Diet Supplementation With Sulfur Amino Acids Modulated Fermentation Metabolome and Gut Microbiome in Goats

Tsegay Teklebrhan1,2,3* and Zhiliang Tan1

1 CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China, 2 University of Chinese Academy of Sciences, Beijing, China, 3 School of Animal and Range Sciences, Haramaya University, Dire Dawa, Ethiopia

Dietary amino acids shift hydrogen metabolism to an alternative hydrogen sink consisting of dissolved hydrogen sulfur (dH2S) rather than methanogenesis; and influences the fermentation metabolome and microbiome associated with particles and liquid fractions in gut regions (foregut, small intestine, and hindgut) of goats. A completely randomized block design with a total of 20 goats (5 goats per treatment) was used to conduct the trial. The goats were fed on a diet that consisted of a concentrated mixture with maize stover roughage (50:50, on a dry matter basis) and randomly assigned to one of the four treatments: without amino acid supplementation (a basal diet), a basal diet supplemented with methionine (Met), a basal diet supplemented with lysine (Lys), and a basal diet supplemented with lysine (ML). Goats fed Met alone or in combination had less acetate, acetate to propionate ratio, and greater propionate (p < 0.05) in the foregut and hindgut than those fed control or Lys. Nonetheless, the goats fed on the amino acid supplements had higher levels of branched-chain VFA (p < 0.05) in the foregut and hindgut than the control goats. Goats fed on ML had the highest ammonia (p < 0.01), followed by Met or Lys, both in the foregut and hindgut, compared with the control. Those fed on Met alone or in combination, had lower dH2, dCH4 (p < 0.01), and higher dH2S (p < 0.01) in the foregut and hindgut than the control or Lys. The goats that were fed on Met alone or in combination, had higher 16S rRNA gene copies of total bacteria, methanogens, and 16S rRNA gene copies of protozoa, fungi, and fiber-utilizing bacterial species (p < 0.01) associated with particles vs. liquid, both in the foregut and hindgut than the control goats. This study gives insights into the use of sulfur-containing amino acids, as an alternative dietary mitigation strategy of methanogenesis in ruminants and highlights the need for further research in this direction.

Keywords: amino acids, hydrogen, metabolites, metagenomics, microbiome
INTRODUCTION

Microbial fermentation of amino acids produces ammonia, volatile fatty acids (VFA), carbon dioxide (CO₂), methane (CH₄), and molecular hydrogen (H₂) in the gut (foregut, small intestine, and hindgut) of ruminants. It is crucial to reduce the level of crude protein (CP) in ruminant diets with the supplementation of limiting amino acids such as methionine and lysine, to improve the number of metabolizable amino acids; and decrease nitrogen losses, feed costs, and greenhouse gas emissions without adverse effect on animal performance (Sinclair, 2014; Guyader et al., 2016). It has been shown that dietary supplements with high sulfate could shift H₂ toward energetically advantageous pathways away from methanogenesis and reduce methane emissions and yield (Judy et al., 2019; Lan and Yang, 2019; Teklebrhan et al., 2020). For instance, a sulfur-rich corn gluten diet decreased dissolved hydrogen (dH₂) and methane (dCH₄), while increasing dissolved hydrogen sulfur (dH₂S) which was associated with reduced methanogenesis in goats fed on corn meal (Teklebrhan et al., 2020). Hydrogen has been shown to be involved in amino acid fermentation in several ways. In some cases, hydrogen or reducing equivalents required for hydrogenation reactions can be obtained by the uptake of molecular hydrogen or may be generated from one amino acid for the reduction of another (Nisman, 1954; Barker, 1961). This suggests that amino acid biosynthesis can either release or consume H₂, which could affect gut fermentation pathways and gaseous production. Biosynthesis of sulfur-containing amino acids like methionine involves H₂ being reduced to H₂S, suggesting that methionine biosynthesis could facilitate uptake of H₂ by sulfidogenic bacteria rather than methanogens.

Research on diet supplementation with amino acids is limited to using amino acids in microbial fermentation and microbiome patterns in ruminants, though few in vitro trials Abbasi et al. (2019) and Hassan et al. (2021) reported inconsistent results for lysine and methionine in fermentation and microbiota. Hence, it is crucial to investigate and compare the effects of supplementation of dietary methionine or lysine, either alone or in combination with a low protein diet in modulating microbial fermentation and the microbial ecosystem in the gut (foregut, small intestine, and hindgut) of ruminants. We hypothesized that methionine supplementation, either alone or combination in corn stover based diet could shift hydrogen metabolism toward an alternative electron sink and modulates fermentation metabolome and microbiome in goats. As a result, this study investigated that sulfur amino acids shift hydrogen to H₂S than methanogenesis and altered the microbiome associated with solid and liquid fractions in the gut regions of goats.

MATERIALS AND METHODS

Animals Feeding and Management

The study used twenty Liuyang black male goats with an average age of 10 ± 0.2 months old and an initial body weight of 18.2 ± 2.5 kg. The experiment was conducted using a completely randomized block design with a total of 20 goats (5 goats per treatment). All of the goats were kept in stainless steel metabolic cages (150 cm × 60 cm × 80 cm) with free access to clean water. The metabolic room’s temperature was set to 22 ± 1°C. The diet was designed to meet 140% of the metabolic energy maintenance needs (Liu and Zhang, 1996). The ingredients and nutrient composition of a basic diet are given in Table 1. In total, twenty goats were randomly divided into four groups. Each group of five goats was randomly assigned to one of four diets: a basal diet with no amino acid supplementation (control), a control diet supplemented with methionine (Met), a control diet supplemented with lysine (Lys), and a control diet supplemented with both methionine and lysine (ML). Goats were adapted to treatment diets through step-wise increments for 14 days until they all reached their stable dry matter (DM) intake according to the standard of metabolic body weight. The experimental period lasted for another 12 d. Goats were fed ad libitum, targeting less than 5% refusal. Daily meals were offered twice equally at 8:00 am and 4:00 am. The amounts of methionine and lysine supplement in Met, Lys, and ML treatments were 1.27 g, 1.96 g, and 1.27 plus 1.96 g of concentrate on a DM basis. Hydrogen gas emissions without adverse effect on animal performance (Judy et al., 2019; Lan and Yang, 2019; Teklebrhan et al., 2020). For instance, a sulfur-rich corn gluten diet decreased dissolved hydrogen (dH₂) and methane (dCH₄), while increasing dissolved hydrogen sulfur (dH₂S) which was associated with reduced methanogenesis in goats fed on corn meal (Teklebrhan et al., 2020). Hydrogen has been shown to be involved in amino acid fermentation in several ways. In some cases, hydrogen or reducing equivalents required for hydrogenation reactions can be obtained by the uptake of molecular hydrogen or may be generated from one amino acid for the reduction of another (Nisman, 1954; Barker, 1961). This suggests that amino acid biosynthesis can either release or consume H₂, which could affect gut fermentation pathways and gaseous production. Biosynthesis of sulfur-containing amino acids like methionine involves H₂ being reduced to H₂S, suggesting that methionine biosynthesis could facilitate uptake of H₂ by sulfidogenic bacteria rather than methanogens.

Research on diet supplementation with amino acids is limited to using amino acids in microbial fermentation and microbiome patterns in ruminants, though few in vitro trials Abbasi et al. (2019) and Hassan et al. (2021) reported inconsistent results for lysine and methionine in fermentation and microbiota. Hence, it is crucial to investigate and compare the effects of supplementation of dietary methionine or lysine, either alone or in combination with a low protein diet in modulating microbial fermentation and the microbial ecosystem in the gut (foregut, small intestine, and hindgut) of ruminants. We hypothesized that methionine supplementation, either alone or combination in corn stover based diet could shift hydrogen metabolism toward an alternative electron sink and modulates fermentation metabolome and microbiome in goats. As a result, this study investigated that sulfur amino acids shift hydrogen to H₂S than methanogenesis and altered the microbiome associated with solid and liquid fractions in the gut regions of goats.

MATERIALS AND METHODS

Animals Feeding and Management

The study used twenty Liuyang black male goats with an average age of 10 ± 0.2 months old and an initial body weight of

18.2 ± 2.5 kg. The experiment was conducted using a completely randomized block design with a total of 20 goats (5 goats per treatment). All of the goats were kept in stainless steel metabolic cages (150 cm × 60 cm × 80 cm) with free access to clean water. The metabolic room’s temperature was set to 22 ± 1°C. The diet was designed to meet 140% of the metabolic energy maintenance needs (Liu and Zhang, 1996). The ingredients and nutrient composition of a basic diet are given in Table 1. In total, twenty goats were randomly divided into four groups. Each group of five goats was randomly assigned to one of four diets: a basal diet with no amino acid supplementation (control), a control diet supplemented with methionine (Met), a control diet supplemented with lysine (Lys), and a control diet supplemented with both methionine and lysine (ML). Goats were adapted to treatment diets through step-wise increments for 14 days until they all reached their stable dry matter (DM) intake according to the standard of metabolic body weight. The experimental period lasted for another 12 d. Goats were fed ad libitum, targeting less than 5% refusal. Daily meals were offered twice equally at 8:00 am and 4:00 am. The amounts of methionine and lysine supplement in Met, Lys, and ML treatments were 1.27 g, 1.96 g, and 1.27 plus 1.96 g of concentrate on a DM basis. Hydrogen gas emissions without adverse effect on animal performance (Judy et al., 2019; Lan and Yang, 2019; Teklebrhan et al., 2020). For instance, a sulfur-rich corn gluten diet decreased dissolved hydrogen (dH₂) and methane (dCH₄), while increasing dissolved hydrogen sulfur (dH₂S) which was associated with reduced methanogenesis in goats fed on corn meal (Teklebrhan et al., 2020). Hydrogen has been shown to be involved in amino acid fermentation in several ways. In some cases, hydrogen or reducing equivalents required for hydrogenation reactions can be obtained by the uptake of molecular hydrogen or may be generated from one amino acid for the reduction of another (Nisman, 1954; Barker, 1961). This suggests that amino acid biosynthesis can either release or consume H₂, which could affect gut fermentation pathways and gaseous production. Biosynthesis of sulfur-containing amino acids like methionine involves H₂ being reduced to H₂S, suggesting that methionine biosynthesis could facilitate uptake of H₂ by sulfidogenic bacteria rather than methanogens.

TABLE 1 | Ingredients and nutrient composition of the diet.

Item	Basal diet
Ingredient (g/kg DM)	
Corn	224
Wheat bran	179
Soybean meal	60.0
Rapeseed meal	1.00
Maize straw	500
Urea	10.8
Salt	6.00
Vitamin/mineral premix	20.0
Nutrient composition (g/kg DM)	
Crude protein	126.9
Acid detergent fiber	231.8
Neutral detergent fiber	493.5
Calcium	2.00
Phosphorus	4.00
Metabolizable energy (MJ/kg)	2.26

aIngredients composition (% DM), contained 22.4% of corn, 17.9% wheat bran, 6.0% of soybean meal, 0.1% of rape seed meal, 50% of maize stover, 1.08% of urea, 0.6% of salt, and 2.0% of premix.

bPremix formulated (per kg of dietary DM): 119 g of MgSO₄·H₂O, 1.53 g of FeSO₄·H₂O, 0.8 g of CuSO₄·H₂O, 3 g of MnSO₄·H₂O, 5 g of ZnSO₄·H₂O, 10 mg of Na₂SeO₃, 40 mg of KI, 30 mg of CoCl₂·6H₂O, 95,000 IU of vitamin A, 17,500 IU of vitamin D, and 18,000 IU of vitamin E.
of amino acids, were calculated according to the following equations:

\[Q_d = \frac{C_t}{C_d} \]
\[Q_i = \frac{C_t}{C_i} \]
\[DFAA_i = CDAA_i \times Q_d \]
\[IFAA_i = CIAA_i \times Q_i \]
\[DAA_i = \frac{DFAA_i - IFAA_i}{DFAA_i} \times 100 \%
\]

where \(Q_d \) is the DM flow in the duodenum, \(C_t \) the total amount of the administrated Cr\(_2\)O\(_3\) content in the dried rumen per day, \(C_d \) the Cr\(_2\)O\(_3\) content in the dried duodenal digesta, \(C_i \) the Cr\(_2\)O\(_3\) content in the dried ileal digesta, DFAA\(_i\) the AA\(_i\) flow at the duodenum, CDAA\(_i\) the AA\(_i\) content in the dried duodenal digesta, IFAA\(_i\) the AA\(_i\) flow at the ileum, CIAA\(_i\) the AA\(_i\) content in the dried ileal digesta, and DAA\(_i\) is the ileal apparent digestibility of AA\(_i\).

In addition, the amounts of Met and Lys infused into the lumen digesta, and DFAA\(_i\).

\[\Delta X = X_t - \sum_{i=1}^{n} DAA_i \times \Delta X_i = D_t Q_i - \frac{D_i \times DFAA_i}{R_i} \]

where \(D_t \) is the ileal digestibility of total amino acids, \(Q_i \) is the duodenal flow of total amino acids, \(\Delta X_i \) is the computed amount of AA\(_i\) infused into the duodenum and \(R_i \) is the AA\(_i\) proportion of total amino acids in the muscle.

Sampling and Processing

After the morning feed on d 12, 5 goats from each treatment were euthanized according to the ethical procedure of the Institute of Subtropical Agriculture, Chinese Academy of Sciences (procedure number: ISA-W-201802). The abdomen was opened, and the gut was immediately separated from the carcass. To avoid mixing of digesta for sampling, the gut regions (foregut, small intestine, and hindgut), including reticular-rumen (foregut), duodenum, ileum, jejenum (small intestine), cecum, colon, and rectum (hindgut), were tied with a sterile thread at the start and end of each region. Each gut region was longitudinally incised along the dorsal line using sterile equipment. The contents in each gut region were first homogenized and then mixed thoroughly to reduce the localized effect.

Representative samples of the foregut (~100 g), small intestine (~60 g), and hindgut (~60 g) were collected in sterile anoxic tubes. A schematized diagram of the sampling regions is given in **Figure 1**. Approximately, 10 g of a subsample from each gut region was used for immediate measurement of dH\(_2\), dH\(_2\)S, and pH. Another subsample of each gut region was diluted with 1:5 (m/v) iced sterile anaerobic phosphate-buffered saline (PBS; pH 6.8). Samples were then homogenized and filtered through four layers of sterile cheesecloth to obtain approximately 100 ml of liquid and remaining particle-associated samples from each region, respectively, for the liquid and particle-associated samples. Then samples were immediately snap-frozen using liquid nitrogen at −80°C for genomic DNA isolation. The remaining liquid from each region was used for the analysis of VFA, ammonia, and dCH\(_4\).

Sample Analysis

All samples of the feed offered, and refusals were dried at 105°C for 24 h for DM determination and then ground, using a hammer mill to pass through a 1-mm sieve. Crude protein (CP) (N × 6.25) was determined using the Kjeldahl method (AOAC, 1995). Neutral detergent fiber (NDF) with the addition of α-amylase and sodium sulfite and acid detergent fiber (ADF), both expressed inclusive of residual ash, were analyzed according to Van Soest et al. (1991). Metabolizable energy (ME) was calculated, according to Lu and Zhang (1996). Phosphorus and Ca concentrations were determined, following the procedure of AOAC International (2006).

The pH of gut samples was measured using a portable pH meter (Starter 300; Ohaus Instruments Co., Ltd., Shanghai, China). The dH\(_2\) and dH\(_2\)S of gut samples were determined by micro-sensor, using H\(_2\) and H\(_2\)S electrodes, respectively, according to protocols of the manufacturer’s manual (Unisense, Aarhus, Denmark). Dissolved methane (dCH\(_4\)) was extracted from the liquid phase of gut samples into the gas phase using the procedure of Wang et al. (2016a) with slight modification. A 20-ml syringe containing 10 ml of N\(_2\) gas (>99.99%) was transferred into a 50-ml plastic syringe containing 35 ml of gut samples via polyurethane tubing. The gas dissolved in the liquid phase was released into the gas phase, by shaking at 200 revolutions per second for 5 min in an orbital shaker (WSZ-100A, Shanghai Yiheng Scientific Instruments Co., Ltd., Shanghai, China). Gas samples were collected, using evacuated tubes for analysis, using GLC (Agilent 7890A, Agilent Inc., Palo Alto, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States). The qPCR analysis of target microbes was performed, using an ABI 7900HT, Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, United States).
FIGURE 1 | A schematic diagram of gut regions of goat. The sampled regions of the gut are highlighted in black boxes.

TABLE 2 | Primers are used for quantitative PCR (qPCR).

Target species	Primer	Primer sequence (5′-3′)	Size (bp)	Reference	E1 (%)
Bacteria	Forward	CGGCAACCGAGCAGCAACCC	146	Denman and McSweeney, 2006	100.4
	Reverse	CCAATTGACACTGCGATAGCC			
Protozoa	Forward	GCTTTCGAGGATGAGTATTT	223	Sylvester et al., 2004	96.3
	Reverse	CTTGAGGATCATGATCAGT			
Methanogens	Forward	GATTAGACTGCCAGTGATG	192	Hook et al., 2009	101.9
	Reverse	GTTGAATGCTAACAAACGCA			
Fungi	Forward	GAGGAAATGACATCCTAGGTTTC	120	Denman and McSweeney, 2006	97.2
Prevotella ruminicola	Reverse	CAAATACAGAAAGGATGATGATT			
Selenomonas ruminantium	Forward	CAATGACATCCACGCCCTGG	138	Stevenson and Weimer, 2007	99.8
	Reverse	TTCACACTGATTGCAACCTGG			
Ruminococcus albus	Forward	CCCTAAAGGACATGCTTTG	176	Koike and Kobayashi, 2001	101.3
	Reverse	CTTCCGCCCCGTTAGAACAA			
Ruminococcus flavefaciens	Forward	CGAACGGAGATAATTGGTACAT	132	Denman and McSweeney, 2006	102.2
	Reverse	CAGTCTGCTGATGATGATGATG			
Fibrobacter succinogenes	Forward	GTTGGACATTACGGGCCCTGG	121	Denman and McSweeney, 2006	100.7
	Reverse	CGCCTGCCCTGAACATACG			
Ruminobacter amylophilus	Forward	CGGAGAGAATCAGCTTGGT	102	Stevenson and Weimer, 2007	100.3
	Reverse	GCATCTGAACTGCGCTTGGT			

1 Efficiency.

made in RNase-free water for qPCR analysis. The qPCR reaction volume was 10 µl, including 5 µl of SYBR Premix Ex Taq, 0.2 µl of ROX, 0.2 µl of each primer (10 µM), 1 µl of the template DNA (10 ng/µl), and 3.4 µl of RNase-free water. The program was set to 95°C for 30 s, followed by 40 cycles at 95°C for 5 s and 60°C for 30 s for annealing/extension. The final melting curve was detected at 95°C for 15 s, 60°C for 1 min, and 95°C for 15 s. The final absolute amount of the target group or species was estimated, by relating the cycle threshold (CT) value to the standard curves. The results were then transformed into log_{10} copies/ml or g of sample for further analysis.
Statistical Analysis

Fermentation metabolites and qPCR data were analyzed using the R software version 3.6.3 by the (R Core Team 2020, Vienna, Austria). Data were subjected to a linear mixed model, using the package lme4 version as described by Pinheiro et al. (2013). Including diet, gut regions, sample fraction, and all possible interactions between them, as fixed effects, and block or animal as a random effect. Multiple mean comparisons were tested, using Tukey’s adjustment. Differences at $p \leq 0.05$ were considered significant results. Pearson correlation coefficients were computed to determine the correlations between fermentation metabolites and microbiota concentrations. Correlation coefficient values (r) with $r > 0.44$ for $p < 0.1$, $r > 0.52$, $p < 0.05$, $r > 0.66$ for $p < 0.01$, and $r > 0.79$ for $p < 0.001$. Correlation coefficient values greater than zero indicate a positive correlation while values less than zero indicate a negative correlation between variables.

RESULTS

Short-Chain Fatty Acid Metabolites

Amino acid supplementation changed the production of volatile fatty acids in gut regions (Table 3). The highest total VFA production was obtained (+73 and 64%) in the foregut, followed by the hindgut and the small intestine, with a lower (−24%; $p < 0.05$) in the hindgut vs. foregut filtrates. The foregut had a higher acetate molar percentage and acetate to propionate ratio ($p < 0.05$), than the hindgut and small intestine filtrates. Nevertheless, propionate, valerate, and branched-chain VFA (isobutyrate and isovalerate) ($p < 0.05$) followed the reverse trend; being higher in the small intestine > hindgut > foregut. Except in the small intestine, goats fed Met alone or in combination (ML), had lower acetate, and acetate to propionate ratios, but higher propionate ($p < 0.05$) than those fed control or Lys. Nevertheless, goats fed on the amino acid supplements had greater branched-chain VFA ($p < 0.05$) than those in the control group. Individual fatty acids were modulated by the interaction of the gut with diet: goats fed Met alone or in combination had less acetate, and acetate to propionate ratio while; having more propionate ($p < 0.05$) in the foregut and hindgut than those fed control or Lys. In addition, consistently, greater branched-chain VFA ($p < 0.01$) was apparent; both in the foregut and hindgut of goats fed the amino acid supplements than in the control group. Despite the small intestine having the highest propionate and branched-chain VFA ($p < 0.05$), these values remained unaffected by the diet groups.

TABLE 3 | Fatty acid metabolites in gut regions of goats supplemented with amino acid.

Gut regions	Diet2	VFA1	Acetate	Propionate	Butyrate	Valerate	Isobutyrate	Isovalerate	Ace/prop
Small intestine	Control	18.1	42.1c	31.0a	14.0	4.00	4.20a	4.70a	1.35a
	Met	17.2	42.1c	30.1a	15.9	3.98	3.94a	3.98a	1.39a
	Lys	18.0	41.2c	32.6a	14.1	4.10	3.96a	4.04a	1.26a
	ML	19.3	42.0d	31.3a	13.0	4.70	4.64a	4.36a	1.34a
Foregut	Control	66.7	65.6b	16.0d	14.0	2.12	1.53c	0.75c	4.10b
	Met	67.5	54.9b	22.5d	14.9	2.16	2.67b	2.87b	2.44b
	Lys	68.3	63.6b	15.2c	14.1	1.99	2.62b	2.49b	4.18b
	ML	69.5	53.9b	23.6b	15.0	2.20	2.89b	2.51b	2.29b
Hindgut	Control	49.8	62.5a	19.1c	14.5	2.02	0.98c	0.90c	3.27c
	Met	50.4	51.8b	26.3b	14.8	2.32	2.90b	1.88b	1.97b
	Lys	51.3	61.5a	17.7c	13.9	2.03	2.46b	2.41b	3.47b
	ML	52.1	51.9b	25.7b	15.0	2.71	2.57b	2.12b	2.05b
	SEM	5.01	3.67	2.50	1.46	0.20	0.01	0.02	0.03
P-value	Gut	0.0201	0.0301	0.0401	0.1524	0.0201	0.0400	0.0300	0.0302
	Diet	0.1210	0.0400	0.0200	0.1310	0.1124	0.0201	0.0412	0.0200
	Gut-Diet	0.3212	0.0301	0.0410	0.2435	0.2010	0.0302	0.0402	0.0310

1FVA total volatile fatty acids (mM), individual volatile fatty acids (mol/100 mol) acetate to propionate ratio (mol/mol). 2Basic diet without supplementation (Control), control supplemented with methionine (Met), and control supplemented with lysine (Lys), and control supplemented with methionine and lysine (ML). Results bear different letters indicate significant, while results bear same letters indicate not significant variation.

Dissolved Gas Products

Amino acid supplementation influenced ammonia and gaseous production, including dH$_2$, dH$_3$S, and dCH$_4$, in different gut regions of goats (Table 4 and Figures 2, 3). The ammonia levels (+88 and 85%, respectively) were higher in the foregut and hindgut than in the small intestine, with the hindgut having less ammonia (−21%) than the foregut (Table 4 and Figure 2A). Foregut and hindgut had greater dH$_2$ (+93 and 87%; $p < 0.05$), respectively, than in the small intestine with an apparently lower (−47.5%; $p < 0.05$) value in the contents of the hindgut vs. foregut (Table 4 and Figure 2B). In addition, the foregut and hindgut had greater dCH$_4$ (+86 and 79%; $p < 0.05$) than in the small intestine and less (−30; $p < 0.05$) in the hindgut than the foregut (Table 4 and Figure 2C). Consistently, the foregut and hindgut had enhanced dH$_3$S (+89 and 86%) levels than the small intestine and lower (−22%) dH$_3$S levels in the hindgut than the
foregut (Table 4 and Figure 2D). Goats fed ML had the highest ammonia compared with other treatments, whilst goats fed either Met alone or in combination had greater ammonia ($p < 0.05$) compared, with those in control (Table 4 and Figure 2E). In addition, goats fed either Met alone or in combination, reduced dH_2, dCH_4, while having greater dH_2S production, than those in control or Lys (Table 4 and Figures 2F–H). It was consistent with higher ammonia in the contents of the foregut, followed by the hindgut in the amino acid supplements than in the control with ML having the highest ammonia levels (Table 4 and Figure 3A; $p < 0.01$). In addition, goats fed either Met alone or in combination, had reduced dH_2, dCH_4, while having increased dH_2S ($p < 0.05$) than in control or Lys with a notably higher value in the foregut than in the hindgut and small intestine (Table 4 and Figures 3B–D; $p < 0.01$).

Association of Metabolome and Dissolved Gasses

There were positive correlations between dH_2, dCH_4 with ammonia, total VFA and molar percentages of propionate, isobutyrate, and isovalerate, and negative correlations with acetate, butyrate, and valerate, both in the foregut and hindgut, with no significant correlations in the small intestinal contents (Table 5). Furthermore, there was a strong positive correlation between dH_2 and dCH_4, while having a negative correlation with dH_2S in the foregut and hindgut. Nevertheless, there was a negative correlation between dCH_4 and dH_2S in the foregut and hindgut. In addition, there was no significant correlation between dissolved gasses and fermentation metabolome in the contents of the small intestine.

Microbiome

Amino acid supplementation had modulated gene copies of gut microbial ecosystems associated with particles and liquid fractions in goats (Table 6). The highest 16S rRNA gene

TABLE 4 | Gas metabolites in gut regions of goats supplemented with amino acid.

Gut regions	Diet2	pH	Ammonia (mM)	$dH_2$1	dCH_4	dH_2S
Small intestine	Control	7.10	1.20±	1.40±	0.30±	29.9±
	Met	7.00	1.30±	0.77±	0.31±	33.0±
	Lys	6.05	1.31±	1.37±	0.34±	27.0±
	ML	7.09	1.41±	0.80±	0.28±	34.0±
Foregut	Control	6.87	6.37±	24.3±	3.41±	190.4±
	Met	7.20	10.8±	14.9±	1.70±	325.3±
	Lys	6.70	11.4±	21.5±	2.92±	187.3±
	ML	6.90	16.4±	13.7±	1.8±	301.8±
Hindgut	Control	6.85	4.94±	14.2±	2.11±	131.2±
	Met	6.98	8.85±	7.62±	1.21±	249.0±
	Lys	7.06	8.01±	13.1±	2.37±	151.0±
	ML	6.96	13.7±	6.63±	1.42±	245.8±
P-value	Gut	0.213±	0.0302±	0.043±	0.0302±	0.0200±
	Diet	0.142±	0.0300±	0.0329±	0.0400±	0.0334±

1Dissolved hydrogen (μM), dissolved methane (mM), dissolved hydrogen sulfur (mM).

2Basic diet without supplementation (Control), control supplemented with methionine (Met), and control supplemented with lysine (Lys), control supplemented with methionine and lysine (ML). Results bear different letters indicate significant, while results bear same letters indicate not significant variation.

FIGURE 2 | Least square and standard error of means (SEM) for the effect of gut and dietary amino acids, respectively, on microbial fermentation metabolome (A) ammonia production (mM), (B) dissolved hydrogen (dH_2; μM), (C) dissolved methane (dCH_4; mM), (D) dissolved hydrogen sulfur (dH_2S; mM), and (E) ammonia production (mM), (F) dissolved hydrogen (dH_2; μM), (G) dissolved methane (dCH_4; mM), (H) dissolved hydrogen sulfur (dH_2S; mM). Different letters on the top of bars for the gut reigns and, amino acid supplement, respectively, indicate significantly different at $p < 0.05$.

TABLE 5 | Least square and standard error of means (SEM) for the effect of gut and dietary amino acids, respectively, on microbial fermentation metabolome.

Items	Gut regions	Diet2	pH	Ammonia (mM)	$dH_2$1	dCH_4	dH_2S
Small intestine	Control	7.10	1.20±	1.40±	0.30±	29.9±	
	Met	7.00	1.30±	0.77±	0.31±	33.0±	
	Lys	6.05	1.31±	1.37±	0.34±	27.0±	
	ML	7.09	1.41±	0.80±	0.28±	34.0±	
Foregut	Control	6.87	6.37±	24.3±	3.41±	190.4±	
	Met	7.20	10.8±	14.9±	1.70±	325.3±	
	Lys	6.70	11.4±	21.5±	2.92±	187.3±	
	ML	6.90	16.4±	13.7±	1.8±	301.8±	
Hindgut	Control	6.85	4.94±	14.2±	2.11±	131.2±	
	Met	6.98	8.85±	7.62±	1.21±	249.0±	
	Lys	7.06	8.01±	13.1±	2.37±	151.0±	
	ML	6.96	13.7±	6.63±	1.42±	245.8±	
copies of methanogens, bacteria, and 18S rRNA gene copies of fungi and protozoa ($p < 0.01$) were observed in the order of foregut > hindgut > small intestine. Additionally, 16S rRNA gene copies of starch (Salmonella ruminantium, Prevotella ruminicola, and Ruminobacter amylophilus) and fiber utilizing bacterial species (Ruminococcus albus, Ruminococcus flavefaciens, and Fibrobacter succinogenes) were also consistently greater in the foregut and hindgut than the small intestine. Goats fed
Amino acid supplements had increased 16S rRNA gene copies of bacteria, methanogens, and 18S rRNA of protozoa, fungi, and bacterial species (starch and fiber utilizing) \((p < 0.05)\) than those in control. In addition, the interaction of gut regions with diet had modulated gene copies of microbiota (Table 6). In response to the amino acid supplements total bacteria, methanogens, protozoa, fungi, and functional bacterial species \((p < 0.01)\) were increased in the foregut and hindgut compared with control.

Regardless of the amino acid supplemented, greater populations of methanogens, bacteria, fungi, protozoa, and fiber utilizing bacterial species \((R.\ albis, R.\ flavafaciens, and F.\ succinogenes)\), while less \(S.\ ruminantium, P.\ ruminicola\) \((p < 0.05)\) were observed in the particles, than liquid fractions. In addition, particles associated populations of the methanogens, bacteria, fungi, protozoa, and fiber utilizing bacterial species \((p < 0.01)\) increased, both in the foregut and hindgut than liquid fractions. Nevertheless, populations of \(S.\ ruminantium\) and \(P.\ ruminicola\) were higher in the liquid than particles associated fractions, both in the foregut and hindgut. Consistently, goats in the amino acid supplements had increased populations of total microbiota, fiber utilizing bacterial species associated with particles vs. liquid fractions, both in the foregut and hindgut than in the control treatment with a notably highest value in the foregut. Moreover, the foregut and hindgut in the amino acids had increased total populations of bacteria, methanogens, protozoa, fungi, and fiber utilizing bacteria species \((p < 0.01)\) associated with particles rather than liquid fractions in the control group. The highest values of these microorganisms were observed in the foregut than the hindgut, and the lowest in the small intestine (Table 6).

Association of Gasses and Microbiome

Concentrations of microbial groups were in correlation with almost all fermentation metabolites, both in the foregut and hindgut (Table 7). Concentrations of total VFAs, \(dH_2\), and ammonia, and molar proportions of acetate, isobutyrate, and isovalerate, were positively correlated with all microbial groups in the foregut and hindgut. On the other hand, the concentration of \(dH_2S\) was positively correlated with the DNA concentrations of bacteria, protozoa, and fungi, and negatively correlated with methanogens. Inversely, \(dCH_4\) was negatively correlated with bacteria, protozoa, and fungi, but positively correlated with methanogens and fiber degrading bacterial species. Furthermore, the molar percentage of propionate was positively correlated with bacteria and fungi, while, negatively correlated with protozoa and methanogens, and fiber degrading bacterial species. On the other hand, molar percentages of butyrate and valerate were negatively correlated with concentrations of all microbial groups considered in the foregut and hindgut (Table 7).

DISCUSSION

We have proposed that sulfur-containing amino acids could redirect hydrogen toward an alternative sink \((H_2S)\) than methanogenesis and modulates metabolites and microbiota associated with particles and liquid fractions in the gut regions of goats. This was supported by a significant shift of these values both in the foregut and hindgut, with little effect on the small intestinal contents. This is likely because, the small intestine is predominated by enzymatic digestion, rather than microbial fermentation in the foregut and hindgut segments, implying less or no effect on fermentation products in the small intestine, in response to the amino acid supplements.

The influence of Met alone or in combination on the shift of fermentation metabolites such as dissolved gasses, VFAs, and the microbial community was visible, both in the foregut and hindgut, but, had little effect on the small intestine (Figure 3). This shows that the methane mitigating effects of these amino acid supplements are induced, not only by rumen fermentation modifications but also by hindgut fermentation changes. In this study, the decreased acetate to propionate ratio and \(CH_4\), both in the foregut and hindgut of goats fed, either Met alone or in combination, indicated the use of these supplements in mitigating methanogenesis which was consistent with decreased total gas and \(CH_4\) in methionine supplemented more than in the control group in an in vitro trial (Abbasi et al., 2019).

However, an increased propionate in goats fed Met alone or in combination, could be caused by the sulfur contained in the amino acids. This claim is supported by previous studies that highlighted the role of sulfur supplementation at different doses \((1 \text{ to } 2.5\%)\) in increased propionate in the range of \((1 \text{ to } 10.9\%)\) in ruminants (Bal and Ozturk, 2006; Promkot et al., 2007; Supapong and Cherdhthong, 2020a,b). This observation was consistent with a previous study that reported goats feeding on high sulfur in corn gluten; \(CG\) reduced \(CH_4\) production and yield, and this was associated with decreased rumen liquid \(dH_2\) and \(dCH_4\), and increased \(dH_2S\), as compared with those fed low sulfur in corn meal \(CM\); Teklebrhan et al., 2020). In addition, the inclusion of 2% sulfur with 2.5% urea in the fermented total mixed ration \((FTMR)\), improved digestibility, fermentation, microbial crude protein synthesis, and milk quality in dairy cows \(Supapong and Cherdhthong, 2020a,b\), suggesting that sulfur redirects \(H_2\) toward energetically beneficial pathways for the animal against methanogenesis.

The \(dH_2\) plays a central role in regulating fermentation pathways; low \(dH_2\) stimulates the acetate production pathway, while high \(dH_2\) stimulates the propionate production pathway (Janssen, 2010). This was consistent with a positive correlation of \(dH_2\) with propionate proportion; and a negative correlation with acetate proportion in the rumen (Wang et al., 2016b, 2018; Teklebrhan et al., 2020). Similarly, in the current study, we have observed a positive correlation of \(dH_2\) with propionate proportion and a negative correlation with acetate proportion, both in the foregut and hindgut. A shift in fermentation pathways affects \(CH_4\) production because, acetate biosynthesis is associated with net \(H_2\) release while, propionate formation is associated with reduced \(H_2\) formation (Janssen, 2010).

A recent in vitro study has reported a reduced \(H_2\) recovery in the methionine supplement than in the control (Hassan et al., 2021). This is in line with the current study, the decreasing \(H_2\) in the foregut and hindgut of goats fed Met alone or in combination might be due to the following main reasons:

1. Sulfur-containing amino acids such, as Met, may over
| Gut regions | Fraction | Diet¹ | Items | Total microbial population | Bacterial species | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | Bacteria | Methanogens | Protozoa | Fungi | P. rumincola | S. ruminantium | R. amyophilus | R. albus | R. flavefaciens | F. succinogenes |
| Small intestine | Particle | Control | 4.92² | 4.01¹ | 4.62³ | 3.29⁴ | 4.97⁷ | 4.39⁷ | 4.09 | 4.39⁷ | 4.10⁴ | 3.96⁴ |
| | | Met | 5.15⁴ | 4.18¹ | 4.83³ | 4.04⁴ | 4.59⁴ | 4.27¹ | 3.99 | 4.49⁴ | 4.19⁵ | 4.06⁵ |
| | | Lys | 5.01³ | 4.09¹ | 4.60⁴ | 4.17⁴ | 4.92⁵ | 4.38² | 3.96 | 4.45⁴ | 3.99⁵ | 3.89⁴ |
| | | ML | 5.07² | 4.06² | 4.69⁴ | 4.89⁴ | 5.01² | 4.52² | 4.04 | 4.53⁵ | 4.08⁶ | 4.08⁶ |
| Liquid | Control | 4.82³ | 3.93³ | 4.24⁴ | 3.02⁴ | 4.02⁷ | 4.36⁷ | 4.02 | 4.22³ | 4.03³ | 4.78³ | 4.78³ |
| | | Met | 5.05³ | 4.18³ | 4.40⁴ | 4.32⁴ | 4.79³ | 4.42² | 3.47 | 4.39⁴ | 4.10³ | 3.99³ |
| | | Lys | 5.50⁵ | 3.89³ | 3.97³ | 4.43³ | 4.84³ | 4.51³ | 3.40 | 4.28⁶ | 3.57³ | 4.92³ |
| | | ML | 5.27³ | 4.16³ | 4.74⁴ | 4.27³ | 4.62³ | 4.39³ | 4.10 | 4.39⁴ | 4.01³ | 3.97³ |
| Foregut | Particle | Control | 10.6⁶ | 8.84⁵ | 9.06³ | 8.58³ | 9.21⁴ | 8.01⁵ | 9.01 | 10.0⁵ | 10.8⁶ | 10.1⁶ |
| | | Met | 11.9⁸ | 9.97⁸ | 10.8⁸ | 9.78⁸ | 9.10⁸ | 9.63⁸ | 10.0 | 10.7⁸ | 11.1⁷ | 11.7⁷ |
| | | Lys | 11.4⁸ | 9.67⁸ | 10.9⁸ | 9.88⁸ | 9.01⁸ | 9.16⁸ | 10.9 | 11.0⁸ | 10.7⁷ | 10.8⁸ |
| | | ML | 12.2⁸ | 9.82⁸ | 11.3⁸ | 10.2⁹ | 10.8⁹ | 10.4⁹ | 10.2 | 10.9⁹ | 11.0⁹ | 10.6⁸ |
| Liquid | Control | 8.07³ | 6.14³ | 6.99³ | 6.73³ | 10.9⁹ | 8.03³ | 8.02³ | 8.02 | 8.82³ | 8.82³ | 8.82³ |
| | | Met | 9.70³ | 7.96³ | 8.52³ | 7.74³ | 11.0³ | 9.93³ | 10.3 | 9.93³ | 9.76³ | 9.78³ |
| | | Lys | 9.87³ | 7.91³ | 8.67³ | 7.82³ | 10.8³ | 10.9³ | 10.6 | 9.91³ | 9.94³ | 9.86³ |
| | | ML | 9.99³ | 8.02³ | 9.04³ | 8.20³ | 11.7³ | 11.2³ | 10.0 | 9.86³ | 9.84³ | 10.0³ |
| Hindgut | Particle | Control | 7.24³ | 6.19³ | 6.63³ | 6.01³ | 7.61³ | 7.89³ | 8.78 | 7.15³ | 7.01³ | 8.05³ |
| | | Met | 9.59³ | 7.04³ | 7.88³ | 6.98³ | 8.01³ | 8.87³ | 9.98 | 8.89³ | 8.19³ | 9.79³ |
| | | Lys | 9.69³ | 7.14³ | 7.95³ | 7.01³ | 8.02³ | 8.82³ | 9.89 | 8.97³ | 8.27³ | 9.78³ |
| | | ML | 9.81³ | 7.10³ | 7.89³ | 6.81³ | 8.09³ | 9.45³ | 9.97 | 9.09³ | 8.16³ | 9.69³ |
| Liquid | Control | 6.04³ | 4.29³ | 4.13³ | 4.97³ | 8.11³ | 8.09³ | 8.89 | 5.91³ | 6.91³ | 6.91³ | 6.91³ |
| | | Met | 6.99³ | 5.82³ | 5.88³ | 5.98³ | 9.99³ | 9.01³ | 9.62 | 7.23³ | 7.89³ | 7.89³ |
| | | Lys | 7.26³ | 5.94³ | 5.84³ | 5.85³ | 10.0³ | 9.32³ | 9.78 | 6.99³ | 7.97³ | 7.93³ |
| | | ML | 7.01³ | 6.10³ | 5.73³ | 6.01³ | 9.97³ | 10.0³ | 9.80 | 7.09³ | 7.16³ | 7.95³ |
| SEM | | 0.20 | 0.32 | 0.06 | 0.03 | 0.10 | 0.20 | 0.03 | 0.12 | 0.02 | 0.02 |

1. Basic diet without supplementation (control), control supplemented with methionine (Met), and control supplemented with lysine (Lys), and control supplemented with methionine and lysine (ML).
2. Microbiota log₁₀ gene copy number per g of particle and liquid fractions of digesta in different gut regions of goats.

Results bear different letters indicate significant, while results bear same letters indicate not significant variation.
Sulfur-containing amino acids shifted H$_2$ to a different hydrogen sink, increasing dH$_2$S production rather than CH$_4$ production. This occurs under standard gut conditions because sulfidoicogenic bacteria have a higher affinity for H$_2$ utilization than methanogens, suggesting thermodynamically less efficient H$_2$ consumption by methanogens, thus, stimulating the fermentation pathway that releases less H$_2$ than more H$_2$, per unit of glucose fermented in the gut regions. This was associated with increased propionate, over the acetate pathway in the foregut and hindgut of goats fed sulfur-containing amino acids, i.e., Met rather than control or Lys.

Sulfur-utilizing bacteria species in the particles associated with liquid may affect its fermentation in vitro in the rumen liquid. In addition, an in vitro cultivating system was found to reduce CH$_4$ in methionine addition more than in the control group (Abbasi et al., 2019; Hassan et al., 2021). This observation was supported by a negative correlation between concentrations of methanogens, dCH$_4$, and dH$_2$S in both the foregut and hindgut contents in the current study.

The gut microbiome is a complex ecosystem of bacteria, methanogens, archaea, fungi, and protozoa, and bacteriophages, which interact with each other and their host (Goodman and Gordon, 2010; Minot et al., 2011). Understanding of their composition, association with their metabolome, and ecological role gives insight into how to improve nutrient utilization efficiencies and health and reduce the carbon footprint of ruminants. The significant associations with microbes and their metabolites suggest that the microbiome plays a significant role in the fermentation of amino acids to ammonia, VFA, CO$_2$, CH$_4$, and H$_2$ for microbial protein synthesis in the gut regions of ruminants. In the current study, in response to amino acid supplement, we observed increased copies of 16S rRNA methanogens, bacteria, and 18S rRNA protozoa, fungi, and fiber utilizing bacteria species in the particles associated with liquid fractions in the foregut and hindgut, with a notable greatest value in the foregut. In addition, regardless of the amino acid supplements and sampling fraction, gut regions significantly increased total microbial populations of methanogens, bacteria,

TABLE 7	Correlation1 between concentrations of microbial groups and fermentation metabolites in the gut regions of goats supplemented with amino acid.																											
	Bacteria1	**methanogen**	**protozoa**	**Fungi**	**R. albus**	**R. flavefaciens**	**F. succinogenes**	**Fungi**	**R. albus**	**R. flavefaciens**	**F. succinogenes**																	
	Foregut	Hindgut																										
Protozoa	0.92	0.65	0.85	0.80	0.57	0.51	0.64	0.56	0.62	0.54	0.91	0.47	0.86	0.60	0.89	0.74	0.87	0.49	0.79	0.63	0.78	0.53	0.96	0.67	0.76	0.59	0.83	0.64
Fungi	0.78	0.73	0.78	0.51	0.54	0.54	0.73	0.57	0.87	0.63	0.82	0.62	0.89	0.54	0.73	0.51	0.71	0.69	0.73	0.51	0.73	0.51	0.73	0.51	0.73	0.51		
Methanogen	0.89	0.70	0.78	0.65	0.86	0.75	0.67	0.51	0.71	0.69	0.73	0.51	0.78	0.73	0.63	0.78	0.53	0.96	0.67	0.76	0.59	0.83	0.64	0.89	0.57			
R. albus	0.90	0.54	0.90	0.79	0.65	0.68	0.99	0.73	0.85	0.66	0.85	0.66	0.89	0.73	0.85	0.66	0.89	0.57										
R. flavefaciens	0.76	0.59	0.83	0.64	0.75	0.66	0.85	0.74	0.85	0.67	0.85	0.67	0.89	0.59	0.83	0.64	0.89	0.66										
F. succinogenes	0.96	0.79	0.68	0.63	0.78	0.53	0.68	0.56	0.73	0.68	0.64	0.69	0.62	0.68	0.66	0.62	0.68											

1Microbial concentrations in the gut regions were expressed as log$_{10}$ transformed; correlation coefficient values (r) with r > 0.44 for p < 0.1, r > 0.52, p < 0.05, r > 0.66 for p < 0.01, r > 0.79 for p < 0.001. r-values < 0.1 is not presented in the table.

To VFA:
- Ammonia4:
- Valerate:
- Butyrate:
- Propionate:
- Isobutyrate:
- Isovalerate:

2Total volatile fatty acids (mM).

3Dissolved hydrogen (µM), dissolved methane (mM), dissolved hydrogen sulfur (mM).

4Ammonia (mM).

5Molar percentages of acetate, propionate, butyrate, valerate, isobutyrate, and isovalerate.
nitrogen losses in the feces and urine were similar to the amino gene copies in the foregut, as well as hindgut. Interestingly, by the increase of free amino acid availability to microbes, these microbiomes in the foregut and hindgut might be caused rather than in the control of the current study. The increase of bacterial species in goats fed on the amino acid supplements, 1962; Wallace, 1994). These findings were consistent with higher actively engaged in protein degradation (Blackburn and Hobson, 2008; Bauer et al. 2004) that reported less cellulyotic enzyme activities in the contents of the small and large intestines. This might be related to the correlations observed between microbiota and microbial fermentation metabolites, in the foregut and hindgut of goats, which suggests increased gene copies of total microbiota and functional bacterial species in these gut regions in the current study. For example, the increased populations of fiber degrading bacterial species, both in the foregut and hindgut suggests these microbes are useful for fiber degradation, mainly; in the foregut, and fully undegradable fractions in the hindgut. This is supported by significant correlations between the concentration of metabolome and the associated proliferation of fiber degrading bacterial species, both in the foregut and hindgut, as observed in the current study.

Several studies have described that dietary supplements can influence microbial populations and functional bacterial species in ruminal contents (Shinkai and Kobayashi, 2007; Frey et al., 2010; Popova et al., 2013). In addition, increasing copies of these genes were documented in the contents of the rumen, rather than in small and large intestines (Zeng et al., 2015, 2017). These lower populations of these microbiomes in the hindgut and small intestine might be, due to the lower rate and activity of fiber degrading enzymes, than in the foregut. This was in agreement with an earlier study by Bauer et al. (2004) that reported less cellulyotic enzyme activities in the contents of the small and large intestines. This might be related to the correlations observed between microbiota and microbial fermentation metabolites, in the foregut and hindgut of goats, which suggests increased gene copies of total microbiota and functional bacterial species in these gut regions in the current study. For example, the increased populations of fiber degrading bacterial species, both in the foregut and hindgut suggests these microbes are useful for fiber degradation, mainly; in the foregut, and fully undegradable fractions in the hindgut. This is supported by significant correlations between the concentration of metabolome and the associated proliferation of fiber degrading bacterial species, both in the foregut and hindgut, as observed in the current study.

A previous study has assessed microbes in the rumen liquid or particles associated fractions (Mullins et al., 2013), reporting that total bacteria, fungi, F. succinogenes, and R. albus populations were higher in the particles associated fractions than in liquid (Mullins et al., 2013). Likewise, in this study, we have investigated the differences in the microbiota of goats fed amino acid in the foregut, small intestine, and hindgut in the particles associated and liquid fractions. The total populations of microbiota and fiber degrading bacterial species of R. albus, F. succinogenes, and R. flavaeenci were increased in the particles associated, with liquid fractions in the current study. This suggests these bacterial species are predominantly engaged in degrading and fermenting plant fibers, which is in accordance with Flint et al. (2008) and Biddle et al. (2013).

CONCLUSION

The hypothesis of this study is that sulfur amino acids could shift hydrogen toward an alternative sink supported by increased H2S instead of methanogenesis and changed fermentation and microbiota, associated with particles and liquid fractions, both in the foregut and hindgut of goats. Goats fed on Met and Lys either alone or in combination had increased 16S rRNA gene copies of total bacteria, methanogens, and 18S rRNA of protozoa, fungi, and fiber; utilizing bacterial species associated with particles than liquid fractions of those in control. In addition, amino acid supplements increased total bacteria, methanogens, protozoa and fungi populations, fiber, and starch utilizing bacterial species both in the foregut and hindgut compared with the control group. This study suggests that sulfur-containing amino acids shift hydrogen to an alternative hydrogen sink, i.e., H2S, over methanogenesis and modified gut fermentation metabolites, increasing particle-associated microbiota than liquid both in the foregut and hindgut. This study gives insights into the use of sulfur-containing amino acids, as an alternative dietary mitigation strategy of methanogenesis in ruminants, and it underscores the need for related further research on sulfur amino acids, as a potential sink of hydrogen.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by the experimental protocols used in this trial endorsed by the animal care and use committee of the Institute of Subtropical Agriculture, Chinese Academy of Sciences and strictly followed the guidelines for animal welfare established by the committee.

REFERENCES

Abbasi, I. H. R., Abbasi, F., Liu, L., Bodinga, B. M., Abdel-Latif, M. A., Swelum, A. A., et al. (2019). Rumen-protected methionine a feed supplement to low dietary protein: effects on microbial population, gases production and fermentation characteristics. AMB Expr. 9, 1–10. doi: 10.1186/s13568-019-0815-4

Agle, M., Hristov, A. N., Zaman, S., Schneider, C., Ndegwa, P., and Vaddella, V. K. (2010). Effects of ruminally degraded protein on rumen fermentation and ammonia losses from manure in dairy cows. J. Dairy Sci. 93, 1625–1637. doi: 10.3168/jds.2009-2579

AOAC (1995). Official Methods Of Analysis, 16th Edn. Arlington, TX: Association of analytical chemist.

AOAC International (2006). Official Methods Of Analysis of AOAC International, 18th Edn. Gaithersburg, MD: AOAC Int.

Bal, M. A., and Ozturk, D. (2006). Effects of sulfur containing supplements on ruminal fermentation and microbial protein synthesis. J. Anim. Vet. Sci. 1, 33–36.

Barker, H. A. (1961). “Fermentation of nitrogenous organic compounds,” in The Bacteria, Vol. 2, eds I. C. Gunsalus and R. Y. Stannier (London: Academic Press), 151–207. doi: 10.1016/b978-0-12-395627-9.5001-6

Bauer, J. H., Goupil, S., Garber, G. B., and Helfand, S. L. (2004). An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 101, 12980–12985. doi: 10.1073/pnas.0403493101

Biddle, A., Stewart, L., Blanchard, J., and Leschine, S. (2013). Untangling the genetic basis of fibrolytic specialization by lachnospiraceae and ruminococcaceae in diverse gut communities. Diversity 5, 627–640. doi: 10.3390/d5030627

Blackburn, T., and Hobson, P. (1962). Further studies on the isolation of proteolytic bacteria from the sheep rumen. J. Gen. Microbiol. 29, 69–81. doi: 10.1099/00221287-29-1-69

Broderick, G. A., Stevenson, M. J., Patton, R. A., Lobos, N. E., and Colmenero, J. J. O. (2008). Effect of supplementing rumen-protected methionine on production and nitrogen excretion in lactating dairy cows. J. Dairy Sci. 91, 1092–1102. doi: 10.3168/jds.2007-6769

Craige, W. M., Brown, D. R., Broderick, G. A., and Ricker, D. B. (1987a). Post-granulid compositional changes of fluid- and particle-associated ruminal microorganisms. J. Anim. Sci. 65, 1042–1048. doi: 10.2527/jas1987.6541042x

Craige, W. M., Broderick, G. A., and Ricker, D. B. (1987b). Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J. Nutr. 117, 56–62. doi: 10.1093/jn/117.1.56

Denman, S. E., and McSweeney, C. S. (2006). Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58, 572–582. doi: 10.1111/j.1574-6941.2006.00190.x

AUTHOR CONTRIBUTIONS

TT designed, conducted, and analyzed the experiment and wrote the manuscript. ZT revised and edited the manuscript. Both authors read and approved the manuscript for submission.

FUNDING

This project was jointly funded by the National Natural Science Foundation of China (Grant Nos. 31320103917 and 31372342), CAS Visiting Professorships for Senior and Young International Scientists (Grant Nos. 2013Y2GA0010 and 2017YBA0026), and Hunan Provincial Creation Development Project (Grant No. 2013TF3006).

Erickson, G., and Klopfenstein, T. (2010). Nutritional and management methods to decrease nitrogen losses from beef feedlots. J. Anim. Sci. 88, 172–180. doi: 10.2527/jas.2009-2358

Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R., and White, B. A. (2008). Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131. doi: 10.1038/nrmicro1817

Frey, J. J., Pell, A. N., Berhaisuzer, R., Lapierre, H., Lee, S., Ha, J. K., et al. (2010). Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows. J. Appl. Microbiol. 108, 1982–1993. x doi: 10.1111/j.1365-2672.2009.04602

Goodman, A. L., and Gordon, J. I. (2010). Our unindicted coconspirators: human metabolism from a microbial perspective. Cell Metab. 12, 111–116. doi: 10.1016/j.cmet.2010.07.001

Gould, D. H. (2000). Update on sulfur-related polioencephalomalacia. Vet Clin. N. Am. Food. Anim. Pract. 16, 481–496. doi: 10.1016/s0774-0705(01)30082-7

Guyader, J., Tavendale, M., Martin, C., and Muetzel, S. (2016). Dose-response effect of nitrate on hydrogen distribution between rumen fermentation end products: an in vitro approach. Anim. Prod. Sci. 56, 224–230. doi: 10.1071/AN15526

Hassan, F., Guo, Y., Li, M., Tang, Z., Peng, L., Liang, X., et al. (2021). Effect of methionine supplementation on rumen microbiota, fermentation, and amino acid metabolism in vitro culture contain nitrate. Microorganism 9, 1–26. doi: 10.3390/microorganisms9081717

Hook, S. E., Northwood, K. S., Wright, A. D., and McBride, B. W. (2009). Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogenes in the rumen of the lactating dairy cow. Appl. Environ. Microbiol. 75, 374–380. doi: 10.1128/AEM.01672-08

Janssen, P. H. (2010). Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed. Sci. Technology. 160, 1–22. doi: 10.1016/j.anifeeds.2010.07.002

Judy, J. V., Bachman, G. C., Brown-Brandl, T. M., Fernando, S. C., Hales, K. E., Miller, P. S., et al. (2019). Reducing methane production with corn oil and calcium sulfate: responses on whole-animal energy and nitrogen balance in dairy cattle. J. Dairy. Sci. 102, 1–14. doi: 10.3168/jds.2018-14567

Koike, S., and Kobayashi, Y. (2001). Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204, 361–366. doi: 10.1111/j.1574-6968.2001.tb0911x

Lan, W., and Yang, C. (2019). Ruminal methane production: microorganism-associated and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 654, 1270–1283. doi: 10.1016/j.scitotenv.2018.11.180

Lu, D. X., and Zhang, P. Y. (1996). Scientific Technology of Feeding Goat. Beijing: Chinese Academy of Agricultural Sciences.

Martin, C., Miranda, C., Morgavi, D. P., Forano, E., Devillard, E., and Mosoni, P. (2013). Methionine analogues HMB and HMBi increase the abundance of cellulolytic bacterial representatives in the rumen of cattle with no direct
effects on fiber degradation. Anim. Feed. Sci. Technol. 182, 16–24. doi: 10.1016/j.aniwatres.2013.03.008
Merry, R. J., and McAllan, A. B. (1983). A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fractions of rumen digesta. Br. J. Nutr. 50, 701–709. doi: 10.1079/BJN19830142
Minnot, S., Sinha, R., Chen, J. L. H., Keilbaugh, S. A., Wu, G. D., et al. (2011). The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625. doi: 10.1101/gr.122705.111
Mullins, C. R., Mamedova, A. J., Carpenter, Y., Ying, M. S., Allen, I., and Yoon, B. J. (2013). Bradford analysis of rumen microbial populations in lactating dairy cattle fed diets varying in carbohydrate profiles and Saccharomyces cerevisiae fermentation product. J. Dairy Sci. 96, 5872–5881. doi: 10.3168/jds.2013-6775
Nisman, B. (1954). The Stickland reaction. Bact. Rev. 1, 16–42. doi: 10.1128/BR.1.1.16-42.1954
Pan, X., Xue, F., Nan, X., Tang, Z., Wang, K., and Beckers, Y. (2017). Illumina sequencing approach to characterize thiamine metabolism related bacteria and the impacts of thiamine supplementation on ruminal microbial in dairy cows fed high-grain diets. Front Microbiol. 8:1818. doi: 10.3389/fmicb.2017.01818
Pinheiro, J., Bornkamp, B., Glimm, E., and Bretz, F. (2013). Model-based dose finding under model uncertainty using general parametric models. Statist. Med. 33, 1646–1661. doi: 10.1002/sim.6052
Popova, M., Morgavi, D. P., and Martin, C. (2013). Methanogens and methanogenesis in the rumens and ceca of lambs fed two different high-grain-content diets. Appl. Environ. Microbiol. 79, 1777–1786. doi: 10.1128/AEM.03115-12
Promkot, C., Wanapat, M., Wachirapakorn, C., and Navanukraw, C. (2007). Influence of sulfur on fresh cassava foliage and cassava hay incubated in rumen fluid of beef cattle. Asian Australas. J. Anim. Sci. 20, 1424–1432. doi: 10.5713/ajas.2007.1424
R Core Team (2020). A Language and Environment for Statistical Computing. Vienna: R foundation for statistical computing.
Shinkai, T., and Kobayashi, Y. (2007). Localization of ruminal cellulosytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real time PCR. Appl. Environ. Microbiol. 73, 1–7. doi: 10.1128/AEM.01896-07
Sinclair, L. A. (2014). Reducing dietary protein in dairy cow diets: implications for nitrogen utilization, milk production, welfare, and fertility. Animal 8, 262–274. doi: 10.1017/S1751731113002139
Stevenson, D. M., and Weimer, P. J. (2007). Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75, 165–174. doi: 10.1007/s00253-006-0802-y
Sun, Z. H., Tan, Z. L., Yao, H., Tang, Z. R., Shan, J. G., Hu, J. P., et al. (2007). Effects of intra-duodenal provision of limiting amino acids on serum concentrations and real time PCR analysis. World J. Microbiol. Biotechn. 36, 808–812. doi: 10.2144/04365ST04
Zeng, Y., Zeng, D., Ni, X., Zhu, H., Jian, P., Zhou, Y., et al. (2017). Microbial community compositions in the gastrointestinal tract of Chinese Mongolian sheep using Illumina MiSeq sequencing revealed high microbial diversity. AMB Expr. 7, 1–10. doi: 10.1186/s13568-017-0378-1
Zeng, Y., Zeng, D., Zhang, Y., Ni, X. Q., Tang, Y. R., Zhu, H., et al. (2015). Characterization of the cellulosytic bacterial communities along the gastrointestinal tract of Chinese Mongolian sheep using Illumina MiSeq sequencing revealed high microbial diversity. AMB Expr. 7, 1–10. doi: 10.1186/s13568-017-0378-1
Zhu, X., Jiao, J., Zhou, C., Tang, S., Wang, M., Kang, J., et al. (2018). Effects of dietary methionine and lysine supplementation on nutrients digestion, serum parameters and mRNA expression of related amino acid sensing and transporting genes in growing goats. Small Rumin. Res. 166, 1–6. doi: 10.1016/j.smallrumres.2018.07.002
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Copyright © 2022 Teklebrhan and Tan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.