Genetic models reveal origin, persistence and non-redundant functions of IL-17–producing γδ T cells

Inga Sandrock1, Annika Reinhardt1, Sarina Ravens1, Christoph Binz1, Anneke Wilharm1, Joana Martins1, Linda Oberdörfer1, Likai Tan1, Stefan Lienenklaus1,2, Baojun Zhang1, Ronald Naumann1, Yuan Zhuang1, Andreas Krueger1, Reinhold Förster1, and Immo Prinz1,3,4

γδ T cells are highly conserved in jawed vertebrates, suggesting an essential role in the immune system. However, γδ T cell–deficient Tcrd−/− mice display surprisingly mild phenotypes. We hypothesized that the lack of γδ T cells in constitutive Tcrd−/− mice is functionally compensated by other lymphocytes taking over genuine γδ T cell functions. To test this, we generated a knock-in model for diphtheria toxin–mediated conditional γδ T cell depletion. In contrast to IFN-γ–producing γδ T cells, IL-17–producing γδ T cells (Tγδ17 cells) recovered inefficiently after depletion, and their niches were filled by expanding Th17 cells and ILC3s. Complementary genetic fate mapping further demonstrated that Tγδ17 cells are long-lived and persisting lymphocytes. Investigating the function of γδ T cells, conditional depletion but not constitutive deficiency protected from cells and ILC3s. Complementary genetic fate mapping further demonstrated that Tγδ17 cells are long-lived and persisting lymphocytes. Investigating the function of γδ T cells, conditional depletion but not constitutive deficiency protected from imiquimod-induced psoriasis. Together, we clarify that fetal thymus-derived Ty817 cells are nonredundant local effector cells in IL-17–driven skin pathology.

Introduction

γδ T cells constitute one of three conserved lymphocyte populations rearranging clonal antigen receptors. Compared with αβ T cells and B cells, γδ T cells account for a smaller fraction of lymphocytes in blood and secondary lymphoid organs, but are more abundant in mucosal tissues and skin (Chien et al., 2014). There, IL-17–producing γδ T cells (Tγδ17 cells) are thought to be the main source of the pro-inflammatory cytokines IL-17A and IL-17F, which protect the body’s surfaces from fungal (Puel et al., 2011; Conti et al., 2014) and bacterial infections (Cho et al., 2010; Sumaria et al., 2011; Misiak et al., 2017) and play a role in the regulation of adipose tissue homeostasis and thermogenesis (Kohlgruber et al., 2018). But Tγδ17 cells are also involved in the pathogenesis of inflammatory and autoimmune diseases (Papotto et al., 2017a, 2017b), in particular experimental autoimmune encephalomyelitis (Petermann et al., 2010), spondylarthritids (Reinhardt et al., 2016) and psoriasis (Cai et al., 2011; Pantelyushin et al., 2012; Ramirez-Valle et al., 2015). In mice, fetal Vγ6 and a fraction of early Vγ4+ cells already differentiate in the prenatal thymus into Tγδ17 effector cells and then egess to populate a wide range of organs (Jensen et al., 2008; Haas et al., 2009, 2012; Ribot et al., 2009). However, recent findings challenged the view that all Tγδ17 effector cells are exclusively derived from fetal thymus by showing that under certain circumstances, Tγδ17 cells may also develop in adult mice, e.g., by recognition of cognate antigen (Zeng et al., 2012) or by TCR stimulation in the presence of IL-1β and IL-23 (Muschaweckh et al., 2017; Papotto et al., 2017a, 2018). In peripheral tissues, the large majority of Tγδ17 cells display TCRs with rearrangements using Vγ4 or Vγ6 segments (Prinz et al., 2013). Many Vγ4+ and Vγ6+ Tγδ17 cells show canonical semi-invariant TCR rearrangements without additions of non-templated N nucleotides (Kashani et al., 2015; Wei et al., 2015), supporting the hypothesis that their capacity to produce IL-17 cytokines is prewired in a subset of fetal T cell precursors before and independent of antigen-specific TCR selection (Haas et al., 2012; Prinz et al., 2013). In some tissues, particularly in the dermis, virtually all γδ T cells share a Tγδ17 phenotype and are likely tissue-resident (Gray et al., 2011; Mabuchi et al., 2011; Sumaria et al., 2011; Jiang et al., 2017). Furthermore, it is still unclear to what extent the task of local IL-17 cytokine production is distributed between Tγδ17 cells, Th17 cells, and IL-17−producing innate lymphoid cells (ILC3s) and whether these sources may actually be re-

1Institute of Immunology, Hannover Medical School, Hannover, Germany; 2Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany; 3Department of Immunology, Duke University Medical Center, Durham, NC; 4Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

Correspondence to Immo Prinz: prinz.immo@mh-hannover.de; A. Reinhardt’s present address is Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden; B. Zhang’s present address is Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, X’an Jiaotong University, X’an, ShaanXi, China; A. Krueger’s present address is Institute of Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.

© 2018 Sandrock et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
dundant (Cua and Tato, 2010; Korn and Petermann, 2012; Sutton et al., 2012). To separate the specific physiological roles of Tyγδ17 and other IL-17–producing cells, several studies used monoclonal antibodies that may lead to blocking and internalization of the γδ TCR, sometimes with significant biological effects (Rose et al., 1996; Pöllinger et al., 2011; Blink et al., 2014). However, we have previously shown that treatment with anti-TCR antibodies including the clones GL3 and UC7-13DS does not deplete γδ T cells in vivo, but rather leads to TCR internalization and thereby generates “invisible” γδ T cells (Koennecke et al., 2009). Additionally, TCR delta chain knock-out mice (Tcrd−/−) are a very useful loss-of-function system for studying T cell development and γδ T cell function (Itohara et al., 1993; Roberts et al., 1996; Welniak et al., 2001). However, the immune phenotype of Tcrd−/− mice is surprisingly mild (Mombaerts et al., 1993; Ramsburg et al., 2003), possibly because plastic αβ T cells can somehow occupy the niches of absent γδ T cells and might partially take over their functions (Jameson et al., 2004).

Here we investigated the regenerative capacity and function of Tyγδ17 cells in vivo in immunocompetent mice. To this end, we generated a novel genetic knock-in model for diphtheria toxin (DTx)–mediated conditional γδ T cell depletion, and additionally used an inducible γδ T cell–specific Cre system to track the relative persistence of γδ T cell subsets in vivo. These genetic systems allowed us to revisit and compare the regenerative capacity between adult Tyγδ17 cells and other γδ T cell subsets and to explore the function of γδ T cells in vivo.

Results

To investigate the function of γδ T cells by conditional depletion in immunocompetent mice with normal γδ T cell compartments, we generated Tcrd-GDL mice expressing enhanced GFP (eGFP), human DTx receptor (DTR), and luciferase under the control of an IRES in the 3′UTR of the Tcrd constant gene (Fig. S1). The γδ T cell–specific cytoplasmic eGFP expression served to directly visualize γδ T cell morphology and their tissue-screening activity in skin and intestinal mucosa in vivo (Fig. 1, A and B; and Videos 1 and 2). Upon injection of luciferin substrate, luciferase activity indicated the distribution of γδ T cells across tissues (Fig. 1C). Notably, γδ T cell–specific DTR expression enabled us to efficiently and truly deplete γδ T cells in homozygous Tcrd-GDL mice by a single DTx treatment without compromising peripheral CD4+ and CD8+ αβ T cells (Fig. 1D and Fig. S2, A–C). Nevertheless, the DTR (along with eGFP and luciferase) is expressed in maturing thymocytes via germline promoters of the Tcrd constant gene before the Tcrd locus is excised during Tcra rearrangement at the thymus (Fig. S2 D). After conditional depletion, γδ T cells reappeared quickly already within 2 wk (Fig. 2A), suggesting that the induced γδ T cell deficiency was partially reversible. However, distinct γδ T cell subsets showed divergent regeneration kinetics. CD27−CD44low γδ T cells with an IFN-γ–producing phenotype fully regained predepletion levels in peripheral LN (pLN) and spleen after 7 wk, while Tyγδ17 cells, as defined by their CD27−CD44high phenotype, were poorly reconstituted (Fig. 2B and Fig. S3A). This finding is consistent with our previous data showing that Tyγδ17 subsets do not develop de novo after bone marrow transplantation or after induction of T cell development in adult Rag1−/− mice (Haas et al., 2012). Along this line, pLN Vy1+ and intestinal Vy7+ cells recovered efficiently (Fig. S3B), but Vy6− and Vy4− cells did not (Fig. S3C). Nevertheless, the rare Tyγδ17 cells that were present at 8–9 wk after DTx treatment maintained a TCR repertoire that was similar to the TCR repertoire before depletion (Fig. 2C), suggesting that these cells presumably originated from expansion of a few cells that survived the DTx treatment.

In skin, overall recovery of γδ T cells was very poor (Fig. 3A). Nevertheless, via screening epidermal sheets, we could identify some Vy5+ dendritic epidermal T cells (DETCs) that sporadically reappeared in isolated clonal patches (Fig. 3, B and C; and Video 3). Likely, a few individual DETCs resisted the DTx treatment, similar to the survival of some Tyγδ17 cells described above. Of note, empty niches of conditionally depleted DETCs could not be invaded and repopulated by unconventional αβ T cells (Fig. S4). This is in contrast to the situation in constitutively γδ T cell–deficient Tcrd−/− mice, in which fetal-derived DETCs using αβ TCR populate the epidermis (Jameson et al., 2004). Interestingly, DTx treatment of heterozygous TcrdGDLWT mice induced a scattered “cow pattern” depletion of DETCs (Fig. 3D). Together, these findings are consistent with the hypothesis that individual fetal DETC precursors colonize the epidermis early in life to form clonal lateral colonies (Fayer et al., 1991).

To complement our results on the differential regeneration of Tyγδ17 and other γδ T cell subsets with a fate mapping system, we next used an inducible γδ T cell–specific Cre system to track their relative persistence in vivo. Tamoxifen-induced Cre activation in TcrdCreER × R26R26 mice (Zhang et al., 2015) led to permanent RFP gene expression in 33% of all γδ T cells in pLN and spleen and 20% in liver after 2 wk (Fig. 4, A and B). 7 wk after tamoxifen gavage, most CD27−CD44low γδ T cells with an IFN-γ–producing phenotype had lost their RFP label, suggesting that this subset is constantly replenished by newly generated γδ T cells from the thymus (Fig. 4C). At the same time, the frequency of RFP-labeled cells among CD27−CD44high Tyγδ17 cells was highly persistent in pLN, spleen, and liver after 7 wk (Fig. 4C). In the skin of TcrdCreER × R26R26 mice, genetic labeling of both epidermal and dermal γδ T cells was remarkably efficient (Fig. 4D). However, the frequency of dermal RFP γδ T cells but not of epidermal RFP DETCs decreased after 7 wk, indicating a higher turnover of Tyγδ17 cells infiltrating the dermis as compared with Tyγδ17 cells in pLN. It is conceivable that dermal Tyγδ17 cells may also exchange with distant tissues including lymph nodes (Hartwig et al., 2015; Ramirez-Valle et al., 2015), in line with the idea that effector γδ T cells with a Tyγδ17 phenotype can be selectively trapped in lymph nodes (Chennupati et al., 2010; Romagnoli et al., 2016; Audemard-Verger et al., 2017; Ugur et al., 2018).

Next, we investigated the impact of γδ T cell depletion in Tcrd-GDL mice in imiquimod (IMQ)–induced skin pathology (van der Fits et al., 2009; Cai et al., 2011; Pantelyushin et al., 2012). We hypothesized that Tyγδ17 cells should play crucial and nonredundant roles in this experimental model for human psoriasis, because the importance of Tyγδ17 cells inducing psoriasis pathology was
suggested before in this IMQ model (Cai et al., 2011; Pantelyushin et al., 2012), as well as in a related model for psoriasis based on intradermal IL-23 injection (Mabuchi et al., 2011, 2013) and in the human system (Laggner et al., 2011). However, constitutively γδ T cell–deficient Tcrd−/− mice showed similar neutrophil influx (Fig. 5 A), disease scores, and epidermal thickening as compared with γδ T cell–sufficient mice after IMQ treatment (Fig. 5, B and C). In contrast, these disease parameters were significantly reduced in acutely depleted Tcrd-GDL mice (Fig. 5, A–C), likely because the absence of pathogenic Tγδ17 cells led to an overall decrease of IL-17–producing dermal lymphocytes (Fig. 5 D). Thus, acute depletion of γδ T cells in Tcrd-GDL mice, but not constitutive absence of γδ T cells in Tcrd−/− mice, conferred a strong protection against psoriasis pathology. Additionally, direct visualization of motile dermal γδ T cells that migrated across the basement membrane straight into the inflamed epidermis of IMQ-treated skin further supported a direct and tissue-confined contribution of γδ T cells to epidermal inflammation in IMQ-induced psoriasis (Fig. 6, A–C; and Video 4). However, analysis of the track straightness and mean track speed of the motile γδ T cells entering the inflamed epidermal layers was not altered, refuting the hypothesis that their movement was driven by antigen-specific cell-to-cell interactions with epidermal cells (Fig. 6 B).

Next, we investigated the regeneration of dermal IL-17 immunity after conditional depletion of γδ T cells. Despite the sustained lack of Tγδ17 cells in the dermis of DTx-treated Tcrd-GDL mice (Fig. 3 A), overall frequencies of IL-17–producing dermal CD45+ lymphocytes rebounded to pretreatment levels within 2 mo, in part through expansion of a few surviving Tγδ17 cells, but mainly due to an increased abundance of TCR–Thy1+ ILC3s (Fig. 7 A). While Tγδ17 cells are the major population of IL23R+ lymphocytes in the skin, Fig. 7 B shows that also some dermal ILCs and Th17 cells are expressing the IL-23R in steady state, and it is thus tempting to speculate that these are the cells that expand via elevated availability of homeostatic cytokines such as IL-23 in the absence of Tγδ17 cells. Accordingly, previously depleted Tcrd-GDL mice regained susceptibility to IMQ-induced pathology (Fig. 7 C). Of note, the experiments shown in Fig. 7 C suggested that ear thickening in previously depleted and recovered Tcrd-GDL mice might still be less pronounced than in undepleted Tcrd-GDL mice or in Tcrd−/− mice, but the differences were marginal and based on statistical outliers. At 9 wk after de-
pletion and induction of psoriasis, IL-17 in cervical lymph nodes, including ear skin draining lymph nodes, was mainly produced by Th17 αβ T cells and lineage-negative ILC3s (Th17, 33.15 ± 3.15%; ILC, 48.97 ± 6.37%; Fig. 7 D). This is in agreement with the hypothesis that pathogenic ILC3s in the skin of constitutively γδ T cell–deficient Tcrd−/− mice can compensate for the lack of γδ T cells (Pantelyushin et al., 2012; Gladiator et al., 2013). After depletion of Tγδ17 cells in adult Tcrd-GDL mice, compensating ILC3s might have been recruited from the circulation; however, their established strict tissue-residency would advocate for local homeostatic expansion (Gasteiger et al., 2015). Nevertheless, the observed loss of protection at 9 wk after γδ T cell depletion could also be compensated in part due to the reappearance of Tyβ17 cells in skin and pLN. To test this, we performed a second round of DTx treatment at 9 wk after a first ablation of γδ T cells (Fig. 8 A). This additional depletion regimen could efficiently reablate γδ T cells including the few recovered Tγδ17 cells (Fig. 8 B), and as a consequence, the severity of IMQ-induced psoriasis as measured by ear thickening and disease score were again diminished after a second γδ T cell depletion (Fig. 8 C). Together, these data strongly suggest a nonredundant contribution of γδ T cells to epidermal inflammation in IMQ-induced psoriasis. Such an essential role of Tyβ17 cells for psoriasis pathology was somehow expected from previous observations in WT mice, but so far, experimental evidence was cloaked by compensatory expansion of other IL-17–producing lymphocytes in constitutively γδ T cell–deficient Tcrd−/− mice and became only clear after conditional ablation of γδ T cells in immunocompetent mice.

Discussion

This work used γδ T cell–specific genetic systems to demonstrate that Tyβ17 cells play nonredundant roles in IMQ-induced skin inflammation and clarified that they are poorly generated de novo in adult mice. Namely, we used tamoxifen-induced Cre activation in TcrdCreER × R26tdRFP mice (Zhang et al., 2015) to track the persistence of Tyβ17 cells, and we established Tcrd-GDL mice for conditional depletion of γδ T cells to definitively Tcrd−/− mice and became only clear after conditional ablation of γδ T cells in immunocompetent mice.
fer from intolerable barrier defects. Therefore, the system can be applied to investigate specific functions of γδ T cells in vivo. Furthermore, multiple rounds of quantitative γδ T cell depletion are possible because the DTR gene in the Tcrd-GDL strain is a knock-in to the 3′-UTR of the functional endogenous Tcrd constant gene and thus, depletion does not foster the outgrowth of DTR-negative γδ T cells as observed in BAC-transgenic systems (Lahl and Sparwasser, 2011). While peripheral αβ T cell populations were not significantly affected by DTx treatment of Tcrd-GDL mice, a limitation of the system is the observed collateral transient depletion of developing CD4/CD8 double-negative and double-positive αβ T cell precursors. This precludes using the model for direct assessment of γδ T cell functions within the thymus. On the other hand, this feature might serve to further revisit the kinetics of thymic αβ T cell development (McCaughtry et al., 2007; Föhse et al., 2013).

Next to genetic ablation by immune cell–specific DTR expression (Walzer et al., 2007; Lahl and Sparwasser, 2011; van Blijswijk et al., 2013), monoclonal antibody (mAb)–mediated depletion via complement lysis is frequently used in loss-of-function studies without the need for breeding mutant mice. For example, NK cells in NK1.1-bearing mouse strains can be efficiently depleted by injection of the PK136 mAb (Koo and Peppard, 1984). However, in vivo ablation of γδ T cells using any currently available mAb does not work. As it had been suspected already for a long time (Kaufmann et al., 1993; Ke et al., 1997), Tcrd-H2BeGFP reporter mice could prove that injection of mAbs directed against the γδ TCR, such as clones UC7-13D5 (Houlden et al., 1989) or GL3 (Goodman and Lefrancois, 1989), does not deplete γδ T cells, but leads to TCR internalization and thereby generates “invisible” γδ T cells (Koenecke et al., 2009). Still, several studies found opposing effects of γδ T-cell depletion and adoptive transfer of γδ T cells, as well as similar experimental outcomes in Tcrd−/− and anti-γδ TCR-treated mice. Therefore, mAb-mediated in vivo blocking of the γδ TCR could be seen as a “functional depletion” and as such is certainly useful to investigate the specific role of the γδ TCR in immune responses of γδ T cells, for example in response to malaria infection (Mamedov et al., 2018). Of note, the low efficiency of the γδ T cell–specific Cre system in Tcrd-CreER mice (Zhang et al., 2015) precludes quantitative depletion of γδ T cells in ROSA-DTA mice (Voehringer et al., 2008).

Functionally, acute depletion of γδ T cells showed a different phenotype in IMQ-induced psoriasis as compared with constitutively deficient Tcrd−/− mice (Itohara et al., 1993), i.e., protection versus susceptibility, respectively. This underlines previous findings that αβ T cells can invade the niches of absent γδ T cells and might partially take over their functions (Jameson et al., 2004). While compensatory αβ DETCs were not able to properly respond to keratinocyte damage like genuine γδ DETCs (Jameson et al., 2004), we show here that dermal ILC3 and Th17 cells were sufficient to induce psoriasis pathology in the absence of γδ T cells. An alternative explanation for protection of acutely depleted Tcrd-GDL mice from IMQ-induced psoriasis would be a strong imbalance of quickly regenerated of Vγ1 T cells and poorly regenerated IL-17–producing Vγ4 and Vγ6 γδ T cells, which may subsequently alter the balance of other adaptive immune cells including αβ T cells and B cells (Huang et al., 2015, 2016). However, this inter-
pretation is flawed by the finding that this imbalanced ratio of overrepresented Vγ1 versus underrepresented (IL-17–producing) Vγ4/6 γδ T cells was still observed after 7 wk, a time point at which the previously depleted mice were no longer resistant to IMQ-induced psoriasis.

In any case, our observations may seem to be contrasting previous results that found significantly decreased IMQ-induced skin pathology in Tcrd−/− mice (Cai et al., 2011; Pantelyushin et al., 2012). However, experimental details such as the investigation of either IMQ-treated ear skin or back skin, along with the precise genetic background of the mice, and different microbiota might strongly bias the outcome of such experiments. Most importantly, skin microbiota can autonomously control the local inflammatory milieu and tune resident Th17 and CD8+ T cell function (Naik et al., 2015; Muschawekh et al., 2016). Even so, our study further underlines that Tγδ17 cells are the major population of IL23R+ lymphocytes in the skin and the main source of IL-17 in IMQ-induced inflammatory pathology in immunocompetent mice. The fact that this function can be compensated by other IL-17–producing lymphocytes in Tcrd−/− or Rag−/− mice highlights the biological importance of the IL-23–IL-17 cytokine axis for skin homeostasis and antimicrobial immunity (Gladiator et al., 2013; Conti et al., 2014). Also, in contrast to the mouse model, recent investigations of human psoriasis suggested that Ty6γδ T cells are rare in human psoriatic skin and rather outnumbered by Th17 cells with an innately biased TCR repertoire (Matos et al., 2017; Merleev et al., 2018). Furthermore, CD8+ T cells have been implicated in the pathogenesis of human psoriasis (Hammar et al., 1984; Di Meglio et al., 2016). A recent study showed that the CD8+ T cell response in psoriasiform inflammation is controlled by regulatory T cells, as their depletion led to CD8+ T cell expansion and exacerbated skin inflammation (Stockenhuber et al., 2018). At the same time, dermal γδ T cell expansion was not observed in regulatory T cell–depleted mice (Stockenhuber et al., 2018). This indicated that the IMQ-induced pathology after regulatory T cell depletion is driven by alternative pathways, possibly more resembling to human psoriasis pathology.

In future studies, the combination of Tcrd-GDL mice, Tcrd−/− mice, and γδ TCR blocking with mAbs will make a powerful triad of three independent loss-of-γδ T cell–function strategies. Comparing their different phenotypes should be very helpful to elucidate the in vivo functions of γδ T cells in models for human disease including infections, autoimmunity, and cancer.

Materials and methods

Animals

Tcrd-GDL, Tcrd−/− (B6.129P2-Tcrdtm1Mom/J; Itohara et al., 1993), TcrdCreERxRosa26-StopRFP mice, obtained by crossing Tcrd-CreERS (Zhang et al., 2015) to Rosa26tdRFP mice (Luche et al., 2007), heterozygous C57BL/6-Il23r tm1Kuch (here IL23-R-eGFP) mice (Awasthi et al., 2009), and Tcrd-H2BeGFP (Prinz et al., 2006) mice were bred and housed under specific pathogen–free conditions in the central animal facility at Hannover Medical School. C57BL/6-NCrl (WT) mice were purchased from Charles River Laboratories. Unless specified otherwise, mice were ana-
lyzed at 7–20 wk of age. All experiments were conducted according to local and institutional guidelines. The study was approved by the Lower Saxony State Office for Consumer Protection and Food Safety, file reference 33.12-42502-04-15/1889.

Generation of Tcrd-GDL mice

We inserted an expression cassette encoding eGFP, human DTR and luciferase (Suffner et al., 2010) into a modification of the vector used to generate Tcrd-H2BeGFP mice (Prinz et al., 2006). Electroporation and homologous recombination to the 3′UTR of the Tcrd constant gene in JM8A3 ES cells was screened by PCR and by Southern blot. Selected ES cell clones were expanded and subsequently injected into blastocysts to generate knock-in mice on the C57BL/6 genetic background (Tcrd-GDL mice). Chimerism in F0 offspring was identified by fur color, positive F0 offspring were mated with C57BL/6N mice, and F1 offspring were tested for germline transmission and successful excision of the Neo cassette by PCR (PCR primers: GDLδ forward: 5′-CTA GAA GAA AAG CAA AAG CCC TC-3′; GDL-IRES reverse: 5′-AAA CGC ACA CCG GCC TTA TT-3′; GDLδ reverse: 5′-CCT TCC TTT CGG TAT TTT ACT TTCA-3′; knock-in fragment size: 412-bp; WT fragment size: 519 bp).

γδ T cell depletion

For conditional depletion of γδ T cells mice were treated with 30 ng DTx per gram body weight by i.p. injection. The optimal regimen for quantitative γδ T cell depletion was titrated as two injections of 15 µg DTx per gram body weight separated by 48 h. This DTx treatment regimen did not affect lymphocytes in WT mice in control experiments. Tcrd-GDL mice in control groups were injected with PBS (Tcrd-GDL ctrl.). In experiments comparing Tcrd-GDL control and DTx treated mice, we used littermates.

Tcrd-Cre induction

TcrdCreER × R26tdRFP mice were gavaged with 4 mg tamoxifen citrate (Enzo Life Sciences), dissolved in 400 µl corn oil/ethanol, three times every other day to induce Cre expression and subsequently RFP expression by γδ T cells.
In vivo imaging system (IVIS)
IVIS 200 system (PerkinElmer) and Living Image software 2.50.2 (Caliper LifeScience) was used for detection of bioluminescence. For images shown, mice were sacrificed 10 min after i.p. injection of 400 µg d-luciferin.

IMQ-induced psoriasis
To induce psoriasis, both ears were treated daily with 5 mg Aldara cream (5% IMQ) per ear for seven consecutive days. Ear thickness was measured starting 2 d before the first treatment (day 0) and set to 100%. Ear thickness was measured using a caliper. Reddening and scaling were evaluated daily and scored with 0: no change, 1: mild, 2: moderate, and 3: severe. Reddening and scaling were assessed separately to calculate an average cumulative disease score. For treatment, mice were anesthetized with Ketamin/Rompun and supplemented i.p. with 0.9% NaCl to avoid dehydration.

Preparation and staining of epidermal sheets
Fur was carefully removed from mouse ears using a scalpel and dorsal and ventral parts were separated. Subsequently, with dermal side down, they were incubated on 0.5 M NH4SCN at 37°C for 20 min. Afterward, epidermis was peeled off and fixed using 4% paraformaldehyde at room temperature for 15 min. Before antibody staining epidermal layers were rehydrated in PBS for 20 min at room temperature and blocked with 8% rat serum. Sheets were stained with the indicated antibodies for 2 h at room temperature and analyzed with an Olympus BX641 microscope. Antibodies directed against TCRβ (clone H57-597; Alexa Fluor 488) and Vγ5 (clone 536; APC) were purchased from BioLegend. Anti-CD3 (clone 17A2) was produced from a rat hybridoma cell line and subsequently labeled with Cy5 or Cy3.

Skin histology
Ear skin was frozen in Tissue Tek optimal cutting temperature compound (Sakura Finetek) and 8-µm cryosections were cut using a cryo microtome (CM3050; Leica). Cryosections were fixed for 10 min with ice-cold acetone and stored at −20°C or used directly for staining. Slides were either stained with H&E or for immunofluorescent microscopy with the indicated antibodies. All samples were covered with Mowiol and examined with an Olympus BX641 fluorescence microscope using CellSense Dimension software (Olympus). Following antibodies were used: anti-CD3 clone 17A2 (Cy5; rat hybridoma cell line), anti-Ly6G clone 1A8 (PE; BioLegend), anti-CD11b clone MAC-1 (FITC; rat hybridoma cell line), anti-cytokeratin K14 clone Poly19053 (unlabeled; BioLegend), and anti-rabbit polyclonal (Cy3, Dianova) to detect the K14 antibody.

Flow cytometry
Single-cell suspension from peripheral lymph nodes, spleen and liver were prepared by meshing the organs through nylon gauze or 100 µm nylon cell strainers (Falcon), respectively. Subsequently, liver lymphocytes were purified by density gradient centrifugation using Percoll gradients. For the preparation of ear skin lymphocytes, four separated halves of one ear pair were digested with collagenase IV (2 mg/ml; Worthington) and DNase I (187.5 µg/ml) for 1 h 30 min at 37°C. For the last 15 min of incubation EDTA (final concentration, 37.5 mM) was added. Subsequently, remaining tissue was dissociated mechanically facilitating a 1-2-
Figure 7. αβ T cells and ILCs can compensate absent Tyδ17 cells. (A) Frequencies of indicated cell populations among IL-17A+ cells. Tcrd-GDL ctrl.: nondepleted; Tcrd-GDL 8w: 8 wk after γδ T cell depletion. Shown are pooled data from two experiments with each n = 2–4 mice per group, mean ± SD. (B) Frequencies of indicated cell populations among IL23R-GFP+ ear skin lymphocytes from heterozygous IL23R-GFP reporter mice. Pooled data from two experiments with each n = 2–3 mice per group, mean. (C) Ear thickness and disease score over time in control and IMQ-treated groups. IMQ treatment started 9 wk after γδ T cell depletion. Graphs show pooled data from two experiments, each n = 1–3 mice per group (total numbers of mice: five Tcrd-GDL DTx IMQ; six Tcrd-GDL ctrl. IMQ; six Tcrd−/− IMQ; two Tcrd-GDL DTx Vas; three Tcrd-GDL ctrl. Vas; three Tcrd−/− Vas); two-way ANOVA with Bonferroni posttests, mean ± SD. (D) Composition of IL-17A–producing lymphocytes from psoriatic ear skin draining lymph nodes day 8 of IMQ-psoriasis, 9 wk after γδ T cell depletion. Frequencies of indicated cell populations in nondepleted Tcrd-GDL control (ctrl.) compared with Tcrd-GDL mice that were treated with DTx 9 wk before psoriasis induction (DTx 9 w). Data shown are from one representative experiment out of two independent experiments with each n = 2–3 mice per group. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant.

Figure 8. Redepletion of γδ T cells confers reprotectin in IMQ-induced psoriasis. (A) For redepletion of γδ T cells, mice were treated twice with DTx at 9 wk and 3 d, before IMQ treatment. Mice of the recovered group were treated only once with DTx at 9 wk before IMQ treatment. (B) Littermates of Tcrd-GDL mice were treated as described in A. Mean frequency of cervical LN (cLN) γδ T cells of d8 IMQ-treated Tcrd-GDL mice. One dot represents one mouse; one experiment representative of two is shown. (C) Ear thickness over time of indicated groups. IMQ treatment started 9 wk after first γδ T cell depletion. Shown are pooled data from two independent experiments with each two to four mice per group, mean ± SD. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant.
For mRNA-based TCR analysis, paired-end Illumina sequencing was performed as described (Ravens et al., 2017). In brief, for mRNA isolation sorted CD44highLy6C−Vγ4− peripheral lymph node cells were pooled from seven to eight Tcrd-GDL control- and DTX-treated mice each (RNAse mini kit; Qiagen). Subsequently, mRNA was reverse transcribed into cDNA (superscript III; Invitrogen). CDR3 regions of Tcrg and Tcrd were PCR-amplified using Taq polymerase (Invitrogen) and gene-specific primers targeting TCR variable (V)- and constant (C)-regions with Illumina sequencing adapter sequences as overhangs (5'-GTCTCTGGGCTCGAGAGTGTTGATAAGAGACAG and TCGTGCAGGCAGTCAGATGTGTA-TAAAGACAGC-3'). Gene-specific primer sequences were for TcrgV4: 5’-TCCTTGGAGAGAAGAGGAGAGA-3; TrgC: 5'-CTATGGAGATTGTGTTGTCAGCA-3'; TrdV5: 5'-TAGGGGACACACTAGTTCCCATGAT-3'; TrdC: 5'-ATGATGAAAAACAGAGTTGG-3'. Each PCR reaction contained 5-7.5 µl cDNA as template in a final volume of 20 µl. PCR products were size selected on 1% agarose gels and purified with Qiagen gel extraction kits. For paired-end 500-cycle Illumina MiSeq analysis, amplicons were coded with Nextera Index primers. Sequencing libraries were calibrated to 4 nM and processed according to the Illumina "denature and dilution guide." 20% PhiX was added to control sequencing performance and for warranting library diversity. Generated Fastq files were annotated according to IMGT/High-Vquest (Alamyar et al., 2012). For downstream analysis, only productive sequences with unambiguous V-gene segment were considered. Tcrg and Tcrd clonotypes were identified based on identical CDR3 region sequences. Results are presented as percentages of all productive reads per sample to normalize between samples. All R and bash shell scripts were based on previous analysis strategies (Ravens et al., 2017). TCR sequences are published under SRA number SRP130082.

Statistical analyses

All statistical analyses were performed using GraphPad Prism software (Version 4.03). Differences between individual groups were analyzed for statistical significance as indicated in legends using either unpaired Student’s t test, one-way, or two-way ANOVA followed by Dunn’s Multiple Comparison or Bonferroni posttests. P values < 0.05 were considered as significant different (*, P < 0.05; **, P < 0.01; ***, P < 0.001).

Online supplemental material

Fig. S1 illustrates the strategy used to generate Tcrd-GDL mice. Fig. S2 shows further characterization of Tcrd-GDL mice including depletion efficiency. Fig. S3 shows differential recovery of γδ T cell populations after depletion. Fig. S4 focuses on the empty DETC niche after depletion. Further supplemental material includes four in vivo two-photon imaging videos. Videos 1 and 2 show γδ T cell motility in ear skin and small intestine, respectively. Video 3 shows recovery of skin γδ T cells over time. Video 4 compares γδ T cells in healthy and psoriatic inflamed ear skin.

Acknowledgments

We would like to acknowledge the assistance of the Cell Sorting Core Facility of the Hannover Medical School. Further, we thank Pablo Pereira for providing anti-Vγ4 clone 49.2 (Department of Immunology, Pasteur Institut, Paris, France).
The work was supported by grants from the Deutsche Forschungsgemeinschaft (PR727/8-1 and SFB900-B8 to I. Prinz) and from Hannover Biomedical Research School (HBRS/DEW IN to I. Sandrock).

The authors declare no competing financial interests.

Author contributions: I. Sandrock, A. Reinhardt, and S. Ravens designed and performed experiments and discussed and analyzed data; C. Binz, A. Wilharm, J. Martins, L. Oberdörfer, L. Tan, S. Lienenklaus, and R. Nauman helped with performing experiments and data analysis; B. Zhang, Y. Zhuang, A. Krueger, and R. Förster helped supervise research and discussed data; I. Prinz supervised research and discussed and analyzed data; and I. Sandrock and I. Prinz wrote the manuscript.

Submitted: 30 July 2018
Revised: 14 September 2018
Accepted: 23 October 2018

References

Alamyar, E., P. Duroux, M.P. Lefranc, and V. Giudicelli. 2012. IMGT(®) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods Mol. Biol. 882:569–604.

Audemard-Verger, A., M. Rivière, A. Durand, E. Peranzoni, V. Guichard, P. Hamon, N. Bonilla, T. Guilbert, A. Boissonnans, C. Auffray, et al. 2017. Macrophages Induce Long-Term Trapping of γδ T Cells with Innate-like Properties within Secondary Lymphoid Organs in the Steady State. J. Immunol. 199:1998–2007.

Awwasti, A., L. Riol-Blanco, A. Jäger, T. Korn, C. Pot, G. Galileos, E. Bettelli, V.K. Kuchroo, and M. Oukka. 2009. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol. 182:5904–5908.

Blink, S.E., M.W. Caldis, G.E. Going, C.T. Harp, B. Malissen, I. Prinz, D. Xu, and S.D. Miller. 2014. γδ T cell subsets play opposing roles in regulating experimental autoimmune encephalomyelitis. Cell. Immunol. 290:39–51.

Cai, Y., X. Shen, C. Ding, C. Qi, K. Li, X. Li, V.R. Jala, H.G. Zhang, T. Wang, J. Blink, S.E., M. W. Caldis, G.E. Goings, C.T. Harp, B. Malissen, I. Prinz. 2013. Differential postselection proliferation dynamics of αβ T cells, Foxp3+ regulatory T cells, and invariant NKT cells monitored by genetic pulse labeling. J. Immunol. 186:6091–6095.

Haas, J.D., F.H. González, S. Schmitz, V. Chenndu, L. Föhse, E. Kremmer, R. Förster, and I. Prinz. 2009. CCR6 and NK1.1 distinguish between IL-17A and IFN-γ-producing gamma/delta T cell effector T cells. Eur. J. Immunol. 39:3488–3497.

Haas, J.D., S. Ravens, S. Düber, I. Sandrock, L. Oberdörfer, E. Kashani, V. Chenndu, L. Föhse, R. Nauman, S. Weiss, et al. 2012. Development of interleukin-17-producing γδ T cells is restricted to a functional embryonic wave. Immunity. 37:48–59.

Hammar, H., S.Q. Gu, A. Johannesson, K.G. Sundkvist, and P. Bibfen. 1984. Subpopulations of mononuclear cells in microscopic lesions of psoriatic patients. Selective accumulation of suppressor/cytotoxic T cells in epi- dermis during the evolution of the lesion. J. Invest. Dermatol. 83:416–420.

Hartwig, T., S. Pantelyushin, A.L. Croxford, P. Kulig, and B. Becher. 2015. Der- mal IL-17-producing γδ T cells establish long-lived memory in the skin. Eur. J. Immunol. 45:3022–3033.

Houlen, B.A., L.A. Matis, R.Q. Cron, S.M. Widacki, D.G. Brown, C. Pampeno, D. Meruelo, and J.A. Bluestone. 1989. A TCR gamma delta cell recognizes a novel TL-encoded gene product. Cold Spring Harb. Symp. Quant. Biol. 54:45–55.

Huang, Y., R.A. Heiser, T.O. Detanico, A. Getahun, G.A. Kirchenbaum, T.L. Casper, M.K. Aydintug, S.R. Carding, K. Ikuta, H. Huang, et al. 2015. γδ T cells affect IL-4 production and β-cel tolerance. Proc. Natl. Acad. Sci. USA. 112:E39–E48.

Huang, V., A. Getahun, R.A. Heiser, T.O. Detanico, K. Aviszus, G.A. Kirchen- baum, T.L. Casper, H. Huang, M.K. Aydintug, S.R. Carding, et al. 2016. γδ T Cells Shape Preimmune Peripheral B Cell Populations. J. Immunol. 198:216–227.

Itohara, S., P. Mombarta, J. Lafaille, J. Iacomini, A. Nelson, A.R. Clarke, M.L. Hooper, A. Farr, and S. Tonegawa. 1993. γδ T cell receptor delta gene mutant mice: independent generation of alpha beta T cells and programmed rearrangements of gamma delta TCR genes. Cell. 72:337–348.

Jameson, J.M., G. Gauffi, D.A. Withereden, and W.L. Havran. 2004. A keratino- cyte-responsive gamma delta T cell is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epi- dermis. J. Immunol. 172:3573–3579.

Jensen, K.D., X. Su, S. Shin, L. Li, S. Vousuff, S. Yamasaki, L. Steinman, T. Saito, R.M. Locksley, M.M. Davis, et al. 2008. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleu- kin-17 and antigen-experienced cells make interferon gamma. Immunity. 29:90–100.

Jiang, X., C.O. Park, J. Geddes Sweeney, M.J. Yoo, O. Guide, and T.S. Kupper. 2017. Dermal γδ T Cells Do Not Freely Re-Circulate Out of Skin and Pro- duce IL-17 to Promote Neutrophil Infiltration during Primary Contact Hypersensitivity. PLoS One. 12:e0169397.

Kashani, E., L. Föhse, S. Raha, I. Sandrock, L. Oberdörfer, C. Koenenec, S. Su- erbaum, S. Weiss, and I. Prinz. 2015. A clonotypic Vγ4/γ1/Vδ8δβ8Ii innate γδ T-cell population restricted to the CCR6’CD27’ subset. Nat. Commun. 6:4477.

Kaufmann, S.H., C. Blum, and S. Yamamoto. 1993. Crosstalk between alpha/ beta T cells and gamma/delta T cells in vivo: activation of alpha/beta T- cell responses after gamma/delta-T-cell modulation with the monoclonal antibody GL3. Proc. Natl. Acad. Sci. USA. 90:9620–9624.

Ke, Y., K. Pearce, J.P. Lake, H.K. Ziegler, and J.A. Kapp. 1997. Gamma delta T lymphocytes regulate the induction and maintenance of oral tolerance. J. Immunol. 158:3610–3618.

Kobayashi, C., V. Chenndu, S. Schmitz, B. Malissen, R. Förster, and I. Prinz. 2009. In vivo application of mAb directed against the gammadelta TCR does not deplete but generates “invisible” gammadelta T cells. Eur. J. Immunol. 39:372–379.

Kohlgruber, A.C., S.T. Gal-Oz, N.M. LaMarche, M. Shimazaki, D. Duquette, H.N. Nguyen, A.I. Mina, T. Paras, A. Tavakkoli, U. von Andrian, et al. 2018. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19:464–474.
Walzer, T., M. Bléry, J. Chaix, N. Fuseri, L. Chasson, S.H. Robbins, S. Jaeger, P. André, L. Gauthier, L. Daniel, et al. 2007. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl. Acad. Sci. USA. 104:3384–3389.

Wei, Y.L., A. Han, J. Glanville, F. Fang, L.A. Zuniga, J.S. Lee, D.J. Cua, and Y.H. Chien. 2015. A Highly Focused Antigen Receptor Repertoire Characterizes γδ T Cells That Are Poised to Make IL-17 Rapidly in Naive Animals. Front. Immunol. 6:118.

Welniak, L.A., A.R. Khaled, M.R. Anver, K.L. Komschlies, R.H. Wiltrout, S. Durum, F.R. Ruscetti, B.R. Blazar, and W.J. Murphy. 2001. Gastrointestinal cells of IL-7 receptor null mice exhibit increased sensitivity to irradiation. J. Immunol. 166:2924–2928.

Zarin, P., T.S.H. In, E.L.Y. Chen, J. Singh, G.W. Wong, M. Mohtashami, D.L. Wiest, M.K. Anderson, and J.C. Zúñiga-Pflücker. 2018. Integration of T-cell receptor, Notch and cytokine signals programs mouse γδ T-cell effector differentiation. Immunol. Cell Biol. 96:994–1007.

Zeng, X., Y.L. Wei, J. Huang, E.W. Newell, H. Yu, B.A. Kidd, M.S. Kuhns, R.W. Waters, M.M. Davis, C.T. Weaver, and Y.H. Chien. 2012. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response. Immunity. 37:524–534.

Zhang, B., J. Wu, Y. Jiao, C. Bock, M. Dai, B. Chen, N. Chao, W. Zhang, and Y. Zhuang. 2015. Differential Requirements of TCR Signaling in Homeostatic Maintenance and Function of Dendritic Epidermal T Cells. J. Immunol. 195:4282–4291.