Effect of substitutions on thermal behavior of symmetric double Schiff bases of 1, 1'- bis (4-amino phenyl) cyclohexane

Bhavesh J. Gangani 1, Parsotam H. Parsania 2*

1Shree M. P. Shah Arts & Science College, Surendranagar-363001, Gujarat, India
2Department of Chemistry, Saurashtra University, Rajkot-360 005, Gujarat, India

1,2 E-mail id: bj2gangani@gmail.com, phparsania22@gmail.com

Keywords: Symmetric double Schiff bases, Thermal stability, Kinetic parameter, Degradation mechanism

ABSTRACT. Thermo gravimetric analyses of some symmetric double Schiff bases of 1, 1’- bis (4-amino phenyl) cyclohexane (SDSB-1 to SDSB-6) was carried out at 10°C/min in nitrogen atmosphere. Schiff bases are thermally stable up to 200-285°C and followed two step degradation kinetic. Various kinetic parameters such as order of degradation (n), energy of activation (Ea), frequency factor (A) and entropy change (AS) were derived accordingly Anderson-Freeman method interpreted in light of nature of the substituents. The nature, size and position of substituents affected thermal properties of the Schiff bases.

1. INTRODUCTION

Thermal methods of analyses are most widely used to study industrially important products such as polymers, pharmaceuticals, metals, minerals, alloys, clays and various metal complexes etc. Jin et. al [1] have reported the thermal stabilities of the polyimide derived from 1,1’ bis (4-amino phenyl) cyclohexane and its derivatives with PMDA, BTDA and HFDA. Polyamides showed glass transition ranging from 290-372°C, stable up to 500°C and 30% residue at 800°C. The glass transition temperature was found to increase with increasing methyl groups in 1, 1’ bis (4-amino phenyl) cyclohexane because of steric restriction on the main chain rotation motion.

Schiff bases are useful as analytical reagents [2] fine chemicals, medical substrates and ligands for metal complexes having industrial importance as antifungal and biological applications [3]. They are also used as drug intermediates for the synthesis of drugs like antibiotics, antiallergic, antiphlogistic and antitumor [4]. Panchal et. al [5] have reported thermo gravimetric analysis of lanthanide coordination polymers with the Schiff base N,N’- di (o- hydroxy phenyl) terephthalaldehyde and determined final decomposition products. Aghera and Parsania [6] have reported thermo gravimetric analysis of symmetric double Schiff bases containg cardo group to understand the effect of different substituents on thermal stability, kinetic parameters of Schiff bases. Recently Gangani and Parsania [7-10] have reported thermo acoustical studies of various substituted symmetric double Schiff bases.

To our best knowledge no work has been reported on thermal behaviour of substituted Schiff bases, which encouraged us to study effect of hydroxy, chloro, phenoxy, nitro, N,N’- dimethyl and styrene substituents on thermal degradation kinetics.

2. EXPERIMENTAL

2.1. Materials

Solvents and chemicals used in the present investigation were of LR grade and used either as received or purified by fractional distillation. The Schiff bases were repeatedly recrystallized from appropriate solvent systems. 1, 1’ Bis (4-aminophenyl) cyclohexane [Scheme-1] was synthesized and recrystallized according to reported work [2]. Symmetric double Schiff bases [Scheme-2] were synthesized by conventional and microwaves irradiation techniques [11-12].
Scheme-1 Synthesis of 1,1’- bis (4-amino phenyl)cyclohexane

Scheme-2 Syntheses of symmetric double Schiff bases

SDSB-1: R= -2 OH
SDSB-2: R= -4Cl
SDSB-3: R= -3 OC₆H₅

SDSB-4: R= -3 NO₂
SDSB-5: R= -4 N (CH₃)₂
SDSB-6: R= 4-CH=CH-C₆H₅

2.2. Instrumentation and method

The Thermo gravimetric measurements were made on Perkin Elmer TGA Model No Pyris-I, at the heating rate of 10°C/min in nitrogen atmosphere.

3. RESULTS AND DISCUSSION

TG thermograms of SDSB-1 to SDSB-6 at the heating rate of 10°C/min in nitrogen atmosphere are presented in Figs. 1 from which it is observed that SDSB-1 to SDSB-6 followed two steps decomposition reactions. Several temperature characteristic thermal properties such as initial decomposition temperature (IDT), temperature of 10 % weight loss (T₁₀), temperature of 50 % weight loss (T₅₀), final decomposition temperature (FDT), temperature of maximum weight loss (Tₘₐₓ) and the decomposition range were derived from these thermograms and are reported in Table 1. From which it is clear that Schiff bases are thermally stable up to about 200-285°C and different Tₘₐₓ values of 333-380°C suggested different degradation mechanism. Observed thermal stability order is SDSB-5 > SDSB-3 > SDSB-4 = SDSB-6 > SDSB-2 > SDSB-1.
Fig.-1 TG thermograms of SDSB-1 to SDSB-6 at the heating rate of 10°C/min in an N₂ atmosphere

Table-1: The TGA data of Schiff bases

Schiff bases	IDT °C	T₁₀ °C	T₅₀ °C	FDT °C	Decomposition Temp., °C	% Wt. Loss	Tₘₐₓ °C
SDSB-1	200.0	292.0	362.1	500.9	750	62.0	353.4
					250-451	23.4	
					589-750		
SDSB-2	239.0	287.5	352.0	379	560	66.3	355.9
					239-379		
SDSB-3	267	342.9	485.7	419.0	608	37.7	379.7
					488-608	46.9	538.7
SDSB-4	250.0	319.5	358.7	372	589	35.4	350.3
					250-372	46.4	565.8
					480-589		
SDSB-5	285.0	335.7	442.9	413	623	42.0	357.8
					285-413	41.4	549.9
					507-623		
SDSB-6	250.0	217.4	467.4	367	620	24.2	333.1
					250-367	44.3	554.0
Table-2: The kinetic parameters of Schiff bases derived according to Freeman-Anderson method

Schiff bases	n	Ea, kJ	A, S⁻¹	ΔS*	γ
SDSB-1	3.3	315.02	2.94x10⁻⁴	217.4	0.998
SDSB-2	0.3	100.27	1.08x10⁶	-135.6	0.990
SDSB-3	0.2	482.70	9.43x10⁻¹⁶	456.4	0.953
SDSB-4	1.0	130.05	9.82x10⁵	-138.5	0.994
SDSB-4	0.7	135.19	1.48x10⁴	-75.5	0.993
SDSB-5	2.0	255.74	6.10x10⁻¹³	10.4	0.995
SDSB-5	3.0	277.86	1.41x10⁻¹⁴	153.7	0.989
SDSB-5	2.0	125.37	3.36x10⁵	-147.5	0.993
SDSB-6	0.4	449.80	1.83x10⁻¹	-226.7	0.981
SDSB-6	0.3	180.40	7.28x10⁻³	-294.3	0.976

From this trend it is concluded that the nature, the position (Ortho, Meta and Para) and size of substituents affected thermal properties considerably. Associated kinetic parameters such as energy of activation (Eₐ), frequency factor (A), and order of reaction (n) were determined according to Anderson-Freeman method [13]. The least derived kinetic parameters are reported in Table 2. The entropy change (ΔS*) was determined at corresponding T_max and also reported Table 2. Schiff bases followed either fraction or integral order of degradation kinetics. The first step decomposition of SDSB-2, SDSB-3, SDSB-4 and SDSB-6 followed fraction order (0.3, 0.2, 0.7 and 0.4) degradation kinetics while SDSB-1 and SDSB-5 followed third order degradation kinetics. The second step decomposition of SDSB-3 followed first order kinetics while both SDSB-4 and SDSB-5 followed second order degradation kinetics. The second step decomposition of SDSB-6 followed 0.3 order degradation kinetics. The magnitude of Eₐ and A found different due to different nature and steric effect of the substituents. High magnitudes of these parameters suggest rigid nature of the Schiff bases.

A large and positive magnitudes of ΔS* confirmed less ordered transition states while negative magnitudes of ΔS* confirmed ordered transition state [13-16]. The side substituents are weak points in the Schiff bases which on heating forms free radicals which undergo further recombination, branching, rearrangement, cross linking reaction and further degrade at elevated temperatures.

4. CONCLUSION

Schiff bases possess fairly good thermal stability. The Schiff bases followed two step degradation kinetics either fraction order or integral order kinetics. The nature, size and position of the substituents affected thermal properties to considerably extent.

Acknowledgments

The authors are grateful to Department of Chemistry, Saurashtra University-Rajkot, for laboratory facility and thanks to Director SICART V.V. Nager for TGA analysis.
References

[1] M. H. Yi, W. Huang, M. Y. Jin, K. Y. Macromolecules, 30 (1997) 5660-5665.
[2] B. J. Gangani, P. H. Parsania, Spectroscopy Letters 40(2007) 97-112.
[3] M. D. Tarafder, A. Kasbollah, N. Saravanan, K. A. Crouse, A. M. Ali, K. T. Oo, J. Biochem., Mol. bio. and Biophys. 6 (2002)85-91.
[4] K. D. Patel, B. D. Mistry, K. R. Desai, J. Ind. Chem. Soc., 81(2004) 783-785.
[5] P. K. Panchal, N .H. Patel, M. N. Patel, Synth. React. Inorg. Met. Org. Nano metal Chem. 35(2005)107-110.
[6] V. K. Aghera, P.H. Parsania, J. Sci. Ind. Res. 67(2008)1083-1087.
[7] B. J. Gangani, P. H. Parsania, J. Indian Chem. Soc., 92, (2015)1097-1103.
[8] B. J. Gangani, J. P. Patel, P. H. Parsania, Russian Journal of Physical Chemistry A, Vol. 89, No. 13,(2015)2367–2372
[9] B. J. Gangani, P. H. Parsania, J. Indian Chem. Soc., 92 (2015)1437-1442.
[10] B. J. Gangani, P. H. Parsania, Journal of Chemical and Pharmaceutical Research, 6(11) (2014)243-247
[11] B. J. Gangani, P. H. Parsania, International Letters of Chemistry, Physics and Astronomy, 57(2015) 36-44.
[12] B. J. Gangani, P. H. Parsania, International Letters of Chemistry, Physics and Astronomy 58(2015) 33-39.
[13] D.A. Anderson, E.S. Freeman, J. Poly. Sci. 54 (1961) 253-260.
[14] M. R. Sanariya, D. R. Godhani, P. H. Parsania. J. Polym. Mater, 16(1999)265-269.
[15] V. M. Kagathara, P. H. Parsania, Polymers Testing, 21(2) (2002)181-186.
[16] B. B. Dhaduk, C. B. Patel, P. H. Parsania, International Letters of Chemistry, Physics and Astronomy Vol. 45(2015) 32-41.