India has an area of approximately 2.0 million ha under potato (*Solanum tuberosum* L.) cultivation (Anonymous 2017) which requires about 4.73 million tonnes of quality seed to achieve 100% seed replacement rate (SRR). Currently, about 2.96 million tonnes (8.5%) of the total potato production are being used as seed. In potato cultivation, the seed is most expensive input accounting for 40–50% of the production cost, which needs to be changed after few multiplications due to the high rate of degeneration (Singh and Pandey 2013). The quality of seed potatoes is an important determinant of the successful potato cultivation (Struik and Wiersema 1999, Pandey 2013). As a nodal agency, ICAR-Central Potato Research Institute is producing only about 2600 tonnes of breeder seed per annum, which is not enough to achieve the target of 100% SRR. There is a huge gap between supply and demand of potato seed. Private Sector has entered into potato seed sector in a big way (Singh and Pandey 2013). India has a climate suitable for seed production under prevailing climatic situation for getting higher seed yield.

Revisiting of planting dates for maximizing seed size potato (*Solanum tuberosum*) tuber yield as per changing climatic scenario

MURLIDHAR J SADAWARTI1, RAJESH K SINGH2, R K SAMADHIYA3, S P SINGH4, S ROY5, VINAY SINGH6, SANJAY RAWAL7, TANUJA BUCKSETH8, RAJ KUMAR9 and S K CHAKRABARTI10

ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171 001, India

Received: 20 September 2018; Accepted: 26 November 2018

ABSTRACT

Potato (*Solanum tuberosum* L.) varieties, viz. Kufri Chandramukhi, Kufri Sindhuri and Kufri Chipsona-1 were evaluated for seed production in west-central Indian conditions. Days to the emergence and 50% emergence were delayed in 10 and 17 October plantings (10.6, 10.5 days and 16.9, 16.6 days, respectively) and in the variety Kufri Sindhuri (10.6 days and 16.5 days). 7 November planting recorded higher growth attributes like emergence, number of stems, compound leaves except plant height. Delayed planting resulted in the reduction of plant height. Among the varieties, Kufri Sindhuri and Kufri Chipsona-1 recorded significantly higher growth parameters, viz. stem number, compound leaves and plant height. Higher seed size and total tuber number and per ha yield were recorded in 17 October onward plantings over other 10 October planting and highest was in 7 November planting (355 and 634 thousand/ha and 19.33 and 24.63 t/ha seed size and total tuber number and weight, respectively). Severe mosaic, mild mosaic and off types in each date of planting and varieties were below maximum permissible limit as per Indian minimum seed certification standards. Aphid population (weekly) was below the critical limit in all date of plantings and varieties. Gwalior region of west-central India is most suitable for seed production under prevailing climatic situation for getting higher seed yield.

Key words: Aphid population, Health standards, Planting window, Seed production, Variety

India has an area of approximately 2.0 million ha under potato (*Solanum tuberosum* L.) cultivation (Anonymous 2017) which requires about 4.73 million tonnes of quality seed to achieve 100% seed replacement rate (SRR). Currently, about 2.96 million tonnes (8.5%) of the total potato production are being used as seed. In potato cultivation, the seed is most expensive input accounting for 40–50% of the production cost, which needs to be changed after few multiplications due to the high rate of degeneration (Singh and Pandey 2013). The quality of seed potatoes is an important determinant of the successful potato cultivation (Struik and Wiersema 1999, Pandey 2013). Being a nodal agency, ICAR-Central Potato Research Institute is producing only about 2600 tonnes of breeder seed per annum, which is not enough to achieve the target of 100% SRR. There is a huge gap between supply and demand of potato seed. Private Sector has entered into potato seed sector in a big way (Singh and Pandey 2013). In India, 94% of the total seed is produced in sub-tropical plains and remaining 6% in hilly areas (Sharma et al. 2013). Potato requires cool night temperature to induce tuberization (Singh and Lal 2009) and optimum soil temperature of 16–19 °C for tuber initiation in the early season. Tuber development requires a temperature of 20°C (Khan et al. 2011) and potato crop growth is not possible below 2°C and above 30oC, however, for net photosynthesis minimum (0–7°C), optimum (16–25°C) and maximum temperature (40°C) are required (Singh and Lal 2009).

The crop productivity is affected by the climate thus, optimum planting date is considered as an important aspect of crop production (Kalbarcyzyk 2000 and Gomma 2014). Appropriate and proper time of sowing is basic requirement for obtaining maximum yield and high-profit returns of potato (Kar 2003). Performance of potato crop highly depends upon planting time for each region in the country, where each stage of growth should coincide with appropriate environmental conditions. Hence, it is necessary to determine planting time for different climatic conditions according to characteristics of cultivars (Ahmed et al. 2017). For potato, planting dates should be calculated on the basis of duration of growing season, and in regions with limited growing season, planting dates should be selected in a way that tuber formation and growth should not coincide with high temperature conditions (Mortazavi-bak and Ramin-pour 2009). Date of planting in potato is highly location specific and varies with the prevailing weather conditions, type of soil and cropping systems (Pandey 2013).
Virus infection is the major limiting factor for producing high-quality seed potato, and aphids normally affect seed potato production in two ways: direct damage caused by the feeding on the plants and indirect damage through virus transmission (Carli and Baltaev 2008). Green peach aphid is the most viruliferous aphid species and is considered as a vector of Potato Leaf Curl Virus (PLRV) that is transmitted in a persistent manner (Milosevic et al. 2012). Degeneration of seed potatoes in the country showed that the aphid, particularly Myzus persicae (Sulzer), is responsible for the spread of virus diseases in the fields (Lakra 2010).

For determining the planting dates, there should be a congenial environment for each stage of plant growth, viz. emergence and seedling establishment, tuber initiation and development (Dehdar et al. 2003). Months from October to January are considered best for production of potato seed in Gwalior region in west-central India. Generally, planting of potato for seed production starts in the third week of October (Annual Report CPRS 2016-2017). The present studies were undertaken to evaluate the planting window for quality seed potato production for the region.

MATERIALS AND METHODS

Three popular varieties Kufri Chandramukhi (early) and Kufri Sindhuri (late) and Kufri Chipsona 1 (medium) were evaluated for seed production for six consecutive years with five planting dates, i.e. 10 October, 17 October, 24 October, 31 October and 7 November at ICAR-Central Potato Research Station, Gwalior, Madhya Pradesh, India. Sprouted seed sized tubers weighing 40–50 g were planted in plot size 4.2 × 4.0 m with a spacing of 60 cm (row to row) and 20 cm (plant to plant). The field experiment was laid down under split-plot design. Nitrogen, phosphorus and potassium were applied @150 kg/ha, 80 kg/ha and 100 kg/ha, respectively. The sources of PK were single super phosphate and muriate of potash, whereas half of the nitrogen was supplied by ammonium sulfate at the time of planting and a half was supplied by urea at the time of earthing up. Recommended seed production practices were followed during the crop growth season as mentioned in the seed plot technique. Thimet 10 G @ 10 kg/ha for controlling insects was applied at the time of earthing up and mancozeb @ 2 kg/ha sprayed as a preventive measure for late blight, leaf spot and other foliar diseases of potato. After emergence at 15–20 days interval, an alternate spray of imidacloprid @ 0.002% triazophos @1.6 l/ha and thiamethoxam @130 g/ha was done to protect seed crop from insects. For controlling the weeds metribuzin mixed in 1000 l of water was applied @ 0.75 kg a.i. /ha.

The growth and yield parameters were recorded from time to time. Haulms were killed as per the schedule in each date of planting. Visually, virus infections were recorded three times, first before hoeing (before 21-25 days), second during 50–55 days and third before haulm killing. Weekly data on aphid infestation was recorded after 20 days of planting for each planting date on 15 randomly selected plants from upper, middle and lower leaves. Average max/min temperature, relative humidity and rainfall were recorded for six years.

RESULTS AND DISCUSSION

Plant emergence

Days to emergence were significantly delayed in all planting dates over 31 October planting (8.6 days) and in Kufri Sindhuri (10.6 days) over other two varieties. Among the interaction between the date of planting and variety, Kufri Sindhuri planted on 10 and 17 October showed the highest delay (11.6 and 11.7 days) in emergence (Table 1). In the Gwalior conditions, 5 October and 20 October plantings took 13 days and 8 days of emergence when the temperature ranges from 35–36°C respectively (Sadawarti et al. 2014). A similar trend was recorded for maximum temperature (34.9°–35.1°C) during 10 and 17 October planting in the present study. Similarly, 50% emergence was significantly delayed in all the dates of planting when compared to 31 October planting (14.1 days) and among the varieties also delayed when compared to Kufri Chipsona-1 (14.6 days). In interaction, Kufri Sindhuri planted at 10 and 17 October showed high delayed emergence of 17.7 days

Table 1 Emergence count of seed potato under different planting dates and varieties

Date of planting/ Varieties	Days to emergence	Days to 50% emergence	Final emergence (%)									
	KCM	K. Sindhuri	K. Chip-1	Mean	KCM	K. Sindhuri	K. Chip-1	Mean	KCM	K. Sindhuri	K. Chip-1	Mean
10th Oct	10.4	11.6	10.0	10.6	17.2	17.7	15.9	16.9	89.76	88.81	87.74	date
17th Oct	10.1	11.7	9.7	10.5	16.4	17.5	15.7	16.6	88.93	89.21	90.16	89.43
24th Oct	9.5	9.9	9.8	9.7	15.7	15.9	14.8	15.5	90.76	91.87	91.31	91.31
31st Oct	8.4	9.7	7.9	8.6	14.1	15.6	12.7	14.1	90.28	91.86	91.23	91.12
7th Nov	9.3	10.0	9.2	9.5	14.4	15.9	13.9	14.8	92.77	93.06	93.10	92.98
Mean	9.5	10.6	9.3	15.6	16.5	14.6	16.0	90.50	90.96	90.71	90.71	
LSD (P=0.05)	0.47	0.60	0.60	1.981								
Variety	0.33	0.51	0.51	NS								
Interaction (DOP × Variety)	0.73	1.13	1.13	1.942								
and 17.5 days, respectively (Table 1). More than 88% final emergence was recorded in all the dates of plantings, i.e. 24 (91.31%), 31 October (91.12%) and 7 November (92.98%) in comparison to early planting, i.e. 10 October planting (88.77%). Similarly, Dash et al. (2018) reported the highest emergence percentage in 15 November planting (87.7 %) over any other planting date under All India Coordinated Research Project on Potato, Orissa University of Agriculture and Technology, Bhubaneswar. Among the interaction Kufri Chipsona 1 planted on 7 November showed significantly high final emergence (93.10%) over other combinations (Table 1). Similar findings were reported by Sadawarti et al. (2014) under Gwalior region of central India and under Bhubaneswar condition (Dash et al. 2018).

Growth attributing parameters
Stem/plant was significantly higher in 24 October (4.2) and 7 November planting (4.5) over other planting dates. Among the varieties, Kufri Sindhuri (4.3) and Kufri Chipsona-1 (4.2) recorded significantly higher stem number over Kufri Chandramukhi (3.6). Among the interaction, 7 November planting of Kufri Sindhuri and Kufri Chipsona-1 recorded significantly higher stem number (4.8). The results obtained under the present study are in line with Khan et al. (2011) in which he reported highest numbers of stems/plant (4.16) in the last sowing of 15 October 2004. Number of stems/hill was affected by the sowing time. Rab et al. (2013) reported the maximum number of stems/hill (2.72) in 8 October and minimum stems/hill in 15 September planting under Peshawar conditions of Pakistan. Similarly, Dash et al. (2018) reported higher number of shoots/plant in 15 November planting under Bhubaneswar conditions.

Maximum number of compound leaves/plant (55.1) were found in 10 October and 24 October planting and found at par with 17 October (51.3) and 7 November (53.3) planting. Among varieties, Kufri Sindhuri (59.6) recorded the maximum number of compound leaves/plant and the minimum was recorded in Kufri Chandramukhi (44.0). Among the interaction between the date of planting and variety, maximum compound leaves/plant were recorded in 24 October planting in Kufri Sindhuri (63.8) and found at par with 10 October planting of the same variety (Table 2). Dash et al. (2018) and Rab et al. (2013) also reported the effect of planting date and varieties on compound leaves/plant and leaves per hill respectively. For seed potato production Sadawarti et al. (2014) reported higher number of stems, compound leaves and plant height/plant in Kufri Sindhuri in 05 and 20 October planting under Gwalior conditions.

With the delay in planting time, the plant height was decreased and maximum plant height was recorded in 10 October planting (56.2 cm). However, among the varieties, Kufri Sindhuri (54.7 cm) recorded the maximum height. Interaction among the date of planting and variety, Kufri Sindhuri planted on 10 October found the maximum height (62.3 cm), which was at par with 17 October planting (59.5 cm) of the same variety (Table 2). Rab et al. (2013) reported the maximum height of plant in the 22 September planting and similarly, Sandhu et al. (2014) also reported the maximum plant height during the 1 November planting. These differences in plant height can be attributed to the differences in the prevailing weather conditions. The highest plant height recorded in 10 October can be attributed to the most favourable environment for plant growth during the cropping season. The least plant height recorded in 7 November can be due to the lower temperature experienced by the plants after emergence compared to other planting dates. Thus, lower temperature might have reduced allocation of assimilates for growth than the remaining three planting dates. The present study confirms this and climatic data indicates that minimum temperature falls below 10°C after 7 November planting. Decreasing trend in plant height with the delay in planting under Bhubaneswar conditions was also reported by Dash et al. (2018).

Yield attributes
Grade wise seed tuber and total tubers/ha
For quantification of total tuber for further seed multiplication according to the Indian minimum seed certification standards, seed tubers were graded in three

Table 2 Growth parameters as influenced by different planting dates and varieties

Date of planting/ Varieties	No. of stems/plant	No. of compound leaves/plant	Plant height (cm)									
	KCM	K. Sindhuri	K. Chip-1	Mean	KCM	K. Sindhuri	K. Chip-1	Mean	KCM	K. Sindhuri	K. Chip-1	Mean
10th Oct	3.3	3.9	4.4	3.9	48.4	61.8	54.9	55.1	52.6	62.3	53.8	56.2
17th Oct	3.3	3.6	3.8	3.6	40.2	52.2	45.1	46.7	47.5	53.3	51.2	52.7
24th Oct	3.7	4.4	4.5	4.2	45.7	63.8	55.9	55.1	43.9	54.2	49.8	49.3
31st Oct	3.9	4.6	3.6	4.0	39.8	55.4	49.3	48.1	40.8	51.7	46.3	46.3
7th Nov	3.8	4.8	4.8	4.5	44.1	58.7	57.2	53.3	42.3	46.0	49.0	45.8
Mean	3.6	4.3	4.2	4.2	44.0	59.6	54.2		45.4	54.7	50.0	
LSD (P=0.05)	0.42	Date of planting	2.25	0.24	Variety	1.58	0.54	Interaction (DOP × Variety)	3.52			

different sizes, viz. <25 g, 25-125 g and >125 g. With the delay in planting, there was a significant increase in <25 g seed tubers and maximum tubers were recorded in 7 November planting (253 thousand/ha), which is at par with 17 October, 24 October and 31 October planting (Table 3). Kufri Sindhuri recorded the significantly maximum tubers (291 thousand/ha and 3.34 t/ha) among the varieties (Table 3 and 4). In the interaction, Kufri Sindhuri planted on 7 November recorded significantly higher (<25 g) tuber number and weight (328 thousand/ha and 3.75 t/ha). Khan et al. (2011) reported that delay in planting increases the small size tubers and the highest percentage (75.79 %) of small size tubers was obtained in 15 October planting.

Seed size tubers (25-125 g) are very important for use as seed tubers in the successive crop season. 24 October and onward planting recorded increase in tuber numbers and weight. 7 November planting recorded maximum tuber number and weight (355 thousand/ha and 19.33 t/ha), which is at par with 17 October, 24 October and 31 October planting (Table 3). Kufri Sindhuri recorded the significantly maximum tubers (291 thousand/ha and 3.34 t/ha) among the varieties (Table 3 and 4). In the interaction, Kufri Sindhuri planted on 7 November recorded significantly higher (<25 g) tuber number and weight (328 thousand/ha and 3.75 t/ha). Khan et al. (2011) reported that delay in planting increases the small size tubers and the highest percentage (75.79 %) of small size tubers was obtained in 15 October planting.

The >125 g size tubers were found higher in 10 October planting date (17 thousand/ha and 2.55 t/ha) recorded the higher seed numbers, which is found to be at par with 17 October and 31 October planting for a number of tubers and for weight found at par with 31 October planting. Kufri Chandramukhi (17 thousand/ha and 2.56 t/ha) recorded the maximum number of tubers and weight among the three varieties. Among the interaction, Kufri Chandramukhi planted on 10 October gives the higher tuber number and weight (23 thousand/ha and 3.5 t/ha). Khan et al. (2011) reported the maximum percentage of large tubers (11.29%) in 24 September planting and similarly Sadawarti et al. (2014) also reported the same under 20 October planting. Hence, it is important to note that later planting (7 November) resulted in the higher proportion of small and medium-size tubers, which is most important to increase the area and quality of seed in further generation of multiplication.

The 7 November planting (560 thousand/ha and 24.63 t/ha) resulted in the maximum tuber number and yield. There was no significant difference for tuber numbers in 31 October planting. Kufri Sindhuri (648 thousand/ha and 22.68 t/ha) produced maximum tuber number and weight out of three varieties. Sadawarti et al. (2014) reported that Kufri Sindhuri resulted in the maximum tuber yield (29.54 t/ha) under 20th October planting. Ezikel (1997) reported the effect of high temperature during growth of seed crop and 15-19% reduction in yield at Modipuram region of Uttar Pradesh.
Pradesh. Under normal crop, highest tuber number and yield was reported by Dash et al. (2018) under Bhubneshwer conditions. Seed production in a temperature range of 25–28°C was found to reduce yield when compared with the cooler grown seed at 16–22°C (Bodlaender 1972). In the present investigations, 7 November planting conceived the optimal temperature, humidity and intermittent rainfall during the seed crop growth, which results in the higher total seed number and yield (Fig. 1, 2, 6).

Health standards

Severe mosaic, mild mosaic and off type

Production of high quality and disease-free breeder seed is important for its further multiplication and higher production. Hence, it is necessary to remove the diseased plants particularly mosaic affected and off types. There was no sign of mosaic in the first roguing in all the planting dates and varieties. During the second roguing, 10 October planting (0.05%) recorded the lower severe mosaic, which was at par with 17 October, 31 October and 7 November plantings (Table 5). Among varieties, Kufri Sindhuri and Kufri Chipsona 1 (0.06%) recorded non-significantly lower severe mosaic. The severe mosaic in each date of planting and varieties were far below maximum permissible limit under Indian minimum seed certification standards, viz. 0.50% for foundation-1, 0.75% for foundation-2 and 1% for certified seed (IMSCS 2013). No significant results were found for mild mosaic among date of planting and varieties for all three rogues. Mild mosaic incidence and off types were non significant in all the dates of planting and varieties for all the three rouging. This was below the maximum permissible limits under Indian minimum seed certification standards viz 1% for foundation-1, 2% for foundation-2 and 3% for certified seed for mild mosaic and 0.05% for foundation-1, 0.05% for foundation-2 and 1% for certified seed for off type (IMSCS 2013).

Aphid population

During the potato seed production, the aphid population should be below the critical limit. In the present investigation, aphid population monitoring was done on 15 compound leaves per plot. In the course of study, the aphid population was found below the critical limit (3/15 compound leaves) in all the planting dates and varieties. The aphid population was higher during 4–9 weeks, but it was far below the critical limit. The minimum aphid population during the crop seasons was due to the intermittent rainfall leading to low temperature and high relative humidity during the crop growth (Fig. 1, 2). Temperature is the most important environmental factor that affects aphid behavior, development and reproduction (Karim et al. 2011).

Relative humidity plays the critical role in aphid population development. With the decrease of relative humidity, there was an increase in aphid population and it was highest when the relative humidity was around 65%. In the present study, the relative humidity was also high in
Table 5. Health parameters (per cent) as influenced by planting dates and varieties

Date of planting/ Variety	Health standard		
	Severe mosaic	Mild mosaic	Off type
	1st 2nd 3rd	1st 2nd 3rd	1st 2nd 3rd
Date of planting			
10th Oct	0.00 0.05 0.07	0.01 0.11 0.08	0.05 0.00 0.00
17th Oct	0.00 0.08 0.13	0.01 0.08 0.05	0.04 0.00 0.00
24th Oct	0.00 0.12 0.07	0.03 0.05 0.08	0.07 0.00 0.00
31st Oct	0.00 0.09 0.08	0.01 0.07 0.08	0.03 0.00 0.00
7th Nov	0.00 0.08 0.12	0.03 0.11 0.08	0.08 0.00 0.00
CD (P=0.05)	NS 0.051 NS	NS NS NS	NS NS NS
Variety			
KCM	0.00 0.14 0.17	0.02 0.14 0.13	0.06 0.00 0.00
K. Sindhuri	0.00 0.06 0.06	0.01 0.05 0.04	0.06 0.00 0.00
K. Chipsona-1	0.00 0.06 0.06	0.03 0.06 0.06	0.04 0.00 0.00
CD (P=0.05)	NS NS NS	NS NS NS	NS NS NS
CD (DOP x VAR)	NS NS NS	NS NS NS	NS NS NS

ACKNOWLEDGMENTS

The authors are grateful to the Indian Council of Agricultural Research, New Delhi, India, for providing...
financial support and necessary facilities to carry out the research work.

REFERENCES
Ahmed B, Sultana M, Choudhury M A H, Akhter S and Alam M J. 2017. Growth and yield performance of potato varieties under different planting dates. *Bangladesh Agronomy Journal* **20**(1): 25–9.

Anonymous. 2017. Horticulture statistic at a glance. Horticulture division, Department of agriculture and cooperation, Ministry of Agriculture and farmer’s welfare, Government of India, pp-143.

Annual report. 2016-17. Central potato research station, Gwalior Madhya Pradesh, pp-5

Bodlaender K B A. 1972. Influence of temperature during growth of seed tubers and their value. Proceedings of 5th Triennial Conference – EAPR1972.

Carli C and Baltayev B. 2008. Aphids infesting potato crop in the highlands of Uzbekistan. *Potato journal* **35**(3-4): 134–40.

Dash S N, Behera S and Pushpavathi Y. 2018. Effect of planting dates and varieties on potato yield. *International Journal of Current Microbiology and Applied Sciences* **7**(3): 1868-73.

Dehdar B A, Hosseinzadeh A and Hossienpanah D. 2003. Effects of different planting and harvest date on yield, Ardabil potato. *Publications of Agricultural Research Center of Ardabil*, pp 52.

Ezekiel R. 1997. Effect of environmental and cultural factors during growth of seed potato (*Solanum tuberosum* L.) on subsequent performance of progeny tubers as seed. *Indian Journal of Agricultural Science* **67**: 308–11.

Gomaa S S. 2014. Effect of planting dates and seed tuber sources on productivity of potato in siwa oasis. *Journal of Plant Production* **5**(12): 2001–16.

Indian minimum seed certification standards. 2013. The Central Seed Certification Board Department of Agriculture & Cooperation, Ministry of Agriculture, Government of India, New Delhi, pp 342.

Kalbaczyk R. 2000. Growth and development of medium- late and late potato in Koszalin area in relation to weather conditions. *Folia Universitatis Agriculturae Steinensis, Agricultura* **83**: 37–50.

Kar G. 2003. Tuber yield of potato as influenced by planting dates and mulches. *Journal of Agronomy and Soil research* **5**: 60–7.

Karim M R, Hanafi M M, Shahidullah S M, Rahman Ahma, Akanda A M and Khair A. 2011. Environment affects aphid population and virus transmission in potato. *Fields Journal of Food, Agriculture & Environment* **9**(1): 195–201.

Khan A A, Jilani M S, Khan M Q and Zubair. 2011. Effect of seasonal variation on tuber bulking rate of potato. *Journal of Animal & Plant Sciences* **21**(1): 31-7.

Konar A. 1998. Buildup of aphids on potato in Kalyani, West Bengal. *Journal of Indian Potato Association* **25**(1&2): 76–8.

Lakra B S. 2010. Degeneration of potato cultivars due to apical leaf curl virus disease under Hisar ecological conditions. *Potato Journal* **37**(3-4): 164–6.

Milosëvic D, Stamenković S and Perić P. 2012. Potential use of insecticides and mineral oils for the control of transmission of major aphid-transmitted potato viruses. *Pesticides & Phytopharmacy* **27**(2): 97–106.

Mortazavi-bak A and Ramin-pour R. 2009. Effect of planting depth on the performance characteristics of commercial potato varieties. *Seed and Plant Journal* **17**(1): 106–9.

Pandey K K. 2013. Techniques for high tech seed potato production including aeroponics. (In) Summer School on Advances in Quality Potato Production and Post-harvest management (16th July – 5th August, 2013) Central Potato Research Institute, Shimla 171 001. (http://14.139.61.86/E-Book-SummerSchool/index.htm.)

Rab A, Nabi G, Amin N U, Haq I, Sajid M, Nawab K and Ara N. 2013. Influence of sowing time and potato propagules on the yield and tuber quality *Pakistan Journal of Botany* **45**(6).

Sadawarti M J, Bhatnagar A, Singh S P and Pandey K K. 2014. Prospect of early planting of potato seed crop in central India. *Indian Journal of Hill Farming* **27**(1): 12–6.

Sandhu A S, Sharma S P ,Bhutani R D and Khurana S C. 2014. Effects of planting date and fertilizer dose on plant growth attributes and nutrient uptake of potato (*Solanum tuberosum* L.) *International Journal of Agricultural Sciences*. **4**(5): 196–202.

Sharma A K. 2013. Practices for quality seed potato production In : Summerschool on advances in quality potato production and post-harvest management (16th July – 5th August, 2013) Central Potato Research Institute, Shimla 171 001. (http://14.139.61.86/E-Book-SummerSchool/index.htm.)

Singh B P and Pandey K K. 2013. Seed Production in India- An overview. (In) Workshop on Problems and Prospects of Seed Potato Production Systems in India. Dr. N K Pandey, Dr. Dheeraj Kumar Singh, Dr. Brajesh Singh and Dr. V K Dua (Eds). Indian Potato Association CPRI, Shimla 171 001, Himachal Pradesh, India, pp8-25.

Singh J P and Lal S S. 2009. Climate change and potato production in India. ISPRS Archives XXXVIII-8/W3 Workshop Proceedings: Impact of Climate Change on Agriculture, p. 115.

Struik P C and Wiersema S G. 1999. *Seed potato technology*. Wageningen University Press, p 382.