Turfgrass Renovation Using Dazomet to Control the *Poa annua* L. Soil Seed Bank

Bruce E. Branham,1 Glenn A. Hardebeck,2 Joseph W. Meyer,1 and Zachary J. Reicher2

Dept. of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801

Abstract. Annual bluegrass (*Poa annua* L.) is an invasive weed producing copious amounts of viable seed that compete with seedling turfgrasses during renovation. These field studies were conducted to determine the effectiveness of dazomet ([tetrahydro-3,5-dimethyl-2H-1,3,5-thiadiazine-2-thione]), a granular soil sterilant that breaks down in soil to release methyl isothiocyanate (MITC), for controlling the soil seed bank of annual bluegrass during turfgrass renovation. Field trials in Urbana, Ill., and West Lafayette, Ind., in Spring and Fall 2000 and 2001 evaluated dazomet rate from 0 to 504 kg·ha⁻¹ and soil preparation techniques to determine the most effective practices to reduce annual bluegrass reestablishment into a creeping bentgrass (*Agrostis stolonifera* L.) seeding. The interval, in days, between dazomet application and creeping bentgrass planting was also examined to determine the optimal seeding time as measured by the level of annual bluegrass reestablishment. Spring trials generally gave poor results that were attributed to windy conditions resulting in rapid loss of MITC. The annual bluegrass soil seed bank was reduced 46% in spring trials compared to 78% in fall trials. Increasing dazomet rates reduced the absolute number of viable annual bluegrass seeds remaining in the soil. However, significant quantities of viable seed remained, regardless of dazomet rate. Annual bluegrass infested the renovated turf in all trials to varying degrees. Dazomet rates of 420 or 504 kg·ha⁻¹ yielded the lowest rates of annual bluegrass reestablishment. Trials conducted in the fall at these rates resulted in annual bluegrass cover of 1% to 20% in the resulting turf. Creeping bentgrass planted 1 day after dazomet application had significantly less annual bluegrass than when seeded at 7 or 9 days after dazomet application. Dazomet is a tool that can help reestablish a new turf with lower levels of annual bluegrass. However, eradication of annual bluegrass with dazomet is not likely and environmental conditions will dramatically affect the success of the sterilization.

Soil sterilization is a logical method for eliminating the AB soil seed bank. Most soil sterilants are used to control multiple pests within the soil profile of high value crops such as strawberry (Rieger et al., 2002) or tomato (Locascio et al., 1997). Soil sterilants are typically injected or incorporated through tillage to control diseases, weeds, and nematodes within the top 15-20 cm of the soil profile. Since the bulk of the AB soil seed bank is contained in the surface thatch and mat (Lush, 1988), subsurface incorporation of soil sterilants to control AB may not be necessary. Soil sterilization is often done on putting greens because of the relatively small acreage involved, but costs can exceed $2000/ha (Rieger et al., 2001).

Methyl bromide is the soil sterilant of choice for turf managers (Unruh et al., 2002), but the use of methyl bromide is being phased out, and the treated area must be covered with a tarp prior to release of the gas. Covering 0.5 to 1 ha of putting greens with tarp is labor intensive but feasible. However, covering 8 to 12 ha of putting greens is logistically difficult and is rarely attempted. Alternatives to methyl bromide that do not require coverage with a plastic tarp can be valuable on larger turfgrass acreages. In Florida, Unruh et al. (2002) examined alternatives to methyl bromide for soil sterilization, but concluded that none of the products evaluated, including dazomet, were as effective as methyl bromide. However, their evaluation included a broad spectrum of difficult-to-control weeds found in warm season climates. In the cool-season region of the U.S., AB is the primary weed problem on golf course turf and often the only reason that soil sterilization is contemplated in this region.

Dazomet is a granular product that decomposes in the presence of soil and water to methyl isothiocyanate (MITC), a gas that is the sterilizing agent (Smelt and Leistra 1974). Dazomet has been used for soil sterilization since the early 1970s (Low, 1974). Dazomet’s label recommends a waiting period from 12 to 17 days after application and reseeding (Anon. 2003). For most commercial turf managers, this interval is too long because the expense of renovation is compounded by lack of revenue during the time turf is unplayable. In contrast to current label restrictions, Park and Landschoot (2003) found that creeping bentgrass could be safely established when seeded as soon as one day after treatment (DAT) with surface-applied dazomet.

Park and Landschoot (2003) showed that dazomet could be surface-applied and provide effective control of AB seed in the soil with or without covering the treated area with plastic tarp. They determined that dazomet rates of 340 and 388 kg·ha⁻¹ provided >90% control of the AB soil seed bank when surface applied to AB-infested turf without a tarp.

The objective of our study was to further define the suitability of dazomet for surface soil sterilization of AB-infested turf. Specifically, we attempted to determine the effect of dazomet application rate and method on the AB soil seed bank, on the reseeding interval for creeping bentgrass, and on the reestablishment of AB in the newly established turf.

Materials and Methods

Experiments were conducted in two locations: the Landscape Horticulture Research Center in Urbana, Ill., and the Ackerman Hills Golf Course on the campus of Purdue University in West Lafayette, Ind. Two experiments were conducted in Fall and Spring 2000 and 2001 at both locations for a total of 16 individual experiments. One experiment was designed to determine the optimum dazomet application rate. A second study examined the effect of different soil preparation techniques when using a single dazomet rate. Soil type in Urbana was a Flanagan silt loam (fine, smectic, mesic Aquertic Aquatholl) with 52 g·kg⁻¹ organic matter, and pH 6.5. Soil type at the Indiana location was a Chalmar silt loam (fine, silty, mixed mesic Typic Hapludoll) with 67 g·kg⁻¹ organic matter and pH 6.5. Soil experiments were initiated on 25 May and 17 Aug. 2000 and 24 May and 13 Aug. 2001 in Illinois, and on 8 May and 16 Aug. 2000 and 23 May and 17 Aug. 2001 in Indiana. Main plot sizes at both locations were 0.9 × 2.4 m in 2000, 0.9 × 3.0 m in May 2001, and 0.9 × 3.7 m in August 2001. During the turf establishment phase of the experiments, all plots were mown at a height of 1.2 cm.

Dazomet rate. Dazomet was applied at 0,
plot. Regression analysis was conducted on all dazomet rate trials.

At 7 DAT, two 10-cm-diameter cores were removed from each unseeded subplot and sectioned into depths of 0 to 1, 1 to 2, and 2 to 3 cm with the 0 depth defined as the beginning of the thatch/mat layer. The two core sections from the same depth interval were combined and air-dried (Indiana) or dried in a forced air oven at 45 °C (Illinois). Following drying, the samples were ground, weighed, and a 10-g subsample (0 to 1 cm depth) or 30-g subsample (1 to 2 and 2 to 3 cm depths) removed for AB soil seed bank determination. Soil subsamples were topdressed onto 230-cm² plastic flats filled with sterilized greenhouse soil (1 perlite : 1 soil : 1 sand, by volume), placed under a mist bench, and irrigated six times daily for 4 weeks. The number of AB seedlings was counted as an estimate of viable AB seeds in the original sample. Smaller soil samples were used for the 0 to 1 cm depth because the large number of viable seed made counting difficult. Data for the Fall 2000 trials in Illinois were lost because drying oven temperatures were too high, killing the seed. AB seed germination data were analyzed as a split plot with dazomet rate as the main plot and sample depth as the split plot. All statistical analyses were conducted using SuperANOVA statistical software package (Abacus Concepts, Berkeley, Calif.).

Results and Discussion

Poa annua establishment

Application rate studies. All four fall rate trials produced significant (P ≤ 0.1) dazomet rate responses for AB establishment (Tables 1–4), while only two of the four spring trials produced significant rate effects. Regression analysis of the fall trials yielded a highly significant linear rate response in all four trials (Table 5). Both fall Indiana trials also had a significant quadratic response that resulted from less consistent control at the highest dazomet rate (Table 5). There were no significant interactions between dazomet rate and seeding date, and so individual seeding date by dazomet rate data are not shown. In general, dazomet applied at ≥420 kg·ha⁻¹ consistently produced the lowest amount of AB reestablishment. Lower rates of dazomet often did not completely control the existing turf, which was predominantly AB. Thus, high levels of AB in these treatments did not result entirely from AB seed germination, but also from survival of the original turf. Dazomet control in the spring was generally erratic, and high rates of dazomet in the spring did not provide consistently low levels of AB reestablishment.

Application method studies. The various applications methods had little influence on dazomet efficacy (Tables 6–9). Spring 2000 trials at both locations produced high levels of AB establishment regardless of treatment. Spring 2001 studies showed dramatically better results with the Indiana trial yielding almost no AB establishment with or without dazomet. The Spring 2001 Illinois trial had reasonable AB control where dazomet was applied (AB populations from 4% to 27%) while the glyphosate plus diquat control treatment was almost completely covered with AB. The fall studies also produced variable results. Since dazomet at 420 kg·ha⁻¹ and higher produced the best results in the rate studies, the

| Table 1. Effectiveness of dazomet rates applied before creeping bentgrass seeding as measured by reestablishment of annual bluegrass in Indiana. Influence of dazomet rate on the visual estimation of percent annual bluegrass cover. |
Treatment (kg a.i./ha)	Rate	Spring 2000	Fall 2000	Spring 2001	Fall 2001
Glyphosate + diquat	2.24 + 0.28	76	37	1	41
Dazomet 168	92	7	23	10	20
Dazomet 252	95	4	21	20	20
Dazomet 336	74	2	14	6	6
Dazomet 420	66	1	0	9	9
Dazomet 504	59	2	2	20	20
Significance	NS	NS	NS	NS	NS

Within columns, means followed by the same letter are not significantly different according to Fisher’s protected LSD (0.05).

Rates were uniformly reduced by 28 kg·ha⁻¹ in the Spring 2000 trials.

Nonsignificant or significant at P = 0.05, 0.01, or 0.001, respectively. ANOVA and LSD values are determined with arc-sin-transformed data; however, means are reported as percent annual bluegrass cover.

| Table 2. Effect of interval between dazomet application and bentgrass seeding on the percent annual bluegrass reestablishment in Indiana. Annual bluegrass cover estimated visually. |
Seeding interval (d)	Spring 2000	Fall 2000	Spring 2001	Fall 2001
0	--	--	--	16 ab
1	--	--	--	7 a
5	--	--	13	10 ab
5	66 a	9	11	22 b
7	78 b	7	9	18 b
9	86 c	11	8	32 c
Significance	**NS**	**NS**	**NS**	**NS**

Within columns, means followed by the same letter are not significantly different according to Fisher’s protected LSD (0.05).

Nonsignificant or significant at P = 0.05, 0.01, or 0.001, respectively. ANOVA and LSD values are determined with arc-sin-transformed data; however, means are reported as percent annual bluegrass cover.
Table 3. Effectiveness of dazomet rates applied before creeping bentgrass seeding as measured by reestablishment of annual bluegrass in Illinois. Influence of dazomet rate on the visual estimate of percent annual bluegrass cover.

Treatment (kg a.i./ha)	Rate	Spring 2000	Fall 2000	Spring 2001	Fall 2001
Glyphosate + diquat	2.24 + 0.28	30 a¹	17	87 bc	24 ab
Dazomet	168¹	80 c	18	82 c	88 c
Dazomet	252	55 b	17	55 ab	76 c
Dazomet	336	42 ab	13	25 a	44 b
Dazomet	420	23 a	3	11 a	14 a
Dazomet	504	33 ab	2	8 a	11 a
Significance	**	****	***	***	

¹Within columns, means followed by the same letter are not significantly different according to Fisher’s protected LSD (0.05).

²Rates were uniformly reduced by 28 kg ha⁻¹ in the Spring 2000 trials.

Significant at P = 0.05, 0.01, or 0.001, respectively. ANOVA and LSD values are determined with arc-sin-transformed data; however, means are reported as percent annual bluegrass cover.

366 kg ha⁻¹ rate used in the application method studies may have been too low to provide consistent AB control. Regardless of dazomet rate, dazomet incorporation via aerification before or after application does not significantly improve control. Though a simple application of dazomet will be effective, aerification to improve seed-soil contact will improve germination and establishment of the newly seeded turfgrass.

Effect of reseeding interval. Both the dazomet rate and methods of application trials were overseeded with creeping bentgrass at various intervals following dazomet application. The seeding date subplots showed significant differences in AB reestablishment in eight of twelve trials where subplot data were collected (Tables 2, 4, 7, and 9). In the 2000 studies, seeding treatments were made at 5, 7, or 9 d after dazomet application (DAT) to allow time for dazomet residues to dissipate. However, no negative impact on bentgrass seeded at day 5 was observed, so in Spring 2001 seeding interval was shortened to 3 DAT. Bentgrass seeded at 3 DAT was similarly unaffected by dazomet residues. In Fall 2001, seeding intervals were changed to 0 (seed applied immediately before dazomet application), 1, 3, 5, 7, and 9 DAT. When the seeding interval was shortened to 0 DAT, seeding interval and dazomet rate were significant factors in the regression analysis of the rate trials (Table 5). For each day of delay in reseeding following dazomet application, a 2.0% to 2.8% increase in AB reestablishment was observed. The lowest level of AB infestation, 4% (average of both locations), was observed when bentgrass was seeded 1 d after application of 504 kg ha⁻¹ dazomet in Fall 2001.

Surprisingly, bentgrass was not killed even when seeded 0 DAT. Bentgrass seed sown at 0 DAT appeared stunted when compared to the seed planted at 1 DAT, but the stunting disappeared within 2 weeks and normal establishment followed. The reduction in establishment vigor of seed planted the day of dazomet application may explain the consistently higher levels of AB contamination in the 0 DAT seeding (Tables 2, 4, 7, and 9). Based on both the application methods and dazomet rate trials, optimum bentgrass establishment and minimum AB infestation will be obtained when bentgrass is seeded between 1 and 3 d after dazomet application (Tables 2, 4, 7, and 9).

Control of the Poa annua soil seed bank. Individual data are not presented due to the extreme variability found with this analysis technique. However, three important points can be gleaned from the data. The most consistent finding was that viable AB seed decreased significantly (P = 0.001) in every trial with depth (Table 10). On average, 80% of the viable AB was in the 0 to 1-cm layer. A sod producer who has fields infested with AB could remove a majority of the soil seed bank by simply harvesting a thicker cut of sod. Furthermore, incorporating a soil sterilant like dazomet only the top 1.0 cm of the soil profile will control the majority of the AB seed and incorporating a sterilant much deeper than that will not significantly improve control.

Second, the average reduction in viable AB seed was 66% and 62% for the 420 and 505 kg ha⁻¹ dazomet rates, respectively. When only the fall trials were considered, the reduction in viable AB seed rose to 86% and 85% for the 420 and 505 kg ha⁻¹ rates. Even under the best conditions, fall applications at high rates, <90% control was obtained. If care and diligence are not utilized, the overseeding will be reinfested with AB, and points to the necessity of seeding quickly after dazomet application and getting full bentgrass cover as soon as possible to minimize subsequent reinfection.

Third, these data help confirm the observations of Lush (1988) and Wu et al. (1987) regarding the germination characteristics of AB seed. Lush (1988) observed that most of the seed shed in the spring germinated throughout the spring and summer and that long-term dormancy of AB seed was provided by a relatively small population of the total seed production. Our data showed >2.2 times as many viable AB seeds in the spring than in the following late summer period, indicating that much of the seed shed in the spring of the year is readily viable and has largely germinated by late summer. Trying to establish a bentgrass turf in the spring will result in tremendous competition from germinating AB. One might be tempted to use a soil sterilant in the spring, but as this research has shown, it is best to allow the spring germination to run its course and attempt renovation in the late summer.

As observed by Park and Landschoot (2002), dazomet does not control all viable AB seed in the soil. Indeed, whereas Park and Landschoot reported control of >90% at rates of 340 kg ha⁻¹ or higher, we saw much more variable rates of control of the AB soil seed bank. Park and Landschoot counted the number of AB seedlings that emerged in the treated plots within the first three weeks following dazomet application. Our approach was to collect soil samples at 7 DAT, dry the samples, and measure germination within 2 to 6 months following sample collection. Neither approach can completely estimate the soil seed bank, because some dormant, viable seed may not germinate in the relatively short time allowed for germination by both investigators. However, the more variable results and less overall control observed in our studies may be explained by the additional time between dazomet application and the estimation of AB seed viability. Our seeding interval data (Tables 1–4, 6–7, and 9) indicates that AB germination can increase within weeks following dazomet application.

Spring dazomet applications did not work well, failing completely at both locations in 2000, providing good results at Indiana in
provide good results, one exception was the Spring 2001 trial at Indiana (Tables 1–2 and 6–7). In the dazomet rate trial, low levels of AB reestablishment were observed across all treatments, and in particular in the non-selective herbicidal control treatment and the two highest dazomet rates. The herbicidal control treatment had only 1% AB cover (Table 1–2), however, the soil seed bank data (data not shown) indicated that the control treatment had the highest level of viable AB seeds. The lack of establishment even with high levels of AB seeds in the soil is most likely due to unfavorable temperatures that inhibit AB germination. Henry et al. (2002) observed this same response when they found that summer-seeded bentgrass produced turf with lower levels of AB reestablishment than when seeded at the more optimal times for turfgrass establishment.

We also observed that AB invasion into the new turf would increase if seeding were not completed by three days after dazomet application. Dazomet does not eradicate AB seed from the soil, rather it helps create an AB-free window of seeding opportunity. Most of the AB seed that is capable of germinating readily has been killed by the dazomet application, but a larger reservoir exists and the longer the interval between dazomet application and bentgrass seeding, the more likely that AB will be able to reinfest the turf.

This research shows that dazomet can be helpful in establishing turf with minimal amounts of AB present in the resulting stand. However, environmental conditions, i.e., wind, may dramatically affect the level of control observed. Furthermore, while the AB soil seed bank is reduced by dazomet application, it is not eliminated and additional, postestablishment control strategies will have to be implemented to keep AB from reinfesting the new turf over time.

Literature Cited

Anonymous. 2003. Basamid granular. http://www.basf.de/en/produkte/gesundheit/pflanzen/produkte/basamid/labels.

Beard, J.B., P.E. Rieke, A.J. Turgeon, and J.M. Vargas, Jr. 1978. Annual bluegrass (Poa annua L.) description, adaptation, culture, and control. Mich. State Univ. Agr. Exp. Sta. Res. Rpt. 352.

Gaussoin, R.E. and B.E. Branham, 1989. Influence of cultural factors on species dominance in a mixed stand of annual bluegrass/creeping bentgrass. Crop Sci. 29:480–484.

Henry, G.M., S.E. Hart, and J.A. Murphy. 2002. Overseeding bentgrass seed mixtures for existing stands of Poa annua. Proc NEWSS. 56:113.

Locascio, S.J., J.P. Gilreath, D.W. Dickson, T.A. Kucharek, J.P. Jones, and J.W. Noling. 1997. Fumigant alternatives to methyl bromide for polyethylene-mulched tomato. HortScience 32:1208–1211.

Low, A.J. 1974. The use of dazomet for partial sterilization of forest nursery soils. Forestry 47:31–43.

Lush, W.M. 1988. Biology of Poa annua in a temperature zone golf putting green (Agrostis stolonifera/Poa annua). II. The soilbank. J. Appl. Ecol. 25:989–997.

Parke, B.S. and P.J. Landschoot. 2003. Effect of dazomet on annual bluegrass emergence and creeping bentgrass establishment in turf.
Table 10. Mean squares from the analysis of variance for the square root transformed number of viable annual bluegrass seed remaining following treatment with various dazomet application rates.

Source	df	IL	PU	IL	PU	IL	PU	
Dazomet rate (R)	5	143	35.0	69.9	34.0	86.0	6.0	40.4
Depth (D)	2	5612***	1460***	87.6***	232***	1970***	53.8***	242***
R × D	10	84.7	16.0	10.3	1.4	15.2	4.4	15.3

, ***Significant at P = 0.05, 0.01, or 0.001, respectively.

maintained as a golf course fairway. Crop Sci. 43:1387–1394.

Rieger, M., G. Krewer, and P. Lewis. 2001. Solarization and chemical alternatives to methyl bromide for preplant soil treatment of strawberries. Hort- Technology 11:258–264.

Smelt, J.H. and M. Leistra. 1974. Conversion of metham-sodium to methyl isothiocyanate and the basic data on the behavior of methyl isothiocyanate in soil. Pest. Sci. 5:401–407.

Turgeon, A.J. 2002. Turfgrass management. Prentice Hall, Upper Saddle River, N.J.

Unruh, J.B., B.J. Brecke, J.A. Dusky, and J.S. God- behere. Fumigant alternatives for methyl bromide prior to turfgrass establishment. Weed Technol. 16:379–387.

Wu, L., I. Till-Bottraud, and A. Torres. 1987. Genetic differentiation in temperature-enforced seed dormancy among golf course populations of Poa annua L. New Phytol. 107:623–631.