Original Research Article

The utility of serum 25-hydroxyvitamin D in predicting post-thyroidectomy hypocalcemia in thyrotoxic subjects: a single-center cohort study

Poongkodi Karunakaran¹*, Deepak Thomas Abraham²

¹Department of Endocrine Surgery, Madras Medical College, Chennai, Tamil Nadu, India
²Department of Endocrine Surgery, Christian Medical College, Vellore, Tamil Nadu, India

Received: 23 September 2020
Revised: 07 November 2020
Accepted: 12 November 2020

*Correspondence:
Dr. Poongkodi Karunakaran,
E-mail: poongkodithesurgeon@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: The role of preoperative vitamin D deficiency as a predictor of post-thyroidectomy hypocalcemia in thyrotoxic subjects is controversially reported. This prospective cohort study determined the utility of serum 25-hydroxyvitamin D (25OHD) levels in predicting transient hypocalcemia in thyrotoxic and euthyroid patients undergoing total thyroidectomy (TT).

Methods: Subjects with new-onset hyperthyroidism (n=97; age=median (Inter-Quartile Range): 38 (18) years; M:F=25:72) and age; sex-matched euthyroid cohorts (n=231; age=37 (18) years; M:F=40:191) undergoing TT were evaluated for serum corrected-calcium, intact parathormone and 25OHD levels at baseline, 48-hour and 6-months post-TT; p value <0.05 was considered significant.

Results: The incidence of transient hypocalcemia in thyrotoxic subjects was 58.8% (57/97) versus 22.5% (52/179) in euthyroid cohorts. In receiver operating characteristic analysis predicting transient hypocalcemia for the test-variable preoperative 25OHD, the area under curve (AUC) among euthyroid subjects was 0.725 (95% CI: 0.641-0.809; p<0.001) with a threshold of 17.6 ng/mL with sensitivity and specificity of 65.4% and 64.2% respectively. In thyrotoxic subjects, the AUC was 0.573 (95% CI: 0.452-0.694; p=0.222) with poorer predictability and was less than that of euthyroid subjects.

Conclusions: Preoperative 25OHD below 17.6 ng/ml was reliable in predicting transient postoperative hypocalcemia in euthyroid subjects though with a limited sensitivity and specificity but unreliable in thyrotoxic subjects undergoing TT.

Keywords: Euthyroid, Hyperthyroidism, Postoperative hypocalcemia, Thyroidectomy, Thyrotoxicosis, 25-hydroxycholecalciferol, Vitamin D deficiency

INTRODUCTION

Thyroid surgery is the most common endocrine surgery performed worldwide. Total thyroidectomy (TT) has emerged as the procedure of choice for thyroid malignancy as well as many benign toxic goitre and nontoxic multinodular goitre with compression symptoms, in order to avoid recurrence and revision surgery.¹ "Postoperative hypocalcemia is" remove comma and add is, a common complication after TT, which may be transient or permanent (>6 months) and is increasingly seen with this radical technique.²,³ Hypocalcemia varies from an asymptomatic biochemical abnormality to a life-threatening tetany, depending on the duration, severity,
and rapidity of development. In particular, thyrotoxic subjects exhibited higher rates of transient and permanent post-thyrotoectomy hypocalcemia (PH) compared to euthyroid subjects. The most important cause of transient hypocalcemia is functional hypoparathyroidism, resulting from surgical trauma and devascularization of parathyroid gland and hence impaired secretion of parathormone hormone, which is the major calcitropic hormone. Vitamin D is the other major hormone involved in calcium regulation and therefore, Vitamin D deficiency (VDD), a potentially correctable factor was extensively investigated for its role in the development of post-thyrotoectomy hypocalcemia. The previous studies had variable results owing to wide variation in prevalence of VDD as it is latitude-specific and population based. Few high-level evidences are available regarding the impact of VDD on PH in our region. Moreover, there is no consensus regarding the threshold of vitamin D levels predisposing to the development of post-thyrotoectomy hypocalcemia in thyrotoxic subjects.

Therefore, we conducted this cohort study to determine the utility of 25-hydroxyvitamin D (25OHD) in predicting the development of transient hypocalcemia in thyrotoxic and euthyroid subjects undergoing TT in southern India.

METHODS

Consecutive patients undergoing first-time total thyroidectomy in the Department of Endocrine Surgery, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai- 600003 (Latitude: 13.08° N, 80.27° E) from July 2017 to December 2019 were prospectively studied after obtaining Institutional ethics committee approval (No.18092012). Informed written consent obtained from all participants. The study was conducted in accordance with the Helsinki declaration and its later amendments. None of the procedures in the study involved animals.

Selection of subjects

Group A/thyrotoxic group

Surgical candidates with new-onset overt hyperthyroidism were included. Diagnosis was based on suppressed Thyroid Stimulating Hormone (TSH) below reference range with or without elevated free thyroid hormone levels. Indications for surgery were: large volume goitre, non-compliance/resistance to antithyroid drugs, suspicion for malignancy in cytology or sonography, planning pregnancy, presence of moderate/severe Graves’ ophthalmopathy and logistic reasons including patient’s preference for surgery.

Group B/ euthyroid subjects

Age and sex-matched euthyroid patients with benign thyroid nodule/s having compression symptoms or malignant thyroid disease who are surgical candidates were included. All the subjects were evaluated for TSH (0.35–4.5 mIU/l), free thyroxine (0.8–2.2 ng/dl), liver and renal function tests. Subjects with revision surgery, concomitant neck dissection, intentional parathyroidectomy, associated medical conditions including chronic renal or hepatic disorder, malignancy, immunosuppression, uncontrolled diabetes and those with calcium and vitamin D supplements were excluded.

Preoperatively, thyrotoxic patients received antithyroid drug, Tab. Carbimazole 10-60 mg/day and propranolol 10-160 mg/day in divided doses until stabilly euthyroid. Under general anesthesia, classic total thyroidectomy was performed by the same surgical team as per institutional standards identifying and preserving all the parathyroid glands and both the external branch of superior laryngeal and recurrent laryngeal nerves on either side. Blood samples were collected for preoperative 25OHD at the time of diagnosis and categorized as severe deficiency<10, deficiency=10-19.9, insufficiency=20-29.9, sufficiency=30-100 ng/ml. Serum 25-OHD was measured in Siemens ADVIA Centaur using fully automated chemiluminescent immune assay method standardized against isotopic dilution-liquid chromatography-tandem mass spectrometry reference methods as per vitamin D standardization programme. Serum corrected-calcium (8.5-10.4 mg/dl) and intact Parathormone (iPTH) (12-65 pg/ml) were measured with automated analyzer, Roche eCobas 6000 series, Switzerland at baseline, 24-hour, 48-hour post-surgery and as per clinical needs.

In the postoperative recovery phase, clinical signs and symptoms of hypocalcemia including perioral and acral numbness, cramps, carpopedal spasm, laryngeal stridor, bronchospasm, cardiac arrythmia, seizures, Chvostek and Trousseau signs were monitored. Patients with clinically evident hypocalcemia or corrected calcium <8 mg/dl received Tab. Calcium carbonate 2g/day±Cap. Calcitriol (active vitamin D) 0.25-1 mcg/day and 10% intravenous calcium gluconate 0.5-2 mg/kg/day for resistant hypocalcemia. Subjects with vitamin D deficiency or insufficiency received high dose cholecalciferol single intramuscular injection of 6 lakh units, or per oral 60,000 IU/week for 4-12 weeks tailored to individual needs.

In the follow up, Tab. Thyroxine sodium in replacement dose for benign or medullary thyroid cancer while suppressive doses were administered for differentiated thyroid cancer.

Statistical analysis

SPSS software version 20.0, IBM Incorp, was used for statistical analysis. Categorical data was expressed as percentage and frequency. Continuous data which was normal and non-normal on Shapiro Wilk’s normality test were expressed as mean (Standard deviation) and median
Karunakaran P et al. Int Surg J. 2020 Dec;7(12):4070-4075

(Inter-Quartile Range: IQR) respectively. Chi-square test, Mann Whitney U test and Multinomial regression tests were performed where appropriate. The results were expressed as Odds ratio (OR) with 95% confidence interval (95% CI). Receiver Operating Characteristic (ROC) determined the diagnostic accuracy of the test-variable 25OHD in predicting transient hypocalcemia. Youden index determined the optimal “cut-off” value. The area under ROC curve (AUC) with values closer 1 indicates better predictability and those closer to 0.5 indicates poorer predictability. P value<0.05 was considered statistically significant.

RESULTS

Out of 359 patients enrolled in the study, a total of 328 patients who underwent TT were eligible for analysis. Thyrotoxic subjects who had remission with antithyroid drug/ radioactive iodine therapy (n=16), those with lesser resection including hemithyroidectomy and isthmectomy (n=3), concomitant neck dissection (n=9) for intraoperative detection of lymph node metastasis and those with incomplete calcium and iPTH values (n=3) were excluded.

Table 1: Comparison of thyrotoxic and euthyroid cohorts undergoing total thyroidectomy.

Parameters	Thyrotoxic group (n=97)	Euthyroid group (n=231)	P value	
Age (years)	Median (IQR; min-max)	38 (18; 17-66)	37 (17; 13-83)	0.489
Male:Female	25:72	40:191	0.214	
Free Thyroxine (ng/dl)	2.5 (2.9; 0.6-10.6)	1.3 (0.3; 0.9-2.1)	0.043	
Thyroid stimulating hormone (mIU/l)	0.005 (0.007; 0.001-0.3)	2.6 (1.0; 0.4-5.3)	<0.001	
Baseline serum calcium (mg/dl)	9 (1.2; 5.8-12.4)	9.3 (0.7; 6.4-11.6)	0.005	
48-hour serum calcium (mg/dl)	7.8 (1.3; 4.5-11.8)	8.5 (1.1; 5.6-11.0)	<0.001	
Baseline serum intact parathormone (pg/ml)	30.1 (36.2;1.2-184)	26 (23.5; 1-83.8)	0.220	
48-hour serum intact parathormone (pg/ml)	13.2 (23.3; 0.01-82.1)	11.5 (16.6; 0.01-199)	0.038	
Baseline serum 25-hydroxy vitamin D (ng/ml)	18 (11.6; 3-55)	19.2 (11.5; 3-61.7)	<0.001	

IQR = Inter-quartile range

Table 2: Multinomial logistic regression model fitted for the analysis of determinants of transient post-thyroidectomy hypocalcemia.

Independent variable	Thyrotoxic group	Euthyroid group		
	P value	Odds ratio (95% Confidence Interval)	P value	Odds ratio (95% Confidence Interval)
Age (years)	0.907	0.367		
Gender	0.749	0.211		
Preoperative calcium	0.894	0.001	3.9 (1.5-9.9)	
25OHD severe deficiency	0.137	0.001	4.4 (4.4-431.6)	
25OHD deficiency	0.285	0.064		
25OHD insufficiency	0.051	0.081		
48-hour Parathormone	0.008	3.7 (1.4-9.8)	0.005	9.4 (2.6-34.4)

25OHD= 25-hydroxycholecalciferol.

Figure 1: Receiver operating characteristic analysis showing preoperative 25-hydroxycholecalciferol predicting post-thyroidectomy hypocalcemia in thyrotoxic subjects.

Figure 2: Receiver operating characteristic analysis showing preoperative 25-hydroxycholecalciferol predicting post-thyroidectomy hypocalcemia in euthyroid subjects.
Group A included 97 patients with new-onset hyperthyroidism with the median age of 38 years (range: 17-66 years) including 25 male and 72 female subjects. Group B included age- and sex-matched euthyroid cohorts (n=231) comprising 40 male and 191 female subjects with median age of 37 years. The incidence of postoperative transient hypocalcemia in thyrotoxic patients was 58.8% (57/97) compared to 22.5% (52/179) in euthyroid cohorts undergoing TT (p<0.001). There was no significant difference between group A and group B across the categories of preoperative 25OHD severe deficiency (15.5% vs. 12.6%), deficiency (37.1% vs. 41.6%), insufficiency (33% vs. 33.3%) and sufficiency (14.4% vs. 12.6%), p=0.813. In group A vs. group B analysis (Table 1), thyrotoxic patients had significantly reduced preoperative 25OHD (p<0.001), preoperative calcium (p=0.005), 48-hour calcium (p<0.001) and elevated 48-hour iPTH (p=0.038) compared to euthyroid cohorts. Multinomial logistic regression model was fitted (Table 2) for the analysis of determinants of outcome variable, transient hypocalcemia. In group A, independent risk factor was 48-hour iPTH (OR: 3.7, p=0.008). In group B, the independent risk factors of transient hypocalcemia were preoperative 25OHD severe deficiency (OR: 44.1, p=0.001), preoperative calcium (OR: 9.4, p=0.001) and 48-hour iPTH (OR: 3.9, p=0.005).

ROC analysis

In group A subjects, the area under the ROC curve (Figure 1) predicting transient hypocalcemia for the test-variable preoperative 25OHD was 0.573 (95% CI: 0.452-0.694; p=0.222) and optimal threshold could not be computed. Whereas, in euthyroid cohorts (Figure 2), preoperative 25OHD reliably predicted transient hypocalcemia with AUC of 0.725 (95% CI: 0.641-0.809; p<0.001) at an optimal cut-off value of 17.6 ng/mL. Sensitivity and specificity were 65.4% and 64.2%. Positive predictive value and negative predictive value was 34.6% and 86.5% respectively.

DISCUSSION

Hyperthyroidism is associated with higher rate and severity of postoperative hypocalcemia compared to euthyroid subjects undergoing TT. The phenomenon of hungry bone resulting from remineralization of bone loss associated with thyrotoxicosis induced osteoporosis is implicated as an important cause of post-thyroidectomy hypocalcemia. Hence, Vitamin D, which is an independent predictor of bone health and a potentially correctable factor was extensively studied for its role in the development of PH in thyrotoxic subjects. However, the results are variable owing to: geographic variation in vitamin D deficiency prevalence; the lack of uniformity in the utilization of 25OHD vs. 1, 25-dihydroxycholecalciferol for assessment of vitamin D status; differences in the assay method and cut-off values for defining the reference range. This single-center prospective study addressed these issues and utilized serum 25-hydroxycholecalciferol, which is the major circulating form and the most reliable marker for assessment of vitamin D status. The severity of hypovitaminosis D was categorized as insufficiency, deficiency and severe deficiency in accordance with the Endocrine Society clinical practice guidelines. The risk of development of PH in each category among thyrotoxic subjects was compared and contrasted with age- and sex-matched euthyroid cohorts.

The present study demonstrated higher rates of transient hypocalcemia in thyrotoxic patients compared to euthyroid cohorts undergoing total thyroidectomy (58.8% vs. 22.5%), which is consistent with published reports. Although the mean levels of preoperative 25OHD was significantly diminished in thyrotoxic subjects compared to euthyroid cohorts, there was no significant difference in the percent prevalence across the categories of severe deficiency, deficiency and insufficiency between the two groups. In multinomial regression analysis, the major determinant of PH in thyrotoxic group was low levels of 48-hour iPTH (OR: 3.7) and 25OHD even in the category of severe deficiency failed to impact the development of transient hypocalcemia.

In contrast, preoperative 25OHD reliably predicted transient hypocalcemia in euthyroid subjects at optimal cut-off value of 17.6 ng/mL. The sensitivity and specificity were 65.4% and 64.2% respectively, though with limited PPV of 34.6%. A PPV of 34.6% implies that 65.4% of subjects would be wrongly diagnosed with false positive results. Additionally, multivariate analysis revealed that independent risk factors for PH were preoperative calcium (OR: 9.4), 48-hour iPTH (OR: 3.9) and severe 25OHD deficiency (OR: 44.1) in euthyroid subjects. Therefore, euthyroid subjects with severe 25OHD deficiency had 44-fold increased likelihood to develop transient hypocalcemia post-TT compared to 25OHD sufficient group. Hence, correction of severe vitamin D deficiency and associated hypocalcemia preoperatively in this subset of euthyroid subjects will decrease the occurrence of PH and facilitate early safe discharge. Several meta-analysis and randomized controlled trials have reported that prophylactic calcium and vitamin D supplementation facilitates same-day discharge post-TT. Literature evidences have
implicated hungry bone syndrome (HBS) as an important cause of PH in thyrotoxic subjects in addition to surgically induced functional hypoparathyroidism. Hungry bone phenomenon is characterized by profound and prolonged hypocalcemia along with hypomagnesemia and hyperphosphatemia with concomitant elevation of parathyroid hormone usually 72- to 96-hours after TT and is due to rapid remineralization of bone loss associated with thyrotoxic osteodystrophy. Thus, the significantly diminished 48-hour calcium and elevated 48-hour iPTH post-TT in thyrotoxic subjects compared to euthyroid group in the present study is corroborative of HBS. Michie et al had reported that higher rates of PH cannot be solely explained by functional hypoparathyroidism and showed that HBS is the mechanism of post-thyroidectomy hypocalcemia in thyrotoxic subjects. In a previous report, we have shown that HBS occurred exclusively in thyrotoxic subjects undergoing TT and correlated with the severity of bone demineralization. Furthermore, the author has shown in the previously published reports that the radical technique of TT was associated with higher rates of PH in thyrotoxic subjects and facilitates rapid recovery of bone mineral density. Moreover, 25OHD levels were not different in subjects exhibiting and not exhibiting PH among thyrotoxic subjects. Recently, Manzini et al had reported that decreased preoperative vitamin D levels did not predict PH, which is in keeping with our observation.

Limitations

As vitamin D deficiency is latitude- and ethnicity-based, some of our observation could have been caused by characteristics specific to our population. The present study has not evaluated the bone mineral density nor its correlation with the severity of thyrotoxicosis and development of PH. Moreover, serum magnesium, alkaline phosphatase and other bone turnover markers which are potential predictors of PH in thyrotoxicosis were not included.

CONCLUSION

Serum 25OHD had limited utility in predicting transient hypocalcemia in thyrotoxic patients undergoing TT. However, preoperative 25OHD below 17.6 ng/mL was a reliable predictor of transient post-thyroidectomy hypocalcemia in euthyroid subjects, though with a limited sensitivity and specificity. Euthyroid patients with severe vitamin D deficiency had 44-fold increased likelihood of developing PH compared to 25OHD sufficient patients. Preoperative Calcium and vitamin D therapy in these patients at risk of PH will facilitate early safe discharge.

ACKNOWLEDGEMENTS

Authors would like to thank Dr. K. Ramadevi MD, PhD, Professor and Director, Institute of Biochemistry, Madras Medical college and Rajiv Gandhi Government General Hospital for her invaluable help in biochemical analysis and interpretation of results.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Liu ZW, Masterson L, Fish B. Thyroid surgery for Graves’ disease and Graves’ ophthalmpathy. Cochrane Database Systematic Rev. 2015:CD010576.
2. Thomusch O, Machens A, Sekulla C. The impact of surgical technique on postoperative hypoparathyroidism in bilateral thyroid surgery: a multivariate analysis of 5846 consecutive patients. Surg. 2003;133:180-5.
3. Thomusch O, Machens A, Sekulla C. Multivariate analysis of risk factors for postoperative complications in benign goiter surgery: prospective multicenter study in Germany. World J Surg. 2000;24:1335-41.
4. Bott KJ, Markogiannakis H, Skandarajah A. Preoperative vitamin D deficiency predicts postoperative hypocalcemia after total thyroidectomy. World J Surg. 2011;35:10-2.
5. Unsal IO, Calapkkulu M, Sencar ME. Preoperative vitamin D levels as a predictor of transient hypocalcemia and hypoparathyroidism after parathyroidectomy. Scientific Reports. 2020;10:95-8.
6. Kim WW, Chung SH, Ban EJ. Is preoperative vitamin D deficiency a risk factor for postoperative symptomatic hypocalcemia in thyroid cancer patients undergoing total thyroidectomy plus central compartment neck dissection? Thyroid. 2015;25:911-8.
7. Wang X, Zhu J, Liu F. Preoperative vitamin D deficiency and postoperative hypocalcemia in thyroid cancer patients undergoing total thyroidectomy plus central compartment neck dissection. Oncotarget. 2017;8:78113-9.
8. Manzini G, Malhofer F, Weber T. Can preoperative vitamin D deficiency predict postoperative hypoparathyroidism following thyroid surgery? Langenbeck’s Arch Surg. 2019;404:55-61.
9. Lee GH, Ku YH, Kim H. Vitamin D level is not a predictor of hypocalcemia after total thyroidectomy. Langenbeck’s Arch Surg. 2015;10:1007-11.
10. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocrine Metab Dis. 2017;18:24-31.
11. Edefe O, Antakia R, Laskar N. Systematic review and meta-analysis of predictors of post-thyroidectomy hypocalcaemia. British J Surg. 2014;101:307-20.
12. Edefe O, Balasubramanian SP. Incidence, prevalence and risk factors for post-surgical
hypocalcaemia and hypoparathyroidism. Gland Surg. 2017;8:09-13.
13. Michie W, Duncan T, Hodges DW. Mechanism of hypocalcaemia after thyroidectomy for thyrotoxicosis. Lancet. 1971;297:508-14.
14. Dembinski TC, Yatscoff RW, Blandford DE. Thyrotoxicosis and hungry bone syndrome—a cause of posttreatment hypocalcemia. Clinical Biochem. 1994;27:69-74.
15. See ACH, Soo KC. Hypocalcaemia following thyroidectomy for thyrotoxicosis. British J Surg. 1997;84:95-7.
16. Nicholls JJ, Brassill MJ, Williams GR. The skeletal consequences of thyrotoxicosis. J Endocrinol. 2012;213:209-21.
17. Karunakaran P, Maharajan C, Ramalingam S. Is hungry bone syndrome a cause of postoperative hypocalcaemia after total thyroidectomy in thyrotoxicosis? a prospective study with bone mineral density correlation. Surg. 2018;163:367-72.
18. Holick MF, Binkley NC, Ferrari HA. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911-30.
19. Sousa AA, Salles JMP, Soares JMA. Predictors factors for post-thyroidectomy hypocalcaemia. Revista Colegio Brasileiro Cirurgioes. 2012;39:10-2.
20. Eismontas V, Slepavicius A, Janusonis V. Predictors of postoperative hypocalcaemia occurring after a total thyroidectomy: results of prospective multicenter study. BMC Surg. 2018;18:87-9.
21. D’Orazi V, Sacconi A, Trombetta S. May predictors of difficulty in thyroid surgery increase the incidence of complications? Prospective study with the proposal of a preoperative score. BMC Surg. 2019;19:447-52.
22. Cho JN, Park WS, Min SY. Predictors and risk factors of hypoparathyroidism after total thyroidectomy. Int J Surg. 2016;34:47-52.
23. Yamashita H, Murakami T, Noguchi S. Postoperative tetany in Graves disease: important role of vitamin D metabolites. Annals Surg. 1999;229:237-45.
24. Qubaisi M, Haigh PI. Hypocalcemia after total thyroidectomy in graves disease. The Permanente Journal. 2019;10:812-8.
25. Nelson KL, Hinson AM, Lawson BR. Postoperative calcium management in same-day discharge thyroid and parathyroid surgery. Otolaryngol Head Neck Surg. 2016;154:854-60.
26. Mazeh H, Khan Q, Schneider DF. Same-day thyroidectomy program: eligibility and safety evaluation. Surg. 2012;152:1133-41.
27. Reinhart HA, Snyder SK, Stafford SV. Same day discharge after thyroidectomy is safe and effective. Surg. 2018;10:101-6.
28. Arer IM, Kus M, Akkapulu N. Prophylactic oral calcium supplementation therapy to prevent early post thyroidectomy hypocalcaemia and evaluation of postoperative parathyroid hormone levels to detect hypocalcaemia: a prospective randomized study. Int J Surg. 2017;38:9-14.
29. Langner E, Tincani AJ, Negro A. Use of prophylactic oral calcium after total thyroidectomy: a prospective study. Arch Endocrinol Metabol. 2017;61:447-54.
30. Rodriguez MD, Ramírez LM, Gallardo LG. Hungry bone syndrome related to hyperthyroidism. Anales Med Interna. 2006;23:326-8.
31. Loredana D, Pasquale GG. Hungry bone syndrome after parathyroidectomy for primary hyperthyroidism. Surg. 2014;10:417-22.
32. Ronde W, Have SMTH, Dalea PL. Hungry bone syndrome, characterized by prolonged symptomatic hypocalcaemia, as a complication of the treatment of hyperthyroidism. Nederlands Tijdschrift. 2004;148:231-4.
33. Karunakaran P, Maharajan C, Mohamed KN. Rapid restoration of bone mass after surgical management of hyperthyroidism: a prospective case control study in Southern India. Surg. 2016;159:771-6.
34. Karunakaran P, Maharajan C, Chockalingam R. The effect of total thyroidectomy on the recovery of bone mineral density in subjects with hyperthyroidism. Surg. 2019;165:80-4.

Cite this article as: Karunakaran P, Abraham DT. The utility of serum 25-hydroxyvitamin D in predicting post-thyroidectomy hypocalcaemia in thyrotoxic subjects: a single-center cohort study. Int Surg J 2020;7:4070-5.