Title
Sphingosine 1-phosphate receptor 3 and RhoA signaling mediate inflammatory gene expression in astrocytes.

Permalink
https://escholarship.org/uc/item/2bp9760n

Journal
Journal of neuroinflammation, 14(1)

ISSN
1742-2094

Authors
Dusaban, Stephanie S
Chun, Jerold
Rosen, Hugh
et al.

Publication Date
2017-06-02

DOI
10.1186/s12974-017-0882-x

Peer reviewed
Sphingosine 1-phosphate receptor 3 and RhoA signaling mediate inflammatory gene expression in astrocytes

Stephanie S. Dusaban 1, Jerold Chun 2, Hugh Rosen 3, Nicole H. Purcell 1∗ and Joan Heller Brown 1*

Abstract

Background: Sphingosine 1-phosphate (S1P) signals through G protein-coupled receptors to elicit a wide range of cellular responses. In CNS injury and disease, the blood-brain barrier is compromised, causing leakage of S1P from blood into the brain. S1P can also be locally generated through the enzyme sphingosine kinase-1 (Sphk1). Our previous studies demonstrated that S1P activates inflammation in murine astrocytes. The S1P1 receptor subtype has been most associated with CNS disease, particularly multiple sclerosis. S1P3 is most highly expressed and upregulated on astrocytes, however, thus we explored the involvement of this receptor in inflammatory astrocytic responses.

Methods: Astrocytes isolated from wild-type (WT) or S1P3 knockout (KO) mice were treated with S1P3 selective drugs or transfected with short interfering RNA to determine which receptor subtypes mediate S1P-stimulated inflammatory responses. Interleukin-6 (IL-6), vascular endothelial growth factor A (VEGFa) messenger RNA (mRNA) and cyclooxygenase-2 (COX-2) mRNA and protein were assessed by q-PCR and Western blotting. Activation of RhoA was measured using SREL luciferase and RhoA implicated in S1P signaling by knockdown of Gα12/13 proteins or by inhibiting RhoA activation with C3 exoenzyme. Inflammation was simulated by in vitro scratch injury of cultured astrocytes.

Results: S1P3 was highly expressed in astrocytes and further upregulated in response to simulated inflammation. Studies using S1P3 knockdown and S1P3 KO astrocytes demonstrated that S1P3 mediates activation of RhoA and induction of COX-2, IL-6, and VEGFa mRNA, with some contribution from S1P2. S1P induces expression of all of these genes through coupling to the Gα12/13 proteins which activate RhoA. Studies using S1P3 selective agonists/antagonists as well as Fingolimod (FTY720) confirmed that stimulation of S1P3 induces COX-2 expression in astrocytes. Simulated inflammation increased expression of Sphk1 and consequently activated S1P3, demonstrating an autocrine pathway through which S1P is formed and released from astrocytes to regulate COX-2 expression.

Conclusions: S1P3, through its ability to activate RhoA and its upregulation in astrocytes, plays a unique role in inducing inflammatory responses and should be considered as a potentially important therapeutic target for CNS disease progression.

Keywords: Astrocytes, Central nervous system, Inflammation, RhoA, S1P, S1P3

* Correspondence: npurcell@ucsd.edu; jhbrown@ucsd.edu
1Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, Biomedical Sciences Building Room 3024, La Jolla, CA 92093-0636, USA

Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Sphingosine 1-phosphate (S1P) is a bioactive lipid and G protein-coupled receptor (GPCR) ligand formed within the brain from sphingomyelin and is also present at high levels in blood where it is bound to lipoproteins and stored in erythrocytes [1–5]. There are five S1P receptor subtypes [6, 7] with S1P1, S1P2, S1P3, and S1P5 (and in some reports S1P4) expressed in the CNS [8–13]. Astrocytes are activated in response to CNS injury and diseases like multiple sclerosis (MS) and undergo astrogliosis characterized by increases in proliferation, hypertrophy, and glial fibrillary acidic protein (GFAP) expression [14–20]. S1P induces astrogliosis when injected into the brain as evidenced by increases in GFAP expression and astrocyte proliferation [21–23]. The importance of S1P receptors in disease is highlighted by the widespread acceptance of fingolimod (FTY720; Gilenya) as a first line oral drug to treat MS [24–27]. Phosphorylated fingolimod functions as an S1P analogue that blocks lymphocyte egress through functional inhibition of S1P1 signaling [28, 29]. Its efficacy in the EAE mouse model of MS has also been linked to signaling through S1P1 on astrocytes [30].

The predominant S1P receptor subtype detected by quantitative-PCR (q-PCR) in cortical astrocytes is S1P3, although S1P1 is also expressed on astrocytes from rat and mouse brain [8, 12, 31]. The potential importance of S1P3 signaling in astrocytes is suggested by the finding that this receptor is upregulated in MS lesions and in response to inflammatory stimuli [32–34]. In a mouse model of Sandhoff disease characterized by neuronal death and astrocyte proliferation, deletion of S1P3, along with the enzyme sphingosine kinase (Sphk) which catalyzes the synthesis of S1P, decreased astrogliosis and disease severity [35]. Importantly, whereas S1P1 exclusively couples to the G protein Goi, S1P3 couples promiscuously and its coupling to Go12/13 activates the small G-protein RhoA [36–38]. Previous work from our laboratory documented the importance of RhoA activation in inducing astrocyte proliferation, gene expression, and inflammation in response to stimulation of GPCRs for thrombin and S1P [39–44].

Here, we ask whether stimulation of the S1P3 receptor on astrocytes activates RhoA, is responsible for inflammatory gene expression, or can be locally engaged by endogenously formed S1P in an in vitro model of neuroinflammation. We demonstrate that S1P3, and not S1P1, mediates induction of interleukin-6 (IL-6) and vascular endothelial growth factor A (VEGFA) mRNA, and cyclooxygenase-2 (COX-2) mRNA and protein in mouse astrocytes and that this occurs through S1P receptor coupling to Go12/13 and RhoA. We also demonstrate that simulated inflammation in vitro leads to increases in expression of Sphk1 and S1P3 which could contribute to autocrine inflammatory astrocyte signaling.

Methods

Agnostics and inhibitors

Sources were as follows: S1P was obtained from Avanti Polar Lipids. The S1P3 antagonist SPM-354 was synthesized and characterized as described [45]. A cell permeable botulinum C3 toxin exoenzyme, which inhibits RhoA activation, was obtained from cytoskeleton. Pertussis toxin, which ribosylates and inactivates the alpha subunit of the Gi protein, was used to block signaling through receptor coupling to Gi (Tocris Bioscience). The S1P3 specific agonist CYM-51736 was provided by the Rosen laboratory, and the functional S1P1 antagonist and MS therapeutic, FTY720 (Fingolimod, and S1P2 antagonist JTE-013 was from Cayman Chemicals. S1P was used at 0.5 μM. SPM-354 was used at 5 μM. C3 exoenzyme was used at 0.5 μg/mL. FTY720 was used at 100 nM. CYM-51736 was used at 10 μM, JTE-013 at 1 μM, and pertussis toxin at 100 ng/mL.

Animals

All procedures were performed in accordance with NIH Guide and Care and Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee at the University of California San Diego. C57BL/6 wild-type and homozygous S1P3 KO mice which do not exhibit any gross phenotypic abnormalities [36, 46] were used for astrocyte isolation.

Primary culture of astrocytes

Astrocytes were isolated from P1-P3 postnatal WT and S1P3 KO mice [44]. Purity of astrocytes was determined to be ~95% based on GFAP staining. In all experiments, WT and S1P3 KO astrocytes were used at passage 2. Astrocytes were cultured in six-well plates, maintained in high-glucose DMEM supplemented with 10% FBS/2 mM glutamine/100 units/ml penicillin/100 μg/ml streptomycin (Invitrogen, Carlsbad, CA) at 37 °C in a humidified 5% CO2 incubator. Cells used for experiments were at 80% confluency and serum-starved for 18–24 h prior to agonist treatment.

siRNA transfections

Pre-designed mouse short interfering RNA (siRNA) smart pools for S1P1, S1P2, S1P3, and control siRNA were purchased from Bioneer. Pre-designed mouse siRNA for Go12, Go13, Goq, and sphingosine kinase 1 were purchased from Qiagen, individual siRNAs were tested for knockdown, and the most efficient was selected for use in the current studies. Control siRNA was compared to targeted siRNAs used throughout. WT astrocytes on six-well plates were transfected using DharmaFECT-3 transfection reagent (Thermo Scientific) and 2 μM siRNA in a 1:3 ratio respectively. Reagent and siRNA were incubated alone in OPTI-MEM media (Gibco) at room temperature for 10 min followed by mixing and incubating further for 20 min. The siRNA/DharmaFECT-3 mixture was added to plates containing
fresh media. Following overnight incubation, media containing siRNA was removed, and cells were washed. Astrocytes were serum-starved for 18–24 h prior to treatment. The table below lists the predesigned or three smartpool siRNA sequences used in these studies.

siRNA	Sense Sequence	Antisense Sequence
S1P1	GAUCAUAGACUGGCAUU	AAUGCCGAGUAUGUAUAC
	CGGGAGUAGGGAGCAUU	AGGCUAGCAAUGAGUCC
S1P2	CUGUACGCGAAGUGCAUU	AGUAGUAGGGAGCUAGAG
	CACUACUUGGUAGCCGGAU	UACUCCGACUCAGGAAAG
S1P3	UCUUGUGCUCCUCUGAUU	AGCUGCCACACCCGAGAG
	UGUAAGGCGACGUAGGAU	AUCGUAUUAACUGCAUCA
	AGAACCUGGGCAUCGUAA	UUUGAGAAGCAGCACUC
Goα2	UGACUUUUUGUAAUAAGA	UUUCUUAUAUAGGAAGCAT
Goα3	CCAUACUACGUUUUAAGA	UUUAAGAAGAGAUAGAG
Gaα1	GUGGAGAUGGUAUAUCCU	IUGAAGAUAUACUUCAGCC
Sphingosine kinase 1	CGACGCGACACUGUAAUG	UUCAUAAGACCCGCUAG

SRE.L luciferase assay
Astrocytes were cultured on 12-well plates and transfected with 500 ng of SRE.L and 50 ng of Renilla as an internal control using DharmaFECT-3 as described above. Following overnight incubation, cells were serum-starved for 18–24 h prior to S1P treatment for 8 h. Cells were lysed, and luciferase activities were measured using the Dual-Luciferase Reporter Assay System (Promega).

In vitro scratch injury model
WT or S1P3 KO astrocytes were cultured on six-well plates and grown to confluence following serum starvation for 18–24 h. To stimulate astrogliosis and inflammation, plates were scratched with a 200-μL pipette tip six times (three vertical and three horizontal) across the dish [47]. Cells were harvested and lysed after 1 h scratch for mRNA analysis or after 8 h for Western blotting as described below.

q-PCR
For gene expression analyses, RNA was extracted from astrocytes using an RNeasy kit (Invitrogen) [40]. Complementary DNA (cDNA) was synthesized with High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems ABI) and real-time q-PCR performed with TaqMan Universal Master Mix II, with UNG (Applied Biosystems ABI). To analyze gene expression in mouse astrocytes treated with S1P or scratch wounding, gene-specific primers for COX-2, IL-6, VEGFa, S1P1, S1P2, S1P3, Sphk1, and GAPDH (as an internal control) were used (Integrated DNA Technologies). S1P3 KO astrocytes were analyzed for the levels of S1P1 and S1P2 and were found to have no significant compensatory changes (data not shown). Data were normalized to internal GAPDH, and fold change was determined according to a published protocol [48]. Values for comparison for a single gene across multiple samples was determined using cycle threshold (Ct) data fitted to a standard curve. For comparison of multiple transcripts in a single sample, the 2− ΔΔCt method was applied to the Ct value [48].

Western blotting
Astrocytes were lysed in RIPA buffer (20 mm Tris, 250 mm NaCl, 3 mm EDTA, 3 mm EGTA, and 20 mm β-glycerophosphate) supplemented with sodium vanadate, leupeptin, aprotinin, p-nitrophenyl phosphate, and phenylmethylsulfonyl fluoride. BCA analysis was performed using the Micro BCA Protein Assay Kit (ThermoFisher Scientific) to determine protein concentration. Equal amounts of protein (10 μg) were loaded onto 4–12% 10-well or 15-well SDS-PAGE gels (Invitrogen NuPage System). Gels were transferred to PVDF membranes (Millipore), and the resulting blot was probed with specific antibodies. The COX-2 antibody (Cayman #160126) was used at 1:500 dilution, and the band running at 72 kDa band was quantitated. The GAPDH antibody (Cell Signaling Technology #2118) was used at 1:1000 dilution, and a band at 37 kDa was quantitated. Rabbit secondary antibody was used at 1:4000 dilution. Fold changes were determined by densitometry and normalized to accompanying GAPDH blots.

Statistical analysis
Statistical differences were determined using Tukey’s multiple-comparison analysis following one-way ANOVA with Prism software (GraphPad). p < 0.05 was considered significant.

Results
S1P3 is highly expressed in astrocytes and mediates increases in COX-2 protein expression
We used q-PCR to compare directly the levels of mRNA expression for S1P1, S1P2, and S1P3 in the cultured mouse astrocytes used in the studies presented here. Relative expression levels for S1P3 (4.7) > S1P1 (1.6) > S1P2 (0.7) mRNA were established using absolute quantitative-PCR (Fig. 1a). To examine S1P receptor subtype involvement in induction of the inflammatory gene COX-2, all three receptor subtypes were knocked down prior to treatment with S1P. Knockdown with S1P1 siRNA (78% decrease in S1P1 mRNA) had no effect on COX-2 protein expression in cells stimulated for 6 h with S1P. Knockdown of S1P3 (80%) significantly attenuated S1P-stimulated COX-2 expression, and the combination of S1P2 and S1P3 knockdown was most effective (Fig. 1b). Knockdown of S1P2 (83%) diminished but did not significantly decrease S1P-induced COX-2 protein expression nor did pretreatment with the selective S1P2 antagonist JTE-013 (Fig. 1c). In contrast, SPM-354, a bitopic antagonist that has a
significantly higher affinity for S1P3 than for S1P2 (1840-fold) or S1P1 (30-fold) [45], decreased S1P-induced COX-2 expression by more than 70% (Fig. 1d) further confirming the predominant role of S1P3 activation in COX-2 protein expression. The S1P2 and S1P3 receptor subtypes can serve redundant functions in regulation of RhoA and other downstream responses in some cell systems [36, 49] but our data indicates that S1P3 mRNA is most highly expressed in mouse astrocytes and plays the predominant role in mediating COX-2 protein expression in response to S1P.

S1P3 is required for induction of inflammatory genes in astrocytes

To provide further evidence that S1P3 is the receptor on astrocytes that is primarily responsible for the induction of COX 2 and other inflammatory genes, astrocytes were isolated from WT and S1P3 KO mice. The ability of S1P to increase inflammatory gene mRNA was examined at 1 h treatment since it was demonstrated that mRNA for IL-6 and COX-2 were significantly increased by S1P at this early time [40]. Deletion of S1P3 fully prevented S1P-mediated increases in IL-6 (Fig. 2a) and VEGFa (Fig. 2b) mRNA. Induction of COX-2 mRNA (Fig. 2c) was markedly but not fully attenuated paralleling the changes in COX-2 protein expression shown in Fig. 1b which suggests some redundancy in S1P2 and S1P3 signaling to COX2 expression. Next, we used a recently generated S1P3 receptor allosteric agonist, CYM-51736, which is more specific than the previous S1P3 agonists [50, 51]. CYM-51736 increased COX-2 protein in WT but not in S1P3 KO astrocytes (Fig. 2d), consistent with its specificity and the ability of S1P3 activation to regulate COX-2 mRNA expression. Finally, we tested FTY720 (fingolimod), which acts as an agonist at both S1P1 and S1P3. FTY720 treatment increased COX-2 protein expression in WT but not in S1P3 KO astrocytes (Fig. 2e), suggesting that its agonist actions at S1P3 induce astrocyte inflammatory genes.

S1P3 signals through Gα12/13 and RhoA to induce gene expression

The Gα12/13 proteins are the G-protein family members that most effectively couple GPCRs to RhoA exchange

![Fig. 1](image-url) S1P3 is highly expressed in astrocytes and mediates COX-2 expression. In WT astrocytes, a S1P1, S1P2, and S1P3 mRNA expression was measured by absolute PCR. b Quantification and Western blot of COX-2 protein expression after S1P treatment (0.5 μM, 6 h) following knockdown of S1P1, S1P2, S1P3, and S1P2/3 with siRNA (2 μM). Data shown are mean ± SEM of values from three independent experiments run in triplicate. COX-2 was normalized to GAPDH and expressed relative to control siRNA vehicle treated. *p < 0.05 and **p < 0.01 between vehicle and S1P-treated groups and #p < 0.05 and ##p < 0.01 between control siRNA S1P-treated and S1P receptor siRNA S1P-treated groups. c Quantification and Western blot of COX-2 expression after pretreatment with the S1P2 antagonist JTE-013 for 30 min (1 μM) followed by S1P treatment (0.5 μM, 6 h). Data shown are mean ± SEM of values from three independent samples. COX-2 was normalized to GAPDH and expressed relative to vehicle control. *p < 0.05 between vehicle and S1P-treated groups. d Quantification and Western blot of COX-2 expression after pretreatment with the S1P3 antagonist SPM-354 for 15 min (5 μM) followed by S1P treatment (0.5 μM, 6 h). Data shown are mean ± SEM of values from three independent experiments run in triplicate. COX-2 was normalized to GAPDH and expressed relative to vehicle control. *p < 0.05 between vehicle and S1P-treated groups and #p < 0.05 between control S1P-treated and SPM-454/S1P-treated group.
factors and thus to activation of RhoA. To demonstrate that S1P3 activates inflammatory gene expression by signaling through Gα12/13, we used siRNAs to achieve combined knockdown of Gα12 and Gα13 (92% decrease in Gα12 mRNA and 90% decrease in Gα13 mRNA). In addition, RhoA was functionally inhibited by pretreatment of cells with C3 exoenzyme. Both interventions significantly decreased S1P-mediated increases in COX-2 protein (Fig. 3a, b). We further demonstrated that induction of COX-2, IL-6, and VEGFa mRNAs by S1P were attenuated by knockdown of Gα12 and Gα13 (Fig. 3c–e).

The SRE.L luciferase reporter gene contains a truncated TCF-independent binding site for serum response factor (SRF) and is widely used as a readout for activated RhoA, which regulates genes through SRF and its transcriptional co-activator MRTF-A [52, 53]. S1P markedly increased SRE.L luciferase activity (16 to 50-fold, depending on the experiment). The S1P response (shown as 100% in the averaged experiments in Fig. 4) was attenuated by functional blockade of Rho signaling with C3 treatment and by knockdown of S1P3, S1P1, and Gα12/13, but not by knockdown of S1P1 or Gαq. Inhibition of Gαi function by pretreatment with pertussis toxin (PTX) was also without effect on S1P-stimulated SRE.L activation. These data demonstrate S1P3 and S1P1 coupling to Gα12/13 to activate RhoA, which in turn regulates COX-2 and other inflammatory genes in astrocytes. S1P3 and Sphk1 are upregulated in response to in vitro wounding and mediate COX-2 expression

To determine whether the signaling pathway delineated above could be activated under pathophysiological conditions, we used an in vitro scratch injury model to simulate localized inflammation of cultured astrocyte [47]. Within an hour after cells were scratched, S1P3 (but not S1P1 or S1P2) mRNA was increased relative to control unscratched cells (Fig. 5a) as was the mRNA level for sphingosine kinase 1 (Sphk1), the enzyme that catalyzes the synthesis of S1P (Fig. 5b) [54]. Our previous studies showed that injuring astrocytes increases COX-2 expression and that the media from scratched cells contains substances that contribute to this response [40]. To determine whether this localized inflammatory response could be mediated by the actions of S1P, formed from the elevated Sphk1 and acting on astrocyte S1P3, we repeated the scratch injury studies using S1P3 KO astrocytes. The increase in COX-2 protein expression was lost, indicating that the ability of scratch to elicit this response requires S1P3 (Fig. 5c). We confirmed this further by comparing wild-type cells that were subject to scratch injury in the presence or absence of the...
S1P₃ inhibitor SPM-354 used in Fig. 1d. Pharmacological blockade of S1P₃, like genetic deletion of the receptor, prevented scratch-induced COX-2 expression (Fig. 5d). Finally, to test the importance of localized formation of S1P, we knocked down Sphk1 using siRNA (90% reduction in Sphk1). Scratch injury failed to increase COX-2 protein expression when Sphk1 was downregulated (Fig. 5e) implicating this enzyme, its product, and S1P₃ activation in localized astrocyte COX-2 induction.

Discussion

Neuroinflammation, which underlies many neurodegenerative processes including those involved in Alzheimer’s disease, Parkinson’s disease, and MS, is increasingly recognized as a hallmark of CNS pathology [19, 20, 55–58]. Astrocytes were once considered as structural elements in the brain but subsequently emerged as functionally important for neuronal guidance, maintenance of the BBB, and structural and metabolic support of neurons [15, 17, 56, 59]. The lysophospholipid S1P regulates astrogliosis and inflammatory responses in the CNS; however, the role of the individual S1P receptor subtypes in these processes has not been clearly delineated [23, 30, 31, 33, 34, 60, 61].

Astrocytes contribute to neuroinflammation by upregulating proinflammatory mediators such as IL-6, MCP-1, TNF-α, iNOS, and COX-2 [15, 17, 40, 62]. Induction of COX-2 in astrocytes increases generation of reactive oxygen species (ROS), as well as formation of prostanoids that play a prominent role in inflammation, and thus further contribute to neuronal cell death and demyelination in diseases such as MS [20, 56]. Moreover,
astrocytes produce VEGF which plays a role in the breakdown of the blood-brain barrier, a step critical to the entry of pathogenic lymphocytes into the brain [63–67]. Our data demonstrate that an important mechanism for induction of inflammatory cytokines and cytotoxic mediators such as IL-6, COX-2, and VEGFα in astrocytes is through their exposure to S1P and activation of S1P3.

Both S1P1 and S1P3 are expressed on astrocytes [8, 12] and are upregulated on reactive astrocytes that contribute to inflammation associated with CNS disease [32, 33, 35, 61, 68]. In response to inflammatory stimuli or in CNS pathologies, Sphk1, an enzyme that generates S1P, is also increased in astroglial cells [23, 34, 35, 69, 70]. Our findings using siRNA and S1P3 KO astrocytes demonstrate mechanistically that agonist binding to S1P3 signals to inflammatory responses through S1P3 coupling to Gα12/13 and activation of RhoA. We also show here, using an astrocyte scratch injury assay, that S1P3 and Sphk1 expression are increased by simulated inflammation and demonstrate by their knockout and downregulation, respectively, that they are involved in an autocrine signaling loop to increase COX-2 expression. While S1P2 could also signal through Gα12/13 and RhoA to contribute to COX-2 expression ([37, 71–73] and Fig. 4) and appears to serve this role when S1P3 is downregulated (Fig. 1b), the relatively low expression of this receptor subtype and its lack of upregulation in response to wounding suggests limited involvement in astrocyte inflammatory responses (Fig. 1c). Thus, it appears that S1P3, and its autocrine activation by S1P generated through Sphk1, are poised to mediate astrocytic inflammatory responses that could contribute to the progression of CNS neuropathology.

S1P signaling in the CNS has important pathophysiological consequences [21, 28–30, 33–35, 40, 61, 74]. Much research has focused on S1P1 as the primary target for the MS drug FTY720 (fingolimod). While a well-recognized effect of fingolimod is to functionally antagonize S1P1 receptors on lymphocytes and thereby prevent their egress into the blood and access to the brain, S1P1 localized to astrocytes contributes significantly to the effects of this drug in an experimental model of MS [75]. The basis for also considering S1P3 signaling in MS is that this receptor subtype is upregulated in astrocytes during MS and in EAE and that it is a target for fingolimod [33, 61]. Notably, fingolimod causes transient bradycardia that appears, at least in the mouse, to be due to its agonist actions on S1P3 [24, 25, 76–78]. While it is clear that fingolimod downregulates S1P1, and thus acts as a functional antagonist, its ability
to similarly downregulate and thus act as a functional antagonist of S1P3 is controversial [61, 77, 79, 80]. A recent study demonstrated that continuous treatment with FTY20, initiated at the onset of disease in an EAE model, reduced S1P3 expression at day 22 [61]. While this indicates that S1P3 is downregulated by FTY720 treatment, this could reflect reversal of the disease process/inflammation (and its accompanying increases in S1P3 gene expression) rather than downregulation at the receptor level. Our data with FTY720 (like that examining bradycardia) demonstrate that FTY720 acts as an agonist, eliciting COX-2 induction, over a period of at least 6 h. Our data further establish that it is S1P3-mediated RhoA signaling, not effects of S1P1 and Gαo, that lead to maladaptive astrocyte inflammation. Thus, agonism at astrocyte S1P3 by fingolimod or other drugs could contribute to neuroinflammation and worsen disease progression, particularly when S1P3 are upregulated and S1P availability increased through activation of sphingosine kinase. Further studies using S1P1/3 double knockout mice are ongoing and should indicate whether blocking S1P3 in addition to S1P1, would have additional therapeutic benefit.

The importance of S1P3 and RhoA signaling in CNS disease could be logically extended to consideration of any of the myriad GPCRs found on astrocytes [32] that couple to RhoA signaling. We and others have shown that PAR1, the receptor for thrombin, couples through RhoA to mediate proliferation and inflammatory responses in astrocytes [39, 40]. Thrombin is also increased in the injured brain [81, 82], and an antagonist of protease activated receptor 1 (PAR1) reduces clinical symptoms in EAE mice [83]. Thus, the evidence that S1P3 and other GPCRs that stimulate RhoA can contribute to sustained inflammatory responses suggests this pathway as a critical target for blocking neuroinflammation in MS and other CNS diseases.

Conclusions

Our findings demonstrate that S1P3 and Sphk1 are mediators of inflammatory signaling and are upregulated in astrocytes in response to injury. S1P3 couples to Gα12/13 and activated RhoA to induce COX-2, IL-6, and VEGFα mRNA as well as COX-2 protein expression in astrocytes. The data suggest that blocking S1P3, as well as the clinically relevant S1P1, could have therapeutic benefit for limiting CNS inflammatory disease progression.

Abbreviations

BBB: Blood-brain barrier; CNS: Central nervous system; COX-2: Cyclooxygenase 2; EAE: Experimental Autoimmune Encephalomyelitis; GFAP: Glial fibrillary acidic protein; GPCR: G protein-coupled receptor; IL-6: Interleukin 6; KO: Knockout; MS: Multiple Sclerosis; NF-κB: Nuclear factor kappa B; PAR1: Protease activated receptor 1; PTK: pertussis toxin; q-PCR: Quantitative-PCR; S1P1: Sphingosine 1-phosphate receptor 1; S1P2: Sphingosine 1-phosphate receptor 2; S1P3: Sphingosine 1-phosphate receptor 3; S1P4: Sphingosine 1-phosphate receptor 4; S1P5: Sphingosine 1-phosphate receptor 5; Sphk1: Sphingosine kinase-1; VEGFα: Vascular Endothelial Growth Factor A; WT: Wild-type

Acknowledgements

We thank Melissa S. Barlow for her capable assistance with the animal breeding and genotyping and Jeffrey M. Smith for the technical assistance.

Funding

This work was supported by National Institutes of Health Grants T32GM007752 (to S.S.D.), HL114949 (to N.H.P.), M084512 (to H.R.), DA019674 (to J.C.), and HL028143 and GM36927 (to J.J.H.).

Availability of data and materials

Not applicable

Authors’ contributions

SSD, NHP, and JHB designed of the study, carried out the experiments, and analyzed the data. JC and HR contributed to the statistical analysis and interpretation of the results. All authors reviewed the results and approved the final version of the manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable

Ethics approval

All procedures were performed in accordance with NIH Guide and Care and Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee at the University of California San Diego.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1. Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, Biomedical Sciences Building Room 3024, La Jolla, CA 92037–0636, USA. 2. Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA. 3. Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.

Received: 1 September 2016 **Accepted:** 17 May 2017

References

1. Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D, Pham TH, Wong JS, Papu R, Coughlin SR. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest. 2009;119:1871–9.

2. Anelli V, Bassi R, Tettamanti G, Viani P, Riboni L. Extracellular release of newly synthesized sphingosine-1-phosphate by cerebellar granule cells and astrocytes. J Neurochem. 2005;92:1204–15.

3. Papu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, Camerer E, Zheng YW, Huang Y, Cyster JG, Coughlin SR. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007;316:295–8.

4. Yatomi Y, Ohmori T, Rile G, Kazama F, Okamoto H, Sano T, Satoh K, Kume S, Tigi G, Igarashi Y, Ozaki Y. Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood. 2003;96:3431–8.

5. Yatomi Y, Igarashi Y, Yang L, Hisano N, Qi R, Asazuma N, Satoh K, Ozaki Y, Kume S. Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem. 1997;121:969–73.

6. Ishi I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors: signaling and biology. Annu Rev Biochem. 2004;73:321–54.

7. Khara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol. 2014;171:3575–94.
51. Guerrero M, Poddutoori R, Urbano M, Peng X, Spicer TP, Chase PS, Hodder PS, Schaeffer MT, Brown S, Rosen H, Roberts E. Discovery, design and synthesis of a selective S1P3 receptor allosteric agonist. Bioorg Med Chem Lett. 2013;23:6346–9.

52. Cen B, Selvaraj A, Burgess RC, Hitzer J, Ma Z, Morris SW, Prywes R. Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Mol Cell Biol. 2003;23:6597–608.

53. Miralles F, Posem G, Zaromytidou AI, Treisman R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell. 2003;113:329–42.

54. Kohama T, Olvera A, Eddall L, Nagiec NM, Dickson R, Spiegel S. Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem. 1998;273:23722–8.

55. Ellwardt E, Zipp F. Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Exp Neurol. 2014;262 Pt A:8–17.

56. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying neuroinflammation in neurodegeneration. Cell. 2010;140:918–30.

57. Heneka MT, O'Banion MK, Terwel D, Kummer MP. Neuroinflammatory pathways in Alzheimer's disease. J Neural Transm. 2010;117:919–47.

58. Minnelli L. Role of COX-2 in inflammatory and degenerative brain diseases. Subcell Biochem. 2007;42:127–41.

59. Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci. 2015;16:249–63.

60. Hoffmann FS, Hofereiter J, Degen JL, Rubsamen H, Melms J, Schwarz S, Faber H, Hof J. Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci. 2013;328:18–9.

61. Forrest M, Sun SY, Hajdu R, Bergstrom J, Card D, Doherty G, Hale J, Keohane C, Meyers C, Milligan J, Mills S, Normura N, Rosen H, Rosenbach M, Shiell G, Singer II, Tian M, West S, White V, Xie J, Proia RL, Mandala S. Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J Pharmacol Exp Ther. 2004;309:578–88.

62. Brinkmann V, Billich A, Baumrucker T, Heinig P, Schnoerder R, Francis G, Aradhye S, Buntin P. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov. 2010;9:883–97.

63. Sanna MG, Liao J, Jo E, Alfonso C, Ahn MY, Peterson MS, Webb B, Lefebvre S, Chun J, Gray N, Rosen H. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J Biol Chem. 2004;279:13639–48.

64. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR. Astrocyte-neuroinflammation. J Neurosci. 2010;30:5843–53.

65. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2004;5:419–30.

66. Han DK, Steinman L, Snyder MP, Weber P, Putz B, Loleit V, Weber F, Hohlfeld R, Meinl E, Krumbholz M. Fingolimod induces neuroprotective factors in human astrocytes. J Neuroinflammation. 2015;12:184.

67. Colombo E, Di Dario M, Capitolo E, Chaabane L, Newcombe J, Martino G, Hofte H, Hoffmann FS, Hofereiter J, Degen JL, Melms J, Schwarz S, Faber H. Fingolimod induces neuroprotective effects in human astrocytes. J Neuroinflammation. 2015;12:184.

68. Farina C. Fingolimod may support neuroprotection via blockade of Sphingosine kinase 1 regulates the expression of proinflammatory cytokines in activated microglia. Neuroscience. 2010;166:132–40.

69. Paugh BS, Bryan L, Paugh SW, Wilczynska K, Alvarez SM, Singh SK, Kapitonov D, Rokita H, Wright S, Griswold-Penner I, Miltiet S, Spiegel S, Kordula T. Interleukin-1 regulates the expression of sphingosine kinase 1 in glioblastoma cells. J Biol Chem. 2009;284:3408–17.

70. Nayak D, Huo Y, Kwang WX, Pushparaj PN, Kumar SD, Ling EA, Dheen ST, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR. Astrocyte-neuroinflammation. J Neurosci. 2010;30:5843–53.

71. Nayak D, Huo Y, Kwang WX, Pushparaj PN, Kumar SD, Ling EA, Dheen ST, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR. Astrocyte-neuroinflammation. J Neurosci. 2010;30:5843–53.

72. Kim HN, Kim YR, Ahn SM, Lee SK, Shin HK, Choi BT. Protease activated receptor-1 antagonist ameliorates the clinical symptoms of experimental autoimmune encephalomyelitis via inhibiting breakdown of blood-brain barrier. J Neurochem. 2015;135:577–88.

73. Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T. Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest. 2007;117:2506–16.