Cross-data Automatic Feature Engineering via Meta-learning and Reinforcement Learning

Jianyu Zhang¹, Jianye Hao¹, Francoise Fogelman-Soulié²

¹College of Intelligence and Computing, Tianjin University, China
²Hub France IA, Paris, France

PAKDD 2020
May 13th, 2020
Online
Contents

• Problem Overview
• Related Work
• Methods
• Experiments
• Conclusion
Problem Overview

• What is Feature Engineering?
 – Create new features to help machine learning algorithm make better use of the data.

https://en.wikipedia.org/wiki/Feature_engineering
Problem Overview

- Where is the Problem of traditional Feature Engineering?
 - Requires expert knowledge
 - This is hard and time-consuming
- We propos CAFEM:
 - Formulate Feature Engineering by *Feature Transformation Graph* (FTG)
 - Learn to *automatically* generate features for a dataset by Reinforcement Learning (FeL).
 - Extend FeL to cross-data level by Meta-learning.
Related Work

- **Top-down approach**
 - Generate all candidate features, then feature selection; Costly
 - Examples
 - *AFEM* (J. Zhang et al. WISE 2018), *ExploreKit* (Katz et al. ICDM 2016), Data Science Machine *DSM* (Kanter et al. DSAA 2015) and One Button Machine *OneBM* (Lam et al. arXiv 2017).

- **Bottom-up approach**
 - Features are progressively added and evaluated
 - Examples
 - *LFE* (Nargesian et al. IJCAI 2017), *Cognito* (Khurana et al. ICDMW 2016), *FERL* (Khurana et al. AAAI-18)
Background

• Reinforcement Learning (RL)
 – Markov Decision Process
 – States, Actions and Rewards
 – Optimal sequence of actions

• Meta-Learning
 – Quickly train a model for a new task
 – Model-Agnostic Meta-Learning (MAML)
 – Find parameters θ that is close to all tasks’ optimal parameters
Methods

• Feature Transformation Graph (FTG)
 – Node: an original feature or generated feature
 – Edge: an operator (e.g. log, product) that transforms one/two features to a new feature

• We defined a set of Order-1 (e.g. square) and Order-2 operators (e.g. product)
Methods

• Feature Transformation Graph (FTG)
 – Node: an original feature or generated feature
 – Edge: an operator (e.g. log, product) that transforms one/two features to a new feature
• We defined a set of Order-1 (e.g. square) and Order-2 operators (e.g. product)
Methods

• Learn Feature Engineering by RL (FeL)
 – State:
 • Current FTG
 • We represent current FTG by a set of features
 • Such as # of each operators in FTG, node depth of a feature, average performance improvement of an action.
 • In total, we use 293 features to represent each state.
 – Action
 • Feature Generation: selects an operator and one/two features in FTG, then apply the operator on the features.
 • Feature selection: eliminates an feature from FTG.
Methods

– Reward
 • Performance improvements of classification/regression tasks (evaluation step) after applying an action.

– Budget: Total # of evaluation steps.
 • Evaluation steps is costly.
 • We train RL within the budget.
• Cross-data extension by Meta-Learning (CAFEM)
 – Speed up training by learning on a set of datasets
 – Model-Agnostic Meta-Learning
 – Find parameters θ on a set of datasets, so that it close to optimal parameters θ_i^* of all individual datasets.

https://arxiv.org/pdf/1703.03400.pdf
Experiments

• Collect 120 classification/regression datasets from OpenML https://www.openml.org

• 13 transformation operators:
 – Order-1 (Log, Round, Sigmoid, Tanh, Square, Square Root, ZScore, Min-Max- Normalization)
 – Order-2 (Sum, Difference, Product, Division)

• Baseline methods:
 – Random-FeL, Brute-force, LFE, FERL

• Evaluation metrics:
 – F1-Score / 1 - Relevant Absolute Error
Experiments

- **FeL classification/regression Performance**
 (Random forest with 5-fold CV)

Datasets	#Row	#Feature	Baseline	FeL	BF	LFE	RS	FERL	FeL	BF	LFE	RS	FERL	
Balance_scale	625	5		88.2%	88.3%	86.4%	88.2%	88.2%	88.6%	95.0%	97.0%	95.1%	92.7%	-
Boston	506	21		88.2%	90.2%	86.7%	89.2%	89.5%	88.7%	89.9%	85.6%	88.2%	89.8%	-
ClimateModel	540	21		95.5%	96.0%	95.6%	95.5%	95.7%	95.9%	96.1%	95.5%	95.5%	96.1%	-
Cpu_small	8,192	13		86.3%	87.1%	84.5%	85.8%	86.6%	86.8%	87.1%	86.2%	86.3%	87.0%	-
Credit card	14,240	31		50.5%	68.7%	64.8%	50.5%	63.8%	64.0%	71.4%	65.1%	65.1%	64.6%	-
Disclosure_x	662	4		44.8%	51.7%	46.6%	46.8%	49.7%	49.8%	51.4%	46.4%	46.4%	51.4%	51.8%
Disclosure_z	662	4		53.8%	57.7%	55.6%	53.1%	55.6%	57.0%	57.0%	53.8%	55.0%	56.7%	56.9%
fri.c1_1000.25	1,000	26		84.9%	87.7%	85.8%	85.8%	86.7%	88.0%	87.1%	77.9%	82.1%	87.1%	-
Fri.c2_100.10	1,000	11		86.3%	89.7%	85.8%	86.8%	88.6%	89.3%	91.0%	87.2%	86.7%	89.3%	-
Fri.c3_100.5	1,000	6		88.2%	89.2%	88.5%	88.2%	88.4%	89.4%	90.7%	87.3%	87.1%	89.3%	-
fri.c3.1000.50	1,000	51		79.7%	83.7%	88.5%	80.9%	80.7%	87.8%	83.1%	88.4%	78.3%	80.8%	-
Gina.agnostic	3,468	971		92.3%	92.8%	78.9%	92.3%	92.8%	93.5%	92.8%	-	92.5%	92.8%	-
Hill-valley	1,212	101		57.5%	61.7%	59.2%	57.5%	60.8%	61.1%	100%	100%	57.5%	99.9%	-
Ipd	583	11		41.3%	45.7%	38.7%	38.9%	43.6%	44.9%	45.9%	45.9%	42.4%	44.8%	-
Kcl	2,109	22		40.4%	44.5%	35.3%	38.9%	42.0%	42.7%	44.4%	39.9%	38.8%	43.4%	-
openml.589	1,000	25		66.9%	67.7%	55.0%	X	67.2%	72.6%	75.0%	76.9%	X	68.1%	-
Pcc	1,458	38		47.7%	57.0%	36.2%	45.3%	53.8%	58.4%	58.1%	50.1%	55.1%	56.5%	-
Pcc3+C14	1,563	38		25.9%	33.4%	27.9%	23.0%	30.3%	32.0%	33.3%	24.6%	27.4%	31.6%	-
Spectrometer	531	103		77.3%	83.9%	80.0%	75.2%	80.4%	83.0%	82.7%	90.8%	73.2%	81.8%	-
Strikes	625	7		96.6%	99.5%	98.7%	97.8%	99.1%	98.9%	99.5%	97.8%	93.4%	99.4%	98.9%

PAKDD 2020 May 13th, 2020
Experiments

• Robustness of FeL on learning algorithms
 – Random Forest: 4.2% improvement
 – Logistic Regression: 10.8% improvement
Experiments

• Cross-data Extension (CAFEM) Performance
 – Training on 100 datasets
 – Few shots learning on other 20 datasets.
Conclusion

• Feature engineering influences performances a lot but it is the most time-consuming part of data mining.
• We propose Feature Transformation Graph (FTG) to organize the feature engineering (FE) process and FE learner (FeL) to learn FE by Reinforcement Learning.
• We extend FeL to cross-data level (CAFEM) by meta-learning.
• Our framework out performs state-of-the-art methods.
Thanks for your attention

Q & A