Pyrimidine-2,4-diamines as antiplasmodial antifolates

Tswene D. Seanego, a Hanna F. Klein, a Natasha C. Jansen van Vuuren, b,c Robyn L. van Zyl, b,c and Amanda L. Rousseau* a,c

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa
bPharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
cWITS Research Institute for Malaria (WRIM), University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa

Email: Amanda.Rousseau@wits.ac.za

Received 07-27-2020, Accepted 08-19-2020, Published on line 09-09-2020

Abstract

Two series of substituted pyrimidine-2,4-diamines with a flexible side chain at either the 5- or 6-position of the pyrimidine ring were designed as potential inhibitors of P. falciparum dihydrofolate reductase (DHFR). The compounds were synthesised and evaluated for antiplasmodial activity in vitro against a cycloguanil-resistant strain of the P. falciparum parasite. 5-(3-(3,5-Dichlorophenoxy)propyl)-6-phenylpyrimidine-2,4-diamine was identified as the most promising compound (IC50 0.86 µM). In general, pyrimidine-2,4-diamines substituted at the 5-position of the pyrimidine ring showed better antiplasmodial activity (IC50 0.86 - 26.55 µM) than those bearing a modified side chain at the 6-position of the pyrimidine ring (IC50 4.46 – 83.45 µM).

Keywords: Pyrimidine-2,4-diamines, antifolates, dihydrofolate reductase, antiplasmodial activity
Introduction

In 2018, approximately half of the world's population was at risk of contracting malaria, a disease caused by parasitic protozoa of the genus *Plasmodium*.\(^1\) According to the most recent World Malaria Report, 93% of the estimated 228 million malaria cases and 94% of the 405,000 deaths worldwide in 2018 were caused by *Plasmodium falciparum*, one of the *Plasmodium* species responsible for causing malaria in humans which is prevalent in sub-Saharan Africa. While malaria-prevention tools such as indoor residual spraying (IRS) of insecticides, the use of insecticide-treated nets (ITNs), and intermittent preventative therapy in pregnancy (IPTp) have played a major role in decreasing malaria incidence and mortality over the last five years, the WHO estimates that 43% of people at risk of contracting malaria in sub-Saharan Africa do not have access to these preventative tools.\(^1\) Furthermore, although there has been a significant decline in the number of malaria fatalities over the last 15 years, the rate of decline has decreased, with mortality rates remaining at similar levels since 2014.\(^1\)

Folates are cellular cofactors that play an essential role in the life cycle of the malaria parasite.\(^2\) Antimalarial antifolates target two key parasitic enzymes, dihydropteroate synthase (DHPS) and dihydrofolate reductase, which, in the parasite, is a bifunctional dimer with thymidylate synthase (DHFR-TS). These enzymes are responsible for maintaining adequate cellular levels of folate derivatives either via a folate salvage pathway or a *de novo* synthetic pathway.\(^3\) The combination therapy of sulfadoxine-pyrimethamine, used in IPT both in pregnancy and in infants under the age of 5 years, targets these enzymes in the parasite, with pyrimethamine (1) targeting DHFR (Figure 1). Unfortunately, resistance to pyrimethamine and other anti-DHFR drugs, such as cycloguanil (2), is widespread and has limited their clinical usefulness.\(^4-5\) Point mutations in the active site of the DHFR domains of DHFR-TS have been shown to be responsible for the development of resistance to these antifolates, which contain a rigid biaryl axis.\(^6\) Related compounds with inherent flexibility, such as WR99210 (3) and P65 (4) (Figure 1), however, have been shown to maintain a high binding affinity to all mutant forms of *P. falciparum* DHFR.\(^7\) These compounds contain a flexible linker between the two rings, which enables the compounds to avoid unfavourable contacts with mutant amino acid residues in the DHFR active site.

![Figure 1](image-url)
Figure 1. Known antifolates pyrimethamine (1), cycloguanil (2), WR99210 (3) and P65 (4).

Based on these findings, we reported the synthesis of a series of novel, flexible analogues of cycloguanil bearing a 4-atom linker between the two rings (see general structure (5), Figure 2), with *in vitro* antimalarial activity in the low nanomolar range against both drug-sensitive and drug-resistant...
strains of *P. falciparum*.⁸ The compounds were shown to inhibit parasitic DHFR, and were not cytotoxic. Despite the promising biological activity of these compounds; however, they were isolated as racemic mixtures in generally low yields. Furthermore, the synthesis proved challenging⁹ and could not readily be adapted for asymmetric synthesis. Herein, we report the synthesis of pyrimidine analogues of general structure (6) of our dihydrotriazine series (5), and their biological activity in a whole cell *P. falciparum* assay. We also embarked on the synthesis of analogues of P65, of general structure (7), bearing a longer side chain moved to the 6-position of the pyrimidine ring in order to assess the effect of this on biological activity *in vitro*.

![Figure 2](image-url)

Figure 2. Dihydrotriazines (5) prepared previously, and pyrimidine analogues (6) and (7) prepared in this work.

Results and Discussion

The dihydrotriazines of general structure (5) that we have prepared previously⁸ contained an atypical phenyl substituent at the 6-position of the dihydrotriazine ring. The majority of known antifolates targeting DHFR (such as those shown in Figure 1) contain a simple alkyl substituent at this position. Owing to the difficulties associated with the synthesis of the dihydrotriazines (5) prepared previously⁸⁻⁹ and the fact that they were isolated as racemic mixtures, we planned to prepare the fully aromatic pyrimidine equivalents which lack the stereogenic centre.

Our approach to the pyrimidine analogues of general structure (6) began with simple alkylation of commercially available phenols (8a-g) with 1,4-dibromobutane to afford the ethers (9a-g) in good yields (Scheme 1). Functional-group interconversions by reacting ethers (9a-g) with potassium cyanide gave pentanenitriles (10a-g) in reasonable yields. Reaction of 10a-g with ethyl benzoate in the presence of base afforded α-cyanoketones (11a-g), once again in good yields.

At this stage, we envisaged utilising methodology reported for the synthesis of 5-arylpyrimidines¹⁰ on our substrates (11a-g) to afford the desired 5-alkylpyrimidines. This methodology involved formation of an intermediate enol ether, followed by reaction with guanidine hydrochloride to afford the desired pyrimidine products. Formation of the intermediate enol ethers was achieved by reaction with diazomethane generated in situ from diazald (*N*-methyl-*N*-nitroso-*p*-toluenesulfonamide) and potassium hydroxide. In general, the enol ethers were used as the crude products in the subsequent reactions with guanidine hydrochloride, after confirmation of the formation of the enol ether by ¹H NMR spectroscopy.

Unfortunately, the final reaction with guanidine hydrochloride either afforded the products in low yields or was unsuccessful, possibly due to the lack of an aromatic substituent at the α-position of our substrates 11a-g. Of the seven enol ethers prepared, only four were successfully converted into pyrimidine products (6a-d), however, in disappointingly low yields.
Scheme 1. Reagents, conditions, and yields: (a) 1,4-dibromobutane, K$_2$CO$_3$, CH$_3$CN, reflux, 20 h, 63 – 98%; (b) KCN, EtOH/H$_2$O, reflux, 48 h, 62 – 89%; (c) ethyl benzoate, KOtBu, THF, rt, 18 h, 63 – 94%; (d) diazomethane, CH$_2$Cl$_2$, rt, 18 h; (e) guanidine HCl, DMSO, NaOMe, 90°C, 24 h, 9 – 11% for 6a-d.

Nonetheless, we subjected compounds (6a-d) to an initial in vitro assessment of antiplasmodial activity in a whole cell P. falciparum assay, at a single concentration of 20 μM. The compounds were screened against a cycloguanil-resistant strain (Gambian FCR-3), for direct comparison with our original series of dihydrotriazine compounds (of general structure (5)) which had been screened against this strain. At this single concentration, pyrimidines (6a-d) inhibited parasitaemia by more than 45% in each case (Table 1). IC$_{50}$ values were then determined for the compounds from the log sigmoid dose response curves generated by GraphPad Prism® software. Disappointingly, only one of the compounds, 5-(3-(3,5-dichlorophenoxy)propyl)-6-phenylpyrimidine-2,4-diamine (6c) (entry 3, Table 1, IC$_{50}$ 0.86 μM) showed activity in the nanomolar range comparable with the dihydrotriazines prepared previously. The remainder of the compounds displayed only moderate activity in the low micromolar range. This could be attributed to the inflexibility of the biaryl axis now present between the 6-phenyl substituent and the pyrimidine ring, which was not present in the original series of dihydrotriazines, where the phenyl substituent was bonded to an sp3 hybridised carbon with tetrahedral geometry. Notably, the DHFR inhibitor methotrexate also displayed antiplasmodial activity in the low micromolar range against the cycloguanil-resistant strain (entry 7, Table 1, IC$_{50}$ 1.71 μM).

Table 1. Whole cell antiplasmodial activity of analogues (6a-d)a

Entry	Inhibitor	Substituent X	% Inhibition of parasitaemia at 20 μM	IC$_{50}$ (µM)b
1	6a	4-Cl	59.84 ± 12.00	3.69 ± 0.35
2	6b	3,4-diCl	48.91 ± 16.49	14.80 ± 2.97
3	6c	3,5-diCl	59.94 ± 24.48	0.86 ± 0.01
4	6d	3-F	48.84 ± 17.33	26.55 ± 5.84
6	Control	DHAc	60.64 ± 0.17	6.13×10$^{-3}$ ± 1.11×10$^{-3}$
7	Control	MTXd	59.69 ± 1.02	1.71 ± 0.51

aData are presented as the mean ± SD of three experiments. bIC$_{50}$ values determined by SYBR green assay against the Gambian FCR-3 strain. cDHA = Dihydroartemisinin. dMTX = Methotrexate
In another aspect of this work, we wanted to assess the effect of moving the flexible side chain from C-5 to C-6 on the pyrimidine ring. This would eliminate the biaryl axis created by the presence of a phenyl substituent at C-6 as was present in 6a-d, and preliminary modelling studies suggested that the longer flexible chain could place the aromatic substituent at the correct binding position in the DHFR active site.\(^\text{11}\)

The preparation of analogues of general structure (7) bearing a modified side chain could be achieved by simple substitution of a 4-hydroxypyrimidine. As shown in Scheme 2, commercially available phenols (8a-d) were alkylated with 1,3-dibromopropane, using the method described previously to afford bromoethers (12a-d). 2,4-Diaminopyrimidin-6-ol was then reacted with bromoethers (12a-d) to give pyrimidines (7g-j) bearing a 5-atom linker at the 6-position of the pyrimidine ring in moderate yields. 2,4-Diaminopyrimidin-6-ol was also treated with previously-prepared bromoethers (9a-f) to afford pyrimidines (7a-f) bearing a 6-atom linker at the 6-position of the pyrimidine ring. Pyrimidines (7a-j) prepared by this method were then assessed in the whole cell \emph{P. falciparum} screen described previously (Table 2).

![Scheme 2](image)

Scheme 2. Reagents, conditions, and yields: (a) For 12 (n = 1); 1,3-dibromopropane, \(K_2CO_3\), \(CH_3CN\), reflux, 20 h, 87 – 95%; for 9 (n = 2); 1,4-dibromobutane, reflux, 20 h, 63 – 98%; (b) 2,4-diaminopyrimidin-6-ol, \(K_2CO_3\), \(CH_3CN\), reflux, 20 h, 33 – 55%.

Table 2. Whole cell antimalarial activity of analogues (7a-j)\(^a\)

Entry	Inhibitor	Substituent \(X\)	\(n\)	% Inhibition of parasitaemia at 20 \(\mu\)M	\(IC_{50}\) (\(\mu\)M)\(^b\)
1	7a	4-Cl	2	66.04 ± 9.4	83.45 ± 8.36
2	7b	3,4-diCl	2	55.15 ± 5.1	4.46 ± 0.29
3	7c	3,5-diCl	2	40.30 ± 14.1	22.80 ± 2.96
4	7d	3-F	2	53.95 ± 9.4	11.18 ± 1.06
5	7e	4-F	2	48.18 ± 5.6	14.96 ± 1.78
6	7f	3-CF\(_3\)	2	66.90 ± 3.1	18.02 ± 2.80
7	7g	4-Cl	1	57.36 ± 4.4	44.88 ± 7.76
8	7h	3,4-diCl	1	52.68 ± 2.8	11.10 ± 1.71
9	7i	3,5-diCl	1	33.95 ± 16.8	7.66 ± 1.03
10	7j	4-F	1	57.50 ± 8.5	54.74 ± 10.91
11	Control	DHA\(^c\)		60.64 ± 0.17	\(6.13 \times 10^{-3}\) ± 1.11 \times 10^{-3}\)
12	Control	MTX\(^d\)		59.69 ± 1.02	1.71 ± 0.51

\(^a\)Data are presented as the mean ± SD of three experiments. \(^b\)\(IC_{50}\) values determined by SYBR green assay against the Gambian FCR-3 strain. \(^c\)DHA = Dihydroartemisinin. \(^d\)MTX = Methotrexate.
The results presented in Table 2 show that moving the side chain, albeit a modified side chain, to the 6-position of the pyrimidine ring, has a detrimental effect on antiplasmodial activity \textit{in vitro}, with the majority of pyrimidines (7a-j) being less active than pyrimidines (6a-d) against the drug-resistant strain of the \textit{P. falciparum} parasite. Although from our initial docking studies it appeared that analogues bearing a longer side chain at the 6-position of the pyrimidine ring could adopt a suitable conformation for binding in the DHFR active site, the biological data suggest that this could be energetically unfavourable.

Conclusions

In summary, we have prepared two series of substituted pyrimidine-2,4-diamines with a flexible side chain at either the 5- or 6-position of the pyrimidine ring as potential inhibitors of \textit{P. falciparum} dihydrofolate reductase (DHFR). The synthesis of the first series of compounds involved construction of the pyrimidine ring by reaction of the enol ether of a suitably substituted \(\alpha\)-cyanoketone with guanidine hydrochloride while the second series was prepared by substitution of the commercially available 2,4-diaminopyrimidin-6-ol. The compounds prepared were evaluated for antiplasmodal activity \textit{in vitro} against a cycloguanil-resistant strain of the \textit{P. falciparum} parasite. Compounds bearing a substituent at the 5-position of the pyrimidine ring showed better activity, in general, than those substituted at the 6-position, with 5-(3-(3,5-dichlorophenoxy)propyl)-6-phenylpyrimidine-2,4-diamine identified as the most active compound in the series (IC\textsubscript{50} 0.86 \(\mu\text{M}\)). The remaining pyrimidine-2,4-diamines showed antiplasmodal activity in the micromolar range.

Experimental Section

Chemistry

General. Reagents purchased from Sigma-Aldrich (Steinheim, Germany) were of reagent grade and used without any further purification unless specified. Ethyl acetate (EtOAc) and hexane used for chromatography or extractions were distilled prior to use. Dimethyl sulfoxide (DMSO) was distilled and stored over 4 Å molecular sieves. Acetonitrile (CH\textsubscript{3}CN) was distilled from calcium hydride and tetrahydrofuran (THF) was distilled from sodium prior to use. Reactions were monitored by thin-layer chromatography (TLC) using precoated aluminium-backed plates (Merck silica gel 60 F254) and visualised under UV light (\(\lambda = 254\) nm). Intermediates and final compounds were purified by column chromatography on Fluka silica gel 60 (70-230 mesh). NMR spectra were acquired on a Bruker 300 or 500 MHz spectrometer at room temperature, using the specified deuterated solvent. For those compounds soluble in deuterated chloroform (CDCl\textsubscript{3}), the solvent contained tetramethylsilane (TMS, 0.05% v/v) as internal standard. For others, the residual solvent signal was used for referencing (MeOD: 3.310 ppm; DMSO-\textit{d}_6: 2.500 ppm). Data processing was done using MestreNova Software under license from Mestrelab Research, CA, USA. Infra-red spectra were recorded on a Bruker Tensor-27 Fourier Transform spectrometer. Mass Spectra (High Resolution) were recorded on a SYNAPT G2 HDMS mass spectrometer (ESI) at Stellenbosch University. Melting points were determined on a Stuart SMP10 melting point apparatus and are uncorrected.

General procedure for the synthesis of (4-bromobutoxy)benzenes (9). To a solution of substituted phenol 8 in dry acetonitrile was added 1,4-dibromobutane (3 eq) and potassium carbonate (1.5 eq). The resultant mixture
was heated at reflux overnight under a nitrogen atmosphere. After this time, TLC analysis showed consumption of the starting material and the reaction mixture was allowed to cool to room temperature and filtered through celite. The filtrate was concentrated on a rotary evaporator and excess 1,4-dibromobutane was removed by distillation under high vacuum. Compounds were purified by silica gel column chromatography (EtOAc/hexane 20:80).

1-(4-Bromobutoxy)-4-chlorobenzene (9a). Prepared from 4-chlorophenol (8a) (5.00 g, 38.9 mmol), 1,4-dibromobutane (13.9 ml, 117 mmol) and potassium carbonate (8.06 g, 58.3 mmol) in dry acetonitrile (250 ml), isolated as a white crystalline solid (10.0 g, 98%). mp 29-30 °C. IR (v max/cm⁻¹): 2958, 1593, 1578, 1104, 823. ¹H NMR (300 MHz, CDCl₃): δH 7.21 (2H, d, J 8.9 Hz), 6.74 (2H, d, J 8.9 Hz), 3.93 (2H, t, J 6.0 Hz), 3.46 (2H, t, J 6.5 Hz), 2.14-1.97 (2H, m), 1.97-1.84 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δC 157.5, 129.3, 125.4, 115.7, 67.1, 33.5, 29.4, 27.8.

1-(4-Bromobutoxy)-3,4-dichlorobenzene (9b). Prepared from 3,4-dichlorophenol (8b) (5.05 g, 31.0 mmol), 1,4-dibromobutane (11.1 ml, 92.9 mmol) and potassium carbonate (6.42 g, 46.5 mmol) in dry acetonitrile (250 ml), isolated as a white solid (8.50 g, 92%). mp 25-27 °C. IR (v max/cm⁻¹): 3041, 1578, 1145. ¹H NMR (300 MHz, CDCl₃): δH 7.31 (1H, d, J 8.9 Hz), 6.98 (1H, d, J 2.8 Hz), 6.74 (1H, dd, J 8.9, 2.8 Hz), 3.96 (2H, t, J 5.9 Hz), 3.48 (2H, t, J 6.4 Hz), 2.13-1.86 (4H, m). ¹³C NMR (75 MHz, CDCl₃): δC 157.9, 132.9, 130.7, 124.0, 116.3, 114.5, 67.5, 33.2, 29.3, 27.7.

1-(4-Bromobutoxy)-3,5-dichlorobenzene (9c). Prepared from 3,5-dichlorophenol (8c) (5.00 g, 30.7 mmol), 1,4-dibromobutane (10.9 ml, 92.0 mmol) and potassium carbonate (6.36 g, 46.0 mmol) in dry acetonitrile (250 ml), isolated as a white crystalline solid (8.02 g, 88%). mp 26-28 °C. IR (v max/cm⁻¹): 2953, 1581, 1576, 1141. ¹H NMR (300 MHz, CDCl₃): δH 6.91 (1H, t, J 1.8 Hz), 6.75 (2H, d, J 1.8 Hz), 3.92 (2H, t, J 5.9 Hz), 3.45 (2H, t, J 6.4 Hz), 2.08-1.96 (2H, m), 1.96-1.84 (2H, m); ¹³C NMR (126 MHz, CDCl₃): δC 160.2, 135.6, 121.2, 113.8, 67.8, 33.5, 29.6, 27.9.

1-(4-Bromobutoxy)-3-fluorobenzene (9d). Prepared from 3-fluorophenol (8d) (5.00 g, 44.6 mmol), 1,4-dibromobutane (15.9 ml, 134 mmol) and potassium carbonate (9.25 g, 66.9 mmol) in dry acetonitrile (250 ml), isolated as an oil (9.51 g, 86%). IR (v max/cm⁻¹): 2956, 1593, 1577, 1084. ¹H NMR (300 MHz, CDCl₃): δH 7.19 (1H, td, J 8.2, 6.8 Hz), 6.71-6.54 (3H, m), 3.94 (2H, t, J 6.0 Hz), 3.46 (2H, t, J 6.5 Hz), 2.11-1.98 (2H, m), 1.98-1.86 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δC 163.7 (d, JCF 245.3 Hz), 160.3 (d, JCF 10.8 Hz), 130.3 (d, JCF 10.0 Hz), 110.3 (d, JCF 2.9 Hz), 107.6 (d, JCF 21.3 Hz), 102.2 (d, JCF 24.7 Hz), 67.2, 33.4, 29.5, 27.9.

1-(4-Bromobutoxy)-4-fluorobenzene (9e). Prepared from 4-fluorophenol (8e) (5.02 g, 44.8 mmol), 1,4-dibromobutane (16.0 ml, 134 mmol) and potassium carbonate (9.28 g, 67.2 mmol) in dry acetonitrile (250 ml), isolated as a white solid (6.92 g, 63%). mp 32-33 °C. IR (v max/cm⁻¹): 2930, 1590, 1578, 1133. ¹H NMR (300 MHz, CDCl₃): δH 7.01-6.93 (2H, m), 6.86-6.75 (2H, m), 3.95 (2H, t, J 6.0 Hz), 3.48 (2H, t, J 6.6 Hz), 2.11-2.01 (2H, m), 2.00-1.86 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δC 157.3 (d, JCF 238.3 Hz), 154.9 (d, JCF 2.0 Hz), 115.8 (d, JCF 23.1 Hz), 115.4 (d, JCF = 8.0 Hz), 67.4, 33.4, 29.4, 27.9. HRMS (ESI) found [M + Na]^+ 268.9953, C₁₀H₁₁F₂BrFONa requires 268.9956.

1-(4-Bromobutoxy)-3-(trifluoromethyl)benzene (9f). Prepared from 3-(trifluoromethyl)phenol (8f) (7.00 g, 43.2 mmol), 1,4-dibromobutane (15.5 ml, 126 mmol) and potassium carbonate (8.95 g, 64.8 mmol) in dry acetonitrile (250 ml), isolated as a pale-yellow oil (11.5 g, 89%). IR (v max/cm⁻¹): 2963, 1594, 1066, 1224. ¹H NMR (500 MHz, CDCl₃): δH 7.39-7.34 (1H, m), 7.21-7.17 (1H, m), 7.13-7.09 (1H, m), 7.04 (1H, dd, J 8.4, 2.7 Hz), 4.01 (2H, t, J 6.0 Hz), 3.48 (2H, t, J 6.6 Hz), 2.10-2.03 (2H, m), 2.00-1.92 (2H, m). ¹³C NMR (125 MHz, CDCl₃): δC 159.1, 131.9 (q, JCF 32.2 Hz), 130.0, 124.1 (q, JCF 272.4 Hz), 118.0, 117.4 (q, JCF 3.8 Hz), 111.3 (q, JCF 3.7 Hz), 67.2, 33.3, 29.4, 27.8.
2,4-Dibromo-1-(4-bromobutoxy)benzene (9g). Prepared from 2,4-dibromophenol (8g) (5.00 g, 19.8 mmol), 1,4-dibromobutane (7.11 ml, 59.5 mmol) and potassium carbonate (4.12 g, 30.0 mmol) in dry acetonitrile (260 ml), isolated as a light-brown solid (6.13 g, 80%). mp 30-33 °C. IR (v max/cm⁻¹): 3042, 1583, 1095. ¹H NMR (300 MHz, CDCl₃): δ H 7.65 (1H, d, J 2.4 Hz), 7.34 (1H, dd, J 8.7, 2.4 Hz), 6.73 (1H, d, J 8.7 Hz), 4.01 (2H, t, J 5.8 Hz), 3.52 (2H, t, J 6.4 Hz), 2.16-2.04 (2H, m), 2.04-1.93 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δ C 154.6, 135.4, 131.3, 114.3, 113.2, 113.1, 68.5, 33.6, 29.4, 27.7. HRMS (ESI): found [M + Na]⁺ 406.8266, C₁₀H₁₁Br₂ONa requires 406.8258.

General procedure for the synthesis of 5-phenoxypentanenitriles (10). To a solution of the substituted (4-bromobutoxy)benzene 9 in ethanol/water (3:1) was added potassium cyanide (1.1 eq). The resulting heterogeneous mixture was stirred and heated at reflux under a nitrogen atmosphere for two days. The reaction progress was monitored by TLC (EtOAc/hexane 40:60). When complete, the reaction mixture was cooled to room temperature, quenched with aq. NaOH (0.1 M, 100 ml) and concentrated on a rotary evaporator. The residue was extracted with CH₂Cl₂ (3 × 100 ml), the combined organic layers were dried with MgSO₄, filtered through celite and excess solvent was removed on a rotary evaporator. Products were purified by silica gel column chromatography (EtOAc/hexane 10:90 - 20:80).

5-(4-Chlorophenoxy)pentanenitrile (10a). Prepared from 1-(4-bromobutoxy)-4-chlorobenzene (9a) (4.00 g, 15.2 mmol) and potassium cyanide (1.10 g, 16.7 mmol) in ethanol/water (160 ml); isolated as a pale yellow oil (2.85 g, 89%). IR (v max/cm⁻¹): 3084, 2965, 2252, 1585, 1570. ¹H NMR (300 MHz, CDCl₃): δ H 7.21 (2H, d, J 9.0 Hz), 6.79 (2H, d, J 9.0 Hz), 3.94 (2H, t, J 5.6 Hz), 2.41 (2H, t, J 6.8 Hz), 1.97-1.77 (4H, m). ¹³C NMR (75 MHz, CDCl₃): δ C 157.3, 129.3, 125.6, 119.5, 115.7, 67.0, 28.1, 22.4, 16.9. HRMS (ESI): found [M + Na]⁺ 232.0500, C₁₁H₁₀ClCINO requires 232.0507.

5-(3,4-Dichlorophenoxy)pentanenitrile (10b). Prepared from 1-(4-bromobutoxy)-3,4-dichlorobenzene (9b) (5.05 g, 16.9 mmol) and potassium cyanide (1.21 g, 18.6 mmol) in ethanol/water (160 ml), isolated as pale yellow oil (3.55 g, 86%). IR (v max/cm⁻¹): 3083, 2964, 2250, 1599, 1574. ¹H NMR (300 MHz, CDCl₃): δ H 7.31 (1H, d, J 8.9 Hz), 6.97 (1H, d, J 2.8 Hz), 6.74 (1H, dd, J 8.9, 2.8 Hz), 3.97 (2H, t, J 5.8 Hz), 2.44 (2H, t, J 7.0 Hz), 2.00-1.81 (4H, m). ¹³C NMR (126 MHz, CDCl₃): δ C 157.7, 132.9, 130.7, 124.1, 119.3, 116.3, 114.5, 67.3, 28.0, 22.3, 17.0. HRMS (ESI): found [M + Na]⁺ 266.0115, C₁₁H₁₁Cl₂INO requires 266.0118.

5-(3,5-Dichlorophenoxy)pentanenitrile (10c). Prepared from 1-(4-bromobutoxy)-3,5-dichlorobenzene (9c) (4.20 g, 14.1 mmol) and potassium cyanide (1.01 g, 15.5 mmol) in ethanol/water (160 ml), isolated as a white solid (2.45 g, 71%). mp 52-53 °C. IR (v max/cm⁻¹): 3083, 2966, 2253, 1585, 1570. ¹H NMR (300 MHz, CDCl₃): δ H 6.96 (1H, t, J 1.8 Hz), 6.78 (2H, d, J 1.8 Hz), 3.98 (2H, t, J 5.6 Hz), 2.45 (2H, t, J 6.8 Hz), 2.0-1.80 (4H, m). ¹³C NMR (75 MHz, CDCl₃): δ C 159.7, 135.5, 121.3, 119.3, 113.6, 67.3, 28.0, 22.3, 17.0. HRMS (ESI): found [M + Na]⁺ 266.0115, C₁₁H₁₁Cl₂INO requires 266.0118.

5-(3-Fluorophenoxy)pentanenitrile (10d). Prepared from 1-(4-bromobutoxy)-3-fluorobenzene (9d) (5.00 g, 20.2 mmol) and potassium cyanide (1.58 g, 24.3 mmol) in ethanol/water (160 ml), isolated as a brown oil (3.22 g, 72%). IR (v max/cm⁻¹): 2961, 2932, 2239, 1596, 1503. ¹H NMR (300 MHz, CDCl₃): δ H 7.26-7.14 (1H, m), 6.70-6.55 (3H, m), 3.95 (2H, t, J 5.6 Hz), 2.41 (2H, t, J 6.8 Hz), 1.99-1.75 (4H, m). ¹³C NMR (75 MHz, CDCl₃): δ C 163.7 (d, J_C-F = 245.7 Hz), 160.1 (d, J_C-F = 10.8 Hz), 130.4 (d, J_C-F = 10.1 Hz), 119.5, 110.3 (d, J_C-F = 3.0 Hz), 107.8 (d, J_C-F = 21.4 Hz), 102.2 (d, J_C-F = 24.8 Hz), 67.0, 28.2, 22.5, 17.1. HRMS (ESI): found [M +Na]⁺ 216.0807, C₁₁H₁₁FNO requires 216.0803.

5-(4-Fluorophenoxy)pentanenitrile (10e). Prepared from 1-(4-bromobutoxy)-4-fluorobenzene (9e) (4.00 g, 16.2 mmol) and potassium cyanide (1.20 g, 17.8 mmol) in ethanol/water (160 ml), isolated as a white solid (1.93 g, 62%). mp 26-27 °C. IR (v max/cm⁻¹): 2960, 2933, 2240, 1596, 1503. ¹H NMR (300 MHz, CDCl₃): δ H 7.09-6.88 (2H, m), 6.88-6.71 (2H, m), 3.96 (2H, t, J 5.5 Hz), 2.44 (2H, t, J 6.6 Hz), 2.04-1.76 (4H, m). ¹³C NMR (75
MHg, CDCl₃): δC 157.3 (d, JCF 238.3 Hz), 154.8 (d, JCF 2.1 Hz), 119.5, 115.8 (d, JCF 23.1 Hz), 115.4 (d, JCF 8.0 Hz), 67.3, 28.2, 22.5, 17.0. HRMS (ESI): found [M + Na]+ 216.0809, C₁₁H₁₂FNONa requires 216.0803.

5-(3-(Trifluoromethyl)phenox)pentanenitrile (10f). Prepared from 1-(4-bromobutyloxy)-3-(trifluoromethyl)benzene (9f) (6.00 g, 20.2 mmol) and potassium cyanide (1.45 g, 22.2 mmol) in ethanol/water (160 ml), isolated as a yellow oil (3.65 g, 74%). mp 272.3°C. HRMS (ESI): found [M + Na]+ 353.9108, C₁₁H₁₁F₇Br₂NONa requires 353.9107.

5-(2,4-Dibromophenoxy)pentanenitrile (10g). Prepared from 2,4-dibromo-1-(4-bromobutyloxy)benzene (9g) (5.00 g, 12.9 mmol) and potassium cyanide (1.01 g, 15.5 mmol, 1.2 eq) in ethanol/water (160 ml), isolated as a white solid (3.12 g, 73%). mp 49-50 °C. IR (νmax/cm⁻¹): 3091, 2948, 2253, 1580, 1480. ¹H NMR (300 MHz, CDCl₃): δC 154.4, 135.5, 131.2, 119.5, 114.2, 113.2, 113.1, 68.3, 27.9, 22.5, 17.1. HRMS (ESI): found [M + Na]+ 353.9108, C₁₁H₁₁F₇Br₂NONa requires 353.9107.

General procedure for the synthesis of 2-benzoyl-5-phenoxypentanenitriles (11). To a solution of the substituted 5-phenoxypentanenitrile 10 (1 eq) in dry THF was added potassium tert-butoxide (3 eq) and ethyl benzoate (4 eq). The reaction mixture was stirred at room temperature under a nitrogen atmosphere overnight. After consumption of the starting material, the reaction was quenched with sat. aq. NH₄Cl and THF removed under reduced pressure. The remaining aqueous residue was washed with EtOAc (3 × 100 ml) and the organic layers were combined, dried over MgSO₄ and filtered through celite. Crude products were purified by column chromatography (EtOAc/hexane 20:80).

2-Benzoyl-5-(4-chlorophenoxy)pentanenitrile (11a). Prepared from 5-(4-chlorophenoxy)pentanenitrile (10a) (2.32 g, 11.1 mmol), potassium tert-butoxide (3.72 g, 33.2 mmol) and ethyl benzoate (6.33 ml, 44.3 mmol) in dry THF (50 ml), isolated as yellow crystals (2.82 g, 81%). mp 124-126 °C. IR (νmax/cm⁻¹): 2878, 2253, 1694, 1596, 1580. ¹H NMR (300 MHz, CDCl₃): δC 7.97 (2H, d, J 7.2 Hz), 7.65 (1H, t, J 7.4 Hz), 7.52 (2H, dd, J 8.3, 6.9 Hz), 7.21 (2H, d, J 9.0 Hz), 6.77 (2H, d, J 9.0 Hz), 4.48 (1H, dd, J 8.4, 5.7 Hz), 4.04-3.99 (2H, m), 2.37-1.99 (4H, m). ¹³C NMR (75 MHz, CDCl₃): δC 190.4, 157.1, 134.6, 133.9, 129.4, 129.2, 128.8, 125.9, 117.1, 115.7, 67.0, 39.4, 26.7, 26.5. HRMS (ESI): found [M + Na]+ 336.0757, C₁₈H₁₆Cl⁵CN⁵O₂Na requires 336.0770.

2-Benzoyl-5-(3,4-dichlorophenoxy)pentanenitrile (11b). Prepared from 5-(3,4-dichlorophenoxy)pentanenitrile (10b) (2.50 g, 10.2 mmol), potassium tert-butoxide (3.45 g, 30.7 mmol) and ethyl benzoate (5.89 ml, 40.9 mmol) in dry THF (60 ml), isolated as a white solid (3.34 g, 94%). mp 43-44 °C. IR (νmax/cm⁻¹): 3041, 2954, 2252, 1695, 1586, 1574. ¹H NMR (500 MHz, CDCl₃): δC 7.96 (2H, d, J 6.9 Hz), 7.89-7.76 (2H, m), 6.71 (1H, s), 6.73-6.57 (1H, m), 4.64-4.40 (1H, m), 4.07-3.92 (2H, m), 2.34-2.12 (2H, m), 2.12-1.95 (2H, m). ¹³C NMR (126 MHz, CDCl₃): δC 190.6, 157.6, 134.6, 133.9, 129.2, 128.8, 125.9, 117.1, 115.7, 67.0, 39.4, 26.7, 26.4. HRMS (ESI): found [M + Na]+ 370.0377, C₁₈H₁₅Cl⁵CN⁵O₂Na requires 370.0380.

2-Benzoyl-5-(3,5-dichlorophenoxy)pentanenitrile (11c). Prepared from 5-(3,5-dichlorophenoxy)pentanenitrile (10c) (1.98 g, 8.11 mmol), potassium tert-butoxide (2.73 g, 24.3 mmol) and ethyl benzoate (4.64 ml, 32.4 mmol) in dry THF (40 ml), isolated as a light yellow solid (2.80 g, 91%). mp 45-46 °C. IR (νmax/cm⁻¹): 2889, 2255, 1697, 1582, 1570. ¹H NMR (300 MHz, CDCl₃): δC 7.97 (2H, d, J 7.1 Hz), 7.74-7.61 (1H, m), 7.53 (2H, dd, J 8.3, 7.0 Hz), 6.95 (1H, t, J 1.8 Hz), 6.72 (2H, d, J 1.8 Hz), 4.46 (1H, dd, J 8.1, 5.9 Hz), 4.06-3.88 (2H, m), 2.36-1.82 (4H, m).
13C NMR (75 MHz, CDCl3): δC 190.2, 159.5, 135.5 (2C), 134.7, 133.9, 129.2, 128.8, 121.3, 117.0, 113.6, 113.5, 67.3, 39.3, 26.5, 26.4. HRMS (ESI): found [M + Na]+ 370.0381, C18H1535Cl2NO2Na requires 370.0380.

2-Benzoyl-5-(3-fluorophenoxy)pentanenitrile (11d). Prepared from 5-(3-fluorophenoxy)pentanenitrile (10d) (4.88 g, 25.3 mmol), potassium tert-butoxide (8.50 g, 75.8 mmol) and ethyl benzoate (14.4 ml, 101 mmol) in dry THF (70 ml), isolated as a yellow solid (6.53 g, 87%). mp 32 °C. IR (vmax/cm⁻¹): 2876, 2254, 1689, 1596, 1576. 1H NMR (300 MHz, CDCl3): δH 7.48-8.00 (9H, m), 7.49 (2H, dd, J 8.8, 7.0 Hz), 7.47 (2H, dd, J 8.8, 7.0 Hz), 7.28-7.12 (1H, m), 6.73-6.46 (3H, m), 4.50 (1H, dd, J 8.4, 5.7 Hz), 4.04-3.92 (2H, m), 2.36-1.99 (4H, m). 13C NMR (75 MHz, CDCl3): δC 190.5, 163.6 (d, JCF 245.3 Hz), 159.9 (d, JCF 10.8 Hz), 134.6, 133.9, 130.3 (d, JCF 10.0 Hz), 129.1, 128.8, 117.2, 110.2 (d, JCF 2.9 Hz), 107.8 (d, JCF 21.3 Hz), 102.2 (d, JCF 24.8 Hz), 66.9, 39.4, 26.7, 26.4. HRMS (ESI): found [M + Na]+ 320.1063, C18H16F2NO2Na requires 320.1065.

2-Benzoyl-5-(4-fluorophenoxy)pentanenitrile (11e). Prepared from 5-(4-fluorophenoxy)pentanenitrile (10e) (1.55 g, 8.02 mmol), potassium tert-butoxide (2.70 g, 24.1 mmol) and ethyl benzoate (4.60 ml, 32.1 mmol) in dry THF (45 ml), isolated as a yellow solid (1.99 g, 83%). mp 86-87 °C. IR (vmax/cm⁻¹): 2956, 2930, 2252, 1703, 1586, 1577. 1H NMR (300 MHz, CDCl3): δH 8.04-7.90 (2H, m), 7.72-7.57 (1H, m), 7.51 (2H, dd, J 8.4, 7.1 Hz), 7.03-6.90 (2H, m), 6.87-6.70 (2H, m), 4.50 (1H, dd, J 8.5, 5.7 Hz), 4.08-3.93 (2H, m), 2.34-1.78 (4H, m). 13C NMR (75 MHz, CDCl3): δC 190.4, 157.4 (d, JCF 238.7 Hz), 154.6 (d, JCF 2.1 Hz), 134.6, 133.9, 129.1, 128.8, 117.2, 115.8 (d, JCF 21.3 Hz), 115.4 (d, JCF 8.0 Hz), 67.3, 39.4, 26.8, 26.6. HRMS (ESI): found [M + Na]+ 320.1100, C18H16F2NO2Na requires 320.1065.

2-Benzoyl-5-(3-(trifluoromethyl)phenoxy)pentanenitrile (11f). Prepared from 5-(3-(trifluoromethyl)phenoxy)pentanenitrile (10f) (2.50 g, 10.3 mmol), potassium tert-butoxide (3.46 g, 30.8 mmol) and ethyl benzoate (5.88 ml, 41.1 mmol) in dry THF (60 ml), isolated as a yellow viscous oil (2.24 g, 63%). IR (vmax/cm⁻¹): 2941, 2249, 1696, 1592, 1571. 1H NMR (300 MHz, CDCl3): δH 7.97 (2H, d, J 7.3 Hz), 7.66 (1H, t, J 7.4 Hz), 7.52 (2H, t, J 7.7 Hz), 7.38 (1H, t, J 7.9 Hz), 7.21 (1H, d, J 7.7 Hz), 7.08-6.96 (2H, m), 4.49 (1H, dd, J 8.2, 5.8 Hz), 4.16-4.00 (2H, m), 2.40-2.00 (4H, m). 13C NMR (75 MHz, CDCl3): δC 190.3, 158.6, 134.6, 134.0, 131.9 (q, JCF 32.3 Hz), 130.1, 129.2, 128.8, 123.9 (q, JCF 272.4 Hz), 117.8, 117.7 (q, JCF 3.9 Hz), 117.1, 111.3 (q, JCF 3.8 Hz), 67.0, 39.3, 26.7, 26.5. HRMS (ESI): found [M + H]+ 348.1227, C15H12F3NO2 requires 348.1213.

2-Benzoyl-5-(2,4-dibromophenoxy)pentanenitrile (11g). Prepared from 5-(2,4-dibromophenoxy)pentanenitrile (10g) (2.94 g, 8.83 mmol), potassium tert-butoxide (2.97 g, 26.5 mmol) and ethyl benzoate (5.05 ml, 35.3 mmol) in dry THF (50 ml), isolated as a yellow solid (3.03 g, 79%). mp 35-36 °C. IR (vmax/cm⁻¹): 3010, 2255, 1699, 1578, 1569. 1H NMR (500 MHz, CDCl3): δH 8.00 (2H, d, J 7.0 Hz), 7.70-7.61 (2H, m), 7.56-7.47 (2H, m), 7.37 (1H, d, J 7.9 Hz), 6.76 (1H, dd, J 8.9, 2.9 Hz), 4.66 (1H, p, J 3.8 Hz), 4.19-4.00 (2H, m), 2.43-2.18 (2H, m), 2.19-2.06 (2H, m). 13C NMR (126 MHz, CDCl3): δC 190.7, 154.2, 135.5, 134.6, 133.9, 131.3, 129.1, 128.9, 117.3, 114.2, 113.3, 113.0, 68.4, 39.8, 26.9, 26.3. HRMS (ESI): found [M + Na]+ 457.9370, C18H1579Br2NO2Na requires 457.9270.

General procedure for the synthesis of 6-phenylpyrimidine-2,4-diامines (6). Carbitol, diethyl ether and aqueous potassium hydroxide (10.7 M, 20.0 eq) were placed in a diazomethane apparatus fitted with a condenser and a dropping funnel containing diazald (3.0 eq) dissolved in diethyl ether. The diazomethane apparatus was lowered into a water bath at 70-80 °C. Diazomethane gas, generated from the reaction of diazald and the above reaction mixture was passed into a flask containing the starting material 11a-g (1.0 eq), in dry dichloromethane (50 ml). Diethyl ether (10 ml) was used to rinse the dropping funnel. After distillation was complete, the reaction mixture was left to stir at room temperature overnight. Any excess diazomethane was quenched with glacial acetic acid. The reaction was evaporated to dryness in vacuo to give the crude product, which was taken to the next step without further purification. Partial characterisation of the
intermediate enol ethers was done by 1H and 13C NMR spectroscopy (exemplified in the synthesis of 6a below). In the subsequent step, guanidine hydrochloride was treated with sodium methoxide (2.0 eq) in methanol (20 ml) to furnish free guanidine after filtration and removal of methanol in vacuo. The enol ether prepared in the first step (1.0 eq) was dissolved in dry DMSO and then added to the flask containing free guanidine. The reaction mixture was then heated at 80-100 °C overnight. After formation of a new product spot visible by TLC, the reaction mixture was heated to 120 °C to remove DMSO under vacuum. The resulting solid residue was dissolved in a methanol-ethyl acetate mixture and purified by column chromatography (EtOAc/hexane 20:80) to give the desired pyrimidine product 6.

5-(3-(4-Chlorophenoxy)propyl)-6-phenylpyrimidine-2,4-diamine (6a). Diazomethane gas, produced from the reaction of diazald (2.05 g, 9.56 mmol) with potassium hydroxide solution (10.7 M, 6 ml), in a mixture of carbitol (4 ml) and diethyl ether (20 ml) was passed through a solution of 2-benzoyl-5-(4-chlorophenoxo)pentanenitrile (11a) (2.10 g, 3.19 mmol), in dry DCM. The resulting enol ether was isolated as a mixture of E and Z isomers in a ratio of 1:4.1. Major isomer: 1H NMR (300 MHz, CDCl$_3$): δH 7.56-7.33 (4H, m), 7.23-7.18 (1H, m), 7.23 (2H, d, J 9.1 Hz), 6.84 (2H, d, J 9.0 Hz), 4.00 (2H, t, J 6.1 Hz), 3.43 (3H, s), 2.57 (2H, dd, J 8.2, 6.7 Hz), 2.11-2.01 (2H, m). 13C NMR (75 MHz, CDCl$_3$): δC 168.9, 157.6, 131.5, 130.5, 129.3, 128.9, 128.8, 125.5, 120.1, 115.8, 94.2, 67.1, 58.3, 28.1, 25.0. Minor isomer: 1H NMR (300 MHz, CDCl$_3$): δH 7.56-7.33 (4H, m), 7.23-7.18 (1H, m), 7.18 (2H, d, J 9.1 Hz), 6.66 (2H, d, J 8.9 Hz), 3.85 (2H, t, J 5.9 Hz), 3.47 (3H, s), 2.23 (2H, dd, J 8.1, 6.5 Hz), 1.99-1.87 (2H, m). 13C NMR (75 MHz, CDCl$_3$): δC 168.7, 157.2, 130.7, 130.3, 129.2, 128.8, 128.7, 125.5, 118.2, 115.6, 91.9, 66.1, 58.1, 27.7, 23.8. The enol ether (0.55 g, 1.68 mmol) was treated with free guanidine (0.32 g, 3.36 mmol) in dry DMSO (5.0 ml) as described to afford 6a as a yellow solid (0.065 g, 11%). mp 130-132 °C. IR (v$_{max}$/cm$^{-1}$): 3328, 3140, 2929, 1637, 1583, 1555. 1H NMR (300 MHz, CDCl$_3$): δH 7.43-7.33 (5H, m), 7.21 (2H, d, J 8.9 Hz), 6.74 (2H, d, J 8.9 Hz), 5.29 (2H, s), 5.15 (2H, s), 3.84 (2H, t, J 5.6 Hz), 2.53 (2H, t, J 8.6 Hz), 1.93-1.84 (2H, m). 13C NMR (75 MHz, CDCl$_3$): δC 165.6, 163.3, 160.4, 157.1, 129.7, 129.4, 128.4, 128.3, 128.0, 125.9, 115.7, 104.8, 67.1, 28.6, 22.2. HRMS (ESI): found [M + H]$^+$ 355.1326, C$_{19}$H$_{20}$Cl$_{15}$N$_{4}$O requires 355.1327.

5-(3-(4-Dichlorophenoxy)propyl)-6-phenylpyrimidine-2,4-diamine (6b). 2-Benzoyl-5-(3,4-dichlorophenoxy)pentanenitrile (11b) (499 mg, 1.38 mmol) was treated with diazomethane as described. The resulting enol ether was treated with free guanidine (0.26 g, 2.76 mmol) in dry DMSO (5.0 ml) to afford a light-yellow solid (0.057 g, 11%). mp 102-104 °C. IR (v$_{max}$/cm$^{-1}$): 3430, 3164, 2866, 1636, 1583, 1554. 1H NMR (300 MHz, CDCl$_3$): δH 7.52 – 7.35 (5H, m), 6.97 (1H, t, J 1.8 Hz), 6.65 (2H, d, J 1.8 Hz), 3.81 (2H, t, J 5.7 Hz), 2.60 (2H, t, J 7.4 Hz), 1.91-1.83 (2H, m). 13C NMR (126 MHz, MeOD): δC 171.6, 165.1, 160.0 (2C), 135.0 (2C), 129.7, 128.5, 128.1, 120.2 (2C), 116.7, 113.2, 105.9, 66.7, 27.0, 20.9. HRMS (ESI): found [M + H]$^+$ 389.0936, C$_{19}$H$_{19}$Cl$_{3}$N$_{2}$O requires 389.0938.

5-(3-(3,5-Dichlorophenoxy)propyl)-6-phenylpyrimidine-2,4-diamine (6c). 2-Benzoyl-5-(3,5-dichlorophenoxy)pentanenitrile (11c) (607 mg, 1.68 mmol) was treated with diazomethane as described. The resulting enol ether was treated with free guanidine (0.32 g, 3.36 mmol) in dry DMSO (5.0 ml) to afford a brown solid (0.048 g, 9%). mp 105-107 °C. IR (v$_{max}$/cm$^{-1}$): 3430, 3164, 2956, 1637, 1599, 1575. 1H NMR (300 MHz, MeOD): δH 7.98 (2H, d, J 7.5 Hz), 7.56-7.30 (5H, m), 6.98 (1H, t, J 1.8 Hz), 6.68 (2H, d, J 1.8 Hz), 3.83 (2H, t, J 5.8 Hz), 2.60 (2H, t, J 7.4 Hz), 1.98-1.72 (2H, m). 13C NMR (126 MHz, MeOD): δC 164.7, 159.9, 157.7, 135.0, 130.8, 129.1, 128.2, 128.1, 127.5, 120.2, 113.2, 105.3, 66.9, 27.2, 21.1. HRMS (ESI): found [M + H]$^+$ 389.0936, C$_{19}$H$_{19}$Cl$_{3}$N$_{2}$O requires 389.0938.

5-(3-(3-Fluorophenoxy)propyl)-6-phenylpyrimidine-2,4-diamine (6d). 2-Benzoyl-5-(3-fluorophenoxy)pentanenitrile (11d) (450 mg, 1.45 mmol) was treated with diazomethane as described. The resulting enol ether was treated with free guanidine (0.28 g, 2.89 mmol) in dry DMSO (5.0 ml) to afford a creamy-white solid (0.043 g, 9%). mp 104-105 °C. IR (v$_{max}$/cm$^{-1}$): 3479, 3112, 2875, 1612, 1576, 1505. 1H NMR
(300 MHz, MeOD): δ_H 7.57-7.33 (4H, m), 7.29-7.09 (1H, m), 6.73-6.29 (3H, m), 3.82 (2H, t, J 5.9 Hz), 2.56 (2H, dd, J 8.6, 6.6 Hz), 1.99-1.83 (2H, m). 13C NMR (75 MHz, CDCl3): δ_C 175.04, 163.7 (d, J_{CF} 245.0 Hz), 163.4, 160.6, 160.3 (d, J_{CF} 10.9 Hz), 130.24, 130.1, 128.3, 128.29, 128.0, 110.3 (d, J_{CF} 3.0 Hz), 107.4 (d, J_{CF} 21.3 Hz), 104.7, 102.2 (d, J_{CF} 24.7 Hz), 67.8, 28.6, 22.1. HRMS (ESI) found [M + H]^+ 339.1621, C_{19}H_{20}FN_{4}O requires 339.1703.

General procedure for the synthesis of (4-bromopropoxy)benzenes (12). (4-Bromopropoxy)benzenes (12) were prepared using the same method described for the synthesis of (4-bromobutoxy)benzenes 9 described above.

1-(3-Bromopropoxy)-4-chlorobenzene (12a). Prepared from 4-chlorophenol (8a) (6.50 g, 50.6 mmol), 1,3-dibromopropane (15.4 ml, 152 mmol) and potassium carbonate (10.5 g, 75.8 mmol) in dry acetonitrile (300 ml), isolated as a white crystalline solid (12.5 g, 99%). mp 28-29 °C. IR (ν_{max}/cm⁻¹): 2959, 1596, 1578, 1102. 1H NMR (300 MHz, CDCl3): δ_H 7.23 (2H, d, J 8.9 Hz), 6.81 (2H, d, J 8.9 Hz), 4.02 (2H, t, J 5.7 Hz), 3.46 (2H, t, J 6.5 Hz), 2.19-1.95 (2H, m). 13C NMR (75 MHz, CDCl3): δ_C 157.3, 129.3, 125.6, 115.7, 67.2, 33.3, 27.8.

4-(3-Bromopropoxy)-1,2-dichlorobenzene (12b). Prepared from 3,4-dichlorophenol (8b) (5.40 g, 33.1 mmol), 1,3-dibromopropane (10.1 ml, 99.4 mmol) and potassium carbonate (6.87 g, 49.7 mmol) in dry acetonitrile (250 ml), isolated as a white solid (8.96 g, 89%). mp 29-30 °C. IR (ν_{max}/cm⁻¹): 3041, 1578, 1145. 1H NMR (300 MHz, CDCl3): δ_H 7.31 (1H, d, J 8.9 Hz), 6.97 (1H, d, J 2.9 Hz), 6.73 (1H, dd, J 8.9, 2.9 Hz), 4.00 (2H, t, J 5.8 Hz), 3.45 (2H, t, J 6.4 Hz), 2.18-1.99 (2H, m). 13C NMR (75 MHz, CDCl3): δ_C 157.4, 132.7, 130.7, 124.2, 116.4, 114.5, 66.0, 25.2, 14.1.

1-(3-Bromopropoxy)-3,5-dichlorobenzene (12c). Prepared from 3,5-dichlorophenol (8c) (5.00 g, 30.7 mmol), 1,3-dibromopropane (9.34 ml, 92.0 mmol) and potassium carbonate (6.36 g, 46.0 mmol) in dry acetonitrile (200 ml), isolated as a white solid (8.46 g, 97%). mp 27-28 °C. IR (ν_{max}/cm⁻¹): 2953, 1581, 1576, 1141. 1H NMR (300 MHz, CDCl3): δ_H 6.91 (1H, t, J 1.8 Hz), 6.75 (2H, d, J 1.9 Hz), 3.92 (2H, t, J 5.9 Hz), 3.45 (2H, t, J 6.4 Hz), 1.90-1.77 (2H, m). 13C NMR (75 MHz, CDCl3): δ_C 159.7, 135.5 (2C), 121.3, 114.0 (2C), 67.3, 28.0, 22.3.

1-(3-Bromopropoxy)-4-fluorobenzene (12d). Prepared from 4-fluorophenol (8f) (4.00 g, 35.7 mmol), 1,3-dibromopropane (10.9 ml, 107 mmol) and potassium carbonate (7.40 g, 53.5 mmol) in dry acetonitrile (200 ml), isolated as a pale solid (7.26 g, 87%). mp 30-31 °C. IR (ν_{max}/cm⁻¹): 2956, 1593, 1577, 1084. 1H NMR (300 MHz, CDCl3): δ_H 7.08-6.94 (2H, m), 6.85-6.81 (2H, m), 4.02 (2H, t, J 5.6 Hz), 3.45 (2H, t, J 6.4 Hz), 2.15-2.07 (2H, m). 13C NMR (75 MHz, CDCl3): δ_C 157.3 (d, J_{CF} 238.3 Hz), 154.9 (d, J_{CF} 2.0 Hz), 115.8 (d, J_{CF} 23.1 Hz), 115.4 (d, J_{CF} 8.0 Hz), 66.0, 30.8, 14.2.

General procedure for the synthesis of 6-(4-(4-chlorophenoxy)butoxy)pyrimidine-2,4-diamine (7a) and analogues. To a stirred solution of 2,4-diamino-6-hydroxy pyrimidine in dry acetonitrile (20 ml) was added potassium carbonate (1.5 eq), followed by a suitably substituted bromoether 9 or 12 (1.0 eq) in dry acetonitrile (30 ml). The reaction was heated to reflux under an atmosphere of nitrogen overnight. The reaction mixture was allowed to cool to room temperature, filtered through celite and the filtrate was concentrated in vacuo. The crude product was purified by column chromatography (EtOAc/hexane 60:40) to furnish the desired product.

6-(4-(4-Chlorophenoxy)butoxy)pyrimidine-2,4-diamine (7a). Prepared from 2,4-diamino-6-hydroxy pyrimidine (0.48 g, 3.79 mmol), potassium carbonate (0.79 g, 5.69 mmol) and 9a (1.00 g, 3.79 mmol) in dry acetonitrile, isolated as a white solid (0.58 g, 50%). mp 97-98 °C. IR (ν_{max}/cm⁻¹): 3520, 3359, 3011, 1576, 1124, 791. 1H NMR (300 MHz, DMSO-d6): δ_H 7.31 (2H, d, J 8.9 Hz), 6.95 (2H, d, J 9.0 Hz), 5.98 (2H, s), 5.82 (2H, s), 5.04 (1H, s), 4.15-4.11 (2H, m), 3.98 (2H, t, J 3.5 Hz), 1.81-1.68 (4H, m). 13C NMR (75 MHz, DMSO-d6): δ_C 170.1,
6-(1,3,4-Dichlorophenoxy)butoxy)pyrimidine-2,4-diamine (7b). Prepared from 2,4-diamino-6-hydroxy pyrimidine (0.43 g, 3.42 mmol), potassium carbonate (0.71 g, 5.13 mmol) and 9b (1.02 g, 3.42 mmol) in dry acetonitrile, isolated as a white solid (0.53 g, 45%). mp 136-137 °C. IR (νmax/cm⁻¹): 3520, 3359, 3011, 1576, 1124, 791. 1H NMR (300 MHz, DMSO-d6): δH 7.50 (1H, d, J 8.9 Hz), 7.22 (1H, d, J 2.9 Hz), 6.95 (1H, dd, J 8.9, 2.9 Hz), 5.99 (2H, s), 5.82 (2H, s), 5.04 (1H, s), 4.15-4.11 (2H, m), 4.05-4.01 (2H, m), 1.78-1.74 (4H, m). 13C NMR (75 MHz, DMSO-d6): δC 170.6, 166.5, 163.4, 158.6, 132.1, 131.4, 122.7, 116.8, 115.9, 76.6, 68.5, 64.6, 25.7 (2C). HRMS (ESI): found [M + H]+ 343.0729, C14H17Cl2N2O2 requires 343.0730.

6-(1,3,5-Dichlorophenoxy)butoxy)pyrimidine-2,4-diamine (7c). Prepared from 2,4-diamino-6-hydroxy pyrimidine (0.40 g, 3.15 mmol), potassium carbonate (0.65 g, 4.73 mmol) and 9c (0.94 g, 3.15 mmol) in dry acetonitrile, isolated as a white solid (0.59 g, 55%). mp 106-107 °C. IR (νmax/cm⁻¹): 3440, 3327, 3008, 1560, 1141, 828, 791. 1H NMR (300 MHz, DMSO-d6): δH 7.13 (1H, t, J 1.8 Hz), 7.03 (2H, d, J 1.8 Hz), 5.98 (2H, s), 5.82 (2H, s), 5.04 (1H, s), 4.15-4.10 (2H, m), 4.06-4.00 (2H, m), 1.83-1.68 (4H, m). 13C NMR (75 MHz, DMSO-d6): δC 170.1, 165.9, 163.0, 160.1, 134.5 (2C), 120.1, 113.8 (2C), 76.1, 68.2, 25.2, 25.1. HRMS (ESI): found [M + H]+ 343.0724, C14H17Cl2N2O2 requires 343.0730.

6-(1,3,4-Fluorophenoxy)butoxy)pyrimidine-2,4-diamine (7d). Prepared from 2,4-diamino-6-hydroxy pyrimidine (0.27 g, 2.14 mmol), potassium carbonate (0.44 g, 3.22 mmol) and 9d (0.53 g, 2.14 mmol) in dry acetonitrile, isolated as an off-white solid (0.25 g, 40%). mp 98-99 °C. IR (νmax/cm⁻¹): 3512, 3344, 2939, 1569, 1145, 1016. 1H NMR (300 MHz, DMSO-d6): δH 7.34-7.26 (1H, m), 6.83-6.71 (3H, m), 6.02 (2H, s), 5.86 (2H, s), 5.04 (1H, s), 4.15 (2H, t, J 6.0 Hz), 4.01 (2H, t, J 3.7 Hz), 1.79-1.77 (4H, m). 13C NMR (75 MHz, DMSO-d6): δC 170.1, 165.9, 163.0 (d, JCF 245.3 Hz), 162.8, 160.1 (d, JCF 10.8 Hz), 130.6 (d, JCF 10.0 Hz), 110.8 (d, JCF 2.9 Hz), 106.9 (d, JCF 21.3 Hz), 101.9 (d, JCF 24.8 Hz), 76.1, 67.6, 64.2, 25.33, 25.31. HRMS (ESI): found [M + H]+ 293.1413, C14H18FN4O2 requires 293.1416.

6-(1,3,4-Fluorophenoxy)butoxy)pyrimidine-2,4-diamine (7e). Prepared from 2,4-diamino-6-hydroxy pyrimidine (0.23 g, 1.86 mmol), potassium carbonate (0.39 g, 2.79 mmol) and 9e (0.46 g, 1.86 mmol) in dry acetonitrile, isolated as a white solid (0.18 g, 33%). mp 138-139 °C. IR (νmax/cm⁻¹): 3478, 2957, 1577, 1216, 1199, 1075. 1H NMR (300 MHz, DMSO-d6): δH 7.12-7.06 (2H, m), 6.99-6.84 (2H, m), 5.99 (2H, s), 5.81 (2H, s), 5.06 (1H, s), 4.13 (2H, t, J 3.1 Hz), 3.98-3.94 (2H, m), 1.78-1.74 (4H, m). 13C NMR (75 MHz, DMSO-d6): δC 170.1, 165.9, 162.9, 156.4 (d, JCF 227.9 Hz), 154.8 (d, JCF 2.0 Hz), 115.8 (d, JCF 23.1 Hz), 115.6 (d, JCF 8.0 Hz), 76.1, 67.7, 64.2, 25.4, 25.3. HRMS (ESI): found [M + H]+ 293.1411, C14H18FN4O2 requires 293.1416.

6-(1,3,5-Trifluoromethyl)phenox)butoxy)pyrimidine-2,4-diamine (7f). Prepared from 2,4-diamino-6-hydroxy pyrimidine (0.51 g, 4.04 mmol), potassium carbonate (0.84 g, 6.06 mmol) and 9f (1.20 g, 4.04 mmol) in dry acetonitrile, isolated as a white solid (0.64 g, 46%). mp 100-101 °C. IR (νmax/cm⁻¹): 3512, 2939, 1569, 1216, 1141, 1015. 1H NMR (500 MHz, DMSO-d6): δH 7.35 (1H, t, J 8.0 Hz), 7.17 (1H, d, J 7.8 Hz), 7.11 (1H, t, J 2.1 Hz), 7.04 (1H, dd, J 8.3, 2.5 Hz), 5.27-5.13 (2H, m), 4.97 (2H, s), 4.26-4.13 (2H, m), 4.00 (2H, t, J 3.8 Hz), 1.97-1.74 (4H, m). 13C NMR (125 MHz, DMSO-d6): δC 170.6, 166.4, 163.4, 159.4, 130.8 (q, J 31.7 Hz), 124.5 (q, JCF 272.4 Hz), 119.2, 117.4 (q, JCF = 3.8 Hz), 111.4 (q, J 3.7 Hz), 76.6, 68.2, 64.6, 25.8 (2C). HRMS (ESI): found [M + H]+ 343.1377, C15H18F3N4O2 requires 343.1384.

6-(1,3-Chlorophenoxy)propoxy)pyrimidine-2,4-diamine (7g). Prepared from 2,4-diamino-6-hydroxy pyrimidine (0.51 g, 4.01 mmol), potassium carbonate (0.83 g, 6.01 mmol) and 12a (1.00 g, 4.01 mmol) in dry acetonitrile, isolated as a white solid (0.41 g, 35%). mp 81-82 °C. IR (νmax/cm⁻¹): 3520, 3359, 3011, 1576, 1125, 791. 1H NMR (300 MHz, DMSO-d6): δH 7.31 (2H, d, J 9.0 Hz), 6.96 (2H, d, J 9.0 Hz), 6.00 (2H, s), 5.85 (2H, s), 5.06 (1H, s), 4.22 (2H, t, J 6.4 Hz), 4.05 (2H, t, J 6.3 Hz), 2.07 (2H, p, J 6.3 Hz). 13C NMR (75 MHz, DMSO-d6): δC 170.0,
165.9, 163.0, 157.3, 129.3, 124.2, 116.2, 76.1, 64.8, 61.4, 28.5. HRMS (ESI): found [M + H]$^+$ 295.0956, C$_{13}$H$_{15}$ClN$_4$O$_2$ requires 295.0964.

6-(3-(3,4-Dichlorophenoxy)propoxy)pyrimidine-2,4-diamine (7h). Prepared from 2,4-diamino-6-hydroxy pyrimidine (0.44 g, 3.52 mmol), potassium carbonate (0.73 g, 5.28 mmol) and 12b (1.00 g, 3.52 mmol) in dry acetonitrile, isolated as a light yellow solid (0.43 g, 37%). mp 134-135 °C. IR (v_{max}/cm$^{-1}$): 3529, 3343, 3010, 1581, 1101. 1H NMR (300 MHz, DMSO-d_6): δH 7.50 (1H, d, J 8.9 Hz), 7.22 (1H, d, J 2.9 Hz), 6.95 (1H, dd, J 8.9, 2.9 Hz), 5.99 (2H, s), 5.82 (2H, s), 5.04 (1H, s), 4.22 (2H, t, J 6.4 Hz), 4.12 (2H, t, J 6.2 Hz), 2.06 (2H, p, J 6.3 Hz). 13C NMR (75 MHz, DMSO-d_6): δC 170.4, 166.5, 163.4, 158.5, 132.1, 131.4, 122.8, 116.8, 115.9, 76.6, 65.8, 61.8, 28.9. HRMS (ESI): found [M + H]$^+$ 329.0565, C$_{13}$H$_{15}$ClN$_4$O$_2$ requires 329.0574.

6-(3-(3,5-Dichlorophenoxy)propoxy)pyrimidine-2,4-diamine (7i). Prepared from 2,4-diamino-6-hydroxy pyrimidine (0.89 g, 7.04 mmol), potassium carbonate (1.46 g, 10.6 mmol) and 12c (2.00 g, 7.04 mmol) in dry acetonitrile, isolated as a creamy white solid (1.26 g, 54%). mp 105-107 °C. IR (v_{max}/cm$^{-1}$): 3541, 3362, 3035, 1588, 1144, 799. 1H NMR (300 MHz, DMSO-d_6): δH 7.14 (1H, t, J 1.8 Hz), 7.06 (2H, d, J 1.8 Hz), 6.00 (2H, s), 5.84 (2H, s), 5.05 (1H, s), 4.21 (2H, t, J 6.4 Hz), 4.12 (2H, t, J 6.2 Hz), 2.11-2.02 (2H, m). 13C NMR (75 MHz, DMSO-d_6): δC 170.0, 166.0, 163.0, 160.0, 134.6 (2C), 120.3, 113.9 (2C), 76.1, 65.5, 61.2, 28.3, HRMS (ESI): found [M + H]$^+$ 329.0572, C$_{13}$H$_{15}$Cl$_2$N$_4$O$_2$ requires 329.0574.

6-(3-(4-Fluorophenoxy)propoxy)pyrimidine-2,4-diamine (7j). Prepared from 2,4-diamino-6-hydroxy pyrimidine (0.27 g, 2.15 mmol), potassium carbonate (0.44 g, 3.22 mmol) and compound 12d (0.50 g, 2.15 mmol) in dry acetonitrile, isolated as a white solid (0.20 g, 34%). mp 69-71 °C. IR (v_{max}/cm$^{-1}$): 3539, 3332, 3032, 1586, 1153. 1H NMR (300 MHz, DMSO-d_6): δH 7.18-7.01 (2H, m), 6.99-6.87 (2H, m), 5.99 (2H, s), 5.85 (2H, s), 5.04 (1H, s), 4.22 (2H, t, J 6.3 Hz), 4.03 (2H, t, J 6.3 Hz), 2.06 (2H, p, J 6.3 Hz). 13C NMR (75 MHz, DMSO-d_6): δC 170.0, 166.0, 163.0, 159.7 (d, J_{CF} 225.5 Hz), 154.8 (d, J_{CF} 3.0 Hz), 115.8 (d, J_{CF} 15.7 Hz), 115.6, 76.1, 65.0, 61.4, 28.6. HRMS (ESI): found [M + H]$^+$ 279.1252, C$_{13}$H$_{15}$F$_3$N$_4$O$_2$ requires 279.1310.

Biology

SYBR green assay against Gambian FCR-3 strain

P. falciparum (FCR-3) strain was cultured in vitro at 37 °C in 3% O$_2$, 5% CO$_2$, 92% N$_2$ and adjusted to a 0.625% parasitaemia/1.25% haematocrit before being incubated along with the analogues for 72 h. The plates were frozen overnight and, once thawed, incubated in the dark for 1 h at room temperature with buffered SYBR green I. The fluorescence was read in a microplate reader with excitation and emission wavelength bands centred at 485 and 528 nm, respectively. The percentage inhibition was calculated taking the untreated and dihydroartemisinin control into account. Dihydroartemisinin (DHA) and methotrexate (MTX) were used as positive controls. At least three independent experiments were conducted for each analogue. The concentration that inhibited 50% of parasite growth (IC$_{50}$ value) was determined from the log sigmoid dose response curves generated by GraphPad Prism® software. Each experiment was repeated in triplicate.

Acknowledgements

Research reported in this publication was supported by the Medical Research Council (South Africa) under a Self-Initiated Research Grant. HFK and TDS thank the National Research Foundation (South Africa) for funding.
Supplementary Material

Readers will be able to access supporting information (\(^1\)H and \(^{13}\)C NMR spectra of synthesized compounds) using the link "Supplementary Material" in the journal issue contents.

References

1. WHO, World Malaria Report 2019. 2019.
 https://www.who.int/publications/i/item/world-malaria-report-2019
2. Salcedo-Sora, J. E.; Ward, S. A. Mol. Biochem. Parasitol. 2013, 188, 51-62.
 https://doi.org/10.1016/j.molbiopara.2013.02.003
3. Nzila, A. J. Antimicrob. Chemother. 2006, 57, 1043-1054.
 https://doi.org/10.1093/jac/dkl104
4. Mita, T.; Tanabe, K.; Kita, K. Parasitol. Int. 2009, 58, 201-209.
 https://doi.org/10.1016/j.parint.2009.04.004
5. Heinberg, A.; Kirkman, L. Ann. N. Y. Acad. Sci. 2015, 1342, 10-18.
 http://dx.doi.org/10.1111/nyas.12662
6. Rastelli, G.; Sirawaraporn, W.; Sompornpisut, P.; Vilaivan, T.; Kamchonwongpaisan, S.; Quarrell, R.; Lowe, G.; Thebtaranonth, Y.; Yuthavong, Y. Bioorg. Med. Chem. 2000, 8, 1117-1128.
 https://doi.org/10.1016/S0968-0896(00)00022-5
7. Yuthavong, Y.; Tarnchompoo, B.; Vilaivan, T.; Chitnumsub, P.; Kamchonwongpaisan, S.; Charman, S. A.; McLennan, D. N.; White, K. L.; Vivas, L.; Bongard, E.; Thongphanchang, C.; Taweechai, S.; Vanichtanankul, J.; Rattanajak, R.; Arwon, U.; Fantauzzi, P.; Yuvaniyama, J.; Charman, W. N.; Matthews, D. PNAS 2012, 109, 16823-16828.
 https://doi.org/10.1073/pnas.1204556109
8. Lourens, A. C. U.; Gravestock, D.; van Zyl, R. L.; Hoppe, H. C.; Kolesnikova, N.; Taweechai, S.; Yuthavong, Y.; Kamchonwongpaisan, S.; Rousseau, A. L. Org. Biomol. Chem. 2016, 14, 7899-7911.
 http://dx.doi.org/10.1039/C6OB01350C
9. Gravestock, D.; Rousseau, A. L.; Lourens, A. C. U.; Moleele, S. S.; van Zyl, R. L.; Steenkamp, P. A. Eur. J. Med. Chem. 2011, 46, 2022-2030.
 https://doi.org/10.1016/j.ejmech.2011.02.054
10. Russell, P. B.; Hitchings, G. H. J. Am. Chem. Soc. 1951, 73, 3763-3770.
 http://dx.doi.org/10.1021/ja01152a060
11. Docking studies were carried out with Biovia Discovery Studio 2.0, using CDocker. The DHFR-TS receptors were obtained from the RCSB PDB: 1J3I (WT) and 1J3K (quadruple mutant) complexed with WR99210, NADPH and dUMP (at the thymidylate synthase (TS) site).
12. Thompson, M.; Carkner, C.; Mosey, N. J.; Kapernaum, N.; Lemieux, R. P. Soft Matter 2015, 11, 3860-3868.
 http://dx.doi.org/10.1039/C5SM00473J
13. Wang, S.; Wang, Y.; Liu, W.; Liu, N.; Zhang, Y.; Dong, G.; Liu, Y.; Li, Z.; He, X.; Miao, Z.; Yao, J.; Li, J.; Zhang, W.; Sheng, C. ACS Med. Chem. Lett. 2014, 5, 506-511.
 https://doi.org/10.1021/ml400492t
14. Schmitz, A.; Sankaranarayanan, A.; Azam, P.; Schmidt-Lassen, K.; Homerick, D.; Hänsel, W.; Wulff, H. Mol. Pharmacol. 2005, 68, 1254-1270.
15. Ratouis, R.; Boissier, J. R.; Dumont, C. J. Med. Chem. 1965, 8, 271-273.
https://doi.org/10.1021/jm00326a035

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)