Retraction

Retraction: Axial compressive behaviour of Concrete Filled Steel Tubular Column (IOP Conf. Ser.: Mater. Sci. Eng. 1145 012017)

Published 23 February 2022

This article (and all articles in the proceedings volume relating to the same conference) has been retracted by IOP Publishing following an extensive investigation in line with the COPE guidelines. This investigation has uncovered evidence of systematic manipulation of the publication process and considerable citation manipulation.

IOP Publishing respectfully requests that readers consider all work within this volume potentially unreliable, as the volume has not been through a credible peer review process.

IOP Publishing regrets that our usual quality checks did not identify these issues before publication, and have since put additional measures in place to try to prevent these issues from reoccurring. IOP Publishing wishes to credit anonymous whistleblowers and the Problematic Paper Screener [1] for bringing some of the above issues to our attention, prompting us to investigate further.

[1] Cabanac G, Labbé C and Magazinov A 2021 arXiv:2107.06751v1

Retraction published: 23 February 2022
Axial compressive behaviour of Concrete Filled Steel Tubular Column

D Vivek¹, J Sridhar², K S Elango¹, R Saravanakumar¹, V Rajesh kumar¹, S Venkat Raman¹ and R Anbarasu³
¹Assistant Professor, Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore.
²Associate Professor, Department of Civil Engineering, GMR Institute of Technology, Rajam.
³Managing Director, Lotus Builders, Tirupur.
vivek.d@kpriet.ac.in¹

Abstract. In current duration growing atmospheric high temperature and discharge of pollutants leads to environmental destruction became major issues in previous couple of decades. This study deals with the partial replacement of fine aggregate with steel slag in concrete filled steel tubular column to check the axial behaviour of column. Review from previous research found that fine aggregate replaced in concrete will reduce the effect of global warming and other environmental hazards.

1. Introduction
The main problem that's now being faced with reference to steel slag, by-product of steel making industry. These steel slags are being disposed by landfills. As there's increase in demand for land for people occupation, it's not a viable option. Hence numerous researches were conducted to convert it into a useful product. As a result, it's found that steel slag can replace fine aggregate in concrete to a particular extent with none adverse effects. Replacement was successfully wrapped to maximum of 30 percent further increase in steel slag percent leads to decrease in strength of concrete and causes other adverse effects. The cementitious capability of all steel slags in low and requires commencement. The works carried out by the various researchers throughout the world which are closely related to compressive strength of concrete filled steel tubular column and steel slag are discussed in this paper.

Researcher in [1] investigated the behaviour steel concrete filled steel tubes packed with steel stirrup-reinforced concrete. Results from test proved that usage of stiffeners and internal shear connectors will help to improve the load carrying capacity and durability properties of steel concrete column filled steel tubes. Research [2-15] proved that better utilisation for worth additional function in cement and concrete stuff may be achieved.

Concrete stuffed steel tube columns are widely used in building particularly at the erection of high-rise buildings. Presently these styles are particularly demanded within the countries of Japan and South-East Asia, that are placed in areas of high unstable activity CFST have variety of essential blessings. The most blessings are then high bearing capability and operational dependability, the high speed of construction of the frame, the reduction of the consumption of fabric and monetary resources for the producing of CFST concrete stuffed steel concrete filled column may be a load bearing
member with concrete stuffed within bar steel tube. CFST columns are most popular over concrete and steel columns thanks to its high axial load carrying capability, higher ductile performance, giant energy absorption capability and lower strength degradation [16]. Table 1 shows the Experimental results and load carrying capacity of reference CFST column.

Table 1. Experimental results and load carrying capacity of reference CFST column

Author	Type of column	Size of Specimens	Material used	Failure mode
Ming-Xiang xiong	Circular	Diameter-100mm Height-200mm	Channel section	Overall buckling
Shiming Chen	Circular	Diameter-100mm Height-340mm	Ultra high Performance concrete	Local Buckling
	Square	100mm x 100mm		
Yong ye	Square	200mm x 200mm	Bimetallic tubes	Buckling
YYiyanlu	Circular	Diameter-133mm Height-400mm	Steel fibre	Shear failure
Wu xu	Hexagonal	Side-100mm x 100mm	Solid & hollow tubular sections	Local buckling
B.Wu	Circular	Diameter-300mm Height-900mm	Recycled coarse aggregate	Local buckling
			Steel stirrups	
Qing-Xin Ren	Circular	Diameter-200mm Height-600mm	Dune sand	Local buckling
	Square	Side-200mm x 600mm		
Liusheng He	Circular	Diameter-165mm Height-495mm	Corrugation in steel tube	Buckling
Ju chen	Circular	Diameter-400mm Height-4000mm	Reinforcing bars Angles	Crack formation

2. Observations on Actual State of Art
From the above review of literature, illustrates that although substantial investigations are experimentally verified on axial compressive behaviour of concrete filled steel tubular column [17-20]. In order to reduce the harm to environmental balance owing to unnecessary removal of fine aggregates from river beds, steel slag can be partially replaced for fine aggregate in concrete filled steel tubular column.

3. Proposed Method
From the above review of literature, the proposed study is to enhance the understanding of axial behaviour of concrete filled steel tubular column with is the steel slag is replaced partially for fine aggregate. Steel slag will be second-hand replacement for fine aggregate. the employment of steel slag up to 30% gives high compressive strength. This study deals with partial replacement of fine aggregate with steel slag in CFST column to search out the axial behaviour of column. The materials are collected and their properties are studied [21-28]. A design mix calculation is created to get target strength of 25MPa. The water cement ratio required for design mix calculation is going to be obtained
through consistency test. Initially trial is going to be casted to get right combination ratio. The compressive test of the specimens is tested and also the optimum percentage of steel slag is going to be obtained. The CFST column is then casted supported the above result. Within the proposed work four columns are casted of which two of it'll be headed column and other two are going to be without head. The axial compressive behaviour of CFST column is then analysed.

4. Experimental Setup
The required height (300mm) of circular steel tube cut from the 6m length hollows tubes. To get the flat surface, both ends of steel tube were surfaced by the surface grinding machine. Inside portion of hollow steel were thoroughly wire brushed to remove the rust and loose debris presented. Simultaneously all the aggregates are taken by weight batching and all the concrete mixtures are mixed together for 5 to 10 min using hand mixing. Then hollow steel tube specimens were filled with concrete and compacted by a steel rod to avoid any flaws or air gaps that occur inside the specimen. The CFST columns were tested in compression testing machine. The specimens are placed and ensured that no slippage occurs when it is loaded. Hydraulic jack is used to apply load at a constant rate. Axial deformations are recorded with help of strain gauges and load cell placed at specified intervals. Initially seating load is applied to check for accuracy of seating. The experimental setup shown in figure 1.

5. Conclusion
This paper reviewed the present research works on axial compressive behaviour of concrete filled steel tubular column. Steel slag has properties as same as natural aggregates and no problems ar caused if it is used in concrete. The use of steel slag adversely improves the durability and other mechanical properties of concrete to a certain limit. When the percentage of replacement is varied between 25 and 35%, best outputs are achieved for mechanical properties. The enduringness is raised by 1.1 - 1.3 times and the utilization of steel slag improves durability of mix for all respective ratios. An increase in properties such as freeze and thaw and durability are also achieved. If the volume is increased after 70 % and there will not be any notable changes in the properties of concrete.

References
[1] Fa-cheng Wang, Lin-hai Han, Wei Li (2018), Analytical behavior of CFDST stub columns with external stainless-steel tubes under axial compression, Thin-Walled Structures, 127, pp. 756-768.
[2] Fa-xing Ding, Lei Fu, Zhi-wu Yu (2017), Behaviors of axially loaded square concrete-filled steel tube (CFST) Stub columns with notch in steel tube, Thin-Walled Structures, **115**, pp. 196-204.

[3] Ganesh Prabhu, G. Sundarraja, M.C, Yun Yong Kim (2015), Compressive behaviour of circular CFST columns externally reinforced using CFRP composites, Thin-Walled Structures, Vol 87, pp. 139-148.

[4] Jingming Cai, Jinlong Pan, Xiaopeng Li, (2018), Behavior of ECC-encased CFST columns under axial compression, Engineering Structures, **171**, pp.1-9.

[5] Krishna Prasanna, Venkata Kiranmayi (2014) Steel Slag as a Substitute for Fine Aggregate in High Strength Concrete, International Journal of Engineering Research &Technology, **3**(10).

[6] Liusheng He, Yangang Zhao, Siqi Lin (2018), Experimental study on axially compressed circular CFST columns with improved confinement effect, Journal of Constructional steel Research, **140**, pp.74-81.

[7] A. Haldorai and A. Ramu, Security and channel noise management in cognitive radio networks, Computers & Electrical Engineering, vol. **87**, p. 106784, Oct. 2020. doi:10.1016/j.compeleceng.2020.106784.

[8] A. Haldorai and A. Ramu, Canonical Correlation Analysis Based Hyper Basis Feedforward Neural Network Classification for Urban Sustainability, Neural Processing Letters, Aug. 2020. doi:10.1007/s11063-020-10327-3.

[9] Ouyang, Y, Kwan. A.K.H, Lo.S.H , Ho. J.C.M. (2017), Finite element analysis of concrete-filled steel tube (CFST) columns with circular sections under eccentric load, Engineering Structures, Vol 148, pp. 387-398.

[10] Ouyang, Y, Kwan. A.K.H. (2018), Finite element analysis of concrete-filled steel tube (CFST) columns with square sections under axial compressive load, Engineering Structures, Vol 156, pp. 443-459.

[11] Ouyang,Y, Kwan. A.K.H. (2018), Use of analytical lateral-axial strain relation in FE analysis of axially loaded rectangular CFST columns, Engineering Structures, Vol 166, pp. 142-151.

[12] Qing-Xin Ren, Kan Zhou, Chao Hou, Zhong Tao, Lin-Hai Han (2018), Dune sand concrete-filled steel tubular (CFST) stub columns under axial compression, Thin-Walled Structures, Vol 124, pp. 291-302.

[13] Radhu Chandini (2017), Use of Steel Slag in Concrete as Fine Aggregate, International Journal of Engineering and Innovative Technology (IIEIT), 7(4).

[14] Shiming Chen, Rui Zhang, Liang-Jiu Jia, Jun-Yan Wang, Ping Gu (2018), Structural behavior of UHPC filled steel tube columns under axial loading, Thin-walled structures, **130**, pp. 550-563.

[15] SubathraDevi.V, Gnanavel. B. K (2018), Properties of concrete manufactured using steel slag’, Procedia Engineering,97, pp 95-104.

[16] Wu Xu, Lin-Hai Han, Wei Li (2016), Performance of hexagonal CFST members under axial compression and bending, Journal of constructional steel research, **123**, pp. 162-175.

[17] Wu. B, Zhang. Q, Chen. G.M (2018), Compressive behavior of thin-walled circular steel tubular columns filled with steel stirrup-reinforced compound concrete, Engineering Structures, **170**, pp.178-195.

[18] YiyanLu,Zhenzhen Liu, Shan Li and Jiuyue Hu (2017), Axial compression behavior of hybrid fiber reinforced concrete filled steel tube stub column, construction and building materials, **174**, pp. 96-107.

[19] Yong Ye, Shi-Jiang Zhang, Lin-Hai Han, Yang Liu (2018), Square concrete filled stainless steel/carbon steel bimetallic tubular stub columns under axial compression, Journal of constructional steel research, 146, pp. 49-62.
[20] Yong Ye, Lin-Hai Han, Zi-Xiong Guo (2017), *Concrete-filled bimetallic tubes (CFBT) under axial compression*, Thin-Walled Structures, **119**, pp. 839-850.

[21] Yu Chen, Kai Wang, Kang He, Jianguang Wei, Jun Wan (2018), *Compressive behavior of CFRP-confined post heated square CFST stub columns*, Thin-Walled Structures, **127**, pp. 434-445.

[22] Zhi-Bin Wang, Zhong Tao, Lin-Hai Han, Brian Uy, Dennis Lam, Won-Hee Kang (2017) *Strength, stiffness and ductility of concrete-filled steel columns under axial compression*, Engineering Structures, **135**, pp.209-221.

[23] K.S.Elango, P.R.Remya, D.Vivek, R.Gopi, R.Saravanakumar, *Strength and durability studies on Ficus Exasperata leaf ash concrete*, Materials Today Proceedings, DOI: https://doi.org/10.1016/j.matpr.2020.06.195.

[24] K.S. Elango, P.R. Remya, D. Vivek, R. Gopi, V. Rajeshkumar, R. Saravanakumar, *Strength and durability studies on ficusexasperata leaf ash concrete*, Materials TodayProceedings, DOI:https://doi.org/10.1016/j.matpr.2020.06.195.

[25] K.S.Elango, D.Vivek, G.Krishna Prakash, M.J.Parandharam, S.Pradeep, M.Prabhukesavaraj, *Strength and permeability studies on PPC binder pervious concrete using palm jiggery as an admixture*, DOI: https://doi.org/10.1016/j.matpr.2020.08.006.

[26] V. Rajeshkumar, S. Anandaraj, V. Kavinkumar, K.S. Elango, *Analysis of factors influencing formwork material selection in construction buildings*, Materials TodayProceedings, DOI: https://doi.org/10.1016/j.matpr.2020.06.044

[27] K.S.Elango and V.Revathi, *FaL-G Binder Pervious Concrete*, Construction and Building Materials, **140C**, pp.91-99, 2017.

[28] J.Sridhar, D.Vivek, D.Jugatheeswaran, *Mechanical and Flexural Behaviour of High performance concrete containing Nano Silica*, International Journal of Engineering and Advanced Technology, ISSN: 2249 – 8958, 9(2), December, 2019.