Viterbi Sequences and Polytopes

Eric H. Kuo

Department of Computer Science
University of California, Berkeley
Berkeley, CA 94720-1776

Abstract

A Viterbi path of length \(n \) of a discrete Markov chain is a sequence of \(n + 1 \) states that has the greatest probability of occurring in the Markov chain. We divide the space of all Markov chains into Viterbi regions in which two Markov chains are in the same region if they have the same set of Viterbi paths. The Viterbi paths of regions of positive measure are called Viterbi sequences. Our main results are (1) each Viterbi sequence can be divided into a prefix, periodic interior, and suffix, and (2) as \(n \) increases to infinity (and the number of states remains fixed), the number of Viterbi regions remains bounded. The Viterbi regions correspond to the vertices of a Newton polytope of a polynomial whose terms are the probabilities of sequences of length \(n \). We characterize Viterbi sequences and polytopes for two- and three-state Markov chains.

1 Introduction

Many problems in computational biology have been tackled using graphical models. A typical setup consists of \(n \) observed random variables \(Y_1, \ldots, Y_n \) and \(m \) hidden random variables \(X_1, \ldots, X_m \). Suppose we observe \(Y_1 = \sigma_1, \ldots, Y_n = \sigma_n \). A standard inference problem is to find the hidden assignments \(h_i \) that produce the maximum a posteriori (MAP) log probability

\[\delta_{\sigma_1, \ldots, \sigma_n} = \min_{h_1, \ldots, h_m} - \log(\Pr[X_1 = h_1, \ldots, X_m = h_m, Y_1 = \sigma_1, \ldots, Y_n = \sigma_n]), \]

where the \(h_i \) range over all the possible assignments for the hidden random variables. However, when the parameters of the graphical model change, the hidden assignments may also vary. The parametric inference problem is to

Email address: ekuo@cs.berkeley.edu (Eric H. Kuo).
solve this inference problem for all model parameters simultaneously. This
problem is addressed for pairwise sequence alignment in [4,9].

This article takes the first step in generalizing the methods to arbitrary graph-
ical models. We begin our investigation with Markov chains and their Viterbi
paths, i.e. the sequence of states with the greatest probability. We partition
the space of k-state Markov chains such that two Markov chains are in the
same region if they have the same Viterbi paths. We ask how many such re-
gions are there, and how do they border each other. Before we begin to answer
these questions, let us state the problem formally.

Let \mathcal{M}_k be the space of all Markov chains with k states. Then \mathcal{M}_k is a
$(k + 1)(k - 1)$ dimensional space in which the parameters include the proba-
bility distribution of the initial state and the stochastic matrix of transition
probabilities.

We number the states of a Markov chain from 0 to $k - 1$. We will consider
sequences of states produced by Markov chains. The length of a sequence is
the number of transitions in the sequence. The zeroth state is the initial state,
and the nth state follows the zeroth state after n transitions.

Given a Markov chain M, the probability of a sequence is the product of
the initial probability of the first state and all the transition probabilities
between consecutive states. There are k^{n+1} possible sequences of length n. A
Viterbi path of length n is a sequence of $n + 1$ states (containing n transitions)
with the highest probability. Viterbi paths of Markov chains can be computed
in polynomial time [2,8]. A Markov chain may have more than one Viterbi
path of length n; for instance, if 012010 is a Viterbi path of length 5, then
010120 must also be a Viterbi path since both sequences have the same initial
state and the same set of transitions, only that they appear in a different
order. Two sequences are equivalent if their set of transitions are the same.
The Viterbi paths of a Markov chain might not be all equivalent. Consider
the Markov chain on k states that has a uniform initial distribution and a
uniform transition matrix (i.e. $p_{ij} = \frac{1}{k}$ for all states i, j). Since each sequence
of length n has the same probability $\frac{1}{k^{n+1}}$, every sequence is a Viterbi path for
this Markov chain.

We define a partition \mathcal{R}_n of the space \mathcal{M}_k into regions such that two Markov
chains M_1, M_2 are in the same region iff they have the same Viterbi path(s) of
length n. These regions will vary greatly in size. For instance, in the partition
\mathcal{R}_2 of \mathcal{M}_2, the region of Markov chains with the Viterbi path 00 occupies one
quarter of the entire space. Yet the Markov chain in which all the initial and
transition probabilities are 1/2 constitutes a region by itself. In this problem,
we will concern ourselves with only the regions which have positive measure in
\mathcal{M}_k, and we will call them Viterbi regions. If S is a Viterbi path for a Viterbi
Fig. 1. Left: Partition of $\pi_0 = 1$ for $k = 2$, $n = 3$. Right: Partition of $\pi_1 = 1$.

region R, then all other possible Viterbi paths of R must be equivalent to
S; if S' were a Viterbi path not equivalent to S, we would have a relation
$\Pr[S] = \Pr[S']$, making R a zero-measure region of \mathcal{M}_k. We call S a Viterbi
sequence if it is a Viterbi path for a Viterbi region. We will generally let one
Viterbi sequence represent an entire class of equivalent paths.

As an example, Figure 1 shows how the subspaces $\pi_0 = 1$ and $\pi_1 = 1$ of \mathcal{M}_2
are partitioned into Viterbi regions for $n = 3$.

In Section 2 we use Newton polytopes to help us enumerate all possible Viterbi
regions and describe the boundary structure within \mathcal{M}_k. In Section 3 we de-
scribe the properties of Viterbi sequences and put a bound on the number of
Viterbi regions of \mathcal{M}_k. Finally, in Sections 4 and 5, we characterize Viterbi
sequences for two- and three-state Markov chains.

2 Polytopes for Viterbi Sequences

In analyzing the Viterbi regions of the space of all k-state Markov chains,
the boundary surfaces are represented as an equation between two products
of transition probabilities. For instance, between regions 1000 and 1111 in
the space of 2-state Markov chains, the equation is $\pi_1 p_{10} p_{00}^2 = \pi_1 p_{11}^3$. After
cancelling out π_1 on both sides, we see that the surface is a third-degree
equation.

Let us first investigate a logarithmic model similar to a Markov chain. For each
probability p_{ij} or π_i, we can define $w_{ij} = -\log p_{ij}$ as the weight of transition
(i, j), and $\omega_i = -\log \pi_i$ as the weight of the initial state i. The weight of a
path in the model is equal to the sum of the weights of the transitions and
initial state. A minimum weight path is simply a path of minimum weight.

The space of logarithmic models is a subset of an even larger space in which the weights no longer represent logarithms of probabilities. Let L_k stand for the $(k^2 + k)$-dimensional space of weighting schemes. We will often consider only the sequences that start with state i; thus let L^i_k be the k^2-dimensional subspace of L_k, representing the weights of the transitions (and omitting the initial states). The terms min-weight regions and min-weight sequences will be defined for L_k and L^i_k in the same way that Viterbi regions and sequences are defined for M_k.

Since it is not required that $\sum_j \exp(-w_{ij}) = 1$ for each state i, there are min-weight sequences in L_k that are not Viterbi sequences. These sequences will be called pseudo-Viterbi sequences. We will see in the next section that 001 cannot be a Viterbi sequence of a two-state Markov chain, but it is the min-weight sequence of length 2 for weights $(w_{00}, w_{01}, w_{10}, w_{11}) = (3, 2, 4, 5)$.

We can more easily visualize the min-weight regions and their boundaries in the space L^0_k of linear models. Thus instead of considering products of probabilities, we work with sums of logarithms. All boundary surfaces become linear. The boundary between 0111 and 0000 becomes $w_{01} + 2w_{11} = 3w_{00}$.

We can formulate an alternative model for bordering min-weight regions of L^0_k. Instead of dividing L^0_k into regions according to their min-weight sequences of length n, we shall represent each sequence as a point in a k^2-dimensional space. In this new space, each coordinate x_{AB} corresponds to the number of transitions from A to B in the sequence. For example, the sequence 021021021010 is represented by the 9-tuple $(0, 1, 3, 4, 0, 0, 3, 0)$ in the case $k = 3$ states. Note that the sequences of length n occupy a $k^2 - 1$ dimensional subspace of \mathbb{R}^{k^2} since the final coordinate is determined by the other $k^2 - 1$ coordinates.

Once we plot all the points corresponding to a min-weight sequence of length n into \mathbb{R}^{k^2}, we can examine the convex hull of these points. This convex hull is essentially the Newton polytope of the polynomial

$$\sum_{S \in S_n} \Pr[S],$$

where S_n is the set of all possible paths of length n generated by a k-state Markov chain with initial state 0, and the probability $\Pr[S]$ is expressed in terms of transition probabilities $p_{00}, p_{01}, p_{10},$ etc. For instance, if S_2 is the set of sequences of length 2 starting with state 0, then we consider the Newton polytope of the polynomial $p_{00}p_{00} + p_{00}p_{01} + p_{01}p_{10} + p_{01}p_{11}$. Figure 2 shows the Newton polytopes of two-state min-weight sequences for general n.

Each vertex (i.e., extreme point) of the Newton polytope corresponds to a
min-weight sequence. Two vertices are joined by an edge if the corresponding \(k^2 \)-dimensional min-weight regions in \(\mathcal{L}_k^0 \) share a boundary of dimension \(k^2 - 1 \).

The collection of log-linear cones of min-weight regions is the normal fan of the Newton polytope. (See [7, §2.1] for basic information about Newton polytopes and their normal fans.) The intersection of this normal fan with the surface \(\sum_j \exp(-w_{ij}) = 1 \) produces a logarithmic transformation of the Viterbi regions of \(\mathcal{M}_k \). If some min-weight region does not intersect \(\sum_j \exp(-w_{ij}) = 1 \), then its corresponding min-weight sequence is also a pseudo-Viterbi sequence.

We can now describe an algorithm for enumerating min-weight sequences of length \(n \) on \(k \) states. Once we have all the min-weight sequences of length \(n - 1 \) that start with state 0, we derive the list of length \(n - 1 \) min-weight sequences beginning with state \(i \) by swapping 0 and \(i \) in the list of min-weight sequences that start with 0. (In terms of coordinates, we swap \(x_{0j} \) with \(x_{ij} \) and \(x_{j0} \) with \(x_{ji} \) for each state \(j \).) Only these sequences can be the suffix of a longer min-weight sequence. Then to the beginning of each length \(n - 1 \) min-weight sequence, append state 0 (thus increasing coordinate \(x_{0i} \) by 1, where \(i \) was the beginning state). We then compute the vertices of the convex hull of this list of coordinates, using a program such as polymake [3]. The output is the coordinates for min-weight sequences of length \(n \) that start with state 0.

3 Bound on the Number of Viterbi Sequences

Consider the set of Markov chains with \(k \) states. We consider the number of possible Viterbi sequences that are of length \(n \). How does this number grow as \(n \) approaches infinity?

Somewhat surprisingly, the number of Viterbi sequences remains bounded while \(n \) continues increase. We show for an arbitrarily large \(n \), each Viterbi sequence can be rearranged to fit a certain blueprint. This blueprint consists of three parts: (1) a long middle periodic section in which a sequence of at most \(k \) states is repeated, which we shall call the interior; (2) a short section preceding the periodic middle, which we shall call the prefix; and (3) a section following the middle, which we shall call the suffix. The length of the periodic interior should be maximized so that neither the prefix nor the suffix contains a subsequence matching a full period of the interior; otherwise we move that subsequence into the interior.

Lemma 3.1 Let a subsequence of \(t \) transitions begin and end with state \(x \) in a Viterbi sequence \(S \). Then if another subsequence of \(t \) transitions begin and end with a different state \(y \), the set of transitions in both subsequences must be the same.
Proof: If the two subsequences do not overlap, then S must contain a subsequence $xAxByCy$, where A, B, C represent sequences of states, and xAx and yCy have the same length. Because S is a Viterbi sequence, we must have $\Pr(xAxByCy) \geq \Pr(xAxAxBy)$ and $\Pr(xAxByCy) \geq \Pr(xByCyCy)$. Cancelling common subsequences within these inequalities shows that $\Pr(yCy) \geq \Pr(xAx)$ and $\Pr(xAx) \geq \Pr(yCy)$, so we conclude that $\Pr(xAx) = \Pr(yCy)$. But if xAx and yCy had different sets of transitions, then $xByCyCy$ and $xAxAxBy$ would also be Viterbi sequences, contradicting the definition of Viterbi sequence.

If the subsequences overlap, then S contains a subsequence $xAyBxCy$. Since yBx is common to both subsequences, xAy and xCy have the same length. If xAy and xCy have different sets of transitions, then $xAyBxAy$ and $xCyBxCy$ are Viterbi sequences, which is also impossible.

Proposition 3.2 Let S be a Viterbi sequence of length $k(mk + 1)$ for some positive integer m. Then S can be rearranged to have a periodic interior that lasts for at least $m + 1$ periods.

Proof: Divide S into $mk + 1$ sections, each k transitions long. The k transitions are contained among $k + 1$ states of S. Two of these states must be the same, so each section contains a subsequence of transitions between two equal states. The length of these subsequences may be from 1 to k. By pigeonhole principle, at least $m + 1$ subsequences have the same length. From Lemma 3.1, the set of transitions must be the same in these $m + 1$ subsequences. We can move these subsequences so that they are adjacent to each other.

Proposition 3.3 If a Viterbi sequence has an arbitrarily long uninterrupted periodic section with period p, then the prefix has at most kp transitions, and the suffix has at most kp transitions.

Proof: Suppose there were $kp + 1$ transitions in the prefix. By the pigeonhole principle, at least one state from the Markov chain must appear at least $p + 1$ times in the prefix. Call this state q. Now classify the states in the prefix into p classes by their distance from the start modulo p. From another instance of the pigeonhole principle, state x must appear mp transitions apart within the prefix for some integer m since there are two states that fall into the same class. The mp transitions between these two q's must consist of m periods that match the interior periodic section. (Otherwise we have an equation between the products of two sets of transition probabilities.) However, the prefix should not contain any subsequence matching a period of the interior. We have a contradiction; thus the prefix can have at most kp transitions. By a similar argument, the suffix also has at most kp transitions.

However, we can prove a stronger statement about the combined lengths of
the prefix and suffix.

Proposition 3.4 For a Viterbi sequence with periodic interior of period p, the combined length of the prefix and suffix may not exceed $kp + k - 2p$.

Proof: We can arrange the Viterbi sequence so that no state in the interior appears in the prefix, but may appear in the suffix at most $p - 1$ times. For if such a state x did appear p times in the suffix, then along with the last appearance of x in the interior, there must be two instances of x (among those $p + 1$) that are apart by a multiple of p.

Now consider a state y that is not in the interior. In the proof for Proposition 3.3, it was shown that y may appear at most p times in the prefix or suffix. If y appears in both the prefix and suffix, then we can rearrange the sequence so that y appears only once in the prefix. (This is done by moving the transitions between the first and last y in the prefix into the suffix.) Since y can occur at most p times in the suffix, y appears at most $p + 1$ times in the entire sequence.

Since p states are in the interior and the other $k - p$ are not in the interior, the combined length of the prefix and suffix is bounded by $p(p-1) + (k-p)(p+1) = kp + k - 2p$.

Proving these propositions allows us to conclude with the following theorem.

Theorem 3.5 The number of Viterbi sequences of length n for a k-state Markov chain remains bounded as n approaches infinity.

Proof: We know that each sequence must have a periodic interior. If the period is length p, then there are at most $(p-1)! \binom{k}{p} = k! / ((k-p)!p)$ possible periods for the interior. Since the prefix and suffix may have at most $kp + k - 2p$ transitions (and $kp + k - 2p + 1$ states) between them, there are at most $k^{kp+k-2p+1}$ choices for the prefix and suffix. Thus an upper bound for the number of Viterbi sequences of length n (for large n) is

$$\sum_{p=1}^{k} k^{kp+k-2p+1} \cdot \frac{k!}{(k-p)!p}.$$

All the propositions proven in this section also apply to min-weight sequences as well. The next theorem demonstrates how the number of min-weight sequences does not decrease as n increases as an arithmetic sequence.

Theorem 3.6 Let K be the least common multiple of the first k positive integers. If $n > K + 2k^2$, then the number of min-weight sequences of length
Proof: Let S be a min-weight sequence of length n. From Proposition 3.3, the length of the prefix and suffix of S can each be at most k^2 since the period $p \leq k$. Thus the length of the periodic interior must be at least K. We will show that extending the interior by K will result in another min-weight sequence S'. Let $W = \{w_{ij}\}$ be a set of weights for which S is the lightest sequence of length n. Let A be the set of states that do not appear in S. We may assume that for i or $j \in A$, w_{ij} is arbitrarily large so that S' is lighter than any sequence that has a state in A. We show that for this set W of weights, S' is the min-weight sequence of length $n + K$. Suppose some other sequence T' of length $n + K > 2k^2$ is the min-weight sequence. The periodic interior of T' must have length at least $2K$. Shorten the interior section by K to form a sequence T that is the same length as S. If S' and T' had the same period, then subtracting the same subsequence of length K from S' and T' should leave T lighter than S, which is a contradiction with S being the min-weight sequence. Thus S' and T' have different periods. Recall that every state in T' (and T) must also appear in S. Let P_S and P_T be the periods of S and T repeated so that they are both length K. If P_S were heavier than P_T, then we could create a sequence lighter than S by removing P_S from S and inserting P_T. Thus P_T must be the heavier than P_S. But then $S' = S + P_S$ and $T' = T + P_T$, so S' is still the lighter sequence. Hence S' is the min-weight sequence.

Since we can create a new min-weight sequence of length $n + K$ from a sequence of length n, and each new sequence is distinct, the number of min-weight sequences doesn’t change.

Remark: Theorem 3.6 may be true for some values of n less than $K + 2k^2$.

The previous two theorems demonstrate the eventual pattern of the number of min-weight sequences as n increases to infinity.

Corollary 3.7 Let $V_k(n)$ be the number of min-weight sequences of length n on k states. The sequence $\{V_k(n)\}$ eventually becomes periodic with period K.

Proof: Consider the subsequence $\{V_k(n + mK)\}$. Theorem 3.6 demonstrated that this subsequence is nondecreasing. However, Theorem 3.5 demonstrated that this sequence is bounded. Thus each subsequence must converge, so the sequence $\{V_k(n)\}$ must be periodic.
In this section we will use the properties in Section 3 to describe the min-weight sequences for two-state linear models that start with state 0. The only possible periods are 00, 11, or 010. (This notation describes the transitions in the period; thus period 00 refers to a long run of 0’s, while period 010 refers to an alternating sequence of 0’s and 1’s. Periods 010 and 101 are equivalent.)

Period 00: Suppose state 1 exists in this min-weight sequence. Transition 11 cannot exist, for it violates Lemma 3.1. Transition 10 cannot follow since 000 and 010 cannot both be subsequences. Thus the only min-weight sequences must have the form 0\(i^*\) or 0\(i^*\)1, where \(i^*\) means state \(i\) is repeated as many times as desired.

Period 11: Likewise, transition 00 cannot exist. Immediately following the initial 0 is a run of 1’s. State 0 may follow again, but then it must be the final state: 101 and 111 cannot coexist in the same sequence. The only possible min-weight sequences are 01\(i^*\) and 01\(i^*\)0.

Period 010: Transition 00 or 11 may appear, but not both; if either appears, it may appear at most once. The only possibilities are of the form (01)*, (01)*0, (01)*1, (01)*10, (01)*00, and (01)*001. Note that exactly three of these sequences have odd length, and the other three even.

Thus for \(n > 3\), there are at most 7 candidates for min-weight sequences. Their coordinates are displayed in Table 1. If we plot these points in \(\mathbb{R}^4\), their convex hull is a three-dimensional polytope with seven vertices, 12 edges, and seven faces. Thus we can verify that all seven candidate are indeed min-weight sequences. Different polytopes are formed for odd and even length sequences. These polytopes are shown in Figure 2.

We could view this polytope as a facet of a greater polytope in which we

\(A^*\)	0\(2m+1\)	\((2m,0,0,0)\)	\(A^*\)	0\(2m+2\)	\((2m+1,0,0,0)\)
\(B\)	0\(2m\)	\((2m-1,1,0,0)\)	\(B\)	0\(2m+1\)	\((2m,1,0,0)\)
\(C\)	(01)\(m\)	\((1,m,m-1,0)\)	\(C^*\)	(01)\(m\)0	\((1,m,m,0)\)
\(D^*\)	(01)\(m\)1	\((0,m,m-1,1)\)	\(D\)	(01)\(m\)10	\((0,m,m,1)\)
\(E^*\)	(01)\(m\)0	\((0,m,m,0)\)	\(E^*\)	(01)\(m\)1	\((0,m+1,m,0)\)
\(F\)	01\(2m-1\)0	\((0,1,1,2m-2)\)	\(F\)	01\(2m\)0	\((0,1,1,2m-1)\)
\(G^*\)	01\(2m\)	\((0,1,0,2m-1)\)	\(G^*\)	01\(2m+1\)	\((0,1,0,2m)\)

Table 1
Left: Min-weight sequences of length \(2m\). Right: Min-weight sequences of length \(2m + 1\). Starred sequences are Viterbi, unstarred are pseudo-Viterbi.
include sequences that start with state 1. The sequences that start with 1 form a polytope isomorphic to the one formed by sequences that start with state 0. These two polytopes are facets on opposite ends of this four-dimensional polytope, where we have introduced another coordinate designating which state we start with. For instance, \((01)^m0\) is now \((0, m, m, 0, 0)\) and \((10)^m1\) is \((0, m, m, 0, 1)\) since the former starts with state 0 and the latter starts with state 1. In this larger polytope, an edge connects a sequence starting with state 0 to a sequence starting with state 1 in the polytope if and only if there exists a matrix of weights that produces both sequences, depending on the initial state.

Not all of the min-weight sequences are Viterbi sequences. In fact, for each \(n > 3\), three of the sequences are pseudo-Viterbi because of the following proposition.

Proposition 4.1 No Viterbi sequence on two states can end with 001 or 110.

Proof: Suppose that 001 is a Viterbi sequence. Then since \(\Pr[001] > \Pr[010]\), we must have \(p_{00} > p_{10}\). Also, \(\Pr[001] > \Pr[000]\), so \(p_{01} > p_{00}\). Finally, \(\Pr[001] > \Pr[011]\), so \(p_{00} > p_{11}\). But then

\[1 = p_{00} + p_{01} > p_{10} + p_{00} > p_{10} + p_{11} = 1,\]

which is a contradiction. Thus no Viterbi sequence can end with 001 (or by symmetry, 110).

The remaining four min-weight sequences are actual Viterbi sequences. Stochastic transition matrices are easily constructed to produce these Viterbi sequences.
5 Viterbi Sequences of Three-State Markov Chains

We have established that Viterbi sequences of arbitrary length must have a periodic interior as well as a prefix and a suffix. Knowing this structure, we will begin to describe Viterbi sequences of three-state Markov Chains. There are eight possible periods that a Viterbi sequence could have: 00, 11, 22, 010, 020, 121, 0120, or 0210. We consider each period in turn, omitting periods 22, 020, and 0210 for their symmetry with periods 11, 010, and 0120, respectively. We will also restrict to sequences that end with state 0.

When writing the prefix of a Viterbi sequence, we will enclose the final state in parentheses. This final state is also the beginning of the interior. Similarly, the first state in the suffix is the last state of the interior, so we will enclose it in parentheses.

To help us describe these Viterbi sequences, we will make frequent use of the following corollary, whose proof is essentially same as in Proposition 3.4:

Corollary 5.1 If a Viterbi sequence \(S \) has a periodic section of period \(p \), then a state \(q \) may appear in the prefix (or suffix) at most \(p \) times. If \(q \) is in the period, then it may appear at most \(p - 1 \) times.

Period 00: Since the final state is 0, we may assume there is no suffix. Corollary 5.1 tells us that since the period \(p = 1 \), state 0 may not appear in the prefix, and each of the other two states may appear at most once. So the only possible sequences with period 00 must have the form

\[0^*, 1^*, 2^*, 120^*, 210^*. \]

Period 11: Only states 0 and 2 may follow a run of 1’s, each at most once. The suffix ends with 0, so the suffix may be (1)0 or (1)20. Similarly the prefix may contain at most one 0 and one 2. Therefore the Viterbi sequences with period 11 must have one of these forms:

\[021^*0, 201^*0, 021^*20, 201^*20 \]

or any of their suffixes (e.g. 01^*20, 1^*0).

Period 010: We can always rearrange a Viterbi sequence so that there is no suffix; since we assume that the sequence ends in 0, we can always move the subsequence 010 to the end of the sequence.

The interior may begin with either state 0 or 1. If the interior starts with 0, then only states 0 or 2 could immediately precede the interior. (State 1 would
only lengthen the interior.) We can eliminate some impossible prefixes, using the following facts:

1. The prefix may not contain subsequences 010 or 101 (for they would be part of the interior).
2. The prefix may not contain 020 or 121, otherwise \(\Pr[020] = \Pr[010] \) or \(\Pr[121] = \Pr[101] \).
3. States 0 and 1 may each appear at most once in the prefix. (Corollary 5.1, with \(p = 2 \).)
4. Wherever state 0 appears in the prefix, it must be an odd distance from any 0 in the interior. (It could be even distance only if the only transitions in between are 01 and 10.) A similar statement holds for state 1.
5. State 2 may appear at most twice (Corollary 5.1), and if it does, the states must be an odd distance apart. Lemma 3.1 says if they were an even distance apart, then the transitions in between would also match the transitions of the interior, which is impossible.

The only possible Viterbi sequences that satisfy all these conditions are subsequences of

\[
20120(10)^*, 2102(10)^*, 200(10)^*, 2100(10)^*,
\]

\[
201(10)^*, 21(10)^*, 0122(10)^*, 10220(10)^*.
\]

Period 121: We do an analysis similar to that of period 010. For now, we will consider Viterbi sequences that end with 210 or 2100. (The ones ending in 120 and 1200 are then derived symmetrically.) Once again we eliminate impossible prefixes with the following facts, many of which carry over from the case 010:

1. States 1 and 2 may appear only once in the prefix, and at an odd distance from states 1 and 2 (respectively) in the interior.
2. Subsequences 101 and 202 are impossible within the Viterbi sequence.
3. The subsequence 201 may not appear, otherwise we could create an equivalent sequence ending with 212010 (instead of 21210) by swapping the positions of subsequences 21 and 201. But then we violate Lemma 3.1 since 212 and 010 both appear.
4. State 0 may appear at most twice in the prefix, and at an odd distance if they do.

Finally, we need the following proposition to complete the analysis:

Proposition 5.2 A Viterbi sequence (or an equivalent sequence) cannot end in 11210, or equivalently, 12110.

Proof: Since the sequence ends with 10, we must have \(p_{10} > p_{11} \). And since 110 is a Viterbi subsequence with higher probability than 101, we must have
\(p_{11}p_{10} > p_{10}p_{01}\), which means \(p_{11} > p_{01}\). Finally, 112 has higher probability than 102, so \(p_{11}p_{12} > p_{10}p_{02}\). Then

\[
p_{12} > \frac{p_{10}p_{02}}{p_{11}} > p_{02}
\]

where we use the fact that \(p_{10} > p_{11}\). Thus

\[1 = p_{10} + p_{11} + p_{12} > p_{00} + p_{01} + p_{02} = 1\]

which is a contradiction. \(\Box\)

Remark: A min-weight sequence may end with 11210 once we remove the condition that transition probabilities starting at the same state must sum to 1. Thus 0(21)*10 and 01(21)*10 (as well as 0(12)*20 and 02(12)*20) are pseudo-Viterbi sequences. In fact, those four sequences are the only three-state min-weight sequences that are pseudo-Viterbi; all other min-weight sequences are Viterbi sequences.

Thus the possible Viterbi sequences with period 121, ending with 210, are subsequences of

\[0210(21)^*0, 01(21)^*0, 00(21)^*0, 001(21)^*0, 02(21)^*0, 012(21)^*0.\]

Period 0210: Just as in the case for periods 010 or 020, we may assume that there is no suffix, and that the sequence ends with state 0. Also suppose that the interior starts with state 0. Then either state 0 or 2 immediately precedes the interior (state 1 would extend the interior).

(1) If 0 is the preceding state, then 2 may not precede 0, for then 2002 and 2102 would be subsequences in the same Viterbi path.

(a) If 00 precedes the interior, then the prefix can be extended to be 2100(0) and no further.

(b) If 10 precedes the interior, only state 2 can precede 10. (If state 1 preceded 10(0), then 11 and 00 would be in the same sequence, violating Lemma 3.1. If state 0 preceded 10(0), then 0100 and 0210 would be in the same sequence.) The prefix cannot be extended before 210(0) since 0210(0) would extend the interior; 1210(0) and 10210 cannot coexist; and 2210(0) violates Lemma 3.1.

(2) Now suppose state 2 immediately precedes the interior. If states 12 preceded the interior, then 12(0)210 is equivalent to 121020, but 121 and 020 cannot coexist (Lemma 3.1). States 22 cannot precede the interior, for 22(0)2 and 2102 cannot coexist. Thus only 02 can precede the interior. The only further extensions for the prefix is either 102(0) or 10202(0),
after eliminating the following prefixes:
(a) 002(0) and 00202(0) since 0210 is in the sequence.
(b) 0102(0) since 010 and 020 cannot coexist.
(c) 1102(0) and 1202(0) since 10210 is in the sequence.
(d) 2102(0) and 210202(0) since 2102 can be moved to the interior.
(e) 2202(0) since 2102 is in the sequence.

If the interior begins with states 1 or 2, the analysis is symmetric. Thus the
possible Viterbi sequences are subsequences of

\[
\begin{align*}
&2100(210)^*, 21000(210)^*, 02110(210)^*, 021110(210)^*, 102(210)^*, 1022(210)^*, \\
&21010(210)^*, 2101010(210)^*, 120(210)^*, 12020(210)^*, 021(210)^*, 02121(210)^*.
\end{align*}
\]

It has been established that all the possible Viterbi sequences enumerated
in this section are indeed Viterbi sequences for Viterbi regions in \(\mathcal{M}_3\). Be-
ginning with \(n \geq 11\), the number of three-state Viterbi sequences that start
with state 0 is 89 for odd \(n\) and 91 for even \(n\). For each \(n\) there are also
four pseudo-Viterbi sequences: \((01)^*002, (02)^*001, 0(12)^*20, 0(21)^*10\) for even
\(n\), and \((01)^*12, (02)^*21, 0(12)^*110, 0(21)^*220\) for odd \(n\). Each Newton poly-
tope for three-state min-weight sequences will have 93 or 95 vertices for odd
and even \(n\). Empirical evidence indicates that the f-vectors of the Newton
polytopes are periodic as \(n\) increases.

6 Conclusion

In this article, we have discussed the parametric inference problem for Markov
chains. We have seen that the number of possible Viterbi sequences of \(k\)-state
Markov chains remains bounded even as the length of the sequence increases
to infinity. We have combinatorially characterized the structure of Viterbi
sequences and enumerate them for two- and three-state Markov chains. One
topic to be addressed in the future is whether pseudo-Viterbi sequences exist
on \(k \geq 4\) states.

Viterbi sequences of Markov chains are only the tip of the iceberg of the various
statistical models whose geometries can be studied. Hidden Markov models,
parametric sequence alignment models, and binary trees are analyzed in [5,6]
with techniques such as tropicalization and polytope propagation. A bound
on explanations for hidden Markov models is given in Corollary 8 of [6]. Toric
ideals of phylogenetic trees are examined in [1].
7 Acknowledgments

The author would like to thank the following persons for their generous and helpful ideas that made this work possible: Lior Pachter, for being a great advisor; Bernd Sturmfels and Seth Sullivant for their discussion about Newton polytopes; and Ben Reichardt and Nicholas Eriksson for their helpful discussions. Data about the polytopes was generated by polymake [3]. The author received financial support from a National Science Foundation Graduate Research Fellowship.

References

[1] N. Eriksson. Toric Ideals of Homogeneous Phylogenetic Models, *International Symposium on Symbolic Algebraic Computation*, 2004.

[2] G.D. Forney. The Viterbi Algorithm. *Proc. of the IEEE*, Vol. 61 No.3 (1973), 268-278.

[3] E. Gawrilow, M. Joswig. polymake, a tool for algorithmic treatment of polytopes and polyhedra. http://www.math.tu-berlin.de/polymake/

[4] D. Gusfield and P. Stelling. Parametric and inverse-parametric sequence alignment with XPARAL, *Methods Enzymology* 266 (1996) 481-494.

[5] L. Pachter and B. Sturmfels. Parametric Inference for Biological Sequence Analysis. *Proc. of the National Academy of Sciences*, Vol. 101, No. 46 (2004), 16138-16143.

[6] L. Pachter and B. Sturmfels. Tropical geometry of statistical models. *Proc. of the National Academy of Sciences*, Vol. 101, No. 46 (2004), 16132-16137.

[7] B. Sturmfels. *Gröbner Bases and Convex Polytopes*, volume 8 of *University Lecture Series*. American Mathematical Society, Providence, RI, 1996.

[8] A.J. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. *IEEE Transactions on Information Theory*, 13 (1967), 260-269.

[9] M. Waterman, M. Eggert, and E. Lander: Parametric sequence comparisons, *Proc. Natl. Acad. Sci. USA* 89 (1992) 6090-6093.