Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the motor neurons of the brain and spinal cord. The disease is characterized by muscular atrophy and weakness due to degeneration of spinal motor neurons and by hyperreflexia after loss of cerebral cortical motor neurons. Approximately 5–10% of ALS cases have a family history of ALS. The etiology of ALS remains largely unknown, although genetic factors are likely involved in the familial form (Al-Chalabi and Leigh 2000). Environmental exposures may also be considered as potential causes of ALS (Nelson 1995–1996). We reported that increased risk of ALS was associated with occupational exposure to lead or with blood or bone lead levels was limited. These findings suggest that genetic susceptibility conferred by polymorphisms in ALAD may affect ALS risk, possibly through a mechanism related to internal lead exposure. Key words: δ-aminolevulinic acid dehydratase, amyotrophic lateral sclerosis, genetic susceptibility, lead, vitamin D receptor. Environ Health Perspect 111:1335–1339 (2003). doi:10.1289/ehp.6109 available via http://dx.doi.org/ [Online 1 April 2003]

Amyotrophic lateral sclerosis, Lead, and Genetic Susceptibility: Polymorphisms in the δ-Aminolevulinic Acid Dehydratase and Vitamin D Receptor Genes

Freya Kamel,1 David M. Umbach,1 Teresa A. Lehman,2 Lawrence P. Park,3 Theodore L. Munsat,4 Jeremy M. Shefner,5 Dale P. Sandler,1 Howard Hu,5 and Jack A. Taylor1

1National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; 2Bioserve Biotechnologies, Rockville, Maryland, USA; 3Westat, Durham, North Carolina, USA; 4New England Medical Center, Boston, Massachusetts, USA; 5SUNY Upstate Medical University, Syracuse, New York, USA 4Harvard Medical School and Harvard School of Public Health, Boston, Massachusetts, USA

Previous studies have suggested that lead exposure may be associated with increased risk of amyotrophic lateral sclerosis (ALS). Polymorphisms in the genes for δ-aminolevulinic acid dehydratase (ALAD) and the vitamin D receptor (VDR) may affect susceptibility to lead exposure. We used data from a case–control study conducted in New England from 1993 to 1996 to evaluate the relationship of ALS to polymorphisms in ALAD and VDR and the effect of these polymorphisms on the association of ALS with lead exposure. The ALAD 2 allele (177G to C; K59N) was associated with increased lead levels in both patella and tibia, although not in blood, and with an imprecise increase in ALS risk [odds ratio (OR) = 1.9; 95% confidence interval (95% CI), 0.60–6.3]. We found a previously unreported polymorphism in ALAD at an MspI site in intron 2 (IVS2+299G>A) that was associated with decreased bone lead levels and with an imprecise decrease in ALS risk (OR = 0.35; 95% CI, 0.10–1.2). The VDR B allele was not associated with lead levels or ALS risk. Our ability to observe effects of genotype on associations of ALS with occupational exposure to lead or with blood or bone lead levels was limited. These findings suggest that genetic susceptibility conferred by polymorphisms in ALAD may affect ALS risk, possibly through a mechanism related to internal lead exposure. Key words: δ-aminolevulinic acid dehydratase, amyotrophic lateral sclerosis, genetic susceptibility, lead, vitamin D receptor. Environ Health Perspect 111:1335–1339 (2003). doi:10.1289/ehp.6109 available via http://dx.doi.org/ [Online 1 April 2003]

Materials and Methods

Population. We recruited cases from two major referral centers in New England: the Neuromuscular Research Unit at New England Medical Center and the Neurophysiology Laboratory at Brigham and Women’s Hospital (Boston, MA). Diagnosis of ALS was based on criteria published by the World Federation of Neurology (Brooks 1994) and confirmed by a board-certified neurologist (T.L.M. or J.M.S.). Patients were eligible if they had received an initial diagnosis of ALS within the 2 years before enrollment, if they lived in New England at least half the year, and if they spoke English and were mentally competent. Population controls were identified by random telephone screening (Waksberg 1978) and were eligible if they lived in New England at least half the year, spoke English, and were mentally competent. In addition, potential controls were excluded if they had a physician diagnosis of any neurodegenerative disease, neuropathy, or post-polio syndrome. We frequency-matched controls to cases so that the distributions of the variables age, sex, and region within New England were similar in the two groups.

The institutional review boards of the National Institute of Environmental Health Sciences, New England Medical Center, Brigham and Women’s Hospital, Survey Research Associates–Battelle (Durham, NC), and CODA (Durham, NC) approved the study. All participants gave informed consent.

Address correspondence to F. Kamel, Epidemiology Branch, National Institute of Environmental Health Sciences, Box 12233, MD A3-05, Research Triangle Park, NC 27709 USA. Telephone: (919) 541-1581. Fax: (919) 541-2511. E-mail: kamel@niehs.nih.gov

We gratefully acknowledge the work of L. Lansdell and K. Catoe in conducting the case-control study and the generous contributions of time and effort made by the study participants. This work was supported by intramural funding to the Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health.

The authors declare they have no conflict of interest.

Received 14 November 2002; accepted 1 April 2003.
Questionnaire. We collected information on demographic and lifestyle characteristics using a structured interview administered by trained personnel (Kamel et al. 2002). Of those eligible, 71% of cases and 76% of controls completed the interview. Information on diet 5 years before interview was collected with a food frequency questionnaire (Longnecker et al. 2000). Interview-based variables considered in the present study were age in years (continuous variable), sex, region (outside vs. within Boston city limits), education (< high school vs. > high school), current physical activity (hours per day spent sitting, lying down, or sleeping; continuous variable), cigarette smoking (ever smoked at least 10 cigarettes vs. never), alcohol use (ever had at least 10 drinks of beer, wine, or liquor vs. never), occupational exposure to lead (ever had a job that involved exposure to lead fumes, dust, or particles 10 or more times vs. never), and daily calcium intake in grams (continuous variable), based on both food and supplements.

Measurement of blood and bone lead. We invited all cases and a subset of the controls who lived within 20 miles of the testing center to come to the laboratory for collection of blood samples and measurement of bone lead. Response rates for this portion of the study were 95% for cases and 41% for controls. Controls who were invited but declined to come in to the laboratory were similar in age, sex, education, physical activity, smoking, and alcohol use to those who participated (Kamel et al. 2002). Blood lead (micrograms per deciliter) was measured using graphite furnace atomic absorption spectroscopy. Bone lead was measured in the mid-tibial shaft and the patella using in vivo K X-ray fluorescence (K-XRF) as previously described (Aro et al. 1994; Burger et al. 1990; Kamel et al. 2002). The technique provides an unbiased estimate of bone lead levels while accommodating the few negative values, we transformed bone lead concentrations using the function log2 (Pb + 32), where Pb is bone lead concentration in micrograms per gram (Kamel et al. 2002). Because few homozygotes were found for either polymorphism in ALAD (Table 1), ALAD genotypes were included as dichotomous predictors, indicating the presence or absence of the polymorphism. No evidence of dose response was observed in models comparing VDR bb or VDR BB to VDR Bb, so results are presented from models using dichotomous predictors.

The relationship of genotype to blood or bone lead levels was analyzed in the control group alone because inclusion of cases might have allowed disease to distort the relationship. We used linear regression for these analyses, with blood lead, log-transformed patella lead, or log-transformed tibia lead as the dependent variable. On the basis of preliminary analyses, we considered the following independent variables: age, square root of age, sex, region, education, inactivity, cigarette smoking, occupational exposure to lead, and patella lead (for blood lead models only). We used backward elimination to determine which of these covariates to include in base models, using p = 0.15 as a cutoff. The base model for blood lead included variables for age, sex, region, inactivity, cigarette smoking, and patella lead; the base model for patella lead included age and cigarette smoking; and the base model for tibia lead included age, sex, and region. Genotype variables were added to these base models. Results of linear regressions are presented as estimated coefficients with 95% confidence intervals (95% CIs) based on standard errors.

We analyzed the relationship of ALS to lead exposure or genotype using multiple

| Table 1. Distribution of polymorphisms in ALAD (n cases, n controls). |
|----------------|---------|---------|---------|----------------|
| ALAD IVS2 + 299G > A | | | | |
| 1-1 | 68, 25 | 19, 5 | 2, 1 | 89, 31 |
| 1-2 | 12, 5 | 2, 1 | 0, 0 | 14, 6 |
| 2-2 | 0, 1 | 0, 0 | 0, 0 | 0, 1 |
| Total | 80, 31 | 21, 6 | 2, 1 | 103, 38 |

| Table 2. Genotypes of ALS cases and controls. |
|----------------|---------|---------|---------|---------|
| ALAD K59N | | | | |
| 1-1 | 80 | 78 | 31 | 82 |
| 1-2 | 21 | 20 | 6 | 16 |
| 2-2 | 2 | 2 | 1 | 3 |
| ALAD IVS2 + 299G > A | | | | |
| mm | 89 | 86 | 31 | 82 |
| mM | 14 | 14 | 6 | 16 |
| MM | 0 | 0 | 1 | 3 |
| VDR | | | | |
| bb | 33 | 32 | 10 | 26 |
| Bb | 49 | 48 | 20 | 53 |
| BB | 21 | 20 | 8 | 21 |
Results
Blood lead levels in study participants ranged from < 1 to 14 µg/dL; patella lead levels from −4 to 107 µg/g; and tibia lead levels from −7 to 61 µg/g (Kamel et al. 2002). Thirty-six percent of cases and 21% of controls reported ever having had a job involving lead exposure. Ninety-six percent of cases and 92% of controls were white and not Hispanic.

We found a novel polymorphism in ALAD at an MspI site in intron 2; a G to A transition at nucleotide 299 destroyed the site (GeneSNPs 2003). Diagnostic fragment sizes for ALAD IVS2+299G>A were 160 bp and 138 bp for ALAD I2-1 and 298 bp for ALAD I2-2. We confirmed the presence of the polymorphism by sequencing (data not shown). We denote the polymorphism at position 177 by ALAD K59N, and, following convention, its alleles by ALAD 1 (wild type) and ALAD 2 (variant). We denote the intron 2 polymorphism by ALAD IVS2+299G>A and its alleles by ALAD I2-1 (wild type) and ALAD I2-2 (variant). The relative distribution of the two ALAD polymorphisms is shown in Table 1. We saw no evidence of linkage disequilibrium between ALAD K59N and ALAD IVS2+299G > A in either cases (p = 0.3) or controls (p = 0.5).

ALAD K59N genotype. We found no deviation from Hardy-Weinberg equilibrium for the two ALAD K59N alleles in either cases (p = 0.7) or controls (p = 0.3). The genotype frequencies are shown in Table 2. The frequency of the ALAD 2 allele was 12% in cases and 11% in controls; the crude OR for the relationship of the variant allele to ALS was 1.3 (95% CI, 0.5–3.7). In controls, presence of the allele was associated with decreases in patella and tibia lead levels but not with blood lead levels (Table 3). The ALAD 2 allele was not related to the distribution of lead among the three lead compartments (data not shown).

After adjustment for age, sex, region, education, and physical activity, ALAD 2 was associated with an approximately 2-fold increase in risk of ALS, although the relationship was imprecise (Table 4, model 1). The association of ALAD 2 with ALS risk was strengthened by further adjustment for blood lead, although adjustment for patella or tibia lead or occupational exposure to lead made little difference (Table 5, model 5). ORs for blood and bone lead and occupational lead exposure were unchanged by adjustment for ALAD 2 (Table 5, models 4 and 5). We saw no important interaction of ALAD 2 with any lead variable (data not shown). Results from models that were not adjusted for physical activity (data not shown) were similar to those presented in Tables 4 and 5.

ALAD IVS2+299G>A genotype. We found no deviation from Hardy-Weinberg equilibrium for the two ALAD IVS2+299G>A alleles in either cases (p = 0.5) or controls (p = 0.3). The genotype frequency is given in Table 2. The frequency of the ALAD I2-2 allele was 7% in cases and 11% in controls; the crude OR for the relationship of ALS to the presence of the variant allele was 0.7 (95% CI, 0.2–2.1). In controls, presence of the ALAD I2-2 allele was associated with decreases in patella and tibia lead levels but not with blood lead levels (Table 3).

After adjustment for age, sex, region, education, and physical activity, presence of the ALAD I2-2 allele was inversely associated with ALS, with or without adjustment for lead levels or occupational exposure to lead (Table 4, model 2; Table 5, model 6). ORs for blood and bone lead and occupational lead exposure were unchanged by adjustment for ALAD I2-2 (Table 5, models 4 and 6). We saw a large but imprecise interaction between ALAD I2-2 and lead variables that was likely due to small numbers (data not shown). Results from models that were not adjusted for physical activity (data not shown) were similar to those presented in Tables 4 and 5. In models including both ALAD 2 and ALAD I2-2, ORs for both polymorphisms were similar to those found in models with only one genotype, whether or not lead variables were also included (data not shown).

VDR genotype. We found no deviation from Hardy-Weinberg equilibrium for the two VDR alleles in either cases or controls (p = 0.7 for each). The genotype frequency is given in Table 2. The frequency of the B allele was 45% in cases and 48% in controls; the crude OR for the presence of the variant allele was 0.8 (95% CI, 0.3–1.9). Presence of the allele was not associated with either blood or bone lead levels in controls (Table 3).

After adjustment for age, sex, region, education, and physical activity, VDR B was not related to ALS, without or with adjustment for lead levels or occupational exposure to lead (Table 4, model 3; Table 5, model 7). ORs for blood and bone lead and occupational lead exposure were unchanged by adjustment for VDR B (Table 5, models 4 and 7). Further adjustment for calcium intake did not alter these relationships (data not shown). We saw no important interaction of VDR B with any lead variable (data not shown). Results from models that were not adjusted for physical activity (data not shown) were similar to those presented in Tables 4 and 5. Results from models comparing VDR bb or VDR BB with VDR bb were similar to results using the dichotomous variable; we found no evidence of a dose response (data not shown).

Discussion
In this study, we found that the ALAD 2 allele (177G to C; K59N) and a previously unidentified polymorphism at an MspI site in intron 2 of ALAD, denoted ALAD I2-2, were

Table 3. Associations of blood and bone lead levels with genotype in controls (n = 38).

ALAD K59N	ALAD IVS2+299G>A	VDR
Mean (95% CI)	Mean (95% CI)	Mean (95% CI)
p-Value	**p-Value**	**p-Value**
Tibia lead (µg/g)	**Tibia lead (µg/g)**	**Tibia lead (µg/g)**
(10–18)	(10–18)	(10–18)
1.3 (1.7–14)	8.6 (8.2–18)	8.3 (8.2–17)
1.65 (2.2–15)	1.35 (1.9–21)	1.35 (2.2–15)
1.3 (1.7–14)	8.6 (8.2–18)	8.3 (8.2–17)
1.65 (2.2–15)	1.35 (1.9–21)	1.35 (2.2–15)

Adjusted mean lead levels were calculated from linear regressions. Blood lead was modeled as micrograms per deciliter; patella and tibia lead were modeled as log,(IPb + 32), where Pb is bone lead concentration in micrograms per deciliter, and then transformed back to original units for presentation. Blood lead models included age, sex, region, physical activity, and ever smoked, and patella lead levels. Patella lead models included age and ever smoked. Tibia lead models included age, sex, and region. Mean lead levels are presented for 60-year-old nonsmoking men from Boston with mean values of inactivity and patella lead. p-Values for the differences between means were calculated from the same linear regressions.

Environmental Health Perspectives • VOLUME 111 | NUMBER 10 | August 2003 1337
both associated with decreased bone lead levels but not with blood lead levels. ALAD 2 appeared to be associated with an increase and ALAD I2-2 with a decrease in risk of ALS, although both associations were imprecise. In contrast, the VDR B allele showed no relationship to blood or bone lead levels or to ALS risk.

Our finding that ALAD 2 was associated with decreases in both tibia and patella lead levels but not with blood lead levels is consistent with some previous results. Some studies have reported that blood lead levels were elevated in ALAD 2 carriers, although the differences were not always statistically significant (Alexander et al. 1998; Fleming et al. 1998; Hsieh et al. 2000; Schwartz et al. 2000a; Wetmur et al. 1991b; Ziemens et al. 1986). Other studies have found no difference in blood lead levels between ALAD 1 homozygotes and ALAD 2 carriers (Bergdahl et al. 1997a; Hu et al. 2001; Lee BK et al. 2001; Schwartz et al. 1997; Smith et al. 1995a). Any difference between genotypes in blood lead levels is likely due to tighter binding of lead to ALAD 2 than to ALAD 1 (Bergdahl et al. 1997b) and may be evident only at higher blood lead concentrations where other binding sites are saturated (Hu et al. 2001). Thus, a difference would not necessarily be expected at the relatively low blood lead concentrations found in our study participants. ALAD 2 has also been associated with decreased lead levels in trabecular or cortical bone (Hu et al. 2001; Smith et al. 1995b) and with decreased uptake of lead into both bone compartments (Fleming et al. 1998), although other studies found no relationship (Bergdahl et al. 1997a; Lee BK et al. 2001; Schwartz et al. 2000a).

Overall, these findings are consistent with the hypothesis that ALAD 2 alters the toxicokinetics of lead, promoting retention of lead in blood and migration of lead from bone to blood. The implications for lead toxicity are unclear. Tighter binding to ALAD 2 in red blood cells could make lead less available to target tissues and hence less toxic. On the other hand, increased retention of lead in blood relative to bone might increase its availability to target tissues. Our data suggesting that ALAD 2 was positively associated with ALS are consistent with the latter hypothesis.

The effect of the ALAD 2 allele on lead toxicokinetics might in theory modify associations of ALS with indices of internal exposure (blood and bone lead) or external exposure (occupational exposure). We found no evidence to support either of these possibilities. The ALAD 2 polymorphism did not alter the relationship of blood or bone lead to ALS or the risk associated with occupational exposure to lead. However, our study had limited power to evaluate effect modification, and this issue needs further consideration.

Few previous studies have examined the effect of ALAD 2 on health outcomes. ALAD 2 had no consistent relationship to hematologic parameters (Alexander et al. 1998; Lee SS et al. 2001; Schwartz et al. 1995; Sithirisanikal et al. 1997; Smith et al. 1995a) or to blood pressure or hypertension (Lee BK et al. 2001; Smith et al. 1995b). One study found detrimental effects of ALAD 2 on renal function (Smith et al. 1995b) and another found better performance on a test of attention in five carriers of the allele (Bellinger et al. 1994). A recent study found that ALAD 2 modified the association of bone lead levels with indices of renal function (Wu et al. 2003), but other studies have not detected effect modification (Alexander et al. 1998; Lee BK et al. 2001; Lee SS et al. 2001).

We found no association of VDR B with blood or bone lead levels or with ALS. In several studies of a group of Korean lead workers, Schwartz and colleagues found that VDR B was associated with an increase in blood and tibia lead levels and with increased blood pressure and hypertension, although not with hematopoietic outcomes (Lee BK et al. 2001; Lee SS et al. 2001; Schwartz et al. 2000a). VDR B did not modify the effect of lead on blood pressure and hypertension (Lee BK et al. 2001) but was weakly associated with a decreased effect of lead on hemoglobin and hematocrit (Lee SS et al. 2001). In another cohort, VDR B had only minimal effects on tibia lead levels but increased the accumulation of tibia lead with age (Schwartz et al. 2000b). Understanding the relationship of this polymorphism to lead toxicokinetics thus awaits further study.

It is unclear why previous studies of ALAD 2 have not reported the MpiI polymorphism in intron 2. The 2% agarose gels we used to separate the reaction products may provide better resolution of the shorter fragments associated with this polymorphism. Nor is it clear why ALAD IVS2+299G>A, an intronic variant, is associated with changes in bone lead levels or with ALS. The associations do not appear to be the result of strong linkage or other interaction with the ALAD K59N site. Recent work has demonstrated that intronic mutations can have functional consequences in some genes—for example, p53 (Lehman et al. 2000).

Our study is limited by the low participation rate of controls in the laboratory portion of the study. This problem raises concerns about selection bias and also reduces the power of the study, contributing to the imprecision of some estimates. However, none of the three genotypes was seen to deviate from Hardy-Weinberg equilibrium, and frequencies of ALAD 2 and VDR B were similar to reported values (Cooper and Umbach 1996; Kelada et al. 2001). Further, controls who were invited but declined to participate in the lab portion of the study were similar in all characteristics examined to those who participated (Kamel et al. 2002). We therefore regard it as unlikely that the association of ALS with ALAD genotype can be explained entirely by selection bias.

Previously we reported that ALS risk was associated with increases in both blood and bone lead levels (Kamel et al. 2002). The association with blood lead was surprisingly strong, with a 2-fold increase in risk for each microgram per deciliter increase in blood lead levels. Although selection bias might have influenced our results, some of the potential

Table 4. Associations of ALS with genotype: models without lead variables.

Models	Adjusted OR (95% CI)	
Model 1	ALAD 2	1.9 (0.60–6.3)
Model 2	ALAD I2-2	0.35 (0.10–1.2)
Model 3	VDR B	0.68 (0.24–1.9)

Table 5. Associations of ALS with genotype (adjusted OR (95% CI): models with lead variables.

Models	Blood	Patella	Tibia	Occupational exposure	
Model 4	Lead	1.9 (1.4–2.6)	3.6 (0.62–21)	2.3 (0.37–14)	2.2 (0.68–7.3)
Model 5	Lead	2.0 (1.4–2.8)	3.8 (0.65–22)	3.0 (0.43–21)	2.7 (0.79–9.1)
Model 6	Lead	3.6 (0.9–15)	2.1 (0.81–6.9)	2.2 (0.66–7.3)	2.4 (0.67–8.7)
Model 7	Lead	1.8 (1.3–2.6)	3.4 (0.58–20)	2.3 (0.35–15)	2.2 (0.67–7.1)
Model 8	Lead	0.47 (0.12–1.8)	0.37 (0.10–1.3)	0.35 (0.10–1.2)	0.29 (0.1–1.2)
Model 9	Lead	1.9 (1.4–2.7)	4.1 (0.69–24)	2.2 (0.35–14)	2.1 (0.63–7.1)

For ORs for ALS were calculated using logistic regression for each unit increase in blood lead or log-transformed bone lead or for self-reported occupational exposure to lead. Blood lead was modeled as micrograms per deciliter and patella and tibia lead as log(Pb + 32), where Pb is bone lead concentration in micrograms per gram. In addition to the indicated variables, all models included age, square root of age, sex, region, education, and physical activity.
biases, if present, would likely have minimized the association of ALS with blood lead rather than creating a spurious relationship (Kamel et al. 2002). Blood lead is often considered to reflect recent exposure. However, in adults without current exogenous exposure, like most of the participants in our study, bone lead is the major source of blood lead (Hu et al. 1998). The latter may therefore reflect cumulative lifetime exposure. Blood lead levels are determined by bone lead levels together with factors affecting mobilization of lead from bone. The present study suggests that $ALAD$ genotype may be one such factor, whereas VDR genotype does not appear to be important. Alterations in lead toxicokinetics conferred by the presence of the $ALAD$ 2 allele may subtly increase exposure to lead throughout a person’s lifetime, thereby elevating risk. We cannot exclude the possibility that $ALAD$ 2 affects ALS risk through some mechanism independent of lead exposure, perhaps through an unidentified polymorphism in linkage disequilibrium with the $ALAD$ 2 site. However, the association of $ALAD$ 2 with decreased bone lead levels suggests that lead may play some role.

In conclusion, our study suggests that genetic susceptibility conferred by $ALAD$ 2 is associated with ALS risk, possibly through a mechanism related to lead exposure. Because our study is small, and the observation is unique, this hypothesis needs further consideration.

References

Al-Chalabi A, Leigh PN. 2000. Recent advances in amyotrophic lateral sclerosis. Curr Opin Neurol 13(4):387–405.
Alexander BH, Checkoway H, Costa-Mullen P, Faustman EM, Woods JS, Kelsey KT, et al. 1998. Interaction of blood lead and delta-aminolevulinic acid dehydratase genotype on markers of home synthesis and sperm production in lead smelter workers. Environ Health Perspect 106:213–216.
Arora AC, Todd AC, Amarasiriwardena C, Hu H. 1994. Improvements in the calibration of Cd-109 K-x-ray fluorescence systems for measuring bone lead in vivo. Phys Med Biol 39(12):2283–2271.
Bellingringer D, Hu H, Titlebaum L, Needelman HL. 1994. Attentional correlates of dentine and bone lead levels in adolescents. Arch Environ Health 49(2):98–105.
Bergdahl IA, Gerhardsson L, Schatz A, Desnica RJ, Wetmur JG, Skerfving S. 1997a. Delta-aminolevulinic acid dehydratase polymorphism: influence on lead levels and kidney function in humans. Arch Environ Health 52(3):91–96.
Bergdahl IA, Grubb A, Schatz A, Desnica RJ, Wetmur JG, Sassa S, et al. 1997b. Lead binding to delta-aminolevulinic acid dehydratase ($ALAD$) in human erythrocytes. Pharmacol Toxicol 81(4):153–158.
Brooks BR. 1994. El Encierro World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. J Neurol Sci 124(suppl):96–107.
Burger DE, Milder FL, Morrislo PR, Adams BB, Hu H. 1990. Automated bone lead analysis by K-x-ray fluorescence for the clinical environment. Basic Life Sci 55:287–292.
Cooper GS, Umbach DM. 1996. Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J Bone Miner Res 11(12):1841–1849.
Fleming DEB, Chetl HK, Wetmur JG, Desnica RJ, Rubin JP, Bouley D, et al. 1998. Effect of the delta-aminolevulinate dehydratase polymorphism of the accumulation of lead in bone and blood in lead smelter workers. Environ Res 84:41–69.
Fulmer CS. 1992. Intestinal interactions of lead and calcium. Neurotoxicology 13(4):799–807.
Hsieh LL, Liou SH, Chen YH, Tsai LC, Yang T, Wu TN. 2000. Association between aminolevulinic dehydrogenase genotype and blood lead levels in Taiwan. J Occup Environ Med 42(3):151–155.
Hu H, Rabinowitz M, Smith D. 1998. Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect 106:1–8.
Hu H, Wu MT, Cheng Y, Sparrow D, Weiss S, Kelsey K. 2001. The delta-aminolevulinic acid dehydratase (ALAD) polymorphism and bone and blood lead levels in community-exposed men: the Normative Aging Study. Environ Health Perspect 109:827–832.
Kamel F, Umbach DM, Munns TL, Shefner JM, Hu H, Sandler DP. 2000. Lead exposure and amyotrophic lateral sclerosis. Epidemiology 11(3):311–319.
Kelada SN, Shelton E, Kaulmann RB, Khoury MJ. 2001. Delta-aminolevulinic acid dehydratase genotype and lead toxicity: a HuGe review. Am J Epidemiol 154(1):14–13.
Lee BK, Lee GS, Stewart WF, Ahn KD, Simon D, Kelsey KT, et al. 2001. Associations of blood lead and hypertension with lead dose measures and polymorphisms in the vitamin D receptor and delta-aminolevulinic acid dehydratase genes. Environ Health Perspect 109:363–369.
Lee SS, Lee BK, Lee GS, Stewart WF, Simon D, Kelsey K, et al. 2001. Associations of lead biomarkers and delta-aminolevulinic acid dehydratase and vitamin D receptor genotypes with hemato poetic outcomes in Korean lead workers. Scand J Work Environ Health 27(6):402–411.
Lehman TA, Haffty BG, Carbone CJ, Bishop LR, Gumbs AA, Benkmann HG, Goedde HW. 1992. Intestinal interactions of lead and calcium. Neurotoxicology 13(4):2263–2271.
Longnecker MP, Kelsey KT, Simon D, Kelsey KT, Wu MT, Kelsey K, Schwartz JS, Sparrow D, Weiss S, Hu H. 2002. $ALAD$-D genotype is not associated with HT or HB levels among workers exposed to low levels of lead. Med Lav 83(6):229–235.
Smith CM, Wang X, Hu H, Kelsey KT. 1995a. A polymorphism in the delta-aminolevulinic acid dehydratase gene may modify the pharmacokinetics and toxicity of lead. Environ Health Perspect 103:248–253.
Waksberg J. 1978. Sampling methods for random digit dialing. J Am Statis Assoc 73(361):40–46.
Weir BS. 1996. Genetic Data Analysis II. Sunderland, MA: Sinauer Associates, Inc.
Wetmur JG, Kaya AH, Flewinsky M, Desnica RJ. 1991a. Molecular characterization of the human δ-aminolevulinic acid dehydratase 2 ($ALAD2$) allele: implications for molecular screening of individuals for genetic susceptibility to lead poisoning. Am J Hum Genet 48(6):757–763.
Wetmur JG, Lehnhert D, Desnica RJ. 1991b. The δ-aminolevulinate dehydratase polymorphism: higher blood lead levels in lead workers and environmentally exposed children with the 1-2 and 2-2 isozymes. Environ Res 56:109–119.
Wu MT, Kelsey K, Schwartz JS, Sparrow D, Weiss S, Hu H. 2003. A δ-aminolevulinic acid dehydratase (ALAD) polymorphism may modify the relationship of low-level lead exposure to uricemia and renal function: the normative aging study. Environ Health Perspect 111:335–340.
Ziemsen B, Angerer J, Niederle G, Benkmen HG, Goede HH. 1986. Polymorphism of delta-aminolevulinic acid dehydratase in lead-exposed workers. Int Arch Occup Environ Health 58:245–247.
Zumida JM, Cauley JA, Fellre JR. 2000. Molecular epidemiology of vitamin D receptor gene variants. Epidemiol Rev 22(3):203–217.

Environmental Health Perspectives • VOLUME 111 • NUMBER 10 • August 2003