A multiwavelength consensus on the main sequence of star-forming galaxies at $z \sim 2$

G. Rodighiero,1* A. Renzini,2 E. Daddi,3 I. Baronchelli,1 S. Berta,4 G. Cresci,5 A. Franceschini,1 C. Gruppioni,6 D. Lutz,4 C. Mancini,2 P. Santini,7 G. Zamorani,6 J. Silverman,8 D. Kashino,9 P. Andreani,10 A. Cimatti,11 H. Domínguez Sánchez,12 E. Le Floch,3 B. Magnelli,4,13 P. Popesso4 and F. Pozzi11

1 Dipartimento di Fisica e Astronomia, Università di Padova, vicolo dell’Osservatorio 3, I-35122 Padova, Italy
2 INAF – Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy
3 CEA-Saclay, Service d’Astrophysique, F-91191 Gif-sur-Yvette, France
4 Max-Planck-Institut für Extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching, Germany
5 INAF – Osservatorio Astronomico di Arcetri, largo E. Fermi 5, I-50127 Firenze, Italy
6 INAF – Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna, Italy
7 INAF – Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monte Porzio Catone, Italy
8 Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwanoha, Kashiwa 277-8583, Japan
9 Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
10 ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany
11 Department of Physics and Astronomy (DIFA), University of Bologna, Vle Berti Pichat 62, I-40127 Bologna, Italy
12 Departamento de Astrofísica, Facultad de CC. and Físicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
13 Argelander-Institut für Astronomie, University of Bonn, auf dem Hülget 71, D-53121 Bonn, Germany

Accepted 2014 June 2. Received 2014 May 27; in original form 2014 February 17

ABSTRACT
We compare various star formation rate (SFR) indicators for star-forming galaxies at $1.4 < z < 2.5$ in the COSMOS field. The main focus is on the SFRs from the far-IR (PACS-Herschel data) with those from the ultraviolet, for galaxies selected according to the BzK criterion. FIR-selected samples lead to a vastly different slope of the SFR–stellar mass (M_*) relation, compared to that of the dominant main-sequence population as measured from the UV, since the FIR selection picks predominantly only a minority of outliers. However, there is overall agreement between the main sequences derived with the two SFR indicators, when stacking on the PACS maps the BzK-selected galaxies. The resulting logarithmic slope of the SFR–M_* relation is ~ 0.8–0.9, in agreement with that derived from the dust-corrected UV luminosity. Exploiting deeper 24 µm Spitzer data, we have characterized a subsample of galaxies with reddening and SFRs poorly constrained, as they are very faint in the B band. The combination of Herschel with Spitzer data has allowed us to largely break the age/reddening degeneracy for these intriguing sources, by distinguishing whether a galaxy is very red in $B-z$ because of being heavily dust reddened, or whether because star formation has been (or is being) quenched. Finally, we have compared our SFR(UV) to the SFRs derived by stacking the radio data and to those derived from the Hα luminosity of a sample of star-forming galaxies at $1.4 < z < 1.7$. The two sets of SFRs are broadly consistent as they are with the SFRs derived from the UV and by stacking the corresponding PACS data in various mass bins.

Key words: galaxies: active – galaxies: evolution – galaxies: starburst – cosmology: observations – infrared: galaxies.

1 INTRODUCTION
Most galaxies at high redshifts are very actively forming stars, with star formation rates (SFRs) of the order of hundreds of M_\odot yr$^{-1}$ being quite common. In the local Universe, instead, galaxies with
such high SFRs are very rare and are called ‘ultraluminous infrared galaxies’ (ULIRGs, with $L_{IR} > 10^{12} L_\odot$; Sanders et al. 1988). Such objects are caught in a transient, starburst event, likely driven by a merger having boosted both their SFR and their far-infrared (FIR) luminosity. By analogy, also such high-redshift galaxies were first regarded as starburst objects, until it became apparent that data were suggesting a radically different picture.

A first suspicion that a new paradigm was needed came from the discovery that over 80 per cent of a ‘BzK’ K-band-selected sample of $z \sim 2$ galaxies were actually qualifying as ULIRGs (Daddi et al. 2005). Clearly, it was very unlikely that the vast majority of galaxies had all been caught in the middle of a transient event. As later shown, at high redshifts, sustained SFRs ought to be the norm rather than the exception.

This was indeed demonstrated in a series of seminal papers (Daddi et al. 2007; Elbaz et al. 2007; Noeske et al. 2007), showing the existence of a tight correlation between SFR and stellar mass M_*, with

$$\text{SFR} \propto f(t)M_*^{1+\beta},$$

(1)

which is followed by the majority of star-forming (SF) galaxies, with a dispersion of ~ 0.3 dex, both at high redshifts (references above) and in the local Universe (Brinchmann et al. 2004). Thus, following Noeske et al. (2007), the correlation is called the main sequence (MS) of SF galaxies. Here, $f(t)$ is a declining function of cosmic time (an increasing function of redshift). Furthermore, no signs of mergers have been found through dynamical measurements in many high-redshift SF galaxies (e.g. Cresci et al. 2009; Förster Schreiber et al. 2009; Law et al. 2009). Implying that most SF galaxies are in a quasi-steady SF regime, the existence of the MS has several important ramifications. It dictates a very rapid stellar mass growth of galaxies at early times, paralleled by a secular growth of their SFR itself (e.g. Renzini 2009; Peng et al. 2010), quite at odds with the widespread assumption of exponentially declining SFRs (as argued by e.g. Maraston et al. 2010 and Reddy et al. 2012). Even more importantly, the slope β controls the relative growth of high-mass versus low-mass galaxies, thus directly impinging on the evolution of the galaxy stellar mass function (Peng et al. 2013, see also Lilly et al. 2013).

While the existence of the MS is generally undisputed, its slope and width may differ significantly from one observational study to another, depending on the sample selection and the adopted SFR and stellar mass diagnostics. Selecting galaxies in a passband that is directly sensitive to the SFR (such as the rest-frame UV or the FIR) automatically induces a Malmquist bias in favour of low-mass galaxies with above average SFRs, thus flattening the resulting SFR–M_* relation. This effect is clearly seen in Herschel FIR-selected samples, where formally $\beta \simeq -1$, but where only a tiny fraction of galaxies are detected at low stellar masses, i.e. those few really starbursting ones (Rodighiero et al. 2010a, 2011). This Malmquist bias has also been recognized in simulations (Reddy et al. 2012).

If redshifts are measured spectroscopically, the final sample may still suffer a similar bias even if the original photometric selection ensured a mass-limited input catalogue. Indeed, at low masses, the success rate of getting redshifts may be higher if the SFR is above average, and it may be lower at high masses if such galaxies are heavily extincted. Again, both these effects will tend to flatten the SFR–M_* relation.

For example, Reddy et al. (2006) and Erb et al. (2006) found no positive correlation at all between SFR and stellar mass (i.e. $\beta \sim -1$) for a spectroscopic sample of UV-selected galaxies at $z \sim 2$, whereas Reddy et al. (2012) found an almost perfectly linear relation ($\beta \sim 0$) for a sample of similarly selected galaxies, when taking into account the result of their simulation.

On the other hand, other biases may tend to steepen the derived SFR–M_* relation. Indeed, the mere selection of SF galaxies (e.g. by colour or by an SFR cut) may preferentially exclude massive galaxies with below-average SFR.

At low redshifts, the most suitable SFR indicator is the Hα luminosity (see Domínguez Sánchez et al. 2012), which is available for the extremely large sample of Sloan Digital Sky Survey (SDSS) galaxies for which Brinchmann et al. (2004) and Peng et al. (2010) got $\beta \simeq -0.1$ using this SFR indicator. However, already at relativley low redshift, Hα moves out of the optical range and Noeske et al. (2007) resorted on the 24 μm flux together with the less reliable [O ii] luminosity as SFR indicators, deriving $\beta \simeq -0.3$ for their sample of $0.2 < z < 0.7$ galaxies. Conversely, Elbaz et al. (2007) got $\beta \simeq -0.1$ for SF galaxies at $z \sim 1$ using the mid-infrared (MIR; 24 μm flux) as an SFR indicator. The same $\beta \simeq -0.1$ slope was then found by Daddi et al. (2007) for a mass-selected sample of $z \sim 2$ galaxies, using the extinction-corrected UV luminosity to measure SFRs. Finally, by combining 24 μm detection and spectral energy distribution (SED) fitting, Santini et al. (2009) found a similar value of $\beta \simeq -0.15$ for SF galaxies at $z \sim 2$.

Stacking 1.4 GHz radio data in various mass bins proved to be another effective way of measuring the slope (and normalization) of the SFR–M_* relation, with Pannella et al. (2009) getting $\beta \simeq 0$ for galaxies at $z \sim 2$. However, stacking the same radio data, Karim, Schinnerer & Martinez-Sansigre (2011) found $\beta \simeq -0.4$ for their sample of SF galaxies, having defined them as those bluer than (NUV–r)$_{rest} = 3.5$, a definition that following Ilbert et al. (2010) includes both ‘active’ ((NUV–r)$_{rest} < 1.2$) and ‘intermediate’ ($1.2 <$ (NUV–r)$_{rest} < 3.5$) SF galaxies. Restricting to ‘active’ galaxies, Karim et al. found β oscillating between ~ 0 and ~ 0.2 with no obvious trend with redshift.

In summary, these examples illustrate that the derived value of the slope β critically depends on several assumptions and adopted procedures as follows.

(i) The starting photometric selection. For example magnitude/flux limited, (multi)colour selection or mass limited.

(ii) The procedure to measure redshifts. Spectroscopic redshifts add to the photometric selection their instrument-specific selection function (i.e. the success rate as a function of photometric magnitudes and colours). Photometric redshifts are less biasing in this respect, modulo their occasional catastrophic failure.

(iii) The criterion to separate SF from non-SF galaxies. As mass quenching dominates at high redshifts (Peng et al. 2010), an SF criterion that may retain galaxies on their way to be quenched would bias β towards more negative values.

(iv) The adopted SFR indicator, including in it the procedure to estimate the dust extinction, if required.

(v) The explored mass range, as the slope at low masses might differ from that at high masses.

In this paper, we derive the SFR–M_* relation for a mass-complete sample of SF galaxies at $1.4 < z < 2.5$ using a variety of SFR indicators, such as the UV continuum, the Hα luminosity, the MIR 24 μm flux, the FIR luminosity and the radio luminosity, and then stacking data when appropriate to derive the average SFR–M_* relation for the mass-limited sample.

Throughout the paper, we use a Salpeter (1955) initial mass function (IMF) and we assume $H_0 = 70$ km s$^{-1}$, $\Omega_\Lambda = 0.75$, $\Omega_M = 0.25$ and AB magnitudes.
2 OBSERVATIONS AND SAMPLE SELECTION

Homogeneous samples of sources would ideally be required to compare the results of different SFR estimators in a meaningful way. Unfortunately, this is normally quite difficult as the selection functions tend to bias samples from various surveys having different depths, spectral ranges and selection wavelength (see e.g. Wyver et al. 2011). In this paper, we combine FIR-selected (i.e. SFR-selected) and near-IR-selected (as a proxy to M_*-selected) SF samples in the COSMOS field (Scoville et al. 2007), having both UV- and IR-based SFR determinations (both mid- and FIR). A fraction of them have been spectroscopically observed to measure the Hα emission-line luminosity, providing an additional indicator of SFR. Radio observations from the literature are used to extend the comparison of widely used SFR tracers. We first describe the data sets used, the sample selections and the SFR and M_* measurements.

We consider only galaxies within the redshift range of $1.4 < z < 2.5$, based either on spectroscopic or photometric redshifts.

2.1 Herschel FIR samples

We start from the sample of PACS/Herschel observations in the COSMOS field described by Rodighiero et al. (2011), over 2.04 deg2 and down to a 5σ detection, above confusion limits of 8 and 17 mJy at 100 and 160 µm, respectively (Lutz et al. 2011). Photometry was carried out by point spread function (PSF) fitting at 24 µm prior positions. The detection limits correspond to $≈ 100$, $≈ 200$ and $≈ 300$ M$_\odot$ yr$^{-1}$, respectively, at $z = 1.5$, 2 and 2.5. Over a common area of 1.73 deg2, we cross-matched the PACS detections with the IRAC-selected catalogue of Ilbert et al. (2010), so as to obtain UV-to-8 µm photometry, accurate photometric redshifts and stellar masses by SED fits as described in Rodighiero et al. (2010b). At $z \sim 2$, the sample of Ilbert et al. (2010) is complete in mass above $≈ 10^{10}$ M$_\odot$ for SF galaxies (see their table 3). FIR 8–1000 µm luminosities (L_{IR}) are derived from PACS fluxes using a set of empirical templates as described in Rodighiero et al. (2010b, 2011). In this work, IR luminosities are always converted to SFR as $\text{SFR}(M_\odot \text{yr}^{-1}) = 1.7 \times 10^{-10} L_{\text{IR}}$ [L$_\odot$] (Kennicutt 1998, hereafter SFR(FIR)). By adopting different templates or codes, consistent SFR estimates are obtained with no bias and a scatter of ~ 0.15 dex (which represents the typical error associated with our SFRs; see also Berta et al. 2013). The data set includes in total 576 PACS-detected galaxies with $1.4 < z < 2.5$.

2.2 BzK samples

We use the K-band-selected sample of $1.4 < z < 2.5$ SF galaxies down to $K_{\text{AB}} < 23$ in the COSMOS field (McCracken et al. 2010) selected according to the criterion (Daddi et al. 2004) designed to pick SF galaxies at these redshifts (the so-called SF BzK, or $sBzK$, i.e. those sources with

$$(z-K)_{\text{AB}} - (B-z)_{\text{AB}} \geq -0.2.$$

(2)

The passively evolving BzK (or $pBzK$) are not discussed in this paper, apart from the possible contamination of the formal $sBzK$ sample. Stellar masses have been computed following the same procedure as in Daddi et al. (2004, 2007), adopting the empirically calibrated relation based on the BzK photometry alone:

$$\log(M_*) = -0.4(K_{\text{AB}} - 19.51) + 0.218(z - K) - 0.499.$$

(3)

In spite of its simplicity, the procedure gives stellar masses which with a 0.3 dex scatter are in excellent agreement with those obtained with full-fledged SED fits. For all selected $sBzK$, the SFRs are estimated from the UV rest-frame luminosity corrected for dust extinction (hereafter SFR(UV)), with reddening being inferred from the slope of the UV continuum as in Daddi et al. (2007). UV-based SFRs reach down to few M$_\odot$ yr$^{-1}$ at $z \sim 2$. The final $sBzK$ sample includes a total of 25 574 sources in the redshift range $1.4 < z < 2.5$. For the rest of the paper, we will use consistently these stellar masses unless stated otherwise. In Rodighiero et al. (2011), we verified that they are fully consistent with those used in Rodighiero et al. (2010b) and in the previous subsection:

(i) good-$sBzK$: with a formal error $\delta \log(\text{SFR(UV)}) < 0.3$ dex (21 375 sources);
(ii) bad-$sBzK$: with a formal error $\delta \log(\text{SFR(UV)}) > 0.3$ dex (4199 sources).

The relative uncertainty on SFR(UV) is formally derived by propagating the errors on the optical photometry of each source, in particular from the B and z bands used to compute $E(B - V)$ and then to derive a dust-corrected SFR(UV) (see Daddi et al. 2004):

$$\delta \log(\text{SFR(UV)}) = \sqrt{E_1^2 + E_2^2 + E_3^2 + E_4^2},$$

(4)

with $E_1 = 0.6 \times \delta B$, $E_2 = \delta z$, $E_3 = 0.1$ and $E_4 = (0.75 \times 0.06 \times (1 + z_{\text{phot}}))$, where δB and δz are the photometric errors on the B and z magnitudes and 0.1 is a term that accounts for the error on the estimate of the total magnitude of the galaxy. Note that the different coefficients of δB and δz stem from the B magnitude entering twice in the calculation of the SFR, once to estimate the reddening and once to measure the observed UV luminosity, whereas the z magnitude affects only the reddening estimate. The last term (E_4) accounts for the uncertainty of the photometric redshift where we assume the typical $z_{\text{phot}}/(1 + z_{\text{phot}}) - 0.06$ and 0.75 is an empirical coefficient depending on the typical UV slope and luminosity distance of the objects.

The good-$sBzK$ sample selection represents ~ 84 per cent of the whole $sBzK$ population, and can be considered as a criterion to select reliable SFR(UV) estimates (at least at the limits of the COSMOS survey).

We should mention that among the ~ 16 per cent of the bad-$sBzK$ sources, ~ 5 per cent of them are undetected in the B band (at the COSMOS survey depth), implying that their SFR(UV) cannot simply be computed or classified. These sources will be considered in the Herschel stacking analysis and will be still included in the bad-$sBzK$ classification. However, when showing the SFR(UV) for the single sources in the bad- and good-$sBzK$ sample, they will not be reported.

In principle, the BzK criterion may introduce a bias by selecting only part of the SF galaxies in the explored redshift range. The same would also do a pure photometric redshift selection, given the sizeable number of photometric redshifts which are grossly discrepant with respect to spectroscopic redshifts (especially at $1.4 < z < 1.8$; cf. Ilbert et al. 2010). For this reason, we have inspected the Ilbert et al. catalogue, finding that ~ 6 per cent of $1.4 < z_{\text{phot}} < 2.5$, $M_*>10^{10}$ M$_\odot$ objects are missed by the BzK criterion (including both SF and passive sources). However, a major fraction of them lie very close to the line defined by equation (2); hence, just small photometric errors have driven them out of the $sBzK$ domain. The others are likely cases in which z_{phot} fails catastrophically. Thus, we believe that a sample of $sBzK$-selected galaxies with $1.4 < z_{\text{phot}} < 2.5$ is more robust than either a purely $sBzK$- or a purely $< z_{\text{phot}}$-selected sample. In any case, the slope and dispersion of the SFR(UV)$-M_*$ MS are not appreciably affected by the inclusion of this minority population.
2.3 Hz spectroscopic sample

As part of a Subaru telescope survey with FMOS (Fibre Multi-Object Spectrograph) in its high-resolution mode ($R \sim 2600$), the $sBzK$ detection rate in the inner deg2 of the COSMOS field has been targeted to detect Hα in emission from galaxies at $1.4 \lesssim z \lesssim 1.7$ (Kashino et al. 2013; Zahid et al. 2013, Silverman et al., in preparation). Sources have been selected from the sample described in Section 2.2 to have stellar masses $>10^{10} M_\odot$ and to belong to the good-$sBzK$ population.

The measured Hα luminosities for the 162 best quality (flag = 2) detections are converted to SFR (hereafter SFR(Hα)) with the Kennicutt (1998) relation, $\text{SFR}(\text{H}\alpha)[M_\odot \text{yr}^{-1}] = 3.03 \times 10^{-3} L(\text{H}\alpha)/L_\odot$. The Hα luminosity has been corrected for extinction applying the average $A_{\text{H}_\alpha} - M_\odot$ relation from the Balmer decrement of FMOS spectra stacked in mass bins (Kashino et al. 2013).

3 SFR FROM VARIOUS INDICATORS

In this section, we present a systematic comparison of SFRs from various widely used SFR indicators, focusing in particular on their effect on the SFR–stellar mass relation of our programme galaxies at $1.4 < z < 2.5$.

3.1 FIR versus ultraviolet SFRs

Fig. 1 (left-hand panel) compares the SFRs from the FIR and from the ultraviolet, i.e. SFR(FIR) versus SFR(UV). We used the sample of 473 $sBzK$ at $1.4 < z < 2.5$ in the COSMOS field for which a PACS counterpart is available. It is apparent that the calorimetric indicator, able to almost completely reveal the hidden SFR, provides systematically higher values than SFR(UV), in particular, at SFR(UV) $\lesssim 300 M_\odot \text{yr}^{-1}$. This is commonly interpreted as an underestimate of dust extinction as derived from the UV slope (i.e. from the $B-z$ colour, as in Daddi et al. 2007, having potentially an important impact on the slope and scatter of the SF MS. This is shown in the right-hand panel of Fig. 1, where we show the mass–SFR relation for the parent sample of good-$sBzK$ (small black dots). To emphasize the effect of different SFR indicators in shaping the MS, for the PACS sources shown in the left-hand panel, the right-hand panel displays both their SFR(FIR) (red filled circles) and their SFR(UV) (green open circles), while using the same stellar mass. By relying only on SFR(FIR), one gets a flat SFR–M_\star relation, with $\beta \approx -1$ in equation (1). Such a flat relation is the direct result of having selected galaxies using a FIR-flux-limited sample, which translates indeed into an SFR-limited sample. On the other hand, the UV indicator provides a much steeper relation (solid line in Fig. 1, with $\beta = -0.21$, good-$sBzK$ only; Rodighiero et al. 2011). This illustrates the point made in the Introduction, about how different the slope of the MS can result when using different selection criteria or SFR indicators.

This apparent discrepancy derives from the vastly different number of galaxies recovered by the two selections, the Herschel/SFR-selected sample and the $sBzK$/mass-selected sample. As made clear in Fig. 1 (right-hand panel), for $\log(M_\star) \lesssim 11$ only a few $sBzK$ galaxies are individually detected by Herschel, and include (part of) the ~ 2 per cent outliers from the MS as shown by Rodighiero et al. (2011). We interpreted these objects as obscured starbursts, possibly driven by merging events or major disc instabilities, characterized by high specific-SFR ($s\text{SFR} = \text{SFR}/M_\star$), and where $E(B-V)$ and the SFR from the UV are systematically underestimated.

On the other hand, the Herschel-COSMOS data at these redshifts do not reach below SFR $\sim 200 M_\odot \text{yr}^{-1}$, and therefore to recover a FIR MS, we must resort on stacking the Herschel data at the location of $sBzK$-selected galaxies, which represent a mass-selected sample. To this end, we split the $sBzK$ sample into four mass bins, and stack all PACS-undetected $sBzK$ if a residual 160 μm map is created by removing all PACS 160 μm detections with SNR >3 (stacking at 100 μm does not change well our results). The stacking is performed using the IAS stacking library (Béthermin et al. 2010), PSF-fitting photometry, and applying an appropriate flux correction for faint, non-masked sources to the PACS stacks (Popesso et al. 2012). With this procedure, we derived the average flux for each mass bin. Using the formalism introduced by Magnelli et al. (2009), which accounts both for detections and no-detections, we then converted these stacked fluxes into bolometric luminosities L_{IR} by adopting an average K-correction (Chary & Elbaz 2001) and then into SFR through the standard law of Kennicutt (1998). The results of this procedure are presented in Fig. 2. We considered the whole $sBzK$ sample at $1.4 < z < 2.5$, and then separately the good- and bad-$sBzK$ subsamples, represented by small black dots and small magenta dots, respectively. The big red filled circles show the average SFR derived by stacking on the PACS maps only the good-$sBzK$ (with the corresponding best linear fit shown as a dashed red line, slope $\alpha = 1 - \beta = 0.86 \pm 0.08$). The magenta circles refer instead to the stacking results for the bad-$sBzK$ (slope $\alpha = 1 - \beta = 0.47 \pm 0.12$), whereas the green data points represent the SFR obtained by stacking the whole $sBzK$ population, with the corresponding best linear fit shown as a dashed green line (slope $\alpha = 1 - \beta = 0.74 \pm 0.11$).

Overall, there is nice agreement of SFR(UV) and stacked SFR(FIR) for the good-$sBzK$ sample, largely amending the discrepant results when using only the individually PACS-detected sources (Fig. 1). The MS slope using SFR(FIR) ($\alpha = 1 - \beta = 0.86 \pm 0.11$) is consistent within the errors with that derived using SFR(UV) ($\alpha = 1 - \beta = 0.79 \pm 0.10$; Rodighiero et al. 2011). This argues for the correlation of SFR(UV) and SFR(FIR) to be fairly good for the general MS population at $z \sim 2$, a correlation that instead clearly fails catastrophically for the most obscured starburst sources, which represent only few percent of the SF galaxies at the same cosmic epoch (Fig. 1). Still, it is somewhat intriguing that for these galaxies (the green open circles in Fig. 1) the ‘wrong’ SFR(UV) places them within the MS, probably because the optical colours refer only to the small fraction of the SFR which is not fully buried in dust.

Fig. 3 further illustrates and quantifies these findings. The data points represent the SFR(FIR)/SFR(UV) ratio for the good-$sBzK$ galaxies which are individually detected by the Herschel/PACS Evolutionary Probe (PEP) survey over the COSMOS field. At low masses, this ratio is very high (~ 10) and decreases with increasing mass reaching near unity towards the high-mass end. However, at low masses, only 0.4 per cent of the good-$sBzK$ galaxies are detected in the infrared, i.e. only the extreme outliers. Then, the fraction of FIR-detected galaxies increases with stellar mass, reaching ~ 16 per cent at the top end. This is still far from 100 per cent, as the PEP data are not deep enough to recover all galaxies even at the top mass end. Note that the minimum measured SFR(FIR) ($\geq 200 M_\odot \text{yr}^{-1}$) refers to $z = 2$, and increases with redshifts, whereas the completeness of the PEP catalogue starts dropping...
The sequence of star-forming galaxies at $z \sim 2$

Figure 1. Left-hand panel: comparison of SFR(UV) and SFR(FIR) for a sample of 473 sBzK at $1.4 < z < 2.5$ with a PACS/Herschel detection in the COSMOS field. The right-hand panel shows the SFR–stellar mass relation for various samples, namely: parent sBzK sample (the so-called good subsample, see text for details, small black dots) for which SFR(UV) is reported, the PACS-detected sBzK sources shown in the upper panel, with SFR(FIR), and for the same group of galaxies the green open circles represent the corresponding SFR(UV). The solid (dotted) line indicates the MS (SFR(UV) = 4 × SFR(MS)) relation at $z \sim 2$ (Rodighiero et al. 2011).

Figure 2. The SFR–stellar mass relation for SF galaxies at $1.4 < z < 2.5$ is shown for various samples: the small black dots represent the parent good-sBzK. Most of these sources have a reliable estimate of extinction from the $(B - z)$ colour, and thus a reliable SFR from the UV. The complementary sample of sBzK, for which SFR(UV) is much less reliable (bad-sBzK), is shown with small magenta dots. These sBzK samples have been split into four mass bins. The red filled circles show the average SFR derived by stacking on the PACS maps the good-sBzK (with the corresponding best linear fit shown as a dashed red line), while the magenta circles refer to the stacking results for the bad-sBzK (with the corresponding best linear fit shown as a dashed magenta line). Green filled circles represent the SFR obtained by stacking the whole sBzK population in the four different mass bins (with the corresponding best linear fit shown as a dashed green line). The blue circles correspond to the stack of the good-sBzK sample plus the bad-sBzK which are detected at 24 μm, and the corresponding best fit is shown as the blue dashed line. For each mass bin, the error bars on SFR are derived from the bootstrap statistical stacking analysis and are smaller than the symbol sizes. The solid black line represents the best fit to the MS derived by Rodighiero et al. (2011).
at substantially higher values (Rodighiero et al. 2011). In deeper PEP observations, such as those on the Great Observatories Origin Deep Survey (GOODS)-South field, the fraction of massive galaxies which are detected does indeed approach 100 per cent (Rodighiero et al. 2011). A further confirmation that SFR(UV) does not systematically deviate from SFR(FIR) comes from the stacking of the Herschel/PACS data discussed above and illustrated in Fig. 2. The almost horizontal line in Fig. 3 shows the ratio of the best-fitting SFR(FIR)–M_* and SFR(UV)–M_* relations from Fig. 2, thus emphasizing that both methods of deriving the SFR are fully consistent for the vast majority of the galaxies, with the exception of a lesser minority of outliers.

When including all sBzK in the FIR comparison (green circles and green line), the slope of the Herschel-derived MS ($\alpha = 1 - \beta = 0.74 \pm 0.08$) is still largely overlapping with that derived from the UV. For what concerns the bad-sBzK sample alone, Fig. 2 indicates that at low masses ($M_* < 10^{11} M_\odot$) the mean SFR(FIR) is consistent with that of the most reliable SFR(UV) sample, while at higher masses, it is systematically lower, hinting for a contamination by passive sources into the SF colour selection. To check for this possibility, in the next section, we consider the MIPS 24 µm properties of these galaxies and we further expand on this issue.

3.2 MIR versus ultraviolet SFRs

A natural extension of the Herschel-based SFR analysis includes the widely used 24 µm MIPS/Spitzer flux density, which allows one to reach lower SFRs than Herschel, although with the large extrapolation required to estimate the total IR luminosity (e.g. Elbaz et al. 2007, 2011; Wuyts et al. 2011). Since the earlier Herschel investigations, it was realized that the 24 µm SFR indicator was working very well up to redshift ~ 1, while it starts to fail at higher redshifts by overestimating somewhat the true L_{IR} (Nordon et al. 2010, 2012; Rodighiero et al. 2010b; Elbaz et al. 2011). This is particularly critical at $z \sim 2$, where the polycyclic aromatic hydrocarbons (PAH) features enter the observed 24 µm passband. More recently, Magdis et al. (2012) have undertaken a systematic study of the typical SED of normal SF and starburst galaxies at $z \sim 2$, including both PACS and SPIRE/Herschel data in their analysis. They found that the mean SED does not evolve along the MS at $z \sim 2$, while it differs for the starburst population (characterized by a warmer dust component). Similar results are found also by Elbaz et al. (2011). These new investigations revamped the use of the 24 µm SFR indicator, ideally allowing the adoption of a universal SED to extrapolate L_{IR} for MS sources. Other recipes and methods have been presented to recalibrate the 24 µm flux density (Wuyts et al. 2011; Nordon et al. 2012, see also Berta et al. 2013 for a summary). In this section, we adopt the MS templates of Magdis et al. (2012) to extrapolate L_{IR} from the 24 µm flux densities.

Following the same approach of Section 3.1, in Fig. 4 (left-hand panels), we compare SFR(UV) with SFR(24,µm) for the sample of sBzK in COSMOS with a 24 µm counterpart brighter than $S_{24,µm} > 60$ µJy. The corresponding differences induced in the MS relation are instead shown in the right-hand panels. We separate the analysis including all sBzK (top panels) and only the good-sBzK (bottom panels). Red points represent the sBzK/MIPS-detected sources shown in the left-hand panels, with SFR from L_{IR} extrapolated from the 24 µm flux density. The green points are the same sources plotted with the corresponding SFR(UV). For completeness, we report also SFR(UV) for the parent sBzK sample (small black dots). The solid (dotted) line indicates the MS (\times 4MS) relation at $z \sim 2$ (Rodighiero et al. 2011), as in Fig. 1. The considered flux limit allows us to reach SFR as low as ~ 60 M_\odot yr$^{-1}$, diving well into the MS, but it still shows the almost flat SFR–M_* relation which is typical of SFR-selected samples (see Fig. 4, right-hand panels).

This SFR(UV)–SFR(24,µm) relation including all sBzK sources is rather dispersed, showing, as for the SFR(UV)–SFR(IR), an excess of objects with SFR(24,µm) > SFR(UV), particularly for SFR(UV) < 100 M_\odot yr$^{-1}$. Indeed, the penalty of a wrong (underestimated) extinction correction is evident for the sBzK sources with a less reliable SFR(UV) (the bad-sBzK): in the top-left panel, the tail at low SFR(UV) ($\lesssim 10$ M_\odot yr$^{-1}$) is populated by these objects, which instead largely disappear when considering only the good-sBzK (bottom-left panel). In this case, the MS based on SFR(24,µm) nicely overlaps with the UV-based one, with the advantage of unraveling also the starburst sources (with SFR > 4 \times SFR(MS)) that remain unidentified when using SFR(UV). Thus, the MIR reveals this population of MS outliers, as does the FIR (Rodighiero et al. 2011), but the extrapolation required to derive L_{IR} from the 24 µm flux density still makes the FIR information a more direct and effective mean to estimate the global SFR of high-redshift dusty sources.

The bad-sBzK which are detected at 24 µm are clearly SF and therefore should be considered together with the good-sBzK when stacking the Herschel data to derive the slope and zero-point of the MS. The result is illustrated in Fig. 2 (blue circles and dashed line) and the corresponding slope is $\alpha = 1 - \beta = 0.80 \pm 0.07$. We consider this as our best possible estimate of the MS slope at $z \sim 2$.

The 24 µm flux density allows us also to better characterize the population of the bad-sBzK. For example, among the 3219 sBzK galaxies with $M_* > 10^{11} M_\odot$ in our sample, there are 787 such objects, ~ 60 per cent of which (467) are not detected at 24 µm, corresponding to an SFR upper limit of ~ 60 M_\odot yr$^{-1}$. This is well below the SFR of massive MS galaxies and we infer that

Figure 3. The SFR(FIR)/SFR(UV) ratio for galaxies that are individually detected by Herschel/PACS over the COSMOS field (red points). The fractions of such detected sources over the parent good-sBzK population are given for four mass bins, each 0.5 dex wide. The nearly horizontal line represents the ratio of the best-fitting SFR(FIR)–M_* and SFR(UV)–M_* relations from Fig. 2.
The sequence of star-forming galaxies at $z \sim 2$

most of the 467 bad-sBzK are likely to be well on their way to be quenched. This is further reinforced by the result of stacking the Herschel 160 µm data, separately for the 24 µm detected and undetected bad-sBzK, as displayed in Fig. 5. Clearly, on average, the 24 µm undetected bad-sBzK galaxies lie well below the MS, whereas the 24 µm detected ones lie appreciably below the MS and exhibit a shallower slope ($\alpha = 1 - \beta = 0.36 \pm 0.04$). We recall that our sBzK selection is supposed to pick SF galaxies, whereas now we have evidence that out of the original 25 574 sBzK, ~ 4199 of them (~ 16 per cent) are likely to be quenched or on the way to be quenched. Of course, we cannot exclude that some of these galaxies are experiencing a temporary downward excursion from the MS and will return to it in the future, i.e. representing a tail of the MS itself. Data cannot distinguish between such objects and truly quenching ones. However, note from Fig. 6 that the bad-sBzK are confined to relatively high masses, where galaxies are faint in the B band because they are either heavily reddened or because they are quenched or on the way to be quenched. In the former case, they should be detected at 24 µm but they are not, which suggests they are actually quenched. Note also the absence of low-mass bad-sBzK, while there should be many of them if they would represent a tail of the MS distribution. Moreover, Fig. 5 shows that when stacking the FIR data for the 24 µm undetected sources, their average SFR is well below the MS values (from ~ 5 to ~ 30 times below) which suggests that the vast majority of them are likely to be quenched or on their way to be quenched. We believe that this illustrates the capability of this multiwavelength approach of singling out MS galaxies as well as the starburst and quenched outliers on either side of the MS. In summary, the bad-sBzKs include a mixture of actively SF galaxies and others which may be fully quenched or with SFRs well below the MS, though the distinction between these two latter subclasses would need deeper data.

3.3 BzK sources selected for being SF actually not being so

In our previous analysis, we made an intensive use of the sBzK classification based on the relative error on SFR(UV) to understand the quality and limits of the SFR derived solely from the rest-frame UV. We have seen that, formally, when considering only reliable sources (i.e. ~ 84 per cent of the sBzK COSMOS sample, those
The SFR(UV)–stellar mass relation for the bad-sBzK with red symbols referring to the MIPS 24 μm detected sources and the blue symbols to the 24 μm undetected ones. The corresponding large circles show SFR(FIR) having stacked the Herschel/PACS data in four mass bins. The dashed horizontal line corresponds to the MIPS 24 μm sensitivity limit over the COSMOS field at $z = 2$ and the solid line is the same as in Fig. 1. For each mass bin, error bars on SFR are derived from the bootstrap statistical stacking analysis and presented with the same colour coding (if bigger than the symbol sizes).

Figure 5. The SFR(UV)–stellar mass relation for the bad-sBzK with red symbols referring to the MIPS 24 μm detected sources and the blue symbols to the 24 μm undetected ones. The corresponding large circles show SFR(FIR) having stacked the Herschel/PACS data in four mass bins. The dashed horizontal line corresponds to the MIPS 24 μm sensitivity limit over the COSMOS field at $z = 2$ and the solid line is the same as in Fig. 1. For each mass bin, error bars on SFR are derived from the bootstrap statistical stacking analysis and presented with the same colour coding (if bigger than the symbol sizes).

The faintness of the bad-sBzK in the B band does not primarily derive from the relative distance of such class, since their redshift distribution is almost flat over the whole range (see Fig. 6, bottom panel), although the ratio of bad- to good-sBzKs moderately increases with redshift.

2 The faintness of the bad-sBzK in the B band does not primarily derive from the relative distance of such class, since their redshift distribution is almost flat over the whole range (see Fig. 6, bottom panel), although the ratio of bad- to good-sBzKs moderately increases with redshift.

with $\delta \log(\text{SFR(UV)}) < 0.3 \text{ dex}$, then SFR(UV) is in very good agreement with SFR(IR) for the vast majority of the galaxies. To better characterize the properties of these various sBzK classes, we present in Fig. 6 the distribution of their stellar masses (top panel), SFR(UV) (second panel from top), B magnitudes (third panel from top) and redshifts (bottom panel). We report separately the distributions for the good-sBzK (dot–dashed red lines), the bad-sBzK (dashed blue lines) and the total distribution (solid black lines). Note that the mass distribution starts dropping at $\sim 2 \times 10^{10} \, M_\odot$, which we consider the completeness limit of our sample. This is nearly twice as large as the mass limit of the Ilbert et al. (2010) $1.5 < z < 2$ sample, as our sample extends to $z = 2.5$.

As expected, the intrinsic larger errors on SFR(UV) (as propagated from formal errors on the original photometry) is mostly related to the faintness of these sources in the B band: the observed B-band distribution is ~ 2.5 mag brighter for the good-sBzK. On the contrary, the SFR(UV) distributions for the two samples span the same range, with the bad sources representing only a tiny fraction excess at low SFR(UV), as already revealed in Fig. 4. However, this low-SFR tail does not have impact on the main trend for SFR(UV)–SFR(IR), as revealed by the PACS stacking analysis (Fig. 2 and Section 3.1), and it consists of a mixture of two opposite kinds of sources: (1) passive sources that appear to fulfill the equation (2) SF (sBzK) selection because of their large error in the B-band magnitude and (2) very obscured/starburst objects for which SFR from the UV catastrophically fails (as it does for a small minority of the good-sBzK as well).

In this respect, we can notice on Fig. 5 that quite many of the most massive bad-sBzK exhibit an SFR(UV) well in excess of the MS values, whereas their average SFR(IR) from stacking the Herschel data falls well below the MS. We conclude that the population of the bad-sBzK is indeed a mixture of obscured starburst and of quenching galaxies, with the former ones dominating at lower masses and the latter ones dominating at high masses. This trend can be readily understood when considering that the fraction of (starburst) MS outliers (~ 2 per cent) is fairly independent of stellar mass (Rodighiero et al. 2011); hence, low-mass outliers must be more numerous, whereas at high masses, the mass-quenching mechanism of Peng et al. (2010) must be proceeding at full steam at these redshifts. We also notice that for the bad, 24 μm undetected sBzK the procedure to get the SFR from UV is delivering an SFR about an order of magnitude too high because it mistakes the red $B − z$ colour as due to reddening, while it is due to old age. Thus, the bad fraction of the SF selection is effectively contaminated by a number of galaxies which are either already quenched or being quenched. These amount to ~ 60 per cent of the bad-sBzK sample of galaxies more massive than $10^{11} \, M_\odot$, or ~ 15 per cent of the whole sBzK sample above this mass limit. Ironically, for most bad-sBzK, many of those with very high SFR(UV) are actually quenched (the small blue points in Fig. 5 with SFR(UV) $\gg 60 \, M_\odot \, \text{yr}^{-1}$) and many of those with very low SFR(UV) are actually starbursting (the small red points in the same figure with SFR(UV) $\ll 60 \, M_\odot \, \text{yr}^{-1}$).
Statistics of the sBzK sample at $1.4 < z < 2.5$ in the COSMOS field as a function of stellar mass (top panel), SFR(UV) (second panel from top), observed B magnitude (third panel from top) and redshift distributions (bottom panel). We report the distribution of sBzK sources with reliable SFR(UV) (i.e. good-sBzK, dot-dashed red lines), the bad-sBzK (dashed blue lines) and the total distribution (solid black lines). Objects undetected in the B band are all assigned to the faintest bin of the B-band histogram. The redshift distribution of the three populations is shown in the bottom panel.

In this regard, it is worth emphasizing that the bad-sBzK which are actually quenched were clearly misclassified as SF in the first place. At the faintest B magnitudes, the error δB can be so large to qualify a galaxy as an sBzK according to equation (2), while the real B magnitude would have actually classified it as a passively evolving, pBzK galaxy. Finally, we notice that the flattening of the MS towards high masses, especially when including the bad-sBzK, is likely due to a large fraction of the most massive galaxies being already on their way to be quenched (e.g. Whitaker et al. 2012; Mancini et al., in preparation).

3.4 Radio and global near-IR-to-submillimeter SED fitting

Pannella et al. (2009) and Karim et al. (2011) have measured the average SFR in various mass and redshift bins by stacking the COSMOS 1.4 GHz radio continuum emission, by using either BzK or IRAC mass-selected samples, respectively.

In Fig. 7, we directly compare the results of Karim et al. (2011) with ours in the common redshift interval ($1.4 < z < 2.5$). The figure shows the SFR(UV) for sBzK-selected sources (small black points) and the stacked SFR(IR) from PACS (green filled circles) while the magenta shaded region corresponds to the radio analysis by Karim et al. (2011). To convert the average 1.4 GHz luminosities into average SFRs, Karim et al. used the calibration of the radio–FIR correlation by Bell (2003). We have rescaled their data to the IMF adopted in this paper. The slope and normalization of the stacked radio SFRs are in good agreement with both the PACS ones and the UV based. This result is not surprising, given the well-known tight correlation between the radio and FIR luminosities.

An indirect approach that combines various ingredients consists in integrating the median SED of sBzK in various mass bins along the MS. As anticipated in Section 3.2, Magdis et al. (2012) have obtained average MIR to FIR SEDs of $z \sim 2.0$ MS galaxies in three stellar mass bins, derived by stacking observed data from 16 up to 1100 μm. They also provide the total IR luminosities of each template for each mass bin, which we converted into average SFR with Kennicutt (1998). The results of this exercise are shown as blue filled squares in Fig. 7, and the resulting SFR–mass relation is fully consistent with the MS defined by UV, Herschel and radio data, providing a further support to the concordance of average SFR indicators at $z \sim 2$. It is certainly reassuring that by applying different criteria for mass-selected samples and different SFR indicators we obtain consistent results in such a wide range of stellar masses.

3.5 SFR from $H\alpha$ luminosity

As mentioned in Section 2.3, a fraction of the SF with photometric redshifts in the range $1.4 \lesssim z \lesssim 1.7$ have been selected as targets for the Intensive Programme at the Subaru telescope with the FMOS near-IR spectrograph (Silverman et al., in preparation; Kashino et al. 2013). The first observing runs in the long H band have provided the detection of $H\alpha$ and spectroscopic redshifts for 271 galaxies, 168 of them having high-quality (flag $= 2$) line detections. Kashino et al. include in their analysis also FMOS spectroscopy in the J band, to assess the level of dust extinction by measuring the Balmer decrement using co-added spectra. They found that the extinction at $H\alpha$ is an increasing function of stellar mass and they provide a linear empirical relation between these two quantities, as $A_{H\alpha} \simeq 0.60 + 1.15 (\log [M_*/M_\odot] - 10)$. In this work, we adopt this recipe to compute dust-corrected SFR(Hα) (see Section 2.3 for details), and we limit our analysis to the 168 flag $= 2$ sources. We first compare the derived SFR(Hα) and SFR(UV) in Fig. 8 (top panel), showing a good correlation between the two independent SFR measures. The median SFR(UV) for this sample is ~ 20 percent higher than SFR(Hα), suggesting that the Balmer decrement may underestimate the total extinction (see discussion in Kashino et al. 2013). To better understand this trend, we have stacked on the 160 μm PACS maps these sources in three mass bins. This is presented in the usual mass–SFR plot in the bottom panel of Fig. 8, showing for each source SFR(UV) (black circles) and the corresponding SFR(Hα) (red circles), while the green symbols show the SFR(IR) from the stacked PACS data. The width of the stacked bins along the x-axis represents the standard deviation of the mass distribution in each bin. The uncertainties on the stacked SFR are derived from the bootstrap stacking procedure, and in the two higher mass bins they are of the size of the green data points. The stacked SFR(IR) in the smaller mass bin is lower than the corresponding average SFR(UV) and SFR(Hα) but we believe this is not significantly so. Contrary to the two more massive bins, no individual sources are detected in the FIR and therefore the bootstrap stacking procedure underestimates the error bars. The solid black line is the MS relation obtained by linear interpolation to the sBzK population with their SFR(UV) at $1.4 < z < 1.7$ (slope $\alpha = 0.90 \pm 0.11$), while the red dotted line

Figure 6. Statistics of the sBzK sample at $1.4 < z < 2.5$ in the COSMOS field as a function of stellar mass (top panel), SFR(UV) (second panel from top), observed B magnitude (third panel from top) and redshift distributions (bottom panel). We report the distribution of sBzK sources with reliable SFR(UV) (i.e. good-sBzK, dot-dashed red lines), the bad-sBzK (dashed blue lines) and the total distribution (solid black lines). Objects undetected in the B band are all assigned to the faintest bin of the B-band histogram. The redshift distribution of the three populations is shown in the bottom panel.
is the best-fitting relation in the same redshift interval obtained by Kashino et al. (2013) from SFR(Hα) (slope $\alpha = 0.81 \pm 0.04$). The UV indicator is more consistent with SFR(IR) than the Hα luminosity, in particular at higher masses, where the flatter relation derived by SFR(Hα) might suggest that the extinction correction derived from the Balmer decrement is more uncertain for massive objects (cf. Kashino et al. 2013). A slight bias is also present in the Hα sample as at low masses objects with above average SFR(UV) were selected for the FMOS observations. A more comprehensive investigation of dust extinction affecting the intrinsic luminosity of emission lines will be presented at the completion of the whole FMOS survey.

4 DISCUSSION AND CONCLUSIONS

We have used the COSMOS multiwavelength data base to derive masses and SFRs of $1.4 < z < 2.5$ galaxies using a variety of SFR indicators, such as the UV luminosity, the FIR (8–1000 µm) luminosity and the 24 µm flux. For galaxies in the redshift range $1.4 < z < 1.7$, we have also estimated the SFR using the Hα line luminosity. Stellar masses have been derived from SED fits using UV-to-8 µm photometry. The same set of masses have been used irrespective of the SFR indicator so as to isolate the effect of using different indicators. Of course, the characterization of high-redshift galaxies may also be biased by the specific procedure to measure stellar masses, but exploring this aspect is beyond the scope of this paper, which is instead focused on the effects of using different SFR indicators, specifically on the slope of the SFR–M_* relation followed by the majority of galaxies and known as the MS of SF galaxies.

We have shown that the selection criteria to pick SF galaxies have a profound effect on the slope of the SFR–M_* relation. Using observables that are directly linked to the SFR (such as the mid- and the FIR), the resulting SFR–M_* relation tends to be essentially flat, but one recovers only a small fraction of the galaxies selected to produce a mass-limited sample. We show in particular that for $M_* \lesssim 10^{11} M_\odot$ the 160 µm selection (from Herschel) picks predominantly galaxies for which the SFR derived from the UV luminosity falls largely short of that indicated by their FIR luminosity. Arguably, in such extreme cases, this is due to the inability of the slope of the rest-frame UV continuum to estimate the true dust extinction affecting the bulk of the star formation in such galaxies. Such a selection picks predominantly starbursting outliers from the MS, but fails to pick the vast majority of SF galaxies in the same mass range, whose FIR luminosities are below the Herschel detection limit.

To take advantage of the positive aspects represented by the reliability of FIR-based SFRs on one side and of mass-limited samples on the other, we recover to stacking the Herschel data in various mass bins, showing that the logarithmic slope of the SFR–M_* relation derived from such stacks is in excellent agreement with that derived from the dust-corrected UV luminosity, and is in the range $\sim 0.8 - 0.9$.

The considerations on the SFRs derived from the FIR luminosity apply as well to the SFRs derived from the 24 µm flux, which actually in COSMOS reaches to lower SFR levels. This offers the opportunity to better characterize a subsample of SF sBzK-selected galaxies, i.e. those for which reddening and SFRs are poorly constrained by the observed rest-frame continuum, here nicknamed the bad-sBzK, i.e. those very faint in the B band. About 50 percent
The sequence of star-forming galaxies at $z \sim 2$

The reassuring conclusion is that a wide variety of SFR indicators, such as the rest-frame UV continuum, the mid- and the FIR, the 1.4 GHz radio flux and the Hα luminosity all give consistent results when applied to samples as close as possible to be mass-selected samples. The slope of the MS can vary between ~ 0.8 and ~ 1, depending on the specific relation and on the adopted SFR indicator, which all must introduce a small bias. Perhaps the most intriguing of such biases comes from how SF galaxies are identified as such, as especially at high masses a non trivial fraction (almost ~ 15 per cent) of $sBzK$-selected galaxies (selected for SF) turns out to be already quenched or well on their way to be quenched, as indeed expected to happen thanks to the mass quenching process, an effect that tends to flatten the slope of the MS. Ironically, many $bad-sBzK$ with low SFR(UV) turn out to be very powerful MIR and FIR sources and are starbursting MS outliers.

Figure 8. Top panel: comparison of SFR(UV) and SFR(Hα) for a sample of $sBzK$ sources at $1.4 < z < 1.7$ spectroscopically observed with FMOS/Subaru and for which a direct measure of the Hα luminosity is available (Kashino et al. 2013). Extinction corrections are derived from the average $A_{H\alpha}$–stellar mass linear relation derived by Kashino et al. (2013). Bottom panel: for the same sources, the stellar SFR–stellar mass relation is shown. For each source, we show the SFR(UV) (black circles) and the corresponding SFR(Hα) (red circles). By stacking these sources in three mass bins on the PACS maps, we obtained a mean value of the corresponding SFR(IR) (plotted as green symbols). The width of the stacked data along the x-axis represents the standard deviation of the mass distribution in each bin. The typical uncertainties on SFR are derived by the bootstrap stacking procedure. The solid black line is the best-fitting relation obtained by linear interpolation to the $sBzK$ population with their SFR(UV) at $1.4 < z < 1.7$, while the red dotted line is the best-fitting relation in the same redshift interval obtained by Kashino et al. (2013) from SFR(Hα).

of them are detected at 24 μm and therefore qualify as SF galaxies. Stacking their Hershel/PACS 160 μm data shows that they are close to the MS, though with a slightly flatter slope. However, particularly interesting are the $bad-sBzK$ which are not detected at 24, 100 and 160 μm, and whose stacked PACS data show that they have SFRs well below the MS (the blue points in Fig. 5) and therefore qualify for being quenched (or quenched) galaxies. Therefore, the combination of Herschel with Spitzer data have allowed us to break the age/reddening degeneracy for $sBzK$-selected galaxies, thus distinguishing whether a galaxy is very red because of being heavily dust reddened, or whether it is very red because star formation has been quenched.

Finally, we have compared our SFR(UV) to the SFRs derived from the Hα luminosity of a sample of $sBzK$-selected galaxies at $1.4 < z < 1.7$ observed with FMOS at the Subaru telescope. The two sets of SFRs are broadly consistent with each other as they are with the SFRs derived by stacking the corresponding PACS data in two mass bins. As a result, also the SFR–M_* relation using SFR(Hα) values is consistent with that derived from the other SFR indicators.

ACKNOWLEDGEMENTS

GR, IB and AF acknowledge support from the University of Padova from ASI (Herschel Science Contract I/005/07/0). AR acknowledges funding support from an INAF-PRIN-2010 grant. ED acknowledges funding support from the ERC-StG grants UPGAL 240039 and ANR-08-JCJC-0008. GC acknowledges support from the grant PRIN-INAF 2011 ‘Black hole growth and AGN feedback through the cosmic time’. AC acknowledges support from the MIUR PRIN 2010-2011 ‘The dark Universe and the cosmic evolution of baryons: from current surveys to Euclid’. This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF–IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy) and CICYT/MCYT (Spain).

We thank the anonymous referee for a careful reading and valuable comments, which have significantly contributed to improve the clarity of the paper.

REFERENCES

Bell E. F., 2003, ApJ, 586, 794
Berta S. et al., 2013, A&A, 551, A100
Béthermin M., Dole H., Beele A., Aussel H., 2010, A&A, 512, A78
Brinchmann J., Charlot S., White S. D. M., Tremonti C., Kauffmann G., Heckman T., Brinkmann J., 2004, MNRAS, 351, 1151
Chary R., Elbaz D., 2001, ApJ, 556, 562
Cresci G. et al., 2009, ApJ, 697, 115
Daddi E., Civatti A., Renzini A., Fontana A., Mignoli M., Pozzetti L., Tozzi P., Zamorani G., 2004, ApJ, 617, 764
Daddi E. et al., 2005, ApJ, 631, L13
Daddi E. et al., 2007, ApJ, 670, 156
Domínguez Sánchez H. et al., 2012, MNRAS, 426, 330
Elbaz D. et al., 2007, A&A, 468, 33
Elbaz D. et al., 2011, A&A, 533, A119
Erb D. K., Steidel C. C., Shapley A. E., Pettini M., Reddy N. A., Adelberger K. L., 2006, ApJ, 647, 128
Förster Schreiber N. M. et al., 2009, ApJ, 706, 1364
Ilbert O. et al., 2010, ApJ, 709, 644
Karim A., Schinnerer E., Martinez-Sansigre A., 2011, ApJ, 730, 61
Kashino D. et al., 2013, ApJ, 777, L8
Kennicutt R. C., Jr, 1998, ARA&A, 36, 189
Law D. R., Steidel C. C., Erb D. K., Larkin J. E., Pettini M., Shapley A. E., Wright S. A., 2009, ApJ, 697, 2057
Lilly S. J., Carollo C. M., Pipino A., Renzini A., Peng Y., 2013, ApJ, 772, 119
Lutz D. et al., 2011, A&A, 532, A90
McCracken H. J. et al., 2010, ApJ, 708, 202
Magdis G. E. et al., 2012, ApJ, 760, 6
Magnelli B., Elbaz D., Chary R. R., Dickinson M., Le Borgne D., Frayer D. T., Willmer C. N. A., 2009, A&A, 496, 57
Maraston C., Pforr J., Renzini A., Daddi E., Dickinson M., Cimatti A., Tonini C., 2010, MNRAS, 407, 830
Noeske K. G. et al., 2007, ApJ, 660, L43
Nordon R. et al., 2010, A&A, 518, L24
Nordon R. et al., 2012, ApJ, 745, 182
Pannella M. et al., 2009, ApJ, 698, L116
Peng Y.-j. et al., 2010, ApJ, 721, 193
Peng Y.-j., Lilly S. J., Renzini A., Carollo C. M., 2013, ApJ, submitted
Popesso P. et al., 2012, preprint (arXiv:1211.4257)
Reddy N. A., Steidel C. C., Fadda D., Yan L., Pettini M., Shapley A. E., Erb D. K., Adelberger K. L., 2006, ApJ, 644, 792
Reddy N. et al., 2012, ApJ, 744, 154
Renzini A., 2009, MNRAS, 398, L58
Rodighiero G. et al., 2010a, A&A, 515, A8
Rodighiero G. et al., 2010b, A&A, 518, L25
Rodighiero G. et al., 2011, ApJ, 739, L40
Salpeter E. E., 1955, ApJ, 121, 161
Sanders D. B., Soifer B. T., Elias J. H., Madore B. F., Matthews K., Neugebauer G., Scoville N. Z., 1988, ApJ, 325, 74
Santini P. et al., 2009, A&A, 504, 751
Scoville N. et al., 2007, ApJS, 172, 1
Whitaker K. E., van Dokkum P. G., Brammer G., Franx M., 2012, ApJ, 754, L29
Wuyts S. et al., 2011, ApJ, 742, 96
Zahid H. J. et al., 2013, preprint (arXiv:1310.4950)

This paper has been typeset from a TeX/LaTeX file prepared by the author.