Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark

Rikke Esberg Kirkfeldt1,2*, Jens Brock Johansen2,3, Ellen Aagaard Nohr4, Ole Dan Jørgensen2,5, and Jens Cosedis Nielsen1

1Department of Cardiology, Aarhus University Hospital, Skejby, Denmark; 2The Danish Pacemaker and ICD Register, Odense University Hospital, Odense, Denmark; 3Department of Cardiology, Odense University Hospital, Odense, Denmark; 4Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark; and 5Department of Heart, Lung, and Vascular Surgery, Odense University Hospital, Odense, Denmark

Received 23 May 2013; revised 11 November 2013; accepted 21 November 2013; online publish-ahead-of-print 17 December 2013

See page 1167 for the editorial comment on this article (doi:10.1093/eurheartj/eht568)

Aims
Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient morbidity, healthcare costs, and possibly increased mortality.

Methods and results
Population-based cohort study in all Danish patients who underwent a CIED procedure from May 2010 to April 2011. Data on complications were gathered on review of all patient charts while baseline data were obtained from the Danish Pacemaker and ICD Register. Adjusted risk ratios (aRRs) with 95% confidence intervals were estimated using binary regression. The study population consisted of 5918 consecutive patients. A total of 562 patients (9.5%) experienced at least one complication. The risk of any complication was higher if the patient was a female (aRR 1.3; 1.1–1.6), underweight (aRR 1.5; 1.1–2.3), implanted in a centre with an annual volume of 750 procedures (0–249 procedures: aRR 1.6; 1.1–2.2, 250–499: aRR 2.0; 1.6–2.7, 500–749: aRR 1.5; 1.2–1.8), received a dual-chamber ICD (aRR 2.0; 1.4–2.7) or CRT-D (aRR 2.6; 1.9–3.4), underwent system upgrade or lead revision (aRR 1.3; 1.0–1.7), had an operator with an annual volume of 50 procedures (aRR 1.9; 1.4–2.6), or underwent an emergency, out-of-hours procedure (aRR 1.5; 1.0–2.3).

Conclusion
CIED complications are more frequent than generally acknowledged. Both patient- and procedure-related predictors may identify patients with a particularly high risk of complications. This information should be taken into account both in individual patient treatment and in the planning of future organization of CIED treatment.

Keywords
Complication • Predictors • Cardiac resynchronization therapy • Implantable cardioverter defibrillator • Pacemaker

Introduction
Cardiac implantable electronic devices (CIEDs), including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are implanted worldwide in increasing numbers.1,2 Post-procedural complications are associated with increased patient morbidity, healthcare costs, and even mortality.3–6 Published data on these complications are based primarily on secondary analyses of strictly controlled randomized trials,7,8 observational single-centre studies,9,10 or registry-based studies.6,11–13 Unselected, real-life population-based complications data to evaluate the quality of routine CIED treatment and to identify high-risk patients are lacking.

We aimed (i) to provide complete and validated data on complications within the first 6 months after a CIED procedure and (ii) to identify predictors for CIED complications in a nationwide cohort of consecutive CIED patients.

* Corresponding author. Tel: +45 7845 2259; Fax: +45 7845 2260; Email: reki@svf.au.dk
© The Author 2013. Published by Oxford University Press on behalf of the European Society of Cardiology
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Methods

Study design and study population
A population-based cohort study was performed in all Danish patients who underwent a CIED procedure from May 2010 to April 2011. Eligible patients and their baseline characteristics were identified in the Danish Pacemaker and ICD Register (DPIR). Data on complications were gathered on review of all patient charts. Patients with epicardial systems were excluded.

Centre structure in Denmark
In Denmark, CIED implantation and follow-up are centralized to 14 centres covering a total population of 5.6 million. All transvenous procedures are performed by electrophysiologists or cardiology residents, and epicardial procedures are performed by thoracic surgeons. All centres perform PM implants, with five university centres performing, in addition, ICD and CRT implants.

Data sources
The Danish pacemaker and ICD register
The DPIR is a national clinical database into which implanting physicians have entered clinical and technical details of every CIED procedure performed since 1982, including implants, generator replacements, system upgrades/downgrades, and revisions.

Study outcome
Detailed information on complications after CIED procedures was collected by systematic review of all patient charts, also holding information regarding out-patient visits. The review was conducted by one investigator (REK).

Complications were categorized into major and minor complications according to severity. All re-interventions were categorized as major complications due to their inherently higher risk of infection.14,15 Major complications therefore included lead-related re-interventions, local infections requiring re-intervention, CIED-related systemic infections or endocarditis, pneumothorax requiring drainage, cardiac perforation, pocket revisions because of pain, generator-lead interface problems requiring re-intervention, haematomas requiring re-intervention, deep venous thrombosis, Twiddler’s syndrome, wound revisions, stroke, myocardial infarctions, and procedure-related deaths. For patients who died before their first outpatient visit, cause of death was established by review of patient charts. Minor complications included haematomas resulting in a prolonged hospital stay, hospital re-admissions, or additional out-patient visits, wound infections treated with antibiotics, pneumothorax conservatively treated, and lead dislodgements without re-intervention.

Predictors
Patient- and procedure-related variables included gender, age, body mass index (BMI), centre volume, CIED type, procedure type, operator volume, and procedure priority. Age was divided into four groups: <39 years, 40–59 years, 60–79 years, and ≥80 years. BMI was categorized into four groups:16 <18.5 kg/m² (underweight), 18.5–24.9 kg/m² (normal weight), 25–29.9 kg/m² (overweight), and ≥30 kg/m² (obese). Centre volume was categorized according to procedure number during the study period: <249 procedures (five non-university centres), 250–499 (four non-university centres), 500–749 (three university centres), and ≥750 (two university centres). CIED type was categorized as a single-chamber PM, dual-chamber PM, CRT-P, single-chamber ICD, dual-chamber ICD, and CRT-D. Procedure type consisted of three groups: first implant, generator replacement, and surgical change of pacing mode (system upgrade), or lead revision. Operator volume was defined as the average annual procedure number of each operator for the period ranging from one year prior to the beginning of the study to the end of the study and was divided into four groups: <50 (low volume operators), 50–99, 100–149, and ≥150 (high volume operators). Procedure priority (elective, emergency daytime, and emergency out-of-hours) was recorded. Categorization of predictors was prespecified.

Statistical analysis
Differences between groups were evaluated with the χ² test. Cumulative incidence proportions of complications six months after the procedure were estimated with 95% confidence intervals (CIs). Binary regression was used to estimate risk ratios (RRs) and 95% CIs for association between selected predictors and any complication, any major complication, or any minor complication. In adjusted analyses, we included a priori selected confounders (gender, age, BMI, centre volume, CIED type, procedure type, operator volume, and procedure priority). A sub-group analysis was performed using binary regression to estimate the RR for association between CIED type (PM/CRT-P vs. ICD/CRT-D) and right ventricular lead-related re-intervention. Additional binary regression analysis was performed with 6-month mortality as outcome. A P-value (two-sided) <0.05 was considered statistically significant. STATA software (STATA IC for Windows, version 11.2) was used for statistical analyses.

The Danish Data Protection Board and the DPIR steering committee approved the study.

Results

Study population
A total of 5942 patients underwent a CIED procedure during the study period. Patients with epicardial systems were excluded (n = 24). The final study population consisted of 5918 consecutive patients.

Patient and procedural characteristics
The majority of patients underwent new CIED implants (Table 1, see Supplementary material online, Table S1). Median age at implantation was 74 years (interquartile range: 65–83).

In the two groups with centre volume <500 procedures (non-university centres), only PM procedures were performed. In the third group (500–749 procedures), 53% of procedures were CRT-P, ICD, or CRT-D procedures, and in the highest volume centres (>750 procedures), 40% were CRT-P, ICD, or CRT-D procedures. During the study period, 68 physicians performed CIED procedures. Emergency procedures involved new implant of single or dual-chamber PMs.

Complication risk
A total of 9.5% of all patients experienced at least one complication (Table 2), while 33 patients (0.6%) had more than one. Lead-related re-intervention was the single most common complication (2.4%). System upgrades or lead revisions had higher overall complication risk primarily because of infection (P = 0.001), and pocket revision due to pain (P < 0.001). The risk of infection was higher in generator replacement procedures compared with first implants (P = 0.001).

Women had higher risk of pneumothorax (2.2 vs. 1.1%, P = 0.02), and cardiac perforation (1.1 vs. 0.4%, P < 0.001). Risk of pneumothorax increased with decreasing BMI from 0.8% in overweight or obese, 2.3% in normal weight, to 5.5% in underweight patients.
Furthermore, minor haematomas were more frequent in underweight than in normal weight patients (4.9 vs. 2.3%, \(P = 0.001\)). Patients older than 80 years had lower risk of any lead-related re-intervention (1.0 vs. 3.1%, \(P = 0.001\)) compared with patients who were 60–79 years of age. Centres with \(\geq 750\) annual procedures had higher complication risks with no predisposition to any specific complication. In dual-chamber ICD and CRT-D procedures, higher complication risks were observed compared with dual-chamber PM procedures, primarily lead-related re-interventions (dual-chamber ICD: 3.6 vs. 2.3%, \(P = 0.001\); CRT-D:

Table 1	Patient and procedure characteristics			
	Total (\(n = 5918\))	No complication (\(n = 5356\))	Complication (\(n = 562\))	
Gender				
Male	3707 (63)	3382 (63)	325 (58)	
Female	2211 (37)	1974 (37)	237 (42)	
Age group, years				
0–39	166 (3)	149 (3)	17 (3)	
40–59	713 (12)	633 (12)	80 (14)	
60–79	3096 (52)	2775 (52)	321 (57)	
\(\geq 80\)	1943 (33)	1799 (34)	144 (26)	
Body mass index, kg/m\(^2\)				
Underweight (\(< 18.5\))	163 (3)	139 (3)	24 (4)	
Normal (18.5–24.9)	2483 (42)	2236 (42)	247 (44)	
Overweight (25–29.9)	2136 (36)	1952 (37)	184 (33)	
Obese (\(\geq 30\))	1126 (19)	1019 (19)	107 (19)	
Centre volume				
0–249	702 (12)	642 (12)	60 (11)	
250–499	1517 (26)	1355 (25)	162 (29)	
500–749	1912 (32)	1697 (32)	215 (38)	
\(\geq 750\)	1787 (30)	1662 (31)	125 (22)	
CIED type				
Single-chamber PM	1160 (20)	1080 (20)	80 (14)	
Dual-chamber PM	3029 (51)	2758 (52)	271 (48)	
CRT-P	209 (4)	189 (4)	20 (4)	
Single-chamber ICD	684 (12)	627 (12)	57 (10)	
Dual-chamber ICD	391 (7)	336 (6)	55 (10)	
CRT-D	445 (8)	366 (7)	79 (14)	
Procedure type				
New implant	4355 (74)	3923 (73)	432 (77)	
Generator replacement	1136 (19)	1069 (20)	67 (12)	
System upgrade or lead revision	427 (7)	364 (7)	63 (11)	
Operator volume				
0–49	349 (6)	301 (6)	48 (9)	
50–99	1436 (24)	1309 (24)	125 (22)	
100–149	2257 (38)	2027 (38)	230 (41)	
\(\geq 150\)	1876 (32)	1717 (32)	159 (28)	
Procedure priority				
Elective	5267 (89)	4773 (89)	498 (89)	
Emergency, daytime	340 (6)	308 (6)	33 (6)	
Emergency, out-of-hours	221 (4)	195 (4)	26 (5)	
Procedure duration, median		40 (30–56)	40 (30–55)	47 (36–65)

Continuous variables are reported as median with 25th and 75th percentiles. Categorical variables are reported as absolute frequencies and percentages. Data were incomplete for the following parameters: body mass index (\(n = 5908\)), procedure priority (\(n = 5828\)), and procedure duration (\(n = 5828\)).
Complications after cardiac implantable electronic device implantations

The present study provides detailed and complete data on the risks and predictors of CIED complications in a nationwide cohort of consecutive CIED patients.
Complication risk

The almost 10% overall risk of any complication is higher than expected from previous studies, as is the 6% risk of major complications.

Most studies report risks of 5–6% for any complication and 3–4% for major complications after PM implantations. Complication risks after ICD and CRT-D procedures are reported to be between 3 and 8%, although comparisons are impeded by varying follow-up periods and definition of complications. More consistent with our findings, however, are reported in-hospital complication risks of 11–16% after ICD and CRT-D procedures, from studies using administrative data from Medicare. Similarly, the FOLLOWPACE trial reported a complication risk of 12.4% within the first two months after PM implant.

We found higher risks of any complication (5.9%) after generator replacement compared with a report from the Ontario ICD database. Similarly, we found higher or equal complication risks for system upgrades and lead revisions compared with those reported by the REPLACE Registry, which specifically studied complication risks of re-intervention procedures. Taken together with these previous findings, our results confirm that any type of re-intervention carries higher complication risk compared with new CIED implants.

This emphasizes the importance of careful consideration of CIED prescription at new implant in order to avoid the need for future re-intervention.

Our finding of higher overall complication risk can be attributed to the comprehensiveness of our study design, which consisted of a systematic review of all patient charts in a consecutive cohort. The majority of our knowledge on complications derives from randomized trials, which typically observe fewer complications than in a real-life setting due to strict patient selection criteria, and selection of more experienced operators. In recent years, large, registry-based studies on complications have emerged with more robust estimates of complications; however, data on complications are typically self-reported by CIED centres such that underreporting is likely to occur. Furthermore, many registries are restricted to in-hospital follow-up, leaving a large proportion of longer-term CIED complications unaccounted for.

Predictors

In centres with an annual volume <750 procedures, we demonstrated 50–100% higher risks of any complication after CIED procedures compared with the highest volume centres, in accord with previous studies. A likely explanation is more experienced...
operators and ancillary personnel in the highest volume centres. Similar to previous reports, we showed that low volume operators had a 90% increased complication risk compared with high volume operators, with a critical threshold of approximately 50 procedures per year. Despite relative centralization of CIED treatment in Denmark compared with most Western countries, we were still...
able to demonstrate marked variation of complication risks between both centres and operators. This variation may be more marked in countries where CIED treatment is decentralized.

Implantation of high-voltage leads (i.e. ICD-leads) had an increased risk of re-interventions compared with implantation of RV pacing leads. Very few data exist on this topic, however, a recently published study

Table 3 Predictors for complications
Any major complication
Risk (%)
Gender
Male 5.0
Female 6.5

Age group, years
Risk (%)
0–39
40–59
60–79
≥ 80

Body mass index, kg/m²
Risk (%)
Underweight (<18.5)
Normal (18.5–24.9)
Overweight (25–29.9)
Obese (≥30)

Centre volume
Risk (%)
0–249
250–499
500–749
≥ 750

CIED type
Risk (%)
Single-lead PM
Dual-chamber PM
CRT-P
Single-chamber ICD
Dual-chamber ICD
CRT-D

Procedure type
Risk (%)
New implant
Generator replacement
Upgrade/lead revision

Operator volume
Risk (%)
0–49
50–99
100–149
≥ 150

Procedure priority
Risk (%)
Elective
Emergency, daytime
Emergency, out-of-hours

\(^a\)Reference group.

\(^b\)Adjusted for gender, age, body mass index, centre volume, CIED type, procedure type, procedure priority, and operator volume.
reports similar findings. This can be attributed to the more complex structure, larger calibre, and increased rigidity of high-voltage leads, which in addition, require more stringent implant and follow-up lead parameters. This higher complication risk should be taken into account when planning the implantation of ICD and CRT-D systems.

Women had a 30% higher risk of any complication, mainly due to pneumothorax, and cardiac perforation. This gender difference in CIED complication risk is consistent with other reports, and underlying explanations may include differences in body composition, and hormonal differences.

In contrast to previous reports, age > 80 years was associated with a 20% reduction in complication risk, particularly fewer lead-related re-interventions were seen. The reason for this is unknown, although possibly related to a higher tendency to accept suboptimal lead function, a higher proportion of simpler CIED types, or less physical activity with lower strain on the CIED in this patient group.

Reduced BMI was associated with increased risk of complications after CIED procedures; in particular, the risks of pneumothorax and haematoma were higher, consistent with findings from recent studies. Haematomas may be more easily recognized in underweight patients, and a closer proximity of the pleural space to the venous access point in these patients may explain the higher risk of pneumothorax.

System upgrades and lead revisions increased the risk of complications by 30%, mainly because of elevated risk of infections, as reported previously. Generator replacements had lower risk of any complication, but were associated with increased infection risk as anticipated. Emergency, out-of-hours procedures were associated with increased complication risk, likely due to more urgent indications for CIED implantation (e.g. third degree atrioventricular block and haemodynamic instability).

Mortality

Mortality after CIED procedures is inconsistently reported and meaningful comparisons are difficult. It is, however, apparent that procedure-related mortality is low; we observed only one potentially procedure-related death in our cohort. Previous studies reported all-cause in-hospital mortality between 0.4 and 1.3%, highest in PM populations, and in registry-based studies. We found a somewhat lower in-hospital mortality of 0.1%. Compared with results from the MOST trial, our 30-day mortality rate was twice as high, likely reflecting the differences in prognosis between a consecutive cohort and patients qualifying for inclusion in a randomized trial. Al-Khatib et al. reported a 90-day mortality higher than ours, most likely explained by their study cohort being older than 65 years.

Patients older than 80 years, patients with single-chamber ventricular PM procedures, and underweight patients had higher 6-month mortality. This likely reflects that single-chamber ventricular PMs are often selected for patients with high burden of comorbidity.

We report acceptably low in-hospital, 30-day, 90-day, and 6-month all-cause mortality rates, not significantly related to centre or operator volumes.

Study limitations

Only complications documented in the patient charts were identified. However, in our opinion, this was the most accurate and comprehensive way of identifying complications.

Our complication risk figures are only applicable to healthcare systems where CIED procedures are performed by cardiologists and electrophysiologists working within a similar system to ours, and should be interpreted with care in countries where general internists and thoracic surgeons also perform these procedures.

Our results may have been confounded by other factors that may affect complications, such as anti-thrombotic and antiplatelet treatment, and the use of steroids, for which data were not collected. Similarly, we were unable to account for procedures where lead extraction occurred concurrently with the CIED procedure being examined. These procedures will undoubtedly carry higher risks of complications. Because of the non-randomized nature of the study, the difference in complication risk between CIED types may in part be explained by residual confounding.

We did not study long-term complication risks. However, our aim was to investigate short-term complications after CIED procedures, and the large majority of these occur within a 6 month period. Nevertheless, prospective studies examining long-term outcome after CIED procedures and CIED complications are needed to further investigate the quality of CIED treatment. Longer follow-up is especially important for CIED-related infections.

Conclusions

Complications following CIED treatment are more frequent than generally acknowledged. Both patient- and procedure-related predictors may identify patients with particularly high risk of complications. This information should be taken into account in individual patient treatment, and when planning the implantation of more complex CIED types. In order to minimize later need for system upgrade, carefully considered CIED therapy prescription is essential. Low volume centres and operators had higher risk of complications, and minimum operator volume of 50 procedures per year seems advisable.

Supplementary material

Supplementary material is available at European Heart Journal online.

Acknowledgements

We wish to thank the DPIR steering committee for supporting the data collection: Sam Riahi, Aalborg University Hospital; Søren Højberg, Bispebjerg Hospital; Elsebeth Fris, Esbjerg Hospital; Michael Vonther, Gentofte University Hospital; Lene Svendstrup, Haderslev Hospital; Jerzy Malczynski, Herning Hospital; Tommi Bo Lindhardt, Hillerød Hospital; Regitze Videbak, Rigshospitalet; Thomas Melchior, Roskilde Hospital; Birger Engby, Vejle Hospital; and Per Dahl Christensen, Viborg Hospital.

Funding

This work was supported by unrestricted research grants from the Institute of Clinical Medicine, Aarhus University; Biotronik Denmark; Medtronic Denmark A/S; St. Jude Medical; ViCare Medical A/S; Gangstedfonden; the foundation of Sophus Jacobsen and Astrid Jacobsen; the Central Denmark Region Research Foundation; Department of Cardiology, Odense University Hospital; and the Danish Heart Foundation (12-04-R90-A3850-22712). Funding to pay the Open Access
publication charges for this article was provided by The Danish Pacemaker-and ICD Register.

Conflict of interest: (J.B.): speakers fee (<10K$) from Biotronik, and Boston-Scientific within latest 12 months. J.C.N.: research Grant from Biosense Webster (>100K$) for MANTRA-PAF trial, speakers fee (<10K$) from Biotronik and Biosense Webster within latest 12 months.

References

1. Mond HG, Irwin M, Ector H, Proclamer A. The world survey of cardiac pacing and cardioverter-defibrillators: calendar year 2005 an International Cardiac Pacing and Electrophysiology Society (ICPES) project. Pacing Clin Electrophysiol 2008;31: 1202–1212.

2. Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, Cleland J, Dehary JC, Delgado Y, Elliott PM, Gorenek B, Israel CW, Ledercq C, Linde C, Mont L, Padelletti L, Sutton R, Vardas PE, Zamarona JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fogard F, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuts J, Kohl P, Lancellotti P, Liniti A, Nihoyannopoulos P, Piepoli MF, Pisoniowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windkessel S, Kirchhof P, Blomstrom-Lundqvist C, Badano LP, Aliyev F, Baranchik O, Baumgartner H, Basta W, Buser P, Charbon A, Dauber JC, Dobrevsky D, Faerestrand S, Hasdai D, Hoes AW, Le Heuzey JY, Mavrakis H, McDonagh T, Merino JL, Navar M, Nielsen J, Peske B, Pospisil L, Ruschitzka F, Tenda M, van Gelder IC, Wilson CM. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA).

3. Reynolds MR, Cohen DJ, Kugelmass AD, Brown PP, Becker ER, Culler SD, Duran GM, Oberman CL, Thomas L, Achenbach S. Comparison of patients with single-chamber, dual-chamber, and biventricular devices. Eur Heart J 2011;32:2281–2293.

4. NHS England, Annual report on coronary stenting in England 2007-2008. Available from: http://www.pacemaker-register.de. Last accessed (13 February 2013).

5. Al-Khatib SM, Greiner MA, Peterson ED, Hernandez A, Schulman KA, Curtis LS. Patient and implanting physician factors associated with mortality and complications after implantable cardioverter-defibrillator implantation, 2002–2005. Circ Arrhythm Electrophysiol 2008;1:249–254.

6. Kron J, Herre J, Renfroe EG, Raitt M, Halperin B, Gold M, Goldner B, Wathen M, Wilkoff B, Ollarte A, Yao Q. Lead- and device-related complications in the arrhythmias versus implantable defibrillators trial. Am Heart J 2001;141: 92–98.

7. Kron J, Herre J, Renfroe EG, Raitt M, Halperin B, Gold M, Goldner B, Wathen M, Wilkoff B, Ollarte A, Yao Q. Lead- and device-related complications in the arrhythmias versus implantable defibrillators trial. Am Heart J 2001;141: 92–98.

8. Kron J, Herre J, Renfroe EG, Raitt M, Halperin B, Gold M, Goldner B, Wathen M, Wilkoff B, Ollarte A, Yao Q. Lead- and device-related complications in the arrhythmias versus implantable defibrillators trial. Am Heart J 2001;141: 92–98.

9. Kron J, Herre J, Renfroe EG, Raitt M, Halperin B, Gold M, Goldner B, Wathen M, Wilkoff B, Ollarte A, Yao Q. Lead- and device-related complications in the arrhythmias versus implantable defibrillators trial. Am Heart J 2001;141: 92–98.

10. Kron J, Herre J, Renfroe EG, Raitt M, Halperin B, Gold M, Goldner B, Wathen M, Wilkoff B, Ollarte A, Yao Q. Lead- and device-related complications in the arrhythmias versus implantable defibrillators trial. Am Heart J 2001;141: 92–98.

11. Kron J, Herre J, Renfroe EG, Raitt M, Halperin B, Gold M, Goldner B, Wathen M, Wilkoff B, Ollarte A, Yao Q. Lead- and device-related complications in the arrhythmias versus implantable defibrillators trial. Am Heart J 2001;141: 92–98.

12. Kron J, Herre J, Renfroe EG, Raitt M, Halperin B, Gold M, Goldner B, Wathen M, Wilkoff B, Ollarte A, Yao Q. Lead- and device-related complications in the arrhythmias versus implantable defibrillators trial. Am Heart J 2001;141: 92–98.

13. Kron J, Herre J, Renfroe EG, Raitt M, Halperin B, Gold M, Goldner B, Wathen M, Wilkoff B, Ollarte A, Yao Q. Lead- and device-related complications in the arrhythmias versus implantable defibrillators trial. Am Heart J 2001;141: 92–98.

14. Kron J, Herre J, Renfroe EG, Raitt M, Halperin B, Gold M, Goldner B, Wathen M, Wilkoff B, Ollarte A, Yao Q. Lead- and device-related complications in the arrhythmias versus implantable defibrillators trial. Am Heart J 2001;141: 92–98.