Lie geometry of 2×2 Markov matrices

Jeremy G. Sumner
School of Mathematics and Physics
University of Tasmania, Australia
ARC Research Fellow
email: jsunmer@utas.edu.au

May 6, 2014

Abstract
In recent work discussing model choice for continuous-time Markov chains, we have argued that it is important that the Markov matrices that define the model are closed under matrix multiplication [6, 7]. The primary requirement is then that the associated set of rate matrices form a Lie algebra. For the generic case, this connection to Lie theory seems to have first been made by [3], with applications for specific models given in [1] and [2]. Here we take a different perspective: given a model that forms a Lie algebra, we apply existing Lie theory to gain additional insight into the geometry of the associated Markov matrices. In this short note, we present the simplest case possible of 2×2 Markov matrices. The main result is a novel decomposition of 2×2 Markov matrices that parameterises the general Markov model as a perturbation away from the binary-symmetric model. This alternative parameterisation provides a useful tool for visualising the binary-symmetric model as a submodel of the general Markov model.

Keywords: Lie algebras, algebra, symmetry, Markov chains, phylogenetics

1 Results
Consider the set of real 2×2 Markov matrices
\[\left\{ \begin{pmatrix} 1-a & b \\ a & 1-b \end{pmatrix} : a, b \in \mathbb{R} \right\}, \]
and the subset of 2×2 “stochastic” Markov matrices
\[\left\{ \begin{pmatrix} 1-a & b \\ a & 1-b \end{pmatrix} : 0 \leq a, b \leq 1 \in \mathbb{R} \right\}. \]

In models of phylogenetic molecular evolution (see for example [1]), this set provides the transition matrices for what is known as the “general Markov model” on two states. If we were to take the additional constraint $a = b$, the model would then be referred to as “binary-symmetric”.

Associated with these sets is the matrix group
\[\mathcal{G} := \left\{ \begin{pmatrix} 1-a & b \\ a & 1-b \end{pmatrix} : a, b \in \mathbb{R}, a + b \neq 1 \right\}. \]
We can geometrically understand \mathcal{G} by considering it as a manifold in \mathbb{R}^2. This is illustrated in Figure 1.

By considering smooth paths $A(t) \in \mathcal{G}$, we can define the tangent space of this matrix group at the identity:

$$ T_1(\mathcal{G}) = \{ A'(0) : A(t) \in \mathcal{G} \text{ and } A(0) = 1 \}. $$

As \mathcal{G} is a matrix group, it follows that $T_1(\mathcal{G})$ forms a Lie algebra. This means that for all $X, Y \in T_1(\mathcal{G})$ and $\lambda \in \mathbb{R}$, we have:

1. $X + \lambda Y \in T_1(\mathcal{G})$, i.e. $T_1(\mathcal{G})$ is a vector space,
2. $[X, Y] := XY - YX \in T_1(\mathcal{G})$.

Consider two smooth functions $a(t)$ and $b(t)$ satisfying $a(t) + b(t) \neq 1$ for all t, and $a(0) = b(0) = 0$. Define

$$ A(t) = \begin{pmatrix} 1 - a(t) & b(t) \\ a(t) & 1 - b(t) \end{pmatrix}, $$

Then, by construction, $A(t)$ is a smooth path in \mathcal{G} and $A'(0) \in T_1(\mathcal{G})$. If we define $L_1 := \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$ and $L_2 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, we have $A'(0) = a'(0)L_1 + b'(0)L_2$, so $T_1(\mathcal{G}) = \langle L_1, L_2 \rangle_\mathbb{R}$ and $\{ L_1, L_2 \}$ is a basis for $T_1(\mathcal{G})$. It is straightforward to check that $[L_1, L_2] = L_1 - L_2$, so we conclude that $T_1(\mathcal{G})$ is indeed a Lie algebra.

Recall that a subgroup $H \leq G$ of a group is normal if $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$. Also recall that the connected component to the identity G^0 is normal in G. In our case, this becomes:

Result 1. $G^0 = \{ M \in \mathcal{G} : \det(M) > 0 \}$.

Proof. Consider $M = \begin{pmatrix} 1 - a & b \\ a & 1 - b \end{pmatrix} = e^{Qt}$ where $Q := \begin{pmatrix} -\alpha & \beta \\ \alpha & -\beta \end{pmatrix}$ is a rate matrix (as would occur in a continuous-time formulation of a Markov process). Using the power series expansion of e^{Qt}, it is straightforward to show that, if $(a + b)t < 1$,

$$ \alpha = -\log(1 - (a + b)t) \quad \frac{1}{1 + b/a}, \quad \beta = -\log(1 - (a + b)t) \quad \frac{1}{1 + a/b}, $$

provides a solution to $M = e^{Qt}$. If we define the path $A(t) := e^{Qt}$, we have $A(0) = 1$ and $A(1) = M$. Thus, $M \in G^0$ for all $a + b < 1$. On the other hand, if $a + b \geq 1$, there can be no path $B(t) \in \mathcal{G}$ with $B(0) = 1$ and $B(1) = M$ because we would have $\det(B(\tau)) = 0$ for some τ in the interval $(0, 1]$.

\[\square \]
Corollary 1. $\mathcal{G}^0 = \left\{ e^Q : Q = \begin{pmatrix} -\alpha & \beta \\ \alpha & -\beta \end{pmatrix} : \alpha, \beta \in \mathbb{R} \right\}$.

Recall the homomorphism theorem for groups (see for example [5]), which ensures, for any group homomorphism $\rho : G \to G'$, that (i.) the image of ρ is a subgroup of G', (ii.) the kernal K of ρ is normal in G, and (iii.) $G/K \cong G'$. To understand the set difference $\mathcal{G} - \mathcal{G}^0$, we notice that \mathcal{G}^0 is the kernal of the homomorphism,

$$\mathcal{G} \to \{1, -1\} \cong \mathbb{Z}_2,$$

$$M \mapsto \text{sgn}(\det(M)).$$

The kernal of this homomorphism is \mathcal{G}^0, thus $\mathcal{G}/\mathcal{G}^0 = \{\mathcal{G}^0, \rho \mathcal{G}^0\} \cong \mathbb{Z}_2$ for some $P \in \mathcal{G} - \mathcal{G}^0$. For reasons of symmetry, we reflect the identity 1 in the line $\det(M)$ and set $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, noting that $P^2 = 1$. As $\mathcal{G}/\mathcal{G}^0$ is a partition of \mathcal{G}, we see that $\mathcal{G} - \mathcal{G}^0 = \rho \mathcal{G}^0$ and $\mathcal{G} = \mathcal{G}^0 \cup \rho \mathcal{G}^0$.

Somewhat trivially:

Result 2. As manifolds, $\mathcal{G}^0 \cong \rho \mathcal{G}^0$.

Proof. Clearly,

$$P : \mathcal{G}^0 \to \rho \mathcal{G}^0$$

$$M \mapsto PM,$$

is a diffeomorphism because it maps continuous paths to continuous paths. \(\square\)

In particular, this means that:

Result 3. \mathcal{G}^0 is connected $\iff \rho \mathcal{G}^0$ is connected

Proof. No proof is required, but we give one regardless to illustrate. Consider the path $A(t) = e^{Q_2}e^{Q_1(1-t)} \in \mathcal{G}^0$ with $A(0) = M_1 := e^{Q_1}$ and $A(1) = M_2 := e^{Q_2}$. Now, $B(t) := PA(t)$ is a path in $\rho \mathcal{G}^0$ with $B(0) = PM_1$ and $B(1) = PM_2$. As any two points in $\rho \mathcal{G}^0$ can be written in this way, we are done. \(\square\)

Recall that the center $Z(G)$ of a group G is the set of all $g \in G$ such that $gh = hg$ for all $h \in G$. In our case, suppose that $N = \begin{pmatrix} 1-c & d \\ c & 1-d \end{pmatrix} \in Z(\mathcal{G})$. Setting $NM = MN$ implies:

$$\begin{pmatrix} 1-c & d \\ c & 1-d \end{pmatrix} \begin{pmatrix} 1-a & b \\ a & 1-b \end{pmatrix} = \begin{pmatrix} * & b(1-c - d) + d \\ a(1-d-c) + c & * \end{pmatrix}$$

$$= \begin{pmatrix} * & d(1-b - a) + b \\ c(1-b - a) + a & * \end{pmatrix},$$

which is true if and only if $-bc = -ad$ for all a and b. This can only happen if $c = d = 0$, thus $Z(\mathcal{G}) = \{1\}$. Now, consider the basic theorem (see for example [5]):

Theorem 1.1. If a matrix group G is path connected with discrete center, then any non-discrete normal subgroup H will have tangent space $T_1(H) \neq \{0\}$. Further, $T_1(H)$ is an ideal of $T_1(G)$, i.e. $[X,Y] \in T_1(H)$ for all $X \in T_1(H)$ and $Y \in T_1(G)$. Therefore, any such H can be detected by checking for ideals of $T_1(G)$.

In our case, \mathcal{G}^0 satisfies the conditions of this theorem. Suppose \mathcal{I} is a proper ideal of $T_1(\mathcal{G}^0)$. Then \mathcal{I} is one-dimensional, and $Y := xL_1 + yL_2 \in \mathcal{I}$ satisfies:

$$[Y, L_1] = y(L_2 - L_1), \text{ and } [Y, L_2] = x(L_1 - L_2) \in \mathcal{I},$$

which can only be true if $Y \propto (L_1 - L_2)$.
In Figure 2. It is remarkable that such a simple application of elementary Lie theory has

\[\langle T_1(\mathcal{H}) \rangle = \langle Y \rangle_{\mathbb{R}} \]

Result 4. \(\langle Y \rangle_{\mathbb{R}} = \langle L_1 - L_2 \rangle_{\mathbb{R}} \) is the only proper ideal of \(T_1(\mathcal{G}^0) \).

We take \(Y = L_1 - L_2 \) and note that \(Y^2 = 0 \), so \(e^{Ys} = e^{(L_1 - L_2)s} = 1 + Ys = (1 - s \, -s) = h_s \). If we define the matrix group \(\mathcal{H} := \{(1 - s \, 1 + s), s \in \mathbb{R}\} \), it is easy to confirm that \(\mathcal{H} \) is normal in \(\mathcal{G}^0 \) and has tangent space \(T_1(\mathcal{H}) = \langle Y \rangle_{\mathbb{R}} \).

Let \(\mathbb{R}_{>0}^2 \) be the set of positive real numbers considered as a group under multiplication. We have:

Result 5. \(\mathcal{H} \) is the kernal of the homomorphism \(\mathcal{G}^0 \to \mathbb{R}_{>0}^2 \) defined by \(M \mapsto \det(M) \).

Thus \(\mathcal{G}^0/\mathcal{H} \cong \mathbb{R}_{>0}^\times \).

Proof.

\[\det(M) = 1 \iff a + b = 0 \iff M = \begin{pmatrix} 1 - a & -a \\ a & 1 + a \end{pmatrix}. \]

\[\square \]

Since \(h_s h_t = h_{s+t} \), i.e. \(\mathcal{H} \) forms a one-parameter subgroup of \(\mathcal{G}^0 \), we have \(\mathcal{H} \cong \mathbb{R}^+ \), where \(\mathbb{R}^+ = \mathbb{R} \) is considered as a group under addition. Note that \(\mathcal{G}^0/\mathcal{H} \) is a parameterised partition of \(\mathcal{G}^0 \), so we can write \(\mathcal{G}^0/\mathcal{H} = \bigcup_{e \in \mathbb{R}} e^q \mathcal{H} \), where \(Q \in T_1(\mathcal{G}^0) - T_1(\mathcal{H}) \). We then see that any \(M \in \mathcal{G}^0 \) can be written as a product \(e^q h_s \), where \(\det(M) = \det(e^q) \).

Again for reasons of symmetry, we take \(Q = \frac{1}{2} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \), i.e. \(Q \) is the generator of the binary-symmetric model, and we have \(\det(e^q) = e^{-t} = \lambda \).

This brings us to our main result.

Result 6. Any \(M \in \mathcal{G}^0 \) can be expressed as

\[M = \begin{pmatrix} 1 - a & b \\ a & 1 - b \end{pmatrix} = e^q h_s = \frac{1}{2} \begin{pmatrix} 1 + e^{-t} & 1 - e^{-t} \\ 1 - e^{-t} & 1 + e^{-t} \end{pmatrix} \begin{pmatrix} 1 - s & -s \\ s & 1 + s \end{pmatrix} \]

\[= \frac{1}{2} \begin{pmatrix} 1 + \lambda & 1 - \lambda \\ 1 - \lambda & 1 + \lambda \end{pmatrix} \begin{pmatrix} 1 - s & -s \\ s & 1 + s \end{pmatrix}, \] (1)

where \(\det(M) = \lambda = e^{-t} = 1 - a - b \), and \(s = \frac{1}{2}(a - b) \det(M)^{-1} \).

For the binary-symmetric model implemented as a stationary Markov chain, the parameter \(\lambda = e^{-t} \) is proportional to the expected number of transitions in chain in time \(t \). Therefore we can think of the parameter \(s \) as providing a perturbation away from the binary-symmetric model. Additionally, to ensure that \(M \) is a stochastic Markov matrix, with \(a, b \geq 0 \), we require \(-\frac{1}{2}(e^t - 1) \leq s \leq \frac{1}{2}(e^t - 1) \).

The decomposition (1) is the main result of this note and is presented geometrically in Figure 2. It is remarkable that such a simple application of elementary Lie theory has

Figure 2: Lie geometry of 2 x 2 Markov matrices
led directly to this decomposition, and it seems plausible that this decomposition may be
useful in practice for (i.) computational efficiency, and/or (ii.) the simple interpretation
of the parameters t, λ and s. It will be interesting to explore whether a similar analysis
leads to alternative parameterisation for other popular phylogenetic models that form Lie
algebras, but we leave this for future work.

References

[1] J. D. Bashford, P. D. Jarvis, J. G. Sumner, and M. A. Steel. $U(1) \times U(1) \times U(1)$
symmetry of the Kimura 3ST model and phylogenetic branching processes. J. Phys.
A Math. Gen., 37:L1–L9, 2004.

[2] T. House. Lie algebra solution of population models based on time-inhomogeneous
markov chains. J. Appl. Prob., 49:472–481, 2012.

[3] J. E. Johnson. Markov-type Lie groups in $GL(n, \mathbb{R})$. J. Math. Phys., 26:252–257,
1985.

[4] C. Semple and M. Steel. Phylogenetics. Oxford Press, 2003.

[5] John Stillwell. Naive Lie Theory. Undergraduate Texts in Mathematics. Springer,
New York, 2008.

[6] J. G. Sumner, J. Fernández-Sánchez, and P. D. Jarvis. Lie markov models. J. Theor.
Biol., 298:16–31, 2012.

[7] J. G. Sumner, P. D. Jarvis, J. Fernández-Sánchez, B. T. Kaine, Michael D. Wood-
hams, and B. R Holland. Is the general time-reversible model bad for molecular
phylogenetics? Syst. Biol., 61:1069–1074, 2012.