Abstract—In the last two decades, a number of methods have been proposed for forecasting based on fuzzy time series. Most of the fuzzy time series methods are presented for forecasting of car road accidents. However, the forecasting accuracy rates of the existing methods are not good enough. In this paper, we compared our proposed new method of fuzzy time series forecasting with existing methods. Our method is based on means based partitioning of the historical data of car road accidents. The proposed method belongs to the kth order and time-variant methods. The proposed method can get the best forecasting accuracy rate for forecasting the car road accidents than the existing methods.

Keywords- Fuzzy sets, Fuzzy logical groups, fuzzified data, fuzzy time series.

I. INTRODUCTION

Forecasting activities play an important role in our daily life. During last two decades, various approaches have been developed for time series forecasting. Among them, ARMA models and Box-Jenkins model building approaches are highly famous. However, the classical time series methods can not deal with forecasting problems in which the values of time series are linguistic terms represented by fuzzy sets [11], [23]. Therefore, Song and Chissom [18] presented the theory of fuzzy time series to overcome this drawback of the classical time series methods. Based on the theory of fuzzy time series, Song et al. presented some forecasting methods [16], [18], [19], [20] to forecast the enrollments of the University of Alabama. In [1] Chen and Hsu and in [2], Chen presented a method to forecast the enrollments of the University of Alabama based on fuzzy times series. It has the advantage of reducing the calculation, time and simplifying the calculation process. In [8], Hwang, Chen and Lee used the differences of the enrollments to present a method to forecast the enrollments of the University of Alabama based on fuzzy time series. In [5] and [6], Huang used simplified calculations with the addition of heuristic rules to forecast the enrollments using [2].

In [4], Chen presented a forecasting methods based on high-order fuzzy time series for forecasting the enrollments of the University of Alabama. In [3], Chen and Hwang presented method based on fuzzy time series to forecast the daily temperature. In [15], Melike and Konstsntin presented a new first order time series model for forecasting enrollments of the University of Alabama. In [14], Li and Kozma presented a dynamic neural network method for time series prediction using the KIII model. In [21], Su and Li presented a method for fusing global and local information in predicting time series based on neural networks. In [22], Sullivan and Woodall reviewed the first-order time-variant fuzzy time series model and the first-order time-invariant fuzzy time series model presented by Song and Chissom[18], where their models are compared with each other and with a time-variant Markov model using linguistic labels with probability distributions. In [13], Lee, Wang and Chen presented two factor high order fuzzy time series for forecasting daily temperature in Taipei and TAIFEX. In [9], Jilani and Burney and in [10], Jilani, Burney and Ardil presented new fuzzy metrics for high order multivariate fuzzy time series forecasting for car road accident casualties in Belgium.

In this paper, we present a comparison of our proposed method and existing fuzzy time series forecasting methods to forecast the car road accidents in Belgium. Our proposed method belongs to the class of k-step first-order univariate time-variant method. The proposed method gives best forecasting accuracy rate for forecasting the car road accidents when compared with existing methods. The rest of this paper is organized as follows. In section2, we briefly review some basic concepts of fuzzy time series. In Section 3, we present our method of fuzzy forecasting based on means of partitioning the fuzzy time series. In Section 4, we compared the forecasting results of the proposed method with the existing methods. In section 5, we conclude the results.
II BASIC CONCEPTS OF FUZZY TIME SERIES:
There are number of definitions for fuzzy time series.
Definition 1: Imprecise data at equally spaced discrete time points are modeled as fuzzy variables. The set of this discrete fuzzy data forms a fuzzy time series.

Definition 2: Chronological sequences of imprecise data are considered as time series with fuzzy data. A time series with fuzzy data is referred to as fuzzy time series.

Definition 3: Let Y(t), (t=...0,1,2,...) be the universe of discourse and Y(t) ∊ R. Assume that \(f(t), i=1,2,... \) is defined in the universe of discourse Y(t) and F(t) is a collection of f(t), (i=...0,1,2,...), then F(t) is called a fuzzy time series of Y(t), i=1,2,...Using fuzzy relation, we define \(F(t) = F(t-1) \circ R(t,t-1) \) where R(t,t-1) is a fuzzy relation and “\(\circ \)” is the max composition operator, then F(t) is caused by F(t-1) where F(t) and F(t-1) are fuzzy sets. Let F(t) be a fuzzy time series and let R(t, t-1) be a first order model of F(t). If \(R(t, t-1) = R(t-1, t-2) \) for any time t then F(t) is called a time-invariant fuzzy time series. If R(t,t-1) is dependent on time t, that is, R(t, t-1) may be different from R(t-1, t-2) for any t, then F(t) is called a time-variant fuzzy time series.

III. PROPOSED METHOD USING FUZZY TIME SERIES:

In this section, we present our method to forecast the data of car road accidents based on means. The historical data of car road accidents are given in Table I. First, based on [1], we defined the partition the universe of discourse into equal length intervals. Then based on means of original data and means of frequency of interval data, we redefine the intervals. After this, define some membership function for each interval of the historical data to obtain fuzzy data to form a fuzzy time series. Then, it establishes fuzzy logical relationships (FLRs) based on the fuzzified data in Table IV. Finally, it uses our proposed method.

Step 1: Define the universe of discourse U and partition it into four equal intervals u₁, u₂, u₃, …., uₙ. For example, assume that the universe of discourse U=[900, 17000] is partitioned into four even and equal length intervals.

Step 2: Get a mean of the original data. Get the means of frequency of each interval. Compare the means of original and frequency of each interval and then split the four interval into number of sub-interval respectively.

Step 3: Define each fuzzy set Aᵢ based on the re-divided intervals and fuzzify the historical data shown in Table I, where fuzzy set Aᵢ denotes a linguistic value of the accident data represented by a fuzzy set. We have used triangular membership function to define the fuzzy sets Aᵢ [10]. The reason for fuzzifying the accident data into fuzzified data is to translate crisp values into fuzzy sets to get a fuzzy time series.

Step 4: Establish fuzzy logical relationships based on the fuzzified data where the fuzzy logical relationship “Aᵢ ↔ Aⱼ” denotes that “if the fuzzified data of year p, q and r are Aᵢᵢ, Aᵢⱼ and Aᵢᵣ respectively, then the fuzzified data of the year (r) is Aᵢᵣ”.

\[
\begin{align*}
 t_j = & \begin{cases}
 1 + 0.5 & \text{if } j = 1 \\
 (1/ a_{j-1}) + (0.5/ a_{j}) & \text{if } 2 \leq j \leq n-2 \\
 0.5 + 1 + 0.5 & \text{if } j = n \\
 (0.5/ a_{n-1}) + (1/ a_{n}) & \text{if } j = n-2
 \end{cases}
\end{align*}
\]

where \(a_{j-1}, a_{j}, a_{j+1} \) are the mid points of the fuzzy intervals \(A_{j-1}, A_{j}, A_{j+1} \) respectively. Based on the fuzzify historical enrollments obtained in step 3, we can get the fuzzy logical relationships group (FLGR) as shown in Table IV.

Divide each interval derived in step 2 into subintervals of equal length with respect to the corresponding means of the interval. We have assumed twenty nine partitions of the universe of discourse of the main factor fuzzy time series. Assuming that \(0 \neq Aᵢ \), for every \(Aᵢ, i=1,2,...29 \).

TABLE – I

YEARLY CAR ACCIDENTS FROM 1974 TO 2004 IN BELGIUM

Year	Killed	Year	Killed
2004	953	1984	1,369
2003	1,035	1983	1,479
2002	1,145	1982	1,464
2001	1,288	1981	1,564
2000	1,253	1980	1,616
1999	1,173	1979	1,572
1998	1,224	1978	1,644
1997	1,150	1977	1,597
1996	1,122	1976	1,536
1995	1,228	1975	1,460
1994	1,415	1974	1,574
1993	1,346		
1992	1,380		
1991	1,471		
1990	1,574		
1989	1,488		
1988	1,432		
1987	1,390		
1986	1,456		
1985	1,308		
TABLE II			
Means of Original Data and frequency of intervals data			
Interval	Re-divide the interval		
-------------------	------------------------		
[900, 1100]	1		
[1100, 1300]	6		
[1300, 1500]	13		
[1500, 1700]	9		

TABLE III
FUZZY INTERVALS USING MEAN BASED PARTITIONING

Linguistics	Intervals
u1	[900, 1100]
u2	[1100, 1133.33]
u3	[1133.33, 1166.66]
u4	[1166.66, 1199.99]
u5	[1199.99, 1233.32]
u6	[1233.32, 1266.65]
u7	[1266.65, 1300.00]
u8	[1300.00, 1315.38]
u9	[1315.38, 1330.76]
u10	[1330.76, 1346.14]
u11	[1346.14, 1361.52]
u12	[1361.52, 1376.90]
u13	[1376.90, 1392.28]
u14	[1392.28, 1407.66]
u15	[1407.66, 1423.04]
u16	[1423.04, 1438.42]
u17	[1438.42, 1453.80]
u18	[1453.80, 1469.18]
u19	[1469.18, 1484.56]
u20	[1484.56, 1500.00]
u21	[1500.00, 1522.22]
u22	[1522.22, 1544.44]
u23	[1544.44, 1566.66]
u24	[1566.66, 1588.88]
u25	[1588.88, 1611.10]
u26	[1611.10, 1633.32]
u27	[1633.32, 1655.54]
u28	[1655.54, 1677.76]
u29	[1677.76, 1700.00]

IV A COMPARISON OF DIFFERENT FORECASTING METHODS

In the following Table V summarizes the forecasting results of the proposed method from 1974 to 2004, where the universe of discourse is divided into twenty nine intervals based on means based partitioning. In the following, we use the average forecasting error rate (AFER) and mean square error (MSE) to compare the forecasting results of different forecasting methods, where \(A_i \) denotes the actual value and \(F_i \) denotes the forecasting value of year (i), respectively.

\[
AFER = \frac{\sum_{i=1}^{n} |A_i - F_i|}{n} \times 100 \%
\]

\[
MSE = \frac{\sum_{i=1}^{n} (A_i - F_i)^2}{n}
\]

In Table VI, we compare the forecasting results of the proposed method with that of the existing methods. From Table III, we can see that when the number of intervals in the universe of discourse is twenty nine intervals are sub-partitioned base on means, the proposed method shows smallest values of the MSE and AFER of the forecasting results as compared to other methods of fuzzy time series forecasting. That is, the proposed method can get a higher forecasting accuracy rate for forecasting car road accidents that the existing methods.

TABLE IV
THIRD ORDER FUZZY LOGICAL RELATIONSHIP GROUPS

Group 1: \(X_1 \), \(X_3 \), \(X_7 \) \(\rightarrow \) \(X_6 \)
Group 2: \(X_3 \), \(X_7 \), \(X_6 \) \(\rightarrow \) \(X_4 \)
Group 3: \(X_7 \), \(X_6 \), \(X_4 \) \(\rightarrow \) \(X_5 \)
Group 4: \(X_6 \), \(X_4 \), \(X_5 \) \(\rightarrow \) \(X_3 \)
Group 5: \(X_4 \), \(X_5 \), \(X_3 \) \(\rightarrow \) \(X_2 \)
Group 6: \(X_5 \), \(X_3 \), \(X_2 \) \(\rightarrow \) \(X_5 \)
Group 7: \(X_3 \), \(X_5 \), \(X_7 \) \(\rightarrow \) \(X_{15} \)
Group 8: \(X_5 \), \(X_{15} \), \(X_7 \) \(\rightarrow \) \(X_{10} \)
Group 9: \(X_7 \), \(X_{15} \), \(X_5 \) \(\rightarrow \) \(X_{13} \)
Group 10: \(X_{15} \), \(X_7 \), \(X_{13} \) \(\rightarrow \) \(X_{19} \)
Group 11: \(X_{10} \), \(X_{13} \), \(X_{19} \) \(\rightarrow \) \(X_{24} \)
Group 12: \(X_{13} \), \(X_{19} \), \(X_{24} \) \(\rightarrow \) \(X_{20} \)
Group 13: \(X_{19} \), \(X_{24} \), \(X_{20} \) \(\rightarrow \) \(X_{16} \)
Group 14: \(X_{24} \), \(X_{20} \), \(X_{16} \) \(\rightarrow \) \(X_{13} \)
Group 15: \(X_{20} \), \(X_{16} \), \(X_{13} \) \(\rightarrow \) \(X_{18} \)
Group 16: \(X_{16} \), \(X_{13} \), \(X_{18} \) \(\rightarrow \) \(X_8 \)
Group 17: \(X_{13} \), \(X_{18} \), \(X_8 \) \(\rightarrow \) \(X_{12} \)
Group 18: \(X_{18} \), \(X_{13} \), \(X_{12} \) \(\rightarrow \) \(X_{19} \)
Group 19: \(X_{13} \), \(X_{12} \), \(X_{19} \) \(\rightarrow \) \(X_{18} \)
Group 20: \(X_{12} \), \(X_{19} \), \(X_{18} \) \(\rightarrow \) \(X_{23} \)
Group 21: X_{19}, X_{18}, X_{23} \to X_{26}
Group 22: X_{18}, X_{23}, X_{26} \to X_{24}
Group 23: X_{23}, X_{26}, X_{24} \to X_{27}
Group 24: X_{26}, X_{24}, X_{22} \to X_{22}
Group 25: X_{26}, X_{27}, X_{22} \to X_{18}
Group 26: X_{27}, X_{22}, X_{18} \to X_{24}

| Table - V |
|---|---|---|---|---|
| Years | Actual Values A_i | Mid Values of Interval F | Calculated Values $(A_i-F)^2$ | $|A_i-F|$ |
| 2004 | 953 | 1,000.0000 | 1,036.0825 | 6,902.7051 | 0.0872 |
| 2003 | 1035 | 1,000.0000 | 1,036.0825 | 1.1718 | 0.0010 |
| 2002 | 1145 | 1,150.0000 | 1,149.5167 | 20.4008 | 0.0039 |
| 2001 | 1288 | 1,283.3335 | 1,280.7594 | 52.4263 | 0.0056 |
| 2000 | 1253 | 1,250.0002 | 1,249.5555 | 11.8643 | 0.0027 |
| 1999 | 1173 | 1,183.3335 | 1,182.8638 | 97.2940 | 0.0064 |
| 1998 | 1224 | 1,216.6667 | 1,216.2100 | 60.6847 | 0.0064 |
| 1997 | 1150 | 1,150.0000 | 1,149.5167 | 0.2336 | 0.0004 |
| 1996 | 1122 | 1,116.6667 | 1,092.7141 | 857.6633 | 0.0261 |
| 1995 | 1228 | 1,216.6667 | 1,216.2100 | 139.0050 | 0.0096 |
| 1994 | 1415 | 1,415.3848 | 1,415.3013 | 0.0908 | 0.0002 |
| 1993 | 1346 | 1,338.4617 | 1,338.3732 | 58.1686 | 0.0057 |
| 1992 | 1380 | 1,384.6155 | 1,384.5300 | 20.5212 | 0.0033 |
| 1991 | 1471 | 1,476.9233 | 1,476.8433 | 34.1437 | 0.0040 |
| 1990 | 1574 | 1,577.7776 | 1,577.6211 | 13.1123 | 0.0023 |
| 1989 | 1488 | 1,492.3079 | 1,493.0643 | 25.6474 | 0.0034 |
| 1988 | 1432 | 1,430.7695 | 1,430.6868 | 1.7246 | 0.0009 |
| 1987 | 1390 | 1,384.6155 | 1,384.5300 | 29.9206 | 0.0039 |
| 1986 | 1456 | 1,461.5388 | 1,461.4578 | 29.7872 | 0.0037 |
| 1985 | 1308 | 1,307.6924 | 1,305.9292 | 7.3287 | 0.0021 |
| 1984 | 1369 | 1,369.2310 | 1,369.1444 | 0.0209 | 0.0001 |
| 1983 | 1479 | 1,476.9233 | 1,476.8433 | 4.6515 | 0.0015 |
| 1982 | 1464 | 1,461.5388 | 1,461.4578 | 6.4630 | 0.0017 |
| 1981 | 1564 | 1,555.5554 | 1,555.3967 | 74.0163 | 0.0055 |
| 1980 | 1616 | 1,622.2219 | 1,622.0697 | 36.8413 | 0.0038 |
| 1979 | 1572 | 1,577.7776 | 1,577.6211 | 31.5967 | 0.0036 |

MSE = 275.77 AFER = 0.658643 %

Comparison of Proposed Method [Arul], Mr. Jillani and Mr. Lee

Year	Actual Values	Jillani	Lee	Arul	
1978	1644	1,644.4441	1,644.2939	0.0864	0.0002
1977	1597	1,599.9998	1,599.8455	8.0966	0.0018
1976	1536	1,533.3333	1,533.1722	7.9962	0.0018
1975	1460	1,461.5388	1,461.4578	2.1251	0.0010
1974	1574	1,577.7776	1,577.6211	13.1123	0.0023
V. CONCLUSIONS

In this paper, we have presented means based partitioning of the historical accident data of the Belgium. The proposed methods belong to the first order and time-variant methods. From Table VI, we can see that the AFER and MSE of the forecasting results of the proposed method are the smallest than that of the existing method to deal with other forecasting problems based on fuzzy time series. We will also develop new methods for forecasting data based on different intervals from mean parametric approaches to get a higher forecasting accuracy.

REFERENCES

[1] Chen S.M. and Hsu C.-C. 2004. A new method to forecasting enrollments using fuzzy time series, International Journal of Applied Science and Engineering, 2:3 : 234-244.
[2] Chen, S. M. 1996, Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81: 311-319.
[3] S.M. Chen and J.R. Hwang, “Temperature prediction using fuzzy time series”, IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics, Vol.30, pp.263-275,2000.
[4] S.M. Chen, “Forecasting enrollments based on high-order fuzzy time series”, Cybernetics and Systems: An International Journal, Vol. 33: pp 1-16, 2002.
[5] K.Huarng, “Heuristic models of fuzzy time series for forecasting”, Fuzzy Sets and Systems, Vol. 123, pp 369-386, 2002.
[6] K. Huwang, “Effective lengths of intervals to improve forecasting in fuzzy time series”, Fuzzy Sets and Systems, Vol.12, pp.387-394, 2001.
[7] C.C. Hsu and S.M. Chen, “ A new method for forecasting enrollments based on fuzzy time series”, Proceedings of the Seventh Conference on Artificial Intelligence and Applications, Taichung, Taiwan, Republic of China, pp. 17-22.
[8] J.R. Hwang, S.M.Chen, C.H.Lee, “Handling forecasting problems using fuzzy time series”, Fuzzy Sets and Systems, Vol. 100, pp.217-228, 1998.
[9] T.A.Jilani and S.M.A. Burney, “M-factor high order fuzzy time series forecasting for road accident data”, In IEEE-IFSA 2007, World Congress, Cancun, Mexico, June 18-21, Forthcoming in Book series Advances in Soft Computing, Springer-Verlag, 2007.
[10] T.A. Jilani, S.M.A. Burney and C. Ardil, “Multivariate high order fuzzy time series forecasting for car road accidents, International Journal of Computational Intelligence, Vol. 4, No.1, pp., 15-20., 2007.
[11] G.J. Klor and T.A. Folger, Fuzzy Sets, Uncertainty, and Information, Prentice Hall, New Jersey, U.S.A, 1988.
[12] G.J. Klor and B.Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, New Jersey, U.S.A, 2005.
[13] L.W. Lee, L.W.Wang and S.M.Chen, “Handling forecasting problems based on two-factors high-order time series”, IEEE Transactions on Fuzzy Systems, Vol. 14, No.3, pp. 468-477, 2006.
[14] H.Li, R. Kozma, “A dynamic neural network method for time series prediction using the KII model”, Proceedings of the 2003 International Joint Conference on Neural Networks, 1: 347-352, 2003.
[15] S. Melike and Y.D.Konstantin, “Forecasting enrollment model based on first-order fuzzy time series”, in proc. International Conference on computation Intelligence, Istanbul, Turkey, 2004.
[16] Q.Song, “A note on fuzzy time series model selection with sample auto correlation functions”, Cybernetics and Systems: An International Journal, Vol. 34, pp.93-107, 2003.
[17] Q.Song and B.S.Chissom, “Fuzzy time series and its models”, Fuzzy Sets and Systems, Vol. 54, pp, 269-277, 1993.
[18] Q.Song and B.S.Chissom, “Forecasting enrollments with fuzzy time series part I”, Fuzzy Sets and Systems, 54: 1-9.
[19] Q.Song and B.S.Chissom, “Forecasting enrollments with fuzzy time series: Part II”, Fuzzy Sets and Systems, Vol. 62: pp. 1-8, 1994.
[20] Q.Song and R.P. Lcland, “Adaptive learning defuzzification techniques and applications; Fuzzy Sets and Systems, Vol. 81, pp.321-329, 1996.
[21] S.F.S and, S.H. Li, “Neural network based fusion of global and local information in predicting time series”, Proceedings of the 2003 IEEE International Joint Conference on Systems, Man and Cybernetics, No. 5: pp. 4445-4450, 2003.
[22] J. Sullivan and W.H. Woodall, “ A comparison of fuzzy forecasting and Markov modeling”, Fuzzy Sets and Systems, Vol.64, pp.279-293, 1994.

AUTHORS PROFILE

Arutchelvan Govindarajan received B.Sc degree in Mathematics from University of Madras, Chennai, M.Sc., degree in Mathematics from Bharathidasan University, Trichy, M.Ed., degree in Mathematics from Annamalai University, Chidambaram, M.C.A., degree in Computer Applications from Madurai Kamaraj University, Madurai, M.Phil., degree in Computer Science from Manonmaniam Sundaranar University, Tirunelveli, PGDCA in Computer Application &
DSADP in Computer Science from Annamalai University, Chidambaram. Presently He is doing Ph.D in Computer Science at SCSVMV University, Kancheepuram. He is the Vice-Principal & Head of the Department of Computer Science and Applications at Adhiparasakthi College of Arts & Science, G.B.Nagar, Kalavai, Vellore Dist., Tamil Nadu. He has 22 years teaching experience in Computer Science and Applications. His research interest is in the area of Fuzzy Logic, Artificial Intelligence, Artificial Neural Networks. He is also a member of Computer Society of India.

Dr. S.K.Srivatsa
Senior professor, St. Joseph’s College of Engg,
Jeppiaar Nagar, Chennai-600 064
Dr. S.K.Srivatsa was born at Bangalore on 21st July 1945. He received his Bachelor of Electronics and Communication Engineering Degree (Honors) from Jadavpur University (Securing First Rank and Two Medals), Master Degree in Electrical Communication Engineering (With Distinction) from Indian Institute of Science and Ph.D also from Indian Institute of Science, Bangalore. In July 2005, he retired as professor of Electronics Engineering from Anna University. He has taught twenty-two different courses at the U.G. Level and 40 different courses at P.G. Level during the last 32 years. He has functioned as a Member of the Board of Studies in some Educational Institutions. His name is included in the Computer Society of India database of Resource Professionals. He has received about a dozen awards. He has produced 23 PhDs. He is the author of well over 350 publications.

Dr. Jagannathan Ramaswamy received B.Sc, M.Sc and Ph.D degrees from the University of Madras, India. He obtained his Master of Philosophy degree in Space Physics from Anna University, Chennai. He was the Reader and the Head of the Postgraduate Department of Physics at D.G. Vaishnav College, Chennai.
Dr. Jagannathan is currently the Chairman cum Secretary of India Society of Engineers, Madras Chapter, Managing Editor (Publications), Asian Journal of Physics and Deputy Registrar (Education), Vinayaka Missions University, Chennai, India.