Immunomodulatory Effects of Cholera Toxin B Subunit and Peptide LKEKK

Navolotskaya EV*
Institute of Bioorganic Chemistry, Russia

*Corresponding author: Elena V Navolotskaya, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Science Avenue, 6, Pushchino, Moscow Region, 142290, Russia, Tel: +7(4967)736668; Fax: +7(4967)330527; Email: navolotskaya@bibch.ru

Abstract

The review analyzed data on Immunomodulatory action of cholera toxin B subunit (CT-B) and the synthetic peptide LKEKK that corresponds to residues 16-20 in thymosin-α1 and 131-135 in interferon-α2 on the functional, NO-synthase and guanylate cyclase activity of T and B lymphocytes, of macrophage-like cell line RAW 264.7. According to the data presented, CT-B and the peptide bind to the cholera toxin receptor of the target cell with high affinity and trigger the following cascade of intracellular reactions: activation of inducible NO synthase → increase in NO production → increase in soluble guanylate cyclase activity → increase in the cyclic guanosine-3',5'-monophosphate level.

Keywords: Protein; Peptide; Receptor; Drug; Cholera Toxin B Subunit; Signal Transduction

Abbreviations: NOS: NO-synthase; CT-B: Cholera Toxin B-subunit; sGC: Soluble Guanylate Cyclase; cGMP: Cyclic Guanosin Monophos Phate; iNOS: Inducible NO-synthase; GTP: Guanosin Triphosphate; eNOS: Endothelial; nNOS: Neuronal.

Introduction

Cholera toxin (CT) is a soluble protein produced by gram-negative bacteria Vibrio cholerae; it consists of two main subunits, CT-A and CT-B, its molecular mass is 84 kDa [1]. The CT-A subunit determines the symptoms of the disease, while CT-B is a means of delivering CT-A to target cells. CT-A is a 28 kDa protein consisting of two primary domains, CT-A1 and CT-A2; CT-A1 determines the activity of the toxin, CT-A2 acts as an anchor [2]. CT-B forms a ring-like structure composed of five CT-B monomers. Each monomer is a nontoxic protein consisting of 103 amino acid residues and binding to the monomerial tetra hexosylganglio side (GM1a, Galβ3GalNAcβ4(Neu5Acα3)Galβ4GlcCer) which is present in almost all cells [3-6].

Cholera toxin B-subunit (CT-B) is a promising immunomodulation and anti-inflammatory agent. It has been shown that the protein suppresses immunopathological reactions in allergies and autoimmune diseases [7,8], stimulates humoral immunity and induces anti-inflammatory reactions in vivo, in particular, reduces intestinal inflammation in Crohn’s disease [9,10]. Since CT-B is able to weaken infectious diseases and, at the same time, inhibit the development of autoimmune reactions, the question remains unclear how these two opposing immune processes can be mediated by the same protein.

Earlier in the structural and functional studies of interferon-α (IFNs-α) we obtained the peptide LKEKKS corresponding to the fragment 131-138 of human IFN-α2, capable of high affinity binding to mouse thymocytes [11] and human fibroblasts [12]. The labeled peptide binding was competitively inhibited by unlabeled IFN-α2, TM-α1, and CT-B.
Comparison of amino acid sequences of the octapeptide and TM-α, showed that they contain the same LKEKK fragment corresponding to the sequence 16-20 TM-α, and 131-135 IFN-α, (Figure 1). We suggested that this fragment may be involved in the binding of TM-α, and IFN-α, with a common receptor and synthetic peptide LKEKK may also have the same ability.

![Figure 1: The amino acid sequences of CT-B, human TM-α1, and human IFN-α2. Numbers of amino acid residues are shown in figures. The identical residues are underlined. The sequence of peptide LKEKK is shown in italics.](image)

Recently we synthesized peptide LKEKK and found that [3H] LKEKK binds with high affinity to donor blood T lymphocytes [13,14], rat intestinal epithelial cell membranes [15,16], rat IEC-6 and human Caco-2 intestinal epithelial cells, murine Raw 264.7 macrophage-like cells [17-19]. Treatment of cells and membranes with proteases did not affect the [3H] LKEKK binding, suggesting the non-protein nature of the peptide receptor. The results obtained showed that lymphocytes and intestinal epithelial cells have on their surface a non-protein receptor common for TM-α, IFN-α, and CT-B. It has been suggested that this receptor could be the CT receptor, which is known to be a GM1-ganglioside.

The review analyzed and systematized data on the action of cholera toxin B subunit (CT-B) and the synthetic peptide LKEKK on different types of cells in vitro and in vivo.

Action of CT-B and Peptide LKEKK on Human Blood T and B Lymphocytes

The analysis of the binding of 125I-labeled CT-B to T and B lymphocytes isolated from the blood of healthy donors showed the presence of one type of high affinity binding sites (Kd 2.8 and 3.0nM, respectively) [13,14]. Unlabeled TM-α, IFN-α, and the peptide LKEKK competitively inhibited the labeled protein binding both to T (Kd 3.3, 2.9, and 3.6nM) and B (Kd 3.7, 3.3, and 3.8nM) cells. The peptide KKEKL with an inverted amino acid sequence tested in parallel did not inhibit the binding of the labeled protein (Kd>10μM). These results indicate that TM-α, IFN-α, and the peptide LKEKK bind with high affinity and specificity to cholera toxin receptor on human blood T and B lymphocytes.

So far, no data have been obtained on the binding of TM-α, to gangliosides. At the same time, CT-B is known to suppress the antiviral activity of IFN-α by inhibiting its interaction with GM1-ganglioside [19-22]. In addition, the ability of IFN-α to reversibly bind to GM1 ganglioside with high affinity and specificity has been shown. The regions of the molecule directly involved in the binding are the oligosaccharide fragment of GM1 including lactose (β-D-Gal-(1→4)-Glc) and N-acetylneuraminic acid and highly conserved IFN-α 131-138 fragment [22,11], or even shorter 131-135 fragment [13].

The binding of CT-B and the peptide LKEKK to T and B lymphocytes has been found to lead to a dose-dependent increase in the activity of soluble guanylate cyclase (sGC), but does not affect the activity of adenylate cyclase and membrane-bound guanylate cyclase (pGC) [14]. The peptide with an inverted KKEKL sequence tested in parallel did not affect sGC activity, indicating a high specificity of the CT-B and peptide LKEKK action.

The soluble guanylate cyclase (sGC) is shown to be a heterodimer that consists of α- and β-subunits, catalyzes a conversion of guanosin-5’-triphosphate (GTP) into the cyclic guanosin-3’,5’ monophosphate (cGMP), and is activated by a direct interaction of NO with a hem of the β-subunit [23]. Besides sGC, there are at least seven plasma membrane enzymes that synthesize the second-messenger cGMP [24]. All membrane (particulate) GCs (pGC-A through pGC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short trans membrane region, and an intracellular domain that contains the catalytic (GC) region [23,24]. There are data indicating that T-cellular inducible NO-synthase (iNOS) and NO play a crucial suppressing role in the control of T-helper differentiation [25-27]. NO was shown to inhibit T cells in the G1-phase and to induce apoptosis through activation of the sGC-dependent protein kinase G [28]. However, NO was found to display a suppressing effect only at high concentrations (>100μM), whereas its low concentrations (525μM) selectively increased the differentiation of Th1 cells and did not influence the differentiation of Th2 cells [29,30]. Th1 cells are involved in the development of inflammatory reactions and the elimination of intracellular pathogens, while Th2 cells are closely associated with allergies and the displacement of extracellular parasites [31-33]. Both cell types have the same precursor and differentiate into two different lines, mainly under the influence of cytokines in the microenvironment. During specific antigenic activation of T-cell precursors the differentiation of Th1 cells is stimulated by IL-12, and the differentiation of Th2 cells by IL-4 [34,35]. Niedbala, et al. [29,30] demonstrated that the activating effect of low concentrations of NO was mediated through cGMP and was manifested selectively on Th1 cells. NO activated sGC, which led to an increase in the level of cGMP.
that activated expression of the IL-12 receptor β2-subunit but did not influence the IL-4 receptor. Since IL-12 and IL-4 are key cytokines in the induction of Th1 and Th2 cells, respectively, they are responsible for the selective action of NO on the differentiation of T cells. Thus, low doses of NO promote the differentiation of Th1 cells by the selective induction of IL-12Rβ2 via the sGC-cGMP-dependent pathway.

Earlier studies have shown that after infections in iNOS-deficient mice an increased Th1-response is developing, which is accompanied by an increase in the level of IFN-γ and a decrease in the level of IL4 [36-38]. These data show that NO selectively suppresses the expansion of Th1 cells through negative feedback that can be realized due to inhibition of IL-12 synthesis by activated macrophages [39]. This mechanism might be very useful in inflammatory diseases mainly mediated through Th1 cells. By contrast, a strong Th1 cell response is very desirable for the effective protection of the organism against intracellular pathogens.

The stimulating effect of CT-B and the peptide LKEKK on sGC activity in T-lymphocytes suggests that they are capable of selectively inducing differentiation of Th1 cells through the sGC-cGMP-dependent pathway.

As mentioned above, CTB is currently considered a promising immunomodulatory agent. Therefore, the establishment of the molecular mechanism of action of this protein is important for its implementation in medical practice. The ability of CTB and peptide LKEKK to enhance the activity of sGC in T and B lymphocytes makes appropriate further detailed study of protein and peptide on the sGC-cGMP signal transmission pathway and its mediated activities.

Effect of CT-B and Peptide LKEKK on Murine Macrophage-Like RAW 264.7 Cell Line

It is established that [27]labeled CT-B binds with high affinity to the RAW 264.7 cells (K_i 2.3nM) [40]. The labeled CT-B binding was inhibited by unlabeled IFN-α, TM-α, and the peptide LKEKK (K_i 0.9, 1.1 and 1.4nM, respectively), but not inhibited by unlabeled peptide KKEKL (K_i >1μM). In the concentration range of 10-1000nM, CT-B and the peptide LKEKK dose-dependently increased NO production by cells and intracellular sGC activity. The peptide KKEKL tested in parallel was inactive, indicating a high specificity of the CT-B and peptide LKEKK action.

NO is a diffuse messenger, which mediates a wide spectrum of physiological and pathological processes in the nervous, cardiovascular, and immune systems [41]. It has several protective functions: improves tissue perfusion, inhibits thromocyte aggregation [42], decreases leucocyte adhesion to endothelial cells [43,44] and proliferation of cells of the smooth muscles, and facilitates preservation of tissue and organ architecture [45]. In addition to regulating normal physiological functions, NO participates in the development of a number of pathological states, such as septic shock, stroke, and neurodegenerative diseases [41,46,47]. NO is synthesized from L-arginine by several isoforms of the NO-synthase (NOS): inducible (iNOS), endothelial (eNOS), and neuronal (nNOS) [41,48] activating sGC by direct interaction with hem of its β-subunit [23]. cGMP that is accumulated in a cell transmits signals to subordinate elements of the signal cascade: cGMP-dependent protein kinases, cGMP-regulated cationic channels, and cGMP-activated phosphodiesterases [23,49]. It is irrefutably proved that the effects of low NO concentrations (~5 to 50μM) are mediated by cGMP [29,30]. Our results are in good agreement with this data: an enhancement of the NO production from 26μM in a control to 48 and 45μM in the presence of 100nM of CT-B or the LKEKK peptide, respectively, results in an almost twofold increase in the sGC activity [40].

NO was found to increase the content of F-actin in macrophages and, thus, change their ability for adhesion, for the formation of pseudopodia, and phagocytosis [50,51]. Key regulators of the actin reorganization which resulted in morphological changes in the NO-stimulated cells were considered to be the cGMP-regulated Ca²⁺-calmodulin [51].

CT-B and the peptide LKEKK in a concentration of 100nM were shown to significantly increase the ability of the RAW 264.7 cells for the adhesion and the spreading in vitro [40]. Inflammation is known to cause an enhanced directed migration of leukocytes. The activated cells gain an ability to adhere to the vascular endothelium and to migrate in an area of an infection and inflammation, and the cells change their shape from round to stellate during this process. Therefore, such properties of phagocytes as adhesion and spreading adequately reflect their functional status. In addition, the adhesion and spreading of the cells can be somewhat considered as initial stages of phagocytosis: attachment and circumvallation of a particle by pseudopodia.

The ability of CT-B and the peptide LKEKK to influence the phagocytic activity of the RAW 264.7 cells was studied on a model system of the bacterial phagocytosis of the *Salmonella typhimurium* 415 virulent strain in vitro [40]. The characteristics of the phagocytosis of the S. *typhimurium* 415 bacteria (PhA, the phagocytic activity; CBA, cytophatic action of the bacteria; PhN, the phagocytic number) by the RAW 264.7 cells in the control and in the presence of CT-B or the LKEKK peptide were given in Table. The control experiments demonstrated that the cells actively imbibed the bacteria of this strain. More than a half of the total cell number (PhA 56.3%) participated in the phagocytosis in one hour, and every phagocyte contained 7 microorganisms on
average (PhN 7.0). However, the imbibed microbes were not digested. Moreover, they continued their active reproduction inside the phagocytes, and PhN increased from 7.0 to 12.1 between the second and seventh hours of the phagocytosis. The cell infection continued for 2 hours. Then, the infection medium was replaced by the culture medium, and, starting from this moment, the PhN could be increased only due to the reproduction of the previously imbibed microbes. A mass cell death was observed even to the seventh hour of the phagocytosis (CBA 61.7%), and all the monolayer was degraded to the 12th hour (CBA~100%). Thus, the interaction of the microbes with the RAW 264.7 cells in the control resulted in the death of the latter. Quite the opposite picture was observed in the presence of 100nM of CT-B or the LKEKK peptide. In both cases, the digestive ability of the cells significantly increased, and the salmonella did not proliferate inside the cells (Table 1). These results pointed to the ability of CT-B and the LKEKK peptide to stimulate bactericidal activity of the RAW 264.7 cells in vitro.

Table 1: The influence of CT-B and the LKEKK peptide on the phagocytosis of the bacteria of the S. typhimurium 415 virulent strain by the LPS-activated RAW 264.7 cells in vitro* [40].

Protein/Peptide, nM	PhA, %	CBA, %	PhN
- (Control)			
	46.2 ± 4.3	10.3 ± 2.0	3.2 ± 1.3
	56.3 ± 5.2	23.2 ± 3.2	7.0 ± 2.2
	49.2 ± 4.4	47.5 ± 4.1	10.2 ± 3.5
	36.2 ± 3.2	61.7 ± 5.3	12.1 ± 3.2
0 ~ 100			
CT-B (100)			
	75.3 ± 6.2	3.2 ± 1.1	5.2 ± 2.3
	87.5 ± 7.3	7.6 ± 2.2	6.3 ± 2.2
	64.0 ± 8.2	13.2 ± 4.0	5.0 ± 2.2
	24.3 ± 5.4	17.3 ± 4.2	2.1 ± 1.3
	72 ± 3.1	14.3 ± 2.3	1.2 ± 0.3
LKEKK (100)			
	69.4 ± 5.2	3.1 ± 2.2	4.1 ± 2.2
	80.1 ± 6.3	8.2 ± 3.0	5.3 ± 2.0
	56.6 ± 3.4	16.3 ± 2.2	4.3 ± 2.0V
	27.2 ± 5.5	18.2 ± 4.1	3.2 ± 2.4V
	6.2 ± 3.2	19.4 ± 3.2	1.3 ± 0.4

*The lines for every compound sequentially (top-down) corresponded to the data that were obtained in 1, 2, 4, 7 and 12h. ♥The difference from the control is significant (P<0.05).

Conclusion

The data presented in this review show that CT-B and the peptide LKEKK corresponding to residues 16-20 in thymosin-α1 and 131-135 in interferon-α2 bind to the cholera toxin receptor of the target cell with high affinity and trigger the following cascade of intracellular reactions: activation of inducible NO synthase → increase in NO production → increase in soluble guanylate cyclase activity → increase in the cyclic guanosine-3', 5'-monophosphate level.

Declaration of Interest

There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This research was funded by Fundamental Research Program of the Presidium of RAS “Molecular and Cell Biology” (Grant # 0101-2014-0086).

References

1. Sanchez J, Holmgren J (2008) Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell Mol Life Sci 65(9): 1347-1360.

2. Sanchez J, Holmgren J (2011) Cholera toxin: foe & a friend. Indian J Med Res 133(2): 1531-163.

3. Lai CY (1977) Determination of the primary structure of...
Navolotskaya EV. Immunomodulatory Effects of Cholera Toxin B Subunit and Peptide LKEKK. Ann Immunol Immunother 2020, 2(1): 000113.

4. Chester MA (1998) IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) Nomenclature of glycolipids-recommendations 1997. Eur J Biochem 257(2): 293298.

5. Cuatrecasas P (1973) Gangliosides and membrane receptors for cholera toxin. Biochemistry 12(18): 35583566.

6. Holmgren J, Lonnroth I, Svennerholm L (1973) Tissue receptor for cholera exotoxin: postulated structure from studies with GM1 ganglioside and related glycolipids. Infect Immun 8(2): 208214.

7. Smits HH, Gloudemans AK, Van Nimwegen M, Willart MA, Sollie T, et al. (2009) Cholera toxin B suppresses allergic inflammation through induction of secretory IgA. Mucosal Immunology 2: 331-339.

8. Sun JB, Czerkinsky C, Holmgren J (2010) Mucosally induced immunological tolerance, regulatory T cells and the adjuvant effect by cholera toxin B subunit. Scand J Immunol 71(1): 111.

9. Baldauf KJ, Royal JM, Hamorsky KT, Matoba N (2015) Cholera toxin B: one subunit with many pharmaceutical applications. Toxins 7(3): 974996.

10. Stratmann T (2015) Cholera toxin subunit B as adjuvant-An Accelerator in Protective Immunity and a break in Autoimmunity. Vaccines (Basel) 3(3): 579596.

11. Zav’yalov VP, Navolotskaya EV, Abramov VM, Galaktionov VG, Isaev IS, et al. (1991) The octapeptide corresponding to the region of the highest homology between a-interferon and thymosin-a1 effectively competes with both cytokines for common high-affinity receptors on murine thymocytes. FEBS Lett 278(2): 187-189.

12. Zav’yalov VP, Navolotskaya EV, Vasilenko RN, Abramov VM, Volodina EF, et al. (1995) The sequence 130-137 of human interferon-a2 is involved in the competition of interferon, prothymosin a and cholera toxin B subunit for common receptors on human fibroblasts. Mol Immunol 32(6): 425-431.

13. Navolotskaya EV, Zinchenko DV, Zolotarev YA, Kolobov AA, Lipkin VM (2016) Binding of synthetic LKEKK peptide to human T-lymphocytes. Biochemistry (Mosc) 81(8): 871-875.

14. Navolotskaya EV, Sadovnikov VB, Zinchenko DV, Lipkin VM, Zav’yalov VP (2017) Interaction of cholera toxin B subunit with T and B lymphocytes. Int Immunopharmacol 50: 279-282.

15. Navolotskaya EV, Sadovnikov VB, Zinchenko DV, Vladimirov VI, Zolotarev YA, et al. (2016) The LKEKK synthetic peptide as a ligand of rat intestinal epithelial cell membranes. Russian Journal of Bioorganic Chemistry 42: 479-483.

16. Navolotskaya EV, Sadovnikov VB, Zinchenko DV, Vladimirov VI, Zolotarev YA (2017) α1-Thymosin, α2-interferon, and the LKEKK synthetic peptide inhibit the binding of the B subunit of the cholera toxin to intestinal epithelial cell membranes. Russian Journal of Bioorganic Chemistry 43: 673-677.

17. Navolotskaya EV, Sadovnikov VB, Zinchenko DV, Vladimirov VI, Zolotarev YA (2018) Interaction of Cholera Toxin B Subunit with Rat Intestinal Epithelial Cells. Russian Journal of Bioorganic Chemistry 44: 403-407.

18. Navolotskaya EV, Sadovnikov VB, Lipkin VM, Zav’yalov VP (2018) Binding of cholera toxin B subunit to intestinal epithelial cells. Toxicology in Vitro 47: 269-273.

19. Friedman RM, Kohn LD (1976) Cholera toxin inhibits interferon action. Biochem Biophys Res Commun 70(4): 1078-1084.

20. Fujinaga Y, Wolf AA, Rodighiero C, Wheeler H, Tsai B, et al. (2003) Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulum. Mol Biol Cell 14(12): 4783-4793.

21. Besancon F, Ankel H (1974) Binding of interferon to gangliosides. Nature 252(5483): 478-480.

22. Besancon F, Ankel H, Basu S (1976) Specificity and reversibility of interferon ganglioside interaction. Nature 259(5544): 576-578.

23. Kots AY, Martin E, Sharina IG, Murad FA (2009) A Short History of cGMP, Guanylyl Cyclases, and cGMP-dependent protein kinases. Handb Exp Pharmacol 191: 1-14.

24. Potter LR (2011) Guanylyl cyclase structure, function and regulation. Cell Signal 23(12): 19211926.

25. Vannini F, Kashfi K, Nath N (2015) The dual role of iNOS in cancer. Redox Biol 6: 334343.

26. Hu Z, Zou Q, Su B (2018) Regulation of T cell immunity by cellular metabolism. Front Med 12(4): 463472.

27. Yang J, Zhang R, Lu G, Shen Y, Peng L, et al. (2013) T cell–derived inducible nitric oxide synthase switches off TH17 cell differentiation. J Exp Med 210(7): 14471462.
28. Valenti L, Mathieu J, Chancerelle Y, Levacher M, Chanaud B, et al. (2003) Nitric oxide inhibits spleen cell proliferative response after burn injury by inducing cytostasis, apoptosis, and necrosis of activated T-lymphocytes: role of the guanylate cyclase. Cell Immunol 221(1): 5063.

29. Niedbala W, Wei XQ, Piedrafaita D, Xu D, Liew FY (1999) Effects of nitric oxide on the induction and differentiation of Th1 cells. Eur J Immunol 29(8): 24982505.

30. Niedbala W, Wei XQ, Campbell C, Thomson D, Komai Koma M, et al. (2012) Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor β2 expression via cGMP. Proc Natl Acad Sci 99(25): 1618616191.

31. Liew FY, Li Y, Moss D, Parkinson C, Rogers MV, et al. (1991) Resistance to Leishmania major infection correlates with the induction of nitric oxide synthase in murine macrophages. Eur J Immunol 21(12): 30093014.

32. Bogdan C, Vodovotz Y, Paik J, Xie QW, Nathan C (1994) Mechanism of suppression of nitric oxide synthase expression by interleukin-4 in primary mouse macrophages. J Leukoc Biol 55(2): 227233.

33. Toor D, Sharma N (2018) T cell subsets: an integral component in pathogenesis of rheumatic heart disease. Immunol Res 66(1): 1830.

34. Seder RA, Paul WE (1994) Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 12: 635673.

35. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383(6603): 787793.

36. Wei XQ, Charles IG, Smith A, Ure J, Feng GJ (1995) Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375(6530): 408411.

37. McInnes IB, Leung B, Wei XQ, Gemmell CC, Liew FY (1998) Septic arthritis following Staphylococcus aureus infection in mice lacking inducible nitric oxide synthase. J Immunol 160(1): 308315.

38. Lee KM, MacLean AG (2015) New advances on glial activation in health and disease. World J Virol 4(2): 4255.

39. Huang FP, Niedbala W, Wei XQ, Xu D, Feng GJ, et al. (1998) Nitric oxide regulates Th1 cell development through the inhibition of IL-12 synthesis by macrophages. European Journal of Immunology 28(12): 40624070.

40. Navolotskaya EV, Sadovnikov VB, Zinchenko DV, Vladimirov VI, Zolotarev YA, et al. (2019) Effect of the B Subunit of the Cholera Toxin on the Raw 264.7 Murine Macrophage-Like Cell Line. Russian Journal of Bioorganic Chemistry 45: 122-128.

41. Seabra AB, Duran N (2017) Nano articulated Nitric Oxide Donors and their Biomedical Applications. Mini Rev Med Chem 17(3): 216-223.

42. Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L (2017) Inducible nitric oxide synthase: Good or bad?. Biomed Pharmacother 93: 370-375.

43. Gupta A, Bhat G, Pianosi P (2018) What Is New in the Management of Childhood Asthma?. Indian J Pediatr 85(9): 773-781.

44. Kleppe R, Jonassen I, Doskeland SO, Selheim F (2018) Mathematical Modelling of Nitric Oxide/Cyclic GMP/Cyclic AMP Signalling in Platelets. Int J Mol Sci 19(2): 612.

45. Lilly B, Dammeyer K, Sam Marosis S, McCallinhart PE, Trask AJ, et al. (2018) Endothelial Cell-Induced Cytoglobin Expression in Vascular Smooth Muscle Cells Contributes to Modulation of Nitric Oxide. Vascul Pharmacol 110: 7-15.

46. Huang YJ, Yuan YJ, Liu YX, Zhang MY, Zhang JG, et al. (2018) Nitric Oxide Participates in the Brain Ischemic Tolerance Induced by Intermittent Hypobaric Hypoxia in the Hippocampal CA1 Subfield in Rats. Neurochem Res 43(9): 1779-1799.

47. Russell JA, Rush B, Boyd J (2018) Pathophysiology of Septic Shock. Crit Care Clin 34(1): 43-61.

48. Insua CC, Merino Gracia J, Aicart Ramos C, Rodriguez Crespo I (2018) Subcellular Targeting of Nitric Oxide Synthases Mediated by Their N-Terminal Motifs. Adv Protein Chem Struct Biol 111: 165-195.

49. Monica FZ, Bian K, Murad F (2016) The Endothelium-Dependent Nitric Oxide-cGMP Pathway. Adv Pharmacol 77: 1-27.

50. Chae CS, Kim GC, Park ES, Lee CG, Verma R, et al. (2017) NFAT1 Regulates Systemic Autoimmunity through the Modulation of a Dendritic Cell Property. J Immunol 199(9): 3051-3062.

51. Lordick F, Terashima M (2016) Gastric cancer adjuvant therapy. Best Pract Res Clin Gastroenterol 30(4): 581-591.