Sociocultural and ecological factors influencing management of edible and non-edible plants: the case of Ixcatlán, Mexico

Selene Rangel-Landa, Alejandro Casas*, Eduardo García-Frapolli and Rafael Lira

Abstract

Background: Identifying factors influencing plant management allows understanding how processes of domestication operate. Uncertain availability of resources is a main motivation for managing edible plants, but little is known about management motives of non-edible resources like medicinal and ceremonial plants. We hypothesized that uncertain availability of resources would be a general factor motivating their management, but other motives could operate simultaneously. Uncertainty and risk might be less important motives in medicinal than in edible plants, while for ceremonial plants, symbolic and spiritual values would be more relevant.

Methods: We inventoried edible, medicinal, and ceremonial plants in Ixcatlán, Oaxaca, Mexico, and conducted in-depth studies with 20 native and naturalized species per use type; we documented their cultural importance and abundance by interviewing 25 households and sampling vegetation in 33 sites. Consumption amounts and preferences were studied through surveys and free listings with 38 interviewees. Management intensity and risk indexes were calculated through PCA and their relation analyzed through regression analyses. Canonical methods allowed identifying the main sociocultural and ecological factors influencing management of plants per use type.

Results: Nearly 64, 63, and 55% of all ceremonial, edible, and medicinal wild plants recorded, respectively, are managed in order to maintain or increase their availability, embellishing environments, and because of ethical reasons and curiosity. Management intensity was higher in edible plants under human selection and associated with risk. Management of ceremonial and medicinal plants was not associated with indexes of risk or uncertainty in their availability. Other sociocultural and ecological factors influence management intensity, the most important being reciprocal relations and abundance perception.

Conclusions: Plant management through practices and collectively regulated strategies is strongly related to control of risk and uncertainty in edible plants, compared with medicinal and ceremonial plants, in which reciprocal interchanges, curiosity, and spiritual values are more important factors. Understanding how needs, worries, social relations, and ethical values influence management decisions is important to understand processes of constructing management strategies and how domestication could be started in the past and are operated at the present.

Keywords: Cultural importance, Domestication, Ixcatec, Plant management, Risk management, Reciprocity interchange, Spiritual values and plant management, Tehuacán Valley

* Correspondence: acasas@cieco.unam.mx
1Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM, Antigua Carretera a Pátzcuaro 8711, 58190 Morelia, Michoacán, Mexico
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Management of plant resources and traditional ecological knowledge (TEK) are intimately related biocultural aspects that crucially influence the modeling of strategies of multiple use of natural resources in rural communities [1–3]. Understanding how management systems do operate, and identifying the factors influencing and motivating them, is greatly important for analyzing how and why plant management is currently decided, how the ongoing processes of domestication are operating, and how these could have operated in the past [4]. Therefore, studies of these processes may be relevant for designing current strategies of sustainable use of plant resources and ecosystems, as well as for understanding factors that led humans to start domestication and agriculture in the past.

Management can be defined as all practices, interventions, transformations, strategies, or decisions deliberately made by humans on ecosystems, their components, functions, and even their emergent properties, in order to use, conserve, or recover them [5, 6]. In traditional contexts, management practices are based on ancient knowledge transmitted from generation to generation, but innovations are continually constructed influenced by new observations, experimentation, and information from recent sources (information from neighboring villages, schools, communication media, interventions by NGOs, governmental promoters, researchers, among others). Both old and new management practices are organized in dynamic systems of knowledge, beliefs, cultural and spiritual values, and local institutions [7, 8].

For studying domestication, it is particularly interesting to document the morphological and genetic divergences between wild and managed populations directed to maintain or increase the availability of particular phenotypes of managed species. Such aspects provide valuable elements for explaining how processes of domestication currently operate and how these could have operated in the past. The ongoing processes of domestication can be documented in numerous rural communities of the world and are responsible for a continuous mechanism of divergence and generation of a new variation of genetic resources. As a research group, we have focused our attention on domestication processes occurring in Mesoamerica, one of the most active areas of plant management and one of the earliest centers of plant domestication in the World [5, 9, 10]. Numerous studies have documented the consequences of domestication, but relatively few have analyzed what factors motivate people to manage and domesticate plants, animals, and other organisms. In this study, we focus our attention to analyzing the main causes of the process.

Management involves several types of practices, tools, and relations between energy invested and amounts of resources obtained; such aspects reflect different degrees of management intensity [11, 12]. Authors analyzing this topic coincide that management intensity of plants goes from gathering, let standing, special care, protection, and transplanting, to practices procuring increase of desirable plant abundance by enhancing and deliberately propagating them [5, 6]. Some variables have been proposed as relevant for analyzing the degree of management intensity: (1) the number and complexity of practices carried out, (2) the number of people or social units (i.e., persons, households, or communities) participating in such practices, (3) the involvement and level of complexity of planning strategies, (4) social agreements regulating the actions, (5) the occurrence of human selection favoring particular phenotypes and the intensity in which it operates, (6) the deliberate practices favoring human-mediated gene flow and manipulation of plant reproduction, (7) the amounts of fossil or human energy invested in practices, (8) the complexity of tools used, and (9) the amount of products obtained per area unit [11–13].

In several case studies with cacti, agaves, herbs, and trees, mainly with edible use, we have documented that managed plants under higher management intensity are those more consumed or commercialized and whose future availability becomes compromised due to their relatively low availability in relation to the demand on them [11–17]. In other words, plant management is influenced by the amounts of products required by social units (which is in turn influenced by their cultural and economic value) but also by people’s perception of the product quality and their substitutability or not by other resources. In addition, management is influenced by the natural availability of plant products, determined by parameters like distribution and abundance, their resilience capacity after human impact on populations, their vulnerability, and management feasibility [11, 12, 18], as well as the ease of access to resources regulated by land tenure and communitarian agreements. All these relations have allowed proposing that management is a response to the need of facing risks or uncertainty in the current and future availability of resources [12]. In other words, it is a response of people’s worries for ensuring availability of resources [12, 19] or preventing their loss [15].

However, some studies have documented that cultural motives such as relations of reciprocity among persons and communities, some spiritual aspects, and efforts to maintain customs and traditions [20, 21] commonly motivate management practices. In addition, practices such as tolerance or let standing of plants in disturbed areas may be associated with ethical principles like the right of plants to live, whereas enhancing abundance of some species may be associated to favor variants of higher quality to embellish the sites where they occur [22–26]. Transplanting and other forms of propagation may
simply be motivated by the need to have particular plants closer because of their beauty, odor, and role in rituals or simply because of curiosity to know how plants grow and reproduce [19, 23]. These scenarios allow supposing that management type and intensity are not only responses to risk, but also practices related to ethic or esthetic values, symbolism, or curiosity, and all factors may be operating simultaneously. Analyzing how people make management decisions on plants with different purposes may allow visualizing more clearly different motives for managing plants and management intensity [12, 27]. Therefore, this study explores management motives for plants with different use types.

We hypothesized that uncertainty in availability of plant resources is a main factor motivating management of plants, especially those directed to satisfy basic needs. We therefore expected that edible plants would have higher management intensity as the higher the risk or uncertainty in their availability, as similarly documented in previous studies [12, 13]. Uncertainty would be influenced by the scarcity of plant resources and human pressures on them; therefore, scarce species with high cultural value would be more intensely managed. Ecological aspects of plants like survival, vigor, or resprouting capacities, which may be affected by use, and others that influence the ease of management like life cycle length, reproductive systems, ease of propagation, and adaptability to human-made environments would influence management types and intensities. Medicinal plants are generally used in smaller amounts than edible plants (except those that are extracted for commercialization); therefore, we expected that the pattern of management as a response to risk would be less pronounced than in edible plants [12]. Finally, we expected that the management of plants used for rituals and ceremonies, is not necessarily influenced by risk since purposes and amounts of plants used for these purposes follow different rationalities in which reciprocity relations, esthetic and symbolic values could be important.

Summarizing, our study aimed to analyze how management type and intensity are influenced by sociocultural and ecological factors in edible, medicinal, and ceremonial plants among the Ixcatec from Santa María Ixcatlán, Mexico. We analyzed whether or not people’s worries about availability of plants operate similarly in plants with different use type and look for evaluating the weight of different motives for decisions on managing plant resources.

Methods

Study area

Santa María Ixcatlán belongs to the Tehuacán-Cuicatlán Biosphere Reserve, Central México (Fig. 1). It is located at elevations from 800 to 2600 m, with annual rainfall of 721 mm and average temperature of 17.2 °C. Climate is temperate sub-humid in high zones and semiarid in lowlands [28, 29]. The traditional General Assembly regulates decisions on land, natural resources, and social life [30]. Ixcatlán is inhabited by 171 households [31], almost all of them catholic [26]; 80% of the people
consider themselves to be indigenous, but only 15 persons speak Ixcatel, and this is the only village of the world where the Ixcatel language is spoken [31, 32]. Subsistence of the people is based on the multiple use of natural resources and ecosystems, seasonal agriculture, livestock raising, and forest resource extraction [26]. We previously reported 630 plant species used by local people for satisfying different needs [26], nearly 400 species receiving some type of management in order to increase their abundance [26]. Gathering and management of plants is carried out in 18 types of forests, agroforestry systems, and homegardens over a 41,530-ha territory [26, 31–35].

Inventory of edible, medicinal, and ceremonial plants

Ethnobotanical studies by Rangel-Landa et al. [26] documented names, uses, and management of all plant species through semi-structured interviews with 44 persons (see Table 1) in 73 sessions. The information was systematized into the ethnobotanical database of Mexican plants (BADEPLAM), at the Botanical Garden, UNAM, and voucher specimens were deposited in the herbaria MEXU, EBUM, IEB-Bajío, and IBUG. The nomenclature of plant species followed APG III consulted through the site www.theplantlist.org [36].

In-depth interviews and surveys

In order to analyze how management is influenced by sociocultural and ecological factors, we selected samples of edible, medicinal, and ceremonial plants. The samples included 20 species of native and naturalized plants per use type, representing the management intensity gradient [26].

In-depth interviews were conducted to obtain deeper and detailed information on uses, values, perception about availability, vulnerability, and management practices (Table 2) for the selected species. These interviews were conducted with 25 persons selected at random (17 women and 8 men, see Table 1). In order to estimate the proportion of families that consume the studied plants in the village, we conducted a survey documenting the role of plant resources in people subsistence [26]. The survey included 20 households selected at random.

Free listing

For exploring the use preferences of the plants studied, we included different valuing criteria (utilitarian, symbolic, aesthetic, and emotional) through the free listing technique [37, 38]. We interviewed 38 persons (22 men, 16 women, Table 1) [26], asking them to list plants used: (1) in ceremonies and offerings to Saints and dead people, (2) as food, (3) for health care [26], and (4) for satisfying basic needs, those considered indispensable to live. We estimated their cognitive prominence for each use type through the formula \(S = F/(N \cdot mP) \), where \(F \) is the frequency of each plant species, \(N \) the number of people interviewed, and \(mP \) the average position in which a plant was named [39]. The index was calculated with Flame v1.0 [40].

Vegetation sampling

In order to identify the places where the plant species studied are managed, and how abundant they are in forests and agroforestry systems (AFS), we sampled vegetation in 7 agricultural plots, 21 homegardens, and 5 AFS associated to sites of mescal production [26].

Selection of variables for the analyses

Socio-ecological and technological variables were selected based on our previous studies [11, 12], which were organized in three main data matrixes. One matrix was with information on indicators of social, cultural, and economic importance of the species studied. A second matrix had information about biological aspects (life cycle length, types of reproduction, growth patterns, among others) and on people’s perception about the availability and vulnerability of each species. The third matrix had information about management practices and management intensity. Information on qualitative variables were categorized assigning numeric values from lower to higher management intensity according to the complexity of strategies and practices, occurrence or not of human selection, and low to high number of persons involved in the management type, among others. We also categorized from lower to higher social, cultural, and economic importance, considering that the higher their importance, the higher the potential risk associated to human pressure. Finally, we categorized from lower to higher vulnerability associated with biological characters considering the impact of human extraction of resources on individual plants and populations (Table 2). We averaged values of different categories, and in variables involving counting or binary records, we calculated the proportions of the states (Table 2). We excluded highly correlated variables, selecting those better representing the importance and management intensity of the plant species analyzed (Table 2).

Data analyses

In order to characterize the use and management of plants with edible, medicinal, and ceremonial uses, we used our previous data about all the species recorded [26] and the in-depth interviews for the selected species. We analyzed these data by cross-checking information and using descriptive statistics. We conducted principal component analysis (PCA) with data about management of all the native and naturalized species in order to classify management intensity among use types. The scores of the first principal component were used as management intensity
ID	Sex	Age	Language	Main activities	Participant type	Semistructured interviews	Surveys 2012	In-depth interviews	Homegarden field	Agricultural field	Mescal factory
1	Male	25	Spanish	Mescal production	Key participant	Yes	Yes				2
2	Male	50	Spanish	Agriculture, mescal production	Key participant	Yes	Yes		1		
3	Male	72	Spanish	Agriculture, palm weaver							6
4	Male	66	Spanish	Agriculture, palm weaver							12
5	Male	46	Spanish	Agriculture, palm weaver	Key participant	Yes	Yes				2
6	Female	44	Spanish	Domestic chores, palm weaver		Yes	15		8		
9	Male	73	Spanish	Agriculture, palm weaver		Yes			5		
10	Male	48	Spanish	Agriculture, commerce	Key participant	Yes	Yes		1		
11	Male	62	Spanish	Agriculture, mescal production	Key participant	Yes					10
12	Male	35	Spanish	Agriculture, mescal production, palm weaver							13
14	Male	67	Spanish	Agriculture, palm weaver							3
16	Male	73	Spanish	Agriculture, mescal production, palm weaver							
17	Female	60	Spanish	Student							
18	Female	35	Spanish	Domestic chores, palm weaver		Yes					13
19	Female	62	Spanish	Domestic chores, palm weaver							1
20	Female	62	Spanish	Domestic chores, palm weaver	Key participant	Yes	7	Yes	15		
23	Male	72	Spanish	Agriculture, palm weaver		Yes					3
24	Male	70	Spanish	Agriculture, palm weaver					14		
25	Male	51	Spanish	Agriculture, mescal production, palm weaver					5		
26	Male	82	Spanish, Ixcatec	Agriculture, palm weaver	Key participant	Yes					4
27	Male	68	Spanish	Agriculture, palm weaver					6		
30	Male	59	Spanish	Agriculture, mescal production, palm weaver					4		
31	Male	57	Spanish	Shepherd	Key participant	Yes	Yes	Yes			
34	Female	48	Spanish	Domestic chores, palm weaver							5
35	Male		Spanish	Student				Yes			
36	Female	70	Spanish	Domestic chores, palm weaver		Yes			7		
37	Female	46	Spanish	Commerce, domestic chores							
38	Female	18	Spanish	Student				Yes			
39	Female	59	Spanish	Domestic chores, palm weaver		Yes	20				
41	Female	34	Spanish	Domestic chores, palm weaver							
Table 1 Consultants’ details and the activities in which they collaborated (Continued)

ID	Sex	Age	Language	Main activities	Participant type	Semi-structured interviews	Surveys 2012	In-depth interviews	Homegarden field	Agricultural field	Mescal factory
42	Female	64	Spanish, Ixcatec	Domestic chores, palm weaver	Key participant	Yes	Yes				
43	Male		Spanish	Agriculture, mescal production, palm weaver							
46	Male	54	Spanish	Agriculture, palm weaver				15			
47	Female	41	Spanish	Domestic chores, palm weaver				Yes			
48	Female		Spanish	Domestic chores, palm weaver							
49	Male		Spanish	Commerce							
50	Female	41	Spanish	Commerce, domestic chores							
51	Female	35	Spanish	Domestic chores, palm weaver							
52	Male	76	Spanish, Ixcatec	Agriculture, palm weaver	Key participant	Yes	Yes	9			
53	Male		Spanish	Agriculture, palm weaver							
54	Male	32	Spanish	Agriculture, construction worker, palm weaver							
57	Female		Spanish	Domestic chores, palm weaver							
58	Female	41	Spanish	Domestic chores, palm weaver	Key participant	Yes	Yes	16			
59	Male	38	Spanish	Agriculture, palm weaver							
60	Female	83	Spanish	Domestic chores, palm weaver							
61	Female	88	Spanish, Ixcatec	Domestic chores, palm weaver							
63	Female	59	Spanish	Domestic chores, palm weaver							
64	Male		Spanish	Agriculture, mescol production, palm weaver, shepherd							
65	Male	73	Spanish	Agriculture, palm weaver							
66	Female	51	Spanish, Ixcatec	Domestic chores, palm weaver	Key participant	Yes	Yes	2			
67	Male	20	Spanish	Agriculture, palm weaver							
68	Male	61	Spanish	Agriculture, palm weaver							
69	Female		Spanish	Student							
70	Female	71	Spanish, Ixcatec	Domestic chores, palm weaver	Key participant	Yes	Yes	18			
72	Male	86	Spanish	Agriculture, palm weaver							
73	Female	82	Spanish, Ixcatec	Domestic chores, palm weaver	Key participant	Yes	Yes				
74	Male	38	Spanish	Agriculture, construction worker, palm weaver							
76	Female	65	Spanish	Domestic chores, palm weaver							
77	Male	38	Spanish	Agriculture, palm weaver							
78	Female	40	Spanish	Domestic chores, palm weaver							
79	Male	59	Spanish	Agriculture, mescal production, palm weaver, construction worker							
ID	Sex	Age	Language	Main activities	Participant type	Semi-structured interviews	Surveys 2012	In-depth interviews	Homegarden	Agricultural field	Mescal factory
-----	------	-----	----------------	--	----------------------------	----------------------------	---------------	--------------------	-------------	--------------------	----------------
81	Female	62	Spanish	Domestic chores, palm weaver		Yes					
82	Female	33	Spanish	Domestic chores, palm weaver		Yes					
83	Female	14	Spanish, Ixcatec	Domestic chores, palm weaver	Key participant	Yes					
84	Male	26	Spanish	Palm weaver, student	Key participant	Yes					
85	Male	80	Spanish	Agriculture, palm weaver		Yes					
88	Female	66	Spanish, Ixcatec	Domestic chores, palm weaver, shepherdess	Key participant	Yes	Yes				
89	Female	64	Spanish	Agriculture, mescal production, palm weaver	Key participant	Yes	Yes				
90	Male	79	Spanish, Ixcatec	Domestic chores, palm weaver	Key participant	Yes	Yes				
92	Male	88	Spanish, Ixcatec	Palm weaver	Key participant	Yes	Yes				
93	Female	84	Spanish	Domestic chores, palm weaver	Key participant	Yes	Yes				
94	Female	94	Spanish	Domestic chores, palm weaver	Key participant	Yes	Yes				
95	Female	33	Spanish	Domestic chores, palm weaver		Yes					
96	Male	25	Spanish	Agriculture, shepherd	Key participant	Yes	Yes				
97	Female	39	Spanish	Domestic chores, palm weaver	Key participant	Yes	Yes				
98	Female	55	Spanish	Agriculture, mescal production, palm weaver		Yes					
99	Male	57	Spanish	Domestic chores, palm weaver		Yes					
100	Female	64	Spanish	Domestic chores, palm weaver		Yes					
101	Female	88	Spanish	Domestic chores, palm weaver		Yes					
102	Male	79	Spanish	Domestic chores, palm weaver		Yes					
103	Male	84	Spanish	Domestic chores, palm weaver		Yes					
104	Female	94	Spanish	Domestic chores, palm weaver		Yes					
105	Female	33	Spanish	Domestic chores, palm weaver		Yes					
106	Male	25	Spanish	Agriculture, mescal production, palm weaver		Yes					
107	Male	39	Spanish	Agriculture		Yes					
108	Female	55	Spanish	Domestic chores, palm weaver		Yes					
109	Female	48	Spanish	Domestic chores, palm weaver		Yes	Yes				
110	Female	50	Spanish	Domestic chores, palm weaver		Yes	Yes				
111	Female	57	Spanish	Agriculture, palm weaver		Yes	Yes				
We performed Kruskal-Wallis tests in order to identify differences among scores of management intensity of plants with ceremonial, edible, and medicinal uses. With the data of selected species, we performed two PCA per use type, one with the variables of the management type matrix and the other with the sociocultural and ecological variables (Table 2); the scores were used as an index of management intensity and a risk index, respectively. The relationships between risk and management intensity were analyzed through regression analyses.

Partial canonical analyses were performed using canonical correspondence analysis (CCA) per use type, in order to identify which fraction of the variation in plant management is explained by sociocultural and ecological factors and the effect of the interaction between the two types of variables [12, 15, 16, 41]. For each analysis, the sum of all canonical eigenvalues divided by the sum of all canonical eigenvalues of the CA with management data allowed calculating the corresponding fraction of variation explained by the analysis. The significance of the models was estimated by permutation tests. All analyses were conducted through the R software [42]. In the PCA and CCA analyses of medicinal plants, *Agave potatorum* and *Quercus acutifolia* were excluded since these species were outliers.

Results

Ceremonial plants

We recorded 128 ceremonial plant species, 78 of them native or naturalized (Table 3); 22 species are considered by people to be basic for their life (Table 4). We recorded 48 species used for altars at homes for venerating Saints (Fig. 2). The most valuable species are those appreciated for their beauty and odor of their flowers (Table 5). As part of the communitarian celebrations, local people use 33 species as incense-like resin called copal (*Bursera* spp.), in the religious processions (*Litsea glaucescens*), and as ornaments offered to Saints (orchids, *Dasyliirion serratifolium*, *Tillandsia grandis*, *Beaucarnea stricta*) (Fig. 2).
Matrix	Variables	Description	Criterion and values
Sociocultural	Uses number	Total number of registered uses	1 per use
(matrix X)	SI basic plants	Sutrop's cognitive prominence index of plants considered as basic to live in Ixcatlán	0–1; 0 is a value assigned when no consultant mentioned the plant, and 1 is a theoretical value that a plant could have if all consultants mentioned it at first rank [39]
	SI by use type	Sutrop's cognitive prominence index of plants by category (edible, medicinal, ceremonial)	0–1; 0 is a value assigned when no consultant mentioned the plant, and 1 is a theoretical value that a plant could have if all consultants mentioned it at first rank [39]
Consumption	Proportion of families that have consumed the species for the analyzed use in the last 2 years		0–1
Use frequency	Frequency of consumption per availability season/year for analyzed use (2)		0 = never been consumed; 1 ≤ 5 times in their life; 2 ≥ 5 times in their life but not regularly; 3 = 1 time every 2 availability seasons; 4 = 1 a 2 times by availability season; 5 = 3 a 10 times by availability season
Recognized variants	Types or varieties recognized (1)		0 = no varieties are recognized; 1 = varieties are recognized for a plant, but each variety is a different species; 2 = varieties are recognized for a species but are used equally; 3 = varieties are recognized and have specialized use
Economic interchange	Type of commercial exchange (1)		1 = direct consumption; 2 = bartering; 3 = sold inside the village by collectors of the community or corners who obtain it in other places; 4 = harvested inside the village and are marketed outside (plants or products)
Reciprocity interchange	Type of exchange of reciprocity (1)		1 = direct consumption; 2 = it is given and received as a gift to/from others; 3 = it is offered in communal celebrations (harvested by sponsors celebration or families who offer the plants to sponsor celebration)
Sociocultural strategies	Strategies to obtain the plant when scarce or unavailable (1)		0 = nothing; 1 = mobility, look elsewhere; 2 = substitution for other species or products; 3 = store them; 4 = ask someone to give them; 5 = seek to obtain it by barter; 6 = buy them
Useful parts²	Number of useful parts		1 per used part
Harvest effort³	Invested effort in harvest in a journey (1)		1 = opportunist; 2 = journey dedicated to harvest the species
Tools for harvest³	Use of tools, supplies, and vehicles in harvest (1)		None, only hands are used; 1 = objects obtained at harvest site; 2 = knife, machete; 2 = Arundo donax pole, baskets, bags; 3 = load animals, vehicles, chainsaws
Ecological	Abundance perception	Abundance perception in the territory (2)	1 = very abundant; 2 = abundant; 3 = regular abundance; 4 = scarce; 5 = rare
(Matrix W)	Vulnerability	Plant vulnerability to factors affecting productivity, quality, and survival (2)	1 = nothing affects and always produces the same; 2 = plague, drought, steady harvest, others
	Life cycle	Life cycle type of the species	1 = annual; 2 = perennial
	Reproduction	Reproduction type of the species	1 = sexual and asexual; 2 = sexual
	Harvested parts	Harvested parts for all use types of the plant in function of survival, resprouting, and reproductive capacity after useful part harvest (1)	1 = living individual; 1 = dry branches; 2 = exudates, thorns; 3 = leaves; 4 = sprout; 5 = mature branches (lignified tissue/flowers); 6 = fruits, seeds; 7 = bark; 8 = all flowers/fruits of the season; 9 = main stalk; 9 = roots; 10 = complete individuals
Brahea spp. leaves blessed are used for weaving shoes for dead people. The copal resin is used in praying, altars, processions, masses, and funerary rites and for protecting against “aires” (negative feelings, dangerous situations that may cause illnesses or accidents).

Commercialization of ceremonial wild plants is uncommon, except the resin of Bursera spp., which is used for celebrating the day of the dead. People used to share part of flowers collected in forests or managed in homegardens (mainly Chiococca alba, Lindleya mespiloides, orchids, and copal resin (Bursera spp.)) and give them as presents to people who organize the communitarian feasts. Dasylirion serratifolium, Beaucarnea stricta, and Tillandsia grandis are involved in practices of reciprocity among most of the local households in communitarian feasts (Table 5).

Table 2 Criteria of variables considered for analyzing sociocultural and ecologic factors that influence management intensity (Continued)

Matrix	Variables	Description	Criterion and values
Nearness to harvest site^a	Closeness perception of harvest sites to consumption site (2)	1 = far away; 2 = far; 3 = not too far; 4 = near; 5 = at hand	
Temporal availability^b	Temporal availability of the useful part for the analyzed use (2)	1 = all year; 2 = months; 3 = weeks; 5 = days	
Collective regulations	Type of regulation for the harvest (1)	0 = without restrictions; 1 = there are “costumbres” traditions that indicate the techniques, quantity, and occasions of harvest; 2 = In addition to communal agreements aimed at regulating the access, they are aware that external institutions protect the species; 3 = complaints have been made or penalties imposed	
Management practices	Management practice type (1)	1 = gathering, forage; 2 = gathering with care to avoid damaging the plant; 3 = tolerance; 4 = enhancement; 5 = protection; 6 = transplanting of individuals; 7 = propagation	
Artificial selection	Selection of individuals and propagules (1)	0 = without selection; 1 = selection of individuals or parts that are collected for consumption; 2 = selection of tolerated, protected or enhanced individuals; 3 = selection of individuals from which seeds or cuttings are obtained to propagate	

Management in AFS Species presence proportion in homegardens, agricultural fields, and mescal factories 0–3

Practices number^a Number of management practices carried out 1 by type of practices

Maintaining labors^a Type of labors carried out to protect, enhance, and cultivate 1 = prepare soil; fix to hosts; exclusion of predators with fences, cages; removal of competitors; pruning, removing dried or diseased leaves; mechanical support; addition of forest soil, sand, ash, residues of organic matter; addition of lime 2 = irrigation 3 = infrastructure and special equipment for maintenance

Management system type^a System type where plant is managed with respect to species natural distribution (1) 1 = wild vegetation where plants are distributed naturally; 2 = homegardens, gardens in mescal factories or “palenques,” and agricultural fields, where plants are naturally distributed; 3 = homegardens, mescal factories, and agricultural fields, where plants have been carried; 4 = greenhouses and nurseries

Numbers in variable description indicate the following: (1) addition of the different values registered for the species; (2) average of category values mentioned by consultants

^aVariables not included in principal component analysis and partial canonical analysis

Table 3 Management of native and naturalized species of Santa María Ixcatlán by use type

Use Type	Ceremonial	Edible	Medicinal
Only gathered	28	30	81
Tolerated	21	40	79
Enhancement	6	7	9
Protection	37	28	31
Transplanting	26	20	15
Propagation	18	11	12
Total	77	80	178
Table 4 Native and naturalized plants of Santa María Ixcatlán with ceremonial, edible, and medicinal use

Family	Species	Voucher number	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Voucher type	Origin	Management practices	Management site with respect to natural distribution
Amaranthaceae	Alternanthera ocuaoa Kunitz	ERL-21, SRL-93	Maravilla	Yes	0	Bal, Sol	icatlan	In situ			
Amaranthaceae	Amaranthus hybridus L.	SRL-79, SRL-80, SRL-1122, SRL-1141, ERL-74, ERL-102	Quelilte tintonil	Yes	Yes	0.024	Bal, Sol, TS	icatlan			
Amaranthaceae	Chenopodium berlandieri Moq.	SRL-1139	Quelilte de manteca, flor de huizomte	Yes	0.006	Sol	icatlan	In situ			
Amaranthaceae	Chenopodium ambrosioides (L.) Mosyakin & Clemants	ERL-32, ERL-33, ERL-168, RLF-89, SRL-1136	Epazote	Yes	Yes	0.065	Bal, Sol	icatlan			
Amaranthaceae	Gomphrena serrata L.	RLF-60, RLF-242, SRL-90, SRL-378, SRL-1175	Gallitos	Yes	0	Bal, BEA, BN, Iz, Me, Pal	icatlan	In situ			
Anacardiaceae	Actinocheita potentillifolia (Turcz.) Bullock	RLF-109, RLF-274, SRL-1183, SRL-1368	Tefate	Yes	0	CaCe, Me, Iz, Palm	icatlan	In situ			
Anacardiaceae	Cyrtocarpa procera Kunth	SRL-1358	Chupandio	Yes	0	CaCe	icatlan	In situ			
Anacardiaceae	Pistacia mexicana Kunth	RLF-326, SRL-1211, SRL-1340, SRL-1523	Socoya	Yes	0	BG, CaCe, Iz, SB, Pal, Sol	icatlan	In situ			
Anacardiaceae	Rhus chondroloma Standll	RLF-282, SRL-1222, SRL-1460	Zumaque	Yes	Yes	0.007	BEA, BC, Me, Pal, SB, TS	icatlan	In situ		
Anacardiaceae	Rhus standleyi F.A.Bakley	RLF-59, RLF-255, SRL-269, SRL-472, SRL-1248, SRL-1470	Encino chaparro, zumaque grueso	Yes	Yes	0.007	BEA, BC, Iz, Me, Pal, Palm, Sol, TS	icatlan	In situ		
Anacardiaceae	Rhus virens Lindl. ex A.Gray	RLF-58, RLF-219, SRL-275, SRL-468, SRL-1218	Zumaque	Yes	Yes	0.007	BEA, BN, Iz, Me, BB, BS, TS	icatlan	In situ		
Apiaceae	Eryngium bonplandii F.Delaroche	RLF-6, SRL-132, SRL-384, SRL-1247	Ojo de gallo	Yes	0	BEA, Paz	icatlan	In situ			
Apiaceae	Eryngium comosus F.Delaroche	RLF-127	espinuda	Yes	0	Me	icatlan	In situ			
Apiaceae	Eryngium pectinatum CPres ex DC.	RLF-52, SRL-315		Yes	0	BEA, Bc	icatlan	In situ			
Apocynaceae	Cascabela thevetia (L.) Lippold	SRL-1336		Yes	0	CaCe	icatlan	In situ			
Apocynaceae	Matelea purpusi Woodson	SRL-1123	Teacacholo	Yes	Yes	0	BEA, Pal, Sol	icatlan	In situ		
Apocynaceae	Plumeria rubra L. Photo record		Gacalsuschi	Yes	0	CaMy, Sol	icatlan	In situ			
Araceae	Brahea dulcis (Kunitz) Mart.	RLF-155, RLF-1915, SRL-462, SRL-463, SRL-1192, SRL-1193	Palma orilla	Yes	Yes	0.106	BEA, Bc, BG, BN, Iz, Me, Pal, Pal, Palm, Sol, TS	icatlan	In situ		
Araceae	Brahea dulcis x B. calcarea Mart x Liebm	SRL-1229	Palma media sierra	Yes	0	BEA	icatlan	In situ			

Rangel-Landa et al. Journal of Ethnobiology and Ethnomedicine (2017) 13:59
Family	Species	Voucher number	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Vegetation type	Origin	Management practices	Management site with respect to natural distribution	
Aristolochiaceae	Aristolochia teretifolia	SRL-1130	Orejita de ratón	Yes	0	Sol, TS	icatlán	Gathering, tolerance, uproot	In situ			
Asparagaceae	Agave kouchelvii Lem.	Photo record	Maguey rabo de león	Yes	0	Iz, Pal	icatlán	Forage, gathering	In situ			
Asparagaceae	Agave potatorum Zucc.	RLF-285, SRL-403, SRL-1209	Maguey papalome	Yes	Yes	0.057	BEA, Iz, Me, Pal, Palm, SB, Sol, TS	icatlán	Enhancement, forage, gathering, protection, propagation, tolerance, transplanting of individuals	Ex situ, in situ		
Asparagaceae	Agave salmiana Otto ex Salm-Dyck subsp. tehuacanensis (Karw. ex Salm-Dyck) Garcia-Mend.	Photo record	Maguey cimarrón	Yes	Yes	0	BEA, BN, Pal, Palm, Sol, TS	icatlán	Forage, gathering, protection, tolerance, transplanting of individuals	Ex situ, in situ		
Asparagaceae	Agave scoposa Gentry	Photo record	Maguey potrero	Yes	0.006	BEM, Sol	icatlán	Gathering, protection	Ex situ, in situ			
Asparagaceae	Agave trianota Gentry	SRL-404	Maguey tiesto	Yes	0	Iz	icatlán	Forage, gathering	In situ			
Asparagaceae	Agave triangularis Jacobi	SRL-437	Maguey rabo de león, maguey tiesto	Yes	0	Iz	icatlán	Forage, gathering	In situ			
Asparagaceae	Agave vivipara L.	SRL-235, SRL-1353, SRL-1309	Maguey espadín	Yes	0	CaCe, Iz, Pal, SB, Sol, TS	icatlán	Gathering, protection, propagation	Ex situ, in situ			
Asparagaceae	Beaucarnea stricta Lem.	RLF-149	Sotol	Yes	0.005	Iz	icatlán	Gathering, protection	In situ			
Asparagaceae	Dasylirion serratifolium (Karw. ex Schult. & Schult.f.) Zucc.	RLF-156, SRL-420, SRL-1473, SRL-1521	Cucharilla, manita	Yes	Yes	0.010	BG, Me	icatlán	Forage, gathering	In situ		
Asparagaceae	Echeandia paniculata	SRL-442, SRL-1114	Cebolla de cacalote	Yes	Yes	0	BEA, Iz, Me	icatlán	Gathering	In situ		
Asparagaceae	Echeandia paniculata	SRL-228	Sotol	Yes	Yes	0	BEA, Me	icatlán	Gathering	In situ		
Asparagaceae	Echeandia paniculata	RLF-1505	Toluca	Yes	0	AA	icatlán	Gathering	In situ			
Bignoniaceae	Tecoma stans (L.) Juss. ex Kunth	RLF-13, RLF-56, RLF-249, SRL-438, SRL-465, SRL-1307	Tronadora	Yes	0	BEA, BN, Iz, Me	icatlán	Forage, gathering	In situ			
Boraginaceae	Antiphytum senectifolium (Karw. ex Schult. & Schult.f.) Hemsl.	SRL-35	Mostaza	Yes	0	BN, Me, Palm	icatlán	Gathering	In situ			
Brassicaceae	Brassica rapa L.	SRL-1536	Mostaza	Yes	0	Bal, Sol, TS	Naturalized, from other continents	Gathering, tolerance, uproot	Ex situ			
Brassicaceae	Capsella bursa-pastoris (L.) Medik.	SRL-182, SRL-1324	Lentejilla	Yes	0	Bal, Sol	Naturalized, from other continents	Gathering, tolerance, uproot	Ex situ			
Brassicaceae	Descurainia villosa (E.Fourn.) O.E.Schulz	SRL-35	Mostaza	Yes	0	Bal, Sol	icatlán	Forage, gathering	In situ			
Brassicaceae	Enca vesicaria (L.) Cav.	RLF-309, SRL-39, SRL-1131	Jaramón	Yes	0	Bal, Sol, TS	Naturalized, from other continents	Forage, gathering, tolerance, uproot	Ex situ			
Family	Species	Voucher number	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Sunop index	Vegetation type	Origin	Management practices	Management site with respect to natural distribution
---------------	---------	----------------	-------------	----------------	------------	---------------	--------------	-------------	----------------	---------	---	--
Brassicaceae	Lepidium virginicum L.	ERL-109, RLF-70, RLF-103, RLF-179, SRL-1320	Lentejilla	Yes	0	Bal, B, B, S, Ixcatlán	Forage, gathering, protection, tolerance	In situ				
Brassicaceae	Nasturtium officinale R.Br.	SRL-199	Bero	Yes	0	00	VR	Naturalized, from other continents	Gathering	In situ		
Bromeliaceae	Caesalpinia pulcherrima	RLF-335, SRL-1253	Soluche de jarrata	Yes	0	BEA, B, I, S, S,	Ixcatlán	Gathering, forage, transplanting of individuals	Ex situ, in situ			
Bromeliaceae	Tillandsia floribunda	SRL-1492	Jarrilén	Yes	0	CaCe, Me, S, Ixcatlán	Gathering, forage, transplanting of individuals	In situ				
Bromeliaceae	Tillandsia neomexicana	SRL-1201, SRL-1435	Soluche blanco, soluche de flor colorada	Yes	0	BEM	Ixcatlán	Gathering	In situ			
Bromeliaceae	Tillandsia sp.	RLF-81, SRL-1246, SRL-1254	Soluche	Yes	0	BEA, B, S, Ixcatlán	Gathering	In situ				
Bromeliaceae	Tillandsia sp.	RLF-84, SRL-224, SRL-1242, SRL-1250	Soluche	Yes	0	BEA, B, P, S, V	Ixcatlán	Gathering, forage, transplanting of individuals	Ex situ, in situ			
Bromeliaceae	Tillandsia recurvata	SRL-211	Soluchito	Yes	0	Palm, S, Ixcatlán	Gathering, forage, transplanting of individuals	In situ				
Bromeliaceae	Tillandsia usneoides	SRL-1243	Soluche	Yes	0	BA	Ixcatlán	Gathering	In situ			
Buddlejaceae	Buddleja pavoniana Kunth	ERL-197, SRL-371, SRL-1207, SRL-1522	Lengua de vaca, tepozol	Yes	0	BEA, B, P, S, Ixcatlán	Gathering, forage, transplanting of individuals	Ex situ, in situ				
Burseraceae	Bursera biflora (Rose) Standl.	RUS-11, RLF-122, SRL-1219	Copal colorado, copal amarrillo, copal criollo	Yes	0	Iz, Me, S, S, Ixcatlán	Gathering, forage, transplanting of individuals	Ex situ, in situ				
Burseraceae	Bursera fagaroides (Kunth) Engl.	SRL-349	Copallillo	Yes	0	Me	Ixcatlán	Gathering, forage, transplanting of individuals	Ex situ, in situ			
Burseraceae	Bursera ponceaensis Rand, Calderón & Medina	SRL-1271	Copallillo blanco	Yes	0	Me	Ixcatlán	Gathering, forage, transplanting of individuals	Ex situ, in situ			
Burseraceae	Bursera schéchenardii Engl.	SRL-1367	Acreceño	Yes	0	CaCe	Ixcatlán	Gathering, forage, transplanting of individuals	Ex situ, in situ			
Cactaceae	Ferocactus recurvus (MIR) Borg	SRL-1419	Biznaga grande	Yes	0	Paz, B, S, TS	Ixcatlán	Gathering, forage, transplanting of individuals	Ex situ, in situ			
Cactaceae	Ferocactus macrodiscus (Mart.) Britton & Rose	SRL-402	Biznaga	Yes	0	Paz, S, S, Ixcatlán	Gathering, forage, transplanting of individuals	Ex situ, in situ				

Table 4: Native and naturalized plants of Santa María Ixcatlán with ceremonial, edible, and medicinal use (Continued)
Family	Species	Voucher number[a]	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Sutrop index	Vegetation type[b]	Origin	Management practices	Management site with respect to natural distribution
Cactaceae	*Mammillaria haageana* Pfeiff.	SRL-387, SRL-1480	Biznaga chiquita	Yes	Yes		BCA, Iz, Me, Palm, Sol	Ixcatlán	Gathering, protection, transplanting of individuals	Ex situ, in situ		
Cactaceae	*Mammillaria sphacelata* Mart.	Photo record	Biznaga	Yes	Yes		BCA, BN, Me, Pal, Sol, TS	Ixcatlán	Gathering, protection, tolerance, transplanting of individuals	Ex situ, in situ		
Cactaceae	*Opuntia depressa* Rose	SRL-238	Nopal de coyote	Yes	0		BEATS	Solar	Forage, gathering, tolerance	In situ		
Cactaceae	*Opuntia lasiacantha* Pfeiff.	SRL-477	Nopal pachón	Yes	0.042		Sol, Ixcatlán	Ixcatlán	Gathering, protection, propagation, tolerance, transplanting of individuals	Ex situ, in situ		
Cactaceae	*Opuntia* sp.	Photo record	Nopal de coyote, nopal tuna roja	Yes	0		Palm, Sol	Ixcatlán	Gathering, forage, propagation, tolerance, transplanting of individuals	Ex situ, in situ		
Cannabaceae	*Celtis coudia* Planch.	ERL-79, ERL-155, ERL-194, ERL-222, SRL-1475	Malintze, moralillo	Yes	0		Me, Sol	Ixcatlán	Gathering, protection, tolerance	In situ		
Chenopodiaceae	*Chenopodium murale* L.	RLF-184, SRL-194, SRL-1121, SRL-1140, SRL-1321	Quelite de guajolote	Yes	Yes		Bal, Sol	Naturalized, from other continents	Forage, gathering, tolerance, uproot	Ex situ		
Commelinaceae	*Tradescantia cassinifolia* Cav.	SRL-149		Yes	0		Me	Ixcatlán	Gathering	In situ		
Compositae	*Ageratina ephrosorum* (A.Gray) RMK & HRob.	RLF-36, SRL-114, SRL-291, SRL-325, SRL-363, SRL-1279	Oreganillo	Yes	0		BEA, BC, BN, Iz, Me, Pal, Palm, Sol, TS	Ixcatlán	Forage, gathering, tolerance	In situ		
Compositae	*Ageratina moleotiana* (DC.) RMK & HRob.	SRL-186, SRL-390	Hiebre de ángel	Yes	0.014		BEA, Pal, Sol	Ixcatlán	Forage, gathering, protection, tolerance, transplanting of individuals	Ex situ, in situ		
Compositae	*Ageratina* sp.	RLF-116, SRL-74	Hiebre de ángel	Yes	0		Me, Sol	Ixcatlán	Forage, gathering	In situ		
Compositae	*Ageratina* sp.	SRL-208	Oreganillo	Yes	0		Pal, Sol	Ixcatlán	Forage, gathering	In situ		
Compositae	*Ambrosia palastachya* DC.	RLF-9	Chamizo	Yes	0		BEA	Ixcatlán	Gathering	In situ		
Compositae	*Baccharis salicina* Terr. & A.Gray	SRL-1151		Yes	0		BEA	Ixcatlán	Gathering	In situ		
Compositae	*Bidens pilosa* L.	SRL-190, SRL-1531, ERL-27, ERL-63, ERL-190, ERL-218	Somiate	Yes	0.003		BG, Pal, Palm, Sol	Ixcatlán	Forage, gathering, tolerance, transplanting of individuals	In situ		
Compositae	*Bidens pilosa* L.	SRL-4, SRL-1285	Oaxaqueña	Yes	0		BG, Pal, Sol, TS	Ixcatlán	Forage, gathering, tolerance, uproot	In situ		
Compositae	*Bisnagua veronica* (Kunth) HRob & Brettell	RLF-11, RLF-203, RLF-205, SRL-293, SRL-361, SRL-1276, ERL-101	Oreganillo, orejita de ratón	Yes	0		BEA, BN, Iz, Me, Pal, Palm, Sol, TS	Ixcatlán	Forage, gathering, tolerance, uproot	In situ		
Compositae	*Chrysanthemum morifolium* (Kunth) A.Gray	RLF-154, SRL-1163	Hiebre de San Nicolás	Yes	0		Palm	Ixcatlán	Gathering, protection	In situ		
Compositae	*Chrysanthemum mexicanum* AGray	RLF-154	Leduga cimarrón	Yes	0		BG, Pal	Ixcatlán	Forage, gathering	In situ		
Compositae	*Cosmos bipinnatus* Cav.	ERL-4, ERL-166, ERL-167, SRL-45, SRL-47	Jazmín	Yes	0		Sol	Naturalized-from other parts of Mexico	Gathering, enhancement, protection, propagation, tolerance	Ex situ		
Family	Species	Voucher number	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Vegetation type	Origin	Management practices	Management site with respect to natural distribution	
------------	---	----------------	----------------------	----------------	------------	---------------	-------------	----------------	--------	--	--	
Compositae	Dahlia apiculata (Sherff) P.D.Sorensen	RLF-259, SRL-91, SRL-1199, ERL-133, ERL-148	Dalia corriente, ticurrichi	Yes	0	BEA, BEM, Pal, Sol	icatlán		Gathering, protection, propagation, transplanting of individuals	Ex situ, in situ		
Compositae	Dahlia coccinea Cav.	RLF-96, RLF-260, SRL-423, SRL-1160, SRL-1186	Dalia	Yes	0	BEA, BEM, BG, Me, Pal, Sol	icatlán		Gathering, protection, propagation, transplanting of individuals	Ex situ, in situ		
Compositae	Gnaphalium sp.	SRL-297							icatlán	Gathering	In situ	
Compositae	Grindelia inuloides Wildd.	RLF-14, SRL-66, SRL-107, SRL-278, SRL-209, SRL-365, SRL-1547	Amica	Yes	0.029	BEM, BN, Palm, Pal, Sol	icatlán		Gathering, protection, propagation, transplanting of individuals	Ex situ, in situ		
Compositae	Gymnsea glaucescens (Spreng.) Less.	RLF-72, RLF-121, SRL-75, SRL-290, SRL-1117, SRL-1297, ERL-25	Cecilia, popote	Yes	0.002	Bal, BEA, BN, Pal, Palm, Sol, TS	icatlán		Forage, gathering, tolerance, uproot	In situ		
Compositae	Helianthus mexicanus Kunth	RLF-25, SRL-1116, SRL-1134	Chiche de perro	Yes	0	BEA, Palm	Ixcatlán	Gathering	In situ			
Compositae	Montanoa tomentosa Cerv.	RLF-300, SRL-2	Oaxaqueña	Yes	0	BEM, BN, Pal, Sol	Ixcatlán	Gathering	In situ			
Compositae	Neurobionia lobata (L.) RBr. ex Cass.	SRL-198	Naranjillo	Yes	0	VR	Ixcatlán	Gathering	In situ			
Compositae	Panthenium bippinastidum (Ortega) Rollins	ERL-9, RLF-87, RLF-178, SRL-34, SRL-82, SRL-445, SRL-1325	Huerba cenizo	Yes	0	Sol	Ixcatlán	Forage, gathering, tolerance, uproot	In situ			
Compositae	Parthenium tomentosum D.C.	SRL-1213, SRL-1375	Palo prieto	Yes	0	Cacce, SB	Ixcatlán	Gathering	In situ			
Compositae	Porphyllum sp.	RLF-251	Cahual	Yes	0	Iz	Ixcatlán	Forage, gathering	In situ			
Compositae	Pinaropappus roseus (Less.) Less.	RJS-8, SRL-407, SRL-1526	Chipule	Yes	0	Bal, BG, Iz, Paz	Ixcatlán	Gathering	In situ			
Compositae	Piqueria tirimia Cerv.	RLF-8							Ixcatlán	Forage, gathering	In situ	
Compositae	Porophyllum ineraria (Cav.) D.C.	RLF-18, SRL-158, SRL-357, SRL-1150, ERL-141	Pepitza	Yes	0	BEA	Ixcatlán	Forage, gathering, protection, propagation, transplanting of individuals	Ex situ, in situ			
Compositae	Porophyllum radians Raderse subsp. macrophyllum (D.C.) R.R.Johnson	RLF-318, SRL-1539	Papaloquelite	Yes	0.004	Me, Sol	Ixcatlán	Forage, gathering, tolerance, transplanting of individuals	Ex situ, in situ			
Compositae	Psilostachyum paucicapitatum (B.L.Rob & Greenm) H.Rob. & Brettel	RLF-193, SRL-1159	Huerba de camote de venado	Yes	0	BEA, Iz	Ixcatlán	Gathering, protection, transplanting of individuals	Ex situ, in situ			
Compositae	Rhodanthe aemuligiosa (Klatt) H.Rob. & Brettel	SRL-1152	Huerba de perro	Yes	0	BEA	Ixcatlán	Gathering	In situ			
Compositae	Sanvitalia procumbens Lam.	RLF-42, SRL-12, SRL-1179	Ojo de gallo	Yes	0	Me, Palm, Sol, TS	Ixcatlán	Forage, gathering, tolerance, uproot	In situ			
Compositae	Semecia praecox (Cav.) D.C.	ERL-191, SRL-1487	Consueida, pata de león	Yes	0	Me, Sol	Ixcatlán	Gathering, protection, transplanting of individuals	Ex situ, in situ			
Family	Species	Voucher number(s)	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Sunop index	Vegetation type	Origin	Management practices	Management site with respect to natural distribution
-----------------	------------------------------	-------------------	----------------	----------------	------------	---------------	--------------	-------------	----------------	---	---	--
Compositae	*Sonchus oleraceus* (L.) L.	ERL-10, SRL-1126	Chicoria	Yes	0	Sol	Naturalized, from other continents	Gathering, tolerance, uproot	Ex situ			
	Stevia lucida Lag.	SRL-332, SRL-339	Chamalacate	Yes	0	BN, IZ, Me, Palm, TS	Ixcatlán	Gathering, forage, tolerance, uproot	In situ			
	Stevia sp.	RLF-170, RLF-183, SRL-32, SRL-97, SRL-1281	Chahuil delgado	Yes	0	BN, Pal, Sol, TS	Ixcatlán	Forage, gathering, tolerance	In situ			
	Stevia sp.	RLF-276	Chahuil prieto	Yes	0	BEA, Pal	Ixcatlán	Gathering	In situ			
	Stevia sp.	SRL-1262	Yes	0	Me	Ixcatlán	Forage, gathering	In situ				
	Stevia sp.	SRL-1295	Yes	0	Pal	Ixcatlán	Forage, gathering	In situ				
	Stevia canacacana D.C.	RLF-211, SRL-1289, SRL-1293, SRL-1402	Yes	0	Iz, Pal, Palm	Ixcatlán	Gathering, tolerance	In situ				
Compositae	*Tagetes erecta* L.	ERL-12, ERL-62, ERL-117, ERL-118, ERL-134, ERL-149, ERL-151, ERL-152, ERL-159, SRL-7, SRL-408, SRL-1142	Cempasuchí	Yes	0.003	Sol, TS	Naturalized-from other parts of Mexico	Enhancement, protection, propagation, tolerance, transplanting of individuals	Ex situ			
	Tagetes lucida Cav.	RLF-3, SRL-377, SRL-1232, SRL-1426	Petición	Yes	Yes	Yes	0.003	BEA, Paz	Ixcatlán	Gathering	In situ	
	Tagetes lunulato Ortega	ERL-137	Cempasuchí chiquito	Yes	0	Sol	Ixcatlán	Gathering, enhancement, forage, protection, tolerance	In situ			
Compositae	*Tocquea campefладes* G.E.Haglund	ERL-106, SRL-89	Achicoria	Yes	Yes	0	Sol	Ixcatlán	Forage, gathering, tolerance, uproot	Ex situ		
Compositae	*Tridax cosmopófilo* (Kunth) Heerl.	SRL-104	Yes	0	BN	Ixcatlán	Gathering	In situ				
Compositae	*Viguiera dentata* (Cav.) Sprenq.	RLF-227, SRL-164, SRL-1277, SRL-1302	Chimalacate	Yes	Yes	Yes	0	BEA, BEC, BG, IZ, Me, Pal, Sol, TS	Ixcatlán	Gathering, forage, tolerance, uproot	In situ	
Compositae	*Viguiera grammatogloia* DC.	RLF-233, RLF-298, SRL-347, SRL-1286	Chahuil prieto	Yes	0	BEG, IZ, Me, Pal, Palm, TS	Ixcatlán	Forage, gathering, tolerance, uproot	In situ			
Convolvulaceae	*Zinnia peruviana* (L.) L.	SRL-1214	Galíto	Yes	0	BEA, BN, IZ, Me, Palm, TS	Ixcatlán	Forage, gathering, tolerance, uproot	In situ			
Compositae	*Sutrop index*	SRL-1214	Jazmín, cahuil blanco	Yes	0	SB	Ixcatlán	Gathering	In situ			
Convolvulaceae	*Ipomoea wrightii* House	SRL-1272	Yes	0	CaCe	Ixcatlán	Gathering	In situ				
Convolvulaceae	*Ipomoea aff. papulina* House	SRL-1275	Cahuil prieto	Yes	0	Pal, Sol, VR	Ixcatlán	Gathering	In situ			
Convolvulaceae	*Ipomoea aff.*	SRL-1478	Heleba de ángel, oxaxqueña	Yes	0	BEA	Ixcatlán	Gathering	In situ			
Convolvulaceae	*Ipomoea aff. populinata* House	SRL-1339	Cempasuchí de motivo de campo	Yes	0	CaCe	Ixcatlán	Gathering	In situ			
Convolvulaceae	*Dichondra argentea* Humb. & Bonpl. ex Willd.	SRL-1314	Orejita de ratón	Yes	0	BEA, BN, IZ, Me, Palm, TS	Ixcatlán	Gathering	In situ			
Convolvulaceae	*Ipomoea wrightii* House	SRL-1306	Jicara	Yes	0	Me	Ixcatlán	Forage, gathering	In situ			
Family	Species	Voucher number	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Suntop index	Vegetation type	Origin	Management practices	
---------------	----------------------------------	----------------	-----------------------------	----------------	------------	---------------	--------------	--------------	----------------	--------------	--	
Convolvulaceae	Ipomoea conzattii Greenm.	SRL-1491, SRL-1510	Jícama de cerro	Yes	0	CaMy, Me			0	Ixcatlán	Forage, gathering	
Convolvulaceae	Ipomoea purpurea (L.) Roth	ERL-14, RLF-44, RLF-45, SRL-145, SRL-48	Quebrada platos	Yes	0	BEA, Me, Paz, Sol, TS			0	Ixcatlán	Gathering, tolerance, uproot	
Convolvulaceae	Echeveria gigantea Rose & Purpus	SRL-1313	Siempreviva grande, lengua de vaca, oreja de toro	Yes	0	Me, Sol			0	Ixcatlán	Gathering, protection, transplanting of individuals	
Convolvulaceae	Echeveria nodulosa (Baker) Otto	SRL-356, SRL-1187, SRL-1255, SRL-1436	Siempreviva chiquita	Yes	0	BEA, Me, Iz, Palm, Sol, TS			0	Ixcatlán	Gathering, protection, transplanting of individuals	
Convolvulaceae	Saturn dendraeum Mac. & Sesse ex DC.	SRL-77, SRL-195, ERL-97, ERL-174	Siempreviva	Yes	0	NE, Sol			0	Ixcatlán	Gathering, protection, transplanting of individuals	
Cucurbitaceae	Cucumis pedatifolia L.H.Bailey	ERL-120, RLF-268, SRL-1135	Calabacita amarga	Yes	0	Bal, Pal, Sol			0	Ixcatlán	Forage, gathering, tolerance, uproot	
Cucurbitaceae	Cyclanthera dissecta (Torr. & A.Gray) Arn.	SRL-151	Chayotillo	Yes	0	Me, TS			0	Ixcatlán	Forage, gathering, tolerance, uproot	
Cucurbitaceae	Schizocarpum filiforme Schrad.	SRL-1260	Chayotillo	Yes	0	Sol, TS			0	Ixcatlán	Forage, gathering, tolerance, uproot	
Cucurbitaceae	Sicyos laxivulus L.	ERL-100, RLF-90, SRL-14	Chayotillo, pegajosa	Yes	0	Sol, TS			0	Ixcatlán	Forage, gathering, tolerance, uproot	
Cupressaceae	Juniperus fillicula Schidtt.	ERL-187, RUF-126, RUF-134, SRL-123, SRL-412, SRL-1199	Nebro	Yes	0.053	BEA, BEC, BG, BN, Iz, Me, Pal, Palm, Sol, TS			0	Ixcatlán	Gathering, protection, transplanting of individuals	
Cupressaceae	Taxodium huegelii C.Lawson	SRL-210, SRL-434, SRL-1294	Sabino	Yes	0.004	BG, Pal, Palm, Sol			0	Ixcatlán	Gathering, protection, transplanting of individuals	
Cyperaceae	Carex sp.	RLF-133	Pasto	Yes	0	Me			0	Ixcatlán	Forage, gathering	
Cyperaceae	Eleocharis acuticulris (L.) Roem. & Schult.	RLF-138	Pasto de arroyo	Yes	0	VR			0	Ixcatlán	Gathering	
Ebenaceae	Diospyros oacanensis Standl.	SRL-1446	Zapotillo	Yes	0	VR			0	Ixcatlán	Forage, gathering	
Ericaceae	Arbutus xalapensis Kunth	ERL-172, RLF-124, RLF-279, SRL-1477	Medranha, allita	Yes	0.018	BEA, BEC, BEM, BN, Me, TS			0	Ixcatlán	Gathering, tolerance	
Euphorbiaceae	Cnidosculus tehuacanensis Brecinon	Photo record	Mala mujer	Yes	0	Iz, Palm			0	Ixcatlán	Gathering	
Euphorbiaceae	Euphorbia dioica Kunth	ERL-107, RLF-7, SRL-359	Cedronia	Yes	0	BEA, Sol			0	Ixcatlán	Gathering, tolerance, uproot	
Euphorbiaceae	Euphorbia macropus (Klotsch & Garcke) Böiss.	SRL-1120	Hierba de chicle	Yes	0	Pal			0	Ixcatlán	Gathering	
Euphorbiaceae	Jatropha neopacifica Pax	SRL-1357	Sangre de grado, aceitillo	Yes	0	CaCe			0	Ixcatlán	Forage, gathering	
Euphorbiaceae	Ricinus communis L.	ERL-116, ERL-144, ERL-145, ERL-243, SRL-23, SRL-1129	Gria	Yes	0	Bal, Sol	Naturalized, from other continents		0	Ixcatlán	Enhancement, gathering, protection, tolerance, transplanting of individuals, uproot	

Rangel-Landa et al. Journal of Ethnobiology and Ethnomedicine (2017) 13:59
Family	Species	Voucher number(s)	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Vegetation type	Origin	Management practices	Management site with respect to natural distribution
Fagaceae	Quercus acutifolia Née	SRL-1226, SRL-1516	Encino colorado	Yes	Yes		0.072	BEM	Ixcatlán	Forage, gathering, protection, transplanting of individuals, propagation	Ex situ, in situ
Fagaceae	Quercus castanea Née	RLF-78, SRL-1233, SRL-1408, SRL-1425, SRL-1431	Encino prieto, encino blanca	Yes	Yes		0.056	BEA, BEM, BN, TS	Ixcatlán	Forage, gathering, tolerance	In situ
Fagaceae	Quercus grisea Benth.	SRL-1156	Encino colorado	Yes	Yes		0.072	BEM	Ixcatlán	Forage, gathering, protection	In situ
Fagaceae	Quercus irota Liebm.	RLF-68, SRL-143, SRL-253, SRL-385, SRL-1230	Encino prieto, encino amarillo	Yes			0.140	BEA, BEC, Pal, Sol	Ixcatlán	Forage, gathering, protection, propagation, tolerance	Ex situ, in situ
Fagaceae	Quercus kahmanni Oemt. ex Trel.	SRL-1107, SRL-1514	Encino amarillo	Yes			0.140	BEA, Me, Palm, TS	Ixcatlán	Forage, gathering, protection, propagation, tolerance, transplanting of individuals	Ex situ, in situ
Fagaceae	Quercus obnita Bonpl.	SRL-1423	Encino prieto	Yes			0.056	BEM	Ixcatlán	Forage, gathering, protection	In situ
Fagaceae	Quercus polyantha Schidt. & Cham.	SRL-1503	Encino prieto						Ixcatlán	Forage, gathering, protection	In situ
Fagaceae	Quercus urbanii Trel.	RLF-161, SRL-252, SRL-475, SRL-1228	Encino cucharilla	Yes			0.074	BEA, BEC, TS	Ixcatlán	Forage, gathering, protection, tolerance	In situ
Iridaceae	Tigridia pavonia (L.f.) DC.	RLF-201		Yes	0			Iz	Ixcatlán	Gathering	In situ
Krameriaceae	Krameria cytisoides Cav.	RLF-97, SRL-251, SRL-1265, SRL-1376	Chayotillo de burro, berrueguito	Yes	0			Me, Palm	Ixcatlán	Forage, gathering	In situ
Lamiales	Clinopodium mexicanum (Benth.) Govaerts	RLF-131, RLF-262, SRL-1190, SRL-1280, SRL-1403	Chiptro	Yes	0			BEA, Me, Pal, Sol, VR	Ixcatlán	Gathering, protection, transplanting of individuals	Ex situ, in situ
Lamiales	Hyptis sp.	SRL-209			0			Sol	Ixcatlán	Gathering	In situ
Lamiales	Leonotis nepetifolia (L.) R.Br.	SRL-1315		Yes	0			Sol	Naturalized, from other continents, gathering, enhancement, propagation, tolerance	Ex situ	
Lamiales	Marrubium vulgare L.	ERL-80, RLF-64, SRL-29, SRL-1146	Manrubio	Yes	0			Bal, Pal, Sol	Naturalized, from other continents, gathering, tolerance	In situ	
Lamiales	Salvia candicans M.Martens & Galeotti	SRL-155, SRL-1456		Yes	0			Me	Ixcatlán	Gathering	In situ
Lamiales	Salvia oaxacana Fernald	RLF-232, SRL-1161, SRL-1188	Minto cimarrón	Yes	0			BEA	Ixcatlán	Forage, gathering	In situ
Lamiales	Salvia purpurea Cav.	RLF-1, RLF-194, SRL-116, SRL-273, SRL-1195, SRL-1202, SRL-1397, SRL-1420	Terciopelo	Yes	0			BEA, BEC, BN, Iz	Ixcatlán	Gathering	In situ
Lamiales	Salvia sessei Benth.	RLF-33, RLF-195, SRL-1162	Oaxaqueña	Yes	0			BEA, BEM	Ixcatlán	Gathering	In situ
Lamiales	Salvia sp.	RLF-3, Photo record	Minto	Yes	0			Sol	Ixcatlán	Gathering	In situ
Lamiales	Salvia thymoides Benth.	SRL-140	Merrubio macho	Yes	0			Iz, Me	Ixcatlán	Gathering	In situ
Table 4: Native and naturalized plants of Santa María Ixcatlán with ceremonial, edible, and medicinal use (Continued)

Family	Species	Voucher numbera	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Surop index	Vegetation typeb	Origin	Management practices	Management site with respect to natural distribution
Lamiaceae	*Salvia tiliifolia* Vahl	ERL-28, ERL-112, RLF-162, SRL-3	Chía	Yes	0		Bal, Sol, TS	Ixcatlán	Gathering, uproot	Ixcatlán	Gathering	In situ
Lamiaceae	*Salvia cincinnata* Cav.	RLF-215, SRL-1291		Yes	0		Iz, Palm	Ixcatlán	Gathering	Ixcatlán	Gathering	In situ
Lauraceae	*Litsea glacesiensis* Kunth	SRL-1157, SRL-1515	Laurel	Yes	0		BEA	Ixcatlán	Gathering, propagation	In situ	Gathering	In situ
Leguminosae	*Calliandra* sp.	SRL-276	Guaje de gamita	Yes	0		BEA, BCC, BG, BN, Me	Ixcatlán	Gathering	Ixcatlán	Forage, gathering	In situ
Leguminosae	*Catalpa purpurea* Ortega	SRL-103, SRL-364		Yes	0		BN, Palm	Ixcatlán	Forage, gathering	Ixcatlán	Forage, gathering	In situ
Leguminosae	*Dalea carthaginesis* (Jacq.) J.F.Macbr.	RLF-115, RLF-168, RLF-222, SRL-154, SRL-417, SRL-1185, SRL-1299	Hierba de Obo	Yes	0		BG, Iz, Me, TS	Ixcatlán	Forage, gathering, tolerance, uproot	Ixcatlán	Forage, gathering	In situ
Leguminosae	*Dalea* sp.	SRL-348		Yes	0		Me	Ixcatlán	Gathering	Ixcatlán	Gathering	In situ
Leguminosae	*Dalea somertosa* (Cav.) Willd.	RLF-214, SRL-214		Yes	0		BN, Iz, Palm	Ixcatlán	Gathering	Ixcatlán	Forage, gathering	In situ
Leguminosae	*Desmanthus* sp.	RLF-225	Tepeguaje cimarrón	Yes	0		Iz	Ixcatlán	Forage, gathering	Ixcatlán	Forage, gathering	In situ
Leguminosae	*Desmanthus virgatus* (L.) Willd.	SRL-368	Guajito de galinto	Yes	0		Palm	Ixcatlán	Gathering	Ixcatlán	Gathering	In situ
Leguminosae	*Lacsona* sp.	SRL-1158	Guaje de gamita	Yes	0		BEA	Ixcatlán	Gathering	Ixcatlán	Gathering	In situ
Leguminosae	*Lupinus kpephyllius* Cham. & Schltdl.	SRL-1410		Yes	0		BEA	Ixcatlán	Gathering	Ixcatlán	Gathering	In situ
Leguminosae	*Phoradendron* sp.	SRL-1206	Ejote de venado	Yes	0		BEA	Ixcatlán	Forage, gathering	Ixcatlán	Forage, gathering	In situ
Leguminosae	*Pisidia grandifolia* (Donn.Sm.) M.C.Johnst.	SRL-1210		Yes	0		SB	Ixcatlán	Gathering	Ixcatlán	Gathering	In situ
Leguminosae	*Prosopis laevigata* (Willd.) M.C.Johnst.	SRL-1888	Mezquite	Yes	0		Pal, SB, Sol	Ixcatlán	Forage, gathering, tolerance	In situ	Forage, gathering	In situ
Leguminosae	*Senna guatemalensis* (Donn.Sm.) H.S.Irwin & Barneby	RLF-246, RLF-295		Yes	0		Iz	Ixcatlán	Forage, gathering	Ixcatlán	Forage, gathering	In situ
Leguminosae	*Tritium* sp.	SRL-375		Yes	0		BEA	Naturalized, unknown origin	Ex situ	Forage, gathering	In situ	
Leguminosae	*Zonia reticulata* Sm.	SRL-300		Yes	0		Paz	Ixcatlán	Forage, gathering	In situ	Forage, gathering	In situ
Leguminosae	*Ziconia* sp.	SRL-1212	Tepeguaje	Yes	0		SB	Ixcatlán	Forage, gathering	In situ	Forage, gathering	In situ
Leguminosae	*Lonchocarpus* sp.	SRL-1217		Yes	0		SB	Ixcatlán	Forage, gathering	In situ	Forage, gathering	In situ
Loasaceae	*Mentzelia hispida* Willd.	RLF-54, RLF-94, SRL-428	Pegajosa	Yes	0		Bal, BEA, BG	Ixcatlán	Gathering, tolerance, uproot	In situ	Forage, gathering	In situ
Lythraceae	*Cuphea* sp.	RLF-100, RLF-143, RLF-172, SRL-20, SRL-352, SRL-1170		Yes	0		Me, Sol, Pal, TS	Ixcatlán	Forage, gathering, tolerance, uproot	In situ	Forage, gathering	In situ
Lythraceae	*Cuphea* sp.	SRL-25		Yes	0		BN, Palm, Sol	Ixcatlán	Gathering	Ixcatlán	Gathering	In situ
Lythraceae	*Cuphea* sp.	SRL-105, SRL-296		Yes	0		BEA, BN, Paz	Ixcatlán	Gathering	Ixcatlán	Gathering	In situ
Family	Species	Voucher number(s)	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Vegetation type	Origin	Management practices	Management site with respect to natural distribution	
---------------------	---	-------------------	------------------------------	----------------	------------	---------------	-------------	----------------	--------	-----------------------------------	---	
Malpighiaceae	Bunchosia sp.	SRL-451	Huevo de gato	Yes	0	Sol	la catlán		catlán	Gathering, tolerance	In situ	
Malpighiaceae	Galphinia multisauris A.Juss.	RLF-65, RLF-295, SRL-1177	Flor de chivo	Yes	0	BEA, BEC, Iz, Me, Palm			catlán	Forage, gathering	In situ	
Malpighiaceae	Gaudichaudia galeottiana (Nied.) Chodat	RLF-241		Yes	0	Iz	catlán	Gathering	In situ			
Malpighiaceae	Galphinia galeottiana A.Juss.	SRL-362, SRL-471, SRL-1272	Nanche	Yes	0	Me, Palm, TS	catlán	Forage, gathering, tolerance	In situ			
Malpighiaceae	Malpighia galeottiana A.Juss.	RLF-67, RLF-277, SRL-6, SRL-446, SRL-1125	Quelte de maíz, violeta	Yes	0	Bal, BEA, Pal, Sol, TS	catlán	Forage, gathering, tolerance, uproot	In situ			
Malpighiaceae	Malva parviflora L.	ERL-30, ERL-90, SRL-205, SRL-1124, SRL-1143	Malva	Yes	0	Bal, Sol, TS	Naturalized, from other continents	Enhancement, forage, gathering, tolerance, uproot	In situ			
Martyniaceae	Proboscidea buxifolia (Mill.) Thell.	SRL-1318	Cuerno de toro	Yes	0	Bal, Palm, Sol, TS	catlán	Gathering, tolerance	In situ			
Meteoriaceae	Meteorium deper (Hornsch. ex Müll. Hal.) Mitt.	SRL-1432	Musgo	Yes	0	BEA, BM, Sol	catlán	Gathering, protection, transplanting of individuals	Ex situ, in situ			
Moraceae	Ficus ovata (Miq.) Mart. ex Miq.	SRL-76, SRL-1171	Amanate	Yes	0.006	Sol	catlán	Gathering, tolerance	In situ			
Moraceae	Morus alba (L.) Kunth	ERL-55, ERL-78, ERL-55, ERL-78, ERL-124, ERL-128, ERL-129, ERL-214, ERL-220, ERL-221, ERL-55, SRL-1517	Moral, morera	Yes	0.051	AA, Sol	catlán	Gathering, protection, tolerance	In situ			
Nyctaginaceae	Mirabilis jalapa L.	ERL-20, ERL-99, SRL-21, SRL-421, SRL-1145	Hieda cuchi, maravilla	Yes	0.003	Bal, BG, Sol	catlán	Forage, gathering, tolerance, uproot	In situ			
Onagraceae	Gaura cocinea Nutt. ex Pursh	SRL-17, SRL-411	Gradolita	Yes	0	Bal, Sol	catlán	Forage, gathering, tolerance, uproot	In situ			
Onagraceae	Oenothera pubescens Willd. ex Hiern.	RLF-76, RLF-113, SRL-22, SRL-40, SRL-150, SRL-213	Campanilla grande	Yes	0	Bal, BEA, ME, Sol	catlán	Gathering, tolerance, uproot	In situ			
Onagraceae	Oenothera rosea L’Her. ex Thunb.	SRL-1127, SRL-1322	Sanguinaria	Yes	0	Bal, Sol	catlán	Gathering, tolerance, uproot	In situ			
Orchidaceae	Bauhinia indigena subsp. vranetana (Rchb.f.) Thien	SRL-1509	Monjita de peña	Yes	0	CalMy	catlán	Gathering, protection, transplanting of individuals	Ex situ, in situ			
Orchidaceae	Dierammanthus cinabarinus (Lex.) Gayr.	RLF-223, RLF-289, SRL-1155, SRL-1172	Gola de leon	Yes	0	BEA, Iz, Palm	catlán	Gathering	In situ			
Orchidaceae	Encyclia harveyi (Lindl.) Sch.	SRL-1519	Monjita morada de campo	Yes	0	Me, Sol	catlán	Gathering, protection, transplanting of individuals	Ex situ, in situ			
Orchidaceae	Epidendrum radicans (Arms, F.T.Hubb. & C.Schweinf.) Hägse	RJS-3	Monjita colorada	Yes	0.002	BEA, BEM, Pal, Sol	catlán	Gathering, protection, transplanting of individuals	Ex situ, in situ			
Orchidaceae	Euchile karwinskii (Mart.) Christenson	RJS-1	Monjita amarilla	Yes	0.002	BEA, Pal, Sol	catlán	Gathering, protection, propagation, transplanting of individuals	Ex situ, in situ			

Table 4 Native and naturalized plants of Santa María Ixcatlán with ceremonial, edible, and medicinal use (Continued)
Table 4 Native and naturalized plants of Santa María Ixcatlán with ceremonial, edible, and medicinal use (Continued)

Family	Species	Voucher number	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Vegetation type	Origin	Management practices	Management site with respect to natural distribution	
Orchidaceae	Laelia albida Bateman ex Lindl.	ERL-126	Monjita blanca	Yes			Pal, Sol, TS	0.002	Ixcatlán	Gathering, protection, propagation, transplanting of individuals	Ex situ, in situ	
Orchidaceae	Laelia anceps Lindl.	SRL-1541	Monjita morada	Yes			AA, Pal, Sol	0.002	Ixcatlán	Gathering, protection, propagation, transplanting of individuals	Ex situ, in situ	
Orchidaceae	Phycnostele maculata (Lex.) Soto Arenas & Salazar	ERL-173, SRL-1476	Monjita pinta	Yes			BEA, BEM, Pal, Sol	0.002	Ixcatlán	Gathering, protection, propagation, transplanting of individuals	Ex situ, in situ	
Orchidaceae	Spirotheces sp.	RLF-208	Monjita de peña	Yes	0	Iz			Ixcatlán	Gathering	In situ	
Orobanchaceae	Castilleja tenuifolia (MMartens & Galeotti)	SRL-117, SRL-223, SRL-329, SRL-1438, SRL-1485	Romero cimarrón	Yes	Yes	0	BEA, BN, Me, Palm		Ixcatlán	Forage, gathering	In situ	
Orobanchaceae	Conopholis alpina Liebm.	SRL-218, SRL-1481	Flor de elote	Yes	0	BEA, Pal			Ixcatlán	Fosage, gathering	In situ	
Orobanchaceae	Lamourouxia dagamnha (Cham. & Schltdl.) WREimst	SRL-1379, SRL-1429	Lisón	Yes	0	BEA, BEM, Me			Ixcatlán	Gathering	In situ	
Orobanchaceae	Lamourouxia viscosa Kunth	RLF-209, SRL-372, SRL-1292	Moso de pava, flor de miel	Yes	0	Iz, Pal, Palm			Ixcatlán	Gathering, tolerance	In situ	
Orobanchaceae	Oxalis aff. latifolia Kunth	ERL-75, RLF-142, SRL-148	Coyule	Yes	0	Iz, Me, Sol, TS			Ixcatlán	Fosage, gathering, protection, tolerance	In situ	
Orobanchaceae	Oxalis aff. nelsoni (Small) R.Knuth	SRL-1273	Coyule	Yes	0	Iz, Sol			Ixcatlán	Fosage, gathering, protection, propagation	Ex situ, in situ	
Orobanchaceae	Oxalis sp.	RLF-139	Coyule delgado	Yes	0	BEA, BEM, BN, Me			Ixcatlán	Fosage, gathering	In situ	
Papaveraceae	Argemone mexicana L.	ERL-244, RLF-180, SRL-455	Chicalote	Yes	Yes	0	Bal, Pal, Sol, TS		Ixcatlán	Gathering, tolerance, uproot	In situ	
Passifloraceae	Passiflora bryonoides Kunth	SRL-1148	Granadilla	Yes	0	Sol			Ixcatlán	Gathering, protection, tolerance	In situ	
Passifloraceae	Passiflora suberosa L.	SRL-444, SRL-1164, SRL-1165		Yes	0	Sol			Ixcatlán	Gathering, tolerance	In situ	
Passifloraceae	Tumera diffusa Willd. ex Schl.	SRL-1220, SRL-1356, SRL-1467	Tamoreal	Yes	Yes	0	CaCe, SB, Sol		Ixcatlán	Gathering, protection, transplanting of individuals	Ex situ, in situ	
Phytolaccaceae	Phytolacca icosandra L.	RLF-236		Yes	0	Iz			Ixcatlán	Gathering	In situ	
Piperaceae	Piperomia quadridifolia (L.) Kunth	ERL-140, SRL-1404, 1430	Verdolaga	Yes	0.014	BEM			Ixcatlán	Gathering, protection, transplanting of individuals	Ex situ, in situ	
Plantaginaceae	Bacopa monnieri (L.) Wettst.	SRL-301, SRL-1132	Verdolaga de agua	Yes	Yes	0	Paz, VR		Ixcatlán	Forage, gathering	In situ	
Plantaginaceae	Penstemon barbatus (Cav.) Roth	RLF-23, RLF-49, SRL-133, SRL-466, SRL-1314	Bandera	Yes	Yes	0	BEA, Palm		Ixcatlán	Gathering	In situ	
Plantaginaceae	Ruselia obtusata S.F.Blake	RLF-263, SRL-254, SRL-342, SRL-424, SRL-1494	Bandera	Yes	0	BEA, BG, BN, Me			Ixcatlán	Gathering	In situ	
Plantaginaceae	Ruselia sp.	SRL-1198	Bandera	Yes	0	BEA			Ixcatlán	Gathering	In situ	
Family	Species	Voucher number	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Sunrop index	Vegetation type	Origin	Management practices	Management site with respect to natural distribution
----------------	---	----------------	---------------------------	----------------	------------	---------------	--------------	--------------	-----------------	---------	----------------------	---
Poaceae	Piptochaetium fimbriatum (Humb., Bonpl. & Kunth) Hitchc.	RLF-137, SRL-260, SRL-413	Pasto	Yes				0.038	BEA, BG, Me, Paz	Ixcatlán	Forage, gathering	In situ
Poaceae	Setaria grisebachii E.Fourn.	RLF-231, RLF-358	Pasta de semilla	Yes				0.038	Iz, Palm, Paz	Ixcatlán	Forage, gathering	In situ
Poaceae	Setaria grisebachii E.Fourn.	SRL-311	Pasta de semilla	Yes				0.038	Ixcatlán	Forage, gathering	In situ	
Polemoniaceae	Loeselia caerulea (Cav.) G.Don	RLF-265, SRL-96, SRL-353, SRL-1267, SRL-1282, SRL-1354, SRL-1401, SRL-1458	Yes	0	BEA, BN, CaCe, Me, Pal, Palm	Ixcatlán	Forage, gathering	In situ				
Poaceae	Piptochaetium fimbriatum (Humb., Bonpl. & Kunth) Hitchc.	RLF-224, RLF-287	Verdelaga de suelo	Yes				0	BEA, Iz	Ixcatlán	Forage, gathering	In situ
Portulacaceae	Portulaca oleracea L.	Photo record	Jabonera, hierba de pollo	Yes				0	Pal, Sol	Naturalized, from other continents	Gathering, tolerance	Ex situ
Primulaceae	Anagallis arvensis L.	ERL-108, ERL-228, RLF-200, SRL-87, SRL-100, SRL-1133	Jabonera, hierba de pollo	Yes	0	Bal, BN, Iz, Palm, Sol, TS	Ixcatlán	Gathering	In situ			
Pteridaceae	Delphinium bicourtum Hemsl.	SRL-1200	Conejito	Yes				0	BEA	Ixcatlán	Gathering	In situ
Rhamnaceae	Condalia mexicana Schltdl.	SRL-1223, SRL-1493	Hierba de pajerito, campanita grande	Yes	0	Me, SB	Ixcatlán	Gathering	In situ			
Rosaceae	Bouvardia longifolia (Cav.) Kunth	RLF-10, RLF-243, SRL-261, SRL-338, SRL-474, SRL-1257, SRL-1258	Tlasisle	Yes	0	BEA, BC, BN, Iz, Me, Palm, TS	Ixcatlán	Forage, gathering, tolerance	In situ			
Rubiaceae	Bouvardia longifolia (Cav.) Kunth	Photo record	Huelie de noche	Yes				0	Me	Ixcatlán	Gathering	In situ
Rubiaceae	Bouvardia longifolia (Cav.) Kunth	RLF-41, RLF-166, SRL-262, SRL-334, SRL-1417	Ventorilla, flor de triste	Yes	0	BEA, BC, Me, Palm, Paz, TS	Ixcatlán	Forage, gathering, tolerance, uproot	In situ			
Rubiaceae	Chiococca alba (L.) Hitchc.	SRL-336, SRL-470, SRL-1111, SRL-1331, SRL-1441	Campanita	Yes	0.002	CaCe, Me, Sol	Ixcatlán	Gathering, protection, transplanting of individuals	Ex situ, in situ			
Rubiaceae	Cuscuta sp.	RLF-136, SRL-1180	Yes		0	Me, Palm	Ixcatlán	Gathering	In situ			
Rubiaceae	Galiurn sp.	RLF-82, RLF-280, SRL-344	Yes	0	BEA, Me, Pal, Palm	Ixcatlán	Gathering	In situ				
Rubiaceae	Randia crispata DC.	RLF-281, SRL-1208	Limoncito de coyote	Yes	0	BEA, Pal, VR	Ixcatlán	Gathering	In situ			
Rutaceae	Prelea trifoliate L.	RER-196, RLF-27, RLF-308, SRL-274, SRL-466, SRL-467	Hierba de zamillo	Yes	0.002	BEA, BC, BG, BN, Me, Pal, Sol, TS	Ixcatlán	Gathering, tolerance	In situ			
Family	Species	Voucher number	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant	Suntrip index	Vegetation type	Origin	Management practices	Management site with respect to natural distribution
---------------	--------------------------------------	----------------	----------------------------------	----------------	------------	---------------	--------------	---------------	----------------	---------	--	--
Rutaceae	Zanthoxylum sp.	SRL-1348		Yes 0						Ixcatlán	Gathering	In situ
Santalaceae	Phoradendron sp.	RLF-228, SRL-1268	Injerto	Yes 0	Iz, Me					Ixcatlán	Gathering, uproot	In situ
Selaginellaceae	Selaginella epidiphylla (Hook & Grev.)	SRL-374, SRL-1497		Yes 0	BEA, Me					Ixcatlán	Gathering	In situ
Solanaceae	Capsicum annuum L.	ERL-165, ERL-204	Chilar de monte	Yes 0						Ixcatlán	Gathering	Ex situ, in situ
Solanaceae	Capsicum sp.	RLF-135		Yes 0	Me					Ixcatlán	Gathering	In situ
Solanaceae	Jaltomata procumbens (Cav.)	SRL-180, SRL-1297	Hiebre mora	Yes 0	Palm, Sol					Ixcatlán	Gathering, tolerance	In situ
Solanaceae	Lycianthes ciliata (M.Martens & Galeotti)	SRL-1149	Ojo de toro	Yes 0	BEA, BG, Pal, Palm, Sol				Ixcatlán	Gathering, tolerance	In situ	
Solanaceae	Nicotiana glauca Graham	ERL-37, RLF-105, SRL-171, SRL-1274	Gignante	Yes 0	Bal, Pal, Sol, TS				Naturalized, from other parts of American Continent	Gathering, tolerance	Ex situ	
Solanaceae	Physalis philadelphia Lam.	ERL-36, ERL-63, ERL-64, ERL-113, RLF-312, SRL-26, SRL-1138, SRL-1298	Miltomate, tomate, tomate de milpa	Yes 0	Sol					Ixcatlán	Gathering, enhancement, protection, propagation, tolerance, transplanting of individuals	In situ
Solanaceae	Solanum americanum Mill.	SRL-1234	Ticungo	Yes 0	Sol					Ixcatlán	Gathering, tolerance	In situ
Solanaceae	Solanum mindsumham D.Don	ERL-91	Tepozán	Yes 0	Sol					Ixcatlán	Gathering, tolerance	In situ
Solanaceae	Solanum minocotum Cav	ERL-195	Tepozán	Yes 0	BEA, BG, Pal, Palm, Sol				Ixcatlán	Gathering, tolerance	In situ	
Solanaceae	Solanum insti Hawkins & Hiet.	RLF-151	Hiebre del tomate pinto	Yes 0	Paz					Ixcatlán	Gathering	In situ
Solanaceae	Solanum estratrum Dural	SRL-380	Chialote de burro	Yes 0	BEA					Ixcatlán	Gathering	In situ
Solanaceae	Solanum rosapannum Dural	RLF-22, RLF-95, RLF-120, RLF-275, SRL-128, SRL-302	Tepozán	Yes 0	Sol, BEA, BEC, Me, Pal, Paz				Ixcatlán	Gathering	In situ	
Thelypteridaceae	Thelypteris sp.	SRL-161, RLF-303		Yes 0	BEA, Iz, Pal					Ixcatlán	Gathering	In situ
Tropaeolaceae	Tropaeolum majus L.	ERL-18, ERL-89, ERL-182, SRL-60, SRL-196	Mastuerzo	Yes 0	Sol					Ixcatlán	Gathering, enhancement, protection, propagation, tolerance	Ex situ
Urticaceae	Parthenaria pensylvonica MuH. ex Willd.	ERL-73, RLF-88, RLF-266, SRL-18	Paletaria	Yes 0	BEA, Pal, Sol, VR				Naturalized, from other parts of American Continent	Gathering, tolerance	In situ	
Urticaceae	Urena crassafacina (Jacq.) Gaudich. ex Grizels	SRL-1543	Chichicasle	Yes 0	Sol					Ixcatlán	Gathering	In situ
Verbenaceae	Glandularia elegans (Kurth) Umbre	RLF-5, SRL-110, SRL-279, SRL-1326, SRL-1479		Yes 0	Bal, BEA, BN, Sol				Ixcatlán	Gathering	In situ	
Verbenaceae	Lantana ochryanthifolia Desf.	RLF-61, RLF-62, SRL-109, SRL-152, SRL-369, SRL-1296	Hiebre buena de monte	Yes 0	BEA, BN, Me, Pal, Palm				Ixcatlán	Forage, gathering, tolerance, uproot	In situ	
Family	Species	Voucher number	Common name	Ceremonial use	Edible use	Medicinal use	Basic plant Sutrop index	Vegetation type	Origin	Management practices	Management site with respect to natural distribution	
-----------	----------------------------------	----------------	--------------------------------	----------------	------------	---------------	---------------------------	----------------	--------	---	---	
Verbenaceae	*Lantana camara* L.	RLF-197, SRL-115, SRL-459, SRL-1112, SRL-1154, SRL-1169, SRL-1365	Tiundica, siete negritos	Yes	Yes	0	BEA, BRC, BN, CaCe, Iz, Me, Palm, Sol	Ixcatlán	Forage, gathering, protection, transplanting of individuals	Ex situ, in situ		
Verbenaceae	*Lantana velutina* M. Martens & Galeotti	ERL-185, RLF-31, RLF-204, SRL-272, SRL-1115, SRL-1168	Tiundica blanca, cinco negritos	Yes	Yes	0	BEA, BRC, BN, Iz, Me, Pal, Palm, Sol	Ixcatlán	Gathering, tolerance, transplanting of individuals	Ex situ, in situ		
Verbenaceae	*Lippia graveolens* Kunth	SRL-71, SRL-1378, SRL-1454, SRL-1549	Oreganillo, salvarreal de castilla	Yes	Yes	0	CaCe, Me, Pal	Ixcatlán	Forage, gathering	In situ		
Verbenaceae	*Lippia oaxacana* B.L. Rob. & Greenm.	SRL-101, RLF-173, SRL-1373, SRL-1535	Tripa de diablo	Yes	Yes	0.014	CaCe, Sol, TS	Ixcatlán	Gathering, tolerance, transplanting of individuals	Ex situ, in situ		
Vitaceae	*Cissus* sp.	RLF-101, RLF-173, SRL-1373, SRL-1535	Tripa de diablo	Yes	Yes	0	CaCe, Sol, TS	Ixcatlán	Gathering, tolerance, uproot	In situ		

Key to collector
- ERL = Erandi Rivera Lozoya
- JS = José Rosario Jiménez Salazar
- SRL = Selene Rangel Landa
- RLF = Ricardo Lemus Fernández

Key to vegetation type
- AA = ancient settlements
- Bal = urban secondary vegetation
- BEA = *Quercus liebmannii* and *Q. laeta* forest
- BRC = *Quercus urbanni* forest
- BEM = *Quercus* spp. forest
- BG = gallery forest (*Taxodium huegelii*)
- BN = *Juniperus flaccida* forest
- CaCe = *Cephalocereus columna-trajanni* shrubland
- CaMy = *Pseudomytrocereus fulviceps* shrubland
- Iz = Izotal (shrubland dominated by rosettes)
- Iz = *Mexical*
- Pal = mescal factories
- Palm = palm shrubland of *Brahea dulcis*
- Paz = grassland
- SB = tropical dry forest
- Sol = homegardens
- TS = agricultural fields
- VR = riparian vegetation
Ornamenting of altars is mostly attended with plants cultivated in homegardens. Due to the scarcity of copal and other plants used in ceremonies, people practice gathering them in different sites throughout their territory (Tables 5 and 6). In addition, we recorded storing of copal resin for use throughout the year (Table 5).

Several species considered scarce in the wild are, however, enough for satisfying the needs of the community; this is particularly the case of Tillandsia grandis (Table 5). The availability of useful plants depends on seasonality, annual rainfall, and incidence of pests (Tables 5 and 6).

Gathering was the only practice for 28 ornamental species (Table 3); species used for ornamenting the altars are gathered by women in areas close to the village, but plants used in communitarian celebrations, as well as the resin of Bursera spp., are carried out by men (Table 5). Journeys for gathering these products may take several hours or days and are considered dangerous activities, particularly those to obtain Beaucarnea stricta, T. grandis, and Burmannia biflora (Table 6). For the extraction of these plants, several techniques are common to prevent damage, such as leaving stems and main branches of the most valuable species (orchids, B. biflora, B. stricta, C. alba, and L. glaucescens). These techniques favor survival and resprouting of plants (Table 6). In total, 22 species that germinate and
ID	Species	Us	SIB	SIU	Con	UF	Var	EI	R1	SCS	UP	HEP	HT0	
Bbif	Bursera biflora (Rose) Standl.	7	0	0.028	1	5	1	1, 3	1, 2, 3, 6	4	3	9		
Blon	Bouvardia longiflora (Cav.) Kunth	1	0	0.006	0.01	3	0	1	1	2	1	1		
Bstr	Beaucarnea stricta Lem.	2	0.005	0	1	4	0	1	1, 2, 3	1	2	4		
Calb	Chiococca alba (L.) Hitchc.	3	0.002	0.066	0.99	4	0	1	1	2	2	1		
Dser	Dasylirion serratifolium (Karw. ex Schult. & Schult.f.) Zucc.	5	0.010	0	1	4	2	1	1, 2, 3	1	2	7		
Dspp	Dahlia apiculata (Sherff) P.D.Sorensen; Dahlia coccinea Cav.	2	0	0.12	4	1	1	0	2	1	1			
Ekar	Euchile karwinskii (Mart.) Christenson	3	0.002	0.033	0.99	3.5	0	1	1, 2, 3	0	2	1		
Erad	Epidendrum radioferens (Ex Com.)	2	0.002	0.85	3	0	1	1, 2, 3	0	3	1			
Lalb	Lactea albida Bateman ex Lindl.	2	0.002	0.052	0.77	4	0	1	1, 2, 3	0	2	1		
Ldas	Lamourouxia dasyantha (Cham. & Schltdl.) W.R. Ernst	2	0	0.039	0.17	3	2	1	1	2	1			
Lgla	Litsea glaucescens Kunth	3	0.010	0	1	6	0	1	1, 2, 3, 4	1	3	3		
Lmes	Lindleya mespiloides Kunth	2	0	0.015	0.05	4	0	1	1, 2, 3	0	1	1		
Mdep	Meteorium deppei (Hornsch. ex Müll. Hal.) Mitt.	2	0	0	1	4	1	1	0	2	1			
Octa	Octavillo	2	0	0.025	0.01	2	0	1	1, 2, 3	0	1	2		
Prub	Plumeria rubra L.	2	0	0.007	0.05	2	2	1, 3	1	0	2	3		
Rmac	Rhynchostele maculate (Lex.) Soto Arenas & Salazar	2	0.002	0.095	0.92	2	0	1	1, 2, 3	0	2	3		
Spur	Salsola purpurea Cav.	3	0	0.016	0.05	3.3	2	1	1	0	2	1		
Tgra	Tillandsia grandis Schltdl.	2	0	0.009	1	5	0	1	1	1	2	9		
Tluc	Tagetes lucida Cav.	4	0.003	0.007	0.5	1	0	1	1, 2, 3	0	2	1		
Tusn	Tillandsia usneoides (L.) L.	5	0	0	1	3	0	1	1	0	2	1		
Acris	Anoda cristata (L.) Schltdl.	4	0	0.012	0.05	2	0	1	1	0	3	2		
Ahyb	Amaranthus hybridus L.	3	0.024	0.252	0.95	4.5	3	1, 3	1, 2, 4	1	3	1		
Aker	Agave kerchovei Lem.	4	0	0.015	0.2	2	0	1	1, 2, 3	0	1	3		
Apot	Agave potatorum Zucc.	8	0.057	0.072	0.25	3.5	2	1	1, 2, 3, 4	1	2	3		
Bdul	Breda dolcis (Kunth) Mart.	11	0.106	0.002	1	2	0	1, 2, 3, 4	1	3, 5	6	5	3	7
Cber	Chenopodium berlandieri Moq.	2	0.006	0.022	0.15	3	3	1	1, 2, 3	0	1	3		
Crme	Crataegus mexicana Moc. & Sess, ex DC	1	0.002	0.011	0.35	4	3	1, 2, 3	1, 2	0, 1, 2, 3, 6	1	2	1	
Damb	Dipsidia ambrosioides (L.) Mosyakin & Clemants	3	0.065	0.024	1	6	3	1, 3	1, 2, 3, 4	2	2	1		
Dser	Dasylirion serratifolium (Karw. ex Schult. & Schult.f.) Zucc.	5	0.010	0.110	0.95	4	2	1	1, 2, 3, 4	0	2	3	7	
Lgla	Litsea glaucescens Kunth	3	0.010	0.026	0.14	3.5	0	1	1, 2, 3, 4	1	3	3		
Lspp	Lantana camara L.; L. velutina M.Martens & Galeotti	5	0	0	0.05	4.5	1	1	1	0	2	1		
Msspp	Mammillaria haageana Pfeiff.; Mammillaria spachelata Mart.	3	0	0	0.05	3.3	1	1	1, 2	0	2	1		
Noff	Nasturtium officinale R.Br.	1	0.002	0.013	0.15	2.5	0	1	1	0	1	1		
Oas	Opuntia lasiacantha Pfeiff.	6	0.042	0.043	1	6	3	1, 3	1, 2, 1, 2, 4, 6	5	3	5		
Ospp	Opuntia aff. latifolia Kunth; Opalis aff. nelsonii (Small) R.Knuth	2	0	0.007	0.45	3	1	1, 3	1, 2, 4, 6	1	3	1		
Pliu	Parthenium linaria (Cav.) DC.	2	0	0.078	0.95	6	0	1, 3	1, 2, 4	6	3	1		
Pole	Portulaca oleracea L.	3	0	0.010	0.05	4	0	1	1	0	1	3		
Pphi	Physalis philadelphica Lam.	2	0	0.035	0.15	6	0	1	1, 2, 3, 4	1	3	3		
Pquia	Peperomia quadrifolia (L.) Kunth	2	0.014	0.070	0.95	4	3	1	1, 2, 3	0	1	3		
Prud	Porophyllum ruderale subsp. macrocephalum (DC.) R.R.Johnson	1	0.004	0.161	0.9	5	0	1, 3	1	2	1			

Table 5 Sociocultural parameters estimated for species considered in in-depth studies.
Selective harvesting of plants based on use quality of their parts and absence of signs of herbivory are criteria for gathering most species documented. Although local people recognize at least five species with intraspecific varieties (identified according to flower color and forms), their use and management are indistinct (Tables 5 and 7). Except for *Tagetes erecta*, in which people select seeds for cultivation, and *Cosmos bipinnatus*, a species commonly producing violaceus ligula, people select the scarcer variety with white ligula.

Local regulations forbid extraction of plants for commercialization out of the village and establish restrictions in using some plants in communitarian celebrations (Table 7).

Edible plants

We recorded 138 plant species used as food, 80 of them being wild and naturalized species and 20 considered as “basic” (Tables 3 and 4). The most valuable species are *Amaranthus hybridus*, *Porophyllum* spp., *Opuntia lasiancanta*, *Dysphania ambrosioides*, *Dasylirion serratifolium*, *Peperomia quadrifolia*, and *Physalis philadelphica*, which are consumed by more than 90% of households from 1 to...
Use	ID	Species	Management motives and observations about use and availability
Ceremonial	Bbif	*Bursera biflora* (Rose) Standl.	Trees are abundant, but copal could become scarce. Care should be taken not to damage the tree, to tree continue producing the copal. Only the one produced naturally, by the worm (butterfly larvae) in hot terrain is good for burning. Not (transplant or cultivation) because the tree would not survive or produce copal here in the village. I have a little tree that I take out of the forest for the luxury of my house and I hope that someday it will produce copal, although maybe it would not be enough or good. I plant a stick, there in the mountain where I go to collect the “copal”, I did to see if it roots.
Ceremonial	Blon	*Bouvardia longiflora* (Cav.) Kunth	Now it is almost no longer used, there are other flowers (flowers of introduced species).
Ceremonial	Bstr	*Beaucarnea stricta* Lem.	The gathering is dangerous, the plant is in very difficult places to walk. Care must be taken to not injure the tree, the [apical meristem], so that the plant continues to produce, sometimes the tree is damaged, but that should not be done.
Ceremonial	Calb	*Chiococca alba* (L.) Hitchc.	Before it was used [to offer it] in the church, but now no longer because they criticize, only is placed on the altars of the houses. I really like its flowers, its scent, I put it on my altar. Once I brought a little tree to the house but it do not survive. Out of curiosity I try to [cultivate], but it does not [germinate].
Ceremonial	Dser	*Dasylirion serratifolium* (Karw. ex Schult. & Schult.f.) Zucc.	It should leave part of the trunk, if there is good rain it can sprout. It has not occurred to us to bring the plant to the village, “it is natural” [it occurs naturally in the field], we always have found it to make the adornments.
Ceremonial	Dspp	*Dahlia apiculata* (Sherff) P.D.Sorensen; *Dahlia coccinea* Cav.	I like to have them in the house, for luxury [ornamental use] and put the flowers on the altar.
Ceremonial	Ekar	*Euchile karwinskii* (Mart.) Christenson	It must remain [pseudobulbs] to have it for another time, they are the ornament of the trees [in the forest]. After the flower dries, the (pseudobulb) is placed in some tree in the house, and so it is going to have for luxury [ornamental use] and have flowers to adornment the altar. When I am gathering firewood and I cut a branch that have “monjitas” [orchids], sometimes I transplant it in other branch and sometimes I bring it to the house.
Ceremonial	Erad	*Epidendrum radioferens* (Ames, F.T.Hubb. & C.Schweinf.) Hägsater	It must remain [pseudobulbs] to have it for another time. They are the ornament of the trees [in the forest]. After the flower dries, is placed in some tree in the house, and so it is going to have for luxury [ornamental use] and have flowers to adornment the altar, however it is difficult, it is a delicate plant.
Ceremonial	Lalb	*Laelia albida* Bateman ex Lindl.	I take care it [cultivation] to have flowers for the altar in Todos Santos [celebration] and for the luxury of my home.
Ceremonial	Ldas	*Lamourouxia dasyantha* (Cham. & Schltdl.) W.R. Ernst	There is much when rain is good, but when it is not given, I use whatever available flower.
Ceremonial	Lgla	*Litsea glaucescens* Kunth	There is a lot in the forest, there is always when it is needed and the tree will regrow if you do not hurt it. I have not had the curiosity [transplanting] and the need because there is [enough], and there is also little terrain to have it maybe it will dry. Out of curiosity, I put some seeds but they did not germinate.
Ceremonial	Lmes	*Lindleya mespiloides* Kunth	There is a lot in the forest, but sometimes there are no flowers due to the drought.
Ceremonial	Mdep	*Meteorium deppei* (Hornsch. ex Müll. Hal.) Mitt.	After the celebration, I put it in my yard for luxury, but it dried.
Ceremonial	Octa	“Octavillo”	I have always found when I am going to collect, but sometimes, in order to not go up to the mountain, I better buy others [other plants in regional markets]. I think it would not survive [transplanting, cultivation], is a delicate plant and its environment is very different, more template.
Table 6 Meaningful consultant’s commentaries about the use, abundance, and their motives to manage plants (Continued)

Use	ID	Species	Management motives and observations about use and availability
Ceremonial	Prub	*Plumeria rubra* L.	I have not tried [propagation], I have not had the curiosity, I like it a lot but I do not try to have it, but there are people that have it. I plant a stick to have the tree here in the house, but it rotted, maybe I try again later.
Ceremonial	Rmac	*Rhynchostele maculate* (Lex.) Soto Arenas & Salazar	It must remain [pseudobulbs] to have it for another time. They are the ornament of the trees [in the forest]. After the flower dries, the [pseudobulb] is placed in some tree in the house, and so it is going to have for luxury [ornamental use] and have flowers to adornment the altar. It is difficult take care of it because it is delicate, but it is a pride to have it.
Ceremonial	Spur	*Salvia purpurea* Cav.	Used more before. There is much when rain is good, but when it is not given, I use whatever available flower, now there are other flowers [introduced that are grown or bought in local stores]. Once I take one from the mountain, to have the flowers for my altar and luxury of the house, but it dried and I have not tried again.
Ceremonial	Tgra	*Tillandsia grandis* Schltdl.	There has always been when it is needed. Once I brought some small plants [transplanting] but dried, is very delicate, needs its natural environment.
Ceremonial	Tluc	*Tagetes lucida* Cav.	There is much when rain is good, but when it is not given, I use whatever available flower.
Ceremonial	Tusn	*Tillandsia usneoides* (L.) L.	I have this plant, I bring it from the mountain and from the adornment of holidays, it is for decoration of my trees and also to feed the cattle when there is nothing, to clean the frets, for what is could needed here I got it near, in my house.
Edible	Acris	*Anoda cristata* (L.) Schltdl.	Before the people collected it, they gathered. Now it is scarce and people say that who eats it does not have money to buy food.
Edible	Ahyb	*Amaranthus hybridus* L.	It is very tasty, it is important to eat it, but it is left to the time and the rain, there has been no need to cultivate it, it is only left on the edge of the cropland to produce seed. There are different colors but if it is “tierno” [shoots] taste does not change, but others prefer the green. When there are a lot and is “sazón” [mature] it could damage the other plants so it is plucked.
Edible	Aker	*Agave kerchovei* Lem.	People say that when someone eats “cacayas” [floral buttons] it’s because they do not have money for food, but we like it. Only is gathered, it is close, it is not necessary to propagate it.
Edible	Apot	*Agave potatorum* Zucc.	This “cacaya” was eaten a lot, was eaten boiled with sauce when there was nothing else or when corn was scarce it was mixed with the nixtamal [boiled corn] to raise it to make the tortillas. When we cooked maguey with coyule [Oxalis spp.] we gave to friends and relatives and other part is for sell it. Now people have it in their fields for mescal, but it was getting scarce, now they are sowing it [mescal producers and external institutions]. Its leaf and thorns vary in shape and color, its size is different, ones gives more mescal, although we like it to be large we cut everything. When we collect seed for [cultivate] it, we go to sites where we know the maguey is big and produce more mescal, others only get the first [capsules with seeds] available.
Edible	Bdul	*Brahea dulcis* (Kunth) Mart.	When a field is opened [for agriculture], the palm is left, it is our sustenance, the hat. I do not wave the hat but my neighbors do it, it is the sustenance of the town, it is the motive because I left it in my terrain [tolerance].
Edible	Cber	*Chenopodium berlandieri* Moq.	Abundance: Before there was more because they no longer work the land as the older. On the edge of the land some are left (tolerated) to produce seeds and there are for the next year.
Use	ID	Species	Management motives and observations about use and availability
-----	----	---------	---
Edible	Crme	*Crataegus mexicana* Moc. & Sess, ex DC	Before there were more, now no one cares for them, the animals eat [cattle]. There are with large and small fruit, with sweet and sour taste. I tried to [propagates] but it does not [germinate].
Edible	Damb	*Dysphania ambrosioides* (L.) Mosyakin & Clemants	Sometimes my neighbor and my aunt ask me for some of it and as I have, I give them a little. I saw a little plant that I liked for its large and green leaves and brought it to my house, I take care of it and now I have all the time. There are green, purple and “criollo” (from the store), the last does not have smell, nor taste.
Edible	Dser	*Dasylirion serratifolium* (Karw. ex Schult. & Schult.f.) Zucc.	Although the plant is abundant, the “manita” [Floral buttons] becomes scarce because of the drought, when that happens we were left with the desire to eat it that year. It has not occurred to me to take the “manita” plant to the village, “it is natural”. There are green “manitas” that are sweet and purples that are bitter, but at the whim we eat the same two.
Edible	Lgla	*Litsea glaucescens* Kunth	For food it requires little, a few twigs. I have not had the curiosity, the need [propagation], I only go to the field and collect it. Out of curiosity, I put some seeds but they did not germinate.
Edible	Lspp	*Lantana camara* L.; *L. velutina* M.Martens & Galeotti	They eat it when they go to the field, but they are not sweet, they are simple.
Edible	Mspp	*Mammillaria haageana* Pfeiff.; *Mammillaria sphacelata* Mart.	I brought one to my house for luxury, not to eat the “chilitos” [fruits], I like the way it looks.
Edible	Noff	*Nasturtium officinale* R.Br.	It is no longer consumed because there is no one who collects it. When harvested, the root must be left to it could sprout.
Edible	Olas	*Opuntia lasiacantha* Pfeiff.	As I have many plants I always have, I give it to my family when they ask me and sometimes other people come to ask me, sometimes I give them and others I sell it depending on how much it is. I brought a “penquita” [cladode] and now all those who fall and take root I care of them because it is the “nopal” that I like, those that come from outside are not good. There are some more spiny than others and they give “tunas” [fruits] of different color.
Edible	Ospp	*Oxalis aff. latifolia* Kunth; *Oxalis aff. nelsonii* (Small) R.Knuth	I brought this [Oxalis plant] out of curiosity, for luxury of the house [ornamental], when we want make the “conserva” [Traditional dish prepared with *Agave potatorum* stems and *Oxalis* leaves] we go to the mountain where it grow big.
Edible	Plin	*Porophyllum linaria* (Cav.) DC.	Its left on the edge of the cropland to produce seed. Some people have had the curiosity to cultivate it, they have it all the time, sometimes they give me a little. I only like the plants that I have inside of the “corralito” [space inside the yard delimited by a fence] or that are in crop lands, it is abundant in roads and the yard but is nasty by the animals.
Edible	Pole	*Portulaca oleracea* L.	I leave some plants to flower and give seed to have in abundance next year, although when it is a lot it is plucked.
Edible	Pphi	*Physalis philadelphica* Lam.	Last year was good [good production], it reach to give 6 kilos to my brothers who live outside It is abundant, but it is because we take care of it. I leave some [fruits] so that the next year can continue, in homegardens is watered, fertilized, so that they can produce [fruits]. There is “milomate” of the maize crop land, “dulce” (sweet) from the wheat cropland and one big that we get in the store, the last one is not so good and to have [manage and cultivate] we choose the milomate and the sweet, of which it is pretty [big].
Table 6 Meaningful consultant’s commentaries about the use, abundance, and their motives to manage plants (Continued)

Use	ID	Species	Management motives and observations about use and availability
Edible	Pqua	*Peperomia quadrifolia* (L.) Kunth	Now that we are old and we can not go to the mountain, we just eat it when my son-in-law shares us. There is, but it is retired, in rains it is more [juicy]. The one from Gandudo is more tastier. Somebody brought to have here, but it dries, here is not their environment.
Edible	Prud	*Porophyllum ruderale* subsp. *macrocephalum* (DC.) R.R.Johnson	I have not had the curiosity to sow it, but there are some people who have it in their homes, they take care of it and have to eat all the year. When it is collected only the tender twigs should be cut so that it continues to sprout.
Medicinal	Amai	*Ageratina mairetiana* (DC.) R.M.King & H.Rob.	Only the twigs are cut, the rest is left and thus sprouts. Only the twigs are cut, if everything is harvested, it runs out. When there is one in the house or the agricultural field, is tolerated.
Medicinal	Apsi	*Ambrosia psilostachya* DC.	In the harvest, the twigs are cut and the stem is left so it can sprout. We do not bring it to the house because we do not know if it will survive, we do not know what it need to produce. We store it because there is no in dry season.
Medicinal	Bsai	*Barkleyanthus salicifolius* (Kunth) H.Rob. & Brettell	Before, many people had it in their homes, now they do not like it so much. It is easy to have it, does not need care as fertilizer or irrigation. I have it, because when it is needed, I only go to the yard, besides it’s luxury [ornamental] for my house.
Medicinal	Cline	*Clinopodium mexicanum* (Benth.) Govaerts	It is not necessary to cut all the plant, only the twigs, leaving the stem can sprout and continues [be available]. I always have dry, it is more to drink, because it is almost not used as medicine. For medicine, it is collected when it’s needed, is not necessary to bring it [to the houses]. Here [mescal factory] it is natural [natural distribution], we only take care of it when is harvested and that the animals (cattle) do not foraged it.
Medicinal	Cmex	*Chrysactinia mexicana* A.Gray	I have not tried to bring it to the house, but if I would do it, it could be, to do not have to go by it, although I do not know if it could survive. I always have some of this plant, I let it dry and I keep it for when it is needed, when I go to the field and there are, I gather it, so I always have. When I need it and I do not have it stored, I ask someone to give me a little.
Medicinal	Dcar	*Dalea carthagenensis* (Jacq.) J.F.Macbr.	This is no longer used so much, but when I need it I’m going to gather it to the edge of town or somebody brings it to me.
Medicinal	Gglu	*Gymnosperma glutinosum* (Spreng.) Less.	There is much everywhere, you only have to gather it when do you need it.
Medicinal	Ginu	*Grindelia inuloides* Willd.	There are those who have it (managed in the houses or dry), when it is needed, we ask them for it or we are going to look for it to field. I think it is not difficult, but maybe the soil did not help to survival of the one that I tries to propagate.
Medicinal	Loax	*Lippia oaxacana* B.L.Rob. & Greenm.	Only the twigs are cut so that it can sprout. When drying this plant does not lose its quality, it is very strong. We store it so we can have it when we need it. I worry that there is not [available when its needed], but I do not bring seedlings to the house because if I bring them and they dry, I will only run out them. I brought a little plant but it dried.
Medicinal	Mpar	*Malva parviflora* L.	I leave some plants on the edge to have it, but when there is a lot, it must be rooted out.
Medicinal	Mpur	*Matelea purpusii* Woodson	I brought it to my house because I’m [need it], so I always have it here.
10 times per season (Fig. 2, Table 5). About 40 species are occasionally consumed where they are gathered and rarely carried to homes. These are the cases of *Chrysactinia mexicana* and *Cyrtocarpa procera*. Other 30 species are consumed occasionally, but it is considered that most of them were highly consumed in the past; these are the cases of *Chenopodium* spp., *Anoda cristata*, *Nasturtium officinale*, *Agave kerchovei*, and *A. potatorum*. Consumption of these plants has decreased due to higher presence of cultivated and processed food (Table 6). Other species are consumed occasionally by few households, as is the case of *L. glaucescens* which is used as a condiment or *Tagetes lucida*, *Lippia* sp., and *Turnera diffusa*, which is used as a condiment or *Tagetes lucida* Cav. (Continued)

Use	ID	Species	Management motives and observations about use and availability
Medicinal	Mvul	Marrubium vulgare L.	Is very resistant, while more you cut, more there are. I leave some plants on the edge to have it, but when there is a lot, it must be rooted out.
Medicinal	Ppen	Parietaria pensylvanica Muhl. ex Wild.	There are at the edge of the village, in my house I leave them in case that someday I would need it.
Medicinal	Pros	Pinarappus roseus (Less.) Less.	Before it was used when it was at hand, there are others that are used for [the same].
Medicinal	Rcom	Ricinus communis L.	I have of the two [green and red] each one has its use, they are also luxury [ornamental]. I brought the first from the road, I transplant the [seedlings] and take care of them, there are those who have taken the seed of those that they need to sow it. When they are abundant, they have to be rooted out.
Medicinal	Spra	Senecio praecox (Cav.) DC.	Now little is used, before it was stored, now only a few use it. I brought a little plant, out of curiosity, now it is luxury of my house [ornamental] and by the time I need it I have it at hand.
Medicinal	Tdif	Turnera diffusa Willd. ex Schult.	When drying this plant does not lose its quality, it is very strong. When I need it and I do not have it stored, I ask someone to give me a little.
Medicinal	Tluc	Tagetes lucida Cav.	I always have dry for when it is needed, this plant does not lose its quality when is drying, it is very strong. If part of the stem is left it can sprout, it must be left to continue [be abundant].
Medicinal	Apot	Agave potatorum Zucc.	Now few cooked the “conserva” [maguey stem cooked with *Oxalis* spp. leaves], but when they do it, they share it with their friends or they also sell it. The cacayas are eaten [flowers] when we meet one while walking in the field, to make mescal we have to go especially to cut the maguey and sometimes we have to buy it to other communities. Now there is scarce before there was here on the shore, now we have to walk to find, about three hours or more to [prepare] the mescal. Now [governmental] programs bring the maguey, we plant them in the fields and some [mescal producers] are already producing the plant, but it still lacks [time] to have it again.
Medicinal	Qacu	Quercus acutifolia Née	When needed [for medicinal use] we look for it, just a few branches with tender leaves. It is also widely used by firewood. For wood, trees should not cut only the branches. I have two little trees, I brought acorns to feed my animals, but I leave some because I like these plants, but it is difficult they are delicate they hardly [germinate or survive], it takes a lot of patience and a lot of cares.

*Excluded variables and species in the performance of principal component analyses (PCA) and canonical correspondence analyses

Commercialization of managed weedy plants is allowed, and the most common is the green tomato *P. philadelphica*. Others occasionally commercialized are *O. lasiacantha* and cooked *A. potatorum* (Table 5). *P. philadelphica*, *C. mexicana*, *Porophyllum* spp., and *D. ambrosioides* are interchanged in local stores (Table 5). Local people share with relatives and friends part of the plants gathered or harvested (Tables 5 and 6). These are the cases of *D. serratifolium*, *P. quadrifolia*, *C. mexicana*, *P. philadelphica*, *D. ambrosioides*, *Opuntia* spp., *Porophyllum* spp., *A. potatorum*, and *A. hybridus*.

Most edible plant species are considered abundant (Table 7), but such abundance is associated with care during extraction or the management in crop fields and
Table 7 Ecological and management parameters estimated for species considered in in-depth studies

ID	APe	VEA	LCI	Rep	HPa	Nea	TAv	Cre	MPr	Sel	MAFS	MLA	MST
Ceremonial													
Bbif	4	2	2	1, 2, 9	1	2	1	2, 6	0	0.05	1	1, 3	
Blon	2	2	2	5	3	2	0	1	1	0	0	1	
Bstr	3.3	3	2	2	3	3.3	1	1, 2	1	0	0	1	
Calb	1.5	3.5	2	2	1, 5	3.5	2	1	2	1	0	0	1
Dser	2	2	2	8, 9	4	1	1, 2	1, 2	1	0	0	1	
Dsp	2.5	2	2	1	5, 9	3.5	2	1	2, 7	1	0.17	4	1, 3
Ekar	3.5	2	2	1, 8, 9	1	3	1	1, 2, 5, 6	1	0.63	1	1, 3	
Erad	3.5	1	2	1, 8, 9	1.5	3	1	1, 2, 5, 6	1	0.32	1	1, 3	
Laib	5	2	2	1, 8, 9	1	3	1	1, 2, 5, 7	1	1.29	1	1, 3	
Ldas	1.5	3	2	2	5	3	3	0	1	1	0	1	
Lgla	2	2	2	5	3.5	1	1, 2, 3	1	0.63	1	1, 3		
Lmes	2	3	2	2	5	4	3	0	1	1	0	0	1
Mdep	1	1	2	1	10	1	1	0	1	0	0	0	1
Octa	3	4	2	2	5	3	1	1	2	1	0	0	1
Prub	4	0	2	2	5	1	2	0	1, 7	1	0.10	3	1, 3
Rmac	3.5	2	2	1, 8, 9	1	3	1	1, 2, 5, 6	1	0.30	1	1, 3	
Spur	3.5	2	1	2	5	3	3	1	1, 2	1	0	0	1
Tgta	4	4	2	2	10	2	1	1	1	1	0	0	1
Tluc	2.7	2	2	2	9	4	2	0	1	0	0	0	1
Tusn	1	0	2	1	5, 10	4	1	0	1, 6	0	1.33	1	1, 3
Edible													
Acris	2	1.5	1	2	4, 10	4	2.5	0	1, 3	1	0.39	2	
Ahyb	2	3	1	2	4, 10	4	2.5	1	1, 2, 3, 4, 5	1	1.33	2	
Aker	1	1.5	2	1	1, 8	4	2	0	1, 3, 6	1	0.07	1, 2	
Apot	2	2	2	1, 1, 3, 8, 10	2.8	1	1, 2	1, 3, 4, 5, 6, 7	1	1.16	1, 2, 3, 4		
Bdul	1	2	2	1, 3, 8, 9, 9	4	2	1, 2	1, 2, 3, 5, 4, 6	1	2.01	1, 2, 3		
Cber	3	3	1	2	4, 10	4.5	2.5	0	1, 3, 4	1	0.53	2	
Crme	4	4	2	2	6	2	2	1	2	2	0.07	1	2
Damb	2	4	1	2	3, 4	5	1.5	1	2, 3, 4, 5, 6, 7	1, 2, 3	0.62	2	
Dser	4	2	2	2	8, 9	3	2	1, 2	1, 2	1	0	1	
Lgla	2	2	2	2	5	3.5	1	1, 2, 3	1	0	0	1	
Lspp	1	2	2	2	4, 6	3.5	2	0	1, 3, 6	0	0.84	1, 2, 3	
Mspp	1.5	2	2	1	1, 6	4	3	0	1, 3, 6	0	0.68	1, 2, 3	
Noff	3.5	1	2	2	4, 10	4	2	0	1	1	0	1	
Olas	3	3	2	1	4, 6	5	2	0	1, 3, 4, 5, 6, 7	1, 2, 3	0.70	1, 2, 3	
Ospp	2	2	2	1	3	4	2	0	1, 3, 6	1	1.59	1, 2, 3	
Plin	1	2	1	2	10	4.3	2	0	1, 3, 4, 5, 6, 7	1	0.53	1, 2, 3	
Pole	2.3	0.7	1	2	4, 10	3.6	2	0	1, 3, 4, 6	1	0.30	2	
Pphi	2.5	4	1	2	6	4.5	2	0	1, 3, 4, 5, 6, 7	1, 2, 3	1.97	2	
Pqua	3.5	1.5	2	1	9	1.5	1.5	0	1	1	0	1	
Prud	2	2	2	2	4	4	2	1	2, 3, 4, 5, 7	1	0.24	1, 3	
homegardens as it was documented for *P. philadelphica* (Table 6). Most species are considered vulnerable to environmental factors and pests (Table 7), and some of the most appreciated resources are perceived to be scarce. This is the case of *D. serratifolium*, which due to the scarcity of its inflorescences people stopped consuming them (Table 6).

Gathering of edible plants is generally carried out while practicing other activities—by men when plants are gathered from the forest and by women and children when plants are harvested from agricultural fields and homegardens. Gathering is the only practice for 30 species, which are immediately consumed (Table 3). Practices of care during gathering of useful parts aim to procure plant survival, and these are carried out only in gathered plants and those under management (Tables 6 and 7). In order to ensure further availability, the abundance of seven species is enhanced by letting individual plants produce seeds and deliberately dispersing their seeds in appropriate places (Tables 3 and 7). At least 40 species are let standing in AFS, with the purpose of ensuring their availability (Tables 3, 6, and 7). For ensuring productivity and quality of products for consumption, 28 species receive irrigation, addition of organic matter, and exclusion from domestic animals (Tables 3 and 7). Nearly 20 species of weedy plants (among them *P. philadelphica* and *D. ambrosioides*) are transplanted into homegardens where people consider the plants to have better conditions for growing (Table 3). Other species occurring in the wild are transplanted to homegardens with the purpose of having them closer and to consume them for longer time (*Porophyllum* spp.) or for ornamental purposes (*Mammillaria* spp. and *Lantana* spp.) (Fig. 2, Tables 3 and 7). We recorded the deliberate propagation of 11 species through seeds and vegetative parts (Tables 3 and 6), as food (*Porophyllum* spp., *D. ambrosioides*, *P. philadelphica*, *Opuntia* spp.), for ornamental purposes, and for satisfying curiosity (*Oxalis* aff. *nelsoni*). Other species have started to be propagated, as is the case of *A. potatorum*, and others have had failed attempts (*L. glaucescens*, *C. mexicana*).

From seven species whose varieties are distinguished by morphology, flavor, and odor, we identified human selection in five of them; the preferred variants are tolerated, protected, or enhanced. For *D. ambrosioides*,

Table 7 Ecological and management parameters estimated for species considered in in-depth studies (Continued)

ID	APe	VEA	LCI	Rep	HPa	Nea	TAv	CRe	MPr	Sel	MAFS	MLa	MSTa
Medicinal													
Amai	3.5	1.5	2	2	5	3.5	2	1	1, 2, 3, 5, 6	1	0.37	1, 2, 3	
Apsi	3	2	2	1	5	3	2	1	1, 2, 3	1	0.07	1, 2	
Bsal	1	1	2	2, 1, 3, 5	5	1	0	1, 3, 5, 6	0	1.04	2		
Clme	2.5	1.5	2	1	5	4	2	1	2, 5	1	0.60	1, 2	
Cmex	4	2	2	2, 5, 10	3	2	1	1, 2	1	0	1		
Dcar	3	2	2	2	4	4	2	0	1, 3	1	0.07	1, 2	
Gglu	2	1	2	2	5	4	2	0	1, 3	0	1.94	1, 2	
Ginu	2	2	2	2, 5, 10	4	2	1	2, 4, 5, 6	0	0.30	1, 2, 3		
Loax	2.5	2.5	2	2	4.5	3	2	1	1, 2	1	0	1	
Mpar	1	2	1	2	10	5	2	0	1, 3, 4	1	0.72	2	
Mpur	2	2	2	2	6.9	4	2	0	1, 7	1	0.19	1, 2, 3	
Mvul	1	2	2	2	4	5	1	0	1, 3	1	0.77	2	
Ppen	1	1	2	2	10	5	2	0	3, 5	0	0.25	2	
Pros	1	1	2	2	3	4	2	0	1	1	0.67	1, 2	
Rcom	1	1	2	2	0, 3	5	1	1	1, 2, 3, 4, 5, 6	1, 2	0.43	2	
Spia	4	0	2	2	2	3	1	0	1, 3, 5, 6	0	0.10	1, 3	
Tdif	2	0	2	2	5	2	2	0	1, 2	0	0	1	
Tlac	2.7	2	2	2	9	4	2	0	1, 2	0	0	1	
Apot	2	2	2	2	1, 1, 3, 8, 10	2.8	1	1, 2	1, 3, 4, 5, 6, 7	1	1.16	1, 2, 3, 4	
Qauc	2	0	2	2	1, 1, 5, 6, 7, 9	4	2	1, 2, 3	2, 5, 6, 7	1	0.03	1, 3	

ID identification tag assigned to the species analyzed (check Table 3 to identify the species), *APe* abundance perception, *VEA* vulnerability to environmental factors, *LCI* life cycle, *Rep* reproduction, *HPa* harvested part, *Nea* nearness to harvest site, *TAv* temporal availability, *CRe* collective regulations, *MPr* management practices type, *Sel* artificial selection, *MAFS* management in AFS, *PrN* practice number, *MLa* maintaining labors, *MST* management system type

Excluded variables and species in the performance of principal component analyses (PCA) and canonical correspondence analyses
O. lasiacaantha, and P. philadelphica, we documented human selection favoring plants providing seeds or cladodes for cultivation (Tables 6 and 7). Local customs and regulations forbid gathering wild edible plants for commercializing them out of the village, with the only exception of Brahea dulcis and A. potatorum, which are edible, but parts commercialized are destined for other uses. In the Communitarian Assemblies, we recorded discussions among local people and the Biosphere Reserve authorities for regulating and planning the use of A. potatorum, B. dulcis, and D. serratifolium. In the case of L. glaucescens, the Assembly decided to allow external people to extract it, but the permit stopped.

Medicinal plants
We recorded 219 medicinal plant species, 178 of them being native and naturalized, and 22 considered “basic plants” (Tables 3 and 4). Currently, 85% of households use medicinal plants, generally complementing their healing treatment with massages, cupping therapy, and treatments by the national system of health through the local health center and private physicians. Women heads of families mainly make the decision on the appropriate treatment, while for traditional treatments, it is common to consult the relatives with more experience or one of the four traditional physicians in the village. The native plant species are mainly used for attending accidents (hurts, cuttings, twists, fractures, bites of poisonous animals), respiratory and stomach infections, pains, child tantrums, angers, “susto” (frights), illnesses caused by “aires,” monitoring of pregnancy, and recovering of childbirth. Medicinal plants may be ingested and placed in affected body zones, steam baths, and “limpias” (ceremonies for cleaning the body and spirit).

Almost all medicinal plants are collected when they are needed, but for some of them (Lippia oaxacana, T. lucida, T. diffusa, Chrysactinia mexicana, Ambrosia psilostachya), people used to store dry materials or ask somebody else to get the needed plant (Fig. 2, Table 5).

No commercialization of medicinal plants was recorded; most medicinal plants are shared. Some plants are interchanged for plants with other uses, for instance, Quercus acutifolia, used and commercialized as fuelwood, and A. potatorum used in mescal production (Table 5). Except C. mexicana and Pittocaulon praecox, all medicinal plants are considered abundant, but dryness and frosts are factors affecting their availability (Table 7).

Gathering of wild medicinal plants is conducted by men and women; men gather plants occurring far away and women those occurring in homegardens. Gathering is the most common practice for all medicinal plants, and the only practice for 81 species (Tables 3 and 4). Practices for preventing damage of gathered plants are common on the most valuable plants (Ambrosia psilostachya, Clinopodium mexicanum, C. mexicana, L. oaxacana, T. diffusa, T. lucida, Ageratina mairetiana, Grindelia inuloides) (Table 7, Fig. 2). In AFS, 79 medicinal plants are let standing during vegetation clearing, as well as the 65 species distributed in homegardens (Table 3). Among them, Ricinus communis, Marrubium vulgare, and Malva parviflora are submitted to practices for controlling their abundance through weeding, similarly to 37 other species (Table 1). We recorded 31 species receiving care such as removal of competitors, addition of organic matter, and irrigation (Table 3). Abundance of nine species is enhanced by leaving plants to produce seeds or by spreading the seeds in appropriate sites for their germination and growth (Tables 6 and 7). We also documented the transplanting of 25 species, 8 of them from forests to homegardens (G. inuloides, P. praecox, and A. mairetiana) for their medicinal and ornamental uses (Tables 3 and 7). In addition, we recorded the propagation by seeds of 12 species, 2 of them mainly motivated to have them available when needed (G. inuloides and Matelea purpusii) (Fig. 2, Tables 3, 6, and 7). We documented failed attempts of transplanting and propagating six species, among them A. mairetiana, A. psilostachya, G. inuloides, and L. oaxacana (Table 6). Reasons for not transplanting individual plants from forests to homegardens were the following: lack of information about plant requirements and the supposition or experience that in changing habitat, plants do not survive and that using appropriate techniques of extraction or storing strategies are enough for ensuring their availability (Table 6). We recorded the recognition of varieties of three species, but people make differential use and management only of R. communis (Fig. 2, Table 7).

Management intensity and risk
Management intensity of edible, ceremonial, and medicinal plants studied is explained mainly by practices and communitarian regulations in the first component and by their presence in AFS in the second component (Fig. 3). Management intensity among use types was significantly different (KW $X^2 = 9.9$, df = 2, $p = 0.007$). Edible plants had the highest management intensity, most of them managed in AFS involving human selection, while most species used for ceremonial and medicinal purposes are gathered from forests and protected through communitarian regulations (Fig. 3).

In plants with ceremonial use, the regression analysis indicates no relation among management intensity and risk indexes ($R^2 = 0.003$, $p = 0.819$) (Fig. 4, Table 8). Partial CCA explains 95% of the variation of management, significantly explained by the intersection of sociocultural and ecological factors (14%) (Fig. 5a, Table 9).
with intermediate management intensity (Table 8), management regulated by collective rules occurs in plants basic for life and exclusively with sexual reproduction. These are the cases of *L. glaucescens*, *D. serratifolium*, *B. stricta*, and *T. grandis* (Fig. 5b, Table 9). Plants intensively managed (Table 8) in AFS are those providing several parts or the whole plant as resources, having asexual reproduction, and being abundant, like *Tillandsia usneoides*, or that are scarce, like *Laelia albida*, *Euchile karwinskii*, *Epidendrum radioferens*, and *Rhynchostele maculata* (Fig. 5b, Table 9).

In edible plants, the regression analysis indicates that there is a highly significant relation among management intensity and risk indexes ($R^2 = 0.48$, $p = 0.0007$) (Fig. 4, Table 8). Partial CCA explained 92% of the variation of management, significantly explained by sociocultural factors (60%) and the intersection of sociocultural and ecological factors (14%) (Fig. 5c, Table 9). Plants with the
lowest management intensity (Table 8) are those protected through collective regulations, like *D. serratifolium* and *L. glaucescens*, which are shared among relatives and used in communitarian ceremonies, as well as in those gathered and perceived to be scarce, like *N. officinale*, *P. quadrifolia*, and *C. mexicana* (Fig. 5d, Table 9). Plants with the highest management intensity like *P. philadelphica*, *O. lasiacantha*, *A. hybridus*, and *D. ambrosioides* (Table 8) are those with different varieties, under human selection through several types of practices, considered to be abundant, shared among members of the community, and obtained through different strategies, among them interchange and commercialization (Fig. 5d, Table 9).

In medicinal plants, the regression analysis indicates no significant relation among management intensity and risk ($R^2 = 0.19$, $p = 0.074$) (Fig. 4, Table 8). Partial CCA explains 79% of the variation of management, mainly by sociocultural factors (46%) (Fig. 5e, Table 9). Plants with low risk like *Pinaropappus roseus* and *Gymnosperma glutinosum* are directly consumed by people who gather them and, along with *Marrubium vulgare*, occur in most of the homegardens and crop fields sampled. These plants are only gathered and left standing (Fig. 5e, Table 9). Management through collective regulations determining care during gathering was documented on *C. mexicana*, *L. oaxacana*, and *A. psilostachya*, with relatively high management intensity and risk (Table 8) associated to their value in reciprocity, use frequency, strategies for obtaining them, and the perception of vulnerability to environmental factors (Fig. 5e, Table 9).

Discussion

Management intensity

As we hypothesized, the gradient of management intensity is higher in edible plants, which are managed through different types of practices in AFS, more frequently, and involving human selection. Contrarily, plants used for ceremonies and as medicine are mostly tolerated or simply gathered. These general trends are similar to other reports for edible plants studied in the region which are managed with more complex practices than other useful plant species [6, 22, 43–45].

Collective regulations importantly influence the management intensity, but differently to that proposed for a general model of management intensity [46], the highest complexity of such regulations was observed in plants that are only gathered in areas of common access, such as the most valuable medicinal and ceremonial plants.
For the contrary, edible species are mainly managed in AFS, where managers have higher control of access to plant resources. These differences reflect the trade-offs in managing natural resources of common use, as it has been discussed previously for edible plants of the region and for several resources of common use [13, 47]. In the case studied, this pattern is illustrated by the fact that collective regulations appear to be effective for plants culturally valuable but not for plant resources with high economic value. The inefficacy of collective regulations for plants like *A. potatorum* appears to be due to the lack of rules coherent with the weakening of local institutions for ordering the use of a resource of increasing demand [28]. The failure of regulations for achieving a balance between cost and benefit of its management has enhanced private management in sites for exclusive use. But also, external actors have promoted the reforestation in areas of common use [16, 26], actions that should be accompanied by strengthening the effectiveness of local institutions.

The selective management characterizes the high management intensity in plants under the three types of use, according to flavors, colors, and sizes of plants or plant parts, which indicates ongoing processes of domestication, which may have advanced expressions like in *P. philadelphica* or, rather incipient, like in *O. lasiacantha* and *R. communis* [5, 15, 48]. The indistinct use of species with varieties recognized such as *Chenopodium*...
berlandieri suggests that there exists a process of decreasing of consumption and interest in human selection, differently to what is happening with A. potatorum, whose propagation starts with gathering seeds from several sites where agaves are recognized to have differential productivity. Such contrasting situations indicate the dynamic aspect of the processes of domestication, in which changes in values, the introduction of new food or products, and changes in markets, among other factors, have direct effects on management of plant resources.

Sociocultural and ecological factors and management intensity
As expected, management intensity in edible plants is associated with their high risk to disappear, compared to the pattern found in medicinal and ceremonial plants.

Risk variable	Ceremonial		Edible		Medicinal							
	Df	X²	F	p	Df	X²	F	p	Df	X²	F	p
Sociocultural and ecological variables												
Uses number (Us)	1	0.017	3.24	0.103	1	0.014	1.98	0.105	1	0.016	1.46	0.175
SI basic plants (SIB)	1	0.190	35.41	0.002	1	0.008	1.09	0.219	1	0.021	1.84	0.11
SI by use type (SIU)	1	0.003	0.47	0.695	1	0.003	0.45	0.497	1	0.026	2.33	0.09
Consumption (Con)	1	0.029	5.35	0.024	1	0.013	1.80	0.125				
Use frequency (UF)	1	0.040	7.48	0.012	1	0.013	1.83	0.180	1	0.024	2.15	0.078
Economic interchange (EI)	1	0.010	1.85	0.22	1	0.006	0.79	0.389				
Reciprocity interchange (RI)	1	0.006	1.08	0.454	1	0.173	24.47	0.002	1	0.052	4.68	0.007
Recognized variants (Var)	1	0.008	1.41	0.345	1	0.048	6.79	0.003	1	0.014	1.24	0.269
Sociocultural strategies (SCS)	1	0.014	2.62	0.13	1	0.028	4.00	0.034	1	0.025	2.22	0.084
Abundance perception (Ape)	1	0.026	4.88	0.045	1	0.027	3.76	0.035	1	0.011	1.01	0.398
Harvested parts (HPa)	1	0.048	8.89	0.008	1	0.008	1.20	0.326	1	0.004	0.40	0.735
Life cycle (LCi)	1	0.002	0.37	0.734	1	0.005	0.74	0.465	1	0.001	0.06	0.981
Reproduction (Rep)	1	0.052	9.65	0.002	1	0.026	3.73	0.066	1	0.019	1.70	0.183
Vulnerability (VEA)	1	0.015	2.72	0.111	1	0.007	0.97	0.416	1	0.001	0.06	0.967
Residual	5	0.027			5	0.035			5	0.056		
Sociocultural variables												
Uses number (Us)	1	0.017	1.028	0.352	1	0.014	1.29	0.114	1	0.016	1.77	0.106
SI basic plants (SIB)	1	0.190	11.232	0.005	1	0.008	0.71	0.321	1	0.021	2.24	0.084
SI by use type (SIU)	1	0.003	0.148	0.925	1	0.003	0.29	0.680	1	0.026	2.83	0.051
Consumption (Con)	1	0.029	1.698	0.212	1	0.013	1.17	0.215				
Use frequency (UF)	1	0.040	2.374	0.131	1	0.013	1.19	0.217	1	0.024	2.61	0.037
Economic interchange (EI)	1	0.010	0.587	0.587	1	0.006	0.51	0.529				
Reciprocity interchange (RI)	1	0.006	0.343	0.808	1	0.173	15.89	0.001	1	0.052	5.68	0.001
Recognized variants (Var)	1	0.008	0.447	0.687	1	0.048	4.41	0.029	1	0.014	1.51	0.189
Sociocultural strategies (SCS)	1	0.014	0.832	0.487	1	0.028	2.60	0.099	1	0.025	2.70	0.048
Abundance perception (Ape)	10	0.170			10	0.109			10	0.092		
Ecological variables												
Abundance perception (Ape)	1	0.034	1.73	0.169	1	0.047	2.29	0.047	1	0.018	1.21	0.214
Harvested parts (HPa)	1	0.089	4.51	0.023	1	0.011	0.55	0.443	1	0.010	0.64	0.509
Life cycle (LCi)	1	0.001	0.05	0.983	1	0.024	1.18	0.196	1	0.002	0.14	0.953
Reproduction (Rep)	1	0.033	1.68	0.221	1	0.045	2.19	0.075	1	0.017	1.12	0.274
Vulnerability (VEA)	1	0.052	2.63	0.107	1	0.004	0.20	0.815	1	0.042	2.77	0.03
Residual	14	0.277	14	0.284	12	0.181						

Number of permutations = 999; p values in italics are significant at 0.05
However, in the analysis about how sociocultural and ecological factors influence on variation of management, we found a high variety of interactions. The economic value, which has been considered one of the most important factors motivating plant management [12, 13], was not significant in any of the systems studied. This result can be due to the low proportion of plant species that are interchanged through barter and commercialization, as well as the isolation of the community, a factor recognized to be significant for introducing non-timber forest products in markets [49]. Nevertheless, among the more intensely managed species, we recorded some whose management represents expenses (P. philadelphica) or their commercialization represents main incomes for households (B. dulcis and A. potatorum), which indicates a relation between management intensity and the economic role of plants in subsistence [46].

Consumption was only significant in ceremonial plants, explaining the gradient of management intensity according to the feasibility of propagation, which may be difficult in plants highly used (Tillandsia grandis and Chiococca alba), compared with species lowly used but having vegetative propagation that makes easy their management (Plumeria rubra, Dahlia sp.).

The perception of abundance and its interaction with cultural value and management feasibility was a meaningful factor for explaining gradients of management intensity of ceremonial and edible plants. For instance, Peperomia quadrifolia, a highly valued species as food, is only gathered following the principle of leaving part of the plant in order that it continues propagating, since it is scarce, but it has very specific habitat requirements. Tillandsia usneoides is intensely managed in homegardens, although it is abundant in forests, since it is easily propagated; P. philadelphica, a basic species, is considered abundant because of the effect of intense management. The examples suggest that the balance between the invested effort in management and benefits obtained according to needs is an important factor for making decisions [50].

The interchange of plant species related to reciprocity was significant for explaining variation of management of edible and medicinal plants. In both use types, the interchanged plants are the most valuable species. In the case of edible plants, our analysis explained the variation in the extremes of the gradient of management intensity; plants of difficult access are managed by collective regulations, and those intensely managed are in AFS. Among the medicinal plants, our analysis identified those species managed following collective regulations and stored, but in the case of emergency, people practice interchange. Importance of this factor coincides with other reports analyzing management of AFS, where it has been found that the social relations of local people are a main factor influencing biodiversity in these systems since plant species are introduced to the systems and because numerous species are maintained to be shared [44, 51, 52]. The study of these relations is covering importance for understanding management of AFS. We suggest that these may be considered for understanding management of species, since these are expressions of affect, respect, and solidarity, through which people construct social nets of mutual support that are part of the cultural identity and strategies for facing risks in their subsistence [28, 53–55].

In edible and medicinal plants, the interest for obtaining resources through sociocultural strategies influences the management intensity. Strategies like mobility for increasing the harvesting area and gathering for storing, among other practices, may determine some degree of risk on plants, which are placed through collective regulations and management practices.

The cognitive prominence by use type may be an indicator of resource quality, but this was no significant factor in our analysis. The perception about the quality of resources arose as a factor related to the place where plants grow. This aspect enhances plant management in AFS [51, 53, 56], which was documented with P. philadelphica and O. lasiacantha. In wild plants, this perception influences the communitarian regulations, as was recorded for Bursera biflora, whose resin is naturally produced and is preferred over that produced after cutting the stem [57].

Management motives

Interactions between cultural importance, perception of scarcity, and feasibility of management suggest that several factors contribute to motivate management techniques, which was confirmed through the in-depth interviews qualitatively analyzed (Table 6). The worries expressed by people about the future availability of plants with ceremonial, edible, and medicinal uses suggest that uncertainty is a main motive determining management. Such worries can be explained because of the fact that in the analysis of cognitive prominence of plants considered as basic, people mentioned plants with the three uses, which means that they are considered indispensable elements of subsistence. This fact coincides with the general hypothesis of control of uncertainty as a main motive of management for ensuring resource availability [12]. However, the differences documented in types of management strategies and their intensity among use types may be due to the differential operation of other motives, as we hypothesized in this study.

Making easier the access to plants was an important motivation for transplanting or cultivating wild and weedy plants for the three use types analyzed. For edible and medicinal plants managed in homegardens, the main management motive is to have them close
to home [22, 45, 58, 59]. And this is why people transplant and propagate plants that are naturally abundant into other ecosystems (e.g., *Porophyllum* spp.), protect with different labors the maintenance of *D. ambrosioides*, or tolerate weedy and ruderal plants like *Malva parviflora* and *Barkleyanthus salicifolius*. In ceremonial plants, the need to have flowers easily accessible is also an important motive for transplanting and propagating plants (for instance orchids and *Dahlia* spp.), but this motive is associated with the purpose of embellishing an area (60% of the ceremonial plant species are considered ornamental), a quality highly valued by the Ixcatec [6, 23, 24, 26, 52, 53, 60].

The symbolic value associated with plants and animals has been proposed relevant for making management decisions [8, 61, 62]. It is particularly important in plants used for ceremonies, like *B. biflora* [21], *L. glaucescens*, *Euchile karwinski*, and other orchids, and may influence the perception of importance of being careful during their gathering and as a motive for propagation.

Our study suggests that ethical principles are important for regulating use and management in order to prevent damage to plants (Table 6), recognizing them as living beings with “the right to exist.” This is expressed in numerous tolerated plants with low cultural and economic value or even those without use [26]. Such criteria interact with others particularly in weedy and ruderal plants, with edible and/or medicinal uses such as *A. hybridus*, *M. parvifolia*, *R. communis*, and *M. vulgaris* in which the perception of their potential as invasive plants determines a balance of efforts for maintaining and removing them [23, 26]. Other motives identified in the maintenance of homegardens [59, 63, 64], such as experimental curiosity, were mentioned by people in order to develop continual innovation in management techniques.

This study aspires to contribute to understand the multifactorial influence of social and ecological aspects on decisions for managing plant resources [26, 65] with different purposes. It is clear from this and other studies that management of edible resources are mainly influenced by factors associated with availability of food or means for obtaining it, whereas medicinal plants, which are consumed less frequently, involve quality rather than quantity, and ritual plants involve symbolic aspects. The three groups of plants involve management, but the intensity required in each case varies. However, some plant resources are particularly valuable because of their multi-functionality [65]; these are species that in this study are called “basic” by local people and are outstandingly important resources receiving the greatest management intensity.

Ixcatlán is the only site in the world where the Ixcatec language is spoken, and only 15 persons speak this language. Our ethnobiological studies look for contributing to efforts of a linguistic group working in favor of conserving and recovering this language. Information recovered in this study includes audio and image systems that have helped to produce educative materials useful for teachers in schools for teaching the Ixcatec language. In addition, the information about resource use, and particularly about management techniques, are helpful for planning actions for ordination, conservation, and recovering forest areas and resources, as well as agroforestry systems, which are part of the biocultural heritage of the Ixcatec for the Ixcatec people, people of the Biosphere Reserve Tehuacán-Cuicatlán, and the Mexican people.

Conclusions

For managing edible, medicinal, and ceremonial plants, the Ixcatec have developed a broad variety of practices and regulations. Management strategies are motivated as responses to uncertainty in their availability and other motivations like embellishing an area, satisfying customs, emotions, and curiosity operating simultaneously in the decisions. Such a variety of factors is associated to a well-being premise combining both material and spiritual needs, as well as maintaining social relations and traditions that are part of the Ixcatec cultural identity [27, 50].

The highest management intensity in economic valuable species, mainly edible plants, indicates that uncertainty is significant in indispensable plants for satisfying subsistence needs. However, species of medicinal and ceremonial uses and some edible plants are managed through diverse management practices without response to abundance perception. These facts make necessary to analyze more deeply how needs, worries, external pressures, and management responses are articulated with subsistence strategies of households and communities in these processes, as well as the role of systems of ethical values and traditional regulation institutions.

Our study confirms the importance of sociocultural factors associated with use and interchange of resources, and ecological processes influencing the vulnerability and feasibility of managing them [12, 16, 17]. The multiple criteria may be useful to analyze conditions guiding early management motives that modeled the biocultural heritage of peoples of the Tehuacán Valley.

Abbreviations

AFS: Agroforestry systems; CCA: Canonical correspondence analyses; PCA: Principal component analyses; TEK: Traditional ecological knowledge; UNAM: Universidad Nacional Autónoma de México

Acknowledgements

We deeply thank the people of Santa María Ixcatlán and the authorities for their generosity and friendship. We also thank Erandi Rivera, Emanuel Emiliano González, and Ricardo Lemus for their collaboration in fieldwork and María Eugenia Salazar and Erandi Rivera for sharing panels a, j, y, and k in Fig. 2. We thank the anonymous referees for their comments and suggestions that helped to improve this manuscript.
Funding
The authors thank the Posgrado en Ciencias Biológicas at the Universidad Nacional Autónoma de México (UNAM) and the Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) for supporting PhD studies and a grant for the first author. We also thank for the financial support for fieldwork the Red Temática: Productos Forestales No Maderables supported by CONACYT, CONACYT (Project CB-2013-01-221,800), the PAPIIT, UNAM (Research project IN209214), Fundación Alfredo Harp Helú Oaxaca, and Fundación UNAM (project IE-282.311.190).

Availability of data and materials
Data that support the analysis and additional data are provided in Tables 1, 5, and 7.

Authors’ contributions
SRL is the main author, involved in the study design, field work, and analysis of the data; wrote the first draft; and concluded the final version of this paper. AC is main coordinator-supervisor of the research project, participated in data analyses, and reviewed several drafts of the manuscript. EGF and RL contributed to designing and following the progress of the research and reviewed the final drafts of the manuscript. All authors read and approved the final manuscript.

Authors’ information
SRL is a postgraduate student at the Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM. AC and EGF are full-time researchers at IIES, UNAM. RL is a full-time researcher at UBIPRO-FES Iztacala, UNAM.

Ethics approval and consent to participate
Permits for conducting our investigation were obtained from local authorities and Ethics approval and consent to participate from Sustentabilidad (IIES), UNAM. AC and EGF are full-time researchers at IIES, SRL is a postgraduate student at the Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM. AC and EGF are full-time researchers at IIES, UNAM. RL is a full-time researcher at UBIPRO-FES Iztacala, UNAM.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM, Antigua Carretera a Pátzcuaro 8711, 58190 Morelia, Michoacán, México.
2 UBIPRO, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios #1, Los Reyes Ixtacala, México, México.

Received: 31 July 2017 Accepted: 5 October 2017
Published online: 30 October 2017

References
1. Toledo VM, Ortiz-Espejel B, Cortés L, Muñoz S, de Orodoñez MJ. The multiple use of tropical forests by indigenous peoples in Mexico: a case of adaptive management. Conserv Ecol. 2003;79.
2. Boege E. El patrimonio biocultural de los pueblos indígenas de México. México, D. F.: Instituto Nacional de Antropología e Historia & Comisión Nacional para el Desarrollo de los Pueblos Indígenas; 2008.
3. Maffi L. Linguistic, cultural, and biological diversity. Ann Rev Anthropol. 2003;34:599–617.
4. Casas A, Lira R, Torres I, Delgado A, Moreno-Calles Al, Rangel-Landa S, et al. Ethnobotany for sustainable ecosystem management: a regional perspective in the Tehuacán Valley. In: Lira R, Casas A, editors. Ethnobotany of Mexico: interactions of people and plants in Mesoamerica. New York: Springer; 2016. p. 179–206.
5. Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A. In situ management and domestication of plants in Mesoamerica. Ann Bot. 2007;100:1101–15.
6. Blancas J, Casas A, Rangel-Landa S, Moreno-Calles Al, Torres I, Pérez-Negrón E, et al. Plant management in the Tehuacan-Cuicatlán Valley, México. Econ Bot. 2010;64:287–302.
7. Berkes F, Colding J, Folke C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl. 2000;10:1251–62.
8. Toledo VM. Ethnocolony: a conceptual framework for the study of indigenous knowledge of nature. In: Seep JR, editor. Ethnobiol. Cult. Divers. USA: International Society of Ethnobiology; 2002. p. 511–22.
9. Bye RA. The role of humans in the diversification of plants in Mexico. In: Ramamoorthy T, Bye RA, Lot A, Fa J, editors. Biod. Divers. Mex. Orig. Distrib. New York: Oxford University Press; 1993. p. 707–31.
10. Casas A, Parra F. La domesticación como proceso evolutivo. In: Casas A, Torres-Guevara J, Parra F, editors. Domest. en el Cont. Am. Vol. 1. Manejo Biodivers. y Evol. dirigida por las Cult. del Nuevo Mundo. Lima: UNALM & UNAM; 2016. p. 133–58.
11. González-Insuasti MS, Caballero J. Managing plant resources: how intensive can it be? Hum Ecol. 2007;35:303–14.
12. Blancas J, Casas A, Pérez-Salciop D, Caballero J, Vega E. Ecological and socio-cultural factors influencing plant management in Nahuatl communities of the Tehuacán Valley, Mexico. J Ethnobiol Ethnomed. 2013;9:39.
13. González-Insuasti MS, Martorell C, Caballero J. Factors that influence the intensity of non-agricultural management of plant resources. Agrofor Syst. 2009;74:1–15.
14. González-Insuasti MS, Casas A, Méndez-Ramírez J, Martorell C, Caballero J. Intra-cultural differences in the importance of plant resources and their impact on management intensification in the Tehuacán Valley, Mexico. Hum Ecol. 2011;39:191–202.
15. Arellanes Y, Casas A, Arellanes A, Vega E, Blancas J, Vallejo M, et al. Influence of traditional markets on plant management in the Tehuacán Valley. J Ethnobiol Ethnomed. 2013;9:38.
16. Delgado-Lemus A, Torres I, Blancas J, Casas A. Vulnerability and risk management of Agave species in the Tehuacán Valley, Mexico. J Ethnobiol Ethnomed. 2014;10:53.
17. Torres I, Blancas J, León A, Casas A. TEK, local perceptions of risk, and diversity of management practices of Agave inaequidens in Michoacán, México. J Ethnobiol Ethnomed. 2015;11:1–20.
18. Casas A, Valiente-Banuet A, Viveros IL, Caballero J, Cortés L, Dávila P, et al. Plant resources of the Tehuacán-Cuicatlán Valley, Mexico. Econ Bot. 2001;55:129–66.
19. Casas A, Parra F, Blancas J, Rangel-Landa S, Vallejo-Ramos M, Figueroa CJ, et al. Oleagen de la domesticación y la agricultura: cómo y por qué. In: Casas A, Torres-Guevara J, Parra F, editors. Domest. en el Cont. Am. Vol. 1. Manejo Biodivers. y Evol. dirigida por las Cult. delNuevo Mundo. Lima: UNALM & UNAM; 2016. p. 189–224.
20. Ayma AI. Beneficios y maleficios de los árboles para los campesinos y su rol en el arreglo de sistemas agroforestales tradicionales en el Norte de Independencia, Bolivia. Acta Nov. 2011;5:225–46.
21. Berkes F. Sacred ecology. Second. New York: Routledge; 2008.
22. Blanckaert 1, Swennen R, Paredes-Flores M, Rosas L, Lieta R. Floristic composition, plant uses and management practices in homegardens of San Rafael Coxcatlán, Valley of Tehuacán-Cuicatlán, Mexico. J Arid Environ. 2004;57:179–202.
23. Moreno-Calles A, Casas A, Blancas J, Torres I, Masera O, Caballero J, et al. Agroforestry systems and biodiversity conservation in arid zones: the case of the Tehuacán Valley, Central México. Agrofor Syst. 2011;80:315–31.
24. Vallejo M, Casas A, Blancas J, Moreno-Calles Al, Solis L, Rangel-Landa S, et al. Agroforestry systems in the highlands of the Tehuacán Valley, México: indigenous cultures and biodiversity conservation. Agrofor Syst. 2014;88:125–40.
25. Vallejo M, Casas A, Pérez-Negrón E, Moreno-Calles Al, Hernández-Ordóñez O, Teixero O, et al. Agroforestry systems of the lowland alluvial valleys of the Tehuacán-Cuicatlán Biosphere Reserve: an evaluation of their biocultural capacity. J Ethnobiol Ethnomed. 2015;11:18.
26. Rangel-Landa S, Casas A, Riverola-Lozoya E, Torres-García I, Vallejo-Ramos M, Ixcatl: ethnecology: plant management and biocultural heritage in Oaxaca, Mexico. J Ethnobiol Ethnomed. 2016;12:30.
27. Casas A, Parra F, Torres-García I, Rangel-Landa S, Zarazúa M, Torres-Guevara J. Estudios y patrones continentales de domesticación y manejo de recursos
genética: Perspectivas. In: Casas A, Torres-Guevara J, Parra F, editors. Domest. en el Cont. Am. Vol. 2. Investig. para el manejo sustentable Recur. genéticos en el Nuevo Mundo. Morelia: UNAM & UNALM; 2017. p. 537–69.

CONABIO. Climas, Portal de Geoinformación, Sistema Nacional de Información sobre Biodiversidad. 2012. http://www.conabio.gob.mx/informaciongis/. Accessed Apr 2017. Comisión Nacional para el Conocimiento de la Biodiversidad.

Servicio Meteorológico Nacional. Normales climatológicas 1951–2010. Estación 00020129 Santa María Ixcátan, Oaxaca. CONAGUA. 2010. http://smn.cna.gob.mx/es/informacion-climatico-ver-estado/estado=oxa. Accessed Apr 2017.

Instituto Nacional de Estadística y Geografía. Tabulados predefinidos, Oaxaca. In: Encuesta Intercensal; 2015. http://www.beta.inegi.org.mx/proyectos/enchohages/especiales/intcensal/?init=1. Accessed Apr 2017.

Simons GF, Fennig CD, editors. Ethnologue: languages of the world, twentieth edition. Dallas: SIL International; 2017. Online version: http://www.ethnologue.com. Accessed Apr 2017

Valente-Brandt A, Solís L, Dávila P, Azmendín M del C, Silva C, Ortega-Ramírez J, et al. Guía de la vegetación del Valle de Tehuacán-Cuicatlán. México D.F: Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Instituto Nacional de Antropología e Historia, Universidad Autónoma de Tamaulipas & Fundación para la Reserva de la Biósfera Tehuacán-Cuicatlán; 2000.

Diario Oficial de la Federación. Resolución sobre conflicto por límites de bienes comunales al poblado de Santa María Ixcátan, municipio del mismo nombre, Estado de Oaxaca. 1948. http://www.dof.gob.mx/. Accessed 25 May 2015. México.

Histórico MO. Santa María Ixcátan, Oaxaca: from colonial cacicazgo to modern municipio. Ph.D. thesis, University of Texas at Austin; 2007.

Royal Botanic Gardens, Kew, Missouri Botanical Garden. The plant list. A working list of all plant species. http://www.theplantlist.org/. Accessed Apr 2017.

Nolan JM. Pursuing the fruits of knowledge: cognitive ethnobotany in Missoulin’s Little Dixie. J Ethnobiol Ethnomed. 2001;21:29–51.

Nolan JM, Robbins MC. Emotional meaning and the cognitive organization of ethnotaxonomic domains. J Linguist Anthropol. 2001;11:240–9.

Sotrup U. List task and a cognitive salience index. Field Methods. 2001;13:263–76.

Pennecc F, Wencellius J, Garine E, Raimond C, Bobbit HFLAME. v1.0: free-list analysis under Microsoft Excel. Paris: CNSR; 2012.

Borcard D, Legendre P, Drapeau P. Partioutilising the spatial component of ecological variation. Ecology. 1992;73:1045–55.

R Core Team. R: a language and environment for statistical computing. Vienna: R foundation for statistical computing. 2016.

Lira R, Casas A, Rosas-López R, Paredez-Flores P, Pérez-Negrón E, Rangel-Landa S, et al. Traditional knowledge and useful plant richness in the Tehuacán–Cuicatlán Valley, Mexico. Econ Bot. 2009;63:271–87.

Moreno-Calles Al, Casas A, García-Frapolli E, Torres-García I. Traditional agroforestry systems of multi-crop “milpa” and “chichipera” cactus forest in the arid Tehuacán Valley, Mexico: their management and role in people’s subsistence. Agrofor Syst. 2012;84:207–26.

Larios C, Casas A, Vallejo M, Moreno-Calles AL, Blanças J. Plant management and biodiversity conservation in Náhuatl homegardens of the Tehuacán Valley. J Ethnobiol Ethnomed. 2013;9:74.

Blanças J, Casas A, Moreno-Calles AL, Caballero J. Cultural motifs of plant management and domestication. In: Lira R, Casas A, Blanças J, editors. Ethnobotany of Mexico: interactions of people and plants in Mesoamerica. New York: Springer; 2016. p. 233–55.

Ostrom E. Governing the commons: the evolution of institutions for collective action. 2nd ed. Cambridge: Cambridge University Press; 1990.

Casas A, Blanças J, Otero-Arnal J, Cruse-Sanders J, Lira R, Avendaño A, et al. Evolutionary ethnozooological studies of incipient domestication of plants in Mesoamerica. In: Lira R, Casas A, Blanças J, editors. Ethnobotany of Mexico: interactions of people and plants in Mesoamerica. New York: Springer; 2016. p. 257–85.

Belcher B, Ruiz-Pérez M, Achdiahwan R. Global patterns and trends in the use and management of commercial NTFPs: implications for livelihoods and conservation. World Dev. 2005;33:1435–52.

Alcorn JB. Factors influencing botanical resource perception among the Huastec: suggestions for future ethnobotanical inquiry. J Ethnobiol. 1981;1:221–30.

Ban N, Coomes OT. Home gardens in Amazonian Peru: diversity and exchange of planting material. Geogr Rev. 2004;94:348–67.

Aguilar-Staen M, Moe SR, Camargo-Ricalde SL. Home gardens sustain crop diversity and improve farm resilience in Candelaria Locxicha, Oaxaca, Mexico. Hum Ecol. 2009;37:55–77.

Galvet-Mir I, Gómez-Baggethun E, Reyes-García V. Beyond food production: ecosystem services provided by home gardens. A case study in Valle Fosca, Catalan Pyrenees, northeastern Spain. Ecol Econ. 2012;74:153–60.

Lope-Alzina DG. Una red comunal de acceso a alimentos: el huerto familiar como principal proveedor de productos para intercambio en una comunidad Maya-Yucateca. Gal Sci. 2014;8:199–219.

Halstead P, O’Shea J, editors. Bad year economics: cultural responses to risk and uncertainty. Cambridge: Cambridge University Press; 1989.

Reyes-García V, Aceituno L, Vila S, Calvet-Mir L, Garnatje T, Jesh A, et al. Home gardens in three mountain regions of the Iberian Peninsula: description, motivation for gardening, and gross financial benefits. J Sustain Agric. 2012;36:249–70.

Purata SE. Uso y manejo de los copales aromáticos: aceites y resinas. México: CONABIO, RAISES; 2008.

Tello-Villavicencio. Las plantas aromáticas en los Andes peruanos. In: Casas A, Torres-Guevara J, Parra F, editors. Domest. en el Cont. Am. Vol. 2. Investig. para el manejo sustentable Recur. genéticos en el Nuevo Mundo. Morelia: UNAM & UNALM; 2017. p. 345–74.

Lope-Alzina DG, Howard PL. The structure, composition, and functions of homegardens: a focus on the Yucatan Peninsula Ethnomed. 2017;13:10.

Cook SF. Santa María Ixcátan: habitat, population, subsistence. In: Sauer CO, Woodrow B, Cook SF, Rowe JH, editors. Ibero-Am. Berkeley and Los Angeles: University of California Press; 1958.

Atan S, Medin DL, Ross NO. The cultural mind: environmental decision making and cultural modeling within and across populations. Psychol Rev. 2005;112:744–76.

Salazar-Rojas VM, Herera-Cabrera BE, Flores-Palacios A, Ocampo-Fletes I, Vázquez-Mondragón M. Traditional use and conservation of the “calaverita”; Laelia anceps subsp. dawsonii f. chilapensis Soto-Arenas at Chilapa Guerrero. Lankesteriana Int J Orchid. 2007;7:368–70.

Clayton S. Domesticated nature: motivations for gardening and perceptions of environmental impact. J Environ Psychol. 2007;27:215–24.

Bhatti M, Church A, Claremont A, Stener P. “I love being in the garden”: enchanting encounters in everyday life. Soc Cult Geogr. 2009;10:61–76.

Soukand R, Kõiva M, Kalle R. Multi-functionality of the few: current and past uses of wild orchids at Rüütli, south-eastern Estonia. J Ecol. 2007;95:736–45.

Atran S, Medin DL, Ross NO. The cultural mind: environmental decision making and cultural modeling within and across populations. Psychol Rev. 2005;112:744–76.

Submit your next manuscript to BioMed Central and we will help you at every step:

• We accept pre-submission inquiries
• Our selector tool helps you to find the most relevant journal
• We provide round the clock customer support
• Convenient online submission
• Thorough peer review
• Inclusion in PubMed and all major indexing services
• Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit