Stability of winding cosmic wall lattices with X type junctions

Brandon Carter
LuTh, Observatoire Paris, 92195 Meudon, France

Received 12 October 2007, in final form 31 December 2007
Published 21 July 2008
Online at stacks.iop.org/CQG/25/154001

Abstract
This work confirms the stability of a class of domain wall lattice models that can produce accelerated cosmological expansion, with pressure to density ratio $w = -1/3$ at early times, and with $w = -2/3$ at late times when the lattice scale becomes large compared to the wall thickness. For walls of tension T_I, the relevant X type junctions could be unstable (for a sufficiently acute intersection angle α) against separation into a pair of Y type junctions joined by a compound wall, only if the tension T_I of the latter were less than $2T_I$ (and for an approximately right-angled intersection if it were less than $\sqrt{2}T_I$) which cannot occur in the class considered here. In an extensive category of multicomponent scalar field models of forced harmonic (linear or nonlinear) type it is shown how the relevant tension—which is the same as the surface energy density U of the wall—can be calculated as the minimum (geodesic) distance between the relevant vacuum states as measured on the space of field values Φ_i using a positive definite (Riemannian) energy metric $dU^2 = \tilde{G}_{ij} d\Phi_i d\Phi_j$ that is obtained from the usual kinetic metric (which is flat for a model with an ordinary linear kinetic part) by application of a conformal factor proportional to the relevant potential function V. For suitably periodic potential functions there will be corresponding periodic configurations—with parallel walls characterized by incrementation of a winding number—in which the condition for stability of large scale bunching modes is shown to be satisfied automatically. It is suggested that such a configuration—with a lattice lengthscale comparable to intergalactic separation distances — might have been produced by a late stage of cosmological inflation.

PACS number: 95.35.+d

(Some figures in this article are in colour only in the electronic version)
1. Introduction

This paper is concerned with the question raised by Bucher and Spergel [1, 2] of whether some kind of cosmic domain-wall lattice might account for the observed acceleration of the expansion of the universe, not to mention subtle deviations from isotropy [3, 4]. More specifically, the question is whether the tendency of such lattices to evolve—typically according to a scaling law [5]—towards a uniform vacuum solution can be ‘frustrated’ in particular scenarios in which the lattice is ultimately preserved in a configuration that is effectively frozen with respect to comoving coordinates. A first prerequisite that must be satisfied by proposed candidate models [6–8] for such a frozen state is of course that of stability, but even in cases for which this is satisfied there remains, as a further necessary condition for viability, the more difficult problem of attainability of the configuration in question from plausible initial conditions.

The first aim of the present work is to show how the existence of absolutely stable frozen lattice configurations will be an automatic consequence of the existence of conserved topological winding numbers for an extensive class of field models with multiply connected field configuration spaces. Although such models would seem to be capable of providing good agreement with what we see now, this depends on the provision of initial conditions for which—contrary to what might be expected from naive symmetry considerations—the relevant winding numbers are endowed with non-zero values. That nature might conceivably provide such symmetry violation—perhaps for anthropic reasons—is shown by the notorious example of cosmic baryon number asymmetry. The need to invoke such a priori symmetry violation does however diminish the attractiveness of such scenarios.

In the (not yet fully satisfied) hope of getting round this drawback, the following work will be mainly concerned with the extension of the class of field models under consideration to a more general class in which, when sufficient energy is available, the fields will have access to a configuration space that is simply connected, but in which the energetically attainable field values will otherwise be effectively confined to a neighbourhood that is postulated to have the non-trivial multiply connected kind of topology considered in the preceding paragraph. In scenarios based on such models, cooling from a thermally excited state can be expected to leave field configurations with winding numbers that will be effectively conserved by substantial energy barriers, and that may be left with non-vanishing values—thus guaranteeing ‘frustration’—over causally connected volumes that in an inflationary scenario could be larger than the visible universe. However an (in the present context) undesired byproduct of this process would be the formation of string-type defects on which the domain walls resulting from the winding would terminate. It is easy to conceive ways in which such undesired strings might be inflated away (as in the usual solution of the monopole problem) but would seem that to do this without also inflating away the desired wall lattice would again require recourse to fine tuning (and perhaps invocation of the anthropic principle) such as we were trying to avoid. The ultimate message of this paper is that this approach does not seem very promising at the present stage, but that it should not yet be definitively excluded from consideration.

It is to be remarked that a more decisively negative opinion, namely that viable scenarios for a ‘frustrated’ lattice cannot exist, has been vehemently advocated in recent articles by Avelino et al [9, 10]. (Since they went so far as to claim that the viability of my proposed pentavac example [6] was ‘easily’ ruled out by their numerical work, despite the fact that the latter was confined to a limited—apparently inappropriate—part of the relevant parameter space, the present paper will therefore give particular attention to the provision of analytic reasoning showing that this pentavac model does indeed provide lattices with the required stability properties provided the relevant parameters are chosen within the appropriate range.
as evaluated in an appendix. In more recent writing [11] these authors have conceded that our examples [6–8] do show how ‘one can build (purely by hand) special lattices that would be locally stable against small perturbations’. They nevertheless maintain their no frustration conjecture to the effect that ‘no such configurations are expected to ever emerge from any realistic cosmological phase transition’. I would suggest that a more justifiable conclusion (from their own and other concordant work on the tendency towards scaling behaviour [5]) would be obtainable by substituting the qualification ‘easily numerically simulable’ in place of their adjective ‘realistic’, but I agree that the ‘frustrated’ examples in this and the preceeding work [6–8] can quite fairly be criticized as artificially contrived. What should not be overlooked however is that one can also criticize wild flowers as having been artificially contrived to attract bees: the point is that artificially contrived results are sometimes obtainable by Darwinian or anthropic selection mechanisms in a manner that is undeniably natural and ‘realistic’, albeit far beyond the scope of easy numerical simulation.

Before proceeding to what is new, this paper will start by recapitulating some noteworthy conclusions from the preceding work [6–8] in which attention was drawn to the important qualitative distinction between the X type of (crossover) junction that is more favorable for stability of the lattice, and the Y type of junction, in which there is no freedom of adjustment in the equilibrium angle of intersection (which must be $\pi/3$ if the wall tensions are all equal). For an X type crossover the most symmetric possibility is a right angle intersection, but for opposing pairs with equal tension equilibrium will still be possible when there is a positive deviation δ so that the walls meet at an acute angle

$$\alpha = \pi/2 - \delta.$$ \hspace{1cm} (1)

It has however been emphasized [9] that in order to contribute to a stable lattice such an X type equilibrium must be stable against decomposition into a pair of Y type junctions (see figure 1), a requirement that was not explicitly checked in the particular toy field models I suggested [6] as examples in my original discussion of this subject, and that has been called into doubt [9] in the particular case of what will be referred to here as the pentavac doublet model.

In order to address the lattice stability question, a preliminary task of the present work will be to provide a simple general criterion for the stability of such an X type equilibrium junction. A strategy for testing this criterion will then be provided for an extensive class of forced harmonic field models, including the pentavac doublet model [6], for which it is confirmed that (contrary to the doubts that have been expressed [9, 10]) the stability condition is indeed satisfied. The main part of this work is concerned with the related but more delicate issue of stability against bunching of parallel walls, which will be dealt with in the same framework.

Although—like many other possibilities such as the monovac triplet model developed at the end of this paper—the pentavac doublet model can provide a regular lattice that is stable, it should be mentioned that it is nevertheless unsatisfactory from the point of view of the
purpose that motivated its introduction, which was to provide a random lattice of the kind to which my (still unproven) five-colour conjecture was concerned [6]. The special feature of the pentavac doublet model (see figure 4 at the end) is the admission of simple domain walls between any of the 10 pairs that can be chosen from its five distinct but equivalent vacua, and the admission of X type crossovers involving any of the five possible combinations of four distinct vacua. However, for each such combination, the pentavac model allows only one of the three mathematically conceivable ways of choosing the diagonally opposing pairs, whereas all of them would be needed for a random solution of the five-colour problem.

This limitation on all the cases investigated so far—namely that they provide lattices that can be stable only when sufficiently regular, not random, and hence that they seem to depend on prerequisite ‘tuning’ of the universe—has considerably reduced the attractivity of such domain wall models in comparison, for example, with the simple hypothesis of an appropriately ‘tuned’ cosmological constant.

Despite this limitation, wall scenarios of the periodic lattice type considered here remain viable in principle, as a possibility that should perhaps be taken more seriously, particularly [3, 4] if the evidence for cosmological anisotropy [12] is confirmed. The systems proposed for investigation here are of a kind that would arise from multiplet generalizations of the much studied Peccei–Quinn singlet model, which produces axionic walls whose potentially important cosmological consequences have been considered by Khlopov and co-authors [13–15]. In systems of this kind, the collective stability of the walls depends on their feature of having topological winding numbers, which need to add up coherently with the same sign. The problem with this is that in a random system (such as would be expected from a Kibble-type symmetry breaking mechanism [16–18]) one would expect to obtain roughly equal numbers of positive and negative windings (which in the long run would undergo mutual destruction, leaving a residue of string anomalies).

In comparison with the (unavoidable) problem of accounting for the observed (but still mysterious [19]) preponderance of ordinary matter over antimatter, the analogous, but numerically less extreme, problem of accounting for the required preponderance (on a sufficiently large scale) of positive over negative walls appears to be less intractable. The reasoning developed below suggests that it may be soluble on the basis of statistical fluctuations in the framework of suitable inflationary models—albeit with the help of special parameter tuning such was already inherent in such models. The basic idea is that—assuming the strings that might have been formed in a very early high (e.g. GUT) energy transition were subsequently inflated away—reheating could have produced walls associated with more moderate (e.g. electroweak) energy scales, that (due to statistical fluctuations) need not have exactly cancelled themselves out in a localized volume, but could have left a residue with coherent winding on a sufficiently large (cosmologically significant) scale.

2. Simple and compound wall configurations in models with X type junctions

The recently raised issue [9] of possible instability of X type junctions arises in bosonic field models of the kind I suggested as candidates for providing domain wall domain wall lattices, in which the essential feature—as illustrated in figure 4—is the existence in the space of classical field values of neighbouring subsets of four equivalent discrete vacua—meaning minima of the potential energy V—separated by four ridges of higher energy that meet in a cross-shaped configuration at a peak of even higher energy. Using the letters A, B, C, D to label the energy minima in a cyclic order, as one goes round the peak of V in configuration space, entails the concomitant notation AB, BC, CD, DA to label the ridges that separate them.
For each such ridge in the space of field values, there will be a corresponding flat domain wall equilibrium state in ordinary spacetime: for example AB will designate the energy minimizing domain-wall state specifiable as a function of a single Cartesian coordinate, x, say by the condition that it tends to the field configuration A as $x \to -\infty$ and to field configuration B as $x \to +\infty$, with maximum energy density at $x = 0$. Since there is nothing to break the Lorentz invariance in directions parallel to the $x = 0$ plane, such a wall will be a Dirac-type brane, with isotropic tension T_I, equal to its surface energy density.

As well as such simple branes associated with the field space energy ridges AB, BC, CD, DA there may also be compound wall configurations separating non-adjacent vacuum pairs, for which the possible combinations are AC and BD. In order to be stable against splitting into the relevant pair of simple walls (for example in order for the compound wall AC to be stable against splitting into the separate simple walls AB and BC) the field model should evidently be such that the energy density (and tension) T_I say of the compound wall configuration—if it exists—is less than twice that of a single wall:

$$T_I < 2T_I.$$

(2)

3. Criterion for stability of an X type junction

In a model of the kind considered in the previous section, an ordinary X type junction between four vacuum domains A,B,C,D consists of a string-like locus of intersection through which a simple wall of type DC continues as a simple wall of type AB, while a simple wall of type AD continues as a simple wall of type BC. Such an X type junction will always be stable if the model does not admit any compound wall configurations satisfying (2).

The possibility [9] of instability with respect to decomposition into a pair of Y type junctions will however arise if the model is such as to admit compound walls satisfying the condition (2). If the simple walls AB and BC meet at an acute angle α the decomposition in question would create a Y junction joining them to a compound wall of type AC, while—as shown in figure 1—at the other end of the double wall there would be another Y type junction on which the simple walls AD and DC would meet at the same acute angle α. The original X type junction will be unstable if and only if the double wall of type AC is too weak to prevent the separation of the two Y-junctions from increasing, that is to say if and only if

$$T_I < 2T_I \cos(\alpha/2),$$

(3)

a condition that is evidently stronger than (2). This is expressible the other way round as the condition that the X-junction will be stable if and only if the acute angle α is such that

$$\cos(\alpha/2) < \frac{T_I}{2T_I}.$$

(4)

Since the range of possible values of the intersection angle is given by $0 < \alpha \leq \pi/2$, which is equivalent to $1 > \cos(\alpha/2) \geq 1/\sqrt{2}$, it follows first that, in the regime for which

$$T_I > 2T_I,$$

(5)

(so that the criterion (2) for local stability of an individual compound wall will fail) the stability condition (4) will always be satisfied. Secondly, in the regime for which

$$2T_I > T_I > \sqrt{2}T_I,$$

(6)

there will be a critical crossing angle, given by

$$\cos \alpha_c = \sin \delta_c = \frac{T_I^2}{2T_I^2} - 1,$$

(7)
such that the X-junction stability condition (4) will hold if and only if the actual crossing angle satisfies the criterion expressible in the equivalent forms

$$\alpha > \alpha_c, \quad \delta < \delta_c,$$

in which case, as when (5) holds, it will be possible to construct a stable periodic X-junction lattice of the kind illustrated in figure 2. Alternatively, if the crossing angle were too acute for (8) to hold, the same global boundary conditions could be satisfied by a periodic Y-junction lattice of the kind illustrated in figure 3, but—as in previously discussed examples [6–8]—the...
stability of such a configuration with respect to local perturbations would be marginal. Finally, if
\[T_1 \leq \sqrt{2} T_0, \quad (9) \]
it is evident that the condition (4) for X-junction stability will never be able to hold at all for any value of the crossing angle.

4. Scalar field models of forced harmonic type

The toy bosonic field models we have been considering belong to a rather extensive category that is describable as being of forced harmonic type. This means that the independent scalar field components, \(\Phi^i \) say, are to be considered as coordinates on a manifold characterized by a flat or curved Riemannian (positive definite) metric
\[
d\lambda^2 = G_{ij} \Phi^i \Phi^j, \quad (10)\]
and by a scalar forcing potential \(V \), in terms of which the relevant Lagrangian density in ordinary spacetime, with pseudo Riemannian metric \(ds^2 = g_{\mu\nu} dx^\mu dx^\nu \) takes the standard form
\[
\mathcal{L} = -\frac{1}{2} G_{ij}(\nabla^i \Phi^j) \nabla_i \Phi^j - V. \quad (11)\]

Generalized nonlinear sigma models (of the kind whose properties were used by Bunting [20] for his proof of black hole uniqueness) are included as the subcategory for which the potential function \(V \) is set to zero. Scalar field models of the ordinary linear and nonlinear kinds that are more commonly considered [21] in physics are included as the subcategory for which the forcing potential is a variable function, \(V(\Phi) \), but for which the kinetic metric (10) on the space of field values is flat, so in such a kinetically linear model it will be possible to scale the field variables in such a way that the metric components will be given simply by the Kronecker unit matrix as \(G_{ij} = \delta_{ij} \).

In a flat static domain wall state of the kind considered in the preceding section, for which the fields depend only on the single Cartesian space coordinate \(x \), the surface energy tension \(T \) will be the same as the integral along the \(x \)-axis of the energy density, as given in the limit \(\ell \to \infty \) by the prescription
\[
T = U\{\infty\}, \quad (12)\]
where
\[
U\{\ell\} = \int_{-\ell/2}^{\ell/2} \left(\frac{1}{2} G_{ij} \frac{d\Phi^i}{dx} \frac{d\Phi^j}{dx} + V \right) dX, \quad (13)\]
in which (to get a finite result) it is to be understood that the potential \(V \) has been adjusted if necessary, by the addition of a constant which will have no effect on the field equations obtained from (11), in such a way as to arrange for its minimum (vacuum) value to be zero, \(V = 0 \).

Stable wall equilibrium states are characterized by the condition that the parametrized field manifold trajectory (as specified by the functions \(\Phi^i(x) \)) with endpoint at the relevant pair of vacuum position (where \(V(\Phi) \) is minimized) should be such that the energy integral (12) should be a minimum.

Using a prime to denote derivation with respect to the parameter \(\lambda \) measuring the distance in the field manifold, so that in particular, according to (10), we shall have
\[
G_{ij} \Phi'^i \Phi'^j = 1, \quad (14)\]
it can be seen that the integrand in (13) can be rewritten as
\[dU = U' \, d\lambda, \]
with
\[U' = \frac{1}{2x'} + Vx', \]
in terms of the rate of variation
\[x' = \frac{dx}{d\lambda}, \]
of the space coordinate \(x \) with respect to the field manifold distance given by (10). For given field values at the extremities of some finite range \(-\ell/2 < x < \ell/2\), a corresponding equilibrium configuration will be characterized by minimization of the energy integral (12) with the integrand given by
\[U\{\ell\} = \int U' \, d\lambda, \]
subject to the associated constraint
\[\int x' \, d\lambda = \ell. \]
In terms of an appropriately adjusted value of a Lagrange multiplier \(P_\perp \) say, this condition will be equivalent to unrestricted minimization of the corresponding enthalpy combination
\[H\{\ell\} = U\{\ell\} + P_\perp \ell \]
which will be given by
\[H = \int \left(\frac{1}{2x'} + (V + P_\perp)x' \right) \, d\lambda. \]
By considering the way this depends on \(x' \) for a fixed dependence of the fields on the parameter \(\lambda \), it can immediately be seen to be necessary for minimization that the variation rate \(x' \) should satisfy the relation
\[x'^2 = \frac{1}{2(V + P_\perp)}, \]
in which \(P_\perp \) is interpretable as a constant of integration whose value can be seen to be that of the pressure in the direction orthogonal to the plane of the wall.

Condition (22) can be used to eliminate the involvement of the ordinary space coordinate \(x \), and to express the quantity that (for fixed field values at the endpoints of integration) has to be minimized in the form
\[H = \int \sqrt{2(V + P_\perp)} \, d\lambda, \]
in which only field manifold variables are involved, and in which the fixed parameters \(\ell \) and \(P_\perp \) are not independent but according to (22) must be related by the consistency condition
\[\ell = \int \frac{d\lambda}{\sqrt{2(V + P_\perp)}}. \]
It can be seen from this that when the orthogonal pressure is varied the corresponding variations of \(U \) and \(\ell \) will be related by the formula
\[\frac{dU}{d\ell} = -P_\perp \]
whereby the interpretation of \(P_\perp \) as the relevant orthogonal pressure is made obvious.
In cases such as those of the compact, topologically non-trivial, field manifolds to be considered in the following two sections, a solution for a finite value of ℓ may be extensible over the complete range of x as a ‘lasagne’ type periodic configuration of the kind whose (linear or nonlinear) superposition will constitute the kind of cosmological lattice whose investigation is the ultimate motivation for this work. More specifically, the slab thickness ℓ will then be identifiable with the wavelength of the periodicity, so that the corresponding longitudinal wavenumber density will be

$$v_\perp = \frac{1}{\ell} = \frac{dP_\perp}{dH},$$

(provided the endpoints of the integration occur at successive maxima or successive minima of the potential as a function of x). Thus in particular, for $P_\perp > 0$, the distance ℓ will be the same as the wavelength if the endpoints occur at successive vacuum states.

In such an effectively one-dimensional lasagne-type configuration, the condition for stability of the large scale averaged system against development of a bunching mode is the positivity the square v_\perp^2 of the orthogonal propagation speed, of perturbations of the mean density $U_{\lambda - }$—on length scales large compared with the wavelength ℓ—as given by

$$v_\perp^2 = \frac{dP_\perp}{d(U_{\lambda - })} = -\frac{\ell}{H} \frac{dH}{d\ell}.$$

That the requirement $v_\perp^2 > 0$ will indeed be satisfied is shown by the expression

$$v_\perp^{-2} = -\frac{H}{\ell^2} \frac{d\ell}{dP_\perp}, \quad -\frac{d\ell}{dP_\perp} = \int (2(V + P_\perp))^{-3/2} d\lambda.$$

It can be seen (using the Schwarz inequality) that the velocity given by (28) can never exceed unity, meaning the speed of light. It will however approach this upper bound when P_\perp becomes very large, so that the kinetic energy becomes much greater than the potential energy (whose particular form will then be irrelevant) which is what happens in the short wavelength limit $\ell \to 0$, for which one will have

$$U \sim P_\perp \ell, \quad P_\perp \sim \frac{1}{4}(\lambda/\ell)^2, \quad v_\perp^2 \sim 1,$$

where λ is the integrated distance along the field space trajectory from one vacuum state to the next, as measured with respect to the kinetic metric (10).

Our main concern here is not with the short wavelength limit, but on the contrary with isolated wall configurations, which are obtained when the range of integration is unlimited, $\ell \to \infty$. This large separation condition requires that the integral (24) should be divergent at the extremities of the trajectory in field space, namely the vacuum states characterizing the domains in question, where the potential V reaches its minimum. Since, for applicability of the tension formula (12), it is to be understood that (by subtraction, if necessary, of any contribution from a cosmological constant that may be present) this minimum value of V has been adjusted to zero, it can be seen that to obtain an isolated wall configuration the relevant constant of integration must also be taken to be zero,

$$P_\perp = 0.$$

According to (16) this simply gives

$$U' = \sqrt{2V},$$

and allows one to take the limit $\ell \to \infty$ in (23) to obtain an expression of the simple form

$$U[\infty] = \int \sqrt{2V} d\lambda.$$
for the surface energy to be minimized in order to obtain the equilibrium configuration of the isolated wall.

It can be seen from the formula (31) that this required surface energy density function \(U \) is interpretable as a generalization to the multiscalar case of what has been referred to in the context of a singlet field [22] as a superpotential, and that it is specifiable as the measure of the relevant distance in the field manifold, as evaluated, not with respect to the original kinetic metric \(G_{ij} \), but with respect to a conformally modified field energy metric that is given by

\[
d U^2 = \tilde{G}_{ij} \, d\Phi^i \, d\Phi^j,
\]

with

\[
\tilde{G}_{ij} = 2 V G_{ij}.
\]

The geodesic distance (between the relevant vacua) obtained by minimizing the integral \(U(\infty) \) given by (32) will thus be directly identifiable with the required wall tension \(T \) as given by (12). The corresponding distribution of the fields as a function of the orthogonal distance \(x \) is given—according to (22)—by a metric that is related to the kinetic metric by a conformal factor which is exactly the inverse of the one that gives the energy metric:

\[
dx^2 = \frac{d\lambda^2}{2V} = \frac{dU^2}{4V^2}.
\]

5. Analytically integrable cases of pentavac and monovac doublet models

As an illustration of the kind of model that can provide a lattice with stable \(X \)-type junctions, I proposed as an interesting prototype example the particular case of what may be concisely referred to as the pentavac model [6]. This is a model with five equivalent vacuum states in a toroidal field space, in which the relevant field variables are a pair of phase variables \(\phi \) and \(\psi \) with period \(2\pi \) with flat kinetic metric given in terms of some fixed mass scale, \(\eta \) say, by

\[
d\lambda^2 = \eta^2(d\theta^2 + d\chi^2) = 5\eta^2(d\phi^2 + d\psi^2),
\]

and potential \(V \) given in terms of some fixed maximum value \(V^* \) by

\[
V = \frac{V^*}{4}(\cos \theta + \cos \chi + 2),
\]

in which

\[
\theta = 2\phi + \psi, \quad \chi = 2\psi - \phi.
\]

A model of this topologically non-trivial kind is obtainable [6] as a low-energy limit \(\varepsilon \to 0 \) from a topologically simple extended model with broken \(U(1) \times U(1) \) symmetry, and this kind is described in the appendix.

According to (34) the energy metric obtained from (36) and (37) on the toroidal space of phase variables \(\phi \) and \(\psi \) will be given by the formula

\[
d U^2 = 2\eta^2 V(d\phi^2 + d\psi^2),
\]

in which it is useful to rewrite the formula (37) for the relevant potential as

\[
V = \frac{V^*}{4}(\cos^2(\theta/2) + \cos^2(\chi/2)).
\]

For such a potential, the corresponding geodesic Hamilton–Jacobi equation, namely

\[
\frac{1}{2\eta^2 V} \left(\frac{\partial S}{\partial \theta} \right)^2 + \frac{\partial S}{\partial \chi} = 1,
\]
turns out to have the convenient property of being separable with respect to the variables θ and χ. By taking the Jacobi action variable S to be a sum,

$$ S = S_\theta + S_\chi, $$

of single variable functions, equation (41) can be seen to be reducible to the form

$$ \left(\frac{dS_\theta}{d\theta} \right)^2 - \eta^2 V_* \cos^2(\theta/2) = \eta^2 V_* \cos^2(\chi/2) - \left(\frac{dS_\chi}{d\chi} \right)^2, $$

in which the terms on the left depend only on θ while those on the right depend only on χ, which means that both sides must be equal to a constant of integration, K say. This means that the corresponding generalized momentum variables, which are specifiable according to (39) as

$$ P_\theta = 2\eta^2 V \frac{d\theta}{dU}, \quad P_\chi = 2\eta^2 V \frac{d\chi}{dU}, $$

will satisfy equations of the form

$$ P_\theta^2 = \eta^2 V_* \cos^2(\theta/2) + K, \quad P_\chi^2 = \eta^2 V_* \cos^2(\chi/2) - K. $$

It should be recalled that the only trajectories to which this derivation is applicable are those that begin and end on vacuum states, namely the field values for which $\cos^2(\theta/2) = \cos^2(\chi/2) = 0$. In order for the momentum values given by (45) to remain real at these end points it is evident that neither K nor $-K$ can be negative, which is only possible if the constant vanishes itself,

$$ K = 0. $$

It can thereby be concluded that the equations of motion for the relevant geodesics are given simply by

$$ 4\eta^2 V^2 \left(\frac{d\theta}{dU} \right)^2 = V_* \cos^2(\theta/2), \quad 4\eta^2 V^2 \left(\frac{d\chi}{dU} \right)^2 = V_* \cos^2(\chi/2). $$

It can be seen from this that, independently of parametrization, the trajectory in phase space will be obtainable by integrating

$$ \frac{d\theta}{\cos(\theta/2)} = \pm \frac{d\chi}{\cos(\chi/2)}, $$

and that the corresponding expression for the energy variation (in the ‘right’ direction) will be given by

$$ dU = 2\eta \sqrt{V_*(\cos(\theta/2) d\theta \pm \cos(\chi/2) d\chi)}. $$

An example of a simple wall trajectory (such as the straight line AB in figure 4) is obtainable by holding χ fixed at a value such that $\cos(\chi/2) = 0$ (so that the ratio on the right-hand side of (48) is indeterminate) and letting θ vary from $-\pi$ to π. According to (35) the wall profile of the field θ as a function of the orthogonal space coordinate x will be given by the relation

$$ \cot \left(\frac{\theta - \pi}{2} \right) = \sinh \left(\frac{x}{\delta_*} \right), $$

in which the effective wall thickness scale δ_* is determined by the relevant mass scale m_* as

$$ \delta_* = \frac{2\eta}{m_*^2}, \quad m_*^4 = V_*.$$
In this case there will be no contribution from the right-hand side of (48), so the complete integral $U[\infty]$ giving the wall tension T_I works out as
\[T_I = 4m^2 \eta = 2V_s \delta_s. \] (52)

To get a compound wall trajectory (of the kind illustrated by the curves AC in figure 4) the variable χ is no longer held fixed but is also allowed, like θ to vary from $-\pi$ to π. Such a trajectory is obtainable by choosing $\pm = +$ in equation (48), which is then easily integrable to give
\[\cot \left\{ \frac{\chi - \pi}{4} \right\} = \kappa \cot \left\{ \frac{\theta - \pi}{4} \right\}, \] (53)

where κ is a dimensionless constant of integration. It takes the value $\kappa = 1$ in the trivial case of the straight diagonal trajectory given by the equation $\chi = \theta$. For any nonzero value of κ, the separate energy contributions from the pair of terms on the right-hand side of (49) will integrate to the same final result. Thus the various trajectories given by different values of κ in (53) are energetically degenerate, all giving the same compound wall energy
\[T_I = 4V_s \delta_s. \] (54)

The condition of being just twice the simple wall energy is an obvious consequence of the fact that although their topology is globally interwoven, the separate field combinations θ and χ behave locally as a pair of decoupled scalars, so their wall configurations can travel through each other without interaction.

According to the analysis in the preceding sections, this feature
\[\frac{T_I}{T_I} = 2 \] (55)

is just what is marginally needed to ensure stability (against disintegration into pairs of Y-junctions) of the X-junctions, whatever their crossing angle α may be (not just when it is near a right angle as would be needed in models providing a lower value of T_I/T_I). Without going into these quantitative details, the stability, as previously claimed [6], of the X-junctions in this particular case was heuristically obvious in advance from the lack of any mechanism of disintegration (into pairs of Y-junctions) in view of the effective absence of interaction between the separate θ and χ fields that respectively characterize the intersecting walls. (For sufficiently small but nonzero values of the parameter ε in the corresponding topologically simple extended model [6] described in the appendix, continuity implies that X-junction stability will still hold except for correspondingly small—meaning highly acute—values of the intersection angle α.)

Although there is no interaction between walls produced by the separate variation of θ and χ, it is important to note that there will be an interaction between the parallel walls in the periodic solution produced by the variation of a single one of the separate variables, θ say, for a finite value of the wavelength ℓ as given by the formula (24) for the separation distance. In such a lasagne-type configuration there will be an interaction, interpretable as an effect of mutual repulsion, due to the build up, as ℓ decreases, of the corresponding orthogonal pressure P_\perp. In the separable case under consideration, it can be seen from (24) and (23) that, in terms of the ‘first’ and ‘second’ kinds of elliptic integral [23],
\[K[\mu] = \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-\mu t^2)}}, \quad E[\mu] = \int_0^1 \sqrt{\frac{1-\mu t^2}{1-t^2}} \, dt, \] (56)

the relations between pressure, separation and the enthalpy density H will be given by
\[
\frac{\ell}{2\delta_*} = \sqrt{\mu} K(\mu), \quad \frac{H}{T_I} = \frac{E[\mu]}{\sqrt{\mu}}, \quad \mu = \frac{V_\ast}{V_\ast + 2P_\perp},
\]

where δ_* is the effective wall thickness as given by (51).

Since the asymptotic behaviour of the elliptic integral is known [23] to be characterized by the condition that $K(\mu) + \ln(\sqrt{1 - \mu/4}) \to 0$ as $\mu \to 1$, it can be seen to follow that in the long wavelength limit $\ell \to \infty$, the relevant pressure will be given asymptotically by

\[
P_\perp \sim 8V_\ast e^{-\ell/\delta_*},
\]

while in terms of the tension T_I of an isolated wall, as given by (52), it can be seen from (25) that the surface energy density per period will be given by the asymptotic formula

\[
U \simeq T_I(1 + 4e^{-\ell/\delta_*}).
\]

According to (27) the velocity of large lengthscale longitudinal perturbations will be given, in this long wavelength limit $\ell \gg \delta_*$, by an expression of the corresponding form

\[
v_\perp \sim \frac{2\ell}{\delta_*} e^{-\ell/2\delta_*},
\]

whose reality is what guarantees stability against bunching.

6. Beta monovac and multivac winding models

The fields ϕ and ψ in the pentavac model in the preceding section were set up as the respective phases of unimodular complex field variables $e^{i\phi}$ and $e^{i\psi}$ that could themselves be considered to have been obtained by imposition of a low-energy restraint on corresponding complex variables Φ and Ψ whose modulus at much higher energy would no longer be restrained. A new model that would be physically indistinguishable in the low-energy limit characterized by the unimodularity condition could be set up by taking instead the independent fields to be the unimodular complex variables $e^{i\theta}$ and $e^{i\chi}$ that are defined by the combinations θ and χ specified by (38).

Whereas the toroidal space occupied by the original pair of unimodular field variables $e^{i\phi}$ and $e^{i\psi}$ can be covered by any one of the four large square patches bounded by dotted lines in figure 4, the (much smaller) toroidal space occupied by the new pair of unimodular field variables $e^{i\theta}$ and $e^{i\chi}$ can be covered just by the small square with vertices at the positions marked A,B,C,D, which in the new model are to be identified, so that there will now be just a single vacuum state instead of five. In the new ‘monovac’ model (a doublet generalization of the singlet sine-Gordon equation) that is obtained in this way, a simple wall of the kind exemplified by the trajectory AB will still be a topologically stable membrane defect, but of the kind known specifically as a ‘winding’, to distinguish it from the more commonly discussed kind of ‘open kink’ for which (as in the pentavac case) the vacuum states on either side are of distinct varieties.

Both the original pentavac model and the new monovac model can be regarded as special separable cases within larger families of respectively pentavac and monovac models for which the potential is given in terms of a fixed index $\beta > 0$ by an expression of the form

\[
V = \frac{m^4}{2}(\cos^2[\theta/2] + \cos^2[\chi/2])^\beta,
\]

which includes the special separable example (40) as the particular case for which $\beta = 1$.

It is apparent that—for sufficiently large values of the angle δ of deviation from orthoginality in figure 1—the possibility of instability of an X type junction with respect to disintegration into Y type junctions [9] will occur in such (monovac or pentavac) models if
and only if the strict inequality $\beta < 1$ is satisfied. By comparing the double wall trajectory parametrized by the symmetric relation $\chi = \theta$ with the simple wall trajectory given by the fixed value $\chi = \pi$ it can be seen from (61) that the energy T_1 of the former (as represented by the diagonal AC in figure 4) will be related to the energy T_I of the latter (as represented by AB) by

$$T_1 = (\sqrt{2})^{1+\beta} T_I. \quad (62)$$

The actual value of the simple wall tension in such a case can be seen to be given in terms of the thickness parameter δ_\ast defined by (51), and an order of unity factor I_β, by

$$T_I = 4m_\ast^2 \eta I_\beta, \quad I_\beta = \int_0^1 \frac{y^\beta \, dy}{\sqrt{1-y^2}}, \quad (63)$$

which in the particularly interesting case $\beta = 2$ gives $T_I = \pi m_\ast^2 \eta$.

It evidently follows from (62) that for $\beta > 1$ the double wall configuration (such as AC) will be unstable with respect to decomposition into a pair of simple walls (such as AB and BC) between which there will be an effective repulsion. On the other hand, for $\beta < 1$ a complementary pair of simple walls (such as AB and BC) would be attractive, and in such a

Figure 4. Contours of the potential V, using darkest shading at maxima and bright colours to distinguish distinct minima—representing vacua—labelled A, B, C, D, E, showing the approximate location of some alternative paths from A to C, in plot of ϕ against ψ representing a (fourfold) periodic covering of toroidal field configuration space of pentavac doublet model with flat kinetic metric $G_{ij} \propto \delta_{ij}$ and energy metric $\tilde{G}_{ij} = 2V G_{ij}$. The large white dotted square contains the single covering range $0 \leq \phi \leq 2\pi, 0 \leq \psi \leq 2\pi$, and the small white square contains the range $0 \leq \theta \leq 2\pi, 0 \leq \chi \leq 2\pi$ that would provide a single covering for the corresponding monovac doublet model, for which (as would be shown by a black and white printout of this figure) the five kinds of vacuum colour A, B, C, D, E would cease to be distinguishable.
case, according to (4) an X-junction will be unstable if and only if the deviation angle \(\delta \) in (1) is large enough to satisfy the strict inequality

\[
\sin \delta > 2^\beta - 1, \quad (64)
\]
a condition that would evidently be impossible for \(\beta \geq 1 \).

The foregoing considerations remain true when—to be cosmologically realistic—the monovac doublet model is extended to a monovac triplet model by the inclusion of a third unimodular scalar field, \(e^{i\sigma} \) say, acting in the same way as the others, so that the complete kinetic metric will be given in terms of a relatively large mass scale \(\eta \) by

\[
d\lambda^2 = \eta^2 (d\theta^2 + d\chi^2 + d\sigma^2), \quad (65)
\]
while in terms of a smaller mass scale \(m_* \), the complete potential function will take the form

\[
V = \frac{m_*^4}{2} (\cos^2 \{\theta/2\} + \cos^2 \{\chi/2\} + \cos^2 \{\sigma/2\})^{\beta}, \quad (66)
\]
which reduces to (61) wherever \(\cos \{\sigma/2\} = 0 \).

It is to be remarked that the potential functions of the same form can be used to characterize triplet models with not just one but many energetically degenerate vacuum states, by supposing that—instead of being obtained directly as phases of unimodular complex numbers—the variables \(\theta, \chi, \sigma \) are obtained as linear combinations of quantities \(\phi, \psi, \xi \) that actually do have this property, meaning that they are phases of the corresponding field variables \(e^{i\phi}, e^{i\psi}, e^{i\xi} \).

The most obvious possibility is to halve the periodicity in each of the three principle directions so as to obtain an octovac model—meaning one with \(2^3(=8) \) vacuum states—by setting

\[
\theta = 2\phi \quad \chi = 2\psi, \quad \sigma = 2\xi, \quad (67)
\]
which entails that the kinetic metric (65) will be expressible as

\[
d\lambda^2 = 4\eta^2 (d\phi^2 + d\psi^2 + d\xi^2). \quad (68)
\]
In the same way, dividing the periods by three instead of two, one can obtain a triplet model with \(3^3(=27) \) vacuum states by setting

\[
\theta = 3\phi \quad \chi = 3\psi, \quad \sigma = 3\xi, \quad (69)
\]
for which the kinetic metric (65) will be expressible as

\[
d\lambda^2 = 9\eta^2 (d\phi^2 + d\psi^2 + d\xi^2). \quad (70)
\]
An alternative 27-vac triplet model with the same kinetic metric (70) is obtainable—as a triplet analogue of the pentavac doublet model (38) discussed above—by replacing (69) by a ‘tilted’ (but still conformal) transformation relation of the form

\[
\theta = \phi - 2\psi + 2\xi, \quad \chi = 2\phi - \psi - 2\xi, \quad \sigma = 2\phi + 2\psi + \xi. \quad (71)
\]
The property of providing same number of distinct vacuum states as the more trivial model characterized by the simple transformation (69) follows from the easily verified condition that the Jacobean determinant of the tilted transformation (71) has the same value, namely 27.

By a mutually orthogonal superposition of the lasagne-type configurations corresponding to variation of \(\theta, \chi \) and \(\sigma \) respectively, it can be seen that for \(\beta > 1 \) such models can provide a robustly stable cubical (rather than merely square) lattice of the kind needed for the averaged stress tensor to be isotropic. For a single one of these lasagne configurations, corresponding just to the variation of \(\theta \) say, with the other two variables fixed at the energy minimizing values \(\cos^2 \{\chi/2\} = \cos^2 \{\sigma/2\} = 0 \), it can be seen from (24) that for \(\beta > 1 \)—instead of falling off
in the exponential manner described by (58)—the dependence on the separation distance ℓ of the orthogonal pressure will be given asymptotically, as $\ell \rightarrow \infty$, by a power law of the form
\[P_\perp \sim \frac{m^2}{2} \left(\frac{\delta_\beta}{\ell} \right)^{2(\beta/(\beta-1))}, \tag{72} \]
in which δ_β is of the same order of magnitude as the original thickness scale δ_\ast defined by (51), to which it is related by the specification
\[\delta_\beta = J_\beta \delta_\ast, \quad J_\beta = \int_0^\infty \frac{dz}{\sqrt{z^{2\beta} + 1}}, \tag{73} \]
which, in the quartic case $\beta = 2$ provides the expression $J_2 = 4\Gamma^2(5/4)/\sqrt{\pi} = \zeta\pi/2$ in terms of a numerical factor close to unity given by $\zeta \simeq 1.18$.

It follows that the analogue for $\beta > 1$ of the asymptotic formula (59) for the surface energy density of each slab of thickness ℓ will be given by
\[U \simeq T_1 + \frac{\beta - 1}{\beta + 1} \ell P_\perp, \tag{74} \]
and that according to (27) the analogue of (60) for the squared velocity of large lengthscale longitudinal perturbations takes the form
\[v^2_\perp \sim \frac{\beta I_\beta}{2(\beta - 1)} \left(\frac{\delta_\beta}{\ell} \right)^{2(\beta/(\beta-1))}, \tag{75} \]
which is manifestly positive, as required for stability, whenever $\beta > 1$.

7. Macroscopic comportment

One of the objections raised against the idea of attributing the cosmological acceleration to a regular domain wall lattice was the lack of a plausible mechanism to prevent parallel walls from drifting together in the long run and eventually undergoing mutual annihilation. It is therefore to be emphasized that this is not a danger in the kind of monovac model advocated here, in which the parallel wall number density is interpretable as a conserved topological winding number, and the parallel walls are protected against getting too close by the effect whereby, when the separation distance ℓ gets too small, the orthogonal pressure P_\perp in (24) will cease to be negligibly small, and will build up so as to produce a mutually repulsive force.

The simplest cosmologically viable category is that of the separable $\beta = 1$ kind of monovac triplet model (effectively a superposition of three independent sine-Gordon singlets) which provides a cubic lattice with a cosmologically comoving lengthscale ℓ and hence cell number density $n = 1/\ell^3$ for which the relations (57) implicitly provide a corresponding equation of state whereby the cosmological energy density ρ will be given by
\[\rho = \frac{3U}{\ell}, \quad U = H - P_\perp \ell, \tag{76} \]
while the corresponding isotropic cosmological pressure P will be given simply by
\[P = P_\perp - \frac{2U}{\ell} = 3P_\perp - \frac{2H}{\ell}, \tag{77} \]
which means that the cosmologically important ratio $w = P/\rho$ will be given by the formula
\[w = \frac{2}{3} + \frac{P_\perp}{\rho}. \tag{78} \]
At a much earlier epoch, when the winding wavelength ℓ would have been comparable with, or even much less than, the wall thickness scale δ^* given by (51), it can be seen from (29) that one would have had

$$w \simeq -\frac{1}{3}, \quad \text{with} \quad \frac{P_\perp}{\rho} \sim \frac{1}{3}, \quad \rho \sim \frac{6\pi^2\eta^2}{\ell^2}. \quad (79)$$

However at the present epoch it is to be presumed that the (cosmologically comoving) lengthscale ℓ will have become very much larger, $\ell \gg \delta^*$, and hence that it will be possible to neglect the final term in (78), which would fall off rapidly with a negative power-law dependence on ℓ for $\beta > 1$, and with an exponential dependence given by the asymptotic formula

$$\frac{P_\perp}{\rho} \sim \frac{4\delta^*}{3\ell} e^{-\ell/\delta^*}, \quad (80)$$

for the case $\beta = 1$, so that (in all these cases) one would ultimately attain the observationally admissible [24] value given, using (63), by

$$w \simeq -\frac{2}{3}, \quad \text{with} \quad \rho \approx 10^{m_\star^2\frac{\eta}{\ell}}. \quad (81)$$

For a simple perfect fluid such an equation of state would of course be unacceptably unstable. The mechanism for the stabilization confirmed in the present work is of exactly the kind that is describable by treating the large scale averaged system as a perfectly elastic solid (in which the three relevant fields θ, χ, σ would be comoving ‘base space’ coordinates) of the kind originally envisaged by Bucher and Spergel [1], of which it is thus a perfect example.

In order to have become dominant, the density (81) must have recently reached the order of magnitude of the baryonic mass density which is given in terms of the proton mass m_p and the cosmological temperature Θ_1 by $\rho_b \approx 10^{-8}m_p\Theta_1^3$. Since the temperature has a contemporary value given in terms of the electron mass m_e by $\Theta_c \approx 10^{-3}m_e$, it can be seen to follow that the ratio of the contemporary value ℓ_c of the mesh spacing ℓ to the value (in the millimeter range) of the contemporary thermal wavelength $\approx \Theta_c^{-1}$ must be given by

$$\Theta_c\ell_c \approx 10^{27}\frac{\eta}{m_p}\left(\frac{m_\star}{m_e}\right)^2. \quad (82)$$

According to the line of reasoning in the preceding analysis [6], the Kibble-type wall formation mechanism that was envisaged would be likely to provide values of this length ratio $\Theta_c\ell$ of the order of 10^{44}, which would be obtained for $m_\star \approx 10^{-5}\eta$ with $\eta \approx m_e$, or for $m_\star \approx 10^{-2}\eta$ with $\eta \approx 10^{-2}m_e$. These values are comparatively small (not comparable, as was stated due to a transcription error) with respect to the interstellar distance scale, of the order of several parsecs, which is what would be obtained for ℓ_c if one used the rather larger mass values $m_\star \approx \eta \approx 10^{-4}m_e$ that were suggested by an analysis of the cruder kind used in earlier work [2]. However it now seems that all such reasoning, whether in its earlier form or in the more refined [6] version, should be considered to be effectively obsolete, because its generic outcome will be the formation of disorganized lattice configurations that would be insufficiently stable, unlike the superposed lasagne-type configurations envisaged here.

The whole question of the wall formation process needs to be entirely reconsidered in the context of the stabilization mechanism considered here, which does not work for random wall lattice configurations, but is essentially dependent on the existence of effectively conserved winding numbers with sufficiently large values, representing the effect of systematic winding in the same sense over a cosmologically large scale. Even for an underlying field model of the appropriate kind (as illustrated by the examples considered above) the ordinary kind of Kibble
mechanism considered so far [2, 6] would give rise to random combinations of positive and negative windings, corresponding to what might be called walls and anti-walls, which in the long run would be unstable with respect to mutual annihilation. The work in the following section suggests, however, that it be possible to overcome this problem by incorporating the effect of the kind inflationary process [25] that has been developed for dealing with what is known as the horizon problem. On the basis of this revised analysis it will be found that the most plausible mean mass values are not smaller but larger than those that were originally envisaged, with the implication that the present mesh lengthscale ℓ_c should actually be expected to be of intergalactic order.

8. An inflationary mechanism?

The horizon problem was posed in the context of traditional cosmology by the need to account for the approximate homogeneity—indicative of causal contact in the past—that is observed all the way out to the present value of the Hubble radius R_H as defined, in terms of the proper time derivative \dot{a} of a comoving lengthscale a say, by $1/R_H = \dot{a}/a$. This suggests that the radius, R_C say, of effective causal correlation must be substantially larger than this, $R_C \gg R_H$. The problem is that in the traditional scenario of a decelerating radiation dominated universe this Hubble radius has the same order of magnitude as this ‘particle horizon’ radius R_C. To get over this, the idea put forward by Guth [25] was that such a restriction would no longer apply if, at some stage in the past, there had been a sufficiently long period of inflation during which the universe was subject to acceleration, $\ddot{a} > 0$, of the kind that seems to have recently started again.

When such considerations were originally introduced by Guth [25], the intended application was to the breakdown of grand unification leaving a relic distribution of monopole particles whose density per Hubble volume was assumed to have been at least of the order of unity at the relevant initial time t_i, implying an initial number density $n_i \gtrsim R_C^{-3}$. The monopole problem was actually even worse than commonly supposed since such a lower limit can plausibly be strengthened by taking account of the consideration that thermal fluctuations corresponding to the temperature Θ_i (in Planck units) at that epoch might have initially produced roughly of the order of one of the relevant particles or antiparticles per thermal volume Θ^{-3}, of which there would have then been $N \approx (R_C/\Theta_i)^3$ in the correlated volume under consideration. As the causal correlation radius increased, the created number in the corresponding volume would also have increased by a factor $(R_C/R_C)^3 (a/a_i)^{-3}$ to give

$$N \approx (R_C \Theta_i a_i/a)^3.$$ (83)

Due to their causal interaction, these particles and antiparticles would however have undergone mutual annihilation, except for a relatively small excess with the same sign (e.g. with no antiparticles) whose number would have had a root mean square value that can be estimated by a random walk argument to be of the order of \sqrt{N}, as given by the estimate

$$\sqrt{N} \approx (R_C \Theta/Z_i)^{3/2},$$ (84)

in which the thermal evolution formula

$$\Theta / \Theta_i = Z_i a_i/a,$$ (85)

has been used to define a reheating factor Z_i of the kind that was supposed by Guth to have become extremely large, and that for consistency with the second law of thermodynamics must at least increase monotonically from an initial value $Z_{i_1} = 1$. In terms of the amplification factor

$$\mathcal{N} = R_C/R_H,$$ (86)
this means that the order of magnitude of the number density with which they would have ultimately emerged would be expressible as

\[n \approx \left(\frac{\Theta}{8Z_i R} \right)^{3/2}. \tag{87} \]

Since the ratio of the present cosmological radius \(R_{hc} \sim 10^{59} \) to the thermal lengthscale given by the present cosmological temperature \(\Theta_c \approx 10^{-31} \) is given roughly by \(R_{hc} \Theta_c \approx 10^{28} \), the implication is that the number of such particles in a Hubble volume would be given now by

\[n_c R_{hc}^{3/2} \approx \left(\frac{R_{hc} \Theta_c}{N_c Z_{ic}} \right)^{3/2} \lesssim 10^{42}, \tag{88} \]

in which the lower limit on the right is obtained by postulating the order of unity values that are the smallest conceivable possibilities for the inflation amplitude \(N_c \) and the reheating factor \(Z_{ic} \) at the present epoch. Guth’s idea \[25\] for the latter, in the context of the monopoles predicted by the grand unification theory (which was more fashionable then than now) was to postulate an enormous value \(Z_{ic} \sim 10^{28} \) in order to get the right hand side of (88) down to near the order of unity.

At the opposite extreme, in the context of the baryon formation problem, it is to be noted that although it is rather large, the maximum value on the right-hand side of (88) is barely the square root of the value—nearer \(10^{26} \)—of Dirac’s cosmological baryon number, thus falling far short of what would be needed even to make a single star, so it cannot be hoped that a mechanism of this kind would suffice to solve the problem of the excess of baryons over antibaryons.

What such a mechanism might conceivably do, however, would be to solve the analogous problem of getting the excess of positive over negative windings that would be needed to provide the kind of domain wall lattice discussed above, in which the lattice spacing \(\ell \) would correspond to a cell number density \(n = \ell^{-3} \), so that the formula (87) would provide for the the relevant contemporary values the analogous estimate

\[\frac{\Theta_c \ell_c}{\sqrt{N_c Z_{ic}}} \approx \sqrt{R_{hc} \Theta_c} \approx 10^{14}, \tag{89} \]

which means that, even for very moderate values of the ratios \(N_c \) and \(Z_{ic} \), the contemporary value \(\ell_c \) of the wall spacing now would at least be large compared with the size of the solar system. To avoid having \(\ell_c \gtrsim R_{hc} \), which would mean that the walls would be entirely inflated away (in the manner envisaged by Guth for the monopoles of grand unification) it can be seen that the inflation factor must satisfy

\[\sqrt{N_c Z_{ic}} \ll 10^{14}. \tag{90} \]

Comparing (89) with the matching condition (82) one sees that it requires that the relevant mass ratios should be related by

\[\frac{\eta}{m_e} \left(\frac{m_*}{m_e} \right)^2 \approx 10^{-8} \sqrt{N_c Z_{ic}}. \tag{91} \]

On the assumption that the potential mass scale is small compared with the kinetic mass scale, meaning \(m_* \ll \eta \), it can thereby be seen to follow from (90) that the lighter mass scale must be subject to a rather severe upper mass limit given by

\[m_* \ll 10^2 m_e. \tag{92} \]

An opposing restriction comes from the astrophysical consideration that, to avoid undermining the experimentally well confirmed scenario of chemical element formation
in the temperature regime $\Theta \lesssim m_e$, the postulated inflation following the relevant phase transition, with $\Theta_i \lesssim \eta$, must have been finished before this stage, which evidently imposes the requirement that the heavier mass scale should be subject to a lower mass limit given by

$$\eta \gg m_e.$$

(93)

9. Conclusions

To compute the stability of an X type junction in the framework of a particular field theoretical model it is not necessary to work with the essentially two-dimensional geometry that is actually involved: it will suffice to consider the effectively one-dimensional problems of plane wall configurations of simple and double types, in order to obtain the corresponding energy densities T_1 and T_i whose ratio is needed. A right angle junction ($\alpha = \pi/2$ in figure 1) will always be stable so long as

$$T_1/T_i > \sqrt{2},$$

(94)

but a larger ratio will be needed for stability of X-junctions at other angles.

For models of the forced harmonic kind it has been shown that the required tensions are obtainable as the field space distances between the relevant vacua, as measured with respect to the energy metric given by (34). For the separable models such as the pentavac doublet model [6] that was subject to the question [9], this geodesic method has been used for the explicit evaluation of the relevant tensions, and it has been shown that the stability condition is indeed satisfied. Finally attention has been drawn to a cosmologically more promising class of monovac triplet models for which the stability condition is guaranteed whenever the relevant index β exceeds unity.

At a macroscopic level, the particular models considered here are well described by the formalism of an elastic solid medium, but it is to be observed that, convenient though it is [1], this feature is not essential for their stability. The winding stabilization mechanism for the superposed lasagne-type configurations envisaged here would work just as well if, instead of three (the minimum compatible with an isotropic total stress tensor) a higher number of independent scalar fields were invoked. In that case one would obtain more than triply superposed lasagne-type configurations which would be just as stable, but in which there would be too many degrees of freedom for the system to behave as a simple elastic (or even hyperelastic [26]) solid unless coupled with something else that ensured the required cohesion. The lack of a plausible cohesion mechanism was one of the weak points in the kinds of solid lattice scenarios that were originally considered. It is therefore to be emphasized that this drawback does not apply to the stability mechanism considered here, for which no such cohesion mechanism is needed.

The drawback that remains is, as remarked in the introduction, the need for the system to have been created in a configuration that is wound up coherently in the same sense (without string winding defects, and with only ‘positive’ walls as opposed to ‘anti-walls’) over a sufficiently large cosmological scale. This last drawback is serious, but (particularly in view of the likely involvement of an anthropic selection mechanism) it should not be considered to be automatically fatal. It should rather be taken as a challenge that is comparable with (and perhaps related to) the unavoidable challenges posed by the problem of the parity breaking that is associated with the observationally well established preponderance of ordinary matter over anti-matter [18], and by the—rather less intractable and perhaps more directly relevant—horizon problem, which provides a major incentive for the hypothesis of cosmological inflation, and also motivates consideration of effects of multiconnectedness [12].
The provisional investigation in the preceding section suggests that it may indeed be possible for an appropriate inflation scenario to provide what is needed. An attractive feature of this approach is that while the concomitant restrictions (90), (92), (93) rule out more exotic mass values, they can be satisfied in a very reasonable way by postulating that the relevant potential and kinetic mass scales have the most obvious orders of magnitude, namely

\[m_\ast \approx m_e, \quad \eta \approx m_p. \]

This would require that the relevant late inflation stage—initiated with temperature \(\Theta_i \) below the B.e.v. level—should have provided a mean inflation factor \(\sqrt{\aleph_c Z_{ic}} \approx 10^{11} \), in which \(Z_{ic} \) is the reheating factor and \(\aleph_c \) is the factor (if any) by which the relevant range of causal influence exceeds the Hubble radius \(R_{Hc} \). The ensuing wall mesh scale would then be

\[\ell_c \approx 10^{-3} R_{Hc}, \]

which means that, in a double inflation scenario, a previous such mean inflation factor of \(10^3 \) (due perhaps just to reheating by \(10^6 \)) would have sufficed to sweep away any grand unification monopoles. It is noteworthy that, in such a scenario, the contemporary mesh length \(\ell_c \) would be in rather satisfactory agreement with the order of the ten megaparsec scale to which (in the context of double inflation) attention has been drawn [27] as the intergalactic threshold for an enhancement of the power spectrum of the observed structure. This agreement would also be compatible with a more extreme mass parameter ratio and higher inflation temperature, such as might be given, with \(\Theta_i \) above the T.e.v. level, by \(m_\ast \approx 10^{-2} m_e \) with \(\eta \approx 10^4 m_p \).

Acknowledgments

I wish to thank R Battye, M Bucher, E Chachoua and A Moss for stimulating conversations.

Appendix A. Derivation from extended field models

In a universe with appropriate toroidal topology (so as to admit configurations without any string defects) the field models considered above might be postulated to have an essentially fundamental status. However it might be computationally convenient (and in other contexts, such as that of Kibble-type mechanisms [16–18], more natural) to consider such topologically non-trivial field models to be derived as approximate effective models from extended field spaces of higher dimension but with simple geometry, in which the relevant total potential \(V_{tot} \) contains a sufficiently steep variable confining contribution, \(V_{cof} \) say, having a degenerate minimum on a submanifold characterized by the vanishing of a set of functions \(\Upsilon_a \) say, constituting a reduced field space with the non-trivial geometry characterized by the intrinsic metric \(G_{ij} \). This means that to linear order in the deviations \(\Upsilon_a \) —provided they are chosen locally as extrinsic coordinates of geodesic normal type—the total kinetic metric of the extended system will be expressible in the form

\[d\lambda_{tot}^2 = (G_{ij} + K_{ija} \Upsilon^a) d\Phi^i d\Phi^j + \delta_{ab} d\Upsilon_a d\Upsilon^b. \]

(A.1)

where \(\delta_{ab} \) is just a Kronecker unit matrix and the coefficients \(G_{ij} \) and \(K_{ija} \) are respectively interpretable as components of the first and the second fundamental tensor of the submanifold.

The idea is that form of the total potential is such that it can be decomposed as a sum

\[V_{tot} = V_{cot} + V_{red} \]

(A.2)

of a relatively slowly varying residual contribution \(V_{red} \) and a much more rapidly varying (and usually more highly symmetric) confining contribution given to quadratic order in the neighbourhood of the submanifold where \(\Upsilon^a = 0 \), by an expression of the form

\[V_{cof} = A^{-1}_{ab} \Upsilon^a \Upsilon^b / 8\epsilon \]

(A.3)
where the variables A_{ab}^{-1} are the inverse components of a moderate valued positive definite matrix A^{ab}, and ε is a dimensionless constant that has to be taken to be very small so as to get the strongly confining limit.

The value V of V_{red} on the submanifold where $\Upsilon^a = 0$, is all that will be needed for determining the effective behaviour of the system whenever the available field energy is insufficient to excite significant deviations from this submanifold. Thus, in such a low-energy limit, the system will be effectively describable just in terms of the reduced model constituted by the reduced field space with the metric G_{ij}.

It is of interest to consider the effect on the energy measure (33) of the deviations from the reduced model that will occur when the confining parameter ε is not exactly zero, in which case, to linear order, the residual potential will be given in terms of a set of coefficients V_a by an expression of the form

$$V_{\text{red}} = V + V_a \Upsilon^a.$$ \hspace{1cm} (A.4)

To linear order in ε and in the deviations Υ^a it can be seen from (A.1) that in the extended model the total energy measure associated with infinitesimal field variations $d\Phi^i, d\Upsilon^a$ across a wall will be given by

$$dU^2_{\text{tot}} = 2V(G_{ij} + K_{ij}a \Upsilon^a + G_{ij}V_a \Upsilon^a / V + G_{ij}A_{ab}^{-1} \Upsilon^a \Upsilon^b / 8\varepsilon V) d\Phi^i d\Phi^j + 2V\delta_{ab} d\Upsilon^a d\Upsilon^b.$$ \hspace{1cm} (A.5)

It can be seen that the first term will be minimized by taking the deviation components to be given by the formula

$$\Upsilon^a = -4\varepsilon V A^{ab} Q_b, \quad Q_b = (K_{ij} + G_{ij}V_a / V) \Phi^i \Phi^j,$$ \hspace{1cm} (A.6)

in which, as before, the prime is used to denote differentiation with respect to the kinetic distance measure $d\lambda$ in the reduced space. For such an energy minimizing (and thus equilibrium) trajectory, it follows that—to first order in ε—the total rate of variation of the energy will be given in terms of its limit value U' in the reduced model by

$$U'_{\text{tot}} = U'(1 - \varepsilon VA^{ab} Q_a Q_b), \quad U' = \sqrt{2V}.$$ \hspace{1cm} (A.7)

The corresponding integrated total energy over a path through the wall will therefore be given to linear order by an expression of the form

$$U_{\text{tot}} = U - \varepsilon W,$$ \hspace{1cm} (A.8)

with

$$U = \int \sqrt{2V} d\lambda, \quad W = \int A^{ab} Q_a Q_b V \sqrt{2V} d\lambda.$$ \hspace{1cm} (A.9)

Appendix B. Examples of extended field models

The pentavac doublet model considered in section 5 was originally obtained [6] in just this way by taking the limit $\varepsilon \to 0$ in a broken $U(1) \times U(1)$ model involving a pair of complex fields with a flat kinetic metric of the standard $O(4)$ invariant form

$$d\lambda^2 = 5\eta^2 (d\Phi d\Phi + d\Psi d\Psi), \quad \Phi = |\Phi| e^{i\phi}, \quad \Psi = |\Psi| e^{i\psi}, \hspace{1cm} (B.1)$$

and with a potential given as a sum of the form (A.2) with a $U(1) \times U(1)$ invariant confining part

$$V_{\text{conf}} = \frac{V_2}{4} (|\Phi|^2 - 1)^2 + (|\Psi|^2 - 1)^2), \quad V_2 = m_2^4.$$ \hspace{1cm} (B.2)
together with a weakly variable residual part given in terms of the combinations (38) by

\[V_{\text{red}} = \frac{V_1}{4}(|\Phi|^2 |\Psi|^2 (\cos \theta + \cos \chi) + 2/(1 - \epsilon)), \quad V_* = m_*^4 = \epsilon V_2, \]

(B.3)
in which the final constant term has been included to adjust the minimum of the total potential to the standard value \(V_{\text{tot}} = 0\). The ratio

\[\epsilon = \frac{V_*}{V_2} = \left(\frac{m_*}{m_2}\right)^4 \]

(B.4)
will act as a small symmetry breaking parameter. In this case the minimum of the confining potential \(V_{\text{conf}}\) that will be used as the reduced field potential consists of the toroidal locus where \(|\Phi|^2 = |\Psi|^2 = 1\), to whose neighbourhood the field will be closely confined when \(m_2 \gg m_*\) unless the available field energy density is relatively large compared with \(V_*\). This neighbourhood will include the five vacuum positions where \(V_{\text{tot}}\) vanishes, which happens wherever \(\cos \theta = \cos \chi = -1\) on the nearby toroidal locus where \(|\Phi|^2 = |\Psi|^2 = 1/(1 - \epsilon)\).

The same reduced field model and linearized extension can be obtained more elegantly from a variant with a confining potential of the same form (B.2), namely

\[V_{\text{conf}} = \frac{m_*^2}{4}((|\Phi|^2 - 1)^2 + (|\Psi|^2 - 1)^2), \]

(B.5)
but with an adjustment of final term in (B.3) so as to get a residual contribution in the more convenient form

\[V_{\text{red}} = \frac{m_*^4}{4}(|\Phi|^2 |\Psi|^2 (\cos \theta + \cos \chi + 2) = \frac{m_*^4}{2}(|\Phi|^2 |\Psi|^2 (\cos \theta/2 + \cos \chi/2)), \]

(B.6)
which is such as to ensure that the vacua occur exactly on the submanifold of the reduced manifold—namely the locus where \(|\Phi|^2 = |\Psi|^2 = 1\)—even for finite values of the dimensionless ratio \((m_2/m_2^4)\).

To linear order in \(\epsilon\) and \(\Upsilon\) these variants are effectively equivalent, as they are both expressible in the same standard form of the kind used in (A.1) and (A.5) by taking the coordinates of the reduced system to be

\[\Phi^i = \sqrt{5} \eta \phi, \quad \Phi^i = \sqrt{5} \eta \psi \]

(B.7)
and by taking the deviation coordinates to be given by

\[\Upsilon^1 = \sqrt{5} \eta (|\Phi| - 1), \quad \Upsilon^2 = \sqrt{5} \eta (|\Psi| - 1), \]

(B.8)
which gives \(V_* = V_2 = 2V/\sqrt{5} \eta\). This means that the nonvanishing components of the first fundamental tensor on the reduced submanifold (where \(\Upsilon^1 = \Upsilon^2 = 0\)) will be given by \(G_{11} = G_{22} = 1\), while the nonvanishing components of the corresponding second fundamental tensor will be given by \(K_{111} = K_{222} = 2/\sqrt{5} \eta\). According to (A.6) this will give \(Q_i = 2\sqrt{5} \eta (2\phi^2 + \psi^2)\), \(Q_i = 2\sqrt{5} \eta (\phi^2 + 2\psi^2)\). Since the only nonvanishing components of the matrix characterizing the confining potential will be given by \(A^{11} = A^{22} = 5\eta^2/8V_*\), one finally obtains the formula

\[A^{ab} Q_a Q_b = (\Phi^{\prime 4} + \Phi^{\prime 2} + 4)/2V_*, \]

(B.9)
in which it is to be remarked that the variation rates are subject to the normalization condition \(|\Phi|^2 + \Phi^{\prime 2} = 1\).

For a wall of the composite kind obtained by taking \(\chi = \theta\), one obtains \(V = V_* \cos^2(\theta/2)\) so it can be seen from (A.9) that the ratio of the corresponding values \(W_i\) and \(U_i\) will be given by

\[W_i/U_i = 2V_* A^{ab} Q_a Q_b/3, \]

(B.10)
whereas for a simple wall the average value of V will only be half as much so one obtains

$$\frac{W_i}{U_i} = V_i A_{ab} Q_a Q_b / 3.$$

(B.11)

In the latter case as exemplified by the trajectory $\phi = 2\psi$ obtained by setting $\chi = 0$ (AB in figure 2) the variation rates of the independent angles ϕ and ψ will have a two to one ratio, so (B.9) will give the value $A_{ab} Q_a Q_b = 117 / 50 V_*$, from which one finally obtains

$$\frac{W_i}{U_i} = 117 / 150.$$

(B.12)

In the case of a composite wall as exemplified by the trajectory $\phi = \psi / 3$ obtained by setting $\chi = \theta$ (AC in figure 2) the corresponding ratio will be one to three, which leads to the value $A_{ab} Q_a Q_b = 241 / 100 V_*$, from which one finally obtains

$$\frac{W_i}{U_i} = 241 / 150.$$

(B.13)

The ratio of the corresponding net wall tensions, $T_i = U_i - \varepsilon W_i$ and $T_i^* = U_i^* - \varepsilon W_i^*$, can thereby be seen to be given to the first order by

$$\frac{T_i}{T_i^*} = 1 - \frac{62\varepsilon}{75}.$$

(B.14)

It can be seen from this by (7) that in such a pentavac model the simple X-junctions will be stable so long as the intersection occurs with an acute angle α that is not too small to satisfy the condition that is given in the small ε limit by

$$\alpha > \alpha_c, \quad \alpha_c = 4 \sqrt{\frac{31\varepsilon}{75}} \approx 2.57 \sqrt{\varepsilon},$$

(B.15)

but destabilization can be expected to occur for moderately large values of α in cases of the weakly confined (and more numerically tractable) kind—to which the work of Avelino et al [9] was restricted—for which ε is comparable with unity.

Such destabilization by deconfinement does not occur for the analogous generalization of category of monovac triplet models of the kind considered in section 6, which can be similarly obtained as a low-energy limit, for $m_* \ll m_\#$, from broken U(1) \times U(1) \times U(1) models with a flat kinetic metric of the standard 0(6) invariant form

$$d\lambda^2 = \eta^2 (d\Theta d\overline{\Theta} + dX d\overline{X} + d\Sigma d\overline{\Sigma}),$$

(B.16)

for

$$\Theta = |\Theta|e^{i\Theta}, \quad X = |X|e^{iX}, \quad \Sigma = |\Sigma|e^{i\Sigma},$$

(B.17)

with a confining term of the form

$$V_{col} = \frac{m^4}{4} ((|\Theta|^2 - 1)^2 + (|X|^2 - 1)^2 + (|\Sigma|^2 - 1)^2).$$

(B.18)

The required form (66) of the potential V for the ensuing reduced model is then obtained by imposing the unimodular restriction on a weakly variable residual part that is taken to be given in terms of a fixed index β by

$$V_{red} = \frac{m^4}{2} (|\Theta|^2 \cos^2 \theta/2 + |X|^2 \cos^2 \chi/2 + |\Sigma|^2 \cos^2 \sigma/2)^\beta,$$

(B.19)

so that its dependence on the field moduli will be quartic for $\beta = 2$, and quadratic for the case $\beta = 1$. It is to be observed that in the special case $\beta = 1$ this model will be separable, not just in the reduced limit but also (unlike the pentavac case) for finite values of the confinement parameter ε, so that it is obvious that its X-junctions will remain stable even for infinitesimally small values of their acute intersection angle α, and it can easily be checked directly that there
will be a cancellation whereby the relevant analogue of the pentavac limit formula (B.15)
works out in this case simply to be \(\varphi_c = 0\).

An intrinsically equivalent reduced model is obtainable from an algebraically simpler
alternative, albeit with not just one but eight distinct vacua, that is specifiable in terms of 6
real variables, \(X_i, Y_i\), for \(i = 1, 2, 3\), which combine as a set of 3 complex variables, whose
phases determine the corresponding angles \(\theta = 2\xi_1, \chi = 2\xi_2, \sigma = 2\xi_3\), in the form

\[
X_i + iY_i = Z_i = |Z_i|e^{i\xi_i},
\]

with the potential contributions in (A.2) given (in a form that is purely quartic for \(\beta = 2\)) by

\[
V_{\text{cot}} = \frac{m^4}{4} \sum_i \left(X_i^2 + Y_i^2 - 1 \right)^2, \quad V_{\text{red}} = \frac{m^4}{2} \left(\sum_i Y_i^2 \right)^2,
\]

so that unimodularity in the low-energy limit is obtained in the same way as before on the
assumption that \(m_2 \gg m_\star\). Provided the flat kinetic metric is taken to have the form

\[
dx^2 = 4\eta^2 \sum_i \left(dX_i^2 + dY_i^2 \right),
\]

this will give a reduced model that will be physically equivalent to the monovac model
described above—as can be seen by making the identifications \(X_i = \cos(\theta/2), X_i' = \cos(\chi/2), X_i'' = \cos(\sigma/3)\), in the unimodular limit \(|Z_i| = |Z_j| = |Z_k| = 1\), which leads to
expressions of exactly the same form (65), (66) as before. By setting \(\phi = \zeta, \psi = \zeta, \xi = \zeta\),
it can be seen that the reduced model obtained in this way is mathematically equivalent to the
octovac model characterized by (67). The octovac triplet model differs in principle from the
corresponding monovac triplet model in that two kinks and not just one are needed to obtain
a complete winding. However this difference would not be perceptible in practice within
the restricted framework of the reduced model, as there would be no way of telling whether
the periodicity of the phase variables should be \(2\pi\) or \(4\pi\), and therefore no way of knowing
whether the relevant vacua were really physically distinct or not.

References

[1] Bucher M and Spergel D N 1999 Is the dark matter a solid Phys. Rev. D 60 043505
[2] Battye R A, Bucher M and Spergel D 1999 Domain wall dominated universes Preprint astro-ph/9908047
[3] Battye R A and Moss A 2006 Anisotropic perturbations due to dark energy Phys. Rev. D 74 041301
[4] Battye R A and Moss A 2007 Cosmological perturbations in elastic dark energy models Phys. Rev. D 76 023005
[5] Battye R A and Moss A 2006 Scaling dynamics of domain walls in the cubic anisotropy model Phys. Rev. D 74 023528
[6] Carter B 2005 Frozen rigging model of the energy dominated universe Int. J. Theor. Phys. 44 1729–41
[7] Battye R A, Carter B, Chachoua E and Moss A 2005 Rigidity and stability of cold dark solid universe model
Phys. Rev. D 72 023503
[8] Battye R A, Chachoua E and Moss A 2006 Elastic properties of anisotropic domain wall lattices Phys. Rev. D 73 123528
[9] Avelino P P, Martins C J A P, Menezes J, Menezes R and Oliveira J C R E 2006 Frustrated expectations: defect
networks and dark energy Phys. Rev. D 73 123519
[10] Avelino P P, Martins C J A P, Menezes J, Menezes R and Oliveira J C R E 2006 Defect junctions and domain
wall dynamics Phys. Rev. D 73 123520
[11] Avelino P P, Martins C J A P, Menezes J, Menezes R and Oliveira J C R E 2007 Scaling of cosmological domain
wall networks with junctions Phys. Lett. B 647 63–6
[12] Riazuelo A, Weeks J, Uzan J-P, Lehoucq R and Luminet J-P 2004 Cosmic microwave background anisotropies
in multi-connected flat spaces Phys. Rev. D 69 103518
[13] Khlopov M, Malomed B A and Zeldovich Ia B 1985 Gravitational instability of scalar fields and formation of
primordial black holes Mon. Not. R. Astron. Soc. 215 575–89
[14] Khlopov M, Sokoloff D D and Sakharov A S 1998 The large scale modulation of the density distribution in standard axionic CDM and its cosmological and physical impact Proc. Workshop on Birth of the Universe and Fundamental Physics (Rome, May 1997) (Preprint hep-ph/9812286)

[15] Khlopov M and Rubin S G 2004 Cosmological Pattern of Microphysics in Inflationary Universe (Dordrecht: Kluwer)

[16] Garagounis T and Hindmarsh M 2003 Scaling in numerical simulations of domain walls Phys. Rev. D 68 103506

[17] Antunes N D, Pogosian L and Vachaspati T 2004 On formation of domain wall lattices Phys. Rev. D 69 043513

[18] Oliveira J C R E, Martins C J A P and Avelino P P 2005 Cosmological evolution of domain wall networks Phys. Rev. D 71 083509

[19] Brandenberger R H, Kelly W and Yamaguchi M 2007 Electroweak baryogenesis with embedded domain walls Proc. Theor. Phys. 117 823–34 (Preprint hep-ph/0503211)

[20] Carter B 1986 Fields in non-affine bundles: (2) Gauge coupled generalization of Harmonic Mappings and their Bunting identities Phys. Rev. D 33 991–6

[21] Alonso I A, Bueno S J C, Gonzalez L M A and de la Torre M M 2004 Kink manifolds in a three component scalar field theory J. Phys. A: Math. Gen. 37 3607–26

[22] Antunes N D, Copeland E J, Hindmarsh M and Lukas A 2004 Kink boundary collisions in a two-dimensional scalar field theory Phys. Rev. D 69 045016

[23] Abramovitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover)

[24] Conversi L, Melchiorri A, Mersini L and Säk I 2004 Are domain walls ruled out? Astropart. Phys. 21 443–9

[25] Guth A 1981 The inflationary universe: a possible solution to the horizon and flatness problems Phys. Rev. D 23 347–56

[26] Carter B 2007 Poly-essential and general hyperelastic world (brane) models Int. J. Theor. Phys. 46 2299–312

[27] Peter P, Polarski D and Starobinsky A A 1994 Confrontation of double-inflationary models with observations Phys. Rev. D 50 4827–34