Pseudo-gap and vertex correction of electron-phonon interaction

Wei Fan

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, 230031-Hefei, People’s Republic of China

(Dated: September 15, 2010)

The standard strong-coupling theory has no bound on \(T_c \). Recently, the Eliashberg functions \(\alpha^2 F(\omega) \) extracted from the measurements of infrared optical conductivity [1] and ARPES spectrum [2] for copper-oxides superconductors predicted very strong electron-phonon interaction and very high \(T_c \) over the experimental values [1]. The \(T_c \) in mean-field approximation of Eliashberg theory is higher than experimental \(T_c \). The \(T_c \) in evolving from weak-coupling region to strong-coupling region. The doping-dependent \(T_c \) of cuprate superconductors and most importantly the pseudo-gap can be explained as the effects of vertex correction.

PACS numbers: 74.20.Fg, 74.25.Dw, 71.38.-k

The strong-coupling Eliashberg theory plus vertex correction is used to calculate the maps of transition temperature (\(T_c \)) in parameter-space characterizing superconductivity. Based on these \(T_c \) maps, complex crossover behaviors are found when electron-phonon interaction increases from weak-coupling region to strong-coupling region. The doping-dependent \(T_c \) of cuprate superconductors and most importantly the pseudo-gap can be explained as the effects of vertex correction.

The standard strong-coupling theory has no bound on \(T_c \). Recently, the Eliashberg functions \(\alpha^2 F(\omega) \) extracted from the measurements of infrared optical conductivity [1] and ARPES spectrum [2] for copper-oxides superconductors predicted very strong electron-phonon interaction and very high \(T_c \) over the experimental values [1]. The \(T_c \) in mean-field approximation of Eliashberg theory is higher than experimental \(T_c \). The \(T_c \) in evolving from weak-coupling region to strong-coupling region. The doping-dependent \(T_c \) of cuprate superconductors and most importantly the pseudo-gap can be explained as the effects of vertex correction.

The pseudogap and phase diagram with same topology as the phase diagram of doping-dependent \(T_c \) for cuprate superconductor are explained as the effects of vertex correction. The interplay of vertex correction and Coulomb interaction can suppress theoretical \(T_c \) to access experimental values [1].

The calculations of vertex corrections are greatly simplified under isotropic approximation because the electron-phonon interactions are included in the vertex corrections only by the functions of electron-phonon interaction \(\lambda_n \) defined as \(\lambda_n = 2 \int_0^{\infty} d\omega\alpha^2 F(\omega)\omega/\omega^2 + \omega_n^2 \). When temperature is very close to \(T_c \) the energy-gap equation [3, 4] is simplified to \(\sum_{n'=\pm\infty} K_{nn'}(\Delta_n'/|\omega_n'|) = 0 \). The kernel matrix is expressed as

\[
K_{nn'} = [\lambda_{n-n'}B_{nn'} - \mu^* + C_{nn'}]|a_n' - \delta_{nn'}H_{n'}, \quad (1)
\]

where the parameters \(A_{nn'} = 1 - V_{nn'}^A, B_{nn'} = 1 - V_{nn'}^B, s_n = \omega_n/|\omega_n| \) and \(a_n = (2/\pi)\arctan(E_B/Z_n|\omega_n'|) \). The three parameters of vertex correction \(V_{nn'}^A, V_{nn'}^B \) and \(C_{nn'} \) can be found in Ref. The Coulomb pseudopotential is defined as \(\mu^* = \mu_0/(1 + \mu_0\ln(E_B/\omega_0)) \), where \(\mu_0 = N(0)U \). The Coulomb interaction between electrons and \(\omega_0 \) characteristic energy of typical phonon related to superconductivity. If the vertex corrections are ignored, three parameters \(V_{nn'}^A, V_{nn'}^B \) and \(C_{nn'} \) are all equal to zero and the kernel Eq. of energy-gap reduction enters to the normal form without vertex correction after some symmetrizations and simplifications. It’s convenient that the \(K_{nn'} \) matrix is symmetrized as in Ref. [14]. The Eliashberg functions \(\alpha^2 F(\omega) \) have the same approximation as in Ref. [12]. Other details in our calculations can be found in Ref. [3, 11].

The parameter \(\Omega_c/E_B \) measures and controls the magnitude of vertex correction in perturbing calculation.

*Corresponding author: Wei Fan, Email:fan@theory.issp.ac.cn; Project supported by Knowledge Innovation Project of Chinese Academy of Sciences.
From electron point of view, the vertex correction or nonadiabatic effect can be controlled by the effective band-width \(E_B \), on the other hand, from ion point of view, it can be controlled by the cutoff \(\omega_0 \) of phonon energy or \(\Omega_P \) in Einstein model. In this work, the vertex correction is controlled by the effective band-width \(E_B \) within the range from 0.5 eV to 5 eV. The situation \(E_B = \infty \) is equivalent to no vertex correction. The smaller \(E_B \) means possible the stronger vertex correction.

The Fig.1(a,b,c) illustrate the evolution of \(T_c \) map on \(\lambda-\Omega_P \) plane with decreasing strengths of vertex corrections (decreasing effective band-width \(E_B \)) with (a) \(E_B = \infty \), (b) \(E_B=1.7 \) eV and (c) \(E_B=1 \) eV. The Coulomb pseudo-potential \(\mu^* = 0.1 \).

The Fig.2(a) is the \(T_c \) change along two arrows shown in Fig.1(c) with fixed phonon energies \(\Omega_P=80 \) meV and 95 meV respectively. (b) The \(T_c \) change along two arrows shown in Fig.3(c) with fixed Coulomb pseudo-potentials \(\mu^* = 0.10 \) and 0.25 respectively.

The Fig.3(a) shows the changes of \(T_c \) with \(\mu^* \) along two arrows A and B shown in Fig.1(c). If \(\Omega_P=80 \) meV, the \(T_c \) monotonously increases with \(\mu^* \). However for \(\Omega_P=90 \) meV, the \(T_c \) first increases with \(\lambda \), reaches the maximum at \(\lambda \sim 1.5-1.7 \) and then quickly decreases with increasing \(\lambda \). Further increasing \(\lambda > 2 \), \(T_c \) will be very low due to strong vertex correc-

FIG. 1: The evolution of \(T_c \) map on the \(\lambda-\Omega_P \) plane with increasing strengths of vertex corrections (decreasing effective band-width \(E_B \)) with (a) \(E_B = \infty \), (b) \(E_B=1.7 \) eV and (c) \(E_B=1 \) eV. The Coulomb pseudo-potential \(\mu^* = 0.1 \).

FIG. 2: (a) The \(T_c \) change along two arrows shown in Fig.1(c) with fixed phonon energies \(\Omega_P=80 \) meV and 95 meV respectively. (b) The \(T_c \) change along two arrows shown in Fig.3(c) with fixed Coulomb pseudo-potentials \(\mu^* = 0.10 \) and 0.25 respectively.

FIG. 3: The evolutions of \(T_c \) map on the \(\mu^* - \lambda \) plane (\(\Omega_P=69 \) meV) with decreasing effective band-width (a) \(E_B = \infty \), (b) \(E_B=1.7 \) eV and (c) \(E_B=1.0 \) eV.
tions. The non-monotonous λ-dependent T_c in Fig(2a) had been found in the non-adiabatic theory of superconductivity [6]. Some crossover behaviors from weak coupling to strong coupling region had been predicted in Holstein-Hubbard model solved numerically by quantum Monte Carlo method [7] and in polaron theory [8]. It’s very reasonable that the non-monotonous λ-dependence T_c is equivalent to the crossovers found in QMC calculation [6] and polaron theory [8]. So only the leading vertex correction can describe qualitatively well the electron-phonon interaction in strong coupling region.

The T_c map on $E_B-\lambda$ plane with $\mu^*=0.25$ and $\Omega_P=72$ meV. (b) The open circle line is the evolution of T_c from P1 to P2 in (a) but μ^* linearly decreases from 0.3 to 0.1. The solid line T_c is the standard results in strong coupling theory without vertex correction. (c) The $\delta-\lambda$ relation is adopted in Ref.[1]

The Fig(3a) is the normal T_c map on $\mu^*-\lambda$ plane without vertex correction [8]. The figure shows that when $\mu^*>0.2$, T_c is insensitive to the change of μ^*. The breaking contour lines with $T_c=0$ K are because of the inaccurate calculations when $T_c<0.1$ K if only $N=200$ Matsubara energies are used. The contour lines with $T_c>0.1$ K are accurate enough. If the Coulomb pseudo-potential and vertex correction work together, the situation will change drastically and some new interesting results will appear. The large deformations are found in Fig(3c) if E_B decreases to 1.0 eV. As expected, the large deformations and discontinuous changes of contour lines appear on the T_c map when $\mu^*>0.20$. The contour lines with iso-values from $T_c=20$ K to 200 K are packed together within the rectangle region in Fig(3c) with $0.15<\mu^*<0.25$ and $\lambda>2$. The figure clearly shows that if the Coulomb pseudo-potential μ^* is larger enough, the T_c will change with λ non-monotonously. The changes of T_c along two arrows with $\mu^*=0.1$ and 0.25 are plotted in Fig(2b). For $\mu^*=0.25$, T_c first increases with λ until reaches the maximum at $\lambda=2.2$ and then sharply decreases to smaller value at $\lambda=2.5$. The crossover behavior is enhanced by strong Coulomb interaction.

The T_c map on $E_B-\lambda$ plane is presented in Fig(4a) with $\Omega_P=72$ meV. If E_B increases but λ keeps unchanged, the T_c monotonously increases with E_B until to the limit of non-vertex-correction. More interestingly, on this map, the T_c is non-monotonous dependent on E_B along straight line from P1 to P2 companying by
the decrease of λ from 5.0 to 0.2. The non-monotonous dependence of T_c on effective band-width E_B is equivalent to the band-filling effect of T_c. Our results show that, if $\Omega_p > 80$ meV, the suppression of T_c will be more prominently.

The values of T_c obtained from standard strong-coupling theory are generally higher than those measured in experiments. The copper-oxides superconductors Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and Bi$_2$Sr$_2$CuO$_{6+\delta}$ studied in Ref. [1, 2] have very strong electron-phonon interactions $\lambda > 2.36 - 2.85$ and overestimated T_c in underdoped samples. With increasing doping δ, the values of T_c decrease to about 0.35 to 1.42 [1].

The effective band-widths E_B of conducting electrons for these cuprates are distributed from 1 eV to 3 eV. The effective phonon energies are distributed from 50 meV to 80 meV. We re-calculate the T_c-doping phase diagram in underdoped region shown in Fig.4(b). The cooper-pairs degenerating with T_c along straight line $P1-P2$ in Fig.4(a) under assumption that the Coulomb interaction is strong in underdoped region $\mu^* = 0.3$ at $P1$ and weak in overdoped region $\mu^* = 0.1$ at $P2$. For simplicity, μ^* linearly decreases from 0.3 at $P1$ to 0.1 at $P2$. As shown in Fig.4(b), if $\lambda < 4.0$, the values of T_c are reduced from around 200 K to lower than 150 K and close to experimental values [1]. In strong-coupling region 4.0 $> \lambda > 3.0$, T_c is very low. Our results are provided an explanation to pseudo-gap in underdoped region shown in Fig.4(b). The Cooper-pairs pre-form at T^*_c, the transition temperature of mean field theory (MFT) or the standard strong-coupling theory. However strong non-adiabatic effects induce the instability of Cooper-pairs and the real T_c has lower value. The T^*_c degenerating with T_c in overdoped region is similar to the example (1) of Fig.9 in Ref. [15].

An interesting result is that at very strong coupling $\lambda > 4.0$, the effects of vertex corrections supercificially become weak. Even there are positive vertex correction that had been found in other work [2]. The electronic states in region SP with $\lambda > 4.0$ are strong-coupling pairs [18]. The Fig.4(b) shows a crossover from BCS state to strong-coupling pairs state with increasing electron-phonon interaction λ. It’s obviously that Fig.4(b) has the same topology as the well-known T_c-doping phase diagram. It’s dependent on whether the parameter λ electron-phonon interaction decreases with increasing doping or not. This point had been proved in recent experiments [1, 2]. The $\delta - \lambda$ curve in Fig.4(c) is based on data in Ref. [1]. It’s urged that there will be other experiments supporting this point.

In order to analyze our results more deeply, we present individually the effects of non-adiabatic parameters $V_{nn'}^A$, $V_{nn'}^B$, and $C_{nn'}$ on T_c in Fig.4(a). The T_c-λ curve labeled with V^B is calculated by allowing $V_{nn'}^B \neq 0$ and setting $V_{nn'}^A = 0$ and $C_{nn'} = 0$. Other curves are obtained with the same manner. We can find that the dome shape curve of T_c in the region $\lambda < 4.0$ is generated by the effects of $V_{nn'}^B$. In the region $\lambda > 4.0$, the effects of $V_{nn'}^A$ and $C_{nn'}$ cancel the effects of $V_{nn'}^B$ so that the strong coupling pairs in mean field approximation are restored and even have higher T_c. This fact can be clarified from the Fig.4(b,c) in that the averages of the absolute values of diagonal and off-diagonal elements of parameter matrix $|A_{nn'}| = |1 - V_{nn'}^A|$, $|B_{nn'}| = |1 - V_{nn'}^B|$ and $|C_{nn'}|$ have larger changes mainly in the region $2.5 < \lambda < 4.0$. Moreover in the region $\lambda > 4.0$, the $|A_{nn'}|$ and $|B_{nn'}|$ are close to normal values 1.0 just as in weak coupling region. Additionally, the average values of diagonal elements of parameter matrix $|C_{nn'}|$ and $|B_{nn'}|$ steadily increase with λ and lead to positive vertex-correction.

In summary the non-monotonous changes of T_c with increasing λ show the crossover behaviors near $\lambda = 2$ when λ evolving from weak-coupling region to strong-coupling region. The crossovers can explain both the pseudo-gap phenomenon and the dome shape of doping dependent T_c of cuprate superconductors. The T_c maps in the previous paper [3] and the maps with vertex corrections in this paper provide very comprehensive understanding of superconductivity of superconductors. The author thanks Prof. E. Cappelluti for very helpful discussions.

[1] van Heumen E, Muhlethaler E, Kuzmenko A B, Eisaki H, Meevasana W, Greven M and van der Marel D 2009 Phys. Rev. B 79 184512.
[2] Ruiz H S and Badia-Majos A 2010 arXiv:1005.4770 [cond-mat].
[3] Kostur V N and Mitrović B 1994 Phys. Rev. B 50 12774.
[4] Grimaldi C, Pietronero L and Strässler S 1995 Phys. Rev. B 52 10530.
[5] Fan W 2009 Physica C 469 177.
[6] Paci P, Cappelluti E, Grimaldi C and Pietronero L 2001 Phys. Rev. B 65 012512.
[7] Freericks J K, Jarrell M and Scalapino D J 1993 Phys. Rev. B 48 6302.
[8] Nasu K 1990 Phys. Rev. B 42 6076.
[9] Fan W 2008 Chin. Phys. Lett. 25 2217.
[10] Fan W, Wang J L, Zou L J and Zeng Z, 2010 Chin. Phys. Lett. 27 087402.
[11] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215.
[12] Scalapino D J, Schrieffer J R and Wilkins J W 1966 Phys. Rev. 148 263.
[13] McMillan W L 1968 Phys. Rev. 167 331.
[14] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905.
[15] Norman M R, Pines D and Kallin C 2005 Advances in Physics 54 715.
[16] Xu Z A, Ong N P, Wang Y, Kakeshita T and Uchida S 2000 Nature 406 486.
[17] Wen H H, Wu G, Luo H Q, Yang H, Shan L, Ren C, Cheng P, Yan J and Fang L 2009 Phys. Rev. Lett. 103 067002.
[18] Chakraverty B K 1980 Nature 287 393.