A NOTE ON QUANTIZATION OF COMPLEX SYMPLECTIC MANIFOLDS

ANDREA D’AGNOLO AND MASAKI KASHIWARA

Abstract. To a complex symplectic manifold X we associate a canonical quantization algebroid \tilde{E}_X. This is modeled on the algebras $\bigoplus_{\lambda \in \mathbb{C}} \rho_\ast \mathcal{E} e^{\lambda h - 1}$, where ρ is a local contactification, \mathcal{E} is an algebra of microdifferential operators and $h \in \mathcal{E}$ is such that $\text{Ad}(e^{\lambda h - 1})$ is the automorphism of $\rho_\ast \mathcal{E}$ corresponding to translation by λ in the fibers of ρ. Our construction is similar to that of Polesello-Schapira’s deformation-quantization algebroid. The deformation parameter \hbar acts on \tilde{E}_X but is not central. If X is compact, the bounded derived category of regular holonomic \tilde{E}_X-modules is a \mathbb{C}-linear Calabi-Yau triangulated category of dimension $\dim X + 1$.

Introduction

We construct here a canonical quantization algebroid on a complex symplectic manifold. Our construction is similar to that of the deformation-quantization algebroid in [10], which was in turn based on the construction of the microdifferential algebroid on a complex contact manifold in [5]. Let us briefly recall these constructions.

Let Y be a complex contact manifold. By Darboux theorem, the local model of Y is an open subset of a projective cotangent bundle P^*M. A microdifferential algebra on an open subset $V \subset Y$ is a \mathbb{C}-algebra locally isomorphic to the ring \mathcal{E}_M of microdifferential operators on P^*M. Let $(\mathcal{E}, *)$ be a microdifferential algebra endowed with an anti-involution. Any two such pairs $(\mathcal{E}', *)$ and $(\mathcal{E}, *)$ are locally isomorphic. Such isomorphisms are not unique, and in general it is not possible to patch the algebras \mathcal{E} together in order to get a globally defined microdifferential algebra on Y. However, the automorphisms of $(\mathcal{E}, *)$ are all inner and are in bijection with a subgroup of invertible elements of \mathcal{E}. As shown in [5], this is enough to prove the existence of a microdifferential algebroid \mathcal{E}_Y, i.e. a \mathbb{C}-linear stack locally represented by microdifferential algebras.

Let X be a complex symplectic manifold. On an open subset $U \subset X$, let $(\rho, \mathcal{E}, *, h)$ be a quadruple of a contactification $\rho: V \rightarrow U$, a microdifferential algebra \mathcal{E} on V, an anti-involution $*$ and an operator $h \in \mathcal{E}$ such that $\text{Ad}(e^{\lambda h - 1})$ is the automorphism of $\rho_\ast \mathcal{E}$ corresponding to translation by $\lambda \in \mathbb{C}$ in the fibers of ρ. One could try to mimic the above construction in order to get an algebroid from the algebras $\rho_\ast \mathcal{E}$. This fails because the automorphisms of $(\rho, \mathcal{E}, *, h)$ are not all inner, an outer automorphism being given by $\text{Ad}(e^{\lambda h - 1})$. There are two natural ways out.
The first possibility, utilized in [10], is to replace the algebra $\rho_*\mathcal{E}$ by its subalgebra \mathcal{W} of operators commuting with \hbar. Then the action of $\text{Ad}(e^{\lambda\hbar^{-1}})$ is trivial on \mathcal{W}, and these algebras patch together to give the deformation-quantization algebroid \mathcal{W}_X. This is an alternative construction to that of [9], where the parameter \hbar is only formal (note however that the methods in loc. cit. apply to general Poisson manifolds).

The second possibility, which we exploit here, is to make $\text{Ad}(e^{\lambda\hbar^{-1}})$ an inner automorphism. This is obtained by replacing the algebra $\rho_*\mathcal{E}$ by the algebra $\mathcal{E} = \bigoplus_{\lambda \in \mathbb{C}} \rho_*\mathcal{E} e^{\lambda\hbar^{-1}}$ (or better, a tempered version of it). We thus obtain what we call the quantization algebroid \mathcal{E}_X, where the deformation parameter \hbar is no longer central. The centralizer of \hbar in \mathcal{E}_X is equivalent to the twist of $\mathcal{W}_X \otimes_{\mathbb{C}} (\bigoplus_{\lambda \in \mathbb{C}} \mathbb{C} e^{\lambda\hbar^{-1}})$ by the gerbe parameterizing the primitives of the symplectic 2-form. One should compare this with the construction in [4], whose authors advocate the advantages of quantization (as opposed to deformation-quantization) and of the complex domain.

There is a natural notion of regular holonomic \mathcal{E}_X-module. In fact, for any Lagrangian subvariety Λ of X there is a contactification $\rho: Y \to X$ of a neighborhood of Λ in X and a Lagrangian subvariety Γ of Y such that ρ induces a homeomorphism $\Gamma \tilde{\to} \Lambda$. Then, an \mathcal{E}_X-module is called regular holonomic along Λ if it is induced by a regular holonomic \mathcal{E}_Y-module along Γ.

One of the main features of our construction is that, if X is compact, the bounded derived category of regular holonomic \mathcal{E}_X-modules is a \mathbb{C}-linear Calabi-Yau category of dimension $\dim X + 1$.

1. Stacks and algebroids

Let us briefly recall the notions of stack and of algebroid (refer to [3, 9, 1]).

A prestack \mathcal{A} on a topological space X is a lax analogue of a presheaf of categories, in the sense that for a chain of open subsets $W \subset V \subset U$ the restriction functor $\mathcal{A}(U) \to \mathcal{A}(W)$ coincides with the composition $\mathcal{A}(U) \to \mathcal{A}(V) \to \mathcal{A}(W)$ only up to an invertible transformation (satisfying a natural cocycle condition for chains of four open subsets). The prestack \mathcal{A} is called separated if for any $U \subset X$ and any $p, p' \in \mathcal{A}(U)$ the presheaf $U \supset V \mapsto \text{Hom}_{\mathcal{A}(V)}(p|_V, p'|_V)$ is a sheaf. We denote it by $\text{Hom}_\mathcal{A}(p, p')$. A stack is a separated prestack satisfying a natural descent condition.

Let \mathcal{R} be a commutative sheaf of rings. For \mathcal{A} an \mathcal{R}-algebra denote by $\text{Mod}(\mathcal{A})$ the stack of left \mathcal{A}-modules. An \mathcal{R}-linear stack is a stack \mathcal{A} such that for any $U \subset X$ and any $p, p' \in \mathcal{A}(U)$ the sheaves $\text{Hom}_{\mathcal{A}}(p', p)$ have an $\mathcal{R}|_U$-module structure compatible with composition and restriction. The stack of left \mathcal{A}-modules $\text{Mod}(\mathcal{A}) = \text{Fct}_\mathcal{R}(\mathcal{A}, \text{Mod}(\mathcal{R}))$ has \mathcal{R}-linear functors as objects and transformations of functors as morphisms.

An \mathcal{R}-algebroid \mathcal{A} is an \mathcal{R}-linear stack which is locally non empty and locally connected by isomorphisms. Thus, an algebroid is to a sheaf of algebras what a gerbe is to a sheaf of groups. For $p \in \mathcal{A}(U)$ set $\mathcal{A}_p = \text{End}_\mathcal{A}(p)$. Then $\mathcal{A}|_U$ is represented by the \mathcal{R}-algebra \mathcal{A}_p, meaning that $\text{Mod}(\mathcal{A}|_U) \simeq \text{Mod}(\mathcal{A}_p)$. An \mathcal{R}-algebroid \mathcal{A} is called invertible if $\mathcal{A}_p \simeq \mathcal{R}|_U$ for any $p \in \mathcal{A}(U)$.

\[2\] ANDREA D’AGNOLO AND MASAKI KASHIWARA
2. Quantization of contact symplectic manifolds

Let \(Y \) be a complex contact manifold. In this section we describe a construction of the microdifferential algebroid \(E_Y \) of [5] and recall some results on regular holonomic \(E_Y \)-modules.

By Darboux theorem, the local model of \(Y \) is an open subset of the projective cotangent bundle \(P^* M \) with \(M = \mathbb{C}^{\frac{1}{2}(\dim Y + 1)} \). By definition, a microdifferential algebra on \(Y \) is a \(\mathbb{C} \)-algebra locally isomorphic to the ring of microdifferential operators \(\mathcal{E}_M \) on \(P^* M \) from [11].

Consider a pair \(p = (\mathcal{E}, *) \) of a microdifferential algebra \(\mathcal{E} \) on an open subset \(V \subset Y \) and an anti-involution \(* \), i.e. an isomorphism of \(\mathcal{C} \)-algebras \(* : \mathcal{E} \to \mathcal{E}^{op} \) such that \(** = \text{id} \). Any two such pairs \(\mathcal{E}' \) and \(p \) are locally isomorphic, meaning that there locally exists an isomorphism of \(\mathbb{C} \)-algebras \(f : \mathcal{E}' \to \mathcal{E} \) such that \(f^* \circ \mathcal{E} \). Moreover, by [5, Lemma 1] the automorphisms of \(p \) are all inner and locally in bijection with the group

\[
\{ b \in \mathcal{E}^\times; \; b^* b = 1, \; \sigma(b) = 1 \},
\]

by \(b \mapsto \text{Ad}(b) \). Here \(\sigma(b) \) denotes the principal symbol and \(\text{Ad}(\mathcal{A})(a) = aba^{-1} \).

Definition 2.1. The microdifferential algebroid \(E_Y \) is the \(\mathbb{C} \)-linear stack on \(Y \) whose objects on an open subset \(V \) are pairs \(p = (\mathcal{E}, *) \) as above. Morphisms \(p' \to p \) are equivalence classes \([a, f] \) of pairs \((a, f) \) with \(a \in \mathcal{E} \) and \(f : \mathcal{E}' \to \mathcal{E} \). The equivalence relation is given by \((ab, f) \sim (a, \text{Ad}(\mathcal{A})(f) \) for \(b \) as in (2.1). Composition is given by \([a, f] \circ [a', f'] = [af(a'), ff'] \). Linearity is given by \([a_1, f_1] + [a_2, f_2] = [a_1 + a_2 b, f_1] \) for \(b \) as in (2.1) with \(f_2 f_1^{-1} = \text{Ad}(\mathcal{A}) \).

Remark 2.2. For \(M \) a complex manifold, denote by \(\Omega_M \) the sheaf of top-degree forms. The algebra \(\mathcal{E}_{\Omega^1_M/2} = \Omega^{1/2}_M \otimes_{\mathcal{O}_M} \mathcal{E}_M \otimes_{\mathcal{O}_M} \Omega^{-1/2}_M \) has a canonical anti-involution \(* \) given by the formal adjoint at the level of total symbols. The pair \((\mathcal{E}_{\Omega^1_M/2}, *) \) is a global object of \(E_{\text{P}^* M} \) whose sheaf of endomorphisms is \(\mathcal{E}_{\Omega^1_M/2} \). Thus \(E_{\text{P}^* M} \) is represented by \(\mathcal{E}_{\Omega^1_M/2} \).

As the algebroid \(E_Y \) is locally represented by a microdifferential algebra, it is natural to consider coherent or regular holonomic \(E_Y \)-modules. Denote by \(\text{Mod}_{\text{coh}}(E_Y) \) and \(\text{Mod}_{\text{rh}}(E_Y) \) the corresponding stacks. For \(\Lambda \subset Y \) a Lagrangian subvariety, denote by \(\text{Mod}_{\Lambda, \text{rh}}(E_Y) \) the stack of regular holonomic \(E_X \)-modules with support on \(\Lambda \).

Denote by \(\mathcal{C}_{\Omega^1_M/2} \) the invertible \(\mathbb{C} \)-algebroid on \(\Lambda \) such that the twisted sheaf \(\Omega^{1/2}_\Lambda \) belongs to \(\text{Mod}(\mathcal{C}_{\Omega^1_M/2}) \).

For an invertible \(\mathcal{C} \)-algebroid \(R \), denote by \(\text{LocSys}(R) \) the full substack of \(\text{Mod}(R) \) whose objects are local systems (i.e. have microsupport contained in the zero-section).

By [5, Proposition 4] (see also [2, Corollary 6.4]), one has

Proposition 2.3. For \(\Lambda \subset Y \) a smooth Lagrangian submanifold there is an equivalence

\[
\text{Mod}_{\Lambda, \text{rh}}(E_Y) \simeq p_1_* \text{LocSys}(p_1^{-1} \mathcal{C}_{\Omega^1_M/2}),
\]

where \(p_1 : \Lambda \times \mathbb{C}^\times \to \Lambda \) is the projection.
Recall that a \(\mathbb{C} \)-linear triangulated category \(T \) is called Calabi-Yau of dimension \(d \) if for each \(M, N \in T \) the vector spaces \(\text{Hom}_T(M, N) \) are finite dimensional and there are isomorphisms

\[
\text{Hom}_T(M, N)^\vee \simeq \text{Hom}_T(N, M[d]),
\]

where \(H^\vee \) denotes the dual of a vector space \(H \).

Denote by \(D^b_{\text{rh}}(E_Y) \) the full triangulated subcategory of the bounded derived category of \(E_Y \)-modules whose objects have regular holonomic cohomologies.

The following theorem is obtained in \cite{7} as a corollary of results from \cite{6}.

Theorem 2.4. If \(Y \) is compact, \(D^b_{\text{rh}}(E_Y) \) is a \(\mathbb{C} \)-linear Calabi-Yau triangulated category of the same dimension as \(Y \).

3. Quantization of symplectic manifolds

Let \(X \) be a complex symplectic manifold. In this section we describe a construction of the deformation-quantization algebroid \(W_X \) of \cite{10}, which we also use to introduce the quantization algebroid \(\hat{E}_X \). We then discuss some results on regular holonomic \(\hat{E}_X \)-modules.

By Darboux theorem, the local model of \(X \) is an open subset of the cotangent bundle \(T^*M \) with \(M = \mathbb{C}^{2\dim X} \). A contactification \(\rho: V \to U \) of an open subset \(U \subset X \) is a principal \(\mathbb{C} \)-bundle whose local model is the projection

\[
P^*(M \times \mathbb{C}) \supset \{ \tau \neq 0 \} \xrightarrow{\xi} T^*M
\]
given by \(\rho(x, t; \xi, \tau) = (x, \xi/\tau) \). Here, the \(\mathbb{C} \)-action is given by translation \(t \mapsto t + \lambda \).

Note that the outer isomorphism of \(\rho_*\mathcal{E}_M \times \mathbb{C} \) given by translation at the level of total symbols is represented by \(\text{Ad}(e^{\lambda \hbar}) \).

Consider a quadruple \(q = (\rho, \mathcal{E}, \ast, \hbar) \) of a contactification \(\rho: V \to U \), a microdifferential algebra \(\mathcal{E} \) on \(V \), an anti-involution \(\ast \) and an operator \(\hbar \in \mathcal{E} \) locally corresponding to \(\partial_\hbar^{-1} \). Any two such quadruples \(q' \) and \(q \) are locally isomorphic, meaning that there locally exists a pair \(\tilde{f} = (\chi, f) \) of a contact transformation \(\chi: \rho' \to \rho \) over \(U \) and a \(\mathbb{C} \)-algebra isomorphism \(f: \chi_*\mathcal{E}' \to \mathcal{E} \) such that \(f\ast' = \ast f \) and \(f(\hbar') = \hbar \). Moreover, by \cite{10} Lemma 5.4] the automorphisms of \(q \) are locally in bijection with the group

\[
\mathbb{C}_U \times \{ b \in \rho_*\mathcal{E}^\times; [h, b] = 0, b^*b = 1, \sigma_0(b) = 1 \},
\]

by \((\mu, b) \mapsto (T_\mu, \text{Ad}(be^{\lambda \hbar^{-1}})) \). Here \([h, b] = \hbar b - bh \) is the commutator and \(T_\mu \) denotes the action of \(\mu \) on \(V \).

Consider the quantization algebra

\[
\tilde{\mathcal{E}} = \bigoplus_{\lambda \in \mathbb{C}} (C^\infty_{\hbar} \rho_*\mathcal{E}) e^{\lambda \hbar^{-1}},
\]

where \(C^\infty_{\hbar} \rho_*\mathcal{E} = \{ a \in \rho_*\mathcal{E}; \text{ad}(\hbar)^N(a) = 0, \exists N \geq 0 \} \) locally corresponds to operators in \(\rho_*\mathcal{E}_M \times \mathbb{C} \) whose total symbol is polynomial in \(t \). Here \(\text{ad}(\hbar)(a) = [h, a] \) and the product in \(\tilde{\mathcal{E}} \) is given by

\[
(a \cdot e^{\lambda \hbar^{-1}})(b \cdot e^{\mu \hbar^{-1}}) = a \text{Ad}(e^{\lambda \hbar^{-1}})(b) \cdot e^{(\lambda + \mu)\hbar^{-1}}.
\]

One checks that \(\tilde{\mathcal{E}} \) is coherent.

\footnote{The statement in \cite{7} Theorem 9.2 (ii) is not correct. It should be read as Theorem 2.4 above.}
Definition 3.1. The quantization algebroid \tilde{E}_X is the \mathbb{C}-linear stack on X whose objects on an open subset U are quadruples $q = (\rho, E, *, h)$ as above. Morphisms $q' \to q$ are equivalence classes $[\tilde{a}, \tilde{f}]$ of pairs $([\tilde{a}, \tilde{f}])$ with $\tilde{a} \in \tilde{E}$ and $\tilde{f}: q' \to q$. The equivalence relation is given by $(\tilde{a}b, \tilde{f}) \sim (\tilde{a}, \text{Ad}(\tilde{b})\tilde{f})$ for $\tilde{b} = be^{\mu h^{-1}}$ with (μ, b) as in (3.3). Here $\text{Ad}(\tilde{b}) = (T_{\mu \chi}, \text{Ad}((\chi)))$. Composition and linearity are given as in Definition 2.1.

A similar construction works when replacing the algebra \tilde{E} by its subalgebra $\mathcal{W} = C^0_0 h, \rho, E$ of operators commuting with h. Locally, this corresponds to operators of $\rho, \mathcal{E} \mathcal{M} \times \mathbb{C}$ whose total symbol does not depend on t. Then the action of $\text{Ad}(e^{\mu h^{-1}})$ is trivial on \mathcal{W}, and these algebras patch together to give the deformation-quantization algebroid \mathcal{W}_X of $[10]$.

The parameter h acts on \tilde{E}_X but is not central. The centralizer of h in \tilde{E}_X is equivalent to the twist of $\mathcal{W}_X \otimes \mathbb{C} (\bigoplus_{\lambda \in \mathbb{C}} C_{\mathbb{C}} e^{\mu h^{-1}})$ by the gerbe parameterizing the primitives of the symplectic 2-form.

If X admits a global contactification $\rho: Y \to X$ one can construct as above a \mathbb{C}-algebroid $E_{[\rho]}$ on X locally represented by ρ, \mathcal{E}. Then there are natural functors
\[
(3.3) \quad \rho^{-1} E_{[\rho]} \to E_Y, \quad E_{[\rho]} \to \tilde{E}_X.
\]

Remark 3.2. For M a complex manifold, the algebra $\mathcal{E} \mathcal{M}^{1/2}$ on $T^* M$ has an anti-involution $*$ and a section $h = \partial_t^{-1}$ on the open subset $\tau \neq 0$. For ρ as in (3.1), the quadruple $(\rho, \mathcal{E} \mathcal{M}^{1/2}, *, h)$ is a global object of \tilde{E}_{T^*M} whose sheaf of endomorphisms is $\mathcal{E}_{\mathcal{M}^{1/2}}$. Thus \tilde{E}_{T^*M} is represented by $\mathcal{E}_{\mathcal{M}^{1/2}}$.

In order to introduce the notion of regular holonomic \tilde{E}_X-modules we need some geometric preparation.

Proposition 3.3. Let Λ be a Lagrangian subvariety of X. Up to replacing X with an open neighborhood of Λ, there exists a unique pair (ρ, Γ) with $\rho: Y \to X$ a contactification and Γ a Lagrangian subvariety of Y such that ρ gives a homeomorphism $\Gamma \xrightarrow{\sim} \Lambda$.

Let us give an example that shows how, in general, Γ and Λ are not isomorphic as complex spaces.

Example 3.4. Let $X = T^* \mathbb{C}$ with symplectic coordinates $(x; u)$, and let $\Lambda \subset X$ be a parametric curve $\{(x(s), u(s)); s \in \mathbb{C}\}$, with $x(0) = u(0) = 0$. Then $Y = X \times \mathbb{C}$ with extra coordinate t, ρ is the first projection and Γ is the parametric curve $\{(x(s), u(s), -f(s)); s \in \mathbb{C}\}$, where f satisfies the equations $f'(s) = u(s)x'(s)$ and $f(0) = 0$. For $x(s) = s^3, u(s) = s^7 + s^8$ we have $f(s) = s^3 + s^7 + s^8$. This is an example where f cannot be written as an analytic function of (x, u). In fact, $s^{11} = \frac{1}{15} x(s)u(s) - \frac{1}{15} f(s)$ and $s^{11} \not\in \mathbb{C}[[s^3, s^7 + s^8]]$.

One checks as in [11] that the functors induced by (3.3)
\[
\text{Mod}_{T^*\mathbb{C}, \text{coh}}(E_{[\rho]}) \xleftarrow{\Phi} \text{Mod}_{T^*\mathbb{C}, \text{coh}}(E_{[\rho]}) \xrightarrow{\Phi} \text{Mod}_{\Lambda, \text{coh}}(\tilde{E}_X),
\]
are fully faithful. Denote by $\text{Mod}_{T^*\mathbb{C}, \text{rh}}(E_{[\rho]})$ the full abelian substack of $\text{Mod}_{T^*\mathbb{C}, \text{coh}}(E_{[\rho]})$ whose essential image by Φ consists of regular holonomic $E_{\mathbb{V}}$-modules. Denote by $\text{Mod}_{\Lambda, \text{rh}}(\tilde{E}_X)$ the essential image of $\text{Mod}_{T^*\mathbb{C}, \text{rh}}(E_{[\rho]})$ by Ψ.

A Note on Quantization of Complex Symplectic Manifolds

5

Definition 3.5. The stack of regular holonomic \(\tilde{\mathcal{E}}_X \)-modules is the \(\mathbb{C} \)-linear abelian stack defined by

\[
\text{Mod}_{\text{rh}}(\tilde{\mathcal{E}}_X) = \lim_{\Lambda} \text{Mod}_{\text{rh}}(\tilde{\mathcal{E}}_X).
\]

As a corollary of Proposition 2.3 we get

Proposition 3.6. If \(\Lambda \subset X \) is a smooth Lagrangian submanifold, there is an equivalence

\[
\text{Mod}_{\text{rh}}(\tilde{\mathcal{E}}_X) \simeq p_1^* \text{LocSys}(p_1^{-1} C_{\Omega/\Lambda}^{1/2}),
\]

where \(p_1 : \Lambda \times \mathbb{C}^\times \to \Lambda \) is the projection.

Remark 3.7. When \(X \) is reduced to a point, the category of regular holonomic \(\mathcal{E}_X \)-modules is equivalent to the category of local systems on \(\mathbb{C}^\times \).

Finally, as a corollary of Theorem 2.4 we get

Theorem 3.8. If \(X \) is compact, \(D^b_{\text{rh}}(\tilde{\mathcal{E}}_X) \) is a \(\mathbb{C} \)-linear Calabi-Yau triangulated category of dimension \(\dim X + 1 \).

References

[1] A. D’Agnolo and P. Polesello, Deformation quantization of complex involutive submanifolds, in: Noncommutative geometry and physics (Yokohama, 2004), 127–137, World Scientific, 2005.
[2] A. D’Agnolo and P. Schapira, Quantization of complex Lagrangian submanifolds, Adv. Math. 213, no. 1 (2007), 358–379.
[3] J. Giraud, Cohomologie non abelienne, Grundlehren der Math. Wiss. 179, Springer, 1971.
[4] S. Gukov and E. Witten, Branes and quantization, arXiv:0809.0305 (2008).
[5] M. Kashiwara, Quantization of contact manifolds, Publ. Res. Inst. Math. Sci. 32, no. 1 (1996), 1–7.
[6] M. Kashiwara and T. Kawai, On holonomic systems of microdifferential equations III, Publ. RIMS Kyoto Univ. 17 (1981), 813–979.
[7] M. Kashiwara and P. Schapira, Constructibility and duality for simple holonomic modules on complex symplectic manifolds, Amer. J. Math. 130, no. 1 (2008), 207–237.
[8] ———, Modules over deformation quantization algebroids: an overview, Lett. Math. Phys. 88, no. 1-3 (2009), 79–99. See also the eprint arXiv:1003.3304 (2010).
[9] M. Kontsevich, Deformation quantization of algebraic varieties, in: EuroConférence Moshé Flato, Part III (Dijon, 2000), Lett. Math. Phys. 56, no. 3 (2001), 271–294.
[10] P. Polesello and P. Schapira, Stacks of quantization-deformation modules on complex symplectic manifolds, Int. Math. Res. Notices 2004:49 (2004), 2637–2664.
[11] M. Sato, T. Kawai, and M. Kashiwara, Microfunctions and pseudo-differential equations, in: Hyperfunctions and pseudo-differential equations (Katata 1971), 265–529, Lecture Notes in Math. 287, Springer (1973).