Modification of the existing maximum residue levels for cyantraniliprole in olives

European Food Safety Authority (EFSA), Maria Anastassiadou, Giulia Bellisai, Giovanni Bernasconi, Alba Brancato, Luis Carrasco Cabrera, Lucien Ferreira, German Giner, Luna Greco, Samira Jarrah, Aija Kazocina, Renata Leuschner, Jose Oriol Magrans, Ileana Miron, Stefanie Nave, Ragnor Pedersen, Hermine Reich, Silvia Ruocco, Miguel Santos, Alessia Pia Scarlato, Anne Theobald, Benedicte Vagenende and Alessia Verani

Abstract

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant FMC International Switzerland Sarl (FISSarl) submitted a request to the competent national authority in France to modify the existing maximum residue level (MRL) for the active substance cyantraniliprole in table olives and olives for oil production. The data submitted in support of the request were found to be sufficient to derive MRL proposals for the intended uses of cyantraniliprole in olives. Adequate analytical methods for enforcement are available to control the residues of cyantraniliprole in the commodities under consideration at the validated limit of quantification (LOQ) of 0.01 mg/kg. Based on the risk assessment results, EFSA concluded that the intake of residues resulting from the uses of cyantraniliprole according to the reported agricultural practices is unlikely to present a risk to consumer health.

© 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: cyantraniliprole, table olives, oil production, pesticide, MRL, consumer risk assessment

Requestor: European Commission
Question number: EFSA-Q-2018-00324
Correspondence: pesticides.mrl@efsauropa.eu
Declarations of interest: The declarations of interest of all scientific experts active in EFSA’s work are available at https://ess.efsa.europa.eu/doi/doiweb/doisearch.

Acknowledgements: EFSA wishes to thank: Stathis Anagnos, Laszlo Bura, Andrea Mioc, Marta Szot, Aikaterini Vlachou for the support provided to this scientific output.

Suggested citation: EFSA (European Food Safety Authority), Anastassiadou M, Bellisai G, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Giner G, Greco L, Jarrah S, Kazocina A, Leuschner R, Magnans JO, Miron I, Nave S, Pedersen R, Reich H, Ruocco S, Santos M, Scarlato AP, Theobald A, Vagenende B and Verani A, 2021. Reasoned Opinion on the modification of the existing maximum residue levels for cyantraniliprole in olives. EFSA Journal 2021;19(8):6805, 25 pp. https://doi.org/10.2903/j.efsa.2021.6805

ISSN: 1831-4732

© 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, a European agency funded by the European Union.
Summary

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant FMC International Switzerland Sarl (FISSarl) submitted a request to the competent national authority in France (evaluating Member State, EMS) to modify the existing maximum residue levels (MRLs) for the active substance cyantraniliprole in table olives and olives for oil production. The EMS drafted an evaluation report in accordance with Article 8 of Regulation (EC) No 396/2005, which was submitted to the European Commission and forwarded to the European Food Safety Authority (EFSA) on 26 April 2018. To accommodate for the intended uses of cyantraniliprole, the EMS proposed to raise the existing MRLs for table olives and olives for oil production from 1.5 to 3 mg/kg.

EFSA assessed the application and the evaluation report as required by Article 10 of the MRL regulation. EFSA identified data gaps and points which needed further clarification, which were requested to the EMS. On 17 May 2021, the EMS submitted the requested information in a revised evaluation report, which replaced the previously submitted evaluation report.

Based on the conclusions derived by EFSA in the framework of Regulation (EC) No 1107/2009, the data evaluated under previous MRL assessments and the additional data provided by the EMS in the framework of this application, the following conclusions are derived.

The metabolism of cyantraniliprole following either foliar or soil drench application was investigated in primary crops belonging to the groups of fruit crops (tomato), leafy crops (lettuce), cereals/grass (rice) and pulses/oilseeds (cotton). Residues were mainly composed of the parent compound.

As the proposed uses of cyantraniliprole are on permanent crops, investigations of residues in rotational crops are not required.

Studies investigating the effect of processing have been assessed in the framework of the EU pesticides peer review and indicated that canning reduces cyantraniliprole residues by factors of 0.4 in olives with stone and 0.6 in olives without stone; refined oil extraction reduces residues by a factor of 0.7 and cold pressing increases residues by a factor of 1.2. These studies confirm that the residues of hydrolysis degradation products IN-N5M09 and IN-F6L99 are not present at significant levels in processed olives.

www.efsa.europa.eu/efsajournal

EFSA Journal 2021;19(8):6805
Residues of cyantraniliprole in commodities of animal origin were not assessed since olives are normally not fed to livestock.

The toxicological profile of cyantraniliprole was assessed in the framework of the EU pesticides peer review under Regulation (EC) No 1107/2009 and the data were sufficient to derive an acceptable daily intake (ADI) of 0.01 mg/kg body weight (bw) per day. An acute reference dose (ARfD) was deemed unnecessary.

The consumer risk assessment was performed with revision 3.1 of the EFSA Pesticide Residues Intake Model (PRIMO). The estimated long-term dietary exposure to cyantraniliprole accounted for up to 67% of the ADI (NL toddler diet). The contribution of residues expected in the commodities assessed in the present MRL application to the overall long-term exposure were 4.3% of the ADI (GEMS/Food G08 diet) for olives for oil production and 0.3% of the ADI (IE adult diet) for table olives.

The risk assessment is affected by additional, non-standard uncertainties related to animal products, table olives and olives for oil production, for which the exposure is likely to be overestimated due to conservative approaches used to derive the input values for the exposure calculations. Additional uncertainties are linked to the lack of toxicological reference values for the two degradation products IN-N5M09 and IN-F6L99, found in quantifiable concentrations in certain processed products, e.g. cooked spinach. However, since in processed olive products these degradation products were not identified, this uncertainty is not directly linked to the intended use in olives.

EFSA concluded that the proposed uses of cyantraniliprole on olives do not result in a consumer exposure exceeding the toxicological reference value and therefore is unlikely to pose a risk to consumers’ health.

EFSA proposes to amend the existing MRLs as reported in the summary table below.

Full details of all endpoints and the consumer risk assessment can be found in Appendices B to D.

Code(a)	Commodity	Existing EU MRL (mg/kg)	Proposed EU MRL (mg/kg)	Comment/justification
0161030	Table olives	1.5	3	The submitted data are sufficient to derive MRL proposals for the SEU uses. Risk for consumers unlikely.
0402010	Olives for oil production	1.5	3	

MRL: maximum residue level; SEU: southern Europe.
(a): Commodity code number according to Annex I of Regulation (EC) No 396/2005.
Table of contents

Abstract ... 1
Summary ... 3
Assessment .. 6
1. Mammalian toxicology .. 7
2. Residues in plants .. 7
2.1. Nature of residues and methods of analysis in plants .. 7
2.1.1. Nature of residues in primary crops ... 7
2.1.2. Nature of residues in rotational crops .. 7
2.1.3. Nature of residues in processed commodities ... 7
2.1.4. Methods of analysis in plants... 8
2.1.5. Storage stability of residues in plants .. 8
2.1.6. Proposed residue definitions ... 8
2.2. Magnitude of residues in plants ... 8
2.2.1. Magnitude of residues in primary crops .. 8
2.2.2. Magnitude of residues in rotational crops ... 9
2.2.3. Magnitude of residues in processed commodities .. 9
2.2.4. Proposed MRLs .. 9
3. Residues in livestock ... 9
4. Consumer risk assessment .. 10
5. Conclusion and Recommendations ... 10
References ... 11
Abbreviations ... 12
Appendix A – Summary of intended GAP triggering the amendment of existing EU MRLs 14
Appendix B – List of end points ... 15
Appendix C – Pesticide Residue Intake Model (PRIMo) ... 20
Appendix D – Input values for the exposure calculations ... 22
Appendix E – Used compound codes ... 24
Assessment

The European Food Safety Authority (EFSA) received an application to modify the existing maximum residue level (MRL) for cyantraniliprole in olives. The detailed description of the intended use of cyantraniliprole, which are the basis for the current MRL application, is reported in Appendix A.

Cyantraniliprole is the ISO common name for 3-bromo-1-(3-chloro-2-pyridyl)-4-cyano-2'-methyl-6'-(methylcarbamoyl)-1H-pyrazole-5-carboxanilide (IUPAC). The chemical structures of the active substance and its main metabolites are reported in Appendix E.

Cyantraniliprole was evaluated in the framework of Regulation (EC) No 1107/2009 with the United Kingdom designated as rapporteur Member State (RMS); the representative uses assessed were foliar applications on various crops. The draft assessment report (DAR) prepared by the RMS has been peer reviewed by EFSA (2014b). Cyantraniliprole was approved for a period of ten years for the use as insecticide on 14 September 2016. The process of renewal of the first approval has not yet been initiated.

The EU MRLs for cyantraniliprole are established in Annex II of Regulation (EC) No 396/2005. After completion of the EU pesticides peer review, EFSA has issued several reasoned opinions on the modification of MRLs for cyantraniliprole. The proposals from these reasoned opinions have been considered in recent MRL regulations. Furthermore, Codex maximum residue limits (CXLs) were also implemented in the EU legislation by the Commission Regulations. The review of MRLs for this active substance in accordance with Article 12 of Regulation (EC) No 396/2005 is not required (EFSA, 2017b), since the MRLs were established in the context of the first approval of the active substance (EFSA, 2014b) or following subsequent MRL applications which were assessed by EFSA.

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant FMC International Switzerland Sarl (FISSarl) submitted a request to the competent national authority in France (EMS) to modify the existing MRLs for the active substance cyantraniliprole in table olives and olives for oil production. The EMS drafted the evaluation report in accordance with Article 8 of Regulation (EC) No 396/2005, which was submitted to the European Commission and forwarded to EFSA on 26 April 2018. To accommodate for the intended uses of cyantraniliprole, the EMS proposed to raise the existing MRLs for olives (table olives and oil production) from 1.5 to 3 mg/kg.

EFSA assessed the application and the evaluation report as required by Article 10 of the MRL regulation. EFSA identified data gaps and points which needed further clarification, which were requested to the EMS. On 17 May 2021, the EMS submitted the requested information in a revised evaluation report (France, 2018), which replaced the previously submitted evaluation report.

EFSA based its assessment on the evaluation report submitted by the EMS (France, 2018), the DAR (United Kingdom, 2013) prepared under Regulation (EC) 1107/2009, the Commission review report on cyantraniliprole (European Commission, 2016), the conclusion on the peer review of the pesticide risk assessment of the active substance cyantraniliprole (EFSA, 2014b), as well as the conclusions from previous EFSA outputs on cyantraniliprole (EFSA, 2014a, 2015, 2016a,b,c, 2017a, 2018a, 2019b,c).

For this application, the data requirements established in Regulation (EU) No 544/2011 and the guidance documents applicable at the date of submission of the application to the EMS are applicable (European Commission, 1997a-g, 2000, 2010a,b, 2017; OECD, 2011). The assessment is performed in accordance with the legal provisions of the Uniform Principles for the Evaluation and the Authorisation of Plant Protection Products adopted by Commission Regulation (EU) No 546/2011.

1 Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.
2 Commission Implementing Regulation (EU) 2016/1414 of 24 August 2016 approving the active substance cyantraniliprole, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 230, 25.8.2016, p. 16–19.
3 Regulation (EC) No 396/2005 of the Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. OJ L 70, 16.3.2005, p. 1–16.
4 For an overview of all MRL Regulations on this active substance, please consult: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/?event=search.as
5 Commission Regulation (EU) No 544/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the data requirements for active substances. OJ L 155, 11.6.2011, p. 1–66.
6 Commission Regulation (EU) No 546/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorisation of plant protection products. OJ L 155, 11.6.2011, p. 127–175.

www.efsa.europa.eu/efsajournal
A selected list of end points of the studies assessed by EFSA in the framework of this MRL application including the end points of relevant studies assessed previously, is presented in Appendix B.

The evaluation report submitted by the EMS (France, 2018) and the exposure calculations using the EFSA Pesticide Residues Intake Model (PRIMo) (EFSA, 2018b, 2019a) are considered as supporting documents to this reasoned opinion and, thus, are made publicly available as background documents to this reasoned opinion.

1. Mammalian toxicology

The toxicological profile of cyantraniliprole was assessed in the framework of the EU pesticides peer review under Regulation (EC) No 1107/2009 and the data were sufficient to derive an acceptable daily intake (ADI) of 0.01 mg/kg body weight (bw) per day (European Commission, 2016). An acute reference dose (ARfD) was not required (EFSA, 2014b).

The toxicological relevance of the plant metabolite IN-J9Z38 (included in the risk assessment residue definition for processed commodities) was discussed in the EU pesticides peer review, where it was considered to be covered by the reference values derived for cyantraniliprole (EFSA, 2014b).

In the framework of the current assessment, the applicant provided additional information on the toxicological profile for the degradation products IN-N5M09 and IN-F6L99 observed in the standard hydrolysis studies; these new studies were assessed by the EMS (France, 2018). Based on experimental data, metabolites IN-N5M09 and IN-F6L99 are considered unlikely to be genotoxic. These two degradation products are not considered structurally similar to parent cyantraniliprole. Studies to investigate the general toxicity of the degradation products are not available.

2. Residues in plants

2.1. Nature of residues and methods of analysis in plants

2.1.1. Nature of residues in primary crops

The metabolism of cyantraniliprole following either foliar or soil applications in primary crops belonging to the fruit (tomato), leafy (lettuce), cereals/grass (rice), pulses/oilseeds (cotton) crop groups has been investigated in the framework of the EU pesticides peer review (EFSA, 2014b). No additional studies were submitted in the current MRL application.

In the crops tested, parent compound was the main residue, accounting for almost 25% to more than 90% of the total radioactive residues (TRRs). Twenty different metabolites were identified, mostly below 5% TRR, the most abundant being the metabolite IN-J9Z38 representing 23% TRR at 32-day preharvest interval (PHI) in lettuce (0.007 mg/kg) and 6% to 28% TRR in rice foliage, straw and grain (0.03 to 0.09 mg/kg) following soil drench application (EFSA, 2014b).

For the intended uses, the metabolic behaviour in primary crops is sufficiently addressed.

2.1.2. Nature of residues in rotational crops

As the proposed uses of cyantraniliprole are on permanent crops, investigations of residues in rotational crops are not required.

2.1.3. Nature of residues in processed commodities

The effect of processing on the nature of cyantraniliprole was investigated in the framework of the EU pesticides peer review (EFSA, 2014b). Cyantraniliprole was stable under pasteurisation and sterilisation processes but degraded to IN-J9Z38 (up to 14% of the applied radioactivity (AR)), IN-N5M09 (up to 8% AR) and IN-F6L99 (up to 5% AR) during processes simulating baking/brewing/boiling. Based on standard hydrolysis studies, the residue definitions in processed commodities were proposed as ‘cyantraniliprole’ for enforcement and as the ‘sum of cyantraniliprole and IN-J9Z38 expressed as cyantraniliprole’ for risk assessment (EFSA, 2014b).

The toxicological relevance of the plant metabolite IN-J9Z38 was considered to be covered by the parent (EFSA, 2014b). The two degradation products IN-N5M09 and IN-F6L99 were identified at quantifiable levels in cooked spinach and therefore, additional toxicological data were requested for these compounds in the framework of the EU pesticides peer review. Further details on the toxicological assessment of these degradation products are reported in Section 1. In the framework of
the first approval of cyantraniliprole in 2014, these two degradation products were not suggested to be included in the residue definition for processed products (EFSA, 2014b).

2.1.4. Methods of analysis in plants

Analytical methods for the determination of cyantraniliprole residues were assessed during the EU pesticides peer review under Regulation (EC) No 1107/2009 (EFSA, 2014b). The multiresidue DFG S19 method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) quantification and its independent laboratory validation (ILV) were concluded to be fully validated for the determination of residues of cyantraniliprole and its metabolite IN-J9Z38 in high water (apples, peaches, tomatoes, lettuces, cucumbers), high acid (oranges, lemons, limes), high oil (almonds, rape seeds) content commodities, dry/starch (wheat grain, potatoes) matrices and in processed commodities (tomato paste and sun dried tomatoes) at the limit of quantification (LOQ) of 0.01 mg/kg for each analyte (EFSA, 2014b, 2015). Table olives and olives for oil production belong to the high oil content commodity group; therefore, sufficiently validated analytical methods are available for the determination of residues of cyantraniliprole in the commodities under consideration.

2.1.5. Storage stability of residues in plants

The storage stability of cyantraniliprole and the metabolites IN-J9Z38, IN-N5M09 and IN-F6L99 in plant commodities stored under frozen conditions was investigated in the framework of the EU pesticides peer review (EFSA, 2014b). It was demonstrated that for commodities belonging to the high oil content group, residues of cyantraniliprole and IN-F6L99 were stable for 18 months and residues of IN-J9Z38 and IN-N5M09 were stable for at least 24 months when stored at −20°C.

2.1.6. Proposed residue definitions

Based on the metabolic pattern identified in metabolism studies, the results of hydrolysis studies, the toxicological significance of metabolites and degradation products, the capabilities of enforcement analytical methods, the following residue definitions were proposed in the framework of the EU pesticide peer review (EFSA, 2014b):

- Residue definition for risk assessment for primary crops (raw agricultural commodities): cyantraniliprole.
- Residue definition for risk assessment for processed commodities: sum of cyantraniliprole and IN-J9Z38, expressed as cyantraniliprole.
- Residue definition for enforcement (primary crops and processed commodities): cyantraniliprole.

The residue definition for enforcement set in Regulation (EC) No 396/2005 is identical with the above-mentioned residue definition. Taking into account the proposed uses assessed in this application, EFSA concluded that these residue definitions are appropriate and no modification is required. Since in processed olives and their products, the degradation products IN-N5M09 and IN-F6L99 do not occur in significant concentrations, the previously derived residue definition for processed commodities is applicable also for olives.

2.2. Magnitude of residues in plants

2.2.1. Magnitude of residues in primary crops

In support of the MRL application, the applicant submitted 9 residue trials performed on olives in SEU. The trials were conducted according to the intended critical Good Agricultural Practice (GAP) in France, Greece, Italy and Spain during the 2014 growing season. The treatment consisted of three foliar applications on 1 m² of foliage in the south side of the treated tree (resulting in three application rates of 15 g a.i./ha), at BBCH 79–89 with a 7-day interval between applications and in combination with a bait for fruit fly. Cyantraniliprole residues were measured in olive fruit samples harvested from the treated sector of olive trees. The trials have been carried out over one growing season, whereas two seasons would generally be required according to Commission Regulation (EC) No 544/2011. Considering the wide geographical
distribution of trial locations, it can be assumed that the range of different conditions is covered, therefore the lack of trials covering two growing seasons can be considered as a minor deficiency.

Trials from two experimental sites were considered by EFSA as non-independent being conducted on sites located at a distance of less than 20 km from each other, on the same crop variety and on close treatment dates (< 30 days apart). The trial with the lower residue level measured (Venterol) was therefore disregarded. Finally, data from 8 experimental locations were selected to derive MRL proposals and risk assessment values.

Decline studies were not available. However, a rapid residue decline between the second and the third application was observed and the lack of decline studies was therefore considered a minor deficiency.

The samples were analysed for the parent compound in accordance with the residue definitions for enforcement and risk assessment and stored under conditions for which integrity of the samples has been demonstrated. According to the assessment of the EMS, the methods used were sufficiently validated and fit for purpose (France, 2018).

The number and quality of trials are sufficient to derive an MRL proposal of 3 mg/kg for the intended SEU uses on table olives and olives for oil production. It should be highlighted that the sampling method used does not reflect the overall residue concentration of the plot (treated and untreated parts of the crop) but focussed only on the treated sector; hence, lower residues may be expected in samples from the untreated side of the tree. Overall, this may lead to an overestimation of the residue levels in the commodity and to a higher MRL proposal.

The available residues data from the GAP-compliant supervised residue trials is summarised in Appendix B, Table B.2.2.1.

2.2.2. Magnitude of residues in rotational crops

Not relevant as olives are not grown in rotation with other crops.

2.2.3. Magnitude of residues in processed commodities

Studies investigating the effect of processing on the magnitude of cyantraniliprole residues in processed olives and various other products were assessed in the context of the EU pesticides peer review (EFSA, 2014b). The processed commodities were analysed for the residues of cyantraniliprole and its degradation products IN-J9Z38, IN-N5M09 and IN-F6L99. The risk assessment residue definition in processed commodities differs from the risk assessment residue definition in raw agricultural commodities (RAC) and therefore the conversion factors were derived.

The three field trials on olives used for processing studies were significantly overdosed compared to the GAP under assessment. The number and quality of the processing studies is sufficient to derive robust processing factors (PFs) for canned olives and raw and refined olive oil. The results from these studies suggest that residues of cyantraniliprole concentrate in raw olive oil (PF: 1.2) and decrease in refined olive oil (PF: 0.7) and canned olives with stone (PF: 0.4) and without stone (PF: 0.6).

Residues of IN-N5M09 and IN-F6L99 were not detected in raw and refined olive oil (the first one being the only product where concentration of residues was observed) and were reported to be negligible (levels up to 0.013 mg/kg for IN-N5M09 and < 0.01 mg/kg for IN-F6L99) in canned olives, thus confirming no need to consider these compounds in the residue definition in processed olive products. As regards IN-J9Z38, a significant amount of the parent compound was found to be converted to the degradation product, which confirms the decision to include this degradation product in the residue definition for risk assessment (EFSA, 2014b).

The processing factors relevant for the commodities assessed in this assessment are reported in Appendix B, B.2.2.3.

2.2.4. Proposed MRLs

The available data are considered sufficient to derive MRL proposals as well as risk assessment values for the commodities under evaluation (see Appendix B.2.2.1). In Section 4, EFSA assessed whether cyantraniliprole residues on these crops resulting from the intended uses are likely to pose a consumer health risk.

3. Residues in livestock

Not relevant as olives are not used for feed purposes.
4. Consumer risk assessment

EFSA performed a dietary risk assessment using revision 3.1 of the EFSA PRIMo (EFSA, 2018b, 2019a). This exposure assessment model contains food consumption data for different subgroups of the EU population and allows the acute and chronic exposure assessment to be performed in accordance with the internationally agreed methodology for pesticide residues (FAO, 2016).

The toxicological reference value for cyantraniliprole used in the risk assessment (i.e. ADI of 0.01 mg/kg bw per day) was derived in the framework of the EU pesticides peer review (European Commission, 2016). The same toxicological reference values are applicable to the metabolite IN-J9Z38 (EFSA, 2014b). Considering the toxicological profile of the active substance, a short-term dietary risk assessment was not required (EFSA, 2014b).

The long-term exposure assessment was performed taking into account the median residue values (STMR) derived from supervised trials for the commodities assessed in this application. For the remaining commodities covered by the MRL regulation, the STMR values derived in the EU pesticides peer review (EFSA, 2014b), previous MRL applications (EFSA, 2015, 2016a,b, 2017a, 2018a, 2019c) and evaluations by the Joint FAO/WHO Meetings on Pesticide Residues (JMPR) (FAO, 2014, 2015, 2019) were selected as input values.

EFSA notes that for animal commodities, for which the existing EU MRLs are set on the basis of CXLs, STMR values refer to the risk assessment residue definition derived by the JMPR (i.e. sum of cyantraniliprole and metabolites IN-N7B69, IN-J9Z38, IN-MLA84 and IN-MYX98, expressed as cyantraniliprole) (FAO, 2015, 2019). The range of metabolites in the residue definition set by the JMPR is broader than the EU risk assessment residue definition; therefore, the calculated exposure is expected to be slightly overestimated.

The complete list of input values is presented in Appendix D.2.

The highest estimated long-term dietary intake accounted for 67% of the ADI (NL toddler diet). The contributions of residues expected in the commodities assessed in the present MRL application to the overall long-term exposure were 4.3% of the ADI (GEMS/Food G08 diet) for olives for oil production and 0.3% of the ADI (IE adult diet) for table olives (see Appendix B.4).

The risk assessment is affected by additional, non-standard uncertainties related to animal products, table olives and olives for oil production. The contribution of animal products to the dietary exposure is likely to be overestimated, since the input values used in the exposure calculation cover additional metabolites which are not part of the EU residue definition. For olives, the expected exposure to residues present in bulked and blended olive products derived from orchards treated in accordance with the intended GAP (spot or band application) is likely to be lower since the input values derived from the supervised field trials used in the exposure assessment are representative for the part of the orchard that was treated with cyantraniliprole (see Section 2.2.1); after bulking, the harvested olives from an orchard treated according to the intended GAP are likely to contain lower residues, since part of the olives would not have been exposed to the direct treatment with cyantraniliprole. Additional uncertainties are linked to the lack of toxicological reference values for two degradation products IN-N5M09 and IN-F6L99 found in quantifiable concentrations in certain processed products, e.g. cooked spinach. However, since in processed olive products these degradation products were not identified, this uncertainty is not directly linked to the intended use in olives.

EFSA concluded that the long-term intake of residues of cyantraniliprole resulting from the existing and the intended uses is unlikely to present a risk to consumer health.

For further details on the exposure calculations, a screenshot of the Report sheet of the PRIMo is presented in Appendix C.

5. Conclusion and Recommendations

The data submitted in support of this MRL application were found to be sufficient to derive an MRL proposal for olives (table olives and olives for oil production).

EFSA concluded that the proposed uses of cyantraniliprole on the crop under consideration does not result in a consumer exposure exceeding the toxicological reference values and, therefore, is unlikely to pose a risk to consumers’ health.

The MRL recommendations are summarised in Appendix B.5.
References

EFSA (European Food Safety Authority), 2014a. Scientific support for preparing an EU position for the 46th Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2014;12(7):3737, 182 pp. https://doi.org/10.2903/j.efsa.2014.3737

EFSA (European Food Safety Authority), 2014b. Conclusion on the peer review of the pesticide risk assessment of the active substance cyantraniliprole. EFSA Journal 2014;12(9):3814, 249 pp. https://doi.org/10.2903/j.efsa.2014.3814

EFSA (European Food Safety Authority), 2015. Reasoned opinion on the modification of the existing maximum residue levels for cyantraniliprole in various crops. EFSA Journal 2015;13(10):4263, 25 pp. https://doi.org/10.2903/j.efsa.2015.4263

EFSA (European Food Safety Authority), 2016a. Reasoned opinion on the setting of import tolerance for cyantraniliprole in rice and coffee beans. EFSA Journal 2016;14(4):4447, 14 pp. https://doi.org/10.2903/j.efsa.2016.4447

EFSA (European Food Safety Authority), 2016b. Reasoned opinion on the modification of the existing maximum residue level for cyantraniliprole in table grapes. EFSA Journal 2016;14(7):4553, 14 pp. https://doi.org/10.2903/j.efsa.2016.4553

EFSA (European Food Safety Authority), 2016c. Scientific support for preparing an EU position in the 48th Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2016;14(8):4571, 166 pp. https://doi.org/10.2903/j.efsa.2016.4571

EFSA (European Food Safety Authority), 2017a. Reasoned opinion on the setting of maximum residue levels for cyantraniliprole in raspberries and blackberries. EFSA Journal 2017;15(11):5061, 27 pp. https://doi.org/10.2903/j.efsa.2017.5061

EFSA (European Food Safety Authority), 2017b. Statement on pesticide active substances that do not require a review of the existing maximum residue levels under Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2017;15(12):5080, 8 pp. https://doi.org/10.2903/j.efsa.2017.5080

EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2018a. Reasoned Opinion on the setting of a maximum residue level for cyantraniliprole in leeks. EFSA Journal 2018;16(1):5124, 24 pp. https://doi.org/10.2903/j.efsa.2018.5124

EFSA (European Food Safety Authority), 2018b. Guidance on use of EFSA Pesticide Residue Intake Model (EFSA PRIMo revision 3). EFSA Journal 2018;16(1):5147, 43 pp. https://doi.org/10.2903/j.efsa.2018.5147

EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Raczyk M, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Tarazona J, Theobald A and Villamar-Bouza L, 2019a. Pesticide Residue Intake Model- EFSA PRIMo revision 3.1 (update of EFSA PRIMo revision 3). EFSA supporting publication 2019;EN-1605, 15 pp. https://doi.org/10.2903/sp.efsa.2019.en-1605

EFSA (European Food Safety Authority), 2019a. Scientific Report on scientific support for preparing an EU position in the 51st Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2019;17(7):5797, 243 pp. https://doi.org/10.2903/j.efsa.2019.5797

EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Raczyk M, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2019c. Reasoned Opinion on the modification of the existing maximum residue levels for cyantraniliprole in Chinese cabbages, blackberries and raspberries. EFSA Journal 2019;17(11):5903, 27 pp. https://doi.org/10.2903/j.efsa.2019.5903

European Commission, 1997a. Appendix A. Metabolism and distribution in plants. 7028/IV/95-rev., 22 July 1996.

European Commission, 1997b. Appendix B. General recommendations for the design, preparation and realization of residue trials. Annex 2. Classification of (minor) crops not listed in the Appendix of Council Directive 90/642/EEC. 7029/V1/95-rev. 6, 22 July 1997.

European Commission, 1997c. Appendix C. Testing of plant protection products in rotational crops. 7524/VI/95-rev. 2, 22 July 1997.

European Commission, 1997d. Appendix E. Processing studies. 7035/VI/95-rev. 5, 22 July 1997.

European Commission, 1997e. Appendix F. Metabolism and distribution in domestic animals. 7030/VI/95-rev. 3, 22 July 1997.

European Commission, 1997f. Appendix H. Storage stability of residue samples. 7032/VI/95-rev. 5, 22 July 1997.
European Commission, 2000. Residue analytical methods. For pre-registration data requirement for Annex II (part A, section 4) and Annex III (part A, section 5 of Directive 91/414. SANCO/3029/99-rev. 4.

European Commission, 2010a. Classes to be used for the setting of EU pesticide Maximum Residue Levels (MRLs). SANCO 10634/2010-rev. 0, Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010.

European Commission, 2010b. Residue analytical methods. For post-registration control. SANCO/825/00-rev. 8.1, 16 November 2010.

European Commission, 2016. Review report for the active substance active substance. Finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting on 12 July 2016 in view of the approval of cyantraniliprole as active substance in accordance with Regulation (EC) No 1107/2009. SANTE/00111/2015 rev 1; 12 July 2016.

European Commission, 2017. Appendix D. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. 7525/VI/95-rev. 10.3, 13 June 2017.

FAO (Food and Agriculture Organization of the United Nations), 2014. Cyantraniliprole. In: Pesticide residues in food – 2013. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 219.

FAO (Food and Agriculture Organization of the United Nations), 2015. Cyantraniliprole. In: Pesticide residues in food – 2015. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. FAO Plant Production and Protection Paper 223.

FAO (Food and Agriculture Organization of the United Nations), 2016. Submission and evaluation of pesticide residues data for the estimation of Maximum Residue Levels in food and feed. Pesticide Residues. 3rd Edition. FAO Plant Production and Protection Paper 225, 298 pp.

FAO (Food and Agriculture Organization of the United Nations), 2019. Cyantraniliprole. In: Pesticide residues in food – 2018. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. FAO Plant Production and Protection Paper 234.

France, 2018. Evaluation report on the modification of MRLs for cyantraniliprole in olives. February 2018, revised in May 2021, 32 pp. Available online: www.efsa.europa.eu

OECD (Organisation for Economic Co-operation and Development), 2011. OECD MRL calculator: spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide Publications/Publications on Pesticide Residues. Available online: http://www.oecd.org

United Kingdom, 2013. Draft assessment report on the active substance cyantraniliprole prepared by the rapporteur Member State the United Kingdom in the framework of Regulation (EC) No. 1107/2009, May 2013. Available online: www.efsa.europa.eu

Abbreviations

- **a.s.** active substance
- **ADI** acceptable daily intake
- **AR** applied radioactivity
- **ARfD** acute reference dose
- **BBCH** growth stages of mono- and dicotyledonous plants
- **bw** body weight
- **CF** conversion factor for enforcement to risk assessment residue definition
- **CXL** Codex maximum residue limit
- **DAR** draft assessment report
- **DAT** days after treatment
- **EMS** evaluating Member State
- **FAO** Food and Agriculture Organization of the United Nations
- **GAP** Good Agricultural Practice
- **GLP** Good Laboratory Practice
- **HR** highest residue
- **IEDI** international estimated daily intake
- **ISO** International Organisation for Standardisation
- **IUPAC** International Union of Pure and Applied Chemistry
- **JMPR** Joint FAO/WHO Meeting on Pesticide Residues
- **LC-MS/MS** liquid chromatography with tandem mass spectrometry
- **LOQ** limit of quantification
- **MRL** maximum residue level
| Acronym | Description |
|---------|-------------|
| MS | Member States |
| NEU | northern Europe |
| OECD | Organisation for Economic Co-operation and Development |
| PF | processing factor |
| PHI | preharvest interval |
| PRIMo | (EFSA) Pesticide Residues Intake Model |
| RA | risk assessment |
| RAC | raw agricultural commodity |
| RD | residue definition |
| RMS | rapporteur Member State |
| SANCO | Directorate-General for Health and Consumers |
| SEU | southern Europe |
| SE | suspoemulsion |
| STMR | supervised trials median residue |
| TRR | total radioactive residue |
| WHO | World Health Organization |
Appendix A – Summary of intended GAP triggering the amendment of existing EU MRLs

Crop and/or situation	NEU, SEU, MS or country	F G or I(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
Olives	SEU	F	Fruit fly: *Bactrocera oleae*	SE	Foliar spot application with a conventional sprayer (only 1 nozzle left) or a backpack sprayer.	BBCH 81–89 (Aug–Dec)	3	7	25–150	5–30	15 for a treatment on each tree or 7.5 on every other row	g a.s./ha	7	Spot or band application with the addition of an attractive bait for fruit fly (hydrolysed proteins, i.e. Levex® at 1.25 L/ha). Application to be done on a small part of each tree (e.g. 1 m² per tree treated)

NEU: northern European Union; SEU: southern European Union; MS: Member State; SE: suspoemulsion; a.s.: active substance.

(a): Outdoor or field use (F), greenhouse application (G) or indoor application (I).

(b): CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide formulation types and international coding system.

(c): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.

(d): PHI: minimum preharvest interval.
Appendix B – List of end points

B.1. Mammalian toxicology

Studies performed on metabolites or impurities

Metabolite/Impurity	Toxicity Conclusion
IN-N5M09	Unlikely to be genotoxic. No conclusion on general toxicity.
IN-F6L99	Unlikely to be genotoxic. No conclusion on general toxicity.

B.2. Residues in plants

B.2.1. Nature of residues and methods of analysis in plants

B.2.1.1. Metabolism studies, methods of analysis and residue definitions in plants

Primary crops (available studies)	Crop groups	Crop(s)	Application(s)	Sampling (DAT)	Comment/Source
Fruit crops	Tomatoes	Foliar (3 × 150 g/ha, BBCH 14–61)	0, 7, 14 DAT (leaves); 125 DAT (leaves, fruits)	Radiolabelled active substance: Foliar applications: 14C-cyano and 14C-pyrazole cyantraniliprole in a 1:1 mixture formulation	
		Soil drench (3 × 150 g/ha, BBCH 19–61)	7, 14 DAT (leaves); 125 DAT (leaves, fruits)	Soil applications: Separate studies with each label (United Kingdom, 2013; EFSA, 2014b).	
Leafy crops	Lettuces	Foliar (3 × 150 g/ha, BBCH 33–36)	0, 7, 14, 32 DAT		
		Soil drench (3 × 150 g/ha, BBCH 36–38)	7, 14, 32 DAT		
Cereals/grass	Rice	Foliar (3 × 150 g/ha, BBCH 13–14)	140 DAT (straw, grain)		
		Soil granule (1 × 300 g/ha, BBCH 13)	175 DAT (straw, grain)		
Pulses/oilseeds	Cotton	Foliar (3 × 150 g/ha, BBCH 16–19)	0, 7, 13–14 DAT (leaves); 124–125 DAT (gin by-product, lint, seed)		
		Soil drench (3 × 150 g/ha, BBCH 19–51)	7, 13–14 DAT (leaves); 124–125 DAT (gin by-product, lint, seed)		
Rotational crops (available studies)

Crop groups	Crop(s)	Application(s)	PBI (DAT)	Comment/Source
Cereals	Wheat	1×450 g a.s./ha	30, 120, 365	All studies conducted with bare soil application. Radiolabelled active substance: [cyano-14C]-cyantraniliprole and [pyrazole carbonyl-14C]-cyantraniliprole for wheat; [pyrazole carbonyl-14C]-cyantraniliprole for soya bean (United Kingdom, 2013; EFSA, 2014b).
Root crops	Red beet	30, 120	30, 120	
Leafy crops	Lettuce	30, 120	30, 120	
Pulses and oil seeds	Soya bean	1×300 g a.s./ha Pilot study not conducted under GLP	25, 120	

Processed commodities (hydrolysis study)

Conditions	Stable?	Comment/Source
Pasteurisation (20 min, 90°C, pH 4)	Yes	EFSA (2014b)
Baking, brewing and boiling (60 min, 100°C, pH 5)	See comment	Degraded to IN-J9Z38 (12–14% AR) and to IN-N5M09 (8% AR) and IN-F6L99 (5% AR) under baking/boiling/brewing conditions (EFSA, 2014b).
Sterilisation (20 min, 120°C, pH 6)	Yes	EFSA (2014b)

Can a general residue definition be proposed for primary crops?

- Yes: EFSA (2014b)
- Open: EFSA (2019c)
- No: EFSA (2014b)

Rotational crop and primary crop metabolism similar?

- Yes: EFSA (2014b)
- Open: EFSA (2019c)
- No: EFSA (2014b)

Residue pattern in processed commodities similar to residue pattern in raw commodities?

- Yes: EFSA (2014b)
- No: EFSA (2014b)

Plant residue definition for monitoring (RD-Mo)

Plant residue definition for risk assessment (RD-RA)

Methods of analysis for monitoring of residues (analytical technique, crop groups, LOQs)

- LC–MS/MS, LOQ = 0.01 mg/kg for cyantraniliprole in plants (high water-, high oil-, high acid- and high starch content matrices). ILV is also available (EFSA, 2014b).

DAT: days after treatment; BBCH: growth stages of mono- and dicotyledonous plants; PBI: plant-back interval; GLP: Good Laboratory Practice; AR: applied radioactivity; LOQ: limit of quantification; LC–MS/MS: liquid chromatography with tandem mass spectrometry; ILV: independent laboratory validation.
B.2.1.2. Storage stability of residues in plants

Plant products (available studies)	Category	Commodity	T (°C)	Stability period Value	Compounds covered	Comment/ Source
	High water content	Apples	−20	≥ 24 Month	Cyantraniliprole, IN-J9Z38, IN-N5M09 and IN-F6L99	EFSA (2014b)
	High acid content	Grapes	−20	≥ 24 Month	Cyantraniliprole, IN-J9Z38, IN-N5M09 and IN-F6L99	EFSA (2014b)
	High starch content	Potatoes	−20	≥ 24 Month	Cyantraniliprole, IN-J9Z38, IN-N5M09 and IN-F6L99	EFSA (2014b)
	High protein content	Dry beans	−20	18 Month	Cyantraniliprole	EFSA (2014b)
	High protein content	Dry beans	−20	≥ 24 Month	IN-J9Z38, IN-N5M09 and IN-F6L99	EFSA (2014b)
	High oil content	Peanuts	−20	18 Month	Cyantraniliprole, IN-F6L99	EFSA (2014b)
	High oil content	Peanuts	−20	≥ 24 Month	IN-J9Z38, IN-N5M09	EFSA (2014b)

B.2.2. Magnitude of residues in plants

B.2.2.1. Summary of residues data from the supervised residue trials

Commodity	Region/ Indoor(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/ Source	Calculated MRL (mg/kg)	HR(b) (mg/kg)	STMR(c) (mg/kg)	CF(d)
Olives	SEU	Whole olive fruit: 0.15; 0.27; 0.37; 0.53; 0.53; 0.95; 0.97; 1.20	Residue trials on olives compliant with the intended GAP. Residue data extrapolated among table olives and olives for oil production	3	1.20	0.53	–

MRL: maximum residue level; GAP: Good Agricultural Practice.
(a): EU: Outdoor trials conducted in northern Europe, SEU: Outdoor trials conducted in southern Europe, EU: indoor EU trials or Country code: if non-EU trials.
(b): Highest residue. The highest residue for risk assessment refers to the whole commodity and not to the edible portion.
(c): Supervised trials median residue. The median residue for risk assessment refers to the whole commodity and not to the edible portion.
(d): Conversion factor to recalculate residues according to the proposed residue definition for monitoring to the residue definition for risk assessment.
B.2.2.2. Residues in rotational crops

| Residues in rotational and succeeding crops expected based on confined rotational crop study? | Open | Cyantraniliprole residues > 0.01 mg/kg not expected. Insufficient information was provided to address the transfer of the very persistent soil metabolites in rotational crops (data gap). Long-term rotational crop studies are required to investigate the magnitude of residues of cyantraniliprole and its most persistent metabolites (EFSA, 2014b). |
| Residues in rotational and succeeding crops expected based on field rotational crop study? | Open | Field rotational crop studies at 450 g/ha. Long-term rotational crop studies are required to investigate the magnitude of residues of cyantraniliprole and its most persistent metabolites (EFSA, 2014b). |

B.2.2.3. Processing factors

Processing studies were not submitted in the framework of the present MRL application. Processing studies in olives were assessed in the framework of the EU pesticide peer review (EFSA, 2014b).

Crop/processed product	Number of valid studies	Processing factors Median PF(a) CF(b)	Comments/Source
Olives/Processed (flesh)	3	0.6	1.6 United Kingdom (2013), EFSA (2014b)
Olives/Processed (whole, with stone)	3	0.4	1.6
Olives/raw oil	3	1.2	1.1
Olives/refined oil	2	0.7	1.4

PF: processing factor.
(a): Processing factor derived as a ratio of residues in processed commodity according to enforcement residue definition and residues in raw agricultural commodity (RAC) according to enforcement residue definition.
(b): Conversion factor for risk assessment derived as a ratio of residues in processed commodity according to risk assessment residue definition and residues in raw commodity according to enforcement assessment residue definition.

B.3. Residues in livestock

Not relevant.
B.4. Consumer risk assessment

Acute consumer risk assessment not relevant since no ARfD has been considered necessary (European Commission, 2016).

ADI	0.01 mg/kg bw per day (European Commission, 2016)

Highest IEDI, according to EFSA PRIMo

Contribution of crops assessed:	Table olives: 0.32% (IE adult diet)
---	Olives for oil production: 4.3% (GEMS/Food G08 diet)

Assumptions made for the calculations

Calculations performed with PRIMo revision 3.1 (EFSA, 2018a, 2019a). The calculation is based on the median residue levels derived for crops under consideration (STMR values) as derived from the submitted residue trials according to the risk assessment residue definition.

For the remaining commodities covered by the MRL regulation, the STMR values derived in the EU pesticides peer review, previous MRL applications and, where relevant, in the evaluations by the JMPR were selected as input values.

For animal commodities, for which the existing EU MRLs are set on the basis of CXLs, STMR values are derived according to risk assessment residue definition set by the JMPR (sum of cyantraniliprole and metabolites IN-N7B69, IN-J9Z38, IN-MLA84 and IN-MYX98, expressed as cyantraniliprole). The range of metabolites in the FAO estimated STMRs is broader than the EU risk assessment residue definition, however these values are considered appropriate for use in the exposure calculation.

The crops on which no uses have been reported in the EU pesticides peer review or in subsequent EFSA outputs, were not included in the exposure calculation.

B.5. Recommended MRLs

Code(a)	Commodity	Existing EU MRL (mg/kg)	Proposed EU MRL (mg/kg)	Comment/justification
Enforcement residue definition: Cyantraniliprole				
161030	Table olives	1.5	3	The submitted data are sufficient to derive an MRL proposal for the SEU uses. Risk for consumers unlikely.
402010	Olives for oil production	1.5	3	

MRL: maximum residue level; SEU: southern Europe.
(a): Commodity code number according to Annex I of Regulation (EC) No 396/2005.
Appendix C – Pesticide Residue Intake Model (PRIMO)

Cyantraniliprole

MRLs set at the LOQ (in % of ADI)	Commodities not under assessment (in % of ADI)
67%	Pears
51%	Table grapes
37%	Table grapes
29%	Oranges
29%	Head cabbages
29%	Tomatoes
28%	Tomatoes
27%	Oranges
25%	Tomatoes
24%	Oranges
24%	Lettuces
23%	Wine grapes
23%	Milk: Cattle
22%	Oranges
21%	Oranges
20%	Tomatoes
19%	Apples
19%	Oranges
18%	Oranges
18%	Tomatoes
17%	Cucumbers
13%	Caulfeathers
13%	Apples
13%	Apples
13%	Milk: Cattle
12%	Milk: Cattle
12%	Oranges
12%	Oranges
11%	Calcium
11%	Oranges
11%	Oranges
11%	Oranges
10%	Oranges
8%	Oranges
3%	Oranges
3%	Broccoli

Calculated exposure (% of ADI)

MS Diet	Exposure result in µg/kg bw per day	Highest contributor to MRL (in % of ADI)	Community exposure of commodities (in % of ADI)	2nd contributor to MRL (in % of ADI)	Community exposure of commodities (in % of ADI)	3rd contributor to MRL (in % of ADI)	Community exposure of commodities (in % of ADI)	
NL child	5.13	26%	Apples	6%	Grapes	4%	Table grapes	51%
NL child	3.62	9%	Apples	4%	Milk: Cattle	3%	Table grapes	37%
NL child	2.93	5%	Grapes	3%	Celeries	2%	Oranges	26%
NL child	2.70	4%	Grapes	2%	Celeries	1%	Oranges	26%
NL child	2.65	5%	Head cabbages	3%	Grapes	2%	Tomatoes	26%
NL child	2.65	5%	Head cabbages	3%	Grapes	2%	Tomatoes	26%
NL child	2.62	4%	Grapes	2%	Celeries	1%	Oranges	26%
NL child	2.58	6%	Celeries	1%	Table grapes	2%	Oranges	27%
NL child	2.40	5%	Apples	4%	Milk: Cattle	3%	Apples	27%
NL child	2.32	3%	Apples	3%	Milk: Cattle	2%	Oranges	26%
NL child	2.27	4%	Apples	2%	Milk: Cattle	2%	Oranges	26%
NL child	2.27	4%	Apples	2%	Milk: Cattle	2%	Oranges	26%
NL child	2.24	4%	Apples	2%	Milk: Cattle	2%	Oranges	26%
NL child	2.19	4%	Apples	2%	Milk: Cattle	2%	Oranges	26%
NL child	2.19	4%	Apples	2%	Milk: Cattle	2%	Oranges	26%
NL child	2.16	3%	Milk: Cattle	3%	Oranges	22%		
NL child	2.06	3%	Milk: Cattle	3%	Oranges	22%		
NL child	1.94	3%	Milk: Cattle	3%	Oranges	22%		
NL child	1.94	3%	Milk: Cattle	3%	Oranges	22%		
NL child	1.92	4%	Apples	2%	Milk: Cattle	2%	Oranges	26%
NL child	1.92	4%	Apples	2%	Milk: Cattle	2%	Oranges	26%
NL child	1.76	2%	Apples	2%	Milk: Cattle	2%	Oranges	26%
NL child	1.68	4%	Apples	2%	Milk: Cattle	2%	Oranges	26%
NL child	1.65	4%	Apples	2%	Milk: Cattle	2%	Oranges	26%
NL child	1.65	4%	Apples	2%	Milk: Cattle	2%	Oranges	26%
NL child	1.32	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.28	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.28	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.20	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.20	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.19	2%	Milk: Cattle	2%	Oranges	26%		
NL child	1.19	2%	Milk: Cattle	2%	Oranges	26%		
NL child	1.17	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.17	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.13	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.13	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.09	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.09	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.05	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.05	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.01	3%	Milk: Cattle	3%	Oranges	26%		
NL child	1.01	3%	Milk: Cattle	3%	Oranges	26%		
NL child	0.96	3%	Milk: Cattle	3%	Oranges	26%		
NL child	0.96	3%	Milk: Cattle	3%	Oranges	26%		
NL child	0.94	3%	Milk: Cattle	3%	Oranges	26%		
NL child	0.94	3%	Milk: Cattle	3%	Oranges	26%		
NL child	0.90	3%	Milk: Cattle	3%	Oranges	26%		
NL child	0.90	3%	Milk: Cattle	3%	Oranges	26%		
NL child	0.86	3%	Milk: Cattle	3%	Oranges	26%		
NL child	0.86	3%	Milk: Cattle	3%	Oranges	26%		

Details – chronic risk assessment

The estimated long-term dietary intake (TMDI/NEDI/IEDI) was below the ADI. The long-term intake of residues of cyantraniliprole is unlikely to present a public health concern.

DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.
Acute risk assessment / children

Commodity	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Broccoli/boiled	2/1.1	87	Celeries/boiled	15/1.1
Cauliflowers/boiled	2/1.1	77	Cauliflowers/boiled	2/1.1
Pumpkins/boiled	0.3/0.3	27	Broccoli/boiled	2/1.1
Peaches/canned	1.5/0.94	24	Kohlrabies/boiled	2/1.1
Currants (red, black and white)	0.4/0.75	21	Pumpkins/boiled	0.3/0.3
Beans (with pods)/boiled	1.5/1.5	19	Wine grapes/wine	1.5/1.5
Wine grapes/juice	1.5/3.2	14	Currants (red, black and white)	4/0.75
Brussels sprouts/boiled	2/1.1	11	Table grapes/raisins	1.5/7.5
Apples/juice	0.3/0.16	8.7	Peaches/canned	1.5/0.94
Oranges/juice	0.9/0.16	8.4	Peas (with pods)/boiled	2/2
Courgettes/boiled	0.4/0.22	7.8	Wine grapes/juice	1.5/0.32
Peaches/juice	1.5/3.4	5.6	Apple/juice	0.8/0.16
Pears/juice	0.6/0.16	5.2	Head cabbages/canned	2/2.5
Currants (red, black and white)	0.4/0.32	5.1	Okra, lady's fingers/boiled	1.5/1.5
Potatoes/fried	0.05/0.05	4.7		

Acute risk assessment / adults

Commodity	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Broccoli/boiled	2/1.1	87	Celeries/boiled	15/1.1
Cauliflowers/boiled	2/1.1	77	Cauliflowers/boiled	2/1.1
Pumpkins/boiled	0.3/0.3	27	Broccoli/boiled	2/1.1
Peaches/canned	1.5/0.94	24	Kohlrabies/boiled	2/1.1
Currants (red, black and white)	0.4/0.75	21	Pumpkins/boiled	0.3/0.3
Beans (with pods)/boiled	1.5/1.5	19	Wine grapes/wine	1.5/1.5
Wine grapes/juice	1.5/3.2	14	Currants (red, black and white)	4/0.75
Brussels sprouts/boiled	2/1.1	11	Table grapes/raisins	1.5/7.5
Apples/juice	0.3/0.16	8.7	Peaches/canned	1.5/0.94
Oranges/juice	0.9/0.16	8.4	Peas (with pods)/boiled	2/2
Courgettes/boiled	0.4/0.22	7.8	Wine grapes/juice	1.5/0.32
Peaches/juice	1.5/3.4	5.6	Apple/juice	0.8/0.16
Pears/juice	0.6/0.16	5.2	Head cabbages/canned	2/2.5
Currants (red, black and white)	0.4/0.32	5.1	Okra, lady's fingers/boiled	1.5/1.5
Potatoes/fried	0.05/0.05	4.7		

Conclusion

No exceedance of the toxicological reference value was identified for any unprocessed commodity.
A short-term intake of residues of cyantraniliprole is unlikely to present a public health risk.
For processed commodities, the toxicological reference value was exceeded in one or several cases.
Appendix D – Input values for the exposure calculations

D.1. Livestock dietary burden calculations

Not relevant to the present MRL application.

D.2. Consumer risk assessment

Commodity	Existing/proposed MRL (mg/kg)	Source	Input value (mg/kg)	Comment
Table olives	3 Proposed MRL	EFSA (2014b)	0.53	STMR-RAC
Olives for oil production	3 Proposed MRL	EFSA (2014b)	0.53	STMR-RAC
Citrus fruit	0.9	EFSA (2014b)	0.16	STMR-RAC
Tree nuts	0.04	FAO (2015)	0.01	STMR-RAC
Pome fruits	0.8	FAO (2014)	0.16	STMR-RAC
Cherries	6	FAO (2014)	0.93	STMR-RAC
Peaches	1.5	FAO (2014)	0.34	STMR-RAC
Plums	0.7	EFSA (2014b)	0.12	STMR-RAC
Table grapes	1.5	EFSA (2016b)	0.26	STMR-RAC
Wine grapes	1.5	EFSA (2016b)	0.32	STMR-RAC \(\times PF \times YF(a) \) (EFSA, 2014b, 2015)
Strawberries	1.5	FAO (2019)	0.455	STMR-RAC
Blueberries (bush berries)	4	FAO (2014)	0.75	STMR-RAC
Cranberries	0.08	FAO (2019)	0.12	STMR-RAC
Currants (red, black and white)	4	FAO (2014)	0.75	STMR-RAC
Gooseberries (green, red & yellow)	4	FAO (2014)	0.75	STMR-RAC
Rose hips	4	FAO (2014)	0.75	STMR-RAC
Azarole/Mediterranean medlars	0.8	FAO (2014)	0.16	STMR-RAC
Kaki/Japanese persimmons	0.8	FAO (2014)	0.16	STMR-RAC
Mangoes	0.7	FAO (2019)	0.01	STMR-RAC
Root and tuber vegetables (except sugar beet)	0.05	FAO (2014)	0.01	STMR-RAC (EFSA, 2014a)
Garlic	0.05	FAO (2014)	0.02	STMR-RAC
Onions	0.05	FAO (2014)	0.02	STMR-RAC
Shallots	0.05	FAO (2014)	0.02	STMR-RAC
Spring onions	8	FAO (2014)	1.3	STMR-RAC
Other bulb vegetables	0.05	FAO (2014)	0.02	STMR-RAC
Tomatoes	1	EFSA (2014b)	0.17	STMR-RAC
Peppers	1.5	EFSA (2014b)	0.14	STMR-RAC
Aubergines	1	EFSA (2014b)	0.14	STMR-RAC
Okra, lady’s fingers	1.5	EFSA (2014b)	0.14	STMR-RAC
Other solanaceae	1.5	EFSA (2014b)	0.14	STMR-RAC
Cucurbits with edible peel	0.4	EFSA (2014b)	0.08	STMR-RAC
Cucurbits with inedible peel	0.3	FAO (2014)	0.06	STMR-RAC (EFSA, 2014b)
Brassica vegetables (ex. leafy brassica)	2	FAO (2014)	0.56	STMR-RAC
Lettuces	5	FAO (2014)	0.79	STMR-RAC
Beans (with pods)	1.5	FAO (2015)	0.29	STMR-RAC
Beans (without pods)	0.3	FAO (2015)	0.07	STMR-RAC
Peas (with pods)	2	FAO (2015)	0.7	STMR-RAC
Commodity	Existing/proposed MRL (mg/kg)	Source	Chronic risk assessment	
---------------------------------	-------------------------------	----------------	-------------------------	
			Input value (mg/kg)	Comment
Peas (without pods)	0.3	FAO (2015)	0.07	STMR-RAC
Celeries	15	FAO (2014)	2	STMR-RAC
Globe artichokes	0.1	EFSA (2015)	0.03	STMR-RAC
Beans (dry)	0.3	FAO (2015)	0.01	STMR-RAC
Sunflower seeds	0.5	FAO (2015)	0.067	STMR-RAC
Rapeseeds/canola seeds	0.8	FAO (2015)	0.077	STMR-RAC
Soya beans	0.4	FAO (2015)	0.033	STMR-RAC
Cotton seeds	1.5	FAO (2015)	0.16	STMR-RAC
Rice	0.01*	EFSA (2016a)	0.01	STMR-RAC
Coffee beans	0.05	EFSA (2016a)	0.01	STMR-RAC
Herbal infusions (dried roots)	0.2	EFSA (2015)	0.08	STMR-RAC
Liquorice	0.2	EFSA (2015)	0.08	STMR-RAC
Turmeric/curcuma	0.2	EFSA (2015)	0.08	STMR-RAC
Other spices (roots)	0.2	EFSA (2015)	0.08	STMR-RAC
Sugar beet roots	0.05	FAO (2014)	0.01	STMR-RAC
Chicory roots	0.05	FAO (2014)	0.01	STMR-RAC

Risk assessment residue definition: Sum cyantraniliprole, IN-J9Z38, IN-MLA84 and IN-N7B69, expressed as cyantraniliprole.

Mammalian terrestrial animals: meat	0.2	FAO (2015)	0.041	STMR-RAC^{(b)}
Mammalian terrestrial animals: fat	0.5	FAO (2015)	0.1	STMR-RAC^{(b)}
Mammalian terrestrial animals: liver, kidney, edible offal	1.5	FAO (2015)	0.38	STMR-RAC^{(b)}
Poultry: meat	0.02	FAO (2015)	0.004	STMR-RAC^{(b)}
Poultry: fat	0.04	FAO (2015)	0.008	STMR-RAC^{(b)}
Poultry: liver, kidney, edible offal	0.15	FAO (2015)	0.032	STMR-RAC^{(b)}
Milk	0.02	FAO (2014)	0.016	STMR-RAC^{(b)}
Eggs	0.15	FAO (2015)	0.043	STMR-RAC^{(b)}

STMR-RAC: supervised trials median residue – raw agriculture commodity; PF: processing factor; YF: yield factor.

*: Indicates that the MRL is set at the limit of analytical quantification (LOQ).

(a): Consumption figure in the PRIMo model is expressed for the raw commodity (grape). A yield factor (YF) of 0.7 is therefore considered to estimate the consumption figure for wine.

(b): Residue values in the FAO (2015). Estimation of STMRs in products of animal origin is the sum of cyantraniliprole and metabolites IN-N7B69, IN-J9Z38, IN-MLA84 and IN-MYX89, expressed as cyantraniliprole.
Appendix E – Used compound codes

Code/trivial name(a)	IUPAC name/SMILES notation/InChiKey(b)	Structural formula(c)
Cyantraniliprole	3-bromo-1-(3-chloro-2-pyridyl)-4'-cyano-2'-methyl-6'-(methylcarbamoyl)-1H-pyrazole-5-carboxanilide CNC(=O)c1cc(C#N)cc(C)c1NC(=O)c1cc(Br) nn1c1nccccc1Cl DVBUJBGJQBEDP-UHFFFAOYSA-N	![Structural formula](image1)
IN-J9Z38	2-[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]-3,8-dimethyl-4-oxo-3,4-dihydroquinazoline-6-carbonitrile Cc1cc(C#N)cc2c1N=C(c1cc(Br)nn1c1nccccc1Cl)N(C)C2=O WHYZZHSKSZLNRP-UHFFFAOYSA-N	![Structural formula](image2)
IN-F6L99	3-bromo-N-methyl-1H-pyrazole-5-carboxamide O=C(NC)c1cc(Br)n[NH]1 LOYJZLXTLAMJX-UHFFFAOYSA-N	![Structural formula](image3)
IN-N5M09	6-chloro-4-methyl-11-oxo-11H-pyrido[2,1-b]quinazoline-2-carbonitrile Cc1cc(C#N)cc2c1N=C1C(Cl)=CC=CN1C2=O MZOZXSPJGMFBK-UHFFFAOYSA-N	![Structural formula](image4)
IN-MLA84	2-[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]-8-methyl-4-oxo-1,4-dihydroquinazoline-6-carbonitrile Cc1cc(C#N)cc2c1N=C(NC2=O)c1cc(Br)nn1c1nccccc1Cl XOWPMRVDJYVVNL-UHFFFAOYSA-N	![Structural formula](image5)
IN-N7B69	3-bromo-1-(3-chloropyridin-2-yl)-N-[4-cyano-2-(hydroxymethyl)-6-(methylcarbamoyl)phenyl]-1H-pyrazole-5-carboxamide CNC(=O)c1cc(C#N)cc(CO)c1NC(=O)c1cc(Br) nn1c1nccccc1Cl HIRGCCGVWDKSH-UHFFFAOYSA-N	![Structural formula](image6)
Code/trivial name^(a)	IUPAC name/SMILES notation/InChiKey^(b)	Structural formula^(c)
-------------------------------	---	--------------------------------
IN-MYX98	3-bromo-1-(3-chloropyridin-2-yl)-N-[(4-cyano-2-[(hydroxymethyl)carbamoyl]-6-methylphenyl]-1H-pyrazole-5-carboxamide	![Structural formula](image)
	OCNC(=O)c1cc(C#N)cc(C)c1NC(=O)c1cc(Br)nn1c1ccc1Cl	FLLWEQACDZRMFC-UHFFFAOYSA-N

IUPAC: International Union of Pure and Applied Chemistry; SMILES: simplified molecular-input line-entry system; InChiKey: International Chemical Identifier Key.

(a): The metabolite name in bold is the name used in the conclusion.
(b): ACD/Name 2020.2.1 ACD/Labs 2020 Release (File version N15E41, Build 116563, 15 June 2020).
(c): ACD/ChemSketch 2020.2.1 ACD/Labs 2020 Release (File version C2SH41, Build 121153, 22 March 2021).