Comment on “Magnetism of Nanowires Driven by Novel Even-Odd Effects”

In a recent Letter [1], S. Lounis et al. find that the ground state of finite antiferromagnetic nanowires deposited on ferromagnets depends on the parity of the number \(N \) of atoms and that a collinear-noncollinear transition exists for odd \(N \). Authors use \textit{ab initio} results and a Heisenberg model, which is studied numerically with an iterative scheme. In this Comment we argue that the Heisenberg model can much easier be investigated in terms of a two-dimensional map, which allows to find an analytic expression for the transition length, a central result of Ref. [1] (see their Fig. 3).

Heisenberg model in Ref. [1] corresponds to Eq. (1) of Ref. [2] for \(H_A = 0 \), which describes antiferromagnetic superlattices in a magnetic field. If we introduce the variable \(s_n = \sin(\theta_n - \theta_{n-1}) \), minimization of

\[
H = |J_1| \sum_{i=1}^{N-1} \cos(\theta_i - \theta_{i+1}) - J_2 \sum_{i=1}^{N} \cos \theta_i
\]

\[
s_{n+1} = s_n - h \sin \theta_n, \quad \theta_{n+1} = \theta_n + \sin^{-1}(s_{n+1}) \tag{1}
\]

where \(h = J_2/|J_1| \). This is an iterative two-dimensional map whose fixed points of order two \((s_{n+2} = s_n \text{ and } \theta_{n+2} = \theta_n)\) correspond to the ferrimagnetic (FI) configuration \((0,0) \leftrightarrow (\pi,0)\) and to the bulk spin-flop state \(((\bar{\theta}, \sin 2\bar{\theta}) \leftrightarrow (-\bar{\theta}, -\sin 2\bar{\theta})\), with \(\cos \bar{\theta} = h/4\). In Fig. 1 we plot the evolution of the map for different initial conditions and \(h = 0.376 \), the special value considered in [1].

Boundary conditions for chains of \(N \) atoms are taken into account [2] imposing \(s_1 = 0 = s_{N+1} \). The determination of the ground state therefore corresponds to find the value \(\theta_1 \) such that iterating the map \(N \) times from \((\theta_1,0)\) we get a point on the axis \(s = 0 \). The \(N \) values \(\theta_1, \ldots, \theta_N \) then give the sought-after configuration. In Fig. 1 we also plot the first \(N \) steps of the map evolution giving the ground states for \(N = 9 \) (red squares) and \(N = 10 \) (blue circles), showing different behaviors for odd and even \(N \). This difference is also visible from Fig. 6 (\(N = 52 \)) and Fig. 10 (\(N = 53 \)) in Ref. [3]. Different ground states also reflect on different behaviors for the spin wave excitations [4].

The existence of a minimum length to get a non-collinear configuration for odd \(N \) is clear from the inset of Fig. 2 where we plot \(s_{N+1}(\theta_1) \), assuming \(s_1 = 0 \), for different values of \(N \). Arrow points to the value \(\theta_1 \) for the first atom of the \(N = 9 \) chain.

In conclusion, the map method allows to have a direct graphical overview of the system, to get equilibrium configurations in a fast and reliable way (Fig. 1), and to find the analytical expression for the transition length (Fig. 2).

Paolo Politi and Maria Gloria Pini
Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy

Received October 10, 2008

PACS numbers: 75.75.+a, 75.30.Kz, 75.10.Hk, 05.45.-a

[1] Samir Lounis, Peter H. Dederichs, and Stefan Blügel, Phys. Rev. Lett. 101, 107204 (2008).
[2] L. Trallori et al., Phys. Rev. Lett. 72, 1925 (1994).
[3] L. Trallori et al., Int. J. Mod. Phys. B 10, 1935 (1996).
[4] L. Trallori et al., J. Appl. Phys. 76, 6555 (1994).