Helicase SUV3, Polynucleotide Phosphorylase, and Mitochondrial Polyadenylation Polymerase Form a Transient Complex to Modulate Mitochondrial mRNA Polyadenylated Tail Lengths in Response to Energetic Changes*

Dennis Ding-Hwa Wang1,2, Xuning Emily Guo1, Aram Sandaldjian Modrek1,2, Chi-Fen Chen3, Phang-Lang Chen4, and Wen-Hwa Lee3,5

From the 1Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and the 2Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan

Mammalian mitochondrial mRNA (mt-mRNA) transcripts are polyadenylated at the 3’ end with different lengths. The SUV3-PNPase complex and mtPAP have been shown to degrade and polyadenylate mt mRNA, respectively. How these two opposite actions are coordinated to modulate mt-mRNA poly(A) lengths is of interest to pursue. Here, we demonstrated that a fraction of the SUV3-PNPase complex interacts with mitochondrial polyadenylation polymerase (mtPAP) under low mitochondrial matrix inorganic phosphate (P_i) conditions. In vitro binding experiments using purified proteins suggested that SUV3 binds to mtPAP through the N-terminal region around amino acids 100–104, distinctive from the C-terminal region around amino acids 510–514 of SUV3 for PNPase binding, mtPAP does not interact with PNPase directly, and SUV3 served as a bridge capable of simultaneously binding with mtPAP and PNPase. The complex consists of a SUV3 dimer, a mtPAP dimer, and a PNPase trimer, based on the molecular sizing experiments. Mechanistically, SUV3 provides a robust single strand RNA binding domain to enhance the polyadenylation activity of mtPAP. Furthermore, purified SUV3-PNPase:mtPAP complex is capable of lengthening or shortening the RNA poly(A) tail lengths in low or high P_i/ATP ratios, respectively. Consistently, the poly(A) tail lengths of mt-mRNA transcripts can be lengthened or shortened by altering the mitochondrial matrix P_i levels via selective inhibition of the electron transport chain or ATP synthase, respectively. Taken together, these results suggested that SUV3-PNPase:mtPAP form a transient complex to modulate mt-mRNA poly(A) tail lengths in response to cellular energy changes.

RNA polyadenylation is observed in almost all living organisms. In Escherichia coli, plant mitochondria and chloroplasts, transient polyadenylation of RNA transcripts serves as signal for rapid exonucleolytic degradation (1–4). In eukaryotic cells, the nuclear-encoded mRNA requires polyadenylation for stabilization, and subsequent nuclear export and translation initiation in the cytosol (5, 6). The poly(A) tail lengths for nuclear-encoded mRNAs can be as long as 200–300 nucleotides (nt) (7). In comparison, human mitochondrial mRNAs (mt-mRNAs) have relatively shorter poly(A) tails (~50 nt), which are critical for the completion of functional translation stop codons for 7 of 13 mt-mRNAs (8, 9). Polyadenylation has also been shown to be involved in the editing of the 3’-acceptor region in mt-tRNAs (10, 11). Beyond this, the precise role of the human mitochondrial mRNA poly(A) tails remains unclear.

RNA polyadenylation is generally carried out by poly(A) polymerases (PAP), to incorporate ATP into poly(A) tails in a template-independent manner, using primarily ATP as a substrate (12). A mitochondrial specific poly(A) polymerase (mtPAP) has been shown to elongate single-stranded 3’ ends of mt-mRNA transcripts (13–16). Knocking down mtPAP by siRNA results in significant shortening of the poly(A) tails of the mt-mRNA transcripts. However, the effect on mRNA steady-state levels seems to be transcript-specific (14, 15, 17).

On the other hand, removal of 3’ poly(A) tails of mt-mRNA is thought to be coupled to degradation of the entire transcript as...
in the *E. coli* model (18, 19). Polynucleotide phosphorylase (PNPase), a 3′ to 5′ phosphate-dependent exoribonuclease in *E. coli* RNA degradosome (20), has been implicated to be involved in mt-mRNA degradation and surveillance (21). Intriguingly, PNPase has also been shown to possess 3′-polyadenylation activity via the reverse reaction in *E. coli* and the chloroplasts (4, 14, 22, 23). PNPase also has multiple functions including RNA import in the mitochondrial intermembrane space (24, 25), and degradations of cytosolic mRNA (26) and microRNA (27). In summary, the roles of mtPAP and PNPase in human mt-mRNA poly(A) length regulation remain controversial and have to be further investigated.

Previously, we demonstrated that human mitochondrial helicase, SUV3, interacts with PNPase to form a heteropentameric complex with a molecular mass of 330 kDa, capable of degrading structured single-stranded RNA (ssRNA) substrates in the presence of Pi, *in vitro* (28, 29). Inactivation of SUV3 in both yeast and human mitochondria leads to accumulation of aberrant RNA molecules (30–32). A recent study showed that treatment with either 1 μg of rabbit polyclonal antibody for SUV3, PNPase, or mtPAP (GeneTex, Irvine, CA), or rabbit IgG at 4 °C on a rotator for 2 h. Subsequently, 50 μl of bovine serum albumin (BSA)-blocked protein G-Sepharose beads (GeneTex, Irvine, CA) was added to the mixture and incubated at 4 °C on a rotator for an additional hour. The beads were washed 3 times by spinning down and replacing the supernatant with 1 ml of fresh lysis buffer. After the wash, 2× SDS-PAGE loading buffer was added to the sample, which was heated in boiling water for 10 min before loading onto a 8% SDS-PAGE gel for immunoblotting. In *Vitro Binding Experiment*—The experimental protocol was adopted from Wang et al. (29), except for GST-tagged proteins that were purified using glutathione-Sepharose 4B beads and eluted with 10 mM freshly prepared glutathione solution (GE Healthcare Life Sciences).

SUV3-PNPase-mtPAP Modulate mt-mRNA Poly(A) Tails

Co-immunoprecipitation—Clariﬁed cell lysate containing 300 μg of protein was incubated with either 1 μg of rabbit polyclonal antibody for SUV3, PNPase, or mtPAP (GeneTex, Irvine, CA), or rabbit IgG at 4 °C on a rotator for 15 min for post-drug treatments and/or dithiobis(succinimidyl propionate) cross-linking. The lysate was then clarified at maximum speed for 10 min at 4 °C.

In Vitro Binding Experiment—The experimental protocol was adopted from Wang et al. (29), except for GST-tagged proteins that were purified using glutathione-Sepharose 4B beads and eluted with 10 mM freshly prepared glutathione solution (GE Healthcare Life Sciences).

EXPERIMENTAL PROCEDURES

Tissue Culture and Drug Treatments—Normal mammary epithelial cells, MCF10A, grown to 70% confluence were treated with either 5 μg/ml of oligomycin A or 1 mM 2-deoxyglucose (2-DG) and 0.5 mM sodium azide (A2) in the background of 5 μg/ml of actinomycin D unless otherwise specified. Dithiobis(succinimidyl propionate) Cross-linking—The protocol was adopted from Smith et al. (33). Briefly, MCF10A cells were treated with 0.5 mM dithiobis(succinimidyl propionate) for 30 min and quenched with 1× PBS containing 5 mM Tris (pH 7.4) for 10 min before washing once with 1× ice-cold PBS. Then the cells were scrapped down and subjected to lysis and gel filtration.

Cell Lysate Preparation—Cells were washed 2 times with PBS, trypsinized, and lysed with 500 μl of lysis buffer (50 mM HEPES, pH 7.6, 150 mM NaCl, 2.5 mM EGTA, 10% glycerol, and 0.2% Triton X-100) at 4 °C on a rotator for 15 min for post-drug treatments and/or dithiobis(succinimidyl propionate) cross-linking. The lysate was then clarified at maximum speed for 10 min at 4 °C.

Polyadenylation Assay and Helicase Assay—12.5 ng/μl of mtPAP was incubated with 40 nm ssRNA substrate (3WRNA)-poly(A) tail lengths in low or high Pi/ATP ratios, respectively. Consistently, the poly(A) tail lengths of mt-mRNA transcripts can be lengthened or shortened by altering the mitochondrial matrix Pi levels via selective inhibition of the ETC or ATP synthase, respectively. These results suggested that SUV3 bridges PNPase and mtPAP to form a transient complex for modulating mt-mRNA poly(A) tail lengths in response to energy changes.
poly(A) tail species that were longer than 50 nt were done by Image).

Circular RT-PCR—The protocol was adopted from Slomvíc et al. (34). In brief, 5 μg of total mRNA extracted from purified mitochondria or cells was used for self-ligation overnight using T4 RNA ligase (Ambion, Grand Island, NY). The circularized RNA was purified using Qiagen RNeasy Mini Kit (Qiagen, Valencia, CA), followed by reverse transcription using gene-specific reverse primers. The first round of PCR was performed using forward primer (F1) and reverse primer (R2). The second round of nested PCR was performed using radioactively labeled forward primer (F2) and reverse primer (R2). Primers were ordered from Integrated DNA Technologies (Integrated DNA Technology, San Diego, CA) and sequences were as described in Ref. 34.

Mitochondrial Isolation, Drug Treatment, and RNA Extraction—24 plates of human embryonic kidney (HEK) 293 cells were grown to confluence, washed twice with PBS, and trypsinized. Cells were washed to confluence, washed once with PBS, and then treated with oligomycin A (Oligo) or Az and 2-DG treatments. C, control, culture media containing DMSO only. All proteins were visualized by immunoblotting. C, gel filtration (Superdex 200) fractions of whole cell lysate post 1 h of oligomycin A (Oligo) or Az and 2-DG treatments. C, control, culture media containing DMSO only. All proteins were visualized by immunoblotting. C, gel filtration (Superdex 200) fractions of whole cell lysate post 1 h of Az and 2-DG treatments. Approximate molecular masses of gel filtration fractions were determined by calibrating the column with known size markers. SUV3, mtPAP, and PNPase were resolved by SDS-PAGE and visualized by immunoblotting. D, co-immunoprecipitation of mtPAP and PNPase by immunoprecipitating SUV3 with large molecular mass fractions (*). E and F, reciprocal co-immunoprecipitation (IP) of mtPAP and PNPase with large (*) and small (**) gel filtration fractions, respectively.

RESULTS

SLUV3, PNPase, and mtPAP Form a Large Molecular Mass Complex in Vivo When the ETC Is Disrupted—To investigate the underlying mechanism that regulates mt-mRNA poly(A) dynamics, we first examined the mitochondrial enzymes that harbor the necessary activities to synthesize and process mt-mRNA poly(A) tails. The potential candidates included mtPAP, which is responsible for the polyadenylation of mt-mRNA poly(A) tails in the presence of ATP (13–16), and the SUV3-PNPase complex, which has been shown to degrade sssRNA in the presence of Pi (29). To test whether these three enzymes can function as a unit to modulate the mt-mRNA poly(A) tail lengths, co-immunoprecipitation experiments were performed. As shown in Fig. 1, A and B, immunoprecipitation of PNPase brought down SUV3 under normal culture conditions, whereas immunoprecipitation of mtPAP under the same conditions failed to bring down any detectable SUV3. Because these enzymatic activities require either ATP or Pi, we then treated cells with oligomycin A (Oligo) or Az/2-DG (a glycolysis inhibitor) to modulate the mitochondrial matrix Pi level. It was noted that import of Pi into the mitochondrial matrix is mediated by a P1/OH-antipporter at the expense of the proton gradient established by the ETC (35). Inhibiting the ETC by compounds such as Az, will result in disruption of the proton gradient, hence damping the Pi import and decreasing the matrix Pi level (36). Conversely, inhibition of the ATP synthase by oligomycin A would increase the proton gradient across the inner mitochondrial membrane, causing more Pi to be imported into the matrix (37). Intriguingly, mtPAP was coimmunoprecipitated with SUV3 only when the cells were treated with Az, but not oligomycin A (Fig. 1B).

To further validate this observation, we fractionated the whole cell lysate by size exclusion chromatography post 2-DG/Az treatment (Fig. 1C). Consistent with prior observations, the majority of SUV3 (dimer, calculated molecular mass 166 kDa) and PNPase (trimer, calculated molecular mass 250 kDa) existed in uncomplexed forms (24, 38). Yet, small portions of the two proteins co-fractionated at a peak larger than 670 kDa. In contrast, the majority of mtPAP (dimer, calculated molecular mass 132 kDa (16)) appeared to associate with a large molecular mass complex. Subsequently, the fractions immediately larger than 670 kDa (fractions 16–18) were pooled together for co-immunoprecipitation experiments. As shown in Fig. 1D, immunoprecipitation of SUV3 brought down both PNPase and mtPAP from the pooled large molecular mass fractions. Reciprocal immunoprecipitations of PNPase and mtPAP brought down each other using the same fractions (Fig. 1E), but not the low-molecular weight fractions (fractions 20–23) (Fig. 1F). Together, these results suggested that small portions of

FIGURE 1. SUV3, PNPase, and mtPAP interact in vivo to form a large molecular mass complex when the ETC is disrupted. A and B, co-immunoprecipitation assays of SUV3 by immunoprecipitating mtPAP or PNPase, respectively, using whole cell lysate post 1 h of oligomycin A (Oligo) or Az and 2-DG treatments. C, control, culture media containing DMSO only. All proteins were visualized by immunoblotting. C, gel filtration (Superdex 200) fractions of whole cell lysate post 1 h of Az and 2-DG treatments. Approximate molecular masses of gel filtration fractions were determined by calibrating the column with known size markers. SUV3, mtPAP, and PNPase were resolved by SDS-PAGE and visualized by immunoblotting. D, co-immunoprecipitation of mtPAP and PNPase by immunoprecipitating SUV3 with large molecular mass fractions (*). E and F, reciprocal co-immunoprecipitation (IP) of mtPAP and PNPase with large (*) and small (**) gel filtration fractions, respectively.
SUVD-PNPase mtPAP Modulate mt-mRNA Poly(A) Tails

SUVD-PNPase mtPAP Modulate mt-mRNA Poly(A) Tails

FIGURE 2. SUVD serves as a bridge for PNPase and mtPAP binding. A, in vitro binding assay. GST mtPAP full-length (FL) or GST proteins were bound to glutathione-Sepharose 4B beads. Group C was preincubated with increasing amounts of His-SUVD for 1 h. Subsequently, Groups A, B, and C were incubated with increasing amounts of His-PNPase, whereas Group D was incubated with increasing amounts of preformed SUVD-PNPase complex for 1 h. Post washing, the bound proteins were resolved by SDS-PAGE and visualized by immunoblotting. B, in vitro binding assay. Increasing amounts of un-tagged SUVD was preincubated with His-PNPase on Ni⁺⁺⁺ resin for 1 h. Subsequently, equal amounts of GST-mtPAP were added to the mixture and further incubated for 1 h. Post washing, the bound proteins were resolved by SDS-PAGE and visualized by immunoblotting. C, size exclusion chromatography (Superdex 200) elution profiles of the purified recombinant SUVD-PNPase-mtPAP complex and the individual proteins. The molecular masses (M.M.) of the individual proteins were determined by analytical ultracentrifugation. The molecular mass of the SUVD-PNPase-mtPAP complex was approximated from its peak elution volume. D, SDS-PAGE followed by silver staining of the complex. E, schematic representation of the SUVD-PNPase-mtPAP complex.

SUVD and PNPase form a stable complex, and only interact with mtPAP under the low matrix Pi level.

SUVD Serves as a Bridge for PNPase and mtPAP Binding—

Next, we explored how mtPAP interacts with SUVD and/or PNPase by *in vitro* binding experiments using purified recombinant mtPAP, SUVD, and PNPase. As shown in Fig. 2A, when immobilized on resin, mtPAP alone failed to pull down PNPase (Group B). However, mtPAP can pull down PNPase by supplementing SUVD (Group C). Even more PNPase could be brought down when the pre-formed SUVD-PNPase complex was utilized in lieu of the separated individual proteins (Group D). The same result was obtained in the reverse direction with PNPase immobilized on the resin. Adding SUVD enhanced the ability of PNPase to bring down mtPAP in a dosage dependent manner (Fig. 2B). To ascertain whether SUVD-PNPase-mtPAP can interact simultaneously using SUVD as a bridge, we mixed the three purified proteins *in vitro*. As shown in Fig. 2C, mixing SUVD, mtPAP, and PNPase resulted in the formation of a complex with a molecular mass ~500 kDa, determined by the gel filtration peak elution volume. The peak elution volume for the SUVD-PNPase-mtPAP complex is 10.5 ml, whereas each individual protein had peak elution volumes around 12.0 ml. Previously, the respective molecular masses of purified SUVD and PNPase were determined to be 125.6 and 207.6 kDa by an analytical ultracentrifugation (29). The molecular mass of mtPAP was determined by analytical ultracentrifugation to be 129 kDa. Simple stoichiometry suggests the complex is composed of a 1:1:1 ratio of SUVD dimer, PNPase trimer, and mtPAP dimer, which is confirmed by the silver staining result on the SUVD-PNPase-mtPAP complex peak fraction (Fig. 2D). Collectively, these results demonstrate that mtPAP interacts with the SUVD-PNPase complex through direct binding to SUVD (Fig. 2E).

N-terminal Region of SUVD Binds to C-terminal Region of mtPAP— In determining the critical binding regions of the complex, because mtPAP has low binding affinity to PNPase, we focused on interaction between SUVD and mtPAP. As shown in Fig. 3, A and B, mtPAP was selectively bound to the N-terminal region of SUVD. On the other hand, SUVD selectively bound to the C-terminal region of mtPAP (Fig. 3, E and F). By systematic deletion analysis within the critical binding regions, we found that a 5-amino acid deletion in either SUVD or mtPAP can disrupt this interaction. For SUVD, the deletion is at amino acid positions 100–104, designated as ΔNSD3, located upstream of the helicase domain (Fig. 3, C and D). The deletion for mtPAP is at amino acid positions 468–472, designated as ΔSP2, located in the finger region of mtPAP (Fig. 3, H and G). Interestingly, we have previously shown that PNPase interacts with SUVD at the region downstream of the helicase domain, as deletion of amino acids 510–514 (designated as ΔSP2) obliterates the PNPase/SUVD interaction (29). Based on the x-ray crystal structure of SUVD, ΔNSD3 is located in the N-terminal domain A, whereas ΔSP2 is situated at the linker region between domains C and D (39).
SU3 Enhances mtPAP Polyadenylation by Providing a Robust ssRNA Binding Domain—To assess if the interaction with SU3 has an impact on the polyadenylation activity of mtPAP, we used purified mtPAP and various SU3 mutants to perform polyadenylation on ssRNA in vitro (Fig. 4A). Consistent with previous studies, mtPAP can carry out 3’-polymerization on ssRNA in the presence of all four nucleotide triphosphates (14, 16), yet the activity is the highest for ATP (Fig. 4B). Interestingly, we observed that SU3 can enhance the polyadenylation activity of mtPAP (Fig. 4E, left and middle panels). To substantiate the importance of the SUV3/mtPAP protein-protein interaction in the observed cooperative activity, we attempted to employ the mtPAP binding-deficient mutant, SU3 ΔNSD3, which had the 100FYKRK104 sequence deleted. However, low solubility of the recombinant protein rendered the purification process difficult. Instead, we generated two serine substitution mutants: FYK and KRK to SSS, both of which possessed reduced mtPAP binding activities (Fig. 4, B and C) but intact helicase activities (Fig. 4D). KRK was subsequently chosen for the polyadenylation assay because it had a significantly superior expression and solubility. As shown in Fig. 4, E and F, when compared with SU3 wild-type (WT), adding SU3 KRK, even at 2-fold concentrations, did not enhance the activity of mtPAP to the same extent, suggesting a direct interaction between the two proteins is essential for the observed enhanced polyadenylation activity on ssRNA.

To further delineate how SU3 enhances the activity of mtPAP, we employed two additional SU3 mutants, K213A and RII, which were previously shown to have decreased ATPase and RNA binding activity, respectively (28, 29). As shown in Fig. 4, G–J, K213A, but not RII, had comparable enhancing activity for the polyadenylation activity of mtPAP compared with SU3 WT. Collectively, these results indicated that SU3 enhances the polyadenylation activity of mtPAP by providing a robust RNA binding domain and this cooperative mechanism does not require helicase activity of SU3.

SU3-PNPase:mtPAP Complex Modulates Poly(A) Tail Lengths in Response to Changes in Pi/ATP Ratios—As SU3-PNPase cooperatively degrade ssRNA (29) and SU3-mtPAP cooperatively add poly(A) tails to mRNA (Fig. 4), we then examined how the SU3-PNPase:mtPAP complex modulates RNA poly(A) tail lengths in vitro. As shown in Fig. 5A, the complex polyadenylated the ssRNA substrate in the presence of ATP, and efficiently degraded poly(A) tails upon the addition of P_0. On the other hand, by keeping the ATP concentration constant, the complex preferred to polyadenylate the ssRNA substrate at low P_i levels. As the P_i level rose, the complex degraded the polyadenylated ssRNA instead (Fig. 5B). These results suggested that the complex is capable of lengthening or shortening the lengths of ssRNA poly(A) tails in response to low or high P_i/ATP ratios, respectively. Next, to test whether a change in the mitochondrial matrix P_i level has an effect on altering the mt-mRNA poly(A) tail lengths in cultured cells, we used circular RT-PCR to measure the poly(A) tail lengths of mt-mRNA transcripts, ND3 and ND5, upon manipulating the matrix inorganic phosphate levels as previously described. The entire experiment was done in the presence of actinomycin D, a mitochondrial transcription inhibitor, to avoid the complications of newly synthesized mt-mRNAs. As shown, respectively, in Fig. 5, C and D, ND3 transcripts were primarily oligoadenylated.
A. Helicase ATPase Note

Mutant	Helicase	ATPase	Note
SUV3 K213A	-	-	- ATP binding
SUV3 RII (S576-S81)	-	+	- RNA binding
SUV3 FYK (100-102 to SSS)	+	+	- mtPAP binding
SUV3 KRK (102-104 to SSS)	+	+	- mtPAP binding
SUV3 SPR2 (S510-S514)	+	+	- PNPase binding

B. GST-SUV3

C. Beads WT KRK FYK

D. HD C WT KRK FYK

E. +SUV3 WT +SUV3 KRK

F. +SUV3 WT +SUV3 KRK

G. +SUV3 WT +SUV3 K213A

H. +SUV3 WT +SUV3 RII

I. +SUV3 WT +SUV3 RII

J. +SUV3 WT +SUV3 RII

FIGURE 4. SUV3 enhances the activity of mtPAP and PNPase by providing a robust ssRNA binding domain. A, summary table of the various SUV3 mutants pertinent to this study. B, protein quantification of GST-SUV3 WT, KRK, and FYK mutants by Coomassie Blue staining. 10 and 20 μl of protein-bound beads were loaded in lanes 2, 4, and 6, and lanes 1, 3, and 5, respectively. C, in vitro binding assay. Immunoblotting of His-tagged mtPAP remained bound to 20 μl of beads containing GST-SUV3 WT, KRK, and FYK after washing. D, helicase assay. Increasing amounts of SUV3 WT, KRK, and FYK mutants (5, 10, and 20 ng/μl) were incubated with the 3′ overhang helicase substrate at 37 °C for 30 min in the presence of 5 mM ATP. Lane HD, heat denatured; the reaction mixture containing the substrate was heated to 80 °C for 10 min to denature the duplex immediately before loading onto 15% native PAGE. Lane C, control, the size exclusion chromatography buffer containing no protein was added. E, F, and G, polyadenylation assays. mtPAP alone or mtPAP with SUV3 wild-type or the designated mutants were incubated with 30 nt ssRNA (3WRNA) at 37 °C in the presence of 1 mM ATP. In E, the amount of KRK used was twice that of SUV3 WT. In G and H, the respective concentrations of K213A and RII were the same as those of SUV3 WT. In F, H, and J, respective quantifications for relative abundance of poly(A) tails that were longer than 50 nt in panels E, G, and I as indicated by dashed lines. AU, arbitrary unit.

(∼8 nt), whereas ND5 transcripts were polyadenylated (∼50 nt), consistent with a previous report (40). Treatment of Az resulted in 3′ extensions of ND3 transcripts within 1 h (Fig. 5C, lanes 5–7). Conversely, when oligomycin A was administrated to block ATP synthase, most poly(A) tails were shortened to oligo(A) tails over the same time frame (Fig. 5C, lanes 2–4). Similarly, the ratio of poly(A) tails to oligo(A) tails of ND5 was drastically decreased upon oligomycin A treatment (Fig. 5C, compare lane 1 to 3), although increased concentrations of oligomycin A treatments had little effect on oligoadenylation. On the other side, treatment of Az slightly increased ND3 poly(A) tail lengths (Fig. 5D, compare lane 1 to 2). These results sug-
suggested that the change of poly(A) tail lengths of both ND3 and ND5 is responding to changes in energetic states of mitochondria.

To further substantiate this observation, we isolated metabolically active mitochondria from cultured cells and then treated with the same drugs in the presence of reduced NADH, the electron donor of the ETC, and room air. The majority of mt-mRNA transcripts from the control isolated mitochondria were in the poly(A) states (Fig. 5E, lanes 1, 4, 7, and 10), different from what is observed in the whole cell extract. We attribute that to the fact that we oversaturated the mitochondria with NADH, promoting polyadenylation of mRNA transcripts. However, more than half of the ND5 transcripts were still oligoadenylated compared with other transcripts, consistent with the rare polyadenylation of ND5 in the whole cells extract (Fig. 5E, lane 4). Upon treating the mitochondria with oligomycin A, we observed a shortening of poly(A) tails among the 4 mt-mRNA transcripts tested. On the other hand, azide treatment resulted in no apparent extensions of poly(A) tail lengths, as most transcripts were already in the poly(A) state. These results indicated that altering the energy states via manipulating the P_i levels in mitochondria has an impact on the lengths of mt-mRNA poly(A) tails.

DISCUSSION

In this communication, we demonstrated the existence of a small fraction of SUV3 bridging PNPase and mtPAP to form a complex under low mitochondrial matrix P_i conditions. SUV3 provides a robust ssRNA binding ability to enhance the polyadenylation activity of mtPAP. Furthermore, the purified SUV3-PNPase-mtPAP complex is capable of lengthening or shortening the RNA poly(A) tail lengths in low or high P_i/ATP ratios, respectively. Consistently, the poly(A) tail lengths of mt-mRNA transcripts can be lengthened or shortened by altering the inorganic phosphate (P_i) levels inside the mitochondrial matrix. These results suggested that the transient SUV3-PNPase-mtPAP complex may have a role in modulating mt-mRNA poly(A) tail lengths in response to energetic changes.

PNPase has diverse roles in the mt-mRNA metabolism depending on its localizations. It was demonstrated that the majority of PNPase is localized in the intermembrane space to regulate RNA import, raising doubts on the accessibility of PNPase to other mitochondrial matrix proteins like SUV3 (24, 25). However, using fluorescence microscopy, it was reported that both SUV3 and PNPase co-localized in distinct foci inside the mitochondrial matrix (41), consistent with a previous biochemical study demonstrating that both proteins were associated with or in close vicinity to the mitochondrial DNA nucleoids (42). In addition, a recent study utilizing a genetically targetable peroxidase enzyme that can biotinylate nearby proteins directly confirmed the presence of PNPase in the mitochondrial matrix (43). These observations indicate that a fraction of PNPase, localized in the mitochondrial matrix, may be capable to interact with other mitochondrial matrix proteins, such as SUV3 and mtPAP.

Interestingly, another recent study suggested that the LRPPRC-SLIRP complex suppresses PNPase-mediated mRNA degradation while promoting mtPAP-mediated polyadenylation *in vitro*, implying multiple layers of control in the regulation of mt-mRNA poly(A) tail lengths by mtPAP and
SUVP3-PNPase Modulate mt-mRNA Poly(A) Tails

SUVP3-PNPase. In the same study, depletion of PNPase, but not PDE12, a 2′-phosphodiesterase identified in human mitochondrial (44, 45), has shown to significantly extend poly(A) tails and abolish mRNA decay, confirming the role of PNPase as the critical exoribonuclease in mt-mRNA processing (13). Importantly, our data suggested that the majority of mtPAP is associated with a large molecular weight complex besides SUVP3-PNPase (Fig. 1). It would be interesting to test if the LRPPRC-SLIRP complex and other mt-mRNA processing complexes co-fractionate with mtPAP. Formation of the SUVP3-PNPase-mtPAP complex may require additional signals, such as phosphorylation, acetylation, and other secondary modifications, which demands further investigation.

As aforementioned, both mtPAP and PNPase possess polyadenylation activities, raising the question of which enzyme mediates polyadenylation in human mitochondria. One significant difference between the two enzymes is their substrate specificities: mtPAP has been shown to synthesize homopolymeric poly(A) tails; whereas PNPase is less specific in choosing nucleotides and usually utilizes NDP to generate heteropolymeric tails (7, 23, 46, 47). It has been reported that the chloroplast PNPase is the sole enzyme with polyadenylation activity, and the 3′ RNA extensions were found to contain up to 30% non-adenosine nucleotides (48). On the other hand, sequence analysis of the 3′ ends of human mt-mRNAs showed mainly homopolymeric tails with less than 1% of residues other than adenosine (15), suggesting that the polyadenylation of mt-mRNA is more likely to be performed by mtPAP rather than PNPase. In addition, the requirement of ADP for PNPase to carry out polyadenylation makes it unlikely to be the enzyme in action as the ADP concentration inside the matrix is in a much lower ATP concentration. Last, the discrepancy on the effect of poly(A) tail lengths upon PNPase depletion in prior studies can largely be explained by transient versus stable silencing approaches used in different studies (13, 49).

The observation that the three enzymes, SUVP3, SUVPase, and mtPAP, form a transient complex to coordinately modulate the poly(A) tail lengths of mt-mRNA is very interesting, as it is known that RNA degradation is coordinated with 3′ polyadenylation in E. coli (19). Mechanistically, it is intriguing that SUVP3 provides a robust ssRNA binding domain for both mtPAP and PNPase. In vitro enzymatic assays suggested that the interactions between mtPAP/SUVP3 and PNPase/SUVP3 are vital for their respective polyadenylase and exoribonuclease activities. Clinically, a A to G missense mutation in exon 9 (N478D) of mtPAP results in shortened mt-mRNA poly(A) tails and mitochondrial dysfunction in an Ohio Amish family (50). Structurally, Asn-478 is located outside of the enzymatic domain, but close to the critical region for SUVP3 binding (amino acids 468–472) demonstrated in this study (Fig. 3) (16). It is possible that the clinical manifestation is a direct result of the disruption of the interaction between mtPAP to SUVP3 and compromised the complex activity. Further investigation to confirm this conjecture is warranted.

On the other hand, the biological functions of mt-mRNA poly(A) tails and whether the length of poly(A) tails confers mtmRNA stability remain an enigma. Temperley et al. (51) reported that a pathogenic microdeletion (μΔ9205) of human mt-ATP6 mRNA at its 3′ end is associated with the shortened poly(A) tail and decreased stability, favoring the notion that poly(A) conveys stability. However, artificial targeting of cytosolic deadenylase (PARN) to mitochondria or overexpressing PDE12 (45) to force deadenylation of mt-mRNAs (52) showed differential effects on the steady-state levels of mt-mRNAs. Such transcript-specific stabilization or destabilization is also observed in cells depleted with either mtPAP or PNPase (13–15, 49). All in all, the length of the poly(A) does not appear to fully correlate with the stability of mt-mRNA.

Based on the data presented in this endeavor, poly(A) tails of mt-mRNA appear to lengthen and shorten via modulations of the SUVP3-PNPase-mtPAP complex in response to changes in cellular energy state. When the mitochondrial matrix P level increases, the SUVP3-PNPase complex degrades the poly(A) tails of mt-mRNA transcripts. Conversely, as the ATP level rises and matrix P level wanes, the SUVP3-PNPase complex interacts with mtPAP to incorporate excess ATP in the poly(A) tails of mt-mRNA. This observation may provide an alternative function of mt-mRNA poly(A) tails. Further genetic and biochemical investigations in this regard will be necessary to affirm this postulation.

Acknowledgments—We are grateful to Dr. Yunay Chen, Dr. Chun-Mei Hu, and Bryan Ngo for technical assistance and Dr. Yu-Hou Chen for assistance in analytical ultracentrifuge.

REFERENCES

1. Carpousis, A. J., Leroy, A., Vanzo, N., and Khemici, V. (2001) Escherichia coli RNA degradosome. Methods Enzymol. 342, 333–345
2. Coburn, G. A., Xiao, X., Briant, D. J., and Mackie, G. A. (1999) Reconstitution of a minimal RNA degradosome demonstrates functional coordination between a 3′ exonuclease and a DEAD-box RNA helicase. Genes Dev. 13, 2594–2603.
3. Hajasndorf, E., Steier, O., Coscoy, L., Teyset, L., and Rénier, P. (1994) Roles of RNase E, RNase II and PNPase in the degradation of the rpsO transcripts of Escherichia coli: stabilizing function of RNase II and efficient degradation in an ams pnp rnb mutant. EMBO J. 13, 3368–3377.
4. Yehudai-Reshoff, S., Hirsh, M., and Schuster, G. (2001) Polynucleotide phosphorylase functions as both an exonuclease and a poly(A) polymerase in spinach chloroplasts. Mol. Cell. Biol. 21, 5408–5416
5. Dreyfus, M., and Rénier, P. (2002) The poly(A) tail of mRNAs: bodyguard in eukaryotes, scavenger in bacteria. Cell 111, 611–613
6. Manley, J. L., and Proudfoot, N. J. (1994) RNA 3′ ends: formation and function, meeting review. Genes Dev. 8, 259–264
7. Colgan, D. F., and Manley, J. L. (1997) Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11, 2755–2766
8. Ojala, D., Montoya, J., and Attardi, G. (1981) RNA punctuation model of RNA processing in human mitochondria. Nature 290, 470–474
9. Anderson, S., Bankier, A. T., Barrell, B. G., de Brujin, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. L., Staden, R., and Young, I. G. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457–465
10. Yokobori, S., and Pääbo, S. (1997) Polyadenylation creates the discriminator nucleotide of chicken mitochondrial tRNA(Tyr). J. Mol. Biol. 265, 95–99
11. Tomita, K., Ueda, T., and Watanabe, K. (1996) RNA editing in the acceptor stem of squash mitochondrial tRNA(Tyr). Nucleic Acids Res. 24, 4987–4991
12. Jacob, S. T., and Schindler, D. G. (1972) Polynucleotidylnucleotide polymerase solubilized from rat liver mitochondria. Biochem. Biophys. Res. Commun.
exoribonuclease that suppresses group I intron toxicity. Cell 84, 199–209
33. Smith, A. L., Friedman, D. B., Yu, H., Carnahan, R. H., and Reynolds, A. B. (2011) ReCLIP (reversible cross-link immunoprecipitation): an efficient method for interrogation of labile protein complexes. PLoS One 6, e16206
34. Smolovic, S., Laufer, D., Geiger, D., and Schuster, G. (2005) Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol. Cell. Biol. 25, 6427–6435
35. Palmieri, F. (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch. 447, 689–709
36. Thiaudiere, E., Gallis, J. L., Dufour, S., Rousse, N., and Canioni, P. (1993) Compartmentation of inorganic phosphate in perfused rat liver. Can cytosol be distinguished from mitochondria by 31P NMR? FEBS Lett. 330, 231–235
37. Vidal, G., Gallis, J. L., Dufour, S., and Canioni, P. (1997) NMR studies of inorganic phosphate compartmentation in the isolated rat liver during acidic perfusion. Arch. Biochem. Biophys. 337, 317–325
38. Chen, H. W., Koehler, C. M., and Teitell, M. A. (2007) Human polynucleotide phosphorylase phosphorylation: location matters. Trends Cell Biol. 17, 600–608
39. Jezdzejczak, R., Wang, J., Dauter, M., Szczesny, R. J., Stepien, P. P., and Dauter, Z. (2011) Human Suv3p protein reveals unique features among SF2 helicases. Acta Crystallogr. D Biol. Crystallogr. 67, 988–996
40. Temperley, R. I., Wydro, M., Lightowers, R. N., and Chrzanowska-Lightowlers, Z. M. (2010) Human mitochondrial mRNAs-like members of all families, similar but different. Biochim. Biophys. Acta 1797, 1081–1085
41. Borowski, L. S., Dziewiorowski, A., Hejnowicz, M. C., Stepien, P. P., and Szczesny, R. J. (2013) Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci. Nucleic Acids Res. 41, 1223–1240
42. Bogenhagen, D. F., Rousseau, D., and Burke, S. (2008) The layered structure of human mitochondrial DNA nucleoid. J. Biol. Chem. 283, 3665–3675
43. Rhee, H. W., Zou, P., Udeshi, N. D., Martell, J. D., Mootha, V. K., Carr, S. A., and Ting, A. Y. (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331
44. Poulsen, J. B., Andersen, K. R., Kjer, K. H., Durand, F., Faou, P., Vestergaard, A. L., Talbo, G. H., Hoogenraad, N., Brodersen, D. E., Justesen, J., and Martensen, P. M. (2011) Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover. Nucleic Acids Res. 39, 3754–3770
45. Rorbach, J., Nicholls, T. J., and Minzuk, M. (2011) PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria. Nucleic Acids Res. 39, 7750–7763
46. Cao, G. J., and Sarkar, N. (1992) Identification of the gene for Annel RNA polymerase with spastic ataxia. Proc. Natl. Acad. Sci. U.S.A. 89, 10380–10384
47. Lin-Chao, S., Chiou, N. T., and Schuster, G. (2007) The PNPase, exosome and RNA helicases as the building components of evolutionarily-conserved RNA degradation machines. J. Biomed. Sci. 14, 523–532
48. Bollenbach, T. J., Schuster, G., and Stern, D. B. (2004) Cooperation of endo- and exonuclease in chloroplast mRNA turnover. Proc. Natl. Acad. Sci. USA. 89, 305–317
49. Slomovic, S., and Schuster, G. (2008) Stable PNPase RNAi silencing: its biological effects. Cell Cycle 5, 1080–1084
50. Das, S. K., Bhutta, S. K., Sokhi, U. K., Dash, R., Azab, B., Sarkar, D., and Fisher, P. B. (2006) Human polynucleotide phosphorylase (hPNPase old-35): an RNA degradation enzyme with pleiotrophic biological effects. Cell Cycle 5, 1080–1084
51. Das, S. K., Bhutta, S. K., Sokhi, U. K., Dash, R., Azab, B., Sarkar, D., and Fisher, P. B. (2011) Human polynucleotide phosphorylase (hPNPase-old-35): an evolutionary conserved gene with an expanding repertoire of RNA degradation functions. Oncogene 30, 1733–1743
52. Sha, Z., Vijayakumar, S., Chen, C. F., Chen, P. L., and Lee, W. H. (2004) Purified human SUV3p exhibits multiple-substrate unwinding activity upon conformational change. Biochemistry 43, 4781–4790
53. Wang, D. D., Shu, Z., Lieser, S. A., Chen, P. L., and Lee, W. H. (2009) Human mitochondrial SVU3 and polynucleotide phosphorylase form a 330-kDa heteropentamer to cooperatively degrade double-stranded RNA with a 3′-to-5′ directionality. J. Biol. Chem. 284, 20812–20821
54. Khdir, L., Wu, G., Davila, A., Proacccio, V., Wallace, D., and Lee, W. H. (2008) Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells. J. Biol. Chem. 283, 27064–27073
55. Guo, X. E., Chen, C. F., Wang, D. D., Modrek, A. S., Phan, V. H., Lee, W. H., and Chen, P. L. (2011) Uncoupling the roles of the SUV3 helicase in maintenance of mitochondrial genome stability and RNA degradation. J. Biol. Chem. 286, 38783–38794
56. Margossian, S. P., Li, H., Zassenhaus, H. P., and Butow, R. A. (1996) The DEXH box protein Suv3p is a component of a yeast mitochondrial 3′-to-5′