Neutrino and graviton rest mass estimations by a phenomenological approach

Dimitar Valev

Stara Zagora Department, Bulgarian Academy of Sciences, P.O. Box 73, 6000 Stara Zagora, Bulgaria

Abstract

The ratio between the proton and electron masses is shown to be close to the ratio between the strong and electromagnetic interaction coupling constants at Extremely Low Energy (ELE). Based on the experimental data, this relation has been extended for the weak and gravitational interactions, too. Thus, a mass relation has been found, according to which the rest mass of the Lightest Free Massive Stable Particle (LFMSP), acted upon by a particular interaction, is proportional to the coupling constant of the respective interaction at ELE. On the basis of this mass relation, the electron neutrino and graviton masses have been approximately estimated to $2.1 \times 10^{-4} \text{ eV/c}^2$ and $2.3 \times 10^{-34} \text{ eV/c}^2$, respectively. The last value is of the order of the magnitude of $\frac{hH}{c^2}$, where H is the Hubble constant.

It is worth noting that this value has been obtained by fundamental constants only, without consideration of any cosmological models.

PACS numbers: 12.10.Kt; 14.60.Lm; 04.60.-m; 04.80.Cc
Key words: neutrino mass limit; graviton mass; mass relation; coupling constant; normal hierarchy

E-mail: valev@gbg.bg
1. Introduction

Although the neutrino and the graviton belong to different particle kinds (neutral lepton and carrier of the gravity, respectively), they have some similar properties. Both particles are not acted upon by the strong and the electromagnetic interactions, which makes their detection and investigation exceptionally difficult. Besides, both have masses that are many orders of magnitude lighter than the masses of the rest particles and they are generally accepted to be massless.

Decades after the experimental detection of the neutrino by Reines and Cowan [1], it was generally accepted that the neutrino mass $\nu_0 m$ is rigorously zero. In the Fermi’s theory of β-decay [2] as well as in the electroweak theory [3, 4] and hence, in the Standard Model (SM), the neutrinos have been accepted massless. Despite this, attempts to determine the neutrino mass have been made as early as it was found. The recent experiments bound $\nu_0 m$ on the top and its upper limit has decreased millions of times in the latest experiments, as compared to the initial estimations of Pauli [5].

The first experiment, hinting that the neutrino probably possesses a mass, was carried out by Davis et al. [6]. The total flux of neutrinos from the Sun was found about three times lower than the one, predicted by theoretical solar models, thereby creating the problem for the solar neutrino deficit. This discrepancy can be explained if some of the electron neutrinos transform into another neutrino flavour. Within the frame of the SM, however, there is no place for massive neutrinos and neutrino oscillations. As a result, the detection of neutrino oscillations appears crucial for the SM and it requires its extension in direction to the GUT, SUSY, Superstring/M-theory and others.

Later, the experimental observations showed that the ratio between the atmospheric ν_μ and ν_e fluxes is less than the theoretical predictions [7, 8]. This discrepancy became known as the atmospheric neutrino anomaly. Again it could be explained by the neutrino oscillations. The crucial experiments with the 50 kton neutrino detector Super-Kamiokande found strong evidence for oscillations (and hence - mass) in the atmospheric neutrinos [9].

The direct neutrino measurements allow to bound the neutrino mass. The upper limit for the mass of the lightest neutrino flavour ν_μ was obtained from experiments for measurement of the high-energy part of the tritium β-spectrum and recent experiments yield $\sim 2 eV/c^2$ upper limit [10, 11]. As a result of the recent experiments, the upper mass limits of ν_μ and ν_τ reach $170 keV/c^2$ [12] and $18.2 MeV/c^2$ [13], respectively. The Solar and atmospheric neutrino
experiments allow to find the neutrino mass squared differences $\Delta m_{12}^2 = m_1^2 - m_2^2$, and $\Delta m_{23}^2 = m_2^2 - m_3^2$, but not the absolute value of the neutrino masses. The astrophysical constraint of the neutrino mass is $\Sigma m_\nu < 2.2 \text{ eV} / c^2$ [14]. The recent extensions of SM lead to non-zero neutrino masses, which are within the large range from $10^{-6} \text{ eV} / c^2$ to $10 \text{ eV} / c^2$.

Although the graviton hasn’t been experimentally detected yet, most of the quantum gravity models posit a neutral spin-2 particle, appearing carrier (gauge boson) of the gravity. Similarly to the case with the neutrino before 1998, the prevailing current opinion is that the graviton is massless. This opinion is connected with Einstein’s theory of general relativity, where the gravity is described by a massless field of spin 2 in a generally covariance manner. The nonzero graviton mass produces a finite range of the gravity $r_g \sim \lambda_g = \frac{h}{m_g c}$. There are two kinds of astrophysical methods for estimation of the upper limit of the graviton mass (or low limit of λ_g) – static and dynamic methods. The static methods are based on the search of difference between Yukawa potential for massive graviton and Newton potential for massless graviton. The Solar system measurements infer $\lambda_g > 2.8 \times 10^{15} m$, that is equivalent to $m_g < 4.4 \times 10^{-22} \text{ eV} / c^2$ [15]. Rich galactic clusters allow to estimate $m_g < 2 \times 10^{-29} h^{-1} \text{ eV} / c^2$ [16], where $h \approx 0.65$ is a dimensionless Hubble constant. This is the lowest limit of the graviton mass and therefore this value is used in the present paper. The dynamic methods are based on the differences of the emission and propagation of the gravitational waves from binary stellar systems in cases of massless or massive graviton. The possibilities of the astrophysical measurements to limit the graviton mass, including Laser Interferometer Space Antenna (LISA), are still of the order of the static tests magnitude in the Solar system [17]. Will and Yunes [18] suggest considerable improvement of these results for extra-Galactic massive binaries.

The theoretical estimations of the graviton mass are most often based on the assumption that the Compton wavelength of the graviton λ_g is close to the Hubble distance $c/H \sim 1.4 \times 10^{26} m$, which produces a value of the graviton mass $m_g \sim \frac{hH}{c^2} \sim 10^{-33} \text{ eV} / c^2$, where $H \approx 65 \text{ km} / \text{s} / \text{Mpc}^{-1}$ is the Hubble constant [19, 20]. Woodward et al. [21] obtain a value of the graviton mass $4.3 \times 10^{-34} \text{ eV} / c^2$ for an infinite stationary universe, but the expansion of the Universe is a fact, long ago established.

2. Determination of the coupling constants at extremely low energy

Four fundamental interactions are known - strong, electromagnetic, weak and gravitational, whose strength decreases in the direction from strong to gravitational interaction of dozens orders of magnitude. A measure for the
interaction strength is a dimensionless quantity, namely the coupling constant of the interaction (α_i), which is determined from the cross section of the respective processes. It is known that the coupling constants of the interactions are running [22, 23]. With increase of the processes energy, the coupling constant of the strong interaction decreases and reaches $\alpha_s \approx 0.11$ at 189 [24] GeV, and the rest coupling constants increase. Since the modern experiments are performed with energy of hundreds GeV, a value of the weak coupling constant, close on the electroweak scale, approaches the coupling constant of the electromagnetic interaction. The electromagnetic coupling constant increases exceptionally slow and remains $\alpha \approx 7.81 \times 10^{-3}$ even at energy $E \sim m_w c^2 \approx 80.4$ GeV [25]. The coupling constant would fulfill the role of unique property of the particular interaction when the energy is fixed. Recent unified theories predict unification of the four interactions on the Planck scale ($E \sim 10^{19}$ GeV). Close to such energy, the four interactions and coupling constants merge. Thus, with the energy increase, the interactions (and the coupling constants) converge and become more hardly differentiated from each other. A similar situation occurs with the particles since their rest masses become a negligible part of the full masses. The purpose of this paper is to relate the rest masses of the lightest stable particles, acted upon by the respective interactions with the respective coupling constants. That is why it is necessary to determine the coupling constants under conditions when the interactions (and the particles) are differentiated as much as possible and, this is the case when the energy of the processes reaches extremely low value. Thus, each coupling constant obtains a unique asymptotical value at Extremely Low Energy (ELE), which will be designated by $\alpha(0)$.

The coupling constant of the electromagnetic interaction α_e is known the fine structure constant $\alpha_e(0) = \frac{e^2}{\hbar c} = \alpha \approx 7.30 \times 10^{-3}$, where e is the elementary electrical charge, \hbar - Planck constant, c – the light velocity.

The coupling constant of the weak interaction α_w is determined by the expression:

\begin{equation}
\alpha_w = \frac{G_F m^2 c}{\hbar^3}
\end{equation}

where G_F is Fermi coupling constant, m – the interacting particle mass.

As mentioned above, it is necessary the coupling constants to be determined at ELE of the processes. The lowest-energy process, involving the weak interaction, is the neutron β - decay. The process is running extremely slowly ($\tau \sim 880$ s), and a minimum quantity of energy is released $\Delta E \approx 0.78$ MeV $\sim m_e c^2 = 0.511$ MeV. Therefore, m in expression (1) is substituted by the electron mass m_e and for the weak coupling constant at ELE, the following value is obtained:
\[\alpha_w(0) \approx \frac{G_N m_e^2 c}{\hbar^3} \approx 3.00 \times 10^{-12} \]

This value of the weak coupling constant is close to the one accepted in [26], where \(\frac{\alpha_w}{\alpha} \approx 10^{-10} \). The value of the weak coupling constant, obtained from (2) is minimal as a result of the minimal energy of the neutron \(\beta \)-decay. The rest decays involve the weak interaction, occurring with considerably higher energy and, as a result, the typical values of \(\alpha_w \) are in orders of magnitude higher than such energy. For this reason \(\alpha_w \) often determines by (1) replacing \(m \) with the pion or proton mass.

It is known [27] that in cases of slow nucleons scattering (without angular momentum) the strong coupling constant reaches a maximum value \(\alpha_s \approx 10 \div 17 \), in [28] \(\alpha_s \) is accepted \(\approx 15 \) and in [29] \(\alpha_s \approx 14 \). As a result, the strong coupling constant at \(ELE \) is accepted \(\alpha_s(0) \approx 14 \pm 1 \) in this paper. The strong coupling constant is often accepted a unit but this value corresponds to high energy of experiments within the \(GeV \) sector.

The coupling constant of the gravitational interaction is determined by the expression:

\[\alpha_g = \frac{G_N m_e m_p}{\hbar c} \approx 3.21 \times 10^{-42} \]

where \(G_N \) is the universal gravitational constant and \(m_e \) and \(m_p \) are the electron and proton masses. This estimation is a conventional medial value between \(\alpha_g = \frac{G_N m_e^2}{\hbar c} \) and \(\alpha_g = \frac{G_N m_p^2}{\hbar c} \).

Thus the coupling constant of the strong, electromagnetic, weak and gravitational interactions at \(ELE \) are 14, \(7.30 \times 10^{-3} \), \(3.0 \times 10^{-12} \) and \(3.21 \times 10^{-42} \), respectively.

3. Phenomenological mass relation for free massive stable particles

Among the hundreds observed particles, only several free particles are notable, which are stable or at least their lifetime is longer than the age of the Universe. These particles are the proton \((p) \), electron \((e) \), photon \((\gamma) \), neutrinos \((\nu) \) and hypothetical graviton \((g) \). These particles play a key role since together with the quasi-stable neutron they build the known matter in the Universe. Although according to the quantum chromodynamics the proton is composed by quarks, it has displayed itself as an undivided particle in the recent experiments. Only free massive stable particles are examined in this paper. The quarks and
gluons are bound in the hadrons by confinement and they cannot be immediately
detected in the experiments, and the photon is massless. Therefore, these
particles are not the subject of this paper.

The ratio between the proton and electron masses is \(\frac{m_p}{m_e} \approx 1836 \). On the other
side, the ratio between the strong and electromagnetic coupling constants at \(ELE \)
is \(\frac{\alpha_s(0)}{\alpha} \approx 1918 \). The two ratios differentiate by less than 5\%, which is less than
the error of \(\alpha_s(0) \). Consequently, the found relation is hardly an incidental
coincidence, therefore would be written:

\[
\frac{m_p}{m_e} \approx \frac{\alpha_s(0)}{\alpha}
\]

Thus, it is shown that the ratio between the proton and electron masses is
close to the ratio between the strong and electromagnetic coupling constants at
\(ELE \). The proton and electron are the Lightest Free Massive Stable Particles
(\(LFMSP \)), acted upon by the strong and electromagnetic interactions, respectively. This relation is important since it connects the masses of \(LFMSP \),
acted upon by the strong and electromagnetic interactions and the respective
coupling constant at \(ELE \). The relation (4) suggests that the mass of \(LFMSP \),
acted upon by the strong (or the electromagnetic) interaction is proportional to
the respective coupling constant at \(ELE \), i.e. \(m_p \approx k\alpha_s(0) \) and \(m_e \approx k\alpha \), where \(k \) is
a constant. Therefore, it is interesting to examine whether this rule is valid both
for the weak interaction, which is several orders of magnitude weaker than the
electromagnetic interaction and for the gravity, which is dozens orders of
magnitude weaker than the weak interaction. \(LFMSP \) acted upon by the weak
interaction is the electron neutrino and \(LFMSP \) acted upon by the gravity most
probably appears the hypothetical graviton. Although the rest masses of the two
particles are yet unknown, the direct neutrino mass experiments and the
theoretical models suggest the \(\nu_e \) mass between \(10^{-6} \, eV/c^2 \) and \(2 \, eV/c^2 \), i.e. \(\nu_e \) is
several orders of magnitude lighter than the electron. Again, the astrophysical
constraints allow to find the upper limits of the graviton mass and according to
these constraints, if the graviton really exists its mass would be less than \(3.1 \times 10^{-29} \, eV/c^2 \), i.e. dozens orders of magnitude lighter than \(\nu_e \). Table I presents the
obtained in Section 2 coupling constants of the interactions at \(ELE \), as well as
the masses of \(LFMSP \), acted upon by the respective interactions. The
experimental upper limits of the electron neutrino and graviton masses are
presented, too.

Table I shows that with increasing the interaction strength (coupling
constant), the mass \(m_{\text{min}} \) of \(LFMSP \) acted upon by the respective interaction also
increases. The data from Table I are presented in a double-logarithmic scale in Fig.1, which shows that the trend is clearly expressed.

TABLE I: Coupling constants of interactions at \(ELE \) and the masses of \(LFMSP \) acted upon by the respective interaction.

Fundamental Interaction	Coupling Constant	Particle	Experimental Mass (\(eV/c^2 \))	Calculated Mass (\(eV/c^2 \))
Strong	14	\(p \)	\(9.38 \times 10^8 \)	\(9.8 \times 10^8 \)
Electromagnetic	\(7.30 \times 10^{-3} \)	\(e \)	\(5.11 \times 10^5 \)	-
Weak	\(3.00 \times 10^{-12} \)	\(\nu_e \)	\(0 < m < 2 \)	\(2.1 \times 10^{-4} \)
Gravitational	\(3.21 \times 10^{-42} \)	\(g \)	\(< 3.1 \times 10^{-29} \)	\(2.3 \times 10^{-34} \)

Fig. 1: Dependence of the mass of \(LFMSP \) acted upon by a particular interaction on the coupling constant of the respective interaction at \(ELE \). The dashed line presents the approximation (5) of \(e, p \) and the upper mass limits of \(g \) and \(\nu_e \). The thin solid line presents the approximation (6) of \(e, p \) and the lowest limit mass of \(\nu_e \) taken from the models. The thick solid line presents the strict linear approximation \((S=1)\).
The points in Fig. 1, corresponding to the electron and proton masses and to
the upper limit masses of the electron neutrino and graviton, are approximated
by the least squares with a power law:

\[\text{Log} m_{\text{min}} = 0.880 \text{Log} \alpha(0) + 8.493 \]

Although this approximation is only on 4 points, the correlation found is
close and the correlation coefficient reaches \(r = 0.997 \), which supports the power
law. The slope (S) is a little smaller than a unit, but it should be reminded that
instead of the electron neutrino and graviton masses, their upper limit values are
used, which produce a certain underestimation of the S value. Therefore it can
be said that the regression is close to a linear one. Analogously, the points,
corresponding to the electron and proton masses and to the low limit of the
electron neutrino mass from the theoretical models are approximated with a
power law, too:

\[\text{Log} m_{\text{min}} = 1.196 \text{Log} \alpha(0) + 7.883 \]

This approximation is similar to (5) and the correlation is close again (\(r = 0.999 \)). Now the slope is a little bigger than a unit. The certain slope
overestimation is due to the fact that in this case instead of the still unknown
value of the electron neutrino mass, the lowest neutrino mass limit is used from
the models. Approximations (5) and (6) produce at \(\alpha_s(0) = 3.21 \times 10^{-42} \) a value
for the graviton mass in an interval from \(1.8 \times 10^{-42} \) eV\(^2\) to \(3.1 \times 10^{-29} \) eV\(^2\), i.e.
it suggests that the graviton possesses a negligible, yet a nonzero mass. These
approximations show that the mass of LFMSP, acted upon by a particular
interaction, increases with the increase of the respective coupling constant \(\alpha(0) \)
by a power law with \(S \sim 1 \), i.e. close to the linear one. The coincidence (4) of the
ratio between the proton and electron masses with the ratio between the strong
and electromagnetic coupling constants at \(ELE \) also supports a linear
dependence (without intercept) between \(m_{\text{min}} \) and \(\alpha(0) \). Hence, the experimental
data suggest a linear dependence (\(S = 1 \)) between the mass of LFMSP and the
coupling constants:

\[\text{Log} m_{\text{min}} = \text{Log} \alpha(0) + k_0 \]

where \(k_0 \) is a constant.

Expression (7) transforms into \(m_{\text{min}} = 10^{k_0} \alpha(0) = k \alpha(0) \). In this way the
experimental data and constraints suggest that the mass of LFMSP, acted upon
by a particular interaction, is proportional to the coupling constant of the
respective interaction at \(ELE \):
where k is a constant, $i = 1, 2, 3, 4$ - index for each interaction and LFMSP acted upon by a respective interaction.

Constant k can be determined by the fine structure constant ($\alpha_i \equiv \alpha$) and the electron mass ($m_{l\text{min}} \equiv m_e$) since both are measured with very high precision

$$k = \frac{m_e}{\alpha} \approx 7.00 \times 10^7 \text{eV} / c^2.$$ The substitution of this value in (8) yields the mass relation:

$$m_{l\text{min}} = \frac{m_e}{\alpha} \alpha_i(0)$$

Therefore, LFMSP corresponds to each fundamental interaction and its mass is proportional to the strength of the respective interaction.

4. Neutrino and graviton mass estimations and discussions

The found mass relation (9) can be examined by the strong interaction since the proton mass is measured with high precision. The application of the mass relation on the strong interaction yields the lightest stable hadron mass $m_p \approx 9.80 \times 10^8 \text{eV} / c^2$. Therefore, the proton mass value obtained by the mass relation would be only 4.5% higher than the experimental value of m_p. This result shows that the found mass relation possesses heuristic power. The application of the mass relation (9) on the weak interaction allows to evaluate the mass of the electron neutrino $m_{\nu e} \approx 2.1 \times 10^{-4} \text{eV} / c^2$. This value is close to the prediction of the simple SO(10) model for the lightest neutrino mass $m_{\nu e} = 2.4 \times 10^{-4} \text{eV} / c^2$ [30].

Finally, the application of the mass relation (9) on the gravitational interaction produces an estimation of the graviton mass $m_g = \frac{m_e}{\alpha} \alpha_g = \frac{G_N m_e^2 m_p}{e^2} \approx 2.3 \times 10^{-34} \text{eV} / c^2$, which is several orders of magnitude smaller than the upper limit of the graviton mass, obtained by astrophysical constraints. Thus, the graviton mass has been estimated by fundamental constants only - universal gravitational constant, electron and proton masses and elementary electrical charge. It is worth noting that this value is of the order of the magnitude of $\frac{\hbar H}{c^2}$, but by suggested approach has been obtained without consideration of any cosmological models.

The calculated masses of the four free stable particles are presented in the last column of Table I. It shows that the fitting of the calculated values and the
experimental data is satisfactory. In this way the found mass relation is remarkable since it unifies the masses of four stable particles of completely different kinds \((p, e, \nu_e \text{ and } g)\) and covers an extremely wide range of values, exceeding 40 orders of magnitude. The found mass relation allows approximate estimation of the neutrino and graviton masses, which affords the opportunity for its verification in the nearest years when the direct neutrino mass measurements are expected to reach the necessary threshold of sensitivity.

The obtained value \(m_\nu \approx 2.1 \times 10^{-4} \text{eV/c}^2\) and the results from the solar and atmospheric neutrino experiments allow to estimate the masses of the heavier neutrino flavours - \(\nu_\mu\) and \(\nu_\tau\). The results from the Super Kamiokande experiment lead to the neutrino mass squared difference \(\Delta m^2_{23} \approx 2.7 \times 10^{-3} \text{eV}^2\) [31]. Recent results on solar neutrinos provide hints that the Large Mixing Angle (LMA) Mikheyev-Smirnov-Wolfenstein (MSW) solution is more probable than Small Mixing Angle (SMA) MSW [32]. The LMA leads to \(\Delta m^2_{12} \approx 7 \times 10^{-5} \text{eV}^2\) [33] and the SMA leads to \(\Delta m^2_{12} \approx 6 \times 10^{-6} \text{eV}^2\) [34]. In this way both solutions yield \(m_\nu \approx 0.05 \text{eV/c}^2\). The most appropriate LMA yields \(m_\nu \approx 8.4 \times 10^{-3} \text{eV/c}^2\), and SMA yields \(m_\nu \approx 2.5 \times 10^{-3} \text{eV/c}^2\). Thus, the obtained values of the neutrino masses support the normal hierarchy of neutrino masses.

Now it is not clear yet what the cause for the relationship between the masses of LFMSP and the interaction coupling constants is but its existence is confirmed by the recent experimental data and constraints. Most probably the found mass relation represents an expression of a universal symmetry, including free stable particles of most diverse kinds (hadron, charged lepton, neutral lepton and carrier of the gravity).

It is interesting that the mass relation (9) is very similar to equation (10) derived in [35] by a totally different approach, namely by strong gravity model and astrophysical constraints:

\[
m = \left(\frac{\hbar^2}{G_N R_0} \right)^{1/3} \frac{q^2}{\hbar c}
\]

where \(R_0 = c/H\) is the Hubble distance and \(q\) is the “main charge”.

The mass dimension coefficient of proportionality \(m_0 = \left(\frac{\hbar^2}{G_N R_0} \right)^{1/3} \approx 1.05 \times 10^{-28} \text{kg}\) is close to \(k = \frac{m_\nu}{\alpha} \approx 1.25 \times 10^{-28} \text{kg}\).

The presence of an exceptionally small, yet nonzero mass of the graviton, involves a finite range of the gravity \(r_g \sim \lambda_g\) and Yukawa potential of the
gravitational field $\phi (r) = -\frac{G_s M}{r} \exp(-r/\kappa_g)$, where κ_g is Compton wavelength of the graviton $\kappa_g = \frac{\hbar}{m_g c} \sim c/H$. Since κ_g is in order of magnitude of the Hubble distance, the deviation of Newton potential from Yukawa potential is manifested very weakly at a distance $r << c/H$. As a result, the experimental determination of the graviton mass will be a serious challenge. Yet, it can be expected that appropriate astrophysical or laboratory experiments will be found for experimental determination of the graviton mass. The massive graviton might turn of considerable importance for the description of the processes in the nuclei of the active galaxies and quasars, the gravitational collapse as well as for the improvement of the cosmological models.

The massive graviton places other challenges before the modern unified theories. Among them are the famous van Dam-Veltman-Zakharov (vDVZ) discontinuity [36, 37] and the violation of the gauge invariance and the general covariance. Yet, there are already encouraging attempts to solve vDVZ discontinuity in anti de Sitter background [38].

5. Conclusions

Among the huge multitude of observed particles, a small group of several free particles is noticeable, which are stables or, at least their lifetimes are longer than the age of the Universe. These particles are very important since together with the quasi-stable neutron they build the known matter in the Universe.

The interaction coupling constants are determined at ELE close to $m_e c^2$ when the interactions are most different in their strength and are differentiated clearly from one another. It is shown that the ratio between the proton and electron masses is close to the ratio between the strong and electromagnetic coupling constants at ELE. Further on, based on the experimental data, a mass relation has been found, according to which the rest mass of the Lightest Free Massive Stable Particle (LFMSP), acted upon by a particular interaction, is proportional to the coupling constant of the respective interaction at ELE. This mass relation is remarkable, since it connects the masses of the particles, most important for the stability of the Universe, i.e. the stable particles, with the most substantial property of the fundamental interactions, i.e. their coupling constants. The applied approach suggests that the graviton mass is nonzero. The electron neutrino and graviton masses are approximately estimated to 2.1×10^{-4} eV/c2 and 2.3×10^{-34} eV/c2, respectively. The obtained value of the graviton mass is of the order of the magnitude of $\frac{\hbar H}{c^2}$ and this value has been found by fundamental constants only, without consideration of any cosmological models. The masses of the heavier neutrinos ν_μ and ν_τ are estimated by the results of the solar and atmospheric neutrino experiments. The
mass of ν_τ is close to $0.05 \, eV/c^2$ while the estimation of m_{ν_μ} depends to a certain extent on the MSW solution. Yet, both solutions support the normal hierarchy of the neutrino masses.

Acknowledgements

I would like to thank Prof. I. G. Koprinkov for his useful discussions.

References

1. Reines F., C. L. Cowan, Detection of the free neutrino, Phys. Rev., 92, 1953, 830-831.
2. Fermi E., Versuch einer theorie der beta-strahlen. I., Zeit. Phys., 88, 1934, 161-177.
3. Weinberg S., A model of leptons, Phys. Rev. Lett., 19, 1967, 1264-1266.
4. Salam A., Elementary particle theory: Relativistic groups and analyticity, In Nobel symposium 8, Stockholm: Almqvist and Wiksell, 1968, 367-377.
5. Pauli W., Les theories quantique du magnetisme. L'electron magnetique. In Proc. 6th Solvay congr. on phys., Bruxelles, 1930, 175-176.
6. Davis R. et al., Search for neutrinos from the Sun, Phys. Rev. Lett., 20, 1968, 1205-1209.
7. Hirata K. S. et al., Experimental study of the atmospheric neutrino flux, Phys. Lett. B, 205, 1988, 416-420.
8. Casper D. et al., Measurement of atmospheric neutrino composition with the IMB-3 detector, Phys. Rev. Lett., 66, 1991, 2561-2564.
9. Fukuda Y. et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett., 81, 1998, 1562-1567.
10. Weinheimer C. et al., High precision measurement of the tritium beta spectrum near its endpoint and upper limit on the neutrino mass, Phys. Lett. B, 460, 1999, 219-226.
11. Lobashev V. M. et al., Direct search for mass of neutrino and anomaly in the tritium beta-spectrum, Phys. Lett. B, 460, 1999, 227-235.
12. Assamagan K. et al., Upper limit of the muon-neutrino mass and charged-pion mass from momentum analysis of a surface muon beam, Phys. Rev. D, 53, 1996, 6065-6077.
13. Barate R. et al., An upper limit on the tau neutrino mass from three- and five-prong tau decays, Eur. Phys. J. C, 2, 1998, 395-406.
14. Bahcall J. N., Solar neutrinos: Where we are, where we are going. Astrophys. J., 467, 1996, 475-484.
15. Talmadge C. et al., Model-independent constraints on possible modifications of Newtonian gravity, Phys. Rev. Let., 61, 1988, 1159-1162.
16. Goldhaber A. S., M. M. Nietto, Mass of the graviton, Phys. Rev. D, 9, 1974, 1119-1121.
17. Finn L. S., P. J. Sutton, Bounding the mass of the graviton using binary pulsar observations, Phys. Rev. D, 65, 2002, 044022-044028.
18. Will C. M., N. Yunes, Testing alternative theories of gravity using LISA, Class. Quant. Grav., 21, 2004, 4367-4381.
19. Freund P. G. et al., Finite-range gravitation, Astrophys. J., 157, 1969, 857-867.
20. Gershtein S. S. et al., Evolution of the Universe and the graviton mass, Phys. Atom. Nucl., 61, 1998, 1420-1429.
21. Woodward J. F. et al., Mach’s principle and the rest mass of the graviton, Phys. Rev. D, 11, 1975, 1371-1374.
22. Bethke S. et al., Experimental investigation of the energy dependence of the strong coupling strength, Phys. Lett. B, 213, 1988, 235-241.
23. Hinchliffe I., Quantum chromodynamics, Eur. Phys. J. C, 15, 2000, 85-94.
24. Acciarri M. et al., Study of the structure of hadronic events and determination of α_s at $\sqrt{s}=130$ GeV and 136 GeV, Phys. Lett. B, 371, 1996, 137-148.
25. Mohr P. J., B. N. Taylor, Physical constants, Eur. Phys. J. C, 15, 2000, 73-74.
26. Dictionary of science, Oxford, Oxford University Press, 1999.
27. Davidov A., Atoms, nuclei and particles, Kiev, Naukova Dumka Press, 1971.
28. Gibson W., B. Pollard, Symmetry principals in elementary particle physics, Cambridge, Cambridge University Press, 1976.
29. Prokhorov A., Physical encyclopedical dictionary, Moscow, Sovyetskaya Encyclopediya Press, 1984.
30. Dermisek R., Neutrino masses and mixing, quark-lepton symmetry, and strong right-handed neutrino hierarchy, Phys. Rev. D, 70, 2004, 073016-073022.
31. Gonzalez-Garcia M. C., C. Pena-Garay, Three-neutrino mixing after the first results from K2K and KamLAND, Phys. Rev. D, 68, 2003, 093003-093012.
32. Krastev P. I., A. Y. Smirnov, Global analysis with SNO: Toward the solution of the solar neutrino problem, Phys. Rev. D, 65, 2002, 073022-073036.
33. Maltoni M. et al., Status of three-neutrino oscillations after the SNO-salt data, Phys. Rev. D, 68, 2003, 113010-113017.
34. Albright C. H., Overview of grand unified models and their predictions for neutrino oscillations, Nucl. Instr. Meth. Phys. Res. A, 472, 2001, 359-363.
35. Massa C., Is there a fundamental acceleration, Nuovo Cimento, 109, 1994, 25-33.
36. van Dam H., M. J. Veltman, Massive and mass-less Yang-Mills and gravitational fields, Nucl. Phys. B, 22, 1970, 397-411.
37. Zakharov V. I., Linearized gravitation theory and the graviton mass, JETP Lett., 12, 1970, 312-320.
38. Kogan I. I. et al., The $m\to 0$ limit for massive graviton in dS$_4$ and AdS$_4$ — How to circumvent the van Dam–Veltman–Zakharov discontinuity, Phys. Lett. B, 503, 2001, 173-180.