Characterizing S-projective modules and S-semisimple rings by uniformity

Xiaolei Zhanga, Wei Qia

a. School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, China

Corresponding author: Wei Qi, E-mail: qwrghj@126.com

Abstract

Let R be a ring and S a multiplicative subset of R. An R-module P is called uniformly S-projective provided that the induced sequence $0 \rightarrow \text{Hom}_R(P, A) \rightarrow \text{Hom}_R(P, B) \rightarrow \text{Hom}_R(P, C) \rightarrow 0$ is u-S-exact for any u-S-short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$. Some characterizations and properties of u-S-projective modules are obtained. The notion of u-S-semisimple modules is also introduced. A ring R is called a u-S-semisimple ring provided that any free R-module is u-S-semisimple. Several characterizations of u-S-semisimple rings are provided in terms of u-S-semisimple modules, u-S-projective modules, u-S-injective modules and u-S-split u-S-exact sequences.

Key Words: u-S-projective module, u-S-injective module, u-S-split u-S-exact sequence, u-S-semisimple ring.

2010 Mathematics Subject Classification: 16D40, 16D60.

1. Introduction

Throughout this article, R is always a commutative ring with identity and S is always a multiplicative subset of R, that is, 1 \in S and s_1s_2 \in S for any s_1 \in S and any s_2 \in S. Let S be multiplicative subset of R. In 2002, Anderson and Dumitrescu [1] introduced the notion of an S-Noetherian ring R, that is, for any ideal I of R there exists a finitely generated sub-ideal K of I and an element s \in S such that $sI \subseteq K$, i.e., I/K is u-S-torsion by [18]. Since then, S-analogues of other well-known classes of rings such as Artinian rings, coherent rings, almost perfect rings, GCD domains and strong Mori domains, were introduced and studied extensively in [2, 3, 4, 10, 11, 9, 15].

Now let’s go back to the definition of S-Noetherian rings. Notice that the element s \in S such that $sI \subseteq K$ is decided by the ideal I for S-Noetherian rings. This situation makes it difficult to characterize S-Noetherian rings from the perspective of module-theoretic viewpoint. In order to overcome this difficulty, Qi and Kim
et al. [13] recently introduced the notion of uniformly S-Noetherian rings R for which there exists an element $s \in S$ such that for any ideal I of R, $sI \subseteq K$ for some finitely generated sub-ideal K of I. They also introduced the notion of u-S-injective modules and finally showed that a ring R is uniformly S-Noetherian if and only if any direct sum of injective modules is u-S-injective in the case that S is a regular multiplicative set. Another “uniform” case is that of uniformly S-von Neumann regular rings introduced by the first author of this paper (see [18]).

The author in [18] first introduced u-S-flat modules using u-S-torsion modules, and then gave the notion of uniformly S-von Neumann regular rings extending von Neumann regular rings with uniformity on the multiplicative subset S. Finally, he characterized uniformly S-von Neumann regular rings by using u-S-flat modules.

The main motivation of this paper is to introduce and study the uniformly S-versions of projective modules and semisimple rings. In Section 2 of this article, we first introduce the notion of u-S-split u-S-exact sequence (see Definition 2.3). Dualizing the u-S-injective modules, we introduce the notion of u-S-projective module and show that an R-module P is u-S-projective if and only if $\text{Ext}_R^1(P, M)$ is u-S-torsion for any R-module M, if and only if any u-S-exact sequence ending at P is u-S-split (see Theorem 2.9). We also give a new local characterization of projective modules in Proposition 2.10. In Section 3 of this article, we first give the notion of a u-S-semisimple module M, that is, any u-S-shortly exact sequence with middle term M is u-S-split. And then we introduced the notion of u-S-semisimple ring over which every free module is u-S-semisimple. We prove that a ring R is a u-S-semisimple ring if and only if every R-module is u-S-semisimple, if and only if every u-S-short exact sequence is u-S-split, if and only if every R-module is u-S-projective, if and only if every R-module is u-S-injective (see Theorem 3.5). By Corollary 3.6 a u-S-semisimple ring is both uniformly S-Noetherian and uniformly S-von Neumann regular. We also show that if S is a regular multiplicative subset of R, then R is a u-S-semisimple ring if and only if R is semisimple (see Proposition 3.8). A non-trivial example of a u-S-semisimple ring which is not semisimple is given in Example 3.11. Finally, we give a new characterization of semisimple rings (see Proposition 3.12).

2. u-S-SPLIT u-S-EXACT SEQUENCES AND u-S-PROJECTIVE MODULES

Let R be a ring and S a multiplicative subset of R. Recall from [17, Definition 1.6.10] that an R-module T is called a u-S-torsion module provided that there exists an element $s \in S$ such that $sT = 0$. Suppose M, N and L are R-modules.
(1) An R-homomorphism $f : M \to N$ is called a u-S-monomorphism (resp., u-S-epimorphism) provided that $\text{Ker}(f)$ (resp., $\text{Coker}(f)$) is a u-S-torsion module.

(2) An R-homomorphism $f : M \to N$ is called a u-S-isomorphism provided that f is both a u-S-monomorphism and a u-S-epimorphism.

(3) An R-sequence $M \xrightarrow{f} N \xrightarrow{g} L$ is called u-S-exact provided that there is an element $s \in S$ such that $s\text{Ker}(g) \subseteq \text{Im}(f)$ and $s\text{Im}(f) \subseteq \text{Ker}(g)$.

(4) A u-S-exact sequence $0 \to A \to B \to C \to 0$ is called a short u-S-exact sequence.

It is easy to verify that $f : M \to N$ is a u-S-monomorphism (resp., u-S-epimorphism) if and only if $0 \to M \xrightarrow{f} N$ (resp., $M \xrightarrow{f} N \to 0$) is u-S-exact.

Suppose M and N are R-modules. We say M is u-S-isomorphic to N if there exists a u-S-isomorphism $f : M \to N$. A family \mathcal{C} of R-modules is said to be closed under u-S-isomorphisms if M is u-S-isomorphic to N and M is in \mathcal{C}, then N is also in \mathcal{C}. One can deduce from the following Lemma 2.1 that the u-S-isomorphism is actually an equivalence relation.

Lemma 2.1. Let R be a ring and S a multiplicative subset of R. Let M and N be R-modules. Suppose there is a u-S-isomorphism $f : M \to N$. Then there is a u-S-isomorphism $g : N \to M$ and $t \in S$ such that $f \circ g = t\text{Id}_N$ and $g \circ f = t\text{Id}_M$.

Proof. Let $f : M \to N$ be a u-S-isomorphism. Then there is $s \in S$ such that $sN \subseteq \text{Im}(f)$ and $s\text{Ker}(f) = 0$. For $y \in N$ pick $x \in M$ with $f(x) = sy$ and define $g(y) = sx$. Suppose $y \in N$ and pick $x_1, x_2 \in M$ such that $f(x_1) = sy = f(x_2)$. Then $x_1 - x_2 \in \text{Ker}(f)$. So $sx_1 = sx_2$. Thus g is well-defined. One can check that g is also linear. Trivially, g is a u-S-isomorphism with $f \circ g = s^2\text{Id}_N$ and $g \circ f = s^2\text{Id}_M$. □

Remark 2.2. Let R be a ring, S a multiplicative subset of R and M and N R-modules. Then the condition “there is an R-homomorphism $f : M \to N$ such that $f_S : M_S \to N_S$ is an isomorphism” does not mean “there is an R-homomorphism $g : N \to M$ such that $g_S : N_S \to M_S$ is an isomorphism”.

Indeed, let $R = \mathbb{Z}$ be the ring of integers, $S = R - \{0\}$ and \mathbb{Q} the quotient field of integers. Then the embedding map $f : \mathbb{Z} \to \mathbb{Q}$ satisfies $f_S : \mathbb{Q} \to \mathbb{Q}$ is an isomorphism. However, since $\text{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z}) = 0$, there does not exist any R-homomorphism $g : \mathbb{Q} \to \mathbb{Z}$ such that $g_S : \mathbb{Q} \to \mathbb{Q}$ is an isomorphism.

Recall that an exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is split provided that there is an R-homomorphism $f' : B \to A$ such that $f' \circ f = \text{Id}_A$.

3
Definition 2.3. Let $\xi : 0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a u-S-short exact sequence. Then ξ is said to be u-S-split (with respect to s) provided that there is $s \in S$ and R-homomorphism $f' : B \to A$ such that $f'(f(a)) = sa$ for any $a \in A$, that is, $f' \circ f = s \text{Id}_A$.

Obviously, any split exact sequence is u-S-split. Certainly, an exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ splits if and only if there exists an R-homomorphism $g' : C \to B$ such that $g \circ g' = \text{Id}_C$. Now, we give the uniformly S-version of this result.

Lemma 2.4. Let R be a ring and S a multiplicative subset of R. A u-S-short exact sequence $\xi : 0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is u-S-split if and only if there is $s \in S$ and R-homomorphism $g' : C \to B$ such that $g(g'(c)) = sc$ for any $c \in C$, that is, $g \circ g' = s \text{Id}_C$ for some $s \in S$.

Proof. Choose the R-homomorphism $f' : B \to A$ and $s' \in S$ such that $f' \circ f = s' \text{Id}_A$, $s'C \subseteq \text{Im}(g)$, $s'\text{Ker}(g) \subseteq \text{Im}(f)$ and $s'\text{Im}(f) \subseteq \text{Ker}(g)$. Define the map $g' : C \to B$ as follows. For $z \in C$, pick $y \in B$ with $g(y) = s'z$ and define $g'(z) = s'^2 y - s'f(f'(y)))$. When $g(y) = g(y') = s'z$, we pick $x \in A$ with $f(x) = s'(y - y')$, so $(s'^2 y - s'f(f'(y))) - (s'^2 y' - s'f(f'(y'])) = s'^2 (y - y') - s'f(f'(y - y')) = s'f(x) - f(f'(f(x))) = s'f(x) - s'f(x) = 0$, thus g' is well-defined. It also can be checked that g' is linear. Finally, if $g(y) = s'z$, we have $g(g'(z)) = g(s'^2 y - s'f(f'(y))) = s'^3 z$ because $s'g \circ f = 0$. Setting $s = s'^3$, we have $g \circ g' = s \text{Id}_C$. The sufficiency can be proved similarly.

Recall from [13] Definition 4.1 that an R-module E is called u-S-injective provided that the induced sequence

$$0 \to \text{Hom}_R(C, E) \to \text{Hom}_R(B, E) \to \text{Hom}_R(A, E) \to 0$$

is u-S-exact for any u-S-exact sequence $0 \to A \to B \to C \to 0$. By [13] Theorem 4.3, an R-module E is u-S-injective, if and only if for any short exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$, the induced sequence $0 \to \text{Hom}_R(C, E) \xrightarrow{g_*} \text{Hom}_R(B, E) \xrightarrow{f_*} \text{Hom}_R(A, E) \to 0$ is u-S-exact, if and only if $\text{Ext}^1_R(M, E)$ is u-S-torsion for any R-module M, if and only if $\text{Ext}^n_R(M, E)$ is u-S-torsion for any R-module M and any $n \geq 1$. We can characterize u-S-injective modules using u-S-exact sequences.

Proposition 2.5. Let R be a ring, S a multiplicative subset of R and E an R-module. Then the following statements are equivalent:

(1) E is u-S-injective;
(2) for any u-S-monomorphism $A \xrightarrow{f} B$ there exists $s \in S$ such that for any R-homomorphism $h : A \to E$, there exists an R-homomorphism $g : B \to E$ satisfying $sh = g \circ f$;

Proof. $(1) \Rightarrow (2)$: Set $C = \text{Coker}(f)$. As $0 \to A \xrightarrow{f} B \to C \to 0$ is u-S-exact, we get the u-S-epimorphism $f^* : \text{Hom}(B, E) \to \text{Hom}(A, E)$. Pick $s \in S$ with $s\text{Hom}(A, E) \subseteq \text{Im}(f^*)$. Then $sh = g \circ f$ for some linear map $g : B \to E$.

$(2) \Rightarrow (1)$: Let M be an R-module and $0 \to N \xrightarrow{i} P \xrightarrow{m} M \to 0$ a short exact sequence of R-modules with P projective. Then we have a long exact sequence $0 \to \text{Hom}_R(M, E) \to \text{Hom}_R(P, E) \xrightarrow{i^*} \text{Hom}_R(N, E) \xrightarrow{\text{Ext}_R^1(M, E)} 0$. By (2), i^* is a u-S-epimorphism. Thus $\text{Ext}_R^1(M, E)$ is u-S-torsion. So E is u-S-injective. □

Lemma 2.6. The following two statements are equivalent:

1. any u-S-short exact sequence $0 \to E \to B \to C \to 0$ beginning at E is u-S-split;
2. any short exact sequence $0 \to E \to B \to C \to 0$ beginning at E is u-S-split.

Proof. $(1) \Rightarrow (2)$: Obvious.

$(2) \Rightarrow (1)$: Let $0 \to E \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a u-S-short exact sequence. Then there is a short exact sequence $0 \to \text{Im}(f) \to B \to \text{Coker}(f) \to 0$. If we denote by $f' : E \to \text{Im}(f)$ to be the natural epimorphism, then there is an u-S-isomorphism $h : \text{Im}(f) \to E$ such that $h \circ f' = s_1\text{Id}_E$ for some $s_1 \in S$ by Lemma 2.1. Consider the following push-out:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & E & \xrightarrow{v} & X & \xrightarrow{x} & \text{Coker}(f) & \longrightarrow & 0 \\
& & \downarrow{h} & & \downarrow{x} & & \uparrow{\cong} & & \\
0 & \longrightarrow & \text{Im}(f) & \xrightarrow{i} & B & \longrightarrow & \text{Coker}(f) & \longrightarrow & 0,
\end{array}
\]

By (2), there exists $s_2 \in S$ and an R-homomorphism $w : X \to E$ such that $w \circ v = s_2\text{Id}_E$. So $w \circ x \circ f = w \circ x \circ i \circ f = w \circ v \circ h \circ f = s_1s_2\text{Id}_E$. Hence $0 \to E \to B \to C \to 0$ is u-S-split with respect to s_1s_2. □

Corollary 2.7. Let R be a ring, S a multiplicative subset of R and E an R-module. Then the following two statements hold:

1. If E is u-S-injective, then any u-S-short exact sequence $0 \to E \to B \to C \to 0$ beginning at E is u-S-split;
2. If there exists $s \in S$ such that any short exact sequence $0 \to E \to B \to C \to 0$ beginning at E is u-S-split with respect to s, then E is u-S-injective.
Proof. (1) Let $0 \to E \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a u-S-short exact sequence of R-modules. Set $h = \text{Id}_E : E \to E$ be the identity map of E. Then there exists $s \in S$ and $g : B \to E$ such that $s\text{Id}_E = g \circ f$. Hence $0 \to E \to B \to C \to 0$ is u-S-split.

(2) Let $f : A \to B$ be a u-S-monomorphism. Then there is $s_1 \in S$ such that $s_1\text{Ker}(f) = 0$. Let $g : A \to E$ be an R-homomorphism. Consider the following push-out:

$$
\begin{array}{ccccccccc}
E & \xrightarrow{h} & X & \xrightarrow{\text{Coker}(h)} & 0 \\
\downarrow{g} & & \downarrow{f} & & \downarrow{\approx} \\
A & \xrightarrow{\text{Coker}(f)} & 0,
\end{array}
$$

we have Ker(h) can be seen as a quotient of Ker(f). So $s_1\text{Ker}(f) = 0$. Hence $0 \to E \to X \to \text{Coker}(h) \to 0$ is u-S-exact, and thus u-S-split with respect to s. So there is an R-homomorphism $h' : X \to E$ such that $h' \circ h = s\text{Id}_E$. Hence $h' \circ l \circ f = h' \circ h \circ g = sg$. Note that s is independent with g. So E is u-S-injective. □

Recall that an R-module P is said to be projective provided that the induced sequence $0 \to \text{Hom}_R(P, A) \to \text{Hom}_R(P, B) \to \text{Hom}_R(P, C) \to 0$ is exact for any exact sequence $0 \to A \to B \to C \to 0$. Now we give a uniformly S-analogue of projective modules.

Definition 2.8. Let R be a ring and S a multiplicative subset of R. An R-module P is called u-S-projective provided that the induced sequence

$$
0 \to \text{Hom}_R(P, A) \to \text{Hom}_R(P, B) \to \text{Hom}_R(P, C) \to 0
$$

is u-S-exact for any u-S-exact sequence $0 \to A \to B \to C \to 0$.

In common with the classical cases, we have the following characterizations of u-S-projective modules. Since the proof is very similar with that of characterizations of u-S-injective modules (see Proposition 2.5 and [13, Theorem 4.3]), we omit the proof.

Theorem 2.9. Let R be a ring, S a multiplicative subset of R and P an R-module. Then the following statements are equivalent:

1. P is u-S-projective;
2. for any u-S-epimorphism $B \xrightarrow{g} C$ there exists $s \in S$ such that for any R-homomorphism $h : P \to C$, there exists an R-homomorphism $\alpha : P \to B$ satisfying $sh = g \circ \alpha$;
3. for any short exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$, the induced sequence $0 \to \text{Hom}_R(P, A) \xrightarrow{f^*} \text{Hom}_R(P, B) \xrightarrow{g^*} \text{Hom}_R(P, C) \to 0$ is u-S-exact;
(4) \(\text{Ext}_R^1(P, M) \) is \(u\)-\(S\)-torsion for any \(R \)-module \(M \);
(5) \(\text{Ext}_R^n(P, M) \) is \(u\)-\(S\)-torsion for any \(R \)-module \(M \) and \(n \geq 1 \).

Similar to the proof of Corollary 2.7 we have the following result.

Corollary 2.10. Let \(R \) be a ring, \(S \) a multiplicative subset of \(R \) and \(P \) an \(R \)-module. Then the following statements hold:

1. If \(P \) is \(u\)-\(S\)-projective, then any \(u\)-\(S\)-short exact sequence \(0 \to A \xrightarrow{f} B \xrightarrow{g} P \to 0 \) is \(u\)-\(S\)-split;
2. If there is \(s \in S \) such that any short exact sequence \(0 \to A \xrightarrow{f} B \xrightarrow{g} P \to 0 \) is \(u\)-\(S\)-split with respect to \(s \), then \(P \) is \(u\)-\(S\)-projective.

By Theorem 2.9 projective modules are \(u\)-\(S\)-projective. Moreover, \(u\)-\(S\)-torsion modules are \(u\)-\(S\)-projective by [13, Lemma 4.2].

Corollary 2.11. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). Let \(P \) be a \(u\)-\(S\)-torsion \(R \)-module or a projective \(R \)-module. Then \(P \) is \(u\)-\(S\)-projective.

Proposition 2.12. Let \(R = R_1 \times R_2 \) be direct product of rings \(R_1 \) and \(R_2 \), \(S = S_1 \times S_2 := \{(s_1, s_2) | s_1 \in S_1, s_2 \in S_2 \} \) a direct product of multiplicative subsets of \(R_1 \) and \(R_2 \). Set \(e_1 = (1, 0) \) and \(e_2 = (0, 1) \). Then \(P \) is a \(u\)-\(S\)-projective \(R \)-module if and only if \(Pe_i \) is a \(u\)-\(S_i\)-projective \(R_i \)-module for each \(i = 1, 2 \).

Proof. Suppose \(P \) is \(u\)-\(S\)-projective. Then \(P \cong Pe_1 \times Pe_2 \). Let \(N \) be an \(R_1 \)-module. Then, as \(R_1 \)-modules, we have \(\text{Ext}^1_R(M, N \times 0) \cong \text{Ext}^1_{R_1}(Pe_1, N) \) which is \(u\)-\(S_1\)-torsion. Consequently, \(Pe_1 \) is a \(u\)-\(S_1\)-projective \(R_1 \)-module. Similarly, \(Pe_2 \) is a \(u\)-\(S_2\)-projective \(R_2 \)-module.

On the other hand, suppose \(Pe_i \) is a \(u\)-\(S_i\)-projective \(R_i \)-module for each \(i = 1, 2 \). Let \(N \) be an \(R \)-module. Then \(N \cong Ne_1 \times Ne_2 \). So \(\text{Ext}^1_R(P, N) \cong \text{Ext}^1_{R_1}(Pe_1, Ne_1) \times \text{Ext}^1_{R_2}(Pe_2, Ne_2) \) which is \(u\)-\(S\)-torsion. Consequently, \(P \) is a \(u\)-\(S\)-projective \(R \)-module.

Recall from [18] that an \(R \)-module \(F \) is \(u\)-\(S\)-flat if and only if \(\text{Tor}^1_R(M, F) \) is \(u\)-\(S\)-torsion for any \(R \)-module \(M \).

Proposition 2.13. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). If \(P \) is a \(u\)-\(S\)-projective \(R \)-module, then \(P \) is \(u\)-\(S\)-flat.

Proof. Let \(P \) be a \(u\)-\(S\)-projective \(R \)-module, \(M \) an \(R \)-module and \(E \) an injective cogenerator. Then there is an element \(s \in S \) such that \(s\text{Ext}^1_R(P, \text{Hom}_R(M, E)) = 0 \) by Theorem 2.9. By [7, Lemma 2.16(b)], we have \(s\text{Hom}_R(\text{Tor}^1_R(P, M), E) = 0 \). Let \(f : \text{Tor}^1_R(P, M) \to E \) be an \(R \)-homomorphism. Since \(E \) is injective, there is an \(R \)-homomorphism \(g : \text{Tor}^1_R(P, M) \to E \) such that \(f = g \circ i \) where \(i : s\text{Tor}^1_R(P, M) \to \text{Tor}^1_R(P, M) \).
$\text{Tor}^R_1(P, M)$ is the embedding map. Since $s\text{Hom}_R(\text{Tor}^R_1(P, M), E)) = 0$, we have $f(sx) = g(sx) = sg(x) = 0$ for any $x \in \text{Tor}^R_1(P, M)$. Thus $\text{Hom}_R(s\text{Tor}^R_1(P, M), E) = 0$. So $s\text{Tor}^R_1(P, M) = 0$ since E is an injective cogenerator. Consequently, P is u-S-flat.

Proposition 2.14. Let R be a ring and S a multiplicative subset of R. Then the following statements hold.

1. Any finite direct sum of u-S-projective modules is u-S-projective.
2. Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a u-S-exact sequence. If C is u-S-projective, then A is u-S-projective if and only if so is B.
3. Let $A \to B$ be a u-S-isomorphism. Then A is u-S-projective if and only if B is u-S-projective.
4. Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a u-S-split u-S-exact sequence. If B is u-S-projective, then A and C are u-S-projective.

Proof. We only prove (4) since the proof of (1)-(3) is dual to that of [13, Proposition 4.7].

(4): Let X be a module. We will prove that $\text{Ext}^1_R(C, X)$ is annihilated by some element of S. Let $h : C \to B$ such that $g \circ h = s\text{Id}_C$ with $s \in S$. Then g, h induce the maps $g' : \text{Ext}^1_R(C, X) \to \text{Ext}^1_R(B, X)$ and $h' : \text{Ext}^1_R(B, X) \to \text{Ext}^1_R(C, X)$ with $h' \circ g' = s\text{Id}_{\text{Ext}^1_R(C, X)}$. As $t\text{Ext}^1_R(B, X) = 0$ for some $t \in S$, we get $s\text{Ext}^1_R(C, X) = 0$. The “$A$-part” of the proof goes similarly.

It is well-known that any direct sum of projective modules is projective. However, the following example shows that a direct sum of u-S-projective modules is not necessarily u-S-projective.

Example 2.15. Let $R = \mathbb{Z}$ be the ring of integers, p a prime in \mathbb{Z} and $S = \{p^n | n \in \mathbb{N}\}$. Let $M_n = \mathbb{Z}/\langle p^n \rangle$ for each $n \geq 1$. Then M_n is u-S-torsion and thus u-S-projective. Set $N = \bigoplus_{n=1}^\infty M_n$. Note that $\text{Ext}^1_\mathbb{Z}(\mathbb{Z}/\langle p^n \rangle, \mathbb{Z}/\langle p^m \rangle) \cong \mathbb{Z}/\langle p^{\min(m,n)} \rangle$.

We have $\text{Ext}^1_\mathbb{Z}(N, N) \cong \prod_{n \in \mathbb{N}} \left(\bigoplus_{m \in \mathbb{N}} \mathbb{Z}/\langle p^{\min(m,n)} \rangle \right) \cong \prod_{n \in \mathbb{N}} \left(\bigoplus_{m \in \mathbb{N}} \mathbb{Z}/\langle p^{\min(m,n)} \rangle \right)$.

Note that the abelian group $\prod_{n \in \mathbb{N}} \left(\bigoplus_{m \in \mathbb{N}} \mathbb{Z}/\langle p^{\min(m,n)} \rangle \right)$ contains a subgroup $\prod_{n \in \mathbb{N}} \mathbb{Z}/\langle p^n \rangle$.

Since $\prod_{n \in \mathbb{N}} \mathbb{Z}/\langle p^n \rangle$ is not u-S-torsion, we have $\text{Ext}^1_\mathbb{Z}(N, N)$ is also not u-S-torsion. Consequently N is not u-S-projective.

Let p be a prime ideal of R. We say an R-module P is (simply) u-p-projective provided that P is $u-(R \setminus p)$-projective.
Proposition 2.16. Let R be a ring and P an R-module. Then the following statements are equivalent:

1. P is projective;
2. P is u-p-projective for any $p \in \text{Spec}(R)$;
3. P is u-m-projective for any $m \in \text{Max}(R)$.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$: Trivial.

$(3) \Rightarrow (1)$: Let M be an R-module. Then $\text{Ext}^1_R(P, M)$ is $(R \setminus m)$-torsion. Thus for any $m \in \text{Max}(R)$, there exists $s_m \in R \setminus m$ such that $s_m \text{Ext}^1_R(P, M) = 0$. Since the ideal generated by $\{s_m \mid m \in \text{Max}(R)\}$ is R, we have $\text{Ext}^1_R(P, M) = 0$. So P is projective. □

3. u-S-semisimple modules and u-S-semisimple rings

Let R be a ring. Recall from [14] that an R-module M is semisimple provided that it is a direct sum of simple modules. By [14, Proposition 4.1] an R-module M is semisimple if and only if every submodule is a direct summand of M. So M is semisimple if and only if any short exact sequence $0 \to A \to M \to C \to 0$ is split.

Utilizing this characterization, we introduce the notion of u-S-semisimple module.

Definition 3.1. Let R be a ring and S a multiplicative subset of R. An R-module M is called u-S-semisimple provided that any u-S-short exact sequence $0 \to A \to M \to C \to 0$ is u-S-split.

Obviously, u-S-torsion modules are u-S-semisimple. Certainly, the class of u-S-semisimple modules is closed under u-S-isomorphisms. We can deduce that semisimple modules are also u-S-semisimple from the following lemma.

Lemma 3.2. An R-module M is u-S-semisimple if and only if any short exact sequence $0 \to L \to M \to N \to 0$ is u-S-split.

Proof. The “only if part” is clear. To prove the converse, let $0 \to A \xrightarrow{f} M \xrightarrow{g} C \to 0$ be a u-S-short exact sequence. Consider the natural exact sequence $0 \to \text{Ker}(g) \to M \xrightarrow{g} \text{Im}(g) \to 0$. Then there is an R-homomorphism $g'_1 : \text{Im}(g) \to M$ and $s \in S$ such that $g_1 \circ g'_1 = s \text{Id}_{\text{Im}(g)}$. Let $i : \text{Im}(g) \to C$ be the embedding map. Then by Lemma 2.1, there exists a u-S-isomorphism $j : C \to \text{Im}(g)$ such that $i \circ j = s' \text{Id}_C$ for some $s' \in S$. Setting $g' = g'_1 \circ j$, we have $g \circ g' = ss' \text{Id}_C$. So the u-S-short exact sequence $0 \to A \xrightarrow{f} M \xrightarrow{g} C \to 0$ is u-S-split by Lemma 2.4. □

Proposition 3.3. Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a u-S-short exact sequence. If B is u-S-semisimple, then A and C are u-S-semisimple.
Proof. Let $a : X \to A$ be a u-S-monomorphism. Since f and a are u-S-monomorphisms, so is their composition $f \circ a : X \to B$. Indeed, if $t \text{Ker}(f) = 0$ and $t' \text{Ker}(a) = 0$ with $t, t' \in S$, then $tt' \text{Ker}(f \circ a) = 0$. As B is u-S-semisimple, $w \circ f \circ a = s \text{Id}_X$ for some R-homomorphism $w : B \to X$ and some $s \in S$. So $0 \to X \to A \to Y \to 0$ u-S-splits, where $Y = \text{Coker}(a)$. Similarly, let $j : C \to K$ be a u-S-epimorphism. As g and j are u-S-epimorphisms, so is their composition $j \circ g : B \to K$. Indeed, if $t K \subseteq \text{Im}(j)$ and $t'C \subseteq \text{Im}(g)$ with $t, t' \in S$, then $tt'K \subseteq \text{Im}(j \circ g)$. As B is u-S-semisimple, $j \circ g \circ w = s \text{Id}_K$ for some linear map $w : K \to B$ and some $s \in S$. Let $M = \text{Ker}(j)$, then $0 \to M \to C \to K \to 0$ u-S-splits by Lemma 2.4.

Recall that a ring R is semisimple provided that R is semisimple as an R-module. Note that a ring R is semisimple if and only if any free R-module is semisimple by [14, Proposition 4.5]. To give a “uniform” version of semisimple rings, we define u-S-semisimple rings by considering all free R-modules.

Definition 3.4. Let R be a ring and S a multiplicative subset of R. R is called a u-S-semisimple ring provided that any free R-module is u-S-semisimple.

Obviously, all semisimple rings are u-S-semisimple for any multiplicative subset S of R. The next result gives various characterizations of u-S-semisimple rings.

Theorem 3.5. Let R be a ring and S a multiplicative subset of R. Then the following statements are equivalent:

1. R is a u-S-semisimple ring;
2. any R-module is u-S-semisimple;
3. any u-S-short exact sequence is u-split;
4. any short exact sequence is u-S-split;
5. $\text{Ext}^1_R(M, N) = 0$ is u-S-torsion for any R-modules M and N;
6. any R-module is u-S-projective;
7. any R-module is u-S-injective.

Proof. (1) \Rightarrow (2): Let M be an R-module. There exists an exact sequence $0 \to K \to F \to M \to 0$ with F free R-module. By Proposition 3.3, M is u-S-semisimple.

(2) \Rightarrow (3): Let $\xi : 0 \to A \to B \to C \to 0$ be a u-S-short exact sequence. Since B is u-S-semisimple, the u-S-short exact sequence ξ is u-S-split.

(3) \Rightarrow (2): Let M be an R-module and $0 \to A \to M \to B \to 0$ a u-S-short exact sequence. By (3), $0 \to A \to M \to B \to 0$ is u-S-split. So M is u-S-semisimple.

(2) \Rightarrow (1) and (3) \Rightarrow (4): Trivial.
(4) \Rightarrow (6): Let M be an R-module and $0 \to K \to P \to M \to 0$ be a short exact sequence with P projective. Then M is u-S-projective by Proposition 2.14.

(5) \Leftrightarrow (6): This equivalence follows from Theorem 2.7.

(5) \Leftrightarrow (7): This equivalence follows from [13, Theorem 4.3].

(6) \Rightarrow (3): Let $0 \to N \to K \to M \to 0$ be a u-S-short exact sequence. Since M is a u-S-projective module, then $0 \to N \to K \to M \to 0$ is u-S-split by Corollary 2.10.

Corollary 3.6. Let R be a ring and S a multiplicative subset of R. Suppose R is a u-S-semisimple ring. Then R is both u-S-Noetherian and u-S-von Neumann regular. Consequently, there exists an element $s \in S$ such that for any ideal I of R there is an R-homomorphism $f_I : R \to I$ satisfying $f_I(i) = si$ for any $i \in I$.

Proof. Let $\Gamma := \{I\}_{I \subseteq R}$ be the set of all ideals of R. Considering the natural short exact sequence $0 \to \bigoplus_{I \in \Gamma} I \xrightarrow{i} \bigoplus_{I \in \Gamma} R \xrightarrow{\pi} \bigoplus_{I \in \Gamma} R/I \to 0$, we have an R-homomorphism $i' : \bigoplus_{I \in \Gamma} R \to \bigoplus_{I \in \Gamma} I$ such that $i' \circ i = s\text{Id}_{\bigoplus_{I \in \Gamma} I}$ for some $s \in S$. So the natural embedding map $\text{Im}(i') \hookrightarrow \bigoplus_{I \in \Gamma} I$ is a u-S-isomorphism. Thus the set $\Gamma := \{I\}_{I \subseteq R}$ is uniformly S-finite (see [13] for example) since the I-th component of $\text{Im}(i')$ is finitely generated for any ideal I of R. So R is a uniformly S-Noetherian ring. Since any R-module is u-S-projective by (4) \Rightarrow (6) of Theorem 3.5 we have R is uniformly S-von Neumann regular by Proposition 2.13.

Let $\Gamma := \{I\}_{I \subseteq R}$ be the set of all ideals of R. Since R is uniformly S-Noetherian, there exists an element $s \in S$ such that for any ideal $I \in \Gamma$ there is a finitely generated sub-ideal K of I satisfying $sI \subseteq K$. Since R is uniformly S-von Neumann regular, there is an element $s' \in S$ such that for any finitely generated ideal K of R there is an idempotent $e \in K$ such that $s'(K/\langle e \rangle) = 0$ by [13, Theorem 3.13]. Let $f : R \to I$ be the R-homomorphism given by $f(1) = ss'e$. Then we have $f(i) = ss'\ i$ for any $i \in I$.

Certainly, if R is a u-S-semisimple ring, then R is u-S-semisimple as an R-module. However, the following example shows that the converse does not hold in general.

Example 3.7. Let $R = \mathbb{Z}$ be the ring of all integers and the multiplicative subset $S = \mathbb{Z}\setminus\{0\}$. Let $\langle n \rangle$ be the ideal generated by $n \in \mathbb{Z}$, and consider the exact sequence $0 \to \langle n \rangle \xrightarrow{i} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/\langle n \rangle \to 0$. Set $i' : \mathbb{Z} \to \langle n \rangle$ to be the \mathbb{Z}-homomorphism satisfying $i'(1) = n$. Then $i'(i(m)) = nm$ for any $m \in \langle n \rangle$. Thus \mathbb{Z} is a u-S-semisimple \mathbb{Z}-module. Since R is not uniformly S-von Neumann regular by [13, Example 3.15], R is not a u-S-semisimple ring by Corollary 3.6.
Moreover, the following result shows that any u-S-semisimple ring is in fact a semisimple ring in the case that S is regular multiplicative subset of R, i.e., the multiplicative set S is composed of non-zero-divisors.

Proposition 3.8. Let R be a ring and S a regular multiplicative subset of R. Then R is a u-S-semisimple ring if and only if R is a semisimple ring.

Proof. The “if part” is clear. To prove the converse, let R be a u-S-semisimple ring, where each element in S is a non-zero-divisor. There exists an element $s \in S$ such that for any ideal I of R there is an R-homomorphism $f : R \to I$ satisfying $f(i) = si$ for any $i \in I$ by Corollary 3.6. Set $I = \langle s^2 \rangle$. Then $s^2 f(1) = f(s^2) = s^3$. Let $f(1) = s^2 r \in I$ for some $r \in R$. Then $s^4 r = s^3$. Since s is a non-zero-divisor, we have $sr = 1$ and thus s is a unit. Consequently, R is a semisimple ring. \[\Box\]

Suppose R is u-S-semisimple as an R-module for a regular multiplicative subset S of R. We must note that R is not necessarily a semisimple ring.

Example 3.9. Let R be a non-field domain and $S = R \setminus \{0\}$ the set of all nonzero elements in R. Then R is obviously not a semisimple ring. However, R is u-S-semisimple as an R-module. Indeed, let I be an nonzero ideal of R and $0 \neq s \in I$. Let $f : R \to I$ be an R-homomorphism satisfying $f(1) = s$. Then we have $f(i) = si$ for any $i \in I$. Hence R is u-S-semisimple as an R-module by Lemma 3.2.

We also have the following direct product property of u-S-semisimple rings.

Proposition 3.10. Let $R = R_1 \times R_2$ be direct product of rings R_1 and R_2 and $S = S_1 \times S_2$ a direct product of multiplicative subsets of R_1 and R_2. Then R is a u-S-semisimple ring if and only if R_i is a u-S_i-semisimple ring for each $i = 1, 2$.

Proof. Follows by Proposition 2.12 and Theorem 3.5. \[\Box\]

The following non-trivial example shows that the condition that “S is a regular multiplicative subset of R” in Proposition 3.8 cannot be removed.

Example 3.11. Let R_1 be a semi-simple ring and R_2 a non-semi-simple ring. Denote by $R = R_1 \times R_2$. Then R is not a semi-simple ring. Set $S = \{(1,1),(1,0)\}$ which is a multiplicative subset of R. Then R is trivially a u-S-semi-simple ring by Proposition 3.10.

Let \mathfrak{p} be a prime ideal of R. We say a ring R is (simply) a u-\mathfrak{p}-semisimple ring provided R is a u-$(R \setminus \mathfrak{p})$-semisimple ring. The final result gives a new characterization of semisimple rings.

Proposition 3.12. Let R be a ring. Then the following statements are equivalent:
(1) R is a semisimple ring;
(2) R is a u-p-semisimple ring for any $p \in \text{Spec}(R)$;
(3) R is a u-m-semisimple ring for any $m \in \text{Max}(R)$.

Proof. (1) \Rightarrow (2): Let P be an R-module and $p \in \text{Spec}(R)$. Then P is projective, and thus is u-p-projective. So R is a u-p-semisimple ring by Theorem 3.5.

(2) \Rightarrow (3): Trivial.

(3) \Rightarrow (1): Let M be an R-module. Then M is u-m-projective for any $m \in \text{Max}(R)$. Thus M is projective by Proposition 2.16. So R is a semisimple ring. \square

Acknowledgement.
The authors would like to thank the reviewers for many valuable suggestions. The first author was supported by the National Natural Science Foundation of China (No. 12061001).

References
[1] D. D. Anderson, T. Dumitrescu, S-Noetherian rings, Commun. Algebra 30 (2002), 4407-4416.
[2] D. D. Anderson, A. Hamed, M. Zafrullah, On S-GCD domains, J. Algebra Appl. (2019), 1950067 (14 pages).
[3] S. Bazzoni, L. Positselski, S-almost perfect commutative rings, J. Algebra 532 (2019), 323-356.
[4] D. Bennis, M. El Hajoui, On S-coherence, J. Korean Math. Soc. 55 (2018), no. 6, 1499-1512.
[5] L. Fuchs, L. Salce, Modules over Non-Noetherian Domains, Providence, AMS, 2001.
[6] S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, vol. 1371, Berlin: Springer-Verlag, 1989.
[7] R. Gobel, J. Trlifaj, Approximations and Endomorphism Algebras of Modules, De Gruyter Exp. Math., vol. 41, Berlin: Walter de Gruyter GmbH & Co. KG, 2012.
[8] J. S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics Series, vol. 29, New York: Longman Scientific and Technical, 1986.
[9] H. Kim, M. O. Kim, J. W. Lim, On S-strong Mori domains, J. Algebra 416 (2014), 314-332.
[10] J. W. Lim, A Note on S-Noetherian Domains, Kyungpook Math. J. 55 (2015), 507-514.
[11] J. W. Lim, D. Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra 218 (2014), 2099-2123.
[12] C. Năstăsescu, C. Nita, Objects noethériens par rapport à une sous-catégorie épaisse d’un catégorie abélienne, Rev. Roum. Math. Pures et Appl. 9 (1965), 1459-1468.
[13] W. Qi, H. Kim, F. G. Wang, M. Z. Chen, W. Zhao, Uniformly S-Noetherian rings, https://arxiv.org/abs/2201.07913.
[14] J. Rotman, An Introduction to Homological Algebra, Second edition, Universitext, New York: Springer, 2009.
[15] E. S. Sevim, U. Tekir, S. Koc, S-Artinian rings and finitely S-cogenerated rings, J. Algebra Appl. (2020), 2050051 (16 pages).
[16] B. Stenström, Rings of Quotients, Die Grundlehren Der Mathematischen Wissenschaften, Berlin: Springer-Verlag, 1975.
[17] F. G. Wang, H. Kim, *Foundations of Commutative Rings and Their Modules*, Singapore: Springer, 2016.

[18] X. L. Zhang, *Characterizing S-flat modules and S-von Neumann regular rings by uniformity*, Bull. Korean Math. Soc., 59 (2022), no. 3, 643-657.