Progressive multifocal leukoencephalopathy and sarcoidosis under interleukin 7

The price of healing

Aurélien Guffroy, MD, PhD, Morgane Solis, PharmD, PhD, Vincent Gies, PharmD, PhD, Yannick Dieudonne, MD, Cornelia Kuhnert, MD, Cédric Lenormand, MD, PhD, Laurent Kremer, MD, PhD, Anne Molitor, PhD, Raphaël Carapito, PhD, Yves Hansmann, MD, PhD, Vincent Poindron, MD, PhD, Thierry Martin, MD, PhD, Sandrine Hirschi, MD, and Anne-Sophie Korganow, MD, PhD

Neurol Neuroimmunol Neuroinflamm 2020;7:e862. doi:10.1212/NXI.0000000000000862

Abstract

Objective
To report the association of JC virus infection of the brain (progressive multifocal encephalopathy [PML]) during the course of sarcoidosis and the challenging balance between immune reconstitution under targeted cytokine interleukin 7 (IL7) therapy for PML and immunosuppression for sarcoidosis.

Methods
Original case report including deep sequencing (whole-exome sequencing) to exclude a primary immunodeficiency (PID) and review of the literature of cases of PML and sarcoidosis.

Results
We report and discuss here a challenging case of immune reconstitution with IL7 therapy for PML in sarcoidosis in a patient without evidence for underlying PID or previous immunosuppressive therapy.

Conclusions
New targeted therapies in immunology and infectiology open the doors of more specific and more specialized therapies for patients with immunodeficiencies, autoimmune diseases, or cancers. However, before instauration of these treatments, the risk of immune reconstitution inflammatory syndrome and potential exacerbation of an underlying disease must be considered. It is particularly true in case of autoimmune disease such as sarcoidosis or lupus.
Progressive multifocal encephalopathy (PML) is a devastating demyelinating disease of the brain white matter described for the first time by Aström and colleagues in 1958 in a context of hematologic malignancy. PML is the consequence of the glial cell opportunistic infection by the human JC virus (JCV). Although asymptomatic JCV infection usually occurs in childhood and remains clinically silent in adult throughout life, active JCV replication in the brain could occurs in primary or secondary immunodeficiencies (mainly AIDS and hematologic malignancies) leading to PML. Immunosuppressive or immunomodulatory drugs such as natalizumab in MS or rituximab have already been linked to PML, and some cases have been reported in sarcoidosis with severe CD4+ lymphopenia. Currently, achievement of immune reconstitution is the only curative option. In this view, interleukin 7 (IL7) or anti-PD1 therapies have been suggested to help the control of JCV in standing the immune response to the virus.

Case report
A 45-year-old man with PML was referred for acute respiratory failure and hypercalcemia after IL7 treatment in the context of underlying thoracic sarcoidosis. His medical history started 3 months with progressive dyspnea and cough revealing a mild micronodular infiltrate and mediastinal lymphadenopathy on the chest CT (figure). A bronchial biopsy showed a noncaseating granuloma. He developed severe lymphopenia up to 350/mm³ (normal > 1,500/mm³). Concomitantly, cognitive impairment (BREF 10/18; MMSE 25/30), frontal syndrome with perseveration, aphasia, and speech disturbance were noticed. First referred in psychiatry for unusual behavior, he was then hospitalized in the neurology department where the diagnosis of PML was made based on suggestive MRI demyelinating lesions of the white matter and positive JCV load in serum and CSF (figure and table 1). At this time, he did not receive any therapy for sarcoidosis. His cognitive impairment became worse (BREF 7/18; MMSE 17/30) during the first days of hospitalization, and a compassionate regimen of IL7 was started. Thanks to a 4-week regimen of IL7 at 10 mg/kg/wk, the neurologic symptoms improved, and the viral load fell to undetectable value (figure and table 1). Recent sharply demarcated erythema with fine scaling of seborrheic areas (presternal region and hairy zones of the face, scalp, and groin) along with erythematous-squamous plaques of the elbows was noticed, strongly suggestive of either sebopsoriasis or profuse seborrheic dermatitis. Skin biopsy with histopathologic examination demonstrated only nonspecific dermatitis without any granuloma, thus ruling out psoriasiform sarcoidosis. At the same time, the patient had

Figure PML and sarcoidosis evolution

Glossary
BREF = "Batterie rapide d’efficience frontale" test (also called Dubois’ test); IRIS = immune reconstitution inflammatory syndrome; JCV = JC virus; MMSE = Mini Mental State Examination; PID = primary immunodeficiency; PML = progressive multifocal encephalopathy; STAT1 GOF = gain-of-function in STAT1 (signal transducer and activator of transcription 1) gene.
hypercalcemia and required oxygen with a serious worsening of his micronodular lung infiltrate (figure). Bronchoalveolar lavage showed a predominant lymphocytosis (86%) with a CD4:CD8 ratio and negative microbiology. One 25-OH-vitamin D3 activity was elevated (143 ng/L, normal <90). Flare-up of sarcoidosis was suspected. He was then transferred to the intensive care unit for acute respiratory failure with a huge worsening of his interstitial lung disease treated with nasal oxygen, and hyperhydration was given with bisphosphonates (pamidronate 90 mg IV) to control calcemia (figure).

Several recent observations and cases series support the hypothesis of underlined inherited immunodeficiency in PML. Moreover, granuloma is a frequent symptom revealing a primary immunodeficiency (PID) (in almost 20% of cases in common variable immunodeficiency for example). In this way, we decide to perform thorough immunophenotyping and genetic explorations. Analysis of his immune status as well as whole-exome sequencing analysis of the patient with his 2 parents did not reveal any evidence for PID.

IL7 was stopped. An immunosuppressive treatment of sarcoidosis was introduced and associated with a tight control of blood JCV load (table 1). Solumedrol (40 mg, twice a day) was started, carefully relayed after 5 days by moderate dose of oral steroids (prednisone 30 mg/d) with a decreasing protocol for 6 months and prophylactic treatments (cotrimoxazole and valaciclovir). In addition, hydroxychloroquine (400 mg/d) was started as a steroid-sparing agent. Under these therapies, sarcoidosis and psoriasis improved. PML did not

Table 1 Clinical and biological features

	Diagnosis	After 4 wk of IL7	M+1	M+3	M+6	
Clinical symptoms						
Weight	62	63	65	65	65	
Fever (>38.2°C)	No	Yes	Yes	No	No	
Dyspnea (NYHA)	I/IV	II/IV	I/IV	No	No	
Confusion	Yes	No	No	No	No	
Aphasia	Yes	No	No	No	No	
BREF	7/18	ND	ND	ND	18/18	
MMSE	17/30	ND	ND	ND	30/30	
Splenomegaly	No	No	Yes*	No	No	
Autoimmune manifestations	No	No	Yes (psoriasis flare-up)	Yes (psoriasis flare-up)	No	
Therapies	None	IL7	Steroids + HCQ	Steroids + HCQ	HCQ alone	
Biological parameters						
Lymphocyte count (/mm3)	340	400	400	540	560	
CD4+ T cells	120	NA	141	150	150	
Hypercalcemia (mmol/L)	No	NA	Yes (3.1)	No	No	
1-25-OH-VitD3	NA	NA	143 ng/L (N < 90)	NA	Normal	
Conversion enzyme activity	65.8	NA	Normal	Normal	Normal	
Gamma-globulinemia (g/L)	NA	NA	4.1g/L	NA	7.4g/L	
JCV load (copies/mL)	Serum	15,000	1,400	712	112	Undetectable
	CNS	150,000	NA	NA	NA	
Radiology						
MRI	Yes	No	Yes (improve)	No	Yes (improve)	
18F-FDG-TEP-TDM	Yes	No	Yes*	No	No	
Chest CT	Yes	No	Yes (worsening)	No	Yes (improve)	

Abbreviations: HCQ = hydroxychloroquine; IFN = interferon; JCV = JC virus; NA = not available; ND = no data; NYHA = New York Heart Association.
*18F-FDG-TEP-TDM show an uptake of the spleen, the lung, and hypermetabolism of the chest and coeliaco-mesenteric adenopathies.
relapse during the 6 months of follow-up. However, the lymphopenia persisted around 600/mm³.

Methods

Whole-exome sequencing
Genomic DNA was isolated from patient and parents’ peripheral blood or saliva using standard protocols. Exome sequencing libraries were prepared with the Twist Library Preparation Kit and captured with Human Core Exome probes extended by Twist Human RefSeq Panel (Twist Bioscience, San Francisco, CA) following the manufacturer’s recommendations. Paired-end (2 × 75 bp) sequencing was performed on a NextSeq500 sequencer (Illumina, San Diego, CA). Before any processing, quality control was performed using FastQC. The raw reads data were next mapped using the Burrows-Wheeler Alignment tool. For each sample, average target read coverage was at least 60-fold. After read mapping, further quality indicators were calculated from the resulting BAM file using SAMtools, Qualimap. Variant calling was performed using the GATK HalotyplexCaller of the GATK software suite. The annotation was performed by VEP, the Ensembl Variant Effect Predictor. We focused only on protein-altering variants (missense, nonsense, splice site variants, and coding indels) with alternative allele frequencies <0.005 in the 1000 Genomes Project, the Genome Aggregation Database, the Exome Aggregation Consortium, and an internal exome database including ~700 exomes. To identify potential causal variants, we further filtered the variants based on a de novo and recessive mode of inheritance.

Statistics
Data are presented as median (range) or frequency (%) with 95% CIs. Statistical analyses were performed using JMP 7.0.

Data availability
Anonymized data will be shared by request from any qualified investigator.

Discussion
To date, only few cases of sarcoidosis and PML have been reported (table 2). The main cause of the immunodeficiency leading to such opportunistic infections in this situation remains unclear. Indeed, lymphopenia, and mainly the CD4⁺ lymphocytes decreased, is usually considered as a redistribution of cells (demargination) in the organs involved by the disease and is not considered at risk for infections. Nonetheless, some case reports or series report severe or opportunistic infections occurring in less than 5% of cases of sarcoidosis.⁵⁄₆ The most frequent infections are Cryptococcus, mycobacterial infection, nocardiosis, histoplasmosis, pneumocystis, and Aspergillus infections. Their occurrence is closely linked not only to the severity (neurologic form of sarcoidosis) and activity of the disease but also to the immunosuppressive therapy (steroids in first and cyclophosphamide).⁴ PML is rarer than other opportunistic infections in sarcoidosis with a very poor prognosis. Our review of literature (n = 41 cases) identifies a median age of 47 years (range 24–74 years) with a sex ratio (M/F) of 1.9 (table 2) and highlights a mortality rate of 61.5% at last follow-up. Unlike other opportunistic infections, PML may occur in untreated patients (table 2).¹ In this context, it is of importance to make the differential diagnosis with neurosarcoidosis, which required the use of intensive immunosuppressive therapy. Patients with sarcoidosis and opportunistic infections, especially with no history of immunosuppressive treatment, may belong to a more sensitive subgroup of patients with inherited susceptibility factors. In this view, such factors described in inherited pediatric and familial cases of sarcoidosis involving autophagy pathway or T-cell activation pathway could be crucial for response against pathogens.⁷ Moreover, it is also important to consider the hypothesis of PID with granulomatous manifestations and opportunistic infections (PML) in some combined immunodeficiencies (i.e., Immunodeficiency, Centromeric region instability, Facial anomalies syndrome, DOCK8 deficiency, STAT1 GOF or other combined immunodeficiencies).⁸ In our case, we excluded the eventuality of an inherited error of immunity by several arguments: (1) the age at onset of the opportunistic infection and the past medical history of the patient and his family; (2) the late onset of lymphopenia with prior normal blood examinations; and (3) the whole-exome analysis that excluded a known mutation in PID-related genes.

PML, caused by invasive JCV infection of the brain, is a poor prognosis affection with a fatal outcome in weeks or months in the absence of immune reconstitution. Recently, IL7 cytokine therapy and anti-PD1 monoclonal therapy have been proposed to restore an immunity against JCV in a context of secondary immunodeficiency, with or without vaccination strategies.²⁄⁴ Before using such therapies, it is very important to consider, however, (1) the risk of immune reconstitution inflammatory syndrome (IRIS) and (2) the potential exacerbation of an underlying disease or the emergence of secondary immune/inflammatory manifestations. It is particularly true in case of autoimmune disease such as sarcoidosis or lupus in which imbalance in immune-activating cytokine such as IL7 (one of the most important cytokines to T-cell expansion and activation) could favor a flare. Mechanisms leading to the worsening of a previous inflammatory/autoimmune situation have already been described not only in PML associated with AIDS but also in apparently non-immunocompromised patients.⁹ In our case, the challenging point was to restore the immunity against JCV and to control the sarcoidosis activity. IRIS has been well described in HIV-infected patients as a paradoxical reaction after introduction of the treatment. Even if rare, IRIS can potentially occur in all granulomatous diseases and not just infectious ones.
Table 2 Literature review of PML cases and sarcoidosis

References	Cases (sex/age at PML diagnosis, y)	Therapies before PML	Time from diagnosis of sarcoidosis to PML (mo)	Lymphocyte count (/mm^3)	CD4+ count (/mm^3)	Treatment	Tolerance	Outcome of PML
Christensen E et al. Acta Psychiatr Neurol Scand. 1955	M/59	No	0	NA	NA	No	NA	Death
Headington JT. Neurology. 1962	M/41	NA	NA	NA	NA	NA	NA	
Mariott PJ et al. J Neurol Neurosurg. 1975	F/52	CS	72	NA	NA	Cytarabine (2 mg/ kg/d)	Good	Improve
Smith CR et al. 1982	M/32	CS	108	NA	NA	Cytarabine	NA	Death
Rosenbloom MA et al. Chest. 1983	F/59	CS	0	820	NA	CS (increased)	NA	Death
Iannarella G et al. Ann Med Int. 1992	F/68	No	26	NA	500	CS and acyclovir	NA	Death
Steiger MJ et al. Ann Neurol. 1993	M/37	NA	0	NA	NA	Cytarabine, acyclovir, and IFN-a	NA	Improve
Heide W. Ann Neurol. 1995	M/47	CS	132	NA	NA	Cytarabine and IFN-a	NA	Death
Hammarin AL et al. J Clin Microbiol. 1996	M/51	NA	NA	NA	NA	NA	NA	
Jochum W et al. Acta Neuropathol. 1997	M/54	NA	NA	NA	NA	NA	NA	
Olindo S. Rev Neurol (Paris). 2000	F/47	CS	168	NA	NA	NA	NA	Death
Mackowiak-Cordoliani MA et al. Rev Neurol (Paris). 2001	F/70	CS/MTX	NA	1,000	<300	Cidofovir and IL2	NA	Death
Völker HU et al. Clin Neurol Neurosurg. 2007	M/49	CS	0	580	258	IVIg and cidofovir	NA	Death
Owczarzczyk et al. Rheumatology. 2007	F/48	CS/MTX	258	580	NA	Cidofovir, mirtazapine, and HCQ	Good	Improve
De Raedt S et al. Clin Neurol Neurosurg. 2008	M/43	No	0	NA	88	Cidofovir and steroids	Stable	Stabilization
Le Guilloux J et al. Rev Neurol (Paris). 2009	M/42	CS/HCQ	144	NA	NA	Cidofovir and IL2 (4.5MIU 2/d)	Bad (worsening)	Death
Granot R et al. J Clin Neurosci. 2009	M/49	CS	11	NA	NA	Cidofovir	Bad (worsening)	Death
Neeb L et al. J Neurol. 2009	F/56		228	310	NA	Cidofovir	Bad (worsening)	Death
Yagi T et al. Clin Neurol Neurosurg. 2010	M/34	No	156	NA	NA	Cidofovir	Good	Improve
Goldbecker A et al. Int J Infect Dis. 2010	F/50	No	240	Normal	Normal	CS and acyclovir	Good	

Continued
Table 2 Literature review of PML cases and sarcoidosis (continued)

References	Cases (sex/age at PML diagnosis, y)	Therapies before PML	Time from diagnosis of sarcoidosis to PML (mo)	Lymphocyte count (×10³)	CD4⁺ count (×10³)	Treatment	Tolerance	Outcome of PML
Gofton TE et al. *Neurol Neurosurg Psychiatr*. 2011	F/54 CS 72 310 NA	Cidofovir	Bad (worsening)	Death				
Park JH et al. *Case Rep Neurol*. 2011	M/45 CS 4 NA	Cidofovir and mirtazapine	Good	Improve				
Hohfeld SK et al. *BMJ Case Rep*. 2012	M/39 No 0 600 171	Mirtazapine	Bad (worsening)	Death				
Keith J et al. *Neuropathology*. 2012	M/74 CS/MTX/HCQ 300 260	No	Bad	Death				
Pallin M et al. *QJM*. 2012	M/47 CS/HCQ 180 488 131	Cytarabine, cidofovir, mirtazapine, and mefloquine	Good	Improve				
Davis MJ et al. *The Neurologist*. 2013	F/68 No 0 NA 182	No	NA	Death				
Jamilloux Y et al. *Neurology*. 2014	M/40 CS 146 300 167	Cidofovir and mirtazapine	Good	Improve				
M/24 CS, MTX, CYC, and aTNFa 96 1,299 NA	Cytarabine and mirtazapine	Good	Improve					
M/41 No 0 1,530 354	Cytarabine and mirtazapine	Good	Improve					
F/32 No 171 1,620 426	Cytarabine and IL2	Bad (worsening of PML)	Death					
M/42 CS, MTX, and HCQ 67 NA 131	Cytarabine and mirtazapine	Good	Improve					
M/35 CS 38 900 NA	Cytarabine and mirtazapine	Good	Improve					
M/27 CS and MTX 138 720 NA	Mefloquine	NA	Death					
M/37 CS 0 500 115	IL2	Medium (cutaneous rash)	Death					
F/36 CS 332 830 101	Cidofovir	Good	Death					
M/35 CS, MTX, and HCQ 147 900 NA	Cytarabine and IL2	NA	Death					
Lefaucheur R et al. *Neurology*. 2014	M/30 CS 60 NA NA	Mirtazapine, mefloquine, and IVIg	NA	Improve				
Scholten P et al. *BMJ Case Rep*. 2017	M/57 No 0 NA 240	Mirtazapine	Bad (worsening)	Death				
Duréault et al. *Medicine*. 2017	M/69 No 3 <200 34	Cidofovir	NA	Death				
Gamperl I et al. *Clin Case Rep*. 2018	F/73 No 24 680 NA	Steroids (pulse) and mirtazapine	Good	Alive				
F/54 Steroids and MMF 72 NA	Mirtazapine	IRIS and then improve	Alive					
F/63 No NA NA NA	No	Bad (worsening)	Death					
In sarcoidosis, CD4 T-cell depletion is mainly linked to the margination process. Thus, the use of IL7 as a therapy for PML has probably favored the expansion and activation of CD4 T cells in tissue, explaining the IRIS in involved tissue (lung and lymph nodes) and hypercalcemia. We chose to introduce low dose of steroids and hydroxychloroquine to balance the related risk of PML resurgence and immune restoration syndrome associated with granuloma activity (hypercalcemia and acute lung injury) and sebopsoriasis flare.10

New targeted therapies in immunology and infectiology open the doors of more specific and more specialized therapies for patients with immunodeficiencies, autoimmune diseases, or cancers. Nonetheless, some imbalance has to be finely found to avoid some severe complications. This is the beginning of a new era for physicians involved in these fields.

Study funding

Supported by the European regional development fund (European Union) INTERREG V program (project PERSONALIS) and the MSD Avenir grant (Autogen project).

Disclosure

The authors report no disclosures relevant to the manuscript. Go to Neurology.org/NN for full disclosures.

Publication history

Received by Neurology: Neuroimmunology & Neuroinflammation April 27, 2020. Accepted in final form June 15, 2020.

Reference	Cases (sex/age at PML diagnosis, y)	Therapies before PML	Time from diagnosis of sarcoidosis to PML (mo)	Lymphocyte count (/mm\(^3\))	CD4\(^+\) count (/mm\(^3\))	Treatment	Tolerance	Outcome of PML
Total	27M/14F 47 (24;74)		85.9 (0;332)	750 (300;1620)	210 (34;500)			24/39 (61.5\%)

Abbreviations: aTNFa = anti-TNFα; CS = corticosteroids; CYC = cyclophosphamide; HCQ = hydroxychloroquine; IRIS = immune reconstitution inflammatory syndrome; IVIg = IV immunoglobulin; MIU = million international unit; MMF = mycophenolate mofetil; MTX = methotrexate; NA = not available; PML = progressive multifocal encephalopathy; TNF = tumor necrosis factor.

Appendix (continued)

Name	Location	Contribution
Vincent Gies, PharmD, PhD	Strasbourg University Hospital, France	Performed the study and wrote, read, and accepted the paper in the final version
Yannick Dieudonné, MD	Strasbourg University Hospital, France	Performed the study and wrote, read, and accepted the paper in the final version
Cornelia Kuhnert, MD	Strasbourg University Hospital, France	Involved in patient care and collecting the data and read and accepted the paper in the final version
Cédric Lenormand, MD, PhD	Strasbourg University Hospital, France	Involved in patient care and collecting the data and read and accepted the paper in the final version
Laurent Kremer, MD, PhD	Strasbourg University Hospital, France	Involved in patient care and collecting the data and read and accepted the paper in the final version
Anne Molitor, PhD	Strasbourg University Hospital, France	Interpreted the data of whole-exome sequencing and read and accepted the paper in the final version
Raphaël Carapito, PhD	Strasbourg University Hospital, France	Interpreted the data of whole-exome sequencing and read and accepted the paper in the final version
Yves Hansmann, MD, PhD	Strasbourg University Hospital, France	Involved in patient care and collecting the data and read and accepted the paper in the final version
Vincent Poin drone, MD, PhD	Strasbourg University Hospital, France	Involved in patient care and collecting the data and read and accepted the paper in the final version
Thierry Martin, MD, PhD	Strasbourg University Hospital, France	Involved in patient care and collecting the data and read and accepted the paper in the final version
Sandrine Hirschi, MD	Strasbourg University Hospital, France	Performed the study, involved in patient care, and wrote, read, and accepted the paper in the final version
Anne-Sophie Korganow, MD, PhD	Strasbourg University Hospital, France	Performed the study, involved in patient care, and wrote, read, and accepted the paper in the final version

Appendix Authors

Name	Location	Contribution
Aurélien Guffroy, MD, PhD	Strasbourg University Hospital, France	Designed and performed the study, wrote the paper, coordinated the care of the patient, and read and accepted the paper in the final version
Morgane Solis, PharmD, PhD	Strasbourg University Hospital, France	Performed the study, involved in patient care, and read and accepted the paper in the final version

Table 2 Literature review of PML cases and sarcoidosis (continued)

Name	Location	Contribution
Vincent Gies, PharmD, PhD	Strasbourg University Hospital, France	Performed the study and wrote, read, and accepted the paper in the final version
Yannick Dieudonné, MD	Strasbourg University Hospital, France	Performed the study and wrote, read, and accepted the paper in the final version
Cornelia Kuhnert, MD	Strasbourg University Hospital, France	Involved in patient care and collecting the data and read and accepted the paper in the final version
Cédric Lenormand, MD, PhD	Strasbourg University Hospital, France	Involved in patient care and collecting the data and read and accepted the paper in the final version
Laurent Kremer, MD, PhD	Strasbourg University Hospital, France	Involved in patient care and collecting the data and read and accepted the paper in the final version
Anne Molitor, PhD	Strasbourg University Hospital, France	Interpreted the data of whole-exome sequencing and read and accepted the paper in the final version
Raphaël Carapito, PhD	Strasbourg University Hospital, France	Interpreted the data of whole-exome sequencing and read and accepted the paper in the final version
Yves Hansmann, MD, PhD	Strasbourg University Hospital, France	Involved in patient care and collecting the data and read and accepted the paper in the final version
Vincent Poin drone, MD, PhD	Strasbourg University Hospital, France	Involved in patient care and collecting the data and read and accepted the paper in the final version
Thierry Martin, MD, PhD	Strasbourg University Hospital, France	Involved in patient care and collecting the data and read and accepted the paper in the final version
Sandrine Hirschi, MD	Strasbourg University Hospital, France	Performed the study, involved in patient care, and wrote, read, and accepted the paper in the final version
Anne-Sophie Korganow, MD, PhD	Strasbourg University Hospital, France	Performed the study, involved in patient care, and wrote, read, and accepted the paper in the final version

Table 2 Literature review of PML cases and sarcoidosis (continued)
References
1. Jamilloux Y, Née A, Lecouffe-Desprets M, et al. Progressive multifocal leukoencephalopathy in patients with sarcoidosis. Neurology 2014;82:1307–1313.
2. Cortese I, Muranski P, Enose-Akahata Y, et al. Pembrolizumab treatment for progressive multifocal leukoencephalopathy. N Engl J Med 2019;380:1597–1605.
3. Walter O, Treiner E, Bonneville F, et al. Treatment of progressive multifocal leukoencephalopathy with nivolumab. N Engl J Med 2019;380:1674–1676.
4. Sospedra M, Schippling S, Yousef S, et al. Treating progressive multifocal leukoencephalopathy with interleukin 7 and vaccination with JC virus capsid protein VP1. Clin Infect Dis 2014;59:1588–1592.
5. Duréault A, Chapelon C, Biard I, et al. Severe infections in sarcoidosis: incidence, predictors and long-term outcome in a cohort of 585 patients. Medicine 2017;96:e8846.
6. Jamilloux Y, Valeyre D, Lortholary O, et al. The spectrum of opportunistic diseases complicating sarcoidosis. Autoimmun Rev 2015;14:64–74.
7. In the frame of GSF (Groupe Sarcoidose France), Calender A, Rollat Farnier PA, Buisson A, et al. Whole exome sequencing in three families segregating a pediatric case of sarcoidosis. BMC Med Genomics 2018;11:23.
8. Zerbe CS, Marciano BE, Katial RK, et al. Progressive multifocal leukoencephalopathy in primary immune deficiencies: stat1 gain of function and review of the literature. Clin Infect Dis 2016;62:986–994.
9. Krey L, Raab P, Sherzay R, et al. Severe progressive multifocal leukoencephalopathy (PML) and spontaneous immune reconstitution inflammatory syndrome (IRIS) in an immunocompetent patient. Front Immunol 2019;10:1188.
10. Tripathi SV, Leslie KS, Maurer TA, Amerson EH. Psoriasis as a manifestation of HIV-related immune reconstitution inflammatory syndrome. J Am Acad Dermatol 2015;72:e35–e36.