The $I^G J^{PC} = 1^{-1+}$ Tetraquark States

Hua-Xing Chen1,2, Atsushi Hosaka2 and Shi-Lin Zhu1

1Department of Physics, Peking University, Beijing 100871, China
2Research Center for Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

We study the tetraquark states with $I^G J^{PC} = 1^{-1+}$ in the QCD sum rule. After exhausting all possible flavor structures, we analyses both the SVZ and finite energy sum rules. Both approaches lead to a mass around 1.6 GeV for the state with the quark contents $qqar{q}ar{q}$, and around 2.0 GeV for the state with the quark contents $qsar{q}ar{s}$. The flavor structure $(\bar{q} \otimes \bar{q}) \oplus (6 \otimes 3)$ is preferred. Our analysis strongly indicates that both $\pi_1(1600)$ and $\pi_1(2015)$ are also compatible with the exotic tetraquark interpretation, which are sometimes labeled as candidates of the 1^{-1+} hybrid mesons. Moreover one of their dominant decay modes is a pair of axial-vector and pseudoscalar mesons such as $b_1(1235)\pi$, which is sometimes considered as the characteristic decay mode of the hybrid mesons.

PACS numbers: 12.39.Mk, 11.40.-q, 12.38.Lg
Keywords: exotic mesons, tetraquark, QCD sum rule

I. INTRODUCTION

Hadrons beyond the conventional quark model have been studied for more than thirty years. For example, Jaffe suggested the low-lying scalar mesons as good candidates of tetraquark states composed of strongly correlated diquarks in 1976 [1]. Especially there may exist some low-lying exotic mesons with quantum numbers such as π^\pm [1]. It suggested the low-lying scalar mesons as good candidates of tetraquark states composed of strongly correlated diquarks.

The experimental establishment of these states is a direct proof of the glue degree of freedom in the low energy sector of QCD and of fundamental importance.

The mass of the non-strange exotic hybrid meson from lattice QCD simulations includes: 2GeV [4], 1.74 GeV [5], and 1.8 GeV [6]. The mass of its strange partner is 1.92 GeV [5] and 2 GeV [6]. The hybrid meson mass from the constituent glue model is 2 GeV [6] while the value from the flux tube model is around 1.9 GeV [8, 9]. The prediction and 1.8 GeV [6]. The mass of its strange partner is 1.92 GeV [5] and 2 GeV [6]. The hybrid meson mass from the QCD sum rule approach is around 1.6 GeV [10, 11]. However, Yang obtained a surprisingly low mass around 1.26 GeV for the 1^{-1+} from the QCD sum rule approach is around 1.6 GeV [10, 11]. However, Yang obtained a surprisingly low mass around 1.26 GeV for the state with the quark contents π^\pm [1]. It suggested the low-lying scalar mesons as good candidates of tetraquark states composed of strongly correlated diquarks.

Up to now, there are several candidates of the exotic mesons with $I^G J^{PC} = 1^{-1+}$ experimentally. They are $\pi_1(1400)$, $\pi_1(1600)$, and $\pi_1(2015)$. Their masses and widths are 1376 ± 17, 300 ± 40 MeV, 1653^{+18}_{-15}, 225^{+25}_{-28} MeV, $1600 \pm 20 \pm 16$, $230 \pm 21 \pm 73$ MeV, respectively [13]. $\pi_1(1400)$ was observed in the reactions $\pi^- p \rightarrow \eta n$ [14]; $\bar{p}p \rightarrow \pi^0 \pi^0 \eta$ and $\bar{p}n \rightarrow \pi^- \pi^0 \eta$ [15]; $\pi^- p \rightarrow \eta \pi^- p$ [16], $\pi_1(1600)$ was observed in the reaction $\pi^- p \rightarrow \eta' \pi^- p$ (η' decays to $\eta\pi^+\pi^-$ with a fraction 44.5%) [17]. Both $\pi_1(1600)$ and $\pi_1(2015)$ were observed in the reactions $\pi^- p \rightarrow \omega\pi^- \pi_0^0$ [18] and $\pi^- p \rightarrow \eta\pi^- \pi^- \pi^-$. However, a more recent analysis of a higher statistics sample from E852 3π data found no evidence of $\pi_1(1600)$ [19]. All the above observations were from hadron-production experiments.

Recently, the CLAS Collaboration performed a photo-production experiment to search for the 1^{-1+} hybrid meson in the speculated state in the charge exchange reaction $\gamma p \rightarrow \pi^+ \pi^+ \pi^- (n)$ [20]. If $\pi_1(1600)$ was an hybrid state, it was expected to be produced with a strength near or much larger than 10% of the $a_2(1320)$ meson from the theoretical models [22]. However $\pi_1(1600)$ was not observed with the expected strength. In fact its production rate is less than 2% of the $a_2(1320)$ meson. If the $\pi_1(1600)$ signal from the hadron-production experiments is not an artifact, the negative result of the photo-production experiment suggests (1) either theoretical production rates are overestimated significantly or (2) $\pi_1(1600)$ is a meson with a different inner structure instead of a hybrid state.

In fact, the tetraquark states can also carry the exotic quantum numbers $I^G J^{PC} = 1^{-1+}$. It is important to note that the gluon inside the hybrid meson can easily split into a pair of $q\bar{q}$. Therefore tetraquarks can always have the same quantum numbers as the hybrid mesons, including the exotic ones. Discovery of hadron candidates with $J^{PC} = 1^{-1+}$ does not ensure that it is an exotic hybrid meson. One has to exclude the other possibilities including tetraquarks based on its mass, decay width and decay patterns etc. This argument holds for all these claimed candidates of the hybrid meson.

*Electronic address: hxchen@rcnp.osaka-u.ac.jp
Electronic address: hosaka@rcnp.osaka-u.ac.jp
Electronic address: zhusl@phy.pku.edu.cn
Tetraquark states in general have a richer structure than ordinary $q\bar{q}$ states. For instance, a pair of quarks can be in channels which cannot be allowed in the ordinary hadrons. The richness of the structure introduces complication in theoretical studies. Therefore, one usually assumed one or a few particular configurations which are motivated by some intuitions.

Recently, we have developed a systematic method for the study of multiquark states in the QCD sum rule, and particular applications have been made for several tetraquark states [23, 24, 25]. Our method is essentially based on complete classification of independent currents. By making suitable linear combinations of the independent currents we can perform advanced analysis as compared with the analysis of using only one type of current which limits the potential of the OPE, and sometimes leads to unphysical results.

In this paper, we first classify the flavor structure of four-quark system with quantum numbers $J^{PC} = 1^{−+}$. We find that there are five iso-vector states. Then we construct tetraquark interpolating currents by using both diquark-antidiquark construction ($(qq)(\bar{q}\bar{q})$) and quark-antiquark pairs ($(q\bar{q})(q\bar{q})$). We verify that they are just different bases and can be related to each other. Therefore they lead to the same results. By using diquark-antidiquark currents, we perform the QCD sum rule analysis, and calculate their OPEs. Our results suggest that $\pi_1(1400)$ may not be explained by just using tetraquark structure, and $\pi_1(1600)$ and $\pi_1(2105)$ could be explained by the tetraquark mesons with quark contents $(qq)(\bar{q}\bar{q})$ and $(qs)(\bar{q}s)$ respectively. The diquark and antidiquark inside have a mixed flavor structure $(3 \otimes 6) \oplus (6 \otimes 3)$.

This paper is organized as follows. In Sec. II, we construct the tetraquark currents using both diquark (qq) and antidiquark $(q\bar{q})$ currents. The tetraquark currents constructed by using quark-antiquark $(\bar{q}q)$ pairs are shown in Appendix A. In Sec. III we perform a QCD sum rule analysis by using these currents, and calculate their OPEs. In Sec. IV the numerical result is obtained for their masses. In Sec. V we use finite energy sum rule to calculate their masses again. We discuss the decay patterns of these $1^{−+}$ tetraquark states in Sec. VI. Sec. VII is a summary.

II. TETRAQUARK CURRENTS

In order to construct proper tetraquark currents, let us start with the consideration of the charge-conjugation symmetry. The charge-conjugation transformation changes diquarks into antidiquarks, while it maintains their flavor structures. If a tetraquark state has a definite charge-conjugation parity, either positive or negative, the internal diquark (qq) and antidiquark $(q\bar{q})$ must have the same flavor symmetry, which is either symmetric flavor structure $6_f \otimes \bar{6}_f$ (S) or antisymmetric flavor structure $3_f \otimes \bar{3}_f$ (A), and can not have mixed flavor symmetry neither $3_f \otimes \bar{6}_f$ nor $6_f \otimes 3_f$ (M). However, combinations of $3_f \otimes \bar{6}_f$ and $6_f \otimes 3_f$ can have a definite charge-parity. Therefore, in order to study the tetraquark state of $I^G J^{PC} = 1^{−+}$, we need to consider the following structures of currents

$$qq\bar{q}(S), q\bar{s}q(S) \sim 6_f \otimes \bar{6}_f \quad (S),$$

$$qs\bar{s}(A) \sim 3_f \otimes \bar{3}_f \quad (A),$$

$$qq\bar{q}(M), q\bar{s}q(M) \sim (3_f \otimes \bar{6}_f) \oplus (6_f \otimes 3_f) \quad (M),$$

where q represents an up or down quark, and s represents a strange quark. The flavor structures are shown in Fig. I in terms of $SU(3)$ weight diagrams. The quark contents indicated at vertices follow the ideal mixing scheme for inner vertices where the mixing is allowed. In the $SU(3)$ limit, the quark contents are suitable combinations of the ones shown in this figures. However, the strange quark has a significantly larger mass than up and down quarks (current quark mass), and so, the ideal mixing is expected to work well for hadrons except for pseudoscalar mesons. The flavor structure in the ideal mixing is also simpler than that in the $SU(3)$ limit. Therefore, we will use the ideal mixing in our QCD sum rule studies.

In the following subsections, we first construct currents by using diquark (qq) and antidiquark $(q\bar{q})$ currents, and then we show the currents with explicit quark contents. The currents constructed by using quark-antiquark $(\bar{q}q)$ pairs can be related to these diquark currents, and are shown in the Appendix. A. The tensor currents $\eta_{\mu\nu}$ ($\eta_{\mu\nu} = -\eta_{\nu\mu}$) can also have $I^G J^{PC} = 1^{−+}$. By using tensor currents, we obtain the similar results, which will be shown in our future work.

A. $(qq)(q\bar{q})$ Currents

We attempt to construct the tetraquark currents using diquark (qq) and antidiquark $(q\bar{q})$ currents. For each state having the symmetric flavor structure $6_f \otimes \bar{6}_f$ (S), there are two $(qq)(q\bar{q})$ currents of $J^{PC} = 1^{−+}$, which are independent

$$\psi^S_{1\mu} = q^T_{1a} C^\gamma q_{2a} (\bar{q}_{3a} \gamma_{\mu} \gamma_5 C q_{4b} + \bar{q}_{3a} \gamma_\mu \gamma_5 C q_{4a}) + q^T_{1a} C^\gamma q_{2a} (\bar{q}_{3a} \gamma_5 C q_{4b} + \bar{q}_{3a} \gamma_5 C q_{4a}),$$

$$\psi^S_{2\mu} = q^T_{1a} C^\gamma q_{2a} (\bar{q}_{3a} \sigma_{\mu\nu} C q_{4b} - \bar{q}_{3a} \sigma_{\mu\nu} C q_{4a}) + q^T_{1a} C \sigma_{\mu\nu} q_{2a} (\bar{q}_{3a} \gamma^\nu C q_{4b} - \bar{q}_{3a} \gamma^\nu C q_{4a}),$$

where q represents an up or down quark.
\[(qq) \otimes (\bar{q}q) = 6_f \otimes \bar{6}_f \quad (S)\]

\[(qq) \otimes (qq) = 3_f \otimes \bar{3}_f \quad (A)\]

\[(qq) \otimes (qq) = \bar{3}_f \otimes 3_f \quad (M)\]

\[\psi_{1\mu}^A = q_1^T C \gamma_\mu q_2 (\bar{q}_3 \gamma_\mu \gamma_5 C q_4^T - \bar{q}_3 \gamma_\mu \gamma_5 C q_4^T) + q_1^T C \gamma_\mu q_2 (\bar{q}_3 \gamma_\mu \gamma_5 C q_4^T - \bar{q}_3 \gamma_\mu \gamma_5 C q_4^T),\]

\[\psi_{2\mu}^A = q_1^T C \gamma^\nu q_2 (\bar{q}_3 \sigma_{\mu \nu} C q_4^T + \bar{q}_3 \sigma_{\mu \nu} C q_4^T) + q_1^T C \sigma_{\mu \nu} q_2 (\bar{q}_3 \gamma^\nu C q_4^T + \bar{q}_3 \gamma^\nu C q_4^T),\]

For each state containing diquark and antidiquark having either the flavor structure $3_f \otimes \bar{6}_f$ or $6_f \otimes 3_f$, there are no
currents of quantum numbers \(J^{PC} = 1^- \). However, their combinations \((3_f \otimes 6_f) \oplus (6_f \otimes 3_f)\) can have the quantum numbers \(J^{PC} = 1^- \). We first define the currents \(\psi_{\mu}^{ML} \) which belong to the flavor representation \(3_f \otimes 6_f \), and the currents \(\psi_{\mu}^{MR} \) which belong to the flavor representation \(6_f \otimes 3_f \) separately. We find the following four independent currents:

\[
\begin{aligned}
\psi_{\mu}^{ML} &= q_1^\mu C \gamma_\mu q_2 \left(q_3^a \gamma_5 q_4^T \bar{q}_a \right) + q_3^\mu C \gamma_4 q_4^a, \\
\psi_{\mu}^{ML} &= q_1^T C \sigma_{\mu\nu} \gamma_5 q_2 \left(q_3^a \gamma_\nu \gamma_5 C q_4^T + \bar{q}_3^a \gamma_\nu \gamma_5 C \bar{q}_4^a \right), \\
\psi_{\mu}^{3p} &= q_1^T C \sigma_{\mu\nu} \gamma_5 q_2 \left(q_3^a \gamma_\nu \gamma_5 C q_4^T + \bar{q}_3^a \gamma_\nu \gamma_5 C \bar{q}_4^a \right), \\
\psi_{\mu}^{4p} &= \bar{q}_1^\mu C \gamma_\nu \gamma_5 q_2 \left(q_3^a \gamma_\nu \gamma_5 C q_4^T + \bar{q}_3^a \gamma_\nu \gamma_5 C \bar{q}_4^a \right).
\end{aligned}
\]

They all have quantum numbers \(J^{PC} = 1^- \) but no good charge-parity conjugation parity. However, their mixing can have a definite charge-parity conjugation parity,

\[
\psi_{\mu}^M = \psi_{\mu}^{ML} \pm \psi_{\mu}^{MR},
\]

where the + and − combinations correspond to the charge-parity conjugation parity positive and negative, respectively. In the present work, we only consider the positive one.

B. Iso-Vector Currents

For the study of the present exotic tetraquark state, we need to construct iso-vector (\(I = 1 \)) currents. There are two isospin triplets belonging to the flavor representation \(6_f \otimes 6_f \), one isospin triplet belonging to the flavor representation \(3_f \otimes 3_f \), and two isospin triplets belonging to the flavor representation \((3_f \otimes 6_f) \oplus (6_f \otimes 3_f) \) (Fig. 1). For each state, there are several independent currents. We list them in the following.

1. For the two isospin triplets belonging to \(6_f \otimes 6_f \) (S):

\[
\begin{aligned}
\eta_{1\mu}^S &= \psi_{2\mu}^S (qq\bar{q}\bar{q}) \sim u_3^T C \gamma_5 d_b \left(\bar{u}_a \gamma_\mu \gamma_5 C d_b^T + \bar{u}_b \gamma_\mu \gamma_5 C d_a^T \right) + u_3^T C \gamma_\mu \gamma_5 d_b \left(\bar{u}_a \gamma_5 C d_b^T + \bar{u}_b \gamma_5 C d_a^T \right), \\
\eta_{2\mu}^S &= \psi_{2\mu}^S (qq\bar{q}\bar{q}) \sim u_3^T C \gamma_5 d_b \left(\bar{u}_a \sigma_{\mu\nu} \gamma_5 C d_b^T \right) + u_3^T C \gamma_\mu \gamma_5 d_b \left(\bar{u}_a \gamma_5 C d_b^T - \bar{u}_b \gamma_5 C d_a^T \right), \\
\eta_{1\mu}^S &= \psi_{1\mu}^S (qs\bar{q}\bar{s}) \sim u_2^T C \gamma_5 s_b \left(\bar{u}_a \gamma_\mu \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu \gamma_5 s_b \left(\bar{u}_a \gamma_5 C s_b^T - \bar{u}_b \gamma_5 C s_a^T \right) + u_2^T C \gamma_\mu \gamma_5 s_b \left(\bar{u}_a \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu \gamma_5 s_b \left(\bar{u}_a \gamma_5 C s_b^T - \bar{u}_b \gamma_5 C s_a^T \right), \\
\eta_{2\mu}^S &= \psi_{1\mu}^S (qs\bar{q}\bar{s}) \sim u_2^T C \gamma_5 s_b \left(\bar{u}_a \sigma_{\mu\nu} \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu \gamma_5 s_b \left(\bar{u}_a \gamma_5 C s_b^T - \bar{u}_b \gamma_5 C s_a^T \right) + u_2^T C \gamma_\mu \gamma_5 s_b \left(\bar{u}_a \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu \gamma_5 s_b \left(\bar{u}_a \gamma_5 C s_b^T - \bar{u}_b \gamma_5 C s_a^T \right),
\end{aligned}
\]

where \(\eta_1^S \) and \(\eta_2^S \) are the two independent currents containing only light flavors, and \(\eta_1^S \) and \(\eta_2^S \) are the two independent ones containing one ss quark pair.

2. For the isospin triplet belonging to \(\bar{3}_f \otimes 3_f \) (A):

\[
\begin{aligned}
\eta_{1\mu}^A &= \psi_{1\mu}^A (qs\bar{q}\bar{s}) \sim u_2^T C \gamma_5 s_b \left(\bar{u}_a \gamma_\mu \gamma_5 C s_b^T - \bar{u}_b \gamma_\mu \gamma_5 C s_a^T \right) + u_2^T C \gamma_\mu \gamma_5 s_b \left(\bar{u}_a \gamma_5 C s_b^T - \bar{u}_b \gamma_5 C s_a^T \right) + u_2^T C \gamma_\mu \gamma_5 s_b \left(\bar{u}_a \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu \gamma_5 s_b \left(\bar{u}_a \gamma_5 C s_b^T - \bar{u}_b \gamma_5 C s_a^T \right), \\
\eta_{2\mu}^A &= \psi_{1\mu}^A (qs\bar{q}\bar{s}) \sim u_2^T C \gamma_5 s_b \left(\bar{u}_a \sigma_{\mu\nu} \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu \gamma_5 s_b \left(\bar{u}_a \gamma_5 C s_b^T - \bar{u}_b \gamma_5 C s_a^T \right) + u_2^T C \gamma_\mu \gamma_5 s_b \left(\bar{u}_a \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu \gamma_5 s_b \left(\bar{u}_a \gamma_5 C s_b^T - \bar{u}_b \gamma_5 C s_a^T \right),
\end{aligned}
\]

where \(\eta_{1\mu}^A \) and \(\eta_{2\mu}^A \) are the two independent currents.

3. For the two isospin triplets belonging to \((3_f \otimes 6_f) \oplus (6_f \otimes 3_f) \) (M):

\[
\begin{aligned}
\eta_{1\mu}^M &= \psi_{1\mu}^M (qq\bar{q}\bar{q}) \sim u_2^T C \gamma_\mu d_b \left(\bar{u}_a \gamma_\mu C d_b^T \right) + u_2^T C \gamma_\mu d_b \left(\bar{u}_a \gamma_\mu C d_b^T \right) + u_2^T C \gamma_\mu d_b \left(\bar{u}_a \gamma_\mu C d_b^T \right) + u_2^T C \gamma_\mu d_b \left(\bar{u}_a \gamma_\mu C d_b^T \right), \\
\eta_{2\mu}^M &= \psi_{1\mu}^M (qq\bar{q}\bar{q}) \sim u_2^T C \sigma_{\mu\nu} \gamma_5 d_b \left(\bar{u}_a \gamma_\nu \gamma_5 C d_b^T \right) + u_2^T C \gamma_\mu \gamma_5 d_b \left(\bar{u}_a \gamma_5 C d_b^T \right) + u_2^T C \gamma_\mu \gamma_5 d_b \left(\bar{u}_a \gamma_5 C d_b^T \right) + u_2^T C \gamma_\mu \gamma_5 d_b \left(\bar{u}_a \gamma_5 C d_b^T \right), \\
\eta_{1\mu}^M &= \psi_{1\mu}^M (qs\bar{q}\bar{s}) \sim u_2^T C \gamma_\mu s_b \left(\bar{u}_a \gamma_\mu \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu s_b \left(\bar{u}_a \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu s_b \left(\bar{u}_a \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu s_b \left(\bar{u}_a \gamma_5 C s_b^T \right), \\
\eta_{2\mu}^M &= \psi_{1\mu}^M (qs\bar{q}\bar{s}) \sim u_2^T C \gamma_\mu s_b \left(\bar{u}_a \gamma_\mu \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu s_b \left(\bar{u}_a \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu s_b \left(\bar{u}_a \gamma_5 C s_b^T \right) + u_2^T C \gamma_\mu s_b \left(\bar{u}_a \gamma_5 C s_b^T \right),
\end{aligned}
\]
where $\eta^M_{1,2,3,4}$ are the four independent currents containing only light flavors, and $\eta^M_{1,2,3,4}$ are the four independent ones containing one $s \bar{s}$ quark pair.

We use \sim to make clear that the quark contents here are not exactly correct. For instance, in the current η^A_{us}, the state $us\bar{u}s$ does not have isospin one. The correct quark contents should be $(us\bar{u}s - d\bar{s}d\bar{s})$. However, in the following QCD sum rule analysis, we shall not include the mass of up and down quarks and choose the same value for $(\bar{u}u)$ and $(\bar{d}d)$. Therefore, the QCD sum rule results for η^A_1 with quark contents $us\bar{u}s$ and $(us\bar{u}s - d\bar{s}d\bar{s})$ are the same.

III. SVZ SUM RULE

For the past decades QCD sum rule has proven to be a very powerful and successful non-perturbative method [26, 27]. In sum rule analyses, we consider two-point correlation functions:

$$\Pi_{\mu\nu}(q^2) \equiv i \int d^4x e^{iqx} \langle 0| T \eta_\mu(x) \eta^*_\nu(0)|0 \rangle ,$$

where η_μ is an interpolating current for the tetraquark. The Lorentz structure can be simplified to be:

$$\Pi_{\mu\nu}(q^2) = (\frac{q_\mu q_\nu}{q^2} - g_{\mu\nu})\Pi^{(1)}(q^2) + \frac{q_{\mu}q_{\nu}}{q^2}\Pi^{(0)}(q^2) .$$

We compute $\Pi(q^2)$ in the operator product expansion (OPE) of QCD up to certain order in the expansion, which is then matched with a hadronic parametrization to extract information of hadron properties. At the hadron level, we express the correlation function in the form of the dispersion relation with a spectral function:

$$\Pi^{(1)}(q^2) = \int_{s_c}^{\infty} \frac{\rho(s)}{s-q^2-\i\varepsilon} ds ,$$

where the integration starts from the mass square of all current quarks. The the spectral density $\rho(s)$ is defined to be

$$\rho(s) = \sum_n \delta(s-M_n^2)|\langle 0|\eta|n\rangle|\langle n|\eta^*|0 \rangle |

= f_T^2 \delta(s-M_T^2) + \text{higher states} .$$

For the second equation, as usual, we adopt a parametrization of one pole dominance for the ground state Y and a continuum contribution. The sum rule analysis is then performed after the Borel transformation of the two expressions of the correlation function, (4) and (6)

$$\Pi^{(all)}(M_B^2) \equiv B_{M_B^2} \Pi^{(1)}(p^2) = \int_{s_c}^{s_0} e^{-s/M_B^2} \rho(s) ds .$$

Assuming the contribution from the continuum states can be approximated well by the spectral density of OPE above a threshold value s_0 (duality), we arrive at the sum rule equation

$$\Pi(M_B^2) \equiv f_T^2 M_B^2 \sum_n \Pi(M_B^2) + \int_{s_c}^{s_0} e^{-s/M_B^2} \rho(s) ds .$$

Differentiating Eq. (9) with respect to $1/M_B^2$ and dividing it by Eq. (9), finally we obtain

$$M_T^2 = \frac{\partial}{\partial (1/M_B^2)} \Pi(M_B^2) = \frac{f_T^2}{f_{s_0}^2 e^{-s_0/M_B^2}} \sum_n \Pi(M_B^2) + \int_{s_c}^{s_0} e^{-s/M_B^2} \rho(s) ds .$$

In the following, we study both Eqs. (3) and (10) as functions of the parameters such as the Borel mass M_B and the threshold value s_0 for various combinations of the tetraquark currents.

We have performed the OPE calculation up to dimension twelve. Here we only show the results for currents $\eta^M_{1,2,3,4}$, which have quark contents $qq\bar{q}\bar{q}$ and $qsq\bar{s}$, respectively. Others are shown in the Appendix. [14]

$$\Pi^M_1(M_B^2) = \int_0^{s_0} \left[\frac{1}{18432\pi^6} s^4 - \frac{(g_s^2GG)^2}{18432\pi^6} s^2 + \frac{1}{18\pi^2} \sum_n \langle \bar{q}q|g_s\bar{q}\sigma Gq\rangle \right] e^{-s/M_B^2} ds + \left(\frac{1}{48\pi^2} - \frac{5}{864\pi^2} \right) \frac{1}{M_B^2} \sum_n \langle \bar{q}q|g_s\bar{q}\sigma Gq\rangle .$$
Π_{B}^{M}(M_{B}^{2}) = \int_{4m_{s}^{2}}^{\infty} \left[\frac{1}{18432\pi^{6}} s^{4} - \frac{17m_{s}^{2}}{7680\pi^{6}} s^{3} + \left(-\frac{(g^{2}GG)}{18432\pi^{6}} - \frac{m_{s}(\bar{q}q)}{96\pi^{4}} + \frac{m_{s}(\bar{s}s)}{48\pi^{4}} \right) s^{2} + \left(-\frac{(\bar{q}q)^{2}}{36\pi^{2}} + \frac{(\bar{q}q)(\bar{s}s)}{9\pi^{2}} \right) \right] e^{-s/M_{B}^{2}} ds

(12)

In the above equations, \(\langle \bar{s}s \rangle \) is the dimension \(D = 3 \) strange quark condensate; \(\langle g^{2}GG \rangle \) is a \(D = 4 \) gluon condensate; \(\langle g\bar{s}\sigma Gq \rangle \) is \(D = 5 \) mixed condensate. There are many terms which give minor contributions, such as \(\langle g^{6}G^{3} \rangle \), and we omit them. As usual, we assume the vacuum saturation for higher dimensional condensates such as \([13, 28, 29, 30, 31, 32, 33] \):

\[M_{\Pi}^{2}(M_{B}^{2}) = \int_{4m_{s}^{2}}^{\infty} \left[\frac{1}{18432\pi^{6}} s^{4} - \frac{17m_{s}^{2}}{7680\pi^{6}} s^{3} + \left(-\frac{(g^{2}GG)}{18432\pi^{6}} - \frac{m_{s}(\bar{q}q)}{96\pi^{4}} + \frac{m_{s}(\bar{s}s)}{48\pi^{4}} \right) s^{2} + \left(-\frac{(\bar{q}q)^{2}}{36\pi^{2}} + \frac{(\bar{q}q)(\bar{s}s)}{9\pi^{2}} \right) \right] e^{-s/M_{B}^{2}} ds

(13)

IV. NUMERICAL ANALYSIS

In our numerical analysis, we use the following values for various condensates and \(m_{s} \) at 1 GeV and \(\alpha_{s} \) at 1.7 GeV [13, 28, 29, 30, 31, 32, 33]:

\[\langle \bar{q}q \rangle = -(0.240 \text{ GeV})^{3}, \]
\[\langle \bar{s}s \rangle = -(0.8 \pm 0.1) \times (0.240 \text{ GeV})^{3}, \]
\[\langle g^{2}GG \rangle = (0.48 \pm 0.14) \text{ GeV}^{4}, \]
\[\langle g\bar{s}\sigma Gq \rangle = -M_{0}^{2} \times \langle \bar{q}q \rangle, \]
\[M_{0}^{2} = (0.8 \pm 0.2) \text{ GeV}^{2}, \]
\[m_{s}(1 \text{ GeV}) = 125 \pm 20 \text{ MeV}, \]
\[\alpha_{s}(1.7 \text{ GeV}) = 0.328 \pm 0.03 \pm 0.025. \]

There is a minus sign in the definition of the mixed condensate \(\langle g\bar{s}\sigma Gq \rangle \), which is different from that used in some other QCD sum rule studies. This difference just comes from the definition of coupling constant \(g_{s} \) [28, 34].

For the currents which belong to the flavor representation \(6_{f} \otimes 6_{f} (S) \) and \(5_{f} \otimes 3_{f} (A) \), the spectral densities turn out to be negative in the energy region 1 GeV \(\sim 2 \text{ GeV} \) as shown in Fig. [2]. The spectral densities of these currents become positive in the region \(s > 4 \text{ GeV}^{2} \). They may couple to the state \(\pi_{i}(1500) \). However, after performing the sum rule calculation, we find that the mass obtained from the currents \(\eta_{\mu}^{A} \) and \(\eta_{\mu}^{A} \) is larger than 2.5 GeV, for instance, we show the mass calculated from the current \(\eta_{\mu}^{A} \) in Fig. [3]. The curves are obtained by setting \(M_{B}^{2} = 2 \text{ GeV}^{2} \) (solid line), 3 GeV^{2} (short-dashed line) and 4 GeV^{2} (long-dashed line). The left curves (disconnected from the right part) are obtained from a negative Borel transformed correlation function, and have no physical meaning. Therefore, our QCD sum rule analysis does not support \(\pi_{1}(1400), \pi_{1}(1600) \) and \(\pi_{1}(1500) \) as tetraquark states with a flavor structure either \(6_{f} \otimes 6_{f} \) or \(5_{f} \otimes 3_{f} \).

When using the currents \(\eta_{\mu}^{M} \), the spectral densities are positive as shown in Fig. [3]. And so we shall use these currents to perform a QCD sum rule analysis. First we need to study the convergence of the OPE. The Borel transformed
FIG. 2: Spectral densities for the current $\eta^A_{1\mu}, \eta^A_{2\mu}$ (solid lines), $\eta^S_{1\mu}, \eta^S_{2\mu}$ (short-dashed lines), $\eta^S_{3 \mu}$ and $\eta^S_{4 \mu}$ (long-dashed lines). The labels besides the lines indicate the flavor symmetry (S or A) and suffix i of the current $\eta^S_{i\mu}$ ($i = 1, 2, 3, 4$).

FIG. 3: Spectral densities for the current $\eta^M_{i\mu}$. The spectral densities for the currents with the quark contents $qq\bar{q}\bar{q}$ are shown in the left hand side, and those with the quark contents $qs\bar{q}\bar{s}$ are shown in the right hand side. The labels besides the lines indicate the suffix i of the current $\eta^M_{i\mu}$ ($i = 1, \cdots, 8$).

FIG. 4: The mass calculated by using the current $\eta^A_{1\mu}$, as functions of s_0 in units of GeV. The curves are obtained by setting $M_B^2 = 2$ GeV2 (solid line), 3 GeV2 (short-dashed line) and 4 GeV2 (long-dashed line). The left curves (disconnected from the right part) are obtained from a negative correlation function, and have no physical meaning.
correlation function of the current $\eta_M^{M\mu}$ is shown in Fig. 5 when we take $s_0 = 4$ GeV2. Besides the first term, which is the continuum piece, the D=6 and D=8 terms give large contributions. The D=6 terms contain $(\bar{q}q)^2$ and the D=8 terms contain $(\bar{q}q)g_\mu \sigma G q$, which are the important condensates. We find that the convergence is very good in the region of $2 \text{ GeV}^2 < M_B^2 < 5 \text{ GeV}^2$. Therefore, in this region, OPEs are reliable.

The mass is calculated by using Eq. (10), and results are obtained as functions of Borel mass M_B and threshold value s_0. In Figs. 6, 7, 8 and 9 we show the mass calculated from currents $\eta_{1\mu}^M$, $\eta_{2\mu}^M$, $\eta_{3\mu}^M$ and $\eta_{4\mu}^M$, whose quark contents are $qq\bar{q}\bar{q}$. Although these four independent currents look much different, we find that they give a similar result. From figures at LHS, we find that the dependence on Borel mass is weak. From figures at RHS where the mass is shown as functions of s_0, we find that there is a mass minimum for all curves where the stability is the best. It is 1.7 GeV, 1.6 GeV and 1.7 GeV for four independent currents, respectively. We find that sometimes the threshold values become smaller than the mass obtained in the mass minimum region. This is due to the negative part of the spectral densities. We also met this in the study of $Y(2175)$. See Ref [25] for details.

In Figs. 10, 11, 12 and 13 we show the mass calculated from currents $\eta_{5\mu}^M$, $\eta_{6\mu}^M$, $\eta_{7\mu}^M$ and $\eta_{8\mu}^M$, whose quark contents are $qs\bar{q}\bar{s}$. The results are similar as previous four currents. But now the mass obtained is about 0.4 GeV larger than the previous ones. The minimum occurs at 2.1 GeV, 2.0 GeV, 1.9 GeV and 2.0 GeV, respectively.

In a short summary, we have performed a QCD sum rule analysis for $qq\bar{q}\bar{q}$ and $qs\bar{q}\bar{s}$. The mass obtained is around 1.6 GeV and 2.0 GeV, respectively. There are four independent currents for each case, which give a similar results. Their mixing would lead to a similar result, too. Compared with the experimental data, they can be used to interpret the states $\pi_1(1600)$ and $\pi_1(2015)$ of $J^{PC} = 1^{--}$. These analyses are very similar to our previous paper [25], where we studied the state $Y(2175)$ by using vector tetraquark currents which have quantum numbers $J^{PC} = 1^{--}$ and quark contents $ss\bar{s}\bar{s}$.

FIG. 5: Various contribution to the correlation function for the current $\eta_M^{M\mu}$ as functions of the Borel mass M_B in units of GeV2 at $s_0 = 4$ GeV2. The labels indicate the dimension up to which the OPE terms are included.

FIG. 6: The mass of the state $qq\bar{q}\bar{q}$ calculated by using the current $\eta_{1\mu}^M$, as functions of M_B^2 (Left) and s_0 (Right) in units of GeV.

FIG. 10: The mass calculated from currents $\eta_{5\mu}^M$, $\eta_{6\mu}^M$, $\eta_{7\mu}^M$ and $\eta_{8\mu}^M$, whose quark contents are $qs\bar{q}\bar{s}$. The results are similar as previous four currents. But now the mass obtained is about 0.4 GeV larger than the previous ones. The minimum occurs at 2.1 GeV, 2.0 GeV, 1.9 GeV and 2.0 GeV, respectively.
The pole contribution

\[
\int_{s_0}^{s} e^{-s/M_B^2} \rho(s) ds
\]

is not large enough for all currents due to the high dimension nature of tetraquark currents. Another reason is that these currents have a large coupling to the continuum, which is difficult to be removed. Therefore, we arrive at a
FIG. 10: The mass of the state $qsq\bar{s}$ calculated by using the current $\eta^M_{\mu\nu}$, as functions of M_B^2 (Left) and s_0 (Right) in units of GeV.

FIG. 11: The mass of the state $qsq\bar{s}$ calculated by using the current $\eta^M_{\mu\nu}$, as functions of M_B^2 (Left) and s_0 (Right) in units of GeV.

FIG. 12: The mass of the state $qsq\bar{s}$ calculated by using the current $\eta^M_{\mu\nu}$, as functions of M_B^2 (Left) and s_0 (Right) in units of GeV.

stable mass, but with a small pole. To make our analysis more reliable, we go on to use the finite energy sum rule.
\[W(n, s_0) = \int_0^{s_0} \rho(s)s^n ds. \]

This integral is used for the phenomenological side, while the integral along the circular contour of radius \(s_0 \) on the \(q^2 \) complex plain should be performed for the theoretical side.

With the assumption of quark-hadron duality, we obtain

\[W(n, s_0) \bigg|_{\text{Hadron}} = W(n, s_0) \bigg|_{\text{OPE}}. \]

The mass of the ground state can be obtained as

\[M^2_Y(n, s_0) = \frac{W(n+1, s_0)}{W(n, s_0)}. \]

The spectral functions \(\rho^M_i(s) \) can be drawn from the Borel transformed correlation functions shown in section III. The d = 12 terms which are proportional to \(1/(q^2)^2 \) do not contribute to the function \(W(n, s_0) \) of Eq. (16) for \(n = 0 \), or they have a very small contribution for \(n = 1 \), when the theoretical side is computed by the integral over the circle of radius \(s_0 \) on the complex \(q^2 \) plain.

The mass is shown as a function of the threshold value \(s_0 \) in Fig. 14, where \(n \) is chosen to be 1. We find that there is a mass minimum. It is around 1.6 GeV for currents \(\eta_1^M, \eta_2^M, \eta_3^M \) and \(\eta_4^M \), whose quark contents are \(qq\bar{q}\bar{q} \), while it is around 2.0 GeV for currents \(\eta_5^M, \eta_6^M, \eta_7^M \) and \(\eta_8^M \), whose quark contents are \(q \bar{s} q \bar{s} \). Here we again find that the threshold values become smaller than the mass obtained in the mass minimum region. See Ref. [25] for details. In a short summary, we arrive at the same results as the previous SVZ QCD sum rule.

VI. DECAY PATTERNS OF THE \(1^{-+} \) TETRAQUARK STATES

In this paper, we have verified that \((qq)(q\bar{q})\) construction and \((q\bar{q})(q\bar{q})\) construction are equivalent (see Appendix A), and from the second one we can obtain some decay information. The four independent \((q\bar{q})(q\bar{q})\) currents \(\xi^M_{i\mu} \) lead to the same mass, and therefore, we shall study the decay patterns from all these currents. We can obtain the \(S \)-wave decay patterns straightforwardly:

1. The current \(\xi^M_{i\mu} \) naively falls apart to one scalar meson and one vector meson:

\[\xi^M_{i\mu} : \pi_1(1600) \to 0^+(\sigma(600), f_0(980) \cdots) + 1^- (\rho(770), \omega(782) \cdots), \]

\[\pi_1(2000) \to 0^+(\sigma(600), \kappa(800) \cdots) + 1^- (\rho(770), K^*(892) \cdots). \]
2. The current \(\xi_{2\mu}^M \) naively falls apart to one axial-vector meson and one pseudoscalar meson:

\[
\xi_{2\mu}^M : \quad \pi_1(1600) \to 1^+(a_1(1260), b_1(1235)\cdots) + 0^- (\pi(135)\cdots), \\
\pi_1(2000) \to 1^+(a_1(1260), K_1(1270), \cdots) + 0^- (\pi(135), K(498)\cdots).
\]

3. The current \(\xi_{3\mu}^M \) naively falls apart to one vector meson and one axial-vector meson:

\[
\xi_{3\mu}^M : \quad \pi_1(1600) \to 1^- (\rho(770), \omega(782)\cdots) + 1^+(a_1(1260), b_1(1235)\cdots), \\
\pi_1(2000) \to 1^- (\rho(770), K^*(892)\cdots) + 1^+(a_1(1260), K_1(1270)\cdots).
\]

4. The current \(\xi_{4\mu}^M \) naively falls apart to one axial-vector meson and one vector meson:

\[
\xi_{4\mu}^M : \quad \pi_1(1600) \to 1^+ (a_1(1260), b_1(1235)\cdots) + 1^- (\rho(770), \omega(782)\cdots), \\
\pi_1(2000) \to 1^+ (a_1(1260), K_1(1270)\cdots) + 1^- (\rho(770), K^*(892)\cdots).
\]

\(\pi_1(2000) \) contains one \(s\bar{s} \) pair, so its final states should also contain one \(s\bar{s} \) pair, and its decay patterns are more complicated than \(\pi_1(1600) \). We see that the decay modes (21) and (22) are kinematically forbidden (or strongly suppressed) due to energy conservation. The decay modes (19) are difficult to be observed in the experiments due to the large decay width of scalar mesons (\(\sigma \) and \(\kappa \)). Moreover, the scalar mesons below 1 GeV are sometimes interpreted as tetraquark states, and if so, these decay modes should be suppressed due to the extra \(\bar{q}q \) pair (24). Therefore, the decay modes (20) are preferred. The \(\pi_1 \) meson first decays to one axial-vector meson and one pseudoscalar meson. Then the axial-vector meson decays into two or more pseudoscalar mesons. However, the second step is a \(P \)-wave decay. Considering the conservation of \(G \) parity, the decay mode \(a_1(1260)\pi \) is forbidden. One possible decay pattern is that \(\pi_1(1600) \) first decays to \(b_1(1235)\pi \), and then decays to \(\omega\pi\pi \).

We can also check the \(P \)-wave decay patterns besides \(S \)-wave decay patterns. We find that the current \(\xi_{2\mu}^M \) leads to a decay mode of two \(P \)-wave pseudoscalar mesons by naively relating \(\bar{q}\gamma_{\mu}\gamma_5q \) and \(\partial_{\mu}\pi \)

\[
\pi_1(1600) \to 0^- (\pi, \eta, \eta'\cdots) + 0^- (\pi, \eta, \eta'\cdots), \\
\pi_1(2000) \to 0^- (\pi, \eta, \eta'\cdots) + 0^- (\pi, \eta, \eta'\cdots).
\]

Considering the conservation of \(G \) parity, decay modes \(\pi\pi \) and \(\eta\eta \) etc. are forbidden, and possible decay modes are \(\pi\eta \) and \(\pi\eta' \) etc. Summarizing the decay patterns, there are two possible decay modes: \(P \)-wave many body decay, such as \(\omega\pi\pi \), and \(P \)-wave two body decay, such as \(\pi\eta \) and \(\pi\eta' \). This is partly consistent with the experiments which observe \(\pi_1(1600) \) and \(\pi_1(2015) \) in the decay modes \(\pi\eta', \omega\pi\pi \) and \(\eta\eta\pi\pi \). However, the experiment has not observe them in the final state \(\pi\eta \). Certainly it is desired to study these decay patterns to obtain more information on the structure of the \(\pi_1s \) mesons.
VII. SUMMARY

In this paper we have performed the QCD sum rule analysis of the exotic tetraquark states with \(I^G J^{PC} = 1^- 1^+ \). The tetraquark currents have rich internal structure. There are several independent currents for a given set of quantum numbers. We have classified the complete set of independent currents and constructed the currents in the form of either \((qq)(\bar{q}\bar{q})\) or \((\bar{q}\bar{q})(qq)\). As expected, they are shown to be equivalent by having the complete set of independent currents. Physically, this seems to make it difficult to draw interpretation of the internal structure such as diquark \((qq)\) dominated or meson \((\bar{q}\bar{q})\) dominated ones. Using the complete set of the currents, one can perform an optimal analysis of the QCD sum rule.

Somewhat complicated feature arises from the flavor structure. We have tested all possibilities for the isovector \(I = 1 \) states. In the SU(3) limit, there are three cases of, in the diquark \((qq)(\bar{q}\bar{q})\) construction, \(6 \otimes 6, 3 \otimes 3\) and \((3 \otimes 6) \oplus (6 \otimes 3)\). We find that the former two cases can not result in meaningful sum rule since the spectral functions become negative. On the other hand, the mixed case \((3 \otimes 6) \oplus (6 \otimes 3)\) allows positive OPE with which we can perform the QCD sum rule analysis. Actual currents have been constructed in the limit of the ideal mixing where the currents are classified by the number of the strange quarks. Hence the quark contents are either \(qq\bar{q}\bar{q}\) or \(qs\bar{q}\bar{s}\).

We have then performed the SVZ and finite energy sum rules. The resulting masses are around 1.6 GeV for \(qq\bar{q}\bar{q}\), and around 2.0 GeV for \(qs\bar{q}\bar{s}\). The four independent currents lead to the same mass and couple to a single state as shown above. Hence one of our main conclusions is that the higher energy states \(\pi_1(1600)\) and \(\pi_1(2015)\) are well compatible with the tetraquark picture in the present QCD sum rule analysis. On the other hand, any combination of the independent currents does not seem to couple sufficiently to the lower mass state \(\pi_1(1400)\), which was, however, described as a hybrid state by K. C. Yang in Ref. \[13\]. He obtained a low mass around 1.26 GeV by using the renormalization-improved QCD sum rules. The \(\pi_1(1400)\) state seems somewhat special, as the experiments show the similarity between \(\pi_1(1600)\) and \(\pi_1(2015)\) as well as the difference between \(\pi_1(1400)\) and the above two states, which we have discussed in the introduction.

We have also studied their decay patterns and found that these states can be searched for in the decay mode of the axial-vector and pseudoscalar meson pair such as \(b_1(1235)\pi\), which is sometimes considered as the characteristic decay mode of the hybrid mesons. The P-wave modes \(\pi\eta, \pi\eta'\) are also quite important.

It is also interesting to study the partners of \(\pi_{1S}\). Especially, we can study the one with quark contents \(uds\bar{s}\), which is at the top of the flavor representation \(\mathbf{10}\) (see Fig. \[1\]). It has a mass around 2.0 GeV, and the decay modes are \(K^+ (5u)K^0 (\bar{s}d)\) (P-wave) and \(KKK\) (P-wave) etc. BESIII will start taking data very soon. The search/identification of exotic mesons is one of its important physical goals. Hopefully the dedicated experimental programs on the exotic mesons at BESIII and JLAB in the coming years will shed light on their existence, and then their internal structure. More work on theoretical side is also needed. We will go on to study other tetraquark candidates.

Acknowledgments

H.X.C. is grateful for Monkasha support for his stay at the Research Center for Nuclear Physics where this work is done. This work was supported by the National Natural Science Foundation of China under Grants 10625521, 10721063, the Ministry of Education of China, and the Grant for Scientific Research ((C) No.19540297) from the Ministry of Education, Culture, Science and Technology, Japan.

APPENDIX A: \((\bar{q}q)(\bar{q}q)\) CURRENTS

In this appendix, we attempt to construct the tetraquark currents using quark-antiquark \((\bar{q}q)\) pairs. For each state containing diquark and antidiquark having the symmetric flavor \(6_f \otimes \bar{6}_f\), there are four \((\bar{q}q)(\bar{q}q)\) currents:

\[
\xi^S_{\mu} = (\bar{q}_3 \gamma_\mu \gamma_5 q_1 a)(\bar{q}_4 \gamma_\mu \gamma_5 q_2 b) + (\bar{q}_3 \gamma_\mu \gamma_5 q_2 a)(\bar{q}_4 \gamma_\mu \gamma_5 q_1 b) + (\bar{q}_3 \gamma_\mu \gamma_5 q_2 a)(\bar{q}_4 \gamma_\mu \gamma_5 q_1 b)
\]

\[
\xi^S_{2\mu} = (\bar{q}_3 \gamma_\nu q_1 a)(\bar{q}_4 \gamma_\mu \gamma_5 q_2 b) + (\bar{q}_3 \gamma_\nu q_2 a)(\bar{q}_4 \gamma_\mu \gamma_5 q_1 b) + (\bar{q}_3 \gamma_\nu q_2 a)(\bar{q}_4 \gamma_\mu \gamma_5 q_1 b)
\]

\[
\xi^S_{\mu} = \lambda_{ab} \lambda_{cd} \{ (\bar{q}_3 \gamma_\mu \gamma_5 q_1 b)(\bar{q}_4 \gamma_\nu \gamma_5 q_2 d) + (\bar{q}_3 \gamma_\mu \gamma_5 q_2 b)(\bar{q}_4 \gamma_\nu \gamma_5 q_1 d) + (\bar{q}_3 \gamma_\nu \gamma_5 q_2 b)(\bar{q}_4 \gamma_\mu \gamma_5 q_1 d) + (\bar{q}_3 \gamma_\nu \gamma_5 q_1 b)(\bar{q}_4 \gamma_\mu \gamma_5 q_2 d) \}
\]

\[
\xi^S_{4\mu} = \lambda_{ab} \lambda_{cd} \{ (\bar{q}_3 \gamma_\mu \gamma_5 q_1 b)(\bar{q}_4 \gamma_5 \sigma_\mu q_2 d) + (\bar{q}_3 \gamma_\nu \gamma_5 q_2 b)(\bar{q}_4 \gamma_5 \sigma_\mu q_1 d) + (\bar{q}_3 \gamma_\nu \gamma_5 q_2 b)(\bar{q}_4 \gamma_5 \sigma_\mu q_1 d) + (\bar{q}_3 \gamma_\mu \gamma_5 q_2 b)(\bar{q}_4 \gamma_5 \sigma_\mu q_1 d) \}.
\]
Among these currents, only two are independent. We can verify the following relations
\[
\xi_{3\mu}^S = - \frac{5}{3} \xi_{1\mu}^S - i \xi_{2\mu}^S,
\]
\[
\xi_{4\mu}^S = 3i \xi_{1\mu}^S + \frac{1}{3} \xi_{2\mu}^S.
\]
Moreover, they are equivalent to the \((qq)(\bar{q}q) \) currents
\[
\psi_{1\mu}^S = - \frac{1}{2} \xi_{1\mu}^S + \frac{i}{2} \xi_{2\mu}^S,
\]
\[
\psi_{2\mu}^S = - \frac{3i}{2} \xi_{1\mu}^S + \frac{1}{2} \xi_{2\mu}^S.
\]
For each state containing diquark and antidiquark having the antisymmetric flavor \(\bar{3}_f \otimes 3_f \), there are also four \((\bar{q}q)(\bar{q}q) \) currents which are non-zero:
\[
\xi_{1\mu}^A = (\bar{q}_3 \gamma_\mu \gamma_5 q_1 a)(\bar{q}_4 b \gamma_5 \bar{q}_2 b) + (\bar{q}_3 \gamma_\mu \gamma_5 q_1 a)(\bar{q}_4 b \gamma_5 \bar{q}_2 a) - (\bar{q}_3 \gamma_\mu \gamma_5 q_2 a)(\bar{q}_4 b \gamma_5 \bar{q}_1 b) - (\bar{q}_3 \gamma_\mu \gamma_5 q_2 a)(\bar{q}_4 b \gamma_5 \bar{q}_1 b),
\]
\[
\xi_{2\mu}^A = (\bar{q}_3 \gamma^\nu \gamma_5 q_1 a)(\bar{q}_4 b \sigma_{\mu \nu} q_2 b) + (\bar{q}_3 \gamma^\nu \gamma_5 q_1 a)(\bar{q}_4 b \sigma_{\mu \nu} q_2 a) - (\bar{q}_3 \gamma^\nu \gamma_5 q_2 a)(\bar{q}_4 b \sigma_{\mu \nu} q_1 b) - (\bar{q}_3 \gamma^\nu \gamma_5 q_2 a)(\bar{q}_4 b \sigma_{\mu \nu} q_1 b),
\]
\[
\xi_{3\mu}^A = \lambda_{ab} \lambda_{cd} \{(\bar{q}_3 \gamma_\mu \gamma_5 q_1 b)(\bar{q}_4 c \gamma_5 \bar{q}_2 b) - (\bar{q}_3 \gamma_\mu \gamma_5 q_1 b)(\bar{q}_4 c \gamma_5 \bar{q}_2 a) - (\bar{q}_3 \gamma_\mu \gamma_5 q_2 a)(\bar{q}_4 c \gamma_5 q_1 b) - (\bar{q}_3 \gamma_\mu \gamma_5 q_2 a)(\bar{q}_4 c \gamma_5 q_1 b)\},
\]
\[
\xi_{4\mu}^A = \lambda_{ab} \lambda_{cd} \{(\bar{q}_3 \gamma^\nu \gamma_5 q_1 b)(\bar{q}_4 c \sigma_{\mu \nu} q_2 b) - (\bar{q}_3 \gamma^\nu \gamma_5 q_1 b)(\bar{q}_4 c \sigma_{\mu \nu} q_2 a) - (\bar{q}_3 \gamma^\nu \gamma_5 q_2 a)(\bar{q}_4 c \sigma_{\mu \nu} q_1 b) - (\bar{q}_3 \gamma^\nu \gamma_5 q_2 a)(\bar{q}_4 c \sigma_{\mu \nu} q_1 b)\},
\]
where two are independent
\[
\xi_{3\mu}^A = \frac{1}{3} \xi_{1\mu}^A + i \xi_{2\mu}^A,
\]
\[
\xi_{4\mu}^A = - 3i \xi_{1\mu}^A - \frac{5}{3} \xi_{2\mu}^A.
\]
They are equivalent to the \((qq)(\bar{q}q) \) currents
\[
\psi_{1\mu}^A = - \frac{1}{2} \xi_{1\mu}^A + \frac{i}{2} \xi_{2\mu}^A,
\]
\[
\psi_{2\mu}^A = - \frac{3i}{2} \xi_{1\mu}^A + \frac{1}{2} \xi_{2\mu}^A.
\]
For the currents which have a mixed flavor symmetry, we just show the \((\bar{q}q)(\bar{q}q) \) currents which belong to the flavor representation \(\bar{3}_f \otimes 6_f \).
\[
\xi_{1\mu}^{ML} = (\bar{q}_3(q_1 a))(\bar{q}_4 b \gamma_\mu q_2 b) - (\bar{q}_3(q_1 a))(\bar{q}_4 b q_2 b) - (\bar{q}_3 q_2 a)(\bar{q}_4 b \gamma_\mu q_1 b) - (\bar{q}_4 q_2 a)(\bar{q}_4 b q_1 b),
\]
\[
\xi_{2\mu}^{ML} = (\bar{q}_3 \gamma^\nu \gamma_5 q_1 a)(\bar{q}_4 b \gamma_\mu \gamma_5 q_2 b) - (\bar{q}_3 \gamma^\nu \gamma_5 q_1 a)(\bar{q}_4 b \gamma_\mu \gamma_5 q_2 a) - (\bar{q}_3 \gamma^\nu \gamma_5 q_2 a)(\bar{q}_4 b \gamma_\mu \gamma_5 q_1 b) - (\bar{q}_3 \gamma^\nu \gamma_5 q_2 a)(\bar{q}_4 b \gamma_\mu \gamma_5 q_1 b),
\]
\[
\xi_{3\mu}^{ML} = (\bar{q}_3 \gamma_\mu \gamma_5 q_1 a)(\bar{q}_4 b \sigma_{\mu \nu} q_2 b) - (\bar{q}_3 \gamma_\mu \gamma_5 q_1 a)(\bar{q}_4 b \sigma_{\mu \nu} q_2 a) - (\bar{q}_3 \gamma_\mu \gamma_5 q_2 a)(\bar{q}_4 b \sigma_{\mu \nu} q_1 b) - (\bar{q}_3 \gamma_\mu \gamma_5 q_2 a)(\bar{q}_4 b \sigma_{\mu \nu} q_1 b),
\]
\[
\xi_{4\mu}^{ML} = (\bar{q}_3 \gamma^\nu \gamma_5 q_1 a)(\bar{q}_4 b \sigma_{\mu \nu} \gamma_5 q_2 b) - (\bar{q}_3 \gamma^\nu \gamma_5 q_1 a)(\bar{q}_4 b \sigma_{\mu \nu} \gamma_5 q_2 a) - (\bar{q}_3 \gamma^\nu \gamma_5 q_2 a)(\bar{q}_4 b \sigma_{\mu \nu} \gamma_5 q_1 b) - (\bar{q}_3 \gamma^\nu \gamma_5 q_2 a)(\bar{q}_4 b \sigma_{\mu \nu} \gamma_5 q_1 b).
\]
There are also four currents which have a color \(8_c \otimes 8_c \) structure, and they can be written as a combination of these color \(1_c \otimes 1_c \) currents. The relations between \(\phi_{ij}^{ML} \) and \(\xi_{ij}^{ML} \) are:
\[
\psi_{1\mu}^{ML} = - \frac{1}{4} \xi_{1\mu}^{ML} + \frac{1}{4} \xi_{2\mu}^{ML} + \frac{i}{4} \xi_{3\mu}^{ML} - \frac{i}{4} \xi_{4\mu}^{ML},
\]
\[
\psi_{2\mu}^{ML} = \frac{3i}{4} \xi_{1\mu}^{ML} + \frac{3i}{4} \xi_{2\mu}^{ML} + \frac{1}{4} \xi_{3\mu}^{ML} + \frac{1}{4} \xi_{4\mu}^{ML},
\]
\[
\psi_{3\mu}^{ML} = \frac{1}{4} \xi_{1\mu}^{ML} + \frac{1}{4} \xi_{2\mu}^{ML} + \frac{i}{4} \xi_{3\mu}^{ML} + \frac{i}{4} \xi_{4\mu}^{ML},
\]
\[
\psi_{4\mu}^{ML} = - \frac{3i}{4} \xi_{1\mu}^{ML} + \frac{3i}{4} \xi_{2\mu}^{ML} + \frac{1}{4} \xi_{3\mu}^{ML} - \frac{1}{4} \xi_{4\mu}^{ML},
\]
We can obtain similar results for \(\xi_{ij}^{MR} \), which belong to the flavor representation \(6_f \otimes 3_f \) can be obtained similarly, and the currents with \(J^{PC} = 1^{-+} \) are
\[
\xi_{ij}^{M} = \xi_{ij}^{ML} + \xi_{ij}^{MR}.
\]
APPENDIX B: TWO-POINT CORRELATION FUNCTIONS

In this appendix we show the results for the Borel transformed correlation functions as defined in Eq. (S). Results for the currents η_1^A, η_2^M, η_3^M, η_4^M, η_6^M and η_8^M are indicated by the same upper and lower indices.

\[
\Pi_1^A(M_B^2) = \int_{s_0}^{s} \left[\frac{1}{36848\pi^6 s^4} - \frac{17m_s^2}{15360\pi^6} s^3 + \left(\frac{g_s^2GG}{18432\pi^6} + \frac{m_s(q\bar{q})}{192\pi^4} + \frac{m_s(s\bar{s})}{96\pi^4} \right) s^2 + \left(\frac{g_s^2GG}{72\pi^2} - \frac{(s\bar{s})^2}{72\pi^2} \right) \right] e^{-s/M_B^2} ds
\]

\[
- \frac{1}{24\pi^4} + \frac{m_s(g_s\bar{q}\sigma Gq)}{24\pi^4} - \frac{m_s(g_s\bar{s}\sigma Gs)}{24\pi^4} - \frac{m_s(g_s^2GG)}{4608\pi^6} \]

\[
+ \left(\frac{g_s^2GG}{72\pi^2} - \frac{(s\bar{s})^2}{72\pi^2} \right) = \frac{g_s^2GG}{864\pi^2} - \frac{m_s(q\bar{q})^2(s\bar{s})}{8\pi^2} + \frac{m_s(g_s\bar{q}\sigma Gq)}{12\pi^2} + \frac{m_s^2(g_s\bar{s}\sigma Gs)}{8\pi^2} + \frac{m_s^2(g_s\bar{q}\sigma Gq)}{8\pi^2} \]

\[
+ \frac{1}{18} \frac{m_s(q\bar{q})^2}{81} + \frac{m_s^2(g_s\bar{q}\sigma Gq)}{48\pi^2} - \frac{m_s^2(g_s\bar{q}\sigma Gq)}{18} \]

\[
\Pi_2^M(M_B^2) = \int_{0}^{s_0} \left[\frac{1}{6144\pi^6} s^4 + \frac{11g_s^2GG}{18432\pi^6} s^3 + \frac{g_s^2GG}{6\pi^2} s + \frac{g_s^2GG}{8\pi^2} \right] e^{-s/M_B^2} ds
\]

\[
+ \left(\frac{g_s^2GG}{16\pi^2} - \frac{5g_s^2GG}{864\pi^2} \right) + \frac{1}{M_B^2} \left(\frac{32g_s^2GG}{27} - \frac{g_s^2GG}{576\pi^2} \right) \]

\[
\Pi_3^M(M_B^2) = \int_{0}^{s_0} \left[\frac{1}{36848\pi^6} s^4 + \frac{g_s^2GG}{18432\pi^6} s^3 + \frac{g_s^2GG}{24\pi^2} s + \frac{g_s^2GG}{36\pi^2} \right] e^{-s/M_B^2} ds
\]

\[
+ \left(\frac{g_s^2GG}{96\pi^2} - \frac{5g_s^2GG}{864\pi^2} \right) + \frac{1}{M_B^2} \left(\frac{16g_s^2GG}{81} - \frac{g_s^2GG}{576\pi^2} \right) \]

\[
\Pi_4^M(M_B^2) = \int_{0}^{s_0} \left[\frac{1}{12288\pi^6} s^4 + \frac{g_s^2GG}{18432\pi^6} s^3 + \frac{g_s^2GG}{12\pi^2} s + \frac{g_s^2GG}{8\pi^2} \right] e^{-s/M_B^2} ds
\]

\[
+ \left(\frac{g_s^2GG}{32\pi^2} - \frac{5g_s^2GG}{864\pi^2} \right) + \frac{1}{M_B^2} \left(\frac{16g_s^2GG}{27} - \frac{g_s^2GG}{576\pi^2} \right) \]
$$\Pi_M^M(M_B^2) = \int_{4m^2}^{s_0} \left[\frac{1}{6144\pi^6} s^4 - \frac{17m^2}{2560\pi^6} s^3 + \frac{11\langle g_s^2 GG \rangle}{18432\pi^6} - \frac{m_s\langle \bar{q}q \rangle}{32\pi^4} + \frac{m_s\langle \bar{s}s \rangle}{16\pi^4} \right] s^2 + \left(-\frac{\langle \bar{q}q \rangle^2}{12\pi^2} + \frac{\langle \bar{q}q \rangle\langle \bar{s}s \rangle}{3\pi^2} \right) s + \left(\frac{\langle \bar{q}q \rangle\langle \bar{s}s \rangle}{8\pi^2} - \frac{\langle \bar{q}q \rangle\langle \bar{s}s \rangle}{4\pi^2} \right) + \frac{m_s^2\langle \bar{s}s \rangle^2}{8\pi^2} e^{-s/M_B^2} ds + \left(-\frac{\langle g_s\bar{q}qGq \rangle\langle \bar{s}s \rangle}{32\pi^2} + \frac{\langle g_s\bar{q}qGq \rangle\langle \bar{s}s \rangle}{8\pi^2} - \frac{\langle g_s\bar{q}qGq \rangle\langle \bar{s}s \rangle}{32\pi^2} - \frac{\langle g_s\bar{q}qGq \rangle\langle \bar{s}s \rangle}{2\pi^2} \right) \right.$$
\[\Pi_8^M(M_B^2) = \int_0^{s_0} \left[\frac{1}{12288\pi^6} s^4 - \frac{17m_s^2}{5120\pi^6} s^3 + \left(\frac{\langle g_s^2 G G \rangle}{18432\pi^6} - \frac{m_s \langle q \bar{q} \rangle}{64\pi^4} + \frac{m_s \langle s \bar{s} \rangle}{32\pi^4} \right) s^2 + \left(-\frac{\langle q \bar{q} \rangle^2}{24\pi^4} + \frac{\langle q \bar{q} \rangle \langle s \bar{s} \rangle}{6\pi^2} \right) \right] e^{-s/M_B^2} ds \]

[1] R. L. Jaffe, Phys. Rev. D 15, 267 (1977); R. L. Jaffe, Phys. Rev. D 15, 281 (1977).
[2] E. Klempt and A. Zaitsev, Phys. Rept. 454, 1 (2007).
[3] I. V. Anikin, B. Pire and O. V. Teryaev, Phys. Lett. B 626, 86 (2005).
[4] C. McNeile et al., Nucl. Phys. Proc. Suppl. 73, 264 (1999); P. Lacock and K. Schilling [TXL collaboration], Nucl. Phys. Proc. Suppl. 73, 261 (1999).
[5] J. N. Hedditch, W. Kamleh, B. G. Lasscock, D. B. Leinweber, A. G. Williams and J. M. Zanotti, Phys. Rev. D 72, 114507 (2005).
[6] C. Bernard et al., Phys. Rev. D 68, 074505 (2003).
[7] F. Ildir and L. Semlala, [arXiv:0710.5352] [hep-ph].
[8] N. Isgur and J. E. Paton, Phys. Rev. D 31, 2910 (1985).
[9] P. R. Page, E. S. Swanson and A. P. Szczepaniak, Phys. Rev. D 73, 014025 (2006).
[10] K. G. Chetyrkin and S. Narison, Phys. Lett. B 485, 145 (2000).
[11] A. Abele et al. [Crystal Barrel Collaboration], Phys. Lett. B 446, 349 (1999); A. Abele et al. [Crystal Barrel Collaboration], Phys. Lett. B 423, 175 (1998).
[12] D. R. Thompson et al. [ES82 Collaboration], Phys. Rev. Lett. 79, 1630 (1997).
[13] E. I. Ivanov et al. [ES82 Collaboration], Phys. Rev. Lett. 86, 3977 (2001).
[14] M. Lu et al. [ES82 Collaboration], Phys. Rev. Lett. 94, 032002 (2005).
[15] J. Kuhn et al. [ES82 Collaboration], Phys. Lett. B 595, 109 (2004).
[16] A. R. Dzierba et al., Phys. Rev. D 73, 072001 (2006).
[17] M. Nozar et al. [CLAS Collaboration], [arXiv:0805.4438] [hep-ex].
[18] N. Isgur, R. Kokoski and J. E. Paton, Phys. Rev. Lett. 54, 869 (1985); F. E. Close and P. R. Page, Phys. Rev. D 52, 1706 (1995); A. Afanasev and P. R. Page, Phys. Rev. D 57, 6771 (1998); A. P. Szczepaniak and M. Swat, Phys. Lett. B 516, 72 (2001).
[19] H. X. Chen, A. Hosaka and S. L. Zhu, Phys. Rev. D 74, 054001 (2006).
[20] H. X. Chen, A. Hosaka and S. L. Zhu, Phys. Rev. D 76, 094025 (2007).
[21] H. X. Chen, X. Liu, A. Hosaka and S. L. Zhu, [arXiv:0801.4603] [hep-ph].
[22] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979).
[23] L. J. Reinders, H. Rubinstein and S. Yazaki, Phys. Rept. 127, 1 (1985).
[24] K. C. Yang, W. Y. P. Hwang, E. M. Henley and L. S. Kisslinger, Phys. Rev. D 47, 3001 (1993).
[25] S. Narison, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 17, 1 (2002).
[26] V. Gimenez, V. Lubicz, F. Mescia, V. Porretti and J. Reyes, Eur. Phys. J. C 41, 535 (2005).
[27] M. Jamin, Phys. Lett. B 538, 71 (2002).
[28] B. L. Ioffe and K. N. Zyablyuk, Eur. Phys. J. C 27, 229 (2003).
[29] A. A. Ovchinnikov and A. A. Pivovarov, Sov. J. Nucl. Phys. 48, 721 (1988) [Yad. Fiz. 48, 1135 (1988)].
[34] W. Y. P. Hwang and K. C. Yang, Phys. Rev. D 49, 460 (1994).