Investigation of Effects of Structural Defects on A Phononic Crystal Heterostructure Waveguide

Mohammad Bagheri nouria*, Mehran Moradib

aDepartment of Mechanical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran
bDepartment of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran

\textbf{Abstract}

Phononic crystals are inhomogeneous structures which are created by periodic arrangement of inclusions in an elastically different host material. By removing a row of inclusions, phononic crystal waveguide can be obtained. In this research, effects of structural defects on a phononic crystal heterostructure waveguide have been investigated. The heterostructure is composed of square and triangular phononic crystals (periodic arrangement of steel inclusions in epoxy host). To analyze the structure, displacement based finite difference time domain method has been used. The simulation shows that a stub attached vertically to the heterostructure waveguide induces dips in the transmission spectrum. Also, the frequency range of the transmission was limited to a narrow frequency domain of 104 KHz in the cavity-containing waveguide. Finally, the simulation showed that the effect of the cavity that is inserted at the side of the waveguide is insignificant.

\textbf{Extended Abstract}

\textbf{1. Introduction}

Phononic crystals are inhomogeneous structures which are created by periodic arrangement of inclusions in an elastically different host material. By removing a row of inclusions, phononic crystal waveguide can be obtained.

In this research, effects of structural defects on a phononic crystal heterostructure waveguide have been investigated. The heterostructure is composed of square and triangular phononic crystals (periodic arrangement of steel inclusions in epoxy host) as illustrated in FIG 1.

![Figure 1. The studied phononic crystal heterostructure](image)

Then, by creation of line defects in the heterostructure, a heterostructure waveguide bend is actualized. Diameter of the steel inclusion and the lattic constant are 5 and 8 mm respectively. The host material is epoxy.
Investigation Of effects Of Structural Defects on A Phononic Crystal Heterostructure Waveguide

Mechanics of Advanced and Smart Materials Journal 2(2) (2022) 123–133

2. Methodology

Two-dimensional phononic crystals are considered here. The equations of elastic wave propagation can be described as:

\[\rho \ddot{u}_i = \sigma_{ij,i} \]
\[\sigma_{ij} = C_{ijmn}u_{m,n} \]

(1)
(2)

In the above equations, \(\rho \) = \(\rho(x, y) \), \(C_{ijmn}(x, y) \) and \(u_{m,n} \) are respectively density, elastic stiffness tensor, ith component of wave displacement in the structure.

The summation agreement over dummy indices is considered, too. Since propagation of elastic waves in the xy plane is assumed, the displacement and stress tensor of the structure are independent of z, i.e., \(u_i = u_i(x, y, t) \) and \(\sigma_{ij} = \sigma_{ij}(x, y, t) \). The propagation of the mixed mode in the heterostructure is studied in this paper.

To solve the aforementioned equations, displacement-based finite difference time domain (DBFDTD) method was used which can be found in detail in [17].

To analyze the proposed bend, left and right boundaries of FIG. 2 was surrounded by two homogenous regions and the perfectly matched layer (PML) [18] was applied as the absorbing boundary condition. The periodic boundary condition was applied on the top and bottom boundaries.

A Gaussian wave packet was launched along the x direction in the left homogenous region. The calculation model was discretized in both x and y directions with a grid interval of (a/60). The equations of motion were solved over 2\(^{16} \) time steps with each time step lasting 6 ns. By taking fast Fourier transform of the averaged x component of displacement over the guide width (right homogenous region) and normalizing it to the same quantity calculated for the wave packet in the absence of the phononic crystal, transmission coefficient can be calculated. To analyse the heterostructure a developed FORTRAN code was used.

3. Discussion and Results

By substituting an inclusion with host material, defects can be introduced within the heterostructure. The cavity-containing waveguide was showed in FIG. 3. Effect of this cavity on transmission spectrum of the waveguide has been illustrated in FIG. 4. As can be seen in FIG. 4, the frequency range of the transmission was limited to a narrow frequency domain of 104 KHz in the cavity-containing waveguide.

FIG. 5 shows a stub attached vertically to the heterostructure waveguide. The analyse showed that a stub attached vertically to the heterostructure waveguide induces dips in the transmission spectrum.
The displacement pattern of the stubbed waveguide in 20000 th time step has been showed in FIG. 7. The frequency of applied wave is 123 KHz. This figure indicates that the displacements of right-side points of waveguide are insignificant. In other words, if the wave frequency is 123 KHz, the wave could not propagate along the waveguide.

FIG. 8 shows the situation where a cavity is inserted at the side of the waveguide. It is expected that a cavity that is inserted at the side of the waveguide, leads to zero of transmission. The effect of this cavity on the transmission spectrum of the waveguide was depicted in FIG. 9

The simulation showed that that the cavity which is inserted at the side of the waveguide leads to an insignificant reduction in the transmission spectrum of the waveguide in 102 KHz frequency.

4. Conclusion

In this paper, effect of structural defect on transmission spectrum of a phononic crystal heterostructure waveguide has been studied. The heterostructure is composed of square and triangular phononic crystals. The inclusion and host material are steel and epoxy respectively.

To analyze the structure, displacement based finite difference time domain method has been used. The simulation shows that a stub attached vertically to the heterostructure waveguide induces dips in the transmission spectrum. Also, the frequency range of the transmission was limited to a narrow frequency domain of 104 KHz in the cavity-containing waveguide. Finally, the simulation showed that the effect of the cavity that is inserted at the side of the waveguide is insignificant.
بررسی اثرات نقص ساختاری بر یک هدایت کننده موج با ساختار نامتجانس

کریستال فونونیک

محمدرضا نوری

نویسنده مسئول؛
تلفن: 08632625008
آدرس پست الکترونیک: m-bagherinoori@araku.ac.ir

چکیده

کریستال‌های فونونیک مواد مرکبی هستند که از ارایش‌هایی در نمونه تولید شده و با استفاده از روش تفاضل محدود نسبت به ساختاری تحلیل شده است. این ارایش‌ها باعث استحکام ماده، کاهش تغییرات فیزیکی و پیچیدگی در محدوده فرکانسی‌های خاص خواهد شد. این ارایش‌ها می‌توانند دارای میزان اثربخشی پیشرفت در سیستم‌های مکانیکی باشند.

واژگان کلیدی

کریستال فونونیک، نقص ساختاری، هدایت کننده، روش تفاضل محدود.

تاریخ دریافت: 28/01/1401
تاریخ بازنگری: 02/03/1401
تاریخ پذیرش: 25/05/1401

1- مقدمه

کریستال‌های فونونیک مواد مرکبی هستند که از ارایش‌هایی در نمونه تولید شده و با استفاده از روش تفاضل محدود نسبت به ساختاری تحلیل شده است. این ارایش‌ها باعث استحکام ماده، کاهش تغییرات فیزیکی و پیچیدگی در محدوده فرکانسی‌های خاص خواهد شد. این ارایش‌ها می‌توانند دارای میزان اثربخشی پیشرفت در سیستم‌های مکانیکی باشند.

به دلیل خصوصیت شکاف فونونیک، کریستال‌های فونونیک برای مدیریت انتشار امواج الاستیک مناسب هستند. شکاف نواری کامل یک محدوده فرکانسی است که کریستال فونونیک از انتشار امواج الاستیک پاک‌کننده کریستال‌های طبیعی و رسانه‌ای را در محدوده‌های مختلفی از ممکن می‌کند.

*Phononic crystal
**Complete band gap
*Absolute
*Transmission
*Guided mode
قرار دارد، توسط هایاکیو کریستال فونونیک به‌خوبی هدایت و در اثر طرف نسخ ساختاری منظم‌تر می‌شود. این قابلیت، کریستال فونونیک را به گزینه مناسبی برای طراحی ریز خوراهای اکوسیکس با استفاده کننده موج، قابلیت اینهای کامل‌تری می‌دهد. استفاده همزمان از نقص نقطه‌ای و خداً یکی از توانمند کرایه کاربردهای موج‌گیری در جداسازی جنبه‌های مختلف عمده مورد بررسی قرار گرفته‌اند و در راستای استفاده در سایر تقسیم‌بندی‌ها استفاده کرده‌اند. [6]، [7]، [8]، [9]. در بررسی‌های تازه‌کاران از روش‌های مختلف برای پیش‌بینی و ارائه نتایج در سایر تقسیم‌بندی‌ها استفاده شده است. [10].

اگر با یکنواختی نشان داده شود که قابلیت عبور هایاکیو کریستال فونونیک تابعی از فرکانست است [11]. خلف و همکارشان [12] انتشار امواج آکوسیکس را در هایاکیو کریستال‌های خطا‌زده درون کریستال‌های فونونیک دوی‌پیدایی (فولاد) در اب، هوا در آب) که دارای به‌ریشه است بررسی کرده‌اند. این نشان داده‌های که این نقص ساختاری قابل غلظت است. [13] نشان داده شد که یک ردیف از امواج آکوسیکس طیف عبور هایاکیو کریستال‌های فونونیک کاملاً مناسب استفاده می‌شود. علاوه بر این، فریم‌های دیگری به بررسی انتخاب امواج ساختاری بر طبق عبور هایاکیو کریستال فونونیک پرداخته شده است.

اگر چه در مقالات مختلفی به بررسی اثرات انتقال می‌گردید همچنان با استفاده از امواج ساختاری بر طبق عبور هایاکیو کریستال فونونیک تاکنون بررسی نشده است.

2- مدل سازی و فرمول بندی

کریستال فونونیک مورد بررسی در این پژوهش دوبعدی است. استوانه‌ها (آخال‌ها) در راستای یکی از دایره‌ها درون صفحه اولیه مطالعه شده‌اند.

این مقاله مربوط به ارائه پژوهش در مورد مدل‌سازی و فرمول‌بندی کریستال فونونیک است.
به تطور متناوب تکرار میشوند. در غیاب نیروهای بدنی، معادلات موج الاستیک به صورت زیر است:

\[
\rho \ddot{u}_i = \sigma_{ij,j} \quad (1)
\]

\[
\sigma_{ij} = C_{ijmn}u_{mn} \quad (2)
\]

که \(\rho \) به ترتیب جنگلی و تانسور ضرایب الاستیک ساختار هستند. فرآیند جمع روی اندر های تکراری فرض می‌شود. از آنجایی که انتشار امواج درون صفحه \(xy \) در نظر گرفته شود، می‌توان برای اینجا انتشار مورد ترکیب 15 ای درون صفحه‌ای (جابجا، جابجا) درون صفحه \(xy \) بررسی می‌شود.

در این مقاله فرض می‌شود که اکس و زمینه ایزوترپیک هستند. برای مطالعه ساختار مورد نظر، از روش تفاضل محدود جابجا-مینا در حوزه زمان [17] استفاده می‌شود. ساختار نامتوازن مورد بررسی این مقاله ساختاری است که از ترکیب دو ساختار نامتوازن را نشان می‌دهد. مطالب شکل 1، سمت راست ساختار مورد نظر ارایه می‌شود. سمت چپ ساختار، آرایش مربیع است.

![شکل 1: ساختار نامتوازن مورد بررسی](https://example.com/shape1)

قطر اکس‌های فولادی 5 میلی‌متر و ناپ شیبکه مربیع 8 میلی‌متر است. زمینه کریستال فونونیک ایزوکسی است. مطالب شکل 2. با ایجاد نقطه خنثی (حذف اکس‌های) در ساختار فوق، هدايت کننده کریستال فونونیک با ساختار نامتوازن ایجاد می‌شود.

![شکل 2: هدايت کننده کریستال فونونیک با ساختار نامتوازن](https://example.com/shape2)

\[^{15} \text{Mixed mode} \]
3- نتایج

برای تحلیل هدایت کندنه فوق، در راستای عمودی از شرط مرزی متناوب و در راستای افقی از شرط

Error! Reference source not found.

برای تحلیل استفاده شده است. به منظور انجام تحلیل، سمت راست و چپ همگی از جنس زمینه احاطه می‌شود که نشان داده شده‌اند.

در ناحیه همگن سمت چپ، موج طولی ایجاد می‌شود. موج طولی به‌صورت یک شرط اولیه اعمال می‌شود. ضمن یک ایجاد شرود خروجی زمانی، مؤلفه‌ای جابجایی نقطه‌ای از ناحیه همگن سمت چپ برای با مقدار یک نمای اخاد می‌شود. تابع استفاده‌شده در اینجا حاصل ضرب یک موج کسب‌شده برای با تابع گوسی

\[y(t) = \begin{cases} 0_{+}, & t \in [0, T] \\ 0, & t \in [T, 2T] \\ 0_{+}, & t \in [2T, 3T] \\ 0, & t \in [3T, 4T] \end{cases} \]

نتایج سازی شده و معادله حرکت در محیط زمانی

\[\frac{\partial^2 u}{\partial t^2} - c^2 \nabla^2 u = 0 \]

ست در ناحیه همگن سمت چپ، از جابجایی در راستای x رون عرض هدایت کندنه میانگین گری می‌شود. از این میانگین تبدیل فوریه گرفته می‌شود. اندازه تبدیل فوریه به‌دست‌آمده با تبدیل فوریه مدل در حالتی که کریستال فوتویکی حذف شده (نها زمینه باقی‌مانده باشد) تصدیق می‌شود. به‌دین ترتیب ضریب عبور به دست‌می‌آید. برای تحلیل ساختار فوق و به دست آوردن نتایج یک کد به زبان فرترن

\[\text{FORTRAN} \]

نوشته و اجرا شد. موج جابجایی گرفته‌ها را با اساس‌منش فاصله محدود جابجایی-مینا در حوزه زمانی بررورسایی می‌کند و از آن تابع فوریه می‌گیرد.

با ایجاد حفره در سازه، نقش به وجود می‌آید. منظور از حفره، حذف یک آنالی از ساختار و جایگزینی آن با زمینه است. در حالتی که هدایت کندنه کریستال فوتویکی‌ای حفره را در پرتوگری، محدوده فوتویکی عبور هدایت کندنه به محدوده باریک مرتب به فوتوییکی ویژه ان حرفه محدود می‌شود [12]. شکل 3 حالتی را نشان می‌دهد که هدایت کندنه مورد بررسی یک حفره را در برگرفته است. در شکل 4 اثر این حفره بر طرف عبور هدایت کندنه نمایش داده شده است.

شکل 3

محدوده مورد نظر در حالتی که یک حفره در یک کندنه است.

شکل 4

*نمایش می‌کند که یک حفره را در یک کندنه فوتویکی را هدایت می‌کند. در شکل 4 طرف عبور هدایت کندنه مورد نظر (بیرون حفره) با خط‌چسب نمایش داده شده است که نشان می‌دهدی کندنه در محدوده فوتوییکی حفره ایجاد شده است. به دهشبات و به محدوده هدایت خش می‌کند. کندنه به حفره از محدوده فوتوییکی +10 کیلوهرتز محدود شده است. فوتوییکی

\[10 \text{کیلوهرتز} \]

یک حفره مرتب می‌شود.

در صورتی که یک منبع موج از بیرون بر کریستال فوتویکی که دارای حفره است اعمال شود، انرژی موج از طریق تونل

16Perfectly matched layer
17Gaussian function
18FORTRAN
بررسی اثرات نقاط ساختاری بر یک هدایت کننده موج با ساختار نامتقارن کرستال فونونیک

زدن 16 ممکن است به درون حفره انتقال یابد. این انتقال از طریق نیم‌برای‌های فنونی‌هایی، به طور موثور رخ می‌دهد. درواقع در حالی که هدایت کننده پیشنهادی یک حفره را در بر می‌گیرد، فنونی‌های زونولاس حفره 104 کیلوهرتز است. در این حالت به کمک اثر تونل زدن، مود هدایت کننده و حفره کویل شده و موج با فنونی‌های زونولاس حفره عبور داده می‌شود [13].

به عبارت دیگر در صورتی که فنونی‌های موج اعمالی 104 کیلوهرتز باشد، اسرار موج به درون حفره انتقال می‌یابد و نهایتاً موج از هدایت کننده عبور می‌کند. درنتیجه طیف عبور هدایت کننده بیشتری در حالتی که یک حفره را در بر می‌گیرد، در فنونی‌ها

104 کیلوهرتز دارای قلا است.

شکل 4 طیف عبور هدایت کننده مورد نظر در حالتی که حفره را در بر دارد (خط پر) و طیف عبور هدایت کننده بدون نقش (خط قهوه‌ای).

شکل 5 هدایت کننده را در حالتی که یک ریشه در مجاورت آن قرار دارد نشان می‌دهد. اثر عمده ریشه، ایجاد صفرهای عبور است [13]. این اثر ریشه بر طیف عبور هدایت کننده مورد نظر بررسی در شکل 6 نمایش داده شده است. همانطور که شکل 6 نشان می‌دهد ریشه‌ای که در مجاورت هدایت کننده پیشنهادی قرار دارد، باعث تنزل طیف عبور در فنونی‌های 102 و 123 کیلوهرتز می‌شود.

199 Tunneling
شکل 6 اثر ریشه بر طیف عبور هدایت کننده. طیف عبور هدایت کننده در مجاورت ریشه (خط پر) و طیف عبور هدایت کننده بدون نقطه (خط چین).

شکل 7 الگوی جابجایی (برحسب مترا) درون هدایت کننده در حالتی که یک ریشه در مجاورت آن قرار دارد در کام زمانی 2000 نمایان می‌دهد.

شکل 8 هدایت کننده را در حالتی که یک حفره در مجاورت آن قرار دارد نشان می‌دهد. انتظار می‌رود حفره‌ای که در مجاورت یک هدایت کننده قرار دارد می‌تواند ایجاد ایجاد صفره‌ای در طیف عبور هدایت کننده شود. این صفره‌ای عبور در فرکانس‌های وزن حفره رخ می‌دهد. در حالتی که عرض حفره در مجاورت کننده زیاد باشد، اثر حفره کاهش قابلیت عبور هدایت کننده خواهد بود. اثر این حفره بر طیف عبور هدایت کننده در شکل 9 نمایش داده شده است. شکل 9 نشان می‌دهد که حفره اثر ناجیزی بر کاهش عبور هدایت کننده برای فرکانس‌های بین 10 کیلوهرتز و 100 کیلوهرتز داشته است. این اثر ناجیز حفره جابجایی به دلیل عرض زیاد هدایت کننده است.

شکل 8 هدایت کننده در حالتی که یک حفره در مجاورت آن قرار گرفته است.
بررسی اثرات نق ص ساختاری بر یک هدایت کننده موج با ساختار نامتجانس کریستال فونونیک

شکل ۹ اثر حفره جانبی بر طیف عبور هدایت کننده. طیف عبور هدایت کننده پیشنهادی در مجاورت حفره جانبی (خط قرمز) و طیف عبور هدایت کننده بدون نقص (خط زرد).

۴- نتیجه‌گیری

در این مقاله اثرات نقص ساختاری بر یک هدایت کننده موج با ساختار نامتجانس کریستال فونونیک بررسی شده است. ساختار نامتجانس از ترکیب کریستال‌های فونونیک با آراشی مرتعی و مثلثی به وردی می‌ایستد. در ساختار فوق آخال و زمینه به ترتیب فولاد و اپوکسی است. در تحلیل ساختار فوق از روش تفاضل محدود جابجایی-مینا در جهت زمان استفاده شده است. نتایج بدست آمده نشان می‌دهند که ریشه‌ای که عموماً در راستای هدایت کننده نامتجانس قرار دارد، باعث نزول طیف عبور در فرکانس‌های ۱۰۲ و ۱۲۳ کیلوهertz می‌شود. همچنین هدایت کننده در حالتی که یک حفره را در برمی‌گیرد، تنا تفاوت ۱۰۴ کیلوهertz را هدایت می‌کند. حفره‌ای که در مجاورت هدایت کننده قرار می‌گیرد اثر ناجیزی بر کاهش عبور هدایت کننده برای فرکانس ۱۰۲ کیلوهertz داشته است.

۵- مراجع

[1] Chen CQ, Cui JZ, Duan HL, Feng X-Q, He LH, Hu GK, et al. Perspectives in mechanics of heterogeneous solids. Acta Mechanica Solida Sinica. 2011;24:1-26.

[2] Pennec Y, Vasseur JO, Djafari-Rouhani B, Dobrzyński L, Deymier PA. Two-dimensional phononic crystals: Examples and applications. Surface Science Reports. 2010;65:229-91.

[3] Lakhtakia A, Varadan VV, Varadan VK. Reflection characteristics of an elastic slab containing a periodic array of circular elastic cylinders: P and SV wave analysis. The Journal of the Acoustical Society of America. 1988;83:1267-75.

[4] Economou EN, Zdetsis A. Classical wave propagation in periodic structures. Physical Review B. 1989;40:1334.

[5] Yang Xe, Zhong J, Xiang J. Optimization scheme for piezoelectric energy harvesting in line-defect for 2D starlike hole-type phononic crystals considering waveguides. AIP Advances. 2022;12:015012.

[6] Zhang S, Liu J, Zhang H, Wang S. Tunable Low Frequency Band Gap and Waveguide of Phononic Crystal Plates with Different Filling Ratio. Crystals. 2021;11:828.

[7] Jia Z, Chen Y, Yang H, Wang L. Designing phononic crystals with wide and robust band gaps. Physical Review Applied. 2018;9:044021.

[8] Guo Y, Schubert M, Dekorsy T. Finite element analysis of surface modes in phononic crystal waveguides. Journal of Applied Physics. 2016;119:124302.
[9] Salman A, Kaya OA, Cicek A. Determination of concentration of ethanol in water by a linear waveguide in a 2-dimensional phononic crystal slab. Sensors and Actuators A: Physical. 2014;208:50-5.

[10] Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B, Laude V. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied physics letters. 2004;84:4400-2.

[11] Kafesaki M, Sigalas MM, Garcia N. Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials. Physical Review Letters. 2000;85:4044.

[12] Khelif A, Djafari-Rouhani B, Vasseur JO, Deymier PA, Lambin P, Dobrzynski L. Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal. Physical Review B. 2002;65:174308.

[13] Khelif A, Djafari-Rouhani B, Vasseur JO, Deymier PA. Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials. Physical Review B. 2003;68:024302.

[14] Benchabane S, Khelif A, Choujaa A, Djafari-Rouhani B, Laude V. Interaction of waveguide and localized modes in a phononic crystal. EPL (Europhysics Letters). 2005;71:570.

[15] Wu T-T, Hsu J-C, Sun J-H. Phononic plate waves. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2011;58:2146-61.

[16] Mohammadi S, Adibi A. On chip complex signal processing devices using coupled phononic crystal slab resonators and waveguides. AIP Advances. 2011;1:041903.

[17] Bagherinouri M., Moradi M. Presentation and investigation of a new two dimensional heterostructure phononic crystal to obtain extended band gap. Physica B: Condensed Matter. 2016;489:28-32.

[18] Chew WC, Liu QH. Perfectly matched layers for elastodynamics: a new absorbing boundary condition. Journal of computational acoustics. 1996;4:341-59.

[19] Lambin P, Khelif A, Vasseur JO, Dobrzynski L, Djafari-Rouhani B. Stopping of acoustic waves by sonic polymer-fluid composites. Physical Review E. 2001;63:066605.

[20] Adibi A, Khelif A. Phononic Crystals: Fundamentals and Applications: Springer, 2016.