REVIEW

Recent advances in marburgvirus research [version 1; peer review: 3 approved]

Judith Olejnik¹,², Elke Mühlberger¹,², Adam J. Hume¹,²

¹Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
²National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA

Abstract
Marburgviruses are closely related to ebolaviruses and cause a devastating disease in humans. In 2012, we published a comprehensive review of the first 45 years of research on marburgviruses and the disease they cause, ranging from molecular biology to ecology. Spurred in part by the deadly Ebola virus outbreak in West Africa in 2013–2016, research on all filoviruses has intensified. Not meant as an introduction to marburgviruses, this article instead provides a synopsis of recent progress in marburgvirus research with a particular focus on molecular biology, advances in animal modeling, and the use of Egyptian fruit bats in infection experiments.

Keywords
Marburg virus, marburgviruses, filovirus, filoviruses, Egyptian rousette, viral proteins

Open Peer Review

Reviewer Status ✅ ✅ ✅

Invited Reviewers

1️⃣ 2️⃣ 3️⃣

version 1
published
21 May 2019

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty. In order to make these reviews as comprehensive and accessible as possible, peer review takes place before publication; the reviewers are listed below, but their reports are not formally published.

1️⃣ Ilhem Messaoudi, University of California, Irvine, USA
2️⃣ Chad E Mire, University of Texas Medical Branch, Galveston, USA
3️⃣ M. Javad Aman, Integrated Biotherapeutics, Inc., Rockville, USA

Any comments on the article can be found at the end of the article.
Corresponding author: Adam J. Hume (hume@bu.edu)

Author roles: Olejnik J: Writing – Original Draft Preparation, Writing – Review & Editing; Mühlberger E: Writing – Original Draft Preparation, Writing – Review & Editing; Hume AJ: Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award numbers R01-AI133486 and R21-AI135912.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Olejnik J et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Olejnik J, Mühlberger E and Hume AJ. Recent advances in marburgvirus research [version 1; peer review: 3 approved] F1000Research 2019, 8(F1000 Faculty Rev):704 (https://doi.org/10.12688/f1000research.17573.1)

First published: 21 May 2019, 8(F1000 Faculty Rev):704 (https://doi.org/10.12688/f1000research.17573.1)
Introduction

Marburg virus (MARV) is a member of the Marburgvirus genus that contains two different viruses: MARV and Ravn virus (RAV). Both viruses are represented by numerous isolates. Filovirus taxonomy is confusing, and for those who do not know the difference between Marburg virus (the virus MARV), Marburgvirus (the genus), and marburgvirus (MARV and RAV), we recommend browsing through the Guide to the Correct Use of Filoviral Nomenclature by Kuhn.

MARV is closely related to the better-known Ebola virus (EBOV) and causes a similarly severe disease in humans. Some of the unique characteristics of filovirus outbreaks were reported for MARV disease (MVD) long before they were noticed in EBOV disease (EVD). This includes persistent infection, sexual transmission, and long-term sequelae. There are also heart-breaking reports of social stigmatization and severe chronic health issues as recalled by survivors of the 1967 MVD outbreak in Marburg, Germany. Notably, one of the patients from that outbreak temporarily lost the ability to write and calculate and never completely recovered from concentration disorders, reflecting the severe neurological consequences in survivors of filovirus disease.

MVD remains a global health threat with outbreaks continuing to occur in Central Africa, including two outbreaks in Uganda in 2012 and 2014. Jointly with EVD, MVD is listed on the World Health Organization 2018 Priority Diseases List (https://www.who.int/blueprint/priority-diseases/en/). This list is used as a tool to determine which diseases and pathogens should be prioritized for research, development of countermeasures, and emergency response preparedness.

In 2012, we published a comprehensive overview on marburgviruses and the disease they cause, ranging from ecology to molecular biology and treatment options. A number of areas of significant progress in the marburgvirus field since 2012—including the development of tools to study MARV replication and transcription and to rescue MARV clones—advances in filovirus countermeasures, and vaccine development—have recently been summarized. Progress in the development of MARV vaccines and antiviral treatment options has led to phase 1 clinical trials to evaluate their safe use in humans. Rather than repeating what has been covered in our previous review and these other excellent reviews, this article instead will focus on (1) recent progress in marburgvirus molecular biology, (2) novel developments in the study of marburgviruses in Egyptian fruit bats, and (3) advances in the use of animal models to study marburgvirus infection, including their use in resolving isolate-specific differences in virulence and pathogenicity.

1. Molecular biology

During the last 6 years, much research has focused on a more detailed understanding of the different steps of the marburgvirus replication cycle as well as virus–host interactions using crystal structure, biochemistry, and bioinformatics approaches. Live-cell imaging studies have been instrumental in developing a deeper understanding of marburgvirus assembly and particle release.

a. Marburg virus genome

Marburgviruses belong to the group of non-segmented negative-strand RNA viruses. A detailed overview of viral genome organization, cis-acting elements, and genome replication and transcription strategies is provided in 7,16. High-throughput sequencing of MARV RNA combined with bioinformatics and statistical analysis has provided new insights into viral genome plasticity and MARV evolution. This includes codon usage analysis9,17,18,19, advances in filovirus countermeasures, and vaccine development2—have recently been summarized. Progress in the development of MARV vaccines and antiviral treatment options has led to phase 1 clinical trials to evaluate their safe use in humans21,22,23,24. Rather than repeating what has been covered in our previous review and these other excellent reviews, this article instead will focus on (1) recent progress in marburgvirus molecular biology, (2) novel developments in the study of marburgviruses in Egyptian fruit bats, and (3) advances in the use of animal models to study marburgvirus infection, including their use in resolving isolate-specific differences in virulence and pathogenicity.

1. Molecular biology

During the last 6 years, much research has focused on a more detailed understanding of the different steps of the marburgvirus replication cycle as well as virus–host interactions using crystal structure, biochemistry, and bioinformatics approaches. Live-cell imaging studies have been instrumental in developing a deeper understanding of marburgvirus assembly and particle release.

a. Marburg virus genome

Marburgviruses belong to the group of non-segmented negative-strand RNA viruses. A detailed overview of viral genome organization, cis-acting elements, and genome replication and transcription strategies is provided in 7,16. High-throughput sequencing of MARV RNA combined with bioinformatics and statistical analysis has provided new insights into viral genome plasticity and MARV evolution. This includes codon usage analysis9,17,18,19, and the identification of hot spots of U–C substitutions20,21. Although the function of these U–C substitutions is unknown, it is suggestive of adenosine deaminase (ADAR) editing22. Deep sequencing of MARV Angola RNA obtained from infected cells and infected non-human primates (NHPs) determined novel editing sites in the nucleoprotein (NP) and L open reading frames, increasing the potential coding capacity of these viral genes with as-yet-unknown functions23.

b. Marburg virus assembly

The MARV RNA genome is in close association with the viral nucleocapsid proteins, including NP (enwraps viral RNA), the RNA-dependent RNA polymerase complex consisting of L (enzymatic moiety of the polymerase complex), and viral protein 35 (VP35) (polymerase cofactor), VP30 (function not clear; possibly a transcription regulator), and VP24 (involved in nucleocapsid formation and maturation). Viral genome replication and transcription occur in the cytoplasm of the infected cells in viral inclusions which are highly ordered aggregations of nucleocapsids23. Live-cell imaging has shed some light on the trafficking of mature MARV nucleocapsids from viral inclusions to the sites of budding and helped to identify viral and cellular proteins involved in this process. Mature MARV nucleocapsids are transported along actin filaments from the viral inclusions to the plasma membrane, where they recruit the viral matrix protein VP40. Only nucleocapsids that are associated with VP40 are transported into filopodia23. These long cellular protrusions are the main budding sites of MARV particles. MARV NP contains a late domain motif (PSAP) that recruits tumor susceptibility gene 101 (Tsg101), a component of the vesicular transport system ESCRT-I (endosomal sorting complexes required for transport I), to the viral inclusions. NP-Tsg101 interaction is required for the actin-dependent transport of MARV nucleocapsids into the filopodia24. The MARV glycoprotein (GP) is also recruited to VP40-enriched membranes by a tubulin-dependent process25.

c. Structure–function of Marburg virus proteins

Structural analyses have provided a deeper insight into the interactions and functions of almost all seven MARV proteins26. Comparison of the MARV proteins with their ebolavirus homologs has shown a varying degree of structural resemblance that often correlates with functional similarity27,28. Intriguingly, despite considerable structural conservation, some of the MARV proteins are functionally different from their ebolavirus homologs, with VP24 being a prime example of this.

Viral protein 24. VP24 is required for nucleocapsid formation and assembly for both viruses, but only ebolavirus VP24 blocks type I interferon (IFN) signaling (reviewed in 37,38). Crystal structure analysis revealed that the ebolavirus and MARV VP24

Page 3 of 13
cores are structurally similar, supporting their common function in nucleocapsid formation and assembly. One difference between MARV and ebolavirus VP24 proteins is an extended β-sheet that is formed by MARV VP24 amino acid residues 201 to 217. Although this structural difference does not explain why MARV VP24 is not immunosuppressive, it is connected to a novel function of MARV VP24. The extended β-sheet contains the binding domain for the cellular adaptor protein Kelch-like ECH-associated protein 1 (Keap1). Keap1 is a Kelch family member that regulates the activity of key transcription factors involved in oxidative stress response pathways. MARV VP24 binds to Keap1 via the “K loop” that comprises amino acids 202 to 209. This leads to the nuclear accumulation of Nrf2 and consequently to the activation of an antioxidant and cytoprotective response in MARV-infected cells. In contrast, ebolavirus VP24 proteins, which do not have the K loop, are not able to induce a cytoprotective response. Keap1 is also a regulator of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. It targets IkB kinase β (IKKβ) for degradation which disables the cell to respond to NF-κB-activating stimuli. MARV VP24 blocks the degradation of IkBd, allowing the cell to respond to NF-κB-activating stimuli.

Viral protein 30. Another example for functional difference despite structural conservation is VP30. Although EBOV VP30 has shown to act as a transcription activator and regulator of viral RNA synthesis, the role of MARV VP30 is less well understood. Despite the high degree of structural homology between MARV and EBOV VP30, EBOV VP30 enhances transcriptional activity in a minigenome system at least 50-fold and is essential for detectable reporter gene activity, whereas MARV VP30 increases reporter gene activity only moderately (about twofold) in the MARV minigenome system. However, MARV VP30 is essential for viral replication. Crystal structure analysis confirmed the conformational similarity of EBOV and MARV VP30 proteins. Both EBOV and MARV VP30 C-terminal domains bind a peptide in the respective NP C-terminal region. The EBOV and MARV NP–VP30 complexes are remarkably similar, although slight differences might account for the lower binding affinity observed for the MARV NP–VP30 complex compared with the EBOV complex. VP30-NP complex formation was shown to be essential for EBOV minigenome activity. Whether the observed differences in VP30-NP binding affinity play a role in the lower efficiency of MARV VP30 to enhance transcription remains to be determined.

Both EBOV and MARV VP30 proteins are phosphorylated, and phosphorylation of EBOV VP30 blocks its transcriptional activity. A recent study showed that phosphorylation of MARV VP30, like that of EBOV, interferes with its enhancing function in the minigenome system.

Viral protein 35. MARV VP35 plays an important role in various steps of the viral replication cycle. It is a component of the viral RNA-dependent RNA polymerase, required for nucleocapsid formation, and suppresses antiviral host responses, including type I IFN production, protein kinase R (PKR) activation, and dendritic cell maturation. Crystal structure analysis provided deeper insights into the various functions of MARV VP35. Similar to EBOV VP35, MARV VP35 chaperones NP by inhibiting NP oligomerization and RNA binding. This facilitates the release of NP-bound viral RNA and gives the viral polymerase access to the RNA template. It also prevents specific NP-RNA aggregation. In regard to its function as a suppressor of type I IFN production, MARV VP35 seems to be less efficient than its EBOV homolog. This difference might be due to differences in the binding modes and affinities of EBOV and MARV VP35 proteins to double-stranded RNA, potentially impacting the inhibition of downstream antiviral pathways. Interestingly, compared with MARV VP35, RAVV VP35 seems to be more efficient in suppressing type I IFN production.

Viral protein 40. MARV VP40 is a multifunctional protein that mediates virus egress, regulates viral transcription and replication, and counteracts the innate immune response by blocking signal transducer and activator of transcription (STAT)1 and STAT2 signaling. Recent research on VP40 has focused on the mechanisms underlying VP40–membrane interaction and budding. Crystal structure analysis has shown that MARV VP40 in solution forms a dimer with an N-terminal dimer interface. The C-terminal domains of the VP40 dimer, which form a flat cationic surface that interacts with anionic phospholipids at the inner leaflet of the plasma membrane, are required for budding but not for the immunosuppressive function of VP40. Hydrogen–deuterium exchange mass spectrometry has suggested that this interaction facilitates VP40 assembly and oligomerization.

VP40 hijacks cellular vesicular transport systems to bud from the infected cells, including the coat protein complex II (COPII) vesicular transport system and the ESCRT system. A screen to find additional cellular proteins that bind to the late domain motif (PpX) within EBOV VP40 identified the co-chaperone protein BCL2-associated athanogene 3 (BAG3). In contrast to other late domain binding proteins that promote filovirus budding, BAG3 inhibits EBOV and MARV VP40-mediated budding and therefore could be part of a cellular antiviral defense system.

It has been shown previously that VP40 is a species-specific virulence factor and that changes in VP40 are required for marburgvirus adaptation to rodent hosts (reviewed in 67). Mouse adaptation of two marburgvirus isolates—RAVV and MARV Cie67—led to several mutations in the VP40 gene. Although the wild-type versions of RAVV and MARV Cie67 VP40 antagonized the type I IFN response inefficiently in mouse cells, the mouse-adapted VP40 mutants retained this function in both human and mouse cells. Intriguingly, the underlying amino acid changes required to facilitate type I IFN antagonism in mouse cells differed in the mouse-adapted RAVV and MARV Cie67 VP40 proteins. Other functional changes that correlated with mouse adaption affected the ability of VP40 to mediate budding. Whereas wild-type RAVV VP40 efficiently mediated budding from both human and mouse cells, mouse-adapted RAVV VP40 was restricted in this function by tetherin in human
cells27. Mutations in VP40 induced by guinea pig adaptation of MARV Musoke resulted in increased budding and a gain of viral fitness in guinea pig cells while not altering the type I IFN antagonizing function of VP40 in human or guinea pig cells31. This shows that VP40 mutations which occur during rodent adaptation not only enhance type I IFN antagonism in these hosts but also promote VP40-mediated budding. MARV adaptation to guinea pigs resulted in mutations in both VP40 and the viral polymerase (L). Minigenome data suggest that there is a synergistic effect of these mutations in guinea pig cells, leading to enhanced replication activity24. Because of the role of VP40 as a virulence factor, the inhibition of type I IFN signaling by VP40 represents an intriguing potential target for the development of anti-MARV therapeutics. Unfortunately, this is currently limited by our poor understanding of the exact molecular mechanisms underlying this inhibition.

Glycoprotein. Given its exposure on the surface of viral particles, which makes it the perfect target for antibody recognition, and its crucial role in attachment and fusion, MARV GP has been extensively studied in the last 6 years. This includes the identification and characterization of host factors involved in attachment and entry23,25; the role of GP\textsubscript{2} in membrane fusion and tetherin antagonism20,31,78,79; and the effects of steric shielding of host surface proteins, including major histocompatibility complex I, integrin β1, and Fas, by MARV GP30,31,32. GP shielding of surface-expressed Fas interfered with the induction of Fas-mediated apoptosis and could help to protect MARV-infected cells from premature cell death32. Interestingly, steric shielding of host proteins was more pronounced for MARV Angola GP than for MARV Musoke GP, indicating that it might play a role in virus-specific pathogenicity30 (see section 3b). Much progress has also been achieved in the structural analysis of GP and its interaction with protective antibodies, which are promising candidates for post-exposure treatment82,83. An excellent overview by King et al. on the structural features of protective epitopes on filovirus GPs highlights the striking differences between the neutralizing epitopes on EBOV and MARV GPs34. To date, only two MARV GP epitopes that are targeted by protective antibodies have been identified: the receptor binding site and the wing domain that is located within the MARV GP\textsubscript{2} subunit and is not present in ebolavirus GPs. The MARV receptor binding site seems to be easily accessible to neutralizing antibodies whether GP is cleaved or not, whereas the respective region on ebolavirus GPs is shielded by a glycan cap and is exposed only after GP cleavage45,46. The receptor binding site antibodies have shown promising potential for use as therapeutics, as they are protective when administered up to 5 days post-exposure in NHPs43. Testing of antibodies directed against the wing domain have been less encouraging: protection of mice is observed when given 1 hour after infection87, highlighting a large disparity in therapeutic potential between antibodies directed against these two regions of GP. Owing to differences in structure and identified protective epitopes, the search for a pan-filovirus antibody has remained unfruitful so far, although pan-ebolavirus protective antibodies have been identified45,46.

2. **Host response to Marburg virus infection**

Recent studies on the host response to MARV infection have focused on identifying signatures of innate and adaptive immunity as well as correlates of disease severity and outcome in both human MVD survivors and MARV-infected NHPs. Although both EBOV and MARV infections are lethal in cynomolgus macaques, transcriptional analysis revealed unique immune signatures associated with each virus and suggested a more pronounced immune dysregulation in MARV infection46. The MARV-specific gene expression profile included the upregulation of complement system genes, genes involved in neutrophil and monocyte recruitment, and innate immune signaling genes46. Distinct immune responses, which are predictive of clinical outcomes, have been detected in both human survivors and macaques infected with MARV: although lethal infection of rhesus macaques with MARV Angola was linked to T-helper cell type 2 (Th2)-skewed responses37, human survivors of MARV infection exhibited Th1-skewed CD4+ T-cell responses49. The ability to identify these predictive responses in patients could result in more effective patient triage and administration of targeted therapies.

Another major focus of MVD research has been the pursuit of earlier diagnostics, and particular attention has been on the early identification of unique signatures of marburgvirus infection. MARV infection of NHPs led to the activation of peripheral blood mononuclear cells, as reflected by the induction of the type I IFN response in rhesus macaques49 and increased expression of heat shock proteins in cynomolgus macaques71,100. Upregulation of type I IFN-stimulated genes was detected as early as 1 day post-infection in MARV-infected rhesus macaques, prior to the onset of symptoms7. These data indicate that new diagnostic tools could be developed to detect these unique signatures of marburgvirus infections prior to the onset of viremia or symptoms, allowing earlier detection and treatment of MVD.

A major unanswered question in the filovirus field is how long human survivors remain protected against subsequent exposure to autologous virus. Although long-lived antibody responses have been found in human survivors of Sudan and Bundibugyo viruses (both ebolaviruses) as well as MARV101. MARV neutralizing antibody responses were lower and showed a faster decline in contrast to the prolonged presence of neutralizing antibodies after Sudan virus infection46,102. Low titers of neutralizing antibodies were also observed in cynomolgus macaques after vaccination against MARV. Nevertheless, animals were protected against lethal MARV challenge for over 1 year103. These findings emphasize the need for a better understanding of the differences in host response to diverse filoviruses and to determine long-term effects of vaccine candidates.

3. **Marburg virus prevalence and pathology in bats**

Another area of progress in the marburgvirus field is focused on the natural reservoir of these viruses. Prior work showed that the common Egyptian fruit bat (Rousettus aegyptiacus) is a reservoir for marburgviruses, having demonstrated positive serology, detection of viral RNA, and the ability to culture infectious virus from the bats, a feat still unparalleled in the ebolavirus field. Since our previous review of the marburgvirus literature1, major advances have been made in our understanding of the ecology of marburgviruses in Egyptian fruit bats, including the outcome of experimental infection of these bats with MARV.
a. Ecology of marburgviruses in bats
Expanding upon the handful of reports prior to 2012, more recent studies have investigated the prevalence of marburgviruses in various bat species. These reports primarily investigated the prevalence of Egyptian fruit bat exposure to MARV and RAVV as determined by serology and, to a lesser extent, quantitative real-time polymerase chain reaction (RT-PCR), finding varying degrees of prevalence in different geographic populations. The finding of higher rates of Egyptian fruit bats with detectable marburgvirus RNA that repopulated Kitaka mine versus the population that was present prior to extermination led the authors to propose that the new founding population may have been susceptible to MARV infection and, following multiple introductions of diverse marburgviruses, led to the high rates of RT-PCR–positive bats. This finding should serve as a warning for possible future attempts at controlling MARV outbreaks by trying to eradicate local bat colonies; such an approach may backfire.

Three separate studies analyzing MARV seropositivity and RNA in Egyptian fruit bats in Uganda, South Africa, and Zambia all detected cyclical temporal patterns: the lowest prevalence was observed during the birthing season and prevalence increased thereafter, particularly among juvenile bats. Intriguingly, 83% of previous marburgvirus outbreaks in the human population coincided with these peaks in viral abundance in Egyptian fruit bats, further implying the importance of Egyptian fruit bats as the prime source for MARV spillover to humans. The fact that similar data were obtained in diverse bat populations that differ drastically in their geographic distribution and mating patterns (once versus twice per year) strengthens the possibility that marburgvirus prevalence, at some level, may be linked to behavioral patterns of these bats.

Because MARV infection appears to be quite mild in Egyptian fruit bats (see section 2b) and prevalence is fairly low, some have speculated either that *R. aegyptiacus* is not the reservoir species or that it is unlikely to be the only species required for the enzootic maintenance of marburgviruses. To date, however, investigations of marburgvirus seroprevalence in other bat species and marburgvirus presence in *R. aegyptiacus*–associated ticks have been unfruitful in finding other likely reservoir species.

b. Experimental infection of Egyptian fruit bats
Critical advances in our understanding of MARV infection of Egyptian fruit bats have been facilitated by the establishment of captive, breeding colonies of Egyptian fruit bats at the Center for Emerging and Zoonotic Diseases in Sandringham, South Africa, and at the Centers for Disease Control and Prevention in Atlanta, Georgia, USA. Studies reporting primary MARV infection of Egyptian fruit bats from these two colonies have yielded strikingly similar results; although MARV is able to replicate in bats, viremia remains low, there is no resulting sickness or pathology in the bats, and the bats are able to quickly clear the infection. Whereas both groups observed MARV RNA in oral and rectal swabs of infected Egyptian fruit bats, only one of the groups was able to culture live virus from oral and rectal swabs from the infected bats.

An important aspect in considering the ecology of MARV in *R. aegyptiacus* populations is whether prior infection with MARV prevents subsequent reinfection. Two separate challenge studies clearly showed that Egyptian fruit bats previously infected with MARV were resistant to challenge by a homologous MARV isolate.

c. Transmission of Marburg virus by Egyptian fruit bats
Recent studies investigating the ability of MARV-infected Egyptian fruit bats to spread the virus to uninfected, co-housed animals have resulted in more divergent results. Whereas Paweska et al. found no evidence of transmission despite robust infection of the injected bats, Schuh et al. did. MARV was detected in blood and oral samples from the bats that were infected by horizontal transmission, providing a possible mechanism of viral transmission (saliva transmission). The different outcomes could be due to the different virus isolates used in these studies or differences in the genetic background of the bats themselves.

d. Molecular biology of Marburg virus infection in bat cells
In addition to advances in studying infections in bats, much recent study has focused on cellular responses in bat cells to MARV infection. Multiple transcriptomic analyses of MARV infection of *R. aegyptiacus* cell lines have come to similar conclusions. Infection of the cell lines R06E (derived from fetal body cells) and R0Ni/7.1 (adult kidney) appears to follow patterns similar to those of transcriptional responses in human cells, although viral replication was not as robust in the bat cells as in Huh7 and HepG2 human cells. Whereas two of these reports found either no induction or minimal induction of type I, II, or III IFNs or IFN-stimulated genes in bat cells infected with MARV, one of these reports found low to modest upregulation of these genes. This may be due to differences in experimental design or differences in the MARV isolates used in the studies. Interestingly, one of these reports found that MARV upregulated some unannotated antiviral paralogs.

Despite a relative dearth of bat-specific antibodies, some non-transcriptomic analyses have begun analyzing molecular mechanisms of MARV infection in bat cell lines. Although EBOV VP35 had previously been shown to inhibit PKR in human cells, a recent report describes the ability of MARV VP35 to inhibit PKR activation in a cell type–specific manner, with VP35 being unable to inhibit bat PKR in the R0Ni/7.1 cell line. An analysis of fibroblast cell lines from four different bat species revealed that species-specific differences in Niemann–Pick C1 (NPC1) accounted for differences in EBOV GP-mediated, but not MARV GP-mediated, infectivity.

4. Advances in animal modeling of marburgvirus infections
Historically, individual studies analyzing marburgvirus infections have been performed using single isolates of MARV or RAVV, and comparative studies have been sparse. However, fueled by discussions about the impact of viral sequence variations on pathogenic potential that arose during the West African EBOV outbreak and by the advent of high-throughput sequencing technologies, marburgvirus isolate variations are now
more acknowledged, and marburgvirus diversity has become a research topic. Well-established and newly developed animal models are useful tools to conduct these comparative studies. A list of marburgvirus variants commonly used in animal experiments during the last 6 years is provided in Table 1.

a. Newly developed animal models to study Marburg virus and Ravn virus infection

Since our previous review in 2012, a number of new animal models of MVD have been developed. Detailed comparisons of these and previously established MVD animal models have recently been published\(^\text{29-33}\). Instead of repeating the content of these comprehensive reviews, we will briefly introduce these animal models and then focus on their use in resolving isolate-specific differences in virulence and pathogenicity as well as their use in modeling post-recovery sequelae.

Recently developed animal models that allow the study of lethal MVD without virus adaptation include STAT2 knockout hamsters\(^\text{32}\), humanized mice\(^\text{33}\), and marmosets\(^\text{34}\). Infection of humanized mice with MARV, compared with infection with EBOV, was associated with lower overall weight loss, whereas the viral titers were similar\(^\text{33}\). Surprisingly, ferrets infected with MARV or RAVV, in contrast to those infected with EBOV, did not develop symptoms of disease, regardless of dose, route of infection, and virus isolate\(^\text{35-38}\). Immunocompetent small-animal infection models for MARV and RAVV, including mice, hamsters, and guinea pigs, require virus adaptation. Recent

Table 1. Experimentally used marburgviruses.

Year	Country of origin	Country of isolation	Isolate	Reference
1967	Presumably Angola	Germany	MARV Ci67 (Marburg virus/H.sapiens-tc/GER/1967/Hesse-Cieplik)	Lofts et al. (2011)\(^\text{39}\), Coffin et al. (2018)\(^\text{40}\)
			MARV Voege (Marburg virus/H.sapiens-tc/GER/1967/Hesse-Voege)	Atkins et al. (2018)\(^\text{41}\)
			MARV Pop (Marburg virus/H.sapiens-tc/GER/1967/Hesse-Pop)	Smither et al. (2013)\(^\text{42}\)
1975	Rhodesia (now Zimbabwe)	South Africa	MARV Ozolins (Marburg virus/H.sapiens-tc/ZAF/1975/Sinoia-Ozolins)	Nicholas et al. (2018)\(^\text{43}\)
			MARV Hogan (Marburg virus/H.sapiens-tc/ZAF/1975/Sinoia-Hogan)	Pawseska et al. (2012)\(^\text{44}\)
1980	Kenya	Kenya	MARV Musoke (Marburg virus/H.sapiens-tc/KEN/1980/Mt. Elgon-Musoke)	Atkins et al. (2018)\(^\text{45}\), Blair et al. (2018)\(^\text{146}\), Nicholas et al. (2018)\(^\text{147}\), Daddario-DiCaprio et al. (2006)\(^\text{148}\), Coffin et al. (2018)\(^\text{149}\), Daddario-DiCaprio et al. (2006)\(^\text{150}\), Mire et al. (2014)\(^\text{151}\)
1987	Kenya	Kenya	RAVV (Ravn virus/H.sapiens-tc/KEN/1987/Kitum Cave-810040)	Atkins et al. (2018)\(^\text{45}\), Lofts et al. (2011)\(^\text{152}\), Cross et al. (2015)\(^\text{153}\), Nicholas et al. (2018)\(^\text{154}\), Daddario-DiCaprio et al. (2006)\(^\text{155}\), Thi et al. (2017)\(^\text{156}\), Mire et al. (2017)\(^\text{157}\)
1998–2000	COD	COD	MARV SPU 148/99/1	Pawseska et al. (2015)\(^\text{158}\), Storm et al. (2018)\(^\text{159}\)
2004–2005	Angola	Angola	MARV-Angola-AGO-2005	Qiu et al. (2014)\(^\text{160}\), Wong et al. (2018)\(^\text{161}\)
			MARV-Angola-AGO-2005-368	Lavender et al. (2018)\(^\text{162}\), Wong et al. (2018)\(^\text{163}\), Marzi et al. (2016)\(^\text{164}\), Fernando et al. (2015)\(^\text{165}\), Nicholas et al. (2018)\(^\text{166}\), Marzi et al. (2018)\(^\text{167}\)
			MARV Angola (Marburg virus/H.sapiens-tc/AGO/2005/Angola-1379c)	Atkins et al. (2018)\(^\text{168}\), Johnston et al. (2015)\(^\text{169}\), Lin et al. (2015)\(^\text{170}\), Alfson et al. (2018)\(^\text{171}\), Cross et al. (2015)\(^\text{172}\), Blair et al. (2018)\(^\text{173}\), Cooper et al. (2018)\(^\text{174}\), Woolsey et al. (2018)\(^\text{175}\), Thi et al. (2017)\(^\text{176}\), Mire et al. (2017)\(^\text{177}\)
2007	Uganda	Uganda	MARV-371-Bat2007 (Marburg virus/R.aegyptiacus-tc/UGA/2007/371Bat-811277)	Amman et al. (2015)\(^\text{178}\), Jones et al. (2015)\(^\text{179}\), Schuh et al. (2017)\(^\text{180}\),
The pathogenicity of different marburgvirus variants was also studied in NHP models which recapitulate the disease in humans most faithfully. Due to advances in telemetry tracking of clinical data, disease symptoms now can be more easily monitored in this infection model. Fatal MARV infection is associated with increased lymphocyte and hepatocyte apoptosis in both rhesus and cynomolgus macaques. The increased virulence of MARV Angola could be explained, at least partially, by an enhanced replication efficiency of this virus, as shown in cell culture experiments. Conflicting results have been reported for RAVV infections of NHPs. Although RAVV infection of rhesus macaques was 100% lethal in two studies, complete survival was noted in a separate study. Overall, these studies highlight the need for further comparative analysis of different marburgvirus variants in different animal models.

Differential virulence of Marburg virus variants

MARV Musoke was isolated in 1980 in Kenya from a physician who contracted the disease while attending a patient with MVD. Whereas the index case succumbed to the infection, the secondary case survived. There is only a single virus isolate from this MVD episode, and it was isolated from the surviving patient. The MARV Angola variant comes from the 2005 outbreak of MVD in Angola with at least 252 cases, including 227 fatalities. Multiple virus isolates exist from this outbreak. It is important to note that even individual isolates may vary from lab to lab, as they have typically been passed in cell culture multiple times, disseminated to other laboratories, and possibly passaged further, leading to a diversity of virus stocks with different histories of propagation and thus potentially divergent genetic and phenotypic identities. Passing of viruses in cell culture is known to lead to the accumulation of defective interfering viral particles and higher particle/plaque-forming unit ratio. This was also shown for MARV Angola and EBOV; virus passaged multiple times in cell culture was found to be associated with increased survival and delayed disease progression in NHPs. Given the much longer history of the stocks derived from the MARV Musoke isolate, it is conceivable that MARV Musoke stocks have accumulated defective particles over time and that the compositions of the MARV Musoke and MARV Angola virus stocks differ, which should be taken into account when interpreting differences in pathogenicity.

Comparative studies in small-animal models that require virus adaptation revealed a range in pathogenicity, with MARV Angola being more pathogenic than other marburgvirus variants, including MARV Musoke, Cie67, Ozolin, and RAVV. Different results were obtained using the STAT2-deficient hamster infection model that does not require virus adaptation. In this infection model, fast disease progression and death were observed with MARV Musoke and Voegle, a delayed but equally lethal infection was observed with MARV Angola, and RAVV resulted in a symptomatic but non-lethal infection.

The pathogenicity of different marburgvirus variants was compared with other marburgvirus variants, including MARV Musoke, Cie67, Ozolin, and RAVV. The increased virulence of MARV Angola could be explained, at least partially, by an enhanced replication efficiency of this virus, as shown in cell culture experiments. Conflicting results have been reported for RAVV infections of NHPs. Although RAVV infection of rhesus macaques was 100% lethal in two studies, complete survival was noted in a separate study. Overall, these studies highlight the need for further comparative analysis of different marburgvirus variants in different animal models.

Persistent Marburg virus infection in non-human primate models

Although persistent MARV infection and long-lasting health issues after recovery have been noted for a number of survivors of MVD, including those from the initial outbreak in 1967, this issue became a research topic only after the devastating EVD outbreak in West Africa. Recent studies using rhesus macaques have shown that immune-privileged sites, including the eyes, female and male genital tracts, and mammary glands, are infected during acute MARV infection. Similar to human survivors of EBOV and MVD, some cynomolgus macaque survivors (including those that had been treated in antiviral drug testing) developed persistent MARV infection in the eyes and testes. These results indicate that NHP survivors of experimental MARV infection could serve as useful models to study sequelae of MVD. It remains to be determined whether persistent infection also occurs in other animal models of filovirus infection.

Abbreviations

BAG3, BCL2-associated athanogene 3; EBOV, Ebola virus; ESCRRT, endosomal sorting complexes required for transport; EVD, Ebola virus disease; GP, glycoprotein; IFN, interferon; IKKB, IκB kinase β; Keap1, kelch-like ECH-associated protein 1; MARV, Marburg virus; MVD, Marburg virus disease; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NHP, non-human primate; NP, nucleoprotein; Nrf2, nuclear factor (erythroid-derived 2)-like 2; PKR, protein kinase R; RAVV, Ravn virus; RT-PCR, real-time polymerase chain reaction; STAT, signal transducer and activator of transcription; Tsg101, tumor susceptibility gene 101; VP, viral protein

Grant information

This work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award numbers R01-AI133486 and R21-AI135912.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments

The authors are grateful to Jens Kuhn (NIH/NIAID/DCR/Integrated Research Facility at Fort Detrick, Frederick, MD, USA), for help with Table 1.
Antibody Reveals Ebola Virus Fusion Loop as a Site of Vulnerability. Cell. 2017; 169(5): 891–894.e15.

Bernoldt ZA, Herbert AS, Mire CE, et al.: A Two-Anthodin Pan-Ebola-Virus Cocktail Cocktail Conserved Therapy Protection in Ferrets and Nonhuman Primates. Cell Host Microbe. 2019; 25(1): 49–58.e5.

Keck ZY, Enterline SG, Howell KA, et al.: Macaque Monoclonal Antibodies Targeting Novel Conserved Epitopes within Filovirus Glycoprotein. J Virol. 2016; 90(1): 279–91.

Wec AZ, Herbert AS, Murin CD, et al.: Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against EbolaVirus. Cell. 2017; 169(5): 887–890.e15.

Howell KA, Osi X, Braman JM, et al.: Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Rep. 2016; 15(7): 1514–26.

Braman JM, He SN, Howell KA, et al.: Post-exposure immunotherapy for two ebolaviruses and Marburg virus in nonhuman primates. Nat Commun. 2019; 10(1): 105.

Marsi A, Menicucci AR, Engelmann F, et al.: Protection Against Marburg Virus Using a Recombinant VSV Vaccine Depends on T and B Cell Activation. Cell Host Microbe. 2017; 21(4): 2563–72.

Thompson KA, Yin J. Population dynamics of an RNA virus and its defective interfering particles in passage cultures. Viral J. 2010; 7, 257.

Caballero IS, Yen YJ, Hensley LE, et al.: Lassa and Marburg viruses elicit distinct host transcriptional responses early after infection. BMC Genomics. 2014; 15: 965.

Natesan M, Jensen SM, Keasey SL, et al.: Human Survivors of Disease Outbreaks Caused by Ebola or Marburg Virus Exhibit Cross-Reactive and Long-Lived Antibody Responses. Clin Vaccine Immunol. 2016; 23(8): 717–24.

Sobarzo A, Escra Y, Herbert AS, et al.: Immune memory to Sudan virus: comparison between two separate disease outbreaks. Viruses. 2015; 7(1): 37–51.

Mire CE, Geisbert JB, Agans KN, et al.: Durability of a vesicular stomatitis virus-based marburg virus vaccine in nonhuman primates. PLow One. 2014; 9(4): e84355.

Amman BR, Niyazkauraka L, McStay AK, et al.: Marburgvirus resurgence in Kitaka Mine bat population after extermination attempts. Uganda. Emerg Infect Dis. 2014; 20(10): 1761–74.

Towner JS, Amman BR, Sealy TK, et al.: Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLow Pathog. 2009; 7(7): e1000956.

Amman BR, Carroll SA, Reed ZD, et al.: Seasonal pulses of Marburg virus circulation in tropical African wild fruit bats. Virus Res. 2017; 212: 107–10.

Paweska JT, Jansen van Vuren P, Kemp A, et al.: Marburg Virus Infection in Egyptian Rousettus Bats, South Africa, 2013-2014. Emerg Infect Dis. 2018; 24(6): 1134–7.

Gogawa H, Miyamoto H, Nakayama E, et al.: Seroprevalence of Filovirus Infection of Rousettus aegypticus Bats in Zambia. J Infect Dis. 2018; 218(suppl. 5): S312–S317.

Changula K, Kajihara M, Mori-Kajihara A, et al.: Seroprevalence of Filovirus Infection of Rousettus aegypticus Bats in Zambia. J Infect Dis. 2018; 218(suppl. 5): S312–S317.

Schuch AJ, Amman BR, Apanaskevich DA, et al.: No evidence for the involvement of the argasilid tick Ornithodoros faini in the enzootic maintenance of marburgvirus within Egyptian rousettus bats Rousettus aegypticus. Parasit Vectors. 2016; 9: 128.

Paweska JT, Jansen van Vuren P, Masumy J, et al.: Virological and serological findings from experimentally inoculated with vero cells adapted hogan strain of Marburg virus. PLow One. 2012; 7(9): e45479.

Amman BR, Jones ME, Sealy TK, et al.: Oral shedding of Marburg virus in experimentally infected Egyptian fruit bats (Rousettus aegypticus). J Wild Dis. 2015; 51(1): 113–24.

Jones ME, Schuh AJ, Amman BR, et al.: Experimental inoculation of Egyptian Rousettus Bats (Rousettus aegypticus) with Viruses of the EbolaVirus and MarburgVirus Genera. Viruses. 2015; 7(7): 3420–42.

Paweska JT, Jansen van Vuren P, Fenton KA, et al.: Lack of Marburg Virus Transmission From Experimentally Infected to Susceptible In-Contact Egyptian Fruit Bats. J Infect Dis. 2015; 212 Suppl 2: S109–18.

Schuh AJ, Amman BR, Sealy TK, et al.: Egyptian rousettus bats maintain long-term protective immunity against Marburg virus infection despite diminished antibody levels. Sci Rep. 2017; 7(1): 8763.

Strom N, Jansen Van Vuren P, Markotter W, et al.: Antibody Responses to Marburg Virus in Egyptian Rousettus Bats and Their Role in Protection against Infection. Viruses. 2018; 10(2): pii: E73.

Schuh AJ, Amman BR, Jones ME, et al.: Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousettus bats. Nat Commun. 2017; 8: 14446.

Jordan I, Horn D, Oehmke S, et al.: Cell lines from the Egyptian fruit bat are permissive for modified vaccinia Ankara. Virus Res. 2009; 146(1): 54–62.

Kühl A, Hofmann M, Müller MA, et al.: Comparative analysis of Ebola virus glycoprotein interactions with human and bat cells. J Infect Dis. 2011; 214 Suppl 2: S840–9.

Hölzer M, Kräling V, Amman F, et al.: Differential transcriptional responses to Ebola and Marburg virus in infection and human cells. Sci Rep. 2016; 6: 34589.

Arnold CE, Gulto JC, Altamura LA, et al.: Transcriptomics Reveal Antiviral Gene Induction in the Egyptian Rousette Bat Is Antagonized In Vitro by Marburg Virus Infection. Viruses. 2018; 10(11): pii: E607.

Kuzmin IV, Schwarz TM, Ilyinik PA, et al.: Innate Immune Responses of Bat and Human Cells to Filoviruses: Commonalities and Distinctions. J Virol. 2017; 91(8): pii: e02471-16.

Ng M, Ñidungé E, Kaczmarke ME, et al.: Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. eLife. 2015; 4: e11785.

Burk R, Bollinger L, Johnson JC, et al.: Neglected filoviruses. FEMS Microbiol Rev. 2016; 40(4): 494–519.

Marzi A, Chadinah S, Haddock E, et al.: Recently Identified Mutations in the Ebola Virus-Makona Do Not Alter Pathogenicity in Animal Models. Cell Rep. 2018; 23(6): 1806–16.

Urbanowicz RA, McClure CP, Sakuntabhai A, et al.: Human Adaptation of Ebola Virus during the West African Outbreak. Cell. 2016; 167(4): 1073–1087.e5.

Dietzel E, Schulz G, Kräling V, et al.: Functional Characterization of Adaptive Mutations during the West African Ebola Virus Outbreak. J Virol. 2017; 91(7): pii: e01913-16.

Wang MK, Lim SY, Lee SM, et al.: Biochemical Basis for Increased Activity of Ebola Glycoprotein in the 2013-16 Epidemic. Cell Host Microbe. 2017; 21(3): 367–75.

Sriragavan V, Wong G, Ooi XG: Animal models for filovirus infections. Zool Res. 2018; 39(1): 15–24.

Yamada K, Banadyska L, Bray M, et al.: Small Animal Models for Studying Filovirus Pathogenesis. Curr Top Microbiol Immunol. 2017; 411: 195–227.
132. Atkins C, Miao J, Kalveram B, et al.: Natural History and Pathogenesis of Wild-Type Marburg Virus Infection in STAT2 Knockout Hamsters. J Infect Dis. 2018; 218(suppl_5): S438–S447. PubMed Abstract | Publisher Full Text | Free Full Text

133. Lavander KJ, Williamson BN, Saturday G, et al.: Pathogenicity of Ebola and Marburg Viruses Is Associated With Differential Activation of the Myeloid Compartment in Humanized Triple Knockout-Bone Marrow, Liver, and Thymus Mice. J Infect Dis. 2018; 218(suppl_5): S409–S417. PubMed Abstract | Publisher Full Text | Free Full Text

134. Smith SJ, Nelson M, Eastaugh L, et al.: Experimental respiratory Marburg virus haemorrhagic fever infection in the common marmoset (Callithrix jacchus). Int J Exp Pathol. 2013; 94(2): 156–68. PubMed Abstract | Publisher Full Text | Free Full Text

135. Cross RW, Mire CE, Borisevich V, et al.: The Domestic Ferret (Mustela putorius furo) as a Lethal Infection Model for 3 Species of Ebola Virus. J Infect Dis. 2016; 214(4): S65–9. PubMed Abstract | Publisher Full Text | Free Full Text

136. Parenti A, Zang Z, He S, et al.: Marburg and Ravn Virus Infections Do Not Cause Observable Disease in Ferrets. J Infect Dis. 2018; 218(suppl_5): S471–S474. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

137. Kozak R, He S, Kroeker A, et al.: Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease. J Virol. 2016; 90(20): 9293–20. PubMed Abstract | Publisher Full Text | Free Full Text

138. Cross RW, Mire CE, Agans KN, et al.: Marburg and Ravn Viruses Fail to Cause Disease in the Domestic Ferret (Mustela putorius furo). J Infect Dis. 2018; 218(suppl_5): S448–S452. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

139. Coffin KM, Liu J, Warren TK, et al.: Persistent Marburg Virus Infection in the Testes of Nonhuman Primate Survivors. Cell Host Microbe. 2018; 24(3): 406–416.e3. PubMed Abstract | Publisher Full Text | F1000 Recommendation

140. Nicholas VV, Rosenke R, Feldmann F, et al.: Distinct Biological Phenotypes of Marburg and Ravn Virus Infection in Macaques. J Infect Dis. 2018; 218(suppl_5): S458–S466. PubMed Abstract | Publisher Full Text | F1000 Recommendation

141. Blair PW, Keshkar-Khammerz M, Procter KJ, et al.: Virulence of Marburg Virus Angola Compared to Mt. Elgon (Musoke) in Macaques: A Pooled Survival Analysis. Viruses. 2018; 10(11): pii: E658. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

142. Daddario-DiCaprio KM, Geisbert TW, Geisbert JB, et al.: Cross-protection against Marburg virus strains by using a live, attenuated recombinant vaccine. J Virol. 2000; 74(19): 1399–404. PubMed Abstract | Publisher Full Text | Free Full Text

143. Daddario-DiCaprio KM, Geisbert TW, Striher U, et al.: Postexposure protection against Marburg haemorrhagic fever with recombinant vesicular stomatitis virus vectors in non-human primates: an efficacy assessment. Lancet. 2006; 367(9520): 1399–404. PubMed Abstract | Publisher Full Text | Free Full Text

144. Cross RW, Fenton KA, Geisbert JB, et al.: Comparison of the Pathogenesis of the Angola and Ravn Strains of Marburg Virus in the Outbred Guinea Pig Model. J Infect Dis. 2015; 212 Suppl 2: S258–70. PubMed Abstract | Publisher Full Text | Free Full Text

145. Thi EP, Mire CE, Lee AC, et al.: siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease. J Clin Invest. 2017; 127(12): 4437–48. PubMed Abstract | Publisher Full Text | Free Full Text

146. Qiu X, Wong G, Audet J, et al.: Establishment and characterization of a lethal mouse model for the Angola strain of Marburg virus. J Virol. 2014; 88(21): 12703–14. PubMed Abstract | Publisher Full Text | Free Full Text

147. Wong G, Cao WG, He SH, et al.: Development and characterization of a guinea pig model for Marburg virus. Zool Res. 2018; 39(1): 32–41. PubMed Abstract | Publisher Full Text | Free Full Text

148. Marzi A, Banayga L, Haddock E, et al.: A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever. Sci Rep. 2016; 6: 39214. PubMed Abstract | Publisher Full Text | Free Full Text

149. Fernandez L, Qiu X, Mello PL, et al.: Immune Response to Marburg Virus Angola Infection in Nonhuman Primates. J Infect Dis. 2015; 212 Suppl 2: S234–41. PubMed Abstract | Publisher Full Text | Free Full Text

150. Johnston SC, Lin KL, Twenhafel NA, et al.: Dose Response of MARV/Angola Infection in Cynomolgus Macaques following IM or Aerosol Exposure. PLoS One. 2015; 10(9): e0138843. PubMed Abstract | Publisher Full Text | Free Full Text

151. Lin KL, Twenhafel NA, Connor JH, et al.: Temporal Characterization of Marburg Virus Angola Infection following Aerosol Challenge in Rhesus Macaques. J Virol. 2016; 90(19): 9675–85. PubMed Abstract | Publisher Full Text | Free Full Text

152. Alston KJ, Avene AE, Delgado J, et al.: A Single Amino Acid Change in the Marburg Virus Glycoprotein Aises during Serial Cell Culture Passages and Attenuates the Virus in a Macaque Model of Disease. mSphere. 2018; 3(1): pii: e00401-17. PubMed Abstract | Publisher Full Text | Free Full Text

153. Cooper TK, Jordan JC, et al.: New Insights Into Marburg Virus Disease Pathogenesis in the Rhesus Macaque Model. J Infect Dis. 2018; 218(suppl_5): S423–S433. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

154. Woolsey C, Geisbert JB, Matassov D, et al.: Postexposure Efficacy of Recombinant Vesicular Stomatitis Virus Vectors Against High and Low Doses of Marburg Virus Variant Angola in Nonhuman Primates. J Infect Dis. 2018; 218(suppl_5): S582–S587. PubMed Abstract | Publisher Full Text | Free Full Text

155. Ewers EC, Pratt RD, Twenhafel NA, et al.: Natural History of Aerosol Exposure with Marburg Virus in Rhesus Macaques. Viruses. 2016; 8(4): 87. PubMed Abstract | Publisher Full Text | Free Full Text

156. Wei H, Audet J, Wong G, et al.: Deep-sequencing of Marburg virus genome during sequential mouse passaging and cell-line adaptation reveals extensive changes over time. Sci Rep. 2017; 7(1): 3590. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

157. Kuhn JH: Filoviruses. A compendium of 40 years of epidemiological, clinical, and laboratory studies. Arch Virol Suppl. editor: Springer Verlag; 2008; 20: 13–29. PubMed Abstract | Publisher Full Text

158. Alston KJ, Avene AE, Beades MW, et al.: Particle-to-PFU ratio of Ebola virus influences disease course and survival in cynomolgus macaques. J Virol. 2015; 89(13): 6773–81. PubMed Abstract | Publisher Full Text | Free Full Text

159. Geisbert TW, Daddario-DiCaprio KM, Geisbert JB, et al.: Marburg virus Angola infection of rhesus macaques: pathogenesis and treatment with recombinant nematode anticoagulant protein C2. J Infect Dis. 2007; 196 Suppl 2: S372–81. PubMed Abstract | Publisher Full Text

160. Alonso JA, Patterson JL: Sequence variability in viral genome non-coding regions likely contribute to observed differences in viral replication amongst MARV strains. Virology. 2013; 440(1): 51–63. PubMed Abstract | Publisher Full Text | Free Full Text

161. Martini GA, Siegert R, editors: Marburg virus disease. New York: Springer; 1971. Publisher Full Text

162. Vetter P, Kaiser L, Schibli M, et al.: Sequela of Ebola virus disease: the emergency within the emergency. Lancet Infect Dis. 2016; 16(6): e82–e91. PubMed Abstract | Publisher Full Text | Free Full Text

163. Gear JS, Cassel GA, Gear AJ, et al.: Outbreak of Marburg virus disease in Johannesburg. Br Med J. 1975; 3(1): 489–93. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️ ✔️

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the reviewers provide input before publication and only the final, revised version is published. The reviewers who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The reviewers who approved this article are:

Version 1

1 M. Javad Aman
 Integrated Biotherapeutics, Inc., Rockville, MD, 20850, USA

 Competing Interests: No competing interests were disclosed.

2 Chad E Mire
 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA

 Competing Interests: No competing interests were disclosed.

3 Ilhem Messaoudi
 Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA

 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com