Association of axillary node status with clinicopathological characteristics and expression of EZH2 and CD44 in primary breast ductal carcinoma

Miodrag Djordjevic¹, Aleksandar Karanikolic², Ljubinka Velickovic³, Maja Milentijevic⁴

ABSTRACT

Objective: In order to enhance the prognostic benefit of new molecular markers, the aim of this study was to identify possible association of axillary lymph node (ALN) status and pN with clinicopathological characteristics and expression of EZH2 and CD44 in invasive ductal carcinoma (IDC) of the breast.

Methods: The investigation included 106 patients with IDC who had undergone radical mastectomy at the Clinic of Endocrine Surgery in Nis. Clinicopathologic parameters and immunohistochemical expression of EZH2 and CD44 in primary IDC were investigated in relation to ALN status and pN.

Results: Our univariate analysis established that T3-T4 stage, high EZH2, and high EZH2 with ER- were associated with ALN metastasis (p=0.014; 0.003; 0.013). Decreased probability for ALN involvement was found with T1 stage, and low EZH2 with ER+ (p=0.032; 0.022). Multivariant analysis established that high EZH2 in cancer cells was associated with high risk for ALN metastases (p=0.004); T1 tumors were associated with low risk (p=0.037). Higher pN was associated with high EZH2, high EZH2 with ER-, as well as an advanced clinical and disease stage (p=0.006; 0.001; p=0.002; 0.001). Lower pN was associated with ER+, and ER+ with low EZH2 (p= 0.004; 0.012). CD44 was not associated with ALN involvement, nor with pN.

Conclusions: This study revealed association of EZH2 with ALN metastases, where disease stage and expression profiles of EZH2 and ER may have affected regional pN.

KEYWORDS: Axillary node status, pN, EZH2, CD44, Breast cancer.
of EZH2 and CD44 in invasive ductal carcinoma (IDC) who had undergone a radical mastectomy at Clinic of Endocrine Surgery, Clinical Center Nis, Serbia, between January 2016 and December 2019. It excluded the patients who received neoadjuvant therapy before surgery. Clinicopathologic parameters - patient age, pT (T1, T2, T3-T4), ALN metastasis (yes or no), pN (N0, N1, N2-3), clinical stage, grade of tumor (1,2,3), Nottingham score, ER/HER-2 status (negative, positive), Ki-67 index (low <20%, high ≥20%), and expression of EZH2 and CD44 were included in this study.

We performed immunohistochemistry on thin sections (4 μm) of tissue slides to examine the expression of EZH2 (clone ab84989, Abcam, 1/250 dilution), and CD44 (Dako, 1:50 dilution). The sections were cut, dried, deparaffinized, rehydrated, heat-pretreated using retrieval solution and stained with antibodies following standard procedures. Visible brown nuclear staining, predominantly moderate, was considered to indicate positive staining for EZH2, and membranous for CD44. The staining intensity was scored from 0 to 3 (no staining, weak, moderate, strong). The proportions of stained positive tumor cells were classified as 1 (0-25%), 2 (26-50%), 3 (51-75%) and 4 (76-100%). Multiplication for intensity and proportion was utilized to represent the protein levels of EZH2 and CD44. Based on the mean score for the entire study group, EZH2 expression in tumors was categorized into low and high expression groups. CD44 expression was scored as low, if ≤50% of cells were stained; and high, if >51% of cells were stained.

Pearson chi-square test was used to assess the differences in distribution of investigated parameters among the patients with negative and positive ALN involvement and pN. The relationship between each investigated parameter and the risk of ALN metastasis was assessed using univariate logistic regression. Odds ratios (ORs) and their corresponding 95% confidence intervals (95% CIs) were calculated. We used backward LR method, which involves starting with all examined variables, to select variables that should be included in final multivariate regression model.

The tests were all two-sided and analyzed using the SPSS software package, version 18.0 (SPSS Inc., Chicago, IL, USA). The value of P < 0.05 was considered statistically significant.
(OR=5.087; 95%CI: 1.394-18.654; p=0.014), clinical stage III (OR=5.018; 95%CI: 1.941-17.156; p=0.018), high EZH2 (OR=3.480; 95%CI: 1.526-7.939; p=0.003), and high EZH2 with negative ER status (OR=3.418; 95%CI: 1.356-13.746; p=0.013) were found to increase the probability for ALN involvement, while T1 tumor stage (OR=0.404; 95%CI: 0.176-0.926; p=0.032), clinical stage I (OR=0.420; 95%CI: 0.206-0.905; p=0.039) and low EZH2 with positive ER status (OR=0.327; 95%CI: 0.126-0.849; p=0.022) were associated with decreased probability for ALN involvement (Table-II). In the multivariate logistic regression model, T1 tumor stage (OR=0.393; 95%CI: 0.163-0.946; p=0.037) and high EZH2 (OR=3.479; 95%CI: 1.491-8.116; p=0.004) remained significantly associated with ALN status (Table-II).

The cancer spread to 1-3, or ≥4 axillary lymph nodes in 34%, ie. 26.4% patients. The higher pN was closely linked to tumors stage (p<0.001), clinical stage (p=0.002), high EZH2 (p=0.006) and high EZH2 with negative ER status (p<0.001). Lower pN was associated with positive ER status (p=0.004), as well as low EZH2 with positive ER status (p=0.012) (Table-III).
DISCUSSION

ALN status remains one of the fundamental prognostic factors in BC and the TNM classification system remains the gold standard for staging the disease. ALN status has been used for guiding adjuvant, local or systemic treatment decisions. ALN status has been used for guiding adjuvant, local or systemic treatment decisions. Wasuthit et al. suggested a combination of clinical, radiologic, and pathologic characteristics for the prediction of ALN involvement and selection of BC patients for full ALN dissection. EZH2 is essential in a number of important cellular processes, such as embryonic and adult stem cell maintenance and tumor progression. Depletion of EZH2 in BC cells significantly increased expression of the top altered genes, decreased proliferation, and improved cell adhesion, indicating a critical role played by EZH2 in determining the cancer phenotype.

Having in mind that a key event in the progression of BC is the development of lymph node metastases, it is very important to determine prognostic benefit of standard and new molecular markers (ER, HER2, EZH2, CD44) on the occurrence of metastatic disease. This study detected that patients with advanced tumor stage, high EZH2, and high EZH2 with negative ER status had a high risk for ALN metastases in the univariate analysis (p=0.014; 0.003; 0.013). Low risk for ALN involvement was detected in patients with T1 stage, and tumors with positive ER status and low EZH2 (p=0.032; 0.022). Multivariate analysis detected that ALN metastases were significantly associated with high expression of EZH2 in cancer cells (p=0.004), and T1 stage had a low risk for ALN involvement (p=0.037).

Our results are consistent with the studies of some other authors who detected that overexpression of EZH2 was associated with larger tumor size, advanced disease, and significantly worse disease free and overall survival than those with tumors expressing low EZH2, but added that overexpression of EZH2 was associated with negative ER status. Reijm et al. showed that high EZH2 expression was associated with the lymph node status only in univariate analysis. They found significant positive associations with the number of lymph nodes involved, histologic grade and HER2 status.

Biological evidence has shown that overexpression of EZH2 induces type 1 histone deacetylation (HDAC) enzymatic activity in breast epithelial cells. Furthermore, the HDAC activity induced by EZH2 may explain the strong association between EZH2 protein expression and negative ER, showing that EZH2 may transcriptionally repress ER.

Recent findings of Yomtoubian et al. showed that specific pharmacological or genetic inhibition of EZH2 catalytic activity impairs distant metastasis in triple negative breast cancer patients. EZH2 inhibition differentiates EZH2 high basal cells to a luminal-like phenotype by derepressing GATA3 and renders them sensitive to endocrine therapy. Polycomb inhibitors, especially those directed
Table-III: Association of pN with clinicopathological characteristics and expression of EZH2 and CD44 in primary IDC.

Parameter	pN	P Value		
	N0	N1	N2 - N3	
Age, years				
≤ 45 godina	3 (7.1%)	5 (13.9%)	3 (10.7%)	0.621
> 45 godina	39 (92.9%)	31 (86.1%)	25 (89.3%)	
Grade				
G1	3 (7.1%)	3 (8.3%)	0 (0.0%)	0.053
G2	25 (59.5%)	26 (72.2%)	13 (46.4%)	
G3	14 (33.3%)	7 (19.4%)	15 (53.6%)	
Nottingham score	6.93±1.02	6.42±1.18	7.32±1.28	0.160
Pathologic stage, no. (%)				
T1	19 (45.2%)	11 (30.6%)	5 (17.9%)	0.000
T2	20 (47.6%)	23 (63.9%)	7 (25.0%)	
T3-4	3 (7.1%)	2 (5.5%)	16 (57.1%)	
Clinical stage, no. (%)				
I	19 (45.2%)	5 (10.6%)	0 (0.0%)	0.002
II	21 (50.1%)	38 (80.9%)	0 (0.0%)	
III	2 (4.7%)	4 (8.5%)	17 (100%)	
ER status				
Negative, no. (%)	19 (45.2%)	14 (38.9%)	22 (78.6%)	0.004
Positive, no. (%)	23 (54.8%)	22 (61.1%)	6 (21.4%)	
HER-2/neu status				
Negative, no. (%)	31 (73.8%)	27 (75.0%)	18 (64.3%)	0.593
Positive, no. (%)	11 (26.2%)	9 (25.0%)	10 (35.7%)	
Ki-67 index				
Low (<20)	11 (26.2%)	19 (52.8%)	5 (17.9%)	0.060
High (≥20)	31 (73.8%)	17 (47.2%)	23 (82.1%)	
CD44 no. (%)				
Low	30 (71.4%)	23 (63.9%)	18 (64.3%)	0.732
High	12 (28.6%)	13 (36.1%)	10 (35.7%)	
EZH2 no. (%)				
Low	29 (69.0%)	16 (44.4%)	9 (32.1%)	0.006
High	13 (31.0%)	20 (55.6%)	19 (67.9%)	
Expression of EZH2 and CD44				
High EZH2 and High CD44	5 (11.9%)	2 (5.6%)	6 (21.4%)	0.158
Low EZH2 and Low CD44	23 (54.8%)	17 (47.2%)	10 (35.7%)	0.294
High EZH2 and Low CD44	7 (16.7%)	13 (36.1%)	8 (28.6%)	0.145
Low EZH2 and High CD44	7 (16.7%)	4 (11.1%)	4 (14.3%)	0.782
High EZH2 and ER positive	9 (21.4%)	14 (38.9%)	5 (17.9%)	0.107
Low EZH2 and ER negative	15 (35.7%)	8 (22.2%)	8 (28.6%)	0.425
High EZH2 and ER negative	4 (9.5%)	6 (16.7%)	14 (50.0%)	0.000
Low EZH2 and ER positive	14 (33.3%)	8 (22.2%)	1 (3.6%)	0.012

against the PRC2 catalytic subunit EZH2 have shown responses in preclinical studies of cancer therapy.9

The number of lymph nodes involved has emerged as a prognostic factor in determining BC prognosis. Patients with four or more positive lymph nodes have a worse prognosis compared to those having three or fewer histologically positive lymph nodes.21 This study identified that higher pN was associated with some parameters which influenced ALN involvement, i.e. with high EZH2, high EZH2 with negative ER status, advanced clinical stage and advanced tumors stage (p=0.006; 0.001; p=0.002; 0.001). Patients with pN2-N3 had high EZH2 in 67.9%, and high EZH2 with negative ER status was seen in 50%. However, lower pN can be expected in women with positive ER status separately (p=0.004) or together with low EZH2 expression (p=0.012). Despite the strong association of EZH2 with ALN status, our study has some limitations having in the mind that it was done in one center.

Some studies indicate that multifunctional cell adhesion molecules CD44 are potential markers of tumour progression, and may favor distant
metastasis. This study investigated the expression of CD44 to clarify its impact on ALN status and pN. Low CD44 was present in 67% of IDC. A high EZH2 expression with CD44 reduction in cancer cells had a certain impact on ALN involvement (OR 2.442, 95% CI 0.931–6.408, p=0.070), but a significant association was not detected.

CONCLUSION

Despite some limitations, (the study has been conducted on the sample size from only one center) this study points the association of high EZH2 expression in IDBC with ALN metastases, where increasing pN was associated with more advanced tumor and clinical stage, high EZH2, and high ER status. Our study showed that EZH2 and ER can facilitate regional lymph node metastatic progression in women with BC.

Grant Support & Financial Disclosures: None.

REFERENCES

1. Majeed AI, Ullah A, Jadoon M, Ahmad W, Riazuddin S. Screening, diagnosis and genetic study of breast cancer patients in Pakistan. Pak J Med Sci. 2020;36(2):16-20. doi: 10.12669/pjms.36.2.1059
2. Sproon I, Schellevis FG, Burgers JS, de Bock GH, Korevaar JC. Incidence of isolated local breast cancer recurrence and contralateral breast cancer: A systematic review. Breast. 2018;39:70-79. doi: 10.1016/j.breast.2018.03.011
3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7-30. doi: 10.3322/caac.21442
4. Chen L, Linden HM, Anderson BO, Li CI. Trends in 5-year survival rates among breast cancer patients by hormone receptor status and stage. Breast Cancer Res Treat. 2014;147(3):699-616. doi: 10.1007/s10549-014-3112-6
5. Verheuvel NC, Ooms HW, Tjan-Heijnen VC, Roumen RM, Voogd AC. Predictors for extensive nodal involvement in breast cancer patients with axillary lymph node metastases. Breast. 2016;27:175-181. doi: 10.1054/bscm.2016.017-4342-1
6. Saeg F, Anbalagan M. Breast cancer stem cells and the challenges of eradication: a review of novel therapies. Stem Cell Investig. 2018;5:39. doi: 10.21037/sci.2018.10.05.
7. Hirochi S, Nobuyasu S, Kae K, Tatsuya T, Takashi Y, Yoshiyasu N, et al. Expression of enhancer of zeste homolog 2 correlates with survival outcome in patients with metastatic breast cancer: exploratory study using primary and paired metastatic lesions. BMC Cancer. 2017;17:160. doi: 10.1186/s12885-017-3514-3
8. Min D, Xin-Juan F, Zhan-Hong C, Tian-Tian W, Xing L, Jie C, et al. Aberrant expression of enhancer of zeste homologue 2, correlated with HIF-1α, refines relapse risk and predicts poor outcome for breast cancer. Oncol Rep. 2014;32:1101-1107. doi: 10.3892/or.2014.3322
9. Umberto Veronesi Aron Goldhirsch Editors-in-Chief Paolo Veronesi Oreste Davide Gentilini Maria Cristina Leonardi Editors; Breast Cancer, ISBN 978-3-319-48846-2 ISBN 978-3-319-48848-6 (eBook) doi: 10.1007/978-3-319-48848-6 Library of Congress Control Number: 2017945756 Springer International Publishing AG 2017, page 43.
10. Xu H, Yu S, Yuan X, Xiong J, Kuang D, Pestell GR, et al. DACH1 suppresses breast cancer as a negative regulator of CD44. Sci Rep. 2017;7:4361. doi: 10.1038/s41598-017-04799-2
11. Tsai J, Bertoni D, Hernandez-Boussard T, Telli ML, Wapnir IL. Lymph node ratio analysis after neoadjuvant chemotherapy is prognostic in hormone receptor-positive and triple-negative breast cancer. Ann Surg Oncol. 2016;23:3310-3316. doi: 10.1245/s10434-016-5319-8
12. Wasutth Y, Kongdan Y, Suvikapakornkul R, Lertsithichai P, Chirappapha P. Predictive factors of axillary lymph node metastasis in breast cancer. J Med Assoc Thai. 2011;94(1):65-70.
13. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006;24(2):268-273. doi: 10.1200/JCO.2005.01.5180
14. Jene-Sanza A, Varalraj R, Vilkova VA, Khramtsova FG, Khramtsov IA, Oloupade IO, et al. Expression of polycomb targets predicts breast cancer prognosis. Mol Cell Biol. 2013;33(19):3951-3961. doi: 10.1128/MCB.00426-13
15. Gonzalez ME, Li X, Toy K, DuPrié M, Ventura AC, Banerjee M, et al. Downregulation of EZH2 decreases growth of estrogen receptor-negative invasive breast carcinoma and requires BRCA1. Oncogene. 2009;28(6):843-853. doi: 10.1038/onc.2008.433
16. Si-Hyong J, Yong Eun L, Ji-Hye L, Hyun Deok C, Kyung-Ju K, et al. High EZH2 protein expression is associated with poor overall survival in patients with luminal A breast cancer. J Breast Cancer. 2016;19(1):53-60. doi: 10.4048/jbc.2016.19.1.53
17. Reijm EA, Timmermans AM, Look MP, Meijer-vanGelder ME, Stobbe CK, van Deurzen CHM, et al. High protein expression of EZH2 is related to unfavorable outcome to tamoxifen in metastatic breast cancer. Ann Oncol. 2014;25:2185-2190. doi: 10.1093/annonc/mdu391
18. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A. 2003;100(20):11066-10611. doi: 10.1073/pnas.1933744100
19. Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009;13(8B):2236-2252. doi: 10.1111/j.1582-4934.2008.00455.x
20. Yomtoubian S, Lee BS, Verma A, Izzo F, Markowitz G, Choi H, et al. Inhibition of EZH2 catalytic activity selectively targets a metastatic subpopulation in triple-negative breast cancer. Cell Reports. 2020;30:755-770. doi: 10.1016/j.celrep.2019.12.056
21. Tonellotto F, Bergmann A, Haukaas T, Bello AM, Jene-Sanz A, Olopade IO, et al. Expression of polycomb targets predicts breast cancer prognosis. J Med Dent Sci. 2018;5:39. doi: 10.21037/sci.2018.10.05.

Authors’ Contribution:

MD conceived, designed and did statistical analysis & editing of manuscript and is responsible for integrity of research.

MD, AK, LjV did data collection and manuscript writing.

MM did review and final approval of manuscript.