TOWARDS A GEOMETRIC INTERPRETATION OF
GENERALIZED FRACTIONAL INTEGRALS -
ERDÉLYI-KOBER TYPE INTEGRALS ON \mathbb{R}^N AS AN EXAMPLE

Richard Herrmann

Abstract

A family of generalized Erdélyi-Kober type fractional integrals is interpreted geometrically as a distortion of the rotationally invariant integral kernel of the Riesz fractional integral in terms of generalized Cassini ovaloids on \mathbb{R}^N. Based on this geometric view, several extensions are discussed.

Key Words and Phrases: Fractional calculus, Riesz fractional integrals, Erdélyi-Kober fractional integrals, Cassini ovaloids.

1. Introduction

In the following we want to present a geometric approach for a deeper understanding of concepts and strategies used in generalized fractional calculus [Kiryakova (1994)].

We will collect arguments in support of the idea, that a generalization of fractional calculus may be considered from a geometrical point of view as a distortion of the isotropic kernel commonly used in standard fractional calculus, mediated by one or more additional fractional parameters.

E.g. a fractional integral I^α acting on a function $f(x)$ on \mathbb{R}^N is therefore generalized to a multi-parameter fractional integral, where the additional parameters are a measure of distortion:

$$I^\alpha f(\vec{x}) \rightarrow I^{\alpha,\gamma,\ldots} f(\vec{x}) \quad (1)$$

According to [Gorenflo et al (2000)], fractional integrals are of convolution type and exhibit weakly singular kernels of power-law type.
Therefore as a first step we will investigate in this paper the specific geometric properties of kernels or weight-functions of a generalized set of multi-dimensional fractional integrals of Erdélyi-Kober type.

For this case, we will demonstrate, that a geometric approach allows a direct classification and interpretation of generalized multi-parameter fractional integrals in a straight forward manner in terms of Cassini and Maxwell ovaloids.

Furthermore, based on this viewpoint, we will present some generalizations of fractional operators of Erdélyi-Kober type, which allow a direct application in hadron physics.

2. Two examples as an illustration

In one dimensional space we start with some examples to illustrate the procedure: The Liouville definition of the left and right fractional integral \cite{Liouville1832} is given by:

\[
I_+^{\alpha} f(x) = \frac{1}{\Gamma(1-\alpha)} \int_{-\infty}^{x} d\xi \ (x-\xi)^{-\alpha} f(\xi) \tag{2}
\]

\[
I_-^{\alpha} f(x) = \frac{1}{\Gamma(1-\alpha)} \int_{x}^{\infty} d\xi \ (\xi-x)^{-\alpha} f(\xi) \tag{3}
\]

With the fractional parameter in the interval \(0 \leq \alpha \leq 1\). Consequently for the limiting case \(\alpha = 1\) \(I_+\) and \(I_-\) both coincide with the unit-operator and for \(\alpha = 0\) \(I_+\) and \(I_-\) both correspond to the standard integral operator.

If \(x\) is a time-like coordinate, the left Liouville integral is causal, the right Liouville integral is anti-causal. For space like coordinates, in order to preserve isotropy of space, both integrals must be combined.

The symmetric combination of \(I_+\) and \(I_-\) yields the Riesz integral \(RZ I^{\alpha}\):

\[
RZ I^{\alpha} f(x) = \frac{1}{2} \left(I_+^{\alpha} + I_-^{\alpha} \right) f(x) \tag{4}
\]

\[
= \frac{1}{\Gamma(1-\alpha)} \int_{-\infty}^{\infty} d\xi \ |x-\xi|^{-\alpha} f(\xi) \tag{5}
\]

where \(|\cdot|\) denotes the absolute value. These integrals are examples of a one parameter convolution integral of power law type

\[
I^{\alpha} f(x) = c(x) \int_{-\infty}^{\infty} d\xi \ w(d) f(\xi) \tag{6}
\]

with the kernel

\[
w(d) = d^{-\alpha} \tag{7}
\]

and \(d\)

\[
d = |x-\xi| \tag{8}
\]

is a measure of distance on \(R^1\).
Erdélyi-Kober integrals are extensions of the Riemann-Liouville left and right fractional integrals, depending not only on the order \(\alpha > 0 \) but also on weight \(\gamma \in \mathbb{R} \) and an additional parameter \(\beta > 0 \) as follows:

\[
I_{+;\beta}^{\alpha,\gamma} f(x) = \frac{x^{\beta(\gamma+1-\alpha)}}{\Gamma(1-\alpha)} \int_0^x d\xi \beta(x^\beta - \xi^\beta)^{-\alpha} \xi^{-\beta\gamma} f(\xi)
\]

(9)

\[
= \frac{1}{\Gamma(1-\alpha)} \int_0^1 d\sigma (1-\sigma)^{-\alpha} \sigma^{-\gamma} f(x\sigma^{1/\beta})
\]

(10)

\[
I_{-;\beta}^{\alpha,\gamma} f(x) = \frac{x^{\beta\gamma}}{\Gamma(1-\alpha)} \int_x^\infty d\xi \beta(\xi^\beta - x^\beta)^{-\alpha} |\xi|^{-\beta(\gamma+1-\alpha)} f(\xi)
\]

(11)

\[
= \frac{1}{\Gamma(1-\alpha)} \int_1^\infty d\sigma (\sigma - 1)^{-\alpha} \sigma^{-(\gamma+1-\alpha)} f(x\sigma^{1/\beta})
\]

(12)

If we take the special case \(\beta = 1 \) and change the initial point 0 to \(-\infty\) in (9), the resulting modifications of the Erdélyi-Kober operators can be written as follows:

\[
\tilde{I}_{+;\beta}^{\alpha,\gamma} f(x) = \frac{x^{\gamma+1-\alpha}}{\Gamma(1-\alpha)} \int_{-\infty}^x d\xi (x-\xi)^{-\alpha} |\xi|^{-\gamma} f(\xi)
\]

(13)

\[
\tilde{I}_{-;\beta}^{\alpha,\gamma} f(x) = \frac{x^\gamma}{\Gamma(1-\alpha)} \int_x^\infty d\xi (\xi - x)^{-\alpha} |\xi|^{-\gamma+\alpha-1} f(\xi)
\]

(14)

which clearly shows the analogy to the fractional Liouville left and right integral definitions.

For space-like coordinates, both integrals may be combined, which yields a symmetric Erdélyi-Kober type generalized fractional integral of the form:

\[
\text{EK} I_{+;\beta}^{\alpha,\gamma} f(x) = \frac{1}{2} (\tilde{I}_{+;\beta}^{\alpha,\gamma} + \tilde{I}_{-;\beta}^{\alpha,\gamma}) f(x)
\]

(15)

\[
= c(x) \int_{-\infty}^\infty d\xi |x - \xi|^{-\alpha} |\xi|^{-\gamma} f(\xi)
\]

(16)

where \(||\) denotes the absolute value. This integral is an example for a two parameter convolution integral of power law type

\[
I_{+;\beta}^{\alpha,\gamma} f(x) = c(x) \int_{-\infty}^{+\infty} d\xi W(d_1, d_2) f(\xi)
\]

(17)

with the kernel \(W \), which now consists of two factors \(w_i \)

\[
W(d_1, d_2) = w_1(d_1)w_2(d_2)
\]

(18)

with

\[
w_1(d_1) = d_1^{-\alpha} \quad \text{and} \quad w_2(d_2) = d_2^{-\gamma}
\]

(19)
and the distances d_i

$$d_1 = |x - \xi| \quad \text{and} \quad d_2 = |\xi|$$

(20)

It should be mentioned, that for vanishing γ the symmetric Erdélyi-Kober integral (15) smoothly reduces to the Riesz integral (5)

$$\lim_{\gamma \to 0} \text{EK} I_{\alpha, \gamma} = \text{RZ} I_{\alpha}$$

(21)

because the weight (18) is the product of two single power law factors as a function of a measure of distance. Values of equal weight are then determined by the equation:

$$d_1^{-\alpha} d_2^{-\gamma} = \text{const}$$

(22)

which is from a geometric point of view when extended to \mathbb{R}^N nothing else, but the definition of Cassini ovaloids. Therefore in the next section, we will investigate the extension of the symmetric Erdélyi-Kober integral (15) to higher dimensions.

3. Symmetric Erdélyi-Kober integral on \mathbb{R}^N

On \mathbb{R}^N which is spanned by the coordinate set $\{x_n, n = 1, ..., N\}$ we define a set of M foci F_m at positions $\{x_{nm}\}$ via:

$$F_m = \{x_{nm}\} \quad n = 1, ..., N \quad m = 1, ..., M$$

(23)

The distance r_m between a given focus position F_m and a given point \vec{x} is the given by the Euclidean norm:

$$r_m = |\vec{x} - \vec{F}_m| \quad m = 1, ..., M$$

(24)

$$= \sqrt{\sum_{n=1}^{N} (x_n - x_{nm})^2}$$

(25)

Introducing a corresponding set of M fractional parameters $\{\alpha_m, m = 1, ..., M\}$ we define the Cassini type weight W as the product

$$W(\vec{x}) = \prod_{m=1}^{M} (r_m)^{-\alpha_m}$$

(26)

and the generalized symmetric Erdélyi-Kober integral on \mathbb{R}^N follows as

$$\text{EK} I_{\{\alpha_m\}} f(\vec{x}) = c \int_{\mathbb{R}^N} d\xi^N W(\vec{\xi}, \{\vec{F}_m(\vec{x})\}) f(\vec{\xi}), \quad 0 < \sum_{m=1}^{M} \alpha_m < N$$

(27)

For the one dimensional case ($N = 1$) setting one focal point at $x_{11} = x$ we obtain the Riesz integral (5), for two focal points $x_{11} = x$ and $x_{12} = 0$ we obtain up to a constant the symmetric Erdélyi-Kober integral (15).
Figure 1. Contours of the weight W in R^2 for two focal points $F_1 = \{4, 4\}$, $\alpha_1 = 0.6$ and $F_2 = \{0, 0\}$, $\alpha_2 = 0.4$. Thick lines indicate 0.25 steps.

In figure 1 for the two-dimensional case we have plotted contours of the weight W for two foci with two different α.

4. A physical interpretation and dynamic extensions

In [Herrmann(2011)] we already mentioned, that a left handed fractional integral is causal and therefore may be used to describe the dynamics
of a particle, while the right handed fractional integral is anti-causal and may be the appropriate tool to describe the dynamics of an anti-particle, which develops backwards in time. As a consequence, the symmetric integral may be used to describe particle-anti-particle pairs.

In a similar manner the generalized symmetric Erdélyi-Kober type integrals with M different foci may be interpreted as operators, which describe multi-particle systems, which have a finite size. A typical example

Figure 2. Contours of the weight W in R^2 for three focal points $F_1 = \{0, 4\}$, and F_2, F_3 rotated by $2\pi/3$ and $4\pi/3$ about the origin $\alpha_i = 0.4$. Thick lines indicate 0.25 steps.
for $M = 2$ within the framework of hadron physics are mesons, which are defined as quark anti-quark systems

$$m = q_1 \bar{q}_2$$

(28)

where different charge/mass ratios are modeled using different α_1 and α_2 values, a method, which has already been used in nuclear physics to describe asymmetric nuclear shapes [Pashkevich(1971)].

Excitations of such a system may then be described by a fractional differential equation of Klein-Gordon type:

$$\left(E_{K} I^{\alpha_1, \alpha_2} \Box - m^2(\alpha_1 + \alpha_2) \right) \Psi(\vec{x}) = 0$$

(29)

For $M = 3$ we may interpret the generalized symmetric Erdélyi-Kober type as an operator suitable for a description of baryons. In figure 2 we have sketched the weight for a symmetric configuration, which could be applied to symmetric 3-quark systems like $\Omega^-(sss)$. Excitations of such a system may then be described by a fractional differential equation of Klein-Gordon type:

$$\left(E_{K} I^{\alpha_1, \alpha_2, \alpha_3} \Box - m^2(\alpha_1 + \alpha_2 + \alpha_3) \right) \Psi(\vec{x}) = 0$$

(30)

The proposed physical interpretation also allows for an inclusion of vibrational and rotational degrees of freedom. Until now, the presented Erdélyi-Kober type operators were static. In fractional calculus, a possible time dependence of spatial operators has been discussed until now only in terms of variable order fractional parameters $\alpha \rightarrow \alpha(t)$ [Samko (1995)]. Within the framework of a geometric interpretation, a dynamic behavior may also be mediated introducing time dependent focus positions:

$$\vec{F}_m \rightarrow \vec{F}_m(t)$$

(31)

For example, the static weight shown in figure 2 may be extended to describe rotations

$$\vec{F}_m(t) = \hat{D}(t)\vec{F}_m(t = 0)$$

(32)

introducing the time-dependent rotation matrix \hat{D}.

Another generalization may realize the weight function W not in terms of Cassini but Maxwell ovoids, which are defined using the sum rather than the product of focal distances [Maxwell(1846)]:

$$\tilde{W}(\vec{x}) = \sum_{m=1}^{M} (r_m)^{-\alpha_m} \quad 0 < \alpha_m < N$$

(33)
5. Conclusion

We have demonstrated that generalized classes of multi-parameter fractional integrals of power law type, which we defined as symmetric Erdélyi-Kober integrals indeed may be interpreted geometrically as distortions of the rotationally symmetric kernel of Riesz fractional integrals. This interpretation allows a direct classification of higher order fractional integrals and a physical interpretation in terms of multi-particle operators. Furthermore a new type of variable order fractional calculus in terms of space and time dependent focal position sets has been proposed.

Acknowledgements

We thank A. Friedrich and V. S. Kiryakova for useful discussions and suggestions.

References

[Erdélyi et al (1940)] A. Erdélyi, *On fractional integration and its application to the theory of Hankel transforms* The Quarterly Journal of Mathematics. Oxford. Second Series 11: (1940), 293–303.

[Gorenflo et al (2000)] R. Gorenflo, F. Mainardi, E. Scalas, M. Raberto and C. Daffara, http://www.fracalmo.de (2000)

[Herrmann(2011)] R. Herrmann, (2011). *Fractional Calculus - An introduction for physicists* World Scientific Publishing, Singapore.

[Kiryakova (1994)] V. S. Kiryakova, (1994). *Generalized fractional calculus and applications* Longman (Pitman Res. Notes in Math. Ser. 301), Harlow; co-publ.: John Wiley and Sons, New York

[Kober (1940)] H. Kober, *On fractional integrals and derivatives* The Quarterly Journal of Mathematics (Oxford series) 11 (1) (1940), 193–211.

[Liouville(1832)] J. Liouville, *Sur le calcul des differentielles à indices quelconques* J. École Polytechnique 13 (1832), 1–162.

[Maxwell(1846)] J. C. Maxwell, *Observation of circumscribed figures having a plurality of foci and radii of different proportions* Royal Society of Edinburgh (1846), reprinted in Harman, P. M. (Ed.) (1990) *The Scientific Letters and Papers of James Clerk Maxwell: 1846-1862*, Cambridge University Press, UK

[Pashkevich(1971)] V. V. Pashkevich, *On the asymmetric deformation of fissioning nuclei* Nucl. Phys. 169 (1971), 275–293.

[Riesz(1949)] M. Riesz, *L’intégrale de Riemann-Liouville et le problème de Cauchy* Acta Math. 81 (1949), 1–223.

[Samko (1995)] S. G. Samko, *Fractional integration and differentiation of variable order* Anal. Math. 21 (1995), 213–236.
1 GigaHedron
Berliner Ring 80
D-63303 Dreieich

e-mail: herrmann@gigahedron.com

Received: December 8, 2013
