B cells in autoimmune hepatitis: bystanders or central players?

Christoph Schultheiß · Silja Steinmann · Ansgar W. Lohse · Mascha Binder

Received: 24 February 2022 / Accepted: 7 April 2022 / Published online: 29 April 2022
© The Author(s) 2022

Abstract
B cells are central for the adaptive immune system to mount successful immune responses not only as antibody producers but also as regulators of cellular immunity. These multifaceted features are also reflected in autoimmunity where autoreactive B cells can fuel disease by production of cytotoxic autoantibodies, presentation of autoantigens to autoreactive T cells, and secretion of cytokines and chemokines that either promote detrimental immune activation or impair regulatory T and B cells. The role of B cells and autoantibodies in autoimmune hepatitis (AIH) have been controversially discussed, with typical autoantibodies and hypergammaglobulinemia indicating a key role, while strong HLA class II association suggests T cells as key players. In this review, we summarize current knowledge on B cells in AIH and how different B cell subpopulations may drive AIH progression beyond autoantibodies. We also discuss recent findings of B cell-directed therapies in AIH.

Keywords
Autoimmune hepatitis · B cell · Autoantibody · Antigen presentation · Cytokine · B cell · Depletion therapy

Introduction
Autoimmune hepatitis (AIH) is a severe chronic and relapsing inflammatory liver disease with a female preponderance characterized by an ongoing autoimmune reaction directed against hepatic autoantigens [1–3]. Like in other autoimmune diseases, the exact pathogenesis remains uncertain. Both B cell and T cell-mediated autoimmunity and immune dysregulation have been proposed as key mechanisms. While the strong association with distinct HLA-DRB1 alleles strongly supports an important role for CD4+ cells in disease development, the characteristic and specific elevation of immunoglobulin G (IgG) levels and the development of both specific and non-specific autoantibodies, which is also of important diagnostic value, support the role of B cells in AIH pathogenesis [1, 3–5]. Furthermore, recently, the establishment of new mouse models and the apparent success of B cell depletion therapies in distinct patient subsets provided further support for the concept of B cells as substantial contributors to AIH immunopathogenesis.

Therefore, in this review, we summarize current knowledge on B cells in AIH and how different B cell subpopulations may drive AIH progression beyond autoantibodies. We also discuss recent findings of B cell depletion in clinical trials as well as further B cell-directed therapeutic approaches beyond depletion.

B cell development and maturation
B cells constitute one of the essential arms of the adaptive immune system [6]. They are produced from hematopoietic precursor cells throughout life starting in the fetal liver to the bone marrow (BM) in adults (Fig. 1) [7]. During a multi-step developmental and selection process, their unique characterizing feature, the B cell receptor (BCR), is generated randomly for each single B cell in a complex genomic rearrangement event generating a diverse B cell repertoire with virtually unlimited specificities [8]. B cells with correctly assembled BCRs that pass checkpoints of central tolerance...
exit the BM as IgM+ immature or transitional B cells and migrate via the bloodstream to the spleen where they complete their maturation process by differentiating into either naïve, follicular, or marginal zone (MZ) B cells. All stages of B cell development are characterized by sets of surface markers from which a selection is depicted. Upon antigen encounter, activated B cells can either rapidly expand in an extrafollicular response into short-lived plasmablast or engage in a germinal center reaction in secondary lymphoid tissues like lymph nodes. The germinal center reaction is a T cell-assisted BCR diversification process, which facilitates class-switch recombination (CSR) and increases BCR affinity via introduction of random mutations (somatic hypermutation, SHM). Germinal center B cells then differentiate into antibody-secreting plasma cells which can become long-lived plasma (LLP) or memory B cells.

Pathogenic B cells in autoimmune diseases

While B cell antigenic selection and maturation is vital to protect against pathogens, it can have detrimental effects when triggered by self-antigens. This may result in autoreactive B cell populations that target an individual’s own tissues or instruct other cells of the adaptive and innate immune system to do so. B cell dyscrasias driven by autoantigen are well defined for some autoimmune diseases [14]. For example,
in diabetes, autoantibodies can target insulin producing β-cells or insulin itself [15, 16], in dilated cardiomyopathy (DCM), which is the leading cause for heart failure and heart transplantation in younger adults, circulating autoantibodies mediate organ-specific tissue damage by targeting different epitopes on cardiac myocytes [17, 18]. In pemphigus vulgaris, IgG autoantibodies directed against desmosomes of keratinocytes cause epidermal acantholysis [19]. The pathogenic potential of several autoantibody classes found in rheumatoid arthritis (RA), especially antibodies targeting post-translational modifications like citrullination (ACPA) and carbamylation (anti-CarP antibodies), was recently substantiated [20, 21]. Another prototypic example for the pathogenic role of B cells is systemic lupus erythematosus (SLE), where ISG15-secreting plasmablast expansions are a hallmark of activity [22] and dysregulated GC reactions mediate the positive selection of high-affinity autoantibodies driving pathogenesis [23]. Notably, SLE also shows ongoing somatic hypermutation (SHM) in extrafollicular responses resulting in affinity matured autoantibodies, a feature also found in other autoimmune settings like RA and Sjögren’s syndrome [24]. While these examples illustrate the direct pathogenic potential of autoreactive B cells in different autoimmune diseases, their role in AIH pathogenesis is much less defined.

The role of B cells as diagnostic markers in AIH

Clinical presentation of AIH is highly variable, ranging from mild and intermittent elevation of liver enzymes to acute and fulminant hepatitis [25]. Since AIH lacks a distinct pathognomonic feature and its etiology is largely unknown, it is diagnosed by exclusion based on clinical, serological, and histopathological features [26–29]. Key to the diagnostic workup are AIH-specific autoantibodies; selective elevation of polyclonal IgG (hyper-IgG), usually in the absence of an elevation of IgA and IgM; and abnormalities in liver histology.

B cells in AIH liver histology

Liver histology in active AIH is typically characterized by a lympho-plasmacellular infiltrate of the hepatic tissue mediating tissue damage and hepatic necroinflammation. However, the changes in AIH histopathology lack pathognomonic characteristics, as histomorphological changes in chronic AIH mimic findings in chronic viral hepatitis [30–32]. Chronic AIH typically shows portal-based lympho-plasmacellular infiltrates with interface hepatitis (formerly called piece-meal-necrosis) [28, 29]. In the inflammatory infiltrate, plasma cells are detectable in two out of three cases; however, their abundance may vary [30, 33, 34]. Histopathological features such as rosette formation and emperipolesis were described to be typical characteristics of AIH. Recently, these histological findings were considered not to be specific for AIH, but rather reflect the hepatic tissue damage and can act as markers of disease severity regardless of the underlying disease [30, 32, 35]. However, predominance of plasma cells as well as appearance in clusters (defined as >5 plasma cells/one focus) in the context of interface hepatitis were reported to be rather specific for AIH [32]. Thus, despite not being necessarily required for diagnosis, plasma cells can be considered typical in AIH [32]. In immunohistochemistry, expression of CD38 or multiple myeloma-1 (MUM-1) can be used to identify plasma cells and determine their distribution and frequency in hepatic tissue [36].

Autoantibodies in AIH

Seropositivity for distinct autoantibody classes represents a key diagnostic feature of AIH. In addition, autoantibodies can serve as biomarkers for grouping different AIH subsets. After exclusion of other autoimmune diseases, ANA and SMA (including anti-F-actin antibody) define AIH type 1. Anti-LKM1 and anti-LC2 are characteristic for the AIH type 2 subset. Antibodies to soluble liver antigen/liver pancreas antigen (anti-SLA/LP) are also regarded by many authors as classifying a third subgroup of AIH, AIH type 3. Further autoantibodies such as pANCA, anti-LM, and anti-ASGPR antibodies have also been discussed as characteristic markers of AIH (Table 1).

Only very few patients lack any type of autoantibody. Autoantibody negativity may, however, occur at acute presentation, but most of these cases develop seropositivity upon further follow-up [37]. While anti-SLA/LP antibodies are highly specific for autoimmune hepatitis, ANA, SMA, and to a lesser extent anti-LKM1 can also be found in other liver diseases or even other autoimmune diseases [38]. Hepatotropic and non-hepatotropic viral infections can lead to a transient development and/or increase of these autoantibodies [38–41]. This limited degree of specificity thus calls into question a direct pathogenic role of autoantibodies in AIH. On the other hand, a high degree of specificity, as observed for anti-SLA/LP, including a high degree of epitope specificity, speaks strongly in favor of a pathogenic role [42, 43]. Albeit a single case report, transfer of maternal SLA/LP autoantibodies both in utero and via breast feeding did not lead to any hepatitis in the newborn [44].

Since these conventional autoantibodies lack diagnostic sensitivity and accuracy [45], several groups aimed to identify other potential targets for more precise diagnostic differentiation of AIH from other related diseases [46–49]. While these efforts identified more than 80 potential targets, only one recent publication systematically validated their
Table 1 Autoantibodies in AIH

Subtype	Antibodies	Target structures	frequency in AIH patients	Clinical features	Presence in concurrent diseases		
					Hepatic	Extrahepatic	
AIH type 1	ANA [29]	Chromatin, Histones, Centromere, ds- and ss-DNA, Cyclin A Ribonucleoproteins (Filamentous) actin, tubulin, or intermediate filaments	50–70%	50%	Correlate with inflammatory activity in adult patients with AIH	PBC, PSC, NAFLD, DILI, Healthy individuals	SLE, RA, Scleroderma, HCV, Sjögren’s Syndrome
	SMA [205] (F-Actin)						
AIH type 2	Anti-LKM-1 [1, 205, 206]	CYP 2D6	Pediatric AIH-patients: up to 20–30% Adult AIH-patients: up to 10%	Early onset of disease, More aggressive disease course	HCV		
	Anti-LKM-3 [207]	UGTs	19% of AIH type 2		HCV		
	Anti-LC1 [208]	FTCD (formimino transferase cyclodeaminase)	30% of AIH type 2		HCV		
AIH type 3	Anti-SLA/LP [209–212]	SepSecS	10–20%	Potentially more aggressive disease course, Worse disease outcome			
	Further antibodies	Anti-ASGPR [213]	Anti-ASGPR	24–82%	Levels might correlate with disease activity [213]	PBC, HBV, HCV	
	p-ANCA/p-ANNA [214–216]	Unclear, tubulin-beta chain?	AIH-1: 65–96% AIH-2: 13%		PSC, HBV, HCV		
	Seronegative [134, 217]		10–15%	Acute presentation, Often development of autoantibodies upon follow-up	IBD, Microscopic polyangiitis, Eosinophilic granulomatosis with polyangiitis, Healthy individuals		

Abbreviations: AIH autoimmune hepatitis, DILI drug-induced liver injury, HBV viral hepatitis B, HCV viral hepatitis C, HDV viral hepatitis D, IBD inflammatory bowel disease, NAFLD non-alcoholic fatty liver disease, PBC primary biliary cholangitis, PSC primary sclerosing cholangitis, SLE systemic lupus erythematosus, RA rheumatoid arthritis

findings [50]. Taubert et al. report that polyreactive IgG against HIP1R/BSA proved to be more specific than ANA, anti-SMA, anti-LKM1, anti-SLA/LP, and other autoantibodies [50]. HIP1R/BSA reactivity was detected in up to 88% of otherwise seronegative patients and in up to 71% of AIH patients with normal IgG levels [50]. Another class of non-conventional autoantibodies are programmed cell death 1 (PD-1)-targeting antibodies found in type 1 AIH where they correlated with levels of bilirubin and alanine aminotransferase but not with IgG [51]. PD-1 and its ligands PD-L1 and PD-L2 constitute a co-inhibitory signaling axis that limits lymphocyte activation and is key for central and peripheral tolerance [52–54]. This essential function is illustrated by several PD-1 knockout mouse models that develop a broad spectrum of autoimmune diseases like arthritis, lupus-like glomerulonephritis, diabetes, or fatal dilated cardiomyopathy [54]. In the cancer context, antibody-mediated blockade of the PD-1/PD-L1 axis helps to overcome cancer immune escape on the other hand favoring adverse autoimmune events including AIH [55]. Since the binding specificities of the anti-PD-1 antibodies from AIH patients and their ability to interfere with the PD-1/PD-L1 axis were not functionally...
validated, their pathogenic impact in breaking liver tolerance has yet to be determined. However, further evidence for the relevance of this axis derives from studies showing correlation of elevated soluble PD-1 (sPD-1) levels with activity [56, 57]. Secretion of sPD-1 which is generated via alternative splicing [58] might result in the competition of soluble and membrane-bound PD-1 on hepatic B and T cells for ligand interactions within the liver microarchitecture, thus interfering with the tolerogenic functions of PD-L1-expressing hepatocytes, liver sinusoidal epithelial cells (LSECs), hepatic stellate cells, dendritic cells (DCs), and Kupffer cells [59, 60].

Hypergammaglobulinemia

In addition to autoantibodies, polyclonal hypergammaglobulinemia with a selective IgG elevation is another characteristic diagnostic hallmark of AIH [1, 3]. Elevated IgG levels in treated AIH patients mirror an ongoing inflammatory activity [61, 62], and normalization of serum IgG is an accepted treatment goal [37]. However, not all AIH patients have elevated IgG levels, and up to 15% of patients present with normal IgG levels when presenting with acute disease [37, 63]. This observation might be explained with varying baseline immunoglobulin levels due to genetic predisposition [64] which is in line with the observation that immunosuppression leads to a persistent decrease of IgG levels below normal thresholds in patients who present without IgG elevation in acute disease phases [63]. Recent findings have questioned the high selectivity of IgG elevation and suggest that hypergammaglobulinemia in AIH may also extend to IgA [63]. IgA antibodies are predominantly generated on mucosal surfaces [65], and increased serum levels might link alterations in gut microbiota and intestinal permeability to autoimmunity in general or AIH in particular [66–68].

Pathological roles of hyper-IgG and autoantibodies

Despite their relevance for diagnosis and therapy monitoring, there is only limited evidence supporting a direct pathogenic role of immunoglobulins in AIH. Hepatocytes isolated from AIH patients are covered with immunoglobulin which may mediate antibody-dependent cellular cytotoxicity (ADCC) [69]. Immunoglobulin coating correlates with biopsy scores and portal but not parenchymal inflammatory activity [69]. In addition, anti-LKM1 can inhibit CYP2D6, which is expressed on hepatocyte plasma membrane, in vitro [70, 71]. However, serum transfer is not able to induce AIH in animal models [72], and fetal or neonatal hepatitis has not been reported in pregnant AIH patients [73, 74].

Other data suggest that autoantibodies and hypergammaglobulinemia might by a by-product reflecting loss of tolerance and/or an overshooting immune response. For example, IL-21 serum levels are elevated in AIH [75] and correlate with immunoglobulin levels [76]. Overexpression of IL-21 has been shown to be sufficient for autoantibody production and initiation of hypergammaglobulinemia in mouse models [77, 78]. IL-21 also triggers class-switching and the plasma cell differentiation program by regulating Blimp-1, Bcl-6, and Pax5 expression [77]. In addition, unpublished data from our group shows elevated IL-10 plasma levels clearly correlating with disease activity. The high plasma IL-10 levels could be seen as a regulatory response, since IL-10 is a dampener of excessive T cell activation while at the same time promoting immunoglobulin class switch recombination and secretion [79–82]. IL-10 has been described in diverse models of autoimmunity as main driver of autoantibody production (especially IgG) and secretion after initial activation by CD40L [83–85].

Cellular functions of B cells in AIH

Immune repertoire sequencing can decode complex B and T cell architectures and identify immunogenetic imprints of infection [86], cancer [87], and immune-mediated diseases [88]. In our own recent work, immunosequencing of peripheral blood and liver-infiltrating B and T cell repertoires revealed a strong T cell receptor skewing unaffected by immunosuppression, while the B cell compartment was only marginally affected [89]. This is in line with flow cytometry data showing alterations in the composition of peripheral T cell subsets that persisted upon immunosuppression, while B cells were not affected [90]. While these findings substantiate that AIH pathogenesis is not fueled by an antigen-driven B cell response, it does not exclude other essential regulatory B cell functions such as antigen presentation or cytokine and chemokine secretion exerted by distinct B cell subsets as important contributors of AIH pathogenesis. Indeed, the presentation of antigen to autoreactive CD4+ cells via B cells might provide a unifying link explaining both the HLA class II association and the various B cell abnormalities including enriched plasma cells in the liver infiltrate (Fig. 2). The regulatory B cell subset may also counteract T cell-mediated immune responses [91, 92].

Antigen presentation

Genetic studies have shown that distinct polymorphisms in the human leukocyte antigen (HLA) region encoding the major histocompatibility complex (MHC) predispose to AIH [1, 3]. MHC class I (MHCI) and II (MHCII) are functionally similar heterodimeric proteins that present processed peptides to T cells [93]. While MHCI proteins are expressed by all nucleated cells and present proteasome-processed antigens of cytosolic and nuclear origin.
to CD8+ T cells, MHCII molecules are mainly expressed by professional antigen-presenting cells (APCs) like dendritic cells (DCs), macrophages, and B cells and present exogenous peptides processed by the endocytic pathway to naïve CD4+ T cells in the secondary lymphoid tissues. In addition, B cells can be primed by autoantigen activated T cells via interaction with T follicular helper (Tfh) cells in germinal center reactions (T cell help) and differentiate into (auto-)IgG secreting plasma cells and plasmablasts. Activated B and T cells migrate via the blood stream to target tissues and mediate tissue damage. They also secrete pro- and anti-inflammatory cytokines that potentially contribute to inflammation or counteract ongoing pathogenic autoimmune reactions.

In an AIH mouse model, B cell depletion contributes to AIH by presenting antigens to CD4+ cells and caused a reduction of T follicular helper (Tfh) cell numbers [99]. Tfh cell differentiation is partly dependent on MHCII antigen presentation by B cells [100], and accumulation of Tfh cells has been shown to be necessary for autoimmunity [23]. Although their exact contribution to AIH pathogenesis is not understood, Tfh cell numbers are enriched in AIH patients [101] and mice models [99]. The role of Tfh cell-mediated T and B cell crosstalk for AIH pathogenesis is also substantiated by the finding that SLA-specific autoreactive T cells upregulate transcription programs associated with B cell help [102].

Cytokine production

B cells can produce a broad array of pro- and anti-inflammatory cytokines and chemokines necessary for regulation of different aspects of immunity [103, 104] (Fig. 2). Examples for B cell-derived cytokines that contribute to T cell
responses are, among others, IFNγ which promotes T^H1 responses, IL-2 which promotes T^H2 memory responses, or TNF-α and CCL3 which regulate Th1 cell responses [104]. Rare subsets of B cells are reported as producers of IL-17 independent of IL-6 and IL-23 signaling and the RORγt transcription factor [105]. In addition, IFN-γ inducible protein 10 (IP-10/CXCL10) which correlates with liver inflammation in AIH [106] is secreted by B cells (and hepatocytes) and mediates hepatic chemotaxis of T^H1 and T^H17 cells in AIH [107, 108].

Regulatory T cells (Tregs) are crucial for establishing tolerance, especially in the liver [109]. Most Tregs express heterodimeric IL-2 receptors (IL-2Rs) on their surface containing the high-affinity alpha chain (IL2RA/CD25) and are thus not highly responsive but also highly dependent on IL-2, a major factor for homeostasis as well as immunosuppressive and cytotoxic Treg function [110]. In a mouse model overexpressing the liver autoantigen FTCD, adoptive transfer of ex vivo IL-2 expanded CXCR3^+ Tregs inhibited intrahepatic proliferation of autoreactive FTCD-specific B and T cells and restored peripheral tolerance [111]. AIH patients show decreased IL-2 serum levels and Tregs from AIH patients have been reported to be less responsive to IL-2 [112]. Low-dose IL-2 treatment in two patients with refractory AIH caused an increase in circulating Tregs and reduction of inflammatory liver damage [113].

A well-known driver of autoimmunity is IL-6 [114]. In multiple sclerosis models, B cell-derived IL-6 promotes the activation of pathogenic T^H1 and T^H17 cells, thereby driving the pathogenesis of this disease [115]. In AIH, IL-17 contributes to AIH pathogenesis by induction of hepatic IL-6 expression [116]. In line with this, several IL-6 polymorphisms are associated with AIH [117], and an effective second-line AIH therapeutic, 6-mercaptopurine, inhibits IL-6 production in B cells [118].

B cells, including plasma cells and plasmablasts, exert immunosuppressive functions by secreting distinct cytokines especially IL-10 and IL-35 [105, 119–121]. As mentioned above, our unpublished data shows elevated IL-10 plasma levels that correlated with marker normalization and disease remission. Here, IL-10 is most likely hypersecreted in active AIH to dampen high numbers of activated T cells and later downregulated when T cell activation gets more and more controlled. This provides a mechanistic basis for the finding that the immune system of AIH patients spontaneously attempts to counterregulate T cell autoreactivity in active disease [122] and also explains the observation of normal IgG levels in some patients with acute AIH [37]. Although IL-10 is mainly derived from distinct subsets of regulatory T cells and T^H2 cells [81, 84], there is also a subset of regulatory B cells termed B10 solely characterized by intracellular production of IL-10 [123]. B10 cells inhibit inflammation in different model systems and humans but might also elicit proinflammatory functions [123]. However, it needs further investigation, if this subset has a relevant impact on B cell (de-)regulation in AIH. In addition, the immunosuppressive effects of IL-10 are partly mediated through upregulation of the membrane-associated E3 ubiquitin ligase MARC1 which reduces the half-life of surface MHC-II complexes on antigen-presenting cells [124]. However, this is not exclusive for all B cell subunits since IL-10 upregulates MHC-II complexes in follicular B cells [124–126].

IL-35 belongs to the IL-12 family and is a heterodimeric cytokine formed by p35 and EBI3 with immunosuppressive functions via increasing numbers of Tregs and regulatory B cells [127]. IL-35 fosters the generation of Tregs and inhibits CD4^+ effector T cells like T^H1 and T^H17 cells [127, 128]. In AIH, the hepatic expression of the IL-35 subunits p35 and EBI3 is elevated and correlates with liver inflammation and fibrosis, the level of p35 also with age and serum levels of IgG and transaminases [129]. Notably, p35 is also a subunit of IL-12 (together with p40) and EBI3 of IL-27 (together with p28) [130]. Although p40 and p28 did not show equivalent correlations in immunohistochemical staining of liver tissue from AIH patients [129], higher expression of p35 and EBI3 might also hint towards production of IL-27 or IL-12; the latter of is also produced by B cells [131, 132]. Interestingly, transient hepatic overexpression of IL-12 in mice causes loss of tolerance to hepatocellular antigens leading to an AIH-like disease with hypergammaglobulinemia, autoantibodies, persistent immune cell infiltration of the liver, and hepatic fibrosis [133].

Evidence for the pathogenic role of B cells in AIH from treatment studies

Standard of care and impact on B cell function

Current therapies block pathogenic immune responses without reliably reestablishing immune tolerance [1, 3, 26, 134]. Standard of care for the induction of remission are the glucocorticoid derivatives prednisone or prednisolone, while azathioprine is given for the maintenance of remission with or without low levels of corticosteroids. In case of intolerance to azathioprine, its metabolite 6-mercaptopurine or mycophenolate mofetil (MMF) may be alternatives that alleviate adverse effects [135]. Functionally, these therapeutics represent nonspecific systemic immunosuppressants that have varying effects on immune cell types including B lineage cells.

Glucocorticoids bind the ubiquitously expressed cytosolic glucocorticoid receptor (GR) which acts as a ligand-inducible transcription factor after nuclear translocation [136–139]. In primary human B cells, GR bound prednisolone impairs BCR (downregulation of CR2/CD21, CD19,
SYK, BTK, BLNK, and CD79B but not CD79A) and Toll-like receptor (TLR) 7 signaling, while immunosuppressive IL-10 and the marker for terminal plasma cell differentiation, PRDM1/Blimp-1, are upregulated [140]. Other reports showed that prednisolone inhibits proliferation, plasma cell differentiation, and IgG secretion in a dose-dependent manner and also reduces IL-10 and IL-21 cytokine levels, while low levels of prednisolone increase IgG secretion when added to peripheral blood mononuclear cells (PBMCs) [141–143]. In AIH patients, prednisolone therapy suppresses intrahepatic B and Treg cell proliferation and portal B and T cell densities [143]. Decline of B and Treg densities was proportional with similar Treg/B cell ratios before and under therapy [143]. In addition, portal CD79A+ B cell infiltrate density significantly correlated with serum IgG levels suggesting these cells as source of elevated IgG levels [143]. Given that mature B cells are more resistant as immature B cells towards long-term prednisolone administration although GR is expressed throughout all stages of B cell development [144, 145] and PRDM1/Blimp-1 is essential for maintenance of long-lived plasma cells (LLPCs) in the bone marrow [146], these findings might provide a mechanistic explanation for the observation that IgG normalizes upon glucocorticoid treatment, while autoantibody titers do not correlate with remission [37]. In this notion, glucocorticoid treatment would select an autoreactive B cell memory which persistently secretes autoantibodies, supports chronic inflammation, or might contribute to the fluctuating course of AIH including flares as also suggested for other autoimmune diseases [147].

Azathioprine is a pro-drug of 6-mercaptopurine that is converted by hypoxanthine–guanine phosphoribosyltransferase (HPRT1) to cytotoxic thioguanine nucleotides which are incorporated into newly synthesized nucleic acids and also reduce nucleotide synthesis by inhibiting enzymes of the purine metabolism [148]. The main immunosuppressive effect of azathioprine and its metabolites is attributed to blockade of DNA synthesis and proliferation of leukocytes by incorporation of cytotoxic purine analoga [148]. In addition, azathioprine-derived 6-mercaptopurine can also directly induce apoptosis in T cells by blocking the activity of the RAS-related C3 botulinum toxin substrate 1 (Rac1) GTPase [149]. It is reasonable to postulate the same mechanism for B cells which are highly sensitive to azathioprine [150] and dependent on Rac1 as mediator of BCR proliferation and survival signals [151]. Interestingly, low doses of azathioprine selectively reduce B cell numbers [152]. This property is used to effectively minimize the immunogenicity of anti-TNF antibodies and thus increase therapeutic efficacy [153, 154].

Mycophenolic acid (MPA) is the pharmacological active metabolite of MMF and is long known for its anti-inflammatory properties [148]. MPA reversibly inhibits inosine-5'-monophosphate dehydrogenase (IMPDH) and thus the formation of guanosine nucleotides with a high preference for T and B cells [155]. IMPDH has two isoforms, IMPDH1 and 2, from which IMPDH2 is more susceptible to MPA inhibition and also more abundant in lymphocytes [156]. MPA has a lower impact on B cell survival as compared to azathioprine, especially on antigen-naïve and resting memory B cells, but selectively inhibits B cell activation and plasma cell formation, while T cells appear not affected in SLE patients [157, 158]. MPA arrests B cells in the G0/G1 phase of the cell cycle and blocks immunoglobulin production from activated primary cells but not from terminally differentiated plasma cells expressing low levels of IMPDH2 [159]. Inhibition of immunoglobulin production of primary human B cells after CD40 ligation is independent of dose [160]. In addition, MPA reduces IL-6 production by B cells [118], which is linked to IL-17-driven production of primary autoantibodies in primary human B cells after CD40 ligation is independent of dose [160]. In addition, MPA reduces IL-6 production by B cells [118], which is linked to IL-17-driven production of primary autoantibodies in primary human B cells after CD40 ligation is independent of dose [160].

B cell depletion in clinical AIH trials

Given the pivotal role of B cells for the development and outcome of many autoimmune diseases including AIH, therapeutic approaches targeting the B lineage emerge as promising therapeutic options. The majority of available treatment options are conceived as antibody-mediated B cell depletion therapies which either target the B cell-specific surface markers CD19 and CD20 or essential survival factors like the B cell activation factor (BAFF) as well as its homolog A proliferation-inducing ligand (APRIL) [161]. B cells express the CD20 molecule from the late pro-B cells to the development of memory cells, but lost during plasma blast/plasma cell differentiation [92]. Anti-CD20 antibody therapy with the monoclonal antibody rituximab has shown efficacy in the treatment of a range of autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, pemphigus vulgaris, immune thrombocytopenia, or systemic lupus erythematosus by B lymphocyte depletion and decreased production of autoantibodies as reviewed [161–164]. However, since CD20 expression is lost on long-lived plasma cells, autoantibody production is not abrogated in all cases and might contribute to persistent inflammation or flares [147, 165].

In AIH, B cell depletion is so far only used as third-line therapy in small cohorts of difficult to treat patients showing promising results without safety concerns [166, 167]. A single center open label study of rituximab in 6 AIH patients and a retrospective multi-center cohort of 22 patients demonstrated significant improvements in serum IgG and liver transaminases sustained for up to 24 months after treatment and reported no significant adverse events [166, 167]. In paired liver biopsies of AIH before and after rituximab therapy, inflammation grade that correlated with CD4 regulatory
T cells improved with treatment [166]. This suggests B cell depletion in AIH might work therapeutically through an indirect reduction in liver infiltrating CD4 T cells. However, prospective studies are yet to be obtained to validate the use of B cell depletion therapies in AIH. This is especially true for the long-term perspective of B cell depletion since anti-CD20 treatment of an AIH mouse model showed reduction in serum IgG but no histopathological normalization [168].

The success of rituximab led to the development of a second generation of humanized or full-humanized anti-CD20 (ocrelizumab, ofatumumab, ublituximab, obinutuzumab) and anti-CD19 (inebilizumab, obexelimab) antibodies [161] (Table 2). Currently, usage of next generation antibodies is evaluated in different autoimmune conditions; however, to our knowledge, no data is available about safety and efficiency in AIH [161].

Targeting of B cell regulating cytokines in AIH

BAFF and APRIL are crucial for survival and proliferation of B cells and plasma cells [169, 170]. These cytokines belong to the tumor necrosis factor family and are mainly provided by T cells and dendritic cells [171]. Both factors are known for their modulation of autoimmunity [161, 172, 173]. Self-tolerance can be achieved by an inactivation mechanism (anergy) which renders autoreactive B cells unresponsive to self-antigens. However, depending on the antigen, the anergic threshold necessary to stimulate B cells via their BCR can be overcome by BAFF-mediated signaling, thus activating autoreactive B cell clones [95]. Since BCR-coupled BAFF signaling defines a clone-specific threshold to rescue autoreactive B cells, low BAFF level maintain peripheral tolerance [174]. In AIH, BAFF levels are reported to correlate with liver inflammation [106, 175].

Ianalumab (VAY736) is an engineered, humanized, defucosylated, IgG1κ monoclonal antibody designed to block the BAFF receptor (BAFF-R/TNFRSF13C) and induce antibody-dependent cellular cytotoxicity (ADCC) of activated B cells. In primary Sjögren’s syndrome, treatment with ianalumab yielded improvements in salivary gland function, reduced tissue inflammation, sustained B cell depletion, and absence of major side effects [176, 177]. The anti-BAFF antibody belimumab has demonstrated promising results in different trials in SLE [178] and is therefore the first approved monoclonal antibody for treatment of SLE for patients intolerant or unresponsive for standard treatment [179]. First data in AIH show complete response in two AIH patients with refractory and advanced liver-related fibrosis who remained in remission while receiving low-dose corticosteroids. No adverse events related to belimumab and/or disease decompensation were observed [180]. Currently, the use of anti-BAFF receptor antibodies is evaluated in a randomized, placebo-controlled, double-blind dose range study in patients refractory or intolerant for standard treatment (NCT03217422).

Targeting of B cell in their role as co-stimulators

Abatacept is a fusion protein comprising the extracellular domain of human CTLA-4. Therefore, it specifically inhibits

Table 2 B cell targeting drugs
Name
Direct targeting agents
Rituximab
Ocrelizumab
Ofatumumab
Ublituximab
Obinutuzumab
Inebilizumab
Obexelimab
Ianalumab (VAY736)
Belimumab
Indirect targeting agents
Abatacept
Prednisone/prednisolone
Azathioprine/6-mercaptopurine
Mycophenolate mofetil
the proliferation and activation of T cells by binding the surface markers CD80 and CD86 [181]. On B cells, abatacept binds CD80/CD86, thereby abrogating B cell-mediated co-stimulation of T cells. Studies in RA patients showed efficient decrease in symptoms, disease activity, and structural damage upon intravenous or subcutaneous administration [181]. Treatment of RA patients with abatacept showed CD80/86 downregulation on peripheral B cells. This was associated with decreased numbers of plasma cells as well as serum IgG levels [182]. Abatacept, which was successfully used in a RA case with adalimumab-induced hepatitis [183] and to treat graft-vs-host disease upon liver transplantation [184, 185], is currently investigated in treatment of recurrent or de novo AIH in liver transplanted patients (NCT04203875).

Remarks and current research gaps/outlook

In summary, B cell-directed therapies such as blockade of BAFF and B cell-depletion have shown first evidence to be safe and efficient in treatment of AIH in patients unresponsive or intolerant to standard treatments. However, the experience of B cell-targeted therapies is limited, as only few cases or case series are reported, all of them were evaluated retrospectively. Therefore, special interest comes to the results of the first prospective phase 2 and 3 studies of ianalumab (NCT05124925, NCT05126277, NCT03656562, NCT02962895), one of which recently reported first data on safety and efficacy in patients with primary Sjögren’s syndrome [186]. Further, there is currently no data about the use of second generation of anti-CD20 antibodies in AIH as well as the use of antibodies targeting B cells in a broader spectrum of development, as it would be possible by the use of anti-CD19-targeted therapies. In addition, we lack information about targeting specifically plasma cells in AIH, which would be possible by use of a small molecule proteasome inhibitor bortezomib promoting plasma cell apoptosis. Bortezomib was shown to be efficient in various models of autoimmune diseases [187–189], and data from other autoimmune-mediated diseases provides evidence for efficiency in patients refractory to standard treatment [147, 190–200]. However, the potential side effects of, e.g., peripheral neuropathy, may limit its use. For evaluation of safety and efficiency, further studies are required.

The success of B cell-targeted therapies in AIH points out that B cells should not be considered innocent bystanders in AIH liver inflammation but rather substantial contributors to and mediators of pathogenic inflammatory processes. This can be facilitated either by being source of proinflammatory cytokines and (auto)antibodies, but also to provide help in sustaining the inflammatory state in AIH by supporting ongoing inflammation as B cells can also act as APC in secondary in chronic immune responses [97, 98, 201]. Irrespective of their substantial contribution to disease maintenance and progression, T cells still seem to play the pivotal role in disease onset in AIH [1–4, 202], and the use of B cell-targeted therapies as primary treatment in AIH remains questionable.

Since placebo-controlled trails of B cell-depletion therapies resulted in highly variable responses in other autoimmune diseases such as SLE [203], the multifaceted roles of B cells become clear. Also in RA B cells as producers of naturally arising antibodies (Nabs) are reported to be protective in the development of disease complications and might alter the disease burden [204]. Induction of regulatory B cells as potential mediators of regulatory functions with anti-inflammatory capacities is discussed as a novel treatment in autoimmunity. Regulatory B cells are reported to repopulate upon B cell-directed therapies, and their abundance are described to correlate with responsiveness to immunosuppressive treatment [162]. These hints to a more diverse role of B cells in autoimmune diseases, which to this point is only insufficiently understood in AIH.

Acknowledgements All figures were generated using BioRender. Figure 1 was adapted from “B-1 and B-2 Cell Development,” by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.

Funding Open Access funding enabled and organized by Projekt DEAL. This study is funded by DFG SFB 841 and YAEL foundation.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Mieli-Vergani G, Vergani D, Czaja AJ, Manns MP, Krawitt EL, Vierling JM et al (2018) Autoimmune hepatitis Nat Rev Dis Primers 4:18017. https://doi.org/10.1038/nrdp.2018.17
2. Krawitt EL (2006) Autoimmune hepatitis. N Engl J Med 354(1):54–66. https://doi.org/10.1056/NEJMra050408
3. Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D (2021) Autoimmune hepatitis. Cell Mol Immunol. https://doi.org/10.1038/s41423-021-00768-8
4. Lohse AW, Mieli-Vergani G (2011) Autoimmune hepatitis. J Hepatol 55(1):171–182. https://doi.org/10.1016/j.jhep.2010.12.012
5. Lohse AW, Weiler-Normann C, Tieg S (2010) Immune-mediated liver injury. J Hepatol 52(1):136–144. https://doi.org/10.1016/j.jhep.2009.10.016
6. Cooper MD (2015) The early history of B cells. Nat Rev Immunol 15(3):191–197. https://doi.org/10.1038/nri3801
7. Hardy RR, Hayakawa K (2001) B cell development pathways. Annu Rev Immunol 19:595–621. https://doi.org/10.1146/annurev.immunol.19.1.595
8. Herzog S, Reth M, Jumaa H (2009) Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 9(3):195–205. https://doi.org/10.1038/nri2491
9. Melchers F (2015) Checkpoints that control B cell development. J Clin Invest 125(6):2203–2210. https://doi.org/10.1172/JCI78083
10. Pieper K, Grimbacher B, Eibel H (2013) B-cell biology and development. J Allergy Clin Immunol 131(4):959–971. https://doi.org/10.1016/j.jaci.2013.01.046
11. Cyster JG, Allen CDC (2019) B Cell responses: cell interaction dynamics and decisions. Cell 177(3):524–540. https://doi.org/10.1016/j.cell.2019.03.016
12. De Silva NS, Klein U (2015) Dynamics of B cells in germinal centres. Nat Rev Immunol 15(3):137–148. https://doi.org/10.1038/nri3804
13. Stebeg M, Kumar SD, Silva-Cayetano A, Fonseca VR,Linterman MA, Graca L (2018) Regulation of the germinal center response. Front Immunol 9:2469. https://doi.org/10.3389/fimmu.2018.02469
14. Ludwig RJ, Vanhoorelbeke K, Lepyold F, Kaya Z, Bieber K, Mlacchan SM et al (2017) Mechanisms of autoantibody-induced pathology. Front Immunol 8:603. https://doi.org/10.3389/fimmu.2017.00603
15. Robles DT, Eisenbarth GS, Dailey NJ, Peterson LB, Wicker LS (2003) Insulin autoantibodies are associated with islet inflammation but not always related to diabetes progression in NOD congenic mice. Diabetes 52(3):882–886. https://doi.org/10.2337/diabetes.52.3.882
16. Taplin CE, Barker JM (2008) Autoantibodies in type 1 diabetes. Autoimmunity 41(1):11–18. https://doi.org/10.1080/08916930701619169
17. Jahn R, Boivin V, Schwarzbach V, Ertl G, Lohse MJ (2008) Pathological autoantibodies in cardiomyopathy. Autoimmunity 41(6):454–461. https://doi.org/10.1080/08916930802031603
18. Caforio AL, Tona L, Bottaro S, Vinci A, Dequal G, Daliento L et al (2008) Clinical implications of anti-heart autoantibodies in myocarditis and dilated cardiomyopathy. Autoimmunity 41(1):35–45. https://doi.org/10.1080/08916930701619235
19. Didona D, Maglie R, Eming R, Hertl M (2019) Pemphigus: current and future therapeutic strategies. Front Immunol 10:1418. https://doi.org/10.3389/fimmu.2019.01418
20. Bax M, Huizinga TW, Toes RE (2014) The pathogenic potential of autoreactive antibodies in rheumatoid arthritis. Semin Immunopathol 36(3):313–325. https://doi.org/10.1007/s00281-014-0429-5
21. van Delft MAM, Huizinga TWI (2020) An overview of autoantibodies in rheumatoid arthritis. J Autoimmun 110:102392. https://doi.org/10.1016/j.jaut.2019.102392
22. Care MA, Stephenson SJ, Barnes NA, Fan I, Zougman A, El-Sherbiny YM et al (2016) Network analysis identifies proinflammatory plasma cell polarization for secretion of ISG15 in human autoimmunity. J Immunol 197(4):1447–1459. https://doi.org/10.4049/jimmunol.1600624
23. Linterman MA, Rigby RJ, Wong RK, Yu D, Brink R, Cannons JL et al (2009) Follicular helper T cells are required for systemic autoimmunity. J Exp Med 206(3):561–576. https://doi.org/10.1084/jem.20081886
24. Elsner RA, Szolnichik MJ (2020) Germline center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 53(6):1136–1150. https://doi.org/10.1016/j.immuni.2020.11.006
25. Rahim MN, Miquel R, Heneghan MA (2020) Approach to the patient with acute severe autoimmune hepatitis. JHEP Rep 2(6):100149. https://doi.org/10.1016/j.jhepre.2020.100149
26. Weiler-Normann C, Lohse AW (2021) Autoimmune hepatitis: from immunopathogenesis to diagnostic and therapeutic innovation. Curr Opin Gastroenterol 37(2):86–90. https://doi.org/10.1097/MOG.0000000000007070
27. Herkel J, Carambula A, Lohse AW (2020) Autoimmune hepatitis: possible triggers, potential treatments. J Hepatol 73(2):446–448. https://doi.org/10.1016/j.jhep.2020.03.015
28. Hennes EM, Zeniya M, Czaja AJ, Pares A, Dalekos GN, Kravitt EL et al (2008) Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 48(1):169–176. https://doi.org/10.1002/hep.22322
29. Alvarez F, Berg PA, Bianchi FB, Bianchi L, Burroughs AK, Canedo EL et al (1999) International autoimmune hepatitis group report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol 31(5):929–938. https://doi.org/10.1016/S0168-8278(99)08297-9
30. de Boer YS, van Nieuwkerk CM, Witte BI, Mulder CJ, Bouma G, Bloemena E (2015) Assessment of the histopathological key features in autoimmune hepatitis. Histopathology 66(3):351–362. https://doi.org/10.1111/his.12558
31. Balitzer D, Shafizadeh N, Peters MG, Ferrell LD, Alshak N, Kakar S (2017) Autoimmune hepatitis: review of histologic features included in the simplified criteria proposed by the international autoimmune hepatitis group and proposal for new histologic criteria. Mod Pathol 30(5):773–783. https://doi.org/10.1038/modpathol.2016.267
32. Gurung A, Assis DN, McCarty TR, Mitchell KA, Boyer JL, Jain D (2018) Histologic features of autoimmune hepatitis: a critical appraisal. Hum Pathol 82:51–60. https://doi.org/10.1016/j.humpath.2018.07.014
33. Bach N, Thung SN, Schaaffner F (1992) The histological features of chronic hepatitis C and autoimmune chronic hepatitis: a comparative analysis. Hepatology 15(4):572–577. https://doi.org/10.1002/hep.1840150403
34. Czaja AJ, Carpenter HA (1993) Sensitivity, specificity, and predictability of biopsy interpretations in chronic hepatitis. Gastroenterology 105(6):1824–1832. https://doi.org/10.1016/S0016-5085(93)91081-r
35. Crawford AR, Lin XZ, Crawford JM (1998) The normal adult human liver biopsy: a quantitative reference standard. Hepatology 28(2):323–331. https://doi.org/10.1002/hep.510280206
36. Covelli C, Sacchi D, Sarcognato S, Cazzagon N, Grillo F, Baciorri F et al (2021) Pathology of autoimmune hepatitis. Patholologia 113(3):185–93. https://doi.org/10.32074/1591-951X-241
37. European Association for the Study of the Liver (2015) EASL clinical practice guidelines: autoimmune hepatitis. J Hepatol 63(4):971–1004. https://doi.org/10.1016/j.jhep.2015.06.030
38. Schultheiss C, Paschold L, Willsher E, Sinnica D, Wosteimeier A, Muscate F et al (2021) Maturation trajectories and transcriptional landscape of plasmablasts and autoreactive B cells in COVID-19. Iscience 24(11):103325. https://doi.org/10.1016/j.isci.2021.103325
39. Wucherpfennig KW (2001) Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest 108(8):1097–1104. https://doi.org/10.1172/JCI14235
40. Chakravarty EF (2008) Viral infection and reactivation in autoimmune disease. Arthritis Rheum 58(10):2949–2957. https://doi.org/10.1002/art.23883
41. Gilman AJ, Le AK, Zhao C, Hoang J, Yasukawa LA, Weber SC et al (2018) Autoantibodies in chronic hepatitis C virus infection: impact on clinical outcomes and extrahepatic manifestations. BMJ Open Gastroenterol 5(1):e000203. https://doi.org/10.1136/gutjnl-2018-000203
42. Baeres M, Herkel J, Craia AJ, Wies I, Kanzler S, Canedo EL et al (2002) Establishment of standardised SLA/LP immunoa-ssays: specificity for autoimmune hepatitis, worldwide occurrence, and clinical characteristics. Gut 51(2):259–264. https://doi.org/10.1136/gut.51.2.259
43. Herkel J, Heidrich B, Nieraad N, Wies I, Rother M, Lohse AW (2002) Fine specificity of autoantibodies to soluble liver antigen and liver/pancreas. Hepatology 35(2):403–408. https://doi.org/10.1053/jhep.2002.30699
44. Lohse AW, Gerken G, Altes U, Mayet WJ, Meyer zumBuschenfelde KH (1993) Transmission of maternal IgG autoantibodies via cord blood and breastmilk without transmission of hepatitis. Lancet 341(8854):1216–7. https://doi.org/10.1016/0140-6736(93)91046-o
45. Zhang WC, Zhao FR, Chen J, Chen WX (2014) Anti-programmed cell death-1 antibody and the association of gut microbiota with liver inflammation. J Clin Gastroenterol 42(8):926–930. https://doi.org/10.1097/MCG.0b013e318154ad74
46. Harit J, Ehlken H, Sebode M, Peiseler M, Krech T, Zenouzi R et al (2018) Usefulness of biochemical remission and transient elastography in monitoring disease course in autoimmune hepatitis. J Hepatol 68(4):754–763. https://doi.org/10.1016/j.jhep.2017.11.020
47. Song Q, Liu G, Hu S, Zhang Y, Tao Y, Han Y et al (2010) Novel autoimmune hepatitis-specific autoantigens identified using protein microarray technology. J Proteome Res 9(1):30–39. https://doi.org/10.1021/pr900131e
48. Lammert C, Zhu C, Lian Y, Raman I, Eckert G, Li QZ et al (2020) Exploratory study of autoantibody profiling in drug-induced liver injury with an autoimmune phenotype. Hepatol Commun 4(11):1651–1663. https://doi.org/10.1002/hepc.1582
49. Zhanga W, Rhoh JH, Roehr MH, Wang JY (2019) A comprehensive autoantigen-ome of autoimmune liver diseases identified from dermatan sulfate affinity enrichment of liver tissue proteins. BMC Immunol 20(1):21. https://doi.org/10.1186/s12865-019-0304-1
50. Taubert R, Engel B, Dieseltorster J, Hupa-Breier KL, Behrendt P, Baerecke NT et al (2021) Quantification of polyreactive immunoglobulin G facilitates the diagnosis of autoimmune hepatitis. Hepatology 75(1):13–27. https://doi.org/10.1002/hep.32134
51. Matsumoto K, Miyake Y, Matsushita H, Ohashi A, Ikeda F, Shiraha H et al (2014) Anti-programmed cell death-1 antibody as a new serological marker for type 1 autoimmune hepatitis. J Gastroenterol Hepatol 29(1):110–115. https://doi.org/10.1111/jgh.12340
52. Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242. https://doi.org/10.1111/j.1600-065x.2010.00923.x
53. Qin W, Hu L, Zhang X, Jiang S, Li J, Zhang Z et al (2019) The diverse function of PD-1/PD-L pathway beyond cancer. Front Immunol 10:2298. https://doi.org/10.3389/fimmu.2019.02298
54. Okazaki T, Honjo T (2006) The PD-1–PD-L pathway in immunological tolerance. Trends Immunol 27(4):195–201. https://doi.org/10.1016/j.it.2006.02.001
55. Martins F, Sofiya L, Sykiotis GP, Lamine F, Mailard M, Fraga M et al (2019) Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 16(9):563–580. https://doi.org/10.1038/s41571-019-0218-0
56. Aarslev K, Dige A, Greisen SR, Kreutzfeldt M, Jessen N, Vilstrup H et al (2017) Soluble programmed death-1 levels are associated with disease activity and treatment response in patients with autoimmune hepatitis. Scand J Gastroenterol 52(1):93–99. https://doi.org/10.1002/sjg.35521.2016.1233576
57. Hadley T, Gillespie S, Espinoza H, Prince J, Gronbaek H, Chandrakasan S et al (2020) Soluble PD1 levels are increased with disease activity in paediatric onset autoimmune hepatitis and inflammatory bowel disease. Autoimmunity 53(5):253–260. https://doi.org/10.1080/00020361.2020.1755964
58. Gu D, Ao X, Yang Y, Chen Z, Xu X (2018) Soluble immune checkpoints in cancer: production, function and biological significance. J Immunother Cancer 6(1):132. https://doi.org/10.1186/s40425-018-0449-0
59. Curran CS, Sharon E (2017) PD-1 immunobiology in autoimmune hepatitis and hepatocellular carcinoma. Semin Oncol 44(6):428–432. https://doi.org/10.1053/j.semincancer.2017.12.001
60. Thomson AW, Knolle PA (2010) Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 10(11):753–766. https://doi.org/10.1038/nri2858
61. Luth S, Herkel J, Kanzler S, Frenzel C, Galle PR, Dienes HP et al (2008) Serologic markers compared with liver biopsy for monitoring disease activity in autoimmune hepatitis. J Clin Gastroenterol 42(8):926–930. https://doi.org/10.1097/MCG.0b013e318154ad74
62. Harit J, Ehlken H, Sebode M, Peiseler M, Krech T, Zenouzi R et al (2018) Usefulness of biochemical remission and transient elastography in monitoring disease course in autoimmune hepatitis. J Hepatol 68(4):754–763. https://doi.org/10.1016/j.jhep.2017.11.020
63. Harit J, Miquel R, Zachou K, Wang GW, Asghar A, Pape S et al (2020) Features and outcome of AIH patients without elevation of IgG. JHEP Rep 2(3):100049. https://doi.org/10.1016/j.jhep.2020.100049
64. Jonsson S, Srienvijarnsson G, de Lapuente Portilla AL, Swan-ianathan B, Plomp R, Dekkers G et al (2017) Identification of sequence variants influencing immunoglobulin levels. Nat Genet 49(8):1182–1191. https://doi.org/10.1038/ng.3897
65. Abokor AA, McDaniel GH, Golonka RM, Campbell C, Brah-mandam S, Yeoh BS et al (2021) Immunoglobulin A, an active liaison for host-microbiota homeostasis. Microorganisms 9(10):2117. https://doi.org/10.3390/microorganisms9102117
66. Yuksel M, Wang Y, Tai N, Peng J, Guo J, Beland K et al (2015) A novel “humanized mouse” model for autoimmune hepatitis and the association of gut microbiota with liver inflammation. Hepatology 62(5):1536–1550. https://doi.org/10.1002/hep.27998
67. Lin R, Zhou L, Zhang J, Wang B (2015) Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis. Int J Clin Exp Pathol 8(5):5153–5160
68. Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N et al (2018) Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359(6380):1156–1161. https://doi.org/10.1126/science.aar7201
69. Vergani D, Milevi-Vergani G, Mondelli M, Portmann B, Eldeddion AL (1987) Immunoglobulin on the surface of isolated hepatocytes is associated with antibody-dependent cell-mediated cytotoxicity and liver damage. Liver 7(6):307–315. https://doi.org/10.1111/j.1600-0676.1987.tb00361.x
70. Manns M, Zanger U, Gerken G, Sullivan KF, Meyer zum-Buschenfelde KH, Meyer UA et al (1990) Patients with type II autoimmune hepatitis express functionally intact cytotoxicity
71. Muratori L, Parola M, Ripalti A, Robino G, Muratori P, Bellomo G et al (2000) Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane. Gut 46(4):553–561. https://doi.org/10.1136/gut.46.4.553

72. Hardtke-Wolenski M, Fischer K, Noyan F, Schlue J, Falk CS, Stahlhut M et al (2013) Genetic predisposition and environmental danger signals initiate chronic autoimmunity hepatitis driven by CD4+ T cells. Hepatology 58(2):718–728. https://doi.org/10.1002/hep.26380

73. Schramm C, Herkel J, Beuers U, Kanzler S, Galle PR, Lohse AW (2006) Pregnancy in autoimmune hepatitis: outcome and risk factors. Am J Gastroenterol 101(3):556–560. https://doi.org/10.1111/j.1572-0241.2006.00479.x

74. Wang CW, Grab J, Tana MM, Irani RA, Sarkar M (2021) Outcomes of pregnancy in autoimmune hepatitis: a population-based study. Hepatology 75(1):5–12. https://doi.org/10.1002/hep.32132

75. Abe K, Takahashi A, Imaiuzumi H, Hayashi M, Okai K, Kanno Y et al (2016) Interleukin-21 plays a critical role in the pathogenesis and severity of type I autoimmune hepatitis. Springerplus 5(1):777. https://doi.org/10.1186/s40064-016-2152-y

76. Ma L, Qin J, Ji H, Zhao P, Ji H, Zhao P et al (2017) Tfh and plasma cells are correlated with hypergammaglobulinaemia in patients with autoimmune hepatitis. Liver Int 37(3):405–415. https://doi.org/10.1111/liv.13245

77. Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF et al (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173(9):5361–5371. https://doi.org/10.4049/jimmunol.173.9.5361

78. Ozaki K, Spolski R, Feng CG, Qi CF, Cheng J, Sher A et al (2002) A critical role for IL-21 in regulating immunoglobulin production. Science 298(5598):1630–1634. https://doi.org/10.1126/science.1077002

79. Wang X, Wong K, Ouyang W, Rutz S (2019) Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb Perspect Biol 11(2). https://doi.org/10.1101/cshperspect.a028548

80. Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM et al (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34(6):566–578. https://doi.org/10.1016/j.immuni.2011.03.018

81. Abe M, Hiasa Y, Onji M (2013) T helper 17 cells in autoimmune liver diseases. Clin Dev Immunol 2013:607073. https://doi.org/10.1155/2013/607073

82. Malisan F, Briere F, Bridon JM, Harindranath N, Mills FC, Max EE et al (1996) Interleukin-10 induces immunoglobulin G isotype switch recombination in human CD40-activated naive B lymphocytes. J Exp Med 183(3):937–947. https://doi.org/10.1084/jem.183.3.937

83. Llortente L, Zou W, Levy Y, Richaud-Patin Y, Wijdenes J, Alcocer-Varela J et al (1995) Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J Exp Med 181(3):839–844. https://doi.org/10.1084/jem.181.3.839

84. Geginat J, Larchi P, Paroni M, Nizzoli G, Penatti A, Pagani M et al (2016) The light and the dark sides of Interleukin-10 in immune-mediated diseases and cancer. Cytokine Growth Factor Rev 30:87–93. https://doi.org/10.1016/j.cytogfr.2016.02.003

85. Laman JD, Claassen E, Noelle RJ (1996) Functions of CD40 and its ligand, gp39 (CD40L). Crit Rev Immunol 16(1):59–108. https://doi.org/10.1615/critrevimmunol.v16.i1.40

86. Schultheiss C, Paschold L, Simmica D, Mohme M, Willers E, von Wenserski L et al (2020) Next-generation sequencing of T and B cell receptor repertoires from COVID-19 patients showed signatures associated with severity of disease. Immunity 53(2):442–55 e4. https://doi.org/10.1016/j.immuni.2020.06.024

87. Simmica D, Smits M, Willers E, Fanchi L, Kioots ISH, Iv Oort et al (2020) Responsiveness to immune checkpoint inhibitors is associated with a peripheral blood T-cell signature in metastatic castration-resistant prostate cancer. JCO Precision Oncology 4:1374–85. https://doi.org/10.1200/po.20.00209

88. Bashford-Rogers RJM, Bergamaschi L, McKinney EF, Pombal DC, Mescia F, Lee JC et al (2019) Analysis of the B cell receptor repertoire in six immune-mediated diseases. Nature 574(7776):122–126. https://doi.org/10.1038/s41586-019-1595-3

89. Schultheiss C, Simmica D, Willers E, Oberle A, Fanchi L, Bonzanni N et al (2021) Next-generation immunosequencing reveals pathological T-cell architecture in autoimmune hepatitis. Hepatology 73(4):1436–1448. https://doi.org/10.1002/hep.31473

90. Renand A, Habes S, Mosnier JF, Auble H, Judor JP, Vince N et al (2018) Immune alterations in patients with type 1 autoimmune hepatitis persist upon standard immunosuppressive treatment. Hepatol Commun 2(8):968–981. https://doi.org/10.1002/hep4.1202

91. Taylor SA, Assis DN, Mack CL (2019) The contribution of B cells in autoimmune liver diseases. Semin Liver Dis 39(4):422–431. https://doi.org/10.1055/s-0039-1688751

92. Czaja AJ (2021) Review article: targeting the B cell activation system in autoimmune hepatitis. Aliment Pharmacol Ther 54(7):902–922. https://doi.org/10.1111/apt.16574

93. Neejes J, Jongsma ML, Puhl P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836. https://doi.org/10.1038/nri3084

94. Fasano R, Malerba E, Prete M, Solimando AG, Buonavoglia A, Silvestris N et al (2021) Impact of antigen presentation mechanisms on immune response in autoimmune hepatitis. Front Immunol 12:814155. https://doi.org/10.3389/fimmu.2021.814155

95. Shlomchik MJ (2008) Sites and stages of autoreactive B cell activation and regulation. Immunity 28(1):18–28. https://doi.org/10.1016/j.immuni.2007.12.004

96. Adler LN, Jiang W, Bhamidipati K, Millican M, Macaubas C, Hung SC et al (2017) The other function: class II-restricted antigen presentation by B cells. Front Immunol 8:319. https://doi.org/10.3389/fimmu.2017.00319

97. Rodriguez-Pinto D, Moreno J (2005) B cells can prime naive CD4+ T cells in vivo in the absence of other professional antigen-presenting cells in a CD154–CD40-dependent manner. Eur J Immunol 35(4):1097–1105. https://doi.org/10.1002/eji.200425732

98. Crawford A, Macleod M, Schumacher T, Corlett L, Gray D (2006) Primary T cell expansion and differentiation in vivo requires antigen presentation by B cells. J Immunol 176(6):3498–3506. https://doi.org/10.4049/jimmunol.176.6.3498

99. Beland K, Marceau G, Labardy A, Bourbonnais S, Alvarez F (2015) Depletion of B cells induces remission of autoimmune hepatitis in mice through reduced antigen presentation and help to T cells. Hepatology 62(5):1511–1523. https://doi.org/10.1002/hep.27991

100. Barnett LG, Simkins HM, Barnett BE, Kora LL, Johnson AL, Wherry EJ et al (2014) B cell antigen presentation in the initiation of follicular helper T cell and germinal center differentiation. J Immunol 192(8):3607–3617. https://doi.org/10.4049/jimmunol.1301284
family gene polymorphisms in autoimmune hepatitis. Ann Hepatol 17(6):1021–1025. https://doi.org/10.5604/01.3001.0017.7202

109. von Borstel A, Abdulahad WH, Dekkema G, Rutgers A, Stegemann CA, Veldman J et al (2020) Mycothecinolic acid and 6-mercaptopurine both inhibit B-cell proliferation in granulomatosis with polyangiitis patients, whereas only mycothecinolic acid inhibits B-cell IL-6 production. PLoS ONE 15(7):e0235743. https://doi.org/10.1371/journal.pone.0235743

110. Shen P, Roche T, Lampropoulou V, O’Connor RA, Stervuo B, Hilgenberg E et al (2014) IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507(7492):366–370. https://doi.org/10.1038/nature12979

111. Dang VD, Hilgenberg E, Ries S, Shen P, Fillatreau S (2014) From the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsets. Curr Opin Immunol 28:77–83. https://doi.org/10.1016/j.coi.2014.02.009

112. Anderton SM, Fillatreau S (2008) Activated B cells in autoimmune diseases: the case for a regulatory role. Nat Clin Pract Rheumatol 4(12):657–666. https://doi.org/10.1038/ncprheum0950

113. Lohse AW, Kogel M, Meyer zum Buschenfelde KH (1995) Evidence for spontaneous immunosuppression in autoimmune hepatitis. Hepatology 22(2):381–8

114. Tedder TF (2015) B10 cells: a functionally defined regulatory B cell subset. J Immunol 194(4):1395–1401. https://doi.org/10.4049/jimmunol.1401329

115. Thibodeau J, Bourgeois-Daigneault MC, Huppe G, Tremblay J, Aumont A, Houde M et al (2008) Interleukin-10-induced MARCH1 mediates intracellular sequestration of MHC class II in monocytes. Eur J Immunol 38(5):1225–1230. https://doi.org/10.1002/eji.200737902

116. Matsuki Y, Ohmura-Hoshino M, Goto E, Aoki M, Mito-Yoshida M, Uematsu M et al (2007) Novel regulation of MHC class II function in B cells. EMBO J 26(3):846–854. https://doi.org/10.1038/sj.emboj.7601556

117. Galbas T, Steimle V, Lapointe R, Ishiolo S, Thibodeau J (2012) MARCH1 down-regulation in IL-10-activated B cells increases MHC class II expression. Cytokine 59(1):27–30. https://doi.org/10.1016/j.cyto.2012.03.015

118. Choi J, Leung PS, Bowlus C, Gershwin ME (2015) IL-35 and Autoimmunity: a comprehensive perspective. Clin Rev Allergy Immunol 49(3):327–332. https://doi.org/10.1007/s12016-015-8468-9

119. Hu S, Lian PP, Hu Y, Zhu XY, Jiang SW, Ma Q et al (2020) The role of IL-35 in the pathophysiological processes of liver disease. Front Pharmacol 11:569575. https://doi.org/10.3389/fphar.2020.569575

120. Lian M, Zhang J, Zhao L, Chen X, Peng Y, Wang Q et al (2019) Interleukin-35 regulates immune microenvironment of autoimmune hepatitis through inducing the expansion of myeloid-derived suppressor cells. Front Immunol 10:2577. https://doi.org/10.3389/fimmu.2019.02577

121. Vignali DA, Kuchroo VK (2012) IL-12 family cytokines: immunological playmakers. Nat Immunol 13(8):722–728. https://doi.org/10.1038/ni.2366

122. Sartori A, Ma X, Gri G, Showe L, Benjamin D, Trinchieri G (1997) Interleukin-12: an immunoregulatory cytokine produced by B cells and antigen-presenting cells. Methods 11(1):116–127. https://doi.org/10.1006/meth.1996.0395

123. Sugimoto K, Ogawa A, Shimomura Y, Nagahama K, Mizoguchi A, Bhan AK (2007) Inducible IL-12-producing B cells regulate Th2-mediated intestinal inflammation. Gastroenterology 133(1):124–136. https://doi.org/10.1053/j.gastro.2007.03.112

124. Gil-Farina I, Di Scala M, Salido E, Lopez-Franco E, Rodriguez-Garcia E, Blasi M et al (2016) Transient expression of transgenic

125. Springer
IL-12 in mouse liver triggers unremitting inflammation mimicking human autoimmune hepatitis. J Immunol 197(6):2145–2156. https://doi.org/10.4049/jimmunol.1600228

134. Manns MP, Czaia AJ, Gorham JD, Krawitt EL, Mieli-Vergani G, Vergani D et al (2010) Diagnosis and management of autoimmune hepatitis. Hepatology 51(6):2193–2213. https://doi.org/10.1002/hep.23584

135. Lohse AW, Sebode M, Jorgensen MH, Ytting H, Karlsen TH, Kelly D et al (2020) Second-line and third-line therapy for autoimmune hepatitis: a position statement from the European Reference Network on Hepatological Diseases and the InternationalAutoimmune Hepatitis Group. J Hepatol 73(6):1496–1506. https://doi.org/10.1016/j.jhep.2020.07.023

136. Hardy RS, Raza K, Cooper MS (2020) Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat Rev Rheumatol 16(3):133–144. https://doi.org/10.1038/s41584-020-0371-y

137. Timmermans S, Souffraria J, Libert C (2019) A General introduction to glucocorticoid biology. Front Immunol 10:1545. https://doi.org/10.3389/fimmu.2019.01545

138. Quarini L, Ugolini S (2021) New insights into the cell- and tissue-specificity of glucocorticoid actions. Cell Mol Immunol 18(2):269–278. https://doi.org/10.1038/s41423-020-00526-2

139. Cain DW, Cidlowski JA (2017) Immune regulation by glucocorticoids. Nat Rev Immunol 17(4):233–247. https://doi.org/10.1038/nri.2017.1

140. Franco LM, Gadkari M, Howe KN, Sun J, Kardava L, Kumar P et al (2019) Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses. J Exp Med 216(2):384–406. https://doi.org/10.1084/jem.20180595

141. Haneda M, Owaki M, Kuzuya T, Iwasaki K, Miwa Y, Kobayashi T (2014) Comparative analysis of drug action on B-cell proliferation and differentiation for mycopHENolic acid, everolimus, and prednisolone. Transplantation 97(4):405–412. https://doi.org/10.1097/TP.00000441826.70687.6

142. Yan SX, Deng XM, Wang QT, Sun XJ, Wei W (2015) Prednisone treatment inhibits the differentiation of B lymphocytes into plasma cells in MRL/MpSlac-lpr mice. Acta Pharmacol Sin 36(11):1367–1376. https://doi.org/10.1038/aps.2015.76

143. Taubert R, Hardtke-Wolenski M, Noyan F, Wilms A, Baumann AK, Schlie J et al (2014) Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. J Hepatol 61(5):1106–1114. https://doi.org/10.1002/hep.24789

144. Voetberg BJ, Garvy BA, Mayer HK, King LE, Fraker PJ (1994) Apoptosis accompanies a change in the phenotypic distribution and functional capacity of murine bone marrow B-cells chronically exposed to prednisolone. Clin Immunol Immunopathol 71(2):190–198. https://doi.org/10.1006/clim.1994.1071

145. Gruver-Yates AL, Quinn MA, Cidlowski JA (2014) Analysis of glucocorticoid receptors and their apoptotic response to dexamethasone in male murine B cells during development. Endocrinology 155(2):463–474. https://doi.org/10.1210/en.2013-1473

146. Shapiro-Shleef M, Lin KI, Savitsky D, Liao J, Calame K (2005) B lymphoid 1-1 is required for maintenance of long-lived plasma cells in the bone marrow. J Exp Med 202(11):1471–1476. https://doi.org/10.1084/jem.20051611

147. Hiepe F, Dorner T, Hauser AE, Hoyer BF, Mei H, Radbruch A (2011) Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol 7(3):170–178. https://doi.org/10.1038/nrrheum.2011.1

148. Broen JCA, van Laar JM (2020) Mycophenolate mofetil, azathioprine and tacrolimus: mechanisms in rheumatology. Nat Rev Rheumatol 16(3):167–78. https://doi.org/10.1038/s41584-020-0374-8

149. Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D et al (2003) CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest 111(8):1133–1145. https://doi.org/10.1172/JCI16432

150. Dimitriu A, Fauci AS (1978) Activation of human B lymphocytes XI Differential effects of azathioprine on B lymphocytes and lymphocyte subpopulations regulating B cell function. J Immunol 121(6):2335–9

151. Walsmsley MJ, Ooi SK, Reynolds LF, Smith SH, Rulf S, Mathiot A et al (2003) Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 302(5644):459–462. https://doi.org/10.1126/science.1090709

152. Tareyeva IE, Shilov EM, Gordovskaya NB (1980) The effects of azathioprine and prednisolone on T- and B-lymphocytes in patients with lupus nephritis and chronic glomerulonephritis. Clin Nephrol 14(5):233–237

153. Kriecek CL, Bartelds GM, Lems WF, Wolbink GJ (2010) The effect of immunomodulators on the immuno-bgogenicity of TNF-blocking therapeutic monoclonal antibodies: a review. Arthritis Res Ther 12(5):217. https://doi.org/10.1186/ar3147

154. Garces S, Denengeot J, Benito-Garcia E (2013) The immuno-bgogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: a systematic review of the literature with a meta-analysis. Ann Rheum Dis 72(12):1947–1955. https://doi.org/10.1136/annrheumdis-2012-202220

155. Allison AC (2005) Mechanisms of action of mycophenolate mofetil. Lupus 14(Suppl 1):s2–8. https://doi.org/10.1177/1009589205033852

156. Carr SF, Papp E, Wu JC, Natsumeda Y (1993) Characterization of human type I and type II IMP dehydrogenases. J Biol Chem 268(36):27286–27290

157. Eickenberg S, Mickholz E, Jung E, Nofer JR, Ravenstijn HJ, Jacobi AM (2012) Mycophenolic acid counteracts B cell proliferation and plasmablast formation in patients with systemic lupus erythematosus. Arthritis Res Ther 14(3):R110. https://doi.org/10.1186/ar3835

158. Bilj M, Horst G, Bootsma H, Limburg PC, Kallenberg CG (2003) Mycophenolate mofetil prevents a clinical relapse in patients with systemic lupus erythematosus at risk. Ann Rheum Dis 62(6):534–539. https://doi.org/10.1136/ard.62.6.534

159. Karnell JL, Karnell FG 3rd, Stephens GL, Rajan B, Morehouse C, Li Y et al (2011) Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation. J Immunol 187(7):3603–3612. https://doi.org/10.4049/jimmunol.1003519

160. Heidt S, Roelen DL, Eijsink C, van Kooten C, Claas FH, Mulder A (2008) Effects of immunosuppressive drugs on purified human B cells: evidence supporting the use of MMF and rapsamycin. Transplantation 86(9):1292–1300. https://doi.org/10.1097/TP.0b013e3181874a36

161. Lee DSW, Rojas OL, Gommerman JL (2021) B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov 20(3):179–199. https://doi.org/10.1038/s41573-020-00092-2

162. Hofmann K, Clauder AK, Manz RA (2018) Targeting B cells and plasma cells in autoimmune diseases. Front Immunol 9:835. https://doi.org/10.3389/fimmu.2018.00835

163. Freamon JE (2020) Rituximab: a review in pemphigus vulgaris. Am J Clin Dermatol 21(1):149–156. https://doi.org/10.1007/s40257-019-00497-9

164. Chen DM, Oduyeungbo A, Csinady E, Gearhart L, Lehane P, Cheu M et al (2020) Rituximab is an effective treatment in patients with pemphigus vulgaris and demonstrates a steroid-sparing effect. Br J Dermatol 182(5):1111–1119. https://doi.org/10.1111/bjd.18482

165. Favas C, Isenberg DA (2009) B-cell-depletion therapy in SLE—what are the current prospects for its acceptance? Nat Rev
Rheumatol 5(12):711–716. https://doi.org/10.1038/rrrheum.2009.218

Burak KW, Swain MG, Santodomingo-Garzon T, Lee SS, Urban-
ski SJ, Aspinall AI et al (2013) Rituximab for the treatment of
patients with autoimmune hepatitis who are refractory or intoler-
able to standard therapy. Can J Gastroenterol 27(5):273–280.
https://doi.org/10.1155/2013/512624

Than NN, Hodson J, Schmidt-Martin D, Taubert R, Wawman
RE, Botter M et al (2019) Efficacy of rituximab in difficult-to-
manage autoimmune hepatitis: results from the international
autoimmune hepatitis group. JHEP Rep 1(6):437–445. https://
doi.org/10.1016/j.jhep.2019.10.005

Buitrago-Molina LE, Dywicky J, Noyan F, Schepengerdes L,
Pietrek I, Lieber M et al (2021) Anti-CD20 therapy alters the
protein signature in experimental murine AIH, but not exclu-
sively towards regeneration. Cells 10(6). https://doi.org/10.3390/
cells10061471

Mackay F, Schneider P, Rennert P, Browning J (2003) BAFF
AND APRIL: a tutorial on B cell survival. Annu Rev Immunol
21:231–264. https://doi.org/10.1146/annurev.immunol.21.
120601.141152

Bosson C, Schneider P (2006) BAFF, APRIL, and their receptors:
structure, function and signaling. Semin Immunol 18(5):263–275.
https://doi.org/10.1016/j.smim.2006.04.006

Mackay F, Schneider P (2009) Cracking the BAFF code. Nat Rev
Immunol 9(7):491–502. https://doi.org/10.1038/nri2572

Vincent FB, Morand EF, Schneider P, Mackay F (2014) The
BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol
10(6):365–373

Nakayamada S, Tanaka Y (2016) BAFF- and APRIL-targeted
therapy in systemic autoimmune diseases. Inflamm Regen 36:6.
https://doi.org/10.1186/s41232-016-0015-4

Stadanlick JE, Cancro MP (2008) BAFF and the plasticity of
peripheral B cell tolerance. Curr Opin Immunol 20(2):158–161.
https://doi.org/10.1016/j.coi.2008.03.015

Migitk K, Abiru S, Maeda Y, Nakamura M, Komori A, Ito M
et al (2007) Elevated serum BAFF levels in patients with autoim-
une hepatitis. Hum Immunol 68(7):586–591. https://doi.org/10.
1016/j.humimm.2007.03.010

McWilliams EM, Lucas CR, Chen T, Harrington BK, Wasmuth
R, Campbell A et al (2019) Anti-BAFF-R antibody VAY-736
demonstrates promising preclinical activity in CLL and enhances
effectiveness of ibrutinib. Blood Adv 3(3):447–460. https://
doi.org/10.1182/bloodadvances.2018025684

Dorner T, Posch MG, Li Y, Petriccoul O, Cabanski M, Mileo-
vic JM et al (2019) Treatment of primary Sjögren’s syndrome
with inalumab (VAY736) targeting B cells by BAFF receptor
blockade coupled with enhanced, antibody-dependent cellular
cytotoxicity. Ann Rheum Dis 78(5):641–647. https://doi.org/
10.1136/annrheumdis-2018-214720

Wise LM, Stohl W (2020) Belimumab and rituximab in systemic
lupus erythematosus: a tale of two B cell-targeting agents. Front
Med (Lausanne) 7:303. https://doi.org/10.3389/fmed.2020.00303

Blair HA, Duggan ST (2018) Belimumab: a review in systemic
lupus erythematosus. Drugs 78(3):355–366. https://doi.org/10.
1007/s40265-018-0872-z

Arvanitaki F, Giannoulis G, Gabela S, Zachou K, Koukoulis
GK, Dalekos GN (2020) Belimumab is a promising third-line treat-
effectiveness of abatacept. Eur J Clin Pharmacol 68(5):895–898.
https://doi.org/10.1007/s00228-011-1191-4

Elfeldi MA, Genco PV, Pungpapong S, Nakhlle RE, Nguyen
JH, Harnois DM (2014) Abatacept use in graft-versus-host disease
after orthotopic liver transplantation: a case report. Transplant
Proc 46(7):2422–2425. https://doi.org/10.1016/j.transproceed.2014.06.061

Wattskins B, Qayed M, McCracken C, Bratrude B, Betz K, Sus-
muth Y et al (2021) Phase II trial of consolidation blockade
with abatacept for prevention of acute GVHD. J Clin Oncol
39(17):1865–1877. https://doi.org/10.1200/JCO.20.01086

Bowman SJ, Fox R, Dorner T, Mariette X, Papas A, Grader-Beck
et al (2022) Safety and efficacy of subcutaneous inalumab
(VAY736) in patients with primary Sjögren’s syndrome: a ran-
domised, double-blind, placebo-controlled, phase 2b dose-find-
ing trial. Lancet 399(10320):161–171. https://doi.org/10.
1016/S4104-6736(21)02251-0

Bontoscho J, Schreiber A, Manza R, Schneider W, Luft FC,
Kettiriz R (2011) Myeloperoxidase-specific plasma cell deple-
tion by bortezomib protects from anti-neutrophil cytoplasmic
autoantibodies-induced glomerulonephritis. J Am Soc Nephrol
22(2):336–348. https://doi.org/10.1681/ASN.2010001034

Gomez AM, Vrolix K, Martinez-Martinez P, Molenaar PC,
Phenamunbuc M, van der Esch E et al (2011) Proteasome inhi-
bition with bortezomib depletes plasma cells and autoantibod-
ies in experimental autoimmune myasthenia gravis. J Immunol
186(4):2503–2513. https://doi.org/10.4049/jimmunol.1002539

Taddeo A, Khodadadi L, Voigt C, Mumtaz IM, Cheng Q, Moser
et al (2015) Long-lived plasma cells are early and constantly
generated in New Zealand Black/New Zealand white F1 mice and
their therapeutic depletion requires a combined targeting of
autoreactive plasma cells and their precursors. Arthritis Res Ther
17:39. https://doi.org/10.1186/s13075-015-0551-3

Rosenberg AS, Pariser AR, Diamond B, Yao L, Turka LA,
Lacana E et al (2016) A role for plasma cell targeting agents in
immune tolerance induction in autoimmune disease and anti-
body responses to therapeutic proteins. Clin Immunol 165:55–59.
https://doi.org/10.1016/j.clim.2016.02.009

Mehta B, Mahadeo K, Zaw R, Tang S, Kapoor N, Abdel-Azim H
(2014) Bortezomib for effective treatment of a child with refrac-
tory autoimmune hemolytic anemia post allogeneic hematopo-
etic stem cell transplant. Peditr Blood Cancer 61(12):2324–
2325, https://doi.org/10.1002/bpc.25172

Jakez-Ocampo J, Atisha-Fregoso Y, Llorente L (2015) Refractory
primary Sjogren syndrome successfully treated with bortezomib.
J Clin Rheumatol 21(1):31–32. https://doi.org/10.3109/
RHU.0000000000000210

Verbrugge SE, Schepet RJ, Lems WF, de Gruijt TD, Jansen G
(2015) Proteasome inhibitors as experimental therapeutics of
autoimmune diseases. Arthritis Res Ther 17:17. https://doi.
org/10.1186/s13075-015-0529-1

Khandewal P, Davies SM, Grimley MS, Jordan MB, Curtis BR,
Jodle S et al (2014) Bortezomib for refractory autoimmunity in
pediatrics. Biol Blood Marrow Transplant 20(10):1654–1659.
https://doi.org/10.1016/j.bbmt.2014.06.032

Yates S, Matevosyan K, Rutherford C, Shen Y, Sarode R
(2014) Bortezomib for chronic relapsing thrombotic thrombo-
cytopenic purpura: a case report. Transfusion 54(8):2064–2067.
https://doi.org/10.1111/trf.12614

van Balen T, Schreuder MF, de Jong H, van de Kar NC (2014)
Refractory thrombotic thrombocytopenic purpura in a 16-year-
old girl: successful treatment with bortezomib. Eur J Haematol
92(1):80–82. https://doi.org/10.1111/ehj.12206
Seminars in Immunopathology (2022) 44:411–427

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.