Unique mitochondrial DNA in highly inbred feral cattle

Gavin Hudson, Ian Wilson, Brendan I.A. Payne, Joanna Elson, David C. Samuels, Mauro Santibanez-Korev, Stephen J.G. Hall, Patrick F. Chinnery

A R T I C L E I N F O

Article history:
Received 2 February 2012
Received in revised form 23 April 2012
Accepted 10 May 2012
Available online 17 May 2012

Keywords:
mtDNA
Mitochondria
Bovine

A B S T R A C T

The Chillingham herd of wild Northumbrian cattle remains viable despite over 300 years of in-breeding and a near-homozygous nuclear genome. Here we report the complete mitochondrial DNA sequence using ultra-deep next generation sequencing. Random population sampling of ~10% of the extant herd identified a single mtDNA haplotype harbouring a unique bovine variant present in all other higher mammals (m.11789C/Y421H) which may contribute to their survival.

© 2012 Elsevier B.V. and Mitochondria Research Society. Open access under CC BY license.
Given the phylogenetic relationship between these different species (Fig. 1b), m.7851C is likely to be a recurrent mutation. This is similar to other B. taurus breeds, which harbour 5 +/− 1.06 unique mtDNA variants (Achilli et al., 2008). Based on a phylogenetic mutation rate of $2.043 \pm 0.099 \times 10^{-8}$/base-pair/year for the mtDNA coding region (15,247 bp) (Achilli et al., 2008), the herd is predicted to have a
common maternal T3 ancestor ~12,000 years ago, in keeping with the Neolithic domestication of European founder cattle in the Fertile Crescent.

Inbreeding is generally found to reduce fitness in both farmed and wild animals (Visscher et al., 2001), so the continued survival of the isolated Chillingham herd suggests that deleterious alleles have been purged from the population. It is conceivable that the divergence of the Chillingham mtDNA genome contributes to the herd viability. This could, in part, be due the presence of m.11789C (Y421H), which resides in a highly conserved region of the complex I ND4 respiratory chain subunit. The histidine residue found in the Chillingham cattle is the sole allele in almost all other higher mammals (including domesticated sheep and horses), but not in modern bovine lineages (Supplementary Fig. 2), and is in a region sensitive to pathogenic mtDNA variation in humans (Taylor and Turnbull, 2005). Thus, m.11789C is likely to have a functional effect. This could occur directly through complex I activity, or indirectly though the nuclear genome, given evidence that mtDNA substitution drives the adaption in nuclear-encoded respiratory chain proteins in other species (Blier et al., 2001). Whichever is the case, since all are healthy, the Chillingham-specific variant could optimize the aerobic synthesis of adenosine triphosphate, and thus promote herd viability in the context of an otherwise invariant nuclear genome.

Acknowledgements

PFC is a Wellcome Trust Senior Fellow in Clinical Science (WT084980/Z/08/Z) and an NIHR Senior Investigator, who is also supported through the Wellcome Trust Centre for Mitochondrial Research (WT096919/Z/11/Z), the Medical Research Council (UK) Translational Neuromuscular Centre, and the UK NIHR Biomedical Research Centre for Ageing and Age-related Disease award to the Newcastle upon Tyne Foundation Hospitals NHS Trust.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.mito.2012.05.003.

References

Achilli, A., Olivieri, A., Pellecchia, M., Uboldi, C., Colli, L., Al-Zahery, N., Accetturo, M., Pala, M., Kashani, B.H., Perego, U.A., Battaglia, V., Fornarino, S., Kalamati, J., Houshmand, M., Negrini, R., Semino, O., Richards, M., Macaulay, V., Ferretti, L. Bandelt, H.J., Ajmone-Marsan, P., Torroni, A., 2008. Mitochondrial genomes of ex- tinct aurochs survive in domestic cattle. Curr. Biol. 18, R157–R158.

Blier, P.U., Dufresne, F., Burton, R.S., 2001. Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends Genet. 17, 400–406.

Bonfiglio, S., Achilli, A., Olivieri, A., Negrini, R., Colli, L. Liotta, L., Ajmone-Marsan, P., Torroni, A., Ferretti, L., 2010. The enigmatic origin of bovine mtDNA haplogroup R: sporadic interbreeding or an independent event of Bos primigenius domestica- tion in Italy? PLoS One 5, e15760.

Darwin, C., 1868. The Variation of Animals and Plants under Domestication. J. Murray, London, pp. 98–99.

He, Y., Wu, J., Dressman, D.C., Iacobuzio-Donahue, C., Markowitz, S.D., Velculescu, V.E., Diaz L.A. Jr., Kinzler, K.W., Vogelstein, B., Papadopoulos, N., 2010. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464, 610–614.

Olivo, P.D., Van de Walle, M.J., Laipis, P.J., Hauswirth, W.W., 1983. Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Na- ture 306, 400–402.

Taylor, R.W., Turnbull, D.M., 2005. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6, 389–402.

Visscher, P.M., Smith, D., Hall, S.J., Williams, J.L., 2001. A viable herd of genetically uniform cattle. Nature 409, 303.