Differences in metabolic profiles between the Burmese, the Maine coon and the Birman cat—Three breeds with varying risk for diabetes mellitus

Malin Öhlund1*, Elisabeth Müllner2*, Ali Moazzami2, Ulrika Hermansson3, Ann Pettersson1, Fredrick Anderson4, Jens Häggström1, Helene Hansson-Hamlin1, Bodil S. Holst×1*

1 Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2 Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden, 3 University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden, 4 Department of Medical Biosciences, Umeå University, Umeå, Sweden

* These authors contributed equally to this work.

* Bodil.Strom-Holst@slu.se

Abstract

Feline diabetes mellitus shares many features with type 2 diabetes in people, regarding clinical presentation, physiology, and pathology. A breed predisposition for type 2 diabetes has been identified, with the Burmese breed at a fivefold increased risk of developing the condition compared to other purebred cats. We aimed to characterize the serum metabolome in cats (n = 63) using nuclear magnetic resonance metabolomics, and to compare the metabolite pattern of Burmese cats with that of two cat breeds of medium or low risk of diabetes, the Maine coon (MCO) and Birman cat, respectively. Serum concentrations of adiponectin, insulin and insulin-like growth factor-1 were also measured (n = 94). Burmese cats had higher insulin and lower adiponectin concentrations than MCO cats. Twenty one metabolites were discriminative between breeds using a multivariate statistical approach and 15 remained significant after adjustment for body weight and body condition score. Burmese cats had higher plasma levels of 2-hydroxybutyrate relative to MCO and Birman cats and increased concentrations of 2-oxoisocaproic acid, and tyrosine, and lower concentrations of dimethylglycine relative to MCO cats. The metabolic profile of MCO cats was characterized by high concentrations of arginine, asparagine, methionine, succinic acid and low levels of acetylcarnitine while Birman cats had the highest creatinine and the lowest taurine plasma levels, compared with MCO and Burmese. The pattern of metabolites in Burmese cats is similar to that in people with insulin resistance. In conclusion, the metabolic profile differed between healthy cats of three breeds. Detection of an abnormal metabolome might identify cats at risk of developing diabetes.
Introduction

Diabetes mellitus (DM) is an increasingly common endocrinopathy in cats and has many features in common with human type 2 diabetes (T2DM) [1, 2]. Cats and humans share many risk factors for developing the disease, for example, the association with insulin resistance (IR) coupled to obesity and a sedentary lifestyle, and β-cell loss with amyloid deposition in the islets of Langerhans in the pancreas [3–6]. There is a genetic predisposition in both people [7–9] and cats, with the Burmese cat breed at increased risk [10–13]. An inherited dyslipidemia has been suggested to increase IR and predispose Burmese cats to the disease [14]. Abnormally increased serum triglyceride (TG) concentrations after oral fat tolerance test have been described [15], indicating a delayed clearance of TG compared to unaffected Burmese cats. In people, hypertriglyceridemia has been associated with both IR and T2DM [16–20]. Hypertriglyceridemia is also one of the components of the metabolic syndrome in people, together with central obesity, increased blood pressure and IR [21]. People with metabolic syndrome have a fivefold increased risk of developing T2DM [22]. Subsequent studies have described aberrations in the cholesterol lipoprotein fraction profiles in lean Burmese cats, similar to obese cats, with increases in very low-density lipoprotein (VLDL) concentrations, and decreases in high-density lipoproteins (HDL), a pattern similar to the metabolic syndrome in people [23–26]. In addition, the expression patterns of several genes involved in lipid metabolism as well as low circulating adiponectin concentrations in lean Burmese cats resemble those of obese cats. In people, low adiponectin levels are associated with IR and T2DM [27–31].

Metabolites are small molecules that are chemically transformed in the metabolism and provide functional readouts of cellular biochemical activities. The metabolome provides a measurement of the metabolic phenotype that is a net result of genomic, transcriptomic, and proteomic variability [32]. Metabolomics is useful for studying metabolic diseases, or traits, such as T2DM and IR, especially considering that the more than 100 so far identified T2DM associated gene loci in people have only small to moderate effects on the individual’s susceptibility to the disease [33]. Metabolomics has been utilized in diabetes research in people [34–40], and an abnormal pattern in the branched-chain and aromatic amino acids has been described [41–44]. Few studies using the metabolomics approach are available in cats. The metabolome of cats in remission has been studied and compared to that of control cats, showing an abnormal metabolism in cats in remission [45]. In a PhD thesis the metabolome has been shown to differ between obese and normal weight cats, and between senior cats of Burmese compared to those of other breeds [46]. In studies not related to DM, one study analyzed the urine metabolome using gas chromatography/time-of-flight mass spectrometry in eight healthy domestic cats [47], and in another study the effects of dietary macronutrient composition on the plasma metabolome of healthy adult cats were assessed with liquid chromatography followed by mass spectrometry (LC/MS) [48].

The objective of the present study was to characterize the feline metabolic profile in healthy Burmese cats, and compare it to two cat breeds of medium or low risk for developing DM, the Maine coon (MCO) and Birman cat, respectively, [11] by using nuclear magnetic resonance (NMR) metabolomics, serum biochemistry, and hormone immunoassays. Differences in the metabolome of these three feline breeds might shed light into preventative measures in the future under a clinical setting. The information may be used when metabolome perturbations of a patient begin to emerge and can be compared to known disease associated metabolome profiles.
Materials and methods

Study population

The study was approved by the Uppsala Ethical Committee on Animal Research (C 299/12 and C 12/15) and the Swedish Board of Agriculture (31-11654/12), and written informed consent to participate in the study was obtained from all owners.

Healthy, adult (> 1 year), purebred, client-owned cats (n = 106) of three different breeds (Burmese, MCO and Birman) were included in the study. Food was withheld for at least 12 hours prior to sampling. Cats were weighed and a physical examination including body condition scoring using a 9-grade scale [44] was performed by a veterinarian at the University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden, or the Bagarmossen Anicura Referral Hospital, Stockholm, Sweden. Of the Burmese cats, 31 cats were sampled in 2013. All other cats were sampled 2015–2016. Cats with a body condition score (BCS) between 3 and 4 were grouped as underweight, 5 were considered normal weight, and cats with a BCS between 6 and 9 were grouped as overweight [47]. Owners completed a questionnaire which included questions concerning the cat’s age, breed, sex, neutering status, any current or previous medications or medical issues, and time of last meal.

Cats were excluded if they were non-fasted, non-compliant at sampling, had a history of or ongoing severe organ related or systemic disease, or if they had received progestin or corticosteroid treatments during the last year. Cats were also excluded if serum biochemistry showed values clearly outside the reference range, although small deviations in fasting serum creatinine levels were accepted [48]. Fasting serum concentrations of creatinine ≤ 200 μmol/L, alanine aminotransferase (ALAT) ≤ 2.8 μkat/L, and fructosamine ≤ 350 μmol/L were accepted.

Sampling

Blood was drawn from the cephalic vein and collected into serum tubes. Samples were centrifuged for 10 minutes at 3000 rpm and serum was thereafter aliquoted and stored cool and analyzed within 24 hours, or stored in microtubes at -70°C until further analysis.

Analyses

Serum biochemistry. All serum samples were analyzed for ALAT, creatinine, and fructosamine concentrations on an automated chemistry analyzer (Abbott Architect c4000, Abbott Park, IL, USA) at the Clinical Pathology Laboratory, University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden.

Lipoprotein profiles were obtained at the department of Medical Biosciences, Umeå University by utilizing an automated HPLC system (Elite LaChrom, Hitachi, Krefeld, Germany) with a Superose 6 size-exclusion column (GE Healthcare, Uppsala, Sweden). Plasma samples were diluted 1:16 in elution buffer that consisted of 10 mM Tris, 150 mM NaCl and 0.02% NaN₃, and injected into the column. On-line measurements of triglyceride and cholesterol concentrations were performed using appropriate reagents (Roche, Basel, Switzerland). The reagents were diluted 1:2 with lab grade water prior to analyses. As a standard for lipoprotein profiles, a human plasma sample with a known lipid concentration was used. All data was processed using the EZChrom Elite software (Agilent Technologies, Boeblingen, Germany).

Free fatty acids were measured with the MaxDiscovery™ Non-esterified fatty acids (NEFA) Assay Kit (Bioo Scientific, Austin TX, US), at the Clinical Sciences laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden.

Hormone immunoassays. Total adiponectin concentrations were assayed using the Adiponectin Human ELISA, High Sensitivity (BioVendor—Laboratori medicina, Brno, Czech
Republic), insulin concentrations were measured with the Mercodia Feline Insulin ELISA (Mercodia AB, Uppsala, Sweden), and insulin-like growth factor (IGF)-1 with the human E20 Insulin-like Growth Factor-I ELISA (Mediagnost, Reutlingen, Germany). All analyses were performed in duplicate at the Department of Clinical Sciences laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden. All hormonal assays have previously been validated for use in cats [49–52]. If the intra-assay coefficient of variation (CV) was above 10%, samples were rerun, and the highest accepted CV was 11% (one sample). For IGF-1, samples at concentrations above 28 ng/mL on the standard curve were diluted further and rerun, to avoid interference by IGF-binding proteins, which may not be efficiently removed when using the standard protocol [51].

NMR-based metabolomics analyses. Metabolomics analyses were performed on a subset of samples, all collected 2015–2016 (in total n = 63; Burmese n = 15, MCO n = 25, Birman n = 23). Nanosep centrifugal filters with 3-kDa cutoff (Pall Life Science, Port Washington, NY) were washed to remove glycerol from the filter membrane. 60 µl serum were filtered at 10,000 g, 4˚C. 40 µl of filtrate were mixed with 50 µl phosphate buffer (0.4 mol/L, pH 7.0), 15 µl D$_2$O, 55 µl millipore water, and 10 µl sodium-3-(trimethylsilyl)-2,2,3,3,-tetradeuteriopionate (TSP, 5.8 mmol/L) (Cambridge Isotope Laboratories, Andover, MA) as an internal standard to be able to quantify metabolites. Analyses were performed on a Bruker spectrometer operating at 600 MHz equipped with a cryogenically cooled probe and auto sampler at the Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden. The 1H NMR spectra were obtained using zgseqp pulse sequence (Bruker Spectrospin Ltd) at 25˚C with 512 scans at 65,356 data points over a spectral width of 17,942.58 Hz (acquisition time: 1.83 s, relaxation delay 4 s). Baseline and spectral phase correction were performed manually using Chenomx. The line width was adjusted to 1.1 Hz for all spectra. Fifty-eight metabolites were identified and their concentrations were calculated using an automated quantification algorithm (AQuA) accounting for interfering signals as previously described [53].

Statistical analysis

Normally distributed data are reported as mean with standard deviation (SD), and non-normally distributed data as median with interquartile range (IQR). A one-way ANOVA was used to compare age, sex, body weight (BW) and BCS between breeds. The assumption of normally distributed residuals and equal variances in the model was examined by visual inspection of diagnostic plots (histogram of residuals and normal probability plots of residuals). If residuals were not normally distributed, data were log-transformed and diagnostic plots were reevaluated. If residuals remained non-normally distributed, a non-parametric test was used.

To assess differences in metabolites between breeds, univariate statistical analyses were performed (Minitab, version 17.3.1) on metabolites identified as discriminative via the multivariate approach described below by using one-way ANOVA (for normally distributed data), or Kruskal-Wallis test (for not normally distributed data). Further, the Tukey’s post hoc test was applied to assess differences between the three breeds. To adjust for influence of BW and BCS, a univariate mixed linear regression model was applied, for each metabolite identified as discriminative between breeds (SAS, version 9.4). Concentrations are reported as least square means or geometric means with 95% CI as described above. The significance level was set at $P < 0.05$.

Multivariate regression was used to investigate the effects of breed, BW, and BCS on the concentrations of creatinine, ALAT, fructosamine, VLDL-TG, HDL-cholesterol, FFA, insulin, adiponectin, and IGF-1 using SAS (version 9.4). Potential interactions were controlled for by
including interaction factors between the explanatory variables. Concentrations were reported as least square means with 95% CI, and if data were logged for analysis, least square means were back-transformed and reported as geometric means with 95% CI. P-values given for the multivariate analyses are based on Wilk’s lambda. Effects of differences in storage time and sample handling were evaluated by t-test within the Burmese breed group, where samples were collected during two different time periods (2013, and 2015 to 2016, respectively).

Multivariate statistical analyses were performed on metabolomics data using SIMCA 14 software (Umetrics, Umeå, Sweden). Principal component analysis (PCA) was applied to get an overview of the data and to exclude potential outliers by using the PCA-Hotelling’s T2 Ellipse (95% confidence intervals (CI)). To assess differences between the breeds, partial least square discriminant analysis (PLS-DA) was applied, which can take class membership (e.g. cat breed) into account. To determine discriminative metabolites between the breeds, variable influences on projection (VIP) values were used. Metabolites with VIP values > 1 for which the corresponding jackknife-based 95% CIs were not close to or included zero were considered discriminative. Cross-validated ANOVA was used to confirm validity and reliability of the PLS-DA model. Additionally, R² (proportion of variation modeled in the component) and Q² parameters (proportion of variation in the data predictable by the PLS-DA model) are reported.

Results

Study population

Out of the 106 recruited cats, 12 were excluded from the study for not having met the inclusion criteria, leaving the study population at 94 cats (46 Burmese, including 31 cats sampled in 2013, 25 MCO, and 23 Birman cats). Reasons for exclusion included non-fasting (n = 3), non-compliance (n = 5), concurrent illness (n = 3), or increased serum biochemistry values (n = 1). Descriptive statistics by breed for the variables age, BW, BCS, and sex distribution are shown in Table 1. Age and sex distribution did not differ between breeds, however, BW (MCO > Burmese > Birman) and BCS (Burmese > Birman) did (Table 1).

Serum biochemistry and hormonal variables. Effects of breed, BW, and BCS on the concentrations of creatinine, fructosamine ALAT, VLDL-TG, HDL-cholesterol, FFA, adiponectin,

| Table 1. Descriptive statistics of the included cats (n = 94) by breed. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Variable | Burmese (n = 46) | Maine coon (n = 25) | Birman (n = 23) | P-value* |
| Age (years) | Median 5.0 a | 8.0 a | 6.0 a | 0.2 |
| | (IQR) (2–9) | (3–10) | (2–11) | |
| BW (kg) | Median 4.4 a | 5.4 c | 3.3 b | <0.001 |
| | (IQR) (3.6–5.1) | (4.6–6.6) | (3.0–4.1) | |
| BCS (scale 1–9) | Median 6.0 a | 5.0 ab | 5.0 b | 0.014 |
| | (IQR) (5.0–6.0) | (5.0–5.0) | (5.0–6.0) | |
| Sex (n) | Male 2 (4%) a | 2 (8%) a | 3 (13%) 4 | 0.44 |
| | Neutered male 22 (48%) | 7 (28%) | 5 (22%) | |
| | Female 9 (20%) | 7 (28%) | 8 (35%) | |
| | Neutered female 13 (28%) | 9 (36%) | 7 (30%) | |

IQR, interquartile range; BW, body weight; BCS, body condition score.

Data are shown as median and interquartile range and number of cats and proportions.

Numbers within a row with different superscript letters differ from another at P < 0.05.

P-values from one-way ANOVA.

https://doi.org/10.1371/journal.pone.0249322.t001
insulin, and IGF-1, showed that for all variables except ALAT and FFA, a significant model could be obtained. Breed ($P < 0.0001$) and BW ($P < 0.0001$), but not BCS ($P = 0.14$), had strong overall effects in the multivariate model. There were no significant interactions present between any of the explanatory variables. Results from the multivariate model with breed differences are summarized in Table 2.

Body weight had significant effects on fructosamine, VLDL-TG, insulin, IGF-1, and adiponectin concentrations. Increasing BW increased concentrations of fructosamine with 8.1μmol/L per kg ($P = 0.0015$), VLDL-TG with 27% per kg ($P < 0.0001$), insulin with 20% per kg ($P = 0.024$), IGF-1 with 33% per kg ($P < 0.0001$), and decreased the concentration of adiponectin with 40.3 ng/mL per kg ($P = 0.0003$). Overweight cats had 20.3 μmol/L higher average creatinine concentrations than normal weight cats ($P = 0.0017$).

None of the above mentioned parameters differed between Burmese cat samples collected in 2013 and those collected in 2015 & 2016.

Metabolomics data. A significant PLS-DA model (Fig 1) successfully separated the breeds: the first component separated MCO cats from Burmese and Birman, while the second component separated Birman from Burmese. Out of 58 quantified metabolites 21 were found discriminative based on their VIP along the first and second component. The discriminative metabolites were subjected to univariate statistical analysis followed by correction for multiple testing and 18 metabolites were reconfirmed (Table 3). The Burmese breed was characterized by higher levels of the branched-chain amino acid (BCAA) valine, the aromatic amino acid tyrosine, the amino acid metabolite 2-oxoisocaproic acid, and acetylcarnitine compared to MCO cats. Additionally, 2-hydroxybutyric acid was higher and acetic acid was lower relative to the Birman breed. Lysine and O-phosphocholine levels were lowest in Burmese cats and significantly different from both other breeds. The metabolic fingerprint of MCO cats was characterized by high concentrations of arginine, asparagine, methionine, creatine, dimethylglycine, succinic acid and low levels of acetylcarnitine, carnitine and tyrosine compared to Burmese and Birman cats. Birman cats showed high levels of creatinine and low taurine concentrations compared to Burmese and MCO cats.

Table 2. Serum biochemistry and hormonal concentrations by breed in 94 cats.

Analyte	Concentration1	Burmese (n = 46)	Maine coon (n = 25)	Birman (n = 23)	P^2
Creatinine (μmol/L)	128 (119–136) a	128 (117–138) a	163 (152–174) b	<0.0001	
Fructosamine (μmol/L)	251 (242–260) a	238 (228–249) a	246 (234–257) a	0.004	
ALAT (μkat/L)	1.1 (0.9–1.2) a	0.8 (0.6–1.0) a	1.2 (1.0–1.4) a	0.110	
VLDL-TG (mmol/L)	0.19 (0.15–0.23) a	0.10 (0.07–0.12) b	0.23 (0.18–0.30) a	<0.0001	
HDL-cholesterol (mmol/L)	4.8 (4.4–5.3) a	4.2 (3.7–4.7) a	6.3 (5.6–7.2) b	<0.0001	
FFA (mmol/L)	0.52 (0.44–0.61) a	0.44 (0.36–0.53) a	0.40 (0.32–0.49) a	0.170	
Adiponectin (ng/mL)	429 (390–468) a	609 (562–656) b	466 (416–516) a	<0.0001	
Insulin (ng/mL)	211 (157–283) a	115 (81–164) b	169 (116–247) a,b	0.036	
IGF-1 (ng/mL)	660 (532–818) a	378 (292–489) b	773 (587–1018) a	0.001	

ALAT, alanine aminotransferase; VLDL, very low-density lipoprotein; TG, triglycerides; HDL, high-density lipoprotein; FFA, free fatty acids; IGF, insulin-like growth factor.

1 Concentrations are shown as estimated least square means for each breed, with 95% confidence intervals (CI). If residuals were non-normally distributed, data were logged for analysis, and least square means were back-transformed and reported as geometric means, with 95% CI.

2 P-values represent breed differences based on results from the multivariate linear regression model including adjustments for body weight and body condition score.

a,b Numbers within a row with different superscript letters differ from another at $P < 0.05$.

https://doi.org/10.1371/journal.pone.0249322.t002
Each point represents one cat. Model parameters: R2X component 1 = 0.103, R2X component 2 = 0.074, R2Y(cum) = 0.668, Q2(cum) = 0.449; Cross-validated ANOVA: P < 0.001. Significant metabolites are presented in Table 3.

Univariate regression analysis including adjustments for BW and BCS for each NMR metabolite identified as discriminative between breeds, revealed that breed remained as a significant explanatory variable for the following 15 metabolites: 2-hydroxybutyric acid, 2-oxoisocaproic acid, acetic acid, acetylcarnitine, arginine, asparagine, creatinine, dimethylglycine, histidine, lysine, methionine, O-phosphocholine, succinic acid, taurine, and tyrosine (Table 4). For the metabolites carnitine, creatine, and valine, breed did not remain significant, and the discriminant effect was instead due to BW, BCS or a combination of the explanatory variables.

Arginine and creatine concentrations increased with 4.6 μM (P = 0.04) and 31.6% (P < 0.0001) per kg BW, respectively. Tyrosine concentrations were affected by BCS, with overweight cats having higher average concentrations than normal weight (P = 0.042) and underweight (P = 0.013) cats.

Discussion

In the present study the metabolic fingerprint was compared between three breeds (Burmese, MCO and Birman cats) and higher concentrations of biomarkers associated with insulin resistance and/or diabetes were observed in Burmese cats, the breed with highest risk of developing DM. Breed differences were also evident from serum biochemistry and hormone assays, where breed was an important individual variable explaining the variation in the data.

In people, BCAAs (isoleucine, leucine, valine) and the aromatic amino acids tyrosine, and phenylalanine have been identified as early biomarkers for T2DM [39]. In the present study,
Table 3. Metabolites found different between the three cat breeds in 63 cats.

Metabolite	Burmese (n = 15)	MCO (n = 25)	Birman (n = 23)	VIP comp 1⁺	VIP comp 2⁺	p³
Concentration (μM)¹						
2-Oxoisocaproic acid	5.5±0.9 a	4.3±0.9 b	4.9±1.6 a,b	1.18 (0.39)	1.16 (0.57)	0.008
Acetic acid	7.7 ±	10.1 a,b	11.3 b	-	1.41 (0.62)	0.002
	(5.0–10.0)	(8.7–12.6)	(9.7–17.0)			
Acetyl carnitine	4.1 a	2.6 b	3.6 a	1.88 (0.89)	1.6 (0.47)	<0.001
	(3.0–5.1)	(2.2–3.1)	(2.8–4.2)			
Arginine	122.1±19.0 a	146.7±22.4 b	118.2±13.0 a	2.14 (0.53)	1.67 (0.37)	<0.001
Asparagine	57.9 ±	68.2 b	60.6 a	2 (0.99)	1.55 (0.85)	<0.001
	(50.1–66.8)	(63.3–72.9)	(53.2–62.7)			
Carnitine	25.0 ±	21.7 b	25.6 a	1.46 (1.04)	1.13 (0.86)	0.004
	(23.9–28.4)	(18.3–28.5)	(24.3–31.1)			
Creatine	9.5 a	12.2 b	8.4 a	1.23 (1.09)	-	0.011
	(6.3–13.7)	(10.6–23.4)	(7.4–12.3)			
Creatinine	128.8±28.7 a	123.7±19.0 a	146.8±19.0 b	1.5 (0.87)	1.57 (0.97)	0.002
Dimethylglycine	4.1 a	5.0 b	4.1 a	1.5 (1.25)	1.26 (0.82)	0.001
	(3.5–4.3)	(4.5–6.4)	(3.7–4.7)			
Histidine	110.5±16.3 b,a	120.7±14.3 a	107.2±16.4 b	-	1.03 (1.02)	0.012
	(63.6–80.2)	(93.4–138.9)	(85.2–126.2)			
Lysine	72.0 ±	107.7 b	114.3 b	-	1.81 (1.13)	<0.001
	(63.6–80.2)	(93.4–138.9)	(85.2–126.2)			
Methionine	40.3±9.0 a	48.1±9.0 b	35.0±7.9 a	1.99 (1)	1.68 (0.66)	<0.001
O-Phosphocholine	3.3±0.5 a	4.1±0.9 b	4.2±0.7 b	-	1.69 (1.11)	0.001
Succinic acid	15.0 ±	17.7 b	14.6 a	1.63 (1.32)	1.27 (1.13)	0.001
	(12.2–17.1)	(16.2–19.9)	(10.2–17.6)			
Taurine	295.8±86.4 a	286.6±121.5 a	193.3±89.2 b	1.93 (0.91)	1.3 (0.8)	0.003
Tyrosine	60.7±10.7 a	47.2±10.4 b	59.3±10.2 a	1.28 (0.78)	1.51 (0.75)	<0.001
2-Hydroxybutyric acid	20.0±4.7 a	17.0±4.2 a,b	16.1±3.6 b	-	1.28 (0.99)	0.020
Valine	183.0±28.0 a	156.2±34.2 b	176.5±36.5 a,b	-	1.11 (0.58)	0.032

VIP, variable influences of projection; CI, confidence interval; MCO, Maine coon.

1 Concentrations are shown as mean with standard deviation for normally distributed data, and as median and interquartile range for non-normally distributed data.

² VIPs (95% CI) are based on the PLS-DA model presented in Fig 1.

³ P-values represent breed differences based on univariate statistical analyses (one-way ANOVA or Kruskal-Wallis test). P < 0.013 was considered significant based on the Benjamini-Hochberg correction for multiple testing.

a,b Numbers within a row with different superscript letters differ from another at P < 0.05, based on univariate statistics including Tukey’s post hoc test.

https://doi.org/10.1371/journal.pone.0249322.t003

the initial comparison of the metabolic fingerprint of the three cat breeds also showed higher levels of valine, leucine, tyrosine, 3-methyl-2-oxovaleric acid (a breakdown product of isoleucine) and 2-oxoisocaproic acid (a breakdown product of leucine) in Burmese cats. After adjustment for body weight and body condition score only tyrosine and 2-oxoisocaproic acid remained significantly different from the MCO breed, suggesting that some of the metabolic differences are due to a high proportion of Burmese cats being overweight. Tyrosine has been shown to be associated with T2DM and insulin resistance in people [39, 40, 54] in epidemiological studies. Mechanistic studies suggest that 2-oxoisocaproic acid induces insulin secretion in rat islets [55]. Alternatively, high levels of 2-oxoisocaproic acid, indicative of impaired BCAA metabolism, may lead to an accumulation of toxic intermediates which have been suggested to cause mitochondrial stress and impaired insulin action [56]. The higher
concentrations of insulin in Burmese than in MCO cats may indicate insulin resistance and thus be related to the increased risk for DM.

Also dimethylglycine, an amino acid derivative, differed in concentration between breeds, with Burmese cats having lower concentrations than MCO cats, after adjustment for body weight and body condition score. Low plasma levels of dimethylglycine have been associated with higher blood glucose levels in human [57]. Additionally, higher concentrations of 2-hydroxybutyric acid were observed in the Burmese compared to the MCO and Birman breed. 2-hydroxybutyric acid, derived from alpha-ketobutyrate which is produced by glutathione anabolism and amino acid catabolism (threonine and methionine), is an early marker for insulin resistance and impaired glucose regulation in people, and the underlying mechanism may involve increased lipid oxidation and oxidative stress [58].

Acetylcarnitine, a short-chain acylcarnitine, was significantly higher in Burmese and Birman cats than in MCO cats. Acetylcarnitine has been shown to be higher in T2DM patients than in healthy controls, and high acylcarnitines have also been associated with IR in people [59]. Acetylcarnitine concentrations were significantly correlated with plasma HbA1c in people, which suggests that higher acetylcarnitine levels are associated with an increasing severity of diabetes [60]. Experimental administration of acetylcarnitine improves insulin-mediated glucose disposal [61]. Acetylcarnitines are also involved in an alternative model for explaining the obesity-induced IR focusing on intra-mitochondrial disturbances. According to this theory, an overload of lipids cause an increase, rather than a decrease, in beta-oxidation, leading to production and accumulation of acylcarnitines, which in turn interfere with insulin signaling in skeletal muscle [20, 62]. Indeed, VLDL-TG were significantly higher in Burmese and

Table 4. Metabolites remaining discriminant for breeds after adjusting for body weight and body condition score.

Metabolite	Concentration (μM)	Burmese (n = 15)	Maine coon (n = 25)	Birman (n = 23)	P²
2-Hydroxybutyric acid	20.5 (17.9–23.1) a	17.1 (15.1–19.1) b	16.8 (14.7–19.0) b	0.033	
2-Oxoisocaproic acid	5.8 (5.0–6.5) a	4.3 (3.7–4.9) b	4.9 (4.3–5.6) a,b	0.014	
Acetic acid	8.4 (5.6–11.2) a	10.9 (8.7–13.1) a,b	13.4 (11.0–15.8) b	0.011	
Acetylcarnitine	4.1 (3.5–5.8) a	2.8 (2.5–3.2) b	3.5 (3.1–4.0) a	0.003	
Arginine	124.0 (113.0–134.9) a	141.6 (133.0–150.1) b	124.3 (115.0–133.6) a	0.022	
Asparagine	57.0 (52.3–62.2) a	68.7 (64.1–73.5) b	58.4 (54.3–62.9) a	0.003	
Creatinine	126.3 (113.6–139.0) a	120.0 (110.1–130.0) a	150.5 (139.7–161.3) b	0.0002	
Dimethylglycine	3.7 (3.2–4.3) a	4.9 (4.4–5.5) b	4.3 (3.8–4.9) a,b	0.013	
Histidine	111.8 (102.2–121.5) a,b	123.5 (115.9–131.0) a	107.3 (99.1–115.5) b	0.027	
Lysine	70.1 (60.6–81.0) a	104.1 (92.9–116.6) b	110.1 (97.3–124.5) b	<0.0001	
Methionine	39.7 (34.8–45.3) a	47.8 (43.1–53.0) b	34.3 (30.7–38.4) a	0.0005	
O-phosphocholine	3.1 (2.7–3.6) a	4.1 (3.8–4.5) b	4.1 (3.7–4.5) b	0.0004	
Succinic acid	13.0 (11.1–15.2) a	18.0 (15.9–20.4) b	13.0 (11.4–14.9) a	0.002	
Taurine	283.3 (218.7–347.9) a	292.8 (242.2–343.3) a	184.2 (129.3–239.1) b	0.007	
Tyrosine	56.5 (50.3–63.4) a	44.8 (41.0–49.1) b	58.5 (53.0–64.5) a	0.001	

1 Concentrations (μM) are shown as estimated least square means for each breed, with 95% confidence intervals (CI). If residuals were not normally distributed, data were logged for analysis, and least square means were back-transformed and reported as geometric means, with 95% CI.

2 P-value for type 3 tests of breed as fixed effect.

a,b Numbers within a row with different superscript letters differ from another at P < 0.05.

* For arginine there was an additional effect from body weight (P = 0.04).

** For tyrosine there was an additional effect from body condition (P = 0.03).
Birman compared to MCO cats, although the BCS was lower in both Birman and MCO than in Burmese cats. The concentrations of adiponectin were lowest in Burmese cats, but significantly different only from the MCO breed. Adiponectin is an adipocyte-derived hormone, with an inconsistent association with obesity in cats. Some studies have shown a negative correlation \([50, 63–66]\), while others did not detect associations between total adiponectin concentrations and obesity \([49, 67]\). Increasing BW in our study was associated with lower adiponectin concentrations, however, we did not identify BCS as an independent factor influencing adiponectin levels. The three breeds in this study represent two normal-sized cat breeds, the Burmese and the Birman, and one large-sized breed, the MCO. Adiponectin directly regulates glucose metabolism and increases insulin sensitivity in people by stimulating fatty-acid oxidation, glucose uptake, and reduces gluconeogenesis in the liver \([27, 68]\). In cats and people with DM, adiponectin concentrations are even lower than in overweight and obese individuals, indicating that the degree of hypoadiponectinemia is more closely related to the degree of insulin resistance than to the degree of adiposity \([25, 26, 69, 70]\).

The plasma metabolic profile of MCO cats was characterized by higher concentrations of two essential amino acids, arginine and methionine \([71]\), and one non-essential amino acid, asparagine, compared to Burmese and Birman cats. Arginine is essential due to its crucial role in the urea cycle to excrete ammonia. Methionine, a sulfur containing proteinogenic amino acid, is needed as methyl-group donor and acceptor.

Breed differences for plasma biochemical analytes in cats have been reported previously, with Birman cats displaying higher creatinine and total protein concentrations than other cats \([72]\). Birman cats had significantly higher creatinine concentrations than the Burmese and MCO cats also in the present study. The reasons for these findings are unclear. Creatinine was also associated with BCS, with higher concentrations seen in overweight cats than in both normal weight and underweight cats. Serum creatinine is a byproduct of muscle metabolism, and it is possible that the underweight cats in our study had less muscle mass which might explain part of the effect of BCS on creatinine.

The present study is the first using a metabolomics approach to assess differences between cat breeds, with the comparatively large number of samples being a strength. Metabolomics uses relatively cheap and noninvasive techniques to produce large amounts of data and thus shows potential to improve disease diagnostics \([73]\). In the search for biomarkers, many metabolites can be measured, and once a biomarker is identified and validated, other simpler methodologies can be used in a clinical setup. An improved understanding of the variation in metabolism between different breeds may thus enable identification of new markers related to abnormal metabolism/insulin resistance and potentially facilitate the development of therapies to improve glucose tolerance in cats of high-risk breeds. Although DM in people shows great heterogeneity not only between but also within different types, and not all variants of T2DM may have feline counterparts \([74]\), the results also support the use of the cat as a model for T2DM in people.

Conclusions

To our knowledge, this is the first study including NMR data from a comparably large cohort of healthy cats of three breeds with different risk of developing DM; the Burmese, MCO and Birman. We found significant differences in the metabolic profiles between the included cat breeds, based on an NMR metabolomics approach, serum biochemistry analyses and hormone immunoassays. Our results indicate that Burmese cats have a metabolic fingerprint similar to that in people with IR. An improved understanding of the variation in metabolism between
different breeds may facilitate the development of therapies to improve glucose tolerance in cats of high risk breeds.

Acknowledgments
The authors thank the Swedish Burmese Cat Club for their collaboration, and Claudia von Brömssen for statistical advice.

Author Contributions

Conceptualization: Malin Öhlund, Elisabeth Müllner, Ali Moazzami, Ann Pettersson, Jens Häggeström, Helene Hansson-Hamlin, Bodil S. Holst.

Formal analysis: Malin Öhlund, Elisabeth Müllner, Ali Moazzami.

Funding acquisition: Malin Öhlund, Bodil S. Holst.

Investigation: Malin Öhlund, Elisabeth Müllner, Ali Moazzami, Ulrika Hermansson, Ann Pettersson.

Methodology: Malin Öhlund, Elisabeth Müllner, Ali Moazzami, Fredrick Anderson.

Project administration: Bodil S. Holst.

Supervision: Ann Pettersson, Jens Häggeström, Helene Hansson-Hamlin, Bodil S. Holst.

Validation: Elisabeth Müllner, Ali Moazzami.

Visualization: Malin Öhlund, Elisabeth Müllner, Ali Moazzami.

Writing – original draft: Malin Öhlund.

Writing – review & editing: Malin Öhlund, Elisabeth Müllner, Ali Moazzami, Ulrika Hermansson, Ann Pettersson, Fredrick Anderson, Jens Häggeström, Helene Hansson-Hamlin, Bodil S. Holst.

References

1. Prahl A, Guptill L, Glickman NW, Tetrick M, Glickman LT. Time trends and risk factors for diabetes mellitus in cats presented to veterinary teaching hospitals. J Feline Med Surg. 2007; 9(5):351–8. Epub 2007/04/24. https://doi.org/10.1016/j.jfms.2007.02.004 PMID: 17449313

2. Henson MS, O'Brien TD. Feline models of type 2 diabetes mellitus. Ilar j. 2006; 47(3):234–42. Epub 2006/06/29. https://doi.org/10.1093/ilar.47.3.234 PMID: 16804198

3. Westermarck P, Wernstedt C, O'Brien TD, Hayden DW, Johnson KH. Islet amyloid in type 2 human diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am J Pathol. 1987; 127(3):414–7. PMID: 3296768

4. Scarlett JM, Donoghue S. Associations between body condition and disease in cats. J Am Vet Med Assoc. 1998; 212(11):1725–31. PMID: 9621878

5. Slingerland LI, Fazilova VV, Plantinga EA, Kooistra HS, Beynen AC. Indoor confinement and physical inactivity rather than the proportion of dry food are risk factors in the development of feline type 2 diabetes mellitus. Vet J. 2009; 179(2):247–53. Epub 2007/10/30. https://doi.org/10.1016/j.tvjl.2007.08.035 PMID: 17964833

6. Rand JS, Fleeman LM, Farrow HA, Appleton DJ, Lederer R. Canine and feline diabetes mellitus: nature or nurture? J Nutr. 2004; 134(8 Suppl):2072s–80s. Epub 2004/07/31. https://doi.org/10.1093/jn/134.8.2072s PMID: 15284406

7. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol. 2011; 8(4):228–36. Epub 2011/11/09. https://doi.org/10.1038/nrendo.2011.183 PMID: 22064493

8. Abate N, Chandalia M. The impact of ethnicity on type 2 diabetes. J Diabetes Complications. 2003; 17(1):39–58. Epub 2002/12/31. https://doi.org/10.1016/s1056-8727(02)00190-3 PMID: 12505756
9. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017; 389(10085):2239–51. Epub 2017/02/14. https://doi.org/10.1016/S0140-6736(17)30058-2 PMID: 28190580

10. Rand JS, Bobbermien LM, Hendrikz JK, Copland M, Over representation of Burmese cats with diabetes mellitus. Aust Vet J. 1997; 75(6):402–5. Epub 1997/06/01. https://doi.org/10.1111/j.1751-0813.1997.tb14340.x PMID: 9247686

11. Ohlund M, Fall T, Strom Holst B, Hansson-Hamlin H, Bonnett B, Egevall A. Incidence of Diabetes Mellitus in Insured Swedish cats in Relation to Age, Breed and Sex. J Vet Intern Med. 2015; 29(5):1342–7. Epub 2015/07/17. https://doi.org/10.1111/jvim.13584 PMID: 26179258

12. McCann TM, Simpson KE, Shaw DJ, Butt JA, Gunn-Moore DA. Feline diabetes mellitus in the UK: the prevalence within an insured cat population and a questionnaire-based putative risk factor analysis. J Feline Med Surg. 2007; 9(4):289–99. Epub 2007/03/30. https://doi.org/10.1016/j.jfms.2007.02.001 PMID: 17392005

13. Lederer R, Rand JS, Jonsson NN, Hughes IP, Morton JM. Frequency of feline diabetes mellitus and breed predisposition in domestic cats in Australia. Vet J. 2009; 179(2):254–8. Epub 2007/12/25. https://doi.org/10.1016/j.tvjl.2007.09.019 PMID: 18155627

14. Kluger EK, Hardman C, Govendir M, Baral RM, Sullivan DR, Snow D, et al. Triglyceride response following an oral fat tolerance test in Burmese cats, other pedigree cats and domestic crossbred cats. J Feline Med Surg. 2009; 11(2):82–90. Epub 2008/08/01. https://doi.org/10.1016/j.jfms.2008.05.005 PMID: 18663749

15. Kluger EK, Caslake M, Baral RM, Malik R, Govendir M. Preliminary post-prandial studies of Burmese cats with elevated triglyceride concentrations and/or presumed lipid aqueous. J Feline Med Surg. 2010; 12(8):621–30. Epub 2010/07/03. https://doi.org/10.1016/j.jfms.2010.04.002 PMID: 20594884

16. Kissebah AH, Alfarsi S, Adams PW, Wynn V. Role of insulin resistance in adipose tissue and liver in the pathogenesis of endogenous hypertriglyceridaemia in man. Diabetologia. 1976; 12(6):563–71. Epub 1976/12/01. https://doi.org/10.1007/BF01220632 PMID: 187517

17. Després JP. The insulin resistance-dyslipidemic syndrome of visceral obesity: effect on patients’ risk. Obes Res. 1998; 6 Suppl 1:8s–17s. Epub 1998/05/06. https://doi.org/10.1020/j.1550-8528.1998.tb00683.x PMID: 9569171

18. Steiner G, Vranic M. Hyperinsulinemia and hypertriglyceridemia, a vicious cycle with atherogenic potential. Int J Obes. 1982; 6 Suppl 1:117–24. Epub 1982/01/01. PMID: 6749716

19. Unger RH. Lipotoxic diseases. Annu Rev Med. 2002; 53:319–36. Epub 2002/01/31. https://doi.org/10.1146/annurev.med.53.082901.104057 PMID: 11818477

20. Schooneman MG, Vaz FM, Houten SM, Soeters MR. Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes. 2013; 62(1):1–8. Epub 2012/12/22. https://doi.org/10.2337/db12-0466 PMID: 23258903

21. Grundy SM. Hypertriglyceridemia, insulin resistance, and the metabolic syndrome. Am J Cardiol. 1999; 83(9b):25f–9f. Epub 1999/06/05. https://doi.org/10.1016/s0002-9149(99)00211-8 PMID: 10357527

22. Stern MP, Williams K, González-Villalpando C, Hunt KJ, Haefner SM. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care. 2004; 27(11):2676–81. Epub 2004/10/27. https://doi.org/10.2337/diacare.27.11.2676 PMID: 15500504

23. Lee P, Mori A, Coradini M, Mori N, Sagara F, Yamamoto I, et al. Potential predictive biomarkers of obesity in Burmese cats. Vet J. 2013; 195(2):221–7. Epub 2012/07/31. https://doi.org/10.1016/j.tvjl.2012.06.027 PMID: 22840209

24. Aguiler CM, Gil-Campos M, Cañete R, Gil A. Alterations in plasma and tissue lipids associated with obesity and metabolic syndrome. Clin Sci (Lond). 2008; 114(3):183–93. Epub 2008/01/11. https://doi.org/10.1042/CS20070115 PMID: 18184112

25. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001; 86(5):1930–5. Epub 2001/05/10. https://doi.org/10.1210/jcem.86.5.7463 PMID: 11344187

26. Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. Jama. 2009; 302(2):179–88. Epub 2009/07/09. https://doi.org/10.1001/jama.2009.976 PMID: 19584347

27. Gao H, Fall T, van Dam RM, Flyvbjerg A, Zethelius B, Ingelsson E, et al. Evidence of a causal relationship between adiponectin levels and insulin sensitivity: a mendelian randomization study. Diabetes. 2013; 62(4):1338–44. Epub 2013/01/01. https://doi.org/10.2337/db12-0935 PMID: 23274890

28. Crop M, Havel PJ, Utschneider KM, Carr DB, Sinha MK, Boyko EJ, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age
and sex. Diabetologia. 2003; 46(4):459–69. Epub 2003/04/11. https://doi.org/10.1007/s00125-003-1074-z PMID: 12687327

29. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006; 444(7121):840–6. Epub 2006/12/15. https://doi.org/10.1038/nature05482 PMID: 17167471

30. Bain JR, Stevens RD, Wanen BR, Ilkayeva O, Muoio DM, Newgard CB. Metabolomics applied to diabetes research: mining from information to knowledge. Diabetes. 2009; 58(11):2429–43. Epub 2009/10/31. https://doi.org/10.2337/db09-0580 PMID: 19875619

31. Gaulton KJ. Mechanisms of Type 2 Diabetes Risk Loci. Curr Diab Rep. 2017; 17(9):72. Epub 2017/07/26. https://doi.org/10.1007/s11892-017-0908-x PMID: 28741265

32. Lanza IR, Zhang S, Ward LE, Karakelides H, Raftery D, Nair KS. Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS One. 2010; 5(5):e10538. Epub 2010/05/19. https://doi.org/10.1371/journal.pone.0010538 PMID: 20479934

33. Zhang AH, Qiu S, Xu HY, Sun H, Wang XJ. Metabolomics in diabetes. Clinica Chimica Acta. 2014; 429:106–10. https://doi.org/10.1016/j.cca.2013.11.037 PMID: 24321733

34. Suhr K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010; 5(11):e13953. Epub 2010/11/19. https://doi.org/10.1371/journal.pone.0013953 PMID: 21085649

35. Connor SC, Hansen MK, Corner A, Smith RF, Ryan TE. Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes. Mol Biosyst. 2010; 6(5):909–21. Epub 2010/06/23. https://doi.org/10.1039/b914182k PMID: 20567778

36. Flogel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolic approach. Diabetes. 2013; 62(2):639–48. Epub 2012/10/09. https://doi.org/10.2337/db12-0495 PMID: 23043162

37. Garvey WT, Kwon S, Shaughnessy S, Wallace P, Hutto A, et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes. 2003; 52(2):453–62. Epub 2003/01/24. https://doi.org/10.2337/diabetes.52.2.453 PMID: 12540621

38. Menni C, Fauman E, Erte I, Perry JR, Kastenmüller G, Shin SY, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes. 2013; 62(12):4270–6. Epub 2013/07/26. https://doi.org/10.2337/db13-0570 PMID: 23884885

39. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011; 17(4):448–53. Epub 2011/03/23. https://doi.org/10.1038/nm.2307 PMID: 21423813

40. Roberts LD, Koulman A, Griffin JL. Towards biomolecular markers of insulin resistance and type 2 diabetes: progress from the metabolome. The lancet Diabetes & endocrinology. 2014; 2(1):65–75. Epub 2014/03/14. https://doi.org/10.1016/S2213-8587(13)70143-8 PMID: 24622670

41. Guasch-Ferre M, Hruby A, Toledo E, Clish CB, Martinez-González MA, Salas-Salvadó J, et al. Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis. Diabetes Care. 2016; 39(5):833–46. Epub 2016/05/22. https://doi.org/10.2337/dc15-2251 PMID: 27208380

42. Deng P, Jones JC, Swanson KS. Effects of dietary macronutrient composition on the fasted plasma metabolome of healthy adult cats. Metabolomics. 2014; 10(4):638–50. https://doi.org/10.1007/s11306-013-0617-7

43. Rivera-Vélez SM, Villarino NF. Feline urine metabolomic signature: characterization of low-molecular-weight substances in urine from domestic cats. J Feline Med Surg. 2018; 20(2):155–63. Epub 2017/04/04. https://doi.org/10.1177/1098612X17701010 PMID: 28367222

44. Laflamme DP. Development and validation of a body condition score system for cats: a clinical tool. Feline Practice. 1997; 25:13–7.

45. Gottlieb S, Rand J, Anderson ST, Morton JM, Dias DA, Boughton BA, et al. Metabolic Profiling of diabetic Cats in Remission. Front Vet Sci. 2020; 7:218. Epub 2020/06/06. https://doi.org/10.3389/fvets.2020.00218 PMID: 32500084

46. Reeve-Johnson M. Screening for prediabetes in senior cats and metabolomic characteristics of obesity and Burmese cats [PhD Thesis]: The University of Queensland; 2017.

47. Brooks D, Churchill J, Fein K, Linder D, Michel KE, Tudor K, et al. 2014 AAHA weight management guidelines for dogs and cats. J Am Anim Hosp Assoc. 2014; 50(1):1–11. Epub 2013/11/13. https://doi.org/10.5326/JAAHA-MS-6331 PMID: 24236501

48. Reynolds BS, Brosse C, Jeunesse E, Concordet D, Lefebvre HP. Routine plasma biochemistry analytes in clinically healthy cats: within-day variations and effects of a standard meal. J Feline Med Surg. 2015; 17(6):468–75. Epub 2014/08/21. https://doi.org/10.1177/1098612X14546920 PMID: 25139540

Differences in metabolic profiles between three cat breeds with varying risk for diabetes mellitus
49. Bjornvad CR, Rand JS, Tan HY, Jensen KS, Rose FJ, Armstrong PJ, et al. Obesity and sex influence insulin resistance and total and multimer adiponectin levels in adult neutered short-haired client-owned cats. Domest Anim Endocrinol. 2014; 47:55–64. Epub 2014/01/01. https://doi.org/10.1016/j.domeend.2013.11.006 PMID: 24373250

50. Tvarijonaviciute A, German AJ, Martinez-Subiela S, Tecles F, Ceron JJ. Analytical performance of commercially-available assays for feline insulin-like growth factor 1 (IGF-1), adiponectin and ghrelin measurements. J Feline Med Surg. 2012; 14(2):138–46. Epub 2012/02/09. https://doi.org/10.1177/1098612X11432236 PMID: 22314090

51. Strage EM, Theodorsson E, Strom Holst B, Lilliehook I, Lewitt MS. Insulin-like growth factor I in cats: validation of an enzyme-linked immunosorbent assay and determination of biologic variation. Vet Clin Pathol. 2015; 44(4):542–51. Epub 2015/09/30. https://doi.org/10.1111/vcp.12289 PMID: 26418310

52. Strage EM, Holst BS, Nilsson G, Jones B, Lilliehook I. Validation of an enzyme-linked immunosorbent assay for measurement of feline serum insulin. Vet Clin Patholol. 2012; 41(4):518–28. Epub 2012/11/06. https://doi.org/10.1111/j.1939-165x.2012.00476.x PMID: 23121305

53. Röhnisch HE, Eriksson J, Müllner E, Agback P, Sandström C, Moazzami AA. AQuA: An Automated Quantification Algorithm for High-Throughput NMR-Based Metabolomics and Its Application in Human Plasma. Anal Chem. 2018; 90(3):2095–102. Epub 2017/12/21. https://doi.org/10.1021/acs.analchem.7b04324 PMID: 29263864

54. Stancáková A, Civelek M, Saleem NK, Soininen P, Kangas AJ, Cederberg H, et al. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes. 2012; 61(7):1895–902. Epub 2012/05/04. https://doi.org/10.2337/db11-1378 PMID: 22553379

55. Gao Z, Young RA, Li G, Najafi H, Burkett C, Sukumvanich SS, et al. Distinguishing features of leucine and alpha-ketocaprate sensing in pancreatic beta-cells. Endocrinology. 2003; 144(5):1949–57. Epub 2003/04/17. https://doi.org/10.1210/en.2002-0072 PMID: 12697702

56. Newgard CB. Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance. Cell Metabolism. 2012; 15(5):606–14. https://doi.org/10.1016/j.cmet.2012.01.024 PMID: 22560213

57. Magnusson M, Wang TJ, Clish C, Engström G, Nilsson P, Gerszten RE, et al. Dimethylglycine Deficiency and the Development of Diabetes. Diabetes. 2015; 64(8):3010–6. Epub 2015/03/22. https://doi.org/10.2337/db14-1863 PMID: 25795213

58. Gall WE, Beebe K, Lawton KA, Adam KP, Mitchell MW, Nakhle PJ, et al. Early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS Genet. 2016; 12(10):e1006379. Epub 2016/10/22. https://doi.org/10.1371/journal.pgen.1006379 PMID: 22553379

59. Okada Y, Kobayashi M, Sawamura M, Arai T. Comparison of Visceral Fat Accumulation and Metabolite Markers among Cats of Varying BCS and Novel Classification of Feline Obesity and Metabolic Syndrome. Frontiers in veterinary science. 2017; 4:17. Epub 2017/04/12. https://doi.org/10.3389/fvets.2017.00017 PMID: 28261588
67. Witzel AL, Kirk CA, Kania SA, Bartges JW, Boston RC, Moyers T, et al. Relationship of adiponectin and its multimers to metabolic indices in cats during weight change. Domest Anim Endocrinol. 2015; 53:70–7. Epub 2015/07/06. https://doi.org/10.1016/j.domaniend.2015.05.001 PMID: 26143302

68. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002; 8(11):1288–95. Epub 2002/10/09. https://doi.org/10.1038/nm788 PMID: 12368907

69. Zapata RC, Meachem MD, Cardoso NC, Mehain SO, McMillan CJ, Sneed ER, et al. Differential circulating concentrations of adipokines, glucagon and adipin in a clinical population of lean, overweight and diabetic cats. BMC Vet Res. 2017; 13(1):85. Epub 2017/04/06. https://doi.org/10.1186/s12917-017-1011-x PMID: 28376869

70. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000; 20(6):1595–9. Epub 2000/06/10. https://doi.org/10.1161/01.atv.20.6.1595 PMID: 10845877

71. MacDonald ML, Rogers QR, Morris JG. Nutrition of the domestic cat, a mammalian carnivore. Annu Rev Nutr. 1984; 4:521–62. Epub 1984/01/01. https://doi.org/10.1146/annurev.nu.04.070184.002513 PMID: 6380542

72. Gunn-Moore DA, Dodkin SJ, Sparkes AH. Letter to the editor. Journal of Feline Medicine and Surgery. 2002; 4(3):165–6. https://doi.org/10.1053/jfms.2002.0175

73. Kosmides AK, Kamisoglu K, Calvano SE, Corbett SA, Androulakis IP. Metabolomic fingerprinting: challenges and opportunities. Crit Rev Biomed Eng. 2013; 41(3):205–21. Epub 2013/01/01. https://doi.org/10.1615/critrevbiomedieng.2013007736 PMID: 24579644

74. Redondo MJ, Hagopian WA, Oram R, Steck AK, Vehik K, Weedon M, et al. The clinical consequences of heterogeneity within and between different diabetes types. Diabetologia. 2020; 63(10):2040–8. Epub 2020/09/08. https://doi.org/10.1007/s00125-020-05211-7 PMID: 32894314