This is a repository copy of Trough geometry was a greater influence than climate-ocean forcing in regulating retreat of the marine-based Irish-Sea Ice Stream.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/136707/

Version: Published Version

Article:
Small, D., Smedley, R.K., Chiverrell, R.C. et al. (11 more authors) (2018) Trough geometry was a greater influence than climate-ocean forcing in regulating retreat of the marine-based Irish-Sea Ice Stream. Geological Society of America Bulletin. ISSN 0016-7606

https://doi.org/10.1130/B31852.1

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Trough geometry was a greater influence than climate-ocean forcing in regulating retreat of the marine-based Irish-Sea Ice Stream

David Small1,2,†, Rachel K. Smedley3,4, Richard C. Chiverrell4, James D. Scourse5, Colm Ó Coafaigh2, Geoff A.T. Duller3, Stephen McCarron6, Matthew J. Burke4, David J.A. Evans2, Derek Fabel7, Delia M. Gheorghiu8, Geoff S.P. Thomas4, Sheng Xu4, and Chris D. Clark6

1School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK
2Department of Geography, Durham University, Durham, UK
3Department of Geography and Earth Sciences, Aberystwyth University, Ceredigion, UK
4School of Environmental Sciences, University of Liverpool, Liverpool, UK
5Centre for Geography, Environment and Society (CGES), College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
6Department of Geography, Maynooth University, Maynooth, Ireland
7Scottish Universities Environmental Research Centre, East Kilbride, UK
8Natural Environment Research Council (NERC), Cosmogenic Isotope Analysis Facility-Scottish Universities Environmental Research Centre (CIAF-SUERC), East Kilbride, UK
9Department of Geography, University of Sheffield, Sheffield, UK

ABSTRACT

Marine terminating ice streams are a major component of contemporary ice sheets and are likely to have a fundamental influence on their future evolution and concomitant contribution to sea-level rise. To accurately predict this evolution requires that modern day observations can be placed into a longer-term context and that numerical ice sheet models used for making predictions are validated against known evolution of former ice masses. New geochronological data document a stepped retreat of the paleo–Irish Sea Ice Stream from its Last Glacial Maximum limits, constraining changes in the time-averaged retreat rates between well-defined ice marginal positions. The timing and pace of this retreat is compatible with the sediment-landform record and suggests that ice marginal retreat was primarily conditioned by trough geometry and that its pacing was independent of ocean-climate forcing. We present and integrate new luminescence and cosmogenic exposure ages in a spatial Bayesian sequence model for a north-south and cosmo genic exposure ages in a spatial and integrate new luminescence in independent of ocean-climate forcing. We

INTRODUCTION

A significant proportion of ice sheet mass balance is regulated by faster flowing corridors of ice (ice streams), which drain accumulation areas and are often marine-terminating (Stokes and Clark, 2001; Bennett, 2003; Stokes et al., 2016). While climate forcing exerts a fundamental control on the retreat of ice masses, internal factors such as phases of over-extension (i.e., an advance due to a dynamic instability rather than toward an equilibrium position), the bed-slope and trough geometry are also important regulators of ice stream behavior (Jamilson et al., 2012; Joughin et al., 2014; Mosola and Anderson, 2006). Marine-terminating ice streams are also susceptible to oceanic influence, including changes in relative sea level, sea surface temperatures and tidal regime (Payne et al., 2004; Arbic et al., 2008). There is presently substantial concern about anthropogenically forced atmospheric and oceanic warming causing the rapid retreat of marine-terminating ice streams in Greenland and Antarctica (Joughin and Alley, 2011; Rignot et al., 2014). To understand fully and predict how these ice masses will evolve, there is a need to understand the complex interactions between external forcings and internal dynamics in modulating ice marginal retreat (e.g., Benn et al., 2007; Jamieson et al., 2012; Schoof, 2007). Constraining the evolution of former ice streams provides important empirical evidence for testing process understanding of modern-day ice masses and evaluating numerical ice sheet models (Stokes et al., 2015).

The Irish Sea Ice Stream (ISIS; Fig. 1) was the largest marine-terminating ice stream to drain the former British–Irish Ice Sheet (BIS) (Eyles and McCabe, 1989) and during deglaciation it formed an example of marine-based ice stream retreat. The sediments and landforms along the southern and eastern coastal lowlands of Ireland, with >30 km extent of intermittent coastal exposure between the south coast and Dublin (~170 km; Fig. 1), record the dynamics of the western lateral margin of the paleo–ISIS during the last deglaciation. We propose a conceptual model for the retreat of the ISIS inferred from the sediment-landform assemblages and constrain this using a new data set of 13 opti-
THE IRISH SEA ICE STREAM

The last ISIS (Fig. 1: Eyles and McCabe, 1989) drained on-shore ice accumulation areas in Ireland, northern England, and southern Scotland (cf. Roberts et al., 2007) and at its maximum extent ca. 25 ka (Ó Cofaigh and Evans, 2007; Smedley et al., 2017a) extended into the Celtic Sea (Scourse et al., 1990; Scourse and Furze, 2001; Hiemstra et al., 2006), possibly as far as the shelf break (Praeg et al., 2015). The advance to this maximum limit has been hypothesized as a rapid, and perhaps short lived, surge-type event (Scourse and Furze, 2001; Ó Cofaigh and Evans, 2001a, 2001b, 2007). Coastal exposures of glaciogenic sediments show ubiquitous diamictons containing erratic clasts of an Irish Sea affinity (Irish Sea Tills: Ó Cofaigh and Evans, 2001a, 2001b) and document on-shore flow of ice (Thomas and Summers, 1983; Ó Cofaigh and Evans, 2001b, 2007; Evans and Ó Cofaigh, 2003). These sediments have been interpreted as representing: (1) the deglacial transition from subglacial to proximal and then distal glaciomarine sedimentation in an isostatically-depressed ISB (Eyles and McCabe, 1989; Clark et al., 2012; McCabe, 1997), or (2) subglacial and ice marginal deposition at the lateral grounded margin of an ice stream (Thomas and Summers, 1983, 1984; Ó Cofaigh and Evans, 2001a, 2001b; Evans and Ó Cofaigh, 2003). The glaciomarine hypothesis is considered unlikely given the magnitude of isostatic loading required (cf. Lambeck and Purcell, 2001; Bradley et al., 2011) and the lack of unambiguous evidence for glaciomarine sedimentation (Ó Cofaigh and Evans, 2001a; Evans and Ó Cofaigh, 2003; Rijjsdijk et al., 2010). The sediment-landform assemblages distributed along the southern and eastern coasts of Ireland provide the evidence base for a conceptual model for the relative order of retreat events and suggests that the ISIS experienced marked changes in the rate of retreat (Fig. 2).

Rapid Initial Advance and Retreat

Initial advance of the ISIS is recorded along the south Irish coast by subglacial diamictons with erratics of Irish Sea provenance (Ó Cofaigh and Evans, 2001a, b). These diamictons contain abundant reworked marine fauna and the youngest ages from a population of 26 radiocarbon ages indicate that advance occurred after ca. 25–24 ka (Ó Cofaigh and Evans, 2007). The timing of the maximum extent of the ISIS on the Isles of Scilly, UK, is indistinguishable within dating uncertainties with new OSL and CN ages constraining this to 25.5 ± 1.5 ka (Smedley et al., 2017a). The Irish Sea diamictons exposed along the south coast of Ireland are overlain by glacial outwash and localized glaciolacustrine deposits that record proglacial deposition along the retreating margin of the ISIS (Fig. 3; Ó Cofaigh and Evans, 2001a, 2001b). Finally, following retreat of the ISIS, ice sourced in the Irish midlands advanced beyond the present-day coastline depositing glacial till that is rich in lithologies of an inland origin and deforming the underlying glacioluvial and glaciolacustrine sequence (Ó Cofaigh and Evans, 2001a, 2001b).
Trough geometry regulated retreat of the marine-based Irish-Sea Ice Stream

Figure 2. Conceptual model of sequence and rates of Irish Sea Ice Stream (ISIS) deglaciation based on existing geomorphological and sedimentary studies. Boundary numbers and names (cf Fig. 1 and Table 5) are shown in the center panel. Sample sites and names are denoted by stars in the lower panel. Note that the sample locations at Ballyhorse, Greystones, and Bray Head, Ireland, are in close proximity, but are separated by >200 m elevation. For deglaciation to have occurred at these sites simultaneously would require a glacier gradient that is physically unlikely. Consequently, we consider it likely that Bray Head was deglaciated prior to Greystones and Ballyhorse and order them accordingly in our prior model. CSP—Carnsore Point, BW—Blackwater, KS—Knocknasillogue, BV—Ballyvaldon, TB—Tinnaberna, WMC—Wicklow meltwater channel.

Figure 3. (A) Composite stratigraphic log of the south coast sequence at Kilmore Quay, Co. Wexford, Ireland, (from Ó Cofaigh and Evans, 2007) showing Irish Sea Till overlying periglacial slope deposits and a raised beach and overlain by glacilacustrine and glaciluvial outwash deposits and a till of inland origin. The location of the optically stimulated luminescence (OSL) samples KQ1 and KQ2 within this sequence is shown. MIS—marine isotope stage; M—Mud; S—Sand; G—Gravel; D—Diamict. (B and C) Shows sample locations of dated OSL samples KQ1 and KQ2.
The thin and discontinuous nature of these deposits perhaps reflects a relatively rapid retreat with limited development of ice-marginal landforms. This inference is supported by an earlier Bayesian model using legacy geochronological data that suggests that ISIS advance to—and retreat from—its maximum limit was rapid (<1 ka) (Chiverrell et al., 2013).

Establishment of an Oscillating Grounded Ice Margin

Sediment-landform assemblages related to the ISIS also crop out along the east coast of Ireland and provide evidence for relatively greater complexity in ice marginal dynamics. The Screen Hills (Fig. 4) represent the largest glacigenic sedimentary depocenter on the east coast of Ireland, with >150 km² of glacial landforms and ~20 km of coastal exposures that locally reach >50 m in height. The stratigraphy reflects the interaction of subglacial processes and ice marginal deposition, including thrusting and stacking of glacigenic units, and results from at least eleven minor (< km scale) readvances of the ISIS margin (Evans and Ó Cofaigh, 2003; Thomas and Chiverrell, 2011; Thomas and Summers, 1984, 1983). The sequence suggests that ice marginal retreat slowed as the ISIS margin retreated from the Celtic Sea into St George’s Channel (cf. Evans and Ó Cofaigh, 2003) and that a dynamic and oscillating margin was established (Thomas and Summers, 1983, 1984; Thomas and Kerr, 1987; Evans and Ó Cofaigh, 2003).

Renewed Rapid Ice Marginal Retreat?

Further north exposures of glacial sediments related to the ISIS are more sporadic (Fig. 1), which might reflect more rapid ISIS retreat, but extensive Holocene sand dunes may mask the glacial sequence locally. There are no sediment exposures or geomorphological features indicative of ice margin oscillations or any large scale readvance(s) north of the Screen Hills. Consequently, it is inferred that retreat from the Screen Hills was a quasi-continuous process. The first ice marginal position north of the Screen Hills occurs at Greystones, Co. Wicklow, Ireland, which has been interpreted as a morainal bank complex deposited in an ice proximal subaqueous basin prograding from a bedrock high (McCabe, 2008). The sections display no evidence for oscillation or readvance of the ice margin (McCabe and Ó Cofaigh, 1995). Further north at Killiney, Co. Dublin, Ireland, glacial diamictons (Irish Sea and inland origin) and outwash deposits form a complex sequence of glacitectonically stacked units resulting from overriding by ice and oscillation of the ice margin during ISIS retreat (Rijsdijk et al., 2010).

Figure 4. The stratigraphy of the Screen Hills sequence between Blackwater Harbour and Tinnaberna, Co. Wexford, Ireland, showing zones of glacitectonic deformation (A–P) and readvance limits (1–11). Length of section is ~7 km. Inset at top shows stereogram (Wulff, lower hemisphere) of 278 measurements of poles to thrust planes and fold limbs. Contours at 1, 3, 5, and 10%. Locations of optically stimulated luminescence samples within this sequence are shown. Redrawn from Thomas and Chiverrell (2011) with additions from Thomas and Summers (1983, 1984).
FIELD SITES

The conceptual model (Fig. 2) for ISIS retreat informed our field sampling strategy with sites distributed to provide geomochronological constraints on the timing and pace of deglaciation throughout the region. The 14 OSL samples from eight sites targeted glacial outwash sands associated primarily with known ice marginal positions and locations (Table 1) through the retreat sequence. The CN dating using in situ 10Be targeted a mixture of glacially modified bedrock outcrops or glacially faceted and transported boulders producing 10 samples from four locations (Table 2).

Kilmore Quay

The exposures at Kilmore Quay, Co. Wexford, Ireland, have previously been described in detail (Ó Cofaigh and Evans, 2001a; Evans and Ó Cofaigh, 2003). Two samples were taken from the coastal cliff where relatively thin glaciﬂuvial sands overlie Irish Sea tills that crop out at the base of the sequence. KQ1 and KQ2 were collected for OSL dating from medium-to ﬁne-sand units (Fig. 3; Table 2) to constrain the timing of ISIS marginal retreat onto the south coast of Ireland. While the sequences are generally glacioteconised the sands retain primary depositional features such as ripples.

Carnsore Point

Twelve km east of Kilmore Quay, Carnsore Point, Co. Wexford, Ireland, is characterized by a spread of large granite boulders derived from local outcrop of the Carnsore Granite (O’Connor et al., 1988). The boulders occur on the surface and reﬂect deposition by the retreating ISIS given the lack of sedimentary evidence for advances of inland ice in this area (Evans and Ó Cofaigh, 2003). There is no obvious orientation to the spread of boulders and no other glacial landforms in the immediate vicinity. Many boulders exhibit signs of human activity including incorporation into ﬁeld boundaries (Fig. 5A and Fig. DR6 in GSA Data Repository1). Some of these however, were inferred in the ﬁeld to be in situ and three samples (CS1–3) were collected for analysis with 10Be to provide constraint on the passage of the ice margin from the south coast of Ireland into St George’s Channel.

Screen Hills

Thirty km to the northeast of Carnsore Point, the Screen Hills represent the largest accumulation of glacial sediments on the east coast of Ireland (Evans and Ó Cofaigh, 2003; Thomas and Chiverrell, 2011; Thomas and Summers, 1983, 1984). OSL samples were collected from glaciﬂuvial outwash sands at four sites which were chosen from the ~15 km of continuous coastal exposure studied in detail by Thomas and Summers (1983, 1984) extending from Blackwater Harbour in the south to Tinnaberna in the north, Co. Wexford, Ireland (Fig. 4). These relate to well-deﬁned ice marginal positions (Thomas and Summers, 1984; Thomas and Chiverrell, 2011) and the sampled units retain primary depositional features such as ripples and faint laminations. Progressing from south to north—near Blackwater Harbour—two samples of medium-coarse sands with faint ripples (BW1) and laminations (BW2) were collected from a >30-m-thick wedge of outwash sands and gravels that thin to the south away from a glacioteconised ice marginal position (Limit 2; Fig. 4; Thomas and Chiverrell, 2011). The samples were collected at 5–8 m depth in the 20-m-thick series of alternating outwash sand and gravel sheets that dip gently to the south and overlie a basal diamict (Fig. 6A). Knocknasillouge, Co. Wexford, Ireland, is ~1.7 km further to the northeast, and two samples separated vertically by ~1 m (KS1 and

1GSA Data Repository item 2018183, details on optically stimulated luminescence methodology and background information on sites, is available at http://www.geosociety.org/datarepository/2018 or by request to editing@geosociety.org.

Table 1. Location information of all OSL samples

Sample code	Site	Lat (°N)	Long (°E)	Elevation (m ASL)
T4KQIV01	KQ1	51.7179	-6.3749	0
T4KQIV02	KQ2	51.1782	-6.5549	0
T4WEXF1A	BW1	52.4316	-6.3263	1
T4WEXF1B	BW2	52.4316	-6.3263	12.5
T4WEXF2A	KS1	52.4451	-6.3128	20
T4WEXF2B	KS2	52.4451	-6.3128	20.7
T4WEXF03	BV1	52.4642	-6.2948	8
T4WEXF4A	TB1	52.4813	-6.274	10
T4WEXF4B	TB2	52.4813	-6.274	5
T4BHOR01	BH1	53.1059	-6.2948	10.5
T4BHOR02	BH2	53.1059	-6.2948	10.5
T4GREY01	GY1	53.165	-6.0767	12.5
T4HOWTO1	HD1	53.3867	-6.0642	10
T4HOWTO2	HD2	53.3867	-6.0642	11.5

Note: All sites are located in SE Ireland. OSL—optically stimulated luminescence; ASL—above sea level.

Table 2. Sample information, chemistry data and measured 10Be/10Be ratios for CN samples

Sample code	Short code	Lat (°N)	Long (°E)	Alt. (m ASL)	Thickness (cm)	Shielding correction	Boulder dimensions (m)	Qtz Mass (g)	Be Spike (g)	10Be/10Be (x)	Uncert. (x)
T4CS01	CS1	52.1795	-6.3749	7	8.0811	1.5 x 1.3 x 1.1	21.47	253.37	235.44	1.95 x 10^16	1.95 x 10^16
T4CS02	CS2	52.1808	-6.3739	7	8.0811	2.3 x 2.2 x 1.5	21.87	253.34	249.18	3.48 x 10^15	3.48 x 10^15
T4CS03	CS3	52.1848	-6.3920	7	8.0811	1.8 x 1.2 x 1.0	21.47	258.54	220.32	2.61 x 10^15	2.61 x 10^15
T4WK01	WK1	52.9722	-6.0993	7	8.0811	0.826 N/A	21.89	253.34	246.82	1.35 x 10^15	1.35 x 10^15
T4WK02	WK2	52.9722	-6.0993	7	8.0811	0.824 N/A	21.89	253.34	246.82	1.35 x 10^15	1.35 x 10^15
T4BR01	BR1	53.1806	-6.0800	7	8.0811	1.4 x 1.1 x 1.0	21.89	253.34	249.18	3.48 x 10^15	3.48 x 10^15
T4BR02	BR2	53.1791	-6.0811	7	8.0811	0.994 N/A	21.89	253.34	249.18	3.48 x 10^15	3.48 x 10^15
T4HO01	HO1	53.3734	-6.0967	7	8.0811	1.8 x 1.2 x 1.0	21.89	253.34	249.18	3.48 x 10^15	3.48 x 10^15
T4HO02	HO2	53.3734	-6.0967	7	8.0811	0.994 N/A	21.89	253.34	249.18	3.48 x 10^15	3.48 x 10^15

Note: CN—cosmogenic nuclide; ASL—above sea level; Qtz—quartz.

1Topographic shielding correction calculated using online calculator (Balco et al., 2008; available at http://hess.ess.washington.edu/math/general/skyline_input.php).
1Relative to NIST 27900 with 10Be/10Be taken as 2.79 x 10^-12.
1Ratios not blank corrected.
1Corrected for a process blank with 10Be/10Be ratio of 4.85 ± 0.61 x 10^-15.
1Corrected for a process blank with 10Be/10Be ratio of 2.37 ± 0.41 x 10^-15.
1Corrected for a process blank with 10Be/10Be ratio of 6.05 ± 0.84 x 10^-15.
KS2) were collected from a depth of ~10 m in medium-fine rippled sands with fine laminations (Fig. 6B). The sampled sequence is immediately up-ice of a pronounced glaciectonised marginal position (Limit 3: Fig. 4; Thomas and Chiverrell 2011). The sampling targeted the upper portion of a ~20-m-thick sequence of sands and gravels that overlie a basal Irish Sea diamicton, with both units thrust forward and upwards in a glaciectonic episode linked to the capping diamicton that completes the vertical succession. At Ballyvaldon, Co. Wexford, Ireland, ~2.3 km to the northeast, a single sample (BV1) of medium-coarse sands was collected at 10 m depth from a ~20 m thick and laterally extensive sequence of outwash sands fronting an ice marginal position ~700 m to the north (Limit 9: Fig. 4; Fig. 6C; Thomas and Chiverrell, 2011). At Tinnaberna, a further ~2.4 km to the northeast, two samples (TB1 and TB2) were collected from sand layers within alternating outwash sands and gravels fronting a further glaciectonised ice marginal positions (Limit 11: Fig. 4; Thomas and Chiverrell, 2011). The samples were taken from outwash sands ~4 m to 0.5 m above a basal Irish Sea diamicton at burial depths of 10 m and 20 m, respectively, but TB2 did not yield an age determination.

Wicklow Point

Fifty km north of Tinnaberna, there is a distinct channel orientated E–W and cut into schist bedrock at ~15 m above sea level (ASL) on Wicklow Point (Fig. 5B and Fig. DR6 in GSA Data Repository). The channel is ~250 m long and 10 m wide, widening to 20 m at its southern end and has an undulating thalweg. The onset and end of the channel are abrupt and there is no catchment, a configuration common in subglacial meltwater channels. The feature is therefore interpreted as a likely subglacial meltwater channel. The channel would have been exposed during deglaciation and thus two samples were collected for 10Be analysis from the channel wall, >3 m from the top of the channel (WK1-2). This site was chosen to provide constraints on deglaciation between the sedimentary exposures at the Screen Hills and Greystones.
Ballyhorsey Quarry

Located 5 km inland from coastal sections lies a series of low-level (<120 m ASL) basins separated by bedrock-cored ridges. Drainage channels fret these bedrock ridges (Ravier et al., 2014), and they locally feed substantial proglacial depocenters (see Fig. DR7 in GSA Data Repository [footnote 1]). At Ballyhorsey a former sand and gravel quarry has provided exposures into extensive sub- and proglacial outwash in the “Kilpedder Basin” as described by Ravier et al. (2014) (Fig. 7). The lower sections studied by these authors document basal diamictons that interdigitate with glacialfluvial deposits that formed subglacially. These units are buried by prograding subaqueous glaciallacustrine fan facies that prograde and dip southwards as wedges and both thin and fine (from gravels to sands) with increasing distance from the ice-contact fan apex. This fan was likely deposited in a lake dammed by Irish Sea ice situated to the north and east (Ravier et al., 2014). In March 2014, the exposures were much degraded, but reasonable exposures were identified at the top of the sequence in the northwest corner of the quarry. These exposures were within 2–3 m of a flat horizontal surface and displayed horizontally and planar bedded and rippled fine to medium sands that we interpret as deltaic top-sets formed during the late stages of deposition. Two samples (BH1 and BH2) were collected from fine–medium planar sands with ripples preserved from the uppermost ice proximal delta top-set sands (Fig. 7).

Greystones

On the coast ~22 km north of Wicklow Point and ~7 km northeast of the Ballyhorsey Quarry, extensive (1.7 km) cliff exposures at Greystones document a substantial ice marginal position (Fig. 1). McCabe and Ó Cofaigh (1995) interpreted the sequence as morainal bank deposits that accumulated in a subaqueous setting by subglacial discharge from the ice margin, with the sequence deposited so that it did not evolve into a Gilbert-type delta. In March 2014, the exposures showed thin (2–3 m thickness) sand and gravel delta foresets (Fig. 8) with associated horizontally bedded sands and gravels interpreted as thin topsets. A single sample (GR1) was taken from this thin (~1 m) rippled sand unit that lies above 10–15 m of subaqueous outwash gravels and diamictons of Irish Sea provenance. Relating the unit sampled to the descriptions of McCabe and Ó Cofaigh (1995), it appears to correlate with a thin (>1 m) horizontally stratified series of rippled sands (Sr) interbedded with planar gravels (Gms) that lie immediately below their uppermost lithofacies (LFA4) which comprised 3.5 m of planar massive and poorly sorted gravels (Gm and Gms).

Bray Head

Five km north of the Greystones site, Bray Head is a hill (240 m ASL) composed of quartzite bedrock that shows extensive signs of glacial modification. Abraded and striated surfaces are present on the summit ridge of Bray Head with striations oriented in a general NNW–SSE direction. Plucked faces also occur on the lee side of flow. A single granite erratic boulder was located on Bray Head, ~250 m north of the summit. Given its altitude and proximity to the Greystones site, Bray Head may have been deglaciated prior to deposition of the sediments from which the optically stimulated luminescence (OSL) sample GR1 was taken. In addition to the granite erratic (BR1), two bedrock samples were collected from 220 m ASL on the summit ridge of Bray Head; one sample was collected from an abraded surface (BR2) with a further sample taken from a plucked surface (BR3) that lay >2.5 m beneath the upper abraded surface (Fig. 5C and Fig. DR6 in GSA Data Repository).
Howth Peninsula

Howth is a peninsula 4 km in length that forms the north coast of Dublin Bay, Co. Dublin, Ireland. The Hill of Howth (171 m ASL) lies in the center of the peninsula and is composed primarily of quartzite. At its summit there is clear evidence of glacial abrasion (Fig. 5D and Fig. DR8 in GSA Data Repository). Striae indicate ice-movement from the north (Stephens and Synge, 1957) as the ISIS impinged onto the eastern coast of Ireland. Two samples were collected from the summit of the Hill of Howth from abraded quartzite bedrock (HH1–2). On the north side of the peninsula there is a ~0.5 km² deposit of stratified sands and gravels (Fig. 9) extending inland that has a maximum thickness of ~15 m (Lamplugh, 1903). The deposits have been interpreted as deltaic in origin composed mainly of reworked glacial deposits transported along local drainage lines and deposited in an ice marginal water-body (Lamplugh, 1903). The sequence was deposited after retreat of the ice margin north and west of Howth but while the ISIS was still present in the ISB to the east and ponding ice-dammed meltwater in Dublin Bay. Two OSL samples (HD1–2) were taken from fine–medium rippled sands that represent the topsets of the “Howth Delta.”

METHODS

OSL Dating

Samples for OSL dating were collected by hammering opaque tubes into the sedimentary sections. External gamma dose-rates were determined in situ using field gamma spectrometry. Concentrations of U, Th, K, and Rb were determined for each sample using inductively coupled plasma–mass spectrometry (ICP-MS) and atomic emission spectroscopy (ICP-AES) (Table 3). These concentrations were used to calculate the external beta dose-rates and in situ gamma spectrometry determined the external gamma dose-rate. Sample preparation and analysis followed methods outlined in Smedley et al. (2017a). Single grains of quartz were used to determine equivalent dose (Dₑ) values (Tables DR1–DR14; Figs. DR1–DR3 in GSA Data Repository [footnote 1]) using a Risø TL/OSL DA-15 automated single-grain system equipped with a ^90Sr/^90Y beta source (Bøtter-Jensen et al., 2003). Grain sizes of 210–250 µm were used for OSL analysis of each sample, except sample KQ1 that had a grain size 150–180 µm and so it was likely that up to four grains were present in each hole on the single-grain disc (i.e., microhole measurements). Sample analysis methods are summarized in the GSA Data Repository (see footnote 1). The Dₑ distribution of sample TB2 (Fig. DR3) had scatter at lower doses that suggests the potential for post-depositional mixing (e.g., bioturbation or cryoturbation) thus OSL dating of this sample was considered unreliable. The central age model (CAM; Galbraith et al., 1999) was used to determine an age for sample KQ2 as the symmetrical Dₑ distribution suggests that these grains were not heterogeneously bleached prior to burial. The minimum age model (MAM; Galbraith et al., 1999; Galbraith and Laslett, 1993) was used to determine
ages for the remaining samples given their asymmetrical D_e distributions (Duller, 2008). The D_e values were then divided by the dose-rate to determine an age. See the GSA Data Repository for full details of the OSL analysis performed in this study, in addition to the D_e values determined for each sample.

Cosmogenic Nuclide Exposure Dating

Sampling targeted the uppermost fresh surfaces of boulders and bedrock to minimize the possibility of post-depositional adjustment such as toppling or large scale spallation of bedrock. Topographic shielding was measured in the field using a compass and clinometer and correction factors calculated using the CRONUS-Earth online calculator (Balco et al., 2008). CN sample preparation was undertaken at the University of Glasgow, Scotland, UK, using standard mineral separation techniques (cf. Kohl and Nishiizumi, 1992). Beryllium extraction was carried out at the Cosmogenic Isotope Analysis Facility–Scottish Universities Environmental Research Centre (CIAF-SUERC), using procedures based on Child et al. (2000). The $^{10}\text{Be}/^{9}\text{Be}$ ratios were measured on the 5MW accelerator mass spectrometer (AMS) at SUERC (Xu et al., 2010).

There are a variety of online calculators (Balco et al., 2008; Marrero et al., 2016; Martin et al., 2017), scaling schemes (e.g., Lal, 1991; Lifton et al., 2014; Stone, 2000), and production rate calibrations (e.g., Putnam et al., 2010; Small and Fabel, 2015; Young et al., 2013) available for calculating exposure ages. We present exposure ages calculated using the CRONUS-Earth calculator (Balco et al., 2008) and the CRONUScalc calculator (Marrero et al., 2016) using a selection of scaling schemes (Lm [Lal, 1991; Stone, 2000] and SA [Lifton et al., 2014]) and production rates (Borchers et al., 2016; Fabel et al., 2012). In practice, choice of calculation method and scaling scheme often make little difference for calculation of ^{10}Be exposure ages (cf. Table 4). Choice of production

Figure 8. (A) Stratigraphic log of Greystones, Co. Wicklow, Ireland, section from McCabe and Ó Cofaigh (1995) with optically stimulated luminescence (OSL) sample location indicated. (B) Photograph of sampled section. Gravel foresets of Gilbert-like delta shown with angled dashed white lines (this was not described by McCabe and Ó Cofaigh [1995]). Thin continuous white line shows continuous sand bed sampled for OSL dating. (C) Sample GR1 within a thin sand bed ~40 cm thick. Note gravels above and below.
rate, however, can make a significant difference and affect subsequent interpretations. Given an apparent geographical bias on production rate values (Phillips et al., 2016) it has been argued that ages should be calculated using the most geographically appropriate calibration (Small and Fabel, 2016a). Considering this, and to aid comparison to previously published work from Britain and Ireland, we focus discussion on ages calculated with the CRONUS calculator (http://hess.ess.washington.edu; Balco et al., 2008), the Lm scaling, and with a reference sea-level high latitude production rate of 4.00 ± 0.17 atoms g\(^{-1}\) quartz (cf. Fabel et al., 2012) calibrated from a site in Scotland, <500 km from our study site.

Bayesian Age Modeling

Integration of the new CN and OSL age control was undertaken using Bayesian age modeling, with the focus on discerning the timing of ice marginal retreat. A sequence model was used which requires the dating information to be arranged in a likely younging order irrespective of the actual age values; this prior model (the hypothetical relative order of events) takes the form of a south to north relative distance reconstruction of retreat of the ISIS margin (Fig. 2). The Bayesian modeling was conducted using OxCal 4.3 (Bronk Ramsey, 2017) and run in an outlier mode (Buck et al., 1991; Bronk Ramsey, 2009) to assess for outliers in time (t) with outlier probabilities assigned a minimum outlier probability of 0.05 which was increased on the basis of quality assurance criteria (see Small et al., 2017). This approach allows all data to be included within the model (suitably down-weighted) and removes the need for the somewhat subjective approach of identifying and removing outliers. The likelihood data—or age measurements—were expressed as a Student’s \(t\)-distribution (more long-tailed than a normal distribution) and attributed an outlier scaling of \(10^2\)–\(10^4\) years (cf. Bronk Ramsey, 2009). The model (see GSA Data Repository for code) was punctuated by uniform in shape prior boundaries that separate a series of phases, essentially an unordered group of likelihoods—or age measurements—for individual locations. The modeled boundary ages document the retreat of the ISIS and allow rates of retreat between boundaries to be calculated.

However, the Bayesian approach to constraining ice margin retreat assumes uni-directional ice retreat (i.e., from south to north in this case). Consequently, any unidentified large scale readvances would cause the reconstructed retreat rates to underestimate the maximum retreat rate experienced by the ice margin between any two given Bayesian boundaries. Similarly, any stillstands or periods of ice margin oscillation will have a similar effect. It therefore must be highlighted that the reconstructed retreat rates presented here represent time-averaged retreat rates between the Bayesian boundaries and that the actual rate likely varied by an unquantifiable amount to be both faster and slower than the time averaged rate. However, given the scale of the transect (~175 km), and the duration of retreat (ca. 7 ka) we consider that time averaged rates provide useful context for modern day retreat rates and for comparison to paleo-ice sheet model output. Additionally, given the lack of evidence for large scale readvances in this sector of the ISB we infer that the time averaged retreat rates presented are a reasonable approximation of the true retreat rate of the ISIS.

Figure 9. (A) Stratigraphic log of sampled section on Howth Delta, Co. Dublin, Ireland, with location of optically stimulated luminescence (OSL) samples indicated. (B) Photograph of sampled section with locations of samples shown. (C) Flow parallel section exposed in nearby road cutting showing alternating sand and gravel beds with gravel top sets. Section is ~15 m high.
TABLE 3. CHEMISTRY AND DOSE RATE DATA OF OPTICALLY STIMULATED LUMINESCENCE SAMPLES

Short sample code	Depth (m)	Water content (%)	K (ppm)	Rb (ppm)	U (ppm)	Th (ppm)	External beta dose-rate (Gy/ka)	External gamma dose-rate (Gy/ka)	External cosmic dose-rate (Gy/ka)	Total dose-rate (Gy/ka)	Age model	α	Dβ	Age (ka)
KQ1	1.5	23 ± 5	1.1 ± 0.1	44.9 ± 4.5	1.1 ± 0.1	4.9 ± 0.5	0.83 ± 0.08	0.58 ± 0.04	0.17 ± 0.02	1.60 ± 0.09	CAM	0.45	412 ± 17.2	25.7 ± 4.7
KQ2	2.0	23 ± 5	1.0 ± 0.1	37.9 ± 3.8	1.3 ± 0.1	3.9 ± 0.4	0.75 ± 0.07	0.44 ± 0.03	0.16 ± 0.02	1.37 ± 0.08	CAM	N.A	358 ± 2.3	26.2 ± 2.2
BW1	12.0	20 ± 5	0.5 ± 0.1	19.6 ± 2.0	0.6 ± 0.1	1.8 ± 0.2	0.38 ± 0.04	0.23 ± 0.02	0.05 ± 0.01	0.67 ± 0.04	CAM	0.20	261 ± 3.2	37.1 ± 5.0
BW2	10.0	20 ± 5	0.4 ± 0.1	16.7 ± 1.7	0.5 ± 0.1	1.6 ± 0.2	0.30 ± 0.03	0.20 ± 0.01	0.06 ± 0.01	0.58 ± 0.03	CAM	0.20	152 ± 1.8	24.9 ± 3.3
KS1	11.0	20 ± 5	0.8 ± 0.1	28.2 ± 2.8	0.6 ± 0.1	1.9 ± 0.2	0.56 ± 0.06	0.32 ± 0.02	0.03 ± 0.00	0.91 ± 0.06	CAM	0.25	185 ± 2.5	28.7 ± 4.2
KS2	10.0	20 ± 5	0.4 ± 0.1	16.7 ± 1.7	0.4 ± 0.1	1.5 ± 0.2	0.30 ± 0.03	0.23 ± 0.02	0.06 ± 0.01	0.60 ± 0.03	CAM	0.25	158 ± 2.5	28.7 ± 4.2
BV1	9.0	20 ± 5	0.4 ± 0.1	13.9 ± 1.4	0.4 ± 0.1	1.6 ± 0.2	0.30 ± 0.03	0.20 ± 0.01	0.07 ± 0.01	0.58 ± 0.03	CAM	0.35	134 ± 2.8	218 ± 4.7
TB1	9.0	20 ± 5	1.1 ± 0.1	41.7 ± 4.2	1.2 ± 0.1	3.9 ± 0.4	0.82 ± 0.08	0.44 ± 0.03	0.07 ± 0.00	1.34 ± 0.08	CAM	0.35	323 ± 4.5	240 ± 3.7
TB2	19.0	23 ± 5	0.7 ± 0.1	28.1 ± 2.8	0.7 ± 0.1	2.4 ± 0.2	0.50 ± 0.05	0.32 ± 0.02	0.03 ± 0.00	0.89 ± 0.05	CAM	N.A	N.A	N.A
BH1	17.5	20 ± 5	1.1 ± 0.1	47.4 ± 4.7	1.5 ± 0.2	4.3 ± 0.4	0.85 ± 0.08	0.54 ± 0.04	0.03 ± 0.00	1.44 ± 0.09	CAM	0.30	260 ± 3.8	18.1 ± 2.9
BH2	17.5	20 ± 5	1.1 ± 0.1	46.0 ± 4.6	1.3 ± 0.1	3.5 ± 0.4	0.82 ± 0.08	0.47 ± 0.03	0.03 ± 0.00	1.34 ± 0.08	CAM	0.30	321 ± 4.9	240 ± 4.0
GY1	5.0	30 ± 5	1.2 ± 0.1	55.6 ± 5.6	1.4 ± 0.1	3.0 ± 0.3	0.80 ± 0.08	0.43 ± 0.03	0.11 ± 0.01	1.35 ± 0.08	CAM	0.20	229 ± 2.7	169 ± 2.3
HD1	5.0	20 ± 5	1.1 ± 0.1	41.3 ± 4.1	1.3 ± 0.1	4.1 ± 0.4	0.84 ± 0.08	0.51 ± 0.03	0.11 ± 0.01	1.47 ± 0.09	CAM	0.30	314 ± 4.9	214 ± 3.6
HD2	5.0	1.0 ± 0.1	1.1 ± 0.1	42.7 ± 4.3	1.4 ± 0.1	4.4 ± 0.4	0.84 ± 0.08	0.52 ± 0.03	0.17 ± 0.02	1.56 ± 0.09	CAM	0.30	397 ± 4.7	256 ± 3.3

*Water contents are expressed as a percentage of the mass of dry sediment.
†External dose-rates calculated using the conversion factors of Guérin et al. (2011) and beta dose-rate attenuation factors of Guérin et al. (2012).
§Cosmogenic ages were calculated using the Doose Rate and Age Calculator (DRAC, Duncan et al., 2015).
Bayesian Age Modeling

The geochronological data above do not exist in isolation but are accompanied by spatial information (the “prior model”) that places dated sites within a morpho-stratigraphical order representing a series of ice-marginal positions arranged in the order of ice margin retreat (cf. Chiverrell et al., 2013). This independently constructed relative order of events (Fig. 2) constrains the independent age measurements with overlapping age probability distributions providing the basis for using Bayesian age modeling (Buck et al., 1991; Bronk Ramsey, 2009). Bayesian age modeling produced a conformable sequence with an agreement index exceeding the threshold of 60 as defined by Bronk Ramsey (2009) (Fig. 11; Table 5). Assigning increased outlier probabilities for those samples where posterior likelihood > prior likelihood did not result in any significant differences in age model output.
Figure 11. Bayesian sequence model of the new dating control for the paleo–Irish Sea Ice Stream and the OxCal keywords that define the relative order (prior) model (Bronk Ramsey, 2009). Each distribution (light gray) represents the relative probability of each age estimate with posterior density estimate (dark gray) generated by the modeling. Outlier coding denotes dating information excluded or down-weighted in the modeling. OSL—optically stimulated luminescence; MWC—Wicklow meltwater channel.
The model produces a conformable sequence with modeled boundary ages for all sample sites. These ages range from 26.6 ± 1.9 ka to 19.5 ± 1.3 ka (Table 5). Additionally, the model produces boundary ages that have significantly lower uncertainties than the best estimate deglacial ages produced by geochronological dating for sites where there was agreement between ages.

Our Bayesian age model indicates that initial ice marginal retreat onto the southern Irish coast occurred at 25.9 ± 1.4 ka (Boundary 2). Retreat of the ISIS from the southern coast of Ireland is constrained by the modeled age (Boundary 3) of 25.1 ± 1.2 ka. Deglaciation to the Wexford coast, and associated deposition of the Screen Hills complex, occurred between 24.2 ± 1.2 ka and 22.1 ± 0.7 ka (Boundaries 4–7). Subsequent deglaciation of the eastern coast of Ireland is constrained by modeled ages from Wicklow Point, Bray Head, Greystones, and the Howth Peninsula and occurred between 21.6 ± 0.6–20.1 ± 1.0 ka (Boundaries 8–12). Final deglaciation of the portion of the ISIS contained within our prior model was complete by 19.5 ± 1.3 ka, when deposition of the Howth Delta occurred (Boundary 13). These modeled age boundaries can be interpreted in terms of the timing of retreat of the lateral margin of the ISIS along the south and east coasts of Ireland and used to test our conceptual model of ISIS deglaciation.

DISCUSSION

Retreat Rate along the Lateral Margin of the Irish Sea Ice Stream

Retreat rates for the ISIS (Table 6) were derived from the mean modeled boundary ages and evidence major changes in the pace of marginal retreat displayed by the ISIS. We separate ISIS marginal retreat into four distinct stages. Stage 1 (25.9–24.2 ka) deglaciation proceeds at a near constant rate of ~26 m a⁻¹ with the margin passing from Kilmore Quay (S Irish Coast) to Carnsore Point (Rossolare corner) and then to Blackwater Harbour (Blackwater). During Stage 2 (24.2–22.1 ka; Blackwater–Screen Hills) modeled rates of ISIS axial margin retreat exhibit an order of magnitude slowing at the Screen Hills (Table 6) from ~26 m a⁻¹ to ~3 m a⁻¹. In this deceleration the ISIS ice margin would have likely experienced numerous stillstands and readvances, which is in accordance with sedimentological and geomorphological evidence for repeated ice margin re-advance in the Screen Hills area (Thomas and Summers, 1983, 1984). Similarly, the relatively rapid rates of retreat onto and along the south coast of Ireland accord well with the sedimentological evidence suggesting the first major slowing of ice marginal retreat was in close proximity to the Screen Hills (cf. Thomas and Summers, 1983, 1984; Thomas and Kerr, 1987; Ó Cofaigh and Evans, 2001a, 2001b; Evans and Ó Cofaigh, 2003; Thomas and Chiverrell, 2011). During Stage 3 (22.1–21.6 ka; Screen Hills–Wicklow) retreat of the axial ice margins proceeded rapidly at average rates of 152 m a⁻¹ (Table 6) and there are no reported substantial ice marginal landforms or accumulations of glacial deposits; this is commensurate with rapid ISIS retreat. This retreat phase (Stage 3) accounts for 75 km of the total 173 km of ISIS axial retreat in the ISB. Ice marginal retreat during Stage 4 (21.6–19.5 ka; Wicklow–Howth) is less rapid at ~21 m a⁻¹, supporting sedimentological evidence for ice margin stillstands at Greystones (McCube and Ó Cofaigh, 1995), and oscillatory ice marginal retreat at Killiney (Rijsljik et al., 2010). In summary, there is a strong correspondence between the modeled rates of ISIS marginal retreat and our conceptual model inferred from the geomorphology and stratigraphy (Fig. 2).

Ice stream Behavior: External Forcing or Internal Dynamics?

Our modeled boundary age for ISIS deglaciation of the south Irish coast (24.5 ± 1.5 ka) is indistinguishable from the existing geochronology constraining the advance to, and maximum extent of, the ISIS (Ó Cofaigh and Evans, 2007; Ó Cofaigh et al., 2012; Smalley et al., 2017a). Our data and the existing chronology suggest that the advance to, and retreat from, maximum extent (total distance of ~600 km) occurred within 1–2 ka (i.e., within the resolution of the

TABLE 5. BOUNDARY NAMES, GEOCHRONOLOGICAL AGES, AND BAYESIAN BOUNDARY AGES (1) (II)

Boundary	Site	Cumulative retreat distance (km)	Samples	Ages (ka) ±	Boundary ages (ka) ±
Boundary Base (1)	N.A	N.A	N.A	26.6 ± 1.9	1.9
Boundary S Irish Coast (2)	Kilmore Quay	0	KO1, KO2	25.7 ± 4.7	2.2
			CS1, CS2	11.4 ± 0.7	1.5
			CS3	27.8 ± 1.5	
			CS3	24.0 ± 1.3	
Boundary Blackwater (4)	Blackwater	45	BW1, BW2	37.1 ± 5.0	3.3
			KS1, KS2	22.7 ± 3.7	4.2
			BV1	21.8 ± 4.7	2.2
			TB1	24.0 ± 3.7	2.1
Boundary Wicklow (8)	Wicklow MWC	128	WK1, WK2	19.7 ± 1.2	0.6
			BR1	20.1 ± 1.1	0.7
			BR2	23.3 ± 1.3	
			BR3	21.5 ± 1.2	
Boundary Bray Head high (9)	Bray Head	153	BR1	20.1 ± 1.1	0.7
			BH1	18.1 ± 2.9	0.8
			GY1	16.9 ± 2.3	0.8
			HO1	25.4 ± 1.4	1.0
			HO2	21.1 ± 1.2	
Boundary Howth (13)	Howth Delta	173	HD1	21.4 ± 3.6	1.3
			HD2	25.6 ± 3.3	

Note: Numbers in parentheses correspond to Boundary numbers in Figures 1 and 2. Boundaries in italics denote modelled ages not used to calculate time averaged retreat rates. MWC—meltwater channel.

TABLE 6. TIME AVERAGED RETREAT RATES BETWEEN (I) INDIVIDUAL BAYESIAN BOUNDARIES AND (II) THE RETREAT STAGES IDENTIFIED BASED ON THE MEDIAN AGE OF MODELLED AGE DISTRIBUTION

Boundary retreat (boundary numbers)	Cumulative retreat (km)	Individual retreat rates (m a⁻¹)	(i) Retreat stages	Average retreat rate (m a⁻¹)
S Irish coast (2)–Rossolare corner (3)	22	28	Stage I (S Irish Coast–Blackwater)	26
Rossolare corner (3)–Blackwater (4)	45	26		3
Blackwater (4)–Knocknasillogue (5)	47	3	Stage II (Blackwater–Screen Hills)	3
Knocknasillogue (5)–Ballyvaldon (6)	50	4		3
Ballyvaldon (6)–Screen Hills (7)	52	3		3
Screen Hills (7)–Wicklow (8)	128	152	Stage III (Screen–Wicklow)	152
Wicklow (8)–Ballyhorse (10)	142	18	Stage IV (Wicklow–Howth)	21
Ballyhorse (10)–Greystones (11)	151	30		3
Greystones (11)–Howth (13)	173	22		3
available geochronology) and, assuming equal time for both components, this points to axial retreat rates of 300–600 m a⁻¹. These are an order of magnitude higher than those observed during our Stage 1 (S Irish Coast–Blackwater; 25.9–24.2 ka) and we suggest that this reduction of the retreat rates reflects the continued narrowing of the calving margin width toward and into St George’s Channel. Given the short duration but extensive nature of ISIS maximum advance, it likely reflects a dynamic instability within the ice sheet during growth leading to rapid advance and probably over-extension such that the ice stream extended far beyond any position that can be reconciled with a glacial system in which accumulation and ablation were in equilibrium. Rapid or surge-like advances of the ISIS into the Celtic Sea have previously been inferred from marine cores (Scourse et al., 1990). The ISIS at maximum extent, given its axial length, would have had a low profile and been thin at its margin (cf. Scourse et al., 1990), and in advancing from the topographic constriction of St George’s Channel it spread out as a piedmont-like lobe. This low gradient, thin-ice and wide calving margin configuration likely rendered an over-extended ISIS vulnerable to rapid retreat perhaps conditioned by accelerated calving but driven by factors such as glaci-eustatic changes, a warmer sea surface, a megatidal regime and/or increasing air temperature leading to hydrofracturing (Haapaniemi et al., 2010; Scourse et al., 2009, 2018; Pollard et al., 2015). Notwithstanding limits imposed by uncertainties of the modeled chronology, the ISIS advance and retreat back to the south coast of Ireland by ca. 24.5 ka appears to pre-date any significant climate/oceanic warming in the North Atlantic (i.e., Greenland Interstadial 2; GI-2; 23.3–22.9 ka b2k; Rasmussen et al., 2014). However, even without external climate forcing at maximum extent, the ISIS may have been intrinsically unstable as thin ice masses near buoyancy are vulnerable to full-thickness tensile failure which would also lead to accelerated calving (Ma et al., 2017).

Slowing of ice margin retreat (Stage 2; Blackwater–Screen Hills) in our modeled chronology between 24.2 ± 1.2 ka and 22.1 ± 0.7 ka corresponds with transit of the ISIS margin into the narrowing of the St George’s Channel and the onset of minor readvance episodes and stands on the lateral ISIS margin at the Screen Hills. The Screen Hills mark a step-change in the ISIS axial trough geometry, with narrowing of the potential calving margin and a shallower trough depth (Fig. 12). These likely changes would have reduced the lateral and vertical extent of the calving margin, thus reducing calving rates leading to stabilization of the ice margin. A similar scenario of ice margin stabilization at trough constrictions was present in numerical modeling of the Marguerite Bay Ice Stream (Jamieson et al., 2012) and has been widely recognized in the literature (e.g., Benn et al., 2007). When an ice stream stabilizes at a trough constriction it ceases to thin at the grounding line although longitudinal stress coupling acts to propagate thinning up stream (Payne et al., 2004; Jamieson et al., 2012). This mechanism can fundamentally limit the duration of stability as the upstream drawdown can only deliver ice to the grounding line for as long as the source areas maintain sufficient ice storage. Such a scenario of drawdown would likely be accompanied by faster flow linked to accelerated ice flux.
Figure 13. Proxy records of potential deglacial forcing for the time period of the Irish Sea Ice Stream deglaciation. (A) Retreat stages as inferred from modeled boundary ages are indicated by the dashed lines. (B) Glacial isostatic adjustment (GIA) generated predictions of relative sea level change based on Bradley et al. (2011). The locations of RSL1 and RSL2 are shown on Figure 1. (C) Sea surface temperature (SST) estimates at 37°N 10°W (Bard, 2002; Bard et al., 2004) and 57°N 17°W (Lawrence et al., 2009). (D) Greenland oxygen isotope records (δ¹⁸O, ‰) from NGRIP and GISP2 on the GICC05 timescale (Rasmussen et al., 2014; Seierstad et al., 2014) (50 year moving averages shown by black lines). (E) Modeled surface-air temperatures relative to present for land masses north of ~45°N (Bintanja et al., 2005). (F) % N. pachyderma (sinistral) and (G) total Ice Rafted Detritus (IRD) flux (>150 μm cm⁻² ky⁻¹) from OMEX-2K core at 49°N 13°W (Haapaniemi et al., 2010).
Trough geometry regulated retreat of the marine-based Irish-Sea Ice Stream

to the grounding line. Geophysical evidence for ice streaming occurs immediately to the north of our region in the central ISB (Van Lawendonk et al., 2009) providing evidence for fast-flow, potentially while the ice margin was located at the Screen Hills. Continued ice sheet drawdown would cause the ISIS to become increasingly sensitive to external perturbations that act to increase mass loss at the grounding line as eventually there would be insufficient upstream mass to sustain fast flow. However, the switch from slower oscillating ice margin behavior (Stage 2) to more rapid marginal retreat (Stage 3) at 22.1 ka appears to post-date GI-2 (23.3–22.9 ka; Fig. 13A), a time of ocean warming in the North Atlantic cited as a potential major driver of BIIS deglaciation (Scourse et al., 2009). Additionally, given that modeled relative sea levels are falling at 21 ka (Bradley et al., 2011; Fig. 13B) it is reasonable to assume that a rise in relative sea-level capable of triggering rapid ice margin retreat was unlikely to have occurred prior to 21 ka. Thus, both the slow-down of marginal retreat and later acceleration of retreat rates display an apparent poor coupling to ocean-climate forcing in the North Atlantic.

More rapid retreat (Stage 3) continues across a normal bed-slope that shallows in the direction of retreat (Fig. 12) with a calving margin width that widens gradually from ~65–90 km. While the widening calving margin may have acted to increase calving and thus exacerbate retreat, the decreasing trough depth (i.e., normal bed slope) could have acted to stabilize the ice margin (cf. Jones et al., 2015) although we note that the changes in depth are small compared to those encountered by contemporary ice streams in Antarctica. Given that these factors would counteract each other, and given that the changes are gradual and relatively small, we suggest that this trough geometry is not conducive to the very rapid retreat (Stage 3) implied by our modeled boundary ages. Additionally, this deglaciation continues during the relatively cooler conditions of Greenland stadial 2 (GS-2) (Fig. 13). Given that neither trough geometry nor climate forcing can be directly correlated with the rapid nature of the observed retreat we infer that it is the result of ice sheet reorganization (drawdown) due to increased flux of ice to a stabilized grounding line, causing upstream thinning. The mass loss required to initiate the rapid retreat may well have been exacerbated by external forcing (i.e., GI-2) with increased calving due to warmer ocean waters as indicated by numerous records from ocean cores proximal to the former ISIS (Scourse et al., 2009). In this way the rapid retreat could be interpreted as a delayed response to climate forcing. The modeled rates of ice margin retreat slow during Stage 4 (Wicklow–Howth) and coincide with morphostratigraphic evidence for stillstands or marginal oscillation (McCabe and Ó Cofaigh, 1995; Rijjsdijk et al., 2010). This period of slower retreat occurs across a reverse bedslope (Fig. 12). This seems counterintuitive as this scenario is widely cited as driving rapid grounded margin line retreat (e.g., Favier et al., 2014; Jamieson et al., 2012; Schoof, 2007), but again we note that the magnitude of depth change is small (<50 m). The more substantial accumulations of ice marginal sediment are both associated with bedrock highs on the lateral margin of the ice stream that may have acted as pinning points (McCabe, 2008), and could account for the slowing of the retreat rates observed during Stage 4. A similar scenario has been proposed for the Llyn Peninsula, Wales, UK, on the opposite lateral margin of the ISIS (Smedley et al., 2017b).

CONCLUSIONS

The geochronological data presented here allow us to test a conceptual model of ISIS deglaciation in south and east Ireland inferred from the sediment-landform assemblage record. Integration of new geochronological data using Bayesian age modeling produces a conformable age model that supports the conceptual model of deglaciation, with extremely rapid (300–600 m a⁻¹) retreat from maximum extent, a slowing of retreat (26 m a⁻¹) during the period 25.9–24.2 ka, ice margin stabilization (3 m a⁻¹; 24.2–22.1 ka), rapid retreat (152 m a⁻¹; 22.1–21.6 ka), and finally a return to slower retreat rates (21 m a⁻¹; 21.6–19.5 ka).

This timescale strongly suggests that aspects of ISIS behavior during deglaciation displayed a complex relationship to external climatic forcing. Extremely rapid advance of the ISIS to its maximum extent, and its subsequent retreat at 26–25 ka is not directly correlated with distinct climate forcing in the North Atlantic region. Such behavior may be explained as a dynamic instability in response to overextension of the ice stream to the maximum limit that rendered it vulnerable to rapid retreat. Similarly, the stabilization of the ice margin at the Screen Hills spans a time of distinct warming (GI-2) with the subsequent rapid retreat occurring during colder conditions of GS-2. The stabilization at the Screen Hills is the most distinct change in pace of ISIS retreat evidenced by the data presented here and it occurs where there is a step-change in the confining trough geometry highlighting the important role that this plays in conditioning ice margin retreat. However, contrary to this, the ISIS subsequently underwent rapid retreat without major changes in trough geometry. We speculate that this represents a delayed response of the ice margin to the climate forcing of GI-2. Overall, changing trough geometry and internal feedbacks related to the overextension, retreat, and stabilization of the ISIS appear to obscure the role of external drivers such as climatic forcing.

The conceptual model and geochronological data presented here provide evidence for specific ice margin behavior during overall deglaciation that provides a testing ground for numerical models that likely require high resolution representations of grounding line dynamics. As contemporary ice streams in Greenland and Antarctica evolve in response to anthropogenic climate change they will undergo retreat that is conditioned both by climatic forcing and their internal dynamics. Our data highlight the potential for the evolution of rapid ice margin retreat to be highly nonlinear and conditioned strongly by trough geometry.

ACKNOWLEDGMENTS

This work was supported by the Natural Environment Research Council (NERC) consortium grant; BRITICE-CHRONO NE/J009768/1 (NE/J007196/1 to Durham University). The cosmogenic analyses were supported by the NERC Cosmogenic Isotope Analysis Facility allocation 9155.1014. Thanks are due to the staff at the Scottish Universities Environmental Research Centre accelerator mass spectrometry (SUERC AMS) Laboratory, East Kilbride, UK, for ⁹Be isotope measurements. H. Wynne is thanked for etching the quartz grains for luminescence dating. We would like to thank the two reviewers, Jon Merritt and Benjamin Laubs, for constructive reviews that have improved this manuscript. Data used in this work is available from the author on reasonable request.

REFERENCES CITED

Arbic, B.K., Mitrovica, J.X., MacAyeal, D.R., and Milne, G.A., 2008, On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events: Paleoceanography, v. 23, PA3211, https://doi.org/10.1029/2007PA001573.

Balco, G., Stone, J.O., Lifton, N.A., and Dunai, T.J., 2008, A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10 Be and 26 Al measurements: Quaternary Geochronology, v. 3, p. 174–195, https://doi.org/10.1016/j.quageo.2007.12.001.

Bard, E., 2002, Climate shock: Abrupt changes over millennial time scales: Physics Today, v. 55, p. 52–38, https://doi.org/10.1063/1.1537910.

Bard, E., Rostek, F., and Menot-Combes, G., 2004, A better radiocarbon clock: Science, v. 303, p. 178–179, https://doi.org/10.1126/science.1091964.

Benn, D.I., Warren, C.R., and Mottram, R.H., 2007, Calving processes and the dynamics of calving glaciers: Earth-Science Reviews, v. 82, p. 143–179, https://doi.org/10.1016/j.earscirev.2007.02.002.

Bennett, M.R., 2003, Ice streams as the arteries of an ice sheet: Their mechanics, stability and significance: Earth-Science Reviews, v. 61, p. 309–339, https://doi.org/10.1016/S0012-8252(02)00130-7.

Bintanja, R., van de Wal, R.S.W., and Oerlemans, J., 2005, Modelled atmospheric temperatures and global sea levels over the past million years: Nature, v. 437, p. 125–128, https://doi.org/10.1038/nature03975.

Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishizumi, K., Phillips, F., Schaefer, Geological Society of America Bulletin

Downloaded from https://pubs.geoscienceworld.org/gsa/gsbulletin/article-pdf/doi/10.1130/B31852.1/4189706/b31852.pdf on 11 October 2018 by Univ Sheffield Subscriptions Section user
Fabel, D., Ballantyne, C.K., and Xu, S., 2012, Trimlines, in D.J.A. Evans, D.J.A., and Ó Cofaigh, C., 2003, Depositional evidence for the Cordilleran ice sheet: Nature Climate Change, v. 4, no. 2, p. 117, https://doi.org/10.1038/nclimate2904.

Gagliardini, O., Gillet-Chaulet, F., Zwinger, T., Payne, A.J., and Le Brocq, A.M., 2014, Retreat of Pine Island Glacier controlled by marine ice-sheet instability: Nature Climate Change, v. 4, no. 2, p. 117, https://doi.org/10.1038/nclimate2904.

Braithwaite, R.J., and Clarke, G.J., 1999, Statistical models for mixed fission track ages: Nuclear Tracks and Radiation Measurements, v. 21, p. 459–470, https://doi.org/10.1016/S0191-9617(99)87011-5.

Small et al.

Lifar, V., Durand, C., Cornfield, S.L., Gudmundsson, G.H., Grinsdell, J., Overeem, I., Payne, A.J., and Le Brocq, A.M., 2014, Retreat of Pine Island Glacier controlled by marine ice-sheet instability: Nature Climate Change, v. 4, no. 2, p. 117, https://doi.org/10.1038/nclimate2904.

Boreas, v. 32, p. 76–101, 10.1111/j.1502-3885.2003.tb01443.x.

Lawton, N., and Smith, A.M., 2001, The calving cliff height of marine terminating glaciers: Earth and Planetary Science Letters, v. 199, p. 391–402, https://doi.org/10.1016/S0012-821X(01)00402-1.

J., and Stone, J., 2016, Geological calibration of spall-nuclide production rates in GRONUS-Earth project: Quaternary Geochronology, v. 31, p. 188–198, https://doi.org/10.1016/j.quascirev.2015.01.009.

Renwick, A.J., and Stone, J., 2016, Late Pleistocene chronostratigraphy and ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica: Science, v. 344, p. 570–573, 10.1126/science.aaf7037 (92)90401-4.

Baker, R.V., and Goudie, A.S., 2003, Developments in radiation, stimulation and dosimetry of the Cordilleran ice sheet: Radiative Measurements, v. 37, p. 357–541, https://doi.org/10.1130/03130-4887(03)00020-9.

Bradley, S.L., Milne, G.A., Shennan, I., and Edwards, R., 2011, An ice age sediment record: Radiocarbon dating of the British Isles: Journal of Quaternary Science, v. 26, p. 541–552, https://doi.org/10.1002/jqs.1481.

Briner, J.P., and Swanson, T.W., 1998, Using inherited cosmogenic nuclides to constrain sedimentation rates of the Cordilleran ice sheet: Geology, v. 26, p. 3–6, https://doi.org/10.1130/0148-946X(1998)026<0003:UICNRM>2.3.CO;2.

Bromley, G.R., Putnam, A.E., Rademaker, K.M., Lowell, T.V., Schaefer, J.M., Hall, B., Winchell, G., Birkel, S.D., and Borns, H.W., 2014, Younger Dryas deglaciation of Scotland driven by warming summers: Proceedings of the National Academy of Sciences of the United States of America, v. 111, p. 6215–6219, https://doi.org/10.1073/pnas.1321221111.

Brock, C.E., Kenworthy, J.B., Litton, C.D., and Smith, A.F.M., 1991, Combining archaeological and radiocarbon information: A Bayesian approach to calibration: Antiquity, v. 65, p. 808–821, https://doi.org/10.1017/S0003588300019183.

Bronger, J.A., King, G.E., and Duller, G.A.T., 2015, DRAC: A fully parameterizable and updated online tool to constrain cosmogenic-ray exposure dating: Journal of Quaternary Science, v. 30, p. 19–34, https://doi.org/10.1016/j.quascirev.2014.11.015.

Bøtter-Jensen, L., Andersen, C.E., Duller, G.A.T., and Murray, P.M., 2002, Variation in glacial erosion near the southern coast of Denmark: Geophysical Research Letters, v. 29, p. 222200294251.

Bradley, S.L., and Balco, G., 2010, Cosmogenic nuclide systematics and the CRONUScale project: Quaternary Geochronology, v. 31, p. 160–187, https://doi.org/10.1016/j.quascirev.2015.09.005.

Boslaugh, S., and Olley, J.M., 1999, Optical dating of single and multiple grains: Quaternary Geochronology, v. 28, p. 54–61, https://doi.org/10.1016/S0969-8099(00)00087-X.

Brézin, G., Mercier, N., and Adamiec, G., 2011, Dose-rate conversion factors: Update: Ancient TL, v. 29, p. 5–8, https://doi.org/10.1016/j.anttit.2011.06.006.

Bryant, E., Sanders, A.D., Kelso, A.J., and Hallet, B., 2015, 39Ar/40Ar dating of the Carnsore Granite Complex, southeastern Ireland: Geological Society, v. 154, p. 601–604, https://doi.org/10.1144/gsjgs.154.4.0601.

Buck, C.E., Kenworthy, J.B., Litton, C.D., and Smith, A.F.M., 1991, Combining archaeological and radiocarbon information: A Bayesian approach to calibration: Antiquity, v. 65, p. 808–821, https://doi.org/10.1017/S0003588300019183.

Child, D., Elliot, G., Mifsud, C., Smith, A.M., and Fink, D., 2000, Sample processing for earth science studies at ANTARES: Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, v. 156, p. 856–860, https://doi.org/10.1016/S0168-583X(99)00198-1.

Chiverrell, R.C., Thrasher, I.M., Thomas, G.S.P., Lawton, I., and Greenshields-Bowman, J.L., 2015, The Quaternary of southern Ireland: Proceedings of the Royal Irish Academy, v. 115, p. 243–256, https://doi.org/10.3318/PRIA.2015.114.1.

Clark, J., McCabe, A.M., Bowen, D.Q., and Clark, D.P., 2012, Response of the Irish Ice Sheet to abrupt climate change during the last deglaciation: Quaternary Science Reviews, v. 35, p. 100–115, https://doi.org/10.1016/j.quascirev.2012.05.016.

Colgan, P.M., Bierman, P.R., Mickelson, D.M., and Caffee, M., 2002, Variation in glacial erosion near the southern margin of the Laurentide Ice Sheet, south-central Wisconsin, USA: Implications for cosmogenic dating of glacial terrains: Geological Society of America Bulletin, v. 114, p. 1581–1591, https://doi.org/10.1130/0016-7606(2002)114<1581:VIGECS>2.0.CO;2.

Duller, G.A.T., 2008, Single grain optical dating of Quaternary Geochronology, v. 28, p. 54–61, https://doi.org/10.1016/S0969-8099(00)00087-X.

Durack, J.A., King, G.E., and Duller, G.A.T., 2015, DRAC: Dose Rate and Age Calculator for trapped charge dating: Quaternary Geochronology, v. 28, p. 54–61, https://doi.org/10.1016/j.quascirev.2015.03.012.

Evans, D.J.A., and Ó Cofaigh, C., 2003, Depositional evidence for the Cordilleran ice sheet in southeast Ireland during the last glaciation: Boreas, v. 32, p. 76–101, 10.1111/j.1502-3885.2003.tb01443.x.

Eyles, N., and McCabe, A.M., 1989, The Late Devensian (<22,000 BP) Irish Sea Basin: The sedimentary record of a collapsed ice sheet margin: Quaternary Reviews, v. 8, p. 307–351, https://doi.org/10.1016/0091-7613(90)90012-3.

Fabel, D., Ballantyne, C.K., and Xu, S., 2012, Trimlines, blockfields, mountain-top erratics and the vertical dimensions of the last British-Irish Ice Sheet in NW Scotland: Quaternary Science Reviews, v. 55, p. 91–102, https://doi.org/10.1016/j.quascirev.2012.09.002.
Trough geometry regulated retreat of the marine-based Irish-Sea Ice Stream

ters, v. 412, p. 112–121, https://doi.org/10.1016/j.epsl.2018.07.003

Praeg, D., McCarron, S., Dove, D., Ø Colfoigh, C., Scott, G., Monteys, X., Fucchin, L., Romeo, R. and Coxon, P., 2015, Ice sheet extension to the Celtic Sea shelf edge at the Last Glacial Maximum: Quaternary Science Reviews, v. 111, p. 107–112, https://doi.org/10.1016/j.quascirev.2014.12.010.

Prescott, J.R. and Hutton, J.T., 1994, Cosmic-Ray Contributions to Dose-Rates for Luminescence and ESR Dating—Large Depths and Long-Term Time Variations: Radiation Measurements, v. 23, no. 2-3, p. 497–500, https://doi.org/10.1350/1350-4487(94)90006-8.

Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.

Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vander Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261., https://doi.org/10.1002/04719033-5900006-1.