Synthesis of indole–cycloalkyl[b]pyridine hybrids via a four-component six-step tandem process

Muthumani Muthu¹, Rakkappan Vishnu Priya², Abdulrahman I. Almansour³, Raju Suresh Kumar³ and Raju Ranjith Kumar*¹

Abstract
The one-pot four-component reaction of 3-(1H-indol-3-yl)-3-oxopropanenitriles, aromatic aldehydes, cycloalkanones and ammonium acetate occurred via a six-step tandem Knoevenagel condensation–nucleophilic addition to carbonyl–Michael addition–N-cyclization–elimination–air oxidation sequence to afford structurally intriguing indole–cycloalkyl[b]pyridine-3-carbonitrile hybrid heterocycles in excellent yields.

Introduction
The syntheses of novel heterocycles through greener protocols have received a great deal of attention of the synthetic organic chemists in view of environmental concerns [1-3]. The multi-component tandem/domino reaction is one among several green chemical protocols widely employed for the synthesis of myriad of natural products and hybrid heterocycles [4-13]. These reactions are one-pot processes involving several bond forming steps under identical reaction conditions affording the desired product in a single transformation [14-22]. Hence, multicomponent tandem reactions minimize the number of steps to synthesize complex heterocycles, avoid the isolation and purification of the intermediates, allow less waste to the environment, shorten the reaction time and are also cost effective.

Carboyclic or heterocyclic fused pyridine derivatives are an important class of compounds omnipresent in natural products and biologically relevant synthetic compounds [23-27]. For example, imiquimod is an immune response modifier used to treat warts on the skin and certain type of skin cancer called superficial basal cell carcinoma (Figure 1) [28,29]. Loratadine is a
second-generation histamine H1 receptor antagonist used to treat allergic rhinitis and urticaria [30,31]. Blonanserin is an atypical antipsychotic drug used to treat schizophrenia [32], whereas the decahydrocyclododeca[b]pyridine has been reported as inhibitors of cytochrome P450 [33]. Furthermore, mussopyridine is being used in perfume industry [34].

Among the several methods available for the synthesis of pyridines or cycloalkyl-fused pyridines [23-27,35-44], the one-pot four-component reaction of cyclic/acyclic ketones, malononitrile, aromatic aldehyde and ammonium acetate affording 2-amino-3-cyanopyridine derivatives have been explored extensively [45-55]. However, syntheses of pyridine scaffolds bearing an indole side chain have received less attention. For instance, the multicomponent reactions of aldehydes, 3-(1H-indol-3-yl)-3-oxopropanenitriles and 5-aminopyrazol or naphthylamine afforded indole substituted fused pyridine derivatives [56]. 2-Indole substituted pyridine derivatives have also been prepared through AlCl3-induced C–C bond forming reaction [57] and three-component reactions of aromatic aldehydes, 3-(1H-indol-3-yl)-3-oxopropanenitrile and malononitrile [58,59], 2-acetylpyridine [60] or 3-amino-2-enones [61]. Incidentally, the indole scaffold is found in several natural products and bioactive synthetic compounds [62-67]. For example, the synthetic drug sumatriptan used for the treatment of migraine and cluster headaches belongs to the triptan class, whereas indomethacin is a non-steroidal anti-inflammatory drug used to relieve pain, swelling and joint stiffness caused by arthritis [68,69].

Recently we reported the synthesis of pyridine/benzo-fused cyclododecanes through a four-component tandem reaction [70]. In continuation we herein report the synthesis of novel indole substituted cycloalkyl[b]pyridine-3-carbonitriles from a one-pot six-step tandem protocol involving 3-(1H-indol-3-yl)-3-oxopropanenitriles, aromatic aldehydes, cycloalkanones and ammonium acetate. This work also stems from our continuous effort in synthesizing novel cycloalkyl[b]pyridine-3-carbonitrile hybrid heterocycles via tandem/domino reaction [71,72].

Results and Discussion

Initially the precursors viz. 3-(1H-indol-3-yl)-3-oxopropanenitriles 3 were synthesized from the reaction of indoles 1 and 2-cyanoacetic acid (2) in acetic anhydride under heating conditions (Scheme 1) [73].

Subsequently the one-pot four-component reaction of 3-(1H-indol-3-yl)-3-oxopropanenitrile (3a), 4-chlorobenzaldehyde (4f), cyclododecanone (5a) and ammonium acetate (6) was chosen as a model in order to identify the optimum conditions for this reaction (Table 1). To begin with, a 1:1:1:2 mixture of the above reactants was refluxed in toluene for 4 h which led to the formation of indole–cyclododeca[b]pyridine-3-carbonitrile 7f and the intermediate (E)-3-(4-chlorophenyl)-2-(1H-indole-3-carbonyl)acrylonitrile (8) in 10 and 80% yields, respectively. Intermediate 8 was formed exclusively when the reaction was carried out in refluxing acetonitrile or isopropanol. The yield of 7f increased up to 60% in refluxing methanol. However, the same reaction in refluxing ethanol afforded solely the desired product 7f in 93% yield within 2 h (Table 1). Furthermore, after completion of the reaction as evident from the TLC, the mixture was set aside for 6 h and the resultant precipitate was filtered, washed with ethanol and dried under vacuum to obtain pure 7f without the need for additional purification methods.

The structure of 7f was elucidated with the help of one- and two-dimensional NMR spectroscopy. In the 1H NMR of 7f the 5- and 14-CH2 protons appeared as triplets at 2.56 and 3.01 ppm (J = 9.0 Hz), respectively. From the H,H-COSY
Table 1: Synthesis of indole–cyclododeca[b]pyridine-3-carbonitrile 7f.

entry	conditions	yield (%)^a	
1	toluene, reflux, 4 h	10	80
2	CH₃CN, reflux, 3 h	–	96
3	iPrOH, reflux, 3 h	–	98
4	MeOH, reflux, 6 h	60	21
5	EtOH, reflux, 2 h	93	–

^a Isolated yield.

correlation of 14-CH₂ protons, the multiplets in the range 2.03–2.18 ppm was assigned to the 13-CH₂ protons. The CH₂ protons of C-6 to C-12 appeared as multiplets in the range 1.27–1.58 ppm. The H,H-COSY spectrum revealed that the NH proton of indole ring, which appeared as a broad singlet at 8.58 ppm is coupled to a doublet at 8.16 ppm (J = 3.0 Hz) due to 2'-CH proton.

A persuasive mechanism to justify the formation of indole–cyclododeca[b]pyridine-3-carbonitrile hybrid 7f is depicted in Scheme 2. Initially, the Knoevenagel condensation of 3-(1H-indol-3-yl)-3-oxopropanenitrile (3a) and 4-chlorobenzaldehyde (4f) leads to the formation of (E)-3-(4-chlorophenyl)-2-(1H-indole-3-carbonyl)acrylonitrile (8). Simultaneously, the reaction of cyclododecanone (5a) with ammonium acetate affords the enamine 9. The Michael addition of 8 and the enamine 9 yields the intermediate 10. Then the amino group of 10 undergoes intramolecular cyclization with the carbonyl to give 11, which subsequently undergoes dehydration to yield the cyclododeca[b]pyridine-3-carbonitrile 12. The intermediate 12 upon oxidative aromatization by molecular oxygen as the sole oxidant yields the indole–cyclododeca[b]pyridine-3-carbonitrile 7f. This four-component multistep tandem reaction afforded 7f in 93% yield involving the formation of two new C–N and C–C bonds in a single transformation without the need to isolate or purify the intermediates. Furthermore, the above reaction occurred stereoselectively to afford indole–cyclododeca[b]pyridine-3-carbonitrile 7f exclusively, which is evident from the fact that the decahydrocyclododeca[b]pyridin-2-amine 13 anticipated through the intramolecular cyclization of the amino group and the CN in intermediate 10 was not formed in the reaction (Scheme 2).

This one-pot four-component strategy was then employed to synthesize twenty-three novel indole–cyclododeca[b]pyridine-3-carbonitrile hybrid heterocycles 7 by varying the 3-(1H-indol-3-yl)-3-oxopropanenitrile 3 and aromatic aldehyde 4 (Scheme 3 and Table 2). In all the cases, the reaction occurred smoothly affording excellent yields of the product 7 (85–95%). However, the reaction failed to occur with aliphatic aldehydes viz. formaldehyde, heptanal, pentanal and hexanal. The structure of all the indole–cyclododeca[b]pyridine-3-carbonitrile hybrid heterocycles 7 was elucidated by NMR spectroscopy.

Furthermore, the analysis of ¹H NMR spectra revealed that the indole–cyclododeca[b]pyridine-3-carbonitriles 7 with ortho/ortho-para/ortho-meta substituted phenyl ring at C-4, exhibited axial chirality. For instance, in the case of 7f with p-Cl substituted phenyl ring at C-4, the 5- and 14-CH₂ protons appeared as triplets at 2.56 and 3.01 ppm, respectively. However, in 7l wherein C-4 is bearing an o-Br substituted phenyl, the 5-CH₂ protons appeared as multiplets in the range of 2.37–2.46 and 2.61–2.71 ppm, whereas the 14-CH₂ protons appeared as multiplets in the range of 2.91–3.01 and 3.06–3.16 ppm. The diastereotopic behavior of 5- and 14-CH₂ protons of indole–cyclododeca[b]pyridine-3-carbonitrile hybrid heterocycles 7 with an ortho/ortho-para/ortho-meta substituted phenyl ring at C-4 may be attributed to the axial chirality in-

2909
duced in these molecules due to the restricted rotation of the C–C single bond. The steric hindrance exerted between the nitrile group at C-3 and the ortho/ortho-para/ortho-meta substitution in the phenyl ring at C-4 restricts the free rotation of the C-4–phenyl C–C single bond thereby inducing axial chirality in these molecules (representative examples, Figure 2).

Interestingly in some cases this reaction afforded the unaromatized indole–cyclododeca[b]pyridine-3-carbonitriles 12 (Table 3). These experiments were repeated thrice in order to ascertain the exclusive formation of 12. The structure of 12 was confirmed from the 1H NMR spectra, wherein the characteristic singlet around 4.6–5.1 ppm due to the 4-CH proton was observed. In addition, in the case of 12r the structure was confirmed from the single crystal X-ray studies (Figure 3) [74]. A careful analysis of the reaction progress revealed that in these reactions the corresponding product 12 precipitated from the reaction mixture within 2 h of reflux (Table 3), which was also an indication of the completion of the reaction. Further increment in the reaction time had no influence on the reaction to
afford the aromatized product 7. However, in other cases (Table 2) the reaction was complete within 2 h (TLC analysis) but the product 7 precipitated after 6–8 h.

Gratified by the above results and, also to demonstrate the general applicability of this protocol, the reaction of 3-(1H-indol-3-yl)-3-oxopropanenitriles 3, aromatic aldehydes 4 and
Scheme 4: Synthesis of indole–cycloalkyl[b]pyridine-3-carbonitrile hybrids 15–18.

Table 3: Synthesis of indole–cyclododeca[b]pyridine-3-carbonitriles 12.

entry	comp	Ar	yield (%)	mp (°C)
1	12g	4-BrC₆H₄	89	222–223
2	12k	2-ClC₆H₄	95	265–266
3	12o	2-Cl,3-CH₂OC₆H₃	92	221–222
4	12p	2-F,4-ClC₆H₃	87	264–265
5	12q	2,5-(OCH₃)₂C₆H₃	85	224–225
6	12r	2,6-F₂C₆H₃	89	269–270

a Isolated yield.

Conclusion
The syntheses of a library of novel indole–cycloalkyl[b]pyridine-3-carbonitrile hybrid heterocycles have been achieved through a facile one-pot four-component strategy. This reaction 15–18 was elucidated using NMR spectroscopy and in the case of 16f the structure was further confirmed from single crystal X-ray studies (Figure 4) [74].
occurred through a six-step tandem Hantzsch-like process involving Knoevenagel–Michael–nucleophilic addition–intramolecular cyclization–elimination–oxidative aromatization sequence of reactions in a single transformation leading to the formation of two new C–N and C–C bonds. The structure of all the indole–cycloalkyl[b]pyridine-3-carbonitrile hybrid heterocycles was elucidated with the help of NMR spectroscopy and supported by single crystal X-ray studies for two compounds. The indole–cycloalkyl[b]pyridine-3-carbonitriles comprising ortho/ortho-para/ortho-meta substituted phenyl rings exhibited axial chirality due to restricted C–C single bond rotation.

Table 4: Yields and melting points of 15–18.

entry	comp	Ar	R	yield (%)	mp (°C)
1	15a	C6H5	H	92	189–190
2	15b	4-CH3C6H4	H	93	201–202
3	15d	4-iPrC6H4	H	92	198–199
4	15e	4-FC6H4	H	94	225–226
5	15f	4-ClC6H4	H	90	214–215
6	15g	4-BrC6H4	H	91	234–235
7	15h	4-CN2C6H4	H	82	235–236
8	15i	4-O2NC6H4	H	92	245–246
9	15j	2-CH3C6H4	H	91	222–223
10	15k	2-BrC6H4	H	94	259–260
11	15m	3-O2NC6H4	H	92	236–237
12	15n	2,4-C6C6H3	H	85	254–255
13	15p	2-F,4-ClC6H3	H	94	237–238
14	15q	2,6-F2C6H3	H	92	261–262
15	15r	3,4-(OCH3)2C6H3	H	92	267–268
16	15s	3,4,5-(OCH3)3C6H2	H	95	198–199
17	15u	thiophene-2-y1	H	94	200–201
18	15a	C2H5	Br	88	186–187
19	15b	4-CH3C6H4	Br	89	268–269
20	15c	4-CH3OC6H4	Br	89	274–275
21	15d	4-iPrC6H4	Br	90	276–277
22	15e	4-F2C6H4	Br	92	289–290
23	15f	4-ClC6H4	Br	91	278–279
24	15g	4-BrC6H4	Br	95	288–289
25	15j	2-Cl,3-CH3OC6H5	Br	90	279–280
26	15k	2-F,4-ClC6H3	Br	90	297–298
27	15l	3,4,5-(OCH3)2C6H2	Br	95	259–260
28	15m	4-CH3C6H4	H	80	165–166
29	15n	4-ClC6H4	H	82	184–185
30	15o	2-BrC6H4	H	89	210–211
31	15p	4-CH3SC6H4	H	84	170–171
32	15q	C6H5	H	81	174–175
33	15r	4-CH3C6H4	H	80	164–165
34	15s	4-ClC6H4	H	80	158–159
35	15t	4-ClC6H4	H	85	162–163

*Yield of isolated product. The unaromatized product was obtained.

References
1. Ritter, S. K. Chem. Eng. News 2013, 91 (22), 22–23. doi:10.1021/en-09122-tescon
2. Li, C.-J.; Trost, B. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13197–13202. doi:10.1073/pnas.0804384105
3. Ojima, I. Front. Chem. (Lausanne, Switz.) 2017, 5, No. 52. doi:10.3389/fchem.2017.00052
License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the authors and source are credited.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (https://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at:

doi:10.3762/bjoc.14.269