In this article we study the bordism groups of normally nonsingular maps \(f : X \to Y \) defined on pseudomanifolds \(X \) and \(Y \). To characterize the bordism of such maps, inspired by the formula given by Stong, we give a general definition of Stiefel-Whitney numbers defined on \(X \) and \(Y \) using the Wu classes defined by Goresky and Pardon in [9] and we show that in several cases the cobordism class of a normally nonsingular map \(f : X \to Y \) guarantees that these numbers are zero.

1. Introduction

The ambiental bordism of manifolds was presented by Thom in [14]. Conner and Floyd [4] extended this theory to bordism of maps between closed manifolds and there is a classical work of Stong [13], where the bordism class of maps between manifolds \(f : X \to Y \) is characterized in terms of so-called Stiefel-Whitney numbers of \((f, X, Y) \).

Concerning the bordism on singular varieties, Siegel in [12] computed the bordism groups of \(\mathbb{Q} \)-Witt spaces, showing that in non trivial cases they are equal to the Witt groups. Pardon [11] computed the bordism groups of the “Poincaré duality spaces” defined by Goresky and Siegel in [10].

In this article we extend this notion to bordism groups of normally nonsingular maps \(f : X \to Y \) between pseudomanifolds. For closed smooth manifolds \(X \) and \(Y \) this definition becomes the Stong’s definition of cobordism of maps \((f, X, Y) \) given in [13].

To characterize the bordism of such maps, inspired by the formula given by Stong, we give a general definition of Stiefel-Whitney numbers defined on \(X \) and \(Y \) using the Wu classes defined by Goresky and Pardon in [9] and we show that, in several cases the cobordism class of the map \(f \) guarantees that these numbers are zero. More precisely, we show how to extend the result of Stong in the case of normally nonsingular maps \(f : X \to Y \) in the following situations: Firstly we consider the case \(X \) is a locally orientable \(\mathbb{Z}_2 \)-Witt space of pure dimension \(a \) and \(Y \) an \(b \)-dimensional smooth manifold. Then we consider the case \(X \) is an \(a \)-dimensional smooth manifold and \(Y \) a locally orientable \(\mathbb{Z}_2 \)-Witt space of pure dimension \(b \). To conclude, we consider the general case where \(X \) and \(Y \) are locally orientable \(\mathbb{Z}_2 \)-Witt spaces.
2. Intersection homology

2.1. Pseudomanifolds.

Definition 2.1. A pseudomanifold (without boundary) of dimension a is a compact space X which is the closure of the union of $(a-1)$-dimensional simplices in any triangulation of X, and each $(a-1)$ simplex is a face of exactly two a-simplices.

A pseudomanifold (with boundary) of dimension a is a compact space X which is the closure of the union of $(a-1)$-dimensional simplices in any triangulation of X, and each $(a-1)$ simplex is a face of either one or two a-simplices. The boundary consists of simplices which are faces of only one a-simplex.

Every pseudomanifold admits a piecewise linear (P.L. for short) stratification, which is a filtration by closed subspaces $\emptyset \subset X_0 \subset X_1 \subset \ldots \subset X_{a-2} \subset X_a = X$, such that for each point $x \in X_i - X_{i-1}$ there is a neighborhood U and a P.L. stratum preserving homeomorphism between U and $\mathbb{R}^{a-i} \times C(L)$, where L is the link of the stratum $X_i - X_{i-1}$ and $C(L)$ denotes the cone on L. Thus, if $X_i - X_{i-1}$ is non empty, it is a (non necessarily connected) manifold of dimension i, and is called the i-dimensional stratum of the stratification.

The singular part, denoted by ΣX, is contained in the element X_{a-2} of the filtration.

Definition 2.2. A map $f : X \to Y$ between pseudomanifolds is normally nonsingular if there exists a diagram

\[
\begin{array}{c}
N \xrightarrow{i} Y \times \mathbb{R}^k, \\
\pi \downarrow \downarrow p \\
X \xrightarrow{f} Y
\end{array}
\]

where $\pi : N \to X$ is a vector bundle with zero-section s, i is an open embedding, p is the first projection and one has $f = p \circ i \circ s$. The bundle $N = N_f$ is called the normal bundle.

2.2. Intersection Homology and Cohomology. All homology and cohomology groups will be considered with \mathbb{Z}_2 coefficients. Reference for this section is Goresky-MacPherson original paper [7].

The notion of perversity is fundamental for the definition of intersection homology and cohomology. A perversity \underline{p} is a multi-index sequence of integers $(p(2), p(3), \ldots)$ such that $p(2) = 0$ and $p(c) \leq p(c + 1) \leq p(c) + 1$, for $c \geq 2$. Any perversity \underline{p} lies between the zero perversity $\underline{0} = (0, 0, 0, \ldots)$ and the total perversity $\underline{t} = (0, 1, 2, 3, \ldots)$. In particular, we will use the lower middle perversity, denoted \underline{m} and the upper middle perversity, denoted \underline{n}, such that

\[
\underline{m}(c) = \left\lfloor \frac{c-2}{2} \right\rfloor \quad \text{and} \quad \underline{n}(c) = \left\lfloor \frac{c-1}{2} \right\rfloor, \quad \text{for} \ c \geq 2.
\]

Let X be an a-dimensional pseudomanifold and \underline{p} a perversity. The intersection homology groups with \mathbb{Z}_2 coefficients, denoted $IH_{\underline{p}}^i(X)$, are the homology groups of the chain complex

\[
IC_{\underline{p}}^i(X) = \left\{ \xi \in C_i(X) \mid \begin{array}{c}
\dim(|\xi| \cap X_{a-c}) \leq i - c + p(c) \text{ and} \\
\dim(|\partial \xi| \cap X_{a-c}) \leq i - 1 - c + p(c)
\end{array} \right\},
\]

where
where $C_i(X)$ denotes the group of compact i-dimensional P.L. chains ξ of X with \mathbb{Z}_2 coefficients and $|\xi|$ denotes the support of ξ.

In fact $C_*(X)$ is the direct limit $\lim \rightarrow C^T_*(X)$, where $C^T_*(X)$ is the simplicial chain complex with respect to a triangulation T and the direct limit is taken with respect to subdivision within the family of triangulations of X compatible with the filtration of X.

The intersection cohomology groups with \mathbb{Z}_2 coefficients, denoted $IH^{a-i}_\bar{p}(X)$, are defined as the groups of the cochain complex

$$IC^{a-i}_\bar{p}(X) = \left\{ \gamma \in C^{a-i}(X) \mid \dim(|\gamma| \cap X_{a-c}) \leq i - c + p(c) \text{ and } \dim(|\partial \gamma| \cap X_{a-c}) \leq i - 1 - c + p(c) \right\},$$

where $C^{a-i}(X)$ denotes the abelian group, with \mathbb{Z}_2 coefficients, of all $(a-i)$-dimensional P.L. cochains of X with closed supports in X.

The main properties of intersection homology that we will use are the following:

For any perversity \bar{p}, the Poincaré map PD, cap-product by the fundamental class of X naturally factorizes in the following way $[7]$:

$$H^{a-i}(X) \xrightarrow{PD} H_i(X) \xrightarrow{\omega_X} IH^{\bar{p}}_i(X).$$

where α_X is induced by the cap-product by the fundamental class $[X]$ and ω_X is induced by the inclusion $IC^{\bar{p}}_i(X) \hookrightarrow C_i(X)$.

For perversities \bar{p} and \bar{r} such that $\bar{p} + \bar{r} \leq \bar{i}$, the intersection product

$$IH^{\bar{p}}_i(X) \times IH^{\bar{r}}_j(X) \rightarrow IH^{\bar{p}+\bar{r}}_{(i+j)-a}(X)$$

is well defined.

The natural homomorphism $IH^{\bar{p}}_{\bar{p}-i}(X) \rightarrow IH^{\bar{p}}_i(X)$, cap-product by the fundamental class $[X]$, is an isomorphism.

3. Witt spaces and Wu classes

In this section we use definitions and notations of M. Goresky [6] and M. Goresky and W. Pardon [9]. First of all, let us fix notations in the smooth case.

Let X be an a-dimensional manifold. We will denote by $w^i(X) \in H^i(X)$ the Stiefel-Whitney cohomology classes (S-W cohomology classes) of the tangent bundle TX. The Stiefel-Whitney homology classes (S-W homology classes) of TX denoted by $w_{a-i}(X) \in H_{a-i}(X)$ are their images by Poincaré duality. Let $i: X \hookrightarrow V$ be the inclusion of differentiable manifolds, then one has the naturality formula $i^*(w^i(V)) = w^i(X)$.

In the singular case, the **Steenrod square operations** are defined in intersection cohomology by M. Goresky [6] §3.4] as follows:
Definition 3.1. Let X be an a-dimensional pseudomanifold. Suppose \bar{c} and \bar{d} are perversities such that $2\bar{c} \leq \bar{d}$. For any i with $0 \leq i \leq [a/2]$ the “Steenrod square” operation

$$S^q: IH^i_d(X) \to IH^{i+j}_d(X) \to \mathbb{Z}_2$$

is given by multiplication with the intersection cohomology i^{th}-Wu class of X:

$$v^i(X) = v^i_d(X) \in IH^i_d(X).$$

One defines $v^i(X) = 0$, for $i > [a/2]$.

Definition 3.2. ([9], Definition 10.1) A stratified pseudomanifold X is a \mathbb{Z}_2-Witt space if for each stratum of odd codimension $2k + 1$, $IH^i_k(L) = 0$, where L is the link of the stratum.

For such spaces, the middle intersection homology group satisfies the Poincaré duality over \mathbb{Z}_2.

In the following, we will use the notion of locally orientable Witt-space that we recall:

Definition 3.3. ([9], Definition 10.2) A stratified pseudomanifold X is a locally orientable Witt space if it is both locally orientable and a \mathbb{Z}_2-Witt space.

Let X be a \mathbb{Z}_2-Witt space, then the Wu classes $v^i(X)$ lift canonically to $IH^i_d(X) = IH^i_0(X)$ (see [9] §10). We denote by $v_{a-i}(X) \in IH^i_{a-i}(X)$ the (homology) $(a - i)^{th}$-Wu class of X, in intersection homology, dual to the Wu class $v^i(X)$ (denoted by $IV^i \in IH^i(X)$ in [6]).

Definition 3.4. ([6] [12]) One defines the Whitney classes by

$$IW_{a-i}(X) = \sum_{\ell+j=i} S^q^\ell v^j(X) \in IH^i(X) = H_{a-i}(X).$$

The pullback of the intersection cohomology Whitney class under a normally nonsingular map is given by the following theorem ([6] 5.3]):

Theorem 3.5. Let X and Y be \mathbb{Z}_2-Witt spaces and $f : X \to Y$ a normally nonsingular map with normal bundle N_f. Then one has, in $IH^*(X)$:

$$f^*(IW(Y)) = W(N_f) \cup IW(X)$$

where $W(N_f)$ is the Whitney cohomology class (in $H^*(X)$) of the normal bundle N_f.

The inclusion $j : X \hookrightarrow V$ provides an unique morphism $j^* : IH^n_{\bar{q}-i}(V) \to IH^{n-i}_q(X)$ (see [6] §(3.4)). The result comes from the commutative diagram

$$\begin{array}{ccc}
IH^n_{\bar{q}-i}(X) & \xrightarrow{j^*} & IH^n_{\bar{q}-i}(V) \\
\downarrow \cong & & \downarrow \cong \\
IH^0_i(X) & \xrightarrow{j_X^*} & IH^0_{i+1}(V)
\end{array}$$

where the bottom map j_X^* is defined by the upper one. We have:

Corollary 3.6. Let us consider the inclusion $j : X \hookrightarrow V$ of the \mathbb{Z}_2-Witt space X in a \mathbb{Z}_2-Witt space V such that $\Sigma V \subset X$, so that the normal bundle N_i is trivial. Then one has:

$$j_X^*(v_{i+1}(V)) = v_i(X).$$
4. Cobordism of maps

Definition 4.1. Let $f : X \to Y$ be a normally nonsingular map between pseudomanifolds of dimensions a and b respectively. The triple (f, X, Y) bords if there exist:

1. Pseudomanifolds V and W with dimensions $a + 1$ and $b + 1$, respectively, such that $\partial V = X$ and $\partial W = Y$; $\Sigma V \subset X$ and $\Sigma W \subset Y$.

2. $F : V \to W$ normally nonsingular such that $F|_X = f$.

We will denote $(f, X, Y) = \partial(F, V, W)$.

The definition implies that $V \setminus X$ and $W \setminus Y$ are smooth manifolds. If X (resp. Y) is a manifold, then W (resp. V) is a manifold with smooth boundary.

If we consider X and Y closed smooth manifolds, this definition becomes the Strong’s definition to cobordism of maps (f, X, Y) in [13]. In this case Strong defines the Stieffel-Whitney (S-W for short) numbers associated to the map (f, X, Y); these numbers allow to characterize the bordism properties among such maps. We recover here results described by Stong which are necessary to better understand our main results.

Definition 4.2. [13] Let us consider a map $f : X \to Y$, where X and Y are manifolds of dimensions a and b, respectively. Define $f^! : H^i(X) \to H^{i+b-a}(Y)$ in such a way that for any $\alpha \in H^i(X)$, we define $f^!(\alpha) : H^{i+b-a}_i(Y) \to \mathbb{Z}_2$ such that for each $\beta \in H^{i+b-a}_i(Y)$,

$$f^!(\alpha)(\beta) = \langle f^*(\tilde{\beta}) \cup \alpha, [X] \rangle \in \mathbb{Z}_2,$$

where $\tilde{\beta} \in H^{a-i}(Y)$ is the Poincaré dual of β.

Remark 4.3. According to Atiyah and Hirzebruch [1], the map $f^!$ can be described in the following way: let us consider $h : X \to S^s$ an imbedding of X in some s-dimensional sphere S^s and T a tubular neighborhood of $(f \times h)(X)$ in $Y \times S^s$, then $f^!$ is the composition of the maps:

$$H^i(X) \xrightarrow{\varphi} H^{i+s+b-a}(T/\partial T) \xrightarrow{c^*} H^{i+s+b-a}(Y \times S^s) \simeq H^{i+b-a}(Y),$$

where φ denotes the Thom isomorphism and $c : Y \times S^s \to T/\partial T$ is the contraction.

5. Main results

In this section we show how to extend the result in the case of singular spaces and normally nonsingular maps $f : X \to Y$. Firstly we consider the case X is a locally orientable \mathbb{Z}_2-Witt space of pure dimension a and Y a b-dimensional smooth manifold. Then we consider the case X is an a-dimensional smooth manifold and Y is a locally orientable \mathbb{Z}_2-Witt space of pure dimension b. To conclude, we consider the general case where X and Y are locally orientable \mathbb{Z}_2-Witt spaces.

5.1. Case of a map $f : X \to Y$, with Y a smooth manifold.

Let $f : X \to Y$ be a normally nonsingular map, with X a locally orientable \mathbb{Z}_2-Witt space of pure dimension a and Y a b-dimensional smooth manifold.
Definition 5.1. Let us define the map \(f_B : IH^p_i(X) \to IH^p_i(Y) \) in such a way that the following diagram commutes

\[
\begin{array}{ccc}
H_i(X) & \xrightarrow{f_*} & H_i(Y) \\
\downarrow{\omega_X} & & \downarrow{\omega_Y} \\
IH^p_i(X) & \xrightarrow{f_B} & IH^p_i(Y)
\end{array}
\]

i.e. \(f_B = (\omega_Y)^{-1} \circ f_* \circ \omega_X \), where the map \(\omega_Y \) is an isomorphism since \(Y \) is smooth.

We denote by \(\tilde{f}_B \) the map obtained by composition

\[
IH^p_i(X) \xrightarrow{\omega_X} H_i(X) \xrightarrow{f_*} H_i(Y) \xrightarrow{PD} H^{b-i}(Y)
\]

with Poincaré duality \(PD \).

Definition 5.2. For any partition \(\iota = (\iota_1, \ldots, \iota_s) \) and \(r \) numbers \(u_1, \ldots, u_r \) satisfying

\[
(\iota_1 + \cdots + \iota_s) + u_1 + \cdots + u_r + r(b - a) = b,
\]

let us denote \(w^\iota(Y) = w^{\iota_1}(Y) \cdots w^{\iota_r}(Y) \). The S-W numbers of any triple \((f, X, Y)\) are defined by

\[
\langle w^\iota(Y).\tilde{f}_B(v_{a-u_1}(X)).\cdots.\tilde{f}_B(v_{a-u_r}(X)), [Y] \rangle.
\]

Theorem 5.4. Let \(f : X \to Y \) be a normally nonsingular map, with \(X \) a locally orientable \(\mathbb{Z}_2 \)-Witt space of pure dimension \(a \) and \(Y \) a \(b \)-dimensional smooth manifold. If \((f, X, Y)\) bords, then for any partition \(\iota \) and \(r \) numbers \(u_1, \ldots, u_r \) satisfying \((5.3)\), the S-W numbers

\[
\langle w^\iota(Y).\tilde{f}_B(v_{a-u_1}(X)).\cdots.\tilde{f}_B(v_{a-u_r}(X)), [Y] \rangle
\]

are zero.

Proof. As \((f, X, Y)\) bords, one has \((f, X, Y) = \partial(F, V, W)\). We may define a map

\[
\tilde{F}_B : IH^p_i(V) \to IH^p_i(W) = H_i(W) \to H^{b+1-i}(W)
\]

in the same way that we defined \(f_B \).

One has:

\[
\langle w^\iota(V).\tilde{f}_B(v_{a-u_1}(V)).\cdots.\tilde{f}_B(v_{a-u_r}(V)), \partial[W] \rangle =
\]

\[
\langle j^*w^\iota(W).j^*\tilde{F}_B(v_{a-u_1}(V)).\cdots.\tilde{f}_B(v_{a-u_r}(V)), \partial[W] \rangle,
\]

by corollary 3.6 and commutativity of the following diagram:
COBORDISM OF MAPS ON \mathbb{Z}_2-WITT SPACES

$$H_{i+1}(V) \xrightarrow{F_*} H_{i+1}(W)$$

$$H_i(X) \xrightarrow{j_*} H_i(Y)$$

ω_Y

ω_X

$H^p_i(X) \xrightarrow{\tilde{F}_B} H^{b-i}(Y)$

\tilde{f}^*

δ

$IH^{p_i}(X) \xrightarrow{j_*} IH^{p_i}(Y)$

$PD \simeq$

$PD \simeq$

$\bar{H}_{i+1}(V) \xrightarrow{\tilde{F}_B} H^{b-i}(W)$.

So, we obtain:

$$\left\langle j^* \left(w^i(W).\tilde{F}_B(v_{a-u_1}(V)) \cdot \ldots \cdot \tilde{F}_B(v_{a-u_r}(V)) \right), \partial[W] \right\rangle =$$

$$\left\langle \delta j^* \left(w^i(W).\tilde{F}_B(v_{a-u_1}(V)) \cdot \ldots \cdot \tilde{F}_B(v_{a-u_r}(V)) \right), [W, \partial W] \right\rangle = 0,$$

where

$$H^k(W) \xrightarrow{\delta} H^{k}(Y) \xrightarrow{\tilde{f}} H^{k+1}(W, \partial W)$$

is part of a long exact sequence, so that $\delta j^* = 0$. □

5.2. Case of a map $f : X \to Y$, with X a smooth manifold.

Let $f : X \to Y$ be a normally nonsingular map, with X an a-dimensional smooth manifold and Y a locally orientable \mathbb{Z}_2-Witt space of pure dimension b.

Since f is a normally nonsingular map one may consider the normal bundle N_f over X, and $i : N_f \to Y \times \mathbb{R}^{s+1}$ an open imbedding. Let \tilde{T} be a tubular neighborhood of $(f \times h)(X)$ in $Y \times \mathbb{R}^{s+1}$, where $h : X \to \mathbb{R}^{s+1}$ is defined in such a way that the following diagram commutes.

$$\begin{array}{ccc}
N_f & \xrightarrow{i} & Y \times \mathbb{R}^{s+1} \\
\sigma \downarrow & & \downarrow f \times h \\
X & \xrightarrow{f \times h} &
\end{array}$$

We denote by S^s the s-dimensional sphere in \mathbb{R}^{s+1} and by T the intersection $T = \tilde{T} \cap (Y \times S^s)$. Following the remark, there exists a map ϕ which is the composition of the maps:

$$H^i(X) \xrightarrow{\varphi} H^{i+s+b-a}(T/\partial T) \xrightarrow{c'} H^{i+s+b-a}(Y \times S^s) \simeq H^{i+b-a}(Y),$$

here φ denotes the Thom homomorphism and $c : Y \times S^s \to T/\partial T$ is the contraction. The last isomorphism is given by the K"unneth formula for a product of a smooth manifold with a \mathbb{Z}_2-Witt space [3].
Since X is a smooth manifold, $\alpha_X : H^i(X) \to IH^p_{a-i}(X)$ is an isomorphism, then one defines the map f_B by commutativity of the following diagram, i.e. as being $f_B = \alpha_Y \circ \phi \circ \alpha_X^{-1}$

$$\begin{array}{ccc} H^i(X) & \xrightarrow{\phi} & H^{b-(a-i)}(Y) \\ \alpha_X \downarrow \cong & & \downarrow \alpha_Y \\ IH^p_{a-i}(X) & \xrightarrow{f_B} & IH^p_{a-i}(Y). \end{array}$$

For any u with $0 \leq u \leq b$, let $v_u(Y) \in IH^p_{u}(Y)$ the Wu class of Y, dual of $v^{b-u}(Y) \in IH^p_{b-u}(Y)$ and $w_{b-u}(X)$ the homology Whitney class of X, so that $f_B(w_{b-u}(X)) \in IH^p_{b-u}(Y)$. For any u with $0 \leq u \leq b$ the S-W intersection numbers

$$v_u(Y) \cdot f_B(w_{b-u}(X))$$

are well defined.

Theorem 5.5. Let $f : X \to Y$ be a normally nonsingular map, with X an a-dimensional smooth manifold and Y a locally orientable \mathbb{Z}_2-Witt space of pure dimension b. If (f, X, Y) bords, then for any $0 \leq u \leq b$ the S-W numbers

$$v_u(Y) \cdot f_B(w_{b-u}(X))$$

are zero.

Proof. If $(f, X, Y) = \partial(F, V, W)$, one has

$$H^i(V) \overset{\cong}{\to} H^{i+s+b-a}(T'/\partial T') \overset{\cong}{\to} H^{i+s+b-a}(W \times S^s) \cong H^{i+b-a}(W),$$

where V is embedded in S^s and T' is a tubular neighborhood of $(F \times h)(V)$, which gives rise to the corresponding map F_B. Therefore we can consider the following diagram, where PD denotes the Poincaré duality

$$\begin{array}{ccc} H^i(X) & \xrightarrow{f_B} & H^i(Y) \\ \alpha_X \downarrow & & \uparrow \alpha_Y \\ IH^p_{a-i}(X) & \xrightarrow{f_B} & IH^p_{a-i}(Y) \\ \omega_X & & \omega_Y \\ PD & & PD \\ H^i(X) & \xrightarrow{c^*} & H^{i+s+b-a}(T/\partial T) \\ c & & c^* \\ H^{i+s+b-a}(Y \times S^s) \cong H^{i+b-a}(Y) \end{array}$$

since we had defined f_B and F_B the result follows in the same way of the proof of Theorem 5.4 \hfill \Box

5.3. The general case.

In the general case X and Y are locally orientable \mathbb{Z}_2-Witt spaces of dimensions a and b respectively. It is not always possible to define an unique map f_B as done in the other cases, however we can show that for any map f_B considered, the bordism condition of (f, X, Y) implies that the corresponding S-W numbers are zero.

First we show the following lemma.
Lemma 5.6. Let $f : X \to Y$ be a normally nonsingular map and $(f, X, Y) = \partial(F, V, W)$. Given a map f_B there exists a map F_B such that the following diagram commutes.

\[
\begin{array}{ccc}
IH^m_u(X) & \xrightarrow{j_X} & IH^m_{u+1}(V) \\
f_B & & F_B \\
IH^m_u(Y) & \xrightarrow{j_Y} & IH^m_{u+1}(W).
\end{array}
\]

Proof. The diagram

\[
\begin{array}{ccc}
X & \xrightarrow{j_X} & V \\
f \downarrow & & F_B \\
Y & \xrightarrow{j_Y} & W
\end{array}
\]

is a cartesian diagram. Then we can apply Proposition 10.7 in [2] (see also [8]).

One has equality of sheaves on Y:

\[
j_Y^* F_B \mathcal{A} = f^* j_X^* \mathcal{A}
\]

for any sheaf \mathcal{A} on V. That provides a commutative diagram of complexes of sheaves on Y (perverse intersection sheaves for the middle perversity \bar{m}).

\[
f^* \mathcal{IC}^\bullet_X \xrightarrow{j_X^*} f^* j_X^* (\mathcal{IC}^\bullet_V) = j_Y^* F_B (\mathcal{IC}^\bullet_V) \]

Let us remind that intersection homology is obtained by taking hypercohomology of the perverse intersection sheaf:

\[
IH^m_u(Y) = \mathbb{H}^{b-u}(Y; \mathcal{IC}^\bullet_Y)
\]

Taking hypercohomology

\[
\mathbb{H}^{b-u}(Y; \bullet)
\]

of the previous diagram, one obtains:

\[
\begin{array}{ccc}
\mathbb{H}^{b-u}(X; \mathcal{IC}^\bullet_X) & \xrightarrow{j_X^*} & \mathbb{H}^{b-u}(V; \mathcal{IC}^\bullet_V) \\
f_B & & F_B \\
\mathbb{H}^{b-u}(Y; \mathcal{IC}^\bullet_Y) & \xrightarrow{j_Y^*} & \mathbb{H}^{b-u}(W; \mathcal{IC}^\bullet_W)
\end{array}
\]

and the Lemma follows. □

Theorem 5.7. Let $f : X \to Y$ be a normally nonsingular map, with X and Y locally orientable \mathbb{Z}_2-Witt spaces of pure dimension a and b respectively. Then for any u with $0 \leq u \leq b$, the S-W numbers $\langle v_u(Y), f_B(v_{b-u}(X)), [Y] \rangle$ are zero.
Proof. The diagram of Lemma 5.6 can be written in the cohomology setting

\[
\begin{align*}
 IH^n_{\bar{m}}(X) \xrightarrow{f^B} IH^n_{\bar{m}}(Y) \\
 \downarrow j_X^* \quad \downarrow j_Y^* \\
 IH^n_{\bar{m}}(V) \xrightarrow{F^B} IH^n_{\bar{m}}(W),
\end{align*}
\]

where \(\bar{m} + \bar{n} = \bar{t} \) and we use the same notation for corresponding maps \(j_X^* \) and \(j_Y^* \).

Let us consider the homology class \(v_{b-u}(Y) \in IH^n_{b-u}(Y) \), that will be written \(v^u(Y) \in IH^n_{\bar{m}}(Y) \) in the cohomology setting.

Then \(v^u(Y) = j_Y^* v^u(W) \) where \(v^u(W) \in IH^n_{\bar{n}}(W) \) is the corresponding cohomology Wu class to the homology Wu class \(v_{b+1-u}(W) \in IH^n_{\bar{m}+1}(W) \) of \(W \).

Let us consider the cohomology Wu class \(v^{a-u}(X) \in IH^n_{\bar{m}}(X) \) corresponding for the cohomology Wu class \(v_u(X) \in IH^n_{\bar{m}}(X) \). Then \(v^{a-u}(X) = j_X^*(v^{a-u}(V)) \) where \(v^{a-u}(V) \in IH^n_{\bar{n}}(V) \) is the corresponding cohomology Wu class to the homology class \(v_{u+1}(V) \in IH^n_{\bar{n}+1}(V) \).

One has

\[f^B(v^{a-u}(X)) = f^B j_X^*(v^{a-u}(X)) \in IH^n_{\bar{m}}(Y). \]

The intersection product

\[v_{b-u}(Y) \cdot f_B(v_u(X)) \in IH^n_{b-u}(Y) \times IH^n_{a-u}(Y) \to IH^n_0(Y) \]

corresponds to the product

\[v^u(Y) \cup f^B(v^{a-u}(X)) \in IH^n_{\bar{m}}(Y) \times IH^n_{\bar{n}}(Y) \to IH^n_0(Y). \]

One has

\[
\langle v^u(Y) \cup f^B(v^{a-u}(X)), [Y] \rangle = \]

\[
\langle j_Y^*v^u(W) \cup f^B j_X^*(v^{a-u}(V)), [Y] \rangle = \]

\[
\langle j_Y^*v^u(W) \cup j_Y^*F^B(v^{a-u}(V)), [Y] \rangle = \]

\[
\langle j_Y^* [v^u(W) \cup F^B(v^{a-u}(V))], \partial[W] \rangle = \]

\[
\langle \delta j_Y^* [v^u(W) \cup F^B(v^{a-u}(V))], [W, \partial W] \rangle = 0 \]

where the first equality is a consequence of the Theorem 5.3 of Goresky [6], the second one is from Lemma 5.6 and the fourth equality is obtained in an analogous way than the proof of Theorem 5.5. \(\square \)
References

[1] M. F. Atiyah and F. Hirzebruch, Cohomologie-Operationen und charakteristische Klassen, Maht. Z. 77 (1961), 149–187.

[2] A. Borel et al. Intersection Cohomology, Progress in Mathematics, 50, Swiss seminars, Boston, 1984, ISBN: 0-8176-3274-3.

[3] G. Barthel, J.-P. Brasselet, K. Fieseler, O. Gabber and L. Kaup, Relèvement de cycles algébriques et homomorphismes associés en homologie d’intersection [Lifting of algebraic cycles and associated homomorphisms in intersection homology], Ann. of Math. 141, no 2, (1995), 147–179.

[4] P. E. Conner and E. E. Floyd, Differentiable Periodic Maps, Springer, Berlin, 1964.

[5] W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces. Mem. Amer. Math. Soc. 31, no. 243, 1981.

[6] M. Goresky, Intersection Homology operations, Comment. Math. Helvet. 59, (1984), 485–505.

[7] M. Goresky and R. MacPherson, Intersection homology theory, Topology 19 (1980), no. 2, 135–162.

[8] M. Goresky and R. MacPherson, Intersection homology II, Invent. Math. 72 (1983), no. 1, 77–129.

[9] M. Goresky and W. Pardon, Wu Numbers of Singular Spaces, Topology 28, (1989), 325–367.

[10] M. Goresky and P. Siegel, Linking pairings on Singular spaces, Comment. Math. Helvet. 58, (1983), 96–110.

[11] W. Pardon, Intersection homology Poincaré spaces and the characteristic variety theorem, Comment. Math. Helvet. 65, (1990), 198–233.

[12] P. Siegel, Witt Spaces: a Geometric Cycle Theory for KO-Homology at odd primes, Amer. J. Math., 105, (1983), no. 5, 1067–1105.

[13] R. E. Stong, Cobordism of maps, Topology 5, (1966), 245–258.

[14] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helvet. 28, (1954), 17–86.

I.M.L., Aix-Marseille University, France.

IGCE-UNESP, Rio Claro, S.P. Brasil.

IGCE-UNESP, Rio Claro, S.P. Brasil.

ICMC-USP, São Carlos, S.P. Brasil.