New Solid Solution MAX Phases: \((Ti_{0.5}, V_{0.5})_3AlC_2\), \((Nb_{0.5}, V_{0.5})_2AlC\), \((Nb_{0.5}, V_{0.5})_4AlC_3\) and \((Nb_{0.5}, Zr_{0.2})_2AlC\)

M. Naguiba\(^a\), G. W. Bentzel\(^a\), J. Shah\(^a\), J. Halim\(^a, b\), E. N. Caspi\(^c\), J. Lu\(^b\), L. Hultman\(^b\) and M. W. Barsouma\(^a\)

\(^a\)Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA; \(^b\)Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden; \(^c\)Nuclear Research Centre-Negev, P.O. Box 9001, 84190 Beer-Sheva, Israel

(Received 2 June 2014; final form 4 June 2014)

We synthesized the following previously unreported aluminum-containing solid solution M\(_{n+1}\)AX\(_n\) phases: \((Ti_{0.5}, V_{0.5})_3AlC_2\), \((Nb_{0.5}, V_{0.5})_2AlC\), \((Nb_{0.5}, V_{0.5})_4AlC_3\) and \((Nb_{0.5}, Zr_{0.2})_2AlC\). Rietveld analysis of powder X-ray diffraction patterns was used to calculate the lattice parameters and phase fractions. Heating Ti, V, Al and C elemental powders—in the molar ratio of 1.5:1.5:1.3:2—for 2 h in flowing argon, resulted in a predominantly phase pure sample of \((Ti_{0.5}, V_{0.5})_3AlC_2\). The other compositions were not as phase pure and further work on optimizing the processing parameters needs to be carried out if phase purity is desired.

Keywords: MAX Phase, Solid Solution, Rietveld Analysis, HRTEM, Lattice Parameter

1. Introduction

The world of ceramic materials has been enriched significantly over the last two decades by the discovery of the M\(_{n+1}\)AX\(_n\) (MAX) phases. The latter is a large, unique family \((70+\) phases) of layered hexagonal \((\text{space group } P6_3/mmc)\) compounds with a composition of \(M_{n+1}AX_n\), where \(M\) is an early transition metal (Sc, Ti, V, Cr, Nb, etc.), \(A\) is a group A element (mainly groups 13–16; Al, Si, Sn, In, etc.), \(X\) is carbon and/or nitrogen and \(n = 1, 2\) or \(3\).[1] The uniqueness of the MAX phases comes from their layered structure and metal-like nature of their bonding. They thus combine both metal and ceramic characteristics.[2] For example, similar to ceramics, some are quite stiff[3] and corrosion,[4] oxidation, and creep resistant. Similar to metals, they have high electrical and thermal conductivities, are not prone to thermal shock, and are most readily machinable.

Among the plentiful MAX phases, the Al-containing members have attracted the most attention, since some of them, such as Ti\(_2\)AlC and Ti\(_3\)AlC\(_2\), have exceptional oxidation resistance due to the formation of a thin alumina layer.[5,6] They also exhibit self-healing characteristics, wherein cracks that form are filled with alumina.[7,8]

Since each MAX phase has its own characteristic properties, combining different transition metals on the M-sites to form solid solutions is a further approach to tailoring properties. Table 1 lists all solid solution MAX phases known to date. The solid solutions are separated by the values of \(n\), as well by the elements that constitute the solid solution.

Note that some solid solutions allow for the formation of certain M atom containing MAX phases with \(n\) values that are not possible with the end members. For example, neither \(V_3AlC_2\) nor \(Cr_3AlC_2\) was reported experimentally, but \((V_{0.5}, Cr_{0.5})_3AlC_2\) was successfully synthesized.[26]

In terms of mechanical properties, the effects of solid solution are highly dependent on the system chosen. For example, substituting 20% of the Ti atoms with V in Ti\(_2\)AlC resulted in 45% increase in compressive strength.[9] Similarly, Meng et al. [9] found that a 15% substitution of V resulted in an increase in the Vicker hardness, \(H_v\), at 10 N, from 3.5 GPa for the end member, Ti\(_2\)AlC, to 4.5 GPa. Conversely, substitution of half the Ti with Nb in Ti\(_2\)AlC [37] did not lead to solid solution hardening, nor did the substitution of 50% Si with Ge in Ti\(_3\)SiC\(_2\).[32]

Another point of interest with solid solutions is their effect on thermal expansion. Barsoum et al. [38] found that the solid solution \((Ti_{0.5}, Nb_{0.5})_2AlC\) has
slightly greater thermal expansion coefficient (TEC) than its end members, 8.9 × 10^{-6} K^{-1} compared with 8.7 × 10^{-6} K^{-1}. A similar result, but of a greater difference, was found by Finkel et al. [39] with Ti3(Ge0.43, C0.56)C2 in the 323–1,473 K range. The TEC of the end members, Ti3SiC2 and Ti3GeC2, are 8.9 × 10^{-6} and 7.8 × 10^{-6} K^{-1}, respectively. The x = 0.5 solid solution has a TEC of 9.3 × 10^{-6} K^{-1}, suggesting a destabilization in the solid solution structure at a higher temperature. It must be noted, however, that more recently, Lane et al. [40] yielded a TEC value of 8.5 × 10^{-6} K^{-1} for Ti3GeC2, placing it more in line with the other results. The TECs of the end members and solid solution compositions in the Cr2(Al0.43, Ge0.56)xC system were more recently measured by Cabioch et al. [19] in the 298–1,073 K range. The results show that, with an increase in the AI content, the TEC along the [010] remains fairly constant at 14(1) × 10^{-6} K^{-1}, while the TEC in the [001] direction decreases from 17(1) × 10^{-6} K^{-1} to about 12(1) × 10^{-6} K^{-1}. More importantly, they found that for Cr2(Al0.43, Ge0.56)xC composition, the TECs along the two directions are equal, thus showing the possibility of TEC tailoring by the use of solid solution compounds. Probably the most significant effect of solid solutions is their effect on magnetic properties. For example, while Cr2AlC is a paramagnetic material, doping it with small amounts of Mn renders it magnetic with a Curie temperature that is a function of Mn content.[41–43] In general, the effects of solid solutions on mechanical, thermal, and especially magnetic properties is still a wide-open field of study. This is especially true since many solid solutions are yet to be discovered. Herein, we report on the following new solid solution, AI-containing, MAX phases: (Ti0.6, V0.4)x1.8AlC2, (Nb0.6, V0.4)x2AlC2, (Nb0.6, V0.4)x4AlC3, and (Nb0.6, Zr0.4)x2AlC. It is important to note that Reifenstein et al. [44] synthesized a (Nb0.6, Zr0.4)x2AlC phase, with a and c-lattice parameters (LPs) of 3.19 and 14.3 Å, respectively.

2. Experimental Details Powders, the characteristics of which are given in Table 2, were mixed in the atomic ratios listed in Table 3 using zirconia balls in

Table 1. List of the 68 solid solutions known to date.

211 (n = 1)	M element	Ti5(Al0.5, V0.5)x1.8AlC2 (x = 0.25, 0.75) [9–11]
212 (n = 2)	A element	Ti3(Al0.43, Ge0.56)x1.8AlC2 (x = 0.5) [25]
312 (n = 3)	X element	Ti3AlC, Ni1−xC (x = 0.5) [35]

aThis work.

Table 2. Source and characteristics of powders used.

Powder	Purity (wt%)	Particle size	Source
Titanium	99.5	−325 mesh	Alfa Aesar, Ward Hill, MA, USA
Vanadium	99.0	−325 mesh	Alfa Aesar, Ward Hill, MA, USA
Niobium	99.8	−325 mesh	Alfa Aesar, Ward Hill, MA, USA
Zirconium	99.5	50 mesh	Atlantic Equipment Engineers, Upper Saddle River, NJ, USA
Aluminum	99.5	−325 mesh	Alfa Aesar, Ward Hill, MA, USA
Graphite	99.0	−300 mesh	Alfa Aesar, Ward Hill, MA, USA
plastic jars for 18 h. The initial concentration of the Al was set to be slightly higher than the stoichiometry, to minimize the formation of the transition metal binary carbides. After mixing, the powders were placed in alumina crucibles and heated at a rate of 5°C/min under argon, Ar, flow in a tube furnace to the soaking temperatures and times listed in Table 3. After furnace cooling, the resulting lightly sintered porous compacts were machined into a fine powder using a TiN-coated milling bit.

To characterize the phases present in each sample, X-ray diffraction (XRD) of the powders, filling a groove of 20 × 20 × 1 mm³ dimensions in a glass holder, was carried out using a diffractometer (Rigaku, SmartLab, Tokyo, Japan) with Cu-Kα radiation (step scan 0.02° 2θ, 6–7 s per step). The incident slit size was 10 mm. Silicon (Si) powder (10 wt%) was added to every sample to act as an internal standard to calibrate the diffraction angles and instrumental peak broadening.

Rietveld refinements of the XRD patterns were conducted using FullProf [45]. Refined parameters were: six background parameters, LPs of all phases, scale factors from which relative phase fractions are evaluated, X profile parameters for peak width, atomic positions and global isotropic thermal displacement parameter for the major phases. Because of the predominantly pure phase (Ti0.5,V0.5)3AlC2, anisotropic thermal displacement parameter for the major phase was refined.

High-resolution transmission electron microscope (HRTEM) micrographs and selected area electron diffraction (SAED) of cross-sectional samples of (Ti0.5,V0.5)3AlC2 and (Nb0.5,V0.5)3AlC were obtained using FEI Tecnai G2 TF20 UT equipped with a field emission gun at a voltage of 200 kV and point resolution of 0.19 nm. The specimens were prepared by embedding the MAX powder in a Ti grid, reducing the Ti-grid thickness down to 50 μm via mechanical polishing and finally Ar⁺ ion milling to reach electron transparency.

3. Results and Discussion
The XRD pattern obtained when the initial elemental ratios were those corresponding to (Ti0.5,V0.5)3AlC2 is shown in Figure 1(a) (black symbols) together with the calculated pattern obtained

Starting composition (atomic ratio)	Soaking parameters	Resulted phases, wt% from Rietveld refinement of XRD
Ti:V:Al:C 1.5:1.5:1:3:2:0	1,450, 2	90.60(3)% (Ti0.5,V0.5)3AlC2, 9.40(8)% TiC
V:Nb:Al:C 1.0:1.0:1.3:1:0	1,550, 2	71.83(2)% (Nb0.5,V0.5)2AlC, 16.39(2)% (Nb0.5,V0.5)4AlC, 11.78(2)% Al3Nb
Nb:Zr:Al:C 1.5:0.5:1.1:1	1,600, 4	90.31(2)% (Nb0.8,Zr0.2)2AlC, 1.1(2)% Zr5Al3, 8.59(4)% ZrC

Figure 1. Powder XRD patterns of sample with (Ti0.5,V0.5)3AlC2 starting composition: (a) observed pattern (black crosses), Rietveld generated pattern (red lines) and difference between the two (blue lines). The black and blue ticks below the pattern represent the peak positions of the 312 phase and TiC phase, respectively; (b) shown in center. The two other patterns were generated by Materials Studio assuming LPs listed in Table 4 for Ti3AlC2 [46] and V3AlC2 [47].
Table 4. Summary of the LPs and z-coordinates of the solid solutions obtained herein by Rietveld analysis of the XRD data, and those previously reported for their end members.

MAX phase	a-LP (Å)	c-LP (Å)	Atom (Wyckoff)	z-Coordinate	Ref.	
(Ti0.5, V0.5)3AlC2	2.99941(6)	18.1494(7)	Ti/V (4f)	0.1294(2)	0.0701(7)	This work
Ti3AlC2	3.075	18.578	Ti (4f)	0.128	[46]	
V3AlC2	2.908a	17.778a	V (4f)	0.1298	[47]	
(Nb0.5, V0.5)2Al2C	3.0098(1)	13.488(1)	Nb/V (4f)	0.0903(2)	[48]	
(Nb0.5, V0.5)2AlC	3.04	13.5	Nb/V (4f)	0.0554(3)	[49]	
V2AlC	3.106	13.888	Nb/V (4f)	0.1585(3)	[50]	
(Nb0.5, V0.5)4AlC3	3.0961(2)	23.821(2)	Nb/V (4f)	0.0554(3)	[51]	
Nb4AlC3	3.13	24.121	Nb (4e)	0.1574	[52]	
V4AlC3	2.931	22.719	V (4e)	0.1548	[53]	
(Nb0.8, Zr0.2)2Al2C	3.13468(8)	14.0003(7)	Nb/Zr (4f)	0.0914(1)	This work	
(Nb0.4, Zr0.4)2Al2C	3.19	14.3	Nb/Zr (4f)	0.0554(3)	[44]	
Nb2AlC	3.106	13.888	Nb/Zr (4f)	0.1086	[37]	
Zr2AlC	3.255a	14.570a	Nb/Zr (4f)	0.1086	[44]	

Note: When reported, numbers in parentheses represent one standard deviation of the last significant digit.
aEstimated from theoretical calculations, not experimental.

from the Rietveld analysis (red lines); the difference between the two is shown in blue. The \(\chi^2 \) value was 3.918. The sample was found to be a predominately pure solid solution, at 72(1) wt%, with 7.4(6) wt% TiC, along with the Si that was added as an internal standard, 21.1(5) wt%. The \(a \)-LP and \(c \)-LP were calculated from the refinement to be 2.99941(6) and 18.1494(7) Å, respectively. Henceforth, the reported uncertainties of all structural values determined from Rietveld refinement are the uncertainties of the refinement process, and are mainly of statistical origin. From the refined LP of the internal Si standard, we evaluate the systematic uncertainty to be < 0.04%. This value is similar for all refinements reported here. The solid solution’s \(a \) and \(c \) LP values are situated approximately halfway between the \(a \) and \(c \) LP of the end members (Table 4).

This is best seen in Figure 1(b) where the observed XRD patterns are compared with those calculated using Materials Studio [52] for the end members, assuming the LPs listed in Table 4. The \(z \)-coordinates of the Ti/V atoms, as well as the C atoms, obtained from refinements were 0.1294(2) and 0.0701(7), respectively.

HRTEM images of the sample along the [11\(\bar{2} \)0] zone axis with its SAED can be seen from Figure 2(a) and 2(b). From the transmission electron microscope (TEM) and SAED images, the \(a \)-LP and \(c \)-LP were measured to be 3.02 and 18.3 Å, respectively. For all samples, \(a \)-LP and \(c \)-LP were measured with an estimated uncertainty of <1%.

The difference between the \(a \)-LP obtained from XRD and TEM is about 0.9%; that of the \(c \)-LP is 0.8%, less than the estimated uncertainty of the LPs determined by TEM. The results obtained through Rietveld refinement confirm these values.

The XRD pattern obtained when the starting molar stoichiometric ratios of Nb, V, Al and C were all equal is shown in Figure 3(a) (black symbols) together with the calculated pattern obtained from the Rietveld analysis (red lines); the difference between the two is shown in blue. The \(\chi^2 \) value was 1.677. In this case three phases were detected: (Nb0.5, V0.5)2Al2C, (Nb0.5, V0.5)4AlC3 and Al1Nb. Their respective weight percents were 64.0(7), 14.6(3) and 10.5(2) wt%. The Si added as an internal standard accounts for the remaining 10.9(5) wt%. The \(a \)-LP and \(c \)-LP for the (Nb0.5, V0.5)2Al2C phase solid solution were calculated to be 3.0098(1) and 13.488(1) Å, respectively. Not surprisingly, these values, again, fall between the values of the end members (Figure 3(b) and Table 4). The refinement calculated a \(z \)-coordinate value of 0.0903(2) for the V/Nb atoms found in the \(n = 1 \) phase. For the \(n = 3 \) phase, the \(z \)-coordinate for the V/Nb atoms at the \(x,y \)-coordinates (0,0) was 0.1585(3) and at the \(x,y \)-coordinates of (1/3,2/3) was 0.0544(3).
As for the C atoms, a \(z \) coordinate value of 0.110(2) was determined.

At 3.0961(2) and 23.821(2), the \(a \)-LP and \(c \)-LP values for the \((\text{Nb}_{0.5}, \text{V}_{0.5})_4\text{AlC}_3\) phase, respectively, were also between the values of the end members (Table 4). The HRTEM image in Figure 2(c) shows \((\text{Nb}_{0.5}, \text{V}_{0.5})_2\text{AlC}\) along the \([11\bar{2}0]\) zone axis with its SAED, Figure 2(d). From the TEM and SAED images, \(a \)-LP and \(c \)-LP were calculated to be 2.99 and 13.55 Å respectively. The difference between the \(a \)-LP obtained from XRD and TEM is about 0.6%; that of \(c \)-LP is 0.4%, less than the estimated uncertainty of the LPs determined by TEM. HRTEM images of the \(n = 3 \) phase along the \([11\bar{2}0]\) zone axis with its SAED are shown in Figure 2(e) and 2(f), respectively. The \(a \)-LP and \(c \)-LP were measured at 3.12 and 23.73 Å, respectively. The difference between the \(a \)-LP obtained
4. Conclusion

Herein, we reported on the synthesis of the previously unreported solid solution MAX phases, \((\text{Ti}_{0.5}, \text{V}_{0.5})_2\text{AlC}_2\), \((\text{Nb}_{0.5}, \text{V}_{0.5})_2\text{AlC}_3\), and \((\text{Nb}_{0.8}, \text{Zr}_{0.2})_2\text{AlC}\), as well as the \((\text{Nb}_{0.8}, \text{Zr}_{0.2})_2\text{AlC}\) phase. Using Rietveld analysis of XRD patterns, the LPs and phase fractions were calculated. In all cases, the LPs of the new solid solution phases were in between those of their end members. By heating a powder mixture, with Ti:V:Al:C from XRD and TEM is about 0.7%; that of c-LP is 0.4%. Again, these values are relatively close, confirming the overall methodology used in this work.

The XRD pattern obtained when the initial elemental ratios were those corresponding to \((\text{Nb}_{0.8}, \text{Zr}_{0.2})_2\text{AlC}\) is shown in Figure 4(a) (black symbols), together with the calculated pattern obtained from the Rietveld analysis (red lines); the difference between the two is shown in blue. The \(\chi^2\) value was 3.476. Here again three phases were detected: \((\text{Nb}_{0.8}, \text{Zr}_{0.2})_2\text{AlC}, \text{Zr}_5\text{Al}_3\) and \(\text{ZrC}\) phases. The respective wt\% were: 82.0(7), 1.0(2) and 7.8(3). At 9.2(3) wt\%, the Si accounts for the balance.

The \(a\)-LP and \(c\)-LP for the \((\text{Nb}_{0.8}, \text{Zr}_{0.2})_2\text{AlC}\) phase were calculated to be 3.13468(8) and 14.0003(7), respectively. As noted above, Reiffenstein et al. [44] were the first to report on a 211 phase in the Nb–Zr–Al–C system, namely \((\text{Nb}_{0.6}, \text{Zr}_{0.4})_2\text{AlC}\). The \(a\) and \(c\)-LPs of the latter were 3.19 and 14.3 Å. In the same paper, the \(a\) and \(c\) LPs of the fictitious \(\text{Zr}_2\text{AlC}\) phase were estimated to be 3.25 and 14.5 Å. These values were used to generate the XRD pattern for \(\text{Zr}_2\text{AlC}\) shown in Figure 4(b). The \(z\)-coordinate of the Nb/Zr atoms was determined by Rietveld refinement to be 0.0914(1).
molar ratios of 1.5:1.5:1.3:2.0, at 1, 450°C for 2 h resulted in a predominantly phase pure (Ti₀.₅, V₀.₅)₁₃AlC₂ sample. The other compositions were not as phase pure and further work on optimizing the processing parameters needs to be carried out if phase purity is desired.

Acknowledgements This work was supported by the National Science Foundation under Grant DMR 1310245; the Department of Energy’s Office of Nuclear Energy University Program under Grant CFP-11-3231. J.H. also acknowledges the support from the SSF synergy grant FUNCASE Functional Carbides and Advanced Surface Engineering. The Knut and Alice Wallenberg Foundation supported the electron microscopy laboratory at Linköping operated by the Thin Film Physics Division.

References
[1] Barsoum MW. MAX phases: properties of machinable ternary carbides and nitrides. Weinheim: John Wiley & Sons; 2013.
[2] Radovic M, Barsoum MW. MAX phases: bridging the gap between metals and ceramics. Am Ceram Soc Bull. 2013;92:20–27.
[3] Barsoum MW, Radovic M. Elastic and mechanical properties of the MAX phases. Annu Rev Mater Res. 2011;41:195–227.
[4] Jovic VD, Jovic BM, Gupta S, El-Raghy T, Barsoum MW. Elastic and mechanical properties of MAX phases in the Cr₂AlC₁₋ₓGeₓC₂ system. J Eur Ceram Soc. 2013;33:897–904.
[5] Tian WB, Sun ZM, Hashimoto H, Du YL. Synthesis, microstructure and properties of (Cr₁₋ₓ,Vₓ)₃AlC₂ solid solutions. J Alloys Compd. 2009;484:130–133.
[6] Wang XH, Zhou YC. High temperature oxidation behavior of Ti₂AlC and (Crₓ,Ti₁₋ₓ)₃AlC₂ with Al₂O₃ addition by SHS involving aluminothermic reduction. Ceram Int. 2013;39:7537–7544.
[7] Song GM, Pei YT, Sloop WG, Li SB, De Hosson JTM, van der Zwaag S. Oxidation-induced crack healing in Ti₃AlC₂ ceramics. Scr Mater. 2008;59:33–39.
[8] Yang HJ, Pei YT, Rao JC, De Hosson JTM, van der Zwaag S. Oxidation of Ti₃AlC₂ ceramics. Scr Mater. 2008;59:13–16.
[9] Meng FL, Zhou YC, Wang JY. Strengthening of Ti₃AlC₂ by substituting Ti with V. Scr Mater. 2005;53:1369–1372.
[10] Schuster JC, Nowotny H, Vaccaro C. The ternary systems: Cr–Al–C, V–Al–C, and Ti–Al–C and the behavior of the H-phases (M₂AlC). J Solid State Chem. 1980;32:213–219.
[11] S. Hoffmann EN, Barsoum MW. Synthesis and oxidation of Ti₃InC₅, Zr₂InC₆, (TiₓZrₓ)₃InC₆ and (Ti₀.₅,Fe₀.₅)$_x$InC in air. J Alloys Compd. 2006;426:168–175.
[12] Barsoum MW, Golczewski J, Seifert JJ, Aldinger F. Fabrication and electrical and thermal properties of Ti₂InC₁₋ₓ, Hf₂InC₁₋ₓ and (Ti, Hf)₂InC. J Alloys Compd. 2002;340:173–179.
[13] Tian WB, Sun ZM, Hashimoto H, Du YL. Synthesis, microstructure and properties of (Crₓ₁₋ₓ,Vₓ)₃AlC₂ solid solutions. J Alloys Compd. 2009;484:130–133.
[14] Phatak NA, Saxena SK, Fei Y, Hu J. Synthesis of a new MAX compound (Cr₀.₅,V₀.₅)$_x$GeC and its compressive behavior up to 49 GPa. J Alloys Compd. 2009;475:629–634.
[15] Yu W, Li S, Sloop WG. Microstructure and mechanical properties of a Cr₂Al(Si)C solid solution. Mater Sci Eng A. 2010;527:5997–6001.
[16] Etzkorn J, Ade M, Kotzott D, Kleczek M, Hillebrecht H. Ti₂GaC, Ti₄GaC₃ and Cr₄GaC₃-synthesis, crystal growth and structure analysis of Ga-containing MAX-phases M₆₋₁GaCₙ with M=Ti, Cr, and n=1,3. J Solid State Chem. 2009;182:995–1002.
[17] Barsoum MW, Ali M, El-Raghy T. Processing and characterization of Ti₂AlC, Ti₂AlN, and Ti₂AlC₀.₅N₀.₅. Metall Mater Trans A. 2000;31:1857–1865.
[18] Yu W, Gauthier-Brunet V, Cabioc’h T, Dubois S. Synthesis and microstructure characterization of substoichiometric Ti₂AlC(Nₓ) solid solutions and related Ti₂AlCₓ and Ti₂AlN end-members. J Am Ceram Soc.; in press. doi:10.1111/jace.12930
[19] Cabioc’h T, Eklund P, Mauchamp V, Jaouen M, Barsoum MW. Tailoring of the thermal expansions of the MAX phases in the Cr₂AlC₁₋ₓGeₓC₂ system. J Eur Ceram Soc. 2010;30:1803–1811.
[20] Liu Z, Zheng L, Sun L, Qian Y, Wang J, Li M. (Crₓ/3)₃Al2 and (Cr₅/8)₃Al₂C₃: new MAX phase compounds in Ti–Cr–Al–C systems. J Am Ceram Soc. 2012;95:1357–1360.
[21] Zhou Y, Meng F, Zhang J. New MAX-phase compounds in the V–Cr–Al–C system. J Am Ceram Soc. 2008;91:1357–1360.
[22] Zhang HB, Zhou YC, Bao YW, Li MS, Wang JY. Intermediate phases in synthesis of Ti₃SiC₂ and Ti₃Si(Al)C₂ solid solutions from elemental powders. J Eur Ceram Soc. 2006;26:2373–2380.
[23] Li SB, Bei GP, Li CW, Zhai HX, Zhou Y. Synthesis and deformation microstructure of Ti₃SiAl₀.₂C₁.₈ solid solution. Mater Sci Eng A. 2006;441:202–205.
[24] Li C, Zhai H, Ding Y, Zhou Y, Zhan Z. Synthesis of Ti₃Si₀.₃Al₀.₄C₁.₈ solid solution from Si–Si–Al–C powder mixture. Mater Lett. 2007;61:3575–3577.
[25] Zhou YC, Chen XJ, Wang JY. Strengthening of Ti₃AlC₂ by incorporation of Si to form Ti₃Al₁₋ₓSiₓC₂ solid solutions. Acta Mater. 2006;54:1317–1322.
[26] Ai MX, Zhai HX, Zhou Y, Zhang Z, Zhan Z, Li SB. Synthesis of Ti₃AlC₂ powders using Si as an additive. J Am Ceram Soc. 2006;89:1114–1117.
[27] Ganguly A, Zhen T, Barsoum MW. Synthesis and mechanical properties of Ti₃GeC₂ and Ti₃(Si₁₋ₓGeₓ)C₂ (x=0.5, 0.75) solid solutions. J Alloys Compd. 2004;376:287–295.
[28] Yang H, Manoub B, Downs RT, Ganguly A, Barsoum MW. Crystal chemistry of layered carbide, Ti₃(Si₀.₄Ge₀.₆)C₂. J Phys Chem Solids. 2006;67:2512–2516.

239
of tantalum synthesized by the molten metal technique. Inorg Chem. 2007;46:1410–1418.

[35] Manoun B, Saxena SK, Hug G, Ganguly A, Hoffman EN, Barsoum MW. Synthesis and compressibility of Ti3(Al0.5Sn0.5)C2 and Ti3Al(C0.5N0.5)2. J Appl Phys. 2007;101:113523.

[36] Zheng LY, Wang JM, Lu XP, Li FZ, Wang JY, Zhou YC. (Ti0.75Nb0.25)2AlC4: a new-layered compound belonging to MAX phases. J Am Ceram Soc. 2010;93:306871.

[37] Salama I, El-Raghy T, Barsoum MW. Synthesis and compressibility of Ti3(Al, Sn0.2)C2 and Ti3Al(C0.5, N0.5)2. J Appl Phys. 2007;101:113523.

[38] Zheng LY, Wang JM, Lu XP, Li FZ, Wang JY, Zhou YC. (Ti0.75Nb0.25)2AlC4: a new-layered compound belonging to MAX phases. J Am Ceram Soc. 2010;93:306871.

[39] Finkel P, Seaman B, Harrell K, Palma J, Hettinger JD, Lofland SE, Ganguly A, Barsoum MW, Sun Z, Ahuja R. Electronic, thermal, and elastic properties of Nb2AlC, (Ti, Nb)2AlC and Ti2AlC. Metall Mater Trans. 2002;33a:2779.

[40] Lane NJ, Vogel SC, Barsoum MW. High temperature neutron diffraction and the temperature-dependent crystal structures of Ti3SiC2 and Ti3GeC2. Phys Rev B. 2010;82:147410.

[41] Tao QZ, Hu CF, Lin S, Zhang HB, Li FZ, Qu D, Wu ML, Sun YP, Sakka Y, Barsoum MW. Coexistence of ferromagnetic and a re-entrant cluster glass state in the layered quaternary (Cr1−x,Mnx)2GeC. Mater Res Lett.; submitted for publication. doi:10.1080/21663831.2014.909542.

[42] Liu Z, Waki T, Tabata Y, Nakamura H. Mn-doping-induced itinerant-electron ferromagnetism in Cr2GeC. Phys Rev B. 2014;89:054435.

[43] Mockute A, Dahlqvist M, Emmerlich J, Hultman L, Schneider JM, Persson POA, Rosen J. Synthesis and ab initio calculations of nanolaminated (Cr, Mn)2AlC compounds. Phys Rev B. 2013;87:094113.

[44] Reiffenstein E, Nowotny H, Benesovsky F. Strukturenchemische und magnetoochemische Untersuchungen an Komplexcarbididen. Monatsh für Chem verw Teiler anderer Wiss. 1966;97:1428–1436.

[45] Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys Rev B. 1993;192:55–69.

[46] Zhou YC, Wang XH, Sun ZM, Chen SQ. Electronic and structural properties of the layered ternary carbide Ti3AlC2. J Mater Chem. 2001;11:2335–2339.

[47] He X, Bai Y, Zhu C, Sun Y, Li M, Barsoum MW. General trends in the structural, electronic and elastic properties of the M3AlC2 phases (M=transition metal): a first-principle study. Comput Mater Sci. 2010;49:691–698.

[48] Scabarozi TH. Materials science and engineering. Philadelphia, PA: Drexel University; 2009.

[49] Schneider JM, Mertens R, Music D. Structure of V2AlC studied by theory and experiment. J Appl Phys. 2006;99:013501.

[50] Hu C, Li F, Zhang J, Wang J, Wang Y, Zhou Y. Nb4AlC3: a new compound belonging to the MAX phases. Scr Mater. 2007;57:893–896.

[51] Hu C, Zhang J, Wang J, Li F, Wang J, Zhou Y. Crystal structure of V4AlC3; a new layered ternary carbide. J Am Ceram Soc. 2008;91:636–639.

[52] Accelrys Software Inc. Discovery studio modeling environment. San Diego, CA: Accelrys Software Inc.; 2007.