Computationally accelerated discovery of high entropy pyrochlore oxides

Krishna Chaitanya Pitike, Antonio Macias, Markus Eisenbach, Craig A. Bridges, and Valentino R. Cooper

1 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
2 Department of Chemistry, University of California, Berkeley, CA 94720, USA
3 National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
4 Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Dated: April 9, 2021)
Abstract

High entropy ceramics provide enhanced flexibility for tailoring a wide range of physical properties, emerging from the diverse chemical and configurational degrees of freedom. Expanding upon the endeavors of recently synthesized high entropy ceramics in rock salt, fluorite, spinel and perovskite structures, we explore the relative feasibility of formation of high entropy pyrochlore oxides, $A_2B_2O_7$, with multi-cation occupancy of the $B-$site, estimated from first principles based thermodynamic descriptors. Subsequently, we used Monte Carlo simulations to estimate the phase composition, oxygen vacancy concentration and local ionic segregation as a function of temperature and oxygen partial pressure. In parallel, we have investigated the synthesis of several multicomponent oxides with a pyrochlore composition, related to our computational investigations, resulting in several high purity pyrochlore oxides, in some cases with minor impurity phases. Ultimately, our approach allows us to evaluate potential impurity phases, ionic disorder and oxygen vacancy concentration in response to the experimental variables, thereby making realistic predictions that can direct and accelerate experimental synthesis of novel multicomponent ceramics.

I. INTRODUCTION

Since the discovery of an entropy stabilized oxide in 2015 [1], there has been a surge in the synthesis of new high entropy compounds ($\sim$ 25 compounds and counting) in $\sim$ 10 structure types [2]. Yet there are more than 9000 structure types (see the Inorganic Crystal Structure Database (ICSD) Ref. [3]), that could still be potentially synthesized in the high entropy form. In this work, we have explored one such technologically important structure type — pyrochlore oxide, $A_2B_2O_7$.

Pyrochlore oxides can be generally formed with a large cation on the $A-$site (e.g., rare earth, alkali or an alkaline earth metal) and a smaller transition metal or post transition metal cation on the $B-$site. The flexibility in oxidation states and accommodating electronic interactions of the $A-$ and $B-$site elements leads to rich functionality in the pyrochlore structure [4]. For example, pyrochlores and related structures have outstanding catalytic [5, 6], magnetic [7, 8] properties as well as exhibiting strong radiation and thermal resistance [9, 10]. These responses could be further tuned by modifying the structure to include multiple elemental species on the cation sublattices. For example, significant enhancement in multicomponent systems compared to the end members is demonstrated for oxygen conduction in disordered pyrochlores [11], piezoelectric properties in

* coopervr@ornl.gov
perovskites [12], and thermal resistance in high entropy ceramics [13, 14]. Furthermore, recent investigations of ionic conductivity and mechanical properties of entropy stabilized oxide in the rock salt structure revealed lithium superionic conductivity [15] and unusual elastic anisotropy [16], respectively.

Thus far, the synthesis of a limited number of high entropy pyrochlores have been reported, as obtained by heavy doping of lanthanides on the $A$-site [13, 17] and transition metals on the $B$-site [18]. Specifically, our previous work on high entropy pyrochlores [18] has shown that Nd$_2$(TaScSnHfZr)$_2$O$_7$ and Nd$_2$(TiNbSnHfZr)$_2$O$_7$ pyrochlore compositions are highly disordered and phase pure. The grand challenge is however, a detailed predictive survey, to identifying new candidates for high entropy pyrochlores obtained by combining multiple chemical species on the target cation sites. In this work, we achieve this by computational exploration of the formation ability of high entropy pyrochlores with 100 at.% La or 100 at.% Nd on the $A$–site and a combination of transition metal cations on the $B$–site. Specifically, we utilize the enthalpy and entropy descriptors — that we previously demonstrated [19] to accurately quantify the relative feasibility of formation of high entropy single phase multi-component rock salt, $BO$ oxides — to identify five component combinations of $B$-site cations that are candidates for experimental synthesis. We further extend this approach to include oxygen vacancy concentration in the high entropy pyrochlore phase, as a function of temperature and oxygen partial pressure, thereby giving insights for the experimental synthesis necessary for realizing single phase multicomponent compounds. Employing this *predictive multiscale screening* approach would have multifold advantages over conventional exploration via chemical synthesis. First, we can quickly filter the combinations that are unlikely to form in a pure high entropy phase not only through chemical intuition, but also by a rigorous thermodynamic assessment, derived from first principles calculations. Second, we can predict the secondary phases and oxygen vacancy concentrations in the high entropy phase as a function of temperature and oxygen partial pressure. Such predictions would serve as critical feedback to a synthetic chemist for setting the experimental synthesis conditions.

Figure 1 presents the computational exploration methodology we have employed in this work. At the first step, the cations are screened from all electropositive elements based on the preliminary criterion (i) similar ionic radii for all species (ii) average nominal charge of the cation combination should be consistent with the expected charge of the cation site. Values of the Shannon ionic radii [20] and common oxidation states of the cations are useful for screening the cations at this step. In the case of pyrochlores with La$^{3+}$ or Nd$^{3+}$ on the $A$–site, we consider the following 7 cations whose
FIG. 1. Predictive multiscale screening of high entropy compounds in a generic phase starting from readily available theoretical and experimental databases to screen potential elemental components. The multicomponent combinations are ranked by comparing \textit{ab initio} computed enthalpy and entropy descriptors. Candidates for further experimental synthesis are predicted from Metropolis Monte Carlo simulations by comparing the temperature and oxygen partial pressure dependent phase fraction and disorder in finite length supercells.
combinations satisfy the chemical intuition, $B = \{\text{Hf, Nb, Sc, Sn, Ta, Ti, Zr}\}$, where 3+/5+ cations may be introduced together for charge balance, or where either 3+ or 5+ cations are introduced then oxygen deficiency/excess may be required. At the second step, the five component combinations are screened by estimating the enthalpy and entropy descriptors. Detailed description on estimation of these descriptors and their relationship to the configurational landscape are presented in our previous work [19]. The enthalpy and entropy descriptors are obtained from density functional theory (DFT) computed formation and mixing enthalpies — relative to the binary oxides, $A_2O_3$ and $BO_2$ — of the end member (one $B-$site cation) and two $B-$site cation compounds, respectively. At the third step, the selected five component compounds are evaluated for secondary phases and local ordering of cations through Metropolis Monte Carlo (MMC) simulations employing a nearest neighbor model (NNM). At this step, we can make accurate predictions of not only the phase fraction and local ordering, but also the oxygen vacancy concentration as a function of temperature and oxygen partial pressure. Based on the predictions at this step, promising candidates are chemically synthesized. The experimental validation of this theoretical predictions could serve as a critical feedback to improve the model. For example, unexpected secondary impurity phases can be added to the model thereby improving the accuracy of thermodynamics for the chemical composition, leading to more realistic predictions.

II. RESULTS

A. Structure and enthalpies of mixing

To assess the validity of the formation ability of the multicomponent high entropy compounds, we first consider the cation radii of all cations, whose combinations could potentially occupy the pyrochlore $B-$site, in combination with a 3+ cation, La or Nd on the $A-$site. Figure 2 presents the $B-O$ bond length in the pyrochlore structure versus the sum of $B-$site and oxygen ionic radii ($R_B + R_O$) for the following cations — Ce$^{4+}$, Ge$^{4+}$, Hf$^{4+}$, Nb$^{4+}$, Nb$^{5+}$, Sc$^{3+}$, Sn$^{4+}$, Ta$^{5+}$, Ti$^{3+}$, Ti$^{4+}$, and Zr$^{4+}$. As expected, $B-O$ bond lengths of these cations have strong linear correlation with their respective Shannon ionic radii. For our study the $A-$ and $B-$sites in $A_2B_2O_7$ carry 3+ and 4+ nominal charges, respectively. We also consider Sc, Nb and Ta cations for $B-$site substitution, that have 3+, 5+ and 5+ nominal charges, respectively. In order to have an average charge of 4+ on the $B-$site in a five component pyrochlore, a combination of one 5+ and one 3+ cation is
FIG. 2. The sum of Shannon ionic radii of $B-$site cation and oxygen anion, $R_B + R_O$, plotted against the respective DFT computed $B-O$ bond length for relevant cations.

required. For example, an equimolar combination of $\{Hf^{4+}, Sn^{4+}, Zr^{4+}, Sc^{3+}, Ta^{5+}\}$, would be charge balanced in a pyrochlore structure. Based on the $B-$site ionic radii and the charge balance, we reduce the possible $B-$site list to the following seven cations — Hf, Nb, Sc, Sn, Ta, Ti, and Zr. We have largely excluded cations with semi-filled $d-$states. A total of 21 five cation compositions can be generated using the seven potential cations ($7!/5!2! = 21$). Table I presents the 21 cation combinations each for La and Nd on the $A-$site along with their short form index. For the purpose of this study, we consider 100 at.% La or 100 at.% Nd on the $A-$site. For both La or Nd on the $A-$site, Hf$^{4+}$, Sn$^{4+}$ and Zr$^{4+}$ form pyrochlore ground state ternary structures. The remaining, Nb$^{5+}$, Ta$^{5+}$, Ti$^{4+}$, and Sc$^{3+}$ form in the fergusonite, LaTaO$_4$ (NdTaO$_4$), perovskite-related layered orthorhombic (PRLO), and classical perovskite structures, respectively [21–33]. Experimentally observed ground state structures for every compound are tabulated in the Supporting Information.

An important aspect of predicting phase impurities is accounting for all the possible crystal structures that may compete with the pyrochlore structure. From the experimental literature and ICSD, we find that the one component $A_2B_2O_7$ and two component combinations $A_2(BB')_2O_7$ are likely to form in one of the six structure types — pyrochlore, fluorite, PRLO, LaTaO$_4$ (NdTaO$_4$), perovskite and fergusonite. Hence, in addition to the pyrochlore structure, we also include the aforementioned phases.

Figure 3 (a,c) depicts the $A_2B_2O_7$ pyrochlore, and (b,d) $A_2B_2O_8$ fluorite structures. Figures
FIG. 3. Eight formula unit representation of (a) $A_2B_2O_7$ pyrochlore and (b) $A_2B_2O_8$ fluorite structures. A smaller, two formula unit representations are shown for (c) pyrochlore and (d) fluorite structures. A-site and B-site cations are shown in green and blue spheres within the like colored translucent polyhedra, respectively. Oxygen ions are present at the corners of each polyhedron.

3(a,b) and (c,d) contain 16 and 4 $B-$sites, respectively. For both structures, the $A-$ and $B-$site cations are ordered along the \{110\}, (face diagonal) directions. While the space group and positions of the $A-$ and $B-$site cations are same for both structures, they differ in their oxygen environment, evident from the shapes of the polyhedra. For the fluorite structure, both cations have cubic coordinated oxygen environment. Whereas for the pyrochlore structure, the $A-$ and $B-$site cations have hexagonal bipyramidal like and octahedral oxygen environments, respectively. The Wyckoff positions for both structures are given in the Supporting Information. Figures 3(c) and (d), shows a simpler representation with first nearest neighbor $B-B'$ interactions for pyrochlore and fluorite structures, respectively. Each $B-$site cation in both structures, is surrounded by six other $B-$site cations. For comparison, each cation in a rock salt structure is surrounded by 12 other cations. Structural models of the remaining structures are included in the Supporting Information.

Furthermore, for modeling purpose, we assume that the pyrochlore structure can undergo a phase transition to other structures by internal restructuring of the oxygen sublattice. Our model assumes free availability of oxygen ions — based on the oxygen partial pressure — wherever necessary when the composition is changed from $A_2B_2O_7$ to, for example, a $A_2B_2O_6$ perovskite or $A_2B_2O_8$ fluorite, etc. Specifically, the $A_2B_2O_8$ in fluorite or NdTaO$_4$ structure types can be obtained by oxidizing the $A_2B_2O_7$ pyrochlore structure with 1 oxygen ion per $B-$site. This assumption is justified because the pyrochlore to fluorite and PRLO structures is experimentally observed [34, 35].

In our previous study, exploring the formation ability of five component divalent cations in the
FIG. 4. Heat maps for mixing enthalpy in eV/B-site of $La_2(BB')_2O_n$ two component ternary oxides in phase $P$, $\Delta H_{\text{mix}}[A_2(BB')_2O_n, P]$, calculated from first principles using Eq. 1. Presented for (a) pyrochlore, (b) PRLO, (c) LaTaO$_4$, (d) fluorite, (e) fergusonite and (f) perovskite phases. The annotation ‘G’ in each panel represents the ground state for the two cation combination. The color legend are shown separately for (a–c) and (d–f).

rock salt structure, we developed and discussed a set of thermodynamic descriptors based on the mixing enthalpies of two component oxides [19]. This approach allowed us to quickly screen the five component oxides directly from DFT calculations — without the high computational costs and configurational sampling, associated with large finite sized super cells. In the case of pyrochlores, the challenge associated with modeling large supercells is further exacerbated due to the larger number of atoms per unit cell, 11, compared to only 2 in the case of the binary oxides. Even though there are more atoms in the formula unit, they don’t increase the total configurational entropy. In fact the configurational entropy decreases due to the fact that disorder exists only for the six nearest neighbor $B$-site cations compared to the twelve nearest neighboring cations in the rock salt structure.

The mixing enthalpy, $\Delta H_{\text{mix}}[A_2(BB')_2O_n, P]$ of a two component oxide (TCO) $A_2(BB')_2O_n$,
in a generic phase, \( P \), is estimated from DFT calculations as shown in Eq. (1).

\[
\Delta H_{\text{mix}}[A_2(BB')_2O_n, P] = \frac{1}{2} \left\{ E_{\text{DFT}}[A_2(BB')_2O_n, P] - \left( \frac{2}{p} \right) E_{\text{DFT}}[A_pO_x, G] \right\}
- \left( \frac{1}{q} \right) E_{\text{DFT}}[B_yO_y, G] \right\} - \left( \frac{1}{r} \right) E_{\text{DFT}}[B'_zO_z, G] - N_O \cdot \mu_O \}
\]

\[ (1) \]

\( N_O = n - \frac{2x}{p} - \frac{y}{q} - \frac{z}{r} \)

\( E_{\text{DFT}}[A_pO_x, G], E_{\text{DFT}}[B_yO_y, G] \) and \( E_{\text{DFT}}[B'_zO_z, G] \) are the DFT total energies of the \( A_pO_x \), \( B_yO_y \) and \( B'_zO_z \) oxides in their respective ground states, respectively. \( E_{\text{DFT}}[A_2(BB')_2O_n, P] \) is the DFT total energy of the \( A_2(BB')_2O_n \), TCO in phase \( P \). \( n, x, y, z, p, q \) are integers representing the stoichiometric compositions of the oxide compounds. \( N_O \) and \( \mu_O \) are the number of excess oxygens and oxygen chemical potential, respectively. Accounting for the experimental conditions of temperature and oxygen partial pressure:

\[
\mu_O = \frac{1}{2} \left( \mu^0_{O_2} + \Delta \mu_O \right)
\]

\[ (2) \]

\( \mu^0_{O_2} \) is the oxygen chemical potential at ambient pressure \( p^0 \) and room temperature \( T = T_{RT} \). \( \tilde{\mu}_{O_2}(p^0, T) \) includes the contributions from rotations and vibrations of the oxygen molecule, as well as the ideal gas entropy at 1 atmosphere, tabulated in Refs. [36 and 37]. These are listed in thermodynamic JANAF tables and allow for the determination of the change in the oxygen chemical potential due to change in \( T \) [36]. \( p_{O_2}/p^0 \) is the oxygen partial pressure and \( k_B \) is the Boltzmann constant. The variation of \( \Delta \mu_O \) as a function of \( p_{O_2} \) and \( T \) is presented in the Supporting Information. In the spirit of the nearest neighbor model [19, 38, 39], the value of \( \Delta H_{\text{mix}}[A_2(BB')_2O_n, P] \), is used to describe the interaction energy between \( B - B' \) cations in phase \( P \), \( \Delta H_{\text{mix}}^{B-B'} = \Delta H_{\text{mix}}[A_2(BB')_2O_n, P] \) in the five component oxide (FCO), as described in our previous work [19].

Figure 4 presents the mixing enthalpy heat maps for \( La_2(BB')_2O_n \) calculated using Eq. (1) for the (a) pyrochlore, (b) PRLO, (c) LaTaO4, (d) fluorite, (e) fergusonite and (f) perovskite structures. The values in Figure 4 are plotted for \( \Delta \mu_O = 0 \). Similar heat maps for \( Nd_2(BB')_2O_n \) are also given in the Supporting Information. There are 21 two component combinations and 7 one component pyrochlore compounds, obtained from 7 \( B - \)site cations. Out of these 28 compounds for both \( A = La \) and \( Nd \), we find that 10 compounds are stable as pyrochlore, 6 as PRLO, 8 as LaTaO4 (NdTaO4),
as fergusonite, and 1 as the perovskite structures. The values of the mixing enthalpies of these one and two component combinations in their ground states, are much smaller than the mixing enthalpies of the \( AO \) type binary oxides as shown in Figure 2 of Ref. [19], indicating that — in this case — the structures with two cation sublattices are thermodynamically more stable than the structures with only one cation sublattice. This is due to the large contribution of the lattice enthalpy generated from the ordering of the \( A- \) and \( B- \) site cations in the ternary oxide super lattice. We utilize the values of these mixing enthalpies as parameters in the nearest neighbor model to estimate the thermodynamic descriptors by systematically exploring local configurations as discussed in our previous work on high entropy oxides in rock salt structure [19].

**TABLE I.** The compositions and short form indices of five component combinations considered in this work.

| Index | Composition                      | Index | Composition                      |
|-------|----------------------------------|-------|----------------------------------|
| La-1  | \( \text{La}_2(\text{HfNbScSnTa})_2\text{O}_7 \) | Nd-1  | \( \text{Nd}_2(\text{HfNbScSnTa})_2\text{O}_7 \) |
| La-2  | \( \text{La}_2(\text{HfNbScSnTi})_2\text{O}_7 \) | Nd-2  | \( \text{Nd}_2(\text{HfNbScSnTi})_2\text{O}_7 \) |
| La-3  | \( \text{La}_2(\text{HfNbScSnZr})_2\text{O}_7 \) | Nd-3  | \( \text{Nd}_2(\text{HfNbScSnZr})_2\text{O}_7 \) |
| La-4  | \( \text{La}_2(\text{HfNbScTaTi})_2\text{O}_7 \) | Nd-4  | \( \text{Nd}_2(\text{HfNbScTaTi})_2\text{O}_7 \) |
| La-5  | \( \text{La}_2(\text{HfNbScTaZr})_2\text{O}_7 \) | Nd-5  | \( \text{Nd}_2(\text{HfNbScTaZr})_2\text{O}_7 \) |
| La-6  | \( \text{La}_2(\text{HfNbScTiZr})_2\text{O}_7 \) | Nd-6  | \( \text{Nd}_2(\text{HfNbScTiZr})_2\text{O}_7 \) |
| La-7  | \( \text{La}_2(\text{HfNbSnTaTi})_2\text{O}_7 \) | Nd-7  | \( \text{Nd}_2(\text{HfNbSnTaTi})_2\text{O}_7 \) |
| La-8  | \( \text{La}_2(\text{HfNbSnTaZr})_2\text{O}_7 \) | Nd-8  | \( \text{Nd}_2(\text{HfNbSnTaZr})_2\text{O}_7 \) |
| La-9  | \( \text{La}_2(\text{HfNbSnTiZr})_2\text{O}_7 \) | Nd-9  | \( \text{Nd}_2(\text{HfNbSnTiZr})_2\text{O}_7 \) |
| La-10 | \( \text{La}_2(\text{HfNbTaTiZr})_2\text{O}_7 \) | Nd-10 | \( \text{Nd}_2(\text{HfNbTaTiZr})_2\text{O}_7 \) |
| La-11 | \( \text{La}_2(\text{HfScSnTaTi})_2\text{O}_7 \) | Nd-11 | \( \text{Nd}_2(\text{HfScSnTaTi})_2\text{O}_7 \) |
| La-12 | \( \text{La}_2(\text{HfScSnTaZr})_2\text{O}_7 \) | Nd-12 | \( \text{Nd}_2(\text{HfScSnTaZr})_2\text{O}_7 \) |
| La-13 | \( \text{La}_2(\text{HfScSnTiZr})_2\text{O}_7 \) | Nd-13 | \( \text{Nd}_2(\text{HfScSnTiZr})_2\text{O}_7 \) |
| La-14 | \( \text{La}_2(\text{HfScTaTiZr})_2\text{O}_7 \) | Nd-14 | \( \text{Nd}_2(\text{HfScTaTiZr})_2\text{O}_7 \) |
| La-15 | \( \text{La}_2(\text{HfSnTaTiZr})_2\text{O}_7 \) | Nd-15 | \( \text{Nd}_2(\text{HfSnTaTiZr})_2\text{O}_7 \) |
| La-16 | \( \text{La}_2(\text{NbScSnTaTi})_2\text{O}_7 \) | Nd-16 | \( \text{Nd}_2(\text{NbScSnTaTi})_2\text{O}_7 \) |
| La-17 | \( \text{La}_2(\text{NbScSnTaZr})_2\text{O}_7 \) | Nd-17 | \( \text{Nd}_2(\text{NbScSnTaZr})_2\text{O}_7 \) |
| La-18 | \( \text{La}_2(\text{NbScSnTiZr})_2\text{O}_7 \) | Nd-18 | \( \text{Nd}_2(\text{NbScSnTiZr})_2\text{O}_7 \) |
| La-19 | \( \text{La}_2(\text{NbScTaTiZr})_2\text{O}_7 \) | Nd-19 | \( \text{Nd}_2(\text{NbScTaTiZr})_2\text{O}_7 \) |
| La-20 | \( \text{La}_2(\text{NbSnTaTiZr})_2\text{O}_7 \) | Nd-20 | \( \text{Nd}_2(\text{NbSnTaTiZr})_2\text{O}_7 \) |
| La-21 | \( \text{La}_2(\text{ScSnTaTiZr})_2\text{O}_7 \) | Nd-21 | \( \text{Nd}_2(\text{ScSnTaTiZr})_2\text{O}_7 \) |

**B. Enthalpy and entropy descriptors from mixing enthalpies**

In our previous work on predicting high entropy oxides in the rock salt structure [19], we have demonstrated that the enthalpy and entropy descriptors, \( m \) and \( \sigma \), respectively, influence the
FIG. 5. A comparison of the enthalpy and entropy descriptors, $m$ and $\sigma$, for all 21 five component (a) $\text{La}_2\text{B}_2\text{O}_7$ and (b) $\text{Nd}_2\text{B}_2\text{O}_7$ pyrochlores. Enthalpy and entropy descriptor differences between pyrochlore and PRLO structures, $\Delta m$ and $\Delta \sigma$, for (c) $\text{La}_2\text{B}_2\text{O}_7$ and (d) $\text{Nd}_2\text{B}_2\text{O}_7$ compositions. Each data point is annotated with its index.

formation ability of a multi-component, single phase structure [40]. The expressions for calculating
the values of $m$ and $\sigma$ are given in Eq. 3.

\[ m = \langle \Delta H_{\text{local}} \rangle \quad (3a) \]

\[ \sigma = \sqrt{\langle \Delta H^2_{\text{local}} \rangle - \langle \Delta H_{\text{local}} \rangle^2} \quad (3b) \]

\[ \langle \Delta H_{\text{local}} \rangle = \frac{1}{N_{\text{local}}} \sum_{i=1}^{N_{\text{local}}} (\Delta H_i[\text{FCO}, P_i]) \quad (3c) \]

\[ \langle \Delta H^2_{\text{local}} \rangle = \frac{1}{N_{\text{local}}} \sum_{i=1}^{N_{\text{local}}} (\Delta H_i[\text{FCO}, P_i])^2 \quad (3d) \]

\[ \Delta H_i[\text{FCO}, P_i] = \frac{1}{n} \sum_{j=1}^{n} \Delta H_{\text{mix}}[B^i - B^j, P_i] \quad (3e) \]

where, $\langle \Delta H_{\text{local}} \rangle$ and $\langle \Delta H^2_{\text{local}} \rangle$ are the mean values of the local mixing enthalpies and squared local mixing enthalpies, respectively. $\Delta H_{\text{mix}}[B^i - B^j, P_i]$ is the average mixing enthalpy of site-$i$ with cation $B^i$, surrounded by cations, $B^j$. Essentially, the descriptors for the enthalpy and entropy, are obtained from exploring the local mixing enthalpies, $\langle \Delta H_{\text{local}} \rangle$, of all local configurations within the five component oxide (FCO). There are six first nearest neighbor $B-$site cations, surrounding each $B-$site cation in the pyrochlore structure. A local atomic configuration at a lattice site, $i$, constitutes chemical species occupied by the lattice site, $B^i$, along with the six nearest neighboring $B-$site cation species, $B^j, j \in \{1, 2, 3, 4, 5, 6\}$. Blue atoms and their bonding environment in Fig. 3(c) represents the local configuration of a $B-$site.

In our previous work, we discuss the significance of exploring the energy landscape of the local configurations. When the distribution of local configurations is relatively narrow, indicating a small value for $\sigma$. Consequently, the entropy contribution $(-T \Delta S)$ to the free energy of the high entropy structure (which is inversely proportional to the entropy descriptor, $\sigma$) would be large and negative. Furthermore, a small value for the enthalpy descriptor, contributes a small value to the free energy. Hence, an FCO with relatively low values for $\sigma$ and $m$, should have a relatively high propensity for the formation of phase pure high entropy structure.

Figure 5 (a, b) plots the enthalpy vs entropy descriptors for all FCOs considered in this work with (a) La and (b) Nd on the $A-$site. Each data point represents a FCO and the closer it is to (0,0) the higher is its propensity to form a high entropy phase. The index of each FCO combination is annotated in the data point symbol. We find that the FCOs automatically fall into three clusters.

The cluster at top right corner of Figures 5 (a) and (b), with high-$m$ and high-$\sigma$ have low propensity to form in a high entropy pyrochlore phase. Each composition in this cluster contain both
Nb\(^{5+}\) and Ta\(^{5+}\) — is comprised of five component combinations with indices 1, 4, 5, 7, 8, 10, 16, 17, 19, and 20. Such compositions with two parts \(5^+\) cations, Nb and Ta, and one [or zero] parts Sc\(^{3+}\) cation, would have a charge balanced chemical composition of \(A_2(Nb^{5+}Ta^{5+}Sc^{3+}BB'BB'')_2O_{7.2}\) [or \(A_2(Nb^{5+}Ta^{5+}BB'BB''_2O_{7.4}\)], inconsistent with the chemical composition of a pyrochlore structure type. Where, \(B\), \(B'\) and \(B''\) exclusively represent cations with \(4^+\) oxidation state, such as Hf, Sn, Ti and Zr. For this cluster, both chemical intuition and our thermodynamic descriptors agree that the cation combinations without charge balance should have a low propensity to form in a high entropy pyrochlore phase.

The second cluster at the center of Figures 5 (a, b), with medium-\(m\) and medium-\(\sigma\), is comprised of FCO combinations that have only one \(5^+\) cation, Nb or Ta. The cluster contains 10 FCO combinations with indices 2, 3, 6, 9, 11, 12, 14, 15, 18, and 21. The charge balance for 8 of these combinations is obtained due to the presence of Sc\(^{3+}\) cation. While the charge balance in other 2 FCO combinations that do not contain Sc\(^{3+}\) (indices 9 and 15), may be achieved due to the presence of Ti, that could take on a \(3^+\) oxidation state, this is not expected to occur in our high temperature reactions in air. We note that Ti in the \(3^+\) oxidation state can be obtained under sufficiently reducing conditions; for example, Ti in the \(3^+\) oxidation state in Ti\(_2\)O\(_3\) oxide can be prepared by reducing TiO\(_2\) with titanium metal at 1300 K [41]. All these five component combinations are charge balanced and could have medium propensity to form in the high entropy pyrochlore form.

The third cluster contains only one FCO, index 13, with \(B = (\text{Hf, Sc, Sn, Ti, Zr})\). Even though according to the charge balance, the composition of this compound is \(A_2(\text{Hf}^{4+}, \text{Sc}^{3+}, \text{Sn}^{4+}, \text{Ti}^{4+}, \text{Zr}^{4+})_2O_{6.8}\) — i.e., 0.2 deficit of oxygen atoms per formula unit, for a pyrochlore structure, will later show that by accommodating oxygen vacancies, it is possible to obtain a phase pure pyrochlore structure with this composition. For further investigation, we have selected 11 FCO combinations from second and third clusters.

Furthermore, according to the mixing enthalpies of two component oxides [see Figure 4 (a) and (b)], we find that the PRLO structure competes with the pyrochlore structure. Other structures — fergusonite, LaTaO\(_4\)/NdTaO\(_4\), perovskite and fluorite phases do not compete with the pyrochlore phase. Here, we compare the phase stability of the pyrochlore phase with the PRLO phase. Figures 5 (c, d) plots the enthalpy and entropy descriptor differences, \(\Delta m = m_{\text{pyrochlore}} - m_{\text{PRLO}}\) vs \(\Delta \sigma = \sigma_{\text{pyrochlore}} - \sigma_{\text{PRLO}}\), respectively, for FCOs in the pyrochlore and PRLO structures. In other words, for combinations which are close to the \(\Delta m = 0\) line and \(\Delta m \geq 0\), the PRLO phase
competes with the pyrochlore phase. Hence these combinations may have low propensity to form in phase pure high entropy pyrochlore. We find that the values of the enthalpy and entropy descriptors of PRLO structures with indices La-2 (Nd-2), La-6 (Nd-6), La-9, La-11 (Nd-11), La-14 (Nd-14), La-15, La-18 (Nd-18), and La-21 (Nd-21), are comparable with the pyrochlore structure. As such these compounds could be competing for two high entropy phases and we expect them to form multiphase complex microstructures. After comparing the FCOs utilizing the enthalpy and entropy descriptors for the pyrochlore and competing PRLO structures, we down selected the following FCO combinations with indices La-3 (Nd-3), La-9 (Nd-9), La-12 (Nd-12), La-13 (Nd-13) and La-15 (Nd-15) for further evaluation. In the next section we describe our thermodynamic predictions for the high entropy phase as a function of experimental conditions, such as temperature, $T$ and oxygen partial pressure $p_{O_2}/p^0$.

C. Estimating experimental variables through Metropolis Monte Carlo simulations

We have ranked the relative tendency of formation of a high entropy pyrochlore phase from the enthalpy and entropy descriptors. This is the first step in choosing the five component combinations most probable to form high entropy compounds — i.e., low mixing enthalpies and low configurational entropies. In this section, we evaluate the variation of the phase composition and cation segregation, as a function of experimentally controllable variables, $T$ and $p_{O_2}/p^0$ for the previously screened five component combinations. Evaluating $T$ and $p_{O_2}/p^0$ dependence is a crucial step for determining the fraction of secondary phases, oxygen vacancy concentration and cation disorder that might emerge in the high entropy pyrochlore phase. We utilized the Metropolis Monte Carlo framework developed in our previous work [19] and extend the approach to include the thermodynamic contributions from oxygen partial pressure.

In addition to sampling configurations, we also sample phase composition by updating the global phase after each trail configuration obtained by atomic swapping. A detailed description of the Monte Carlo method, and scheme to sample atomic configurations and phase composition is given in Section IV B. Briefly, the total energy of the system depends not only on the mixing enthalpies but also on the oxygen chemical potential, $\mu_O$ as shown in the following equation,

$$\Delta H_{\text{total}}[\text{FCO}, P] = \sum_{i=1}^{N} \Delta H_i[\text{FCO}, P_i] + N_O \cdot \mu_O \quad (4)$$

where, $N_O$ is the deficit oxygen present in the composition and $\Delta H_i[\text{FCO}, P_i]$ is the local mixing
enthalpy of $B-$site cation at site $i$ (see Eq. 3e). $\mu_{O_2}$ further depends on $T$ and $p_{O_2}/p^0$ as given in Eq. 2. The significance of the influence of oxygen chemical potential is emphasized below. For example, the presence of Sc$^{3+}$ cations on a $B^4+$ site could potentially induce oxygen vacancies adjacent to Sc$^{3+}$ in the pyrochlore structure. The vacancy formation enthalpy was estimated in the pyrochlore structure for all two component combinations. Concurring with chemical intuition and charge balance, we find that the oxygen vacancy formation enthalpies are negative for two component combinations containing Sc. The oxygen formation enthalpies, $\Delta H_{\text{vac}}^O[B - B']$ are computed according to the following equation:

$$
\Delta H_{\text{vac}}^O[B - B'] = E_{\text{DFT}}[A_2(BB')_2O_7] - E_{\text{DFT}}[A_2(BB')_2O_6] - \frac{1}{2} \cdot \mu_{O_2}
$$

(5)

In order to estimate the oxygen vacancy concentration of a five component pyrochlore, we consider the oxygen vacancy structures as a new phase ‘pyrochlore with vacancies’. A phase update is also performed in addition to the $B-$site cation swap. Below, we discuss the trends in expectation values of the phase fraction and short range order parameter as a function of $T$ and $p_{O_2}/p^0$, for the La$_2$(HfNbScSnZr)$_2$O$_7$ composition. The results for other structures are presented in the Supporting Information and the summary is tabulated in Table II.

Figure 6 presents the expectation value of the phase fraction, $\langle \phi(P) \rangle$ as a function of $T$ and $p_{O_2}/p^0$ for La$_2$(HfNbScSnZr)$_2$O$_7$ in the (a) pyrochlore, (b) oxygen vacancies in the pyrochlore, (c) PRLO and (d) fergusonite structures. Other secondary phases such as fluorite and perovskite, have negligible phase fractions for this compound. At $T > 1800$ K and ambient oxygen partial pressure, the value of $\langle \phi(\text{pyrochlore}) \rangle > 96\%$. For practical purposes, we consider that the transition to phase pure pyrochlore occurs at $\langle \phi(\text{pyrochlore}) \rangle > 96\%$. Such an assumption is justified as discussed in our previous observations of the entropy stabilized rock salt oxide, where the secondary phases were not visible in the predicted X-ray powder diffraction pattern at this phase fraction secondary phases [1, 19].

Besides the transition to a pure pyrochlore phase at $T > 1800$ K, we also find that the oxygen vacancy concentration is $\sim 1.2\%$ in the pyrochlore phase. The vacancies are correlated with Sc$^{3+}$ cation locations with no neighboring Nb$^{5+}$ or Ta$^{5+}$. Furthermore, the transition temperature $T_t$ decreases with $p_{O_2}/p^0$. However, the oxygen vacancy concentration in the pyrochlore increases by decreasing $p_{O_2}/p^0$. Similar phase diagrams for the other five component combinations, that are screened at the second step are given in the Supporting Information.

Figure 7 depicts the expectation value of the short range order parameter (SOP), $\langle \alpha_{BB'} \rangle$ as a func-
FIG. 6. Heat map of phase fraction, $\langle \phi P \rangle$ for La$_2$(HfNbScSnZr)$_2$O$_7$ is plotted as a function of log($p_{O_2}/p_0^0$) and $T$. (a) pyrochlore, (b) percentage vacancies in pyrochlore structure, (c) PRLO and (d) LaTaO$_4$ phases. The contour lines along with their annotated values are also given for each panel.

Table II summarizes the phase transitions temperatures (denoted by a pyrochlore phase fraction $\langle \phi P \rangle$) for (a) Hf-Nb, (b) Sc-Sc, (c) Nb-Nb and (d) Nb-Sc in La$_2$(HfNbScSnZr)$_2$O$_7$. Plots for SOPs of all combinations of cations are given in the Supporting Information. In our framework we do not consider the activation barrier for cation diffusion. Nevertheless, we find that the cation mixing happens at low temperatures $T < 500$ K. While, in reality the mixing of the cations typically occur at $T > 1000$ K for the ternary structures (for instance see Ref. [42]), we anticipate that the qualitative trends in the SOP should be unchanged. In general, we find that $4^+$ cations, Hf, Sn and Zr, mix easily at low temperatures in the pyrochlore phase. Whereas Nb$^{5+}$ segregates to a fergusonite phase, as shown in Figure 6(d). In addition, Nb partially mixes with Sc in the pyrochlore phase (and also in the competing PRLO phase).

Table II summarizes the phase transitions temperatures (denoted by a pyrochlore phase fraction $\langle \phi P \rangle$ for (a) Hf-Nb, (b) Sc-Sc, (c) Nb-Nb and (d) Nb-Sc in La$_2$(HfNbScSnZr)$_2$O$_7$. Plots for SOPs of all combinations of cations are given in the Supporting Information. In our framework we do not consider the activation barrier for cation diffusion. Nevertheless, we find that the cation mixing happens at low temperatures $T < 500$ K. While, in reality the mixing of the cations typically occur at $T > 1000$ K for the ternary structures (for instance see Ref. [42]), we anticipate that the qualitative trends in the SOP should be unchanged. In general, we find that $4^+$ cations, Hf, Sn and Zr, mix easily at low temperatures in the pyrochlore phase. Whereas Nb$^{5+}$ segregates to a fergusonite phase, as shown in Figure 6(d). In addition, Nb partially mixes with Sc in the pyrochlore phase (and also in the competing PRLO phase).
FIG. 7. Heat map of short range order parameter for selected two component combination for \(\text{La}_2(\text{HfNbScSnZr})_2\text{O}_7\) is plotted in separate panel as a function of \(\log(p_{O_2}/p^0)\) and \(T\). The contour lines along with their annotated values are also given for each panel.

of \(\geq 96\%\) and other critical properties for the considered structural phases. Overall, we find that \(T_f\) for \(A = \text{Nd}\) are smaller than their \(A = \text{La}\) counterparts. These computational predictions were experimentally validated by attempting to synthesize the following compositions: \(\text{La}_2(\text{NbScHfSnZr})_2\text{O}_7\), \(\text{La}_2(\text{TaScHfSnZr})_2\text{O}_7\), \(\text{La}_2(\text{NbTiHfSnZr})_2\text{O}_7\), \(\text{La}_2(\text{ScTiHfSnZr})_2\text{O}_7\), \(\text{La}_2(\text{CeTiHfSnZr})_2\text{O}_7\), and the \(\text{Nd}\) analogues of these compositions.

Figure 8 presents the powder X-ray diffraction pattern for five component \(B\)–site cation combinations mentioned in each panel with either (a) \(\text{La}\) and (b) \(\text{Nd}\) on the \(A\)–site. Even though our theoretical predictions generally agree with the experimental findings, there are a few noticeable discrepancies. First, due to the competing thermodynamics between the PRLO and pyrochlore phases, the former was predicted to persist as a secondary phase up to the transition temperature
TABLE II. Summary of the finite temperature properties, such as transition temperature, $T_t$, expectation value of oxygen vacancy concentration, $\langle \phi(O_{\text{vac}}) \rangle$ for the La$_2$B$_2$O$_7$ and Nd$_2$B$_2$O$_7$ compounds obtained from Metropolis Monte Carlo simulations. In addition, we have also compared the predicted secondary phases with the experimentally observed secondary phases for each compound, where possible.

| Index | La-3 | La-12 | La-13 | La-9 | La-15 |
|-------|------|------|------|------|------|
| $T_t$ [K] | | | | | |
| $\log(p_{O_2}/p^0) = -30$ | 1400 | 1600 | 1600 | 1300 | 1400 |
| $\log(p_{O_2}/p^0) = 0$ | 2000 | 2100 | 1100 | 1900 | 2100 |
| $\log(p_{O_2}/p^0) = 5$ | 2200 | 2200 | 1100 | 2200 | 2300 |
| $\langle \phi(O_{\text{vac}}) \rangle$ [%] | | | | | |
| $\log(p_{O_2}/p^0) = -30$ | 0.37882 | 0.37091 | 0.44835 | 0 | 0 |
| $\log(p_{O_2}/p^0) = 0$ | 0.26367 | 0.24961 | 0.34044 | 0 | 0 |
| $\log(p_{O_2}/p^0) = 5$ | 0.22144 | 0.23816 | 0.30370 | 0 | 0 |
| Experimental Synthesis | Yes | Yes | Yes | Yes | No |
| Predicted Secondary Phases | PRLO & PRLO & PRLO & PRLO & PRLO & |
| Experimental Secondary Phases | Negligible | PRLO | Perovskite | Fergusonite | LaTaO$_4$ |
| Cation segregation | Nb-Nb & Nb-Sc | Ta-Ta & Sc-Ta | Sc-Sc & Ti-Ti | Nb-Nb & Ti-Ti | Ta-Ta |
| Supporting Information Figure | S4(a-d) & S9(a) | S6(a-d) & S11(a) | S7(a-d) & S12(a) | S5(a-d) & S10(a) | S8(a-d) & S13(a) |

| Index | Nd-3 | Nd-12 | Nd-13 | Nd-9 | Nd-15 |
|-------|------|------|------|------|------|
| $T_t$ [K] | | | | | |
| $\log(p_{O_2}/p^0) = -30$ | 1300 | 1100 | 1100 | 1200 | 1200 |
| $\log(p_{O_2}/p^0) = 0$ | 1800 | 1800 | 1000 | 1800 | 1800 |
| $\log(p_{O_2}/p^0) = 5$ | 1900 | 1900 | 1000 | 2000 | 2000 |
| $\langle \phi(O_{\text{vac}}) \rangle$ [%] | | | | | |
| $\log(p_{O_2}/p^0) = -30$ | 0.39469 | 0.38794 | 0.48623 | 0 | 0 |
| $\log(p_{O_2}/p^0) = 0$ | 0.26470 | 0.25746 | 0.34031 | 0 | 0 |
| $\log(p_{O_2}/p^0) = 5$ | 0.23732 | 0.24383 | 0.31862 | 0 | 0 |
| Experimental Synthesis | Yes | Yes | Yes | Yes | No |
| Predicted Secondary Phases | PRLO & PRLO & PRLO & PRLO & PRLO & |
| Experimental Secondary Phases | Fergusonite | NdTaO$_4$ | Perovskite | Fergusonite | NdTaO$_4$ |
| Cation segregation | Nb-Nb & Nb-Sc | Ta-Ta & Sc-Ta | Sc-Sc & Ti-Ti | Nb-Nb & Ti-Ti | Ta-Ta |
| Supporting Information Figure | S4(e-h) & S9(b) | S6(e-h) & S11(b) | S7(e-h) & S12(b) | S5(e-h) & S10(b) | S8(e-h) & S13(b) |
for all considered five component combinations. However the PRLO phase was only found as a minor impurity phase in the La$_2$(HfNbSnTiZr)$_2$O$_7$ composition through powder X-ray diffraction. We believe that the PRLO phase can be easily transformed into the pyrochlore phase at high temperature, due to the close mixing enthalpy values. Furthermore, since the phase fraction of the pyrochlore is significantly greater in the sample than the PRLO structure, the surrounding pyrochlore structure propagates into the PRLO structure. This effect can be thought of similar to the substrate induced phases — where the substrate phase propagates into the thin film [43].

Second, we find the presence of the compound $A_2$(HfScSnTiZr)$_2$O$_{7-x}$, where $A = \{\text{La, Nd}\}$, can be formed in the pyrochlore phase at $T \sim 1100$. However the oxygen vacancy concentration is expected to be quite large $\sim 2.5 \%$, due to charge balance with Sc$^{3+}$ on the B-site. Interestingly, the vacancy concentration can be decreased to $\sim 1.6 \%$ by setting $T \sim 2400$ K and $p_{O_2}/p_0 \sim 10^5$.

Whereas the powder X-ray diffraction for the same compound suggests that the samples are contaminated with secondary $A$ScO$_3$ perovskite phases. The data indicate that the LaScO$_3$ and
NdScO$_3$ compounds are sufficiently stable that they would prefer to form under the synthesis conditions. Of the remaining compositions, most formed pure or nearly single phase products, with the exception of La$_2$(HfScSnTaZr)$_2$O$_7$ which contains a significant secondary phase, that may be fluorite structured. Examination of the pattern suggests that two similar phases are present, perhaps due to poor diffusion, some compositional inhomogeneity remains that was difficult to remove during this solid state route. We note that it is challenging for powder X-ray diffraction data to distinguish between the changes in oxygen sublattice between pyrochlore and fluorite structure. Furthermore, for this compound the presence of the strong X-ray scatterers Hf$^{4+}$ and Ta$^{5+}$ on the $B-$site means that the difference in scattering power between the $A-$ and $B-$site cations is relatively small, making the superstructure peaks from the cation sublattice ordering more difficult to observe when comparing the fluorite and pyrochlore structures. Therefore, based upon the computationally-derived expectation values of the phase fraction and cation segregation, we interpret the peak broadening in this case may be due to the local segregation of Ta along with Sc, leading to a minority pyrochlore phase with local variations in the lattice constant.

Finally, we would like to mention that we have not attempted to synthesize La-15 or Nd-15, even though we have computationally evaluated these compounds to have medium propensity to form in a high entropy phase. The experimental validation of La-15 and Nd-15 is yet to be explored. Furthermore, we did not considered Ce in our computational evaluation — of its ability to mix with other cations to form a high entropy pyrochlore due to its large Shannon radii compared with other radii. Nevertheless, we have attempted to synthesize La$_2$(CeHfSnTiZr)$_2$O$_7$ and Nd$_2$(CeHfSnTiZr)$_2$O$_7$, as a test case for Ce based high entropy pyrochlores. Ce appears to drive the formation of secondary phases rather than form a single phase pyrochlore with 20 at.% Ce present on the $B-$site, despite the entropic driving force at the 1800 K synthesis temperature. Which is consistent with the chemical intuition as a rational for screening criterion.

**III. DISCUSSION**

We have utilized a generic framework — that we developed and extensively tested in our previous work on $A$O multicomponent oxides [19] — to screen high-entropy pyrochlores with five components on the $B-$site. We examined the potential secondary phases as a function of the experimentally controllable variables, temperature and oxygen partial pressure. The mean $m$ and standard deviation $\sigma$, of the local mixing enthalpies calculated using the nearest neighbor
model, represent enthalpy and entropy descriptors of the five component combinations. Within this
framework a five component combination with low values of $m$ and $\sigma$ — representing low mixing
enthalpy and high configurational entropy — would have the highest propensity to form a high
entropy pyrochlore phase. Here we reject the five component combinations that also have low value
of $m$ and $\sigma$ in a different phase indicating the presence of thermodynamically competing phase.
In this case, we rejected several five component combinations that have a PRLO phase competing
with the pyrochlore phase. Starting from 42 five component combinations, 21 each with 100 at.%
La and 100 at.% Nd on $A$–site, we were able to find 3 and 5 potential candidates with La and Nd
on the $A$–site, respectively.

We have extended the Metropolis Monte Carlo framework to evaluate the influence of temper-
ature and oxygen partial pressure on the tendency for phase segregation and to form secondary
phases. More importantly, this approach now allows us to examine phase compositions, oxygen
vacancy concentrations and short range order parameters as a function of experimentally control-
able variables. For the pyrochlores, we find that the phase transition temperatures for $A = \text{Nd}$
are lower than their $A = \text{La}$ counterparts, indicating that pyrochlores with $A = \text{Nd}$ are easier to
form. The presence of Sc induces oxygen vacancy concentration of $< 0.5\%$ at ambient oxygen
partial pressure and $T = T_t$, which further decreases by increasing oxygen partial pressure. Further-
more, a combination of $3^+$ and $5^+$ cations tend to promote local segregation of pyrochlore phase,
which decreases with increasing temperature. In this regard, the x-ray diffraction peak broadening
for $\text{La}_2(\text{TaScHfSnZr})_2\text{O}_7$, as shown in second panel from top of Fig. 8, could be due to local
segregation of Ta and Sc cations leading to local changes in lattices.

Out of the three compositions with $A = \text{La}$ that were predicted to have high propensity to form
high entropy pyrochlore structure, $\text{La}_2(\text{HfNbScSnZr})_2\text{O}_7$ was experimentally synthesized as a pure
high entropy pyrochlore structure. The remaining two compositions, $\text{La}_2(\text{HfScSnTaZr})_2\text{O}_7$ has
local segregation of Ta-Sc cations and $\text{La}_2(\text{HfNbSnTiZr})_2\text{O}_7$ forms secondary perovskite related
layered orthorhombic phases. Out of the five compositions with $A = \text{Nd}$ that were predicted to
have a high propensity to form high entropy pyrochlore structures, $\text{Nd}_2(\text{HfScSnTaZr})_2\text{O}_7$ was
experimentally synthesized as a pure high entropy pyrochlore structure. $\text{Nd}_2(\text{HfNbSnTiZr})_2\text{O}_7$ was
synthesized with minor fergusonite secondary phases, agreeing with our previous neutron scattering
analysis of this compound [18]. However the other two compositions $\text{Nd}_2(\text{HfNbScSnZr})_2\text{O}_7$ and
$\text{Nd}_2(\text{HfScSnTiZr})_2\text{O}_7$ were observed to have fergusonite and perovskite secondary phases, respec-
tively. We note that the predicted secondary phases for all structures agree with the experimental
While the utility of thermodynamic descriptors demonstrated in this work to predict the formation ability of high entropy pyrochlores are conceptually-simple and computationally-cheap, these descriptors are robust enough to accommodate simple AO oxides to complex $A_2B_2O_7$ pyrochlores. This work significantly advances the predictive capabilities that include the oxygen partial pressure as an independent variable to predict impurity phases, local disorder and oxygen vacancy concentrations. Furthermore, this framework is simple and flexible enough to accommodate other independent variables such as the influence of mechanical strain on the phase stability of epitaxial high entropy functional oxides — thereby predicatively screen the high entropy ceramics for target properties. While the present effort is primarily focused on predicting new high entropy pyrochlores and their experimental synthesis recommendations, other structures of interest can be systematically identified using a similar multiscale screening approach.

IV. COMPUTATIONAL METHODS

A. Details of first-principles calculations

All DFT calculations were carried out using the plane-wave-based Vienna *ab initio* simulation package VASP version 5.4.4, software package [44, 45] within the generalized gradient approximation (GGA) using the Perdew, Burke, and Ernzerhof for solids (PBEsol) exchange-correlation functional [46]. The energy cutoff for the plane-wave basis set was 800 eV, and projected augmented wave (PAW) potentials [47, 48] were used. VASP PAW potential files used in this study and their valance electronic configuration are tabulated in the Supporting Information. A $6 \times 6 \times 6$ $k$–point mesh was utilized for sampling the Brillouin zone for a 22 atom unit cell and scaled inversely with the number of atoms present in the unit cell. The bulk geometry was optimized with a force convergence criterion of 1 meV/Å and the individual components of the stress tensor were converged to $\leq 0.1$ kЂ.

Spin-unpolarized calculations were employed for estimating the mixing enthalpies. According to experimental observations, pyrochlores with $A = \text{Nd}$ are antiferromagnetic (AFM) on the $A$-site with all-in-all-out (AIAO) AFM ordering. However, it was recently reported that for the case of structural thermodynamics, non-magnetic calculations would yield enthalpy values with reasonable accuracy [49]. Hence, even in the case of Nd$^{3+}$ containing compounds, we employed
only non-magnetic calculations.

B. Metropolis Monte Carlo Simulations

We employed Metropolis Monte Carlo simulations to study the mixing behaviour between different chemical species within the FCO at relevant temperatures ranging from $T = 300$ to 2400 K with a temperature step of $\Delta T = 100$ K. Atomic configurations — generated through randomly swapping unlike atoms between different lattice sites in a $3 \times 3 \times 15$ periodic supercell (containing 2160 $B-$site cations) — are sampled according to the Metropolis criterion. A trial configuration is accepted according to the Boltzmann probability, $p_B$

$$ p_B = \text{Minimum} \left\{ \exp \left( -\frac{\Delta H}{k_B T} \right), 1 \right\} $$

where, $\Delta H = \Delta H_{n}^{\text{total}} - \Delta H_{n-1}^{\text{total}}$ is the change in total mixing enthalpy between $n$ and $n-1$ steps, caused by swapping unlike chemical species. $k_B$ is the Boltzmann constant and $T$ is the absolute temperature. The trial configuration is always accepted if $\Delta H \leq 0$. However, if $\Delta H > 0$ the trial configuration is accepted by chance according to the Boltzmann probability, $p_B$.

In addition to the sampling of atomic configurations, we also sample the phase composition through phase updates similar to the technique discussed in Ref. [19]. A ‘global’ phase $P$ from one of the following phases — ground, pyrochlore, fergusonite, LaTaO$_4$ (NdTaO$_4$), PRLO, perovskite — is assigned to the atomic configurations. The ground state phase represents a mixture of multiple phases, where the fraction of each phase is obtained by counting the fraction of lattice sites of each phase. A phase update is done after each atomic swap according to the metropolis criterion. For example, a phase update from $P = \text{Ground}$ to $P = \text{Pyrochlore}$ is preferred according to the Boltzmann probability, $p_B$, where,

$$ \Delta H = \Delta H_{n}^{\text{total}}[\text{FCO, Ground}] - \Delta H_{n-1}^{\text{total}}[\text{FCO, Pyrochlore}] $$

is the energy difference between the configuration in pure pyrochlore phase and the ground state phase with mixed phase composition. The expectation values of phase fraction $\langle \phi(P) \rangle$ and local short-range order $\langle \alpha_{B-B'} \rangle$, are determined at constant temperature.

The phase composition of each microstate is achieved by assigning a local ground-state phase, $G_i$, to each lattice site $i$ as

$$ \Delta H_i[\text{FCO, } G_i] = \text{Minimum}(\Delta H_i[\text{FCO, } P_i]) $$
It is crucial to note that the ground-state phase, $G$, of a microstate is a combination of all local phases. For example, at lattice site $i$, a chemical species $B_i$ is assigned a local phase $G_i$ — which is determined based on the minimum of the mixing enthalpies of all considered phases. The phase fraction, $\Phi(P)$, of a phase $P$ is evaluated by dividing the number of occurrences of local phase $P_i$ by the total number of lattice sites.

$$\Phi(P) = \frac{1}{N} \sum_{i=0}^{N} \delta(G_i, P)$$

(9)

where $\delta(G_i, P)$ is a Dirac delta function, which returns 1 if the local ground-state phase at lattice site $i$, $G_i = P$.

The value of the short range order parameter $\alpha_{BB'}$ of a microstate is estimated by averaging the number of atoms of species $B'$ surrounding all atoms of species $B$. By the commutative relation, $\alpha_{BB'} = \alpha_{BB'}$, there are only 15 unique short-range order parameters in a five-component high-entropy compound.

V. EXPERIMENTAL METHODS

Rare-earth oxides ($\text{La}_2\text{O}_3$, $\text{Nd}_2\text{O}_3$) and $B-$site metal oxides ($\text{ZrO}_2$, $\text{HfO}_2$, $\text{SnO}_2$, $\text{TiO}_2$, $\text{Ta}_2\text{O}_5$, $\text{Nb}_2\text{O}_5$, $\text{Sc}_2\text{O}_3$) were ground together in stoichiometric quantities. $\text{La}_2\text{O}_3$, $\text{Nd}_2\text{O}_3$ and $\text{Sc}_2\text{O}_3$ were heated before weighing to $1000^\circ\text{C}$ to decompose impurities (e.g., carbonate, hydroxide). Typically 1-2 g of starting material were ground in a mortar and pestle, then milled in a SPEX mill for several hours with YSZ balls. The collected powder was pressed into pellets and heated to $1500^\circ\text{C}$ in air for 10 hours. The difference between quenching the samples in ice water versus slow cooling ($5^\circ\text{C/min}$ to room temperature) was investigated, and did not appear to influence the sample purity according to laboratory X-ray diffraction results. X-ray diffraction data were collected on a Panalytical Empyrian X-ray diffractometer using Cu $K_\alpha$ radiation.

ACKNOWLEDGMENTS

This work was supported by the U. S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. This research used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory (ORNL), which is supported by the Office of Science of the U.S. Department of Energy (DOE).
under Contract No. DE-AC05-00OR22725 as well as National Energy Research Scientific Com-
puting Center (NERSC), which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. A.M. participated in this investigation by
an appointment to the ORNL HERE Program, sponsored by the U.S. DOE and administered by
the Oak Ridge Institute for Science and Education, while he was an undergraduate student at the
University of California, Berkeley.

DATA AVAILABILITY

Raw data associated with all figures is available on request from the corresponding authors,
V.R.C. (vrcooper@ornl.gov), or C.A.B. (bridgesca@ornl.gov).

AUTHOR CONTRIBUTIONS

K.C.P. performed first principles calculations, co-developed the theoretical framework, devel-
oped all computational codes including Monte Carlo code, performed Monte Carlo simulations,
interpreted the computational results and wrote the manuscript with significant input from all
Other authors. M.E. co-developed the Metropolis Monte Carlo framework and contributed to the
manuscript. A.M. and C.A.B. performed all experimental synthesis and X-ray diffraction stud-
ies. C.A.B. interpreted the X-ray diffraction and computational data, contributed to writing the
manuscript and co-supervised the project. V.R.C. initiated the research concept co-developed the
theoretical framework, interpreted the results, contributed to writing the manuscript and supervised
the project.

COMPETING INTERESTS

The authors declare no competing interests.

[1] C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, and
J.-P. Maria, Entropy-stabilized oxides, Nat. Commun. 6 (2015).
[2] C. Oses, C. Toher, and S. Curtarolo, High-entropy ceramics, Nat. Rev. Mater. 5, 295 (2020).
[3] G. Bergerhoff, I. Brown, F. Allen, et al., Crystallographic databases, Int. U. Crystallogr., Chester 360, 77 (1987).

[4] C. N. R. Rao, Transition metal oxides, Annu. Rev. Phys. Chem. 40, 291 (1989).

[5] D. Lebedev, M. Povia, K. Waltar, P. M. Abdala, I. E. Castelli, E. Fabbri, M. V. Blanco, A. Fedorov, C. Copéret, N. Marzari, and T. J. Schmidt, Highly active and stable iridium pyrochlores for oxygen evolution reaction, Chem. Mater. 29, 5182 (2017).

[6] D. Abbott, R. K. Pittkowski, K. Macounová, R. Nebel, E. Marelli, E. Fabbri, I. E. Castelli, P. Krtíl, and T. J. Schmidt, Design and synthesis of Ir/Ru pyrochlore catalysts for the oxygen evolution reaction based on their bulk thermodynamic properties, ACS Appl. Mater. Interfaces 11, 37748 (2019).

[7] N. Taira, M. Wakeshima, and Y. Hinatsu, Magnetic properties of ruthenium pyrochlores $R_2Ru_2O_7$ ($R$ = rare earth), J. Phys. Condens. Matter 11, 6983 (1999).

[8] N. Taira, M. Wakeshima, and Y. Hinatsu, Magnetic properties of iridium pyrochlores $R_2Ir_2O_7$ ($R$ = Y, Sm, Eu and Lu), J. Phys. Condens. Matter 13, 5527 (2001).

[9] K. Sickafus, L. Minervini, R. Grimes, J. Valdez, M. Ishimaru, F. Li, K. McClellan, and T. Hartmann, Radiation tolerance of complex oxides, Science 289, 748 (2000).

[10] K. E. Sickafus, R. W. Grimes, J. A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S. M. Corish, C. R. Stanek, and B. P. Uberuaga, Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides, Nat. Mater. 6, 217 (2007).

[11] R. Sachan, V. R. Cooper, B. Liu, D. S. Aidhy, B. K. Voas, M. Lang, X. Ou, C. Trautmann, Y. Zhang, M. F. Chisholm, and W. J. Weber, Forging fast ion conducting nanochannels with swift heavy ions: The correlated role of electronic and atomic structure, J. Phys. Chem. C 121, 975 (2017).

[12] A. A. Heitmann and G. A. Rossetti, Thermodynamics of ferroelectric solid solutions with morphotropic phase boundaries, J. Am. Ceram. Soc. 97, 1661 (2014).

[13] F. Li, L. Zhou, J.-X. Liu, Y. Liang, and G.-J. Zhang, High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials, J. Adv. Ceram. 8, 576 (2019).

[14] J. L. Braun, C. M. Rost, M. Lim, A. Giri, D. H. Olson, G. N. Kotsonis, G. Stan, D. W. Brenner, J.-P. Maria, and P. E. Hopkins, Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides, Adv. Mater. 30, 1805004 (2018).

[15] D. Bérardan, S. Franger, A. Meena, and N. Dragoe, Room temperature lithium superionic conductivity in high entropy oxides, J. Mater. Chem. A 4, 9536 (2016).
[16] K. C. Pitike, A. E. Marquez-Rossy, A. Flores-Betancourt, D. X. Chen, K. Santosh, V. R. Cooper, and E. Lara-Curzio, On the elastic anisotropy of the entropy-stabilized oxide (Mg, Co, Ni, Cu, Zn)O compound, J. Appl. Phys. 128, 015101 (2020).

[17] Z. Zhao, H. Xiang, F.-Z. Dai, Z. Peng, and Y. Zhou, (La_{0.2}Ce_{0.2}Nd_{0.2}Sm_{0.2}Eu_{0.2})_2Zr_2O_7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate, J. Mater. Sci. Technol. 35, 2647 (2019).

[18] B. Jiang, C. A. Bridges, R. R. Unocic, K. C. Pitike, V. R. Cooper, Y. Zhang, D.-Y. Lin, and K. Page, Probing the local site disorder and distortion in pyrochlore high-entropy oxides, J. Am. Chem. Soc. 10.1021/jacs.0c10739 (2020).

[19] K. C. Pitike, S. KC, M. Eisenbach, C. A. Bridges, and V. R. Cooper, Predicting the phase stability of multicomponent high-entropy compounds, Chem. Mater. 32, 7507 (2020).

[20] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32, 751 (1976).

[21] K. R. Whittle, L. M. Cranswick, S. A. Redfern, I. P. Swainson, and G. R. Lumpkin, Lanthanum pyrochlores and the effect of yttrium addition in the systems La_{2-x}Y_xZr_2O_7 and La_{2-x}Y_xHf_2O_7, J. Sol. State Chem. 182, 442 (2009).

[22] P. Sarin, R. W. Hughes, D. R. Lowry, Z. D. Apostolov, and W. M. Kriven, High-temperature properties and ferroelastic phase transitions in rare-earth niobates (LnNbO_4), J. Am. Ceram. Soc. 97, 3307 (2014).

[23] R. P. Liferovich and R. H. Mitchell, A structural study of ternary lanthanide orthoscandate perovskites, J. Sol. State Chem. 177, 2188 (2004).

[24] V. Bondah-Jagalu and S. T. Bramwell, Magnetic susceptibility study of the heavy rare-earth stannate pyrochlores, Can. J. Phys. 79, 1381 (2001).

[25] B. J. Kennedy, Structural trends in pyrochlore oxides, Mater. Sci. Forum 228, 753 (1996).

[26] T. Kurova and V. Aleksandrov, Crystalline structure of LaTaO_4, Doklady Akademii Nauk SSSR 201, 1095 (1971).

[27] M. Gasperin, Dititanate de lanthane, Acta Crystallogr. B Struct. Cryst. Cryst. Chem. 31, 2129 (1975).

[28] Y. Tabira, R. L. Withers, L. Minervini, and R. W. Grimes, Systematic structural change in selected rare earth oxide pyrochlores as determined by wide-angle CBED and a comparison with the results of atomistic computer simulation, J. Sol. State Chem. 153, 16 (2000).

[29] V. K. Anand, A. K. Bera, J. Xu, T. Herrmannsdörfer, C. Ritter, and B. Lake, Observation of long-range magnetic ordering in pyrohafnate Nd_2Hf_2O_7: A neutron diffraction study, Phys. Rev. B 92 (2015).
[30] S. Tsunekawa, T. Kamiyama, K. Sasaki, H. Asano, and T. Fukuda, Precise structure analysis by neutron diffraction for RNbO$_4$ and distortion of NbO$_4$ tetrahedra, Acta Crystallogr. A 49, 595 (1993).

[31] Y. Titov, A. Sych, A. Sokolov, A. Kapshuk, V. Markiv, and N. Belyavina, Crystal structure of the high-pressure modification of NdTaO$_4$, J. Alloys Compd. 311, 252 (2000).

[32] N. Ishizawa, K. Ninomiya, T. Sakakura, and J. Wang, Redetermination of Nd$_2$Ti$_2$O$_7$: a non-centrosymmetric structure with perovskite-type slabs, Acta Crystallogr. E 69, i19 (2013).

[33] M. van Dijk, J. ter Maat, G. Roelofs, H. Bosch, G. van de Velde, P. Gellings, and A. Burggraaf, Electrical and catalytic properties of some oxides with the fluorite or pyrochlore structure, Mater. Res. Bull. 19, 1149 (1984).

[34] M. Glerup, O. F. Nielsen, and F. W. Poulsen, The structural transformation from the pyrochlore structure, A$_2$B$_2$O$_7$, to the fluorite structure, AO$_2$, studied by raman spectroscopy and defect chemistry modeling, J. Sol. State Chem. 160, 25 (2001).

[35] Z. Gao, Y. Liu, C. Lu, Y. Ma, Y. Xia, L. Fang, Q. He, Y. Liu, G. Liu, J. Yang, H. He, and D. He, Origin of the phase change from pyrochlore to perovskite-like layered structure and a new lead free ferroelectric, arXiv (2017), http://arxiv.org/abs/1703.01016v1.

[36] D. Stull, Prophet, janaf thermochemical tables, National Bureau of Standards, NSRDS-NBS (1971).

[37] K. Reuter and M. Scheffler, Composition, structure, and stability of RuO$_2$(110) as a function of oxygen pressure, Phys. Rev. B 65, 035406 (2001).

[38] M. Hillert, On the nearest neighbour interaction model with a concentration dependent interaction energy, Journal de Physique et le Radium 23, 835 (1962).

[39] L. J. Santodonato, P. K. Liaw, R. R. Unocic, H. Bei, and J. R. Morris, Predictive multiphase evolution in al-containing high-entropy alloys, Nat. Commun. 9 (2018).

[40] We have used different set of symbols in Pitike. et. al. Chem. Mater. 32, 7507 (2020), for enthalpy ($m = \mu_{\text{local}}$) and entropy ($\sigma = \sigma_{\text{local}}$) descriptors.

[41] K. O. Hara, E. Yamasue, H. Okumura, and K. N. Ishihara, Formation of metastable phases by high-energy ball milling in the Ti-O system, J. Phys. Conf. Ser. 144, 012021 (2009).

[42] H. Muramatsu and T. Kimura, Preparation of bulk Pb(Zr, Ti)O$_3$ with crystallographic texture by templated grain growth method, J. Electroceramics 13, 531 (2004).

[43] A. O. F. Jones, B. Chattopadhyay, Y. H. Geerts, and R. Resel, Substrate-induced and thin-film phases: Polymorphism of organic materials on surfaces, Adv. Funct. Mater. 26, 2233 (2016).
[44] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).

[45] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).

[46] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008).

[47] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).

[48] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999).

[49] G. Pilania, B. Puchala, and B. P. Uberuaga, Distortion-stabilized ordered structures in $A_2BB'\text{O}_7$ mixed pyrochlores, npj Comput. Mater. 5 (2019).