Cataloging Of Unit Replacement Based On Long Run Repair Average Cost Rate (Acr) Based On Weibull Distribution Model

1dr. K. Uma Maheswari,2k. Subrahmanyam, 3dr.A. Mallikarjuna Reddy

1Associate professor, Dept of humanities and sciences,Srinivasa Ramanujan institute of technology, Anantapur, Andhra Pradesh India.
2Dept of Mechanical Engineering,3Professor, Dept of Mathematics, JNTUA college of Engineering, Anantapur, Andhra Pradesh India.
3Sri krishnadevaraya university, Anantapur, Andhra Pradesh India.

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 10 May 2021

Abstract: Large amounts of money are lost each year in the real-estate industry because of poor schedule and cost control, In industry the investigated failure and repair pattern, reliabilities of generators, compressors, turbines, using simple statistical tools and simulation techniques. The repair duration is divided into the 1)Major repair 2)Minor repair .In major repair having(repair hour greater than a threshold valve)and Minor repair having(repair hour less than or)equal to threshold valve.This approach is mainly for Weibull distribution method. In Weibull analysis is a common method for failure analysis and reliability engineering used in a wide range of applications. In this paper, the applicability of Weibull analysis for evaluating and comparing the reliability of the schedule performance of multiple projects is presented, while the successive performance of multiple projects is presented ,while the successive repair times are increasing and are exposing to Weibull distribution ,under these assumptions ,an optimal replacement policy ‘T’ in which we replace the system ,when the repair time reaches T. It can be determined that an optimal repair replacement policy T* such that long run average cost and the corresponding optimal replacement policy T* can be determined analytically.

Keywords: Weibull distribution, Time, failure, repair.

1.Introduction:

In modern Industry, millions of rupees are being spent at high quality and reliability products. It requires optimal decisions to the maintenance problems of the systems, Weibull distribution is named waldos Weibull (1887 to 1979).It has very flexible and appropriate choice of parameters ,model many types of failure rate behavior ,This distribution can have three parameters such as scale, shape and location graphical and analytical methods include Weibull probability plotting & hazard plot .These methods are not very accurate but they have gave very fast results. The hydro- generators, compressors and turbines requires a special approach to repair and it is divided in to two types they are minor and major repairs. This approach is specially introduced by the Weibull distribution method. This method is used for the reliability analysis and the analysis is carried out the gearbox assembly analysis and the failure data in various operating conditions was taken from the logbooks of the vehicles. The objective of this study is to discuss and present the applicability of Weibull analysis for evaluating schedule performance using cost and performance indices. Under these assumptions, an optimal replacement policy T in which we replace the system when the repair time reaches T. It can be determined that an repair policy T* such that long run average cost per unit time is minimized and also derived an explicit expression of the long -run average cost and the optimal policy T* can be determined analytically .Numerical results are provided to support the theoretical results.

2.Weibull distribution:

Weibull distribution requires characteristic life and shape factor valves. Beta determines the shape of distribution.

\[\beta > 1 - failure rate is increasing \]
\[\beta < 1 - failure rate is decreasing \]
\[\beta = 1 - failure rate is constant \]

The Weibull distribution is the best choice to use analysis software product. If such a tool is not available data can be manually plotted a Weibull probability plot to determine if it follows a straight line.

3.Assumptions:

1)Assume time t=0.
2) If the system fails it should be immediately repaired by repairmen.
3)Time intervals between the completion of the (n-1) th repair and completion of the nth repair of system.
4)Xn and Yn are independent where n=1,2,3,4..............
5) Xn and Yn are possess a Weibull distribution model
6)F_n(x) and G_n(Y) are the distribution function of Xn and Yn respectively
7) $E(X_n) = \int_0^\infty t \, dF(t) = \frac{1}{\lambda}$ and

8) $E(Y_n) = \int_0^\infty u \, dG(u) = \frac{1}{\mu}$, $\lambda, \mu > 0$

9) Assume repair time (working time) is at $\mu < T$ such that underlying distribution is good fit to the data sets.

10. Assume that an optimal replacement policy ‘T’ is applied.

11. Let C_f be the repairable cost and C_p be the un-repairable cost.

These above assumptions an explicit expression for the long run average cost per unit under the policy ‘T’ is considered and an optimal solution for T^* which minimizes the long-run average cost per unit time.

4. Long-run average cost rate under policy ‘T’

Let $T_n(n \geq 2)$ be the time between the $(n-1)$ replacement and the nth replacement of the system under policy T. Clearly, $\{T_1, T_2, \ldots\}$ form a renewal process and the inner arrival time between two consecutive replacements is called renewal cycle. According to renewal reward theorem [8], the long-run average cost rate under policy T is:

$$C(N) = \frac{\text{The expected cost incurred in a renewal cycle}}{\text{The expected length of the renewal cycle}}$$

$$C(T) = C_f \int_0^T f(t) \, dt + C_p \int_T^\infty f(t) \, dt$$

$$+ \int_0^T tf(t) \, dt + T \int_T^\infty f(t) \, dt$$

According into the above assumption the Weibull exponential distribution is

$$G(x) = \lambda e^{-\lambda x}, x > 0; \quad g(x) = 1 - e^{-\lambda x}$$

$$F(x) = 1 - \exp \left\{ -\alpha \left(\frac{1-e^{-\lambda x}}{e^{-\lambda x}} \right)^\beta \right\}, x > 0, \alpha, \beta, \lambda > 0$$

Where $\alpha = 1, \beta = 1$

5. Numerical results and discussions:

5.1. The parameters are $\lambda = 0.01681$, $C_f = 500$, $C_p = 4$, the long run average cost per unit time is calculated from the above expression.

Time T	C(T)	Time T	C(T)	Time T	C(T)
1	23.1268	34	12.5345	67	14.4345
2	19.234	35	12.6345	68	14.3345
3	18.3456	36	12.7345	69	14.2345
4	17.2345	37	12.8345	70	14.2345
5	16.2345	38	12.9345	71	14.2345
6	15.2345	39	13.0345	72	14.2345
7	14.2345	40	13.1345	73	14.2345
8	13.2345	41	13.2345	74	14.2345
9	12.2345	42	13.3345	75	14.3345
10	11.2345	43	13.4345	76	14.4345
11	10.2345	44	13.5345	77	14.5345
12	10.3345	45	13.6345	78	14.6345
13	10.4345	46	13.7345	79	14.7345
14	10.5345	47	13.8345	80	14.8345
15	10.6345	48	13.9345	81	14.9345
16	10.7345	49	14.0345	82	15.0345
17	10.8345	50	14.1345	83	15.1345
The parameters are $\lambda=0.065$, $C_f=200$, $C_p=45$, the long run average cost per unit time is calculated from the above expression.

Time T	C(T)	Time T	C(T)	Time T	C(T)
1	43.456	34	38.917	67	67.717
2	34.567	35	40.117	68	68.517
3	33.567	36	41.317	69	69.317
4	32.317	37	42.517	70	69.717
5	31.067	38	43.717	71	70.117
6	29.817	39	44.917	72	70.517
7	28.567	40	46.117	73	70.917
8	27.317	41	46.917	74	71.317
9	26.067	42	47.717	75	71.717
10	24.817	43	48.517	76	72.117
11	23.567	44	49.317	77	72.517
12	22.317	45	50.117	78	72.917

Table 1: Values of long run average cost rate under policy ‘T’.

Fig. 1: Long run average cost rate against T
Table 2: long run average cost valves (ACR)

Time T	C(T)	Time T	C(T)	Time T	C(T)
13	21.067	46	50.917	79	73.317
14	19.817	47	51.717	80	73.717
15	18.567	48	52.517	81	74.117
16	17.317	49	53.317	82	74.517
17	18.517	50	54.117	83	74.917
18	19.717	51	54.917	84	75.317
19	20.917	52	55.717	85	75.717
20	22.117	53	56.517	86	76.117
21	23.317	54	57.317	87	76.517
22	24.517	55	58.117	88	76.917
23	25.717	56	58.917	89	77.317
24	26.917	57	59.717	90	77.717
25	28.117	58	60.517	91	78.117
26	29.317	59	61.317	92	78.517
27	30.517	60	62.117	93	78.917
28	31.717	61	62.917	94	79.317
29	32.917	62	63.717	95	79.717
30	34.117	63	64.517	96	80.117
31	35.317	64	65.317	97	80.517
32	36.517	65	66.117	98	80.917
33	37.717	66	66.917		

Fig 2: Long run average cost rate against Time(T)

5.3. The parameters are $\lambda=0.095$, $C_f=150$, $C_p=30$, the long run average cost per unit time is calculated from the expression.
Table 3: long - run average cost valves (ACR)

| 44.48 | 44 | 57.68 | 77 | 74.68 |

Fig: 3. Long run average cost rate against time (T)

Hence, we observed that the cost of repair and the \(\lambda' \) increases and the Weibull distribution decreases. Thus, the parameter \(\lambda' \) the failure rate is positive, and negative is at the time(T).

6. Conclusion: In this paper, we have considered the Weibull exponential failure model similarly we can use these assumptions all laws, However the work in this distribution is progression as well. The above results we find the long run average cost rate against vs time of Weibull distribution based on the all three analysis we treat best has average cost valve is 5.2.
7. References:

[1] Reddy, A. M., & Joshna, N. (2017). Identification of Unit Replacement Based on Long-Run Repair Average Cost Rate (Acr) Based on Truncated Exponential Failure Model. *Bulletin of Pure & Applied Sciences-Mathematics and Statistics, 36*(1), 37.

[2] Barlow, R.E, ‘operation research, vol.08,pp.90-100,1959

[3] Barlow, R.E, ‘Mathematical theory of reliability’,1965

[4] Devasena, G. S. (2017). Key words: Alpha series Dr. B. Venkata Ramudu, (5), 6–8. Retrieved

[5] www.semanticscholar.org. (n.d.). Retrieved from

[6] Bal Guruswamy, Reliability Engineering, Tata McGraw Hill, New delhi,1984.

[7] Dhillon B.S Reliability Engineering applications areas beta publishers Gloucester 1992.

[8] Srinath L.s reliability engineering east west press new delhi 2013.

[9] Reni Sargunaraj M marline Anita a Chandrababu. A Shanmugam Priya’s

[10] wai-ki-ching Michael k.Ng Markov chains Models Algorithms and applications ,Springer international New delhi 2008.