Non-syndromic monogenic female infertility

Giulia Guerri1, Tiziana Maniscalchi2, Shila Barati2, Sandro Gerli3, Gian Carlo Di Renzo3, Chiara Della Morte3, Giuseppe Marceddu2, Arianna Casadei2, Antonio Simone Laganà4, Davide Sturla4, Fabio Ghezzi4, Simone Garzon4, Vittorio Unfer5, Matteo Bertelli2

1 MAGI’s Lab, Rovereto (TN), Italy; 2 MAGI Euregio, Bolzano, Italy; 3 Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, Perugia, Italy; 4 Department of Obstetrics and Gynecology, Filippo Del Ponte Hospital, University of Insubria, Varese, Italy; 5 Department of Experimental Medicine, Systems Biology Group, University of Rome La Sapienza, Rome, Italy

Summary. Infertility is a significant clinical problem. It affects 8-12% of couples worldwide, about 30% of whom are diagnosed with idiopathic infertility (infertility lacking any obvious cause). In 2010, the World Health Organization calculated that 1.9% of child-seeking women aged 20-44 years were unable to have a first live birth (primary infertility), and 10.5% of child-seeking women with a prior live birth were unable to have an additional live birth (secondary infertility). About 50% of all infertility cases are due to female reproductive defects. Several chromosome aberrations, diagnosed by karyotype analysis, have long been known to be associated with female infertility and monogenic mutations have also recently been found. Female infertility primarily involves oogenesis. The following phenotypes are associated with monogenic female infertility: premature ovarian failure, ovarian dysgenesis, oocyte maturation defects, early embryo arrest, polycystic ovary syndrome and recurrent pregnancy loss. Here we summarize the genetic causes of non-syndromic monogenic female infertility and the genes analyzed by our genetic test. (www.actabiomedica.it)

Key words: female infertility, premature ovarian failure, ovarian dysgenesis, oocyte maturation defects, pre-implantation embryonic lethality, recurrent pregnancy loss, ovarian hyperstimulation syndrome

Premature ovarian failure and ovarian dysgenesis

Premature ovarian failure (POF) is a frequent and heterogeneous disorder (1-2% of women under age 40 years, 1:10000 women under age 20 years and 1:1000 under 30 years) due to anomalies in follicular development. It is characterized by early functional blockade of the ovary (with respect to menopause which normally occurs after age 45 years) and menstrual cycles can be completely absent (primary amenorrhea) or end before 40 years of age (secondary amenorrhea). The most severe forms are caused by ovarian dysgenesis (50% of cases of primary amenorrhea), whereas post-pubertal forms are characterized by disappearance of the menstrual cycle (secondary amenorrhea) (1).

Biochemically, premature ovarian failure is characterized by reduced levels of gonad hormones (estrogens) and increased levels of gonadotropins (LH and FSH) (2). Ovarian dysgenesis is characterized by absence of gonad development, gonadotropin resistance and normal development of the external and internal genitalia (3). Chromosome anomalies (deletions, translocations) and pre-mutation status of the $FMR1$ gene are frequent causes of POF (estimated prevalence 10-13%) (4). Several studies have identified genes important for ovarian development and onset of POF (Table 1). Mutations in the $BMP15$ gene have been identified in 1.5-15% of Caucasian, Indian and Chinese women with POF (5). One third of patients with POF have mutations in $PGRMC1$ while changes
Table 1. Genes associated with primary ovarian failure and ovarian dysgenesis

| Gene   | Inheritance | OMIM gene ID | OMIM phenotype | OMIM or HGMD phenotype ID | Clinical Features                                                                 |
|--------|-------------|--------------|----------------|---------------------------|-----------------------------------------------------------------------------------|
| HFM1   | AR          | 615684       | POF9           | 615724                    | Amenorrhea                                                                         |
| FIGLA  | AD          | 608697       | POF6           | 612310                    | Small/absent ovaries, follicles absent, atrophic endometrium                       |
| FOXL2  | AD          | 605597       | POF3           | 608996                    | Hypoplastic uterus and ovaries, follicles absent, secondary amenorrhea             |
| MSH5   | AR          | 603382       | POF13          | 617442                    | Oligomenorrhea, atrophic ovaries, follicles absent                                 |
| STAG3  | AR          | 608489       | POF8           | 615723                    | Primary amenorrhea, ovarian dysgenesis                                            |
| NOBOX  | AD          | 610934       | POF5           | 611548                    | Secondary amenorrhea, follicles absent                                             |
| NR5A1  | AD          | 184757       | POF7           | 612964                    | Irregular or anovulatory menstrual cycles, secondary amenorrhea, dygenetic gonads, no germ cells |
| ERCC6  | AD          | 609413       | POF11          | 616946                    | Secondary amenorrhea                                                              |
| SYCE1  | AR          | 611486       | POF12          | 616947                    | Primary amenorrhea, small prepubertal uterus and ovaries, no ovarian follicles     |
| MCM8   | AR          | 608187       | POF10          | 612885                    | Absent thelarche, primary amenorrhea, no ovaries, hypergonadotropic ovarian failure |
| BMP15  | XLD         | 300247       | POF4, OD2      | 300510                    | Delayed puberty, primary/secondary amenorrhea, small ovaries, follicles absent, hypoplastic uterus, hirsutism, absent pubic/axillary hair |
| FLJ22792 | XLR     | 300603       | POF2B          | 300604                    | Weak teeth, delayed puberty, primary amenorrhea, osteoporosis                     |
| DLPH2  | XLD         | 300108       | POF2A          | 300511                    | Secondary amenorrhea                                                              |
| FSHR   | AR          | 136435       | OD1            | 233300                    | Osteoporosis, primary amenorrhea                                                  |
| MCM9   | AR          | 610098       | OD4            | 616185                    | Short stature, low weight, underdeveloped breasts, no ovaries, retarded bone age and development of pubic/axillary hair, primary amenorrhea |
| SOHLH1 | AR          | 610224       | OD5            | 617690                    | Short stature, absent thelarche, primary amenorrhea, hypoplastic/no ovaries, small uterus, retarded bone age |
| PSMC3IP| AR          | 608665       | OD3            | 614324                    | Underdeveloped breasts and absent pubic hair, hypoplastic uterus, primary amenorrhea |
| AMH    | AD          | 600957       | POF            | 782468699                 | Primary/secondary amenorrhea                                                       |
| AMHR2  | AD          | 600956       | POF            | 1454100025                | Primary ovarian insufficiency                                                      |
| DAZL   | AR          | 601486       | POF            | 782468699                 | Low ovarian reserves                                                              |
| GDF9   | AR          | 601918       | POF14          | 618014                    | Primary amenorrhea, no breast development, delayed pubic hair development          |
| LHCGR  | AR          | 152790       | POF            | 1754122511                | Primary amenorrhea                                                                |

(continued on next page)
in levels of the encoded protein are known to cause POF through impaired activation of microsomal cytochrome P450 and excessive apoptosis of ovarian cells (6). In 1-2% of cases, mutations in GDF9, FIGLA, NR5A1 and NANOS3 have been identified (6). Whole exome sequencing (WES) in large families has detected mutations in genes important for homologous recombination and meiosis (STAG3, SYCE1, HFM1), DNA repair (MCM8, MCM9, ERCC6, NUP107), mRNA transcription (SOHLH1) and mRNA translation (eIF4ENIF1) (7).

MAGI uses a multi-gene next generation sequencing (NGS) panel to detect nucleotide variations in coding exons and flanking introns of the above genes.

**Oocyte maturation defects and pre-implantation embryonic lethality**

Oocyte maturation is defined as re-initiation and completion of the first meiotic division, subsequent progression to the second phase of meiosis, and other molecular events essential for fertilization and early embryo development (8). The meiotic cell cycle begins in the neonatal ovary and stops at prophase I of meiosis until puberty, when an increase in luteinizing hormone concentrations re-initiates meiosis and ovulation. Thus the oocyte progresses from metaphase I to metaphase II. Metaphase I is completed by extrusion of a polar body. Mature oocytes are again arrested at metaphase II, the only stage at which they can be successfully fertilized (9).

Microscope observation of mature oocytes shows a single polar body, a homogeneous cytoplasm, a zona pellucida (ZP) and a perivitelline space. The zona pellucida is an extracellular matrix surrounding the oocytes of mammals and is fundamental for oogenesis, fertilization and pre-implantation embryo development. It consists of four glycoproteins (ZP1-ZP4) and ensures species-specific fertilization and induction of the sperm acrosomal reaction during fertilization. It also contains sperm receptors, contributes to blocking polyspermy and protects early embryos until implantation. Glycoprotein ZP1 connects ZP2 with ZP3. ZP3 is a structural component of the zona pellucida and has a role in sperm binding and penetration after the acrosomal reaction. ZP3 is a receptor that binds sperm at the beginning of fertilization and induces the acrosomal reaction (10). Oocyte maturation can be arrested in various phases of the cell cycle. Until recently, the genetic events underlying oocyte maturation ar-

---

### Table 1 (continued). Genes associated with primary ovarian failure and ovarian dysgenesis

| Gene     | Inheritance | OMIM gene ID | OMIM phenotype ID | OMIM or HGMD phenotype ID | Clinical Features                                      |
|----------|-------------|--------------|-------------------|----------------------------|--------------------------------------------------------|
| INHA     | AD, AR      | 147380       | POF               | 782468699                  | Primary amenorrhea                                     |
| PGRMC1   | AD          | 300435       | POF               | 782468699                  | Hypergonadotropic hypogonadism, amenorrhea             |
| POU5F1   | AD          | 164177       | POF               | 782468699                  | Small ovaries without follicles                        |
| TGFB1    | AD          | 600742       | POF               | 782468699                  | Premature ovarian failure                              |
| WT1      | AD          | 607102       | POF               | 782468699                  | Secondary amenorrhea                                   |
| SGO2     | AR          | 612425       | POF               | 141105721                  | Ovarian insufficiency                                  |
| SP1      | AR          | 615384       | POF               | 141105721                  | Hypoplastic/no ovaries                                 |
| EIF4ENIF1| AD          | 607445       | POF               | 141105721                  | Secondary amenorrhea                                   |
| NUP107   | AR          | 607617       | OD6               | 618078                     | No ovaries, small uterus, no spontaneous puberty       |
| NANOS3   | AD          | 608229       | POF               | 729748889                  | Primary amenorrhea                                     |

OD=ovarian dysgenesis; POF = primary ovarian failure; HGMD = Human Gene Mutation Database (https://portal.biobase-international.com/hgmd/pro/)

---

Oocyte maturation defects and pre-implantation embryonic lethality

Oocyte maturation is defined as re-initiation and completion of the first meiotic division, subsequent progression to the second phase of meiosis, and other molecular events essential for fertilization and early embryo development (8). The meiotic cell cycle begins in the neonatal ovary and stops at prophase I of meiosis until puberty, when an increase in luteinizing hormone concentrations re-initiates meiosis and ovulation. Thus the oocyte progresses from metaphase I to metaphase II. Metaphase I is completed by extrusion of a polar body. Mature oocytes are again arrested at metaphase II, the only stage at which they can be successfully fertilized (9).

Microscope observation of mature oocytes shows a single polar body, a homogeneous cytoplasm, a zona pellucida (ZP) and a perivitelline space. The zona pellucida is an extracellular matrix surrounding the oocytes of mammals and is fundamental for oogenesis, fertilization and pre-implantation embryo development. It consists of four glycoproteins (ZP1-ZP4) and ensures species-specific fertilization and induction of the sperm acrosomal reaction during fertilization. It also contains sperm receptors, contributes to blocking polyspermy and protects early embryos until implantation. Glycoprotein ZP1 connects ZP2 with ZP3. ZP3 is a structural component of the zona pellucida and has a role in sperm binding and penetration after the acrosomal reaction. ZP3 is a receptor that binds sperm at the beginning of fertilization and induces the acrosomal reaction (10). Oocyte maturation can be arrested in various phases of the cell cycle. Until recently, the genetic events underlying oocyte maturation ar-
rest were unknown (9). Only in the last few years have pathogenic genetic variations that cause oocyte maturation defects been found. In particular, heterozygous mutations in the tubulin beta 8 gene \((TUBB8)\) cause defects in the assembly of the meiotic spindle and in oocyte maturation (11). Pathogenic variations in \(TUBB8\) can be found in ~30% of cases with oocyte maturation arrest; mutations in \(PATL2\) and genes that encode ZP proteins are less frequent (12).

Early arrest of embryo development is one of the main causes of female infertility, although diagnosis can be difficult and the genetic causes are largely unknown. Gene-disease is difficult to identify, but studies on animal models suggest that there may be hundreds. A recent study identified a homozygous mutation in \(TLE6\) in a case of pre-implantation embryonic lethality with reduced female fertility and embryo development arrest at the meiosis II phase of the oocyte (13). Another study found that mutations in \(PADI6\) cause early embryonic arrest due to lack of activation of the zygotic genome (14). \(PADI6\) may be involved in formation of the subcortical maternal complex, essential for the embryo to go through the two-cell stage in mice as well as humans.

The current list of genes associated with oocyte maturation defects and pre-implantation embryonic lethality includes \(ZP1, TUBB8, ZP3, PATL2, ZP2, TLE6\) and \(PADI6\) (Table 2).

MAGI uses a multi-gene NGS panel to detect nucleotide variations in coding exons and flanking introns of the above genes.

### Sporadic and recurrent pregnancy loss

Recurrent pregnancy loss is defined as two or more consecutive miscarriages before the 20th week of gestation (15) and affects 1-5% of women of fertile age. Several other conditions have been associated with recurrent pregnancy loss: chromosome anomalies in parents or embryo, prothrombotic states, structural anomalies of the uterus, endocrine dysfunction, infections and immunological factors. Although there has been progress in the clinical and biochemical diagnosis of the human infertility, it is estimated that 35-60% of cases are still considered idiopathic, suggesting that genetic, epigenetic and environmental factors contribute to the recurrent pregnancy loss phenotype (16).

Fetal aneuploidies are the most frequent cause of sporadic miscarriage and can be detected in 50-70% of miscarriages in the first trimester and 5-10% of all pregnancies. The most frequent chromosome aberrations are trisomy, triploidy and X monosomy. Chromosome anomalies can also be found in the parental karyotype in 4-6% of couples with at least two miscarriages, and are more frequent in women. The most

| Gene | Inheritance | OMIM gene ID | OMIM phenotype | OMIM phenotype ID | Clinical Features |
|------|-------------|--------------|----------------|-------------------|-------------------|
| \(ZP3\) | AD | 182889 | OOMD3 | 617712 | Oocyte degeneration, absence of zona pellucida |
| \(TUBB8\) | AD, AR | 616768 | OOMD2 | 616780 | Oocyte arrest at metaphase I or II; abnormal spindle |
| \(ZP1\) | AR | 195000 | OOMD1 | 615774 | Absence of zona pellucida |
| \(PATL2\) | AR | 614661 | OOMD4 | 617743 | Oocyte maturation arrest in germinal vesicle stage, metaphase I or polar body 1 stage; abnormal polar body 1; early embryonic arrest |
| \(ZP2\) | AR | 182888 | OOMD6 | 618353 | Abnormal of zona pellucida |
| \(TLE6\) | AR | 612399 | PREMBL1 | 616814 | Failure of zygote formation |
| \(PADI6\) | AR | 610363 | PREMBL2 | 617234 | Recurrent early embryonic arrest |

OOMD= oocyte maturation defect; PREMBL= preimplantation embryonic lethality.
common anomaly found in couples is unbalanced translocation. Carriers are phenotypically healthy, but about 50-60% of their gametes are unbalanced due to anomalous meiotic segregation (17).

Single genes or few genes as the main cause of recurrent pregnancy loss have been less considered. However, in couples with recurrent pregnancy loss, identification of mutations in the SYCP3 gene, which encodes a fundamental component of the synaptonemal complex involved in meiotic segregation, has demonstrated a correlation between meiosis, aneuploidy and recurrent miscarriages. This suggests that correct segregation of chromosomes is influenced by events that take place in the fertilization phase, during meiosis I (18,19).

Recurrent miscarriage can also be linked to thrombophilia. In fact, mutations in the Leiden factor V gene (F5), coagulation factor II gene (F2) and annexin A5 gene (ANXA5 encoding an anticoagulant protein active in placental villi), have been associated with increased risk of recurrent pregnancy loss. Finally, mutations in NLRP7 and KHDC3L have been associated with hydatidiform mole, a disease of the trophoblast. Hydatidiform mole is due to a fertilization defect and is characterized by trophoblast proliferation that prevents normal embryo development. Mutations in the two genes have been reported in 1% of cases of hydatidiform mole.

The current list of genes known to be associated with recurrent pregnancy loss is reported in Table 3.

MAGI uses a multi-gene NGS panel to detect nucleotide variations in coding exons and flanking introns of the above genes.

### Ovarian hyperstimulation syndrome

Ovarian hyperstimulation syndrome (OHSS, OMIM phenotype: 608115) is a potentially life-threatening condition. It is a systemic disorder caused by excessive secretion of vasoactive hormones by hyperstimulated ovaries. The physiopathology is characterized by an increase in capillary permeability with leakage into the vasal compartment and intravascular dehydration. Severe complications include thrombophilia, renal and hepatic dysfunction and acute respiratory distress (20).

The syndrome is defined as having early onset when it manifests in luteal phase in response to human chorionic gonadotropin (hCG). It is defined as having late onset when it manifests at the beginning of pregnancy and endogenous hCG further stimulates the ovary. It is often induced by ovarian stimulation used for in vitro fertilization, although 0.5-5% of cases are spontaneous. Clinical manifestations may range from benign abdominal distension to massive, potentially lethal ovarian enlargement (21). Pathological features of the syndrome, both spontaneous and iatrogenic, include multiple serous and hemorrhagic follicular cysts surrounded by luteal cells (iperreactio luteinalis). The syndrome can arise from high serous levels of hCG caused by multiple or molar pregnancies. It can also be associated with pituitary or neuroendocrine adenomas stimulating follicular hormone (FSH), with hypothyroidism, or with activating mutations of the FSH receptor (FSHR) (22).

Five activating mutations in the FSHR gene have been described in pregnant women with OHSS. These

| Gene     | Inheritance | OMIM gene ID | OMIM phenotype | OMIM phenotype ID |
|----------|-------------|--------------|----------------|------------------|
| SYCP3    | AD          | 604759       | RPRGL4         | 270960           |
| F2       | AD          | 176930       | RPRGL2         | 614390           |
| ANXA5    | AD          | 131230       | RPRGL3         | 614391           |
| NLRP7    | AR          | 609661       | HYDM1          | 231090           |
| KHDC3L   | AR          | 611687       | HYDM2          | 614293           |

Table 3. Genes associated with recurrent pregnancy loss.

RPRGL=recurrent pregnancy loss; PREMBL=preimplantation embryonic lethality.
mutations increase sensitivity to hCG and/or thyroid stimulating hormone (TSH). By contrast, loss-of-function mutations in FSHR can severely upset folliculogenesis, causing ovarian insufficiency. Recent studies reported cases with non-gestational OHSS with new mutations in FSHR (23-26).

To date, the only gene known to be associated with OHSS is FSHR (OMIM gene ID: 136435) and the phenotype has autosomal dominant inheritance.

MAGI uses a multi-gene NGS panel to detect nucleotide variations in coding exons and flanking introns of FSHR.

Conclusions

Infertility is a significant and increasing clinical problem. Several chromosome aberrations have long been known to be associated with female infertility. Only recently have monogenic mutations been found in association with male and female infertility. Genetic tests based on parallel sequencing of several genes are becoming increasingly important in diagnostic practice.

We created a NGS panel to detect nucleotide variations in coding exons and flanking regions of all the genes associated with infertility. When a suspect of female infertility is present we perform the analysis of all the genes present in this short article. In order to have a high diagnostic yield, we developed a NGS test that reaches an analytical sensitivity (proportion of true positives) and an analytical specificity (proportion of true negatives) of ≥99% (coverage depth ≥10x).

Knowledge of the exact molecular cause helps clinicians choose the most appropriate treatments and follow-up.

Conflict of interest: Each author declares that he or she has no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing arrangement etc.) that might pose a conflict of interest in connection with the submitted article

References

1. Franić-Ivanišević M, Franić D, Ivović M, et al. Genetic etiology of primary premature ovarian insufficiency. Acta Clin Croat 2016; 55: 629-35.

2. Beck-Peccoz P, Persani L. Premature ovarian failure. Orphanet J Rare Dis 2006; 1: 9.

3. Kebali S, Chaabane K, Mnif MF, et al. Gonadal dysgenesis and the Mayer-Rokitansky-Kuster-Hauser syndrome in a girl with a 46, XX karyotype: a case report and review of literature. Indian J Endocrinol Metab 2013; 17: 505-8.

4. Ebrahimi M, Akbari Ashbagh F. Pathogenesis and causes of premature ovarian failure: an update. Int J Fertil Steril 2011; 5: 54-65.

5. Al-Ajoury R, Kassem E, Al-Halabi B, Moassess F, Al-Achkar W. Investigation of some genetic variations in BMP15 accompanied with premature ovarian failure (POF) in Syrian women. Middle East Fertil Soc J 2015; 20: 91-6.

6. Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update 2015; 21: 787-808.

7. Zorrilla M, Yatsenko AN. The genetics of infertility: current status of the field. Curr Genet Med Rep 2013; 1.

8. Küpker W, Diedrich K, Edwards RG. Principles of mammalian fertilization. Hum Reprod 1998; 13: 20-32.

9. Feng R, Sang Q, Kuang Y, et al. Mutations in TUBB8 and human oocyte meiotic arrest. N Engl J Med 2016; 374: 223-32.

10. Yang P, Luan X, Peng Y, et al. Novel zona pellucida gene variants identified in patients with oocyte anomalies. Fertil Steril 2017; 107: 1364-9.

11. Feng R, Yan Z, Li B, et al. Mutations in TUBB8 cause a multiplicity of phenotypes in human oocytes and early embryos. J Med Genet 2016; 53: 662-71.

12. Chen B, Zhang Z, Sun X, et al. Biallelic mutations in PATL2 cause female infertility characterized by oocyte maturation arrest. Am J Hum Genet 2017; 101: 609-15.

13. Alazami AM, Awad SM, Coskun S, et al. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol 2015; 16: 240.

14. Xu Y, Shi Y, Fu J, et al. Mutations in PADI6 cause female infertility characterized by early embryonic arrest. Am J Hum Genet 2016; 99: 744-52.

15. Zegers-Hochschild F, Adamson GD, de Mouzon J, et al. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril 2009; 92: 1520-4.

16. Quintero-Ronderos P, Mercier E, Fukuda M, et al. Novel genes and mutations in patients affected by recurrent pregnancy loss. PLoS One 2017; 12: e0186149.

17. Hyde KJ, Schust DJ. Genetic considerations in recurrent pregnancy loss. Cold Spring Harb Perspect Med 2015; 5: a023119.

18. Bolor H, Mori T, Nishiyama S, et al. Mutations of the SYCP3 gene in women with recurrent pregnancy loss. Am J Hum Genet 2009; 84: 14-20.

19. Stouffs K, Vandermaelen D, Tournaye H, Liebaers I, Lissen W. Mutation analysis of three genes in patients with maturation arrest of spermatogenesis and couples with recurrent miscarriages. Reprod Biomed Online 2011; 22: 65-71.
20. Kumar P, Sait SF, Sharma A, Kumar M. Ovarian hyperstimulation syndrome. J Hum Reprod Sci 2011; 4: 70-5.
21. Delvigne A, Rozenberg S. Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): a review. Hum Reprod Update 2002; 8: 559-77.
22. Oztekin O, Soylu F, Tatli O. Spontaneous ovarian hyperstimulation syndrome in a normal singleton pregnancy. Taiwan J Obstet Gynecol 2006; 45: 272-5.
23. De Leener A, Caltabiano G, Erkan S, et al. Identification of the first germline mutation in the extracellular domain of the follitropin receptor responsible for spontaneous ovarian hyperstimulation syndrome. Hum Mutat 2008; 29: 91–8.
24. Vasseur C, Rodien P, Beau I, et al. A chorionic gonadotropin-sensitive mutation in the follicle-stimulating hormone receptor as a cause of familial gestational spontaneous ovarian hyperstimulation syndrome. N Engl J Med 2003; 349: 753-9.
25. Smits G, Olatunbosun O, Delbaere A, Pierson R, Vassart G, Costagliola S. Ovarian hyperstimulation syndrome due to a mutation in the follicle-stimulating hormone receptor. N Engl J Med 2003; 349: 760-6.
26. Hugon-Rodin J, Sonigo C, Gompel A, et al. First mutation in the FSHR cytoplasmic tail identified in a non-pregnant woman with spontaneous ovarian hyperstimulation syndrome. BMC Med Genet. 2017; 18: 44.