Myeloproliferative neoplasms (MPNs) originate from genetically transformed hematopoietic stem cells that retain the capacity for multilineage differentiation and effective myelopoiesis. Beginning in early 2005, a number of novel mutations involving Janus kinase 2 (JAK2), Myeloproliferative Leukemia Virus (MPL), TET oncogene family member 2 (TET2), Additional Sex Combs-Like 1 (ASXL1), Casitas B-lineage lymphoma proto-oncogene (CBL), Isocitrate dehydrogenase (IDH) and IKAROS family zinc finger 1 (IKZF1) have been described in BCR-ABL1-negative MPNs. However, none of these mutations were MPN specific, displayed mutual exclusivity or could be traced back to a common ancestral clone. JAK2 and MPL mutations appear to exert a phenotype-modifying effect and are distinctly associated with polycythemia vera, essential thrombocythemia and primary myelofibrosis; the corresponding mutational frequencies are ~99, 55 and 65% for JAK2 and 0, 3 and 10% for MPL mutations. The incidence of TET2, ASXL1, CBL, IDH or IKZF1 mutations in these disorders ranges from 0 to 17%; these latter mutations are more common in chronic (TET2, ASXL1, CBL) or juvenile (CBL) myelomonocytic leukemias, mastocytosis (TET2), myelodysplastic syndromes (TET2, ASXL1) and secondary acute myeloid leukemia, including blast-phase MPN (IDH, ASXL1, IKZF1). The functional consequences of MPN-associated mutations include unregulated JAK-STAT (Janus kinase/signal transducer and activator of transcription) signaling, epigenetic modulation of transcription and abnormal accumulation of oncoproteins. However, it is not clear as to whether and how these abnormalities contribute to disease initiation, clonal evolution or blast transformation.

JAK2 mutations

JAK2 is located on chromosome 9p24 and includes 25 exons and its protein 1132 amino acids. JAK2 is one of the four Janus family nonreceptor protein tyrosine kinases; JAK1, JAK2 and TYK2 are ubiquitously expressed in mammalian cells, whereas JAK3 expression is limited to hematopoietic cells. Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling is important for a wide spectrum of cellular processes, including proliferation, survival or normal functioning of hematopoietic, immune, cardiac and other cells. JAKs transduce signals from their cognate type I and type II nonkinase cytokine receptors. Selective association of a JAK family member with specific cytokines or growth factors might explain some of the differences in therapeutic and side-effect profiles among drugs that primarily target JAK1, JAK2, JAK3 or multiple JAKs (Figure 2).

JAK2V617F

Oncogenic JAK1, JAK2 and JAK3 mutations have been associated with both lymphoid and myeloid neoplasms. Of particular relevance to MPN, JAK2V617F was discovered in 2004 and the first reports appeared in early 2005. JAK2V617F is by far the most prevalent mutation in BCR-ABL1-negative MPN (occurs in ~95% of patients with PV, in ~55% with ET and in ~65% with PMF), but it is also seen in some patients with myelodysplastic syndrome (MDS)/MPN (for example, refractory anemia with ring sideroblasts and thrombocytosis and rarely, in primary acute myeloid leukemia (AML), MDS or CML). However, this should not undermine

Keywords: polycythemia; thrombocythemia; myelofibrosis; pathogenesis; isocitrate dehydrogenase

Correspondence: Professor A Tefferi, Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. E-mail: tefferi.ayalew@mayo.edu

Received 10 February 2010; accepted 18 March 2010; published online 29 April 2010

Introduction

The WHO (World Health Organization) classification system for hematological malignancies includes eight clinicopathological entities under the category of myeloproliferative neoplasms (MPNs): chronic myelogenous leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), chronic neutrophilic leukemia, chronic eosinophilic leukemia—not otherwise specified, mastocytosis and MPN-unclassifiable. Among these, the first four were first assembled in 1951 by William Dameshek, as ‘myeloproliferative disorders’; accordingly, they are now referred to as ‘classic’ MPNs. As CML is invariably and specifically associated with BCR-ABL1, the other three (that is, PV, ET and PMF) are operationally dubbed as ‘BCR-ABL1-negative MPNs.’

REFERENCES

PV, ET and PMF are traditionally considered as stem cell-derived monoclonal hemopathies. Furthermore, family studies and Janus kinase 2 (JAK2) haplotype analysis have suggested a hereditary component for disease susceptibility. The possibility of independently emerging multiple abnormal clones (that is, leading to oligoclonal rather than monoclonal myeloproliferation) has recently been raised and challenges the prevailing concept that considers an ancestral abnormal clone that gives rise to mutually exclusive subclones (Figure 1). In the past 5 years, a number of stem cell-derived mutations involving JAK2 (exon 14–27 and exon 12), Myeloproliferative Leukemia Virus (MPL) (exon 10), TET oncogene family member 2 (TET2) (across several exons), Additional Sex Combs-Like 1 (ASXL1) (exon 12), Casitas B-lineage lymphoma proto-oncogene (CBL) (exons 8 and 9), Isocitrate dehydrogenase (IDH1) (exon 4), IDH2 (exon 4) and IKAROS family zinc finger 1 (IKZF1) (deletion of several exons) have been described in chronic- or blast-phase MPN and are discussed in this review (Table 1).
its broad specificity to patients with myeloid neoplasms (including those with occult disease and splanchic vein thrombosis)\(^5\),\(^6\) and the fact that the mutation is not seen in patients with lymphoid neoplasms, reactive myeloproliferation or in healthy volunteers.\(^5\)–\(^8\)

JAK2\(V617F\) results from a somatic G to T mutation involving JAK2 exon 14, which leads to nucleotide change at position 1849 and the substitution of valine to phenylalanine at codon 617.\(^9\) The mutation affects the noncatalytic ‘pseudo-kinase’ domain and is believed to derail its kinase-regulatory activity. JAK2\(V617F\)-mediated transformation is believed to require coexpression of type I cytokine receptor and leads to STAT5/3 activation;\(^6\)–\(^8\) in addition, a recent study has suggested an epigenetic effect through nuclear translocation of the mutant molecule and direct phosphorylation of histone H3.\(^6\) Such a noncanonical mode of action has previously been reported to disrupt heterochromatin-mediated tumor suppression in Drosophila.\(^6\) Some patients with MPN might carry multiple JAK2 mutations, sometimes occurring in the same exon and in cis configuration.\(^6\) Such events might have functional relevance as they might alter specific signaling.

JAK2\(V617F\) induces PV-like phenotype in mouse transplantation models,\(^6\) and this observation has been further confirmed by a recent report of an inducible JAK2\(V617F\) knock-in mouse model, in which both heterozygous and homozygous mutation expressions induced PV-like disease, with the latter causing a more aggressive phenotype with myelofibrosis.\(^6\) Such experimental data along with the fact that virtually all patients with PV carry a JAK2 mutation,\(^6\) suggest a cause–effect relationship with erythrocytosis.\(^3\)\(^1\),\(^6\)–\(^7\) Somewhat consistent with this contention, JAK2\(V617F\) homozygosity is infrequent in ET and its frequent occurrence in PV has been ascribed to mitotic recombination, possibly facilitated by JAK2\(V617F\)-induced genetic instability.\(^7\) However, both ET- and PMF-like disease are also induced in mice by experimental manipulation of the JAK2\(V617F\) allele burden,\(^7\)\(^3\),\(^7\) and mutant allele burden in PMF is often as high as that seen in PV and its level increases further during fibrotic transformation.\(^7\) These observations suggest the presence of additional phenotype determinants in primary and post-PV/ET MF.

Despite the above-described experimental and clinical observations, JAK2\(V617F\) does not appear to be the disease-initiating event and probably defines an MPN subclone, which does not always account for leukemic transformation.\(^7\),\(^6\)\(^7\) In the latter regard, JAK2\(V617F\)-positive, as opposed to JAK2\(V617F\)-negative, blast-phase MPN might require a fibrotic phase disease transition.\(^8\) On the other hand, JAK2 wild-type AML that develops in the setting of JAK2\(V617F\)-positive MPN does not necessarily arise from originally mutation-positive clones that have undergone mitotic recombination of wild-type JAK2.\(^8\) The complexity of clonal hierarchy and structure in MPN has become more evident with recent demonstrations of multiple mutations occurring in the same patient and the fact that such mutations are neither necessarily mutually exclusive nor follow a predictable sequence of occurrence.\(^6\),\(^6\)\(^7\),\(^8\)

JAK2\(V617F\)-positive MPN has been associated with older age at diagnosis (ET and PMF), higher hemoglobin level (ET and PMF), leukocytosis (ET and PMF) and lower platelet count (ET).\(^7\) A higher mutant allele burden has been associated with pruritus (PV and PMF), higher hemoglobin level (PV), leukocytosis (PV, ET and PMF) and larger spleen size (PV, ET and PMF).\(^7\),\(^8\) However, save for some contrary observations,\(^8\),\(^8\) the mere presence of JAK2\(V617F\) or increased mutant allele burden does not seem to affect survival or leukemic transformation.\(^8\) Instead, a lower mutant allele burden has been associated with

Figure 1 Clonal origination and evolution in myeloproliferative neoplasms (MPNs). PV, polycythemia vera; ET, essential thrombocythemia; PMF, primary myelofibrosis; CML, chronic myelogenous leukemia; AML, acute myeloid leukemia; JAK2, Janus kinase 2; MPL, thrombopoietin receptor; TET2, TET oncogene family member 2; ASXL1, Additional Sex Combs-Like 1; CBL, Casitas B-lineage Lymphoma proto-oncogene; IDH, isocitrate dehydrogenase; IKZF1, IKAROS family zink finger 1.
Table 1 Novel mutations in polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) and blast-phase myeloproliferative neoplasm (MPN)

Mutations	Chromosome location	Mutational frequency	Pathogenetic relevance	Prognostic relevance
JAK2V617F exon 14 (Janus kinase 2)	9p24	PV ~ 96% ET ~ 55% PMF ~ 65% Blast-phase MPN ~ 50%	Believed to contribute to myeloproliferation and progenitor cell growth factor hypersensitivity	Limited
JAK2 exon 12	9p24	PV ~ 3% ET ~ rare PMF ~ rare Blast-phase MPN ~ ?	Believed to contribute to primarily erythroid myeloproliferation	Not enough information
MPL exon 10 (Myeloproliferative Leukemia Virus oncogene) (encodes for thrombopoietin receptor)	1p34	PV ~ rare ET ~ 3% PMF ~ 10% Blast-phase MPN ~ ?	Believed to contribute to primarily megakaryocytic myeloproliferation	Not enough information
TET2 mutations occur across several of the gene's 12 exons (TET oncogene family member 2)	4q24	PV ~ 16% ET ~ 5% PMF ~ 17% Blast-phase MPN ~ 17%	Might contribute to epigenetic modulation of transcription (TET1 catalyzes conversion of 5-methylcytosine to 5-hydroxymethylcytosine)	Not enough information
ASXL1 exon 12 (Additional Sex Combs-Like 1)	20q11.1	PV ~ ? ET ~ ? PMF ~ ? Blast-phase MPN ~ 19%	Believed to affect regulation of transcription and RAR-mediated signaling	Not enough information
CBL exons 8 and 9 (Casitas B-lineage lymphoma proto-oncogene)	11q23.3	PV ~ rare ET ~ rare PMF ~ 6% Blast-phase MPN ~ ?	Believed to alter the regulatory function of wild-type CBL against kinase signaling because of defective ubiquitylation of oncoproteins	Not enough information
IDH1/IDH2 exon 4/exon 4 (Isocitrate dehydrogenase)	2q33.3/15q26.1	PV ~ rare ET ~ rare PMF ~ 4% Blast-phase MPN ~ 20%	Induces accumulation of 2-hydroxylglutarate, a possible oncoprotein	Not enough information
IKZF1 (IKAROS family zinc finger 1)	7p12	PV ~ rare ET ~ rare PMF ~ rare Blast-phase MPN ~ 19%	Believed to alter tumor suppressor activity of the wild-type protein	Not enough information

Abbreviation: RAR, retinoic acid receptor.

Figure 2 The spectrum of cytokines and growth factors that use Janus kinases (JAKs) for signal transduction.
inferior survival in PMF. This particular finding illustrates prognostically relevant clonal complexity in PMF. JAK2V617F allele burden increases with time in PV and PMF, but not in ET. This phenomenon in PV and PMF coincides with the development of post-PV myelofibrosis, marked splenomegaly and requirement for chemotherapy. Current evidence is not conclusive with regard to the relationship between JAK2V617F and thrombosis.

JAK2 exon 12 mutations

JAK2 exon 12 mutations are relatively specific to JAK2V617F-negative PV and were first described in 2007. Subsequent studies have identified N542-E543del as the most frequent among the >10 JAK2 exon 12 mutations described so far. JAK2 exon 12 mutations include in-frame deletions, point mutations and duplications, mostly affecting seven highly conserved amino-acid residues (F537–E543). As is the case with its exon 14 counterpart (that is, JAK2V617F), the JAK2K539L exon 12 mutation has also been shown to induce erythroid crisis in mice. JAK2 exon 12 mutation-positive PV patients are often heterozygous for the mutation and are characterized by predominantly erythroid myelopoiesis, subnormal serum erythropoietin level and younger age at diagnosis. The clinical course of these patients seems to be similar to that of patients with JAK2V617F-positive PV.

MPL mutations

MPL, located on chromosome 1p34, includes 12 exons and encodes for the thrombopoietin receptor (635–680 amino acids). MPL is the key growth and survival factor for megakaryocytes. Gain-of-function germline MPL mutations have been associated with familial thrombocytopathy (SS05N) that is, interestingly, associated with an MPN phenotype, including splenomegaly, myelofibrosis and an increased risk of thrombosis. The particular observation further attests to the phenotype-modifying effect of somatic MPL mutations in MPN. An MPL single-nucleotide polymorphism (G1238T) that results in a K39N substitution is found in single-nucleotide polymorphism (G1238T) that results in a K39N substitution is found in approximately 7% of African Americans and is associated with higher platelet counts.

Somatic MPL mutations are rare and their occurrence is largely limited to patients with MPN, although their occurrence in acute megakaryocytic leukemia patients has also been reported. MPLW515L results from a G to T transition at nucleotide 1544 (exon 10), resulting in a tryptophan to leucine substitution at codon 515. MPLW515L was first described in 2006 among patients with JAK2V617F-negative PMF and induces a PMF-like disease with thrombocytopathy in mice. Subsequently, MPLW515K and other exon 10 MPL mutations (such as MPLW515S and MPLS05N) were described in ET and PMF with mutational frequencies that range from 3 to 15%. MPLW515L is the most frequent MPL-associated mutation, whereas MPLS05N also occurs in the setting of hereditary thrombocythemia, as mentioned above.

As is the case with JAK2 mutations, MPLS15 mutations are stem cell-derived events that involve both myeloid and lymphoid progenitors. MPL mutant-induced oncogenesis also results in constitutive JAK-STAT activation and might require specific MPL mutant variants (such as MPLW515L) and receptor residues (such as Y112). Some patients with ET or PMF display multiple MPL mutations and others a low allele burden JAK2V617F clone together with a higher allele burden MPL mutation. Homozygosity for MPL mutations is also ascribed to acquired uniparental disomy, as is the case with JAK2V617F.

MPL-mutated ET has been associated with older age, lower hemoglobin level, higher platelet count, microvascular symptoms and a higher risk of post-diagnosis arterial thrombosis. The presence of MPL mutation did not appear to affect survival, fibrotic or leukemic transformation. MPL-mutated PMF has been associated with the female gender, older age, lower hemoglobin level and a higher likelihood of becoming transfusion dependent. This set of findings suggests a phenotype-modifying effect that is different from that seen with a JAK2 mutation.

TET2 mutations

TET2 is one of three homologous human proteins (that is, TET1, TET2 and TET3) the function of which, based on a recent report on TET1, might include conversion of 5-methylcytosine to 5-hydroxymethylcytosine, and thus possibly affect the epigenetic regulation of transcription. TET1 was the first of the three TET genes to be described and the name is derived from ‘ten-eleven translocation 1’—a name given to a novel gene located at chromosome 10q22 and was identified as the fusion partner of TET1 during an AML-associated chromosomal translocation, t(10;11)(q22;q31). TET2 is located on chromosome 4q24, which is a breakpoint that is also involved in other AML-associated translocations, including t(3;4)(q26;q24), t(4;5)(q24;p16), t(4;7)(q24;q21) and del(4)(q23q24). TET2 has multiple isoforms and isoform A, which is affected by most of the TET2 mutations described so far, and includes 12 exons. TET3 is located at 2p13.1.

TET2 mutations, first described in 2008, include frameshift, nonsense and missense mutations, scattered across several of its 12 exons, and are seen in both JAK2V617F-positive (17%) and JAK2V617F-negative (7%) MPNs with approximate mutational frequencies of 16% in PV, 5% in ET, 17% in PMF, 14% in post-PV MF, 14% in post-ET MF and 17% in blast-phase MPN. Higher incidences of TET2 mutations have been reported in systemic mastocytosis, MPN-unclassifiable, chronic myelomonocytic leukemia (CMLML), MDS, MDS/MPN, AML and idic(X)(q13)-positive myeloid malignancies; in addition, a germline TET2 mutation was recently described in a patient with PV. Furthermore, TET2 mutations have been shown to coexist with other pathogenetically relevant mutations involving RARA, MPL, KIT, FLT3, RAS, MLL, CEBPA or NPM1. TET2 mutations in MPN can either antedate or follow the acquisition of a JAK2 mutation (exon 12 or 14), or occur in an independent manner leading to a bicalonal pattern.

Taken together, the ubiquitous nature of TET2 mutations undermines their specific pathogenetic contribution to MPN. Furthermore, the presence of the mutant TET2 did not seem to affect survival, leukemic transformation, thrombosis risk or cytogenetic profile in either PV or PMF. By contrast, the presence of TET2 mutations was associated with superior survival in MDS and inferior survival in AML and CMMML. A further twist in the TET2 story was recently reported by a study that suggested the possible acquisition of the mutation during leukemic transformation of MPN, a paired sample analysis in 14 patients disclosed the absence of TET2 mutations in chronic-phase disease but their presence in 5 cases during blast-phase disease, regardless of JAK2V617F mutational status. However, these results were not reproduced by two other
studies that looked for the presence of TET2 mutations in patient samples obtained during chronic- and blast-phase diseases. One of the latter studies also showed that post-MPN AML can develop in the presence or absence of TET2 or JAK2 mutations in a mutually exclusive manner or not.

ASXL1 mutations

ASXL1 (includes 12 or 13 exons) maps to chromosome 20q11.1 and belongs to the Enhancer of trithorax and Polycomb gene family. Gene function is believed to include dual activator/ suppressor activity toward transcription and includes repression of retinoic acid receptor-mediated transcription. ASXL1 is expressed in most hematopoietic cell types, and a knockout mouse model displayed mild defects in myelopoiesis but did not develop MDS or other hematological malignancy. PAX5-ASXL1 has been associated with the B precursor acute lymphoblastic leukemia. Truncation exon 12 mutations, which affect the C-terminal PHD (plant homeodomain), have recently (2009) been described in 11% of patients with MDS, 43% of those with CMML, 7% with primary and 47% with secondary AML. In a more recent study of 300 patients with a spectrum of non-MPN myeloid malignancies, ASXL1 mutations were found in 62 patients (~21%); ~7% in MDS without excess blasts, 11–17% in MDS with ring sideroblasts, 31% in MDS with excess blasts, 23% in post-MDS AML, 33% in CMML and 30% in primary AML. ASXL1 mutations might be more common in patients with normal karyotype or ~77q− and infrequent in the presence of ~5q−. In AML with normal karyotype, ASXL1 mutations were often absent in patients with NPM1 or FLT3 mutations; mutational frequency was 34% in non-MPN1 cases.

ASXL1 mutations occur in both chronic- and blast-phase MPNs; in a study of 64 patients with ET (n = 35), PMF (n = 11), PV (n = 10), blast-phase MPN (n = 5) and MPN-unclassifiable (n = 3), heterozygous mutations of ASXL1 were identified in 5 cases who were all JAK2V617F negative (~8%; 3 PMF, 1 ET and 1 blast-phase ET). In an even more recent study of 63 patients with post-MPN AML, ASXL1 mutations were seen in 12 (19%) cases and did not appear to be acquired during leukemic transformation. ASXL1 mutations in the latter study were shown to coexist with JAK2 or TET2 but not IDH1 mutations and, in some instances, appeared to predate the acquisition of both JAK2 and TET2 mutations. Obviously, larger studies are required to confirm these findings and determine prognostic impact, especially in terms of leukemic transformation risk. Similarly, additional laboratory studies are required to clarify ASXL1 mutation-mediated oncogenesis and whether it involves loss of tumor suppression or aberrant retinoic acid receptor signaling.

CBL mutations

CBL (includes 16 exons) is located at 11q23.3, telomeric to MLL and encodes for a cytosolic protein capable of dual function: negative regulation of kinase signaling mediated by E3 ubiquitin ligase activity and an adaptor protein function with a positive effect on downstream signaling. CBL (906 amino acids) is one of three cytosolic CBL family of proteins (CBL, CBL-B and CBL-C/3) and its N terminal features tyrosine kinase-binding and zinc-binding RING-finger domains with a linker domain between them, and its C terminal is composed of a proline-rich region. E3 ubiquitin ligase activity is central to the primary function of CBL, which is the downregulation of activated receptor and nonreceptor protein-tyrosine kinases by ubiquitination, internalization and lysosomal/proteosomal degradation.

Of relevance to myeloid neoplasms, wild-type CBL has been shown to participate in the ubiquitination of MPL, KIT and FLT3 and ubiquitylation of the latter two proteins was shown to be defective in the presence of mutant CBL. Mutant CBL induces oncogenic phenotype in various cell lines and promotes growth factor independence. CBL knockout mouse display expanded hematopoietic stem cell pool, splenomegaly and enhanced growth factor sensitivity of hematopoietic progenitor cells. Retroviral expression of mutant CBL in transplanted bone marrow induced extensive and diffuse multigran infiltration by mast cells accompanied by mast cell sarcoma, myeloproliferative phenotype and acute leukemia in some instances. In contrast to this observation, CBL mutations were not detected in any of the 60 patients with systemic mastocytosis.

CBL mutations in myeloid malignancies are usually associated with 11q acquired uniparental disomy and were first recognized in AML as an MLL-CBL fusion resulting from interstitial CBL deletion. Subsequent studies have shown that CBL mutations were most frequent in juvenile mononucentic leukemia (JMML) and CMML. In one large study, mostly exon 8 CBL mutations were detected in 27 (17%) of 159 cases with JMML (40% mutational frequency among patients without known RAS pathway mutations) and 5 (11%) of 44 patients with CMML. The respective mutational frequencies for JMML and CMML, from another group of investigators, were 10 and 5%, respectively. Others have also shown relatively high CBL mutation rates in CMML (13–15%) and one of the latter studies reported an 8% incidence in BCR-ABL1-negative atypical CML. It is to be recalled that CMLM and atypical CML are all subcategories of MDS/MPN. By contrast, CBL mutations were infrequent in refractory anemia with ring sideroblasts and thrombocytosis (0 of 19 analyzed cases), a provisional MDS/MPN entity.

Most CBL mutations in JMML are homozygous, which suggests a tumor-suppressor function for the normal protein. This conjecture is supported by the observation that two patients with homozygous mutations in their hematopoietic cells displayed germline heterozygous mutations in their buccal or cord blood cells. In general, CBL mutations associated with JMML and CMML consist of missense substitutions or in-frame deletions and are located throughout the linker and RING-finger domain. JMML patients with mutant CBL do not express RAS or PTPN11 mutations but display similar biochemical (for example, cellular granulocyte macrophage-colony-stimulating factor hypersensitivity) and clinical features. By contrast, mutant CBL has been shown to coexist with mutations involving RUNX1, FLT3, JAK2 and TP53.

CBL mutations are infrequent in myeloid malignancies other than JMML or CMML. In a recent study of 577 patients with MPN or MDS/MPN, including 74 patients with PV, 24 with ET and 53 with PMF, CBL mutations in either exon 8 or 9 were identified in 3 (6%) patients with PMF and 1 of 96 patients with CEL/HES (chronic eosinophilic leukemia/hypereosinophilic syndrome). CBL mutations were found in <1% of patients with primary AML, MDS, systemic mastocytosis, CNL (chronic neutrophilic leukemia), blast-phase CML and T-acute lymphoblastic leukemia. Mutation frequency might be higher in post-MDS/MPN AML or in AML with core-binding factor or 11q aberrations. Acquisition of mutant CBL during disease progression from ET to post-ET MF was documented in one instance. Additional studies are required to clarify the pathogenetic contribution of altered CBL to PMF or
post-ET/PV MF and its potential role in fibrotic or leukemic disease transformation.

IDH mutations

IDH1 (located on chromosome 2q33.3; includes 10 exons) and **IDH2** (located on chromosome 15q26.1; includes 11 exons) encode for isocitrate dehydrogenase 1 and 2, respectively, which are homodimeric NADP⁺-dependent enzymes that catalyze oxidative decarboxylation of isocitrate to α-ketoglutarate, generating NADPH from NADP⁺. **IDH1** and **IDH2** are different from the mitochondrial NAD⁺-dependent isocitrate-IDH3-β (IDH3-β) and IDH3-γ. **IDH1** (414 amino acids) is localized in the cytoplasm and peroxisomes, whereas **IDH2** (452 amino acids) is localized in the mitochondria. **IDH1** and **IDH2** mutations were first described in gliomas148 and subsequently in AML149–151 localized in the mitochondria.

IDH1 mutations are younger and display better survival and often express **EGFR** mutations.152,153 These mutations have also been described in post-MPN AML.35–37 In one such study, 18 (23%) of 78 IDH1/R132H, 19% R132S, 15% R132G and 4% R132L). In both IDH1 and IDH2 mutations clustered with normal karyotype, or 1%, respectively, of patients with WHO grade II or III histology and secondary glioblastomas but are infrequently (<5% incidence) seen in primary glioblastoma.158–161 In one study of 496 gliomas, >90% of the IDH1 mutations were IDH1/R132H.162 Paired sample analysis in glioma patients transforming from low- to high-grade histology showed that IDH mutations were early events. IDH-mutated glioma patients are younger and display better survival and often express TP53 but not PTEN, EGFR, CDKN2 or CDKN2B mutations.158,163 The superior survival associated with IDH mutations has been attributed to increased sensitivity to treatment, as a result of decreased NADPH production, and, therefore, reduced risk of progression.164–166

The first study on IDH mutations in AML included 188 patients with primary AML and reported IDH1 but not IDH2 mutations in 16 (∼9%) cases: R132C in 8, R132H in 7 and R132S in 1.149 In a subsequent AML study of 493 adult Chinese patients, 167 27 (∼6%) expressed IDH1 mutations (37% R132C, 26% R132H, 19% R132S, 15% R132G and 4% R132L). In both studies, IDH1 mutations clustered with normal karyotype, NPM1 mutations and trisomy 8. More recently, IDH2 exon 4 mutations, affecting R172 or R140, were also shown to occur in primary AML.150,151 In one of these studies, 18 (23%) of 78 patients displayed either IDH1 (n = 6; ∼8%) or IDH2 (n = 12; ∼15%; 7 R140Q and 5 R172K) mutations.150 AML patients with IDH2 mutations were also less likely to carry FLT3, NPM1 or ASXL1 mutations, whereas the above-mentioned study from China167 reported the coexistence of IDH1 mutations and RUNX1, PTPN11, NRAS, FLT3-ITD, FLT3-TKD or MLL-PTD mutations.150,167 In general, survival in primary AML did not seem to be affected by the presence of IDH1 mutations.149,150,167

IDH1 mutations have also been described in post-MPN AML.35–37 In one such study, IDH1 mutations were seen in ∼8% (5 of 63) of patients, mostly occurring in the absence of TET2 and ASXL1 mutations.16 In this particular study, there was no significant difference in **IDH1** mutational frequency between post-MPN AML, post-MDS AML and primary AML. Furthermore, paired sample analysis did not suggest acquisition of **IDH1** mutation during leukemic transformation.16 In another study of AML occurring in the setting of JAK2-mutated MPN,35 mutant IDH1 was seen in 5 (31%) of 16 patients; 3 R132C (1 post-PMF, 1 post-ET and 1 post-PV with exon 12 mutation) and 2 R140Q (1 post-PMF with trisomy 8 and 7q– and 1 post-PV with complex karyotype). Three patients lost their mutant JAK2 at the time leukemic transformation; in two of these three patients, the **IDH1** mutation was present in leukemic blasts with wild-type JAK2 but absent from JAK2 mutation-positive progenitor colonies. By contrast, in the PMF patient with JAK2R140Q, the mutation was detected in both JAK2V617F-positive erythroid colonies and leukemic blasts. The authors did not find **IDH1** mutations in 180 patients with either PV or ET.35 Most recently, 200 patients with either chronic- or blast-phase MPN were screened for **IDH1** and **IDH2** mutations.37 A total of nine **IDH1** mutations including five **IDH1** and four **IDH2** were found and mutational frequencies were ∼21% for blast-phase AML and ∼4% for PMF. No mutations were seen in PV or ET. Furthermore, **IDH1** mutations were found in only 1 of 12 paired chronic- and blast-phase samples and the mutation was detected in both chronic- and blast-phase disease samples in the single **IDH1**-mutated case. The specific **IDH1** mutations found in this study included R132C and R132S and the **IDH2** mutations R140Q and R140W. **IDH1** mutations coexisted with JAK2V617F. The results of this and the aforementioned study suggest that **IDH1** mutations are relatively frequent in blast- but not chronic-phase MPN, but more studies are required to find out whether they represent early genetic events or are acquired during leukemic transformation.

IKZF1 mutations

IKAROS family zinc finger 1 (IKZF1; 7p12) encodes for Ikaros transcription factors, which are important regulators of lymphoid differentiation. **IKZF1** gene (seven translated exons) transcription is characterized by multiple alternatively spliced transcripts with common C- (inter-Ikaros protein dimerization) and N-terminal (DNA-binding) domains. **IKZF1** is believed to modulate expression of lineage-specific genes through a mechanism that involves chromatin remodeling and results in effective lymphoid development and tumor suppression. Loss-of-function animal models develop severe B, T and NK cell defects (homozygous gene deletions) or lymphoblastic leukemia (heterozygous for a dominant-negative allele).169 **IKZF1** mutations and overexpression of dominant-negative isoforms are prevalent in ALL, including blast-phase CML or **BCR-ABL1**-positive ALL, suggesting a pathogenetic contribution to leukemic transformation.170 A recent study demonstrated that **IKZF1** deletions were rare in chronic-phase CML but were detected in approximately 19% of patients with blast-phase CML.171 The occurrence of **IKZF1** mutations in MPN is particularly relevant, as part of their functional consequence might include JAK–STAT activation.

Concluding remarks

PMF–PV–ET were first described in 1879–1892–1934 and their close relationship was formally recognized in 1951 and molecularly validated in 2005. Unlike CML, pathogenetic mechanisms in these **BCR-ABL1**-negative MPN are turning out

Novel mutations in MPNs

A Tefferi
to be more complex than originally believed, and their trademark JAK2 and MPL mutations do not appear to be analogous to BCR-ABL1 in terms of their importance as therapeutic targets.41,78 The repertoire of other mutations (such as TET2, ASXL1, CBL, IDH1 mutations) in MPN is growing but their specific pathogenetic relevance is undermined by their omnipresence in other myeloid malignancies. Conversely, the particular scenario might reflect our collective oversight regarding the molecular inter-relationship among phenotypically disparate myeloid malignancies. Regardless, on the basis of the assumption that JAK-STAT is central to the pathogenesis of BCR-ABL1-negative MPN, a number of orally administered anti-JAK2 ATP mimetics have been developed and are undergoing clinical trials.42–44 So far, the two that have shown the most promising clinical activity are TG101348 (JAK2 inhibitor) and INCBO18424 (JAK1/2 inhibitor).41 Other drugs that are currently in clinical trials for PMF, PV or ET include other kinase inhibitors (such as CYT387, CEP-701, AZD1480, SB1518, erlotinib), histone deacetylase inhibitors (such as ITF2357, MK-0683, panobinostat) and the anti-vascular endothelial growth factor monoclonal antibody bevacizumab (http://ClinicalTrials.gov).42,168

Conflict of interest

The author declares no conflict of interest.

References

1. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.
2. Tefferi A. The history of myeloproliferative disorders: before and after Dameshek. Leukemia 2008; 22: 3–13.
3. Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 14–22.
4. Adamson JW, Fialkow PJ, Murphy S, Prchal JF, Steinmann L. Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med 1976; 295: 913–916.
5. Fialkow PJ, Faguet GB, Jacobson RJ, Vaidya K, Murphy S. Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 1981; 58: 916–919.
6. Jacobson RJ, Salo A, Fialkow PJ. A neonatal myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood 1978; 51: 189–194.
7. Landgren O, Goldin LR, Kristinnson SY, Helgdottir EA, Samuelsson J, Bjorkholm M. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24 577 first-degree relatives of 11 039 patients with myeloproliferative neoplasms in Sweden. Blood 2008; 112: 2199–2204.
8. Pardanani A, Fridley BL, Lasho TL, Gilliland DG, Tefferi A. Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood 2008; 111: 2785–2789.
9. Olcaydu D, Skoda RC, Rooser L, Li S, Cazzolla M, Pietra D et al. The ‘GGCC’ haplotype of JAK2 confers susceptibility to JAK2 exon 12 mutation-positive polycythemia vera. Leukemia 2009; 23: 1924–1926.
10. Olcaydu D, Harutyunyan A, Jager R, Berg T, Gisslinger B, Pabinger I et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 2009; 41: 446–449.
11. Jones AV, Chase A, Silver RT, Osei-D, Zoi K, Wang YL et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 2009; 41: 450–454.
12. Patnaik MM, Lasho TL, Finke CM, Gangat N, Caramazza D, Siragusa S et al. MPL mutation effect on JAK2 46/1 haplotype frequency in JAK2V617F-negative myeloproliferative neoplasms. Leukemia 2010; (e-pub ahead of print).
13. Tefferi A, Lasho TL, Patnaik MM, Finke CM, Hussein K, Hogan WJ et al. JAK2 germline genetic variation affects disease susceptibility in primary myelofibrosis regardless of V617F mutational status: nullizygosity for the JAK2 46/1 haplotype is associated with inferior survival. Leukemia 2010; 24: 105–109.
14. Pardanani A, Lasho TL, Finke CM, Gangat N, Wolanskyj AP, Hanson CA et al. The JAK2 46/1 haplotype confers susceptibility to essential thrombocythemia regardless of JAK2V617F mutational status–clinical correlates in a study of 226 consecutive patients. Leukemia 2010; 24: 110–114.
15. Lambert JR, Everington T, Linch DC, Gale RE. In essential thrombocythemia, multiple JAK2-V617F clones are present in most mutan-positive patients: a new disease paradigm. Blood 2009; 114: 3018–3023.
16. Schaub FX, Looser R, Li S, Hao-Shen H, Lehmann T, Tichelli A et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood 2010; 115: 2003–2007 blood-2009-245381.
17. Schaub FX, Jager R, Looser R, Hao-Shen H, Hermsouet S, Girudon F et al. Clonal analysis of deletions on chromosome 20q and JAK2-V617F in MPD suggests that del20q acts independently and is not one of the predisposing mutations for JAK2-V617F. Blood 2009; 113: 2022–2027.
18. Beer PA, Delhoumme F, Lecouedec JP, Dawson MA, Chen E, Bareford D et al. Two routes to leukemic transformation following a JAK2 mutation-positive myeloproliferative neoplasm. Blood 2009; (e-pub ahead of print).
19. James C, Mazurier F, Dupont S, Chaligue R, Lamrissi-Garcia I, Tulliez M et al. The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood 2008; 112: 2429–2438.
20. Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2008; 108: 1377–1380.
21. Beer PA, Jones AV, Bench AJ, Goday-Fernandez A, Boyd EM, Vaghesia K et al. Clonal diversity in the myeloproliferative neoplasms: independent origins of genetically distinct clones. Br J Haematol 2009; 144: 904–908.
22. Haeno H, Levine RL, Gilliland DG, Michor F. A progenitor cell origin of myeloid malignancies. Proc Natl Acad Sci USA 2009; 106: 16616–16621.
23. Pardanani A, Lasho TL, Finke C, Mesa RA, Hogan WJ, Ketterling RP et al. Extending JAK2V617F and MPLV515 mutation analysis to single hematopoietic colonies and B and T lymphocytes. Stem Cells 2007; 25: 2358–2362.
24. Pardanani A, Lasho TL, Finke C, Markovic SN, Tefferi A. Demonstration of MPLV515K, but not JAK2V617F, in in vitro expanded CD4+ T lymphocytes. Leukemia 2007; 21: 2206–2207.
25. Delhoumme F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.
26. Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adelake J, Rey J et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 2009; 23: 2183–2186.
27. James C, Ugo V, Le Couedic JP, Stork K, Delhoumme F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythemia vera. Nature 2005; 434: 1144–1148.
28. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.
29. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Acquiring mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.
30. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.
31. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Strattan MR et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468.
Somatic mutations of IDH1 and IDH2 in the leukaemic transformation of myeloproliferative neoplasms. *N Engl J Med* 2010; 362: 369–370.

Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukaemias. *Cancer Res* 2010; 70: 447–452.

Pardanani A, Lasho T, Finke C, Mai M, McClure R, Tefferi A. IDH1 and IDH2 mutation analysis in chronic and blast phase myeloproliferative neoplasms. *Leukemia* 2010; in press.

Kurdi M, Booz GW. JAK redux: a second look at the regulation of cytokines. *Cytokine* 2009; 47: 133–140.

Pardanani A, Lasho T, Smith G, Burns CJ, Fantino E, Tefferi A. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. *Blood* 2005; 106: 3377–3379.

Kipapa A, Levine RL. JAK2 and MPL mutations in myeloproliferative neoplasms: discovery and science. *Leukemia* 2008; 22: 1813–1817.

Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zanegg S et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. *Proc Natl Acad Sci USA* 2005; 102: 18962–18967.

Funakoshi-Tago M, Tago K, Abe M, Sonoda Y, Kasahara T. STAT5 activation is critical for the transformation mediated by myeloproliferative disorder-associated JAK2V617F mutant. *J Biol Chem* 2010; 285: 5296–5307.

Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR et al. JAK2 phosphorylates histone H3Y41 and excludes H1 from chromatin. *Nature* 2009; 461: 819–822.

Kota J, Caceres N, Constantinescu SN. Aberrant signal transduction pathways in myeloproliferative neoplasms. *Leukemia* 2008; 22: 1828–1840.

Li WX. Canonical and non-canonical JAK-STAT signalling. *Trends Cell Biol* 2008; 18: 545–551.

Cleary T, Jelinek J, Girodon F, Boissinot M, Ponge T, Constantinescu SN. Expression of JAK2V617F from its endogenous promoter induces a polycythaemia vera-like disease. *Blood* 2010, (e-pub ahead of print).

Akada H, Yan D, Zou H, Fiering S, Hutchinson RE, Mohi MG. Conditional expression of heterozygous or homozygous JAK2V617F from its endogenous promoter induces a polycythaemia vera-like disease. *Blood* 2010, (e-pub ahead of print).

Wang YL, Vandrind K, Jones A, Cross NC, Christos P, Adriano F et al. JAK2 mutations are present in all cases of polycythaemia vera. *Leukemia* 2008; 22: 1289.

Pardanani A, Lasho TL, Finke C, Hanco CA, Tefferi A. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. *Leukemia* 2007; 21: 1960–1963.

Pikea D, Li S, Brisci A, Passamonti F, Rumi Y, Theocharides A et al. Somatic mutations of JAK2 exon 12 in patients with JAK2V617F-negative myeloproliferative disorders. *Blood* 2008; 111: 1686–1689.

Patnaik MM, Tefferi A. The complete evaluation of erythrocytosis: congenital and acquired. *Leukemia* 2009; 23: 834–844.

da Costa Res Monte-Mor B, Plo I, da Cunha AF, Costa GG, de Albuquerque DM, Jedidi A et al. Constitutive JUNB expression associated with the JAK2V617F mutation, stimulates proliferation of the erythroid lineage. *Leukemia* 2009; 23: 144–152.
Bone marrow JAK2V617F allele burden and clinical progression to large splenomegaly and leukemic transformation.

The JAK2 tyrosine kinase mutation in myelofibrosis with the JAK2-V617F mutation.

Development of ET, primary myelofibrosis and PV in mice overexpressing the mutant JAK2-V617F to wild-type Jak2.

Novel mutations in MPNs: a critical reappraisal.

The clinical phenotype of wild-type, heterozygous, and homozygous JAK2V617F in polycythemia vera.

The clinical phenotype of patients with poorer survival in idiopathic myelofibrosis.

The clinical phenotype of patients with poorer survival in PV.

Molecular and clinical features of the JAK2 V617F mutation with acute myocardial infarction in young patients.

Evidence for MPL W515L/K mutations in hematopoietic stem cells in primary myelofibrosis.

ASH Annual Meeting Abstracts 2007: 110: 678.

Evidence for MPL W515L/K mutations in hematopoietic stem cells in primary myelofibrosis.

ASH Annual Meeting Abstracts 2007: 110: 2546.

Evidence for MPL W515L/K mutations in hematopoietic stem cells in primary myelofibrosis.

ASH Annual Meeting Abstracts 2007: 110: 3735–3743.

Evidence for MPL W515L/K mutations in hematopoietic stem cells in primary myelofibrosis.

ASH Annual Meeting Abstracts 2007: 110: 141–149.

Evidence for MPL W515L/K mutations in hematopoietic stem cells in primary myelofibrosis.

ASH Annual Meeting Abstracts 2007: 110: 141–149.

Evidence for MPL W515L/K mutations in hematopoietic stem cells in primary myelofibrosis.

ASH Annual Meeting Abstracts 2007: 110: 141–149.

Evidence for MPL W515L/K mutations in hematopoietic stem cells in primary myelofibrosis.

ASH Annual Meeting Abstracts 2007: 110: 141–149.
thrombopoietin receptor W515 mutations is mediated by cytosolic tyrosine 112 of the receptor. *Blood* 2010; 115: 1037–1048.

110 Lasho TL, Pardanani A, McClure RF, Miska RA, Levine RL, Gary Gilliland D et al. Concurrent MPL515 and JAK2V617F mutations in myelofibrosis: chronology of clonal emergence and changes in mutant allele burden over time. *Br J Haematol* 2006; 135: 683–687.

111 Szpurka H, Gondek LP, Mohan SR, Hsi ED, Theil KS, Maciejewski JP. UPFD1 indicates the presence of MPL W515L mutation in RARS-T, a mechanism analogous to UPFDp and JAK2V617F mutation. *Leukemia* 2009; 23: 610–614.

112 Vannucchi AM, Antonioli E, Guglielmelli P, Pancrazzi A, Guerini V, Barosi G et al. Characteristics and clinical correlates of MPL 515W->L/K mutation in essential thrombocythemia. *Blood* 2008; 113: 844–847.

113 Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Vannucchi AM, Antonioli E, Guglielmelli P, Pancrazzi A, Guerini V, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. *Science* 2009; 324: 930–935.

114 Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. TET1, a member of a novel protein family, is fused in AML. *Blood* 2010; 115: 900–911.

115 TET2 mutations and their clinical correlates in MPN and AML. *Leukemia* 2009; 23: 905–911.

116 TET2 mutation is an independent favorable mutation of e3 ubiquitin ligase c-Cbl mutants lead to a generalized mastocytosis and myeloproliferative disease. *Blood* 2009; 114: 419–4208.

117 Sargin B, Choudhary C, Crosetto N, Schmidt MH, Grundler, Renshingof M et al. FLT3-dependent transformation by inactivating c-ABL mutations in AML. *Blood* 2007; 110: 1004–1012.

118 Lee SW, Cho YS, Na JM, Park UH, Kang M, Kim EJ et al. ASXL1 repression retinoic acid receptor-mediated transcription associated with HSP and LPS1. *J Biol Chem* 2010; 285: 18–29.

119 Fisher CL, Pineault N, Brookes C, Helgason CD, Ohta H, Bodner C et al. Loss-of-function additional sex comb-like1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. *Blood* 2010; 115: 38–46.

120 An Q, Wright SL, Konn ZJ, Matheson E, Minto L, Moorman AV et al. Variable breakpoints target PAX5 in patients with dicentric translocations in cancer. Proc Natl Acad Sci USA 2008; 105: 17050–17054.

121 Carubaccia N et al. Mutations of polycrom-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. *Br J Haematol* 2009; 145: 788–800.

122 Carubaccia N, Trupolin V, Gelsy-Voyer M, Murati A, Rocquain J, et al. Mutation of e3 ubiquitin ligase ASXL1 in MPNs: Clinical features and prognostic impact. *Clin Cancer Res* 2010; 16: 469–473.

123 Surtirajana G, Tysgankov AY. The Cbl family proteins: ring leaders in regulation of cell signaling. *J Cell Physiol* 2006; 219: 20–43.

124 Saur SJ, Sangkhae V, Geddis AE, Kaushansky K, Hitchcock IS. Ubiquitination and degradation of the thrombopoietin receptor c-Mpl. *Blood* 2010; 115: 1254–1263.

125 Argiropoulos B et al. Absence of e3 ubiquitin ligase c-Cbl mutations in AML. *Blood* 2009; 114: 141–147.

126 Couronne L, Lippert E, Andrieux J, Kosmider O, Radford-Weiss I, et al. Novel mutations in MPNs associated with 5-methylcytosine to 5-hydroxymethylcytosine conversion in myeloid malignancies: early stem cell involvement? *Leukemia* 2009; 19: 1411–1415.

127 TET1, a member of a novel protein family, is fused in AML. *Blood* 2010; 115: 900–904.

128 TET2 mutant allele burden over time. *Blood* 2009; 114: 3285–3291.

129 Loss of heterozygosity 4q24 and TET2 mutations in chronic myelomonocytic leukemia. *Blood* 2009; 113: 1334–1345.

130 Lasho TL, Pardanani A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J et al. Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. *Leukemia* 2009; 23: 1334–1345.

131 Mutations of e3 ubiquitin ligase cbl family members are associated with myelodysplastic/myeloproliferative neoplasms. *Nature* 2009; 41: 838–842.

132 TET2 mutations in juvenile myelomonocytic leukemia. *Blood* 2009; 114: 141–147.

133 Kossider O, Gelsy-Boyer V, Cheek M, Grabar S, Della-Valle V, Picard F et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). *Blood* 2009; 114: 2923–2929.

134 Del-Italia LM, Smith AE, Gaken J, Lea NC, Mian SA, Downing JR. TET1, a member of a novel protein family, is fused in AML. *Blood* 2009; 114: 1507–1514.

135 Yusuf K, Van Dyke DL, Telfer A. Conventional cytogenetics in myelofibrosis: literature review and discussion. *Eur J Haematol* 2009; 82: 329–338.

136 Br J Haematol 2009; 151: 2004–2006.

137 Jankowska AM, Szpurka H, Tiel RV, Makishima H, Ablamey M, Huh J et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. *Blood* 2009; 113: 6403–6410.

138 Paulsson K, Haerlach C, Fonatsch C, Hagemeijer A, Andersen MK, Slovak ML et al. The idic(X)(q33) in myeloid malignancies: breakpoint clustering in segmental duplications and association with TET2 mutations. *Hum Mol Genet* 2010; 19: 1507–1514.

139 Jankowska AM, Smith AE, Gaken J, Lea NC, Mian SA, Downing JR. TET1, a member of a novel protein family, is fused in AML. *Blood* 2009; 114: 2923–2929.

140 Yusuf K, Van Dyke DL, Telfer A. Conventional cytogenetics in myelofibrosis: literature review and discussion. *Eur J Haematol* 2009; 82: 329–338.

141 Telfer A, Lim KH, Levine R. Mutation in TET2 in myeloid cancers. *N Engl J Med* 2009; 361: 1117; author reply 1117–1118.

142 Yusuf K, Abdel-Wahab O, Lasho TL, Van Dyke DL, Levine RL, Hanson CA et al. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. *Haematologica* 2009; 94: 1676–1681.
149 Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

150 Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA et al. The common feature of leukemia-associated idh1 and idh2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010; 17: 225–234.

151 Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukaemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 2010; 207: 339–344.

152 Gaal J, Burnichon N, Korpershoek E, Roncelin I, Bertherat J, et al. Isocitrate dehydrogenase mutations are rare in pheochromocytoma and paragangliomas. J Clin Endocrinol Metab 2010; 95: 1274–1278.

153 Park SW, Chung NC, Han JY, Eom HS, Lee JY, Yoo NJ et al. Absence of IDH2 codon 172 mutation in common human cancers. Int J Cancer 2009; 125: 2485–2486.

154 Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Seo SI et al. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 2009; 125: 353–355.

155 Bleeker FE, Lamba S, Leemstra S, Troost D, Hulselbos T, Vandertop WP et al. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 2009; 30: 7–11.

156 Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009; 462: 739–744.

157 Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009; 324: 261–265.

158 Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360: 765–773.

159 Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 2008; 116: 597–602.

160 Nobusawa S, Watanabe T, Kleihues P, Ohgaki H. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 2009; 15: 6002–6007.

161 Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendrogial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 2009; 118: 469–474.

162 Gravendeel LA, Kloosterhof NK, Bralten LB, van Marion R, Dubbink HJ, Dinjens W et al. Segregation of non-p.R132H mutations in IDH1 in distinct molecular subtypes of glioma. Hum Mutat 2010; 31: E1186–E1199.

163 Sanson M, Marie Y, Paris S, Ldaiba A, Lafaire J, Ducray F et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 2009; 27: 4150–4154.

164 Bleeker FE, Atai NA, Lamba S, Jonker A, Rijkeboer D, Bosch KS et al. The prognostic IDH1 (R132) mutation is associated with reduced NADP (+)-dependent IDH1 activity in glioblastoma. Acta Neuropathol 2010; 119: 487–494.

165 Wick W, Hartmann C, Engel C, Stoffels M, Felsberg J, Stockhammer F et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 2009; 27: 5874–5880.

166 Weller M, Felsberg J, Hartmann C, Berger H, Steinbach JP, Schramm J et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 2009; 27: 5743–5750.

167 Chou WC, Hou HA, Chen CY, Tang JL, Yao M, Tsay W et al. Distinct clinical and biological characteristics in adult acute myeloid leukaemia bearing isocitrate dehydrogenase 1 (IDH1) mutation. Blood 2010, (e-pub ahead of print).

168 Guerini V, Barbui V, Spinelli O, Salvi A, Dellacasa C, Carobbio A et al. The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2(V617F). Leukemia 2008; 22: 740–747.

169 Mullighan C, Downing J, Ikaros and acute leukemia. Leuk Lymphoma 2008; 49: 847–849.

170 Mullighan CG, Miller CB, Radtke J, Phillips LA, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110–114.

171 Jager R, Gisslinger H, Berg T, Passamonti F, Cazzola M, Rumi E et al. Deletions of the Transcription Factor Ikaros in Myelo-proliferative Neoplasms at Transformation to Acute Myeloid Leukemia. ASH Annual Meeting Abstracts 2009; 114: 433.