Right free wall is a common location for atrioventricular pathways. Accessory pathways located along the right free wall are less likely to be concealed, are more likely to have a longer retrograde effective refractory period and to show anterograde decremental conduction, and are less likely to be associated with orthodromic reentrant tachycardia and inducible atrial fibrillation than pathways in other locations [1]. More importantly, pathways in this location have a lower acute and long-term success rate after targeted ablation than pathways in other locations [2–5].

Several factors account for the reported higher ablation failure rates in patients with pathways along the right free wall. Lack of a reference catheter, ablation catheter instability along the tricuspid valve annulus and anisotropic conduction velocity have been reported as major factors [6]. In addition to catheter stability, epicardial location of pathways along the right free wall could also impact the success of endocardial ablation procedure [6,7].

In order to improve the success rate of procedures along the right free wall, several strategies have been employed. They include use of multipolar catheters along the tricuspid valve annulus [8], use of 3-dimensional electroanatomic mapping systems [9], targeting the atrial insertion of the pathway [10], and under the valve approach to target the ventricular end of these pathways [11,12] and cryoablation for catheter stability [13,14].

Cryoablation for all types of supraventricular tachycardia substrate elimination is common practice and widely adopted in pediatric ablations [13–15]. Virk et al. published a case series in this issue of the journal [16] demonstrating that cryoablation was successful in eliminating arrhythmia target along the right free wall in 4 patients who had previously unsuccessful radiofrequency ablation. They presume that this is due to increased stability due to cryoadhesion. Cryoadhesion and there by catheter stability is only one factor required for successful ablation. Other factors include activation time mapping, unipolar and bipolar electrogram characteristics, and identification of the accessory pathway potential. Cryoablation suffers from several limitations including overall lower acute and long-term success rate for accessory pathways when compared to radiofrequency ablation [17]. Moreover, studies have shown that cryoablation lesions produce a smaller acute edema volume than radiofrequency lesions [18] and therefore may not be able to successfully target accessory pathways located deeper in the tissue as well as epicardial pathways which have been reported along the right free wall. The authors fail to provide important details regarding method of mapping (pre-excited sinus rhythm, ventricular pacing or during tachycardia), electrogram characteristics, the time to accessory pathway elimination and the temperature at which the pathways were eliminated, all of which are critical features in an ablation procedure [13].

Given the low risk of atrioventricular block with use of radiofrequency energy along the right free wall, several additional strategies can be utilized to enhance the success of the procedure in difficult cases of arrhythmia recurrences. These strategies include cooled tip radiofrequency ablation [19], open window mapping [20] and force sensing catheters. Cho et al. showed that overall mean contact force along the tricuspid annulus was lower than the mitral annulus with the lowest contact force along the right anterolateral free wall [21]. In our experience and that reported by Dalal et al., a contact force of between 10 and 15 g at the site of earliest activation is associated with high likelihood of a successful lesion [22]. In this case series, ablation was attempted with force sensing catheters in two patients (Patient #1 and Patient #4). It appears that it was the use of a force sensing catheter and not cryoa- blation that resulted in successful ablation in patient #4. Finally, in addition to catheter contact and stability, the importance of careful point by point mapping, accurate electrogram localization, atrial and ventricular electrogram ratio, identifying pathway potential and using both bipolar and unipolar electrograms to guide ablation cannot be emphasized enough.

References

[1] de Chillou C, Rodriguez LM, Schlapfer J, Kappos KG, Katsivs A, Biajan X, Sweets JL, Wellens HJ. Clinical characteristics and electrophysiological properties of atrioventricular accessory pathways: importance of the accessory pathway location. J Am Coll Cardiol 1992;20:666–71.
[2] Behjati Ardakani M, Dehghani F, Sarebanhassanabadi M, Yalameh A, Behjat M, Behjati Ardakani M, Shafiee M, Seyed Hosseini SM. Impact of accessory pathway location on electrophysiological characteristics and ablation success. Crit Pathw Cardiol 2020;19:94–7.
[3] Dione A, Gauvreau K, O‘Leary E, Mah DY, Abrams DJ, Alexander ME, DeWitt ES, Bezzerides VJ, Friedman JC, Walsh EP. Risk factors for early recurrence following ablation for accessory pathways: the role of consolidation lesions. Circ Arrhythm Electrophysiol 2020;13:e008848.
[4] Twidle N, Wang XZ, Beckmann KJ, McClelland JH, Moulton KP, Prior ML, Hazlitt HA, Lazzara R, Jackman WM. Factors associated with recurrence of accessory pathway conduction after radiofrequency catheter ablation. Pacing Clin Electrophysiol 1991;14:2042–8.
[5] Xie B, Heald SC, Camm AJ, Rowland E, Ward DE. Radiofrequency catheter ablation of accessory atrioventricular pathways: primary failure and recurrence of conduction. Heart 1997;77:363–8.
[6] Xie B, Heald SC, Camm AJ, Rowland E, Ward DE. Radiofrequency catheter ablation of accessory atrioventricular pathways: primary failure and recurrence of conduction. Heart 1997;77:363–8.
[7] Sterneck EB, Faustino M, Corena FS, Pisanis C, Scanavacca MJ. Percutaneous catheter ablation of epicardial accessory pathways. Arrhythmia Electrophysiol Rev 2017;6:80–4.
[8] Wong T, Hussain W, Markides V, Gorog DA, Wright I, Peters NS, Davies DW. Ablation of difficult right-sided accessory pathways aided by mapping of tricuspid annular activation using a halo catheter: halo-mapping of right sided accessory pathways. J Intervent Card Electrophysiol 2006;16:175–82.
[9] Chen ML, Yang B, Ju WZ, Chen HW, Chen C, Hou XF, Zhang F, Cui JY, Zhang CH, Shan QJ, Zou JG, Sun JP, Yi YT, Cheng J, Cao KJ. Right-sided free wall accessory pathway refractory to conventional catheter ablation: lessons from 3-
[10] Long DY, Dong JZ, Liu XP, Tang RB, Ning M, Gao LY, Yu RH, Fang DP, Jiang CX, Yuan YQ, Sang CH, Yin XD, Chen G, Zhang XY, Liang C, Ma CS. Ablation of right-sided accessory pathways with atrial insertion far from the tricuspid annulus using an electroanatomical mapping system. J Cardiovasc Electrophysiol 2011;22:499–505.

[11] Wieczorek M, Tajjaraghi S, Hoeltgen R. A subvalvular catheter approach for radiofrequency ablation of right-sided accessory pathways. J Intervent Card Electrophysiol 2019;56:29–36.

[12] Yang J, Yang G, Chen H, Ju W, Yang B, Zhang F, Jin Y, Cao J, Qian L, Chen M. An alternative under-valve approach to ablate right-sided accessory pathways. Heart Rhythm 2019;16:51–6.

[13] Kalman JR, Tanel RE, Wegrzynowicz B, Kozodoy E, Wieand T, Ennis J, Vetter VL, Shah MJ. Time and temperature profile of catheter cryoaulation of right septal and free wall accessory pathways in children. J Cardiovasc Electrophysiol 2008 Apr;19(4):343–7.

[14] Drago F, Righi D, Placidi S, Russo MS, Di mambro C, Silvetti MS, Prosperi M. Cryoaulation of right-sided accessory pathways in children: report of efficacy and safety after 10-year experience and follow-up. Europace 2015;15:1651–6.

[15] Ozturk E, Ergul Y, Tanidir IC, Akdeniz C, Tola HT, Tuzcu V. Electroanatomic mapping guided cryoaulation of Mahaim pathways in children with limited fluoroscopy exposure. Pacing Clin Electrophysiol 2015;38:362–7.

[16] Virk K, Stecker E, Balaji S. Cryoaulation to improve catheter stability and ablation success in the right atrioventricular groove. Indian Pacing Electrophysiol J 2021;21:269–72. https://www.sciencedirect.com/science/article/pii/S097262922100111X.

[17] Bravo L, Atienza F, Eidelman G, Avila P, Pelliza M, Castellanos E, Loughlin G, Datino T, Torrecilla EG, Almendral J, Sánchez PL, Arenal A, Martínez-Alzamora N, Fernández-Avilés F. Safety and efficacy of cryoaulation vs. radiofrequency ablation of septal accessory pathways: systematic review of the literature and meta-analyses. Europace 2018;20:1334–42.

[18] Yamashita K, Khlomovski E, Ghaffori E, Kamali R, Kwan E, Lichter J, MacLeod R, Dossall DJ, Ranjan R. Characterization of edema after cryo and radiofrequency ablations based on serial magnetic resonance imaging. J Cardiovasc Electrophysiol 2019;30:255–62.

[19] Telishevskia M, Faechle J, Buatti A, Busch S, Reents T, Bourier F, Semmler V, Kaess B, Horndasch M, Kormmayer M, Rottmaier M, Desschnofer I, Hessling G. Irrigated-tip catheters for radiofrequency ablation of right-sided accessory pathways in adolescents. Pacing Clin Electrophysiol 2017;40:1167–72.

[20] Schricker AA, Winkle R, Moskovitz R, Suchomel L, Fowler S, Engel G, Cho S, Salcedo J, Woods CE. Open-window mapping of accessory pathways utilizing high-density mapping. J Interv Card Electrophysiol 2021;61(3):525–33.

[21] Choo WK, Raji H, Lipton J, Bates M, Klister P, Sparks P, Morton J, Kalman J. Assessment of ablation catheter contact on valve annulus: implications on accessory pathway ablation. Indian Pacing Electrophysiol J 2015;19:84–9.

[22] Dalal AS, Nguyen HH, Bowman T, Van Hare GF, Avari Silva JN. Force-sensing catheters during pediatric radiofrequency ablation: the FEDERATION study. J Am Heart Assoc 2017 May 17;6(5):e005772.