Title
Induced pluripotent stem cell line from an atopic dermatitis patient heterozygous for c.2282del4 mutation in filaggrin: KCLi001-A.

Permalink
https://escholarship.org/uc/item/4qs4d2s5

Journal
Stem cell research, 31(Lancet 368 2006)

ISSN
1873-5061

Authors
Devito, Liani
Donne, Matthew
Kolundzic, Nikola
et al.

Publication Date
2018-08-01

DOI
10.1016/j.scr.2018.07.014

Peer reviewed
Lab resource: Stem cell line

Induced pluripotent stem cell line from an atopic dermatitis patient heterozygous for c.2282del4 mutation in filaggrin: KCLi001-A

Liani Devitoa,b,1, Matthew Donnec,1, Nikola Kolundzic,a,b,1, Preeti Khuranaa,b, Carl Hobbsd, Gabriel Kaddour,e, Sandrine Dubracf, Robert Gruberf, Matthias Schmuthf, Thea Maurog, Dusko Ilic,d,b,c,1

a Stem Cell Laboratory, Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
b Assisted Conception Unit, Guy’s Hospital, London, UK
c ViroLabs Inc., San Francisco, California, USA
d Histology Laboratory, Wolfson Centre for Age-Related Diseases, School of Biomedical Sciences, King’s College London, London, UK
e Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, France
f Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
g Dermatology Services, Veteran Affairs Medical Center, University of California San Francisco, San Francisco, California, USA

ABSTRACT

We have generated an induced pluripotent stem cell (iPSC) line KCLi001-A (iOP118) from a female atopic dermatitis (AD) patient, heterozygous for the loss-of-function mutation c.2282del4 in the filaggrin gene (FLG). Epidermal keratinocytes were reprogrammed using non-integrating Sendai virus vectors. The entire process of derivation and expansion of AD-iPSCs were performed under xeno-free culture conditions. Characterization of KCLi001-A line included molecular karyotyping, mutation screening using restriction enzyme digestion and Sanger sequencing, while pluripotency and differentiation potential were confirmed by expression of associated markers in vitro and by in vivo teratoma assay.

Resource table

Unique stem cell line identifier	KCLi001-A
Alternative name(s) of stem cell line	iOP118
Institution	King’s College London, London UK
Contact information of distributor	Dusko ILIC, dusko.ilic@kcl.ac.uk
Type of cell line	iPSC
Origin	Human
Sex: Female	
Ethnicity: Caucasian	
Cell source	Epidermal keratinocytes
Clonality	Clonal
Method of reprogramming	Non-integrating SeV-mediated delivery of OCT4, SOX2, c-MYC and KLF4
Genetic modification	None
Type of modification	N/A

Associated disease: Atopic dermatitis (AD) or eczema, OMIM #605803
Gene/locus: Filaggrin gene (FLG), loss-of-function mutation NM_002016.1:c.2282del4
Method of modification: N/A
Name of transgene or resistance: N/A
Inducible/constitutive system: N/A
Date archived/stock date: December 2017
Cell line repository/bank: N/A
Ethical approval: Ethics Committee of the Medical University of Innsbruck, Austria (AN2016-0260)

*Corresponding author at: Assisted Conception Unit, 11th Fl. Tower Wing, Guy’s Hospital, London SE1 9RT, UK.
E-mail address: dusko.ilic@kcl.ac.uk (D. Ilic).
1 These three authors contributed equally to the paper.

https://doi.org/10.1016/j.scr.2018.07.014
Received 4 July 2018; Accepted 13 July 2018
Available online 25 July 2018
1873-5061/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
Resource utility

Generation of a library of human iPSC lines with the most common variants in the FLG gene can be efficiently used to construct highly specific in vitro 3D skin models (Petrova et al., 2014) for drug discovery towards novel personalized therapies in AD.

Resource details

AD or eczema is an incurable, non-contagious, extensive inflammatory and extremely pruritic chronic cutaneous disorder. AD is one of the most common skin diseases which affects up to 20% of children and approximately 3% of adults worldwide, while its
prevalence is continuously increasing, particularly in underdeveloped countries (Asher et al., 2006). Several loss-of-function mutations within FLG exon 3, including c.2282del4 variant, are considered to be the most significant risk factors for atopic dermatitis in the European population (Palmer et al., 2006). The epidermal keratinocytes derived from a female AD patient who is heterozygous for c.2282del4, were programmed into iPSCs following previously established protocol with genome non-integrating Sendai virus (SeV) vectors (Miere et al., 2016a). Three weeks post-transduction colonies with a typical morphology of pluripotent stem cells appeared and were selected to establish feeder-free iPSC clones (Fig. 1A). After ten passages, the examination of the SeV vectors was confirmed in the KCLi001-A cell line by RT-PCR using specific primers (Fig. 1B). The clones were screened with restriction enzyme digestion and we have verified that the AD-related mutation (NM_002016.1:c.2282del4) was retained in the iPSCs. This finding was also confirmed independently by Sanger sequencing (Fig. 1C). Endogenous expression of pluripotency-related molecular markers (TRA-1-60, TRA-1-81, OCT4, NANOG) in the iPSCs was assessed by double immunofluorescence technique (Fig. 1D). Furthermore, undifferentiated colonies were also positive for alkaline phosphatase (AP) (Fig. 1D). Differentiation capacity of the KCLi001-A cells into three germ layers was determined by specific immunofluorescence staining of AFP (liver, endoderm), ACTA2 (cardiac muscle, mesoderm), and TUBB3 (neurons, ectoderm) in vitro (Fig. 1E), as well as in vivo through a teratoma formation assay. All three germ layers, ectoderm, mesoderm, and endoderm, were present in the teratoma, as demonstrated by immunohistochemical analysis (Fig. 1F).

Table 1
Characterization and validation.

Classification	Test	Result	Data	
Morphology	Light microscopy	hESC-like morphology (compact, dense, roundly shaped colonies with sharp edges, high nucleus to cytoplasm ratio)	Fig. 1 panel A	
Phenotype	Qualitative analysis (Immunofluorescence staining and AP activity)	Expression of pluripotency- markers TRA-1-60, TRA-1-81, OCT4, NANOG; AP-positive	Fig. 1 panel D	
Quantitative analysis (Immunofluorescence counting)	Percentage of cells positive for pluripotent markers: OCT4-94%, NANOG - 95, TRA-1-60: 95%, TRA-1-81: 93%	Submitted in archive with journal	Fig. 1 panel D	
Genotype	Array CGH	Not tested	N/A	
Identity	STR analysis	DNA fingerprinting PCR, 17 specific markers tested	Submitted in archive with journal	Fig. 1 panel C
Mutation analysis	Sequencing	Heterozygous, c.2282del4 in exon 3 of FLG	Fig. 1 panel C	
Restriction enzyme digestion	Mutation 2282del4 creates a new DraIII site, which was used to screen short, highly specific PCR fragments for this variant.	Supplementary Fig. 1		
Microbiology and virology	Mycoplasma	LookOut Mycoplasma PCR Detection Kit: negative (Supplementary file 1)	Fig. 1 panel E	
Differentiation potential	Embryoid body formation	Expression of smooth muscle actin (ACTA2), a-fetoprotein (AFP) and JilII-tubulin (TUBB3)	Fig. 1 panel F	
Teratoma formation	Alcian blue/periodic acid Schiff (PAS)-stained cartilage and desmin for mesoderm, TUBB3 and glial fibrillar acidic protein (GFAP) for ectoderm, and GATA4 and AFP for endoderm, while mitochondrially encoded cytochrome C oxidase II (MTCO2) only immunostains human mitochondria in the cells of the teratoma	Not tested	N/A	
Directed differentiation into keratinocytes	The iPSC-derived keratinocytes expressed the epithelial cell markers: KRT14, KRT18, and isoform of TP63 (ΔNp63)	Fig. 1 panel G		
Donor screening	HIV 1 + 2 Hepatitis B, Hepatitis C	Not tested	N/A	
Genotype additional info	Blood group genotyping	Not tested	N/A	
	HLA tissue typing	Not tested	N/A	

Since our aim is to use the line for modeling AD in vitro, we tested differentiation of the KCLi001-A iPSCs into epidermal keratinocytes (Petrova et al., 2014). The cells expressed keratinocyte-specific markers - keratins 14 and 18 (KRT14, KRT18), and isoform of TP63 known as ΔNp63 within three weeks in culture as expected (Fig. 1G). Examination of the genomic integrity of our AD-iPSC line using array CGH after more than twenty passages showed a normal female karyotype (46, XX), whereas smaller imbalances have not been excluded (submitted in archive with journal). Taken together, these results prove that we have successfully produced a stable AD patient specific iPSC line which can provide a powerful tool for: 1) developing the first iPSC-derived 3D in vitro AD-human skin equivalents (HSE); 2) deciphering the molecular mechanisms of the disease; 3) innovative drug screening platform in atopic dermatitis. (Table 1).
Materials and methods

Epidermal keratinocytes reprogramming

Patient keratinocytes of passage 3 were transduced with genome integration-free SeV virus kit (CytoTune 2.0, Life Technologies) as described (Miere et al., 2016a). Clonal selection of fully reprogrammed cells was performed manually by picking individual clones with hESC-like appearance (Table 1). The iPSCs under feeder-free culture conditions were assessed (Table 1), as previously described (Petrova et al., 2014).

Molecular karyotyping

Array comparative genomic hybridization (aCGH) and short tandem repeat (STR) analysis of 17 STR loci were conducted at Viapath Genetics Centre.

Pluripotency markers

The pluripotency status of KCLi001-A line was evaluated by immunostaining for three germ layer markers in spontaneously differentiated cells (Table 1) as previously described (Petrova et al., 2014).
Acknowledgements

This work was supported by The LEO Foundation, grant number (LF16028). S.D. was supported with a grant from the Austrian Science Fund (FWF-28039).

We thank Dr. Yahnua Hu and Prof. Dr. Xingbo Xu from King’s College London for help with teratoma assay. Animal procedures were approved by the UK Home Office (PPL70/8944).

References

Asher, M.I., et al., 2006. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet 368, 733–743.
Miere, C., Devito, L., Ilic, D., 2016a. Sendai virus-based reprogramming of mesenchymal stromal/stem cells from umbilical cord Wharton’s jelly into induced pluripotent stem cells. Methods Mol. Biol. 1357, 33–44.
Miere, C., et al., 2016b. Generation of KCL038 clinical grade human embryonic stem cell line. Stem Cell Res. 16, 137–139.
Palmer, C.N., et al., 2006. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38, 441–446.
Petrova, A., et al., 2014. 3D in vitro model of a functional epidermal permeability barrier from human embryonic stem cells and induced pluripotent stem cells. Stem Cell Rep. 2, 675–689.