Effect of Remnant Lipoprotein Cholesterol and Nitric Oxide in Young Coronary Heart Disease Subjects

Thirunavukkarasu Jaishankar¹, Meera Shivasekar¹*, V.M. Vinodhini², Sriram Veeraragavan³

¹Research Scholar, Department of Biochemistry, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Kancheepuram - 603 203, Tamil Nadu, India; ²Professor and Head, Department of Biochemistry, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Kancheepuram - 603 203, Tamil Nadu, India; ³Associate Professor, Department of Cardiology, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Kancheepuram - 603 203, Tamil Nadu, India.

ABSTRACT

Introduction: The remnant lipoproteins Cholesterol are highly atherogenic, because of their lesser size along with high cholesterol content, and increased residence period in the blood which may not be reflected by the levels of LDL-C. Elevated Remnant lipoprotein cholesterol and decreased level of Nitric oxide is the novel atherosclerotic risk factors that stimulate the immune and inflammatory reactions associated with the progression of coronary heart disease.

Aim and Objective: The study aims to assess the role of remnant lipoprotein cholesterol associated with nitric oxide in the development of coronary heart disease.

Materials and Methods: This cross-sectional study was conducted in SRM Medical College Hospital and Research Centre on subjects appearing the master health check-up and medicine OP. The study was conducted on 97 CHD patients and 97 healthy control in the age group of 30 to 55 years and was age and sex-matched. After overnight fasting body fluid samples were collected for analysis for Lipid Profile, Nitric oxide was measured by ELISA method and Lipid Profile is measured using Auto Analyzer AU480. Statistical analysis was done using Student’s test and Pearson correlation analysis for the comparison between two groups.

Result: The mean levels of FBG, Total cholesterol, Triglyceride, LDL-C, VLDL, TC/HDL-C Ratio, LDL-C/HDL-C Ratio, RLP-C, were significantly increased in CHD subjects when compared to controls. And the mean Nitric Oxide levels were decreased significantly in the CHD group compared to controls (P<0.001).

Conclusion: Decreased levels of Nitric oxide and the elevated levels of RLP-C in the arterial wall impairs endothelial function resulting in the progression of CHD.

Key Words: Coronary Heart Disease, High-Density Lipoprotein, Low-Density Lipoprotein, Nitric Oxide, Remnant lipoprotein cholesterol, Endothelial function

INTRODUCTION

The prevalence of Coronary Heart Disease in India is very high and has a maximum number of CHD patients in the world putting India in the state of a CHD epidemic. The high degree of mortality, morbidity, and premature of CHD has put a great burden on society and health care expenditure, and it is the most common cause of death worldwide. Coronary Heart Disease is one of the most common diseases and the major cause of death worldwide. Many traditional lipid markers such as lipoproteins (Total Cholesterol, TG, HDL and LDL) and their subfractions helps for better diagnosis of CHD.

Recently RLP-C and Nitric oxide are used as emerging risk markers which helps to rule out the CHD risk and predicting cardiac events. Remnant cholesterol is the cholesterol content of triglyceride-rich lipoproteins that is IDL and VLDL in the fasting state, and chylomicron remnants in a non-fasting state. Remnant cholesterol acts as a potent contributor towards Coronary heart disease and stroke risk. Cholesterol in atherogenic particles other than the low-density lipoproteins (LDL-C) is currently emerging as a major risk factor for ischemic heart disease and is mostly found in fasting and non-fasting triglyceride-rich lipoproteins (TRLs). Surplus amounts of remnant lipoproteins present in plasma affect the
lipoprotein metabolism cause obesity, diabetes, CVD and genetic variants.\(^7\)

Alteration in the lipid profile (decreased HDL and Apo-A\(_1\)) & (increased LDL, VLDL and Apo-B 100) inhibits Nitric Oxide [NO]. Increase in RLP-C bind to scavenger receptor and uptake by macrophages from foam cell. All these cause oxidative stress and endothelial dysfunction in CHD patients.\(^8\)

Nitric Oxide is a signal-transducing molecule and prominent free radical that maintains vasodilating tone, in vitro modulation of lipid peroxidation and alteration of pro-inflammatory gene expression. LDL accumulation in arterial intima depicts an early stage in atherosclerosis.\(^9\) Nitric Oxide produced from eNOS react with O\(_2^-\) ions and form ONNO which induce biotin oxidation and uncoupled the eNOS resulting in decreased NO and increased O\(_2^-\) generation elevate the level of oxidative LDL.\(^10\) Hypercholesterolemia is an essential pathogenic aspect of dysfunction in endothelium caused by impairment of endothelial nitric oxide (NO) production through mechanisms that remain poorly characterized.\(^11\) Reduced NO level promotes endothelial dysfunction the earliest event in Coronary Heart Disease.\(^12\)

MATERIALS AND METHODS

Study design and population

This cross-sectional study was conducted from Nov 2019 to Feb 2020 at SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India on subjects attending the Cardiology and medicine outpatient. Totally 194 subjects were included who were age and sex match in the age group 30-55 years. 97 CHD subjects and 97 normal healthy subjects were selected as control. The control subjects were also taken from Master health check-up Programme and General Medicine OP in SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India. This study obeys the Declaration of Helsinki and was approved by the institutional ethical committee at SRM Medical College Hospital and Research Centre (ECN: 1513/ICE/2018). Written informed consent was collected from all participants at the time of enrolment.

Inclusion Criteria:

- The CHD subjects were selected based on coronary angiography and subjects with chest pain, ECG changes, increased cardiac markers such as creatinine phosphokinase (CPK-MB) and troponin levels.
- The control group consists of persons with no clinical and ECG evidence of CHD and negative history of the past of CHD or stroke, Diabetes mellitus, hypertension, smoking, dyslipidemia, and family history of CHD.

Exclusion Criteria:

The subjects who were on treatment for autoimmune diseases, pregnancy, arthritis, rheumatoid arthritis, acute/chronic infection subjects were excluded

Anthropometric Measurement

MATERIALS AND METHODS

Study design and population

This cross-sectional study was conducted from Nov 2019 to Feb 2020 at SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India on subjects attending the Cardiology and medicine outpatient. Totally 194 subjects were included who were age and sex match in the age group 30-55 years. 97 CHD subjects and 97 normal healthy subjects were selected as control. The control subjects were also taken from Master health check-up Programme and General Medicine OP in SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India. This study obeys the Declaration of Helsinki and was approved by the institutional ethical committee at SRM Medical College Hospital and Research Centre (ECN: 1513/ICE/2018). Written informed consent was collected from all participants at the time of enrolment.

Inclusion Criteria:

- The CHD subjects were selected based on coronary angiography and subjects with chest pain, ECG changes, increased cardiac markers such as creatinine phosphokinase (CPK-MB) and troponin levels.
- The control group consists of persons with no clinical and ECG evidence of CHD and negative history of the past of CHD or stroke, Diabetes mellitus, hypertension, smoking, dyslipidemia, and family history of CHD.

Exclusion Criteria:

The subjects who were on treatment for autoimmune diseases, pregnancy, arthritis, rheumatoid arthritis, acute/chronic infection subjects were excluded

Anthropometric Measurement

MATERIALS AND METHODS

Study design and population

This cross-sectional study was conducted from Nov 2019 to Feb 2020 at SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India on subjects attending the Cardiology and medicine outpatient. Totally 194 subjects were included who were age and sex match in the age group 30-55 years. 97 CHD subjects and 97 normal healthy subjects were selected as control. The control subjects were also taken from Master health check-up Programme and General Medicine OP in SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India. This study obeys the Declaration of Helsinki and was approved by the institutional ethical committee at SRM Medical College Hospital and Research Centre (ECN: 1513/ICE/2018). Written informed consent was collected from all participants at the time of enrolment.

Inclusion Criteria:

- The CHD subjects were selected based on coronary angiography and subjects with chest pain, ECG changes, increased cardiac markers such as creatinine phosphokinase (CPK-MB) and troponin levels.
- The control group consists of persons with no clinical and ECG evidence of CHD and negative history of the past of CHD or stroke, Diabetes mellitus, hypertension, smoking, dyslipidemia, and family history of CHD.

Exclusion Criteria:

The subjects who were on treatment for autoimmune diseases, pregnancy, arthritis, rheumatoid arthritis, acute/chronic infection subjects were excluded

Anthropometric Measurement

MATERIALS AND METHODS

Study design and population

This cross-sectional study was conducted from Nov 2019 to Feb 2020 at SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India on subjects attending the Cardiology and medicine outpatient. Totally 194 subjects were included who were age and sex match in the age group 30-55 years. 97 CHD subjects and 97 normal healthy subjects were selected as control. The control subjects were also taken from Master health check-up Programme and General Medicine OP in SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India. This study obeys the Declaration of Helsinki and was approved by the institutional ethical committee at SRM Medical College Hospital and Research Centre (ECN: 1513/ICE/2018). Written informed consent was collected from all participants at the time of enrolment.

Inclusion Criteria:

- The CHD subjects were selected based on coronary angiography and subjects with chest pain, ECG changes, increased cardiac markers such as creatinine phosphokinase (CPK-MB) and troponin levels.
- The control group consists of persons with no clinical and ECG evidence of CHD and negative history of the past of CHD or stroke, Diabetes mellitus, hypertension, smoking, dyslipidemia, and family history of CHD.

Exclusion Criteria:

The subjects who were on treatment for autoimmune diseases, pregnancy, arthritis, rheumatoid arthritis, acute/chronic infection subjects were excluded

Anthropometric Measurement

MATERIALS AND METHODS

Study design and population

This cross-sectional study was conducted from Nov 2019 to Feb 2020 at SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India on subjects attending the Cardiology and medicine outpatient. Totally 194 subjects were included who were age and sex match in the age group 30-55 years. 97 CHD subjects and 97 normal healthy subjects were selected as control. The control subjects were also taken from Master health check-up Programme and General Medicine OP in SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India. This study obeys the Declaration of Helsinki and was approved by the institutional ethical committee at SRM Medical College Hospital and Research Centre (ECN: 1513/ICE/2018). Written informed consent was collected from all participants at the time of enrolment.
The damaging effects of oxidative stress on the cardiovascular system regulate the dysfunction in endothelium by reduction in nitric oxide (NO) synthesis and bio-availability, inflammatory response and peroxidation of lipid.

RLPs decreasing NO production from endothelium thereby inhibit EDR. RLP is almost massively correlated to most LDL particles, it is especially bad because unlike LDL particles, which have to go through oxidation before they can be taken into the arterial intima by macrophage cells, RLP can be freely scavenged by macrophage cells even when they are not oxidized. Once scavenged by a macrophage, RLP is converted into foam cells which are the building blocks of arterial plaque. Increased RLP has been found in survivors of myocardial infarction and individuals with significant coronary heart disease. Additionally, RLP contributes to endothelial dysfunction by damaging the vascular relaxation process as well as strengthening platelet aggregation.

The endothelium is frequently active for various physiological molecules that may have a direct role in nitric oxide activities. Endothelial dysfunction and reduced production or bioavailability of NO is an important factor in the pathogenesis of vascular complications.

As a result, remnant lipoproteins might cause dysfunction in the endothelial vasomotor and increase the risk of coronary heart disease in patients with hypertriglyceridemia. Endothelium-derived nitric oxide plays an essential protective role during the initial phases of coronary heart disease by inhibiting the adhesion of leucocytes. In atherosclerotic disease progression, NO may play an advantageous role in hemo-dynamically mediated coronary ischemia by causing coronary vasodilatation. Because the expression and activation of endothelial nitric oxide synthase (eNOS) are dynamic to endothelial function, and latest data have implied a link between RLPs and eNOS.

CONCLUSION

This manuscript suggests the hypothesis that RLPs might impair endothelial function via direct and indirect effects on eNOS. The current study demonstrated that increased levels of remnant lipoproteins in fasting serum predicts the development of clinical coronary actions in patients with CHD independently of other risk factors like NO. Calculation of RLP-C is not being widely practised and...
not much information is available in the Asian population. Raised levels of RLP-C can be dropped by adopting lifestyle changes. Lifestyle modifications might be useful to decrease remnant cholesterol by decreasing weight, reduced consumption of alcohol, decreased consumption of fat, avoidance of smoking and improved physical activity. RLP-C has to be encompassed as one of the lipid profile parameters for the subjects attending the hospital and in the health screening in our population. There is much work to be done to shed light on these scary cardiac blind spots.

Limitations
This study had some limitations. First, our results were limited by the relatively small sample size and cross-sectional nature of the study which demonstrates only the associations with CHD severity. A small sample size and more in-depth work on the role of NO and RLP-C are needed to evaluate for the prevention of future risk of CHD.

ACKNOWLEDGEMENT
The authors acknowledge the Department of Cardiology and Department of Medicine for the permitting and support.

Conflict of Interest: I declare that no conflict of interest could be perceived as prejudicing the impartiality of the research reported.

Source of Funding: This research did not receive any specific grant from any funding agency in the public, commercial or not for profit sector.

Ethical Approval: All procedures performed in studies involving human participants were by ethical standards. The study protocol was approved by the institutional ethical committee (ECN: 1513/ICE/2018).

Informed Consent: Informed consent was obtained from all individual participants included in the study.

Authors’ Contribution
All authors have made important contributions to the research work reported in this manuscript.

Meera Shivasekar- Designing and drafting of the study
Thirunavukkarasu Jaishankar- data collection, data analysis and critical revision of the article
Sriram Veeraragavan- Statistical analysis and interpretation
Vinodhini V.M- Final inputs and approval of the article to publish.

REFERENCES
1. M.N. Krishnan. Coronary heart disease and risk factors in India on the brink of an epidemic? Indian Heart J. 2012; 64: 364-367.
2. Ravi Kant U, Perona, Javier S. Emerging Risk Biomarkers in Cardiovascular Diseases and Disorders. J lipids. 2015; 12(01): 971453-50.
3. Katsuyuki Nakajima, L.Adrienne C and Paulesh KS. Remnant-like particle (RLP) cholesterol is an independent cardiovascular disease risk factor in women: Results from the Framingham Heart Study. Atherosclerosis.1999; 154(1):229-36
4. Alan C, Henry N. Ginsberg, Tomas V. Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease. Diab. 2020; 69(4): 508-516.
5. Borge GN and Anette V. Triglyceride-rich Lipoprotein Cholesterol (Remnant Cholesterol) as a Therapeutic Target for Cardiovascular Disease Risk. Therapy Lipidology. 2020; (12): 139-158
6. Hermans MP, Ahn SA, and Rousseau MF. Novel unbiased equations to calculate triglyceride-rich lipoprotein cholesterol from routine non-fasting lipids. Cardio Diabet. 2014; 13, 56. https://doi.org/10.1186/1475-2840-13-56
7. Hirano, Tatsutomu. Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb. 2018; 25(9):771-782. doi:10.5551/jat.RV17023
8. Brites F, Martin M, Guillais I, Kontush A. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clin. 2017 Aug 19;8:66-77. doi: 10.1016/j.bbagen.2017.07.002. PMID: 28936395; PMCID: PMC5597817.
9. Ooi BK, Goh BH and Yap WH. Oxidative Stress in Cardiovascular Diseases: Involvement of NrF2 Antioxidant Redox Signaling in Macrophage Foam Cells Formation. Int J Mol Sci. 2017 Nov 5;18(11):2336. doi: 10.3390/ijms18112336. PMID: 29113088; PMCID: PMC5713305.
10. Bloodworth A, O’Donnell VB, Freeman BA. Nitric oxide regulation of free radical- and enzyme-mediated lipid and lipoprotein oxidation.Arteriosclerosis, Thromb Vasc Bio. 2000 July;20(7):1707-15. doi: 10.1161/01.atv.20.7.1707. PMID: 10894807.
11. Zou MH, Cohen R, Urlich V. Peroxynitrite and vascular endothelial dysfunction in diabetes mellitus. Endo. 2004 Mar-Apr;11(2):89-97. doi: 10.1080/10623320490482619. PMID: 15370068.
12. Olivier F, Chantal D and Stephane M. Hypercholesterolemia decrease nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest. 1999; 103(6):897-905.
13. Minako Y-T. Endothelial Function for Cardiovascular Disease Prevention and Management. Int J Cardiol. 2017; (4):103.
14. Kugiyama K, Doi H, Takazoe K. Remnant lipoprotein levels in fasting serum predict coronary events in patients with coronary artery disease. Circul. 1999 Jun 8;99(22):2858-60.
15. Elena B, Mariarosaria N, Kathleen MB. Postprandial Lipid Metabolism: The Missing Link between Life-Style Habits and the Increasing Incidence of Metabolic Diseases in Western Countries. Open Transl Med J. 2010; (2): 1-13.
16. Galicia-Garcia U, Benito-Vicente A, Jebari S. Pathophysiology of Type 2 Diabetes Mellitus. In. J Mol Sci. 2020 Aug 30;21(17):6275. doi: 10.3390/jm21176275. PMID: 32872570; PMCID: PMC7503727.
17. Ramasamy, Indra. Recent advances in physiological lipoprotein metabolism. Clin Chem Lab Med. (CCLM) 2014;52(12): 1695-1727.
Table 1: Demographics and baseline characteristics Coronary Heart Disease Subject and Healthy Controls

Parameters	Controls (n=97)	CHD subjects (n=97)	P-Value
Mean age (years, mean ± S.E.M.)	41.8 ± 9.7	40.6 ± 6.4	<0.0001***
Male Sex (%)	57(58.7%)	73(75.2%)	-
Female Sex (%)	40 (41.2%)	24(24.7%)	-
BMI (kg/m²)	21.9±0.37	25.08±0.19	<0.0001**
WC (cm)	90.9 ± 10.1	96.43± 4.3	<0.0001**
WHR	0.94±0.02	1.03±0.03	<0.0001**
SBP(mm Hg)	112.73 ±18.32	128.26±11.95	<0.0001**
DBP (mm Hg)	77.69 ±7.95	70.16 ±6.47	<0.0001**
Alcohol drinking	Drinkers	10(10.3%)	57(58.7%)
	Non-Drinkers	87(89.6%)	40 (41.2%)
Family history of CHD	Yes	0	44(45.3%)
	No	97(100%)	53(54.6%)

BMI- Body mass index; WC- Waist circumference; WHR- Waist to hip ratio; SBP- Systolic blood pressure; DBP- Diastolic blood pressure

Values are expressed in Mean ± Standard Deviation; P-value < 0.05 is considered to be significant; NS-Not significant; ***Very Highly significant; **Highly Significant.
Table 2: Biochemical parameters of Coronary Heart Disease Subject and Healthy Controls

Parameters	Controls (n=97) (Mean ± SD)	CHD Subjects (n=97) (Mean ± SD)	P-Value
FBG (mg/dl)	95.7±7.68	97.29±6.98	<0.0001***
Total Cholesterol (mg/dl)	169.20±16.13	242.73±40.33	<0.0001**
TG (mg/dl)	82.74±28.41	178.86±90.08	<0.0001***
HDL (mg/dl)	46.96±9.4	37.83±4.25	<0.0001**
LDL (mg/dl)	106.54±12.45	164.64±27.32	<0.0001***
VLDL (mg/dl)	17.26±8.77	34.08±14.29	<0.0001***
TC/HDL Ratio	3.71±0.70	6.50±1.36	<0.0001**
LDL/HDL Ratio	2.35±0.53	4.41±0.90	<0.0001***
TG/HDL Ratio	1.84±0.78	6.50±1.36	<0.0001**
RLP-C (mg/dl)	15.69±3.15	40.25±5.62	<0.0001**
Nitric Oxide (µmol/L)	19.08±4.74	12.77±1.37	<0.0001**

FBG- Fasting Blood Glucose; TC- Total Cholesterol; TG- Triglyceride; HDL- High Density Lipoprotein; LDL-C- Low Density Lipoprotein; RLP-C- Remnant Lipoprotein Cholesterol; NO- Nitric Oxide
Values are expressed in Mean ± Standard Deviation
P-value < 0.05 is considered to be significant; NS- Not significant; ***Very Highly significant; **Highly Significant.

Table 3: The Pearson correlations analysis between Remnant lipoprotein cholesterol and NO with other biochemical parameters in subjects with CHD

Variables	CHD subjects	RLP-C	P-Value	NO	P-Value
BMI		0.104	<0.0001**	-0.044	<0.0001***
Waist Circumference		0.035	<0.0001***	0.045	<0.0001**
Waist Hip Ratio		-0.032	<0.0001***	-0.158	<0.0001***
FBG		0.047	<0.0001**	-0.216	<0.0001**
Total Cholesterol		-0.050	<0.0001***	-0.024	<0.0001***
Triglyceride		0.181	<0.0001***	-0.012	<0.0001***
HDL-C		-0.312	<0.0001***	0.090	<0.002**
LDL-C		0.226	<0.0001***	-0.999	<0.0001***
VLDL-C		0.176	<0.0001***	-0.113	<0.0001***
TC/HDL Ratio		0.746	<0.0001***	-0.654	<0.0001***
LDL/HDL Ratio		0.165	<0.0001***	-0.291	<0.0001***
Nitric Oxide		-0.223	<0.0001**	-	-
RLP-C		-0.223	<0.0001**	-	-

A- Positive Correlation
B- Negative Correlation