Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Aspergillus meningitis: A rare clinical manifestation of central nervous system aspergillosis. Case report and review of 92 cases

Spinello Antinori a,*, Mario Corbellino a, Luca Meroni a, Federico Resta b, Salvatore Sollima a, Massimo Tonolino b, Anna Maria Tortorano c, Laura Milazzo a, Lorenzo Bello d, Elisa Furfaro e, Massimo Galli a, Claudio Viscoli e

a Department of Biomedical and Clinical Sciences Luigi Sacco, Università di Milano, Milano, Italy
b Radiology Unit, L Sacco Hospital, Milano, Italy
c Department of Biomedical Sciences for Health, Università di Milano, Milano, Italy
d Department of Medical Biotechnology and Translational Medicine, Università Di Milano, Milano, Italy
e Division of Infectious Diseases, San Martino Hospital, Università di Genova, Genova, Italy

Accepted 5 November 2012
Available online 21 November 2012

KEYWORDS
Aspergillus meningitis;
Galactomannan antigen;
Diagnosis;
Therapy

Summary
Objectives: To describe the pathogenesis, clinical presentation, cerebrospinal fluid findings and outcome of *Aspergillus* meningitis, meningoencephalitis and arachnoiditis.
Methods: A case of *Aspergillus* meningitis is described. A comprehensive review of the English-language literature was conducted to identify all reported cases of *Aspergillus* meningitis described between January 1973 and December 2011.
Results: Ninety-three cases (including the one described herein) of *Aspergillus* meningitis were identified. Fifty-two (55.9%) were in individuals without any predisposing factor or known causes of immunosuppression. Acute and chronic meningitis was diagnosed in 65.6% of patients and meningoencephalitis in 24.7% of them with the remaining presenting with spinal arachnoiditis and ventriculitis. Cerebrospinal fluid cultures for *Aspergillus* spp. were positive in about 31% of cases and the galactomannan antigen test in 87%. Diagnosis during life was achieved in 52 patients (55.9%) with a case fatality rate of 50%. The overall case fatality rate was 72.1%.
Central nervous system (CNS) infections are well recognized manifestations of disseminated aspergillosis observed in about 10% of immunocompromised patients and with mortality rates greater than 90%. By contrast, Aspergillus meningitis is a more seldomly encountered clinical entity and it is found more frequently in immunocompetent rather than in immunocompromised hosts. Information about Aspergillus meningitis is limited and sparse and to our knowledge no review on this topic has been published so far. We present here a case of Aspergillus meningitis, along with a review of published cases since 1973.

Methods

Case reports of Aspergillus meningitis, meningoencephalitis, arachnoiditis and ventriculitis as well as series of CNS aspergillosis were identified through a search of PubMed and Scopus databases of the English literature, and the reference lists were reviewed for additional cases. Research was conducted from the year 1973 through 2011. Used research terms included “Aspergillus meningitis”, “cerebral aspergillosis”, “central nervous system aspergillosis”, “Aspergillus arachnoiditis”, “mycotic meningitis”. For the purpose of this review a case of meningitis or meningoencephalitis caused by Aspergillus spp. was defined during life as follows: 1) a cerebrospinal culture positive for Aspergillus spp. together with a meningeal or encephalic syndrome; 2) the presence of galactomannan antigen or Aspergillus DNA detected by polymerase chain reaction (PCR) test in the CSF, together with a meningeal syndrome. Post-mortem diagnoses of Aspergillus meningitis were included if the autopsy clearly indicated involvement of the meninges or a picture of meningitis with microscopic identification of Aspergillus hyphae or a positive Aspergillus culture. When inflammation involved the spinal leptomeninges the case was classified as spinal arachnoiditis. Patients were considered immunocompromised if the following conditions were met: 1) HIV/AIDS infection; 2) solid organ transplantation; 3) hematologic diseases with or without bone marrow transplantation; 4) autoimmune diseases treated with steroids or other immunosuppressive drugs; 5) diabetes mellitus; 6) any other condition treated with corticosteroids or immunosuppressive drugs.

Case report

A 34-year-old man was referred to our Infectious Diseases ward on February 9, 2010 from a Neurosurgery Unit where a diagnosis of Aspergillus meningitis had been made. The clinical history was notable for heroin intravenous drug abuse, high alcohol intake, untreated chronic hepatitis C and methadone maintenance therapy (50 mg/day). One month before he was admitted to the Internal Medicine ward of another Hospital to investigate the nature of low back pain, headache and low grade fever (37.5 °C) that had appeared 1 month earlier. Magnetic resonance imaging (MRI) of the brain was negative for parenchymal and meningeal lesions. On the contrary, MRI of the lumbar spine showed abnormal contrast enhancement into the spinal canal between L4 and S1 suggesting an intradural mass lesion conditioning a traction effect on the roots of the cauda equina. A color-doppler echocardiogram showed only a mild mitral regurgitation. Blood and urine cultures were negative as well as a serologic test for HIV. Cerebrospinal fluid (CSF) analysis performed on February 9 is shown in Fig. 1. Gram and Ziehl-Neelsen stains, as well as bacterial and mycobacterial cultures, were negative as was the search for bacterial and Cryptococcus neoformans antigens. Cerebrospinal culture grew Aspergillus flavus that was susceptible to amphotericin B, voriconazole, posaconazole, itraconazole and caspofungin. Aspergillus galactomannan antigen-GM (Platelia Aspergillus, Sanofi Diagnostics Pasteur, Marne-La Coquette, France) was detected both in the CSF and blood with a higher index value in the former (respectively, 7.4 and 2.5). Upon admission to our ward (February 12), the patient had fever (38.5 °C), was alert and complained of frontal headache and photophobia, without neck stiffness. Intravenous treatment with voriconazole was started (6 mg/kg every 12 h (q12h) as loading dose, followed by 4 mg/kg q12h) together with ceftriaxone (2 g q12h). Two weeks later, a control brain and spinal MRI showed meningeal enhancement with cysternal distribution especially in the pre-pontine area around the basilar artery, together with endocanalar pathologic enhancement between L4 and S2 (Figs. 2, 3a and b). A concomitant CSF analysis showed a reduction of WBCs (180/μL, 61% PMNs), improvement of glucose levels (24 mg/dL, serum 110 mg/dL) and a striking increase of protein level (3705 mg/dl), whereas, at this time point, CSF culture turned negative. The GM index was 6.36 in the CSF and 0.9 in the peripheral blood. Because of persistent fever, headache and worsening of the radiological picture, caspofungin (70 mg loading dose, 50 mg maintenance dose) was added to the antifungal regimen with discontinuation of the antibiotic therapy. Voriconazole blood and CSF trough concentrations obtained after 2 weeks of therapy were similar (5.85 and 5.86 mg/L, respectively). Therapeutic drug monitoring was arranged 6 and 10 days later and it showed toxic concentrations of the drug that prompted dosage adjustments despite the absence of any clinical or biochemical signs of voriconazole toxicity. Another CSF examination performed on March 18, disclosed an improvement of all parameters (Fig. 1). Repeated MRI of the brain and spine (March, 17) showed the reduction of the pial and cysternal contrast enhancement but a progression of the endocanalar inflammation now involving
the segments L3 to S2. After a new evaluation by the neurosurgery consultant, who deemed any procedure unfeasible, the patient was discharged after having received 38 days of voriconazole therapy (total cumulative dosage: 21,200 mg) and one month of caspofungin (total cumulative dosage: 1520 mg). The patient was left on maintenance therapy with oral voriconazole at a dosage of 150 mg q12 h due to raised ALT levels (199 U/L), the appearance of visual disturbances and persistently elevated trough voriconazole concentrations (6.2 mg/L). At the end of April, the patient was readmitted to our hospital ward because of persistent abnormal liver function test results and visual disturbances that required discontinuation of voriconazole and its substitution with intravenous liposomal amphotericin B (L-AMB, 250 mg/day). He complained of persistent low back pain that was irradiated to both the lower extremities with preserved deep tendon and superficial reflexes. Repeated attempts to obtain CSF samples by lumbar puncture were unsuccessful. Nerve conduction and electromyography studies showed mild sensorimotor bilateral demyelinating polyneuropathy. A new MRI of the brain and spine (performed on May, 17) was substantially unchanged. During the 30-day therapy with L-AMB, GM was evaluated weekly and showed values ranging from 0.9 to 1.59. Because of the patient’s drug addiction history, it was decided to resume oral voriconazole therapy since the positioning of a permanent intravenous device for L-AMB infusion on an outpatient basis was

Figure 1 Medication history, clinical course and kinetic of *Aspergillus* antigen in CSF of our case of *Aspergillus flavus* meningitis. The dotted line represents the cut-off value of GM. The light blue line is the index on CSF and the red line on plasma. The blue circle represents the CSF levels of voriconazole. The purple diamond and the yellow triangle are respectively the down and peak plasma levels of voriconazole. The blue rectangle denotes the range of expected therapeutic levels of voriconazole.

Figure 2 Sagittal and coronal T1-weighted gadolinium-enhanced magnetic resonance scan of the brain of our patient with *Aspergillus flavus* meningitis showing contrast impregnation along the basilar artery in the preptontine cistern.
judged risky. A dosage of 150 mg every 12 h was started on June 9, showing after a week trough and peak concentrations of 3.4 and 3.6 mg/L, respectively. A new MRI of the brain and spine was performed on August 4, that demonstrated a reduction of pial enhancement along the cervical tract, the conus medullaris and cauda equina with a only a mild volumetric reduction of the endocanalar lumbar abscess. Clinically, the patient was well oriented with a positive bilateral Lasègue sign at the neurologic examination. He was discharged and subsequently lost to follow-up.

Results

A detailed, chronologically ordered summary of 93 cases of Aspergillus meningitis, chronic meningitis/pachymeningitis, meningoencephalitis, arachnoiditis and ventriculitis including the one presented herein (case 46) is shown in Table 1. There were 46 women (50%) and 46 men, with a median age of 37 years (range 3–75 years). Diagnosis was made during life in 52 patients (55.9%) and at autopsy in 41 patients. A diagnosis was obtained more frequently during life among immunocompetent patients (69%) in comparison with immunocompromised individuals (39%) (Table 2).

In almost half of the cases (n = 44) Aspergillus was identified by histology or culture without speciation; all other infections were caused by A. fumigatus (n = 34), A. flavus (n = 8) and A. terreus (n = 3) while A. oryzae, A. granulosus and A. candidus were identified in one case each. Forty-one patients were considered immunocompromised hosts (5 AIDS patients; 3 with autoimmune diseases treated with steroids; 9 solid organ transplant recipients; 10 hematologic patients undergoing chemotherapy or bone marrow transplantation; 5 subjects under steroid therapy for chronic obstructive pulmonary disease (COPD), and Severe Acute Respiratory Syndrome; 7 patients with diabetes and, finally, 1 each with Cushing’s disease and sarcoidosis). In the fifty-two patients without classic risk factors for invasive aspergillosis, central nervous system involvement was presumed to be the result of: direct extension of Aspergillus from the orbit, ear or paranasal sinuses in 6 patients (11.5%); iatrogenic direct inoculation of Aspergillus through spinal anesthesia (13 patients, 25%), neurosurgery (13 patients, 25%) or epidural steroid injections (1 patient). In six intravenous drug abusers (11.5%) the infection was probably acquired by the hematogenous route. Among the remaining subjects, no predisposing factor could be identified in six patients while one patient each were notable for the presence of the following: pregnancy, alcohol abuse, fungal endocarditis and near drowning. The most common syndrome was acute meningitis which was observed in 46 patients, followed by meningoencephalitis (n = 23). A chronic course of meningitis was observed in 15 patients; five patients showed a picture of spinal arachnoiditis (in 1 case with associated meningitis), and 4 ventriculitis (Table 2). An acute course characterized by rapid deterioration of the clinical picture usually ending with death was observed among immunocompromised hosts and in patients who had direct inoculation of the fungus into the cerebrospinal fluid or the subarachnoid space. By contrast, a sub-acute or chronic form of meningitis going unrecognized for several weeks and sometimes displaying a relapsing character was the most frequent presentation among immunocompetent patients, intravenous drug abusers and patients with diabetes. However, the latter clinical picture was also observed among several patients who had undergone neurosurgery.

Cerebrospinal fluid culture was positive for Aspergillus spp. in 31% of cases with a slightly higher prevalence among immunocompetent (36.9%), as opposed to immunocompromised hosts (18.2%) (Table 2). In nine patients, Aspergillus spp. was cultured from CSF only after repeated attempts (median number of lumbar punctures: 4, range 3–9). Antigen-based assays were employed in fifteen patients: GM antigen by use of the Plateia Elisa in 10 patients, with an unspecified assay in 2 patients, with Pastorex assay in 1 patient and 1,3-β-D-glucan in 2 individuals. GM antigen was detected in CSF specimens of 6 out of 8 immunocompetent patients and in all immunocompromised hosts in whom it was assessed (7/7, 100%) with an overall sensitivity of 86.7%. The median CSF GM index was 6.58 (range 2.2–578).

Serum GM was concomitantly measured in 8 cases and turned positive in 3. In 3 patients, CSF GM was serially determined (3–10, median 7), showing a good correlation
Author, year [Reference]	Age/sex	Risk factor/Underlying disease	Sign and symptoms (time duration)/Time from TX	Syndrome	Diagnosis/methods	CSF characteristics	Aspergillus species (method)	CSF Ag GMN	Antifungal treatment (time duration)	Outcome
Meningitis										
Atkinson & Israel, 1973³	27/M	None/Sarcoidosis	Headache, blurred vision	Meningitis	L/CSF	WBC 144/µL (PMNs 10%)	*Aspergillus fumigatus* (CSF)	NA	5-FLU (3 months)	Alive 2 years after stopping antifungal therapy
Feely et al., 1977¹⁰	57/F	Neurosurgery (Trans-sphenoidal Yttrium⁶⁰ implant)/Acromegaly	Meningeal signs, left hemiparesis/11 months	Meningitis	Pm/Autopsy (purulent basal leptomeningitis + multiple infarcts)	WBC 138/µL (PMNs 96%); proteins 850 mg/L	*Aspergillus spp.* (autopsy culture)	NA	None	Death after 1 day
37/M		Neurosurgery (Trans-sphenoidal Yttrium⁶⁰ implant)/Diabetic retinopathy	Fever, stiff neck, headache, blurred vision/9 months	Meningitis	L/Biopsy (tissue adherent to the screws)	WBC 8800/µL (PMNs 90%); protein 330 mg/L	*Aspergillus spp.* (biopsy)	NA	AMFB (NR); removal of implant	Alive
Mohandas et al., 1978¹¹	38/M	Neurosurgery/Maxillary sinusitis	Meningeal irritation, coma/6 days post-operatively	Meningitis	L/Surgery of fungal granuloma	WBC 100/µL (PMNs 0%); glucose 35 mg/dL; protein 1160 mg/L	*Aspergillus spp.* (biopsy)	NA	AMFB (7 days) ev + intratechal (1 day)	Death after 7 days
Aung et al., 1979¹²	22/F	Pregnancy/None	Headache, retrobulbar pain, blurred vision, ophthalmoplegia (22 days after delivery)	Meningitis	L/Biopsy leptomeninges	ND	*Aspergillus spp.* (biopsy)	NA	Antifungal drugs (not mentioned)	Death after 1 month
Beal et al., 1982¹³	47/F	None/Sphenoid sinusitis	Frontal headache (5 months); nuchal rigidity, fever, hydrocephalus	Meningitis	L/biopsy sinus	WBC 120/µL (PMNs 63%); glucose 25 mg/dL; protein 620 mg/L	*Aspergillus spp.* (sinus biopsy)	NA	AMFB (NR)	Alive 2 years later
22/F		Neurosurgery/Medullo-blastoma	Fever (38.8°C), severe headache, meningismus 12 days after neurosurgery	Meningitis	L/CSF; Autopsy (basilar *Aspergillus meningitis with exudate in the subarachnoid space of spinal cord)*	WBC 2650/µL (PMNs 10%); glucose 26 mg/dL; protein 1750 mg/L	*Aspergillus spp.* (CSF culture after multiple attempts)	NA	AMFB (3 days)	Death after 20 days
Diendogh et al., 1983¹⁴	60/M	Neurosurgery (Trans-sphenoidal Yttrium⁶⁰ implant)/Diabetic retinopathy	Drowsy, disoriented in time and space, neck stiffness, positive Kernig sign	Meningitis	PM/Autopsy (meningitis; necrotizing vasculitis (pons); fungal invasion of basilar and middle cerebral arteries)	WBC 323/µL (PMNs 60%)	*Aspergillus spp.* (autopsy histology)	NA	None	Death after 2 weeks

(continued on next page)
Author, year [Reference]	Age/sex	Risk factor/Underlying disease	Sign and symptoms (time duration)/Time from TX	Syndrome	Diagnosis/methods	CSF characteristics	Aspergillus species	CSF Ag GMN (method)	Antifungal treatment (time duration)	Outcome	
Walsh et al., 1985³	64/F	Steroid treatment/Cushing syndrome	Meningismus, headache, hemiparesis	Meningitis	PM/Autopsy: mycotic Aspergillus aneurism & subarachnoid hemorrhage	WBC 15/µL (PMNs 0%); glucose 90 mg/dL; protein 1450 mg/L	Aspergillus spp. (autopsy histology)	NA	None	Death after 9 days	
Hajjar et al., 1987¹⁵	28/M	Neurosurgery/Acoustic neurinoma	NR/9 days	Meningitis	PM/Autopsy: Aspergillus fumigatus	L/Wound culture	NR	Aspergillus spp. (wound culture)	AMFB + 5-FLU (2 months)	Death after 2 months	
Asnis et al., 1988¹⁶	44/M	None/AIDS	Confusion, generalized seizures	Meningitis	PM/Autopsy (Aspergillus leptomeningites)	NR	Aspergillus spp. (autopsy histology)	NA	AMFB (20 days)	Death	
Carrazana et al., 1991¹⁷	44/M	None/AIDS; sphenoid sinusitis	Headache, fever, nausea, ataxia, hemiparesis, seizures	Meningitis	PM/Autopsy (Aspergillus meningal infiltration; thrombosis of basilar artery)	NR	Aspergillus spp. (autopsy histology)	NA	None	Death	
Komatsu et al., 1991¹⁸	61/F	Neurosurgery/Rathke’s cleft cyst	High fever and meningeal signs/12 days after surgery	Meningitis	PM/Autopsy (Aspergillus meningitis & mycotic aneurism, subarachnoid hemorrhage)	WBC 881/µL (PMNs 70%); glucose 46 mg/dL; protein 540 mg/L	Aspergillus spp. (autopsy histology)	NA	ND	Death after 23 days	
Lammens et al., 1992¹⁹	39/F	Immunosuppressive therapy/SLE	Headache (1 month), fever (39.5 °C), neck stiffness, Horner syndrome	Meningitis	PM/Autopsy (Aspergillus basal meningitis & subarachnoid hemorrhage)	WBC 3750/µL (PMNs 84%); glucose 32 mg/dL; protein 1000 mg/L	Aspergillus spp. (autopsy histology)	NA	None	Death after 15 days	
Torre-Cisneros et al., 1993¹⁰	31/F	Liver transplant/End stage liver disease	Seizure	Meningitis	PM/Autopsy (ischemic infarct; leptomeningeal aspergillosis)	NR	Aspergillus spp. (autopsy histology)	NA	NR	Death	
21/F	Liver transplant/End stage liver disease	NR	Meningitis	PM/Autopsy (ischemic infarct; leptomeningeal aspergillosis)	NR	Aspergillus spp. (autopsy histology)	NA	NR	Death		
24/F	Liver transplant/End stage liver disease	Seizure	Meningitis	PM/Autopsy (acute leptomeningitis)	NR	Aspergillus spp. (autopsy histology)	NA	NR	Death		
38/M	Kidney transplant/End stage kidney disease	Seizure	Meningitis	PM/Autopsy (acute leptomeningitis; haemorrhagic infarcts)	NR	Aspergillus spp. (autopsy histology)	NA	NR	Death		
Name et al., 1995	Gender/ Age	Diagnosis	Symptoms	Diagnosis	WBC 2000/μL (PMNs 95%); protein 900 mg/L	Aspergillus spp. (autopsy histology)	NA	NR	Death after 5 days		
------------------	-------------	-----------	----------	-----------	--------------------------------------	-------------------------------------	-----	----	-------------------		
Miaux et al., 1995	41/M	Bone marrow transplant; steroid therapy/CML	Fever (38 °C), hemiplegia/2 months	Meningitis	Pm/Autopsy (thickening and meningeal inflammation with haemorrhagic necrosis; lung & heart involvement)	WBC 2560/μL (PMNs 98%); Aspergillus spp. (autopsy histology)	NA	NR	Death after 8 days		
Adunsky et al., 1996	74/M	None/None	Fever (38.3 °C), stuporous, left hemiplegia, dysarthria (1 day)	Meningitis	Pm/Autopsy	Aspergillus flavus (CSF culture)	NA	AMFB (few days)	Death after few days		
Adunsky et al., 1996	39/F	Bone marrow transplant; steroid therapy/RAEB	Mental confusion/3.5 months	Meningitis	Pm/Autopsy (brain hemorrhagic necrosis; lung involvement)	WBC 2400/μL (PMNs 94%); glucose 10 mg/dL; protein 1500 mg/L	Aspergillus fumigatus (extradural abscess)	Negative (NR)	AMFB (2 months) + Itraconazole (2 months)	Death after 12 months	
Adunsky et al., 1996	74/M	None/None	Fever (38 °C), acute respiratory failure (22 days)	Meningitis	Pm/Autopsy (right haemorrhagic infarct with subcortical vessel invasion and meningeal diffusion by Aspergillus; pulmonary involvement)	WBC 830/μL (PMNs 53%); glucose 48 (s 155) mg/dL; protein 830 mg/L	Aspergillus fumigatus (CF culture)	Positive (NR)	L-AMB (5 weeks) + 5-FLU (7 weeks); Itraconazole (6 months)	Alive after 12 months	
Verweij et al., 1999	73/F	Mastoidectomy/Otitis media	Fever (39 °C), headache, vomiting, drowsiness, meningismus/NR	Meningitis	L/CSF (sixth attempt)	WBC 2130/μL; glucose 27 mg/dL (47 mg/dL serum); protein 150 mg/L	Aspergillus fumigatus (CSF culture, 6th attempt + PCR)	10.4 (Platelia)	Itraconazole 1 week; AMFB (4 weeks + AMFB intraventricular; voriconazole (9 weeks)	Alive 12 months after voriconazole discontinuation	
Mariushi et al., 1999	43/F	None/None	Headache, neck stiffness (11 days), fever (37.6 °C), nausea, chills	Meningitis	L/CSF	WBC 329/μL (PMNs 0%); glucose 46 mg/dL; protein 500 mg/L	Aspergillus spp. (CSF culture, 5th attempt)	ND	Flucanazole (2 years)	Alive after 2 years	
Author, year [Reference]	Age/sex	Risk factor/Underlying disease	Sign and symptoms (time duration)/Time from TX	Syndrome	Diagnosis/methods	CSF characteristics	Aspergillus species	CSF Ag GMN (method)	Antifungal treatment (time duration)	Outcome	
--------------------------	---------	-------------------------------	---	----------	------------------	--------------------	-------------------	-------------------	-------------------------------	---------	
Arabi, 2001²⁷	58/M	None/Maxillary sinusitis	Confusion, progressive unresponsiveness, 4th nerve palsy 8 days after pneumonia	Meningitis	L/Sinus aspirate/ Autopsy (Aspergillus ventriculitis, meningitis; focal encephalitis; pneumonia)	WBC 3500/µL (PMNs 91%); glucose 77 mg/dL; protein 3370 mg/L	Aspergillus fumigatus	ND	AMFB (3 weeks)	Death 20 days later	
Nenoff et al., 2001^a	74/M	Ethmoidectomy and orbitotomy (for A. fumigatus orbital and sinus infection)/Diabetes mellitus	Vomiting, nausea, exophthalmus, somnolent and disoriented/7 months	Meningitis	L/Biopsy (orbital apex)/ Autopsy (Aspergillus meningitis, vasculitis internal carotid, mycotic aneurism with subarachnoid hemorrhage)	NR	Aspergillus fumigatus (biopsy)	1:2 (Pastorex)	AMFB + 5-FLU (few days)	Death 3 weeks after surgical procedure	
Moling et al., 2002²⁵	29/M	Kidney transplant (reject); Hemodialysis + steroid therapy/complement 4 deficiency	Fever (39°C); confusion; disorientation; right motor hemisindrome (2 weeks)	Meningitis	L/CSF	WBC 3200/µL; glucose 4 mg/dL	Aspergillus fumigatus (CSF culture, 4th attempt + PCR)	ND	Fluconazole (2 weeks); L-AMB (3 weeks); Itraconazole (4 months)	Alive after 7 months; Death after 6 years^b	
Kleinschmidt-DeMasters, 2002²⁴	51/M	Steroid therapy/ Wegener’s granulomatosis	NR	Meningitis	PM/Autopsy (Aspergillus acute and chronic basilar granulomatous meningitis; mycotic aneurism; lung, skin, heart involvement)	NR	Aspergillus spp.	ND (autopsy histology)	NR	Death after 68 days	
Pandian et al., 2004³¹	34/F	Spinal anaesthesia/ None	Fever, headache, vomiting^g	Meningitis	PM/Autopsy (Aspergillus meningitis; mycotic aneurism with subarachnoid hemorrhage)	WBC 640/µL (PMNs 76%); glucose 32 mg/dL; protein 3600 mg/L	Aspergillus spp.	ND (autopsy histology)	None	Death	
Age	Gender	Anaesthesia	Diagnosis	Meningitis	WBC	Glucose	Protein	Pathology	AD	Follow-up	
-----	--------	-------------	-----------	-----------	------	---------	---------	------------	----	-----------	
21/F	Spinal anaesthesia	None	Fever, headache, vomiting	Meningitis	WBC 678/μL (PMNs 65%); glucose 23 mg/dL; protein 3600 mg/L	23 mg/dL	3600 mg/L	Aspergillus spp. (autopsy histology)	ND	None	Death
42/F	Spinal anaesthesia	None	Fever, headache, vomiting	Meningitis	WBC 240/μL (PMNs 68%); glucose 23 mg/dL; protein 2400 mg/L	23 mg/dL	2400 mg/L	Aspergillus spp. (autopsy histology)	ND	None	Death
32/F	Spinal anaesthesia	None	Fever, headache, vomiting	Meningitis	WBC 345/μL (PMNs 76%); glucose 23 mg/dL; protein 1230 mg/L	23 mg/dL	1230 mg/L	Aspergillus spp. (autopsy histology)	ND	None	Unknown
24/F	Spinal anaesthesia	None	Fever, headache, vomiting	Meningitis	WBC 435/μL (PMNs 96%); glucose 32 mg/dL; protein 4200 mg/L	32 mg/dL	4200 mg/L	Aspergillus spp. (autopsy histology)	ND	None	Death after 18 months

Larson Kolbe et al., 2007

Age	Gender	Anaesthesia	Diagnosis	Meningitis	WBC	Glucose	Protein	Pathology	AD	Follow-up	
51/F	Epidural steroid injections	COPD	Mental status changes; 3rd nerve palsy	Meningitis	WBC NR (PMNs 99%); glucose 56 mg/dl (s 115 mg/dL); protein 680 mg/L	56 mg/dl	680 mg/L	Aspergillus fumigatus (disc aspiration + vpsos abscess culture)	ND	Caspofungin + oriconazole (4 months)	Death after 5 months

Gunaratne et al., 2007

Age	Gender	Anaesthesia	Diagnosis	Meningitis	WBC	Glucose	Protein	Pathology	AD	Follow-up	
26/F	Spinal anesthesia	None	Low grade fever, headache, nausea, vomiting 12 days after sa	Meningitis	WBC 302/μL (PMNs 99%); glucose 56 mg/dl (s 115 mg/dL); protein 680 mg/L	56 mg/dl	680 mg/L	Aspergillus fumigatus (autopsy culture)	ND	Fluconazole	Death after 4 weeks

Age	Gender	Anaesthesia	Diagnosis	Meningitis	WBC	Glucose	Protein	Pathology	AD	Follow-up	
21/F	Spinal anaesthesia	None	Fever, chills, neck stiffness 10 days after sa	Meningitis	WBC 575/μL (PMNs 70%); glucose 25 mg/dl (s 90 mg/dL); protein 490 mg/L	25 mg/dl	490 mg/L	Aspergillus fumigatus (autopsy culture)	ND	AMFB (4 days)	Death after 4 weeks

Age	Gender	Anaesthesia	Diagnosis	Meningitis	WBC	Glucose	Protein	Pathology	AD	Follow-up	
27/F	Spinal anaesthesia	None	Fever, headache, neck stiffness, diplopia, photophobia 15 days after sa	Meningitis	WBC 720/μL (PMNs 3%); glucose 21 mg/dl (s 133 mg/dL); protein 680 mg/L	21 mg/dl	680 mg/L	Aspergillus spp. (CSF)	ND	AMFB iv + it (4 weeks) voriconazole (4 weeks)	Alive after 12 months (residual 6th cranial nerve palsy and impaired hearing)

(continued on next page)
Author, year [Reference]	Age/sex	Risk factor/Underlying disease	Sign and symptoms (time duration)/Time from TX	Sydrome	Diagnosis/methods	CSF characteristics	Aspergillus species	CSF Ag GMN (method)	Antifungaltreatment (time duration)	Outcome
29/F Spinal anesthesia (Pregnancy)/None	Fever, headache, vomiting, neck stiffness, photophobia 11 days after sa	Meningitis	L/CSF	WBC 1430/μL (PNNs 40%); glucose 45 mg/dL; protein 330 mg/L	Aspergillus fumigatus (CSF culture)	ND	AMF 1 iv + it (2 weeks); voriconazole (16 weeks)	Alive after 12 months (no disability)		
38/F Spinal anesthesia (Pregnancy)/None	Fever, neck stiffness 8 days after sa	Meningitis	Pm/Autopsy	WBC 225/μL (PNNs 0%); glucose 61 mg/dL (s 109 mg/dL); protein 280 mg/L	Aspergillus fumigatus (autopsy culture)	ND	AMB (9 days)	Death after 24 days		
Saitoh et al., 2007	33/M Chemotherapy/AML	Fever, headache, neck stiffness/14 days post-chemotherapy	Meningitis	L/CSF	WBC 15/μL; glucose 30 mg/dL; protein 760 mg/L	Aspergillus spp. (PCR + Ag on CSF) (Plateia)	2.2 (s 0.1)	AMFB (1 week); voriconazole (12 months)	Alive after 1 year	
Sundaram et al., 2007	22/M Spinal anesthesia (1 month prior)/None	Fever, headache, vomiting (2 months), neck stiffness	Meningitis	Pm/Autopsy (Aspergillus purulent meningitis & mycotic aneurism with subarachnoid hemorrhages)	WBC 720/μL (PNNs 90%); glucose 37 mg/dL; protein 850 mg/L	Aspergillus fumigatus (CSF culture, 6th attempt)	ND	ND	Death after 68 days	
Van de Beek et al., 2008	56/M Kidney-pancreas transplant/End stage disease; sphenoid sinusitis	Headache, fever (6 weeks); neck stiffness, dysarthria, hemiparesis	Meningitis	L/sphenoid biopsy/Autopsy	WBC 1200/μL (PNNs 94%); glucose 64 mg/dL; protein 7300 mg/L	Aspergillus fumigatus (sphenoid biopsy + autopsy)	6.47 (s 0.39) (Plateia)	Voriconazole (NR)	Death after 4 weeks	
[PR], 2011	35/M IVDA (heroin)/Chronic hepatitis C	Fever (37.5 °C), headache, back pain (1 month)	Meningitis & spinal arachnoiditis	L/CSF	WBC 260/μL (PNN 70%); glucose 1 mg/dL (s 76 mg/dL); protein 7900 mg/L	Aspergillus flavus (CSF culture)	7.4 (s 2.5) (Plateia)	Voriconazole 5 months (+1 month caspofungin); L-AMB 3 months	Alive after 9 months	
Chronic meningitis/pachimeningitis										
Palo et al., 1975	69/M None/Diabetes	Headache, fever, diplopia, vertigo hearing loss (6 months)	Chronic meningitis	Pm/CSF; autopsy (granulomatous leptomeningitis and spinal cord involvement)	WBC 103/μL (PNNs 8%); glucose 45 mg/dL; protein 1400 mg/L	Aspergillus fumigatus (CSF culture, 6th attempt)	NA	None	Death 1 month later	
Reference	Gender	Age	Diagnosis	Symptoms	Diagnosis	Treatment	Outcome			
-------------------------------	--------	------	----------------------------------	--	---	------------------------------------	------------------------------			
Gordon et al., 19766,9	34/F	IVDA (heroin, cocaine)/None	Bifrontal headache, neck stiffness (weeks), low-grade fever	Chronic meningitis	L/CSF WBC 2892/μL (PMNs 80%); glucose 16 (± 110) mg/dL; protein 990 mg/L; ND	Aspergillus oryzae (CSF culture, 7th attempt)	AMFB + 5-FLU (12 months)	Alive (6 years later; episode of bilateral necrotizing scleritis due to A. oryzae)		
Mielke et al., 19811,8	58/F	Neurosurgery/Acrromegaly	Severe headache (4 months), retro-orbital pain, blindness, ophthalhalmoplegia/10 months	Chronic meningitis	Pm/Autopsy (chronic basilar meningitis by A. fumigatus & C. albicans; mycotic aneurism of the basilar artery with subarachnoid hemorrhage)	Aspergillus fumigatus (autopsy culture)	None	Death after 7 days		
Weinstein et al., 19829	67/M	None/none	Retro-orbital and periorbital pain, vertigo (months); decrease eye vision; weakness; malaise	Chronic meningitis	L/biopsy sphenoid wing WBC 88/μL (PMNs 6%); glucose 53 (± 97) mg/dL; protein 1130 mg/L	Aspergillus fumigatus (biopsy + culture sphenoid)	AMFB + rifampicin (2 weeks)	Death after 18 days from surgery		
Salaki et al., 198440	32/M	Steroid treatment/ SLE	Fever (38°C), frontal headache, lethargy (3 weeks), stiff neck, 6th nerve palsy	Chronic meningitis	L/CSF + spinal aspirate WBC 1400/μL (92%); glucose 33 mg/dL; protein 1100 mg/L	Aspergillus fumigatus (CSF culture, 4th attempt)	AMFB + 5-FLU (NR)	Alive		
Woods et al., 199041	44/M	None/AIDS	Headache, fever, nausea, vomiting, lethargy, slurred speech, severe back pain (4 months)	Chronic meningitis	Pm/Autopsy (Aspergillus acute and chronic basilar meningitis; spinal arachnoiditis; pleural, brain, lumbar spinal cord involvement) WBC 80/μL (PMNs 80%); glucose 19 mg/dL; protein 2000 mg/L	Aspergillus fumigatus (autopsy culture)	None	Death after 18 days		
Murai et al., 199242	59/F	None/Diabetes; Liver cirrhosis; Mondini’s anomaly; otitis media	Headache; hearing loss; multiple nerve palsy (6th, 8th, 9th, 10th, 11th)	Chronic pachymentingitis	L/surgery maxillary sinus WBC 7/μL; protein 660 mg/L	Aspergillus flavus (surgery culture)	Miconazole (2 months); 5-FLU, fluconazole (1 month)	Alive after 4 months		
Kurino et al., 199343	63/M	None/Diabetes; otitis media	Fever, headache, hyperesthesia of face, abducens palsy, deafness	Chronic meningitis	Pm/Biopsy granuloma + autopsy WBC 138/μL (PMNs 50%); glucose 87 mg/dL; protein 1007 mg/L	Aspergillus spp. (biopsy + autopsy)	None	Death 30 days post-surgery		

(continued on next page)
Author, year [Reference]	Age/sex	Risk factor/Underlying disease	Sign and symptoms (time duration)/Time from TX Syndrome	Diagnosis/methods	CSF characteristics	Aspergillus species	CSF Ag GM1 (method)	Antifungal treatment (time duration)	Outcome	
Mochizuki et al., 2000	75/M	None/Otitis media	Multiple cranial nerve palsy (2nd, 3rd, 4th), impaired vision (4 months) Chronic pachymeningitis	L/Biopsy	NR	Aspergillus flavus (biopsy culture)	ND	Fluconazole (4 weeks); AMFB (4 months); 5-FLU (4 months); itraconazole (5 months)	Alive after 36 months	
Moling et al., 2002	48/M	Alcohol abuse/None	Headache, fever, gait instability, apathy (5 months) Chronic meningitis + ventriculitis + arachnoiditis	L/CSF	WBC 1880/μL; glucose 20 mg/dL	Aspergillus flavus candidus group (CSF culture)	6.7 (± 1.7) (Platelia)	AMFB (1 week); rifampicin (several months); voriconazole (10 days); itraconazole (10 months)	Alive after 24 months	
Kowacs et al., 2004	26/M	Near drowning/None	Fever (37.2 °C), mild meningismus (4 weeks) Chronic meningitis	L/CSF	WBC 165/μL (PMNs 69%); glucose 64 mg/dL; protein 778 mg/L	Aspergillus fumigatus (CSF culture, 3rd attempt)	ND	Fluconazole (12 days); itraconazole + AMFB (44 days)	Death after 56 days	
Ismail et al., 2007	73/M	None/Diabetes mellitus; pulmonary asbestosis	Headache, left-sided visual loss, scalp tenderness, fatigue (3 weeks) Hypertrophic pachymeningitis	L/Meningeal biopsy	WBC 0/μL; protein 5670 mg/L	Aspergillus flavus (biopsy culture)	ND	Antifungal treatment (NR)	Death 3 months later	
Kagawa et al., 2008	33/F	Spinal cord mass lesion	Headache, low grade fever (5 months), hydrocephalus Chronic meningitis	L/Biopsy VA shunt	WBC 1340/μL; glucose 8 mg/dL; protein 1580 mg/L	Aspergillus spp. (VA shunt biopsy)	ND	AMFB (NR); fluconazole (NR)	Alive after 15 years (multiple recurrences)	
Chan et al., 2011	59/M	Diabetes; impaired renal function	Headache, diplopia, hoarseness (2 months) Pachymeningitis	L/Dural biopsy	Glucose 102 mg/dL; protein 1270 mg/L	Aspergillus flavus (culture from dural biopsy)	Positive (β-D-glucan + Platelia)	Voriconazole (2 weeks); caspofungin (4 weeks); voriconazole (8 weeks)	Alive after 7 months	
Kato et al., 2011	42/M	None/None	Headache, right nuchal pain, cranial nerve palsies (2 months) Hypertrophic pachymeningitis	L/CSF	WBC 43/μL (PMNs 4%); glucose 56 mg/dL; protein 1000 mg/L	Aspergillus spp. (CSF PCR positive)	β-D-glucan (Fungitell) 164 pg/mL; serum < 5 pg/mL	Voriconazole (8 weeks); L-AMB + 5-FLU (2 weeks); fluconazole 8 weeks	Alive after 30 months	
Meningoencephalitis	Goldhammer et al., 1974	45/M	None/none	Headache (9 months), blurred vision (3 weeks) Meningoencephalitis	Pm/Autopsy	Disseminated meningoece-phalitis with pituitary abscess and left optic nerve involvement	Aspergillus spp. (microscopy smear of pituitary abscess + autopsy)	ND	None	Death 4 days postoperatively

Clinical manifestations of Aspergillus meningitis
Study	Gender	Age	Diagnosis	Symptoms	Clinical Presentation	Investigations	Treatment	Outcome	
Naidoff et al., 1975⁵¹	29/F	51	Kidney transplant/ End stage kidney disease	Meningoencephalitis/ disseminated aspergillosis (heart, lung, liver, spleen, thyroid, brain, eye, meninges)	ND	Aspergillus fumigatus (autopsy culture)	None	Death in a few days	
Kaufman et al., 1976⁵²	31/F	IVDA (heroin)/ None	Headache (9 months), Meningo-encephalitis blunted vision (2 months), intermittent diplopia, hearing loss	LR/ Lobectomy; CSF/Autopsy (granulomatous basilar leptomeningitis; aspergilloma left frontal gyrus; transtentorial and tonsillar herniation)	WBC 1150/µL (PMNs 83%); glucose 20 (s 119) mg/dL; Aspergillus fumigatus (CSF + frontal granuloma culture)	NA	AMFB (2 weeks)	Death after 3 weeks	
Horton et al., 1976⁵³	17/F	53	Fungal endocarditis/ Aortic stenosis	Headache, incoordination, right-sided numbness, seizure	Meningoencephalitis PM/Autopsy (mycotic aneurism of the middle cerebral artery with subarachnoid hemorrhage)	NR	Aspergillus fumigatus (CSF culture)	None	Death after 9 days
Galassi et al., 1978⁵⁴	59/F	59	Neurosurgery/ Meningioma	Intermittent fever, seizures, aphasia, hemiparesis/12 months	Meningoencephalitis PM/Autopsy (diffuse purulent meningoc-encephalitis)	NR	Aspergillus fumigatus (CSF culture)	None	Death after 3 months
Peacock et al., 1984⁵⁵	23/M	23	Post-chemotherapy/ Refractory anemia	Fever, headache, lethargia (57 days post-chemo)	Meningoencephalitis LR/ Biopsy (pulmonary); Autopsy (Aspergillus leptomeningitis; necrotizing vasculitis (pons and basal ganglia); tonsillar herniation; necrotizing pneumonia)	WBC 117-1126/µL (PMNs 88–99%); glucose 13–48 mg/dL; protein 540–3460 mg/L; Aspergillus terreus (culture lung biopsy); CSF Aspergillus antigen	Positive (RIA)	AMFB + 5-FLU + rifampicin (NR)	Death after 65 days
Ouammou et al., 1986⁵⁶	3/M	3	Neurosurgery/ Encephalomeningocoele	Fever (37.8 ºC), frontal subcutaneous abscess/3 days	Meningoencephalitis LR/CSF; surgery: meningeal mycetoma. Autopsy: encephalitis (cerebral hemispheres, brain stem)	WBC 52/µL (PMNs 70%); glucose 10 mg/dL; protein 1200 mg/L; Aspergillus fumigatus (CSF culture)	NA	Griseofulvin (3 months)	Death after 3 months

(continued on next page)
Author, year [Reference]	Age/sex	Risk factor/Underlying disease	Sign and symptoms (time duration)/Time from TX	Syndrome	Diagnosis/methods	CSF characteristics	Aspergillus species	CSF Ag GMN (method)	Antifungal treatment (time duration)	Outcome		
Cox et al., 199057	31/M	None/AIDS	Headache, fever (38.2 weeks), confusion, vomiting	Meningoencephalitis	PM/Autopsy	ND	Aspergillus spp.	(autopsy histology)	NA	None	Death after few days	
Breneman et al., 19925	50/M	IVDA; steroid therapy/COPD	Fever (38.6°C), dyspnea, headache; stiff neck, progressive mental status change (3 days)	Meningoencephalitis	L/brain biopsy	WBC 4100/µL (PMNs 96%); glucose 33 mg/dL; protein 1340 mg/L	Aspergillus fumigatus	(Brain biopsy culture)	NA	AMFB (few days)	Death after few days	
Van der Knaap et al., 199358	3/M	None/Galactosemia	Fever (40°C), nuchal rigidity, convulsions, left hemiparesis	Meningoencephalitis	L/CSF positive antigen	Normal	Aspergillus spp.	(Positive NR)	AMFB + 5-FLU (NR)	Improvement		
Mikolich et al., 19966	25/F	None/None	Worsening headache (3 months); vomiting; photophobia (1 month); papilledema	Meningoencephalitis	L/brain biopsy	WBC 200/µL (PMNs 2%); glucose 40 mg/dL; protein 920 mg/L	Aspergillus fumigatus	(brain biopsy)	NA	Itraconazole (24 months)	Alive after 4 years	
Darras-Joly et al., 199623	17/F	Neurosurgery/Ependymoma	Fever (40°C), neck stiffness/7 days after surgery	Meningoencephalitis; ventriculitis	L/Surgical drainage	WBC 1900/µL (PMNs 97%); glucose 36 mg/dL; protein 1100 mg/L	Aspergillus fumigatus	(surgical culture)	Negative (NR)	AMFB (72 days) + Itraconazole (30 days)	Death after 96 days	
Schwartz et al., 199759	18/M	Chemotherapy/ALL	Meningism, fever (92 days post-chemotherapy)	Meningoencephalitis	L/Brain biopsy	WBC 1056/µL (PMNs 96%)	Aspergillus spp.	(Brain biopsy)	ND	Itraconazole (4 weeks); voriconazole (6 months)	ND	Death after 6 months
Koh et al., 199860	15/F	Chemotherapy/ALL	Flaccid weakness lower extremities, slurred speech, urinary retention	Meningomioencephalitis	PM/Autopsy (Multifocal leptomeningeal exudates; fungal abscess/necrosis in spinal cord)	ND	Aspergillus spp.	(autopsy histology)	ND	Death 21 days later		
Payot et al., 199961	29/M	None/AIDS	Headache (3 weeks), nausea (1 week), fever (39°C), nuchal rigidity	Meningoencephalitis	PM/Autopsy	WBC 19/µL (PMNs 50%); protein 1080 mg/L	Aspergillus spp.	(autopsy histology)	ND	None	Death after 7 days	
Fasciano et al., 199962	26/M	Steroid treatment/Chronic asthma	Fever, quadriplegia, areflexia; hydrocephalus (2 weeks)	Meningoencephalitis	L/Brain biopsy	WBC 1300/µL (PMNs 98%); glucose 40 mg/dL; protein 1100 mg/L	Aspergillus fumigatus	(brain biopsy)	ND	AMFB iv and intrathecal + 5-FLU (2 weeks)	Death after 6 weeks	
Chandra et al., 200063	40/F	None/Ethmoid and sphenoid sinusitis	Headache, fever, vomiting (1 week); left proptosis	Meningoencephalitis	L/Brain biopsy	NR	Aspergillus fumigatus	(biopsy)	ND	ND	ND	
Study and Authors	Year	Age	Diagnosis	Symptoms	Pathology	Treatment	Outcome					
------------------	------	-----	-----------	----------	-----------	-----------	---------					
Viscoli et al.,	2002	NR	BMT/Acute lymphoblastic leukemia	Fever, neurological deficit, seizures/5 days post-BMT	Meningoencephalitis	Pm/Autopsy (diffuse meningeal and parenchymal infiltration)	Aspergillus spp. (meningeal and parenchymal)	NR	Death			
Wang et al.,	2003	39/M	Steroid treatment/ SARS	Tentorial herniation	Meningoencephalitis	Pm/Autopsy: (Aspergillus meningitis; multiple brain abscess containing aspergillus; disseminated aspergillosis heart, kidney, spleen, pancreas, adrenal glands)	Aspergillus spp. (autopsy histology and culture)	ND	None	Death		
Roberts et al.,	2004	71/F	None/Sinusitis	Fever (38.3 °C), severe headache, diplopia, confusion (5 weeks)	Meningoencephalitis	WBC 286/μL (PMNs 38%); glucose 23 mg/dL; protein 850 mg/L	Aspergillus spp. (autopsy histology)	ND	None	Death after 10 days		
Botturi et al.,	2006	59/F	Steroid treatment/ Sphenoid sinusitis/	Headache, diplopia; bilateral 6th nerve palsy (5 weeks)	Meningoencephalitis	WBC 920/μL (PMNs 96%); glucose 0 mg/dL; protein 180 mg/L	Aspergillus spp. (biopsy)	ND	None	Alive after 23 months		
Gabelmann et al.,	2007	43/F	Chemotherapy/AML; sinusitis	NR	Meningoencephalitis	WBC 286/μL (PMNs 90%); glucose 27 mg/dL; protein 830 mg/L	Aspergillus spp. (autopsy histology)	ND	None	Death after 41 days		
Van de Beek et al.,	2008	62/F	Kidney-pancreas transplant/End stage disease	Headache (6 months), Meningoencephalitis altered consciousness	L/Brain biopsy	WBC 286/μL (PMNs 90%); glucose 27 mg/dL; protein 830 mg/L	Aspergillus spp. (biopsy)	ND	None	Alive after 12 days		
Spinal arachnoiditis	Bryan et al.,	1980	IVDA (heroin)/None	Headache, nausea, vomiting (weeks), low back pain; hydrocephalus	Spinal arachnoiditis	L/Lumbar biopsy (lesion L3-5)	Aspergillus flavus (immunofluorescence on biopsy) (CSF)	NA	AMFB + rifampicin (10 weeks)	Alive after 14 months		
Stein et al.,	1982	24/F	IVDA (heroin)/ Chronic alcoholism	Low back pain (4 months), left leg weakness, frequent headache fever (38 °C); confusion and signs of meningeal irritation	Spinal arachnoiditis	L/CSF	Aspergillus terreus (2 CSF cultures)	NA	AMFB (NR)	Death 26 days after laminectomy		
Van de Wyngaert et al., 1985	30/M	None (splinter stuck on his hand)/None	High fever, painful stiffness of spine, headache, photophobia, nausea	Spinal arachnoiditis	L/CSF	WBC 3200/μL (PMNs 90%); glucose 30 mg/dL; protein 1530 mg/L	Aspergillus fumigatus (CSF) precipitin	NA	AMFB (3 months) + rifampin (10 days) + 5-FLU (3 months)	Alive after 229 days		

(continued on next page)
Author, year [Reference]	Age/sex	Risk factor/Underlying disease	Sign and symptoms (time duration)/Time from TX	Syndrome	Diagnosis/methods	CSF characteristics	Aspergillus species (method)	CSF Ag GMN (method)	Antifungal treatment (time duration)	Outcome	
Endo et al., 2001 \(^2^\)	55/M	Neurosurgery/Pituitary adenoma	Diplopia, retro-orbital pain (1 year), loss of vision/9 years	Arachnoiditis; subdural abscess	L/Abscess aspiration	NR	Aspergillus fumigatus (abscess culture)	ND	Fluconazole (4 weeks)	Death after 1 month	
Genzen et al., 2009 \(^3^\)	37/F	Spinal anesthesia (12 months prior pregnancy)	Headache (months); fever (37.4 °C), blurred vision, numbness left lower extremity	Arachnoiditis	L/Laminectomy & tissue biopsy	WBC 970/µL (PMN 92%); glucose 50 mg/dL; protein 1010 mg/L	Aspergillus terreus (biopsy culture)	ND	Voriconazole (78 days); voriconazole + caspofungin (54 days); AMFB (6 days); ABLC (50 days)	Alive after 9 months	
Genzen et al., 2009 \(^4^\)	73				WBC 949/µL (PMNs 27%); glucose 29 (s 90) mg/dL; protein 1200 mg/L	Aspergillus flavus (serology)	NA				
Hummel et al., 2006 \(^5^\)	4/F	Chemotherapy/ALL		Ventriculitis & multiple abscess	L/CSF (Ommaya reservoir)	NR	Aspergillus fumigatus (PCR CSF)	Positive (Platelia)	Voriconazole + caspofungin (5 weeks); intraventricular AMFB (4 weeks); voriconazole (2 months)	Alive after 3 months	
Antachopoulos et al., 2011 \(^6^\)	5/F	VP shunt	Fever (40 °C), tonic/clonic seizures	Ventriculitis	L/VP	WBC 400/µL (Neutrophil predominance); glucose 25 mg/dL (s 110 mg/dL); protein 1000 mg/L	Aspergillus fumigatus (Culture VP catheter; PCR CSF)	5.5 (Platelia)	L-AMB (4 months) + voriconazole (5 months)	Death after 9 months	

M = male; **F** = female; **IVDA** = intravenous drug abuser; **CSF** = cerebrospinal fluid; **L** = life; **Pm** = post-mortem; **Ag GMN** = galactomannan antigen; **s** = serum; **WBC** = white blood cells; **PMNs** = polymorphonuclear; **NA** = not available; **ND** = not done; **NR** = not reported; **AMB** = amphotericin B deoxycholate; **SFLU** = 5-fluorocytosine; **L-AMB** = liposomal amphotericin B; **ABLC** = amphotericin B lipid complex; **ALL** = acute lymphoblastic leukaemia; **CML** = chronic myelogenous leukemia; **RAEB** = refractory anemia with excess blasts; **C4def** = hereditary complete C4 deficiency; **PR** = present report; **PCR** = polymerase chain reaction; **VP** = ventriculoperitoneal; **sa** = spinal anaesthesia.

\(^a\) One of these four patients had meningism and headache.
\(^b\) Reported also in reference 77 (updated the follow-up).
\(^c\) Symptoms appeared 2–21 days after spinal anaesthesia (mean 7.8 days).
\(^d\) Random values of blood glucose were reported.
\(^e\) Reported also in reference 78.
\(^f\) Discarded as contaminant.
\(^g\) Reported also in reference 79 (updated the follow-up).
\(^h\) Serological speciation made a result compatible with A. flavus.
with response to therapy. 1-3-β-D-glucan was evaluated in 2 patients with positive results in both. CSF pleocytosis was detected in 61/64 (95.3%) of available specimens with a median cell count of 678/μL and with a neutrophil predominance in 68.4% of cases. Hypoglycorrhachia was shown to be present in 62.5% of cases with a median glucose level of 32.5 mg/dL.

Fifty-six patients received antifungal therapy: amphotericin B deoxycholate (AMFB) alone or associated with 5-fluorocytosine (11 pts), rifampicin (5 pts), itraconazole (3 pts) or fluconazole (1pt) was used in 36 cases; liposomal amphotericin B (L-AMB) was employed in the treatment of 6 individuals; fluconazole was used in five patients (in three patients as the only drug). Two patients received 5-fluorocytosine, alone in one case and with miconazole and fluconazole in the other case. Fifteen patients received voriconazole (in three cases associated with caspofungin), and in 4 following AMFB use. AMFB was the main antifungal employed until 1996 when oral itraconazole was used for the first time. Voriconazole and L-AMB were used for the first time in 1997, whereas caspofungin in 2006.

Of those patients who had received at least one dose of antifungal agent, 30 (51.7%) died after an interval of time ranging from few days up to 6 years. All patients with chronic meningitis were initially treated with antibiotics and had also received anti-tubercular therapy. An overall case-fatality rate (CFR) of 72.1% was observed, with significant differences between immunocompetent (63.5%) as opposed to immunocompromised patients (82.9%) patients.

Autopsy was available in 49 cases and it was the method by which diagnosis was made for 40 patients (81.6%). In twelve cases basilar meningitis was identified; spinal cord involvement was observed in 5 patients; the presence of a mycotic aneurism involving either the internal carotid artery or the basilar artery was shown in 12 patients with concomitant subarachnoid hemorrhage. Transtentorial, tonsillar or uncal herniation was present in three patients.

Discussion

In a 1969 review of the literature, Mukoyama et al., reported 33 cases of aspergillosis involving the CNS of whom 10 had meningitis and 3 had meningoencephalitis. However, Aspergillus isolation failed in all 10 cultured cerebrospinal fluid specimens.7

In a clinical-pathological study of central nervous system aspergillosis only 1 patient had signs of meningeal irritation during life while at autopsy the meninges were focally affected in nearly half of the cases.8

In the present series regarding 93 patients, a picture of pure meningitis was observed in 65.6% of cases, while meningoencephalitis was diagnosed in about 25% of patients.5,6,36,50

In patients with a diagnosis of meningitis fever and headache were the most common presenting symptoms (78.8%) followed by neck stiffness in 28.2% (24/85).3–6,9–76

Table 2 Characteristics of patients with aspergillus meningitis.
Immunocompetent patients, n = 52 (%)
Age, years median (range)
Sex, female (%)
Diagnosis during life
Death after diagnosis in life
Total deaths
Clinical picture
Meningitis
Meningoencephalitis
Chronic meningitis/pachimeningitis
Spinal arachnoiditis
Ventriculitis
CSF characteristics
Positive culture
Positive PCR
Median WBCs/μL (range)
Neutrophils predominance (≥60%)
Hypoglycorrhachia
Median glucose level (mg/dL)
Glucose ≤ 25 mg/dl
Median protein level (range) (mg/L)
Median galactomannan antigen (range)
Positive

| a 1 patient also had empyema, 1 abscess, 1 spinal arachnoiditis. |
| b 1 patient had concomitant ventriculitis + arachnoiditis. |
| c 1 patient had concomitant subdural abscess. |
| d 1 patient had concomitant multiple abscess. |
However, only 16.5% (14/85) of patients presented with three of the four signs and symptoms of headache, fever, neck stiffness and altered mental status.3,10,18–20,25,33–36,40,57,61,66,70 Cranial nerve palsies were reported in 17.6% (15/85) and seizures (11/86) in 12.8% of patients.

The diagnosis of \textit{Aspergillus} meningitis is very difficult and challenging. In fact, a diagnosis during life was obtained only in 55.9% of patients although with a much higher frequency among immunocompetent patients (69.2\%3,6,10,12,15,22,23,25–27,29,32,33,39,44,45,47,52,54,56,58,63–69,73,76,78,79 PR as opposed to immunocompromised individuals (39\%)5,9,28,29,34,36,40,42,46,48,55,59,74 This difference might be explained by a more aggressive and acute course of the disease observed in immunosuppressed hosts. A culture-based diagnosis of \textit{Aspergillus} meningitis is hampered by the lack of sensitivity as shown by the 31% of positive results observed in our review of published cases.3,9,11,22,23,25,26,29,33,35,37,40,45,52–54,56,70 PR It has been previously suggested that a minimum of 5 mL of cerebrospinal fluid should be cultured when a mycosis is suspected or that repeated culture of large volumes of CSF are critical for successful \textit{in vitro} isolation. However, such large volumes are not easy to obtain in clinical practice.80 On the other hand, serial lumbar puncture does indeed seem to succeed by the lack of cerebrospinal fluid only after several attempts.3,23,26,29,35,37,40,45

Non-culture based diagnostic methods for the diagnosis of aspergillosis were employed on CSF in fifteen patients and seem to outperform traditional culture, with an overall sensitivity of 87\%.23,25,28,29,34,36,46,69,64,75,76PR Although a cut-off value of the GM index has not yet been formally established for the diagnosis of CNS aspergillosis, it has been proposed that it might be lower than that used for serum samples due to the lower back-ground reactivity of CSF.25,81

The median CSF GM index in this series was 6.58 which is a value higher than what is usually observed in serum and well above the cut-off of 0.5 when two serial serum determinations are used among immunocompromised patients or the 0.7–1 value when a single determination is employed in non-hematological patients.82,83 Notably, when both serum and CSF GM were screened concomitantly, negative results were observed in three cases in serum and the index value was always higher in CSF than in serum.29,34,36,64PR Although serial determinations on CSF were available only in three cases they may provide useful information on the therapeutic response.25,29PR Finally, it seems that the Platelia GM test works well irrespective of the species of \textit{Aspergillus} involved as shown by the cases described by Vervej, Moling and ourselves in whom \textit{A. fumigatus}, \textit{A. candidus} and \textit{A. flavus} were respectively cultured from the CSF.25,29PR

Our review shows that \textit{Aspergillus} meningitis has an ominous prognosis with a global case-fatality rate (CFR) of 72.1% but with a much better outcome among immunocompetent patients in whom a CFR of 63.5% was observed versus a 83% CFR registered among immunocompromised patients. Our data are only slightly better than the 88% CFR reported by Lin et al. in a literature-based survey published before 2001.84

The Infectious Diseases Society of America (IDSA) guidelines recommend voriconazole for the treatment of central nervous system aspergillosis but these recommendations are mainly based upon studies regarding patients with hematological disorders and there is no specific mention as to the treatment of \textit{Aspergillus} meningitis.85 In our present review, that encompasses a long period of time before the introduction of voriconazole (\textit{i.e.}, 2002), most patients (64.3\%) were treated with amphotericin B deoxycholate and less than 30\% received voriconazole at some time of their disease.32,33,34,36,48,49,67,73–76 PR In a recent analysis conducted by Schwartz et al. on 120 cases of CNS aspergillosis a 47\% response rate and a median survival of 159 days among patients treated with voriconazole was shown.86 Voriconazole shows excellent penetration into the CNS as demonstrated by studies conducted in healthy guinea pigs in whom high cerebrospinal fluid to plasma ratio (0.68) together with rapid penetration across the blood brain barrier were observed.87 Including the present report, determination of cerebrospinal fluid concentrations of voriconazole were available in four cases, with reported values ranging from 0.8 to 5.86 mg/L and with a CSF/plasma ratio ranging from 38\% to 76 \%.25,59PR Hope recently proposed that in the busy clinical setting, voriconazole therapeutic drug monitoring (TDM) should be obtained at the end of day 2 and subsequently in the first week of therapy.88 An association between poor outcome and voriconazole concentrations has been initially observed by Pascual and coworkers.89 In addition Miyakis et al. recently showed an 11-fold increased risk of death among patients with invasive mucoses treated with voriconazole who had an initial trough concentration of less than 0.35 mg/L.90 By contrast, several studies and expert opinion suggest that the optimal maximum voriconazole concentrations should not exceed 5.5–5.8 mg/L89,91,92

Another crucial issue not yet addressed so far is the optimal length of antifungal therapy in patients with \textit{Aspergillus} meningitis, as well as for cerebral aspergillosis. In our patient, antifungal treatment was administered for 7 months, 5 of which employing voriconazole but, just before losing the patient to follow-up we were uncertain how long it would have been necessary to continue the specific treatment. Our analysis of the literature regarding patients with \textit{Aspergillus} meningitis who were treated with voriconazole shows very different lengths of treatment, ranging from 8–14 weeks to 5–12 months.25,32–34,67,74,76PR

However, it should be pointed out that in most cases the outcome following drug discontinuation is not reported. The long term duration of voriconazole treatment for patients with \textit{Aspergillus} meningitis or with CNS involvement is a matter not only of efficacy but also of toxicity. In this regard, the risk of phototoxicity and, above all, the risk of inducing squamous cell carcinoma should be mentioned.93 Caspofungin was employed in 5 patients, (in 4 of whom in combination with voriconazole), but its role, if there is any, as a single agent in the treatment of aspergillus meningitis is hampered by the lack of significant penetration across the blood–brain barrier of this drug.94 Except one apparently successful case, flucytosine has been used only in association with AMB and its role in the treatment of aspergillosis remains anecdotal.9,95

In conclusion, our review shows that \textit{Aspergillus} meningitis is a rare clinical entity that is much more frequently observed among immunocompetent patients. It is characterized by CSF neutrophil pleocytosis in 68\% of cases and...
hypoglycorrhachia in 62% of cases. Cultures of CSF are positive only in one third of cases, but the GM antigen test is very useful, with a sensitivity reaching 87%. Although our data show a poor prognosis, we believe that the more widespread use of diagnostic methods with greater sensitivity (e.g., PCR and GM), together with the availability of voriconazole therapy, may allow improved outcomes provided that the diagnosis is achieved earlier. The optimal length of antifungal therapy however remains to be determined.

Funding

No particular funding was received to support this work.

Conflict of interest

Spinello Antinori none Mario Corbellino none Luca Meroni none Federico Resta none Salvatore Sollima none Massimo Tonolini none Anna Maria Tortorano none Laura Milazzo none Lorenzo Bello none Elisa Furfaro none Massimo Galli none Claudio Viscoli none.

Acknowledgments

We thank Rosamaria Rotolo, Virginia Zanzottera, and Rossella Garlaschelli of the Biblioteca “Alberto Malliani” of the University of Milano for their excellent help in the retrieval much of the articles.

References

1. Denning DW, Stevens DA. Antifungal and surgical treatment of invasive aspergillosis: review of 2,121 published cases. Rev Infect Dis 1990;12:1147–201.
2. Denning DW. Therapeutic outcome of invasive aspergillosis. Clin Infect Dis 1996;23:608–15.
3. Gordon MA, Holzman RS. Aspergillus oryzae meningitis. JAMA 1976;235:2122–3.
4. Morrow R, Wong B, Finkelstein WE, Sternberg SS, Armstrong D. Aspergillosis of the cerebral ventricles in a heroin abuser. Arch Intern Med 1983;143:161–4.
5. Breneman E, Colford Jr JM. Aspergillosis of the CNS presenting as aseptic meningitis. Clin Infect Dis 1992;15:737–8.
6. Mikolich DJ, Kinsella LJ, Skowron G, Friedman J, Sugar AM. Aspergillus meningitis in an immunocompetent adult successfully treated with itraconazole. Clin Infect Dis 1996;23:1318–9.
7. Mukoyama M, Gimple K, Poser CM. Aspergillosis of the central nervous system. Report of a brain abscess due to A. fumigatus and review of the literature. Neurology 1969;19:967–74.
8. Walsh TJ, Hier DB, Caplan LR. Aspergillosis of the central nervous system: clinicopathological analysis of 17 patients. Ann Neurol 1985;18:574–82.
9. Atkinson GW, Israel HL. 5-fluorocytosine treatment of meningeal and pulmonary aspergillosis. Am J Med 1973;55:496–504.
10. Feely M, Steinberg M. Aspergillus infection complicating transsphenoidal yttrium-90 pituitary implant. J Neurol Surgery 1976;46:530–2.
11. Mohandas S, Ahuja GK, Sood VP, Virmani V. Aspergillosis of the central nervous system. J Neurol Sci 1978;38:229–33.
12. Aung BUK, Lin UK, Nyunt US. Leptomeningeal aspergillosis causing internal carotid artery stenosis. B J Radiol 1979;52:328–9.
13. Beal MF, O’Carroll PC, Kleinmann GM, Grossman RI. Aspergillosis of the nervous system. Neurology 1992;32:473–9.
14. Diendogh JV, Barnard RO, Thomas DGT. Aspergillosis of the nervous system. Report of two cases. Neuropathol Appl Neurobiol 1983;9:477–84.
15. Hajjar J, Brunon J, Jaubert J, Aubert G, Duthel R, Delorme C, et al. Cerebral aspergillosis. Report on four cases. Neurochirurgie 1987;33:142–7.
16. Asnis DS, Chitikara RK, Jacobson M, Goldenstein JA. Invasive aspergillosis: an unusual manifestation of AIDS. NY State J Med 1988;88:653–5.
17. Carrazana EJ, Rossitch Jr E, Morris J. Isolated central nervous system aspergillosis in the acquired immunodeficiency syndrome. Clin Neurol Neurosurg 1991;93:227–30.
18. Komatsu Y, Narushima K, Kobayashi E, Tomono Y, Nose T. Aspergillus myotic aneurysm-case report. Neurol Med Chir (Tokyo) 1991;31:346–50.
19. Lammens M, Robberecht W, Waer M, Carton H, Dom R. Purulent meningitis due to aspergillosis in a patient with systemic lupus erythematosus. Clin Neurol Neurosurg 1992;94:39–43.
20. Torre-Cisneros J, Lopez OL, Kusne S, Julio Martinez A, Starzl TE, Simmons RL, et al. CNS aspergillosis in organ transplantation: a clinicopathological study. J Neurol Neurosurg Psychiatry 1993;56:188–93.
21. Mauz Y, Ribaud P, Williams M, Guermazi A, Gluckman E, Brocheriou C, et al. MR of cerebral aspergillosis in patients who have had bone marrow transplantation. Am J Neuroradiol 1995;16:552–62.
22. Adunsky A, Rubinstein E, Goldsmith A. Aspergillus flavus meningitis and pontine hemorrhage in an older patient. J Amer Geriat Soc 1996;44:739–40.
23. Darras-Joly C, Veber B, Bedos JP, Gachot B, Regnier B, Wolff M. Nosocomial cerebral aspergillosis: a report of 3 cases. Scand J Infect Dis 1996;28:317–9.
24. Monlun E, De Blay F, Berton C, Gasser B, Jaeger A, Pauli G. Invasive pulmonary aspergillosis with cerebromeningeal involvement after short-term intravenous corticosteroid therapy in a patient with asthma. Respir Med 1997;91:435–7.
25. Verweij PE, Brinkman K, Kremer HPH, Kullberg B-J, Meis JFGM. Aspergillus meningitis: diagnosis by non-culture-based microbial methods and management. J Clin Microbiol 1999;37:1186–9.
26. Mariushi WM, Arruda WO, Tsubouchi ME, Ramina R. Chronic Aspergillus sp. meningitis successfully treated with fluconazole. Arq Neuropsiquiatr 1999;57:288–91.
27. Arabi Y. Nosocomial meningocerebralitis in medical patients. Internet J Infect Dis 2001;1:2.
28. Nenoff P, Kellermann S, Horn L-C, Keiner S, Bootz F, Schneider S, et al. Mycotic arteritis due to Aspergillus fumigatus in a diabetic with retrobulbar aspergillosis and mycotic meningitis. Mycoses 2001;44:407–14.
29. Moling O, Lass-Floerl C, Verweij PE, Porte M, Pruggner M, Gebert U, et al. Chronic and acute Aspergillus meningitis. Mycoses 2002;45:504–11.
30. Kleinschmidt-DeMasters BK. Central nervous system aspergillosis: a 20-year retrospective series. Hum Pathol 2002;33:116–24.
31. Pandian JD, Sarada C, Radhakrishnan VV, Kishore A. Iatrogenic meningitis after lumbar puncture: a preventable health hazard. J Hosp Infect 2004;56:119–24.
32. Kolbe AB, Mckinney AM, Kendi AT, Missett D. Aspergillus meningitis and discitis from low-back procedures in an immunocompetent patient. Acta Radiol 2007;48:687–9.
33. Gunaratne PS, Wijeyaratne CN, Seneviratne HR. Aspergillus meningitis in Sri-Lanka: A post-tsunami effect? N Engl J Med 2007;356:754–6.
34. Saltogh T, Matsushima T, Shimizu H, Yokohama A, Iriasawa H, Handa H, et al. Successful treatment with voriconazole of Aspergillus meningitis in a patient with acute myeloid leukemia. Ann Hematol 2007;86:697–8.
Clinical manifestations of *Aspergillus meningitis*

35. Sundaram C, Goel D, Uppin SG, Seethajayalakshmi S, Bordagah R. Intracranial mycotic aneurysm due to *Aspergillus* spp. J Clin Neurosci 2007;14:882–6.

36. van de Beek D, Patel R, Campeau NG, Badley A, Parisi JE, Rabenstein AA, et al. Insidious sinusitis leading to catastrophic cerebral aspergillosis in transplant recipients. Neurology 2008;70:2411–3.

37. Palo J, Haltia M, Utela T. Cerebral aspergillosis with special reference to cerebrospinal fluid findings. Eur Neurol 1975;13:224–31.

38. Mielke B, Weir B, Oldring D, von Westarp C. Fungal aneurysm: case report and review of the literature. Neurosurgery 1981;9:578–82.

39. Weinstein JM, Sattler FA, Towfighi J. Optic neuropathy and paraplegic syndrome due to *Aspergillus fumigatus*. Arch Neurol 1982;39:582–5.

40. Salaki JS, Louria DB, Chmel H. Fungal and yeast infections of the central nervous system. Medicine 1984;63:108–32.

41. Woods GL, Goldsmith JC. *Aspergillus* infection of the central nervous system in patients with acquired immunodeficiency syndrome. Arch Neurol 1990;47:181–4.

42. Murali H, Kira J, Kobayashi T, Goto I, Inoue H, Hasuo K. Hypertrrophic cranial pachymeningitis due to *Aspergillus flavus*. Clin Neurol Neurosurg 1992;94:247–50.

43. Kurino M, Kuratsu J, Yamaguchi T, Ushio Y. Mycotic aneurysm accompanied by aspergillotic granuloma: a case report. Surg Neurol 1994;42:160–4.

44. Mochizuki M, Muraske S, Takahashi K, Shimada S, Kume H, Izuka T, et al. Serum itraconazole and hydroxyitraconazole concentration and interaction with digoxin in a case of chronic hypertrrophic pachymeningitis caused by *Aspergillus flavus*. Jpn J Med Mycol 2000;41:33–9.

45. Kowacs PA, Kuratsu J, Yamaguchi T, Ushio Y. Mycotic aneurysm accompanied by aspergillotic granuloma: a case report. Surg Neurol 2000;12:573–7.

46. Naidoff MA, Green WR. Endogenous Aspergillus endophthalmitis occurring after kidney transplant. Am J Ophthalmol 1986;102:1641–9.

47. Cox JH, di Dio F, Pizzolato GP, Lerch R, Pochon N. *Aspergillus* endocarditis and myocarditis in a patient with the acquired immunodeficiency syndrome (AIDS). Virchows Archiv A Pathol Anat Histopathol 1990;417:255–9.

48. van der Knaap MS, Valk J, Jansen GH, Kappelle LJ, van Nieuwenhuizen O. Mycotic encephalitis: predilection for grey matter. Neuroradiology 1993;35:567–72.

49. Schwartz S, Milatovic D, Thiel E. Successful treatment of cerebral aspergillosis with a novel triazole (voriconazole) in a patient with acute leukemia. B J Haematol 1997;97:663–5.

50. Koh S, Ross LA, Gilles FH, Nelson JR MD, Mitchell WG. Myelopathy resulting from invasive aspergillosis. Pediatr Neurol 1998;19:135–8.

51. Payot A, Garbino J, Burkhartt K, Delavelle J, Pizzolato G, Kaiser L. Primary central nervous system aspergillosis: a case report and review of the literature. Clin Microbiol Infect 1999;5:573–6.

52. Fasciano JW, Ripple MG, Suarez JL, Bhaduraj A. Central nervous system aspergillosis: a case report and literature review. Hosp Physician 1999;4:63–70.

53. Chandra S, Goyal M, Mishra NK, Gaikwad SB. Invasive aspergillosis presenting as a cavernous sinus mass in immunocompetent individuals: report of three cases. Neurologly 2000;42:108–11.

54. Viscoli C, Machetti M, Gazzola P, De Maria A, Paola D, Van Lint MT, et al. *Aspergillus* galactomannan antigen in the cerebrospinal fluid of bone marrow transplant recipients with probable cerebral aspergillosis. J Clin Microbiol 2002;40:1496–9.

55. Wang H, Ding Y, Yang L, Zhang W, Kang W. Fatal aspergillosis in a patient with SARS who was treated with corticosteroids. N Engl J Med 2003;349:507–8.

56. Roberts M, Carmichael A, Martin P. Cerebral vasculitis caused by *Aspergillus* species in an immunocompetent adult. Infection 2004;32:360–3.

57. Botturi A, Salmaggi A, Polio B, Lamperti E, Erbetta A, Boiard I. Meningitis following relapsing painful ophthalmoplegia in *Aspergillus* sphenoidal sinusitis: a case report. Neurol Sci 2006;27:284–7.

58. Gabelmann A, Klein S, Kern W, Kruger S, Brambs H-J, Rieber-Brams A, et al. Relevant imaging findings of cerebral aspergillosis on MRI: a retrospective case-based study in immunocompromised patients. Eur J Neurol 2007;14:548–55.

59. Bryan CS, Di Salvo AF, Huffman LJ, Kaplan W, Kaufman L. Communicating hydrocephalus caused by *Aspergillus* flavus. South Med J 1980;73:1614–1.

60. Stein SC, Corrado ML, Friedlander M, Farmer P. Chronic mycotic meningitis with spinal involvement (arachnoiditis): a report of five cases. Ann Neurol 1982;11:519–24.

61. van de Wyngaert FA, Sindle CJM, Rousseau JJ, Fernandes Xavier FG, Bruche JM, Laterre EC. Spinal arachnoiditis due to *Aspergillus* meningitis in a previously healthy patient. J Neurol 1986;233:41–3.

62. Endo T, Numagami Y, Jokura H, Ikeda H, Shirane R, Yoshimoto T. *Aspergillus* parasaerial abscess mimicking radiation-induced neurofibroma. Case report. Surg Neurol 2001;56:195–200.

63. Genzen JR, Kenney B. Central nervous system *Aspergillus* infection after epidural analgesia: diagnosis, therapeutic challenges, and literature review. Diagn Microbiol Infect Dis 2009;65:312–8.

64. Hummel M, Spiess B, Kontouche K, Niggemann S, Bohm C, Reuter S, et al. Detection of *Aspergillus* DNA in cerebrospinal fluid from patients with cerebral aspergillosis by a nested PCR assay. J Clin Microbiol 2006;44:3899–93.

65. Sutton DA, Wickes BL, Romanelli AM, Rinaldi MG, Thompson EH, Fothergill AW, et al. Cerebral aspergillosis caused by *Aspergillus* flavus. J Clin Microbiol 2009;47:3386–90.

66. Antachopoulos C, Stergiopolous T, Simitsopoulou M, Georgiadou E, Kottas T, Marinopoulos D, et al. Ventriculitis caused by *Aspergillus* fumigatus in a child with central nervous system tuberculosis. Mycoses 2011;54:e627–30.

67. Falkeis C, Mark W, Sergi C, Heininger D, Neumair F, Scheiring J, et al. Kidney transplantation in patients suffering from...
hereditary complete complement C4 deficiency. Transplant Int 2007;20:1044–9.
78. Rodrigo N, Perera KNT, Ranwala R, Jayasinghe S, Warnakulasurya A, Hapuarachchi S. Aspergillus meningitis following spinal anesthesia for caesarean section in Colombo, Sri Lanka. Int J Obs Anesth 2007;16:256–60.
79. Stenson S, Brookner A, Rosenthal S. Bilateral endogenous necrotizing scleritis due to Aspergillus oryzae. Ann Ophthalmol 1982;14:67–72.
80. McGinnis MR. Detection of fungi in cerebrospinal fluid. Am J Med 1983;75(1B):129–38.
81. Klont RR, Mennik-Kertsen MA, Verveij PE. Utility of Aspergillus antigen detection in specimens other than serum specimens. Clin Infect Dis 2004;39:1467–74.
82. Maertens JA, Klont R, Masson C, Theunissen K, Meersseman W, Lagrou K, et al. Optimization of the cut-off for the Aspergillus double-sandwich enzyme immunoassay. Clin Infect Dis 2007;44:1329–36.
83. Guinea J, Jensen J, Pelaez T, Gijón P, Alonso R, Rivera M, et al. Value of a single galactomannan determination (Platelia) for the diagnosis of invasive aspergillosis in non-hematological patients with clinical isolation of Aspergillus spp. Med Mycol 2008;46:575–9.
84. Lin SJ, Schranz J, Teutsch SM. Aspergillosis case-fatality rate: systematic review of the literature. Clin Infect Dis 2001;32:358–66.
85. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 2008;46:327–60.
86. Schwartz S, Reisman A, Troke PF. The efficacy of voriconazole in the treatment of 192 fungal central nervous system infections: a retrospective analysis. Infection 2011;39:201–10.
87. Lutsar I, Roffey S, Troke P. Voriconazole concentrations in the cerebrospinal fluid and brain tissue in guinea pigs and immunocompromised patients. Clin Infect Dis 2003;37:728–32.
88. Hope WW. Population pharmacokinetics of voriconazole in adults. Antimicrob Agents Chemother 2012;56:526–31.
89. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis 2008;46:201–11.
90. Miyakis S, van Hal SJ, Ray J, Marriott D. Voriconazole concentrations and outcome of invasive fungal infections. Clin Microbiol Infect 2010;16:927–33.
91. Kim S-H, Yim D-S, Choi S-M, Kwon JC, Han S, Lee DG, et al. Voriconazole-related severe adverse events: clinical application of therapeutic drug monitoring in Korean patients. Int J Infect Dis 2011;15:e753–8.
92. Pascualotto AC, Xavier MO, Andreolla HF, Linden R. Voriconazole therapeutic drug monitoring: focus on safety. Expert Opin Drug Saf 2010;9:125–37.
93. Epaulard O, Leccia M-T, Blanche S, Chosidow O, Mamzer-Bruneel MF, Ravaud P, et al. Phototoxicity and photocarcinogenesis associated with voriconazole. Med Mal Infect 2011;41:639–45.
94. Bellmann R. Clinical pharmacokinetics of systemically administered antimycotics. Curr Clin Pharmacol 2007;2:37–58.
95. Polak AM, Scholer HJ, Wall M. Combination therapy of experimental candidiasis, cryptococcosis, and aspergillosis in mice. Chemotherapy 1982;28:461–79.