Mechanical removal of macrophytes in freshwater ecosystems: Implications for ecosystem structure and function

Kirstine Thiemer a,b,⁎, Susanne C. Schneider a,b, Benoît O.L. Demars a

a Norwegian Institute for Water Research, Gaustadallen 21, 0349 Oslo, Norway
b Faculty of Environmental Sciences and Nature Conservation, Norwegian University of Life Sciences, P.O. Box 5003, 1430 Ås, Norway

HIGHLIGHTS
• Macrophyte removal affects ecosystem structure and functions.
• Most removal studies were done in rivers and evaluated single ecosystem properties.
• Modelling of removal on interrelated ecosystem properties with a Bayesian network.

ABSTRACT
Macrophytes are generally considered a nuisance when they interfere with human activities. To combat perceived nuisance, macrophytes are removed, and considerable resources are spent every year worldwide on this practice. Macrophyte removal can, however, have severe negative impacts on ecosystem structure and functioning and interfere with management goals of healthy freshwater ecosystems. Here, we reviewed the existing literature on mechanical macrophyte removal and summarised current information from 98 studies on short- and long-term consequences for ecosystem structure and functioning. In general, the majority of studies were conducted in rivers and streams and evaluated short-term effects of removal on single ecosystem properties. Moreover, most studies did not address the interrelationships between ecosystem properties and the underlying mechanisms. Contrasting effects of removal on ecosystem structure and function were found and these discrepancies were highly dependent on the context of each study, making meaningful quantitative comparisons across studies very difficult. We illustrated how a Bayesian network (BN) approach can be used to assess the implications of macrophyte removal on interrelated ecosystem properties across a wide range of environmental conditions. The BN approach could also help engage a conversation with stakeholders on the management of freshwater ecosystems.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Mass development of aquatic macrophytes is a worldwide problem (Barrett, 1989; Hussner et al., 2017; Verhofstad et al., 2017) and considerable resources are spent every year on macrophyte removal (Hilt et al., 2006; Vereecken et al., 2006; Verhofstad and Bakker, 2019). Macrophytes are often negatively perceived as water weeds, notably during periods of mass development (nuisance growth) when very high densities of aquatic plants interfere with human activities. The removal of macrophytes is desired for the prevention of flooding of adjacent land (Boerema et al., 2014; Vereecken et al., 2006), prevention of clogging of hydropower plants (Dugdale et al., 2013), facilitation of irrigation (Armellina et al., 1996), disease control (Bicudo et al., 2007), trade and commerce (Güereña et al., 2015) together with recreational activities such as angling, swimming, boating and water skiing (Bickel and Closs, 2009; Verhofstad and Bakker, 2019).

Mass development generally results from a combination of multiple drivers promoting plant growth (light, temperature, nutrients) and minimising plant loss (lack of disturbance and biological control), when a species is present that is able to benefit from these conditions (Riis and Biggs, 2001). The controlling role of light and nutrient supply from diffusive or point sources is well established in shallow lakes with the theory of alternative stable states (Hilt et al., 2006; Verhofstad et al., 2017), and ecosystems recovering from nutrient enrichment have likewise been shown to exhibit excessive plant growth (Hilt et al., 2011). Increases in nutrient supply may also be indirect. Limiting in oligotrophic systems, for example, can promote the degradation of sediment organic matter and boost CO₂, NH₄ and PO₄ supply causing excessive plant growth (Roelofs et al., 1994). In river systems, water regulation (discharge and depth), nutrient supply (sewage effluents, fine sediment accumulation upstream of weirs, land use) and management of river bank (clearance of river banks leading to improved light availability) may boost the development of plant biomass across the channel (Chambers and Prepas, 1994), even in oligotrophic systems with perennial aquatic plants (Moe et al., 2013; Rørslett, 1988). Degraded ecosystems may be sensitive to the introduction of new species able to invade for lack of biological control or because they have biological traits more suited to the modified environment (Hussner et al., 2017).

Solutions to combat perceived nuisance growth of macrophytes include mechanical removal (cutting, dredging), chemical treatment (herbicide, salt) or biological control (biocontrol agents such as herbivorous fish and insects or shading) (Hussner et al., 2017). However, these management practices are costly and generally only have short-term effects due to plant regrowth. They can therefore not be considered a sustainable solution. A more progressive management is using nature-based solutions to promote sustainable economic, societal, and environmental benefits (Boerema et al., 2014; Güereña et al., 2015).

The disadvantages macrophytes have for humans' conflict, at the same time, with the societal benefits that macrophytes provide (i.e. ecosystem services). The benefits of aquatic macrophytes are often overlooked by the public and might be underestimated in decision making by water managers. The ecosystem services provided by aquatic macrophytes include supporting (e.g., habitats for fish and macroinvertebrate), provisioning (e.g. food, fodder, fertiliser, biomass fuel), regulating (e.g. nutrient cycling, water purification, pest and disease control), and cultural services (e.g. aesthetic pleasure, inspiration for culture, art and design, recreation and tourism) (Boerema et al., 2014; García-Lorente et al., 2011).

These ecosystem services rely on the role that aquatic macrophytes play in ecosystem structure and function (Caraco et al., 2006; Engelhardt and Ritchie, 2001; Gurnell, 2014; Jeppesen et al., 1998). Many individual studies have quantified the effects of macrophyte removal on individual ecosystem properties, and time has come to synthesise this research and explore the implications at the level of the whole ecosystem level. Today, many countries prohibit chemical treatment and while biological control with non-native species has been successful in different parts of the world (Hill and Coetzee, 2017), it introduces additional ecological uncertainties for native species (Hussner et al., 2017). Here, we focus our review on the effects of mechanical removal of aquatic plants (both submerged and free-floating), hereafter referred to as macrophyte removal, as is used worldwide in rivers and lakes. We distinguish short-term from long-term consequences on aquatic ecosystems. Short-term effects were defined as the necessary period for plant regrowth and ecosystem recovery, which may take weeks (Bal et al., 2017; Garner et al., 1996; Spencer et al., 2006) to years (Caffrey and Monahan, 2006; Painter, 1986; Rørslett and Johansen, 1996). Long-term consequences may emerge from repeated macrophyte removal (Baatrup-Pedersen et al., 2002). We also briefly discuss the complexity of assessing the consequences of aquatic plant removal on aquatic ecosystems, depending on the local context and removal methods used. For this, we used a Bayesian network (BN) approach as a first attempt to synthesise how macrophyte removal affects ecosystem structure in different freshwater ecosystems and how the current lack of a holistic approach may influence the conclusions derived from single organism studies. Finally, we identified research needs.
2. Publication search criteria

A systematic search was conducted to find relevant literature concerning mechanical removal of macrophytes (last search, 10.07.2020). Web of Science, PubMed and Google Scholar academic search engines were used to find the relevant scientific peer-reviewed papers using combinations of the following search terms in title and author keywords: \textbf{(fish(*) OR macrophyte(*) OR*macroinvertebrate*OR periphyton OR “aquatic weed” OR “water weed” OR “aquatic plant”(*)) AND (dredg*OR cut*OR mow* OR remov*)}. Studies retrieved from the automatic search that clearly did not concern macrophyte removal were discarded. In addition, relevant articles from reference lists of papers and our own general knowledge were used to identify additional important literature. The initial search yielded 532 studies in total. From these studies, we selected all papers which met the criteria in Table 1 which gave a total of 58 papers of which 86 had an experimental setup. The other 13 papers were mainly review papers or papers on ecosystem services. Grey literature, in the form of reports and management plans were not included. However, conclusions from these were indirectly used in this review as several peer-reviewed papers used the local knowledge. Information on the effect of removal was extracted from each study which met the inclusion criteria: species removed, removal area, size of study and each ecosystem property measured.

3. General trends in publications

The 86 experimental papers covered studies on mechanical macrophyte removal in 25 countries, with the largest proportion of studies from America and Europe (Fig. 1). The majority of studies have been conducted in streams and rivers (Fig. 2A) and evaluated the effects of single-event removal of submerged macrophytes (Fig. 2B). The effects of removal on macrophytes, fish, macroinvertebrates and hydraulic properties have been the most frequently studied ecosystem properties, whereas the consequences of removal on benthic algae, mussels and zooplankton have only been evaluated in very few studies (Fig. 2C).

Only nine studies have examined more than one ecosystem property (Fig. 2D). The consequences of macrophyte removal on separate ecosystem properties have mostly been documented through short-term studies with a mean range of 14 months including before and after sampling (Fig. 2E) and the effects of partial removal have been the most studied (Fig. 2F). An overview of the consequences of macrophyte removal for several ecosystem properties is summarised below from the data compiled in Appendix A.

4. Consequences of mechanical macrophyte removal for ecosystem structure

4.1. Macrophytes

The influence of aquatic plant removal on the growth and survival of macrophytes causes long-term effects on community structure. Following removal, increased relative growth rates have been reported for several species such as Sparganium erectum (L.) (Bal et al., 2017), Myriophyllum spicatum (L.) (Crowell et al., 1994) and Lagarosiphon major (Ridl. Moss ex Wager) (Bickel and Closs, 2009) which may be a compensatory mechanism and a response to plant damage similar to herbivory (van Zuidam and Peeters, 2012). Increased growth rates may further be stimulated by improved light conditions and low self-shading post removal (Binzer et al., 2006). Despite increased growth rates, ten studies found reduced standing biomass by the end of the growth season (Armellina et al., 1996; Bal et al., 2017; Bal et al., 2006; Caffrey and Monahan, 2006; Crowell et al., 1994; Garbey et al., 2003; He et al., 2019; Schooler et al., 2007; Thiébaut et al., 2008). Removal was found to have more severe effects on survival of species with an apical meristem growth point, such as Potamogeton compressus (L.) and Potamogeton lucens (L.), with both being less tolerant to cutting (van Zuidam and Peeters, 2012) than species with basal meristem growth points, e.g. Sparganium emersum (Rehmann) (Baattrup-Pedersen et al., 2003) and free-floating macrophyte species such as Eichhornia crassipes (Mart.) (Spencer et al., 2006).

Table 1

Criteria for inclusion of peer-review publications.

Criteria	Include	Exclude
Language	English	Other languages
Ecosystem	River, Streams, lakes	Estuaries, lagoons, coastal waters, sea, wetlands, dryland
Location	Global	
Organisms	Macrophytes, macroinvertebrates, fish, benthos, periphyton, birds, mammals	
Ecosystem function	Carbon and nutrient cycling	
Ecosystem services	No	Channelization of river, removal of debris jams
Maintenance type	Macrophyte cutting, dredging including removal of plants	Riparian vegetation
Vegetation	Submerged, emergent, free-floating	

Fig. 1. Map showing the distribution of studies evaluating the consequences of macrophyte removal with colours based on the number of studies.
The effects of differences in tolerance to removal may be more pronounced for the composition of macrophyte communities in ecosystems where macrophyte removal is repeated annually. In lowland streams, annual macrophyte removals, over a period of 20 years, made the species composition of macrophyte more homogeneous and dominated by fast-growing species with basal meristem growth points, rhizomes and high dispersal capacities (e.g. *Sparganium* sp. and *Elodea canadensis* (Michx.)) (Baattrup-Pedersen et al., 2002). Shannon-diversity and species richness have also been reported to decrease 19–66% and 16–40%, respectively (Baattrup-Pedersen et al., 2003).
Baattrup-Pedersen et al., 2002; Baattrup-Pedersen and Riis, 1999; Best, 1994; Strien and Strucker, 1991). The altered species composition towards a community with a less complex structure, are likely to have knock-on effects on ecosystem structure and functioning, however these inter-relationships have not yet been revealed.

4.2. Macroinvertebrates

The consequences of macrophyte removal for macroinvertebrate abundance and diversity have been frequently studied in rivers (Appendix A, Table 1). In small rivers with submerged macrophytes, removal has been shown to instantly reduce abundance by 20–70% (Armitage et al., 1994; Dabkowski et al., 2016; Kaenel et al., 1998; Lusardi et al., 2018). The highest declines in abundance were found in taxa using macrophytes directly as substrate (i.e. Simuliidae and Chironomidae), whereas taxa living in or on the bottom sediments proved to be more resistant (Kaenel et al., 1998). Four studies did not find a significant effect on abundance, likely due to the late sampling of invertebrates post removal enabling a possible recovery (Armitage et al., 1994; Buczyński et al., 2016; Laughton et al., 2008; Ward-Campbell et al., 2017). Similar findings were reported from lakes with submerged macrophytes (Habib and Yousuf, 2014; Mišiça et al., 2006). We did not find studies on invertebrate abundance in systems dominated by free-floating plants, although it is likely that the absolute number of invertebrates will be less affected as changes in surface for colonization are smaller and the sediment is usually not disturbed during removal of free-floating plants. Changes in overall macroinvertebrate diversity were less clear. Shannon–diversity was found either to decline significantly (23–44%) (Gray et al., 1999; Habib and Yousuf, 2014; Mišiça et al., 2006), to stay unchanged (Bickel and Closs, 2009; Buczyński et al., 2016; Dabkowski et al., 2016) or to increase (14% increase) (Lusardi et al., 2018). These contrasting findings likely reflect the different contexts of the studies, such as differences in methods and time of sampling following the removal.

Reduced abundance and potential changes in diversity post removal may only be temporary. Invertebrate abundance has been reported to recover within 1-10 months depending on the time for plants to regrow and colonization from upstream or nearby areas (Habib and Yousuf, 2014; Kaenel et al., 1998; Monahan and Caffrey, 1996). Long-term studies on invertebrate community response are currently lacking.

4.3. Phyto- and zooplankton

Phyto- and zooplankton require a sufficient water residence time to develop (Reynolds, 2000) and thus the effects of macrophyte removal for phyto- and zooplankton abundance and diversity have mostly been studied in lakes rather than rivers (Appendix A). Removal of macrophytes in eutrophic waters may cause regime shifts: a study modelling combined effects of removal and high external nutrient loads found that removal of >30% of the submerged macrophytes in a lake with high nutrient input was sufficient to trigger a regime shift to an alternative stable state with higher phytoplankton biomass (Kuiper et al., 2017). Accordingly, an increase in phytoplankton biomass up to 83% and a shift towards communities dominated by fast growing cyanobacteria has been reported after removal of free-floating macrophytes (Bicudo et al., 2007; James et al., 2002; Zhu et al., 2019). The increase in phytoplankton biomass was explained by increased light availability due to the lack of macrophytes, and more suspended sediment leading to increased availability of nutrients for phytoplankton growth. However, removal of submerged macrophytes has also been reported to lead to an initial decrease in phytoplankton biomass, followed by recovery after several weeks and possible exceedance of phytoplankton biomass in control sites (Alam et al., 1996; Morris et al., 2006; Wile, 1978). This was likely due to sediment disturbance during the removal leading to considerably increased turbidity, hence reducing light availability and impairing initial phytoplankton growth, while the lack of competition by macrophytes later boosted phytoplankton growth.

The effects of macrophyte removal on zooplankton have scarcely been studied (Appendix A). A decline in zooplankton abundance and a shift in community composition towards small zooplankton species has been reported post removal. These were suggested to be a result of increased fish predation on the larger cladocera, and downstream displacement in rivers as macrophytes provide velocity refuge and are a food source for zooplankton (Garner et al., 1996; Mangas-Ramírez and Elías-Gutiérrez, 2004). Partial removal of macrophytes has been suggested to promote higher zooplankton abundance and diversity. In a study with removal of only free-floating macrophytes, zooplankton diversity increased from 11 to 40 species and was explained by higher habitat heterogeneity in partially cut areas where macrophytes with different life forms coexisted (Choi et al., 2014).

4.4. Fish

Macrophyte removal can be detrimental to fish populations, either directly when plants are harvested (Engel, 1990; Mikol, 1985) or indirectly through enhanced predation risk from larger fish (Unmuth et al., 1999), reduced food availability due to increased flow velocity (Garner et al., 1996) or deterioration of important spawning habitats (Lusardi et al., 2018; Swales, 1982). Reduced survival and abundance following macrophyte removal have been reported for fish fry and smaller fish in both rivers and lakes (Engel, 1990; Mikol, 1985; Mortensen, 1977). Mechanical harvesting of submerged macrophytes was also found to remove 2-25% of the standing juvenile population (Engel, 1990; Mikol, 1985). In eight studies, fish abundances were reduced by up to 60% after macrophyte removal (Greer et al., 2012) (Appendix A). In one study, a more severe outcome was found in a highly eutrophic lake, as no fish were recorded post-removal of macrophytes (Mangas-Ramírez and Elías-Gutiérrez, 2004). This was explained by oxygen depletion and increased ammonia concentrations following removal which were deemed lethal for fish. Conversely, in some cases, macrophyte removal had no significant effect on fish abundance (Bickel and Closs, 2009; Laughton et al., 2008; Unmuth et al., 1999; Wile, 1978) and actually increased survival and growth of some fish age classes (Holmes et al., 2019; Olson et al., 1998; Unmuth et al., 1999; Unmuth et al., 1998). Increases in larger fish classes were suggested to be most profound when partially removing the dense vegetation of submerged macrophytes, thus allowing fish to spread out into formerly unoccupied areas, likely causing less cannibalism and competition (Unmuth et al., 1999). Hence, making general conclusions on the consequences of macrophyte removal on fish population structure are complex, as fish community structure will depend greatly on the local context, such as the species present in the system, their interaction, the trophic state, together with removal practice (partial or full removal).

5. Consequences of mechanical macrophyte removal on ecosystem functioning

5.1. Hydraulic properties

Macrophytes provide important protection to riverbanks and the lake littoral zone and stabilise the sediment by reducing flow velocities (Kaenel et al., 1998; Verschoren et al., 2017; Wilcock et al., 1999). In rivers, macrophyte removal generally enhanced discharge capacity, where flow velocities increased by 30–40% (Old et al., 2014; Wilcock et al., 1999), water level was lowered by up to 50% (Kaenel et al., 2000) and the Manning roughness coefficient was reduced by 25–73% (Bal and Meire, 2009; Old et al., 2014; Vereeken et al., 2006; Verschoren et al., 2017). The most profound effects on hydraulics were found when macrophytes were removed from larger areas (Verschoren et al., 2017). We found no studies describing the consequences of macrophyte removal
on hydraulic functioning in lakes. Removal of submerged and free-floating macrophytes will likely increase shore wave exposure and resuspension of sediment to the water column, as suggested in comparative studies (Horppila and Nurminen, 2005; James et al., 2004).

5.2. Sediment transport

Hydraulic transport and retention capacity of dissolved and particulate material is tightly coupled to physical properties and will be affected by macrophyte removal (Verschoren et al., 2017). An increase in suspended sediment concentration has been reported downstream of removal sites with highest maximum peaks during or shortly after (hours to days) removal (Greer et al., 2017; Rasmussen et al., 2021). Elevated suspended sediment concentrations which are detrimental to fish have been measured at stations several km downstream of a removal, lasting up to 77 days (Greer et al., 2017). Similarly, in lakes, turbidity increased during or shortly after removal with the use of mechanical shredding (Alam et al., 1996; James et al., 2002).

5.3. Nutrient cycling

Aquatic macrophyte removal is likely to impact on nutrient cycling and metabolism in freshwater ecosystems (Bernot et al., 2006; Levi et al., 2015; O’Brien et al., 2014). Aquatic plants can play a significant role in nutrient cycling in oligotrophic ecosystems, but despite several attempts (Ensign and Doyle, 2005; O’Brien et al., 2014) we found no studies that successfully quantified the impact of macrophyte removal on nitrate, ammonium and phosphate cycling rates. O’Brien et al. (2014) recorded a marginal increase in water phosphate concentration, but not ammonium or nitrate concentrations after plant removal. The retention of nutrients by quatic plants (net uptake) is generally very small in nutrient rich rivers relative to fluxes (House et al., 2001).

5.4. Ecosystem metabolism

Submerged and emergent macrophytes can be major contributors to primary production in freshwater ecosystems, thus influencing ecosystem metabolism and diel variation in oxygen concentration (O’Brien et al., 2014). Gross primary production (GPP) was found to decrease by up to 70% after removal in streams with high biomass of submerged macrophytes (Kaenel et al., 2000; O’Brien et al., 2014). However, the reduction in GPP may only last a short time, as partial recovery of GPP can be caused by enhanced growth of filamentous algae, stimulated by higher nutrient concentrations and increased light availability post removal (Kaenel et al., 2000). We found no studies in ecosystems dominated by free-floating macrophytes, however GPP increases following removal is likely as better light conditions may stimulate growth of submerged macrophytes or phytoplankton depending on nutrient availability in the system. Ecosystem respiration (ER) was found either to decrease (Kaenel et al., 2000; Madsen et al., 1988) or to stay unchanged (Carpenter and Gasith, 1978; O’Brien et al., 2014). The discrepancy in ER responses may be caused by differences in removal practices. Studies finding lower ER also report elimination of organic sediment retained in plant beds and epiphytic heterotrophs following plant removal (Kaenel et al., 2000). The effects on ecosystem metabolism and oxygen balance following macrophyte removal may be different in different ecosystems and more research is needed to understand how these relationships may differ.

We did not find any studies on how removal may impact other metabolic pathways, notably those involving green-house gases (N₂O, CH₄ and CO₂), such as denitrification, methanogenesis or methanotrophy. This said, rooted aquatic plants with large radial oxygen loss in the root system can increase the coupling of nitrification-denitrification sediment fluxes (Kreiling et al., 2011) and oxidation of methane into carbon dioxide (Ribaudo et al., 2017). Floating plants may considerably lower dissolved oxygen in the water column (where respiration largely exceeds aquatic photosynthesis) and increase denitrification (Tall et al., 2011). Denitrification may not otherwise be significantly altered (Pinardi et al., 2009; Tall et al., 2011), unless denitrification is limited by the availability of organic carbon in the sediment (generally higher in aquatic plant patches). The decomposition of aquatic plant dead tissue in the sediment is known to produce methane ebullition in anoxia, predictable from plant water content and stoichiometry (Grasset et al., 2019).

6. The complexity of evaluating consequences of macrophyte removal

The overall effects of macrophyte removal for ecosystem structure and function are complex and making generalisations is not straightforward. The shifts in species abundances and composition, as well as trophic interactions following removal are poorly understood. The derived effects of macrophyte removal, including alterations in biochemical cycles and hydraulic conditions, may likely stimulate further changes in food-web structure. Moreover, current studies have very distinct contexts e.g. macrophyte species removed, removal method, ecosystem types, trophic states, time of removal, size of study and study design. Replication within each combination is infrequent or completely lacking (Appendix A). Due to the scarcity of studies on the consequences of macrophyte removal with regard to different ecosystem properties, performing an unbiased formal meta-analysis of previous work is unfeasible. Furthermore, the effect reported in the studies on single ecosystem properties does not necessarily reflect the direct influence of removal, as indirect effects, such as inter-relationships with other ecosystem properties are not considered and the underlying drivers for the potential change remain unaddressed. This suggests that a new approach to evaluating the consequences of macrophyte removal at the ecosystem level is needed.

7. Synthesising effects of macrophyte removal on ecosystem level – an example using a Bayesian network approach

Our review of the existing literature showed that consequences of macrophyte removal have mainly been documented through short-term studies evaluating single ecosystem properties without considering the underlying mechanisms and interrelationships between ecosystem properties (Fig. 2D). Moreover, the results were highly dependent on the context of each study, making meaningful quantitative comparisons across studies very difficult. We therefore chose a Bayesian network (BN) approach to identify important consequences of macrophyte removal. These networks can be used to explore and understand the interrelationships between environmental factors and their influence on the response variable (end-point) of interest (Stewart-Koster et al., 2010), thus BNs can be helpful in management decisions of freshwater ecosystems with mass development of aquatic macrophytes. A Bayesian network (BN) is a model based on probabilities and consists

Fig. 3. A) BN showing probabilities of each category in each node following partial removal in a lake dominated by submerged macrophytes and with high nutrient loading and presence of piscivorous fish B) BN showing probabilities of each category in each node following full removal in a lake dominated by submerged macrophytes and with high nutrient loading and presence of piscivorous fish C) BN showing probabilities of removal practice given the goal of low phytoplankton abundance and swimming possibilities in a lake dominated by submerged macrophyte with high nutrient loading and presence of piscivorous fish. BN models are based on expert knowledge and developed for illustrative purposes. Grey boxes indicate nodes that have been specified.
of the main factors of a system (nodes) and their conditional dependencies illustrated by arrows connecting the nodes (Stewart-Koster et al., 2010) (Fig. 3). The network is quantified by conditional probability tables (CPTs) for each node and can consist of observed data or expert knowledge (Korb and Nicholson, 2004; Pollino et al., 2007). Here we use the BN approach as a first attempt to synthesise potential short-term effects of macrophyte removal from different freshwater ecosystems for a specified end-point. The structure of the network is important to guide the collection of measurements in specific case studies, so that node states and CPTs could be derived from measurements prior to and following removal events. We used the NETICA software v. 6.07 (Norsys, 2005) to construct the BN. The CPTs used in the network were based on general (qualitative) knowledge for illustrative purposes. Detailed information on the construction of the BN and the conditional probability tables can be retrieved in Supplementary Information 1.

7.1. Description of mechanical macrophyte removal network

One major short-term consequence of cutting aquatic plants is to increase the risk of phytoplankton bloom (Kuiper et al., 2017). We illustrate how BN can help us quantify this risk through an understanding of causal mechanisms. Phytoplankton growth is controlled by changes in resource supply (light and nutrient availability) and disturbance frequency (flow and trophic cascades) (Fig. 3A) (Bernes et al., 2015; Reynolds, 2000).

In the BN, the availability of resources is a function of three predictor variables: light, nutrient and bioturbation (benthic fish foraging). Light is a function of plant removal and ecosystem. Plant removal indicates the proportion of macrophyte removal (i.e. none, partial or full) and ecosystem represents either lake dominated by submerged or floating macrophytes or rivers dominated by submerged macrophytes. Nutrient loading represents the nutrient supply in the system and has three rates (low, moderate and high). Benthic fish foraging is an inverse function of the availability of epiphytic invertebrates and indicates the proportion of fish feeding on benthic invertebrates and thus a higher risk of bioturbation and associated nutrient release to the water column (Carpenter et al., 1998; Fausch et al., 1997). The availability of epiphytic invertebrates is a function of plant removal and ecosystem.

The variable disturbance is a function of flow and zooplankton, which describes the hydrological disturbance (including water residence time) and the potential grazing pressure. Flow is a function of two predictor variables, plant removal and ecosystem and has three categories (low, moderate and high) representing hydrological disturbance conditions for zooplankton development. Zooplankton abundance is a function of flow and planktivorous fish. High zooplankton abundance results from hydrological stability and low predation pressure (i.e. low flow and low planktivorous fish). Planktivorous fish abundance preying on zooplankton is a function of piscivorous fish predation itself dependent on piscivorous fish presence and plant removal. Finally, plant removal indicates the proportion of macrophyte removal (none, partial or full) dependent on desired ecosystem services, e.g. full removal benefits recreational users, reduce the risk of flooding or erode specific target species that may be invasive to the area (Baatrup-Pedersen et al., 2003; Verhofstad and Bakker, 2019), partial removal can benefit fisheries (Bickel and Closs, 2009) and no removal can be beneficial for nutrient retention and birds (Klaassen and Nolet, 2007). In this BN each node in the model contains two to three states.

7.2. Evaluating short-term consequences of mechanical removal using a Bayesian network approach

In this hypothetical example, we used the BN model described above to synthesise and illustrate potential short-term effects of macrophyte removal on different ecosystem properties. The a priori assumption for the BN model is that the ecosystem of interest has a mass development of aquatic macrophytes conflicting with human interest, such as prevention of flooding and/or recreational activities. It is possible to specify conditions by setting the probability of a given state in the nodes and the nodes are then updated via the CPTs (Stewart-Koster et al., 2010). A given BN can therefore be adjusted to local conditions.

Let’s assume a lake is filled with submerged macrophytes, has high nutrient loading and hosts piscivorous fish, by setting the probabilities to 100% of the states in the respective nodes (ecosystem, nutrient loading and piscivorous fish) (Fig. 3A). What is the risk of phytoplankton bloom if macrophytes were partially removed? The probability of high phytoplankton abundance following partial removal of submerged plants is 59.4%, due to high resources (50%) and despite high disturbances (50%, zooplankton grazing and removal of plant protection). By only changing the management practice to full removal (plant removal; Full 100%) in the BN, the probability of high phytoplankton abundance now increases to 100% (Fig. 3B). More interesting are the effects on the trophic cascade in the two BNs. For BNs with partial and full plant removal, the probabilities for moderate Epiphytic invertebrates are 75% and 0%, high Planktivorous fish 50% and 0% and high zooplankton 0% and 100% respectively (Fig. 3A-B). Thus, the choice of management practice can have very different implications for ecosystem structure. Again, we emphasise that the probabilities were obtained by expert knowledge and are used for illustrative purpose only. The states of the nodes and conditional probability tables in the BN should be based on values derived from the system under study for more realistic probabilities.

In addition, the BN can also be used to identify possible options for managing mass development of aquatic macrophytes. Assuming the same conditions as the previous example but allowing the variable nutrient loading, a goal for managers could be to reduce the risk of high phytoplankton abundance when removing the macrophytes in order to ensure recreational activities such as swimming. Further specifying the conditions by setting phytoplankton abundance to low and swimming to 100%, the BN suggests that the only option for this is to choose partial plant removal (Fig. 3C, plant removal; Partial 100%) and to reduce the nutrient loading to either low or medium (Fig. 3C, nutrient loading, Low 52.5%, Medium 27.5%).

These examples illustrate how BNs can be used to assess effects of mechanical macrophyte removal in a holistic way as the interrelationships between ecosystem properties are also considered and not only the direct effects on single ecosystem properties. The BN approach could help engage the stakeholders in conversation.

8. Research needs

In the future, mass development of aquatic macrophytes will likely increase in many freshwater ecosystems interfering with human activities and potentially resulting in more frequent removal (Hussner et al., 2017; Verhofstad et al., 2017). Currently, no studies have evaluated the effects of macrophyte removal on interrelated ecosystem properties for the whole ecosystem, thus a holistic evaluation of the consequences of macrophyte removal is lacking Appendix A. Considering the social and economic importance of freshwater ecosystems and knowing the important role of macrophytes, there is an urgent need for more research on macrophyte removal in order to understand the implications for whole ecosystem structure, functions and services. This will require large scale experiments covering different macrophyte species, ecosystem types and geographical gradients, where both parameters on ecosystem structure and functions are estimated. Consistent and comparable data can then be used to make general conclusions on consequences of macrophyte removal. This would enable management decisions to be based on balanced knowledge rather than just the prevailing negative perception of macrophytes. However, the long-term consequences of macrophyte removal on other ecosystem properties have received little attention and few studies exists, meaning that more research is needed to understand these long-term effects.
Acknowledgement

This study was funded by the Research Council of Norway (297202/E10), the German Federal Ministry of Education and Research (033WU005), the French Agence National de Recherche (N° ANR-18-IC4W-0004-06), the South African Water Research Commission (K5/2951), and the Fundação Araucária in Brazil (N° 186/2019) for funding of MadMacs (Mass development of aquatic macrophytes - causes and consequences of macrophyte removal for ecosystem structure, function, and services) in the frame of the collaborative international consortium of the 2017 call of the Water Challenges for a Changing World Joint Programme Initiative (Water JPI). Additional funding was provided by Kystsivprosjektet på Sørlandet, NIVA and NMBU to support PhD-student KTH in Norway. Finally, we would like to thank Joanna Kemp for linguistic corrections and two anonymous reviewers for improving the manuscript.

Table A

Ecosystem property	Plant species removed	Effect of removal	Removal practice	Ecosystem?	Trophic state	Study size	Design?	Country	Reference
Shannon-diversity	Not specified	19% reduction	Not specified	Stream	Not specified	79 streams	CI	DNK	Baattrup-Pedersen et al. (2003)?
	Not specified	48–66% reduction	Partial annual removal in a 20y period	Stream	Not specified	2 streams, 4 sites	CI	DNK	Baattrup-Pedersen et al. (2002)?
	Not specified	43% reduction	Not specified	Stream	Not specified	14 streams	CI	DNK	Baattrup-Pedersen & Riis (1999)?
	Not specified	Increased (only on the floodplain) and certain species disappeared	Not specified	Partial River	Not specified	1 river, 5 sites	BACI	POL	Stepielli et al. (2019)?
Richness	Not specified	28% reduction	Not specified	Stream	Not specified	79 streams	CI	DNK	Baattrup-Pedersen et al. (2003)?
	Not specified	25–40% reduction	Partial annual removal in a 20y period	Stream	Not specified	2 streams, 4 sites	CI	DNK	Baattrup-Pedersen et al. (2002)?
Standing macrophyte biomass	Not specified	16.3% reduction	Not specified	Stream	Not specified	14 streams	CI	DNK	Baattrup-Pedersen & Riis (1999)?
	Not specified	No significant effect	Not specified	Different practices	Ditch	320 ditches	BA	NLD	Best (1994)?
	Not specified	16% of species negative affected	Not specified	Different practices	Ditch	5 ditches	BA	NLD	Caffrey & Monahan (2006)
	Myriophyllum verticillatum	92.5% reduction (g DM/m2)	Full	River	Not specified	1 river	CI	IRE	Armellina et al. (1996)
	Not specified	≈90% reduction (g DM/m2)	Full	River	Not specified	1 river, 2 sites	BACI	ARG	Thibault et al. (2008)
	Elodea nuttallii and Elodea canadensis	63% reduction (g DM/m2)	Full	River	Eutrophic	1 river	CI	FRA	Crowell et al. (1994)
	Myriophyllum spicatum	Reduction (g DM/m2)	Full	River	Not specified	1 lake, 5 sites	CI	USA	van Zuidam and Peeters (2012)
	Potamogeton lucens and Potamogeton compressus	80% reduction (g DM)	Partial	Not specified	Experiment	BACI	NLD	Caffrey & Monahan (2006)	
	Ranunculus peltatus	Reduced standing biomass production (g/m2)	Full	River	Oligotrophic	1 stream	BACI	FRA	Garvey et al. (2003)
	Egeria densa	13–43% reduction (g WM/m2)	Partial	Lake_S	Eutrophic	1 lake	BACI	USA	Johnson & Bagwell (1979)
	Elodea nuttallii	Reduced shoot biomass (mg DW)	Partial	Not specified	Experiment	CI	DEU	He et al. (2019)	
	Stuckenia pectinata	No significant effect on standing biomass (g DM/m2) when cutting is done early in the season. Reduced standing biomass if cutting is performed later in the season	Full	River	Not specified	1 river, 4 sites	CI	BEL	Bal et al. (2006)
	Sparganium erectum	No significant effect on standing	Full	River	Eutrophic	1 river	BACI	BEL	Bal et al. (2017)

(continued on next page)
Table 1 (continued)

Ecosystem property	Plant species removed	Effect of removal	Removal practice	Ecosystema	Trophic state	Study size	Designb	Country	Reference
and Potamogeton natans		biomass (g DM/m2) when cutting is done early in the season. Reduced standing biomass if cutting is performed later in the season	Full	Not specified					
	Alternanthera philoxeroides								
	Eichhornia crassipes		Reduction (g)						
	Myriophyllum spicatum		Increase						
	Lagarosiphon major		Increase						
	Elodea nuttallii		Decrease in growth rate (mg DW/d)						
	Elodea nuttallii		No significant effect on regrowth strategy						
	Potamogeton lucens and Potagomoton compressus		Number of reproducing organs reduced						
	Luronium natans		Flowering and reproduction reduced						
	Ranunculus peltatus		Flowering inhibited and no significant effect on degree of branching						
	Myriophyllum spicatum		Shoot and root weight reduced						
	Ceratophyllum demersum and Myriophyllum spicatum		Decrease in Lymanidae, Planorbidae and Chironomidae, Psychodidae, Glossiphoniidae, Pylaiidae, and Pisauridae, which were present in smaller numbers before the removal, got completely removed from the system. Increase in Gammaridae and Coenagrionidae						
			Not specified						
	Saw grass and willows								
	Ceratopteris thalictroides		Dominance of P. hypodenum and T. ciuskus seductus, mites (Frontipoda sp., Coastraliobates sp. Unionicolidae) and Chironomidae (Tanypodinae,Orthocladiinae, Chironominae sp.), Decrease in mayflies Tasmanocoenis arcuata and Thraulus sp. and lepidopteran larvae Nymphulinae						
			No significant changes						
	Lagarosiphon major		Decrease in Chironomidae and Trichoptera taxa (Paroxyethira hendersoni), Increase in mollusc taxa (Gyrinidae, Lymnaeidae and Potamopyrgus) and Chydoridae						
			No significant changes						
	Phragmites australis and Elodea canadensis		No significant changes						
	Sparganium emersum and Elodea canadensis		No significant changes						
	Ranunculus perecrinitus		No significant changes						
	Ranunculus aquatilis		Decrease in Hydella, Simulium, Baetis, Diphther, Brachycorcentrus, jugo and Oligochaetes, Increase in Opiuservus (larvae), Rhithrogena, Proteptilis and Physa						
	Shannon-diversity		Ceratophyllum demersum and						
			23% reduction						

| K. Thiemer, S.C. Schneider and B.O.L. Demars | Science of the Total Environment 782 (2021) 146671 | 10 |
Plant species removed	Effect of removal	Removal practice	Ecosystema	Trophic state	Study size	Designb	Country	Reference
Myriophyllum spicatum	44% reduction	Partial	Not specified	Oligotrophic	4 lakes	CI	USA	Gray et al. (1999)
Not specified								
Saw grass and willows	32% reduction	Partial	Not specified	Oligotrophic	1 lake, 2 sites	BACI	HRV	Miliša et al. (2006)
Lagarosiphon major	No significant effect	Partial	Lake_S	Oligotrophic	1 lake, 10 sites	BACI	NZL	Bickel & Closs (2009)
Phragmites australis	No significant effect (only dragonflies)	Partial	River	Not specified	1 river, 10 sites	BACI	POL	Buczýnski et al. (2016)
and Elodea canadensis								
Phragmites australis	No significant effect	Partial	Lake_S	Oligotrophic	1 lake, 10 sites	BACI	POL	Dabkowski et al. (2016)
Ranunculus aquatilis	14% increase	Partial	River	Not specified	1 river, 4 sites	CI	USA	Lusardi et al. (2018)
ASPT score								
Ranunculus penicillatus	No significant effect in ASPT score	Full	River	Not specified	1 river, 4 sites	BACI	GBR	Armitage et al. (1994)
Ceratopteris thalictroides	Reduced taxa richness	Partial	River	Not specified	1 river	CI	AUS	Carey et al. (2017)
Not specified	No significant effect	Full	River	Not specified	4 streams, 8 sites	BACI	CAN	Ward-Campbell et al. (2017)
Lagarosiphon major	No significant effect	Partial	Lake_S	Oligotrophic	1 lake, 10 sites	BACI	NZL	Bickel & Closs (2009)
Sparganium emersum and Elodea canadensis	No significant effect	Full	River	Not specified	1 river, 8 sites	BACI	IRE	Monahan & Caffrey (1996)
Abundance								
Ranunculus fluitans and Myriophyllum spicatum	65% reduction (no. ind./m²)	Partial	River	Eutrophic	2 streams, 4 sites	BACI	CHE	Kaenel et al. (1998)
Phragmites australis	Reduction (no. of ind.)	Partial	River	Not specified	1 river, 10 sites	BACI	POL	Dabkowski et al. (2016)
Ranunculus aquatilis	9-fold reduction (no. ind./m²)	Partial	River	Not specified	1 river, 4 sites	CI	USA	Lusardi et al. (2018)
Not specified	3–23% reduction in no. ind. of larger mussels (Anodonta anatina, A. cygnea, Unio pictorum and U. tamidus)	Partial	River	Not specified	1 river	BA	GBR	Aldridge (2000)
Not specified	70% reduction (no. of ind.)	Full	River	Not specified	4 rivers	CI	POL	Grygarouk et al. (2015)
Ranunculus spp.	20% reduction (no. ind./m²)	Full	River	Not specified	1 river, 5 sites	Not specified	GBR	monahan & Caffrey (1996)
Sparganium emersum and Elodea canadensis	48–89% reduction (no. ind./m²)	Full	River	Not specified	1 river, 8 sites	BACI	IRE	Habib & Yousuf (2014)
Saw grass and willows	51–58% reduction (no. ind./m²)	Partial	Lake_S	Oligotrophic	1 lake, 2 sites	BACI	HRV	Miliša et al. (2006)
Ceratophyllum demersum & Myriophyllum spicatum	75% reduction (no. ind./m²)	Partial	Lake_S	Eutrophic	1 lake, 4 sites	BACI	IND	Monahan & Caffrey (1996)
Myriophyllum spicatum	Reduction (no. of ind., only Elodea canadensis)	Full	Lake_S	Mesotrophic	1 lake, 3 sites	CI	USA	Sheldon and Bryan (1996)
Not specified	No significant effect in occurrence	Full	River	Not specified	4 streams, 8 sites	BACI	CAN	Ward-Campbell et al. (2017)
Not specified	No significant effect (no. of ind.)	Full	River	Not specified	1 river, 4 sites	BACI	GBR	Armitage et al. (1994)
Ranunculus spp.	No significant effect on no. ind. of larger mussels (Margaritifera margaritifera)	Partial	River	Not specified	1 river, 3 sites	BACI	GBR	Laughton et al. (2008)
Potamogeton crispus, Callitriche obtusangula, Glyceria pedicillata, Ceratophyllum demersum, Nasturtium officinale	No significant effect on the number of Bithynia tentaculara, Lymnaea peregra, Physa fontinalis and Planorbis planorbus	Partial	Stream	Eutrophic	1 stream	CI	GBR	Daldorph and Thomas, 1991
Phragmites australis and Elodea canadensis	No significant effect (no. ind.)	Partial	River	Not specified	1 river, 10 sites	BACI	POL	Buczýnski et al. (2016)
Phragmites australis and Elodea canadensis	62% increase in occurrence of heteroptera	Partial	River	Not specified	1 river, 10 sites	BACI	POL	Plaska et al. (2016)
Biomass	No significant effect (g/m²)	Partial	Not	Not specified	4 lakes	CI	USA	Gray et al. (1999)

(continued on next page)
Ecosystem property	Plant species removed	Effect of removal	Removal practice	Ecosystema	Trophic state	Study size	Designb	Country	Reference
Diversity									
	Lagarosiphon major	104% increase (mg invertebrate AFDM/g plant DM)	Partial	Lake_S	Oligotrophic	1 lake, 10 sites	BACI	NZL	Nickl (2019)
	Ranunculus spp.	12% reduction (g invertebrates/m² plant DM)	Full	River	Not specified	1 river, 5 sites	Not specified	GBR	Lusardi et al. (2018)
	Eichhornia crassipes	2-Fold increase	Partial	River	Not specified	1 river, 8 sites	CI	USA	Lusardi et al. (2018)
Richness									
	Salvinia natans	Increase in cyanobacteria (Microcystis aeruginosa and Oscillatoria limnetica) and decrease in diatoms and flagellates	Partial	Lake_F	Not specified	1 lake	BA	BRA	Wojciechowski et al. (2018)
Shannon-diversity		Increase in chl.a concentration	Full	Lake_S	Eutrophic	1 lake	CI	AUS	Morris et al. (2006)
Community									
	Myriophyllum spicatum	No significant effect on biomass (g/m²)	Full	Lake_S	Eutrophic	1 lake	CI	AUS	Morris et al. (2006)
Abundance									
	Myriophyllum spicatum	63% reduction in chl.a. concentration	Partial	Lake_S	Not specified	1 lake, 2 sites	BACI	CAN	Wile (1978)
	Vallisneria americana and Potamogeton tricarinatus	67% reduction in chl.a. concentration	Full	Lake_S	Eutrophic	1 lake	CI	AUS	Morris et al. (2006)
	Alternanthera philoxeroides and Azolla caroliniana	Reduction in chl.a. concentration	Partial	Lake_F	Not specified	1 lake	BA	USA	Alam et al. (1996)
Zooplankton									
	Ceratophyllum demersum and Potamogeton spp.	No significant effect in chl.a. concentration	Partial	Lake_S	Not specified	1 lake	BA	USA	Engel (1990)
	Eichhornia crassipes	7–83% increase in chl.a. concentration	Full	Lake_F	Eutrophic	1 lake, 1 site	BACI	BRA	Bicudo et al. (2007)
	Nymphoides peltata	24–30% increase in chl.a. concentration	Partial	Lake_F	Eutrophic	1 lake, 6 sites	BA	CHN	Zhu et al. (2019)
	Cyperus luzulae and Salvina auriculata	Increase in cell densities	Partial	Lake_F	Not specified	1 lake	BA	BRA	Wojciechowski et al. (2018)
	Trapa natans	35% increase in chl.a. concentration	Partial	Lake_F	Eutrophic	1 lake, 2 sites	BACI	USA	James et al. (2002)
	Salvinia natans and Spirodela polyrhiza	Increase in cell densities	Partial	Lake_F	Not specified	1 lake	CI	KOR	Choi et al. (2014)
Fish									
	Not specified	Reduction in both richness and Brillouin’s diversity	Partial	River	Not specified	1 river, 7 sites	CI	GBR	Choi et al. (2014)
Abundance	Ceratophyllum demersum and Potamogeton spp.	25% reduction (total no. of individuals, of these 90% Micropterus salmoides and	Partial	Lake_S	Not specified	1 lake	BA	USA	Freedman et al. (2013)

a Ecosystem trophic state: *Lake_S* = lake, *River* = river, *BA* = Brazil, *CI* = China, *KOR* = Korea, *GBR* = Great Britain

b Design: *BACI* = Before-after control-impact, *USA* = United States, *USA* = United States, *UK* = United Kingdom

Ecosystem property	Plant species removed	Effect of removal	Removal practice	Ecosystema	Trophic state	Study size	Designb	Country	Reference
Diversity									
	Lagarosiphon major	104% increase (mg invertebrate AFDM/g plant DM)	Partial	Lake_S	Oligotrophic	1 lake, 10 sites	BACI	NZL	Nickl (2019)
	Ranunculus spp.	12% reduction (g invertebrates/m² plant DM)	Full	River	Not specified	1 river, 5 sites	Not specified	GBR	Lusardi et al. (2018)
	Eichhornia crassipes	2-Fold increase	Partial	River	Not specified	1 river, 8 sites	CI	USA	Lusardi et al. (2018)
Richness									
	Salvinia natans	Increase in cyanobacteria (Microcystis aeruginosa and Oscillatoria limnetica) and decrease in diatoms and flagellates	Partial	Lake_F	Not specified	1 lake	BA	BRA	Wojciechowski et al. (2018)
Shannon-diversity		Increase in chl.a concentration	Full	Lake_S	Eutrophic	1 lake	CI	AUS	Morris et al. (2006)
Community									
	Myriophyllum spicatum	No significant effect on biomass (g/m²)	Full	Lake_S	Eutrophic	1 lake	CI	AUS	Morris et al. (2006)
Abundance									
	Myriophyllum spicatum	63% reduction in chl.a. concentration	Partial	Lake_S	Not specified	1 lake, 2 sites	BACI	CAN	Wile (1978)
	Vallisneria americana and Potamogeton tricarinatus	67% reduction in chl.a. concentration	Full	Lake_S	Eutrophic	1 lake	CI	AUS	Morris et al. (2006)
	Alternanthera philoxeroides and Azolla caroliniana	Reduction in chl.a. concentration	Partial	Lake_F	Not specified	1 lake	BA	USA	Alam et al. (1996)
Zooplankton									
	Ceratophyllum demersum and Potamogeton spp.	No significant effect in chl.a. concentration	Partial	Lake_S	Not specified	1 lake	BA	USA	Engel (1990)
	Eichhornia crassipes	7–83% increase in chl.a. concentration	Full	Lake_F	Eutrophic	1 lake, 1 site	BACI	BRA	Bicudo et al. (2007)
	Nymphoides peltata	24–30% increase in chl.a. concentration	Partial	Lake_F	Eutrophic	1 lake, 6 sites	BA	CHN	Zhu et al. (2019)
	Cyperus luzulae and Salvina auriculata	Increase in cell densities	Partial	Lake_F	Not specified	1 lake	BA	BRA	Wojciechowski et al. (2018)
	Trapa natans	35% increase in chl.a. concentration	Partial	Lake_F	Eutrophic	1 lake, 2 sites	BACI	USA	James et al. (2002)
	Salvinia natans and Spirodela polyrhiza	Increase in cell densities	Partial	Lake_F	Not specified	1 lake	CI	KOR	Choi et al. (2014)
Fish									
	Not specified	Reduction in both richness and Brillouin’s diversity	Partial	River	Not specified	1 river, 7 sites	CI	GBR	Choi et al. (2014)
Abundance	Ceratophyllum demersum and Potamogeton spp.	25% reduction (total no. of individuals, of these 90% Micropterus salmoides and	Partial	Lake_S	Not specified	1 lake	BA	USA	Freedman et al. (2013)

a Ecosystem trophic state: *Lake_S* = lake, *River* = river, *BA* = Brazil, *CI* = China, *KOR* = Korea, *GBR* = Great Britain

b Design: *BACI* = Before-after control-impact, *USA* = United States, *USA* = United States, *UK* = United Kingdom
Table 1 (continued)

Ecosystem property	Plant species removed	Effect of removal	Removal practice	Ecosystem*	Trophic state	Study size	Design#	Country	Reference
Growth rates	*Myriophyllum spicatum* and *Potamogeton crispus*	Increased growth rate (mm/d) of 2y and 4y Micropterus salmoides and reduced 5y Micropterus salmoides and 4-5y *Lepomis macrochirus*	Partial	Lake_S	Meso-eutrophic	1 lake BA	USA	Unmuth et al. (1999)	
Survival	*Myriophyllum spicatum*	35% increase in growth rate (mm/y) for 3y and 4y *Lepomis macrochirus*	Partial	Lake_S	Not specified	13 lakes, 4 impact and 9 control	CI	USA	Olson et al. (1998)
Habitat use	*Ranauculus aquatilis*	3.2-Fold reduction in utilization by 0y and 1y steelhead	Full	River	Not specified	1 river, 25 sites, 132 snorkel surveys	CI	USA	Lusardi et al. (2018)
Hydraulic Rivers	Native species	>40% increase	Partial	River	Not specified	1 stream, 3 sites	BA	GBR	Old et al. (2014)
Flow velocity (m/s)	*Nupar lutea*, *Potamogeton natans* and *Sparaganium emersum*	18–19% increase	Partial and full	River	Eutrophic	2 stream, same site, 2 years	CI	POL	Verschoren et al. (2017)
	Egeria densa and *Myriophyllum spicatum*	30% increase	Full	River	Not specified	1 river, 6 sites	BA	NZL	Wilcock et al. (1999)
	Ranunculus aquatilis and *Myriophyllum spicatum*	50–60% increase	Full	River	Eutrophic	2 streams	BACI	CHE	Kaelin et al. (2000)
Table 1 (continued)

Ecosystem property	Plant species removed	Effect of removal	Removal practice	Ecosystem	Trophic state	Study size	Design	Country	Reference
Water level									
Native species	No significant effect	Partial	River	Not specified	1 river, 4 sites	CI	USA	Lusardi et al. (2018)	
Native species	11–16 cm reduction	Partial	River	Not specified	3 streams, 6 sites	BA	DNK	Baattrup-Pedersen et al. (2018)	
Native species	5–15 times reduction	Partial and full	Eutrophic	2, same site, 2 years	CI	POL	Verschoren et al. (2017)		
Native species	17–28% reduction	Partial	River	Not specified	1 stream, 3 sites	BA	GBR	Old et al. (2014)	
Native species	48–49% reduction	Full	River	Eutrophic	2 streams	BACI	CHE	Kaelen et al. (2000)	
Native species	40% reduction	Full	River	Not specified	1 river, 6 sites	BA	NZL	Wilcock et al. (1999)	
Native species	Reduced	Full	River	Not specified	3 streams, 6 sites	BACI	DNK	Wilcock et al. (2011)	
Native species	Reduced	Full	River	Not specified	1 river, 6 sites	BA	NZL	Wilcock et al. (1999)	
Native species	Reduced	Full	River	Not specified	2, same site, 2 years	CI	POL	Verschoren et al. (2017)	
Native species	>40% reduction	Partial	River	Not specified	1 stream, 3 sites	BA	GBR	Old et al. (2014)	
Native species	27–87% reduction	Partial and full	River	Not specified	Experimental flumes	BA	BEL	Vereecken et al. (2006)	
Native species	Reduced	Full	River	Not specified	2 streams	BA	BEL	Bal & Meire (2009)	
Native species	No significant effect	Full	River	Not specified	1 stream, 2 sites	CI	ITA	Errico et al. (2019)	
Native species	No cut: 0.013, Cut banks: 0.069, but highly influence by discharge	Partial	River	Not specified	1 river, 4 sites	CI	EGY	Bakry (1996)	
Native species	55% reduction	Full	Channellised stream	Not specified	1 stream	BACI	USA	Ensign & Doyle (2005)	
Native species	Reduced	Full	Stream	Not specified	1 stream	CI	SWE	Salehin et al. (2019)	
Native species	30% increase (Ks(20))	Full	River	Not specified	1 river, 6 sites	BA	NZL	Kaelen et al. (1999)	
Native species	91–260% increase (Ks(20))	Full	River	Eutrophic	2 streams	BACI	CHE	Kaelen et al. (2000)	
Native species	Reduced	Full	River	Not specified	2 streams	BA	CHE	Kaelen et al. (2000)	
Native species	56% reduction (g O2/m2/d)	Full	River	Not specified	1 lake	BACI	USA	Carpenter & Gasith (1978)	
Native species	8% reduction (mg O2/m2/d)	Full	River	Eutrophic	3 streams, 5 sites	BACI	NZL	O'Brien et al. (2014)	
Native species	67–70% reduction in one stream (mg O2/m2/d) and no significant effect in one stream (mg O2/m2/d)	Full	River	Eutrophic	2 streams	BACI	CHE	Kaelen et al. (2000)	
Native species	96% reduction (mg O2/L/h)	Full	River	Eutrophic	1 stream	BACI	USA	Madsen et al. (1988)	
Native species	39% reduction (mg O2/L/h)	Full	River	Eutrophic	1 stream	BACI	USA	Madsen et al. (1988)	
Native species	67–70% reduction (mg O2/m2/d) in one stream and no significant effect in one stream (mg O2/m2/d)	Full	River	Eutrophic	2 streams	BACI	CHE	Kaelen et al. (2000)	
Ecosystem property	Plant species removed	Effect of removal	Removal practice	Ecosystem	Trophic state	Study size	Design	Country	Reference
---------------------	-----------------------	------------------	-----------------	------------	--------------	-----------	--------	---------	-----------
Not specified	No significant effect (g O₂/m²/d)	Full	Not specified	River	Eutrophic	3 streams, 5 sites	BACI	NZL	O’Brien et al. (2014)
Elodea canadensis, Juncus articulatus and Mimulus guttatus	No significant effect (mg O₂/m²/d)	Full	Lake_S	Not specified	1 lake	USA	BACI	USA	Alam et al. (1996)
Turbidity	Hydrilla verticillata	155% increase during removal but no significant effect 1.5 month after harvest (>50 NTU peak)	Partial	Lake_F	Eutrophic	1 lake, 2 sites	BACI	USA	James et al. (2002)
Nutrient uptake	Elodea canadensis, Juncus articulatus and Mimulus guttatus	No significant effect	Partial	River	Eutrophic	3 streams, 5 sites	BACI	USA	O’Brien et al. (2014)
Suspending sediment	Elodea canadensis, Juncus articulatus and Mimulus guttatus	Increase	Full	River	Not specified	3 streams, 5 sites	BACI	NZL	Greer et al. (2017)
Species not specified but removal of submerged macrophytes	Increase	Full	Stream	Not specified	2 streams	BA	DKK	Rasmussen et al. (2021)	

References

Alam, S.K., Ager, L.A., Rosegger, T.M., Lange, T.R., 1996. The effects of mechanical harvesting of floating plant Tussock Communities on water quality in Lake Isotkopa, Florida. Lake Reserv. Manag. 12, 455–461. https://doi.org/10.1080/074381496093534285.

Aldridge, D.C., 2000. The impacts of dredging and weed cutting on a population of fresh-water mussels (Bivalvia: Unionidae). Biol. Conserv. 95, 247–257. https://doi.org/10.1016/S0006-3207(00)00045-8.

Arnemilla, A.D., Bezic, C.R., Gajardo, O.A., Dall, J. (2015). http://dx.doi.org/10.1016/j.jaexes.2013.08.001.

Bakry, M.F., 1996. Impact of mechanical cutting on the channel roughness. Water Resour. Manag. 10, 479–486. https://doi.org/10.1023/A:1007481313101.

Balic, K.D., Meire, P., 2009. The influence of mechanical cutting on the hydraulic resistance of lowland rivers. J. Aquat. Plant Manag. 44, 139–141.

Balc, K.D., Bellgame, S.V., Deckere, E.D., Meire, P., 2006. The re-growth capacity of sago pondweed following mechanical cutting. J. Aquat. Plant Manag. 44, 139–141.

Bal, T., Sorensen, A.-L., Sand-Jensen, K., Middelboe, A.-L., 2006. Community photosynthesis of aquatic macrophytes. Limnol. Oceanogr. 51, 2722–2733. https://doi.org/10.4319/lo.2006.51.6.2722.

Bleeker, W., Rasmussen, J.J., 2018. Evaluating effects of weed cutting on water level and ecological status in Danish lowland streams. Freshw. Biol. 63, 652–661. https://doi.org/10.1111/fwb.13101.

Boerema, A., Schoelynck, J., Bal, K., Vredev, D., Jacobs, S., Staes, J., Peire, M., 2014. Economic valuation of ecosystem services, a case study for aquatic vegetation removal in the Nette catchment (Belgium). Ecosyst. Serv. 7, 46–56. https://doi.org/10.1016/j.ecoser.2013.08.001.

Booms, T.L., 1999. Vertebrates removed by mechanical weed harvesting in Lake Keeseus, Wisconsin. J. Aquat. Plant Manag. 37, 34–36.

Bucyzynski, P., Zawal, A., Bucyzynski, E., Stepień, E., Dąbkowski, P., Michołosi, G., Szaławiuk, A., Palkuniewicz, J., Robert, S., Chazorowski, S., 2016. Early recolonization of a dredged lowland river by dragonflies (Insecta: Odonata). Knowl. Manag. Aquat. Ecosyst. 43. https://doi.org/10.1051/kmae/201603016.

Caffrey, J.M., Monahan, C., 2006. Control of Myriophyllum verticillatum L. in Irish canals by mechanical cutting. River Res. Appl. 22, 273–282. https://doi.org/10.1002/rra.1187.

Carr, N., Strachan, S.R., Robson, B.J., 2017. Impacts of Indian waterfern (Ceratopteris thalictroides (L.) Brongn.) infestation and removal on macroinvertebrate biodiversity and conservation in spring-fed streams in the Australian arid zone. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 83–97. https://doi.org/10.1002/aqc.2828.

Caraco, N., Cole, J.M., Monahan, C., 2006. Control of Myriophyllum verticillatum L. in Irish canals by mechanical cutting. River Res. Appl. 22, 273–282. https://doi.org/10.1002/rra.1187.

Carpenter, S.R., Gasith, A., 1998. Mechanical cutting of submerged macrophytes: Immediate effects on littoral water chemistry and metabolism. Water Res. 12, 55–57. http://dx.doi.org/10.1016/0043-1354(78)90196-3.

Choi, J.-Y., Jeong, K.-S., La, G.-H., Joo, G.-J., 2014. Effect of removal of free-floating macrophytes on zooplankton habitat in shallow wetland. Knowl. Manag. Aquat. Ecosyst. 41. https://doi.org/10.1051/kmae/2014023.

Crowell, W., Troelsen, J., New, P., Perry, J., 1994. Effects of harvesting on plant communities dominated by Eurasian watermilfoil in Lake Minnetonka, MN. J. Aquat. Plant Manag. 32, 56–60.

Dąbkowski, P., Bucyzynski, P., Zawal, A., Stepien, E., Bucyzynski, E., Stryjeki, R., Chazorowski, S., Smitena, P., Szejno, J., 2016. The impact of dredging of a...
Stepień, E., Zawal, A., Buczyński, P., Buczyńska, E., Szenejko, M., 2019. Effects of dredging on the vegetation in a small lowland river. PeerJ 7. https://doi.org/10.7717/ peerj.6282.

Stewart-Koster, B., Bunn, S.E., Mackay, S.J., Poff, N.L., Naiman, R.J., Lake, P.S., 2010. The use of Bayesian networks to guide investments in flow and catchment restoration for impaired river ecosystems. Freshw. Biol. 55, 243–260. https://doi.org/10.1111/j.1365-2427.2009.02119.x.

Strien, A.J.V., Strucker, R.C.W., 1991. Effects of mechanical ditch management on the vegetation of ditch banks in Dutch peat areas. J. Appl. Ecol. 28, 501–513.

Swales, S., 1982. Impacts of weed-cutting on fisheries: an experimental study in a small lowland river. Aquat. Res. 13, 125–137. https://doi.org/10.1111/j.1365-2109.1982.tb00403.x.

Talli, L., Caraco, N., Maranger, R., 2011. Denitrification hot spots: dominant role of invasive macrophyte Trapa natans in removing nitrogen from a tidal river. Ecol. Appl. 21, 3104–3114. https://doi.org/10.1890/11-0061.1.

Thiébaut, G., Di Nino, F., Pettire, M.C., Wagner, P., 2008. Management of aquatic exotic plants: the case of Elodea species. Proceedings of Taal 2007: The 12th World Lake Conference. p. 1066.

UMNUTH, J.M.L., Hansen, M.J., Rasmussen, P.W., Pellett, T.D., 1999. Effects of mechanical harvesting of Eurasian watermilfoil on angling for Bluegills in fish lake, Wisconsin. North Am. J. Fish. Manag. 21, 448–454. https://doi.org/10.1577/1557-8675(2001)021<0448:EMHWE>2.0.CO;2.

UMNUTH, Sloey, D., J. Lille, R.A., 1998. An evaluation of close-cut mechanical harvesting of Eurasian watermilfoil. J. Aquat. Plant Manag. 36, 93–100.

Verecken, H., Baetens, J., Vaene, P., Mostaert, F., Meire, P., 2006. Ecological management of aquatic plants: effects in lowland streams. Hydrobiologia 570, 205–210. https://doi.org/10.1007/s10750-006-0181-5.

Verhoeofst, M.J.M., Bakker, E.S., 2019. Classifying nuisance submerged vegetation depending on ecosystem services. Limnology 20, 55–68. https://doi.org/10.1007/s10036-018-1020-1.

Verhoeofst, M.J.M., Aliargues Núñez, M.M., Reichman, E.P., van Donk, E., Lamers, L.P.M., Bakker, E.S., 2017. Mass development of monospecific submerged macrophyte vegetation after the restoration of shallow lakes: Roles of light, sediment nutrient levels, and propagule density. Aquat. Bot. 141, 29–38. https://doi.org/10.1016/j.aquatbot.2017.04.004.

Versonhore, V., Schoelvynck, J., Cox, T., Schoutens, K., Temmerman, S., Meire, P., 2017. Opposing effects of aquatic vegetation on hydraulic functioning and transport of dissolved and organic particulate matter in a lowland river: a field experiment. Ecol. Eng. 105, 221–230. https://doi.org/10.1016/j.ecoleng.2017.04.064.

Ward-Campbell, B., Cottienie, K., Mandrak, N., McLaughlin, R., 2017. Maintenance of agricultural drains alters physical habitat, but not macroinvertebrate assemblages exploited by fish. J. Environ. Manage. 203, 20–39. https://doi.org/10.1016/j.jenvman.2017.07.032.

Wilcock, R.J., Champion, P.D., Nagels, J.W., Croker, G.F., 1999. The influence of aquatic macrophytes on the hydraulic and physico-chemical properties of a New Zealand lowland stream. Hydrobiologia 416, 203–214. https://doi.org/10.1023/A:1003872318484.

Wille, I., 1978. Environmental effects of mechanical harvesting. J. Aquat. Plant Manag. 16, 14–20.

Wojciechowski, J., Burda, T.M., Scheer, M.B., da Costa, E.A.D., Fernandes, L.F., Wojciechowski, J., Burda, T.M., Scheer, M.B., da Costa, E.A.D., Fernandes, L.F., 2018. Potential effects of mechanically removing macrophytes on the phytoplankton community of a subtropical reservoir. Acta Bot. Bras. 32, 588–594. https://doi.org/10.1590/0102-33692018ab0015.

Zhu, J., Peng, Z., Liu, X., Deng, J., Zhang, Y., Hu, W., 2019. Response of aquatic plants and water quality to large-scale nymphoides peltata harvest in a shallow lake. Water 11, 77. https://doi.org/10.3390/w11010077.

van Zuidam, J.P., Peeters, E.T.J.M., 2012. Cutting affects growth of Potamogeton lucens L and Potamogeton compressus L. Aquat. Bot. 100, 51–55. https://doi.org/10.1016/j.aquatbot.2012.02.005.