Ostracoda (Myodocopa) from Anchialine Caves and Ocean Blue Holes

LOUIS S. KORNICKER, THOMAS M. ILIFFE & ELIZABETH HARRISON-NELSON
Louis S. Kornicker, Thomas M. Iliffe & Elizabeth Harrison-Nelson
Ostracoda (Myodocopa) from Anchialine Caves and Ocean Blue Holes
(Zootaxa 1565)
151 pp.; 30 cm.
31 August 2007
ISBN 978-1-86977-153-9 (paperback)
ISBN 978-1-86977-154-6 (Online edition)
Ostracoda (Myodocopa) from Anchialine Caves and Ocean Blue Holes

LOUIS S. KORNICKER1, THOMAS M. ILIFFE2 & ELIZABETH HARRISON-NELSON1

1Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560–0163, U.S.A. E-mail: kornickl@si.edu; nelsone@si.edu
2Department of Marine Biology, Texas A&M University at Galveston, PO Box 1675 (MARB), Galveston TX 77553-1675, U.S.A. E-mail: iliffet@tamug.edu

Table of contents

Abstract .. 5
Introduction ... 5
Endangered species .. 12
Ocean Blue Holes of the Bahamas .. 14
Inland Blue Holes of the Bahamas ... 16
Anchialine Cenotes of the Yucatan Peninsula .. 17
Systematics ... 20
Class Ostracoda Latrielle 1802 .. 20
Subclass Myodocopa Sars 1866 .. 20
Order Halocyprida Dana 1853 .. 20
Suborder Halocypridina Dana 1853 .. 20
Superfamily Thaumatocypridoidea Müller 1906 .. 24
Family Thaumatocyprididae Müller 1906 ... 24
Danielopolina Kornicker & Sohn 1976 .. 25
Subgenus Humphreysella Kornicker & Danielopol in Kornicker et al. 2006 26
Danielopolina (H.) palmeri n.sp. ... 26
Danielopolina (H.) exuma Kornicker & Iliffe 1998 .. 32
Subgenus Danielopolina Kornicker et al. 2006 ... 33
Danielopolina (D.) mexicana Kornicker & Iliffe 1989 ... 33
Superfamily Halocypridoidea Dana 1853 ... 33
Family Deeveyidae Kornicker & Iliffe 1985, elevation from subfamily rank 34
Subfamily Spelaeoecciinae, new subfamily .. 34
Spelaeoeccia Angel & Iliffe 1987 .. 34
Spelaeoeccia styx Kornicker 1990 in Kornicker et al. 1990 34
Spelaeoeccia capax Kornicker 1990 in Kornicker et al. 1990 36
Spelaeoeccia parkeri Kornicker et al. 2002 .. 36
Spelaeoeccia bermudensis Angel & Iliffe 1987 ... 42
Spelaeoeccia hox, new species .. 43
Spelaeoeccia sagax Kornicker 1990 in Kornicker et al. 1990 50
Subfamily Deeveyinae Kornicker & Iliffe 1985 .. 51
Deeveya Kornicker & Iliffe 1985 ... 51

Accepted by R. Maddocks: 10 May 2007; published: 31 Aug. 2007
Abstract

Eleven stygobitic myodocopid ostracodes (two new—Danielopolina palmeri and Spelaeoecia hox) in the Order Halocyprida are reported from anchialine waters in 11 inland blue holes in Bahamas. One stygobitic halocyprid ostracode is reported from two localities in Bermuda, and one from a cave in Mexico. A new subfamily, Spelaeoeciinae, is proposed to contain the genus Spelaeoecia, and the subfamily Deeveyinae is elevated to family status. Two new species of cladocopid ostracode (Pseudopolycope helix and Pontopolycope storthynx), are described from a cave in Mexico and an oceanic blue hole in the Bahamas.

Nine species of myodocopid ostracodes (four new—Rutiderma flex, Eusarsiella syrinx, Eusarsiella fax, and Synasterope matrix) in the Suborder Myodocopina and one species in the Suborder Halocypridina are reported from ocean blue holes in the Bahamas. This is the first report of a halocyprid living in both an inland and ocean blue hole in the Bahamas. The sarsiellid genus Dantya Kornicker & Cohen 1978 is reported for the first time in the Bahamas, but the single juvenile specimen is left in open nomenclature as Dantya sp. A. The development of Deeveya bransoni and Eusarsiella syrinx is described in detail.

With the exception of one species of Danielopolina from deep waters of the South Atlantic, all other species of Danielopolina, Spelaeoecia and Deeveya have been previously found only in inland, anchialine caves. The discovery of Deeveya inhabiting deeper, hydrologically-isolated waters in ocean blue holes, which are otherwise comparable to classical anchialine environments, has raised questions concerning the geographic limits to the anchialine habitat and its supposed reliance on terrestrial inputs.

Key words: Halocyprida, Myodocopida, Ostracoda, anchialine caves, blue holes, Bahamas, Mexico, Bermuda

Introduction

The term anchialine was coined by Holthuis (1973: 3) to designate "pools with no surface connection with the sea, containing salt or brackish water, which fluctuates with the tides". During the Bermuda Marine Cave Symposium October 1984 the definition was modified as follows:

Anchialine habitats consist of bodies of haline water, usually with a restricted exposure to open air, always with more or less extensive subterranean connections to the sea, and showing noticeable marine as well as terrestrial influences (Stock et al. 1986: 91).

Caves opening beneath sea level and entirely filled with seawater were termed "submarine caves" and were not considered anchialine since they lack a terrestrial influence.

Until recently, the distinction between anchialine and submarine caves appeared valid based on significant hydrological and biological differences. Typically, anchialine caves are well stratified with a surface layer of