Immunosenescence is a natural ageing phenomenon with age-related immunological alterations resulting in increased susceptibility to autoimmunity and endothelial dysfunction. It involves innate and adaptive immune cells and includes thymic involution with peripheral loss of naïve T cells, telomere shortening, repertoire restriction with impaired T- and B-cell responses to newly encountered antigens and a skewed maturation phenotype with an increase in terminally differentiated senescent T cells that typically lack CD28.

Senescent T cells contribute to a systemic chronic inflammatory state (inflammaging) and cardiovascular disease. A higher plasma fraction of CD4+CD28null T cells was identified in patients with prevalent cardiovascular disease, acute...
coronary syndrome and especially recurrent coronary events. This increase was associated with worse cardiovascular outcomes in people with heart failure, end-stage kidney disease (ESKD) and also kidney transplant recipients (KTR). In vitro and in vivo studies indicate that these pro-atherosclerotic CD28null T cells accumulate in unstable plaques and promote rupture. This is mainly caused by their senescence-associated secretory phenotype (SASP) with increased tumor-necrosis factor (TNF-α) and interferon (IFN)-γ production, recruitment and activation of macrophages, and an endothelial tropism with direct killing of endothelial cells by high expression of cytolytic enzymes perforin and granzyme B.

This is mainly caused by their senescence-associated secretory phenotype (SASP) with increased tumor-necrosis factor (TNF-α) and interferon (IFN)-γ production, recruitment and activation of macrophages, and an endothelial tropism with direct killing of endothelial cells by high expression of cytolytic enzymes perforin and granzyme B.

Similarly, emerging data highlight the central role of senescent T cells in the initiation and propagation of glomerulonephritis. In the next sections, we describe the characteristics and drivers of CD28null T cells. We outline how these immunosenescent T cells are perfectly suited to mediate endothelial damage in kidney disease. Finally, we speculate on potential therapies, which target these key culprits.

Characteristics of senescent T cells

Despite a nearly universal loss of the costimulatory molecule CD28 on their cell surface, these oligoclonal TCR-expressing cells are highly reactive. They contain exhausted (PD1+) populations, are mostly late effector memory T cells (CD45RA−CCR7− TEM and especially CD45RA−CCR7− TEMRA) and no longer express CD27, preceding or following the loss of CD28 in CD4+ and CD8+ T cells, respectively. They are activated and proliferate upon interaction with antigen-presenting cells (APC) but also share many characteristics with NK cells. They are stimulated by classical antigens, such as heat-shock proteins (HSP), which contribute to atherosclerosis and immune-mediated glomerular disease (Figure 1). Antigen-independent stimulation also occurs through binding to the highly expressed costimulatory receptors OX40 and 4-1BB. Interleukin-15 (IL-15) enhances their proliferation via combined activities of STAT-5, Bcl-2 and mTORC1. IL-7 and especially IL-15 are implicated in several autoimmune disorders and atherosclerosis, stimulate chemo-attraction and increase the cytotoxicity of senescent lymphocytes and NK cells both in healthy individuals and in people with acute coronary syndrome (Table 1). CD28null T cells exert their cytotoxicity similarly to NK cells and CD8+ T cells by releasing perforin and granzyme B. This process occurs upon TCR ligation or by binding to NK activating receptors such as NKG2D and Killer Cell Immunoglobulin-like receptors (KIRs). Exposure of CD4+CD28null T cells to glomerular endothelial cells caused NKG2D-dependent endothelial damage independent of TCR ligation. Senescent T cells are well-equipped to initiate, as well as maintain, glomerular inflammation (Table 2). They have the potential to become long-lived and accumulate in kidneys over time. They are anti-apoptotic given their downregulation of Fas ligand and increased expression of Bcl-2 while escaping suppression by regulatory T cells (Tregs).

In myocardial infarction, β2 integrin-mediated migration is reactive oxygen species (ROS)-dependent and likely contributes to plaque destabilisation before rupture. As compared with CD28+ T cells, expression and activation of the β2 integrin lymphocyte function-associated antigen-1 (LFA-1) and its subunits CD11a (integrin αL) and CD18 next to integrin αβ (CD49d) are notably increased in both CD8+ and CD4+CD28null T cells. This is also relevant to many glomerular diseases where endothelial proteoglycans interact with selectins and β2 integrin on lymphocytes. Leukocyte infiltration into the kidney is especially driven by β2 integrins binding to highly expressed ligands such as intercellular adhesion molecule-1 (ICAM-1) on renal endothelial, mesangial and epithelial cells across glomerulopathies including ANCA-associated vasculitis (AAV) and systemic lupus erythematosus (SLE).

Loss of CD28 in senescent T cells

T-cell activation requires recognition of 'non-self' antigen by TCR and costimulatory pathway
Table 1. Shared mechanistic role of senescent T cells in glomerulonephritis and atherosclerosis

Senescent T cells	Glomerulonephritis	Atherosclerosis (CD4+ & CD8+)
Increased cytokine production (IFN-γ, TNF-α)	Development of atherosclerosis	Senescent CD4+ T cells
Endothelial toxicity (granzyme/perforin)	Glomerular endothelial cell lysis (CD4)	Increased protease production (especially TEMRA)
Oxidative stress dependent activation of β2 integrin (LFA-1)	Binding on ICAM-1 on renal epithelial, mesangial, and endothelial cells	
Increased expression of CX3CR1	The CX3CR1/fractalkine axis promotes glomerulonephritis	
Enhanced activation and proliferation by IL-15	HLA DRB1*04 predisposes to SLE nephritis	Higher plasma concentration with HLA DRB1*0301
Triggered by HSP	HLA DRB1*04 promote glomerulonephritis	HSP, heat-shock protein; ICAM-1, Intercellular Adhesion Molecule 1; IFN-γ, interferon-gamma; IL-15, interleukin-15; LFA-1, Lymphocyte function-associated antigen 1; MMP, matrix metalloproteinase; TNF-α, tumor-necrosis factor alpha.

Stimulation (type 2 signalling). The costimulatory molecule CD28, the receptor for CD80/CD86 on APC, is constitutively expressed on naive T cells and essential for immune homeostasis.21 Although the homologous CTLA4 competes for the same ligands (with higher affinity), both molecules have opposing effects on T cells.21 Upon binding to CD28, transcriptional, posttranslational and epigenetic modifications occur in these cells, stimulating survival, glycolytic rate, cytokine production (IL-4, IL-10, and especially IL-2) and clonal expansion.21,22 The absence of CD28 can occur by various mechanisms (Figure 2). Most importantly, exposure to TNF-α downregulates the promoter of CD28 with a decline of nuclear protein binding motifs α and β. Accordingly, replicative stress because of recurrent or chronic infections leads to an exhausted lymphocyte phenotype in murine models with reduced expression of CD28.23 Also, endogenous antigens such as HSP downregulate CD28 likely because of triggering of TNF-α release.24 With sustained stimulation over time, loss of CD28 becomes permanent through transcriptional silencing.25

With ageing, the proportion of highly differentiated effector and memory CD28null T cells in plasma rises steadily and this occurs earlier and to a larger extent for CD8+ T cells, which are more susceptible to replicative senescence.2,25 Several factors promote the accumulation of these senescent T cells. With ageing, microbial dysbiosis with enrichment of pro-inflammatory commensals is more common.1 This process is also cytokine (TNF-α)-driven and involved in inflamminging.1 Cytomegalovirus (CMV) infection and resulting seropositivity are associated with an increase of the CD4+ and CD8+CD28null T cell fraction because of repeated antigenic triggering with decreased expression of CD27 and CD45RA than CD28null T cells from seronegative patients.11,26 Chronic HIV and EBV infection also expands CD8+CD28null T cells with a lower proportional expression of CD57 than CMV.2,27 Recently, the hyperactive cytokine response in critically ill patients with acute COVID-19 infection was also associated with an increase in CD4+CD28nullCD57+ T cells.28 The circulating fraction of CD4+CD28null T cells is also increased in uraemia and autoimmune diseases such as SLE, rheumatoid arthritis (RA) and AAV, where it is closely linked to CMV seropositivity.29,30 All these conditions share chronic inflammation and endothelial dysfunction6,29,30 (Figure 2). A genetic predisposition also matters. The HLA DRB1*0301
allele was associated both with less severity of RA and fewer circulating CD4+CD28null T cells.31 This is in sharp contrast to HLA DR4 alleles (particularly HLA DRB1*0401 and DRB1*0404), which are associated with a higher concentration of these lymphocytes, enhanced cytokine production, more development and severity of autoimmune disease including SLE, RA and IgA vasculitis as well as cardiovascular disease.29,32–34 Likewise, inflammatory conditions such as type 2 diabetes and obesity have been associated with an increase in CD4+CD28null T cells.6,35 Plasma of obese individuals induces the loss of CD28 expression in peripheral blood mononuclear cells (PBMC) from healthy lean individuals.36

Glomerulonephritis and the role of senescent T cells

T cells are key players in glomerulonephritis, even in ‘classical’ antibody-mediated glomerular disease such as anti-GBM disease and SLE. Recent wide-
scale transcriptomic analyses confirmed the prime involvement of T cells with IFN signature in human SLE glomerulonephritis next to mononuclear phagocytes, NK cells and dendritic cells (DC) particularly of the conventional DC type 2 (cDC2) phenotype.\(^{37,38}\) Infiltration of glomerular and/or interstitial T cells defined the outcome of childhood IgAN.\(^{39}\) Their role was also confirmed in diabetic nephropathy where a transcriptomics approach revealed an eightfold increase in leukocytes (half of which were T cells) in biopsy samples than in controls.\(^{40}\) Depletion of CD4\(^+\) T cells in rats prevented progression of glomerulonephritis because of reduced glomerular accumulation of CD8\(^+\) T cells and activated macrophages with decreased expression of IFN-\(\gamma\).\(^{41}\) The exact role and phenotype of these cells and their modifiers such as age and CMV status in the course of glomerulonephritis largely remain unexplored. A major drawback hampering the development of hypothesis-generating murine models is that the loss of CD28 in circulating T cells is mainly observed in humans and primates.\(^{6}\) Other markers of immune-senescence could be helpful here. In murine models of acute kidney injury (AKI), cellular senescence of resident and infiltrating immune cells likely explained the more severe phenotype in older mice.\(^{42}\)

A relevant question is whether an increased concentration of circulating peripheral cytotoxic CD28\(^-\) and especially CD4\(^+\) T cells corresponds

Table 2. Involvement of senescent T cells in perpetuation of chronic glomerular disease

Causes	Potential treatments
Aging	Vitamin D
CMV	Lifestyle interventions
Uremia	Statins
SLE, AAV, RA	TNF inhibitors
Diabetes mellitus	Abatacept
Chronic infections	Tofacitinib
	Virostatics

HSP, heat-shock protein; IL-15, interleukin-15; TCR, T-cell receptor; TNF-\(\alpha\), tumor-necrosis factor alpha; Tregs, regulatory T cells.

Figure 2. Causal factors in downregulation of CD28 in T cells and possible treatment options. Depicted on the left are mechanisms which lead to downregulation of CD28 in CD4\(^+\) and CD8\(^+\) T cells. TNF-\(\alpha\) is a central molecule which exerts its effect at the transcriptional level with sustained stimulation over time leading to permanent CD28 loss. Other important factors are ageing and CMV infection which have a tropism for downregulation of CD28 respectively in CD8\(^+\) and CD4\(^+\) T cells. Other conditions depicted are associated with but with less certain causality, considering the increased concentration of TNF-\(\alpha\) in for instance SLE, RA, AAV, in obesity or diabetes mellitus, and in viral and bacterial infections. Uraemia can also have both direct and indirect effects on CD28 downregulation. All inflammatory conditions which are associated with higher amounts of circulating CD28\(^{\text{null}}\) T cells share endothelial dysfunction and cardiovascular disease. Depicted on the left are treatment options which have demonstrated to decrease circulating CD28\(^{\text{null}}\) T cells (and at the same time to counteract vascular inflammation). A potential role of anti-oxidants which suppress IL-15 can be suspected but remains elusive. AAV, ANCA-associated vasculitis; HIV, human immune-deficiency virus; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; TNF-\(\alpha\), tumor-necrosis factor alpha.
with higher tissue (interstitial or glomerular) concentrations. In an OVA transgenic glomerulonephritis mouse model, the addition of ex-vivo activated cytotoxic T lymphocytes (CTL) led to accumulation of periglomerular infiltrates in the absence of immune complexes. Multiple examples from autoimmune diseases support this. In parallel with an increased serum concentration and enhanced expression of TNF-α and IFN-γ, the in situ concentration of CD4⁺ CD28⁻ T cells was increased in synovial fluid in RA, in the small airways in bronchiolitis obliterans, in thyroid and orbital tissue in Graves' disease, and in hepatic tissue in primary sclerosing cholangitis. Also, and in parallel with peripheral expansion of j2 integrin expressing CD4⁺ CD28null T cells in granulomatosis with polyangiitis (GPA), immunostaining revealed their abundance in granulomatous lesions. In Immunoglobulin G4-related disease, circulating CD28nullCD27nullCD57⁺CD4⁺ T cells were the dominant effector subset with transcripts of activation, cytotoxicity and tissue migration, and the TEMRA fraction particularly correlated with disease severity. TEMRA have increased production of proteases including metalloproteases which also affect cellular adhesion and migration.

CX3CR1 positivity of infiltrating CD4⁺ and CD8⁺ CD28null T cells promotes their migration from peripheral blood (Figure 1). The local micro-environment propagates the terminal differentiation and accumulation of cytotoxic cells by paracrine secretion of cytokines, chemokines and increased expression of adhesion molecules. The invoked tissue damage with apoptosis of nonimmune cells then causes epitope spreading with presentation of glomerular antigens by resident DC and monocytes or macrophages to CD4⁺ T cells and recruitment and activation of CTL and macrophages. Also, HSP-60 directly activates CD28null T cells and can aggravate glomerulonephritis after extracellular release from the kidney upon injury (Figure 1). Exposure of CD4⁺ CD28null T cells of people with CKD to HSP-60 and -70 significantly increased their cytotoxicity.

The immunological role of sex in glomerulonephritis

Of relevance but largely unexplored, sex modifies the origin, course and outcome of glomerular disease with a mostly male bias where SLE nephritis is the sole exception with a strong female predominance. Apart from variation in occupational hazards, smoking and drugs, of which determine the renal phenotype and prognosis, sex-based immunological differences are also essential. Women in general have a stronger innate and adaptive immune response but are also more predisposed to develop autoimmune disease. Next to relevant X-linked genes, sex hormones also exert relevant and age-varying immunological effects, which could modify the role of immunosenescence in glomerulonephritis. In single-cell analyses of immune cells, increased IFN-γ-mediated signalling in males was observed in line with a higher expression of pro-inflammatory genes and with enhanced intercellular communication patterns. The age-related decline of CD8⁺ CD28⁻ T cells was more pronounced in Japanese men than in women. Of note, animal studies mostly use male species although SLE murine models have also been designed where female animals have a more severe phenotype in most cases, but this is inconsistent, and sex is not always disclosed. Analyses in people with SLE are mostly being performed in females but generally without a priori exclusion of males.

Systemic lupus erythematosus nephritis and T-cell-mediated damage

Accruing data have demonstrated an essential role of T cells in the pathogenesis of SLE, classically defined as B-lymphocyte-driven. High concentrations of circulating CD4⁺ CD28null T cells correlate with measures of disease severity such as SLEDAI index and serum concentration of IFN-γ, especially in patients with coexisting cardiovascular disease. The risk of premature cardiovascular disease and atherosclerosis in SLE is well-established. Effector CD4⁺ T cells from SLE-susceptible mice had accelerated atherosclerosis partially from resistance to Treg suppression and enhanced secretion of IL-17. Renal arteriosclerosis in patients with SLE correlated with echocardiographic indices alluding to a continuum of vascular inflammation at the renal and extrarenal level.

When comparing patients with and without SLE nephritis, those with also have higher serum concentrations of TNF-α, IL-17, IL-10 and IL-15. IL-15 increases the survival and proliferation of CD28null CX3CR1⁺ cytolytic effector memory T cells.
resulting in enhanced trafficking to inflamed tissues.11,12

The fractalkine/CX3CR1 axis is involved in the pathogenesis of SLE nephritis. In murine SLE models, many exhausted T cells and glomerulus-infiltrating activated NK cells were already observed in the preclinical phase with high renal expression of fractalkine and of NKG2D ligand MICA.56 Antagonists of fractalkine were renoprotective in another murine SLE model by reducing glomerular hypercellularity and macrophage infiltration.57 In humans with class III and IV nephritis, glomerular fractalkine expression was increased.59 In single-cell RNA analysis of human samples of lupus nephritis, most samples shared an enhanced NK cell activity and exhausted IFN-γ signature with increased expression of CX3CR1 in peripheral cells, but the overall composition and level of exhaustion of circulating T cells differed from the kidney population.38,56,60 Caielli and co-workers neverthelss observed a congruent expansion of both circulating and infiltrating tubulo-interstitial CX3CR1+CD4+ T cells in patients with proliferative SLE nephritis.65 TCR sequencing of kidney biopsies of patients with SLE nephritis demonstrated tubular and to a lesser extent glomerular infiltration with mostly oligoclonal CD8+ CD28null memory effector T cells.61 Especially, the periglomerular CD8+ T cell fraction correlates both with histological severity and treatment response in humans with SLE nephritis.59,61 The absence of CD28 was not verified in these analyses.39,61

The chronicity of glomerular lesions in SLE nephritis and other aetiologies of glomerulonephritis is determined by the phenotype of the infiltrating immune cells. Activated lymphocytes invade the kidney in a manner dependent on type I IFN, but independent of class II MHC.59,61 In a second phase, an adaptive immune response occurs through activation, clonal expansion of CD4+ T cells and terminal differentiation of memory effector CD8+ T cells, which are adherent to periglomerular or tubular epithelium.61 Analysis of homing receptors confirmed these noncirculatory and mostly CD28null CD8+ T cells in multiple sites of inflamed kidney tissue to persist for years.61 Resident memory T cells are long-lived and maladaptive lymphocytes with pathogenic role in numerous diseases including kidney disease.

Recruitment of senescent T cells via the CX3CR1-fractalkine axis

Decreased levels of DNA methyl transferases in senescent CD4+CD28null T cells cause overexpression of CX3CR1. This receptor binds with its sole ligand, fractalkine, in both soluble or (membrane)-bound forms, and plays a crucial role in human pathophysiology as a chemokine and adhesion molecule.66 It is involved in the early phase of vascular inflammation, chronic inflammatory diseases such as RA but also has regulatory functions.16 Upregulation of this axis by angiotensin-II (AT-II) in the aorta and vascular smooth muscle cells of uremic mice promotes homing of T cells.67 CX3CR1 was upregulated in arterial segments of patients with ESKD and binds to endothelial fractalkine, whose expression is increased upon exposure to monocytes, preconditioned with the uremic retention solute indoxyl sulphate.68 Higher monocyte expression of CX3CR1 in patients with CKD predicts cardiovascular events.69

The fractalkine/CX3CR1 axis is central in the pathogenesis of glomerulopathies.16,70 Fractalkine is produced in mostly endothelial and tubular epithelial cells but also mesangial cells and podocytes in response to pro-inflammatory cytokines, such as TNF-α, IL-1β, MCP-1 and IFN-γ through multiple intracellular signalling pathways encompassing NF-κB and JAK–STAT.16,49,70,71 The high expression of CX3CR1 in senescent CD28null CD4+ lymphocytes stimulates homing of these cells into the inflamed kidney perpetuating a positive feedback loop.66 This property is shared with CD8+ T cells, NK and iNKT cells, γδ T cells and mononuclear phagocytes such as activated macrophages and monocytes while B cells lack CX3CR1.66 Recent data disclosed its role as kidney-specific homing-receptor for cDC2, which recruit and regulate immune cells in glomerulonephritis.71,72 The proportion of CX3CR1 expressing T cells and serum concentration of fractalkine is increased in CKD.66 This could amplify the disease phenotype with declining kidney function, bearing in mind the role of pro-inflammatory uremic retention solutes. Antibodies against CX3CR1 blocked the glomerular infiltration of leukocytes and DCs resulting in decreased crescent formation in a rat model.73

A role of CX3CR1 in glomerulonephritis is also supported by clinical data from patients with
IgAN and SLE. Micro-array analysis in patients with IgAN and gross haematuria demonstrated an increased CX3CR1 expression in PBMC and CTL promoting their transendothelial migration. Kidney biopsies of patients with IgA vasculitis and IgAN were characterised by upregulation of glomerular fractalkine in parallel with upregulation of HLA-DR and CX3CR1 in circulating NK cells and CTL. An increased serum fractalkine concentration corresponds with more aggressive disease with pronounced lymphocyte infiltration in patients with IgAN.

Cytomegalovirus and immunosenescence

Cytomegalovirus is a widespread virus characterised by lifelong endothelial latency. Infection leads to repeated T lymphocyte activation and effector memory infiltration with accumulation of CMV-specific T cells and attrition of the naive T cell pool by 20 years. This premature senescence correlates with an upregulation of CD57 synergistically with age with an estimated acceleration of epigenetic ageing by 5 years. Accrual of CD28nullCX3CR1+ memory T cells correlates with increased vascular inflammation in seropositive people with AAV and healthy volunteers > 60 years. Ganciclovir decreased the concentration of circulating CD4+CD28null T cells in people with AAV. Repeated CMV infection because of impaired immunity further expands this fraction by TCR-mediated antigenic triggering.

There is broad support of a direct (by the presence of viral antigen and DNA in diseased endothelial and vascular smooth muscle cells) and indirect role (through accelerated immunosenescence) of CMV in the development of cardiovascular disease. Cytokine serum concentrations are higher in CMV seropositive patients with chronic heart failure than in their seronegative counterparts and correlate with anti-CMV antibody titers. A meta-analysis of community-based prospective observational studies demonstrated an association between CMV infection and later development of cardiovascular disease.

In KTR, previous CMV infection predicts inferior cardiovascular outcome and CMV D+/R- status is associated with a higher mortality and more graft loss according to OPTN data. CMV prophylaxis is associated with better cardiovascular outcome in KTR according to registry data. The not-uncommon presence of CMV (antigen/DNA) in especially the renal graft cortex was associated with intimal thickening of small arterioles on KTR protocol biopsies. High viral loads of CMV and serostatus were associated with a faster decline of kidney graft function. In KTR, CMV infection was associated with an incremental increase in CD28null T cells, with a very high expression of CX3CR1 and NKG2D in CD27null T cells. Their concentration in lymph nodes remained low suggesting directed recruitment. In vitro, they proliferated in response to PBMC previously exposed to CMV-derived but not HLA-derived antigens. Endothelial damage by CMV is caused by induction of endothelial fractalkine and ensuing recruitment of CX3CR1- and NKG2D-positive immune cells including senescent CD4+ T cells.

Cytomegalovirus can aggravate autoimmune-mediated inflammation. In murine models of multiple sclerosis, exposure to CMV increased the peripheral fraction of CD4+CD28null T cells followed by recruitment into the spinal cord and increased demyelination. In RA, CMV positivity increases circulating CX3CR1+CD28null T cells, which correlated with intima-media thickness. Whether a CMV-induced rise in CX3CR1+CD28null cells could potentiate microvascular inflammation in the glomeruli and periglomerular areas should be further explored.

Immunosenescence and uraemia

Uraemia is characterised by Th1 predominance and also by premature senescence of lymphocytes likely contributing to its inflammatory state and ensuing cardiovascular disease. CD4+ but also CD8+CD28nullCD57+ T cells are increased in people with ESKD, especially in CMV seropositive patients, correlating with inflammation and cardiovascular events. In patients with CKD, circulating CD4+CD28null T cell concentrations correlate with serum TNF-α concentration, IMT and vascular calcification status. In HD patients, concentrations of circulating CD4+ and CD8+CD28null T cells are associated with erythropoietin resistance in CMV seropositive patients and the degree of CX3CR1 expression correlates with impairment of flow-mediated dilatation and increased IMT. These senescent changes, which include telomere shortening, also occur in children with CKD and strikingly in those with previous exposure to immunosuppression.
relevance, adolescents and young adults with ESKD because of glomerulonephritis had higher risk of cardiovascular disease in a large USRDS-based observational study.96 Recent registry data indicate that adults with primary glomerular disease have a 2.5 times higher risk of cardiovascular disease than the general population.97

A specific uremic retention solute with an established role in immunosenescence is the protein-bound molecule indoxyl sulphate. This ligand of the acyl hydrocarbon receptor (AhR) downregulates the lymphocyte expression of CD28 at the transcriptional level.98 AhR is a major player in B- and T-cell physiology, expressed on many T-cell subtypes but especially Th17 cells which regulates IL-22 production.98 In ESKD, indoxyl sulphate binds to AhR on monocytes leading to increased production of TNF-α.99 Age and poor kidney function are classically associated with worse renal outcome in patients with glomerulonephritis. Both conditions are characterised by increased concentrations of TNF-α, which downregulates the transcription of CD28 at the promotor level. Podocytes express AhR, which are activated upon exposure to indoxyl sulphate in the uremic state.100 This results in a pro-inflammatory phenotype in both human and murine immortalised podocytes with foot effacement, cytoplasmic vacuoles and decreased mRNA expression of podocyte-specific proteins with abnormal granular and wrinkled patterns of podocin and synaptopodin.100 Mice exposed to indoxyl sulphate for 8 weeks exhibited prominent renal and vascular damage including tubulo-interstitial lesions, ischaemic changes and mesangiolysis.100 This suggests that uraemia could initiate and aggravate podocyte damage both directly or indirectly by creating a pro-inflammatory milieu.

Targeting CD28null T cells

CD28null status of T cells is not only a biomarker of immunosenescence but also a potential therapeutic target. Restoration of its expression in chronically activated human CD8+ T cells via gene transduction attenuated replicative senescence via increased telomerase activity, more proliferative potential and a lower production and secretion of pro-inflammatory cytokines.101 Also, supplementation of active vitamin D, which has established immunological effects on adaptive and innate immunity, increases the expression of CD28 in CD4+ T cells from liver tissue of people with primary sclerosing cholangitis (PSC) even in the presence of TNF-α.46 Patients with PSC and vitamin D deficiency had lower levels of circulating CD4+CD28null T cells after repletion.46 Lifestyle measures also seem to be beneficial for counteracting immunosenescence. A 4-week regimen of hypoxic exercise upregulated the CD28 expression in circulating T cells at baseline and after strenuous exercise, most likely because of improvement of oxidative stress and lowering of pro-inflammatory cytokines.102 A systematic review of studies including RCT demonstrated a beneficial effect of repeated aerobic exercise or endurance resistance training on CD28 expression of CDB+ T cells irrespective of age or level of sedentarism.103 This occurred despite a temporary increase in senescent CDB+CD28null T cells immediately postexercise.103 Cardioprotective drugs such as lipid-lowering statins have pleiotropic effects, which include a lowering of circulating CDB+CD28null T cells.6,29 This is likely related to anti-inflammatory properties and pro-apoptotic effects on senescent T cells.5,29

Considering the role of TNF-α in the downregulation of CD28, a potential beneficial role of TNF-α inhibitors can be speculated. Both in vivo and in vitro data demonstrated a dose-dependent decrease in CDB+CD28null T cells by infliximab in patients with RA or unstable angina.104,105 In people with RA, these drugs exerted beneficial effects on cardiovascular events and mortality.106 In the same study population, 48 weeks of abatacept treatment, of which is a fusion protein containing CTLA-4 that binds ligands CD80 and 86, also decreased both circulating CDB+ and CDB+CD28null T cells in parallel with clinical recovery.107 In parallel with TNF-α inhibitors, patients with RA on abatacept had a better cardiovascular outcome than conventional synthetic disease-modifying antirheumatic drugs.108 Its role as a potential treatment in glomerulonephritis and AAV remains yet unestablished.

Finally, tofacitinib, a selective JAK1/JAK3 inhibitor, blocks IL-7/IL-15-signalling, thereby preventing the expansion of CD4+CD28null (but not CD28+) T cells.109 In a recent phase I trial, tofacitinib attenuated the type I IFN response in patients with SLE with ensuing improvement of cardiometabolic parameters, endothelial function and vascular stiffness.110 In a MRL/lpr SLE mouse
model, tofacitinib decreased the proliferation of tissue-resident memory T cells leading to improved preservation of kidney function.111 Current evidence supports a net cardiovascular benefit of JAK–STAT inhibitors because of anti-atherosclerotic effects, although potentially prothrombotic effects with high-dose treatment were reported.112 Also, patients with RA allocated to tofacitinib versus TNF-blockers had more serious adverse cardiac events.113

FUTURE PROSPECTS

Recent studies including transcriptomics data demonstrate an emerging role of immunosenescence in the pathophysiology of both glomerulonephritis and vascular inflammation. The role of terminally differentiated and cytotoxic CD28$^\text{null}$ T cells, however, has not been clarified. A direct causal link between a provoked increase in these circulating immunosenescent T cells and ensuing intrarenal accumulation should be demonstrated. Both experimental animal models or kidney biopsies of humans with glomerular disease and longitudinal follow-up of T cells could contribute to a better recognition of the dynamics of this T-cell subpopulation. Considering the loss of CD28 in circulating T cells is mainly observed in humans and primates, other markers of immunosenescence should also be included in animal experiments.

Cytomegalovirus serostatus could modify the course of glomerulonephritis by increasing these terminally differentiated lymphocytes, which express specialised homing receptors, such as CX3CR1. Whether a CMV-induced increase in CX3CR1$^-$/CD28$^\text{null}$ cells could potentiate microvascular inflammation in the glomeruli and periglomerular areas should be further explored. Also, intrinsic effects of ageing or uraemia on glomerular inflammation or podocyte toxicity in animal and human models should be further deciphered. A potential synergism between CMV and uremic toxins in microvascular inflammation is an attractive hypothesis with potential relevance for biomedical research, bearing in mind that CMV-directed treatment including antiviral drugs and vaccines could prove beneficial.

Shared mechanistic pathways between vascular and glomerular inflammation highlight the links between cardiovascular risk, systemic autoimmune diseases, such as SLE or AAV and CKD. Importantly, early T-cell accumulation precedes glomerular or vascular injury and as such could open avenues for early and successful treatment interventions, which include chemokine-driven strategies.

ACKNOWLEDGMENT

The authors thank Dr Andrew S Brown for linguistic review of the manuscript.

AUTHOR CONTRIBUTIONS

Steven Van Laecke: Conceptualization; writing – original draft; writing – review and editing. Karel Van Damme: Writing – original draft; writing – review and editing. Amelie Dendooven: Writing – original draft; writing – review and editing.

CONFLICT OF INTEREST

Steven Van Laecke has served in the advisory board of Hansa and GSK. The others authors declare no conflict of interest.

REFERENCES

1. Sato Y, Yanagita M. Immunology of the ageing kidney. Nat Rev Nephrol 2019; 15: 625–640.
2. Lioulis G, Fylaktou A, Papagianni A, Stangou M. T cell markers recount the course of immunosenescence in healthy individuals and chronic kidney disease. Clin Immunol 2021; 225: 108685.
3. Konstandin MH, Aksoy H, Wabnitz GH et al. Beta2-integrin activation on T cell subsets is an independent prognostic factor in unstable angina pectoris. Basic Res Cardiol 2009; 104: 341–351.
4. Okba AM, El Raouf A, Raafat M et al. Expanded peripheral CD4$^+$CD28$^\text{null}$ T cells and its association with atherosclerotic changes in patients with end stage renal disease on hemodialysis. Hum Immunol 2019; 80: 748–754.
5. Betjes MG, Weimar W, Litjens NH. Circulating CD4$^+$CD28$^\text{null}$ T cells may increase the risk of an atherosclerotic vascular event shortly after kidney transplantation. J Transplant 2013; 2013: 841430.
6. Dumitriu IE. The life (and death) of CD4$^+$CD28$^\text{null}$ T cells in inflammatory diseases. Immunology 2015; 146: 185–193.
7. Zal B, Chitalia N, Ng YS et al. Killer cell immunoglobulin receptor profile on CD4$^+$CD28$^-$ T cells and their pathogenic role in non-dialysis-dependent and dialysis-dependent chronic kidney disease patients. Immunology 2015; 145: 105–113.
8. George RP, Mehta AK, Perez SD et al. Premature T cell senescence in pediatric CKD. J Am Soc Nephrol 2017; 28: 359–367.
9. Chebotareva N, Bobkova I, Lyssenko L, Neprinzeva N, Vinogradov A, Moiseev S. Heat shock protein 70 and anti-heat shock protein 70 antibodies in patients with chronic glomerulonephritis. *Cell Stress Chaperones* 2018; 23: 1229–1235.

10. Dumitrue IE, Barah A, Finlayson CJ et al. High levels of costimulatory receptors OX40 and 4-1BB characterize CD4+CD28null T cells in patients with acute coronary syndrome. *Circ Res* 2012; 110: 857–869.

11. Morris SR, Chen B, Mudd JC et al. Inflammascent CX3CR1+CD57+ CD8+ T cells are generated and expanded by IL-15. *JCI Insight* 2020; 5: e132963.

12. Panigrahi S, Chen B, Fang M et al. CX3CL1 and IL-15 promote CD8 T cell chemotraction in HIV and in atherosclerosis. *PLoS Pathog* 2020; 16: e1008885.

13. Shabir S, Smith H, Kaul B et al. Cytomegalovirus-associated CD4+CD28null T cells in NKG2D-dependent glomerular endothelial injury and kidney allograft dysfunction. *Am J Transplant* 2016; 16: 1113–1128.

14. Kosmaczewska A, Ciszak L, Stosio M et al. CD4+CD28null T cells are expanded in moderately active systemic lupus erythematosus and secrete pro-inflammatory interferon gamma, depending on the Disease Activity Index. *Lupus* 2020; 29: 705–714.

15. Thewissen M, Somers V, Hellings N, Fraussen J, Damoiseaux J, Stinissen P. CD4+CD28null T cells in autoimmune disease: pathogenic features and decreased susceptibility to immunoregulation. *J Immunol* 2007; 179: 6514–6523.

16. von Vietinghoff S, Kurts C. Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease. *Cell Tissue Res* 2021; 385: 1510–1522.

17. Samstag Y, Bogert NV, Wabnitz GH. Heat shock proteins 60 and 70: a distinctive calcium response in naïve T cells. *Front Immunol* 2018; 9: 2864.

18. Soma J, Sato H, Ootaka T, Saito T. Loss of LFA-1, but not Mac-1, protects MRL/MpJ-Faslpr mice from autoimmune disease. *Am J Pathol* 2004; 165: 609–616.

19. Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 costimulation: from mechanism to therapy. *Immunity* 2016; 44: 973–988.

20. Xia F, Qian CR, Xun Z et al. TCR and CD28 concomitant stimulation elicits a distinctive calcium response in naïve T cells. *Front Immunol* 2018; 9: 2864.

21. He W, Xiao K, Xu J et al. Recurrent sepsis exacerbates CD4+ T cell exhaustion and decreases antiviral immune responses. *Front Immunol* 2021; 12: 627435.

22. Yadav AK, Kumar V, Jha V. Heat shock proteins 60 and 70 specific proinflammatory and cytotoxic response of CD4+CD28null cells in chronic kidney disease. *Mediators Inflamm* 2013; 2013: 1, 384807.

23. Moro-Garcia MA, Alonso-Arias R, Lopez-Larrea C. When aging reaches CD4+ T-cells: phenotypic and functional changes. *Front Immunol* 2013; 4: 107.

24. Vanheusden M, Broux B, Welten SPM et al. Cytomegalovirus infection exacerbates autoimmune mediated neuroinflammation. *Sci Rep* 2017; 7: 663.

25. Lee SA, Sinclair E, Hatano H et al. Impact of HIV on CD8+ T cell CD57 expression is distinct from that of CMV and aging. *PLoS One* 2014; 9: e89444.

26. Arcanjo A, Pinto KG, Logullo J et al. Critically ill COVID-19 patients exhibit hyperactive cytokine responses associated with effector exhausted senescent T cells in acute infection. *J Infect Dis* 2021; 224: 1672–1683.

27. Thewissen M, Somers V, Venken K et al. Analyses of immunosenescent markers in patients with autoimmune disease. *Clin Immunol* 2007; 123: 209–218.

28. Morgan MD, Pachnio A, Begum J et al. CD4+CD28null T cell expansion in granulomatosis with polyangiitis (Wegener’s) is driven by latent cytomegalovirus infection and is associated with an increased risk of infection and mortality. *Arthritis Rheum* 2011; 63: 2127–2137.

29. Kevil CG, Hicks MJ, He X et al. CD28 costimulation: from mechanism to therapy. *Nat Immunol* 2001; 2: 1523.

30. Sun W, Cui Y, Zhen L, Huang L. Association between HLA-DRB1*04 as a risk allele to systemic lupus erythematosus and lupus nephritis in the malay population of Malaysia. *Front Med (Lausanne)* 2021; 7: 598665.

31. Parisi MM, Grun LK, Lavandoski P et al. Recurrent sepsis exacerbates autoimmune disease. *Immunosenescence and glomerulonephritis* 2019; 39. Watanabe T, Kawachi H, Ikezumi Y, Yanagihara T, Oda et al. High levels of anti-heat shock protein 70 antibodies in patients with lupus nephritis. *PLoS One* 2014; 9: e89444.
41. Ikezumi Y, Kanno K, Karasawa T et al. The role of lymphocytes in the experimental progressive glomerulonephritis. Kidney Int 2004; 66: 1036–1048.

42. Marquez-Exposito L, Tejedor-Santamaría L, Santos-Sanchez L et al. Acute kidney injury is aggravated in aged mice by the exacerbation of proinflammatory processes. Front Pharmacol 2021; 12: 6620.

43. Kim AH, Markiewicz MA, Shaw AS. New roles revealed

44. Marquez-Exposito L, Tejedor-Santamaria L, Santos-Liev CL, Holmes M. Bronchiolitis obliterans obliterans syndrome is associated with increased senescent lymphocytes in the small airways. J Heart Lung Transplant 2021; 40: 108–119.

45. Liaskou E, Jeffery LE, Trivedi PJ et al. Loss of CD28 expression by liver-infiltrating T cells contributes to pathogenesis of primary sclerosing cholangitis. Gastroenterology 2014; 147: 221–232.

46. Komosci A, Lamprecht P, Csernok E et al. Peripheral blood and granuloma CD4+CD28− T cells are a major source of interferon-γ and tumor necrosis factor-α in Wegener’s granulomatosis. Am J Pathol 2002; 160: 1717–1724.

47. Hodge G, Hodge S, Liu H, Nguyen P, Holmes-Liew CL, Holmes M. Dysregulated CD4+CD8α T lymphocytes in chronic kidney disease and class IV lupus nephritis. J Am Soc Nephrol 2021; 32: 753–762.

48. Kurts C, Panzer U, Anders HJ, Rees AJ. The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Nephrol 2013; 10: 738–753.

49. Westhorpe CLV, Norman MU, Hall P et al. The role of CD8+ T lymphocytes among periglomerular cells in murine lupus nephritis. J Autoimmun 2005; 24: 1533–1543.

50. Hirokawa K, Utsuyama M, Hayashi Y, Kitagawa M, Makinodan T, Fulop T. Slower immune system aging in women versus men in the Japanese population. Immn Ageing 2013; 10: 19.

51. Richard ML, Gilkeson G. Mouse models of lupus: what they tell us and what they don’t. Lupus Sci Med 2018; 5: e000199.

52. Tilstra JS, Avery L, Menk AV et al. Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J Clin Invest 2018; 128: 4884–4897.

53. Inoue A, Hasegawa H, Kohno M et al. Antagonist of fractalkine (CX3CL1) delays the initiation and ameliorates the progression of lupus nephritis in MRL/lpr mice. Arthritis Rheum 2005; 52: 1522–1533.

54. Pacheco-Lugo L, Sánchez-García J, Navarro Quiroz E et al. Plasma cytokines as potential biomarkers of kidney damage in patients with systemic lupus erythematosus. Lupus 2019; 28: 34–43.

55. Yoshimoto S, Nakatani K, Iwano M et al. Elevated levels of fractalkine expression and accumulation of CD16+ monocytes in glomeruli of active lupus nephritis. Am J Kidney Dis 2007; 50: 47–58.

56. Couzi L, Merville P, Demenièr C et al. Predominance of CD8+ T lymphocytes among periglomerular infiltrating cells and link to the prognosis of class III and class IV lupus nephritis. Arthritis Rheum 2007; 56: 2362–2370.

57. Winchester R, Wiesendanger M, Zhang HZ et al. Immunologic characteristics of intrarenal T cells: trafficking of expanded CD8+ T cells β-chain clonotypes in progressive lupus nephritis. Arthritis Rheum 2012; 64: 1589–1600.

58. Bortoluzzi A, Chighizola CB, Fredi M et al. The IMMENSE study: the interplay between iMMune and ENdothelial cells in mediating cardiovascular risk in systemic lupus erythematosus. Front Immunol 2020; 11: 572876.

59. Wilhelm AJ, Rhoops JP, Wade NS, Major AS. Dysregulated CD4+ T cells from SLE-susceptible mice are sufficient to accelerate atherosclerosis in LDLr−/− mice. Ann Rheum Dis 2015; 74: 778–785.

60. Ding Y, Tan Y, Yu Z, Yu F. Renal microvascular lesions in lupus nephritis. Ren Fail 2020; 42: 19–29.

61. Caielli S, Veiga DT, Balasubramanian P et al. A CD4+ T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate. Nat Med 2019; 25: 75–81.

62. Hamdan D, Robinson LA. Role of the CX3C1-CX3CR1 axis in renal disease. Am J Physiol Renal Physiol 2021; 321: F121–F134.

63. Li C, Zhong X, Xia W et al. The CX3CL1/CX3CR1 axis in renal disease. Am J Physiol Renal Physiol 2021; 321: F121–F134.

64. Li C, Zhong X, Xia W et al. The CX3CL1/CX3CR1 axis is upregulated in chronic kidney disease and contributes to angiotensin II-induced migration of vascular smooth muscle cells. Microvasc Res 2020; 132: 104037.

65. Claro LM, Moreno-Amaral AN, Gadotti AC et al. The impact of uremic toxicity induced inflammatory response on the cardiovascular burden in chronic kidney disease. Toxins (Basel) 2018; 10: 384.

66. Schepers E, Houthuys E, Dhondt A et al. Transcriptome analysis in patients with chronic kidney disease on hemodialysis disclosing a key role for CD16−/− T lymphocytes. Blood 2013; 121: 1589–1600.

67. Cox SN, Sallustio F, Serino G et al. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
74. Imai T, Nishiyama K, Ueki K et al. Involvement of activated cytolytic T lymphocytes and natural killer cells in Henoch-Schönlein purpura nephritis. *Clin Transl Immunol* 2020; 9: e1212.

75. Luo R, Guo SM, Li YQ et al. Plasma fractalkine levels are associated with renal inflammation and outcomes in immunoglobulin A nephropathy. *Nephrol Dial Transplant* 2019; 34: 1549–1558.

76. Chidrawar S, Khan N, Wei W et al. Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. *Clin Exp Immunol* 2009; 155: 423–432.

77. Poloni C, Sztyf M, Cheishvili D, Tsoukas CM. Are the healthy vulnerable? Cytomegalovirus seropositivity in healthy adults is associated with accelerated epigenetic age and immune-dysregulation. *J Infect Dis* 2021; 225: 443–452.

78. Chanouzas D, Sagmeister M, Dyall L et al. The host cellular immune response to cytomegalovirus targets the endothelium and is associated with increased arterial stiffness in ANCA-associated vasculitis. *Arthritis Res Ther* 2018; 20: 194.

79. Kirkham F, Pera A, Simanek AM et al. Cytomegalovirus infection is associated with an increase in aortic stiffness in older men which may be mediated in part by CD4 memory T-cells. *Theranostics* 2021; 11: 5728–5741.

80. Chanouzas D, Sagmeister M, Faustini S et al. Subclinical reactivation of cytomegalovirus drives CD4⁺CD28null T-cell expansion and impaired immune response to pneumococcal vaccination in antineutrophil cytoplasmic antibody-associated vasculitis. *J Infect Dis* 2019; 219: 234–244.

81. García-Torre A, Bueno-García E, López-Martínez R et al. CMV infection is directly related to the inflammatory status in chronic heart failure patients. *Front Immunol* 2021; 12: 687582.

82. Yu HT, Youn JC, Kim JH et al. Arterial stiffness is associated with cytomegalovirus-specific senescent CD8⁺ T cells. *J Am Heart Assoc* 2017; 6: e006355.

83. Leeaphorn N, Garg N, Thamcharoen N, Khankin EV, Cardarelli F, Pavlakis M. Cytomegalovirus mismatch still negatively affects patient and graft survival in the era of routine prophylactic and preemptive therapy: a paired kidney analysis. *Am J Transplant* 2019; 19: 573–584.

84. Opelz G, Dohler B. Reduced rate of cardiovascular death after cytomegalovirus prophylaxis in renal transplant recipients. *Transplantation* 2015; 99: 1197–1202.

85. Helanterä I, Koskinen P, Tornroth T, Loginov R, Gronhagen-Riska C, Lautenschlager I. The impact of cytomegalovirus infections and acute rejection episodes on the development of vascular changes in 6-month protocol biopsy specimens of cadaveric kidney allograft recipients. *Transplantation* 2003; 75: 1858–1864.

86. Lollinga WT, de Wit RH, Rahbar A et al. Human cytomegalovirus-encoded receptor US28 is expressed in renal allografts and facilitates viral spreading in vitro. *Transplantation* 2017; 101: 531–540.

87. Law JP, Borrow R, McNulty D, Sharif A, Ferro CJ. Early renal function trajectories, cytomegalovirus serostatus and long-term graft outcomes in kidney transplant recipients. *BMC Nephrol* 2021; 22: 102.

88. Lollinga WT, Rurenga-Gard L, van Doesum W et al. High human cytomegalovirus DNAemia early post-transplantation associates with irreversible and progressive loss of renal function - a retrospective study. *Transpl Int* 2017; 30: 817–826.

89. Betjes MGH, Litjens NHR. High numbers of differentiated CD28null CD8⁺ T cells are associated with a lowered risk for late rejection and graft loss after kidney transplantation. *PloS One* 2020; 15: e0228096.

90. Bolovan-Fritts CA, Trout RN, Spector SA. High T-cell response to human cytomegalovirus induces chemokine-mediated endothelial cell damage. *Blood* 2007; 110: 1857–1863.

91. Wahlin F, Fasth AER, Karp K et al. Atherosclerosis in rheumatoid arthritis: associations between anti-cytomegalovirus IgG antibodies, CD4⁺CD28null T-cells, CD8⁺CD28null T-cells and intima-media thickness. *Clin Exp Rheumatol* 2021; 39: 578–586.

92. Sampani E, Stangou M, Daikidou DV et al. Influence of end stage renal disease on CD28 expression and T-cell immunity. *Nephrology (Carlton)* 2021; 26: 185–196.

93. Sun Z, Ye H, Tang B et al. Prevalence of circulating CD4⁺CD28null T cells is associated with early atherosclerotic damage in patients with end-stage renal disease undergoing hemodialysis. *Hum Immunol* 2013; 74: 6–13.

94. Rodriguez-Carrio J, Carrillo-López N, Ulloa C et al. Novel immune cell subsets exhibit different associations with vascular outcomes in chronic kidney disease patients-identifying potential biomarkers. *Front Med (Lausanne)* 2021; 8: 618286.

95. Gerli R, Schillaci G, Giordano A et al. CD4⁺CD28⁻ T lymphocytes contribute to early atherosclerotic damage in rheumatoid arthritis patients. *Circulation* 2004; 109: 2744–2748.

96. Modi ZJ, Lu Y, Ji N et al. Risk of cardiovascular disease and mortality in young adults with end-stage renal disease: an analysis of the US renal data system. *JAMA Cardiol* 2019; 4: 353–362.

97. Canney M, Gunning HM, Zheng Y et al. The risk of cardiovascular events in individuals with primary glomerular diseases. *Am J Kidney Dis* 2022 ahead of publication. https://doi.org/10.1053/j.ajkd.2022.04.005

98. Prigent L, Robineau M, Jouneau S et al. The aryl hydrocarbon receptor is functionally upregulated early in the course of human T-cell activation. *Eur J Immunol* 2014; 44: 1330–1340.

99. Kim HY, Yoo TH, Hwang Y et al. Indoxyl sulfate (IS)-mediated immune dysfunction provokes endothelial damage in patients with end-stage renal disease (ESRD). *Sci Rep* 2017; 7: 3057.

100. Ichii O, Otsuka-Kanazawa S, Nakamura T et al. Indoxyl sulfate and aryl-hydrocarbon receptor ligand. *PLoS One* 2014; 9: e108448.

101. Parish ST, Wu JE, Effros RB. Sustained CD28 expression delays multiple features of replicative senescence in human CD8 T lymphocytes. *J Clin Immunol* 2010; 30: 798–805.
102. Wang JS, Chen WL, Weng TP. Hypoxic exercise training reduces senescent T-lymphocyte subsets in blood. *Brain Behav Immun* 2011; 25: 270–278.

103. Donovan T, Bain AL, Tu W, Pyne DB, Rao S. Influence of exercise on exhausted and senescent T cells: a systematic review. *Front Physiol* 2021; 12: 668327.

104. Broyl E, Vallejo AN, Matteson EL, Witkowski JM, Weyand CM, Goronzy JJ. Modulation of CD28 expression with anti-tumor necrosis factor α therapy in rheumatoid arthritis. *Arthritis Rheum* 2005; 52: 2996–3003.

105. Rizzello V, Liuzzo G, Brugaletta S, Rebuzzi A, Biasucci LM, Crea F. Modulation of CD4$^{+}$CD28null T lymphocytes by tumor necrosis factor-α blockade in patients with unstable angina. *Circulation* 2006; 113: 2272–2277.

106. Hu S, Lin C, Cai X et al. The biological disease-modifying antirheumatic drugs and the risk of cardiovascular events: a systematic review and meta-analysis. *Mediators Inflamm* 2021; 2021: 7712587–7712512.

107. Scarsi M, Ziglioli T, Airò P. Decreased circulating CD28-negative T cells in patients with rheumatoid arthritis treated with abatacept are correlated with clinical response. *J Rheumatol* 2010; 37: 911–916.

108. Ozen G, Pedro S, Michaud K. The risk of cardiovascular events associated with disease-modifying antirheumatic drugs in rheumatoid arthritis. *J Rheumatol* 2021; 48: 648–655.

109. Bullenkamp J, Mengoni V, Kaur S et al. Interleukin-7 and interleukin-15 drive CD4$^{+}$CD28null T lymphocyte expansion and function in patients with acute coronary syndrome. *Cardiovasc Res* 2021; 117: 1935–1948.

110. Hasni SA, Gupta S, Davis D et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. *Nat Commun* 2021; 12: 3391.

111. Zhou M, Guo C, Li X et al. JAK/STAT signaling controls the fate of CD8$^{+}$CD103$^{+}$ tissue-resident memory T cell in lupus nephritis. *J Autoimmun* 2020; 109: 102424.

112. Baldini C, Moriconi FR, Galimberti S, Libby P, De Caterina R. The JAK-STAT pathway: an emerging target for cardiovascular disease in rheumatoid arthritis and myeloproliferative neoplasms. *Eur Heart J* 2021; 42: 4389–4400.

113. Ytterberg SR, Bhatt DL, Mikuls TR et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. *N Engl J Med* 2022; 386: 316–326.

114. Dong L, Nordlohne J, Ge S et al. T Cell CX3CR1 mediates excess atherosclerotic inflammation in renal impairment. *J Am Soc Nephrol* 2016; 27: 1753–1764.

115. Wick G, Jakic B, Buszko M, Wick MC, Grundtman C. The role of heat shock proteins in atherosclerosis. *Nat Rev Cardiol* 2014; 11: 516–529.

116. Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases. *Am J Physiol Renal Physiol* 2012; 302: F1351–F1361.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
In this article, we discuss the role of immunosenescence in the ethiopathogenesis and course of glomerulonephritis. We integrate an overview of (non) modifiable risk factors with potential relevance for treatment. We also describe the strikingly similar role of senescent lymphocytes and its mediators such as pro-inflammatory cytokines, chemokines and integrins in the development of atherosclerotic disease.