Multidrug resistance, inappropriate empiric therapy, and hospital mortality in *Acinetobacter baumannii* pneumonia and sepsis

Marya D. Zilberberg¹*, Brian H. Nathanson², Kate Sulham³, Weihong Fan³ and Andrew F. Shorr⁴

Abstract

Background: The relationship between multidrug resistance (MDR), inappropriate empiric therapy (IET), and mortality among patients with *Acinetobacter baumannii* (AB) remains unclear. We examined it using a large U.S. database.

Methods: We conducted a retrospective cohort study using the Premier Research database (2009–2013) of 175 U.S. hospitals. We included all adult patients admitted with pneumonia or sepsis as their principal diagnosis, or as a secondary diagnosis in the setting of respiratory failure, along with antibiotic administration within 2 days of admission. Only culture-confirmed infections were included. Resistance to at least three classes of antibiotics defined multidrug-resistant AB (MDR-AB). We used logistic regression to compute the adjusted relative risk ratio (RRR) of patients with MDR-AB receiving IET and IET’s impact on mortality.

Results: Among 1423 patients with AB infection, 1171 (82.3 %) had MDR-AB. Those with MDR-AB were older (63.7 ± 15.4 vs. 61.0 ± 16.9 years, *p* = 0.014). Although chronic disease burden did not differ between groups, the MDR-AB group had higher illness severity than those in the non-MDR-AB group (intensive care unit 68.0 % vs. 59.5 %, *p* < 0.001; mechanical ventilation 56.2 % vs. 42.1 %, *p* < 0.001). Patients with MDR-AB were more likely to receive IET than those in the non-MDR-AB group (76.2 % MDR-AB vs. 13.8 % non-MDR-AB, *p* < 0.001). In a regression model, MDR-AB strongly predicted receipt of IET (adjusted RRR 5.5, 95 % CI 4.0–7.7, *p* < 0.001). IET exposure was associated with higher hospital mortality (adjusted RRR 1.8, 95 % CI 1.4–2.3, *p* < 0.001).

Conclusions: In this large U.S. database, the prevalence of MDR-AB among patients with AB infection was > 80 %. Harboring MDR-AB increased the risk of receiving IET more than fivefold, and IET nearly doubled hospital mortality.

Keywords: Pneumonia, Sepsis, *Acinetobacter baumannii*, Multidrug resistance, Inappropriate empiric therapy, Outcomes
a multicenter, retrospective cohort study to explore the
impact of MDR in IET and of IET on hospital mortality
in AB.

Methods
We conducted a multicenter retrospective cohort study
of patients admitted to the hospital with pneumonia
and/or sepsis and included in the Premier Research
database in the 2009–2013. We hypothesized that
multidrug-resistant AB (MDR-AB) (primary exposure)
increases the risk of receiving IET (primary outcome),
and that IET increases hospital mortality. Because this
study used already-existing, Health Insurance Portability
and Accountability Act (“HIPAA”)–compliant, fully de-
deidentified data, it was exempt from institutional review
board (IRB) review.

Patient population
Patients were included if they were adults (aged ≥ 18 years)
hospitalized with pneumonia and/or sepsis. Pneumonia
was identified by the principal diagnosis International
Classification of Diseases, Ninth Revision, Clinical Modifi-
cation (ICD-9-CM) codes 481–486, or by respiratory
failure codes (518.81 or 518.84) with pneumonia as a
secondary diagnosis. Sepsis was identified by the principal
diagnosis codes 038, 038.9, 020.0, 790.7, 995.92, or 785.52,
or by respiratory failure codes (518.81 or 518.84) with
sepsis as a secondary diagnosis [15–18]. Only patients
with community-onset (present on admission) infection
and antibiotic treatment beginning within the first 2
hospital days and continued for at least three consecutive
days or until discharge were included [15–17]. Patients
were excluded if they had been transferred from another
acute care facility, had cystic fibrosis, or had a hospital
length of stay of 1 day or less. Those with both pneu-
monia and sepsis were included in the pneumonia group.
Patients were followed until death in or discharge from
the hospital. Only patients with a positive AB culture
from a pulmonary or blood source who met the above
criteria were included in the analysis.

Data source
The Premier Research database, an electronic laboratory,
pharmacy, and billing data repository for 2009–2013,
contains approximately 15 % of all U.S. hospitalizations
nationwide. In addition to patient age, sex, race and/or
ethnicity, principal and secondary diagnoses, and proce-
dures, the database contains a date-stamped log of all
medications, laboratory tests, and diagnostic and therapeu-
tic services charged to the patient or the patient’s
insurer. We used data from 176 U.S. institutions that
submit microbiological data into the database. Eligible
time began only following the commencement of micro-
biological data submission by each institution.

Baseline variables
We classified infection (pneumonia or sepsis) as
healthcare-associated (HCA) if one or more of the follow-
ning were present: (1) prior hospitalization within 90 days of
the index hospitalization, (2) hemodialysis, (3) admission
from a long-term care facility, and/or (4) immune suppres-
sion. All other infections were considered community-
aquired (CA). Patient-level factors included demographic
variables and comorbid conditions. Charlson comorbid-
ity index score was computed as a measure of the burden
of chronic illness, while intensive care unit (ICU) admission,
mechanical ventilation, and vasopressor use served as
markers for disease severity. Hospital-level characteristics
examined were geographic region, size, teaching status, and
urbanicity.

Microbiological and treatment-related variables
and definitions
Blood and respiratory cultures had to be obtained within
the first 2 days of hospitalization. AB isolates were classi-
cified as S (susceptible), I (intermediate), or R (resistant).
For the purposes of the present analyses, I and R were
grouped together as nonsusceptible. MDR-AB was de-
finite, per Magiorakos et al., as any AB resistant to at
least one agent in at least three antimicrobial classes
[19]. Similarly, extensively drug resistant AB (XDR-AB)
was defined as an AB resistant to at least one agent in
all but two or fewer classes listed above, and pandrug-
resistant AB (PDR-AB) as an AB resistant to all anti-
microbial agents listed above [19].
IET was present if the antibiotic administered did not
cover the organism or if coverage did not start within
2 days of obtaining the positive culture. Because the role
of combination therapy in treating AB is not well defined,
combination therapy was not included in the definition
of IET [20]. IET was deemed “indeterminate” if the
susceptibility of AB to the regimen received was not
reported. These cases were excluded from the IET
analysis. All microbiological testing was performed at the
institutions contributing data to the database and con-
formed to the Clinical & Laboratory Standards Institute
standards.

Statistical analyses
We compared characteristics of patients infected with
MDR-AB with those of patients with non-MDR-AB
infection, as well as characteristics of patients who
received IET with those of patients treated with non-IET.
Continuous variables were reported as means with SD
when distributed normally or as medians with 25th and
75th percentiles when skewed. Differences between mean
values were tested via Student’s t test, and differences
between medians were assessed using the Mann-Whitney
U test. Categorical data were summarized as proportions,
Table 1 Baseline characteristics	Non-MDR-AB (n = 252)	%	MDR-AB (n = 1171)	%	p Value
Mean age, years (SD)	61.0 (16.9)		63.7 (15.4)		0.014
Male sex	134	53.2 %	633	54.1 %	0.799
Race/ethnicity					
White	134	53.2 %	633	54.1 %	< 0.001
Black					
Hispanic	159	63.1 %	738	63.0 %	0.632
Other	55	21.8 %	276	23.6 %	0.362
Admission source					
Non-healthcare facility (including from home)	167	66.3 %	573	48.9 %	< 0.001
Clinic	14	5.6 %	26	2.2 %	0.217
Transfer from ECF	13	5.2 %	280	23.9 %	0.007
Transfer from another non-acute care facility	3	1.2 %	45	3.8 %	0.362
Emergency department	54	21.4 %	236	20.2 %	0.632
Other	1	0.4 %	11	1.0 %	0.632
Elixhauser comorbidities					
Congestive heart failure	61	24.2 %	353	30.1 %	0.060
Valvular disease	21	8.3 %	92	7.9 %	0.800
Pulmonary circulation disease	16	6.3 %	107	9.1 %	0.153
Peripheral vascular disease	33	13.1 %	145	12.4 %	0.756
Paralysis	32	12.7 %	292	24.9 %	< 0.001
Other neurological disorders	44	17.5 %	300	25.6 %	0.006
Chronic pulmonary disease	108	42.9 %	507	43.3 %	0.898
Diabetes without chronic complications	65	25.8 %	390	33.3 %	0.020
Diabetes with chronic complications	21	8.3 %	96	8.2 %	0.943
Hypothyroidism	28	11.1 %	182	15.5 %	0.072
Renal failure	66	26.2 %	359	30.7 %	0.160
Liver disease	17	6.7 %	37	3.2 %	0.007
Peptic ulcer disease with bleeding	0	0.0 %	0	0.0 %	1.000
AIDS	0	0.0 %	0	0.0 %	1.000
Lymphoma	1	0.4 %	16	1.4 %	0.336
Metastatic cancer	20	7.9 %	30	2.6 %	< 0.001
Solid tumor without metastasis	17	6.7 %	31	2.6 %	0.001
Rheumatoid arthritis/collagen vascular	5	2.0 %	46	3.9 %	0.132
Coagulopathy	45	17.9 %	134	11.4 %	0.005
Obesity	41	16.3 %	191	16.3 %	0.987
Weight loss	49	19.4 %	392	33.5 %	< 0.001
Fluid and electrolyte disorders	145	57.5 %	628	53.6 %	0.258
Chronic blood loss anemia	5	2.0 %	16	1.4 %	0.461
Deficiency anemia	97	38.5 %	593	50.6 %	< 0.001
Alcohol abuse	22	8.7 %	35	3.0 %	< 0.001
Drug abuse	16	6.3 %	29	2.5 %	0.001
Psychosis	13	5.2 %	77	6.6 %	0.402
Depression	29	11.5 %	161	13.7 %	0.343
Hypertension	158	62.7 %	669	57.1 %	0.104
and chi-square test or Fisher’s exact test (when cell counts were ≤4) was used to examine differences between groups.

We developed a generalized logistic regression model to explore the relationship between MDR-AB and the risk of IET. Covariates in the model included demographics (sex, age, whether the infection was HCA), Elixhauser comorbidities, and measures of illness severity by hospital day 2. We calculated the relative risk ratio with 95 % CI of receiving IET for MDR-AB vs. non-MDR-AB, based on Huber-White robust standard errors clustered at the hospital level [21]. To confirm our results, we created two other models: (1) a nonparse model that included all of the predictors in the generalized logistic regression model with a large number of additional treatments present or absent by hospital day 2, and (2) a propensity-matched model with propensity for MDR-AB derived from a logistic regression model using the nonparse model’s predictors, and MDR-AB matched to non-MDR-AB patients using a 5:1 Greedy algorithm [22, 23].

All tests were two-tailed, and a p value < 0.05 was deemed a priori to represent statistical significance. All analyses were performed in Stata/MP 13.1 for Windows software (StataCorp LP, College Station, TX, USA).

Results

Among the 229,028 enrolled patients with pneumonia or sepsis, 1423 (0.6 %) had a pulmonary or blood culture positive for AB, of which 1171 (82.3 %) were MDR, 239 (16.8 %) were XDR, and 0 (0.0 %) were PDR. Patients with MDR-AB were older (63.7 ± 15.4 vs. 61.0 ± 16.9 years, \(p = 0.014 \)) than those with non-MDR-AB, while the racial distributions were comparable in both groups (Table 1). Although the distribution of some chronic conditions varied, there was no difference between the groups in the Charlson comorbidity index (Table 1). MDR-AB was more common than non-MDR-AB in the West and the Midwest, in urban hospitals, and in hospitals of medium size (200–499 beds). Both large hospitals (500+ beds) and those with an academic program were less likely to have MDR-AB than non-MDR-AB (Table 1).

In both groups (MDR-AB and non-MDR-AB), the majority (approximately three-fourths) of the patients had a diagnosis of sepsis, with the remaining one-fourth having pneumonia (Table 2). Patients harboring MDR-AB were more likely to have an HCA infection (64.9 % vs. 42.5 %, \(p < 0.001 \)) along with higher illness severity by day 2 of admission (ICU 68.0 % vs. 59.5 %, \(p < 0.001 \); mechanical ventilation 56.2 % vs. 42.1 %, \(p < 0.001 \); vaspressors
15.5 % vs. 17.6 %, \(p = 0.420 \) than non-MDR-AB patients (Table 2). Although patients in the MDR-AB group had a higher prevalence of use of antipseudomonal carbapenems, aminoglycosides, and polymyxins than those in the non-MDR-AB group, they were also far more likely to receive IET (76.2 % MDR-AB vs. 13.8 % non-MDR-AB, \(p < 0.001 \)), regardless of infection type (Fig. 1). Unadjusted hospital mortality among patients with MDR-AB was nearly double that in those with non-MDR-AB (23.7 % vs. 12.7 %, \(p < 0.001 \)).

When we compared the cohort of 1098 patients (77.2 % of all AB patients) with valid, known antimicrobial treatment data based on the receipt of IET, we found that only 379 (34.5 %) received appropriate therapy (Table 3). The rate of sepsis upon admission did not significantly differ between IET and non-IET patients (Table 3). Unadjusted hospital mortality was higher in patients receiving IET than non-IET (23.6 % vs. 16.6 %, \(p = 0.007 \)) in all infection types (Fig. 2).

In a regression model designed to explore the impact of MDR on the risk of IET exposure, MDR-AB was the single strongest predictor of receiving IET (adjusted relative risk ratio 5.5, 95 % CI 4.0–7.7, \(p < 0.001 \)) (Table 4). The confirmatory analyses produced similar risk ratios.

In a nonparse generalized regression model adjusting for all confounders (demographics, comorbidities, severity of illness measures, hospital characteristics), IET was associated with an increased risk of in-hospital mortality (adjusted relative risk ratio 1.76; 95 % CI 1.36–2.28, \(p < 0.001 \) (Table 4). The parse model and propensity-matched analysis produced similar risk ratios.
Table 3 Characteristics of the cohort, based on receipt of inappropriate empiric therapy

	Non-IET (n = 379)		IET (n = 719)		p Value	
Baseline characteristics						
Mean age, years (SD)	62.4 (15.6)		62.7 (15.9)		0.767	
Male sex	202 53.3 %		373 51.9 %		0.654	
Race/ethnicity						
White	236 62.3 %		464 64.5 %		0.055	
Black	103 27.2 %		159 22.1 %		0.239	
Hispanic	7 1.8 %		32 4.5 %		0.451	
Other	33 8.7 %		64 8.9 %		0.944	
Admission source						
Non-healthcare facility	223 58.8 %		357 49.7 %		0.022	
Hospital	14 3.7 %		15 2.1 %		0.239	
Transfer from ECF	69 18.2 %		173 24.1 %		0.133	
Transfer from another	8 2.1 %		20 2.8 %		0.944	
non-acute care facility	63 16.6 %		148 20.6 %		0.944	
Other	2 0.5 %		6 0.9 %		0.944	
Elixhauser comorbidities						
Congestive heart failure	97 21.5 %		209 30.4 %		0.222	
Valvular disease	30 6.6 %		53 7.7 %		0.746	
Pulmonary circulation disease	26 5.8 %		62 9.0 %		0.306	
Peripheral vascular disease	51 11.3 %		82 11.9 %		0.322	
Paralysis	85 18.8 %		176 25.6 %		0.448	
Other neurological disorders	82 18.1 %		185 26.9 %		0.133	
Chronic pulmonary disease	164 36.3 %		305 44.4 %		0.786	
Diabetes without chronic	105 23.2 %		241 35.1 %		0.049	
complications	38 8.4 %		56 8.2 %		0.208	
Diabetes with chronic	49 10.8 %		119 17.3 %		0.113	
complications	107 23.7 %		217 31.6 %		0.501	
Liver disease	17 3.8 %		27 3.9 %		0.557	
Peptic ulcer disease	0 0.0 %		0 0.0 %		1.000	
with bleeding	0 0.0 %		0 0.0 %		1.000	
AIDS	0 0.0 %		0 0.0 %		1.000	
Lymphoma	2 0.4 %		10 1.5 %		0.236	
Metastatic cancer	24 5.3 %		17 2.5 %		0.001	
Solid tumor without	18 4.0 %		19 2.8 %		0.066	
metastasis	11 2.4 %		29 4.2 %		0.342	
Rheumatoid arthritis/collagen	58 12.8 %		83 12.1 %		0.077	
vascular	Obesity	48 10.6 %		128 18.6 %		0.027
Weight loss	94 20.8 %		250 36.4 %		0.001	
Fluid and electrolyte	219 48.5 %		393 57.2 %		0.322	
disorders	Chronic blood loss	5 1.1 %		9 1.3 %		0.924
anemia	Deficiency anemia	173 38.3 %		363 52.8 %		0.127
Alcohol abuse	18 4.0 %		24 3.5 %		0.246	
Drug abuse	16 3.5 %		19 2.8 %		0.157	
Psychosis	22 4.9 %		45 6.6 %		0.765	
Depression	50 11.1 %		96 14.0 %		0.941	
Hypertension	215 47.6 %		413 60.1 %		0.821	
Table 3 Characteristics of the cohort, based on receipt of inappropriate empiric therapy (Continued)

Charlson comorbidity score	0	19.0 %	164	22.8 %	0.152
	1	28.5 %	177	24.6 %	
	2	16.9 %	151	21.0 %	
	3	16.4 %	108	15.0 %	
	4	9.0 %	66	9.2 %	
	5+	10.3 %	53	7.4 %	
Mean (SD)	2.2 (2.2)	2.0 (1.9)	0.043		
Median [IQR]	2 [1–3]	2 [1–3]	0.202		

Infection characteristics and treatments

Infection characteristics

Infection characteristics	296	78.1 %	525	73.0 %	0.065
Sepsis	83	21.9 %	194	27.0 %	
Pneumonia	222	58.6 %	464	64.5 %	0.053
HCA	217	57.3 %	693	96.4 %	< 0.001
MDR-AB					

Illness severity

Illness severity	249	65.7 %	482	67.0 %	0.655
ICU admission	206	54.4 %	390	54.2 %	0.972
Mechanical ventilation	64	16.9 %	121	16.8 %	0.981

Antibiotics administered

Antibiotics administered	91	24.0 %	123	17.1 %	0.006
Antipseudomonal penicillins with β-lactamase inhibitor	97	25.6 %	209	29.1 %	0.222
Antipseudomonal fluoroquinolones	177	46.7 %	339	47.1 %	0.888
Extended-spectrum cephalosporins	190	50.1 %	350	48.7 %	0.647
Antipseudomonal carbapenems	140	36.9 %	269	37.4 %	0.877
Aminoglycosides	5	1.3 %	9	1.3 %	0.924
Penicillins with β-lactamase inhibitors	12	3.2 %	9	1.3 %	0.028
Polymyxins	7	1.8 %	23	3.2 %	0.191
Folate pathway inhibitors	1	0.3 %	4	0.6 %	0.665
Tetracyclines					

Hospital characteristics

Hospital characteristics	118	31.1 %	234	32.5 %	< 0.001
U.S. region	60	15.8 %	91	12.7 %	
Midwest	167	44.1 %	254	35.3 %	
Northeast	34	9.0 %	140	19.5 %	

Number of beds

Number of beds	41	10.8 %	78	10.8 %	0.011
	65	17.2 %	165	22.9 %	
	143	37.7 %	292	40.6 %	
	130	34.3 %	184	25.6 %	
Teaching	212	55.9 %	292	40.6 %	< 0.001
Urban	357	94.2 %	696	96.8 %	0.038
Hospital mortality	63	16.6 %	170	23.6 %	0.007

Abbreviations: IET inappropriate empiric therapy, ECF extended care facility, HCA healthcare-associated, MDR-AB multidrug-resistant Acinetobacter baumannii, ICU intensive care unit
Discussion

In this large, multicenter cohort study, we have demonstrated that CA and HCA pneumonia and sepsis are rarely caused by AB. However, when AB is present, it is most often MDR. Moreover, harboring MDR puts patients at a fivefold increased risk of receiving IET, which is in turn associated with increased hospital mortality.

Multiple investigators have documented the exceedingly high and rising rate of AB resistance. In a multicenter microbiology database study in the United States, we noted a rise in MDR-AB from 21.4 % between 2003 and 2005 to 35.2 % in the 2009–2012 period [3]. Similarly, the Center for Disease Dynamics, Economics & Policy (CDDEP) reported an MDR-AB increase from 32.1 % in 2009 to 51.0 % in 2010 [2]. The discrepancy between the two studies reflects the populations evaluated and the definitions of MDR applied. While our prior investigation was limited to only patients with severe sepsis and septic shock, the CDDEP surveillance included all infection sources. Additionally, we limited drug definitions to those where clinical efficacy data were available, while CDDEP included all pertinent drug categories.

Our present study, though not longitudinal, confirms the high probability of MDR-AB, though the rate is higher than that in either of the surveillance studies. Although the our examined population is more similar to that in our previous surveillance study than to the CDDEP surveillance, the IET definition is more in line with that of the CDDEP [19]. Because our data represent years 2009–2013, the high prevalence may simply be consistent with continued growth of this resistant pathogen beyond the time frame examined in either of the previous surveillance efforts.

We confirm that antimicrobial resistance confers a high risk for IET. A previous single-center study reported that having severe sepsis or septic shock caused by carbapenem-resistant AB doubled the risk of IET [14]. This is the case for any gram-negative pathogen of severe sepsis or septic shock [24]. In the present study, the effect size was even greater, with a more than fivefold increase in the relative risk of receiving IET compared with non-MDR-AB. This suggests that clinicians should consider broad empiric coverage when AB is either suspected or identified by rapid testing.

In sepsis and pneumonia, it has been shown repeatedly that IET increases hospital mortality two- to fourfold and that escalation of treatment in response to culture results fails to alter this outcome [4–13]. Specific to AB sepsis and septic shock patients, Shorr et al. recently reported a significantly elevated risk of mortality associated with IET (risk ratio 1.42, 95 % CI 1.10–1.58, \(p = 0.015 \)) [14]. We confirm this observation in a cohort of patients with AB pneumonia or sepsis. However, this association

Table 4

Risk of IET in the setting of MDR-AB	Marginal effect, IET in non-MDR-AB	Marginal effect, IET in MDR-AB	Adjusted relative risk ratio (95 % CI)	\(p \) Value
Method				
Parse model	13.8 %	76.2 %	5.5 (4.0–7.7)	< 0.001
Propensity score (based on 204 matched pairs; 81.0 % matched)	13.4 %	73.9 %	5.5 (3.6–8.4)	< 0.001
Nonparse model	14.4 %	75.6 %	5.3 (3.7–7.4)	< 0.001
Risk of death in the setting of IET	Marginal effect, mortality in non-IET	Marginal effect, mortality in IET	Adjusted relative risk ratio (95 % CI)	\(p \) Value
Method				
Parse model	15.9 %	24.3 %	1.53 (1.21–1.93)	< 0.001
Propensity score (based on 226 matched pairs; 59.6 % matched)	15.0 %	27.8 %	1.85 (1.35–2.54)	< 0.001
Nonparse model	14.5 %	25.6 %	1.76 (1.36–2.28)	< 0.001

IET inappropriate empiric therapy, MDR-AB multidrug-resistant Acinetobacter baumannii

Fig. 2 Mortality and inappropriate empiric therapy. HCA healthcare-associated.
has not always been found in studies of AB infection. While researchers in two additional cohort studies reported a two- to sixfold rise in hospital mortality in association with IET for AB, six other study groups failed to detect such an association [25–32]. Though it is not clear why such a well-recognized relationship would not exist specifically in the setting of AB, there are a number of potential reasons for this divergence. Some of the previous studies suffer from several methodological issues, such as small sample size, incomplete adjustment for or unmeasured confounders, and overadjusting for some factors that may be collinear.

Our study has a number of strengths and limitations. It included a large multicenter cohort representative of U.S. institutions and thus has broad generalizability. Though largely representative of U.S. institutions overall, the southern portion of the United States is overrepresented in the database. Although this made the study susceptible to bias, particularly selection bias, we dealt with it by setting a priori enrollment criteria and definitions for the main exposures and outcomes. Though some misclassification is possible, the main exposures (MDR-AB, IET) and outcomes (IET, hospital mortality) are minimally susceptible to misclassification. At the same time, in at least some of the identified cases, AB might have represented colonization rather than true infection. Additionally, the fact that fully one-third of all MDR-AB were isolates from cases defined as CA suggests that some misclassification may exist in this group; that is, it is possible that we were unable to identify these patients’ exposure to the healthcare system with the variables available in the current database. Although confounding is a potential issue in observational studies, we attempted to eliminate this through regression analyses using a large number of potentially confounding variables. Nevertheless, the possibility of residual confounding remains.

Conclusions

In this largest representative multicenter study to date, although AB was a rare pathogen in CA or HCA pneumonia or sepsis, over 80 % of the AB isolates exhibited MDR. MDR increased the risk of receiving IET fivefold. In turn, IET was associated with increased risk of inhospital mortality.

Key messages

- AB is a rare pathogen in community-acquired or healthcare-associated pneumonia or sepsis.
- Eighty percent of all AB in this population is MDR.
- MDR raises the risk of receiving inappropriate empiric therapy fivefold.
- Inappropriate empiric therapy increases the risk of hospital mortality.

Abbreviations

AB, Acinetobacter baumannii; CA, community-acquired; CDDEP, Center for Disease Dynamics, Economics & Policy; ECF, extended care facility; HCA, healthcare-associated; I, intermediate; ICU, intensive care unit; IET, inappropriate empiric therapy; IRB, institutional review board; MDR, multidrug resistance; PDR, pandrug-resistant; R, resistant; RRR, relative risk ratio; S, susceptible; XDR, extensively drug resistant

Funding

This study was supported by a grant from The Medicines Company, Parsippany, NJ, USA.

Authors’ contributions

MDZ, KS, WF, and AFS contributed substantially to the study design, the data interpretation, and the writing of the manuscript. BHN had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. BHN contributed substantially to the study design, the data analysis, and the writing of the manuscript. All authors read and approved the final manuscript.

Competing interests

MDZ, an employee of EvI Med Research Group, LLC, has served as a consultant to and/or received research funding from The Medicines Company, Pfizer, Astellas, Tetraphase, Theravance, and Merck. BHN is an employee of OptiStatim, which has received funding from EvI Med Research Group, LLC, to conduct this study. KS is an employee and stockholder of The Medicines Company. WF is an employee and stockholder of The Medicines Company. Although KS and WF are employees of the sponsor and participated in the study as coinvestigators, the larger sponsor had no role in the study design, the data analysis or interpretation, or publication decisions. AFS has served as a consultant to, received research support from, or been a speaker for Abbott, Actavis, Alos BioPharma, AstraZeneca, Bayer, Bristol-Myers Squibb, Cardeas Pharma, The Medicines Company, Merck, Pfizer, Roche, Tetraphase Pharmaceuticals, Theravance Biopharma, and Woekhardt Pharma.

Consent for publication

All authors have reviewed and approved the manuscript for publication.

Ethical approval and consent to participate

Because this study used already-existing, HIPAA-compliant, fully de-identified data, it was exempt from IRB review.

Author details

1. EvI Med Research Group, LLC, PO Box 303, Goshen, MA 01032, USA.
2. OptiStatim, LLC, Longmeadow, MA, USA.
3. The Medicines Company, Parsippany, NJ, USA.
4. Washington Hospital Center, 110 Irving Street NW, Washington, DC 20010, USA.

Received: 5 May 2016 **Accepted:** 23 June 2016 **Published online:** 11 July 2016

References

1. Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States, 2013. Atlanta, GA: CDC; 23 Apr 2013. p. 59. Available at http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf#page=59. Accessed 8 Jan 2015.
2. The Center for Disease Dynamics, Economics and Policy (CDDEP). Resistance map: Acinetobacter baumannii overview. Available at http://www.cddep.org/projects/resistance_map/acinetobacter_baumannii_overview. Accessed 8 Jan 2016.
3. Zilberberg MD, Kollef MH, Shorr AF. Secular trends in Acinetobacter baumannii resistance in respiratory and blood stream specimens in the United States, 2003 to 2012: a survey study. J Hosp Med. 2016;11:21–6.
4. Micek ST, Kollef KE, Reichley RM, Roubinian N, Kollef MH. Healthcare-associated pneumonia and community-acquired pneumonia: a single-center experience. Antimicrob Agents Chemother. 2007;51:3568–73.
5. Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest. 2002;122:262–8.
6. Alvarez-Lerma F, ICU-Acquired Pneumonia Study Group. Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. Intensive Care Med. 1996;22:387–94.
7. Zilberberg MD, Short AF, Micek MT, Mody SH, Kollef MH. Antimicrobial therapy escalation and hospital mortality among patients with HCAP: a single center experience. Chest. 2008;134:963–8.
8. Dellinger RP, Levy M, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. 2008. Crit Care Med. 2008;36:296–327.
9. Short AF, Micek ST, Welch EC, Doherty JA, Reichley RM, Kollef MH. Inappropriate antibiotic therapy in Gram-negative sepsis increases hospital length of stay. Crit Care Med. 2011;39:46–51.
10. Kollef MH, Sherman G, Ward S, Fraser VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest. 1999;115:462–74.
11. Garnacho-Montero J, Garcia-Garmendia JL, Barreiro-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med. 2003;31:274–2.
12. Harbath S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med. 2003;115:529–35.
13. Ferrer R, Artigas A, Suarez D, Palencia E, Levy MM, Arenzana A, et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009;180:861–6.
14. Short AF, Zilberberg MD, Micek ST, Kollef MH. Predictors of hospital mortality among septic ICU patients with Acinetobacter spp. bacteremia: a cohort study. BMC Infect Dis. 2014;14:572.
15. Rothberg MB, Pekow PS, Priya A, Zilberberg MD, Belfort R, Skiest D, et al. Using highly detailed administrative data to predict pneumonia mortality. PLoS One. 2014;9:e87382.
16. Rothberg MB, Haessler S, Lagu T, Lindenauer PK, Pekow PS, Priya A, et al. Outcomes of patients with healthcare-associated pneumonia: worse disease or sicker patients? Infect Control Hosp Epidemiol. 2014;35 Suppl 3:5107–15.
17. Rothberg MB, Zilberberg MD, Pekow PS, Priya A, Haessler S, Belfort R, et al. Association of guideline-based antimicrobial therapy and outcomes in healthcare-associated pneumonia. J Antimicrob Chemother. 2015;70:1573–9.
18. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–54.
19. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–78.
20. Liu Q, Li W, Feng Y, Tao C. Efficacy and safety of polymyxins for the treatment of Acinetobacter baumannii infections: a systematic review and meta-analysis. PLoS One. 2014;9:e98091.
21. Williams RL. A note on robust variance estimation for cluster-correlated data. Biometrics. 2000;56:645–6.
22. Parsons LS. Reducing bias in a propensity score matched-pair sample using greedy matching techniques. Paper 214-26. In: Proceedings of the twenty-sixth annual SAS users group international conference. Cary, NC: SAS Institute; 2001.
23. Guo S, Fraser MW. Propensity score analysis: statistical methods and applications. 2nd ed. Thousand Oaks, CA: Sage Publications; 2014.
24. Zilberberg MD, Short AF, Micek ST, Vazquez-Guillamet C, Kollef MH. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care. 2014;18:596.
25. Kwon KT, Oh WS, Song JH, Chang HH, Jung SJ, Kim SW, et al. Impact of imipenem resistance on mortality in patients with Acinetobacter baumannii bacteremia. J Antimicrob Chemother. 2007;59:525–30.
26. Erbay A, Idil A, Gozelnia C, Municucuo I, Balaban N. Impact of early appropriate antimicrobial therapy on survival in Acinetobacter baumannii bloodstream infections. Int J Antimicrob Agents. 2009;34:575–9.
27. Sunenshine RH, Wright MD, Maragakis LL, Harris AD, Song X, Heiden J, et al. Multidrug-resistant Acinetobacter baumannii infection mortality rate and length of hospitalization. Emerg Infect Dis. 2007;13:97–103.
28. Chen HP, Chen TL, Lai CH, Fung CP, Wong WW, Yu KW, et al. Predictors of mortality in Acinetobacter baumannii bacteremia. J Microbiol Immunol Infect. 2005;38:127–36.
29. Choi JY, Park YS, Kim CO, Park YS, Yoon HJ, Shin SY, et al. Mortality risk factors of Acinetobacter baumannii bacteremia. Intern Med J. 2005;35:599–603.
30. Falagas ME, Kasiakou SK, Rafalidis PI, Zougalias G, Morfou P. Comparison of mortality of patients with Acinetobacter baumannii bacteremia receiving appropriate and inappropriate empirical therapy. J Antimicrob Chemother. 2006;57:1251–4.
31. Metan G, Sariguzel F, Sumerkan B. Factors influencing survival in patients with multidrug-resistant Acinetobacter baumanni bacteremia. Eur J Intern Med. 2009;20:540–4.
32. Esterly JS, Griffith M, Qi C, Manczynski M, Postelinick MJ, Scheetz MH. Impact of carbapenem resistance and receipt of active antimicrobial therapy on clinical outcomes of Acinetobacter baumannii bloodstream infections. Antimicrob Agents Chemother. 2011;55:4844–9.