Genetic screen identifies non-mitochondrial proteins involved in the maintenance of mitochondrial homeostasis

Stephane Rolland1,2§, Barbara Conradt1,3,4§

1Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
2Current Address: Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, South Korea
3Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
4Current Address: Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, United Kingdom
§To whom correspondence should be addressed: s.rolland@ibs.re.kr; b.conradt@ucl.ac.uk

Abstract

The mitochondrial unfolded protein response (UPRmt) is an important stress response that ensures the maintenance of mitochondrial homeostasis in response to various types of cellular stress. We previously described a genetic screen for Caenorhabditis elegans genes, which when inactivated cause UPRmt activation, and reported genes identified that encode mitochondrial proteins. We now report additional genes identified in the screen. Importantly, these include genes that encode non-mitochondrial proteins involved in processes such as the control of gene expression, post-translational modifications, cell signaling and cellular trafficking. Interestingly, we identified several genes that have been proposed to participate in the transfer of lipids between peroxisomes, ER and mitochondria, suggesting that lipid transfer between these organelles is essential for mitochondrial homeostasis. In conclusion, this study shows that the maintenance of mitochondrial homeostasis is not only dependent on mitochondrial processes but also relies on non-mitochondrial processes and pathways. Our results reinforce the notion that mitochondrial function and cellular function are intimately connected.
Figure 1. Genetic screen identifies additional proteins involved in the maintenance of mitochondrial homeostasis
A. The candidates identified in the screen are listed by functional groups. When available, the name of the human ortholog as stated on Alliancegenome.org is indicated. Protein localization is indicated and is based on experimental evidence in C. elegans or experimental evidence using the human ortholog. In case no experimental evidence was available, the localization was predicted with the PSORT II website (https://psort.hgc.jp/form2.html). Newly identified candidates are indicated in green whereas candidates identified in previous genetic screens are indicated in blue (Runkel et al. 2013, Bennett et al. 2014). Finally, candidates identified in a previous genetic screen for enhancers of fzo-1(tm1133fl)-induced UPR\textsuperscript{mt} are indicated in yellow (Haeussler et al. 2021). B. DIC and fluorescence images of animals carrying the hsp-6p::GFP (zcs13) reporter and either homozygous for the C25H3.11 loss-of-function allele ok2632 (C25H3.11(ok2632)) or homozygous wildtype for C25H3.11 (mIn1/mln1). The balancer mIn1 carries the dpy-10(e128) mutation and the pharyngeal myo-2p::GFP transgene, which is visible in the mln1/mln1 Dumpy animal (indicated by an arrow in the right panel). Induction of the hsp-6p::GFP reporter is visible in the intestine of C25H3.11(ok2632) homozygous animals (indicated by an arrowhead in the right panel) but not in animals homozygous for the balancer mln1. C. Wild-type (+/+ ) and C25H3.11(ok2632) animals were analyzed by Western analysis using anti-tubulin (loading control) and anti-GFP antibodies. D. C25H3.11 VPS13D has been proposed to be a conduit that transfers lipids between ER and mitochondria and between ER and peroxisomes (Guillen-Samander et al. 2021). It localizes to the ER in a VPR-1 VAP-B dependent manner (Guillen-Samander et al. 2021). PRX-3 PEX3 and PRX-12 PEX12 are essential for peroxisome biogenesis and hence peroxisomal beta oxidation (Petriv et al. 2002). Inactivation of any of these genes induces the expression of the hsp-6p::GFP reporter and hence triggers UPR\textsuperscript{mt}, indicating that these proteins are required to maintain mitochondrial homeostasis.

Description

Mitochondrial UPR (UPR\textsuperscript{mt}) is a conserved unfolded protein stress response that is necessary for the maintenance of mitochondrial homeostasis in response to various types of stress (Shpilka et al. 2018). To systematically identify processes that trigger UPR\textsuperscript{mt} when compromised, we performed a genome-wide RNAi screen in Caenorhabditis elegans (Rolland et al. 2019). To that end, we used a reporter construct, hsp-6p::GFP, the expression of which is induced in the intestine upon UPR\textsuperscript{mt} activation (Yoneda et al. 2004). Using this approach, we identified 172 genes that when knocked-down induce the expression of the hsp-6p::GFP reporter (and hence activate UPR\textsuperscript{mt}) and encode mitochondrial proteins (Rolland et al. 2019). We now report an additional seven genes that fall into this category, which increases the number of genes identified encoding mitochondrial proteins to 179 (Figure 1A). Furthermore, our screen also led to the identification of 19 genes that induce the expression of the hsp-6p::GFP reporter when knocked-down but encode non-mitochondrial proteins (Figure 1A). In summary, our genetic screen identified in total 179 genes encoding mitochondrial proteins and 19 genes encoding non-mitochondrial proteins, all of which are required for the maintenance of mitochondrial homeostasis. The non-mitochondrial proteins identified have been shown or are predicted to localize to several sub-cellular compartments, including the nucleus, the endoplasmic reticulum (ER), the Golgi apparatus and peroxisomes. This indicates that several cellular pathways including non-mitochondrial pathways participate in the maintenance of mitochondrial homeostasis.

Among the non-mitochondrial proteins identified, we further investigated C25H3.11, the ortholog of mammalian VPS13D (Vacuolar Protein Sorting-associated protein 13D). To confirm this candidate, we analyzed the effect of the C25H3.11 loss-of-function allele ok2632 on the expression of the hsp-6p::GFP reporter (ok2632 is a 1740bp deletion that removes part of exon 3 and 4 and creates a frameshift; it therefore most likely represents a null allele). Since animals homozygous for ok2632 are sterile, we maintained it over the balancer mln1. Microscopy analysis revealed that the progeny of the balanced strain that is homozygous for ok2632 (C25H3.11(ok2632)) exhibits intestinal hsp-6p::GFP expression in contrast to animals homozygous for the balancer (mln1/mln1) (Figure 1B). We confirmed this result by Western analysis (Figure 1C). Therefore, we conclude that the loss of C25H3.11 VPS13D induces UPR\textsuperscript{mt}.

VPS13D was shown to mediate contact sites between mitochondria, ER and peroxisomes (Guillen-Samander et al. 2021). Specifically, VPS13D has been proposed to provide a lipid conduit between peroxisomes and ER as well as between ER and mitochondria. Interestingly, localization of VPS13D to the ER requires the protein VAP-B, the ortholog of another candidate identified in our screen, VPR-1(Guillen-Samander et al. 2021). Inactivation of these genes could affect mitochondrial metabolism by disrupting lipid transport between these organelles. Consistent with this idea, we identified other candidates such as prx-3 PEX3 or prx-12 PEX12, which are essential for peroxisome biogenesis and likely cause defects in lipid homeostasis when inactivated. In summary, we propose that the transfer of lipids between mitochondria, ER and peroxisomes is required to maintain mitochondrial homeostasis (Figure 1D).

We previously showed that by causing a reduction in mitochondrial membrane potential (which is sensed by the UPR\textsuperscript{mt} transcription factor ATFS-1), the impairment of most but not all mitochondrial processes activates UPR\textsuperscript{mt}(Rolland et al. 2019).
Our new results reveal that non-mitochondrial processes can also activate UPR\textsuperscript{mt} when compromised. We propose that impairment of these processes might affect mitochondrial membrane potential indirectly through, for example, defects in lipid transfer into and out of mitochondria, thereby inducing UPR\textsuperscript{mt}.

**Methods**

The genetic screen was performed as previously described (Rolland et al. 2019). Western analysis was performed as previously described (Rolland et al. 2019) with the following modifications. Thirty myo-2p::GFP negative L4 larvae of MD3815 (C25H3.11(ok2632) / mln1 [mls14[myo-2p::GFP] dpy-10(e128)] II ; zcIs13[hs-6p::GFP + lin-15(+)] V) (C25H3.11(ok2632)) or thirty L4 larvae of SJ4100 (zcIs13 [hsp-6p::GFP + lin-15(+)] V) (+/+) were lysed in Laemmli buffer and analyzed by SDS-PAGE and Western blotting using a monoclonal anti-Tubulin antibody (1:10000; Sigma T6199) and polyclonal anti-GFP antibody (1:6000; Abcam ab290). We used horseradish peroxidase conjugated goat anti-mouse antibodies (BioRad #1706516) at 1:60000 for the anti-Tubulin and a horseradish peroxidase conjugated goat anti-rabbit (BioRad #1706515) at 1:30000 for the anti-GFP. Western was developed using ECL (Amersham #RPN2106) and images were acquired using the ChemiDoc XRS+ System (Bio-Rad).

**Reagents**

The Ahringer RNAi library (Kamath et al. 2003) and the *C. elegans* SJ4100 strain (zcIs13 [hsp-6p::GFP + lin-15(+)] V) (Yoneda et al. 2004) were used for the genetic screen. The strain VC1998 (C25H3.11(ok2632) / mln1 [mls14[myo-2p::GFP] dpy-10(e128)] II) was crossed with the SJ4100 strain to generate the strain MD3815 (C25H3.11(ok2632) / mln1 [mls14[myo-2p::GFP] dpy-10(e128)] II ; zcIs13[hs-6p::GFP + lin-15(+)] V).

| Strain     | Genotype                                  | Available from |
|------------|-------------------------------------------|----------------|
| SJ4100     | zcIs13 [hsp-6p::GFP + lin-15(+)] V        | CGC            |
| VC1998     | C25H3.11(ok2632)/mln1 [mls14[myo-2p::GFP] dpy-10(e128)] II | CGC            |
| MD3815     | C25H3.11(ok2632)/mln1[mls14[myo-2p::GFP] dpy-10(e128)] II ; zcIs13[hs-6p::GFP + lin-15(+)] V | This study     |

**Acknowledgments:** We thank M. Bauer, L. Jocham, N. Lebedeva and M. Schwarz for excellent technical support and the CGC for providing *C. elegans* strains. We thank Nadin Memar for her comments on the manuscript.

**References**

Bennett CF, Vander Wende H, Simko M, Klum S, Barfield S, Choi H, Pineda VV, Kaeberlein M. 2014. Activation of the mitochondrial unfolded protein response does not predict longevity in *Caenorhabditis elegans*. Nat Commun 5: 3483. PubMed ID: 24662282

de Souza N, Vallier LG, Fares H, Greenwald I. 2007. SEL-2, the *C. elegans* neurobeachin/LRBA homolog, is a negative regulator of lin-12/Notch activity and affects endosomal traffic in polarized epithelial cells. Development 134: 691-702. PubMed ID: 17215302

Guillén-Samander A, Leonzino M, Hanna MG, Tang N, Shen H, De Camilli P. 2021. VPS13D bridges the ER to mitochondria and peroxisomes via Miro. J Cell Biol 220(5):e202010004 PubMed ID: 33891013

Haeussler S, Yeroslaviz A, Rolland SG, Luehr S, Lambie EJ, Conradt B. 2021. Genome-wide RNAi screen for regulators of UPR\textsuperscript{mt} in *Caenorhabditis elegans* mutants with defects in mitochondrial fusion. G3 (Bethesda). 11(7):jkab095 PubMed ID: 33784383

Hrus A, Lau G, Hutter H, Schenk S, Ferralli J, Brown-Luedi M, Chiquet-Ehrismann R, Canevascini S. 2007. *C. elegans* agrin is expressed in pharynx, IL1 neurons and distal tip cells and does not genetically interact with genes involved in synaptogenesis or muscle function. PLoS One 2(8): e731. PubMed ID: 17710131
Kamath RS, Ahringer J. 2003. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30: 313-21. PubMed ID: 12828945

Meissner B, Rogalski T, Viveiros R, Warner A, Plastino L, Lorch A, Granger L, Segalat L, Moerman DG. 2011. Determining the sub-cellular localization of proteins within Caenorhabditis elegans body wall muscle. PLoS One 6: e19937. PubMed ID: 21611156

Orsborn AM, Li W, McEwen TJ, Mizuno T, Kuzmin E, Matsumoto K, Bennett KL. 2007. GLH-1, the C. elegans P granule protein, is controlled by the JNK KGB-1 and by the COP9 subunit CSN-5. Development 134: 3383-92. PubMed ID: 17699606

Petriv OI, Pilgrim DB, Rachubinski RA, Titorenko VI. 2002. RNA interference of peroxisome-related genes in C. elegans: a new model for human peroxisomal disorders. Physiol Genomics 10: 79-91. PubMed ID: 12181365

Popovic C, Fallet M, Marguet D, Birnbaum D, Roubin R. 2006. Intracellular trafficking of LET-756, a fibroblast growth factor of C. elegans, is controlled by a balance of export and nuclear signals. Exp Cell Res 312: 1484-95. PubMed ID: 16487967

Rolland SG, Schneid S, Schwarz M, Rackles E, Fischer C, Haeussler S, Regmi SG, Yeroslaviz A, Habermann B, Mokranjac D, Lambie E, Conradt B. 2019. Compromised Mitochondrial Protein Import Acts as a Signal for UPRmt. Cell Rep 28: 1659-1669.e5. PubMed ID: 31412237

Runkel ED, Liu S, Baumeister R, Schulze E. 2013. Surveillance-activated defenses block the ROS-induced mitochondrial unfolded protein response. PLoS Genet 9: e1003346. PubMed ID: 23516373

Sarov M, Murray JI, Schanz K, Pozniakowski A, Niu W, Angermann K, Mosley SA, Rupprecht M, Vinis E, Tilney M, Preston E, Zinke A, Enst S, Teichgraber T, Janette J, Reis K, Janosch S, Schloissnig S, Ejmont RK, Sligham C, Xu X, Kim SK, Reinke V, Stewart AF, Snyder M, Waterston RH, Hyman AA. 2012. A genome-scale resource for in vivo tag-based protein function exploration in C. elegans. Cell 150: 855-66. PubMed ID: 22901814

Shpilka T, Haynes CM. 2018. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 19: 109-120. PubMed ID: 29165426

Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, Alm T, Asplund A, Björk L, Breckels LM, Bäckström A, Danielsson F, Fagerberg L, Fall J, Gatto L, Gnann C, Hofer S, Hjelmar M, Johannesson F, Lee S, Lindskog C, Mulder J, Mulvey CM, Nilsson P, Oksvold P, Rockberg J, Schutten R, Schwenk JM, Sivertsson A, Sjöstedt E, Skogs M, Stadler C, Sullivan DP, Tegel H, Winsnes C, Zhang C, Zwahlen M, Mardinoglu A, Pontén F, von Feilitzen K, Lilley KS, Uhlen M, Lundberg E. 2017. A subcellular map of the human proteome. Science 356(6340): eaal3321 PubMed ID: 28495876

Willer T, Inamori K, Venzke D, Harvey C, Morgensen G, Harra Y, Beltrán Valero de Bernabé D, Yu L, Wright KM, Campbell KP. 2014. The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. Elife 3:e03941 PubMed ID: 25279699

Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D. 2004. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117: 4055-66. PubMed ID: 15280428

Funding: This work was supported by funding from the Deutsche Forschungsgemeinschaft (CO204/6-1 and CO204/9-1 to B.C. and RO5352/1-1 to S.G.R.), the Institute for Basic Science (IBS-R2022-A2-2022 to S.G.R), a Royal Society Wolfson Fellowship (RWF\R1\180008 to B.C.) and University College London (Capital Equipment Fund to B.C.). The C. elegans strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440).

Author Contributions: Stephane Rolland: conceptualization, investigation, writing - original draft, funding acquisition. Barbara Conradt: conceptualization, supervision, writing - review editing, funding acquisition.

Reviewed By: Anonymous

History: Received March 12, 2022 Revision Received April 28, 2022 Accepted May 2, 2022 Published May 11, 2022

Copyright: © 2022 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Rolland, S; Conradt, B (2022). Genetic screen identifies non-mitochondrial proteins involved in the maintenance of mitochondrial homeostasis. microPublication Biology. 10.17912/micropub.biology.000562