Integrated Biorefinery of Empty Fruit Bunch from Palm Oil Industries to Produce Valuable Biochemicals

Rendra Hakim Hafyan 1, Lupete K. Bhullar 2, Shuhaimi Mahadzir 1,1, Muhammad Roil Bilad 1, Nik Abdul Hadi Nordin 1, Mohd Dzul Hakim Wirzal 1, Zulfan Adi Putra 2, Gade Pandu Rangaiah 3, and Bawadi Abdullah 1,4

1 Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

2 PETRONAS Group Technical Solutions, Process Simulation and Optimization, Level 16, Tower 3, Kuala Lumpur Convention Center, Kuala Lumpur, 50088, Malaysia

3 Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585

4 Chemical Engineering Department, Center of Contaminant Control and Utilization (CenCoU), Institute Contaminant Management for Oil and Gas, 32610 Bandar Seri Iskandar, Malaysia

Supplementary Information

This Supplementary Information has the following sections:

(A) sustainability assessment,

(B) multi-objective optimization code, and

(C) multi-criteria decision making.

A. Sustainability Assessment

The integrated biorefinery of empty fruit bunch (EFB) is modelled in Aspen Plus, and all information shown in this supplementary data is for the base case capacity of 75 ton/h of EFB
1. Techno-economic analysis

Tables S1 and S2 display the factors used for the estimation of capital investment and for the estimation of operating costs, respectively. Table S3 and S4 are a summary of raw material cost and selling price of products and economic results for all production processes involved.

Table S1. The estimation of capital investment

Component of investment	Factor
A. Total plant direct cost (TPDC)	
Equipment purchase cost	1
purchased equipment installation	0.39
instrumentations and control-installed	0.13
piping-installed	0.31
electrical installed	0.1
buildings-including services	0.29
yard improvement	0.1
service facilities-installed	0.55
B. Total plant indirect cost (TPIC)	
Engineering and supervision	0.32
Construction expenses	0.34
C. Total direct and indirect costs (TPC = TPDC + TPIC)	
D. Contractor’s fee and contingency (CFC)	
contractor’s fee	0.05
Contingency	0.1
E. Fixed Capital Investment (FCI = TPC + CFC)	
Working capital (30% of FCI) (WC)	0.3
Land use (6% of Equipment purchase cost)	0.06
Total Capital Investment (TCI = FCI + WC + LU)	
Table S2. The estimation of operating costs

Category	Feature	Value used in Text
Direct manufacturing costs (DMC)	Raw material cost	C_{RM}
	Utilities cost	C_{WT}
	Operating labor	C_{OL}
	Supervisory and clerical labor	0.2 C_{OL}
	Maintenance and repair	0.06 FCI
	Operating supplies	0.009 FCI
	Laboratory charges	0.15 C_{OL}
	Patent and royalties	0.03 C_{OM}
Fixed manufacturing costs (FMC)	Local taxes and insurance	0.03 FCI
	Plant overhead	0.708 C_{OL} + 0.036 FCI
General manufacturing costs (GMC)	Administration costs	0.177 C_{OL} + 0.009 FCI
	Distribution and selling costs	0.11 C_{OM}
	Research and development	0.05 C_{OM}

Table S3. Raw material and product selling price

Raw material	Price ($/kg)
Empty fruit bunch	0.005
Sulfuric acid	0.075
Ammonia	0.495
Hydrogen	10
Raney-nickel	2.6
Carbon dioxide	0.0098
AlCl_3	0.0006
Ionic liquid	3.56x10^{-5}
Ethyl acetate	0.7
NaOH	0.7
SO_2	0.0015
Glucose	0.0015
CNUTR	1.267 x10^{-5}
Oil	6

Product	Price ($/kg)
Xylitol	4.05
Levulinic acid	8.28
Succinic acid	2.6
Guaiacol	1.6
Vanillin	20
Table S4. Economic results for 75 ton/hour of dry empty fruit bunch

Component	Dilute acid	Enzyme	Saccharification	Xylitol	Levulinic acid	Succinic acid	Guaiacol	Vanillin
Capital investment	5.2	58.2	3.4	31.4	7.7	42.6	52.2	18.8
Operating cost	13.4	20.8	1.2	122.9	4.1	70.1	42.6	115.2
Sales Revenue	-	-	-	626.96	838.5	191.75	73.57	385.36
Profit (M$/year)	-	-	-	335	823	313	25	74

2. **Life cycle assessment**

Figure S1 reveals the global warming potential of each production process involved.
3. Inherent safety

Table S5 presents results of inherent safety assessment for five upgrading processes involved.

Process	Chemicals	Type of hazards	FEDI	TDI
Xylitol	Hydrogen, xylitol	Flammable	118	87
Levulinic acid	Hydroxymethylfurfural, formic acid, levulinic acid	Toxic/corrosive	163	285
Succinic acid	Succinic acid	Toxic/corrosive	144	341
Guaiacol	Hibert kethon, guaiacol	Toxic/corrosive	172	325
Vanillin	Vanillin, sulfureic acid, ethyl acetate	Toxic/corrosive	195	204

B. Multi-objective optimization code

The developed model equations of all responses/outputs of all processes are given below. Interaction between the parameters were obtained and correlated with the output as shown in following Equations.

1. Objective function (@Biorefinery)

Max annual profit = -(11012.84 + 0.23x₁ - 226.11x₂ + 0.06x₁x₂ - 2.59x₁⁻⁹x₂² + 1.16x₂⁻² - (x₃)(-204.03 + 0.304x₁ + 5.69x₄ + 0.14x₁x₄ - 1.1x₁⁻¹¹x₂² - 0.039x₄²) - (1 - (x₃))(1743.27 - 0.29x₁ - 46.15x₅ + 0.069x₁x₅ + 4.5x₁⁻⁵x₂² + 0.3x₅²) - (x₆)(49.11 - 0.63x₁ - 1.402x₇ + 0.04x₁x₇) - (1 - (x₆))(547.12 + 0.063x₁ - 149.27x₆ + 0.32x₆x₆ + 9.13x₁⁻⁷x₁² + 10.17x₅²) + (43.53 + 0.0039x₁ - 0.88x₂ + 1.18x₁⁻⁴x₁x₂ - 1.4x₁⁻⁴x₂² + 4.5x₁⁻³x₂²) + (x₃)(0.27 + 5.24x₁⁻³x₁ - 1.24x₁⁻⁴x₄ + 4.11x₁⁻⁵x₃x₄) + (1 - (x₃))(15.46 - 0.032x₁ - 0.37x₅ + 3.74x₁⁻⁴x₁x₅ + 5.63x₁⁻⁴x₂² + 2.85x₁⁻³x₅²) + (x₆)(6.11 + 0.073x₁ - 0.32x₇ + 3.73x₁⁻⁴x₁x₇ - 1.43x₁⁻⁴x₂² + 4.42x₁⁻³x₇²) - (1 - (x₆))(-3.11 + 0.025x₁ + 1.02x₆ + 1.3x₁⁻⁴x₁x₆ - 7.95x₁⁻⁵x₂² - 0.068x₆²) + 0.32 + 0.038 - 1.056x₁ + 0.123x₁ + (62.53 + 1.63x₁ - 1.25x₂ + 1.8x₁⁻⁴x₁x₂ - 3.13x₁⁻⁴x₂² + 6.42x₁⁻³x₂² + (x₃)(0.77 + 0.037x₁ - 2.32x₁⁻⁴x₄ + 9.58x₁⁻⁵x₃x₄) + (1 - (x₃))(-3.22 + 0.69x₁ + 0.21x₅ + 1.34x₁⁻³x₃x₅ + 8.88x₁⁻⁴x₄² + (x₆)(3.09 + 0.58x₁ + 0.057x₇) + (1 - (x₆))(-7.23 + 1.59x₁ + 1.38x₈ + 1.76x₁⁻⁴x₁x₇ - 3.12x₁⁻⁴x₇² - 0.086x₈²) + 0.968 + 0.166x₁ - 0.667 + 0.32x₁
Min $GWP = 6.99 + 0.48x_1 - 0.15x_2 + 4.22 \times 10^{-5}x_1x_2 - 1.06 \times 10^{-4}x_1^2 + 7.92 \times 10^{-4}x_2^2 + (x_3) \left(-1.58 + 0.064x_1 + 0.044x_4 + 6.05 \times 10^{-4}x_1x_4 + 8.87 \times 10^{-7}x_1^2 - 3.03 \times 10^{-4}x_4^2 \right) + (1 - (x_3)) \left(-375.55 + 1.61x_1 + 10.2x_5 + 7.16 \times 10^{-3}x_1x_5 - 3.27 \times 10^{-4}x_1^2 - 0.069x_5^2 \right) + (x_6) \left(11.31 + 0.72x_1 - 0.32x_7 + 9.8 \times 10^{-3}x_1x_7 \right) + (1 - (x_6)) \left(0.37 + 0.54x_1 - 0.1x_8 + 2.25 \times 10^{-4}x_1x_8 - 4.96 \times 10^{-6}x_1^2 + 7.09 \times 10^{-3}x_8^2 \right) + 0.0083 + 0.051x_1 + 0.705 + 0.2694x_1$

Min $FEDI = 724.22 + 0.78x_1 - 13.73x_2 + 1.2 \times 10^{-3}x_1x_2 - 2.43 \times 10^{-3}x_1^2 + 0.071x_2^2 + (x_3) \left(58.44 + 1.13x_1 + 0.59x_4 + 1.51 \times 10^{-3}x_1x_4 - 3.29 \times 10^{-3}x_1^2 - 2.67 \times 10^{-3}x_4^2 \right) + (1 - (x_3)) \left(232.03 + 0.85x_1 - 4.53x_5 + 3.12 \times 10^{-3}x_1x_5 - 2.9 \times 10^{-3}x_1^2 + 0.033x_5^2 \right) + (x_6) \left(399.28 + 0.52x_1 - 17.46x_7 + 0.025x_1x_7 - 4.18 \times 10^{-3}x_7^2 + 0.24x_7^2 \right) + (1 - (x_6)) \left(171.76 + 0.96x_1 - 12.59x_8 + 0.012x_1x_8 - 2.95 \times 10^{-3}x_1^2 + 0.97x_8^2 + 62.943 + 0.4396x_1 \right)$

Min $TDI = 909.22 + 0.59x_1 - 18.10x_2 + 2.16 \times 10^{-3}x_1x_2 - 1.95 \times 10^{-3}x_1^2 + 0.094x_2^2 + (x_3) \left(46.54 + 2.18x_1 + 1.57x_4 + 5.56 \times 10^{-3}x_1x_4 - 6.34 \times 10^{-3}x_1^2 - 7.21 \times 10^{-3}x_4^2 \right) + (1 - (x_3)) \left(635.56 + 2.2x_1 - 14.1x_5 + 0.012x_1x_5 - 7.54 \times 10^{-3}x_1^2 + 0.101x_5^2 + (x_6) \left(61.04 + 1.87x_1 + 3.33x_7 + (1 - (x_6)) \left(122.95 + 1.84x_1 - 12.53x_8 + 0.015x_1x_8 - 5.14 \times 10^{-3}x_1^2 + 0.95x_8^2 \right) + 77.893 + 0.8216x_1 \right)$

2. Demand constraint (@Bconstraint)

$xylitol\ demand = -(339.902 + 0.00713x_1 - 6.979x_2 + 0.00184x_1x_2 - 7.99 \times 10^{-3}x_1^2 + 0.0358x_2^2) + 19$;

$levulinic\ acid\ demand = -(x_3)(-3.08 + 0.0459x_1 + 0.0858x_4 + 0.0021x_1x_4 - 1.66 \times 10^{-13}x_1^2 - 0.000596x_4^2) + 1.9$;

$succinic\ acid\ demand = -(1 - (x_3))(-1.1344 + 0.00169x_1 + 0.0144x_5 + 0.0031x_1x_5) + 88.75$;

$guaiacol\ demand = -(x_6)(-0.1344 - 0.0556x_1 + 0.000304x_7 + 0.0022x_1x_7) + 5.6$;

$evulinic\ acid\ demand = -(1 - (x_6))3.419 + 0.00039x_1 - 0.9329x_8 + 0.0021x_1x_8 + 5.71 \times 10^{-9}x_1^2 + 0.0635x_8^2) + 4.7$;

3. Solver
options = optimoptions('gamultiobj','Display','iter',...
 'MaxGeneration',1000,...
 'PopulationSize',100,...
 'CrossoverFraction',0.8,...
 'MigrationFraction',0.2,...
 'PlotFcns',@gaplotpareto);

fitness = @Biorefinery;
nvars = 8;
ConsFcn = @Bconstraint;
LB = [50 96 0 67 73 0 33 7];
UB = [100 99 1 77 80 1 37 7.7];
[x,fval] = gamultiobj(fitness,nvars,[],[],[],[],LB,UB,[],options);

%pareto front
figure(1);
scatter3(fval(:,1),fval(:,2),fval(:,3).');
xlabel('Annual profit($Million/year');
ylabel('GWP (kg CO2 eq)');
zlabel('FEDI');
view(40,35)

C. Multi-criteria decision making

1. Fuzzy Analytical Hierarchy Process

Table S6. Decision maker attribute

Decision maker 1	Economic Viability	Environmental Performance	Safety Index
Economic Viability	1 1 1	1 1 1	1 1 1
Environmental Performance	1 1 1	1 1 1	1 1 1
Safety Index	1 1 1	1 1 1	1 1 1

Decision maker 2
Economic Viability	Environmental Performance	Safety Index
Economic Viability	1 1 1	1 1 1 0.179 0.333 0.667
Environmental Performance	1 1 1	1 1 1 0.179 0.333 0.667
Safety Index	1.5 3 5.6 1.5 3 5.6	1 1 1

Decision maker 3

Economic Viability	Environmental Performance	Safety Index
Economic Viability	1 1 1	3 5 7.9 3 5 7.9
Environmental Performance	0.127 0.2 0.333 1 1 1	0.179 0.333 0.667
Safety Index	0.127 0.2 0.333 1.5 3 5.6	1 1 1

Decision maker 4

Economic Viability	Environmental Performance	Safety Index
Economic Viability	1 1 1	3 5 7.9 1.5 3 5.6
Environmental Performance	0.127 0.2 0.333 1 1 1	0.179 0.333 0.667
Safety Index	0.179 0.333 0.667 1.5 3 5.6	1 1 1

Decision maker 5

Economic Viability	Environmental Performance	Safety Index
Economic Viability	1 1 1	0.313 0.5 0.833 1.5 3 5.6
Environmental Performance	1.2 2 3.2 1 1 1	1.5 3 5.6
Safety Index	0.179 0.333 0.667 0.179 0.333 0.667	1 1 1
GROUP (GEOMETRIC MEAN)

Economic Viability	Economic Viability	Environmental Performance	Safety Index
1	1	1.23	1.04
1	1	1.66	1.72
1	1	2.20	2.78
0.45	0.60	0.81	0.39
0.81	1	1	0.64
0.39	0.64	1.11	
0.36	0.58	0.96	1
0.58	0.96	2.59	1
0.96	2.59	1	

2. Technique for Order Preference

Table S7. TOPSIS key calculation information for profit, GWP, and FEDI

Profit (F1)	GWP (F2)	FEDI (F3)	Normalized Weighted F1	Normalized Weighted F2	Normalized Weighted F3	S	S - Relative Closeness	
931.8	284.0	594.7	0.09289	0.03296	0.05194	0.00233	0.01660	0.8771
925.4	285.3	594.1	0.09226	0.03312	0.05189	0.00240	0.01595	0.8693
918.7	287.7	592.1	0.09159	0.03339	0.05172	0.00258	0.01526	0.8553
915.7	285.3	592.3	0.09129	0.03311	0.05174	0.00269	0.01499	0.8478
914.0	288.9	591.4	0.09111	0.03353	0.05165	0.00285	0.01477	0.8382
905.7	290.0	590.2	0.09029	0.03366	0.05155	0.00340	0.01395	0.8038
896.2	285.7	589.9	0.08934	0.03316	0.05152	0.00406	0.01306	0.7628
894.3	283.0	589.1	0.08915	0.03284	0.05145	0.00416	0.01292	0.7562
887.9	296.9	586.0	0.08851	0.03446	0.05118	0.00502	0.01214	0.7075
884.5	286.9	588.4	0.08818	0.03329	0.05139	0.00508	0.01189	0.7007
882.3	280.4	586.8	0.08796	0.03255	0.05125	0.00519	0.01181	0.6948
875.9	297.6	583.7	0.08732	0.03454	0.05098	0.00607	0.01096	0.6436
870.1	296.2	579.3	0.08674	0.03437	0.05060	0.00649	0.01044	0.6168
866.4	283.4	584.3	0.08637	0.03289	0.05103	0.00668	0.01020	0.6043
860.8	281.6	584.0	0.08581	0.03268	0.05101	0.00721	0.00970	0.5738
855.3	287.3	581.4	0.08526	0.03334	0.05078	0.00776	0.00906	0.5388
851.4	290.2	580.3	0.08488	0.03368	0.05068	0.00816	0.00865	0.5144
842.3	288.5	579.5	0.08397	0.03349	0.05061	0.00902	0.00781	0.4640
839.0	289.7	579.5	0.08364	0.03362	0.05061	0.00936	0.00746	0.4435
Table S8.: TOPSIS key calculation information for profit, GWP, and TDI

Profit (F1)	GWP (F2)	TDI (F3)	Normalized Weighted F1	Normalized Weighted F2	Normalized Weighted F3	S	S -	Relative Closeness				
931.3	284.1	956.9	0.08721	0.03403	0.05096	0.00055	0.00538	0.9079				
929.5	284.2	956.8	0.08704	0.03403	0.05095	0.00057	0.00521	0.9018				
927.4	283.8	956.2	0.08684	0.03399	0.05092	0.00061	0.00502	0.8912				
925.3	283.7	955.8	0.08664	0.03397	0.05089	0.00073	0.00482	0.8683				
923.3	283.6	955.6	0.08646	0.03396	0.05089	0.00087	0.00463	0.8416				
922.9	283.5	955.5	0.08642	0.03395	0.05088	0.00090	0.00460	0.8367				
920.8	283.3	955.0	0.08622	0.03393	0.05085	0.00106	0.00440	0.8054				
Processes	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12
----------	----	----	----	----	----	----	----	----	----	-----	-----	-----
919.6	283.2	954.9	0.08611	0.03391	0.05085	0.00116	0.00429	0.7871				
916.8	282.9	954.3	0.08585	0.03388	0.05082	0.00140	0.00403	0.7414				
915.9	282.8	954.1	0.08577	0.03387	0.05081	0.00148	0.00395	0.7278				
914.6	282.7	953.9	0.08564	0.03386	0.05079	0.00159	0.00383	0.7060				
912.1	282.5	953.4	0.08540	0.03383	0.05077	0.00182	0.00359	0.6631				
912.1	282.5	953.4	0.08540	0.03383	0.05077	0.00182	0.00359	0.6631				
910.0	282.3	953.0	0.08521	0.03381	0.05075	0.00201	0.00340	0.6283				
909.1	282.2	952.9	0.08513	0.03380	0.05074	0.00209	0.00332	0.6131				
906.9	282.3	952.8	0.08492	0.03380	0.05074	0.00230	0.00311	0.5746				
905.7	281.9	952.2	0.08481	0.03375	0.05070	0.00240	0.00301	0.5556				
903.9	281.8	952.1	0.08464	0.03375	0.05070	0.00257	0.00284	0.5252				
901.6	281.7	951.7	0.08442	0.03373	0.05068	0.00279	0.00256	0.4853				
900.4	281.5	951.4	0.08432	0.03371	0.05066	0.00289	0.00253	0.4666				
897.2	281.5	951.1	0.08401	0.03371	0.05065	0.00320	0.00223	0.4110				
895.4	281.2	950.6	0.08384	0.03367	0.05062	0.00336	0.00208	0.3816				
893.3	281.3	950.5	0.08365	0.03369	0.05062	0.00356	0.00189	0.3464				
892.5	281.2	950.4	0.08357	0.03368	0.05061	0.00364	0.00181	0.3328				
890.6	281.4	950.2	0.08339	0.03370	0.05060	0.00382	0.00164	0.3007				
888.3	281.4	950.2	0.08318	0.03370	0.05060	0.00402	0.00144	0.2639				
887.3	281.3	950.0	0.08309	0.03369	0.05059	0.00412	0.00136	0.2477				
885.2	281.5	949.9	0.08289	0.03371	0.05058	0.00432	0.00117	0.2138				
882.6	281.5	949.6	0.08265	0.03371	0.05056	0.00456	0.00096	0.1746				
882.5	281.5	949.6	0.08263	0.03371	0.05056	0.00457	0.00096	0.1729				
879.2	281.8	949.4	0.08233	0.03375	0.05056	0.00488	0.00070	0.1257				
877.9	281.8	949.3	0.08221	0.03375	0.05055	0.00500	0.00063	0.1113				
875.3	282.1	949.2	0.08196	0.03378	0.05055	0.00524	0.00050	0.0873				
873.8	282.1	949.1	0.08183	0.03378	0.05054	0.00538	0.00049	0.0828				
873.8	282.1	949.1	0.08183	0.03378	0.05054	0.00538	0.00049	0.0828				
	Value 1	Value 2	Value 3									
----------------	---------	---------	---------									
Positive Ideal	0.08721	0.03367	0.05054									
Negative Ideal	0.08183	0.03403	0.05096									