AN AMPLENESS CRITERION FOR LINE BUNDLES ON ABELIAN VARIETIES

INDRANIL BISWAS AND KRISHNA HANUMANTHU

Abstract. Let A be an abelian variety defined over an algebraically closed field. We first show that a line bundle L on A is ample if its restriction to every curve in A is ample. Using it we give a sufficient condition for a vector bundle on A to be ample.

1. Introduction

Let X be a projective variety over an algebraically closed field, and let L be a line bundle on X. The Nakai-Moishezon criterion says that L is ample if and only if $L^{\dim(Y)} \cdot Y > 0$ for every positive-dimensional subvariety Y of X. In general, it is not sufficient to check this condition only for curves in X. Mumford gave an example of a non-ample line bundle on a surface which intersects every curve positively; see [Har, Example 10.6] or [La1, Example 1.5.2].

However, in some cases it turns out that to check ampleness of L it suffices to verify $L \cdot C > 0$ for all curves $C \subset X$. In [HMP], this statement is proved for toric varieties; in fact, in [HMP] it is proved that a vector bundle E on a toric variety X is ample if the restriction of E to the invariant rational curves on X is ample. We recall that there are only finitely many invariant rational curves on X. For a flag variety X over a curve defined over \overline{F}_p, a line bundle on X is ample if its restriction to each curve is ample [BMP].

In this short note, we prove that a line bundle L on an abelian variety A is ample if the restriction of L to every curve on A is ample. Using it we give a similar sufficient condition for ampleness of vector bundles on A.

2. The ampleness criterion

Let k be an algebraically closed field. Our first result is the following.

Theorem 2.1. Let A be an abelian variety defined over k. Let L be a line bundle over A with the following property: for every pair (C, f), where C is an irreducible smooth projective curve defined over k, and $f : C \rightarrow A$ is a nonconstant morphism, the inequality

$$\text{degree}(f^*L) > 0$$

holds. Then L is ample.
Proof. Take a line bundle L on A. Let
$$
\alpha : A \times A \to A, \ (x, y) \mapsto x + y
$$
be the addition map. Consider the family of line bundles
$$(\alpha^* L) \otimes p_1^* L^* \to A \times A \xrightarrow{p_2} A,$$
where p_1 and p_2 are the projections of $A \times A$ to the first and second factor respectively. Let
$$
\varphi_L : A \to A^\vee = \text{Pic}^0(A)
$$
be the classifying morphism for this family. This φ_L is a group homomorphism. Let
$$K(L) \subset A$$
be the (unique) maximal connected subgroup of the reduced kernel $\ker(\varphi_L)_{\text{red}}$.

If $L \in A^\vee = \text{Pic}^0(A)$, then φ_L is the constant morphism $x \mapsto 0$ [MFK p. 120] (see after Definition 6.2), [GN p. 11, Lemma 2.1.6]. Using this it follows that if L' is numerically equivalent to L, then $\varphi_L = \varphi_L'$, which in turn implies that
$$K(L) = K(L'). \quad (2.2)$$

It is known that L is ample if the following two conditions hold:

1. the line bundle L is effective, and
2. $K(L) = 0$.

(See [Mum1 p. 288, § 1], [GN p. 13, Theorem 2.2.2].)

We will use the following lemma:

Lemma 2.2. The line bundle L in Theorem 2.1 is ample if $K(L) = 0$.

Proof of Lemma 2.2. Since L is nef, it follows that L is numerically equivalent to a \mathbb{Q}–effective \mathbb{Q}–Cartier divisor on A (see [Mo p. 811, Proposition 3.1]). So L^n is numerically equivalent to an effective divisor D on A, for some positive integer n. Note that
$$\varphi_{L^n} = n \cdot \varphi_L. \quad (2.3)$$

Assume that $K(L) = 0$. Consequently, from (2.3) and (2.2) it follows that $K(D) = 0$. Since D is also effective, using the above mentioned criterion for ampleness it follows that D is ample. This implies that L is ample. \qed

Continuing with the proof of Theorem 2.1 in view of Lemma 2.2 it suffices to show that $\dim K(L) = 0$. Assume that
$$\dim K(L) \geq 1.$$

The restriction of L to the sub-abelian variety $K(L) \subset A$ will be denoted by L_0. For any closed point $x \in A$, define
$$\alpha_x : A \to A, \ y \mapsto x + y. \quad (2.4)$$

For any closed point $x \in K(L)$, let $\tilde{\alpha}_x : K(L) \to K(L)$ be the restriction of α_x in (2.4) to $K(L)$.

For any \(x \in K(L) \), we have \(\alpha_x^*L = L \); hence we have
\[
\hat{\alpha}_x^*L_0 = (\alpha_x^*L)|_{K(L)} = L|_{K(L)} = L_0.
\]
This implies that the line bundle \(L_0 \) on \(K(L) \) is numerically trivial \([\text{Mum2}, \text{p. 74, Definition}] \) and \([\text{Mum2}, \text{p. 86}] \). Consequently, for any pair \((C, f)\), where \(C \) is an irreducible smooth projective curve defined over \(k \), and \(f : C \to K(L) \subset A \) is a nonconstant morphism, we have
\[
\deg(f^*L) = 0.
\]
Since this contradicts \((2.1)\), we conclude that \(\dim K(L) = 0 \). Hence \(L \) is ample by Lemma 2.2.

\[\square\]

2.1. Ample vector bundles on \(A \)

Let \(E \) be a vector bundle of rank \(r \) on \(A \) satisfying the following two conditions:

1. The line bundle \(\det E := \bigwedge^r E \) has the property that for every pair \((C, f)\), where \(C \) is an irreducible smooth projective curve defined over \(k \), and \(f : C \to A \) is a nonconstant morphism, the inequality \(\deg(\det E) > 0 \) holds.
2. For every closed point \(x \in A \), there is a line bundle \(L(x) \) on \(A \) such that
\[
\alpha_x^*E = E \otimes L(x),
\]
where \(\alpha_x \) is the morphism in \((2.4)\).

Proposition 2.3. The above vector bundle \(E \) is ample.

Proof. Since \(E \) satisfies the condition in \((2.5)\), a theorem of Mukai says that there is an isogeny
\[
f : B \to A
\]
such that the vector bundle \(f^*E \) admits a filtration of subbundles
\[
0 = E_0 \subset E_1 \subset \cdots \subset E_{r-1} \subset E_r = E
\]
for which \(\operatorname{rank}(E_i) = i \), and the line bundle \(E_i/E_{i-1} \) is numerically equivalent to \(E_1 \) for every \(1 \leq i \leq r \) \([\text{Muk}, \text{p. 260, Theorem 5.8}] \) (see also \([\text{MN}, \text{p. 2}] \)).

Consequently, the line bundle \(\det E = \bigwedge^r E = \bigotimes_{i=1}^r (E_i/E_{i-1}) \) is numerically equivalent to the line bundle \(E_1^{\geq r} \). From Theorem 2.1 we know that \(\det E \) is ample. This implies that \(E_1^{\geq r} \) is ample. Hence \(E_1 \) is ample. So \(E_i/E_{i-1} \) is ample for every \(1 \leq i \leq r \). Consequently, from \((2.6)\) it follows that \(E \) is ample \([\text{La2}, \text{p. 13, Proposition 6.1.13}] \). \[\square\]

Remark 2.4. Let \(X \) be a projective variety over an algebraically closed field \(k \). A divisor \(D \) on \(X \) is said to be **big** if there is an ample divisor \(H \) on \(X \) such that \(mD - H \) is linearly equivalent to an effective divisor for some positive integer \(m \). A \(\mathbb{Q} \)-divisor \(D \) is **pseudo-effective** if \(D + B \) is big for any big \(\mathbb{Q} \)-divisor \(B \). Similarly one can define the notion of pseudo-effective \(\mathbb{R} \)-divisors. In the Néron-Severi space \(N^1(X)_{\mathbb{R}} \), the pseudo-effective \(\mathbb{R} \)-divisors form a cone which is the closure of the cone of effective \(\mathbb{R} \)-divisors.

If \(\dim(X) = 2 \) and the pseudo-effective cone of \(X \) is equal to the effective cone, then a line bundle \(L \) on \(X \) is ample if and only if \(L \cdot C > 0 \) for every curve \(C \) on \(X \). But, in
general, the pseudo-effective cone of a projective variety is not equal to the effective cone; see the example of Mumford described in [Har, Example 10.6] or [La1, Example 1.5.2].

If \(k \) is an algebraic closure of a finite field, Moriwaki showed that every pseudo-effective divisor (over \(\mathbb{Q} \) or \(\mathbb{R} \)) is effective when \(X \) is a projective bundle over a curve or when \(X \) is an abelian variety (see [Mo, p. 802, Theorem 0.4] and [Mo, p. 802, Proposition 0.5]). As our next example shows, this statement is false for abelian varieties over \(\mathbb{C} \).

Example 2.5. Let \(X \) be an elliptic curve defined over \(\mathbb{C} \). Let \(x \in X \) be a point of infinite order. Let \(D := 0 - x \), where 0 is the identity element of \(X \). Then \(D \) is a divisor of degree 0 and it is pseudo-effective. However, no multiple of \(D \) is effective, since \(x \) has is infinite order.

We end with the following question.

Question 2.6. Let \(A \) be an abelian variety over an algebraically closed field. Let \(E \) be a vector bundle on \(A \) such that the restriction \(E|_C \) is ample for every curve \(C \) on \(A \). Then is \(E \) ample?

Acknowledgements

The first author is supported by a J. C. Bose Fellowship. The second author is partially supported by DST SERB MATRICS grant MTR/2017/000243 and also a grant from Infosys Foundation.

References

[BMP] I. Biswas, S. Mehrotra and A. J. Parameswaran, Nef line bundles on flag bundles on a curve over \(\mathbb{F}_p \), *Arch. Math. (Basel)* 101 (2013), 105–110.

[GN] A. Genestier and B. C. Ngô, *Lectures on Shimura varieties*, https://www.math.uchicago.edu/~ngo/Shimura.pdf.

[Har] R. Hartshorne, *Ample subvarieties of algebraic varieties*, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin, 1970. MR0282977

[HMP] M. Hering, M. Mustaţă and S. Payne, Positivity properties of toric vector bundles, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 607–640.

[La1] R. Lazarsfeld, *Positivity in algebraic geometry. I*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 48, Springer-Verlag, Berlin, 2004.

[La2] R. Lazarsfeld, *Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 49. Springer-Verlag, Berlin, 2004.

[MN] V. B. Mehta and M. V. Nori, Semistable sheaves on homogeneous spaces and abelian varieties, *Proc. Indian Acad. Sci. Math. Sci.* 93 (1984), 1–12.

[Mo] A. Moriwaki, Toward a geometric analogue of Dirichlet’s unit theorem, *Kyoto Jour. Math.* 55 (2015), 799–817.

[Muk] S. Mukai, Semi-homogeneous vector bundles on an Abelian variety, *Jour. Math. Kyoto Univ.* 18 (1978), 239–272.

[Mum1] D. Mumford, On the equations defining abelian varieties. 1, *Invent. Math.* 1 (1966), 287–354.

[Mum2] D. Mumford, *Abelian varieties*, Oxford University Press, Bombay 1970.

[MFK] D. Mumford, J. Fogarty and F. Kirwan, *Geometric invariant theory*. Third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34. Springer-Verlag, Berlin, 1994.
