Weak containment by restrictions of induced representations

Matthew Wiersma

University of Alberta
Let π and σ be representations of a locally compact group G.

Three notions for what it means for π to contain σ:

- σ is unitarily equivalent to a subrepresentation of π
- σ is quasi-contained in π
- σ is weakly contained in π
Quasi-containment

\[\pi, \sigma - \text{representations of } G \]
\[\text{VN}_\pi := \pi(G)'' \subset B(\mathcal{H}_\pi) \]

Definition

\(\sigma \) is *quasi-contained* in \(\pi \) if \(\sigma \) is unitarily equivalent to subrepresentation of some amplification of \(\pi \).

Theorem

\(\pi \) quasi-contains \(\sigma \) iff the identity map on \(G \) extends to a normal \(* \)-homomorphism \(\text{VN}_\pi \to \text{VN}_\sigma \).
Weak containment

\(\pi, \sigma \) – representations of \(G \)
\[\pi_{\xi,\eta}: G \to \mathbb{C} \text{ defined by } \pi_{\xi,\eta}(s) = \langle \pi(s)\xi, \eta \rangle \text{ for } \xi, \eta \in \mathcal{H}_\pi \]
\(C^*_\pi := \pi(L^1(G)) \parallel \cdot \parallel \)

Definition

\(\sigma \) is *weakly contained* in \(\pi \) (write \(\sigma \prec \pi \)) if for every \(\xi \in \mathcal{H}_\sigma \), \(\sigma_{\xi,\xi} \) is the limit of positive definite functions of the form \(\sum_{i=1}^{N} \pi_{\eta_i,\eta_i} \) in the topology of uniform convergence on compact subsets of \(G \).

Theorem

\(\pi \) weakly contains \(\sigma \) if and only if the identity map on \(L^1(G) \) extends to *-homomorphism \(C^*_\pi \to C^*_\sigma \).
Main problem

Let H be a closed subgroup of a locally compact group G and π a representation of H.

When is π “contained” in $(\text{Ind}_{H}^{G}\pi)|_{H}$?
Main problem

Let H be a closed subgroup of a locally compact group G and π a representation of H.

When is π “contained” in $(\text{Ind}_H^G \pi)|_H$?

Easy exercise

If G be a discrete group, then π is unitarily equivalent to a subrepresentation of $(\text{Ind}_H^G \pi)|_H$.
Aside: Classes of Locally Compact Groups

\[\tau : G \rightarrow B(L^1(G)) \] defined by \(\tau(s)f(t) = f(s^{-1}ts)\Delta(s) \)

Definition

A locally compact group \(G \) is a \textit{SIN} group if the identity of \(G \) admits a neighbourhood base consisting of conjugation invariant compact sets \(K \), i.e., sets \(K \) such that \(s^{-1}Ks = K \) for all \(s \in G \).

Example

- Abelian groups,
- Discrete groups,
- Compact groups

Theorem (Mosak)

A locally compact group \(G \) is SIN if and only if \(L^1(G) \) has a \textit{central BAI}, i.e., a BAI \(\{ e_{\alpha} \} \subset L^1(G) \) such that \(\tau(s)e_{\alpha} = e_{\alpha} \) for all \(s \in G \).
Aside: Classes of Locally Compact Groups

Definition

A locally compact group G is QSIN if $L^1(G)$ has a *quasi-central* BAI, i.e., a BAI $\{e_\alpha\} \subset L^1(G)$ such that $\|\tau(s)e_\alpha - e_\alpha\| \to 0$ uniformly on compact subsets of G.

Theorem (Losert-Rindler)

Every amenable group is QSIN.
Question

When does \((\text{Ind}^G_H \pi)|_H\) contain \(\pi\)?

Theorem (Cowling-Rodway)

Let \(G\) be a SIN group. Then \((\text{Ind}^G_H \pi)|_H\) quasi-contains \(\pi\) for every closed subgroup \(H\) of \(G\) and representation \(\pi\) of \(H\).

Example (Khalil)

The above result fails for \(G = \mathbb{R} \ltimes \mathbb{R}^+\) be the \(ax + b\) group and \(H\) be the subgroup \(\mathbb{R}\).
Question
When does \((\text{Ind}_H^G \pi)|_H\) contain \(\pi\)?

Theorem (Cowling-Rodway)
Let \(G\) be a SIN group. Then \((\text{Ind}_H^G \pi)|_H\) quasi-contains \(\pi\) for every closed subgroup \(H\) of \(G\) and representation \(\pi\) of \(H\).

Example (Khalil)
The above result fails for \(G = \mathbb{R} \rtimes \mathbb{R}^+\) be the \(ax + b\) group and \(H\) be the subgroup \(\mathbb{R}\).
Main result

Theorem (W.)

Let G be a QSIN group. Then $\pi \preceq (\text{Ind}^G_H \pi)|_H$ for every closed subgroup $H \leq G$ and representation π of H.

Example (Bekka)

The above result fails for $G = \text{SL}(2, \mathbb{R})$ and $H = \text{SL}(2, \mathbb{Z})$.
Main result

Theorem (W.)

Let G be a QSIN group. Then $\pi \prec (\text{Ind}^G_H \pi)|_H$ for every closed subgroup $H \leq G$ and representation π of H.

Example (Bekka)

The above result fails for $G = \text{SL}(2, \mathbb{R})$ and $H = \text{SL}(2, \mathbb{Z})$.
Completely Positive Maps

Definition

Let A and B be C*-algebras. A linear map $\phi : A \to B$ is *completely positive* if

\[
[a_{ij}] \in M_n(A) \text{ is positive} \Rightarrow [\phi(a_{ij})] \in M_n(B) \text{ is positive.}
\]
Nuclear C*-algebras

Definition

A C*-algebra A is _nuclear_ if $A \otimes_{\text{min}} B = A \otimes_{\text{max}} B$ for every C*-algebra B.

Definition

A C*-algebra A has the _completely positive approximation property (CPAP)_ if there exist ccp maps $\varphi_i : A \to M_{n_i}(\mathbb{C})$ and $\psi_i : M_{n_i}(\mathbb{C}) \to A$ such that

$$\|\psi_i \circ \varphi_i(a) - a\| \to 0$$

for every $a \in A$.

Theorem (Kirchberg)

A C*-algebra A is nuclear iff it has the CPAP.
Nuclear C*-algebras

Definition

A C*-algebra A is *nuclear* if $A \otimes_{\text{min}} B = A \otimes_{\text{max}} B$ for every C*-algebra B.

Definition

A C*-algebra A has the *completely positive approximation property* (CPAP) if there exist ccp maps $\varphi_i : A \rightarrow M_{n_i}(\mathbb{C})$ and $\psi_i : M_{n_i}(\mathbb{C}) \rightarrow A$ such that

$$\|\psi_i \circ \phi_i(a) - a\| \rightarrow 0$$

for every $a \in A$.

Theorem (Kirchberg)

A C*-algebra A is nuclear iff it has the CPAP.
Nuclearity of Group C*-algebras

\[C^*_r(G) := C^*_\lambda = \overline{\lambda(L^1(G))} \| \cdot \| \]
\[C^*(G) := C^*_{\pi_u}, \text{ where } \pi_u \text{ is universal representation of } G \]

Theorem (Lance)

Let \(G \) be a discrete group. Then \(G \) is amenable if and only if \(C^*_r(G) \) is nuclear.

Theorem (Connes)

Let \(G \) be a separable and connected. Then \(C^*(G) \) is nuclear.
Exact C*-algebras

Definition

A C*-algebra A is exact if for every short exact sequence $0 \rightarrow J \rightarrow B \rightarrow C \rightarrow 0$ of C*-algebras, the sequence

$$0 \rightarrow A \otimes_{\text{min}} J \rightarrow A \otimes_{\text{min}} B \rightarrow A \otimes_{\text{min}} C \rightarrow 0$$

is exact.

Theorem (Kirchberg)

Let A be a C*-algebra and suppose that $A \hookrightarrow B(\mathcal{H})$ is a faithful embedding. The C*-algebra A has is exact if and only if there exists ccp maps $\varphi_i : A \rightarrow M_{n_i}(\mathbb{C})$ and $\psi_i : M_{n_i}(\mathbb{C}) \rightarrow B(\mathcal{H})$ such that $\|\psi_i \circ \varphi_i(a) - a\| \rightarrow 0$ for all $a \in A$.

Nuclear \Rightarrow Exact
Exact C*-algebras

Definition

A C*-algebra A is *exact* if for every short exact sequence $0 \to J \to B \to C \to 0$ of C*-algebras, the sequence

$$0 \to A \otimes_{\text{min}} J \to A \otimes_{\text{min}} B \to A \otimes_{\text{min}} C \to 0$$

is exact.

Theorem (Kirchberg)

Let A be a C*-algebra and suppose that $A \hookrightarrow B(\mathcal{H})$ is a faithful embedding. The C*-algebra A has is exact if and only if there exists ccp maps $\varphi_i : A \to M_{n_i}(\mathbb{C})$ and $\psi_i : M_{n_i}(\mathbb{C}) \to B(\mathcal{H})$ such that $\|\psi_i \circ \varphi_i(a) - a\| \to 0$ for all $a \in A$.

Nuclear \Rightarrow Exact
$\mathcal{C}^*(\mathbb{F}_2)$ is not exact

Theorem (Wasserman)

The sequence

$$0 \to \mathcal{C}^*(\mathbb{F}_2) \otimes_{\min} J \to \mathcal{C}^*(\mathbb{F}_2) \otimes_{\min} \mathcal{C}^*(\mathbb{F}_2) \to \mathcal{C}^*(\mathbb{F}_2) \otimes_{\min} \mathcal{C}^*_r(\mathbb{F}_2) \to 0$$

is not exact, where J is the kernel of $\mathcal{C}^*(\mathbb{F}_2) \to \mathcal{C}^*_r(\mathbb{F}_2)$.
Local properties of C*-algebras

Local reflexivity and the *local lifting property* (LLP) are C*-algebraic properties which are weaker than nuclearity.
Local properties of C*-algebras

Local reflexivity and the local lifting property (LLP) are C*-algebraic properties which are weaker than nuclearity.

\[\text{Exact} \Rightarrow \text{Locally Reflexive} \]
Local properties of C*-algebras

Local reflexivity and the *local lifting property* (LLP) are C*-algebraic properties which are weaker than nuclearity.

Exact \Rightarrow Locally Reflexive

Definition
A unital C*-algebra A has the LLP if any ucp map $\varphi: A \rightarrow B/J$ is locally liftable, i.e., for any finite dimensional operator system $E \subset A$, there exists a ucp map $\psi: E \rightarrow B$ such that $\varphi = q \circ \psi$ (where $q: B \rightarrow B/J$ is the quotient map). A nonunital C*-algebra A is said to have the LLP if its unitization does.
Local properties of C*-algebras

Local reflexivity and the *local lifting property* (LLP) are C*-algebraic properties which are weaker than nuclearity.

\[\text{Exact} \Rightarrow \text{Locally Reflexive} \]

Definition

A unital C*-algebra \(A \) has the LLP if any ucp map \(\varphi : A \to B/J \) is locally liftable, i.e., for any finite dimensional operator system \(E \subset A \), there exists a ucp map \(\psi : E \to B \) such that \(\varphi = q \circ \psi \) (where \(q : B \to B/J \) is the quotient map).

A nonunital C*-algebra \(A \) is said to have the LLP if its unitization does.

Theorem (Kirchberg)

A C*-algebra \(A \) has the LLP if and only if \(A \otimes_{\text{min}} \mathcal{B}(\mathcal{H}) = A \otimes_{\text{max}} \mathcal{B}(\mathcal{H}) \) canonically.
Local properties of C*-algebras

Theorem (Effros-Haagerup)

If A is a locally reflexive C*-algebra, then the sequence

$$0 \to J \otimes_{\min} C \to A \otimes_{\min} C \to A/J \otimes_{\min} C \to 0$$

is exact for every closed two-sided ideal J of A and every C*-algebra C.

Theorem (Effros-Haagerup)

Let B be a C*-algebra and J a closed two sided ideal of B. If $A := B/J$ has the local lifting property, then the sequence

$$0 \to J \otimes_{\min} C \to B \otimes_{\min} C \to A \otimes_{\min} C \to 0$$

is exact for every C*-algebra C.
Theorem (Wasserman)

The sequence

\[
0 \to \mathbb{C}^* (\mathbb{F}_2) \otimes_{\text{min}} J \to \mathbb{C}^* (\mathbb{F}_2) \otimes_{\text{min}} \mathbb{C}^* (\mathbb{F}_2) \to \mathbb{C}^* (\mathbb{F}_2) \otimes_{\text{min}} \mathbb{C}^r_1 (\mathbb{F}_2) \to 0
\]

is not exact, where \(J \) is the kernel of \(\mathbb{C}^* (\mathbb{F}_2) \to \mathbb{C}^r_1 (\mathbb{F}_2) \).
Local properties of group C*-algebras

Theorem (Wasserman)

The sequence

\[0 \to C^*(\mathbb{F}_2) \otimes_{\min} J \to C^*(\mathbb{F}_2) \otimes_{\min} C^*(\mathbb{F}_2) \to C^*(\mathbb{F}_2) \otimes_{\min} C^*_l(\mathbb{F}_2) \to 0 \]

is not exact, where \(J \) is the kernel of \(C^*(\mathbb{F}_2) \to C^*_l(\mathbb{F}_2) \).

Corollary

\(C^*(\mathbb{F}_2) \) is not locally reflexive and \(C^*_l(\mathbb{F}_2) \) does not have the LLP.
Local properties of group C*-algebras

Theorem (W.)

Let G be a QSIN group which contains \mathbb{F}_2 as a closed subgroup. Then

$$0 \to C^*(G) \otimes_{\text{min}} K \to C^*(G) \otimes_{\text{min}} C^*(G) \to C^*(G) \otimes_{\text{min}} C^*_r(G) \to 0$$

is not exact, where K is the kernel of $C^*(G) \to C^*_r(G)$.

Key Fact: ($\text{Ind}_G \times G \mathbb{F}_2 \times \mathbb{F}_2 \pi \big|_{\mathbb{F}_2 \times \mathbb{F}_2}$ weakly contains π for every representation π of $\mathbb{F}_2 \times \mathbb{F}_2$.)

Corollary

If G is QSIN and contains \mathbb{F}_2 as a closed subgroup, then $C^*(G)$ is not locally reflexive and $C^*_r(G)$ does not have the LLP.
Local properties of group C^*-algebras

Theorem (W.)

Let G be a QSIN group which contains \mathbb{F}_2 as a closed subgroup. Then

$$0 \to C^*(G) \otimes_{\text{min}} K \to C^*(G) \otimes_{\text{min}} C^*(G) \to C^*(G) \otimes_{\text{min}} C^*_r(G) \to 0$$

is not exact, where K is the kernel of $C^*(G) \to C^*_r(G)$.

Key Fact: $(\text{Ind}_{\mathbb{F}_2 \times \mathbb{F}_2}^G \pi)_{|\mathbb{F}_2 \times \mathbb{F}_2}$ weakly contains π for every representation π of $\mathbb{F}_2 \times \mathbb{F}_2$.
Local properties of group C*-algebras

Theorem (W.)

Let G be a QSIN group which contains \mathbb{F}_2 as a closed subgroup. Then

$$0 \to C^*(G) \otimes_{\min} K \to C^*(G) \otimes_{\min} C^*(G) \to C^*(G) \otimes_{\min} C^r(G) \to 0$$

is not exact, where K is the kernel of $C^*(G) \to C^r(G)$.

Key Fact: $(\text{Ind}_{F_2 \times F_2}^{G \times G} \pi)|_{F_2 \times F_2}$ weakly contains π for every representation π of $F_2 \times F_2$.

Corollary

If G is QSIN and contains \mathbb{F}_2 as a closed subgroup, then $C^*(G)$ is not locally reflexive and $C^r(G)$ does not have the LLP.
Thank you!