Original paper
(Artículo científico)

A NEW SPECIES OF ETHOBUNUS CHAMBERLIN, 1925 (OPILIONES: ZALMOXIDAE) FROM OAXACA, MEXICO, WITH TAXONOMIC NOTES ON MEXICAN SPECIES OF THE GENUS

UNA ESPECIE NUEVA DEL GÉNERO ETHOBUNUS CHAMBERLIN, 1925 (OPILIONES: ZALMOXIDAE) PROCEDENTE DE OAXACA, MÉXICO, CON NOTAS TAXONÓMICAS SOBRE LAS ESPECIES MEXICANAS DEL GÉNERO

JESÚS ALBERTO CRUZ-LÓPEZ*

Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Regional de Investigación Pacifico Sur (CIRPAS), Campo Experimental Valles Centrales, Melchor Ocampo No. 7, Santo Domingo Barrio Bajo, Villa de Etla, Oaxaca, México, C.P. 68200. <cruz.alberto@inifap.gob.mx>; <thelyphonidito@gmail.com>
*Corresponding author: <cruz.alberto@inifap.gob.mx>; <thelyphonidito@gmail.com>

Received: 27/12/2019; accepted: 10/03/2020; published online: 30/04/2020
Responsible editor: María Jiménez

Cruz-López, J. A. (2020) A new species of Ethobunus Chamberlin, 1925 (Opiliones: Zalmoxidae) from Oaxaca, Mexico, with taxonomic notes on Mexican species of the genus. Acta Zoológica Mexicana (nueva serie), 36, 1–12. https://doi.org/10.21829/azm.2020.3612262

ABSTRACT. A new species of the genus Ethobunus Chamberlin, 1925 from Mexico is described: Ethobunus oaxacensis sp. nov. The description of this new species is based on both sexes, specimens collected from different localities of low deciduous forest in the coastal region from the state of Oaxaca. Ethobunus oaxacensis sp. nov. is compared with other two species of the genus present in Mexico: Ethobunus acanthotibialis (Goodnight & Goodnight, 1953) and Ethobunus pilosus (Goodnight & Goodnight, 1953); it is also compared with the most similar species, Ethobunus cubensis (Šilhavý, 1979) and Ethobunus kratochvili (Šilhavý, 1979), both from Cuba. Additional comments on the taxonomy of the Mexican Ethobunus and Pachylicus Roewer, 1923 are provided.

Key words: Laniatores; Grassatores; Zalmoxoidea; Pachylicus; Neotropic; taxonomy

Cruz-López, J. A. (2020) Una especie nueva del género Ethobunus Chamberlin, 1925 (Opiliones: Zalmoxidae) procedente de Oaxaca, México, con notas taxonómicas sobre las especies mexicanas del género. Acta Zoológica Mexicana (nueva serie), 36, 1–12. https://doi.org/10.21829/azm.2020.3612262

RESUMEN. Se describe una especie nueva del género Ethobunus Chamberlin, 1925 procedente de México: Ethobunus oaxacensis sp. nov. La descripción de esta especie nueva está basada en ejemplares de ambos sexos, los cuales fueron colectados en una selva baja caducifolia en la región de la costa del estado de Oaxaca. Se compara a Ethobunus oaxacensis sp. nov. con las otras dos especies del género presentes en México: Ethobunus acanthotibialis (Goodnight & Goodnight, 1953) y Ethobunus pilosus (Goodnight &
Cruz-López: A new species of Ethobunus from Oaxaca, Mexico

Goodnight, 1953); además, también es comparada con las especies más parecidas morfológicamente Ethobunus cubensis (Šilhavý, 1979) y Ethobunus kratochvili (Šilhavý, 1979), ambas de Cuba. Adicionalmente se ofrecen comentarios respecto al estatus taxonómico de las especies mexicanas de los géneros Ethobunus y Pachylicus Roewer, 1923.

Palabras clave: Laniatores; Grassatores; Zalmoxoidea; Pachylicus; Neotrópico; taxonomía

INTRODUCTION

The family Zalmoxidae Sørensen, 1886 is the most diverse family of Zalmoxoidea with 61 genera and 226 described species (Kury et al., 2015; Kury & Pérez-González, 2015; Pérez-González et al., 2016; 2017). This family has a peculiar disjunct geographical distribution, being found in the Neo- and Paleotropics, due to ancient transoceanic dispersal from the Neotropics of the Indo-Pacific region (Sharma & Giribet, 2012). The fauna of Asian zalmoxids comprises only the genus Zalmoxis Sørensen, 1886 with 66 species, the remaining members of the family are distributed in tropical America, especially northern South America (Kury, 2003; Sharma et al., 2011; Kury et al., 2015; Kury & Pérez-González, 2015).

The southeast Mexico is the northern limit of the geographical distribution of the family in the Americas, with only four species reported in the country: Ethobunus acanthotibialis (Goodnight & Goodnight, 1953), Ethobunus pilosus (Goodnight & Goodnight, 1953), Pachylicus acutus (Goodnight & Goodnight, 1942) and Pyropharynx gracilis (Pickard-Cambridge, 1905). Whereas E. pilosus and P. gracilis were recorded from few localities including the type locality, E. acanthotibialis and P. acutus were recorded from several localities in Mexico, Belize, and Guatemala (Kury, 2003). Also, Pyropharynx Kury & Alonso-Zarazaga, 2011 is a monotypic genus only known from the type locality, whereas Ethobunus Chamberlin, 1925 and Pachylicus Roewer, 1923 are two of the most speciose genera with 33 and nine species, respectively (Kury, 2003; Pérez-González et al., 2016). In addition, Ethobunus and Pachylicus have long and conflictive taxonomic histories, which involve many generic synonymies proposed without justification by Goodnight and Goodnight (1953).

As a result of several expeditions collecting arachnids in southeastern Mexico, specimens of Ethobunus oaxacensis sp. nov. were found in a low deciduous forest near to the coastal area in the state of Oaxaca. To corroborate its taxonomic status, the types of the other two Ethobunus species reported from Mexico were examined at the American Museum of Natural History (AMNH), NY, USA. Complementing the comparative diagnosis, available literature shows that E. oaxacensis sp. nov. is most similar to Ethobunus cubensis (Šilhavý, 1979) and Ethobunus kratochvili (Šilhavý, 1979), both from Cuba. Final remarks on the taxonomic status of Mexican Ethobunus and Pachylicus are provided.

MATERIALS AND METHODS

Types of E. acanthotibialis and E. pilosus were reviewed at the American Museum of Natural History (AMNH), NY, USA. Types of E. oaxacensis sp. nov. are deposited at the Colección Nacional de Arácnidos (CNAN), Universidad Nacional Autónoma de México (UNAM), Mexico. Additionally, male genitalia of P. acutus (topotypes) and E. aff. acanthotibialis from Mexico: Veracruz: Los Tuxtlas were examined for comparisons. Color images were obtained using a Nikon Coolpix S10 camera attached to a Nikon SMZ645 microscope. Male genitalia was prepared for scanning electronic photographs (SEM) following the procedure described in Acosta et al. (2007) and SEM photographs were taken in a Hitachi S-2460N microscope in the Laboratorio Nacional de Biodiversidad (LaNaBio), in the Instituto de Biología, UNAM (IB-UNAM). Nomenclature of scutum follows Kury and Medrano (2016), pedipalpal armature follows Acosta et al. (2007), and penial morphology according to Kury and Pérez-González (2007).
RESULTS

Family Zalmoxidae Sørensen, 1886
Genus Ethobunus Chamberlin, 1925
Ethobunus oaxacensis sp. nov.
(Figs. 1–6)

Type material. Holotype male (CNAN-T01377) from MEXICO: Oaxaca, Parque Nacional Huatulco, Puente Cacalotla, Santa María Huatulco, 08.IX.2018, 15°46′46.05″ N, 96°10′21.44″ W, 90 m, J. Mendoza, D. Barrales, R. Monjaraz, D. Candia, colls.

Paratypes. Male (CNAN-T01378) with same data as the holotype. Male (CNAN-T01379) from Oaxaca, Km 354+200 carr. fed. 200 Salina Cruz – Huatulco, 07.IX.2018, 16°02′4.25″ N, 95°24′56.65″ W, 116 m, J. Mendoza, D. Barrales, R. Monjaraz, D. Candia, colls. Male and female (CNAN-T01380) from Oaxaca, camino a La Playa, La Mina, Puerto Ángel, 08.IX.2018, 15°40′28.72″ N, 96°28′44.48″ W, J. Mendoza, D. Barrales, R. Monjaraz, D. Candia, colls. Two males and one female (CNAN-T01381) from Oaxaca, Km 281 Huatulco – Salina Cruz, 09.VI.2015, 15°51′55.73″ N, 95°57′17.75″ W, G. Montiel, C. Santibáñez, G. Contreras, R. Monjaraz, D. Guerrero, colls.; one male and one female of this sample were used for SEM photographs. Male and two females (CNAN-T01382) from Oaxaca, La Cueva, Asunción Ixtaltepec, 06.IX.2018, 16°37′45.82″ N, 94°59′12.00″ W, 123m, J. Mendoza, D. Barrales, R. Monjaraz, D. Candia, colls.

Figures 1–2. Ethobunus oaxacensis sp. nov. habitus dorsal. 1) male holotype; 2) female paratype (CNAN-T01380). Scale bars: 0.5 mm.
Diagnosis. *Ethobunus oaxacensis* sp. nov. is easily recognizable from all species of *Ethobunus* by the presence of prominent conical tubercles on anal plates in males (Figs. 4, 5, 7), instead of the presence of spiniform tubercles. Armature on legs IV of males is similar to those on *E. cubensis* and *E. kratochvili*, but the femur of *E. oaxacensis* sp. nov. has two subapical strong spiniform tubercles (Figs. 12, 14), and the armature on tibia IV is formed by a row of spiniform tubercles increasing in size towards the apical part (Figs. 13, 15).

Figures 3–6. *Ethobunus oaxacensis* sp. nov., SEM habitus and venter. 3) dorsal male paratype (CNAN-T01381); 4) lateral, same specimen; 5) venter, same specimen; 6) venter, female paratype (CNAN-T01381). Scale bars: 3, 4 = 0.5 mm, 5, 6 = 250 µm.

Description. Based on the male holotype CNAN-T01377. Small zalmoxid, scutum length: 1.5 mm, scutum width at the posterior margin: 1.0 mm. Color in 80% alcohol light yellow thoroughout, tarsi lighter (Fig. 1).
Body (Figs. 1, 3–5, 7). Campaniform, with constriction 1 marked, constriction 2 not visible. Mesotergal sulci U-shaped and distinct, mesotergal areas densely covered by rounded spiniform tubercles. Prosoma almost smooth, with few tubercles anteriorly; ocularium conical, located at the level of anterior margin, ornate with few small tubercles. Free tergites with wide, conical tubercles; anal plate with seven prominent conical tubercles. Venter without ornamentation, coxae IV enlarged, visible from dorsal view. Genital operculum semicircular, spiracles slightly concealed by coxae IV. Free sternites with a row of small tubercles.

Chelicera (Figs. 9–10). Sexually monomorphic, bulla rounded and covering almost entire basichelicerite. Cheliceral hand not incrassated, ornate with few setae near the fingers. Cheliceral fingers with small dentition, with no other ornamentation.

Pedipalp (Fig. 11). Short and robust, with the typical armature of the family. Femur basally with a ventral subapical and one mesal subapical megaspine, both very long. Patella with a large meso-apical megaspine. Tibia with three megaspines on a mesal ridge and two on the ectal side, the apical-most pair larger. Tarsus with two spines on each side.

Legs (Figs. 12–15). Legs I–III with short segments, without armature. Legs IV sexually dimorphic as follows. Coxae rounded, without armature. Femur thickened, covered by rounded tubercles, ventrally with a row of spiniform tubercles increasing in size distally, the two apical-most prominent. Patella with a sharp spiniform tubercle, located ventro-apical. Tibia with a ventral row of 12 spiniform tubercles, that are contiguous and increasing in size distally. Tarsal count 3:4:5:5.

Penis (Figs. 19–21). Rutrum wider than long, with long, sharp lateral extensions. Pergula divided into two extended rounded lobes, separated by a ventral furrow. Capsula externa modified into expandable stragulum, fused at the base, with two acute projections apically. Arrangement of macrosetae as follows: Rutrum with three pairs of macrosetae as in other zalmoxids, pergula with three pairs, two of them displaced laterally near the edges, and one pair next to the junction with stragulum. A basal pair just below pergula, in the middle of pars distalis.

Figures 7–8. Ethobunus oaxacensis sp. nov., SEM anal plate. 7) male paratype (CNAN-T01381); 8) female paratype (CNAN-T01381). Scale bars: 200 µm.

Description of the female. (Figs. 2, 6, 8, 16–18). Similar to the male, but smaller in size, stigmatic area shorter, anal plate without the prominent conical tubercles and legs IV thinner and without armature.

Etymology. Toponymic referring to Oaxaca, the state where this species is found.
Natural history. Specimens collected in 2018 were found under dry logs and rocks; and when they were disturbed, they ran immediately.

Geographical distribution. This species is known from the Pacific Coastal region of Oaxaca.

DISCUSSION

In a controversial work, Goodnight and Goodnight (1953) synonymized 88 genera (most of them monotypic and described by them) into only eight genera within the families Phalangodidae and Cosmetidae. Such a monumental nomenclatural act was made without any explanation, and Goodnight and Goodnight (1953) argued only that some variable morphological features (as tarsal counts) were enough to recognize a relatively small number of genera clearly separated from one another. Kury (2003) was one of the first authors who courageously decided to revalidate all of the Goodnight’s synonymies in Cosmetidae awaiting further taxonomic studies. In this sense, Cruz-López and Francke (2015; 2017; 2019b) in a series of works with phylogenetic revisions of Stygnopsidae, have also reversed additional Goodnight’s synonymies.

Ethobunus is one of these over synonymized genera that still remains without a systematic framework. Goodnight and Goodnight (1953) chose the name _Cynortina_ Banks, 1909 as the senior synonym of 15 of the genera they synonymized. Later, Goodnight and Goodnight (1983) discovered that this name was a preoccupied and chose _Dapessus_ Roewer, 1933 as the next oldest name available, which was _Ethobunus_, eight years older. Kury and Cokendolpher (2000) restored _Ethobunus_, and _Dapessus_ was reverted as a junior synonym. Currently, _Ethobunus_ is a complex group comprising 12 generic synonymies covering a wide range of morphological variation among its 33 current species. A fast revision of modest descriptions of some _Ethobunus_ species (e.g. Šilhavý, 1979; Goodnight & Goodnight, 1983; González-Sponga, 1987), reveals there are evidences that this genus is not a natural group, _i. e._ it is not monophyletic, and it is likely that the some or all of the synonymized genera will be reinstated in the future.
Figures 12–18. *Ethobunus oaxacensis* sp. nov., SEM leg IV of male paratype (CNAN-T01381) and female paratype (CNAN-T01381). 12) ectal femur male; 13) ectal patella and tibia male; 14) ventral femur male; 15) ventral patella and tibia male; 16) ectal femur female; 17) ectal patella and tibia female; 18) ventral patella and tibia female. Scale bars: 12, 13, 15 = 250 µm, 14, 17, 18 = 200 µm, 16 = 150 µm.

A general rule in the modern taxonomy of Opiliones, followed by all workers is to illustrate and describe the male genitalia. Although the penises of *Ethobunus* species are poorly understood, some details can be rescued from the old literature. Šilhavý (1979) and González-Sponga (1987) showed that the general shape of the rutrum that is generally longer than wide (*e.g.* González-Sponga 1987: figs. 50, 51, to cite some
Cruz-López: A new species of Ethobunus from Oaxaca, Mexico

specific examples). This feature is quite uniform even in the Asian species (Sharma, 2012; Sharma et al., 2012), and now is reported here for *P. acutus* and *E. aff. acanthotibialis* (Figs. 22–25). Having a rutrum wider than long is the other side of the coin, this shape of rutrum is only present in *E. cubensis*, *E. kratochvili*, and the new species herein described. In fact, external morphologies between these three species are very similar, especially between *E. cubensis* (formerly *Hewus cubensis*) and *E. oaxacensis* sp. nov.

![Figures 19–21. Ethobunus oaxacensis sp. nov., SEM male genitalia of male paratype (CNAN-T01381). 19) dorsal; 20) lateral; 21) ventral. Scale bars: 50 µm.](image)

Finally, Cruz-López and Francke (2013; 2015; 2016; 2019a; 2019b) detected another common problem in some of the Goodnight’s descriptions. They designated numerous type specimens from several localities, some of them quite far from each other and from the type locality, and currently belonging to different biogeographic provinces. This resulted in species with a broad morphological variation and very wide geographical distribution. On the other hand, it has been demonstrated that for some stygnopsid species, Goodnight and Goodnight mixed different type specimens within a single species, sometimes completely unrelated specimens (Cruz-López & Francke, 2013; 2015; 2016; 2019a; 2019b). For these reasons, to complement the description of *E. oaxacensis* sp. nov., types of other Mexican *Ethobunus* where revised at the AMNH. In the first place, *E. pilosus* results in an enigmatic zalmoxoid which is being treated in another work. Similarly, types and additional material of the putatively widely distributed *E. acanthotibialis* (Goodnight & Goodnight, 1953; 1954) resulted to be five different species, although they are more similar to those on some species of the genera *Dapessus* and *Pachylicus*, due to the presence of a long leg IV in males and shape of male genitalia, with a ventro-basal long bulbous projection (Figs. 22–25; Goodnight & Goodnight, 1983: figs. 38, 71).
Summarizing, the assignment of *E. oaxacensis* sp. nov. into the genus *Ethobunus* seek to propose a more stable classification using modern standards in the description of a new species in this genus, from which none has been described since 1998 by González-Sponga (1998). Additionally, examining the types of Mexican *Ethobunus* and *Pachylicus* aimed to show that the taxonomic decisions of Goodnight and Goodnight (1953) derived in artificial groups, and a systematics revision of Mexican zalmoxids is badly needed.

Figures 22–25. SEM Male genitalia of *E. aff. acanthotibialis* and *P. acutus*. 22) ventral *E. aff. acanthotibialis*; 23) lateral *E. aff. acanthotibialis*; 24) ventral *P. acutus*; 25) lateral *P. acutus*. Scale bars: 22, 23 = 100 µm, 24, 25 = 50 µm. Read arrows indicated the ventro-basal long bulbous projection.

ACKNOWLEDGEMENTS. Revision of types deposited at the AMNH was possible by the following grants: Programa de Apoyo a los Estudios de Posgrado (PAEP), UNAM, Mexico and Ernst Mayr travel grant,
Cruz-López: A new species of Ethobunus from Oaxaca, Mexico

Museum of Comparative Zoology (MCZ), Harvard University, USA. Examination of these specimens was possible thanks the facilities provided by Lorenzo Prendini and Pío Colmenares. SEM photographs were taken with the help of Berenit Mendoza (UNAM). Manuscript was improved thanks suggestions of O. Francke and E. González-Santillán. Specimens of *E. oaxacensis*, *E. aff. acanthotibialis* and *P. acutus* were collected under Scientific Collector Permit FAUT-175 granted by SEMARNAT, México to Oscar Francke (CNAN).

LITERATURE CITED

Acosta, L. E., Pérez-González, A., Tourinho, A. L. (2007) Methods for taxonomic study. Pp: 494–505. In: Pinto-da-Rocha, R., G. Machado, G. Giribet (Eds.). *Harvestmen: The Biology of Opiliones*. Cambridge, Massachusetts Harvard University Press, and London, England.

Banks, N. (1909) Arachnida from Costa Rica. *Proceedings of the Academy of Natural Sciences of Philadelphia*, 61, 194–234.

Chamberlin, R. V. (1925) Diagnoses of new American Arachnida. *Bulletin of the Museum of Comparative Zoology*, 67, 211–248.

Cruz-López, J. A., Francke, O. F. (2013) Two new species of the genus *Paramitraceras* Pickard-Cambridge, 1905 (Opiliones: Laniatores: Stygnopsidae) from Chiapas, Mexico. *Zootaxa*, 3641, 481–490. https://doi.org/10.11646/zootaxa.3641.4.13

Cruz-López, J. A., Francke, O. F. (2015) Cladistic analysis and taxonomic revision of the genus *Karos* Goodnight & Goodnight, 1944 (Opiliones, Laniatores, Stygnopsidae). *Zoological Journal of the Linnean Society*, 175, 827–891. https://doi.org/10.1111/zoj.12299

Cruz-López, J. A., Francke, O. F. (2016) Three new species of the Mexican harvestman genus *Chapulobunus* (Opiliones: Stygnopsidae). *Journal of Arachnology*, 44, 65–75. https://doi.org/10.1636/Ha15-44.1

Cruz-López, J. A., Francke, O. F. (2017) Total evidence phylogeny of the North American harvestman family Stygnopsidae (Opiliones: Laniatores: Grassatores) reveals hidden diversity. *Invertebrate Systematics*, 31, 317–360. https://doi.org/10.1071/IS16053

Cruz-López, J. A., Francke, O. F. (2019a) New species of the cave-dwelling genus *Huasteca* (Opiliones: Stygnopsidae: Karosinae), from Northern Oaxaca, Mexico, with a SEM survey of the sexually dimorphic areas on legs and structures related to chelicerae in the genus. *Journal of Natural History*, 53, 1451–1464. https://doi.org/10.1080/00222933.2019.1657194

Cruz-López, J. A., Francke, O. F. (2019b) Taxonomic revision of the Neotropical genus *Panzosus* Roewer, 1949 stat. rev. (Opiliones: Laniatores: Stygnopsidae). *Journal of Arachnology*, 47, 226–247. https://doi.org/10.1636/JoA-S-18-061

González-Sponga, M. A. (1987) *Arácnidos de Venezuela. Opiliones Laniatores I. Familias Phalangodidae y Agoristenidae*. Academia de Ciencias Físicas, Matemáticas y Naturales. Caracas, Venezuela. 562 pp.

González-Sponga, M. A. (1998) Arácnidos de Venezuela: un nuevo género y seis nuevas especies de la familia Phalangodidae (Opiliones: Laniatores). *Memoria de la Sociedad de Ciencias Naturales La Salle*, 58, 87–108.

Goodnight, C. J., Goodnight, M. L. (1942) New and little known Phalangida from Mexico. *American Museum Novitates*, 1163, 1–16.

Goodnight, C. J., Goodnight, M. L. (1953) The opilionid fauna of Chiapas, Mexico, and adjacent areas
(Arachnoidea, Opiliones). *American Museum Novitates*, 1610, 1–81.

Goodnight, C. J., Goodnight, M. L. (1954) The opilionid fauna of an isolated volcano in Southeastern Veracruz. *Transactions of the American Microscopical Society*, 73, 344–350.

Goodnight, C. J., Goodnight, M. L. (1983) Opiliones of the family Phalangodidae found in Costa Rica. *Journal of Arachnology*, 11, 201–242.

Kury, A. B. (2003) Annotated catalogue of the Laniatores of the New World. *Revista Ibérica de Aracnología*. Volumen especial monográfico 1, 337 pp.

Kury, A. B., Cokendolpher, J. C. (2000) Opiliones; *Pp*: 137–157. In: J. E. Llorente-Bousquets, E. González-Soriano, N. Papavero (Eds.). *Biodiversidad, Taxonomía y Biogeografía de Artrópodos de México: Hacia una síntesis de su conocimiento*. Vol. II. CONABIO, Ciudad de México, Mexico.

Kury, A. B., Pérez-González, A. (2003) Zalmoxidae Sørensen, 1886; *Pp*: 243–246. In: R. Pinto-da-Rocha, G. Machado, G. Giribet (Eds.). *Harvestmen: The Biology of Opiliones*. Cambridge, Massachusetts Harvard University Press, and London, England.

Kury, A. B., Alonso-Zarazaga, M. A. (2011) Addenda and corrigenda to the “Annotated catalogue of the Laniatores of the New World (Arachnida, Opiliones)”. *Zootaxa*, 3034, 47–68. https://doi.org/10.11646/zootaxa.3032.1.3

Kury, A. B., Souza, D. R., Pérez-González, A. (2015) World checklist of Opiliones species (Arachnida). Part 2: Laniatores – Samooidea, Zalmoxoidea and Grassatores *incertae sedis*. *Biodiversity Data Journal*, 3, e6482. https://doi.org/10.3897/BDJ.3.e6482

Kury, A. B., Pérez-González, A. (2015) A companion to Part 2 of the World checklist of Opiliones species (Arachnida): Laniatores – Samooidea, Zalmoxoidea and Grassatores *incertae sedis*. *Biodiversity Data Journal*, 3, e6663. https://doi.org/10.3897/BDJ.3.e6663

Kury, A. B., Medrano, M. (2016) Review of terminology for the outline of dorsal scutum in Laniatores (Arachnida, Opiliones). *Zootaxa*, 4097, 130–134. https://doi.org/10.11646/zootaxa.4097.1.9

Pérez-González, A., Sharma, P. P., Proud, D. N. (2016) Morphological tricks and blessed genitalia: rectifying the family placement of *Fijicolana tuberculata* (Opiliones: Laniatores: Zalmoxidae). *Zootaxa*, 4061, 253–260. https://doi.org/10.11646/zootaxa.4061.3.3

Pérez-González, A., Cerracelli, F. S., Monte, B. G. O., Proud, D. N., DaSilva, M. B., Bichuette, M. E. (2017) Light from dark: a relictual troblogite reveals a broader ancestral distribution for kimulid harvestmen (Opiliones: Laniatores: Kimulidae) in South America. *PLOS One*, 12, e0187919. https://doi.org/10.1371/journal.pone.0187919

Pickard-Cambridge, F. O. (1905) Order Opiliones; *Pp*: 545–560. In: F. D. Godman, O. Salvin (Eds.). *Biologia Centrali-Americana, Vol. 2 Arachnida. Araneidea and Opiliones*. London, England.

Roewer, C. F. (1923) *Die weberknechte der Erde. Systematischebearbeitung der bisher bekannten Opiliones*. Jena, Germany, 1116 pp.

Roewer, C. F. (1933) Ergebnisse der Österreichischen biologischen Costa-Rica-Expedition 1930. IV. Teil. Opilioniden. *Annalen des Naturhistorischen Museums in Wien*, 46, 276–295.

Sharma, P. P. (2012) New Australasian Zalmoxidae (Opiliones: Laniatores) and a new case of male polymorphism in Opiliones. *Zootaxa*, 3236, 1–35. https://doi.org/10.11646/zootaxa.3236.1.1

Sharma, P. P., Giribet, G. (2012) Out of the Neotropics: Late Cretaceous colonization of Australasia by American arthropods. *Proceedings of the Royal Society*, 279, 3501–3509. https://doi.org/10.1098/rspb.2012.0675

Sharma, P. P., Kury, A. B., Giribet, G. (2011) Zalmoxidae (Arachnida: Opiliones: Laniatores) of the Paleotropics: a catalogue of Southeast Asian and Indo-Pacific species. *Zootaxa*, 2972, 37–58. https://doi.org/10.11646/zootaxa.2972.1.3
Sharma, P. P., Buenavente, P. A. C., Clouse, R. M., Diesmos, A. C., Giribet, G. (2012) Forgotten gods: Zalмoxidae of the Philippines and Borneo (Opiliones: Laniatores). *Zootaxa*, 3280, 29–55. https://doi.org/10.11646/zootaxa.3280.1.2

Sharma, P. P., Giribet, G. (2012) Out of the Neotropics: Late Cretaceous colonization of Australasia by American arthropods. *Proceedings of the Royal Society B*, 279, 3501–3509. https://doi.org/10.1098/rspb.2012.0675

Šilhavý, V. (1979) New opilionids from the subfamily Phalangodinae from Cuba (Arachn.: Opilionidea). *Věstník československé Společnosti Zoologické*, 43, 60–75.

Sørensen, W. E. (1886) Opiliones; Pp: 53–86. In: L. Koch, E. Keyserling (Eds.). *Die Arachniden Australiens nach der Natur beschrieben und abgebildet*. Nuremberg, Germany.