The peculiarities of local structure of YbNi$_2$ and YbCo$_2$ intermetallics synthesized at high pressure.

O V Chernysheva1,3, A P Menushenkov1, A V Tsvyashchenko2, L N Fomicheva2, A A Ivanov1, A V Kuznetsov1

1National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409, Moscow, Russia
2Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe sh. 14, Troitsk, 142190 Moscow, Russia

E-mail: olgagrish@gmail.com

Abstract. Local structure of YbCo$_2$ and YbNi$_2$ was investigated by EXAFS and XANES spectroscopy. It was found that the bond Yb-Co(Ni) has the highest static disorder and its length increases with temperature decrease, while all other bonds remain almost unchanged. This phenomenon may be caused by short-range magnetic ordering at temperatures above the phase transition. XANES measurements above L_{III}-Yb absorption edge in YbCo$_2$ and YbNi$_2$ revealed that both compounds have almost the same density of free 5d-states.

1. Introduction

Unusual magnetic and transport properties of Laves phases YbM$_2$, where M – transition metal, are determined in general by hybridization of 4f electron with s- and d- conduction band electrons. In the case of magnetic compounds there is also a contribution of rare earth 5d and metal 3d band hybridization [1-3]. Despite intensive study of intermetallic Yb compounds some questions are yet to answer, including influence of temperature and pressure (hydrostatic and chemical), which may change in the local interatomic distances, and hence the magnitude of the exchange interaction [4-7]. Investigation of the local structure of YbCo$_2$ and YbNi$_2$ by X-ray absorption spectroscopy may remove contradictions and gaps in the data on properties of these compounds.

2. Experiment

Samples were prepared by melting of the constituent materials at a constant pressure of 8 GPa in a chamber of the “Toroid” type [8]. Then samples were rapidly quenched to room temperature, and pressure was released. The resulting material was a homogeneous polycrystal.

The X-ray absorption measurements were carried out at I811 beamline of MAX IV facility (Lund, Sweden) in the transmission mode at K-Co and L_{III}-Yb absorption edges in 80-300 K temperature range with normalized energy resolution of 1×10^{-4}. EXAFS spectra analysis was performed using the VIPER [9] software pack with standard procedure of EXAFS-function $\chi(k)$ extraction and Fourier-analysis. Fitting of EXAFS-functions was performed in standard harmonic approximation. Backscattering amplitude and phase shift calculated by FEFF [10] within the framework of structure model of cubic Laves phase C15.
3. Results and discussion

EXAFS-functions $\chi(k)k^2$, measured above K-Co and L_{III}-Yb absorption edges at different temperatures are given in Figures 1 and 2.

Figure 1. EXAFS-functions $\chi(k)k^2$, measured above L_{III}-Yb absorption edge at temperatures 80-300 K for YbCo$_2$ (a) and YbNi$_2$ (b).

The radii of coordination spheres Yb-M slightly change with temperature. At the same time the other distances stay almost unchanged. Bond lengths are shorter than the values extracted from XRD data for YbNi$_2$ and YbCo$_2$ intermetallics [11,12], except the bond length Yb-Yb. It is equal to published data for YbCo$_2$, and is 0.03 Å greater for YbNi$_2$. The value of the distance between Yb and Co(Ni) atoms is the most significant for the magnetic properties of these compounds (Fig. 3). The radius of the first coordination shell, corresponding to the shortest distance between atoms Yb and Co(Ni), increases with decreasing temperature. Weak Co moments survive far above the phase transition temperature [13], forming the clusters with short-range magnetic order. Therefore, the increase in the unit cell volume can occur when approaching the phase transition temperature [14] leading to a corresponding increase in local distances.

Figure 2. EXAFS-functions $\chi(k)k^2$, measured above K-Co absorption edge at temperatures 80-300 K

Figure 3. Temperature dependence of the distances between Yb and d-metal atoms in the first coordination sphere. The values in legend were calculated from data [3,23]
The temperature dependences of Debye–Waller factors $\sigma^2(T)$ for coordination shells around ytterbium and cobalt atoms were also obtained. Here Debye-Waller factor is defined as a standard deviation of the interatomic distance from the mean value $\sigma^2 = \sigma_s^2 + \sigma_d^2$ and consists of the temperature independent contribution σ_s^2 due to the statistical disordering of atoms and dynamic contribution σ_d^2 due to thermal vibrations. The temperature dependence of the dynamic contribution can be calculated using Einstein model:

$$\sigma_d^2 = \frac{\hbar}{2\mu\omega} \operatorname{sinh}\left(\frac{\Theta_E}{2T}\right)$$

Here ω – the frequency of longitudinal oscillations, μ – the reduced mass of the atomic pair, $\Theta_E = \frac{\hbar\omega}{k_B}$ - Einstein temperature. Experimental results are shown in Figure 4 and Table 1.

One can see that Einstein temperature and hence bond rigidity is the highest for Co-Co bond (Table 1) that correlates with the fact that this bond is the shortest. The greatest static disorder corresponds to Yb-Co bond. Magnetic ordering is determined by the exchange interaction between sublattices of Co and Yb. The spread of distances between the atoms and the corresponding change in the overlap of the wave functions affect the density of states in 3d-band of Co and magnetic moment of Co atoms.

![Figure 4. Temperature dependence of Debye–Waller factors for Yb-Co, Yb-Yb, Yb-Ni bonds](image)

Table 1. Einstein temperatures and Debye-Waller factors for YbCo$_2$ interatomic bonds.

Bond	Θ_E, K	σ_d^2(Å2)
Yb-Yb	190	0.005
Co-Co	260	0.003
Yb-Co	207	0.006

For YbNi$_2$ it was not possible to distinguish the static and dynamic contribution since only two temperature points were available. However, we can say that in YbNi$_2$ the atoms have a higher degree of disorder than in YbCo$_2$ and Debye-Waller factor of Yb-Ni bond is also the largest.

The normalized experimental L_{III}-Yb XANES spectra for YbCo$_2$ and YbNi$_2$ measured at the temperature of 8 K are shown in Figure 5. Energy position of the absorption edge indicates that Yb atom is in Yb$^{3+}$ valence state. The shape and intensity of the white line are almost identical for both samples and do not vary with temperature. XANES spectroscopy above L_{III}-absorption edge is based on the excitation of an electron from an internal 2p$_{3/2}$ level on the d-valence orbitals and carries information about the density of unoccupied electron states, therefore, the density of free 5d-states of these two compounds is almost the same.

4. Conclusion
The distance between Yb and Co (Ni) atoms increases with decreasing temperature. Perhaps this is due to the presence of clusters with short-range magnetic ordering at temperatures above the phase transition. The same bond has the greatest static disorder. The shape and intensity of the L_{III}-Yb absorption edge white line is practically identical for YbCo$_2$ and YbNi$_2$ samples, which indicates almost the same value of the density of free 5d-states in these two compounds.
Figure 5. XANES spectra of YbCo$_2$ and YbNi$_2$ compounds measured above L_{III}-Yb absorption edge.

Acknowledgments
The work was supported by the Russian Foundation for Basic Research (grants No. 14-02-00001 and 14-22-01002-ofi_m) by the Competitiveness Program of NRNU MEPhI.

References
[1] Harada I, Asakura K, Fujiwara A, Kotani A 2004 Journal of Electron Spectroscopy and Related Phenomena 136 125–133
[2] Matsunami M, Chainani A, Taguchi M, Eguchi R, Takata Y, Oura M, Yabashi M, Tamasaku K, Nishino Y, Ishikawa T, Kosaka M, and Shin S 2012 Journal of the Physical Society of Japan 81 073702
[3] Okada H, Koyama K, Yamada M, Goto T, Makihara Y, Fujii H, Watanabe K 2006 Journal of Alloys and Compounds 408–412 144–146
[4] Sahu P CH, Chandra Shekar N V 2006 J. Mater. Sci. 41 3207–3228
[5] Dallera C, Anneseb E, Rueff J-P, Palenzona A, Vankó G 2004 Journal of Electron Spectroscopy and Related Phenomena 137–140 651–655
[6] Kumar R S, Svane A, Vaitheeswaran G, Kanchana V, Bauer E D, Hu M, Nicol M F and Cornelius A L 2008 Phys Rev B 78 075117
[7] Görlach T, Pfleiderer C, Grube K and v Löhneysen H 2005 Phys Rev B 2005 71 033101
[8] Khvostantsev L G, Vereshchagin L F and Novikov A P 1977 High Temp.-High Press. 9 637
[9] Klementev K V 2001 J. Phys. D: Appl. Phys. 34 209
[10] Rehr J J and Albers R C 2000 Rev. Mod. Phys. 72 621
[11] Rojas D P, Fernandez Barquin L, Echevarria-Bonet C, Rodriguez Fernandez J 2012 YbNi$_2$: A heavy fermion ferromagnet Solid State Communications 152 1834–1837
[12] Buschow K H J 1972 Journal of the Less Common Metals 26 329-333
[13] Prchal J, Sebesta J, Valenta J, Misek M, Turcinkova D, Lapcak L, Prokleska J, Kratochvilova M and Sechovsky V 2014 Acta Physica Polonica 126 288-289
[14] Syshchenko O, Fujita T, Sechovsky V, Divis M and Fujii H, 2001 Phys Rev B 63, 054433