A Dirichlet-type integral on spheres, applied to the fluid/gravity correspondence

David D. K. Chow

George P. & Cynthia W. Mitchell Institute for Fundamental Physics & Astronomy, Texas A&M University, College Station, TX 77843-4242, USA
chow@physics.tamu.edu

Abstract

We evaluate an analogue of an integral of Dirichlet over the sphere S^D, but with an integrand that is independent of $[(D + 1)/2]$ Killing coordinates. As an application, we evaluate an integral that arises when comparing a conformal fluid on S^D and black holes in $(D + 2)$-dimensional anti-de Sitter spacetime.
1 Introduction

There is a class of functions that are particularly easy to integrate over the \(n \)-dimensional unit sphere \(S^n \), namely monomials in the cartesian coordinates for \(\mathbb{R}^{n+1} \supset S^n \). Let \(x_i, i = 1, \ldots, n+1 \) be such coordinates, so \(S^n \) is the hypersurface \(\sum_{i=1}^{n+1} x_i^2 = 1 \). A well-known result of Dirichlet \footnote{\cite{1}} is that, for non-negative integers \(\alpha_j \),

\[
\int_{S^n} \prod_{j=1}^{n+1} x_j^{\alpha_j} = \begin{cases}
0, & \text{some } \alpha_j \text{ is odd,} \\
\frac{2 \prod_{j=1}^{n+1} \Gamma\left(\frac{1}{2} + \frac{1}{2} \alpha_j\right)}{\Gamma\left(\frac{n+1}{2} + \frac{1}{2} \sum_{i=1}^{n+1} \alpha_i\right)}, & \text{all } \alpha_j \text{ are even.}
\end{cases}
\]

(1.1)

More generally, we have, for any real and non-negative \(\alpha_j \),

\[
\int_{S^n} \prod_{j=1}^{n+1} |x_j|^{\alpha_j} = \frac{2 \prod_{j=1}^{n+1} \Gamma\left(\frac{1}{2} + \frac{1}{2} \alpha_j\right)}{\Gamma\left(\frac{n+1}{2} + \frac{1}{2} \sum_{i=1}^{n+1} \alpha_i\right)}.
\]

(1.2)

A simple direct proof is given in, for example, \cite{2}. For a historical review of a wider class of integrals, see \cite{3}. Taking linear combinations of these results allows one to integrate polynomials and more general power series in \(x_i \) over spheres.

In applications, it may be necessary to use some angular coordinates intrinsic to the sphere. Consider the \(D \)-dimensional unit sphere \(S^D \), and let \(D = 2n + \epsilon \), with \(\epsilon = 0, 1 \) according to whether \(D \) is even or odd. By introducing plane polar coordinates \((\mu_i, \phi_i)\) for orthogonal 2-planes in \(\mathbb{R}^{D+1} \), we have \([\lfloor (D+1)/2 \rfloor]\) angular coordinates \(\phi_i, i = 1, \ldots, n+\epsilon \), with independent periods \(2\pi \). The flat metric on \(\mathbb{R}^{D+1} \) induces the round metric on \(S^D \) given by

\[
ds_D^2 = \sum_{i=1}^{n+\epsilon} d\mu_i^2 + \sum_{i=1}^{n+\epsilon} \mu_i^2 d\phi_i^2,
\]

(1.3)

where \(\mu_i \) satisfy the constraint

\[
\sum_{i=1}^{n+\epsilon} \mu_i^2 = 1.
\]

(1.4)

The metric coefficients are independent of \(\phi_i \), i.e. \(\partial/\partial \phi_i \) are commuting Killing vectors; they represent rotational symmetries. One can imagine situations in which one has to consider functions that are independent of \(\phi_i \), and so are expressible in terms of \(\mu_i \) only. These are a generalization to higher dimensions of axisymmetric functions on \(S^2 \), which in 3-dimensional spherical polar coordinates depend on \(\mu = \cos \theta \) but not the azimuthal coordinate \(\phi \). This motivates us to consider integrals that are analogous to (1.2), but over \(S^D \) and involving powers of \(\mu_i \). The main result that we shall prove is that, for \(\alpha_j \geq -1 \),

\[
\int_{S^D} \prod_{j=1}^{n+\epsilon} \mu_j^{\alpha_j} = \frac{2\pi^{(D+1)/2} \prod_{j=1}^{n+\epsilon} \Gamma\left(1 + \frac{1}{2} \alpha_j\right)}{\Gamma\left(\frac{D+1}{2} + \frac{1}{2} \sum_{i=1}^{n+\epsilon} \alpha_i\right)}.
\]

(1.5)

As an application, we shall evaluate an integral arising in \cite{4}, which concerns a correspondence between fluid mechanics on spheres and black holes in AdS (anti-de Sitter) spacetime.

2 Proof of general result

Let \(X_I, I = 1, \ldots, D+1 \) be cartesian coordinates for \(\mathbb{R}^{D+1} \). We introduce sets of plane polar coordinates \((\mu_i, \phi_i)\) for the \((X_{2i-1}, X_{2i})\)-planes by

\[
(X_{2i-1}, X_{2i}) = (\mu_i \cos \phi_i, \mu_i \sin \phi_i),
\]

(2.1)
for \(i = 1, \ldots, n + \epsilon \). If \(D \) is even, then we instead define \(\mu_{n+1} \) by

\[
X_{2n+1} = \mu_{n+1}. \tag{2.2}
\]

The coordinates \((\mu_1, \ldots, \mu_{n+1}, \phi_1, \ldots, \phi_{n+\epsilon})\) cover \(\mathbb{R}^{D+1} \), with ranges \(\mu_i \geq 0 \) for \(i = 1, \ldots, n+\epsilon \), \(\mu_{n+1} \) unrestricted if \(D \) is even, and \(0 \leq \phi_i < 2\pi \) for all \(i \).

The \(D \)-dimensional unit sphere \(S^D \subset \mathbb{R}^{D+1} \) is the hypersurface \(\sum_{i=1}^{D+1} X_i^2 = 1 \), on which the round metric is \((1.3)\). Bearing in mind the constraint \((1.4)\), it can be expressed as

\[
ds_D^2 = ds_n^2 + \sum_{i=1}^{n+\epsilon} \mu_i^2 d\phi_i^2, \tag{2.3}
\]

where

\[
ds_n^2 = \sum_{i=1}^{n+1} d\mu_i^2. \tag{2.4}
\]

If we regard \(\mu_i \) as cartesian coordinates for \(\mathbb{R}^{n+1} \), then \((2.4)\) can be interpreted as the round metric on \(S^n \subset \mathbb{R}^{n+1} \). A difference is that there no constraints on the signs of \(\mu_i \) as coordinates for \(\mathbb{R}^{n+1} \). On the sphere \(S^n \), we again have the constraint \((1.4)\).

The interpretation of \(\mu_i \) as either coordinates for \(\mathbb{R}^{D+1} \) or for \(\mathbb{R}^{n+1} \) enables us to reduce an integral over \(S^D \) that is independent of the \(\phi_i \) coordinates to an integral over \(S^n \): we have a “sphere within a sphere”. Note that

\[
\prod_{l=0}^{n+\epsilon} \int_0^{2\pi} d\phi_l \int_{\sum_{i=1}^{n+\epsilon} \mu_i^2 = 1, \mu_1, \ldots, \mu_{n+\epsilon} \geq 0} d^n \mu \prod_{j=1}^{n+\epsilon} \mu_j^{\alpha_j+1} = \pi^{n+\epsilon} \int_{\sum_{i=1}^{n+\epsilon} \mu_i^2 = 1} d^n \mu \prod_{j=1}^{n+\epsilon} |\mu_j|^{\alpha_j+1}, \tag{2.5}
\]

because the \(\phi_l \) integrals give a factor of \((2\pi)^{n+\epsilon}\), and removing the sign constraints on \(\mu_1, \ldots, \mu_{n+\epsilon} \) gives a factor of \(2^{-(n+\epsilon)} \). The meaning of \(d^n \mu \) should be clear. Explicitly, one can, for example, eliminate \(\mu_{n+1} \) from the integrand in favour of \(\mu_1, \ldots, \mu_n \) using the constraint \((1.4)\). Then \(d^n \mu \) means \(\prod_{k=1}^n d\mu_k \), bearing in mind that for each choice of \((\mu_1, \ldots, \mu_n)\) we must account for both signs of \(\mu_{n+1} \) on the right. Expressing this in terms of integrals over \(S^D \) and \(S^n \), with respective metrics \((1.3)\) and \((2.4)\), we have

\[
\int_{S^D} \prod_{j=1}^{n+\epsilon} \mu_j^{\alpha_j} = \pi^{n+\epsilon} \int_{S^n} \prod_{j=1}^{n+\epsilon} |\mu_j|^{\alpha_j+1}. \tag{2.6}
\]

Using the Dirichlet integral \((1.2)\) for integration over \(S^n \), remembering for even \(D \) that it includes a factor of \(\Gamma(\frac{1}{2}) = \sqrt{\pi} \), we hence obtain our main result \((1.3)\).

3 Application: fluid/gravity correspondence

An explicit application of our main result is to a missing step in [4], which studies the fluid/gravity correspondence. It is argued that there is a duality between a conformal fluid on \(S^D \) that solves the relativistic Navier–Stokes equations and a large black hole in \(\text{AdS}_{D+2} \) that solves the Einstein equations. For one specific example, in arbitrary dimensions, the fluid is uncharged and rigidly rotating, and the black hole is the Kerr–AdS solution, with a horizon radius much larger than the AdS radius. One can compare the thermodynamics of both sides of the correspondence. From the correspondence for non-rotating solutions, one can make predictions for rotating solutions.
On the fluid side of the correspondence, one considers the spacetime
\[ds^2 = -dt^2 + ds_D^2, \] (3.1)
where \(ds_D^2 \) is the round metric on \(S^D \) (1.3). The spacetime is filled with a fluid with velocity
\[u^a \partial_a = \gamma \left(\frac{\partial}{\partial t} + \sum_{i=1}^{n+\epsilon} \omega_i \frac{\partial}{\partial \phi_i} \right), \] (3.2)
where
\[\gamma = \frac{1}{\sqrt{1 - v^2}}, \quad v^2 = \sum_{i=1}^{n+\epsilon} \mu_i^2 \omega_i^2, \] (3.3)
and \(\omega_i^2 < 1 \). One computes the energy-momentum tensor and currents. Integration gives conserved charges, which can be compared with the gravity side of the correspondence. A missing step in [4] is a proof for all \(D \) of a certain integral, namely
\[\int_{S^D} \left(1 - \sum_{j=1}^{n+\epsilon} \mu_j^2 \omega_j^2 \right)^{-(D+1)/2} = \frac{2\pi^{(D+1)/2}}{\Gamma\left(\frac{D+1}{2}\right) \prod_{j=1}^{n+\epsilon} (1 - \omega_j^2)}, \] (3.4)
Equivalently, we have
\[\int_{S^D} \gamma^{D+1} = \frac{V_D}{\prod_{j=1}^{n+\epsilon} (1 - \omega_j^2)}, \quad V_D = \frac{2\pi^{(D+1)/2}}{\Gamma\left(\frac{D+1}{2}\right)}, \] (3.5)
where \(V_D \) is the volume of \(S^D \). Using this result, one then finds agreement between the two sides of the correspondence.

To prove the required integral, we first use binomial expansions to obtain
\[\left(1 - \sum_{j=1}^{n+\epsilon} \mu_j^2 \omega_j^2 \right)^{-(D+1)/2} = \sum_{k_1, \ldots, k_{n+\epsilon} \geq 0} (D+1)(D+1) \ldots (D+1 + k - 1) \prod_{j=1}^{n+\epsilon} \left(\frac{\mu_j \omega_j}{k_j} \right)^{2k_j}, \] (3.6)
where
\[k = \sum_{j=1}^{n+\epsilon} k_j. \] (3.7)
From the main result (1.5), if \(k_j \) are non-negative integers, then
\[\int_{S^D} \prod_{j=1}^{n+\epsilon} \mu_j^{2k_j} = \frac{2\pi^{(D+1)/2} \prod_{j=1}^{n+\epsilon} (k_j)!}{\Gamma\left(\frac{D+1}{2} + k\right)}. \] (3.8)
Using this and the expansion of \(\prod_{j=1}^{n+\epsilon} (1 - \omega_j^2)^{-1} \), we hence obtain the integral (3.4).

References

[1] Lejeune-Dirichlet, “Sur une nouvelle méthode pour la détermination des intégrales multiples,” J. Math. Pures Appl. Ser. 1, 4, 164 (1839).

[2] G.B. Folland, “How to integrate a polynomial over a sphere,” Amer. Math. Monthly 108, 446 (2001).
[3] R.D. Gupta and D.St.P. Richards, “The history of the Dirichlet and Liouville distributions,” *Int. Stat. Rev.* **69**, 433 (2001).

[4] S. Bhattacharyya, S. Lahiri, R. Loganayagam, S. Minwalla, “Large rotating AdS black holes from fluid mechanics,” JHEP **0809**, 054 (2008). [arXiv:0708.1770].