Supplemental information

Spatially resolved transcriptomic profiling
of ovarian aging in mice

Jennifer E. Russ, Mary E. Haywood, Sydney L. Lane, William B. Schoolcraft, and Mandy G. Katz-Jaffe
Figure S1, related to Figure 1: Female reproductive aging is associated with progressive loss of follicles in the mouse ovary. Histological staining of (A) Young and (B) Aged murine ovaries confirms diminished ovarian reserve in the Aged population and an appropriate aging model. (C) Aged ovaries exhibit significantly decreased follicle counts (**p<0.01) compared to the Young population. (D) Quantification of follicle types in Young versus Aged ovaries (**p<0.001, *p<0.01, *p<0.05). Scale bar is 500μm.
Figure S2, related to Figure 1 and Figure 2: Principal component analysis (PCA) plots of spots. PCs 1 and 2 (A-C) and PCs 3 and 4 (D-F) are colored by the capture area (A and D) or the age group (B, C, E, and F). All spots are shown in A, B, D, and E, but spots in C and F are shown for each capture area individually.
Figure S3, related to Figure 8: Gene expression of key transcripts in Follicle sub-clusters. Expression of genes well characterized in follicles of varying developmental stages used to distinguish follicle sub-clusters.
Figure S4, related to Figure 3: Spatial mapping of Follicle sub-clusters. Follicle sub-clusters aligned with tissue sections to validate cluster identities and distinguish follicles at varying stages of development. Scale bar is 500μm.
Figure S5, related to Figure 8: Spatial mapping of Oocyte sub-clusters. Oocyte sub-clusters aligned with tissue sections to validate cluster identities and distinguish oocytes at varying stages of development. Scale bar is 500\(\mu\)m.
Figure S6, related to Figure 1: Spatial transcriptomics tissue optimization. Each capture area contains one Young and one Aged ovary tissue section. Fluorescently labeled cDNA footprints generated after various lengths of tissue permeabilization; times shown in bottom left corner of each capture area. The upper left capture area shows a positive RNA control with no tissue (Pos) and the bottom right capture area shows a negative control with tissue not exposed to permeabilization reagents (Neg). The optimal permeabilization time for mouse ovaries was determined to be 18 minutes based on brightness of cDNA footprint.
Figure S7, related to Figure 1: Gene Expression slide imaging. Each capture area contains one Young and one Aged ovary tissue section (n=4). Sections stained by hematoxylin and eosin (left side) versus the detected tissue in Space Ranger by mRNA capture (right side) shows excellent coverage, mRNA capture, and tissue recognition by Space Ranger software. Scale bar is 500μm.
Cluster/Sub-Cluster	Total Spots	Total Young Spots	Young Proportion	Total Aged Spots	Aged Proportion	p-value	OR	FDR
Figure 1A								
Cluster Corpus Luteum-R	1138	680	0.265	458	0.282	0.2395709	0.919	0.3359992
Cluster Corpus Luteum-P	525	859	0.335	539	0.332	0.8422357	0.319	0.4571919
Stromal Cluster	1398	639	0.249	236	0.145	2.72E-16	1.951	1.90E-15
Follicle Cluster	875	245	0.095	280	0.172	5.02E-13	0.507	1.76E-12
Epithelium Cluster	168	104	0.041	64	0.039	0.8720064	0.130	0.8720064
Epithelium Cluster	25	29	0.011	26	0.017	0.1314329	0.652	0.1300755
Epithelium Cluster	30	10	0.004	20	0.012	0.0022555	0.314	0.003865
Figure 7A - Corpus Luteum-R								
Cluster Corpus Luteum-R	269	262	0.385	7	0.015	4.00E-59	40.295	3.60E-58
Cluster Corpus Luteum-P	225	100	0.147	121	0.264	1.33E-08	0.481	1.33E-08
Stromal Cluster	193	69	0.101	124	0.271	1.73E-13	0.305	5.20E-13
Follicle Cluster	158	118	0.174	40	0.087	3.53E-05	2.193	3.98E-05
Epithelium Cluster	164	45	0.056	73	0.340	2.92E-03	0.009	2.58E-02
Epithelium Cluster	58	6	0.009	52	0.114	1.61E-15	0.070	5.24E-15
Epithelium Cluster	55	55	0.081	0	0.000	3.83E-13	Inf	6.89E-13
Epithelium Cluster	35	1	0.001	34	0.074	3.74E-13	0.018	6.89E-13
Epithelium Cluster	25	25	0.035	1	0.002	4.69E-05	16.697	4.69E-05
Figure 7B - Corpus Luteum-P								
Cluster Corpus Luteum-R	165	88	0.359	77	0.275	0.047682	1.477	0.095364
Cluster Corpus Luteum-P	158	81	0.331	77	0.275	0.182161	1.361	0.206236
Stromal Cluster	148	76	0.310	72	0.257	0.206236	1.298	0.206236
Follicle Cluster	54	0	0.000	54	0.193	2.54E-16	0.000	1.02E-15
Figure 7C - Stroma								
Cluster Stroma	288	111	0.129	177	0.328	1.03E-18	0.304	2.75E-18
Cluster Stroma	262	253	0.295	9	0.017	2.25E-48	24.549	1.81E-47
Cluster Stroma	225	124	0.144	101	0.187	0.03629	0.732	0.041476
Cluster Stroma	189	44	0.051	145	0.269	2.49E-30	0.147	9.95E-30
Cluster Stroma	147	133	0.155	14	0.026	7.51E-16	0.663	3.03E-16
Cluster Stroma	140	77	0.090	60	0.117	0.1003	0.744	0.85E-17
Cluster Stroma	88	72	0.084	16	0.030	3.59E-05	2.988	5.75E-05
Cluster Stroma	7	59	0.052	14	0.026	0.019507	2.072	0.026009
Figure 7D - Follicle								
Cluster Follicle	168	160	0.250	8	0.034	6.75E-16	9.506	3.55E-15
Cluster Follicle	166	114	0.178	52	0.220	0.173922	0.769	0.202909
Cluster Follicle	159	152	0.203	7	0.030	1.67E-15	10.195	3.90E-15
Cluster Follicle	147	99	0.165	48	0.263	0.10279	0.718	1.43E-04
Cluster Follicle	140	70	0.130	24	0.137	0.806317	0.744	0.85E-17
Cluster Follicle	75	23	0.036	52	0.230	1.02E-15	0.133	3.55E-15
Cluster Follicle	66	21	0.033	45	0.191	3.51E-13	0.145	6.04E-13
Figure 8G - Oocyte								
Cluster Oocyte	104	67	0.295	37	0.725	1.91E-08	0.160	7.64E-08
Cluster Oocyte	103	92	0.405	11	0.216	0.015444	2.471	0.020592
Cluster Oocyte	55	52	0.229	3	0.059	0.00564	4.735	0.011279
Cluster Oocyte	3	16	0.070	0	0.000	0.049406	Inf	0.049406
Table S2, related to Figure 2B: Top 10 Marker Genes per Cluster

Cluster	Gene	P-value	Function
CL-R			
Lgmn	0	Protease required for lysosomal protein degradation; regulates cell proliferation via EGFR degradation	
Gyp4f18	0	Monooxygenase important for synthesis of cholesterol and steroids; inflammation regulation	
S100a4	1.11E-291	Motility, angiogenesis, cell differentiation, apoptosis and autophagy, cytokine production and inflammation	
A001b	7.75E-288	Translocates drugs and phospholipids across the membrane	
Hgcc	5.54E-210	Modulates cell cycle-specific kinases; induced by ps3 in response to DNA damage; overexpression suppresses cell cycle progression	
Lep3	2.33E-196	Protects cells and enzymes from oxidative damage	
Mgs1	1.16E-146	Protects endoplasmic reticulum and outer mitochondrial membrane from oxidative stress	
Sectlm1b	2.46E-57	Immune system processes; cytokine activity	
Mt	2.58E-46	Heavy metal-binding; degrades various components of the ECM (collagen)	
mt-Co2	3.43E-11	Mitochondrial electron transport chain; oxidative phosphorylation	
Stroma			
Ap	6.15E-135	Potent regulator of blood pressure by acting directly on vascular smooth muscle as a potent vasoconstrictor	
Mgarp	3.46E-80	Mitochondria trafficking via microtubules; role in stereoidogenesis via maintenance of mitochondrial abundance and morphology	
Igf2	2.24E-12	Antigen binding; innate immune response	
Ig hg2c	9.79E-30	Antigen binding; innate immune response	
Ig hg2b	2.14E-36	Antigen binding; immunoglobulin receptor binding; innate immune response	
Igm	1.3E-83	Binds oocyte zona pellucida	
Apoe	4.83E-14	Key regulator of active cholesterol uptake in ovarian follicle cells for steroligenesis	
Lyz2	1.04E-08	Lysozyme with primarily bactericidal function	
Cpe	1.05E-93	Directs prohormones to the regulated secretory pathway	
Chs	3.46E-14	Intracellular protein breakdown; amyloid precursor protein (APP) processing and degradation	
Follicle			
Inha	0	Inhibin; inhibits the secretion of follistatin (FSH) by the pituitary gland; oocyte development and maturation	
Rps4x	1.84E-133	Ribosomal protein	
Rps2x	3.04E-121	Ribosomal protein	
Hps3a	1.6E-114	Ribosomal protein	
Ldhb	2.93E-110	Oxidoreductase involved in synthesizing lactate from pyruvate	
Hifdb	1.15E-12	Inhibits the secretion of FSH by the pituitary gland; oocyte development and maturation	
Hps17	1.77E-18	Ribosomal protein	
Pdcd6	2.96E-09	Oocyte cytoskeletal organization; cytoplasmic lattice (CPL) component in oocytes	
Inha	2.42E-31	Inhibin; inhibits the secretion of FSH by the pituitary gland; oocyte development and maturation	
Grea1	1.91E-21	Estrogen-stimulated cell proliferation	
CL-P			
Hsx1b7	0	Steroid-hormone metabolism and cholesterol biosynthesis; catalyzes reduction of estrogens and androgens, regulating their biological potency	
Hmgcs1	0	Cholesterol synthesis; catalyzes the condensation of acetyl-CoA to mevalonate	
Hspa9b1	4.11E-04	Molecular chaperone that functions in the processing and transport of secreted proteins	
Timp1	5.66E-03	Inhibits metalloproteinases, such as collagenases, by binding to their catalytic zinc cofactor	
Csa	2.87E-41	Extracellular chaperone that prevents aggregation of non-native proteins; inhibits apoptosis when associated with the mitochondrial membrane; following stress, promotes apoptosis	
Poc1e	1.06E-02	Binds C-terminal pro-peptide of type I procollagen and enhances procollagen C-proteinase activity	
Fdn1	4.77E-05	Stores iron in a soluble, non-toxic readily available form; important for iron homeostasis	
mt-Co1	3.62E-02	Mitochondrial electron transport chain; oxidative phosphorylation	
Spp1	3.15E-08	Important for cell-matrix interactions; inflammatory cytokine activity	
Star	3.65E-09	Steroid hormone synthesis; cholesterol transport and metabolism	
Epi1			
Lgals2	3.30E-157	Binds beta-galactoside; physiological function unknown	
Gpd2	4.23E-146	Hydrolyzes GTP to GDP; major product is GDP	
Ucp2	3.14E-14	Negative regulation of glucose import	
Ly9e	6.00E-106	Regulation of T-lymphocytes proliferation, differentiation, and activation	
Igfbp5	6.59E-105	Prolongs the half-life of insulin-like growth factors (IGFs); implicated in aging	
Cgap	3.00E-01	Acts in sarcoplasmic transport and absorption	
Laptm4b	7.20E-70	Required for lysosomal function; blocks EGFR-stimulated EGFR intramitochondial sorting and degradation; negative regulator of TGB1 production in regulatory T-cells	
Krt7	2.75E-02	Keratin; constitutes Type II intermediate filaments of the intracytoplasmic cytoskeleton	
Lgsa1	1.6E-46	Cell-cell and cell-matrix interactions; apoptosis, cell proliferation and cell differentiation	
Pima	1.71E-17	Immune function; apoptosis	
Epi2			
Dynlnb2	8.01E-79	Involved in linking dynein to cargos and adapter proteins; cytoplasmic dynein 1 acts as a motor for intracellular retrograde motility of vesicles and organelles along microtubules	
Cdc153	1.06E-76	Collected-domain containing protein	
Tipp3	1.06E-74	Regulator of microtubule dynamic that has microtubule bundling activity	
Fam3B	1.07E-66	Cytoskeleton component	
Ovq3x	6.95E-52	Binds oocyte zona pellucida in vivo; may play a role in the fertilization process	
M03	3.16E-50	Binds heavy metals	
Eor1	3.65E-04	Transcription elongation factor implicated in maintenance of chromatin structure in actively transcribed regions	
Hsp90a1	4.42E-04	Molecular chaperone; promotes maturation, structural maintenance and proper regulation of specific target proteins involved in cell cycle control and signal transduction; mitochondrial import; inflammatory response	
Tmem212	2.56E-73	Transmembrane protein	
Epi3			
Des	2.47E-42	Muscle-specific type III intermediate filament essential for proper muscular structure and function; sarcomeric microtubule-anchoring protein	
Cm1n	1.82E-34	Thin filament-associated protein implicated in the regulation and modulation of smooth muscle contraction	
Pdmd3	1.44E-29	Organization of actin filament arrays within muscle cells	
Act2	1.22E-26	Gamma actins exist in most cell types as components of the cytoskeleton and as mediators of internal cell motility	
Cita2a	4.76E-27	Function unknown; expressed in activated T-cells	
Casp1	2.24E-21	Neuronal development	
Myo9	2.33E-20	Myosin regulatory subunit important in regulation of smooth muscle and non-muscle cell contractile activity via phosphorylation	
Tnsh	7.49E-20	Actin cross-linking protein	
Acta2	1.47E-14	Alpha actins are found in muscle tissues and are a major constituent of the contractile apparatus	
C21ta	5.32E-04	Inhibits hemopoiesis and stimulates chemotaxis; chemotactic in vitro for thromocytes and activated T-cells	