Astrocytes protect dopaminergic neurons against aminochrome neurotoxicity

Juan Segura-Aguilar1, 2, Bengt Mannervik2, José Inzunza3, Mukesh Varshney1, Ivan Nalvarte1, Patricia Muñoz1, 4

Abstract

Astrocytes protect neurons by modulating neuronal function and survival. Astrocytes support neurons in several ways. They provide energy through the astrocyte-neuron lactate shuttle, protect neurons from excitotoxicity, and internalize neuronal lipid droplets to degrade fatty acids for neuronal metabolic and synaptic support, as well as by their high capacity for glutamate uptake and the conversion of glutamate to glutamine. A recent reported astrocyte system for protection of dopamine neurons against the neurotoxic products of dopamine, such as aminochrome and other o-quinones, were generated under neuromelanin synthesis by oxidizing dopamine catechol structure. Astrocytes secrete glutathione transference M2-2 through exosomes that transport this enzyme into dopaminergic neurons to protect these neurons against aminochrome neurotoxicity. The role of this new astrocyte protective mechanism in Parkinson’s disease is discussed.

Key Words: aminochrome; astrocytes; dopamine; dopaminergic neurons; exosomes; glutathione transference M2-2; neuroprotection; Parkinson’s disease

Introduction

The loss of dopaminergic neurons containing neuromelanin from the nigrostriatal system is one of the most important events in the generation of motor symptoms in Parkinson’s disease. The question is why these neuromelanin-loaded neurons degenerate in Parkinson’s disease and not in healthy older adults who keep these neurons intact until death. For some time it has been argued that astrocytes play a fundamental role in the protection of neurons in general. Neuromelanin synthesis involves the generation of ortho-quinones that can be neurotoxic. Therefore, the objective of this review is to analyze the protective mechanisms that prevent the loss of dopaminergic neurons loaded with neuromelanin in healthy older adults and the role of astrocytes.

Search Strategy and Selection Criteria

Studies cited in this review published from 2000 to 2020 were searched on the PubMed database using the following keywords: astrocytes neuroprotection, dopamine neurons degeneration, neuromelanin synthesis, dopamine derived ortho-quinones, aminochrome, alphasynclein, mechanism involved in dopaminergic neurons degeneration, neuroprotective mechanisms against aminochrome-induced neurotoxicity, endogenous neurotoxins in dopaminergic neurons.

Metabolic Coupling between Astrocytes and Neurons

Astrocyte-neuron lactate shuttle

Astrocytes protect neurons by modulating neuronal function and survival. Astrocytes support the energy requirement of neurons via the astrocyte-neuron lactate shuttle, where lactate is a precursor of glucose in gluconeogenesis (Tarczyluk et al., 2013). Lactate transporters play an important role for preservation of myelin and axon function, functional recovery following nerve injuries, motor end-plate function, and the progress of diabetic peripheral neuropathy. Brain functions and energy metabolism are also dependent on lactate interactions between neurons and glia cells (Jha et al., 2020). Recently, a study of proteins involved in the astrocyte-neuron lactate shuttle (Ldh, Atp1a2, Gys1, Ldhb, Mct1, and Pfkfb3) revealed that Pfkfb3 and Atp1a2 genes, expressing fructose-2,6-biphosphatase 3/6-phosphofructo-2-kinase and the Na+K+ transporting ATPase, respectively, were predominantly expressed by astrocytes (Margineanu et al., 2020). The most extensively supported idea of brain energy metabolism is the lactate shuttle between the astrocyte and the neuron. However, there is evidence that astrocyte and neuronal plasma membrane receptors, such as potassium ATP-channel, and GLUT2, perform a crucial role in brain glucose metabolism (Welcome and Mastorakis, 2018). Thus, the astrocyte-neuron lactate shuttle during activation, neurotransmission, and metabolism (Welcome and Mastorakis, 2018). Thus, the astrocyte-neuron lactate shuttle (Ldha, Atp1a2, Gys1, Ldhb, Mct1, and Pfkfb3) revealed that Pfkfb3 and Atp1a2 genes, expressing fructose-2,6-biphosphatase 3/6-phosphofructo-2-kinase and the Na+K+ transporting ATPase, respectively, were predominantly expressed by astrocytes (Margineanu et al., 2020). The most extensively supported idea of brain energy metabolism is the lactate shuttle between the astrocyte and the neuron. However, there is evidence that astrocyte and neuronal plasma membrane receptors, such as potassium ATP-channel, and GLUT2, perform a crucial role in brain glucose metabolism (Welcome and Mastorakis, 2018). Thus, the astrocyte-neuron lactate shuttle during activation, neurotransmission, and memory consolidation is an issue of controversy (Dieneet, 2019; Figure 1).

The close relationship between neurons and astrocytes can also be illustrated during an acute increase in interstitial K+ where neuronal activity couples neuron energy demand to astrocytes metabolism. An increase in K+ induces inhibition of mitochondrial respiration, activation of aerobic glycolysis, and the release of lactate. The glucose transporter GLUT1 in astrocytes is modulated by extracellular K+ that regulates the efflux and influx modes of this transporter. The regulation of astrocytes GLUT1 by K+ explains how astrocytes can preserve their glucose pool in the face of robust glycolysis stimulation. The effect of increased K+ on astrocytes results in release of lactate after activation of aerobic glycolysis, and inhibition of mitochondrial respiration (Fernández-Moncada, 2021).

Lipid degradation

Another important interrelation between astrocytes and neurons concerns lipid degradation. Lipid droplets accumulate fatty acids as energy rich reservoirs. Astrocytes internalize lipid lipid.
Astrocytes are functionally and metabolically coupled to neurons by the uptake and recycling of neurotransmitters, which interconnects the function and metabolism of astrocytes and neurons. Astrocytes also secrete metabolites, such as lactate, glutamate, glutamine, adenosine triphosphate, D-serine, and regulate plasticity by pre- and postsynaptic mechanisms and synaptic activity (Mayorquin et al., 2018).

Neuroprotection

Astrocytes express Kir6.1, a principal pore unit of the K-ATP channel that is not found in neurons. In the presence of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the Kir6.1 knockout mouse exhibited a lower concentration of striatal dopamine, increased dopamine neuron degeneration in substantia nigra compacta, and increased severe motor dysfunction, in comparison with control mice. Astrocytic Kir6.1 knockout also impaired mitophagy, which resulted in the accumulation of injured mitochondria, neuro inflammation and generation of free radicals in astrocytes. These results suggest that the astrocytic Kir6.1/K-ATP channel is neuroprotective to dopaminergic neurons (Hu et al., 2019). In addition, astrocytes protect neurons from excitotoxicity by activating the G protein-coupled receptor 30, an estrogen membrane receptor (Wang et al., 2020).

A study focused on the effect of Gq and Gi/o G protein-coupled receptors on astrocytes Ca2+-based activity, on neuronal electrical activity, and glutamatergic release, revealed that Gi/o G protein-coupled receptor activation induced cellular activation in astrocytes, and cellular inhibition in neurons, while Gq G protein-coupled receptors activation induced neuronal and astrocytic activation. Transmitter liberated from glia cells enhances neurons excitability when astrocyte activation was exerted by either Gi/o or Gq protein-mediated signaling (Durkee, 2019).

Neurotransmission and neuronal activity require energy that it is produced by mitochondrial glucose oxidation and oxidative phosphorylation, which generates reactive oxygen species under normal conditions due to the leakage of dioxygen from the electron transport chain. The redox-regulated Nrf2 transcription factor activates and induces antioxidant genes transcription in astrocytes that stimulates glutathione synthesis in neighboring neurons. The enzyme fructose-2, 6-bisphosphatase-3/6-phosphofructo-2-kinase, a crucial regulator enzyme of glycolysis, is continuously degraded by the proteasomal system in neurons, which explains its low activity in neurons. Neurons stimulate glucose oxidation through the pentose-phosphate pathway to generate NADPH, which is required for reduction of oxidized glutathione (Bolaños, 2016). Co-culture of astrocytes and neurons showed that neuronal glutathione synthesis is induced by direct activation of Nrf2 in astrocytes, and that the inhibition of astrocytic Nrf2 function inhibited neuron-induced glutathione synthesis (McGann and Mandel, 2018).

Fibroblast growth factor-1 activates astrocytes to stimulate nerve growth factor secretion. Nerve growth factor induces apoptosis in motor neurons that express p75 neurotrophin receptor by inducing formation of nitric oxide (NO) and peroxynitrite. Fibroblast growth factor-1 stimulates NO production in astrocytes by increasing the expression of inducible NO synthase (Bolaños, 2016). Co-culture of astrocytes and neurons showed that neuronal glutathione synthesis is induced by direct activation of Nrf2 in astrocytes, and that the inhibition of astrocytic Nrf2 function inhibited neuron-induced glutathione synthesis (McGann and Mandel, 2018).

Fibroblast growth factor-1 stimulates NO production in astrocytes by increasing the expression of inducible NO synthase. However, fibroblast growth factor-1 also stimulates Nrf2 that increases glutathione synthesis in astrocytes, thereby reducing NO-dependent neurotoxicity in motor neurons (Vargas et al., 2006).

It has been reported that the glutathione antioxidant system under synaptic activity is coupled to the N-methyl-D-aspartic acid receptor. The control of neuronal oxidative stress and apoptosis is mediated by changing the synthesis, recycling, and utilization of glutathione to promote detoxification of reactive oxygen species. This mechanism is of importance in developing brain where the disruption of N-methyl-D-aspartic acid receptor-dependent transcriptional control of glutathione synthesis can lead to neurodegeneration (Baxter et al., 2015).

The metabolic coupling between astrocytes and neurons performs an important role in the prevention of oxidative stress in the brain, where astrocytes support the survival of neurons by secreting glutathione that can be taken up by neurons. This coupling between astrocytes and neurons is unidirectional, because neurons are not able to secrete glutathione to protect astrocytes. The high rate of oxidative stress in the brain that leaks electrons from the electron transport chain, reducing dioxygen to superoxide requires permanent secretion of glutathione by astrocytes to...
neuromelanin is controversial because macrophages remove and fibrils in Lewy bodies in the loss of dopamine neurons containing SNCA aggregates and the deposition of SNCA form fibril aggregates that generate large deposits in Lewy oligomers of SNCA, 3,4-dihydroxyphenylacetaldehyde and o-quinones and rapid degeneration. Possible endogenous neurotoxins that inside of these neurons in order to not induce a propagative of dopamine neurons containing neuromelanin must be generated can also be detected in cerebrospinal fluid (Lafon-Cazal et al., 2003).

Protein secretion
The metabolic coupling between neurons and astrocytes also involves astrocyte secretion of a large number of proteins such as superoxide dismutase (Cu-Zn), ceruloplasmin chain 1, antioxidant protein 2, 1-cys peroxiredoxin, apolipoprotein E chain 1, heat shock protein HSP90-alpha and beta, insulin-like growth factor binding protein 2, L-lactate dehydrogenase M and H chain, malate dehydrogenase cytoplasmic, metalloproteinase inhibitor 1 and 2 chain1, thioredoxin peroxidase 1 and 2, glutathione transferase class-mu, creatine kinase B chain, phosphoglycerate kinase 1, and carboxypeptidase H chain 1, among other proteins. Internally, only proteins secreted from astrocytes can also be detected in cerebrospinal fluid (Lafon-Cazal et al., 2003).

Parkinson’s Disease
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer’s disease. PD has been recognized for the development of motor symptoms that are evident after 60–70% degeneration of the dopaminergic nigrostriatal neurons. However, non-motor symptoms have been observed in PD patients including olfactory dysfunction, sleep dysfunctions, and autonomic dysfunctions (Braak et al., 2003; Schrag et al., 2015; Roos et al., 2019; Wang et al., 2019; De Rui et al., 2020). Numerous mechanisms linked in the degeneration of dopamine neurons that contain neuromelanin have been reported, such as mitochondrial damage and dysfunction, protein degradation, disruption of mitochondrial and endoplasmic reticulum (ER) stress, neuro inflammation, and oxidative stress (Martinez-Vicente and Vila, 2013; Taylor et al., 2013; Ross et al., 2015; Zaltieri et al., 2015; Mercado et al., 2016; Moors et al., 2016; Ganguly et al., 2018; Fields et al., 2019; Jankovic et al., 2019). It has been reported that 3,4-dihydroxyphenylacetaldehyde (3,4-DHFA) triggers these mechanisms in idiopathic PD is still not known.

A remarkable characteristic of idiopathic PD is the extremely slow rate of neurodegeneration and disease progression after diagnosis, taking years before motor symptoms develop. The possible link of exogenous neurotoxins and environmental factors in the degeneration of the nigrostriatal neurons seems to be excluded, because drug addicts that used synthetic drugs containing near pure MPTP developed a severe Parkinsonism in just 3 days (Williams, 1986). Although some results indicate that a prion-like hypothesis based on the propagation of SNCA aggregates through Lewy bodies from different regions until the propagation affect the nigrostriatal neurons. Evidently, this propagation will not be as slow as the extremely slow rate of neurodegeneration and progression observed in PD patients (Mori et al., 2019; Du et al., 2020). The particularly slow rate of the neurodegenerative process and progression in PD suggest that the degeneration of dopaminergic neurons containing neuromelanin must be induced by an endogenous neurotoxin, which triggers the degeneration of a single neuron. In this focused mode of degeneration, the accumulation of dead neurons induced by an endogenous neurotoxin will take years, which is observed in PD.

The endogenous neurotoxin that can be involved in the degeneration of dopamine neurons containing neuromelanin must be generated inside of these neurons in order to maintain established levels of thiols in the neurons (Wang and Cynader, 2000). However, astrocytes are not always neuroprotective. It has been suggested that reactive astrocytes can be divided into two subtypes: a neuroprotective astrocyte (A1) and a neurotoxic astrocyte (A2). However, astrocytes are not always neuroprotective. It has been suggested that reactive astrocytes can be divided into two subtypes: a neuroprotective astrocyte (A1) and a neurotoxic astrocyte (A2), where astrocytes A2 has been reported to be linked to Parkinson’s disease (Li et al., 2020).

3,4-Dihydroxyphenylacetaldehyde
3,4-Dihydroxyphenylacetaldehyde is generated during dopamine degradation. Monoamine oxidase catalyzes the oxidative deamination of dopamine to 3,4-dihydroxyphenylacetaldehyde, which is converted to 3,4-dihydroxyphenylacetic acid, and hydrogen peroxide by aldehyde dehydrogenase (ADH)-1. The catechol structure of 3,4-dihydroxyphenylacetaldehyde suggests that it can be oxidized to an o-quinone by reducing dioxygen to superoxide. It has been reported that 3,4-dihydroxyphenylacetaldehyde is harmful by triggering oxidative stress, mitochondrial dysfunction, and autophagy dysregulation (Goldstein, 2020). The catechol structure of 3,4-dihydroxyphenylacetaldehyde suggests that it can be oxidized to an o-quinone by reducing dioxygen to superoxide. It has been reported that 3,4-dihydroxyphenylacetaldehyde can induce covalent bonds with proteins such as L-aromatic-amino-acid decarboxylase and tyrosine hydroxylase (Goldstein, 2020; Yang et al., 2020).

A study of postmortem tissue from substantia nigra pars compacta of PD patients showed that ADH1 expression was decreased, suggesting that 3,4-dihydroxyphenylacetaldehyde accelerates the neurotoxicity (Grüblatt et al., 2004). Another investigation also reported a decrease in ADH1 expression in Parkinson’s disease patients (Liu et al., 2014). However, we must remember that the postmortem tissue of Parkinson’s disease patients with an average age of seventy-seven years contain neurotoxins and glia cells that have survived the degenerative process induced by PD, suggesting that low expression of ADH1 is not linked in the loss of dopamine neurons.

The results from investigations with mice deficient of ADH have been contradictory. One study that used the ADH1A1 null mouse demonstrated significantly increased dopamine levels. However, no negative effect on substantia nigra dopaminergic neurons growth and development was observed, because the expression level of dopamine transporter, tyrosine hydroxylase, or vesicular monoamine transporter-2 were unchanged (Anderson et al., 2011). Another study with mice null for both ADH1A1 and ADH2 showed different results since significant degeneration of tyrosine hydroxylase immunopositive neurons in the substantia nigra was observed, accompanied with deficits in motor performance and an increase in 3,4-dihydroxyphenylacetaldehyde and 4-hydroxynonenal (Wey et al., 2012).

Based on the observed low expression of ADH1 in postmortem samples of PD patient neurons that survived the degenerative process over many years, and the lack of effect of ADH1A1 null mouse on substantia nigra dopaminergic neurons growth and development, it seems plausible that 3,4-dihydroxyphenylacetaldehyde accumulation is not involved to the loss of dopaminergic neurons of the nigrostriatal system in PD.

Ortho-quinones generated during neuromelanin synthesis
Neuromelanin formation requires dopamine oxidation to transient o-quinones such as dopamine o-quinone (DAOQ), aminochrome (AM), and 5,6-indolequinone (5,6-IQ) in a successive oxidative event (Segura-Aguilar, 2021a). Neuromelanin synthesis is a natural and inoffensive metabolic route, since this pigment increase when the life span increase in healthy aged individuals, which have undamaged dopamine neurons containing neuromelanin in substantia nigra postmortem tissue (Cassidy et al., 2019). However, under special circumstances these o-quinones can be harmful inside dopaminergic neurons, resulting in their loss in PD.
DAoQ is unstable only at pH higher than 2.0 and therefore, the amino group of this o-quinone undergo cyclization instantly to form AM at physiological pH (0.15 s⁻¹, Herrera et al., 2017). DAoQ generates harmful adducts with mitochondrial proteins, parkin, dopamine transporter, and tyrosine hydroxylase (Xu et al., 1998; Whitehead et al., 2001; LaVoie et al., 2005; Van Laar et al., 2009). DAoQ binds to many mitochondrial proteins when this o-quinone is formed in the presence of isolated mitochondria, but only a few proteins form adducts with DAoQ when dopamine is oxidized within a cell. Due to the high reactivity of DAoQ, the question remains whether the adducts that formed inside the cell are DAoQ or AM adducts. 5,6-IQ is also highly reactive, and it polymerizes instantly to neuromelanin by autocatalysis and the polymerization rate increases when AM concentration and pH rise. The neuromelanin structure is composed by 5,6-IQ units assembled by van der Waals interactions. It has been reported that 5,6-IQ reacts with glutathione and NADH and forms adducts with SNCA triggering the generation of oligomers (Bisaglia et al., 2007, 2010; Pezzella et al., 2007). 5,6-IQ forms adduct with Nurr1 and stimulates Nurr1 activity such as the transcription of genes for dopamine homeostasis (Bruning et al., 2019). AM is the least unstable o-quinone generated during dopamine oxidation to neuromelanin. This was illustrated by AM NMR spectra being stable 40 min before the appearance of 5,6-IQ NMR spectra (Bisaglia et al., 2007). AM is harmful by binding to proteins such as SNCA or when it is one-electron reduced by flavoenzymes that catalyze one-electron reductions of quinones (Herrera et al., 2017). In addition, AM has several other harmful effects in the brain; it induces mitochondrial damage, SNCA aggregates into harmful oligomers, and triggers proteasomal and lysosomal impairment. It also induces ER stress, neuro inflammation, oxidative stress, disruption of cytoskeleton architecture, and progressive neuronal dysfunction, as well as decreases synaptic dopamine release while increasing GABA release, inhibits axonal transport of monoaminergic vesicles to synaptic terminals, and induces cell shrinkage (Herrera et al., 2017, 2017; Figure 2).

Figure 2 | Aminochrome neurotoxicity.

Neuromelanin synthesis in dopaminergic neurons require the formation of DAoQ that is stable at pH lower than 2.0 that instantly cyclizes to AM. AM rearranges to 5,6-IQ, the precursor of neuromelanin, but when the neuroprotective capacity of DT-diaphorase is surpassed aminochrome is neurotoxic. AM is harmful by triggering the formation of SNCA harmful oligomers, mitochondrial damage, oxidative stress, proteasomal impairment, autophagy impairment, neuro inflammation and ER stress. AM induces a progressive and slow neuronal dysfunction decreasing dopamine release and increase GABA release, dramatic morphological changes such as cell shrinkage. Unpublished data. 5,6-IQ: 5,6-dioleodopamine; AM: aminochrome; DAoQ: dopamine o-quinone; ER: endoplasmic reticulum; GABA: y-amino butyric acid; SNCA: alpha-synuclein.

As we mentioned earlier, neuromelanin synthesis is a normal and harmless process that requires the generation of o-quinones that can be harmful under certain circumstances. The explanation for this paradox is the existence of two enzymes that inhibit the neurotoxic effects of AM.

(a) DT-diaphorase: DT-diaphorase inhibits the harmful effects of AM by reducing it with two electrons to leukoaminochrome. One-electron transferring flavoenzymes reduce AM to leukoaminochrome o-semiquinone radical, which is very unstable and instantly autoxidizes to AM in the presence of dioxigen (Segura-Aguilar et al., 1998). One-electron reduction of AM induces a redox cycling between AM and leukoaminochrome o-semiquinone radical that reduces dioxigen to superoxide and oxidizes NADH to NAD+ in the cytosol. DT-diaphorase also prevents the generation of AM-adducts with proteins, such as a- and b-tubulin, and actin (Paris et al., 2010). DT-diaphorase is a protecting enzyme against AM neurotoxicity by preventing (i) AM-dependent cell death (Lozano et al., 2010); (ii) mitochondrial damage (Herrera et al., 2017); (iii) lysosome impairment (Herrera et al., 2017); autophagy impairment (Herrera et al., 2017); (iv) generation of harmful SNCA oligomers (Herrera et al., 2017); (v) proteasome impairment (Zafar et al., 2006); (vi) aggregation of alpha- and beta-, actin, and impairment of the cytoskeleton architecture (Herrera et al., 2017). Dopaminergic neurons and astrocytes have constitutive expression of DT-diaphorase to prevent AM harmful effects (Herrera et al., 2017).

(b) GSTM2: GSTM2 catalyzes glutathione conjugation of AM and its precursor DAoQ to 4-S-glutathionyl-5,6-dihydroxyindoline and 5-glutathionyl dopamine, respectively (Herrera et al., 2017). Dioxygen, superoxide and hydrogen peroxide are not able to oxidize 4-S-glutathionyl-5,6-dihydroxyindoline. 5- Glutathionyl dopamine is degraded to 5-cysteinyldopamine as the final product in the human neuromelanin and cerebrospinal fluid (Segura-Aguilar, 2021b). GSTM2 prevents AM-dependent (i) cell death in astrocytes; (ii) autophagy dysfunction; (iii) mitochondria damage; (iv) generation of SNCA harmful oligomers; and (v) AM-induced lysosomal dysfunction (Huenchuquala et al., 2017; Segura-Aguilar, 2021b).

AM is the less unstable and most studied o-quinone during neuromelanin synthesis and the most suitable endogenous neurotoxin to be used for preclinical model of Parkinson’s disease because (i) AM is generated inside dopaminergic neurons containing neuromelanin degenerated during Parkinson’s disease; (ii) there are two enzymes that prevents its neurotoxic effects, explaining why healthy aged individuals have undamaged dopamine neurons containing neuromelanin. However, AM under certain circumstances is neurotoxic when the protective enzymes capacity is surpassed; (iii) AM neurotoxicity is not expansive and affects single neurons exposed to AM neurotoxicity; and (iv) AM triggers all the reported neurodegenerative mechanisms such as mitochondrial damage, the formation of harmful oligomers of SNCA, dysfunction of proteasomal and lysosomal systems, ER stress, neuro inflammation, and free radical formation (Herrera et al., 2017; Segura-Aguilar, 2021a).

Astrocytes Protect Dopaminergic Neurons against Aminochrome Neurotoxicity

A new astrocyte neuroprotective mechanism has been reported where astrocytes secrete GSTM2 that prevents AM-dependent neurotoxicity in dopaminergic neurons. These neurons do not express GSTM2 but astrocytes constitutively express this enzyme. However, astrocytes secrete GSTM2 that can be internalized by dopaminergic neurons, thereby protecting dopaminergic neurons against the harmful effects of AM (Segura-Aguilar et al., 2021b). The secretion of GSTM2 from astrocytes is mediated by exosomal release, explaining why dopamine neuron ability to internalize GSTM2 into the cytosol to mediate protection against AM (Valdes et al., 2021).

This new astrocyte protective mechanism against AM neurotoxicity in dopamine neurons during dopamine oxidation to neuromelanin would be very important to prevent loss of dopaminergic neurons in substantia nigra when DT-diaphorase protective capacity is surpassed. It is important to remember that GSH conjugate of DAoQ and AM inhibit the participation of these o-quinones in neurotoxic redox cycling reactions. 5-Glutathionyl dopamine, the GSH conjugate of DAoQ, is degraded to 5-cysteinyldopamine that has been observed in cerebrospinal fluids and in human neuromelanin. This is the final product eliminated from dopaminergic neurons. 4-S-Glutathionyl-5,6-dihydroxyindoline, the GSH conjugate of AM, is resistant to biological oxidizing agents preventing its participation in neurotoxic reactions that require oxidative activation (Segura-Aguilar, 2021b; Figure 3).
Author contributions: Manuscript writing and data analysis: JSA; data search and manuscript correction: BM; data search: Ji and PM; data collection: MV; manuscript correction and data analysis: IN. All authors approved the final version of the manuscript.

Conflicts of interest: The authors declare no conflicts of interest.

Open access articles: This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

References
Anderson DW, Schray RC, Duester G, Schneider JS (2011) Functional significance of aldehyde dehydrogenase ALDH1A1 to the nigrostriatal dopamine system. Brain Res 1408:81-87.
Baxter PS, Bell KF, Haseil P, Kandil AM, Fricker M, Thomson D, Cregan SP, Gillingwater TH, Hardingham GE (2015) Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutamate transporter. Nat Commun 6:6761.
Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282:15597-15605.
Bisaglia M, Soriano ME, Arduini I, Mammi S, Bubacco L (2010) Molecular characterization of dopamine-derived quinones reactivity toward NADH and glutathione: implications for mitochondrial dysfunction in Parkinson disease. Biochim Biophys Acta 1802:699-706.
Bolaños JP (2016) Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem 139 Suppl 2:115-125.
Braak H, Del Tredici K, Rüb U, de Vet RA, Jansen Steur EN, Braak E (2003) Staging of Alzheimer disease and the non-motor symptoms: hyposmia, weight loss, osteosarcopenia. J Neurol 250:315-322.
Bruning JM, Wang Y, Oltrabella F, Tian B, Kholodar SA, Liu H, Bhattacharya P, Guo S, Holton JM, Fletterick RJ, Jacobson MP, England PM (2019) Covalent modification and regulation of the nuclear receptor Nurr1 by a dopamine metabolite. Proc Natl Acad Sci U S A 116:5108-5117.
Cassidy CM, Zucca FA, Girgis RR, Baker SC, Weinstein JJ, Sharp ME, Bellei C, Valmadre A, Vanegas N, Kegeles LS, Brucato G, Kang UJ, Sulzer D, Zecca L, Abid Dargham A, Horga G (2019) Neuronalamin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain. Proc Natl Acad Sci U S A 116:5108-5117.
De Rui M, Inelmen EM, Trevisan C, Pigozzo S, Manzato E, Sereggi G (2020) Parkinson’s disease and the non-motor symptoms: hyposmia, weight loss, osteosarcopenia. Aging Cell Exp Res 10.1007/s40520-020-01470-x.
Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99:949-1045.
Du XY, Xie XX, Liu RT (2020) The role of α-synuclein oligomers in Parkinson’s disease. Int J Mol Sci 21:8645.
Durkee CA, Covelto A, Lines J, Kofuji P, Aguilar J, Araque A (2019) Glu/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate glutiotransmission. Glia 67:1076-1093.
Farmer BC, Klumper J, Johnson LD (2019) Apolipoprotein E4 alters astrocyte fatty acid metabolism and lipid droplet formation. Cells 8:182.
Fernández-Moncada I, Robles-Maldonado D, Castro P, Alejandro K, Epp R, Ruminot I, Barros LF (2021) Bidirectional astrocytic GLUT1 activation by elevated extracellular K. Glia 69:1012-1021.
Fields CR, Bengoa-Vergnori N, Wade-Martins R (2019) Targeting alpha-synuclein as a therapy for Parkinson’s disease. Front Mol Neurosci 12:299.
Follmer C, Coelho-Cerqueira E, Yatebe-Franco DY, Araudo GJ, Pinheiro AS, Domont GB, Eliezer D. (2015) Oligomerization and membrane-binding properties of cellular aducts formed by the interaction of α-synuclein with the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). J Biol Chem 290:27660-27679.
Gaig C, Martí-MJ, Ezquerra M, Rey M, Cardozo A, Toloza E (2007) GLUT1-LEUCINE RICH REPEAT KINASE-2 mutation causing Parkinson’s disease without Lewy bodies. J Neurol Neurosurg Psychiatry 78:626-628.
Ganguly U, Chakrabarti SK, Kaur U, Mukherjea A, Chakrabarti S (2018) Alpha-synuclein, proteotoxicity and Parkinson’s disease: search for neuroprotective therapy. Curr Neuropharmacol 16:1086-1097.
Glasson BI, Covey JP, Bonini NM, Hurtig H, Farrow MJ, Trojanowski JQ, Van DerLinde VM (2006) Biochemical and pathological characterization of LM2. Ann Neurol 59:315-322.
Goldstein DS (2020) The “Sick-but-not-Dead” phenomenon applied to catecholamine deficiency in neurodegenerative diseases. Semin Neurol 40:502-514.
Grönlund E, Mandel S, Jacob-Hirsch J, Zeligson S, Amarigos S, Rechavi G, Li J, Ravid R, Roggendorf W, Riederer P, Youdim MB (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm (Vienna) 111:1543-1573.
Herrera A, Muñoz P, Steinbusch HWM, Segura-Aguilar J (2017) Are dopamine oxidation metabolites involved in the loss of dopaminergic neurons in the nigrostriatal system in Parkinson’s disease? ACS Chem Neurosci 8:702-711.
Hu ZL, Sun T, Lu M, Ding JH, Du RH, Hu G (2019) Kir6.1/K-ATP channel on astrocytes protects dopaminergic neurons against aminochrome neurotoxicity. Glia 67:1012-1021.
ApoE4 impairs neuron-astrocyte crosstalk in homeostasis and disease. Front Cell Neurosci 14:58982.

Jankovic J, Tan EK (2020) Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry 91:795-808.

Lafon-Cazal M, Adjali O, Galéotti N, Poncet J, Jouin P, Homburger V, Boockaert J, Marin P (2003) Proteomic analysis of astrocytic secretion in the mouse. Comp Biochem Physiol C 133:237-244.

Liu G, Yu J, Ding J, Xie C, Sun L, Rudenko I, Zheng W, Sastry N, Luo J, Rudow G, Lafon-Cazal M, Adjali O, Galéotti N, Poncet J, Jouin P, Homburger V, Bockaert J, Homburger V (2013) DT-diaphorase prevents aminochrome-induced α-synuclein oligomer formation and α-synuclein, conspire to cause neurodegeneration. Mov Disord 34:167-179

Liu G, Yu J, Ding J, Xie C, Sun L, Rudenko I, Zheng W, Sastry N, Luo J, Rudow G, Troncoso JC, Cai H (2014) Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopamine neuron subpopulation. J Clin Invest 124:3032-3046.

Martinez-Vicente M, Vila M (2013) Alpha-synuclein and protein degradation pathways in Parkinson’s disease: a pathological feed-back loop. Exp Neurol 244:48-56.

Mor DE, Daniels MJ, Ischiropoulos H (2015) Neuronal activity induces glutathione metabolism and functional studies of a new, labile 5,6-indolequinone and its semiquinone. J Org Chem 72:1595-1603.

Feng L, Land EJ, Barone V, d’Ischia M (2007) Chemical, pulse radiolysis and density functional studies of a new, labile 5,6-indolequinone and its semiquinone. J Org Chem 72:1595-1603.

Mizuno Y (1998) Pathologic and biochemical studies of juvenile parkinsonism: a pathological feed-back loop. Exp Neurol 14:58982.

Welcome MO, Mastorakis NE (2018) Emerging concepts in brain glucose metabolic dysfunction and α-synuclein aggregation in Parkinson's disease: translations from preclinical models (Segura-Aguilar J, ed), pp229-237. Cambridge: Elsevier.

Troncoso JC, Cai H (2014) Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopamine neuron subpopulation. J Clin Invest 124:3032-3046.

Ross JM, Olson L, Coppotelli G (2015) Mitochondrial and ubiquitin proteasome system dysfunction in aging and disease: two sides of the same coin? Int J Mol Sci 16:19458-76.

Schouboe A (2020) Astrocytic metabolism focusing on glutamate homeostasis: a short review dedicated to vittorio gallo. Neurochem Res 45:522-525.

Schrag A, Horsfall L, Walters K, Noyce A, Petersen I (2015) Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol 14:57-64.

Segura-Aguilar J (2011a) Dopamine oxidation to neuromelanin and neurotoxic metabolites. In: Clinical studies and therapies in Parkinson’s disease: translations from preclinical models (Segura-Aguilar J, ed), pp213-223. Cambridge: Elsevier.

Segura-Aguilar J (2011b) Neuroprotective mechanisms against dopamine oxidation-dependent neurotoxicity. In: Clinical studies and therapies in Parkinson’s disease: translations from preclinical models (Segura-Aguilar J, ed), pp229-237. Cambridge: Elsevier.