Deactivation Study of α-Amanitin Toxicity in Poisonous Amanita spp. Mushrooms by the Common Substances In Vitro

Paitoon Narongchai* and Siripun Narongchai
Department of Forensic Medicine, Faculty of Medicine, ChiangMai University, Chiang Mai, Thailand

Abstract

The purpose of this research was to find out the substance which deactivate α-Amanitin Toxicity

The materials and methods used in the study include analysis with high performance liquid chromatography (HPLC) to:

1. Demonstrate the standard α-amanitin at concentrations of 25, 50 and 100 µg/ml

2. Determine the deactivation of α-amanitin with 1) 18% acetic acid 2), calcium hydroxide 40 mg/ml, 3) potassium permanganate 20 mg/ml, 4) sodium bicarbonate 20 mg/ml

3. Report the statistical analysis as the mean ± standard deviation (SD) and paired t-test.

The results revealed that potassium permanganate could eliminate 100 percent of the α-amanitin at 25, 50 and 100 µg/ml. Calcium hydroxide, sodium bicarbonate and acetic acid had lower elimination rates at those concentrations: 68.43 ± 2.58 (-71.4, -67.2, -66.7%), 21.48 ± 10.23 (-29.4, -25.2, -9.9%) and 3.21 ± 0.02% (-3.2, -3.2, +1.1%), respectively. The conclusion of this study was suggested that potassium permanganate could be applied as an absorbent substance during gastric lavage in patients with mushroom poisoning. It also might be effective as a cleansing wash for uncooked mushrooms. Investigation of potassium permanganate’s ability to absorb α-amanitin in animal models and humans should be considered.

Keywords: α-Amanitin; Poisonous Amanita; Mushrooms; Acetic acid; Sodium carbonate; Potassium permanganate; Calcium hydroxide

Introduction

The poisonous mushrooms which are very dangerous toxicity are Amanita mushroom species: A. phalloides, (death cap), A. virens, (destroying angel), A. verna, A. bisporigera, Galerina marginata and Conocybe filaris (Figures 1A and 1B). Alpha-amanitin is the most potent of the toxins occurring in poisonous mushrooms in the genus Amanita [1,2]. The lethal oral dose (LD50) of α-amanitin in mice is 0.1-0.3 mg/kg. One cap of A. phalloides, A. virens or A. verna contains ten amatoxins. Ingestion of A. phalloides results in the highest mortality rate of all poisonous mushrooms, ranging from 50 to 90%. Unfortunately, distinguishing poisonous and non-poisonous mushrooms by morphology alone is challenging due to their similar gross appearance. Theoretically, there are ten important amatoxins: [3] α-amanitin, β-amanitin, γ-amanitin, ε-amanitin, δ-amanitin, amanullin, amanullinic acid, amaninamide, amanin and proamanullin [4] These differ from the other amatoxins in that they are heat resistant, alcohol and lipid soluble [5] and indigestible in gastric and small intestinal enzymes. In addition, they can be absorbed rapidly by both gastric and duodenal tissues. One hundred grams of A. phalloides contain eight milligrams of α-amanitin [1] The RNA polymerase II and III inhibitor α-amanitin [2] affects many organs, especially liver cells, resulting in necrotic hepatic cytolsysis [3]. The mortality rate of α-amanitin poisoning is very high because of the difficulty diagnosis, the delayed toxicity (average 24 hrs.), the severity of the toxicity and the administration of an ineffective antidote. The cycle peptide chain, α-amanitin, has (average 24 hrs.), the severity of the toxicity and the administration of an ineffective antidote. The cycle peptide chain, α-amanitin, has a cleanser for uncooked mushrooms to deactivate α-amanitin toxicity and potentially reduce the mortality rate from liver failure, acute renal failure, respiratory failure and gastro-intestinal haemorrhage[9].

Materials and Methods

In this study, experiments were performed on α-amanitin at concentrations of 25, 50 and 100 µg/ml each mixed with 1) 18% acetic acid 2), calcium hydroxide 40 mg/ml, 3) potassium permanganate 20 mg/ml, 4) sodium bicarbonate 20 mg/ml (results analyzed with high performance liquid chromatography (HPLC) with Luna C18 (150 x 4.6 mm I.D., 5 micron) from Phenomenex®, USA), or 5) mobile phase (a mixture of 0.02 M aqueous ammonium acetate and acetonitrile (88/12, v/v) pH 5.0 at an absorbance of 280 nm). Glacial acetic acid was used to

*Corresponding author: Paitoon Narongchai, Department of Forensic Medicine, Faculty of Medicine, ChiangMai University, Chiang Mai, 50200, Thailand, E-mail: paitoon.narongchai@cmu.ac.th

Received October 12, 2016; Accepted October 31, 2017; Published November 06, 2017

Citation: Narongchai P, Narongchai S (2017) Deactivation Study of α-Amanitin Toxicity in Poisonous Amanita spp. Mushrooms by the Common Substances In Vitro. J Forensic Res 8: 396. doi: 10.4172/2157-7145.1000396

Copyright: © 2017 Narongchai P, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
adjust the acid-base condition. Each of the mixtures was injected into the HPLC three separate times [10].

Results of statistical analysis of the α-amanitin concentrations are reported as the mean ± standard deviation (SD) for each group. The levels of α-amanitin concentration inhibited or destroyed by each substance were analyzed by paired t-test.

Results

1. α-amanitin concentrations as determined by HPLC

The concentrations of standard α-amanitin solution (25, 50 and 100 µg/ml) were injected into the HPLC to measure α-amanitin retention time of 10.2 minutes. The results of the chromatography is shown in Figure 2 and Table 1. The equation of the linear correlation is Y=1723.8X + 1228.6 (R²=0.9999) (Figure 3).

2. Analysis of the effectiveness of α-amanitin deactivation by 18% acetic acid

The results of deactivation of α-amanitin at concentrations of 25, 50 and 100 µg/ml by 18% acetic acid are shown in the Figure 4-7 and in Table 2. The deactivation levels were not statistically significant.

3. Analysis of the effectiveness of α-amanitin deactivation using sodium bicarbonate

The levels of deactivation of α-amanitin at concentrations of 25, 50 and 100 µg/ml by sodium bicarbonate (NaHCO₃) are shown in Figure 8 and Table 3. Deactivation was statistically significant when compared with the control group (p<0.01).

4. Analysis of the effectiveness of α-amanitin deactivation by potassium permanganate (KMnO₄)

The results of deactivation of α-amanitin at concentrations of 25, 50 and 100 µg/ml by potassium permanganate (KMnO₄) are shown in Figures 9-11 and Table 4. The results showed statistically significant deactivation when compared with the control group (p<0.05) (Figure 12).

5. Analysis of the effectiveness of α-amanitin deactivation by calcium hydroxide (Ca (OH)₂) 40 mg/ml

The effectiveness of deactivation of α-amanitin at concentrations of 25, 50 and 100 µg/ml by calcium hydroxide (Ca (OH)₂) is shown in Figure 13-16 and in Table 5. Deactivation was statistically significant when compared with the control group (p<0.01).
Figure 3: The equation of linear correlation is $Y = 1723.8x + 1228.6$ ($R^2 = 0.9999$).

Figure 4: Deactivation of α-amanitin at a concentration of 25 µg/ml by 18% acetic acid. The average ± sd. and deactivation (%) of α-amanitin is 42319.0 ± 932.8 mAU and 3.2%.

Figure 5: Deactivation of α-amanitin at a concentration of 50 µg/ml by 18% acetic acid. The average ± sd. and deactivation (%) of α-amanitin is 85489.0 ± 3650.2 mAU and 3.2%.

Figure 6: Effective de-activation of α-amanitin at a concentration of 100 µg/ml by 18% acetic acid. The average ± sd. and deactivation (%) of α-amanitin is 175159.5 ± 4347.3 mAU and ND.
Figure 7: Comparison of Area under the Curve for concentrations of α-amanitin before and after 18% acetic acid.

Table 2: Area of chromatograph showing deactivation of α-amanitin at concentrations of 25, 50 and 100 µg/mL by 18% acetic acid.

Testing	Area of Chromatograph			
	1st injection	2nd injection	3rd injection	Average ± SD (% Deactivation)
α-amanitin 25 µg/mL + water	44748	43498	43956	43727.0 ± 632.4
α-amanitin 50 µg/mL + water	91448	85370	88120	88312.7 ± 3043.6
α-amanitin 100 µg/mL + water	171481	170648	175971	173309.5 ± 2863.2
α-amanitin 25 µg/mL + acetic acid 18%	43108	41505	43133	42319.0 ± 932.8 (3.2%)
α-amanitin 50 µg/mL + acetic acid 18%	86701	88379	81387	85489.0 ± 3650.2 (3.2%)
α-amanitin 100 µg/mL + acetic acid 18%	168497	177185	173134	175159.5 ± 4347.3 (ND)

Figure 8: Area under the curve comparing concentrations of α-amanitin before and after sodium bicarbonate 20 mg/mL. Deactivation was statistically significant when compared with the control group.

Table 3: Area of chromatograph showing deactivation of α-amanitin at concentrations of 25, 50 and 100 µg/mL by sodium bicarbonate 20 mg/mL.

Testing	Area of Chromatograph				
	1st injection	2nd injection	3rd injection	Average ± SD/% Deactivation	P
α-amanitin 25 µg/mL + water	44748	43498	43956	43727.0 ± 632.4	<0.01
α-amanitin 50 µg/mL + water	91448	85370	88120	88312.7 ± 3043.6	<0.01
α-amanitin 100 µg/mL + water	171481	170648	175971	173309.5 ± 2863.2	<0.01
α-amanitin 25 µg/mL + NaHCO3 20 mg/mL	43108	41505	43133	30679.7 ± 1487.5 (29.4%)	<0.01
α-amanitin 50 µg/mL + NaHCO3 20 mg/mL	86701	88379	81387	66092 ± 1748.9 (25.2%)	<0.01
α-amanitin 100 µg/mL + NaHCO3 20 mg/mL	168497	177185	173134	156153.3 ± 2482.1 (9.9%)	<0.01
The average ± sd. and deactivation (%) of α-amanitin is 0.0 mAU and 100%

Figure 9: Deactivation of α-amanitin at a concentration of 25 µg/ml by 20 ug/ml of potassium permanganate (KMnO₄).

The average ± sd. and deactivation (%) of α-amanitin is 0.0 mAU and 100%

Figure 10: Deactivation of α-amanitin at 50 µg/ml by 20 ug/ml potassium permanganate (KMnO₄).

The average ± sd. and deactivation (%) of α-amanitin is 0.0 mAU and 100%

Figure 11: Deactivation of α-amanitin at a concentration of 100 µg/ml by 20 ug/ml of potassium permanganate (KMnO₄) (p<0.05).

Testing	Area of Chromatograph
α-amanitin 25 µg/mL + water	44748 43498 43956 43727.0 ± 632.4
α-amanitin 50 µg/mL + water	91448 85370 88120 88312.7 ± 3043.6
α-amanitin 100 µg/mL + water	171481 170648 175971 173309.5 ± 2863.2
α-amanitin 25 µg/mL + KMnO₄ (20 µg/mL)	43108 41505 43133 0/100% <0.05
α-amanitin 50 µg/mL + KMnO₄ (20 µg/mL)	86701 88379 81387 0/100% <0.05
α-amanitin 100 µg/mL + KMnO₄ (20 µg/mL)	168497 177185 173134 0/100% <0.05

Table 4: Area of chromatograph showing deactivation of α-amanitin at concentrations of 25, 50 and 100 µg/mL by 20 µg/mL of Potassium permanganate (KMnO₄).

Discussion and Conclusions

Four common substances, Potassium permanganate (KMnO₄), calcium hydroxide (Ca (OH)₂), sodium carbonate (NaHCO₃) and acetic acid are regularly used for vegetable detoxification. As mushrooms are one of the most popular ingredients in Thai food, especially in rural areas, routine detoxification of potential toxins in uncooked mushrooms is one solution that should be considered to avoid mushroom poisoning, particularly α-amanitin toxicity.
Figure 12: Area under the Curve with three concentrations of α-amanitin before and after potassium permanganate (KMnO₄) 20 ug/ml showing statistically significant deactivation.

Figure 13: Deactivation of α-amanitin at 25 µg/ml by 40 mg/ml of Calcium hydroxide (Ca(OH)₂).

Figure 14: Deactivation of α-amanitin at 50 µg/ml by 40 mg/ml of calcium hydroxide (Ca(OH)₂).

Figure 15: Deactivation of α-amanitin at 100 mg/ml by 40 mg/ml of calcium hydroxide (Ca(OH)₂).
Potassium permanganate (KMnO₄) is the strongest of the oxidizing agents tested and that it has the ability to destroy or deactivate peptides of α-amanitin. It completely inhibits α-amanitin molecules in vitro [11,12]. Potassium permanganate (KMnO₄) could potentially be used for gastric lavage in patients with mushroom poisoning. Additional experiments in animal models should be conducted to evaluate the effectiveness of these four substances.

Calcium hydroxide (Ca(OH)₂) and sodium carbonate (NaHCO₃) have an alkaline property which can significantly deactivate alkaline substances. Acetic acid has an antisepctic acid property but it cannot destroy the cell membranes or cell walls of any vegetable including α-amanitin because it has a low pKa value. α-amanitin in poisonous mushrooms cannot be destroyed by acids or by gastric or duodenal enzymes [15].

Potassium permanganate (KMnO₄) is the most effective deactivation substance for α-amanitin. It completely inhibits α-amanitin activation. Both calcium hydroxide (Ca(OH)₂) and sodium carbonate (NaHCO₃) (to a lesser degree) inhibit α-amanitin, but they do not do so completely. Acetic acid only very weakly inhibits α-amanitin. Based on these findings, washing uncooked poisonous Amanita spp. mushrooms with KMnO₄ to detoxify or deactivate α-amanitin before ingestion would definitely be beneficial to health, especially in rural areas where many people gather their own mushrooms from forested areas rather than purchasing them at a market.

Ethical Approval

This research did not involve any human participants or animals.

References

1. Defendenti C, Bonacina E, Mauroni M, Gelosa L (1998) Validation of a high performance liquid chromatographic method for alpha amanitin determination in urine. Forensic Sci Int. 92: 59-68.

2. Meinecke B, Meinecke-Tillmann S (1993) Effects of alpha-amanitin on nuclear maturation of porcine oocytes in vitro. J Reprod Fertil 98: 195-201.

3. Michelot D, Labia R (1968) Alpha-amanitin: A possible suicide substance-like toxin involving the sulphoxide moiety of the bridged cyclopeptide. Drug Metabol Drug Interact 6: 265-74.

4. Baumann K, Muentner K, Faulstich H (1993) Identification of structural features involved in binding of α-amanitin to a monoclonal antibody. Biochemistry 32: 4043-50.

5. Christie KS, Hans P (2003) Cytotoxic fungi – an overview. Toxicon 42: 339-49.

6. Wieland T (1983) The toxic peptides from Amanita mushrooms. Int J Pept Prot Res 22: 257-76.

7. Baumann K, Zanotti G, Faulstich H (1994) A beta-turn in alpha-amanitin is the most important structural feature for binding to RNA polymerase II and three monoclonal antibodies. Prot Sci 3: 750-6.

8. Pomilio AB, Battista ME, Vitale AA (2001) Semiempirical AM1 and ab initio parameters of the lethal cyclopeptides alpha-amanitin and its related thiorether, S-sulphoxide, sulphone, and O-methyl derivative. J Mol struct: Theochem. 536: 447-48.

9. Mas A (2005) Mushrooms. J Hepatol 42: 166-9.

10. Jehl F, Gallion C, Bircikel P, Jaeger A, Flesch F, et al. (1985) Determination of α-amanitin and α-amanitin in human biological fluids by High-performance liquid chromatography. Anal Biochem 149: 35-42.

11. Hopwood D (1989) Fixation of proteins by osmium tetroxide potassium dichromate and potassium permanganate. Histochem Cell Biol 18: 250-60.

12. Lewis GP, Rowe PB (1979) Oxidative and reductive cleavage of folates-A critical appraisal. Anal Biochem 93: 91-7.

13. Zhleva A, Tolekova A, Zhelkov M, Uzunova V, Platikanova M et al. (2007) Free radical reactions might contribute to severe alpha amanitin hepatotoxicity- A hypothesis. Med Hypothesis. 69: 361-7.

14. Leist M, Gantner F, Naumann H, Bluethmann H, Vogt K, et al. (1997) Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxin. Gastroenterology 112: 923-34.

15. Vetter J (1998) Toxin of Amanita phalloides. Toxicon 36: 13-24.

Table 5: Area of chromatograph showing deactivation of α-amanitin at 25,50 and 100µg/mL by Calcium hydroxide.

Testing	Area of Chromatograph				
	1st injection	2nd injection	3rd injection	Average ± SD% Deactivation	P
α –amanitin 25 µg/mL + water	44748	43498	43956	43727.0 ± 632.4	<0.01
α –amanitin 50 µg/mL + water	91448	85370	88120	88312.7 ± 3043.6	<0.01
α –amanitin 100 µg/mL + water	171481	170648	175971	173309.5 ± 2863.2	<0.01
α –amanitin 25 µg/mL + Ca(OH)₂(40 mg/mL)	43108	41505	43133	12504.3 ± 1198.8/71.4%	<0.01
α –amanitin 50 µg/mL + Ca(OH)₂(40 mg/mL)	86701	88379	81387	28998.3 ± 3007.3/67.2%	<0.01
α –amanitin 100 µg/mL + Ca(OH)₂(40 mg/mL)	168497	177185	173134	57652.3 ± 5517.4/66.7%	<0.01

Figure 16: Area under the curve comparing three concentrations of α-amanitin before and after calcium hydroxide 40 mg/mL. Deactivation was statistically significant compared with the control group.