Search for the Rare Decays $B^0 \to D_s^{(*)+} a_{0(2)}$
University of California at Los Angeles, Los Angeles, California 90024, USA
University of California at Riverside, Riverside, California 92521, USA
University of California at San Diego, La Jolla, California 92039, USA
University of California at Santa Barbara, Santa Barbara, California 93106, USA
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
California Institute of Technology, Pasadena, California 91125, USA
University of Cincinnati, Cincinnati, Ohio 45221, USA
Colorado State University, Fort Collins, Colorado 80523, USA
University of Dortmund, Institut für Physik, D-44221 Dortmund, Germany
University of Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
Ecole Polytechnique, LLR, F-91128 Palaiseau, France
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
Universität Kiel, Institut für Physik, D-24118 Kiel, Germany
Ecole Polytechnique, LLR, F-91128 Palaiseau, France
University of Liverpool, Liverpool L69 7BE, United Kingdom
Queen Mary, University of London, E1 4NS, United Kingdom
University of London, Royal Holloway and Bedford New College, Egham, Survey TW20 0EX, United Kingdom
University of Michigan, Ann Arbor, Michigan 48109, USA
University of Minnesota, Minneapolis, Minnesota 55455, USA
University of Missouri, Columbia, Missouri 65211, USA
Ohio State University, Columbus, Ohio 43210, USA
University of Notre Dame, Notre Dame, Indiana 46556, USA
Ohio State University, Columbus, Ohio 43210, USA
University of Oregon, Eugene, Oregon 97403, USA
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Université de Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Énergies, F-75252 Paris, France
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
Stanford Linear Accelerator Center, Stanford, California 94309, USA
Stanford University, Stanford, California 94305-4060, USA
State University of New York at Stony Brook, Stony Brook, New York 11794, USA
State University of New York, Albany, New York 12222, USA
University of Texas at Austin, Austin, Texas 78712, USA
University of Texas at Dallas, Richardson, Texas 75083, USA
University of Trieste, Dipartimento di Fisica Sperimentale and INFN, I-34122 Trieste, Italy
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
Vanderbilt University, Nashville, Tennessee 37235, USA
We have searched for the decays $B^0 \to D_s^{(*)+} a_0^{-}$, $B^0 \to D_s^{(*)0} a_0^{-}$, $B^0 \to D_s^{(*)+} a_0^{-}$ and $B^0 \to D_s^{(*)0} a_0^{-}$ in a sample of about 230 million $\Upsilon(4S) \to B\overline{B}$ decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We find no evidence for these decays and set upper limits at 90% C.L. on the branching fractions: $B(B^0 \to D_s^{(*)+} a_0^{-}) < 1.9 \times 10^{-5}$, $B(B^0 \to D_s^{(*)0} a_0^{-}) < 3.6 \times 10^{-5}$, $B(B^0 \to D_s^{(*)+} a_0^{-}) < 1.9 \times 10^{-4}$, and $B(B^0 \to D_s^{(*)0} a_0^{-}) < 2.0 \times 10^{-4}$.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

The time-dependent decay rates for neutral B mesons into a D meson and a light meson provide sensitivity to the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix phases β and γ [2]. A CP-violating term emerges through the interference between $B^0 \overline{B}^0$ mixing mediated and direct decay amplitudes. The time-dependent CP-asymmetries in the decay modes $B^0 \to D_s^{(*)-} \pi^+$ have been studied by BABAR and BELLE [4,5]. In these modes, the CP-asymmetries arise due to a phase difference between two amplitudes of very different magnitudes: one decay amplitude is suppressed by the product of two small CKM elements V_{ub} and V_{cd}, while the other is CKM favored. Therefore, the decay rate is dominated by the CKM-favored part of the amplitude, resulting in a very small CP-violating asymmetry.

Recently it was proposed to consider other types of light mesons in the two-body final states [6]. The idea is that decay amplitudes with light scalar or tensor mesons, such as a_0^{-} or a_2^+, emitted from a weak current, are significantly suppressed because of the small coupling constants $f_{a_0^{-}}$ and $f_{a_2^+}$. In the $SU(2)$ limit, $f_{a_0^{-}} = 0$ (since the coupling constant of a light scalar is proportional to the mass difference between u and d quarks), and any non-zero value of $f_{a_0^{-}}$ is of the order of isospin conservation breaking effects. Since the light tensor meson a_2^+ has spin 2, it cannot be emitted by a W-boson (i.e. $f_{a_2^+} \equiv 0$), and thus could only appear in a V_{cb}-mediated process via final state hadronic interactions and rescattering. Therefore, the absolute values of the CKM-suppressed and favored parts of the decay amplitude (see Figure 1, top two diagrams) could become comparable, potentially resulting in a large CP-asymmetry. No $B \to a_0^{-}(2)X$ transitions have been observed yet. A summary of the theoretical predictions for the values of V_{ub} and V_{cb}-mediated parts of the $B^0 \to D_s^{(*)-} a_0^{-}(2)$ branching fractions can be found in [6].

The V_{ub}-mediated amplitudes in [6] were computed in the factorization framework. In addition to model uncertainties, significant uncertainty in the theoretical calculations is due to unknown $B \to a_0^{-}(2)X$ transition form factors. One way to verify the numerical assumptions and test the validity of the factorization approach experimentally is to measure the branching fractions for the $SU(3)$ conjugated decay modes $B^0 \to D_s^{(*)+} a_+(2)$. These decays are represented by a single tree diagram (Figure 1, bottom diagram) with external W^+ emission, without contributions from additional tree or penguin diagrams. The V_{ub}-mediated part of the $B^0 \to D_s^{(*)+} a_+(2)$ decay amplitude can be related to $B^0 \to D_s^{(*)+} a_+(2)$ using $\tan(\theta_{Cabibbo}) = |V_{ub}/V_{cs}|$ and the ratio of the decay constants $f_{D_s^{(*)}}/f_{D^{(*)}}$.

Branching fractions of $B^0 \to D_s^{(*)+} a_+(2)$ are predicted to be in the range 1.3–1.8 (2.1–2.9) in units of 10^{-5} [6]. Branching fraction estimates for $B^0 \to D_s^{(*)+} a_+(2)$, of approximately 8×10^{-5} are obtained using $SU(3)$ symmetry from the predictions made for $B^0 \to D_s^{(*)+} a_0^{-}(2)$ in [6].

In this paper we present the first search for the decays $B^0 \to D_s^{(*)+} a_0^{-}(2)$, including the $B^0 \overline{B}^0$ mixing mediated part of the amplitude. Bottom diagram: tree diagram representing the decay amplitude of $B^0 \to D_s^{(*)+} a_0^{-}(2)$.}

FIG. 1: Top diagrams: tree diagrams contributing to the decay amplitude of $B^0 \to D_s^{(*)-} a_0^{-}(2)$ (including the $B^0 \overline{B}^0$ mixing mediated part of the amplitude). Bottom diagram: tree diagram representing the decay amplitude of $B^0 \to D_s^{(*)+} a_0^{-}(2)$. This analysis uses a sample of approximately 210 fb^{-1}, which corresponds to about 230 million $\Upsilon(4S)$ decays into $B \overline{B}$ pairs collected in the years 1999–2004 with the BABAR detector at the asymmetric-energy B-factory PEP-II [6]. The BABAR detector is described elsewhere [10] and only the components crucial to this analysis are summarized here. Charged particle
tracking is provided by a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH). For charged-particle identification, ionization energy loss \((dE/dx) \) in the DCH and SVT, and Cherenkov radiation detected in a ring-imaging device are used. Photons are identified and measured using the electromagnetic calorimeter, which is comprised of 6580 thallium-doped CsI crystals. These systems are located inside a 1.5 T solenoidal superconducting magnet. We use GEANT4 \(^{11}\) software to simulate interactions of particles traversing the BABAR detector, taking into account the varying detector conditions and beam backgrounds.

The selection criteria are optimized by maximizing the ratio of expected signal events \(S \) to the square-root of the sum of signal and background events \(B \). For the calculation of \(S \) we assume \(\mathcal{B}(B^0 \to D_s^{(*)} \ell^- \nu) \) to be the mean values of the predicted intervals from \(\mathcal{S} \) and an estimate of \(\mathcal{B}(B^0 \to D_s^{(*)} \ell^- \nu) \) is obtained from \(\mathcal{B}(B^0 \to D_s^{(*)} \ell^- \nu) \) predicted in \(\mathcal{B} \) and assuming SU(3) symmetry. The optimal selection criteria as well as the shapes of the distributions of selection variables are determined from simulated Monte Carlo (MC) events. We use MC samples of our signal modes and, to simulate background, inclusive samples of \(B^+ B^- \) (800 fb\(^{-1}\)), \(B^0 \bar{B}^0 \) (782 fb\(^{-1}\)), \(c\bar{c} \) (263 fb\(^{-1}\)), and \(q \bar{q}, q = u, d, s \) (279 fb\(^{-1}\)). In addition, we use large samples of simulated events of rare background modes which have final states similar to the signal.

Candidates for \(D_s^+ \) mesons are reconstructed in the modes \(D_s^+ \to \phi \pi^+, K^{*0}K^+, \) and \(K_S^{*0}K^+ \), with \(\phi \to K^+K^- \), \(K^{*0} \to K^-\pi^+ \), and \(K_S^{*0} \to \pi^+\pi^- \). The \(K_S^{*0} \) candidates are reconstructed from two oppositely-charged tracks, with an invariant mass close to the nominal \(K_S^{*0} \) mass \(^{12}\) that come from a common vertex displaced from the \(e^+e^- \) interaction point. All other tracks are required to originate less than 1.5 cm away from the \(e^+e^- \) interaction point in the transverse plane and less than 10 cm along the beam axis. Charged kaon candidates must satisfy kaon identification criteria that are typically around 95% efficient, depending on momentum and polar angle, and have a misidentification rate at the 10% level. The \(\phi \to K^+K^- \), \(K^{*0} \to K^-\pi^+ \), and \(K_S^{*0} \to \pi^+\pi^- \) candidates are required to have invariant masses close to their nominal masses \(^{12}\) (we require the absolute differences between their measured masses and the nominal values \(^{12}\) to be in the range 12–15 MeV, 35–60 MeV and 7–12 MeV, respectively, depending on the \(B^0 \) and \(D_s^+ \) decay modes). The polarizations of the \(K^{*0} \) and \(\phi \) mesons in the \(D_s^+ \) decays are used to reject backgrounds through the use of the helicity angle \(\theta_H \), defined as the angle between the \(K^- \) momentum vector and the direction of flight of the \(D_s^+ \) in the \(K^{*0} \) or \(\phi \) rest frame. The \(K^{*0} \) candidates are required to have \(|\cos \theta_H| \) greater than 0.25–0.5 and \(\phi \) candidates are required to have \(|\cos \theta_H| \) greater than 0.3–0.5, depending on the \(B^0 \) decay mode. We also apply a vertex fit to the \(D_s^+ \) candidates that decay into \(\phi\pi^+ \) and \(K^{*0}K^+ \), since all charged daughter tracks of \(D_s^+ \) are supposed to come from a common vertex. The \(\chi^2 \) of the vertex fit is required to be less than 10–16 (which corresponds to a probability of better than 0.1%–1.9% for the 3 track vertex fit), depending on the reconstructed mode.

The \(D_s^+ \) candidates are reconstructed in the mode \(D_s^+ \to D_s^+ \gamma \). The photons are required to have an energy greater than 100 MeV. The \(D_s^+ \) and \(D_s^+ \) candidates are required to have invariant masses less than about \(\pm2\sigma \) from their nominal values \(^{12}\). The invariant mass of the \(D_s^+ \) is calculated after the mass constraint on the daughter \(D_s^+ \) has been applied. Subsequently, all \(D_s^+ \) candidates are subjected to a mass-constrained fit.

We reconstruct \(a_0 \) and \(a_2 \) candidates in their decay to the \(\eta\pi^- \) final state. For reconstructed \(\eta \to \gamma\gamma \) candidates we require the energy of each photon to be greater than 250 MeV for \(a_0 \) candidates, and greater than 300 – 400 MeV for \(a_2 \) candidates, depending on the \(D_s^+ \) mode. The \(\eta \) mass is required to be within a \(\pm1\sigma \) or \(\pm2\sigma \) interval of the nominal value \(^{12}\), depending on the background conditions in a particular \(B^0 \), \(D_s^+ \) decay mode (the \(\eta \) mass resolution is measured to be around 15 MeV/\(c^2 \)). The \(a_0 \) and \(a_2 \) candidates are required to have a mass \(m_{\pi^+\pi^-} \) in the range 0.9–1.1 GeV/\(c^2 \) and 1.2–1.5 GeV/\(c^2 \), respectively. We also require that photons from \(\eta \) and \(D_s^+ \) are inconsistent with \(\pi^0 \) hypothesis when combined with any other photon in the event (the \(\pi^0 \) veto window varies from \(\pm10 \) to \(\pm15 \) MeV/\(c^2 \)). Finally, the \(B^0 \) meson candidates are formed using the reconstructed combinations of \(D_s^+ a_0 \), \(D_s^+ a_2 \), \(D_s^+ a_0 \) and \(D_s^+ a_2 \).

The background from continuum \(q\bar{q} \) production (where \(q = u, d, s, c \)) is suppressed based on the event topology. We calculate the angle \(\theta_T \) between the thrust axis of the \(B \) meson candidate and the thrust axis of all other particles in the event. In the center-of-mass frame (c.m.), \(B\bar{B} \) pairs are produced approximately at rest and have a uniform \(\cos \theta_T \) distribution. In contrast, \(q\bar{q} \) pairs are produced in the c.m. frame with high momentum, which results in a \(\cos \theta_T \) distribution peaking at 1. Depending on the background level of each mode, \(\cos \theta_T \) is required to be smaller than 0.70–0.75. We further suppress backgrounds using a Fisher discriminant \(F \) \(^{13}\) constructed from the scalar sum of the c.m. momenta of all tracks and photons (excluding the \(B \) candidate decay products) flowing into 9 concentric cones centered on the thrust axis of the \(B \) candidate. The more isotropic the event, the larger the value of \(F \). We require \(F \) to be larger than a threshold that retains 75% to 86% of the signal while rejecting 78% to 65% of the background, depending on the background level. In addition, the ratio of the second and zeroth order Fox-Wolfram moments \(^{14}\) must be less than a threshold in the range 0.25–0.40 depending on the decay mode.

We extract the signal using the kinematical variables \(m_{ES} = \sqrt{E^2_{ES} - (\sum E_i)^2} \) and \(\Delta E = \sum \sqrt{m_i^2 + p_i^2} - p_{ES}^2 \).
TABLE I: Reconstruction efficiencies for $B^0 \rightarrow D_s^{(*)+} a_0(2)$ decays (excluding the intermediate branching fractions).

Decay mode	$D_s^{(*)+} \rightarrow \phi\pi^+$	$D_s^{(*)+} \rightarrow \overline{K}^0 K^+$	$D_s^{(*)+} \rightarrow K^0_s K^+$
$B^0 \rightarrow D_s^{(*)+} a_0^{-}$	4.7%	2.9%	2.5%
$B^0 \rightarrow D_s^{(*)+} a_0^{-}$	1.9%	1.1%	1.1%
$B^0 \rightarrow D_s^{(*)+} a_0^{-}$	2.2%	1.5%	1.3%
$B^0 \rightarrow D_s^{(*)+} a_0^{-}$	0.9%	0.7%	0.5%

Background events that pass these selection criteria are mostly from $q\bar{q}$ continuum, and their m_{ES} distribution is described by a threshold function $f(m_{ES})$:

$$f(m_{ES}) \sim m_{ES}\sqrt{1-x^2}\exp[-\xi(1-x^2)],$$

where $x = 2m_{ES}/\sqrt{s}$, \sqrt{s} is the total energy of the beams in their center of mass frame, and ξ is the fit parameter. A study using simulated events of B^0 and B^+ decay modes with final states similar to our signal mode, including $D_s^{(*)+}\pi^-$ and $D_s^{(*)+}\rho^-$, shows that these modes do not peak in m_{ES}.

Figure 2 shows the m_{ES} distributions for the reconstructed candidates $B^0 \rightarrow D_s^{(*)+} a_0^{-}$, $B^0 \rightarrow D_s a_0^{-}$, $B^0 \rightarrow D_s^{(*)+} a_0^{-}$, $B^0 \rightarrow D_s^{(*)+} a_0^{-}$, and $B^0 \rightarrow D_s^{(*)+} a_0^{-}$. For each mode, we perform an unbinned maximum-likelihood fit to the m_{ES} distributions using the candidates from all $D_s^{(*)+}$ decay modes combined. We fit the m_{ES} distributions with the sum of the function $f(m_{ES})$ characterizing the combinatorial background and a Gaussian function to describe the signal. The total signal yield in each B^0 decay mode is calculated as a sum over $D_s^{(*)+}$ modes ($i = \phi\pi^+$, $\overline{K}^0 K^+$, $K^0_s K^+$):

$$n_{sig} = B \cdot N_{BB} \cdot \sum_i B_i \cdot \epsilon_i,$$

where B is the branching fraction of the B^0 decay mode, N_{BB} is the number of produced $B\bar{B}$ pairs, B_i is the product of the intermediate branching ratios and ϵ_i is the reconstruction efficiency. The mean and the width of the Gaussian function are fixed to values obtained from simulated signal events for each decay mode. The threshold shape parameter ξ, along with the branching ratio B are free parameters of the fit. The likelihood function is given by:

$$L = \frac{e^{-N} \prod_i (n_{sig} P_i^{sig} + (N - n_{sig}) P_i^{bkg})}{N!},$$

where P_i^{sig} and P_i^{bkg} are the probability density functions for the corresponding hypotheses, N is the total number of events in the fit and i is the index over all events in the fit.

Table III (second column) shows the signal event yields from the m_{ES} fit. Due to a lack of entries in the signal region for the $B^0 \rightarrow D_s^{(*)+} a_0^{-}$ mode, the fit did not yield any central value for the number of signal events in this mode. Accounting for the estimated reconstruction efficiencies and daughter particles branching fractions, we measure the branching fractions shown in the third column of Table III.

The systematic errors include a 14% relative uncertainty for $D_s^{(*)+}$ decay rates. Uncertainties in the m_{ES} signal and background shapes result in 11% relative error in the measured branching fractions. The rest of the systematic error sources, which include uncertainties in photon and η reconstruction efficiencies, the a_1^+ and a_2^+ masses and widths, track and K^0_s reconstruction, charged
kaon identification, range between 3% and 10%. We assume the branching fraction for \(a^{+}_0 \rightarrow \eta \pi^+ \) to be 100% and assign an asymmetric systematic error of –10% to this assumption. The systematic error in the number of produced \(B \overline{B} \) pairs is 1.1%. It was checked that the selection of the best candidate based on \(|\Delta E| \) does not introduce any significant bias in the \(m_{ES} \) fit. The total relative systematic errors are estimated to be around 25% for each mode.

We use a Bayesian approach with a flat prior above zero to set 90% confidence level upper limits on the branching fractions. In a given mode, the upper limit on the branching fraction \(B_{UL} \) is defined by:

\[
\int_{0}^{B_{UL}} L(B)dB = 0.9 \times \int_{0}^{\infty} L(B)dB
\]

where \(L(B) \) is the likelihood as a function of the branching fraction \(B \) as determined from the \(m_{ES} \) fit described above. We account for systematic uncertainties by numerically convolving \(L(B) \) with a Gaussian distribution with a width determined by the relative systematic uncertainty multiplied by the branching fraction obtained from the \(m_{ES} \) fit. In cases with asymmetric errors we took the larger for the width of this Gaussian function. In case of \(D^{+}_s a^0_2 \) (where no central value was determined from the fit) we conservatively estimate the absolute systematic error by taking the numerically calculated 90% confidence level upper limit (without the systematic uncertainties) instead of the fitted branching fraction. The resulting upper limits are summarized in Table III (fourth column). The likelihood curves are shown in Figure 3.

We have also calculated upper limits without including the intermediate branching fractions of the decays \(D^{+}_s \rightarrow \phi \pi^+ a^{0,2}_0 \) and \(a^{+}_0 \rightarrow \eta \pi^+ \). The relative systematic errors in this case are reduced to 18% for each of the \(B^0 \) meson decay modes. The results are presented in Table III (third and fourth columns, numbers in parenthesis).

In conclusion, we do not observe any evidence for the decays \(B^0 \rightarrow D^{+}_s a^0_0 \), \(B^0 \rightarrow D^{+}_s a^0_2 \), \(B^0 \rightarrow D^{+}_s a^0_2 \) and \(B^0 \rightarrow D^{+}_s a^2_2 \), and set 90% C.L. upper limits on their branching fractions. The upper limit value for \(B^0 \rightarrow D^{+}_s a^0_0 \) is lower than the theoretical expectation, which might indicate the need to revisit the \(B \rightarrow a^0_0 X \) transition form factor estimate. It might also imply the limited applicability of the factorization approach for this decay mode. The upper limits suggest that the branching ratios of \(B^0 \rightarrow D^{+}_s a^0 \) are too small for \(CP \)-asymmetry measurements given the present statistics of the \(B \)-factories.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

\[B^0 \text{ mode} \quad n_{sig} \quad B_{ES}\left(10^{-3}(10^{-7})\right) \quad U.L. \left[10^{-5}\right] \]

\[
\begin{array}{llll}
D^+_s a^0_0 & 0.9^{+2.2}_{-1.2} \pm 0.1 & (2.6^{+6.6}_{-5.1} \pm 0.5) & 1.9 (0.09) \\
D^+_s a^0_2 & 6.4^{+1.0}_{-0.9} \pm 4.5^{+1.4}_{-0.8} & \pm 0.8 & 19 (0.13) \\
D^+_s^* a^0_0 & 1.5^{+2.2}_{-1.6} \pm 1.4^{+2.1}_{-2.0} \pm 0.3 & (6.5^{+1.0}_{-1.2}) & 3.6 (0.17) \\
D^+_s a^0_2 & 0 & 0 & 20 (0.13)
\end{array}
\]

\[
\text{FIG. 3: Likelihood functions of the fit for the} \ m_{ES}\text{ distributions of the selected} \ B^0 \rightarrow D^{+}_s a^0 \text{ candidates. Solid curves represent the original likelihood scan from the fit, the dashed lines show the result of the convolution with the systematic errors Gaussian. Vertical lines indicate the 90% Bayesian C.L. upper limit value.}
\]
(1973), N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).

β = \arg\left(-V_{ud}V_{ub}^{\ast}/V_{td}V_{tb}^{\ast}\right), \quad \gamma = \arg\left(-V_{ud}V_{ub}^{\ast}/V_{cd}V_{cb}^{\ast}\right)

Charge conjugate reactions are implicitly included, throughout this paper.

4] \textit{BABAR} Collaboration, B. Aubert \textit{et al}., Phys. Rev. Lett. 92, 251801 (2004); \textit{BABAR} Collaboration, B. Aubert \textit{et al}., Phys. Rev. Lett. 92, 251802 (2004);

5] \textit{BELLE} Collaboration, K. Abe \textit{et al}., hep-ex/0408106

6] M. Diehl, G. Hiller, Phys. Lett. B 517, 125 (2001).

7] M. Diehl, G. Hiller, JHEP 0106:067 (2001).

8] C.S. Kim, J.P. Lee, and S. Oh, Phys. Rev. D 67, 014011 (2003).

9] PEP-II Conceptual Design Report, SLAC-0418 (1993).

10] \textit{BABAR} Collaboration, B. Aubert \textit{et al}., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).

11] Geant4 Collaboration, S. Agostinelli \textit{et al}., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

12] Particle Data Group, S. Eidelman \textit{et al}., Phys. Lett. B 592, 1 (2004).

13] R.A. Fisher, Annals of Eugenics 7 Part II, 179 (1936).

14] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).

15] ARGUS Collaboration, H. Albrecht \textit{et al}., Z. Phys. C 48, 543 (1990).

16] \textit{BABAR} Collaboration, B. Aubert \textit{et al}., Phys. Rev. D71, 091104 (2005);