Low temperature transport on surface conducting diamond

M. T. Edmonds1, L. H. Willems van Beveren2, K. Ganesan2, N. Eikenberg2, J. Cervenka2, S. Prawer2, L. Ley1, A. R. Hamilton3, C. I. Pakes1

1Physics Department, La Trobe University, Victoria 3086, Australia
2School of Physics, University of Melbourne, Victoria 3010, Australia
3School of Physics, University of New South Wales, New South Wales 2052, Australia
*Corresponding author: Email mtedmonds@students.latrobe.edu.au

Abstract: Magneto-transport measurements were performed on surface conducting hydrogen-terminated diamond (100) hall bars at temperatures between 0.1-5 K in magnetic fields up to 8T.

1 Introduction: Diamond with a band gap of 5.47 eV is an insulating material when undoped. However, when the diamond surface is terminated with hydrogen and then exposed to air or synthetic surface adsorbates, a p-type surface conductivity is observed [1]. Changes in the electronic properties of the diamond surface as a result of this p-type surface conductivity are well understood [2,3], and transport measurements on surface conducting diamond have been performed at room temperature and liquid nitrogen temperatures [4,5]. However, little attention has been paid to the transport properties of the p-type carriers in diamond at liquid helium temperatures and in high magnetic fields.

2 Experiment: Two samples were used in this study: an electronic grade sample (E1) with low impurity content and surface roughness ~0.1 nm and one standard grade sample (SG1) with a higher level of impurities and larger surface roughness ~1.0 nm. Hall Bars were fabricated on these samples using standard photolithography techniques. In the inset of Fig. 1 the blue region of the Hall Bar represents the h-terminated conducting region and the region outside of the Hall Bar is insulating oxygen-terminated diamond. After fabrication magneto-transport measurements were performed using a dilution refrigerator at temperatures between 0.1-5.0 K in magnetic fields up to 8 T.

3 Results: Figure 1 shows the sheet conductivity as a function of temperature between room temperature and 0.1K. Both samples show only weak temperature dependence with the electronic grade sample having a higher room temperature sheet conductivity. Carrier activation energies have been determined from Fig. 1 to be 0.43 meV and 0.14 meV for SG1 and E1 respectively in the linear region.

Longitudinal resistivity ρ_{xx}, and Hall resistivity ρ_{xy} was measured as a function of magnetic field perpendicular to the sample, for temperatures between 0.3 K and 5.0 K for both samples. Fig. 2 shows the data for E1 at 3.9 K. From a linear fit to the Hall resistivity as a function of magnetic field the hole concentration is found to be $\sim 10^{13}$ cm$^{-2}$, very close to that obtained at room temperature indicating no carrier freeze out. The mobility of 78 cm2V$^{-1}$s$^{-1}$ has slightly decreased from the room temperature value of 105 cm2V$^{-1}$s$^{-1}$; this follows the change in sheet conductivity which decreases with temperature. This low carrier mobility at cryogenic temperature is attributed to scattering from adsorbate anions.

Fig. 1. Main: Sheet conductivity as a function of temperature. Inset: Image of a Hall Bar fabricated on IIa (100) diamond.
Surface conductivity on diamond deals with a 2D system with carriers and scatterers confined to two adjacent planes separated by only a few nanometers [2]. With such a small separation between the charge sheets, scattering from anions in the adsorbed water layer is expected to be the dominant scattering mechanism.

Magneto-resistance as a function of magnetic field in Fig. 2 exhibits weak localization similar to that observed for highly disordered Si:P δ-doped two-dimensional electron systems [6].

Further magneto-transport measurements are required between 4K and mK at constant temperature to fully understand the hole-hole interaction in this highly disordered system and to obtain the weak localization correction to the Drude conductivity.

Acknowledgements

This work has been supported by the Australian Research Council under DP0879827.

References

[1] F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, “Origin of surface conductivity in diamond,” Phys. Rev. Lett. 85, 3472 (2000)

[2] M. T. Edmonds, C. I. Pakes, S. Mammadov, W. Zhang, A. Tadich, J. Ristein, and L. Ley, “Surface band bending and electron affinity as a function of hole accumulation density in surface conducting diamond,” Appl. Phys. Lett. 98, 102101 (2011)

[3] M. T. Edmonds, M. Wanke, A. Tadich, H. M. Vulling, K. J. Rietwyk, P. L. Sharp, C. B. Stark, Y. Smets, A. Schenk, Q.-H. Wu, L. Ley, and C. I. Pakes, “Surface transfer doping of hydrogen-terminated diamond by C₆₀F₄₈: Energy level scheme and doping efficiency” J. Chem. Phys. 136, 124701 (2012)

[4] J. A. Garrido, T. Heimbeck, and M. Stutzmann, “Temperature-dependent transport properties of hydrogen-induced diamond surface conductive channels” Phys. Rev. B 71, 245310 (2005)

[5] C. E. Nebel, C. Sauerer, F. Ertl, M. Stutzmann, C. F. O. Graeff, P. Bergonzo, O. A. Williams, and R. Jackman, “Hydrogen-induced transport properties of holes in diamond surface layer” Appl. Phys. Lett. 79, 4541 (2001)

[6] K. E. J. Goh , M. Y. Simmons, and A. R. Hamilton, “Electron-electron interactions in high disordered two-dimensional systems” Phys. Rev. B 77, 235410 (2008)