Data Article

Satellite data for Singapore, Manila and Kuala Lumpur city growth analysis

Mukesh Singh Booria,b,d,\ast,1, Komal Choudharya, Alexander Kupriyanova,c, Viktor Kovelskiya

a Samara National Research University, Samara, Russia
b American Sentinel University, CO, USA
c Image Processing Systems Institute, Samara, Russia
d Hokkaido University, Sapporo, Japan

Abstract

This data article presents satellite data related to city growth of Singapore, Manila and Kuala Lumpur cities. The data were collected from NASA and USGS websites. A method has been developed for city built-up density from city center to outward till 50 km by using satellite data. These data sets consists three decade Landsat images. A detailed description is given to show how to use this data to produce urban growth maps. The urban growth maps have been used to know the changes and growth pattern in the Southeast Asia Cities. © 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The following multi-sensor, multi-resolution and multi-temporal satellite data were used: Landsat 5 TM (Thematic Mapper) for 1989, Landsat 7 ETM+ (Enhanced Thematic Mapper plus) for 2001 and Landsat 8 OLI (Operational Land Imager) for 2014, an image captured by a different type of sensors with less than 20% cloud cover. In addition, Landsat images are frequently updated and are available free of charge through the Global Land Cover Facility repository [1–3]. All data were downloaded free of charge from NASA and USGS website. Fig. 1 presents city growth of Singapore, Manila and Kuala Lumpur in the last three decades.

2. Experimental design, materials and methods

To convert all row satellite data into meaningful data, first rectified and georeferenced the data in UTM projection (WGS 84 datum). To increase the quality of satellite data, all data processed through band ratio, classification and in last change detection techniques [4–6]. All satellite data were preferred to retain the spatial details such as original pixel value and size. Therefore the satellite data were kept without changing their pixel sizes despite the possible varying accuracy level of classification with the different spatial, spectral and radiometric resolutions. All nine satellite images were classified through maximum likelihood supervised classification in ArcGIS 10.2 software [7–9]. To create a closer correspondence between the produced output data maps, the classification was done by only considering four main classes: urban/built-up area, agriculture land, forest land (tree/park) and water body [10–12]. The produced data maps were presented in Fig. 2.

After classification multi-buffer rings were created for every 1 km distance from 1 to 50 km from city center to outward. Than intersect with classified data maps (land cover) for all three dates [13–15]. Later on all land cover classes area were measured from 1 to 50 km distance and derive urban
Fig. 1. Singapore, Manila and Kuala Lumpur city growth from 1989, 2001 and 2014.
density according to following formula.

\[
\text{Urban density} = \frac{\text{Settlement area / ring}}{\text{Total ring area}}
\]

(1)

In all buffer rings only urban/built-up area was calculated in place of whole ring area. After producing complete land use data maps, the total coverage of different classes were determined. Using this information, we calculated the water, forest, vegetation and built-up area per capita for all the study years (Table 1).

In order to evaluate the spatial distribution of urban expansion intensity, we adapted an indicator called annual urban growth rate (AGR) for evaluating the 'urbanization' speed of per unit area [16,17]. AGR is defined as follows:

\[
\text{AGR} = \frac{UA_{n+i} - UA_i}{nTA_{n+i}} \times 100\%
\]

(2)
Table 1
Singapore, Manila and Kuala Lumpur land use/cover classes for 1989, 2001 and 2014.

	Area_1989	%	Area_2001	%	Area_2014	%
Singapore						
Settlements	196.88	66.25	383.23	69.71	464.69	70.19
Agriculture	34.67	11.67	80.26	14.60	80.84	12.21
Forest	60.74	20.44	62.58	11.38	89.65	13.54
Water	4.89	1.65	23.64	4.30	26.87	4.06
Total	297.18	100.00	549.71	100.00	662.05	100.00
Manila						
Settlements	189.61	96.70	416.87	77.08	776.65	69.12
Agriculture	6.37	3.24	110.14	20.37	243.89	21.71
Forest	2.19	1.11	9.44	1.75	98.59	8.77
Water	0.1	0.05	4.36	0.81	4.42	0.39
Total	196.08	100.00	540.81	100.00	1123.55	100.00
Kuala Lumpur						
Settlements	456.99	51.81	1098.48	60.22	1663.23	64.36
Agriculture	345.46	39.16	520.40	28.53	699.21	27.06
Forest	70.50	7.99	188.74	10.35	209.99	8.13
Water	9.18	1.04	16.54	0.91	11.68	0.45
Total	882.13	100.00	1824.16	100.00	2584.11	100.00
where T_{An+i} is the total land area of the target unit to be calculated at the time point of $i+n$; UA_{An+i} and UA_i the urban area or built-up area in the target unit at time $i+n$ and i, respectively and n is the interval of the calculated period (in years).

2.1. Urban/built-up area, city density and landscape

With the help of ArcGIS 10.2 software, urban/built up area data were created. After creation of built-up data, city density data were generated by Eq. (1) from city center to 50 km outward the city for Singapore, Manila and Kuala Lumpur cities (Fig. 3).

As Fig. 3 represents three dates data of urban density so this data can be utilize as urban growth rate data of Singapore, Manila and Kuala Lumpur city.

![Fig. 3. Singapore, Manila and Kuala Lumpur city density from 1 to 50 km distance for the year of 1989, 2001 and 2014.](image-url)
With the help of supervised classification, previous knowledge and experience, landscape data were created for all three cities for the year of 1989, 2001 and 2014. Here a trimble hand-held GPS with an accuracy of 10 m was used to map and collect the coordinates of important landscape features during pre- and post-classification field visits in order to prepare land-use and land-cover datasets. Fig. 4 shows landscape data with urban growth and urban density datasets for Singapore, Manila and Kuala Lumpur cities from 1989 to 2014.

Acknowledgments

This data work is financially supported by the Russian Scientific Foundation (RSF), Grant no. 14-31-00014 “Establishment of a Laboratory of Advanced Technology for Earth Remote Sensing”.

References

[1] Kai-ya Wu, Z. Hao, Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing Hangzhou metropolitan area, eastern China (1978–2008), Appl. Geogr. 34 (2012) 137–145.
[2] M.S. Boori, R.R. Ferraro, Global land cover classification based on microwave polarization and gradient ratio (MPGR), in: I. Ivan, I. Benenson, B. Jiang, J. Horák, J. Haworth, T. Inspektor (Eds.), Geo-informatics for Intelligent Transportation, Springer International Publishing, Switzerland, vol. 71, 2015, pp. 17–37, http://dx.doi.org/10.1007/978-3-319-11463-7-2.
[3] A.M. Dewan, Y. Yamaguchi, M.Z. Rahman, Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka metropolitan, Bangladesh, Geol. 77 (3) (2012) 315–330.
[4] M.S. Boori, V. Vozenilek, K. Choudhary, Land use/cover disturbances due to tourism in Jeseniky Mountain, Czech Republic: a remote sensing and GIS based approach, Egypt. J. Remote Sens. Space Sci. 17 (3) (2015) 01–10. http://dx.doi.org/10.1016/j.ejrs.2014.12.002.
[5] T.M. Lillesand, R.W. Kiefer, Remote Sensing and Image Interpretation, John Wiley and Sons, New York, 1999.
[6] J.R. Anderson, E. Hardey, J. Roach, R.E. Wimper, A land use and land cover classification system for use with remote sensor data, US geological survey professional paper, Washington, DC, vol. 964, 1976, p. 28.
[7] M.S. Boori, V. Vozenilek, K. Choudhary, Exposer intensity, vulnerability index and landscape change assessment in Olo-
mouc, Czech Republic, ISPRS: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-7/W3 (2015) 771–776. http://dx.doi.
org/10.5194/isprsannals-II-8-77-2014.

[8] J.R. Jensen, J. Im, Remote sensing change detection in urban environments, in: R.R. Jensen, J.D. Gatrell, D. McLean (Eds.),
Geo-Spatial Technologies in Urban Environments: Policy, Practice and Pixels, 2nd ed., Springer-Verlag, Heidelberg, 2007,
pp. 7–30.

[9] M.S. Boori, V. Vozenilek, Land-cover disturbances due to tourism in Jeseniky mountain region: a remote sensing and GIS
based approach, SPIE: Remote Sensing, vol. 9245, 92450T, 2014, pp. 01–11, http://dx.doi.org/10.1117/12.2065112.

[10] United Nations, World urbanization prospects, The 2014 Revision, New York, 2014.

[11] M.S. Boori, K. Choudhary, A. Kupriyanov, V. Kovelskiy, Four decades urban growth and land use change in Samara Russia
through remote sensing and GIS techniques, SPIE: Remote Sensing and Image Formation, vol. 9817, 2015, pp. 01–07, http://
dx.doi.org/10.1117/12.2227992.

[12] D. Haiyong, W. Shi, Land-use/land-cover change and its influence on surface temperature: a case study in Beijing City, Int.
J. Remote. Sens. 34 (15) (2013) 5503–5517.

[13] M.S. Boori, A.V. Kuznetsov, K. Choudhary, A. Kupriyanov, Satellite image analysis to evaluate the urban growth and land
use changes in the city of Samara from 1975 to 2015, Comput. Opt. 39 (5) (2015) 818–822. http://dx.doi.org/10.18287/
0134-2452-2015-39-5-818-822.

[14] B. Feizizadeh, H. Helali, Comparison pixel-based, object based image analysis and effective parameters in classification
land cover e land use of west province Azerbaijan, J. Geogr. Res. 47 (2010) 73–84.

[15] M.S. Boori, M. Netzband, V. Vozenilek, K. Choudhary, Urban growth in last three decades in Kuala Lumpur, Malaysia IEEE:
Urban Remote Sensing Event (JURSE), 2015 Joint, 2015e, pp. 01–04, http://dx.doi.org/10.1109/JURSE.
2015.7120536.

[16] K.O. Were, Ø.B. Dick, Remotely sensing the spatial and temporal landcover changes in Eastern Mau forest reserve and Lake
Nakuru drainage basin, Appl. Geogr. 41 (2013) 75–86.

[17] M.S. Boori, K. Choudhary, A. Kupriyanov, V. Kovelskiy, Urbanization data of Samara City, Russia, Data Brief 6 (2016)
885–889. http://dx.doi.org/10.1007/978-3-319-11463-7-2.