Data Article

The permeability and selectivity of nanocomposite membrane of PEBAx 1657/PEI/SiO₂ for separation of CO₂, N₂, O₂, CH₄ gases: A data set

Mojtaba Shafiee a, Ali Akbari a, Iman Bahreini pour a, Rauf Foroutan b, **, Bahman Ramavandi c, d, *

a Department of Chemical Engineering, Jundi-Shapur University of Technology, P.O. Box 64615-334, Dezful, Iran
b Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
c Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
d Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran

Article info

Article history:
Received 6 October 2019
Received in revised form 1 November 2019
Accepted 6 November 2019
Available online 16 November 2019

Keywords:
Membrane
Thermal fission
Poly ether-block-amide
Poly-ether-imide
Silica nanoparticles

Abstract

The poly ether-block-amide (PEBAx)/Poly-ether-imide (PEI)/SiO₂ nanocomposite membranes were fabricated using the solution casting method and utilized for separation of N₂, O₂, CH₄ and CO₂ gases. The effect of SiO₂ nanoparticles loading on permeability and selectivity of gases using the nanocomposite membranes was tested. The data showed that the permeability of the gases increased with increasing SiO₂ nanoparticle content. By adding SiO₂ nanoparticles (10 wt%), the permeability of N₂, O₂, CH₄ and CO₂ gases elevated from 0.39, 1, 1.83 and 11.1 to 2.01, 1.95, 2.98 and 19.83 Barrer unit, respectively (at a pressure of 2 Bar). In contrast, with increasing SiO₂ content the selectivity of the studied gases decreased. The morphology, crystallinity and the functional groups of the fabricated membranes were evaluated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) techniques. The data...
presented confirm the influence of the nanoparticles on the membrane structure and thus on the permeability and selectivity of the membranes.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specification Table

Subject area	Chemical engineering
More subject area	Gas separation
Type of data	Figure, image, table
How data was acquired	- FTIR (Spectrum-65, Perkin Elmer) analysis was used to investigate the functional groups of membranes
- XRD patterns of fabricated membranes were prepared using X-Ray Diffractometer, Bruker, D8-Advance model.
- Scanning electron microscopy (MIRA3, Tescan) was utilized to study the morphology of prepared membranes |
| Data Format | Raw |
| Experimental factors | • The membranes were fabricated using the phase inversion method.
• SiO2 nanoparticles were used to modify the permeability of membranes.
• The permeability and selectivity of membranes were investigated.
• The constant temperature-pressure method was used to measure the permeability of membranes. |
| Experimental features | Separation of N2, O2, CH4, and CO2 gases using Pebax/PEI- SiO2 nanocomposite membranes. |
| Data source location | Jundishapur University of Technology, Dezful, Iran |
| Data accessibility | Data were presented with the article. |

Value of the Data

- This data can be useful for developing the nanocomposite polymeric membranes.
- The study may be applicable for oil, gas and petrochemical industries for natural gas sweetening and purification processes.
- Our data can be helpful for power plants to the separation of CO2 gas released from fossil fuels.
- This paper introduces a membrane to the world of industry that can be useful for controlling carbon dioxide gas and thus controlling global warming.

1. Data

The X-Ray Diffraction (XRD) of SiO2 nanoparticles and fabricated membranes is shown in Fig. 1. Also, the FTIR analysis of SiO2 nanoparticles and membranes are depicted in Fig. 2. Four SEM images of prepared membranes have been indicated in Fig. 3. The effect of SiO2 nanoparticle loading on permeability in various feed gas pressure is shown in Fig. 4. Table 1 is related to the kinetic diameter and condensability of the studied gases. The selectivity of CH4, N2, and O2 gases is depicted in Table 2. The raw data for this work are presented in the Supplementary section.

2. Experimental design, materials, and methods

2.1. Membrane fabrication

The polymer membranes were prepared by solution casting method [1]. To prepare the PEBA/PEI/SiO2 nanocomposite membranes with 0, 5, 10 and 20 wt% of SiO2 nanoparticles, first SiO2 nanoparticles...
were dispersed in di-methyl-formamide by the ultrasonic process for 60 min at 50 °C. A 6% w/v of polymer solution was fabricated by adding Pebax 1657 and PEI (4:1 wt ratio) to the solution at 120 °C. To form a homogeneous solution, the mixing was continued for 24 h. Afterward, the solution was poured on Teflon mold at 70 °C. Then, the solvent completely removed from the membranes by vacuum drying in the ambient temperature for 4 h. Finally, the thickness of the prepared membranes was measured by a micrometer. A schematic for the membrane fabrication is illustrated in Fig. 5.

2.2. Gas permeability and selectivity measurement

The gas permeability was measured using the time lag method [2,3]. The gas flow rate was obtained using a constant pressure method. In this method, by connecting the downstream space to the water column, and by measuring the changes of water column’s height over time, the gas flow rate passing through the membrane is obtained. The gas flow rate can achieve from the slope of the linear part of the water column height as a function of time. Then, the permeability coefficient can be calculated using the following equation [4]:

![Fig. 1. XRD pattern of fabricated membranes.](image1.png)

![Fig. 2. FTIR spectrum of prepared membranes.](image2.png)
Fig. 3. SEM images of fabricated membranes, (A) Pebax/PEI, (B) Pebax/PEI/SiO$_2$-5%, (C) Pebax/PEI/SiO$_2$-10% and (D) Pebax/PEI/SiO$_2$-20%.

Fig. 4. The effect of nanoparticle loading on gases permeability in various feed gas pressure, (A) N_2, (B) O_2, (C) CH_4, and (D) CO_2.
\[
\frac{Q \cdot l}{(P_1 - P_2) \cdot A}
\]

where \(P\) is the gas permeability coefficient in the polymer (1 Barrer = \(cm^3\) (STP).cm/cm².S.cmHg), \(Q\) is the gas flow rate (\(cm^3/s\)), \(l\) is the membrane thickness (\(cm\)), \(A\) is the cross-section area of membrane (\(cm^2\)), \(P_1\) and \(P_2\) are the gas pressure in upstream and downstream, respectively. The membrane ideal selectivity respect to a given gas can calculate through the following equation [5]:

\[
\alpha = \frac{P_i}{P_j}
\]

where \(\alpha\) is the membrane ideal selectivity, \(P_i\) and \(P_j\) are the gas permeability coefficient of gas \((i)\) and \((j)\), respectively.

Acknowledgment

We thank the Jundi Shapur University of Technology, Iran for their assistance and technical support to conduct this study (through Grant No.: JUST-203).
Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104800.

References

[1] H. Abdul Mannan, H. Mukhtar, M. Shima Shaharun, M. Roslee Othman, T. Murugesan, Polysulfone/poly(ether sulfone) blended membranes for CO2 separation, J. Appl. Polym. Sci. 133 (2016) 1–9, https://doi.org/10.1002/app.42946.
[2] A.S.L. Gouveia, L.C. Tomé, I.M. Marrucho, Towards the potential of cyano and amino acid-based ionic liquid mixtures for facilitated CO2 transport membranes, J. Membr. Sci. 510 (2016) 174–181, https://doi.org/10.1016/j.memsci.2016.03.008.
[3] L.C. Tomé, A.S.L. Gouveia, M.A. Ab Rani, P.D. Lickiss, T. Welton, I.M. Marrucho, Study on gas permeation and CO2 separation through ionic liquid-based membranes with siloxane-functionalized cations, Ind. Eng. Chem. Res. 56 (2017) 2229–2239, https://doi.org/10.1021/acs.iecr.6b04661.
[4] S.C. Fraga, M. Monteleone, M. Lanč, E. Esposito, A. Fuoco, L. Giorno, K. Pilnáček, K. Friess, M. Carta, N.B. McKeown, P. Izák, Z. Petrusová, J.G. Crespo, C. Brazinha, J.C. Jansen, A Novel Time Lag Method for the Analysis of Mixed Gas Diffusion in Polymeric Membranes by On-Line Mass Spectrometry: Method Development and Validation, Elsevier B.V., 2018, https://doi.org/10.1016/j.memsci.2018.04.029.
[5] Q. Ge, L. Ding, T. Wu, G. Xu, F. Yang, M. Xiang, Effect of surfactant on morphology and pore size of polysulfone membrane, J. Polym. Res. 25 (2018), https://doi.org/10.1007/s10965-017-1418-5.