Bounding the Degree of Belyi Polynomials

Jose Rodriguez

November 12, 2011

Abstract

Belyi’s theorem states that a Riemann surface X, as an algebraic curve, is defined over \mathbb{Q} if and only if there exists a holomorphic function B taking X to $\mathbb{P}^1 \mathbb{C}$ with at most three critical values $\{0, 1, \infty\}$. By restricting to the case where $X = \mathbb{P}^1 \mathbb{C}$ and our holomorphic functions are Belyi polynomials, we define a Belyi height of an algebraic number, $H(\lambda)$, to be the minimal degree of Belyi polynomials with $B(\lambda) \in \{0, 1\}$. Using the combinatorics of Newton polygons, we prove for non-zero λ with non-zero p-adic valuation, the Belyi height of λ is greater than or equal to p. We also give examples of algebraic numbers which show our bounds are sharp.

1 Introduction

In this paper we fix an algebraic closure of p-adic numbers and denote it as \mathbb{Q}_p. We denote an embedded algebraic closure of the rational numbers in \mathbb{Q}_p as $\overline{\mathbb{Q}}_p$. A polynomial $B(x) \in \mathbb{Q}_p[x]$ is said to have a critical point at x_i if its derivative $B'(x)$ vanishes at x_i. We say $B(x)$ has a critical value of $B(x_i)$ when x_i is a critical point. A polynomial is said to be a general Belyi polynomial if its critical values are contained in $\{0, 1\}$. Since composing a general Belyi polynomial with any linear factor $(\gamma x - \alpha)$ yields another general Belyi polynomial, we normalize our set of polynomials by requiring $B(0), B(1) \in \{0, 1\}$.

Definition 1. A polynomial $B(x) \in \mathbb{Q}_p[x]$ is said to be a normalized Belyi polynomial or Belyi polynomial if $B(0), B(1) \in \{0, 1\}$ and $\{B(x_i) : B'(x_i) = 0\} \subset \{0, 1\}$.

Equivalently we note that $B(x)$ is a Belyi polynomial if $B(0), B(1) \in \{0, 1\}$, and

$$B'(x) | B(x)(1 - B(x)).$$

We call these the two Belyi conditions. With these conditions, a Belyi polynomial composed with a linear factor $(\gamma x - \alpha)$ is a Belyi polynomial if and only if $B(\gamma), B(\gamma - \alpha) \in \{0, 1\}$. For a fixed Belyi polynomial there exist finitely many linear factors we may compose with and yield a Belyi polynomial. This finiteness condition is essential to define our Belyi height with the property that there exist finitely many Belyi polynomials of a given degree.

Example 1. The simplest examples of Belyi polynomials are $f(x) = x^n, f(x) = 1 - x$, and

$$B_{a,b}(x) = b^{a-b}(b-a)^{-a} x^a (1-x)^{b-a}, \text{ where } a,b \in \mathbb{N}, \text{ and } (b-a) \geq 0.$$

The Belyi polynomial $B_{a,b}(x)$ maps $\{\frac{a}{b}, 0, 1\}$ to $\{0, 1\}$. When we compose $B_{a,b}(x)$ with certain polynomials $C(x)$ the result, $B_{a,b}(C(x))$, as fewer critical values than $C(x)$. Specifically, when $C(x)$ satisfies the first Belyi condition and has a critical value of $\frac{a}{b}$, composing with $B_{a,b}$ reduces the number of critical values.
Example 2. The Chebyshev polynomials of the first kind, $T_n(x)$, $n \geq 1$,

$$T_0(x) = 1, \quad T_1(x) = x, \quad T_{n+1}(x) = 2x \cdot T_n(x) - T_{n-1}(x)$$

have critical values contained in $\{-1, 1\}$ and $T_n(1), T_n(-1) \in \{-1, 1\}$. Therefore $\frac{1}{2}(T_n(x) + 1)$ are general Belyi polynomials and $\frac{1}{2}(T_n(2x - 1)) + 1$ are Belyi polynomials.

This example is studied in detail in [11] where the normalization of Belyi polynomials is done with respect to $\{-1, 1\}$ instead of $\{0, 1\}$.

Example 3. The composition of any two Belyi polynomials is a Belyi polynomial.

This example is a simple application of the chain rule and gives the set of Belyi polynomials a monoid structure under composition with identity, x. This structure has been used to study the absolute Galois group in number theory [13], [4] and dynamical systems [10].

Belyi polynomials belong to the larger set of Belyi functions. A Belyi function f maps a Riemann surface X to the Riemann sphere $P^1\mathbb{C}$ with critical values contained in $\{0, 1, \infty\}$. Grothendieck was drawn into this subject because of Belyi’s theorem [3], which states a Riemann surface X is defined over $\overline{\mathbb{Q}}$ if and only if there exist a Belyi function mapping X to $P^1\mathbb{C}$. This marked the beginning of his program on dessin d’enfants [11], which is directly related to Belyi functions due to the well-known categorical equivalence between the two.

In the case where $X = P^1\mathbb{C}$ we normalize Belyi functions by requiring the set $\{0, 1, \infty\}$ be mapped to $\{0, 1, \infty\}$. As a corollary [1] of the Riemann Existence Theorem [9] there exist finitely many normalized Belyi functions that map $P^1\mathbb{C}$ to $P^1\mathbb{C}$ of degree at most n, where degree is the cardinality of the pre-image of a point in $P^1\mathbb{C} \setminus \{0, 1, \infty\}$. This means there are finitely many normalized Belyi polynomials of a given degree, hence finitely many algebraic numbers mapped to zero or one by normalized Belyi polynomials of degree d. The question we address in this paper is the following: for fixed $\lambda \in \overline{\mathbb{Q}}$, what is the minimal degree of normalized Belyi polynomials that map λ to zero or one? We call this minimum the Belyi height of a number and denote it as $\mathcal{H}(\lambda)$. In [7], an upper bound of $\mathcal{H}(\lambda)$ is given, in addition to bounds for the case when X is an elliptic curve. In this paper we will prove a sharp lower bound on the degree. Our results follow directly from [8] and [2]. As in Beckman’s paper our result says bad reduction implies wild ramification. What this paper contributes is a proof which uses elementary combinatorial techniques and Newton polygons. We will prove that Belyi polynomials with degree less than p and $B(0) = 0$ have Newton polynomials with respect to p (for the remainder of the paper all Newton polynomials will be with respect to p) contained in the Newton polygon of $B(x) - 1$ [Theorem 1]. We then prove the Newton polygon of $B(x) - 1$ is contained in a single line segment [Theorem 2]. Using a classical lemma [Lemma 2] relating the Newton polygon of a polynomial to the p-adic valuation of its roots we prove:

Main Result (Theorem 3). The Belyi height of λ, $\mathcal{H}(\lambda)$, is greater than or equal to p for $\lambda \neq 0$ in $\overline{\mathbb{Q}}$ with non-zero p-adic valuation.

We remark that it is nontrivial to show that such a height is well defined, that is, for all algebraic numbers over \mathbb{Q} there exists a Belyi polynomial, which maps it to either zero or one. Given $\lambda \in \overline{\mathbb{Q}}$ Belyi provided a way to construct [11] a Belyi function, which maps $\{0, 1, \lambda, \infty\}$ to $\{0, 1, \infty\}$ by first constructing a polynomial $g_\lambda(x) \in \mathbb{Q}[x]$ having rational critical values, $g_\lambda(\lambda) \in \mathbb{Q}$, and $\{0, 1\}$ mapped to $\{0, 1\}$. We compose $g_\lambda(x)$ with a linear factor $l_1(x)$, preserving the number of critical values, so that $l_1 \circ g_\lambda(x)$ has a rational critical value $\frac{\lambda}{n}$ between zero and one. We compose $l_1(x) \circ g_\lambda(x)$ with $B_{a_1, b_1}(x)$ so $B_{a_1, b_1} \circ l_1 \circ g_\lambda(x)$ has fewer critical values than $g_\lambda(x)$ as mentioned in Example 1. Repeating this finitely many times yields a Belyi polynomial $B_{a_k, b_k} \circ l_k \circ \cdots \circ B_{a_1, b_1} \circ l_1 \circ g_\lambda(x)$ that maps λ to a rational number $\frac{a_{k+1}}{b_{k+1}}$. We do a final iteration so that λ is mapped to zero or one. While this algorithm gives us a way of constructing Belyi polynomials it does not provide us a way of constructing all of them.
2 Newton Polygon Factorization

We begin this section with an introduction to p-adic numbers, Newton polygons, and convex sets to state Lemma 1 which allows us to classify the roots of a polynomial using these objects (see [6], [12], [5] for a thorough introduction). The p-adic metric on \mathbb{Q} is defined as:

$$|| \cdot ||_p : \mathbb{Q} \rightarrow \mathbb{R} \quad \xrightarrow{\text{p}} p^{-k}$$

where $p \nmid ab \neq 0$ and $|0|_p \equiv 0$. The completion of \mathbb{Q} under this metric will be denoted as \mathbb{Q}_p. The algebraic closure of \mathbb{Q}_p is denoted as $\overline{\mathbb{Q}}_p$ and has a p-adic absolute value. Thus it makes sense to talk of the p-adic absolute value of any algebraic number over \mathbb{Q}. Frequently, it will be easier to state results using the p-adic valuation

$$\nu : \overline{\mathbb{Q}}_p \rightarrow \mathbb{R} \cup \{\infty\}$$

where $\nu_p(0) \equiv \infty$. The p-adic valuation has properties induced by the p-adic metric:

1. $\nu_p(\lambda \lambda_2) = \nu_p(\lambda_1) + \nu_p(\lambda_2)$
2. $\nu_p(\lambda) = \infty$ if and only if $\lambda = 0$
3. $\nu_p(\lambda_1 + \lambda_2) \geq \min\{\nu_p(\lambda_1), \nu_p(\lambda_2)\}$.

The last property is induced because the p-adic metric is non-Archimedian meaning

$$|a + b|_p \leq \max\{|a|_p, |b|_p\}.$$

Define the valuation ring with respect to p as $\mathcal{O}_p = \{\lambda \in \overline{\mathbb{Q}}_p : \nu_p(\lambda) \geq 0\}$, the elements of the field $\overline{\mathbb{Q}}_p$ with non-negative valuation. This ring has the maximal ideal $m_p = \{\lambda \in \overline{\mathbb{Q}}_p : \nu_p(\lambda) > 0\}$, the elements of $\overline{\mathbb{Q}}_p$ with positive valuation. We denote the reduction map as $\pi : \mathcal{O}_p[x] \rightarrow \mathbb{F}[x]$ where \mathbb{F} is the field \mathcal{O}_p/m_p.

The convex hull of a set of points is the intersection of all convex sets containing the points. When we find the convex hull of finitely many points $\{(x_0, y_0), \ldots, (x_n, y_n)\} \subset \mathbb{R}^2$, the result is a point, line segment, or convex polygon described algebraically as

$$\{\left(\sum_{i=0}^{n} c_i x_i, \sum_{i=0}^{n} c_i y_i\right) \in \mathbb{R}^2 : \sum_{i=0}^{n} c_i = 1\}$$

where $c_i \geq 0$ for all i. Given a polynomial $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ over \mathbb{Q}, then $\text{Conv}_p(f)$ denotes the convex hull of

$$\{(i, \nu_p(a_i)) \in \mathbb{R}^2 : a_i \neq 0\}.$$

Our notation will be that $[v_i, v_j]$ denotes the line segment connecting the points v_i and v_j. By convention $[v_i, v_i]$ denotes the point v_i. When $\text{Conv}_p(f)$ is a polygon we label a subset of the polygon’s vertices counter-clockwise from the left-most, v_0, ending at the right-most, v_m. The lower boundary of $\text{Conv}_p(f)$ is the union of the m line segments connecting v_{i-1} to v_i, denoted as

$$\bigcup_{i=1}^{m} [v_{i-1}, v_i].$$

When $\text{Conv}_p(f)$ is a line segment or point, the lower boundary of $\text{Conv}_p(f)$ is $[v_0, v_1]$ or $[v_0, v_0]$ respectively.

Definition 2. The Newton polygon of a polynomial $f(x) \in \mathbb{Q}[x]$ with respect to p, is the lower
The Newton polygon of a polynomial is a single vertex precisely when \(f(x) \) is a monomial. When \(f(0) = 0 \) the Newton polygons of \(f(x) \) and \(f(x) - 1 \) are closely related.

Lemma 3. Suppose \(f(0) = 0 \) and \(\text{New}_p(f(x)) = [v_0, v_1] \cup \ldots \cup [v_{m-1}, v_m] \).

1. \(\text{New}_p(f(x) - 1) = [v_{-1}, v_j] \cup [v_j, v_{j+1}] \cup \ldots \cup [v_{m-1}, v_m] \) for some \(j, 0 \leq j \leq m \), and \(v_{-1} \) denotes the origin.
2. Let \(s_i \) denote the slope of \([v_{i-1}, v_i]\) and \(s_0 \) denote the slope of \([v_{-1}, v_j]\). Then
 \[
 s_1 < \ldots < s_j < s_0 \leq s_{j+1} < \ldots < s_m.
 \]
3. If the degree of \(f(x) \) is less than \(p \), then \(\text{New}_p(f(x)) = \text{New}_p(x \cdot f'(x)) \).

Proof. This follows directly from properties of convex sets and the definition of Newton polygon.

When \(f(0) = 0 \) and \(v_j \) denotes the left-most point of \(\text{New}_p(f(x)) \cap \text{New}_p(f(x) - 1) \), combinatorially, the first two parts of the lemma say: the points in \(\text{New}_p(f(x)) \cup \text{New}_p(f(x) - 1) \) to right of \(v_j \) are in \(\text{New}_p(f(x)) \cap \text{New}_p(f(x) - 1) \); the \(\text{New}_p(f(x) - 1) \) has only one segment, \([v_{-1}, v_j]\), to the left of \(v_j \); and the slope of \([v_{-1}, v_j]\) is bounded by the slopes of line segments of \(\text{New}_p(f(x)) \). The third part combinatorial means that the \(\text{New}_p(f(x)) \) is \(\text{New}_p(f(x)) \) but shifted to left one unit.

We will prove Theorem 1 and Theorem 2 by taking full advantage of the following classical lemma:

Lemma 4. Let \(f(x) \) be a polynomial over \(\overline{\mathbb{Q}} \) such that \(\text{New}_p(f(x)) = [v_0, v_1] \cup \ldots \cup [v_{m-1}, v_m] \). Let \(s_i \) equal the slope of \([v_{i-1}, v_i]\), and \(d_i \) equal the length of the projection of \([v_{i-1}, v_i]\) to the \(x \)-axis. Then the polynomial \(f(x) \) may be written as

\[
 f(x) = a_n x^{d_0} f_1(x) \cdots f_m(x)
\]

where \(f_i(x) \) is monic with \(d_i \) roots of valuation \(-s_i \), counting multiplicity.

Proof. We refer to [12], p.74.

We call this factorization of \(f(x) \) its **Newton polygon factorization** with respect to \(p \).

Example 4. Setting \(p \) equal to five, the Newton polygons of three polynomials, \(h_1(x), h_2(x), h_3(x) \), are shown in bold. The thin line segment is the left-most line segment of \(\text{New}_p(h_1(x) - 1) \).

The left is an example where \(\text{New}(f(x)) \not\subset \text{New}(f(x) - 1) \). The center is an example where \(\text{New}(f(x) - 1) \) is not contained in a line segment. The right is an example of a Newton polygon of a Belyi polynomial.
\[h_1 = 5^4 \cdot x \left(x - \frac{1}{3} \right)^2 (x - 5), \quad h_2 = 5^7 x^2 \left(x - \frac{1}{3} \right) \left(x - \frac{1}{17} \right), \quad h_3 = \frac{5^5}{3^4} x^4 (1 - x), \]

\[h_1 = 5^4 x^4 - 3^3 \cdot 5^3 x^3 + 51 \cdot 5^2 x^2 - 5^2 x, \quad h_2 = 5^7 x^4 - 6 \cdot 5^4 x^3 + 5^2 x^2, \quad h_3 = -\frac{5^5}{3^4} x^5 + \frac{5^5}{3^4} x^4 \]

3 Newton Polygons of Belyi Polynomials

We prove in the case where \(B(x) \) is a Belyi polynomial of degree less than \(p \) with zero as a root that \(\text{New}_p(B(x)) \subset \text{New}_p(B(x) - 1) \). We then prove \(\text{New}_p(B(x) - 1) \) is contained in a single line segment. Using these two results we are able to give a lower bound on the Belyi height.

Theorem 1. If \(B(x) \in \overline{\mathbb{Q}}[x] \) is a Belyi polynomial of degree less than \(p \) such that \(B(0) = 0 \), then \(\text{New}_p(B(x)) \subset \text{New}_p(B(x) - 1) \).

Proof. Let \(B(x) = \sum a_k x^k \). If \(B(x) \) is a monomial the result is trivial so we consider the case where \(\text{New}_p(B(x)) = [v_0, v_1] \cup \ldots \cup [v_{m-1}, v_m] \), \(m > 0 \). Using the same notation as Lemma 3, we may assume \(\text{New}_p(B(x) - 1) = [v_{-1}, v_j] \cup [v_j, v_{j+1}] \cup \ldots \cup [v_{m-1}, v_m] \) and

\[s_1 < \ldots < s_j < s_0 \leq s_{j+1} < \ldots < s_m. \]

Our goal is to show \(v_j = v_0 \) and the result follows. Lemma 4 allows us to write

\[B(x) = a_n x^{d_0} f_1(x) \cdots f_m(x), \]

\[B(x) - 1 = a_n g_0(x) g_{j+1}(x) \cdots g_m(x) \]

where every root of the monic polynomials \(f_i \) and \(g_i \), \(i \neq 0 \), has valuation \(-s_i \). In addition \(\deg(g_i) = \deg(f_i) \) when \(i > j \), while each root of \(g_0 \) has valuation \(-s_0 \).

Since \(\deg(B(x)) < p \) and \(B(0) = 0 \) then \(\nu_p(a_i) = \nu_p(i \cdot a_i) \) for every \(a_i \neq 0 \). Therefore \(\text{Conv}_p(B(x)) = \text{Conv}_p(x B'(x)) \) and \(\text{New}_p(B(x)) = \text{New}_p(x B'(x)) \). Hence \(B'(x) \) may be written as

\[B'(x) = \deg(B) a_n x^{d_0-1} h_1(x) \cdots h_m(x) \]

where \(\deg(h_i) = \deg(f_i) \) and \(h_i \) is monic with roots of valuation \(-s_i \). By the Belyi conditions,

\[\deg(B) a_n x^{d_0-1} h_1(x) \cdots h_m(x) | a_n x^{d_0} f_1(x) \cdots f_m(x) \cdot a_n g_0(x) g_{j+1}(x) \cdots g_m(x). \]

Therefore \(h_i(x) | f_j(x) \) when \(i \leq j \). Since the degrees of the monic polynomials are also equal it follows \(f_1 = h_1 \) when \(j \geq 1 \). Taking the derivative of \(B(x) \) and substituting \(f_1(x) \) for \(h_1(x) \) we have

\[\deg(B) a_n x^{d_0-1} f_1(x) h_2(x) \cdots h_m(x) = f'_1(x)(a_n x^{d_0} f_2(x) \cdots f_m(x)) + f_1(x)(a_n x^{d_0} f_2(x) \cdots f_m(x))' \]

and so

\[f_1(x) | f'_1(x)(a_n x^{d_0} f_2(x) \cdots f_m(x)). \]

Because \(f_1(x) \) and \(f_i(x) \) share no common roots when \(i \neq 1 \), \(f_1(x) \) is not divisible by \(f_i(x) \), yielding a contradiction when \(j \geq 1 \). Hence \(v_0 = v_j \).

Next we show that if \(B(x) \) is a Belyi polynomial such that \(B(0) = 0 \), then \(\text{New}(B(x) - 1) \) must be a line segment, and in preparation prove two lemmas.

Lemma 5. Suppose \(f(x) \) is a nonzero polynomial over an algebraically closed field of characteristic zero. If \(f'(x) \) divides \(f(x)^2 \) and \(f(0) = 0 \) then \(f(x) = a_n x^d \).
Proof. Suppose \(f(x) = a_n \prod_{i=1}^{m} (x - \alpha_i)^{d_i} \) where \(\alpha_i \) are distinct. Then

\[
f'(x) = a_n \prod_{i=1}^{m} (x - \alpha_i)^{d_i - 1} g(x), \quad \text{where } g(x) = \sum_{i=1}^{m} d_i (x - \alpha_1) ... (x - \alpha_i) ... (x - \alpha_m)
\]

and \((x - \alpha_i)\) denotes omitting a term. Note that \(\deg(g(x)) = m - 1 \) and the coefficient of the leading term is \(\deg(f(x)) \). For each root \(\alpha_j \) of \(f(x) \), \(g(\alpha_j) \neq 0 \). But \(g(x) \) also divides \(f(x)^2 \) so \(g(x) \) must have degree zero and \(m = 1 \).

The same proof holds in characteristic \(p \) if every \(d_i \) is not divisible by \(p \) and \(p \nmid \deg(f(x)) \), giving us:

Corollary 6. Suppose \(f(x) \) is a nonzero polynomial over an algebraically closed field of arbitrary characteristic. If \(f'(x) \) divides \(f(x)^2 \) and \(f(0) = 0 \) then \(f(x) = a_n x^d \) or \(\deg(f(x)) \geq p \).

Lemma 7. Given \(f(x) \in \mathbb{Q} \) of degree \(n \), \(f(0) = 0 \), \(\text{New}_p(f(x)) = [v_0, v_1] \cup ... \cup [v_{m-1}, v_m] \), and \(m > 0 \), then there exists \(\gamma \) such that \(R(x) = \frac{1}{a_n \gamma^n} f(\gamma x) \) with \(\text{New}_p(R(x)) = [w_0, w_1] \cup ... \cup [w_{m-1}, w_m] \) has \([w_{m-1}, w_m]\) contained in the \(x \)-axis.

Proof. The polynomial \(f(x) \) has Newton factorization \(f = a_n f_1(x)...f_m(x) \) with the roots of \(f_m(x) \) of least valuation. Let \(\gamma \) be a root of \(f_m(x) \). For \(R(x) := \frac{1}{a_n \gamma^n} f(\gamma x) \) the roots are of the form \(\frac{\gamma}{\gamma_i} \) where \(\gamma_i \) is a root of \(f_i(x) \). Therefore the valuation of a root of \(R(x) \) equals \(\nu_p(\gamma_i) - \nu_p(\gamma) \geq 0 \). It follows the slopes of \([w_{i-1}, w_i]\) of \(\text{New}_p(R(x)) \) are less than zero if \(i \neq m \) and equal to zero when \(i = m \). Since \(R(x) \) is monic and \([w_{m-1}, w_m]\) has slope zero then \(w_{m-1} \) and \(w_m \) are in the \(x \)-axis.

Theorem 2. If \(B(x) \) is a Belyi polynomial of degree less than \(p \) with \(B(0) = 0 \), then \(\text{New}_p(B - 1) \) is a line segment.

Proof. If \(B(x) \) is a monomial the result is trivial. Now suppose \(B(x) = a_1 x + a_2 x^2 + ... + a_n x^n \) with Newton factorization \(a_n x^d_1 f_1(x)...f_m(x) \). By Lemma 3 using the already defined notation from Theorem 1 we see for \(m \geq 1 \)

\[
\text{New}_p(B(x)) = [v_0, v_1] \cup ... \cup [v_{m-1}, v_m],
\]

\[
\text{New}(B(x) - 1) = [v_1, v_2] \cup ... \cup [v_{m-1}, v_m].
\]

By Theorem 1, \(j = 0 \) so the slopes satisfy

\[
s_0 \leq s_1 < s_2 < ... < s_m.
\]

To prove the theorem we must show that \(m = 1 \) and \(s_0 = s_1 \). Let \(\gamma \) be a root of \(B(x) \) with least valuation. This is a root of \(f_m(x) \) and \(\nu_p(\gamma) = -s_m \). Let \(R(x) := \frac{1}{a_n \gamma^n} B(\gamma x) \). Then the Newton factorization of \(R(x) \) is

\[
R(x) = \frac{(\gamma x)^{d_0}}{\gamma^{d_0}} f_1(\gamma x) \frac{f_m(\gamma x)}{\gamma^{d_m}}
\]

By Lemma 7

\[
\text{New}_p(R(x)) = [w_0, w_1] \cup ... \cup [w_{m-1}, w_m]
\]

has \([w_{m-1}, w_m]\) contained in the \(x \)-axis. So \(R(x) \) has \(d_m \) roots of valuation zero. Since the slope of each \([w_{i-1}, w_i]\), is non-positive it follows \(\text{New}_p(R(x)) \) is contained in the upper half plane, hence \(R(x) \) is in \(\mathcal{O}_p[x] \) as is each of its factors.

As in Theorem 1, \(B(x) - 1 \) has a Newton factorization

\[
B(x) - 1 = a_n g_0(x) g_1(x) ... g_m(x)
\]
where \(\text{deg } g_i = d_i \) and \(g_i \) has roots of valuation \(-s_i\). So

\[
R(x) - \frac{1}{a_n \gamma^n} = \frac{1}{a_n \gamma^n} (B(\gamma x) - 1) = \frac{g_0(\gamma x)}{\gamma^{d_0}} g_1(\gamma x) \cdots \frac{g_m(\gamma x)}{\gamma^{d_m}} \in \mathcal{O}_p[x]
\]

and \(R(x) - \frac{1}{a_n \gamma^n} \) also has \(d_i \) roots of valuation \((s_i - s_m)\).

Since \(R(x) - \frac{1}{a_n \gamma^n} \) is monic, the product of its roots is \(\frac{(-1)^{n+1}}{a_n \gamma^n} \in \mathcal{O}_p \), and

\[
0 \leq \nu_p\left(\frac{(-1)^{n+1}}{a_n \gamma^n}\right) = \nu_p\left(\frac{-1}{a_n \gamma^n}\right) = -d_0(s_0 - s_m) - d_1(s_1 - s_m) - \cdots - d_m(s_m - s_m).
\]

With this, we see \(\nu_p\left(\frac{-1}{a_n \gamma^n}\right) = 0 \) if and only if \((s_i - s_m) = 0 \). So in the case where \(\nu_p\left(\frac{-1}{a_n \gamma^n}\right) = 0 \) it follows \(m \) is necessarily one and \(s_0 = s_1 \).

We conclude the proof by using the reduction map and Corollary 6 to show that the remaining case where \(\nu_p\left(\frac{-1}{a_n \gamma^n}\right) > 0 \) leads to a contradiction. Since \(\deg R(x) < p \) and \(R(0) = 0 \) then \(\text{New}_p(R(x)) = \text{New}_p(x \cdot R'(x)) \). So \(R'(x) \) also has leading coefficient and \(d_m \) roots of valuation zero. In particular \(R(x), R(x) - \frac{1}{a_n \gamma^n}, R'(x) \), and each of their factors are in \(\mathcal{O}_p[x] \) and \(\pi(R(x)), \pi(R(x) - \frac{1}{a_n \gamma^n}), \pi(R'(x)) \) are nonzero. The Belyi condition \(B(x) \mid B(x)B(x-1) \) imply \(R'(x) \mid R(x)R(x) - \frac{1}{a_n \gamma^n} \). So \(\pi(R'(x)) \mid \pi(R(x)\pi(R(x) - \frac{1}{a_n \gamma^n}) \). But when \(\nu_p\left(\frac{-1}{a_n \gamma^n}\right) > 0 \), \(\pi(R(x)) = \pi(R(x) - \frac{1}{a_n \gamma^n}) \). We can then apply Corollary 7 which says \(\pi(R(x)) \) has no nonzero roots. But this contradicts the fact that \(R(x) \) has \(d_m \) roots of valuation zero.

Theorem 3. The Belyi height of \(\lambda, \mathcal{H}(\lambda) \), is greater than or equal to \(p \) for \(\lambda \neq 0 \) in \(\overline{\mathbb{Q}} \) with non-zero \(p \)-adic valuation.

Proof. If \(B(0) = 1 \), then consider the Belyi polynomial \(1 - B(x) \), so without loss of generality we may assume \(B(0) = 0 \). If \(\text{deg}(B(x)) < p \), then by Theorem 2 \(\text{New}(B(x)) \) and \(\text{New}(B(x) - 1) \) imply \(R'(x) \mid R(x)R(x) - \frac{1}{a_n \gamma^n} \). So \(\pi(R'(x)) \mid \pi(R(x))\pi(R(x) - \frac{1}{a_n \gamma^n}) \). But when \(\nu_p\left(\frac{-1}{a_n \gamma^n}\right) > 0 \), \(\pi(R(x)) = \pi(R(x) - \frac{1}{a_n \gamma^n}) \). We can then apply Corollary 7 which says \(\pi(R(x)) \) has no nonzero roots. But this contradicts the fact that \(R(x) \) has \(d_m \) roots of valuation zero.

With this theorem, we know for every Belyi polynomial with rational number \(\frac{a}{b} \) in lowest terms as a root will have degree greater than or equal to every prime \(p \) that divides \(ab \). The well-known Belyi polynomial from Example 1 \(B_{1,1}(x) \) has as its critical points \(\{\frac{1}{x}, 0, 1\} \). Therefore \(B_{1,1}(\frac{1}{x}) \) is a normalized Belyi polynomial mapping \(p \) to zero showing our bound is sharp. However, in general, it is not true \(\mathcal{H}(a) \geq a \), for \(a \in \mathbb{Z} \), as the following example shows.

Example 5. If we consider the Belyi polynomial \(B(x) = -\frac{1}{4}(x-1)^2(x-4) \), then \(B(4) = 0 \) and \(\mathcal{H}(4) \leq 3 \). By Theorem 3 \(\mathcal{H}(4) \geq 2 \). A direct calculation by solving a quadratic shows that \(\mathcal{H}(4) \neq 2 \), so it follows \(\mathcal{H}(4) = 3 \).

We end with a few open questions. First, how can one express \(\mathcal{H} : \overline{\mathbb{Q}} \to \mathbb{R}^+ \) in a closed form? By Example 1 we know this is not a simple function such as \(\mathcal{H}(a) = a \) when we restrict \(\mathcal{H} \) to the natural numbers. Second, when is \(\mathcal{H}(ab) \geq \mathcal{H}(a) + \mathcal{H}(b) \)? By Theorem 3 we know \(\mathcal{H}(pq) \geq \max\{\mathcal{H}(p), \mathcal{H}(q)\} \) for primes \(p \) and \(q \). Third, we ask for fixed \(h \in \mathbb{R}^+ \) how many distinct \(\lambda \) satisfy the inequality \(\mathcal{H}(\lambda) \leq h \) in \(\mathbb{R}^+ \)? In addition, can we adjust the definition of Belyi height so that the number of such \(\lambda \) grows on the order of a polynomial as we vary \(h \). Finally, does there exist a unique Belyi polynomial of degree equal to \(\mathcal{H}(\lambda) \) with \(\lambda \) as one of its roots? If not can we classify such polynomials, and do they have the same Newton polygon?

I would like to especially thank Eric Katz for supervising this research and the Ronald E. McNair Postbaccalaureate Achievement Program for funding this project.
References

[1] Ingrid Bauer, Fabrizio Catanese, and Fritz Grunewald. Chebycheff and Belyi polynomials, dessins d’enfants, Beauville surfaces and group theory. *Mediterr. J. Math.*, 3(2):121–146, 2006.

[2] Sybilla Beckmann. Ramified primes in the field of moduli of branched coverings of curves. *J. Algebra*, 125(1):236–255, 1989.

[3] G. V. Bely˘ı. On extensions of the maximal cyclotomic field having a given classical Galois group. *J. Reine Angew. Math.*, 341:147–156, 1983.

[4] Jordan S. Ellenberg. Galois invariants of dessins d’enfants. In *Arithmetic fundamental groups and noncommutative algebra* (Berkeley, CA, 1999), volume 70 of *Proc. Sympos. Pure Math.*, pages 27–42. Amer. Math. Soc., Providence, RI, 2002.

[5] Antonio J. Engler and Alexander Prestel. *Valued fields*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.

[6] Fernando Q. Gouvêa. *p-adic numbers: An introduction*. Universitext. Springer-Verlag, Berlin, second edition, 1997.

[7] Lily S. Khadjavi. An effective version of Belyi’s theorem. *J. Number Theory*, 96(1):22–47, 2002.

[8] Zapponi Leaonardo. On the degree of a belyi number field. *Arxiv*, 2008.

[9] Rick Miranda. *Algebraic curves and Riemann surfaces*, volume 5 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 1995.

[10] Kevin M. Pilgrim. Dessins d’enfants and Hubbard trees. *Ann. Sci. École Norm. Sup. (4)*, 33(5):671–693, 2000.

[11] Leila Schneps, editor. *The Grothendieck theory of dessins d’enfants*, volume 200 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Cambridge, 1994. Papers from the Conference on Dessins d’Enfant held in Luminy, April 19–24, 1993.

[12] Edwin Weiss. *Algebraic number theory*. Dover Publications Inc., Mineola, NY, 1998. Reprint of the 1963 original.

[13] Melanie Matchett Wood. Belyi-extending maps and the Galois action on dessins d’enfants. *Publ. Res. Inst. Math. Sci.*, 42(3):721–737, 2006.