A LEFT TOPOLOGICAL MONOID ASSOCIATED TO A TOPOLOGICAL GROUPOID

HABIB AMIRI

Department of Mathematics, Faculty of Sciences, Zanjan University, Zanjan, Iran
Email: h.amiri@znu.ac.ir

Abstract. This paper presents a functor S from the category of groupoids to the category of semigroups. Indeed, a monoid S_G with a right zero element is related to a topological groupoid G. The monoid S_G is a subset of $C(G, G)$, the set of all continuous functions from G to G, and with the compact-open topology inherited from $C(G, G)$ is a left topological monoid. The group of units of S_G, which is denoted by $H(1)$, is isomorphic to a subgroup of the group of all bijection maps from G to G under composition of functions. Moreover, it is proved that $H(1)$ is embedded in the group of all invertible linear operators on $C(G)$, the set of all complex continuous functions on G.

2010 Mathematics Subject Classification: 20D60, 18B40

Keywords: Topological Groupoid; Semigroup

1. Introduction

If G is a topological group, then each element x of G defines two translation operators L_x and R_x on $C(G)$, the set of all complex valued continuous functions on G, by

$$L_x f(y) = f(x^{-1}y), \ R_x f(y) = f(yx).$$

The maps $x \mapsto L_x$ and $x \mapsto R_x$ are two monomorphisms, injective homomorphism, from G into $L(C(G))$, the semigroup of all linear operators on $C(G)$ under composition of operators. In the case where G is a groupoid, since $x \in G$ is not composable with each element, it is not possible to define the operators L_x and R_x on $C(G)$ as in the group case. Of course, $x \in G$ defines $L_x : C(G^{d(x)}) \to C(G^{r(x)})$ by $L_x f(y) = f(x^{-1}y)$ for $f \in C(G^{d(x)})$. Similarly, $x \in G$ defines $R_x : C(G^{r(x)}) \to C(G^{d(x)})$ by $R_x f(y) = f(yx)$ for $f \in C(G^{r(x)})$. It is easy to check that if (x, y) is a composable pair, then $(L_xL_y)(f) := L_x(L_y f), (R_xR_y)(f) := R_x(R_y f)$ are well defined and $L_xL_y = L_{xy}, R_xR_y = R_{xy}$.

For a topological groupoid G, we introduce two monoids, semigroups with identity, S_G and S'_G. Indeed, the map $G \mapsto S_G$ is a functor from the category of groupoids to the category of semigroups. The elements of S_G and S'_G are chosen from $C(G, G)$, the set of continuous functions from G to G. The range and domain maps, r and d, on the groupoid

and have a common idempotent element \(j\), the inverse map from \(G\) to \(G\), which is also a right zero for them. We will show that \(S_G\) with the compact-open topology inherited from \(C(G,G)\) is a left topological monoid. The group of units, the maximal subgroup containing the identity element, of \(S_G\) is obtained and is denoted by \(H(1)\). The group \(H(1)\) is isomorphic to a subgroup of the group of all bijection map from \(G\) to \(G\) under composition of functions. Also there exists an monomorphism \(f \mapsto L_f\) from \(S_G\) into \(\mathcal{L}(C(G))\), where \((L_f(g))(x) = g(f(x)x)\) for \(g \in C(G)\) and \(x \in G\). By this monomorphism the group \(H(1)\) is embedded in the group of all invertible linear operators on \(C(G)\). The monoid \(S_G\) has a left cancellative submonoid \(T_G\) which is embedded in the submonoid of all injective linear operators on \(C(G)\).

2. Definition and Notation

The following definition is the definition of a groupoid given by P. Hahn in [3].

Definition 2.1. A groupoid is a set \(G\) endowed with a product map \((x, y) \mapsto xy : G^2 \to G\) where \(G^2\) is a subset of \(G \times G\) is called the set of composable pairs, and an inverse map \(x \mapsto x^{-1} : G \to G\) such that the following relations are satisfied:

1. For every \(x \in G\), \((x^{-1})^{-1} = x\).
2. If \((x, y), (y, z) \in G^2\), then \((xy, z)\), \((x, yz) \in G^2\) and \((xy)z = x(yz)\).
3. For all \(x \in G\), \((x^{-1}, x) \in G^2\) and if \((x, y) \in G^2\), then \(x^{-1}(xy) = y\). Also for all \(x \in G\), \((x, x^{-1}) \in G^2\) and if \((z, x) \in G^2\), then \((zx)x^{-1} = z\).

The maps \(r\) and \(d\) on \(G\) defined by the formulae \(r(x) = xx^{-1}\) and \(d(x) = x^{-1}x\) are called the range and domain maps. It follows easily from the definition that they have a common image called the unit space of \(G\) which is denoted by \(\mathcal{G}^0\). The pair \((x, y)\) is composable if and only if \(r(y) = d(x)\).

It is perhaps helpful to picture a groupoid as a collection of points with various arrows connecting the points. For example, we can write \((x \xrightarrow{g} y)\) to indicate that \(g\) is an arrow with source \(x\) and target \(y\). By this notation, if \((g, h) \in G^2\), then \((x \xrightarrow{g} y \xrightarrow{h} z) \Rightarrow (x \xrightarrow{g \circ h} z)\) by the product map.

Condition (iii) implies that \(r(x)x = x, xd(x) = x\). For \(u, v \in G^0\), \(G^n = r^{-1}(u), G_v = d^{-1}(v)\) and \(G^0_v = G^n \cap G_v\). A groupoid \(G\) is called a principal groupoid if and only if the map \((r, d)\) from \(G\) into \(G^0 \times G^0\) denoted by \((r, d)(x) = (r(x), d(x))\) is one-to-one.

If \(G, H\) are two groupoids. A map \(\phi : G \to H\) is an homomorphism if and only if \((x, y) \in G^2\) implies \((\phi(x), \phi(y))\) is in \(H^2\), and in this case, \(\phi(xy) = \phi(x)\phi(y)\). Also a map \(\psi : G \to H\) is an antihomomorphism if and only if \((x, y) \in G^2\) implies \((\psi(y), \psi(x))\) is in \(H^2\), and in this case, \(\psi(xy) = \psi(y)\psi(x)\). It is easy to see that groupoid homomorphisms
and groupoid antihomomorphisms between two groupoids map units to units and inverses to inverses.

The reader interested in groupoids is referred to the books [4] and [5].

A topological groupoid consists of a groupoid G and a topology compatible with the groupoid structure. That is the inverse map $x \mapsto x^{-1} : G \to G$ is continuous, as well as the product map $(x, y) \mapsto xy : G^2 \to G$ is continuous where G^2 has the induced topology from $G \times G$. We are concerned with topological groupoids whose topology is Hausdorff and locally compact. We call them locally compact Hausdorff groupoids.

If S is a semigroup, then a nonempty subset T of S is called a left ideal of S if $S.T \subset T$ and it is called a right ideal of S if $T.S \subset T$. If T is both a left ideal and a right ideal of S, then T is called an ideal of S. A left ideal(right ideal, ideal) of a semigroup S is said to be minimal if it properly contains no left ideal (right ideal, ideal, respectively) of S. An element e of S is said to be an idempotent if $e^2 = e = e$. An element z in a Semigroup S is a right zero if $s.z = z$ for all $s \in S$. By Theorem 2.8 of [1] for an idempotent e in S, the left ideal Se is minimal left ideal if and only if eS is a minimal right ideal and equivalently eSe is a group. An injective homomorphism between two semigroups is called a monomorphism and a semigroup with identity element is called a monoid.

3. A MONOID RELATED TO A TOPOLOGICAL GROUPOID

For a topological groupoid G, we denote the set of all continuous function from G into itself by $C(G, G)$.

Definition 3.1. For a topological groupoid G, set

$S_G = \{ f \in C(G, G) \mid f(x) \in G_{r(x)} \text{ for all } x \in G \}$,

$S'_G = \{ f \in C(G, G) \mid f(x) \in G_{d(x)} \text{ for all } x \in G \}$.

Note that if G is a topological group, then $S_G = S'_G = C(G, G)$.

Proposition 3.2. Two sets S_G and S'_G with the following binary operations are two isomorphic monoid.

$(f \ast g)(x) = g(f(x)x) f(x) \quad f, g \in S, x \in G$,

$(h \ast k)(x) = h(x)k(xh(x)) \quad h, k \in S', x \in G$.

The range and domain maps, r and d, on the groupoid G are the identity element of S_G and S'_G, respectively.

Proof. Note that if $f, g \in S_G$, $h, k \in S'_G$ and $x \in G$, then $(f(x), x, h(x)) \in G^2$ and

$d\left(g(f(x)x)\right) = r(f(x)x) = r(f(x))$.
\[d(h(x)) = d(xh(x)) = r(k(xh(x))). \]

Hence \((g(f(x)), f(x)), (h(x), k(xh(x))) \in G^2\), consequently \(f * g\) and \(h * k\) are well-defined function from \(G\) to \(G\) and by the continuity assumption of \(f\) and \(g\), are continuous.

Also,
\[
\begin{align*}
\quad & d((f * g)(x)) = d(g(f(x))) = d(f(x)) = r(x), \\
\quad & r((h * k)(x)) = r(h(x)) = d(x).
\end{align*}
\]

Therefore \(f * g \in S_G\) and \(h * k \in S'_G\). So \(S_G\) and \(S'_G\) are closed under these binary operations.

Next we show that the binary operation of \(S_G\) is associative. The associativity of the binary operation of \(S'_G\) is similar. For \(f, g, h \in S_G\) and \(x \in G\),
\[
(f * (g * h))(x) = (g * h)(f(x))f(x) = \left[h\left(g(f(x))f(x)g(f(x))\right)\right]f(x).
\]

On the other hand
\[
(f * (g * h))(x) = \left[h\left(f(g(x))x\right)\right](f * g)(x) = \left[h\left(g(f(x))f(x)\right)\right]g(f(x))f(x).
\]

So \(f * (g * h) = (f * g) * h\).

The range map \(r(x) = xx^{-1}\) belongs to \(S_G\) and for \(g \in S_G\),
\[
\quad & (r * g)(x) = g(r(x))r(x) = g(x)r(x) = g(x)d(g(x)) = g(x), \\
\quad & (g * r)(x) = r(g(x))g(x) = r(g(x))g(x) = g(x).
\]

so \(r * g = g * r = g\), and therefore \(r\) is the identity of \(S_G\). Similarly, the domain map \(d(x) = x^{-1}x\) is the identity of \(S'_G\). Therefore \(S_G\) and \(S'_G\) are two monoids.

If for \(f \in S_G\) we define \(f^*(x) = (f(x^{-1}))^{-1}\), then \(f^*\) is continuous and for each \(x \in G\),
\[
\quad & r(f^*(x)) = r((f(x^{-1}))^{-1}) = d(f(x^{-1})) = r(x^{-1}) = d(x).
\]

Therefore \(f^* \in S'_G\). Note that \((f^*)^* = f\) for every \(f \in S_G\). We show that the map \(f \mapsto f^*\) from \(S_G\) to \(S'_G\) is a semigroup isomorphism.

The proof will be completed if we prove that \((f * g)^* = f^* * g^*\) for every \(f, g \in S_G\).

If \(f, g \in S_G\), then for each \(x \in G\),
\[
\begin{align*}
(f * g)^*(x) &= \left((f * g)(x^{-1})\right)^{-1} \\
&= \left(g(f(x^{-1})x^{-1})f(x^{-1})\right)^{-1} \\
&= (f(x^{-1}))^{-1}\left(g(f(x^{-1})x^{-1})\right)^{-1} \\
&= f^*(x)\left[g((x^*f^*)^{-1})\right]^{-1} \\
&= f^*(x)g^*(xf^*(x)) \\
&= (f^* * g^*)(x).
\end{align*}
\]

\(\square\)
Proposition 3.3. The following assertions hold for the two monoids.

1. The inverse map \(j(x) = x^{-1} \) from \(G \) to \(G \) is belong to \(S_G \cap S'_G \) and is an idempotent of these two semigroups which is also a right zero element for them.

2. The element \(j \) is left zero for \(S_G \) if and only if \(f(u) = u \) for every \(f \in S_G \) and \(u \in G^0 \). Similar assertion holds for the semigroup \(S'_G \).

3. \(S_G \cap S'_G \) is a left ideal of \(S_G \) and \(S'_G \).

4. \(jS_G \) is a minimal ideal of \(S_G \), and \(jS'_G \) is a minimal ideal for \(S'_G \).

5. If \(\phi \in S_G \) is a bijection, then \(\phi^{-1} \) is an element of \(S'_G \), where \(\phi^{-1}(\phi(x)) = x = \phi(\phi^{-1}(x)) \) for every \(x \in G \).

6. The only injective antihomomorphism element of \(S_G \) which is also an idempotent is the element \(j \).

7. The only antihomomorphism element of \(S_G \) which is also a right zero element is the element \(j \).

8. If \(f \in S_G \cap S'_G \) is an antihomomorphism, then \(f \ast f = f \ast f \).

Proof. (1) For every \(x \in G \), \(j(x) = x^{-1} \in G_{r(x)}^d \). So \(j \) is an element of \(S_G \cap S'_G \). Also

\[
(j \ast j)(x) = j(j(x)xj(x) = x^{-1}(j(x))^{-1}j(x) = x^{-1} = j(x),
\]

that is \(j \ast j = j \). Since \(j^* = j \), therefore \(j \ast j = (j \ast j)^* = j^* = j \). For \(f \in S_G \), \(g \in S_G \) and \(x \in G \),

\[
(f \ast j)(x) = j(f(x)xj(x) = x^{-1}(f(x))^{-1}f(x) = x^{-1} = j(x).
\]

Consequently \(g \ast j = (g^* \ast j)^* = j \). Hence \(j \) is a right zero for \(S_G \) and \(S'_G \).

(2) Suppose that \(j \) is a left zero for \(S_G \), for \(f \in S_G \) and \(x \in G \)

\[
x^{-1} = j(x) = (j \ast f)(x) = f(j(x)xj(x) = f(d(x))x^{-1}.
\]

Therefore \(f(d(x)) = d(x) \) for every \(x \in G \). Conversely, if \(f(u) = u \) for every \(u \in G^0 \), then for every \(x \in G \)

\[
(j \ast f)(x) = f(j(x)xj(x) = f(d(x))x^{-1} = d(x)x^{-1} = x^{-1} = j(x).
\]

(3) Let \(g \in S_G \cap S'_G \) and \(f \in S_G \), then

\[
r f(g(x)) = r(g(f(x)x)) = r(g^d(f(x))) = d(f(x)) = d(x)
\]

and

\[
d f(g(x)) = d(g(f(x)x)) = d(f(x)) = r(x).
\]

So \(f \ast g \in S_G \cap S'_G \). Similarly, we can show that \(S_G \cap S'_G \) is a left ideal of \(S'_G \).
Remark 3.4. We consider \(jS_G \) is a right ideal of \(S_G \) and since \(j \) is a right zero for \(S_G \), \(jS_G \) is also a left ideal of \(S_G \). Now let \(f \in S_G \). If \(S_G(j \ast f)S_G = jS_G \), then by Proposition 2.4 of [1], \(jS_G \) is a minimal ideal of \(S_G \). However, since \(j \) is a right zero for \(S_G \), \(S_G(j \ast f)S_G = (j \ast f)S_G \subset jS_G \). If \(g \in S_G \), then \(j \ast g = j \ast (j \ast f) \ast j \ast g \in S_G(j \ast f)S_G \). So \(jS_G \subset S_G(j \ast f)S_G \).

(5) Let \(\psi \) be the inverse of \(\phi \), \(y \in G \) and \(\psi(y) = x \). Then \(r(\psi(y)) = r(\psi(\phi(x))) = r(x) = d(\phi(x)) = d(y) \), that is \(\psi \in S'_G \).

(6) Let \(\phi \) be an idempotent which is also an injection antihomomorphism element of \(S_G \). Then \(\phi \ast \phi = \phi \), that is, \(\phi(\phi(x))\phi(x) = \phi(x) \) for all \(x \in G \), so \(\phi(\phi(x)x) = r(\phi(x)) = \phi(d(x)) \). The injectivity of \(\phi \) implies that \(\phi(x)x = d(x) \), so \(\phi(x) = x^{-1} = j(x) \).

(7) By definition of a right zero element in a semigroup, \(\phi \ast \psi = \psi \) for all \(\phi \in S_G \). Therefore in a special case \(j \ast \psi = \psi \) and consequently \(\psi(j(x)x)j(x) = \psi(x) \). Hence \(j(x) = [\psi(j(x)x)]^{-1} \psi(x) = [\psi(d(x))]^{-1} \psi(x) = [r(\psi(x))]^{-1} \psi(x) = r(\psi(x)) \psi(x) = \psi(x) \).

(8) By the definition of the binary operations of \(S_G, S'_G \), it is straightforward.

\[\square \]

Remark 3.4. We consider \(C(G,G) \) with the compact-open topology. Recalling that the compact-open topology is the topology generated by the base consisting of all sets \(\cap_{i=1}^{k} M(C_i, U_i) \), where \(C_i \) is a compact subset of \(G \) and \(U_i \) is an open subsets of \(G \) for \(i = 1, 2, \ldots, k \) and where, \(M(A,B) = \{ f \in C(G,G) : f(A) \subset B \} \) for \(A, B \subset G \). The reader is referred to [2] for more details about this topology.

In the following we will show that \(S_G \) with the compact-open topology inherited from \(C(G,G) \) is a left topological monoid. It is easy to check that the isomorphism \(f \mapsto f^* \) is continuous from \(S_G \) into \(S'_G \), with compact-open topology, so \(S'_G \) is left topological.

Proposition 3.5. The monoid \(S_G \) with the compact-open topology is a left topological semigroup.

Proof. Let \(f \in S_G \) and let \(\{ g_\alpha \}_{\alpha \in \Sigma} \) be a net in \(S_G \) converging to \(g \in S_G \) in compact-open topology. We will show that \(f \ast g_\alpha \to f \ast g \) in compact-open topology. Suppose that \(\cap_{i=1}^{k} M(C_i, U_i) \) is a neighborhood of \(f \ast g \) in compact-open topology. So \(g(f(x)x)f(x) \in U_i \) for every \(x \in C_i \) and \(i = 1, 2, \ldots, k \). Since \(G \) is a topological groupoid, for \(x \in C_i \), there exists tow open sets \(U'_x \) and \(V'_x \) with \(g(f(x)x) \in U'_x \), \(f(x) \in V'_x \) and \(U'_x V'_x \subset U_i \). Let \(U_x, V_x \) be two open set in \(G \) with \(g(f(x)x) \in U_x \), \(f(x) \in V_x \) and \(\overline{U_x} \subset U'_x \) and \(\overline{V_x} \subset V'_x \). The set \(\{ (g(f(x)x), f(x)) : x \in C_i \} \) is a compact subset of \(G^2 \), hence there exist \(x_1, x_2, \ldots, x_n \),
in C_i such that
\[
\left\{ \left(g(f(x)x), f(x) \right) : x \in C_i \right\} \subset \bigcup_{j=1}^{n_i} \left(U_{x_j} \times V_{x_j} \right) \cap G^2.
\]
So
\[
\left\{ g(f(x)x)f(x) : x \in C_i \right\} \subset \bigcup_{j=1}^{n_i} U_{x_j}V_{x_j} \subset U_i.
\]

Put $F_j = \{ f(x)x : x \in C_i \}$ and $g(f(x)x) \in U_{x_j}$, then F_j is a compact set for $j = 1, 2, \ldots, n_i$ and $g(F_j) \subset U'_{x_j}$. So $\bigcap_{j=1}^{n_i} \{ F_j \} \subset U'_{x_j}$ is a neighborhood of g in compact-open topology. Therefore there exists $\beta \in \Sigma$ with $g_{\alpha}(F_j) \subset U'_{x_j}$ for every $\alpha \geq \beta$ and $j = 1, 2, \ldots, n_i$ and $i = 1, 2, \ldots, k$. Now if $x \in C_i$, then there exists $j \in \{1, 2, \ldots, n_i\}$ with $f(x)x \in F_j$, then $f(x) \in V'_{x_j}$. Therefore $(f * g_{\beta})(x) = g_{\alpha}(f(x)x)f(x) \in g_{\alpha}(F_j)f(x) \subset U'_{x_j} \subset U_i$ for every $\alpha \geq \beta$, that is $(f * g_{\beta})(C_i) \subset (f * g)(U_i)$ for $\alpha \geq \beta$, and $i = 1, 2, \ldots, k$. Therefore $f * g_{\alpha} \to f * g$ in compact-open topology. \qed

Proposition 3.6. The map $G \mapsto S_G$ from the category of groupoids to the category of semigroups is a functor. Therefore if G and H are two isomorphic groupoids, then S_G and S_H are two isomorphic monoids.

Proof. Suppose that $\psi : G \to H$ is a groupoid homomorphism. Define $\Psi : S_G \to S_H$ by $(\Psi(f))(x) = (\psi \psi^{-1})(x)$. We have
\[
\begin{align*}
d\left(\Psi(f)(x) \right) &= d\left(\psi\left(f(\psi^{-1}(x)) \right) \right) \\
&= \psi d\left(f(\psi^{-1}(x)) \right) \\
&= \psi r(\psi^{-1}(x)) \\
&= \psi (\psi^{-1}(r(x))) \\
&= r(x).
\end{align*}
\]
Therefore $\Psi(f) \in S_H$. We will show that the map Ψ is a semigroup homomorphism. Let $f, g \in S_G$ and $x \in H$,
\[
\begin{align*}
(\Psi(f * g))(x) &= \psi\left(f * g(\psi^{-1}(x)) \right) \\
&= \psi g\left(f(\psi^{-1}(x))\psi^{-1}(x) \right) f(\psi^{-1}(x)) \\
&= \psi g\left(f(\psi^{-1}(x))\psi^{-1}(x) \right) \psi f(\psi^{-1}(x)) \\
&= \psi g\left(\psi^{-1}\left(\psi f(\psi^{-1}(x)) \right) \psi^{-1}(x) \right) f(\psi^{-1}(x)) \\
&= \left(\psi g(\psi^{-1}) \right) \left(\psi f(\psi^{-1})(x)x \right) \left(\psi f(\psi^{-1})(x) \right) \\
&= \Psi(g) \left(\Psi(f)(x) \right) (\Psi(f))(x) \\
&= (\Psi(f) * \Psi(g))(x).
\end{align*}
\]
So the map $f \mapsto \Psi(f)$ is a semigroup homomorphism. It is obvious that if $id_G : G \to G$ is the identity, then $\Psi(id_G) : S_G \to S_G$ is the identity. So the proof is completed. \qed
Lemma 3.7. The monoid S_G is isomorphic to a submonoid of the semigroup $C(G,G)$ under the binary operation $(f \circ g)(x) = g(f(x))$ for $f, g \in C(G,G)$ and $x \in G$.

Proof. For $\phi \in S_G$ define, $L_\phi : G \rightarrow G$ by $L_\phi(x) = \phi(x)x$. Then

$L_{\phi \circ \psi}(x) = (\phi \ast \psi)(x)x = \psi(\phi(x)x)\phi(x)x = L_\psi(\phi(x)x) = L_\psi(L_\phi(x))$.

That is, the map $\phi \mapsto L_\phi$ is an homomorphism from S_G into $C(G,G)$. It is obvious that this homomorphism is injective. So S_G is isomorphic to the subsemigroup $\{L_\phi : \phi \in S_G\}$ of the semigroup $(C(G,G), \circ)$.

Proposition 3.8. For $\phi \in S_G$ denote the map $x \mapsto \phi(x)x$ by L_ϕ, then the set

$H(1) = \{\phi \in S_G : \text{the map } L_\phi \text{ is a bijection}\}$

is the group of units of S_G, the maximal subgroup of S_G which containing the identity element r.

Proof. Obviously the map r which is the identity of S_G belong to $H(1)$. Also by the previous Lemma the map $\phi \mapsto L_\phi$ from the monoid (S_G, \ast) to the monoid $(C(G,G), \circ)$ is a homomorphism. Since the composition of two bijection map is bijective, $H(1)$ is a submonoid of S_G. Now let $\phi \in H(1)$ and define $\psi(y) = (\phi(x))^{-1}$, where $y = L_\phi(x) = \phi(x)x$, ψ is well-defined. We will show that ψ is the inverse of ϕ, that is $\psi \ast \phi = \phi \ast \psi = r$. By definition of ψ, $(\phi \ast \psi)(x) = \psi(\phi(x)x)\phi(x) = (\phi(x))^{-1}\phi(x) = d(\phi(x)) = r(x)$. To prove that $\psi \ast \phi = r$, note that $y = \phi(x)x$ implies that $\psi(y)y = \psi(y)\phi(x)x = \psi(\phi(x)x)\phi(x)x = (\phi \ast \psi)(x)x = r(x)x = x$. Therefore $(\psi \ast \phi)(y) = \phi(\psi(y)y)\psi(y) = (\psi(y))^{-1}\psi(y) = d(\psi(y)) = r(y)$ for every $y \in G$. To complete the proof we just need to show that $H(1)$ is maximal. Let K be a subgroup of S_G which containing r. To prove that $K \subset H(1)$, it is enough to show that if $\phi \in K$, then the map L_ϕ is a bijection. Suppose that ψ is the inverse of ϕ, then $\phi \ast \psi = \psi \ast \phi = r$. Therefore $L_\phi \circ L_\phi = L_\phi \circ L_\psi = h_x = I$ the identity map on G. So L_ϕ is a bijection.

For $\phi \in S_G$, the set of all fixed point of ϕ is denoted by $\text{Fix}(\phi)$.

Proposition 3.9. Let A be a subset of G and put $I_A = \{\phi \in C(G,G) : \phi(A) \subset A\}$, then the following assertion hold,

If A is a subgroupoid of G, then $S_A = I_A \cap S_G$ is a subsemigroup of S_G.

Proof. It is easy to see that for a subgroupoid A of G, $\phi \in I_A$ if and only if $L_\phi \in I_A$. Now let $\phi, \psi \in S_A$, then by Lemma 3.7, $L_{\phi \ast \psi}(A) = L_\psi(L_\phi(A)) \subset L_\psi(A) \subset A$. So S_A is a subsemigroup of S_G.

Remark 3.10. If $\phi : G \rightarrow H$ is a groupoid homomorphism, then $d(\phi(x)) = \phi(d(x))$ and $r(\phi(x)) = \phi(r(x))$ for all $x \in G$. Note that the conditions $\phi \circ r = r \circ \phi$ and $\phi \circ d = d \circ \phi$ does
not imply that \(\phi \) is a homomorphism. For example in the case where \(G \) and \(H \) are two groups, every function \(\phi: G \to H \) which preserves the identity element, satisfies in the two conditions. Similarly \(d(\psi(x)) = \psi(r(x)) \) and \(r(\psi(x)) = \psi(d(x)) \) for all \(x \in G \) does not imply that \(\psi \) is an antihomomorphism. Now let \(\phi \in C(G,G) \) and \(\text{Fix}(\phi) \) be the fixed-point set of \(\phi \). If \(\psi \in S_G \) with \(d(\psi(x)) = \psi(r(x)) \) for all \(x \in G \), then \(\psi(r(x)) = d(\psi(x)) = r(x) \) and therefore \(G^0 \subset \text{Fix}(\psi) \). Conversely, if \(\psi \circ r = d \circ \psi \) and \(G^0 \subset \text{Fix}(\psi) \), then \(\psi \in S_G \).

Therefore for an element \(\psi \) of \(C(G,G) \) with \(\psi \circ r = d \circ \psi \), we have \(\psi \in S_G \) if and only if \(G^0 \subset \text{Fix}(\psi) \).

In a special case if \(\phi \) is a continuous antihomomorphism, then \(\phi \in S_G \) if and only if \(G^0 \subset \text{Fix}(\phi) \). In the following we obtain this result when the condition \(G^0 \subset \text{Fix}(\phi) \) is replaced by \(\phi(G^u) \cap G_u \neq \emptyset \) for every \(u \in G^0 \), where \(\phi(G^u) \) is the image of \(G^u \) under the map \(\phi \).

Proposition 3.11. Let \(\phi \in C(G,G) \) and \(d \circ \phi = \phi \circ r \), then \(\phi \in S_G \) if and only if \(\phi(G^u) \cap G_u \neq \emptyset \) for all \(u \in G^0 \).

Proof. Suppose that \(\phi(G^u) \cap G_u \neq \emptyset \) for all \(u \in G^0 \). Therefore for \(z \in G \) there exists \(x \in G^r(z) \) with \(\phi(x) \in G^r(\phi(z)) \). So

\[
\begin{align*}
d(\phi(z)) &= \phi(r(z)) \\
 &= \phi(r(x)) \\
 &= d(\phi(x)) \\
 &= r(z).
\end{align*}
\]

That is, \(\phi \in S_G \). The converse is hold, since \(d(\phi(x)) = r(x) \) and \(x \in G^r(\phi(z)) \), that is \(\phi(G^r(x)) \cap G_d(x) \neq \emptyset \) for every \(x \in G \).

For \(\phi \in S_G \) and \(\psi \in S'_G \), define \(L_\phi(x) = \phi(x)x \) and \(R_\psi(x) = x\psi(x) \).

Proposition 3.12. Let \(S_G \) and \(S'_G \) be the monoids which are defined in Definition 3.1. Set

\[
\begin{align*}
T_G &= \{ \phi \in S_G : \{ L_\phi(x) : x \in G \} \text{ is dense in } G \}, \\
T'_G &= \{ \psi \in S'_G : \{ R_\psi(x) : x \in G \} \text{ is dense in } G \}.
\end{align*}
\]

Then \(T_G \) is a left cancellative submonoid of \(S_G \), \(T'_G \) is a left cancellative submonoid of \(S'_G \), and \(T_G \) is isomorphic to \(T'_G \).

Proof. It is obvious that \(r \in T_G \) and \(d \in T'_G \). Suppose that \(\phi, \psi \in T_G \). Since the map \(L_\phi \) is continuous by using the density of the sets \(\{ L_\phi(x) : x \in G \} \) and \(\{ L_\psi(x) : x \in G \} \) in \(G \), we obtain that the set \(\{ L_\phi(L_\phi(x)) : x \in G \} \), which is equal to \(\{ L_{\phi \psi}(x) : x \in G \} \), is dense in \(G \). So \(T_G \) is a subsemigroup of \(S_G \). If \(f, g, h \in S_G \) and \(f \star g = f \star h \). Therefore
Proposition 4.1. There exists a map \(\mathcal{C} \) of \(L_g(L_f(x)) = L_h(L_f(x)) \) for every \(x \in G \). The density of \(\{L_f(x) : x \in G\} \) in \(G \) and the continuity of \(L_g \) and \(L_h \) imply that \(L_h = L_g \) and therefore \(g = h \).

Similarly, we can show that \(T_G^G \) is a left cancellative subsemigroup of \(S_G^G \). To prove that \(T_G \) and \(T_G^G \) are isomorphic, using the proof of Proposition 3.2, it is enough to show that if \(f \in T_G \), then \(f^* \in T_G^G \). Let \(f \in T_G \), then

\[
\{f(x) : x \in G\}^{-1} = \{x^{-1}(f(x))^{-1} : x \in G\} = \{f(t^{-1})^{-1} : t \in G\} = \{tf'(t) : t \in G\}.
\]

The continuity of the inverse map from \(G \) to \(G \) implies that \(A \subset G \) is dense in \(G \) if and only if \(A^{-1} \) is dense in \(G \). Therefore \(f^* \in T_G^G \). \(\square \)

Example 3.13. (Transformation group groupoids [4, p.6]). Suppose that the group \(T \) acts on the space \(U \) on the right. The image of the point \(u \in U \) by the transformation \(t \in T \) denoted by \(u.t \). The set \(G = U \times T \) is a groupoid with the following groupoid structure: \((u,t),(v,t') \) is composable if and only if \(v = u.t,(u,t)(u,t') = (u,tt') \) and \((u,t)^{-1} = (u.t^{-1}) \). Then \(r(u,t) = (u,e) \) and \(d(u,t) = (u.e) \). If a locally compact group \(T \) acts on a locally compact space \(U \) then the transformation group groupoid \(U \times T \) with the product topology is a locally compact groupoid. Now recall that \(S_T = C(T,T) \), since \(T \) is a group. Let \(\varphi \in S_T \), define \(f_\varphi : G \rightarrow G \) by \(f_\varphi(u,t) = \left(u,\varphi(t)^{-1},\varphi(t)\right) \). Then it is easy to check that \(f_\varphi \) is an element of \(S_G \) and it is straightforward to check that \(f_\phi \circ f_\psi = f_{\phi \circ \psi} \) for every \(\phi, \psi \in S_T \), and the map \(\phi \mapsto f_\phi \) is injective, that is the monoid \(S_T \) is algebraically isomorphic to a submonoid of \(S_G \). Also it is easy to check that the group of units of \(S_T \) is embedded in the group of units of \(S_G \) by this monomorphism.

Now for \(z \in T \) define \(f_z(u,t) = (u,z^{-1},z) \) for all \((u,t) \in G \). We have \(f_{za} \circ f_z = f_{za} \). Therefore the set \(\{f_z : z \in T\} \) with the pointwise topology is a subgroup of \(S_G \) which is topologically isomorphic to \(T \). In a special case if we let \(s \in T \) and define \(\varphi(t) = ts^{-1}t \) for every \(t \in T \), then \(f_{\varphi} \) by \(f_{\varphi}(u,t) = (u.t^{-1}st^{-1},ts^{-1}t) \) is an element of \(T_G \).

4. A REPRESENTATION OF THE ELEMENTS OF \(S_G \) AS LINEAR OPERATORS ON \(C(G) \)

In the following we will show that every \(f \in S_G \) is represented by a linear operator \(L_f \) on \(C(G) \). Also the map \(\Phi : S_G \rightarrow \mathcal{L}(C(G)) \) by \(\Phi(f) = L_f \) is a monomorphism, where \(\mathcal{L}(C(G)) \) is the monoid of all linear operators on \(C(G) \) under composition of operators. Moreover the group of units of \(S_G \) is embedded in the group of all invertible linear operators on \(C(G) \).

Proposition 4.1. There exists a map \(\phi : S_G \times C(G) \rightarrow C(G) \) with the following properties.

1. \(\phi(f_1 \circ f_2, g) = \phi(f_1, \phi(f_2, g)) \) for all \(g \in C(G) \), \(f_1, f_2 \in S_G \),
2. \(\phi(r, g) = g \) for all \(g \in C(G) \), where \(r(x) = xx^{-1} \).
Proposition 4.2. There exists a map \(f \) and therefore the map \(f \) ties.

Proof. For \(f \in S_G \) we have a function from \(G \) to \(G \), the map \(f \) is well defined and belongs to \(C(G) \). Therefore we have a function from \(S \times C(G) \) to \(C(G) \). Now let \(f_1, f_2 \in S_G \) and \(g \in C(G) \), then

\[
(g \circ L_{f_1} \circ f_2) = g \circ (L_{f_2} \circ L_{f_1}) = (g \circ L_{f_2}) \circ L_{f_1},
\]

and therefore the map \(f \mapsto g \) from \(S_G \) to \(L(C(G)) \) is an homomorphism. This complete the proof of part 1).

The proof of (2) is straightforward, since \(L_r = I \), the identity map on \(G \).

The proof of part (3) is obvious, since the topology of \(G \) is Hausdorff. For part (4), let \(f \in T_G \), \(g, h \in C(G) \) and \(L_f(g) = L_f(h) \). Therefore \(g(L_f(x)) = h(L_f(x)) \) for every \(x \in G \). The density of the set \(\{L_f(x) : x \in G\} \) in \(G \) and the continuity of \(g \) and \(h \) imply that \(g = h \). Finally (5) is proved by the part (2) and (3).

\[\square\]

There is a similar assertion on the monoid \(S_G' \), so we delete it’s proof.

Proposition 4.2. There exists a map \(\psi : C(G) \times S_G' \to C(G) \) with the following properties.

1. \(\psi(g, f_1 \ast f_2) = \psi(g, f_2, f_1) \) for all \(g \in C(G) \) and all \(f_1, f_2 \in S_G' \),
2. \(\psi(g, d) = g \) for all \(g \in C(G) \), where \(d(x) = x^{-1}x \).
3. For \(f \in S_G' \) the map \(R_f = \phi(., f) : C(G) \to C(G) \) is a linear operator, and the map \(f \mapsto R_f \) from \(S_G' \) to \(L(C(G)) \) is an injective homomorphism.
4. If \(f \in T_G' \), the map \(R_f \) is an injective linear operator.
5. The group \(H'(1), \) group of units of \(S_G' \), is embedded in the group of all invertible linear operators on \(C(G) \), under the composition of operators.

From (i) and (ii) we can say that the semigroup \(S_G' \) acts on \(C(G) \) on the right.

Corollary 4.3. The semigroup \(S_G \) acts on \(C(G) \) on the right. Similarly, the semigroup \(S_G' \) acts on \(C(G) \) on the left.

Proof. By application of the semigroup isomorphism \(f \mapsto f^* \) form \(G \) to \(S_G' \) and proposition 4.1, 4.2, it is obvious.

\[\square\]
It is easy to check that, if G is a principal groupoid, then $S \cap S' = \{j\}$. The converse is probably true, but I don’t have a correct proof.

References
1. J.F. Bergland, H.D. Junghenn and P. Milnes. Analysis on semigroups, function spaces, compactifications, representations. J. Wiley and Sons, New york (1989).
2. R. Engelking. General Topology. Sigma series in pure mathematics, Vol 6 (1989).
3. P. Hahn. Haar measure for measure groupoids. Trans. Amer. Math. Soc, 242. 519 (1978), 1-33.
4. A. L. T. Paterson. Groupoids, inverse semigroups and their operator algebras. Progress in Mathematics, Vol. 170, Birkhauser, Boston, (1999).
5. J. Renault. A groupoid approach to C^*-algebra. Lecture Note in Mathematics, Springer-Verlag, Vol. 793, New York-Heidelberg, (1980).