THE IMPACT OF SHIRORO DAM PROJECT ON
PRODUCTIVITY AND LIVELIHOOD DIVERSIFICATION OF
RURAL FISHERFOLKS IN NIGER STATE, NIGERIA

Oladimeji, Y. U*, Abubakar, B. AY2, Abdulsalam, Z1.

1Department of Agricultural Economics, Ahmadu Bello University, Zaria-Nigeria
2Post Graduate Program, Department of Agricultural Economics, Ahmadu Bello University, Zaria-Nigeria

*Corresponding author’s e-mail: yusuf.dimeji@yahoo.com; +234803222000

Abstract: The interdependence of water, food and energy are widely recognized as important drivers of socioeconomic development. The objective of the study was to assess the impact of Shiroro Dam Project (SDP) on productivity and livelihood diversification of rural fisherfolks in Niger state, Nigeria. Primary data were collected from the fisherfolks with the aid of structured questionnaires. A multistage sampling procedure was used to select 363 fisherfolks from two LGAs, twelve villages and 1,210 sample frames. Two hundred and sixty (267) fisherfolks who are non-beneficiaries of SDP were also selected as counterfactual to examine the impact. The data were analyzed using descriptive statistics, Tobit regression, Propensity Score Matching (PSM) and the Local Average Treatment Effect (LATE) models. Result revealed that fishery activities were the most important source of income (68.3%) among the fisherfolks. The coefficients of length of fishing gears (-0.400), capacity of outboard engine (-0.005), household size (0.008), credit accessed for fishery (0.052) and per capita expenditure (0.306) were statistically significant factors influencing the extent of livelihood diversification of Shiroro dam fisherfolks. There was statistically significant difference between the mean income of fisherfolks (₦56,119.06 per annum) who benefitted from SDP and counterfactual (₦37,876.80). Similarly, the results of impact of SDP on productivity of fisherfolks revealed that the treatment effect on the treated (ATT) increases productivity of the benefitted fisherfolks by 2.8273 (38.1%), that ATU had a significant and positive impact (0.1282) on productivity, and the average effect of the treatment (ATE) for SDP fisherfolks has a positive difference of 0.6654 compared to the treated category. Fisherfolks should form a formidable social organization to benefit from economy of bulk purchase of farm inputs especially fishing gears and outboard engine, farm advisory services, increased access to credit, and access to other modern fishing techniques.

Keywords: Fisherfolks, impact, income, Shiroro dam project, Nigeria

http://dx.doi.org/10.21776/ub.agrise.2020.020.3.2

Received 10 February 2020
Accepted 11 April 2020
Available online 29 July 2020

INTRODUCTION

The interdependence of water, food and energy are widely recognized as important drivers of socioeconomic development. This importance is embedded in the United Nations 2030 Agenda for Sustainable Development Goals Report as Nigerian population is expected to increase to 262, 599,000 people by 2030 ((UN SDG, 2016; ICSU-ISSC, 2015, UNDESA, 2015). The economic benefits of dams outweigh the costs, thus providing rationale for construction of dams around the world (Philip et al., 2008). Dams are important means of meeting water; energy and food need in the long-term, strategic investments with many additional benefits. Some of these benefits include projects or regional development, employment generation, and fostering of local industry (World Commission on Dam, 2000). Impacts of dams can be involuntarily imposed on rural farming households whose livelihoods are dependent on riverine resources through contributions to economic growth while the services they provide may come at a cost (Skinner et al., 2009, Oladimeji and Abdulsalam, 2014).

Similarly, large dams by increasing irrigation and hydroelectricity production, can stimulate development and reduce poverty has led developing countries and international agencies such as the World Bank to undertake major investments in dam construction. By implication, dams generated 19 % of the world's electricity supply and irrigated over
Policy makers and researchers have often ignored the contribution made by rural livelihood diversifications focusing attention on agriculture (Carswell, 2000) especially artisanal fishery. It is pertinent to note that research works on the impact of dam on productivity and livelihood diversification of rural fish farming household are scanty. This study therefore examines the impact of Shiroro dam on productivity and livelihood diversification of rural fisherfolks. Consequently, the study seeks to provide answers to the following research questions:

a. what are the level of livelihood diversification among artisanal fisherfolks?

b. which factors influence the extent of livelihood diversification of fisherfolks?

c. are there impact of Shiroro dam project on the livelihood diversification?

d. are there impact of Shiroro dam project on the productivity of fisherfolks?

e. what are the constraints encountered by the rural fisherfolks in the study area?

METHODOLOGY
Description of the Study Area
This study was conducted in Shiroro, Munya and Gurara Local Government Areas (LGAs) of Niger State. The State is located between Latitude 8° 22' N and 11° 30' N and Longitude 3° 30' N and 7° 20' E and covers a land area of about 74,244 sq. km, or about 8 % of Nigeria’s total land area. The climate, soil and hydrology of the state permit the cultivation of most of Nigeria’s staple crops such as maize, yam, rice, millet, sorghum, and allows sufficient opportunities for grazing, fresh water fishing and forestry development.

Specifically, the Shiroro hydropower reservoir is a storage based hydroelectric facility located in Niger State at the Shiroro Gorge with approximately between Latitude 9° 46' 35" and 10° 08' 36" N and Longitude 6° 50' 51" and 6° 53' 14" N. It is located approximately 90 km southwest of Kaduna on river Dinya. The facility has an installed capacity of 600 MW (Kolo, 1996). The reservoir has a surface area of about 320 km² with a maximum length of 32 m and a total storage capacity of 7 billion m³ of water (Usman and Ifabiyi, 2012). About 70 % of inflows into the reservoir are from river Kaduna, with lateral contributions from rivers Dinya, Gun, Sarkin-Pawa, Erena and Muayi. Annual temperature around the reservoir varies between 27 and 35 °C. (Abayomi et al., 2015)

Method of data Collection and Sampling Procedure
Primary data was collected in 2019 fishery season, with the aid of a structured questionnaire and trained field enumerators for the study. Information
collected includes: socio-economic characteristics, livelihood diversification activities, fishery inputs such as size of canoes in meters; length of fishing gears (nets) in meters; fuel gasoline and diesel oil in litres; number of plastic container, hand paddlers and baits and capacity of outboard engine in horse power.

A multistage sampling procedure was used to the sampled respondents. Two Local Government Areas (LGAs) Shiroro and Muya out of the twenty-five LGAs in Niger state were purposefully selected because of location of Shiroro dam in the vicinity of villages in the two LGAs and concentration of fisherfolks in the villages. The list of beneficiary villages was listed and a total of a dozen villages were randomly selected through balloting from the two LGAs proportionate to size. The list of fisherfolks in each village was compiled and 30% of the sampling frame (1, 210) was randomly selected through balloting totaling 363 fisherfolks.

On the other hand, two hundred and sixty (267) fisherfolks who are non-beneficiaries of Shiroro dam fishery expedition but engage in fishing nearby communities in Kebbi and Kwara states with similar socio-economic characteristics were randomly selected from a sample frame of nine hundred and sixty two (962) fisherfolks (Oladimeji, 2018) as counterfactual to examine the impact of the dam on productivity of the fisherfolks.

Analytical techniques

Descriptive statistics and the mean of income shares approach were used to estimate the level of livelihood diversification by the fisherfolks in Niger state, Nigeria. The general mean of income shares (MIS) formula is given as:

\[MS_i = \frac{\sum_{h=1}^{n} Y_{ih}/f_i}{n} \]

(1) (Bernard et al., 2014; Oladimeji et al., 2018)

Where \(I \) = the income source (naira, \(\mathbb{N} \)), \(Y \) = total Income (naira, \(\mathbb{N} \)), \(y \) = income from particular activity (naira, \(\mathbb{N} \)), \(h \) = the household (number of persons), \(n \) = the number of fisherfolks. Equation (1) was applied in this study as:

The sum of total household income (THI) is given as:

\[THI = \sum_{j=1}^{16} Y_j \]

(2) (Schwarze and Zeller, 2005; Bernard et al., 2014)

Where: THI=Total Household Income, thus income coming from all sources

Factors influencing diversification of fisherfolks to non-fishery activities were determined using Tobit model. This was measured by the share of fishery income (from all activities) in total fisherfolks’ income. The diversity index of zeros indicated no diversification in the dependent variable for some respondents necessitated the use of the censored and truncated Tobit regression. Thus:

\[Y_i^* = \sum_{j=1}^{9} X_j \beta_j + \mu_i \]

Where: \(Y_i^* \) is the vector of variables indicating the dependent variables in the model;

\[Y_i = P_i = (X_j \beta_j \mu), \text{ if } P_i > P_i^* \quad \text{...(4)} \]

\[0 = (X_j \beta_j \mu), \text{ if } P_i \leq P_i^* \quad \text{...(5)} \]

Where: \(Y_i^* \) is the vector of variables indicating the share of income in fishery from total household income. \(\beta \) is a vector of unknown co-efficient and \(\mu \) is an independently distributed error term. \(X_i \) is a vector of explanatory variables stated explicitly in equation 6 below. \(P_i \) is the diversification depth or intensity defined as \((Z - Y_i)/Z \) and \(P_i^* \) is the diversification intensity, when the diversification line \(Z \) equals the \(Z - Y_i \). The model was estimated using maximum likelihood estimation (MLE) procedure.

\[Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_{10} + \beta_{11} X_{11} + \epsilon \]

(6) (Equation 6 adopted from Oladimeji, 2018)

Where: \(X_1 \) = size of canoes in meters; \(X_2 \) = length of fishing gears (nets) in meters; \(X_3 \) = capacity of outboard engine in horse power; \(X_4 \) = level of investment, (\(\mathbb{N} \)); \(X_5 \) = age (years); \(X_6 \) = household size (number of persons per fisherfolks); \(X_7 \) = level of education (years); \(X_8 \) = credit accessed (Naira); \(X_9 \) = cooperative society (years); \(X_{10} \) = per capita expenditure (naira); \(X_{11} \) = market access (access = 1 and 0 otherwise); \(\beta_0 \) = constant; \(\beta_1 \) to \(\beta_9 \) are coefficients to be estimated and \(\epsilon \) = error term.

The challenge in impact evaluation based on observational data lies on the estimation of the counterfactual of the treated group based on the observations on the untreated group. This is because beneficiaries and non-beneficiaries are very unbalanced; that is, they are different socially, economically and psychologically. The impact of Shiroro dam project on the productivity of fisherfolks were achieved using the propensity score matching (PSM) and Local Average Treatment Effect (LATE) models. The method of propensity score matching (PSM) allows this matching problem to be reduced to a single dimension: that of the propensity score. PSM is defined as the conditional probability that a unit in the full sample receives the treatment, given a set of observed variables (Rosenbaum and Rubin, 1983). It entails computation using either Probit or Logit regression models. Thus:
p(Xi) = P(d=1|Xi)................................. (7)

Where p(Xi) is a consistent estimate of the propensity score evaluated at Xi while Xi were the variables used for the matching. P score was estimated in the first stage and computed for each fisherfolk, the actual matching was carried out after p score was computed. The estimated propensity scores were used to estimate the Average Treatment Effect on the Treated (ATT) which was the parameter of interest as

\[
\delta = E \left(\frac{Y^1 - Y^0}{D_1 = 1} \right) = E \left(\frac{E \left(\frac{Y^1}{p(Z_i)} - E \left(\frac{Y^0}{p(Z_i)} \right) \right)}{D_1 = 1} \right)
\]

……………………………………………… (8)

(Adopted from Idi et al., 2019)

Where: P (Z_i) is the P-Score, Y_1 and Y_0 are the Shiroro dam fisherfolks beneficiaries and non-beneficiaries respectively in the two counterfactual situations of receiving treatment (fisherfolks income benefit from Shiroro dam and non-treatment (non-beneficiaries of Shiroro dam. Two important properties of the PSM are the balancing property and conditional independence assumption (CIA). Testing for this property is important to ascertain if fisherfolks behavior within each group is actually similar. Related to the balancing of P-score is CIA, which states that participating in fishery in Shiroro dam is random and uncorrelated with the fish output by the fisherfolk from the dam, once the set of observable characteristics, Z are controlled. A further requirement is the common support condition, which requires that persons with the same values of covariates Z have positive possibilities of being both beneficiaries and non-beneficiaries (Heckman et al., 1999, Idi et al., 2019).

Furthermore, Heckman and Hotz, (1989), Hünemund and Czarnitzki, (2016) adopted from Imbens, and Angrist (1994), opined that Local Average Treatment Effect (LATE) estimator could be used to remedied the noncompliance problems experienced in estimation of the average treatment effect (ATE) for the population. LATE estimation was achieved using equation 9 below:

\[
E[Y^1 - Y^0 | D = C] = \frac{E[Y | IZ = 1] - E[Y | IZ = 0]}{E[D | IZ = 1] - E[D | IZ = 0]}
\]

……………………………………………… (9)

T-statistics was used to determine the impact of Shiroro dam project on the livelihood diversification of fisherfolks. This was achieved to test whether there is significant difference between returns from fisheries from dam versus other activities of fisherfolks in the study area. It is a useful technique for comparing mean values of two sets of numbers. The formula is given by:

\[
t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}
\]

(Adopted from Oladimeji et al., 2016)

Where: \(\overline{X}_1 \) = average return from fisheries for beneficiaries’ fisherfolks (fishery in Shiroro dam) \(\overline{X}_2 \) = average return from non- beneficiaries’ fisherfolks. \(\sigma_1^2 \) = variance from return of beneficiaries, \(\sigma_2^2 \) = variance for return from non-beneficiaries. n_1 and n_2 = sample size of beneficiaries and non-beneficiaries fisherfolks.

RESULTS AND DISCUSSION

Classification of Livelihood Diversification

The shares of incomes from different livelihood activities are summarized by sectors in Table 1. Although the activities were important sources of income for all the fisherfolks sampled, fishing activities were the most important source of income (68.3%) which is in tandem with study of Oladimeji (2018) on determinants of livelihood diversification among rural artisanal fisherfolks in north-central and north-western Nigeria. However, off-fish activities which accounted for 22.66 % of total fisherfolks’ income were largely made up of crop production which constitutes about 65.5 % of off-fish sectoral activities. Others such as livestock / poultry (2.98 %), agric. wage labour (2.26 %) and agriculture input or output items (1.49%) were also captured but of lesser important.

Factors Influencing Extent of Livelihood Diversification among Fisherfolks

Table 2 shows the factors influencing extent of livelihood diversification among Fisherfolks in Shiroro dam. In the regression model, the coefficients of length of fishing gears (-0.400), capacity of outboard engine (-0.005), household size (0.008), credit accessed for fishery (0.052) and per capita expenditure (0.306) were statistically significant factors influencing the extent of livelihood diversification of Shiroro dam fisherfolks.

Table 1. Summary of average income earnings by activities per annum (n=363)
The Impact of Shiroro Dam Project on Productivity and Livelihood Diversification

Table 2. Estimate of factors influencing extent of livelihood diversification of fisherfolks

| Variable | Parameter | Coefficient | Std Error | T-value | P > |Z| |
|----------|-----------|-------------|-----------|---------|-----|-----|
| Constant | β_0 | 0.203* | 0.115 | 1.76 | 0.062 |
| size of canoes | β_1 | 0.076 | 0.106 | 0.72 | 0.209 |
| length of fishing gears | β_2 | -0.400** | 0.196 | -2.04 | 0.037 |
| capacity of outboard engine | β_3 | -0.005*** | 0.001 | -5.00 | 0.000 |
| investment | β_4 | 0.002 | 0.002 | 1.00 | 0.168 |
| Age | β_5 | -0.105 | 0.300 | -0.35 | 0.421 |
| household size | β_6 | 0.008*** | 0.003 | 2.67 | 0.001 |
| level of education | β_7 | 0.016 | 0.025 | 0.65 | 0.250 |
| credit accessed for fishery | β_8 | 0.052* | 0.028 | 1.87 | 0.051 |
| cooperative society | β_9 | -0.006 | 0.007 | -0.85 | 0.163 |
| per capita expenditure | B_{10} | 0.306** | 0.148 | 2.07 | 0.030 |
| market access | B_{11} | -0.001 | 0.001 | -1.06 | 0.156 |

Diagnostic statistics

- Number of observation: 363
- Log likelihood ratio: -72.09
- Restricted log likelihood ratio: -91.01
- Chi square (χ^2): 14.07
- Pseudo R^2: 0.185
- Probability > χ^2: 0.000

Source: Field survey, 2019; Note: *** P<0.01 and **<0.05 level of probability.

The coefficients of length of fishing gears (-0.400) and capacity of outboard engine (-0.005) were statistically significant at 5 and 1 % respectively which implies that fisherfolks without improved fishing gears and employ manual outboard such as paddle tend to have an array of livelihood sources and their distribution is more uneven. The availability of modern fishing gears enable the fisherfolks to rely more on actual fishing and exploit distance fishery resources which invariably increase their income. In remote areas there are no income possibilities outside self-employment within agriculture.

Conversely, the coefficients of household size (0.008) and per capita expenditure (0.306) were

Source: Field survey, 2019; Note: *** P<0.01 and **<0.05 level of probability.
positive and statistically significant at 1 and 5% level of probability respectively.

This suggests that fisherfolks with large family size tend to diversify more to cater for the member of household and improve their per capita expenditure. This result is consistent with several studies: Schwarze and Zeller, (2005), Oladimeji et al. (2015), Femi and Adelomo, (2016), Oladimeji, (2018), that fisherfolks with large household size and dependents have likelihood to engage in supplementary earnings aside their main occupation. This could be for either consumption or to foster education of their wards and family health care or to minimize income fluctuation or shocks as experienced by the sampled fisherfolks. In addition, credit had significant positive effect on livelihood diversification of the sampled fisherfolks in line with Schwarze and Zeller, (2005) and Oladimeji, (2018) suggesting that better-off households through credit diversify more out of the fishery sector than less privilege ones. Credit seems to enable household members to extend their participation to fishery and new activities.

Impact of Shiroro dam project on the livelihood diversification of fisherfolks

The result of impact of Shiroro dam on the income accrued to fisherfolks was achieved through t-test as depict in Table 3. The result showed that the mean income of fisherfolks who benefitted from Shiroro dam project (₦56,119.06 per annum) for fisheries activities is greater than that of counterfactual (₦37,876.80). The t-statistics was statistically significant at 1% which implies that there is a significant difference between the accrued incomes of fisherfolks that participated in fishing enterprise compared to non-participants. Therefore it can be concluded that the Shiroro dam project impact on the livelihood of fisherfolks.

Variables	Beniciaries	Non-beneficiaries
Mean (₦)	56,119.062	37,876.800
Variance	39.0085	45.752
Observation	363	267
Hypothesized mean difference	0	
Df	628	
t-statistics	5.770081***	
P(T≤ t) one tail	0.200827E-03	
t critical one tail	1.8608275	
P(T≤ T) two tail	0.4973341E-04	
t critical two tail	2.28342	

*** denote statistically Significant at 1%

Impact of Shiroro dam on Productivity of fisherfolks

The impact of Shiroro dam on fisherfolks’ productivity was achieved through Propensity Score Matching (PSM) and Local Average Treatment Effect (LATE) model. The two analytical tools concurrently tackled the problem of selection bias and particularly non-compliance or problem of endogeneity.

For propensity score, nearest neighbor (NN) matching algorithm was used to match the socio-economic characteristics between beneficiary and non-beneficiaries fisherfolks based on the t-value, Rubin B and Rubin R in Table 4. NN also uses the propensity score of individuals alike in the treated and control group to construct the counterfactual outcome with its major advantage of having lower variance which is achieved because more information is used.

Propensity scores were obtained through Logit regression model and fisherfolks involved in the Shiroro dam were matched on the basis of the proximity of their propensity scores of participating...
to fisherfolks in the counterfactual using individual socio-economic characteristics to form matched pairs of observational similar individual characteristics (Table 5). All other fisherfolks whose propensity scores for involvement in Shiroro dam fishing were different from the range of scores for the Shiroro fisherfolks were dropped from the analysis. The propensity score is a probability, so the average probability in the treatment for fisherfolks was 0.549.

The results of the impact of Shiroro dam on productivity of fisherfolks are presented in Table 6. The result revealed that the average output per unit of inputs of the Shiroro fisherfolks was 6.0320 kg. This implies increasing return to scale, a unit increase in their inputs will lead to 6.032 units increase in the fish harvest. This result seems to be on high side simply because most fisherfolks committed little investment into artisanal fishery and take advantage of the opportunity of the dam for higher harvest. Therefore, the average impact estimation shows that involvement in Shiroro dam had a significant and positive impact on productivity of the fisherfolks.

Table 5: Maximum likelihood estimates of the propensity score for Shiroro dam

Variable	β	SE	T-value	P >	Z		Marginal effect
Constant	-1.087***	-0.359	-3.03	0.000		0.0965	
Age	0.321*	0.164	1.96	0.059		0.0063	
Marital status	0.087	0.105	0.83	0.521		0.0732	
Household size	-0.390**	0.188	-2.08	0.036		-0.0421	
Cooperative	0.457	0.427	1.07	0.347		0.127	
Education	0.521	0.521	1.00	0.357		0.0086	
Credit	-0.076***	0.019	-3.91	0.000		-0.07231	
LGA (dummy)	0.342*	0.195	1.75	0.072		0.214	
LR Chi² (7)	73.09						
Prob > chi²	0.000						
Pseudo R²	0.324						
Wald test	0.087						
Observations	630						

Note: *** P<0.01 and **<0.05 levels of probability.

Table 6: Impact of Shiroro dam on fisherfolks’ productivity

Estimation by	Sample	Treated	Control	β	SE	T-value
Output-input ratio	Unmatched	6.0320	5.7002	0.3318***	0.0987	3.36
	ATT	7.9725	5.1452	2.8273***	0.8754	3.23
	ATU	3.4290	3.3008	0.1282**	0.0562	2.28
	ATE			0.6654		
WALD Chi² test				0.50821	0.1965	2.58
Participant versus				1.9432	0.0976	19.91
Non-participant				1.0332	0.406	2.54
Observed diff				0.9102	0.3908	2.33

Note: treated = beneficiaries and control = non-beneficiaries, Note: *** P<0.01 and **<0.05 levels of probability.

The Treatment Effect on the Treated (ATT) on the average also had a positive impact and increases productivity of the benefitted fisherfolks by 2.8273 (38.1%). This implies that Shiroro dam project positively impacted on the participants’ productivity. The Treatment Effect on the Untreated (ATU) was estimated by matching a similar treated fisherfolks to each non-treated respondent. The result showed that ATU had a significant and positive (0.1282) impact on productivity, this is the counter factual outcome of the treated had it been they were not treated. The Average Effect of the Treatment (ATE) for Shiroro dam fisherfolks has a positive difference of 0.6654 compared to the treated category. The positive impact of Shiroro dam on fisherfolks’ income and productivity is similar to the finding of Idi et al. (2019) on micro-credit utilization and its impact on famers maize output and household food security in Kaduna state, Nigeria.

The LATE estimate was carried out for productivity using WALD chi square estimator proposed by Imbens and Angrist (1994) and adopted by Heckman and Hotz, (1989), Hünermund and Czarnitzki, (2016). For the productivity, the result of its LATE mean difference as shown in Table 6 is that there was a significant difference of 0.9102 in fishery productivity between the beneficiaries and non-beneficiaries. This implies that the productivity of the participants of Shiroro dam fisherfolks were
The study revealed that income from fishery was the most important source of income for fisherfolks in the study area. The hypothesis which stated that Shiroro dam utilization on fish output of the beneficiaries in the study area was conducted using T-test (Table 7). Fisherfolks output involved in Shiroro dam utilization after nearest neighbor matching was 32,980.07 kg while that of fisherfolks who were not involved in the dam utilization was 27,004.05 kg. Consequently, the impact of Shiroro dam utilization on fish harvest (ATT) was 5,976.02 kg. This was statistically significant at 1% level of probability. This implies that the null hypothesis which state that Shiroro dam utilization has no impact on fish harvest of the beneficiaries in the study area was rejected at 1% level of probability. In other words, there is a significant impact of Shiroro dam utilization on fish output of the beneficiaries in the study area.

Table 7. T-test of the impact of Shiroro dam accessibility on productivity of fisherfolks

Variables	Treated	Control	ATT	SE	T-statistics
Fish caught (kg)	32,980.07	27,004.05	5,976.02	901.41	3.00***

Source: Author’s estimates, Note: **<0.01, ATT=Average Treatment Effect on the Treated (Impact)

Table 8. Perception on severity of constraints encountered by Shiroro dam fisherfolks

Component	VH	H	L	N	WS	MS	Rank
Inaccessibility of credit	852	228	80	34	1194	3.29	1st
High cost of fish equipment	792	237	108	32	1196	3.22	2nd
High cost of hired labour	668	255	116	53	1092	3.01	3rd
Inadequate storage facilities	348	555	104	39	1046	2.88	4th
Distance of markets	364	144	264	92	864	2.38	5th
Accessibility to fuel	180	228	354	65	827	2.29	6th
Infestation by hyacinth	168	135	156	197	656	1.81	7th
Climatic variability	216	66	84	245	611	1.68	8th

VH= very high, H=high, L=low, N=not at all, WS= Weighted score, MS= mean score, %MS= percentage mean score

CONCLUSION

The study revealed that income from fishery was the most important source of income for fisherfolks in the study area. The key determinants of livelihood diversification among fisherfolks were the length of fishing gears, capacity of outboard engine, household size, credit accessed for fishery and per capita expenditure. Therefore, income from both artisanal fishery and non-farm could be combined to minimize income stress, fluctuation and shocks.

Fisherfolks should form a formidable social organization to benefit from economy of bulk purchase of farm inputs especially fishing gears and outboard engine, farm advisory services, increased access to credit, and access to other modern fishing techniques.

REFERENCES

Abayomi, K. I., Murtala, A. I., Babatunde, O. and Suleiman, A. (2015). Trend analysis of hydro-meteorological data for river Kaduna at Shiroro dam site, Niger State. Journal of Scientific Research and Reports, 8(5), 1-12.

Bashir, A. and Kyung-Sook, C. (2018): A review of the evaluation of irrigation practice in Nigeria: Past, present and future prospects. Journal of Agricultural research, 13(40), 2087-2097.

Barrett, C. B., Reardon, T. and Webb, P. (2001). Non-farm income diversification and household livelihood strategies in rural
The Impact of Shiroro Dam Project on Productivity and Livelihood Diversification

Agricultural Socio-Economics Journal

Volume XX, Number 3 (2020): 191-200

Africa: concepts, dynamics, and policy implications. Food Policy, 26(4), 315-331.

Bernard, A. S. A., Samuel, A. and Edward E. O. (2014). Determinants of income diversification of farm households in the western region of Ghana. Quarterly Journal of International Agriculture, 53(1), 55-72.

Femi, M. O. and Adelomo B. S. (2016). Farm households’ income sources diversification behavior in Nigeria. Journal of Natural Sciences Research, 6(4), 102-111.

FAO (2012). The state of world fisheries and aquaculture 2010 &2018. Food and Agricultural Organisation of the United Nations, Rome, Italy.

Heckman, J. J. and Hotz, V. J. (1989). Choosing among alternative non-experimental methods for estimating the impact of social programs: the case of manpower training. Journal of the American Statistical Association, 84(408), 862-874.

Heckman, J., Ichimura, H. and Todd, P. (1997). Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Program.” Review of Economic Studies, 64, 605(654).

Hunermund, P. and Czarnitzki, D. (2016). Estimating the Local Average Treatment Effect of R&D Subsidies in a Pan-European Program. Discussion Paper No. 16-039, 42PP.

Idi, A. S. Damisa, M. A., Ahmed, B., Edekhogregor, O. I. and Oladimeji, Y. U. (2019). Macro-credit utilization and as impact on farmers maize output and household food security in Kaduna State, Nigeria. Journal of Agric. and Environment, 15(1), 19-31.

Imbens, G. W. and Angrist J. D. (1994). Identification and estimation of local average treatment effects. Econometrica, 62(2), 467-476.

International Council for Science (ICSU) / the International Social Science Council (ISSC), (2015). Review of targets for the sustainable development goals: The science perspective. A report. 92pp.

Kolo, A. I. (1996). The assessment of physical-chemical parameters of Shiroro Lake and its major tributaries.

Oladimeji, Y. U., Abdulsalam, Z., Damisa, M. A., Ajao, A. M. and Sidi, A. G. (2013). Empirical analysis of artisanal fishery practices and constraints: a synergy to poverty alleviation and sustainable fishery development in north central, Nigeria. Ethiopia Journal of Applied Science and Technology, 4(2), 85 – 102.

Oladimeji, Y. U. and Abdulsalam, Z. (2015). Determinants of participation of rural farm households in non-farm activities in Kwara State, Nigeria: a paradigm of poverty alleviation. Ethiopian Journal of Env Studies and Management, 8(6), 635 – 649.

Oladimeji, Y. U., Abdulsalam, Z., Muhammed-Lawal, A., AdefaLu, L. L., Adepoju, S. A. (2016). Economic analysis and effects of water hyacinth (Eichhornia crassipes) on artisanal fishery of river Niger in north-central Nigeria. Journal of Animal Production Research, 28(2), 338-349.

Oladimeji, Y. U. (2018). Effect of livelihood diversification strategies among rural artisanal fisherfolks in north-central and north-western Nigeria. African Journal of Agriculture Technology and Environment, 8(1), 1-15.

Philip, H., Brown, A., Desiree, T. B., Bryan, T. C., Darrin, M. D., Aaron, T. and Wolf, E. (2008). Modeling the costs and benefits of dam construction from a multidisciplinary perspective. Journal of Environmental Management, 1-8.

Readon, T. (1997). Using evidence of household of income diversification to inform study of rural non-farm labour market in African: World Development, Vol 25, No: 735-47. Resettlement in the Narmada Valley. New Delhi: Oxford University Press.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41-55.

Schwarze, S. and. Zeller, M. (2005). Income diversification of rural households in central Sulawesi, Indonesia. Quarterly Journal of International Agriculture, 44(1), 61-73.

Skinner, J., Niasse, M. and Haas, L. (2009). Sharing the benefits of large dams in West Africa. natural resource issues No. 19. International Institute for Environment a Development, London, UK.
Usman, A. and Ifabiyi, I. (2012). Socio-economic analysis of the operational impacts of shiroro hydropower generation in the lowland.

The World commission on Dams, WCD, (2000). Dams and development: a new framework for decision-making. A report, Earthscan publications Ltd, London and Sterling, VA pp. 404. Available at www.dams.org/report.

Philip, H., Brown, A., Desiree, T. B., Bryan, T. C. Darrin, M. D., Aaron, T. and Wolf, E. (2008). Modeling the costs and benefits of dam construction from a multidisciplinary perspective. Journal of Environmental Management, 1-8.