Bond-bending modes and stability of tetrahedral semiconductors under high pressure: a puzzle of AlN

Ekaterina V. Iakovenko, Michel Gauthier, and Alain Polian

Department of High Pressure Physics, Russian Academy of Science, 142190 Troitsk, Moscow Region, Russia

Physique des Milieus Condensés, Université P&M Curie, F 75252 Paris Cedex 05, France

(Dated: November 8, 2018)

Lattice vibrations of the wurtzite-type AlN have been studied by Raman spectroscopy under high pressure up to the structural phase transition at 20 GPa. We have shown that the widely debated bond-bending E_{2g} mode of w-AlN has an abnormal positive pressure shift up to the threshold of the phase transition, whereas in many tetrahedral semiconductors the bond-bending modes soften on compression. This finding disagrees with the results of ab initio calculations, which give a “normal” negative pressure shift. Combination of high dynamical and low thermodynamical stability of AlN breaks the correlation between the mode Gruneisen parameters for the bond-bending modes and the transition pressure, which holds for CdS, InP, ZnO, ZnTe, ZnSe, ZnS, Ge, Si, GaP, GaN, SiC and BeO.

PACS numbers:

For the last four decades, a rather curious and at first sight surprising phenomenon of softening of tetrahedral semiconductors under compression has been reported in a number of experimental [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and theoretical [11, 12, 13, 14, 15, 16, 17, 18] works. Thus, Si, Ge, A$_{IV}$B$_{VI}$ and A$_{II}$B$_{IV}$ semiconductors have pressure-sensitive phonon modes with negative pressure shifts E_{1u}, E_{2u}, E_{3u}, A_{1g} and E_{2g} [19]. Phonon frequency drop, more pronounced for high-Z materials, reaches about 30% at the threshold of the pressure induced phase transitions, when covalent tetrahedral structures lose their stability and transform to more densely packed arrangements.

Earlier, the only known example of a bond-bending mode having a positive, although weak, pressure shift was the “pure bread” bond-bending E_{2g} mode of the low-Z wurtzite-type BeO [14]. This result was being regarded as an exception until recent Raman measurements found a similar behavior for the E_{2g} mode of the wurtzite-type AIN [20]. Ab initio calculations [21] did not catch this feature, giving a “normal” negative pressure shift for the E_{2g} mode of AlN. This discrepancy deserves special attention, since the bond-bending elasticity is one of the most prominent manifestations of directional covalent bonding, and its pressure behavior should be well accounted for. The point to be made here is that AIN represents a complicated case of covalent versus ionic bonding [22]: although its valence charge distribution is highly ionic [23], AlN adopts the tetrahedrally coordinated wurtzite structure under ambient conditions [24]. Aspiring to clarify the question, we have undertaken a complementary high-pressure Raman study of vibrational modes of the wurtzite-type AIN up to its stability limit at about 20 GPa. The pressure dependence of the low-frequency bond-bending E_{2g} mode is traced up to the threshold of the pressure induced phase transition for the first time.

The AlN samples were 20 μm-thick crystals grown on the sapphire substrate by vapor phase epitaxy. Pressure was produced using the diamond-anvil pressure cell. Compressed helium and methanol-ethanol mixture were used as a pressure-transmitting medium in the first and in the second experimental run, respectively. Pressure was measured in situ by the ruby luminescence technique. The Raman spectra were measured using the THR-1000 triple spectrometer equipped with an OSMA detector (the first run), and the Dilor XY double spectrometer equipped with the CCD detector (the second run). An Ar$^+$ laser ($\lambda = 514.5$ nm) was used as a source of excitation. All spectra were recorded in the backscattering geometry at ambient temperature.

For the hexagonal wurtzite structure with the space group $P6_3$mc ($Z = 2$), a factor-group analysis predicts the following six sets of optical modes at the $k = 0$ [25]:

$$
\Gamma_{op} = A_1 + 2B_1 + E_1 + 2E_2,
$$

where A_1, E_1 and E_2 are Raman active modes, and B_1 modes are silent. A_1 and E_1 are also infrared active, and split into the longitudinal and transverse components (LO and TO). The lowest-frequency E_2 mode is a bond-bending mode.

The Raman spectrum of w-AlN has been measured previously under ambient conditions and analyzed in some detail, including the effects of polarization and anisotropy [26, 27, 28]. Our ambient pressure Raman frequencies $\nu_{E_1} = 249$ cm$^{-1}$, $\nu_{A_1,(TO)} = 610$ cm$^{-1}$, $\nu_{E_2} = 657$ cm$^{-1}$, $\nu_{E_1,(TO)} = 669$ cm$^{-1}$, $\nu_{A_1,(LO)} = 890$ cm$^{-1}$, and $\nu_{E_1,(LO)} = 910$ cm$^{-1}$ agree with very reliable data of Ref. [26, 27, 28] within 1%. On increase in pressure, all Raman bands shift continuously to higher phonon energy with no intensity loss to about 18 GPa. Above 18 GPa, the bands weaken and disappear at about 21 GPa in both experimental runs due to the phase transition to the rock salt structure [24, 29]. Representative Raman spectra of w-AlN in the low-energy region as a function of pressure are shown in Fig. 1.
FIG. 1: Raman spectra of AlN as a function of pressure in the low-energy region. The spectral resolution is 0.5 cm$^{-1}$.

FIG. 2: Comparison between the measured and calculated pressure dependence of the Raman frequency for the E_2^1 mode. The squares are the first run data, obtained with compressed helium as a pressure transmitting medium. The triangles are the second run data, obtained with ethanol-methanol mixture as a pressure transmitting medium. The solid line 1 is a linear fit of the first run data. The dotted line 2 is guided for the eye. The lines 3 and 4 are calculated dependences obtained in [21] and [20], respectively. The line 5 is the experimental dependence obtained in [20]. All data are shifted along the vertical axis in order to coincide the 1 atm frequencies with the value 249 cm$^{-1}$ obtained in our first experimental run.

Table II compiles the commonly used mode-Gr"uneisen parameters $\gamma_i = -d\ln \nu_i/d\ln V$ obtained for the bond-bending modes i in a series of tetrahedral compounds [33]. Negative value for γ_i is observed in each case, except for SiC, BeO and AlN. Although SiC has an essentially zero γ_1, its quadratic pressure coefficient is negative [31]. Thus, BeO and AlN appear to be the most stable materials with respect to the bond-bending mode on compression.

This bond-bending stability of AlN looks rather surprising, since its wurtzite phase has a rather limited stability range up to 21 GPa. Indeed, experimentally it has been found that the stability of tetrahedral structures with respect to the bond-bending modes correlates with their absolute stability under pressure in such a way that the frequency drop is faster for less stable compounds. Weinstein [4, 6] has discovered that for six diamond and zinc-blende structure semiconductors ZnTe, Ge, Si, ZnSe,

Expt.	E_2^1	A_1(TO)	E_2^1	E_1(TO)	A_1(LO)	E_1(LO)	
Run 1	0.05(1)	3.8(2)	4.9(2)	4.5(1)	-	-	
Run 2	0.05(1)	4.3(2)	4.65(3)	4.55(6)	4.0(1)	3.6(7)	
Go"ni"a	0.12(5)	4.4(1)	4.99(3)	4.55(3)	-	4.61(1)	
Calc.	Gorczycab	-0.29	4.29	4.79	4.36	-	
	Go"ni"aa	-0.03	3.0	4.2	3.8	3.5	4.0

aRef. [20]. bRef. [21].
TABLE II: Mode-Grüneisen parameters for the bond-bending modes.

Material	Structure	Bond-bending mode	γ_i
CdS	wurtzite	E_2	-2.7a
InP	zinc blende	TA(L)	-2.0a
ZnO	wurtzite	E_2	-1.8a
GaAs	zinc blende	TA(L)	-1.7a
ZnTe	zinc blende	TA(L)	-1.5a
Ge	diamond	TA(L)	-1.52b
Si	diamond	TA(L)	-1.3c
ZnS	zinc blende	TA(L)	-1.8a
GaP	zinc blende	TA(L)	-0.81d
GaN	wurtzite	E_2	-0.426e
SiC	hex.(6H)	E_2	0.0f
BeO	wurtzite	E_2	0.04g
AlN	wurtzite	E_2	0.04h

aRef. 6.
bRef. 10.
cRef. 3.
dRef. 2.
eRef. 8.
fRef. 7.
gRef. 19.
hThis study.

ZnS and GaP there is a remarkable linearity between the mode Grüneisen parameter $\gamma_{TA(X)}$ for the bond-bending TA(X) mode and the transition pressure P_{tr} for these materials. \textit{Ab initio} calculations by Yin and Cohen 15 have given some insight into the nature of this correlation. They have shown that those individual contributions to the total crystal energy of Si and Ge, which stabilize the bond-bending TA(X) mode, are just the same ones, which preserve the diamond structure from rearrangement to more densely packed structures 34. The balance between stabilizing and destabilizing contributions drastically depends on the specific volume, destabilizing contributions becoming stronger under compression.

At present it is possible, following Weinstein and Zallen 4,6, to trace the $\gamma_i - P_{tr}$ correlation to much higher pressures, using recent data for w-GaN 8, SiC-6H 7, 35 and w-BeO 36. The mode Grüneisen parameters determined for the bond-bending TA(L) phonons of InP, GaAs, ZnTe, ZnS, Ge, Si, GaP and for the bond-bending E_2 phonons of CdS, ZnO, AlN, GaN, SiC and BeO are plotted in Fig. 3 as a function of the transition pressure P_{tr} ranging to 140 GPa.

Fig. 3 shows that the γ_i versus P_{tr} points form a smooth curve deviating from linearity at $P_{tr} > 20$ GPa and approaching to zero at $P_{tr} \approx 100$ GPa. On the basis of this curve one may reasonably expect that materials with $\gamma_i > 0$ should be at least as stable under pressure as SiC does. However, the point for AlN falls far afield from the common curve and tends to continue a linear dependence drawn by high-Z materials.

So, we see that a simple universal correlation between the pretransitional behavior of the bond-bending modes and the stability of tetrahedral semiconductors under high pressure does not exist. To our knowledge, the question why AlN combines a high dynamical and a low thermodynamical stability remains still open, and a detailed microscopic treatment, possibly along the direction indicated by Yin and Cohen 12, is required.

The authors wish to thank A. Dobrynin for growing the AlN crystals. E. V. Iakovenko is grateful to A. F. Goncharov for his assistance in Raman measurements.

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{figure3}
 \caption{Correlation between the mode Grüneisen parameter γ_i for the bond-bending TA(L) [E_2] modes and the transition pressure in a series of tetrahedral semiconductors. Solid and dashed lines are guided for the eye. References are given in Table II and in the text.}
\end{figure}

[1] R. T. Payne, Phys. Rev. Lett. 13, 53 (1964).
[2] B. A. Weinstein and G. J. Piermarini, Phys. Lett. A 48, 14 (1974).
[3] B. A. Weinstein and G. J. Piermarini, Phys. Rev. B 12, 1172 (1975).
[4] B. A. Weinstein, Solid State Commun. 24, 595 (1977).
[5] D. Olego and M. Cardona, Phys. Rev. B 25, 1151 (1982).
[6] B. A. Weinstein and R. Zallen, in Light Scattering in Solids IV, edited by M. Cardona and G. Guntherodt (Springer, Heidelberg, 1984).
[7] E. V. Yakovenko, A. F. Goncharov, S. M. Stishov, High Pressure Research 7, 433 (1991).
[8] P. Perlin, C. Jauberthie-Carillon, J. P. Itie, A. San Miguel, I. Grzegory, and A. Polian, Phys. Rev. B 45, 83 (1992).
[9] H. Olijnyk, High Pressure Research 10, 461 (1992).
[10] S. Klotz, J. M. Besson, M. Braden, K. Karch, P. Pavone, D. Strauch, and W. G. Marshall, Phys. Rev. Lett. 79, 1313 (1997).
[11] G. Dolling, R. A. Cowley, Proc. Phys. Soc. 88, 463 (1966).
[12] R. M. Martin, Phys. Rev. 186, 871 (1969).
[13] H. Jex, Phys. Status Solidi (b) 45, 343 (1971).
[14] H. Wendel and R. M. Martin, Phys. Rev. B 19, 5251 (1979).
[15] M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 3259 (1982); 26, 5668 (1982).
[16] K. J. Chang and M. L. Cohen, Phys. Rev. B 31, 7819 (1985); 34, 8581 (1986).
[17] O. H. Nielsen, Phys. Rev. B 34, 5808 (1986).
[18] D. J. Chadi and R. M. Martin, Solid State Communications 19, 643 (1976).
[19] A. P. Jephcoat, R. J. Hemley, H. K. Mao, R. E. Cohen, and M. J. Mehl, Phys. Rev. B 37, 4727 (1988).
[20] A. R. Goñi, H. Siegle, K. Syassen, C. Thomsen, and J.-M. Wagner, Phys. Rev. B 64, 035205 (2001).
[21] I. Gorczyca, N. E. Cristensen, E. L. Peltzer y Blanca, and C. O. Rodriguez, Phys. Rev. B 51, 11936 (1995).
[22] K. Karch and F. Bechstedt, Phys. Rev. B 56, 7404 (1997).
[23] E. Gabe, Y. LePage, and S. L. Mair, Phys. Rev. B 24, 5634 (1981).
[24] W. Harrison, Electronic structure and Properties of Solids (Freeman, San Francisco, 1980).
[25] W. G. Fateley, F. R. Dollish, N. T. McDevitt, and F. F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method (Wiley-Interscience, New York, 1972).
[26] L. E. McNeil, M. Grimsditch, and R. H. French, J. Am. Ceram. Soc. 76, 1132 (1993).
[27] L. Filippidis, H. Siegle, A. Hoffman, C. Thomsen, K. Karch, and F. Bechstedt, Phys. Status Solidi (b) 198, 621 (1996).
[28] Yu Davydov, Yu. E. Kitaev, A. N. Smirnov, J. Graul, O. Semchionova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, Phys. Rev. B 58, 12 899 (1998).
[29] M. Ueno, A. Onodera, O. Shimomura, K. Takamura, Phys. Rev. B 45, 10123 (1992).
[30] Q. Xia, H. Xia, A. L. Ruoff, J. Appl. Phys. 73, 8198 (1993).
[31] The E_2^1 frequency in the second run was fitted only to 12 GPa.
[32] A sudden rise, observed in the second run at $P > 13$ GPa is obviously associated to the solidification of the ethanol-methanol medium, resulting in a nonuniform sample stress. So, above 13 GPa the data obtained in hydrostatic conditions with compressed helium as a pressure transmitting medium (the first run) are the most reliable ones.
[33] The mode-Gruneisen parameters $\gamma_i = -d \ln \nu_i / d \ln V$ are related at zero pressure with the coefficients ν_i' by the equation $\gamma_i = (B_0 / \nu_0^i) \nu_i'$, where ν_i' is the mode frequency and B_0 is the bulk modulus at ambient pressure.
[34] Namely, the electronic contributions (i.e., the resulting contribution from the electronic kinetic energy, the electron-core interaction energy, the electron-electron Coulomb energy, and the electronic exchange and correlation energy) favor phases with low coordination numbers and stabilize the bond-bending TA(X) mode of the diamond structure, while the core-core Coulomb energy (the Ewald energy) favors phases with high coordination numbers and destabilizes the TA(X) mode.
[35] M. Yoshida, A. Onodera, M. Ueno, K. Takamura, and O. Shimomura, Phys. Rev. B 48, 10587 (1993).
[36] Y. Mori, T. Ikai, K. Takarabe, Abstracts of High Pressure Conference of Japan, 27-29 Nov., 2002, printed in Special Issue of The Review of High Pressure Science and Technology, volume 12, p. 2D05, 2002.