FAST DIRECTIONAL COMPUTATION OF HIGH
FREQUENCY BOUNDARY INTEGRALS VIA LOCAL FFTS

LEXING YING

Abstract. The boundary integral method is an efficient approach for solving time-harmonic acoustic obstacle scattering problems. The main computational task is the evaluation of an oscillatory boundary integral at each discretization point of the boundary. This paper presents a new fast algorithm for this task in two dimensions. This algorithm is built on top of directional low-rank approximations of the scattering kernel and uses oscillatory Chebyshev interpolation and local FFTs to achieve quasi-linear complexity. The algorithm is simple, fast, and kernel-independent. Numerical results are provided to demonstrate the effectiveness of the proposed algorithm.

1. Introduction

This paper is concerned with the solution of time-harmonic acoustic obstacle scattering problems. Let ω be the frequency of the wave field and Ω be the scatterer with boundary $\partial \Omega$. The boundary integral method is an appealing approach for this problem since it typically requires fewer unknowns and provides better accuracy when compared to the volumetric type methods. The main computational task of the boundary integral method is the evaluation of the integral

$$u(x) = \int_{\partial \Omega} G(x,y)f(y)dy, \quad x \in \partial \Omega,$$

where $G(x,y)$ is the Green’s function of the Helmholtz operator at frequency ω, or a similar integral where the kernel is replaced with one of the derivatives of the Green’s function.

The numerical treatment of $u(x)$ requires boundary discretization. For a typical scattering problem, at least a couple of points per wavelength $\lambda = 2\pi/\omega$ is required in order for the solution method to achieve reasonable accuracy. If we assume that both the diameter and the boundary length of Ω
are of order $\Theta(1)$, then the boundary $\partial \Omega$ shall be discretized with a set P of $n = \Theta(1/\lambda) = \Theta(\omega)$ points. Discretizing (1) with an appropriate numerical quadrature scheme results in the following discrete summation problem: for each $x \in P$, evaluate

$$u(x) = \sum_{y \in P} G(x, y) f(y).$$

Direct evaluation of (2) takes $\Theta(n^2)$ steps. This can be computationally intensive for high frequency problems where ω and n are large. Hence, there is a practical need for algorithms that can evaluate (2) rapidly and accurately.

In the past thirty years, a lot of research has been devoted to this problem and several successful algorithms have been proposed. The first, and probably the most well-known approach is the high frequency fast multipole method initiated by Rokhlin in [18, 19] and further developed in [6, 8, 12, 20, 21]. This method follows the structure of the classical fast multipole method for the Laplace equation and uses fast spherical harmonic transforms and diagonal forms to construct the multipole and local expansions efficiently. This method has an $\Theta(n \log n)$ complexity but is rather technical.

The second method is the butterfly algorithm proposed by Michielssen and Boag in [15], where the main observation is that the interaction between two regions under certain geometric configuration is numerically low-rank even for high frequency scattering problems. The complexity of this algorithm is $\Theta(n \log^2 n)$ with a relatively large prefactor.

A third method is the directional FMM-type algorithm proposed by Engquist and Ying in [10, 11], where the concept of a directional parabolic separation condition is introduced to construct directional low-rank approximations between certain square regions and wedges with narrow opening angle. This algorithm has a $\Theta(n \log n)$ complexity and the advantage of being kernel-independent. Other algorithms that rely on this directional low-rank idea include [2, 14].

While all the above methods are based on hierarchical partitioning of the boundary, methods based on the fast Fourier transform [4, 5] are also used widely. These methods are relatively easy to implement, but have superlinear complexity like $\Theta(n^\alpha \log n)$ with $\alpha = 1.5$ for example.

In this paper, we introduce a new algorithm for 2D problems. This algorithm leverages the directional idea of [10, 11] and uses oscillatory Chebyshev interpolation and local FFTs to speed up the computation. This new method has a $\Theta(n \log^2 n)$ complexity and is conceptually much simpler than the previous hierarchical methods. The rest of this paper is organized as follows. Section 2 explained the algorithm in detail. Section 3 provides numerical results and discussions are given in Section 4.
2. Algorithm

2.1. Notations. In 2D, the Green’s function of the Helmholtz equation is given by

\[G(x, y) = \frac{i}{4} H^1_0(\omega|x - y|) \]

and \(\lambda = 2\pi/\omega \) is the wavelength. To simplify the problem, we assume that the domain \(\Omega \) has a \(C^2 \) boundary and that both its diameter and its boundary length \(L \) are of order \(\Theta(1) \) and let \(\rho: \partial \Omega \to [0, L] \) be the arclength parameterization of the boundary. The extension to piecewise \(C^2 \) boundary is quite straightforward and requires little extra effort.

We also assume without loss of generality that the length \(L \) of \(\partial \Omega \) is equal to \(4q \lambda \), where \(q > 0 \) is an integer. The actual number \(4q \) is not important but it makes the presentation of the algorithm simpler. Under these assumptions, it is clear that \(\lambda = \Theta(1/4^q) \) and \(\omega = \Theta(4^q) \).

Following the typical practice of using a constant number \(p \) of points per wavelength, we discretize the boundary \(\partial \Omega \) with a set \(P \) of \(n = 4^q p \) equally-spaced sampling points.

2.2. Existence of low-rank approximation. A function \(H(x, y) \) with \(x \in X \) and \(y \in Y \) is said to have a separated approximation of \(n \) terms with relative accuracy \(\epsilon \), if there exist functions \(\{\alpha_i(x)\}_{1 \leq i \leq n} \) and \(\{\beta_i(y)\}_{1 \leq i \leq n} \) such that

\[|H(x, y) - \sum_{i=1}^{n} \alpha_i(x)\beta_i(y)| \leq \epsilon |H(x, y)|. \]

The following result is the theoretical foundation of new algorithm.

Theorem 1. Consider two rectangles

\[R_1 = \left[\frac{d}{2} \lambda, \frac{3d}{2} \lambda \right] \times \left[-\frac{h_1}{2} \lambda, \frac{h_1}{2} \lambda \right], \]

\[R_2 = \left[-\frac{3d}{2} \lambda, -\frac{d}{2} \lambda \right] \times \left[-\frac{h_2}{2} \lambda, \frac{h_2}{2} \lambda \right]. \]

Suppose that \(d > 1 \) and \(d \geq 2 \max(h_1, h_2)^2 \). Then, for each \(\epsilon > 0 \) sufficiently small, there exists an \((\omega, d) \)-independent constant \(C(\epsilon) \) such that \(G(x, y) = \frac{i}{4} H^1_0(\omega|x - y|) \) with \(x \in R_1 \) and \(y \in R_2 \) has a separated approximation of \(C(\epsilon) \) terms with relative accuracy \(\epsilon \).

The main point of the theorem is that the number of terms \(C(\epsilon) \) is independent of \(\omega \) and \(d \). Therefore, even if \(\omega \) and \(d \) grow, the number of terms remains uniformly bounded. For this reason, such a separated approximation is called low-rank.

Proof. The geometric setting is illustrated in Figure 1. We first observe that \(G(x, y) \) can be written as

\[G(x, y) = \exp(i\omega|x - y|)G_0(|x - y|). \]
where $G_0(|x - y|)$ is a non-oscillatory real analytic function (see [1] for example). A low-rank separation approximation for $G_0(|x - y|)$ with relative error ϵ can be constructed via Taylor expansion or Chebyshev interpolation. Hence, the remaining task is to find a low-rank separated approximation for $\exp(i\omega|x - y|)$ with relative accuracy ϵ. For $x = (x_1, x_2) \in R_1$ and $y = (y_1, y_2) \in R_2$, we write

$$\exp(i\omega|x - y|) = \exp(i\omega(x_1 - y_1)) \exp(i\omega(|x - y| - (x_1 - y_1))).$$

As the first term on the right hand side is obviously separated, we only focus on the second term, which can be rewritten as

$$\exp(i\omega(|x - y| - (x_1 - y_1))) = \exp\left(i\omega(x_1 - y_1)\left(\sqrt{1 + \frac{|x_2 - y_2|^2}{|x_1 - y_1|^2}} - 1\right)\right).$$

We denote the last term by η and decompose its calculation into multiple steps by introducing

$$\xi = \frac{1}{|x_1 - y_1|^2}, \quad \alpha = |x_2 - y_2|^2\xi, \quad \beta = \sqrt{1 + \alpha} - 1,$$

$$\gamma = i\omega(x_1 - y_1)\beta, \quad \eta = \exp(i\gamma).$$

For a quantity δ, we use the notation $\text{lrsa}(\delta)$ to stand for a separated approximation of δ with a number of terms that is (ω, d)-independent and with a relative error bounded by a constant multiple of ϵ.

For $\xi = 1/|x_1 - y_1|^2$, applying a truncated Taylor expansion of x_1 at the center of R_1 with relative error ϵ gives a low-rank separated approximation $\text{lrsa}(\xi)$ for which the number of terms is (ω, d)-independent due to scale invariance:

$$\text{lrsa}(\xi) = \xi(1 + \epsilon_\xi), \quad |\epsilon_\xi| \lesssim \epsilon.$$

For $\alpha = |x_2 - y_2|^2\xi$, we define $\text{lrsa}(\alpha) = |x_2 - y_2|^2\text{lrsa}(\xi)$. Clearly, by letting $\epsilon_\alpha = \epsilon_\xi$, we have

$$\text{lrsa}(\alpha) = \alpha(1 + \epsilon_\alpha), \quad |\epsilon_\alpha| \lesssim \epsilon.$$

From the relation $\alpha = |x_2 - y_2|^2/|x_1 - y_1|^2$ and the geometric setup in Figure 1 it is clear that $\alpha \in (0, 1/4)$. Hence, by choosing ϵ sufficiently small, one can easily guarantee that $\text{lrsa}(\alpha) \in (0, 1/3)$.

Next, we consider $\beta = \sqrt{1 + \alpha} - 1$. Since both α and $\text{lrsa}(\alpha)$ is between 0 and 1/3, expanding $\sqrt{1 + \alpha} - 1$ with truncated Taylor series at $\alpha = 0$ with
relative error ϵ gives a polynomial $p(\alpha)$ for which the number of terms is independent of ω and d. We then define $\text{lrsa}(\beta) = p(\text{lrsa}(\alpha))$. Notice that

$$
\text{lrsa}(\beta) = (\sqrt{1 + \text{lrsa}(\alpha)} - 1)(1 + \epsilon) \\
= (\sqrt{1 + \alpha(1 + \epsilon_\alpha)} - 1)(1 + \epsilon) \\
= (\sqrt{1 + \alpha} - 1)(1 + C\epsilon_\alpha)(1 + \epsilon) \\
= (\sqrt{1 + \alpha} - 1)(1 + C\epsilon_\alpha)(1 + \epsilon) \\
= \beta(1 + C\epsilon_\alpha)(1 + \epsilon),
$$

where C is a uniformly bounded constant. By defining $\epsilon_\beta = (1 + C\epsilon_\alpha)(1 + \epsilon) - 1$, we have

$$
\text{lrsa}(\beta) = \beta(1 + \epsilon_\beta), \quad |\epsilon_\beta| \lesssim \epsilon.
$$

For $\gamma = i\omega(x_1 - y_1)\beta$, we define $\text{lrsa}(\gamma) = i\omega(x_1 - y_1)\text{lrsa}(\beta)$ and $\epsilon_\gamma = \epsilon_\beta$. Clearly,

$$
\text{lrsa}(\gamma) = \gamma(1 + \epsilon_\gamma), \quad |\epsilon_\gamma| \lesssim \epsilon.
$$

An easy but essential calculation also shows that

$$
\gamma = i\omega(x_1 - y_1)\left(\sqrt{1 + \frac{|x_2 - y_2|^2}{|x_1 - y_1|^2}} - 1\right)
$$

is of order $O(1)$ for $x \in R_1$ and $y \in R_2$. Then it follows that $\text{lrsa}(\gamma)$ is also of order $O(1)$.

Finally, consider $\eta = \exp(i\gamma)$. As both γ and $\text{lrsa}(\gamma)$ are of order $O(1)$, applying truncated Taylor expansion to $\exp(i\gamma)$ near $\gamma = 0$ with relative error ϵ gives a polynomial $q(\gamma)$ with an (ω, d)-independent number of terms. We then define $\text{lrsa}(\eta) = q(\text{lrsa}(\gamma))$ and have

$$
\text{lrsa}(\eta) = q(\text{lrsa}(\gamma)) = \exp(i\text{lrsa}(\gamma))(1 + \epsilon) \\
= \exp(i\gamma)\exp(i\text{lrsa}(\gamma) - \gamma))(1 + \epsilon) \\
= \exp(i\gamma)\exp(i\gamma\epsilon_\gamma)(1 + \epsilon) \\
= \exp(i\gamma)(1 + C\gamma\epsilon_\gamma)(1 + \epsilon).
$$

where C is uniformly bounded from the fact that $\gamma = O(1)$ and $\text{lrsa}(\gamma) = O(1)$. By defining $\epsilon_\eta = (1 + C\gamma\epsilon_\gamma)(1 + \epsilon) - 1$, one has

$$
\text{lrsa}(\eta) = \eta(1 + \epsilon_\eta), \quad |\epsilon_\eta| \lesssim \epsilon.
$$

This shows that $\exp(i\omega|x - y|)$ has a low-rank separated approximation with an (ω, d)-independent number of terms and relative error $O(\epsilon)$. Combined with the approximation for $G_0(|x - y|)$, we conclude that $G(x, y)$ has a low-rank separated approximation with an (ω, d)-independent number of terms and relative error $O(\epsilon)$.

At this point, it is clear that in order to get a relative error strictly bounded by ϵ, we only need to repeat the above argument by pre-dividing ϵ by a uniform constant factor.
2.3. Setup algorithm. We call that the length of $\partial \Omega$ is $4q\lambda$. The setup algorithm first generates a complete binary tree structure of $\partial \Omega$ by bisecting it into segments of equal length recursively. The process is stopped when a segment is of length $m\ell\lambda$, where $m\ell$ is a constant typically set to 2 or 4. A segment at the final level is called a leaf and it contains $m\ell p$ discretization points. A segment T is called almost-planar if its length is bounded by $2q\lambda/\sqrt{\kappa_T}$, where κ_T is the maximum of the absolute value of the curvature within the segment T.

The key component of the setup algorithm is how to compress the interaction between two segments. Consider two segments T and S and let

- c_T and c_S be the centers of T and S,
- t_T and t_S be the tangent directions at c_T and c_S, and
- $a_{TS} = (c_T - c_S)/|c_T - c_S|$ be the unit vector pointing from c_S to c_T (see Figure 2).

![Figure 2. The geometric setting for constructing low-rank approximation between two segments T and $S.$](image)

The pair (T, S) is called parabolically separated if T and S can be enclosed in two rectangles R_1 and R_2 that satisfy the condition of Theorem 1. More precisely, we define

- ℓ_{TS} to be the line passing through the centers c_T and c_S,
- $w_T\lambda$ and $w_S\lambda$ to be the lengths of the projections of T and S onto ℓ_{TS},
- $d_{TS}\lambda$ to be the distance between the projections, and
- $h_T\lambda$ and $h_S\lambda$ to be the lengths of the projections of T and S, respectively, onto the direction a_{TS}^{-1}.

With these definitions, (T, S) is parabolically separated if $d_{TS} > 1, d_{TS} > \max(w_T, w_S)$, and $d_{TS} > 2\max(h_T, h_S)^2$. Theorem 1 states that, for a parabolically separated pair (T, S), the interaction between T and S is numerically low-rank. As we shall see, the setup algorithm constructs a low-rank approximation for such a pair when at least one of T and S is also almost-planar.

Let \mathcal{G} be an empty set initially. The algorithm first traverses the tree in a breadth first search. Whenever it reaches an almost-planar segment, the algorithm inserts it into \mathcal{G} and skip the whole subtree starting from it. When it reaches a leaf, the algorithm also inserts it into \mathcal{G}. At the end of
this step, \(\mathcal{G} \) consists of almost-planar segments and non-planar leaves, and they form a disjoint union of the boundary \(\partial \Omega \).

Next, the algorithm starts with a queue \(Q \) of segment pairs, initialized to be \(\{(T, S), T, S \in \mathcal{G}\} \), as well as a set \(\mathcal{F} \), initialized to be empty. When the queue \(Q \) is not empty, the top element is popped out and denoted by \((T, S) \). The algorithm treats the pair \((T, S) \) depending on the types of \(T \) and \(S \).

- If both \(T \) and \(S \) are non-planar leaves, we mark \((T, S) \) as a **dense pair** and insert it into \(\mathcal{F} \).
- Suppose that \(T \) is a non-planar leaf but \(S \) is almost-planar. If \((T, S) \) is parabolically separated, then we mark \((T, S) \) as a **low-rank pair** and insert it into \(\mathcal{F} \). If it is not, one of the following two options is taken.
 - If \(S \) is not at the leaf level, we partition \(S \) evenly into two segments \(S_1 \) and \(S_2 \) and insert \((T, S_1) \) and \((T, S_2) \) into \(Q \).
 - If \(S \) is at the leaf level, we mark \((T, S) \) as a **dense pair** and insert it into \(\mathcal{F} \).
- Suppose that \(T \) is almost-planar but \(S \) is a non-planar leaf. If \((T, S) \) is parabolically separated, then we mark \((T, S) \) as a **low-rank pair** and insert it into \(\mathcal{F} \). If it is not, one of the following options is taken.
 - If \(T \) is not at the leaf level, we partition \(T \) evenly into two segments \(T_1 \) and \(T_2 \) and insert \((T_1, S) \) and \((T_2, S) \) into \(Q \).
 - If \(T \) is at the leaf level, we mark \((T, S) \) as a **dense pair** and insert it into \(\mathcal{F} \).
- Suppose that both \(T \) and \(S \) are almost-planar. If \((T, S) \) is parabolically separated, then we mark \((T, S) \) as a **low-rank pair** and insert it into \(\mathcal{F} \). If it is not, one of the following options is taken.
 - If \(T \) is longer than \(S \), partition \(T \) evenly into two segments \(T_1 \) and \(T_2 \) and insert \((T_1, S) \) and \((T_2, S) \) into \(Q \).
 - If \(S \) is longer than \(T \), partition \(S \) evenly into two segments \(S_1 \) and \(S_2 \) and insert \((T, S_1) \) and \((T, S_2) \) into \(Q \).
 - If \(T \) and \(S \) are of the same length but are not at the leaf level, then partition \(T \) evenly into \(T_1 \) and \(T_2 \) and \(S \) evenly into \(S_1 \) and \(S_2 \) and insert \((T_1, S_1), (T_2, S_1), (T_1, S_2), \) and \((T_2, S_2) \) into \(Q \).
 - Finally if \(T \) and \(S \) are of the same length and at the leaf level, then mark \((T, S) \) as a **dense pair** and insert it into \(\mathcal{F} \).

This process is repeated as long as the queue \(Q \) is not empty. When \(Q \) is empty, the set \(\mathcal{F} \) provides a hierarchical compressed approximation of \((2) \).

2.3.1. Construction of directional low-rank approximation

What is missing at this point is the procedure of constructing a actual low-rank separated approximation. In the setup algorithm, this procedure is used when \((T, S) \) is parabolically separated and at least one of \(T \) and \(S \) is almost-planar.

Let us first consider a low-rank pair \((T, S) \in \mathcal{F} \) where both \(T \) and \(S \) are almost-planar. It is instructive to consider the function \(\exp(i\omega|x - y|) \)
instead of $G(x, y)$ as this is where the oscillations come from. In what follows, we shall use \sim to denote an approximation up to a non-oscillatory multiplicative term.

Let $2^{k_1} \lambda$ and $2^{k_2} \lambda$ be the lengths of T and S, respectively. For a point $x \in T$ and $y \in S$,

$$\exp(i\omega|x - y|) \sim \exp(i\omega a T S \cdot (x - y))$$

$$= \exp(i\omega a \cdot ((x - c_T) + (c_T - c_S) + (c_S - y)))$$

(3)

$$= \exp(i\omega a T S \cdot (x - c_T)) \cdot \exp(i\omega a T S \cdot (c_T - c_S)) \cdot \exp(-i\omega a T S \cdot (y - c_S)),$$

where the approximation in the first line is based on the fact that (T, S) is parabolically separated.

To further approximate the first term in (3), we perform a Taylor expansion for $\rho^{-1}(t)$ near $t = \rho(c_T)$ and evaluate it at $\rho(x)$:

$$|\rho^{-1}(\rho(x)) - (\rho^{-1}(\rho(c_T)) + t_T(\rho(x) - \rho(c_T)))| \leq \frac{1}{2}|\rho(x) - \rho(c_T)|^2 \kappa_T \leq \frac{1}{2}(2^{k} \lambda/\sqrt{\kappa_T})^2 \kappa_T = O(4^{k} \lambda^2) = O(\lambda),$$

where κ_T is the maximum of the absolute value of the curvature in T and here we also use the fact that T is almost-planar. This is equivalent to

$$(x - c_T) = (\rho(x) - \rho(c_T)) \cdot t_T + O(\lambda).$$

Multiplying it with $i\omega a T S$ and taking exponential gives the approximation

(4) $$\exp(i\omega a T S \cdot (x - c_T)) \sim \exp(i\omega a T S \cdot t_T(\rho(x) - \rho(c_T))).$$

For the last term of (3), the same argument works for $(y - c_S)$. Since S is almost-planar, we get

$$(y - c_S) = (\rho(y) - \rho(c_S)) \cdot t_S + O(\lambda),$$

and

(5) $$\exp(-i\omega a T S \cdot (y - c_S)) \sim \exp(-i\omega a T S \cdot t_S(\rho(y) - \rho(c_S))).$$

Noticing that $\omega a T S \cdot t_T \in [-\omega, \omega]$, we partition the interval $[-\omega, \omega]$ uniformly into $2^{k_1+1}m_f$ intervals with a set K_T of $2^{k_1+1}m_f + 1$ gridpoints. Here m_f is a parameter that is typically set to 2 or 4. A key step of the algorithm is to approximate $\omega a T S \cdot t_T$ with a nearby gridpoint. More precisely, we define $[k]T$ to the value of rounding k to the nearest gridpoint in K_T. Since

$$|(\omega a T S \cdot t_T - [\omega a T S \cdot t_T])(\rho(x) - \rho(c_T))| \leq \frac{2\omega}{2^{k_1} + 1} \cdot \frac{1}{2} \cdot \frac{2^{k_1} \lambda}{2} = \frac{2\pi}{4m_f} = O(1),$$

replacing $\omega a T S \cdot t_T$ with $[\omega a T S \cdot t_T]$ in (4) only introduces a non-oscillatory multiplicative term. Therefore,

(6) $$\exp(i\omega a T S \cdot (x - c_T)) \sim \exp(i[\omega a T S \cdot t_T](\rho(x) - \rho(c_T))).$$
Similarly for \(-\omega t_s \cdot t_s\), we partition the interval \([-\omega, \omega]\) uniformly into \(2^{s+1}m_f\) intervals with a set \(K_t\) of \(2^{s+1}m_f + 1\) gridpoints and define \([k]_t\) to the value of rounding \(k\) to the nearest gridpoint in \(K_t\). Again since

\[
|(-\omega t_s \cdot t_s - [-\omega t_s \cdot t_s]s)(\rho(y) - \rho(c_s))| \leq \frac{2\omega}{2^{s+1}m_f} \cdot \frac{1}{2} \cdot \frac{2 f_s \lambda}{2} = \frac{2\pi}{4m_f} = O(1),
\]

replacing \(-\omega t_s \cdot t_s\) with \([-\omega t_s \cdot t_s]s\) in (5) introduces an extra non-oscillatory multiplicative term. Thus

\[
(7) \quad \exp(-i\omega t_s \cdot (y - c_s)) \sim \exp(i[-\omega t_s \cdot t_s]s(\rho(y) - \rho(c_s))).
\]

The reason for introducing the rounding is that:

- \(\exp(ik(\rho(x) - \rho(c_T)))\) for \(x \in T\) and \(k \in K_t\) is a partial Fourier matrix since both \(\rho(x)\) and \(k\) are on a uniform grid.

The same also holds for \(\exp(ik(\rho(y) - \rho(c_S)))\) for \(y \in S\) and \(k \in K_s\). As we shall see, this has an enormous impact on the efficiency of applying the low-rank approximations.

By introducing

\[
\begin{align*}
k^T_t &= [\omega t_st T], \\
k^S_s &= [-\omega t_st S], \\
F_t(x, k) &= \exp(ik(\rho(x) - \rho(c_T))), \quad x \in T, k \in K_t \\
F_s(y, k) &= \exp(ik(\rho(y) - \rho(c_S))), \quad y \in S, k \in K_s
\end{align*}
\]

and applying (6) and (7) to (3), we have

\[
\exp(i\omega|x - y|) \sim F_t(x, k^T_t) \cdot \exp(i\omega(c_T - c_s) \cdot a_T) \cdot F_s(y, k^S_s).
\]

So far, we have been considering the kernel \(\exp(i\omega|x - y|)\). Let us now replace \(\exp(i\omega|x - y|)\) back with the kernel \(G(x, y)\). Since the difference \(G(0)(|x - y|)\) is a non-oscillatory term, the above discussion applies without any change and we have the following representation for \(G(x, y)\)

\[
(8) \quad G(x, y) = F_t(x, k^T_t) \cdot G^{mm}_{TS}(x, y) \cdot F_s(y, k^S_s), \quad x \in T, y \in S,
\]

where the term \(G^{mm}_{TS}(x, y)\) defined via this equation is non-oscillatory in \(x \in T\) and \(y \in S\). The superscript \(mm\) of \(G^{mm}_{TS}\) indicates that the complex exponential modulation is done both for \(T\) and for \(S\). In a more compact operator form, we can write (8) as

\[
(9) \quad G(T, S) = \text{diag}(F_T(\cdot, k^T_T)) \cdot G^{mm}_{TS}(T, S) \cdot \text{diag}(F_S(\cdot, k^S_S)).
\]

Since \(G^{mm}_{TS}(x, y)\) is non-oscillatory, it can be approximated with Chebyshev interpolation in the parametric domain of the boundary. More specifically, we define

- \(m_c\) to be the size of the Chebyshev grid used,
- \(R_T\) be the image (under \(\rho^{-1}\)) of the Chebyshev grid in \(T\) and \(R_S\) be the image of the Chebyshev grid in \(S\),
- \(I_T\) and \(I_S\) to be the interpolation operator for \(T\) and \(S\) associated with the Chebyshev grids \(R_T\) and \(R_S\), respectively.
In the matrix notation, I_T is a matrix with entries given by $I_T(x,j)$ for $x \in T$ and $j \in R_T$ and I_S is a matrix with entries given by $I_S(y,j)$ for $y \in S$ and $j \in R_S$. In an operator form, this approximation reads

$$G_{TS}^{nm}(T,S) \approx I_T \cdot G_{TS}^{nm}(R_T,R_S) \cdot I_S.$$

Putting it together with (9) gives

$$G(T,S) \approx \text{diag}(F_T(:,k_T^{TS})) \cdot I_T \cdot G_{TS}^{nm}(R_T,R_S) \cdot I_S \cdot \text{diag}(F_S(:,k_S^{TS})).$$

Notice that for a pair (T,S), representing this low-rank approximation only requires storing k_T^{TS}, k_S^{TS}, and $G_{TS}^{nm}(R_T,R_S)$.

The above discussion is for the case in which both T and S are almost-planar. However, the setup algorithm also needs to construct low-rank approximations for low-rank pairs in which only one of T and S is almost-planar. For those cases, the oscillatory Chebyshev interpolation is only used for the almost-planar segment while a dense evaluation is used at the other non-planar segment. More precisely, if S is almost-planar, we form the representation

$$G(T,S) = G_{TS}^{m}(T,S) \cdot \text{diag}(F_S(:,k_T^{TS}))$$

and the approximation

$$G(T,S) \approx G_{TS}^{m}(T,R_S) \cdot I_S \cdot \text{diag}(F_S(:,k_T^{TS})),$$

where the superscript $\cdot m$ means that the exponential modulation is done only for S. Similarly if T is almost-planar, we construct the representation

$$G(T,S) = \text{diag}(F_T(:,k_T^{TS})) \cdot G_{TS}^{m}(T,S)$$

and the approximation

$$G(T,S) \approx \text{diag}(F_T(:,k_T^{TS})) \cdot I_T \cdot G_{TS}^{m}(R_T,S),$$

where the superscript $\cdot m$ means that the exponential modulation is done only for T.

2.3.2. Complexity of the setup algorithm. Since Ω has a C^2 boundary, the curvature is uniformly bounded. Let us first estimate the number of segments in \mathcal{G}. From the setup algorithm, it is clear that the length of a segment T in \mathcal{G} is bounded by $\min(2^q \lambda, 2^q \lambda/\sqrt{r_T}) = \Theta(2^q \lambda) = \Theta(\sqrt{\omega} \lambda)$. As the total length of the boundary is $\Theta(1)$, the number of segments in \mathcal{G} is bounded by $\Theta(1/(\sqrt{\omega} \lambda)) = \Theta(\sqrt{\omega})$.

Next, let us consider the number of pairs in \mathcal{F}. Since that the boundary is C^2, for almost all pairs (T,S) in \mathcal{F} the segments T and S have the same length. Consider first the segments of length $2^q \lambda$. As there are 2^q segments of this length, the total number of pairs is bounded by $2^{2q} = \Theta(\omega)$. For length equal to smaller values, a segment T only appears together with a constant number of segments S in its neighborhood. Therefore, the total number of pairs in \mathcal{F} is again $\Theta(\omega)$.

The complexity of the setup algorithm contains three parts:

- The generation of the set \mathcal{F}. It takes $O(\omega \log \omega)$ steps.
The evaluation of the dense pairs. Clearly there are at most \(\Theta(\omega) \) dense pairs. Since each leaf segment contains at most \(O(1) \) points, the dense matrix \(G(T, S) \) has \(O(1) \) entries. Therefore, the evaluation cost of all dense pairs is \(O(\omega) \).

The evaluation of the low-rank pairs. Again, the number of low-rank pairs is at most \(\Theta(\omega) \). In all cases of the low-rank pairs, the matrices \(G_{T,S}^{mm}, G_{T,S}^{m}, \) and \(G_{T,S}^{m} \) have \(O(1) \) entries. Therefore, the evaluation cost of all low-rank pairs is also \(O(\omega) \).

Summing these contributions together gives a \(\Theta(\omega \log \omega) = \Theta(n \log n) \) complexity for the setup algorithm.

2.4. Evaluation algorithm. Now we are ready to describe how to evaluate the sums

\[
u(x) = \sum_{y \in P} G(x, y) f(y), \quad x \in P
\]

efficiently. In the following discussion, we slightly abuse notation by using \(u \) to denote the vector \((u(x))_{x \in P}\) and \(f \) to denote the vector \((f(y))_{y \in P}\). For a segment \(T \), \(u(T) \) stands for the subvector obtained by restricting \(u \) to the points in \(T \). Similarly, \(f(S) \) is the restriction of \(f \) to the points in \(S \).

Initially, we set \(u = 0 \). The algorithm visits all pairs \((T, S) \in \mathcal{F}\). If \((T, S)\) is dense, then

\[
u(T) \leftarrow u(T) + G(T, S) f(S),
\]

where \(\leftarrow \) stands for assignment.

If \((T, S)\) is low-rank and both \(T \) and \(S \) are almost-planar,

(10) \[
u(T) \leftarrow u(T) + \text{diag}(F_T(:, k_{T,S}^T)) \cdot I_T \cdot G_{T,S}^{mm}(R_T, R_S) \cdot I_S^T \cdot \text{diag}(F_S(:, k_{T,S}^S)) \cdot f(S).
\]

If \((T, S)\) is low-rank and only \(S \) is almost-planar,

(11) \[
u(T) \leftarrow u(T) + G_{T,S}^{m}(T, R_S) \cdot I_S \cdot \text{diag}(F_S(:, k_{T,S}^S)) \cdot f(S).
\]

If \((T, S)\) is low-rank and only \(T \) is almost-planar,

(12) \[
u(T) \leftarrow u(T) + \text{diag}(F_T(:, k_{T,S}^T)) \cdot I_T \cdot G_{T,S}^{m}(R_T, S) \cdot f(S).
\]

Direct evaluation of these three formulas results in a \(\Theta(\omega^{3/2}) \) complexity. In order speed up this calculation, the work is split into multiple steps. Let us consider (10), i.e., the situation where both \(T \) and \(S \) are almost-planar.

First, at segment \(S \), one needs to compute

\[
I_S \cdot \text{diag}(F_S(:, k_{T,S}^S)) \cdot f(S).
\]

It turns out to be extremely useful to consider all \(k \in K_S \) altogether instead of one by one:

\[
I_S \cdot \text{diag}(F_S(:, k)) \cdot f(S).
\]

This is equivalent to evaluating for each \(j \in R_S \)

(13) \[
\langle I_S(:, j), F_S(:, k) \odot f(S) \rangle = \langle F_S(:, k), I_S(:, j) \odot f(S) \rangle := \hat{f}(j, k),
\]
where the symbol \odot stands for the entrywise product of two vectors and $\langle \cdot, \cdot \rangle$ is the bilinear product, i.e., $\langle v, w \rangle = \sum_i v_i w_i$. An essential observation from the last equation is that:

- Computing $\hat{f}_S(j, \cdot)$ (i.e., all $k \in K_S$ with a fixed $j \in R_S$) simply requires entrywise product of $f(S)$ with $I_S(:, k)$, followed by an FFT.

Looping through each $j \in R_S$ provides all entries in the $|R_S| \times |K_S|$ matrix $\hat{f}_S(:, \cdot)$.

Second, instead of considering one pair (T, S) at a time, we fix T and consider all pairs for which the first component is T and both T and S are almost-planar. More precisely,

$$u(T) \Leftarrow u(T) + \sum_S \text{diag}(F_T(:, k_{TS}^T)) \cdot I_T \cdot G_{TS}^{mm}(R_T, R_S) \cdot \hat{f}_S(:, k_{TS}^S)$$

$$\Leftarrow u(T) + \sum_{k \in K_T} \sum_{S : k_{TS}^T = k} \text{diag}(F_T(:, k)) \cdot I_T \cdot G_{TS}^{mm}(R_T, R_S) \cdot \hat{f}_S(:, k_{TS}^S)$$

$$\Leftarrow u(T) + \sum_{k \in K_T} \text{diag}(F_T(:, k)) \cdot I_T \cdot \left(\sum_{S : k_{TS}^T = k} G_{TS}^{mm}(R_T, R_S) \cdot \hat{f}_S(:, k_{TS}^S) \right).$$

Motivated by the last equation, we introduce an $|R_T| \times |K_T|$ matrix $\hat{u}_T(:, \cdot)$ defined via

$$\hat{u}_T(:, k) = \sum_{S : k_{TS}^T = k} G_{TS}^{mm}(R_T, R_S) \hat{f}_S(:, k_{TS}^S).$$

Third, we can now write

$$u(T) \Leftarrow u(T) + \sum_{k \in K_T} \text{diag}(F_T(:, k)) \cdot I_T \cdot \hat{u}_T(:, k).$$

To perform this computation efficiently, notice that the last term is

$$\sum_{k \in K_T} \sum_{j \in R_T} \text{diag}(F_T(:, k))I_T(:, j) \hat{u}_T(j, k) = \sum_{j \in R_T} I_T(:, j) \odot \left(\sum_{k \in K_T} F_T(:, k) \hat{u}_T(j, k) \right).$$

An essential observation is that

- for a fixed $j \in R_T$, the sum over $k \in K_T$ can be carried out by an FFT.

Therefore, for each $j \in R_T$, the work is reduced to an FFT followed by an entrywise product.

The above discussion addresses the case where both T and S are almost-planar. For the cases where only one of them is almost-planar, i.e., (11) and (12), the procedure is similar except that the oscillatory Chebyshev interpolation and local FFTs are done only on one side.

To summarize, the evaluation algorithm takes the following steps:

1. Set $u = 0$ and $\hat{u}_T(:, \cdot) = 0$.
(2) For each segment S and for each $j \in R_S$, form $\hat{f}_S(j, :)$ by an entrywise product followed by an FFT, as shown in (13).

(3) For each pair (T, S) in \mathcal{F},
 (a) If (T, S) is dense,
 $$u(T) \leftarrow u(T) + G(T, S)f(S).$$
 (b) If (T, S) is low-rank and both are almost-planar,
 $$\hat{u}_T(:, k^T_{TS}) \leftarrow \hat{u}_T(:, k^T_{TS}) + G_{mm}^{mm}(R_T, R_S)\hat{f}_S(:, k^S_{TS}).$$
 (c) If (T, S) is low-rank and only S is almost-planar,
 $$u(T) \leftarrow u(T) + G_{TS}^{m}(T, R_S)\hat{f}_S(:, k^S_{TS}).$$
 (d) If (T, S) is low-rank and only T is almost-planar,
 $$\hat{u}_T(:, k^T_{TS}) \leftarrow \hat{u}_T(:, k^T_{TS}) + G_{TS}^{mm}(R_T, S)f(S).$$

(4) For each segment T and for each $j \in R_T$, apply an FFT and then an entrywise product to $\hat{u}_T(j, :)$ and add the result to $u(T)$, as shown in (14).

2.4.1. Complexity of the evaluation algorithm. The complexity of the four steps of the evaluation algorithm is estimated as follows.

(1) The cost of the first step is clearly $O(\omega)$.

(2) The FFT for a segment of length $t\lambda$ and tp points take $\Theta(t \log t)$ steps as p is constant. Since there are $O(4^t/t)$ segments of this length, the overall cost is $O(4^t \log t) = O(\omega \log t)$. Now summing over all possible values of t results a complexity of $O(\omega \log^2 \omega)$ for the second step of the algorithm.

(3) Now consider the third step. The matrices $G(T, S)$, $G_{TS}^{mm}(R_T, R_S)$, $G_{TS}^{m}(T, R_S)$, and $G_{TS}^{mm}(R_T, S)$ that appear in all four scenarios all have size $O(1)$. Taking into consideration that there are at most $O(\omega)$ pairs in \mathcal{F}, the cost of this step is $O(\omega)$.

(4) The last step is very similar to the second one. Its cost is $O(\omega \log^2 \omega)$ as well.

Putting these together shows that the complexity of the evaluation algorithm is $O(\omega \log^2 \omega) = O(n \log^2 n)$.

3. Numerical Results

The proposed algorithms are implemented in Matlab and the numerical results in this section are obtained on a desktop computer with a 3.60GHz CPU. The numerical experiments are performed for two domains: (a) an ellipse and (b) a bean-shaped object (shown in Figure 3).

The constants in the algorithm are set as follows.

- The number of points p per wavelength is 8.
- The length of the leaf segment is $m_\ell \lambda$ with $m_\ell = 4$.
- The constant m_f in defining the frequency grid is equal to 2.
• The size m_c of the Chebyshev grid is equal to 6, 8, 10, or 12. This number controls the accuracy of the evaluation algorithm.

We denote the exact values and the numerical approximations by $u_e(x)$ and $u_a(x)$, respectively. To check the error, the exact solution is evaluated at a set S of 100 points and the relative error is estimated by

\[
\left(\frac{\sum_{x \in S} |u_e(x) - u_a(x)|^2}{\sum_{x \in S} |u_e(x)|^2} \right)^{1/2}.
\]

The experiments are performed for the following four operators

\[
\begin{align*}
 u(x) &= (Sf)(x) := \int_{\partial \Omega} G(x,y)f(y)dy, \\
 u(x) &= (Df)(x) := \int_{\partial \Omega} \frac{\partial G(x,y)}{\partial n(y)} f(y)dy, \\
 u(x) &= (D'f)(x) := \int_{\partial \Omega} \frac{\partial G(x,y)}{\partial n(x)} f(y)dy, \\
 u(x) &= (Nf)(x) := \int_{\partial \Omega} \frac{\partial^2 G(x,y)}{\partial n(x)\partial n(y)} f(y)dy,
\end{align*}
\]

which are typically referred as single layer (S), double layer (D), normal derivative of single layer (D'), and normal derivative of double layer (N) [7,16]. These operators are the basic building blocks of the boundary integral methods for solving the Dirichlet and Neumann problems of acoustic wave scattering.

The numerical results for the single layer operator S on the two domains are given in Tables 1 and 2. In these tables,

• m_c is the size of the Chebyshev grid that controls the accuracy of the method,
• ω is the frequency of the wave field,
• n is the number of boundary discretization points,
• T_s is the running time for the setup algorithm,
• T_a is the running times of the application algorithm, and

![Figure 3. The two scatterers used in the numerical tests. (a) an ellipse. (b) a bean-shaped object.](image)
• e is the relative error estimated via (15).

The numerical results for the double layer operator D on the two domains are given in Tables 3 and 4. The numerical results for the normal derivative of the single layer operator D' on the two domains are given in Tables 5 and 6. Finally, the numerical results for the normal derivative of the double layer operator N on the two domains are given in Tables 7 and 8.

m_c	ω	n	T_s	T_a	e
6	5.3e+03	3.3e+04	1.9e+01	1.3e+00	2.4e-04
6	2.1e+04	1.3e+05	8.0e+01	5.5e+00	3.5e-04
6	8.5e+04	5.2e+05	3.3e+02	2.2e+01	2.9e-04
8	5.3e+03	3.3e+04	2.0e+01	1.9e+00	1.0e-05
8	2.1e+04	1.3e+05	8.2e+01	5.6e+00	8.8e-06
8	8.5e+04	5.2e+05	3.3e+02	2.4e+01	1.3e-05
10	5.3e+03	3.3e+04	2.1e+01	2.0e+00	9.9e-07
10	2.1e+04	1.3e+05	8.4e+01	6.1e+00	7.8e-07
10	8.5e+04	5.2e+05	3.4e+02	2.6e+01	5.3e-07
12	5.3e+03	3.3e+04	2.2e+01	2.2e+00	2.0e-08
12	2.1e+04	1.3e+05	8.8e+01	6.6e+00	2.2e-08
12	8.5e+04	5.2e+05	3.6e+02	2.9e+01	2.7e-08

Table 1. Numerical results of operator S for the ellipse.

m_c	ω	n	T_s	T_a	e
6	5.2e+03	3.3e+04	2.6e+01	2.0e+00	7.6e-04
6	2.1e+04	1.3e+05	1.0e+02	6.6e+00	9.1e-04
6	8.3e+04	5.2e+05	4.2e+02	3.0e+01	9.4e-04
8	5.2e+03	3.3e+04	2.7e+01	2.4e+00	5.6e-05
8	2.1e+04	1.3e+05	1.1e+02	7.0e+00	5.4e-05
8	8.3e+04	5.2e+05	4.3e+02	3.0e+01	7.5e-05
10	5.2e+03	3.3e+04	2.8e+01	2.5e+00	2.2e-06
10	2.1e+04	1.3e+05	1.1e+02	7.4e+00	2.3e-06
10	8.3e+04	5.2e+05	4.4e+02	3.2e+01	2.7e-06
12	5.2e+03	3.3e+04	2.9e+01	2.7e+00	1.9e-07
12	2.1e+04	1.3e+05	1.2e+02	7.9e+00	3.1e-07
12	8.3e+04	5.2e+05	4.7e+02	3.4e+01	3.5e-07

Table 2. Numerical results of operator S for the bean-shaped object.

The numerical results show that both the setup and the evaluation algorithms scale linearly with respect to ω and n. The log-square factor $\log^2 \omega$ of the application algorithm is not significant. The running time reported here are obtained with our current Matlab implementation. We expect a careful
C/C++ or Fortran implementation to exhibit much lower absolute running times. The relative error is clearly controlled by the size of the Chebyshev grid m_c. Even for relative small Chebyshev grids, the algorithms achieve good accuracy. An attractive feature of the new algorithms is that once the kernel function is provided the algorithms are fully kernel-independent.

4. Discussions

This paper presented a new directional algorithm for rapid evaluation of high frequency boundary integrals via oscillatory Chebyshev interpolation and local FFTs. This algorithm is conceptually simple, fast, and kernel-independent.
Among the previously presented algorithms, this algorithm shares with the algorithm in [10] the idea of using directional low-rank separated approximations. However, in [10] the directional upward and downward equivalent sources are computed in upward and downward passes in a recursive fashion. In this algorithm, the low-rank separated approximations are computed instead using local FFTs combined with oscillatory Chebyshev interpolation. This makes the current algorithm much simpler to implement.

Though the paper presented the algorithms in the case of smooth boundaries, they work for piecewise smooth boundaries without much modification. One assumption is that the discretization points are equally spaced.
Table 7. Numerical results of operator N for the ellipse.

m_c	ω	n	T_s	T_α	e
6	5.3e+03	3.3e+04	2.4e+01	2.3e+00	6.9e-04
6	2.1e+04	1.3e+05	1.0e+02	5.3e+00	4.2e-04
6	8.5e+04	5.2e+05	4.0e+02	2.3e+01	3.1e-04
8	5.3e+03	3.3e+04	2.5e+01	1.9e+00	2.0e-05
8	2.1e+04	1.3e+05	1.0e+02	5.8e+00	1.3e-05
8	8.5e+04	5.2e+05	4.2e+02	2.4e+01	1.6e-05
10	5.3e+03	3.3e+04	2.7e+01	2.0e+00	4.5e-07
10	2.1e+04	1.3e+05	1.1e+02	6.2e+00	1.3e-06
10	8.5e+04	5.2e+05	4.4e+02	2.6e+01	7.4e-07
12	5.3e+03	3.3e+04	2.9e+01	2.2e+00	3.0e-08
12	2.1e+04	1.3e+05	1.2e+02	6.7e+00	2.9e-08
12	8.5e+04	5.2e+05	4.7e+02	2.8e+01	2.0e-08

Table 8. Numerical results of operator N for the bean-shaped object.

m_c	ω	n	T_s	T_α	e
6	5.2e+03	3.3e+04	3.2e+01	2.6e+00	1.2e-03
6	2.1e+04	1.3e+05	1.3e+02	6.6e+00	1.1e-03
6	8.3e+04	5.2e+05	5.1e+02	3.0e+01	1.4e-03
8	5.2e+03	3.3e+04	3.5e+01	2.4e+00	1.0e-04
8	2.1e+04	1.3e+05	1.3e+02	7.0e+00	1.2e-04
8	8.3e+04	5.2e+05	5.3e+02	3.0e+01	1.2e-04
10	5.2e+03	3.3e+04	3.5e+01	2.5e+00	4.2e-06
10	2.1e+04	1.3e+05	1.4e+02	7.4e+00	4.6e-06
10	8.3e+04	5.2e+05	5.6e+02	3.2e+01	3.4e-06
12	5.2e+03	3.3e+04	3.8e+01	2.8e+00	5.1e-07
12	2.1e+04	1.3e+05	1.5e+02	8.0e+00	3.4e-07
12	8.3e+04	5.2e+05	6.1e+02	3.4e+01	5.9e-07

according to the arclength parameterization. This assumption can be relaxed if the parameterization is a smooth function of the arclength. For an irregular discretization, the non-uniform FFTs [3, 9, 13, 17] can be used instead. The main topic for future work is the extension of this approach to the 3D boundary integral formulations of the scattering problems.

REFERENCES

[1] Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR1225604 (94b:00012)

[2] M. Bebendorf, C. Kuske, and R. Venn, Wideband nested cross approximation for Helmholtz problems, 2012. SFB 611, Preprint 536, submitted.
1. G. Beylkin, *On the fast Fourier transform of functions with singularities*, Appl. Comput. Harmon. Anal. 2 (1995), no. 4, 363–381. MR1354915 (96i:65122)
2. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, *Aim: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems*, Radio Science 31 (1996), no. 5, 1225–1251.
3. Oscar P. Bruno and Leonid A. Kunyansky, *A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications*, J. Comput. Phys. 169 (2001), no. 1, 80–110. MR1829284 (2002b:65188)
4. R. Coifman, V. Rokhlin, and S. Wandzura, *The fast multipole method for the wave equation: a pedestrian prescription*, Antennas and Propagation Magazine, IEEE 35 (1993June), no. 3, 7–12.
5. David Colton and Rainer Kress, *Inverse acoustic and electromagnetic scattering theory*, Third, Applied Mathematical Sciences, vol. 93, Springer, New York, 2013. MR2986407
6. Eric Darve, *The fast multipole method. I. Error analysis and asymptotic complexity*, SIAM J. Numer. Anal. 38 (2000), no. 1, 98–128 (electronic). MR1770344 (2001e:65047)
7. A. Dutt and V. Rokhlin, *Fast Fourier transforms for nonequispaced data*, SIAM J. Sci. Comput. 14 (1993), no. 6, 1368–1393. MR1241591 (95d:65114)
8. Björn Engquist and Lexing Ying, *A fast directional multilevel algorithm for high frequency acoustic scattering in two dimensions*, Commun. Math. Sci. 7 (2009), no. 2, 327–345. MR2536441 (2010d:65351)
9. Matthias Messner, Martin Schanz, and Eric Darve, *Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation*, J. Comput. Phys. 231 (2012), no. 4, 1175–1196. MR2876448
10. E. Michielssen and A. Boag, *A multilevel matrix decomposition algorithm for analyzing scattering from large structures*, IEEE Transactions on Antennas and Propagation 44 (1996), no. 8, 1086–1093.
11. Jean-Claude Nédélec, *Acoustic and electromagnetic equations*, Applied Mathematical Sciences, vol. 144, Springer-Verlag, New York, 2001. Integral representations for harmonic problems. MR1822275 (2002c:35003)
12. Daniel Potts, Gabriele Steidl, and Manfred Tasche, *Fast Fourier transforms for nonequispaced data: a tutorial*, Modern sampling theory, 2001, pp. 247–270. MR1865690
13. V. Rokhlin, *Rapid solution of integral equations of scattering theory in two dimensions*, J. Comput. Phys. 86 (1990), no. 2, 414–439. MR1036660 (90k:76081)
14. *Diagonal forms of translation operators for the Helmholtz equation in three dimensions*, Appl. Comput. Harmon. Anal. 1 (1993), no. 1, 82–93. MR1256528 (95d:35034)
15. J. M. Song and W. C. Chew, *Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering*, Microwave Opt. Tech. Lett. 10 (1995), no. 1, 15–19.
16. Jiming Song, Cai-Cheng Lu, and Weng Cho Chew, *Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects*, Antennas and Propagation, IEEE Transactions on 45 (1997Oct), no. 10, 1488–1493.
