Intima Media Thickness and Cognitive Function Among Adults: Meta-Analysis of Observational and Longitudinal Studies

Celia Álvarez-Bueno, PhD; Iván Cavero-Redondo, PhD; Rosa Maria Bruno, MD, PhD; Alicia Saz-Lara, MSc; Irene Sequí-Dominguez, MSc; Blanca Notario-Pacheco, PhD; Vicente Martinez-Vizcaino, MD, PhD

BACKGROUND: Carotid structural changes measured by intima media thickness (IMT) have been related to cognitive complaints during aging. Therefore, the aims of this meta-analysis were (1) to elucidate the relationship between vascular status, measured as IMT, and cognitive domains distinguishing between global cognition, executive functions, memory and attention; and (2) to explore whether demographic (ie, age and sex), clinical (ie, body mass index and IMT baseline values), and procedure characteristics influence this association.

METHODS AND RESULTS: We performed a systematic review of MEDLINE (via PubMed), Scopus, and Web of Science databases from their inception to June 2021. Studies meeting the following inclusion criteria were included: (1) the participants were adults; (2) the exposure was carotid IMT; (3) the outcome was cognitive function, including global cognition, executive function, memory, and attention measured using standardized tests; and (4) the study design was cross-sectional or longitudinal including unadjusted and adjusted analyses. A total of 19 cross-sectional and 15 longitudinal studies were included and demographic (age and sex), clinical (body mass index and baseline IMT values), and procedure characteristics were analyzed as potential mediators or moderators of the association.

CONCLUSIONS: Our data support negative associations between IMT and cognitive function in cross-sectional studies. The association between IMT and cognition lost significance in longitudinal studies and when controlling for covariates in cross-sectional studies. Finally, the strength of these associations seems not to be modified by age, sex, body mass index, and baseline IMT values. This systematic review and meta-analysis adds to the evidence supporting the use of IMT as a measure for identifying patients at risk of cognitive decline.

Key Words: aging ■ carotid intima-media thickness ■ cognition ■ cognitive impairment

According to World Health Organization estimates, by the end of 2020, the number of people aged >60 years might outnumber children younger than 5 years and reach 22% of the global population by 2050.1 As population life expectancy continues growing worldwide, health systems, social systems, and governments have to face the aging-related burden of chronic diseases.2 Among the needs of elderly people are changes in several physical and mental health domains (eg, somatic diseases, physical function aging, and psychological and cognitive changes). In particular, cognitive complaints are among the most common reasons for consultation with older patients and their primary caregivers and have been described as a predictor of cognitive decline.3

To date, cognitive decline lacks effective treatment, and the search for approaches to prevent or delay its progression and the onset of cognitive impairment has
become an important clinical target.4,5 The concept of cognitive decline as a vascular disease is being increasingly accepted,6 together with the evidence that the early detection and treatment of classical cardiovascular risk factors could reduce the impact of cognitive decline.7-9 In this framework, the monitoring of subclinical cardiovascular risk markers may have an important role in detecting individuals at risk to develop cognitive impairment9 and in tracking changes induced by treatments.10 A number of structural alterations that are an expression of vascular aging, reflecting the integrated burden of known and unknown cardiovascular risk factors on the vasculature, such as large artery stiffness11-13 and carotid structural changes,14,15 have been associated with a steeper cognitive decline. Among subclinical cardiovascular risk markers, carotid structural changes have been specifically associated with chronic cerebral hypoperfusion, silent micro- and macrocerebrovascular disease, and cortical atrophy, silent cerebral small vessel lesions,16-18 which in turn are associated with reduced cognitive function.

The utility of the measurement of carotid structural changes by intima media thickness (IMT) has been debated; these subclinical biomarkers of vascular aging are currently not recommended in international guidelines for risk stratification,19 though recent meta-analyses demonstrate that the extent of intervention effects on carotid IMT predicted the degree of cardiovascular diseases reduction, thus supporting the usefulness of IMT as surrogate biomarkers in interventional trials.20 Furthermore, a relationship between IMT and cognitive performance has been demonstrated in many cross-sectional and longitudinal studies.21-23 Discrepancies among studies, including differences in the design and population characteristics and the measurement of a wide variety of cognitive domains, make the evidence of this relationship inconsistent. Furthermore, not every cognitive domain is equally affected during aging, because the brain does not age uniformly, and several factors could protect or damage specific cognitive functions.24,25

Therefore, the aims of this meta-analysis were the following: (1) to elucidate the relationship between vascular status, measured as IMT, and cognitive domains distinguishing between global cognition, executive functions, memory, and attention; and (2) to explore whether demographic (ie, age and sex), clinical (ie, body mass index (BMI) and baseline IMT values), and procedure characteristics influence this association.

METHODS

This systematic review and meta-analysis was conducted following the Cochrane Collaboration Handbook26 and was reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis of Observational Studies in Epidemiology statement.27 The protocol for this systematic review and meta-analysis was previously registered on PROSPERO. The methods used in the analysis, and materials used to conduct the research are available to other researchers upon request.

Data Sources and Searches

Studies on the association between carotid IMT and cognitive function in adults were searched on Medline (via PubMed), Web of Science, and Scopus from database inception to June 2021. The search strategy included the following terms: "endothelial function," "atherosclerosis," "IMT," "intima thickness," "intima media thickness," "carotid plaque," "cognition," "executive," "executive function," "cognitive control," "memory," "attention," "metacognition," "life skills," "goal setting," "problem solving," "self-regulation," "brain development," and "brain health". We completed the search by screening previous systematic reviews and meta-analyses in the field and checking the reference lists of the included studies.
Study Selection
This systematic review includes studies on the relationship between vascular status, measured by IMT, and cognitive function in adults. The inclusion criteria were as follows: (1) the participants were adults, (2) the exposure was carotid IMT, (3) the outcome was cognitive function, including global cognition, executive function, memory and attention, measured using standardized tests, and (4) the study design was cross-sectional or longitudinal including unadjusted and adjusted analyses.

Studies were excluded when they were (1) focused on children or adolescents, (2) focused on patients with dementia, or (3) written in languages other than English, French, Portuguese, or Spanish.

Data Extraction and Risk of Bias Assessment
The main characteristics of the included studies are summarized in Table 1 and Table S1, including information on (1) subject characteristics (sample size, percentage of women, mean age, BMI, systolic blood pressure, and diastolic blood pressure; (2) exposure (technique used to measure IMT); and (3) outcome information (test used to measure cognitive function and cognitive domain measured).

The Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies was used to evaluate the risk of bias. This tool evaluates 14 criteria for longitudinal studies. For cross-sectional designs, only 11 were applied. Each criterion could be scored as “yes” when the study achieves the criterion, “no” when the study does not achieve the criterion, and “not reported” when the studies do not clearly report the required information. Following this risk of bias tool, studies could be rated as good (ie, at least 11 criteria for longitudinal studies and 8 criteria for cross-sectional studies were met), fair (ie, from 6–10 criteria for longitudinal studies and 4–7 criteria for cross-sectional studies were met), or poor (ie, from 1–5 criteria for longitudinal studies and 1–3 criteria for cross-sectional studies were met).

The literature search (inter-rater agreement Kappa index 0.93 [95% CI, 0.99–0.95]), data extraction (inter-rater agreement Kappa index 0.89 [95% CI, 0.87–0.91]), and risk of bias assessment (inter-rater agreement Kappa index 0.92 [95% CI, 0.90–0.94]) were independently performed by 2 researchers (C.A.-B. and I.C.-R.), and disagreements were solved by consensus or involving a third researcher (V.M.V).

Data Synthesis and Statistical Analysis
To perform the meta-analysis, 4 cognitive domains were considered: (1) global cognition, (2) executive functions, (3) memory, and (4) attention. Separate analyses were conducted for unadjusted and adjusted estimations of cross-sectional and longitudinal associations. For cross-sectional associations, effect sizes (ESs) and 95% CIs were calculated for each observed correlation and regression coefficient using Cohen’s d index. A pooled ES was estimated for each cognitive domain using a random-effects model based on the Der Simonian and Laird method. Random effects models were used as they provide more conservative results than fixed effects models and assume that each sample comes from a different population and that the effects in these populations may also differ. The ES was interpreted following Cohen’s suggestions; d=0.2 was considered a “small” ES, 0.5 represented a “medium” ES, and 0.8 a “large” ES. The Cochran’s Q statistics were used to estimate the between-study heterogeneity in ES. The proportion of the total variation across studies because of heterogeneity was assessed using the I² statistic, whose values were not important (0% to <30%), moderate (≥30% to <50%), substantial (≥50% to <75%), or considerable (≥75% to 100%). Moreover, the corresponding P values were also considered. Following similar procedures, we estimated the pooled ES for the longitudinal associations between the baseline IMT and the pre–post change in the cognitive domains. The Z scores and corresponding P values against the hypothesis that IMT has no effect on cognitive function were also reported.

The following methodological considerations for data collection and analysis should be noted. When longitudinal studies reported baseline associations between IMT and cognitive function, these reports were included in the cross-sectional pooled ES estimates. When studies provided ≥2 measurements for the same cognitive domain, these measurements were combined to calculate a single pooled ES for the corresponding domain. For unadjusted analyses, those associations including the shortest number of covariates were considered, and for the adjusted analyses, those associations including the largest number of covariates were considered. Finally, when studies reported mean value trends by groups or associations using regression models or correlation coefficients, ES values were calculated.

Sensitivity analyses were performed excluding all the studies 1 at a time from the pooled estimates to evaluate whether any particular study modified the original summary estimate. Subgroup analyses were performed based on characteristics of the procedures to measure IMT, including (1) manual, automated, or not specified measurements; (2) right, left, or bilateral carotid artery measurement; and (3) frequency of the ultrasound (defined as a range, >7 or not specified). Additional subgroup analyses were performed based on the method used to measure cognitive function.
References	Subjects characteristics	Exposure	Outcome								
	n, female (%)	Age	BMI	SBP	DBP	Depressive (%)	IMT device	IMT average	Cognitive measurement	Cognitive construct	
Al Hazzouri et al, 2015	2618 (57.1)	45.3 (3.6)	NR	NR	NR	16.2%	GE-Logiq-700	0.8 (0.1)	Rey AVL, Digit Symbol Substation, Stroop Interference	Delayed verbal memory, Processing speed, Executive function	
Arntzen et al, 2012	4371 (51.5)	M: 58.6 (9.3)	W: 59.5 (9.9)	M: 143.1 (19.2)	W: 142.4 (22.9)	NR	M: 2.1%	W: 5.5%	High-resolution B-mode ultrasonography	12-word memory Test, Digit Symbol-Coding Test, Finger tapping Test	Immediate free recall, Psychomotor speed, attention, and mental flexibility, Psychomotor tempo
Casado-Naranjo et al, 2016	181 (45.9)	MCI: 77.5 (4.6)	C: 75.3 (5.2)	NR	NR	MCI: 18.1%	C: 4.0%	Philips HD 11	MMSE	Global cognitive	
Cohen-Manheim et al, 2016	507 (32.3)	49.9 (0.8)	24.7 (3.6)	112.0 (10.0)	68.0 (9.0)	Depressive symptoms score (HADS 0–21): 3.6 (2.9)	Philips IU22	0.63 (0.11)	Digit arithmetic problems, Go-NoGo, Stroop and Catch Game, Abstract spatial ability test, Immediate and delayed memory tests	Global cognitive, Attention, Information processing speed, Executive, Visual spatial processing Memory	
Cohen et al, 2009	88 (NR)	72.2 (7.7)	NR	129.3 (19.5)	68.5 (10.1)	Exam Score Beck Depression Inventory: 4.2 (2.5)	Agilent 5500 machine	0.88 (0.13)	MMSE, Dementia Rating Scale, BNT, Animals, Block Design, Hooper Visual Organization, Rey Complex Figure Test, Copy California Verbal Learning delayed, Rey Complex Figure Test delayed, Brief Visual Memory Test–Revised Stroop, TMT A–B, controlled oral Word association, Letter search, Digit Symbol Coding, Digit Span and Pegs-D	Global cognitive, Language, Visual-spatial, Learning and memory functions, Attention-executive-psychomotor functions	
Del Brutto et al, 2020	561 (58)	57.8 (11.9)	NR	NR	NR	10%	Terson Smart 3300 NexGen	NR	MoCA	Global cognition	

(Continued)
References	n, female (%)	Age	BMI	SBP	DBP	Depressive s (%)	IMT device	IMT average	Cognitive measurement	Cognitive construct
Feinkohl et al, 201332	831 (48.3)	67.7 (4.2)	31.3 (5.6)	132.5 (15.9)	69.0 (8.9)	HADS Depression 3 (1–5)	Sonoline Bagra Ultrasound Imaging System	1.0 (0.2)	Borkowski Verbal Fluency Test Logical Memory Faces Subtest TMT-B Digit Symbol Coding Letter-Number Sequencing Matrix Reasoning Mill Hill Vocabulary Scale MMSE	Executive function Immediate and delayed memory Nonverbal memory Mental flexibility and Executive function Speed of information processing Working memory Nonverbal reasoning Vocabulary abilities Global cognition
Frazier et al, 201433	251 (46.0)	78.0 (6.4)	NR	NR	NR	High-resolution B-mode ultrasound	0.9 (0.1)	Dementia Rating Scale Initiation-perseveration subscale, Wechsler Memory Scale Memory Scale-Revised Digit and Visual Span backwards, COW-Fluency Task Word List Learning Test, short and long delayed recall	Executive function Verbal memory	
Gardener et al, 201834	1166 (60.0)	70.0 (9.0)	28.0 (5.0)	NR	NR	GE LogIQ 700	0.9 (0.1)	List-Learning, Delayed Recall, Delayed Recognition Color Trail Test, Odd-man-out subtest Grooved Pegboard Task, Color Trail test, Visual–motor Integration BNT, Animal Naming, Phonetic fluency test	Episodic memory Executive function Processing speed Semantic memory	
Gatto et al, 200935	504 (38.9)	60.8 (9.9)	28.1 (5.0)	129.6 (16.9)	80.8 (10.4)	7.3%	High-resolution B-mode ultrasound	0.75 (0.15)	Symbol Digit Modalities, Trial-B, Letter-Number Sequencing, Judgment of Line Orientation, Block design, Shipley Institute of Living Scale California Verbal Learning Test, immediate recall and delayed recall Paragraph recall- immediate recall and delayed recall Faces I and II Category fluency and BNT	Executive function Verbal learning Logical memory Visual memory Semantic memory Global cognitive
Geijseraers et al, 201646	722 (44.9)	60.0 (8.0)	27.2 (4.4)	137.0 (19.0)	77.0 (11.0)	3.9%	MyLab 70	0.85 (0.15)	Verbal Learning Test Stroop Colour/Word, Concept Shifting Test Part A and B, Letter-Digit Substitution Test Stroop Colour-Word, Concept Shifting	Immediate and delayed recall Processing speed Executive function and attention
References	Subjects characteristics	Exposure	Outcome							
-------------------------------	--------------------------	----------	---------							
Haley et al, 2007	109 (43.0)	NR	NR							
	69.2 (7.43)	NR	NR							
	NR	NR	NR							
	NR	NR	NR							
	NR	NR	NR							
	High-resolution B-mode ultrasonography	0.88 (0.13)								
	Mindray Z6	0.81 (0.22)	RAVLT							
			ROCFT							
Imran et al, 2020	79 (NR)	NR	NR							
	55.5 (12.7)	NR	NR							
	NR	NR	NR							
	NR	NR	NR							
	Mindray Z6	0.81 (0.22)	RAVLT							
			ROCFT							
Jiang et al, 2017	357 (65.0)	NR	NR							
	57.2 (9.3)	NR	NR							
	25.3 (3.3)	NR	NR							
	132.2 (16.6)	NR	NR							
	83.4 (9.3)	NR	NR							
	Sequoia scanner	0.8 (0.2)	MoCA							
Kemp et al, 2016	8114 (56.3)	NR	NR							
	51.2 (8.8)	NR	NR							
	NR	NR	NR							
	Depression severity: 8.0 (78)	Toshiba (Aplio XG)	TMT-B							
Komulainen et al, 2007	91 (100)	NR	NR							
	63.8 (3.2)	NR	NR							
	27.6 (4.4)	NR	NR							
	Zung self-report 20-item scale: 36.4 (5.5)	1.02 (0.26)	MMSE							
	Carotid ultrasonography		Word Recall Test							
			Stroop test and Letter-Digit Substitution Test							
Lim et al, 2016	463 (43.2)	NR	NR							
	MP: 63.0 (6.1)	NR	NR							
	NP: 64.2 (6.4)	NR	NR							
	MP: 25.0 (4.1)	NR	NR							
	NP: 24.6 (3.5)	NR	NR							
	MMSE, Digit Span-Forward, Colour Trails Test, Story Memory and Recall BNT, Brief Visuospatial Memory Test-Revised, Digit Span-Backward, Block Design, Colour Trails Test 2 and Categorical Verbal Fluency (Animal Naming)	0.7 (0.1)	Global cognition							
Masley et al, 2014	536 (27.4)	NR	NR							
	48.0 (7.5)	NR	NR							
	27.4 (4.7)	NR	NR							
	117.7 (15.3)	NR	NR							
	75.7 (10.4)	NR	NR							
	High-resolution B-mode ultrasound	0.7 (0.1)	Index score							
			Verbal memory and visual memory components							
			Symbol Digit Coding							
			Stroop Test, Continuous Performance Test							
			Finger Tapping Test, Stroop Test							

(Continued)
Table 1. Continued

Subjects characteristics	Exposure	Outcome								
References	n, female (%)	Age	BMI	SBP	DBP	Depressive s (%)	IMT device	IMT average	Cognitive measurement	Cognitive construct
Matsumoto et al, 2018 13	176 (55.7)	CI: 67.7 (12.3) Non-CI: 64.6 (9.6)	CI: 125.4 (20.9) Non-CI: 119.9 (16.1)	CI: 23.8 (2.8) Non-CI: 23.4 (3.4)	NR	Xario SSA-660A	CI: 2.0 (1.0) Non-CI: 1.7 (0.6)	MMSE, Hasegawa Dementia Scale-revised Logical Memory IA and IIA of the WMS-R Clock-drawing Test		
Muela et al, 2018 14	211 (54.8)	NoHTA: 52.2 (13.9) HTA 1: 52.1 (13.0) HTA 2: 51.3 (10.1)	NoHTA: 121.9 (8.3) HTA 1: 135.0 (13.5) HTA 2: 147.5 (26.1)	NoHTA26.7 (4.2) HTA 1:285 (4.6) HTA 2:301 (4.6)	NR	Wall Track Systems, Medical Systems Arnhem	NoHTA: 0.7 (0.1) HTA 1: 0.8 (0.1) HTA 2: 0.8 (0.1)	MMSE, MoCA BNT RAVLT REY, Clock Drawing Test Semantic Verbal Fluency animal category, Phonological Verbal Fluency Forward and Backward Digit Span Test, Trail Making Test, and Digit Symbols Substitution Test		
Muller et al, 2007 15	396 (0.0)	N-CVD: 54.5 (10.3) S-CVD: 66.8 (8.1) P-CVD: 67.7 (8.8)	N-CVD: 25.9 (0.3) S-CVD: 26.5 (0.3) P-CVD: 27.3 (0.5)	N-CVD: 134.2 (1.3) S-CVD: 145.5 (1.7) P-CVD: 140.2 (2.5)	NR	Acuson Aspen	N-CVD: 0.77 (0.01) S-CVD: 0.89 (0.01) P-CVD: 0.89 (0.02)	MMSE, Rey auditory verbal learning test, and door test Digit span, TMT-A TMT-B, Word fluency test Dutch adult reading test		
Roberts et al, 2013 16	278 (54.3)	49.0–51.0	NR	NR	NR	High-resolution B-mode ultrasound	NR	IQ test Moray House Tests 57 & 58, the English and Arithmetic tests and the Mill Hill and Raven’s Progressive Matrices		
Rogne et al, 2013 17	1577 (47.3)	57 (52–61)	25.6 (3.2)	138.0 (18.0)	NR	NR	High-resolution B-mode ultrasonography	0.78 (0.69–0.89)	Digit Symbol Test Finger tapping test 12-word test parts 1 and 2 test (modification of the CVL test) MMSE	Execuive function Motor speed Verbal episodic memory Global cognition
Romero et al, 2009 18	1971 (53.0)	58.0 (10.0)	NR	126.0 (18.0)	NR	NR	Doppler spectral analyzer (Model SSH-140A)	NR	Wechsler Memory Scale Logical Memory, Paragraph A subtest, Immediate and Delayed Recall Halstead Reitan TMT (A and B) BNT, WAIS Similarities subtest, HVOT	
Schwerdtfeger et al, 2015 19	124 (49.0)	37.5 (7.9)	23.8 (4.0)	NR	NR	High-resolution B-mode ultrasound	0.5 (0.1)	Mainz Coping Inventory	Cognitive avoidance	

(Continued)
Table 1. Continued

References	n, female (%)	Age	BMI	SBP	DBP	Depressive (%)	IMT device	IMT average	Cognitive measurement	Cognitive construct
Singh-Manoux et al, 2008[^5^]	3896 (27.9)	H-SES-M: 62.3 (5.6) H-SES-W: 59.8 (5.5) I-SES-M: 60.0 (5.8) I-SES-W: 60.1 (5.9) L-SES-M: 60.8 (6.5) L-SES-W: 62.0 (5.7)	H-SES-M: 26.2 (3.7) H-SES-W: 25.6 (5.1) I-SES-M: 26.5 (3.8) I-SES-W: 26.4 (5.3) L-SES-M: 26.5 (4.2) L-SES-W: 27.6 (4.9)	H-SES-M: 127.9 (15.5) H-SES-W: 122.8 (17.7) I-SES-M: 127.2 (15.2) I-SES-W: 124.7 (16.9) L-SES-M: 124.5 (14.7) L-SES-W: 126.5 (17.3)	NR	Aloka 5500	H-SES-M: 74.2 (10.3) H-SES-W: 71.9 (10.3) I-SES-M: 74.5 (10.1) I-SES-W: 72.6 (10.4) L-SES-M: 72.2 (10.1) L-SES-W: 72.6 (10.6)	NR	20-word Free Recall Test Alice Heim 4 I Mill Hill Vocabulary Test "S" words and "animal" words MMSE	Short term verbal memory Inductive reasoning Verbal meaning and phonetic and semantic fluency Global cognition
Smith et al, 2011[^1^]	124 (63.7)	52.3 (9.6)	32.8 (3.8)	138.3 (8.4)	86.1 (6.5)	8%	High-resolution B-mode ultrasonography	0.70 (0.14)	TMT (A and B), Stroop Test, Verbal Paired Associates test, COW-Association Test, Digit Span Test, Animal Naming Ruff 2 & 7 Test, Digit Symbol Substitution Test	Executive Function Psychomotor Speed
Suemoto et al, 2015[^2^]	8208 (55.9)	49.6 (7.3)	26.6 (4.5)	NR	NR	4.0%	Toshiba ultrasound machine	0.7 (0.2)	CERAD Delayed Word Recall test Category Fluency Test TMT-B	Verbal learning and recent memory Language and executive function Executive function, speed of processing, and attention
Wang et al, 2016[^3^]	3227 (43.4)	57.9 (10.9)	24.9 (3.3)	130.8 (19.9)	82.6 (11.0)	NR	Philips iU-22 ultrasound system	NR	MMSE	Global cognition

(Continued)
Table 1. Continued

References	n, female (%)	Age	BMI	SBP	DBP	Depressive s (%)	IMT device	IMT average	Cognitive measurement	Cognitive construct
Wendell et al., 2009	338 (60.2)	54.9 (14.0)	26.3 (4.5)	NR	NR	CES-D: 6.6 (9.6)	Ultramark 9 HDI	0.5 (0.1)	Blessed Information-Memory-Concentration (I-M-Q) Test, MMSE	Attention and concentration, Verbal learning, Memory, Nonverbal memory, Attention, perceptuomotor speed, visuomotor scanning, and mental flexibility
Wendell et al., 2016	1712 (55.1)	46.9 (9.3)	29.4 (7.4)	119.5 (17.2)	NR	CES-D: 14.0 (10.8)	Acuson CV 70	0.7 (0.1)	MMSE, Benton Visual Retention Test, CVL, Animal fluency, Brief Test of Attention, Digit Span subtest of the Wechsler Adult Intelligence Scale-Revised, TMT (A and B)	Global cognition, Visual and semantic association fluency, Auditory divided attention, Attention and working memory, Attention, visual scanning, psychomotor speed, and mental flexibility
Yue et al., 2016	1826 (35.2)	63.2 (11.9)	NR	147.2 (22.4)	149.0 (22.7)	CINT: 85.5 (12.5)	High-resolution B-mode ultrasonography	1.4 (0.7)	MMSE	Global cognition
Zhong et al., 2011	2794 (54.0)	49.0 (9.8)	NR	NR	NR	Biosound AU4	TMT (A and B)	0.65 (0.15)	Grooved Pegboard Test, MMSE	Executive, attention and psychomotor function, Executive, and psychomotor function, General cognitive function

(Continued)
Álvarez-Bueno et al IMT and Cognitive Function Among Adults

(10) Álvarez- Bueno et al IMT and Cognitive Function Among Adults

Random effect meta-regressions were calculated based on sample characteristics: percentage of women, mean age, BMI, and baseline IMT values. Finally, publication bias was estimated using Egger’s test. All the statistical analyses were performed using STATA 15 (StataCorp) software.

RESULTS

Systematic Review

The literature search retrieved 6879 studies, of which 19 cross-sectional and 15 longitudinal studies were included in this systematic review and meta-analysis (Figure S1). The studies included a total of 50,779 participants aged 45.3 to 78.0 years. Table 1 and Table S1 summarize the characteristics of included studies. Table S2 summarizes the covariates used in the analyses of the included studies.

Risk of Bias Assessment

Cross-sectional studies scored between 5 and 11 points, and longitudinal studies scored between 8 and 12 points. The 4 criteria in which most articles lacked information were sample size justification, power description, variance, and outcome blinding of the assessors to the participants’ exposure status (Table S3).

Meta-Analysis

The pooled ES for the unadjusted cross-sectional association between carotid IMT and cognitive function was small for global cognition (−0.25 [95% CI, −0.36 to −0.14]; Q: 134.40; I²: 89.6%), for executive function (−0.18 [95% CI, −0.29 to −0.07]; Q: 37.15; I²: 81.2%), for memory (−0.14 [95% CI, −0.25 to −0.04]; Q: 151.33; I²: 90.1%), and for attention (−0.12 [95% CI, −0.29 to 0.04]; Q: 54.16; I²: 87.1%). Considering the adjusted cross-sectional data, the pooled ES was small for global cognition (−0.15 [95% CI, −0.24 to −0.07]; Q: 78.08; I²: 82.1%), for executive function (−0.12 [95% CI, −0.21 to −0.03]; Q: 27.04; I²: 74.1%), for memory (−0.09 [95% CI, −0.15 to −0.03]; Q: 33.88; I²: 55.7%), and for attention (−0.13 [95% CI, −0.26 to 0.01]; Q: 32.46; 78.4%) (Figures 1 and 2).

Additionally, for the longitudinal associations, the pooled ES for the unadjusted longitudinal association between IMT and cognitive function was small for global cognition (−0.21 [95% CI, −0.38 to −0.04]; Q: 16.37; I²: 81.7%), for executive function (−0.14 [95% CI, −0.29 to 0.01]; Q: 50.25; I²: 90.0%), for memory (−0.15 [95% CI, −0.30 to 0.00]; Q: 255.80; I²: 96.5%), and for attention (−0.23 [95% CI, −0.62 to 0.17]; Q: 215.95; 98.6%). Considering the adjusted longitudinal data, the pooled ES was small for global cognition (−0.09 [95% CI, −0.20 to 0.02]; Q: 7.30; I²: 58.9%), for executive function (−0.04 [95% CI, −0.12 to 0.04]; Q: 12.78;
\bar{P}: 60.9%, for memory (−0.00 [95% CI, −0.05 to 0.04]; Q: 23.32; \bar{P}: 61.4%); and for attention (−0.04 [95% CI, −0.09 to 0.01]; Q: 3.81; 21.3%) (Figures 3 and 4).

The Z scores and corresponding P values against the hypothesis that IMT has no effect on cognitive function are reported in Table S4.

Sensitivity Analysis

Sensitivity analyses were performed excluding all the studies 1 at a time from the pooled estimates to evaluate whether any particular study modified the original summary estimate. The sensitivity analyses for the cross-sectional estimates showed that the adjusted
association between IMT and attention became significant after excluding the studies performed by Geijselaers et al and Zhong et al.

The sensitivity analyses for the longitudinal estimates showed that the unadjusted association between IMT and cognitive function became significant after excluding the studies performed by (1) Cohen-Manheim et al, Del Brutto et al, and Feinkohl et al, for global cognition; (2) Gardener et al, and Romero et al, for executive functions; and (3) Gardener et al, Romero et al, Wendell et al, and Zhong et al, for memory (Tables S5–S8).
Meta-Regressions and Subgroup Analyses

Meta-regressions showed that none of the considered variables (i.e., % females, age, BMI, and baseline IMT values) influenced the relationship between IMT and cognitive function for the cross-sectional or longitudinal models (Table S9). Additionally, when considering the procedure characteristics, the ESs for the subgroup analyses were similar to the pooled ESs when (1) automated and not specified measurements of IMT were used for cross-sectional studies reporting on global cognition and memory; (2) bilateral carotid artery measurement was used for cross-sectional and longitudinal studies reporting on global cognition, executive functions, and memory; (3) >7 frequency of the ultrasound was used for cross-sectional studies reporting on global cognition, memory, and attention; and (4) domain-specific assessments to measure cognitive function were used for cross-sectional studies reporting on global cognition and memory (Table S10).

Publication Bias

As evaluated by Egger’s test and funnel plot asymmetry, publication bias was found for (1) global cognition in the unadjusted longitudinal analysis; (2) memory in the unadjusted and adjusted cross-sectional analyses;
and (3) attention in the unadjusted cross-sectional analysis (Table S11 and Figures S2–S9).

DISCUSSION

The purpose of this meta-analysis was to identify associations between IMT and cognitive function in cross-sectional and longitudinal studies. Our data support a small negative association between IMT and cognitive function in cross-sectional studies, especially for global cognition, executive functions, and memory. The association between IMT and cognition lost significance in the longitudinal studies and after controlling for covariates in cross-sectional studies. Finally, our data suggest that demographic (age and sex), clinical (BMI and baseline IMT values), and procedure characteristics do not influence the strength of this association.

Data from cross-sectional studies suggest an association between IMT and cognition, indicating that cognition is reduced in people with increased IMT. The association was not significant when ESs of longitudinal studies were pooled; therefore, the pooled results did not support that IMT level predicted cognitive performance over time. This asymptomatic carotid atherosclerosis could be the image of the arterial remodeling that occurs during the natural process of vascular aging.65 In addition, several covariates could negatively impact vascular aging, including age, sex,
diabetes, hypertension, and patient education, resulting in atherosclerosis as a maladaptive process of vascular remodeling.66

Significant heterogeneity was observed in the pooled analyses and explored by subgroup analyses and meta-regressions based on demographic, clinical, and procedure characteristics. Although sex, age, and BMI have been proposed to be factors affecting IMT, the results of the meta-regressions do not suggest that the relationship between IMT and cognitive functions could be influenced by these factors.67 In addition, the different effects of hemodynamic and biochemical changes on the left and right IMT could be sources of heterogeneity; data from the subgroup analyses suggest that the bilateral IMT measurement is the most reported and reproducible method when assessing the relationship between IMT and cognitive functions.68 The influence of other procedure characteristics including the method used to measure IMT (automated or manual methods) and cognitive functions (domain-specific assessment or global test of cognition), and the mHz applied could not be confirmed because of the lack of studies to draw conclusions.69

Different mechanisms have been proposed to explain the effect of IMT on cognitive function. Blood support to neural cells could be compromised as a result of 2 interrelated events: (1) the thickening of the arterial wall, which could reduce the vessel lumen and produce chronic cerebral hypoperfusion; and (2) the promotion of endothelial dysfunction by the increased wall stress.70 Additionally, the increased wall stress has been related to an increased risk of plaque fissuring,71 increasing the subsequent risk of neural ischemia. Atherosclerosis and embolization of the vascular microcirculation and subsequent chronic inflammation65,72 have been suggested to precipitate cerebral small vessel disease.73 Furthermore, the local thickening of the arterial wall could produce a microturbulent flow, reducing the supply of blood and nutrients and leading to neuronal dysfunction and cell death.

The results of this systematic review and meta-analysis should be cautiously considered, as some limitations should be mentioned. In addition to the specific limitations of the meta-analysis design, other sources of bias could be that (1) we did not use the original data but the data as reported by the studies to estimate the pooled ES; (2) substantial heterogeneity was found when pooled ESs were estimated, and diverse methods and tools were used to measure cognitive function across the included studies; (3) publication bias was found in some of the analyses; (4) language restrictions may have limited the number of included studies; and (5) our data might be limited by the use of 3 databases, and additional studies may have been found by checking other databases.

In conclusion, the pooled analysis of cross-sectional studies suggests a negative association between IMT and global cognition, executive functions, and memory. The association between IMT and cognition lost significance in longitudinal studies and when controlling for covariates in cross-sectional studies. Finally, age, sex, BMI, and baseline IMT values do not seem to modify the strength of this association. The results of this systematic review and meta-analysis do not support a strong association between IMT and longitudinal change in cognitive function, and future work is needed to address this association with the onset of cognitive impairment.

ARTICLE INFORMATION
Received March 23, 2021; accepted November 24, 2021.

Affiliations
Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain (C.A., I.C., I.S., B.N., V.M.); Universidad Politécnica y Artística del Paraguay, Asunción, Paraguay (C.A.); Rehabilitation in Health Research Center (IRES), Universidad de las Americas, Santiago, Chile (I.C.); Department of Clinical and Experimental Medicine, University of Pisa, Italy (R.M.B.); INSERM U970 and Université de Paris, Paris, France (R.M.B.); and Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile (V.M.).

Sources of Funding
This study was funded by European Regional Development Fund.

Disclosures
None.

Supplemental Material
Tables S1–S11
Figures S1–S9

REFERENCES
1. WHO. Ageing and health [Internet]. World Health Association. Available at: https://www.WHO.int/news-room/fact-sheets/detail/ageing-and-health. Accessed January 20, 2021.
2. Jaul E, Barron J. Age-related diseases and clinical and public health implications for the 85 years old and over population. Front Public Health. 2017;5:335.
3. Numbers K, Crawford JD, Kochan NA, Draper B, Sachdev PS, Brodaty H. Participant and informant memory-specific cognitive complaints predict future decline and incident dementia: findings from the Sydney Memory and Ageing Study. PLoS One. 2020;15:e0232961. doi: 10.1371/journal.pone.0232961
4. Kvistelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14:653–666. doi: 10.1038/s41588-018-0070-3
5. Rosenberg A, Mangialasche F, Ngandu T, Solomon A, Kvistelto M. Multidomain interventions to prevent cognitive impairment, Alzheimer’s disease, and dementia: from FINGER to world-wide FINGERS. J Prev Alzheimer Dis. 2020;7:29–36.
6. Picano E, Bruno RM, Ferrari GF, Bonucelli U. Cognitive impairment and cardiovascular disease: so near, so far. Int J Cardiol. 2014;175:21–29. doi: 10.1016/j.ijcard.2014.05.004
7. Larsson SC, Hugh SM. Does treating vascular risk factors prevent dementia and Alzheimer’s disease? A systematic review and meta-analysis. J Alzheimer Dis. 2018;64(2):657–668. doi: 10.3233/JAD-180288
8. Rosenberg A, Ngandu T, Rusanen M, Antikainen R, Bäckman L, Havulinna S, Hänninen T, Lastikainen T, Lehtisalo J, Levalahti E, et al. Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline
characteristics: the FINGER trial. Alzheimers Dement. 2018;14:263–270. doi: 10.1016/j.jad.2017.09.006

Vintimilla R, Balasubramanian K, Hall J, Johnson L, O’Bryant S. Cardiovascular risk factors, cognitive dysfunction, and mild cognitive impairment. Dement Geriatr Cogn Dis Extra. 2020;10:154–162. doi: 10.1159/000511030

Van Rooij RM, Stea F, Scari R, Ghiadoni L, Taddelli S, Ungar A, Bonuccelli U, Tognoni G, Cintoli S, Del Turco S, et al. Vascular function is improved after an environmental enrichment program: the train the brain–mind the vessel study. Hypertension. 2018;71:1218–1225. doi: 10.1161/HYPERTENSIONAHA.117.01066

Waldstein SR, Rice SC, Thayer JF, Najjar SS, Scuteri A, Zonderman AB. Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore Longitudinal Study of Aging. Hypertension. 2008;51:99–104. doi: 10.1161/HYPERTENSIONAHA.107.093674

Mitchell GF, van Buchem MA, Sigurdsson S, Gotel JD, Jonsdottir MK, Kjartansson Ö, Garcia M, Asplund T, Harris TB, Guudanson V, et al. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Environment/Susceptibility–Reykjavik study. Brain. 2011;134:3398–3407. doi: 10.1093/brain/awr253

Poels MM, van Oijen M, Mattace-Raso FU, Hofman A, Koudstaal PJ, Witteman JC, Breteler MM. Arterial stiffness, cognitive decline, and risk of dementia: the Rotterdam Study. Stroke. 2007;38:888–892. doi: 10.1161/01.STR.0000257998.33768.87

Hofman A, Ott A, Breteler MM, Bols ML, Siooster AJ, van Harskamp F, van Duijn GN, Van Broeckhoven C, Grobbee DE. Atherosclerosis, carotid intima-media thickness, and prevalence of dementia and Alzheimer’s disease in the Netherlands. Stroke. 1997;28:1451–154. doi: 10.1161/01.STR.6736.09328.2

Wendell CR, Zonderman AB, Metter EJ, Najjar SS, Waldstein SR. Carotid intimal medial thickness predicts cognitive decline among adults without clinical vascular disease. Stroke. 2009;40:3180–3185. doi: 10.1161/STROKEAHA.109.557280

Bots ML, Breteler M, Hofman A, Grobbee DE, van Swieten JC, van Gijn J, van Swieten JC, de Jong P. Cerebral white matter lesions and atherosclerosis in the Rotterdam Study. Lancet. 1993;341:1237–1237. doi: 10.1016/0140-6736(93)91144-B

Manolio TA, Burke GL, O’Leary DH, Evans G, Beauchamp N, Knepper L, Hubert H, O’Neal W, Thomas C, Wingo P. Relationship of carotid intima-media thickness to cardiovascular mortality in the framingham heart study. Hypertension. 2007;50:670–677. doi: 10.1161/01.hyp.0000273905.47017.34

Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, Greenland S, Lauer MS, O’Donnell CJ, Pearson TA. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;63:2935–2959.

Willet P, Tschiderer L, Allara E, Reuber K, Zehringer L, Gao J, Liao X, Lonn E, Keski-Hedman HC, Yusu S, et al. Carotid intima-media thickness in patients with cardiovascular risk factors: meta-analysis of 119 clinical trials involving 100 667 patients. Circulation. 2020;142:621–642. doi: 10.1161/CIRCULATIONAHA.120.043611

Wadström BN, Engström G, Nilsson PM, Exploring and comparing definitions of healthy vascular age in the population: characteristics and prospective cardiovascular risk. J Hum Hypertens. 2020;35:428–436.

Zhong W, Cui JX, Wang Y, Guo X, Chen W, Liu W. Ultrasound markers of carotid atherosclerosis and cognitive function: the Northern Manhattan Study. Stroke. 2017;48:1855–1861. doi: 10.1161/STROKEAHA.117.016921

Gatto NM, Henderson VW, St. John JA, McCleary C, Detrano R, Hodis HN, Mack WJ. Subclinical atherosclerosis is weakly associated with lower cognitive function in healthy hyperhomocysteinemic adults without clinical cardiovascular disease. Int J Geriatr Psychiatry. 2016;31:1279–1286. doi: 10.1002/gps.4590

Gejseliers SL, SLP, JSS, Schram M, van Boxtel MPJ, van Stoten TT, op het Roodt J, Henry RMA, Reesink KD, Schaper NC, Dagnelle PC, et al. Carotid circumference wall stress is not associated with cognitive performance among individuals in late middle age: the Maastricht Study. Atherosclerosis. 2016;263:15–22. doi: 10.1016/j.atherosclerosis.2018.07.003

Haley AP, Forman DE, Pappas A, Hoth KF, Gunstad J, Jefferson AL, Paul RH, Ler ASH, Sweet LH, Cohen RA. Carotid artery intima-media thickness and cognition in all vascular domains. J Int Med Res. 2020;48:2063684620917250

Imran Y, Prawiroharjo P, Mawi M, Pratama P. Carotid intima-media thickness correlates with memory function in productive age population. Aging. 2020;55:243–250. doi: 10.1159/000511580

Jiang X, Zhao X, Chen R, Jiang Q, Zhou B. Plasma soluble CD36, carotid intima-media thickness and cognitive function in patients with type 2 diabetes. Arch Med Sci. 2017;13:1031. doi: 10.5114/ams.2016.60821

Kemp AH, Lopez SR, Passos VMA, Dantas EM, Mill JS, Ribeiro ALP, Thayer JF, Bensenor IM, Lotufo PA, et al. Insulin resistance and carotid intima-media thickness mediate the association between resting-state heart rate variability and executive function: a path modelling study. Biol Psychol. 2016;117:216–224. doi: 10.1016/j.biopsycho.2016.04.006

Komulainen P, Kivipelto M, Lakka TA, Hirsikko L, Tuomainen TP, Witzke I, Rantanen T, Helkala EL, Patja K, Nisivenen A, Rauramaa R. Carotid intima-media thickness and cognitive function in elderly women: a population-based study. Neuropediatrics. 2007;38:207–213. doi: 10.1159/000108112
1. Lim SL, Gao QI, Nyunt MSZ, Gong L, Lunaria JB, Lim ML, Ling A, Lam C-P, Richards AM, Ling LH, et al. Vascular health indices and cognitive domain function: Singapore longitudinal ageing studies. J Alzheimers Dis. 2016;50:27–40. doi: 10.3233/JAD-150516

2. Masley SC, Masley LV, Guattieri CT. Cardiovascular biomarkers and carotid IMT scores as predictors of cognitive function. J Am Coll Nutr. 2014;33:68–69. doi: 10.1080/07315724.2014.870010

3. Muela HCS, Costa-Hong VA, Yasuda MS, Moraes NC, Memória CM, Machado MF, Bor-Seng-Shu E, Nogueira RC, Mansur AJ, Massaro AR, et al. Higher arterial stiffness is associated with lower cognitive performance in patients with hypertension. J Clin Hypertens. 2018;20:22–30. doi: 10.1111/jch.13129

4. Muller M, Grobbee DE, Ahern JP, Bots M, Van der Schouw YT. Cardiovascular disease and cognitive performance in middle-aged and elderly men. Atherosclerosis. 2007;190:143–149. doi: 10.1016/j.atherosclerosis.2006.01.005

5. Roberts BA, Batty GD, Gale CR, Deary IJ, Parker L, Pearce MS. IQ variability and risk of cognitive decline in the elderly: evidence from the Whitehall II study. Atherosclerosis. 2008;197:541–548. doi: 10.1016/j.atherosclerosis.2007.08.010

6. Smith PJ, Blumenthal JA, Babyak MA, Hinderliter A, Sherwood A. Association of vascular health and neurocognitive performance in overweight adults with high blood pressure. J Clin Exp Neuropsychol. 2011;33:559–566. doi: 10.1080/13803395.2010.537649

7. Suemoto CK, Santos IS, Bittencourt MS, Pereira AC, Goulart AC, Rundek T, Passos VM, Lotufo P, Benseñor IM. Subclinical carotid artery atherosclerosis and performance on cognitive tests in middle-aged adults: baseline results from the ELSA-Brasil. Atherosclerosis. 2015;243:510–515. doi: 10.1016/j.atherosclerosis.2015.10.008

8. Wang A, Chen G, Su Z, Liu X, Yuan S, Jiang R, Cao Y, Chen S, Luo Y, Guo X, et al. Carotid intima-media thickness and cognitive function in a middle-aged and older adult community: a cross-sectional study. J Neurol. 2016;263:2097–2104.

9. Wendell CR, Waldstein SR, Evans MK, Zonderman AB. Subclinical carotid atherosclerosis and neurocognitive function in an urban population. Atherosclerosis. 2016;249:125–131. doi: 10.1016/j.atherosclerosis.2016.04.009

10. Yue W, Wang A, Jiang H, Hu F, Zhang Y, Deng M, Li T, Hu X, Ye Z, Shen Y, et al. Association between carotid intima-media thickness and cognitive impairment in a Chinese stroke population: a cross-sectional study. Sci Rep. 2016;6:1–6. doi: 10.1038/srep19556

11. Zhong W, Cruchanshiks KJ, Huang GH, Klein BE, Klein R, Nieto FJ, Pankow JS, Schubert CR. Carotid atherosclerosis and cognitive function in midlife: the Beaver Dam Offspring Study. Atherosclerosis. 2011;219:330–333. doi: 10.1016/j.atherosclerosis.2011.07.013

12. National Heart, Lung, and Blood Institute. Quality assessment tool for observational cohort and cross-sectional studies. Available at: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed November 28, 2020.

13. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20:37–46. doi: 10.1177/00131644600200104

14. Altman DG. Practical Statistics for Medical Research. Chapman and Hall; 1991.

15. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28:105–114. doi: 10.1016/j.cct.2006.04.004

16. Jackson D, White IR, Thompson SG. Extending Der Simonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med. 2010;29:1282–1297. doi: 10.1002/sim.3602

17. Tak LM, Meijer A, Manoharan A, de Jonge P, Roosjen MG. More than the sum of its parts: meta-analysis and its potential to discover sources of heterogeneity in psychosomatic medicine. Psychosom Med. 2010;72:253–265. doi: 10.1097/PSY.0b013e3181d714e1

18. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1593–1598. doi: 10.1002/sim.1186

19. Sterne JA, Egger M, Smith GD. Systematic reviews in health care: investigating and dealing with publication and other biases in meta-analysis. BMJ. 2001;323:100–105. doi: 10.1136/bmj.323.7304.101

20. Ward MR, Fusterkamp G, Yeung AC, Borst C. Arterial remodeling, mechanisms and clinical implications. Circulation. 2000;102:1186–1191. doi: 10.1161/01.CIR.102.10.1186

21. Zhang Y, Fang X, Hua Y, Tang Z, Guan S, Wu X, Liu H, Liu, B, Wang C, Zhang Z, et al. Carotid artery plaques, carotid intima–media thickness, and risk of cardiovascular events and all-cause death in older adults: a 5-year prospective, community-based study. Angiology. 2016;69:120–129. doi: 10.1016/j.anto.2016.07.009.0973-8224(99)00134-9

22. Alizadeh A, Shahlaei H, Mozaffarian F. Carotid atherosclerosis and cardiovascular risk factors. J Neurol. 2017;264:916–925. doi: 10.1007/s00415-016-8279-5

23. Pham L, Nguyen T, Nguyen T, Nguyen T, Nguyen D. Subclinical carotid atherosclerosis and cognitive function among adults: a systematic review and meta-analysis. J Neurol. 2019;266:515–523. doi: 10.1007/s00415-018-9386-6

24. Touboul PJ, Grotta DE, Ruijter H. Assessment of subclinical atherosclerosis by carotid intima–media thickness: technical issues. Ann Neurol. 2007;61:1–6. doi: 10.1002/ana.21032

25. Touboul PJ, Grotta DE, Ruijter H. Assessment of subclinical atherosclerosis by carotid intima–media thickness: technical issues. Ann Neurol. 2007;61:1–6. doi: 10.1002/ana.21032

26. Richardson PD, Davies MJ, Born GVR. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Circulation. 1989;334:941–944. doi: 10.1161/01.CIR.87.4.1179

27. Hulot JS, Manoulanovic I, Polański J, Dudek K, Szuba A, Łoboz-Grudzień K. Impact of cardiovascular risk factors on carotid intima–media thickness: sex differences. Clin Interv Aging. 2016;11:721–731. doi: 10.2147/CIA.S103521

28. Alizadeh A, Shahlaei H, Mozaffarian F. Carotid atherosclerosis and cognitive function among adults: a systematic review and meta-analysis. J Neurol. 2019;266:916–925. doi: 10.1007/s00415-018-9386-6

29. Alizadeh A, Shahlaei H, Mozaffarian F. Carotid atherosclerosis and cognitive function among adults: a systematic review and meta-analysis. J Neurol. 2019;266:916–925. doi: 10.1007/s00415-018-9386-6

30. Practical Statistics for Medical Research. Chapman and Hall; 1991.
Table S1. Characteristics of the IMT Measurement Procedures of the Studies Included in the Systematic Review and Meta-Analysis on the Association Between Cognition Parameters and IMT.

References	Manual/automated	Common carotid	mHz	Uni o bilateral	Mean or maximal	Global test of cognition or Domain specific assessments
Alf Hasszouri et al., 2015	Manual	Yes	13	Bilateral	Maximal IMT of the near and far wall of the CCA	Global test of cognition
Arnzten et al., 2021	Automated	Yes	7.5	Right	Far and near wall of the CCA and the far wall of the bulb. Included plaque	Domain specific assessments
Casado-Narbono et al., 2016	NE	Yes	3-12	Bilateral	CCA at 1.5 cm proximal to the flow divider	Domain specific assessments
Cohen-Manheim et al., 2016	Automated	Yes	7.5	Left	Far wall of the left CCA, 1 cm proximal to the carotid bulb	Global test of cognition
Cohen et al., 2009	Manual	Yes	7-17	Bilateral	CCA, bifurcation, and internal carotid artery, in three views (lateral, anterior, and posterior oblique) Included plaque	Global test of cognition
Del Brutto et al., 2020	NE	Yes	4-15	Bilateral	Near wall and far wall of the: (1) segment extending from 1-2cm proximal to the tip of the flow divider into the CCA; (2) carotid bifurcation beginning at the tip of the flow divider and extending 1cm proximal to the flow divider tip; and (3) proximal 1cm of the internal carotid artery	Domain specific assessments
Feinkohl et al., 2013	NE	Yes	NE	Bilateral	CCA, 1 to 2 cm below the bifurcation Free of plaque	Domain specific assessments
Frazier et al., 2014	Automated	Yes	NE	Bilateral	Far wall far wall of the right and left distal CCA, a 1 cm length, just distal to the carotid artery bulb Free of plaque	Domain specific assessments
Gardner et al., 2018	Automated	Yes	9-13	Bilateral	Near and far walls of the common carotid artery, bifurcation, and internal carotid artery Free of plaque	Domain specific assessments
Gatto et al., 2009	Automated	Yes	NE	Right	Distal CCA far wall along a 1 cm length just distal to the carotid artery bulb.	Global test of cognition
Geijseraes et al., 2016	NE	Yes	7.5	Left	Left CCA, 1 cm proximal to the carotid bulb. Free of plaque	Global test of cognition
Haley et al., 2007	Automated	Yes	7.5	Left	Far wall of the left CCA, 1 cm proximal to the carotid bulb	Global test of cognition
Imran et al., 2020	Manual	Yes	10	Bilateral	Near and far wall of the distal part of CCA, on the 1-cm long segment from the carotid bulb	Domain specific assessments
Jiang et al., 2017	Automated	Yes	NE	Bilateral	Far wall of the CCA, the 1 cm segment proximal to the bifurcation	Domain specific assessments
Kemp et al., 2016	Automated	Yes	7.5	Bilateral	Outer wall, 1 cm in length from 1 cm below carotid bifurcation	Domain specific assessments
Komulainen et al., 2007	Automated	NE	10	Bilateral	Far wall of the left and right bifurcation	Domain specific assessments
Lim et al., 2016	NE	Yes	10.5	Bilateral	The CCA was scanned in anterior, posterior and lateral at 1 cm proximal to the carotid bulb Free of plaque	Domain specific assessments
Masley et al., 2014	NE	Yes	5-10	Bilateral	Far wall of the right and left distal 1 cm of the CCA	Global test of cognition
Matsumoto et al., 2018	NE	Yes	NE	Bilateral	The maximum value among the bilateral common and internal carotid artery in the far arterial walls	Domain specific assessments
Muella et al., 2018	Automated	Yes	7.5	Left	Left CCA, 1 cm below the bifurcation at the site of the distal Free of plaque	Domain specific assessments
Muller et al., 2014	NE	Yes	7.5	Bilateral	Left and right distal CCA	Domain specific assessments
Roberts et al., 2013	NE	Yes	7	Bilateral	Three locations in the common and internal carotid arteries	Global test of cognition
Rogne et al., 2013	Semi-automated	Yes	7.5:12	Right	1 cm segments of the far and near wall of the CCA, and in the most proximal 1 cm segment of the bulb. Included plaque	Domain specific assessments
Romero et al., 2009	NE	Yes	7.5	Bilateral	Near and far walls of CCA, carotid bulb and ICA	Global test of cognition
Schwedtfeger et al., 2015	Automated	NE	5-13	Bilateral	1 cm from carotid bifurcation from the far wall of the artesia carotid at a length of 1 cm	Domain specific assessments
Singh Manoux et al., 2006	Automated	Yes	7.5	Right	Left and left CCA, thickest part 1 cm proximal to the bifurcation	Domain specific assessments
Smith et al., 2011	Automated	Yes	10	Bilateral	Far wall of the left and right CCA	Global test of cognition
Suemoto et al., 2015	NE	Yes	7.5	Bilateral	Left and right CCA, within an area 1 cm in length, 1 cm below the carotid bifurcation	Domain specific assessments
Wang et al., 2016	Manual	Yes	5-12	Bilateral	Far wall of the CCA proximal to the bifurcation, along a plaque-free segment of 1 cm	Domain specific assessments
Wendell et al., 2009	NE	Yes	5-10	Right	1.5 cm proximal to the carotid bifurcation, of the far arterial wall of the right CCA	Domain specific assessments
Wendell et al., 2016	NE	Yes	NE	Left	Far all of the left CCA, 1.5 cm proximal to the carotid bifurcation was identified. Free of plaque	Domain specific assessments
Yue et al., 2018	NE	Yes	7.5	Bilateral	Near and far walls of the right and left CCA Included plaque	Domain specific assessments
Zhong et al., 2011	NE	Yes	7.5	Bilateral	Left and right sides of the near and far walls of the CCA, the bifurcation and the internal carotid artery Included plaque	Domain specific assessments
Zhong et al., 2012	NE	Yes	7.5	Bilateral	Left and right sides of the near and far walls of the CCA, the bifurcation and the internal carotid artery Included plaque	Domain specific assessments
References	Unadjusted	Adjusted				
------------	------------	----------				
Al Hazzouri et al., 2015	None.	Age, sex, race, and education, smoking, physical activity, elevated depressive symptoms, body mass index, type 2 diabetes mellitus, hypertension, cystatin C–based estimated glomerular filtration rate and antihypertensive medication use.				
Arentsen et al., 2012	None.	Sex, age and education, physical activity, smoking, systolic blood pressure, total cholesterol, HDL cholesterol, body mass index, diabetes, coronary heart disease and depression.				
Casado-Naranjo et al., 2016	Education, smoking, hypertension, folate, B12, creatinine and others as covariates.	Education, smoking, hypertension, folate, B12, creatinine and others as covariates.				
Cohen-Manhein et al., 2016	Sex.	Sex, age, education, childhood socioeconomic status (ICBS-based), adult socioeconomic status (ICBS-based), and cigarette pack–years, BMI, plasma cholesterol, fasting plasma glucose, and systolic and diastolic blood pressure measured at ages 28–32.				
Cohen et al., 2020	None.	Demographics, cardiovascular risk factors, severe edentulism, and symptoms of depression.				
Del Brutto et al., 2019	Age and sex.	None.				
Geijselaers et al., 2016	Age at baseline, sex, education, CDR score, and hypertension.	Age at baseline, sex, education, CDR score, and hypertension, cerebrovascular risk factors (LDL, diabetes) and WHR.				
Gardener et al., 2018	Age at neuropsychological examination, education (y), time from baseline to ultrasound, and time from ultrasound to neuropsychological examination.	Age at neuropsychological examination, education (y), time from baseline to ultrasound, time from ultrasound to neuropsychological examination, sex, race/ethnicity, medicaid/no insurance status, physical activity, alcohol use, smoking, body mass index, diabetes mellitus, hypercholesterolemia, and hypertension, and brain MRI markers (WMHV, brain volume, and SBV).				
Gatto et al., 2009	Age, gender, race/ethnicity, education, income, CES-D score, Hcy, SBP, LDL-C, smoking status.	Age, gender, race/ethnicity, education, income, CES-D score, Hcy, SBP, LDL-C, smoking status.				
Geijserlaers et al., 2016	Age, sex, and educational level.	Age, sex, educational level, body mass index, total/high density lipoprotein-cholesterol ratio, triglycerides, use of lipid-modifying medication, hypertension, presence of type 2 diabetes, estimated glomerular filtration rate, smoking behaviour, alcohol consumption, history of cardiovascular disease(s) and presence of a current depression.				
Haley et al., 2007	Age, education, sex, cardiovascular risk factors, and current systolic blood pressure.	Age, education, sex, cardiovascular risk factors, and current systolic blood pressure.				
Imam et al., 2020	None.	None.				
Jiang et al., 2017	None.	Age, gender, and education level, duration of DM, and hypertension.				
Komulainen et al., 2007	None.	Age, education, depression, diabetes, LDL cholesterol, systolic blood pressure, cardiovascular disease (coronary heart disease, cardiac insufficiency), hormone replacement therapy at the time of IMT measures, physical activity, alcohol consumption and smoking.				
Lim et al., 2016	None.	Age, gender, education, hypertension, diabetes, dyslipidemia, smoking, body mass index, and APOE 4 status.				
Masley et al., 2014	None.	None.				
Matsumoto et al., 2018	None.	Sex, age and years of education, body mass index, Brinkman index, systolic blood pressure, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, hemoglobin A1c, uric acid, bone density, and grade of deep and subcortical white matter hypointensity.				
Muela et al., 2018	None.	All independent variables with P<.01 in the bivariate analyses.				
Muller et al., 2007	Age and education.	Age and education.				
Rogne et al., 2013	None.	Cardiovascular risk factors and other factors known to influence cognition.				
Romero et al., 2009	Age and sex.	Age, sex, time to MRI/Neuropsychological testing, diabetes, smoking, hypertension treatment, systolic blood pressure and cardiovascular disease.				
Singh-Manoux et al., 2008	Age and sex.	Age and sex.				
Smith et al., 2017	Background characteristics, CVRF, and intima medial thickness.	Background characteristics, CVRF, and intima medial thickness.				
Suemoto et al., 2015	None.	Age, sex, race, marital status, education, income, hypertension, diabetes, coronary artery disease, heart failure, smoking, alcohol use, physical activity, body mass index, depression, and thyroid function status.				
Table S2. List of covariates used in the analyses of the included studies. (continue)

References	Unadjusted	Adjusted
Wang et al., 2016	None.	Age, sex, education, income level, body mass index, physical exercise, systolic blood pressure, diastolic blood pressure, high-density lipoprotein cholesterol, hypertension, diabetes mellitus, dyslipidemia, smoking, and drinking
Wendell et al., 2009	Age, years of education, MAP, BMI, total cholesterol, and depressive symptoms were treated as continuous covariates, and gender, race, smoking, and cardiovascular medications.	Age, years of education, MAP, BMI, total cholesterol, and depressive symptoms were treated as continuous covariates, and gender, race, smoking, and cardiovascular medications.
Wendell et al., 2016	Age, sex, race, poverty status, education, substance use, depressive symptoms, systolic blood pressure, total cholesterol, body mass index, antihypertensive use, lipid-lowering medication use, cardiovascular disease, and diabetes.	Age, sex, race, poverty status, education, substance use, depressive symptoms, systolic blood pressure, total cholesterol, body mass index, antihypertensive use, lipid-lowering medication use, cardiovascular disease, and diabetes.
Yue et al., 2016	None.	None.
Zhong et al., 2011	Age, sex, and education	Age, sex, education, marital status, family income, hypertension, CVD, diabetes, smoking and heavy drinking status, regular exercise, SF-36 mental score, HDL, cholesterol, anti-hypertensive medications and use of statins.
Zhong et al., 2012	Age, sex and education	Hemoglobin A1C, SF-36 mental score, antihypertensive medications, body mass index, heavy drinking, HDL, cholesterol and smoking.
Figure S1. Preferred Reporting Items for Systematic Reviews flowchart.

Table S3. Risk of bias of cross-sectional and longitudinal included studies. Numbers representing the questions included in the The Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies.

References	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total	
Al Hazouri et al., 2015	Y	Y	Y	Y	NR	Y	Y	Y	Y	Y	Y	Y	Y	12		
Amten et al., 2021	Y	Y	Y	Y	NR	Y	Y	Y	NR	Y	Y	Y	Y	Y	11	
Casado-Naranjo et al., 2016	Y	Y	Y	Y	NR	-	-	Y	Y	-	Y	Y	-	Y	9	
Cohen-Manheim et al., 2016	Y	Y	Y	Y	NR	Y	Y	Y	Y	NR	Y	Y	Y	Y	11	
Cohen et al., 2009	Y	Y	Y	Y	Y	NR	-	-	Y	Y	-	Y	Y	-	N	8
Del Brutto et al., 2020	Y	Y	Y	Y	NR	Y	Y	Y	Y	Y	NR	Y	Y	Y	12	
Feinkohl et al., 2013	Y	Y	N	Y	NR	Y	Y	Y	Y	Y	NR	Y	Y	Y	11	
Frazier et al., 2014	Y	Y	Y	Y	NR	Y	Y	Y	Y	Y	Y	Y	Y	N	11	
Gardener et al., 2018	Y	Y	Y	Y	NR	-	-	Y	Y	Y	NR	Y	Y	Y	12	
Gatto et al., 2009	Y	Y	N	Y	NR	-	-	Y	Y	-	Y	Y	N	Y	7	
Geijselaers et al., 2016	Y	Y	Y	Y	NR	-	-	Y	Y	-	Y	NR	Y	Y	8	
Haley et al., 2007	Y	Y	Y	Y	NR	-	-	Y	Y	-	Y	NR	Y	N	8	
Imran et al., 2020	Y	Y	Y	Y	NR	-	-	N	Y	-	Y	NR	-	N	6	
Jiang et al., 2017	Y	Y	Y	Y	NR	-	-	Y	Y	-	Y	NR	-	Y	8	
Kemp et al., 2016	Y	Y	Y	Y	NR	-	-	Y	Y	-	Y	NR	-	N	7	
Komulainen et al., 2007	Y	Y	Y	Y	NR	Y	Y	N	Y	Y	Y	NR	Y	N	10	
Lim et al., 2016	Y	Y	NR	Y	NR	-	-	N	Y	-	Y	NR	Y	Y	6	
Masley et al., 2014	Y	Y	NR	Y	NR	-	-	N	Y	-	Y	NR	-	N	5	
Matsumoto et al., 2018	Y	Y	NR	Y	NR	Y	Y	Y	Y	Y	Y	-	Y	7		
Mueta et al., 2018	Y	Y	NR	Y	NR	-	-	Y	Y	-	Y	NR	Y	Y	8	
Muller et al., 2007	Y	Y	N	Y	NR	NR	-	-	Y	Y	-	Y	NR	Y	7	
Roberts et al., 2016	Y	Y	Y	Y	NR	Y	Y	Y	Y	Y	Y	NR	-	Y	11	
Rogne et al., 2013	Y	Y	Y	Y	NR	Y	Y	Y	Y	Y	Y	Y	Y	N	11	
Romero et al., 2009	Y	Y	Y	Y	NR	Y	Y	Y	Y	Y	Y	Y	Y	N	12	
Schwerdtfeger et al., 2015	Y	Y	NR	Y	NR	-	-	Y	Y	-	Y	NR	-	Y	7	
Singh-Manoux et al., 2008	Y	Y	N	Y	NR	-	-	Y	Y	-	Y	Y	-	Y	7	
Smith et al., 2011	Y	Y	Y	Y	NR	-	-	N	Y	-	Y	NR	-	Y	7	
Suzuki et al., 2015	Y	Y	Y	Y	NR	-	-	Y	Y	-	Y	NR	-	Y	8	
Wang et al., 2016	Y	Y	N	Y	NR	-	-	N	Y	-	Y	NR	-	Y	7	
Wendell et al., 2009	Y	Y	NR	Y	NR	Y	Y	Y	Y	Y	NR	Y	N	9		
Wendell et al., 2016	Y	Y	N	Y	NR	Y	Y	Y	Y	Y	NR	N	Y	8		
Yue et al., 2016	Y	Y	Y	Y	NR	-	-	Y	Y	-	Y	NR	-	Y	7	
Zhong et al., 2011	Y	Y	N	Y	NR	-	-	Y	Y	-	Y	NR	-	Y	6	
Zhong et al., 2012	Y	Y	NR	Y	NR	Y	Y	Y	Y	Y	Y	NR	N	Y	8	

Y: yes; N: no; NR: not reported
Table S4: Heterogeneity, inconsistence estimations for DerSimonian random effects methods and z scores and corresponding p-values against the hypothesis that IMT has no effect on cognitive function.

Hypothesis values	Inconsistence	Heterogeneity				
Q	p	τ²	I²	z	p	
Cross-sectional Unadjusted						
Global cognition	134.40	0.000	0.039	89.6	4.40	0.000
Executive function	37.15	0.000	0.012	81.2	3.15	0.002
Memory	151.33	0.000	0.036	90.1	2.65	0.008
Attention	54.16	0.000	0.042	87.1	1.47	0.142
Cross-sectional Adjusted						
Global cognition	78.08	0.000	0.021	82.1	3.46	0.001
Executive function	27.04	0.000	0.010	74.1	2.51	0.012
Memory	33.88	0.000	0.007	55.7	2.86	0.004
Attention	32.46	0.000	0.024	78.4	1.83	0.067
Longitudinal Unadjusted						
Global cognition	16.37	0.001	0.025	81.7	2.37	0.018
Executive function	50.25	0.000	0.031	90.0	1.78	0.075
Memory	255.80	0.000	0.052	96.5	2.00	0.046
Attention	215.95	0.000	0.157	98.6	1.13	0.259
Longitudinal Adjusted						
Global cognition	7.30	0.063	0.007	58.9	1.56	0.120
Executive function	12.78	0.026	0.005	60.9	1.03	0.305
Memory	23.32	0.006	0.003	61.4	0.20	0.843
Attention	3.81	0.283	0.000	21.3	1.57	0.116
Table S5. Sensitivity analyses by removing studies one by one from the pooled unadjusted cross-sectional analysis. The effect size and 95% interval confidence (95% IC) represents the pooled estimations after excluding from the analysis the corresponding reference.

Reference	ES	LL	UL
Global cognition			
Casado-Naranjo et al., 2016	-0.241	-0.355	-0.126
Del Brutto et al., 2020	-0.228	-0.339	-0.116
Feinhol et al., 2013	-0.256	-0.375	-0.137
Gatto et al., 2009	-0.265	-0.382	-0.149
Jiang et al., 2016	-0.193	-0.285	-0.101
Komulainen et al., 2007	-0.247	-0.361	-0.134
Lim et al., 2016	-0.251	-0.367	-0.135
Matsumoto et al., 2018	-0.258	-0.374	-0.141
Muela et al., 2018	-0.232	-0.345	-0.119
Singh-Manoux., 2008 (High SES)	-0.274	-0.387	-0.161
Singh-Manoux., 2008 (Intermed SES)	-0.272	-0.386	-0.158
Singh-Manoux., 2008 (low SES)	-0.260	-0.378	-0.142
Wang et al., 2016	-0.259	-0.388	-0.130
Yue et al., 2016	-0.244	-0.363	-0.124
Zhong et al., 2011	-0.262	-0.383	-0.114
Executive function			
Gardener et al., 2018	-0.198	-0.324	-0.071
Gatto et al., 2009	-0.210	-0.325	-0.095
Suemoto et al., 2015	-0.176	-0.332	-0.019
Lim et al., 2016	-0.169	-0.287	-0.052
Masley et al., 2014	-0.145	-0.258	-0.032
Muller et al., 2007	-0.177	-0.299	-0.054
Rogne et al., 2013	-0.140	-0.244	-0.037
Smith et al., 2011	-0.199	-0.312	-0.086
Memory			
Cohen et al., 2009	-0.157	-0.265	-0.048
Gardener et al., 2018	-0.140	-0.251	-0.029
Gatto et al., 2009	-0.157	-0.274	-0.040
Geijsehaers et al., 2016	-0.151	-0.264	-0.038
Imran et al., 2020	-0.127	-0.234	-0.021
Komulainen et al., 2007	-0.125	-0.231	-0.019
Lim et al., 2016	-0.147	-0.257	-0.038
Masley et al., 2014	-0.142	-0.252	-0.031
Matsumoto et al., 2018	-0.134	-0.243	-0.025
Muela et al., 2018	-0.119	-0.224	-0.014
Muller et al., 2007	-0.135	-0.244	-0.026
Rogne et al., 2013	-0.128	-0.231	-0.025
Singh-Manoux., 2008 (High SES)	-0.157	-0.273	-0.041
Singh-Manoux., 2008 (Intermed SES)	-0.163	-0.282	-0.045
Singh-Manoux., 2008 (low SES)	-0.152	-0.264	-0.039
Suemoto et al., 2015	-0.161	-0.251	-0.072
Attention			
Cohen et al., 2009	-0.064	-0.217	0.089
Geijsehaers et al., 2016	-0.163	-0.364	0.037
Haley et al., 2007	-0.078	-0.239	0.083
Lim et al., 2016	-0.142	-0.321	0.038
Masley et al., 2014	-0.130	-0.315	0.054
Muela et al., 2018	-0.067	-0.222	0.089
Suemoto et al., 2015	-0.186	-0.377	0.005
Zhong et al., 2011	-0.180	-0.387	0.027

ES: effect size; LL: low limit; UL: upper limit.
Table S6. Sensitivity analyses by removing studies one by one from the pooled adjusted cross-sectional analysis. The effect size and 95% interval confidence (95% IC) represents the pooled estimations after excluding from the analysis the corresponding reference.

Reference	ES	LL	UL
Casado-Naranjo et al., 2016	-0.140	-0.228	-0.053
Del Brutto et al., 2020	-0.160	-0.251	-0.068
Feinkohl et al., 2013	-0.151	-0.244	-0.058
Gatto et al., 2009	-0.161	-0.252	-0.070
Jiang et al., 2016	-0.123	-0.203	-0.043
Komulainen et al., 2007	-0.151	-0.239	-0.062
Lim et al., 2016	-0.136	-0.246	-0.066
Matsumoto et al., 2018	-0.162	-0.252	-0.072
Muela et al., 2018	-0.146	-0.235	-0.057
Singh-Manoux, 2008 (High SES)	-0.170	-0.257	-0.084
Singh-Manoux, 2008 (Intermed SES)	-0.168	-0.256	-0.080
Singh-Manoux, 2008 (low SES)	-0.155	-0.247	-0.064
Wang et al., 2016	-0.158	-0.257	-0.060
Yue et al., 2016	-0.130	-0.208	-0.052
Zhong et al., 2011	-0.153	-0.247	-0.059

Reference	ES	LL	UL
Gardner et al., 2018	-0.124	-0.234	-0.014
Gatto et al., 2009	-0.139	-0.241	-0.039
Kempt et al., 2016	-0.139	-0.251	-0.027
Suemoto et al., 2015	-0.107	-0.201	-0.013
Masley et al., 2014	-0.070	-0.131	0.010
Muller et al., 2007	-0.110	-0.208	-0.011
Rogne et al., 2013	-0.117	-0.229	-0.004
Smith et al., 2011	-0.131	-0.225	-0.036

Reference	ES	LL	UL
Cohen et al., 2009	-0.097	-0.159	-0.034
Gardner et al., 2018	-0.092	-0.160	-0.024
Gatto et al., 2009	-0.103	-0.172	-0.034
Geijseelaers et al., 2016	-0.099	-0.166	-0.031
Imran et al., 2020	-0.079	-0.137	-0.021
Komulainen et al., 2007	-0.081	-0.141	-0.021
Lim et al., 2016	-0.093	-0.158	-0.028
Masley et al., 2014	-0.085	-0.149	-0.020
Matsumoto et al., 2017	-0.089	-0.155	-0.024
Muela et al., 2018	-0.076	-0.135	-0.017
Muller et al., 2007	-0.078	-0.139	-0.016
Rogne et al., 2013	-0.095	-0.165	-0.025
Singh-Manoux, 2008 (High SES)	-0.103	-0.171	-0.034
Singh-Manoux, 2008 (Intermed SES)	-0.106	-0.168	-0.043
Singh-Manoux, 2008 (low SES)	-0.096	-0.163	-0.029
Suemoto et al., 2015	-0.096	-0.162	-0.031

Reference	ES	LL	UL
Cohen et al., 2009	-0.072	-0.191	0.046
Geijseelaers et al., 2016	-0.174	-0.337	-0.011
Haley et al., 2007	-0.085	-0.214	0.043
Lim et al., 2016	-0.143	-0.289	0.003
Masley et al., 2014	-0.138	-0.294	0.019
Muela et al., 2018	-0.072	-0.196	0.053
Suemoto et al., 2015	-0.184	-0.377	0.009
Zhong et al., 2011	-0.178	-0.337	-0.019

ES: effect size; LL: low limit; UL: upper limit
Table S7. Sensitivity analyses by removing studies one by one from the pooled unadjusted longitudinal analysis. The effect size and 95% interval confidence (95% IC) represents the pooled estimations after excluding from the analysis the corresponding reference.

Global cognition	Reference	ES	LL	UL
COHEN-MANHEIM et al., 2016	-0.200	-0.424	0.023	
DEL BRUTTO et al., 2020	-0.176	-0.375	0.024	
FEINKOHL et al., 2013	-0.177	-0.381	0.028	
WENDELL et al., 2016	-0.287	-0.383	-0.190	
EXECUTIVE FUNCTION	Reference	ES	LL	UL
ALHAZZOURI et al., 2015	-0.068	-0.162	0.025	
COHEN-MANHEIM et al., 2016	-0.139	-0.314	0.035	
FRAZIER et al., 2014	-0.106	-0.269	0.057	
GARDENER et al., 2018	-0.173	-0.338	-0.008	
ROGNE et al., 2013	-0.151	-0.340	0.038	
ROMERO et al., 2009	-0.168	-0.336	-0.001	
MEMORY	Reference	ES	LL	UL
AMRTZEN et al., 2012	-0.088	-0.195	0.191	
COHEN-MANHEIM et al., 2016	-0.149	-0.310	0.012	
FRAZIER et al., 2014	-0.150	-0.309	0.009	
GARDENER et al., 2018	-0.185	-0.344	-0.025	
KOMULAINEN et al., 2007	-0.117	-0.269	0.035	
ROMERO et al., 2009 (CCAIMT)	-0.175	-0.347	-0.003	
WENDELL et al., 2009	-0.183	-0.344	-0.022	
WENDELL et al., 2016	-0.176	-0.352	0.001	
ZHONG et al., 2012	-0.171	-0.335	-0.007	
ATTENTION	Reference	ES	LL	UL
AMRTZEN et al., 2012	-0.067	-0.204	0.071	
COHEN-MANHEIM et al., 2016	-0.215	-0.697	0.267	
WENDELL et al., 2009	-0.307	-0.779	0.165	
WENDELL et al., 2016	-0.299	-0.754	0.154	

ES: effect size; LL: low limit; UL: upper limit

Table S8. Sensitivity analyses by removing studies one by one from the pooled adjusted longitudinal analysis. The effect size and 95% interval confidence (95% IC) represents the pooled estimations after excluding from the analysis the corresponding reference.

Global cognition	Reference	ES	LL	UL
COHEN-MANHEIM et al., 2016	-0.093	-0.240	0.053	
DEL BRUTTO et al., 2020	-0.102	-0.248	0.044	
FEINKOHL et al., 2013	-0.027	-0.102	0.048	
WENDELL et al., 2016	-0.125	-0.255	0.004	
EXECUTIVE FUNCTION	Reference	ES	LL	UL
ALHAZZOURI et al., 2015	-0.040	-0.144	0.063	
COHEN-MANHEIM et al., 2016	-0.046	-0.136	0.044	
FRAZIER et al., 2014	-0.019	-0.080	0.041	
GARDENER et al., 2017	-0.061	-0.144	0.023	
ROGNE et al., 2013	-0.030	-0.125	0.064	
ROMERO et al., 2009	-0.063	-0.150	0.025	
MEMORY	Reference	ES	LL	UL
ALHAZZOURI et al., 2015	-0.001	-0.054	0.052	
AMRTZEN et al., 2012	-0.005	-0.061	0.052	
COHEN-MANHEIM et al., 2016	-0.001	-0.051	0.049	
FRAZIER et al., 2014	0.001	-0.046	0.049	
GARDENER et al., 2017	-0.017	-0.063	0.030	
KOMULAINEN et al., 2007	0.002	-0.035	0.039	
ROMERO et al., 2009 (CCAIMT)	-0.008	-0.065	0.049	
WENDELL et al., 2009	-0.016	-0.065	0.033	
WENDELL et al., 2016	-0.005	-0.063	0.053	
ZHONG et al., 2012	-0.007	-0.060	0.045	

ES: effect size; LL: low limit; UL: upper limit
Table S9. Meta-regression of IMT and cognition domains by percentage of females and mean age, BMI, and baseline IMT values of included studies.

	% female	Age	BMI	Baseline IMT								
	n	β (95% CI)	p	n	β (95% CI)	p	n	β (95% CI)	p			
Global cognition												
Cross-sectional data												
Unadjusted	15	-0.007	0.225	15	-0.008	0.174	8	0.003	0.736	13	-0.136	0.552
Adjusted	15	-0.002	0.597	15	-0.006	0.083	8	0.002	0.701	13	-0.110	0.462
Longitudinal data												
Unadjusted	3	0.007	0.873	4	-0.010	0.202	3	0.002	0.973	3	-0.430	0.641
Adjusted	3	0.025	0.271	4	-0.001	0.331	3	-0.018	0.667	3	-0.628	0.259
Executive function												
Cross-sectional data												
Unadjusted	8	0.003	0.401	7	-0.001	0.895	8	0.068	0.057	7	0.458	0.721
Adjusted	8	0.003	0.277	7	-0.001	0.973	8	0.039	0.241	7	0.404	0.705
Longitudinal data												
Unadjusted	5	0.007	0.728	6	-0.001	0.878	-	-	-	5	-0.369	0.577
Adjusted	5	0.015	0.350	6	-0.002	0.486	-	-	-	5	-0.281	0.565
Memory												
Cross-sectional data												
Unadjusted	14	-0.002	0.555	15	-0.003	0.573	14	-0.043	0.147	16	-0.245	0.205
Adjusted	14	0.000	0.877	15	-0.002	0.447	14	-0.031	0.139	16	-0.161	0.192
Longitudinal data												
Unadjusted	9	-0.013	0.141	10	0.000	0.938	7	0.009	0.928	10	-0.758	0.306
Adjusted	9	-0.010	0.132	10	0.000	0.977	7	0.006	0.789	10	-0.105	0.711
Attention												
Cross-sectional data												
Unadjusted	7	-0.0003	0.982	8	-0.021	0.100	5	-0.120	0.262	7	-2.093	0.148
Adjusted	7	-0.001	0.949	8	-0.018	0.137	5	-0.0107	0.259	7	-2.028	0.172
Longitudinal data												
Unadjusted	3	0.073	0.372	4	-0.012	0.584	3	0.108	0.638	4	-1.348	0.262
Adjusted	3	0.010	0.462	4	-0.006	0.270	3	0.013	0.635	4	-0.295	0.297

NA: Not Available; BMI: body mass index; IMT: intima media thickness.
Table S10. Subgroup analyses of the association between IMT and cognition domains by IMT and cognition measurement procedure characteristics of included studies. n represents number of studies included in each subgroup analysis; bold font indicates effects size similar to the reported in the main analyses and italics indicates effect size opposite to the reported in the main analyses.

Global cognition	Manual/automated	mHz	Laterally	Cognition method	
	Type	n	Place	ES (95% CI)	
Cross-sectional data	Manual	-1.18 (-0.25; 0.11)	1	Range	-0.17 (-0.32; -0.02)
Adjusted	Automated	-0.26 (-0.49; -0.02)	7	>7	-0.28 (-0.42; -0.14)
	Not specified	-0.26 (-0.38; -0.15)	7	Not specified	-0.33 (-0.70; 0.04)
	Manual	-0.11 (-0.19; -0.03)	1	Range	-0.06 (-0.15; 0.03)
	Automated	-0.14 (-0.29; 0.01)	7	>7	-0.23 (-0.34; -0.04)
	Not specified	-0.18 (-0.28; -0.07)	7	Not specified	-0.20 (-0.43; 0.03)
Longitudinal data	Manual	-0.24 (-0.41; -0.06)	1	Range	-0.28 (-0.41; -0.15)
Adjusted	Automated	-0.20 (-0.42; 0.02)	3	Not specified	-0.15 (-0.43; 0.13)
	Not specified	-0.09 (-0.24; 0.05)	3	Not specified	-0.12 (-0.34; 0.11)
Executive functions	Manual	-0.35 (-0.42; -0.27)	2	Range	-0.05 (-0.14; 0.04)
	Automated	-0.08 (-0.18; 0.02)	3	>7	-0.35 (-0.42; -0.28)
	Not specified	0.00 (-0.09; 0.09)	1	Not specified	-0.15 (-0.50; 0.19)
	Manual	-0.05 (-0.13; 0.02)	2	Range	-0.02 (-0.12; 0.08)
	Automated	-0.10 (-0.28; 0.09)	3	>7	-0.06 (-0.14; 0.02)
	Not specified	0.04 (-0.05; 0.13)	1	Not specified	-0.14 (-0.52; 0.24)
Table S10. Subgroup analyses of the association between IMT and cognition domains by IMT and cognition measurement procedure characteristics of included studies. (continued) n represents number of studies included in each subgroup analysis; bold font indicates effects size similar to the reported in the main analysis and italics indicated effect size opposite to the reported in the main analysis.

Memory	Type	Manual/automated	n	Classification	mHz	n	Place	Laterality	ES (95% CI)	Classification	ES (95% CI)	n	
Cross-sectional data	Unadjusted	Manual	-0.61 (-1.06; -0.16)	1	Range	-0.11 (-0.23; 0.01)	6	Bilateral	-0.13 (-0.26; -0.01)	11	Domain specific assessments	-0.19 (-0.34; -0.05)	11
	Automated	-0.14 (-0.26; -0.02)	9	>7	-0.21 (-0.43; 0.02)	8	Right	-0.15 (-0.41; 0.11)	2	Global test of cognition	-0.05 (-0.13; 0.02)	5	
	Not specified	-0.11 (-0.30; -0.08)	6	Not specified	-0.13 (-0.40; 0.13)	2	Left	-0.16 (-0.54; 0.23)	3	-	-	-	
	Adjusted	Manual	-0.61 (-1.06; -0.16)	1	Range	-0.05 (-0.12; 0.01)	6	Bilateral	-0.11 (-0.19; -0.02)	11	Domain specific assessments	-0.12 (-0.20; -0.03)	11
	Automated	-0.06 (-0.13; 0.01)	9	>7	-0.19 (-0.34; -0.03)	8	Right	-0.05 (-0.13; 0.02)	2	Global test of cognition	-0.04 (-0.12; 0.03)	5	
	Not specified	-0.12 (-0.20; -0.04)	6	Not specified	-0.04 (-0.15; 0.07)	2	Left	-0.10 (-0.39; 0.19)	3	-	-	-	
Longitudinal data	Unadjusted	Manual	-0.29 (-0.39; -0.18)	2	Range	0.02 (-0.12; 0.15)	3	Bilateral	-0.14 (-0.30; 0.01)	7	Domain specific assessments	-0.18 (-0.43; 0.06)	6
	Automated	-0.34 (-0.75; 0.07)	4	>7	-0.29 (-0.53; -0.05)	5	Right	-0.21 (-0.76; 0.35)	2	Global test of cognition	-0.14 (-0.31; 0.04)	4	
	Not specified	0.00 (-0.04; 0.05)	4	No specified	-0.06 (-0.20; 0.08)	2	Left	-0.02 (-0.07; 0.03)	1	-	-	-	
	Adjusted	Manual	-0.05 (-0.12; 0.03)	2	Range	-0.06 (-0.02; 0.14)	3	Bilateral	-0.03 (-0.11; 0.05)	7	Domain specific assessments	0.00 (-0.08; 0.08)	6
	Automated	-0.08 (-0.25; 0.10)	4	>7	-0.02 (-0.09; 0.04)	5	Right	-0.03 (-0.07; 0.12)	2	Global test of cognition	-0.02 (-0.06; 0.03)	4	
	Not specified	-0.01 (-0.03; 0.05)	4	Not specified	-0.06 (-0.20; 0.08)	2	Left	-0.02 (-0.07; 0.03)	1	-	-	-	

ES: Effect size; CI: Confidence Interval.
Table S11. Meta-bias for the association between IMT and cognitive function domains.

	Coefficient	p
Cross-sectional Unadjusted		
Global cognition	-2.193	0.224
Executive function	-0.023	0.968
Memory	0.188	0.002
Attention	-3.491	0.002
Cross-sectional Adjusted		
Global cognition	-0.104	0.695
Executive function	-0.135	0.200
Memory	-1.868	0.018
Attention	-1.917	0.086
Longitudinal Unadjusted		
Global cognition	-6.497	0.087
Executive function	1.743	0.692
Memory	0.945	0.826
Attention	-0.648	0.584
Longitudinal Adjusted		
Global cognition	-2.102	0.602
Executive function	-1.479	0.512
Memory	1.992	0.103
Attention	-0.057	0.937

Figure S2. Funnel plot for comparison-specific cross-sectional pooled effect sizes for global cognition.
Figure S3. Funnel plot for comparison-specific cross-sectional pooled effect sizes for executive functions.

Figure S4. Funnel plot for comparison-specific cross-sectional pooled effect sizes for memory.

Figure S5. Funnel plot for comparison-specific cross-sectional pooled effect sizes for attention.
Figure S6. Funnel plot for comparison-specific longitudinal pooled effect sizes for global cognition.

Figure S7. Funnel plot for comparison-specific longitudinal pooled effect sizes for executive functions.

Figure S8. Funnel plot for comparison-specific longitudinal pooled effect sizes for memory.
Figure S9. Funnel plot for comparison-specific longitudinal pooled effect sizes for attention.