THE EFFECT OF A COSMIC RAY PRECURSOR IN SN 1006?

Cara E. Rakowski1, J. Martin Laming2, Una Hwang3, Kristoffer A. Eriksen4, Parviz Ghavamian5, and John P. Hughes4

1 Space Science Division, Naval Research Laboratory, Code 7671, Washington, DC 20375, USA
2 Space Science Division, Naval Research Laboratory, Code 7674L, Washington, DC 20375, USA
3 NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771
4 Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854
5 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

Received 2011 January 25; accepted 2011 April 12; published 2011 June 10

ABSTRACT

Like many young supernova remnants, SN 1006 exhibits what appear to be clumps of ejecta close to or protruding beyond the main blast wave. In this Letter, we examine three such protrusions along the east rim. They are semi-aligned with ejecta fingers behind the shock-front and exhibit emission lines from O vii and O viii. We first interpret them in the context of an upstream medium modified by the saturated non-resonant Bell instability which enhances the growth of Rayleigh–Taylor instabilities when advected post-shock. We discuss their apparent periodicity if the spacing is determined by properties of the remnant or by a preferred size scale in the cosmic ray precursor. We also briefly discuss the alternative that these structures have an origin in the ejecta structure of the explosion itself. In this case, the young evolutionary age of SN 1006 would imply density structure within the outermost layers of the explosion with potentially important implications for deflagration and detonation in thermonuclear supernova explosion models.

Key words: acceleration of particles – cosmic rays – ISM: supernova remnants – shock waves – supernovae: individual (SN 1006)

Online-only material: color figure

1. INTRODUCTION

Supernova remnants (SNRs) have long been suspected as the sites of cosmic ray (CR) diffusive shock acceleration, where ∼10% of the supernova energy would be required to be transmitted to CRs to satisfy observations. Partial confirmation of this idea came with ASCA observations of SN 1006 (Koyama et al. 1995; Reynolds 1996), which revealed northeastern and southwestern limbs dominated by X-ray synchrotron radiation from CR electrons. Direct evidence of CR ions, presumably the dominant CR component, has been harder to find, for the most part being limited to the observation of γ-rays resulting from the reaction $p + p \rightarrow \pi^0 + X$ followed by $\pi^0 \rightarrow 2\gamma$ decay. Eriksen et al. (2011) interpreted newly discovered, regularly spaced stripes of non-thermal emission in Tycho’s SNR as regions where the pre-shock medium has been significantly modified by $\sim 10^{15}$ eV ions. Indirect evidence for CR ions comes from the separation between the forward shock and the contact discontinuity in young SNRs (Warren et al. 2005; Cassam-Chenaï et al. 2008; Ferrand et al. 2010). For example, in SN 1006, the contact discontinuity is predicted to be less than 0.86 of the forward shock radius but is observed to be larger than that around almost all of the remnant (Cassam-Chenaï et al. 2008; Miceli et al. 2009). This has been interpreted in SN 1006 and Tycho’s SNR as being due to energy losses to CRs at the forward shock (Warren et al. 2005; Cassam-Chenaï et al. 2007, 2008; Miceli et al. 2009), which leads to a greater shock compression ratio and a thinner shell of shocked CSM (Blondin & Ellison 2001; Fraschetti et al. 2010). However, only in cases of extreme CR energy losses can a fraction of the ejecta in Rayleigh–Taylor (RT) instability approach or overtake the forward shock.

Density inhomogeneities in either the interstellar medium (Jun et al. 1996) or the ejecta (Wang & Chevalier 2001; Blondin et al. 2001) can also enhance the growth of RT instabilities potentially allowing them to reach the forward shock. Originally motivated to explain the existence of radial magnetic fields in young SNRs (Jun & Norman 1996), Jun et al. (1996) explored the effect of turbulence induced as the SNR forward shock encounters density clumps (of a factor of five) in the pre-shock medium. The vorticity induced by the interaction of the forward shock with the overdense clumps is advected post-shock. Upon reaching the contact discontinuity, the vortices transfer their rotational energy to the RT fingers. This enhances the growth of the fingers such that ejecta clumps may protrude beyond the blast wave. In some specific cases, it was found that 20 times larger density inhomogeneities would be required in the ejecta to achieve the same result (Wang & Chevalier 2001; Blondin et al. 2001).

Upstream density clumping may be intrinsic to the pre-shock medium, or induced by a CR shock precursor. In the scenario of non-resonant magnetic field amplification (Bell 2004, 2005), density clumping by a factor of ~3 is produced upstream of the shock as the magnetic field amplification saturates. Magnetic field amplification, also taken by some as indirect evidence for proton acceleration at shocks, is suggested by the narrowness of rims of synchrotron radiation at SNR shocks (Vink & Laming 2003; Long et al. 2003; Yamazaki et al. 2004; Warren et al. 2005; Cassam-Chenaï et al. 2007; Volk et al. 2005). Modeling the widths allows one to estimate the magnetic field to be in the range 100–500 μG, far larger than can be attained by the typical compression of ambient magnetic field. Fields of this magnitude may speed up the CR acceleration process, allowing SNRs to generate CRs up to and beyond the “knee” in the CR spectrum, at about 10^{15}–10^{16} eV.

Of all known SNRs, SN 1006 offers the most promising test of the action of CRs to produce density clumping ahead of the forward shock. It is the likely remnant of a Type Ia supernova,
located 500 pc above the galactic plane and expanding into low density interstellar medium. An H.E.S.S. detection of SN 1006 has been reported (Naumann-Godöta et al. 2008), consistent with an ambient gas density of 0.05 cm$^{-3}$ (Acero et al. 2007). Proper motions have been measured in the northwest in the optical, 0.28 yr$^{-1}$ (Winkler et al. 2003) corresponding, at a distance of 2.2 kpc, with a shock velocity of 2900 km s$^{-1}$ (Ghavamian et al. 2002). In the northeast, 0.48 yr$^{-1}$ expansion was measured in X-rays (Katsuda et al. 2009) giving 5000 km s$^{-1}$, indicating higher density in the northwest than elsewhere. Hamilton et al. (1997, 2007) derive a reverse shock velocity of 2700 km s$^{-1}$, and determine the expansion velocity of ejecta entering the reverse shock to be 7000 km s$^{-1}$, from Hubble Space Telescope (HST) observations.

In this Letter, we examine Chandra images and discuss structures seen to protrude beyond the eastern portion of the shock front. Ejecta clumps with similar periodicities are seen behind or near the blast wave elsewhere in SN 1006, most prominently around the southern rim. We chose to study these three features because they extend past the main shock and have deep enough observations for minimal spectral analysis. A more definitive study of all periodic structures in SN1006 is deferred to future work, thus numerical results reported herein may not be applicable for all of SN1006.

2. OBSERVATIONS

The eastern portion of SN1006 has been imaged multiple times with Chandra and XMM, and the features under discussion here are evident in all observations. However, for the sake of higher statistics we focus only on the two deepest Chandra observations on 2000 July 10 (Obsid 732) and 2008 June 24 (Obsid 9107). As in Katsuda et al. (2009), we exclude times of high background from the 2000 observation but found no flares in the 2008 observation. To further reduce the background we consider only the band in which the emission from SN1006 dominates, from 0.2 to 5.0 keV for imaging, and 0.3 to 6.0 keV for spectral analysis.

Figure 1 shows the region of interest in each long observation and a merged image where the 2008 observation was shifted to allow the use of χ^2 statistics. The total counts in the 2000 data between 0.3 and 6.0 keV were 1650 and 1033 for the three features and the background region, respectively. Table 2 summarizes the best-fit values and 3σ confidence intervals for a simultaneous fit of the 2000 and 2008 data. An absorbed power-law model with two additional Gaussian lines fits the data well, with an appropriate N_H for SN 1006, and a power-law index consistent with fits to a nearby region of the bright shock. The addition of two Gaussian lines for He-like and H-like O is supported by an F-test at the 99% significance level. Alternatively, following the SE model of Miceli et al. (2009), the data are fit equally well with a synchrotron and non-equilibrium ionization thermal component. In this fit we allowed only the normalizations, power-law index γ, temperature kT, and ionization timescale $n_e t$ to vary. Their analysis yielded a super-solar oxygen abundance which matches our spectrum

Feature Size	Angular (arcsec)	Linear (1018 cm)a
Azimuthal length	83, 41, 46b	2.7, 1.5, 1.4
Radial extent	25, 20, 10	0.8, 0.7, 0.3
Spacingc	145, 125, 125	4.8, 4.1, 4.1

Notes.

a Assuming 2.2 kpc distance to SN 1006.

b Three features, from south to north.

c Measured from “leading edge” to leading edge of each feature as opposed to the size of the darker regions between features. The northernmost size is measured from the feature marked with a white arrow in Figure 1.
well, the only difference being the best-fit ionization timescale for the three features is nominally lower than that of the shocked region as a whole (at 1σ, but not at 3σ).

3. DISCUSSION

3.1. Overview

The most relevant observed characteristics of the three pre-shock features are the generic size scale of \(\sim 4 \times 10^{18}\) cm, a continuum that is consistent with the synchrotron emission from the bright shock, and the presence of He-like and H-like O lines that imply an ionization age of \(\sim 5.7 \pm 0.1 \times 10^8\) s. This ionization age, comparable to the remnant lifetime given the ambient density of SN 1006, argues against an interpretation of the features as the denser portions of a CR precursor. The likely super-solar abundances with a synchrotron-dominated continuum, relative brightness of the pre-shock features, and small radius of curvature also support the idea that these are ejecta fingers that have breached the shock front.

Hereafter, we discuss possible origins for the spacing of the pre-shock features. (1) Anomalous viscosity determines the preferred RT wavelength. (2) The saturated state of non-resonant magnetic field amplification creates cavities and higher density regions at a particular scale. (3) The ejecta fingers originate in the explosion itself.

3.2. Ejecta Fingers Spaced by Anomalous Viscosity?

If the pre-shock features seen are the extension of the ejecta fingers themselves (Cassam-Chenaï et al. 2008), then the spacing between them may reflect the wavelength of the RT instability. In the absence of a periodic perturbation, this depends on the kinematic viscosity (the product of the sound speed and largest eddy size: \(v = \nu_{\text{sound}}/\nu_{\text{edd}}\)).

In stationary incompressible media the RT linear growth rate is approximately \(\Gamma = \sqrt{v^2k^4 + gk - \nu k^2}\) which has a maximum at mode wavenumber \(k = (g/\nu)^{1/3}/2\) (Plesset & Whipple 1974), where \(g \lesssim 0.0049\) cm s\(^{-2}\) for SN 1006 is the deceleration of the plasma (estimated from the SNR dynamics using Truelove & McKee 1999), and the ejecta density is assumed much greater than that of the shocked ISM. Exponential growth goes over to power-law growth as displayed in Blondin & Ellison (2001) when expansion is included. Taking the observed wavelength of \(4 \times 10^{18}\) cm, we find \(\nu \sim 10^{27}\) cm\(^{-2}\) s\(^{-1}\) and a maximum linear growth rate \(g^2/2

\begin{align*}
\frac{\nu m \gamma c^2}{qB} & \sim 2 \times 10^{18}\text{ cm} \Rightarrow B \sim 2 \times 10^{-12}\gamma G, \quad (1)
\end{align*}

where \(\gamma\) is the Lorentz factor for a high energy unmagnetized CR and \(B\) is the amplified magnetic field. The CR rest mass and charge are \(m\) and \(q\), and \(c\) is the speed of light. To estimate \(B\) and \(\gamma\), we consider a condition for the existence of the non-resonant instability (Bell 2004)

\begin{align*}
\frac{qB}{\gamma mc^2} & < k_{II} < \frac{J_{CR}B}{\rho v_{A}^2} = \frac{4\pi n_{CR}qv_{i}}{\gamma c} \Rightarrow B^2 < 4\pi m v_{i} cn_{CR}\quad (2)
\end{align*}

where \(v_{A}^2 = B^2/4\pi\rho\) and \(J_{CR} = n_{CR}qv_{i}/\gamma\) is the CR current in terms of the total number density of CRs \(n_{CR}\) (of which the unmagnetized fraction \(n'_{CR} = n_{CR}/\gamma\), the charge \(q\), and the shock velocity \(v_{i}\) at which CRs are assumed to stream. For SN 1006 with \(v_{i} \approx 5000\ km\ s^{-1}\), \(B^{2} < 3 \times 10^{-4}n_{CR}\). The total CR number density in terms of \(n = P_{CR}/\rho v_{A}^2\), the ratio

\begin{align*}
& 6 \ We are taking the CR distribution function \(f_{CR} = n_{CR}P_{0}/4\pi p^{4}\), \(n_{CR} = \int_{m_{CR}}^{n_{0}} f_{CR}4\pi \rho p dp\) with \(P_{0} \gg P_{*}\), and \(n_{CR} = \int_{m_{CR}}^{n_{0}} f_{CR}4\pi \rho p dp \approx n_{CR}(P_{0}/P_{*}) \approx n_{CR}/\gamma\). The injection momentum is \(P_{0} \sim m_{e}\), so that \(\gamma \approx 1\), and \(P_{*} \approx \gamma mc^{2}\) is the minimum momentum of the unmagnetized CRs.
of CR pressure to shock ram pressure, with \(P_{CR} = E_{CR}/3 = f_{p\text{max}}^p f_{c\text{CR}} p e4\pi p^2 dp/3 \), is

\[
n_{CR} = \frac{3\eta n_i v_i^2}{\ln \gamma e^{\frac{3}{2}}}, \tag{3}
\]

where \(n_i \approx 0.05 \text{ cm}^{-3} \) is the ion density in the upstream medium. Hence \(B^2 \sim 10^{-9} \eta \), or with \(\eta = 0.1, B \sim 10 \mu G \) then \(\gamma \sim 6 \times 10^6 \). At a position further to the north, Morlino et al. (2010) infer a value of \(\eta \approx 0.29 \), which results in higher values of \(B \sim 17 \mu G \) and \(\gamma \sim 10^7 \). Both these values imply \(E = 10^{52} - 10^{56} \text{ eV} \), which is past the “knee” in the CR spectrum.

3.4. Ejecta Fingers Associated with SN Explosion?

The possibility remains that the ejecta structure interpreted as due to RT instability above is in fact related to the Type Ia explosion, as in, e.g., the O-DDT model of Maeda et al. (2010a) illustrated in Maeda et al. (2010b). In other SN Ia remnants, such as Tycho, similar clumps to the ones considered here show the clear presence of Fe ejecta and as a result have been interpreted in this way. Delayed detonation models (e.g., Gamezo et al. 2004) appear to be the most plausible explosion model for a Type Ia SN (see, e.g., Badenes et al. 2006). Ashes burnt by the deflagration may exhibit structure (Maeda et al. 2010a; Jordan et al. 2008), whereas large density gradients appear to be absent from ejecta burnt by a detonation wave (e.g., Maeda et al. 2010a; Meakin et al. 2009). Unburnt ejecta exterior to these regions may survive due to expansion ahead of the deflagration front, with the density diminishing sufficiently to allow them also to escape burning in any subsequent detonation as well.

In SN 1006, both spectrally and dynamically, it appears that the reverse shock has only recently encountered regions that were subject to thermonuclear burning. Suzaku recently detected Fe K emission with a low ionization degree consistent with the Fe ejecta being more recently shocked than the other ejecta (Yamaguchi et al. 2008). The ejecta expansion velocity at the reverse shock in the observations of Hamilton et al. (1997, 2007) is close to the predicted outer extent of Fe produced in the C-DDT and C-DEF models of Maeda et al. (2010a), and also that in the various models tabulated by Badenes et al. (2005). Hamilton et al. (1997) comment that the ISM density at the back of the SNR is likely to be lower than elsewhere, and so the reverse shock in other regions of the remnant may have progressed further into the ejecta, shocking some of the Fe as is now seen by Suzaku (Yamaguchi et al. 2008). By comparison, in Tycho’s SNR, Badenes et al. (2006) find that the reverse shock has reached all but the last 0.4 M\(_{\odot}\) of ejecta. Thus these ISNRs are at significantly different evolutionary stages in terms of the location of the reverse shock in the ejecta. An ejecta origin for the protrusions in SN 1006 would have different implications for the locus of deflagration and detonation burning than for similar clumps in Tycho, in terms of the location of deflagration ashes and whether their structure can survive a detonation wave, as in the asymmetrical O-DDT model of Maeda et al. (2010a).

4. CONCLUSIONS

The structures observed exterior to the blast wave along the eastern limb of SN 1006 are likely to be metal-rich ejecta based on their probable super-solar abundances of O. We believe that a mechanism combining the ideas of Jun et al. (1996) and Bell (2004) is one way to bring the ejecta so close to the blast wave. Upstream density inhomogeneities of only a factor of five in the ISM could allow some RT fingers to overtake the blast wave, with the cavities and density enhancements that are a natural consequence of CR magnetic field amplification.

We contend that prior explanations for ejecta overtaking the shock are insufficient if acting alone. Invoking enhanced shock compression following CR losses, Blondin & Ellison (2001) needed post-shock compressions by a factor of 21 to obtain RT fingers that actually overtook the forward shock. This would imply implausibly high energy losses (77% of shock ram pressure lost as CRs, from Equation (2) of Liang & Keilty 2000). The recent more conservative simulations of Fraschetti et al. (2010) do not show RT fingers that exceed the blast wave radius, but do show that 2% of the ejecta material reaches within 95% of the forward shock radius (see also Wang 2011).

If the protrusions are RT fingers, we can interpret the size scale of the pre-shock features in terms of properties of the SNR in this sector of the shell. If the size scale is determined by the properties of the SNR plasma, assuming that the CR precursor itself establishes no preferred wavenumber for RT growth, then the viscosity would need to be anomalous by a factor of \(\sim 10^{-2} \). If instead the CR precursor develops a preferred size scale (Bell 2004, 2005), and this determines the wavelength of RT growth, the spacing may be interpreted in terms of CR parameters to give \(B \sim 10 \mu G \) and \(\gamma \sim 6 \times 10^6 \). This implies CR acceleration up to the knee in SN 1006.

The other tantalizing possibility is that these structures have an origin in the ejecta. If deeper observations revealed Fe as is seen in some ejecta clumps in Tycho’s SNR, the clumpiness, Fe, and low evolutionary age of SN 1006 would imply that deflagration ashes survived near the exterior of the exploding white dwarf.

C.E.R and J.M.L acknowledge support from NASA contract NNH10A009I and basic research funds from the Office of Naval Research. K.A.E and J.P.H acknowledge support from Chandra grant number GO9-0078X to Rutgers University. P.G. acknowledges HST grant GO-11184.07A at STScI.

REFERENCES

Acero, F., Ballet, J., & Decourchelle, A. 2007, A&A, 475, 883
Badenes, C., Borkowski, K. J., & Bravo, E. 2005, ApJ, 624, 198
Badenes, C., Borkowski, K. J., Hughes, J. P., Hwang, U., & Bravo, E. 2006, ApJ, 645, 1373
Bell, A. R. 2004, MNRAS, 353, 550
Bell, A. R. 2005, MNRAS, 358, 181
Blondin, J. M., Borkowski, K. J., & Reynolds, S. P. 2001, ApJ, 557, 782
Blondin, J. M., & Ellison, D. C. 2001, ApJ, 560, 244
Cassam-Chenaï, G., Hughes, J. P., Ballet, J., & Decourchelle, A. 2007, ApJ, 665, 315
Cassam-Chenaï, G., Hughes, J. P., Reynoso, E. M., Badenes, C., & Moffett, D. 2008, ApJ, 680, 1180
Erik sen, K. et al., 2011, ApJ, 728, L28
Ferrand, G., Decourchelle, A., Ballet, J., Teys sier, R., & Fraschetti, F. 2010, A&A, 509, L10
Fraschetti, F., Teys sier, R., Ballet, J., & Decourchelle, A. 2010, A&A, 515, A104
Gasiorov, V., Khokhlov, A. M., & Oran, E. S. 2004, Phys. Rev. Lett., 92, 211102
Ghavamian, P., Winkler, P. F., Raymond, J. C., & Long, K. S. 2002, ApJ, 572, 888
Hamilton, A. J. S., Fesen, R. A., & Blair, W. P. 2007, MNRAS, 381, 771
Hamilton, A. J. S., Fesen, R. A., Wu, C.-C., Crenshaw, D. M., & Sarazin, C. L. 1997, ApJ, 481, 838
Jordan, G. C., Fisher, R. T., Townsley, D. M., Calder, A. C., Graziani, C., Asida, S., Lamb, D. Q., & Truran, J. W. 2008, ApJ, 681, 1448

C.E.R and J.M.L acknowledge support from NASA contract NNH10A009I and basic research funds from the Office of Naval Research. K.A.E and J.P.H acknowledge support from Chandra grant number GO9-0078X to Rutgers University. P.G. acknowledges HST grant GO-11184.07A at STScI.
Naumann-Gódo, M., Beilicke, M., Hauser, D., Lemoine-Goumard, M., & de Naurois, M. 2008, in AIP Conf. Ser. 1085, High Energy Gamma-ray Astronomy: Proc. 4th International Meeting on High Energy Gamma-Ray Astronomy, ed. F. A. Aharonian, W. Hofmann, & F. Rieger (Melville, NY: AIP), 304
Plesset, M. S., & Whipple, C. G. 1974, Phys. Fluids, 17, 1
Reynolds, S. P. 1996, ApJ, 459, L13
Truelove, J. K., & McKee, C. F. 1999, ApJS, 120, 299
Vink, J., & Laming, J. M. 2003, ApJ, 584, 758
Völk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2005, A&A, 433, 229
Wang, C.-Y., & Chevalier, R. A. 2001, ApJ, 549, 1119
Warren, J. S., et al. 2005, ApJ, 634, 376
Winkler, P. F., Gupta, G., & Long, K. S. 2003, ApJ, 585, 324
Yamazaki, R., Yoshida, T., Terasawa, T., Bamba, A., & Koyama, K. 2004, A&A, 416, 595