Search for Natural Compounds That Increase Apolipoprotein A-I Transcription in HepG2 Cells: Specific Attention for BRD4 Inhibitors

Sophie E. van der Krieken1 · Pieter C. van-der Pijl2 · Yuguang Lin2 · Herman E. Popeijus1 · Ronald P. Mensink1 · Jogchum Plat1

Received: 10 May 2019 / Revised: 25 October 2019 / Accepted: 25 October 2019
© 2019 The Authors. Lipids published by Wiley Periodicals, Inc. on behalf of American Oil Chemists’ Society

Abstract Although increasing apolipoprotein A-I (apoA-I) might lower the cardiovascular disease risk, knowledge on natural compounds that elevate apoA-I transcription is limited. Therefore, the aim of this study was to discover natural compounds that increase apoA-I transcription in HepG2 cells. Since BRD4 inhibition is known to elevate apoA-I transcription, we focused on natural BRD4 inhibitors. For this, the literature was screened for compounds that might increase apoA-I and or inhibit BRD4. This resulted in list A, (apoA-I increasers with unknown BRD4 inhibitor capacity), list B (known BRD4 inhibitors that increase apoA-I), and list C (BRD4 inhibitors with unknown effect on apoA-I). These compounds were compared with the compounds in two natural compound databases. This resulted in (1) a common substructure (ethyl-benzene) in 60% of selected BRD4-inhibitors, and (2) four compounds that increased ApoA-I: hesperetin, equilenin, 9(S)-HOTrE, and cymarin. Whether these increases are regulated via BRD4 inhibition and the ethyl-benzene structure inhibits BRD4 requires further study.

Keywords apolipoprotein A-I · BET inhibitor · BRD4 · high-density lipoprotein · in silico structural similarity search · natural compounds

Lipids (2019) 54: 687–695.

Abbreviations

ABCA1 ATP-binding cassette A1
ADME adsorption, distribution, metabolism, and excretion
ApoA-I apolipoprotein A-I
BET bromodomain and extraterminal inhibitor
BRD1-4 bromodomain-containing protein 1, 2, 3, or 4
CSL112 apolipoprotein A-I [human]
CVD cardiovascular disease
DMSO dimethylsulfoxide
DSM Dutch State Mines
ER-stress endoplasmic reticulum stress
FCFP4 functional-class fingerprints 4
HaCaT human skin keratinocyte cell line
HDL high-density lipoprotein
HepG2 human hepatocellular liver carcinoma
IC50 half-maximal inhibitory concentration
JNK c-Jun N-terminal kinase
MEM minimum essential medium
NEAA nonessential amino acids
NIH3T3 National Institutes of Health 3-day transfer, inoculum 3 × 10^5 mouse fibroblast cells.
NWO Netherlands Organization for Scientific Research
SHIME simulator of the human intestinal microbial ecosystem
STW Dutch Technology Foundation

Supporting information Additional supporting information may be found online in the Supporting Information section at the end of the article.

* Herman E. Popeijus
 h.popeijus@maastrichtuniversity.nl

1 NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Nutrition and Movement Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands

2 Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Introduction

Cholesterol efflux capacity is defined as the amount of cholesterol taken up from cholesterol-loaded macrophages by high-density lipoprotein (HDL) particles. It is inversely associated with the incidence of cardiovascular events (Rohatgi et al., 2014). As an elevated in vitro cholesterol efflux capacity may reflect increased reverse cholesterol transport in vivo; the efflux capacity may be a useful parameter for the development of cardiovascular disease (CVD)-lowering strategies (Rohatgi et al., 2014). Apolipoprotein A-I (apoA-I) is the principal component of HDL, which can take up cholesterol by binding to the ATP-binding cassette A1 (ABC-A1), the trans membrane cholesterol transporter on macrophages (Phillips, 2014). The plasma concentration of apoA-I is associated with increased cholesterol efflux capacity (Saleheen et al., 2015). Therefore, a promising strategy to increase cholesterol efflux capacity is to increase the amount of nascent HDL particles by increasing de novo apoA-I production (Dullens et al., 2007; Smits et al., 2014). The effectiveness of increasing apoA-I concentrations in the combat against CVD is supported by several in vivo animal (Rubin et al., 1991; Schultz et al., 1993) and human studies (Nissen et al., 2003; Tricoci et al., 2015). For example, intravenous infusion of recombinant apoA-I particles decreased atherosclerosis progression, as it reduced the atheroma volume in patients with acute coronary syndromes (Nissen et al., 2003). Moreover, the use of apoA-I mimetics like CSL112 (Tricoci et al., 2015) clearly enhanced cholesterol efflux capacity. Besides the involvement of apoA-I in enhancing cholesterol efflux capacity, apoA-I may also provide other cardioprotective effects. ApoA-I is antiinflammatory (Umemoto et al., 2013), antithrombotic (Epand et al., 1994), and has glucose-lowering properties (Dalla-Riva et al., 2013; Drew et al., 2009). Altogether, this illustrates the crucial role for elevating apoA-I production in CVD risk management.

In addition, studies have indicated a positive role for the family of bromodomain and extra-terminal (BET) protein inhibitors to increase apoA-I production. For example, in in vitro as well as in in vivo studies, the BET inhibitor RVX208 (or apabetalone) increased apoA-I transcription and protein production (Gilham et al., 2016). Additionally, there are many other compounds with BET-inhibiting function and the capacity to increase apoA-I synthesis, at least in vitro, such as JQ1 (+) (Kempen et al., 2013), Ro11-1464 (Zanotti et al., 2011), GW841819X (Chung et al., 2011), GSK1210151A or I-BET151 (Seal et al., 2012), alaprazolam (Filippakopoulos et al., 2012), GSK1324762A or I-BET762 (Minguet et al., 2012), and thieno- or benzotriazolodiazepines (Kempen et al., 2013) such as U-34599 and U-51477 (Princen JMG May 28; Princen and Kooistra, 2003; Kempen et al., 2013). In humans, four types of BET proteins have been identified, namely, bromodomain-containing protein (BRD) 2, BRD3, BRD4, and testis-specific BRD T. Although many BET inhibitors are multi-BET active, in vitro experiments have shown that specifically the silencing of BRD4 is involved in increasing apoA-I production (Chung et al., 2011). For example, JQ1 (+) and RVX208 inhibit BRD4, which may explain their effects on increasing apoA-I production. Currently, BET-inhibition is considered a promising route to increase apoA-I transcription and most BET inhibitors under development are of synthetic origin. Possibly, natural compounds can—assuming they pass safety assessment, affordable sourcing, and have favorable ADME properties—be used as a functional food ingredient. Therefore, the aim of this study was to identify natural compounds that increase apoA-I transcription, by an in silico and in vitro approach based on a literature review. Specific attention was paid to the role of BRD4 inhibition.

Materials and Methods

General Approach

To identify new, natural compounds, or functional (sub-)structures that increase apoA-I transcription, three lists (Lists A, B, and C) were compiled based on a literature review, and via a database of bioactivities (Gaulton [22]). The compounds in these lists were compared with those from two databases containing natural compounds: a company-owned database and a commercially available one. Next, most similar compounds were tested in vitro for their ability to increase apoA-I transcription. For a schematic representation of the study design, see Fig. 1.

Literature Review

To identify known natural compounds that increase apoA-I production or HDL, the literature was scrutinized using PubMed for articles published until August 2015. As search term (((BRD*) OR bromodomain)) AND (((apo*) OR High-Density Lipoproteins, Pre-beta) OR apoI) was used. In addition, a well-curated database of bioactivities (Gaulton et al., 2017) was used to identify natural compounds and synthetic compounds, which inhibit BRD4. Additionally, we recently identified cymarin and 9(S)-HOTrE as apoA-I transcriptional elevating compounds (van der Krieken et al., 2018). Therefore, these two compounds were included in our literature review results as well.
This resulted in the formation of three lists (Fig. 1): List A contained compounds that increase apoA-I production with unknown BRD4 inhibiting capacity. List B contained compounds that were BRD4 inhibitors and increased apoA-I production. List C was composed of known BRD4 inhibitors, with unknown effects on apoA-I production. Only BRD4 inhibitors with IC50 values <500 nM were selected.

In Silico Screening for Natural Ingredients with Potential to Increase apoA-I

Two databases were searched for natural compounds that may increase apoA-I transcription: a database provided by DSM (DSM, Delft, The Netherlands) containing 2000 natural compounds and a commercially available one, the Dictionary of Natural Products (version 18.1; Francis & Taylor) containing about 260,000 natural compounds.

Structural similarities between compounds identified from the literature and molecules present in those databases were determined using the Tanimoto algorithm based on circular fingerprints of four atoms (FCFP4). This was performed for molecules from each list.

The method used to screen for molecules depended on the list of molecules: since lists A and B contained relatively few compounds, a structural similarity search was performed for each compound from these lists in the aforementioned natural product databases via Tanimoto-based similarities. In addition, the structural similarity of compounds from lists A and B was shown in a structural similarity matrix. By performing a substructure search in list C, we determined if the BRD4 inhibitors in this list contain a common substructure.

In Vitro Testing

In Vitro test for apoA-I transcription

In Vitro apoA-I Transcription

Human hepatocellular liver carcinoma (HepG2) cells (kindly provided by S. Braesch-Andersen, Mabtech, Nacka Strand, Sweden) were cultured at 37°C in a humidified atmosphere and 5% CO2. For cell culturing, minimum essential medium (MEM) was used supplemented with 10% fetal calf serum (v/v, South-American, Greiner Bio- one, Frickenhausen, Germany), L-glutamine (Invitrogen Life Technologies, Carlsbad, CA, USA), 1% penicillin/streptomycin (v/v), 1% nonessential amino acids (NEAA, v/v), and 1% sodium pyruvate (v/v, all from Invitrogen Life Technologies). To gain insight into the effect of the selected natural compounds on apoA-I transcription, HepG2 cells were exposed for 48 h to different doses of each compound. Stocks were prepared in recommended carrier solutions and were diluted in culture medium. For carrier controls, maximally 0.5% DMSO or ethanol was used. After incubation, cells were microscopically inspected and pictures of each condition were made to confirm cell vitality (data not shown). Different doses of the BRD4 inhibitor RVX208 (Bioconnect, Huis ten Bosch, The Netherlands) were used as positive controls for their ability to increase apoA-I transcription. Furthermore, in each
experiment 3 μM JQ1(+) (Tocris Bioscience, Abingdon, UK), another known BRD4 inhibitor was used as a control for increased apoA-I transcription in HepG2 cells.

ApoA-I qPCR Measurement

Total RNA was isolated according to the Qiagen Trizol protocol. Next, cDNA was produced using Taqman reagents. ApoA-I (Hs00163641_m1) and internal control cyclophilin A (Hs99999904_m1) mRNA expression was determined using the 7300 Real-Time PCR System. Both TaqMan Gene Expression Assays and reagents were obtained from Applied Biosystems (Warrington, UK).

Results

Literature-Derived ApoA-I Increasing Compounds and/or BRD4 Inhibitors

Eight compounds were identified that increased HDL-C or apoA-I protein and/or mRNA expression according to literature. It is unknown whether these compounds are also BRD4 inhibitors (Table 1; list A). Among the compounds of List A, hesperetin, equilenin, 9(S)-HOTrE, and cymarin (Fig. 2, upper panel) were confirmed to be of natural origin as they are listed in DNP and DSM natural databases. There were six synthetic compounds that increased apoA-I production (either measured as transcription, protein secretion, or luciferase reporter activity) and were known BRD4 inhibitors (Table 1; list B). Two of the synthetic compounds (U-34599 and U-51477) from list A and three of the synthetic compounds of list B (JQ1(+), Ro11-1464 and RVX208) also increased *in vitro* apoA-I protein secretion, besides increasing apoA-I transcription.

In addition, the literature search also resulted in the identification of 48 synthetic compounds that were described to bind to BRD4 (IC₅₀ < 500 nM) (Table S1; list C), suggesting that they may affect apoA-I. However, their effects on apoA-I transcription and/or apoA-I production have not been reported in the literature.

In Silico Screening for Natural Ingredients with Potential to Increase apoA-I

By comparison of the molecular structures within lists A and B, a structural similarity of 0.7 was found between U-

Table 1 ApoA-I increasing compounds according to literature review and virtual screening in the Dictionary of Natural Products (DNP) and DSM database

Compounds from literature	Compounds from the virtual screen					
List	Relation to apoA-I	BET inhibition	Molecule	Reference	DNP	DSM
A	↑ transcription	?	9(S)-HOTrE	van der Krieken et al. (2018)	a	a
A	↑ transcription	?	Cymarin	van der Krieken et al. (2018)	a	a
A	↑ cholesterol efflux to apoA-I	?	BMS-309403	Furuhashi (2007)	0	0
A	↑ cholesterol efflux to apoA-I	?	Equilenin	Zhang et al. (2001)	a	a
A	↑ luciferase reporter activity	?	GW694481	Mirguet et al. (2012)	0	0
A	↑ cholesterol efflux to apoA-I	?	Hesperetin	Lio (2012)	a	a
A	↑ transcription and protein secretion	?	U-34599	Kempen et al. (2013), Princen and Kooistra (2003)	0	0
A	↑ transcription and protein secretion	?	U-51477	Kempen et al. (2013), Princen and Kooistra (2003)	0	0
B	↑ luciferase reporter activity	↓	GW841819X	Chung et al. (2011)	0	0
B	↑ transcription	↓	I-BET151	Mirguet et al. (2012)	0	0
B	↑ transcription	↓	I-BET762	Mirguet (2013)	0	0
B	↑ transcription and protein secretion	↓	JQ1(+)	Filippakopoulos (2010), Kempen et al. (2013), McLure (2013)	0	0
B	↑ transcription and protein secretion	↓	Ro11-1464	Zanotti et al. (2011)	0	0
B	↑ transcription and protein secretion	↓	RVX208	McNeill (2010), Gilham et al. (2016), McLure (2013)	0	0

Lists A and B were based on the outcome of the literature review and the virtual screening in the DNP and DSM databases. Filters: Molecular similarity compared to literature compound >0.5, present in a natural source for the virtual structural comparisons. Compounds not filtered for commercial availability.

aData files resulting from the virtual screening in the DNP and DSM database are available upon request.
51477 and alprazolam (Table S2). Searches for structural similarity of the compounds found in the literature (list A and B) via in silico screening are available upon request. Among them, four natural compounds were selected based on their commercial availability (Fig. 2, lower panel).

For compound hesperetin, eriodictyol was selected (0.79 similarity); for compound equilenin hordenine was selected (0.53 similarity); for compound 9(S)-HOTrE we selected 5(S),15(S)-DiHETE (0.91 similarity), and for the compound cymarin we selected the structurally comparable compound emicymarin (0.81 similarity). These eight compounds were further tested for their effects on apoA-I transcription in HepG2 cells (Fig. 2).

After determining structural similarities of these synthetic BRD4 inhibitors within list C, a common substructure (ethylbenzene moiety) was discovered in 60% of all compounds (Fig. 3). Furthermore, the DNP and DSM databases were searched for natural compounds that contained this ethylbenzene moiety. This search resulted in the identification of approximately 179 compounds with a similarity of >0.5. This data is available upon request.

Effects of the Selected Compounds on apoA-I mRNA Expression in HepG2 Cells

Addition of different doses of the known BET inhibitor RVX208 (Fig. S1) clearly increased dose dependently the production of apoA-I mRNA. Likewise, the positive control JQ1(+) increased apoA-I transcription in all experiments (Fig. 4), indicating that it could serve as a positive control for apoA-I production in vitro. Hesperetin, did not increase apoA-I transcription in our in vitro testing system. If anything, apoA-I transcription was reduced (Fig. 4a). However, eriodictyol, the selected compound with a high similarity to hesperetin, did induce apoA-I transcription by 35% at a dose of 50 μM (Fig. 4b). Eriodictyol in doses ranging from 100 to 250 μM decreased apoA-I and had no effect at lower doses. Equilenin raised apoA-I transcription in HepG2 cells, although no clear dose–response pattern was evident (Fig. 4c). Hordenine, the compound with a structure comparable to equilenin, did not affect apoA-I transcription (Fig. 4d). 9(S)-HOTrE increased apoA-I

![Fig. 2 Comparison of lists A and B to the DNP and DSM natural databases resulted in the confirmation of four structures: hesperetin, equilenin, (9)S-HOTrE, and cymarin (a). In (b), the structurally comparable compounds are presented: eriodictyol, hordenine, 5(S),15(S)-DiHETE, and emicymarin](image)

![Fig. 3 The common ethylbenzene substructure found in 60% of all BRD4 inhibitor compounds listed in Table S1 with unknown effects on apoA-I](image)
Fig. 4 Relative apoA-I mRNA expression in HepG2 cells treated with different doses of (a) hesperetin, (b) eriodictyol, (c) equilenin, (d) hordenine, (e) 9(S)-HOTrE, (f) 5(S),15(S)-DiHETE, (g) cymarin, and (h) emicymarin. Known BET inhibitor and apoA-I increaser JQ1(+) (3 μM) was used as a positive control, whereas thapsigargin (0.01 μM) was used as a control to confirm decreased apoA-I expression. *The data presented in panels (e) and (g) are adapted from van der Krieken et al. [23]. Compounds were tested in duplo; error bars indicate the SD.
transcription by 35% at a dose of 170 nM (Fig. 4e), while the structural variant of this compound 5(S),15(S)-DiHETE, reduced apoA-I transcription (Fig. 4f). Cymarin slightly decreased apoA-I mRNA expression at low concentrations, but increased its expression by 37% at doses ranging from 18 to 45 μM (Fig. 4f). The structurally comparable compound emicymarin increased apoA-I up to 77% (Fig. 4h). All compound doses were tested in duplo in HepG2 cells and measurements were performed in duplo.

Discussion

We aimed to identify new natural compounds that increase apoA-I transcription via a literature search, in silico screening, and in vitro testing. Specifically, we searched for natural BRD4 inhibiting compounds, since a growing number of studies point toward a role for BRD4 inhibitors for increasing apoA-I transcription (Chung et al., 2011).

Based on the assumption that molecules with comparable structures interact similarly with their molecular targets (Martin et al., 2002), we examined the effects of structurally comparable compounds of hesperetin, equilenin, 9(S)-HOTrE, and cymarin on apoA-I transcription in HepG2 cells, namely, eriodictyol, hordenine, 5(S),15(S)-DiHETE, and emicymarin. Of the three main structures that increased apoA-I transcription (equilenin, 9(S)-HOTrE, cymarin), the structurally comparable compounds eriodictyol and emicymarin increased apoA-I transcription.

Eriodictyol, the compound that was structurally comparable to hesperetin, is a metabolite of hesperetin and both are present in oranges. We observed that, eriodictyol, but not hesperetin, induced apoA-I transcription by 35% at a dose of 50 μM. Possibly, hesperetin needs to be converted into eriodictyol to exert its effects on apoA-I transcription (Brand et al., 2008). If so, it would be of interest to study also effects of other metabolites of hesperetin on apoA-I transcription. The optimal dose of eriodictyol in our study was 50 μM, which has been reported as nontoxic in various cell lines, such as macrophage mouse cells, NIH3T3 (fibroblast) cells, and HaCaT (human skin) cells (Lee et al., 2013). In vivo studies in mice suggested that eriodictyol is antiinflammatory (Zhu et al., 2015), while in vitro studies in mouse spleen cells showed that this compound has antioxidant properties (Mokdad-Bzeouich et al., 2016). In HepG2 cells, eriodictyol increased insulin-stimulated glucose uptake (Zhang et al., 2012) and inhibited of c-Jun N-terminal kinase (JNK) in macrophages (Lee et al., 2013). Since JNK is also activated during ER-stress (Lee et al., 2011), it is of interest to examine if eriodictyol is also able to prevent ER-stress-induced decreases in apoA-I transcription.

Equilenin is a naturally occurring estrogenic steroid that can be extracted from the urine of pregnant mares (Blavnani and Stanczyk, 2014). Equilenin (10 μM) is a potent activator of the apoA-I promoter and increased apoA-I transcription with 140% in HepG2 cells (Zhang et al., 2001). At a dose of 10 μM, we observed that equilenin increased apoA-I transcription by 19% in HepG2. However, the optimal dose of equilenin in our study was only 0.6 μM, which increased apoA-I transcription by 27%. In women, estrogen replacement therapy in postmenopausal women increases plasma HDL-C and apoA-I concentrations (Lamon-Fava et al., 2003). Long-term estrogen treatment reduced the risk of mortality, myocardial infarction, or heart failure in early postmenopausal women, but not in women who start hormone therapy 5–20 years after menopause. Moreover, unwanted effects such as thromboembolic disease or breast cancer have been observed (Mosca et al., 2001). Hordenine, the structurally comparable compound of equilenin (0.53 similarity) did not influence apoA-I transcription. Unfortunately, no other compounds with a resemblance to equilenin above 0.53 were commercially available.

9(S)-HOTrE increased apoA-I transcription in HepG2 cells by 35% at a dose of 170 nM (Fig. 4). 9(S)-HOTrE is a monohydroxy polysaturated fatty acid found in the leaves of a plant called Glechoma hederacea (Kim et al., 2015). Studies in primary macrophages, suggested a possible protective role for a Glechoma hederacea extract on rheumatoid arthritis and osteoporosis, due to antiinflammatory actions (Hwang et al., 2014). In humans, 9(S)-HOTrE can be produced from the essential fatty acid alpha-linolenic acid by the action of 5-lipoxygenase (Yandava et al., 1999). Unfortunately, the compound with a comparable structure to 9(S)-HOTrE—5(S),15(S)-DiHETE did not increase apoA-I transcription.

Cymarin, a cardiac glycoside produced by the digitalis plant (Gozapour et al., 2013), increased transcription of apoA-I by 37% at doses ranging from 18 to 45 μM. The structurally comparable compound of cymarin, emicymarin increased apoA-I transcription up to 77%. Emicymarin is, like cymarin, a cardenolide and cardiac glycoside. Although digoxins are used in the clinic, there is concern about its toxicity, as an in vivo plasma concentration above 3 μg/L could give rise to symptoms of toxicity, (Vivo et al., 2008).

The bioavailability of a compound, which was not tested in our studies, is of importance for its possible in vivo effects on apoA-I transcription. In future experiments, bioavailability can therefore be addressed by using a transwell system that combines intestinal and hepatic cells. Moreover, by using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME), the in vivo situation could be better mimicked (Van Rymenant et al., 2018). Also,
more structural derivatives of the main structures that were presented could be tested. In fact, all natural compounds that have a minimum similarity above 0.5 could be examined for their effect on apoA-I transcription. Likewise, one should investigate their effect on toxicity. Our findings further suggest that the lack of effect could be caused by the removal of a specific structural element that is essential for increasing apoA-I transcription. It would be interesting to discover which part of a molecular structure is responsible for the increased apoA-I transcription.

In summary, this study confirmed that the reported natural compounds equilenin, cymarin, and 9(S)-HOTrE increase apoA-I transcription in HepG2 cells. In addition, as predicted by in silico analysis, two new (structurally comparable) compounds eriodictyol and emicymarin, increased apoA-I in vitro. Additional experiments are needed to confirm whether these compounds increase apoA-I transcription by inhibiting BRD4. Additionally, it would be interesting to investigate the effects of all BRD4 inhibitors that were predicted by in silico modeling, on their effect on apoA-I production, in vitro and in vivo.

Acknowledgements We would like to thank M. Konings, M. Beckers and J. Tayyeb for their contribution to cell culture experiments. This research was supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Contract grant number: 11349.

Author Contributions All authors (S.v.d.K., P.v.d.P., Y.L., H.P., R.M., J.P.) substantially contributed to conception and design, acquisition of data, or analysis and interpretation of data. All authors substantially contributed to drafting the article or revising it critically for important intellectual content. All authors substantially contributed to final approval of the version to be published.

Conflict of Interest The authors declare that they have no conflict of interest.

References

Bhavnani, B. R., & Stanczyk, F. Z. (2014) Pharmacology of conjugated equine estrogens: Efficacy, safety and mechanism of action. The Journal of Steroid Biochemistry and Molecular Biology, 142: 16–29.

Brand, W., van der Wel, P. A., Rein, M. J., Barron, D., Williamson, G., van Bladeren, P. J., & Rietjens, I. M. (2008) Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers. Drug Metabolism and Disposition, 36: 1794–1802.

Chang, C. W., Coste, H., White, J. H., Mirguet, O., Wilde, J., Gosmini, R. L., … Nicodeme, E. (2011) Discovery and characterization of small molecule inhibitors of the BET family bromodomains. Journal of Medicinal Chemistry, 54:3827–3838.

Dalla-Riva, J., Stenkula, K. G., Petrovova, J., & Lagerstedt, J. O. (2013) Discoidal HDL and apoA-I-derived peptides improve glucose uptake in skeletal muscle. Journal of Lipid Research, 54: 1275–1282.

Drew, B. G., Duffy, S. J., Formosa, M. F., Natoli, A. K., Henstridge, D. C., Penfold, S. A., … Kingwell, B. A. (2009) High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation, 119:2103–2111.

Dullens, S. P., Plat, J., & Mensink, R. P. (2007) Increasing apoA-I production as a target for CHD risk reduction. Nutrition, Metabolism, and Cardiovascular Diseases, 17:616–628.

Epand, R. M., Stafford, A., Leon, B., Lock, P. E., Tytler, E. M., Segrest, J. P., & Anantharamiah, G. M. (1994) HDL and apolipoprotein A-I protect erythrocytes against the generation of procoagulant activity. Arteriosclerosis and Thrombosis, 14: 1775–1783.

Filippakopoulos, P., Qi, J., Picaud, S., Shen, Y., Smith, W. B., Fedorov, O., … Bradner, J. E. (2010) Selective inhibition of BET bromodomains. Nature, 468(7327):1067–1073.

Filippakopoulos, P., Picaud, S., Fedorov, O., Keller, M., Wrobel, M., Morgenstern, O., … Knapp, S. (2012) Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorganic & Medicinal Chemistry, 20:1878–1886.

Furuhashi, M., Tuncman, G., G ö r g ü n, C. Z., Makowski, L., Atsumi, G., Vaillancourt, E., … Hotamisligil, G. S. (2007) Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature, 447(7147):959–965.

Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., … Leach, A. R. (2017) The ChEMBL database in 2017. Nucleic Acids Research, 45(D1):D945–D954. ChEMBL. ChEMBL, version 19. Retrieved from https://www.ebi.ac.uk/chembl

Gilham, D., Wasiak, S., Tsujikawa, L. M., Halliday, C., Norek, K., Patel, R. G., … Wong, N. C. (2016) RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease. Atherosclerosis, 247:48–57.

Gozalpour, E., Wittgen, H. G., van den Heuvel, J. J., Greupink, R., Russel, F. G., & Koenderink, J. B. (2013) Interaction of digitalis-like compounds with p-glycoprotein. Toxicological Sciences, 131: 502–511.

Hwang, J. K., Erkhembaatar, M., Gu, D. R., Lee, S. H., Lee, C. H., Shin, D. M., … Kim, M. S. (2014) Gliechona hederacea suppresses RANKL-mediated osteoclastogenesis. Journal of Dental Research, 93:685–690.

Kempen, H. J., Bellus, D., Fedorov, O., Nicklisch, S., Filippakopoulos, P., Picaud, S., & Knapp, S. (2013) Stimulation of hepatic apolipoprotein A-I production by novel thieno-triazolodiazepines: Roles of the classical benzodiazepine receptor, PAF receptor, and bromodomain binding. Lipid Insights, 6:47–54.

Kim, K. R., An, J. U., Lee, S. H., & Oh, D. K. (2015) Selective production of 9R-hydroxy-10E,12Z,15Z-ocadecatetraenoic acid from alpha-linolenic acid in perilla seed oil hydrolyzate by a lipoxigenase from Nostoc Sp. SAG 25.82. PLoS One, 10: e0137785.

Lamon-Fava, S., Posfai, B., Asztalos, B. F., Horvath, K. V., Dallal, G. E., & Schafer, E. J. (2003) Effects of estrogen and medroxyprogesterone acetate on subpopulations of triglyceride-rich lipoproteins and high-density lipoproteins. Metabolism, 52: 1330–1336.

Lee, E., Jeong, K. W., Shin, A., Jin, B., Janwali, H. N., Jun, B. H., … Kim, Y. (2013) Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway. BMB Reports, 46:594–599.

Lee, H., Park, M. T., Choi, B. H., Oh, E. T., Song, M. J., Lee, J., … Park, H. J. (2011) Endoplasmic reticulum stress-induced JNK activation is a critical event leading to mitochondria-mediated cell death caused by beta-lapachone treatment. PLoS One, 6:e21533.
Iio, A., Ohguchi, K., Inumia, M., Nozawa, Y., & Ito, M. (2012) Lipids. 695:762–764.
Seal, J., Lamotte, Y., Donche, F., Bouillot, A., Mirguet, O., Gellibert, F., ... Prinjha, R. K. (2012) Bioorganic & Medicinal Chemistry Letters, 22:2968–2972.
Smits, L. P., Kootte, R. S., & Stroes, E. S. (2014) Atherosclerosis. 232:217–219.
Tricoci, P., D’Andrea, D. M., Gurbel, P. A., Yao, Z., Cuchel, M., Winston, B., ... Alexander, J. H. (2015) Inflammation of reconstituted high-density lipoprotein, CSL112, in patients with atherosclerosis: Safety and pharmacokinetic results from a phase 2a randomized clinical trial. Journal of the American Heart Association, 4:e002171.
Umemoto, T., Han, C. Y., Mitra, P., Averill, M. M., Tang, C., Goodspeed, L., ... Chait, A. (2013) Apolipoprotein AI and high-density lipoprotein have anti-inflammatory effects on adipocytes via cholesterol transporters: ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. Circulation Research, 112:1345–1354.
van der Krieken, S. E., Popejus, H. E., Bendik, I., Bohlendorf, B., Konings, M. C. J. M., Tayeb, J., ... Plat, J. (2018) Large-scale screening of natural products transactivating peroxisome proliferator-activated receptor alpha identifies 9S-hydroxy-10E,12Z,15Z-octadecatrienoic acid and cymarin as potential compounds capable of increasing apolipoprotein A-I transcription in human liver cells. Lipids, 53:1021–1030.
Van Ryneman, E., Salden, B., Voorspoels, S., Jacobs, G., Noten, B., Pitart, J., ... Camp, J. (2018) A critical evaluation of in vitro hesperidin 2S bioavailability in a model combining luminal (microbial) digestion and Caco-2 cell absorption in comparison to a randomized controlled human trial. Molecular Nutrition & Food Research, 62(8):e1700881.
Vivo, R. P., Krim, S. R., Perez, J., Inklab, M., Tenner Jr., T., & Hodgson, J. (2008) Digoxin: Current use and approach to toxicity. The American Journal of the Medical Sciences, 336:423–428.
Yandava, C. N., Kennedy, B. P., Pillari, A., Duncan, A. M., & Drazen, J. M. (1999) Cytogenetic and radiation hybrid mapping of human arachidonate 5-lipoxygenase-activating protein (ALOX5AP) to chromosome 13q12. Genomics, 56:131–133.
Zanotti, I., Maugerais, C., Pedrelli, M., Gomaraschi, M., Salgam, P., Calabresi, L., ... Kempen, H. (2011) The thioreodorazidopine Ro 11-1464 increases plasma apo-A-I and promotes reverse cholesterol transport in human apo-A-I transgenic mice. British Journal of Pharmacology, 164:1642–1651.
Zhang, W. Y., Lee, J. J., Kim, Y., Kim, I. S., Han, J. H., Lee, S. G., ... Myung, C. S. (2012) Effect of eriodictyol on glucose uptake and insulin resistance in vitro. Journal of Agricultural and Food Chemistry, 60:7652–7658.
Zhang, X., Jiao, J. I., Bhavnani, B. R., & Tam, S. P. (2001) Regulation of human apolipoprotein A-I gene expression by equine estrogens. Journal of Lipid Research, 42:1789–1800.
Zhu, G. F., Guo, H. J., Huang, Y., Wu, C. T., & Zhang, X. F. (2015) Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidant and anti-inflammatory activity. Experimental and Therapeutic Medicine, 10:2259–2266.