Crop water productivity of cash crops under drip irrigation combined with soil mulching

Komariah¹, F P Sari²* and D P Ariyanto¹

¹Soil Science Dept., Faculty of Agriculture, Sebelas Maret University, Indonesia
²Undergraduate Program of Agrotechnology Dept., Faculty of Agriculture, Sebelas Maret University, Indonesia
*Corresponding author: nanaspf@student.uns.ac.id

Abstract. Drip irrigation is one of important technique of watering especially during unstable and uneven distributed rainfall due to global climate change. It minimizes water loss hence may increase the CWP (Crop Water Productivity). The purpose of this study was to evaluate the drip irrigation combined with soil mulching to CWP of cash crops. This research was conducted from October 2020 to February 2021 at Jumantono, Karanganyar Regency, Indonesia. The experiment was arranged in the Strip Plot design with 3 factors, namely type of irrigation (drip and conventional) as main plot; mulch (control, silver black mulch, and straw mulch) also commodities (paddy and chili) as the sub-plot with 3 replications. Parameters observed were biomass and Crop Water Productivity (CWP). The results showed drip irrigation combined with soil mulching resulted in higher CWP at both chili and paddy.

1. Introduction
Climate change in Indonesia brings decreasing water availability, degradation of soil moisture and fertility, also increasing the evaporation followed by augmentation of rainfall. It gives negative impact to agriculture industry in Indonesia which dependent to weather and other elements of climate [1]. Earth temperature’s rising about 0.8 °C which effect on global warming and caused the negative impact to Indonesia [2]. Especially, this country has 75% marine territory from total area so that it easily provides high evaporation and rainfall. Indonesia is a part of Asia, which is a continent with 63% resident from total population in the world and 67% contribution of agriculture productivity [3]. That’s why, climate change issue might be gives serious affect to Indonesia economic, due to the climate change impact on cash crops productivity.

Cash crop production is still using a large amount of fertilizers and irrigation water to achieve high yield. In Indonesia, surface irrigation by farmers still irrigating their land from water source until it spread to all-rounder area [4], hence more water are wasted because not all of the water volume could be absorbed by the plant root. Moreover, residue of fertilizers can pollute to environment. Therefore, the agriculture system is not yet suitable [5]. One of way to solve this problem is by applying the drip irrigation method. This system minimizes water loss because water is slowly released and only applied surrounding the root zone [6]. Drip irrigation is also suitable for rice cultivation too because rice water productivity was the highest with less or limited irrigation [7]. In another study, drip irrigation under soil mulching increased crop water productivity of chili from 50 to 65%, which was significantly higher than control [8].

Drip irrigation usage with mulching can suppress weed growth so as it can minimizing the impact of competition to growing and nutrition absorb [9]. This irrigation system can save water usage from 50 to
80% in compare to conventional irrigation which oftentimes over-irrigated [10]. This system will be more beneficial if the utilization is in dry land such as mostly land characteristic in Indonesia [11]. Drip irrigation combined with plastic mulching can increase Crop Water Productivity (CWP) because it keeps the optimization of water consume from rainfall or irrigation [12]. CWP value can be enhanced by the same input to once production using less volume of water given, or using same water volume with different irrigation system but produce more yield [13].

Till date, few studies are still found regarding CWP of rice and chili under drip irrigation combined with soil mulching. Hence, this study aimed at investigating the CWP of rice and chili under drip irrigation management and soil mulching.

2. Materials and methods
This research was conducted from October 2020 to February 2021 at Jumantono, Karanganyar Regency, Indonesia. The study site located at 7.63° S; 110.95° E, with alfisols of soil type. The experiment was arranged in the Strip Plot design with 3 factors, namely type of irrigation (control/manual and drip) as main plot; mulch (control, black-silver and rice straw mulch); also commodities (paddy and chili) as the sub-plots. Parameters observed were climate (air temperature, solar radiation, wind speed and photoperiodicity), total biomass and Crop Water Productivity (CWP) of each plant. Chili and rice cultivars used were Capsicum annuum L. cv Beautiful and Oryza sativa L. cv. Situ Bagendit (upland rice), respectively. Climate parameters to calculate evapotranspiration were measured using Automatic Weather Station (AWS). Total volume of applied water at each crop type was calculated using ET₀ (potential evapotranspiration) Penman Monteith in Cropwat 8.0 [14] using 10 years of climatic data from Jumantono Climate Station of Sebelas Maret University.

The total volume of applied irrigation based on crop coefficient (kc) and potential evapotranspiration (ET₀) is presented in Table 1. It can be seen in Table 1 applied irrigation volume of chili was smaller (96.9 liter) than paddy (121.7 liter) because the crop evapotranspiration of paddy (rice) is higher than chili [14].

Table 1. Total volume of applied irrigation water.

Crop	Planting duration (days)	kc-value	ET₀ (mm)	Irrigated Water						
	kc-in	kc-mid	kc-late	Oct	Nov	Dec	Jan	Feb	mm	liter
Chili	124	0.6	1.05	5.23	4.57	4	3.66	3.98	459.3	96.9
Paddy	119	1.05	1.2	0.9	4	3.66	4	3.98	495.6	121.7

Notes: kc-value from FAO [14]; ET₀ was calculated using Cropwat 8.0 software.

Dry biomass, which is the outcome from stack of CO₂ assimilation [16] was measured using gravimetric method after dry-oven process for approximately 48 hours in 60°C. Crop Water Productivity (CWP) is the ratio of output (yield or biomass) and total water input. CWP (kg l⁻¹) is calculated using equation (1) [15, 16].

\[
CWP = \frac{Y}{ET_c}
\]

where \(Y\) is yield or biomass (kg ha⁻¹) and \(ET_c\) is total volume of irrigation water applied (mm or liter).

Data analysis used software SPSS 26.0 to find the significance value of each factor using Analysis of Variance (ANOVA) with 95% significance level (\(\alpha = 0.05\)).

3. Results and discussion
Biomass (dry) of each plant is shown in Figure 1. Figure 1 indicates drip irrigation resulted in higher dry biomass than conventional but not significant among chili and paddy, respectively. It means, somehow plants under drip irrigation resulted in bigger header and root, because drip irrigation plays important role on earl stage of plant growth [17].
The effects of soil mulching on dry biomass is presented in Figure 2. Despite insignificant, Figure 2 shows that regardless with irrigation type, soil mulching produced high biomass in general. When combined with drip irrigation, soil mulching resulted in higher dry biomass than control. Under chili, straw mulch resulted the highest biomass (80.6 g plant$^{-1}$), then silver-black plastic mulch (76.46 g plant$^{-1}$). The similar trend is also shown at paddy, where drip irrigation resulted in higher dry biomass, but the combination with black-silver plastic mulch contributed the highest biomass which were 182 and 229 g plant$^{-1}$ under conventional and drip irrigation, respectively. Soil mulch can keep the soil temperature and moisture stable [18], as well as minimizes the evapotranspiration and conserves soil moisture [19]. Drip irrigation under mulch could evenly distributes water to soil and provides less risk of water percolation [20]. Organic amendment, including organic mulch application may contributes to the availability of soil nutrient especially phosphorus to plant [21], hence promotes plant biomass.

Figure 1. Irrigation types on biomass.
(Note: 1= control, conventional irrigation; 2= drip irrigation)

Figure 2. Irrigation and soil mulching on dry biomass.
(Notes: 1= control (no mulch); 2= silver-black plastic mulch; 3= straw mulch; $\alpha=0.05$)
Figure 3. Irrigation method and soil mulching on biomass CWP of chili and paddy.

Figure 3 presents the CWP based on total dry biomass of both chili and paddy as affected by irrigation method and soil mulching. It is indicated in Figure 3 that generally the dry biomass-based CWP of paddy was higher than chili. That is due to higher crop water requirement of paddy than chili [14]. Soil mulching also resulted in higher biomass, that is because mulching helps drip irrigation to provide efficiency and maintain the quality of water given [20]. In chili, the straw mulching resulted higher CWP (29.9 and 35.1 kg ha\(^{-1}\) l\(^{-1}\)) than silver-black plastic mulch (24.6 and 33.2 kg ha\(^{-1}\) l\(^{-1}\)) at both conventional and drip irrigation, respectively. On the other hand, plastic mulch resulted higher biomass (62.3 and 78.2 kg ha\(^{-1}\) l\(^{-1}\)) than straw mulch (52.5 and 72.5 kg ha\(^{-1}\) l\(^{-1}\)) in paddy under conventional and drip irrigation, respectively. Higher biomass with straw mulch in chili probably due to the root of chili needs oxygen by good soil respiration than just availability of soil moisture, it is less tolerant to salinity and acidity [22]. Meanwhile, soil moisture contributes more to paddy’s growth and more tolerant to soil acidity [23].

4. Conclusion
Drip irrigation tended to result in higher CWP at both chili and paddy. However, straw mulch contributed in higher CWP at chili, but it was silver-black plastic mulch at paddy. It can be concluded that drip irrigation under soil mulch method is appropriate to use in this climate change situation. Because, it provides higher productivity by optimizing the usage of minimum water availability to minimize exaggerate water wasted. Although this method spends more cost than conventional irrigation, it can be good invest for further application on farming activity. Further study regarding the effective irrigation volume on CWP is required for more some cash crops.

Acknowledgments
Authors acknowledged the Laboratory Station of Gifu University in Universitas Sebelas Maret and Research Group of Climate Change and Land Resource of Management, Faculty of Agriculture, Universitas Sebelas Maret for funding and support this research.

References
[1] Saptutyningsih E, Diswandi and Jaung W 2020 Does social capital matter in climate change adaptation? A lesson from agricultural sector in Yogyakarta, Indonesia Land Use Policy 95 104189
[2] Legionosuko T, Madjid M A, Asmoro N and Samudro E G 2019 Posisi dan strategi indonesia
dalam menghadapi perubahan iklim guna mendukung ketahanan nasional *Jurnal Ketahanan Nasional* **25** 295-312

[3] Mendelsohn R 2014 The impact of climate change on agriculture in Asia *J. Integr. Agric.* **13** 660-5

[4] Widiastuti I and Wijayanto D S 2018 Implementasi teknologi irigasi tetes pada budidaya tanaman buah naga *JTEP Jurnal Keteknikan Pertanian* **6** 1-8

[5] Zhou H, Chen J, Wang F, Li X, Génard M and Kang S 2020 An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China *Agricultural Water Management* **241** 106331

[6] Jia Q, Shi H, Li R, Miao Q, Feng Y, Wang N and Li J 2021 Evaporation of maize crop under mulch film and soil covered drip irrigation: field assessment and modelling on West Liaohet Plain, China *Agric. Water Manag.* **253** 106894

[7] Reis A F de B, de Almeida R E M, Lago B C, Trivelin P C, Linquist B and Favarin J L 2018 Aerobic rice system improves water productivity, nitrogen recovery and crop performance in Brazilian weathered lowland soil *F. Crop. Res.* **218** 59-68

[8] Gerçek S and Demirkaya M 2021 Impact of colored water pillows on yield and water productivity of pepper under greenhouse conditions *Agric. Water Manag.* **250** 106835

[9] Kartika M N and Kurniash B 2021 Pengaruh Irigasi tetes dan mulsa terhadap pertumbuhan tajuk tanaman tomat (*Solanum lycopersicum* L.) di lahan kering Gunungkidul *Vegetalika* **10** 31-43

[10] Guo Q, Huang G, Guo Y, Zhang M, Zhou Y and Duan L 2021 Optimizing irrigation and planting density of spring maize under mulch drip irrigation system in the arid region of Northwest China *Field Crop. Res.* **266** 108141

[11] Negara I D G J, Budianto M B, Supriyadi A and Saidah H 2020 Analisis kebutuhan air tanaman dengan metode caoli pada tanaman tomat dengan irigasi tetes di lahan kering Lombok Utara *GANEC SWARA* **14** 419-25

[12] Li C, Li Y, Fu G, Huang M, Ma C, Wang H, Zhang J 2020 Cultivation and mulching materials strategies to enhance soil water status, net ecosystem and crop water productivity of winter wheat in semi-humid regions *Agric. Water Manag.* **239** 106240

[13] Waqas M S, Cheema M J M, Hussain S, Ullah M K and Iqbal M M 2021 Delayed irrigation: An approach to enhance crop water productivity and to investigate its effects on potato yield and growth parameters *Agric. Water Manag.* **245** 106576

[14] Allen R G, Pereira L S, Raes D and Smith M 1998 *Crop evapotranspiration: FAO Irrigation and drainage paper no. 56* (Rome, Italy: FAO)

[15] Meng X, Lian Y, Liu Q, Zhang P, Jia Z and Han Q 2020 Optimizing the planting density under the ridge and furrow rainwater harvesting system to improve crop water productivity for foxtail millet in semiarid areas *Agric. Water Manag.* **238** 106220

[16] Rahmadiyanto A N, Komariah, Dewi W S, Senge M and Ariyanto D P 2014 Crop water productivity (CWP) with the small farm reservoir (SFR) as a supplemental irrigation for cash crop on rainfed area in Karanganyar regency, Indonesia *Glob. Adv. Res. J. Agric. Sci.* **3** 158–64

[17] He Y, Xi B, Bloomberg M, Jia L and Zhao D 2020 Effects of drip irrigation and nitrogen fertigation on stand growth and biomass allocation in young triploid Populus tomentosa plantations *For. Ecol. Manage.* **461** 117937

[18] Komariah, Ito K, Onishi T and Senge M 2011 Soil properties affected by combinations of soil solarization and organic amendment *Paddy and Water Environment* **9** 357–66

[19] Komariah, Ito K, Senge M, Adomako J T A and Afandi 2008 The influences of organic mulches on soil moisture contentand temperatures: a case study of tapioca wastes application *J. Rainwater Catchment Syst.* **14** 1–8

[20] Zhang Z, Li X, Liu L, Wang Y and Li Y 2020 Influence of mulched drip irrigation on landscape scale evapotranspiration from farmland in an arid area *Agric. Water Manag.* **230** 105953

[21] Muktamar Z, Lifia L and Adiprasetyo T 2020 Phosphorus availability as affected by the
application of organic amendments in Ultisols *SAINS TANAH Journal Soil Science and Agroclimatolgy* **17** 16–22

[22] Tchiadje N F T 2007 Strategies to reduce the impact of salt on crops (rice, cotton and chili) production: A case study of the tsunami-affected area of India *Desalination* **206** 524–30

[23] Fageria N K, Castro E M and Baligar V C 2004 Response of upland rice genotypes to soil acidity *The red soils of China* ed. Wilson M J, He Z, Yang X (Switzerland: Springer) chapter 3 pp 219–237.