FH ALERT:
A feasibility study of a novel approach to identify patients with familial hypercholesterolemia

Felix Fatha,b, Andreas Bengeserc, Mathias Barresic, Priska Binnerc, Stefanie Schwabd, Kausik K. Raye, Bernhard K. Krämerh,f, Uwe Fraassd, Winfried Märza,b,h,i

a SYNLAB Holding Germany GmbH, SYNLAB Academy, Mannheim, Germany
b Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
c SYNLAB Holding Germany GmbH, Augsburg, Germany
d SYNLAB MCC Human Genetics Mannheim GmbH, Mannheim, Germany
e Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College London, London UK
f European Center for Angioscience ECAS, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
g Amgen GmbH, Munich, Germany
h Clinical Institute of Medical and Chemical Laboratory Diagnostics Medical University of Graz, Austria
i D·A·CH Society Prevention of Cardiovascular Diseases e.V., Hamburg, Germany

\textbf{Corresponding author:}

Felix Fath, Ortstraße 24, 69469 Weinheim
Phone: +4915783931994, E-Mail: felix.fath@t-online.de
Abstract

Background and aims. Diagnosis rates of familial hypercholesterolemia (FH) remain low. We implemented FH ALERT to assess whether alerting physicians for the possibility of FH impacted additional diagnostic activity.

Methods. The study was conducted from SYNLAB laboratory Weiden (Bavaria). Beyond common reporting of LDL-C or TC, 1,411 physicians covering approximately a population of 1.5 million people were eligible to receive an alert letter (AL) including information on FH, if laboratory results exceeded thresholds as follows: adults LDL-C ≥190-250 mg/dl (to convert into mmol/l multiply with 0.0259), TC ≥250 to ≤310 mg/dl (probable suspicion); LDL-C >250 mg/dl and TC >310 mg/dl (strong suspicion). Persons below 18 years were alerted for LDL-C ≥140 mg/dl and TC ≥200 mg/dl (strong suspicion). Patients above 60 years were excluded. Our readouts were characteristics of involved physicians, rate of ALs issued, acceptance, and subsequent diagnostic activity.

Results. Physicians were mainly general practitioners in ambulatory care. 75% of the ordered tests were for TC, 25% for LDL-C. We issued 3,512 ALs (~5% of tests). 86% of eligible physicians stayed with the initiative, 32.7% were alerted, and 70% were positive upon call-center survey. We registered 101 new visitors of www.fhscore.eu and sent out 93 kits for genetics. Thereof, 26 were returned and 5 patients were positive for FH.

Conclusions. Although physicians appeared open to our approach, recommendations were hardly translated into action. The reasons behind this are elusive. Further education is required, and our simple alerting system may not suffice to improve FH detection in the community.
Introduction
Elevated low-density lipoprotein cholesterol (LDL-C) is among the most important causes of atherosclerosis. Genetic epidemiological and interventional studies have shown a continuous relationship between LDL cholesterol and the incidence of atherosclerosis-related vascular events.

Familial hypercholesterolemia (FH) is a genetic disorder of LDL-C metabolism, mainly caused by mutations in the genes encoding the LDL receptor (LDLR), apolipoprotein B100 (APOB) or proprotein convertase subtilisin/kexin type 9 (PCSK9). FH is inherited in an autosomal dominant manner, meaning that 50% of the descendants of a heterozygote parent are affected. FH is the most frequent autosomal dominant genetic disease encountered in adults with a global prevalence estimated at between 1:200-1:300 and more common among populations with founder effects. FH is characterized by pronounced elevations of plasma LDL-C as early as in childhood and premature onset of coronary heart disease. Roughly 2 percent of individuals with an LDL-C above 190 mg/dL (to convert into mmol/l multiply with 0.0259) suffer from FH. Homozygous FH (HoFH) frequently results in cardiovascular events in the first decade of life, and left untreated those with HoFH may die before the age of 20 years. In heterozygous (HeFH) patients the additional risk of cardiovascular events is 50% in men up to the age of 50 and 30% in women up to the age of 60.

Despite all available data detection remains low. For instance the prevalence rate of HeFH is approximately 1:300, which entails more than 250,000 patients in Germany, yet the current diagnosis rate is estimated to be between 1 to 2%. Unidentified and untreated patients on average lose 15 to 21 years of life. Registry data from the Netherlands have shown that an early screening strategy together with effective and early use of statin therapy to reduce LDL-C can reduce the cardiovascular risk associated with FH similar to that of the general population. Thus, it is crucial that patients are identified early in life. Although, there are several clinical algorithms which help to identify patients with FH, they are underutilised in clinical practice. Moreover, these algorithms can be used to increase the pre-test probability of a positive genetic test. The clinical value of genetic diagnostics of FH has been underscored by guidelines and expert consensus in the United States, Europe, and Germany, yet, utilization of genetic testing remains poor. To facilitate the diagnosis of FH and given that this condition is dependent upon ascertainment of an elevated LDL-C measurement, we designed a pilot study (FH ALERT) to serve as the
interface between a clinical laboratory receiving blood samples for lipid measurements and the ambulatory outpatient care, to assess whether a decision support protocol was feasible, acceptable, and improved detection rates compared to historical records. Here we report the results of this pilot study to evaluate feasibility and acceptance of this approach in a German outpatient care environment.
Materials and Methods

Setting
We included all ambulatory care physicians (general practitioners and specialists across all disciplines) referring their laboratory samples to the SYNLAB Medical Care Center (MCC) Weiden GmbH which is located in Bavaria, Germany. We chose MCC Weiden GmbH because it is one of the biggest SYNLAB core laboratories in Germany. All patients aged 60 and below visiting participating physicians who were being evaluated for elevated LDL-C or total cholesterol (TC) measurements were eligible. The study was conducted between March 15, 2018 and June 15, 2018 and approved by the Ethics Committee II of the Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (reference number 2018-849R-MA). As this was a retrospective evaluation of findings generated during regular patient care and no study specific procedures were conducted, the above-mentioned ethics committee did not consider it necessary to obtain individual informed consents. All methods were carried out in accordance with relevant guidelines and regulations.

Procedures
Beyond the regular laboratory results, participating physicians received an alert letter (AL) once TC or LDL-C levels exceeded predefined threshold values (Figure 1). The ALs also included scientific information about FH and the further diagnostic options including genetic testing.
We used six different threshold values to trigger an AL (Table 1). We distinguished among two categories with different wording, namely “suspicion of FH” in adults belonging to the LDL-C threshold category I or TC threshold category I as well as “strong suspicion of FH” in children and in adults belonging to LDL-C threshold II and/or TC threshold II. (Table I). LDL-C was used as the primary criterion to trigger reports, TC was used in cases in which LDL-C was not available. We recommended the Dutch Lipid Clinic Network (DLCN) score to estimate the pre-test probability of a positive genetic test, with a test score of ≥6 indicating for genetic testing.
Approximately two weeks before initiation, we announced FH ALERT by an initiation letter to all physicians regularly referring tests to the SYNLAB MCC Weiden GmbH. This document described background and aims, design and procedures of the project.
The initiation letter and each subsequent AL informed the participating physician that they had the choice to opt-out from the project at any time.

The software extracting TC or LDL-C from the laboratory information system to produce the ALs was written by CSMed GmbH, Darmstadt, Germany. We established a call center which was specifically instructed and available to participating physicians to provide further information on the diagnoses of FH if requested (inbound calls). The call center was operated by IMS Health GmbH & Co. OHG, Bensheim, Germany. The ALs usually arrived the day following the regular report. They included in depth information on the diagnosis of FH, advice how to use the DLCN score11, how to initiate genetic testing, and named lipid specialists in the surroundings of the patients´ residential address. Any medical decisions regarding further diagnostic and therapeutic measures were completely left to the discretion of the responsible physicians (Figure 1).

Physicians who received at least one AL were contacted pro-actively by the call center and asked to assess the FH Alert project using a standardized questionnaire. Physicians were also encouraged to express their criticism and to propose improvements of the procedures.

Genetic testing

Current guidelines and expert opinion suggest that the diagnosis of FH is established by genetic testing if accessible13-17. To achieve seamless access to genetic testing for FH, we offered physicians the facilities at the SYNLAB Center of Human Genetics in Mannheim, Germany. Interested physicians were provided with kits (including request and consent forms and material for sampling) upon request. We monitored the number of genetic tests requested during the FH ALERT project until 6.5 months after the conclusion of the project on June 15, 2018. This accounted for delays in ordering genetic tests due to waiting for the patients´ next appointments, education of patients or receiving their informed consent.

Patients´ DNA was isolated from a blood sample and then analyzed by next generation sequencing. Following library preparation with TruSight Rapid Capture technology and bridge amplification, the sample was sequenced on an Illumina NextSeq 500 instrument. Coverage of the ROI was >98%, reading depth a minimum of 100-fold. We examined the following loci: \textit{LDLR, APOB, PCSK9, LDLRAP, SORT1, NPC1L1, STAP1, APOE, ABCG5, ABCG8, DHCR24, LIPA, CYP27A1, and DHCR7}. In addition,
the *LDLR* gene was also evaluated for copy number variation by multiplex ligation-dependent probe amplification. Variants were classified according to current American College of Medical Genetics and Genomics (ACMG) guidelines \(^\text{18}\). Results were classified as inconspicuous, polygenic hypercholesterolemia and classically monogenic.

Outcomes
This study used the following readouts: characteristics of the physicians involved, number of ALs issued in comparison to the number of TC and/or LDL-C, acceptance by physicians, further diagnostic activity including genetic testing.

Statistics
Statistics is descriptive. Beyond the algorithm to generate alerting reports, CSMed GmbH also provided a documentation tool and a customized statistics module to evaluate FH ALERT. All calculations were performed with Microsoft® Excel® 2016 (Version: MSO (16.0.9126.2282) 32-Bit). The frequency of the use of the FH score online tool was tracked with Google Analytics.

Sources of Funding
FH ALERT was initiated by SYNLAB Holding Germany GmbH and supported by Amgen GmbH. Expenses of upcoming costs and dedicated workflow were divided equally between project partners.
Results

Characteristics of the physicians involved
During the project period 1,411 physicians/institutions ordered at least one analysis of any parameter from the SYNLAB MCC Weiden. They were mainly in ambulatory care (general practitioner or medical specialist), but also included occupational health departments of companies or health care institutions. Most letters were issued to general practitioners, followed by internists while paediatricians, nephrologists, dermatologists and gynaecologists contributed marginally (Figure 2).

Alert letters generated
During the project period of three months, 193,715 samples were analyzed by the SYNLAB MCC Weiden GmbH, and 75,431 TC and/or LDL-C examinations were performed. In our observation period, TC and/or LDL-C were therewith the fourth most frequent tests ordered, ranking just behind alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT) and thyroid stimulating hormone (TSH). Overall, 3,512 (4.7%) ALs were issued. In 885 cases (25.2% of 3512) the ALs were triggered by LDL-C with or without TC, whereas in 2,627 cases (74.8% of 3512) TC only triggered the ALs. Amongst those, approximately 95% fell into to category I. 154 (4.4%) of all ALs were generated patients below 18 years of age. In category II, all 181 ALs were for adults. The average age of alerted persons was 48 years in total, 50 years in women and 47 years in men (Table 2).

On average, there were 2.49 ALs per physician, when calculated based on 1,411 (total participating physicians) and 7.6 ALs per physician in relation to physicians who received at least one AL. 462 of participating physicians - predominantly general practitioners and internists – were alerted and received at least one AL (32.74%). 37 medium frequently alerted physicians received 3 to 4 ALs (8.01% of alerted physicians), 48 frequently alerted physicians 5 to 9 ALs (10.39% of alerted physicians) and 121 high frequently alerted physicians were alerted 10 times or more (26.19% of alerted physicians).
Acceptance
Only 200 physicians chose to opt out from the project and 1,211 physicians participated for all 3 months, corresponding to an opt-out rate of 14.2%; 32.74% of all physicians received at least one AL (Table 2).
In the survey conducted by the call center, FH ALERT was evaluated positively by approximately 70% of respondents, 23% did not finally know how to classify and 7% had a negative opinion about FH ALERT. The most frequent criticism arose regarding to the amount of paperwork caused by ALs, followed by a lack of additional time to look through the ALs.
The FH score website was visited 101 times due to the FH ALERT project; 31 visitors recurred at least once, 88 FH score questionnaires were completed whereof 45 had a result of ≥ 3 (Table 2).

Further diagnostic activity including genetic testing
During the FH ALERT project 93 sampling kits for genetic testing were sent out to 60 physicians and 26 were returned for analysis within the active period and 6.5 months beyond. Of these, 10 samples were inconspicuous, 3 showed variants most likely not related to hypercholesterolemia, 8 samples showed variants or combinations of variants which we classified as polygenic hypercholesterolemia, and 5 samples showed at least one variant that we deemed causal for familial hypercholesterolemia. Among these, 3 were heterozygous for LDLR mutations (Table 3)
Discussion

We successfully established a novel channel of information exchange between the clinical laboratory and requesting physicians. We found that this approach was generally welcome to the majority of the medical community participating. However, we also observed that this poorly translated into further diagnostic steps – as far as this process was visible for us - as they are recommended by international and national expert opinion or guidelines 13-16.

Even though TC and LDL-C are amongst the most frequently ordered tests in ambulatory care, the diagnosis rate of FH remains low in Germany, and in many other countries 3. We started by assuming physicians commonly do not pay attention to extreme TC or LDL-C results included in conventional laboratory reports and hardly consider the diagnosis of FH, and if so, rarely or no consecutive action or further diagnostic steps follow. To enhance awareness for pathologic lipid parameters, we decided to specifically alert physicians once TC or LDL-C exceeded threshold values at which the probability of FH is deemed to be high.

Alert letters generated

Approximately 5% of all the samples tested triggered an alert. This confirms that in the population studied, our thresholds defined a subgroup of samples beyond the 95th percentile of either LDL-C or TC. Most of these samples fell in threshold category I (LDL-C 190-250, TC 250-310 mg/dl in adults or LDL-C ≥140 mg/dl, TC ≥200 mg/dl in children), only 5% fell in category II (LDL-C >250 mg/dl or TC >310 mg/dl). At an estimated prevalence rate of FH of 1:300 in the general population and under the assumption that there were no FH patients amongst those below the pre-defined cut-offs, approximately 250 FH patients (75,000 tests divided by 300) should have been amongst those who triggered an AL, the ratio of true FH patients being 1 in 14 amongst those who are above threshold I. Others estimated this ratio even lower: Among coronary heart disease-free participants of prospective cohort studies only 24 of 1386 persons with LDL-C ≥ 190 had genetically confirmed FH, suggesting a ratio of 1 in 58 4, indicating a substantial overlap of LDL-C concentrations between FH patients and otherwise elevated LDL-C 4,19,20. Therefore, molecular diagnostics has been recommended to distinguish between these two groups 14.

Only one quarter of the ALs was triggered by LDL-C with or without assessment of TC, the remaining ones by TC only. This stands in contrast to previous and current
guidelines which define LDL-C as the primary treatment goal \cite{15,21-23} and demonstrates that further efforts are warranted to educate physicians to place emphasis on LDL-C instead of TC.

Of the participating physicians, who were predominantly general practitioners and internists, 32.74\% received at least one report. This suggests that a small proportion of physicians include cholesterol and/or LDL-C testing into their standard practice of care. The majority of physicians may thus waive for screening for high cholesterol and/or to conduct state of the art risk assessment as it would comply with guidelines \cite{15,16,21-23}. However, at least theoretically there may be physicians caring for patients with well controlled LDL levels or not being at elevated risk according to previous screening. As a consequence of the clustering of ALs to one third of the physicians only it may be worth limiting FH ALERT specifically to general practitioners and internists who regularly order TC and/or LDL-C in the future. In Germany, nephrologists and dialysis centres often provide care for patients with lipid disorders. However, they did not substantially contribute to the total number of ALs, on the one hand because they are small in number, on the other hand because their lipid patients may be well controlled (Figure 2). Only few ALs originated from paediatricians, indicating that TC and/or LDL cholesterol are infrequently measured in patients < 18 years and that opportunities to identify FH at a young age are vastly missed in Germany. Thus, it appears that the single initiation letter that we issued was not sufficient to provide a broad awareness of the significance of LDL-C. Other reasons to waive cholesterol testing may be that it has been disputed that the cost-effectiveness of systematic risk factor screening in the absence of vascular disease is still a matter of debate \cite{21} or that lipid lowering therapy would not immediately have been considered in a given patient.

Acceptance

Amongst all participating physicians, 200 (14\%) decided to opt out. We believe that this discontinuation rate is reasonable since we offered a hitherto completely unknown service. As the most common reason to withdraw physicians quoted that the ALs produced too much additional paperwork and due to this often lead to lacking time in their practice to even read individual ALs. Other withdrawing physicians said that it would need too much time to follow the advice provided with the ALs, disregarding that a clear diagnosis could facilitate treatment decisions and patients’ adherence in the future and might therefore allow time savings alongside. Refinement of the FH ALERT
strategy in the future will therefore have to resolve this criticism, for instance by cumulating results within one weekly report. However, of the physicians who finished the pilot study almost more than two thirds assessed the initiative as positive, and only less than 10 % had a negative opinion about the FH ALERT project.

Further diagnostic activity including genetic testing
The 462 physicians who received an alert ordered 93 sampling kits for genetic testing, of which 26 (27.96%) were ultimately returned for genetic testing. We recorded the number of genetic tests requested until 6.5 months after the conclusion of FH ALERT, but evidently the time between ordering kits and actually carrying out the test may be longer so that actual number of tests may yet be slightly higher.

We noted 101 new visitors on the www.fhscore.eu website. Under the assumption that there was an overlap between the 101 new visitors on the website and the 60 physicians who ordered kits for genetic testing, it may be reasonable and conservative to assume that 120 physicians amongst the 462 who had received an AL responded in any of the two ways to the FH ALERT initiative. Thus, the overall response rate may be 25% or more. Since to our knowledge the design of FH ALERT is unprecedented, a comparison to established bench marks is hard to accomplish. In any case, however, the response rates achieved here by far exceed the response rates known from untargeted mailings which are usually 1% or less.

Of the 26 requests for genetic testing 10 were inconspicuous, 3 showed variants most likely not related to hypercholesterolemia, 8 samples showed variants or combinations of variants which we classified as polygenic and 5 (19%) showed at least one variant that we deemed causal for familial hypercholesterolemia. This may be less than obtained in specialized lipid clinics, where we found causal mutations in approximately 80% of patients with a DLCN Score of 6 or more12. Further, the 5 true FH cases make up approximately 2% only of the number of patients that would theoretically have FH in our study (see above). Even if one would still account for the cases in which we considered the genetic findings as polygenic hypercholesterolemia, this would increase to no more than 5%. Overall, genetic testing for FH was thus taken up poorly, although the environment for cascade screening, which is recommended as cost-effective for identifying FH patients and preventing vascular disease (reviewed in 14), would be ideal in a rural area like the Upper Palatinate where the general practitioner usually oversees many generations of a family. However, if one assumes that those

12
13 people who either received the diagnosis of genetic hypercholesterolemia or definite FH would gain 10 years of life each through intensive treatment, the FH ALERT pilot project would have saved 130 years of life and the effect would even be much larger if treating physicians went back to the families of the index patients to identify other affected individuals.

The reasons for the poor uptake of genetics may be manifold. Ordering genetic tests may have been uncommon in ambulatory care so far. Other reasons may include: lack of knowledge of FH amongst physicians, misbeliefs about the expenses or the reimbursement of genetic testing (genetic testing is not charged to the laboratory budget of physicians in Germany), lack of time, lack of diligence, low awareness of FH in the lay population, poor willingness of patients to agree into genetic testing. However, it is unlikely that the patients’ attitudes would seriously compromise the use of genetic testing. Rather parents of affected children or patients have been open to genetic testing recognizing its benefit with little evidence for psychological impact \(^{24-29}\).

Consequently, we consider proactive and comprehensive education of physicians of utmost importance to lead them up to a better understanding of the benefits of genetic testing. This is evidently not only true for genetic lipid disorders but applies to all disease areas in which genetic disease becomes symptomatic in adulthood.

Future directions

3,512 ALs ultimately lead to 26 genetic tests only. Despite this, we consider our pilot study successful, mainly because significant other diagnostic activity (visits to FH score website) developed during the project period. Also the high proportion of physicians rating FH positive has been encouraging and we are convinced that our novel strategy of communication between referrers and the laboratory holds considerable potential for the future.

Based on our experience, conceivable improvements are: i) reducing the amount of paperwork by consolidating individual alert letters to weekly cumulated alert letters; ii) generating increased awareness for TC/LDL-C earlier before starting the initiative by educational events and multiple initiation letters; iii) including medical societies and key opinion leaders in awareness activities; iv) increasing the frequency of calls by the call center to remind physicians to perform genetic testing and send back the genetics kits for analyses; v) yearly repetition of the initiative.
Limitations
Limitations of this project are the exclusion of samples from patients above 60 years of age and the thresholds for ALs at the 95th percentile of the TC and LDL-C distribution. The latter obviously will miss some FH patients (also including the treated ones), because having an LDL-C of less than 190 mg/dl does not rule out FH. Further, we did not include samples coming from hospitals to which FH patients may present with acute coronary syndromes. The pilot study was restricted to three months only and to a rural area of Germany and may therefore not be representative. It is also a limitation that it was hard to place our findings into the context of similar studies because to the best of our knowledge there is no published report systematically evaluating our approach.

Conclusions
We conclude that bridging the interface between referring physicians and the laboratory by an innovative approach of communication is technically demanding, but feasible. Basically, our initiative was welcome and highly appreciated by the participating physicians. However, even individualized recommendations as they were provided with FH ALERT were not rigorously translated into concrete action.
References

1. Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. *Eur Heart J* **38**, 2459-2472, doi:10.1093/eurheartj/ehx144 (2017).

2. Klose, G., Laufs, U., Marz, W. & Windler, E. Familial hypercholesterolemia: developments in diagnosis and treatment. *Deutsches Arzteblatt international* **111**, 523-529, doi:10.3238/arztebl.2014.0523 (2014).

3. Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. *Eur Heart J* **34**, 3478-3490a, doi:10.1093/eurheartj/eht273 (2013).

4. Khera, A. V. et al. Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. *J Am Coll Cardiol* **67**, 2578-2589, doi:10.1016/j.jacc.2016.03.520 (2016).

5. Sanna, C. et al. Homozygous familial hypercholesterolemia in childhood: Genotype-phenotype description, established therapies and perspectives. *Atherosclerosis* **247**, 97-104, doi:10.1016/j.atherosclerosis.2016.02.009 (2016).

6. Schmidt, N. et al. Familial hypercholesterolemia in primary care in Germany. Diabetes and cardiovascular risk evaluation: Targets and Essential Data for Commitment of Treatment (DETECT) study. *Atherosclerosis* **266**, 24-30, doi:10.1016/j.atherosclerosis.2017.08.019 (2017).

7. Mundal, L. et al. Mortality among patients with familial hypercholesterolemia: a registry-based study in Norway, 1992-2010. *Journal of the American Heart Association* **3**, e001236, doi:10.1161/JAHA.114.001236 (2014).

8. Versmissen, J. et al. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. *BMJ* **337**, a2423 (2008).

9. Williams, R. R. et al. Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics. *Am J Cardiol* **72**, 171-176, doi:10.1016/0002-9149(93)90155-6 (1993).
10 Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group. *BMJ* **303**, 893-896, doi:10.1136/bmj.303.6807.893 (1991).

11 Defesche, J. C., Lansberg, P. J., Umans-Eckenhausen, M. A. & Kastelein, J. J. Advanced method for the identification of patients with inherited hypercholesterolemia. *Seminars in vascular medicine* **4**, 59-65, doi:10.1055/s-2004-822987 (2004).

12 Grenkowitz, T. *et al.* Clinical characterization and mutation spectrum of German patients with familial hypercholesterolemia. *Atherosclerosis* **253**, 88-93, doi:10.1016/j.atherosclerosis.2016.08.037 (2016).

13 Goldberg, A. C. *et al.* Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. *Journal of clinical lipidology* **5**, S1-8, doi:10.1016/j.jacl.2011.04.003 (2011).

14 Sturm, A. C. *et al.* Clinical Genetic Testing for Familial Hypercholesterolemia: JACC Scientific Expert Panel. *J Am Coll Cardiol* **72**, 662-680, doi:10.1016/j.jacc.2018.05.044 (2018).

15 Catapano, A. L. *et al.* 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). *Atherosclerosis* **253**, 281-344, doi:10.1016/j.atherosclerosis.2016.08.018 (2016).

16 Mach, F. *et al.* 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. *Eur Heart J*, doi:10.1093/eurheartj/ehz455 (2019).

17 Deutsche Gesellschaft für Allgemeinmedizin. Hausärztliche Risikoberatung zur kardiovaskulären Prävention. S3-Leitlinie. *AWMF-Register-Nr. 053-024, DEGAM-Leitlinie Nr. 19*, https://www.degam.de/files/Inhalte/Leitlinien-Inhalte/Dokumente/DEGAM-S3-Leitlinien/053-024_Risikoberatung%20kardiovaskul.%20Praevention/053-024_Hausa%CC%88rtliche_Risikoberatung_kardivaskula%CC%88re_Praevention_29-08-2018.pdf (2017).
Richards, S. *et al.* Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med* **17**, 405-424, doi:10.1038/gim.2015.30 (2015).

Huijgen, R., Hutten, B. A., Kindt, I., Vissers, M. N. & Kastelein, J. J. Discriminative ability of LDL-cholesterol to identify patients with familial hypercholesterolemia: a cross-sectional study in 26,406 individuals tested for genetic FH. *Circ Cardiovasc Genet* **5**, 354-359, doi:10.1161/CIRCGENETICS.111.962456 (2012).

Wald, D. S. *et al.* Child-Parent Familial Hypercholesterolemia Screening in Primary Care. *N Engl J Med* **375**, 1628-1637, doi:10.1056/NEJMoa1602777 (2016).

Piepoli, M. F. *et al.* 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). *Eur Heart J* **37**, 2315-2381, doi:10.1093/eurheartj/ehw106 (2016).

Stone, N. J. *et al.* 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation*, doi:10.1161/01.cir.0000437738.63853.7a (2013).

Grundy, S. M. *et al.* 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol. *Circulation*, CIR00000000000000625, doi:10.1161/CIR.00000000000000625 (2018).

Umans-Eckenhausen, M. A., Defesche, J. C., van Dam, M. J. & Kastelein, J. J. Long-term compliance with lipid-lowering medication after genetic screening for familial hypercholesterolemia. *Archives of internal medicine* **163**, 65-68 (2003).

Marteau, T. *et al.* Psychological impact of genetic testing for familial hypercholesterolemia within a previously aware population: a randomized
controlled trial. *Am J Med Genet A* **128A**, 285-293, doi:10.1002/ajmg.a.30102 (2004).

26 Claassen, L., Henneman, L., van der Weijden, T., Marteau, T. M. & Timmermans, D. R. Being at risk for cardiovascular disease: perceptions and preventive behavior in people with and without a known genetic predisposition. *Psychol Health Med* **17**, 511-521, doi:10.1080/13548506.2011.644246 (2012).

27 Jenkins, N. *et al.* How do index patients participating in genetic screening programmes for familial hypercholesterolemia (FH) interpret their DNA results? A UK-based qualitative interview study. *Patient Educ Couns* **90**, 372-377, doi:10.1016/j.pec.2011.09.002 (2013).

28 Hallowell, N. *et al.* A qualitative study of patients' perceptions of the value of molecular diagnosis for familial hypercholesterolemia (FH). *J Community Genet* **8**, 45-52, doi:10.1007/s12687-016-0286-0 (2017).

29 Keenan, K. F. *et al.* Parents' views of genetic testing and treatment of familial hypercholesterolemia in children: a qualitative study. *J Community Genet* **10**, 129-141, doi:10.1007/s12687-018-0373-5 (2019).

30 Ballantyne, C. M., Vega, G. L., East, C., Richards, G. & Grundy, S. M. Low-density lipoprotein metabolism in cerebrotendinous xanthomatosis. *Metabolism* **36**, 270-276, doi:10.1016/0026-0495(87)90187-9 (1987).

31 Cohen, J. C. *et al.* Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. *Proceedings of the National Academy of Sciences of the United States of America* **103**, 1810-1815, doi:10.1073/pnas.0508483103 (2006).

32 Wang, L. J. *et al.* Molecular characterization of the NPC1L1 variants identified from cholesterol low absorbers. *J Biol Chem* **286**, 7397-7408, doi:10.1074/jbc.M110.178368 (2011).

33 Bennet, A. M. *et al.* Association of apolipoprotein E genotypes with lipid levels and coronary risk. *Jama* **298**, 1300-1311 (2007).

34 Wang, L. R., McIntyre, A. D. & Hegele, R. A. Complex genetic architecture in severe hypobetalipoproteinemia. *Lipids in health and disease* **17**, 48, doi:10.1186/s12944-018-0680-1 (2018).

35 Argyri, L. *et al.* Molecular basis for increased risk for late-onset Alzheimer disease due to the naturally occurring L28P mutation in apolipoprotein E4. *J Biol Chem* **289**, 12931-12945, doi:10.1074/jbc.M113.538124 (2014).
36. Kamboh, M. I. et al. A novel mutation in the apolipoprotein E gene (APOE*4 Pittsburgh) is associated with the risk of late-onset Alzheimer’s disease. *Neurosci Lett* **263**, 129-132, doi:10.1016/s0304-3940(99)00129-9 (1999).

37. Hansel, B. et al. Premature atherosclerosis is not systematic in phytosterolemic patients: severe hypercholesterolemia as a confounding factor in five subjects. *Atherosclerosis* **234**, 162-168, doi:10.1016/j.atherosclerosis.2014.02.030 (2014).

38. Buonuomo, P. S. et al. Timely diagnosis of sitosterolemia by next generation sequencing in two children with severe hypercholesterolemia. *Atherosclerosis* **262**, 71-77, doi:10.1016/j.atherosclerosis.2017.05.002 (2017).

39. Alves, A. C., Etxebarria, A., Soutar, A. K., Martin, C. & Bourbon, M. Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia. *Hum Mol Genet* **23**, 1817-1828, doi:10.1093/hmg/ddt573 (2014).

40. Motazacker, M. M. et al. Evidence of a polygenic origin of extreme high-density lipoprotein cholesterol levels. *Arterioscler Thromb Vasc Biol* **33**, 1521-1528, doi:10.1161/ATVBAHA.113.301505 (2013).

41. Pirillo, A. et al. Spectrum of mutations in Italian patients with familial hypercholesterolemia: New results from the LIPIGEN study. *Atherosclerosis. Supplements* **29**, 17-24, doi:10.1016/j.atherosclerosisissup.2017.07.002 (2017).

42. Dron, J. S. & Hegele, R. A. Complexity of mechanisms among human proprotein convertase subtilisin-kexin type 9 variants. *Curr Opin Lipidol* **28**, 161-169, doi:10.1097/MOL.0000000000000386 (2017).

43. Holla, O. L. et al. Effects of intronic mutations in the LDLR gene on pre-mRNA splicing: Comparison of wet-lab and bioinformatics analyses. *Molecular genetics and metabolism* **96**, 245-252, doi:10.1016/j.ymgme.2008.12.014 (2009).

44. Maxwell, K. N. et al. Evaluation of ACMG-Guideline-Based Variant Classification of Cancer Susceptibility and Non-Cancer-Associated Genes in Families Affected by Breast Cancer. *American journal of human genetics* **98**, 801-817, doi:10.1016/j.ajhg.2016.02.024 (2016).

45. Marmontel, O. et al. Single, short in-del, and copy number variations detection in monogenic dyslipidemia using a next-generation sequencing strategy. *Clinical genetics* **94**, 132-140, doi:10.1111/cge.13250 (2018).
Bertolini, S. et al. Spectrum of mutations and phenotypic expression in patients with autosomal dominant hypercholesterolemia identified in Italy. *Atherosclerosis* **227**, 342-348, doi:10.1016/j.atherosclerosis.2013.01.007 (2013).

Hobbs, H. H., Brown, M. S. & Goldstein, J. L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. *Hum Mutat* **1**, 445-466, doi:10.1002/humu.1380010602 (1992).

Cassanelli, S. et al. A ‘de novo’ point mutation of the low-density lipoprotein receptor gene in an Italian subject with primary hypercholesterolemia. *Clinical genetics* **53**, 391-395, doi:10.1111/j.1399-0004.1998.tb02752.x (1998).
Acknowledgments
We thank the physicians in the Upper Palatinate area for participating in FH ALERT. We also thank the staff of the SYNLAB Medical Care Center Weiden GmbH, of CSmed GmbH, Darmstadt, Germany, of IMS Health GmbH & Co. OHG, Bensheim, Germany, and of the SYNLAB Logistics Department, Augsburg, Germany. KKR acknowledges support from the NIHR Imperial Biomedical Research Centre.

Author contributions
WM and UF conceived the study, interpreted the results and critically reviewed the manuscript. FF implemented the study and did statistical analysis. FF and WM and are responsible for the manuscript. AB and MB implemented the dedicated FH ALERT workflow within the SYNLAB laboratory information systems and contributed to the statistical analysis. SS and PB provided genetic analyses and variant annotations. BKK contributed to the ethics committee application and critically reviewed the manuscript. KKR critically reviewed the manuscript. All authors take full responsibility of the whole manuscript.

Additional Information

Competing Interests statement

Mr. Fath reports employment with SYNLAB Holding Germany GmbH, SYNLAB Academy. SYNLAB Academy received grants from Amgen GmbH, during the conduct of the project FH ALERT; grants from Akcea Therapeutics Germany GmbH, outside the submitted work.

Dr. Binner, Mr. Bengeser and Mr. Barresi report employment with SYNLAB Holding Germany GmbH, outside the submitted work.

Mrs. Schwab reports employment with SYNLAB MCC Human Genetics Mannheim GmbH, outside the submitted work.

Dr. Krämer has nothing to disclose.
Dr. Fraass is employed by Amgen GmbH and additionally holds stock, outside the submitted work.

Dr. März reports grants and personal fees from AMGEN, grants and other from SYNLAB Holding Deutschland GmbH, during the conduct of the study; grants from Siemens Healthineers, grants and personal fees from Aegerion Pharmaceuticals, grants and personal fees from AMGEN, grants from Astrazeneca, grants and personal fees from Sanofi, grants and personal fees from Alexion Pharmaceuticals, grants and personal fees from BASF, grants and personal fees from Abbott Diagnostics, grants and personal fees from Numares AG, grants and personal fees from Berlin-Chemie, other from SYNLAB Holding Deutschland GmbH, grants and personal fees from Akcea Therapeutics, grants from Bayer Vital GmbH, grants from bestbion dx GmbH, grants from Boehringer Ingelheim Pharma GmbH Co KG, grants from Immundiagnostik GmbH, grants from Merck Chemicals GmbH, grants from MSD Sharp and Dohme GmbH, grants and personal fees from Novartis Pharma GmbH, grants from Olink Proteomics, outside the submitted work.

Dr. Ray reports receiving investigator initiated research grants to his institution from Amgen, Sanofi, Regeneron, MSD, Pfizer, Daiichi Sankyo and honoraria for consultancy from Amgen, Sanofi, Regeneron, MSD, Pfizer, Astra Zeneca, Lilly, Medicines Company, Kowa, IONIS, Takeda, Novo Nordisk, Boehringer Ingelheim, Esperion, Cipla, Algorithm, Abbvie, Resverlogix, Cerenis, Novartis, Akcea, Silence Therapeutics.

Financial support
The initiative FH ALERT was financed equally by SYNLAB Holding Deutschland GmbH and Amgen GmbH.

Legends

Figure 1. Schematic representation of procedures of FH ALERT. Alerting letters (ALs) were issued to treating physicians once total cholesterol (TC) or LDL-C scored above predefined threshold values. In addition to TC or LDL-C the ALs provided information about FH and further diagnostic options including genetic testing.
Figure 2. Distribution of Alerting letters (ALs) to specialist groups. Most ALs were issued to general practitioners, followed by internists while paediatricians, nephrologists, dermatologists and gynaecologists contributed marginally.

Table 1. Overview of defined thresholds triggering alert letters. Beside the thresholds, alert categories and associated severity levels are illustrated.
Table 2. FH ALERT’s pilot initiative key results. Data describes general information, distribution of alerts, acceptance, feedback, and genetic testing.

Table 3. Genetic findings in 26 samples obtained from FH ALERT. Subdivided according to the categories variants most likely not relevant to hypercholesterolemia, possibly relevant to hypercholesterolemia and familial hypercholesterolemia all findings are described by diagnosis, gene, variant, zygosity and ACMG (American College of Medical Genetics and Genomics) class as well as associated remarks in addition.
Tables

Table 1. Overview of alert letters' triggering thresholds

	Children (< 18 years)	Suspicion of FH	Adults (≥ 18 ≤ 60 years)	Suspicion of FH
LDL C threshold 1	≥140 mg/dL	Strong	≥190 mg/dL	probable
LDL C threshold 2			>250 mg/dL	strong
TC threshold 1 (if LDL C is not available)	≥200 mg/dL	Strong	≥250 mg/dL	probable
TC threshold 2 (if LDL C is not available)			>310 mg/dL	strong
Table 2. FH ALERT’s pilot initiative key results

Period of time: 12 weeks	Absolute values
Cholesterol examinations	75,431
Alert letters, n (%)	3,512 (4.66)

Distribution of alerts

Category I		
Adults with probable suspicion	3,177	
Children with strong suspicion	154	
Sum, n (%)	3,331 (94.85)	
thereof LDL C, n (%)	838 (25.16)	
thereof TC, n (%)	2,493 (74.84)	

Category II		
Adults with strong suspicion, n (%)	181 (5.15)	
thereof LDL C, n (%)	47 (25.97)	
thereof TC, n (%)	134 (74.03)	

Age

Patients < 18 years, n (%)	154 (4.38)
Patients ≥ 18 ≤ 60 years, n (%)	3,358 (95.62)
Average age (total/ female/ male, years)	48/ 50/ 47

Acceptance and Feedback

Total number of clients of MCC Weiden GmbH, n (%)	1,411 (100)
Clients with Opt-out, n (%)	200 (14.17)
Altered clients	
Clients with alert letters, n (%)	462 (32.74)
Alert letters per client (total/alerted clients)	2.49/7.60
≥ 10 alert letters (Opt-in, cum.), n (%)	121 (26.19)
≥ 5 ≤ 9 alert letters (Opt-in, cum.), n (%)	48 (10.39)
≥ 3 ≤ 4 alert letters (Opt-in, cum.), n (%)	37 (8.01)
Positive reaction by caller, n (%)	370 (69.94)
Negative reaction by caller, n (%)	38 (7.18)
Undifferentiated reaction by caller, n (%)	121 (22.87)

FH Score

New visitors/recurring visitors	101/31
Completed questionnaires	88
Questionnaires > 3	45

Genetic testing

| Requested genetic test kits | 93 |
| Returned genetic test kits, n (%) | 26 (27.96%) |
Table 3. Genetic findings in 26 samples obtained from FH ALERT.

Diagnosis	Gene	Variant	Zygosity	ACMG^a class	Remarks	
Variants most likely not relevant to hypercholesterolemia						
	CYP27A1	c.1494G>C, p.(Lys498Asn)	Het^b	3	Recessive mutations of CYP21A1 responsible for CTX^c, not described in the literature, *in silico* possibly damaging, but Lys498 poorly conserved and CTX patients have typically low to normal LDL C³⁰	
	NPC1L1	c.448C>T, p.(Leu150Phe)	Het	3	Leu150 poorly conserved, not contained in mutation databases, not described in the literature, *in silico* benign	
	NPC1L1	C1496C>T, p.(Thr499Met)	Het		Thr499 poorly conserved, pathogenic according to HGMD^d, loss of function variant, reduced intestinal cholesterol absorption^{31,32}	
Possibly relevant to hypercholesterolemia	Genetic HC	APOE	c.526C>T, p.(Arg176Cys)	APOE2/3	Type III HLP^e?	
	Genetic HC	APOE	c.388T>C, p.Cys130Arg	APOE3/4	LDL-C increased by apoE4³³	
	ABCG5	c.431T>C, p.(Val144Ala)	Het	3	Val144 strongly conserved, low frequency, located in the “P-loop containing nucleoside triphosphate domain” of ABCG8, *in silico* disease causing, no reports in the literature, increased cholesterol absorption?	
	DHCR24	c.231+19G>C, p.(?)	Het	3	Intronic variant, *in silico* prediction of aberrant mRNA splicing, no reports in the literature	
	PCSK9	c.1327G>A, p.(Ala443Thr)	Het	3	Ala443 poorly conserved, no relationship to elevated LDL-C³⁴	
	Genetic HC	ABCG8	c.712G>A, p.(Glu238Lys)	Het	3	Glu238 strongly conserved, located in the “P-loop containing nucleoside triphosphate domain” of ABCG8, *in silico* disease causing, loss of acceptor splice site of exon 6, no reports in the literature, increased cholesterol absorption?
	Genetic HC	APOE	c.526C>T, p.(Arg176Cys)	APOE2/3	Type III HLP?	
	ABCG8	c.1832G>A, p.(Arg611Lys)	Het	3	Arg611 poorly conserved, increased cholesterol absorption?	
	Genetic HC	SORT1	c.43C>T, p.(Pro15Ser)	Het	3	Pro155 poorly conserved, not contained in mutation databases, low allele frequency, *in silico* controversial

^aACMG: American College of Medical Genetics and Genomics
^bHet: Heterozygous
^cCTX: Congenital Tangier Disease
^dHGMD: Human Gene Mutation Database
^eHLP: Hypercholesterolemia
³⁰
^{31,32}
Gene	Variant	Allele	Description		
CYP27A1	c.4391G>A, p.(Arg164Gin)	Het	Arg164 highly conserved, in silico controversial, low allele frequency, not described in the literature		
APOE	c.388T>C, p.Cys130Arg, c.1377T>C, p.(Leu46Pro)	APOE3/4 P	ApoE-Pittsburg, possibly associated with Alzheimer’s disease, association with cholesterol elusive		
ABCG8	c.1083G>A, p.(Trp361*)	Het.	Causes stop of translation, causal in recessive sitosterolemia, increased cholesterol absorption?		
APOE	c.2337G>C, p.(Cys130Arg)	APOE3/4	LDL-C increased by apoE4		
APOB	c.2630c>T, p.(Pro877Leu)	Het	Pro877 strongly conserved, in silico disease causing, no reports in the literature, binding deficient apo B-100?		
NPC1L1	Haplotype c.529G>A, p.Val177Ile, c.661C>T, p.(His221Tyr), c.811_812delGCinsTT, p.(Ala271Phe)	Het	c.529G>A and c.661C>T reported associated with high HDL-C and TC		
Familial hypercholesterolemia	Het FH	ABCG5	c.1829A>C, p.(Glu610Ala)	Het	Low frequency, in silico disease causing, high cholesterol absorption?
	APOB	c.2630c>T, p.(Pro877Leu)	Het	Pro877 strongly conserved, in silico disease causing, no reports in the literature, binding deficient apo B-100?	
PCSK9	c.60_65dupGCTGCT, p.(Leu22_Leu23dup)	Het	Gain of function variant		
APOE	c.388T>C, p.(Cys130Arg)	APOE3/4	LDL-C increased by apoE4		
LDLR	c.190+4_190+7del, p.?	Het	4 bp deletion within the donor splice of exon 4 likely likely to cause aberrant splicing of the LDLR mRNA according to in silico prediction, individual base changes at c.190+4 and c.190+5 listed as pathogenic on HGMD, aberrant splicing of these variants proven experimentally		
APOB	c.6639_6641del, p.(Asp2213del)	Het	Variant previously detected in a patient with FH, causality still controversial		
APOB	c.9242G>A, p.(Ser3081Asn)	Het	Significance of the variant unclear		
Het FH	LDLR	c.798T>A, p.(Asp266Glu)	Het	Asp266 highly conserved, disease causing according to HGMD and Clinvar, causal according to the literature 46,47	
-------	------	------------------------	-----	--	
Het. FH	LDLR	c.10_delinsCGGGGCTGGAATTGCCTGGACCGTCGCC, c.10_delins31 p.(Trp4_Ala13delinsArgGlyLeuGluIleAlaLeuAspArgArg), p.(Trp4_Ala13delins10)	Het	4	Exchange of 10 amino acids in exon 1, *in silico* pathogenic, not described in the literature nor in databases, multiple base changes have been described as pathogenic at position c.28; they replace Trp10 (which is affected by the current mutation as well) by other amino acids 46,48
APOE	LDLR	c388T>C, p.(Cys130Arg)	APOE3/4	LDL-C increased by apoE4 33	

Abbreviations

- ACMG: American College of Medical Genetics and Genomics
- Het: heterozygous
- CTX: cerebrotendinous xanthomatosus
- Human Gene Mutation Database
- HLP: hyperlipoproteinemia