A Coupled model for ERT monitoring of contaminated sites

Yuling Wang1,3, Bo Zhang1, Shulan Gong1 and Ya Xu2

1 Department of information and electrical engineering, Shandong Jianzhu University, Jinan, China, 250101;
2 Chinese Research Academy of Environmental Sciences, Beijing 100012
3 anguingwyl@163.com

Abstract. The performance of electrical resistivity tomography (ERT) system is usually investigated using a fixed resistivity distribution model in numerical simulation study. In this paper, a method to construct a time-varying resistivity model by coupling water transport, solute transport and constant current field is proposed for ERT monitoring of contaminated sites. Using the proposed method, a monitoring model is constructed for a contaminated site with a pollution region on the surface and ERT monitoring results at different time is calculated by the finite element method. The results show that ERT monitoring profiles can effectively reflect the increase of the pollution area caused by the diffusion of pollutants, but the extent of the pollution is not exactly the same as the actual situation. The model can be extended to any other case and can be used to scheme design and results analysis for ERT monitoring.

1. Introduction

Due to the advantages of rapid, non-destructive and low-cost, electrical resistivity tomography has been used in many areas such as hydrogeological, mining and geotechnical investigations and environmental surveys. More recently, ERT is used in time-lapse mode, measuring temporal changes in resistivity, has become increasingly popular to monitor dynamic processes including non-aqueous phase liquids remediation [1-2], biodegradation of hydrocarbons [3], freshwater salinization [4], wastewater transport [5], and recharge induced contaminant plume behavior [6-7]. These applications demonstrate the great potential of using resistivity method to monitor contaminated sites. However, due to the different geological conditions, e.g. hydrology, pollution sources and soil texture, the monitoring scheme and results interpretation remain huge challenge.

The numerical simulation study for ERT monitoring of contaminated sites is helpful to analyze the performance of ERT monitoring under different geological conditions and the results can be used to guide the monitoring scheme design and results interpretation. Ebrahimi has analyzed the ability of ERT arrays to detect a buried channel though Numerical simulation [8]. Lu built a three-dimensional (3-D) forward model based on the patching method of electrical resistivity tomography (ERT) to research apparent resistivity features of different topographies with pole–pole array and Wenner array [9]. Bongiovanni designed an electrical model of the reservoir from well data and numerically simulated the forward geoelectrical response to determine the conditions under which the anomaly studied and studied the feasibility of detecting brine in an oil reservoir with surface-downhole electrical measurements [10]. Ye construct a coupling simulation model for ERT in which the distribution information of multi-phase flow is exchanged between the fluid field and electric field [10]. Power proposed a coupled DNAPL-ERT model for simulating the mapping of dense non-
aqueous phase liquids using electrical resistivity tomography [11]. In this paper, a method to construct a time-varying resistivity model by coupling the water transport, solute transport and constant current field is proposed for ERT monitoring of contaminated sites. The model is used to simulate the ERT monitoring results of pollutant diffusion process to guide the design of the monitoring system for contaminated sites.

2. ERT monitoring model of contaminated sites

2.1. The coupled model
Many experimental studies have shown that the soil resistivity is affected by many factors. The spatial distribution of resistivity in the site can be regarded as the result of three factors. The first factor is the basic properties of soil, such as soil particle size, cementing coefficient and porosity. The second factor is the water saturation which is related to the parameters such as the permeability coefficient and groundwater level of the site. The third factor is the pore water conductivity which is related to the ion content in soil and is greatly affected by the type and concentration of pollutants. The quantitative relationship under unsaturated conditions between resistivity and saturation, porosity and pore water resistivity given by Archie [12] is:

$$\frac{\lambda_b}{\lambda_w} = a \theta^{-z} S_w^{-g} \lambda_w$$

(1)

where: λ_b is the resistivity of soil, and z, a is constant, z is the cementation index of rock, a is the curvature factor, λ_w is the resistivity of pore water, θ means porosity and S_w is water saturation.

To simulate the ERT results for monitoring pollutant diffusion process in subsurface soil, a coupled model is built by combined the three physical fields: fluid field, solute migration and steady electric field. The linkage of three physical fields is shown in Figure 1 and the whole solution of the model includes four steps:

1. The flow velocity and moisture content distribution in a site are obtained by solving the water transport.
2. Using the solution of the water transport model as input, the solute transport model was solved to obtain the spatial distribution of pollutant concentrations at different times.
3. According to the spatial distribution of pollutant concentration and the spatial distribution of moisture content, the spatial distribution of resistivity was solved by Archie's formula.
4. The ERT results are obtained by solving the steady electric field distribution at different times.

![Diagram](image)

Figure 1. ERT monitoring model of contaminated sites.

2.2. Water transport
The flow velocity and moisture content distribution in the vadose zone can be described using the following equations, which derived from Richard's equation [13-14].

$$\left(C + S_c \cdot S \right) \frac{\partial H}{\partial t} + \nabla \cdot (\rho u) = 0$$

(2)

$$u = \frac{K}{\rho g} (\nabla \rho + \rho g \nabla D)$$

(3)

$$K = K_s \cdot K_r$$

(4)

$$S = (\theta_i - \theta_c) / (\theta_m \cdot \rho g)$$

(5)
where C is the specific moisture content (m$^{-1}$); S_e is the effective saturated soil (dimensionless); S is a storage coefficient (m$^{-1}$); H_r is the pressure head (m), which is proportional to the independent variable P (Pa); t is time; u is the Darcy velocity field; K is the hydraulic conductivity (m/s); the direction of D (usually in the z direction) represents the vertical elevation (m). ρ is the density of the liquid, g is the acceleration of gravity. K_r is the relative permeability coefficient in soil, and K_s is the constant hydraulic conductivity at saturation. θ_s and θ_r represent fluid saturation and volume fraction after drainage, respectively.

The coefficients C, S_e, and K vary with the pressure head H_p, and with the volume fraction of fluid within the soil which can be defined as follows according to Van Genuchten [15]:

$$
\theta = \begin{cases}
\theta_s + S_e(\theta_s - \theta_r) & H_p < 0 \\
\theta_r & H_p \geq 0
\end{cases} \quad (6)
$$

$$
S_e = \begin{cases}
\frac{1}{1 + [\theta_s / \theta_r]^m} & H_p < 0 \\
1 & H_p \geq 0
\end{cases} \quad (7)
$$

$$
C = \begin{cases}
\frac{a m}{1 - m} (\theta_s - \theta_r) S_e^{1/n} (1 - S_e^{1/n})^n & H_p < 0 \\
0 & H_p \geq 0
\end{cases} \quad (8)
$$

$$
k_r = \begin{cases}
S_e [1 - (1 - S_e^{1/n})^n] & H_p < 0 \\
1 & H_p \geq 0
\end{cases} \quad (9)
$$

Here α, n, m, and l are constants for a certain type of medium, with $m=1-1/n$. θ is porosity.

2.3. Solute transport

The most commonly used models to simulate the solute transport in soil fall into two categories, one is based on convection-dispersion equation and the other is based on transfer function model. In this paper, the former is employed to predict the transport of contaminant in soil as follows:

$$
(\theta + \rho_b k_p) \frac{\partial c}{\partial t} + c \frac{\partial \theta}{\partial t} + \nabla \cdot (- \theta D_L \nabla c + uc) = \theta \phi_L + \rho_b k_p \phi_p c + S_c
$$

$$
c \frac{\partial \theta}{\partial t} = c C \frac{\partial H_p}{\partial t} \quad (11)
$$

where c represents the dissolved concentration (Kg/m3), θ represents the fluid volume fraction (porosity, dimensionless), θ_c represents the amount of material in the pore water, ρ_b is the soil bulk density (Kg/m3), C_p represents mass units of adsorbed pollutants (mg/Kg), $\rho_b C_p$ provides solute mass concentration in the soil, D_L is the hydrodynamic dispersion tensor (m2/d); R_p denotes the reaction in water (Kg/(m3·d)), R_p equals the reaction involving solute attachment to soil particles (Kg/(m3·d)). S_c is the increased solute per unit volume per unit time (Kg/(m3·d)). ϕ_L and ϕ_p represent the rate of adsorption and the rate of solute concentration, respectively.

The hydrodynamic dispersion tensor, D_L, describes mechanical spreading from groundwater movement in addition to chemical diffusion:
\[
\theta D_{,ll} = \alpha_1 \frac{u_i^2}{\|u\|} + \alpha_2 \frac{u_j^2}{\|u\|} + \frac{\theta D_{,d}}{\tau_L} \tag{12}
\]

\[
\theta D_{,lj} = (\alpha_1 - \alpha_2) \frac{u_i u_j}{\|u\|} \tag{13}
\]

where \(\theta D_{,ll}\) are the diagonal elements of the diffusion tensor; \(\theta D_{,lj}\) are the cross terms; \(\alpha\) is the dispersivity; the subscripts “1” and “2” denote longitudinal and transverse dispersivities, respectively; \(D_m\) denotes the coefficient of molecular diffusion (m²/d); and \(\tau_L\) is a tortuosity factor that reduces impacts of molecular diffusion for porous media relative to free water. Here \(\tau_L = \theta^{7/3} \theta_s^{-2}\).

2.4. Control equation of point current source

The purpose of the ERT measurement is to determine the subsurface resistivity distribution by making measurements on the ground surface or at boreholes. A stable artificial electric field is established by injecting a steady current into the earth. By measuring the value of the electric field, the resistivity distribution of the sites can be defined, and then the underground medium information can be inferred. According to the principle of the stationary current field, the potential distribution of a point current source in three-dimension space satisfies the Poisson’s equation:

\[
\nabla \cdot (\sigma \nabla U) = -2I \delta(A) \tag{14}
\]

where, \(\sigma\) is electrical conductivity, \(\delta = 1/\lambda\), \(\lambda\) is resistivity; \(U\) is electrical potential; \(I\) is current intensity of current source; \(A\) is location of current source.

3. Case study

3.1. Contamination site description

Surface water infiltration is one of the main causes that lead to the pollution of soil and groundwater. For example, in China, almost all artificial liner system in landfill is damaged due to manufacturing and construction defects. As a result, leachate produced in the landfill will leak through these failures and enter into the subsurface, leading to soil and groundwater pollution. Soil or groundwater once contaminated can hardly be restored unless plenty of time and money invested. Thus, monitoring methods/instrument capable of contamination detection are more desirable for early warning and leaks location. Here, we construct a monitoring model to simulate the above-mentioned condition when there is a potential pollution source of soil on the surface.

3.2. Parameter setting of monitoring model

The model space is set as a cube with a detection region located in the middle of the model. The area of detection region is set to 5m×5m×1.5m. The upper surface of detection region coincides with the upper surface of the model surface. Supposing a circular pollution source is located at the center of the model space’s surface, the radius of the source is set to 0.4m. 24 electrodes are placed along the X axis and y=0, (represented by dots in Figure 2), and the interval space between the adjacent electrodes is set to 0.2m. The coordinate of the first electrode is (-2.3m, 0m, 0m), and the coordinate of the 24th electrode is (2.3m, 0m, 0m). Wenner array [16-17] is carried out for simulation. In each measurement, two of the 24 electrodes are selected as current electrodes by which a steady current is injected into the model space. The current values at the two current electrodes are +1A and -1A respectively. The finite element method is used to solve the governing equation and the mesh of model is shown in Figure 1.
Figure 2. Model space and mesh.

The initial value of the pressure head H_p is set to 0.01m in the pollution source area, the initial value of the pressure head in the rest of the model area is related to vertical elevation:

$$H_p = \begin{cases}
0.01m & \text{Source region} \\
-(z + 1.4)m & \text{Other}
\end{cases}$$

(15)

The boundaries of the model space are set to free outflow boundaries. the pressure head distribution H_p can be gotten by solving the equation 2. And then, the velocity distribution in the space can be obtained according to Darcy law. The parameter values of soil are shown in Table 1.

Parameter	Value	Unit
Hydraulic conductivity K_s	0.298	m/d
Fluid saturation θ_s	0.399	
Volume fraction after drainage θ_r	0.001	
α	1.74	m$^{-1}$
n	1.38	
m	$1 - 1/n$	
Pore connection parameter	n/α	

The pollutant concentration in source region is set to a constant value 2Kg/m3 while it is set to 0 Kg/m3 in other location of the model space. The pollutant migrates from the surface to the subsurface soil in the effect of advection and diffusion. The migrating range of pollutant will not exceed the model size in a few hours. Therefore, solute flux is set to 0 at the boundary of model space.

$$n \cdot N = 0 \quad \text{or} \quad n \cdot (\Theta D_L \nabla c) = 0$$

(16)

where n is Normal vector of boundary.

Solute transport parameters are shown in table 2:

Parameter	Value	Unit
Bulk density ρ_b	1400	Kg/m3
Partition coefficient K_p	0.0001	m3/Kg
Molecular diffusion coefficient D_m	0.00374	m2/d
Transverse dispersion α_z	0.001	m
Decay rate in liquids Φ_L	0.05	d$^{-1}$
Decay rate in soil Φ_p	0.01	d$^{-1}$
4. Results and discussion

4.1. Pollutant concentration distribution

Starting from the initial moment, the concentration distribution is calculated every hour which is shown in figure 3. We can see that pollutant concentration is 0 Kg/m3 except in the pollutant source. As time goes by, the pollutants diffuse to the deeper and the surrounding soil under the action of the water head. After 2 hours, the range in the horizontal direction is -0.5m~0.5m, and in the depth direction arrives at 0.18m. The range of pollutant after 10 hours, the range of horizontal direction increases to -0.62m~0.62m, and in the depth direction arrives at 0.45m. The pollutant diffusion velocity in horizontal direction is less than in vertical direction apparently.

![Figure 3](image)

Figure 3. Concentration distribution at different times.

4.2. Resistivity method detection results

The chromium was assumed to be the targeted pollutant, and relevant soil parameters in equation 1 were referred to literature [18], the resistivity of the ground is calculated according to the concentration distribution. The background value of the ion concentration in the soil is assumed to be 0.1 kg/m3, and the highest ion concentration is 2 Kg/m3. So, the resistivity value of the site range from 4.9 $\Omega\cdot$m to 122 $\Omega\cdot$m. ERT results in different time are shown in figure 4. From the figure we can see that the range of low resistivity is increased with the increases of time, especially the area range of resistivity value 4.9 $\Omega\cdot$m ~10 $\Omega\cdot$m increases significantly. The trend of resistivity change is consistent with the trend of pollutant diffusion. However, the area range of low resistivity in vertical direction is more than the range of pollutant region because of volume effect.
Figure 4. ERT monitoring profiles at different times.

5. Conclusions
This paper builds a coupled model by combined the three physical fields: fluid field, solute migration and steady electric field. The linkage of three physical fields and the solving steps is given. And then, a case of contaminated sites which with a pollutant source on earth's surface is taken as example and the ERT results at different times are solved by finite element calculation method. The simulation results show that the ERT monitoring profiles can effectively reflect the increase of the pollution area caused by the diffusion of pollutants, but the extent of the pollution is not exactly the same as the actual situation which may be improved by ERT inversion. In the further study, we will study the method of recognize the pollution extent according to the change of resistivity in ERT results and the monitoring scheme for contaminated sites in different pollutant condition.

Acknowledgement
This work is partially supported by NSFC Grants (61503219), Major Research and Development Program of Shandong Province (2016GGX101005), the Specialized Research Fund for the Doctoral Program of Shandong Jianzhu University (XNBS1328) and the Basic Scientific Research Special Project of China Central Commonwealth Research Institute (No.2016YSKY14).

References
[1] Power C, Gerhard J I, Karaoulis M, Tsourlos P, & Giannopoulos A 2014 Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring dnapl source zone remediation Journal of Contaminant Hydrology 27 pp 162-163
[2] Power C, Gerhard J I, Tsourlos P, Soupios P, Simyrdanis K, & Karaoulis M 2015 Improved time-lapse electrical resistivity tomography monitoring of dense non-aqueous phase liquids with surface-to-horizontal borehole arrays Journal of Applied Geophysics pp 1-13
[3] Masy T, Caterina D, Tromme O, Lavigne B, Thonart P, & Hiligsmann S, et al 2016 Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with rhodococcus erythropolis t902.1 at a pilot scale Journal of Contaminant Hydrology 184 pp 1-13
[4] Wagner F M, Möller M, Schmidt-Hattenberger C, Kempka T, & Maurer H 2013 Monitoring
freshwater salinization in analog transport models by time-lapse electrical resistivity tomography. Journal of Applied Geophysics 89 pp 84-95

[5] Seferou P, Soupios P, Kourgiadas N N, Dokou Z, Karatzas G P, Candasayar E, Papadopoulos N, Dimitriou V, Sarris A, Sauter M 2013 Olive-oil mill wastewater transport under unsaturated and saturated laboratory conditions using the geoelectrical resistivity tomography method and the FEFLOW model Hydrogeol. J. 21(6) pp 1219-1234

[6] Gasperikova E, Hubbard S S, Watson D B, Baker G S, Peterson J E, Kowalsky M B, Smith M, Brooks S 2012 Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior. J. Contam. Hydro 142-143 pp 33-49

[7] Sainato C M, Losinno B N, & Malleville H J 2012 Assessment of contamination by intensive cattle activity through electrical resistivity tomography Journal of Applied Geophysics 76(1) pp 82-91

[8] Ebrahimi M, & Abbasis M 2015 Two-dimensional ERT Modeling to Detect Buried Channels Eage Conference and Exhibition

[9] Lu D B, Zhou Q Y, Junejo S A, & Xiao A L 2015 A systematic study of topography effect of ert based on 3-d modeling and inversion Pure & Applied Geophysics 172(6) pp 1531-1546

[10] Bongiovanni M V, Grünhut V, Osella A, & Tichno A 2015 Numerical simulation of surface-downhole geoelectrical measurements in order to detect brine plumes Journal of Applied Geophysics 116 pp 215-223

[11] Ye J, Wu M, Che H, Wang H, & Yang W 2016 Coupling Simulation for electrical resistance tomography IEEE International Conference on Imaging Systems and Techniques pp 289-293

[12] Archie G E 1942 The electrical resistivity log as an aid in determining some reservoir characteristics Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers 146 pp 54-62

[13] J Bear Hydraulics of Groundwater McGraw-Hill Inc. 1978

[14] Richards L A 1931 Capillary conduction of liquids through porous mediums Physics 1(5) pp 318-333

[15] Van Genuchten M Th 1980 A-Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils Soil Science Society of America Journal 44 pp 892-898

[16] Wilkinson P B, Loke M H, Meldrum P I, Chambers J E, Kuras O, Gunn D A and Ogilvy R D 2012 Practical aspects of applied optimised survey design for Electrical Resistivity Tomography Geophysical Journal International 189 pp 428-440

[17] ZHU J J, KANG H Z 2007 Application of Wenner Configuration to Estimate Soil Water Content in Pine Plantations on Sandy Land Pedosphere 17(6) pp 801-812

[18] Zhu Y 2013 Research on time-frequency combined detection of complex resistivity method in chromium contaminated site China University of Mining and Technology (Beijing)