Traditional Diagnosis of *Eimeria* spp. in Fallow Deer at Middle Parts of Iraq

Safaa M Kareem*, and May H Kawan

Department. of Parasitology, College of Veterinary Medicine, University of Baghdad, Iraq

ABSTRACT

Eimeria is an apicomplex protozoon which affects many species of birds, domestic and wild animals including deer. This is the first study in Iraq that was designed for diagnosis *Eimeria* spp. in deer using traditional methods. Eighty fecal samples of Fallow deer (*Damadama*) were collected in different provinces in the middle part of Iraq during December 2018 to the end of September 2019. Samples were examined by direct smear and flotation with Sheather’s solution. The total infection rate with *Eimeria* spp. was 70% (56/80), in which higher infection rate was observed in female deer (78%, 39/50). The results also showed that Fawn at age<3-11 months recorded higher rate of infection (86.3%, 19/22). *Eimeria* infection was more prevalent in Karbala and Baghdad provinces where recorded (73.3% and 72%) respectively, sharp increase of infection recorded during March (87.5%, 7/8). In addition, four species of *Eimeria* (*E. crandalis, E. intricate, E. parva*, and *E. sordida*) were detected in Iraqi deer according to morphological characterization of oocysts. This study highlighted the distribution of some *Eimeria* species in deer and revealed the effect of some epidemiological factors on prevalence in different middle Iraq provinces.

Keywords: traditional, diagnosis, *Eimeria*, fallow, deer

INTRODUCTION

The genus *Eimeria* (Apicomplexa: Eimeriidae) is a species group of single-celled parasitic organisms that are obligatory intracellular protozoan parasite (1, 2). These parasites are common in most domestic and wild ruminants, such as cattle (3), sheep and goats (4, 5) and deer (6) including fallow deer (7).

Eimeria spp. can be transmitted by fecal-oral route. The source of infection is usually by asymptomatic carrier adult animals that act as a source for spreading infection through contaminating water and feed (8). The appearance of clinical signs depends on the number of ingested sporulation oocysts (9). This coccidiosis can be found probably in all ages of animals and can be a significant problem in the younger one (10).

Eimeria 's taxonomy relied on the morphological characteristics of the sporulated and non-sporulated oocysts. The basic structure component of the oocyst wall is the same in all *Eimeria* species and the structure of the sporozoites includes refractile bodies, the nucleus, and striations (11).

In Iraq, rare available studies were recorded the *Eimeria* detect in deer. Therefore, this study was designed to investigate the rate of infection with *Eimeria* spp. in deer in middle areas of Iraq; and to detect types of *Eimeria* spp. in...
Iraqi deer according to the morphological characterization of oocysts.

MATERIALS AND METHODS

Sampling

All procedures conducted in this study were reviewed and approved by the scientific committee in the College of Veterinary Medicine, University of Baghdad in accordance with the ethical standards of animal welfare.

A total of 10-15 grams fecal samples were collected from rectum of 80 Fallow deer (30 males, 50 females) with different ages (<3-11 months, <11-20 months and <2 years) from different provinces in the middle areas of Iraq (Baghdad (25), Al- Najaf (15), Babylon (25) and Karbala (15)) during December 2018, to end of September 2019.

Fecal samples were collected in sterile tightly stoppered plastic containers. All information included age sex and date of sampling were given serial numbers; and change gloves after collecting samples as a protective step were done too. The samples were dispatched by cooling box to the laboratory of Parasitology, College of Veterinary Medicine/ University of Baghdad for diagnosis using traditional methods (direct smear and flotation with Sheather’s solution) during December 2018, to end of September 2019.

Direct Wet Smear

One gram of each fecal samples was placed onto the glass slide after one drop of normal saline was added on it and mixed with a wood stick; then a coverslip was added on each slide. The slides have been examined under the light microscope at 10x and 40x magnification powers (12).

Flotation Method

The flotation method as described by (13) based on the use of Sheather’s solution. The steps of the method were by examining a batch of 2-4 g of feces with 10 mL of distilled water. Then to extract big fragments, the mixture of feces was washed out with sieve sized of forty angles. The filtrates were placed in sterile plastic tubes and centrifuged at 1000 rpm for 3 min then the supernatant was discarded. 5 mL volume of sugar solution was applied for precipitation using wooden sticks; then the latter mixed properly and centrifuged at 1000 rpm for 2 min. All plastic test tubes were put on hold to fill the tanks letting the Pipette to drop sugar solution vertically. Finally, the glass cover slide was then put on the tubes for 10-15 min.

To scan the *Eimeria* oocysts, the glass cover slide was carefully lifted and placed under a microscope at magnification strength between 10x and 40x (14).

Oocyst Measurement

The calibration of a microscope for measuring oocyst was provided by (14).

Statistical Analysis

Statistical analysis was performed using SAS (version 9.1). The infection rates were compared using Chi-square test (15).

RESULTS

The total rate of infection with *Eimeria* spp. in Fallow deer was 70% (56/80) when traditional method (direct smear and flotation with sheather’s solution) of middle areas of Iraq was used.

Rate of Infection Based on Sex

A significant difference (P<0.01) was reported between male and female deer to their ratio of infection with *Eimeria* spp. in which it was 78% (39/50) in female while male had 56.67 % (17/30) (Table 1).

Sex	Total No.	Positive No.	%	Statistics
Male	30	17	56.67	P<0.043
Female	50	39	78	
Total	80	56	70	

\(\chi^2 = 8.106, P<0.05 \)

Rate of Infection Based on Age

Higher rate of infection with *Eimeria* spp. recorded 86.36% (19/22) in <3-11 months age group while it showed less ratio in > 2 years of age 62.5% (20/32) with significant difference P<0.05 (Table 2).

Age	Total No.	Positive No.	%	Statistics
<3-11 months	22	19	86.36	
11-20 months	26	17	65.38	P<0.14
>2 year	32	20	62.5	
Total	80	56	70	

\(\chi^2 = 8.04, P<0.05 \)

Rate of Infection Based on Area of Study

Karbala and Baghdad recorded higher rate of infection 73.33% (11/16) and 72% (18/25) respectively without significant differences P>0.05 (Table 3).
Table 3. Rate of infection by *Eimeria* spp. in fallown deers (*Dama dama*) based on area of study

Area	Total No.	Positive	No.	%	Statistics
Baghdad	25		18	72	
Karbala	15		11	73.33	P<0.96
Al-Najaf	15		10	66.67	
Babylon	25		17	68	
Total	80		56	70	

$\chi^2 = 0.506$, $P>0.05$

Rate of Infection Based on Month of Study

Non-Significant variation ($P>0.05$) was recorded among the months of the study. March recorded higher rate of infection (87.5 %, 7/8) while the lower rate was recorded in December (44.44%, 4/9) (Table 4).

Table 4. Rate of infection by *Eimeria* spp. in fallown deers (*Dama dama*) based on month of study

Months	Total No.	Positive	No.	%	Statistics
December	9		4	44.44	
January	10		6	60	
February	6		4	66.67	
March	8		7	87.5	
April	10		8	80.0	
May	4		3	75.0	$P<0.77$
Jun	9		7	77.78	
July	8		6	75.0	
August	8		6	75.0	
September	8		5	62.5	
Total	80		56	70.0	

$\chi^2 = 8.777$, $P<0.05$

Oocysts of *Eimeria* spp in Deer

Four species of *Eimeria* (*E. crandalis*, *E. intricata*, *E. parva*, and *E. sordida*) were detected in this study by the traditional methods (direct wet smear and floatation with Sheather’s solution) according to the morphological characterizations and measurements of oocysts.

Eimeria crandalis

Non sporulated oocysts had broad ellipsoidal to spherical shape with average size 28×20±2 µm, with smooth wall, yellow color, micropyle was presented however, polar cap might be absent (Figure 1).

Sporulated oocysts had an ellipsoidal in shape with 4 sporocysts each one of them had two sporozoites (Figure 2).

Eimeria intricata

Non sporulated oocysts had spherical shape with average size 50×37.5±2 µm, with two layers of irregular granular form thick and striated wall had brown color, micropyle and distinct polar cap (Figure 3).

Sporulated oocysts appeared as spherical shape with four sporocysts each one contained two sporozoites (Figure 4).
Eimeria parva

No sporulated oocysts had spherical to sub-spherical shape with an average size of 15x13 μm and smooth colorless surface; absence of polar cap and micropyl had also features of them (Figure 5).

Sporulated oocysts appeared as spherical to sub spherical shape with 4 sporocysts each one of them had two sporozoites (Figure 6).

Eimeria sordida

Non sporulated oocyst appeared as spherical to ellipsoidal shape with smooth colorless, non-clear or absent polar cap and inconspicuous micropyle having an average size of 36×28±3 μm (Figure 7).

Sporulated oocysts appeared as spherical to ellipsoidal shape with four sporocysts each of them had two sporozoites (Figure 8).

DISCUSSION

Total rate of infection with Eimeria spp in deer by traditional methods (Direct wet smear and Flotation Sheather’s solution) in middle areas of Iraq was 70%. The results of deer were higher than 39, 30% in Bosnia and Herzegovina by others (16).

In wild deer (17), it was recorded a ratio of 81.25% and prevalence for Eimeria with micropyle and Eimeria without micropyle was 77.78% and 86.67% of equal prevalence for both Eimeria with micropyle and without micropyle. Eimeria spp. was also recorded in conservation area of Nepal.
Concurring to a few points about the variability in prevalence and distribution of coccidiosis may be due to variations in management and hygienic conditions, temperature, agroecology, environmental, weather conditions, host immune status, sample size, sampling period and breed susceptibility to coccidia in different areas (18). Dissemination of the *Eimeria* oocysts is feasible, particularly in highly productive crowded farms, and those have a highly infected rate readily introduced (19).

According to sex, males and females of fallow deer recorded 56.6% and 78% rate of infection with *Eimeria*, respectively. Walaa et al found that sex had an influence on the prevalence of infection with coccidiosis in adult female in small ruminants (20). The results of same study were in accordance with (21, 22) through which it was revealed that females were more susceptible than males, and the latter showed to be in consistent with the findings of (23) in wild ruminants. The higher rate of infection in females were recorded in compared to males due to higher stressful conditions experienced by female animals especially during pregnancy, delivery, breast feeding and presenting large numbers of females for reproductive and economic purposes in the livestock (23).

In relation to age groups, Fawn recorded higher infection rates with *Eimeria* spp. (86.36%) at the age group (<3-11 months). That was in accordance with others (24) in which they indicated that newborn and less than 1-year old of small ruminants had greater infection rate with *Eimeria* spp. as comparing with older animals. Many studies also showed the relationships between highest infection rate and the ages of ruminants (25, 26).

The young ruminants are more susceptible to infection than older one due to their great susceptibility to infection, the breeding and overcrowding system observed in the different properties, immature development of the immune system of young ruminants in comparison to older. The young ruminant’s immune system is still unaware about the invading *Eimeria* parasite because of lack of previous exposure while adult animals had previous multiple exposure to *Eimeria* parasite. Multiple exposures of low dose infection are one of the most important factors that make the animal highly immunized to a specific infection (25).

Karbala province showed a slight increase infection rate with *Eimeria* spp in Fallow deer (73.3%). The differences could be due to living conditions of captivity which made the animals more susceptible to parasitic infection in comparison to the range conditions. Another possibility of parasite transmission was where animals are moved from one enclosure to another without proper parasites precautions. The non-healthy regime of some worker within zoos may increase incidence of infection (26,27).

According to months, March revealed the highest rate of infection with *Eimeria* spp (87.5%) than other months of study. High prevalence of infection during the spring season may be attributed to climatic conditions that are more conducive to sporulation and coccidian oocyst survival. The result indicated that the rate of infection among deer pastures was high. The reasons for seasonal variation in the rate of infection may be due to variation in temperature, raining, moisture which may facilitate the maturation, shedding, and sporulation of oocysts (28).

The direct examination and flotation method gave the same results regarding diagnosis of *Eimeria* infection, and the only superior advantage of flotation method is that it provided better morphologic parameters to confirm the already obtained diagnosis by direct method.

The studies of (29) and (30) suggested that *Eimeria* were consistent with the basic structure of the oocyst wall. The authors have convincingly shown in both experiments that the oocyst wall consists of two distinct layers, surrounded by an outer membrane, called the outer veil which is usually absent in mature oocysts isolated from feces. The bilayer exhibit is at chances with multiple prior thoughts on which in their definitions called oocysts with single layered walls. The micropyle can be described as discontinuity in one of the layers of the oocyst wall. This feature can be seen in the interior layer as described by (31).

The presence or absence of a micropylar cap, the diameters of the oocyst and the form of the oocysts are valid criteria for differentiating *Eimeria* species (32). Four species of *Eimeria* were detected in this study according to the morphological characterization and measurements of oocyst. Female recorded higher rate of infection than male and fawn deer was more susceptible to infection with *Eimeria* than adult. Finally, infection rate in middle provinces of Iraq recorded significant differences with higher increase during March.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge to Prof. Dr. Hameed Ali Kadhim, Dean of the College of Veterinary Medicine University of Baghdad, and to the Department of Parasitology, Veterinary Medicine, University of Baghdad. We also thank the deer owners for cooperating and their help in collecting fecal samples in this study.

FUNDING

Authors declare that above-submitted work was not funded by any governmental or private funding source nor supported by any financial projects.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.
REFERENCES

1. Shirley MW, Smith AL, Tomley FM. The biology of avian Eimeria with an emphasis on their control by vaccination. Adv. Parasitol. 2005; 60: 285–330.

2. Yakhchali M, Rezaei AA. The prevalence and intensity of Eimeria spp. infection in sheep of Malayer suburb, Iran. Archives of Zavi Institute. 2010; (65): 1: 27-32.

3. Bangoura B, Mundt HC, Schmschke R, Westphal B, Daugachies A. Prevalence of Eimeria bovis and Eimeria zuernii in German cattle herds and factors influencing oocyst excretion. Parasitol. Res. 2011; 109(1): 129-138.

4. Fthenakis GC, Arsenos G, Brozos C, Fragkou IA, Gairoduis ND, Giadinis ND, Fthenakis GC, Arsenos G, Brozos C, Fragkou IA, Giadinis ND, Giannelas I, et al. Health management of ewes during pregnancy. Anim. Reprod. Sci. 2011; 130: 198-212.

5. Saad MA, Adnan MA, Ahmed AH. Diagnosis of Eimeria spp. in Capra ibex (local merz goat). Iraqi J. Vet. Med. 2010; 40(1): 47-52.

6. Davidson RK, Susan JK, Knut Madslien EH, Kjell H. Gastrointestinal parasites in isolated Norwegian population of wild red deer (Cervus elaphus). Acta Vet Scand. 2014; 56(1): 59.

7. Pyziol AM, Józwikowski M, Demiaszkiewicz AW. Coccidia (Apicomplexa: Eimeridae) of the lowland European bison (Bison bonasus bonasus) (L.). Vet. Parasitol. 2002: 138-144.

8. Ocal N, Yagel BB, Duru SY, Kul, O. Trolta Zuriel treatment for acute clinical, pathological, hematologic, and biochemical findings. Med. Vet. 2007; 63(7): 805-809.

9. Herman P. Resistance to anticoccidial drugs: alternative strategies to control coccidiosis in broilers [Dissertation]. Utrecht: Utrecht University; 2010.

10. Urquhart GM, Armour J, Duncan JL, Dunn AM, Jennings FW, editors. Veterinary Parasitology. 2nd ed. Philadelphia: W. B. Saunders Company, 1986. p 375

11. Fthenakis GC, Arsenos G, Brozos C, Fragkou IA, Gairoduis ND, Giadinis ND, Giannelas I, et al. Health management of ewes during pregnancy. Anim. Reprod. Sci. 2011; 130: 198-212.

12. Coles EH, editor. Veterinary Clinical Pathology. 4th ed. Philadelphia: W. B. Saunders Company, 1986. p 375-379.

13. Al-Kabi NA. Epidemiological and diagnostic study of coccidiosis in sheep of Diwaniyah [dissertation]. Al-Qadisiyya, Iraq: University of Al-Qadisiyya; 2009.

14. Conway DP, Mckenzie FW, editors. Poultry Coccidiosis: diagnostic and testing procedures. 3rd ed. Iowa: Blackwell Publishing, Ames; 2007. p 164.

15. Petrie A, Watson P. Statistics for Veterinary and Animal Science 2nd edition. Ames: Blackwell Publishing; 2006. p 24-112.

16. Omeragić J, Hodžić A, Zuko Almedina H, Jažić A. Review of investigations of parasita fauna of wild animals in Bosnia and Herzegovina. Veterinaria. 2011; 60: 251-257.

17. Byanru J, Shrestha SP, Kanhal DR. Prevalence of gastrointestinal parasites inYaks of Lehe VDC, Manaslu Conservation Area. Nepal. J. of Sci. and Tech. 2011; 12: 366-369.

18. AlTaf AR, Hidayatu A. Study of some potential risk factors associated with coccidia in sheep. J. Agr. Vet. Sci. 2014; 65: 11-13.

19. Hari O, Sanjiv K, Pawanjit S. Prevalence of coccidia in Mathura Region of Uttarpradesh. Vet. World, 2010; 3(11): 503-505.

20. Waala IM, Naha HS, Eman MA. Prevalence of Eimeria species among sheep and goats in Suez Governorate, Egypt. Int J Vet Sci Med. 2018; 6(1): 65–72.

21. Al-Hakamy J. Diagnostic study of Eimeria species in cattle in Babylon and Al-Qadisiyya Provinces [dissertation]. Al-Qadisiyya, Iraq: University of Al-Qadisiyya; 2012.

22. Dawid F, Amede Y, Bekele M. Calf coccidiosis in selected dairy farms of Dire Dawa, Eastern Ethiopia. Global Vet. 2012; 9: 460-464.

23. Rehman TU, Khan MN, Sajid MA, Abbas RZ, Arshad M, Iqbal Z. Epidemiology of Eimeria and associated risk factors in cattle of district Toba Tek Singh, Pakistan. Parasitol Res. 2011;108 (5): 1171–1177.

24. Nourolah-Fard SR, Khediri J, Ghashghaei O, Mohammadyari ON, Sharifi H. The prevalence of ovine Eimeria infection in Rudsar, North of Iran. J. Parasit Dis. 2011; 40(3): 954–957.

25. Yu SK, Gao M, Huang N, Jia YQ, Lin Q. Prevalence of coccidial infection in cattle in Shaanxi province, Northwestern China. J. of Animal and Vet. Advances. 2011; 10: 2716–2719.

26. Alemayehu A, Nuru M, Belina T. Prevalence of bovine coccidia in Kombolcha district of Wollo, Ethiopia. J. of Vet. Med. and Animal Health. 2013; 5(2): 41-45.

27. Goossens E, Dorny P, Boomker J, Vercaemmen F, Vercruysse J. A 12-month survey of the gastro-intestinal helminths of antelopes, gazelles and giraffids kept at two zoos in Belgium. Vet. Parasitol. 2005; 127(3-4): 303-312.

28. Adetunji VE. Prevalence of gastrointestinal parasites in primates and their keepers from two zoological gardens in Ibadan, Nigeria. Sokoto J. Vet. Sci. 2014; 12(2): 25-30.

29. Kumar B, Mahara BR, Prasad A, Joseph JP, Patel B, Patel JS. Seasonal incidence of parasitic diseases in bovines of south western Gujarat (Junagadh), India. J. Parasit Dis. 2016; 40(4): 1342–6.

30. Belli S, Smith NC, Ferguson DJ. The coccidian oocyst: a tough nut to crack! Trends Parasitol. 2006; 22(9): 416-423.

31. Mai K, Sharman PA, Walker RA, Katrib M, Souza D, McConville MJ. Oocyst wall formation and composition in coccidian parasites. Mem. Inst. Oswaldo. Cruz. 2009; 104(2): 281-289.

32. Mohammed OB, Alaigali AN, Omer SA. Redescription of Eimeria dorcadis Mantovani 1966 (Apicomplexa: Eimeriidae) from the dorcas gazelle (Gazella dorcas) in Saudi Arabia. Folia parasitol. 2012; 59(1): 27-31.

33. Hassum IC, Menezes RCA. Natural infection with species of the genus Eimeria in small ruminant raised in two municipalities of the state Rio de Janeiro. Rev Bras Parasitol Vet. 2005.; 14: 95-100.