Data Article

Fatigue data for laser beam powder bed fused 17-4 PH stainless steel specimens in different heat treatment and surface roughness conditions

P.D. Nezhadfar a,b, Rakish Shrestha a,b, Nam Phan c, Nima Shamsaei a,b,*

a Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
b National Center for Additive Manufacturing Excellence (NCAME), Auburn University, Auburn, AL 36849, USA
c Structures Division, Naval Air Systems Command (NAVAIR), Patuxent River, MD 20670, USA

ARTICLE INFO

Article history:
Received 2 March 2019
Received in revised form 21 June 2019
Accepted 26 June 2019
Available online 4 July 2019

Keywords:
Laser beam powder bed fusion (LB-PBF)
17-4 PH stainless steel
Fatigue behavior
Heat treatment
Surface condition

ABSTRACT

This article presents the data demonstrating the synergistic effect of surface roughness and heat treatment on the fatigue behavior of 17–4 PH stainless steel (SS) fabricated via laser beam powder bed fusion (LB-PBF) [1]. Two sets of specimens, in as-built and machined surface conditions, were heat treated using five different recommended procedures for 17-4 PH SS by ASTM A693. Axial fully-reversed fatigue tests (R = -1) were conducted on heat treated as-built and machined specimens. The stable hysteresis stress–strain data, as well as the maximum and minimum stress and strain values for the cycle in a log10 increment are included for all conducted fatigue experiments. In addition, fractography images are provided for selected set of specimens.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

DOI of original article: https://doi.org/10.1016/j.ijfatigue.2019.02.039.
* Corresponding author.
E-mail address: shamsaei@auburn.edu (N. Shamsaei).
The experimental data presented in this article obtained from axial fully-reversed (R = -1) strain-controlled fatigue tests on LB-PBF 17-4 PH SS specimens. All the specimens (i.e., with as-built or machined surface) were fabricated via laser beam powder bed fusion (LB-PBF) technique. Square bars were further machined to make fatigue specimens with the geometry and dimensions similar to the as-built specimens. Five different heat treatments were applied to all specimens. Axial fully-reversed (R = -1) strain-controlled fatigue tests were carried out following ASTM E606 standard [3].

Synergistic effects of surface roughness and heat treatment on the fatigue performance of LB-PBF 17-4 PH SS are demonstrated. Fractography is performed to reveal the fracture mechanisms of LB-PBF 17-4 PH SS specimens in as-built and machined surface conditions.

The generated datasets specifically provide information on the effect of heat treatment on cyclic deformation and fatigue behavior of LB-PBF 17-4 PH SS. Synergistic effects of surface roughness and heat treatment can also be learned from the presented data. Fractography analysis images demonstrate the effect of surface roughness and/or internal defects, such as gas entrapped pores, on the fatigue failure mechanisms. Modelers can use these datasets to calibrate and validate their models.

1. Data

The experimental data presented in this article obtained from axial fully-reversed (R = -1) strain-controlled fatigue tests on LB-PBF 17-4 PH SS specimens. All the specimens (i.e. with as-built or as-built specimens were fabricated via laser beam powder bed fusion (LB-PBF) technique. Square bars were further machined to make fatigue specimens with the geometry and dimensions similar to the as-built specimens. Five different heat treatments were applied to all specimens. Axial fully-reversed (R = -1) strain-controlled fatigue tests were carried out following ASTM E606 standard [3].

Synergistic effects of surface roughness and heat treatment on the fatigue performance of LB-PBF 17-4 PH SS are demonstrated. Fractography is performed to reveal the fracture mechanisms of LB-PBF 17-4 PH SS specimens in as-built and machined surface conditions.

The generated datasets specifically provide information on the effect of heat treatment on cyclic deformation and fatigue behavior of LB-PBF 17-4 PH SS. Synergistic effects of surface roughness and heat treatment can also be learned from the presented data. Fractography analysis images demonstrate the effect of surface roughness and/or internal defects, such as gas entrapped pores, on the fatigue failure mechanisms. Modelers can use these datasets to calibrate and validate their models.

1. Data

The experimental data presented in this article obtained from axial fully-reversed (R = -1) strain-controlled fatigue tests on LB-PBF 17-4 PH SS specimens. All the specimens (i.e., with as-built or
machined surface conditions) were heat treated based on the heat treatment procedures shown in Fig. 1. CA stands for Condition A, which is a solution heat treatment procedure (i.e. heat treating at 1050°C for half an hour, followed by air cooling to room temperature). Some specimens were initially subjected to CA heat treatment procedure to investigate the effect of solution heat treatment on the fatigue behavior. Fatigue data for the two sets of specimens, as-built and machined surface conditions, for all heat treatments are listed in Table 1 and Table 2, respectively. The data included herein are based on the experimental results provided in a previous publication by present authors [1]. All the data can be downloaded from the Mendeley Dataset (https://doi.org/10.17632/c3dp75g5x9.1).

Heat treatment procedure	Specimen ID	Strain amplitude, ε_a (mm/mm)	Frequency (Hz)	Reversals to failure, $2N_f$
H900	SP_6	0.0010	5	636,952
	SP_5	0.0010		624,146
	SP_4	0.0020	2.5	36,956
	SP_3	0.0020		35,568
	SP_2	0.0030	1.75	14,164
	SP_11	0.0030		10,052
	SP_7	0.0030		48,588
	SP_8	0.0040	1.25	3026
	SP_10	0.0040		2898
H1025	SP_14	0.0010	5	1,188,840
	SP_19	0.0010		645,562
	SP_12	0.0020	2.5	99,010
	SP_13	0.0020		64,446
	SP_15	0.0020		79,458
	SP_16	0.0030	1.75	18,612
	SP_17	0.0030		22,732
	SP_20	0.0040	1.25	9116
	SP_18	0.0040		8630
CA-H900	SP_22	0.0010	5	>10,049,222
	SP_36	0.0010		>10,000,000
	SP_38	0.0015	3.3	297,378
	SP_39	0.0015		188,054
	SP_45	0.0015		499,102
	SP_21	0.0020	2.5	235,076
	SP_23	0.0020		128,050
	SP_25	0.0030	1.75	40,988
	SP_24	0.0030		31,438
	SP_27	0.0040	1.25	11,840
	SP_26	0.0040		7822
CA-H1025	SP_44	0.0015	3.3	>10,693,604
	SP_43	0.0015		>10,273,224
	SP_49	0.0020	2.5	177,810
	SP_50	0.0020		113,374
	SP_48	0.0030	1.75	43,952
	SP_47	0.0030		29,352
	SP_51	0.0040	1.25	10,540
	SP_52	0.0040		7426
CA-H1150	SP_46	0.0015	3.3	>10,012,162
	SP_53	0.0015		>10,002,396
	SP_41	0.0015		530,362
	SP_42	0.0015		339,506
	SP_28	0.0020	2.5	361,246
	SP_29	0.0020		300,064
	SP_30	0.0030	1.75	56,068
	SP_31	0.0030		49,962
	SP_32	0.0040	1.25	10,268
	SP_33	0.0040		9176
Argon atomized 17-4 PH SS powder was utilized to fabricate specimens using EOS M290, a laser beam powder bed fusion (LB-PBF) system. All specimens were fabricated under argon shielding gas. Two sets of LB-PBF 17-4 PH SS specimens were considered in the design of experiment. First set was as-built specimens fabricated vertically to the final specimen geometry and dimensions, recommended by ASTM E606 [3] and shown in Fig. 2. The second set was fabricated as vertical square bars and later machined to the geometry and dimensions similar to the as-built specimens, shown in Fig. 2.

Each set of specimens were divided into five groups to go through five different heat treatment procedures [2]. The utilized heat treatments are schematically described in Fig. 1. Two groups of specimens from each set (i.e. as-built and machined surface conditions) went directly through the aging heat treatment of either H900 or H1025, as shown in Fig. 1(a). The other three groups went through intermediate heat treatments.

Table 2
Summary of uniaxial fully-reversed ($R = -1$) fatigue test results for heat treated LB-PBF 17-4 PH SS specimens in machined (MA) surface condition [1].

Heat treatment procedure	Specimen ID	Strain amplitude, ε_a (mm/mm)	Frequency (Hz)	Reversals to failure, $2N_f$
H900	SP_32	0.0020	2.5	>10,485,384
	SP_46	0.0020		>10,012,062
	SP_34	0.0025	2	454,602
	SP_33	0.0025		355,844
	SP_27	0.0030	1.75	176,086
	SP_28	0.0030		175,776
	SP_29	0.0040	1.25	38,230
	SP_30	0.0040		25,472
H1025	SP_44	0.0020	2.5	>10,280,216
	SP_41	0.0020		>10,100,720
	SP_40	0.0025	2	496,526
	SP_39	0.0025		303,788
	SP_36	0.0030	1.75	213,094
	SP_35	0.0030		203,538
	SP_38	0.0040	1.25	56,462
	SP_37	0.0040		55,118
CA-H900	SP_7	0.0020	2.5	>10,614,228
	SP_6	0.0020		>10,596,648
	SP_16	0.0025	2	>10,772,058
	SP_23	0.0025		820,176
	SP_4	0.0030	1.75	291,556
	SP_5	0.0030		266,272
	SP_25	0.0030		255,006
	SP_2	0.0040	1.25	59,286
	SP_1	0.0040		54,014
	SP_3	0.005	1	12,048
CA-H1025	SP_22	0.0020	2.5	>10,603,816
	SP_20	0.0025	2	>10,109,402
	SP_21	0.0025		2,496,340
	SP_15	0.0030	1.75	1,394,730
	SP_18	0.0030		254,274
	SP_14	0.0040	1.25	51,348
	SP_13	0.0040		39,764
CA-H1150	SP_12	0.0020	2.5	>10,887,458
	SP_42	0.0020		>10,044,094
	SP_17	0.0025	2	1,488,706
	SP_19	0.0025		383,866
	SP_10	0.0030	1.75	232,096
	SP_11	0.0030		185,542
	SP_9	0.0040	1.25	46,852
	SP_8	0.0040		33,746
through the initial CA (i.e. solution heat treatment) before applying the subsequent again heat treatments, shown in Fig. 1(b), designated as CA-H900, CA-H1025, and CA-H1150.

Axial fully-reversed \((R = -1)\) constant amplitude strain-controlled fatigue tests were performed within the range of 0.001 mm/mm-0.004 mm/mm strain amplitudes using an MTS servo hydraulic test machine with a sinusoidal waveform input. For each strain amplitude level, a minimum of two fatigue tests were performed to ensure the consistency of results. Plastic deformation was negligible; therefore, all cyclic tests were switched to force-controlled mode after a few thousands of cycles. The test frequency was attuned for each test to maintain a constant average strain rate among all experiments. Fatigue tests that reached \(10^7\) cycles were stopped and marked as run-out tests. Tables 1 and 2 summarize the fatigue data for as-built and machined specimens, respectively. Fractography analyses were performed to elucidate the crack initiation and failure mechanisms for the as-built and machined specimens.

Acknowledgements

This material is based upon the work supported by the U.S. Naval Air Systems Command (NAVAIR).
Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] P.D. Nezhadfar, Rakish Shrestha, Nam Phan, Nima Shamsaei, Fatigue behavior of additively manufactured 17-4 PH stainless steel: synergistic effects of surface roughness and heat treatment, Int. J. Fatigue 124 (2019) 188–204.
[2] ASTM A693 – 16: Standard Specification for Precipitation-Hardening Stainless and Heat-Resisting Steel Plate, Sheet, and Strip, ASTM International.
[3] ASTM E606, Standard Test Method for Strain-Controlled Fatigue Testing, ASTM International.