Comparison of perfusion 18F-FP-CIT PET and 99mTc-ECD SPECT in parkinsonian disorders

KyungAh Chun, MD, PhD*, EunJung Kong, MD, PhD, IhnHo Cho, MD, PhD

Abstract

Early and accurate identification of various conditions that can cause parkinsonian symptoms is important for determining treatment policies. Currently dopamine transporter (DAT) imaging using FP-CIT, glucose metabolism imaging using fluorodeoxyglucose, cerebral blood flow imaging using ethyl cysteinate dimer (ECD), and others are used for differentiation. However, the use of multiple modalities is inconvenient and costly. In the present retrospective study, we evaluated the correlation between regional brain uptake ratios (URs) in perfusion FP-CIT PET and ECD SPECT images.

Twenty patients with Parkinson's symptoms underwent perfusion DAT positron emission tomography (18F-FP-CIT PET/CT) and cerebral blood flow tomography (99mTc-ECD SPECT) within a 2-week period. Perfusion 18F-FP-CIT PET/CT and 99mTc-ECD SPECT URs of 19 brain regions (bilateral frontal, temporal, parietal and occipital lobes, bilateral caudate nucleus, bilateral putamen, bilateral insula, bilateral cingulate gyrus, bilateral thalamus, and brainstem) were directly compared and correlations were analyzed.

Average 18F-FP-CIT PET/CT regional perfusion URs were higher than 99mTc-ECD SPECT URs. Uptake ratios were well correlated in all 19 regions (except right putamen), and especially in dopamine poor regions (cerebral cortex). In left putamen, URs were significantly correlated, but the correlation coefficient was lower than those of other regions.

A single tracer dual phase N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane test seems to be helpful for differential diagnosis of parkinsonian disorders. Large-scale, longitudinal studies on complementary diseases with parkinsonian patterns are required to investigate differences in correlations between perfusion 18F-FP-CIT PET/CT and 99mTc-ECD SPECT over time.

Abbreviations: APD = atypical parkinsonian disorders, DAT = dopamine transporter, ECD = ethyl cysteinate dimer, FDG = fluorodeoxyglucose, FP CIT = N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane, IPD = idiopathic Parkinson's disease, MR = magnetic resonance, MSA = multiple system atrophy, PD = Parkinson disease, PET = positron emission tomography, PSP = progressive supranuclear palsy, SPECT = single-photon emission computed tomography, URs = uptake ratios.

Keywords: ECD SPECT, parkinsonian symptoms, perfusion FP-CIT PET

1. Introduction

Accurately identifying the various conditions that can cause parkinsonian symptoms, such as Parkinson disease (PD), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP), is challenging, but early identification is important for determining treatment strategies.[1] Typically, dopamine transporter (DAT) imaging is highly sensitive at detecting neurodegenerative parkinsonian disorders, but is poor at their differentiation.[2,3] Various methods such as DAT imaging by N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP CIT), glucose metabolism imaging by fluorodeoxyglucose (FDG), or brain perfusion imaging by ethyl cysteinate dimer (ECD) are used for this purpose.[4-6] Van Laere et al[6] reported that dual-tracer DAT and perfusion single-photon emission computed tomography (SPECT) in combination with discrimination analysis allowed the automated, accurate differentiation of the most common forms of parkinsonism. 18FFDG positron emission tomography (PET) is helpful by showing preserved or raised lentiform nucleus glucose metabolism in in idiopathic Parkinson's disease (IPD), reduced metabolism in most cases of atypical parkinsonian disorders (APD),[8-10] and can be used for the differential diagnosis of parkinsonian disorders.[11,14]

Furthermore, many of the available tests are inconvenient and expensive, and thus, research continues to resolve these issues and devise simpler test methods. Previous studies have shown that glucose metabolism and cerebral perfusion are tightly coupled,[12,13] and thus, perfusion imaging can be used as an alternative to glucose imaging. 18FP-CIT shows rapid tracer uptake increases in brain and a high extraction fraction rate after intravenous injection.[14] Images obtained within 10 minutes of intravenously injecting 18F-FP-CIT well represent perfusion flow and glucose metabolism in brain.[1,15] In addition, early FP CIT imaging reflects perfusion, and thus, is helpful in Parkinson's disease and can be used as an alternative to glucose imaging.
Several studies have evaluated the usefulness of perfusion imaging using 18F-FP-CIT for the differential diagnosis of PD and Parkinson-plus syndrome.1,16 Jin et al16 reported that dual-phase 18F-FP-CIT PET imaging might be useful for the differential diagnosis of atypical parkinsonism and for evaluating striatal DAT loss in neurodegenerative parkinsonism. However, no direct comparative study of 99mTc-ECD perfusion SPECT and early phase (perfusion) 18F-FP-CIT PET has been performed, though they are considered to be well correlated because both reflect perfusion.

In the present study, we compared uptake ratios (URs) determined by perfusion 18F-FP-CIT PET and 99mTc-ECD perfusion SPECT in patients with parkinsonian symptoms.

2. Materials and methods

2.1. Subjects

This retrospective study included 20 patients (5 females and 15 males; mean age 69.1 ± 6.3 years) with parkinsonian symptoms such as tremor, bradykinesia, and rigidity that underwent DAT positron emission tomography (18F-FP-CIT PET) and cerebral blood perfusion tomography (99mTc-ECD SPECT) within a period of 2 weeks between January 1, 2018 and August 30, 2018. There was no cerebrovascular disease between 18F-FP-CIT PET and 99mTc-ECD SPECT. The study was approved by the Institutional Review Board of Yeungnam University Hospital and the need for written informed consent was waived (IRB no. YUMC 2019-06-033).

2.2. Data acquisition

99mTc-ECD SPECT images were obtained 30 minutes after injecting 99mTc-ethyl cysteinate dimer (ECD, Neurilite, DuPont Pharma/Durham APS, Kastrup, Denmark) 925 MBq (25 mCi) using a SPECT camera (Discovery 630, GE Medical Systems, Milwaukee, WI). All patients were imaged in a standardized manner (supine, dimly lit room, low noise). Reconstruction was performed by filtered backprojection using a Butterworth filter (order, 10; cutoff, 0.3). Uniform Chang attenuation correction (AC) was used to compensate for photon attenuation.

Perfusion 18F-FP-CIT PET images were obtained using a PET/CT unit (Discovery 710, GE Medical Systems, Milwaukee, WI). Antiparkinsonian drugs were stopped 12 hours before scans. All patients underwent an emission scan after injecting 185 MBq (5 mCi) of 18F-FP-CIT. Perfusion PET/CT image acquisition was performed within 10 minutes of intravenously injecting 18F-FP-CIT. Brain CT was performed in helical mode at auto mAs (50–200 mAs) and 120 kVp. 18F-FP-CIT PET images were acquired in the 3-dimensional (3D) mode for 10 minutes. Reconstruction was performed by iterative reconstruction with 20 subsets/2 iterations. The matrix size for AC was 128 × 128, and a 2.57 mm Gaussian filter and a fully 3D iterative algorithm (VUE Point HD) were applied. Late 18F-FP-CIT PET images were obtained using a PET/MR unit (Biograph mMR, Siemens Medical Solution, Hoffman Estates, Knoxville, TN) 3 hours after intravenous injection to assess striatal DAT binding patterns. The PET/MR imaging acquisition protocol was as follows; iterative reconstruction with 21 subsets/5 iterations, and a matrix size of 344 × 344 using a 4 mm Gaussian post reconstruction filter. All 20 patients underwent MR imaging with an ultrashort echo time sequence conducted with a repetition time of 11.94 ms, echo time of 0.07 ms, echo time 2 of 2.46 ms, field of view 300 × 300 mm, matrix size 192 × 192, and flip angle 10°. PET data were acquired over a single bed position over 20 minutes and 30 cm, which covered the head and neck. PET/MR systems used segmentation-based AC based on attenuation maps derived from MR images.

2.3. Data analysis

The perfusion images of DAT positron tomography (PET) and cerebral blood flow tomography (SPECT) were interpreted by visual inspection and using quantitative regional uptake values for spatially normalized perfusion PET and SPECT images using Pmod Software Ver. 3.6 (Pmod Technologies Ltd, Adliswil, Switzerland). The T1-weighted MR brain images were loaded using Pmod in the HFS (Head First Supine) direction. Space normalization was performed after rigid matching on the MRI T1 brain template. After loading the PET/SPECT image in the HFS direction, the transformation matrix obtained during MR T1 image normalization was applied to PET/SPECT. After determining the ROI of cerebellum using Hammer’s atlas, intensity normalization was performed by dividing the entire area by the average SUV value of the cerebellum area. URs were defined as 19 VOI counts (bilateral frontal, temporal, parietal and occipital lobes, bilateral caudate nucleus, bilateral putamen, bilateral insula, bilateral cingulate gyrus, bilateral thalamus, and brainstem) divided by whole cerebellar count. URs obtained by 18F-FP-CIT PET/CT and 99mTc-ECD SPECT were directly compared and correlations were analyzed using Pearson’s correlation analysis. URs in PET/CT and SPECT images were compared using the T test. Probability values of <0.05 were considered statistically significant.

3. Results

Visual inspection of late 18F-FP-CIT PET/MR scans showed 10 of the 20 patients exhibited IPD, 1 patient showed multiple system atrophy-C (MSA-C), and 1 showed PSP, criteria were based on subregional patterns of preferential striatal DAT loss.17 PET images with PD showed preferential DAT loss in dorsal putamen and occipital lobes, bilateral caudate nucleus, and thalamus. MSA showed preferential DAT loss in ventral putamen and dorsal PP. The other 8 patients had normal FP-CIT findings. Figure 1 shows a transaxial 99mTc-ECD SPECT image and corresponding perfusion 18F-FP-CIT PET/CT and late 18F-FP-CIT PET/MR images of an IPD patient. Clinical diagnosis based on cardinal symptoms, clinical features, neurologic examination, and diagnostic criteria (movement rating scale & neuropsychiatric inventory) such as UPDRS. In the case of PSP, mandatory exclusion and supportive criteria were used. Demographic features of 20 patients are reported in Table 1.

Average regional perfusion 18F-FP-CIT PET URs were higher than 99mTc-ECD SPECT URs. Uptake ratios were significantly higher in bilateral frontal and right temporal lobes and in bilateral putamen and thalamus (Table 2).

18F-FP-CIT PET/CT and 99mTc-ECD SPECT URs were well correlated for all regions (except right putamen), and were especially well correlated for cerebral cortex (correlation coefficients: right frontal 0.896, left frontal 0.891, right temporal 0.897, left temporal 0.885, right parietal 0.895, left parietal 0.901, right occipital 0.848, left occipital 0.862, right caudate nucleus 0.762, left caudate nucleus 0.764, right putamen 0.265,
left putamen 0.487, right thalamus 0.787, left thalamus 0.818, right insula 0.8, left insula 0.656, right cingulate gyrus 0.832, left cingulate gyrus 0.821, and brainstem 0.619). For left putamen, the correlation coefficient was significant but lower than for other regions (Fig. 2).

4. Discussion

We investigated the correlation between regional URs obtained by perfusion 18F-FP-CIT PET and 99mTc-ECD SPECT. We found that URs of all brain regions (except right putamen) were significantly correlated.
Precise and early discrimination of diseases such as IPD, MSA, and PSP, which can cause Parkinson’s symptoms, is important for determining treatment policies, but it is difficult to differentiate them during early disease stages. Various methods are used to differentiate these conditions, such as FP-CIT DAT images, FDG PET glucose metabolism images, ECD or HMPAO brain perfusion SPECT images, or diffusion-weighted magnetic resonance (MR) images.1,4-7

DAT imaging with 18F-FP-CIT PET is highly sensitive at detecting parkinsonian disorders, such as PD and APD, but poor at their differentiation,1,14 although it is useful for excluding essential tremor, drug induced parkinsonism, vascular parkinsonism, and Alzheimer’s disease.1,16 18F-FDGPET is a well-established modality for the differential diagnosis of parkinsonism and helpful for revealing preserved or raised glucose metabolism of the lentiform nucleus in IPD and reduced glucose metabolism in the majority of APD cases.1,16 Perfusion imaging with ECD or HMPAO may also be helpful, because regional cerebral perfusion is usually coupled to cerebral metabolism.1,16 Accurate diagnoses often require FDG PET or perfusion SPECT and DAT imaging, but there are inconveniences, such as the radiation exposures and high costs involved,14 and thus, more cost-effective, simpler methods are required.

18F-FP-CIT PET shows rapid tracer uptake increase in brain and early perfusion uptake of FP CIT in dopamine-poor regions (e.g., cerebral cortex and cerebellum) peaks around 10 minutes after injection.1,14 Furthermore, early imaging within 10 minutes of injecting 18F-FP-CIT well represents perfusion flow and mimics glucose metabolism in brain. In 1 study, early (perfusion) 18F-FP-CIT PET and 18F-FDG PET images were compared1 and regional cerebral uptake of perfusion FP CIT correlated well to that of the FDG images. However, differences between perfusion and metabolism exist. They1 reported that hyperperfusion is evident in putamen, midbrain, and cerebellum and hypoperfusion is observed in the superior frontal lobe.

Recent comparative studies on cerebral perfusion SPECT and FP CIT PET for the differentiation of patients with Parkinson’s symptoms have compared delayed FP CIT PET images rather than perfusion FP CIT PET images, and no study has directly compared perfusion FP CIT PET and cerebral perfusion SPECT in this context. Accordingly, the present study was undertaken to determine whether perfusion FP CIT PET URs correlate well with cerebral perfusion ECD SPECT URs, because if the URs of perfusion dopamine PET images obtained by 18F-FP-CIT PET and brain perfusion SPECT images obtained by 99mTc-ECD are similar, a single tracer dual phase FP CIT PET test might facilitate the differentiation of patients with parkinsonian symptoms.

Our results show good correlation between the URs of 18F-FP-CIT PET and 99mTc-ECD SPECT for all regions except right putamen and a relatively low correlation, but significant correlation, for left putamen. Jin et al1 reported that early 18F-FP-CIT PET images correlated well with FDG, especially in dopamine-poor brain regions, such as the frontal cortex and cerebellum. In dopamine-rich brain regions, such as putamen and midbrain, the correlation was poor with time.

In the present study, an inconsistency between perfusion 18F-FP-CIT PET images and 99mTc-ECD SPECT images was in right putamen, a dopamine-rich region. Even though images were taken within 10 minutes, it seems that wash out and DAT uptakes differed, probably due to kinetic differences between brain regions.11 Therefore, it appears optimal timing of perfusion 18F-FP-CIT PET plays a role in determining whether it reflects correct perfusion. Furthermore, the different drug kinetics and resolutions of PET and SPECT are also likely to influence results.

Even though our datasets are small, our study shows a single tracer dual phase FP CIT PET test maybe helpful for differential diagnosis of parkinsonian disorders. We recommend larger-scale studies be conducted on diseases with different parkinsonian patterns to examine correlations between 18F-FP-CIT PET and 99mTc-ECD SPEC URs over time.

Author contributions

Data curation: KyungAh Chun, EunJung Kong, IhnHo Cho.

Formal analysis: KyungAh Chun, EunJung Kong.
Figure 2. Correlations between regional uptake ratios (URs) as determined using perfusion 18F-FP-CIT PET/CT and 99mTc-ECD SPECT images. Right frontal (A), left frontal (B), right temporal (C), left temporal (D), right parietal (E), left parietal (F), right occipital (G), left occipital (H), right caudate nucleus (I), left caudate nucleus (J), right putamen (K), left putamen (L), right thalamus (M), left thalamus (N), right insula (O), left insula (P), right cingulate gyrus (Q), left cingulate gyrus (R) and brainstem (S).
Figure 2. Continued.
Writing – original draft: KyungAh Chun.
Writing – review & editing: KyungAh Chun.

References

[1] Jin S, Oh M, Oh SJ, et al. Additional value of early-phase 18F-FP-CIT PET image for differential diagnosis of atypical parkinsonism. Clin Nucl Med 2017;42:e80–7.
[2] Pirker W, Asenbaum S, Bencsits G, et al. [123I]beta-CIT SPECT in multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Mov Disord 2000;15:1158–67.
[3] Varrone A, Marek KL, Jennings D, Innis RB, Seibyl JP. [(123)I]beta-CIT SPECT imaging demonstrates reduced density of striatal dopamine transporters in Parkinson’s disease and multiple system atrophy. Mov Disord 2001;16:1023–32.
[4] Juh R, Kim J, Moon D, Choe B, Suh T. Different metabolic patterns analysis of parkinsonism on the 18F-FDG PET. Eur J Radiol 2004;51:223–33.
[5] Teune LK, Renken RJ, Mudali D, et al. Validation of parkinsonian disease-related metabolic brain patterns. Mov Disord 2013;28:547–51.
[6] Van Laere K, Caeteels G, De Ceuninck L, et al. Dual-tracer dopamine transporter and perfusion SPECT in differential diagnosis of parkinsonism using template-based discriminant analysis. J Nucl Med 2006;47:384–92.
[7] Schocke MF, Seppi K, Esterhammer R, et al. Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology 2002;58:575–80.
[8] Brooks DJ. Imaging approaches to Parkinson disease. J Nucl Med 2010;51:596–609.
[9] Eckert T, Barnes A, Dhawan V, et al. FDG PET in the differential diagnosis of Parkinsonian disorders. Neuroimage 2005;26:912–21.
[10] Eidelberg D, Takikawa S, Moeller JR, et al. Striatal hypometabolism distinguishes striatogniral degeneration from Parkinson’s disease. Ann Neurol 1993;33:518–27.
[11] Broski SM, Hunt CH, Johnson GB, et al. Structural and functional imaging in Parkinsonian syndromes. Radiographics 2014;34:1273–92.
[12] Sokoloff L. Relationships among local functional activity, energy metabolism, and blood flow in the central nervous system. Fed Proc 1981;40:2311–6.
[13] Gur RC, Ragland JD, Reivich M, Greenberg JH, Alavi A, Gur RE. Regional differences in the coupling between resting cerebral blood flow and metabolism may indicate action preparedness as a default state. Cereb Cortex 2009;19:375–82.
[14] Hong CM, Ryu HS, Ahn BC. Early perfusion and dopamine transporter imaging using 18F-FP-CIT PET/CT in patients with parkinsonism. Am J Nucl Med Mol Imaging 2018;8:360–72.
[15] Kazumata K, Dhawan V, Chaly T, et al. Dopamine transporter imaging with fluorine-18-FPCIT and PET. J Nucl Med 1998;39:1521–30.
[16] Jin S, Oh M, Oh SJ, et al. Differential diagnosis of parkinsonism using dual-phase F-18 FP-CIT PET imaging. Nucl Med Mol Imaging 2013;47:44–51.
[17] Oh M, Kim JS, Kim JY, et al. Subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multiple-system atrophy. J Nucl Med 2012;53:399–406.