Vine Parsing and Minimum Risk Reranking for Speed and Precision

Markus Dreyer
David A. Smith
Noah A. Smith

Johns Hopkins University
Design Goals

- Speed
- Precision
Unlabeled Parser

Smoothed MLE

Labeler

Smoothed MLE

Log-linear

Reranker

U-best unlabeled parses

$U \times L$-best labeled parses

CoNLL-2006 • M. Dreyer, D. A. Smith, N. A. Smith • *Vine Parsing and Minimum Risk Reranking*

Collins (2000)

Charniak and Johnson (2005)
Split-Head assumption
Projectivity
Vine Grammar

Eisner and N. Smith (2005)
According to estimates, would changes cut filings by more than a third. (from the Penn Treebank)
According to estimates, some would changes the rule cut filings by more than a third.

(b = 4)

(from the Penn Treebank)
According to some estimates, would changes the rule cut filings by more than a third.

$ b = 3 $
According to estimates, some changes would cut filings by more than a third.

(from the Penn Treebank)
According to estimates, changes to the rule would cut filings by insider more than a third. (from the Penn Treebank)
Different bounds for left and right children

Speed - Accuracy Tradeoff

Choose bounds:
90% of original dependencies untouched

\(O(nB_{left}^2 + nB_{right}^2) \)

(from the Penn Treebank)
Minimum Risk Training

Deterministic annealing

D. Smith and Eisner (2006)
CoNLL-2006 • M. Dreyer, D. A. Smith, N. A. Smith • Vine Parsing and Minimum Risk Reranking

Labeled

Median 67.6

Japanese (82.9), Portuguese (75.3), Bulgarian (74.8), Chinese (71.6), German (71.0)

Unlabeled

Median 77.5

Japanese (86.0), Portuguese (82.4), Bulgarian (82.0), Swedish (79.5), Chinese (77.6)
Summary

- Parsing constraints
- Linear-time inference and decoding
- Minimum Risk reranking
- High precision, mediocre recall

Future Work

- Better estimation
- Better labeler (label bigrams)
- More fine-grained parsing constraints (length bounds given head)