Correlated insulators are frequently observed in magic-angle twisted bilayer graphene at even fillings of electrons or holes per moiré unit cell. Whereas theory predicts these insulators to be intervalley coherent excitonic phases, the measured gaps are routinely much smaller than theoretical estimates. We explore the effects of random strain variations on the intervalley coherent phase, which have a pair-breaking effect analogous to magnetic disorder in superconductors. We find that the spectral gap may be strongly suppressed by strain disorder, or vanish altogether, even as intervalley coherence is maintained. We discuss predicted features of the tunneling density of states, show that the activation gap measured in transport experiments corresponds to the diminished gap, and thus offer a solution for the apparent discrepancy between the theoretical and experimental gaps.

DOI: 10.1103/PhysRevB.107.L081403
The perturbation in Eq. (4) does not break any of the symmetries of \(h_{\text{MF}} \). However, as we will show below (see also Ref. [26]), the fact that it commutes with the K-IVC operator \(\sigma_z \tau_x \rho_z \) enables a drastic reduction of the gap which opens in the K-IVC spectrum due to the random strain disorder. For this reason, we have also neglected inter-minivalley scattering, which has additional \(\rho_z \), \(\rho_x \) factors, and thus anticommutes with the OP.

Considering a simple pointlike perturbation, \(\mathcal{A}(r) = \mathcal{A}_0 \delta(r) \), one may employ a \(T \)-matrix formalism to find the bound-state spectrum inside the mean-field gap [25], in analogy to Yu-Shiba-Rusinov states induced by magnetic impurities in a superconductor [29–31]. We find that as the perturbation strength increases, the in-gap-state energy is reduced and the two bound-state energies cross at zero when the impurity strength becomes an appreciable fraction of the bandwidth \(W \).

Moreover, we find that when approximating the density of states (DOS) as a constant around the Fermi level (rather than linear as appropriate in our case), one recovers—apart from additional degeneracies—precisely the bound-state spectrum of a magnetic impurity inside a singlet superconductor. This outcome may be traced to the analogous algebraic structure of the two problems, i.e., the impurity operator commuting with the OP. This analogy enables the treatment of random strain fluctuations in MATBG by tools similar to those employed in superconductors with magnetic impurities.

\textbf{Abrikosov-Gor’kov approach.} We therefore treat the random strain fluctuations within the self-consistent Born approximation (SCBA), inspired by the Abrikosov-Gor’kov theory of superconductivity in magnetically disordered alloys [32]. A similar method was also used to study exciton condensates in the presence of potential impurities [33,34].

The main object of interest is the Green’s function, \(G(k, \omega) = (i \omega - h_{\text{MF}} - \hat{\Sigma}_{\text{SCBA}})^{-1} \).

Within the SCBA, the self-energy matrix \(\hat{\Sigma}_{\text{SCBA}} \) can be written as

\[
\hat{\Sigma}_{\text{SCBA}}(k, \omega) = \left(\sum_p \mathcal{U}_{k-p} G(p, \omega) \mathcal{U}_{k-p} \right),
\]

where the matrix \(\mathcal{U} \) represents the random strain perturbation in momentum space, \(\mathcal{H}_{\text{str}} = \sum_{k} \langle \psi_{k+q} \psi_{k} \rangle \mathcal{U} \psi_{k} \), and \(\langle \rangle_{\text{dis}} \) stands for disorder averaging.

Manipulating the Green’s function, it can be written as

\[
G = -\frac{i \omega}{\Delta + \Delta_{\text{IVC}}} \int d\mathbf{r} \psi^\dagger(\mathbf{r}) [\mathcal{A}(\mathbf{r}) \sigma_x + \mathcal{A}^\dagger(\mathbf{r}) \sigma_y + \Delta_{\text{IVC}} \sigma_z] \psi(\mathbf{r}),
\]

where \(\mathcal{A} \) is the strain-induced perturbation, and \(\psi(\mathbf{r}) = \frac{i}{\sqrt{2}} \sum_k e^{i \mathbf{k} \cdot \mathbf{r}} \psi_k \). In Eq. (4) we have implicitly assumed that the strain potential is smooth on the moiré length scale. Otherwise one should replace the renormalized velocity \(u \) by the much larger bare graphene Fermi velocity \(v_F \). Notice that uniform strain constitutes a shift of \(\mathbf{k} \) in \(H_0 \) [28] and redefines the momentum connecting the two valleys \(\mathbf{Q} = \mathbf{K} - \mathbf{K}' \). This only changes the momentum carried by the condensed electron-hole K-IVC pairs, so that we can assume \(\mathcal{A}_i \) has zero spatial mean.

FIG. 1. Schematic description of our model. (a) The band structure in each valley (\(K, K' \)) is approximated by two Dirac cones, one in each “minivalley.” The momentum separating the valleys, \(\mathbf{Q} \), is modified by random homostrain fluctuations acting on the graphene layers, as represented by colored dotted arrows. (b) Schematic of a possible random strain configuration. Color indicates the strain strength \(|\mathcal{A}| \), whereas arrows indicate the directions of the local distortions of the graphene lattice.

tirely filled or empty, while the remaining pair is “active” and forms intervalley coherence. Conversely, two copies of our spinless model may be used describe the K-IVC phase at CN [13–16].

We introduce local density-density repulsive interactions,

\[
H_{\text{int}} = \frac{U}{2\Omega} \sum_{k,k',q} \psi_{k+q}^\dagger \mathcal{A}_x \psi_k \psi_{k'-q}^\dagger \mathcal{A}_y \psi_{k'},
\]

which induce spontaneous symmetry-breaking in our model on a mean-field level. (\(\Omega \) is the system area.) This simplified form of \(H_{\text{int}} \) suffices to illustrate the phenomenon we are interested in. Specifically, we examine the K-IVC phase, which has been argued to be the likely ground state of MATBG at even fillings. The K-IVC state is characterized by intervalley coherence, i.e., formation of an exciton condensate with intervalley electron-hole pairs, a finite gap to charge excitations, and TRS breaking. The corresponding mean-field Hamiltonian at a given \(\mathbf{k} \) has the form

\[
h_{\text{MF}}(\mathbf{k}) = u(k_x \sigma_x + k_y \sigma_y + \Delta_{\text{IVC}} \sigma_z \tau_x \rho_z).
\]

\(h_{\text{MF}} \) preserves a Kramers-like TRS, \(\mathcal{T}' = \tau_z \rho_z \mathcal{T} \), which concatenates \(\mathcal{T} \) with a valley rotation. It also preserves chiral and particle-hole symmetries, represented by \(\mathcal{S} = \sigma_z \) and \(\mathcal{C} = \mathcal{ST}' \), respectively [27].

We now introduce random homostrain variations, which enter the model as a random gauge field acting in opposite directions in opposite valleys; see Fig. 1(b). Concretely, the strain Hamiltonian may be written as

\[
H_{\text{str}} = u \int d\mathbf{r} \psi^\dagger(\mathbf{r}) [\mathcal{A}(\mathbf{r}) \sigma_x + \mathcal{A}^\dagger(\mathbf{r}) \sigma_y + \Delta_{\text{IVC}} \sigma_z \tau_x \rho_z] \psi(\mathbf{r}),
\]
where A_q is the Fourier transform of $A(r)$, and we have used the standard approximation that the scattering mostly depends on the angle between incoming and outgoing momenta θ [33,34]. As for magnetic impurities in superconductors and potential scatterers in excitonic condensates, the form of Eq. (8) is due to the K-IVC OP commuting with the random perturbation. Thus, the equations we find are identical to the Abrikosov-Gor’kov equations for superconductors with magnetic impurities, with one important difference. In MATBG, we cannot assume a constant DOS near the Fermi energy, but should account for the fact that the DOS vanishes linearly at the Dirac point. This leads to important qualitative differences in the results.

By relating the local strain to the effective gauge field A, one may obtain an order-of-magnitude estimate of Γ. For root-mean-square strains of $\langle E \rangle \sim 0.1\%$ and disorder correlation lengths of few unit cells, we find Γ/W values of 0.1–0.3 [25]. As will be shown, such values are sufficient to dramatically reduce the spectral gap or even close it completely.

The strength of K-IVC order in the presence of disorder is obtained by combining Eq. (8) with the gap equation

$$\Delta_{ivc} = -2U/\beta \omega \sum k \text{Tr}[\sigma_z \tau_z \rho_z G],$$

which we solve numerically. (Here, β is inverse temperature.) Figure 2(a) shows results for the OP Δ_{ivc} as a function of temperature and disorder. We find that both the OP and the critical temperature deteriorate with increasing disorder.

Assuming a DOS which is linear in energy, $N_{lin} = 4|\epsilon|/W^2$ with cutoff energy $|\epsilon| < W/2$, we can also make analytical progress. In particular, we calculate the critical disorder scale Γ_c, at which Δ_{ivc} vanishes for $T = 0$. In the regime $\Gamma_c \ll W/2$, we find [25]

$$\Gamma_c = \frac{U_c}{\ln 8 \left(1 - \frac{U_c}{U}\right)},$$

where $U_c = W/4$ is the critical interaction U below which the K-IVC order vanishes at $\Gamma_c = 0$. The finite U_c as well as the form of the critical “pair-breaking” parameter Γ_c originate in the DOS vanishing linearly at zero. This suppresses the analog of the Cooper instability for arbitrarily weak interactions, which requires finite DOS at the Fermi level.

Having found the self-consistent Green’s function, we can calculate the tunneling density of states (TDOS) $\tilde{N}(\epsilon)$ as in Eq. (8) is due to the K-IVC OP commuting with the random perturbation. Thus, the equations we find are identical to the Abrikosov-Gor’kov equations for superconductors with magnetic impurities, with one important difference. In MATBG, we cannot assume a constant DOS near the Fermi energy, but should account for the fact that the DOS vanishes linearly at the Dirac point. This leads to important qualitative differences in the results.

By relating the local strain to the effective gauge field A, one may obtain an order-of-magnitude estimate of Γ. For root-mean-square strains of $\langle E \rangle \sim 0.1\%$ and disorder correlation lengths of few unit cells, we find Γ/W values of 0.1–0.3 [25]. As will be shown, such values are sufficient to dramatically reduce the spectral gap or even close it completely.

The strength of K-IVC order in the presence of disorder is obtained by combining Eq. (8) with the gap equation

$$\Delta_{ivc} = -2U/\beta \omega \sum k \text{Tr}[\sigma_z \tau_z \rho_z G],$$

which we solve numerically. (Here, β is inverse temperature.) Figure 2(a) shows results for the OP Δ_{ivc} as a function of temperature and disorder. We find that both the OP and the critical temperature deteriorate with increasing disorder.
strength \(\Gamma \) increases, these bands spread out in energy, and their separation diminishes. This is very different from the behavior of \(\Delta_{ivc} \). While \(\omega_g \) diminishes already for weak disorder, \(\Delta_{ivc} \) remains mostly unaffected up to intermediate values of \(\Gamma \).

The TDOS depicted in Fig. 3 can be measured in planar tunneling junctions with a large tunneling area, similar to the experimental verification of gapless superconductivity [35]. The large tunneling area is required for effective averaging over disorder configurations in a particular device. Such measurements are expected to show two spread-out TDOS lobes, with centers separated by \(\sim 2\Delta_{ivc} \) and a spectral gap of \(2\omega_g < 2\Delta_{ivc} \). In contrast, local scanning-tunneling-microscopy (STM) measurements do not reveal disorder-averaged quantities, yet we expect the tunneling gap to vary as a function of position, in a manner correlated with the homostrain variations. Such phenomenology would be a clear indicator of the proposed disorder-driven K-IVC phase.

To make contact with transport experiments, we now turn to calculating the DC conductivity. We use the Kubo-Bastin formula [36], \(\sigma_{xx} \propto \int d\epsilon (-\frac{d}{d\epsilon}) S(\epsilon) \), where \(f \) is the Fermi function, and

\[
S(\epsilon) \approx \frac{1}{\Omega} \sum_k \text{Tr}\{j_z \text{Im}G(k, \omega \to -ie) j_z \text{Im}G(k, \omega \to ie)\}
\]

(12)

is the conductivity kernel. The current operator is \(j_z = u\sigma_z \tau_z \). Equation (12) neglects vertex corrections to \(j_z \), which may have quantitative significance, but are beyond the scope of this work.

Figure 4 presents Arrhenius plots of the conductivity for different \(\Gamma \) values. We can extract the activation energy \(E_{\text{act}} \) by fitting the conductivity to \(\sigma_{xx} \propto \exp(-E_{\text{act}}/T) \). Remarkably, we observe that the low-\(T \) behavior is indeed temperature activated with \(E_{\text{act}} \approx \omega_g \), and not the potentially much larger \(\Delta_{ivc} \). (In the topmost plot of Fig. 4, \(\Delta_{ivc} \approx 5.4\omega_g \).) This behavior can be traced to the analytic structure of \(S(\epsilon) \), which has a gap \(\approx 2\omega_g \) around \(\epsilon = 0 \) [25], similar to the TDOS.

Conclusions. We have explored the consequences of random homostrain fluctuations on the K-IVC state, believed to describe the insulating phases of MATBG at even fillings. Using a simplified model for MATBG, we have studied this problem using the SCBA in conjunction with a mean-field treatment of the K-IVC OP. Homostrain disorder has a pair-breaking effect on the intervalley coherent condensate, since it locally acts on the two valleys in opposite ways.

In contrast to similar pair-breaking disorder problems, random homostrain does not break any symmetries of the K-IVC state. However, it does lead to in-gap states, gap closing, and OP deterioration due to its operator structure—it commutes with the OP. Moreover, the DOS dependence on energy had to be taken into account, since it vanishes at the Dirac point. This led to the unique form of the solutions of the Abrikosov-Gor’kov equations which we derive, and of the critical pair-breaking parameter \(\Gamma_c \).

One of our key results is the significant separation between the energy scales of the K-IVC order (\(\Delta_{ivc} \)) and the spectral gap for single-particle excitations (\(\omega_g \)), even for modest values of disorder. Borrowing insights from superconductors, the gap reduction stems from in-gap bound states, which become stronger and more abundant with increasing \(\Gamma \), yet impact the surrounding intervalley-coherent condensate only weakly.

We suggest that the order-of-magnitude discrepancy between the theorized K-IVC gap and the activation gap measured in transport experiments can be resolved within our model. We have demonstrated that the relevant activation energy as measured via the DC conductivity is the spectral gap, which may be considerably smaller than the OP due to disorder. (Both scales coincide in the pristine case.) The rare appearance of insulators at CN can also be understood by considering two copies of our model with different spin labels. Variations of the magnitude of strain disorder between devices may tip the state at CN from a weakly insulating K-IVC state to the gapless K-IVC regime. The relative weakness of the insulating state at CN compared to fillings \(\nu = \pm 2 \) has been attributed to bandwidth renormalizations [37–39], rendering the effective interactions stronger away from CN.

The interplay of strain fluctuations with other sources of K-IVC suppression, such as twist-angle disorder and uniform heterostrain, remains to be explored. Additionally, the fact that the considered disorder couples only to intervalley-ordered states may also be important. This may have ramifications for the competition between the K-IVC state and other correlated insulating phases, such as the valley-Hall phase, for which the OP \(\propto \sigma_z \) anticommutes with the strain fluctuations. Incorporating such complications, as well as including more intricate aspects of the (particle-hole symmetric) band structure, will shed much-needed light on the nature of the insulating phases in MATBG and their variation between different devices.

Acknowledgements. We gratefully acknowledge funding by Deutsche Forschungsgemeinschaft through CRC 183 (Project No. C02; Y.O. and F.v.O.), a joint ANR-DFG project (TWISTGRAPH; C.M. and F.v.O.), the European Union’s Horizon 2020 research and innovation program (Grant Agreement LEGOTOP No. 788715; Y.O.), the ISF Quantum Science and Technology program (Grant No. 2074/19; Y.O.), and a BSF and NSF grant (Grant No. 2018643; Y.O.).
[1] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. USA 108, 12233 (2011).

[2] Y. Cao, V. Fatemi, A. Demir, Y.-H. Zhang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature (London) 556, 80 (2018).

[3] Y. Cao, V. Fatemi, Y.-H. Zhang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43 (2018).

[4] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachhold, A. H. MacDonald, and D. K. Efetov, Nature (London) 574, 653 (2019).

[5] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Science 363, 1059 (2019).

[6] Y. Saito, J. Ge, K. Watanabe, T. Taniguchi, and A. F. Young, Nat. Phys. 16, 926 (2020).

[7] U. Zondiner, A. Rozen, D. Rodan-Legrain, Y. Cao, R. Queiroz, T. Taniguchi, K. Watanabe, Y. Oreg, F. von Oppen, A. Stern, E. Berg, P. Jarillo-Herrero, and S. Ilani, Nature (London) 582, 203 (2020).

[8] D. Wong, K. P. Nuckolls, M. Oh, B. Lian, Y. Xie, S. Jeon, K. Watanabe, T. Taniguchi, B. A. Bernevig, and A. Yazdani, Nature (London) 582, 198 (2020).

[9] X. Liu, Z. Wang, K. Watanabe, T. Taniguchi, O. Vafek, and J. I. A. Li, Science 371, 1261 (2021).

[10] G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, Z. Shi, T. Senthil, D. Goldhaber-Gordon, Y. Zhang, and F. Wang, Nature (London) 579, 56 (2020).

[11] M. Serlin, C. L. Tscharnert, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Science 367, 900 (2020).

[12] P. Stepanov, M. Xie, T. Taniguchi, K. Watanabe, X. Lu, A. H. MacDonald, B. A. Bernevig, and D. K. Efetov, Phys. Rev. Lett. 127, 197701 (2021).

[13] N. Bultinck, E. Khalaf, S. Liu, S. Chatterjee, A. Vishwanath, and M. P. Zaletel, Phys. Rev. X 10, 031034 (2020).

[14] J. S. Hofmann, E. Khalaf, A. Vishwanath, E. Berg, and J. Y. Lee, Phys. Rev. X 12, 011061 (2020).

[15] G. Shavit, E. Berg, A. Stern, and Y. Oreg, Phys. Rev. Lett. 127, 247703 (2021).

[16] G. Wagner, Y. H. Kwan, N. Bultinck, S. H. Simon, and S. A. Parameswaran, Phys. Rev. Lett. 128, 156401 (2022).

[17] N. N. T. Nam and M. Koshino, Phys. Rev. B 96, 075311 (2017).

[18] A. Uri, S. Grover, Y. Cao, J. A. Crosse, K. Bagani, D. Rodan-Legrain, Y. Myasoedov, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and E. Zeldov, Nature (London) 581, 47 (2020).

[19] Y. Xie, B. Lian, B. Jäck, X. Liu, C.-L. Chiu, K. Watanabe, T. Taniguchi, B. A. Bernevig, and A. Yazdani, Nature (London) 572, 101 (2019).

[20] A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean, A. Rubio, and A. N. Pasupathy, Nature (London) 572, 95 (2019).

[21] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R. Polski, Y. Zhang, H. Ren, J. A. Aizic, G. Refael, F. von Oppen, K. Watanabe, T. Taniguchi, and S. Nadji-Perge, Nat. Phys. 15, 1117 (2019).

[22] D. E. Parker, T. Soejima, J. Hauschild, M. P. Zaletel, and N. Bultinck, Phys. Rev. Lett. 127, 027601 (2021).

[23] L. Huder, A. Artaud, T. Le Quang, T. Lequang, G. T. de Laissardière, H. Shiba, Prog. Theor. Phys. 556, 653 (2019).