Aptamer-based diagnostic and therapeutic approaches in animals: Current potential and challenges

Sapna Devi, Neelesh Sharma, Touqeer Ahmed, Zul I. Huma, Savleen Kour, Bijayalaxmi Sahoo, Amit Kumar Singh, Nino Macesic, Sung Jin Lee, Mukesh Kumar Gupta

Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
Experimental Animal Facility, National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, U.P., India
Clinic for Reproduction and Theriogenology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
College of Animal Life Sciences, Kangwon National University, Chuncheon, South Korea

Article history:
Received 7 October 2020
Revised 11 May 2021
Accepted 12 May 2021
Available online 20 May 2021

Keywords:
Aptamer
Aptasensor
Point-of-care
RNA Spiegelmers
Targeted therapy
Theranostics

Abstract

Fast and precise diagnosis of infectious and non-infectious animal diseases and their targeted treatments are of utmost importance for their clinical management. The existing biochemical, serological and molecular methods of disease diagnosis need improvement in their specificity, sensitivity and cost and, are generally not amenable for being used as points-of-care (POC) device. Further, with dramatic changes in environment and farm management practices, one should also arm ourselves and prepare for emerging and re-emerging animal diseases such as cancer, prion diseases, COVID-19, influenza etc. Aptamer – oligonucleotide or short peptides that can specifically bind to target molecules – have increasingly become popular in developing biosensors for sensitive detection of analytes, pathogens (bacteria, virus, fungus, prions), drug residues, toxins and, cancerous cells. They have also been proven successful in the cellular delivery of drugs and targeted therapy of infectious diseases and physiological disorders. However, the in vivo application of aptamer-mediated biosensing and therapy in animals has been limited. This paper reviews the existing reports on the application of aptamer-based biosensors and targeted therapy in animals. It also dissects the various modifications to aptamers that were found to be successful in in vivo application of the aptamers in diagnostics and therapeutics. Finally, it also highlights major challenges and future directions in the application of aptamers in the field of veterinary medicine.

© 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction ... 5082
1.1. Aptamers synthesis technique ... 5082
2. Application of aptamers in diagnosis of animal diseases. 5084
2.1. Diagnosis of viral diseases .. 5084
2.1.1. Severe acute respiratory syndrome corona virus (SARS-CoV) 5084

A Corresponding author at: Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu and Kashmir 181102, India.
E-mail addresses: drnelesh.sharma@yahoo.co.in (N. Sharma), sjlee@kangwon.ac.kr (S.J. Lee).
1 Co-corresponding author at: College of Animal Life Sciences, Kangwon National University, Chuncheon-si, Kangwon-do 200-701, South Korea.
2 Both authors have equal contribution.

Peer review under responsibility of King Saud University.

https://doi.org/10.1016/j.sjbs.2021.05.031
1319-562X/© 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Infectious diseases of livestock, particularly highly infectious diseases, almost always cause major economic losses to the livestock owners in particular and the country as a whole (Raboisson et al., 2020). Transmissible livestock diseases caused by pathogenic microorganisms such as viruses and bacteria have a negative impact on their health and well-being, limit their production, and often result in mortality, resulting in significant economic losses in the respective field.

Prompt diagnosis and proper treatment of livestock diseases is an integral aspect of disease management and prevention, and it decreases economic risk to dairy farmers. Precise diagnosis of animal diseases is an important step between the cause and cure of disease. The role of animal disease diagnostics is important not only for the welfare of animals and farmers but also for consumers' health. There are various animal diseases that can transmit to humans such as anthrax, rabies, tuberculosis, swine/bird flu, foot and mouth disease (FMD) and so on. The zoonotic diseases continue to be a concern today with recent outbreaks of severe acute respiratory syndrome corona virus (SARS-CoV) and influenza (H1N1). The SARS-CoV-2 of the current COVID-19 (Coronavirus Disease 2019) pandemic has also been detected in dogs, ferrets, cats (Shi et al., 2020), and tigers, though infection from animal to human has not yet been verified. Viral and bacterial infections can cause serious diseases to livestock and humans. Precise and early detection of the pathogen is often crucial for clinical diagnosis and effective treatment.

An early diagnosis of the disease is a pre-requisite for effective treatment and management of animal diseases. In most cases the diagnosis and differential diagnosis of animal diseases are done based on symptoms and basic biochemical, microbial, parasitological and serological tests of biological samples. Additional confirmatory tests include ELISA, PCR, DNA chips and chromatographic techniques, which require sophisticated instruments, professional operators, and costly chemicals. More recently, newer POC biosensors have emerged as newer diagnostic tools but many of them suffer from low sensitivity, specificity and reliability (Sheikhzadeh et al., 2021; Wang et al., 2021). Biosensors are rapidly becoming a cutting-edge novel technology in disease diagnosis and treatment. Biosensors are analytical devices that use biological molecules to generate signals that can be used to detect a specific disease condition (Duarte et al., 2015). Biosensors have two important features such as selectivity and sensitivity (Seo and Gu, 2017). With the accumulating knowledge on the development of aptamers and aptasensors, they have been increasingly investigated and tested for the detection of various infectious agents, including bacteria and viruses, as well as their toxins.

Aptamers are single-stranded nucleic acids (DNA, RNA) having molecular recognition properties similar to antibodies that are usually 22–100 nucleobases long and consist of a variable region edged by constant regions, which allow for amplification and identification of sequences (Gu, 2016; Kanwar et al., 2011; Simmons et al., 2012). Aptamers have several applications like monoclonal antibodies such as biomarker identification, therapeutics, diagnostics, and high throughput screening (Green et al., 2001; Shigdar et al., 2011). Yet, by virtue of their biophysical properties, aptamers compete with antibodies in many aspects (Proske et al., 2005). Literature for the present review was collected through searched in PubMed, google using key words, aptamers, biosensors, animals disease diagnosis, drug residue, COVID19 etc. and manually from the institute library.

1.1. Aptamers synthesis technique

Aptamers can be chemically synthesized and have shown specificity comparable to antibodies for antigen capture and identification, making them excellent alternatives to antibodies (Thiviyathan and Gorenstein, 2012). Thus, they are occasionally referred as “synthetic antibodies” and have been competing with antibodies in the research of disease diagnosis, prophylactics, and therapeutics. They offer advantages of reduced cost, smaller size, ease of production and modification, and improved stability over antibodies (Song et al., 2008). Consequently, a number of aptamer-based platforms have been developed in the form of biosensors (called aptasensors) for detection of pathogen and target analytes, immunophenotyping and management of animal health (Table 1).

The conventional SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology was described by Tuerk and Gold (1990). Formation of aptamers by this method lasts from a few weeks up to a month. A library of oligonucleotides containing unique but random sequences was designed by chemical method used to select aptamers and usually used to hybridize primers during polymerase chain reaction (PCR). Many steps of selection introduced during the conventional method of SELEX solely depend on the type of the desired aptamer (Fig. 1).

Nucleic-acid aptamers are paying attention towards intense interest and have found various applications in different areas. Extensive research is available on applying aptamers in the diagnosis of diseases in human beings, but very limited data is available in veterinary medicine. Therefore, this review is aimed to focus on the application of aptamers in the diagnosis of animal diseases, detection of drug residues and contaminants, and targeted drug delivery.
Table 1

Summary of aptamers/biosensors in veterinary medicine.

S. No.	Aptamer type/Biosensor type	Target/Disease condition	Reference
1	RNA aptamer	Detection of SARS coronavirus nucleocapsid protein	Ahn et al. (2009)
2	RNA aptamer	Fluorescence-based detection of the influenza A H1N1 virus using a sandwich-based aptamer assay	Tseng et al. (2016)
3	RNA aptamer	Diagnosis of FMD virus	Ellingham et al. (2006)
4	RNA aptamer	Detection of Shiga toxins of E. coli.	Challa et al. (2014)
5	RNA aptamer	Detection of capsid of the Porcine circovirus type 2.	Yoon et al. (2010)
6	RNA aptamer	Development of aptamers which specifically targets ATR/TEM2B in Willebrand factor type A (VWA) domain.	Lee et al. (2015)
7	20′-F-RNA aptamer	Detection of E. coli strains	So et al. (2008)
8	20′-F-RNA aptamer	Detection of E. coli using dual strategy	Lee et al. (2009)
9	RNA Spiegelmer	NOX-B11-3, a RNA aptamer can suppress appetite by specifically binding to orexigenic hormone ghrelin and blocking its activity.	Becksie et al. (2008)
10	RNA Spiegelmer	Used to block the activity of anorectic and dipsogenic pancreatic hormone amylin.	Bilik et al. (2007)
11	DNA aptamer	Detection of avian influenza viruses	Lee et al. (2020)
12	DNA aptamer	Detection of H5N1 avian influenza virus	Wu et al. (2008)
13	DNA aptamer	Detection of triple reassortant influenza A virus	Wongthacharachai et al. (2013)
14	DNA aptamer	Diagnosis of Bovine herpesvirus 1	Xu et al. (2019)
15	DNA aptamer	Detection of FMD virus	Vidic et al. (2017)
16	DNA aptamer	Competitive fluorescence resonance energy transfer (FRET)-aptamer-based strategy for foot-and-mouth disease (FMD)	Bruno et al. (2008)
17	DNA aptamer	Detection of E. coli strains K88	Li et al. (2011)
18	DNA aptamer	Detection of Salmonella enterica serovar.	Joshi et al. (2009)
19	DNA aptamer	Nanoparticle-based two-stage aptasensing platform for Campylobacter jejuni and Campylobacter coli.	Kim et al. (2019)
20	DNA aptamer	Detection of a TB biomarker HspX in sputum.	Lavania et al. (2018)
21	DNA aptamer	Detection of prion diseases	Wang et al. (2011)
22	DNA aptamer	Detection of prion protein on a solid-phase membrane.	Hossain et al. (2010)
23	DNA aptamer	Detection of prion protein with very high sensitivity.	Wang et al. (2012)
24	DNA aptamer	Detected a prion protein of BSE in the CNS.	Antipin and Nadtochey (2019)
25	DNA aptamer	Prion proteins (PrP) detection through the formation of T-Hg(2+)-T configuration	Xiao et al. (2012)
26	DNA aptamer	Electrochemical aptasensor for the detection of sulfadimethoxine in veterinary medicine and milk.	Bai et al. (2019)
27	DNA aptamer	Competitive voltammetric aptasensor for azlocillin β-lactam antibiotic.	Chinnappan et al. (2020a)
28	DNA aptamer	Detection of Bovine herpesvirus 1	Xu et al. (2019; 2017)
29	ssDNA aptamer	Detection of SARS coronavirus nucleocapsid protein	Cho et al. (2011)
30	ssDNA aptamer	HN protein of Bovine Parainfluenza Virus type 3	Cheng et al. (2018)
31	ssDNA aptamer	Detection of avian influenza H5Nx whole viruses	Nguyen et al. (2016)
32	ssDNA aptamer	Detection of Muscovy duck parvovirus	Lu et al. (2018)
33	ssDNA aptamer	Detection of Staphylococcus aureus	Baumstamer et al. (2014)
34	ssDNA aptamer	An enzyme linked aptamer for the detection of P48 protein of M. bovis	Fu et al. (2014)
35	ssDNA aptamer	Detection of TB from sputum samples	Rotherham et al. (2012)
36	ssDNA aptamer	Analytical assay for detection of brevetoxin.	Tian et al. (2016)
37	ssDNA aptamer	Combined the aptamer with electrochemical SPR to develop an aptasensing platform for detection of ampicillin in real time.	Bildar et al. (2019)
38	ssDNA aptamer	Aptamer based enzyme immunoassay was developed for the determination of enrofloxacin	Ni et al. (2014)
39	ssDNA aptamer	Developed an aptameric biosensor for the sensitive detection of tropomycin allergen.	Chinnappan et al. (2020b)
40	Self-quenched probe based strategy	Sensitive detection of Pseudorabies virus	Shen et al. (2018)
41	Mannose-modified fluorescent carbon quantum dots (Man–CQDs)	Detection of bacteria using novel dual recognition strategy	Cheng et al. (2016)
42	NH₂ based aptamer	Impedimetric aptasensor for ultrasensitive detection of Pseudomonas aeruginosa	Roushani et al. (2019)
43	Biotin tagged aptamer	Mastitis detection	Ashley and Li (2013)
44	Colorimetric biosensor	Detection of plasmid as biomarker in case of mastitis	Chinnappan et al. (2017)
45	Colorimetric aptasensor	Detection of E. coli strains	Wu et al. (2012)
46	Fluoroscent probe system	Quantum dot-based aptamer beacon for tumor cells.	Hwang et al. (2016)
47	Electrochemical biosensor	Direct detection of E. coli O111.	Luo et al. (2012)
48	Photoelectrochemical (PEC) immunoasensor	Nanoparticles based aptamer for detection of Ochratoxin A.	Chen et al. (2018)
49	SPR biosensor	Whole bacteria detection	Ahn et al. (2018)
50	Biotin labeled DNA	For detection of Salmonella enterica serovar Typhimurium	Dwivedi et al. (2013)
51	Prion protein aptamer	Determination of BoIFN-γ in TB	Curiolas et al. (2017)
52	Specific aptamers of antibiotics	Specific aptamers for detection of antibiotics such as Florfenicol, Cefquinome, Kenamycin, Oxitetracyclin, Tetracycl and Chloramphenicol.	Sadeghi et al. (2018); Wang et al. (2018); Xu et al. (2015); Zhou et al. (2018); Yan et al. (2018)
2. Application of aptamers in diagnosis of animal diseases

There are various bacterial (e.g. mastitis, tuberculosis, enteritis or colibacillosis, tuberculosis etc.) and viral diseases (e.g. SARS CoV, influenza, FMD etc.) that have a high prevalence rate in animals and are affecting farmers’ economies in many ways (Mendes et al., 2020; Puerto et al., 2021; Tsouloufi et al., 2020). Other conditions, such as bovine spongiform encephalopathy (BSE), cancer, and toxins, play important roles in veterinary medicine in addition to infectious diseases.

2.1. Diagnosis of viral diseases

2.1.1. Severe acute respiratory syndrome corona virus (SARS-CoV)

2.1.1.1. Influenza. Influenza viruses have various subtypes such as H1N1, H2N2, H5N1, H7N2, H9N2, which has global concern, and there is a need to develop methods for the early detection of these viruses to prevent loss in poultry and other agricultural sectors. The use of aptamers for the diagnosis of the virus has been extensively studied. Several aptamers have been reported to be effective in several viruses such as Muscovy duck parvovirus (Lu et al., 2018), H5Hx influenza viruses (Nguyen et al., 2016), H5N1 avian influenza virus (Wu et al., 2008), Triple reassortant influenza A virus (Wongphatcharachai et al., 2013), Bovine herpesvirus 1 (Xu et al., 2019), pseudorabies virus (Shen et al., 2018) etc.

In this connection, Cheng et al. (2018) proposed an indirect enzyme-linked aptamer assay (ELAA) for the detection of viruses in cattle. They developed ssDNA aptamers that can rapidly detect HN protein of Bovine Para-influenza Virus type 3 with high affinity and specificity. The positive detection rate of the ELAA was higher than that of the commercial ELISA kits, and the coincidence rate of ELAA and ELISA was 88%. A real time immuno-polymerase chain reaction (RT-PCR) method has also been developed for detecting viruses such as H9N2 influenza virus in poultry. In the assay, aptamers are applied as ligands to capture and detect the virus with higher sensitivity than standard ELISA (Hmila et al., 2017).

The particular diagnosis of avian influenza H5N2 whole viral particles has also been possible using a cognate pair of sandwich-type aptamers. In this strategy, a pair of aptamers were selected for whole avian influenza virus particles of H5N2 as the analyte of interest by using graphene-oxide-based SELEX (GO-SELEX) (Kim et al., 2019). The lateral flow strips could detect the particles as low as 6×10^5 in the buffer and 1.2×10^6 in the duck’s feces by direct examination. Such aptamer-based test strips can thus, be useful for rapid screening and preventing pandemics.

Sandwich-type SPR- based aptasensor has also been used to diagnose avian influenza HSNx whole viruses (Nguyen et al., 2016). Seo and Gu (2017) have also critically reviewed the literature on aptamer-based sandwich-type biosensors.

Several studies have also used electrochemical aptasensors for the detection of avian influenza viruses. To avoid the electrochemical signal-based errors due to external interferences, Lee et al. (2020) utilized a self-calibrating dual-electrode system based electrochemical aptasensor to detect avian influenza viruses. They fabricated two electrodes using tungsten rods, and methylene blue was used as an electron mediator. One electrode was capped with the virus-specific aptamer, whereas the second electrode was capped with a control aptamer. This dual-electrode platform exhibited excellent output-signal stability compared to a conventional single-electrode platform and did not require purification and washing steps. Thus, using such dual electrodes for the detection of electrochemical signals from aptasensors offers a reliable and robust platform for detecting molecules.

A new approach was adopted for fluorescence-based detection of H1N1 virus by sandwich-based aptamer assay (Tseng et al., 2016), which is comparatively much faster than the conventional viral culture.
2.1.2. Foot and mouth disease (FMD)

FMD mainly affects the animals such as swine, cattle, goats, deer, and sheep. FMD affects extensive areas worldwide enlisted in the notifiable diseases to the World Organization for Animal Health (http://www.oie.int/eng/en/index.htm). Since it was recognized as a significant epidemic disease in 16th century to yet it is a major global animal health problem (Longjam et al., 2011). FMD has caused numerous outbreaks in the US, UK and Asia including India. Owing to significant economic losses there is an urgent need to develop a fast and most unswerving test for the detection of FMD virus. In order to detect this disease, DNA aptamers were successfully screened (Vidic et al., 2017).

Aptamers have also been used for selective detection of pathogenic viruses. Bruno et al. (2008) developed a FRET based novel aptamer for FMD and labelled it with Black Hole Quencher-2 and Alexa Fluor 546-14-dUTP dye. The detection principle was based on competitive fluorescence energy transfer (FRET) and could detect FMD within 10 min with a sensitivity of 25–250 ng/mL of a FMD peptide. Ellingham et al. (2006) have been selected RNA-dependent RNA polymerase (3Dpol) enzyme for RNA aptamers specific to FMD.

2.1.3. Severe acute respiratory syndrome corona virus (SARS-CoV)

The recent pandemics and epizootics in various parts of the world have highlighted the public health importance of viruses such COVID-19 (SARS-CoV-2), influenza virus, herpes viruses etc. At the beginning of January 2020, a novel coronavirus (COVID-19) was identified in Wuhan, China as a causal agent of an outbreak of respiratory disease. SARS-CoV-2 (Severe Acute Respiratory Syndrome - Coronavirus-2) is a member of Coronavirusidae, which is the responsible agent for COVID-19. SARS-CoV-2 is an enveloped virus measuring approximately 50–200 nm in diameter, having single strand RNA genome consists of 26–32 kb in length (Lu et al., 2020; Xu et al., 2020). WHO declared this disease a pandemic on 11 March 2020. COVID-19 has presently spread in the 222 countries/territories with the death of 3.27 millions out of total positive cases, which accounts for more than 156.75 millions up to 07 May 2021. While in India alone, 2.15 millions are infected, and 0.234 millions deaths have been reported. As per reports, strains of SARS-CoV-2 are showing mutations in different countries. A recent study at Peking University in Beijing reported two types of strains: “L-type” and “S-type”. It has been suggested L-type strain is “more aggressive” and jumped from animals to humans.

Few studies have reported the possible connections with animals in the origin of SARS-CoV-2 and reverse zoonosis. However, a recent study in China investigated the possibilities of the vulnerability of ferrets and animals in close connection with humans to SARS-CoV-2 (Shi et al., 2020). They found that replication of SARS-CoV-2 is very less in dogs, pigs, chickens, and ducks but efficiently in ferrets and cats. It has also been reported that the virus spreads in cats via respiratory droplets. Wildlife Conservation Society releases one report, the USA on 05 April 2020 that a tiger at the Zoo found positive for COVID-19.

Recently, WHO conducted a two-day meeting on COVID-19 and highlighted various issues related to the importance or possible linkage of COVID-19 with animals (WHO, 2020). Various researchers have also tried to develop aptamers for the diagnosis of SARS-CoV. Ahn et al. (2009) have been developed a RNA aptamer, is capable to bind with N protein with high affinity with a K(d) of 1.65 nM (nano Molar), using a SELEX and recombinant N protein. K(d) value denotes the equilibrium dissociation constant between the antibody and its antigen. The strength of a given interaction can be judged through the association constant K or the dissociation constant Kd. The nucleocapsid protein binding ssDNA aptamer was developed with Kd value of 4.93 ± 0.30 nM by SELEX procedure (Cho et al., 2011).

The aptamer can potentially be used in the diagnosis of COVID19 in humans as well as animals. A recent paper on POC diagnostic devices for rapid detection of novel coronavirus (SARS-nCoV19) has been reviewed all possible recent diagnostic tests including aptamer/biosensors based tests for COVID19 (Rao, 2021). About 900 SARS-nCoV-2 test kits are in pipeline, among 395 test kits are molecular bested test kits and only few test kits are developed using Aptamer technology https://www.fnddx.org/covid-19/pipeline/ (Rao, 2021).

Rapid microbiology has developed “Pinpoint’s Low-Cost Hand-held COVID-19 Aptamer-Based Diagnostic Device” which is an accurate COVID-19 diagnostic test that non-clinicians can execute in human being. Moreover, there is no widespread of COVID19 in the farm and pet animals except few studies of possible transmission from humans to animals; hence research in this direction is still awaited. Chen et al. (2018) have developed a novel method for the detection of SRAS-CoV-2N protein using DNA based aptamers. However, the diagnostic performance, such as sensitivity and specificity needs further investigation.

2.2. Diagnosis of bacterial diseases

2.2.1. Mastitis

Bovine mastitis can be well-defined as ‘inflammation of mammary gland’ and is one of the most common and dreadful diseases of dairy cows and poses substantial economic loss to dairy industry. The estimated total economic loss of US$ 2 billion per year in the United States of America Viguer et al. (2009) due to mastitis. The estimated annual economic loss due to both subclinical and clinical mastitis in India was US$ 98,228 million [7165.51 crore Indian Rupees] (Bansal and Gupta, 2009). It is among the most critical diseases of cattle and buffalo because it causes numerous complications to milk production, processing of milk and quality of milk and its products, resulting in severe economic losses to the dairy industry. Mastitis is caused by more than 200 infectious microorganisms and commonest pathogens are Staphylococcus aureus, E. coli, Streptococcus spp., Pseudomonas spp., Mycoplasma spp. etc. (Sharma and Maiti, 2010; Sharma et al., 2012; Zhang et al., 2009).

Mastitis poses major problem in dairy farms regardless of various prevention and control methods (Sharma et al., 2018). Delay in diagnosis and treatment of mastitis are the major factors in the failure of treatment protocols (Down et al., 2017; Vasquez et al., 2017). It has been shown that timely and accurate diagnosis of mastitis is a major key for prevention and control of mastitis and its effective treatment (Down et al., 2016). Various methods of diagnosis of mastitis have been developed (El-Sayed et al., 2017). Current methods for detecting clinical and particularly subclinical mastitis (e.g., California mastitis test, somatic cell count, and bacteriological culture) (Sharma et al., 2018; Sharma et al., 2011) are either insufficient, have low accuracy, or have low specificity (Robles et al., 2021; Windria et al., 2021; Zeconi et al., 2021). The various confirmist methods for detection and identification of pathogens are generally either time-consuming or expensive for the dairy farmers at their farms in field conditions. Recent advances and developments in micro- and nanotechnologies have opened the window for the development of biosensors (Martins et al., 2019).

The sensor-based diagnostic systems help in detecting the intramammary infection with minimal stress on the animal (Martins et al., 2019). The various emerging technologies, including transcriptome and proteome analyses and nano- and microfabrication of handy portable devices, offer promising, effective methods for early diagnosis of mastitis (Duarte et al., 2015). Change et al. (2016) developed aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters for the detection of bac-
teria. Baumstummer et al. (2014) identified SOMAmers (slow off-rate modified aptamer) to detect S. aureus. SOMAmers are made from ssDNA that contain pyrimidine residues and have quite long (>30 min) dissociation rates (Gold et al., 2010). They found that SpA and CIFASOMAmers are useful for the selective detection of S. aureus. Another study used ELONA (Enzyme-Linked Oligonucleotide Assay) to detect the Protein A-binding aptamer PA#2/8 in S. aureus (Stoltenburg et al., 2016). Roushani et al. (2019b) have also developed an impedimetric aptasensor for ultrasensitive detection of Pseudomonas aeruginosa using a glassy carbon electrode. The glassy carbon electrode was modified by electrodeposition of silver nanoparticles and NH2-aptamer was covalently attached to its surface. Using such an aptamer-coated electrochemical probe, P. aeruginosa could be detected in the range of 10^2-10^7 CFU/mL with a detection limit of 33 CFU/mL in serum samples.

Mycoplasma bovis (M. bovis) is a disease causing agent that causes mastitis, respiratory diseases and arthritis in cattle. Mycoplasmas do not have cell wall, which is the reason that many antibiotics are not effective against Mycoplasma. Various methods such as culture, FAT, and PCR are used for the diagnosis of Mycoplasmosis, but recently developed biosensors can detect Mycoplasma infection rapidly, easily and with a high specificity level. In a study, ssDNA aptamers were selected against P48 protein of M. bovis with high affinity and specificity (Fu et al., 2014).

During the inflammation of mammary gland various enzymes are released from the inflammatory cells, which may be used as mastitis markers. Gulye et al. (2002) emphasized that high levels of enzyme activity related to quality of milk are associated with damaged udder cells and have been used as an evidence of the degree of udder inflammation. Catalase acts as an indicator of increased milk somatic cell count (SCC) and mastitis, and also works as an antioxidant in the milk. It was demonstrated that catalase activity can be used as a marker of mastitis (Fox and Kelly, 2006).

An aptamer-based surface plasmon resonance (SPR) biosensor with a detection limit of 20.5 nM has been developed for detecting catalase in milk as a mastitis marker (Ashley and Li, 2013). Aptamer tagged with biotin was immobilized onto a gold platform by affinity capture. While Ashley et al. (2012) developed catalase aptamer by non-SELEX method for detecting catalase in bovine milk with a Kd value in the low micro molar range. A recent study of Chinnappan et al. (2017) developed magnetic nanoparticles-based colorimetric biosensor assay in which plasmin was used as biomarker with a high sensitivity (1 ng/mL).

2.2.2. Enteritis causing bacteria

Colibacillosis considered as the most important problems faced in livestock production, causing significant losses related to economy in dairy farming, which is mainly caused by Escherichia coli (Bashahun and Amina, 2017). Some pathogenic strains of enteric bacteria cause various diseases in livestock and poultry such as gastrointestinal diseases, diarrhoea, mastitis, urinary tract infections, meningitis, septicaemia etc. In poultry, E. coli causes colibacillosis, which is categorized by the relocation of the virulent strains (e.g. O78:K80, O1:K1, O2:K1) from intestinal tract to other organ systems such as respiratory or urinary tracts. This infection in poultry has negative impact on egg production, chicken growth and increases mortality of birds and causes severe economic losses (Vidic et al., 2017). An important challenge in the diagnosis of E. coli is to differentiate between the closely related pathogenic and non-pathogenic species.

There are many conventional methods to detect the presence of E. coli, and various assays have been developed to detect these strains at the herald of the diseases. The conventional method to detect E. coli usually takes two to three days (Liu et al., 2020; Rani et al., 2021). This method is not enough to characterize the bacteria, and additionally requires bacterial identification either by PCR (Rajendhran and Gunasekaran, 2011), 16S rRNA sequencing, or by using biological probes, including antibodies and aptamers (Gopinath et al., 2014). These methods show drawbacks in terms of long identification time (typically few days), high labor and costly reagents (Fournier-Wirth et al., 2006).

Screening of E. coli strains using aptamer –functionalised Single-Walled carbon nano tube field effect transistors have been reported (So et al., 2008). Dual strategy combining immunomagnetic separation and real time PCR amplification of aptamers to detect E. coli was manufactured (Lee et al., 2009). New method for competitive FRET- aptamers applied to E. coli assay development (Bruno et al., 2010). Another group developed electrochemical based aptasensor for the detection of E. coli directly and calorimetrically (Wu et al., 2012). The DNA aptamers have also been developed for detection of E. coli strains K88 through binding with fimbriae protein of enteropathogenic E. coli (Li et al., 2011). Luo et al. (2012) have developed a sensitive and specific electrochemical biosensor for direct detection of E. coli O111, while showed less sensitivity to other bacteria such as Salmonella typhimurium, S. aureus and non-pathogenic E. coli.

Ahn et al. (2018) adopted whole-bacteria SELEX (WB-SELEX) strategy to isolate specific aptamer and develop surface plasmon resonance (SPR) biosensor. The SPR is highly sensitive to various molecular binding processes occurring onto planar metal surface or metal nanoparticles and is the basis of many label-free biosensors and lab-on-chip sensors. When combined with specific aptamers, the developed biosensor could specifically and selectively discriminate pathogenic Vibrio parahaemolyticus bacteria from other enteric species such as Escherichia coli, Listeria monocytogenes, Sigellasonnei, and Vibrio fischeri. Such SPR biosensors demonstrate the feasibility of using DNA aptamer platform for developing POC diagnostics. The WB-SELEX strategy has also been used for development of aptamers to capture and detect Salmonella enterica serovar Typhimurium (Dwivedi et al., 2013). The aptamer showed high binding affinity with Kd value of 1.73 ± 0.54 μM and low cross-reactivity with other food borne bacteria. In another study, Joshi et al. (2009) developed a DNA-based aptamer to detect Salmonella enterica serovar Typhimurium by selective enrichment against outer membrane proteins (OMPs).

A number of efforts have also been made to make the aptamer-based technologies label free and capable of being used at POC. Kim et al. (2019) developed a gold nanoparticle-based two-stage aptasensing platform for fast and on-site detection of Campylobacter jejuni and Campylobacter coli and detected by the change of colour from red to purple. The aptasensor were found to be highly specific when tested on chicken samples. Such calorimetric detection methods can provide an excellent and rapid screening tool for on-site detection of bacteria and may possibly be extended to other bacterial species. A novel aptamer-based strategy has recently been developed for label-free, in situ detection of bacteria by utilizing surface-enhanced Raman scattering (SERS). The SERS signals generated by bacteria-aptamer on silver nanoparticles should linear dependence on bacterial concentration and could be used to recognize bacteria quickly with a detection limit of 1.5 CFU/mL (Gao et al., 2017). Thus, this strategy offers an opportunity to create SERS-based biochips for quick in-situ detection of bacterial.

2.2.3. Tuberculosis

Bovine tuberculosis (BT) is a slow progressing disease and primarily caused by the Mycobacterium bovis (M. bovis), and to a lesser
extent by *M. caprae* and *M. tuberculosis*. Bovine tuberculosis is affecting the livelihoods and is hampering efforts to control and/or elimination by 2030 (WHO, 2018). The traditional diagnostic test i.e. tuberculin skin test, is a standard and the most popular test in the livestock. However, the bacterial culture of *M. bovis* is a time-consuming process and can take eight weeks or more. Aptamers are helpful tools for developing POC diagnostic assays for TB. Mozioglu et al. (2016) developed ssDNA aptamers that recognize *M. tuberculosis* H37Ra using SELEX procedure.

Bovine tuberculosis caused by *M. tuberculosis* is difficult to be identified by the pathological symptoms. Release of bovine interferon gamma (BoIFN-γ) by T-cells can offer a diagnostic marker of *M. tuberculosis* (Cruillas et al., 2017). They developed an electrochemical aptasensor for sensitive and specific determination of BoIFN-γ. In this study, this biosensor can be used for on-site detection bovine TB (Cruillas et al., 2017). In another study, Rotherham et al. (2012) developed ssDNA aptamers to detect TB from sputum samples. It has reported that CSIR 2.11 aptamer have affinity to bind with CFP-10. ESAT-6 was developed to detect BT (Rotherham et al., 2012). Lavania et al. (2018) developed two DNA aptamer-based diagnostic tests, namely aptamer linked immobilized sorbent assay (Aptamer ALISA) and electrochemical sensor (ECS), for the direct detection of a TB biomarker HspX in sputum.

2.3. Diagnosis prions diseases

Prion disease is a lethal and tragic neurodegenerative condition that affects both humans and animals. Transmissible spongiform encephalopathy is the common term assigned to all known prion diseases. Prions are infectious particles that lead Gerstmann-Straussler-Scheinker syndrome in humans, bovine spongiform encephalopathy (BSE) in cattle and there is a link between the transmission of prion diseases in humans and cattle (MacGregor, 2001). Prion diseases are neurodegenerative in nature and there is a great demand for sensitive and rapid diagnostic tools for these particles.

DNA aptamers have been used to detect transmissible spongiform encephalopathies in animals. The assay is based on their ability to detect conformationally normal prion protein from abnormal isoforms in prion diseases. Using SELEX enrichment, Wang et al. (2011) identified DNA aptamers, which can distinguish normal and abnormal PrP isoforms. The aptamer can even distinguish different strains of prions in blood samples, which are usually not detectable by antibody-based detection procedure. Researchers have developed a high-throughput, inexpensive and convenient method for a specific and sensitive determination of prion protein on a solid-phase membrane (Hossain et al., 2010).

In another approach, a cellular prion protein (rhPrPC) based detection platform was developed using magnetic and gold-coated magnetic nanoparticles as support material (Kouassi et al., 2007) biotinylated aptamer. An effective aptamer-mediated chemiluminescence detection of prion protein has been developed (Zhang et al., 2014). More research led to the development of robust aptasensor for the detection of prion protein with very high sensitivity (Wang et al., 2012). Antipin and Nadtochev (2019) detected a prion protein of BSE in the CNS of BSE affected cow by using DNA aptamers specifically bound with amyloid epitopes. A study established a sensitive method for the development of DNA aptamer for prion proteins (PrP) detection through the formation of T-Hg(2+)-T configuration (Xiao et al., 2012).

2.4. Diagnosis of cancer

In recent year, efforts have also been made to use aptasensors for diagnosis of cancer. Hwang et al. (2016) have applied quantum dot-based aptamer beacon for fluorescent imaging of circulating tumor cells. In this strategy, aptamers were designed for binding sequences of EpCAM/MUC1, which are known to be expressed in circulating metastasizing cancerous cells. The aptamers were labelled with Black Hole Quencher-2 and Cy5.5 fluorescent dye and, conjugated to quantum dots as aptamer linker beacon. The binding of aptamer to the EpCAM/MUC1 of circulating cancerous cells triggers the dissociation of quencher and generates fluorescence signal of Cy5.5 for its detection. The aptamer beacon was successfully tested in Panc02-implanted mouse model for the rapid monitoring of the circulating tumor cells.

Aptamers have also been explored for detection of blood analytes and replace biochemical analytical methods. One such example is the development of RNA aptasensor for detecting cyclic adenosine monophosphate (cAMP), which is related with the healthy state of the animal. Zhao et al. (2015) developed an RNA aptamer having principle of electrochemical impedance spectroscopy-enhanced by gold nanoparticles electrodeposited on the surface of gold electrode which can detect cAMP in a wide range with a detection limit of 50 nM in serum. Importantly, the aptasensor could be fabricated in cost effective way and could be used multiple times thereby demonstrating great potential as POC device for clinical test.

3. Sensing of toxins

Several approaches have also been made to find out selective aptamers for detecting bacterial, fungal and plant toxins. In a study, Challa et al. (2014) developed a RNA aptamer against Shiga toxins of by *E. coli*, which is known to cause life threatening hemolytic uremic syndrome. The RNA aptamers could block the binding of Shiga toxins to cells. Unfortunately, the developed aptamers could not neutralize the toxin-mediated cytotoxicity and death of the cells. An aptamer-based aptasensor for detecting Ochratoxin A has also been developed. Chen et al. (2018) hybridized Ochratoxin A aptamer onto dual gold nanoparticles and immobilized onto an electrode for electrochemical signal reporting. Due to high surface-to-volume ratio and excellent electro-conductivity of gold nanoparticles, the developed aptasensor was ultrasensitive to as low target concentration as 0.001–5000 ppb over six orders of magnitude. Tian et al. (2016) developed an aptamer-based analytical assay for detection of brevetoxin. The aptamers had a dissociation constant of 4.83 μM and IC50 of 73.81 ng/mL. The assay was as efficient as commercial ELISA.

Toxins present in feed and fodders are occasional cause of toxicity and death in animals. One such example is Ricin toxin resulting from the castor bean plant. The Ricin toxin is highly thermostable, active at acidic and alkaline pHs and is known to cause animal death due to toxicity. Aptamers against the B-chain of ricin was shown to detect ricin B in several liquid food and out-competed ELISA kit with a detection limit of 25 ng/mL (Lamont et al., 2011). The aptamer could also be combined with surface enhanced Raman scattering technique for label free detection. Thus, such aptamers can serve as pre-analytical tool for screening of toxins in animal feed and fodder. Zhang et al. (2018) developed a fast and cost-effective ssDNA aptamer to detect zearalenone in animal feed with a detection limit of 12.5 nM.

4. Application of aptamers on detection of drug residues and contaminants

Aptamers have also been used for the purpose of detecting drug remains in milk, meat and farm waste. They have also been used successfully for detection of contaminants in drugs, allergens or environmental residues in various animal products. In particular, the rampant usage of antibiotics in animal feeds and veterinary
The technique could detect ampicillin in the range of 2.5–2000 nmol/L. Such aptasensors could be useful for identifying the presence of ampicillin residues in the food and environment.

Specific aptamers have also been developed and used for detection of other antibiotics such as Florfenicol (Sadeghi et al., 2018), Cefquinome (Wang et al., 2018), Kenamycin (Xu et al., 2015), Oxytetracyclin (Xu et al., 2018), Tetracyclin (Zhou et al., 2018) and Chloramphenicol (Yan et al., 2018), which allowed rapid and sensitive colorimetric detection by naked eye or using a colorimeter with detection limit of 0.0031 ng/mL. In order to detect chloramphenicol residues, Roushani et al. (2019a) developed an aptasensor by coating 3-aminomethyl pyridine functionalized GO on the surface of glassy carbon electrode, which was again coated with silver nanoparticle and chloramphenicol specific aptamer. The aptasensor allowed impedimetric ultrasensitive detection of chloramphenicol by glassy carbon electrode in the linear range of 1.0 pM to 1.0 nM with the detection limit of 0.3 pM in milk samples. DNA aptamer has also been used to construct a competitive voltammetric aptasensor for azlocillin β-lactam antibiotic (Chinnappan et al., 2020a). The developed aptasensor was highly selective, sensitive and cost-effective with a limit of detection of 1.2 pg/mL. Antibiotics such as enrofloxacin are widely used fluoroquinolone in poultry and are the main causative agent of bacterial drug resistance. A single stranded DNA aptamer based enzyme immunoassay was developed for the determination of enrofloxacin (Ni et al., 2014).

High doses of quinolones antibiotics are regularly used in livestock farming and they are one of the most commonly observed antibiotic residues in animal products and water bodies. Aptamer-based technologies have been shown to be a sensitive and effecting monitoring tool for quinolones. Reinemann et al. (2016) selected an aptamer pool, which could detect various quinolones such as ofloxacin with high specificity using the Capture-SELEX procedure. The aptamers were demonstrated to be effective in detecting ofloxacin in water and in effluents of sewage plants.

Components of animal products can cause allergic reaction to consumers and therefore, quick and sensitive methods for detecting various allergens in animal foods are essential to assist patients in managing their allergies. Currently, immunoasays, polymerase chain reaction and mass spectrometry are employed for analysing allergens. However, these methods are complex, costly and time consuming. Thus, aptamers are being investigated for rapid and specific detection of food allergen. Chinnappan et al. (2020b) developed anaptameric biosensor for the sensitive detection of troponemin allergen. The aptamer-based sensor detected the allergen within 30 min with a detection limit of 2 nM.

5. Application of aptamers in the targeted drug delivery and treatment of animal diseases

Current therapeutic strategies such as use of antibiotic or antiviral agents are ineffective in many cases and may even result in development of resistance upon their prolonged usage (Aminov, 2021; Caudell et al., 2020; Palma et al., 2020). Consequently, newer alternative therapeutic approaches are actively explored worldwide. In recent years, several oligonucleotide-based therapies such as short interfering RNAs (siRNA), microRNAs, aptamers, DNAzymes, and ribozymes have been used for diagnosis and/or treatment of viral diseases (Kim and Lee, 2021; Lundstrom, 2020). Among these nucleic-acid based approaches, DNA or RNA aptamers have been increasingly gaining wide attention due to their efficacy and specificity to pathogens and ease in their production by complete chemical synthesis methods. The first report on the use of aptamers for clinical application appeared in 1992 and since then it has been widely explored for human application using animal models (Fig. 2). Unfortunately, the development and application of aptamer-based diagnostics and therapeutics in veterinary field has been slow. Nevertheless, after successful demonstration on animal models, efforts are being made for application of aptamers on diagnosis and treatment of livestock and pet animals (Kim et al., 2020; Kim and Lee, 2021; Vidic et al., 2017). There are many studies of aptamers are going on in the different stages of testing and have provided researchers to address some of the disadvantages of antibodies (Table 2).

Various aptamers have been shown to successfully treat various infectious and non-infectious diseases by specifically targeting the pathogen, hormone or, enzymes or by allowing targeted delivery of another drug. In recent years, antimicrobial peptides such as beta-defensin have emerged as a promising new class of antibacterial and antiviral drugs. Unfortunately, most exogenously administered antimicrobial peptides are unstable in biological fluids and have low penetrating ability into mammalian cells. Several researchers have used DNA aptamers for effective and rapid delivery of antimicrobial peptides into the cells.

Aptamers such as FO24 and FO21 have been tested as preventive and/or therapeutic antiviral therapy against viruses. Studies have shown that injection of FO24 and FO21 ssDNA aptamers for 24 h prior to inoculation with street rabies virus FJ strain into mice resulted in 60–80% survival rate (Liang et al., 2014a; Liang et al., 2013). The aptamers could be used for both pre-exposure as well as post-exposure prophylaxis but the pre-exposure prophylaxis was superior to post-exposure prophylaxis. These aptamers were specific to street rabies virus and did not the replication of other viruses such as canine distemper virus and canine parvovirus (Liang et al., 2014b). However, clinical trials have not yet been done to use them as therapeutic molecules. Similarly, Xu et al. (2019; 2017) demonstrated that specific DNA aptamers can inhibit the production of Bovine herpesvirus 1 through blocking nucleocytoplasmic shuttling and inhibiting the infectivity of the virus by blocking viral entry. The developed aptamers exhibited high affinity and specificity for Bovine herpesvirus 1 with a Kd value of 3.519 nM and significantly reduced viral replication. Thus, DNA aptamers could be used as a novel tool for the treatment of Bovine
herpesvirus 1 infection in cattle. In yet another study, Yoon et al. (2010) developed RNA aptamers that bound to the capsid protein of the Porcine circovirus type 2 with nanomole affinity and neutralized the viral infectivity in PK-15 cells in dose dependent manner.

Aptamers have also been investigated as novel anti-prion compounds. It was shown that peptide aptamers binding to PrP(C) prion protein can abrogate prion propagation (Corda et al., 2018). Binding of the designed anti-prion aptamer with PrP(C) prion protein increased α-cleavage and interfered with its internalization and inhibited prior replication. Aptamers can also used for neutralization of bacterial, viral, fungal and plant toxins. Lee et al. (2015) developed RNA aptamers which specifically targets ATR/TEM8 Von Willebrand factor type A (VWA) domain. Such RNA aptamers were shown to have an inhibitor efficiency (IC50) of 5 μM and could block the binding of Protective Antigen (PA) to its receptors in order to neutralize anthrax toxin.

Aptamers have also been used for non-infections conditions such as hormonal imbalance, intestinal motility, modifying apatite or thirst etc. Becskei et al. (2008) showed that NOX-B11-3, a RNA aptamer (called RNA Spiegelmers) can suppress appetite during food deprivation by specifically binding to orexigenic hormone ghrelin and blocking its activity. The NOX-B11-3 could effectively block the effect of endogenous ghrelin on neuronal activity in the hypothalamic arcuate nucleus. Interestingly, the NOX-B11-3 acted only on animal under fasting and not on normal-fed animals. Similarly, RNA Spiegelmer has been used to block the activity of anorectic and dipsogenic pancreatic hormone amylin (Bilik et al., 2007). Such RNA Spiegelmer may be beneficial for the treatment of complications arises due to high amount of plasma amylin, as in cancer anorexia.

6. Conclusion

This review paper has put forward an outline of novel progresses in developing aptamer-based sensors to diagnose and treat major animal diseases. In the light of current limitations in common detection techniques of early disease diagnosis, researchers

Fig. 2. Number of publications on aptamers published per year during 1990–2019. A: Overall publications on aptamers; B: Publications on the use of aptamers for diagnosis or therapy. Total number of publications (any species) and publications exclusively on animals or veterinary science are shown separately. First publication on aptamer appeared on 1992 whereas its application in animal or veterinary science appeared first on 1993.
Important patents on the development and application of aptamers in veterinary diagnostics and therapeutics.

No	Title	Inventors [Country]	Publication Number	Priority Date
1	Switch mode nucleic acid aptamer probe and uses thereof in detection of tumor living cell and living body	Guo Quiping et al., [China]	WO2011134328A1	2010-04-26
2	Nucleic acid aptamer-based diagnostic methods with novel techniques for signal enhancement	Nussbaum Ofer [USA]	WO2012004790A2	2010-07-06
3	Carcinomembranonic antigen detection kit based on nucleic acid aptamer autocatalysis effect, and preparation method thereof	Zou Mingjing [China]	CN10764505A	2016-02-18
4	Aptamer-directed drug delivery	Bagalkot Vaishali et al., [USA]	WO20007137117A2	2006-05-17
5	Method for detecting N-hydroxyacetanilide or naphthalene-2-carboxylic acid content based on aptamer	Gong Sheng et al., [China]	KR101526921B1	2013-06-28
6	Nucleic acid aptamer specifically binding to enrofloxacin or ciprofloxacin	Jeong Sang Hee et al., [South Korea]	CN108709980A	2018-05-29
7	Aptamer for binding bifidobacterium breve as well as screening method and application of aptamer	Chen Wei et al., [China]	CN105838719A	2016-04-13
8	Serum igG antibody aptamer of tuberculosis patients and preparation method thereof	Cai Jangli et al., [China]	CN103045600A	2011-10-11
9	Gene regulation with aptamer and modulator complexes for gene therapy	BUEHLER BERND et al., [UK]	US2005260164A1	2002-10-10
10	Aptamers for prion diagnostics and aptamer binding detection system	Mohanty Sarina [USA]	WO2014008440A2	2012-07-04
11	DNA aptamer binding to glyphosate with specificity	Gu Man Bock et al., [South Korea]	KR101338520B1	2011-10-25
12	Aptamer ELISA detection kit, preparation method, and application thereof	DONG ZAIZAI et al., [China]	CN108957001A	2018-06-27
13	Research and development of aptamer-based rapid detection technology for agricultural veterinary drug residues	Ling Qingyun	CN105956600A	2017-09-30
14	Aptamer specifically binding to nonylphenol and detecting method using thereof	Kim So Youn [South Korea] and Ren Shuo [China]	KR101822881B1	2014-03-31
15	Biosensing probe kit for detecting sulfadiazine on basis of nucleotide aptamer specificity, and application thereof	Sun Qi et al., [China]	CN10719054A	2017-05-04
16	Aptamer-based multiplexed assays	Kartlius Evaldas et al., [USA]	US9201701361WA	2016-11-04
17	DNA Insulin receptor-specific DNA aptamer and uses thereof	Ahn Ji Young et al., [South Korea]	KR101850793B1	2016-06-14
18	Target substance detection method using aptamer	Kim So Youn [South Korea] and Cameron Det D et al., [USA]	US8592268B1	2012-01-14
19	Nucleic acids aptamer binding specifically to cucurbitacin	Choi Tae Young et al., [South Korea]	KR101966758B1	2016-09-20
20	Use of nucleic acid aptamer in alkaline phosphatase heterodimer recognition and binding or in tumor detection	Bing Tao et al., [China]	WO2019149115A1	2018-02-02
21	Application of nucleic acid aptamer in recognizing and binding alkaline phosphatase heterodimer	Bing Tao et al., [China]	CN11054369A	2018-02-02
22	Nucleic acid aptamer capable of specifically binding to tetracyclines compound and use thereof	Gu Man Bock et al., [South Korea]	KR101342710B1	2012-02-14
23	Nucleic acid aptamer probe kit for detecting doxycycline residue as well as preparation method and application thereof	He Hongqiu et al., [China]	CN104360077A	2014-11-25
24	Real-time and continuous measurement in vivo using aptamer-based biosensors	Arroyo Curras Netzahualcoyotl et al., [USA]	WO2017164982A1	2016-03-21
25	Nucleic acids aptamer binding specifically to Ingenol mebutate	Choi Tae Young et al., [South Korea]	KR101987591B1	2018-08-06
26	Antigen-binding fragment and/or aptamer for binding to an extracellular part of cd9 and therapeutic uses	Corbel Denis et al., [USA]	WO2020044285A1	2018-08-29
27	Escherichia coli o157:h7 aptamer and applications thereof	Amraee Masoum et al.[Iran]	WO2018189639A1	2017-04-14
28	Nucleic acid aptamer which specifically binds to bisphenol A	Kim So Youn [South Korea] and Wang Feng and Wu Wenzue [China]	EP2397550A2	2009-02-16
29	Target substance detection method using aptamer and kit special for mycoplasma gallisepticum antibody	Gu Man Bock et al., [South Korea]	WO2015056980A1	2013-10-16
30	Nucleic acid aptamer capable of specifically binding to tebuconazole, mfenacet, and inabendazole, and use thereof	Li Minyong et al., [China]	AU2009281857A1	2008-05-29
31	Antipathy to thrombus formation	Liu Jing et al., [China]	CN106990237A	2017-05-10
32	DNA EGFR-specific DNA aptamer as incubation additives for promotion of mammalian cell growth and uses thereof	Yu Xiaoyan et al., [China]	CN104450725A	2015-01-05
33	Aptamer-coated implant, process of production, and uses	Boreck Alexander [Germany]	US2011150964A1	2009-12-21
34	DNA PIGGR-specific DNA aptamer as incubation additives for promotion of mammalian cell growth and uses thereof	Ahn Ji Young et al., [South Korea]	KR101855614B1	2016-07-17
35	Aptamer-based rapid kanamycin detection test paper as well as preparation method and application thereof	Datta Bhaskar et al., [USA]	US2012088232A1	2010-09-30
36	Aptamer-based device for detection of cancer markers and methods of use	Ahn Ji Young et al., [South Korea]	KR101833231B	2016-07-17

and scientists are turning their attention towards the development of aptamer based diagnosis for efficient rapid non-invasive detection of diseases in veterinary medicine. Aptamer based biosensors are attaining importance over other biosensors due to its several advantages. However, the development of biosensors for multiple disease detection is still a big challenge to the scientist and researchers. Integration of high multidisciplinary approaches and the use of nanomaterials in the development of aptamer biosensors will enhance the sensitivity of these devices and make it more efficient for early detection of disease, which is the need of the hour. In conclusion, while there are still some gaps in developing aptamers for clinical applications in veterinary medicine, aptamers will be widely used in early and most accurate disease diagnosis with the improvement of the relevant technologies.
7. Future perspectives and challenges in the application of aptamers

In veterinary medicine, there is still lot to be done for the developments in the diagnostic techniques to meet the demand of dairy farmers. We expect that this new field of aptamer-based biosensors in the diagnosis and treatment of animal diseases will eventually become a real-world tool. This would help in encountering challenges that could be difficult with currently available conventional technologies.

The success of aptamers in clinics depends on their stability in blood and other biological fluids upon injection into the body. The general use of aptamers is also hindered by their incapability of intracellular accumulation at the site of action. While several studies have shown success with the use of aptamers under in vitro conditions, their use in animal systems requires special considerations. One such approach could be encapsulation of the aptamers for protecting them against nuclease activity of biological fluids. Bedi et al. (2013) established that fusion phage coat protein pVIII, exhibiting cancer-targeting peptides, can commendably encapsulate siRNAs and could be used as nanophages to transport them into the cells leading to specific silencing of the model gene.

A yet another challenge in the application of aptamers is the complex optimization process of SELEX in screening and identifying the monoclonal aptamer candidate for target molecule of interest. Target molecules occasionally have isoforms or variants which may not be targeted by a single monoclonal aptamer, as is the case with FMD virus. The FMD virus has several strains and a monoclonal aptamer developed against one, such as pep1-region, could selectively identify few strains but were did not match the sensitivity of the polyclonal aptamer. Similarly, many toxins such as Shiga toxins have two antigenically distinct forms, which could not be identified by a single aptamer (Kaur et al., 2020).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This work was supported by the Department of Biotechnology, Government of India, New Delhi, India under the project grant No. BT/PR26666/AAQ/1/713/2017 and National Research Foundation project grant No: 2017R1A2B2012125, Republic of Korea.

References

Ahn, D.G., Jeon, I.J., Kim, J.D., Song, M.S., Han, S.R., Lee, S.W., Jung, H., Oh, J.W., 2009. Economic analysis of bovine mastitis in India and Punjab – a review. Indian J. Dairy Sci. 62, 337–345.
Bansal, B.K., Gupta, D.K., 2009. Baumstummer, A., Lehmann, D., Janic, N., Ochsner, U.A., 2014. Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components. Lab Chip. 14, 4634–4641.
Becker, C., Bilik, K.U., Klussmann, S., Jarosch, F., Lutz, T.A., Riediger, T., 2008. The anti-gshelin Spiegelkner NOX-B11-3 blocks gshelin- but not fasting-induced neuronal activation in the hypothalamic arcuate nucleus. J. Neuroendocrinol. 20, 85–92.
Bedi, D., Gillespie, J.W., Petrenko Jr., V.A., Eber, A., Leintner, M., Hinterdorfer, P., Petrenko, V.A., 2013. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins. Mol. Pharm. 10, 551–559.
Bilik, K.U., Jergouen, E., Klussmann, S., Jarosch, F., Wuoga, P.Y., Lutz, T.A., Riediger, T., 2007. In-vitro and in-vivo antagonistic action of an anti-anpelin Spiegelkner. NeuroReport. 18, 1855–1859.
Bildar, A., Feuer, B., Tertis, M., Galatus, R., Cristea, I., 2019. Electrochemical surface plasmon resonance (ESPR) aptasensor for ampilinfection. Anal. Bioanal. Chem. 411, 1053–1065.
Bruno, J.G., Carrillo, M.P., Phillips, T., 2008. Development of DNA aptamers to a foot-and-mouth disease peptide for competitive FRET-based detection. J. Biomol. Tech. 19, 109–115.
Bruno, J.G., Carrillo, M.P., Phillips, T., Andrews, C.J., 2010. A新颖 screening method for competitive FRET-aptamer applied to E. coli assay development. J. Fluoresc. 20, 1211–1223.
Caudill, M.A., Dorado-Garcia, A., Eckford, S., Creese, C., Byarugaba, D.K., Afyake, K., Chansa-Kabali, T., Fasina, F.O., Kabali, E., Kambi, S., Kimani, T., Mainda, G., Magesho, P.E., Chimpong, F., Dube, K., Kikimoto, B.B., Koka, E., Mugara, T., Rubegwa, B., Swissa, S., 2020. Towards a bottom-up understanding of antimicrobial use and resistance on the farm: a knowledge, attitudes, and practices survey across livestock systems in five African countries. PLoS ONE 15, e0220274.
Challa, S., Tzifori, S., Sheoran, A., 2014. Selective evulation of ligands by exponential enrichment to identify RNA aptamers against shiga toxins. J. Nucl. Acids 2014, 214929.
Chen, W., Yang, C., Cheng, L., Yao, L., Xue, F., Xu, J., 2018. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layered-by-layer assembly of double gold nanoparticle conjugates. Biosens. Bioelectron. 117, 845–851.
Cheng, D., Yu, M., Fu, F., Han, W., Li, C., Xie, J., Song, Y., Shihart, M.T., Song, E., 2016. Dual recognition strategy for specific and sensitive detection of bacteri using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Anal. Chem. 88, 820–825.
Cheng, J., Wang, J., Liu, Y., Wu, Q., Wang, Z., 2018. Screening and identification of ssDNA aptamers against HN protein for detection of bovine parainfluenza virus type 3 antibodies in Serum. Curr. Pharm. Biotechnol. 19, 896–901.
Chinnappan, R., Al Attas, S., Kaman, W.E., Bikker, F.J., Zourob, M., 2017. Development of magnetic nanoparticle based calorimetric assay for the detection of bovine mastitis in cow milk. Anal. Biochem. 523, 58–64.
Chinnappan, R., Eissa, S., Alotbiya, A., Siddiquia, A., Alisger, O.A., Zourob, M., 2020a. In vitro selection of DNA aptamers and their integration in a competitive voltammetric biosensor for aflotoxin determination in water sample. Anal. Chim. Acta 1101, 149–156.
Chinnappan, R., Rahamm, A.A., AlZahrin, R., Kamath, S., Lopata, A.L., Abu-Salah, K.M., Zourob, M., 2020b. Aptameric biosensor for the sensitive detection of major shrimp allergen, treponomysin. Food Chem. 314, 126133.
Cho, S.I., Yoo, H.M., Kim, K.S., Oh, J.W., Jeong, Y.J., 2011. Development of single malignant phenotype of magnetic nanoparticle based calorimetric assay for the detection of bovine catalase in milk. Biosens. Bioelectron. 26, 4039–4044.
Cho, S.J., Woo, H.M., Kim, K.S., Oh, J.W., Jeong, Y.J., 2011. Novel system for detecting SARS coronavirus nucleocapsid protein using an ssDNA aptamer. J. Biosci. Bioeng. 112, 535–540.
Cord, C., Xu, X., Shim, S.Y., Klein, A.N., Silberg-Liberies, J., Gilch, S., 2018. Interaction of peptide aptamers with gp120 protein central domain promotes γ-cleavage of Pr(C) Mol. Neurobiol. 55, 7758–7774.
Crulhas, B.P., Hadley, D.J., Liu, Y., Shin, D., Styhayeava, G., Imbennaka, M., Hill, A.E., Pedrosa, V.A., Rezvani, A, 2017. An electrochemical aptasensor for detection of bovine interferon gamma. Anal. Methods 9.
Down, P.M., Bradley, A.J., Breen, J.E., Green, M.J., 2017. Factors affecting the cost-effectiveness of on-farm culture prior to the treatment of clinical mastitis in cattle. Prev. Vet. Med. 145, 91–101.
Down, P.M., Bradley, A.J., Breen, J.E., Green, M.J., 2017. Current management practices and interventions prioritised as part of a nationwide mastitis control plan. Vet. Rec. 178, 449.
Duarte, C.M., Freitas, P.P., Begista, R., 2015. Technological advances in bovine mastitis diagnosis: an overview. J. Vet. Diagn. Invest. 27, 665–672.
Dwivedi, H.P., Smiley, R.D., Jaykus, L.A., 2013. Selection of DNA aptamers for capture and detection of Salmonella Typhimurium using a whole-cell SELEX approach with cell sorting. Appl. Microbiol. Biotechnol. 97, 3677–3686.
El-Sayed, A., Awad, W., Abdou, N.E., Castañeda Vázquez, H., 2017. Molecular biological tools applied for identification of mastitis causing pathogens. Int. J. Food Microbiol. 20, 85–92.
El-Sayed, A., Awad, W., Abdou, N.E., Castañeda Vázquez, H., 2017. Molecular biological tools applied for identification of mastitis causing pathogens. Int. J. Food Microbiol. 20, 85–92.
Ellingham, M., Bunka, D.H., Rowlands, D.J., Stonehouse, N.J., 2006. Selection and characterization of RNA aptamers to the RNA-dependent RNA polymerase from foot-and-mouth disease virus. RNA 12, 1970–1979.
Fournier-Wirth, C., Deschaseaux, M., Defer, C., Godreau, S., Carrière, C., Bertrand, X., Tuzex, V., Schneider, T., Costin, J., Morel, P., 2006. Evaluation of the enhanced
bacterial detection system for screening of contaminated platelets. Transfusion 46, 220–224.

Fox, F.F., Kelly, A.L. 2006. Indigenous enzymes in milk: overview and historical perspectives. J. Dairy Sci. 89, 2. Int. Dairy J. 16, 517–532.

Fu, P., Sun, Z., Yu, Z., Zhang, Y., Shen, J., Zhang, H., Xu, W., Jiang, F., Chen, H., Wu, W., 2014. Enzyme linked aptamer assay: based on a competition format for simultaneous detection of antibodies to Mycoplasma bovis in serum. Anal. Chem. 86, 7001–7019.

Gao, W., Li, B., Yao, R., Li, Z., Wang, X., Dong, X., Qu, H., Li, Q., Ni, Ch., Zhou, B., Xiu, Z., 2017. Intuitive label-free SERS detection of bacteria using aptamer coating in situ in a microfluidic biochip. Talanta 186, 415–422.

Gold, L., Ayers, D., Bertino, J., Bock, C., Bock, A., Brody, E.N., Carter, J.D., Dalby, A.B., Eaton, B.E., Fitzwater, T., Flather, D., Forbes, A., Foreman, T., Fowler, C., Gawande, B., Goss, M., Gunn, M., Gupta, S., Halladay, D., Heil, J., Heilig, J., Hicke, B., Husar, G., Ivanov, A., Janjavat, S., Kang, J., Kaur, S., Kaur, S., Kaur, K., Kaur, H., Kraemer, S., Kroiss, L., Le, N., Levine, D., Lindsey, W., Lollo, B., Mayfield, W., Mehlan, M., Meherl, R., Nelson, S.K., Nelson, M., Nieuwendt, D., Nikrad, M., Ochsner, U., Ostraff, R.M., Otis, M., Parker, T., Pietrasiewicz, S., Resniciou, D.L., Rohlhoff, J., Sanders, C., Sattin, S., Schneider, D., Singer, B., Stanton, M., Sterkel, A., Stewart, A., Stratford, S., Vaught, J.D., Vitkjan, M., Walker, J.J., Wadbroka, M., Waugh, S., Weiss, A., Wilcox, S.K., Wolfson, A., Walt, S.K., Zhang, C., Zichi, D., 2010. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004.

Gopinath, S.C., Tang, T.H., Chen, Y., Citartan, M., Lakshmipriya, T., 2014. Bacterial detection system: from microscope to smartphone. Biosens. Bioelectron. 60, 332–342.

Green, Louis S., Bell, Carol, Janjic, Nebojsa, 2001. Aptamers as reagents for high-throughput screening. Biotechniques 30 (5), 1094–1110. https://doi.org/10.2144/01s050d2.

Gu, M.B., 2016. Highly sensitive detection of pandemic viruses, biomarkers, and small molecules by using Aptamer nanobiosensor. Nanomod-Nanotechnol. 12, 49–54.

Guiley, A.Y., Van Creveld, C., Yagil, R., 2002. Detection of subclinical mastitis in dromedary camels (Camelus dromedarius) using somatic cell count and the N-acetyl-beta-D-glucosaminidase test. Trop. Anim. Health Prod. 34, 95–104.

Hinula, K., Mijacz-Tynzer, A., Mijaczy, R., Mijaczy, R., Szczewinska, M., Szczewinska, M., Sreewatans, S., Ghrum, A., 2017. A novel method for detection of H5N2 influenza viruses by an aptamer real-time PCR. J. Virol. Methods 243, 83–91.

Hossain, M.T., Shibata, T., Kabashima, T., Kai, M., 2010. Aptamer-mediated chemiluminescence detection of prion protein on a membrane using trimethoxysilylphenyloxylalcohol. Anal. Sci. 26, 645–647.

Hwang, J.Y., Kim, S.T., Han, H.S., Kim, K., Han, J.S., 2016. Optical aptamer probes of fluorescent imaging to rapid monitoring of circulating tumor cell. Sensors (Basel) 16, 1211–1224.

Joshi, R., Janagama, H., Dwivedi, H.P., Senthil Kumar, T.M., Jaykus, L.A., Schefers, J., Sreewatans, S., Ghrum, A., 2017. Selection of an aptamer functions as a biosensor for ricin. Analyst. 136, 3884–3895.

Kajima, A., Tanaka, M., Komatsu, M., Aoki, M., Kajima, A., Tanaka, M., Komatsu, M., Sreewatans, S., Ghrum, A., 2017. Selection of an aptamer functions as a biosensor for ricin. Analyst. 136, 3884–3895.

Kim, T.H., Lee, S.W., 2021. Aptamers for anti-viral therapeutics and diagnostics. Int. J. Mol. Sci. 22, 4526–4550.

Kim, S.H., Lee, J., Lee, B.H., Song, C.S., Gu, M.B., 2016. Specific detection of avian influenza H9N2 whole virus particles on lateral flow strips using a pair of aptamers. Biosens. Bioelectron. 24, 3550–3555.

Kim, S.H., Lee, J., Lee, B.H., Song, C.S., Gu, M.B., 2019. Characterization and application, and DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol. Cell. Probes 23, 20–28.

Kanwar, J.R., Roy, K., Kanwar, R.K., 2011. Chimeric aptamers in cancer cell-targeted drug delivery. Crit. Rev. Biochem. Mol. Biol. 46, 459–477.

Kaur, P., Dhawan, M., 2020. Biological fortune-teller-SELEX for Shiga toxin antigenic-pesticide aptamers & detection via chitosan-WSe2(2) aptasensor. Biosens. Bioelectron. 167, 112498.

Kim, S.H., Cho, J.W., Kim, A.R., Lee, S.C., Yoon, M.Y., 2020. Development of ssDNA aptamers for detection of diaminoethane inhibition of the highly pathogenic avian influenza virus subtype H5N1. Biomolecules 10, 484.

Joshi, R., Janagama, H., Dwivedi, H.P., Senthil Kumar, T.M., Jaykus, L.A., Schefers, J., Sreewatans, S., Ghrum, A., 2017. Selection of an aptamer functions as a biosensor for ricin. Analyst. 136, 3884–3895.

Kaur, P., Dhawan, M., 2020. Biological fortune-teller-SELEX for Shiga toxin antigenic-pesticide aptamers & detection via chitosan-WSe2(2) aptasensor. Biosens. Bioelectron. 167, 112498.

Kim, S.H., Lee, J., Lee, B.H., Song, C.S., Gu, M.B., 2019. Specific detection of avian influenza H5N2 whole virus particles on lateral flow strips using a pair of ssDNA aptamers. Biosens. Bioelectron. 134, 121–126.

Kim, T.H., Lee, S.W., 2021. Aptamers for anti-viral therapeutics and diagnostics. Int. J. Mol. Sci. 22, 4526–4550.

Kouassi, G.K., Wang, P., Sreewatans, S., Trudayaraj, J., 2007. Aptamer-mediated magnetic and gold-coated magnetic nanoparticles as detection assay for prion protein. Biotechnol. Prog. 23, 1239–1244.

Lamont, E.A., He, L., Warriner, K., Labuza, T.P., Sreewatans, S., 2011. A single DNA aptamer functions as a biosensor for ricins. Analyst. 136, 3884–3895.

Lavania, S., Das, R., Dhaman, A., Myneedu, V.P., Verma, A., Singh, N., Sharma, T.K., Kyagi, J.S., 2018. Aptamer-based TB antigen tests for the rapid diagnosis of Escherichia coli O111. Electroanalysis 24, 1186–1191.

Liang, H.R., Hu, Q.G., Xue, H.I., Li, L., Zheng, X.X., Gao, Y.W., Yang, S.T., Xia, X.Z., 2014b. Selection of an aptamer against rabies virus: a new class of molecules with antiviral activity. Virus Res. 184, 7–13.

Liang, H.R., Lu, Q., Zheng, X., Gao, Y.W., Hu, G.Q., Wu, H.X., Wang, H.L., Yang, S.T., Xia, X.Z., 2013. Aptamers targeting rabies virus-infected cells inhibit viral replication both in vitro and in vivo. Virus Res. 173, 398–403.

Lu, Y., Chen, F., Yuan, S., Sun, B., Sun, R., Men, M., 2020. A novel method for sensitive detection of Escherichia coli O157:H7 based on an aptamer and hybridization chain reaction. Anal. Methods 12, 3734–3740.

Longnami, D., Neb, R., Sarmark, A.K., Taxy, A., Awachat, V.B., Saxena, V.K., 2011. A brief review of aptamer-based disease diagnosis using a multiplexed aptasensing platform. In: 20th International Conference on Industrial and Engineering Chemistry Research. 4527–4531.

Lu, R., Zhao, X., Li, J., Ni, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, Z., Liao, L., Chen, M., 2020. Design of a novel single-stranded DNA aptamer for the detection of hepatitis C virus (HCV) NS5B in cell culture. Biosens. Bioelectron. 136, 106416.

Lu, R., Zhao, X., Li, J., Ni, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, Z., Liao, L., Chen, M., 2020. Design of a novel single-stranded DNA aptamer for the detection of hepatitis C virus (HCV) NS5B in cell culture. Biosens. Bioelectron. 136, 106416.
Sadeghi, A.S., Mohsenzadeh, M., Ahnous, K., Taghdisi, S.M., Ramezani, M., 2018. Development and characterization of DNA aptamers against florfenicol: Fabrication of a sensitive fluorescent aptasensor for specific detection of florfenicol in milk. Talanta 182, 193–201.

Seo, H.B., Gu, M.B., 2017. Aptamer-based sandwich-type biosensors. J. Biol. Eng. 11, 11.

Sharma, N., Huma, Z.L., Singh, S.G., Navjot, Sharma, S., Gupta, S.K., Upadhyay, S.R., 2018. Prevalence of clinical and subclinical mastitis in buffaloes in Jammu region. Int. J. Agri. Environ. Biotechn. 11, 415–420.

Sharma, N., Matti, S.K., 2010. Incidence, etiology and antibioticogram of sub clinical mastitis in cows in Durg, Chattisgarh. Indian J. Vet. Res. 19, 45–54.

Sharma, N., Rho, G.J., Hong, H.J., Kang, T.Y., Lee, H.K., Hur, T.J., Jeong, D.K., 2012. Bovine mastitis: an Asian perspective. Asian J. Anim. Vet. Adv. 7, 454–476.

Sharma, S., Singh, N.K., Bhadwal, M.S., 2011. Relationship of somatic cell count and mastitis: an overview. Asian-Austr. J. Anim. Sci. 24, 429–438.

Sheikhzadeh, E., Beni, V., Zouroub, M., 2021. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 230, 122026.

Shen, H., Chen, H., Cheng, Z., Ma, L., Huang, L., Xiao, M., Xiao, W., Xie, K., Tang, Y., 2018. A novel fluorescent immunochromatographic strip combined with pocket fluorescence observation instrument for rapid detection of PRV. Anal. Bioanal. Chem. 410, 7655–7661.

Shi, J., Wen, Z., Zheng, C., Yang, W., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y., Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., Chen, H., Hu, B., 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science.

Shigdar, S., Lin, J., Yu, Y., Pastuvic, M., Wei, M., Duan, W., 2011. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci. 102, 991–998.

Simmons, S.C., McKenzie, E.A., Harris, L.K., Aplin, J.D., Brenchley, P.E., Velasco-Garcia, M.N., Missailidis, S., 2012. Development of novel single-stranded nucleic acid aptamers against the pro-angiogenic and metastatic enzyme matrix metalloproteinase (HPS1). PLoS ONE 7, e37938.

So, H.M., Park, D.W., Jeon, E.K., Kim, Y.H., Kim, B.S., Lee, C.K., Choi, S.Y., Kim, S.C., 2011. Detection and titrer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 4, 197–201.

Song, S.H., Wang, L., Li, J., Zhao, J., Fan, C., 2008. Aptamer-based biosensors. Trends Anal. Chem. 27, 108–117.

Stoltenburg, R., Kräfčková, P., Vlčková, S., Strehlitz, B., 2016. G-quadruplex aptamer targeting Protein A and its capability to detect Staphylococcus aureus demonstrated by ELONA Sci. Rep. 6, 33812.

Tsouloufi, T.K., Donnison, L.M., Smyth, K.L., Peters, A.R., 2020. Development of a diagnostic reagents. Proteomics Clin. Appl. 6, 563–573.

Tian, R.Y., Lin, C., Yu, S.Y., Gao, Y., Zhou, J., Liu, F., 2015. RNA aptamer based detection of four tetracycline veterinary drugs in milk based on catalytic hairpin biosensor. J. Agric. Food Chem. 66, 238–243.

Xiao, S.J., Hu, P.P., Xiao, G.F., Wang, Y., Liu, Y., Huang, C.Z., 2012. Label-free detection of prion protein with its DNA aptamer through the formation of T-H²-gT² configuration. J. Phys. Chem. B 116, 9565–9569.

Xu, J., Cai, Y., Jiang, B., Li, X., Jin, H., Liu, W., Kong, Z., Hong, J., Sealy, J.E., Iqbal, M., Li, Y., 2015. An optimized aptamer-binding viral regimen protein VPS inhibits the production of Bovine Herpesvirus-1 through blocking nucleocapsid protein replication. J. Virol. 100, 1226–1238.

Xu, J., Zhang, X., Zhou, S., Shen, J., Yang, D., Wu, J., Li, X., Li, M., Huang, X., Sealy, J.E., Iqbal, M., Li, Y., 2017. A DNA aptamer efficiently inhibits the infectivity of Bovine herpesvirus 1 by blocking viral entry. Sci. Rep. 7, 11796.

Xu, X., Shen, C., Wang, P., Feng, J., Zhou, H., Li, X., Zhong, W., Hao, P., 2020. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 63, 457–460.

Xu, Y., Han, T., Li, X., Sun, L., Zhang, Y., 2015. Colorimetric detection of kanamycin based on analyte-protected silver nanoparticles and aptamer-selective sensing mechanism. Anal. Chim. Acta 891, 298–303.

Xu, Y., Liu, C., Sun, Y., Shao, Y., Cai, Z., Zhang, Y., Miao, J., Miao, P., 2018. A colorimetric aptasensor for the antibiotics oxytetracycline and kanamycin based on the use of magnetic beads and gold nanoparticles. Microchim. Acta. 185, 548.

Yan, C., Zhang, J., Yao, L., Xue, F., Li, J., Li, B., Chen, W., 2018. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food. Food Chem. 260, 208–212.

Yoon, S., Lee, C., Han, D., Song, J.Y., Kang, K.S., Lee, Y.S., 2010. Neutralization of infectivity of porcine circovirus type 2 (PCV2) by capsid-binding 2’-RNA aptasensors. Antiviral Res. 88, 19–24.

Zecon, A., Meinen, G., Sora, M., Mattina, R., Cicilera, M., Zanini, L., 2021. Total and differential cell counts as a tool to identify intramammary infections in cows after calving. Animals (Basel) 11, 2021.

Zhang, H.J., Lu, Y.H., Tong, Y.J., Wang, Q.L., Huang, X.X., Zhu, R., Wang, X.L., Liang, L.P., Teng, P., Zhen, H.Z., 2014. Apaptamer-functionalized gold nanoparticle biosensor for the detection of prion protein. Anal. Methods 6, 2982–2987.

Zhang, X., Jia, X.F., Ya, M.S., Siquingqimuge, N., Liu, B.Z., Suyila, Y.C., Gao, X.S., Liu, Q.Y., Zhang, Y., He, J., Wu, J., Wu, L., Cui, J., 2018. Prevalence of clinical and subclinical mastitis in buffaloes of Jammu and Kashmir. Indian J. Vet. Res. 19, 45–54.

Zhao, F., Xie, Q., Xu, M., Wang, S., Zhou, J., Liu, F., 2015. RNA aptamer based electrochemical biosensor for sensitive and selective detection of CAMP. Biosens. Bioelectron. 66, 238–243.

Zhou, C., Zou, H., Sun, C., Ren, D., Xiong, W., Li, Y., 2018. Fluorescent aptasensor for detection of four tetracycline veterinary drugs in milk based on catalytic hairpin assembly reaction and displacement of G-quadruplex. Anal. Bioanal. Chem. 410, 2981–2989.