Abstract Let K be a knot of genus g. If K is fibered, then it is well known that the knot group $\pi(K)$ splits only over a free group of rank $2g$. We show that if K is not fibered, then $\pi(K)$ splits over non-free groups of arbitrarily large rank. Furthermore, if K is not fibered, then $\pi(K)$ splits over every free group of rank at least $2g$. However, $\pi(K)$ cannot split over a group of rank less than $2g$. The last statement is proved using recent results of Agol, Przytycki–Wise and Wise.

1 Introduction

We start out with a few definitions from group theory. Let π be a group. We say that π splits over the subgroup B if π admits an HNN decomposition with base group A and amalgamating subgroup B. More precisely, π splits over the subgroup B if there exists an isomorphism

$$\pi \cong \langle A, t \mid \varphi(b) = tbt^{-1} \text{ for all } b \in B \rangle,$$

D. S. Silver and S. G. Williams were partially supported by Grants #245671 and #245615 from the Simons Foundation.
where $B \subset A$ are subgroups of π and $\varphi : B \to A$ is a monomorphism. In this notation, relations of A are implicit. We will write such a presentation more compactly as $\langle A, t \mid \varphi(B) = t B t^{-1} \rangle$.

In this paper we are interested in splittings of knot groups. Given a knot $K \subset S^3$ we denote the knot group $\pi_1(S^3 \setminus K)$ by $\pi(K)$. We denote by $g(K)$ the genus of the knot, the minimal genus of a Seifert surface Σ for K. It follows from the Loop Theorem and the Seifert–van Kampen theorem that we can split the knot group $\pi(K)$ over the free group $\pi_1(\Sigma)$ of rank $2g(K)$. The rank $\text{rk}(G)$ of a group G is the minimal size of a set of generators for G.

It is well known that if K is a fibered knot, that is, the knot complement $S^3 \setminus K$ fibers over S^1, then the group $\pi(K)$ splits only over free groups of rank $2g(K)$. (See, for example, Lemma 3.1.) We show that this property characterizes fibered knots. In fact, we can say much more.

Theorem 1.1 Let K be a non-fibered knot. Then $\pi(K)$ splits over non-free groups of arbitrarily large rank.

Neuwirth [51, Problem L] asked whether there exists a knot K such that $\pi(K)$ splits over a free group of rank other than $2g(K)$. By the above, such a knot would necessarily have to be non-fibered. Lyon [45, Theorem 2] showed that there does in fact exist a non-fibered genus-one knot K with incompressible Seifert surfaces of arbitrarily large genus. This implies in particular that there exists a knot K for which $\pi(K)$ splits over free groups of arbitrarily large rank. We give a strong generalization of this result.

Theorem 1.2 Let K be a non-fibered knot. Then for any integer $k \geq 2g(K)$ there exists a splitting of $\pi(K)$ over a free group of rank k.

Note that an incompressible Seifert surface gives rise to a splitting over a free group of even rank. The splittings over free groups of odd rank in the theorem are therefore not induced by incompressible Seifert surfaces.

Feustel and Gregorac [20] showed that if N is an aspherical, orientable 3-manifold such that $\pi = \pi_1(N)$ splits over the fundamental group of a closed surface $\Sigma \neq S^2$, then this splitting can be realized topologically by a properly embedded surface. (More splitting results can be found in [15, Proposition 2.3.1].) The fact that fundamental groups of non-fibered knots can be split over free groups of odd rank shows that the result of Feustel and Gregorac does not hold for splittings over fundamental groups of surfaces with boundary.

Theorems 1.1 and 1.2 can be viewed as strengthenings of Stallings’s fibering criterion. We refer to Sect. 7 for a precise statement.

Our third main theorem shows that Theorem 1.2 is optimal.

Theorem 1.3 If K is a knot, then $\pi(K)$ does not split over a group of rank less than $2g(K)$.

The case $g(K) = 1$ follows from the Kneser Conjecture and work of Waldhausen [72], as we show in Sect. 8.1. However, to the best of our knowledge, the classical methods of 3-manifold topology do not suffice to prove Theorem 1.3 in the general case.
case. We use the recent result [26] that Wada’s invariant detects the genus of any knot. This result in turn relies on the seminal work of Agol [2], Wise [74–76], Przytycki–Wise [52,54] and Liu [44].

Theorem 1.3 is of interest for several reasons:

1. It gives a completely group-theoretic characterization of the genus of a knot, namely

 $g(K) = \frac{1}{2} \min \{ \text{rk}(B) | \pi(K) \text{ splits over the group } B \}.$

 A different group-theoretic characterization was given by Calegari (see the proof of Proposition 4.4 in [13]) in terms of the ‘stable commutator length’ of the longitude.

2. Theorem 1.3 fits into a long sequence of results showing that minimal-genus Seifert surfaces ‘stay minimal’ even if one relaxes some conditions. For example, Gabai [29] showed that the genus of an immersed surface cobounding a longitude of K is at least $g(K)$. Furthermore, minimal-genus Seifert surfaces give rise to surfaces of minimal complexity in the 0-framed surgery N_K (see [30]) and in most S^1-bundles over N_K (see [28,41]).

3. Given a closed 3-manifold N it is obvious that $\text{rk}(\pi_1(N))$ is a lower bound for the Heegaard genus $g(N)$ of N. In light of Theorem 1.3 one might hope that this is in an equality; that is, that $\text{rk}(\pi_1(N)) = g(N)$. This is not the case, though, as was shown by various authors (see [10,58] and [42]).

The paper is organized as follows. In Sect. 2 we discuss several basic facts about HNN decompositions of groups. In Sect. 3 we recall that incompressible Seifert surfaces give rise to HNN decompositions of knot groups and we characterize in Lemma 3.1 the splittings of fundamental groups of fibered knots. In Sect. 4 we consider the genus-one non-fibered knot $K = 5_2$. We give explicit examples of splittings of the knot group over a non-free group and over the free group F_3 of rank 3, and inequivalent splittings of the knot group over F_2.

Section 5 contains the proof of Theorem 1.1, and in Sect. 6 we give the proof of Theorem 1.2. In Sect. 7 we show that these two theorems strengthen Stallings’ fibering criterion. In Sect. 8.1 we give a proof of Theorem 1.3 for genus-one knots. The proof relies mostly on the Kneser Conjecture and a theorem of Waldhausen. In Sect. 8.2 we review the definition of Wada’s invariant of a group. Finally, in Sect. 8.3 we prove Theorem 8.5, which combined with the main result of [26] provides a proof of Theorem 1.3 for all genera.

We conclude this introduction with two questions. The precise notions are explained in Sect. 2.

1. Let π be a word hyperbolic group and let $\epsilon: \pi \to \mathbb{Z}$ be an epimorphism such that $\text{Ker}(\epsilon)$ is not finitely generated. Does (π, ϵ) admit splittings over (infinitely many) pairwise non-isomorphic groups? (The group $\pi = \pi(K)$ satisfies these conditions if K is a non-fibered knot.)

2. Let K be a non-fibered knot of genus g. Does $\pi(K)$ admit (infinitely many) inequivalent splittings over the free group F_{2g} on $2g$ generators?
Conventions and notations All 3-manifolds are assumed to be connected, compact and orientable. Given a submanifold X of a 3-manifold N, we denote by $vX \subset N$ an open tubular neighborhood of X in N. Given $k \in \mathbb{N}$ we denote by F_k the free group on k generators.

2 HNN-decompositions and splittings of groups

In the following section and throughout the paper we assume that all groups are finitely presented unless we say specifically otherwise. Note that finitely generated subgroups of 3-manifolds are by [59] also finitely presented.

2.1 Splittings of groups

An HNN decomposition of a group π is a 4-tuple (A, B, t, φ) consisting of subgroups $B \leq A$ of π, a stable letter $t \in \pi$, and an injective homomorphism $\varphi : B \to A$, such that the natural inclusion maps induce an isomorphism from $\langle A, t | \varphi(B) = tBt^{-1} \rangle$ to π. Alternatively, a HNN-decomposition of π can be viewed as an isomorphism

$$f : \pi \xrightarrow{\cong} \langle A, t | \varphi(B) = tBt^{-1} \rangle$$

where $\varphi : B \to A$ is an injective map. We will frequently go back and forth between these two points of view.

We need a few more definitions:

(1) Given an HNN-decomposition (A, B, t, φ) we refer to the homomorphism $\epsilon : \pi \to \mathbb{Z}$ that is given by $\epsilon(t) = 1$ and $\epsilon(a) = 0$ for $a \in A$ as the canonical epimorphism.

(2) Let π be a group and let $\epsilon \in \text{Hom}(\pi, \mathbb{Z})$ be an epimorphism. A splitting of (π, ϵ) over a subgroup B (with base group A) is an HNN decomposition (A, B, t, φ) of π such that ϵ equals the canonical epimorphism. With the alternative point of view explained above, a splitting of (π, ϵ) is an isomorphism

$$f : \pi \xrightarrow{\cong} \langle A, t | \varphi(B) = tBt^{-1} \rangle$$

such that the following diagram commutes:

$$\begin{array}{ccc}
\pi & \xrightarrow{f} & \langle A, t | \varphi(B) = tBt^{-1} \rangle \\
& \searrow \epsilon \swarrow & \\
& \mathbb{Z} & \downarrow \psi \\
\end{array}$$

where ψ denotes the canonical epimorphism.

(3) Two splittings (A, B, t, φ) and (A', B', t', φ') of (π, ϵ) are called weakly equivalent if there exists an automorphism Φ of π with $\Phi(B) = B'$. If Φ can be chosen
Splittings of knot groups

405
to be an inner automorphism of π, then the two HNN decompositions are said to be strongly equivalent.

We conclude this section with the following well-known lemma of [9]. It appears as Theorem B* in [64] where an elementary proof can be found.

Lemma 2.1 Let π be a finitely presented group and let $\epsilon \in \text{Hom}(\pi, \mathbb{Z})$ be an epimorphism. Then there exists a splitting

$$f : \pi \xrightarrow{\cong} \langle A, t \mid \phi(B) = tBt^{-1} \rangle$$

of (π, ϵ) where A and B are finitely generated.

2.2 Splittings of pairs (π, ϵ) with finitely generated kernel

The following lemma characterizes splittings of pairs (π, ϵ) for which $\text{Ker}(\epsilon)$ is finitely generated.

Lemma 2.2 Let π be a finitely presented group, $\epsilon : \pi \to \mathbb{Z}$ an epimorphism, and t an element of π with $\epsilon(t) = 1$. If $\text{Ker}(\epsilon)$ is finitely generated, then there exists a canonical isomorphism

$$\pi = \langle B, t \mid \phi(B) = tBt^{-1} \rangle$$

where $B := \text{Ker}(\epsilon)$ and where $\phi : B \to B$ is given by conjugation by t. Furthermore, any other splitting of (π, ϵ) is strongly equivalent to this splitting.

Proof Let π be a finitely presented group and let $\epsilon : \pi \to \mathbb{Z}$ be an epimorphism such that $B = \text{Ker}(\epsilon)$ is finitely generated. We have an exact sequence

$$1 \to B \to \pi \xrightarrow{\epsilon} \mathbb{Z} \to 0.$$

Let $t \in \pi$ with $\epsilon(t) = 1$. The map $n \mapsto t^n$ defines a right-inverse of ϵ, and we see that B is canonically isomorphic to the semi-direct product $(t) \rtimes B$ where t^n acts on B by conjugation by t^n. That is, we have a canonical isomorphism

$$\pi = \langle B, t \mid \phi(B) = tBt^{-1} \rangle.$$

We now suppose that we have another splitting $\pi = \langle C, s \mid \psi(D) = sDs^{-1} \rangle$ of (π, ϵ). By our hypothesis the group $B = \text{Ker}(\epsilon)$ is finitely generated. On the other hand, it follows from standard results in the theory of graphs of groups (see [61]) that

$$\text{Ker}(\epsilon) \cong \cdots C_k \ast_D h C_{k+1} \ast_D h C_{k+2} \cdots,$$

where $C_i = C$ and $D_i = D$ for all $i \in \mathbb{Z}$ and each map $D_i \to C_{i+1}$ is given by ψ.

As in [51], the fact that the infinite free product with amalgamation is finitely generated implies that $C_i = D_i = \psi(D_{i-1})$ for all $i \in \mathbb{Z}$. This, in turn, implies that
each C_i and D_i is isomorphic to $D = \text{Ker}(\epsilon)$. It is now clear that the identity on π already has the desired property relating the two splittings of (π, ϵ). □

2.3 Induced splittings of groups

Let

$$\pi = \langle A, t \mid \varphi(B) = tBt^{-1} \rangle$$

be an HNN-extension. Given $n \leq m \in \mathbb{N}$ we denote by $A_{[n,m]}$ the result of amalgamating the groups t^iAt^{-i}, $i = n, \ldots, m$ along the subgroups $t^i\varphi(B)t^{-i} = t^{i+1}Bt^{-i-1}$, $i = n, \ldots, m - 1$. In our notation,

$$A_{[n,m]} = \langle \star_{i=n}^{m-1} t^iAt^{-i} \mid t^i\varphi(B)t^{-i} = t^{i+1}Bt^{-i-1} \ (j = n, \ldots, m - 1) \rangle.$$

Given any $k \leq m \leq n \leq l$, we have a canonical map $A_{[m,n]} \to A_{[k,l]}$ which is a monomorphism (see, for example, [61] for details). If $\epsilon: \pi \to \mathbb{Z}$ is the canonical epimorphism, then it is well known that $\text{Ker}(\epsilon)$ is given by the direct limit of the groups $A_{[-m,m]}$, $m \in \mathbb{N}$; that is,

$$\text{Ker}(\epsilon) = \lim_{m \to \infty} A_{[-m,m]}.$$

The following well-known lemma shows that a splitting of a pair (π, ϵ) gives rise to a sequence of splittings.

Lemma 2.3 Let

$$\pi = \langle A, t \mid \varphi(B) = tBt^{-1} \rangle$$

be an HNN-extension. For any integer $n \geq 0$, let

$$\varphi_n : \pi_1(A_{[0,n]}) \to A_{[1,n+1]}$$

be the map that is given by conjugation by t. Then the obvious inclusion maps induce an isomorphism

$$\langle A_{[0,n+1]}, t \mid \varphi_n(A_{[0,n]}) = tA_{[0,n]}t^{-1} \rangle \overset{i}{\to} \pi = \langle A, t \mid \varphi(B) = tBt^{-1} \rangle.$$

Proof We write

$$\Gamma = \langle A_{[0,n+1]}, t \mid \varphi_n(A_{[0,n]}) = tA_{[0,n]}t^{-1} \rangle.$$

We denote by π' (respectively Γ') the kernel of the canonical map from π (respectively Γ) to \mathbb{Z}. It is clear that it suffices to show that the restriction of $i : \Gamma \to \pi$ to $\pi' \to \Gamma'$ is an isomorphism.

Springer
For \(i \in \mathbb{Z} \), we write \(A_i := t^i A t^{-i} \) and \(B_i := \varphi(t^{i+1} B t^{-i-1}) \). Note that \(\Gamma' \) is canonically isomorphic to

\[
\cdots (A_0 \ast B_0 \cdots \ast B_n A_{n+1}) \ast A_1 \ast B_1 \cdots \ast B_n A_{n+1} \\
(A_1 \ast B_1 \cdots \ast B_{n+1} A_{n+2}) \ast A_2 \ast B_2 \cdots \ast B_{n+1} A_{n+2} \cdots ,
\]

and \(\pi' \) is canonically isomorphic to

\[
\cdots \ast B_0 A_{-1} \ast B_{-1} A_0 \ast B_0 A_1 \ast B_1 \ast \cdots
\]

It is now straightforward to see that \(\iota \) does indeed restrict to an isomorphism \(\Gamma' \to \pi' \). \(\square \)

Note that the isomorphism in Lemma 2.3 is canonical. Throughout the paper we will therefore make the identification

\[
\pi = \langle A_{[0, n+1]}, t \mid \varphi_n(A_{[0,n]}) = tA_{[0,n]}t^{-1} \rangle.
\]

In the paper we will also write \(A = A_{[0,0]} \).

3 Splittings of knot groups and incompressible surfaces

Now let \(K \subset S^3 \) be a knot, that is, an oriented embedded simple closed curve in \(S^3 \). We write \(X(K) := S^3 \setminus vK \) and

\[
\pi(K) := \pi_1(X(K)) = \pi_1(S^3 \setminus vK).
\]

The orientation of \(K \) gives rise to a canonical epimorphism \(\epsilon_K : \pi(K) \to \mathbb{Z} \) sending the oriented meridian to 1.

Let \(\Sigma \) be a Seifert surface of genus \(g \) for \(K \); that is, a connected, orientable, properly embedded surface \(\Sigma \) of genus \(g \) in \(X(K) \) such that \(\partial \Sigma \) is an oriented longitude for \(K \). Note that \(\Sigma \) is dual to the canonical epimorphism \(\epsilon \).

Suppose that \(\Sigma \) is incompressible. (Recall that a surface \(\Sigma \) in a 3-manifold \(N \) is called incompressible if the inclusion-induced map \(\pi_1(\Sigma) \to \pi_1(N) \) is injective.) We pick a tubular neighborhood \(\Sigma \times [-1, 1] \). The manifold \(X(K) \setminus \Sigma \times (-1, 1) \) is the result of cutting along \(\Sigma \). The Seifert–van Kampen theorem gives us an splitting

\[
\pi_1(X(K)) = \langle \pi_1(X(K) \setminus \Sigma \times (-1, 1)), t \mid \varphi_1(\Sigma \times -1) = t\pi_1(\Sigma \times 1)t^{-1} \rangle
\]

of \((\pi(K), \epsilon_K) \), where \(\varphi_1 \) is induced by the canonical homeomorphism \(\Sigma \times -1 \to \Sigma \times 1 \).

We thus see that \(\pi(K) \) splits over the free group \(\pi_1(\Sigma) \) of rank \(2g \).

Given a knot \(K \subset S^3 \), we denote by \(g = g(K) \) the minimal genus of a Seifert surface. It follows from the Loop Theorem (see, for example, [35, Chapter 4]) that a Seifert surface of minimal genus is incompressible. Hence \(\pi(K) \) splits over a free group of rank \(2g(K) \).
If two incompressible Seifert surfaces of a knot K are isotopic, then it is clear that the corresponding splittings of $\pi(K)$ are strongly equivalent. There are many examples of knots that admit non-isotopic minimal genus Seifert surfaces; see e.g. [3,18,19,33,47]. We expect that these surfaces give rise to splittings that are not strongly equivalent.

On the other hand, if a knot is fibered, then it admits a unique minimal genus Seifert surface up to isotopy (see e.g. [17, Lemma 5.1]). It is therefore perhaps not entirely surprising that $\pi(K)$ admits a unique splitting up to strong equivalence. More precisely, we have the following well-known lemma, which is originally due to Neuwirth [51].

Lemma 3.1 Let K be a fibered knot of genus g with fiber Σ. Then any splitting of $\pi(K)$ is strongly equivalent to

$$\langle \pi_1(X(K)\setminus \Sigma \times (-1, 1)), t \mid \varphi(\pi_1(\Sigma \times -1) = t\pi_1(\Sigma \times 1)t^{-1} \rangle.$$

In particular $\pi(K)$ only splits over the free group of rank $2g$.

Proof If Σ is a fiber surface for $X(K)$, then the infinite cyclic cover of $X(K)$ is diffeomorphic to $\Sigma \times \mathbb{R}$. Put differently, $\text{Ker}(\epsilon_K) \cong \pi_1(\Sigma)$ which implies in particular that $\text{Ker}(\epsilon_K)$ is finitely generated. The lemma is now a straightforward consequence of Lemma 2.2. \qed

4 Splitting of the knot group for $K = 52$

In this section we give several explicit splittings of the knot group $\pi(K)$ where $K = 52$, the first non-fibered knot in the Alexander-Briggs table. We construct:

1. three splittings of $\pi(52)$ over the free group F_2, no two being weakly equivalent;
2. a splitting of $\pi(52)$ over the free group F_3 on three generators;
3. a splitting of $\pi(52)$ over a non-free group.

Note that neither the second nor the third splitting is induced by an incompressible surface. We will also see that at least two of the three splittings over F_2 are not induced by an incompressible surface.

Since K is a knot of genus one, a minimal-genus Seifert surface gives rise to a splitting of $\pi(K)$ over a free group of rank 2. In the following we will consider an explicit splitting that comes from a Wirtinger presentation of the knot group:

$$\pi(K) = \langle a, b, t \mid tat^{-1} = b, \quad tba^{-1}t^{-1} = (b^{-1}a)^2 \rangle.$$

Here the knot group has an HNN decomposition (A, B, t, φ), where A is the free group on a, b while B is the subgroup freely generated by a and $b^{-1}ab^{-1}$. The isomorphism φ sends $a \mapsto b$ and $b^{-1}ab^{-1} \mapsto (b^{-1}a)^2$. For the remainder of this section we identify $\pi(K)$ with $\langle A, t \mid \varphi(B) = tBt^{-1} \rangle$.

Proposition 4.1 Consider the splittings:

- $\pi(K) = \langle A, t \mid \varphi(B) = tBt^{-1} \rangle$,
- $\pi(K) = \langle A_{[0,1]}, t \mid \varphi_1(A) = tAt^{-1} \rangle$,
- $\pi(K) = \langle A_{[0,2]}, t \mid \varphi_2(A_{[0,1]}) = tA_{[0,1]}t^{-1} \rangle$.
where the latter two splittings are provided by Lemma 2.3. Then the following hold.

(i) Each is a splitting over a free group of rank two.
(ii) No two of the splittings of \((\pi(K), \epsilon_K)\) are weakly equivalent.
(iii) At least two of the splittings are not induced by an incompressible Seifert surface.

In the proof of Proposition 4.1 we will make use of the following lemma which is perhaps also of independent interest.

Lemma 4.2 Let \(M\) be a hyperbolic 3-manifold with empty or toroidal boundary, and let \(G\) be a subgroup of \(\pi := \pi_1(M)\). If \(f : \pi \to \pi\) is an automorphism with \(f(G) \subset G\), then \(f(G) = G\).

We do not know whether the conclusion of the lemma holds for any 3-manifold.

Proof Let \(f : \pi \to \pi\) be an automorphism with \(f(G) \subset G\). Since \(M\) is hyperbolic, it is a consequence of the Mostow Rigidity Theorem that the group of outer automorphisms of \(\pi\) is finite. (See, for example, [5, Theorem C.5.6] and [37, p. 213] for details.) Consequently, there exists a positive integer \(n\) and an element \(x \in \pi\) such that \(f^n(G) = xGx^{-1}\). If follows from [12, Theorem 4.1] that \(f^n(G) = G\).

The assumption that \(f(G) \subset G\) implies inductively that \(f^n(G) \subset f(G)\). Hence \(f(G) = G\). \(\Box\)

We can now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1 It is clear that the first and the second splitting are over a free group of rank two. It remains to show that \(A_{[0,1]}\) is a free group of rank two. First note that

\[
A_{[0,1]} \cong \langle a_0, b_0, a_1, b_1 \mid a_1 = b_0, b_1^{-1}a_1b_1^{-1} = (b_0^{-1}a_0)^2 \rangle,
\]

where \(a_i\) and \(b_i\) denote \(t^ia^{-i}\) and \(t^ib^{-i}\), respectively. Using the first relation to eliminate the generator \(b_0\), we obtain \(A_{[0,1]} \cong \langle a_0, a_1, b_1 \mid r \rangle\), where \(r = (a_1^{-1}a_0)^2b_1a_1^{-1}b_1\). We let \(c = a_1^{-1}a_0\) and \(d = b_1a_1^{-1}\). Clearly \(\langle c, d, r \rangle\) is a basis for the free group on \(a_0, a_1, b_1\). Hence \(A_{[0,1]} \cong \langle c, d, r \mid r \rangle \cong \langle c, d \mid \rangle\) is indeed a free group of rank 2. This concludes the proof of (i).

We turn to the proof of (ii). Since \(K\) is not fibered it follows from Stallings’s theorem (see Theorem 7.1) that \(\text{Ker}(\epsilon_K) = \lim_{k \to \infty} A_{[-k,k]}\) is not finitely generated. It follows that easily that for any \(l \geq k\) the map \(A_{[0,k]} \to A_{[0,l]}\) is a proper inclusion. In particular, we have proper inclusions \(A \subset A_{[0,1]} \subset A_{[0,2]}\). Since \(S^3 \setminus vK\) is hyperbolic, the desired statement now follows from Lemma 4.2.

We prove (iii). It is well known (see, for example, [38]) that any two minimal-genus Seifert surfaces of \(S^2\) are isotopic. This implies, in particular, that any two splittings of \(\pi(K)\) induced by minimal-genus Seifert surfaces are strongly equivalent. It follows from (ii) that at least two of the three splittings are not induced by a minimal genus Seifert surface. \(\Box\)
We show that $\pi(K)$ admits a splitting over a free group of rank 3. In order to do so we note that there exists a canonical isomorphism

$$\langle a, b, t | tat^{-1} = b, t b^{-1} a b^{-1} t^{-1} = (b^{-1} a)^2 \rangle \cong \langle a, b, c, t | tat^{-1} = b, t b^{-1} a b^{-1} t^{-1} = (b^{-1} a)^2, t b^{-1} a b^{-1} t^{-1} = c \rangle.$$

(1)

Let A' be the free group generated by a, b, c. Let B' be the subgroup of A' generated by $a, b^{-1} a b^{-1}, b^{-2} a b^{-2}$. We now claim that B' is a free rank-3 subgroup of A'. To show this we consider the 4-fold covering of based graphs in Fig. 1, where we equip the lower graph with the obvious base point given by the vertex and where we equip the upper graph with the vertex on the left. The fundamental group of the covering graph in Fig. 1 is evidently free on $a, b^{-1} a b^{-1}, b^{-2} a b^{-2}$, and b^4, and so it follows that B' is a free rank-3 subgroup of A', as claimed. The elements $b, b^{-1} a b^{-1}, c$ of A' also generate a free group of rank 3, since they are free in the abelianization of A'. There exists therefore a unique homomorphism $\varphi' : B' \to A'$ such that $\varphi'(a) = b, \varphi'(b^{-1} a b^{-1}) = b^{-1} a b^{-1} a$ and $\varphi'(b^{-2} a b^{-2}) = c$. It follows that φ' is in fact a monomorphism. Hence from (1),

$$\langle A', t | t B' t^{-1} = \varphi(B') \rangle$$

defines a splitting of $\pi(K)$ over the free group B' of rank three.

Finally we give an explicit splitting of $\pi(K)$ over a subgroup that is not free. Recall that by Lemma 2.3 the group $\pi(K)$ admits an HNN decomposition with the HNN base $A_{[0,2]}$ defined as the amalgamated product of $A, t A t^{-1}$ and $t^2 A t^{-2}$. It suffices to prove the following claim.

Claim. The group $A_{[0,2]}$ is not free.

Note that $A_{[0,2]}$ has the presentation

$$\langle a_0, b_0, a_1, b_1, a_2, b_2 | a_1 = b_0, b_1^{-1} a_1 b_1^{-1} = (b_0^{-1} a_0)^2, a_2 = b_1, b_2^{-1} a_2 b_2^{-1} = (b_1^{-1} a_1)^2 \rangle.$$
Using the first and third relations, we eliminate the generators \(b_0 \) and \(b_1 \). Thus

\[
A_{[0,2]} \cong \langle a_0, a_1, a_2, b_2 \mid r_1, r_2 \rangle,
\]

where \(r_1 = (a_1^{-1}a_0)^2a_2a_1^{-1}a_2 \) and \(r_2 = (a_2^{-1}a_1)^2b_2a_2^{-1}b_2 \).

Let \(\epsilon = a_1^{-1}a_0 \) and \(f = a_2a_1^{-1} \). One checks that \(\{\epsilon, f, r_1, b_2\} \) is a basis for the free group \(\langle a_0, a_1, a_2, b_2 \mid \rangle \). Using the substitutions

\[
a_0 = f^{-2}\epsilon^{-2}r_1\epsilon, \quad a_1 = f^{-2}\epsilon^{-2}r_1 \quad \text{and} \quad a_2 = f^{-1}\epsilon^{-2}r_1,
\]

we see

\[
A_{[0,2]} \cong \langle \epsilon, f, b_2 \mid r_2 \rangle \cong \langle \epsilon, f, b_2 \mid f^{-2}\epsilon^{-2}(b_2\epsilon^2)f(b_2\epsilon^2) \rangle.
\]

We perform two more changes of variables. First we let \(g = b_2\epsilon^2 \) and eliminate \(b_2 \) to obtain

\[
A_{[0,2]} \cong \langle \epsilon, f, g \mid \epsilon^{-2}(gf)^2f^{-3} \rangle.
\]

Second, we let \(h = gf \) and we eliminate \(g \):

\[
A_{[0,2]} \cong \langle \epsilon, f, h \mid \epsilon^{-2}h^2 = f^3 \rangle.
\]

We thus see that \(A_{[0,2]} \) is a free product of two free groups amalgamated over an infinite cyclic group. By Lemma 4.1 of [7] (see Example 4.2), if the group \(A_{[0,2]} \) is free, then either \(\epsilon^{-2}h^2 \) or \(f^3 \) is a basis element in its respective factor. Since neither element is a basis element (seen for example by abelianizing), the group \(A_{[0,2]} \) is not free. This concludes the proof of the claim.

5 Splittings of fundamental groups of non-fibered knots over non-free groups

In Sect. 4 we saw that we can split the knot group \(\pi(5_2) \) over a group that is not free. We will now see that this example can be greatly generalized. We recall the statement of our first main theorem.

Theorem 5.1 If \(K \) is a non-fibered knot, then \(\pi(K) \) admits splittings over non-free subgroups of arbitrarily large rank.

Proof Let \(\Sigma \subset X(K) \) be a Seifert surface of minimal genus. We write \(A = \pi_1(X(K) \setminus \Sigma \times (-1, 1)) \) and \(B = \pi_1(\Sigma \setminus (-1, 1)) \), and we consider the corresponding splitting

\[
\pi(K) = \langle A, t \mid \varphi(B) = tBt^{-1} \rangle
\]

of \((\pi(K), \epsilon_K) \) over \(\pi_1(\Sigma) \). Given \(n \leq m \) we consider, as in Sect. 2.3, the group
$$A_{[n,m]} = \langle \ast_{i=m}^{n} t_i A t_i^{-1} \mid t_i \varphi(B) t_i^{-1} = t_{j+1} B t_j^{-1} \ (j = n, \ldots, m - 1) \rangle.$$

By Lemma 2.3 the group $\pi(K)$ splits over the group $A_{[0,n]}$ for any non-negative integer n.

Claim. There exists an integer m such that $A_{[0,n]}$ is not a free group for any $n \geq m$.

As we pointed out in Sect. 2.3, we have an isomorphism

$$\text{Ker}(\epsilon_K : \pi(K) \to \mathbb{Z}) \cong \lim_{k \to \infty} A_{[-k,k]}$$

where the maps $A_{[-l,l]} \to A_{[-k,k]}$ for $l \leq k$ are monomorphisms. It follows from [21, Theorem 3] that $\text{Ker}(\epsilon_K)$ is not locally free; that is, there exists a finitely generated subgroup of $\text{Ker}(\epsilon_K)$ which is not a free group. But this implies that there exists $k \in \mathbb{N}$ such that $A_{[-k,k]}$ is not a free group. We have a canonical isomorphism $A_{[-k,k]} \cong A_{[0,2k]}$, and for any $n \geq 2k$ we have a canonical monomorphism $A_{[0,2k]} \to A_{[0,n]}$. It now follows that $A_{[0,n]}$ is not a free group for any $n \geq 2k$. This concludes the proof of the claim.

To complete the proof of Theorem 5.1 it remains to prove the following claim:

Claim. Writing $H_n := A_{[0,n]}$ we have

$$\lim_{n \to \infty} \text{rk}(H_n) = \infty.$$

Since $\Sigma \subset X(K)$ is not a fiber it follows from [35, Theorem 10.5] that there exists an element $g \in A \setminus B$. By work of Przytycki–Wise (see [53, Theorem 1.1]) the subgroup $B = \pi_1(\Sigma \times -1) \subset \pi(K)$ is separable. This implies, in particular, that there exists an epimorphism $\alpha : \pi(K) \to G$ onto a finite group G such that $\alpha(g) \notin \alpha(B)$. Then

$$D := \alpha(B) \subset C := \alpha(A).$$

Given $n \in \mathbb{N}$ we denote by α_n the restriction of α to $H_n \subset \pi(K)$ and we write $G_n := \alpha(H_n)$.

Note that in

$$H_n = A_0 \ast_{B_0} \cdots \ast_{B_{n-1}} A_n$$

the groups A_i, viewed as subgroups of $\pi(K)$, are conjugate. It follows that the groups $\alpha_n(A_i)$ are conjugate in G. In particular, each of the groups $\alpha_n(A_i)$ has order $|C|$. The same argument shows that each of the groups $\alpha_n(B_i)$ has order $|D|$. Standard arguments about fundamental groups of graphs of groups (see, for example, [61]) imply that $\text{Ker}(\alpha_n : H_n \to G_n)$ is the fundamental group of a graph of groups, where the underlying graph \tilde{G} is a connected graph with $(n + 1) \cdot |G_n|/|C|$ vertices and $n \cdot |G_n|/|D|$ edges. From the Reidemeister–Schreier theorem (see, for example, [48, Theorem 2.8]) and from the fact that $\text{Ker}(\alpha_n : H_n \to G_n)$ surjects onto $\pi_1(\tilde{G})$ it then follows that
\[
\text{rk}(H_n) \geq \frac{1}{|G_n|} \text{rk}(\text{Ker}(\alpha_n : H_n \to G_n)) \\
\geq \frac{1}{|G_n|} \text{rk}(\pi_1(\tilde{G})) \\
= \frac{1}{|G_n|} \left(n \cdot |G_n|/|D| - (n + 1) \cdot |G_n|/|C| + 1 \right) \\
\geq (n + 1) \left(\frac{1}{|D|} - \frac{1}{|C|} \right).
\]

But this sequence diverges to \(\infty\) since \(|D| < |C|\).

\section{Splittings of fundamental groups of non-fibered knots over free groups}

Lyon \cite[Theorem 2]{45} showed that there exists a non-fibered knot \(K\) of genus one that admits incompressible Seifert surfaces of arbitrarily large genus (see also \cite{32,56,69} for related examples). By the discussion in Sect. 3, this implies that \(\pi(K)\) splits over free groups of arbitrarily large rank.

Splitting along incompressible Seifert surfaces is a convenient way to produce knot group splittings. Yet there are many non-fibered knots that have unique incompressible Seifert surfaces (see, for example, \cite{38,46,73}). For such a knot, Seifert surfaces gives rise to only one type of knot group splitting.

In Sect. 4 we saw an example of a splitting of a knot group over a free group that is not induced by an embedded surface. We generalize the example in our second main theorem. We recall the statement.

\textbf{Theorem 6.1} Let \(K\) be a non-fibered knot. Then for any integer \(k \geq 2g(K)\) there exists a splitting of \(\pi(K)\) over a free group of rank \(k\).

Theorem 6.1 is an immediate consequence of Propositions 6.2 and 6.3 below.

\textbf{Proposition 6.2} Let \(K\) be a non-fibered knot. Then for any Seifert surface \(\Sigma\) of minimal genus there exists a nontrivial element \(g \in \pi_1(S^3\setminus \Sigma \times \{0, 1\})\) such that the subgroup of \(\pi_1(K)\) generated by \(\pi_1(\Sigma \times \{0\})\) and \(g\) is the free product of \(\pi_1(\Sigma \times \{0\})\) and the infinite cyclic group \(\langle g \rangle\).

\textbf{Proof} Let \(\Sigma\) be a Seifert surface for \(K\) of minimal genus. We write \(X = S^3\setminus \nu K\). We pick a regular neighborhood \(\Sigma \times \{0, 1\}\) for \(\Sigma\) and we write \(M = X \setminus \Sigma \times \{0, 1\}\). We pick a base point \(p\) on \(\Sigma = \Sigma \times \{0\}\) and we write \(\Gamma := \pi_1(\Sigma \times \{0\}, p)\). Our assumption that \(K\) is non-fibered implies by \cite[Theorem 10.5]{35} that \([\pi_1(M, p) : \Gamma] = \infty\).

It follows from Thurston’s Geometrization Theorem for Haken manifolds, see e.g. the formulation in \cite[Theorem 1.1.5]{6} or \cite[Corollary 1.45]{39}, that \(M\) admits a collection of incompressible tori \(T_1, \ldots, T_k\), such that the components \(M_1, \ldots, M_l\) of \(M\) cut along the tori are geometric. Note that the fact that the tori are incompressible implies that the inclusion induced maps \(\pi_1(M_i) \to \pi_1(M)\) are monomorphisms. Also note that the tori \(T_1, \ldots, T_k\) evidently lie in the interior of \(M\); the boundary of \(M\) is thus contained in a single component \(M_j\). Since \(\chi(\partial M_j) < 0\) it follows furthermore that \(M_j\) is hyperbolic. Possibly after reordering we can furthermore assume that \(T_1, \ldots, T_m\), with \(m \leq k\), are the toroidal boundary components of \(M_j\).

We now write \(\pi := \pi_1(M_j, p)\) and we write \(H_i = \pi_1(T_i), i = 1, \ldots, m\), which we view as subgroups of \(\pi\) via a choice of paths connecting \(p\) to base points on the
Note that \(\pi \) is word hyperbolic relative to the set of parabolic subgroups, which is given by all the conjugates of \(H_1, \ldots, H_m \).

We first consider the case that \(m = 0 \), i.e. the case that \(\pi \) is word hyperbolic. It follows from the Tameness Theorem, see [1,14], that \(\Sigma \times \{0\} \subset M \) is geometrically finite, which by [68, Theorem 1.1 and Proposition 1.3] implies that \(\Gamma = \pi_1(\Sigma \times \{0\}, p) \) is a quasiconvex subgroup of \(\pi \). Since \([\pi : \Gamma] = \infty\) it then follows from work of Gromov [31, 5.3.C] (see also [4, Theorem 1]) that there exists an element \(g \in \pi \) such that the subgroup of \(\pi \) generated by \(\Gamma \) and \(g \) is in fact the free product of \(\Gamma \) and \(\langle g \rangle \).

We now suppose that \(m > 0 \). We first prove the following claim.

Claim. There exists a parabolic subgroup \(P \) of \(\pi \) such that the intersection \(\Gamma \cap P \) is trivial.

We suppose that the intersection \(\Gamma \cap P \) is non-trivial for every parabolic subgroup \(P \) of \(\Gamma \), i.e. \(\Gamma \cap gH_ig^{-1} \neq \{e\} \) for any \(i \) and any \(g \in \pi \). Using the hyperbolic structure on \(M_i \) and using the corresponding holonomy representation we will now identify \(\pi \) with a discrete subgroup of \(\text{PSL}(2, \mathbb{C}) \). Given a subgroup \(J \subset \text{PSL}(2, \mathbb{C}) \) we denote by \(\Lambda(J) \subset S^2 \) its limit set, we refer to [49, Sect. 2.4] for the definition and for proofs of the subsequent statements on limit sets. If \(J \) is non-trivial, then \(\Lambda(J) \neq \emptyset \) and if \(J \) is an inclusion of subgroups, then \(\Lambda(J) \subset \Lambda(J') \). For each parabolic subgroup the limit set is a point, and the union of all limit sets corresponding to parabolic subgroups is dense in \(\Lambda(\Gamma) \). Since \(\Gamma \) intersects each parabolic subgroup non-trivially it follows from the above that \(\Lambda(\Gamma) \) is also dense in \(\Lambda(\pi) \). On the other hand limit sets of groups are closed, it thus follows that \(\Lambda(\Gamma) = \Lambda(\pi) \). It is now a consequence of [67, Theorem 1] (see also [77, Corollary 1.4]) that \(\Gamma \) has finite index in \(\pi \), which is a contradiction. This concludes the proof of the claim.

In the following let \(P \) be a parabolic subgroup \(P \) such that the intersection \(\Gamma \cap P \) is trivial. We pick a non-trivial element \(g \in \Gamma \). It follows again from the Tameness Theorem and from work of Hruska [36, Corollary 1.3] that \(\Gamma \) and \(\langle g \rangle \) are both relatively quasi-convex subgroups of \(\pi \). It now follows from a result of Martinez-Pedroza [50, Theorem 1.2] that there exists a \(h \in P \) such that the subgroup of \(\pi \) generated by \(\Gamma \) and \(hgh^{-1} \) is the free product of \(\Gamma \) and \(\langle hgh^{-1} \rangle \).

As we mentioned before, Theorem 6.1 is now a consequence of Proposition 6.2 and the following proposition about HNN decompositions.

Proposition 6.3 Assume that \((\pi, \epsilon)\) splits over a free group \(F \) of rank \(n \) with base group \(A \). If there exists an element \(g \in A \) such that the subgroup of \(\pi \) generated by \(F \) and \(g \) is the free product \(F \ast \langle g \rangle \), then \((\pi, \epsilon)\) splits over free groups of every rank greater than \(n \).

Proof. By hypothesis we can identify \(\pi \) with

\[
\langle A, t \mid \varphi(x_i) = tx_i t^{-1} (1 \leq i \leq n) \rangle,
\]

where \(x_1, \ldots, x_n \) generate the group \(F \) and where \(\epsilon \) is given by \(\epsilon(t) = 1 \) and \(\epsilon(A) = 0 \).

The kernel of the second-factor projection \(F \ast \langle g \rangle \to \langle g \rangle = \mathbb{Z} \) is an infinite free product \(\ast \{ g^iFg^{-i} \mid i \in \mathbb{Z} \} \). Let \(l \) be any positive integer. Choose a nontrivial element
$z \in F$ and define $z_i = g^i z g^{-i}$, for $1 \leq i \leq l$. Then $F' = \langle F, z_1, \ldots, z_l \rangle$ is a free subgroup of $F \ast \langle g \rangle$ with rank $n + l$. By hypothesis F' is then also a free subgroup of A of rank $n + l$.

Note that π is canonically isomorphic to

$$\langle A, c_1, \ldots, c_l, t \mid \varphi(x_i) = tx_i t^{-1}, c_j = tz_j t^{-1} (1 \leq i \leq n, 1 \leq j \leq l) \rangle.$$

We denote by A' the free product of A and $\langle c_1, \ldots, c_l \rangle$, and we denote by φ' the unique homomorphism

$$\varphi' : F' = F \ast \langle z_1, \ldots, z_l \rangle \to A' = A \ast \langle c_1, \ldots, c_l \rangle$$

that extends φ and that maps each z_j to c_j. Since φ' is the free product of two isomorphisms, it is also an isomorphism. We then have a canonical isomorphism

$$\pi \cong \langle A', t \mid \varphi'(F) = tF't^{-1} \rangle.$$

We have thus shown that (π, ϵ) splits over the free group F' of rank $n + l$. \square

7 Comparison with Stallings’s fibering criterion

Let K be a knot. Recall that we denote by $\epsilon_K : \pi(K) \to \mathbb{Z}$ the unique epimorphism that sends the oriented meridian to 1. Stallings [66] proved the following theorem.

Theorem 7.1 If K is not fibered, then $\text{Ker} (\epsilon_K)$ is not finitely generated.

It follows from Lemma 2.2 that if $\text{Ker} (\epsilon_K)$ is finitely generated, then there exists precisely one group B such that $\pi(K)$ splits over B. Thus Stalling’s theorem follows as a consequence of either Theorem 5.1 or Theorem 6.1.

On the other hand, a group π with an epimorphism $\epsilon : \pi \to \mathbb{Z}$ such that $\text{Ker} (\epsilon)$ is not finitely generated may still split over a unique group. The Baumslag-Solitar group, the semidirect product $\mathbb{Z} \rtimes \mathbb{Z} [\frac{1}{2}]$ where $n \in \mathbb{Z}$ acts on $\mathbb{Z} [\frac{1}{2}]$ by multiplication by 2^n, has abelianization \mathbb{Z}. The kernel of the abelianization $\epsilon : \pi \to \mathbb{Z}$ is the infinitely generated subgroup $\mathbb{Z} [\frac{1}{2}]$. Since every finitely generated subgroup of $\mathbb{Z} [\frac{1}{2}]$ is isomorphic to \mathbb{Z}, $\mathbb{Z} \rtimes \mathbb{Z} [\frac{1}{2}]$ splits only over subgroups isomorphic to \mathbb{Z}. (In fact, any two splittings are easily seen to be strongly equivalent.) This shows that the conclusions of Theorems 5.1 and 6.1 are indeed stronger than the conclusion of Theorem 7.1.

Stallings’s fibering criterion has been generalized in several other ways. For example, if K is not fibered, then $\text{Ker} (\epsilon)$ can be written neither as a descending nor as an ascending HNN-extension [8], $\text{Ker} (\epsilon)$ admits uncountably many subgroups of finite index (see [27, Theorem 5.2], [62] and [63, Theorem 3.4]), the pair $(\pi(K), \epsilon_K)$ has ‘positive rank gradient’ (see [16, Theorem 1.1]) and $\text{Ker} (\epsilon_K)$ admits a finite index subgroup which is not normally generated by finitely many elements (see [16, Theorem 5.1]).
8 Proof of Theorem 1.3

In this section we will prove Theorem 1.3, i.e. we will show that if \(K \) is a knot, then \(\pi(K) \) does not split over a group of rank less than \(2g(K) \). We will first give a ‘classical’ proof for genus-one knots before we provide the proof for all genera.

8.1 Genus-one knots

In this subsection we prove:

Theorem 8.1 If \(K \) is a genus-one knot, then \(\pi(K) \) does not split over a free group of rank less than two.

The main ingredients in the proof are two classical results from 3-manifold topology. First, we recall the statement of the Kneser Conjecture, which was first proved by Stallings [65] in the closed case, and by Heil [34, p. 244] in the bounded case.

Theorem 8.2 (Kneser Conjecture) Let \(N \) be a 3-manifold with incompressible boundary. If there exists an isomorphism \(\pi_1(N) \cong \Gamma_1 \ast \Gamma_2 \), then there exist compact, orientable 3-manifolds \(N_1 \) and \(N_2 \) with \(\pi_1(N_i) \cong \Gamma_i \), \(i = 1, 2 \) and \(N \cong N_1 \# N_2 \).

In the following, we say that a properly embedded 2-sided annulus \(A \) in a 3-manifold \(N \) is *essential* if the inclusion map \(A \hookrightarrow N \) induces a \(\pi_1 \)-injection and if \(A \) is not properly homotopic into \(\partial N \). The second classical result we will use is the following, which is a direct consequence of a theorem of Waldhausen [72] (see Corollary 1.2(i) of [60]).

Theorem 8.3 Let \(N \) be an irreducible 3-manifold with incompressible boundary. If \(\pi_1(N) \) splits over \(\mathbb{Z} \), then \(N \) contains an essential, properly embedded 2-sided annulus.

We turn to the proof of Theorem 8.1.

Proof of Theorem 8.1 Let \(K \) be a genus-one knot. Since \(K \) is non-trivial, the Loop Theorem implies that \(\partial X(K) \) is incompressible. Since knot complements are prime 3-manifolds, it now follows from the Kneser Conjecture that \(\pi(K) \) can not split over the trivial group, i.e. \(\pi(K) \) cannot split over a free group of rank zero.

Now suppose that \(J \) is a non-trivial knot such that \(\pi(J) \) splits over a free group of rank one, that is, over a group isomorphic to \(\mathbb{Z} \). From Theorem 8.3 we deduce that \(X(J) \) contains an essential, properly embedded, 2-sided annulus \(A \). Lemma 2 of [46] (an immediate consequence of [71]) implies that the knot \(J \) is either a composite or a nontrivial cable knot. If \(J \) is a composite knot, then it follows from the additivity of the knot genus (see, for example, [55, p. 124]) that the genus of \(J \) is at least two. Moreover, a well-known result of Schubert [57] (see Proposition 2.10 of [11]) implies that the genus of any cable knot is greater than one. Thus in both cases we see that \(g(J) \geq 2 \).

We now see that for the genus-one knot \(K \) the group \(\pi(K) \) cannot split over a free group of rank one. \(\square \)
8.2 Wada’s invariant

For the proof of Theorem 1.3 we will need Wada’s invariant, which is closely related to the twisted Alexander polynomial or the twisted Reidemeister torsion of a knot.

We introduce the following convention. If π is a group and $\gamma : \pi \to \text{GL}(k, R)$ a representation over a ring, then we denote by γ also the \mathbb{Z}-linear extension of γ to a map $\mathbb{Z}[\pi] \to M(k, R)$. Furthermore, if A is a matrix over $\mathbb{Z}[\pi]$ then we denote by $\gamma(A)$ the matrix given by applying γ to each entry of A.

Let π be a group, $\epsilon : \pi \to \mathbb{Z}$ an epimorphism, and $\alpha : \pi \to \text{GL}(k, \mathbb{C})$ a representation. First note that α and ϵ give rise to a tensor representation

$$\alpha \otimes \epsilon : \pi \to \text{GL}(k, \mathbb{C}[t^{\pm 1}])$$

$$g \mapsto t^{\epsilon(g)} \alpha(g).$$

Now let

$$\pi = \langle g_1, \ldots, g_k \mid r_1, \ldots, r_l \rangle$$

be a presentation of π. By adding trivial relations if necessary, we may assume that $l \geq k - 1$. We denote by F_k the free group with generators g_1, \ldots, g_k. Given $j \in \{1, \ldots, k\}$ we denote by $\frac{\partial}{\partial g_j} : \mathbb{Z}[F_k] \to \mathbb{Z}[F_k]$ the Fox derivative with respect to g_j, i.e. the unique \mathbb{Z}-linear map such that

$$\frac{\partial g_i}{\partial g_j} = \delta_{ij},$$

$$\frac{\partial uv}{\partial g_j} = \frac{\partial u}{\partial g_j} + u \frac{\partial v}{\partial g_j}$$

for all $i, j \in \{1, \ldots, k\}$ and $u, v \in F_k$. We denote by

$$M := \left(\frac{\partial r_i}{\partial g_j} \right)$$

the $l \times k$-matrix over $\mathbb{Z}[\pi]$ of all the Fox derivatives of the relators. Given subsets $I = \{i_1, \ldots, i_r\} \subset \{1, \ldots, k\}$ and $J = \{j_1, \ldots, j_s\} \subset \{1, \ldots, l\}$ we denote by $M_{J,I}$ the matrix formed by deleting the columns i_1, \ldots, i_r and by deleting the rows j_1, \ldots, j_s of M.

Note that there exists at least one $i \in \{1, \ldots, k\}$ such that $\epsilon(g_i) \neq 0$. It follows that

$$\det((\alpha \otimes \epsilon)(1 - g_i)) = \det \left(\text{id}_k - t^{\epsilon(g_i)} \alpha(g_i) \right) \neq 0.$$

We define

$$Q_i := \gcd(\det((\alpha \otimes \epsilon)(M_{J,[i]}))) \mid J \subset \{1, \ldots, l\} \text{ with } |J| = l + 1 - k.$$
(Note that each $M_{J,\{i\}}$ is a $(k-1) \times (k-1)$-matrix.) It is worth considering the special case that $l = k-1$; that is, the case of a presentation of deficiency one. Then the only choice for J is the empty set, and hence

$$Q_i = \det((\alpha \otimes \epsilon)(M_{\emptyset,\{i\}})).$$

Wada [70] introduced the following invariant of the triple (π, ϵ, α).

$$\Delta_{\pi,\epsilon}^\alpha := Q_i \cdot \det((\alpha \otimes \epsilon)(1-g_i))^{-1} \in \mathbb{C}(t).$$

A priori, Wada’s invariant depends on the various choices we made. The following theorem proved by Wada [70, Theorem 1] shows that the indeterminacy is well-controlled.

Theorem 8.4 Let π be a group, let $\epsilon: \pi \to \mathbb{Z}$ be an epimorphism, and let $\alpha: \pi \to GL(k, \mathbb{C})$ be a representation. Then $\Delta_{\pi,\epsilon}^\alpha$ is well-defined up to multiplication by a factor of the form $\pm t^kr$, where $k \in \mathbb{Z}$ and $r \in \mathbb{C}^*$.

Finally, let $K \subset S^3$ be a knot and let $\alpha: \pi(K) \to GL(k, \mathbb{C})$ be a representation. As before, we denote by $\epsilon: \pi(K) \to \mathbb{Z}$ the epimorphism that sends the oriented meridian of K to 1. We write

$$\Delta_K = \Delta_{\pi,\epsilon}^\alpha.$$

If $\alpha: \pi(K) \to GL(1, \mathbb{C})$ is the trivial one-dimensional representation, then Wada’s invariant is determined by the classical Alexander polynomial Δ_K. More precisely, we have

$$\Delta_K^\alpha = \frac{\Delta_K}{1-t^r}.$$

Wada’s invariant equals the twisted Reidemeister torsion of a knot, and is closely related to the twisted Alexander polynomial of a knot, which was first introduced by Lin [43]. We refer to [25, 40] for more details about Wada’s invariant, its interpretation as twisted Reidemeister torsion and its relationship to twisted Alexander polynomials.

8.3 Proof of Theorem 1.3

Before we provide the proof of Theorem 1.3 we need to introduce two more definitions. First, given a non-zero polynomial $p(t) = \sum_{i=r}^s a_i t^i \in \mathbb{C}[t^{\pm 1}]$ with $a_r \neq 0$ and $a_s \neq 0$, we write

$$\deg(p(t)) = s - r.$$

If $f(t) = p(t)/q(t) \in \mathbb{C}(t)$ is a non-zero rational function, we write

$$\deg(f(t)) = \deg(p(t)) - \deg(q(t)).$$

\[\text{Springer} \]
Note that if Wada’s invariant of a triple (π, ϵ, α) is non-zero, then the degree of Wada’s invariant $\Delta_{\pi, \epsilon}^\alpha$ is well defined.

We can now formulate the following theorem.

Theorem 8.5 Let π be a group and let

$$f : \pi \rightarrow \langle A, t \mid f(B) = tBt^{-1} \rangle$$

be a splitting. We denote by $\epsilon : \langle A, t \mid f(B) = tBt^{-1} \rangle \rightarrow \mathbb{Z}$ the canonical epimorphism which is given by $\epsilon(t) = 1$ and $\epsilon(a) = 0$ for $a \in A$. If $\alpha : \pi \rightarrow GL(k, \mathbb{C})$ is a representation such that $\Delta_{\pi, \epsilon}^\alpha \neq 0$, then

$$\text{deg} \Delta_{\pi, \epsilon}^\alpha \leq k(\text{rk}(B) - 1).$$

In [23] (see also [22]) it was shown that if K is a knot and $\alpha : \pi(K) \rightarrow GL(k, \mathbb{C})$ is a representation such that $\Delta_{\pi(K)}^\alpha \neq 0$, then

$$\text{deg} \Delta_{\pi(K)}^\alpha \leq k(2\text{ genus}(K) - 1). \quad (2)$$

In light of the discussion in Sect. 3, we can view Theorem 8.5 as a generalization of (2).

Proof Let π be a group and let

$$\pi = \langle g_1, \ldots, g_k, t \mid r_1, \ldots, r_l, \phi(b) = tbt^{-1} \text{ for all } b \in B \rangle$$

be a splitting, where $\phi : B \rightarrow A$ is a monomorphism and B is a rank-d subgroup of $A = \langle g_1, \ldots, g_k, t \mid r_1, \ldots, r_l \rangle$. We pick generators x_1, \ldots, x_d for B. Note that

$$\langle g_1, \ldots, g_k, t \mid r_1, \ldots, r_l, \phi(b) = tbt^{-1} \text{ for all } b \in B \rangle = \langle g_1, \ldots, g_k, t \mid r_1, \ldots, r_l, \phi(x_1)^{-1}tx_1t^{-1}, \ldots, \phi(x_d)^{-1}tx_dt^{-1} \rangle.$$

We write $K := \text{Ker}(\epsilon)$.

We denote by M the $(l + d) \times (k + 1)$-matrix over $\mathbb{Z}[\pi]$ that is given by all the Fox derivatives of the relators. We make the following observations.

1. The relators r_1, \ldots, r_l are words in g_1, \ldots, g_k. The Fox derivatives of the r_i with respect to the g_j thus lie in $\mathbb{Z}[K]$.
2. For any $i \in \{1, \ldots, k\}$ and $j \in \{1, \ldots, r\}$ we have

$$\frac{\partial}{\partial g_i} \left(\phi(x_j)^{-1}tx_jt^{-1} \right) = \frac{\partial}{\partial g_i} \left(\phi(x_j)^{-1} \right) + \phi(x_j)^{-1}t\frac{\partial}{\partial g_i}x_j.$$

The same argument as in (1) shows that the first term lies in $\mathbb{Z}[K]$, and one can similarly see that the second term is of the form $t \cdot g$, where $g \in \mathbb{Z}[K]$.

\(\circ\) Springer
Thus $M_{∅, [k+1]}$, the matrix obtained from M by deleting the $(k + 1)$-st column, is of the form

$$M_{∅, [k+1]} = P + tQ,$$

where P and Q are matrices over $\mathbb{Z}[K]$, and where all but the last d rows of Q are zero.

Let $α: π \to \text{GL}(k, \mathbb{C})$ be a representation and $J \subset \{1, \ldots, d + l\}$ a subset with $|J| = d + l - k$. It follows from the above that

$$M_{J, [k+1]} = P_J + tQ_J,$$

where P_J and Q_J are matrices over $\mathbb{Z}[K]$ and where at most d rows of Q_J are non-zero. We then see that

$$\text{det}((α ⊗ ϵ)(M_{J, [k+1]})) = \text{det}(α(P_J) + tα(Q_J)),$$

where at most kr rows of $α(Q_J)$ are non-zero. If $\text{det}(α(P_J) + tα(Q_J))$ is non-zero, then it follows from an elementary argument that

$$\deg(\text{det}(α(P_J) + tα(Q_J))) \leq kr.$$

We now consider

$$Q := \gcd\{\text{det}((α ⊗ ϵ)(M_{J, [k+1]})) \mid J \subset \{1, \ldots, l\} \text{ with } |J| = d + l - k\}.$$

By the above, if $Q \neq 0$, then $\deg(Q) \leq kr$.

Since $ϵ(t) = 1$,

$$\Delta_{α, ϵ}^α = Q \cdot \text{det}((α ⊗ ϵ)(1 - t))^{-1} = Q \cdot \text{det}(id_k - α(t)t)^{-1} ∈ \mathbb{C}(t).$$

Finally, we suppose that $\Delta_{α, ϵ}^α \neq 0$. By the above, this implies that $Q \neq 0$. In particular, we see that

$$\deg(\Delta_{α, ϵ}^α) = \deg(Q) - k \leq kr - k = k(rk B - 1).$$

This concludes the proof of the theorem. \qed

The last ingredient in the proof of Theorem 1.3 is the following result from [26]. The proof of the theorem builds on the virtual fibering theorem of Agol [2] (see also [24]), which applies for knot complements by the work of Liu [44], Przytycki–Wise [52,54] and Wise [74–76].
Theorem 8.6 Let K be a knot. Then there exists a representation $\alpha : \pi(K) \to \text{GL}(k, \mathbb{C})$ such that $\Delta^K_1 \neq 0$ and such that

$$\deg \Delta^K_1 = k(2g(K) - 1).$$

In [26, Theorem 1.2] an analogous statement is formulated for twisted Reidemeister torsion instead of Wada’s invariant. The theorem, as stated, now follows from the interpretation (see, for example, [25,40]) of Wada’s invariant as twisted Reidemeister torsion.

We can now formulate and prove the following result, which is equivalent to Theorem 1.3.

Theorem 8.7 Let K be a knot. If $\pi(K)$ splits over a group B, then $\text{rk}(B) \geq 2g(K)$.

Proof Let K be a knot and let

$$f : \pi(K) \to \pi = \langle A, t \mid \varphi(B) = t B t^{-1} \rangle$$

be an isomorphism. We denote by $\epsilon : \langle A, t \mid \varphi(B) = t B t^{-1} \rangle \to \mathbb{Z}$ the canonical epimorphism which is given by $\epsilon(t) = 1$ and $\epsilon(a) = 0$ for $a \in A$.

Note that $\epsilon \circ f : \pi(K) \to \mathbb{Z}$ is an epimorphism. In particular, it sends the meridian to either 1 or -1. By possibly changing the orientation of the knot, we can assume that $\epsilon \circ f : \pi(K) \to \mathbb{Z}$ sends the meridian to 1. By Theorem 8.6, there exists a representation $\alpha : \pi(K) \to \text{GL}(k, \mathbb{C})$ such that $\Delta^K_1 \neq 0$ and such that

$$\deg \Delta^K_1 = k(2g(K) - 1).$$

By definition, we have

$$\Delta^K_1 = \Delta^K_{\pi(K), \epsilon \circ f} = \Delta^K_{\pi, \epsilon}.$$

Theorem 8.5 implies that

$$\text{rk}(B) \geq \frac{1}{k} \deg \left(\Delta^K_{\pi, \epsilon} \right) + 1 = \frac{1}{k} \deg \left(\Delta^K_1 \right) + 1 = 2g(K).$$

\[\square\]

Acknowledgments The first author wishes to thank the University of Sydney for its hospitality. We are also grateful to Saul Schleimer and Henry Wilton for many helpful conversations, we are especially grateful to Eduardo Martinez-Pedroza for help with the proof of Proposition 6.2. We also wish to thank the referee for many thoughtful comments.

References

1. Agol, I.: Tameness of hyperbolic 3-manifolds, unpublished paper (2007). math/0405568
2. Agol, I.: Criteria for virtual fibering. J. Topol. 1, 269–284 (2008)
3. Altman, I.: Sutured Floer homology distinguishes between Seifert surfaces. Topol. Appl. 159(14), 3143–3155 (2012)
4. Arzhantseva, G.: On quasiconvex subgroups of word hyperbolic groups. Geom. Dedicata 87(1–3), 191–208 (2001)
5. Benedetti, R., Petronio, C.: Lectures on hyperbolic geometry. Universitext. Springer, Berlin (1992)
6. Bessières, L., Besson, G., Boileau, M., Maillot, S., Porti, J.: Geometrisation of 3-manifolds. EMS Tracts in Mathematics, vol. 13. European Mathematical Society, Zürich (2010)
7. Bestvina, M., Feighn, M.: Outer limits, unpublished paper (1994). http://andromeda.rutgers.edu/~feighn/papers/outer
8. Bieri, R., Neumann, W., Strebel, R.: A geometric invariant of discrete groups. Invent. Math. 90, 451–477 (1988)
9. Bieri, R., Strebel, R.: Almost finitely presented soluble groups. Comment. Math. Helv. 53, 258–278 (1978)
10. Boileau, M., Zieschang, H.: Heegaard genus of closed orientable Seifert 3-manifolds. Invent. Math. 76, 455–468 (1984)
11. Brieze, G., Zieschang, H.: Knots. Walter de Gruyter, Berlin (1985)
12. Button, J.O.: Mapping tori with first Betti number at least two. J. Math. Soc. Japan 59(2), 351–370 (2007)
13. Calegari, D.: scl, MSJ Memoirs, vol. 20. Mathematical Society of Japan, Tokyo (2009)
14. Calegari, D., Gabai, D.: Shrinkwrapping and the taming of hyperbolic 3-manifolds. J. Am. Math. Soc. 19(2), 385–446 (2006)
15. Culler, M., Shalen, P.: Varieties of group representations and splittings of 3-manifolds. Ann. Math. 117(1), 109–146 (1983)
16. Deblois, J., Friedl, S., Vidussi, S.: The rank gradient for infinite cycliccovers of 3-manifolds. Mich. Math. J. 63, 65–81 (2014)
17. Edmonds, A., Livingston, C.: Group actions on fibered three-manifolds. Comment. Math. Helv. 58(4), 529–542 (1983)
18. Eisner, J.: A characterisation of non-fibered knots. Mich. Math. J. 24, 41–44 (1977)
19. Eisner, J.: Knots with infinitely many minimal spanning surfaces. Trans. Am. Math. Soc. 229, 329–349 (1977)
20. Feustel, C.D., Gregorac, R.J.: On realizing HNN groups in 3-manifolds. Pac. J. Math. 46, 381–387 (1973)
21. Freedman, B., Freedman, M.: Kneser-Haken finiteness for bounded 3-manifolds locally free groups, and cyclic covers. Topology 37(1), 133–147 (1998)
22. Friedl, S.: Twisted Reidemeister torsion, the Thurston norm and fibered manifolds. Geom. Dedicata 172, 135145 (2014)
23. Friedl, S., Kim, T.: The Thurston norm, fibered manifolds and twisted Alexander polynomials. Topology 45, 929–953 (2006)
24. Friedl, S., Kitayama, T.: The virtual fibering theorem for 3-manifolds. l’Enseignement Mathématique 60(1), 79–107 (2014)
25. Friedl, S., Vidussi, S.: A survey of twisted Alexander polynomials. In: Banagl, M., Vogel, D. (eds.) The Mathematics of Knots: Theory and Application (Contributions in Mathematical and Computational Sciences), pp. 45–94 (2010)
26. Friedl, S., Vidussi, S.: The Thurston norm and twisted Alexander polynomials. J. reine angew. Math., Preprint (to appear, 2012)
27. Friedl, S., Vidussi, S.: A vanishing theorem for twisted Alexander polynomials with applications to symplectic 4-manifolds. J. Eur. Math. Soc. 15(6), 2027–2041 (2013)
28. Friedl, S., Vidussi, S.: Minimal genus on 4-manifolds with a free circle action. Adv. Math. 250, 570–587 (2014)
29. Gabai, D.: Foliations and the topology of 3-manifolds. J. Differ. Geom. 18(3), 445–503 (1983)
30. Gabai, D.: Foliations and the topology of 3-manifolds. III. J. Differ. Geom. 26, 479–536 (1987)
31. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory. Math. Sci. Res. Inst. Publ., vol. 8, pp. 75–263. Springer, New York (1987)
32. Gustafsson, R.: A simple genus-one knot with incompressible spanning surfaces of arbitrarily high genus. Pac. J. Math. 96(1), 81–98 (1981)
33. Hedden, M., Juhász, A., Sarkar, S.: On Sutured Floer homology and the equivalence of Seifert surfaces. Alg. Geom. Topol. 13, 505–548 (2013)
34. Heil, W.: On Kneser’s conjecture for bounded 3-manifolds. Proc. Camb. Philos. Soc. 71, 243–246 (1972)
35. Hempel, J.: 3-manifolds. Annals of Mathematics Studies, vol. 86. Princeton University Press, Princeton (1976)
36. Hruska, C.: Relative hyperbolicity and relative quasi-convexity for countable groups. Alg. Geom. Topol. 10, 1807–1856 (2010)
37. Johannson, K.: On the mapping class group of simple 3-manifolds. In: Topology of Low-Dimensional Manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977). Lecture Notes in Mathematics, vol. 722, pp. 48–66. Springer, Berlin (1979)
38. Kakimizu, O.: Classification of the incompressible spanning surfaces for prime knots of 10 or less crossings. Hiroshima Math. J. 35(1), 47–92 (2005)
39. Kapovich, M.: Hyperbolic manifolds and discrete groups. Progress in Mathematics, vol. 183 (2001)
40. Kitano, T.: Twisted Alexander polynomials and Reidemeister torsion. Pac. J. Math. 174(2), 431–442 (1996)
41. Kronheimer, P.: Minimal genus in $S^1 \times M^3$. Invent. Math. 135(1), 45–61 (1999)
42. Li, T.: Rank and genus of 3-manifolds. J. Am. Math. Soc. 26, 777–829 (2013)
43. Lin, X.S.: Representations of knot groups and twisted Alexander polynomials. Acta Math. Sin. (Engl. Ser.) 17, 361–380 (2001)
44. Liu, Y.: Virtual cubulation of nonpositively curved graph manifolds. J. Topol. 6(4), 793–822 (2013)
45. Lyon, H.C.: Incompressible surfaces in knot spaces. Trans. Am. Math. Soc. 157, 53–62 (1971)
46. Lyon, H.C.: Simple knots with unique spanning surfaces. Topology 13, 275–279 (1974)
47. Lyon, H.C.: Simple knots without unique minimal surfaces. Proc. Am. Math. Soc. 43, 449–454 (1974)
48. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Second revised edition. Dover Publications Inc, New York (1976)
49. Marden, A.: Outer Circles: An Introduction to Hyperbolic 3-Manifolds. Cambridge University Press, Cambridge (2007)
50. Martinez-Pedroza, E.: Combination of quasiconvex subgroups of relatively hyperbolic groups. Groups Geom. Dyn. 3(2), 317–342 (2009)
51. Neuwirth, L.: Knot groups. Annals of Mathematics Studies, vol. 56. Princeton University Press, Princeton (1965)
52. Przytycki, P., Wise, D.: Mixed 3-manifolds are virtually special, preprint (2012)
53. Przytycki, P., Wise, D.: Separability of embedded surfaces in 3-manifolds. Compositio Mathematica 150, 1623–1630 (2014)
54. Przytycki, P., Wise, D.: Graph manifolds with boundary are virtually special. J. Topol. 7(2), 419–435 (2014)
55. Rolfsen, D.: Knots and links. Corrected reprint of the 1976 original. Mathematics Lecture Series, vol. 7. Publish or Perish Inc, Houston (1990)
56. Schaufele, C.B.: The commutator group of a doubled knot. Duke Math. J. 34, 677–681 (1967)
57. Schubert, H.: Knoten und Vollringe. Acta Math. 90, 131–286 (1953)
58. Schultens, J., Weidmann, R.: On the geometric and the algebraic rank of graph manifolds. Pac. J. Math. 231, 481–510 (2007)
59. Scott, P.: Compact submanifolds of 3-manifolds. J. Lond. Math. Soc. (2) 7, 246–250 (1973)
60. Scott, P.: A new proof of the annulus and torus theorems. Am. J. Math. 102, 241–277 (1980)
61. Serre, J.-P.: Trees. Springer, Berlin (1980)
62. Silver, D., Williams, S.: Nonfibered knots and representation shifts. In: Proceedings of the Postnikov Memorial Conference, Bana...
69. Tsutsumi, Y.: Hyperbolic knots spanning accidental Seifert surfaces of arbitrarily high genus. Math. Z. 246(1–2), 167–175 (2004)
70. Wada, M.: Twisted Alexander polynomial for finitely presentable groups. Topology 33, 241–256 (1994)
71. Waldhausen, F.: The word problem in fundamental groups of sufficiently large irreducible 3-manifolds. Ann. Math. (2) 88, 272–280 (1968)
72. Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. Math. (2) 87, 56–88 (1968)
73. Whitten, W.: Isotopy types of knot spanning surfaces. Topology 12, 373–380 (1973)
74. Wise, D.: The structure of groups with a quasi-convex hierarchy. Electron. Res. Ann. Math. Sci 16, 44–55 (2009)
75. Wise, D.: The structure of groups with a quasi-convex hierarchy, 189 pages, preprint (2012). Downloaded on October 29, 2012 from http://www.math.mcgill.ca/wise/papers.html
76. Wise, D.: From riches to RAAGs: 3-manifolds, right-angled Artin groups, and cubical geometry. CBMS Regional Conference Series in Mathematics (2012)
77. Yang, W.-Y., Jiang, Y.-P.: Limit sets and commensurability of Kleinian groups. Bull. Aust. Math. Soc. 82(1), 1–9 (2010)