Quantum Oscillations of the Critical Current of Asymmetric Aluminum Loops in Magnetic Field

V.L. Gurtovoi, S.V Dubonos, A.V. Nikulov, N.N. Osipov, and V.A. Tulin

Institute of Microelectronics Technology and High Purity Materials, Russia Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia. E-mail: nikulov@ipmt-hpm.ac.ru

Abstract. The periodical dependencies in magnetic field of the asymmetry of the current-voltage curves of asymmetric aluminum loop are investigated experimentally at different temperatures below the transition into the superconducting state $T < T_c$. The obtained periodical dependency of the critical current on magnetic field allows to explain the quantum oscillations of the dc voltage as a consequence of the rectification of the external ac current and to calculate the persistent current at different values of magnetic flux inside the loop and temperatures.

Keywords: Mesoscopic superconductor loop, persistent current, quantum oscillations.

PACS: 74.78.Na, 74.78.-w

INTRODUCTION

The persistent current $I_p = s2e_n v_s$ should flow along circumference of a superconductor loop l with thin section $s < \lambda L^2$ at $\Phi \neq n\Phi_0$ since the state with zero velocity of superconducting pairs $v_s = 0$ is forbidden when the magnetic flux Φ inside l is not divisible by the flux quantum $\Phi_0 = h/2e$ [1]. Its equilibrium value and sign $<I_p> = s2e_n <v_s> \propto <n> - \Phi/\Phi_0$ vary periodically with Φ [1]. The Little-Parks resistance oscillations $R_l(\Phi/\Phi_0)$ [2] observed in the loop [3] is experimental evidence of $I_p \neq 0$ at non-zero resistance $R_l > 0$. According to an analogy with the conventional circular current a dc potential difference $V(\Phi/\Phi_0) \propto I_p(\Phi/\Phi_0) \propto <n> - \Phi/\Phi_0$ may be expected to be observed on segments of asymmetric superconductor loop at $R_l > 0$. Such quantum oscillations of the dc voltage were observed on segment of asymmetric aluminum loops [4,5] and much before on a double Josephson point contact [6]. The dc voltage $V(\Phi/\Phi_0)$ observed near the critical temperature T_c [4,6] can be induced by switching of the loop between superconducting states with different connectivity [7,8]. The quantum oscillations $V(\Phi/\Phi_0)$ induced at lower temperatures by an external ac current [5] may be interpreted as a result of the rectification because of asymmetry of the current-voltage curves sign and value of which are periodical function of Φ. The results of measurements of this periodical change of the asymmetry of the current-voltage curves with value of magnetic flux Φ inside asymmetric aluminum loop at different temperatures are presented in this work.

FIGURE 1. SEM image of a typical asymmetric aluminium rings.

EXPERIMENTAL DETAILS AND RESULTS

Microstructures consisting of asymmetric Al rings with semi-ring width $w_n = 200$ nm and $w_w = 400$ nm for the narrow and wide parts, respectively, see Fig.1,
were investigated. 4 μm diameter single asymmetric superconductor ring (ASR) and 20 ASR structures, see Fig.1, were fabricated by e-beam lithography and lift-off process of film d = 45-50 nm in thickness, thermally evaporated on oxidized Si substrates. For these structures, the sheet resistance was 0.23 Ω/□ at 4.2 K, the resistance ratio R(300K)/R(4.2K)=2.7, and the critical temperature was T_c = 1.24-1.27 K.

Current -Voltage Curves

The structure as a whole jumps into the resistive state R > 0 (at a low temperature T < 0.995T_c) when the current density exceeds the critical value j_c in any of its segment and the irreversibility of the current-voltage curves is observed at T < 0.99 T_c. The value of its segment and the irreversibility of the current- voltage curves is observed at T < 0.99T_c. The value of the external current I_ext corresponding to this jump to the state with R > 0 is measured as the critical current |I_{ext}|c of the structure.

![FIGURE 2. Quantum oscillations of the critical current |I_{ext}(Φ/Φ_0)| of system of 18 asymmetric Al loops with w_{ext} = 400 nm < w_n + w_w measured in opposite directions |I_{ext}|c, |I_{ext}|c at T = 0.978 T_c. The quantum oscillations of the dc voltage V(Φ/Φ_0) induced by the external ac current with the frequency f = 40 kHz and the amplitude 7 μA are shown also.](image)

Periodical Dependence of |I_{ext}(Φ/Φ_0)|

Our measurements have revealed the periodical magnetic dependencies |I_{ext}(Φ/Φ_0)| of both single rings and systems of rings with both w_{con} < w_n + w_w, see Fig.2, and w_{con} ≥ w_n + w_w. These periodical dependencies may be explained as a consequence of superposition of the external I_{ext} and persistent I_p(Φ/Φ_0) currents. The current density in the narrow j_n and wide j_w semi-rings is determined by both the I_{ext} and I_p currents: j_n = I_{ext}/d(w_n + w_w) ± I_p/dw_n and j_w = I_{ext}/d(w_n + w_w) ± I_p/dw_w [5]. The summation “+” takes place when the direct I_{ext} and circular I_p currents have the same direction in the semi-rings, see Fig.1. The current density mounts the critical value j_c first of all in the narrow semi-rings at |I_{ext}|c = d(w_n + w_w)/(j_c - I_p/w_w), in the wide ones at |I_{ext}|c = d(w_n + w_w)/(j_c - I_p/w_w) or in the stripes connecting the rings at |I_{ext}|c = d w_{con} j_c depending on the I_{ext} and I_p directions and the j_p/w_w values.

Our results of the measurement of |I_{ext}(Φ/Φ_0)| are evidence of the periodical dependence not only value but also sign of I_p(Φ/Φ_0) since the |I_{ext}(Φ/Φ_0)| value depends on the I_{ext} direction, |I_{ext}|c+, |I_{ext}|c- of the current-voltage curves are asymmetric, at some Φ/Φ_0 values, see Fig.2. For example |I_{ext}|c+ (at the right I_{ext} direction) has a minimum value at Φ/Φ_0 = 0.2 ± n whereas |I_{ext}|c- (at the left I_{ext} direction) the minimum is observed at Φ/Φ_0 = 0.8 ± n, see Fig.2. This means that the persistent current has the clockwise direction at Φ/Φ_0 = 0.2 ± n and the counter-clockwise one at Φ/Φ_0 = 0.8 ± n since the minimum of |I_{ext}|c is observed when the I_{ext} and I_p have the same direction in the narrow semi-rings, see Fig.1. The experimental dependencies |I_{ext}(Φ/Φ_0)|, |I_{ext}(Φ/Φ_0)| obtained in our work allow to explain the quantum oscillations of the dc voltage V(Φ/Φ_0) as consequence of the rectification and to calculate the I_p(Φ/Φ_0;T) dependencies at T < T_c.

ACKNOWLEDGMENTS

This work has been supported by a grant of the Program "Low-Dimensional Quantum Structures", the Russian Foundation of Basic Research (Grant 04-02-17068) and a grant of the program "Technology Basis of New Computing Methods".

REFERENCES

1. M. Tinkham, *Introduction to Superconductivity*, New York: McGraw-Hill Book Company, 1975.
2. W.A. Little and R.D. Parks, *Phys. Rev. Lett.* 9, 9 (1962).
3. H. Vloegberghs et al., *Phys. Rev. Lett.* 69,1268 (1992).
4. S.V. Dubonos, V.I. Kuznetsov, and A.V. Nikulov, in *Proceedings of 10th International Symposium "NANOSTRUCTURES: Physics and Technology"*, St Petersburg: Ioffe Institute, 2002, pp. 350-354; e-print arXiv: cond-mat/0305337.
5. S.V. Dubonos et al., *Pisma Zh. Eksp. Teor. Fiz.* 77, 439 (2003) (*JETP Lett.* 77, 371 (2003)).
6. A. Th. A. M. de Waele et al., *Physica* 37, 114 (1967).
7. A.V. Nikulov and I.N. Zhilyaev, *J. Low Temp. Phys.* 112, 227-236 (1998).
8. A.V. Nikulov, *Phys. Rev. B* 64, 012505 (2001).