We report a comprehensive analysis of the clinical features, patient trajectories, and risk factors for progression to severe disease or death at the time of hospital admission among all patients admitted to our hospital system and used these data to develop the COVID-19 Inpatient Risk Calculator (CIRC) to quantify the probability of progression to severe disease or death among patients hospitalized with COVID-19.

METHODS

Study Design and Participants

This cohort study was conducted at Johns Hopkins Hospital, Baltimore, Maryland; Bayview Hospital, Baltimore, Maryland; Howard County General Hospital, Columbia, Maryland; Suburban Hospital, Bethesda, Maryland; and Sibley Hospital, Washington, DC. These 5 hospitals comprise Johns Hopkins Medicine (JHBM), a health care system with 2513 beds (354 intensive care unit beds) serving approximately 7 million persons. The institutional review boards of these hospitals approved this study as minimal risk and waived consent requirements.

See also:

Web-Only Supplement
All patients consecutively admitted with confirmed severe acute respiratory syndrome coronavirus 2 infection according to any nucleic acid test with an Emergency Use Authorization from the U.S. Food and Drug Administration between 4 March and 24 April 2020 were included. Time zero for all analyses was the time of the admission order.

Data Collection

The primary data source was JH-CROWN: The COVID-19 PMAP Registry, which utilizes the Hopkins Precision Medicine Analytics Platform (10) and includes demographic characteristics, medical history, comorbid conditions, symptoms, vital signs, respiratory events, medications, and laboratory results.

Outcome Measures and Definitions

Primary outcomes were defined by using the World Health Organization (WHO) COVID-19 disease severity scale (11). The WHO scale is an 8-point ordinal scale ranging from ambulatory (1 = asymptomatic, 2 = mild limitation in activity) to hospitalized with mild to moderate disease (3 = room air, 4 = nasal cannula or facemask oxygen), hospitalized with severe disease (5 = high-flow nasal cannula or noninvasive positive pressure ventilation, 6 = intubation and mechanical ventilation, 7 = intubation and mechanical ventilation and other signs of organ failure [hemodialysis, vaso-pressors, extracorporeal membrane oxygenation]), and death (score of 8). We defined severe disease as a score of 5 to less than 8 and the composite outcome of severe disease or death as a score of 5 to 8 on the WHO scale.

Laboratory testing was determined by treating physicians. Natural language processing was used to identify presenting symptoms (Supplement Table, available at Annals.org).

Statistical Analysis

To assess the association between patient characteristics at admission and outcomes, a set of 24 demographic and clinical variables were selected on the basis of their clinical relevance. Multiple comorbid condition burden was assessed by using the 17-item modified Charlson Comorbidity Index (CCI) (12, 13). We imputed missing values by chained equations (MICE) with predictive mean matching (MICE, R package, version 3.7.0) (14–16) with 10 rounds of multiple imputation (Supplement Figure 1, available at Annals.org). For the 7 out of 694 discharged patients whom we know subsequently died, we censored their outcomes at time of discharge to minimize bias due to treating them differently from the discharged patients with unknown vital status. To estimate the association between baseline patient characteristics and a given cause-specific outcome, we used Cox proportional hazard regression models with baseline hazards stratified by admitting hospital (17). Standard error estimates that account appropriately for missing covariates were computed by using the Rubin rules (18).

To protect against overfitting, models were initially built by splitting the predictor variables into clinically meaningful subgroups or “blocks” (for example, “demographic” or “comorbid conditions”), then adding the best predictors from each block. For the composite outcome of severe disease or death, no further variable selection was performed. For the time-to-death models, with few events relative to the number of variables of interest, we fit cause-specific proportional hazards models regularized with an elastic net penalty (glmnet, R package, version 3.0.2) (19). This model was run on each of the 10 imputed data sets, and variables with nonzero coefficients in at least half of the models were chosen for the final model (20). The composite CCI was used instead of individual comorbidities to reduce the risk for model overfitting. The \( \text{SpO}_2/\text{FiO}_2 \) ratio was eligible for selection into the death model but not for the composite outcome model to avoid reverse-causality bias, because reaching severe disease is directly tied to a worsening \( \text{SpO}_2/\text{FiO}_2 \) ratio.

To address age interactions, we first fit models separately for 3 age groups for time to severe disease or death (younger than 60 years, 60 to 74 years, and 75 years or older) and for 2 age groups for the time until death (60 to 74 years and 75 years or older). Owing to changes in statistical significance or in the direction of model coefficients between age groups for sex, CCI, and troponin (for time to severe disease or death) and for the effect of nursing home (for time to death), we refit our final models including age as a 3-level factor and interactions with these factors.

There is clinical utility in predicting an individual’s risk for a severe outcome over time. Because discharge and severe disease or death are competing risks, we calculated a cumulative incidence of severe disease or death for each individual’s baseline covariate profile. The cumulative incidence function at time \( t \) is the probability of the cause-specific outcome having occurred by then. Unlike the prediction in a noncompeting risks model, it requires estimation of a hazard model for the outcome of interest and for the competing event. We estimated the discharge hazard with a Cox regression with the same predictors as for the outcome of interest by using the CSC function in the R package risk regression (21).

To evaluate the cumulative incidence model’s ability to discriminate higher- from lower-risk patients, we used the area under the cumulative-dynamic receiver-operator characteristic curve (AUC(t)) (22). We used 10-fold cross-validation so that the AUC(t) estimate did not use the same data to fit the model and also assess its quality. We then checked for heterogeneity by using a hospital-specific cross-validation where all patients from a given hospital were held out of the training set and then used in the validation set.

Analyses were done by using R, version 3.6.2 (23).

Role of the Funding Source

The data utilized were part of JH-CROWN: The COVID PMAP Registry, which is based on the contribution of many patients and clinicians and is funded by Hopkins inHealth, the Johns Hopkins Precision Medicine Program. Drs. Garibaldi, Muschelli, Robinson, and Gupta and Mr. Schumock received funding from the
COVID-19 Administrative Supplement for the HHS Region 3 Treatment Center from the Office of the Assistant Secretary for Preparedness and Response. The funders had no role in the design, analysis, or conduct of the study or in the decision to submit the manuscript for publication.

RESULTS
Study Population
During the study window, 832 patients were admitted with COVID-19. Table 1 shows demographic characteristics and comorbid conditions, and Table 2 shows symptoms, vital signs, and laboratory values on admission. Median age was 63 years (interquartile range [IQR], 49 to 75 years; range, 1 to 108 years). Patients younger than 18 years (n = 3) were excluded from subsequent analyses. Among 788 patients presenting to the emergency department, median time from emergency department arrival to admission was 3.1 hours (IQR, 2.1 to 4.5 hours). At administrative censoring on 24 June 2020, 694 patients (83%) had been discharged, 131 (16%) had died, and 7 (0.8%) remained hospitalized with severe disease. Among those who had been discharged, 523 (63%) had mild to moderate disease and 171 (21%) had severe disease. There were notable differences in demographic and clinical characteristics by peak severity of disease category (Tables 1 and 2) as well as by admission hospital (Supplement Table 2, available at Annals.org). For example, the median age was higher among patients who died than among those who survived. Ninety percent of deaths occurred in patients aged 60 years or older. Patients who died were more likely to have hypertension, coronary artery disease, chronic kidney disease, and cancer, but the prevalence of diabetes and chronic lung disease was similar across the groups. Vital signs and lab-

Table 1. Baseline Demographic Characteristics and Comorbid Conditions, Overall and by Peak Disease Severity

| Characteristic                  | Overall (n = 832) | Mild to Moderate Disease (n = 523)* | Severe Disease (n = 171)† | Death (n = 131) |
|--------------------------------|-------------------|------------------------------------|---------------------------|---------------|
|                                | Patients, n (%)   | Missing Data, n (%)                | Patients, n (%)           | Missing Data, n (%) |
| Demographic                    |                   |                                    |                           |               |
| Median age (IQR, y)            | 63 (49–75)        | 60 (45–72)                         | 58 (51–70)                | 77 (68–85)    |
| Female                         | 389 (47)          | 257 (49)                           | 75 (44)                   | 55 (42)       |
| Pregnant                       | 13 (2)            | 11 (2)                             | 2 (1)                     | 0 (0)         |
| Race and ethnicity             |                   |                                    |                           |               |
| American Indian or Alaska Native | 2 (0.2)       | 1 (0.2)                            | 1 (0.6)                   | 0 (0)         |
| Asian                          | 48 (6)            | 32 (6)                             | 6 (4)                     | 10 (7.7)      |
| Black                          | 336 (41)          | 209 (40)                           | 72 (42)                   | 50 (38)       |
| Latinx                         | 135 (16)          | 90 (17)                            | 34 (20)                   | 9 (7)         |
| White, non-Hispanic            | 264 (32)          | 160 (31)                           | 45 (26)                   | 59 (45)       |
| Other/multiracial              | 42 (5)            | 28 (5)                             | 12 (7)                    | 2 (1)         |
| Admitted from skilled nursing facility | 172 (21)  | 81 (15)                            | 22 (13)                   | 66 (50)       |
| Alcohol use                    | 189 (26)          | 129 (28)                           | 39 (26)                   | 20 (19)       |
| Smoking                        | 96 (12)           | 47 (9)                             | 12 (7)                    | 36 (27)       |
| Current smoker                 | 42 (6)            | 21 (4)                             | 13 (8)                    | 7 (4)         |
| Former smoker                  | 197 (27)          | 111 (23)                           | 45 (28)                   | 39 (41)       |
| Median BMI (IQR, kg/m²)        | 29 (25–34)        | 16 (2)                             | 32 (27–36)                | 27 (24–33)    |
| DNR/DNI in first 24 h of admission | 124 (15)        | 56 (11)                            | 9 (5)                     | 59 (45)       |
| Comorbid conditions            |                   |                                    |                           |               |
| Cancer                         | 87 (10)           | 43 (8)                             | 22 (13)                   | 21 (16)       |
| Congestive heart failure       | 127 (15)          | 45 (9)                             | 42 (25)                   | 36 (27)       |
| COPD                           | 151 (18)          | 95 (18)                            | 28 (16)                   | 26 (20)       |
| Hypertension                   | 389 (47)          | 229 (44)                           | 71 (42)                   | 87 (66)       |
| Liver disease                  | 34 (4)            | 16 (3)                             | 15 (9)                    | 3 (2)         |
| Asthma                         | 79 (9)            | 54 (10)                            | 16 (9)                    | 8 (6)         |
| Coronary artery disease        | 266 (32)          | 126 (24)                           | 64 (37)                   | 71 (54)       |
| Chronic kidney disease         | 106 (13)          | 43 (8)                             | 23 (13)                   | 36 (27)       |
| Immunosuppression              | 22 (3)            | 13 (3)                             | 7 (4)                     | 2 (1)         |
| COPD/chronic lung disease      | 160 (19)          | 100 (19)                           | 31 (18)                   | 27 (21)       |
| Transplant                     | 20 (2)            | 14 (3)                             | 4 (2)                     | 2 (1)         |
| Diabetes                       | 252 (30)          | 147 (28)                           | 57 (33)                   | 45 (34)       |
| AIDS/HIV                       | 9 (1)             | 5 (1)                              | 3 (2)                     | 1 (0.8)       |

BMI = body mass index; COPD = chronic obstructive pulmonary disease; DNI = do not intubate; DNR = do not resuscitate; IQR = interquartile range.
* Includes patients with a World Health Organization ordinal score of 3 (not on oxygen) or 4 (on nasal cannula or facemask oxygen).
† Includes patients with a World Health Organization ordinal score of 5 (high-flow nasal cannula or noninvasive positive pressure ventilation), 6 (intubation and mechanical ventilation), and 7 (intubation; mechanical ventilation; and other signs of organ failure, including use of extracorporeal membrane oxygen, hemodialysis, or vasopressors).

Annals.org
Table 2. Vital Signs, Symptoms, and Laboratory Values at Admission, Overall and by Peak Disease Severity

| Characteristic                        | Overall (n = 832) | Mild to Moderate Disease (n = 523)* | Severe Disease (n = 171)† | Death (n = 131) |
|--------------------------------------|-------------------|------------------------------------|---------------------------|----------------|
| **Vital signs‡**                     |                   |                                    |                           |                |
| Respiratory rate, breaths/min        | 20.0 (18.0–22.0)  | 18.5 (18.0–20.0)                   | 22.0 (19.0–26.0)          | 23.8 (20.0–27.0) |
| Heart rate, beats/min                | 84 (75–95)        | 84 (74–93)                         | 85 (78–95)                | 86 (73–98)     |
| Maximum temperature, °C              | 37.8 (37.2–38.6)  | 37.7 (37.2–38.4)                   | 38.3 (37.4–39.1)          | 39.7 (37.1–38.6) |
| FiO2                                 | 0.28 (0.20–0.30)  | 0.20 (0.20–0.28)                   | 0.40 (0.28–0.50)          | 0.44 (0.28–0.80) |
| SpO2/FiO2 ratio                      | 377 (275–480)     | 471 (348–482)                      | 246 (184–346)             | 223 (121–339)  |
| MAP, mm Hg                           | 86 (80–94)        | 87 (81–95)                         | 84 (77–92)                | 82 (75–88)     |
| Intubated in the first 24 h          | 84 (10)           | 0 (0)                              | 47 (27)                   | 34 (26)        |
| NIPPV or HFNC in the first 24 h      | 63 (8)            | 0 (0)                              | 44 (26)                   | 18 (14)        |
| **Presenting symptoms§**             |                   |                                    |                           |                |
| Cough                                | 649 (78)          | 418 (80)                           | 145 (85)                  | 81 (62)        |
| Shortness of breath                  | 689 (83)          | 409 (78)                           | 157 (92)                  | 117 (89)       |
| Fever                                | 691 (83)          | 436 (83)                           | 148 (87)                  | 102 (78)       |
| Chills                               | 343 (41)          | 241 (46)                           | 78 (46)                   | 23 (18)        |
| Muscle pain                          | 353 (42)          | 252 (48)                           | 78 (46)                   | 22 (17)        |
| Headache                            | 156 (214)         | 125 (241)                          | 29 (17)                   | 21 (14)        |
| Sore throat                          | 191 (23)          | 141 (27)                           | 36 (21)                   | 13 (10)        |
| New loss of taste or smell           | 134 (16)          | 105 (20)                           | 22 (13)                   | 7 (5)          |
| Diarrhea                             | 296 (36)          | 194 (37)                           | 71 (42)                   | 28 (21)        |
| Vomiting                             | 305 (37)          | 208 (40)                           | 65 (38)                   | 29 (22)        |
| **Laboratory values‖**               |                   |                                    |                           |                |
| Leukocyte count, × 10^9 cells/μL     | 6.7 (4.9–9.1)     | 6.4 (4.7–8.3)                      | 6.8 (5.2–9.6)             | 8.1 (5.8–11.0) |
| Absolute lymphocyte count, × 10^9 cells/μL | 0.99 (0.69-1.42) | 1.07 (0.76-1.55)                  | 0.89 (0.61-1.22)          | 1.0 (0.83-1.22) |
| Hemoglobin level, g/dL               | 13.1 (11.5–14.3)  | 13.2 (11.9–14.4)                   | 13.1 (11.4–14.3)          | 12.8 (10.6–14.3) |
| Platelet count, × 10^9 cells/μL      | 204 (157–251)     | 204 (158–261)                      | 201 (157–261)             | 200 (151–264)  |
| Albumin level, g/dL                  | 3.70 (3.30–4.10)  | 3.80 (3.50–4.20)                   | 3.60 (3.27–3.90)          | 3.50 (3.00–3.80) |
| ALT level, U/L                       | 29 (19–48)        | 29 (16–47)                         | 33 (21–49)                | 26 (17–43)     |
| AST level, U/L                       | 39 (27–58)        | 36 (24–53)                         | 45 (31–66)                | 41 (29–72)     |
| Bilirubin level, mg/dL               | 0.50 (0.30–0.60)  | 0.40 (0.30–0.60)                   | 0.50 (0.40–0.63)          | 0.50 (0.40–0.80) |
| Creatinine level, mg/dL              | 1.00 (0.80–1.20)  | 0.92 (0.80–1.24)                   | 1.10 (0.80–1.80)          | 1.60 (1.00–2.25) |
| GFR, mL/min per 1.73 m2              | 74 (44–97)        | 83 (56–102)                        | 68 (40–94)                | 39 (24–65)     |
| CRP level, mg/dL                     | 8 (3–14)          | 6 (2–11)                           | 12 (6–18)                 | 12 (6–19)      |
| LDH level, U/L                       | 341 (258–485)     | 373 (45)                           | 434 (321–540)             | 346 (222–628)  |
| D-dimer level, mg/L, FEU             | 0.93 (0.52–1.83)  | 0.75 (0.46–1.43)                   | 1.00 (0.59–1.70)          | 2.06 (1.0–4.00) |
| Ferritin level, mg/dL                | 510 (401–611)     | 482 (385–575)                      | 607 (496–688)             | 482 (362–648)  |
| Hemoglobin A1c, %                    | 6.80 (5.9–8.63)   | 6.70 (5.8–8.70)                    | 6.80 (6.0–8.10)           | 7.55 (6.7–8.92) |
| Pro-BNP level, pg/mL                 | 214 (45–960)      | 121 (25–475)                       | 231 (74–1021)             | 978 (184–3824) |

Clinical Course by Disease Outcome

Table 3 and Supplement Figures 3 to 5 (available at Annals.org) show patient trajectories by peak WHO disease category. Forty-five patients (5%) had severe

Vital signs also differed among peak disease categories (Table 2). Supplement Figure 2 (available at Annals.org) shows demographic and clinical characteristics by WHO peak illness severity score.
Factors on Admission Associated With Time to Severe Disease or Death

Age appreciably modified associations with sex, multiple comorbid conditions (measured by CCI), and detectable troponin level. Including these effect modifiers in Cox models to describe disease progression, several demographic and clinical factors were significantly associated (Appendix Table 1, available at Annals.org). Compared with a reference group of patients aged 60 to 74 years (female, not from a nursing home, CCI of 0, and no detectable troponin level), patients younger than 60 years and patients aged 75 years or older were less likely to develop severe disease (for both of the latter groups, a change in risk at 2 days from 10% to 5%). A higher CCI was associated with an increased risk for progression in patients younger than 60 years (a change in risk at 2 days from 10% to 12%) and patients aged 75 years or older (a change in risk at 2 days from 10% to 11%) but a lower risk for progression among patients aged 60 to 74 years (a change in risk at 2 days from 10% to 8%). A detectable troponin level was associated with an increased risk for progression to severe disease or death, but this association was only statistically significant in patients aged 60 to 74 years. Other factors were associated with progression to severe disease or death independent of age; these included BMI (a change in risk by 4 days from 13% to 16% for each 5-point increase), respiratory symptoms (a change in risk by 4 days from 13% to 30%), C-reactive protein (CRP) level, respiratory rate, albumin level, and temperature greater than 38°C (a change in risk by 4 days from 13% to 23%). Constitutional symptoms were associated with a decreased risk for severe disease, as was a higher absolute lymphocyte count.

Cumulative Incidence and Risk Probabilities by Days After Hospital Admission

We generated cumulative incidence plots for commonly encountered patients with different baseline conditions to illustrate specific factors associated with progression to the composite outcome of severe disease or death (Figure). For example, an 81-year-old patient in the first 12 h 108 (13) 51 (9.8) 6 (3) 51 (39)

Table 3. Time Course of Disease Progression, Overall and by Peak Disease Severity

| Time to Severe Illness or Death and DNR/DNI* | Overall (n = 832) | Mild to Moderate Disease (n = 523)† | Severe Disease (n = 171)‡ | Death (n = 131) |
|--------------------------------------------|------------------|----------------------------------|--------------------------|----------------|
| Median time to severe illness or death (IQR), d | 1.1 (0.1–3.4) | – | 1.0 (0.1–2.7) | 1.8 (0.0–5.9) |
| Severe illness or death, n (%) | | | | |
| Upon admission | 45 (5) | – | 21 (12) | 23 (18) |
| In the first 12 h | 120 (14) | – | 65 (38) | 51 (39) |
| In the first 24 h | 149 (18) | – | 86 (50) | 59 (45) |
| By day 2 | 185 (22) | – | 113 (66) | 68 (52) |
| By day 3 | 215 (26) | – | 134 (78) | 77 (59) |
| By day 4 | 244 (29) | – | 150 (88) | 88 (67) |
| DNR/DNI, n (%) | | | | |
| Upon admission | 52 (6) | 26 (5.0) | 1 (0.6) | 25 (19) |
| In the first 12 h | 108 (13) | 51 (9.8) | 6 (3) | 51 (39) |
| In the first 24 h | 124 (15) | 56 (11) | 9 (5) | 59 (45) |

DNR = do not resuscitate; DNI = do not intubate; IQR = interquartile range. * “Admission” was defined as the time that the admission order was placed. Overall, 788 patients (95%) presented to an emergency department at 1 of the 5 health care system hospitals. The median time between arrival to the emergency department and admission order was 3.1 h (IQR, 2.1 to 4.5 h). The timing of DNI/DNR order among those who died is further shown in Supplement Figure 6 (available at Annals.org). † Includes patients with a World Health Organization ordinal score of 3 (not on oxygen) or 4 (on nasal cannula or facemask oxygen). ‡ Includes patients with a World Health Organization ordinal score of 5 (high-flow nasal cannula or noninvasive positive pressure ventilation), 6 (intubation and mechanical ventilation), and 7 (intubation; mechanical ventilation; and other signs of organ failure, including use of extracorporeal membrane oxygen, hemodialysis, or vasopressors).
**Figure.** Cumulative incidence of severe disease or death for characteristic patients.

| Patient | Description | Cumulative Incidence of Severe Disease or Death |
|---------|-------------|-----------------------------------------------|
| A       | 81-year-old Black woman with diabetes and hypertension; BMI, 35 kg/m²; respiratory rate, 32 breaths/min; febrile; high CRP level; D-dimer level >1 mg/L | 80% 92% 96% |
| B       | 69-year-old Black man with diabetes, coronary disease, and hypertension; BMI, 38 kg/m²; respiratory rate, 23 breaths/min | 28% 41% 50% |
| C       | 47-year-old Black man with diabetes and hypertension; BMI, 34 kg/m²; respiratory rate, 18 breaths/min; febrile; detectable troponin level | 18% 27% 32% |
| D       | 79-year-old White man with a CCI of 0; BMI, 24 kg/m²; respiratory rate, 19 breaths/min; afebrile; detectable troponin level | 10% 15% 18% |
| E       | 60-year-old White woman with a CCI of 0; BMI, 28 kg/m²; respiratory rate, 18 breaths/min; afebrile; detectable troponin level | 6% 9% 11% |
| F       | 39-year-old Latinx man with a CCI of 0; BMI, 23 kg/m²; respiratory rate, 18 breaths/min; afebrile | 3% 5% 5% |

The cumulative incidences are calculated from the model in Appendix Table 1 (available at Annals.org). BMI = body mass index; CCI = Charlson Comorbidity Index; CRP = C-reactive protein. Left. Cumulative incidences at days 2, 4, and 7 after admission for 6 characteristic patients. These exemplars were chosen by selecting for key characteristics that are known to affect risk in our Cox models. Right. Cumulative incidence plots for each characteristic patient. The plots show how some patients have a higher likelihood of progression to severe disease or death and progress at a faster rate than others. For example, patient A has an 80% risk for severe disease or death by day 2, whereas patient F has only a 3% risk. The slope of the curve for patient A is also steeper than that of the others.

Black woman with diabetes and hypertension, a BMI of 35 kg/m², fever, a respiratory rate of 32 breaths/min, a high CRP level, and a D-dimer level greater than 1 mg/L has a probability of progressing to severe disease or death of 80%, 92%, and 96% by days 2, 4, and 7, respectively, after admission. In contrast, a 39-year-old Latinx man with a BMI of 23 kg/m², no comorbid conditions, and no fever has a probability of progression of 3%, 5%, and 5% by days 2, 4, and 7.

### Prediction Model for Progression to Severe Disease or Death

The cause-specific hazard model in Appendix Table 1 and the same model for the competing risk discharge was applied to each person’s baseline characteristics to predict their risk (cumulative incidence) of severe disease or death given their baseline covariate profile. The AUC(t) at days 2, 4, and 7 is shown in Table 4. The value is largest at day 2 (0.85) but remains close to 0.80 for the entire week. An interactive version of the CIRC is available at https://rsconnect.biostat.jhsph.edu/covid_predict/.

Having 5 hospitals with diverse patient populations was an opportunity to quantify the heterogeneity in patients’ risk among these hospitals, which we did by estimating a separate hospital fixed effect for each hospital. Controlling for baseline covariates that differ substantially across hospitals, a joint test that all hospitals held out of the training set discriminate patients with severe disease from those with nonsevere disease just as well as predictions within hospitals used for training the model.

### Factors on Admission Associated With Time to Death

When death alone was assessed, important risk factors included age, age interaction with nursing home, CCI, and SpO2/FiO2 ratio (Appendix Table 2, available at Annals.org). Compared with a reference group of patients aged 60 to 74 years who were not admitted from a nursing home, patients younger than 60 years had a decreased risk for death (a change in baseline risk at 7 days from 2% to 1%) and patients aged 75 years or older had an increased risk for death (a change in baseline risk at 7 days from 2% to 7%). Admission from a nursing home was associated with an increased risk for death, but this association was only statistically significant in patients younger than 75 years (a change in baseline risk at 7 days from 2% to 5%). The CCI and
SpO2/FiO2 ratio were associated with death across all age groups. There were not enough events to create a reliable prediction model for death as the main outcome.

**DISCUSSION**

Our study provides insight into the disease trajectories of hospitalized patients with COVID-19 in the United States and the risk factors associated with severe outcomes. Rapid progression of disease after admission provides a narrow window to intervene to avert these outcomes. Different combinations of risk factors predict severe disease or death with probabilities ranging from over 90% to as little as 5% (that is, 18-fold for patients at highest risk compared with those at lowest risk). Selected risk factors carry great importance in prediction.

As seen elsewhere (24–26), older age and nursing home residence were associated with a high risk for death. Nursing home patients tend to be older, have high comorbidity, and live in an environment where COVID-19 can spread rapidly among staff and residents (27, 28). Underlying conditions, such as cognitive impairment or chronic cough, can delay recognition of symptoms and presentation to the hospital (27). With approximately 1.4 million nursing home residents in the United States (29), strategies to prevent and treat COVID-19 in this population are needed.

One in 5 patients who died had DNR/DNI orders at the time of admission, probably reflecting advanced directives. Presence of a DNR/DNI order affected the use of specific interventions, measurement of disease severity by using the WHO scale, and time to death. Almost all patients who died without receiving mechanical ventilation had DNR/DNI orders. It is difficult to know how end-of-life practices differed across doctors and hospitals and whether DNR/DNI orders reflected patient preference or rapid development of severe disease with perceived poor outcomes. The implementation of advanced directives varies globally (30) and may contribute to geographic differences in COVID-19 mortality.

As in other studies (31–34), BMI was strongly associated with severe disease or death. This could be due to obesity-related diabetes, cardiovascular disease, and inflammation that impairs the immune response and induces oxidant stress. Obesity can also impair the mechanics of breathing (35, 36). This association is particularly important in the United States, where the age-adjusted prevalence of obesity is 42%. Obesity prevalence is higher among Black persons, Latinx persons, and persons aged 40 to 59 years and is linked to socioeconomic status, other comorbid conditions, and poor health outcomes (37). In the United States, younger patients admitted to the hospital for COVID-19 are more likely to be obese (38). The relationship between obesity and COVID-19 outcomes in older patients is probably complicated by the fact that excess body weight in frail older adults may be somewhat protective against additional stressors (39).

Although 60% of patients were non-White, we did not observe associations of race/ethnicity with severe disease or death after adjustment for clinical factors. Easily measured baseline parameters (absolute lymphocyte count; CRP, troponin, and albumin levels; respiratory rate; and SpO2/FiO2 ratio) were associated with disease trajectory. Respiratory rate is included in mortality prediction scores for hospitalized patients (40–42) and has been associated with mortality in COVID-19 (43). A lower SpO2/FiO2 ratio is associated with mortality because hypoxic respiratory failure is a hallmark of severe COVID-19. A lower SpO2/FiO2 ratio is also associated with mortality in other causes of acute respiratory distress syndrome and respiratory failure (44, 45).

Our observed mortality of 16% is lower than the 20% to 28% reported from hospitalized cohorts in Italy, China, the United Kingdom, and elsewhere in the United States (4, 20–23, 46) but is similar to the 13% mortality in the placebo group of the Adaptive COVID-19 Treatment Trial (47). Lower mortality could be due to our more complete observation of discharge outcome or because the Johns Hopkins Hospital is one of the Regional Ebola and Special Pathogens Treatment Centers (RESPTCs) funded to improve domestic preparedness following the 2014–2016 Ebola outbreak (48, 49). Furthermore, the health system did not exceed its capacity of hospital and intensive care unit beds.

The CIRC performed best at predicting progression to severe disease or death in the first 2 days of hospital admission and thus offers valuable information at the time of initial hospital evaluation. Within the 5 study hospitals, the model discriminated higher- vs lower-risk patients equally well regardless of whether the patients were from the hospitals used to fit the model. Although the model performed well at predicting progression by hospital days 4 and 7, models that incorporate longitudinal data will probably provide more accurate predictions at these later time points.

Our study has limitations. First, the data are derived from a single health system. However, we observed limited heterogeneity across the 5 hospitals after controlling for baseline predictors, suggesting that this model could apply to other hospitals. Second, collection of key laboratory values was not standardized across the health system, or even at individual hospitals, which contributed to missing data. Third, testing challenges may have caused underascertainment of COVID-19-positive cases in our health system (50). Fourth, we did not have respiratory viral panels for all patients and did not account for the possibility that coinfection with other viral infections may have altered disease trajectory. Fifth, the electronic health record may not have documented all comorbid conditions. Sixth, some symptoms, such as loss of taste or smell, may have been underrepresented because they were not recognized early on in the pandemic and severely ill patients may have been unable to accurately report symptoms. Seventh, our data set did not include symptom onset because this metric is difficult to extract by using natural language processing. Finally, postdischarge out-
comes were not captured if they occurred outside of the health system. In conclusion, we identified important factors easily ascertained at admission that are associated with severe COVID-19 outcomes. Specific subgroups had high risk for progression to severe illness or death. Progression to severe disease or death can be rapid. A model using factors on admission to the hospital can predict outcomes at days 2, 4, and 7 of hospitalization. Future studies will focus on prediction using longitudinal data to assist clinicians, patients, and families as they navigate COVID-19.

From Johns Hopkins University School of Medicine, Baltimore, Maryland (B.T.G., M.L.R., P.N., J.H.G., H.M., T.M.N., B.S.K., P.M.H., R.B., D.R.T., M.G.B., A.R., A.G.); Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (J.F., J.M., J.P., G.S., M.W., K.B., S.L.Z.); Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.R., B.W.); Information Technology, Johns Hopkins Medicine, Baltimore, Maryland (M.G., K.H.); Howard County General Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.S.A.); Suburban Hospital, Johns Hopkins Medicine, Bethesda, Maryland (E.D.D.); Sibley Memorial Hospital, Johns Hopkins Medicine, Washington, DC (J.A.); and Technology Innovation Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.B.S.).

Acknowledgment: The authors thank the Johns Hopkins Health System and its surrounding communities for working together to provide outstanding patient care and to keep each other safe during these extraordinary times.

Financial Support: The data utilized were part of JH-CROWN: The COVID PMAP Registry, which is based on the contribution of many patients and clinicians and funded by Hopkins in-Health, the Johns Hopkins Precision Medicine Program. Drs. Garibaldi, Muschelli, Robinson, and Gupta and Mr. Schumock received funding from the COVID-19 Administrative Supplement for the HHS Region 3 Treatment Center from the Office of the Assistant Secretary for Preparedness and Response.

Disclosures: Disclosures can be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M20-3905.

Reproducible Research Statement: Study protocol: Not available. Statistical code: Available from Dr. Garibaldi (e-mail, bgariba1@jhmi.edu), along with information on the COVID-19 Inpatient Risk Calculator (CIRC). Data set: Not available.

Corresponding Author: Brian T. Garibaldi, MD, MEHP, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, 1830 East Monument Street, Fifth Floor, Baltimore, MD 21205; e-mail, bgariba1@jhmi.edu.

Correction: This article was corrected on 6 November 2020 to reflect the authors’ use of pulse oximetry measurements (SpO₂) in their model.

Previous Posting: This manuscript was posted as a preprint on medRxiv on 26 May 2020. doi:10.1101/2020.05.24.20111864

Current author addresses and author contributions are available at Annals.org.

References
1. Holshue ML, DeBolt C, Lindquist S, et al; Washington State 2019-nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382:929-936. [PMID: 32004427] doi:10.1056/NEJMoa2001191
2. Center for Systems Science and Engineering, Johns Hopkins University. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Accessed at https://coronavirus.jhu.edu/map.html on 1 September 2020.
3. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061-1069. [PMID: 32031570] doi:10.1001/jama.2020.1585
4. Richardson S, Hirsch JS, Narasimhan M, et al; the Northwell COVID-19 Research Consortium. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323:2052-2059. [PMID: 32320003] doi:10.1001/jama.2020.6775
5. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020;323:1775-1776. [PMID: 32203977] doi:10.1001/jama.2020.4683
6. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180:934-943. [PMID: 32167524] doi:10.1001/jama.2020.0994
7. Garg S, Kim L, Whitaker M, et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 - COVID-NET, 14 states, March 1-30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:458-464. [PMID: 32298251] doi:10.15585/mmwr.mm6915e3
8. Ison MG, Wolfe C, Boucher HW. Emergency use authorization of remdesivir: the need for a transparent distribution process. JAMA. 2020;323:2365-2366. [PMID: 32407438] doi:10.1001/jama.2020.8863
9. Emanuel EJ, Persad G, Upshur R, et al. Fair allocation of scarce medical resources in the time of covid-19. N Engl J Med. 2020;382:2049-2055. [PMID: 32202722] doi:10.1056/NEJMsb2005114
10. Johns Hopkins inHealth. PMAP: The Johns Hopkins Precision Medicine Analytics Platform. Accessed at https://pm.jh.edu/ on 17 May 2020.
11. World Health Organization. WHO R&D Blueprint: novel coronavirus COVID-19 therapeutic trial synopsis. 18 February 2020. Accessed at www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf on 17 May 2020.
12. Charlson M, Szatrowski TP, Peterson J, et al. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47:1245-51. [PMID: 7722560]
13. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45:613-9. [PMID: 1607900]
14. Little RJ. Missing-data adjustments in large surveys. J Bus Econ Stat. 1988;6:287-96.
15. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. J Stat Softw. 2011;45:1-67.
16. White IR, Royston P. Imputing missing covariate values for the Cox model. Stat Med. 2009;28:1982-98. [PMID: 19452569] doi:10.1002/sim.3618
17. Cox DR. Regression models and life-tables. In: Kotz S, Johnson NL, eds. Breakthroughs in Statistics: Methodology and Distribution. Springer New York; 1992:527-41.
18. Rubin DB. Multiple Imputation for Nonresponse in Surveys. Vol 81. J Wiley; 2004.
Current Author Addresses: Drs. Garibaldi and Kim: Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, 1830 East Monument Street, Fifth Floor, Baltimore, MD 21205.
Drs. Fiksel, Muschelli, Perin, Wang, Bandeen-Roche, and Zege and Mr. Schumock: Division of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205-2179.
Dr. Robinson: Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, 4th Floor, Baltimore, MD 21205.
Dr. Rouhizadeh: Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, 750 East Pratt Street, 16th Floor, Baltimore, MD 21202.
Dr. Nagy and Mr. Shah: Johns Hopkins Medicine Technology Innovation Center, 855 North Wolfe Street, Rangos Building, Suite 600 B, Baltimore, MD 21205.
Mr. Gray, Mr. Malapati, and Ms. Bowring: Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205.
Ms. Ghobadi-Krueger and Mr. Harkness: Information Technology, Johns Hopkins Health System, 1000 Lancaster Street, 4th Floor, Baltimore, MD 21202.
Dr. Niessen: Division of Hospital Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287.
Dr. Hill: Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287.
Dr. Dobbins: Howard Country General Hospital, 5755 Cedar Lane, Columbia, MD 21044.
Dr. Blanding: Johns Hopkins Bayview Medical Center, 4940 Eastern Avenue, Baltimore, MD 21224.
Dr. Abele: Sibley Memorial Hospital, 5255 Loughboro Road NW, Washington, DC 20016.
Ms. Woods: Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, 750 East Pratt Street, 16th Floor, Baltimore, MD 21202.
Dr. Thiemann: Division of Cardiology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287.
Dr. Rosen: Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287-1832.
Dr. Gupta: Center for Clinical Global Health Education, Johns Hopkins School of Medicine, 600 North Wolfe Street, Phipps 521, Baltimore, MD 21287.

Author Contributions: Conception and design: B.T. Garibaldi, P.G. Nagy, M.M. Ghobadi-Krueger, T. Niessen, D. Thiemann, K. Bandeen-Roche, A. Rosen, S. Zeger, A. Gupta.
Analysis and interpretation of the data: B.T. Garibaldi, J. Fiksel, J. Muschelli, M.L. Robinson, J. Perin, G. Schumock, P.G. Nagy, J.H. Gray, H. Malapati, B. Woods, D. Thiemann, M. Wang, K. Bandeen-Roche, S. Zeger, A. Gupta.
Drafting of the article: B.T. Garibaldi, J. Fiksel, M.L. Robinson, M. Rouhizadeh, P.G. Nagy, J.H. Gray, H. Malapati, P.M. Hill, A. Rosen, S. Zeger, A. Gupta.
Critical revision for important intellectual content: B.T. Garibaldi, J. Fiksel, M.L. Robinson, G. Schumock, P.G. Nagy, J.H. Gray, H. Malapati, B. Kim, D. Thiemann, K. Bandeen-Roche, A. Rosen, S. Zeger, A. Gupta.
Final approval of the article: B.T. Garibaldi, J. Fiksel, J. Muschelli, M.L. Robinson, M. Rouhizadeh, J. Perin, G. Schumock, P.G. Nagy, J.H. Gray, H. Malapati, M.M. Ghobadi-Krueger, T. Niessen, B. Kim, P.M. Hill, M. Shafeeq Ahmed, E.D. Dobkin, R. Blanding, J. Abele, B. Woods, K.B. Harkness, D. Thiemann, M.G. Bowring, A.B. Shah, M. Wang, K. Bandeen-Roche, A. Rosen, S. Zeger, A. Gupta.
Provision of study materials or patients: J. Abele, E.D. Dobkin, B.T. Garibaldi, T. Niessen.
Statistical expertise: B.T. Garibaldi, J. Fiksel, J. Muschelli, M.L. Robinson, G. Schumock, J.H. Gray, M.M. Ghobadi-Krueger, D. Thiemann, K. Bandeen-Roche, S. Zeger.
Obtaining of funding: A.B. Shah, S. Zeger.
Administrative, technical, or logistic support: B.T. Garibaldi, M. Rouhizadeh, P.G. Nagy, J.H. Gray, M.M. Ghobadi-Krueger, M. Shafeeq Ahmed, E.D. Dobkin, R. Blanding, B. Woods, K.B. Harkness, D. Thiemann, M.G. Bowring, A.B. Shah, S. Zeger, A. Gupta.
Collection and assembly of data: B.T. Garibaldi, J. Fiksel, M. Rouhizadeh, P.G. Nagy, J.H. Gray, H. Malapati, M.M. Ghobadi-Krueger, B. Kim, B. Woods, K.B. Harkness, D. Thiemann, M.G. Bowring, A.B. Shah, S. Zeger, A. Gupta.
### Appendix Table 1. Multivariate Association of Factors on Admission With Severe Disease or Death*

| Characteristic                                                                 | Estimate | Adjusted Hazard Ratio (95% CI) | P Value |
|-------------------------------------------------------------------------------|----------|-------------------------------|---------|
| Age <60 y (vs. 60–74 y)†                                                   | -0.61    | 0.54 (0.31-0.96)             | 0.04    |
| Age ≥75 y (vs. 60–74 y)†                                                   | -0.71    | 0.49 (0.26-0.92)             | 0.03    |
| Within age <75 y, nursing home residence vs. no nursing home residence      | -0.24    | 0.79 (0.49-1.26)             | 0.32    |
| Within age ≥75 y, nursing home residence vs. no nursing home residence      | -0.22    | 0.80 (0.52-1.23)             | 0.31    |
| Within age <60 y, male vs. female                                           | 0.31     | 1.36 (0.88-2.12)             | 0.17    |
| Within age 60–74 y, male vs. female                                          | -0.47    | 0.63 (0.39-1.02)             | 0.06    |
| Within age ≥75 y, male vs. female                                           | 0.10     | 1.11 (0.72-1.71)             | 0.64    |
| BMI (increments of 5 kg/m²)                                                 | 0.17     | 1.19 (1.10-1.28)             | <0.001  |
| Non-White race vs. White race                                               | 0.08     | 1.08 (0.81-1.44)             | 0.60    |
| Within age <60 y, CCI per 1-point increase                                   | 0.19     | 1.21 (1.02-1.43)             | 0.03    |
| Within age 60–74 y, CCI per 1-point increase                                  | -0.23    | 0.80 (0.68-0.94)             | 0.01    |
| Within age ≥75 y, CCI per 1-point increase                                    | 0.14     | 1.15 (1.02-1.31)             | 0.03    |
| Respiratory symptoms present vs. absent                                      | 0.81     | 2.26 (1.15-4.43)             | 0.02    |
| Gastrointestinal symptoms present vs. absent                                 | -0.14    | 0.87 (0.66-1.15)             | 0.32    |
| Constitutional symptoms present vs. absent                                   | -0.57    | 0.56 (0.36-0.87)             | 0.01    |
| Loss of taste and smell present vs. absent                                   | -0.30    | 0.74 (0.48-1.15)             | 0.18    |
| Fever (temperature >38.0 °C) vs. no fever                                    | 0.56     | 1.76 (1.35-2.29)             | <0.001  |
| Pulse (increments of 10 beats/min)                                           | -0.02    | 0.98 (0.90-1.06)             | 0.62    |
| Respiratory rate <18 breaths/min                                             | -0.25    | 0.78 (0.64-0.95)             | 0.02    |
| Respiratory rate ≥18 breaths/min                                             | 0.13     | 1.14 (1.11-1.16)             | <0.001  |
| Log absolute lymphocyte count (K cells/mm³)                                  | -0.29    | 0.74 (0.59-0.94)             | 0.01    |
| Log ALT level (U/L)                                                          | 0.02     | 1.02 (0.84-1.22)             | 0.87    |
| Hemoglobin level (every 1-point decrease in g/dL)                            | 0.04     | 1.04 (0.97-1.11)             | 0.23    |
| Albumin level (every 0.5-g/dL decrease below 4 g/dL)                         | 0.23     | 1.25 (1.09-1.44)             | 0.002   |
| GFR (increase of 10 mL/min per 1.73 m²)                                      | -0.03    | 0.97 (0.92-1.01)             | 0.16    |
| Log CRP level (mg/dL)                                                        | 0.20     | 1.22 (1.00-1.49)             | 0.05    |
| Log ferritin level (ng/mL)                                                   | 0.11     | 1.12 (0.96-1.31)             | 0.16    |
| Within age <60 y, detectable troponin level vs. not                          | 0.19     | 1.20 (0.67-2.17)             | 0.54    |
| Within age 60–74 y, detectable troponin level vs. not                        | 1.36     | 3.90 (2.23-6.82)             | <0.001  |
| Within age ≥75 y, detectable troponin level vs. not                          | 0.35     | 1.42 (0.85-2.38)             | 0.19    |
| D-dimer level >1 mg/dL FEU                                                   | 0.24     | 1.27 (0.93-1.72)             | 0.14    |

ALT = alanine aminotransferase; BMI = body mass index; CCI = Charlson Comorbidity Index; CRP = C-reactive protein; FEU = fibrinogen equivalent unit; GFR = glomerular filtration rate.

* Based on 829 patients and 303 events per 4030 person-days observed. For ease of interpretation, we report hazard ratios by age group rather than as main effects and interaction. Because age appreciably modified associations with sex, CCI, and detectable troponin level, these interactions were included in the model. Vital signs other than temperature were the median values over the first 24 h after admission. For temperature, we chose the highest value in the first 24 hours after admission. Symptoms were derived by using natural language processing on clinical notes as described in the Supplement (available at Annals.org). Laboratory values were the first value present in the 48 h before or after admission. Overall, 788 patients (95%) presented to an emergency department at 1 of the 5 system hospitals. The median time between arrival to the emergency department and admission order was 3.1 hours (interquartile range, 2.1–4.5 h). To be able to compare risks between patients with different covariates at days 2, 4, and 7, we calculated baseline cumulative incidences for a White woman aged 60–74 y with a BMI of 30 kg/m², CCI of 0, no symptoms (respiratory, gastrointestinal, constitutional, or loss of taste or smell), leukocyte count of 6.8 × 10³ cells/μL, absolute lymphocyte count of 1.0 × 10³ cells/μL, ALT level of 30.0 U/L, albumin level of 3.7 g/dL, GFR of 71 mL/min per 1.73 m², CRP level of 5.7 mg/dL, hemoglobin level of 12.9 g/L, ferritin level of 545 ng/mL, no detectable troponin level, D-dimer level <1 mg/dL FEU, heart rate of 85 beats/min, and respiratory rate of 21 breaths/min. The baseline cumulative incidences for this patient at days 2, 4, 7, and 14 were estimated to be 10%, 13%, 15%, and 15% respectively. † The reference group is female, not from a nursing home, CCI of 0, and no detectable troponin level.
Appendix Table 2. Multivariate Association of Factors on Admission and Death*

| Characteristic                                      | Estimate | Adjusted Hazard Ratio (95% CI) | P Value |
|-----------------------------------------------------|----------|--------------------------------|---------|
| Age <60 y (vs. 60–74 y)†                           | -0.69    | 0.50 (0.26–0.97)               | 0.04    |
| Age ≥75 y (vs. 60–74 y)†                           | 1.27     | 3.56 (2.00–6.32)               | <0.001  |
| Within age <75 y, nursing home residence vs. no nursing home residence | 0.83 | 2.30 (1.30–4.06) | 0.004 |
| Within age ≥75 y, nursing home residence vs. no nursing home residence | 0.35 | 1.42 (0.87–2.29) | 0.16 |
| Male vs. female                                     | 0.34     | 1.40 (0.97–2.03)               | 0.07    |
| BMI (increments of 5 kg/m²)                         | -0.04    | 0.97 (0.86–1.09)               | 0.56    |
| Non-White race vs. White race                       | -0.33    | 0.72 (0.49–1.07)               | 0.11    |
| CCI (per 1-point increase)                         | 0.12     | 1.13 (1.02–1.25)               | 0.02    |
| SpO₂/FiO₂ ratio ≥375 (for every 50-unit decrease)  | 0.00     | 1.00 (0.72–1.38)               | 0.99    |
| SpO₂/FiO₂ ratio <375 (for every decrease in 50)    | 0.35     | 1.42 (1.26–1.60)               | <0.001  |

BMI = body mass index; CCI = Charlson Comorbidity Index.

* Based on 829 patients and 124 events per 9082 person-days observed. Given the smaller number of deaths relative to the number of variables of interest, variable selection was warranted. We fit cause-specific proportional hazards models regularized with an elastic net penalty, as implemented in the glmnet R package. Age is divided into 3 groups (<60 y, 60–74 y, ≥75 y) rather than treated as a continuous variable. In sensitivity analyses, there were changes in statistical significance or in the direction of model coefficients between age groups for admission from a nursing home. For ease of interpretation, we report hazard ratios for this factor by age groups rather than as main effects and interaction. The SaO₂/FiO₂ ratio was the median value over the first 24 h after admission. Symptoms were derived by using natural language processing on clinical notes as described in the Supplement (available at Annals.org). “Admission” was defined as the time that the admission order was placed. Overall, 788 patients (95%) presented to an emergency department at 1 of the 5 system hospitals. The median time between arrival to the emergency department and admission order was 3.1 h (interquartile range, 2.1–4.5 h). To be able to compare risks between patients with different covariates at days 2, 4 and 7, we calculated baseline cumulative incidences at day 2, 4, 7, and 14 for a White woman aged 60–74 y who was not from a nursing home and had a BMI of 30 kg/m², CCI of 0, and SpO₂/FiO₂ ratio of 365. These cumulative incidences were estimated to be 0.1%, 1%, 2%, and 3% respectively.

† The reference group is patients not from a nursing home.