GENERALIZING THE KANTOROVICH METRIC TO PROJECTION VALUED MEASURES

TRUBEE DAVISON

ABSTRACT. Given a compact metric space X, the collection of Borel probability measures on X can be made into a complete metric space via the Kantorovich metric (see [5]). We generalize this well known result to projection valued measures. In particular, given a Hilbert space \(\mathcal{H} \), consider the collection of projection valued measures from X into the projections on \(\mathcal{H} \). We show that this collection can be made into complete metric space via a generalized Kantorovich metric. As an application, we use the Contraction Mapping Theorem on this complete metric space of projection valued measures to provide an alternative method for proving a fixed point result due to P. Jorgensen (see [7] and [8]). This fixed point, which is a projection valued measure, arises from an iterated function system on X, and is related to Cuntz Algebras. We also show that the space of positive operator valued measures from X into the positive operators on \(\mathcal{H} \) can be made into a complete metric space, via the same generalized Kantorovich metric.

CONTENTS

1. Preliminaries: 1
2. A Metric Space of Projection Valued Measures on X: 4
 2.1. A Generalized Kantorovich Metric: 4
 2.2. \((P(X), \rho) \) is Complete: 8
 2.3. Defining the Weak Topology on P(X): 11
 2.4. Isomorphism of Metric Spaces: 12
3. An Application for the Metric Space \((P(X), \rho) \): 14
 3.1. An Alternative Proof of Theorem 1.9: 18
4. Generalizing to Positive Operator Valued Measures: 20
5. Conclusion: 26
6. Acknowledgements: 27
References 27

1. PRELIMINARIES:

Let \((X, d)\) be a compact metric space, and define \(M(X)\) to be the collection of Borel probability measures on X. It is well known (see [5]) that \(M(X)\) can be equipped with the Kantorovich metric, \(H\), given by:

\[
H(\mu, \nu) = \sup_{\phi \in \text{Lip}_1(X)} \left\{ \left| \int_X \phi d\mu - \int_X \phi d\nu \right| \right\},
\]

where \(\mu\) and \(\nu\) are elements of \(M(X)\), and where,
\(\text{Lip}_1(X) = \{ \phi : X \to \mathbb{R} : |\phi(x) - \phi(y)| \leq d(x, y) \text{ for all } x, y \in X \}. \)

Definition 1.1. A sequence measures \(\{ \mu_n \}_{n=1}^{\infty} \subseteq M(X) \) converges weakly to a measure \(\mu \in M(X) \), written \(\mu_n \Rightarrow \mu \), if for all \(f \in C(\mathbb{R}) \), \(\int_X f \, d\mu_n \to \int_X f \, d\mu \), where \(C(\mathbb{R}) \) is the collection of continuous real valued functions on \(X \).

The motivation behind the above definition is the following. For each \(\mu \in M(X) \), define a mapping \(\hat{\mu} : M(X) \to \mathbb{R} \) by \(\mu \mapsto \int_X f \, d\mu \). For each \(\nu \in M(X) \), for each \(\epsilon > 0 \), and for any finite collection of functions \(\{f_1, \ldots, f_k\} \subseteq M(X) \), consider the subset, \(\{ \mu \in M(X) : |\hat{f}_j(\mu) - \hat{f}_j(\nu)| < \epsilon \text{ for all } 1 \leq j \leq k \} \), of \(M(X) \). The collection of all finite intersections of such subsets defines a basis for a topology on \(M(X) \) which is called the weak topology on \(M(X) \). Note that since \(C(\mathbb{R}) \) is a separable metric space, the weak topology is first countable, and hence, can be characterized by sequences.

Remark 1.2. A sequence \(\{ \mu_n \} \) of measures in \(M(X) \) converges to a measure \(\mu \) in the weak topology on \(M(X) \) if and only if \(\hat{\mu}(\mu_n) \to \hat{\mu}(\mu) \) for all \(f \in C(\mathbb{R}) \).

This leads us to the following two well known facts (presented in [9]).

Proposition 1.3.

1. \((M(X), H)\) is compact.
2. The topology induced by the metric \(H \) on \(M(X) \) coincides with the weak topology on \(M(X) \).

Corollary 1.4. \((M(X), H)\) is a complete metric space.

We continue with some additional preliminaries. Let \(S = \{ \sigma_0, \ldots, \sigma_{N-1} \} \) be an iterated function system (IFS) on \((X, d)\). That is, for all \(0 \leq i \leq N - 1 \), \(\sigma_i : X \to X \) such that for all \(x, y \in X \),

\[
d(\sigma_i(x), \sigma_i(y)) \leq r_i d(x, y),
\]

where \(0 < r_i < 1 \). Indeed, each \(\sigma_i \) is a Lipschitz contraction on \(X \), and \(r_i \) is the Lipschitz constant associated to \(\sigma_i \). Let \(\sigma : X \to X \) be a Borel measurable function such that \(\sigma \circ \sigma_i = \text{id}_X \) for all \(0 \leq i \leq N - 1 \).

Assume further that,

\[
X = \bigcup_{i=0}^{N-1} \sigma_i(X), \quad (1.2)
\]

where the above union is disjoint. We have the following important result due to Hutchinson.

Theorem 1.5. [5] The map \(T : M(X) \to M(X) \) by

\[
\nu(\cdot) \mapsto \sum_{k=0}^{N-1} \frac{1}{N} \nu(\sigma_k^{-1}(\cdot)),
\]

is a Lipschitz contraction in the \((M(X), H)\) metric space, with Lipschitz constant \(r := \max_{0 \leq i \leq N-1} \{ r_i \} \).
By applying the Contraction Mapping Theorem to the Lipschitz contraction T, there exists a unique measure, $\mu \in M(X)$, such that $T(\mu) = \mu$. That is,

$$\mu(\cdot) = \frac{1}{N}\sum_{k=0}^{N-1}\mu(\sigma_k^{-1}(\cdot)).$$

This unique invariant measure, μ, is called the Hutchinson measure associated to S.

Consider the Hilbert space $L^2(X, \mu)$. Define,

$$S_i : L^2(X, \mu) \to L^2(X, \mu) \text{ by } \phi \mapsto (\phi \circ \sigma)\sqrt{N}\delta_{\sigma_i(X)},$$

for all $i = 0, \ldots, N-1$, and it’s adjoint,

$$S_i^* : L^2(X, \mu) \to L^2(X, \mu) \text{ by } \phi \mapsto \frac{1}{\sqrt{N}}(\phi \circ \sigma_i),$$

for all $i = 0, \ldots, N-1$. This leads to the following result due to Jorgensen.

Theorem 1.6. [6] The maps $\{S_i : 0 \leq i \leq N-1\}$ are isometries, and the maps $\{S_i^* : 0 \leq i \leq N-1\}$ are their adjoints. Moreover, these maps and their adjoints satisfy the Cuntz relations:

1. $\sum_{i=0}^{N-1} S_i S_i^* = 1_H$
2. $S_i^* S_j = \delta_{i,j} 1_H$ where $0 \leq i, j \leq N-1$.

Corollary 1.7. [6] The Hilbert space $L^2(X, \mu)$ admits a representation of the Cuntz algebra, \mathcal{O}_N, on N generators.

Let $\Gamma_N = \{0, \ldots, N-1\}$. For $k \in \mathbb{Z}_+$, let $\Gamma_N^k = \Gamma_N \times \ldots \times \Gamma_N$, where the product is k times. If $a = (a_1, \ldots, a_k) \in \Gamma_N^k$, where $a_j \in \{0, 1, \ldots, N-1\}$ for $1 \leq j \leq k$, define

$$A_k(a) = \sigma_{a_1} \circ \ldots \circ \sigma_{a_k}(X).$$

Using that (1.2) is a disjoint union, we conclude that $\{A_k(a)\}_{a \in \Gamma_N^k}$ partitions X for all $k \in \mathbb{Z}_+$. Indeed,

$$X = \bigcup_{i=0}^{N-1}\sigma_i(K) = \bigcup_{i=0}^{N-1}\sigma_i(\bigcup_{j=1}^{N-1}\sigma_j(X)) = \bigcup_{i,j}\sigma_i \circ \sigma_j(X) = \bigcup_{a \in \Gamma_N^k} A_k(a) = \ldots = \bigcup_{a \in \Gamma_N^k} A_k(a).$$

For $k \in \mathbb{Z}_+$ and $a = (a_1, \ldots, a_k) \in \Gamma_N^k$, define,

$$P_k(a) = S_a S_a^*,$$

where $S_a = S_{a_1} \circ \ldots \circ S_{a_k}$. The Cuntz relations suggest that $P_k(a)$ is a projection on the Hilbert space $L^2(X, \mu)$.

Definition 1.8. If T is a set, Ω is a σ-algebra of subsets of T, and \mathcal{H} is a Hilbert space, a projection valued measure for (T, Ω, \mathcal{H}) is a function $F : \Omega \to B(\mathcal{H})$ (where $B(\mathcal{H})$ denotes the C^* algebra of bounded operators on the Hilbert space \mathcal{H}) such that,
(1) For each $\Delta \in \Omega$, $F(\Delta)$ is a projection on \mathcal{H};
(2) $F(\emptyset) = 0$ and $F(\Omega) = id_{\mathcal{H}}$ (where $id_{\mathcal{H}}$ denotes the identity operator on \mathcal{H});
(3) $F(\Delta_1 \cap \Delta_2) = F(\Delta_1)F(\Delta_2)$ for $\Delta_1, \Delta_2 \in \Omega$;
(4) If $\{\Delta_n\}_{n=1}^{\infty}$ are pairwise disjoint sets in Ω, then for any $h \in \mathcal{H}$,
\[F\left(\bigcup_{n=1}^{\infty} \Delta_n\right)(h) = \sum_{n=1}^{\infty} (F(\Delta_n)h). \]

We now state an important result due to Jorgensen.

Theorem 1.9. \([7] [8]\) There exists a unique projection valued measure $E(\cdot)$ defined on the Borel subsets of X taking values in the projections on $L^2(X, \mu)$ such that,

1. $E(\cdot) = \sum_{i=0}^{N-1} S_i E(\sigma_i^{-1}(\cdot)) S_i^*$, and
2. $E(A_k(a)) = P_k(a)$ for all $k \in \mathbb{Z}^+$ and $a \in \Gamma_k N$.

Jorgensen’s proof of Theorem 1.9 is achieved by showing that the map $A_k(a) \mapsto P_k(a)$ extends uniquely to a projection valued measure from the Borel subsets of X, denoted $B(X)$, into the projections on $L^2(X, \mu)$. The main goal of this paper is to provide an alternative proof of this theorem. In particular, we will realize the map,

\[F(\cdot) \mapsto \sum_{i=0}^{N-1} S_i F(\sigma_i^{-1}(\cdot)) S_i^*, \]

as a Lipschitz contraction on a complete metric space of projection valued measures from $B(X)$ into the projections on $L^2(X, \mu)$. The Contraction Mapping Theorem will then guarantee the existence of a unique projection valued measure E satisfying part (1) of Theorem 1.9 Part (2) of Theorem 1.9 will follow as a consequence.

2. A Metric Space of Projection Valued Measures on X:

Let (X, d) be the compact metric space defined above. Let \mathcal{H} be an arbitrary Hilbert space. In Section 3, we will restrict to the situation that $\mathcal{H} = L^2(X, \mu)$.

2.1. A Generalized Kantorovich Metric:

Lemma 2.1. \([3]\) Let F be a projection valued measure from $B(X)$ into the projections on \mathcal{H}. Let $g, h \in \mathcal{H}$. For all $\Delta \in \mathcal{B}(X)$ define,

\[F_{g,h}(\Delta) = \langle F(\Delta)g, h \rangle, \]

where $\langle \cdot, \cdot \rangle$ denotes the inner product on \mathcal{H}. Then $F_{g,h}(\cdot)$ defines a countably additive measure on $\mathcal{B}(X)$ with total variation less than or equal to $||g|| \cdot ||h||$. Moreover, $F_{g,h}(\cdot) = F_{h,g}(\cdot)$.

Remark 2.2. If $h \in \mathcal{H}$, $F_{h,h}(\cdot)$ is a positive measure with total mass equal to $||h||^2$.

Proposition 2.3. \([3]\) Let F be a projection valued measure from $B(X)$ into the projections on \mathcal{H}. Let $\psi : X \to \mathbb{C}$ be a bounded Borel measurable function. Then there exists a unique bounded operator, which we denote by $\int \psi dF$, that satisfies,

\[\langle \left(\int \psi dF \right) g, h \rangle = \int_X \psi dF_{g,h}, \]
for all $g, h \in \mathcal{H}$. Moreover, $|\int \psi dF| \leq ||\psi||_\infty$, where $|| \cdot ||$ denotes the operator norm, and $|| \cdot ||_\infty$ denotes the supremum norm.

Let $P(X)$ be the collection of all projection valued measures from $\mathcal{B}(X)$ into the projections on \mathcal{H}. Define a metric ρ on $P(X)$ by,

$$\rho(E, F) = \sup_{\phi \in \text{Lip}_1(X)} \left\{ \left\| \int \phi dE - \int \phi dF \right\| \right\}, \quad (2.1)$$

where $|| \cdot ||$ denotes the operator norm in $\mathcal{B}(\mathcal{H})$, and E and F are arbitrary members of $P(X)$. We show that ρ is a metric on $P(X)$. We begin with several facts.

Claim 2.4. For $h \in \mathcal{H}$, and $E \in P(X)$, the positive measure $E_{h,h}(\cdot)$ is regular on $\mathcal{B}(X)$.

Proof. This follows from the fact that positive Borel measures are regular on metric spaces (see [2]).

Claim 2.5. If $\phi : X \to \mathbb{R}$ is continuous and $E \in P(X)$, then $\int \phi dE$ is a self-adjoint operator on $\mathcal{B}(L^2(X, \mu))$.

Proof. Note that since ϕ is continuous on the compact space X, it is a bounded Borel measurable function. Therefore, one can define $\int \phi dE$. If $g, h \in \mathcal{H}$, then,

$$\left\langle \left(\int \phi dE \right) g, h \right\rangle = \int_X \phi dE_{g,h} = \int_X \overline{\phi dE_{h,g}} = \int_X \phi dE_{h,g} = \left\langle \left(\int \phi dE \right) h, g \right\rangle = \left\langle g, \left(\int \phi dE \right) h \right\rangle.$$

Claim 2.6. If $\lambda \in \mathbb{C}$ is a constant, then,

$$\left\langle \left(\int \lambda dE \right) g, h \right\rangle = \lambda \text{id}_\mathcal{H}.$$

Proof. Let $g, h \in \mathcal{H}$. Then,
\[
\langle \left(\int \lambda dE \right) g, h \rangle = \int_X \lambda dE_{g,h}(x)
\]
\[
= \lambda \int_X dE_{g,h}(x)
\]
\[
= \lambda \langle E(X)g, h \rangle
\]
\[
= \lambda \langle \text{id}_H g, h \rangle
\]
\[
= \langle \lambda \text{id}_H g, h \rangle.
\]

\[
\square
\]

Theorem 2.7. ρ is a metric on $P(X)$.

Proof.

(1) Let $E, F \in P(X)$. We show $\rho(E, F) < \infty$. Let $\phi \in \text{Lip}_1(X)$ and $x_0 \in X$. Then, by Claim 2.6 ($\lambda = \phi(x_0)$),

\[
\left| \int \phi dE - \int \phi dF \right| = \left| \int \phi dE - \phi(x_0)\text{id}_H + \phi(x_0)\text{id}_H - \int \phi dF \right|
\]
\[
= \left| \int \phi dE - \int \phi(x_0) dE - \left(\int \phi dF - \int \phi(x_0) dF \right) \right|
\]
\[
\leq \left| \int (\phi - \phi(x_0)) dE \right| + \left| \int (\phi - \phi(x_0)) dF \right|
\]

(2.2)

By Claim 2.3 since $\phi - \phi(x_0)$ is a real-valued continuous function on X, $\int (\phi - \phi(x_0)) dE$ and $\int (\phi - \phi(x_0)) dF$ are self-adjoint operators and therefore,

\[
\left| \int (\phi - \phi(x_0)) dE \right| = \sup_{h \in H, ||h|| = 1} \left\{ \left| \langle \left(\int (\phi(x) - \phi(x_0)) dE \right) h, h \rangle \right| \right\}
\]

Let $h \in H$ with $||h|| = 1$. Then,
\begin{align*}
\left| \left(\int (\phi(x) - \phi(x_0))dE \right) h, h \right| &= \left| \int_X (\phi(x) - \phi(x_0))dE_{h,h}(x) \right| \\
&\leq \int_X |\phi(x) - \phi(x_0)|dE_{h,h}(x) \\
&\leq \int_X d(x,x_0)dE_{h,h}(x) \\
&\leq \text{diam}(X) \int_X dE_{h,h}(x) \\
&= \text{diam}(X) \langle E(X)h,h \rangle \\
&= \text{diam}(X)||h||^2 \\
&= \text{diam}(X) < \infty,
\end{align*}

where \(\text{diam}(X) \) denotes the diameter of the metric space \(X \). This quantity is finite because \(X \) is compact. Hence,

\[\left| \int (\phi - \phi(x_0))dE \right| \leq \text{diam}(X) < \infty, \]

and similarly,

\[\left| \int (\phi - \phi(x_0))dF \right| \leq \text{diam}(X) < \infty, \]

which implies that the last line of (2.2) is less than or equal to \(2 \text{diam}(X) < \infty \). Since \(\text{diam}(X) \) is independent of the choice of \(\phi \in \text{Lip}_1(X) \), \(\rho(E,F) \leq 2 \text{diam}(X) < \infty \).

(2) Let \(E,F \in P(X) \). It is clear from the definition of \(\rho \) that \(\rho(E,F) = \rho(F,E) \).

(3) Let \(E,F \in P(X) \). We show that \(\rho(E,F) = 0 \) if and only if \(E = F \). The backwards direction is clear from the definition of \(\rho \). For the forwards direction, suppose that \(\rho(E,F) = 0 \). We need to show that \(E = F \). That is, for all \(\Delta \in \mathcal{B}(X) \), we need to show that \(E(\Delta) = F(\Delta) \). Choose a closed subset \(C \subseteq X \).

Define \(f_n : X \to \mathbb{R} \) for \(n = 1, \ldots, \infty \) by \(f_n(x) = \max \{1 - nd(x,C)\} \). Note that \(f_n \in \text{Lip}_1(X) = \{ f : X \to \mathbb{R} : |f(x) - f(y)| \leq nd(x,y) \text{ for all } x,y \in X \} \). Therefore, \(\frac{1}{n} f_n \in \text{Lip}_1(X) \). Since \(\rho(E,F) = 0 \),

\[\frac{1}{n} \int f_n dE = \frac{1}{n} \int f_n dF, \]

for all \(n \), which implies,

\[\int f_n dE = \int f_n dF, \]

for all \(n \). Note that \(f_n \downarrow 1_C \) pointwise. Choose \(h \in \mathcal{H} \) with \(||h|| = 1 \). By the Dominated Convergence Theorem,

\[E_{h,h}(C) = \int_X 1_C dE_{h,h} = \lim_{n \to \infty} \int_X f_n dE_{h,h}. \]
and,
\[F_{h,h}(C) = \int_X 1_C dF_{h,h} = \lim_{n \to \infty} \int_X f_n dF_{h,h}. \]

By (2.3),
\[\int_X f_n dE_{h,h} = \int_X f_n dF_{h,h}, \]
for all \(n \), and hence,
\[E_{h,h}(C) = F_{h,h}(C) \]
for all closed sets \(C \subseteq X \). Since \(E_{h,h}(\cdot) \) and \(F_{h,h}(\cdot) \) are regular measures, \(E_{h,h}(\Delta) = F_{h,h}(\Delta) \), or equivalently,
\[\langle (E(\Delta) - F(\Delta))h, h \rangle = 0 \]
for all \(\Delta \in \mathcal{B}(X) \). Since \(E(\Delta) - F(\Delta) \) is a self-adjoint operator (being the difference of two projections),
\[||E(\Delta) - F(\Delta)|| = \sup_{h \in \mathcal{H}, ||h|| = 1} |\langle (E(\Delta) - F(\Delta))h, h \rangle| = 0. \]

Therefore, \(E(\Delta) = F(\Delta) \) for all \(\Delta \in \mathcal{B}(X) \).

(4) Let \(E, F, G \in P(X) \). We need to show that \(\rho \) satisfies:
\[\rho(E, G) \leq \rho(E, F) + \rho(F, G). \]

Choose \(\phi \in \text{Lip}_1(X) \). Then,
\[\left| \left| \int \phi dE - \int \phi dG \right| \right| \leq \left| \left| \int \phi dE - \int \phi dF \right| \right| + \left| \left| \int \phi dF - \int \phi dG \right| \right|. \]

By taking the supremum of both sides over all \(\text{Lip}_1(X) \) functions (2.4) follows.

Corollary 2.8. The metric space \((P(X), \rho) \) is bounded.

Proof. In (1) of the above proof, we showed that for any \(E, F \in P(X) \), \(\rho(E, F) \leq 2 \text{diam}(X) < \infty \). \(\square \)

2.2. \((P(X), \rho) \) is Complete: We show that the metric space \((P(X), \rho) \) is complete. We begin with several facts.

Definition 2.9. Let \(C(X) \) denote the \(C^* \)-algebra of continuous functions functions from \(X \) to \(\mathbb{C} \), and \(B(H) \) denote the \(C^* \)-algebra of bounded operators on \(H \). A representation \(\pi : C(K) \rightarrow B(H) \) is a \(* \)-homomorphism that preserves the identity.

Theorem 2.10. [3] Let \(E : \mathcal{B}(X) \rightarrow B(H) \) be a projection valued measure. The map \(\pi : C(X) \rightarrow B(H) \) given by,
\[f \mapsto \int f dE, \]
is a representation.

Theorem 2.11. [3] Let \(\pi : C(X) \rightarrow B(H) \) be a representation. There exists a unique projection valued measure \(E : \mathcal{B}(X) \rightarrow B(H) \) such that,
\[\pi(f) = \int f dE, \]
for all \(f \in C(X) \).
Lemma 2.12. \(\text{Lip}(X) \) is dense in \(C_\mathbb{R}(X) \), where \(\text{Lip}(X) \) is the collection of real valued Lipschitz functions on \(X \).

Theorem 2.13. The metric space \((P(X), \rho) \) is complete.

Proof. Let \(\{E_n\}_{n=1}^\infty \subseteq P(X) \) be a Cauchy sequence of projection valued measures in the \(\rho \) metric. For each \(n = 1, 2, \ldots \), use Theorem 2.10 to define a representation \(\pi_n : C(X) \to \mathcal{B}(\mathcal{H}) \) by,

\[
f \mapsto \int f \, dE_n.
\]

Claim 2.14. Let \(f \in C(X) \). The sequence of operators \(\{\pi_n(f)\}_{n=1}^\infty \) is Cauchy in the operator norm.

Proof of claim: Let \(\epsilon > 0 \). Let \(f = f_1 + if_2 \), where \(f_1, f_2 \in C_\mathbb{R}(X) \). By Lemma 2.12, choose \(g_1, g_2 \in \text{Lip}(X) \) such that \(||f_1 - g_1||_\infty < \frac{\epsilon}{6} \) and \(||f_2 - g_2||_\infty < \frac{\epsilon}{6} \).

There is a \(K > 0 \) such that \(\frac{1}{K}g_1 \in \text{Lip}_1(X) \) and \(\frac{1}{K}g_2 \in \text{Lip}_1(X) \). Since \(\{E_n\}_{n=1}^\infty \) is a Cauchy sequence in the \(\rho \) metric, the sequence \(\{\pi_n(\frac{1}{K}g_1)\}_{n=1}^\infty \) is Cauchy in the operator norm, and hence, \(\{\pi_n(g_1)\}_{n=1}^\infty \) is Cauchy in the operator norm. Similarly, \(\{\pi_n(g_2)\}_{n=1}^\infty \) is Cauchy in the operator norm. Therefore, choose \(N \) such that for \(n, m \geq N \),

\[
||\pi_n(g_1) - \pi_m(g_1)|| < \frac{\epsilon}{6} \quad \text{and} \quad ||\pi_n(g_2) - \pi_m(g_2)|| < \frac{\epsilon}{6}.
\]

If \(m, n \geq N \),

\[
||\pi_n(f_1) - \pi_m(f_1)|| \leq ||\pi_n(f_1) - \pi_n(g_1)|| + ||\pi_n(g_1) - \pi_m(g_1)|| + ||\pi_m(g_1) - \pi_m(f)||
\]

\[
\leq ||\pi_n(f_1 - g_1)|| + \frac{\epsilon}{6} + ||\pi_m(f_1 - g_1)||
\]

\[
\leq \frac{\epsilon}{2},
\]

where the third inequality is because \(||\pi_n(f_1 - g_1)|| \leq ||f_1 - g_1||_\infty \) and \(||\pi_m(f_1 - g_1)|| \leq ||f_1 - g_1||_\infty \). Similarly, \(||\pi_n(f_2) - \pi_m(f_2)|| \leq \frac{\epsilon}{2} \). Then, if \(n, m \geq N \),

\[
||\pi_n(f) - \pi_m(f)|| = ||\pi_n(f_1 + if_2) - \pi_m(f_1 + if_2)||
\]

\[
= ||(\pi_n(f_1) - \pi_m(f_1)) + i(\pi_n(f_2) - \pi_m(f_2))||
\]

\[
\leq ||\pi_n(f_1) - \pi_m(f_1)|| + ||\pi_n(f_2) - \pi_m(f_2)||
\]

\[
\leq \epsilon.
\]

This proves the claim.

Define \(\pi : C(X) \to \mathcal{B}(\mathcal{H}) \) by \(f \mapsto \lim_{n \to \infty} \pi_n(f) \). This map is well defined by Claim 2.14 and the fact that \(\mathcal{B}(\mathcal{H}) \) is complete in the operator norm. We show that \(\pi \) is a representation.

1. \(\pi \) is linear:

Let \(f, g \in C(X) \) and \(\alpha \in \mathbb{C} \). Then,
\[\pi(\alpha f + g) = \lim_{n \to \infty} \pi_n(\alpha f + g) \]
\[= \lim_{n \to \infty} (\alpha \pi_n(f) + \pi_n(g)) \]
\[= \alpha \lim_{n \to \infty} \pi_n(f) + \lim_{n \to \infty} \pi_n(g) \]
\[= \alpha \pi(f) + \pi(g). \]

(2) \(\pi \) is an algebra homomorphism:

Let \(f, g \in C(X) \). Then,

\[\pi(fg) = \lim_{n \to \infty} \pi_n(fg) \]
\[= \lim_{n \to \infty} \pi_n(f) \lim_{n \to \infty} \pi_n(g) \]
\[= \pi(f)\pi(g). \]

(3) \(\pi \) is a \(* \)-homomorphism:

Let \(f \in C(X) \). Then,

\[\pi(f^*) = \lim_{n \to \infty} \pi_n(f^*) \]
\[= \lim_{n \to \infty} \pi_n(f)^* \]
\[= \pi(f)^*, \]

where the last equality is because \(||\pi_n(f) - \pi(f)|| = ||(\pi_n(f) - \pi(f))^*|| = ||\pi_n(f)^* - \pi(f)^*||. \)

(4) \(\pi \) preserves the identity:

\[\pi(1) = \lim_{n \to \infty} \pi_n(1) \]
\[= \lim_{n \to \infty} 1_{\mathcal{H}} \]
\[= 1_{\mathcal{H}}. \]

By Theorem 2.11 there exists a unique projection valued measure \(E : \mathcal{B}(X) \to \mathcal{B}(\mathcal{H}) \) such that,

\[\pi(f) = \int f \, dE, \]

for all \(f \in C(X) \). We show that \(E_n \to E \) in the \(\rho \) metric as \(n \to \infty \). Let \(\epsilon > 0 \). Choose \(N \) such that for \(n, m \geq N \),

\[\rho(E_n, E_m) < \epsilon. \]

Let \(n, m \geq N \) and \(\phi \in \text{Lip}_1(X) \). Observe,
\[\left\| \int \phi dE_n - \int \phi dE \right\| = \lim_{m \to \infty} \left\| \int \phi dE_n - \int \phi dE_m \right\| \leq \epsilon, \]

where the equality is because \(\lim_{m \to \infty} \int \phi dE_m = \lim_{m \to \infty} \pi_m(\phi) = \pi(\phi) = \int \phi dE \)
and the inequality is because \(\rho(E_n, E_m) < \epsilon \). Since the choice of \(N \) is independent of the choice of \(\phi \), we have for \(n, m \geq N \),

\[\rho(E_n, E) = \sup_{\phi \in \text{Lip}(X)} \left\{ \left\| \int \phi dE_n - \int \phi dE \right\| \right\} \leq \epsilon. \]

Hence, \(E_n \to E \) in the \(\rho \) metric as \(n \to \infty \) and the metric space \((P(X), \rho) \) is complete.

2.3. Defining the Weak Topology on \(P(X) \):

Definition 2.15. A sequence of projection valued measures \(\{F_n\}_{n=1}^{\infty} \subseteq P(X) \) converges weakly to a projection valued measure \(F \in P(X) \), written \(F_n \Rightarrow F \), if for all \(f \in C_{\mathbb{K}}(X) \), \(\int f dF_n \to \int f dF \), where convergence is in the operator norm on \(\mathcal{B}(\mathcal{H}) \).

Theorem 2.16. The topology induced by the \(\rho \) metric on \(P(X) \) coincides with the weak topology on \(P(X) \).

Proof. Suppose that \(\{E_n\}_{n=1}^{\infty} \subseteq P(X) \) converges to a projection valued measure, \(E \in P(X) \), in the \(\rho \) metric. We will show that \(E_n \Rightarrow E \). Toward this end, choose \(f \in C_{\mathbb{K}}(X) \) and let \(\epsilon > 0 \). Using Lemma 2.12, choose a function \(g \in \text{Lip}(X) \), with Lipschitz constant \(K > 0 \), such that \(\|f - g\|_{\infty} \leq \frac{\epsilon}{3K} \). Note that \(\frac{g}{K} \in \text{Lip}_1(X) \).

Since \(E_n \to E \) in the \(\rho \) metric, we know there exists an \(N \) such that for \(n \geq N \),

\[\rho(E_n, E) \leq \frac{\epsilon}{3K}. \]

In particular, for \(n \geq N \),

\[\left\| \int_X \frac{g}{K} dE_n - \int_X \frac{g}{K} dE \right\| \leq \rho(E_n, E) \leq \frac{\epsilon}{3K}, \]

which implies that,

\[\left\| \int_X g dE_n - \int_X g dE \right\| \leq \frac{\epsilon}{3}. \]

Combining this information, we get that for \(n \geq N \),

\[\left\| \int_X f dE_n - \int_X f dE \right\| \leq \left\| \int_X f dE_n - \int_X g dE \right\| + \left\| \int_X g dE_n - \int_X g dE \right\| \]

\[+ \left\| \int_X g dE - \int_X f dE \right\| \]

\[\leq \|f - g\|_{\infty} + \frac{\epsilon}{3} + \|f - g\|_{\infty} \]

\[= \epsilon, \]

which implies that \(E_n \Rightarrow E \).
Next, suppose that $E_n \Rightarrow E$. We show that E_n converges to E in the ρ metric. Choose $x_0 \in X$. Consider the set $B = \{ f \in C_{\mathbb{R}}(X) : f \in \text{Lip}_1(X) \text{ and } f(x_0) = 0 \}$.

- B is closed in the supremum norm in $C_{\mathbb{R}}(X)$.
- B is pointwise bounded: If $x \in X$, and $f \in B$, then $|f(x)| = |f(x) - f(x_0)| \leq d(x, x_0) \leq \text{diam}(X) < \infty$.
- B is equicontinuous: Let $x \in X$ and $\epsilon > 0$. Then, if $y \in X$ such that $d(x, y) < \epsilon$,

$$|f(x) - f(y)| \leq d(x, y) < \epsilon,$$

for all $f \in B$.

Therefore, by Ascoli’s Theorem, see [10], B is compact in the supremum norm. Accordingly, choose $\{f_1, \ldots, f_k\} \subseteq B$ such that $B \subseteq \bigcup_{j=1}^{k} \mathcal{O}_{\epsilon_j}(f_j)$. Since $E_n \Rightarrow E$, and $f_j \in C_{\mathbb{R}}(X)$ for all $1 \leq j \leq k$, there exists an N such that for $n \geq N$,

$$\left| \int_X f_j dE_n - \int_X f_j dE \right| \leq \frac{\epsilon}{3},$$

for all $1 \leq j \leq k$. Let $\phi \in \text{Lip}_1(X)$. Define $f(x) = \phi(x) - \phi(x_0)$, and note that $f \in B$. There exists an f_j such that $\|f - f_j\|_{\infty} \leq \frac{\epsilon}{3}$. Observe that if $n \geq N$,

$$\left| \int_X \phi dE_n - \int_X \phi dE \right| = \left| \int_X f dE_n - \int_X f dE \right| \leq \left| \int_X f dE_n - \int_X f_j dE_n \right| + \left| \int_X f_j dE_n - \int_X f_j dE \right| + \left| \int_X f_j dE - \int_X f dE \right| \leq \|f - f_j\|_{\infty} + \frac{\epsilon}{3} + \|f - f_j\|_{\infty} = \epsilon.$$

Since N does not depend on the choice of ϕ, $\rho(E_n, E) \leq \epsilon$ if $n \geq N$.

2.4. Isomorphism of Metric Spaces:

Theorem 2.17. Suppose the \mathcal{H}_1 and \mathcal{H}_2 are two isomorphic Hilbert spaces with isomorphism $S : \mathcal{H}_1 \to \mathcal{H}_2$. Consider the two associated complete metric spaces $(P_{\mathcal{H}_1}(X), \rho)$ and $(P_{\mathcal{H}_2}(X), \rho)$. Define $\Theta : (P_{\mathcal{H}_1}(X), \rho) \to (P_{\mathcal{H}_2}(X), \rho)$, by

$$E(\cdot) \mapsto SE(\cdot)S^*.$$

Then, Θ is a bijective isometry of metric spaces.

Proof. We first show that Θ is well defined. Choose some $E \in (P_{\mathcal{H}_1}(X), \rho)$ and show that $\Theta(E)$ is a projection valued measure in $(P_{\mathcal{H}_2}(X), \rho)$. By construction, $\Theta(E)(\Delta)$ is a bounded operator in $B(\mathcal{H}_2)$ for all Borel subsets $\Delta \subseteq X$.

- $\Theta(E)(\emptyset) = SE(\emptyset)S^* = 0$.
- $\Theta(E)(X) = SE(X)S^* = SS^* = 1_{\mathcal{H}_2}$.

• \(\Theta(E)(\Delta_1 \cap \Delta_2) = SE(\Delta_1 \cap \Delta_2)S^* = SE(\Delta_1)E(\Delta_2)S^* = SE(\Delta_1)SE(\Delta_2)S^* = \Theta(E)(\Delta_1)\Theta(E)(\Delta_2) \) for all Borel subsets \(\Delta_1, \Delta_2 \subseteq X \).

• Let \(\{\Delta_n\}_{n=1}^{\infty} \) be a sequence of pairwise disjoint Borel subsets of \(X \) and let \(h \in H_2 \). Then,

\[
\Theta(E)(\bigcup_{n=1}^{\infty} \Delta_n)(h) = SE(\bigcup_{n=1}^{\infty} \Delta_n)S^*h = S \left(\sum_{n=1}^{\infty} E(\Delta_n)S^*h \right) = \sum_{n=1}^{\infty} SE(\Delta_n)S^*h = \sum_{n=1}^{\infty} \Theta(E)(\Delta_n)h,
\]

where the third equality is because \(S \) is continuous. Hence, \(\Theta(E) \) is a projection valued measure. Now we show that \(\Theta \) preserves the metric \(\rho \). In particular, let \(E, F \in (P_{H_1}(X), \rho) \). We want to show that

\[
\rho(\Theta(E), \Theta(F)) = \rho(E, F).
\]

To this end, choose \(\phi \in \text{Lip}_1(X) \) and suppose \(h \in H_2 \) with ||h|| = 1. Observe,

\[
\left| \left\langle \left(\int \phi d\Theta(E) - \int \phi d\Theta(F) \right) h, h \right\rangle \right| =
\]

\[
\left| \left\langle \left(\int \phi dSE(\cdot)S^* - \int \phi dSF(\cdot)S^* \right) h, h \right\rangle \right| =
\]

\[
\left| \left\langle \left(\int \phi dE - \int \phi dF \right) S^*h, S^*h \right\rangle \right|.
\]

Since \(S^* \) is a surjective isometry,

\[
\{k \in H_1 : ||k|| = 1\} = \{S^*h : h \in H_2, ||h|| = 1\}.
\]

Hence,
\[
\left\| \int \phi d\Theta(E) - \int \phi d\Theta(F) \right\| = \sup_{h \in \mathcal{H}_2, ||h||=1} \left\langle \left(\int \phi dE - \int \phi dF \right) h, h \right\rangle
\]
\[
= \sup_{h \in \mathcal{H}_2, ||h||=1} \left\langle \left(\int \phi dE - \int \phi dF \right) S^* h, S^* h \right\rangle
\]
\[
= \sup_{k \in \mathcal{H}_1, ||k||=1} \left\langle \left(\int \phi dE - \int \phi dF \right) k, k \right\rangle
\]
\[
= \left\| \int \phi dE - \int \phi dF \right\|
\]

By taking the supremum over all Lip\(_1\)(\(X\)) functions we get that, \(\rho(\Theta(E), \Theta(F)) = \rho(E, F)\).

Next, we show that \(\Theta\) is surjective. Choose \(E \in (P_{\mathcal{H}_2}(X), \rho)\). Consider \(S^* E(\cdot) S \in (P_{\mathcal{H}_1}(X), \rho)\). Then, \(\Theta(S^* E(\cdot) S) = SS^* E(\cdot) SS^* = E(\cdot)\), and \(\Theta\) is surjective (where here we are using the fact that \(SS^* = \text{id}_{\mathcal{H}_2}\)). To show \(\Theta\) is injective, suppose \(E, F \in P_{\mathcal{H}_1}(X)\) are such that \(SE(\cdot)S^* = SF(\cdot)S^*\). By using the fact that \(S^* S = \text{id}_{\mathcal{H}_1}\), we get that \(E = F\).

\[\square\]

3. An Application for the Metric Space \((P(X), \rho)\):

We now restrict to the situation that \(\mathcal{H} = L^2(X, \mu)\), and we consider the associated complete metric space \((P(X), \rho)\).

Theorem 3.1. The map \(\Phi : P(X) \to P(X)\) given by,

\[
E(\cdot) \mapsto \sum_{i=0}^{N-1} S_i E(\sigma_i^{-1}(\cdot)) S_i^*
\]

is a Lipschitz contraction in the \(\rho\) metric.

Proof. We begin by showing that the map \(\Phi\) is well defined. That is, we show that if \(E \in P(X)\), then \(\Phi(E)\) is a projection valued measure.

- Let \(\Delta \in \mathcal{B}(X)\). Then,
\[(\Phi(E)(\Delta))^2 = \left(\sum_{i=0}^{N-1} S_i E(\sigma^{-1}_i(\Delta)) S_i^* \right)^2 \]
\[= \sum_{i=0}^{N-1} S_i E(\sigma^{-1}_i(\Delta)) S_i^* \sum_{j=0}^{N-1} S_j E(\sigma^{-1}_j(\Delta)) S_j^* \]
\[= \sum_{i=0}^{N-1} S_i E(\sigma^{-1}_i(\Delta))^2 S_i^* \]
\[= \sum_{i=0}^{N-1} S_i E(\sigma^{-1}_i(\Delta)) S_i^* \]
\[= \Phi(E)(\Delta), \]

where the third equality is because \(S_i^* S_j = \delta_{i,j} \text{id}_H\), and the fourth equality is because \(E(\sigma^{-1}_i(\Delta))\) is a projection (in particular an idempotent) for all \(0 \leq i \leq N - 1\).

- \(\Phi(E)(\emptyset) = \sum_{i=0}^{N-1} S_i E(\sigma^{-1}_i(\emptyset)) S_i^* = \sum_{i=0}^{N-1} S_i E(\emptyset) S_i^* = 0.\)

- \(\Phi(E)(X) = \sum_{i=0}^{N-1} S_i E(\sigma^{-1}_i(X)) S_i^* = \sum_{i=0}^{N-1} S_i E(X) S_i^* = \sum_{i=0}^{N-1} S_i S_i^* = \text{id}_H.\)

- Let \(\Delta_1, \Delta_2 \in \mathcal{B}(X)\). Then,

\[
\Phi(E)(\Delta_1 \cap \Delta_2) = \sum_{i=0}^{N-1} S_i E(\sigma^{-1}_i(\Delta_1 \cap \Delta_2)) S_i^* \\
= \sum_{i=0}^{N-1} S_i E(\sigma^{-1}_i(\Delta_1) \cap \sigma^{-1}_i(\Delta_2)) S_i^* \\
= \sum_{i=0}^{N-1} S_i E(\sigma^{-1}_i(\Delta_1)) E(\sigma^{-1}_i(\Delta_2)) S_i^* \\
= \sum_{i=0}^{N-1} S_i E(\sigma^{-1}_i(\Delta_1)) S_i^* S_i E(\sigma^{-1}_i(\Delta_2)) S_i^* \\
= \sum_{i=0}^{N-1} S_i E(\sigma^{-1}_i(\Delta_1)) S_i^* \sum_{j=0}^{N-1} S_j E(\sigma^{-1}_j(\Delta_2)) S_j^* \\
= \Phi(E)(\Delta_1) \Phi(E)(\Delta_2),
\]

where the third equality is because \(E\) is a projection valued measure, and the fourth and fifth equalities are because \(S_i^* S_j = \delta_{i,j} \text{id}_H\).
Let \(\{\Delta_n\}_{n=1}^\infty \) be a sequence of disjoint subsets in \(\mathcal{B}(X) \). Let \(h \in \mathcal{H} \). Note that,

\[
\Phi(E)(\bigcup_{n=1}^\infty \Delta_n)(h) = \left(\sum_{i=0}^{N-1} S_i E(\sigma_i^{-1}(\bigcup_{n=1}^\infty \Delta_n)) S_i^* \right) (h) = \\
\sum_{i=0}^{N-1} \left(S_i E(\sigma_i^{-1}(\bigcup_{n=1}^\infty \Delta_n)) S_i^* \right) h.
\]

(3.1)

For each \(0 \leq i \leq N - 1 \), since \(E \) is a projection valued measure,

\[
E(\sigma_i^{-1}(\bigcup_{n=1}^\infty \Delta_n)) S_i^* h = E(\bigcup_{n=1}^\infty \sigma_i^{-1}(\Delta_n)) S_i^* h = \sum_{n=1}^\infty E(\sigma_i^{-1}(\Delta_n)) S_i^* h.
\]

Since \(S_i \) is continuous,

\[
S_i \left(\sum_{n=1}^\infty E(\sigma_i^{-1}(\Delta_n)) S_i^* h \right) = \sum_{n=1}^\infty S_i E(\sigma_i^{-1}(\Delta_n)) S_i^* h,
\]

which implies that (3.1) is equal to,

\[
\sum_{i=0}^{N-1} \sum_{n=1}^\infty S_i E(\sigma_i^{-1}(\Delta_n)) S_i^* h = \sum_{n=1}^\infty \sum_{i=0}^{N-1} S_i E(\sigma_i^{-1}(\Delta_n)) S_i^* h = \sum_{n=1}^\infty (\Phi(E)(\Delta_n) h).
\]

Claim 3.2. Let \(h \in \mathcal{H} \). Then,

\[
\Phi(E)_{h,h}(\Delta) = \sum_{i=0}^{N-1} E S_i^* h, S_i^* h(\sigma_i^{-1}(\Delta)),
\]

for all \(\Delta \in \mathcal{B}(X) \).

Proof of claim: Let \(\Delta \in \mathcal{B}(X) \). Then,

\[
\Phi(E)_{h,h}(\Delta) = \left(\Phi(E)(\Delta) h, h \right) = \left(\sum_{i=0}^{N-1} S_i E(\sigma_i^{-1}(\Delta)) S_i^* \right) h, h = \\
\sum_{i=0}^{N-1} \left(S_i E(\sigma_i^{-1}(\Delta)) S_i^* h, h \right) = \\
\sum_{i=0}^{N-1} \sum_{i=0}^{N-1} \left(E(\sigma_i^{-1}(\Delta)) S_i^* h, S_i^* h \right) = \\
\sum_{i=0}^{N-1} \sum_{i=0}^{N-1} E S_i^* h, S_i^* h(\sigma_i^{-1}(\Delta)),
\]

which completes the proof of the claim.
We now show that \(\Phi \) is a Lipschitz contraction in the \(\rho \) metric. Accordingly, choose \(E, F \in P(X) \). We show that,

\[
\rho(\Phi(E), \Phi(F)) \leq r \rho(E, F),
\]

where \(r = \max_{0 \leq i \leq N-1} \{r_i\} \) (\(r_i \) is the Lipschitz constant associated to \(\sigma_i \)). Choose \(\phi \in \text{Lip}_1(X) \), \(h \in \mathcal{H} \) with \(||h|| = 1 \), and \(x_0 \in X \). By Claim 2.5,

\[
\int \phi d\Phi(E) - \int \phi d\Phi(F),
\]

is self adjoint operator, and hence,

\[
\left\langle \left(\int \phi d\Phi(E) - \int \phi d\Phi(F) \right), h, h \right\rangle,
\]

is a real number. Suppose without loss of generality,

\[
\left| \left\langle \left(\int \phi d\Phi(E) - \int \phi d\Phi(F) \right), h, h \right\rangle \right| = \left\langle \left(\int \phi d\Phi(E) - \int \phi d\Phi(F) \right), h, h \right\rangle.
\]

Then,

\[
\left\langle \left(\int \phi d\Phi(E) - \int \phi d\Phi(F) \right), h, h \right\rangle = \left\langle \left(\int \phi d\Phi(F) \right), h, h \right\rangle = \int_X \phi d\Phi(E)_{h,h} - \int_X \phi d\Phi(F)_{h,h} =
\]

\[
\sum_{i=0}^{N-1} \int_X \phi dE_{S_i^* h, S_i^* h}(\sigma_i^{-1}(\cdot)) - \sum_{i=0}^{N-1} \int_X \phi dF_{S_i^* h, S_i^* h}(\sigma_i^{-1}(\cdot)) =
\]

\[
\sum_{i=0}^{N-1} \int_X (\phi \circ \sigma_i) dE_{S_i^* h, S_i^* h} - \sum_{i=0}^{N-1} \int_X (\phi \circ \sigma_i) dF_{S_i^* h, S_i^* h} =
\]

\[
\sum_{i=0}^{N-1} \int_X (\phi(\sigma_i(x)) - \phi(\sigma_i(x_0))) dE_{S_i^* h, S_i^* h}(x) + \sum_{i=0}^{N-1} \int_X \phi(x_0) dE_{S_i^* h, S_i^* h}(x) -
\]

\[
\sum_{i=0}^{N-1} \int_X (\phi(\sigma_i(x)) - \phi(\sigma_i(x_0))) dF_{S_i^* h, S_i^* h}(x) - \sum_{i=0}^{N-1} \int_X \phi(x_0) dF_{S_i^* h, S_i^* h}(x) =
\]

\[
\sum_{i=0}^{N-1} \int_X (\phi(\sigma_i(x)) - \phi(\sigma_i(x_0))) dE_{S_i^* h, S_i^* h}(x) -
\]

\[
\sum_{i=0}^{N-1} \int_X (\phi(\sigma_i(x)) - \phi(\sigma_i(x_0))) dF_{S_i^* h, S_i^* h}(x) \leq
\]

\[
\sum_{i=0}^{N-1} \int_X r d(x, x_0) dE_{S_i^* h, S_i^* h}(x) - \sum_{i=0}^{N-1} r \int_X \phi(\sigma_i(x)) - \phi(\sigma_i(x_0)) \frac{dE_{S_i^* h, S_i^* h}(x)}{r} =
\]
\[r \left(\sum_{i=0}^{N-1} \left\langle \left(\int d(x, x_0) dE \right) S_i^* h, S_i^* h \right\rangle - \left\langle \left(\int g(x) dF \right) S_i^* h, S_i^* h \right\rangle \right) = \]
\[r \left(\sum_{i=0}^{N-1} \left\langle \left(\int d(x, x_0) dE - \int g(x) dF \right) S_i^* h, S_i^* h \right\rangle \right) \]

where \(g(x) = \frac{\phi(\sigma_i(x)) - \phi(\sigma_i(x_0))}{r} \in \text{Lip}_1(X) \). Also, note that \(d(x, x_0) \in \text{Lip}_1(X) \).

Continuing,
\[r \left(\sum_{i=0}^{N-1} \left\langle \left(\int d(x, x_0) dE - \int g(x) dF \right) S_i^* h, S_i^* h \right\rangle \right) \leq \]
\[r \left(\sum_{i=0}^{N-1} \left\| \int d(x, x_0) dE - \int g(x) dF \right\| \left\| S_i^* h \right\|^2 \right) \leq \]
\[r \rho(E, F) \left(\sum_{i=0}^{N-1} \left\langle S_i^* h, S_i^* h \right\rangle \right) = r \rho(E, F) \left(\sum_{i=0}^{N-1} \left\langle S_i S_i^* h, h \right\rangle \right) \]
\[= r \rho(E, F) \left(\sum_{i=0}^{N-1} \left\langle S_i S_i^* h, h \right\rangle \right) \]
\[= r \rho(E, F) \left\langle S_i S_i^* h, h \right\rangle \]
\[= r \rho(E, F) \left\langle h, h \right\rangle \]
\[= r \rho(E, F). \]

Hence,
\[\left\| \int \phi d\Phi(E) - \int \phi d\Phi(F) \right\| \leq r \rho(E, F), \]
and since \(\phi \) is an arbitrary element of \(\text{Lip}_1(X) \),
\[\rho(\Phi(E), \Phi(F)) \leq r \rho(E, F), \]
which proves that \(\Phi \) is a Lipschitz contraction on \((P(X), \rho) \).

\[\square \]

3.1. **An Alternative Proof of Theorem 1.9**: By Theorem 2.13 and Theorem 3.1, we know that \(\Phi \) is contraction on the complete metric space \((P(X), \rho) \). By the Contraction Mapping Theorem, there exists a unique projection valued measure \(E \in P(X) \) such that,

\[E(\cdot) = \sum_{i=0}^{N-1} S_i E(\sigma_i^{-1}(\cdot)) S_i^* . \quad (3.2) \]
It remains to show that \(E(A_k(a)) = P_k(a) \) for all \(k \in \mathbb{Z}_+ \) and \(a \in \Gamma_N^k \). This will be done by induction on \(k \). Indeed, suppose that \(k = 1 \), and consider \(A_1(j) = \sigma_j(X) \) for some \(j \in \Gamma_N \). Then, by (3.2),

\[
E(\sigma_j(X)) = \sum_{i=0}^{N-1} S_i E(\sigma_j^{-1}(\sigma_j(X))) S_i^*
\]

\[
= S_j E(X) S_j^*
\]

\[
= S_j S_j^*
\]

\[
= P_1(j).
\]

This proves the base case. Suppose that \(E(A_{k-1}(b)) = P_{k-1}(b) \) for all \(b \in \Gamma_{N-1}^k \) where \(k \in \mathbb{Z}_+ \) with \(k > 1 \). We will show that \(E(A_k(a)) = P_k(a) \). Choose some \(a \in \Gamma_N^k \). Suppose that \(a = (a_1, \ldots, a_k) \) and \(b = (a_2, \ldots, a_k) \). Then,

\[
E(A_k(a)) = \sum_{i=0}^{N-1} S_i E(\sigma^{-1}_i(A_k(a))) S_i^*
\]

\[
= \sum_{i=0}^{N-1} S_i E(\sigma^{-1}(\sigma_{a_1}(A_{k-1}(b)))) S_i^*
\]

\[
= S_{a_1} E(A_{k-1}(b)) S_{a_1}^*
\]

\[
= S_{a_1} P_{k-1}(b) S_{a_1}^*
\]

\[
= P_k(a).
\]

Hence, an alternative proof of Theorem \text{[1.9]} is complete.

Remark 3.3. The alternative proof that we have presented depends on the fact that the subsets \(A_k(a) \), for \(k \in \mathbb{Z}_+ \) and \(a = (a_1, \ldots, a_k) \in \Gamma_N^k \), satisfy

\[
A_k(a) = \sigma_{a_1} \circ \cdots \circ \sigma_{a_k}(X),
\]

where \(\{\sigma_i\}_{i=0}^{N-1} \) is an iterated function system of Lipschitz contractions on \(X \). The proof of Jorgensen does not require this assumption, and hence, it is more general. Indeed, it only requires that for each \(k \in \mathbb{Z}_+ \), there is a sequence of subsets \(\{A_k(a)\}_{a \in \Gamma_N^k} \) which partitions \(X \), such that

\[
\lim_{k \to \infty} \text{diam}(A_k(a)) = O(N^{-ck}) \text{ for } c > 0.
\]

At this juncture, we think it is useful to briefly review a result due to Jorgensen which identifies the relationship between the measure \(\mu \) and the projection valued measure \(E \). We first introduce some notation. Let \(C \) be the abelian \(C^*-\)subalgebra of \(B(L^2(X, \mu)) \) generated by the family of projections \(S_a S_a^* \) for \(a \in \Gamma_N^k \) and \(k \in \mathbb{Z}_+ \). For \(h \in L^2(X, \mu) \), let \(Ch = \{Ch : C \in C\} \), and denote the closure of \(Ch \) by \(H_h \).

Theorem 3.4. [7] There is a set \(h_1, h_2, \ldots \in L^2(X, \mu) \) (possibly finite) with \(||h_i|| = 1 \) for all \(i = 1, 2, \ldots \) such that the following hold:
(1) The measures E_{h_i, h_i} for $i = 1, 2, \ldots$ are mutually singular.
(2) $L^2(X, \mu) = \oplus_i \mathcal{H}_{h_i}$.
(3) For each $i = 1, 2, \ldots$, there exists a unique isometry,

$$V_i : L^2(X, E_{h_i, h_i}) \rightarrow L^2(X, \mu),$$

satisfying the following:

- $V_i(1_{A_k(a)}) = S_a S^*_a h_i$ for all $a \in \Gamma^k_N$ and $k \in \mathbb{Z}_+$,
- $V_i^* S_a S^*_a V_i = M_{A_k(a)}$ for all $a \in \Gamma^k_N$ and $k \in \mathbb{Z}_+$, where $M_{A_k(a)}$ is the operator on $L^2(X, E_{h_i, h_i})$ given by multiplication by $1_{A_k(a)}$, and
- $V_i(L^2(X, E_{h_i, h_i})) = \mathcal{H}_{h_i}$.

We note that Theorem 3.4 is presented in a more general form in [7]; namely, the Hilbert space $L^2(X, \mu)$ is replaced with an arbitrary Hilbert space \mathcal{H} which admits a representation of the Cuntz algebra on N generators.

4. Generalizing to Positive Operator Valued Measures:

Definition 4.1. Let \mathcal{H} be an arbitrary Hilbert space. A positive operator valued measure for $(X, B(X), \mathcal{H})$ is a function $A : B(X) \rightarrow B(\mathcal{H})$ such that,

1. For each $\Delta \in B(X)$, $A(\Delta)$ is a positive operator on \mathcal{H};
2. $A(\emptyset) = 0$ and $A(X) = id_{\mathcal{H}}$;
3. If $\{\Delta_n\}_{n=1}^\infty$ are pairwise disjoint sets in $B(X)$, then for all $h, k \in \mathcal{H}$,

$$\left\langle B \left(\bigcup_{n=1}^\infty \Delta_n \right), h, k \right\rangle = \sum_{n=1}^\infty \langle B(\Delta_n) h, k \rangle.$$

Remark 4.2. Lemma 2.1 and Proposition 2.3 are true for positive operator valued measures.

Let $S(X)$ be the collection of all positive operator valued measures from X into $B(\mathcal{H})$, and consider the ρ metric on $S(X)$. Using the same argument as before, we can show that ρ is a metric on $S(X)$.

Theorem 4.3. The metric space $(S(X), \rho)$ is complete.

The proof of this theorem will be achieved by combining several results.

Lemma 4.4. Let $\{A_n\}_{n=1}^\infty \subseteq S(X)$ be a Cauchy sequence in the ρ metric. For any $g, h \in \mathcal{H}$, there exists a unique complex valued measure $\mu_{g, h}$ such that $A_n \Rightarrow \mu_{g, h}$; that is, for any $f \in C_\mathbb{R}(X)$,

$$\int_X f dA_n \rightarrow \int_X f d\mu_{g, h}.$$

Proof. Choose some $h \in \mathcal{H}$ and consider the sequence of positive measures $\{A_{n_h, h}\}_{n=1}^\infty$.

Claim 4.5. For $f \in C_\mathbb{R}(X)$, the sequence $\{\int_X f dA_{n_h, h}\}_{n=1}^\infty$ is a Cauchy sequence of real numbers.
Proof of claim: Let $\epsilon > 0$. Since $\text{Lip}(X)$ is dense in $C_\mathbb{R}(X)$, choose a $g \in \text{Lip}(X)$, with Lipschitz constant $K > 0$, such that $\|f - g\|_\infty \leq \frac{\epsilon}{3||h||^2}$. Next, choose an N such that for $n, m \geq N$, $\rho(A_n, A_m) \leq \frac{\epsilon}{3K||h||^2}$. Note that since $gK \in \text{Lip}_1(X)$, if $n, m \geq N$,

$$\left| \int_X \frac{g}{K} dA_{n,h} - \int_X \frac{g}{K} dA_{m,h} \right| = \left| \left(\int_X \frac{g}{K} dA_n - \int_X \frac{g}{K} dA_m \right) h, h \right|$$

$$\leq \left\| \int_X \frac{g}{K} dA_n - \int_X \frac{g}{K} dA_m \right\| ||h||^2$$

$$\leq \rho(A_n, A_m)||h||^2$$

$$\leq \frac{\epsilon}{3K},$$

or equivalently,

$$\left| \int_X g dA_{n,h} - \int_X g dA_{m,h} \right| \leq \frac{\epsilon}{3}.$$

For $n, m \geq N$,

$$\left| \int_X f dA_{n,h} - \int_X f dA_{m,h} \right| = \left| \int_X f dA_{n,h} - \int_X g dA_{n,h} \right|$$

$$+ \left| \int_X g dA_{n,h} - \int_X g dA_{m,h} \right|$$

$$+ \left| \int_X g dA_{m,h} - \int_X f dA_{m,h} \right|$$

$$\leq ||f - g||_\infty ||h||^2 + \frac{\epsilon}{3} + ||f - g||_\infty ||h||^2$$

$$\leq \epsilon,$$

and the claim is proven.

Define $\mu_{h,h} : C_\mathbb{R}(X) \to \mathbb{R}$ by $f \mapsto \lim_{n \to \infty} \int_X f dA_{n,h}$. This map is well defined by the above claim, and the fact that \mathbb{R} is complete. Since $\mu_{h,h}$ is a positive linear functional on $C(X)$, $\mu_{h,h}$ is the unique measure which satisfies,

$$\int_X f d\mu_{h,h} = \mu_{h,h}(f),$$

for all $f \in C_\mathbb{R}(X)$. Moreover, by construction, $A_{n,h} \Rightarrow \mu_{h,h}$.

Remark 4.6. Let A be a positive operator (or projection) valued measure on X. Since the inner product associated to the Hilbert space \mathcal{H} is sesquilinear, the map,

$$[g, h] \mapsto A_{g,h},$$

is sesquilinear. Also, for $g, h \in \mathcal{H}$, $A_{g,h} = A_{h,g}^\ast$ (this property is also inherited from the inner product).
Let \(g, h \in \mathcal{H} \). Using the above remark, observe that for all \(n \),

\[
A_{n g+h,g+h} = A_{n g,g} + A_{n g,h} + A_{n h,g} + A_{n h,h} \\
= A_{n g,g} + A_{n g,h} + A_{n g,h} + A_{n h,h} \\
= A_{n g,g} + 2\Re A_{n g,h} + A_{n h,h},
\]

and therefore, \(\Re A_{n g,h} = \frac{1}{2} (A_{n g+h,g+h} - A_{n g,g} - A_{n h,h}) \). Since \(A_{n g+h,g+h} \Rightarrow \mu_{g+h,g+h} \), \(A_{n g,g} \Rightarrow \mu_{g,g} \), and \(A_{n h,h} \Rightarrow \mu_{h,h} \),

\[
\Re A_{n g,h} = \frac{1}{2} (\mu_{g+h,g+h} - \mu_{g,g} - \mu_{h,h}) := \Re \mu_{g,h}.
\]

Similarly,

\[
A_{n i g+h,i g+h} = A_{n g,g} + iA_{n g,h} - iA_{n h,g} + A_{n h,h} \\
= A_{n g,g} + i(\Re A_{n g,h} + iA_{n g,h}) - i\overline{A_{n g,h}} + A_{n h,h} \\
= A_{n g,g} + i\Re A_{n g,h} - \Im A_{n g,h} - i(\Re A_{n g,h} - i\Im A_{n g,h}) + A_{n h,h} \\
= A_{n g,g} + i\Re A_{n g,h} - \Im A_{n g,h} - i\Re A_{n g,h} - \Im A_{n g,h} + A_{n h,h} \\
= A_{n g,g} - 2\Im A_{n g,h} + A_{n h,h},
\]

and therefore, \(\Im A_{n g,h} = -\frac{1}{2} (A_{n i g+h,i g+h} - A_{n g,g} - A_{n h,h}) \). Since \(A_{n i g+h,i g+h} \Rightarrow \mu_{i g+h,i g+h} \), \(A_{n g,g} \Rightarrow \mu_{g,g} \), and \(A_{n h,h} \Rightarrow \mu_{h,h} \),

\[
\Im A_{n g,h} = -\frac{1}{2} (\mu_{i g+h,i g+h} - \mu_{g,g} - \mu_{h,h}) := \Im \mu_{g,h}.
\]

Define \(\mu_{g,h} = \Re \mu_{g,h} + i\Im \mu_{g,h} \). By construction, \(A_{n g,h} \Rightarrow \mu_{g,h} \).

\[\square\]

Lemma 4.7. The map \([g, h] \mapsto \mu_{g,h} \) is sesquilinear.

Proof. We will show that \([g, h] \mapsto \mu_{g,h} \) is linear in the first coordinate. The remaining properties of sesquilinearity are proved with a similar approach.

Let \(g, h, k \in \mathcal{H} \). We will show that,

\[
\mu_{g+h,k}(\Delta) = \mu_{g,k}(\Delta) + \mu_{h,k}(\Delta),
\]

for all Borel subsets \(\Delta \in \mathcal{B}(X) \). Let \(f \in C_{r}(X) \). Then,

\[
\int_X f d\mu_{g+h,k} = \lim_{n \to \infty} \int_X f dE_{n g+h,k} \\
= \lim_{n \to \infty} \left(\int_X f dE_{n g,k} + \int_X f dE_{n h,k} \right) \\
= \int_X f d\mu_{g,k} + \int_X f d\mu_{h,k}.
\]
Consider a closed subset $C \subseteq X$, and choose a sequence of functions $\{f_m\}_{m=1}^{\infty} \subseteq C_\mathbb{R}(X)$ such that $f_m \downarrow 1_C$ pointwise. By the Dominated Convergence Theorem,

$$
\int_X 1_C d\mu_{g+h,k} = \lim_{m \to \infty} \int_X f_m d\mu_{g+h,k}
$$

$$
= \lim_{m \to \infty} \left(\int_X f_m d\mu_{g,k} + \int_X f_m d\mu_{h,k} \right)
$$

$$
= \int_X 1_C d\mu_{g,k} + \int_X 1_C d\mu_{h,k}.
$$

Hence, we have shown that for any closed $C \subseteq X$,

$$
\mu_{g+h,k}(C) = \mu_{g,k}(C) + \mu_{h,k}(C). \tag{4.1}
$$

By decomposing the measures $\mu_{g+h,k}, \mu_{g,k}, \mu_{h,k}$ into their real and imaginary parts, we can show that (4.1) is equivalent to the following equations:

$$
\text{Re}\mu_{g+h,k}(C) = \text{Re}\mu_{g,k}(C) + \text{Re}\mu_{h,k}(C), \tag{4.2}
$$

and,

$$
\text{Im}\mu_{g+h,k}(C) = \text{Im}\mu_{g,k}(C) + \text{Im}\mu_{h,k}(C). \tag{4.3}
$$

Using the definition of the real part of the measures $\mu_{g+h,k}, \mu_{g,k}, \mu_{h,k}$, we can show, by rearranging terms, that (4.2) is equivalent to:

$$
M_1(C) = M_2(C), \tag{4.4}
$$

where M_1 is the positive Borel measure,

$$
\frac{1}{2}(\mu_{g+h+k,g+h+k} + \mu_{g,g} + 2\mu_{k,k}),
$$

and M_2 is the positive Borel measure,

$$
\frac{1}{2}(\mu_{g+k,g+k} + \mu_{g+h,g+h} + \mu_{h+k,h+k} + \mu_{k,k} + \mu_{h,h}).
$$

Since M_1 and M_2 are positive Borel measures on a metric space, M_1 and M_2 regular. That is, we can conclude that $M_1(\Delta) = M_2(\Delta)$ for any Borel subset $\Delta \in B(X)$. By invoking the equivalence of (4.2) and (4.4), we have that (4.2) is true for any Borel subset $\Delta \in B(X)$. A similar approach, will yield that (4.3) is true for any Borel subset $\Delta \in B(X)$. Hence, (4.1) is true for any Borel subset $\Delta \in B(X)$. This shows linearity in the first coordinate.

As mentioned above, the following additional properties listed below are proved similarly:

- Let $g, h, k \in \mathcal{H}$. Then $\mu_{g,h+k} = \mu_{g,h} + \mu_{g,k}$.
- Let $\alpha \in \mathbb{C}$ and $g, h \in \mathcal{H}$. Then $\mu_{\alpha g,h} = \alpha \mu_{g,h}$.
- Let $\beta \in \mathbb{C}$ and $g, h \in \mathcal{H}$. Then $\mu_{g,\beta h} = \beta \mu_{g,h}$.
Hence, the map \([g, h] \mapsto \mu_{g,h}\) is sesquilinear.

Lemma 4.8. For all \(g, h \in \mathcal{H}\), \(\mu_{g,h}(X) = \langle g, h \rangle\).

Proof. \(\mu_{g,h}(X) = \int_X 1d\mu_{g,h} = \lim_{n \to \infty} \int_X 1dA_{n_{g,h}} = \lim_{n \to \infty} \langle A_n(X)g, h \rangle = \langle g, h \rangle\), where the second equality is because \(1 \in C_\mathcal{R}(X)\), and \(A_{n_{g,h}} \Rightarrow \mu_{g,h}\). □

We now begin the proof of Theorem 4.3.

Proof. Let \(\{A_n\}_{n=1}^\infty \subseteq S(X)\) be a Cauchy sequence in the \(\rho\) metric. Our goal is to find an element \(A \in S(X)\) such that \(A_n \to A\) in the \(\rho\) metric. By Lemma 4.4 and Lemma 4.7, there exists a sesquilinear family of complex measures \(\{\mu_{g,h} : g, h \in \mathcal{H}\}\) such that for all \(f \in C_\mathcal{R}(X)\),

\[
\int_X f dA_{n_{g,h}} \to \int_X f d\mu_{g,h}.
\]

Let \(\Delta \in B(X)\). The map \([g, h] \mapsto \int_X 1\Delta d\mu_{g,h}\) is a bounded sesquilinear form with bound 1. Hence, by the Riesz Representation Theorem, there exists a unique bounded operator, \(A(\Delta) \in B(\mathcal{H})\), such that for all \(g, h \in \mathcal{H}\),

\[
\langle A(\Delta)g, h \rangle = \int_X 1\Delta d\mu_{g,h}.
\]

Accordingly, define \(A : B(X) \to B(\mathcal{H})\) by \(\Delta \mapsto A(\Delta)\).

Claim 4.9. \(A\) is a positive operator valued measure.

Proof of claim:

1. Let \(\Delta \in B(X)\), and \(h \in \mathcal{H}\). Then,

\[
\langle A(\Delta)h, h \rangle = \int_X 1\Delta d\mu_{h,h} \geq 0.
\]

Hence, \(A(\Delta)\) is a positive operator.

2. Let \(h \in \mathcal{H}\). Then,

\[
\langle A(X)h, h \rangle = \int_X d\mu_{h,h} = \langle h, h \rangle,
\]

and

\[
\langle A(\emptyset)h, h \rangle = \int_X 1_\emptyset d\mu_{h,h} = 0.
\]

Hence, \(A(X) = \text{id}_\mathcal{H}\) and \(A(\emptyset) = 0\).

3. If \(\{\Delta_n\}_{n=1}^\infty\) are pairwise disjoint sets in \(B(X)\), then for all \(h, k \in \mathcal{H}\),

\[
\left\langle A \left(\bigcup_{n=1}^\infty \Delta_n \right) h, k \right\rangle = \int_X 1_{\bigcup_{n=1}^\infty \Delta_n} d\mu_{h,k} =
\]
\[
\sum_{n=1}^{\infty} \mu_{h,k}(\Delta_n) = \\
\sum_{n=1}^{\infty} \int_X 1_{\Delta_n} d\mu_{h,k} = \\
\sum_{n=1}^{\infty} \langle A(\Delta_n) h, k \rangle.
\]

This completes the proof of the claim.

We now show that \(A_n \to A\) in the \(\rho\) metric. Let \(\epsilon > 0\). Choose an \(N\) such that for \(n, m \geq N\),

\[
\rho(A_n, A_m) < \epsilon.
\]

Next, choose \(\phi \in \text{Lip}_1(X)\). If \(n \geq N\), and \(h \in \mathcal{H}\) with \(||h|| = 1\),

\[
\left| \left\langle \left(\int \phi dA_n - \int \phi dA_m \right) h, h \right\rangle \right| = \left| \int X \phi dA_{n,h,h} - \int X \phi dA_{h,h} \right| \\
= \lim_{m \to \infty} \left| \int X \phi dA_{n,h,h} - \int X \phi dA_{m,h,h} \right| \\
= \lim_{m \to \infty} \left| \left\langle \left(\int \phi dA_n - \int \phi dA_m \right) h, h \right\rangle \right|,
\]

where the second equality is because \(A_{n,h,h} \Rightarrow \mu_{h,h} = A_{h,h}\). Now,

\[
\left| \left\langle \left(\int \phi dA_n - \int \phi dA_m \right) h, h \right\rangle \right| \leq \left\| \int \phi dA_n - \int \phi dA_m \right\| \left| h \right|^2 \\
= \left\| \int \phi dA_n - \int \phi dA_m \right\| \\
\leq \rho(A_n, A_m) \\
\leq \epsilon.
\]

Hence,

\[
\lim_{m \to \infty} \left| \left\langle \left(\int \phi dA_n - \int \phi dA_m \right) h, h \right\rangle \right| \leq \epsilon,
\]

and therefore,

\[
\left\| \int \phi dA_n - \int \phi dA \right\| \leq \epsilon.
\]

Since the choice of \(N\) is independent of \(\phi \in \text{Lip}_1(X)\), \(\rho(A_n, A) \leq \epsilon\), which shows that the metric space \((S(X), \rho)\) is complete.

\(\square\)
Corollary 4.10. The map $\Phi : S(X) \to S(X)$ given by,

$$A(\cdot) \mapsto \sum_{i=0}^{N-1} S_i A(\sigma_i^{-1}(\cdot)) S_i^*,$$

is a Lipschitz contraction in the ρ metric.

Proof. The proof of this corollary is exactly the same as the proof of Theorem 3.1. □

Remark 4.11. Since we have previously shown that $(P(X), \rho)$ is a complete metric space, and $P(X) \subseteq S(X)$, where $(S(X), \rho)$ is also complete, we can conclude that $P(X)$ is a closed subset of $S(X)$ in the ρ metric. Also, note that, by uniqueness, the fixed point for the map $\Phi : S(X) \to S(X)$ is the same as the fixed point for $\Phi : P(X) \to P(X)$.

Remark 4.12. We can also consider the weak topology on $S(X)$. Using the same argument as before, one can show that the weak topology on $S(X)$ coincides with the topology induced by the ρ metric.

5. Conclusion:

Given a compact metric space (X, d), we showed that it is possible to generalize the Kantorovich metric to the space of projection (positive operator) valued measures from $B(X)$ into the bounded operators on an arbitrary fixed Hilbert space \mathcal{H}. We showed that this metric space was complete. We used the Contraction Mapping Theorem as an alternative approach to show the existence and uniqueness of a projection valued measure that satisfies a fixed point result (this was first identified by P. Jorgensen using a different and slightly more general approach [7] [8]). We now identify a list of further related topics. We have considered the first four topics, but we plan to present these additional findings in a future paper. We have not considered the fifth topic listed below, but we look forward to investigating it.

(1) Finding a topology on $P(X)$ (or $S(X)$) which is compact.

Remark 5.1. The proof that the Kantorovich metric space of Borel probability measures on a compact space is compact (see Theorem 1.3) does not directly generalize to the $(P(X), \rho)$ (or $(S(X), \rho)$) metric space, because $B(\mathcal{H})$ does not have a compact unit ball in the operator norm.

(2) Generalizing (X, d) to a non-compact metric space.
(3) Finding other Lipschitz contractions on the metric space $(S(X), \rho)$.
(4) Looking at the map,

$$E(\cdot) \mapsto \sum_{i=0}^{N-1} S_i E(\sigma_i^{-1}(\cdot)) S_i^*,$$

when the maps $\{\sigma_i\}$ constitute a weakly hyperbolic iterated function system on a compact metric space (X, d) (see [1] and [4]). This is a weaker notion than when each σ_i is a Lipschitz contraction on X.

(5) Considering an iterated function system $\{\sigma_i\}$ that has overlap (i.e. [1,2] is not a disjoint union).
6. ACKNOWLEDGEMENTS:

The author would like to thank his advisor, Judith Packer (University of Colorado), for a careful review of this material.

REFERENCES

[1] Arbieto, A., Junqueira, A., and Santiago, B., "On weakly hyperbolic iterated functions systems," ArXiv e-prints, November 2012.
[2] Billingsley P. P., *Convergence of Probability Measures* (Second Edition), Wiley, New York, 1999.
[3] Conway, J., *A Course in Functional Analysis* (Second Edition), Springer, New York, 2000.
[4] Edalat, A., "Power Domains and Iterated Function Systems," Information and Computation, 124, 182-197 (1996).
[5] Hutchinson J., "Fractals and self similarity," Indiana University Mathematics Journal, 30, No. 5, 713-747 (1981).
[6] Jorgensen, P., "Iterated Function Systems, Representations, and Hilbert Space," Int. J. Math., 15, 813 (2004).
[7] Jorgensen, P., "Measures in Wavelet Decompositions," Adv. in Appl. Math., 34, No. 3, 561-590 (2005).
[8] Jorgensen, P., "Use of Operator Algebras in the Analysis of Measures from Wavelets and Iterated Function System," Operator Theory, Operator Algebras, and Applications, Contemp. Math., 414, 13-26, Amer. Math. Soc. (2006).
[9] Latremoliere, F., Ulam Seminar, University of Colorado, Fall 2013.
[10] Munkres, J., *Topology*, (Second Edition), Prentice Hall, New Jersey, 2000.

E-mail address: trubee.davison@colorado.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO