Influenza epidemiology and influenza vaccine effectiveness during the 2016–2017 season in the Global Influenza Hospital Surveillance Network (GIHSN)

Víctor Baselga-Moreno¹, Svetlana Trushakova², Shelly McNeil³, Anna Sominina⁴, Marta C. Nunes⁵,⁶, Anca Draganescu⁷, Serhat Unal⁸, Parvaiz Kouf⁹, Jan Kync⁵⁰, Tao Zhang¹¹, Ainagul Kuatbayeva¹², Afif Ben-Salah¹³,¹⁴, Elena Burtseva², Joan Puig-Barberà¹, Javier Díez-Domingo¹* and for the Global Influenza Hospital Surveillance Network (GIHSN)

Abstract

Background: The Global Influenza Hospital Surveillance Network (GIHSN) aims to determine the burden of severe influenza disease and Influenza Vaccine Effectiveness (IVE). This is a prospective, active surveillance and hospital-based epidemiological study to collect epidemiological data in the GIHSN. In the 2016–2017 influenza season, 15 sites in 14 countries participated in the GIHSN, although the analyses could not be performed in 2 sites. A common core protocol was used in order to make results comparable. Here we present the results of the GIHSN 2016–2017 influenza season.

Methods: A RT-PCR test was performed to all patients that accomplished the requirements detailed on a common core protocol. Patients admitted were included in the study after signing the informed consent, if they were residents, not institutionalised, not discharged in the previous 30 days from other hospitalisation with symptoms onset within the 7 days prior to admission. Patients 5 years old or more must also complied the Influenza-Like Illness definition. A test negative-design was implemented to perform IVE analysis. IVE was estimated using a logistic regression model, with the formula $\text{IVE} = (1-\text{aOR}) \times 100$, where aOR is the adjusted Odds Ratio comparing cases and controls.

Results: Among 21,967 screened patients, 10,140 (46.16%) were included, as they accomplished the inclusion criteria, and tested, and therefore 11,827 (53.84%) patients were excluded. Around 60% of all patients included with laboratory results were recruited at 3 sites. The predominant strain was A(H3N2), detected in 63.6% of the cases (1840 patients), followed by B/Victoria, in 21.3% of the cases (618 patients). There were 2895 influenza positive patients (28.6% of the included patients). A(H1N1)pdm09 strain was mainly found in Mexico. IVE could only be performed in 6 sites separately. Overall IVE was 27.24 (95% CI 15.62–37.27). Vaccination seemed to confer better protection against influenza B and in people 2–4 years, or 85 years old or older. The aOR for hospitalized and testing positive for influenza was 3.02 (95% CI 1.59–5.76) comparing pregnant with non-pregnant women.

Conclusions: Vaccination prevented around 1 in 4 hospitalisations with influenza. Sparse numbers didn’t allow estimating IVE in all sites separately. Pregnancy was found a risk factor for influenza, having 3 times more risk of being admitted with influenza for pregnant women.

Keywords: Influenza virus, Surveillance, Vaccine effectiveness, Epidemiology

* Correspondence: jdiezdomingo@gmail.com
¹Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), 21 Cataluña Av, 46020 Valencia, Spain
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Influenza is a major public health problem that can cause hospitalisations, and it is related with respiratory failures [1, 2]. The Global Influenza Hospital Surveillance Network (GIHSN) is an international public–private collaboration that started in 2012. The GIHSN goals are to improve understanding of influenza epidemiology, quantifying the circulation of the different types and subtypes of influenza, in order to measure the effectiveness of seasonal influenza vaccines and better inform public health policy decisions. We conduct a prospective, active surveillance, hospital-based epidemiological study that collects epidemiological and virological data from those sites that are included in the network. Each season results are presented in annual meetings and, since 2012, have been published [3–6], with the agreement of the Principal Investigators of all concerned sites. The implementation and data collection for the last season (2016–2017) was led by the Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), a regional public health institution in Valencia, Spain, and funded by the Foundation for Influenza Epidemiology. Fifteen sites in fourteen countries participated in the GIHSN in the season 2016–2017. Among them, there were 12 sites (St. Petersburg, Moscow, Kazakhstan, Czech Rep., Canada, Romania, Turkey, Spain, Tunisia, Suzhou/Shanghai, India and Mexico) from Northern Hemisphere countries not situated in the tropics and three sites (Ivory Coast, Peru and South Africa) from the tropics or the Southern Hemisphere. Since Peru and Ivory Coast only reported two positive cases for influenza in the influenza season, the analysis was performed without the data from these countries, and therefore, results are reported for 13 sites. A common core protocol and standard operating procedures are used for all participating sites, in order to allow comparisons among countries, and analyse results of all sites.

Methods
This study aims to determine the frequency of influenza-related hospitalisations in different countries, by circulating strains and age groups, to study risk factors for influenza-associated hospitalisations and estimate Influenza Vaccine Effectiveness (IVE) by site, age group and strain. Each site had one or more hospitals that recruited patients for the study, between October 2016 and May 2017 in Northern Hemisphere sites, except China, whose patients were recruited between June and September. For Southern Hemisphere sites, patients were recruited between May and November. Patients were included in the study if they presented any of the admission diagnoses included in the protocol, and only if they signed the informed consent to participate in the study. Among them, we selected for the study only those who were residents in the predefined hospital catchment’s area in the previous past 6 months, who were not institutionalised, who hadn’t been discharged from other hospitalisation in the last 30 days, and who had symptoms possibly related to influenza in 7 days or less prior to admission (Fig. 1). We also excluded patients who had previously tested positive for influenza in the current season, and also patients for whom the difference between the date of the onset of symptoms and the date of swabbing was 10 days or more (that is, those admitted after the 7th day after the onset of symptoms+maximum delay in swabbing). For patients 5 years old or more, they must also have complied with the Influenza-Like Illness (ILI) definition, detailed in European Centre for Disease Prevention and Control (ECDC) protocols, according to the decision of the Commission of the European Union of 8 August 2012 [7]. Patients enrolled outside the influenza epidemic period of each of the participating sites were also excluded. Influenza seasons were previously determined by each site, following recommendations of previous studies [8]. This methodology has been used in the GIHSN since the beginning of the network, and has been previously described [9]. For patients under 14 years old, nasal and/or nasopharyngeal swabs were collected, whereas, for patients 14 years old or more, pharyngeal and/or nasopharyngeal swabs were taken. Reverse transcription-polymerase chain reaction (RT-PCR) was used, according to each site’s protocol, in order to detect influenza virus; viral subtyping was performed in order to identify A(H1N1)pdm09, A(H3N2), B/Yamagata-lineage, and B/Victoria-lineage strains in the positive specimens.

We performed a test-negative study [10] in order to compare positives (cases) and negatives (controls) for influenza and estimate Influenza Vaccine Effectiveness (IVE). Odds Ratios were used to estimate IVE, comparing cases and controls of patients depending on the vaccination status. Patients were considered vaccinated if they received an influenza vaccine in the current season, at least 15 days before the onset of symptoms. Patients with contra-indication to influenza vaccination were excluded from the IVE analysis, but were included in the analysis regarding influenza circulation. Vaccination status was ascertained either by recall or by vaccination registries. Adjusted odds ratios (aOR) were calculated using a logistic regression model including sex, occupational social class, obesity status, pregnancy, underlying conditions, general practitioner (GP) consultations in last 3 months, smoking habits, days from onset of symptoms to swabbing as fixed effects, age and epidemiological week of admission using cubic splines, and site as a cluster variable, in order to consider sites variability [11]. IVE was calculated as (1-aOR) × 100. The same factors were used to adjust IVE by strain or age group. The variables relative to the Barthel Index (in patients 65 years old or older) and the previous hospitalisations in the last year were initially considered to be included in
the model, but were excluded from the final model as they were not statistically significant considering all variables mentioned above. The model did not include the number of consultations at the GP in the last 3 months to estimate IVE in Canada, as this site did not provide information for this variable. Severe outcomes were also studied, defining them as an influenza positive patient admitted to ICU during the hospitalisation, or with COPD exacerbation, respiratory failure, any cardiovascular complication, shock or death during hospitalisation. Heterogeneity was studied, using the I^2 test, and considering that heterogeneity was relevant if $I^2 \geq 50\%$ [12, 13].

Results

Included patients: distribution, characteristics and influenza positives and negatives

There were 21,967 eligible admissions between October 1, 2016 and November 9, 2017. However, only 10,140 patients complied with the conditions described above, and had laboratory results, hence only these were included in the analysis. Among them, 2895 (28.6%) tested positive for influenza, and 7245 (71.4%) tested negative for influenza (Table 1). The most common reason of exclusion was the fact that patients didn’t have ILI symptoms in the 7 days previous to admission. It is important to note that 2/3 of all included patients in the GIHSN came from 4 sites (St. Petersburg, Moscow, Canada and Valencia). These 4 sites also have the highest numbers of influenza positive cases, including 77.8% of all influenza positives in the GIHSN, and 84.3% of the A(H3N2) influenza positives among all participant sites. A (H3N2) was the predominant strain this season, being detected in 63.6% of all influenza positive cases (1840 patients), followed by B/Victoria, with 21.3% among the influenza positive cases (618 patients) (Table 1). Influenza A(H3N2) was detected throughout the season, whereas B/Victoria started to increase in the second week of 2017 in the Northern Hemisphere, and in the 31st week of 2017 in the Southern Hemisphere, approximately in the middle of the season in each Hemisphere (Fig. 2).

In the Northern Hemisphere, there was a significant increase in the number of influenza cases in week #49 of 2016, with a peak in the number of positive cases during the second week of 2017 and starting to descend at the eighth week of 2017. Influenza B/Victoria started to increase clearly in the second week of 2017, as A(H3N2) started to descend. 70.3% of all influenza cases were positive for influenza A, whereas 29.7% were positive for influenza B, with a clear different distribution among sites. A(H3N2) was predominant in all sites, except in Mexico, where the predominant strain was A(H1N1)pdm09, and Romania and India with a predominance of B/Victoria-lineage. Both B lineages circulated during this season, with geographical differences, so in Canada, Czech Republic, Turkey, Tunisia, Mexico and South Africa, B/Yamagata was more often detected, while the B/Victoria was elsewhere.
Table 1 Patients included and excluded in the current analyses, inclusion criteria and influenza laboratory results

Category	St. Pet	Moscow	Kazakhstan	Czech Rep.	Canada	Romania	Turkey	Valencia	Tunisia	Suzhou/Shanghai	India	Mexico	South Africa	Total														
	n	%	n	%	n	%	n	%	n	%	n	%	n	%														
Screened admissions	2012	661	211	917	6913	106	1264	693	1480	21967																		
Exclusion criteria																												
Non resident	0.1	167	7.4	0.0	3	1.5	0.0	43.7	8.5	25	0.4	9	85															
Institutionalised	0.0	19	0.8	21.3	0.0	0.0	461	188.8	0.1	20.2	358	5.2	0.0	1.0														
Previous discharged < 30 days	0.1	114	5.1	44.6	6.7	3.5	145	5.9	68	7.5	173	18.9	1131	164.5														
Unable to communicate	0.5	136	6.1	0.0	11	5.5	0.0	0.0	50	5.5	367	5.3	0.0	30														
Not giving consent	44.2	2.8	49.4	7.4	13	6.5	0.0	1.0	15	1.6	275	4.0	0.0	3.0														
No ILI symptoms ≥ 5 years	0.0	42	1.9	0.0	14.4	8.4	573	23.4	41	4.5	140	15.3	2164	31.3														
Admission within 7 days of symptoms onset	0.2	124	5.5	279	42.2	8	4.0	137	5.6	4	0.4	3	0.3	335	4.8	4	3.8	301	23.8	2	0.3							
Previous influenza infection	0.1	1	0.0	0.0	0.0	0.0	0.0	6	0.7	0.8	1	0.0	0.0	15.2														
Onset of symptoms to swab > 9 days	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0														
Sample inadequate	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0														
Sample lost	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0														
Recruited outside periods with continuous influenza positive admissions	0.4	13	0.6	100	15.1	11	5.5	1	0.0	0.0	16	1.7	131	1.9	18	1.7	170	198	157	159	229	98	66	462	21.8	1216	5.5	
Included with valid laboratory results	1937	96.3	1620	72.2	159	24.1	111	55.2	1132	46.2	387	42.9	413	45.0	2125	30.7	39	368	470	372	493	71.1	350	236	904	42.6	10140	46.2
RT-PCR result																												
Influenza negative	1417	73.2	869	53.6	128	80.5	69	62.2	414	36.6	221	57.1	316	175.3														
Influenza positive	520	26.8	751	46.4	31	19.5	42	37.8	718	63.4	166	42.9	102	24.7														
Subtype and lineage																												
A(H1N1)pdm09	1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.11														
A(H3N2)	296	56.9	420	55.9	15	48.4	32	76.2	585	51.7	23.5	81	794	251														
A not subtyped	34	6.5	4	0.5	0.0	5	0.0	2	48	67	5.9	4	2.4	3.9														
B/Yamagata lineage	2	4.0	0	0.0	0.0	4	9.5	35	3.1	0.0	19	18.6	0.0	2.0														
B/Victoria lineage	187	36.0	299	39.8	0.0	1	2.4	4	0.4	74	44.6	2.0	0.0	0.0														
B not subtyped	0	0.0	28	3.7	16	51.6	2	4.8	24	2.1	50	30.1	1	1.0														
Fig. 2 Influenza-associated admissions by epidemiological week and virus type/subtype

Fig. 3 Admissions with influenza by site, epidemiological week and virus type/subtype
Influenza B cases generally appeared as a second influenza wave (Fig. 3). In Valencia, no cases were positive for influenza B.

Influenza B was mainly observed in the youngest, and was the predominant strain in the age group 5–17 years old. Among the two influenza B lineages, in general B/Victoria was detected more often than B/Yamagata, except in the age group 50–64 years (Fig. 4).

The distribution of influenza cases among the age groups was clearly different among sites, but differences were mainly due to the characteristics of the participating hospitals for each site. Tunisia and Czech Republic only recruited patients 18 years old or older, while Suzhou/Shanghai only enrolled patients under 18 years old. In Moscow, the majority of influenza positives were pregnant women (which represented the 49.4% of the included patients), and therefore, the highest number of influenza positives among the different age groups was situated in the age group 18–49 years old in this site. Influenza positive cases were mainly found in patients 65 years old or older in Valencia and Canada, but 89.8% of the included patients from Canada were 50 years old or older. In St. Petersburg and South Africa, due to the characteristics of the patients of the participating hospitals (mainly children) there were more influenza positive cases in the youngest groups (Fig. 5).

25.8% of the included patients were previously hospitalised in the same year and 36.6% of the included patients had at least one underlying condition, but this percentage varied among sites, in Canada, for example, more than 90% of the included patients had at least one underlying condition, whereas in St. Petersburg, this percentage was lower than 10% and in Turkey was 48.2%, but these percentages could be related to the age distribution of the included patients in each site. Among the different comorbidities, the most common were cardiovascular (20.7% of the included patients), diabetes (10.4%) and chronic obstructive pulmonary disease (COPD) (9.9%). Obesity was also found in more than 14% of the included patients, being more relevant in Canada (29.6%), Valencia (26.3%) and Czech Republic (23.4%). Moscow was the site with the highest number of pregnant women among all sites (800 pregnant in Moscow among 940 pregnant women in all sites), being 49.4% of the included patients in this site. In Kazakhstan, pregnant women represented 22.6% of the included patients. The Barthel Index in those over 65 years showed that almost 90% of these subjects were not dependent or had a mild dependence. 68.3% of the patients who tested negative for influenza were swabbed from 0 to 4 days after symptoms started, but this percentage was 78.4% for influenza positive cases (p-value < 0.0001).

Vaccination coverage differed among sites. Patients were considered as vaccinated if vaccination was at least 15 days before symptoms onset (Table 2). Targeted patients for vaccination criteria were different among sites (Additional file 1: Complementary Table S1). Vaccination coverage was 11.1% among the influenza positives and 18.4% among the influenza negatives overall. Cardiovascular diseases, renal impairment, chronic obstructive pulmonary
disease and diabetes were the most common comorbidities among influenza positives (Table 3). Seasonality had also a clear geographical distribution. Sites in higher latitudes had, generally, an earlier start of the influenza season.

Patients with a qualified occupation had a higher risk of being admitted with influenza. Patients with a swab taken 8–9 days after symptoms onset appeared with less risk of being admitted with influenza, suggesting a decrease in the influenza viral load for these patients (Table 4).

Pregnant women had a 3 times higher risk of having influenza at admission than non-pregnant. Also subjects with diabetes had 1.19 times higher risk of being an influenza case. On the other hand, patients with COPD or neoplasm had lower risk of testing positive for influenza. Despite there was a high number of admissions with cardiovascular diseases (CVD), no difference in the risk of influenza was found in these patients. (Fig. 6).

During pregnancy, the risk of testing positive for influenza was higher during the third trimester than in the first trimester, and also if they had any comorbidity in the first trimester (Fig. 7).

There were no significant statistical differences among influenza positives and negatives for those who were admitted to ICU or who received mechanical ventilation or those who died while they were hospitalised, and differences for those with extracorporeal membrane oxygenation could be due to sparse numbers of patients who received extracorporeal membrane oxygenation. Apart from influenza, the main discharge diagnosis was pneumonia, either for influenza-negatives or influenza-positives (Table 5).

Probabilities of most common severe outcomes by strain by age and influenza strains are displayed in Fig. 8. This probability had an upward trend up to 80 years old after a shock. The probability point estimates of having any cardiovascular complication increased greatly from 90 years old for those who had influenza. Similar trends were found for each individual strain for these discharge diagnoses.

Vaccination coverage was 9% or higher for targeted groups only in 4 sites (Fig. 9), and only 6 sites had at least 20 patients vaccinated among the patients targeted.
Characteristic	St. Pet	Moscow	Kazakhstan	Czech Rep.	Canada	Romania	Turkey	Valencia	Tunisia	Suzhou/Shanghai	India	Mexico	South Africa	Total
N = 1937	N = 1620	N = 159	N = 111	N = 1132	N = 387	N = 413	N = 2125	N = 39	N = 470	N = 493	N = 350	N = 904	N = 10,140	
n %	n %	n %	n %	n %	n %	n %	n %	n %	n %	n %	n %	n %	n %	
Age in years, median (range)	3 (0–87)	24 (0–91)	17 (1–76)	64 (18–90)	76 (17–105)	5 (0–63)	3 (0–95)	68 (14–84)	0 (0–13)	60 (0–99)	3 (0–96)	0 (0–91)	20 (0–105)	
Age group														
0–1 y	684	35.3	167	10.3	34	21.4	89	179	43.3	421	198	0.0	334	71.1
2–4 y	483	24.9	156	9.6	33	20.8	87	225	39	94	108	5.1	96	20.4
5–17 y	310	16.0	182	11.2	14	8.8	118	305	32	7.7	54	2.5	25	40.5
18–49 y	388	20.0	1052	64.9	73	45.9	37	333	97	2.2	72	13.4	145	145
50–64 y	49	42.5	192	12.1	38	23.8	108	280	45	27	136	7.8	45	6.8
65–74 y	12	0.6	12	0.7	2	1.3	24	216	196	173	0	0.0	29	70
75–84 y	9	0.5	10	0.6	1	0.6	20	180	156	138	21	5.4	45	109
≥85 y	2	0.1	7	0.4	0	0.0	10	90	246	217	0	0.0	20	48
Sex														
Male	1050	54.2	607	37.5	76	47.8	64	577	541	47.8	205	5.3	224	542
Female	887	45.8	1013	62.5	83	52.2	47	423	591	52.2	182	10.7	182	470
Chronic conditions														
0	1758	90.8	1382	85.3	111	69.8	35	315	99	8.7	349	90.2	214	518
1	157	8.1	187	11.5	42	26.4	40	360	307	27.1	28	7.2	87	21.1
≥2	22	1.1	51	3.1	6	3.8	36	324	726	641	10	2.6	112	27.1
Previously hospitalised (last 12 months)														
No	1447	74.7	1354	83.6	143	899	80	721	–	–	–	–	–	–
Yes	490	25.3	266	16.4	16	101	31	279	–	–	–	–	–	–
Underlying chronic conditions														
Cardiovascular disease	49	2.5	70	4.3	5	3.1	50	450	872	770	17	4.4	110	266
Chronic obstructive pulmonary disease	21	1.1	23	1.4	24	15.1	7	63	134	118	1	0.3	70	169
Asthma	28	1.4	29	1.8	0	0.0	7	63	146	129	2	0.5	46	111
Immunodeficiency/organ transplant	13	0.7	4	1.1	1	0.6	4	36	114	101	8	0.2	21	44
Diabetes	7	0.4	16	1.0	3	1.9	25	225	344	304	6	1.6	47	114
Renal impairment	4	0.2	74	4.6	15	9.4	3	27	167	148	4	1.0	27	65
Neuromuscular disease	56	2.9	29	1.8	6	3.8	3	6.4	182	161	0	0.0	30	75
Neoplasm	0	0.0	15	0.9	0	0.0	11	9.9	239	21.1	5	0.3	13	27
Table 2 Characteristics of included patients overall and by site (Continued)

Characteristic	St. Pet	Moscow	Kazakhstan	Czech Rep.	Canada	Romania	Turkey	Valencia	Tunisia	Sushou/ Shanghai	India	Mexico	South Africa	Total																
	N = 1937	N = 1620	N = 139	N = 111	N = 1123	N = 387	N = 413	N = 2125	N = 39	N = 470	N = 493	N = 350	N = 904	N = 10,140																
	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%														
Cirrhosis/liver disease	18	0.9	18	1.1	1	0.6	3	2.7	22	1.9	5	1.3	6	1.5	62	29	0	0.0	0	0.0	0	0.0	135	1.3						
Autoimmune disease	7	0.4	29	1.8	0	0.0	5	4.5	1	0.1	5	1.3	5	1.2	43	20	2	5.1	0	0.0	22	4.5	12	3.4	0	0.0	131	1.3		
Pregnant (women 15–45 y)	72	3.7	800	49.4	36	22.6	3	2.7	14	1.2	7	1.8	0	0.0	2	0.1	0	0.0	0	0.0	2	0.6	4	0.4	940	9.3				
Obese (all ages)	165	8.5	150	9.3	13	8.2	26	23.4	197	29.6	35	9.0	76	18.4	154	21.3	0	0.0	0	0.0	5	13	4	3.4	656	6.3				
Outpatient consultations last 3 months	0	0.0	894	46.2	658	40.6	116	7.0	33	2.7	--	--	166	42.9	148	35.8	233	11.0	14	3.5	9	2.0	--	--	120	24.3	81	23.1	177	16.8
Smoking habits (patients ≥ 18 y)	419	21.6	724	44.7	0	0.0	44	39.6	--	--	100	58.1	165	60.0	1479	69.6	14	35.9	23	63.7	199	56.9	46	5.1	3797	42.2				
Never smoker	222	48.3	698	62.6	58	74.4	51	45.9	431	43.5	55	59.1	85	52.1	784	50.8	15	39.5	0	0.0	198	49.4	53	53.8	102	61.4	2756	27.4		
Past smoker	46	10.0	263	23.6	16	20.5	24	21.6	387	39.1	6	65	59	36.2	464	30.1	12	31.6	0	0.0	121	30.2	34	32.1	35	21.1	1467	27.9		
Current smoker	192	41.7	154	13.8	4	5.1	36	32.4	172	17.4	32	34.4	19	11.7	294	19.1	11	28.9	0	0.0	82	20.4	15	14.2	29	17.5	1040	19.7		
Functional status impairment (Barthel score; patients ≥ 65 y)	4	18.2	69.0	1	33.3	39	72.2	373	742	0	47	490	735	628	2	118	0	0.0	--	--	136	61.3	17	51.5	6	33.3	1394	64.3		
Sampling time	0–2 days	1160	59.9	843	52.0	109	686	31	27.9	474	419	76	196	59	143	386	182	7	179	8	1.7	44	8.9	67	19.1	321	39.1	3585	35.6	
	3–4 days	568	29.3	595	36.7	46	289	42	37.8	387	342	155	401	161	390	892	420	14	35.9	107	22.8	175	35.5	123	35.1	308	37.5	3573	35.5	
	5–7 days	209	10.8	179	11.0	4	2.5	37	33.3	259	229	144	372	181	438	655	308	8	16.2	264	56.2	274	55.6	141	40.3	140	17.1	2505	24.9	
	8–9 days	0	0.0	3	0.2	0	0.0	1	0.9	12	1.1	12	31	12	29	192	90	0	0.0	91	19.4	0	0.0	19	5.4	52	63.2	394	3.9	
Influenza vaccination ≥15 days from symptom onset	86	4.4	65	4.0	0	0.0	6	5.4	139	123	7	18	21	5.1	825	388	2	5.1	0	0.2	11	2.2	49	14.0	0	0.0	1217	12.0		
Influenza vaccination ≥15 days from symptom onset (age ≥ 65)	2	8.7	5	17.2	0	0.0	6	11.1	124	141	0	--	14	135	701	599	2	11.8	0	0.0	5	2.3	9	27.3	0	0.0	868	33.8		
Influenza vaccination ≥15 days from symptom onset (targeted groups)	65	4.5	30	2.2	0	0.0	6	7.0	138	127	3	44	21	90	806	503	2	61.1	0	0.4	8	2.1	43	16.0	2	1.5	1125	16.0		
Table 3: Characteristics of included patients according to RT-PCR result

Characteristic	Influenza negative	Influenza positive	A (H1N1)pdm09	A (H3N2)	A not subtyped	B/Yamagata	B/Victoria	B not subtyped
N	7245	2895	N = 76	N = 1840	N = 129	N = 108	N = 618	N = 135
Age in years, median (range)								
	12 (0–105)	28 (0–103)	35 (0–84)	35 (0–103)	48 (0–102)	13 (0–92)	18 (0–89)	7 (0–94)
Age group								
0–1 y								
	2361	328	111.9	1145	220	16	20	47
	906	126	111.2	12158	162	13	16	86
5–17 y	446	62	137	792	143	7	7	176
18–49 y	1305	181	287	23303	440	15	10	282
50–64 y	540	75	70	1317	159	3	12	5
65–74 y	565	79	82	792	178	15	7	11
75–84 y	631	88	98	339	223	16	11	15
≥ 85 y	441	61	94	0	230	15	10	2
Sex								
Male	3766	520	463	3343	859	72	54	254
Female	3479	480	537	43566	981	57	54	364
Chronic conditions								
0	4765	658	574	44579	894	51	58	528
1	1240	171	198	19250	415	27	18	71
≥2	1240	171	229	1317	531	51	32	19
Previously hospitalised (last 12 months)								
No	5029	736	762	58795	924	44	53	494
Yes	1802	264	238	15205	331	18	20	120
Underlying chronic conditions								
Cardiovascular disease	1298	179	275	17224	627	60	37	30
Chronic obstructive pulmonary disease	802	111	71	8105	159	10	10	16
Asthma	276	38	65	679	147	14	8	8
Immunodeficiency/organ transplant	155	21	23	339	49	7	3	2
Diabetes	687	95	125	11145	292	33	13	5
Renal impairment	409	56	72	453	161	11	7	19
Neuromuscular disease	234	32	66	268	147	15	8	12
Table 3 Characteristics of included patients according to RT-PCR result (Continued)

Characteristic	Influenza negative	Influenza positive	A (H1N1)pdm09	A (H3N2)	A not subtyped	B/Yamagata	B/Victoria	B not subtyped	
	N = 7245	N = 2895	N = 76	N = 1840	N = 129	N = 108	N = 618	N = 135	
	n	%	n	%	n	n	n	n	
Neoplasm	311	4.3	168	58.0	0.0012	163	7.6	129	53.7
	2895		133	7.2		769	3.7		377
Cirrhosis/liver disease	12	1.3	3	13.6	0.9171	7	0.7	12	0.7
	76		19	2.6		409	3.4		37.5
Autoimmune disease	13	1.3	35	12.0	0.6002	13	1.3	12	0.9
	76		19	2.6		409	3.4		37.5
Pregnant (women 15–45 y)	459	58.0	15	21.2	0.0016	25	13.0	12	0.9
	2895		133	7.2		769	3.7		377
Obese (all ages)	1083	15.6	374	14.6	0.1967	271	17.0	108	6.5
	2504		19	7.6		402	2.6		1.9
Smoker (patients ≥18 y)	4106	57.0	1598	23.0	0.5600	993	56.7	62	53.9
	2521		19	7.6		402	2.6		1.9
Smoking habits (patients ≥18 y)	4106	57.0	1598	23.0	0.5600	993	56.7	62	53.9
Total (0–15)	106	6.8	24	39.0	0.00	21	3.3	0	0.0
Severe (20–35)	35	2.3	13	24.0	0.00	12	2.1	0	0.0
Moderate (40–55)	62	4.0	31	50.0	0.00	26	4.4	1	0.0
Mild (60–90)	364	23.5	136	23.0	0.444	109	19.2	10	17.8
Minimal (95–100)	985	65.3	409	66.5	5.556	330	66.4	26	63.4
Sampling time < 0–2 days	2374	33.1	1211	42.0	16.11	830	45.3	54	41.9
3–4 days	2521	35.2	1052	36.5	22.28	657	35.9	38	29.5
5–7 days	1941	27.1	564	19.5	34.47	303	16.5	35	27.1
8–9 days	335	4.7	59	20.0	4.53	42	23.2	2	16
Influenza vaccination ≥15 days from symptom onset	938	13.0	279	96.0	0.3339	221	12.0	10	2825
Influenza vaccination ≥15 days from symptom onset (age ≥65)	673	99.0	175	23.0	0.0541	175	24.4	8	10.7
Influenza vaccination ≥15 days from symptom onset (targeted groups)	869	84.0	256	11.1	0.3047	214	13.6	8	7.2

Baselga-Moreno et al. BMC Public Health (2019) 19:487
Characteristic	All admissions	Influenza-positive	Crude OR	Heterogeneity by strain (I²)	aOR (*)		
	N = 10140	N = 2895					
Age group							
0–1 years	2692	331	12.3	1.00	79.4%	1.00 –	
2–4 years	1217	311	25.6	2.45	2.06–2.92	75.6%	0.86 – 0.67–1.09
5–17 years	827	381	46.1	6.09	5.03–7.38	94.6%	1.59 – 0.85–2.96
18–49 years	2100	795	37.9	4.35	3.73–5.06	96.4%	0.65 – 0.22–1.97
50–64 years	735	195	26.5	2.58	2.10–3.15	96.6%	0.59 – 0.25–1.39
65–74 years	793	228	28.8	2.88	2.37–3.50	95.3%	0.61 – 0.31–1.22
75–84 years	903	272	30.1	3.07	2.55–3.71	96.9%	0.50 – 0.21–1.20
≥ 85 years	701	260	37.1	4.21	3.45–5.13	98.4%	0.49 – 0.19–1.28
Sex							
Male	5105	1339	26.2%	1.00	54.0%	1.00 –	
Female	5035	1556	30.9%	1.26	1.15–1.37	46.5%	0.84 – 0.74–0.95
Smoking habits							
Current smoker	2270	542	23.9%	1.00	81.7%	1.00 –	
Past smoker	2006	640	31.9%	1.49	1.30–1.71	88.4%	1.04 – 0.89–1.22
Never smoker	5704	1598	28.0%	1.24	1.11–1.39	34.0%	1.09 – 0.93–1.28
Consultations at the GP (last 3 months)							
No	3283	779	23.7%	1.00	95.0%	1.00 –	
Yes	5725	1398	24.4%	1.04	0.94–1.15	92.6%	0.91 – 0.69–1.18
Occupation / Social class							
Qualified	3810	1255	32.9%	1.00	97.1%	1.00 –	
Skilled	1376	355	25.8%	0.71	0.62–0.81	81.9%	0.83 – 0.72–0.94
Low or unskilled	3411	591	17.3%	0.43	0.38–0.48	91.5%	0.63 – 0.50–0.78
Other risk factors							
Comorbidity	3714	1234	33.2%	1.43	1.31–1.56	98.7%	0.90 – 0.63–1.30
Cardiovascular disease	2094	796	38.0%	1.74	1.57–1.92	98.7%	1.01 – 0.72–1.40
Chronic obstructive pulmonary disease	1008	206	20.4%	0.62	0.52–0.72	92.5%	0.66 – 0.45–0.98
Asthma	463	187	40.4%	1.74	1.44–2.11	94.3%	1.31 – 0.96–1.77
Immunodeficiency/organ transplant	222	67	30.2%	1.08	0.81–1.45	85.2%	0.57 – 0.28–1.17
Diabetes	1049	362	34.5%	1.36	1.19–1.56	98.1%	1.19 – 1.03–1.37
Chronic renal impairment	617	208	33.7%	1.29	1.09–1.54	89.2%	1.06 – 0.89–1.27
Chronic neuromuscular disease	426	192	45.1%	2.13	1.75–2.59	91.7%	1.08 – 0.75–1.56
Active neoplasm	479	168	35.1%	1.37	1.13–1.67	96.8%	0.63 – 0.42–0.95
Chronic liver disease	135	38	28.1%	0.98	0.67–1.43	38.8%	1.09 – 0.79–1.50
Autoimmune disease	131	35	26.7%	0.91	0.62–1.35	23.8%	1.14 – 0.84–1.56
Obesity	1457	374	25.7%	0.92	0.81–1.04	93.3%	0.83 – 0.69–1.00
Pregnancy	942	483	51.3%	2.96	2.58–3.40	97.6%	3.02 – 1.59–5.76
Days from onset of symptoms to swabbing							
0–2 days	3585	1211	33.8%	1.00	92.8%	1.00 –	
3–4 days	3573	1052	29.4%	0.82	0.74–0.90	36.9%	1.05 – 0.99–1.12
5–7 days	2505	564	22.5%	0.57	0.51–0.64	83.4%	0.82 – 0.64–1.07
8–9 days	394	59	15.0%	0.35	0.26–0.46	65.2%	0.60 – 0.47–0.77

*Adjusted Odds Ratios were obtained using the model described in the ‘Methods’ section (pg.6)
Fig. 6 Adjusted Odds Ratio (aOR) and number of admissions with influenza according to comorbidity

Underlying condition	aOR (95% CI)	(n)
CVD	1.01 (0.72, 1.40)	796
COPD	0.66 (0.45, 0.98)	206
Asthma	1.31 (0.96, 1.77)	187
Diabetes	1.19 (1.03, 1.37)	362
Immunodef	0.57 (0.28, 1.17)	67
Renal disease	1.06 (0.89, 1.27)	208
Neuromuscular	1.08 (0.75, 1.56)	192
Liver disease	1.09 (0.79, 1.50)	38
Neoplasm	0.63 (0.42, 0.95)	168
Autoimmune	1.14 (0.84, 1.56)	35
Obese	0.83 (0.69, 1.00)	374
Pregnancy	3.02 (1.59, 5.76)	483

Adjusted by age, sex, smoking habits, occupational social class, consultations at GP in the last 3 months, obesity, pregnant, women, flu vaccination, time to swab, calendar time (weeks, spline) and site as a clustering factor.

Fig. 7 Predicted probability of having an admission with influenza in pregnant and non-pregnant women by trimester
Category	Influenza-negative	Influenza-positive	A (H1N1)pdm09	A (H3N2)	A not subtyped	B/Yamagata	B/Victoria	B not subtyped
Intensive care unit admission	317 4.4	132 46	118 5.5	3 3.9	5 4.6	6 6.0	1 1.5	6 4.4
Mechanical ventilation	225 3.1	75 26	66 3.3	3 2.3	2 1.9	3 0.5	2 1.5	0.0018
Extracorporeal membrane oxygenation	89 1.2	9 0.3	0.0000	5 0.3	3 2.3	0 0.0	1 0.2	0.00035
Death during hospitalisation	183 2.5	69 24	53 2.8	3 2.8	5 3.8	0 0.8	2 1.5	0.0745
Length of stay (days), median (interquartile range)	6 (10-8) 5 (10-8)	<0.001	3 (10-9) 6 (10-8)	4 (2-6)	7 (4-10) 5 (3-10)	0.004		
Respiratory diagnoses	None 2052 28.3	1828 63.1	15 19.7	79 49.7	51 47.2	435 70.4	60 44.4	
Pneumonia	2335 32.2	658 22.7	38 23.3	28 17.8	47 25.2	121 23.9	44 26.7	
COPD exacerbation	192 2.7	91 3.1	2.6	4.0	3.9	3 2.8	0.5	4.0
Respiratory failure	109 1.5	12 04	1.3	0.5	1.8	0 0.0	0.0	1.7
Asthma exacerbation	53 0.7	30 1.0	0.0	0.0	0.0	0 0.0	0.0	0.0
Acute respiratory distress syndrome	18 0.2	2 0.1	0.0	0.0	0.0	0 0.0	0.0	0.0
Pneumotorax	1 0.0	0 0.0	0.0	0.0	0.0	0 0.0	0.0	0.0
Bronchiolitis	383 5.3	48 1.7	3.3	1.6	5.1	1.0	4.4	
Upper respiratory infection	2101 29.0	226 7.8	14.6	7.9	6.7	14 2.0	6.7	
Metabolic failure	7016 96.8	2827 97.7	1803 98.0	126 97.7	106 98.1	604 97.9	127 94.1	
Acute renal failure	85 1.2	19 07	3.9	10.0	2.1	2.1	0.0	2.1
Diabetic coma	8 0.1	1 00	0.0	0.0	0.0	0 0.0	0.0	0.0
Fluid/electrolyte/acid-base/balance disorders	136 1.9	48 1.7	1.3	2.6	1.4	1.0	4.4	
Cardiovascular events	None 6674 92.1	2766 95.5	69 90.8	1741 94.6	122 94.6	104 96.3	611 98.9	129 95.6
Acute myocardial infarction	6 0.1	1 00	0.0	1.0	0.0	0 0.0	0.0	0.0
Arterial or venous embolism	1 0.0	0 00	0.0	0.0	0.0	0 0.0	0.0	0.0
Carditis	2 0.0	1 00	0.0	0.0	0.0	0 0.0	0.0	0.0
Cardiac arrest	1 0.0	1 00	0.0	1.0	0.0	0 0.0	0.0	0.0
Malignant hypertension	1 0.0	3 01	0.0	2.0	0.0	0 0.0	0.0	0.7
Any cardiovascular condition	560 7.7	123 42	7.2	9.5	5.2	7 5.4	6 3.7	10.0 5.3

P-values for distribution by strain:

- Intensive care unit admission: <0.0001
- Mechanical ventilation: 0.0018
- Extracorporeal membrane oxygenation: 0.00035
- Death during hospitalisation: 0.0745
- Length of stay: <0.0001
- Respiratory diagnoses:
 - None: 0.3163
 - Pneumonia: 0.001
 - COPD exacerbation: 0.47
 - Respiratory failure: 0.001
 - Asthma exacerbation: 0.001
 - Acute respiratory distress syndrome: 0.001
 - Pneumonia: 0.001
 - Bronchiolitis: 0.001
 - Upper respiratory infection: 0.001
 - Metabolic failure:
 - No: 0.2106
 - Acute renal failure: 0.001
 - Diabetic coma: 0.001
 - Fluid/electrolyte/acid-base/balance disorders: 0.001
 - Cardiovascular events:
 - None: 0.0001
 - Acute myocardial infarction: 0.0001
 - Arterial or venous embolism: 0.0001
 - Carditis: 0.0001
 - Cardiac arrest: 0.0001
 - Malignant hypertension: 0.0001
 - Any cardiovascular condition: 0.0001
| Category | Influenza-negative | Influenza-positive | A(H1N1)pdm09 | A (H3N2) | A not subtyped | B/Yamagata | B/Victoria | B not subtyped | P-value for distribution by strain |
|---------------------------------------|--------------------|--------------------|--------------|----------|----------------|------------|------------|----------------|----------------------------------|
| Neurologic events | | | | | | | | | |
| No | 7241 99.9 | 2894 100.0 | 76 100.0 | 1839 99.9| 129 100.0 | 108 100.0 | 618 100.0 | 135 100.0 | 0.4268 |
| Altered mental status | 3 0.0 | 1 0.0 | 0 0.0 | 1 0.1 | 0 0.0 | 0 0.0 | 0 0.0 | 0 0.0 | |
| Convulsions | 1 0.0 | 0 0.0 | 0 0.0 | 0 0.0 | 0 0.0 | 0 0.0 | 0 0.0 | 0 0.0 | |
| Major discharge diagnoses | | | | | | | | | <0.0001 |
| Influenza | 241 3.3 | 2272 78.5 | 40 52.6 | 1401 76.1 | 90 75.2 | 39 36.1 | 584 94.5 | 113 83.7 | <0.0001 |
| Pneumonia | 2427 33.5 | 238 8.2 | 31 40.8 | 145 7.9 | 12 9.3 | 29 26.9 | 13 2.1 | 12 8.9 | |
| Other respiratory disease | 2683 37.0 | 177 6.1 | 1 1.3 | 132 7.2 | 8 6.2 | 15 13.9 | 17 2.8 | 6 4.4 | |
| Cardiovascular | 267 3.7 | 34 1.2 | 1 1.3 | 31 1.7 | 1 0.8 | 1 0.9 | 0 0.0 | 1 0.7 | |
| Other | 1627 22.5 | 174 6.0 | 3 3.9 | 131 7.1 | 11 8.5 | 24 22.2 | 4 0.6 | 3 2.2 | |
for vaccination. The IVE analysis was restricted to the sites with the highest vaccination coverage in targeted groups for vaccination having at least 20 patients vaccinated in these groups. These sites were Valencia, Canada, St. Petersburg, Mexico, Moscow and Turkey.

The IVE analysis, therefore, will be carried out in these six sites and globally. Vaccination coverage in pregnant women was 0% in Kazakhstan among the included patients, and in Moscow, only 1.3% (10 out of 800) of the admitted pregnant women received the vaccine at least 15 days before symptoms onset, therefore, adjusted IVE could not be estimated for pregnant women.

Vaccination coverage was higher in patients older than 65 years and in patients with two or more comorbidities. Among immunized women 15 to 45 years old, 19 of 47 were pregnant (40.4%), and among all vaccinated patients, 26.7% were obese.

Of the subjects vaccinated, 78.0% were also vaccinated in season 2015–2016 and 67.2% were vaccinated in season 2014–2015. However, 8.0% of the unvaccinated patients in the current season were vaccinated in the season 2015–2016, and 6.6% in the season 2014–2015 (Table 6).

IVE estimates for included patients

In the selected sites for IVE estimates, vaccination coverage was 11.7% among the influenza positives and 22.2% among the influenza negatives. The overall IVE was 27.24% (95% CI 15.62 to 37.27%) in targeted groups for vaccination. Table 7 shows IVE for different strains, Fig. 10 by study country.

IVE was statistically significant for all strains except for A(H1N1)pdm09 due to the limited sample size, and the point estimate was higher for both influenza B lineages, even using the trivalent vaccine (Fig. 11). Heterogeneity among influenza types/subtypes was relevant ($I^2 = 57.4\%$).

This season IVE estimate was higher in patients 85 years old or older (51.17% [95% CI: 35.13 to 63.24]). IVE was also high and statistically significant for patients 2 to 4 years old (49.37% [95% CI: 21.60 to 67.30]) (Fig. 12). Heterogeneity among the different age groups was relevant ($I^2 = 69\%$).
Discussion
The GIHSN included sites from the two hemispheres in the 2016/17 season. However, Ivory Coast and Peru were not included in the epidemiology study or in the IVE study due to the low influenza cases detected. This season was characterized by a predominance in the circulation of A(H3N2) virus, and a second wave of B/Victoria. However, A(H1N1)pdm09 was predominant in Mexico. B/Yamagata-strain, which was not included in the vaccine, also circulated in some areas. Influenza A(H1N1)pdm09 was mainly found in Mexico. A low vaccination coverage was seen in most of the GIHSN sites.

The GIHSN represents an opportunity to analyse the epidemiology of hospitalized influenza cases, and an assessment of the vaccine effectiveness worldwide. However, there are some limitations that should be mentioned:

- Although the same protocol was developed, the adaptation to different countries or sites produced some heterogeneity in the results, as previously reported in the network [3].
- In general vaccination coverage was low in most sites, even among high risk groups.
- Other factors as number of cases per site, and variability in the vaccination coverage, increased the heterogeneity in the reporting and analysis.

All of these limitations contributed to the complexity of the interpretation of the results.

In the northern hemisphere, the season differed by latitude [14], and this may have implications in the calendar of the vaccination campaigns.

Patients tested for influenza 8 to 9 days after symptoms onset had a higher proportion of samples negative for influenza than patients tested within the first 7 days after symptoms onset, as that viral load decreases with increasing time since infection, [15]. However, there were a few cases in our study as we collected all cases whose admission was in the 7 days after ILI symptoms started, and any delay in approaching the patient could result in a late swabbing.

Among inpatients with COPD, there was not a higher risk of testing for influenza. As all the cases were hospitalized, this result cannot be interpreted as COPD not being a risk factor for influenza hospitalization, as any other respiratory infection may decompensate the respiratory condition and force an admission. Besides vaccination coverage is higher in subjects with chronic conditions [16] and therefore, protection from the vaccine may also impact on our finding.

The risk of testing positive for influenza in diabetic patients was slightly higher than non-diabetic patients, as it also happened in previous seasons [3, 4]. Pregnancy also increased the probability of having influenza in women, particularly if they had at least one comorbidity in the first trimester.
Risk variables	Category	Unvaccinated	Vaccinated	P value		
Number of patients, n (%)	Controls	6307	70.7%	938	77.1%	< 0.0001
	Cases	2616	29.3%	279	22.9%	
Age (y)	Median (range)	11.4 (0–105.3)	76.5 (0.6–102.8)	< 0.0001		
Age group, n (%) (2)	0–5 months	1254	14.3%	0	0.0%	< 0.0001
	6–11 months	643	7.3%	13	1.1%	
	1–4 yrs	1948	22.2%	51	4.3%	
	5–17 yrs	760	8.7%	67	5.6%	
	18–49 yrs	1988	22.7%	112	9.4%	
	50–64 yrs	628	7.2%	106	8.9%	
	65–74 yrs	583	6.6%	210	17.6%	
	75–84 yrs	566	6.5%	337	28.2%	
	≥85 y	403	4.6%	299	25.0%	
Sex, n (%)	Male	4462	50.0%	643	52.8%	0.0641
	Female	4461	50.0%	574	47.2%	
Comorbidities, n (%)	None	6123	68.6%	303	24.9%	< 0.0001
	1	1457	16.3%	355	29.2%	
	> 1	1343	15.1%	559	45.9%	
Pregnant, n (%)	–	921	69.5%	19	40.4%	< 0.0001
Obesity, n (%)	–	1148	13.8%	309	26.7%	< 0.0001
Previous hospitalisation within 12 months, n (%)	–	1914	24.1%	406	37.7%	< 0.0001
GP visit within 3 months, n (%)	None	3074	38.8%	209	19.4%	< 0.0001
	1	1740	21.9%	188	17.4%	
	> 1	3116	39.3%	681	63.2%	
Smoking, n (%)	Current	2112	24.1%	158	13.0%	< 0.0001
	Past	1618	18.5%	388	32.0%	
	Never	5037	57.5%	667	55.0%	
Functional impairment in ≥65 y, n (%)	None or minimal	72	5.4%	58	7.0%	0.4086
	Mild	32	2.4%	18	2.2%	
	Moderate	52	3.9%	41	4.9%	
	Severe	309	23.1%	191	23.0%	
	Total	871	65.2%	523	62.9%	
Sampling interval (days)	Median (range)	3 (0–9)	4 (0–9)			< 0.0001
Sampling interval, n (%)	≤4 days	6377	72.1%	781	64.2%	< 0.0001
	5–7 days	2148	24.3%	357	29.3%	
	8–9 days	315	3.6%	79	6.5%	
Site, n (%)	St. Pet	1851	20.7%	86	7.1%	< 0.0001
	Moscow	1555	17.4%	65	5.3%	
	Kazakhstan	159	1.8%	0	0.0%	
	Czech Republic	105	1.2%	6	0.5%	
	Canada	993	11.1%	139	11.4%	
	Romania	380	4.3%	7	0.6%	
	Turkey	392	4.4%	21	1.7%	
	Valencia	1300	14.6%	825	67.8%	
Table 6 Characteristics of patients included in the primary analysis by vaccination status (Continued)

Risk variables	Unvaccinated	Vaccinated	P value			
	Category	n	%	n	%	
Tunisia	37	0.4%	2	0.2%		
Suzhou/Shanghai	469	5.3%	1	0.1%		
India	482	5.4%	11	0.9%		
Mexico	301	3.4%	49	4.0%		
South Africa	899	10.1%	5	0.4%		
Vaccinated, n (%)						
In 2015–2016	718	8.0%	949	78.0%	< 0.0001	
In 2014–2015	589	6.6%	818	67.2%	< 0.0001	

Table 7 IVE for all cases and for targeted groups only by age and strain

Population	Strain	Age	Total-positive	Influenza-positive	Influenza-negative	Adjusted IVE (*)	Percent (95% CI)	P-value
Overall	Any		2895	279	7245	938	27 (15, 38)	0.804
	<65 y		2013	84	5558	265	27 (−1, 48)	
	≥65 y		882	195	1687	673	25 (3, 43)	
A (H1N1) pdm09	Any		76	7	7245	938	39 (−68, 78)	0.346
	<65 y		66	6	5558	265	2 (−138, 60)	
	≥65 y		10	1	1687	673	99 (1, 100)	
A (H3N2)	Any		1840	221	7245	938	25 (13, 35)	
	<65 y		1124	46	5558	265	31 (1, 51)	0.703
	≥65 y		716	175	1687	673	19 (−10, 40)	
B/Yamagata	Any		108	9	7245	938	41 (−110, 84)	
	<65 y		73	3	5558	265	7 (−178, 69)	0.203
	≥65 y		35	6	1687	673	73 (−38, 95)	
B/Victoria	Any		618	25	7245	938	43 (−15, 71)	
	<65 y		596	24	5558	265	27 (−14, 54)	0.191
	≥65 y		716	175	1687	673	89 (40, 98)	
Targeted groups only	Any		2314	256	4723	869	27 (16, 37)	
	<65 y		1432	61	3036	196	37 (0, 47)	0.657
	≥65 y		882	195	1687	673	25 (3, 43)	
A (H1N1) pdm09	Any		54	7	4723	869	18 (−142, 72)	
	<65 y		44	6	3036	196	−62 (−303, 35)	0.423
	≥65 y		10	1	1687	673	99 (1, 100)	
A (H3N2)	Any		1572	214	4723	869	23 (9, 34)	
	<65 y		856	39	3036	196	27 (−7, 50)	0.485
	≥65 y		716	175	1687	673	19 (−10, 40)	
B/Yamagata	Any		63	7	4723	869	72 (8, 92)	
	<65 y		28	1	3036	196	65 (−35, 91)	0.037
	≥65 y		35	6	1687	673	73 (−38, 95)	
B/Victoria	Any		449	14	4723	869	66 (3, 80)	
	<65 y		427	13	3036	196	41 (10, 62)	0.262
	≥65 y		22	1	1687	673	89 (40, 98)	

(*) IVE was obtained in each case using the same model (described in the ‘Methods’ section) but restricting it by strain, age or targeted groups. P-value obtained comparing patients <65 y and ≥ 65 y
Fig. 10 Adjusted Influenza Vaccine Effectiveness by site

Site	Adjusted Influenza Vaccine Effectiveness (95% CI)
St. Petersburg	10.05 (-57.21, 48.53)
Moscow	43.87 (-30.34, 75.83)
Canada	4.31 (-58.46, 42.22)
Turkey	-146.70 (-698.23, 23.75)
Valencia	30.34 (4.32, 49.28)
Mexico	16.21 (-121.18, 68.26)
Global	27.24 (15.62, 37.27)

Adjusted by age, sex, smoking habits, occupational social class, consultations at GP in the last 3 months, obesity, pregnant women, flu vaccination, time to swab and calendar time (weeks, spline)

Fig. 11 Adjusted Influenza Vaccine Effectiveness by strain

Strain	Adjusted Influenza Vaccine Effectiveness (95% CI)
A (H1N1)pdm09	18.12 (-141.50, 72.24)
A (H3N2)	22.65 (8.95, 34.29)
B/Yamagata	72.38 (7.65, 91.74)
B/Victoria	56.49 (3.31, 80.42)
Global	27.24 (15.62, 37.27)

Adjusted by age, sex, smoking habits, occupational social class, consultations at GP in the last 3 months, obesity, pregnant women, flu vaccination, time to swab, calendar time (weeks, spline) and site as a clustering factor
Despite differences in the characteristics of the included patients relative to the age or pregnancy status, heterogeneity in the IVE analysis among the 6 sites with the highest numbers of vaccinated patients was low. Point estimates of the overall IVE from a two-step pooling was 27.2% (95% CI: 15.62 to 37.27) in hospitalized, which is higher than that reported in Europe for hospitalised patients [17], that ranged from 2.4 to 7.9%, depending on the age group, and lower to that estimated by the US CDC, which was 40% (95% CI: 32 to 46) [18].

Pooled Influenza vaccine effectiveness showed protection against all influenza virus that circulated, although for A(H1N1)pdm09 did not reach statistical significance, as the circulation of the virus was low except in Mexico. There was a significant effectiveness against both B lineages, even though most of the vaccines used were trivalent, i.e. only contained the B/Victoria lineage, following recommendations of the World Health Organisation (WHO) for trivalent vaccines in the Northern Hemisphere [19]. Although antigenically different, there has been shown some degree of cross-protection among both B lineages.

Conclusion
The GIHSN provides an opportunity to analyse influenza epidemiology and vaccine effectiveness worldwide. In the 2016/17 season, A(H3N2) was the predominant influenza strain this season (first wave), followed by B/Victoria (second wave). Influenza A(H1N1)pdm09 was mainly found in Mexico. A low vaccination coverage was seen in most of the GIHSN sites.

Differences in the distribution of influenza cases among the age groups were mainly due to the characteristics of the participating hospitals. Pregnant women had higher risk of testing positive for influenza, as occurred with diabetics, however this difference was not seen in COPD subjects.

Overall IVE was low to moderate 27.24 (95% CI 15.62 to 37.27) in this season. A moderate to high effectiveness was seen for both influenza B lineages, and a non-significant low effectiveness for Influenza A(H1N1)pdm09.

Additional file

Additional file 1: Complementary Table S1. (DOCX 142 kb)

Abbreviations
AOR: Adjusted odds ratio; CI: Confidence interval; GIHSN: Global Influenza Hospital Surveillance Network; IVE: Influenza vaccine effectiveness; OR: Odds ratio; RT-PCR: Reverse transcription-polymerase chain reaction
Acknowledgements

The authors would like to acknowledge the Foundation for Influenza Epidemiology for the financial support and all members of the GIHSN, which are listed below (sites are firstly ordered by contribution to this manuscript and secondly by alphabetical order):

Valencia: B Escribano-López, S García-Esteban, B Guglielmi-López, M Martín-Navarro, A Mira-Iglesias and M J Sánchez-Catalán from FISABIO-Salud Pública, Valencia, Spain, and X López-Labrador from FISABIO-Salud Pública, Valencia, Spain and the Consorcio de Investigación Biomédica de Epidemiología y Salud Pública, Spain, Instituto Carlos III, Madrid, Spain; E Adriana-Magos and M Carballido-Fernández from the Hospital General de Castellón, Castellón, Spain; J Mollar Maseres and M Roldán-Aguado from the Hospital Universitario y Politécnico La Fe, Valencia, Spain; J Fernández-Dopazo and M Tortajada-Gríós from the Hospital Doctor Peset, Valencia, Spain, and P Llobente-Nieto and G Schwarz-Chavarrí from the Hospital General de Alicante, Alicante, Spain.

Moscow: E Garina, L Kisteneva, L Kolobukhina, K Kransnolobosov, I Kruzhkova, L Merkulova and E Mukhaeva from the D.I. Ivanovsky Institute of Virology FSBI “N.F. Gamaleya Research Center of Epidemiology and Microbiology” of the Ministry of Health, Moscow, Russian Federation.

Canada: A Ambrose, M Andrew, M ElShenf, D Mackinnon-Cameron, M Nichols-Evans and P Ye from the Canadian Center for Vaccinology, IWK Health Centre and Nova Scotia Health Authority, Halifax, Canada.

St. Petersburg: O Afanasieva, A Afanasieva, S Demina, E Dondurei, M Eropkin, A Fadeev, L Generalova, A Go, E Golovacheva, V Gonchar, A Komissarov, N Konovalova, S Kuzvarina, T Levanyuk, T Lobova, L Osidak, M Pisanova, E Rozhkova, K Sintova, Z Sirokina, E Smorodintseva, K Stolyarov, V Sukhoveskaya, M Tamara, P Vestshukh, M Yanina and P Zharhynov from the Research Institute of Influenza, St. Petersburg, Russian Federation.

South Africa: S. A. Madhi from the Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa.

România: V Arama, D.Flore, M Luminos, D Otelea, O Sandulescu and O Vișicu, from the National Institute of Infectious Diseases “Prof. Dr.Matei Bals”, Bucharest (INIBMB), Romania, and D Pfitzner from the National Institute of Infectious Diseases “Prof. Dr.Matei Bals”, Bucharest (INIBMB) and the University of Medicine and Pharmacy “Carol Davila” Bucharest, Romania.

Turkey: K Akyac, T Bagci Bosi, I Bilgin, M Durusu, A Kara, L Ozsik and S Tanir Basaranoglou from the Hacettepe University Faculty of Medicine, Ankara, Turkey; T Bedir Demirdag, O Guzel Tunccan, O Ozgen and H Tezer from the Gaziantep University Faculty of Medicine, Ankara, Turkey; B Gulhan and A Dzkaya-Parlakay from the Ankara Hematology Oncology Children’s Training and Research Hospital, Ankara, Turkey; M Osyo and N Tulek from the Ankara Research and Training Hospital, Ankara, Turkey, and M Akcay Ciblik from Sanofi Pasteur, Turkey.

Mexico: A Gallindo Fraga, M L Guerrero Almeida and G M Ruiz-Palacios from the National Institute of Medical Sciences and Nutrition Salvador Zubirián (INCMNSZ), Mexico; A de Cola Ranero and W Dolores Dominguez-Viveros from the Instituto Nacional de Pediatria, Mexico; J Jiménez-Escobar, J P Ramírez-Hinojoa and R P Vidal-Vázquez from the Hospital General Dr. Manuel Gea González, Mexico; D de la Rosa-Zamboni, A E Gamino-Arroyo and S Moreno-Espinosa from the Hospital Infanta de México, Mexico, and A Hernández from the Instituto Nacional de Enfermedades Infecciosas Ismael Cosio Villegas, Mexico.

India: S Ali, M Khan, H Mir, Souryia and R Yusuf from the Sheik-Kashmir Institute of Medical Sciences (SKIMS), India, and N Bali from the Department of Clinical Microbiology, Government Medical College, Srinagar, India.

Czech Republic: M Havlickova, H Jinicova, R Kralkova, Z Mandakova, J Prochazkova, H Sebestova from the National Institute of Public Health, Prague, Czech Republic, and D Dvorska, K Hermannova, H Rohacova, T Rudova and J Standerova from the Hospital Na Bulovce, Prague, Czech Republic.

Suzhou/Shanghai: K Chen, W Shan, F Zhang, G Zhao from the Fudan University, Shanghai, China; Y Yan from the Soochow University Affiliated Children Hospital, Suzhou, China; J Zheng from the Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 100206, China, and J Pan from the State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Kazakhstan: N Gaukhar from the Center for Sanitary-Epidemiological Expertise and Monitoring, Almaty, Kazakhstan.

Tunisia: S Amine from the Hôpital Charles-Nicolle, Tunis, Tunisia; J Ben Kheill from the Medical Intensive Care Unit, Abderrahmen Mami Hospital, Ariana, Tunisia; M Ben Jeema and M Koubâla from the Hedi Chaker Hospital, Sfax, Tunisia; K Menif from the Children’s Hospital of Tunis, Tunis, Tunisia; A Boukhir, S Chiff, M K Dellegi, A Garda, H Louzizi, R Yazidi and W Zid from the Pasteur Institute of Tunis, Tunisia.

Peru: A Laguna, from the Instituto de Medicina Tropical Daniel Alcides Carrion, UNMSM, Lima, Peru; J Pérez-Baio, from the United States Naval Medical Research Center Detachment, Iquitos and Lima, Peru, and N Reyes from the Universidad Nacional Mayor de San Marcos, Lima, Peru.

Ivory Coast: M Coulibaly, from the Pasteur Institute of Côte d’Ivoire, Abidjan, Côte d’Ivoire.

Funding

The study was funded by FISABIO-Public Health and the participating institutions of the manuscript (listed in the affiliations in the author list), and Sanofi Pasteur, who had no role in the analysis or discussion of the results. All participating institutions contributed to the data collection of the corresponding site, as well as the datasets transfer to FISABIO and the interpretation of GIHSN results. FISABIO-Public Health contributed to the design of the study, the recruitment and data collection of patients from Valencia Region and all participating sites, and the data analysis and interpretation of GIHSN results.

Availability of data and materials

Datasets were collected by each participating site and gathered on a pooled database by FISABIO. An authorisation is needed to any participating site in order to require sites databases. Data cannot be publicly shared due to confidentiality reasons, as some confidential patient data should not be shared, and in order to accomplish privacy laws from the participating sites. The corresponding author must be contacted with in order to ask for information about databases.

Authors’ contributions

VBM wrote the manuscript and performed the statistical analysis, VBM, ST, SM, AS, MN, AD, SU, PK, JK, TZ, AK, ABS, EB, JDD, JPB (all authors) participated in the data collection, preparation and revision of the manuscript and approval of the final version and agreed with the common core protocol and the standard operating procedures of the GIHSN in order to keep the accuracy of the data.

Ethics approval and consent to participate

This study has been approved by the Ethics Committees of the participating sites, who have approved their participation in the GIHSN network. Each adult patient tested for influenza had signed an informed consent in order to be included in the study. In case the patient did not reach the legal age or is impaired, parents or legal guardians signed the informed consent. The Ethics Committees of the participating sites are listed below:

- St. Petersburg: Local Ethical Committee under the FGBU “Research Institute of Influenza” of the Ministry of Health of the Russian Federation
- Moscow: The local Ethical Committee of Hospital #1 for Infectious Diseases of Moscow Health Department
- Kazakhstan: The study was carried in Almaty, Kazakhstan as part of the implementation of the national Severe Acute Respiratory Infections (SARI) surveillance program in Kazakhstan for purposes of communicable disease control. Ethical approval was not required but informed consent was obtained before inclusion. Informed consent provided in accordance with the Constitution of the Republic of Kazakhstan (section II article 29)
- Czech Republic: Ethics Committee of the Hospital Na Bulovce
- Canada: The Nova Scotia Health Authority Research Ethics Board and the IWK Health Research Ethics Board (IWK: Isack Walton Killiam)
- Romania: Bioethics Committee of the National Institute for Infectious Diseases “Prof. Dr. Matei Bals” Bucharest, Romania
- Turkey: Hacettepe University Non-interventional Clinical Research Ethics Board
- Valencia: Comité Ético de Investigación Clínica Dirección General de Salud Pública-Centro Superior de Investigación en Salud Pública (CEIC-DGSP-CSISP)
- Tunisia: The ethics committee of Abderrahmane Mami hospital, Ariana, Tunisia
References
1. Ortiz JR, Neuzil KM, Shay DK, Rue TC, Neradilek MB, Zhou H, et al. The burden of influenza-associated critical illness hospitalizations. Crit Care Med. 2014;42(2):325–32.
2. Ortiz JR, Neuzil KM, Rue TC, Zhou H, Shay DK, Cheng PY, et al. Population based incidence estimates of influenza-associated respiratory failure hospitalizations, 2003 to 2009. Am J Respir Crit Care Med. 2013;188(7):710–5.
3. Puig-Barbera J, Burtseva E, Yu H, Cowling BJ, Badur S, Kyncl J, et al. Influenza epidemiology and influenza vaccine effectiveness during the 2014-2015 season: annual report from the global influenza hospital surveillance network. BMC Public Health. 2016;16(Suppl 1):757. https://doi.org/10.1186/s12889-016-3378-1.
4. Puig-Barberà J, Natividad-Sancho A, Trushakova S, Sominina A, Pisareva M, Ciblak MA, et al. Epidemiology of hospital admissions with influenza during the 2013/2014 northern hemisphere influenza season: results from the global influenza hospital surveillance network. PLoS One. 2016;11(5):e0154970. https://doi.org/10.1371/journal.pone.0154970.
5. Puig-Barberà J, Natividad-Sancho A, Launay O, Burtseva E, Ciblak MA, Tormos A, et al. 2012-2013 seasonal influenza vaccine effectiveness against influenza hospitalizations: results from the global influenza hospital surveillance network. PLoS One. 2014;9(6):e100497. https://doi.org/10.1371/journal.pone.0100497.
6. Puig-Barberà, et al. First-year results of the global influenza hospital surveillance network: 2012 – 2013 northern hemisphere influenza season. BMC Public Health. 2014;14:564.
7. Commission of the European Union. Official Journal of the European Union. 279:2012. Influenza virus – Clinical criteria. L 262/16 (2012).
8. Sullivan SG, Tay EL, Kelly H. Variable definitions of the influenza season and their impact on vaccine effectiveness estimates. Vaccine. 2013;31:4280–3.
9. Puig-Barberà, et al. The global influenza hospital surveillance network (GHSN): a new platform to describe the epidemiology of severe influenza. Influenza Other Respir Viruses. 2015;9(6):277–86.
10. Foppa IM, Haber M, Ferdinands JM, Shay DK. The case test-negative design for studies of the effectiveness of influenza vaccine. Vaccine. 2013;31:3104–9.
11. Kirkwood BR, Sterne JAC. Analysis of clustered data. In: Essential medical statistics. Malden: Blackwell Science; 2003. p. 355–70.
12. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.
13. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.
14. Caiñ Saverio, Alonso Wladimir J, Séblain Clotilde El-Guerche, Schellevis François, Paget John. The spatiotemporal characteristics of influenza a and B in the WHO European region: can one define influenza transmission zones in Europe?. Euro Surveill. 2017;22(35). https://doi.org/10.2807/1560-7917.EuroSuir.2017.22.35.30606.
15. Carat F, Vergu E, Ferguson NM, Lemaître M, Cauchemez S, Leach S, Valleron A-J. Time Lines of Infection and Disease in Human Influenza: A Review of Volunteer Challenge Studies. American journal of epidemiology. 2008;167(Issue 7):775–85 https://doi.org/10.1093/aje/kw375.
16. Dirección General de Salud Pública. Prevención y vigilancia de la gripe en la Comunitat Valenciana. Temporada 2016–2017. Available at: http://publicaciones san.gva.es/publicaciones/documentos/IS-150.pdf, last access 28 Nov 2018.
17. Esther K, Marc R, I-MOVE/I-MOVE+ study team. Early 2016/17 vaccine effectiveness estimates against influenza a(H3N2); I-MOVE multicentre case control studies at primary care and hospital levels in Europe. Euro Surveill. 2017;22(7) https://doi.org/10.2807/1560-7917.EuroSuir.2017.22.7.30464.
18. Centers for Disease Control and Prevention (CDC) (CDC). Estimated Influenza Illnesses, Medical visits, and Hospitalizations Averted by Vaccination in the United States. Available at: https://www.cdc.gov/flu/about/disease/2016-17.htm, last access 6 Dec 2018.
19. World Health Organisation (WHO). Recommended composition of influenza virus vaccines for use in the 2016-2017 northern hemisphere influenza season. Available at: https://www.who.int/influenza/vaccines/virus/recommendations/201602_recommendation.pdf?ua=1, last access 6 Dec 2018.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more: biomedcentral.com/submissions