Probabilistic cell typing enables fine mapping of closely related cell types in situ

Xiaoyan Qian1,4, Kenneth D. Harris2,4*, Thomas Hauling1,2, Dimitris Nicoloutsopoulos2, Ana B. Muñoz-Manchado3, Nathan Skene2,3, Jens Hjerling-Leffler3 and Mats Nilsson1*

Understanding the function of a tissue requires knowing the spatial organization of its constituent cell types. In the cerebral cortex, single-cell RNA sequencing (scRNA-seq) has revealed the genome-wide expression patterns that define its many, closely related neuronal types, but cannot reveal their spatial arrangement. Here we introduce probabilistic cell typing by in situ sequencing (pciSeq), an approach that leverages previous scRNA-seq classification to identify cell types using multiplexed in situ RNA detection. We applied this method by mapping the inhibitory neurons of mouse hippocampal area CA1, for which ground truth is available from extensive previous work identifying their laminar organization. Our method identified these neuronal classes in a spatial arrangement matching ground truth, and further identified multiple classes of isocortical pyramidal cell in a pattern matching their known organization. This method will allow identifying the spatial organization of closely related cell types across the brain and other tissues.

Body tissues are composed of a myriad variety of cell types, which differ in their spatial organization, morphology, physiology and gene expression. Different varieties of cells can often be distinguished by differences in their transcriptomes, and spatially resolved transcriptomic methods raise the possibility of mapping cellular varieties at large scale. While transcriptional differences between some varieties are clear cut, others can be subtle. In the cerebral cortex, the genes expressed by neurons differ greatly from those expressed by multiple classes of glia, but there exists a remarkable diversity of finely related neuronal subtypes, particularly among inhibitory interneurons, whose transcriptomes may differ by only a few genes. Thus, while the diversity of cortical cells was known to classical neuroanatomists, accurately relating fine transcriptomic varieties to classically defined cortical neurons has proved challenging.

To validate that spatial transcriptomic analyses can genuinely distinguish finely related cell types, it is essential to work in a system where ground truth is available from previous work with other methods. The interneurons of rodent hippocampal area CA1 provide a unique opportunity: several decades of work using methods of anatomy, immunohistochemistry and electrophysiology have identified around 20 interneuron subtypes, which are arranged in a stereotyped spatial organization and differ in their computational function and expression of marker genes. Analysis of CA1 interneuron classes by single-cell RNA sequencing (scRNA-seq) yields clusters strikingly consistent with these classically defined types. Mapping the spatial organization of CA1 interneurons is thus not only important to understand the memory circuits of the brain, but also provides a powerful way to validate spatial cell-type mapping approaches for closely related subtypes, using the spatiomolecular ground truth provided by this system.

Here we provide a spatial map of mouse CA1 interneuron types, using a new approach to in situ cell typing that is based on in situ RNA expression profiling. While several approaches to multiplexed in situ RNA detection and cell-type classification have been proposed, none have yet shown the ability to distinguish fine cortical cell types known from previous ground truth. Here we introduce probabilistic cell typing by in situ sequencing (pciSeq), a method with several advantages over other methods. Because it uses low-magnification (x20) imaging, it enables large regions to be analyzed quickly and with reasonable data sizes. Because our chemical methods have very low misdetection rates, our analysis methods can confidently identify cell classes from just a few detections of characteristic RNAs. Finally, because our cell-calling algorithms yield probabilistic readouts, they are able to report the depth to which it is able to confidently classify cells. We show that this combination allows cell typing of closely related neuronal classes, verified by the ground truth available from the laminar architecture of CA1.

Results

CA1 interneurons constitute around 20% of CA1 neurons and thus around 5% of CA1 cells. To rigorously test pciSeq, we focused on distinguishing fine subtypes within this 5% rather than the easier problem of finding major differences within the remaining 95%.

The pciSeq method consists of three steps (Supplementary Fig. 1). First, we select marker genes sufficient for identifying cell types using previous scRNA-seq data. Second, we apply in situ sequencing to detect expression of these genes at cellular resolution in tissue sections (Supplementary Methods). Third, gene reads are assigned to cells and cells to types using a probabilistic model derived from scRNA-seq clusters.

Gene panel selection. To select a gene panel, we developed an algorithm that searches for a subset of genes that can together identify scRNA-seq cells to their original clusters, after downsampling expression levels to match the lower efficiency of in situ data (Methods). The gene panel was selected using a database of interneurons from mouse hippocampus (Supplementary Fig. 2), as well as isocortex, and the results were manually curated before final gene selection, excluding genes likely to be strongly
expressed in all cell types even if at different levels, and favoring genes that have been used in classical immunohistochemistry (Supplementary Table 1 and Supplementary Fig. 3). Although our focus was on interneurons, we included some genes identifying CA1 excitatory cells (for example, Wfs1) as well as oligodendrocytes (Plp1). A further set of three genes (Slc1a2, Vim and Map2) were excluded after initial experiments, as their expression was widespread in neuropil and did not help identify cell types. The final panel contained 99 genes.

In situ sequencing. To generate RNA expression profiles, we modified the in situ sequencing method described by Ke et al. 14 (Supplementary Fig. 4; Supplementary Methods). Padlock probes were designed for the selected genes, each containing two arms together matching a 40-base-pair (bp) sequence on the cDNA, a 4-bp barcode, an ‘anchor sequence’ allowing all amplicons to be labeled simultaneously and a 20-bp hybridization sequence for additional readouts. For weakly expressed genes, we designed probes matching multiple target sequences along the mRNA length, which aided their detection without compromising detection of others (Supplementary Fig. 5). In total we designed 755 probes for 99 genes, but used only 161 barcodes of 1,024 (45) possible combinations expected from scRNA-seq. Expression patterns of genes further to single neurons showed genes grouped together in the coronal level (Fig. 1e). Read densities were consistent between sections, even with different gene panels, further supporting the reliability of the technique (r=0.93; Supplementary Fig. 8a). We manually drew hippocampal CA1 regions (Supplementary Fig. 9) and used the pciSeq approach to identify the cell types of 27,338 CA1 neurons from 28 hippocampus sections.

Probabilistic cell typing. A fundamental challenge for in situ cell typing is assigning genes to cells, as boundaries between cells are difficult to obtain in 2D imaging. We counterstained all sections with DAPI to reveal nuclei; standard watershed segmentation yielded boundaries containing many, but not all the genes belonging to them (Fig. 2a). To solve this problem, we developed a Bayesian algorithm which leverages scRNA-seq data to simultaneously estimate the probability of assigning each read to each cell and each cell to each class. (Fig. 2a and Supplementary Fig. 10). Note that the algorithm does not take into account the laminar location of a cell, allowing this to be used later for independent validation.

The algorithm mapped CA1 cells to 70 fine classes (previously defined by scRNA-seq clustering, and including pyramidal cells and some non-neurons), however laminar ground truth from previous work is usually only available for a coarser level of classification. Therefore, validating the results of pciSeq against anatomical ground-truth data required that the fine cell classes be merged into coarser ‘superclasses’ (Supplementary Table 4). These include 16 interneuron classes: three types of interneuron-selective cell; two types of Cck cell; two types of neurogliaform (NGF) cell; two types of GABAergic projection cell; three types of parvalbumin cell and four types of somatostatin cell (Supplementary Tables 4 and 5; Supplementary Discussion).

To represent the results on a spatial map, we displayed the class assignments of each cell by a pie chart, of size proportional to total gene count, with the angle of each slice indicating the probability of assignment to a fine transcriptomic class and slices color-coded according to their superclass assignment (Fig. 2 and Supplementary Fig. 11; for all 28 cell-type maps, see Supplementary Results; online viewer at http://insitu.cortexlab.net). Although our panel was aimed at distinguishing interneurons, we also obtained confident distinction of two types of pyramidal cell inside and outside of CA1. Non-neuronal cells, however, could not be distinguished from each other, as our panel did not contain genes to separate them; indeed, many non-neurons had no gene reads at all, and were therefore assigned as unclassified (‘Uncalled’). The average number of gene reads per cell was over 20 for most targeted cell types, and the number of unique genes detected per cell was in the range of five to ten (Fig. 3a). The probabilistic algorithm allows diagnostics showing which genes provided evidence for calling as one type over another (Supplementary Fig. 12).

Validation of cell typing. The cell-type assignments of the algorithm conformed closely to known combinatorial patterns of gene expression in CA1 interneuron subtypes. Across all experiments, the patterns of both classical and new interneuron markers were consistent with scRNA-seq results, as well as the known biology of CA1 interneurons (Supplementary Discussion; Supplementary Fig. 13). Moreover, the cell-type composition was consistent between the left and right hemispheres (Supplementary Fig. 8b).

We validated pciSeq, as well as the scRNA-seq classification it relies on, by verifying that the cell classes it identifies are found in appropriate layers. The layers in which cell types were identified were consistent with known ground truth (Supplementary Discussion; Fig. 3c). This close correspondence with independent studies verifies that the method can accurately identify biological cell types, across a wide dynamic range of cell abundances, ranging from very rare subtypes (IS2 and Sst/Nos1; Supplementary Fig. 14) to types with hundreds per section (PC CA1; Supplementary Table 5 and Supplementary Fig. 8).

As a further validation of the cell calling, we performed an analysis of error rates in simulated data. To do so, we replaced the actual read distributions with simulations subsampled from cells in...
Fig. 1 | Detection of 99 genes in a mouse brain coronal section. a, Pseudocolor images showing barcode sequencing readout for a region corresponding to one cell. Top to bottom, base-specific fluorophores in the four cycles of sequencing by ligation and for the fifth cycle of barcode-specific hybridization. The white square shows a single RCP of barcode AGCG-H4. Scale bars, 5 µm. b, Gene calling for this RCP. Left, pseudocolor representation of raw fluorescence intensities; middle, predicted intensity of best template barcode pattern under crosstalk model; right, raw template barcode (AGCG-H4, marking the gene Cnr1). c, Distribution of 99 genes at different zoom levels. Top to bottom, a complete coronal mouse brain section; left hippocampus; the border of stratum radiatum and stratum lacunosum moleculare; finally, zoom-in to reads for the cell whose raw fluorescence is shown in a. d, Code symbols for the 99 marker genes. e, Comparison of the distribution of five markers in the hippocampus as determined by pciSeq (left) with the distribution shown in the Allen Mouse Brain Atlas (right). Scale bars, 500 µm. Similar results were observed in all 14 sections from three experiments.

The scRNA-seq database, for which cell-type information is therefore available down to the finest details (Supplementary Methods). This analysis showed that with the current detection efficiency and false-positive rate, cells could be reliably assigned to fine inhibitory classes comprising as little as ~0.5% of all cells in the tissue (Supplementary Fig. 15).

To evaluate the minimal number of genes needed for the pciSeq algorithm to correctly classify cells, we also compared the relative accuracy of cell classification at different gene panel sizes (Supplementary Fig. 16). The analysis showed the importance of having relevant genes rather than having high numbers of genes. When genes were added in optimal order, coarse cell types were classified from the top 50 genes similarly to how they were classified by the full panel; for identification of fine cell types, around 70 genes were needed. When genes were added in a random order, however, performance increased more slowly, reaching equivalent performance only when the whole panel was included. Thus, accurate classification of fine cell types can be obtained with modest-size gene panels, but only if they are chosen carefully.

Application of the method in the isocortex. To verify that the method can also work in structures for which it was not directly optimized, we applied the same method to map neurons of the isocortex. Application of the method in the isocortex.

We took cell-type definitions from the scRNA-seq data published by Zeisel et al., using all neuronal types that the authors annotated to be present in those cortical regions found in the coronal section analyzed (isocortex, cingulate/retrosplenial and piriform). We mapped 11,000 cells distributed across 15 excitatory and 10 inhibitory classes (Supplementary Fig. 17). As in CA1, the frequencies of different neuronal types ranged from a handful for the rare ones, to thousands for the most frequent, and was similar in...
Fig. 2 | Cell-type map of CA1 from an example experiment (experiment 4-3, right hemisphere). a, Reads are assigned to cells, and cells to classes, using a probability model that is based on scRNA-seq data. Top row, distribution and assignment of reads for fourteen example cells. Colored symbols indicate reads (color code as in Fig. 1d). The grayscale background image indicates a DAPI stain with watershed segmentation as a dotted line. Straight lines join reads to the cell that are assigned highest probability. Scale bars, 5 µm. Bottom row, pie charts showing the probability distribution of each class for the same example cells. Colors indicate broad cell types and segments show probabilities for individual scRNA-seq clusters, which are named underneath. O/LM, oriens/lacunosum-moleculare; MGE, medial ganglionic eminence; CGE, caudal ganglionic eminence; IS, interneuron-selective; NGF, neurogliaform.
b, Spatial map of cell types across CA1. Cells are represented by pie charts of area proportional to the number of reads assigned to the cell. Numbers identify the example cells in a. Similar maps were obtained for all 28 hippocampus sections. O-Bi, oriens-bistratified; PC, pyramidal cell.
the two hemispheres (Supplementary Fig. 17b). Although ground-truth information on the laminar organization of inhibitory classes is not available as it is in CA1, we were able to recapitulate the laminar organization of excitatory cells in isocortex, as well as between distinct cortical regions in the section (Supplementary Fig. 17c,e).

Discussion

We have presented pciSeq, a method for probabilistic cell typing on the basis of in situ sequencing data. We validated the method by mapping interneurons in hippocampal area CA1, a group of closely related neuronal types that together comprise approximately 5% of the cells in this region. We found that the method was able to confidently classify fine subtypes representing as little as 0.5% of the total cells in the region. Furthermore, assigning these fine transcriptomic classes to 18 biological superclasses for which laminar ground truth was available, we confirmed that the spatial assignments made by pciSeq were accurate.

There exist multiple methods for multiplexed in situ RNA detection and cell calling,9,15–17,20, each of which presents various advantages and disadvantages. At a computational level, the key advantages of our method are its probabilistic assignment of cells to classes, which indicates the confidence and depth with which the cells can be classified, and its probabilistic assignment of reads to cells, avoiding problems of uncertain segmentation. At the chemical level, the key advantage of our method is its low false-positive gene detection rate. This low false-positive rate means that even one or two reads of an RNA can provide strong evidence for a cell to belong to a particular class. Thus, while the method has higher false-negative rates than FISH-based approaches, classification of cell types can still confidently be performed by designing a panel of genes that are expressed strongly enough to ensure enough reads of each are present. The lower read density of the current method provides a complementary advantage over FISH-based methods: it uses ×20 objective for faster imaging and reduction in data size as compared
to the $\times60$ to $\times100$ imaging required for single-molecule FISH16,17,21, and allowing entire mouse brain sections to be processed.

The pciSeq method requires that scRNA-seq data be available for the cell system of interest, and that cluster analysis has been run on this data. These scRNA-seq clusters are used to design the gene panel, and the output of the algorithm is a probabilistic assignment of each in situ cell to these scRNA-seq clusters. Although our primary test of the method was a very well understood cell system with laminar ground truth, this is not necessary to apply the method, only to validate it. pciSeq does not require the scRNA-seq varieties to have been identified with known cell types. Indeed, using the same gene panel that we selected from a clustering of CA1 inhibitory neurons, pciSeq was able to correctly map isocortical and piriform excitatory cells to clusters taken from an independent whole-nervous-system dataset8. Thus, the method should be applicable to any tissue where scRNA-seq data are available. Large-scale scRNA-seq projects are now underway for the whole body, and the data required to design panels and apply this method to all tissues will soon be available. The pciSeq approach requires only low-magnification imaging, and so may be applied at a high throughput, raising the possibility of body-wide spatial cell-type maps in the near future.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41592-019-0631-4.

Received: 12 October 2018; Accepted: 8 October 2019; Published online: 18 November 2019

References
1. Lein, E., Borm, I. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358, 64–69 (2017).
2. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).
3. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).
Methods

Gene selection. We chose the gene panel for in situ sequencing using an automated algorithm that was based on scRNA-seq data. The algorithm was run on data from CA12,6 and isocortex3, restricting in both cases to GABAergic neurons, our primary cell type of interest. The final panel was selected by manual merging and curation of the automatically generated lists. During this manual stage, we excluded genes that were expressed in all classes (even if at different mean levels) and also added some genes that are used in classical immunohistochemical analysis of CA1 inhibitory cells. These latter genes were not essential for accurate cell typing: the algorithm performed comparably well when they were excluded from analysis (Supplementary Fig. 18), and furthermore the same gene panel accurately identified isoctyrtal pyramidal cells (Supplementary Fig. 17), for which no genes were manually selected.

The algorithm starts by clustering the scRNA-seq data, for which we used a probabilistic algorithm called ProMMT.6 Other clustering algorithms could also be used; however, for optimal functioning of the pceSeq cell-typing algorithm it is recommended to use algorithms for which within-cluster distributions of gene expression are not strongly bimodal, so can be reasonably modeled by a negative binomial distribution. Given a cluster assignment k, for each cell c, we computed the mean expression μ_c for each gene g and cluster k, and then clustered mean vectors μ, hierarchically, yielding a representation of each cluster k as a leaf of a binary tree.

To automatically select genes for in situ analysis, we used a combinatorial search algorithm, which optimized a score function over possible gene sets G. Given a set of genes G, we reasigned each cell c to a cluster k_c using only the genes in G, using the probability model of the ProMMT algorithm. To explore the lower efficiency of in situ sequencing, we divided the means μ_g by a factor of 50 and on each iteration resampled the expression levels of each cell according to a Poisson distribution with this mean. We then computed a score $S(G)$ as the mean similarity of the new cluster assignments $k_{c,G}$ to the original clusters k_c, with cluster similarity defined by the depth of the last common ancestral node of the two clusters on the binary classification tree.

The search was performed using a greedy algorithm, initializing G as an empty set. On each iteration, the algorithm computes the score increment $S(G) - S([G])$ that would be obtained by adding each gene g not currently in G, and then adds the best gene. After this, it computes for each gene g currently in G, a ‘gene value’ $v(g) = S([G,g]) - S(G)$, which measures how much the score would increase if this gene was removed from the panel. Note that the value of any gene will decrease as the gene set grows larger, as genes will contain redundant information. If the value of any gene was negative on a given iteration, the gene with the most negative value was removed from G (a negative score means that retaining this gene in the set does more harm than good, which is possible as the Poisson resampling means genes whose expression provides no information will only contribute noise).

The algorithm was run for 100 iterations. After performing our mapping experiments, we re-evaluated the contribution of all genes to all typing post hoc. We found that performance was improved by discarding Vsnl1, and was made no worse by discarding a further six (Supplementary Fig. 19). We conclude that detecting more genes would not have been helpful, as genes whose expression was close to equal between classes only added noise to the classification problem.

Data analysis. Data were analyzed with a suite of custom software for image processing integrated into one calling and one cell calling. All code is written in MATLAB and is freely available at https://github.com/kdharris101/iss.

In situ sequencing occurs in five rounds, each of which involves chemical processing followed by multiplexed imaging of the tissue sample. Because the tissue sample was generally too large for a single camera image, imaging occurs in overlapping tiles. In each tile, a stack of seven images covering 10 μm in depth were taken for each color, and flattened into two dimensions using an extended depth of focus algorithm15. The data therefore consist of a set of images $I_{RCP}(x)$.

Here I_R gives the pixel intensity for sequencing round R, color channel C, tile T and pixel coordinates x within this tile. On each round, we have six images: a DAPI image; an anchor image that detects every sequenced RCP; and four images to detect individual bases in a position defined for that round. The processing pipeline to identify detected genes comprises several steps: initial registration; spot detection and fine registration; crosstalk compensation; and gene calling. These analyses proceed without ever ‘stitching’ all the tiles into a single large image; this approach allows processing of very large datasets on computers with limited memory, and also easily allows non-rigid alignments. Before the pipeline, all RCP images are filtered with a disk-shaped top-hat filter with a radius of 3 pixels (corresponding to 1 μm, the expected RCP size) and all DAPI images are filtered with a disk-shaped top-hat filter with a radius of 24 pixels (8 μm, the expected nuclear size).

Initial registration. Image registration proceeded in two steps. In the first step, we aligned the anchor channel images for all rounds and computed the offsets between neighboring tiles. This initial step therefore defines a global coordinate system for the entire tissue sample, by computing the information that would be required to stitch the tiles together (although we never in fact create this global image). In this initial step, non-linear registration is important, for example, because the specimen might not lie flat under the microscope. The degree of non-linear warping is small within a tile, but can amount to a shift of several pixels across the entire (1-cm) image, which would compromise the sequencing protocol if not properly accounted for. To solve this problem, we allowed the shifts, scales and rotations of each tile to the global coordinate system to differ, allowing non-linearities at the global level.

Because we used a square tiling strategy, each tile may have up to four ‘neighbors’: other tiles with which it has a region of substantial overlap. We denote the set of neighboring tile pairs as \mathcal{R}. As the same tile configuration is used for each round, the neighbor relationships between tiles will not vary across rounds, even if a single RCP spot may occupy different tiles on different rounds.

We first aligned all tiles using the anchor channel on a ‘reference round’ R_0 (two for the current analyses), which we refer to as the ‘reference image’ for each tile. To align the reference images, we looped over all pairs of neighboring tiles and computed an offset using phase correlation to register the overlapping regions of the top-hat-filtered reference images of these two tiles. The result was a shift vector $\Delta_{R_0,T}$ for every pair of neighboring tiles T_i and T_j that specifies the x and y offsets of tile T_i relative to tile T_j.

We next defined a single global coordinate system by finding the coordinate origin X_i for each tile T_i. Note however, that this problem is overdetermined as there are more neighbor pairs than there are tiles. We therefore computed the offsets by minimizing the loss function L:

$$L = \sum_{(T_i,T_j) \in \mathcal{R}} |X_i - X_j - \Delta_{R_0,T_j}|^2$$

Differentiating this loss function with respect to X_i yielded a set of simultaneous linear equations, whose solution yielded the origins of each tile on the reference round.

The results of this step sufficed to define a global coordinate system, but did not provide pixel-level alignment of images from multiple color channels on multiple rounds, owing to the occurrence of chromatic aberration and small rotational or non-rigid shifts. The latter was dealt with by the next step, through point-cloud registration.

Spot detection and fine registration. The second processing step detected spots in all images, performed fine alignment of color channels and sequencing rounds, and computed for each spot a position in global coordinates and an intensity vector summarizing the detected fluorescence of that spot in each round and channel.

The most intricate part of this step was fine image registration. Even though the same tile layout was used for all sequencing rounds, the precise positions of the tiles may differ owing to slight shifts in the placement and rotation of the sample. Thus, a single spot might be found on different tiles in different sequencing rounds. Furthermore, owing to chromatic aberration, a spot may be in slightly different positions (although not different tiles) in different color channels. Because most spots were only a few pixels in size, even a one-pixel registration error can compromise accurate reads.

Spots first were detected in the reference images (anchor channel, reference round). For each tile, spots were detected as local maxima of the top-hat-filtered image exceeding a fixed detection threshold. A global coordinate was defined for each of these spots using the initial registration described above. In regions where tiles overlapped, duplicate spots were rejected by keeping only spots that were closer in global coordinates to the center of their original tile than to any other.

Next, spot positions were detected in images from all sequencing rounds and all color channels. These are used to align each round and color channel to the anchor round reference channel, using point-cloud registration. Specifically, we fit an affine transformation from each reference image, to the images of the corresponding tile for all rounds and color channels, using the iterative closest point (ICP) algorithm with matches that were further than 3 pixels away excluded. These affine transformations can include shifts, scalings, rotations and shears, but we did not find it necessary to introduce non-linear warping transformations within tiles (Supplementary Fig. 6e; non-linear transformations can still occur globally by variation of the affine transformation across tiles). As the ICP algorithm is highly sensitive to local maxima, it is initialized from a shift transformation computed by phase correlation of anchor channel images. When spots are located on neighboring tiles on different rounds, the corresponding images are again registered with ICP.

Finally, an intensity vector is computed for each spot, by reading the intensity from the corresponding tile and color channel of each top-hat-filtered image. Although the point-cloud registration yields subpixel alignment we did not apply subpixel interpolation to the images, instead filtering with a disk filter of radius 1 to allow images to be detected after subpixel shifts.

Crosstalk compensation and gene-calling. The last step in associating spots to genes consisted of transforming the intensity vectors to gene identities.
An important consideration in this stage was that crosstalk can occur between color channels. Some crosstalk may occur because of optical bleedthrough; additional crosstalk can be caused by chemical cross-reactivity of probes. The precise degree of crosstalk can vary between sequencing runs, which tends to be constant within a round. It is therefore possible to largely compensate for this crosstalk by learning the precise amount of crosstalk between each pair of color channels on each round.

To estimate the crosstalk present on a given round \(r \), we first collected a set of four-dimensional vectors \(v_x \), containing the intensity in each color channel of all well-isolated spots \(s \). Only well-isolated spots were used to ensure that crosstalk estimation was not affected by spatial overlap of spots corresponding to different genes; a spot was defined as well-isolated if the reference image intensity averaged over an annular region (2–7 pixel radius) around the spot was less than a threshold value (60 for current analyses, applied to 16-bit images after top-hat filtering).

Crosstalk was then estimated by running a scaled \(k \)-means algorithm on these vectors, which found a set of four vectors \(c_p \) (\(b \) refers to one of the four base possibilities in round \(r \)), such that the error function \(\sum_{s} \min_{b} \| v_s - k \cdot c_p \|_2 \) is minimized; in other words, it finds for each round \(r \) the four intensity vectors \(c_p \) such that each well-isolated spot on round \(r \) is close to a scaled version of one of them.

Finally, we associate each spot with a gene using the codebook defined by the probe barcodes. For each probe \(p \) with barcode \(b_1, b_2, b_3, b_4 \), we concatenate the corresponding crosstalk vectors into a 20-dimensional vector \(\left[c_{p,b_1}, c_{p,b_2}, c_{p,b_3}, c_{p,b_4} \right] \). Each spot is called as belonging to the probe \(p \) for which this vector best matches the 20-dimensional intensity vector of the spot, as measured by normalized dot-product (that is, the cosine angle between the measured intensity vector and the crosstalk-compensated code vector). Spots whose cosine angles fall below a threshold value are taken to represent misreads (for example, owing to background fluorescence) and discarded. The threshold value (0.9 for the current analyses) was chosen manually as a value below which reads appeared that did not match the known genomic composition of CA1 interneurons established by previous scRNA-seq; 63% of reads passed the threshold in current experiments.

Cell calling. To assign cells to classes, we used a probabilistic approach. We started with a model that predicted the probability of any configuration of RNA detection spots, given the class of every cell. We then used Bayes’ theorem to estimate the probability for each cell to belong to each class, given the observed RNA spot configuration. To do this, we also estimated the probability distributions of other ‘hidden variables’, such as the cell responsible for each RNA detection, and the detection efficiency of each gene. The current algorithm however does not estimate the mean expression level of each gene in each cell class; instead it relies on these means being defined by previous analysis of scRNA-seq data, where higher efficiency and larger cell counts lead to more accurate estimates of these parameters.

Notation and preliminaries. Cellular RNA counts can be accurately modeled by a negative binomial distribution\(^{19} \). The negative binomial is a better model of RNA counts than the simpler Poisson distribution, as it has a larger variance, which matches measured fluctuations in gene expression. We parametrized the negative binomial distribution by its mean \(\mu \) and a dispersion parameter \(r \) for which a value of \(r = 2 \) fits CA1 neurons well. Note that parametrizing the negative binomial by its mean is different to the usual parametrization in terms of success probability. In terms of these parameters, the probability distribution is

\[
\text{NB}(k; r, \mu) = \binom{n}{k} \left(\frac{\mu r}{\mu + r} \right)^k \left(\frac{\mu}{\mu + r} \right)^{r-n}
\]

The notation \(\binom{n}{k} \) denotes combinations:

\[
\binom{n}{r} = \frac{n!}{r!(n-r)!}
\]

Our algorithm takes advantage of the fact that a negative binomial distribution can be defined as a Poisson distribution whose mean is itself random following a gamma distribution. We parametrize the gamma distribution by a shape \(r \) and rate \(\mu \), with probability density function

\[
\text{Gamma}(x; r, \mu) = \frac{\mu^r}{\Gamma(r)} x^{r-1} e^{-\mu x}
\]

Recall that if \(x \sim \text{Gamma}(\mu, r) \) then \(E(x) = r/\mu \), \(E(\log(x)) = \log(\mu) - \log(r) \) where \(\mu(r) \) is the digamma function. Furthermore, a scaled Gamma distribution is still Gamma: \(\lambda x \sim \text{Gamma}(\lambda r, \mu) \), for any \(\lambda > 0 \). The relationship between the gamma, Poisson and negative binomial distributions is as follows: if \(x \sim \text{Poisson}(\lambda) \) and \(\lambda \sim \text{Gamma}(r, \mu) \), then \(x \sim \text{NB}(r, \mu\lambda) \).

We will represent the results of an in situ sequencing experiment using the location \(x \) and decoded gene \(g \) of each detected RNA spot \(s \). We represent the cell of origin of an RNA spot \(s \) as \(\phi(s) \), and define an indicator variable \(z_s \) to be 1 if spot \(s \) arises from cell \(c \) and 0 otherwise: \(z_{s,c} = 1 \). Similarly, we denote by \(k(s) \) the cell class of cell \(c \) and define an indicator variable \(\zeta_{s,k} \) to be 1 if cell \(c \) belongs to class \(k \) and 0 otherwise; \(\zeta_{s,0} = 1 \). Note that \(\sum_{k} z_{s,k} = 1 \) for all \(s \) and \(\sum_{k} \zeta_{s,k} = 1 \) for all \(c \).

The letters \(Z \) and \(\zeta \) written without subscripts refer to the entire matrices of these indicator variables.

Assigning spots to cells. Most RNAs are detected within somas, the cytoplasm near cell nuclei, but many are also located more distal from the soma. Assigning RNA spots to their cells of origin is therefore a non-trivial problem. We did this using a probabilistic framework, allowing for the fact that the location of a spot does not identify its parent cell with complete certainty.

We detected cell nuclei using DAPI staining and the DAPI image was segmented to reveal an approximately circular region outlining each cell. In our model, spots inside this region are highly likely (but still not absolutely certain) to arise from the cell, and the probability of a spot arising from the cell decays progressively with distance from the DAPI region.

To formalize this mathematically, we denote the centroid of the DAPI region of cell \(c \) as \(x_c \), and an indicator function \(I_c(x) \) to be 1 if point \(x \) lies within the DAPI region. We define a function measuring the distance from a point \(x \) to a cell \(c \), \(D_c(x) \), as

\[
D_c(x) = \frac{|x - x_c|^2}{2g^2} + \log(2\pi g^2) - \log I_c(x)
\]

Here \(\bar{r} \) is the mean radius of the DAPI region over all cells. Note that the first two terms define the negative log of a normalized Gaussian density of radius \(\bar{r} \).

The third term produces a bias toward identifying a point inside the DAPI region with its cell of origin, with the parameter \(\beta \) taking the value three for our current analyses; this value was chosen manually after inspecting the assignment of gene reads to cells (as in Fig 2a), to confirm that reads both inside and outside the DAPI regions matched the choices that a human operator with knowledge of this cell system would make.

Later calculations will require a measure of the normalized area of each cell

\[
A_c = \int e^{-D_c(x)} dx
\]

If \(b \) were equal to 0, \(A_c \) would be 1 for all cells owing to the normalization of the log-density \(D_c \). Numerical computation of the integral would be time-consuming owing to the large number of cells present, and we therefore use an approximation assuming each cell is circular. If cell \(c \) is approximately circular with radius \(r_c \), a simple integration shows that

\[
A_c \approx \bar{r}^2 + e^{-r_c^2/\bar{r}^2}(1 - e^{-\bar{r}^2})
\]

Not all spots can be identified with cells. RNAs located in cellular processes are far from somata and it is impossible to identify the soma of origin, and others arise from technical misreads. To account for these, we add an additional source of spots corresponding to a uniform density \(\rho_0 \), which equals \(10^{-4} \) reads per pixel for the current analyses:

\[
D_0(x) = -\log \rho_0
\]

Including this misread density allows the algorithm to automatically discard any rare gene misreads that nevertheless passed the cosine distance threshold (for example, owing to off-target probe binding). The value of 10\(^{-4} \) was chosen on the basis of visual estimates of the number of reads seen not matching transcriptomic classes established by scRNA-seq: approximately 1 misread for every 20 cells.

Probability model. The number of counts of a gene \(g \) in a cell \(c \) can be modeled as \(x_{c,g} \sim \text{NB}(\rho_0(\mu_0r_0)), \) where \(k(c) \) represents the cell class to which cell \(c \) belongs, \(\mu_g \) represents the mean RNA count of gene \(g \) in cell class \(k \) and \(r \) is a parameter, for which the value of two provides a good fit. Note that in this manuscript we parameterize the negative binomial by \(r \) and its mean \(\mu \), rather than the probability parameter \(P = \rho_0(\mu_0r_0) \).

For our purposes, however, a model for each the RNA counts of each cell was not sufficient: we needed a probability distribution for not just the number of spots, but also their locations. This kind of probability distribution is known as a spatial point process\(^6\).

The best-characterized spatial point process is the (inhomogeneous) Poisson process. A Poisson process is parameterized by an intensity function \(\lambda(x) \), which measures the density of points expected to be found at every location \(x \). Given an intensity function, the Poisson process assigns a spot configuration \(\{x_s=x_{1...S}\} \) the log probability density

\[
\log P(x_{1...S}) = -\int \lambda(x) dx + \sum \log \lambda(x_s)
\]

A key property of the Poisson process is that the total number of points in any region of space follows a Poisson distribution, with mean equal to the integral of the intensity function in this region. Thus, a Poisson process is not itself sufficient to model negative binomial RNA counts.
To model the number and spatial locations of the RNA spots produced by a given cell, we take advantage of the fact that a negative binomial distribution arises when the mean of a Poisson distribution is itself random, following a gamma distribution. Specifically, if $\gamma \sim \text{Gamma}(r, \mu)$, then $x \sim \text{NB}(\mu, p)$. We model the distribution of RNA spots of gene g arising from cell c as a Poisson process with intensity function

$$\lambda_c(x) = \sum_{k} \mu_k e^{(\log(c_k + 1)) x/k}$$

Here $k(c)$ represents the class of cell c; μ_k represents the mean expression level of gene g in cell class k as determined by scRNA-seq: $D(x)$ is the function measuring the distance of point x from cell c (see above); and γ_r represents a gamma-distributed scale factor for each cell and gene, representing fluctuations in gene expression levels that cause the total expression level to follow a negative binomial rather than Poisson distribution. In our model, $\gamma_r \sim \text{Gamma}(r, 1)$, where the shape parameter r takes the value two to ensure the negative binomial distribution has correct dispersion. Finally, η_k represents the efficiency of in situ sequencing of gene relative to single-cell sequencing. Because we do not know the efficiencies η_k a priori, we also modeled the efficiency of each gene probabilistically: $\eta_k \sim \text{Gamma}(\gamma_k, \eta)$, where the expected efficiency γ_k takes the value 0.2 for current analyses, and we used a shape parameter $r = 20$. This prior distribution allowed the efficiency of each gene to be estimated for each experiment, allowing the algorithm to account for gene-specific technical fluctuations in efficiency. The mean value of 0.2 was chosen on the basis of previous estimates of the efficiency of this method, but is ‘uninformative’; the large prior variance $r = 20$ ensures that the effect of this prior mean is quickly overridden by data.

To write the formula for the full probability distribution, we used the ‘indicator variables’ ζ_k, which is 1 if spot arose from cell c and 0 otherwise; and ζ_k, which is 1 if cell belongs to class k (that is, $k = k(c)$) and 0 otherwise. We define π_k as the prior probability of a cell to belong in class k (Supplementary Table 4).

Then we have

$$\log P(x, g, z, \zeta, r, \eta) = -\sum_{c,k} \zeta_k \log \mu_k + \log \sum_{c,k} \frac{\mu_k}{\gamma_r} e^{(\log(c_k + 1)) x/k}$$

$$+ \sum_{s,k} \log \gamma_s \log(\mu_k + \gamma_r) + \sum_{g} \log(\eta_g + x/\eta) + \sum_{c,k} \log(\eta_k)$$

Defining $A_c = \int e^{(\log(c_k + 1)) x/k}$, this simplifies to

$$\log P(x, g, z, \zeta, r, \eta) = -\sum_{c,k} \zeta_k \log \mu_k + \log \sum_{c,k} \frac{\mu_k}{\gamma_r} A_c$$

$$+ \sum_{s,k} \log \gamma_s \log(\mu_k + \gamma_r) + \sum_{g} \log(\eta_g + x/\eta) + \sum_{c,k} \log(\eta_k)$$

$$+ \sum_{c,k} \log(\eta_k)$$

Variational Bayes approximation. We would like to obtain the posterior distribution of the cell classes given the data: $P(\zeta|g)$. Direct application of Bayes’ theorem is analytically intractable, so we therefore employ the mean-field variational Bayes approximation, a common method in Bayesian analysis that is conceptually similar to the expectation-maximization algorithm of classical statistics. In this approach, we approximate the posterior distribution of the unobserved variables by a product $P(\zeta, r, \eta|g) \approx q(\zeta, r, \eta|g)$, and alternate estimating the three functions q while holding the others fixed. On each step, \log_2 is estimated as the log of the total probability over the other unobserved variables, plus a normalization constant.

We group the variables r and γ together as the appropriate values as r_c for a cell will depend on the class of that cell. To compute $q(\zeta, r|g)$ we first see that

$$E_{q(\zeta)} \log P(x, g, z, \zeta, r, \eta) = -\sum_{c,k} \zeta_k \log \mu_k + \log \sum_{c,k} \frac{\mu_k}{\gamma_r} A_c$$

$$+ \sum_{s} \log(\gamma_s) + \sum_{c,k} \log(\mu_k + \gamma_r)$$

$$+ \log \sum_{c,k} \frac{\mu_k}{\gamma_r} e^{(\log(c_k + 1)) x/k}$$

$$+ \sum_{c,k} \log(\eta_k)$$

Here overbars represents the expectation of a unobserved variable with respect to its current q distribution, and const collects terms that do not depend on ζ or η. Writing N_{cg} for the total number of spots of gene g assigned to cell c, that is $N_{cg} = \sum_{t,g} E_{q(\zeta)} \gamma_{cg} = \sum_{t,g} E_{q(\zeta)} \gamma_{cg}$, and recording that $\sum_{c,k} \zeta_k = 1$ for all c, we can switch the sum over spots in the second term to a sum over genes:

$$\log q(\gamma, r|g) = \sum_{c,k} \zeta_k \left[-\mu_k A_c \gamma_{cg} + \log \gamma_{cg} \log(\mu_k + \gamma_r) + \log(\eta_k) \right]$$

$$+ \sum_{c,k} \log(\eta_k) + \text{const}$$

We next factorize this joint probability distribution $q(\zeta, r|g)$ as a marginal and a conditional: $q(\zeta, r|g) = q(\zeta|g) q(r|g)$. To obtain $q(r|g)$ we could integrate $q(r|g) q(\zeta|g)$ and normalize to a probability distribution. In practice, however, this is unnecessary. We can see by inspection that for any g and c, the summand of the top term is the log probability of a gamma–Poisson mixture, which defines a negative binomial when integrated over γ_{cg}. We therefore have:

$$\log q(\gamma, r|g) = \sum_{c,k} \zeta_k \left[-\mu_k A_c \gamma_{cg} + \log(\eta_k) \right]$$

$$+ \sum_{c,k} \log(\eta_k) + \text{const}$$

Rewriting this in terms of the class assignment variables $k(c)$ we have:

$$q(k(c) = k) \propto n_k \prod_{g} \log(\eta_{cg} + A_c)$$

For each cell c, the estimated class probabilities are thus those obtained observing N_{cg} of copies of each gene g (that is, the expected number assigned to the cell given the current distribution of spot assignments), under a negative binomial distribution of mean μ_k / A_c (that is, the scRNA-seq means scaled by the current estimate of in situ efficiency and cell area). To specify the conditional distribution $q(\zeta, g)$, we must obtain for each cell c and gene g a probability distribution for r_c conditional on each possible cluster assignment $k(c)$ for that cell. Some manipulation shows that

$$q(r_c|k(c) = k) = \text{Gamma}(r_c A_c \gamma_{cg} + \mu_k, 1)$$

Thus, for each possible class assignment $k(c)$, the scale factor r_c follows a gamma distribution, whose mean approaches $N_{cg} / (\mu_k / A_c)$, that is, the ratio between the number of reads of each gene assigned to that cell, to the number predicted from scRNA-seq counts, cell area and estimated efficiency. We now turn to the estimation of the distribution for the spot assignments, $q(\zeta)$. From equation (1) we see that:

$$E_{q(\zeta)} \log P(x, g, z, \zeta, r, \eta) = -\sum_{c,k} \zeta_k \log \mu_k + \log \sum_{c,k} \frac{\mu_k}{\gamma_r} A_c$$

$$+ \sum_{s} \log(\gamma_s) + \sum_{c,k} \log(\eta_k)$$

Rewriting this in terms of the assignment variables $s(c)$ we have:

$$q(s(c) = s) \propto \exp \left[-\log(\eta_s) + \sum_{c,k} \log(\eta_k) + \text{const} \right]$$

The expectation ζ is simply the probability $q(k(c) = k)$, and we can compute $\log(\eta_s) = -\sum_{c,k} E_{q(s(c) = s)} \log(\eta_k)$ by plugging the parameters from equation (3) into the formula for the expected log of a gamma variate. This shows that the probability of assigning a spot to a given cell will be large when the spot is close to the cell and the likely class assignments of that cell have high expression of the gene.

Finally, we must compute $q(\eta)$, the distribution of in situ efficiency parameters for each gene. From equation (1) we see that

$$E_{q(\eta)} \log P(x, g, z, \zeta, r, \eta) = -\sum_{c,k} \zeta_k \log \mu_k + \log \sum_{c,k} \frac{\mu_k}{\gamma_r} A_c$$

$$+ \sum_{s} \log(\gamma_s) + \sum_{c,k} \log(\eta_k)$$

$$+ \sum_{c,k} \log(\eta_k)$$

We therefore have $q(\eta) = \prod_{g} q(\eta_g)$, and a quick calculation shows that:

$$q(\eta_g) = \text{Gamma}(r_g A_c \gamma_{cg} + \mu_k, 1)$$

Thus, the efficiency factor for gene g follows a gamma distribution whose mean approaches $N_{cg} / \sum_{e} \mu_k A_c \gamma_{cg}$, the ratio of the total number of reads of that gene to the summed predictions of the scRNA-seq area and scale factor of each cell.

Regularizing the model of gene expression. Although Bayesian approaches provide optimal answers when the underlying probability models are accurate, they can be highly sensitive to errors that are not captured by the probability model. For example, if expression of gene g in cell type k were modeled by a negative binomial distribution with mean 0, detecting a single copy of gene g would make it impossible for the cell to be classified as class k, even if expression of all other
genes matched class k perfectly. To model the fact that such detections might occur through technical errors, we therefore take the mean expression parameter μ_{ik} to be the value obtained by scRNA-seq plus a regularization parameter ϵ, set to 10^{-3} in the current analyses. Experimenting with different values of this parameter we found its exact value had little effect provided it was non-zero, and therefore took an extremely low value of 10^{-4} reads per cell.

The present method does not aim to classify all cell types, and only genes targeting neurons have been included in the probe set. Consequently, many cells detected by DAPI have zero or few detected RNAs. To account for these cells, we have included an additional cell class ‘Zero’, with $\mu_{ik} = \epsilon$ for all g.

Optimizing for speed. In principle, the algorithm allows computing the probability of every RNA spot to belong to every cell. This would be computationally very slow; furthermore, most of these potential matches are impossible, as the cells are simply too far away from the spots. We therefore restrict the search for the parent cell of each spot to only its three closest neighbors.

Algorithm summary. The algorithm is summarized in the following pseudocode:

1. Compute regularized mean expression μ_{ik} from scRNA-seq data including ‘zero’ class.
2. Compute distance parameters $D_i(x_k)$ for three closest neighbors and misread density.
3. Compute normalized area of each cell A_i.
4. Initialize cell scale factors η_c to have mean 0.2.
5. Initialize cell scale factors $\gamma_{c,g}$ to have mean 1.
6. Assign each spot to closest neighbor with probability 1.
7. Repeat until convergence:
 1. Compute expected RNA count in each cell $\sum_k c_i(x_k)$.
 2. Compute cell class probabilities using equation (2).
 3. Compute gamma distribution parameters for scale factors $\gamma_{c,g}$ using equation (3).
 4. Compute gamma distribution parameters for in situ efficiencies η_c using equation (5).
 5. Compute spot assignment probabilities using equation (4).

The algorithm is determined to have converged when the spot assignments have stopped changing. Specifically, for every spot we compute the amount its assignment probabilities $\frac{c_i}{c_i(x)}$ have changed since the last iteration, using the L_∞ norm: $\max|c_i(x) - c_i(x_{\text{old}})|$. When the mean value of this across cells is lower than a tolerance threshold (0.02 for present analyses), the loop terminates.

Statistics. The data presented in the study were generated from three independent experiments on 14 mouse brain sections from one animal. The Bayesian method for cell calling presented in this is described fully above.

Reporting Summary. Further information on research design is available in the Life Sciences Reporting Summary linked to this article.

Data availability

Analysis files are available at https://doi.org/10.6084/m9.figshare.7150760.v1 and an interactive online viewer is at http://insitu.cortexlab.net. The raw image files are available from corresponding authors upon reasonable request. Source data for Figs. 1–3 are presented with the paper.

Code availability

Code of the ProMMT algorithm for gene selection is available at https://github.com/cortex-lab/Transcriptomics. Code for probe design is available at https://github.com/Moldia/multi_padlock_design. MATLAB code for image analysis and cell typing is available at https://github.com/kdharris101/iss. A Python version of the cell-calling algorithm, designed to work with StarFISH data standards, is available at https://github.com/acycliq/cell_call. All custom code is freely accessible.

References

22. Pertuz, S., Puig, D., Garcia, M. A. & Fusiello, A. Generation of all-in-focus images by noise-robust selective fusion of limited depth-of-field images. IEEE Trans. Image Process 22, 1242–1251 (2013).
23. Horl, D. et al. BigStitcher: Reconstructing high-resolution image datasets of cleared and expanded samples. Nat. Methods 16, 870–874 (2019).
24. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).
25. Elad, M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer-Verlag, 2010).
26. Robinson, M. D. & Smyth, G. K. Small sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9, 321–332 (2008).
27. Lu, J., Tomforh, J. K. & Kepler, T. B. Identifying differential expression in multiple SAGE libraries: an undersampled log-linear model approach. BMC Bioinformatics 6, 165 (2005).
28. Raddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (CRC Press, 2015).
29. Bishop, C. M. Pattern Recognition and Machine Learning (Springer, 2006).

Acknowledgements

We thank F. Somogyi, M. Carandini, S. Linmarsson, M. Hilchester, N. Kessaris and L. Magno for valuable discussions. We thank K. Karlsson for providing scRNA-seq reads for Ccl14 gene. This work was supported by grants from the Wellcome Trust (108726, to K.D.H., J.H.L. and M.N.), Chan–Zuckerberg Initiative (182811 to K.D.H.), the Swedish Research Council (2016-03645 to M.N.), Knut och Alice Wallenbergs Stiftelse (to M.N.) and Familjen Erling-Perssons Stiftelse (to M.N.).

Author contributions

X.Q. wrote the DNA probe design software, performed experiments, analyzed data, and designed the in situ sequencing protocol, prepared figures and wrote the manuscript. K.D.H. conceived the study, designed and wrote analysis software and wrote the manuscript. T.H. designed the in situ sequencing protocol. D.N. designed and wrote analysis software and wrote the manuscript. N.S. contributed to gene panel selection. J.H.-L. conceived the study and supervised tissue sample preparation and collection. M.N. conceived the study, designed the in situ sequencing protocol, supervised experiments and wrote the manuscript.

Competing interests

X.Q., T.H. and M.N. hold shares in Cartana AB, a company that commercializes in situ sequencing reagents.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41592-019-0631-4.

Correspondence and requests for materials should be addressed to K.D.H. or M.N.

Peer review information Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated
- Clearly defined error bars
 State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection

- ZEN 2.0 pro imaging software from Zeiss was used for microscopy data collection.

Data analysis

- MATLAB 2018a, command line ClustalW, blast+, Python 3 were used in the study. Code for ProMMT algorithm in gene selection is available at https://github.com/cortex-lab/Transcriptomics. Code for probe design is available at https://github.com/Moldia/multi_padlock_design. MATLAB Code for image analysis and cell typing is available at https://github.com/kdharris101/iss. A Python version of the cell-calling algorithm, designed to work with StarFISH data standards, is available at https://github.com/acyciq/cell_call. All custom code is freely accessible.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All figures are derived from the same set of raw data, available at https://doi.org/10.6084/m9.figshare.7150760.v1. An online viewer showing reads and probabilistic cell type assignments is at http://insitu.cortexlab.net. All data is available under CC BY license. The raw image files are available from corresponding authors upon reasonable request. Processed data used to create figures are provided as separate tables.

Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- [x] Life sciences
- [] Behavioural & social sciences
- [] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/reportingSummary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Parameter	Description
Sample size	14 coronal sections of a P25 mouse brain. Consecutive sections were used to perform 84 and 99-panel comparison and sections were chosen to have a moderate anterior-posterior coverage.
Data exclusions	No samples were excluded, no data were excluded.
Replication	The samples were processed in three independent experiments. The experiments were performed on consecutive sections in order to assess reproducibility. The sample selection and experimental set up is shown in Fig S7, and consistency of data is shown in Fig S8. Similar results were reproduced in all sections and the results can be accessed via the online viewer. Supplementary Results contain all CA1 cell maps.
Randomization	This is not relevant to the study. Samples were not divided into experimental groups.
Blinding	This is not relevant to the study. There was no group allocation involved in the study.

Reporting for specific materials, systems and methods

Materials & experimental systems

n/a	Involved in the study
❌	Unique biological materials
❌	Antibodies
❌	Eukaryotic cell lines
❌	Palaeontology
❌	Animals and other organisms
❌	Human research participants

Methods

n/a	Involved in the study
❌	ChiP-seq
❌	Flow cytometry
❌	MRI-based neuroimaging

Animals and other organisms

Policy information about studies involving animals: ARRIVE guidelines recommended for reporting animal research

Category	Description
Laboratory animals	CD1 mouse, male, aged postnatal day 25.
Wild animals	The study did not involve wild animals.
Field-collected samples	The study did not involve samples collected from the field.