Resource Allocation for Uplink Cell-Free Massive MIMO Enabled URLLC in a Smart Factory

Qihao Peng, Graduate Student Member, IEEE, Hong Ren, Member, IEEE, Cunhua Pan, Member, IEEE, Nan Liu, Member, IEEE, and Maged Elkashlan, Senior Member, IEEE

Abstract—Smart factories need to support the simultaneous communication of multiple industrial Internet-of-Things (IoT) devices with ultra-reliability and low-latency communication (URLLC). Meanwhile, short packet transmission for IoT applications incurs performance loss compared to traditional long packet transmission for human-to-human communications. On the other hand, cell-free massive multiple-input and multiple-output (CF mMIMO) technology can provide uniform services for all devices by deploying distributed access points (APs). In this paper, we adopt CF mMIMO to support URLLC in a smart factory. Specifically, we first derive the lower bound (LB) on achievable uplink data rate under the finite blocklength (FBL) with imperfect channel state information (CSI) for both maximum-ratio combining (MRC) and full-pilot zero-forcing (FZF) decoders. The derived LB rates based on the MRC case have the same trends as the ergodic rate, while LB rates using the FZF decoder tightly match the ergodic rates, which means that resource allocation can be performed based on the LB data rate rather than the exact ergodic data rate under FBL. The log-function method and successive convex approximation (SCA) are then used to approximately transform the non-convex weighted sum rate problem into a series of geometric program (GP) problems, and an iterative algorithm is proposed to jointly optimize the pilot and payload power allocation. Simulation results demonstrate that CF mMIMO significantly improves the average weighted sum rate (AWSR) compared to centralized mMIMO. An interesting observation is that increasing the number of devices improves the AWSR for CF mMIMO whilst the AWR remains relatively constant for centralized mMIMO.

Index Terms—Cell-free massive MIMO, URLLC, Industrial Internet-of-Things (IoT).

I. INTRODUCTION

The smart factory is envisioned as one of the most fundamental application scenarios in the next generation of industrial systems, which entails ultra-reliable and low-latency communication (URLLC) for wireless connected terminals [1], [2]. For typical industrial applications, wireless packet has several hundred bits and is delivered with high reliability (i.e., above $1 - 10^{-6}$) and low latency (i.e., below 1 ms) to fulfill the goal of real-time and precise control [1], and thus the channel blocklength is finite. According to Shannon coding theorem, the decoding error probability (DEP) always approaches zero when the channel blocklength is infinity [3]. However, the DEP cannot approach zero when the channel blocklength is limited [4], [5], which cannot be ignored in the transmission design.

Recently, the achievable data rate in terms of the finite blocklength (FBL), the DEP and signal-to-noise ratio (SNR) was derived in [5]. Since then, significant efforts have been devoted to the transmission design based on the capacity under FBL [6], [7], [8], [9], [10], [11], [12]. Multiple messages were grouped into a single packet to reduce the transmission latency [6]. The authors of [7] jointly optimized the power and blocklength for two devices under four schemes, namely, orthogonal multiple access (OMA), non-orthogonal multiple access (NOMA), relay, and cooperative relay. Similarly, the blocklength was optimized to satisfy the stringent requirements of the DEP and latency [8]. The DEP of relay-assisted transmission under FBL was analyzed in [9] with perfect channel state information (CSI), which was further extended to the imperfect CSI case in [10]. Resource allocation for a secure URLLC scenario was studied in [11]. Besides, the unmanned aerial vehicle (UAV) was deployed to deal with the blockage issue in [12] under FBL.

To support multiple devices simultaneously, massive multiple-input and multiple-output (mMIMO) for URLLC [13], [14], [15], [16] has attracted extensive research attention due to its appealing feature of a large number of spatial degrees of freedom [17], [18]. In addition, the channel hardening effect of mMIMO fits well with the rich scattering environment in smart factories [19]. The authors of [13] and [20] investigated the network availability and analyzed the relationship between the DEP and the number of antennas. The system performance with severe shadow fading was studied under the stringent requirements on URLLC [15]. Moreover, the closed-form expression of the average secrecy throughput was derived in [16]. Besides, joint pilot and payload transmission power allocation for mMIMO URLLC was studied in [21], where the best local approximation and geometric program (GP) were introduced to solve the optimization problem. Although adopting mMIMO can provide enhanced service for multiple...
devices, it still faces some critical challenges in the centralized mMIMO-enabled smart factory scenarios, e.g., i) the poor quality of service (QoS) for the devices far away from the AP; and ii) the blockage issue between the AP and the devices.

To tackle the above challenges, the promising technique named cell free mMIMO (CF mMIMO) has been proposed [22]. Unlike typical cell-centric networks, CF mMIMO can support user-centric transmissions, where all access points (APs) jointly serve all devices without cell boundaries [23]. Therefore, CF mMIMO is regarded as the future paradigm for the next generation of wireless communication [24]. For a distributed precoding scheme, Giovanni et al. developed a full-pilot zero-forcing (FZF) method with orthogonal pilots to suppress inter-cell interference, and then proposed a local partial zero-forcing precoding for reusing pilots [25]. The centralized minimum mean-square error (MMSE) processing was provided in [26]. To reduce the implementation complexity, the user-centric approach was adopted in [27]. Besides, the impact of APs’ density on the system performance was investigated in [28]. The authors of [29] considered the power allocation problem, where each AP is equipped with a single antenna.

Due to the appealing features of CF mMIMO, some researchers have already noticed the advantages of adopting CF mMIMO to support multiple devices with URLLC. Specifically, the network availability in terms of the DEP was analyzed in [30], which demonstrated the performance gains over the centralized mMIMO. The authors of [31] considered two power allocation problems with the objectives of maximizing the minimum data rate and maximizing the energy efficiency, where the simple conjugate beamforming was adopted at the single-antenna APs. However, it has been shown that single-antenna APs can hardly improve the reliability of estimated channels (i.e., channel hardening), unless ultra-high-density APs are deployed, which is theoretically possible but practically unrealistic [32]. To the best of our knowledge, we are the first to investigate the URLLC enabled by CF mMIMO where each AP is equipped with multiple antennas. In addition, we jointly optimize the pilot power and payload power allocation to maximize the weighted sum rate. Different from the previous works relying on GP in [21] and [33] or sum rate optimization relying on weighted MMSE in [34], jointly allocating power based on the FBL is more challenging in CF mMIMO systems. Our contributions are summarized as follows.

1) The lower bounds (LBs) on the achievable uplink data rates under FBL for the maximum-ratio combining (MRC) and FZF schemes are derived for the CF mMIMO. Simulation results confirm that there exists a gap between the LB rate based on the MRC scheme and the ergodic data rate, and the LB rate using the FZF decoder can tightly match the ergodic rate, which provides tractable expressions for power allocation.

2) For the MRC decoder, due to the non-convex weighted sum rate expression, it is challenging to obtain the optimal solution. The log-function method is adopted to approximate the objective function in an iterative manner. Meanwhile, the numerator of the signal-to-interference-plus-noise (SINR) is a posynomial function and cannot be transformed into a GP problem. To tackle this issue, the successive convex approximation (SCA) is adopted to approximately transform the numerator into a series of monomial functions, and then the optimization problem can be readily solved by CVX.

3) For the FZF decoder, the expression of the SINR is more complicated than that of the MRC decoder, and thus it is more challenging to solve the optimization problem. Different from the MRC case where the numerator of the SINR contains only one pilot power allocation variable, the numerator of the SINR based on the FZF decoder contains all devices’ pilot power allocation variables. We first prove that the numerator of SINR is a convex function by examining its Hessian matrix, based on which we derive its LB by using Jensen’s inequality. Fortunately, the LB of the numerator of the SINR is a monomial function, and the original optimization problem can be approximately addressed by solving a series of GP problems. Finally, an iterative algorithm is proposed to jointly optimize the pilot and payload power allocation.

4) Simulation results demonstrate the rapid convergence of our proposed algorithms, and also validate that our proposed method has a remarkable performance improvement over the benchmark schemes.

The remainder of this paper is organized as follows. In Section II, the system model is provided, and then the LB date rate under FBL based on statistical CSI are derived for the MRC and FZF decoders, respectively. In Section III, the optimization problem of maximizing weighted sum rate is simplified into a GP problem and an iterative algorithm is proposed by jointly optimizing the pilot and payload power for the MRC decoder. The iterative algorithm for jointly allocating power for the FZF case is given in Section IV. Then, simulation results and analysis are presented in Section V. Finally, the conclusion is drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an uplink CF mMIMO-enabled smart factory illustrated in Fig. 1, where each AP and each device are equipped with \(N \) antennas and a single antenna, respectively. These APs are connected to a central processing unit (CPU) through backhauls. The channel vector \(\mathbf{g}_{m,k} \in \mathbb{C}^{N \times 1} \) between the \(m \)-th AP and the \(k \)-th device is modeled as

\[
\mathbf{g}_{m,k} = \sqrt{\beta_{m,k}} \mathbf{h}_{m,k},
\]

where \(\beta_{m,k} \) is the large-scale fading and \(\mathbf{h}_{m,k} \in \mathbb{C}^{N \times 1} \) represents the small-scale fading. For simplicity, we denote \(\mathbf{G}_m = [\mathbf{g}_{m,1}, \mathbf{g}_{m,2}, \ldots, \mathbf{g}_{m,K}] \) as the channel matrix from all the devices to the \(m \)-th AP.

The received signal at the \(m \)-th AP is given by

\[
y_m = \mathbf{G}_m \sqrt{\mathbf{P}} \mathbf{d} s + \mathbf{n}_m,
\]

where \(\mathbf{P} = \text{diag}\{P_1, P_2, \ldots, P_K\} \) is the payload power of \(K \) devices, \(P_k \) is the \(k \)-th device’s transmission power,
s ∈ ℂ^{K × 1} is the transmission symbol vector with zero mean and unit covariance matrix, and n_m is the normalized noise vector following the distribution of $\mathcal{C}\mathcal{N}(0, I_N)$. Then, the mth AP decodes the received signal based on the locally estimated channel, and then delivers the decoded signal to the CPU [23]. Finally, the CPU combines the signals to obtain the information based on the user-centric approach.

B. Channel Estimation

It is assumed that each AP needs to estimate the CSI from all the devices based on TDD protocol. In order to distinguish the channels from different devices, K devices are allocated with orthogonal pilot sequences. Let us define $L_p = (L_p = K)$ as the length of the pilot sequence for each device and $q_k ∈ ℂ^{K × 1}$ as the pilot sequence of the kth device, $\forall k$. The finite blocklength L is divided into blocklength L_p for pilot sequence and blocklength $(L - L_p)$ for data transmission, respectively. Assume that the bandwidth is B. Then, the time durations for channel estimation and data transmission are $t_p = L_p / B$ and $t_d = L_d / B$, respectively.

In the training phase, K orthogonal pilot sequences are received by all APs, and then the received pilot signal at the mth AP is denoted as

$$Y_m = \sum_{k=1}^{K} g_{m,k} \sqrt{P_k} q_k + N^p_m,$$

where P_k is the power of the kth device, and $N^p_m ∈ ℂ^{N × K}$ is the additive Gaussian noise matrix at the mth AP, each element of which is independent and follows the distribution of $\mathcal{C}\mathcal{N}(0, 1)$. By multiplying (3) with q_k, we have

$$\hat{Y}^p_{m,k} = \frac{1}{\sqrt{P_k}} Y_m q_k = g_{m,k} + n^p_{m,k},$$

where $n^p_{m,k} = \frac{1}{\sqrt{P_k}} N^p_m q_k$. Based on (4), the MMSE estimate for $g_{m,k}$ is

$$\hat{g}_{m,k} = \frac{P_k}{P_k \beta_{m,k} + 1}\hat{Y}^p_{m,k},$$

which follows the distribution of $\mathcal{C}\mathcal{N}(0, \lambda_{m,k} I_N)$, and $\lambda_{m,k}$ is given by

$$\lambda_{m,k} = \frac{K P_k}{P_k \beta_{m,k} + 1}.$$

Then, let us denote $\tilde{g}_{m,k} = g_{m,k} - \hat{g}_{m,k}$ as the estimation error, which is independent of $\hat{g}_{m,k}$ and follows the distribution of $\mathcal{C}\mathcal{N}(0, (\beta_{m,k} - \lambda_{m,k}) I_N)$.

C. Achievable Date Rate Under Finite Blocklength

As previously stated, Shannon capacity under infinite channel blocklength is no longer applicable due to FBL. Based on the result in [21] and [35], the interference can be treated as Gaussian noise. Therefore, the achievable data rate can be approximated as

$$R_k \approx B \left[(1 - \eta) \log_2 (1 + \gamma_k) - \sqrt{\frac{1 - \eta}{L} V_k(\gamma_k)} Q^{-1}(\varepsilon_k) \ln 2 \right],$$

where $\eta = K / L$, γ_k is the kth device’s SINR, ε_k is DEP, $V_k(\gamma_k)$ is the channel dispersion with $V_k(\gamma_k) = 1 - (1 + \gamma_k)^{-2}$, and $Q^{-1}(\varepsilon_k)$ is the inverse function of $Q(\varepsilon) = \frac{1}{\sqrt{2}} \int_0^\infty e^{-t^2/2} dt$ of the kth device, $\forall k$.

For the mth AP, the linear vector $a_{m,k}$ for the kth device is based on the locally estimated channel in (5), which is given by [23] and [25]

$$a_{m,k} = \begin{cases} \hat{g}_{m,k}, & \text{MRC,} \\ \sqrt{E\left[\hat{G}_m^H \hat{G}_m^{-1}\right]} e_k, & \text{FZF,} \end{cases}$$

where $E\{\cdot\}$ denotes the expectation operator, $\hat{G}_m = [\hat{g}_{m,1}, \hat{g}_{m,2}, \cdots, \hat{g}_{m,K}]$ is the estimated channel matrix between all the devices and the mth AP, and e_k repersents the kth column of I_K. As mentioned before, the mth AP multiplies the received signal with the decoding vector $a_{m,k}$ to obtain the kth device’s information, which can be denoted by

$$y^d_{m,k} = a_{m,k}^H G_m \sqrt{P} s + a_{m,k}^H n_m.$$
which is given by
\[
y_k^d = \mathbb{E} \left\{ \sum_{m \in \mathcal{M}_k} (a_{m,k})^H g_{m,k} \sqrt{p_k^d} s_k \right\}
\]
\[+ \sqrt{p_k^d} \sum_{m \in \mathcal{M}_k} (a_{m,k})^H g_{m,k} - \mathbb{E} \left\{ \sum_{m \in \mathcal{M}_k} (a_{m,k})^H g_{m,k} \right\} s_k,
\]
\[+ \sum_{k' \neq k} \sum_{m \in \mathcal{M}_k} (a_{m,k})^H g_{m,k'} \sqrt{p_{k'}^d} s_k + \sum_{m \in \mathcal{M}_k} (a_{m,k})^H n_m,
\]
(10)
where \(p_k^d \) is the kth device’s transmission power, \(s_k \) is the transmitted information, \(n_m \) is the noise vector, \(L_{S_k} \) is the desired signal, \(L_{S_k} \) is the leaked signal, \(U_{k,k'} \) represents the interference of the k’th device, and \(N_k \) is the noise term. Then, the SINR at the \(k \)th device is given by
\[
\gamma_k = \frac{|D_{S_k}|^2}{|LS_k|^2 + \sum_{k' \neq k} |U_{k,k'}|^2 + |N_k|^2}.
\]
(11)
Due to the channel hardening, the impact of random channel gain on communication is negligible. Therefore, we consider the optimization of pilot power and payload power that are only based on the large-scale CSI, which varies much slower than the instantaneous CSI. In this case, the pilot and payload power only needs to be updated once the large-scale CSI changes rather than the rapidly varying instantaneous CSI. As a result, we first need to derive the ergodic data rate of the devices. The ergodic capacity of the \(k \)th device under FBL is given by
\[
\hat{R}_k \approx \mathbb{E} \left\{ B \frac{1 - \eta}{\ln 2} \left[\ln (1 + \gamma_k) - \frac{Q^{-1}(\varepsilon_k)}{\sqrt{L(1-\eta)}} \left(\frac{\gamma_k}{\sqrt{\gamma_k}} \right) \right] \right\},
\]
\[= B \frac{1 - \eta}{\ln 2} \mathbb{E} \left\{ f_k \left(\frac{1}{\gamma_k} \right) \right\},
\]
(12)
where \(f_k(x) = \ln(1 + \frac{1}{x}) + \frac{Q^{-1}(\varepsilon_k)}{\sqrt{L(1-\eta)}} \sqrt{\frac{2x+1}{(x+1)^2}} \) denotes a function of the \(k \)th device’s DEP \(\varepsilon_k \).

However, it is challenging to derive the closed-form expression of the ergodic data rate. Instead, we aim to derive its LB. To this end, we first provide the following results. Since the rate \(R_k \) is no smaller than 0, the following inequality holds
\[
\frac{Q^{-1}(\varepsilon_k)}{\sqrt{L(1-\eta)}} \leq \frac{1}{\gamma_k} \ln(1 + \gamma_k) - \frac{Q^{-1}(\varepsilon_k)}{\sqrt{L(1-\eta)}} \left[\frac{\gamma_k}{\sqrt{\gamma_k}} \right] \leq g \left(\frac{1}{\gamma_k} \right).
\]
(13)
As the first-order derivative of \(g(x) \) is less than 0, \(g(x) \) is monotonically decreasing. Besides, the feasible region of \(f_k(x) \) is \(0 \leq x \leq g^{-1} \left(\frac{Q^{-1}(\varepsilon_k)}{\sqrt{L(1-\eta)}} \right) \). Then, we have the following lemma.

Lemma 1: Function \(f_k(x) \) is decreasing and convex when \(0 < x \leq g^{-1} \left(\frac{Q^{-1}(\varepsilon_k)}{\sqrt{L(1-\eta)}} \right) \).

Proof: Please refer to Appendix B in [36].

By using Jensen’s inequality and Lemma 1, the ergodic data rate is lower bounded by
\[
\hat{R}_k \geq \hat{R}_k \triangleq B \frac{1 - \eta}{\ln 2} f_k \left(\frac{1}{\gamma_k} \right),
\]
(14)
where \(\hat{R}_k \) is the LB of the \(k \)th device’s ergodic data rate, and \(\hat{\gamma}_k = \gamma_k \).

In the following, we derive the expression of \(\hat{R}_k \) for the MRC and FZF decoders, respectively. Specifically, we have extended the results for the centralized mMIMO in [21] to the more general user-centric CF mMIMO.

Theorem 1: The ergodic achievable rate for the \(k \)th device using the MRC decoder with FBL can be lower bounded by
\[
\hat{R}_{k}^{\text{MRC}} \leq \frac{1 - \eta}{\ln 2} f_k \left(\frac{1}{\gamma_k^{\text{MRC}}} \right),
\]
where \(\gamma_k^{\text{MRC}} \) is denoted as
\[
\hat{\gamma}_k^{\text{MRC}} = \frac{N p_k^d \left(\sum_{m \in \mathcal{M}_k} \lambda_{m,k} \right)^2}{\sum_{k'=1}^{K} \sum_{m \in \mathcal{M}_k} p_{k'}^d \lambda_{m,k} (\beta_{m,k'} - \sum_{m \in \mathcal{M}_k} \lambda_{m,k})},
\]
(16)
Proof: Please refer to Appendix A.

Theorem 2: The \(k \)th device’s ergodic achievable rate for the FZF decoder is lower bounded by
\[
\hat{R}_{k}^{\text{FZF}} \triangleq B \frac{1 - \eta}{\ln 2} f_k \left(\frac{1}{\gamma_k^{\text{FZF}}} \right),
\]
where \(\gamma_k^{\text{FZF}} \) is denoted as
\[
\hat{\gamma}_k^{\text{FZF}} = \frac{p_k^d (N - K) \left(\sum_{m \in \mathcal{M}_k} \sqrt{\lambda_{m,k}} \right)^2}{|\mathcal{M}_k| + \sum_{k'=1}^{K} p_{k'}^d (\beta_{m,k'} - \lambda_{m,k'})},
\]
(18)
where \(|\mathcal{M}_k| \) means the cardinality of the set \(\mathcal{M}_k \), and the number of antennas \(N \) should be larger than the number of devices \(K \).

Proof: Please refer to Appendix B.

D. Problem Formulation

In smart factory, the weight sum rate is an effective method to satisfy various devices’ requirements [21], [34]. Therefore, we aim to jointly optimize the pilot power and payload power to maximize the weighted sum rate of all devices subject to the data rate constraints and the total energy constraints. Mathematically, the optimization problem can be formulated as
\[
\max_{\{p_k^d\}} \sum_{k=1}^{K} \omega_k \hat{R}_k
\]
(19a)
s.t. \(\hat{R}_k \geq R_k^{\text{req}}, \forall k, \)
(19b)
\[K p_k^d + (L - K) p_k^d \leq E_k, \forall k, \]
(19c)
where \hat{R}_k denotes the LB data rate for either MRC or FZF, w_k is the weight of the kth device, constraint (19b) denotes the minimum data rate requirements of the devices, and constraint (19c) means that the energy consumption of each device is limited.

Unlike the Shannon Capacity based on infinite blocklength (i.e., the max-min fairness problem in [33] or sum rate in [34]), the expression of data rate under FBL is more complicated. In addition, the weighted sum rate problem is an NP-hard problem and is more challenging to solve under imperfect CSI and FBL. To deal with this difficulty, we introduce some methods for simplifying the problem, and then solve the problem with polynomial-time complexity.

Using Lemma 1, the constraint (19b) can be simplified into the kth device’s minimal SINR requirement, denoted as

$$\hat{\gamma}_k = \frac{1}{\sum_{k=1}^{K} w_k B \left(\frac{1 - \eta}{\ln 2} \right) \left[\ln (1 + \chi_k) - \alpha_k G(\chi_k) \right]}.$$ \hspace{1cm} (20)

where $\hat{\gamma}_k$ represents the SINR of the kth device by using MRC or FZF decoder, respectively. Then, the auxiliary variables χ_k is introduced to equivalently transform (19) into the following optimization problem

$$\begin{align*}
\max_{\{\varphi_k^i, \varphi_k^f, \chi_k\}} & \sum_{k=1}^{K} w_k B \left(\frac{1 - \eta}{\ln 2} \right) \left[\ln (1 + \chi_k) - \alpha_k G(\chi_k) \right] \\
\text{s.t.} & \hat{\gamma}_k \geq \chi_k, \forall k, \\
& \chi_k \geq \frac{1}{\sum_{k=1}^{K} w_k B \left(\frac{1 - \eta}{\ln 2} \right) \left[\ln (1 + \chi_k) - \alpha_k G(\chi_k) \right]}, \forall k,
\end{align*}$$ \hspace{1cm} (21a) \hspace{1cm} (21b) \hspace{1cm} (21c) \hspace{1cm} (21d)

where $G(\chi_k)$ is defined as $G(\chi_k) \triangleq \sqrt[\chi_k]{\frac{\chi_k + 1}{\chi_k}}$, and α_k is $\alpha_k = \frac{G^{-1}(\chi_k)}{\sqrt{1 - \eta}}$. Due to the different expressions of $\hat{\gamma}_k$, we provide solutions for the power allocation for the MRC and FZF decoders, respectively.

III. POWER ALLOCATION FOR THE CASE OF MRC

In this section, we aim to solve the weighted sum rate maximization problem for the MRC decoder.

A. Joint Optimization

As seen in (21a), it is challenging to solve the optimization problem due to the complicated functions of $\ln (1 + \chi_k)$ and $G(\chi_k)$. To simplify the objective function, two lemmas are introduced in the following.

Lemma 2: For any given $\hat{x} \geq 0$, function $\ln (1 + x)$ is lower bounded by

$$\ln (1 + x) \geq \rho \ln x + \delta,$$ \hspace{1cm} (22)

where ρ and δ are expressed as

$$\rho = \frac{\hat{x}}{1 + \hat{x}}, \quad \delta = \ln (1 + \hat{x}) - \frac{\hat{x}}{1 + \hat{x}} \ln (\hat{x}).$$ \hspace{1cm} (23)

Proof: Please refer to Appendix C.

Lemma 3: For any given $\hat{x} \geq \sqrt{\frac{\chi_k}{\alpha_k}}$, function $G(\chi)$ always satisfies the following inequality:

$$G(\chi) \leq \hat{\rho} \ln (x) + \hat{\delta},$$ \hspace{1cm} (24)

where $\hat{\rho}$ and $\hat{\delta}$ are denoted by

$$\hat{\rho} = \frac{\hat{x}}{\sqrt{x^2 + 2\hat{x}}} = \frac{x \sqrt{x^2 + 2\hat{x}}}{1 + \hat{x}},$$ \hspace{1cm} (25)

and

$$\hat{\delta} = \sqrt{1 - \frac{1}{(1 + x)^2}} - \hat{\rho} \ln (\hat{x}).$$ \hspace{1cm} (26)

Proof: Please refer to Appendix D in [21].

Based on Lemma 2 and Lemma 3, we can now solve the weighted sum rate maximization problem by using an iterative optimization algorithm. To this end, we first initialize the kth device’s pilot power as $p_k^{\psi(i)}$ and payload power as $p_k^{\varphi(i)}$, and calculate the corresponding SINR $\hat{\gamma}_k^{\text{MRC}}$, which is denoted by $\chi_k^{(i)} = \hat{\gamma}_k^{\text{MRC}}$. In the ith iteration, we approximate $\ln (1 + \chi_k)$ by $\ln (\chi_k) = \rho_k^{(i)} \ln x + \delta_k^{(i)}$ and $G(\chi_k)$ by $G(\chi_k) = \rho_k^{(i)} \ln (x) + \delta_k^{(i)}$, where $\rho_k^{(i)}$ and $\delta_k^{(i)}$ are obtained based on (23) by using $\hat{x} = \chi_k^{(i)}$. $\rho_k^{(i)}$ and $\delta_k^{(i)}$ are obtained based on (25) and (26) by using $\hat{x} = \chi_k^{(i)}$. As a result, the weighted sum rate can be lower bounded by

$$\sum_{k=1}^{K} w_k B \left(\frac{1 - \eta}{\ln 2} \right) \left[\ln (1 + \chi_k) - \alpha_k G(\chi_k) \right] \geq \sum_{k=1}^{K} w_k B \left(\frac{1 - \eta}{\ln 2} \right) \left[\rho_k^{(i)} \ln (\chi_k) + \delta_k^{(i)} - \alpha_k \rho_k^{(i)} \ln (\chi_k) - \alpha_k \delta_k^{(i)} \right] \geq \sum_{k=1}^{K} w_k B \left(\frac{1 - \eta}{\ln 2} \right) \left[\ln (\chi_k) \left(\rho_k^{(i)} - \alpha_k \rho_k^{(i)} \right) + \delta_k^{(i)} - \alpha_k \delta_k^{(i)} \right],$$ \hspace{1cm} (27)

where the equality holds only when $\chi_k = \chi_k^{(i)}$.

Next, we optimize the LB of the objective function instead of the original objective function. Specifically, the subproblem to be solved in the ith iteration is given by

$$\begin{align*}
\max_{\{\varphi_k^i, \varphi_k^f, \chi_k\}} & \prod_{k=1}^{K} \chi_k^{\omega_k^{(i)}} \\
\text{s.t.} & \text{(21b), (21c), (19c)},
\end{align*}$$ \hspace{1cm} (28a) \hspace{1cm} (28b)

where $\omega_k^{(i)}$ is equal to $\omega_k^{(i)} = w_k B \frac{1 - \eta}{\ln 2} (\rho_k^{(i)} - \alpha_k \rho_k^{(i)})$. For the centralized mMIMO case in [21], the above power allocation problem is a GP problem, which can be readily solved by using CVX tools. However, for the general case of user-centric CF mMIMO systems, the constraint (21b) cannot be transformed into a GP form. As a result, the above problem is not a GP problem, which cannot be readily solved.

To address the abovementioned issue, we approximate the constraint (21b) into a more tractable form by introducing the following lemma.
Lemma 4: The kth device’s SINR γ_k^{MRC} can be rewritten as

$$\gamma_k^{\text{MRC}} = \frac{N p_k^d (\theta_k)^2}{\sigma_k \left(\sum_{k'=1}^{K} p_{k'}^d \xi_{k,k'} + \theta_k \right)}$$

(29)

where θ_k, σ_k, $\xi_{k,k'}$ are given by

$$\theta_k = \sum_{m \in M_k} \left[K p_k^p (\beta_{m,k})^2 \prod_{n \neq m} (K p_n^p \beta_{n,k} + 1) \right],$$

(30)

$$\sigma_k = \prod_{m \in M_k} (K p_k^p \beta_{m,k} + 1),$$

(31)

and

$$\xi_{k,k'} = \sum_{m \in M_k} \left[K p_k^p (\beta_{m,k})^2 \prod_{n \neq m} (K p_n^p \beta_{n,k} + 1) \right].$$

(32)

Proof: Please refer to Appendix D.

By using Lemma 4, the constraint (21b) can be reformulated as

$$N p_k^d (\theta_k)^2 \geq \chi_k \left[\sigma_k \left(\sum_{k'=1}^{K} p_{k'}^d \xi_{k,k'} + \theta_k \right) \right].$$

(33)

However, both sides of (33) are all posynomial functions, and thus constraint (33) still does not satisfy the form of a GP problem. To deal with this difficulty, we utilize log-function to approximate θ_k into a monomial form as detailed in the following theorem.

Theorem 3: For any given $\hat{p}_k^p > 0$, θ_k is lower bounded by

$$\theta_k = K p_k^p \sum_{m \in M_k} (\beta_{m,k})^2 \prod_{n \neq m} (K p_n^p \beta_{n,k} + 1) \geq e^{a_k} (\hat{p}_k^p)^{a_k},$$

(34)

where e is the exponent, and a_k and c_k are given by

$$a_k = \frac{\partial \ln \theta_k}{\partial \ln (\hat{p}_k^p)} \bigg|_{\hat{p}_k^p = \hat{p}_k^p} = 1,$$

$$+ \sum_{m \in M_k} \left[(\beta_{m,k})^2 \prod_{n \neq m} (K \beta_{n,k} \hat{p}_n^p + 1) \right],$$

$$\sum_{m \in M_k} \left[(\beta_{m,k})^2 \prod_{n \neq m} (K \beta_{n,k} \hat{p}_n^p + 1) \right],$$

(35)

and

$$c_k = \ln \left(\frac{\theta_k}{\hat{p}_k^p} \right) - a_k \ln (\hat{p}_k^p),$$

(36)

where $\hat{\theta}_k$ is obtained by substituting $p_k^p = \hat{p}_k^p$ into (30).

Besides, it is obvious that the inequality in (34) holds with equality only when $p_k^p = \hat{p}_k^p$.

Proof: Please refer to Appendix E.

Based on Theorem 3, we replace the polynomial function θ_k in (34) with the best local monomial approximations.

Algorithm 1 Iterative Algorithm for Solving Problem (38) for the MRC case

1: Initialize iteration number $i = 1$, and error tolerance $\zeta = 0.01$;
2: Initialize the pilot power and transmission power $\{p_k^{(1)}, d_k^{(1)}, \forall k\}$ by solving Problem (39), calculate SINR $\{\chi_k^{(1)}, \forall k\}$, obtain the weighted sum rate in (19a) and denoted as $\text{Obj}_1 = \text{Obj}_1^1(\zeta)$;
3: while $(\text{Obj}_i - \text{Obj}_{i-1})/\text{Obj}_{i-1} \geq \zeta$ do
4: Update $\{a_k^{i}, c_k^{i}, \forall k\}$;
5: Update $i = i + 1$, solve Problem (38) by using the CVX package to obtain $\{p_k^{i}, d_k^{i}, \forall k\}$, calculate SINR $\{\chi_k^{i}, \forall k\}$ and then obtain the weighted sum rate, denoted as Obj_i;
6: end while

Specifically, we use a_k^{i} and c_k^{i} to approximate θ_k in the ith iteration, then replace the left hand side of the inequality in (33) by

$$N p_k^d (\theta_k)^2 \geq N e^{a_k^{i}} (p_k^p)^{2a_k^{i}} p_k^d.$$

(37)

Through the above approximations, Problem (19) for the MRC case is converted into a GP problem, which is given by

$$\max \{p_k^p, \{p_k^d, \{c_k, \forall k\} \} \} \sum_{k=1}^{K} \chi_k^{i} \left[\sigma_k \left(\sum_{k'=1}^{K} p_{k'}^d \xi_{k,k'} + \hat{\theta}_k \right) \right], \forall k, (38a)$$

s.t. $N e^{a_k^{i}} (p_k^p)^{2a_k^{i}} p_k^d$

$$\geq \chi_k \left[\sigma_k \left(\sum_{k'=1}^{K} p_{k'}^d \xi_{k,k'} + \hat{\theta}_k \right) \right], \forall k, (38b)$$

$$\left(21c\right), \left(19c\right).$$

(38c)

For the iterative algorithm, we need to find a feasible solution to initialize the algorithm. To tackle this issue, we introduce an auxiliary variable φ and construct an alternative optimization problem, which is given by

$$\max \left\{ \varphi \{p_k^p, \{p_k^d, \{c_k, \forall k\} \} \} \right\} \sum_{k=1}^{K} \left\{ \varphi \left(R_k^{\text{max}} \ln 2 \right) \right\} \left[\sigma_k \left(\sum_{k'=1}^{K} p_{k'}^d \xi_{k,k'} + \hat{\theta}_k \right) \right],$$

(39a)

s.t. $N e^{a_k^{i}} (p_k^p)^{2a_k^{i}} p_k^d$

$$\geq \chi_k \left[\sigma_k \left(\sum_{k'=1}^{K} p_{k'}^d \xi_{k,k'} + \hat{\theta}_k \right) \right], \forall k, \left(19c\right).$$

(39c)

Obviously, Problem (39) is always feasible. Similar to Problem (38), Problem (39) is also a GP problem, and the original Problem (38) is feasible only if φ is no smaller than 1. Based on the abovementioned discussion, the algorithm to solve Problem (38) is given in Algorithm 1.

B. Algorithm Analysis

1) Convergence Analysis: Before proving the convergence of our proposed algorithm, we first need to prove that
the solution in the ith iteration is also feasible in the ($i + 1$)th iteration. For Algorithm 1, we only need to check whether constraint (38b) still holds since the constraints (21c) and (19c) are the same in each iteration. The constraint (38b) in the ith iteration can be expressed as

$$N e^{2 \chi_k^{(i)} \left(p_k^{p,(i)} - \rho_k^{d,(i)} \right)} \geq \chi_k^{(i)} \left[\sigma_k^{(i)} \left(\sum_{k' = 1}^{K} \frac{d_{k',k}^{(i)}}{d_{k,k'}^{(i)}} \right) + \theta_k^{(i)} \right],$$

(40)

where $\{ \chi_k^{(i)}, p_k^{d,(i)}, p_k^{p,(i)}, \forall k \}$ is the optimal solution in the ith iteration.

By using Theorem 3 and (37), we have

$$N e^{2 \chi_k^{(i)} \left(p_k^{p,(i)} - \rho_k^{d,(i)} \right)} = N p_k^{d,(i)} \left(\theta_k^{(i)} \right)^2 \geq N e^{2 \chi_k^{(i-1)} \left(p_k^{p,(i)} - \rho_k^{d,(i)} \right)} = \chi_k^{(i)} \left[\sigma_k^{(i)} \left(\sum_{k' = 1}^{K} \frac{d_{k',k}^{(i)}}{d_{k,k'}^{(i)}} \right) + \theta_k^{(i)} \right].$$

(41)

Then, by combining (40) with (41), we have

$$N e^{2 \chi_k^{(i)} \left(p_k^{p,(i)} - \rho_k^{d,(i)} \right)} \geq \chi_k^{(i)} \left[\sigma_k^{(i)} \left(\sum_{k' = 1}^{K} \frac{d_{k',k}^{(i)}}{d_{k,k'}^{(i)}} \right) + \theta_k^{(i)} \right].$$

(42)

Therefore, we prove that the solution is also feasible for the solution in the ($i + 1$)th iteration.

Finally, we denote $\text{Obj}^{(i)}$ as the weighted sum rate in the ith iteration and prove the convergence of Algorithm 1. Since the solution in the ith iteration is just a feasible solution in the ($i + 1$)th iteration, we have

$$\sum_{k = 1}^{K} w_k B \frac{1 - \eta}{\ln 2} \left[\ln \left(\chi_k^{(i+1)} \right) \left[\rho_k^{(i)} - \alpha_k \hat{\rho}_k^{(i)} + \delta_k^{(i)} - \alpha_k \hat{\delta}_k^{(i)} \right] \right]$$

$$\geq \sum_{k = 1}^{K} w_k B \frac{1 - \eta}{\ln 2} \left[\ln \left(\chi_k^{(i)} \right) \left[\rho_k^{(i)} - \alpha_k \hat{\rho}_k^{(i)} + \delta_k^{(i)} - \alpha_k \hat{\delta}_k^{(i)} \right] \right]$$

$$= \text{Obj}^{(i)},$$

(43)

where $\{ \chi_k^{(i+1)}, \forall k \}$ is the optimal solution to Problem (38) in the ($i + 1$)th iteration.

Substituting $\chi_k = \chi_k^{(i+1)}$ into the inequality in (27), we have

$$\sum_{k = 1}^{K} w_k B \frac{1 - \eta}{\ln 2} \left[\ln \left(1 + \chi_k^{(i+1)} \right) - \alpha_k G \left(\chi_k^{(i+1)} \right) \right]$$

$$\geq \sum_{k = 1}^{K} w_k B \frac{1 - \eta}{\ln 2} \left[\ln \left(\chi_k^{(i+1)} \right) \left[\rho_k^{(i+1)} - \alpha_k \hat{\rho}_k^{(i+1)} \right] \right]$$

$$+ \sum_{k = 1}^{K} w_k B \frac{1 - \eta}{\ln 2} \left[\delta_k^{(i+1)} - \alpha_k \hat{\delta}_k^{(i+1)} \right]$$

$$\geq \sum_{k = 1}^{K} w_k B \frac{1 - \eta}{\ln 2} \left[\ln \left(\chi_k^{(i+1)} \right) \left[\rho_k^{(i+1)} - \alpha_k \hat{\rho}_k^{(i+1)} + \delta_k^{(i)} - \alpha_k \hat{\delta}_k^{(i)} \right] \right].$$

(44)

IV. POWER ALLOCATION FOR THE CASE OF FZF

In this section, we aim to solve the weighted sum rate maximization problem for the case of FZF decoder.

A. Joint Optimization

Different from the MRC decoder, the expression of SINR at the kth device by using FZF decoder is much more complicated. Before solving the optimization problem, we first rewrite the SINR's expression in a more tractable form as in the following lemma.

Lemma 5: The $\tilde{\gamma}^{\text{FZF}}_k$ can be equivalently reformulated as

$$\tilde{\gamma}^{\text{FZF}}_k = \frac{p_k^{l} \left(N - K \right) \left(\varpi_k \right)^2 \left(\prod_{k' \neq k} \left(\vartheta_{k,k'} \right)^2 \right)^K}{|\mathcal{M}_k| \prod_{k' = 1}^{K} \left(\vartheta_{k,k'} \right)^2 + \sum_{k' = 1}^{K} \prod_{k''
eq k'}^{K} \left(\vartheta_{k,k''} \right)^2},$$

(46)

where ϖ_k, $\vartheta_{k,k'}$, and $\mu_{k,k'}$ are given by

$$\varpi_k = \sum_{m \in \mathcal{M}_k} \sqrt{K p_k^p \beta_{m,k} \left(\prod_{n \neq m} K p_n^p \beta_{n,k} + 1 \right)^2},$$

(47)
\[\vartheta_{k,k'} = \prod_{m \in M_k} \sqrt{K p_k^m \beta_{m,k'} + 1}, \tag{48} \]

and

\[\mu_{k,k'} = \sum_{m \in M_k} \left[\beta_{m,k'} \prod_{n \neq m} (K p_k^m \beta_{n,k'} + 1) \right]. \tag{49} \]

Proof: Please refer to Appendix F. \[\square \]

It is readily found that the numerator in (46) is not a monomial function, and thus Problem (19) for the FZF case is not a GP problem. Note that the numerator of the SINR at the \(k\)th device by using the FZF decoder is much more complicated than the case of the MRC decoder, and the approximate method for the MRC decoder cannot be directly applied to the FZF decoder. To address this issue, we introduce the following theorem.

Theorem 4: For any given pilot power \(\mathbf{P} = [p_1^*, p_2^*, \ldots, p_K^*] \) with \(p_k^* > 0 \), \((w_k)^2 \prod_{k' \neq k} (\vartheta_{k,k'})^2 \) is lower bounded by

\[(w_k)^2 \prod_{k' \neq k} (\vartheta_{k,k'})^2 \geq e^{d_k} \prod_{j=1}^K (p_j^*)^{b_k^j}, \tag{50} \]

where \(d_k \) and \(b_k^j \) are given by

\[b_k^j = \begin{cases} \frac{2}{\vartheta} \frac{d_k}{\vartheta_k} \frac{\partial \ln \vartheta_{k,j}}{\partial \ln (p_j^*)} p_j^* = \hat{p}_j^p, & j \neq k, \\ \frac{2}{\vartheta} \frac{d_k}{\vartheta_k} \frac{\partial \ln \vartheta_{k,k}}{\partial \ln (p_k^*)} p_k^* = \hat{p}_k^p, & j = k, \end{cases} \tag{51} \]

and

\[d_k = \ln \left((w_k)^2 \prod_{k' \neq k} (\vartheta_{k,k'})^2 - \sum_{j=1}^K b_k^j \ln (\hat{p}_j^p) \right), \tag{52} \]

where \(\vartheta_k \) and \(\hat{\vartheta}_{k,k'} \) are obtained by substituting \(p_k^p = \hat{p}_k^p \) into (47) and (48), respectively. In addition, the inequality in (50) holds with equality only when \(p_k^p = \hat{p}_k^p \).

Proof: Please refer to Appendix G. \[\square \]

According to Theorem 4, the posynomial \((w_k)^2 \prod_{k' \neq k} (\vartheta_{k,k'})^2 \) can be replaced by the best local monomial approximation. Specifically, the updated \(d_k^{(i)} \) and \(b_k^{(i),j} = [b_1^{(i),k}, b_2^{(i),k}, \ldots, b_K^{(i),k}] \) are utilized to approximate the numerator of \(\hat{\vartheta}_k^{(i),FZF} \) in the \(i\)th iteration, denoted as

\[p_k^{(i)} (N-K) (w_k)^2 \prod_{k' \neq k} (\vartheta_{k,k'})^2 \geq p_k^{(i)} (N-K) e^{d_k^{(i)}} \prod_{j=1}^K (p_j^{(i)})^{b_k^{(i),j}}. \tag{53} \]

Then, the original SINR constraint in (21b) can be replaced by the following constraint

\[p_k^{(i)} (N-K) e^{d_k^{(i)}} \prod_{j=1}^K (p_j^{(i)})^{b_k^{(i),j}}. \]

Algorithm 2 Iterative Algorithm for Solving Problem (55) for the FZF Case

1. Initialize iteration number \(i = 1 \), and error tolerance \(\zeta = 0.01 \);
2. Initialize the pilot power and transmission power \(\{p_k^{(1)}(i), \hat{p}_k(1), \forall k\} \), calculate SINR \(\{\chi_k^{(i)}, \forall k\} \), and obtain the weighted sum rate that is \(\text{Obj}^{(i)} \). Set \(\text{Obj}^{(0)} = \text{Obj}^{(1)} \);
3. while \((\text{Obj}^{(i)} - \text{Obj}^{(i-1)}) / \text{Obj}^{(i-1)} \geq \zeta \) do
4. Update \(\{\hat{p}_k^{(i)}, \hat{p}_k^{(i),k}, \forall k\} \);
5. Update \(i = i + 1 \), solve Problem (55) by using the CVX package to obtain \(\{p_1^{(i)}, \hat{p}_k^{(i),k}, \forall k\} \), calculate SINR \(\{\chi_k^{(i)}, \forall k\} \) and then obtain the weighted sum rate, denoted as \(\text{Obj}^{(i)} \);
6. end while

\[\geq \chi_k \left\{ \sum_{m \in M_k} K k' \prod_{k' \neq k} (\vartheta_{k,k'})^2 + \sum_{k'=1}^K \prod_{j=1, j \neq k'}^K (p_j^{(i)})^{b_k^{(i),j}} \right\} \tag{54} \]

Based on the above analysis, the optimization problem can be transformed into the following GP problem

\[\max \{p_k^m\} \prod_{k=1}^K \chi_k^{(i)} \quad \text{s.t.} \quad (54), \forall k, \tag{55a} \]

\[(22c), (19c). \tag{55b} \]

Therefore, an iterative algorithm is proposed to solve Problem (55), which is shown in Algorithm 2. In addition, the initialization scheme similar to the MRC case can be adopted to find a feasible initial point for Algorithm 2. The convergence of Algorithm 2 can be readily proved by using the similar method for the MRC decoder, which is omitted due to limited space.

V. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate the effectiveness of our proposed algorithms for a smart factory. The factory is assumed to be a square with size of \(1 \text{ km} \times 1 \text{ km} \), and all the APs are uniformly deployed at \(M \) constellation points. For the large-scale fading, we adopt three slope model for path-loss (dB) [23], which is given by

\[\text{PL}_{m,k} = \begin{cases} L_{\text{loss}} + 35\log_{10} (d_{m,k}), & d_{m,k} > d_1, \\ L_{\text{loss}} + 15\log_{10} (d_1) + 20\log_{10} (d_0), & d_{m,k} \leq d_0, \\ L_{\text{loss}} + 15\log_{10} (d_1) + 20\log_{10} (d_{m,k}), & \text{other}, \end{cases} \tag{56} \]

where \(d_{m,k} \) is the distance between the \(m \)th AP and the \(k \)th device, and \(L_{\text{loss}} \) is a constant factor, denoted as

\[L_{\text{loss}} = 46.3 + 33.9\log_{10} (f) - 13.82\log_{10} (h_{\text{AP}}) - (1.1\log_{10} (f) - 0.7) h_u + (1.56\log_{10} (f) - 0.8), \tag{57} \]
where f (MHz) is the carrier frequency, and h_{AP} (m) and h_u (m) are the heights of the APs and devices, respectively. For the small-scale fading, it is generally modeled as Rayleigh fading with zero mean and unit variance. Unless otherwise specified, the simulation parameters are summarized in Table I. The noise power is given by

$$P_n = B \times k_B \times T_0 \times 10^{\frac{N_{\text{dB}}}{10}} \text{(W)},$$

(58)

where $k_B = 1.381 \times 10^{-23}$ (Joule per Kelvin) is the Boltzmann constant, and $T_0 = 290$ (Kelvin) is the noise temperature. The weights for all the devices are randomly generated within $[0,1]$. More importantly, we assume that the total number of antennas in this square area is constant. In other words, if there are more APs, each AP is equipped with less antennas.

Due to the implementation complexity, each device cannot be served by all APs, and thus several nearest APs are chosen to provide the service for each device. Inspired by [24], the following strategy is adopted

$$\sum_{m \in M_k} \beta_{m,k} \geq T_h,$$

(59)

where T_h is the threshold. Specifically, the large-scale fading parameters are arranged in descending order, and then select them in turn until the above condition in (59) is satisfied. For example, $T_h = 1$ means each device is served by all APs.

A. Tightness of the Date Rate LB

We first evaluate the gap between the derived LB and ergodic data rate for both MRC and FZF decoders with $T_h = 0.9$ and $p^d_k = p^f_k = 0.1$ W, $\forall k$. Simulation results are obtained through the Monte-Carlo simulation by averaging over 10^4 random channel generations. As can be seen in Fig. 2, there is a gap between the derived LB and the ergodic rate for the MRC case, and the gap enlarges with the number of AP. Nevertheless, the analytical results have the same trend with the Monte Carlo simulations. In Fig. 3, we find that the derived LB based on the FZF decoder is close to the ergodic rate for any cases. This is due to the fact that the devices’ interference is suppressed by the FZF decoder. More importantly, simulation results demonstrate that we can optimize the derived LB data rate instead of the complicated expectation expression.

B. Convergence of the Proposed Algorithms

In this subsection, the devices are randomly deployed in the network, and then demonstrate the convergence of the proposed algorithms with a total number of antennas equal to $MN = 144$, illustrated in Fig. 4 and Fig. 5. From these two figures, it is obvious that both algorithms converge rapidly regardless of the number of AP. Specifically, only 3 or 4 iterations are sufficient for the algorithm to converge for the MRC decoder, while the FZF decoder needs about 12 iterations to converge, which demonstrates the low complexity of our proposed algorithms.

C. Effect of the Threshold

In this subsection, we demonstrate the impact of the threshold on the system performance for the AP selection.

TABLE I

SIMULATION PARAMETERS

Parameters Setting	Value	Parameters Setting	Value
Carrier frequency (f)	2.1 GHz	Bandwidth (B)	10 MHz
Transmission duration (T_{th})	0.1 ms	Blocklength ($L = BT_{th}$)	1000
Height of APs (h_{AP})	15 m	Height of devices (h_u)	1.6 m
Noise figure (N_{dB})	9 dB	Number of devices (K)	10
Required data rate (R_{req})	5 Mbps	Decoding error probability ε_k	10^{-5}
d_0	10 m	d_1	50 m
the average weighted sum rate is obtained by averaging over 10^2 random deployments in the square area, and the system performance is defined as zero if any devices do not satisfy the strict requirements of data rate and DEP.

For the MRC case, the performance with different thresholds T_h is illustrated in Fig. 6. Initially, more APs can provide improved performance. However, the system performance deteriorates when choosing all APs, and the reason is that the APs that are far away from the device introduce unexpected interference. Besides, we find that the average performance can reach the peak performance when the threshold is about 0.95 for both 4 and 9 APs.

The impact of the threshold on the system performance for the FZF decoder is illustrated in Fig. 7. Similar to the MRC decoder, the average weighted sum rate first increases with the threshold and then decreases with it. It can be seen from Fig. 7 that the optimal threshold is about 0.8, and the performance would deteriorate after this threshold. Therefore, we set the threshold for the MRC and FZF decoders as 0.95 and 0.75 to reduce the implementation complexity.

D. Performance Comparison

In this subsection, we investigate the impact of limited energy E_k on the system performance. The total number of antennas MN is set to 144, and the simulation results are obtained by averaging over 100 Monte-Carlo trials where in each snapshot the devices’ locations are randomly generated in the square area. Besides, to guarantee the URLLC requirements, we set the weight sum rate to zero when the achievable data rate of at least one device does not meet the required data rate. We also compare the proposed algorithms with the following algorithms.

- **Upper bound**: Shannon capacity under infinite block-length (IFBL) is adopted for solving the problems in (19) and (55). Since the performance loss due to FBL is ignored, the Shannon capacity without penalty can be regarded as the upper bound of the average weighted sum rate in the smart factory.

- **Conventional alg.**: We first obtain the solution based on the Shannon capacity under IFBL, and then the solution is applied to both MRC and FZF cases under channel capacity in the FBL regime, respectively. Specifically, we first obtain the optimal pilot power p_k^p and payload power p_k^d by solving the conventional Shannon capacity maximization problem, and then calculate the achievable data rate based on the FBL.

- **Fixed pilot power alg.**: The pilot power is fixed as $p_k^p = \frac{E_k}{L}$ and we only optimize the payload power p_k^d for maximizing the weighted sum rate.
In Fig. 8, we show the average weighted sum rate versus the total energy E_k for the MRC decoder. It is obvious that the upper bound can obtain the best performance as the penalty due to FBL is ignored. Specifically, our proposed method is superior over the fixed pilot power algorithm, especially for the low energy regime. This is due to the fact the system performance is limited by the estimated channel gain $\lambda_{m,k}$ in the low energy regime, and the proposed algorithm can flexibly allocate energy by jointly considering channel gain and transmission gain to maximize the system performance.

In addition, the conventional method performs much worse than our proposed algorithm, because the optimization based on the conventional Shannon capacity does not consider the penalty due to FBL.

Next, the weighted sum rate for the FZF decoder is depicted in Fig. 9. As expected, our proposed algorithm can achieve the best performance. Particularly, similar to the MRC decoder, the fixed pilot power algorithm can meet the requirement of URLLC only when deploying more APs and using more energy. For conventional method, its performance could approach the upper bound with the increasing energy, which is different from the results of the MRC case. More importantly, an interesting observation is that 4 APs provide a better performance than 9 APs, which reveals a tradeoff between deploying more APs and installing more antennas on each AP when adopting the FZF decoder.

E. Effect of Number of Devices

In this subsection, we investigate the relationship between the number of devices and the system performance with the total energy $E_k = 20$ dB, $\forall k$. Here, we assume that the number of devices is smaller than the number of antennas deployed at each AP to ensure channel hardening.
Fig. 10 and Fig. 11 show the average performance versus the number of devices for MRC and FZF decoders, respectively. For both decoders, the performance of conventional method has an unpredictable trend, as the optimal solution based on the Shannon capacity under FBL does not consider the penalty due to FBL. Besides, CF mMIMO can provide uniform services for all devices, while the centralized mMIMO cannot support URLLC for the devices that are far away from APs, leading to the fact that the system performance remains almost unchanged or even degraded with the increasing number of devices for the MRC and FZF decoders, respectively. More importantly, CF mMIMO with the FZF decoder cannot provide URLLC for all devices when the number of devices approaches the number of each AP's antenna.

VI. CONCLUSION

In this paper, we studied the resource allocation for uplink CF mMIMO systems to support URLLC in a smart factory. The closed-form LB data rates with imperfect CSI for both MRC and FZF decoders were derived, which is more tractable than the exact ergodic rate. Then, the joint optimization of the pilot and the payload power was proposed to maximize the weighted sum rate while considering limited energy, data rate, and DEP requirements. Finally, to tackle the non-convex problem, an iterative algorithm that uses SCA and GP was proposed. Simulation results demonstrated that the algorithm converges rapidly, and outperforms the existing benchmark algorithms for all cases, especially for devices with a lower energy budget, which demonstrates the effectiveness of our approach.

APPENDIX A

PROOF OF THEOREM 1

From (11), we need to derive the expressions of $|DS_k|^2$, $\mathbb{E}\left(|LS_k|^2\right)$, $\mathbb{E}\left(|UI_{k,k'}|^2\right)$ and $\mathbb{E}\left(|N|^2\right)$, respectively.

We first compute DS_k. Since $\hat{g}_{m,k}$ and $\bar{g}_{m,k}$ are independent, we have

$$|DS_k|^2 = \mathbb{E}\left(\left|\sum_{m \in M_k} \sqrt{p_k^d} (\hat{g}_{m,k}^H) \bar{g}_{m,k} \right|^2\right) = N^2 p_k^d \left(\sum_{m \in M_k} \lambda_{m,k}\right)^2. \quad (60)$$

The term $\mathbb{E}\left(|LS_k|^2\right)$ is given by

$$\mathbb{E}\left(|LS_k|^2\right) = P_k^d p_k^d \mathbb{E}\left(\left|\sum_{m \in M_k} (\hat{g}_{m,k}^H) g_{m,k} - N \sum_{m \in M_k} \lambda_{m,k}\right|^2\right) = N^2 p_k^d \sum_{m \in M_k} \lambda_{m,k}^2 \beta_{m,k}. \quad (61)$$

Then, $\mathbb{E}\left(|UI_{k,k'}|^2\right)$ can be calculated as

$$\mathbb{E}\left(|UI_{k,k'}|^2\right) = \mathbb{E}\left(\left|\sum_{m \in M_k} \sqrt{p_k^d} \hat{g}_{m,k} \left(g_{m,k} + n_{m,k}^p\right)^H \bar{g}_{m,k'}\right|^2\right) = p_k^d \mathbb{E}\left(\left|\sum_{m \in M_k} \hat{\alpha}_{m,k} (g_{m,k}^H \bar{g}_{m,k'})\right|^2\right) + p_k^d \mathbb{E}\left(\left|\sum_{m \in M_k} \hat{\alpha}_{m,k} (n_{m,k}^p)^H \bar{g}_{m,k'}\right|^2\right). \quad (62)$$

where $\hat{\alpha}_{m,k}$ is equal to $\tilde{\alpha}_{m,k} = \frac{\lambda_{m,k}}{\beta_{m,k}}$. For each term in (62), we have

$$\mathbb{E}\left(\left|\sum_{m \in M_k} \hat{\alpha}_{m,k} (g_{m,k}^H \bar{g}_{m,k'})\right|^2\right) = \mathbb{E}\left(\left|\sum_{m \in M_k} \tilde{\alpha}_{m,k} (g_{m,k}^H \bar{g}_{m,k'})\right|^2\right) = N \sum_{m \in M_k} (\lambda_{m,k})^2 \beta_{m,k}, \quad (63)$$

and

$$\mathbb{E}\left(\left|\sum_{m \in M_k} \hat{\alpha}_{m,k} (n_{m,k}^p)^H \bar{g}_{m,k'}\right|^2\right) = \frac{N}{K p_{k'}^d} \sum_{m \in M_k} \left(\frac{\lambda_{m,k}}{\beta_{m,k}}\right)^2 \beta_{m,k'}. \quad (64)$$
Finally, we compute $\mathbb{E}\left(|N_k|^2 \right)$. Similar to (64), we have
\[
\mathbb{E}\left(|N_k|^2 \right) = N \sum_{m \in M_k} \lambda_{m,k}. \tag{65}
\]

Substituting (60), (61), (63), and (64) into (11), we obtain $\hat{\gamma}_{k,MRC}$ in (16).

APPENDIX B

PROOF OF THEOREM 2

Similar to the MRC decoder, we need to derive the expressions of $|D_{S_k}|^2$, $\mathbb{E}\left(|L_{S_k}|^2 \right)$, $\mathbb{E}\left(|U_{k,k'}|^2 \right)$ and $\mathbb{E}\left(|N_k|^2 \right)$, respectively.

Before deriving $|D_{S_k}|^2$, we need to calculate the decoding vector for the FZF decoder. The coefficient of normalized vector can be derived as
\[
\mathbb{E}\left(\left\| \tilde{G}_m \left[\tilde{G}_m^H \tilde{G}_m \right]^{-1} \mathbf{e}_k \right\|^2 \right) = \frac{1}{(N-K) \lambda_{m,k}}. \tag{66}
\]

Then, $|D_{S_k}|$ can be derived as
\[
|D_{S_k}| = \mathbb{E}\left\{ \sum_{m \in M_k} (a_{m,k})^H g_{m,k} \sqrt{p_{k}^d} \right\} = \sqrt{p_{k}^d (N-K)} \sum_{m \in M_k} \sqrt{\gamma_{m,k}}. \tag{67}
\]

Next, the leakage power can be formulated as
\[
\mathbb{E}\left\{ |L_{S_k}|^2 \right\} = \mathbb{E}\left\{ \left\| \sum_{m \in M_k} (a_{m,k})^H g_{m,k} \sqrt{p_{k}^d - D_{S_k}} \right\|^2 \right\} = p_{k}^d \sum_{m \in M_k} (\gamma_{m,k} - \lambda_{m,k}). \tag{68}
\]

The term $\mathbb{E}\left\{ |U_{k,k'}|^2 \right\}$ can be expressed as
\[
\mathbb{E}\left\{ |U_{k,k'}|^2 \right\} = \mathbb{E}\left\{ \left\| \sum_{m \in M_k} (a_{m,k})^H g_{m,k'} \sqrt{p_{k}^d} \right\|^2 \right\} = p_{k}^d (N-K) \mathbb{E}\left\{ \sum_{m \in M_k} \gamma_{m,k} (\gamma_{m,k'} - \lambda_{m,k'}) \left[\tilde{G}_m^H \tilde{G}_m \right]^{-1} \right\} = p_{k}^d \sum_{m \in M_k} (\gamma_{m,k'} - \lambda_{m,k'}). \tag{69}
\]

The noise term can be derived as
\[
\mathbb{E}\left\{ |N_k|^2 \right\} = \mathbb{E}\left\{ \left\| \sum_{m \in M_k} (a_{m,k}) \right\|^2 \right\} = |M_k|, \tag{70}
\]

where $|M_k|$ means the cardinality of the set M_k.

Finally, we complete the proof by substituting the expressions of (67), (68), (69), and (70) into the SINR expression.

APPENDIX C

PROOF OF LEMMA 2

The inequality in (22) can be readily proved by substituting the expressions of ρ and δ into (22). Then, we define $J(x) = \ln (1+x) - \rho \ln x - \delta$, the first-order derivative is given by
\[
\frac{dJ(x)}{dx} = \frac{x - \rho (1+x)}{(1+x)x} = \frac{x (1+\hat{x}) - \hat{x} (1+x)}{(1+x)(1+x)}. \tag{71}
\]

Since both x and \hat{x} are positive values, the sign of $\frac{dJ(x)}{dx}$ only depends on the numerator. Let us define $H(x) = x (1+\hat{x}) - \hat{x} (1+x)$, and then the first-order derivative of $H(x)$ is given by $H'(x) = 1$, which means $H(x)$ is monotonically increasing. Consequently, we have $H(x) \geq 0$ when $x \geq \hat{x}$ since $H(\hat{x}) = 0$, which indicates that $J(x)$ is a monotonically increasing function if $x \geq \hat{x}$. Similarly, we can prove the $J(x)$ is a monotonically decreasing function if $x < \hat{x}$. As a result, we complete the proof by showing that $J(x)$ is always larger than $J(\hat{x}) = 0$.

APPENDIX D

PROOF OF LEMMA 4

Using (30) and (31), we have
\[
\frac{\theta_k}{\sigma_k} = \sum_{m \in M_k} \frac{\left(K p_k^p (\beta_{m,k})^2 \prod_{n \neq m} (K p_k^p \beta_{n,k} + 1) \right)}{\prod_{m \in M_k} (K p_k^p \beta_{m,k} + 1)} = \sum_{m \in M_k} \lambda_{m,k}, \tag{72}
\]

where $\lambda_{m,k}$ is given in (6).

Using (31) and (32), we have
\[
\frac{\xi_{k,k'}}{\sigma_k} = \sum_{m \in M_k} \frac{\left(K p_k^p (\beta_{m,k})^2 \prod_{n \neq m} (K p_k^p \beta_{n,k} + 1) \right)}{\prod_{m \in M_k} (K p_k^p \beta_{m,k} + 1)} = \sum_{m \in M_k} \hat{\lambda}_{k,k'}. \tag{73}
\]

Substituting (73) and (72) into (16), we have
\[
\hat{\gamma}_{k,MRC} = \frac{K p_k^p (\theta_k)^2}{\sum_{k' = 1}^{K} p_{k'}^d \sigma_k \xi_{k,k'} + \sigma_k \theta_k}. \tag{74}
\]

APPENDIX E

PROOF OF THEOREM 3

By taking the logarithm operator for the left hand side of (34), we have
\[
\ln \theta_k = \ln (K e^x) + \ln \left(\sum_{m \in M_k} \left(\beta_{m,k} \prod_{n \neq m} (K \beta_{n,k} e^x + 1) \right) \right) \triangleq F(x), \tag{75}
\]

where x is given by $x = \ln (p_k^p)$.
It is readily found that (75) can be transformed into the following equivalent form
\[
F(x) = \ln (K e^x) + \ln \left(\sum_{m \in M_k} \left[\hat{v}_m e^{\Gamma_m x} \right] \right),
\]
(76)
where \(\hat{v}_m\) and \(\Gamma_m\) are certain positive constant values. Note that the expressions of \(\hat{v}_m\) and \(\Gamma_m\) are not needed since we only need to prove that (76) is a convex function of \(x\). Then, by using Jensen’s inequality, we have
\[
F(x) \geq a_k x + c_k,
\]
(77)
where \(a_k\) and \(c_k\) are given in (35) and (36), respectively.

Finally, we complete the proof by substituting (78) and (79) into the SINR expression for the FZF case in (18).

Appendix F

Proof of Lemma 5

By using \(\varpi_k\) in (47) and \(\vartheta_{k,k}\) in (48), we have
\[
\frac{\varpi_k}{\vartheta_{k,k}} = \sum_{m \in M_k} \left[\sqrt{K p_k^m (\beta_{m,k})^2} \prod_{n \neq m} \sqrt{K p_k^m (\beta_{n,k}^* + 1)} \right]
\]
(78)
\[
= \prod_{m \in M_k} \sqrt{K p_k^m (\beta_{m,k}^* + 1)}.
\]
(79)

Finally, we complete the proof by substituting (78) and (79) into the SINR expression for the FZF case in (18).

Appendix G

Proof of Theorem 4

The term \(\ln \left(\varpi_k \prod_{k' \neq k} (\vartheta_{k,k'})^2 \right)\) can be expressed as
\[
2 \ln (\varpi_k) + \sum_{k' \neq k} \ln (\vartheta_{k,k'})^2 \geq D_k (x),
\]
(80)
where \(x\) is equal to \(x = [x_1, x_2, \ldots, x_K]\) with \(x_k = \ln (p_k^m)\).

Next, we need to derive the second-order derivatives of \(\ln (\varpi_k)\) and \(\ln (\vartheta_{k,k'})\) to prove that they are both convex functions. We substitute \(x_k = \ln (p_k^m)\) into \(\ln (\varpi_k)\), denoted as
\[
\ln (\varpi_k) = \ln \left(\prod_{m \in M_k} \sqrt{K e^{x_k} (\beta_{m,k})^2} \prod_{n \neq m} \sqrt{K e^{x_k} (\beta_{n,k}^* + 1)} \right)^2 \]
\[
= \ln \left(\left(\sum_{m \in M_k} \sqrt{K e^{x_k} (\beta_{m,k})^2} \prod_{n \neq m} \sqrt{K e^{x_k} (\beta_{n,k}^* + 1)} \right)^2 \right)
\]
(81)

where \(\hat{v}_m\) and \(\Gamma_m\) are certain positive constant values. Similar to the proof of Theorem 3, the expressions of \(\hat{v}_m\) and \(\Gamma_m\) are not needed since we only need to prove that (81) is a convex function of \(x_k\). Similar to \(F(x)\) in (76), it is readily to prove \(\ln \left((\varpi_k)^2 \right)\) is a convex function.

The second-order derivative of \(\ln \left((\vartheta_{k,k'})^2 \right)\) is given by
\[
\frac{\partial^2 \ln (\vartheta_{k,k'})^2}{\partial (x_{k'})^2} = \frac{\sum m \in M_k (K \beta_{m,k'} e^{x_k'})}{\sum m \in M_k (K \beta_{m,k'} e^{x_k'})^2} > 0,
\]
(82)
where \(x_{k'}\) is equal to \(x_k' = \ln (p_k^m)\). Then, \(\ln (\vartheta_{k,k'})\) is a convex function of \(x_{k'}\).

Then, it is readily to calculate \(\frac{\partial^2 \ln (\varpi_k)^2}{\partial (x_k)^2} = 0\) and \(\frac{\partial^2 \ln (\vartheta_{k,k'})^2}{\partial (x_{k'})^2} = 0\), and thus the Hessian matrix of \(D_k (x)\) in (80) is positive semi-definite. As a result, by using Jensen’s inequality, we have
\[
D_k (x) \geq \sum_{j=1}^{K} b_j x_j + d_k,
\]
(83)
where \(b_j\) and \(d_k\) are given in (51) and (52), respectively.

Finally, we complete this proof by taking exponential operation for both sides of (83).

References

[1] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and low-latency wireless communication with short packets,” Proc. IEEE, vol. 104, no. 9, pp. 1711–1726, Sep. 2016.
[2] M. Bennis, M. Debbah, and H. V. Poor, “Ultrareliable and low-latency wireless communication: Tail, risk, and scale,” Proc. IEEE, vol. 106, no. 10, pp. 1834–1853, Oct. 2018.
[3] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.
[4] P. Popovski et al., “Wireless access in ultra-reliable low-latency communication (URLLC),” IEEE Trans. Commun., vol. 67, no. 8, pp. 5783–5801, Aug. 2019.
[5] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, Apr. 2010.
[6] K. F. Trillinggaard and P. Popovski, “Downlink transmission of short packets: Framing and control information revisited,” IEEE Trans. Commun., vol. 65, no. 5, pp. 2054–2061, May 2017.
[7] H. Ren, C. Pan, Y. Deng, M. Elkashlan, and A. Nallanathan, “Joint power and blocklength optimization for URLLC in a factory automation scenario,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 1786–1801, Mar. 2020.
[8] J. Cao, X. Zhu, Y. Jiang, Y. Liu, and F.-C. Zheng, “Joint block length and pilot length optimization for URLLC in the finite block length regime,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.
[9] Y. Hu, J. Gross, and A. Schmeink, “On the capacity of relaying with finite blocklength,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1700–1704, Mar. 2016.
[10] Y. Hu, A. Schmeink, and J. Gross, “Blocklength-limited performance of relaying under quasi-static Rayleigh channels,” IEEE Trans. Wireless Commun., vol. 15, no. 7, pp. 4548–4558, Jul. 2016.
[11] H. Ren, C. Pan, Y. Deng, M. Elkashlan, and A. Nallanathan, “Resource allocation for secure URLLC in mission-critical IoT scenarios,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5793–5807, Sep. 2020.
Nan Liu (Member, IEEE) received the B.Eng. degree in electrical engineering from the Beijing University of Posts and Telecommunications, Beijing, China, in 2001, and the Ph.D. degree in electrical and computer engineering from The University of Maryland, College Park, MD, USA, in 2007. From 2007 to 2008, she was a Post-Doctoral Scholar with the Wireless Systems Laboratory, Department of Electrical Engineering, Stanford University. In 2009, she became a Professor with the National Mobile Communications Research Laboratory, School of Information Science and Engineering, Southeast University, Nanjing, China. Her research interests lie in the area of information theory and communication theory. She is an Associate Editor of IEEE TRANSACTIONS ON COMMUNICATIONS.

Maged Elkashlan (Senior Member, IEEE) received the Ph.D. degree in electrical engineering from The University of British Columbia in 2006. From 2007 to 2011, he was with the Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia. During this time, he held visiting faculty appointments at the University of New South Wales, The University of Sydney, and University of Technology Sydney. In 2011, he joined the School of Electronic Engineering and Computer Science, Queen Mary University of London. He also holds a visiting faculty appointment at the Beijing University of Posts and Telecommunications. His research interests fall into the broad areas of communication theory and signal processing. He is an Editor of the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY and the IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL AND MULTI-SCALE COMMUNICATIONS. He was an Editor of the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS from 2013 to 2018 and the IEEE COMMUNICATIONS LETTERS from 2012 to 2016. He received numerous awards, including the 2022 IEEE Communications Society Leonard G. Abraham Prize, and Best Paper Awards at the 2014 and 2016 IEEE ICC, 2014 CHINACOM, and 2013 IEEE VTC-Spring.