A DISJOINTNESS TYPE PROPERTY
OF CONDITIONAL EXPECTATION OPERATORS

BEATA RANDRIANANTOANINA∗

Abstract. We give a characterization of conditional expectation operators through a disjointness type property similar to band preserving operators. We say that the operator $T : X \to X$ on a Banach lattice X is semi band preserving if and only if for all $f, g \in X$, $f \perp Tg$ implies that $Tf \perp Tg$. We prove that when X is a purely atomic Banach lattice, then an operator T on X is a weighted conditional expectation operator if and only if T is semi band preserving.

1. Introduction

In this note we study two abstract disjointness type conditions which are satisfied by all conditional expectation operators on Banach lattices. There is an extensive literature devoted to finding conditions which characterize conditional expectation operators and an extensive literature studying disjointness preserving and band preserving operators. However, as far as we know, to date there have been no attempts to characterize conditional expectation operators through a property related to disjointness.

Of course, conditional expectation operators are never disjointness preserving yet alone band preserving. However they do preserve some bands, namely they satisfy the following disjointness type condition:

(SBP) $f \perp Tg \implies Tf \perp Tg \ \forall f, g \in X,$

(here X is a Banach lattice and T is a linear operator on X).

Note that the condition (SBP) is a weakening of the condition which defines band preserving operators. Recall that a linear operator T on a Banach lattice X is called band preserving if $TB \subset B$ for every band $B \subset X$. Thus T is band preserving if and only if one of the two following equivalent conditions is satisfied.

(BP1) $f \perp g \implies Tf \perp g \ \forall f, g \in X,$

(BP2) $f \triangleleft g \implies Tf \triangleleft g \ \forall f, g \in X.$

(We use notation $f \triangleleft g$ to mean that f belongs to a band generated by $\{g\}$.)

Thus condition (SBP) is the same as (BP1) with the additional constraint that g belongs to the range of T. Hence, clearly (BP1) implies (SBP) and (BP1) and (SBP) are equivalent.

1991 Mathematics Subject Classification. [.

∗Participant, NSF Workshop in Linear Analysis and Probability, Texas A&M University.
if \(T \) is surjective. Conditional expectation operators are our principal examples of non-band preserving operators which do satisfy (SBP).

We will say that an operator \(T \) is semi band preserving if \(T \) satisfies (SBP). Our main result (Theorem 4.7 and Corollary 4.11) asserts that when \(X \) is a purely atomic Banach lattice, then an operator \(T \) on \(X \) is a weighted conditional expectation operator if and only if \(T \) is semi band preserving.

Further, we study a condition which arises from the weakening of (BP2) by adding the constraint that \(g \) belongs to the range of \(T \), similarly as in the definition of semi band preserving operators. Namely we consider

\[
\text{(SCP)} \quad f \prec Tg \Rightarrow Tf \prec Tg \quad \forall f, g \in X.
\]

We will say that an operator \(T \) is semi containment preserving if \(T \) satisfies (SCP). It is clear that all surjective semi containment preserving operators are band preserving. It is also easy to see that all conditional expectation operators are semi containment preserving but not band preserving. In contrast to the fact that (BP1) and (BP2) are equivalent, conditions (SBP) and (SCP) are independent in general (see Examples 3.1 and 3.2). However if Banach lattice \(X \) is purely atomic then it follows from our characterization of semi band preserving operators that all semi band preserving operators are semi containment preserving (see Corollary 4.10). It is easy to construct on almost all Banach lattices a semi containment preserving operator \(T \) so that \(T \) is not semi band preserving, one can even find projections with this property (see Example 3.2). However we prove (Theorem 5.1 and Corollary 5.3) that if \(X \) is a strictly monotone purely atomic Banach lattice and \(P \) is a projection of norm one on \(X \) then \(P \) is a weighted conditional expectation operator if and only if \(P \) is semi containment preserving. (Thus, in particular, semi containment preserving projections of norm one on strictly monotone purely atomic Banach lattices are semi band preserving.)

We finish these general remarks about semi band preserving and semi containment preserving operators by recalling a pair of conditions which are very similar to (SBP) and (SCP). Let \(X \) denote a vector lattice and \(T \) be a linear operator on \(X \). Consider:

\[
\text{(DP)} \quad f \perp g \implies Tf \perp Tg \quad \forall f, g \in X;
\]

\[
\text{(\(\beta \))} \quad f \prec g \implies Tf \prec Tg \quad \forall f, g \in X.
\]

Condition (DP) is the well-known condition defining disjointness preserving operators, and condition (\(\beta \)) has been recently identified by Abramovich and Kitover [2] as the condition equivalent to the fact that \(T^{-1} \) is disjointness preserving (provided that \(T \) is bijective and \(X \) has sufficiently many components). Abramovich and Kitover [2] showed that in general conditions (DP) and (\(\beta \)) are independent, but if \(T \) is a continuous (or just regular) linear operator between normed vector lattices then (DP) implies (\(\beta \)) and if \(X \) is a Banach lattice lattice and \(T \) is bijective then (DP) is equivalent to (\(\beta \)).
Acknowledgments. I wish to express my thanks to Professors Y. Abramovich and A. Schep for their valuable remarks on preliminary versions of this paper.

2. Preliminaries

We use standard lattice and Banach space notations as may be found e.g. in \[5, 6, 7\]. Below we recall basic definitions that we use.

A **band** in a Banach lattice \(X\) is a closed subspace \(Y \subseteq X\) for which \(y \in Y\) whenever \(|y| \leq |x|\) for some \(x \in Y\) and so that whenever a subset of \(Y\) possesses a supremum in \(X\), this supremum is a member of \(Y\). An element \(u\) in a Banach lattice \(X\) is called an **atom** if it follows from \(0 \neq v \leq u\) that \(v = u\). \(X\) is called a purely atomic Banach lattice if it is the band generated by its atoms. Examples of purely atomic Banach lattices include \(c_0, c, \ell_p (1 \leq p \leq \infty)\) and Banach spaces with 1-unconditional bases. A Banach lattice \(X\) is called nonatomic if it contains no atoms.

For an element \(u\) in a Banach lattice \(X\), an element \(v \in X\) is said to be a component of \(u\) if \(|v| \land |u - v| = 0\). A lattice \(X\) is called essentially one-dimensional if for any two non-disjoint elements \(x_1, x_2 \in X\) there exist non-zero components \(u_1\) of \(x_1\) and \(u_2\) of \(x_2\) such that \(u_1\) and \(u_2\) are proportional. This class of lattices is strictly larger than purely atomic lattices and does include some nonatomic lattices, see \[3, Chapter 11\].

A Banach lattice \(X\) is called **strictly monotone** if for all elements \(x, y \in X\) with \(x, y > 0\) we have \(\|x + y\| > \|x\|\).

In this note we will mainly consider Banach lattices of (equivalence classes of) functions on a \(\sigma\)-finite measure space \((\Omega, \Sigma, \mu)\) which are subspaces of \(L_1(\Omega, \Sigma, \mu) + L_\infty(\Omega, \Sigma, \mu)\).

By the Radon-Nikodym Theorem for each \(f \in L_1(\Omega, \Sigma, \mu) + L_\infty(\Omega, \Sigma, \mu)\) and for every \(\sigma\)-subalgebra \(A\) of \(\Sigma\) so that \(\mu\) restricted to \(A\) is \(\sigma\)-finite (i.e. so that \(A\) does not have atoms of infinite measure) there exists a unique, up to equality a.e., \(A\)-measurable locally integrable function \(h\) so that

\[
\int_\Omega ghd\mu = \int_\Omega gfd\mu
\]

for every bounded, integrable and \(A\)-measurable function \(g\) on \(\Omega\). The function \(h\) is called the conditional expectation of \(f\) with respect to \(A\) and it is usually denoted by \(E(f|A)\). The operator \(E(\cdot|A)\) is called the conditional expectation operator generated by \(A\). Sometimes, particularly when \((\Omega, \Sigma, \mu)\) is purely atomic, \(E(\cdot|A)\) is also called an averaging operator. When \(X\) is a purely atomic Banach lattice with a basis \(\{e_i\}_{i \in \mathbb{N}}\) then averaging operators on \(X\) have the following form:

The \(\sigma\)-finite \(\sigma\)-subalgebra \(A\) is generated by a family of mutually disjoint finite subsets of \(\mathbb{N}, \{A_j\}_{j=1}^\infty\), and for all \(x = \sum_{i=1}^\infty x_i e_i\) the conditional expectation \(E(x|A)\) is defined by:

\[
E(x|A) = \sum_{j=1}^\infty \left(\frac{1}{\text{card}(A_j)} \sum_{n \in A_j} x_n \right) (\sum_{n \in A_j} e_n).
\]
Conditional expectation operators have been extensively studied by many authors since 1930s, for one of the most recent presentations of the subject see [1]. One of the main directions in the research concerning conditional expectation operators is to identify a property or properties of an operator T that guarantee that T is a conditional expectation operator, see [4].

Let X be a Banach lattice of functions on (Ω, Σ, μ) and let $k \in L_1(\Omega, \Sigma, \mu) + L_\infty(\Omega, \Sigma, \mu)$, $w \in X'$. Then $\mathcal{E}(wf|A)$ is well defined for all $f \in X$. Assume in addition that $k\mathcal{E}(wf|A) \in X$ for all $f \in X$ and put

$$Tf = k\mathcal{E}(wf|A).$$

Thus defined operator T is called a \textit{weighted conditional expectation operator}. Note that when X is a purely atomic Banach lattice or when A is a σ-subalgebra of Σ generated by a family of mutually disjoint sets $\{A_j\}_{j=1}^\infty$ of finite measure on Σ then weighted conditional expectation operators on X have the following form:

$$Tf = \sum_{j=1}^\infty \langle \psi_j, f \rangle u_j$$

where $\{\psi_j\}_{j=1}^\infty \subset X'$ and $\{u_j\}_{j=1}^\infty \subset X$ are so that for all j, $\text{supp} \psi_j \subset A_j$ and $\text{supp} u_j \subset A_j$.

Recall that when X is a space of (equivalence classes of) functions on (Ω, Σ, μ) then $\text{supp} f$ is the minimal closed subset of Ω so that $f(t) = 0$ for a.e. $t \in \Omega \setminus \text{supp} f$.

Note that a weighted conditional expectation operator is a projection if and only if $\mathcal{E}(kw|A)$ is the function constantly equal to 1, in case when μ is a finite measure, or if and only if

$$\langle \psi_j, u_j \rangle = 1$$

in case when A is a σ-subalgebra of Σ generated by a family of mutually disjoint sets $\{A_j\}_{j=1}^\infty$ (i.e. when T has form (1)).

3. Definitions of semi band preserving and semi containment preserving operators

Let X be a Banach lattice and T be a linear operator on X. As discussed in the Introduction we are interested in the following two conditions:

$$f \perp Tg \implies Tf \perp Tg \quad \forall f, g \in X,$$

(SBP)

$$f \preceq Tg \implies Tf \preceq Tg \quad \forall f, g \in X.$$

(SCP)

We will say that an operator T is \textit{semi band preserving} if T satisfies (SBP) and we will say that T is \textit{semi containment preserving} if T satisfies (SCP).

It is easy to see that all conditional expectation operators and weighted conditional expectation operators are both semi band preserving and semi containment preserving.
Conditions (SBP) and (SCP) are weakenings of conditions (BP1) and (BP2) (respectively) which define band preserving operators, but in contrast to the fact that conditions (BP1) and (BP2) are always equivalent, in general conditions (SBP) and (SCP) are independent of each other, as the following two simple examples demonstrate.

Example 3.1. Let X be a Banach lattice of functions on $[0, 1]$ such that the constant function $\varphi_1 = 1 = \chi_{[0,1]}$, and the function φ_2 defined by $\varphi_2(t) = t$ if $t \in [0, \frac{1}{2}]$, and $\varphi_2(t) = 0$ if $t \in (\frac{1}{2}, 1]$, belong to X and there exist functionals $\psi_1, \psi_2 \in X'$ with $\text{supp} \psi_1 \cup \text{supp} \psi_2 \subseteq [0, 1/2]$. Then there exists a linear operator T on X which is semi band preserving but not semi containment preserving.

Construction. Define for all $f \in X$:
\[
Tf = \langle \psi_1, f \rangle \varphi_1 + \langle \psi_2, f \rangle \varphi_2.
\]
Then the operator T is semi band preserving. Indeed, $f \perp Tg$ implies that either $f = 0$ or $\text{supp} Tg \subseteq [0, 1/2]$ and $f \subseteq [1/2, 1]$. But then $Tf = 0$ so $Tf \perp Tg$.

However T is not semi containment preserving. Indeed, let $f, g \in X$ be such that $\langle \psi_1, f \rangle = 0$, $\langle \psi_1, g \rangle \neq 0$ and $\text{supp} g \subseteq [0, 1/2]$. Then $Tf = \langle \psi_2, f \rangle \varphi_2$ and so $\text{supp} Tf = [0, 1/2]$. On the other hand, $\text{supp} Tg = [0, 1]$ since $\langle \psi_1, g \rangle \neq 0$. Thus $g \not\perp Tf$ but $Tg \not\perp Tf$.

Example 3.2. Let X be any Banach lattice which contains nonzero elements f_1, f_2 with $f_1 \perp f_2$. Then there exists a semi containment preserving operator Q on X which is not semi band preserving. Moreover Q can be chosen to be a projection and if X is not strictly monotone then Q can be chosen to be a projection of norm one.

Construction. Let ψ be a functional on X so that $\langle \psi, f_1 \rangle \neq 0$ and $\langle \psi, f_2 \rangle \neq 0$. Define for all $f \in X$:
\[
Qf = \langle \psi, f \rangle f_1.
\]
Then Q is trivially semi containment preserving since the range of Q is one dimensional. However Q is not semi band preserving since $f_2 \perp Qf_1$, but $Qf_2 \not\perp Qf_1$.

Moreover if $\langle \psi, f_1 \rangle = 1$ then Q is a projection. Further if X is not strictly monotone, then it is possible to chose $f_1 \perp f_2$, $f_2 \neq 0$, so that $\|f_1 + f_2\| = \|f_1\| = 1$ and $\psi \in X'$ so that $\langle \psi, f_1 \rangle = 1$, $\langle \psi, f_2 \rangle \neq 0$ and $\|\psi\| = 1$, which will result in Q being a projection of norm one.

4. Semi band preserving operators

Our next goal is to characterize weighted conditional expectation operators on purely atomic lattices as semi band preserving operators.

In the following X will be a Banach lattice of (equivalence classes of) real valued functions on a measure space (Ω, Σ, μ). For any linear operator $T : X \to X$ denote
\[
\Sigma_T = \{ A \subseteq \Omega : \exists f \in X \text{ with } \text{supp}(Tf) = A \}.
\]
Here and in the following all set relations are considered modulo sets of measure zero.

We start with a simple lemma, which we formulate here for easy reference.

Lemma 4.1.

1. If $A, B \in \Sigma_T$, then $A \cup B \in \Sigma_T$.
2. If $\{A_j\}_{j \in \mathbb{N}} \subseteq \Sigma_T$ is a family of mutually disjoint sets, then $\bigcup_{j=1}^{\infty} A_j \in \Sigma_T$.

Proof. These facts are immediate. For (1), let f, g be concrete representations of functions in X so that $\text{supp}(Tf) = A$ and $\text{supp}(Tg) = B$. Define

$$h(t) \overset{\text{def}}{=} \begin{cases} \frac{Tf(t)}{Tg(t)} & \text{if } Tg(t) \neq 0, \\ 0 & \text{if } Tg(t) = 0, \end{cases}$$

and denote

$$V(h) = \{ a \in \mathbb{R} : \mu(h^{-1}\{a\}) > 0 \}.$$

Clearly $\text{card}(V(h)) \leq \aleph_0$ and thus there exists $\alpha \in \mathbb{R}$, so that $-\alpha \notin V(h)$. It is easy to see that this implies that $\text{supp}(T(f + \alpha g)) = A \cup B$ (recall that all set relations are considered modulo sets of measure zero).

Part (2) is even quicker. Indeed let $\{f_j\}_{j \in \mathbb{N}}$ be a sequence of elements of X such that $\|f_j\| = 1$ and $\text{supp}(Tf_j) = A_j$ for all $j \in \mathbb{N}$. Then $\sum_{j=1}^{\infty} 2^{-j}f_j$ belongs to X and, since sets $\{A_j\}_{j \in \mathbb{N}}$ are mutually disjoint

$$\text{supp}(T(\sum_{j=1}^{\infty} 2^{-j}f_j)) = \bigcup_{j=1}^{\infty} A_j,$$

as desired.

Denote $S_T = \bigcup_{A \in \Sigma_T} A \subset \Omega$. Then, for each $f \in X$ we have

$$\text{supp}(Tf) \subseteq S_T.$$

Now we immediately obtain:

Proposition 4.2. If T is a semi band preserving operator on X then for every $f \in X$ with $\text{supp} f \subseteq \Omega \setminus S_T$ we have $Tf = 0$.

Proof. Indeed, by (2), $\text{supp}(Tf) \subseteq S_T$ so $f \perp Tf$. By (SBP) we get $Tf \perp Tf$. Thus $Tf = 0$.

When the space X is essentially one-dimensional we can deduce a further important property of semi band preserving operators. We have:

Proposition 4.3. Suppose that X is essentially one-dimensional and T is a semi band preserving operator on X. If $A, B \in \Sigma_T$ and $A \subset B$, then $B \setminus A \in \Sigma_T$.

6
Proof. Let \(h, g \in X \) be such that \(\text{supp}Th = B \) and \(\text{supp}Tg = A \). Since \(A \subset B \) and \(X \) is essentially one-dimensional there exists \(C \subset A \) so that the components \((Th)_C\) and \((Tg)_C\) of \(Th \) and \(Tg \), respectively, are proportional. Let \(\{A_i\}_{i \in I} \) denote the family of subsets of \(A \) maximal with respect to the property that \((Th)_{\chi A_i}\) and \((Tg)_{\chi A_i}\) are proportional. Then \(\{A_i\}_{i \in I} \) are mutually disjoint and, by the essential one-dimensionality of \(X \),

\[
A = \bigcup_{i \in I} A_i.
\]

Moreover, for each \(i \in I \) there exists a scalar \(a_i \neq 0 \) so that

\[
(3) \quad (Th)_{\chi A_i} = a_i(Tg)_{\chi A_i}.
\]

Consider \(g_i = h - a_i g \) for \(i \in I \). Then, by the maximality of \(A_i \)'s,

\[
\text{supp}(Tg_i) = B \setminus A_i.
\]

Thus \(B \setminus A_i \in \Sigma_T \) for all \(i \in I \). Moreover

\[
(4) \quad g_{\chi A_i} \perp Tg_i.
\]

Thus, by (SBP),

\[
T(g_{\chi A_i}) \perp Tg_i.
\]

That is, for all \(i \in I \):

\[
\text{supp}(T(g_{\chi A_i})) \subset A_i.
\]

But, since \(\{A_i\}_{i \in I} \) are mutually disjoint

\[
Tg = \sum_{i \in I} T(g_{\chi A_i}),
\]

and, by (4),

\[
(5) \quad (Tg)_{\chi A_i} = T(g_{\chi A_i}).
\]

Thus, by (3) and (4), we get

\[
(Th)_{\chi A} = \sum_{i \in I} (Th)_{\chi A_i} = \sum_{i \in I} a_i(Tg)_{\chi A_i} = \sum_{i \in I} a_i(T(g_{\chi A_i})) = T(\sum_{i \in I} a_i g_{\chi A_i}) = T(h_{\chi A}).
\]

Thus \((Th)_{\chi A} \in T(X)\). Hence

\[
(Th)_{\chi B \setminus A} = Th - (Th)_{\chi A} \in T(X).
\]

Thus \(B \setminus A \in \Sigma_T \).

Remark 4.4. Note that the above proof also shows that if \(X \) is essentially one-dimensional and \(T \) is a semi band preserving operator on \(X \) then the subspace \(T(X) \) is essentially one-dimensional. We will prove a stronger result in Theorem 4.7.
Remark 4.5. Proposition 4.3 fails in general nonatomic Banach lattices. Indeed, let T be the semi band preserving operator defined in Example 3.1. It is easy to see that $[0, 1], [0, 1/2] \in \Sigma_T$ and $[1/2, 1] = [0, 1] \setminus [0, 1/2]$ does not belong to Σ_T.

Note that when ψ_1 and ψ_2 are positive then T is positive, and when $\psi_i(\varphi_j) = \delta_{ij}$ for $i, j = 1, 2$, then T is a projection. However it follows from [4, Theorem 3.10] that when T is an order continuous positive semi band preserving projection on a Banach lattice of functions on $[0, 1]$ then T satisfies the thesis of Proposition 4.3.

By de Morgan Laws as a corollary of Lemma 4.1 and Proposition 4.3 we immediately obtain:

Corollary 4.6. Suppose that X is an essentially one-dimensional Banach lattice and T is a semi band preserving operator on X. Then T satisfies the following two properties:

(I1) $A, B \in \Sigma_T \implies A \cap B \in \Sigma_T$;

(I2) $\{A_j\}_{j \in \mathbb{N}} \subseteq \Sigma_T$ and $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots \implies \bigcap_{j \in \mathbb{N}} A_j \in \Sigma_T$.

These properties allow us to give the full characterization of semi band preserving operators on essentially one-dimensional Banach lattices. Namely we have:

Theorem 4.7. Let X be an essentially one-dimensional Banach lattice. Then an operator $T : X \to X$ is semi band preserving if and only if the range of T is the linear span of a collection of mutually disjoint elements $\{u_j\}_{j \in J}$ in $T(X)$ and T is a weighted conditional expectation operator, i.e. T has the following form for all f in X:

$$Tf = \sum_{j \in J} \langle \psi_j, f \rangle u_j,$$

where $\{\psi_j\}_{j \in J}$ are nonzero functionals on X so that for all $j \in J$ if $f \perp u_j$ then $\langle \psi_j, f \rangle = 0$ (see (1)).

Proof. It is not difficult to see that all weighted conditional expectation operators are semi band preserving.

For the other direction, let $\omega_0 \in S_T \overset{\text{def}}{=} \bigcup_{A \in \Sigma_T} A \subset \Omega$. Then, by (I2) and Zorn’s Lemma, among all $A \in \Sigma_T$ such that $\omega_0 \in A$, there exists a set $A_0 \in \Sigma_T$, minimal with respect to inclusion.

Next, we claim that the subspace of $T(X)$ consisting of those elements in $T(X)$ whose support is contained in A_0, is one-dimensional.

Suppose for contradiction that there exist $f, g \in X$ such that $\text{supp} Tf = A_0$, $\text{supp} Tg \subseteq A_0$ and Tf, Tg are linearly independent. Since X is essentially one-dimensional there exist nonzero components u_1, u_2 of Tf, Tg respectively so that

$$u_1 = ku_2$$
for some scalar k. Clearly $\text{supp } u_1 = \text{supp } u_2$ and since Tf, Tg are linearly independent,

$$\text{supp } u_1 = B \subset A_0.$$

Consider $h = f - kg$. Then $Th = Tf - kTg$ and $C = \text{supp } Th$ belongs to Σ_T and

$$\emptyset \neq C \subseteq A_0 \setminus B \subset A_0.$$

By Proposition 4.3 we also have that $A_0 \setminus C$ belongs to Σ_T.

Now ω_0 belongs to one of the sets C or $A_0 \setminus C$ which contradicts the minimality of the set A_0.

It now follows immediately that there exist mutually disjoint elements $\{u_j\}_{j \in J}$ in $T(X)$ with minimal supports in Σ_T. Thus $T(X) = \text{span}\{u_j\}_{j \in J}$ and T has the form (5) since T is a linear operator. Condition (SBP) implies that for all $j \in J$, if $f \perp u_j$, since $u_j \in T(X)$, then $Tf \perp u_j$ and thus $\langle \psi_j, f \rangle = 0$, as required in (5).

}\end{proof}

Remark 4.8. The above proof is very similar in spirit to the proof of the characterization of the form of norm one projections in ℓ_p, $1 < p < \infty$, \cite[Theorem 2.a.4]{[5]}

Remark 4.9. Theorem 4.7 is not valid in general nonatomic lattices. The counterexample is very similar to Example 3.1. Indeed let X be any Banach lattice of functions on $[0, 1]$ such that the constant function 1, and the function $\psi : [0, 1] \to [0, 1]$ defined by $\psi(t) = t$, belong to X. Then $\text{span}\{1, \psi\} \subset X$ is 2-dimensional in X and therefore it is complemented in X, i.e. there exists a projection $T : X \to X$ with $T(X) = \text{span}\{1, \psi\}$. But for every $g \in X$ we have $\text{supp } Tg = [0, 1]$. Thus $f \perp Tg$ implies $f = 0$ and thus T is trivially semi band preserving. Clearly T is not a weighted conditional expectation operator. Further, note that every function in the range of T has full support and hence T is also trivially semi containment preserving.

We finish this section with two immediate corollaries of Theorem 4.7.

Corollary 4.10. Let X be an essentially one-dimensional Banach lattice. Then every semi band preserving operator T on X is semi containment preserving.

Corollary 4.11. Let X be a purely atomic Banach lattice. Then an operator T on X is a weighted conditional expectation operator if and only if T is semi band preserving.

5. Semi containment preserving projections

In this section we obtain an analogue of our main result, Theorem 4.7, for semi containment preserving operators. However, as Example 3.4 demonstrates, on any Banach lattice which contains nonzero elements f_1, f_2 with $f_1 \perp f_2$ there exists a semi containment preserving projection Q which is not semi band preserving and thus is not a weighted conditional
expectation operator. Moreover if X is not strictly monotone then such Q can be chosen to be a projection of norm one.

Also an example described in Remark 4.8 demonstrates that in general nonatomic Banach lattices there may exist a semi containment preserving projection which is not a weighted conditional expectation operator. Thus our characterization below has natural restrictions. We prove:

Theorem 5.1. Let X be an essentially one-dimensional strictly monotone Banach lattice and let $P : X \to X$ be a projection of norm one. Then P is semi containment preserving if and only if the range of P is the linear span of a collection of mutually disjoint elements $(u_j)_{j \in J}$ in $P(X)$ and P is a weighted conditional expectation operator, i.e. P has the following form for all f in X:

$$Pf = \sum_{j \in J} \langle \psi_j, f \rangle u_j,$$

where $(\psi_j)_{j \in J}$ are nonzero functionals on X so that for all $j \in J$, supp $\psi_j \subseteq$ supp u_j, $\langle \psi_j, u_j \rangle = 1 = \|\psi_j\| = \|u_j\|$ and $\langle \psi_j, u_i \rangle = 0$ if $i \neq j$ (see (7)).

Proof. As before we note that all weighted conditional expectation operators are semi containment preserving, so we just need to prove one implication in Theorem 5.1.

Our method of proof depends on the following lemma:

Lemma 5.2. Suppose that X is a strictly monotone (not necessarily essentially one-dimensional) Banach lattice and $P : X \to X$ is a semi containment preserving projection of norm one. Let $(A_j)_{j \in \mathbb{N}} \subset \Sigma_P$ with $A_1 \supseteq A_2 \supseteq \ldots$. Then

$$\bigcap_{j \in \mathbb{N}} A_j \in \Sigma_P.$$

Using this lemma the proof of Theorem 5.1 is the same as the proof of Theorem 4.7. Indeed, Lemma 5.2 states that when X and P satisfy assumptions of Theorem 5.1 then P has property (I2) from Corollary 4.8. Thus, following the proof of Theorem 4.7 word for word, we get that there exist mutually disjoint elements $(u_j)_{j \in J}$ in $P(X)$ so that $P(X) = \text{span}(u_j)_{j \in J}$ and P has the form (7) since P is a linear operator. Condition (SCF) implies that for all $j \in J$, supp $\psi_j \subseteq$ supp u_j, and since P is a projection of norm one we have $\langle \psi_j, u_j \rangle = 1 = \|\psi_j\| = \|u_j\|$ and $\langle \psi_j, u_i \rangle = 0$ if $i \neq j$, as required in (7).

Proof of Lemma 5.2. Since $(A_j)_{j \in \mathbb{N}} \subset \Sigma_P$, there exist $(f_j)_{j \in \mathbb{N}} \subset X$ so that supp $Pf_j = A_j$. Denote $A = \bigcap_{j \in \mathbb{N}} A_j$ set $g = (Pf_1) \cdot \chi_A$. Then supp $g = A \supseteq$ supp Pf_j for all $j \in \mathbb{N}$. Thus, by (SCF),

$$\text{supp } Pg \subset \text{supp } Pf_j$$

for all $j \in \mathbb{N}$. Hence

$$\text{supp } Pg \subset A.$$
Denote $\text{supp } Pg = B$. Then
\[(Pg) \cdot \chi_{A_1 \setminus B} = 0.\]

Further
\[
Pf_1 = (Pf_1) \cdot \chi_{A_1 \setminus A} + (Pf_1) \cdot \chi_A = (Pf_1) \cdot \chi_{A_1 \setminus A} + g,
\]
\[
Pf_1 = P(Pf_1) = P((Pf_1) \cdot \chi_{A_1 \setminus A}) + Pg,
\]
\[
(Pf_1) \cdot \chi_{A_1 \setminus B} = P((Pf_1) \cdot \chi_{A_1 \setminus A}) \cdot \chi_{A_1 \setminus B} + (Pg) \cdot \chi_{A_1 \setminus B}
\]
\[
= P((Pf_1) \cdot \chi_{A_1 \setminus A}) \cdot \chi_{A_1 \setminus B}.
\]

Since P has norm one we get:
\[
\|Pf_1 \cdot \chi_{A_1 \setminus B}\| = \|P((Pf_1) \cdot \chi_{A_1 \setminus A}) \cdot \chi_{A_1 \setminus B}\| \leq \|P((Pf_1) \cdot \chi_{A_1 \setminus A})\|
\]
\[
\leq \|Pf_1 \cdot \chi_{A_1 \setminus A}\|.
\]

Since X is strictly monotone and $\text{supp } Pf_1 = A_1$ we conclude that
\[A_1 \setminus B \subseteq A_1 \setminus A.\]

Since $B \subseteq A$, we get that
\[A_1 \setminus B \subseteq A_1 \setminus A = A = B = \text{supp } Pg.\]

Thus $A \in \Sigma_P$, as desired. \hfill \square

We finish this section with an immediate corollary of Theorem 5.1 similar to Corollary 4.11.

Corollary 5.3. Let X be a purely atomic Banach lattice and let $P : X \to X$ be a projection of norm one. Then an operator P is a weighted conditional expectation operator if and only if T is semi containment preserving.

References

[1] Y. A. Abramovich and C. D. Aliprantis, *An Invitation to Operator Theory*, forthcoming.

[2] Y. A. Abramovich and A. K. Kitover, *A characterization of operators preserving disjointness in terms of their inverse*, Positivity, 4 (2000), pp. 205–212. Positivity and its applications (Ankara, 1998).

[3] Y. A. Abramovich and A. K. Kitover, *Inverses of disjointness preserving operators*, Mem. Amer. Math. Soc., 143 (2000), pp. viii+162.

[4] P. Dodds, C. Huijsmans, and B. de Pagter, *Characterizations of conditional expectation-type operators*, Pacific J. Math., 141 (1990), pp. 55–77.

[5] J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces, Vol. I, Sequence spaces*, Springer-Verlag, Berlin–Heidelberg–New York, 1978.

[6] W. A. J. Luxemburg and A. C. Zaanen, *Riesz spaces, Vol. I*, North-Holland Publishing Co., Amsterdam, 1971. North-Holland Mathematical Library.

[7] P. Meyer-Nieberg, *Banach lattices*, Springer-Verlag, Berlin, 1991.

Department of Mathematics and Statistics, Miami University, Oxford, OH 45056

E-mail address: randrib@muohio.edu