Three Revolutions in The Kernel Are Worse Than One

Benjamin Jaye* and Fedor Nazarov
Department of Mathematical Sciences, Kent State University, Kent, OH 44240, USA

*Correspondence to be sent to: e-mail: bjaye@kent.edu

An example is constructed of a purely unrectifiable measure μ for which the singular integral associated to the kernel $K(z) = \frac{\bar{z}}{z^2}$ is bounded in $L^2(\mu)$. The singular integral fails to exist in the sense of principal value μ-almost everywhere. This is in sharp contrast with the results known for the kernel $\frac{1}{z}$ (the Cauchy transform).

1 Introduction

Let $B(z, r)$ denote the closed disc in \mathbb{C} centred at z with radius $r > 0$. A finite Borel measure μ is said to be one-dimensional if $H^1(\text{supp}(\mu)) < \infty$, and there exists a constant $C > 0$ such that $\mu(B(z, r)) \leq Cr$ for any $z \in \mathbb{C}$ and $r > 0$.

For a kernel function $K : \mathbb{C}\setminus\{0\} \to \mathbb{C}$, and a finite measure μ, we define the singular integral operator associated to K by

$$T_\mu(f)(z) = \int_{\mathbb{C}} K(z - \xi)f(\xi)d\mu(\xi), \text{ for } z \notin \text{supp}(\mu).$$

A well-known problem in harmonic analysis is to determine geometric properties of μ from regularity properties of the operator T_μ, see for instance the monograph of David and Semmes [2]. This article concerns the question of characterizing those
functions K with the following property:

Let μ be a one-dimensional measure. Then

\[\| T_\mu(1) \|_{L^\infty(\mathbb{C} \setminus \text{supp}(\mu))} < \infty \text{ implies that } \mu \text{ is rectifiable.} \] (\ast)

The class of functions K for which (\ast) holds does not change if one replaces the condition $\| T_\mu(1) \|_{L^\infty(\mathbb{C} \setminus \text{supp}(\mu))} < \infty$ with the boundedness of T_μ as an operator in $L^2(\mu)$, see for instance [10]. A one-dimensional measure μ is rectifiable if $\text{supp}(\mu)$ can be covered (up to an exceptional set of H^1 measure zero) by a countable union of rectifiable curves. A measure μ is purely unrectifiable if its support is purely unrectifiable, that is, $H^1(\Gamma \cap \text{supp}(\mu)) = 0$ for any rectifiable curve Γ.

David and Léger [5] proved that the Cauchy kernel $\frac{1}{z}$ has property (\ast). As is remarked in [1], the proof in [5] extends to the case when the Cauchy kernel is replaced by either its real or imaginary part, that is, $\Re(\frac{z}{|z|^2})$ or $\Im(\frac{z}{|z|^2})$. Recently in [1], Chousionis, Mateu, Prat, and Tolsa extended the result of [5] and showed that kernels of the form $\frac{\Re(z)^k}{|z|^{k+1}}$ have property (\ast) for any odd positive integer k. Both of these results use the Melnikov–Menger curvature method.

On the other hand, Huovinen [4] has shown that there is a purely unrectifiable Ahlfors–David (AD)-regular set E for which the singular integral associated to the kernel $\frac{\Re(z)}{|z|^2} - \frac{\Im(z)^3}{|z|^4}$ is bounded in $L^2(H^1|_E)$. In fact, an essentially stronger conclusion is proved that the principal values of the associated singular integral operator exist H^1-a.e. on E. Huovinen takes advantage of several non-standard symmetries and cancellation properties in this kernel to construct his very nice example.

The result of this article is that a weakened version of Huovinen’s theorem holds for a very simple kernel function. Indeed, it is perhaps the simplest example of a kernel for which the Menger curvature method fails to be directly applicable. From now on, we shall fix

\[K(z) = \frac{\bar{z}}{z^2}, z \in \mathbb{C} \setminus \{0\}. \] (1.1)

We prove the following result.

Theorem 1.1. There exists a one-dimensional purely unrectifiable probability measure μ with the property that $\| T_\mu(1) \|_{L^\infty(\mathbb{C} \setminus \text{supp}(\mu))} < \infty$.

In other words, the kernel K in (1.1) fails to satisfy property (\ast). At this point, we would also like to mention Huovinen’s thesis work [3], regarding the kernel function.
Three Revolutions in the Kernel are Worse Than One

It is proved that if \(\lim \inf_{r \to 0} \frac{\mu(B(z,r))}{r} \in (0, \infty) \) \(\mu \)-a.e. (essentially the AD-regularity of \(\mu \)), then the \(\mu \)-almost everywhere existence of \(T_\mu(1) \) in the sense of principal value implies that \(\mu \) is rectifiable. This result was proved by building upon the theory of symmetric measures, developed by Mattila [7], and Mattila and Preiss [9]. Unfortunately the measure in Theorem 1.1 does not satisfy the AD-regularity condition. In view of Huovinen’s work it would be of interest to construct an AD-regular measure supported on an unrectifiable set for which the conclusion of Theorem 1.1 holds. We have not been able to construct such a measure (yet).

For the measure \(\mu \) constructed in Theorem 1.1, we show that \(T_\mu(1) \) fails to exist in the sense of principal value \(\mu \)-almost everywhere. Thus the two properties of \(L^2(\mu) \) boundedness of the operator \(T_\mu \), and the existence of \(T_\mu(1) \) in the sense of principal value, are quite distinct for this singular integral operator.

2 Notation

- Let \(m_2 \) denote the two-dimensional Lebesgue measure normalized so that \(m_2(B(0,1)) = 1 \). We let \(m_1 \) denote the one-dimensional Lebesgue measure.
- A collection of squares are essentially pairwise disjoint if the interiors of any two squares in the collection do not intersect. Throughout the article, all squares are closed.
- We shall denote by \(C \) and \(c \) large and small absolute positive constants. The constant \(C \) should be thought of as large (at least 1), while \(c \) is to be thought of as small (smaller than 1).
- For \(a > 1 \), the disc \(aB \) denotes the concentric enlargement of a disc \(B \) by a factor of \(a \).
- We define the \(\mathcal{H}^1 \)-measure of a set \(E \) by
 \[
 \mathcal{H}^1(E) = \sup_{\delta > 0} \inf \left\{ \sum_j r_j : E \subset \bigcup_j B(x_j, r_j) \text{ with } r_j \leq \delta \right\}.
 \]
- For \(z \in \mathbb{C} \) and \(r > 0 \), we define the annulus \(A(z,r) = B(z,r) \setminus B(z,r/2) \).
- The set \(\text{supp}(\mu) \) denotes the closed support of \(\mu \).

3 A reflectionless measure

Let us make the key observation that allows us to prove Theorem 1.1.

Lemma 3.1. Let \(z \in \mathbb{C} \), \(r > 0 \). For any \(\omega \in B(z,r) \),

\[
\int_{B(z,r)} K(\omega - \xi) d m_2(\xi) = 0.
\]

\[\square\]
Proof. Without loss of generality, we may set \(z = 0 \) and \(r = 1 \). If \(|\omega| < |\xi|\), then
\[
K(\omega - \xi) = \frac{\omega - \xi}{\xi^2} \sum_{\ell = 0}^{\infty} (\ell + 1) \left(\frac{\omega}{\xi} \right)^{\ell}.
\]
So whenever \(t > |\omega| \), we have \(\int_{\partial B(0,t)} K(\omega - \xi) \, dm_1(\xi) = 0 \). (This follows merely from the fact that \(\int_{\partial B(0,t)} \xi^k \, dm_1(\xi) = 0 \) whenever \(k, \ell \in \mathbb{Z} \) satisfy \(k \neq \ell \).) On the other hand, if \(|\xi| < |\omega|\), then
\[
K(\omega - \xi) = \frac{\omega - \xi}{\omega^2} \sum_{\ell = 0}^{\infty} (\ell + 1) \left(\frac{\xi}{\omega} \right)^{\ell}.
\]
Therefore, if \(t < |\omega| \), then
\[
\int_{\partial B(0,t)} K(\omega - \xi) \, dm_1(\xi) = 2\pi \left[t \frac{\omega}{\omega^2} - 2 \frac{t^3}{\omega^3} \right] = \frac{2\pi}{\omega^3} (t|\omega|^2 - 2t^3).
\]
Since \(\int_0^{|\omega|} (t|\omega|^2 - 2t^3) \, dt = 0 \), the desired conclusion follows. \(\blacksquare \)

The next lemma will form the basis of the proof of the non-existence of \(T_m(1) \) in the sense of principal value.

Lemma 3.2. There exists a constant \(\tilde{c} > 0 \) such that for any disc \(B(z, r) \), and \(\omega \in \partial B(z, r) \),
\[
\left| \int_{A(\omega, r) \cap B(z, r)} K(\omega - \xi) \frac{dm_2(\xi)}{r} \right| \geq \tilde{c}.
\]

Proof. By an appropriate translation and rescaling, we may assume that \(B(z, r) = B(i, 1) \), and \(\omega = 0 \). Making reference to Figure 1 above, we split the domain of integration into three regions, \(I = \{ \xi \in A(0, 1) : \arg(\xi) \in \left[\frac{\pi}{6}, \frac{5\pi}{6} \right] \} \), \(II = \{ \xi \in A(0, 1) \cap B(i, 1) : \arg(\xi) \in [0, \frac{\pi}{6}] \} \), and \(III = \{ \xi \in A(0, 1) \cap B(i, 1) : \arg(\xi) \in \left[\frac{5\pi}{6}, \pi \right] \} \). The regions \(II \) and \(III \) are respectively the right and left grey shaded regions in Figure 1. Note that \(\Im K(-\xi) < 0 \) if \(\arg(\xi) \in \left[\frac{\pi}{6}, \frac{2\pi}{3} \right] \), and \(\Im K(-\xi) > 0 \) if \(\arg(\xi) \in \left[0, \frac{\pi}{6} \right] \cup \left[\frac{2\pi}{3}, \pi \right] \). Furthermore, note that
\[
\int_I \Im K(-\xi) \, dm_2(\xi) = \frac{1}{\pi} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \Im (e^{-2\theta i}) t \, d\theta \, dt = 0.
\]
But \(\int_{II, III} \Im K(-\xi) \, dm_2(\xi) = 2 \int_{II} \Im K(-\xi) \, dm_2(\xi) > 0 \). Therefore, by setting \(\tilde{c} = 2 \int_{II} \Im K(-\xi) \, dm_2(\xi) \), the lemma follows. \(\blacksquare \)
4 Packing squares in a disc

Fix $r, R \in (0, \infty)$ such that $r < \frac{R}{16}$ and $\frac{R}{r} \in \mathbb{N}$.

Lemma 4.1. One can pack $\frac{R}{r}$ pairwise essentially disjoint squares of side length $\sqrt{\pi \frac{r}{R}}$ into a disc of radius $R(1 + 4\sqrt{\frac{r}{R}})$.

Proof. We may assume that the disc is centred at the origin. Consider the square lattice with mesh size $\sqrt{\pi \frac{r}{R}}$. Label those squares that intersect $B(0, R)$ as Q_1, \ldots, Q_M. These squares are contained in $B(0, R(1 + 4\sqrt{\frac{r}{R}}))$. Since $M r R = \sum_{j=1}^{M} m_2(Q_j) > m_2(B(0, R)) = R^2$, we have that $M > \frac{R}{r}$. By throwing away $M - \frac{R}{r}$ of the least desirable squares, we arrive at the desired collection.

Lemma 4.2. Consider a disc $B(z, R)$. Let $Q_1, \ldots, Q_{R/r}$ be the collection of squares contained in $B(z, R(1 + 4\sqrt{\frac{T}{R}}))$ found in Lemma 4.1. Then $m_2(B(z, R) \triangle \bigcup_{j=1}^{R/r} Q_j) \leq Cr^{1/2}R^{3/2}$.

Proof. Since $m_2(B(z, R)) = m_2\left(\bigcup_{j=1}^{R/r} Q_j\right) = R^2$, the property follows from the fact that both sets are contained in $B(z, R(1 + 4\sqrt{\frac{T}{R}}))$.

5 The construction of the sparse Cantor set E

Let $r_0 = 1$, and choose $r_j, j \in \mathbb{N}$, to be a sequence which tends to zero quickly. Assume that $r_j < \frac{r_{j-1}}{100}$, $\frac{r_j}{r_j+1} \in \mathbb{N}$, and $\frac{r_j}{r_{j+1}} \in \mathbb{N}$ for all $j \geq 1$.

Several additional requirements will be imposed on the decay of r_j over the course of the following analysis, and we make no attempt to optimize the conditions.

It will be convenient to let $s_{n+1} = 4\sqrt{\frac{n+1}{r_n}}$ for $n \in \mathbb{Z}_+$.

First define $\tilde{B}_1^{(0)} = B(0, 1)$. Given the n-th level collection of $\frac{1}{r_n}$ discs $\tilde{B}_j^{(n)}$ of radius r_n, we construct the $(n + 1)$-st generation according to the following procedure:
Fig. 2. The picture shows a single disc $B^{(n)}_j$ of radius $(1+s_{n+1})r_n$. The grey shaded squares are the squares $Q^{(n+1)}_\ell$ of sidelength $\sqrt{\pi r_n r_{n+1}}$ formed by applying Lemma 4.1 to the disc $\widetilde{B}^{(n)}_j$ of radius r_n. The boundary of the disc $\widetilde{B}^{(n)}_j$ is the dashed circle. Deep inside each square $Q^{(n+1)}_\ell$ is the disc $B^{(n+1)}_\ell$ of radius $(1+s_{n+2})r_{n+1}$.

Fix a disc $\widetilde{B}^{(n)}_j$. Apply Lemma 4.1 with $R = r_n$ and $r = r_{n+1}$ to find $\frac{r_n}{r_{n+1}}$ squares $Q^{(n+1)}_\ell$ of side length $\sqrt{\pi r_{n+1} r_n}$ that are pairwise essentially disjoint, and contained in $(1+s_{n+1}) \cdot \widetilde{B}^{(n)}_j$. Let $z^{(n+1)}_\ell$ be the centre of $Q^{(n+1)}_\ell$, and set $\widetilde{B}^{(n+1)}_\ell = B(z^{(n+1)}_\ell, r_{n+1})$. This procedure is carried out for each disc $\widetilde{B}^{(n)}_j$ from the n-th level collection. There are a total of $\frac{1}{r_{n+1}}$ discs $\widetilde{B}^{(n+1)}_\ell$ in the $(n+1)$-st level. See Figure 2 above.

The above construction is executed for each $n \in \mathbb{Z}_+$.

Now, set $B^{(n)}_j = (1+s_{n+1})\widetilde{B}^{(n)}_j$. Define $E^{(n)} = \bigcup_j B^{(n)}_j$. We shall repeatedly use the following properties of the construction:

(a) $\bigcup_j Q^{(n+1)}_\ell \subset E^{(n)}$, for all $n \geq 0$.
(b) $B^{(n)}_j \subset Q^{(n)}_\ell$ for each $n \geq 1$. Moreover, $\text{dist}(B^{(n)}_j, \partial Q^{(n)}_\ell) \geq \frac{1}{2} \sqrt{r_{n-1} r_n}$.
(c) $\text{dist}(B^{(n)}_j, B^{(n)}_k) \geq \frac{1}{2} \sqrt{r_{n-1} r_n}$, whenever $j \neq k$, $n \geq 0$.

Property (a) is immediate. To see property (b), merely note that $\text{dist}(B^{(n)}_j, \partial Q^{(n)}_j) = \frac{\sqrt{r_{n-1} r_n}}{2} - (1+s_{n+1})r_n \geq \frac{1}{2} \sqrt{r_{n-1} r_n}$. For property (c), we shall use induction. If $n = 0$, then the claim is trivial. Using (b), the claimed estimate is clear if $Q^{(n)}_j$ and $Q^{(n)}_k$ have been
created by an application of Lemma 4.1 in a common disc \(\tilde{B}^{|n-1|} \). Otherwise, the squares are born out of applying Lemma 4.1 to different discs at the \((n - 1)\)-st level, and those parent discs are already separated by \(\frac{1}{2}\sqrt{r_{m-2}r_{m-1}} \).

Courtesy of properties (a) and (b), we see that \(E^{(n+1)} \subset E^{(n)} \) for each \(n \geq 0 \). Set \(E = \bigcap_{n \geq 0} E^{(n)} \). Each \(z \in E^{(n)} \) is contained in a unique disc \(B^{(n)}_j \) (or square \(Q^{(n)}_j \)) which we shall denote by \(B^{(n)}(z) \) (respectively \(Q^{(n)}(z) \)).

If \(m \geq n \geq 0 \), then \(E \cap B^{(n)}_j \) is covered by the \(\frac{m}{r_m} \) discs \(B^{(m)}_j \) that are contained in \(B^{(n)}_j \), each of which has radius \((1 + s_{m+1})r_m \leq 2r_m\). Therefore \(\mathcal{H}^1(E \cap B^{(n)}_j) \leq 2r_n \). Taking \(n = 0 \) yields \(\mathcal{H}^1(E) \leq 2 \).

6 The measure \(\mu \)

Define \(\mu^{(n)}_j = \frac{1}{r_n} \chi_{B^{(n)}_j}, m_2 \). Set \(\mu^{(n)} = \sum_j \mu^{(n)}_j \). Then \(\text{supp}(\mu^{(n)}) \subset E^{(n)} \), and \(\mu^{(n)}(\mathbb{C}) = 1 \) for all \(n \). Therefore, there exists a subsequence of the sequence of measures \(\mu^{(n)} \) that converges weakly to a measure \(\mu \), with \(\mu(\mathbb{C}) = 1 \) and \(\text{supp}(\mu) \subset E \).

The following three properties hold:

(i) \(\text{supp}(\mu^{(m)}) \subset \bigcup_j B^{(n)}_j \) whenever \(m \geq n \),

(ii) \(\mu^{(m)}(B^{(n)}_j) = r_n \) for \(m \geq n \), and

(iii) there exists \(C_0 > 0 \) such that \(\mu^{(n)}(B(z, r)) \leq C_0 r \) for any \(z \in \mathbb{C}, r > 0 \) and \(n \geq 0 \).

Properties (i) and (ii) follow immediately from the construction of \(E^{(n)} \). To see the third property, note that since \(\mu^{(n)} \) is a probability measure, the property is clear if \(r \geq 1 \). If \(r < 1 \), then \(r \in (r_{m+1}, r_m) \) for some \(m \in \mathbb{Z}^+ \). If \(m \geq n \), then \(B(z, r) \) intersects at most one disc \(B^{(n)}_j \). Then \(\mu^{(m)}(B(z, r)) = \frac{1}{r_n} m_2(B(z, r) \cap \tilde{B}^{(m)}_j) \leq \frac{r^2}{r_n} \leq r \). Otherwise \(m < n \). In this case, note that since the discs \(B^{(m+1)}_j \) are \(\frac{1}{2}\sqrt{r_m r_{m+1}} \) separated, \(B(z, r) \) intersects at most \(1 + C\left(\frac{r}{\sqrt{r_m r_{m+1}}}\right)^2 \) discs \(B^{(m+1)}_j \). Hence, by property (ii), we see that

\[
\mu^{(n)}(B(z, r)) = \sum_j \mu^{(m)}(B(z, r) \cap B^{(m+1)}_j) \leq \left[1 + C\left(\frac{r}{\sqrt{r_m r_{m+1}}}\right)^2\right] r_{m+1},
\]

which is at most \(Cr \).

The weak convergence of a subsequence of \(\mu^{(n)} \) to the measure \(\mu \), along with property (iii), yields that \(\mu(B(z, r)) \leq C_0 r \) for any disc \(B(z, r) \). We shall henceforth refer to this property by saying that \(\mu \) is \(C_0 \)-nice. We have now shown that \(\mu \) is one-dimensional.

Notice that we also have \(\mathcal{H}^1(E) \geq \frac{1}{C_0} \mu(E) > 0 \).
7 The boundedness of $T_\mu(1)$ off the support of μ

As a simple consequence of the weak convergence of $\mu^{(n)}$ to μ, the property that $\|T_\mu(1)\|_{L^\infty(C \setminus \text{supp}(\mu))} < \infty$ will follow from the following proposition.

Proposition 7.1. Provided that $\sum_{n \geq 1} \sqrt{s_n} < \infty$, there exists a constant $C > 0$ so that the following holds:

Suppose that $\text{dist}(z, \text{supp}(\mu)) = \varepsilon > 0$. Then for any $m \in \mathbb{Z}_+$ with $r_m < \frac{\varepsilon}{4}$,

$$\left| \int_{C} K(z - \xi) \, d\mu^{(m)}(\xi) \right| \leq C.$$

To begin the proof, fix r_m with $r_m < \frac{\varepsilon}{4}$. Let $z^* \in \text{supp}(\mu)$ with $\text{dist}(z, z^*) = \varepsilon$. For any $\xi \in \text{supp}(\mu)$, $B^{(m)}(\xi) \cap \text{supp}(\mu^{(m)}) \neq \emptyset$, so $\text{dist}(z, \text{supp}(\mu^{(m)})) \geq \varepsilon - (1 + s_{m+1})r_m \geq \frac{\varepsilon}{2}$.

Now, let q be the least integer with $r_q \leq \varepsilon$ (so $m \geq q$). Then by property (ii) of the previous section,

$$\int_{B^{(q)}(z^*)} |K(z, \xi)| \, d\mu^{(m)}(\xi) \leq \frac{2}{\varepsilon} \mu^{(m)}(B^{(q)}(z^*)) = \frac{2r_q}{\varepsilon} \leq 2. \quad (7.1)$$

The crux of the matter is the following lemma.

Lemma 7.2. There exists $C > 0$ such that for any $n \in \mathbb{Z}_+$ with $1 \leq n \leq q$,

$$\left| \int_{B^{(n-1)}(z^*), B^{(n)}(z^*)} K(z - \xi) \, d\mu^{(m)}(\xi) \right| \leq C\sqrt{s_n} + C\sqrt{\frac{\varepsilon}{r_{n-1}}}. \quad \square$$

For the proof of Lemma 7.2, we shall require the following simple comparison estimate.

Lemma 7.3. Let $z_0 \in \mathbb{C}$, and $\lambda > 0$. Fix $r, R \in (0, 1]$ with $100r \leq R$. Suppose that ν_1 and ν_2 are Borel measures, such that $\text{supp}(\nu_1) \subset Q(z_0, \sqrt{\pi Rr}) = Q$, $\text{supp}(\nu_2) \subset B(z_0, 2r) = B$, and $\nu_1(\mathbb{C}) = \nu_2(\mathbb{C})$. Then, for any $z \in \mathbb{C}$ with $\text{dist}(z, Q) \geq \lambda \sqrt{rR}$, we have

$$\left| \int_{Q} K(z - \xi) \, d\nu_1(\xi) - \int_{B} K(z - \xi) \, d\nu_2(\xi) \right| \leq \frac{1}{\lambda^2} \int_{Q} \frac{C \sqrt{Rr}}{|z - \xi|^2} \, d\nu_1(\xi) + \frac{1}{\lambda^2} \int_{B} \frac{Cr}{|z - \xi|^2} \, d\nu_2(\xi). \quad \square$$

Proof. The left hand side of the inequality can be written as

$$\left| \int_{Q} [K(z - \xi) - K(z - z_0)] \, d(\nu_1 - \nu_2)(\xi) \right|.$$
But, under the hypothesis on \(z \), we have that \(|K(z - \xi) - K(z - z_0)| \leq \frac{C|z - \xi|^2}{m_2(z)}|z - \xi|^2 r_n r_{n-1} \) for any \(\xi \in Q \).

Plugging this estimate into the integral and taking into account the supports of \(v_1 \) and \(v_2 \), the inequality follows.

Proof of Lemma 7.2. Write

\[A = \{ j : B_j^{(n)} \neq B^{(n)}(z^*) \text{ and } B_j^{(n)} \subset B^{(n-1)}(z^*) \}. \]

First suppose that \(\text{dist}(z, Q_j^{(n)}) \geq \frac{1}{4} r_{n-1} r_n \) for \(j \in A \). Then the hypothesis of Lemma 7.3 are satisfied with \(v_1 = \chi_{Q_j^{(n)}} m_2, v_2 = \chi_{B_j^{(n)}} \mu^{(m)}, R = r_{n-1}, r = r_n, \) and \(z_0 = z_{Q_j^{(n)}} \). Thus

\[
\left| \int_{Q_j^{(n)}} K(z - \xi) \frac{dm_2(\xi)}{r_{n-1}} - \int_{B_j^{(n)}} K(z - \xi) d\mu^{(m)}(\xi) \right| \\
\leq \int_{Q_j^{(n)}} \frac{C\sqrt{r_{n-1} r_n}}{|z - \xi|^2} \frac{dm_2(\xi)}{r_{n-1}} + \int_{B_j^{(n)}} \frac{Cr_n d\mu^{(m)}(\xi)}{|z - \xi|^2}.
\]

Now suppose that \(j \in A \) and \(\text{dist}(z, Q_j^{(n)}) \leq \frac{1}{4} r_{n-1} r_n \). Since \(\text{dist}(z, Q_j^{(n)}) \geq \text{dist}(z^*, Q_j^{(n)}) - \text{dist}(z, z^*) \geq \frac{1}{2} r_{n-1} r_n - \epsilon \), we must have that \(\epsilon \geq \frac{1}{2} r_{n-1} r_n \). But as \(\text{dist}(z, \text{supp}(\mu^{(m)})) \geq \epsilon \), and \(\mu^{(m)}(B_j^{(n)}) = r_n \), we have the following crude bound

\[
\left| \int_{Q_j^{(n)}} K(z - \xi) \frac{dm_2(\xi)}{r_{n-1}} - \int_{B_j^{(n)}} K(z - \xi) d\mu^{(m)}(\xi) \right| \\
\leq \frac{C}{r_{n-1}} \sqrt{m_2(Q_j^{(n)})} + 2 \frac{\mu^{(m)}(B_j^{(n)})}{\epsilon} \leq C_n.
\]

(Here it is used that \(\int_A |K(\xi)| dm_2(\xi) \leq C \sqrt{m_2(A)} \) for any Borel measurable set \(A \subset \mathbb{C} \) of finite \(m_2 \)-measure.)

At most four of the essentially pairwise disjoint squares \(Q_j^{(n)}, j \in A \), can satisfy \(\text{dist}(z, Q_j^{(m)}) \leq \frac{1}{4} r_{n-1} r_n \) (and it can only happen at all if \(n = q \)). Therefore, by summing (7.2) and (7.3) over \(j \in A \) in the cases when \(\text{dist}(z, Q_j^{(m)}) \geq \frac{1}{4} r_{n-1} r_n \) and \(\text{dist}(z, Q_j^{(n)}) \leq \frac{1}{4} r_{n-1} r_n \) respectively, we see that the quantity

\[
\left| \int_{\cup_{j \in A} Q_j^{(n)}} K(z - \xi) \frac{dm_2(\xi)}{r_{n-1}} - \int_{B^{(n-1)}(z^*) \setminus B^{(n)}(z^*)} K(z - \xi) d\mu^{(m)}(\xi) \right|,
\]

is no greater than a constant multiple of

\[
\int_{B(x, 2 r_{n-1}) \setminus B(x, \frac{1}{4} r_{n-1} r_n)} \frac{r_n}{r_{n-1}} \frac{dm_2(\xi)}{|z - \xi|^2} + \int_{B(x, \frac{1}{4} r_{n-1} r_n)} \frac{r_n d\mu^{(m)}(\xi)}{|z - \xi|^2} + s_n.
\]
The first term here is bounded by \(C \sqrt{\frac{r_n}{r_{n-1}}} \log(\frac{r_{n-1}}{r_n}) \leq C_n \log(\frac{1}{s_n}) \leq C \sqrt{s_n} \). Since \(\mu^{(m)} \) is \(C_0 \)-nice, we bound the second term by

\[
Cr_n \int_{1/\sqrt{r_{n-1}}}^{1} \frac{dr}{r^2} \leq Cr_n \frac{1}{\sqrt{r_n r_{n-1}}} \leq C s_n.
\]

We now wish to estimate \(\int_{\bigcup_{j \in A} Q_j} K(z - \xi) \frac{dm_2(\xi)}{r_{n-1}} \). With a slight abuse of notation, write \(\tilde{B}^{(n-1)}(z^*) = B_j^{(n-1)} \) if \(z^* \in B_j^{(n-1)} \). Then

\[
\left| \int_{\tilde{B}^{(n-1)}(z^*)} K(z - \xi) \frac{dm_2(\xi)}{r_{n-1}} - \int_{\bigcup_{j \in A} Q_j} K(z - \xi) \frac{dm_2(\xi)}{r_{n-1}} \right|
\]

is bounded by \(\frac{C}{r_{n-1}} \left(m_2(\tilde{B}^{(n-1)}(z^*) \triangle \bigcup_{j \in A} Q_j) \right)^{1/2} \). By Lemma 4.2, this quantity is no greater than \(\frac{C}{r_{n-1}} \sqrt{r_{n-1}^{3/2} + r_n r_{n-1}} \leq C \sqrt{s_n} \).

It remains to employ the reflectionless property (Lemma 3.1). Since \(z \in (1 + \frac{\epsilon}{r_{n-1}}) B^{(n-1)}(z^*) \), we use Lemma 3.1 to infer that

\[
\left| \int_{\tilde{B}^{(n-1)}(z^*)} K(z - \xi) \frac{dm_2(\xi)}{r_{n-1}} \right| = \left| \int_{(1 + \frac{\epsilon}{r_{n-1}}) B^{(n-1)}(z^*) \setminus \tilde{B}^{(n-1)}(z^*)} K(z - \xi) \frac{dm_2(\xi)}{r_{n-1}} \right|
\]

This quantity is bounded by \(\frac{C}{r_{n-1}} \left(m_2((1 + \frac{\epsilon}{r_{n-1}}) B^{(n-1)}(z^*) \setminus \tilde{B}^{(n-1)}(z^*)) \right)^{1/2} \leq C \sqrt{s_n + \frac{\epsilon}{r_{n-1}}} \). The lemma follows.

With Lemma 7.2 in hand, we may complete the proof of Proposition 7.1. First write

\[
\int_C K(z - \xi) d\mu^{(m)}(\xi) = \int_{B^{(n)}(z^*)} K(z - \xi) d\mu^{(m)}(\xi) + \sum_{n=1}^{q} \int_{B^{(n)}(z^*) \setminus B^{(n)}(z^*)} K(z - \xi) d\mu^{(m)}(\xi)
\]

(7.4)

Next note that that \(\frac{\epsilon}{r_{n-1}} \leq 1 \) if \(n = q \), and \(\sqrt{\frac{\epsilon}{r_{n-1}}} \leq s_n \) for \(1 \leq n < q \). As \(n \geq 1 \sqrt{s_n} < \infty \), it follows from Lemma 7.2 that the sum appearing in the right hand side of (7.4) is bounded in absolute value independently of \(q \), \(m \) and \(\epsilon \). The remaining term on the right hand side of (7.4) has already been shown to be bounded in absolute value, see (7.1).

8 \(T_\mu(1) \) fails to exist in the sense of principal value \(\mu \)-almost everywhere

We now turn to consider the operator in the sense of principal value. The primary part of the argument will be the following lemma.
Lemma 8.1. Provided that n is sufficiently large, there exists a constant $c_0 > 0$ such that for any disc $B_j^{(n)}$, and $z \in \mathbb{C}$ satisfying
\[
\text{dist}(z, \partial B_j^{(n)}) \leq c_0 r_n,
\]
\[
\left| \int_{A(z, r_n)} K(z - \xi) d\mu(\xi) \right| \geq c_0.
\]
\[\square\]

Before proving the lemma, we deduce from it that $T_\mu(1)$ fails to exist in the sense of principal value for μ-almost every $z \in \mathbb{C}$. To this end, we set $F = \{ z \in E : z \in (1 - c_0)B_j^{(m)}(z) \text{ for all but finitely many } n \}$. It suffices to show that $\mu(F) = 0$.

First note that, with $F_n = \{ z \in E : z \in (1 - c_0)B_j^{(m)}(z) \text{ for all } m \geq n \}$, we have $F \subset \bigcup_{n \geq 0} F_n$, so it suffices to show that $\mu(F_n) = 0$ for all n.

To do this, note that for each $m \geq 0$, at most $\left(1 - c_0 \right) r_m + C \sqrt{r_m / r_{m+1}}$ squares $Q_{\ell}^{(m+1)}$ can intersect $(1 - c_0)B_j^{(m)}$. Thus
\[
\mu\left(\bigcup_{\ell} \left\{ B_{\ell}^{(m+1)} : B_{\ell}^{(m+1)} \cap (1 - c_0)B_j^{(m)} \neq \emptyset \right\} \right) \leq (1 - c_0) r_m + C \sqrt{r_m / r_{m+1}}
\]
\[
= (1 - c_0) \mu(B_j^{(m)}) + C s_{m+1} r_m \leq \left(1 - \frac{c_0}{2} \right) \mu(B_j^{(m)}),
\]
where the last inequality holds provided that m is sufficiently large. But then, as long as n is large enough, this inequality may be iterated to yield
\[
\mu\left(\{ z \in E : z \in (1 - c_0)B_j^{(n+k)}(z) \text{ for } k = 1, \ldots, m \} \right) \leq (1 - \frac{c_0}{2})^m.
\]

Hence $\mu(F_n) = 0$.

In preparation for proving Lemma 8.1, we make the following claim.

Claim 8.2. Let $n \in \mathbb{Z}_+$. For any disc $B_j^{(n)}$, and $z \in \mathbb{C}$, we have
\[
\left| \int_{A(z, r_n) \cap B_j^{(n)}} K(z - \xi) d(\mu - \frac{m_2}{r_n}) (\xi) \right| \leq C s_{n+1}.
\]
\[\square\]

Proof. To derive this claim, first suppose that a square $Q_{\ell}^{(n+1)} \subset A(z, r_n)$. Then from a crude application of Lemma 7.3 (see (7.2)), we infer that
\[
\left| \int_{Q_{\ell}^{(n+1)}} K(z - \xi) d(\mu - \frac{m_2}{r_n}) (\xi) \right| \leq C \sqrt{r_n r_{n+1} r_{n+1}^2} \leq C \left(\frac{r_{n+1}}{r_n} \right)^{\frac{3}{2}}.
\]
If it instead holds that \(Q^{(n+1)}_i \cap \partial A(z, r_n) \neq \emptyset \), then we have the blunt estimate

\[
\left| \int_{Q^{(n+1)}_i \cap A(z, r_n)} K(z - \xi) d(\mu - \frac{m_2}{r_n})(\xi) \right| \leq \frac{2}{r_n} \left[\mu(Q^{(n+1)}_i) + \frac{m_2(Q^{(n+1)}_i)}{r_n} \right],
\]

which is bounded by \(\frac{Cr_{n+1}}{r_{n+1}} \). There are most \(\frac{r_n}{r_{n+1}} \) squares \(Q^{(n+1)}_i \) contained in \(A(z, r_n) \), and no more than \(C \sqrt{\frac{r_n}{r_{n+1}}} \) squares \(Q^{(n+1)}_i \) can intersect the boundary of \(A(z, r_n) \).

On the other hand, the set \(\tilde{A} \) consisting of the points in \(A(z, r_n) \cap B_z(n) \) not covered by any square \(Q^{(n+1)}_i \) has \(m_2 \)-measure no greater than \(Cr_{n+1}^{1/2}r_n^{3/2} \) (see Lemma 4.2). Thus

\[
\int_{\tilde{A}} |K(z - \xi)| \frac{d m_2(\xi)}{r_n} \leq \frac{2m_2(\tilde{A})}{r_n} \leq C_{s, n+1}.
\]

Bringing these estimates together establishes Claim 8.2. ■

Let us now complete the proof of Lemma 8.1

Proof of Lemma 8.1. Note that \(\int_{A(z, r_n) \cap B_z(n)} K(z - \xi) \frac{d m_2(\xi)}{r_n} \) is a Lipschitz continuous function in \(C \), with Lipschitz norm at most \(\frac{C}{r_n} \). Thus, we infer from Lemma 3.2 that there is a constant \(c_0 > 0 \) such that

\[
\left| \int_{A(z, r_n) \cap B_z(n)} K(z - \xi) \frac{d m_2(\xi)}{r_n} \right| \geq \frac{c_0}{2},
\]

whenever \(\text{dist}(z, \partial B_z(n)) \leq c_0 r_n \). But now we apply Claim 8.2 to deduce that for all such \(z \),

\[
\left| \int_{A(z, r_n) \cap B_z(n)} K(z - \xi) d\mu(\xi) \right| \geq \frac{c_0}{2} - C_{s, n+1} \text{ (the only part of the support of } \mu \text{ that } A(z, r_n) \text{ intersects is contained in } B_z(n) \text{). The right hand side here is at least } \frac{c_0}{4} \text{ for all sufficiently large } n. \quad \square
\]

9 The set \(E \) is purely unrectifiable

We now show that \(E \) is purely unrectifiable, that is, \(\mathcal{H}^1(E \cap \Gamma) = 0 \) for any rectifiable curve \(\Gamma \). The proof that follows is a simple special case of the well-known fact that any set with zero lower \(\mathcal{H}^1 \)-density is unrectifiable (one can in fact say much more, see for instance [6]).

First notice that for each \(z \in \mathbb{C} \) and \(n \geq 1 \), \(B(z, \frac{1}{4} \sqrt{r_n r_{n-1}}) \) can intersect at most one of the discs \(B_z(n) \). Hence

\[
\mathcal{H}^1(E \cap B(z, \frac{1}{4} \sqrt{r_n r_{n-1}})) \leq 2r_n.
\]

A rectifiable curve \(\Gamma \) can be covered by discs \(B(z_j, \frac{1}{4} \sqrt{r_n r_{n-1}}), j = 1, \ldots, N \), the sum of whose radii is at most \(\ell(\Gamma) \).
Thus $\mathcal{H}^1(E \cap \Gamma) \leq \sum_{j=1}^{N} \mathcal{H}^1(E \cap B(z_j, \frac{1}{4} \sqrt{r_n r_{n-1}})) \leq 2 \sum_{j=1}^{N} r_n$. But $\sum_{j=1}^{N} \frac{1}{4} \sqrt{r_n r_{n-1}} \leq \ell(\Gamma)$, and so $\mathcal{H}^1(\Gamma \cap E) \leq 8 \sqrt{r_n} \ell(\Gamma)$, which tends to zero as $n \to \infty$ (the sequence $\sqrt{s_n}$ is summable).

Funding

This work was supported by the National Science Foundation [NSF DMS-1500881 to B.J. and NSF DMS-1600239 to F.N.].

References

[1] Chousionis, V., J. Mateu, L. Prat, and X. Tolsa. “Calderón-Zygmund kernels and rectifiability in the plane.” *Advances in Mathematics* 231, no. 1 (2012): 535–68.
[2] David, G. and S. Semmes. Analysis of and on Uniformly Rectifiable Sets, vol. 38. *Mathematical Surveys and Monographs*. Providence, RI: American Mathematical Society, 1993.
[3] Huovinen, P. “Singular integrals and rectifiability of measures in the plane.” *AcademiæScientiarum Fennicæ. Annales. Mathematica. Dissertationes* 109 (1997): 1–63.
[4] Huovinen, P. “A nicely behaved singular integral on a purely unrectifiable set.” *Proceedings of the American Mathematical Society* 129, no. 11 (2001): 3345–51.
[5] Léger, J. C. “Menger curvature and rectifiability.” *Annals of Mathematics. Second Series* 149, no. 3 (1999): 831–69.
[6] Mattila, P. Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, vol. 44. *Cambridge Studies in Advanced Mathematics*. Cambridge: Cambridge University Press, 1995.
[7] Mattila, P. “Cauchy singular integrals and rectifiability in measures of the plane.” *Advances in Mathematics* 115, no. 1 (1995): 1–34.
[8] Mattila, P., M. Melnikov, and J. Verdera. “The Cauchy integral, analytic capacity, and uniform rectifiability.” *Annals of Mathematics. Second Series* 144, no. 1 (1996): 127–36.
[9] Mattila, P. and D. Preiss. “Rectifiable measures in \mathbb{R}^n and existence of principal values for singular integrals.” *Journal of the London Mathematical Society. Second Series* 52, no. 3 (1995): 482–96.
[10] Nazarov, F., S. Treil and A. Volberg. “The Tb-theorem on non-homogeneous spaces that proves a conjecture of Vitushkin.” (1999), arXiv:1401.2479.