Robot Localization in Floor Plans
Using a Room Layout Edge Extraction Network

Federico Boniardi∗ Abhinav Valada∗ Rohit Mohan Tim Caselitz Wolfram Burgard

Abstract—Indoor localization is one of the crucial enablers for deployment of service robots. Although several successful techniques for indoor localization have been proposed in the past, the majority of them relies on maps generated based on data gathered with the same sensor modality that is used for localization. Typically, tedious labor by experts is needed to acquire this data, thus limiting the readiness of the system as well as its ease of installation for inexperienced operators. In this paper, we propose a memory and computationally efficient monocular camera-based localization system that allows a robot to estimate its pose given an architectural floor plan. Our method employs a convolutional neural network to predict room layout edges from a single camera image and estimates the robot pose using a particle filter that matches the extracted edges to the given floor plan. We evaluate our localization system with multiple real-world experiments and demonstrate that it has the robustness and accuracy required for reliable indoor navigation.

I. INTRODUCTION

Inexpensive sensors and ease of setup are widely considered as key enablers for a broad diffusion of consumer-grade robotic applications. However, such requirements pose technological challenges to manufacturers and developers due to the limited quantity of sensory data and low quality of prior information available to the robot. Particularly in the context of robot navigation, most of the existing localization solutions require highly accurate maps that are built upfront with same sensor modality used for localizing the robot. Typically, these maps are generated by collecting sensory measurements via teleoperation and fusing them into a coherent map of the environment, for which generally solutions for the Simultaneous Localization and Mapping (SLAM) problem are applied. Despite the advances in the field, maps generated by SLAM systems can be affected by global inconsistencies when perceptual aliasing or feature scarcity reduce the effectiveness of loop closing approaches. In general, a substantial expertise is required to assess as to whether the quality of the generated maps is sufficient for the planned deployment. For large-scale environments such as offices or public buildings, teleoperating the platform through the entire navigable area can be a tedious and time-consuming operation. In order to address these issues, previous works [1], [2], [3] have proposed to leverage floor plans obtained from architectural drawings as a means for accurate localization as they provide a representation of the stable structures in the environment. Furthermore, floor plans are often available from the blueprints used for the construction of buildings.

Alternatively, floor plans can also be created with moderate effort using drawing utilities.

Recently, innovative approaches based on Convolutional Neural Networks (CNN) have been proposed as computationally efficient methods for extracting structural information from monocular images. This also includes, approaches to extract room layout edges from images [4], [5]. However, these networks occasionally predicts discontinuous layout edges, even more in presence of significant clutter. In addition, room layouts can be easily inferred from floor plans under the assumptions that buildings consist only of orthogonal walls, also called Manhattan world assumption [6], and has constant ceiling height.

Inspired by all of these factors, we propose a localization system that uses a monocular camera and wheel odometry to estimate the robot pose using a given floor plan. We propose a state-of-the-art CNN architecture to predict room edges from images and apply a Monte Carlo Localization (MCL) method that compares these edges with those expected according to the given floor plan. We evaluate our proposed method in real-world scenarios, showing its robustness and accuracy even in challenging environments.

∗The first two authors contributed equally to this work
All authors are with the University of Freiburg, Germany. Wolfram Burgard is also with the Toyota Research Institute, Los Altos, USA.
II. RELATED WORK

Several methods have been proposed in the past to localize robots or, more generally, devices, in 2D maps using RGB and range/depth measurements. For example, the approaches proposed by Wolf et al. [7] and Bennewitz et al. [8] use Monte Carlo Localization (MCL) and employ a database of images recorded in an indoor environment. Mendez et al. [9] proposed a sensor model for MCL that leverages the semantics of the environment, namely doors, walls and windows, obtained by processing RGB images with a CNN. They enhance the standard likelihood fields for the occupied space on the map with suitable likelihood fields for doors and windows. Although such a sensor model can be also adapted to handle range-less measurements, it shows increased accuracy with respect to standard MCL only when depth measurements are used. Winteralter et al. [2] proposed a sensor model for MCL to localize a Tango tablet in a floor plan. They extrude a full 3D model of the floor plan and use the depth measurement to estimate the current pose. More recently, Lin et al. [10] proposed a joint estimation of the camera pose and the room layout leveraging prior information from floor plans. Given a set of partial views, they combine a floor plan extraction with a pose refinement process to estimate the camera poses.

The approaches described above rely on depth information or previously acquired poses. Other methods, conversely, only use monocular cameras to localize. Zhang and Kogadoga [11] proposed a robot localization system based on wheel odometry and monocular images. The system extracts edges from the image frame and converts the floor edges into 2D world coordinates using the extrinsic parameters of the camera. Such points are then used as virtual endpoints for vanilla MCL. A similar approach by Unicomb et al. [12] was proposed recently to localize a camera in a 2D map. The authors train a CNN using information from floor segmentation to select which lines in an edge image belong to the floor plane. The detected edges are reprojected into the 3D world using the current estimate of the floor plane. They are then used as virtual measurement in an Extended Kalman Filter. Hile and Boriello [13] proposed a system to localize a mobile phone camera with respect to a floor plan by triangulating suitable features. They employ RANSAC to estimate the relative 3D pose together with the feature correspondences. Although the system achieves high accuracy, the features are limited to corner points at the base of door frames and wall intersections and therefore they are often unusable outside corridors due to occlusions and the limited field-of-view. Chu et al. [14] use MCL to estimate the 3D pose of a camera in a extruded floor plan. They propose a sensor model that incorporates information about the observed free-space, doors as well as structural lines of the environment by leveraging a 3D metrical point cloud obtained from monocular visual SLAM.

The method proposed in this work differs from the approaches above. Instead of locally reconstructing the 3D world from the camera observations and matching this reconstruction to an extruded model of the floor plan, we project the lines extracted from the floor plan onto the camera frame. To the best of our knowledge, our approach shares only similarity with the work of Chu and Chen [15], Wang et al. [16] and Unicomb et al. [12]. In the first two works the authors localize a camera using a 3D model extracted from a floor plan. In order to score localization hypotheses, both systems use a distance transform-based cost function that encodes the misalignment on the image plane between the structural lines extracted from the 3D model and the edge image obtained by edge detection. In contrast to these approaches, we use a CNN for reliably predicting room layout edges in order to better cope with occlusion due to clutter and furniture. Unicomb et al. [12] also employed a CNN but they only learn to extract floor edges. This is a limitation in case of clutter or occlusion. Furthermore, using a Kalman Filter approach to project the measurement in the floor plan of the map can make the system less robust to wrong initialization as the accuracy of the virtual measurement is dependent on the current camera pose estimation. Finally, in contrast to [14] and [16], we model the layout edges of the floor plan from an image and wall corners without any 3D model.

Most of the CNN-based approaches for estimating room layout edges employ a encoder-decoder topology with a standard classification network for the encoder and utilize a series of deconvolutional layers for upsampling the feature maps [4], [5], [17], [12]. Ren et al. [17] propose an architecture that employs the VGG-16 network for the encoder followed by fully-connected layers and deconvolutional layers that upsample encoder to one quarter of the input resolution. The use of fully-connected layers enables their network to have a large receptive field but at the cost of losing the feature localization ability. Lin et al. [4] introduces a similar approach with the stronger ResNet-101 backbone and models the network in a fully-convolutional manner. Most recently, Zhang et al. [5] propose an architecture based on the VGG-16 backbone for simultaneously estimating the layout edges as well as predicting the semantic segmentation of the walls, floors and ceiling. As opposed these networks, we employ a more parameter efficient encoder with dilated convolutions and we incorporate the novel eASPP for capturing long-range context, complemented with an iterative training strategy that enables our network to predict thin layout edges without discontinuities.

III. PROPOSED METHOD

In order to localize the robot in floor plans, we employ MCL [19] with adaptive sampling. MCL applies Bayesian recursive update

$$bel(x_t)
\propto \int_X p(x_t \mid x_{t-1}, u_t) \cdot bel(x_{t-1}) \, dx_{t-1}$$

(1)

to a set of weighted hypothesis, called particles, for the posterior distribution $bel(x_t) \triangleq p(x_t \mid z_{1:t}, u_{1:t})$ of the robot pose $x_t \in SE(2)$, given a sequence of motion priors $u_{1:t}$ and sensor measurements $z_{1:t}$. Whereas a natural choice for the proposal distribution $p(x_t \mid x_{t-1}, u_t)$ is to apply the odometry motion model with white Gaussian noise, a
suitable measurement model \(p(z_t | x_t) \) based on the floor plan layout edges has to be used and will be outlined in the reminder of this section. To resample the particle set, we used KLD-sampling, which is a well-known sampling technique that adapts the number of particles according to the Kullback-Leibler divergence of the estimated belief and an approximation of the true posterior distribution [20].

As a final remark, we note that in this work we only interested in the pose tracking problem, that is, at every time \(t > 0 \) we are interested to estimate \(bel(x_t | x_0) \) given an initial coarse estimate \(x_0 \) of the starting location of the robot. For real-world applications, this is often not required as users can often provide an initial position estimate.

A. Room Layout Edge Extraction Network

Our approach to estimate the room layout edges consists of two steps. In the first step, we estimate the vanishing lines in a monocular image of the scene using the approach of Hedau et al. [21]. Briefly, we detect vanishing lines by extracting line segments and estimating three mutually orthogonal vanishing points. Subsequently, we color the detected line segments according to the vanishing point using a voting scheme. In the second step, we overlay the estimated colorized vanishing lines on the monocular image which is then input to our network for feature learning and prediction. Utilizing the vanishing lines enables us to encode prior knowledge about the orientation of the surfaces in the scene which accelerates the training of the network and improves the performance in highly cluttered scenes.

The topology of our proposed architecture for learning to predict room layout edges is shown in Figure 2. We build upon our recently introduced AdapNet++ architecture [18] which has four main components. It consists of an encoder based on the full pre-activation ResNet-50 architecture [22] in which the standard residual units are replaced with multiscale residual units with parallel atrous convolutions with different dilation rates. We add dropout on the last two residual units to prevent overfitting. The output of the encoder, which is 16-times downsampled with respect to the input image, is then fed into the eASPP module. The eASPP module has cascaded and parallel atrous convolutions to capture long-range contexts with very large effective receptive fields. Having large effective receptive fields is critical for estimating room layout edges as often indoor scenes are significant cluttered and the network needs to be able to capture large contexts beyond occlusions. In order to illustrate this, we compare the empirical receptive field at the end of the eASPP of our network and the receptive field at the end of the full pre-activation ResNet-50 architecture in Figure 3. As we observe the receptive field for the pixel annotated by the red dot, we see that the receptive field at the end of the ResNet-50 architecture is not able to capture context beyond the clutter that causes occlusion, whereas the receptive field of our network extends beyond occlusions thereby enabling our network to accurately predict the layout edges even in the presence of severe occlusion.

In order to upsample the output of the eASPP back to the input image resolution, we employ a decoder with three upsampling stages. Each stage employs a deconvolution layer that upsamples the feature maps by a factor of two, followed by two \(3 \times 3 \) convolution layers. We also fuse high-resolution encoder features into the decoder to obtain smoother edges. We use the parameter configuration for all the layers in our network as defined in the AdapNet++ architecture [18], except for the last deconvolution layer in which we set the number of filter channels as one and we add a sigmoid activation function to yield the room layout edges, which is thresholded to yield a binary edge mask. We detail the training protocol that we employ in Section IV-B.

B. Floor Plan Layout Edge Extraction

As in our previous work [23], we assume the floor plan to be encoded as binary image \(I \in \{0, F\}^{H \times W} \) with a high resolution \(\sigma \), a reference frame \(\mathcal{F} \in \mathbb{S} \mathbb{E}(2) \) and a set of corner points \(C \subset \mathbb{R}^2 \) associated to some corner pixels and expressed with respect to that reference frame. Corners can be extracted by preprocessing the map using standard corner detection algorithms and clustering the resulting corners according to
we define the observation model of each pose hypotheses as

\[
\sum \end{equation}

whose lines of sight from which we assume to be known upfront. Moreover, to complete \(F \) with respect to the 2D reference frame, while using the same notation.

The floor plan images with a lower resolution. The visibility of each corner point can be inferred, again, by ray-casting along the connecting vertical line (see Figure 4). The visibility of each FoV of the camera together with their related ceiling points \(O \) the visible layout edges, we add to \(F \) with respect to the 2D reference frame \(T \). Accordingly, we elevating the ray-casted points by the height of the building, \(z \) as well as their counterparts on the ceiling, obtained by the floor plan model, \(\sigma_z > 0 \) is a tolerance term (in pixel) that encodes the expected pixel noise in the layout edge mask \(z \), \(\pi(o) \) is the transformation that projects 3D world points onto the image plane using the intrinsic parameters, and \(d(p,z) \) is the distance of pixel \(p \) to the closest pixel in edge layout mask.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed method, we recorded datasets in two buildings of the University of Freiburg. We will henceforth refer to them as Fr078-1 (113 m long), Fr078-2 (179 m long) and Fr080 (108 m long). Fr078-1 and Fr078-2 aim to emulate an apartment-like structure while Fr080 was obtained obtained in a standard office building. For all the experiments, we used a Festo Robotino omnidirectional platform and the RGB images obtained from a Microsoft Kinect V2 mounted on board the robot. To provide a reference trajectory for the evaluation, we employed the localization system proposed in [23] using an Hokuyo UTM-30LX laser rangefinder also mounted on the robot. The robot moved with an average speed of approximately 0.2 m/s and 15°/s and maximum of 0.5 m/s and 50°/s. Since the trajectories estimated by [23] are highly accurate, we will henceforth consider them to be the (approximate) ground-truth for the datasets. For each dataset, we run 25 experiments to account for the randomness of MCL and consider the estimated pose at each time to be the average pose over the runs.

In addition, we benchmark the performance of our room layout edge estimation network on the challenging LSUN Room Layout Estimation dataset [24] consisting of 4,000 images for training, 394 images for validation and 1,000 images for testing. We employ augmentation strategies such as horizontal flipping, cropping and color jittering to increase the
number of training samples. We report results in terms of the edge error which can be computed as the Euclidean distance between the estimated layout edges and the ground-truth edge map normalized by the number of pixel in each mask. In order to facilitate comparison with previous approaches [5], we also report the fixed contour threshold (ODS) and the per-image best threshold (OIS) [25] metrics.

A. Implementation

In all the experiments we used the same set of parameters. To extract the room layout of the floor plans we removed single pixel lines as well as close doors and narrow passages by using respectively an erosion/dilation and dilation/erosion pass on a $1 \text{ cm}/\text{px}$ image. Similarly, the Harris corner detector implementation of OpenCV was utilized to extract the corner pixels on the floor plan image. In our implementation of MCL, we set $\sigma_{z} = 10 \text{ px}$, $\delta = 25 \text{ px}$. To compute the predicted layout O_{\times}, we subsampled the 2D camera FoV with 150 rays and we approximated the vertical edges of the layout with 100 points. Localization updates occurred whenever the motion prior from wheel odometry reported a linear or angular relative motion exceeding 10 mm or 5° (0.1 rad) respectively and used 1,500 and 5,000 as minimum/maximum number of particles to approximate the robot belief.

B. Network Training

We use the TensorFlow deep learning library for the network implementation and we train our model on images resized to a resolution of 320×320 pixels and the output of our network has the same resolution as the input image. To generate the ground-truth data for training, we first convert the LSUN room layout ground-truth to a binary edge map where the edge lines have a width of 6 pixels. We dilate the edges with a 5×5 kernel for d_{c} number of iterations, where c is the number of epochs for which we train using this dilation factor. We then applied Gaussian blur with a kernel of 21×21 pixels and $\sigma = 6$ for smoothing the edge boundaries. We employed a four stage training procedure and began training with the ground-truth edges dilated with $d_{0} = 5$ and in subsequent stages we reduced the amount of edge dilation to $d_{1} = 3$, $d_{2} = 1$ and $d_{3} = 0$. Intuitively this process can be described as starting the training with thick layout edges and gradually thinning the edge thickness as the training progresses. Employing this gradual thinning approach improves convergence and predicts precise thin edges in the estimated output, as opposed to training only with a fixed edge width. Lin et al. [4] employ a similar training strategy that adaptively changes the edge thickness according to the gradient, however our training strategy yielded a better performance.

We used the He initialization [26] for all the layers of our network and the cross-entropy loss function for training. For optimization, we used Adam solver with $\beta_{1} = 0.9$, $\beta_{2} = 0.999$ and $\epsilon = 10^{-10}$. Additionally, we suppressed the gradients of non-edge pixels by multiplying them with a factor of 0.2 in order to prevent the network from converging to zero, which often occurs due to the imbalance between edge and non-edge pixels. We trained our model for a total of 66 epochs with an initial learning rate of $\lambda_{0} = 10^{-4}$ and a mini-batch size of 16, which takes about 18 hours.

Fig. 5. Accuracy of the localization system for Fr078-I (left column) and Fr080 (right column). Top: the estimated mean trajectory (red), approximate ground-truth trajectory (gray). The red shadowed red area represents the translational standard deviation of each pose estimate. Middle and bottom: The linear and angular RMSE (red) compared to the pure odometry error (black). The red areas delimit the errors for the worst and best pose estimation.
C. Evaluation of Layout Edge Estimation

In order to empirically evaluate the performance of our room layout edge extraction network, we performed evaluations on the LSUN benchmark in comparison to state-of-the-art approaches [5], [4], [22]. The results are reported in Table I. Our network achieved a edge error of 8.33 which accounts for an improvement of 2.91 over the previous state-of-the-art. We also observe a higher ODS scores and a larger improvement in both these metrics, thereby setting the new state-of-the-art on the LSUN benchmark in comparison to state-of-the-art approaches [5], [4], [22]. The results are reported in Table I. Our network achieved a edge error of 8.33 which accounts for an improvement of 2.91 over the previous state-of-the-art. We also observe a higher ODS scores and a larger improvement in both these metrics, thereby setting the new state-of-the-art on the LSUN benchmark in comparison to state-of-the-art approaches [5], [4], [22].

Qualitative comparisons of room edge layout estimation are reported in Figure 6. The first two and second two rows show a prediction results on the LSUN validation set and Fr080 respectively. Note that we only train our network on the validation set (first two rows) and on Fr080 (last two rows). Compared the other methods, our network predicts continuous layout edges even under substantial occlusion.

D. Ablation Study of Layout Edge Estimation Network

We evaluated the performance of the network through the different stages of the upsampling. Referring to Table II M1 model upsamples the eASPP output to one quarter the resolution of the input image and this model achieves an edge error of 10.99. In the subsequent M2 and M3 models, we suppress the gradients of the non-edge pixels with a factor of 0.2 and upsample the eASPP output to half the resolution of the input image which reduces the edge error by 0.86. Finally in M4 model, we upsample back to the full input image resolution subsequently and in the M5 model we overlay the colorized vanishing lines by adding these channels to the RGB image. Our final M5 model achieves a reduction of 2.66 in the edge error compared to base AdapNet++ model.

E. Localization Robustness and Accuracy

In all experiments the robot was initialized within 10 cm and 15° from the ground-truth pose. As shown in Figure 5 the robot was always able to estimate its current pose and non negligible errors were reported only in a specific situation. As shown in Figure 5 in Fr078-1, the robot failed temporarily to track its current pose when traversing a doorway (scattered trajectory at the bottom of the map). The error was due to the camera image capturing both the next room (predominant view) and the current room (limited view). This resulted in the network only predicting the layout edges for largest room view, before having entered the next room. The linear RMSE of the mean trajectory reached approximately 1 m. Nonetheless, the robot was later able to localize itself with an accuracy similar to the average accuracy over all the experiment whenever new observations were collected.

Overall, the proposed method delivered an average linear RMSE of (225 ± 14) mm and (245 ± 13) mm as well as an average angular RMSE of $(2.5 ± 2.5)°$ and $(2.9 ± 2.3)°$ in Fr078-1 and Fr078-2 respectively. Similar results were recorded for Fr080-UF, with average linear and angular RMSE of $(223 ± 12) mm$ and $(2.3 ± 2.0)°$ respectively.

Table I

Network	Edge Error	ODS	OIS	Parameters
ResNet50-FCN [22]	18.36	0.213	0.227	23.57 M
Lin et al. [4]	10.72	0.279	0.284	42.29 M
Zhang et al. [5]	11.24	0.257	0.263	138.24 M
Ours	8.33	0.310	0.316	30.19 M

Table II

Model	Output Resolution	Background Weight	Vanishing Lines	Edge Error
M1	1/4	0	-	10.99
M2	1/4	0.2	-	10.61
M3	1/2	0.2	-	10.13
M4	Full	0.2	-	9.46
M5	Full	0.2	✓	8.33
The high peaks in Figure 7 are due to the Manhattan lines previously unseen environments. Challenging LSUN benchmark and generalize effectively to camera views. In addition, our network for room layout system is able to robustly estimate the pose of the robot even in real-world environments demonstrates that our proposed approach can run in real-time on consumer grade hardware.

V. CONCLUSIONS

In this work, we presented a robot localization system that uses wheel odometry and images from a monocular camera to estimate the pose of a robot in a floor plan. We utilize a convolutional neural network tailored to predict the room layout edges and employ Monte Carlo Localization with a sensor model that takes into account the overlap of the predicted layout edge mask and the expected layout edges generated from a floor plan image. Experiments in complex real-world environments demonstrate that our proposed system is able to robustly estimate the pose of the robot even in challenging conditions such as severe occlusion and limited camera views. In addition, out network for room layout edge estimation achieves state-of-the-art performance on the challenging LSUN benchmark and generalize effectively to previously unseen environments.

REFERENCES

[1] S. Ito, F. Endres, M. Kuderer, G. D. Tipaldi, C. Stachniss, and W. Burgard, “W-RGB-D: floor-plan-based indoor global localization using a depth camera and wifi,” in Proc. of the IEEE International Conference on Robotics and Automation, 2014.

[2] W. Winterhalter, F. Fleckenstein, B. Steder, L. Spiniello, and W. Burgard, “Accurate indoor localization for RGB-D smartphones and tablets given 2D floor plans,” in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015.

[3] F. Boniardi, T. Caselitz, R. Kümmerle, and W. Burgard, “Robust LiDAR-based localization in architectural floor plans,” in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017.

[4] J. Lin, S.-W. Huang, S.-H. Lai, and C.-K. Chiang, “Indoor scene layout estimation from a single image,” in Proc. of the IEEE International Conference on Pattern Recognition, 2018.

[5] W. Zhang, W. Zhang, and J. Gu, “Edge-semantic learning strategy for layout estimation in indoor environment,” arXiv preprint arXiv:1901.00021, 2019.

[6] J. Coughlan and A. Yuille, “Manhattan world: Orientation and outlier detection by Bayesian inference,” Neural Computation, vol. 15, no. 5, pp. 1063–1088, 2003.

[7] J. Wolf, W. Burgard, and H. Burkhardt, “Robust vision-based localization for mobile robots using an image retrieval system based on invariant features,” in Proc. of the IEEE International Conference on Robotics and Automation, 2002.

[8] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke, “Metric localization with scale-invariant visual features using a single perspective camera,” in European Robotics Symposium, 2006.

[9] O. Mendez, S. Hadfield, N. Pugeault, and R. Bowden, “SeDAR-semantic detection and ranging: Humans can localise without lidar, can robots?” in Proc. of the IEEE International Conference on Robotics and Automation, 2018.

[10] C. Lin, C. Li, Y. Furukawa, and W. Wang, “Floorplan priors for joint camera pose and room layout estimation,” arXiv preprint arXiv:1812.06677, 2018.

[11] Z. Zhang and S. Kodagoda, “A monocular vision based localizer,” in Proc. of the Australasian Conference on Robotics and Automation, Australian Robotics and Automation Association, 2005.

[12] J. Uniconb, R. Ranasinghe, L. Dantanarayana, and G. Dissanayake, “A monocular indoor localiser based on an extended kalman filter and edge images from a convolutional neural network,” in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018.

[13] H. Hile and G. Borriello, “Positioning and orientation in indoor environments using camera phones,” Computer Graphics and Applications, vol. 28, no. 4, 2008.

[14] H. Chu, D. Ki Kim, and T. Chen. “You are here: Mimicking the human thinking process in reading floor-plans,” in Proc. of the IEEE International Conference on Computer Vision, 2015.

[15] Towards indoor localization with floorplan-assisted priors. Available online. Accessed on January 2019.

[16] S. Wang, S. Fidler, and R. Urtasun, “Lost shopping! monocular localization in large indoor spaces,” in Proc. of the IEEE International Conference on Computer Vision, 2015.

[17] Y. Ren, S. Li, C. Chen, and C.-C. J. Kuo, “A coarse-to-fine indoor layout estimation (cfile) method,” in Asian Conference on Computer Vision, 2016, pp. 36–51.

[18] A. Valada, R. Mohan, and W. Burgard, “Self-supervised model adaptation for multimodal semantic segmentation,” arXiv preprint arXiv:1808.03833, 2018.

[19] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2005.

[20] D. Fox, “KLD-sampling: Adaptive particle filters,” in Advances in Neural Information Processing Systems, 2002.

[21] V. Hedau, D. Hoiem, and D. Forsyth, “Recovering the spatial layout of cluttered rooms,” in Proc. of the IEEE International Conference on Computer Vision, 2009.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in Proc. of the European Conference on Computer Vision, 2016.

[23] F. Boniardi, T. Caselitz, R. Kümmerle, and W. Burgard, “A pose graph-based localization system for long-term navigation in CAD floor plans,” Robotics and Autonomous Systems, vol. 112, pp. 84 – 97, 2019.

[24] Y. Zhang, F. Yu, S. Song, P. Xu, A. Seff, and J. Xiao. Large-scale scene understanding challenge: Room layout estimation. Available online. Accessed on January 2019.

[25] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 5, pp. 898–916, 2011.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1026–1034.