An Asian Elephant Imitates Human Speech

Angela S. Stoeger,1,6,* Daniel Mietchen,2,6 Sukhun Oh,3 Shermin de Silva,4,6 Christian T. Herbst,1 Soowhan Kwon,3 and W. Tecumseh Fitch1,6
1Department of Cognitive Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
2EvoMRI Communications, Zwätzengasse 10, 07743 Jena, Germany
3Samsung Everland Zoo, 310 Jeodae-ri, Pogok-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 449-715, South Korea
4Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO 80523, USA
5Elephant Forest and Environment Conservation Trust, 215 A 3/7 Park Road, Colombo 5, Sri Lanka

Summary
Vocal imitation has convergently evolved in many species, allowing learning and cultural transmission of complex, conspecific sounds, as in birdsong [1, 2]. Scattered instances also exist of vocal imitation across species, including mockingbirds imitating other species or parrots and mynahs producing human speech [3, 4]. Here, we document a male Asian elephant (Elephas maximus) that imitates human speech, matching Korean formants and fundamental frequency in such detail that Korean native speakers can readily understand and transcribe the imitations. To create these very accurate imitations of speech formant frequencies, this elephant (named Koshik) places his trunk inside his mouth, modulating the shape of the vocal tract during controlled phonation. This represents a wholly novel method of vocal production and formant control in this or any other species. One hypothesized role for vocal imitation is to facilitate vocal recognition by heightening the similarity between related or socially affiliated individuals [1, 2]. The social circumstances under which Koshik’s speech imitations developed suggest that one function of vocal learning might be to cement social bonds and, in unusual cases, social bonds across species.

Results and Discussion
Vocal learning, a crucial component of human speech, has evolved independently in several distantly related taxa, typically to allow the learning and cultural transmission of complex, conspecific calls [1, 2]. The learned songs of birds [5–8] and whales [9] are the best-known examples. Numerous instances of vocal imitation across species (sometimes termed “vocal mimicry”) also exist, for example animals imitating human speech. Among birds, parrots and mynahs are talented imitators of the human voice [3, 4], but only a few convincing examples of speech imitation in nonhuman mammals are known. One documented case was Hoover, a harbor seal (Phoca vitulina) who could utter simple phrases in English after being raised by a Maine fisherman [10]. Another study documented that an adult male beluga (Delphinapterus leucas) imitated his name “Logosi” [11]. Anecdotal reports further suggest that a male Asian elephant (Elephas maximus) in a zoo in Kazakhstan might have been capable of producing speech-like utterances in Russian and Kazakh [12], but documentation is lacking.

Human speech imitation in animals requires a complex match between vocal perception and production to perceive, decode, and reproduce the speech signal. Despite considerable effort, several attempts to train apes to imitate human speech provide little support for ape vocal imitation abilities [13]. The inability of our nearest living relatives to imitate speech apparently stems from poor cortical-motor control of the larynx and the vocal tract [14–16]. Despite lacking certain morphological structures that humans use to articulate speech sounds (e.g., having a beak instead of lips), some animals can overcome morphological constraints that might seem to preclude production of human sounds, as long as neural circuitry specialized for perceiving and reproducing an acoustic signal is available.

Here, we analyze human speech imitation by a male Asian elephant named Koshik from the Everland Zoo in South Korea, augmenting and extending prior evidence of vocal imitation in elephants [17].

Speech Imitative Repertoire
Koshik’s speech sound repertoire was said by his trainers to comprise six Korean words. We tested this hypothesis by analyzing transcriptions made by 16 Korean native speakers on 47 recordings of Koshik’s utterances (see Table S1 available online). The subjects were not informed about the supposed spelling or meaning of the imitations. This analysis largely confirmed the trainers’ claims, indicating that Koshik’s speech imitations correspond to the following five words: “annyong” (“hello,” Audio S1), “anja” (“sit down,” Audio S2), “anyia” (“no”), “nuo” (“lie down,” Audio S3), and “choah” (“good,” Audio S4). Agreement was high for vowels and relatively poor for consonants: vowel transcription similarity was 67% overall, whereas consonant agreement only reached 21% (Table S1). For example, “choah” utterances (according to trainers) were mainly transcribed as “boah” (“look,” 38%) or “moa” (“collect,” 23%), but neither of these utterances was used toward Koshik. As a result, transcriptions provided exact spelling matches (in Korean) for only one sound (“annyong,” “hello,” for which the majority of respondents [56%] agreed) and three additional imitations for which considerable agreement could be documented (“anyia”: 44%; “nuo”: 31%; “anja”: 15%). These results show that Koshik accurately imitates vowels, determined by formant frequency matching, but that consonant fidelity is relatively poor. Korean is not a tonal language like Chinese, in which changes in fundamental frequency are phonemic and change word meanings. Figure 1 contains spectrographic depictions of Koshik’s speech imitation corresponding to the word “nuo,” together with “nuo” produced by one of his trainers and a native Korean speaker unfamiliar with Koshik.

Comparison of the Elephant’s Speech Imitation, Human Speech, and Natural Asian Elephant Calls
We applied discriminant function analysis (DFA) to compare structural characteristics of Koshik’s speech imitations to
natural Asian elephant calls (using duration, minimum and maximum fundamental frequency, and the first formant/spectral peak frequency), finding that Koshik’s imitations are very different from 187 calls of 22 Asian elephants of both genders and various ages recorded in five different zoos and in the Udawalawe National Park, Sri Lanka (Table S2). Instead, they cluster tightly with the human model utterances (Figure 2A), which were recorded from Koshik’s trainers. Fundamental frequency is the most discriminating feature. Post hoc Bonferroni tests revealed no significant difference in minimum or maximum fundamental frequency between Koshik’s imitations and the trainer’s utterances, but showed significant differences relative to the natural Asian elephant calls (all p < 0.001) (Figure 2B).

Koshik’s Speech Production and Formant Matching

Particularly during vowel production, Koshik’s first two formants accurately match formant 1 and formant 2 of his trainers (Figure 3). Comparing means of the first and second formant with the corresponding human formant of the most commonly recorded vowels, “a,” “o,” and “u,” revealed no significant difference between the elephant and the human models (Table S3). Koshik’s precise imitation of the acoustic characteristics of his trainers is remarkable, given that the long vocal tract of an elephant would naturally produce much lower formant frequencies [19]. Koshik creates these accurate imitations of human formant frequencies by placing the trunk against the mouth [20]. Putting a body part, in Koshik’s case the trunk, inside the mouth, thereby modulating the vocal tract in order to manipulate formants, is a wholly novel method of vocal production. Lacking X-ray images, we cannot be certain whether tongue movements are also involved in Koshik’s speech imitations. But we do know that elephants lack a full oral sphincter, because the upper lip is fused with the nose to form the trunk. Lip rounding, a feature of vowels such as /u/, is thus, strictly speaking, impossible. Koshik’s success at vowel imitation suggests that elephants are able to overcome morphological limitations by augmenting the oral vocal tract with their trunk: an evolutionarily novel and highly specialized appendage. The only vaguely reminiscent result we are aware of, outside of humans, concerns orangutans (Pongo pygmaeus wurmbii), who are reported to modulate sound spectra using their hands or leaves [24].

The results indicate that the elephant brain can transfer detailed information between auditory centers and the corresponding motor planning regions (including those controlling the trunk muscles), in addition to having the precise control over the larynx necessary to gate and modulate fundamental frequency. Our documentation of elephant vocal learning adds support to the “vocal learning and rhythmic synchronization hypothesis,” since it has been recently suggested that Asian elephants may be capable of beat perception and synchronization (BPS) [25, 26]. This hypothesis signifies that entrainment might have evolved as a byproduct of selection for vocal imitation (BPS also requires information transfer between the auditory and motor systems) and, thus, that only vocal learning species should be capable of BPS [25, 26]. The alternative, that entrainment leads to vocal imitation, is rendered unlikely by the finding that, while all known entraining species are vocal learners, many vocal learners show no entrainment ability [26].

Although elephants living under human care may be heavily exposed to speech from birth on, they do not imitate speech on a regular basis. Thus, early intensive speech exposure does not seem adequate to initiate speech imitation in elephants (although it might be a required precondition), as long as they are embedded within an elephant social environment. Koshik was captive-born in 1990 and translocated to Everland in 1993, where two female Asian elephants accompanied him until he was five years old. From 1995 to 2002, Koshik was the only elephant in Everland. He was trained to physically obey several commands and was exposed to...
human speech intensively by his trainers, veterinarians, guides, and tourists. In August 2004, his trainers first noticed that Koshik imitated speech. We cannot be certain whether Koshik started to produce speech sounds at 14 years of age that Koshik imitated speech. We cannot be certain whether guides, and tourists. In August 2004, his trainers first noticed human speech intensively by his trainers, veterinarians,

- **Experimental Procedures**
 - **Acoustic Data Collection**
 Koshik was recorded in an outdoor enclosure (microphone-to-elephant distance of 10 to 25 m) of the Everland Zoo from October 3–8, 2010, on a daily basis for 25 hr in total. He was typically stimulated to vocalize: A trainer or the veterinarian said his name or “hello Koshik” (“Koshik annyong” in Korean) and continued talking to Koshik with words from his imitative repertoire until Koshik responded. This typically occurred within two to three utterances. Although Koshik’s speechlike vocalizations often followed such “requests” from his trainers, he frequently uttered different words than those used immediately previously by his trainers. Koshik was usually rewarded after each imitation and, therefore, was not specifically trained to only reproduce the preceding utterance. Additionally, Koshik sometimes spontaneously produced speechlike utterances (mainly “choah” and “nuo”). These spontaneous vocalizations did not vary from the ones recorded during the interactions with the trainers. We recorded 320 imitative calls. We recorded the two trainers and the veterinarian simultaneously with the elephant, while they worked and interacted with him (80 words from trainer 1, 50 words from trainer 2, and 30 words from the veterinarian).

- **Vocal learning might be to cement social bonds and, in unusual cases, social bonds across species.**
imitations and the human utterances: 120 Hz; rumbles and growls: 10 Hz; squeals, chirps, and trumpets: 300 Hz).

To examine formant frequencies 1 and 2 of the annotated time units of the prospective vowels of Koshik and those of the human models, LPC smoothing was performed on the spectra (number of peaks: 2 in 2000 Hz). The same method was applied to analyze spectral peak frequencies of natural Asian elephant calls (we also used time units of 0.15 s, measured at the middle of the call; if calls were shorter than 0.15 s, we used the entire call; the sampling frequency and the settings were adjusted based on the call type). Due to an inadequate understanding of the production mechanism of particular call types (such as trumpets, squeals, and squeaks/chirps) of the natural Asian elephant vocal repertoire, we use the term “spectral peak” instead of “formant” for those vocalizations.

The timing of the trunk insertion into the oral chamber before vocalization and trunk removal after vocalization was measured from videos using VLC software. The time was noted from the moment that the trunk tip was put into the mouth, until the lower jaw was raised (which was always coincident with the onset of phonation). We further noted the time from the offset of vocalization until the trunk tip was taken out of the trunk. In total, we analyzed a subsample of 50 imitations (including exemplars of all five imitative utterance classes).

Statistical Analyses
All statistical tests were performed in PASW Statistics 18.0. Two-tailed alpha was set to 0.05.
References

1. Fitch, W.T. (2000). The evolution of speech: a comparative review. Trends Cogn. Sci. 4, 258–267.
2. Janik, V.M., and Slater, P.B. (1997). Vocal learning in mammals. Adv. Stud. Behav. 26, 59–99.
3. Pepperberg, I.M. (2010). Vocal learning in Grey parrots: A brief review of perception, production, and cross-species comparisons. Brain Lang. 115, 81–91.
4. Klatt, D.H., and Stefanski, R.A. (1974). How does a mynah bird imitate human speech? J. Acoust. Soc. Am. 55, 822–832.
5. Marler, P. (1970). A comparative approach to vocal learning: song development in white-crowned sparrows. J. Comp. Physiol. Psychol. 71, 1–25.
6. Nottebohm, F. (1970). Ontogeny of bird song. Science 176, 950–956.
7. Brainard, M.S., and Doupe, A.J. (2002). What songbirds teach us about learning. Nature 417, 351–358.
8. Jarvis, E.D. (2004). Learned birdsong and the neurobiology of human language. Ann. N Y Acad. Sci. 1016, 749–777.
9. Payne, K., and Payne, R. (1985). Large-scale changes over 19 years in song of humpback whales in Bermuda. Z. Tierpsychol. 68, 89–114.
10. Ralls, K., Fiorelli, P., and Gish, S. (1985). Vocalizations and vocal mimicry in captive harbor seals: Phoca vitulina. Can. J. Zool. 63, 1050–1056.
11. Eaton, R.L. (1974). A beluga whale imitates human speech. Carnivore, 22–23.
12. Beeston, R. (1980). Soviet Zoo has talking elephant. The Daily Telegraph, April 9, 1980. p. 16.
13. Hayes, C. (1951). The Ape in Our House (Oxford: Harper).
14. Jarvis, E.D. (2007). Neural systems for vocal learning in birds and humans: a synopsis. J. Ornithol. 148, 35–44.
15. Jürgens, U. (1992). On the neurobiology of vocal communication. In Nonverbal Vocal Communication: Comparative and Developmental Approaches, H. Papousek, U. Jürgens, and M. Papousek, eds. (Cambridge: Cambridge University Press), pp. 31–42.
16. Lieberman, P. (1984). The Biology and Evolution of Language (Cambridge, MA: Harvard University Press).
17. Poole, J.H., Tyack, P.L., Stoeger-Horwath, A.S., and Watwood, S. (2005). Animal behaviour: elephants are capable of vocal learning. Nature 434, 455-456.
18. Peterson, G.E., and Barney, H.L. (1952). Control methods used in a study on the vowels. J. Acoust. Soc. Am. 24, 175–184.
19. Soltis, J. (2010). Vocal communication in African elephants (Loxodonta africana). Zoo Biol. 29, 192–209.
20. Herbst, C.T., Stoeger, A.S., Frey, R., Lohscheller, J., Titze, I.R., Gumpenberger, M., and Fitch, W.T. (2012). How low can you go? Physical production mechanism of elephant infrasonic vocalizations. Science 337, 595–599.
21. Nair, S., Balakrishnan, R., Seelamantula, C.S., and Sukumar, R. (2009). Vocalizations of wild Asian elephants (Elephas maximus): structural classification and social context. J. Acoust. Soc. Am. 126, 2768–2778.
22. de Silva, S. (2010). Acoustic communication in the Asian elephant, Elephas maximus maximus. Behaviour 147, 825–852.
23. Wemmer, C., and Mishra, H.R. (1982). Observational learning by an Asiatic elephant of an unusual sound production method. Mammalia 46, 556–557.
24. Hardus, M.E., Lameira, A.R., Van Schaik, C.P., and Wich, S.A. (2009). Tool use in wild orang-utans modifies sound production: A functionally deceptive innovation? Proc. Biol. Sci. 276, 3689–3694.
25. Patel, A.D., Iversen, J.R., Bregman, M.R., and Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Curr. Biol. 19, 827–830.
26. Schachner, A., Brady, T.F., Pepperberg, I.M., and Hauser, M.D. (2009). Spontaneous motor entrainment to music in multiple vocal mimicking species. Curr. Biol. 19, 831–836.
27. Poole, J.H. (1987). Rutting behaviour in African elephants: the phenomenon of musth. Behaviour 102, 283–316.
28. Pepperberg, I.M., Naughton, J.R., and Banta, P.A. (1998). Allospecific vocal learning by grey parrots (Psittacus erithacus): a failure of videotaped instruction under certain conditions. Behav. Processes 42, 139–158.
29. Amsler, M. (1947). An almost human grey parrot. Avicult. Mag. 53, 68–69.
30. West, M.J., Stroud, A.N., and King, A.P. (1983). Mimicry of the human voice by European starlings: the role of social interaction. Wilson Bull. 95, 635–640.
31. Maglio, V.J. (1973). Origin and evolution of the Elephantidae. Trans. Am. Phil. Soc. 63, 1–149.
32. Tyack, P.L. (2008). Convergence of calls as animals form social bonds, active compensation for noisy communication channels, and the evolution of vocal learning in mammals. J. Comp. Psychol. 122, 319–331.
33. Tyack, P.L. (2003). Dolphins communicate about individual-specific social relationships. In Animal Social Complexity: Intelligence, Culture and Individualized Societies, F. de Waal and P.L. Tyack, eds. (Cambridge, MA: Harvard University Press), pp. 342–361.
34. Wittemeyer, G., Douglas-Hamilton, I., and Getz, W.M. (2005). The socioecology of elephants: analysis of the processes creating multi-tiered social structures. Anim. Behav. 69, 1357–1371.
35. de Silva, S., Ranjeewa, A.D.G., and Kryazhimskiy, S. (2011). The dynamics of social networks among female Asian elephants. BMC Ecol. 11, 17.