KECK SPECTROSCOPY OF THE GRAVITATIONAL LENS SYSTEM PG 1115+080: REDSHIFTS OF THE LENSING GALAXIES

TOMISLAV KUNDIĆ
Theoretical Astrophysics, California Institute of Technology, Mail Code 130-33, Pasadena, California 91125
Electronic mail: tomislav@tapir.caltech.edu

JUDITH G. COHEN
Palomar Observatory, California Institute of Technology, Mail Code 105-24, Pasadena, California 91125
Electronic mail: jlc@astro.caltech.edu

ROGER D. BLANDFORD
Theoretical Astrophysics, California Institute of Technology, Mail Code 130-33, Pasadena, California 91125
Electronic mail: rdb@tapir.caltech.edu

LORI M. LUBIN
The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, California 91101
Electronic mail: lml@ociw.edu

Received 1997 April 15; revised 1997 May 13

ABSTRACT

The quadruple system PG 1115 + 080 is the second gravitational lens with a reported measurement of the Hubble constant. In addition to the primary lens, three nearby galaxies are believed to contribute significantly to the lensing potential. In this paper we report accurate redshifts for all four galaxies and show that they belong to a single group at $z_p = 0.311$. This group has very similar properties to Hickson's compact groups of galaxies found at lower redshifts. We briefly discuss implications for the existing lens models and derive $H_0 = 52 \pm 14$ km s$^{-1}$ Mpc$^{-1}$. © 1997 American Astronomical Society. [S0004-6256(97)02908-7]

1. INTRODUCTION

Gravitational lensing provides a method of measuring Hubble's constant at cosmological distances independently of the traditional distance ladder. In a multiply-imaged source the difference in geometrical path length and gravitational potential along each light ray results in a time delay which can be measured if the source is variable. This time delay is inversely proportional to H_0 with the constant of proportionality that depends on the mass distribution in the lens (Refsdal 1964)

Though simple in principle, Refsdal's method has been difficult to implement, because of demanding observations required to determine the time delays. In the double quasar 0957+561 A,B (Walsh et al. 1979), there has been a long controversy over the correct value of the delay (Haarsma et al. 1997, and references therein) that was only recently resolved by Kundic et al. (1995, 1996). Combined with the lens model of Grogin & Narayan (1996), the galaxy velocity dispersion of Falco et al. (1997), and the cluster mass model of Fischer et al. (1996), this time delay yields $H_0 = 64 \pm 13$ km s$^{-1}$ Mpc$^{-1}$.

The second lens with a known time delay is the quadruple quasar PG 1115+080 (Schechter et al. 1997; Bar-Kana 1997). This system consists of four images of a $z_s = 1.722$ quasar (Weymann et al. 1980) lensed by a foreground group of galaxies at $z_f = 0.3$ (Henry & Heasley 1986; Angonin-Willaime et al. 1993). HST imaging of PG 1115+080 established the relative positions of the four quasar images with an uncertainty of 5 mas and the centroid of the lensing galaxy with an uncertainty of 50 mas (Kristian et al. 1993). A schematic diagram of the system is shown in Fig. 1 of Keeton & Kochanek (1996, hereafter KK96). We adopt their galaxy designations (based on Young et al. 1981), in which the primary lens is named G, and the nearby group members are named G1, G2, and G3.

The goals of this paper are (1) to provide an accurate redshift for the primary lensing galaxy and thus reduce the uncertainty in the derived value of H_0, (2) to establish that G, G1, G2, and G3 belong to the same group of galaxies, and (3) to estimate the velocity dispersion of this group.

2. DATA ACQUISITION

Optical spectra of PG 1115+080 were obtained on two nights, 1997 February 7 and 1997 March 2, with the Low Resolution Imaging Spectrometer (Oke et al. 1995) at the Keck II 10 m telescope. Table 1 lists the relevant observing parameters. The first two exposures were taken with the 300 line/mm grating and the 0.7" slit, and the other three with the...
Table 1. Observing parameters.

Exposure Number	Object	UT Date	UT Time	Airmass (° E of N)	Exposure Time (s)	Grating Range (Å)
1	G	1997 Feb 7	09:51	298	600	300/5000 3900–8800
2	G	1997 Feb 7	10:04	298	600	200/5000 3900–8800
3	G2, G3	1997 Mar 2	09:02	192	1200	4800–7300
4	G2, G3	1997 Mar 2	09:31	192	1200	4800–7300
5	G1, G3	1997 Mar 2	09:54	106	1200	4800–7300

600 line/mm grating and the 1.0″ slit. The resulting spectral resolution, as measured from unresolved sky lines, was approximately 7 Å in the low-resolution spectra and 4.5 Å in the high-resolution spectra. The seeing was ~0.7″ in exposures 1 and 2, and ~1.2″ in exposures 3–5.

The spectra were reduced in a standard fashion using the "lonslit" and "apextract" packages in IRAF. In the case of the main lensing galaxy G, we had to subtract the contaminating quasar light from the galaxy spectrum. Galaxy G is located approximately halfway between images A and C, which are separated by about 2 arcsec. In the R band, where the spectrograph is most sensitive, image A is ~4 mag brighter than G, and image C is ~2 mag brighter. We thus proceeded by first extracting the image A spectrum and then shifting the trace by 1 and 2 arcsec to extract the spectra of galaxy G and image C. The contribution of image A to the galaxy aperture was then subtracted using an aperture on the opposite side of the image A center. The same was repeated for image C. The resulting galaxy spectrum is shown in the bottom panel of Fig. 1, while the spectra of quasar images A and C are shown in the top two panels. Note that no correction for galaxy contamination was made to the quasar fluxes. Some of the stronger galaxy absorption lines can thus be seen in the image C spectrum.

For each spectrum the wavelength solution was derived using sky emission lines identified in the atlas of Osterbrock et al. (1996). After fitting a 4th-order Legendre polynomial to 10–20 strong, isolated lines, the rms residuals were typically ≤0.3 Å. In order to minimize systematic errors, the sky spectra were extracted on both sides of each galaxy spectrum, independently calibrated and averaged for the final wavelength solution. The shift between the two calibrations was in all cases smaller than 0.5 Å.

Approximate redshifts of the lensing galaxies were first estimated from strong absorption features in the spectra, particularly the Ca ii H and K lines and the G band. These features, along with the Balmer series lines and the Mg Ib triplet, are marked with dotted lines in Fig. 2. Accurate redshifts were then determined by cross-correlating the galaxy spectra with stellar templates of Jones (1996) available on the AAS CD-ROM Series, Vol. 7 (Leitherer et al. 1997). Only G and K giants were used, since they provide the closest match to the spectral characteristics of the early type galaxies in the lensing group. The results of the cross-correlation analysis are summarized in Table 2. The errors listed in the table were calculated from the width of the cross-correlation peak (Tonry & Davis 1979) and an estimate of the systematic error in wavelength calibration. Our results are consistent with the previous measurement of the G1 and G2 redshifts by Henry & Heasley (1986), and marginally consistent (at 3σ) with the G redshift reported by Angonin-Willaime et al. (1993).

3. PROPERTIES OF THE LENSING GROUP

The spectra of G, G1, G2, and G3 clearly show that they belong to a single group of galaxies at the redshift of z = 0.311 (Fig. 2). The rest-frame line-of-sight velocity dispersion of this group is σv = cσz/(1+z) = 270±70 km s⁻¹, where the formal error includes only the uncertainty in the individual galaxy redshifts. Because of the small number of

1IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

2Image A consists of a close pair of images A1 and A2 which were unresolved in the original discovery paper (Weymann et al. 1980).
galaxies used to derive σ_v, the velocity dispersion of the mass associated with the lensing group could be substantially larger (Ramella et al. 1994).

Properties of the lensing group in PG 1115+080 are very similar to those of Hickson’s compact groups (HCGs) of galaxies (Hickson 1982; Hickson et al. 1992). The median projected separation of galaxies in the lensing group is 35h^{-1} kpc (for $\Omega_0 = 1$), as compared to 40h^{-1} kpc for HCGs (we quote the median with upper and lower quartiles). The one-dimensional velocity dispersion of 270 km s$^{-1}$ is also within the range of 200$^{-1}$ km s$^{-1}$ characteristic of HCGs. The absolute magnitudes of the lensing galaxies are less certain, but if we adopt $M_\odot = -19.1$ for the primary lens (KK96), the range of magnitudes in the lensing group, $-20 \leq M_\odot \leq -19$, is compatible with M_\odot(HCG) $=-19.5^{+0.8}_{-0.7}$.

The gravitational potential associated with the group is crucial for the models of PG 1115+080, because it provides an independent source of shear required to obtain a statistically acceptable fit to the observables (KK96; Keeton et al. 1996). As in the case of Q 0957+561, however, the presence of an extended perturber introduces a degeneracy into the models (Falco et al. 1985) that can only be removed if the mass of the primary lens or the perturbing group are independently measured. These estimates can be obtained from the line-of-sight velocity dispersions of the galaxy and the group. The former requires high signal-to-noise, moderate (~1 Å) resolution spectroscopy of the lensing galaxy (e.g., Falco et al. 1997), a challenging observation because of the proximity of bright quasar images. The velocity dispersion of the group can be improved from our current estimate if additional galaxies associated with the group are found in the vicinity of the lens (Ramella et al. 1994). A deeper spectroscopic survey of the field would thus be highly desirable.

4. IMPLICATIONS FOR THE HUBBLE CONSTANT

In the expression for the gravitational lens time delay, it is common to separate the lens model dependence from the cosmological scale factor (e.g., Blandford & Narayan 1992):

$$\tau(\theta) = \frac{(1+z_d)}{c} \frac{D_d D_s}{D_d} \left[\frac{\theta - \beta}{2} - \Psi(\theta) \right],$$

where θ and β are the image and source positions; $\Psi(\theta)$ is the scaled surface potential; and D_d, D_s, and D_d are the angular diameter distances observer–lens, observer–source, and lens–source. In a given lens model specified by $\Psi(\theta)$, the value of the Hubble constant derived from the differential time delays, $\tau(\theta) = \tau(\beta)$, is inversely proportional to $K = (1+z_d)/c (D_d D_s)/D_d$. This factor K also depends on the source and lens redshifts, and the choice of cosmological parameters Ω_0 and Λ.

For the source redshift of $z_d = 1.722$ and the lens redshift of $z_l = 0.311$, the cosmological scale factor K takes the values of 31.3, 33.7, 32.6, and 32.7$^{-1}$ days arcsec$^{-2}$ when $(\Omega_0, \Lambda) = (1,0)$, (0.1,0), (0.4,0.6), and (0.2,0.8), respectively. In the $(\Omega_0, \Lambda) = (1,0)$ cosmology, the lens model of KK96 then implies $H_0 = 52 \pm 14$ km s$^{-1}$ Mpc$^{-1}$. This value is approximately 3% higher than the one quoted by KK96 who use $z_d = 0.304$. It is worth noting that K is much less sensitive to Ω_0 and Λ than the angular diameter distances involved, making the derived value of H_0 robust with respect to the choice of the world model (Blandford & Kochanek 1987; Blandford & Kundic 1997). For the same reason, the time delay method is not an effective way to constrain Ω_0 and Λ.

5. CONCLUSIONS

In this paper we demonstrate that the main lensing galaxy in the gravitational lens system PG 1115+080 and its three neighbors belong to a single group at $z = 0.311$. With its
velocity dispersion of $270 \pm 70 \text{ km s}^{-1}$ and median projected galaxy separation of $35 \text{ h}^{-1} \text{kpc}$, this group is very similar to Hickson's compact groups of galaxies discovered at lower redshifts. The presence of the group is important for the models of the system, because it provides an additional source of shear required to explain the observed image configuration. Such a two-shear model has been constructed by KK96. Using Bar-Kana's (1997) analysis of Schechter et al. (1997) light curves, the KK96 model implies $H_0 = 52 \pm 14 \text{ km s}^{-1} \text{Mpc}^{-1}$ in an Einstein-DeSitter universe.

We thank D. W. Hogg and S. Malhotra for helpful conversations. This work was supported by NSF Grant No. AST-95-29170 and NASA Grant No. NAG-5-3834.

REFERENCES

Angonin-Willaime, M.-C., Hammer, F., & Rigaut F. 1993, in Gravitational Lenses in the Universe, edited by J. Surdej, D. Fraipont-Caro, E. Gosset, S.Refsdal, and M. Remy (Université de Liège, Institut d’Astrophysique, Liège, Belgium), p. 85
Bar-Kana, R. 1997, preprint, astro-ph/9701068
Blandford, R. D., & Kochanek, C. S. 1987, in The Dark Matter in the Universe, edited by J. Bahcall, T. Piran, and S. Weinberg (World Scientific, Singapore), p. 133
Blandford, R. D., & Kundic, T. 1997, in The Extragalactic Distance Scale, edited by M. Livio, M. Donahue, and N. Panagia (Cambridge University Press, Cambridge) (in press)
Blandford, R. D., & Narayan, R. 1992, ARA&A, 30, 311
Christian, C. A., Crabtree, D., & Waddell, P. 1987, ApJ, 312, 45
Falco, E. E., Gorenstein, M. V., & Shapiro, I. I. 1985, ApJ, 289, L1
Falco, E. E., Shapiro, I. I., Moustakas, L. A., & Davis, M. 1997, preprint, astro-ph/9702152
Fischer, P., Bernstein, G., Rhee, G., & Tyson, J. A. 1996, preprint, astro-ph/9608117
Grogin, N. A., & Narayan, R. 1996, ApJ, 464, 92 & 473, 570
Haarsma, D. B., Hewitt, J. N., Lehar, J., & Burke, B. F. 1997, ApJ, 479, 102
Henry, J. P., & Heasley, J. N. 1986, Nature, 321, 139
Hickson, P. 1982, ApJ, 255, 382
Hickson, P., Mendes de Oliveira, C., Huchra, J. P., & Palumbo, G. G. C. 1992, ApJ, 399, 353
Jones, L. 1996, Ph.D. thesis, University of North Carolina at Chapel Hill
Keeton, C. R., & Kochanek, C. S. 1996, preprint, astro-ph/9611216 (KK96)
Keeton, C. R., Kochanek, C. S., & Setjak, U. 1996, preprint, astro-ph/9610163
Kristian, J., et al. 1993, AJ, 106, 1330
Kundic, T., Colley, W. N., Gott, J. R. III, Malhotra, S., Pen, U., Rhoads, J. E., Stanek, K. Z., & Turner, E. L. 1995, ApJ, 455, L5
Kundic, T., et al. 1996, preprint, astro-ph/9610162
Leitherer, C., et al. 1997, PASP, 108, 996
Oke, J. B., et al. 1995, PASP, 107, 375
Osterbrock, D. E., Fulbright, J. P., Martel, A. R., Keane, M. J., & Trager, S. C. 1996, PASP, 108, 277
RameI, M., Diaferio, A., Geller, M. J., & Huchra, J. P. 1994, AJ, 107, 1623
Refsdal, S. 1964, MNRAS, 128, 307
Schechter, P. L., et al. 1997, ApJ, 475, L85
Tonry, J., & Davis, M. 1979, AJ, 84, 1511
Walsh, D., Carswell, R. F., & Weymann, R. J. 1979, Nature, 279, 381
Weymann, R. J., Latham, D., Angel, J. R. P., Green, R. F., Liebert, J. W., Turnshek, D. A., Turnshek, D. E., & Tyson, J. A. 1980, Nature, 285, 641
Young, P., Deverill, R. S., Gunn, J. E., & Westphal, J. A. 1981, ApJ, 244, 723