I. INTRODUCTION

The standard model of particle physics prescribes that electro-weak interactions are mediated by vector and axial-vector currents. However, several theories dealing with deficiencies of the Standard Model predict chirality-violating scalar and tensor currents. An example are lepto-quarks which are predicted by many unification models and could provide a natural explanation for the remarkable cancelation between the quark and lepton contributions to triangle anomalies [1]. Other ideas, such as left-right symmetric models, aimed at a natural explanation for parity violation [2], and supersymmetric models [3][4] also scalar and tensor currents. The V − A structure of the weak currents was established in the late 1950’s by measurements of nuclear β decay correlations. More recently precision measurements of nuclear and neutron beta decays [5][6], pion decays [7], and searches at collider experiments have been pursued in search for non-VA components of the weak currents.

There are reasons to believe that chirality violating interactions, if they exist, are far smaller than current limits. Some of these arguments involve considerations of the fact that they would not be renormalizable if they existed at the fundamental level. Instead, they could come as the result of exchanges of, for example, supersymmetric particles but these scenarios yield tiny contributions [4]. Other limits come from considering the necessary contributions of chirality-violating interactions to neutrino masses [10]. Both of these are model dependent. In this paper we only consider direct limits coming from kinematic observables.

Recently, the authors of refs. [11][12] have presented a unified Effective Field Theory framework to compare low- and high-energy probes in search for exotic weak currents. Under the assumption that the new physics emerges at a higher energy scale than the production threshold of the LHC, low- and high-energy probes can be compared in a rather model-independent way. It is shown there that presently low-energy experiments are competitive in constraining tensor or scalar currents that couple to left-handed neutrinos. For tensor currents they indicate that the limits coming from radiative pion decays [14] are more stringent than those coming from nuclear beta decays.

In this article we present limits on tensor-type weak currents from nuclear and neutron β decays, taking into account recent experimental data and show that the combined limits from nuclear beta decays are actually more stringent than those from pion decays. Note that limits from from neutron β decays alone have recently been presented in ref. [13].

II. FORMALISM

Following Jackson, Treiman, and Wyld [16] we parameterize the nuclear β decay hamiltonian in terms of coupling constants C_V and C_A' for each of the possible $V, A, S,$ and T currents [17]:

$$H_{int} = \sum \bar{\psi}_p O^i \psi_n \left((C_i + C_i') \bar{\psi}_e^L O_i \psi_{\nu}^L + (C_i - C_i') \bar{\psi}_e^R O_i \psi_{\nu}^R \right) + \sum \bar{\psi}_p O^i \psi_n \left((C_i + C_i') \bar{\psi}_e^L O_i \psi_{\nu}^L + (C_i - C_i') \bar{\psi}_e^R O_i \psi_{\nu}^R \right)$$

where the operators are:

- $O_S = 1$
- $O_P = \gamma^5$
- $O_V = \gamma_{\mu}$
- $O_A = i\gamma_{\mu}\gamma^{5}$
- $O_T = \sigma_{\mu\nu}/\sqrt{2} = -i (\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu})/(2\sqrt{2})$

We separated the sum in the hamiltonian of Eq. 1 into the vector and axial-vector parts, allowed in the standard model and conserving chirality, and the scalar and tensor parts, which violate chirality. We restrict our present analysis to only left-handed components for the standard model currents, i.e. assume $C_V = C_V'$ and $C_A = C_A'$ and concentrate on searching for non-zero values for C_S, C_S' and C_T, C_T'.

The distribution W for electrons (positrons) and (anti) neutrinos derived from Eq. 1 is given by

$$W \propto \left[1 + \frac{m_{\nu}}{E_{\nu}} b_{Fierz} + A_{\beta} \frac{p_{\nu}}{E_{e}} \cdot \frac{p_{\nu}}{E_{e}} \cdot \frac{2}{\gamma} + \frac{a_{\beta\nu}}{E_{\nu}} \cdot \frac{p_{\nu}}{E_{e}} \cdot 4 \cdot \frac{2}{\gamma} + \cdots \right],$$
with m_e the electron rest mass, p_e (p_ν) and E_e (E_ν) the electron (neutrino) momentum and total energy, and J the parent nuclear spin. The dependencies of the correlation coefficients b_{Fierz}, A_β, $a_{2\nu}$, etc. on the coupling constants in Eq. 1 are listed in [18].

The analysis of Refs. [11–13] parameterize their interactions in terms of quark-level scalar and tensor effective couplings, ϵ_S and ϵ_T coupling to left-handed neutrinos, and $\tilde{\epsilon}_S$ and $\tilde{\epsilon}_T$ coupling to right-handed neutrinos. For the present analysis of the nuclear data we use $C_V = C'_V$ and $C_A = C'_A$ and the two sets of coupling constants are related by

$$
g_s \epsilon_S = \frac{C_S + C'_S}{2 C_V}, \quad g_s \tilde{\epsilon}_S = \frac{C_S - C'_S}{2 C_V},$$
$$g_T \epsilon_T = \frac{C_T + C'_T}{8 C_A}, \quad g_T \tilde{\epsilon}_T = \frac{C_T - C'_T}{8 C_A},$$

(4)

where g_S and g_T are nucleon form factors. These have been calculated using Lattice QCD calculations [11, 19, 20] and are shown in Table I. Precision experiments in pion decay observables can also be used to search for tensor currents. The observable in pion radiative decay is sensitive to a product similar to Eq. 4 except that there is a pion form factor f_T instead of the nucleon form factor g_T. The pion form factor has been calculated in Ref. [22]. The pion form factor is constructed in terms of S, T, and C transition coefficients related by

$$C_A \equiv T, \quad C_S \equiv S, \quad C_T \equiv T.$$

The pion form factor has been calculated in Ref. [22].

III. DATA SET

The neutron lifetime τ_n and β asymmetry parameter A_0 can be used to determine V_{ud} (e.g. [7] and [24]). However, due to the strong Gamow-Teller character of the neutron decay, the measurements can also be seen as sensitive probes for a tensor-type interaction. We adopt the 2012 Particle Data Group (PDG2012 [25]) selection; in addition, we include the most recent averages for the UCNA [20] and PERKEOII [27] experiment (Table II). All quoted values for A_0 include a $O(1\%)$ correction for weak magnetism, $g_V - g_A$ interference, and nuclear recoil [28], and a $O(0.1\%)$ radiative correction [29]. In our use of τ_n, we adopt the phase space factor of [28] and the overall electro-weak correction factor of [30]. Note that we use the individual data points and their reported errors in our analysis. The inconsistency of the neutron lifetime data is discussed in e.g. Ref. [23] and [31]. In this paper, the effect of this spread on the obtained limits is illustrated in Fig. 4.

For nuclear β decays, a limited selection was made of experiments most sensitive to tensor and scalar interactions (Table II). The value for the β-asymmetry parameter, A_β, of 60Co [32] includes a recoil correction [33]. The $\beta\nu$-correlation, $a_{\beta\nu}$, results of Ref. [31] and the value of the $\beta\nu$ correlations for 6He of Ref. [35] and for 32Ar [34] include the radiative corrections of Ref. [30]. For the $\beta\nu$ correlation of 38mK recoil and radiative correction were estimated to be $<10^{-4}$ [37]. A non-zero value of the b_{Fierz} due to scalar weak currents would manifest as a isotope dependent variation in the corrected f_t-values of the $0^+ \rightarrow 0^+$ super-allowed Fermi transitions. The extraction of b_{Fierz} from the f_t values from these transitions is described in Ref. [38]. We choose not to include the result of ref. [39] because their bounds are dominated by the limited knowledge of the recoil-order corrections.

Experiments on radiative pion decays (Bolotov et al. [40] and PIBETA Ref. [41]) have observed discrepancies with the expected spectra which could be interpreted as possible evidence for tensor currents [42]. However, this was contested by Ref. [33]. Moreover, more recently the PIBETA collaboration published more precise data with a wider kinematic coverage and showed good agreement with the Standard Model expectations [43]. The upper limit from this last measurement are shown in Fig. 11 and 26.

IV. METHOD

Using the expressions from [18], a general χ^2 function is constructed in terms of C_V, C_A, C_S, C'_S, C'_T, and C_T. We fix C_V using the corrected log f_t’s from the $0^+ \rightarrow 0^+$ transitions [40]. A 2-D χ^2 surface is constructed by stepping through different values of the two coupling constants of interest, letting the others vary to minimize it. For example, for the limits on $C_T-C'_T$, these are held fix at each point in the $C_T-C'_T$ plane while C_A, C_S, C'_S are
TABLE II. Selected correlation measurements sensitive to tensor or scalar type weak currents. For the neutron decay data, we include the more recent values for the corrected β-asymmetry parameter A_0 of [22] and [23] in addition to the Particle Data Group [22] selection. The SM value for A_0 depends on λ, the ratio of the axial-vector to vector coupling constants C_A/C_V: $A_{0,SM} = \frac{2(\lambda^2 - 1)}{1 + 3\lambda}$. The SM value for the neutron lifetime depends on λ and V_{ud}. V_{ud} is fixed by the corrected ft-values from the $0^+ \rightarrow 0^+$ super-allowed Fermi transitions.

Isotope	Parameter	Decay type	SM value ($q^2 \rightarrow 0$)	Value	Error	Reference	
6He	$a_{3\nu}$	β^-, GT	-1/2	0.286	0.3308	0.003	[35][36]
14O	P_F/P_{GT}	β^+, F/GT	1	0.292	0.9996	0.0037	[44]
26Al	P_F/P_{GT}	β^+, F/GT	1	0.216	1.003	0.0184	[45]
32Ar	$a_{\beta\nu}$	β^+, F	1	0.191	0.9989	0.0065	[34]
38K	$a_{\beta\nu}$	β^+, F	1	0.133	0.9981	0.0045	[37]
60Co	A_β	β^-, GT	-1	0.704	-1.027	0.022	[32]
$0^+ \rightarrow 0^+$	b_{Fierz}	β^+, F	0	n/a	-0.0022	0.0026	[46]
n	A_0	β^-, F/GT	$A_{0,SM}$	0.560	-0.11952	0.00110	[26][24][47]
n	A_0	β^-, F/GT	$A_{0,SM}$	0.539	-0.11926	0.00050	[27][48][49]
n	A_0	β^-, F/GT	$A_{0,SM}$	0.582	-0.1160	0.0015	[50]
n	A_0	β^-, F/GT	$A_{0,SM}$	0.558	-0.1135	0.0014	[51][52]
n	A_0	β^-, F/GT	$A_{0,SM}$	0.551	-0.1146	0.0019	[53]
n	τ	β^-, F/GT	0.653	881.6	2.1	[54][55]	
n	τ	β^-, F/GT	0.653	880.7	1.8	[56]	
n	τ	β^-, F/GT	0.653	886.3	3.4	[57]	
n	τ	β^-, F/GT	0.653	878.5	0.76	[58]	
n	τ	β^-, F/GT	0.653	889.2	4.8	[59]	
n	τ	β^-, F/GT	0.653	882.6	2.7	[60]	
n	τ	β^-, F/GT	0.653	887.6	3.0	[61]	

varied at each point to minimize χ^2. For each point the probability density function is computed as $e^{-\chi^2/2}/N$, where N is a normalization so the sum of all probabilities yields unity. The confidence level contours were obtained as the loci of constant χ^2 that have a probability such that the sum of all points with higher probabilities, i.e. smaller χ^2, yield the desired probability (68%, 90%, and 95% for the plots shown in this paper). The 1-D confidence intervals were calculated from the projected probability density surfaces.

V. RESULTS

Fig. 1 shows confidence-level contours for C_T and C'_T from nuclear β decays excluding neutron decay data. These nuclear-only limits are dominated by the $a_{3\nu}$ of 6He and the relative polarization measurements of Ref. [44]. Combining this data with the neutron lifetime and β asymmetry further tightens the limits for a tensor interaction coupled to left-handed neutrinos as shown in Fig. 2. In order to compare with data from radiative pion decay [14] we project the limits from nuclear decay onto the $C_T + C'_T$ axis. As can be seen the nuclear decay limits are comparable to those from pion decays. The 90% C.L. intervals on the 1-D projections are $-0.14 \times 10^{-2} < (C_T + C'_T)/C_A < 1.4 \times 10^{-2}$ and $-0.16 < (C_T - C'_T)/C_A < 0.16$.

Fig. 3 shows limits for the tensor and scalar currents assuming they couple only to left-handed neutrinos ($C'_T = C_T$ and $C'_S = C_S$), with the limits on C_S dominated by the b_{Fierz} $0^+ \rightarrow 0^+$ super-allowed transitions. The corresponding 90% C.L. for C_S and C_T are $-0.1 \times 10^{-2} < C_S/C_V < 0.3 \times 10^{-2}$ and $0.0 \times 10^{-2} < C_T/C_A < 0.4 \times 10^{-2}$. For this 3-parameter fit, the limits on tensor currents from β-decays are more stringent than those from pion decays and are in agreement with the evaluation of ref. [14]. The value of λ (= C_A/C_V) at the minimum χ^2, $-1.2753(6)$, is consistent with the PDG2012 recommended value of $-1.2701(25)$.

Nuclear β decay data from Table III without neutron-decay information form a consistent data set (p-value of 0.4 for Fig. 1). In contrast, there is a large spread in the neutron decay data (Tab. III). Fig. 4 illustrates the sensitivity of the obtained limits to inconsistencies in neutron data by adopting the two different values for τ_n, the 2010
FIG. 1. 68 %, 90 % and 95 % C.L. contours of \(C_T \) and \(C'_T \) from selected nuclear \(\beta \)-decay data (Table II). The top panel shows the 1-D projection of the probability distribution, the shaded area is the 90 % confidence interval for \(\frac{C_T + C'_T}{C_A} \).

FIG. 2. Same as Fig. 1 but including neutron decay data.

FIG. 3. Limits \(C_T \) and \(C_S \) combining neutron and nuclear \(\beta \) decay data for the 3-parameter fit. On top we show the probability distribution of the limits on \(C_T \) obtained by projecting the 2D distribution and compare to the limits from pion decay data.

FIG. 4. Limits on \(C_T/C_A \) compared to the previous evaluation Ref. [5] in the 3-parameter fit.

VI. CONCLUSIONS

Present \(\beta \)-decay data is consistent with \(C_S = C'_S = C_T = C'_T = 0 \). This conclusion is in agreement with previous evaluations (e.g. Boothroyd et al. [64] and Severijns et al. [5]) and is independent of possible inconsistencies in the neutron decay lifetime or in the asymmetry parameter.

The limits from nuclear and neutron \(\beta \) decays are more stringent than those from pion decays. As shown in Fig. 5 a future correlation-parameter measurement with an uncertainty of \(10^{-3} \) in neutron or selected nuclear decays where the higher-order corrections are under control, would significantly improve the discovery potential. This would surpass the sensitivity of the current and future LHC experiments for new physics emerging at a higher energy scale than the production threshold [12, 65]. In addition, a reduced theoretical uncertainty of the nucleon and pion form factors would enable a combined analysis of all low energy data to further constrain tensor-type weak currents.
FIG. 4. The effect of the 5.6 s shift between the PDG2010 or PDG2012 recommended values for the neutron lifetimes on the 90% confidence limits on C_T and C_T'.

ACKNOWLEDGMENTS

We thank Oscar Naviliat-Cuncic, Peter Müller, Martin González-Alonso and Vincenzo Cirigliano for their fruitful comments. This work was supported by the US DOE under Contract No. DE-FG02-97ER41020.

[1] W. Buchmüller, R. Rückl, and D. Wyler, *Physics Letters B* **191**, 442 (1987).

[2] P. Herczeg, *Progress in Particle and Nuclear Physics* **46**, 413 (2001).

[3] S. Profumo, M. J. Ramsey-Musolf, and S. Tulin, *Phys. Rev. D* **75**, 075017 (2007).

[4] V. Belyaev and I. Kogan, *Physics Letters B* **280**, 238 (1992).

[5] N. Severijns, M. Beck, and O. Naviliat-Cuncic, *Reviews of Modern Physics* **78**, 991 (2006).

[6] J. A. Behr and G. Gwinner, *Journal of Physics G* **36**, 033101 (2009).

[7] H. Abele, *Progress in Particle and Nuclear Physics* **60**, 1 (2008).

[8] D. Dufbers and M. G. Schmidt, *Rev. Mod. Phys.* **83**, 1111 (2011).

[9] D. Pocanić, *Nuclear Physics A* **844**, 26c (2010).

[10] T. M. Ito and G. Prézeau, *Phys. Rev. Lett.* **94**, 161802 (2005).

[11] T. Bhattacharya, V. Cirigliano, S. D. Cohen, A. Filipuzzi, M. González-Alonso, M. L. Graesser, R. Gupta, and H.-W. Lin, *Phys. Rev. D* **85**, 054512 (2012).

[12] V. Cirigliano, M. Gonzalez-Alonso, and M. L. Graesser, *Journal Of High Energy Physics* **1302**.

[13] V. Cirigliano, S. Gardner, and B. R. Holstein, *Progress in Particle and Nucl. Phys.* **71**, 93 (2013).

[14] M. Bychkov, D. Pocanic, B. A. VanDevender, V. A. Barnov, W. Bertl, Y. M. Bystritsky, E. Frizi, V. A. Kalinikov, N. V. Khomutov, A. S. Korenchenko, S. M. Korenchenko, M. Korolija, T. Kozlowski, N. P. Kravchuk, N. A. Kuchinsky, W. Li, D. Mekterovic, D. Mzhavia, S. Ritt, P. Robmann, O. A. Rondon-Aramayo, A. M. Rozhdestvenskii, T. Sakhalasvili, S. Scheu, U. Straumann, I. Supek, Z. Tsamalaidze, A. van der Schaaf, E. P. Velicheva, V. P. Volnykh, Y. Wang, and H.-P. Wirtz, *Phys. Rev. Lett.* **103**, 051802 (2009).

[15] R. W. Pattie, K. P. Hickerson, and A. R. Young, *Phys. Rev. C* **88**, 048501 (2013).

[16] J. Jackson, S. Treiman, and J. H. Wyld, *Physical Review* **106**, 517 (1957).

[17] We neglect pseudo-scalar currents because their role is minimal due to the slow nature of the nucleon motion within the nucleus.

[18] J. Jackson, S. Treiman, and J. H. Wyld, *Nuclear Physics* **4**, 206 (1957).

[19] R. Green, J. W. Negele, A. V. Pochinsky, S. N. Syritsyn, M. Engelhardt, and S. Krieg, *Phys. Rev. D* **86**, 114509 (2012).

[20] T. Bhattacharya, S. D. Cohen, R. Gupta, A. Joseph, and H.-W. Lin, *ArXiv*, 1306.5435 (2013).

[21] H.-W. Lin, Private communication.

[22] V. Mateu and J. Portoles, *European Physical Journal C* **52**, 325 (2007).

[23] M. González-Alonso, Private communication.

[24] J. Liu, M. P. Mendenhall, A. T. Holley, H. O. Back, T. J. Bowles, L. J. Broussard, R. Carr, S. Clayton, S. Currie, B. W. Filipponi, A. Garcia, P. Gelpenbort, K. P. Hickerson, J. Hoagland, G. E. Hogan, B. Honoi, T. M. Ito, C.-Y. Liu, M. Makela, R. R. Mammei, J. W. Martin, D. Melconian, C. L. Morris, R. W. Pattie, A. Pérez Galván, M. L. Pitt, B. Plaster, J. C. Ramsey, R. Rios, R. Russell, A. Saunders, S. J. Seestrom, W. E. Sondheim, E. Tatar, R. B. Vogelaar, B. VornDick, C. Wrede, H. Yan, A. R. Young, and B. Zeck (UCNA Collaboration), *Phys. Rev. Lett.* **105**, 181803 (2010).

[25] J. Beringer, J. F. Aruign, R. M. Barnett, K. Copic, O. Dahl, D. E. Groom, C. J. Lin, J. Lys, H. Mu-
FIG. 5. Limits on tensor currents from envisaged measurements of the correlation coefficient for 6He at 0.1% [62] or of the Fierz interference term b_{Fierz} to 10^{-3} in 6He or neutron decays [63]. In the formalism of Eq. [3] the current LHC limits from Ref. [12] are \(|(C_T + C'_T)/C_A| < 6 \times 10^{-3}\) and \(|(C_T - C'_T)/C_A| < 2 \times 10^{-2}\).
Physics Letters B 243, 308 (1990)

[41] E. Frlez, D. Pocanic, V. A. Baranov, W. Bertl, M. Bychkov, N. V. Khotmutov, A. S. Korenchenko, S. M. Korenchenko, T. Kozlowski, N. P. Kravchuk, N. A. Kuchinsky, W. Li, R. C. Minehart, D. Mzhavia, B. G. Ritchie, S. Ritt, A. M. Rozhdestvensky, V. V. Sidorkin, L. C. Smith, I. Supeka, Z. Tsamalaidze, B. A. VanDevender, E. P. Velicheva, Y. Wang, H.-P. Wirtz, and K. O. H. Ziock, Phys. Rev. Lett. 93, 181804 (2004)

[42] A. Poblaguev, Physics Letters B 238, 108 (1990)

[43] P. A. Quin, J. Deutsch, T. E. Pickering, J. E. Schewe, and P. A. Voytas, Phys. Rev. D 47, 1247 (1993)

[44] A. S. Carnoy, J. Deutsch, T. A. Girard, and R. Prieels, Phys. Rev. C 43, 2825 (1991)

[45] V. A. Wichers, T. R. Hageman, J. van Klinken, H. W. Wilschut, and D. Atkinson, Phys. Rev. Lett. 58, 1821 (1987)

[46] J. C. Hardy and I. S. Towner, Physical Review C (Nuclear Physics) 79, 055502 (2009)

[47] B. Plaster, R. Rios, H. O. Back, T. J. Bowles, L. J. Brousard, R. Carr, S. Clayton, S. Currie, B. W. Filippone, A. Garcia, P. Geltenbort, K. P. Hickerson, J. Hoagland, G. E. Hogan, B. Hona, A. T. Holley, T. M. Ito, C.-Y. Liu, J. Liu, M. Makela, R. R. Mammei, J. W. Martin, D. Melconian, M. P. Mendenhall, C. E. Morris, R. Mortensen, R. W. Pattie, A. Perez Galvan, M. L. Pitt, J. C. Ramsey, R. Russell, A. Saunders, R. Schmid, S. J. Seestrom, S. Sjue, W. E. Sondheim, E. Tatar, B. Tippen, R. B. Vogelaar, B. VornDick, C. Wrede, Y. P. Xu, H. Yan, A. R. Young, and J. Yuan (UCNA Collaboration), Phys. Rev. C 86, 055501 (2012)

[48] H. Abele, M. A. Hoffmann, S. Baessler, D. Dubbers, F. Glueck, U. Muller, V. Nesvizhevsky, J. Reich, and O. Zimmer, Phys. Rev. Lett. 88, 211801 (2002)

[49] H. Abele, S. Baessler, D. Dubbers, J. Last, U. Mayerhofer, C. Metz, T. Miller, V. Nesvizhevsky, C. Raven, O. Schripf, and O. Zimmer, Physics Letters B 407, 212 (1997)

[50] P. Liaud, K. Schreckenbach, R. Kossakovski, H. Nastoll, A. Bussire, J. Guillaud, and L. Beck, Nuclear Physics A 612, 53 (1997)

[51] B. Yerozolimsky, I. Kuznetsov, Y. Mostovoi, and I. Stepanenko, Physics Letters B 412, 240 (1997)

[52] B. Yerozolimsky, I. Kuznetsov, I. Kujda, Y. Mostovoi, and I. Stepanenko, Phys.Lett. B263, 33 (1991)

[53] P. Bopp, D. Dubbers, L. Hornig, E. Klemt, J. Last, H. Schutze, S. J. Freedman, and O. Schripf, Phys. Rev. Lett. 56, 919 (1986)

[54] S. Arzumanov, L. Bondarenko, V. Morozov, Y. Panin, and S. Chernyavsky, JETP Lett. 95, 224 (2012)

[55] A. Pichlmaier, V. Varlamov, K. Schreckenbach, and P. Geltenbort, Phys.Lett. B 693, 221 (2010)

[56] J. S. Nico, M. S. Dewey, D. M. Gilliam, F. E. Wietfeldt, X. Fei, W. M. Snow, G. L. Greene, J. Pauwels, R. Eykens, A. Lamberty, J. Van Gestel, and R. D. Scott, Phys. Rev. C 71, 055502 (2005)

[57] A. Serebrov, V. Varlamov, A. Kharitonov, A. Fomin, Y. Pokotilovsky, P. Geltenbort, J. Butterworth, I. Krasnoschekova, M. Lasakov, R. Tal’daev, A. Vassiljev, and O. Zherebtsov, Physics Letters B 605, 72 (2005)

[58] A. Pichlmaier, V. Varlamov, A. Kharitonov, A. Fomin, Y. Pokotilovsky, P. Geltenbort, J. Butterworth, I. Krasnoschekova, M. Lasakov, R. Tal’daev, A. Vassiljev, and O. Zherebtsov, Physics Letters B 605, 72 (2005)

[59] J. Byrne and P. Dawber, Europhys.Lett. 33, 187 (1996)

[60] W. Mampe, L. Bondarenko, V. Morozov, Y. Panin, and A. Fomin, JETP Lett. 57, 82 (1993)

[61] W. Mampe, P. Ageron, C. Bates, J. M. Pendlebury, and A. Steyerl, Phys.Rev.Lett. 63, 593 (1989)

[62] A. Knecht, D. W. Zumwalt, B. G. Dellbridge, A. Garcia, G. C. Harper, R. Hong, P. Mueller, A. S. C. Palmer, R. G. H. Robertson, H. E. Swanson, D. I. Will, W. Williams, and C. Wrede, Nuclear Instruments and Methods A 660, 43 (2011)

[63] D. Pocanic, R. Alarcon, L. Alonzi, S. Baessler, S. Balascan, J. Bowman, M. Bychkov, J. Byrne, J. Calarco, V. Cianciolo, C. Crawford, E. Frei, M. Gerick, G. Greene, R. Grzywacz, V. Gudkov, F. Hersman, A. Klein, J. Martin, S. Page, A. Palladino, S. Pentila, K. Rykaczewski, W. Wilburn, A. Young, and G. Young, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 611, 211 (2009)

[64] A. I. Boothroyd, J. Markey, and P. Vogel, Phys. Rev. C 29, 683 (1984)

[65] M. Gonzalez-Alonso and N.-C. O, arXiv:1304.1759 [hep-ph] (2013)