The correlation between serum Ca-125 level and clinical pregnancy in in vitro fertilization (IVF): A meta-analysis

CURRENT STATUS: UNDER REVIEW

Reproductive Biology and Endocrinology ▼ BMC

Xin-Lei Wang
Jilin University First Hospital

Zhuo Li
Jilin University First Hospital

Han Zhang
Jilin University First Hospital

Ce Shi
Jilin University First Hospital

Tong Tong
Jilin University First Hospital

Rui-Zhi Liu
Jilin University First Hospital

qi xi 😁 cmu_xiqi@163.com
Jilin University First Hospital

Corresponding Author
ORCiD: 0000-0001-6993-3819

DOI: 10.21203/rs.2.18753/v1

SUBJECT AREAS Endocrinology & Metabolism

KEYWORDS

in vitro fertilization, Ca-125, pregnancy outcome, embryos transferred
Abstract

Background Several studies had investigated the role of serum Ca-125 in clinical pregnancy of patients undergoing in vitro fertilization (IVF); however, their conclusions had been inconsistent. This study aimed to evaluate the correlation between serum Ca-125 level and clinical pregnancy in IVF.

Methods We systematically review the studies in the databases of Mediline OvidSP, EMBASE OvidSP and Cochrane (CENTRAL Central Register of Controlled Trials). Studies on the correlation between serum Ca-125 level and clinical pregnancy in patients undergoing IVF with or without Intracytoplasmic sperm injection (ICSI) were considered. The pooled standardized mean difference (SMD) with 95% confidence intervals (CIs) was used in the analysis.

Results Seven studies involving 558 patients were included. The meta-analysis showed that there was no significant difference in the serum Ca-125 level before embryo transfer (ET) between clinical pregnant group and nonpregnant group (SMD 0.72; 95% CI [0.01, 1.43], P = 0.05, I² = 88%), and the same conclusion was also reached in patients without endometriosis (SMD 0.31; 95% CI [-0.53, 1.16], P = 0.47, I² = 89%); However, after embryo transfer, the result showed that the Ca-125 level has a small but significantly increase in the clinical pregnant group than in the nonpregnant group (SMD 0.39; 95% CI [0.09, 0.69], P = 0.01, I² = 0%).

Conclusions Before ET, there was no significant correlation between serum Ca-125 level and clinical pregnancy in IVF; After ET, the Ca-125 level has a small but significantly increase in the clinical pregnant group than in the nonpregnant group, and it might reflect a successful interaction between the embryo and the endometrium in that time period.
Background

Prediction of clinical pregnancy is rapidly becoming an important objective in in vitro fertilization (IVF). On the one hand, pregnancy in IVF have a higher risk of obstetric and perinatal complications than spontaneous pregnancies; on the other hand, most IVF patients are successfully fertilized and get embryos transferred (ET), but only a relatively small percentage of transferred embryos actually implant and develop into viable pregnancies.

Successful implantation after ET has been shown to depend on two factors: good quality of transferred embryos; and well-prepared endometrium [1]. At present, endometrial receptivity is judged generally by Ultrasound parameters, such as endometrial thickness and pattern, and Doppler study of uterine arteries and subendometrial flow [2]. However, morphological assessments of endometrial receptivity have been subjective and disregards embryo interaction [1]. The idea that some objective parameters could ascertain the endometrial receptivity in a non-invasive and cost efficient way in an Assisted Reproductive Technology cycles is interesting and has important clinical significance.

Cancer antigen 125 (Ca-125) is a cell-surface antigenic determinant on a high molecular-weight glycoprotein, as a well-established marker it is mainly used to diagnose endometriosis and epithelial cell ovarian cancer [3, 4]. Ca-125 can be measured in the serum. Although the primary source of serum Ca-125 levels is controversial, some studies have found that endometrium may be one of the sources of serum Ca-125: (1) Ng et al. detected Ca-125 in the uterine flushings fluid [5]; (2) Ca-125 was detected in vitro endometrial tissue culture medium [6]; (3) The serum Ca-125 level was increased due to endometrial destruction during menstrual period [7]. If endometrium is the main source of serum Ca-125, then Ca-125 may be
used as an indicator of endometrial receptivity in IVF. In addition, several studies
had investigated the role of serum CA-125 in clinical pregnancy of patients
undergoing IVF; however, their conclusions were inconsistent. Therefore, we
conducted a meta-analysis to evaluate the correlation between serum Ca-125 level
and clinical pregnancy in in vitro fertilization.

Methods
This study adhered to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement [8].

Exclusion criteria and inclusion criteria
Inclusion and exclusion criteria were established prior to literature search. This
meta-analysis focused on the correlation between serum Ca-125 level and clinical
pregnancy in patients undergoing IVF with or without Intracytoplasmic sperm
injection (ICSI). The inclusion criteria were as follows: (1) Case-control, cohort or
cross-sectional studies; (2) All patients were women who underwent IVF treatment
with or without ICSI, regardless of the ovarian stimulation protocol employed; (3)
Study provided data on serum Ca-125 levels in clinical pregnant and nonpregnant
groups, no limit was given for Ca-125 measurement methods; (4) Clinical pregnancy
was clarified as a positive heart action or Intrauterine pregnancy sac in transvaginal
ultrasound after ET; (5) When multiple studies may contain the same study
population, only the most complete study was included; (6) Available full text in
English. We excluded: (1) Study contained overlapping or insufficient data; (2)
Reviews, editorials, commentaries, animal experiments, and individual case reports.
Search Strategy

The studies in the databases of Mediline OvidSP, EMBASE OvidSP and Cochrane (CENTRAL Central Register of Controlled Trials) were systematically reviewed until October 25, 2019. The search strategy was shown in Additional file 1. We also manually searched the references of the included studies and reviews for additional studies.

Study selection and quality assessment

After importing the search results into EndNote X9, duplicated studies were excluded. Two review authors (Li Z and Wang XL) independently screened the studies based on both the titles and abstracts of the selected studies, then retrieved the full text articles for those relevant and determine whether it meets the inclusion criteria. The quality of the included studies were assessed using the Newcastle–Ottawa scale (NOS) for cohort studies, which evaluates studies according to the following three domains: selection of subjects, comparability, and assessment of the results [9]. We rated the studies as ‘high quality’ if they had a score ≥5; otherwise, the studies were rated as ‘low quality’. A discrepancies between Li and Wang was resolved through discussion and consensus with a third reviewer (Zhang Han).

Extraction of data

Two researchers (Wang XL, Li Z) extracted data independently using a pre-designed data extraction table. A third review author (Zhang Han) resolved any disagreements between the two researchers. We extracted data on study design, number of participants, patients’ age, publication year, included and excluded
criteria of patients, ovarian stimulation protocols, and time of blood sample
collection, methods of Ca-125 detected, the mean and standard deviation (SD) of
serum Ca-125 level (In case no means and SD were reported, we used medians,
terquartile ranges (IQRs), or ranges to estimate them based on the methods
advocated by Wan et al) [10].

Synthesis of results and assessment of heterogeneity

All analyses were performed using Review Manager 5.0 software.

Statistical heterogeneity was tested with the Q test (chi-square) and calculated I^2
values. When chi-square test $p<0.1$ and the $I^2>50\%$, we thought that there was
significant heterogeneity among studies, in which case, we used the randomized
effect model, otherwise the fixed effects model was used. We assessed clinical
heterogeneity by performing subgroup analyses for different detection methods of
Ca-125. We expected the different methods of Ca-125 detected among studies, so
the serum Ca-125 level was shown as standardized mean difference (SMD) with
corresponding 95\% confidence intervals (95\% CIs). The $P < 0.05$ values could be
considered as statistically significant.

Sensitivity analysis and assessment of publication bias

To evaluate stability and reliability of the meta-analysis, we performed sensitivity
analysis whereby: 1. Assessed the influence of each individual study on the pooled
SMD by removing each study individually; 2. Different models (fixed effect model or
randomized effect model) were used. If enough studies (10 or more) were found, we
planned to use a funnel plot to explore the possibility of publication bias.
Result

Study selection

The preliminarily database search retrieved 185 citations. After the initial exclusion of 32 duplicate articles, the remaining 157 articles were screened based on title and abstract. Then we retrieved 32 full-text articles reading, of which we excluded 25. Finally, seven articles were included in our analysis. No articles were included by manual search. The details of study selection was shown in Fig. 1.

Characteristics and quality assessment of the included studies

The various baseline characteristics of including studies were shown in Table 1. A total of 7 studies involving 558 patients were included, and the sample sizes of included studies were ranged from 33 to 182. Three studies directly reported mean and SD [11-13], while data for 4 studies [14-17] that did not were transformed according to the method proposed by Wan et al [10]. Two studies detected serum Ca-125 by enzyme immunoassay method [15, 17], while four studies [11, 12, 14, 16] used Immunoradiometric methods and only one [13] used Chemiluminescence method. The quality assessment of the included studies was summarised in Table 2. All studies had a score ≥ 5 and were rated as ‘high quality’.

Study author, year	Number of patients in study	Study author, year	Number of patients in study	Study author, year	Number of patients in study	
Urbancsek 2005	182	Hauzman 2005	112			
Age (years)		Causes of infertility	Ovarian stimulation protocols	ART protocol	Sample time	Method of CA-125 detection
Clinical pregnant	Nonpregnant	ART protocol	Sample time	Method of CA-125 detection		
Urbancsek 2005	31 (28-35) Median (25-75 centile range)	NR	IVF, ICSI	post-ET day 11	Immunoradiometric	
Hauzman 2005	31.1 ± 3.8 Mean ± SD	male/tubal	GnRH-a, HMG, FSH	IVF, ICSI	on day 1 and on the day of Immunoradiometric	

Table 1: The various baseline characteristics of including studies.
Author	Year	Median (range)	SD or SEM	Unexplained	Treatment	Day of hCG	Day of ET	Enzyme Immunosay
Vujisic	2002	34 (28-42)	SD	Tubal factor/Idiopathic	GnRH-a, HMG	the day of oocyte pickup		enzyme immunosay
		Median (range)	SD	Unexplained Male factor				
Baalbegen	2000	33.0 (27-40)	SD	NR	GnRH-a, HMG	before OPU, 14 days after ET (day ET + 14) and, after the establishment of a clinical pregnancy, on day ET + 21	enzym	enzyme immunosay
		Median (range)	SD					
Tavmerge	2001	31.54 ± 0.69	Mean ± SEM	Male factor, Idiopathic, Tubal, Tubal + male factor	GnRH-a, HMG, FSH	on the day before and on the day of HCG administration, and on the day of oocyte retrieval		Chemiluminescence
		32.6 ± 0.77	Mean ± SEM					
Brandenberger	1998	34 (26-38)	Median (range)	NR	GnRH-a, HMG	2 and/or 3 days before OPU (day hCG/hCG-1), on the day of OPU, and on the day of ET	Immunoradiometric	
		Median (range)	SD					
Chryssikopoulos	1996	31.1 ± 4.3	Mean ± SD	NR	GnRH-a, FSH, HMG	on the day of HCG administration, on the day of oocyte retrieval, and on the day of ET	Immunoradiometric	
		34 (25-41)	Median (range)					

NR = not report; GnRH-a = gonadotrophin-releasing hormone agonist; HMG = human menopausal gonadotrophin; FSH = Follicle-stimulating hormone; IVF = in vitro fertilization; ICSI = Intracytoplasmic sperm injection; ET = embryos transferred. aThe data showed the age of the total population.
The correlation between serum Ca-125 level before ET and clinical pregnancy in IVF

A total of 349 patients in 6 studies reported the correlation between serum Ca-125 level before ET and clinical pregnancy in IVF, including 132 clinical pregnant and 217 nonpregnant patients [11-13, 15-17]. When there were multiple blood sample collection times, we considered the values of the closest to the day of ET. The meta-analysis showed that there was no significant difference in the serum Ca-125 level before ET between clinical pregnant group and nonpregnant group (SMD 0.72; 95% CI [0.01, 1.43], P = 0.05, I² = 88%; Fig. 2).

The correlation between serum Ca-125 level after ET and clinical pregnancy in IVF

A total of 229 patients in 2 studies reported the correlation between serum Ca-125 level after ET and clinical pregnancy in IVF, including 162 clinical pregnant and 67 nonpregnant patients [14, 17]. The result showed that the Ca-125 level has a small but significantly increase in the clinical pregnant group than in the nonpregnant group (SMD 0.39; 95% CI [0.09, 0.69], P = 0.01, I² = 0%; Fig. 3).

Studies	Score for Selection	Score for Comparability	Score for Outcome	Aggregate score	
Urbanske 2005	Item 1: 0 Item 2: 0	Item 3: 1 Item 4: 0	Item 1: 1 Item 2: 1	Item 1: 1 Item 2: 1 Item 3: 1	6 High
Hauzmann 2005	Item 1: 1 Item 2: 1	Item 3: 0 Item 4: 1	Item 1: 1 Item 2: 1	Item 1: 1 Item 2: 1 Item 3: 1	8 High
Vujisic 2002	Item 1: 1 Item 2: 1	Item 3: 0 Item 4: 1	Item 1: 1 Item 2: 1	Item 1: 1 Item 2: 1 Item 3: 1	7 High
Tavgren 2001	Item 1: 0 Item 2: 0	Item 3: 1 Item 4: 1	Item 1: 1 Item 2: 1	Item 1: 1 Item 2: 1 Item 3: 1	6 High
Baalbregen 2000	Item 1: 1 Item 2: 1	Item 3: 0 Item 4: 1	Item 1: 1 Item 2: 1	Item 1: 1 Item 2: 1 Item 3: 1	6 High
Brandenburg 1998	Item 1: 1 Item 2: 1	Item 3: 0 Item 4: 1	Item 1: 1 Item 2: 1	Item 1: 1 Item 2: 1 Item 3: 0	6 High
Chryssikopoulos 1996	Item 1: 1 Item 2: 1	Item 3: 0 Item 4: 1	Item 1: 1 Item 2: 1	Item 1: 1 Item 2: 1 Item 3: 1	6 High

NOS: Newcastle-Ottawa scale
The correlation between serum Ca-125 level before ET and clinical pregnancy in Patients without endometriosis in IVF

Considering that Ca-125 concentrations are known to be elevated in endometriosis [18], we excluded studies that might include patients with endometriosis [11, 16] before ET. The result showed that there was no significant difference in the serum Ca-125 level between clinical pregnant group and nonpregnant group (SMD 0.31; 95% CI [-0.53, 1.16], P = 0.47, I² = 89%; Fig. 4).

Subgroup analysis

Before embryo transfer, two studies detected serum Ca-125 level by enzyme immunoassay [15,17], whereas three studies used Immunoradiometric methods [11,12,16], and the remain one used Chemiluminescence [13]. Subgroup analysis showed Ca-125 level was significantly higher in the clinical pregnant group than in the nonpregnant group by Chemiluminescence (SMD 1.49; 95% CI [0.97, 2.01], P <0.001, 1 study) or Immunoradiometric methods (SMD 1.12; 95% CI [0.18, 2.05], P =0.02, 3 study), but not in the enzyme immunoassay subgroup (SMD -0.34; 95% CI [-0.83, 0.14], P =0.16, 2 study) (Fig 5).

Sensitivity analysis and publication bias

Considering that the number of the included studies on Ca-125 level after ET was small, we didn’t conduct sensitivity analyses about it. We performed a sensitivity analysis for the Ca-125 level before ET, and found that Ca-125 level before ET was significantly higher in the clinical pregnant group compared with the nonpregnant group when the study by Baalbergen et al. [17] or Vujisic et al. [15] was excluded. In addition, the conclusion on Ca-125 level before ET also changed when we used different models. There were insufficient data for any publication bias analysis.
Discussion

This meta-analysis aimed to assess the correlation between serum Ca-125 level and clinical pregnancy in in vitro fertilization. Before ET, our meta-analysis showed that there was no significant correlation between serum Ca-125 level and clinical pregnancy in IVF, and the same conclusion was also reached in patients without endometriosis; After ET, the result revealed that there was a significant correlation between serum Ca-125 level and clinical pregnancy in IVF.

Although we included women who underwent IVF treatment with or without ICSI, five studies excluded patients with endometriosis [12–15, 17]. It is likely that Ca-125 concentrations are known to be elevated in endometriosis [18]; therefore, evidence related to the correlation between serum Ca-125 level in endometriosis and pregnant outcome is still lacking, which may reduce the overall applicability of the evidence.

We found that there was significant heterogeneity among studies on the outcome of correlation between serum Ca-125 level before ET and clinical pregnancy in IVF ($I^2 = 88\%$). The sources of heterogeneity might be explained by the differences in the methods of ca-125 detected, the time of sample collected, the inclusion and exclusion of patients (eg. Some studies excluded patients with endometriosis), and the ovarian stimulation protocols. However, we found no reduction in heterogeneity when we excluded studies that might include patients with endometriosis, and the same as we only included studies which used Immunoradiometric methods. This suggests that patient inclusion criteria or testing methods are not at least the only sources of heterogeneity. The sensitivity analysis found that the conclusion where
there was no significant difference in the serum Ca-125 level before ET between clinical pregnant group and nonpregnant group had changed after excluding the study by Baalbergen et al. or Vujisic et al [15,17], which may be attributed to Ca-125 assay used, both of them used enzyme immunoassay. Unfortunately, enzyme immunoassay is a less susceptible detection methods of Ca-125 compared with Immunoradiometric and Chemiluminescence methods [19]. In addition, subgroup analyses showed that there was a significant correlation between serum Ca-125 level before ET and clinical pregnancy in IVF by Immunoradiometric or Chemiluminescence methods; which indicated that detecting Ca-125 using more sensitive assays can better predict pregnant outcome in IVF. We should be cautious to assess the impact of conclusion on Ca-125 level before ET, because we used randomized effect model that dealt with the heterogeneity of data by increasing the weight of small sample data and reducing the weight of large sample data [20], and the direction of effect altered when we used fixed effect model; Therefore, further studies should increase sample sizes to reduce accidental errors.

First of all, the concentration of serum Ca-125 fluctuated throughout the menstrual cycle. The different observations reveal that Ca-125 levels were significantly elevated during menstruation [21, 22]. The reason may be that the endometrium was destroyed during menstruation, which caused Ca-125 to be released into the blood; So Ca-125 was somehow associated with the integrity of the endometrium. Secondly, immunohistochemistry of Ca-125 showed that the concentration of Ca-125 in endometrium was 20-fold higher than that in ovary and 2-fold higher than those in fallopian tubes; In addition, only in the endometrium Ca-125 content has a significant circulatory change [23]. This suggests that endometrium might be the main source of serum Ca-125, and therefore, an endocrine or a paracrine function
would be possible. However, our meta-analysis showed no correlation between serum Ca-125 level before ET and clinical pregnancy in IVF, the same as patients without endometriosis. The reasons for this phenomenon may be as follows: (1) Although there is some evidence that endometrium is one of the sources of serum Ca-125, other factors (eg. Endometrial thickness, endometrial volume, endometrial pattern, pulsatility index and resistance index of the subendometrial blood flow) play a greater role in the endometrial receptivity [24]; (2) The achievement of a clinical pregnancy in IVF results from too many factors, such as maternal age and embryo quality, so serum CA-125 level can not directly predict the success of pregnancy in an IVF cycle; (3) Despite the controversy, studies have shown changes of Ca-125 concentration during ovarian stimulation [16, 25], hence, changes of the serum Ca-125 level due to ovarian stimulation may mask the changes caused by endometrium.

After ET, the meta analysis showed that the serum Ca-125 level had a small but significantly increase in the clinical pregnant group than in the nonpregnant group. In the first trimester of pregnancy, serum Ca-125 level rised in patients with vaginal bleeding and miscarriage [26, 27]. Therefore, the increase of Ca-125 concentration might indicate the destruction of decidua. However, these observations were all made over 5 weeks gestation. In our meta analysis, there were 2 studies which reported the correlation between serum Ca-125 level after ET and clinical pregnancy in IVF, one study detected Ca-125 on or closer to post-ET day 11, the another one was on 14 days after ET. Hence, higher Ca-125 levels might reflect a successful interaction between the embryo and the endometrium in that time period.

This study has several limitations. Firstly, we conducted a comprehensive search of the correlation between serum Ca-125 level and clinical pregnancy in IVF. However, It
is possible that our findings on serum Ca-125 level before ET cannot be interpreted as truly negative because of the small sample sizes and significant heterogeneity between studies; Secondly, the evidence on Ca-125 level after ET between clinical pregnancy and nonpregnancy is limited, as only two trials were included for our investigation, and needs to be further investigated; Third, publication bias could not be assessed because of the limited number of studies; Fourth, four studies didn’t directly report mean and its SD, and we employed the method recommended by Wan et al to handle the dates [10], and it may result certain deviation.

Conclusion

Our meta-analysis was the first systematic review to confirm the correlation between serum Ca-125 and clinical pregnancy in IVF. This meta-analysis revealed that there was no significant correlation between serum Ca-125 level before ET and clinical pregnancy in IVF, and the same conclusion was also reached in patients without endometriosis; After ET, the Ca-125 level had a small but significantly increase in the clinical pregnant group than in the nonpregnant group, and it might reflect a successful interaction between the embryo and the endometrium in that time period.

Declarations

Abbreviations: IVF: in vitro fertilization, ET: embryos transferred, Ca-125: Cancer antigen 125, ICSI: Intracytoplasmic sperm injection.

Acknowledgements

Not applicable.
Funding

There was no funding source in this study.

Availability of data and material

All data generated or analysed during this study are included in this published article.

Authors’ contributions

Took part in the literature search, study characteristics assessment, study quality assessment: WXL, LZ, ZH; took part in the data analysis, interpretation of statistics: SC, TT; conducted the preliminary idea and drafted the paper: XQ; critically reviewed the paper: XQ, LRZ.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Diedrich K, Fauser BC, Devroey P, et al. The role of the endometrium and
1. Embryo in human implantation. Hum Reprod Update; 2007;13:365-77.

2. Riad ON, Hak AA. Assessment of endometrial receptivity using Doppler ultrasonography in infertile women undergoing intrauterine insemination. Gynecol Endocrinol. 2014;30:70-3.

3. Foster W. Diagnosing endometriosis: CA125 rules in, but not out. BJOG. 2016;123:1769.

4. Wang J, Gao J, Yao H, et al. Diagnostic accuracy of serum HE4, CA125 and ROMA in patients with ovarian cancer: a meta-analysis. Tumour Biol. 2014;35:6127-38.

5. Ng EH, Laird SM, Li TC, et al. Concentrations of endometrial protein PP 14 and CA-125 in uterine flushings performed in natural and stimulated cycles. Hum Reprod. 2004;19:905-10.

6. Brumsted JR, McBean JH, Deaton JL, et al. CA-125 secretion by luteal phase endometrium in vitro. Hum Reprod. 1990;5:682-4.

7. McLemore MR, Aouizerat BE, Lee KA, et al. A comparison of the cyclic variation in serum levels of CA125 across the menstrual cycle using two commercial assays. Biol Res Nurs. 2012; 14:250-6.

8. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

9. Wells GA, Shea B, O’Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 15 Mar 2015. Biol Res Nurs. 14:250-6.

10. Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard
deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014; 14:135.

11. Chryssikopoulos A, Mantzavinos T, Kanakas N, et al. Correlation of serum and follicular fluid concentrations of placental protein 14 and CA-125 in in vitro fertilization-embryo transfer patients. Fertil Steril. 1996;66:599-603.

12. Hauzman EE, Lagarde AR, Nagy K, et al. Prognostic value of serum CA-125 measurements on stimulation day 1 and on the day of oocyte pickup in the prediction of IVF treatment outcome. J Assist Reprod Genet. 2005;22:265-8.

13. Tavmergen E, Sendag F, Goker ENT, et al. Value of serum CA-125 concentrations as predictors of pregnancy in assisted reproduction cycles. Human Reproduction. 2001;16:1129-34.

14. Urbancsek J, Hauzman EE, Lagarde AR, et al. Serum CA-125 levels in the second week after embryo transfer predict clinical pregnancy. Fertil Steril. 2005; 83:1414-21.

15. Vujisic S, Kupesic S, Mihaljevic D, et al. Evaluation of serum CA 125 concentration before and during hormonal induced cycles as predictor of IVF/ET outcome. Am J Reprod Immunol. 2002; 48:355-60.

16. Brandenberger AW, Bersinger NA, Huber PR, et al. CA-125 concentrations in the serum and pregnancy outcome in IVF cycles. J Assist Reprod Genet. 1998;15:390-4.

17. Baalbergen A, Janssen JW, van der Weiden RM. CA-125 levels are related to the likelihood of pregnancy after in vitro fertilization and embryo transfer. Am J Reprod Immunol. 2000;43:21-4.

18. Hirsch M, Duffy JMN, Deguara CS, et al. Diagnostic accuracy of Cancer Antigen 125 (CA125) for endometriosis in symptomatic women: A multi-center study.
19. Wu JT, Miya T, Knight JA, et al. Improved specificity of the CA 125 enzyme immunoassay for ovarian carcinomas by use of the ratio of CA 125 to carcinoembryonic antigen. Clin Chem. 1988; 34:1853-7.

20. Brockwell SE, Gordon IR. A comparison of statistical methods for meta-analysis. Stat Med. 2001; 20:825-40.

21. Lehtovirta P, Apter D, Stenman UH. Serum CA 125 levels during the menstrual cycle. Br J Obstet Gynaecol. 1990;97:930-3.

22. Grover S, Koh H, Weideman P, et al. The effect of the menstrual cycle on serum CA 125 levels: a population study. Am J Obstet Gynecol. 1992;167:1379-81.

23. Zeimet AG, Muller-Holzner E, Marth C, et al. Tumor marker CA-125 in tissues of the female reproductive tract and in serum during the normal menstrual cycle. Fertil Steril. 1993;59:1028-35.

24. Craciunas L, Gallos I, Chu J, et al. Conventional and modern markers of endometrial receptivity: a systematic review and meta-analysis. Hum Reprod Update. 2019;25:202-23.

25. Mordel N, Anteby SO, Zajicek G, et al. CA-125 is present in significant concentrations in periovulatory follicles of in vitro fertilization patients. Fertil Steril. 1992;57:377-80.

26. Fiegler P, Katz M, Kaminski K, et al. Clinical value of a single serum CA-125 level in women with symptoms of imminent abortion during the first trimester of pregnancy. J Reprod Med. 2003;48:982-8.

27. Scarpellini F, Mastrone M, Sbracia M, et al. Serum CA 125 and first trimester abortion. Int J Gynaecol Obstet. 1995;49:259-64.
Figure 1

The details of study selection
Figure 2

Forest plot of comparison: Clinical pregnant group vs Nonpregnant group, Outcome:

Study or Subgroup	Clinical pregnant	Nonpregnant	Std. Mean Difference						
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random. 95% CI	
Baasbergen 2000	14	9.07	18	19	12.11	26	17.1%	-0.45 [-1.06, 0.16]	
Brandenberger 1998	63.08	50.93	21	30.95	14.89	66	17.7%	1.14 [0.62, 1.66]	
Chrysikopoulos 1996	26.3	5.7	8	13.1	5.7	18	13.6%	2.24 [1.18, 3.31]	
Heuzmann 2005	22.2	12.9	42	16.7	11	42	18.3%	0.29 [0.14, 0.72]	
Tavmagen 2001	15.94	9.41	35	5.9	2.48	40	17.7%	1.49 [0.97, 2.01]	
Vujic 2002	9.03	3.37	8	9.56	2.99	25	15.7%	-0.17 [-0.97, 0.63]	
Total (95% CI)	132		217			100.0%		0.72 [0.01, 1.43]	

Heterogeneity: Tau^2 = 0.66; Chi^2 = 41.42, df = 5 (P < 0.00001); I^2 = 89%
Test for overall effect: Z = 2.00 (P = 0.05)
Figure 3

Forest plot of comparison: Clinical pregnant group vs Nonpregnant group, Outcome
Figure 4

Forest plot of comparison: Clinical pregnant group vs Nonpregnant group in patients without endometriosis.
Figure 5

Forest plot of comparison: Clinical pregnant group vs Nonpregnant group, Outcome

Supplementary Files
This is a list of supplementary files associated with the primary manuscript. Click to download.

PRISMA Checklist.doc
Additional file 1.doc