Identifying Comparative Claim Sentences in Full-Text Scientific Articles

Dae Hoon Park1 and Catherine (Cathy) Blake2

1Department of Computer Science

2Center for Informatics Research in Science and Scholarship (CIRSS), Graduate School of Library and Information Science with courtesy appointments in Computer Science and Medical Information Science

University of Illinois at Urbana Champaign
Motivation

• Relentless increase in electronic text
 – More than 1 million articles in more than 20,000 journals per year (Tenopir et al, 2011)
 – E.g. Pubmed 22 million abstracts (June, 2012)
 – E.g. Chemistry - more than 110,000 articles in 1 year

• Consequences:
 – Hundreds of thousands of “relevant” articles
 – Implicit connections between literature go unnoticed

Shift from Retrieval to Synthesis
The Claim Framework

• **Premise:** There exists a sublanguage that scientists use to express their empirical study findings (claims) in a published scientific article.

• **Hypothesis 1:** The Claim Framework captures the key characteristics of the claim sublanguage
 – Blake, C. (2010) Beyond genes, proteins, and abstracts: Identifying scientific claims from full-text biomedical articles, Journal of Biomedical Informatics, 43(2):173-189

• **Hypothesis 2:** Text mining can be used to populate the Claim Framework automatically
 – Explicit Claims (77% of claims, see citation above)
 – Comparisons (~5% - this paper)
• Observation (9.3%)
 – Weakest claim
 – *Eg. However, the plasma nm21-H1 protein level was increased in SML-M3 patients (P = 0.0002)*

\[P=0.0002 \]
Claim Framework

• Explicit Claim (77.11%)
 – most specific and frequent type of claim
 – *E.g. Tamoxifen (Nolvadex®) is a drug that interferes with the activity of estrogen, a female hormone*

• Implicit (2.7%)
 – *E.g. The Hsd3b-isoforms are all down regulated from 2 h after DEHP treatment ...*
Claim Framework

• Correlation (5.39%)
 – *E.g.* ... *we did not find a correlation between c-myc expression and nm23-H2 expression in AML.*

 c-myc expression not correlation AML nm23-H2 expression

• Comparison (5.11%)
 – *E.g.* *The plasma concentration of nm23-H1 was higher in patients with AML than in normal controls (P = 0.0001).*

 patients with AML higher normal controls

 plasma concentration of nm23-H1
Distribution of Claim Categories

Category	Total (%)	Pilot(%)	Main(%)
Explicit	2489	332	2157
Implicit	87	3	84
Observation	298	24	274
Correlation	174	12	162
Comparison	165	27	138
Total	**3228**	**398**	**2830**
Related Work

• Product reviews
 – Sequential rule mining (Jindal and Liu, 2006)
 – Enhanced point-wise mutual information (Ganapathibhotla and Liu, 2008)
 – Conditional Random Fields (Xu et al., 2011)
 – Maximum entropy (Yang and Ko, 2011)
 – Support Vector Machines (Yang and Ko, 2011)

• Biomedical text
 – linguistic patterns (Fiszman et al., 2007)
Challenges with Comparisons

• “The comparative clause construction in English is almost notorious for its syntactic complexity.” Bresnan (1973)

• “An interest in the comparative is not surprising because it occurs regularly in language, and yet is a very difficult structure to process by computer. Because it can occur in a variety of forms pervasively throughout the grammar, its incorporation into a NL system is a major undertaking which can easily render the system unwieldy.” Friedman (1989)
Comparison Types

• Gradable
 – indicates ordering
 – *E.g.* *greater*, *decreased*, *shorter*

• Non-gradable
 – Non-gradable similarity comparison
 • *E.g.* ‘*similar to*’, ‘*as ~ as*’, *similarly*
 – Non-gradable difference comparison
 • *E.g.* ‘*different from*’, ‘*difference between*’
Goal: Identify Comparisons

E.g. Gradable: The number of deaths was higher for rats treated with the Emulphor vehicle than with corn oil ...

E.g. Non-gradable similarity: Mean maternal body weight was similar between controls and treated groups ...

controls similar treated groups

mean maternal body weight

rats treated with Emulphor vehicle higher rats treated with corn oil number of deaths
Frame as Classification Task

1. Build model based on training data

Sentences	Feature Values	Label
Sentence1	0,0,0,0,1,0,0,1,...	Comp.
Sentence2	1,0,1,0,0,0,0,0,...	Non-comp.
Sentence3	0,0,0,1,0,0,0,0,...	Non-comp.

2. Evaluate predictions of model on test data

Sentences	Feature Values	Label
Sentence1	0,0,0,0,1,0,0,1,...	?
Sentence2	1,0,1,0,0,0,0,0,...	?
Sentence3	0,0,0,1,0,0,0,0,...	?

3. Repeat with different training and test data sets
Semantic Features

- SPECIALIST lexicon (Browne et al., 2000)
 - Modified list of comparative words
 - *E.g.*, ADJ+‘er’, ‘worse’, ...

- Direction words lexicon
 - Subset of direction verbs (Blake, 2010)
 - Added 22 additional words from pilot study
 - *E.g.*, ‘increased’, ‘decreased’, ...

- Other lexicons for words/phrases
 - *E.g.*, ‘versus’, ‘twice the’, ‘times that of’, ...
Syntactic Features

• Combines semantics (words) and syntax (dependency)
 – E.g., [prep ‘than’]

• Compiled 29 syntactic features
 – 4 Features related to similarity/difference
 • + PREP for indicative preposition of similarity/difference
 • + PLURAL for plurality of the subject in similarity/difference
 – 6 Features related to ‘than’
 – 9 Features related to ‘compared’, ‘comparing’, and ‘comparison’
 – 5 Features related to ‘contrast’ and ‘relative’
 – 3 Features related to phrases such as ‘as ~ as’
E.g. DBP is several orders of magnitude more mutagenic/carcinogenic than BP.
Classifiers

• Both SVM and NB work well with text (Sebastiani, 2002)

• Support Vector Machine (SVM)
 – Effective classifier
 – Creates hyperplanes that separate training data
 – Uses hyperplanes to classify new data

• Naïve Bayes (NB)
 – Graphical model
 – Conditional independence between features
Bayesian Network (BN)

- A directed acyclic graph
- Efficient (exact inference)
- Compact representation
 - Maintains only conditional probabilities
- Captures feature dependencies
- Maximum Likelihood Estimation (MLE)
 - With additive smoothing
Bayesian Network

S: compared, comparing, comparison, relative
L4: versus, vs

S20, S21: contrast
L3: from, over, above

S: compared, comparing, relative
L4: versus, vs
Evaluation

- Pilot study
 - 465 sentences (Fiszman et al., 2007; Blake, 2010)
- Full study
 - 14157 sentences (122 full text articles)
 - 13657 sentences in 83 articles in development
 - 500 sentences from 39 articles in validation

Sentence Type	Pilot	Development	Validation
Comparative Sentences	465 (100%)	1659 (12.15%)	76 (15.2%)
Non-comparative Sentences	0 (0%)	11998 (87.85%)	424 (84.8%)
Total	465 (100%)	13657 (100%)	500 (100%)

Feature refinement
Accuracy and ROC AUC

	Development	Validation	
	NB	SVM	BN
Accuracy	0.923	0.933	**0.940**++
ROC AUC	0.928	0.904	**0.933**++
	0.924	0.916	**0.932**
	0.948	0.883	**0.958**

+-/-: statistical significance at p=0.05
++/--: statistical significance at p=0.01

Superscripts: BN vs NB
Subscripts: BN vs SVM
Evaluation on Comparatives

	NB	SVM	BN
Development			
Precision	0.653	0.780	0.782 ++
Recall	0.778	0.621	0.706 ++
F1 Score	0.710	0.691	0.742 ++
Validation			
Precision	0.726	0.886	0.875
Recall	0.803	0.513	0.645
F1 Score	0.763	0.650	0.742

+/-: statistical significance at p=0.05
++/--: statistical significance at p=0.01

Superscripts: BN vs NB
Subscripts: BN vs SVM
Evaluation on Non-comparatives

	NB	SVM	BN
Development			
Precision	0.968	0.949	0.960^{--}^{++}
Recall	0.943	0.976	0.973^{++}^{--}
F1 Score	0.955	0.962	0.966^{++}^{--}
Validation			
Precision	0.964	0.919	0.939
Recall	0.946	0.988	0.983
F1 Score	0.955	0.952	0.961

+/-: statistical significance at p=0.05
++/--: statistical significance at p=0.01

Superscripts: BN vs NB
Subscripts: BN vs SVM
Precision-Recall Curves
Threshold vs Recall Curves

Set $P(C=\text{comparative}|X)$ threshold to satisfy goal.

- **Precision**
 - Threshold = 0.9
 - Recall = 0.3
 - Precision = 0.9

- **Recall**
 - Threshold = 0.4
 - Recall = 0.8
 - Precision = 0.4
Validation Set – False Positives

• Confusion Matrix for BN

Actual	Predicted
Class	
Non-comparative (0)	417
Comparative (1)	27

- Four of seven false positives
- “Although these data cannot be compared directly to those in the current study because they are in a different strain of rat (Charles River CD), they clearly illustrate the variability in the incidence of glial cell tumors in rats.”
Validation Set – False Negatives

Reason of misclassification	# errors
Probability is estimated poorly	10
Comparison is partially covered by syntactic features	7
Comparison word is not in lexicon	7
Dependency parse error	3
Total	27

• Poor estimation example
 – $P(C=\text{Comparative}|X) = 0.424$
 – “Mesotheliomas of the testicular tunic were statistically (p<0.001) \textbf{increased} in the high-dose male group \textbf{in comparison to} the combined control groups.”
 – ‘comparison’ syntactic feature occurs not frequent enough
Conclusions

• Comparatives make up 12% of sentences
 – 35 semantic and syntactic features capture key characteristics of those sentences

• Best generalizable comp. F1 = NB

• Best generalizable accuracy and non-comp F1 = BN

Development	NB	SVM	BN
Accuracy	0.923	0.933	**0.940**++ ++
Comp. F1 score	0.710	0.691	**0.742**++ ++
Non-comp. F1 score	0.955	0.962	**0.966**++ ++

Validation	NB	SVM	BN
Accuracy	0.924	0.916	**0.932**
Comp. F1 score	**0.763**	0.650	0.742
Non-comp. F1 score	0.955	0.952	**0.961**
Thank You

Any Questions?

Dae Hoon Park: dpark34@illinois.edu
Catherine Blake: clblake@illinois.edu