Improving Business Process Efficiency for Supply Chain Finance: Empirical Analysis and Optimization Based on Stochastic Petri Net

XUHONG YE1, DONGBO GE1, XUETING BIAN1, QIKE XU1, AND YUN ZHOU2

1School of Management, Zhejiang University of Technology, Hangzhou 310023, China
2School of Management, Zhejiang University, Hangzhou 310058, China
Corresponding author: Yun Zhou (zhouyun2015@zju.edu.cn)

ABSTRACT

Efficient business process is important to the operations of supply chain finance (SCF). Many deficiencies exist in the processes of SCF such as complicated workflows and high time-consuming steps. However, few studies have paid attention to evaluate and improve the performance of SCF processes. We empirically model and investigate the processes of supply chain finance by constructing a Stochastic Petri Net based on the field survey of a focal firm. Two critical indices, place busy rate and transition utilization rate, are evaluated. The results demonstrate that some places (transitions) of the Petri Net have high busy rates (utilization rates). By integrating the Petri Net and dependency graph, several key places and transitions in the Petri Net of SCF processes are identified for further optimization. To improve the performance of SCF processes, we propose three optional adjusting schemes on the basis of information sharing perspective (for the first half of the Petri Net) and risk sharing perspective (for the second half of the Petri Net). The proposed optimization strategies have further been proven to reduce the place busy rates, shorten the process, and improve the process efficiency of the supply chain finance.

INDEX TERMS

Supply chain finance, process improvement, stochastic Petri Net, information sharing, risk sharing.

I. INTRODUCTION

Supply chain finance (SCF) is becoming more and more popular and important in the field of supply chain management. In 2016, it was reported that 68 percent of the firms in China had overdue payments, while 15.9 percent of the firms experienced overdue payments with the delay over 150 days [1]. There would be more severe payment delay when it comes to small and medium-sized enterprises (SMEs) [2]. Due to the weak risk resistibility, insufficient finance source and high financing cost, most SMEs have trouble in obtaining the external funds. The shortage of capital may incur the poor performance and low efficiency of a supply chain. SCF aims to align financial flows with product and information flows in the supply chain, and to improve the cash flow management level from a supply chain’s perspective [3]. By involving financial institutions [4] or technology providers [5], and alleviating the unforeseeable risks of an individual company into the one shared in the supply chain, SCF managers and operators would be able to control the potential risks more effectively [6], [7].

To better ameliorate the potential risks and enhance the workflow performance of SCF, an efficient process is necessary and important. Elaborately designed processes will significantly reduce the time-consuming periods and increase the benefits of SCF. On the contrary, an inferior operation process would weaken the performance of SCF. Thus, it is untrivial to investigate the performance of SCF in theory and practice, and to identify the deficiencies and key steps that are potential to improve the SCF process.
In prior literature, many topics in SCF research field are widely studied including characteristics of SCF [8], interaction of the SCF three entities (the bank, focal firm and financing applicant) in game theory [9], decision optimization by mathematical model [10], and corresponding computational technologies [11] et al. However, there are few studies involving the process optimization in the domain of SCF. How to improve and optimize SCF processes is still a big challenge for scholars and practitioners. To fill the research gap, we investigate the SCF process performance based on the Petri Net and propose the improving strategies considering the perspectives of information sharing and risk sharing.

Our work focuses on the supply chain of a national high-tech enterprise named as Company J which specializes in the production of heat exchanger equipment. A powerful modeling method, Stochastic Petri Net (SPN) embedded with time delay, is adopted to analyze the performance of the SCF process. Stochastic Petri Net, which describes data flow, control flow and status transition, is a graphic tool for simulation modeling and analysis of complex systems [12], [13]. As an extended Petri Net, the Stochastic Petri Net (SPN) is applicable for both static and dynamic analysis with stochastic processes. Hence, SPN can be a useful tool to investigate the process of supply chain finance. In the Stochastic Petri Net, the place busy rates and transition utilization rates are calculated to identify the weak parts of the process that need to be improved. However, few studies have ever used Stochastic Petri Net to evaluate and optimize the process of supply chain finance. In addition, dependency graph is also used to identify and verify the places and transitions in SPN that should be potential for adjustment.

The simulation results demonstrate that some places (transitions) at the first and second half of SPN have higher place busy rates (transition utilization rates). Specifically, those parts closely related to the two activities in the process, i.e. “the inspection on Downstream firms”, and “the repayment of Downstream firms”, are the significant parts for process improvement. The identification of key events in the dependency graph echoes to the SPN evaluation. At the first half of the process, according to the information sharing in the theory of SCF, we suggest to integrate (the “I” in ESIA principal, i.e. Eliminate, Simplify, Integrate and Automate) the inspection of Company J and the Bank on the financing applicants (Downstream firms in our context). When it comes to the repayment of Downstream firms, Company J (the focal firm) is involved into the repayment to share the risk with the bank, so that there would be sufficient funds in the account for both static and dynamic analysis with stochastic

Petri Net with analysis of place busy rates and transition utilization rates. In this section, we also use the dependency graph to analyze the causality of process events in the Petri Net and analyze the critical events. Section V selects the potentially adjustable places and transitions and proposes three adjusting schemes to improve the process. Section VI concludes our study with findings, theoretical and practical implications and opportunities for future work.

II. LITERATURE REVIEW

A. SUPPLY CHAIN FINANCE AND BUSINESS PROCESS

Supply chain finance refers to a set of solutions to finance specific products as they move along the supply chain [11]. By integrating the financing into supply chains, there would be more effective control over the capital flow, information flow, and logistics; thus, the risks of the chain would be mitigated [14]. Supply chain finance has become an efficient means to solve the funds shortage, which is one of the major problems of SMEs [15]. The primary financing patterns can be categorized into three types: financing for accounts receivable, financing for prepayment and financing for stock [16].

Supply chain finance has attracted a lot of scholars’ attention and interest over the past decade. Many scholars find that potential risks in dynamic and turbulent supply chain finance systems will be even more complicated. Furthermore, information asymmetry in supply chain finance process will lead to the greater potential risks. Without controlling the risks properly, the capital chain may break [17]. Some researchers [1], [18] analyze the risk of supply chain financing by introducing the basic model of supply chain finance for SMEs, and propose the corresponding solutions. Some other scholars [6], [19] discuss the classification of credit risk in commercial bank supply chain finance business and the principles of risk management. Generally speaking, there are five key types of risks in supply chain finance: credit risk, market risk, legal risk, operational risk and regulatory risk [20].

There exist unneglectable risks in the business processes of supply chain finance, e.g. overstaffing in organizations [21], poor communications [22] and among others. Business process consists of several activities that are run by different entities [23]. The process becomes complicated due to some uncorrelated activities and different kinds of coordination mechanisms [24]. The high complexity may render high challenges to manage the process effectively [25]. Moreover, inefficient workflows may lead to low work efficiency and
business process flexibility [24]. Thus, improvement of business processes is essential for an organizational survival and business success [25]–[27].

However, few studies have spent effort on the process of supply chain finance. The existing literature mainly concentrates on the risk management of supply chain finance and financing theoretical models. As mentioned in [28], there is great potential for us to reschedule the business process to reduce cost, enhance efficiency, improve customer satisfaction, and even to promote social welfare of the supply chain.

B. MODELING TOOL: PETRI NET

Petri Net is a well-known representation language to model business process [29], which can be used to represent parallel or concurrent activities in a system and can enable users to investigate the whole system visually [30]. A Petri Net consists of four elements: place, transition, directed arc and token. A place not only represents a location, but also presents the resource depository. Tokens are represented by small black dots in the place, which are dynamic objects that can be moved from one place to another. Events are generally characterized by “transitions”. There is a direct arc between the place and the transitions [31], [32].

Petri Net has been proven to be a powerful simulation system that is applicable to various research fields such as work flow [33], performance evaluation [34], software design [35], food systems [36], web service discovery [12], emergency healthcare systems [13], property preservation [37], multithreaded software [38], and resource allocation systems [39] et al. Some types of Petri Nets have been developed, including Timed Petri Net (TPN) [40], Colored Petri Net (CPN) [41], Generalized Stochastic Petri Net (GSPN) [42], and so forth.

In the complicated system, Petri Net is able to evaluate the performance of the system accurately [30]. Additionally, Petri Net can adjust flexibly as the rule varies, which empowers it to be an ideal modeling approach to simulate the business process. Thus, Petri Net is widely adopted to the study of process management. For instance, a model [5] integrating Timed and Colored Petri Net with correlation graphs is built to study several performance indicators of supply chain events. Zhu et al. [29] build a location-aware Petri Net to adjust business process. In the context of cross-organizations, Zeng et al. [43] use Petri Net to analyze the data from the operational logs of each system server and model the process.

However, to the best of our knowledge, no study has applied Petri Net to analyze the business process of supply chain finance. In our study, Stochastic Petri Net embedded with time parameters is utilized to assess the business process of supply finance and identify the key places and transitions that would be optional to optimize the SCF process.

C. ESIA PRINCIPLE

ESIA principle is widely applied to systematically improve the existing process and customer satisfaction. On the basis of analysis and understanding of the exist process, we are able to create the new process using ESIA principle [44]. Specifically, the basic content of ESIA consists of four tasks [45]: Eliminate (Eliminating unnecessary steps in the original process), Simplify (Simplification of the remaining process based on the previous step), Integrate (Integrating the decentralized steps to form a smooth flow) and Automate (Using modern information technology to realize automatic operation of process).

ESIA principle is fairly practical and popular in the business process management. As stated by Gasparski [46], “ESIA allows one to analyze individual business process and interactions between them, identifying the potential for specific improvements. Interestingly, this approach is similar to Kotarbiński’s economization measures, described in this paper, but more simplistic, disregarding some of the potentially useful improvement techniques that had been identified by Kotarbiński.” Indramawan and Yadrifil [47] apply ESIA to construct As-Is and To-Be processes in project procurement and show that the processing time can be shortened up to forty percent. Also, a modified version of the ESIA framework is used for further process improvement [48]. Thus, the ESIA method has been proven to be a suitable analysis tool for business process reengineering in many application areas, such as multimedia audio-visual process improvement [49] et al. In our study, the principle of ESIA, combined with the theory of supply chain finance, is applied to improve the process of SCF.

III. PETRI NET OF COMPANY J’S SUPPLY CHAIN FINANCIAL BUSINESS PROCESS

A. PETRI NET CONSTRUCTION

Company J is a national high-tech enterprise that specializes in the production of air-conditioning heat exchanger equipment, high-speed precision stamping equipment, and micro-channel heat exchanger equipment et al. As one of the largest suppliers in the air-conditioning heat exchanger industry, the firm produces these products that are popular in both the domestic market and abroad (exported to over 40 countries around the world). The high unit-price (value) of the products may exert heavy capital loads on its Downstream firms and may even cause the loss of sales. As the focal firm of the supply chain, Company J tends to offer guarantee support for its Downstream firms so that the banks are willing to grant Downstream firms the loans (i.e. supply chain finance). There will be a complex financing process in the supply chain to control the risks when the banks are involved. However, to balance the risk control and workflow complexity, the process of SCF should be evaluated and optimized.

Company J’s business processes of SCF are collected by means of field research [50], as shown in Figure 6 (Appendix A). The investigation design and key process contents of the field research are described in detail in Appendix A. To be specific, we started the investigation from the manufacture departments, by interviewing the...
department head. Then the status of the firm in the supply chain is identified by gathering the information of procurement. After that, we had face-to-face communications with the information management director. Finally, we had some in-depth conversations with respect to the financing in the supply chain, including the causes of financing, operations of financing, risks of financing, etc. The Petri Net of the financing business process was then constructed using the software Visual Object Net++. The description of the places and transitions are given in Table 1.

Figure 1 illustrates the graphical representation of the Petri Net \(\sum = (P, T, F, K, W, M_0) \). In the net, \(P \) and \(T \) refer to the places and transitions, respectively. The component of the set \(F \) is the directed arc that connects a place and a transition, with a set of corresponding weight \(W \). \(K \) represents the capacity function. \(M_0 \) labels the initial marking (status).

Based on the process decomposition, we can obtain:

1) \(P = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9, P_{10}, P_{11}, P_{12}, P_{13}, P_{14}, P_{15}, P_{16}, P_{17}, P_{18}, P_{19}, P_{20}, P_{21}, P_{22}\} \)

2) \(T = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9, T_{10}, T_{11}, T_{12}, T_{13}, T_{14}, T_{15}, T_{16}, T_{17}, T_{18}, T_{19}, T_{20}, T_{21}\} \)

3) \(F = \{(P_1,T_1), (T_1,P_2), (P_2,T_2), (T_2,P_3), (P_3,T_3), (T_3,P_4), (P_4,T_4), (T_4,P_5), (P_5,T_5), (T_5,P_7), (P_7,T_6), (T_6,P_8), (P_8,T_7), (T_7,P_9), (P_9,T_8), (T_8,P_{10}), (P_{10},T_9), (T_9,P_{11}), (P_{11},T_{10}), (T_{10},P_{12}), (P_{12},T_{11}), (T_{11},P_{13}), (T_{12},P_{14}), (P_{14},T_{13}), (T_{13}, P_{15}), (P_{15},T_{14}), (T_{14},P_{16}), (T_{14},P_{17}), (P_{17},T_{16}), (T_{16},P_{18}), (P_{18},T_{17}), (T_{17},P_{19}), (T_{17},P_{20}), (P_{20}, T_{18}), (T_{18},P_{21}), (P_{21},T_{19}), (T_{19},P_{22}), (P_{22}, T_{20}, T_{21}), (P_{22}, T_{21})\} \)

4) \(I(T_1) = \{P_1\}, I(T_2) = \{P_2\}, I(T_3) = \{P_3\}, I(T_4) = \{P_4\}, I(T_5) = \{P_5\}, I(T_6) = \{P_7\}, I(T_7) = \{P_8\}, I(T_8) = \{P_9\}, I(T_9) = \{P_{10}\}, I(T_{10}) = \{P_{11}\}, I(T_{11}) = \{P_{12}\}, I(T_{12}) = \{P_{13}\}, I(T_{13}) = \{P_{14}\}, I(T_{14}) = \{P_{15}\}, I(T_{15}) = \{P_{16}, P_{19}\}, I(T_{16}) = \{P_{17}\}, I(T_{17}) = \{P_{18}\}, I(T_{18}) = \{P_{20}\}, I(T_{19}) = \{P_{21}\}, I(T_{20}) = \{P_6\}, I(T_{21}) = \{P_{22}\} \)

5) \(O(T_1) = \{P_2\}, O(T_2) = \{P_3\}, O(T_3) = \{P_4\}, O(T_4) = \{P_5, P_6\}, O(T_5) = \{P_7\}, O(T_6) = \{P_8\}, O(T_7) = \{P_9\}, O(T_8) = \{P_{10}\}, O(T_9) = \{P_{11}\}, O(T_{10}) = \{P_{12}\}, O(T_{11}) = \{P_{13}\}, O(T_{12}) = \{P_{14}\}, O(T_{13}) = \{P_{15}\}, O(T_{14}) = \{P_{16}, P_{17}\}, O(T_{15}) = \{P_{22}\}, O(T_{16}) = \{P_{18}\}, O(T_{17}) = \{P_{19}, P_{20}\}, O(T_{18}) = \{P_{21}\}, O(T_{19}) = \{P_{22}\}, O(T_{20}) = \{P_{22}\}, O(T_{21}) = \{P_1\} \)

6) \(M_0 = (1,0) \)

B. Basic Properties of Petri Net in Company J’s Financing Business Process

A simple Petri Net can be used to judge some features of the model through observation methods. However, as a large and complex net, it needs to be analyzed by model analysis methods. Common analysis methods include incidence matrix method, reachable marking graph, and state equation, etc.

Place	Description
P1	Financing requirement submitted by Downstream firms
P2	Company J’s investigation on Downstream firms
P3	Company J’s inquiry for the engagement intention of the Bank
P4	Financing application submitted by Downstream firms to the Bank
P5	The Bank’s approval of the application
P6	The Bank’s rejection of the application
P7	Guarantee of Company J for repurchasing the equipment
P8	Security deposit that Downstream firms paid Company J
P9	The fund required by company J for supplements in the sales agreement
P10	The equipment manufacturing of Company J
P11	Payment from the banks to company J
P12	Equipment delivery of Company J to Downstream firms
P13	Equipment installation and testing
P14	Arrival payment from the Bank to Company J
P15	Repayment of Downstream firms to the Bank by stages
P16	Sufficient fund in the account of Downstream firms
P17	Insufficient fund in the account of Downstream firms
P18	Repayment of Downstream firms to the Bank within the agreed expiration
P19	Sufficient fund in the account of Downstream firms with the cooperation of company J
P20	Insufficient fund in the account of Downstream firms
P21	Repurchase of the equipment by Company J
P22	End of this financing process

In the bounded Petri Net, the reachable marking graph is a directed graph with a limited set of reachable identities.
The Petri Net of company J’s SCF business process.

$R(M_0)$ as vertices, and an arc set representing the direct reachability relationship between labels. By exploring the network system’s state change and transition occurrence sequence, the relevant properties of the network system can be obtained. In this section, we analyze the basic properties of the Petri Net as shown in Figure 1 to verify the correctness using the reachable marking graph.

In the reachable marking graph, the corresponding identity of each vertex is combined into a vector. The Petri Net place set has m elements, $P = \{P_1, P_2, \ldots, P_m\}$; Thus, an identifier M of this net can be expressed as an m-dimensional vector $M = [M(P_1), M(P_2), \ldots, M(P_m)]$.

Definition. Let $q_{i,j} = d(1 - e^{-\lambda_k \tau})/d \tau |_{\tau=0} = \lambda_k$ denotes a bounded Petri net. The reachable marking graph of Σ is defined as a triple $RG(\Sigma) = (R(M_0), E, P)$, where:

$$E = \{(M_i, M_j) | M_i, M_j \in R(M_0),$ \exists \tau_k \in T : M_i[\tau_k > M_j] \}$$

$P : E \rightarrow T, P(M_i, M_j) = \tau_k$, if and only if $M_i[\tau_k > M_j$

Let $R(M_0)$ be the vertex set of $RG(\Sigma)$ and E be the arc set of $RG(\Sigma)$; if $P(M_i, M_j) = \tau_k$, then name τ_k as a subscripts of the arc (M_i, M_j).

The reachable marking graph is a useful tool for analyzing the properties of the bounded Petri Net, which can help to identify those unfavorable situations in the Petri Net, e.g., conflicts and dead chains (see Figure 7 in Appendix A). All the markings in the Petri Net are reachable starting from M_0. There is constantly a transition sequence that enables the transition T, i.e., T meets the condition of liveness.

IV. EVALUATION OF PROCESS PERFORMANCE BASED ON A STOCHASTIC PETRI NET

The time delay of the transition is introduced to construct the Stochastic Petri Net (SPN). The performance of the system can be quantitatively evaluated using the isomorphism of its state space and Markov chain. In terms of the occurrence of an event in the system, the Petri Net usually consumes a certain amount of time. Denote $\lambda \in \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ as the firing rate for each transition, where λ is assumed to follow a certain probability distribution to construct a Stochastic Petri Net.

There are three steps involved in the evaluation procedure:

1) Establishing a Stochastic Petri Net of the system.

2) Constructing a Markov chain that is isomorphic to the Stochastic Petri Net.

3) Evaluating the required system performance based on the stable state probability of the Markov chain.

In the third step, the $n \times n$ transfer matrix is denoted as $Q = [q_{ij}]$, $1 \leq i, j \leq n$.

i) when $i \neq j$

If $\exists \tau_k \in T : M_i[\tau_k > M_j$ then

$$q_{i,j} = d(1 - e^{-\lambda_k \tau})/d \tau |_{\tau=0} = \lambda_k$$

else $q_{i,j} = 0$

ii) when $i = j$

$$q_{i,i} = \sum_k \lambda_k$$

where $k \neq i$ and $\exists M' \in [M_0]$, $\exists \tau_k \in T : M_i[\tau_k > M', \lambda_k$ is the rate of τ_k.

Denoting a row vector $X = (x_1, x_2, \ldots, x_n)$ as the steady state probability of n states in a Markov chain, the linear equations according to the Markov chain process is derived as follows:

$$XQ = 0$$

$$\sum_i x_i = 1 \leq i \leq n,$$ (3)

where Q is the state transfer matrix. Denoting $x_i = P[M_{i-1}]$, i.e., $x_i = P[M_0]$.

The performance is measured in terms of place busy rate and transition utilization rate. In the steady state, the probability density function of the mark indicates the probability of the number of tokens contained in each place (node).

Place busy rate: The token probability function of the place P_i is obtained by using the stable probability of the reachable marking ($\forall P_i \in P, \forall i \in N$, ;

$$P[M(P) = i] = \sum_j P[M_j]$$

where $M_j \in [M_0]$ and $M_j(P) = i$

Transition utilization rate: The utilization rate $U(t)$ ($\forall t \in T$) is the sum of all the stable probabilities, which belongs to markings that enable t to be implemented:

$$U(t) = \sum_{M \in E} P[M],$$ (5)

where E is the set of all reachable markings that enable t to be implementable.

A. BUSY RATE OF PLACES

As shown in Appendix B, we firstly calculate the steady-state probabilities of each marking obtained by formula (3). Afterward, the place busy rates are derived leveraging the formula (4) as shown in Table 2.

Obviously, $P6$ (The Bank rejects the requirements of Downstream firms) has the highest busy rate, while $P22$ (End of this round of financing process) and $P5$ (The Bank’s
Table 2. The busy rate of places.

Place	Busy rate	Place	Busy rate
P1	0.1322	P12	0.0283
P2	0.0881	P13	0.0057
P3	0.0881	P14	0.0378
P4	0.0110	P15	0.0283
P5	0.1888	P16	0.1180
P6	0.5296	P17	0.0755
P7	0.0378	P18	0.0142
P8	0.0566	P19	0.0850
P9	0.0566	P20	0.0094
P10	0.0283	P21	0.0189
P11	0.0378	P22	0.2643

Table 3. The utilization rate of transitions.

Transition	Utilization rate	Transition	Utilization rate
U(T1)	0.1322	U(T12)	0.0057
U(T2)	0.0881	U(T13)	0.0378
U(T3)	0.0881	U(T14)	0.0283
U(T4)	0.0110	U(T15)	0.0189
U(T5)	0.0378	U(T16)	0.0566
U(T6)	0.0378	U(T17)	0.0142
U(T7)	0.0566	U(T18)	0.0094
U(T8)	0.0566	U(T19)	0.0189
U(T9)	0.0283	U(T20)	0.0566
U(T10)	0.0378	U(T21)	0.2643
U(T11)	0.0283		

Approval of the application follow. In addition, the busy rates of P1 (Downstream firms submit financing requirements to company J), P2 (Company J investigates Downstream firms), P3 (Company J contacts Cooperative bank), P16 (Downstream firms have sufficient fund in the account) and P19 (Sufficient fund in the account of Downstream firms with the cooperation of company J) are as well at high levels.

Place busy rate presents the probability that a place is busy during the process of supply chain finance. The greater the probability is, the busier the place would be. Based on the results of Table 2, there are some critical places that are potential to further improve the performance of SCF process. P1, P2 and P3 are the preliminary stages of the process, which are busy and time-consuming. P5 denotes the busy processing on the bank’s approval of application. In the case that the bank rejects the financing application, there would be information block at P6 with the highest place busy rate. The reason for the high busy rate of P22 (End of a round of financing process) pertains to the factors that terminate the financing abnormally, i.e., the Bank rejects the requirements of Downstream firms or Downstream firms have insufficient fund in the account, which piles up the information at place P22. The Downstream firms’ repayment states phased to the bank will result in the status of the Downstream firms’ funds in the bank account to be sufficient or not. This is critical to whether the financing can be operated properly in the late stages of the process. Therefore, we should as well pay attention to P16 to improve the process. In addition, if Downstream firms’ account has sufficient funds with the cooperation of company J, the SCF process can be proceeded more smoothly, implying that P19 should also been taken into consideration.

In general, the places of P1, P2, P3, P5, P6, P16, P19 and P22 are the key places for improvement.

B. UTILIZATION RATE OF TRANSITIONS

The utilization rate of a transition in the process refers to the sum of the stable probability of all state markings when the transition is performed. From the calculation formula (5) mentioned earlier, we can get Table 3.

From calculating the transition utilization rates, we can get which transitions are relatively important in the process of SCF. The greater the transition utilization rate is, the more important the transition would be. The results in the Table 3 demonstrate that transition T1, T2, T3 at the first half and transition T16, T20, T21 at the second half of financing process have relatively high utilization rates. In other words, “The financing requirement of Downstream firms and the engagement intention of the bank at the beginning” and “The Bank’s reminder for the Downstream to repay and the termination of financing at the second half of process” are potential options to improve the efficiency of SCF process. Moreover, transitions T7 and T8, indicating the flow of funds among Downstream firms, banks, and company J, also have higher utilization rates and are important. In summary, the transitions of T1, T2, T3, T7, T8, T16, T20, and T21 are important transitions.

V. IMPROVEMENT OF SCF PROCESS

In this section, the results of Section IV are testified by dependency graphs to filter the potential places and transitions which may enhance the performance of SCF process to the most extent. Based on the dependency graph analysis, we develop some improvement strategies to optimize the business process.

A. CAUSAL RELATIONSHIP OF EVENTS BASED ON DEPENDENCY GRAPHS

The dependency graph is widely used to characterize causality relationship and search for the key events. Based on the Petri Net in Figure 1, the relationship between the input and output of events is investigated to show the causality and sequence of events and the transitions that occur when events are transferred. Thus, twenty-two events are defined as shown in Table 4.

The dependency graph in Figure 2 illustrates the causal relationship between events. The event that initiates the current one can be traced by the “arrow-based reverse tracking” in the directed graph. As we can see, the termination event E22 is directly incurred by either E6, E16, E19 or E21. After a detailed analysis of the causal relationships on these events, we figure out that E4, E15 and E18 are the key events (Appendix C).
TABLE 4. Description of the events.

Event	Description	Transition	Place
E1	Downstream firms submit financing requirements to company J	-	P1
E2	Company J investigates Downstream firms	T1	P2
E3	Company J seek out the interested Bank	T2	P3
E4	Downstream firms submit financing applications to bank	T3	P4
E5	The Bank approves the application	T4	P5
E6	The Bank rejects the application	T4	P6
E7	The Bank requires Company J for repurchase agreement	T5	P7
E8	Downstream firms deposit money to Company J	T6	P8
E9	Bank supplements the insufficient part of the fund for the equipment procurement	T7	P9
E10	Company J manufactures the equipment	T8	P10
E11	The Bank pays company J for delivery	T9	P11
E12	Company J delivers the equipment to Downstream firms	T10	P12
E13	Company J installs and test the equipment	T11	P13
E14	The Bank pays Company J for the arrival	T12	P14
E15	Downstream firms repay the bank by stages	T13	P15
E16	Downstream firms have sufficient fund for repayment	T14	P16
E17	Downstream firms have insufficient fund for repayment	T14	P17
E18	Downstream firms repay the load within the expiration	T16	P18
E19	Downstream firms have sufficient fund for repayment	T17	P19
E20	Downstream firms still don’t have sufficient fund for repayment	T17	P20
E21	Company J repurchase equipment according to the agreement	T18	P21
E22	End of this financing process	T15, T19,	T20

B. PLACE AND TRANSITION SELECTION FOR IMPROVEMENT

We have dug out the busy places (P1, P2, P3, P5, P6, P16, P19, P22), the busy and important transitions (T1, T2, T3, T7, T8, T16, T20, T21), and key events (E4, E15, E18) in the SCF process. However, some of them may be indispensable in the process and not suitable for adjustment. In this section, we attempt to further filter the places and transitions for process improvement by excluding irrational options.

Some of the places and transitions should be excluded from the consideration set. For instance, T7 (Company J receives deposits from Downstream companies) and T8 (Company J receives funds from the Bank) are indispensable places in the Petri Net. It is difficult to integrate these two places as well. Thus, T7 and T8 are ruled out. T20 happens when the banks reject the financing requirement. It is infeasible to employ ESIA principle. T21 is essentially the transition when the financing cooperation agreements expire. No matter whether the bank offers the financing, the process will constantly terminate after T21. Hence, T21 is nonadjustable. P5 and P6 are unmodifiable because they are key places that cannot be eliminated. P22, which refers to the end of this financing process, is also undeletable. Overall, the transitions T7, T8, T20, and T21 and places P22 are eliminated from the candidate set. As a result, our optimization will concentrate on ((P1, P2, P3, P16, P19), (T1, T2, T3, T16)) as potential places and transitions for improvement.

C. IMPROVING THE SCF PROCESS

We propose the process improvement strategy on the basis of theories commonly accepted in the realm of SCF and the selected places and transitions. The ESIA theory [49] of process optimization is applied in this section.

Two major issues in supply chain are considered: information and risk. Information, which is an important component in supply chains, plays a critical role in supply chain finance [51]–[57]. The process complexity in SCF is heavily attributed to asymmetric information on the financing parties, e.g., the capability of repayment, the market status, etc. This may lead to moral hazard and adverse selection in the pledge loan credit contract [51], [58]. Besides, risk assessment and control [51], [59], [60] are also the key activities in the process of SCF. The information asymmetry increases the uncertainty of the banks to select the safe credit side (Downstream firms). The banks suffer potential risks that the money may not be returned. This is even more serious when the Downstream firms collude with the focal firm.

It seems to be functional to adjust the process by enhancing the information sharing [56] or risk sharing [60] between the focal firm (Company J) and the banks. The relationship between the focal firm and financing applicant (Downstream firms in our study) renders the focal firm to have richer information. However, it is difficult for the Bank to accurately understand the Downstream firm. Sharing information or risk tends to lower the process complexity that is designed to reduce the uncertainty in SCF.

1) INFORMATION SHARING

As identified in the previous section, the places (P1, P2, P3) are the most time-consuming, while the transitions (T1, T2, T3) are of the greatest importance to the process. They are all included in the segments of “P1-P3”, where two consecutive key activities are involved: “the inspection
of Company J on Downstream firms”, and its follow-up “Company J’s inquiry for the engagement intention of the Bank”. Generally, Company J has more information about Downstream firms. If Company J and the banks can cooperate and share information with each other, it is expected to simplify the process considerably. In the Petri Net, this can be achieved by integrating the two places (the “I” in ESIA method) and parallelly undergoing the inspection procedure. As a result, the time-consuming delay of transition T_4 (from P_4 to P_5) in the process are reduced.

![FIGURE 3. New Petri Net of SCF process improved by information sharing.](image)

Figure 3 illustrates the optimized process considering information sharing and stage integration. In the adjusted process, Company J and the banks carry on the inspection simultaneously. By involving the banks into the starting stages of SCF, the load in P_1, P_2, P_3 and P_5 of the initial process (Figure 1) may be relieved, while the efficiency (time-consuming) of inspection is enhanced (decreased). The places in the new process as shown in Figure 3 are labeled as “xP”, while all the transitions in the new process are labeled by “xT” (the details of place and transition descriptions are shown in Table 15 of Appendix D).

TABLE 5. The busy rate of places.

Place	Busy rate	Place	Busy rate
xP_1	0.1070	xP_{12}	0.0535
xP_2	0.0713	xP_{13}	0.0107
xP_3	0.0713	xP_{14}	0.0713
xP_4	0.0089	xP_{15}	0.0535
xP_5	0.0713	xP_{16}	0.1025
xP_6	0.7995	xP_{17}	0.0624
xP_7	0.0713	xP_{18}	0.0000
xP_8	0.0700	xP_{19}	0.0668
xP_9	0.0700	xP_{20}	0.0178
xP_{10}	0.0535	xP_{21}	0.0357
xP_{11}	0.0713	xP_{22}	0.0535

The busy rates of places in the optimized process are re-evaluated following the calculation in Section IV. As shown in Table 5, the improvement significantly reduces the burden of the five places (xP_1, xP_2, xP_3, xP_4 and xP_5, which are identical to P_1, P_2, P_3, P_4, P_5 in the original process). In contrast to those in Table 2, busy rates of them are 0.1070 (vs. 0.1322 in the original process), 0.0713 (vs. 0.0881 in the preliminary process), 0.0713 (vs. 0.0881 in the preliminary process), 0.0089 (vs. 0.0110 in the initial process), and 0.0713 (vs. 0.0881 in the process of Figure 1), respectively. Besides, it is surprise that the busy rates of P_{22} also declines significantly.

As shown in Table 6, there is no remarkable increase in the utilization rates of transitions in the shortened process. Usually, we may suppose that eliminating some steps (places) of the process would incur higher utilization rates of some transitions. However, the results of the new process represent the similar level. That is to say, we are able to adjust the process without expanding time-consumption. Thus, the results of Table 5 and VI imply that the optimization of process works properly in general.

TABLE 6. The utilization rate of transitions.

Transition	Utilization rate	Transition	Utilization rate
$U(xP_{11})$	0.0535	$U(xP_{11})$	0.0535
$U(xT_1)$	0.0107	$U(xT_1)$	0.0107
$U(xT_2)$	0.0713	$U(xT_2)$	0.0713
$U(xT_3)$	0.0089	$U(xT_3)$	0.0535
$U(xT_4)$	0.0713	$U(xT_4)$	0.0357
$U(xT_5)$	0.0713	$U(xT_5)$	0.0357
$U(xT_6)$	0.1070	$U(xT_6)$	0.0000
$U(xT_7)$	0.1070	$U(xT_7)$	0.0178
$U(xT_8)$	0.0535	$U(xT_8)$	0.0357
$U(xT_9)$	0.0713	$U(xT_9)$	0.0134
$U(xT_{10})$	0.0535	$U(xT_{20})$	0.0535

2) RISK SHARING

The places $\{P_{16}, P_{19}\}$ and transition T_{16}, essentially, are closely related to the activity of Downstream firms’ repayment, and especially related to the scenario that Downstream firms are unwilling or incapable to repay the loan. Thus, company J is introduced into the repayment process to share the risk assumed by the bank. This may ensure that the fund of Downstream firms’ bank account is enough for repayment, enabling the financing business process to proceed more smoothly. It is expectable that not only the busy rates of place P_{16} and P_{19}, but also the time-consumption of transition T_{16} is reduced.

The process in Figure 1 is rescheduled to the new one shown in Figure 4. By eliminating (The “E” in ESIA) two places and transitions, $\{P_{19}, P_{20}, T_{18}, T_{19}\}$, we attempt to shorten the process and reduce the time-consumption. The description of the places and transitions (labeled as “yP” and “yT”) are listed in Table 16 (Appendix D). All the transitions in the new process are included in the original process (as shown in Table 1).

As shown in Table 7, risk sharing between the focal firm and the banks may promote the Downstream firms to keep sufficient fund in the account of Downstream firms. The process is shortened in the modified process with only 20 places, at the expense of busy rate of yP_{16} (P_{16} in Figure 1) raising from 0.1180 (Table 2) to 0.1383.
3) INFORMATION & RISK SHARING

The process may be further improved if both information sharing and risk sharing are taken into consideration. The rationale behind is the fact that there is no conflict between these two optimization strategies. Figure 5 demonstrates the procedure combination. The description of the places and transitions (labeled as “nP” and “nT”) are listed in Table 17 (Appendix D).

By means of information sharing, there will be process simplification and reduction of place busy rate (time-consuming) in the first part of SCF process. Risk sharing tends to shorten the process, particularly for the repayment of Downstream firms, and lower the risk of contract violation which would terminate the process abnormally. As a result, the new process has saved two places and three transitions.

In the case that the strategies of information and risk sharing are simultaneously adopted to improve the process, the effect of process optimization stacks. The place P19 of the process in Figure 1 is removed. The busy rates of nP3 and nP16 are lower than those in the original process, i.e., 0.0116 vs. 0.0881 and 0.1139 vs. 0.1180, respectively (as shown in Table 9).

Analogously, as shown in Table 10, the utilization rate of transition nT3 (0.0116) is significantly lower than that of T3 in the original process (0.0881). In the second half of the process, the transition nT16 suffers a smaller busy rate of 0.0396, in contrast to T16 in Table 3. Hence, the proposed optimization works well on some specific steps of the SCF process.
TABLE 10. The utilization rate of transitions.

Transition	Utilization rate	Transition	Utilization rate
U(nT1)	0.1387	U(nT10)	0.0297
U(nT2)	0.0925	U(nT11)	0.0059
U(nT3)	0.0116	U(nT12)	0.0396
U(nT4)	0.0925	U(nT13)	0.0297
U(nT5)	0.0396	U(nT14)	0.0198
U(nT6)	0.0594	U(nT15)	0.0149
U(nT7)	0.0594	U(nT16)	0.0396
U(nT8)	0.0297	U(nT17)	0.0925
U(nT9)	0.0396	U(nT18)	0.2773

VI. CONCLUSIONS
A. FINDINGS
This paper aims to improve the efficiency of business process in supply chain finance which is operated among different entities including a focal firm (Company J), financing applicants (Downstream firms) and banks. A Stochastic Petri Net with the time delay of the transition is constructed to estimate the performance of the process. The relevant data of business flow chart is collected through an empirical investigation of Company J.

We figure out that, in the Petri Net, there are places with high busy rates and transitions with high utilization rates at both the first half and second half of the financing process. We further analyze the causal relationship of the events in the Petri Net by dependency graph to identify key events, i.e., the corresponding key places and transitions. By excluding those are infeasible, several potential places and transitions are selected for process adjustment. Generally, there are two important parts identified in the Petri Net: inspection of focal firm (Company J) and the banks on the financing applicants, and re-payment of the financing applicants.

Three different strategies involving information sharing or and risk sharing are proposed in our study to improve the process of supply chain finance. By integrating the place about examination of focal firm on the applicants and place about Company J’s inquiry for the engagement intention of the Bank, the adjustment not only reduces the time-consuming period, but also enhances the understanding of the applicants. Sharing the risk between the bank and focal firm in the repayment stage, in terms of involving the focal firm if the applicants are incapable to repay, will also shorten the process, reduce the busy rates of places and increase the efficiency of SCF process.

B. THEORETICAL AND PRACTICAL IMPLICATIONS
In this study, the theory of Stochastic Petri Net (SPN) is applied to analyze the process of supply chain finance. Few studies have ever touched on this research field. Our work not only extends the theoretical research on SCF process management but also expands the theoretical application of SPN. Although prior literature uses Petri Net to analyze the supply chain process, for example, Ma et al. [33] used Petri Net to the model and analyzed the cross-organizational workflow systems in the context of lean supply chain (LSC), there are still many challenges in the research field of supply chain process management. Our work focuses on the process improvement of supply chain finance field based on Petri Net, which is yet theoretically unexplored.

We also offer theoretical support for the process management and improvement, by leveraging the concept of information and risk sharing. Traditionally, the process designers tend to adjust the steps (places) in the process without sufficient theoretical support. However, our work suggests that the strategies of information sharing or and risk sharing can be an insightful guidance for process management. It is noteworthy that this may be applicable to other fields besides supply chain finance.

Practically, our results of the research will be of interest to business process managers and designers in supply chain finance field. The key process steps can be identified and optimized to guarantee the process to work smoothly. For example, during the process of SCF, it is important that the banks and core enterprises should collaborate more closely with each other. Thus, fully information sharing between the banks and the focal firms will benefit from the risk control of the financing. Besides, risk sharing between the banks and focal firms will in turn motivate the focal firm to filter the downstream firms and share information with the banks. As a result, if the downstream firms realize that only when they are exceptionally reliable that the focal firm would be willing to offer financing support, the uncertainty of the banks may correspondingly decrease. In summary, through analysis on the process and optimization on the key process places and transitions, the performance of SCF process can be eventually improved.

C. LIMITATIONS AND FUTURE WORKS
The research introduces a firm case for process improvement, which may limit the external validity. In the future, the research could be further improved by incorporating more sample firms and making the comparisons between results from the different sample firms. Greater attention could be paid to the process of supply chain finance in other industries for proposing the general principle of improving the SCF process performance. For instance, Do the places in the earlier and end stages of the process generally suffer high busy rates, disregarding the types of industry? Do information sharing and risk sharing strategies of SCF process improvement work in other industries?

APPENDIX A
INVESTIGATION DESIGN
1. Purpose of Investigation
(1) The departments involved in the current operation of supply chain finance in the firm
(2) Acquiring the process of supply chain finance and corresponding organizational activities in the firm that faces middle and small-sized enterprises
(3) Investigating the problems existing in the current supply chain finance business of the enterprise

2. The process of investigation
(1) Collecting information of the investigated firm
(2) Analyzing and finding the potential problems
(3) Brainstorming the possible solutions
(4) Thinking of the data collections
(5) Survey and consolidation on data

3. Investigation Method
(1) Interview
(2) Collection of files and data provided by the enterprise

4. Investigation Content
(1) Profile and organizational structure of the enterprise
(2) The department (launching the business process) that is responsible for the operation of supply chain finance
(3) The departments that are related to supply chain finance, e.g., logistics department, inventory, procurement department, the financial department, manufacture departments, etc.
(4) The organizations involved in supply chain finance, e.g., the banks

5. Data Collection
(1) Up-streams
(2) Resources imported into the Small and medium-sized enterprises (SMES)
(3) Financing of SMES
(4) The bank’s needs of dealing with the financing process
(5) The coordinate activities of focal firm
(6) Logistics, logistics service of third-party provider
(7) The time duration of each activity
(8) The exchange of information, etc.

Notes: A. Agreement of sales; B. Financing requirement; C. Agreement on repurchase; D. Financing agreement; E. Security deposit; F. Replenishment the remaining fund; G. Delivery notification; H. Delivery; I. Repay funds by installments; J. Repayment on time/buy-back of the equipment.

We have decomposed the above business flow chart into the following events:

(1) Downstream firms submit financing application to Company J. After confirmation of Downstream firms’ financing requirements, Company J inspects the Downstream firms. If the inspection is approved, Company J signs a sales agreement with the Downstream firms with a Bank as fund source. Otherwise, financing terminates.
(2) The Downstream firms and Company J submit a financing requirement and repurchase agreement to the bank, respectively. Afterward, the bank inspects the status of Downstream firms and assess company J’s capability of repurchase simultaneously.
(3) The bank signs repurchase agreements with Company J.
(4) The bank signs financing agreements with Downstream firms.

(5) Downstream firms pay company J the security deposit.
(6) Company J submits the requirement of funds to the bank when Downstream firms do not have enough funds (60% of equipment funds). The Bank pays the required funds. Company J receives the bank’s funds and start the manufacture. Company J notifies Downstream firms when the production is complete.
(7) Downstream firms request for equipment delivery. Company J ships the equipment to Downstream firms.
(8) Company J finishes equipment installment and debug for the Downstream firms. Downstream firms confirm receipt after testing the status of equipment.
(9) The bank pays Company J 30% of equipment’s price. Downstream firms carry out the production and repay the loan by stage.
(10) The bank verifies whether the funds in the Downstream firms’ account are sufficient. If not, the bank informs company J to repurchase the equipment. Financing process continues if there is sufficient fund in the account.

As stated in the sales agreement, Downstream companies should pay 60% of the price of equipment before the settlement of the equipment. However, because of the high price level and long production cycle of the equipment, Downstream enterprises, especially SMEs, usually confront financial difficulties. Spontaneously, Downstream firms resort to the banks. To smooth the transactions, the equipment repurchase of Company J is proposed as a guarantee to the Bank. However, there are yet no standard operation processes in supply chain finance, which is a relatively newly emerging business with hidden risks. We conduct an in-depth investigation of the business processes to identify the key events that would affect the operation of the process and then offer improving strategies.

APPENDIX B
THE PROCEDURE OF PERFORMANCE EVALUATION
A. BUILD A RANDOM PETRI NET
Given the definition of the P/T system, we are able to yield a corresponding SPN by adding a set of average firing rates. As shown in Figure 8, we construct the corresponding Markov chain, with the arc between each marking (state) representing the corresponding transition. The state set of Markov chain is described in TABLE 11.
B. Calculation of Performance Measures for Stochastic Petri Net

1) The Steady-state Probability of Marketer

The transition probabilities of markings are assumed to follow the negative exponential distribution. In our study, we used the average firing rates λ to calculate the transition probabilities. The average firing rates are the reciprocal of the time delay of transitions, i.e. $\lambda_i = 1/\tau_i$, $i \in \{1, \ldots, 21\}$. The time variables of the transitions, which are gathered from Company J, represent the time period between the time that...
TABLE 11. Markov chain state sets isomorphic to Petri Nets.

| | \(P_1\) | \(P_2\) | \(P_3\) | \(P_4\) | \(P_5\) | \(P_6\) | \(P_7\) | \(P_8\) | \(P_9\) | \(P_{10}\) | \(P_{11}\) | \(P_{12}\) | \(P_{13}\) | \(P_{14}\) | \(P_{15}\) | \(P_{16}\) | \(P_{17}\) | \(P_{18}\) | \(P_{19}\) | \(P_{20}\) | \(P_{21}\) | \(P_{22}\) |
|---|
| \(M_0\) | 1 | 0 |
| \(M_1\) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_2\) | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_3\) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_4\) | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_5\) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_6\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_7\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_8\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_9\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_{10}\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_{11}\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_{12}\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_{13}\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(M_{14}\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| \(M_{15}\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| \(M_{16}\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| \(M_{17}\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| \(M_{18}\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| \(M_{19}\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| \(M_{20}\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

transition is available and the time the transition is indeed implemented. The values of the transition rate \(\lambda\) is given in TABLE 12.

Based on the values of the transition rate \(\lambda\) obtained above, the state transfer matrix in the Stochastic Petri Net can be calculated, as shown in Table 13.

The steady-state probabilities of each marking obtained by formula (3) are shown in TABLE 14.

2) PLACE (NODE) BUSY RATE
According to formula (4), the place busy rates are derived as follows:

\[
P[M(P1) = 1] = P(M0) = 0.1322
\]
\[
P[M(P2) = 1] = P(M1) = 0.0881
\]
\[
P[M(P3) = 1] = P(M2) = 0.0881
\]
\[
P[M(P4) = 1] = P(M3) = 0.0110
\]
\[
P[M(P5) = 1] = P(M4) + P(M20) = 0.1888
\]
\[
P[M(P6) = 1] = P(M4) + P(M5) + P(M6) + P(M7) + P(M8) + P(M9) + P(M10) + P(M11) + P(M12) + P(M13) + P(M14) + P(M15) + P(M16) + P(M17) + P(M18) + P(M19) = 0.5296
\]
\[
P[M(P7) = 1] = P(M5) = 0.0378
\]
\[
P[M(P8) = 1] = P(M6) = 0.0566
\]
\[
P[M(P9) = 1] = P(M7) = 0.0566
\]
\[
P[M(P10) = 1] = P(M8) = 0.0283
\]
TABLE 13. The state transfer matrix.

| | M_0 | M_1 | M_2 | M_3 | M_4 | M_5 | M_6 | M_7 | M_8 | M_9 | M_{10} | M_{11} | M_{12} | M_{13} | M_{14} | M_{15} | M_{16} | M_{17} | M_{18} | M_{19} | M_{20} |
|---|
| λ_1 | 0.012 |
| λ_2 | 0.001 |
| λ_3 | 0.000 |
| λ_4 | 0.000 |
| λ_5 | 0.000 |
| λ_6 | 0.000 |
| λ_7 | 0.000 |
| λ_8 | 0.000 |
| λ_9 | 0.000 |
| λ_{10} | 0.000 |

TABLE 14. The steady-state probability of markings.

Marking	Steady-State Probabilities	Marking	Steady-State Probabilities
$P[M_0]$	0.1322	$P[M_11]$	0.0057
$P[M_1]$	0.0881	$P[M_{12}]$	0.0378
$P[M_2]$	0.0881	$P[M_{13}]$	0.0283
$P[M_3]$	0.0110	$P[M_{14}]$	0.0189
$P[M_4]$	0.0378	$P[M_{15}]$	0.0566
$P[M_5]$	0.0378	$P[M_{16}]$	0.0142
$P[M_6]$	0.0566	$P[M_{17}]$	0.0094
$P[M_7]$	0.0566	$P[M_{18}]$	0.0189
$P[M_8]$	0.0283	$P[M_{19}]$	0.0566
$P[M_9]$	0.0283	$P[M_{20}]$	0.1510

\[
P[M(P11) = 1] = P(M9) = 0.0378 \quad P[M(P17) = 1] = P(M14) + P(M15) = 0.0755
\]
\[
P[M(P12) = 1] = P(M10) = 0.0283 \quad P[M(P18) = 1] = P(M16) = 0.0142
\]
\[
P[M(P13) = 1] = P(M11) = 0.0057 \quad P[M(P19) = 1] = P(M17) + P(M18) + P(M19) = 0.0850
\]
\[
P[M(P14) = 1] = P(M12) = 0.0378 \quad P[M(P20) = 1] = P(M17) = 0.0094
\]
\[
P[M(P15) = 1] = P(M13) = 0.0283 \quad P[M(P21) = 1] = P(M18) = 0.0189
\]
\[
P[M(P16) = 1] = P(M14) + P(M16) + P(M17) \quad P[M(P22) = 1] = P(M15) + P(M19) + P(M20) = 0.2643
\]
\[
+P(M18) + P(M19) = 0.1180
\]
\[
\lambda_{21} = 0.000 \quad \lambda_{22} = 0.000 \quad \lambda_{23} = 0.000
\]
TABLE 15. Description of place and transition in the Petri Net of Figure 3.

Place	Description
xP1	Financing requirement that Downstream firms submitted to Company J
xP2	Company J’s investigation on Downstream firms
xP3	Company J’s inquiry for the engagement intention of the Bank
xP4	Financing application submitted by Downstream firms to the Bank
xP5	The Bank’s approval of the application
xP6	The Bank’s rejection of the application
xP7	Guarantee offered by Company J for repurchasing the equipment
xP8	Security deposit that Downstream firms paid Company J
xP9	The fund required by company J for supplements in the sales agreement
xP10	The equipment manufacturing of Company J
xP11	Payment from the banks to company J
xP12	Equipment delivery of Company J to Downstream firms
xP13	Equipment installment and testing
xP14	Arrival payment from the Bank to Company J
xP15	Repayment of Downstream firms to the Bank by stages
xP16	Sufficient fund in the account of Downstream firms
xP17	Insufficient fund in the account of Downstream firms
xP18	Repayment of Downstream firms to the Bank within the agreed expiration
xP19	Sufficient fund in the account of Downstream firms with the cooperation of company J
xP20	Insufficient fund in the account of Downstream firms
xP21	Repurchase of the equipment by Company J
xP22	End of this financing process

APPENDIX C

ANALYSIS OF THE CAUSAL RELATIONSHIPS

E4 (Downstream firms submit a financing application to bank)

→ E6 (Bank’s check fails)
→ E22 (End of a financing process)

We can see that E4 (Downstream firm submits financing application to the bank) is an event of decision and will trigger E5 and E6 events. The event E6 leads to E22, implying that the entire financing business process terminates. Hence, E4 is essentially a key event.

E15 (Downstream firms repay the bank in phases)

→ E16 (Downstream firms have sufficient bank account funds)
→ E22 (End of a round of financing process)
E15 (Downstream firms repay the bank in phases)

E15 (Downstream firms repay the bank in phases)
Place	Description
yP1	Financing requirement that Downstream firms submitted to Company J
yP2	Company J's investigation on Downstream firms
yP3	Company J's inquiry for the engagement intention of the Bank
yP4	Financing application submitted by Downstream firms to the Bank
yP5	The Bank's approval of the application
yP6	The Bank's rejection of the application
yP7	Guarantee offered by Company J for repurchasing the equipment
yP8	Security deposit that Downstream firms paid Company J
yP9	The fund required by company J for supplements in the sales agreement
yP10	The equipment manufacturing of Company J
yP11	Payment from the banks to company J
yP12	Equipment delivery of Company J to Downstream firms
yP13	Equipment installment and testing
yP14	Arrival payment from the Bank to Company J
yP15	Repayment of Downstream firms to the Bank by stages
yP16	Sufficient fund in the account of Downstream firms
yP17	Insufficient fund in the account of Downstream firms
yP18	Sufficient fund in the account of Downstream firms with the cooperation of company J
yP19	Repayment of Downstream firms to the Bank within the agreed expiration
yP20	End of this financing process

Transition	Description
yT1	Company J receive financing requirement
yT2	Company J signed a sales agreement with Downstream firms and confirms the engagement cooperation intention of the bank
yT3	The Bank delivers the engagement intention
yT4	The Bank inspects Downstream firms
yT5	The Bank signs cooperation agreement with Downstream firms
yT6	Company J signs repurchase agreement with the Bank
yT7	Company J receives deposits from Downstream companies
yT8	Company J receives funds from the Bank
yT9	Downstream company informs J company the issues about equipment delivery
yT10	Company J receives payment for equipment delivery from the Bank
yT11	Downstream firms receive equipment
yT12	Downstream firms confirm that equipment is qualified and operate under good conditions
yT13	Company J receives the banks funds
yT14	The Bank investigates whether the fund repaid by Downstream firms are available
yT15	The Bank reminds the Downstream to repay within the agreement expiration
yT16	The Bank investigates availability of the funds from the Downstream firms again
yT17	The Bank informs Company J to continue cooperation in production
yT18	The Bank informs Company J to repurchase the equipment
yT19	Expiration of the financing cooperation agreements

→ E17 (Downstream company has insufficient bank account funds)
→ E18 (Downstream firms pays back to banks during agreed time)
→ E20 (The bank account funds of Downstream firms are still insufficient)
→ E21 (Company J repurchase equipment according to the agreement)
→ E22 (End of a round of financing process)
E15 (Downstream firms repay the bank in phases)
→ E17 (Downstream company has insufficient bank account funds)

→ E18 (Downstream firms pays back to banks during agreed time)
→ E19 (Downstream company has sufficient bank account funds)
→ E22 (End of a round of financing process)

From Figure 2, it can be seen that the event E15 (Downstream firms repay the bank in phases) belongs to the second half of the business process. It will trigger the events E16 and E17 and decide whether the financing is completed successfully, or Downstream company will breach the contract, or Company J will need to buy back equipment. Thus, E15 is of key significance for the process to terminate successfully.
TABLE 17. Description of place and transition in the Petri Net of Figure 5.

Place	Description
np1	Financing requirement that Downstream firms submitted to Company J
np2	Company J’s investigation on Downstream firms
np3	Company J’s inquiry for the engagement intention of the Bank
np4	Financing application submitted by Downstream firms to the Bank
np5	The Bank’s approval of the application
np6	The Bank’s rejection of the application
np7	Guarantee offered by Company J for repurchasing the equipment
np8	Security deposit that Downstream firms paid Company J
np9	The fund required by company J for supplements in the sales agreement
np10	The equipment manufacturing of Company J
np11	Payment from the banks to company J
np12	Equipment delivery of Company J to Downstream firms
np13	Equipment installment and testing
np14	Arrival payment from the Bank to Company J
np15	Repayment of Downstream firms to the Bank by stages
np16	Sufficient fund in the account of Downstream firms
np17	Insufficient fund in the account of Downstream firms
np18	Sufficient fund in the account of Downstream firms with the cooperation of company J
np19	Repayment of Downstream firms to the Bank within the agreed expiration
np20	End of this financing process

Transition	Description
nT1	Company J receive financing requirement
nT2	Company J signed a sales agreement with Downstream firms and confirms the engagement cooperation intention of the bank
nT3	The Bank inspects Downstream firms
nT4	The Bank signs cooperation agreement with Downstream firms
nT5	Company J signs repurchase agreement with the Bank
nT6	Company J receives deposits from Downstream companies
nT7	Company J receives funds from the Bank
nT8	Downstream company informs J company the issues about equipment delivery
nT9	Company J receives payment for equipment delivery from the Bank
nT10	Downstream firms receive equipment
nT11	Downstream firms confirm that equipment is qualified and operate under good conditions
nT12	Company J receives the banks funds
nT13	The Bank investigates whether the fund repaid by Downstream firms are available
nT14	The Bank reminds the Downstream to repay within the agreement expiration
nT15	The Bank investigates availability of the funds from the Downstream firms again
nT16	The Bank informs J Company to continue cooperation in production
nT17	The Bank informs Company J to repurchase the equipment
nT18	Expiration of the financing cooperation agreements

E18 (Downstream firms pays back to banks during agreed time) → E20 (The bank account funds of Downstream firms are still insufficient) → E21 (Company J repurchase equipment according to the agreement) → E22 (End of a round of financing process)

E18 (Downstream firms pays back to banks during agreed time) → E19 (Downstream company has sufficient bank account funds) → E22 (End of a round of financing process)

E18 (Downstream firms pays back to banks during agreed time) relates to whether the loans are repaid in time. This is also a key event and will lead to two results: the first is the smooth progress and completion of the financing business process that we are looking forward to; the second is a risky point, the breach of contract by Downstream financing companies which will cause problems in the capital chain, such that the financing model does not work properly.

APPENDIX D
See Tables 15, 16, and 17.

REFERENCES
[1] H. Song, K. Yu, and Q. Lu, “Financial service providers and banks’ role in helping SMEs to access finance,” Int. J. Phys. Distrib. Logistics Manage., vol. 48, no. 1, pp. 69–92, Feb. 2018.
[2] H. Y. Xu, “Research on financing mode and risk prevention of supply chain in small and medium-sized enterprises,” in Proc. 2nd Int. Conf. Mod. Manage., Edu. Technol., Soc. Sci., vol. 146, 2017, pp. 138–145.

[3] D. A. Wuttke, C. Blome, and M. Henke, “Focusing the financial flow of supply chains: An empirical investigation of financial supply chain management,” in Proc. 4th Int. Conf. Econ., vol. 145, no. 2, pp. 773–789, Oct. 2013.

[4] C. H. Lee and B.-D. Rhee, “Trade credit for supply chain coordination,” Eur. J. Oper. Res., vol. 214, no. 1, pp. 136–146, Oct. 2011.

[5] J. Peng, J. Quan, G. Zhang, and A. J. Dubinsky, “Mediation effect of business process and supply chain management capabilities on the impact of IT on firm performance: Evidence from Chinese firms,” Int. J. Inf. Manage., vol. 36, no. 1, pp. 89–96, Feb. 2016.

[6] C. Liu, H. Duan, Q. Zeng, M. Zhou, F. Lu, and J. Cheng, “Towards customer-intensive support for privacy preservation cross-organization business process mining,” IEEE Trans. Services Comput., vol. 12, no. 4, pp. 639–653, Jul. 2019.

[7] J. Cheng, C. Liu, M. Zhou, Q. Zeng, and A. Yla-Jaaski, “Automatic composition of semantic Web services based on fuzzy predicate Petri nets,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 680–689, Apr. 2015.

[8] R. J. van Wersch, K. Shahzad, I. Vanderfeesten, K. Vanhaeckt, P. Greven, L. Pintelon, J. Mendling, G. G. van Merode, and H. A. Reijers, “A critical evaluation and framework of business process improvement methods,” Bus. Inf. Syst. Eng., vol. 58, no. 1, pp. 43–53, Feb. 2016.

[9] X. Zhu, S. vanden Broucke, G. Zhu, J. Vantienen, and B. Baesens, “Enabling flexible location-aware business process modeling and execution,” Decis. Support Syst., vol. 83, pp. 1–9, Mar. 2016.

[10] W. J. Thong and M. A. Ameedeen, “A survey of Petri net tools,” Proc. 1st Int. Conf. Commun. Comput. Eng. Adv. Technol., vol. 315, 2015, pp. 537–551.

[11] I. Koch, “Petri net—a mathematical formalism to analyze chemical reaction networks,” Mol. Inf., vol. 29, pp. 838–843, Dec. 2010.

[12] X. Zhang, Q. Lu, and T. Wu, “Petri-net based applications for supply chain management: An overview,” Int. J. Prod. Res., vol. 49, no. 13, pp. 3939–3961, Jul. 2011.

[13] J. Ma, K. Wang, and L. Xu, “Modelling and analysis of workflow for lean supply chains,” Enterprise Inf. Syst., vol. 5, no. 4, pp. 423–447, Nov. 2011.

[14] N. Khilwani, M. K. Tiwari, and I. Sabuncuoglu, “Hybrid Petri-nets for modelling and performance evaluation of supply chains,” Int. J. Prod. Res., vol. 49, no. 15, pp. 4627–4656, Aug. 2011.

[15] D. Naravane, P. Palanque, J. F. Ladry, and E. Barbuni, “ICOs: A model-based user interface description technique dedicated to interactive systems addressing usability, reliability and scalability,” ACM Trans. Comput. Hum. Int., vol. 16, no. 4, pp. 18.1–18.56, Nov. 2009.

[16] J. A. J. van der Vorst, A. J. M. Beulens, and P. van Beek, “Modelling and simulating multi-echelon food systems,” Eur. J. Oper. Res., vol. 122, no. 2, pp. 354–366, Apr. 2000.

[17] C. L. Xia and C. D. Li, “Property preservation of Petri synthesis net based representation for embedded systems,” IEEE/CAA J. Autom. Sinica, early access, Jan. 16, 2020, doi: 10.1109/JAS.2020.1003003.

[18] W. Duo, X. Jiang, O. Karoui, X. Guo, D. S. Wang, and Y. Ruan, “A deadlock prevention policy for a class of multithreaded software,” IEEE Access, vol. 8, pp. 16676–16688, 2020.

[19] S. Wang, D. You, and M. Zhou, “A necessary and sufficient condition for a subsequence subminimal siphon in a 4PR,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 4173–4179, Aug. 2017.

[20] W. M. Zuberek, “Timed Petri net definitions, properties, and applications,” Microelectron. Reliab., vol. 31, no. 4, pp. 627–644, 1991.

[21] D. S. Liu, J. M. Wang, S. C. F. Chan, J. G. Sun, and L. Zhang, “Modelling workflow processes with colored Petri net,” Comput. Ind., vol. 49, pp. 267–281, Dec. 2002.

[22] M. A. Marsan, G. Balbo, G. Chiola, G. Conte, S. Donatelli, and G. Franceschinis, “An Introduction to Generalized Stochastic Petri net,” Microelectron. Reliab., vol. 31, no. 4, pp. 699–725, 1991.

[23] Q. Zeng, S. X. Sun, H. Duan, C. Liu, and H. Wang, “Cross-organizational collaborative workflow mining from a multi-source log,” Decis. Support Syst., vol. 54, no. 3, pp. 1280–1301, Feb. 2013.

[24] S.-L. Badue, C. Vogt, M. Gehre, A. Fischer, A.-F. Danet, and H.-H. Richnow, “Development of an enantiomer-specific stable carbon isotope analysis (ESIA) method for assessing the fate of alpha-hexachlorocyclo-hexane in the environment,” Rapid Commun. Mass Spectrometry, vol. 25, no. 10, pp. 1363–1372, May 2011.

[25] P. Joe and R. Philip, Essence of Business Process Re-Engineering, 1st ed. London, U.K.: Pearson, 1995.

[26] W. W. Gasparski, Praxiological Essays: Texts and Contexts, 1st ed. Routledge, New York, NY, USA, 2017.

[27] R. N. Indramawan and M. D. Yadrifil, “Reengineering process for reducing time of procurement and inventory process in telecommunication tower company with IEDF0 tools and ESIA method,” in Proc. 7th Int. Seminar Ind. Eng. Manage., 2014, pp. 83–89.

[28] A. Greasley, “Process improvement within a HR division at a UK police force,” Int. J. Operations Prod. Manage., vol. 24, no. 3, pp. 230–240, Mar. 2004.

[29] W. Reisig, G. Rozenberg, and H. Weber, Eds. Berlin, Germany: Springer, (Lecture Notes in Computer Science), vol. 2472, H. Ehrig, ed., 2002.
X. Ye et al.: Improving Business Process Efficiency for SCF: Empirical Analysis and Optimization Based on SPN

[49] C. Lin, X. Chen, and R. Ye, “Research on the business process improvement and reengineering of multimedia audio-visual in colleges,” in Proc. IEEE/ACIS 17th Int. Conf. Comput. Inf. Sci. (ICIS), Jun. 2018, pp. 881–887.

[50] X. Ye, X. Bian, and Q. Xu, “Empirical analysis and optimization for supply chain finance business process based on Petri nets,” in Proc. 15th Int. Conf. Service Syst. Service Manage. (ICSSSM), Jul. 2018, pp. 1–6.

[51] X. Lyu and J. Zhao, “Compressed sensing and its applications in risk assessment for Internet supply chain finance under big data,” IEEE Access, vol. 7, pp. 53182–53187, 2019.

[52] J. A. Buzacott and R. Q. Zhang, “Inventory management with asset-based financing,” Manage. Sci., vol. 50, no. 9, pp. 1274–1292, Sep. 2004.

[53] Z. Tao, X. Li, X. Liu, and N. Feng, “Analysis of signal game for supply chain finance (SCF) of MSEs and banks based on incomplete information model,” Discrete Dyn. Nature Soc., vol. 2019, pp. 1–6, Mar. 2019.

[54] F. Jia, C. Blome, H. Sun, Y. Yang, and B. Zhi, “Towards an integrated conceptual framework of supply chain finance: An information processing perspective,” Int. J. Prod. Econ., vol. 219, pp. 18–30, Jan. 2020.

[55] G. G. Cai, X. Chen, and Z. Xiao, “The roles of bank and trade credits: Theoretical analysis and empirical evidence,” Prod. Oper. Manage., vol. 23, no. 4, pp. 583–598, Apr. 2014.

[56] Z. Ali, B. Gongbing, and A. Mehreen, “Supply chain network and information sharing effects of SMEs’ credit quality on firm performance: Do strong tie and bridge tie matter?” J. Enterprise Inf. Manage., vol. 32, no. 5, pp. 714–734, Sep. 2019.

[57] D. Gupta and L. Wang, “A stochastic inventory model with trade credit,” Manuf. Service Oper. Manage., vol. 11, no. 1, pp. 4–18, 2009.

[58] C. Brindley, Supply Chain Risk. Abingdon, U.K.: Routledge, 2004, pp. 13–127.

[59] R. Wang, C. Yu, and J. Wang, “Construction of supply chain financial risk management mode based on Internet of Things,” IEEE Access, vol. 7, pp. 110323–110332, 2019.

[60] J. Heckmann, T. Comes, and S. Nickel, “A critical review on supply chain risk—Definition, measure and modeling,” Omega, vol. 52, pp. 119–132, Apr. 2015.

Xuhong Ye received the Ph.D. degree in management from Zhejiang University, China. She was a Visiting Scholar with the National University of Singapore. She is an Associate Professor of information systems with the School of Management, Zhejiang University of Technology, China. Her research interests focus on information technology management, supply chain management, human–computer interaction, and consumer decisions.

Dongbo Ge is currently pursuing the degree in management science and engineering with the School of Management, Zhejiang University of Technology, China. His research interests focus on supply chain finance, information system management, and consumer online decisions.

Xueling Bian is currently pursuing the degree in logistics engineering with the School of Management, Zhejiang University of Technology, China. Her research interests focus on supply chain management, information system management, and consumer online decisions.

QiKe Xu is currently pursuing the degree in logistics engineering with the School of Management, Zhejiang University of Technology, China. His research interests focus on supply chain management, business process management, and Petri Nets.

Yun Zhou is currently pursuing the Ph.D. degree with the School of Management, Zhejiang University, China. He was a Visiting Scholar with the University of Southern California. His articles are published in journals such as Asia Pacific Journal of Management. His research interests focus on process management, game theory, data mining, and Petri Nets.
