Assessing the vulnerability of food farming system to support climate change adaptation: A case study in Java, Indonesia

W Estiningtyas1, A Mulyani2, Sumaryanto3 and B Kartiwa1

1 Indonesian Agroclimate and Hydrology Research Institute, Bogor, Indonesia
2 Indonesian Center for Agricultural Land Resources Research and Development, Bogor, Indonesia
3 Indonesian Center for Agricultural Socio Economic and Policy Studies, Bogor, Indonesia

E-mail: woro_esti@yahoo.com

Abstract. Increasing resilience to climate change is one of the priorities of the Government of Indonesia. Climate change has a significant impact on the agricultural sector and is projected to global gross domestic product. Java Island, as a center of food production, has a strategic location because of its strong impact on food availability in Indonesia. The study aimed to provide information about the status of the vulnerability of farming system for food at the district/city level in Java Island and the determinant factors that affect the level of vulnerability. The analysis was based on soil fertility, water availability and demand, climate, and socio-economy expressed in terms of exposure and sensitivity index and adaptation capacity index using the quadrant method. The results show that 20\% of districts/cities in Java have very high levels of vulnerability. The main determinants identified in Java are the ratio of the number of extension agents and the number of farmer groups/rice field area and the rice consumption ratio to total carbohydrate food. The results of this study can be used as a reference in determining priority locations and formulating adaptation programs and actions to reduce the impact of climate change.

1. Introduction

The 2020-2024 mid-term development plan (RPJMN), which is a national planning document, states that one of Indonesia's national priorities is increasing disaster and climate change resilience as an integral part of strengthening economic resilience and building the environment. Climate change is a significant concern considering its considerable impact, which can affect the decline on global gross domestic product. Based on the Asian Development Bank data, the losses in the agricultural and coastal sectors due to climate change in 2,100 are estimated to be around 2.2\% of the total GDP \cite{1}. Therefore, adaptation as an effort to increase resilience to climate change needs to be supported by the results of studies to assist program formulation and implementation in Indonesia.

Indonesia is a tropical country with a position flanked by two oceans and two continents, which makes Indonesia's climate very complex and dynamic. Some of the advantages in the tropical regions are getting sunshine almost all year round, having relatively fertile soil because it is exposed to sunlight all year round, and having sufficient rainfall and only two seasons (rainy season and dry season).

On the other hand, the emergence of climate change has had a significant impact on various sectors, particularly agriculture. Climate change caused by increased emission of greenhouse gases to...
the atmosphere from anthropogenic activities has a direct effect on the functions of nature and agrosystems [2]. Changes in water systems and atmospheric temperature due to the anthropogenic greenhouse effect cause variations in crop productivity and hence affect food production [3]. Other studies showed that the most visible impact of climate change on the agricultural sector is on crop yields [4-13]. Meanwhile, the impact on the soil can be seen in the dynamics of soil carbon stocks [14].

The population that continues to increase has the consequence that food supply is also growing. FAO shows the need for food for an increasing population often threatens natural resources as people try to get the most out of the land that is already in production [15]. Based on the results of the 2015 inter-census population survey, it is estimated that Indonesia’s population in 2020 will be 269,670 million people [16], and most of them consume rice as the staple food. The agricultural centers in Indonesia are mostly areas that are significantly affected by climate change and climate extremes. The impacts faced include (1) seasonal shifts that cause conventional planting time to be inapplicable, (2) increased temperature and changes in rain patterns cause potential areas for food commodity cultivation to be less than optimal, (3) an increase in temperature causes a decrease in plant productivity, (4) seasonal shifts indirectly encourage the emergence of Plant Pest Organisms (OPT), and (5) sea level rise and salinity will reduce agricultural land on the coast, causing a decrease in production [17].

Java Island is the largest contributor to national rice production. BPS data shows that the total rice field area of Indonesia is 7.46 million ha, and about 45.7% of them are located in Java [18]. Therefore, most of the national rice production (54%) comes from Java. On the other hand, the share of rice production in Java Island towards total national rice production continues to decline due to the reduction in rice fields in Java Island. One of the causes is extreme climatic events that have an impact in the form of floods and droughts, which reduce planting areas, harvested areas, and production. An example is a case in the Brantas watershed in East Java. If paddy fields are affected by flooding and drought, it is projected that yield losses will reach 5.2 t ha⁻¹ [19]. Besides, other impacts include postponement of the start of the rainy season by 30 days due to seasonal shifts and extreme climatic events that frequently occur, especially in rice production centers in Java and Bali [20].

For the agricultural sector, adaptation is a priority with mitigation as a co-benefit. Given the different impacts of climate change on each region, adaptation programs and actions should also be carried out based on the magnitude of the effect in each area. The realization of adaptation programs and efforts needs to be supported by related research and studies, one of which is the analysis of the vulnerability index of food farming. Vulnerability is the propensity to be affected by hazards caused by a lack of capacity to cope and adapt [21]. A vulnerability indicator is a credible tool for decision-makers to identify priority needs [22], whereas the biophysical indicators are agricultural products such as crop yields and socio-economic indicators, including income from crop production [23]. Research and vulnerability studies have been carried out in various sectors, such as agriculture, energy, and water resources [24-30]. In Indonesia, vulnerability assessments have been carried out by several agencies with different objectives, such as the Food Security Agency, the Meteorology, Climatology and Geophysics Agency, and the Ministry of Forestry and the Environment [31]. The success of adaptation is also primarily determined by the response of farmers to climate change. Apart from that, several studies on farmers’ perceptions and responses to climate change have also been carried out [32-35].

Java, which is a center for food production, especially rice, is a vital study location because of its event of an extreme climate. Any change in Java will have a significant impact on rice production, food supply, and even national food availability. By identifying the level of vulnerability and determinant factors, it is hoped that adaptation programs and actions can be developed to reduce the risk of climate change impacts. It is also an anticipatory measure to increase adaptation capacity and reduce the level of exposure and sensitivity to climate change. The study aimed to provide information about the status of the vulnerability of farming system for food at the district/city level in Java Island and the determinant factors that affect the level of vulnerability.
2. Materials and methods

2.1. Study area

The research was conducted in Java Island as the center for National rice production, where the largest staple food is produced for the Indonesian population. The area of Java Island was about 129,438.28 km\(^2\) or 6.8% of the total area of Indonesia covering 1,913,578.68 km\(^2\) [36]. Java Island consists of 6 provinces and 119 districts/cities.

2.2. Data

Vulnerability analysis involved four main data groups: soil fertility, water criticality level, climate type, and socio-economy. The data used in the study were soil fertility based on review ground level maps 1:250,000 [37], monthly rainfall [38, 39], a map of the availability of river water sourced from the Ministry of Public Works, socio-economic data (consumption, production, rice field area, farmer groups, extension workers, education, etc.) from BPS.

Soil fertility was analyzed based on soil type and slope identified from the 1: 250,000 scale reconnaissance soil map at the scale. The level of water criticality was analyzed based on the ratio of water availability and demand. Water availability was interpreted from the spatial water availability data of the river. In contrast, water demand was calculated from the agricultural land and water needs for paddy fields and dry land. Rainfall data were analyzed to obtain the type of climate based on the Oldeman method. The socio-economic data included production, consumption, and other supporting data. All data were expressed in an index form and grouped into the Exposure and Sensitivity Index (IKS) and the Adaptation Capacity Index (IKA). There were 15 IKS data (table 1) and 6 IKA data (table 2).

Index	Data	Index	Data
IKS 1	The ratio of rice consumption to total carbohydrate food	IKS 9	Soil fertility
IKS 2	Rice consumption per capita	IKS 10	Agricultural Gross Regional Domestic Product (GRDP) ratio per total
IKS 3	Entropy (shows the level of food diversification)	IKS 11	GINI index (income gap)
IKS 4	The ratio of expenditure on rice to total expenditure on food	IKS 12	Climate type
IKS 5	Percentage of poor people	IKS 13	Ratio of farmer households to resident households
IKS 6	Rice and maize production to population ratio	IKS 14	Population density
IKS 7	Soybean production to population ratio	IKS 15	Ratio of land area for food agriculture to total area
IKS 8	Availability of water		

Index	Data
IKA 1	School enrollment rates
IKA 2	Road length based on surface conditions
IKA 3	The ratio of the number of extension agents to rice field area
IKA 4	The ratio of the number of poktan to rice field area
IKA 5	The ratio of the number of types of agricultural machinery to rice field area
IKA 6	The ratio of the value of food consumption to the total value of household expenditure
2.3. Methods

Vulnerability is a function of the sensitivity of agriculture to climate change, the adaptive capacity of the system, and the level of exposure to climate hazards [40]. The assessment of the level of vulnerability was carried out by an approach based on a combination of three key indicators, namely, exposure, sensitivity and adaptation capacity. The classification used the quadrant method [41] modified by Boer [42]. Modifications were made in the weight assessment aspect determined based on Expert Judgment.

Based on the quadrant classification method, five levels of vulnerability in food farming system were produced, i.e., Very Low, Low, Medium, High, and Very High. The vulnerability classifications were then mapped to determine the distribution at the district/city level in Java. The determinant factors were identified using the respective spider diagrams for IKA and IKS with index values ranging from 0 to 1. Based on the level of vulnerability and additional information on determinants, recommendations were made to support adaptation to climate change in Java (Figure 1).

3. Results and discussion

Twenty four districts/cities (20%) in Indonesia were classified as very highly vulnerable in food farming. The distribution of vulnerable districts were found in West Java Province (7 districts), Central Java Province (7 districts), East Java Province (6 districts), Banten Province (4 districts), and Jakarta Province (1 district, Table 3). The distribution of districts in high food farming vulnerability in provinces is respectively Cianjur, Garut, Cirebon, Indramayu, Subang, Karawang, and West Bandung (West Java Province), Grobogan, Rembang, Pati, Demak, Pemalang, Tegal, and Brebes (Central Java Province), Malang, Lumajang, Jember, Situbondo, Magetan, Bangkalan, and Sampang (East Java Province), Pandeglang, Lebak, Tangerang and Serang (Banten Province, Figure 2).
Most of the districts or cities that have a very high level of vulnerability are food production centers, but infrastructure support and human resources are limited, such as the number of extension agents or a combination of farmer groups compared to the area of their rice fields, thus affecting their adaptive capacity.

The identification of the determinant factor of the very high level of vulnerability in Java indicates that the adaptation capacity in this area is generally still low, and the levels of exposure and sensitivity are still high. The level of vulnerability will decrease if the adaptation capacity increases to a medium level. The "Medium" level of IKA is represented by the dashed line (Figure 3a), whereas for IKS it must be increased to medium level to reduce the level of vulnerability. The "Medium" level of IKS as represented by the dashed line (Figure 3b). For example IKA 1 (school participation) must be increased from 0.3 to 0.5, IKA 3 (the ratio of the number of extension worker to rice field area) must be increased from 0.2 to 0.4, the IKA 4 (the ratio of total group of farmer to rice field area) must be increased from 0.2 to 0.4 and the IKA 6 (the ratio of the value of food consumption to the value of total household expenditure) must be increased from 0.4 to 0.6. Parameters that are good enough to

Figure 2. Distribution of vulnerability of food farming in Java at the district/city level.

Table 3. Distribution of the number of districts at each level of vulnerability in Java.

No	Province	Very Low	Low	Moderate	High	Very High	Total
1	DKI Jakarta	2	0	3	1	0	6
2	Jawa Barat	2	8	10	0	7	27
3	Jawa Tengah	0	10	18	0	7	35
4	DIY	0	3	2	0	0	5
5	Jawa Timur	4	7	21	0	6	38
6	Banten	0	3	1	0	4	8
	Total	8	31	55	1	24	119

The identification of the determinant factor of the very high level of vulnerability in Java indicates that the adaptation capacity in this area is generally still low, and the levels of exposure and sensitivity are still high. The level of vulnerability will decrease if the adaptation capacity increases to a medium level. The "Medium" level of IKA is represented by the dashed line (Figure 3a), whereas for IKS it must be increased to medium level to reduce the level of vulnerability. The "Medium" level of IKS as represented by the dashed line (Figure 3b). For example IKA 1 (school participation) must be increased from 0.3 to 0.5, IKA 3 (the ratio of the number of extension worker to rice field area) must be increased from 0.2 to 0.4, the IKA 4 (the ratio of total group of farmer to rice field area) must be increased from 0.2 to 0.4 and the IKA 6 (the ratio of the value of food consumption to the value of total household expenditure) must be increased from 0.4 to 0.6. Parameters that are good enough to
support adaptation capacity are IKA 2 (road length based on surface conditions) and IKA 5 (ratio of the number and types of machinery per rice field unit), whose values are greater than 0.5.

For the average condition of Java Island, there are still many parameters that need to be lowered, namely: IKS 3 (Entropy), IKS 1 (Ratio of rice consumption to total carbohydrate food), IKS 12 (Oldeman climate type), IKS 4 (Expenditure ratio for the rice to total expenditure on food), IKS 5 (Percentage of poor people), IKS 15 (Ratio of land area for food agriculture to the area), IKS 8 (availability of water), IKS 9 (level of soil fertility) and IKS 14 (population density). Each of these parameters still has an index of more than 0.5. For this reason, it must be decreased so that the level of vulnerability from "Very High" becomes "Medium" (Figure 3b).

Determinant factors can also be identified at the provincial and district levels according to the needs and purposes of the information to be provided. Based on the identification results, the vulnerability levels in Java Island, the dominant determinants that affect the level of vulnerability of food farming are IKA 4 (the ratio of the total indicates of farmers to rice field area) and IKS 1 (Ratio of rice consumption to total carbohydrate food).

In the framework of adaptation to climate change, the level of vulnerability of food farming can be used as a reference in determining adaptation priority locations, while the determinant factors can be used as the basis for programming and adaptation actions. Areas with a "very high" level of vulnerability certainly require much greater adaptation efforts than regions with a "medium" level of vulnerability. The starting point that can be used as adaptation efforts is to know the determinant factors, whether to increase or decrease in line with the three components of vulnerability, namely sensitivity, exposure, and adaptation capacity.

The dotted line is the medium index value. To reduce the level of vulnerability, the IKA index must be increased at least to a medium value (dashed line in green, (a)), while for IKS it must be lowered from a minimum value to a medium value (dashed line in red, (b)).

Figure 3. Spider diagram of IKA (a) and IKS (b) at a very high level of vulnerability in Java

Based on the vulnerability of food farming at high and very high levels in Java, several recommendations can be proposed for the identified determinants of IKA 4 and IKS 1. To increase the ratio of the total group of farmer to rice field area (IKA 4) the proposed recommendations are: (1) improving the institutionalization of farmer groups and increasing the number of farmer groups, (2) increasing the capacity of farmer groups and (3) empowerment of farmer groups. While recommendations for decreasing the ratio of rice consumption to total carbohydrate food (IKS 1) are: (1) food diversification, especially from rice to non-rice and local food, (2) development of local non-
rice food technology production, including the development of processing technology, and (3) development of sustainable food house area. Besides, efforts that can be made in the context of climate change adaptation are increasing capacity to promote food diversification programs among the community, to promote non-agricultural sectors that can increase district income, and to promote production aspects by utilizing sub-optimal lands, idle land, land management, water and fertilization that is environmentally friendly and sustainable. The implementation of integrated cropping calendars in the field to adapt to a climate with very dynamic variability. The integrated cropping calendar is a guideline that provides spatial and tabular information on the current state of food agriculture activities in Indonesia [43].

Adaptation technology recommendations are compiled based on determinant factors and aligned with adaptation programs and actions in the regions as outlined in the Regional Medium Term Program Plan (RPJMD), which aims to reduce the level of vulnerability through adaptation options to climate change. Therefore, recommendations are site-specific and are made to be implemented in the regions. To implement the proposed recommendations it is necessary to have discussions with several stakeholders such as the Center for the Assessment and Application of Agricultural Technology (BPTP), the Regional Planning Agency (Bappeda), the Agriculture Office, the Plant Protection and Pest Control Center (BPTPH), Agricultural Extension Centers (BPP), extention worker, farmer groups and farmers.

The implementation of climate change adaptation is relatively complex, considering Indonesia's geographical position in the tropics, topographic variations, the extent of land and sea areas, and the response of the implementers in the field. However, it is not impossible to do this. A comprehensive approach, outreach and assistance is needed so that adaptation programs and actions can be implemented to minimize impacts and risks due to climate change.

4. Conclusions
Based on the results of the study concluded that approximately 20% of districts/cities in Java Island are at a high to very high level of vulnerability of farming system for food. The determinant factors that affect the level of vulnerability in Java are ratio of the total group of farmer to rice field area for IKA and Ratio of rice consumption to total carbohydrate food for IKS.

Locations with high and very high levels of vulnerability are priority sites for adaptation. Adaptation programs and actions can be prepared based on the determinant factors of IKA and IKS.

Acknowledgments
This research supported by the Indonesian Agency for Agricultural Research and Development (IAARD) through the Indonesian Center for Agricultural Land Resources Research and Development (ICALRD) and the Indonesian Agroclimate and Hydrology Research Institute (IAHRI). Thank you to Revo and Adilla, who helped in data preparation and mapping. All authors are the main contributors in writing this paper.

References
[1] Asian Development Bank 2009 The Economics of Climate Change in Southeast Asia: A Regional Review Asian Development Bank Manila Lal R 2002 Enhancing crop yields in the developing countries through the restoration of the soil organic carbon pool in agricultural lands Land Degradation and Development v 17 p 197-209 2006
[2] IPCC 2003 Good Practice Guidance for Land Use, Land-Use Change and Forestry IPCC National Greenhouse Gas Inventories Programme UNEP Edited by J Penman, M Gytarsky, T Hiraishi, T Krug, D Kruger, R Pipatti, L Buendia, K Miwa, T Ngara, K Tanabe and F Wagner The Institute for Global Environmental Strategies (IGES) for the IPCC Japan
[3] Zang J, Feng L, Zou H and Liu D L 2015 Using ORYZA 2000 to model cold rice yield response to climate change in the Heilongjiang province, China The Crop J. 3 3317-327
[4] Zhang J, Fengmei Y, Cui H and Vijendra B 2016 Impacts of temperature on rice yields of different rice cultivation systems in southern China over the past 40 years Phys Chem Earth 87–88 153–159

[5] Kooi C J, Reich M, Löwec M, Koka l J, and Tausza M 2016 Growth and yield stimulation under elevated CO2 and drought: A meta-analysis on crops Environ. Exp. Bot. 122 150–157

[6] Bocchiola D 2015 Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy Agric. Syst. 139 223-237

[7] Deng N, Ling X, Sun Y, Zhang D, Fahad S, Peng S, Cui K, Nie L and Huang J 2015 Influence of temperature and solar radiation on grain yield and quality in irrigated rice system Eur J Agron 64 37–46

[8] Satapathy S S, Swain D K, Pasupalak S and Bhadoria P B S 2015 Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India Crop J. 3 468 – 480

[9] Saito K, Dieng I, Toure A A, Somado E A and Wopereis M C S 2015 Rice yield growth analysis for 24 African countries over 1960–2012 Glob. Food Sec. 5 62–69

[10] Chao C, Sheng Z G and Li Z 2014 Impacts of Climate Change on Rice Yield in China From 1961 to 2010 Based on Provincial Data J. Integr. Agric. 13(7) 1555-1564

[11] Cheng W, Sakai H, Yagi K and Hasegawa T 2009 Interactions of elevated [CO2] and night temperature on rice growth and yield Agric For Meteorol 149 51-58

[12] Krishnan P, Swain D K, Bhaskar B C, Nayak S K and Dash R N 2007 Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies Agric Ecosyst Environ 122 233–242

[13] Mitchell T D, Carter T R, Jones P D, Hulme M and New M 2004 A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001-2100) Norwich: Tyndall Centre, 2004. (Working Paper, 55)

[14] FAO 2005 Special Event On Impact Of Climate Change, Pests And Diseases On Food Security And Poverty Reduction 31st Session of the Committee on World Food Security Rome 2005

[15] Badan Pusat Statistik 2018 Proyeksi jumlah penduduk 2020 menurut provinsi (SUPAS) 2015 Badan Pusat Statistik.

[16] Badan Pusat Statistik 2020 Luas baku sawah (2019) (In Bahasa) Badan Pusat Statistik.

[17] Sumarini E, Estiningtyas W dan Las I 2017 Mewujudkan Sistem Usahatani Inovatif Menghadapi Ancaman Perubahan Iklim dan Iklim Ekstrem (In Bahasa) Bab II Menghadapi tantangan Perubahan Iklim dari Buku Memperkuat Kemampuan Wilayah Menghadapi Perubahan Iklim Editor : E. Pasandaran, M, Syakir, R Heriawan, M P Yufdy Badan Penelitian dan Pengembangan Pertanian

[18] Badan Pusat Statistik 2019 Luas Panen dan Produksi padi di Indonesia (In Bahasa) Berita Resmi Statistik Luas Panen dan Produksi Padi di Indonesia 2019 No. 16/02/Th. XXIII 4 Februari 2020

[19] Boer R 2011 Ancaman Perubahan Iklim terhadap Ketahanan Pangan (In Bahasa) Presentasi pada Workshop Nasional dan FGD Adapasi Perubahan Iklim Bandung 9-10 November 2011 Balai Besar Sumatera daya Lahan Pertanian Kementerian Pertanian

[20] Naylor R L, David S B, Daniel J V, Walter P F and Marshall B B 2007 Assessing risks of climate variability and climate change for Indonesian rice agriculture PNAS in June 2007

[21] IPCC 2014 Climate Change 2014: Impact, Adaptation and Vulnerability Intergovernmental Panel on Climate Change Geneva

[22] Harley M, Horrocks L, Hodgson N and Minnen V J 2008 Climate change vulnerability and adaptation indicators European Topic Centre on Air and Climate Change 2008 Retrieved from http://www.seachangecop.org/taxonomy/term/599

[23] Fellman T 2012 The assessment of climate change-related vulnerability in the agricultural sector: Reviewing Conceptual Frameworks Food and Agriculture Organization (FAO) 2012 Retrieved from: http://www.fao.org/docrep/017/i3084e/i3084e04.pdf
[24] Andrew and Mikhail 2017 Climate change vulnerability in the food, energy, and water nexus: concerns for agricultural production in Arizona and its urban export supply Environ. Res. Lett. 12 035004

[25] Challinor A, Wheeler T, Garforth C, Craufurd P and Kassam A 2007 Assessing the vulnerability of food crop systems in Africa to climate change Clim. Change 83 381–399

[26] Aslam A Q, Ahmad S R, Ahmad I, Hussain Y and Hussain M S 2016 Vulnerability and impact assessment of extreme climatic event: A case study of southern Punjab, Pakistan Sci. Total Environ. 580 468-481

[27] Dahlia S, Sudihyakto dan Hizbaron D R 2016 Penilaian Kerentanan Lahan Sawah Padi Terhadap Banjir Das Cidurian Di Desa Renged, Kecamatan Binuang, Serang, Banten. Jurnal Alami 21(1) 21-32

[28] Aleksandrova M, Gain A G and Giuppioni C 2015 Assessing agricultural systems vulnerability to climate change to inform adaptation planning: an application in Khorezm, Uzbekistan. Mitig Adapt Strateg Glob Change. 21 1263-1287

[29] Nam W H, Choi J Y and Hong E M. 2015 Irrigation vulnerability assessment on agricultural water supply riskfor adaptive management of climate change in South Korea. Agric. Water Manag. 152 173–187

[30] Luers A L, Lobell D B, Sklar L S, Addams C L and Matson P A 2003 A Method for Quantifying Vulnerability applied to the agricultural system of the Yaqui Valley Mexico Glob Environ Change 13 255-267

[31] Estiningtyas W, Surmaini E dan Susanti E 2016 Kerentanan Sub-Sektor Tanaman Pangan Terhadap Perubahan Iklim (In Bahasa) Jurnal Sumberdaya Lahan edisi khusus Desember 2016 ISSN 1907-0799

[32] Lane D, Chatrchyan A, Tobin D, Thorn K, Allred S and Radhakrishna R.2017 Climate change and agriculture in New York and Pennsylvania: risk perceptions, vulnerability and adaptation among farmers

[33] Abid M, Schilling J, Scheffran J and Zulfiqar F 2016 Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan Sci. Total Environ. 547 447–460

[34] Below T B, Schmid J C and Sieber S 2014 Farmers’ knowledge and perception of climatic risks and options for climate change adaptation: a case study from two Tanzanian villages. Reg Environ Change 15(7) 1169-1180

[35] Badan Pusat Statistik 2020 Luas daerah dan jumlah pulau menurut provinsi, 2002-2016 (In Bahasa) Badan Pusat Statistik https://www.bps.go.id/statisticable/2014/09/05/1366/luas-daerah-dan-jumlah-pulau-menurut-provinsi-2002-2016.html

[36] Badai Besar Sumberdaya Lahan Pertanian 2015 Peta tanah tingkat jinjau skala 1:250.000 Pulau Jawa (In Bahasa). Badai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian

[37] Badan Meteorologi Klimatologi dan Geofisika 2015 Data online Pusat Database (In Bahasa) BMKG http://dataonline.bmkg.go.id/home Badan Meteorologi, Klimatologi dan Geofisika

[38] Balai Penelitian Agroklomat dan Hidrologi 2015 Data curah hujan bulanan(In Bahasa). Balai Penelitian Agroklomat dan Hidrologi

[39] Badan Pusat statistik 2015 Indonesia-Survei Sosial Ekonomi Nasional 2014 (Gabungan) (In Bahasa) https://mikrodata.bps.go.id/mikrodata/index.php/catalog/631 Badan Pusat Statistik

[40] IPCC 2001 Impacts, adaptation & vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change Cambridge: University Press 2001 1000p

[41] IPCC 2012 Managing the risk of extreme events and disasters to advance climate change adaptation. A Special Report of working groups I and II of the intergovernmental panel on climate change Cambridge University Press Cambridge United Kingdom and New York USA
[42] Boer R, Perdinan, Faqih A, Amanah S dan Rakhman A 2015 Kerentanan dan Pengelolaan Risiko Iklim Pada Sektor Pertanian, Sumberdaya Air dan Sumber Kehidupan Masyarakat Nusa Tenggara Timur (NTT) (In Bahasa) Kementerian Lingkungan Hidup dan Kehutanan

[43] Badan Litbang Pertanian 2020 Sistem Informasi Kalender Tanam Terpadu Musim Kemarau (MK) (In Bahasa): April-September 2020 http://katam.litbang.pertanian.go.id/