Prevalence and Risk Factors of Burnout among Healthcare Professionals during COVID-19 Pandemic - Saudi Arabia

Khalid H. Alanazi¹, Ghada M. bin Saleh¹, Sulaiman M. AlEidi², Muteb A. AlHarbi³, Hanan M. Hathout¹,4,*

¹General Directorate of Infection Prevention& Control-Ministry of Health-Saudi Arabia
²General Directorate of Occupational Health, Ministry of Health-Saudi Arabia
³King Faisal Specialist hospital and Research Center -Medina Al Munawara- Saudi Arabia
⁴Public Health & Community Medicine Department, Faculty of Medicine, Menoufiya University, Egypt

ORCID: 0000-0003-4833-4803
*Corresponding author: han_hathout@yahoo.com

Received November 30, 2020; Revised December 07, 2020; Accepted December 14, 2020

Abstract Objective: study the impact of COVID-19 pandemic on the prevalence of burnout and the associated factors among health care workers in Saudi Arabia. Methodology: This study targeted all categories of health care workers (HCWs) in Saudi Arabia. The data were collected through an online questionnaire that included: sociodemographic data, medical history, smoking history, work characteristics, direct care of infected patients, questions of Maslach Burnout inventory (MBI) to assess burnout among health care workers that assess the Emotional Exhaustion (EE), Depersonalization (DP), and Personal Achievement (PA). The collected data was analyzed through SPSS program version 25. Results: The total number of the participants in this study was 3,557. The results showed that 38.5% of the participants scored high for EE, 31.2% for DP, and 33.6% for PA. On analysis, being younger than the age of 40 years, female, or Saudi nationality tended to be associated with increased all burnout parameters. Shift work, on call duties, changing working hours, direct involvement in management of COVID-19 patients were associated with high burnout scores. Conclusion: High burnout is common among healthcare workers in Saudi Arabia during COVID-19 pandemic due to direct contact with infected cases and changes in the working patterns during the pandemic, etc. These factors should be discussed to find solutions to relieve the health care workers from excess stress and burnout.

Keywords: burnout, COVID-19, health care workers (HCWs), Maslach Burnout inventory (MBI), Saudi Arabia

Cite This Article: Khalid H. Alanazi, Ghada M. bin Saleh, Sulaiman M. AlEidi, Muteb A. AlHarbi, and Hanan M. Hathout, “Prevalence and Risk Factors of Burnout among Healthcare Professionals during COVID-19 Pandemic - Saudi Arabia.” American Journal of Public Health Research, vol. 9, no. 1 (2021): 18-27. doi: 10.12691/ajphr-9-1-3.

1. Introduction

Burnout syndrome is the experience of exhaustion over prolonged periods of time with lower levels of motivation and interest in the job. [1] Burnout results in three distinct symptoms: emotional exhaustion (EE), depersonalization (DP), and reduced professional achievement (PA). EE is characterized by energy deficiency and a lack of motivation. DP is a psychological state of emotional detachment can give rise to impersonal treatment of people in the workplace. Reduced PA is defined by the tendency of a worker to a negative self-assessment, feeling less competent and successful and dissatisfied with their PA. [2]

Healthcare Workers (HCWs) are very often susceptible to job burnout, with the highest levels are reported among HCWs in the emergency and Intensive Care Unit (ICU) departments where they are subjected to excess work-related stress. [3] Burnout is associated with negative outcomes such as lack of concentration, low productivity, irritability, aggressiveness, and increased tendency to make mistakes. [4]

The coronavirus disease 2019 (COVID-19) pandemic emerged in December 2019 as a health care crisis first reported in Wuhan, in China, as a case of pneumonia triggered by an unknown pathogen. The coronavirus that causes COVID-19 is known as severe acute respiratory syndrome coronavirus 2 (SARSCoV-2). [5] Saudi Arabia was among the first countries to implement early and unprecedented precautionary measures to prevent SARS-CoV-2 introduction into the country. The first case reported in the country on March 2nd, 2020. [6]

Extensive efforts by the Ministry of health in Saudi Arabia were done to combat the spread of diseases in healthcare facilities [7]. These efforts help to control the
transmission of the disease, reduce complications and mortality among infected cases. But placed extra-stress and burden on health care workers and subject them to various forms of physical and mental fatigue and exhaustion. Numerous studies, both international and local attempt to study the impact of COVID-19 pandemic on health care workers, but there was not any nationwide study conducted in Saudi Arabia. This work was conducted to study the impact of COVID-19 pandemic on the prevalence of burnout and the associated factors among health care workers in Saudi Arabia.

2. Material and Methods

2.1. Type of Study

Cross sectional study involved all categories of health care workers (HCWs) working in different health care institutions in Saudi Arabia.

2.2. Sample size calculation

The sample size was calculated based on total number of health care workers (314,000), 95% confidence interval, and 5% percentage of error. [8]

2.3. Data Collection

Data were collected through an online survey targeting different categories of health care workers from all regions/governorates of the kingdom to get at least 60 participants from each region to reach the required minimum sample size of 1200. Period of data collection from 5 to 12 October 2020.

The questionnaire includes the following data:
1. Personal information such as age, sex, marital status, nationality.
2. Smoking history
3. Medical history and antipsychotics medications.
4. Place of work
5. Working characteristics such as name of health care facility, no. of daily working hours per shift work/department, etc.
6. History of working with COVID-19 suspected and confirmed cases.
7. Burnout questionnaire: Burnout was measured by the Maslach Burnout inventory (MBI) which is the most commonly used tool for assessing burnout. It consists of 22 items which are divided into three subscales: Emotional exhaustion (9 items), Depersonalization (5 items), and Personal accomplishment (8 items). The items are answered in terms of the frequency with which the respondent experiences these feelings, on a 7-point scale ranging from 0 (never) to 6 (every day). The three scores are calculated for each respondent. A higher score indicates greater burnout except for the personal accomplishment scale which is rated inversely as low score on this dimension is associated with high level of burnout.

High emotional exhaustion was considered at a score of 27 or more, high depersonalization was considered at a score of 10 or more, and low personal accomplishment was considered at a score of 31 or less. [9]

2.4. Data Analysis

The collected data were analyzed through SPSS program version 25. Percentages, mean and standard deviation (SD) were used as descriptive statistics.

The independent t test was used to study the relationship between mean burnout subscale scores for emotional exhaustion, depersonalization and personal accomplishment with regard to independent variables of 2 groups and ANOVA test was used for comparing of the mean scores for more than 2 groups of the independent variables. The independent variables were: the demographic characteristics (age, sex, marital status, nationality, qualifications), smoking history, medical history, work characteristics, and COVID-19 exposure and experience. Then, ordinal logistic regression models were designed for each burnout parameter to detect the most significant independent variables that determine the occurrence of burnout among health care workers in Saudi Arabia.

3. Results:

The results showed that 38.5% of the participants scored high for EE burnout, 31.2% for DP, and 33.6% for PA (Figure 1).

Burnout scores are higher in health care workers ≤ 40, Female, Saudi. Emotional exhaustion is significantly high in single HCWs. On the other hand, a high score on depersonalization and low personal achievement are significantly in widow/divorced. Current smokers’ participants have significantly high depersonalization and low personal achievement. (Table 1)

Low personal achievement scores are significantly common among participants with neurological diseases, psychiatric disease, and taking antipsychotic drugs. Taking antipsychotic drugs are associated with significant high burnout scores. (Table 2)

High burnout scores are recorded in Eastern region. Nurses are the most affected job categories to high burnout scores and the least are the technicians. Participants from ICUs reported higher emotional exhaustion and depersonalization scores compared to participants from other departments.

Participants with less than 10 years of work experience and those working 8 hours or more are more likely to have high emotional exhaustion and depersonalization scores. Working less than 8 h daily is associated with low personal achievement scores. Shift work affecting burnout in all parameters. On call duties is associated with high burnout scores in relation to emotional exhaustion and depersonalization. (Table 3)

Specific COVID-19 training is associated with significant lower scores on emotional exhaustion and depersonalization and high scores on personal achievement. On the other hand, changing job duties is associated with significant high burnout scores.

Changed working hours per shift, direct involvement in management of COVID-19 patients, infection of household member/s or colleague with COVID-19 are associated with significant high emotional exhaustion and depersonalization scores. No significant difference in the
mean burnout scores for HCWs with or without history of getting infection with COVID-19. (Table 4)

Figure 1. Distribution of burnout among the study participants

Table 1. Relation Between Mean Burnout Scores and Sociodemographic Characteristics and Smoking History

| Personal information       | N   | Emotional exhaustion Mean (± SD) | Depersonalization Mean (± SD) | Personal achievement Mean (± SD) |
|----------------------------|-----|---------------------------------|-------------------------------|---------------------------------|
| Age categories:            |     |                                 |                               |                                 |
| ≤ 40                       | 2529 | 24.08 (16.07)                   | 8.26 (7.60)                   | 33.67 (10.59)                   |
| > 40                       | 1027 | 18.59 (15.39)                   | 5.73 (6.42)                   | 36.22 (10.65)                   |
| T= 9.349, P ≤ 0.001*       | T= 9.378, P ≤ 0.001*            | T= -6.489, P < 0.001*         |                                 |
| Sex:                       |     |                                 |                               |                                 |
| Male                       | 2063 | 20.10 (15.72)                   | 6.88 (7.14)                   | 34.75 (11.18)                   |
| Female                     | 1494 | 25.80 (15.96)                   | 8.42 (7.59)                   | 33.94 (9.91)                    |
| T= 10.616, P ≤ 0.001*      | T= -6.161, P ≤ 0.001*           | T= 2.254, P = 0.024           |                                 |
| Marital status:            |     |                                 |                               |                                 |
| Married                    | 2782 | 21.86 (16.15)                   | 7.21 (7.28)                   | 34.45 (10.81)                   |
| Single                     | 633  | 24.87 (15.47)                   | 8.66 (7.60)                   | 34.39 (10.12)                   |
| Widow/ divorced            | 142  | 24.42 (15.96)                   | 8.68 (7.45)                   | 33.77 (10.47)                   |
| F= 10.096, P ≤ 0.001*      | F= 11.894, P ≤ 0.001*           | F= 0.269, P =0.764            |                                 |
| Nationality:               |     |                                 |                               |                                 |
| Saudi                      | 2566 | 22.85 (6.51)                    | 7.68 (7.54)                   | 33.51 (10.98)                   |
| Non-Saudi                  | 991  | 21.58 (14.82)                   | 7.11 (6.89)                   | 36.73 (9.43)                    |
| T= 2.123, P = 0.034*       | T= 2.073, P = 0.038*            | T= -8.140, P ≤ 0.001*         |                                 |
| Current Smoking:           |     |                                 |                               |                                 |
| Yes                        | 840  | 21.93 (15.95)                   | 7.98 (7.69)                   | 33.53 (11.47)                   |
| No                         | 2714 | 22.68 (16.10)                   | 7.39 (7.26)                   | 34.68 (10.40)                   |
| T= 1.176, P = 0.237        | T= 2.021, P = 0.050             | T= -2.72, P = 0.006*          |                                 |
| * Significant.             |     |                                 |                               |                                 |

Table 2. Relation Between Mean Burnout Scores and Medical History

| Medical history            | N   | Emotional exhaustion Mean (± SD) | Depersonalization Mean (± SD) | Personal achievement Mean (± SD) |
|----------------------------|-----|---------------------------------|-------------------------------|---------------------------------|
| Hypertension               |     |                                 |                               |                                 |
| Yes                        | 425 | 22.82 (16.31)                   | 7.08 (7.21)                   | 35.31 (10.92)                   |
| No                         | 2966| 22.14 (15.96)                   | 7.42 (7.30)                   | 34.50 (10.61)                   |
| Unknown                    | 162 | 28.20 (16.28)                   | 10.53 (8.40)                  | 30.44 (10.49)                   |
| F= 11.11, P ≤0.001*        | F= 14.65, P ≤0.001*              | F= 12.88, P ≤0.001*           |                                 |
| Neurological diseases      |     |                                 |                               |                                 |
| Yes                        | 141 | 28.30 (17.81)                   | 9.12 (8.23)                   | 30.45 (12.16)                   |
| No                         | 3274| 21.88 (15.87)                   | 7.30 (7.26)                   | 34.72 (10.56)                   |
| Unknown                    | 139 | 31.18 (15.21)                   | 11.29 (7.74)                  | 31.13 (10.50)                   |
| F= 32.45, P ≤0.001*        | F= 23.250, P ≤0.001*             | F= 17.84, P ≤0.001*           |                                 |
| Psychiatric disease        |     |                                 |                               |                                 |
| Yes                        | 109 | 30.35 (16.44)                   | 10.42 (8.45)                  | 28.93 (13.07)                   |
| No                         | 3264| 21.54 (15.81)                   | 7.15 (7.17)                   | 34.83 (10.53)                   |
| Unknown                    | 181 | 35.20 (13.67)                   | 12.65 (7.92)                  | 30.07 (9.83)                    |
| F= 78.75, P ≤0.001*        | F= 58.25, P ≤0.001*              | F= 32.53, P ≤0.001*           |                                 |
| Taking antipsychotic drugs |     |                                 |                               |                                 |
| Yes                        | 99  | 26.73 (18.16)                   | 9.71 (9.04)                   | 31.27 (14.36)                   |
| No                         | 3455| 22.38 (15.99)                   | 7.46 (7.31)                   | 34.50 (10.54)                   |
| T= 2.66, P ≤0.001*         | T= 2.99, P ≤0.001*               | T= -2.97, P ≤0.001*           |                                 |

* Significant.
Table 3. Relation Between Mean Burnout Scores and Some Work Characteristics

| Region                  | N      | Emotional exhaustion Mean (± SD) | Depersonalization Mean (± SD) | Personal achievement (Mean± SD) |
|-------------------------|--------|---------------------------------|------------------------------|---------------------------------|
| Riyadh                  | 584    | 22.05 (15.99)                   | 7.66 (7.39)                  | 33.78 (10.54)                   |
| Aseer                   | 111    | 20.16 (15.55)                   | 6.79 (6.82)                  | 35.86 (9.75)                    |
| Eastern region          | 86     | 28.86 (15.90)                   | 8.69 (7.90)                  | 33.22 (10.64)                   |
| Al Jouf                 | 104    | 23.43 (15.79)                   | 8.72 (7.61)                  | 34.58 (10.01)                   |
| Jeddah                  | 369    | 26.30 (16.71)                   | 8.96 (7.94)                  | 31.63 (10.84)                   |
| Tabouk                  | 74     | 16.96 (13.03)                   | 5.62 (5.92)                  | 35.36 (9.04)                    |
| Al Qassim               | 168    | 19.13 (15.00)                   | 6.24 (6.84)                  | 36.74 (10.28)                   |
| Bisha                   | 290    | 18.24 (15.15)                   | 6.09 (6.74)                  | 35.72 (11.83)                   |
| Hail                    | 60     | 22.88 (15.80)                   | 6.57 (6.83)                  | 38.47 (7.68)                    |
| Al Hassa                | 127    | 26.84 (15.19)                   | 8.69 (8.16)                  | 32.65 (10.79)                   |
| Northern borden         | 173    | 23.84 (15.69)                   | 8.87 (6.66)                  | 34.38 (9.67)                    |
| Makkah                  | 243    | 22.48 (16.57)                   | 8.21 (8.31)                  | 32.88 (10.80)                   |
| Al Baha                 | 59     | 26.08 (14.54)                   | 7.90 (6.54)                  | 34.02 (8.64)                    |
| Al Qunfatha             | 72     | 20.58 (15.95)                   | 6.58 (7.63)                  | 36.18 (9.75)                    |
| Al Quaryat              | 264    | 23.76 (16.70)                   | 8.62 (7.34)                  | 35.24 (10.14)                   |
| Al Medina               | 111    | 21.12 (15.49)                   | 7.14 (6.75)                  | 33.59 (12.36)                   |
| Jizan                   | 75     | 21.92 (15.24)                   | 6.11 (6.85)                  | 36.65 (9.79)                    |
| Al Taif                 | 392    | 20.12 (14.91)                   | 6.89 (6.76)                  | 35.58 (11.09)                   |
| Najran                  | 35     | 13.49 (15.68)                   | 4.26 (4.40)                  | 34.43 (13.44)                   |

| F = 6.68, P ≤ 0.001*   | F = 3.85, P ≤ 0.001*   | F = 3.89, P ≤ 0.001*   |

| Professional categories | N      | Emotional exhaustion Mean (± SD) | Depersonalization Mean (± SD) | Personal achievement (Mean± SD) |
|-------------------------|--------|---------------------------------|------------------------------|---------------------------------|
| Doctor                  | 823    | 22.85 (15.99)                   | 7.36 (7.28)                  | 35.70 (10.17)                   |
| Nurse                   | 1361   | 24.70 (16.18)                   | 8.37 (7.67)                  | 34.22 (10.17)                   |
| Technician              | 467    | 18.17 (15.72)                   | 5.91 (6.82)                  | 34.49 (11.49)                   |
| Others                  | 906    | 21.10 (15.58)                   | 7.24 (7.09)                  | 33.47 (11.29)                   |

| F = 22.62, P ≤ 0.0001* | F = 14.27, P ≤ 0.0001* | F = 6.54, P ≤ 0.001* |

| Department              | N      | Emotional exhaustion Mean (± SD) | Depersonalization Mean (± SD) | Personal achievement (Mean± SD) |
|-------------------------|--------|---------------------------------|------------------------------|---------------------------------|
| Emergency               | 606    | 23.54 (16.09)                   | 7.96 (7.69)                  | 33.94 (10.98)                   |
| ICUs                    | 184    | 27.96 (16.04)                   | 9.30 (7.32)                  | 33.10 (9.54)                    |
| Inpatient departments   | 454    | 23.60 (15.77)                   | 7.68 (7.01)                  | 35.38 (10.30)                   |
| Radiology and laboratory| 383    | 22.38 (15.95)                   | 7.72 (7.68)                  | 34.61 (10.87)                   |
| Administration          | 1301   | 20.09 (15.84)                   | 6.70 (7.01)                  | 34.61 (10.98)                   |
| Operating theatre       | 14     | 18.25 (11.18)                   | 6.00 (3.37)                  | 41.75 (3.95)                    |

| F = 9.77, P ≤ 0.001*   | F = 5.26, P ≤ 0.001*   | F = 3.15, P ≤ 0.001*   |

| Years of working:      | N      | Emotional exhaustion Mean (± SD) | Depersonalization Mean (± SD) | Personal achievement (Mean± SD) |
|------------------------|--------|---------------------------------|------------------------------|---------------------------------|
| less than 10 years     | 1569   | 23.70 (15.91)                   | 8.13 (7.57)                  | 34.24 (10.34)                   |
| More than 10 years     | 1987   | 21.55 (16.13)                   | 7.05 (7.17)                  | 34.55 (10.92)                   |

| T = 3.976, P < 0.001*  | T = 4.370, P < 0.001* | T = -0.86, P > 0.05 |

| Daily working hours    | N      | Emotional exhaustion Mean (± SD) | Depersonalization Mean (± SD) | Personal achievement (Mean± SD) |
|------------------------|--------|---------------------------------|------------------------------|---------------------------------|
| Less than 8 hours      | 366    | 18.76 (14.69)                   | 6.60 (7.59)                  | 31.78 (11.91)                   |
| 8 hours or more        | 3190   | 22.92 (16.17)                   | 7.63 (7.34)                  | 34.71 (10.48)                   |

| T = 4.710, P < 0.001*  | T = 2.463, P < 0.05*  | T = -4.513, P < 0.001*       |

| Shift work             | N      | Emotional exhaustion Mean (± SD) | Depersonalization Mean (± SD) | Personal achievement (Mean± SD) |
|------------------------|--------|---------------------------------|------------------------------|---------------------------------|
| Yes                    | 1687   | 25.48 (15.94)                   | 8.61 (7.60)                  | 33.95 (10.41)                   |
| No                     | 1868   | 19.81 (15.70)                   | 6.55 (6.90)                  | 34.82 (10.89)                   |

| T = 10.653, P < 0.001* | T = 8.384, P < 0.001* | T = -2.42, P < 0.05*           |

| On call duties on the previous month | N      | Emotional exhaustion Mean (± SD) | Depersonalization Mean (± SD) | Personal achievement (Mean± SD) |
|--------------------------------------|--------|---------------------------------|------------------------------|---------------------------------|
| Yes                                  | 1683   | 25.29 (15.89)                   | 8.65 (7.58)                  | 34.66 (10.10)                   |
| No                                   | 1871   | 20.00 (15.82)                   | 6.52 (7.05)                  | 34.18 (11.16)                   |

| T = 9.93, P ≤ 0.001* | T = 8.69, P ≤ 0.001* | T = 1.351, P = 0.177 |

Table 4. Relation between Mean Burnout Scores and COVID-19 Training and Experience

| COVID-19 training and experience | N     | Emotional exhaustion Mean (± SD) | Depersonalization Mean (± SD) | Personal achievement Mean (± SD) |
|---------------------------------|-------|---------------------------------|-------------------------------|---------------------------------|
| COVID-19 specific training      |       |                                 |                               |                                 |
| Yes                             | 2103  | 21.26 (15.60)                   | 7.14 (7.16)                   | 35.59 (10.08)                   |
| No                              | 1452  | 24.31 (16.56)                   | 8.08 (7.63)                   | 32.70 (11.27)                   |
|                                 |       | T=5.587, P ≤ 0.001*             | T= -3.74, P ≤ 0.001*          | T= 8.020, P ≤ 0.001*            |
| Changed job duties              |       |                                 |                               |                                 |
| Yes                             | 2243  | 25.39 (16.19)                   | 8.65 (7.72)                   | 33.98 (10.47)                   |
| No                              | 1312  | 17.55 (14.59)                   | 7.51 (6.67)                   | 35.15 (10.98)                   |
|                                 |       | T= 14.449, P ≤ 0.001*           | T= 12.11, P ≤ 0.001*          | T= 3.6, P ≤ 0.001*              |
| Changed working hours per shift |       |                                 |                               |                                 |
| Yes                             | 2466  | 23.81 (16.08)                   | 8.00 (7.50)                   | 34.64 (10.40)                   |
| No                              | 1090  | 19.51 (15.65)                   | 6.46 (6.94)                   | 33.90 (11.25)                   |
|                                 |       | T= 2.421, P ≤ 0.001*            | T= 2.97, P = 0.003*           | T= 2.02, P = 0.044*             |
| Direct involvement in care of COVID-19 patients |       |                                 |                               |                                 |
| Yes                             | 2466  | 23.81 (16.08)                   | 8.00 (7.50)                   | 33.90 (11.25)                   |
| No                              | 1090  | 19.51 (15.65)                   | 6.46 (6.94)                   | 33.90 (11.25)                   |
|                                 |       | T= 2.421, P ≤ 0.001*            | T= 2.97, P = 0.003*           | T= 2.02, P = 0.044*             |
| Infection of household member/s |       |                                 |                               |                                 |
| Yes                             | 3282  | 23.09 (16.04)                   | 7.72 (7.42)                   | 34.41 (10.60)                   |
| No                              | 274   | 15.33 (14.67)                   | 5.23 (6.31)                   | 34.41 (11.48)                   |
|                                 |       | T= 7.84, P ≤ 0.001*             | T= 5.98, P ≤ 0.001*          | T= 3.75, P ≤ 0.001*             |
| Infection of Colleague member/s |       |                                 |                               |                                 |
| Yes                             | 607   | 23.32 (15.88)                   | 7.76 (7.36)                   | 34.17 (10.80)                   |
| No                              | 2949  | 22.33 (16.10)                   | 7.48 (7.37)                   | 34.46 (10.65)                   |
|                                 |       | T= 1.41, P = 0.161              | T= 0.85, P = 0.394            | T= 0.59, P = 0.554              |

Table 5. Logistic Regression Analysis of the Variables Included in Study of Burnout Among Health Care Workers

| Variables                   | Emotional Exhaustion | Depersonalization | Personal achievement |
|-----------------------------|----------------------|-------------------|----------------------|
|                             | OR (95% CI)          | P value           | OR (95% CI)          | P value           | OR (95% CI)          | P value           |
|Age categories < 40 years    | 1.68 (0.34-0.71)     | 0.007             | 1.87 (0.44-0.81)     | 0.007             | 1.45 (0.20-0.54)     | 0.886             |
|Age categories ≥ 40 years    | 1.56 (0.62-0.27)     | 1.19 (0.35-0.01)  | 0.045                | 1.25 (0.39-0.06)  | 0.035             |
|Male/ female                | 1.15 (0.22-0.49)     | 0.455             | 0.19 (0.05-0.17)     | 0.315             | 1.03 (0.33-0.39)     | 0.690             |
| Married                     | 1.19 (0.21-0.56)     | 0.363             | 0.90 (0.47-0.27)     | 0.594             | 1.03 (0.33-0.39)     | 0.848             |
| Single                      | 1.27 (0.23-0.16)     | 0.563             | 1.19 (0.01-0.34)     | 0.053             | 1.01 (0.18-0.16)     | 0.850             |
|Smoking status/ non smokers  | 1.31 (0.67-0.12)     | 0.177             | 1.60 (0.85-0.09)     | 0.015             | 1.64 (0.86-0.13)     | 0.200             |
|Hypertensive status         | 1.63 (0.84-0.14)     | 0.006             | 1.59 (0.79-0.13)     | 0.006             | 1.49 (0.72-0.08)     | 0.008             |
|Not hypertensive Unknown    | 1.11 (0.42-0.62)     | 0.695             | 1.41 (0.84-0.14)     | 0.165             | 1.61 (0.00-0.95)     | 0.062             |
|Neurological disease        | 1.27 (0.64-0.17)     | 0.252             | 1.65 (0.89-0.12)     | 0.010             | 1.01 (0.36-0.38)     | 0.816             |
|Psychiatric disease         | 1.74 (1.13-0.03)     | 0.062             | 2.18 (1.30-0.26)     | 0.003             | 1.10 (0.42-0.61)     | 0.753             |
|No Psychiatric disease      | 4.02 (1.76--1.02)    | 0.000             | 3.04 (1.45-0.78)     | 0.000             | 2.13 (1.07-0.43)     | 0.000             |
|Taking antipsychotic drugs  | 1.26 (0.72-0.25)     | 0.342             | 1.02 (0.47-0.43)     | 0.936             | 1.79 (1.04-0.13)     | 0.011             |
Ordinal logistic regression analysis of burnout parameters reveals the following: - For emotional exhaustion, the only significant independent variables are age, sex, nationality, hypertension and history of psychiatric disease, region, professional categories, departments, daily working hours, on call duties, specific training in the care of COVID-19 patients, job duties changed, direct involvement in management of COVID-19 patients, infection of household member/s or colleague with COVID-19. For depersonalization, the only significant independent variables are age, sex, hypertension, neurological disease, and history of psychiatric disease, professional categories, departments,
daily working hours, on call duties, specific training in the care of COVID-19 patients, changed job duties, infection of household member/s or colleague with COVID-19. For personal achievement, the only significant independent variables are age, sex, nationality, hypertension, history of psychiatric disease and taking antipsychotic drugs, departments, daily working hours, COVID-19 specific training, changed job duties and working hours. (Table 5)

4. Discussion

In the COVID-19 pandemic, the working conditions in the hospitals are becoming highly demanding and stressful, which has worsened the already-existing burnout among health care providers. [10]

To our knowledge, this research is the most widespread study conducted in the Kingdom of Saudi Arabia to study the prevalence of burnout and associated factors during COVID-19 pandemic as this study involves (3,557) participants of different categories of health care workers in Saudi Arabia. The results showed that 38.5% of the participants scored high for EE, 31.2% for high DP, and 33.6% for low PA (Figure 1). Many local studies were done in Saudi Arabia since start of COVID-19 pandemic to study the psychological impact of the pandemic on the health care workers. However, it is difficult to compare some of the results of these studies to our findings due to assessment of different aspects of psychological stresses as anxiety, fear, mental stress, and depression, or the use of different assessment tools that makes comparison of the prevalence with these studies is invalid. [11,12,13]

However, all of these studies agreed that there is a negative psychological effect of COVID-19 pandemic on the mental health of health care workers. Study of Sulais et al., 2020 [14] detects that 67.5% of physicians has worry, 56.9% feel isolated and 49.7% experience sense of fear. Also, a study to assess burnout and depression among HCWs in emergency and intensive care units detected that 30% of respondents were classified as having moderate burnout and 11% had high burnout levels. This study involved only selected category of health care workers. So, the results are not comparable to our findings. [15]

The prevalence of emotional exhaustion and depersonalization of the current study is relatively high when compared to Italian study. On the other hand, prevalence of low personal achievement in our study is lower than the Italian study. [16] Study of burnout and somatic symptoms among frontline healthcare professionals at the peak of the Italian COVID-19 pandemic reported that more than 1 out of 3 of the participants had high emotional exhaustion scores and 1 out of 4 reported high depersonalization levels, while only about 15 percent reported low personal achievement levels. [17]

Significant high burnout scores for younger age (Table 1), and this is supported by [18]. This could be explained by the effect of years of experience as older health care workers (HCW’s) may have a better knowledge in comparison to the younger participants. In addition, the use of social media tends to be more prevalent among younger health care workers and can be a source for disturbing and confusing information that can contribute to stress and burnout symptoms. [14] This finding is also supported by [19]. On the other hand, the level of psychological distress is higher in older medical personnel in a study conducted in China and explained by the fear of more exposure risk to infection and occurrence of complications especially if there are underlying diseases with old age. [20]

Significant high burnout scores in all parameters in the female in comparison to the male health care workers and this is supported by many other studies both local and international. [14,19,21,22] Against to this finding are the results of one pre- COVID-19 study. Being single in this study is associated with a significantly high level of emotional exhaustion. While, widow or divorced participants are experiencing a significant high level of depersonalization and low scores on personal achievement (Table 2). This finding is supported by [23].

Saudi nationality in the current study is associated with high burnout level for all subscales (Table 1). National studies conducted in Saudi Arabia before COVID-19 pandemic detect high levels of burnout among Saudi participants as high EE and DP scores was seen in Saudi physicians working in primary health care centers. [24] Another study involved nurses working in critical care areas revealed that the prevalence of burnout among Saudi and the non-Saudi nurses was (55.6% & 44% respectively) with statistically significant between burnout and nationality. [25] The reason for high burnout among Saudi participants relative to non-Saudi in this study could be explained by differences in the age distribution between the 2 groups as most of the Saudi participants in our study are in the age categories ≤ 40 years with a few years of experience.

On the other hand, study of burnout syndrome among emergency physicians and nurses in Asser region, detected that Saudi health care professionals had significant low EE prevalence and low PA compared to non-Saudi. [15]

This study shows no significant association between current smoking and emotional exhaustion among the study participants, but there is a significant relationship between current smoking and high depersonalization score and low personal achievement scores. Smokers were at higher significant risk of burnout compared to nonsmokers (OR=15.37, p<0.001). [26] Smoking can be a contributing factor to burnout or may be used as a mean used by healthcare workers for relieving from feelings of exhaustion related to work problems. [27,28] On the contrary, another study in Kazakhstan found that smoking did not predict high burnout level. [29]

In this study, there is a significant high burnout score for participants with unknown medical history of hypertension and neuro-psychiatric diseases compared to the other 2 groups (Table 2), this may be due to small number of the participants in the unknown category or that if the person has undiagnosed diseases with no medical treatment there may be a high level of burnout. A study of the relationship between job burnout and somatic diseases found that there is a significant association between hypertension and burnout and explained this relation to increase the sympathetic activity and the inflammation process. [30]

A significant association of neuropsychiatric diseases and taking antipsychotic drugs with low scores on personal achievement. For taking antipsychotic drugs,
there are also high scores on EE and DP (Table 2). Association between burnout and psychological symptoms as insomnia, depressive symptoms, use of psychotropic and antidepressant medications, etc. detected in study of [31,32].

Significant differences in the mean burnout scores between regions of Saudi Arabia detected in this study with the Eastern region reports the highest mean score for emotional exhaustion and depersonalization, followed by Al Hassa and Jeddah regions. While, Najran region reports the lowest mean score on emotional exhaustion and depersonalization compared to all other regions of Saudi Arabia. (Table 3). No available published study that measured the burnout of COVID-19 on health care workers in all KSA regions. But this difference in burnout between different regions could be explained by date of entering the COVID-19 the outbreak in that region and the magnitude of the outbreak, health care facilities preparedness to face the consequence of the COVID-19 outbreak. Eastern region is the first Saudi area that reported first case of COVID-19 case which may place excess workload on staff in the region with prolonged exposure to work stress from the date of first reported case. The incidence of COVID-19 was not similar across different cities. This is reflected on the amount of the workload on health care professionals in different areas with the risk of burnout to be higher in area than others. [33]

In this study, the shift work is associated with high burnout as presented by high emotional exhaustion and depersonalization scores compared to other job categories. And this occurs in accordance with many other studies as that conducted in Japan. The Japanese study showed that the burnout criteria were met by more than 40 percent of nurses and more than 30 percent of radiological technologists and pharmacists. [21].

High level of burnout was detected for staff working in intensive care units (ICUs) (Table 3) and this is supported by a study of [3,34]. Factors that may lead to high level of burnout among health care workers, especially in critical care areas are intense work load, having long shift hours, facing critical cases due to COVID 19, etc. [34,35].

On the other hand, working in surgery departments in this study was associated with significant low burnout levels and this contributed to policy taken by the Saudi ministry of health to postpone all elective surgery during peak of COVID-19 pandemic, which markedly reduce the operative lists and relieve staff working in this department from tension and stress. The COVID-19 pandemic has contributed to substantial global disruption of routine health care services. Elective surgery has been limited to prevent the in-hospital viral transmission. [36] On the other hand, staff working in infection control (IC) field demonstrates significant high scores for EE and DP, but not for PA and this attributed to extra-workload of IC staff ranging from implementing and updating policies and procedures, regular review of the current situation and the control measures, ensure all precautions are implemented, etc.

In this study, the shift work is associated with significant high burnout scores in all subscales (Table 3) and this explained by disturbance of circadian rhythm, and job strain. [37] This is supported by a study in Thailand. [38]

Working less than 10 years is associated with a significant high level of burnout and this is supported by the finding of Omari et al., 2020 who found that healthcare providers with fewer years of experience, have difficulty coping with stress and workload. [39] Direct involvement in care of COVID-19 is associated with high EE and DP but not on PA (Table 4). This is supported by [16,17,18,19,20,21,22], who found that being in contact with COVID-19 patients are strong, independent factors for EE and DP among HCWs.

In this study, infection of household members or colleagues is associated with a significant high level of emotional exhaustion and depersonalization (Table 4). This may be related to emotional pressure for fear of infection and the wellbeing of their families. [34] On the other hand, no significant differences in the mean burnout scores between health care workers with or without a history of catching COVID-19 infection (Table 4). Physicians with a previous exposure to similar traumatic events were less likely to experience psychological stress during the COVID-19 pandemic. [14]

Some of the variables are insignificant in the regression models for all burnout domains, including marital status, smoking history, working more than 10 years, and history of COVID-19 infection. Independent significant variables for burnout that remains in the models including age, sex, hypertension and a history of taking antipsychotic drugs, neurological disease, region (only for Al Baha region; significantly lower than Najran the reference category), professional category, departments, daily working hours, on call duties, training, changing duties and working hours, and infection of household members or colleagues. These results are supported by another study that found that predictors of all the three components of burnout were working hours, psychological diseases, fear of infection and perceived support by friends. Being female, nurse, and in contact with COVID-19 patients were predictors of both emotional exhaustion and depersonalization. Age is a significant predictor for personal accomplishment. [16] Study in Wuhan found that nurses, women, frontline workers, and those in Wuhan reported experiencing more severe symptoms of depression, anxiety, insomnia, and distress. [22] Gender, age, and previous exposure to similar traumatic events were predictive of psychological reactions. [14]

5. Limitations

This study has limitations that included collection of data through cross-sectional survey and so, the causal association between research variables and burnout is difficult. The use of self-reported data requires care in drawing conclusions about the impact of working conditions on burnout. Furthermore, because we did not assess the baseline level of burnout before the pandemic, we were unable to compare changes in prevalence.

6. Conclusion

This work highlights the impact of COVID-19 pandemic on burnout prevalence among health care
workers and detect significant related factors both personal and work related.

7. Recommendations

Factors associated with high burnout that should be discussed thoroughly to address these issues and implement interventions as means to relief health care workers especially those dealing with COVID-19 cases.

Ethical Approval

This work was approved by the ethical committee (Institutional Review Board)- King Fahad Medical City, Riyadh on 29 September 2020. IRB log number: 20- 636 E. All data were kept confidential.

Acknowledgments

For all participants shared in in the study and provided valid information.

Source of Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest

The authors have no conflict of interest among authors.

Authors Contribution

KA shared in the design of the study, preparation of research materials, and data collection. GS shared in the design of study, analysis and interpretation of data. SA shared in conception of the study, acquisition of data, shared in analysis and interpretation of data, and drafting the article. All authors have critically reviewed and approved the final draft and are responsible for the content and similarity index of the manuscript.

References

[1] Embriaco N, Papazian L, Kentish-Barnes N, Pochard F, Azoulay E, “Burnout syndrome among critical care healthcare workers”, Curr Opin Crit Care, 13(5), 427-434, October 2007.

[2] Rojas BM, Grisales RH “Burnout syndrome in professor from academic unit of a Colombian University”, Invest Educ Enferm, 29(3), 427-434. December 2011.

[3] Elshaer NSM, Moustafa MSA, Aiad MW, Ramadan MIE, “Job stress and burnout syndrome among critical care healthcare workers”. Alexandria Journal of Medicine, 54(3), 273-277. July 2017.

[4] Sami Abdo Radman Al-Dubai and Krishna Gopal Rampal, “Prevalence and Associated Factors of Burnout among Doctors in Yemen”, Journal of Occupational Health, 52(1), 58-65. 15 February 2010.

[5] Singhal T., “A Review of Coronavirus Disease-2019 (COVID-19)”, Indian J Pediatr. 87(4), 281-286. March 2020.

[6] Abdullah Al. Alghaisi, Naif Khalaf Alharbic, Mazen Hassannaime, Anwar M. Hashemiri, “Preparedness and response to COVID-19 in Saudi Arabia: Building on MERS experience”, Journal of Infection and Public Health, 13 (6), 834-838. June 2020.

[7] Alsofyan MA, Malaekah HM, Bashawyah A, Bawazeer M, Akkour K, Alsalim S, et al, “Safety measures for COVID-19: a review of surgical preparedness at four major medical centers in Saudi Arabia”, Patient Safety in surgery,14(34). 1-14. 05 September 2020.

[8] Al-Hanawi, M. K., Khan, S. A., & Al-Borie, H. M., “Healthcare human resource development in Saudi Arabia: emerging challenges and opportunities-a critical review”, Public health reviews, 40(1). 27. February 2019.

[9] Maslach C, Jackson SE, Leiter MP, MBI Manual, 3rd ed. Palo Alto (CA): Consulting Psychologists Press, 1996, 192-8.

[10] Panagioti M, Geraghty K, Johnson J, Zhou A, Panagopoulou E, Chew-Graham C, et al, “Association Between Physician Burnout and Patient Safety, Professionalism, and Patient Satisfaction”, JAMA Intern Med,78(10). 1317-1331. 4 Sep. 2018.

[11] Deemah A. AlAteeqa, Sumayyah Aljhanibi, Ibrahim Althiyabi, Safaa Majzoub, “Mental health among healthcare providers during coronavirus disease (COVID-19) outbreak in Saudi Arabia”, Journal of Infection and Public Health (13).1432-1437. September 2020.

[12] Alzaidi EH, Alsaud SS, Alshakhis N, Albaghdi D, Albesher R, Aloqaili M, “Prevalence of COVID-19-related anxiety among healthcare workers: A cross-sectional study” J Family Med Prim Care, 9 (9). 4904-10. 20 Sept. 2020.

[13] Mohammed Khaled Al-Hanawi, Martin Limbikani Mwale, Noor Alshareef, Ameerah MN Qattan, Khadijah Angawi, Rasha Almubarak, et al, “Psychological Distress amongst Health Workers and the General Public During the COVID-19 Pandemic in Saudi Arabia”, Risk Management and Healthcare Policy, 13: 733-742. 7 July 2020.

[14] Al Sulaisi E, Mosli M, AlAmeel T, “The psychological impact of COVID-19 pandemic on physicians in Saudi Arabia: A cross-sectional study”, Saudi Journal of Gastroenterology, 26(5), 249-255. 04 June 2020.

[15] Almubarak R. Almaleh Y., BinDhim N., Almedaini M., Almuthairi A., Alqahtani S., “Monitoring Burnout in the Intensive Care Unit and Emergency Department during the COVID-19 pandemic: the Saudi Arabian Experience”, Middle East Journal of Nursing, 14(2)-12-21. Nov. 2020.

[16] Giusti EM, Pedroli E, D’Angelo GE, Stramala Badiate C, Pietrabissa G, Manna C, et al,” The Psychological Impact of the COVID-19 Outbreak on Health Professionals: A Cross-Sectional Study”, Front. Psychol., 11(1684). 1-9. 10 July 2020.

[17] Barello S, Palamenghi L, Graffigna G, “Burnout and somatic symptoms among frontline healthcare professionals at the peak of the Italian COVID-19 pandemic”, Psychiatry Research, 290 (113129). May 2020.

[18] Al-Hanawi, M. K., Mwale, M. L., Alshareef, N., Qattan, A., Angawi, K., Almubark, R., et al., “Psychological Distress Amongst Health Workers and the General Public During the COVID-19 Pandemic in Saudi Arabia”, Risk management and healthcare policy,13.733-742.7 July 2020.

[19] Khasne RW, Dhiakulkar BS, Mahajan HC, Kulkarni AP, “Burnout amongst Healthcare Workers during COVID-19 Pandemic in India: Results of a Questionnaire-based Survey”, Indian J Crit Care Med, 4(8), 664-671. Aug 2020.

[20] Xing J, Sun N, Xu J, Geng S, Li Y, “Study of the mental health status of medical personnel dealing with new coronavirus pneumonia”, PLoS One,15(5). 1-10. 19 May 2020.

[21] Matsuoto T, Kobayashi D, Taki F, Sakamoto F, Ucharya Y, Mori N, et al., “Prevalence of Health Care Worker Burnout During the Coronavirus Disease 2019 (COVID-19) Pandemic in Japan”, JAMA Network Open,3(8). 1-4. 4 Aug 2020.

[22] Lai J, Ma S, Wang Y, Cai Z, Hu J, Wei N, et al., “Factors Associated with Mental Health Outcomes Among Health Care Workers Exposed to Coronavirus Disease 2019”, JAMA Network Open, 3(3). 1-12. 23 March 2020.
Guillermo A. Cañadas-De la Fuente, Elena Ortega, Lucia Vargas and Jose Luis Gómez-Urquiza, "Gender, Marital Status, and Children as Risk Factors for Burnout in Nurses: A Meta-Analytic Study", Int. J. Environ. Res. Public Health, 15(10). 1-13. 25 September 2018.

Al-Haddad A, Al-Omar F, Al-Khaled A, Al-Khalef A,” Prevalence of burnout syndrome and its related risk factors among physicians working in primary health care centers of the Ministry of Health, Al Ahsa region, Saudi Arabia, 2018-2019”, J Family Med Prim Care 9(2). 571-579. 28 Feb. 2020.

Majid Ali Alotni and Samia Eaid Elgazzar, “Investigation of Burnout, its Associated Factors and its Effect on the Quality of Life of Critical Care Nurses Working in Buraydah Central Hospital at Qassim Region, Saudi Arabia”, The Open Nursing Journal (14). 190-202. 14 Sept. 2020.

Alqahtani, A. M., Awadalla, N. J., Alsaleem, S. A., Alsamghan, A. S., & Alsaleem, M. A.,” Burnout Syndrome among Emergency Physicians and Nurses in Abha and Khais Mshait Cities, Aseer Region, Southwestern Saudi Arabia”, The Scientific World Journal, Article ID: 4515972. 1-14. 18 Feb. 2019.

Petrelli F, Scursi S, Tazni E, Nguyen C, Grappasinni I, ”Public health and burnout: a survey on lifestyle changes among workers in the healthcare sector”, Acta BioMed, 90 (1). 24-30. 28 Nov.2018.

Xia L, Jiang F, Rakofsky J, Zhang Y, Zhang K, Liu T, Liu Y, Liu H and Tang YL,” Cigarette Smoking, Health-Related Behaviors, and Burnout Among Mental Health Professionals in China: A Nationwide Survey”, Front. Psychiatry, 11(706). 1-8. 17 July 2020.

Vinnikov D, Dushpanova A, Kodosbaev A, Romanova Z, Almukhanova A, Tulekov Z, et al., “Occupational burnout and lifestyle in Kazakhstan cardiologists “, Arch Public Health, 77(1). 1-6. 13 Dec. 2019.

Roland von Känel, Mary Princip, SarahA. Holzgang, Walther J. Fuchs, Marc van Nufel, Aju P. Pazhenkotti & et al., “Relationship between job burnout and somatic diseases: a network analysis”, Scientific Reports, 10(1): 18438. Oct. 2020.

Salvagioni DAJ, Melinda FN, Mesas AE, González AD, Gabani FL, Andrade SM, “Physical, psychological and occupational consequences of job burnout: A systematic review of prospective studies”, PLoS ONE2017; 12(10): e0185781.1-29. 4 Oct. 2017.

Selahiem AA,” Prevalence of burnout amongst physicians working in primary care in Riyadh military hospital, Saudi Arabia”, Int J Med Sci Public Health, 2(3):436. 410-9. Jan. 2013.

Alyami MH, Naser AY, Alwafi H and Alyami HS, ” Epidemiology of COVID-19 in the Kingdom of Saudi Arabia: An Ecological Study”, Frontiers in Public Health, 8:506. 1-9. 17 Sept. 2020.

Talae N, Varahram M, Janaati H, Salimi A, Attarchi M, Kazempour Dizaji M, et al., “Stress and burnout in health care workers during COVID-19 pandemic: validation of a questionnaire”, Z Gesundh Wiss. 1-6. 6 June 2020.

Sahin, T., Aslaner, H., Olguner Eker, Özlem., Gökçek, M. B., & Doğan, M. A,” Questionnaire Study Effect of COVID-19 Pandemic on Anxiety and Burnout Levels in Emergency Healthcare Workers”, International Journal of Medical Science and Clinical Investigation, 7(09)- 4991-5001. 12 Dec. 2020.

COVID Surg. Collaborative, “E elective surgery cancellations due to the COVID-19 pandemic: global predictive modelling to inform surgical recovery plans”, Br J Surg. , 107. 1440-1449. 12 May 2020.

Wang XS, Armstrong ME, Cairns BJ, Key TJ, Travis RC,” “Shift work and chronic disease: the epidemiological evidence”, Occup Med ,61(2). 78-89. March 2011.

Wisetborisut A, Angkurawaranon C, Jiraporncharoen W, Uaphantasath R, Wiwatanadate P,” Shift work and burnout among health care workers”, Occup Med, 64(4):279-86. June 2014.

Awad Al-Omari, Abbas Al Mutair, Abbas Shamans, and Alya Al Mutairi,” Predicting Burnout Factors among Healthcare Providers at Private Hospitals in Saudi Arabia and United Arab Emirates: A Cross-Sectional Study”, Appl. Sci.,10(1),157. 1-8. 24 Dec. 2019.

© The Author(s) 2021. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).