A ChPT estimate of the strong-isospin-breaking contribution
to the anomalous magnetic moment of the muon

Christopher L. James and Randy Lewis

Department of Physics and Astronomy, York University,
4700 Keele St., Toronto, ON CANADA M3J 1P3

Kim Maltman

Department of Mathematics and Statistics, York University,
4700 Keele St., Toronto, ON CANADA M3J 1P3

Abstract

First-principles lattice determinations of the Standard Model expectation for the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon have become sufficiently precise that further improvement requires including strong and electromagnetic isospin-breaking effects. We provide a continuum estimate of the strong isospin-breaking contribution, $a_{\mu}^{SIB}$, using $SU(3)$ chiral perturbation theory. The result is shown to be dominated by resonance-region contributions encoded in a single low-energy constant whose value is known from flavor-breaking hadronic $\tau$ decay sum rules. Implications of the form of the result for lattice determinations of $a_{\mu}^{SIB}$ are also discussed.
I. INTRODUCTION

The more than 3 σ disagreement between the final 2006 BNL E821 result for $a_\mu$ \[1\]–\[3\], the anomalous magnetic moment of the muon, and subsequent updates of the Standard Model (SM) expectation prompted intense interest in improving both experimental and theoretical results. Interest in the latter has been further heightened by the recently released Fermilab E989 result \[4\], which produces an updated experimental world average $4.2 \sigma$ higher than the current best assessment of the SM expectation \[5\].

Hadronic contributions, though representing a small fraction of $a_\mu$, dominate the uncertainty in the SM prediction. This paper focuses on the largest of these, the leading-order, hadronic vacuum polarization contribution, $a^{LO,HVP}_\mu$.

As is well known, assuming (as expected) beyond-the-SM contributions to experimentally measured $e^+e^- \rightarrow \text{hadrons}$ cross sections are numerically negligible, the SM expectation for $a^{LO,HVP}_\mu$ can be obtained as a weighted (“dispersive”) integral over the inclusive hadroproduction cross-section ratio $R(s)$. The weight entering this integral is exactly known, monotonically decreasing with hadronic invariant squared mass, $s$, and strongly emphasizes contributions from the low-$s$ region, with $\sim 73\%$ of the full dispersive result coming from the $\pi\pi$ exclusive mode. Ref. \[5\] provides a detailed discussion of the most recent dispersive evaluations \[6\]–\[9\].

A practical complication limiting the accuracy of these determinations is the long-standing discrepancy between BaBar \[10, 11\] and KLOE \[12\] $e^+e^- \rightarrow \pi^+\pi^-$ cross section results, which independent determinations by CMD2 \[13–15\], BESIII \[16\], CLEO-c \[17\] and SND \[18\] have so far failed to resolve. The difference, $9.8 \times 10^{-10}$ \[8\], between results for the $\pi\pi$ contribution obtained using only BaBar or KLOE in the region $0.305 \text{ GeV} < E_{CM} < 1.937 \text{ GeV}$, and the analogous difference, $5.5 \times 10^{-10}$, between the full $\pi\pi$ contribution obtained using averages with either BaBar or KLOE excluded \[6\], both considerably exceed the uncertainty anticipated from the full Fermilab E989 experimental program.

The reliance on at-present-discrepant experimental spectral data can, in principle, be avoided using lattice results for the electromagnetic (EM) current two-point function to evaluate $a^{LO,HVP}_\mu$. This possibility was first raised in Ref. \[19\] and relies on the alternate representation of $a^{LO,HVP}_\mu$ as a weighted integral of the subtracted EM vacuum polarization, $\hat{\Pi}_{EM}(Q^2) \equiv \Pi_{EM}(Q^2) - \Pi_{EM}(0)$ over spacelike $Q^2 = -s > 0$ \[20, 21\]. While the precision of the lattice determination has yet to reach that of the dispersive results, there has been rapid progress over the last few years, with recent updates from the BMW \[22, 23\], ETMC \[24–26\], RBC/UKQCD \[27–29\], FNAL/HPQCD/MILC \[30, 31\], Mainz \[32\], PACS \[33\] and Aubin et al. \[34\] collaborations. The most recent BMW result \[23\], in particular, reaches a precision of 0.8%. While (as detailed, e.g., in Ref. \[29\]) some disagreements persist between results from different lattice groups for the dominant $ud$ connected contribution, as well as for the $t_0 = 0.4 \text{ fm}$, $t_1 = 1.0 \text{ fm}$, $\Delta = 0.15 \text{ fm}$ RBC/UKQCD “window” quantity $a^{ud,conn.,isospin,W}_\mu$ \[27\], these disagreements are the subject of ongoing scrutiny, and additional sub-%-level lattice results are expected in the near future from a number of other lattice groups.
The current sub-% precision goal for determining $a^{LO,HVP}_\mu$ on the lattice necessitates an evaluation of the effects of strong and EM isospin-breaking (IB). These receive contributions from both quark-line-connected and -disconnected diagrams, with the latter much more numerically challenging on the lattice.

This paper focuses on the strong isospin-breaking (SIB) contribution, $a^{SIB}_\mu$. A number of lattice groups have reported determinations of the connected contribution, $[a^{SIB}_\mu]_{\text{conn}}$ \cite{23, 25, 27, 29, 30}, but only one, BMW \cite{23}, a result for the disconnected contribution, $[a^{SIB}_\mu]_{\text{disc}}$. BMW finds a strong cancellation between $[a^{SIB}_\mu]_{\text{conn}}$ and $[a^{SIB}_\mu]_{\text{disc}}$, a result anticipated in Ref. \cite{29}, which studied the $\pi\pi$ contributions to these quantities using partially quenched Chiral Perturbation Theory (PQChPT) and found an exact cancellation of connected and disconnected contributions at next-to-leading (NLO) chiral order. As we will see below, this cancellation is specific to NLO, and does not persist to higher order. Ref. \cite{29} does not provide a lattice determination of $[a^{SIB}_\mu]_{\text{disc}}$; instead using the NLO PQChPT expression for the contribution of the $\pi\pi$ intermediate state as an estimate, assigning to this estimate a 50% uncertainty. Results from the literature for $[a^{SIB}_\mu]_{\text{conn}}$ and $[a^{SIB}_\mu]_{\text{disc}}$ are summarized in Table I. Note that, while (as will be confirmed below), one expects finite volume (FV) effects to be small in the full connected-plus-disconnected SIB sum, this is not the case for the individual connected and disconnected components, and significant FV effects are, in fact, observed in the results for $[a^{SIB}_\mu]_{\text{conn}}$ reported in Refs. \cite{25, 27, 29}.

| $[a^{SIB}_\mu]_{\text{conn}} \times 10^{10}$ | $[a^{SIB}_\mu]_{\text{disc}} \times 10^{10}$ | Source |
|-------------------------------|-------------------------------|--------|
| 9.5(4.5)                      | —                             | \cite{30, 31} |
| 10.6(8.0)                     | —                             | \cite{27} |
| 6.0(2.3)                      | —                             | \cite{25} |
| 9.0(1.4)                      | -6.9(3.5)*                    | \cite{29} |
| 6.6(0.8)                      | -4.7(0.9)                     | \cite{23} |

In view of the inflation of the relative error in lattice determinations of $a^{SIB}_\mu$ expected from the strong cancellation between connected and disconnected contributions, an independent, continuum estimate of this quantity is of interest. In this paper, we provide such an estimate using $SU(3)$ chiral perturbation theory (ChPT).

The rest of the paper is organized as follows. In Section II we set notation, provide the explicit expression for $a^{SIB}_\mu$ as a weighted integral over Euclidean $Q^2$ of the IB part...
of the subtracted EM vacuum polarization, \( \hat{\Pi}^{SIB}(Q^2) \), and discuss the features of this expression which make a ChPT estimate of \( a^{SIB}_\mu \) feasible. In Section III, we provide the explicit form of the ChPT representation of \( \hat{\Pi}^{SIB}(Q^2) \) needed as input to this expression, and outline the flavor-breaking hadronic \( \tau \) decay sum rule analysis used to determine the input value for a key higher-order low-energy constant (LEC) needed to encode the effect of \( \rho - \omega \) mixing. This section also contains our numerical results for \( a^{SIB}_\mu \). Finally, Section IV contains a discussion of these results and our conclusions.

II. THE EUCLIDEAN INTEGRAL REPRESENTATION OF \( a^{SIB}_\mu \) AND FEASIBILITY OF A CHPT DETERMINATION

In what follows, the vector-current two-point functions, \( \Pi_{\mu \nu}^{ab} \), and associated scalar vacuum polarizations, \( \Pi^{ab} \), are defined, as usual, by

\[
\Pi_{\mu \nu}^{ab}(q) = (q_{\mu}q_{\nu} - q^2 g_{\mu \nu})\Pi^{ab}(Q^2) = i \int d^4xe^{iq \cdot x}\langle 0|T\{V_{\mu}^a(x)V_{\nu}^b(0)\}|0\rangle ,
\]

where \( Q^2 \equiv -q^2 \equiv -s \), and \( V_{\mu}^a \) are the members of the \( SU(3)_F \) octet of vector currents,

\[
V_{\mu}^a = \bar{q}\frac{\lambda^a}{2}\gamma_{\mu}q .
\]

The sum of the \( u, d \) and \( s \) contributions to the electromagnetic (EM) current then has the standard decomposition,

\[
J_{\mu}^{EM} = V_{\mu}^3 + \frac{1}{\sqrt{3}}V_{\mu}^8 ,
\]

into \( I = 1 \) \((a = 3)\) and \( I = 0 \) \((a = 8)\) contributions, and the vacuum polarization, \( \Pi_{EM}(Q^2) \), of the two-point function of this current the decomposition

\[
\Pi_{EM}(Q^2) = \Pi^{33}(Q^2) + \frac{2}{\sqrt{3}}\Pi^{38}(Q^2) + \frac{1}{3}\Pi^{88}(Q^2) \]

into pure isovector \((ab = 33)\), pure isoscalar \((ab = 88)\), and mixed isospin \((ab = 38)\) parts. Since strong isospin-breaking (SIB) is associated with the \( I = 1 \), \( O(m_d - m_u) \) component of the \( n_f = 3 \) QCD mass operator, SIB occurs, to leading order in \( m_d - m_u \), only in the 38 part of \( \Pi_{EM} \).

The resulting leading order, \( O(m_d - m_u) \) SIB component of the EM current vacuum polarization is then

\[
\Pi^{SIB}(Q^2) = \frac{2}{\sqrt{3}}\Pi^{38}_{QCD}(Q^2) \]

where the \( QCD \) subscript on the right-hand side denotes the \( O(m_d - m_u) \) QCD contribution and will be dropped in what follows.
A. The Euclidean $Q^2$ integral representation of $a_{\mu}^{S\mu B}$

The full LO, HVP contribution, $a_{\mu}^{LO,HVP}$, is given, in the Euclidean momentum-squared, $Q^2$, representation of Refs. [20, 21], by the weighted integral

$$a_{\mu}^{LO,HVP} = -4\alpha^2 \int_0^\infty dQ^2 f(Q^2)\hat{\Pi}_{EM}(Q^2),$$

with $\hat{\Pi}_{EM}$ the subtracted EM vacuum polarization defined above, $\alpha$ the EM fine structure constant, and $f(Q^2)$ the exactly known kernel

$$f(Q^2) = m_\mu^2 Q^2 Z^3 \frac{[1 - Q^2 Z]}{1 + m_\mu^2 Q^2 Z^2}$$

where

$$Z = \frac{\sqrt{Q^4 + 4m_\mu^2 Q^2} - Q^2}{2m_\mu^2 Q^2}. $$

For use in the discussion below, it is convenient to also define the related quantity, $a_{\mu}^{LO,HVP}(Q_{max}^2)$, obtained by replacing the upper limit of the integral in Eq. (2.6) by $Q_{max}^2$.

![Graph of $f(Q^2)$](image)

**FIG. 1:**
The product $Q^2 f(Q^2)$, with $f(Q^2)$ the weight appearing in the Euclidean integral representation, Eq. (2.6), of $a_{\mu}^{LO,HVP}$. 

5
The kernel $f(Q^2)$ diverges as $1/\sqrt{Q^2}$ as $Q^2 \to 0$ and falls rapidly with increasing $Q^2$, creating a peak in the integrand of Eq. (2.6) at very low $Q^2 \simeq m_\mu^2/4$. At such low $Q^2$, $\hat{\Pi}_{EM}(Q^2)$ should be very close to linear in $Q^2$, an expectation born out by an evaluation of $\hat{\Pi}_{EM}(Q^2)$ using $R(s)$ results from Ref. [7] as input to the subtracted dispersive representation

$$\hat{\Pi}_{EM}(Q^2) = -\frac{Q^2}{12\pi^2} \int_0^\infty ds \frac{R(s)}{s(s + Q^2)}.$$  \hspace{1cm} (2.9)

The location of the peak of the integrand in Eq. (2.6) is thus essentially just that of the maximum of the product $Q^2 f(Q^2)$. Figure 1 shows the behavior of this product as a function of $Q^2$. Note that an analogous figure for $\hat{\Pi}_{EM}(Q^2) f(Q^2)$, taking into account the deviation from linearity of $\hat{\Pi}_{EM}(Q^2)$ in the higher-$Q^2$ region, would show an additional suppression, increasing with $Q^2$, of contributions at higher $Q^2$ relative to those from the region of the peak.

The SIB contribution, $a_{\mu}^{SIB}$, is, similarly, given, in the Euclidean-$Q^2$ integral representation, by

$$a_{\mu}^{SIB} = -4\alpha^2 \int_0^\infty dQ^2 f(Q^2) \hat{\Pi}^{SIB}(Q^2).$$ \hspace{1cm} (2.10)

As for $\hat{\Pi}_{EM}(Q^2)$, $\hat{\Pi}^{SIB}(Q^2)$ will be very close to linear in $Q^2$ in the low-$Q^2$ region, and the maximum of the integrand in Eq. (2.10) will thus also occur at $Q^2 \simeq m_\mu^2/4$.

### B. The feasibility of a ChPT determination

The fact that the contributions to the integral representation in Eq. (2.10) are concentrated at low $Q^2$ raises the possibility that a reliable estimate of $a_{\mu}^{SIB}$ might be obtained using the ChPT representation of $\hat{\Pi}^{SIB}(Q^2)$. An estimate of how reliable such a determination might be can be obtained by studying the related $\hat{\Pi}^{33}(Q^2)$ case.

The utility of this estimate is based on the following similarities between the spectral functions, $\rho^{38}(s)$ and $\rho^{33}(s)$, of $\Pi^{38}(Q^2)$ and $\Pi^{33}(Q^2)$. First, $\rho^{38}(s)$ and $\rho^{33}(s)$ share a common threshold, $s = 4m_\pi^2$, as well as a common saturation of the low-$s$ region by contributions from $\pi\pi$ intermediate states. Second, while $\rho^{33}(s)$ is necessarily $\geq 0$ for all $s$, while $\rho^{38}(s)$ is not, the chiral representation of $\rho^{38}(s)$ shows $\rho^{38}(s)$ to be, like $\rho^{33}(s)$, positive in the low-$s$ $\pi\pi$ region. Third, both $\rho^{33}(s)$ and $\rho^{38}(s)$ show sizeable resonance enhancements in the $\rho-\omega$ region, as evidenced by the large $\rho$ peak in the $e^+e^- \to \pi^+\pi^-$ cross sections and the obvious IB interference shoulder, centered at $s = m_\omega^2$, on the upper side of that peak. The $\rho$ contribution to $\rho^{38}(s)$ is, of course, positive, while the $\rho-\omega$ interference contribution to $\rho^{38}(s)$ has a dispersive shape, with an important contribution which changes sign between $s < m_\omega^2$ and $s > m_\omega^2$.  \hspace{1cm} 1 Fits in the interference region using various phenomenological models allow one to obtain model-dependent separations of

1 See, e.g., Eq. (19), of Ref. [36].
the isospin-conserving (IC) 33 and IB 38 parts of the $\pi\pi$ cross sections. These can be converted to the corresponding IC and IB contributions to $R(s)$ and the resulting IB contributions integrated with the $a_\mu^{LO,HVP}$ dispersive weight to obtain model-dependent estimates of the IB $\rho-\omega$ interference region contribution to $a_\mu^{LO,HVP}$. Such estimates were obtained for a range of models in Refs. [35–37]. Strong cancellations, associated with the change of sign noted above and the narrowness of the interference region, were observed in all cases. These cancellations led to a significantly enhanced model dependence [35–37]. The sign of the integrated result was, however, positive over the full range of models considered, and hence the same as the sign of the IC $\rho$ contribution to $a_\mu^{LO,HVP}$. Integrating, instead, with the weight appearing in the subtracted dispersive representation, Eq. (2.9), one finds, similarly, a common sign for the IC $\rho$ contribution to $\Pi_{EM}(Q^2)$ and the IB $\rho-\omega$ interference region contribution to $\Pi^{SIB}(Q^2)$. From the point of view of $\Pi^{SIB}(Q^2)$ in the spacelike, $Q^2 > 0$ region, the narrow $\rho-\omega$ interference contribution to $\rho^{38}(s)$ is essentially indistinguishable from that of a narrow, averaged positive contribution located at $s = m^2_\omega$. As far as the subtracted polarizations are concerned, the spectral functions $\rho^{33}(s)$ and $\rho^{38}(s)$ are thus close analogues of one another all the way from threshold through the first resonance region, and a study of the features of the IC 33 contribution to the representation Eq. (2.6) can be used to obtain plausible expectations for the behavior of the corresponding representation, Eq. (2.10), of $a_\mu^{SIB}$.

This observation is of practical use because, in the isospin limit, $\hat{\Pi}^{33}(Q^2) = \frac{1}{2} \hat{\Pi}_{ud,V}(Q^2)$, where $\hat{\Pi}_{ud,V}(Q^2)$ is the subtracted polarization of the flavor $ud$, $I = 1$, vector current, whose spectral function, $\rho_{ud,V}(s)$, has been extracted from measured differential non-strange hadronic $\tau$ decay distributions by ALEPH [38, 39, 40, 41] and OPAL [39]. A version of $\hat{\Pi}_{ud,V}(Q^2)$ based on the OPAL results for $\rho_{ud,V}(s)$ and the subtracted dispersive representation, was constructed in Ref. [42] and used to study (i) the convergence of $a_\mu^{LO,HVP}(Q^2_{max})$ to the full IC $I = 1$ result, $a_\mu^{LO,HVP}$, as $Q^2_{max}$ was increased from zero to infinity, and (ii) the utility of various representations (including the ChPT representation) of $\hat{\Pi}_{ud,V}(Q^2)$ in the low-$Q^2$ region [42, 43]. It was found that $\sim 82\%$ of the $a_\mu^{LO,HVP}$ arises from $Q^2 < 0.10$ GeV$^2$, $\sim 92\%$ from $Q^2 < 0.2$ GeV$^2$, and $\sim 94\%$ from $Q^2 < 0.25$ GeV$^2 \simeq m^2_K$. With the region between $Q^2 = 0$ and $m^2_K$ plausibly in the range of validity of $SU(3)_F$ ChPT, we thus expect that a determination of $a_\mu^{SIB}$ obtained using ChPT for $\hat{\Pi}^{SIB}(Q^2)$ and truncating the integral in Eq. (2.10) at $Q^2_{max} = 0.25$ GeV$^2 \simeq m^2_K$ will miss only $\sim 6\%$ of the total contribution to $a_\mu^{SIB}$, provided the ChPT representation used is accurate over this integration region.

The OPAL-based version of $\hat{\Pi}^{33}(Q^2)$ constructed in Ref. [42] can also be used to explore the accuracy of results obtained using the ChPT representations of subtracted vector current polarizations in the region up to $Q^2 \simeq m^2_K$. To make a sensible estimate

---

2 See Figures 1 and 2 of Ref. [43] for plots showing the behavior of $f(Q^2)\hat{\Pi}_{ud,V}(Q^2)$ as a function of $Q^2$ and $a_\mu^{LO,HVP,33}(Q^2_{max}) = a_\mu^{33}(Q^2_{max})$ as a function of $Q^2_{max}$. Note that the quantity denoted $\hat{\Pi}_{ud,V}(Q^2)$ in Ref. [43] is $\Pi_{ud,V}(0) - \hat{\Pi}_{ud,V}(Q^2)$, and hence differs by an overall sign from that used in the current paper.
of the $I = 1$ (33) contribution to $a_\mu^{LO,HVP}$, the chiral order at which the representation of $\hat{\Pi}^{33}(Q^2)$ is truncated must be high enough to ensure the effect of the large $\rho$ peak in $\rho^{33}(s)$ is incorporated. This contribution first appears in the chiral expansion through the next-to-next-to-leading-order (NNLO) LEC, $C_{93}$, necessitating the use of the two-loop (NNLO) expression for $\hat{\Pi}^{33}(Q^2)$. Using this representation, with the value of the renormalized LEC $C_{93}(0.77 \text{ GeV})$ from Ref.[44] as input, one finds an NNLO ChPT estimate for $a_\mu^{33}(0.25 \text{ GeV}^2)$ which overshoots that produced by the OPAL-based version of $\hat{\Pi}^{33}(Q^2)$ by $\sim 4.8\%$. This slight over-shooting is a consequence of the fact that the NNLO representation of $\hat{\Pi}^{33}(Q^2)$ misses small, yet-higher-order contributions of the $\rho$ peak to the curvature of $\hat{\Pi}^{33}(Q^2)$ in the low-$Q^2$ region. The positivity of the $\rho$ contributions to $\rho^{33}(s)$ ensures that these contributions would, if included, decrease the magnitude of the resulting representation of $\hat{\Pi}^{33}(Q^2)$, producing a result for $a_\mu^{33}(0.25 \text{ GeV}^2)$ lower than that given by the NNLO representation. The (overshooting) effect of the truncation at NNLO and the (undershooting) effect of omitting contributions from $Q^2 > 0.25 \text{ GeV}^2$ thus work in opposite directions. The NNLO ChPT estimate, $a_\mu^{33}(0.25 \text{ GeV}^2)$, is, in fact, only $\sim 1.5\%$ below the full ($Q^2_{max} \to \infty$) $I = 1$ contribution to $a_\mu^{LO,HVP}$ implied by the OPAL-based dispersive version of $\hat{\Pi}^{33}(Q^2)$.

As we will see below, the ChPT result for $a_\mu^{SIB}(0.25 \text{ GeV}^2)$ is also dominated by the contribution of a higher-order LEC encoding resonance-region (in this case $\rho$-$\omega$) effects. Since, as noted above, the contribution of the $\rho$-$\omega$ interference region to the dispersive representation of $\hat{\Pi}^{SIB}(Q^2)$ is equivalent to that of a narrow, net positive contribution to $\rho^{38}(s)$ located at $s = m_\omega^2$, the effect of similarly missing resonance-region-induced, higher-order contributions to the low-$Q^2$ curvature of $\hat{\Pi}^{SIB}(Q^2)$ will be such that our ChPT estimate for $a_\mu^{SIB}(0.25 \text{ GeV}^2)$ will also slightly overshoot the true value of this quantity. There will thus, as in the case of the NNLO result for $a_\mu^{33}(0.25 \text{ GeV}^2)$, be a cancellation between the overshooting produced by the use of the truncated ChPT representation and the undershooting caused by the truncation of the integral representation at $Q^2_{max} = 0.25 \text{ GeV}^2$. In the analogous $a_\mu^{33}$ case, these effects are $O(\pm 5\%)$ and $O(-6\%)$, respectively. Based on these observations, we expect the combination of the truncation in chiral order and truncation of the integral representation at $Q^2 = 0.25 \text{ GeV}^2$ to produce an uncertainty of a few to several $\%$ in the truncated-in-chiral-order, $a_\mu^{SIB}(0.25 \text{ GeV}^2)$ estimate for $a_\mu^{SIB}$ obtained below. To be conservative, since this estimate for the uncertainty relies on results for the analogous, but not identical, $a_\mu^{33}$ case, we assign a significantly expanded 10$\%$ estimate for the contribution of these effects to the uncertainty on the ChPT-based $a_\mu^{SIB}(0.25 \text{ GeV}^2)$ estimate for $a_\mu^{SIB}$. 
III. THE CHPT ESTIMATE FOR $\hat{\Pi}^{SIB}(Q^2)$

A. $\hat{\Pi}^{SIB}(Q^2)$ to two loops in ChPT

The forms of the effective $SU(3)_F$ chiral Lagrangian to NLO and NNLO were worked out long ago in Refs. [45] and [46, 47]. The two-loop (NNLO) representation for the unsubtracted version of the IB polarization, $\Pi^{38}(Q^2)$, can be found in Ref. [48]. From this expression one finds, recasting the result in terms of the Euclidean variable $Q^2 = -q^2$, the following result for the subtracted version, $\hat{\Pi}^{38}(Q^2)$:

$$\hat{\Pi}^{38}(Q^2) = \frac{\sqrt{3}}{4} (m_{K^0}^2 - m_{K^*}^2)_{QCD} \left[ \frac{2i \tilde{B}(\bar{m}_K^2, Q^2)}{Q^2} - \frac{1}{48\pi^2 \bar{m}_K^2} + \frac{8i \tilde{B}(m_K^2, Q^2)}{f_\pi^2} \left( \frac{i}{2} \tilde{B}_{21}(m_\pi^2, Q^2) + i \tilde{B}_{21}(\bar{m}_K^2, Q^2) + \frac{\log (m_\pi^2 \bar{m}_K^4/\mu^6)}{384\pi^2} - L^r_9(\mu) \right) \right]$$

where $(m_{K^0}^2 - m_{K^*}^2)_{QCD}$ is the non-EM contribution to the kaon mass-squared splitting, $\bar{m}_K^2$ is the non-EM part of the average physical kaon squared mass, $(m_{K^0}^2 + m_{K^*}^2)/2$, $L^r_9$ is the usual renormalized NLO LEC of Gasser and Leutwyler [45], $\mu$ is the chiral renormalization scale, $\tilde{B}(m^2, Q^2)$ is the standard subtracted, equal-mass, two-propagator loop function, given, for $Q^2 > 0$, by

$$\tilde{B}(m^2, Q^2) = \frac{i}{8\pi^2} \left[ 1 - \sqrt{1 + 4m^2/Q^2} \tanh^{-1} \left( \frac{1}{\sqrt{1 + 4m^2/Q^2}} \right) \right],$$

and $\tilde{B}_{21}$ is the auxiliary loop function

$$\tilde{B}_{21}(m^2, Q^2) = \frac{1}{12} \left( 1 + \frac{4m^2}{Q^2} \right) \tilde{B}(m^2, Q^2) - \frac{i}{576\pi^2}.$$

Our convention for the pion decay constant is that used in Ref. [45], $f_\pi \simeq 92$ MeV. The first line of Eq. (3.1) contains the NLO contributions, the second line the NNLO contributions. The low-$Q^2$ expansion,

$$\frac{2i \tilde{B}(m^2, Q^2)}{Q^2} = \frac{1}{48\pi^2 m^2} + O(Q^2),$$

has been used in obtaining the subtracted form, Eq. (3.1), from the unsubtracted form given in Ref. [48]. The absence of an NLO pion loop contribution in Eq. (3.1) reflects the cancellation noted in Ref. [29] between NLO $\pi\pi$ intermediate state contributions to the connected and disconnected parts of $\hat{\Pi}^{38}$. The presence of the pion loop function factor, $\tilde{B}_{21}(m_\pi^2, Q^2)$, in the NNLO expression shows this cancellation does not persist beyond NLO. The result $L^r_9(\mu = 0.77 \text{ GeV}) = 0.00593(43)$ from Ref. [49] is used in obtaining numerical results below.
As is well known, the separation of IB effects into strong and EM contributions is ambiguous at $O(\alpha (m_d + m_u))$.\(^3\) Since $m_d - m_u$ and $m_d + m_u$ differ by only a factor of $\sim 3$ for physical $m_u$ and $m_d$, this ambiguity is, in fact, at the level of effects second order in IB, which we are neglecting. The impact of this ambiguity, in any case, lies entirely in the factor $(m_{K^0}^2 - m_{K^+}^2)_{QCD}$ in Eq. (3.1). At leading order in IB, this factor can be determined by subtracting the EM contribution to the K mass-squared splitting. This is related to the EM contribution to the pion mass-squared splitting by

\[
(m_{K^0}^2 - m_{K^+}^2)_{EM} = (m_{\pi^+}^2 - m_{\pi^0}^2)_{EM} (1 + \epsilon_D)
\]

where $\epsilon_D$ (which depends on the light quark masses) parametrizes the breaking of Dashen’s Theorem \cite{51}, and is equal to zero in the $SU(3)$ chiral limit. Since the experimental pion mass-squared splitting receives no SIB contribution at $O(\alpha (m_d - m_u))$, $(m_{\pi^+}^2 - m_{\pi^0}^2)_{EM}$ can, up to corrections second order in IB, be replaced by the corresponding experimental value. Using the FLAG 2019 \cite{50} $n_f = 2 + 1 + 1$ result, $\epsilon_D = 0.79(7)$, as input, we find

\[
(m_{K^0}^2 - m_{K^+}^2)_{QCD} = 0.00616(9) \text{ GeV}^2,
\]

a result valid to first order in IB.

Inputting the NNLO representation of $\hat{\Pi}^{38}(Q^2)$ given by Eq. (3.1) into Eq. (2.10), and using the numerical input specified above, one finds the following results for the NLO and NNLO contributions to $a_\mu^{SIB}(0.25 \text{ GeV}^2)$:

\[
[a_\mu^{SIB}(0.25 \text{ GeV}^2)]_{NLO} = 0.073 \times 10^{-10}
\]

\[
[a_\mu^{SIB}(0.25 \text{ GeV}^2)]_{NNLO} = 0.552(37) \times 10^{-10}
\]

where the error on the NNLO contribution is that induced by the uncertainty on the input for $L_5^0(0.77 \text{ GeV})$. The smallness of the NLO contribution in Eq. (3.7) is a reflection of the exact cancellation at NLO between connected and disconnected contributions from $\pi\pi$ intermediate states. The total to NNLO,

\[
[a_\mu^{SIB}(0.25 \text{ GeV}^2)]_{NLO+NNLO} = 0.625(37) \times 10^{-10},
\]

is also small, and dominated by the unsuppressed NNLO contribution. The smallness of the NLO+NNLO total should come as no surprise since no LEC encoding resonance-region $\rho-\omega$ interference contributions to $\hat{\Pi}^{38}(Q^2)$ appears in the NNLO representation Eq. (3.1). The situation is analogous to that of the ChPT representation of $\hat{\Pi}^{33}(Q^2)$, where the LEC, $C_{93}$, which encodes the dominant $\rho$ contribution, does not appear in the NLO representation. The next subsection addresses this shortcoming of the NNLO representation of $\hat{\Pi}^{38}(Q^2)$ and shows how results from flavor-breaking hadronic $\tau$ decay sum rules can be used to quantify the dominant contribution to $a_\mu^{SIB}$ from terms beyond NNLO in the chiral expansion.

\(^3\) A particularly clear discussion of this point is given in Sections 3.1.1 and 3.1.2 of the 2019 FLAG report \cite{50}.\]
B. Contributions to $\hat{\Pi}^{SIB}(Q^2)$ beyond two loops

The mesonic low-energy effective Lagrangian of ChPT has as explicit degrees of freedom only the low-lying, pseudoscalar mesons. The effects of resonance degrees of freedom, which have been integrated out, are encoded in the LECs of the effective theory. As is well known, contributions from the lowest-lying resonances provide estimates for these LECs which typically agree well with phenomenological determinations \[52\].

At low $Q^2$, the $\rho$-\omega mixing contribution to $\rho^{38}$ produces a leading low-$Q^2$ contribution to $\hat{\Pi}^{38}(Q^2)$ of the form $C_{\rho\omega}Q^2$ where $C_{\rho\omega}$ is a constant proportional to the product $f_\rho f_\omega \theta_{\rho\omega}$, with $f_\rho$ the $\rho$ decay constant (which parametrizes the $\rho$ coupling to $J^3_\mu$), $f_\omega$ the $\omega$ decay constant (which parametrizes the $\omega$ coupling to $J^8_\mu$) and $\theta_{\rho\omega}$ the IB parameter characterizing the strength of $\rho$-\omega mixing. No tree-level contribution of the form $CQ^2$ appears in the NNLO expression Eq. (3.1), establishing that $\rho$-\omega mixing effects are not yet encoded in the NNLO form. The reason for this absence is obvious. An operator in the effective Lagrangian producing an SIB, tree-level $CQ^2$ contribution to $\hat{\Pi}^{38}(Q^2)$ would have to include one factor of the quark mass matrix and four derivatives (two to produce the factor $(q_\mu q_\nu - g_{\mu\nu} q^2)$ in $\Pi^{38}_{\mu\nu}$ and two to produce the $Q^2$ in the $CQ^2$ contribution to $\hat{\Pi}^{38}(Q^2)$). Such an operator is NNNLO in the chiral counting. The LECs encoding the effects of $\rho$-\omega mixing (as well as of all other higher-energy degrees of freedom integrated out in forming the effective Lagrangian) thus do not appear in the chiral expansion of $\hat{\Pi}^{38}(Q^2)$ until NNNLO.

Model-dependent results for the contribution to $a_S^{SIB}$ from the $\rho$-\omega interference region can, of course, be obtained using experimental results for the $\pi\pi$ cross-sections in the interference region and separations of the IC and IB contributions to these cross sections produced by fits based on phenomenological models of the pion form factor $F_\pi(s)$. Such results, of course, provide no information about NNNLO (and higher) contributions to $a_S^{SIB}$ from other high-energy degrees of freedom also integrated out in forming the effective Lagrangian, though they do serve to provide an estimate of the expected scale of NNNLO and higher order contributions. Fits to a range of experimental $\pi\pi$ cross-section data sets involving models for which the resulting $\chi^2/dof$ was $< 1$ were found to produce $\rho$-\omega mixing contributions between $\sim 2 \times 10^{-10}$ and $\sim 5 \times 10^{-10}$ \[36, 53\], confirming the numerical importance of contributions beyond NNLO. Contributions other than that induced by $\rho$-\omega mixing, for example due to $\rho'$-\omega' mixing, are, of course, also expected at some level. With the $\rho'$ and $\omega'$ having comparable widths, and no analogue of the $\rho$-\omega interference shoulder evident in the $\pi\pi$ cross-sections in the $\rho'$-\omega' region, no similar phenomenological estimate is possible for such higher resonance contributions.

An advantage of the chiral representation of the low-$Q^2$ contributions to $a_S^{SIB}$ is that contributions from all degrees of freedom integrated out in forming the effective Lagrangian, not just those from the $\rho$-\omega interference region, will be encoded in the relevant NNNLO (and higher) LECs. It turns out that, at NNNLO, there is only one such LEC, denoted $\delta C_{93}^{(1)}$ in Ref. \[44\]. Retaining only vector external sources, $v_\mu = v^a_\mu \lambda^a / 2$, the form of the associated NNNLO term in the effective Lagrangian needed to generate tree-level
contributions to vector-current two-point functions reduces to

\[ 8B_0 Q^2 \delta C_{93}^{(1)} \text{Tr} \left[ M \gamma^\mu \gamma^\nu \right] \left( g_\mu q_\nu - g_{\mu\nu} q^2 \right), \tag{3.10} \]

where \( M \) is the quark mass matrix and \( B_0 \) the standard leading-order (LO) LEC, related to the chiral limit value of the quark condensate. The tree-level contribution to \( \hat{\Pi}_{38}^{\mu\nu} \) and thence to \( \hat{\Pi}_{38} \) is obtained by taking the second derivative of this expression with respect to \( v_3^\mu \) and \( v_8^\nu \). An estimate of beyond-NNLO contributions to \( a_{SIB}^{\mu} \) thus requires only a determination of the LEC \( \delta C_{93}^{(1)} \).

The situation for the chiral representation of \( a_{SIB}^{\mu} \) is similar to that of the chiral representation of the \( I = 1 (ab = 33) \) contribution to \( a_{\mu}^{LO,HVP} \), where the leading (tree-level LEC) contribution from the \( \rho \) resonance enters beginning only at NNLO. The NLO representation thus produces a dramatic underestimate of \( a_{\mu}^{LO,HVP,33} \). As noted above, this underestimate is almost completely cured once NNLO contributions, including, in particular, the \( \rho \)-dominated contribution proportional to \( C_{93} \), are included.

It turns out that the NNNLO LEC, \( \delta C_{93}^{(1)} \), which encodes the contributions to \( a_{SIB}^{\mu} \), at NNLO, from all degrees of freedom integrated out in forming the effective Lagrangian (including those from the \( \rho - \omega \) interference region) has already been determined in a flavor-breaking (FB), inverse-moment finite-energy sum rule (IMFESR) analysis of non-strange and strange hadronic \( \tau \) decay distribution data \([44]\). We outline this determination below, and provide a numerical update of its results for \( \delta C_{93}^{(1)} \).

FB hadronic \( \tau \) data can be used to determine \( \delta C_{93}^{(1)} \) because of the close relation between \( \hat{\Pi}_{38}^{38}(Q^2) \) and the FB vector current combination \( \hat{\Pi}_{ud-us;V}^{38}(Q^2) \equiv \hat{\Pi}_{ud;V}(Q^2) - \hat{\Pi}_{us;V}(Q^2) \). \( \hat{\Pi}_{ud-us;V} = \hat{\Pi}_{11}^{38} + \hat{\Pi}_{22}^{38} - \hat{\Pi}_{44}^{38} - \hat{\Pi}_{55}^{38} \), and hence involves symmetric products of flavor-octet vector currents. The FB component of the QCD quark mass operator

\[ -\frac{2}{\sqrt{3}} (m_s - m_u - m_d) \bar{q} \frac{\lambda^8}{2} \]

is proportional to the \( a = 8 \) member of the flavor octet, \( S^a = \bar{q} \frac{\lambda^2}{2} q \), of light-quark scalar densities. The FB combination \( \hat{\Pi}_{ud-us;V} \) thus, to first order in FB, is determined by the \( a = 8 \) member of the symmetric \( \delta_F \) multiplet of the products of octet vector currents. Since the SIB component of the QCD quark mass operator

\[ - (m_d - m_u) \bar{q} \frac{\lambda^3}{2} q \]

is proportional to the \( a = 3 \) member of the same octet of scalar densities, and \( \Pi_{38}^{38} \) involves the symmetric product, \( J_\mu^3 J_\nu^3 + J_\mu^3 J_\nu^3 \), of two members of the same octet of vector currents,
\(\hat{\Pi}^{38}\), is determined, to first order in SIB, by the \(a = 3\) member of the same symmetric \(8_F\) multiplet of products of the octet vector currents. A determination of the contributions beyond NNLO to \(\hat{\Pi}_{ud-us;V}\) will thus, up to corrections higher order in \(SU(3)_F\) breaking, also provide a determination of the contributions beyond NNLO to \(\hat{\Pi}^{38}\).

The NNNLO version of the relation between these two quantities follows immediately from the structure of the NNNLO operator in (3.10). The FB NNNLO contribution to \(\hat{\Pi}_{ud-us;V}(Q^2)\) and SIB NNNLO contribution to \(\hat{\Pi}^{SIB}(Q^2)\) produced by this operator are

\[
\left[\hat{\Pi}_{ud-us;V}(Q^2)\right]_{NNNLO,LEC} = -8Q^2(m_K^2 - m^2_\pi)\delta C^{(1)}_{93}
\]

and

\[
\left[\hat{\Pi}^{SIB}(Q^2)\right]_{NNNLO,LEC} = -\frac{8}{3}Q^2(m_{K^0}^2 - m_{K^+}^2)_{QCD}\delta C^{(1)}_{93}
\]

where the LO relations \(B_0(m_s - m_u) = m_K^2 - m_\pi^2\) and \(B_0(m_d - m_u) = (m_{K^0}^2 - m_{K^+}^2)_{QCD}\) have been used to recast the results in terms of pseudoscalar meson masses. While (since they encode resonance-region contributions missing at NNLO) we expect these terms to dominate the contributions beyond NNLO, the argument above shows that the relation between NNNLO and higher FB contributions to \(\hat{\Pi}_{ud-us;V}(Q^2)\) and NNNLO and higher SIB contributions to \(\hat{\Pi}^{SIB}(Q^2)\) is more general, and extends beyond the relation between the tree-level NNNLO contributions.

We now outline the determination of \(\delta C^{(1)}_{93}\) from the FB IMFESR analysis of hadronic \(\tau\) decay data. This analysis is favored as a means of determining \(\delta C^{(1)}_{93}\) because the spectral functions, \(\rho_{ud;V}(s)\) and \(\rho_{us;V}(s)\), of \(\hat{\Pi}_{ud;V}\) and \(\hat{\Pi}_{us;V}\) can be determined experimentally, up to \(s = m_{\tau}^2\), from the measured differential non-strange and strange hadronic \(\tau\) decay distributions \([54]\). Experimental data can thus be used to evaluate the first term on the right-hand side of the FB IMFESR

\[
\frac{d\hat{\Pi}_{ud-us;V}(Q^2)}{dQ^2}\bigg|_{Q^2=0} = -\frac{1}{4m_{\tau}^2} \int_{s_{0}}^{s_{0}} \frac{ds}{s} w_\tau(s/s_{0}) \rho_{ud;V}(s) - \rho_{us;V}(s) \frac{\hat{\Pi}_{ud-us;V}(Q^2 = -s)}{s^2}
\]

provided \(s_{0} \leq m_{\tau}^2\). The operator product expansion (OPE) is used to evaluate the (numerically very small) second term on the right-hand side. The \(\tau\) kinematic weight factor, \(w_\tau(x) = 1 - 3x^2 + 2x^3\), with \(x = s/s_{0}\), has been included (i) because of its double zero at \(s = s_{0}\), which serves to suppress duality violating contributions and improve the accuracy of the OPE approximation \([55, 56]\), and (ii) because its derivative with respect to \(s\) at \(s = 0\) is 0, which ensures only the derivative of the polarization with respect to \(Q^2\) appears on the left-hand side. Analogous IMFESRs provide the slopes with respect to \(Q^2\), at \(Q^2 = 0\), of the separate non-strange and strange polarizations \(\hat{\Pi}_{ud;V}\) and \(\hat{\Pi}_{us;V}\).

The chiral representations of \(\hat{\Pi}_{ud;V}(Q^2)\) and \(\hat{\Pi}_{us;V}(Q^2)\) are known to NNLO and given in Ref. \([57]\). Both contain numerically small NLO and NNLO loop contributions and a
common, numerically dominant tree-level NNLO LEC contribution $8Q^2 C_{93}^\rho$ encoding the leading $\rho$ contribution to $\hat{\Pi}_{ud,V}(Q^2)$ and $K^*$ contribution to $\hat{\Pi}_{us,V}(Q^2)$. These leading representations of resonance-region effects cancel in the NNLO representation of the FB difference $\hat{\Pi}_{ud-us,V}(Q^2)$. Resonance-region contributions to $\hat{\Pi}_{ud-us,V}(Q^2)$ thus, as for $\hat{\Pi}(Q^2)$ (and for the same reason as in the $\hat{\Pi}(Q^2)$ case) first enter at NNLO in the chiral expansion. Contributions to the slopes with respect to $Q^2$ of $\hat{\Pi}_{ud,V}(Q^2)$ and $\hat{\Pi}_{us,V}(Q^2)$ in the low-$Q^2$ region are expected to be dominated by the effects of the $\rho$ and $K^*$ resonances. Since these contributions produce slopes at $Q^2 = 0$ which, in the narrow width approximation, are proportional to $f_\rho^2/m_\rho^4$ and $f_{K^*}^2/m_{K^*}^4$, a FB difference of order $\sim 40\%$ between the $\hat{\Pi}_{ud,V}(Q^2)$ and $\hat{\Pi}_{us,V}(Q^2)$ slopes would not be unexpected. A difference of this magnitude is easily determinable from the FB IMFESR, Eq. (3.16),

The slope $\left.\frac{d\hat{\Pi}_{ud-us,V}(Q^2)}{dQ^2}\right|_{Q^2=0}$, was determined in Ref. [44] using then-current OPE input and $\rho_{ud,V}(s)$ and $\rho_{us,V}(s)$ obtained from then-current versions of the non-strange and strange experimental $\tau$ decay distributions. Important inputs to this analysis are the exclusive-mode strange $\tau$ branching fractions (BFs), which set the overall scales of the corresponding exclusive-mode contributions to $\rho_{us,V}(s)$. At the time of the analysis of Ref. [44], there was a disagreement between the HFAG assessments of the two $\tau \to K\pi\nu_\tau$ BFs and the expectations for these BFs from the dispersive analysis of Ref. [58] (ACLP). Since the sum of these BFs sets the normalization for the dominant $K\pi$ contribution to $\rho_{us,V}(s)$, this disagreement produced a disagreement between results for the FB slope at $Q^2 = 0$ obtained using the HFAG and ACLP $K\pi$ normalizations. Ref. [44] thus quoted two different determinations of the FB slope difference, and hence two different results for $\delta C_{93}^{(1)}$, the latter obtained assuming the slope difference is dominated by the NNLO contribution.

New experimental information has since resolved the $K\pi$ BF discrepancy in favor of the dispersive ACLP expectation: the sum of the $\tau \to K\pi\nu_\tau$ BFs reported in the 2019 HFLAV compilation [59] agrees well with the ACLP expectation and, in addition, has a significantly smaller uncertainty. We have thus updated the determination of $\delta C_{93}^{(1)}$ in Ref. [44] using (i) current 2019 HFLAV results for all $\tau$ BFs and correlations, (ii) the updated determination of $\rho_{ad,V}(s)$ reported in Ref. [60], (iii) updated PDG [61] input for $\alpha_s$, $V_{ud}$ and $V_{us}$, (iv) updated 2019 FLAG [50] input for the light-quark masses, and (v) the most recent HPQCD result [62] for the strange-to-light-quark condensate ratio. While included for completeness, updates other than those to the $\tau \to K\pi\nu_\tau$ BFs have negligible impact on the results for the FB slope difference. The updated result

$$\left.\frac{d\hat{\Pi}_{ud-us,V}(Q^2)}{dQ^2}\right|_{Q^2=0} = -0.0862(24) \text{ GeV}^{-2}$$

has an improved error and central value very close to the ACLP-based result, $-0.0868(40) \text{ GeV}^{-2}$, of Ref. [44]. The updated slope produces an updated estimate

$$\delta C_{93}^{(1)} (m_K^2 - m_\rho^2) = 0.00534(37) \text{ GeV}^{-2}$$
for the NNNLO LEC $\delta C_{93}^{(1)}$.

Our assessment of the NNNLO contribution to $\hat{\Pi}_{SIB}^{N}(Q^2)$ is obtained by substituting

$$\text{Eq. (3.18) into (3.14).}$$

Weighting this expression with the factor $-4\alpha^2 f(Q^2)$ appearing in Eq. (2.10) and integrating between $Q^2 = 0$ to 0.25 $GeV^2$ produces our estimate,

$$\left[ a_{\mu}^{SIB}(0.25 GeV^2) \right]_{NNNLO} = 2.69(18) \times 10^{-10},$$

for the NNNLO contribution to $a_{\mu}^{SIB}(0.25 GeV^2)$, and hence for the NNNLO contribution to $a_{\mu}^{SIB}$. The error in Eq. (3.19) reflects only the uncertainty on the input for $\delta C_{93}^{(1)}$ from Eq. (3.18). We assign an additional $\sim 30\%$ uncertainty to the NNNLO result to account for the absence of small non-resonance-induced NNNLO loop contributions and the impact of possible contributions higher order in FB to the slope at $Q^2 = 0$ of $\hat{\Pi}_{ud-us;V}(Q^2)$.

FIG. 2:
The NLO, NNLO and NNNLO LEC contributions to $\hat{\Pi}_{38}^{N}(Q^2)$. The errors on the NNLO and NNNLO LEC points are those induced by the uncertainties on the input value for $L_9^1$ and the contribution to the error on $\delta C_{93}^{(1)}$ quoted in Eq. (3.18), respectively.

$^5$ The FB IMFESR provides an essentially purely experimental determination of the FB slope difference. The associated determination of $\delta C_{93}^{(1)}$, however, relies on the assumption that this result is dominated by the leading-order-in-FB contribution associated with the NNNLO operator (3.10). This assumption might be subject to $O(30\%)$ $SU(3)_F$ corrections.
Figure 2 shows the $Q^2$ dependence of the NLO, NNLO and “NNNLO LEC” contributions to $\hat{\Pi}^{SIB}(Q^2)$, where “NNNLO LEC” denotes the tree-level contribution proportional to $\delta C^{(1)}_{93}$. It is clear that the NNNLO LEC contribution is numerically dominant, and that, although the loop functions which determine the NLO and NNLO contributions are not strictly linear in $Q^2$, they are, numerically, very close to being so, in the region of interest to us. The errors on the NNLO and NNNLO LEC contributions are those associated with the uncertainty on the input for $L_9^\nu$, and that on the leading-order-in-FB result, Eq. (3.18), for $\delta C_{93}^{(1)}$.

Adding to the NNNLO LEC result, (3.19), the NLO and NNLO contributions (3.7) and (3.8), we obtain our final estimate for $a_\mu^{SIB}$:

$$a_\mu^{SIB} = 3.32(4)(19)(33)(81) \times 10^{-10},$$  \hspace{1cm} (3.20)

where the first error is that induced on the NNLO contribution by the uncertainty on the input for $L_9^\nu$, the second is that associated with the error on the FB IMFESR estimate, Eq. (3.18), for $\delta C_{93}^{(1)}$, the third is our 10% estimate for the uncertainty produced by the combination of truncating the integral for $a_\mu^{SIB}$ at $Q^2_{\max} = 0.25 \text{ GeV}^2$ and neglecting contributions beyond NNLO to the curvature of $\hat{\Pi}^{SIB}(Q^2)$, and the fourth is that induced by our $\sim 30\%$ estimate for the uncertainty in $\delta C_{93}^{(1)}$ induced by possible higher-order FB contributions to the slope of $\hat{\Pi}_{ud-usV}(Q^2)$ at $Q^2 = 0$ obtained from the updated version of the FB IMFESR analysis of Ref. [44].

The NLO, NNLO and NNNLO LEC contributions to $a_\mu^{SIB}[Q^2_{\max}]$, together with the NLO+NNLO+NNNLO LEC total, are shown as a function of $Q^2_{\max}$ in Figure 3. The error band on the total shows the quadrature sum of the LEC-uncertainty-induced NNLO and NNNLO LEC errors plotted in Fig. 2.

IV. SUMMARY AND CONCLUSIONS

We have obtained a continuum, ChPT-based estimate of the SIB contribution, $a_\mu^{SIB}$, to $a_\mu^{LO,HVP}$, the leading-order, hadronic-vacuum-polarization contribution to the anomalous magnetic moment of the muon. As shown in Figs. 2 and 3, the NLO contribution to this result is very small, presumably as a consequence of the cancellation at this order between disconnected and connected contributions from $\pi\pi$ intermediate states. The NNLO contribution, though significantly larger, is also sub-dominant, a result not unexpected given the absence of terms encoding resonance-region contributions from the NNLO representation. Resonance-region contributions first appear in the chiral expansion of $a_\mu^{SIB}$ at NNLO, encoded in the NNNLO LEC $\delta C_{93}^{(1)}$. Our full estimate, (3.20), for $a_\mu^{SIB}$ is thus,
FIG. 3: The accumulation of the NLO, NNLO and NNNLO LEC contributions to $a_{\mu}^{SIB}$ as a function of the upper integration limit, $Q_{\text{max}}^2$. The errors on the NNLO and NNNLO LEC contributions have been suppressed. The shaded band shows the error on the sum of the NLO, NNLO and NNNLO LEC contributions obtained by summing the NNLO and NNNLO LEC errors from Fig. 2 in quadrature.

as expected, dominated by the NNNLO contribution proportional to $\delta C_{93}^{(1)}$. Fortunately, an estimate for this LEC can be obtained from a FB IMFESR analysis of experimental hadronic $\tau$ decay distributions, and we have updated the original version of this analysis, reported in Ref. [44], to take into account subsequent, numerically relevant changes to the normalization of the dominant $K\pi$ contribution to the strange experimental distribution. The resulting NNNLO LEC contribution to $a_{\mu}^{SIB}$ is similar in size to the results of phenomenological estimates for the contribution from the $\rho-\omega$ interference region based on model-dependent fits to experimental interference-region $e^+e^- \rightarrow \pi^+\pi^-$ cross sections, confirming the importance of contributions from the $\rho-\omega$ region. The ChPT analysis has the advantage, over such phenomenological estimates of the contribution from this one, narrow region only, of including also contributions from the lower-$Q^2$ region, evaluated in the model-independent chiral framework, as well as those from regions of the spectrum above $s \simeq m_{\omega}^2$ where the absence of experimentally observable IB interference effects makes analogous phenomenological estimates impossible.

The dominance of the result in Eq. (3.20) by the NNNLO LEC term in the chiral representation of $\bar{\Pi}^{38}(Q^2)$ and hence by contributions from higher-energy (short-distance) resonance degrees of freedom confirms the expectation that, once connected and disconnected contributions have been summed, FV effects in lattice determinations of $a_{\mu}^{SIB}$ will
be small, relative to $a_\mu^{SIB}$, and hence can be neglected on the scale of the current precision goal for the determination of $a_\mu^{LO,HVP}$. The situation for the relative size of FV effects should, in fact, be similar to that of the $I = 1$ contribution, $a_\mu^{33}$, where the contribution proportional to the NNLO LEC $C_{93}$ which encodes the higher-energy $\rho$ degree of freedom also dominates the chiral representation. The only difference between the two cases is a practical one: while few-to-several percent FV corrections to the large $a_\mu^{33}$ contribution are far from numerically negligible on the scale of the current precision target, analogous few-to-several percent FV corrections to the much (more than two orders of magnitude) smaller SIB contribution are entirely negligible on that same precision target scale.

Combining the errors from Eq. (3.20) in quadrature, we find for our final result

$$a_\mu^{SIB} = 3.32(89) \times 10^{-10} .$$

The central value is larger than that of the BMW lattice result,

$$[a_\mu^{SIB}]_\text{BMW} = 1.93(83)(87) \times 10^{-10} = 1.93(1.20) \times 10^{-10}$$

obtained by summing the connected and disconnected contributions reported in Ref. [23], but compatible with it within errors.\(^6\)

We close by noting that, given the dominance of the result by the contribution proportional to the NNNLO LEC $\delta C_{93}^{(1)}$, and the leading linear-in-$Q^2$ behavior of this contribution, it would be of interest were future lattice studies to quote results for the slope of $\Pi^{SIB}(Q^2)$ with respect to $Q^2$ at $Q^2 = 0$, a result obtainable from the $t^4$ time moment of the two-point function at zero spatial momentum [63].

Acknowledgments

The work of C.L.J., R.L. and K.M. is supported by the Natural Sciences and Engineering Research Council of Canada

\[1\] G.W. Bennett, et al., Phys. Rev. Lett. 89, 101804 (2002) [arXiv:hep-ex/0208001].
[2] G.W. Bennett, et al., Phys. Rev. Lett. 92, 161802 (2004) [arXiv:hep-ex/0401008].
[3] G.W. Bennett, et al., Phys. Rev. D73, 072003 (2006) [arXiv:hep-ex/0602035].
[4] B. Abi, et al., Phys. Rev. Lett. 126, 141801 (2021) [arXiv:2104.03281 [hep-ex]].
[5] T. Aoyama, et al., Phys. Rep. 887, 1 (2020) [arXiv:2006.04822 [hep-ph]].
[6] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C80, 241 (2020) (Erratum: Eur. Phys. J. C80, 410 (2020) [arXiv: 1908.00921 [hep-ph]].

\(^6\) The statistical and systematic errors, $0.83 \times 10^{-10}$ and $0.87 \times 10^{-10}$, on the BMW result are the quadrature sums of the corresponding statistical/systematic errors on the connected and disconnected contributions. We thank Laurent Lellouch for clarification on how these errors should be combined.
[7] A. Keshavarzi, D. Nomura and T. Teubner, Phys. Rev. D97, 114025 (2018) [arXiv:1802.02995 [hep-ph]].
[8] A. Keshavarzi, D. Nomura and T. Tuebner, Phys. Rev. D101, 014029 (2020) [arXiv:1911.00367 [hep-ph]].
[9] F. Jegerlehner, The Anomalous Magnetic Moment of the Muon, Springer Tracts Mod. Phys. 274, 1 (2017).
[10] B. Aubert, et al., Phys. Rev. Lett. 103, 231801 (2009) [arXiv:/0908.3589 [hep-ex]].
[11] J.P. Lees, et al., Phys. Rev. D86, 032013 (2012) [arXiv:1205.2228 [hep-ex]].
[12] A. Anastasi et al., JHEP 03, 173 (2018) [arXiv:1711.03085 [hep-ex]].
[13] R.R. Akhmetshin, et al., Phys. Lett. B578, 108 (2004) [arXiv:hep-ex/0308008].
[14] V.M. Aulchenko, et al., JETP Lett. 82, 743 (2005) [arXiv:hep-ex/0603021].
[15] R.R. Akhmetshin, et al., Phys. Lett. B648, 28 (2007) [arXiv:hep-ex/0610021].
[16] M. Ablikim, et al., Phys. Lett. B753, 629 (2016) [arXiv:1507.08188 [hep-ex]].
[17] T. Xiao, S. Dobbs, A. Tomaradze, K. Seth and G. Bonvicini, Phys. Rev. D97, 032012 (2018) [arXiv:1712.04530 [hep-ex]].
[18] M.N. Achasov, et al., JHEP 01, 113 (2021) [arXiv:2004.00263 [hep-ex]].
[19] T. Blum, Phys. Rev. Lett. 91, 052001 (2003) [arXiv:hep-lat/0212018].
[20] B.E. Lautrup, A. Peterman and E. de Rafael, Phys. Rep. 3, 193 (1972).
[21] E. de Rafael, Phys. Lett. B322, 239 (1994) [arXiv:hep-ph/9311316].
[22] Sz. Borsanyi, et al., Phys. Rev. Lett. 121, 022002 (2018) [arXiv:1711.04980 [hep-lat]].
[23] Sz. Borsanyi, et al., Nature 593, 51 (2021) [arXiv:2002.12347 [hep-lat]].
[24] D. Giusti, F. Sanfilippo and S. Simula, Phys. Rev. D98, 114504 (2018) [arXiv:1808.00888 [hep-lat]].
[25] D. Giusti, V. Lubicz, G. Martinelli, F. Sanfilippo and S. Simula, Phys. Rev. D99, 114502 (2019) [arXiv:1901.10462 [hep-lat]].
[26] D. Giusti and S. Simula, PoS LATITCE2019, 104 (2019) [arXiv:1910.03874 [hep-lat]].
[27] T. Blum, P.A. Boyle, V. Gülpers, T. Izbuchi, L. Jin, C. Jung, A. Jüttner, C. Lehner, A. Portelli and J.T. Tsang, Phys. Rev. Lett. 121, 022003 (2018) [arXiv:1801.07224 [hep-lat]].
[28] V. Gülpers, A. Jüttner, C. Lehner and A. Portelli, PoS LATTICE2018, 134 (2018) [arXiv”1812.09562 [hep-lat]].
[29] C. Lehner and A.S. Meyer, Phys. Rev. D101, 074515 (2020) [arXiv:2003.04177 [hep-lat]].
[30] B. Chakraborty, et al., Phys. Rev. Lett. 120, 152001 (2018) [arXiv:1710.11212 [hep-lat]].
[31] C.T.H. Davies, et al., Phys. Rev. D101, 034512 (2020) [arXiv:1902.04223 [hep-lat]].
[32] A. Gérardin, M. Cè, G. von Hippel, B. Hörz, H.B. Meyer, D. Mohler, K. Ottnad, J. Wilhelm and H. Wittig, Phys. Rev. D100, 014510 (2019) [arXiv:1904.03120 [hep-lat]].
[33] E. Shintani and Y. Kuramashi, Phys. Rev. D100, 034517 (2019) [arXiv:1902.00885 [hep-lat]].
[34] C. Aubin, T. Blum, C. Tu, M. Golterman, C. Jung and S. Peris, Phys. Rev. D101, 014503 (2020) [arXiv:1905.09307 [hep-lat]].
[35] K. Maltman and C.E. Wolfe, Phys. Rev. D73, 013004 (2006) [arXiv:hep-ph/0509224].
[36] C.E. Wolfe and K. Maltman, Phys. Rev. D80, 114024 (2009) [arXiv:0908.2391 [hep-ph]].
[37] C.E. Wolfe and K. Maltman, Phys. Rev. D83, 077301 (2011) [arXiv:1011.4511 [hep-ph]].
[38] R. Barate, et al., Eur. Phys. J. C4, 409 (1998).
[39] K. Ackerstaff, et al., Eur. Phys. J. C7, 571 (1999) [arXiv:hep-ex/9808019].
[40] S. Schael, et al., Phys. Rept. 421, 191 (2005) [arXiv:hep-ex/0506072].
[41] M. Davier, A. Höcker, B. Malaescu, C.-Z. Yuan and Z.-Q. Zhang, Eur. Phys. J. C74, 2803 (2014) [arXiv:1312.1501 [hep-ex]].
[42] M. Golterman, K. Maltman and S. Peris, Phys. Rev. D88, 114508 (2013) [arXiv:1309.2153 [hep-lat]].
[43] M. Golterman, K. Maltman and S. Peris, Phys. Rev. D90, 074508 (2014) [arXiv:1405.2389 [hep-lat]].
[44] M. Golterman, K. Maltman and S. Peris, Phys. Rev. D96, 045027 (2017) [arXiv:1706.03672 [hep-ph]].
[45] J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).
[46] H. Fearing and S. Scherer, Phys. Rev. D53, 315 (1996) [arXiv:hep-ph/9408346].
[47] J. Bijnens, G. Colangelo and G. Ecker, JHEP 02, 020 (1999) [arXiv:hep-ph/9902437].
[48] K. Maltman, Phys. Rev., D53, 2573 (1996) [arXiv:hep-ph/9504404].
[49] J. Bijnens and P. Talavera, JHEP 03, 046 (2002) [arXiv:hep-ph/0203049].
[50] S. Aoki, et al., Eur. Phys. J. C80, 113 (2020) [arXiv:1902.08191 [hep-lat]].
[51] R.F. Dashen, Phys. Rev. 183, 1245 (1969).
[52] G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl. Phys. B321, 311 (1989).
[53] M. Davier, et al., Eur. Phys. J. C66, 127 (2010) [arXiv:0906.5443 [hep-ph]].
[54] Y.-S. Tsai, Phys. Rev. D4, 2821 (1971); Erratum: Phys. Rev. D13, 771 (1976).
[55] K. Maltman, Phys. Lett. B440, 367 (1998) [arXiv:hep-ph/9901239].
[56] C.A. Dominguez and K. Schilcher, Phys. Lett. B448, 93 (1999) [arXiv:hep-ph/9811261].
[57] G. Amoros, J. Bijnens and P. Talavera, Nucl. Phys. B568, 319 (2000) [arXiv:hep-ph/9907264].
[58] M. Antonelli, V. Cirigliano, A. Lusiani and E. Passemar, JHEP 10, 070 (2013) [arXiv:1304.8134 [hep-ph]].
[59] Y.S. Amhis, et al., Eur. Phys. J. C81, 226 (2021) [arXiv:1909.12524 [hep-ex]].
[60] D. Boito, M. Golterman, K. Maltman, S. Peris, M.V. Rodrigues and W. Schaaf, Phys. Rev. D103, 034028 (2021) [arXiv:2012.10440 [hep-ph]].
[61] P.A. Zyla, et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[62] C.T.H. Davies, et al., Phys. Rev. D100, 034506 (2019) [arXiv:1811.04305 [hep-lat]].
[63] B. Chakraborty, C.T.H. Davies, G.C. Donald, R.J. Dowdall,, J. Koponen, G.P. Lepage and T. Teubner, Phys. Rev. D89, 114501 (2014) [arXiv:1403.1778 [hep-lat]].