Jiang, Wenshuai; Naber, Aaron
L^2 curvature bounds on manifolds with bounded Ricci curvature. (English)
Ann. Math. (2) 193, No. 1, 107-222 (2021).

Authors’ abstract: Consider a Riemannian manifold with bounded Ricci curvature $|\text{Ric}| \leq n - 1$ and the noncollapsing lower volume bound $\text{Vol}(B_1(p)) > v > 0$. The first main result of this paper is to prove that we have the L^2 curvature bound $f_{B_r(p)}(\text{Rm})^2(x) < C(n,v)$, which proves the L^2 conjecture. In order to prove this, we will need to first show the following structural result for limits. Namely, if $(M^n, d_j, p_j) \to (X, d, p)$ is a GH-limit of noncollapsed manifolds with bounded Ricci curvature, then the singular set $\mathcal{S}(X)$ is $n-4$ rectifiable with the uniform Hausdorff measure estimates $H^{n-4}(\mathcal{S}(X) \cap B_r) < C(n,v)$ which, in particular, proves the $(n-4)$-finiteness conjecture of Cheeger-Colding. We will see as a consequence of the proof that for $n-4$ a.e. $x \in \mathcal{S}(X)$, the tangent cone of X at x is unique and isometric to $\mathbb{R}^{n-4} \times C(S^3/\Gamma_x)$ for some $\Gamma_x \subseteq O(4)$ that acts freely away from the origin.

Reviewer: V. K. Chaubey (Gorakhpur)

MSC:
53B20 Local Riemannian geometry
35A21 Singularity in context of PDEs

Keywords:
Ricci; curvature; stratification; singularity

Full Text: DOI arXiv

References:
[1] Naber, Aaron; Valtorta, Daniele, Rectifiable-{R}eifenberg and the regularity of stationary and minimizing harmonic maps, Ann. of Math. (2). Annals of Mathematics. Second Series, 185, 131-227 (2017); Zbl 1393.58009 · doi:10.4007/annals.2017.185.1.3
[2] Anderson, Michael T., Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc., Journal of the American Mathematical Society, 2, 455-490 (1989); Zbl 0694.53045 · doi:10.2307/1990939
[3] Anderson, Michael T., Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math., Inventiones Mathematicae, 102, 429-445 (1990); Zbl 0711.53038 · doi:10.1007/BF01233434
[4] Anderson, Michael T., Hausdorff perturbations of $\{\text{R}\}$icci-flat manifolds and the splitting theorem, Duke Math. J., Duke Mathematical Journal, 68, 67-82 (1992); Zbl 0767.53029 · doi:10.1215/S0012-7094-92-06083-7
[5] Anderson, Michael T., Einstein metrics and metrics with bounds on $\{\text{R}\}$icci curvature. Proceedings of the $\{\text{I}\}$nternational $\{\text{C}\}$ongress of $\{\text{M}\}$athematicians, $\{\text{V}\}$ol. 1, 2 ($\{\text{Z}\}$ürich, 1994), 443-452 (1995); Zbl 0840.53036 · doi:10.1007/978-3-0348-9078-6:7
[6] Bando, Shigetoshi; Kasue, Atsushi; Nakajima, Hiraku, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math., Inventiones Mathematicae, 97, 313-349 (1989); Zbl 0682.53045 · doi:10.1007/BF01389045
[7] Cheeger, Jeff, Degeneration of $\{\text{R}\}$iemannian Metrics Under $\{\text{R}\}$icci Curvature Bounds, Lozisoni Fermiane. [Fermi Lectures], ii+77 pp. (2001); Zbl 1055.53024
[8] Cheeger, Jeff, Integral bounds on curvature elliptic estimates and rectifiability of singular sets, Geom. Funct. Anal., Geometric and Functional Analysis, 13, 20-72 (2003); Zbl 1086.53051 · doi:10.1007/s0003900400001
[9] Cheeger, Jeff, Colding, Tobias H., Lower bounds on $\{\text{R}\}$icci curvature and the almost rigidity of warped products, Ann. of Math. (2). Annals of Mathematics. Second Series, 144, 189-237 (1996); Zbl 0865.53037 · doi:10.2307/2118589
[10] Cheeger, Jeff, Colding, Tobias H., On the structure of spaces with $\{\text{R}\}$icci curvature bounded below. I, J. Differential Geom., Journal of Differential Geometry, 46, 406-480 (1997); Zbl 0902.53034 · doi:10.4310/jdg/1214459974
[11] Cheeger, Jeff, Colding, Tobias H.; Tian, G., On the singularities of spaces with bounded $\{\text{R}\}$icci curvature, Geom. Funct. Anal., Geometric and Functional Analysis, 12, 873-914 (2002); Zbl 1030.53046 · doi:10.1007/PL00012649
[12] Cheeger, Jeff, Naber, Aaron, Lower bounds on $\{\text{R}\}$icci curvature and quantitative behavior of singular sets, Invent. Math., Inventiones Mathematicae, 191, 321-339 (2013); Zbl 1268.53053 · doi:10.1007/s00222-012-0394-3
[13] Cheeger, Jeff, Naber, Aaron, Regularity of $\{\text{E}\}$instein manifolds and the codimension 4 conjecture, Ann. of Math. (2). Annals
of Mathematics. Second Series, 182, 1093-1165 (2015) · Zbl 1335.53057 · doi:10.4007/annals.2015.182.3.5

[14] Cheeger, Jeff; Tian, Gang, Anti-self-duality of curvature and degeneration of metrics with special holonomy, Comm. Math. Phys.. Communications in Mathematical Physics, 255, 391-417 (2005) · Zbl 1081.53038 · doi:10.1007/s00220-004-1279-0

[15] Chen, X.-X.; Donaldson, S. K., Integral bounds on curvature and [G]romov-[H]ausdorff limits, J. Topol.. Journal of Topology, 7, 543-556 (2014) · Zbl 1308.53057 · doi:10.1112/jtopol/jtt037

[16] Colding, Tobias Holck; Minicozzi, II, William P., On uniqueness of tangent cones for [E]instein manifolds, Invent. Math.. Inventiones Mathematicae, 196, 515-588 (2014) · Zbl 1302.53048 · doi:10.1007/s00222-013-0474-z

[17] Federer, Herbert, Geometric Measure Theory, Grundlehren math. Wiss., 153, xiv+676 pp. (1969) · Zbl 0176.00801

[18] Fukushima, Masatoshi; Oshima, Yoichi; Takeda, Masayoshi, Dirichlet Forms and Symmetric [M]arkov Processes, de Gruyter Stud. Math., 19, x+489 pp. (2011) · Zbl 1227.31001

[19] Hamilton, Richard S., A matrix [H]arnack estimate for the heat equation, Comm. Anal. Geom., Communications in Analysis and Geometry, 1, 113-126 (1993) · Zbl 0799.53048 · doi:10.4310/CAG.1993.v1.n1.a6

[20] Kotschwar, Brett L., Hamilton’s gradient estimate for the heat kernel on complete manifolds, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 135, 3013-3019 (2007) · Zbl 1127.58021 · doi:10.1090/S0002-9939-07-08837-5

[21] Li, Peter; Yau, Shing-Tung, On the parabolic kernel of the [S]chrödinger operator, Acta Math.. Acta Mathematica, 156, 153-201 (1986) · Zbl 0611.58045 · doi:10.1007/BF02392203

[22] Naber, Aaron, The geometry of [R]icci curvature. Proceedings of the [I]nternational [C]ongress of [M]athematicians— [S]eoul 2014. [Y]oung [II]., 911-937 (2014) · Zbl 1376.53003

[23] Naber, Aaron; Valtorta, Daniele, Volume estimates on the critical sets of solutions to elliptic (PDE)s, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 70, 1835-1897 (2017) · Zbl 1376.35021 · doi:10.1002/cpa.21708

[24] Petersen, Peter, Riemannian Geometry, Grad. Texts in Math., 171, xviii+561 pp. (1998) · Zbl 0830.53001

[25] Reifenberg, E. R., Solution of the [P]lateau [P]roblem for \{m\textperiodcentered\}m-dimensional surfaces of varying topological type, Acta Math.. Acta Mathematica, 104, 1-92 (1960) · Zbl 0099.08503 · doi:10.1007/BF02547186

[26] Schoen, R.; Yau, S.-T., Lectures on Differential Geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, 1-235 pp. (1994) · Zbl 0830.53001

[27] Souplet, Philippe; Zhang, Qi S., Sharp gradient estimate and [Y]au’s [L]iouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc.. The Bulletin of the London Mathematical Society, 38, 1045-1053 (2006) · Zbl 1109.58025 · doi:10.1112/S0024609306008947

[28] Tian, G., On [C]alabi’s conjecture for complex surfaces with positive first [C]hern class, Invent. Math.. Inventiones Mathematicae, 101, 101-172 (1990) · Zbl 0716.32019 · doi:10.1007/BF01231499

[29] Topping, Peter, Lectures on the [R]icci Flow, London Math. Soc. Lecture Note Ser., 325, x+113 pp. (2006) · Zbl 1105.58013 · doi:10.1017/CBO9780511721465

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.