Corrigendum

Flat spacetime vacuum in loop quantum gravity
A Miković 2004 Class. Quantum. Grav. 21 3909

We give the correct expressions for the spin network evaluations proposed in Miković A (2004 Class. Quantum Grav. 21 3909) as the coefficients of the quantum gravity vacuum wavefunction in the spin network basis. A proposal for the construction of the flat spacetime vacuum wavefunction in the loop quantum gravity formalism was given. According to this proposal, if the spacetime manifold has a topology $\Sigma \times \mathbb{R}$ and A is a flat complex connection 1-form on the $SU(2)$ principal bundle over Σ, then a holomorphic gauge-invariant functional $\Psi[A]$ satisfies the Ashtekar constraints and hence it can be considered as a physical wavefunction. In order to obtain a physical wavefunction which describes the flat background geometry, one should choose $\Psi[A]$ such that it is peaked around the flat background values of the triads. The simplest choice is

$$\Psi[A] = \exp \left(i \text{Tr} \int_{\Sigma} E^0_0(x) A(x) \, d^3 x \right),$$

where the components of $E^0_0(x)$ represent the background triads. Although this choice is not gauge invariant, it can be modified when the theory is discretized such that one obtains a gauge invariant result. The corresponding state in the spin network basis is given by

$$|\Psi\rangle = \sum_s I(s)|s\rangle,$$

where $|s\rangle$ is an orthonormal basis of states labelled by the $SU(2)$ spin network s, and

$$I(s) = \int DAW_s[A] \delta(F) \Psi[A],$$

where $W_s[A]$ is the spin network wavefunction and F is the connection curvature. The path-integral $I(s)$ can be defined by discretizing Σ by using a corresponding triangulation. This gives

$$I(s) = \int \prod_l d g_l W_s(g_l) \prod_f \delta(g_f) \prod_l e^{i \text{Tr}(A_l E^0_0)} ,$$

where l and f denote the edges and the faces respectively of the dual two-complex Γ, g_l denote the corresponding $SU(2)$ holonomies, $g_f = \prod_{l \leftrightarrow f} g_l$ and l' denote the dual edges which carry the irreps j_s of the embedded spin network s. After performing the group integrations, one obtains the following state-sum:

$$I(s) = \sum_{\Lambda_f, \lambda_l, \iota_l} \prod_f \text{dim} \Lambda_f \left(\prod_{l} C(E^0_0, \lambda_l) \prod_{v} A_v(\Lambda_{f'}, \iota_{s'}, \iota_{l'}) \right),$$

where C are the edge amplitudes and A_v are the vertex amplitudes of the spin foam Γ. ι_s and ι_l are the corresponding intertwiners, while the expression
Figure 1. The graph corresponding to a theta-5 spin network embedded into the triangulation of S^3 consisting of two tetrahedra. The solid lines carry the face irreps Λ_f, the dashed lines carry the embedded spin network irreps j_i and the dotted lines carry the edge irreps λ_l.

\[
\left\langle \prod_l C(E_l^0, \lambda_l) \prod_v A_v(\Lambda_f, j_i, \iota_f, \iota_i) \right\rangle
\]

indicates the evaluation of the spin network obtained by composing Γ and s. The corresponding graph is obtained by inserting the tetrahedron graphs into the vertices of the graph of Γ and then by inserting the vertices of the spin network s into the corresponding tetrahedra, see figure 1. All the tetrahedra carry the irreps Λ_f and the tetrahedra which contain the vertices of the spin network s have the additional edges carrying the corresponding irreps j_i. Each edge l of Γ carries an irrep λ_l and has the insertion $C(E_l^0, \lambda_l)$.

In Miković (2004 *class. Quantum. Grav.* 21 3909), formula (5) was presented, but it was not as precisely defined as it is done here. Consequently, the expression for $I(s)$ in the case of the theta-5 spin network embedded in the triangulation of $\Sigma = S^3$ consisting of two tetrahedra was not correct, because it was based on the wrong graph. The correct expression is based on the evaluation of the spin network whose graph is given in figure 1.

The second error appeared in the evaluation of the $C(E_l^0, \lambda_l)$ matrix elements. The average value of an element of the matrix $C(E, j)$ was defined as

\[
C_j(E) = \frac{\text{Tr} \, C(E, j)}{\dim j}, \quad (6)
\]

which was determined by the group integral

\[
C_j(E) = \int_{SU(2)} \, d g \, \chi^{(j)}(g) \, e^{i \vec{A} \cdot \vec{E}}, \quad g = e^{i \hat{\sigma} \vec{\sigma}}, \quad (7)
\]

where $\chi^{(j)}$ is the representation character and $\vec{\sigma}$ are the Pauli matrices. However, when calculating (7), an incorrect expression for the $SU(2)$ group measure was used. The correct expression is given by

\[
dg = \frac{1}{8\pi^2} \sin^2(A/2) \sin \theta \, dA \, d\theta \, d\phi, \quad (8)
\]
where $A = |\vec{A}| \in (0, 4\pi)$, $\theta \in (0, \pi)$ and $\phi \in (0, 2\pi)$, so that

$$C_j(E) = \frac{1}{4\pi} \int_0^{4\pi} dA \int_0^\pi d\theta \sin \theta \sin^2(A/2) \frac{\sin (j + \frac{1}{2}) A}{\sin(A/2)} \cdot e^{iE \sin \phi},$$

(9)

where $E = |\vec{E}|$. This gives

$$C_j(E) = \frac{1}{2\pi} \int_0^{4\pi} dA \sin(A/2) \sin \left(\left(j + \frac{1}{2}\right) A\right) \frac{\sin(EA)}{EA},$$

(10)

which can be expressed as

$$C_j(E) = \frac{1}{8\pi E} \left[K(j + E) - K(j - E) - K(j + 1 + E) + K(j + 1 - E)\right],$$

(11)

where

$$K(a) = \int_0^{a \pi} \frac{\sin x}{x} \, dx.$$

(12)