Materials Research Express

PAPER

Thermal expansion behavior of CNT reinforced AlSi10Mg composite fabricated via laser powder bed fusion

I. Y. Jiang, T. T. Liu, C. D. Zhang, K. Zhang, T. Yang, C. C. Zhang and W. H. Liao

National Joint Engineering Research Center of NC forming technology and equipment, School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China

E-mail: liutingting@mail.njust.edu.cn and cnwho@njust.edu.cn

Keywords: laser powder bed fusion, coefficient of thermal expansion, CNTs, network

Abstract

Carbon nanotube (CNT) reinforced Al matrix composite exhibit good dimensional stability and can be a promising material with low coefficient of thermal expansion (CTE). The thermal expansion behavior of CNT/AlSi10Mg composite with the CNTs content from 0 wt% to 2 wt% fabricated via laser powder bed fusion (LPBF) was investigated in this research. The CTE of all samples increased generally as the temperature increasing. At the same temperature, the CTE of the samples was smaller when CNTs content is lower. The best dimensional stability was reached as CNTs content was 2 wt%. The CTE deceased to 29.08 \times 10$^{-6}$ C$^{-1}$, as much as 16% reduction compared with unreinforced AlSi10Mg at 300 $^\circ$C. The solid solution and precipitation behavior of Si in matrix and the interruptions of Si network resulted in the fluctuation during dimension increase. With the CNTs distributed along the cell boundary, the Si network was consolidated. Hence, the microstructure of the composite became more stable and the CTE got lower with the addition of CNTs increasing. Moreover, the experimental results were similar to the predicted value of the thermoelastic model.

1. Introduction

Aluminum alloys are widely used in aerospace, aviation and automobile industries because of their high specific strength. However, the high coefficient of thermal expansion of aluminum alloy limits its application in the fields requiring high dimensional stability, such as inertial navigation system and electronic packaging system. Fortunately, aluminum matrix composites show good performance in dimensional stability [1, 2] and they are gradually applied in the fields of high dimensional accuracy requirements for their high designability [3, 4].

Zhang et al [4] fabricated a 70 vol% SiC/pure-Al composite by the pressure infiltration technique. The addition of high volume fraction of SiC particles led to a 60% decrease of CTE (20°–100°C), Chen et al [2] utilized 45 vol% Si$_3$N$_4$ particles to reinforce 2024Al alloy by pressure infiltration. The CTE of Si$_3$N$_4$/2024Al composite was 50% lower than the matrix’s. Tayebi et al [5] employed hot pressing method to prepare the Al/B$_4$C composite with the B$_4$C volume fraction from 5% to 35% and the results showed that 25% B$_4$C/Al had the lowest CTE. From the previous studies, it can be found that the excellent thermal strain resistance can be normally got with high fraction of reinforcement in the field of the ceramic reinforced composites.

CNTs has excellent properties [6] and is known as one of the new generation reinforcements of composites [7, 8]. The properties of CNT reinforced aluminum matrix composites are expected to exceed those of traditional aluminum matrix composites reinforced by ceramic particles and carbon fibers. The CTE of CNTs is close to zero [9], which can effectively inhibit the thermal expansion behavior of matrix materials with relatively low content. Deng et al [10] prepared 1.0 wt% CNT/2024Al composite by cold pressing and hot extrusion. They found that the CTE of aluminum alloy matrix was significantly reduced by adding CNTs and it decreased 11% compared with that of 2024 aluminum alloy (50 $^\circ$C). Zhao et al [11] studied the thermal expansion properties of CNT/Al composites prepared by sintering and hot extrusion. It showed that the CTE of samples with 4.5 wt% CNTs could be 17% lower than that of Al matrix (100 $^\circ$C). Liu et al [12, 13] studied the thermal expansion
properties of CNT/2009Al composite specimens treated by friction stir processing. The results showed that a small amount of CNTs could significantly reduce the CTE of the specimens. When the CNTs content was 4.5 vol%, the CTE of the composite decreased about 25% compared with the matrix (300 °C). Those researches showed great potential of CNTs in improving the dimensional stability of the matrix materials. However, these manufacturing method can merely fabricate the Al matrix composites with regular structures.

Laser powder bed fusion creates parts by scanning powdered materials with a laser beam to melt and fuse the material into a solid, the parts being manufactured layer by layer direct from the CAD file data. This process, one of the widely used additive manufacturing technologies, shows great advantages in the fabrication of complex structures parts [14, 15] and homogeneous reinforced composite parts [16–18]. Considering the excellent performance of CNTs, more and more researchers have given the focus on the research of CNT/Al composites fabricated by LPBF. Zhao et al [19] conducted the research including powder preparation, forming process and performance of 1 wt% CNT reinforced AlSi10Mg composite printed by LPBF. The results showed that the hardness and conductivity of the composite samples were improved with the addition of CNTs. In the study of Du et al [20], 1 wt% CNT reinforced AlSi10Mg composites formed by LPBF and FSP were compared. The mechanical properties of LPBF specimens (tensile strength of 287 ± 11 MPa) were better than those of FSP specimens (tensile strength of 187 ± 28 MPa). CNTs were detected at the fracture surface of LPBF specimens, and the strengthening effect of CNTs was speculated. Wang et al [21] studied the properties and microstructures of 1 wt% CNT/AlSi10Mg specimens under different bulk energy densities. The microstructures of this composite were refined and the hardness of it was improved a lot (143.7 HV0.1) with a proper parameter.

Those researches above exhibited the possibility of fabricating CNT/AlSi10Mg composites by LPBF and remarkable improvements of mechanical properties to the LPBF parts with the introduction of CNTs. However, there has been no report on the thermal expansion behavior of CNT reinforced AlSi10Mg composites fabricated via LPBF yet. In this paper, the CNT/AlSi10Mg composite with the content of CNTs from 0 wt% to 2 wt% was fabricated and the role of CNTs on dimensional constraints of composite prepared by LPBF was estimate. The effect mechanism of CNTs on the thermal expansion behavior of LPBF CNT/AlSi10Mg composites were analyzed according to the microstructures of samples with different CNTs contents before and after thermal expansion experiments.

2. Experimental procedure

2.1. Materials
The AlSi10Mg powders, D50 of 53.8 μm (figure 1(a)) (Concept Laser GmbH Co. Ltd, Germany) and CNTs (Chengdu Organic Chemistry Co., Ltd, China), length of 10–30 μm and diameter of 20–30 nm (figure 1(d)), were utilized in our research. Two materials were weighed according to the specific ratio. Then mixed powders with 1 wt% CNTs (figures 1(b) and (e)) and 2 wt% CNTs (figures 1(c) and (f)) were obtained by the colloidal mixing method [22]. The CNTs on the surface of AlSi10Mg powders were marked with the yellow arrows (figures 1(e) and (f)).
2.2. LPBF process
The Concept Laser M2 Cusing (400 W) equipment was utilized to fabricate the samples with CNTs content of 0 wt%, 1 wt% and 2 wt%. The argon with purity of 99.999% was used as protective gas. Based on the previous research [23], the LPBF parameters were set as: the laser power of 370 W, the scan speed of 1300 mm s⁻¹, the scan hatch of 105 μm, and the layer thickness of 30 μm. The scan strategy of zigzag scan in same layer and 90° rotation between adjacent layers was utilized (figure 2(a)).

The cubes with dimension of 10 × 10 × 10 mm³ were printed for microstructure morphology study of as-built samples. The cylinder parts (figure 2(b)) with the dimension of φ6 × 20 mm³ were cut from cuboids of 8 × 8 × 25 mm³ by wire electrical discharge machining (WEDM) for the investigation of thermal expansion behavior of composites. Cubes of 5 × 5 × 3 mm³ cut along the axis of cylinder parts (figure 2(c)) were used to investigate the microstructure of samples after CTE test.

2.3. Characterization
The CTE test was conducted on a DIL 402C thermomechanical analyzer (NETZSCH Group, Germany) at a heating rate of 5 °C min⁻¹ from 29 to 300 °C. XRD measurements were conducted on a D8 X (Bruker, Germany), operating with a cobalt anticathode in the angular range (2θ) from 10° to 80° and scan step of 0.02° min⁻¹. After grinding and polishing, the parts for microstructure investigation were etched with Keller reagent (2.5 ml HNO₃, 1.5 ml HCl, 1 ml HF and 95 ml H₂O) for 30 s. A Quanta 250F (FEI, Czech) scanning electron microscope (SEM) was used to analyze the microstructure morphology of samples at the test voltage of 30 kV. An FEI Tecnai G2 transmission electron microscope (TEM) was used to characterize the CNTs in samples prepared by ion milling at 200 kV test voltage.

3. Results
3.1. The CTE of samples
The dimension increase ratio (DIR) curves of the samples are shown in figure 3. When the CNTs content was a constant, the DIR along the test direction increased with the increase of temperature generally. When the temperature was lower than 150 °C, there was no obvious difference among the DIR curves of samples with different CNTs contents. When the temperature rose from 150 °C to 250 °C, the difference among the DIR curves of samples increased with the increase of temperature. The higher the CNTs content was, the smaller DIR...
the samples was. When the temperature was higher than 250 °C, the difference among the DIR curves of the samples tended to be stable. The DIR curves of all samples had inflection points near 120 and 230 °C, showing a change with first steep and then smooth.

The CTE of samples can be calculated (figure 4) from the following equation:

\[\alpha = \frac{\Delta l}{L_0 \cdot \Delta t} \]

where \(\alpha \) is the coefficient of linear expansion, \(\Delta l \) is the absolute value of the change of sample length, \(L_0 \) is the original length of the sample, \(\Delta t \) is the absolute value of temperature difference during test. With the increase of CNTs content, the CTE of the samples decreased and the dimensional stability of the sample increased when the temperature was a constant. When the content of CNTs was 2 wt%, CTE of the sample was 29.08 \(\times \) 10\(^{-6} \) °C\(^{-1} \) at 300 °C, which was about 16% lower than that of the sample without CNTs.

3.2. Phase characterization

XRD patterns (figure 5) showed that all the diffraction peaks from Al or Si, indicating that the phase of samples did not transform during the CTE test. However, the (111) and (200) characteristic peaks of Al phase showed some differences from the local enlargement diagram of XRD curve (figure 5(b)). After CTE test, the peak position of the sample shifted to the left. Because of its extremely fast cooling rate [24], the solid solubility of Si in Al of AlSi10Mg part fabricated via LPBF was as high as 5.4 wt%, much higher than that of 0.5 wt% after solution treatment [25]. Therefore, the supersaturated solid soluble Si atoms in the sample will gradually precipitate from \(\alpha \)-Al during the process of temperature rising. Since the radius of Si atom is smaller than that of Al atom, the lattice constant of Al increased after the precipitation of Si atom, which made the characteristic peak of Al shift to the left. In addition, the characteristic peaks of CNTs, Al\(_4\)C\(_3\) and Mg\(_2\)Si phases were not obvious in XRD patterns. This was a result of the relative low content of these phases in the samples.

3.3. Microstructure

The microstructures of the LPBF samples with different CNTs contents were similar (figures 6(a)–(c)). They had the typical structure of Al-Si alloy LPBF samples [26–28]: The \(\alpha \)-Al solidified in a cellular morphology, surrounded by discontinuous network of the residual Si concentrating at the cellular, and the width of the cells was about submicron size. Image J software was used to calculate the mean cell size of the sample with 0 wt% to 2 wt% CNTs content (table 1). The results showed that the cell size of the sample decreased with the increase of CNTs content.

After CTE test, the microstructures of the samples had obvious difference (figures 6(d)–(f)). Compared with the microstructures before test, the Si atoms segregated from initial network by diffusion, leading to the interruptions of Si network, and grew up at the nucleation point forming coarser particles. Fortunately, with the increase of CNTs content, the Si network in the sample remained more complete. The average cell size of samples with 2 wt% CNTs was the smallest, which was about 533 nm.
Figure 5. (a) is the XRD results of samples before and after CTE test. (b) is the local enlargement diagram of as-built AlSi10Mg sample and the part after CTE test.

Figure 6. Microstructures of samples before and after CTE test. (a)–(c) were the micrographs before the test of samples with 0 wt%, 1 wt% and 2 wt% CNTs, respectively. (d)–(f) were the micrographs after the test of samples with 0 wt%, 1 wt% and 2 wt% CNTs, respectively.
4. Discussion

Solid solution and phase transition in the material are considered as the common causes of CTE change \[29, 30\]. The change of microstructure with CNTs addition will also affect the thermal expansion behavior of the material \[31\]. Si has a diamond lattice \((a = 5.430 \text{ Å})\) \[32\], 8 atoms per unit cell, and Al has a fcc lattice \((a = 4.041 \text{ Å})\) containing 4 atoms per unit cell. Therefore, the volume of AlSi10Mg matrix will increase when Si atoms precipitate from Al lattice. In this study, with the increase of temperature, the supersaturated Si in \(\alpha\)-Al gradually precipitated (figure 5(b)), which made the curve of sample DIR steep. And the DIR curves of the samples became smooth after the precipitation finished. TEM results showed that CNTs were evenly dispersed at the cell boundary in LPBF samples (red arrows figure 7) and partially reacted to Al\(_4\)C\(_3\) (yellow arrows in figure 7). Because of the location limitation, CNTs had little influence on the precipitation process of Si atoms from \(\alpha\)-Al. It can be inferred that the sudden change near 120 °C (figure 3) was dominated by the precipitation of supersaturated Si.

As the temperature increase, the DIR curves of the samples became steep again after 150 °C. It had the similar phenomenon in the thermal expansion behavior study of Al-50Si LPBF part by Jia et al \[33\]. Thus, the interruptions of Si network at this stage was thought to be the reason for this sudden change of samples’ dimension increase. In the samples with CNTs, CNTs were distributed at the cell boundary (figure 7) and reinforced the Si network in the matrix. This effectively hindered the aggregation of Si during continuous heating (figure 6), thus limiting the softening of matrix. The morphologies of CNTs in samples with 1 wt% and 2 wt% content were quite different: the length of CNTs in samples with 1 wt% content was about 200 nm (figure 7(a)), which was less than the cell boundary length; the length of CNTs in samples with 2 wt% content was about 900 nm (figure 7(b)). The length and distribution density of CNTs in samples with 2 wt% content were higher, so the contact area between CNTs and the cell boundaries was larger. As a result, the constraints on the matrix were relatively large \[34, 35\], which was conducive to limiting the increase of cell size in the process of temperature rise. Therefore, the DIR curves and CTE curves of samples with different CNTs contents showed increasing difference in the test range from 150 to 250 °C, and the CTE reached the lowest point when CNTs content was 2 wt%.

The solubility of Si in Al increased when the temperature was above 250 °C. Some Si re-dissolved into the lattice of Al, which reduced the volume of the material and partially neutralized the volume expansion of matrix with the increase of temperature \[36\]. Thus the DIR curves of the samples were flattened and the CTE decreased.

Generally, the CTE results showed strong dependence on the content of CNTs. Several models have been proposed based on thermoelastic theories for the prediction of CTE of MMCs, which can be used to explain the dependence of CTE on the CNTs fraction of CNT/AlSi10Mg composite. The three most commonly used models are Schapery, Kerner and Turner.

Schapery’s model was derived through extremum principles of thermoelasticity. The expression of it is given as \[5\]:

CNTs Fraction	0 wt%	1 wt%	2 wt%
Before CTE test (nm)	380.991	321.136	292.34
After CTE test (nm)	658.828	609.441	533.697

Figure 7. CNTs in the as-built samples with different CNTs contents: (a) 1 wt% and (b) 2 wt%.
where, \(c, r \) and \(m \) indexes represent the composite, the reinforcement and the matrix, respectively. \(\alpha_c^u \) is the upper bound of the CTE of the composite \(K_c \) is the lower bound of the bulk modulus of the composite and the expression is given as:

\[
\alpha_c^u = \alpha_r + \frac{K_m (K_r - K_m^l) (\alpha_m - \alpha_r)}{K_c^l (K_r - K_m)}
\]

\[
K_c^l = K_m + \frac{V_r}{K_r - K_m} + \frac{V_c}{K_c^l V_r (K_r - K_m) + 4G_m/3}
\]

where, \(G_m \) is the shear modulus of the matrix. The upper bound of the bulk modulus can be calculated by exchanging \(r \) and \(m \) in the equation (3).

Kerner’s model takes the shear modulus of the constituents into account. And the upper band of the Schapery is coincided with the Kerner [37].

Turner’s model takes the elastic modulus and the Poisson’s ratio of each component materials into account. The expression of it is given as [38, 39]:

\[
\alpha_c = \frac{\alpha_r V_r K_r + \alpha_m V_m K_m}{V_r K_r + V_m K_m}
\]

The results predicted by Kerner model and Turner model were showed in figure 8. The experimental data of matrix was utilized to brought into the calculation in the temperature range of 50 °C–300 °C. The comparison of experimental and theoretical data showed that the experimental data was closer to Turner’s model generally. Especially, the test results of both samples were almost coincide with Turner model at temperatures below 100 °C. There was a slight higher away trend of experimental data to Turner’s model in the results of sample with 1 wt% CNTs (figure 8(a)). And the trend in the results of sample with 2 wt% CNTs was more obvious, which exceeded Kerner model (figure 8(b)). This trend was consistent with the analysis of the effect by Si network interruptions. At temperatures above 250 °C, the experimental CTE was even smaller than Turner model. Overall, figure 8 showed that the experimental data lay closer to Turner model and lower than the prediction of Turner model at high temperature (above 250 °C).

From the comparison of the theoretical and experimental results, it showed that the experimental conditions can be basically described by these models. Especially the Turner model showed high precision and validation of the prediction on CTE. The main reason for major difference of experimental and theoretical results around 150 °C was that thermoelastic models do not consider the effect of precipitation and solid solution of the material during heating process. Because of the high aspect ratio of CNTs, the experimental CTE was smaller than prediction at high temperature.

5. Conclusion

The thermal expansion behavior of laser powder bed fusion specimens of 0 wt%, 1 wt% and 2 wt% carbon nanotube reinforced AlSi10Mg composites was studied. The following conclusions were drawn:

(1) During thermal expansion test, Si undergoes the process of precipitation then solid solution in \(\alpha \)-Al, and the Si network was gradually interrupted. This two reasons made the dimension increase ratio curve of the
samples fluctuate in the process of temperature rising. The precipitation of Si atoms made the diffraction peaks of Al(111) and Al(200) shift left in the XRD results of the sample after thermal expansion test. There was no obvious phase transition in the samples before and after test.

(2) The uniform distribution of CNTs at the cell boundary plays a role in stabilizing the Si network in the matrix. With the increase of CNTs content, the more complete CNTs were survived in the sample, which reduced the CTE of LPBF samples. The CTE of the sample of 2 wt% CNTs content was the lowest, decreasing to $29.08 \times 10^{-6} \text{ C}^{-1}$, which was about 16% lower than that of unreinforced AlSi10Mg at 300 °C.

(3) The experimental CTE lay closer to Turner model and lower than the prediction of Turner model at high temperature (above 250 °C). The main reason for major difference of experimental and theoretical results around 150 °C was that these thermoelastic models do not consider the effect of precipitation and solid solution of the material during heating process, as well as the high aspect ratio of CNTs.

Acknowledgments

This work was supported by the National Key R&D Program of China (No.2017YFB1103000), Key Technology Breakthrough Project in Nanjing (No.2018003) and Natural Science Foundation of Jiangsu Province (BK20190463). The help with the CTE test operations by PhD. Shuai Tian was greatly appreciated. It was very grateful for the help from Lihua Xie for the WEDM processing of the printed parts. The discussion with PhD. Xu Weivei was also very helpful to this research.

ORCID iDs

T T Liu https://orcid.org/0000-0002-0699-8196

References

[1] Huber T, Degischer H P, Lefranc G and Schmitt T 2006 Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles Compos. Sci. Technol. 66 2206–17
[2] Chen G, Yang W, Ma K, Hussain M, Jiang L and Wu G 2011 Aging and thermal expansion behavior of Si$_3$N$_4$/w2024 Al composite fabricated by pressure infiltration method T. Nonfer Metal Soc. 21 262–73
[3] Hocine R, Boudjemai A, Boukortt A and Belkacemi K 2013 3D TLM Formulation for Thermal Modelling of Metal Matrix composite Materials for Space Electronics Systems (Piscataway, NJ) (IEEE) pp 47–52
[4] Zhang Q, Jiang L and Wu G 2014 Microstructure and thermo-physical properties of a SiC//pure-Al composite for electronic packaging J. Mater. Sci. Mater. Electron. 25 604–8
[5] Tayebi M, Jozdani M and Mirhadi M 2019 Thermal expansion behavior of Al/–B4C composites by powder metallurgy J. Alloy Compd 809 151753
[6] Rosull K S and Lorents D C 1993 Mechanical and thermal properties of carbon nanotubes Carbon 33 925–30
[7] Calvert P 1999 A recipe for strength Nature 399 210–211
[8] Baig Z, Mamat O and Mustapha M 2018 Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: a review Crit. Rev. Solid State 43 1–46
[9] Yoshida Y 2000 High-temperature shrinkage of single-walled carbon nanotube bundles up to 1600 K J. Appl. Phys. 87 3338–41
[10] Deng C F, Ma Y X, Zhang P, Zhang X X and Wang D Z 2008 Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes Mater. Lett. 62 2301–3
[11] Yang X, Zou T, Shi C, Liu E, He C and Zhao N 2016 Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites Materials Science and Engineering: A 660 1–8
[12] Liu Z Y, Xiao B L, Wang W G and Ma Z Y 2014 Effect of carbon nanotube orientation on mechanical properties and thermal expansion coefficient of carbon nanotube-reinforced aluminum matrix composites Acta Metallurgica Sinica (English Letters) 27 901–8
[13] Liu Z Y, Xiao B L, Wang W G and Ma Z Y 2012 Elevated temperature tensile properties and thermal expansion of CNT/2009Al composites Compos. Sci. Technol. 72 1826–33
[14] Atzemi E and Salmi A 2012 Economics of additive manufacturing for end-useable metal parts The International Journal of Advanced Manufacturing Technology 62 1147–55
[15] DebRoy T, Mukherjee T, Milewski J O, Elmer J W, Ribic B, Blecher J J and Zhang W 2019 Scientific, technological and economic issues in metal printing and their solutions Nat. Mater. 18 1026–1032
[16] Zhao X, Gu D, Ma C, Xi L and Zhang H 2019 Microstructure characteristics and its formation mechanism of selective laser melting SiC reinforced Al-based composites Vacuum 160 189–96
[17] Jiang B, Zhenglong L, Xi C, Peng L, Nannan L and Yanbin C 2019 Microstructure and mechanical properties of TiB$_2$-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition Ceram. Int. 45 5680–92
[18] Li X P, Ji G, Chen Z, Addad A, Wu Y, Wang H W, Vleugels J, Van Humbeeck J and Kruth J P 2017 Selective laser melting of nano-TiB$_2$ decorated AlSi10Mg alloy with high fracture strength and ductility Acta Mater. 129 183–93
[19] Zhao X, Song B, Fan W, Zhang Y and Shi Y 2016 Selective laser melting of carbon/AlSi10Mg composites: Microstructure, mechanical and electronic properties J. Alloy Compd 665 271–81
[20] Du Z, Tan M J, Guo J and Wei J 2016 Aluminium-carbon nanotubes composites produced from friction stir processing and selective laser melting Materialwiss Werkst 47 539–48
[21] Wang L, Chen T and Wang S 2017 Microstructural characteristics and mechanical properties of carbon nanotube reinforced AlSi10Mg composites fabricated by selective laser melting Optik - International Journal for Light and Electron Optics 143 173–9
[22] Piao S H, Kim M H, Choi H J, Lee H and Park J 2017 Dispersion state and rheological characteristics of carbon nanotube suspensions J. Ind. Eng. Chem. 52 369–75
[23] Jiang L Y, Liu T T, Zhang C D, Zhang K, Li M C, Ma T and Liao W H 2018 Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting Materials Science and Engineering: A 734 171–7
[24] Sercombe T B and Li X 2016 Selective laser melting of aluminium and aluminium metal matrix composites: review Mater. Technol. 31 27–85
[25] Rao J H, Zhang Y, Fang X, Chen Y, Wu X and Davies C H J 2017 The origins for tensile properties of selective laser melted aluminium alloy A357 Additive Manufacturing 17 113–22
[26] Thijs L, Kempen K, Kruth J and Van Humbeeck J 2013 Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder Acta Mater. 61 1809–19
[27] DebRoy T, Wei H L, Zuback J S, Mukherjee T, Elmer J W, Milewski J O, Beese A M, Wilson-Heid A, De A and Zhang W 2018 Additive manufacturing of metallic components — Process, structure and properties Prog. Mater. Sci. 92 112–224
[28] Prashanth K G and Eckert J 2017 Formation of metastable cellular microstructures in selective laser melted alloys J. Alloy Compd 707 27–34
[29] Wang T T and Kwei T K 1969 Effect of induced thermal stresses on the coefficients of thermal expansion and densities of filled polymers Journal of Polymer Science Part A-2: Polymer Physics 7 889–96
[30] Hahn T A and Armstrong R W 1988 Internal stress and solid solubility effects on the thermal expansivity of Al-Si eutectic alloys Int. J. Thermophys. 9 179–93
[31] Chen Y, Liu L, Wang Y, Liu J and Zhang R 2011 Microstructure evolution and thermal expansion of Cu-Zn alloy after high pressure heat treatment T Nonferr Metal Soc. 21 2205–9
[32] Mittemeijer E J, Van Mourik P and De Keijser T H 1981 Unusual lattice parameters in two-phase systems after annealing Philos. Mag. A 1981, 43 43 1157–64
[33] Jia Y D, Ma P, Prashanth K G, Wang G, Yi J, Scudino S, Cao F Y, Sun J F and Eckert J 2017 Microstructure and thermal expansion behavior of Al-80Si synthesized by selective laser melting J. Alloy Compd 699 548–53
[34] Hassanzadeh-Aghdam M K, Ansari R and Mahmodi M J 2018 Thermal expanding behavior of carbon nanotube-reinforced metal matrix nanocomposites-A micromechanical modeling J. Alloy Compd 744 637–50
[35] Chen B, Shen J, Ye X, Imai H, Umeda J, Takahashi M and Kondoh K 2017 Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites Carbon 114 198–208
[36] Stoltze P, Jacobsen K W and Norskov J K 1987 Monte Carlo calculation of the thermal expansion coefficient of Al Physical Review. B, Condensed Matter 36 3035–6
[37] Goertzen W K and Kessler M R 2008 Thermal expansion of fumed silica/cyanate ester nanocomposites J. Appl. Polym. Sci. 109 647–53
[38] Chan K C and Liang J 2001 Thermal expansion and deformation behaviour of aluminium-matrix composites in laser forming Compos. Sci. Technol. 61 1265–70
[39] Zare R, Sharifi H, Saerl M R and Tayebi M 2019 Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite J. Alloy Compd 801 520–8