Development and Evaluation of Flupirtine Maleate Transdermal Patch Containing Different Permeation Enhancers

Rehab Tonse¹*, Amit Patil², Smitha Shetty¹

¹.Production of Pharmaceutics, Shree Devi College of Pharmacy, Mangalore, Karnataka, India.
².Production of Pharmaceutics, JSS College of Pharmacy, Mysore, Karnataka, India.

ABSTRACT

The present study was aimed at the formulation of transdermal patches of flupirtine maleate containing different permeation enhancers. It acts indirectly as N-methyl-D-aspartate (NMDA) receptor antagonist and activates the K⁺ channels; thereby acts as a skeletal muscle relaxant. Flupirtine maleate transdermal patches are intended to provide localized effect. The patches were prepared by solvent evaporation technique, using polyvinyl alcohol (PVA) as the polymer whereas dimethyl sulfoxide (DMSO) and polyethylene glycol (PEG-400) as the permeation enhancers. Methanol was used as a solvent to dissolve the drug and glycerol was used as the plasticizer. These patches were evaluated for in vitro permeation, tensile strength, percent moisture absorption, drug content uniformity, film thickness, weight variation and folding endurance. All the patches showed extended release properties. Formulation FDD8 containing 8% polymer and 2% DMSO was found to be the optimized formulation on the basis of evaluation parameters. In vitro permeation release was found to be 95.71 ± 0.01% at the end of 12 h. As the concentration of DMSO increased, the release profile of drug was enhanced. This indicated that DMSO improved the release profile of flupirtine maleate when compared to PEG-400. The release kinetics of the transdermal patches followed Higuchi matrix model. The stability studies showed that all the optimized patches were stable during their study period. From the present study, it can be concluded that addition of DMSO yields good result to enhance the permeation of the drug.

Keywords: flupirtine maleate, transdermal patch, permeation enhancers, dimethyl sulfoxide (DMSO), polyethylene glycol PEG-400, polyvinyl alcohol PVA.

*Corresponding Author Email: hab.k2518@gmail.com
Received 10 July 2021, Accepted 9 August 2021
INTRODUCTION

For many decades, treatment of an acute or chronic pain has been mostly accomplished by delivery of drugs to patients using various pharmaceutical dosage forms including tablets, capsules, creams, pills, suppositories, ointments, liquids, aerosols, injectable, etc. Analgesics for systemic action are preferably and routinely administered by the conventional oral dosage forms. Due to increased dose frequency, the patient compliance decreases. Therefore drug administration through transdermal route can be used as patient-friendly and compliant dosage form.\(^1\) Transdermal patches are defined as medicated adhesive patch that are placed on skin to deliver a specific dose of medication through the skin and into the blood stream.\(^2\) Flupirtine maleate is an NMDA receptor antagonist which blocks K\(^+\) ions and blocks the pain pathway. It is an excellent alternative to opioids and NSAIDs. Therefore it has been chosen to be incorporated into transdermal patches for localized effect and it also helps to reduce the dosing frequency in patients.\(^3\)

MATERIALS AND METHOD

Flupirtine maleate was procured as a gift sample from Lupin pharmaceuticals, Mumbai. Polyvinyl alcohol was procured from Central drug house limited, New Delhi. Polyethylene glycol 400 and glycerol were procured from Loba chemie, Mumbai. Dimethyl sulfoxide was procured from Himedia laboratories, Mumbai and methanol was procured from SRK chemicals, Mangalore.

**Formulation of PVA patches containing drug and permeation enhancers: Solvent evaporation method.**\(^4\)

Required amount of PVA was weighed and dissolved in distilled water using magnetic stirrer and left undisturbed overnight to de-aerate. The drug was dissolved in methanol and the drug solution was added to the polymeric solution in small portions with constant stirring using a magnetic stirrer. Glycerol was added to the solution and different concentration of permeation enhancers were added to the respective formulations. The solutions were poured into petridish and placed in vacuum oven at 35\(^\circ\)C overnight. The dried patches were cut into 1.5 X 1.5 cm using sharp blade and stored.

| Code | Drug (mg) | PVA (mg) | DMSO (ml) | PEG 400 (ml) | Glycerol (ml) | Methanol (ml) | Distilled Water q.s.(ml) |
|------|-----------|----------|-----------|--------------|---------------|----------------|--------------------------|
| FD1  | 3115      | 600      | -         | -            | 0.5           | 15             | 25                       |
| FD2  | 3115      | 800      | -         | -            | 0.5           | 15             | 25                       |
| FDD1 | 3115      | 600      | 0.5       | -            | 0.5           | 15             | 25                       |
| FDD2 | 3115      | 600      | 1.0       | -            | 0.5           | 15             | 25                       |
| FDD3 | 3115      | 600      | 1.5       | -            | 0.5           | 15             | 25                       |
| FDD4 | 3115      | 600      | 2.0       | -            | 0.5           | 15             | 25                       |
Physical appearance

All the transdermal patches were visually inspected for color, flexibility, homogeneity and smoothness.

Percentage moisture absorption

Each formulation was accurately weighed and exposed to ambient atmospheric conditions of temperature and RH for three days. After three days, the films were again weighed and percentage moisture absorption was calculated. Average percentage moisture absorption of each film was calculated.

Film thickness

The thickness of the patches were measured at five different places on a single patch of each formulation using a micrometer screw gauge and the mean values were calculated.

Weight variation

A set of three patches were weighed to calculate the weight variation.

Folding endurance

A strip of 1.5 cm × 1.5 cm (2.25 cm²) was subjected to folding endurance by folding the patch at the same place repeatedly several times until a visible crack was observed and the values were reported.

Tensile strength and percentage elongation

The strips were pulled at a rate of 100 mm/min; the force and elongation were measured when the film broke. The pressure gauge directly gives readings in Kg/cm². Six trials were conducted for each patch.

Drug content uniformity

A patch of size 2.25 cm² containing 100 mg of flupirtine was shredded and transferred into a graduated flask containing 10 ml DMSO. The flask was shaken for 24 h in a mechanical shaker.
Then the solution was filtered and after suitable dilutions with phosphate buffer pH 7.4, the absorbance was measured at 250 nm using the placebo patch solution as blank and the drug content was calculated.

**In vitro drug release**

It was carried out using USP-II dissolution apparatus. 900 ml of PBS at 37 ± 0.5 ºC was taken as dissolution media. The rpm of the paddle was fixed at 100. Aliquot of 10 ml was withdrawn at an interval of 1 hour up to 12 h and absorbance was recorded at 250 nm.

**In vitro drug permeation**

The in vitro drug permeation was studied using a modified Franz diffusion cell. The donor compartment was in contact with ambient conditions of the atmosphere. The receptor compartment was in contact with 25 ml phosphate buffer pH 7.4 and the contents were stirred at 50 rpm at 37 ± 0.5 ºC for 12 h. Patch of 2.25 cm² containing 100 mg of flupirtine was placed in the donor compartment of the diffusion cell. The receptor fluid (2 ml) was withdrawn at predetermined time intervals. The samples were analyzed for drug content at 250 nm using UV-Visible spectrophotometer after suitable dilutions using the placebo patch solution as blank.

**Stability study**

Stability study was carried out as per ICH Guidelines at 25±2ºC/60±5% RH and 40±2ºC/75±5% RH for the optimized formulations of transdermal patches for appearance, percentage drug content, tensile strength and drug release.

**In Vivo Skin Irritation Studies in Albino Wistar Rat**

For skin irritation studies 8 albino rats of either sex were used. The rats were anesthetized using anesthetic ether and 3 cm² area was shaved on the either sides of the rats. Three optimized patches i.e. one containing drug alone, one containing drug along with DMSO as permeation enhancer, one containing drug with PEG 400 as permeation enhancer were used. A placebo patch containing only the polymer and excipients were also used to test the primary skin irritation. These patches were cut into a size of 2.25 cm² surface area and each was applied on the rats, right side serving as test and left as control (without drug) and was secured using adhesive tape. The patches were applied for 24 h and then observed for period of 72 h for any sign of erythema or edema and graded according to the standards.

**RESULTS AND DISCUSSION**

In the present study, an attempt was made to formulate flupirtine maleate transdermal patch. Formulations were subjected to various parameters such as moisture absorption, film thickness, weight variation, folding endurance, tensile strength, percentage elongation, drug content
uniformity, in vitro drug release, in vitro drug permeation and in vivo skin irritation studies. All the patches prepared with different concentration of polymer were found to be flexible, smooth, translucent, non-sticky and homogeneous. This may be due to the presence of plasticizer.

Stability studies were performed as per ICH-Guidelines. Figure 1 and Figure 2 show the FT-IR spectra of pure drug and excipient which showed that there is no interaction found between drug and excipient. All the formulations showed good physical appearance as shown in Figure 3. The weight variation was found to be in range of 7.29 – 8.99 g. Film thickness was found to be in the range of 0.32 – 0.44 mm. Folding endurance was found in the range of 200 - 300 folds, indicated that all the patches have good flexibility due to adequate quantity of plasticizer. Percentage drug content was found in the range of 91.77 – 95.95%. The results of weight variation, film thickness, folding endurance and drug content uniformity are depicted in Table 3.

Percentage moisture absorption was found to be in the range of 2.32 ± 0.02% to 3.35 ± 0.08%; whereas tensile strength was found to be in the range of 1.88 – 2.38 Kg/cm² and percentage elongation was found to be in the range of 30.45 - 38.62%. The results of percentage moisture absorption, tensile strength and percentage elongation are depicted in Table 4.

The in vitro dissolution study of formulation FD2 without permeation enhancer was found to be 69.95±0.11%, FDD7 with DMSO as permeation enhancer was found to be 99.73±0.02% as shown in Figure 4 and FDP8 with PEG-400 as permeation enhancer was found to be 99.89±0.05% as depicted in Figure 5. The details of in vitro dissolution studies are shown in Table 5 and Table 6.

In vitro drug permeation using Franz diffusion cell for formulation FD2 was found to be 69.95±0.11%, FDD7 was found to be 99.73±0.02% and FDP8 was found to be 83.45±0.05%. The details of in vitro drug permeation study are shown in Table 7 and depicted graphically in Figure 6.

In vivo skin irritation studies were carried out on 8 albino rats of each sex. The results show that the excipients incorporated in the patch do not cause any irritation to the rats. The extent of skin irritation was found to be below 1. The details of skin irritation study is given is Table 10 and depicted in Figure 7.

**Table 2: Interpretation of FTIR spectrum**

| Group                        | Wave numbers cm⁻¹ | Flupirtine maleate | PVA  | Physical mixture |
|------------------------------|-------------------|--------------------|------|------------------|
| OH bond                      | -                 | 3642.34            | 3774.06 |
| CH₂ bond                     | -                 | 1873.97            | 1702.12 |
| C-O stretch                  | 1277.81           | 1118.95            | 1224.07 |
| C-H stretch (aliphatic)      | -                 | 2671.70            | 2313.96 |
| C-H stretch (aromatic)       | 3046.75           | -                  | 2889.13 |
| NH bend (primary amine)      | 1625.15           | -                  | 1702.12 |
| NH₂ stretch                  | 3256.35           | -                  | 3187.80 |
| Formulation Code | *Weight (g) ± SD | *Thickness (mm) ± SD | Folding Endurance | *% Drug Content ± SD |
|------------------|------------------|----------------------|-------------------|----------------------|
| FD1              | 7.29 ± 0.11      | 0.32 ± 0.01          | >250              | 92.21 ± 0.01         |
| FD2              | 8.99 ± 0.08      | 0.41 ± 0.08          | >250              | 95.19 ± 0.04         |
| FDD1             | 8.97 ± 0.01      | 0.33 ± 0.02          | >250              | 94.32 ± 0.08         |
| FDD2             | 8.93 ± 0.06      | 0.39 ± 0.06          | >250              | 93.26 ± 0.05         |
| FDD3             | 8.29 ± 0.09      | 0.32 ± 0.03          | >250              | 94.98 ± 0.01         |
| FDD4             | 8.61 ± 0.11      | 0.37 ± 0.07          | >250              | 95.02 ± 0.03         |
| FDD5             | 8.33 ± 0.02      | 0.42 ± 0.04          | >250              | 94.80 ± 0.04         |
| FDD6             | 8.42 ± 0.13      | 0.43 ± 0.11          | >250              | 93.87 ± 0.09         |
| FDD7             | 8.01 ± 0.07      | 0.41 ± 0.10          | >250              | 92.11 ± 0.02         |
| FDD8             | 8.13 ± 0.04      | 0.42 ± 0.05          | >250              | 93.24 ± 0.07         |
| FDP1             | 7.97 ± 0.08      | 0.31 ± 0.03          | >250              | 95.95 ± 0.03         |
| FDP2             | 7.89 ± 0.13      | 0.34 ± 0.07          | >250              | 94.74 ± 0.08         |
| FDP3             | 8.34 ± 0.11      | 0.32 ± 0.04          | >250              | 95.08 ± 0.02         |
| FDP4             | 8.05 ± 0.02      | 0.30 ± 0.05          | >250              | 95.23 ± 0.01         |
| FDP5             | 7.62 ± 0.09      | 0.41 ± 0.12          | >250              | 94.46 ± 0.05         |
| FDP6             | 8.11 ± 0.01      | 0.44 ± 0.09          | >250              | 95.59 ± 0.04         |
| FDP7             | 7.96 ± 0.07      | 0.40 ± 0.03          | >250              | 91.77 ± 0.07         |
| FDP8             | 8.09 ± 0.06      | 0.41 ± 0.07          | >250              | 93.02 ± 0.03         |

**Table 4: Percentage moisture absorption, percentage elongation and tensile strength of the prepared transdermal patches**

| Formulation Code | *Percent Moisture Absorption ± SD | *Tensile strength (kg/cm²) ± SD | *Percent Elongation ± SD |
|------------------|----------------------------------|---------------------------------|--------------------------|
| FD1              | 2.32 ± 0.02                      | 1.88 ± 0.05                    | 31.86 ± 0.47             |
| FD2              | 2.99 ± 0.01                      | 2.14 ± 0.03                    | 33.72 ± 0.35             |
| FDD1             | 2.91 ± 0.03                      | 1.98 ± 0.11                    | 30.45 ± 0.53             |
| FDD2             | 2.86 ± 0.06                      | 2.12 ± 0.13                    | 31.63 ± 0.58             |
| FDD3             | 2.97 ± 0.01                      | 1.99 ± 0.09                    | 32.84 ± 0.41             |
| FDD4             | 3.02 ± 0.09                      | 1.89 ± 0.10                    | 34.06 ± 0.39             |
| FDD5             | 3.13 ± 0.04                      | 2.23 ± 0.08                    | 32.37 ± 0.32             |
| FDD6             | 3.10 ± 0.11                      | 1.99 ± 0.04                    | 35.97 ± 0.36             |
| FDD7             | 3.35 ± 0.08                      | 2.28 ± 0.07                    | 36.02 ± 0.45             |
| FDD8             | 3.28 ± 0.05                      | 2.37 ± 0.10                    | 38.62 ± 0.40             |
| FDP1             | 2.76 ± 0.03                      | 1.98 ± 0.04                    | 31.19 ± 0.27             |
| FDP2             | 2.69 ± 0.09                      | 1.91 ± 0.08                    | 35.03 ± 0.38             |
| FDP3             | 2.38 ± 0.02                      | 2.03 ± 0.03                    | 32.94 ± 0.35             |
| FDP4             | 3.10 ± 0.13                      | 1.76 ± 0.07                    | 31.83 ± 0.26             |
| FDP5             | 3.17 ± 0.07                      | 2.29 ± 0.10                    | 32.08 ± 0.22             |
| FDP6             | 3.23 ± 0.01                      | 2.32 ± 0.11                    | 34.67 ± 0.38             |
| FDP7             | 3.29 ± 0.11                      | 2.37 ± 0.13                    | 34.99 ± 0.41             |
| FDP8             | 3.24 ± 0.03                      | 2.38 ± 0.02                    | 35.23 ± 0.53             |
Table 5: *In vitro* percentage cumulative drug release profile of transdermal patches containing DMSO

| Time (h) | FDD1 Cumulative drug release ± SD | FDD2 | FDD3 | FDD4 | FDD5 | FDD6 | FDD7 | FDD8 |
|---------|-----------------------------------|------|------|------|------|------|------|------|
| 1       | 12.25 ± 0.19                      | 14.14 ± 0.06 | 18.99 ± 0.03 | 19.49 ± 0.02 | 8.97 ± 0.03 | 9.79 ± 0.02 | 10.51 ± 0.03 | 13.18 ± 0.02 |
| 2       | 21.54 ± 0.06                      | 28.35 ± 0.11 | 29.68 ± 0.01 | 32.25 ± 0.11 | 16.28 ± 0.09 | 18.15 ± 0.09 | 22.46 ± 0.09 | 25.93 ± 0.01 |
| 3       | 32.96 ± 0.15                      | 40.19 ± 0.02 | 43.15 ± 0.08 | 46.72 ± 0.07 | 25.11 ± 0.01 | 27.32 ± 0.07 | 34.35 ± 0.02 | 37.27 ± 0.09 |
| 4       | 40.49 ± 0.18                      | 56.65 ± 0.07 | 60.44 ± 0.09 | 62.14 ± 0.04 | 36.54 ± 0.07 | 39.41 ± 0.08 | 44.99 ± 0.01 | 47.82 ± 0.05 |
| 5       | 65.34 ± 0.23                      | 77.99 ± 0.05 | 79.39 ± 0.05 | 81.36 ± 0.06 | 42.19 ± 0.04 | 47.23 ± 0.03 | 49.11 ± 0.07 | 51.93 ± 0.07 |
| 6       | 74.25 ± 0.04                      | 90.24 ± 0.09 | 98.56 ± 0.04 | 98.99 ± 0.01 | 50.43 ± 0.05 | 53.67 ± 0.01 | 58.52 ± 0.04 | 65.33 ± 0.03 |
| 7       | 87.99 ± 0.18                      | 99.21 ± 0.13 | --- | --- | 58.16 ± 0.02 | 62.35 ± 0.05 | 67.21 ± 0.09 | 81.86 ± 0.01 |
| 8       | 99.48 ± 0.02                      | --- | --- | --- | 64.27 ± 0.09 | 70.14 ± 0.04 | 78.96 ± 0.03 | 84.52 ± 0.08 |
| 9       | --- | --- | --- | --- | 71.36 ± 0.11 | 79.39 ± 0.09 | 85.29 ± 0.08 | 89.79 ± 0.02 |
| 10      | --- | --- | --- | --- | 77.47 ± 0.08 | 85.57 ± 0.02 | 92.64 ± 0.01 | 95.63 ± 0.05 |
| 11      | --- | --- | --- | --- | 80.18 ± 0.10 | 91.42 ± 0.01 | 95.15 ± 0.04 | 98.72 ± 0.07 |
| 12      | --- | --- | --- | --- | 89.44 ± 0.05 | 95.83 ± 0.08 | 99.73 ± 0.02 | --- |
| 13      | --- | --- | --- | --- | 94.17 ± 0.07 | 99.46 ± 0.05 | --- | --- |
| 14      | --- | --- | --- | --- | 99.32 ± 0.12 | --- | --- | --- |

Table 6: *In vitro* percentage cumulative drug release profile of transdermal patches containing PEG 400

| Time (h) | FDP1 Cumulative drug release ± SD | FDP2 | FDP3 | FDP4 | FDP5 | FDP6 | FDP7 | FDP8 |
|---------|-----------------------------------|------|------|------|------|------|------|------|
| 1       | 10.82 ± 0.01                      | 12.13 ± 0.02 | 15.96 ± 0.01 | 17.87 ± 0.10 | 6.31 ± 0.11 | 8.99 ± 0.01 | 9.68 ± 0.01 | 10.54 ± 0.03 |
| 2       | 21.43 ± 0.18                      | 24.16 ± 0.01 | 29.19 ± 0.03 | 31.63 ± 0.05 | 11.11 ± 0.02 | 13.59 ± 0.07 | 19.36 ± 0.07 | 21.68 ± 0.04 |
| 3       | 37.11 ± 0.03                      | 38.76 ± 0.10 | 40.18 ± 0.07 | 43.38 ± 0.02 | 16.63 ± 0.07 | 19.89 ± 0.03 | 24.03 ± 0.04 | 28.87 ± 0.09 |
| 4       | 46.38 ± 0.21                      | 49.88 ± 0.04 | 50.39 ± 0.10 | 52.72 ± 0.09 | 22.17 ± 0.03 | 26.23 ± 0.02 | 30.36 ± 0.09 | 34.15 ± 0.07 |
| 5       | 58.96 ± 0.17                      | 61.11 ± 0.07 | 62.38 ± 0.09 | 64.95 ± 0.05 | 28.29 ± 0.08 | 31.38 ± 0.05 | 37.15 ± 0.01 | 42.98 ± 0.08 |
| 6       | 72.69 ± 0.26                      | 75.46 ± 0.03 | 69.15 ± 0.08 | 76.39 ± 0.02 | 34.01 ± 0.10 | 38.17 ± 0.06 | 41.36 ± 0.02 | 49.69 ± 0.01 |
| 7       | 79.35 ± 0.11                      | 80.21 ± 0.05 | 77.34 ± 0.11 | 89.13 ± 0.04 | 39.64 ± 0.09 | 44.79 ± 0.03 | 49.21 ± 0.08 | 56.66 ± 0.02 |
| 8       | 85.93 ± 0.16                      | 86.42 ± 0.11 | 88.23 ± 0.01 | 98.65 ± 0.07 | 44.11 ± 0.11 | 47.13 ± 0.09 | 54.16 ± 0.02 | 60.32 ± 0.06 |
| 9       | 90.13 ± 0.08                      | 91.59 ± 0.08 | 99.03 ± 0.04 | --- | 49.36 ± 0.01 | 52.18 ± 0.08 | 63.11 ± 0.05 | 67.73 ± 0.01 |
| 10      | 98.36 ± 0.10                      | 99.47 ± 0.10 | --- | --- | 54.18 ± 0.02 | 58.99 ± 0.05 | 69.93 ± 0.10 | 72.89 ± 0.09 |
| 11      | --- | --- | --- | --- | 60.34 ± 0.05 | 65.67 ± 0.07 | 76.11 ± 0.11 | 79.68 ± 0.10 |
| 12      | --- | --- | --- | --- | 69.73 ± 0.03 | 72.59 ± 0.01 | 80.03 ± 0.03 | 83.45 ± 0.05 |
| 13      | --- | --- | --- | --- | 74.98 ± 0.05 | 79.09 ± 0.03 | 86.93 ± 0.03 | 92.97 ± 0.05 |
### Table 7: Comparative *in vitro* percentage cumulative drug permeation profile of optimized transdermal patches FD2, FDD7 and FDP8

| Time (h) | % Cumulative drug permeation ± SD |
|---------|----------------------------------|
|         | **FD2**                         | **FDD7**                | **FDP8**                |
|         | 0                               | 80.49 ± 0.10            | 84.53 ± 0.06            | 92.54 ± 0.05            | 99.89 ± 0.05            |
| 1       | 5.95 ± 0.10                     | 10.51 ± 0.03            | 10.54 ± 0.03            |                           |                           |
| 2       | 10.37 ± 0.18                    | 22.46 ± 0.09            | 21.68 ± 0.04            |                           |                           |
| 3       | 20.63 ± 0.07                    | 34.34 ± 0.02            | 28.87 ± 0.09            |                           |                           |
| 4       | 27.89 ± 0.02                    | 43.97 ± 0.01            | 34.15 ± 0.07            |                           |                           |
| 5       | 34.41 ± 0.17                    | 49.14 ± 0.07            | 41.91 ± 0.08            |                           |                           |
| 6       | 37.69 ± 0.13                    | 57.55 ± 0.04            | 49.64 ± 0.01            |                           |                           |
| 7       | 45.26 ± 0.26                    | 65.20 ± 0.09            | 55.67 ± 0.02            |                           |                           |
| 8       | 48.94 ± 0.19                    | 76.94 ± 0.03            | 60.32 ± 0.06            |                           |                           |
| 9       | 53.38 ± 0.05                    | 87.26 ± 0.08            | 67.73 ± 0.01            |                           |                           |
| 10      | 58.89 ± 0.16                    | 93.64 ± 0.01            | 82.89 ± 0.09            |                           |                           |
| 11      | 61.16 ± 0.13                    | 96.13 ± 0.04            | 99.68 ± 0.10            |                           |                           |
| 12      | 69.95 ± 0.11                    | 99.73 ± 0.02            | 83.45 ± 0.05            |                           |                           |

### Table 8: Stability studies of Transdermal patches at 25±2 ºC (Relative humidity 60 ± 5 %)

| Formulation Code | Study duration (days) | Test parameters | Appearance              | % Drug content ± SD | Tensile strength (kg/cm²) ± SD | Drug release (12th h) ± SD |
|------------------|-----------------------|-----------------|-------------------------|---------------------|--------------------------------|---------------------------|
| FD2              | 30                    | Smooth and flexible | 86.97 ± 0.11          | 2.13 ± 0.01       | 68.93 ± 0.02                   |                           |
|                  | 60                    | Smooth and flexible | 86.94 ± 0.13          | 2.11 ± 0.06       | 67.91 ± 0.12                   |                           |
|                  | 90                    | Smooth and flexible | 86.96 ± 0.22          | 2.14 ± 0.02       | 68.69 ± 0.13                   |                           |
| FDD7             | 30                    | Smooth and flexible | 86.92 ± 0.12          | 2.96 ± 0.02       | 98.86 ± 0.03                   |                           |
|                  | 60                    | Smooth and flexible | 86.89 ± 0.04          | 2.95 ± 0.04       | 99.63 ± 0.12                   |                           |
|                  | 90                    | Smooth and flexible | 86.91 ± 0.01          | 2.99 ± 0.18       | 99.67 ± 0.06                   |                           |
| FDP8             | 30                    | Smooth and flexible | 88.41 ± 0.10          | 2.96 ± 0.03       | 82.10 ± 0.17                   |                           |
|                  | 60                    | Smooth and flexible | 88.38 ± 0.13          | 2.99 ± 0.01       | 83.07 ± 0.12                   |                           |
|                  | 90                    | Smooth and flexible | 88.39 ± 0.12          | 2.97 ± 0.09       | 82.91 ± 0.11                   |                           |
Table 9: Stability studies of transdermal patch at 40±2 °C (Relative humidity 75 ± 5 %)

| Formulation Code | Study duration (days) | Test parameters Appearance | *% Drug content ± SD | *Tensile strength (kg/cm²)± SD | *Drug release (12th h)± SD |
|------------------|-----------------------|-----------------------------|----------------------|-------------------------------|-----------------------------|
| FD2              | 30                    | Smooth and flexible          | 86.93 ± 0.04         | 2.12 ± 0.01                   | 67.91 ± 0.01                |
|                  | 60                    | Smooth and flexible          | 86.98 ± 0.01         | 2.14 ± 0.13                   | 66.90 ± 0.01                |
|                  | 90                    | Smooth and flexible          | 86.97 ± 0.1          | 2.10 ± 0.07                   | 67.93 ± 0.05                |
| FDD7             | 30                    | Smooth and flexible          | 86.93 ± 0.05         | 2.95 ± 0.11                   | 98.61 ± 0.01                |
|                  | 60                    | Smooth and flexible          | 86.90 ± 0.06         | 2.92 ± 0.03                   | 98.66 ± 0.07                |
|                  | 90                    | Smooth and flexible          | 86.93 ± 0.04         | 2.96 ± 0.05                   | 99.63 ± 0.02                |
| FDP8             | 30                    | Smooth and flexible          | 88.43 ± 0.01         | 2.93 ± 0.07                   | 82.09 ± 0.08                |
|                  | 60                    | Smooth and flexible          | 88.37 ± 0.07         | 2.96 ± 0.11                   | 83.06 ± 0.06                |
|                  | 90                    | Smooth and flexible          | 88.40 ± 0.06         | 2.95 ± 0.06                   | 82.14 ± 0.04                |

Table 10: Readings after skin irritation study

| Formulation Code | Rat Number | Erythema and Scar formation time (hours) | Oedema formation | Primary Irritation Index |
|------------------|------------|----------------------------------------|------------------|-------------------------|
|                  |            | 0 | 24 | 48 | 72 | 0 | 24 | 48 | 72 |                      |
| F3               | Rat 1      | 0 | 0  | 0  | 0  | 0 | 0  | 0  | 0  | 0                      |
|                  | Rat 2      | 0 | 0  | 0  | 0  | 0 | 0  | 0  | 0  | 0                      |
| FD2              | Rat 3      | 0 | 0  | 0  | 0  | 0 | 0  | 0  | 0  | 0                      |
|                  | Rat 4      | 0 | 0  | 0  | 1  | 0 | 0  | 0  | 0  | 0.12                   |
| FDD7             | Rat 5      | 0 | 0  | 0  | 0  | 0 | 0  | 0  | 0  | 0                      |
|                  | Rat 6      | 0 | 0  | 0  | 1  | 0 | 0  | 0  | 0  | 0.12                   |
| FDP8             | Rat 7      | 0 | 0  | 0  | 0  | 0 | 0  | 0  | 0  | 0                      |
|                  | Rat 8      | 0 | 0  | 0  | 0  | 0 | 0  | 0  | 0  | 0                      |
Figure 1: FTIR spectra of flupirtine maleate

Figure 2: FTIR spectra of physical mixture of flupirtine maleate and PVA

Figure 3: Formulated transdermal patches
Figure 4: *In vitro* percentage cumulative drug release profile of transdermal patches containing DMSO.

Figure 5: *In vitro* percentage cumulative drug release profile of transdermal patches containing PEG 400.

Figure 6: Comparative *in vitro* percentage cumulative drug permeation profile of optimized transdermal patches FD2, FDD7 and FDP8.
CONCLUSION

Thin, flexible, smooth and transparent films were obtained with PVA using glycerol as plasticizer. Thickness of all formulations remained uniform with low SD values. In order to reduce the dosing frequency, an attempt was made to develop TDDS of flupirtine maleate for 12 h. As the concentration of DMSO increased, the release profile of drug was enhanced. As the concentration of PEG-400 increased, the release profile of flupirtine maleate was enhanced. The results indicated that DMSO improved the release profile of flupirtine maleate when compared to PEG-400. Studies have shown promising results and therefore it can be used as an extended release formulation.

Figure 7: In vivo skin irritation study
ACKNOWLEDGEMENT

The research work was supported by Dr. Amit Patil, Professor, JJS College of Pharmacy, Mysore. The author would like to thank Lupin Pharmaceuticals, Mumbai for providing the gift sample of drug Flupirtine maleate and also extend heartfelt gratitude towards Dr. C.S. Shastry, Principal, NGSM institute of pharmaceutical sciences, Mangalore for providing necessary facility to carry out the work with ease and precision.

REFERENCES

1. Chein YW. Oral drug delivery and delivery systems. 3rd ed. Novel drug delivery systems. Marcel Dekker, Inc., New York, 2002;50: p. 139-96.
2. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115-24.
3. Gaur PK, Mishra S, Purohit S, Dave K. Transdermal drug delivery system – A review. Asian J Pharm Cli Res. 2009;2:14-20
4. Kulkarni PV and Keshavayya J. Preparation and evaluation of polyvinyl alcohol transdermal membranes of salbutamol sulphate. Int J Curr Pharm Res. 2010;2(2):13-16.
5. Kumar JR, Selvadurai M, Arumugam SD. Formulation and in vitro evaluation of terbinafine HCl transdermal patches. J Pharm Sci Res. 2012;4(6):1840-43.
6. Morrow DI, McCarron PA, Woolfson AD, Donnelly RF. Innovative strategies for enhancing topical and transdermal drug delivery. Open Drug Del J. 2007;1:36-59.
7. Aggarwal G, Dhawan S. Development, fabrication and evaluation of transdermal drug delivery system – A review. Pharmainfo.net. 2009;7(5):48-52.
8. Barhate DS, Patel MM, Sharma SA, Nerkar P, Shankhpal G. Formulation and evaluation of transdermal drug delivery system of carvedilol. J Pharm Res. 2009;2(4):663-65.
9. Guy RH, Hadgrift J. Physicochemical aspects of percutaneous penetration and its enhancement. Pharm. Res. 1988;5:753-58.
10. Jain S, Goswami M, Bhandari A, Arora V. Skin irritation study of intradermal patch of chitosan containing trazodone HCl on rat skin. Int J Res Pharm Bio Sci. 2011;2(3):102-04.

AJPTR is
- Peer-reviewed
- Bimonthly
- Rapid publication
Submit your manuscript at: editor@ajptr.com

www.ajptr.com