Effectiveness of fungal bacterial biofertilizers on agrobiochemical attributes of quinoa (Chenopodium quinoa willd.) under salinity stress

G. Karimi · L. Pourakbar · S. Siavash Moghaddam · Y. Rezaee Danesh · J. Popovi´c-Djordjevi´c

Received: 29 January 2022 / Revised: 6 May 2022 / Accepted: 11 July 2022 / Published online: 5 August 2022
© The Author(s) under exclusive licence to Iranian Society of Environmentalists (IRSEN) and Science and Research Branch, Islamic Azad University 2022

Abstract
The effects of fungi and bacteria biofertilizers under salinity stress were studied on some morphological and physiological traits of quinoa. The experiment was conducted as a factorial based on a completely randomized design with three replications. The factors included NaCl (no salinity-150 mM NaCl and 300 mM NaCl), Trichoderma (no Trichoderma and Trichoderma), and bacterial biofertilizers (no biofertilizer-N biofertilizer and P biofertilizer). The highest shoot and root length and dry weight were observed in the treatment of no salinity + no Trichoderma + N biofertilizer. Salinity increased Na + and K + content and decreased K + /Na + ratio, whereas the application of Trichoderma alleviated the effect of salinity on these factors. Ca2+/Na+ and Mg2+/Na+ ratios were significantly decreased in high salinity level compared to the zero salinity level. The highest and lowest phenol content was observed in the treatments of 300 mM NaCl + Trichoderma + P biofertilizer and no salinity + no Trichoderma + N biofertilizer, respectively. Flavonoid content was higher in the treatments of no salinity + Trichoderma + N biofertilizer and no salinity + Trichoderma + P biofertilizer than in the other treatments, also The high-performance liquid chromatography analysis revealed that all phenolic and flavonoid compounds exhibited the greatest increase in treatments of no salinity + Trichoderma + N biofertilizer and no salinity + Trichoderma + P biofertilizer, respectively. Flavonoid content was higher in the treatments of no salinity + Trichoderma + N biofertilizer and no salinity + Trichoderma + P biofertilizer than in the other treatments, which is consistent with the significant increase in total flavonoid content in these treatments. The results showed that using N biofertilizer can improve the growth and development of quinoa in saline soils.

Keywords Flavonoids · Growth · Halophyte · High-performance liquid chromatography · Phenols · Quinoa

Introduction

Quinoa (Chenopodium quinoa willd.) is a plant rich in biologically and nutritionally active compounds with plenty of health benefits, which has drawn interest in recent years (Küster and Vila 2017). The high genetic diversity of this species allows it to adapt to and grow in extremely adverse environmental conditions, and therefore, it is highly resistant to abiotic stresses (Aziz et al. 2018). Plants exposed to salinity stress exhibit different responses, including changes in nutrient uptake, cell homeostasis, and metabolic pathways, which may change stem and root elongation (Patterson et al. 2009). Research on two quinoa genotypes showed that salinity stress did not influence the growth and biomass of either genotype at low levels, but high levels of salinity reduced their shoot/root ratio, growth, and biomass significantly (Parvez et al. 2020). Water deficit induced by salinity stress results in the over-accumulation of Na and Cl ions inside the cells, leading to ion unbalance (Gupta and Huang 2014). Salinity stress disrupts the K+/Na+ ratio, which is important for plants (Wu 2018) so that it imbalances these ions and reduces the K+/Na+ ratio (Reich et al. 2017). Na+ NSCC channels are a large family of non-selective cation channels in plasma and tonoplast membranes, which are usually permeable to a wide range of univalent cations (Demidchik and Maathuis 2007). The secretion of Na+ to vacuoles is a common and important mechanism of salinity tolerance in
plants, which is mediated by Na⁺/H⁺ antiporters and reduces cytoplasm Na⁺ content (Shi et al. 2000).

Abiotic stresses in plants, e.g., salinity, induce oxidative stress by producing reactive oxygen species (ROS). ROS are highly cytotoxic, which severely injure such molecules as proteins, lipids, carbohydrates, and nucleic acids and tear cell membrane, causing the leakage of cell content and the death of plant cells (Islam et al. 2015). To detoxify ROS, plants can activate antioxidant defensive systems by inducing enzymatic and non-enzymatic antioxidants (Zhang et al. 2019). Defensive mechanisms have evolved in plants to minimize detrimental ROS or protect the plants against their toxic effects and also protect the balance between ROS production and decomposition to keep cell redox homeostasis (Lin et al. 2011). Antioxidant systems reduce oxidative damage and improve resistance to environmental stress, which is often related to a regular antioxidant system (Suzuki et al. 2012). These systems in a plant are activated by inducing the phenylpropanoid biosynthesis pathway, which can lead to the activation of the genes related to salinity stress and the antioxidant system (Zhu et al. 2021). Flavonoid contents can be increased by biological fertilizers or a combination of biological and chemical fertilizers, such as nitrogen (Gendy et al. 2013). Fertilization sources are an effective factor of biological control, especially against abiotic stresses (Mahdavikia et al. 2019). On the other hand, the efficient application of soil microorganisms (plant growth-promoting rhizobacteria–PGPR) can be effective in increasing and improving plant growth in farming. Different genera of Pseudomonas and Azotobacter are plant growth-promoting microorganisms that improve plant growth and development in both normal and stressful conditions (Vimal et al. 2017). In addition to their role in nitrogen biofixation, siderophore generation, the dissolution of mineral phosphates, and the synthesis of plant hormones, rhizobacteria can influence plant development and performance and mitigate salinity-induced risks (Li et al. 2017). Previous studies have shown that biofertilizers that contain bacteria can be used in saline environments to biologically enhance plant resistance to stress (Ortuno et al. 2013). The fungal genus Trichoderma is another soil microorganism that safeguards plants against environmental stresses such as salinity and improves their growth and development (Brotman et al. 2013). Increased growth of quinoa was reported with the treatment of Trichoderma (Ortuno et al. 2017). Trichoderma produces fungal materials that can stimulate plants to produce their defensive metabolites (Vinal et al. 2012) and can increase plant tolerance against abiotic stresses, e.g., salinity, by inducing protection against oxidative damage (Zhang et al. 2019).

The interaction of plants and beneficial soil microbes, e.g., Trichoderma and bacteria, can improve plant growth under salinity stress and influence plant tolerance of this stress. The present study aimed to explore the effect of N and P biofertilizers and Trichoderma, applied alone or in combination, on morphological traits and leaf polyphenols of quinoa exposed to salinity stress. The results may contribute to provide practical recommendations on the use of these microorganisms to improve the growth and development of this species in highly saline environments. This research was done at the research greenhouse of the Faculty of Agriculture in Urmia University from August to October 2018.

Materials and methods

Cultivation and treatment

The study was conducted as a factorial experiment based on a completely randomized design with three replications under controlled conditions. The factors included salinity at three levels of 0 (S0), 150 (S150), and 300 (S300) millimolar (Mm) NaCl, Trichoderma at two levels of no fungi (T0) and fungi application (T), and bacterial biofertilizers at three levels of control (C), nitrogen (FN), and phosphorus (FP). The treatments included [no salinity + no Trichoderma + no biofertilizer (S0T0C), no salinity + no Trichoderma + N biofertilizer (S0T0F0N), no salinity + no Trichoderma + P biofertilizer (S0T0F0P), no salinity + Trichoderma + no biofertilizer (S0T0FP), 150 mM salinity + no Trichoderma + no biofertilizer (S150T0C), 150 mM salinity + no Trichoderma + N biofertilizer (S150T0F0N), no salinity + Trichoderma + P biofertilizer (S0TF0P), 150 mM salinity + no Trichoderma + P biofertilizer (S150T0FN), 150 mM salinity + no Trichoderma + no biofertilizer (S150T0FP), 150 mM salinity + Trichoderma + no biofertilizer (S150TC), no salinity + Trichoderma + N biofertilizer (S0TF0N), no salinity + Trichoderma + P biofertilizer (S0TF0P), 150 mM salinity + Trichoderma + no biofertilizer (S150TC), 150 mM salinity + Trichoderma + P biofertilizer (S150TF0P), 300 mM salinity + no Trichoderma + no biofertilizer (S300T0C), 300 mM salinity + no Trichoderma + N biofertilizer (S300T0F0N), 300 mM salinity + no Trichoderma + P biofertilizer (S300T0F0P), 300 mM salinity + Trichoderma + no biofertilizer (S300TC), 300 mM salinity + Trichoderma + N biofertilizer (S300TF0N), 300 mM salinity + Trichoderma + P biofertilizer (S300TF0P)]. A total of 54 sterilized 6.5-kg pots containing soil and sand at a 3:1 ratio were prepared for the 18 treatments in three replications. Before initiation, the soil sample was tested for its compounds (Table 1). After performing the calculations, mineral N, P, and K fertilizers (urea, triple superphosphate, and potassium sulfate) were applied to the pot soil at half of the quinoa plant requirement. Trichoderma (Trichoderma harzianum) were applied to the pot soil so that it did not directly touch the seeds. The seeds of quinoa ‘Titicaca’ were surface-disinfected with sodium hypochlorite 5% for 10 min and washed with distilled water before sowing. The biofertilizer Azotobacter-1, which contained strain O4 of Azotobacter vinelandii, was used as the N biofertilizer, and the
biofertilizer PhosphoBARVAR®-2, which contained strain P₅ of Pantoea and strain P₁₃ of *Pseudomonas putida*, was used as the P biofertilizer. The seeds that were intended to be treated with the biofertilizers were impregnated with the biofertilizers for 30 min. Each pot was sown with 20 seeds. After germination, they were thinned to keep 6 plants. When the plants were at the 6-leaf stage (one month), the salinity stress was applied at various rates. After 20 days, the pots were transferred to a laboratory to harvest the plants.

Measurement of morphological traits

Shoot and root length were determined with millimeter ruler. They were, then, oven-dried at 70 °C for 48 h. Shoot and root dry weight were determined with a precise 0.001-g scale.

Measurement of Na, K, Ca, and Mg

One gram of powdered dry matter of the leaves for each treatment was incinerated in a furnace at 550 °C for 5 h and was digested in 10 mL of 6 M HCl. The solution was filtered with a Whatman Paper No. 1 and the volume of the digested solution was, then, adjusted to 50 mL with distilled water. and its Na and K contents were measured with a PFP7 flamephotometer. Ca and Mg contents of digested solution were measured by EDTA titration.

Plant extract preparation to measure total phenol and total flavonoid

The extract was prepared by the protocol reconstruct Aysel and Munevver (2004). For this purpose, 1 g of leaf fresh tissue was homogenized in 25 mL of methanol on a magnetic shaker in darkness for 3 h. The solution was, then, filtered with a Whatman Paper No. 1 and centrifuged at 15,000 g for 30 min. Then, the supernatant was kept at −80 °C until the experiment time.

The total phenol content was determined by Marinova et al. (2005) protocol with some modifications. According to this method, 1 mL of the extract was added with 9 mL of distilled water and 1 mL of the Folin–Ciocalteu reagent. After 5 min, 10 mL of 7% sodium carbonate was added to the solution, and it was incubated at the laboratory temperature for 90 min. Then, the absorbance of the samples was read at 750 nm with a spectrophotometer. The total phenol content was calculated by using the standard gallic acid curve in mg/100 g fresh weight (FW).

The total flavonoid content was determined by Chang et al. (2002) procedure based on aluminum colorimetry. Accordingly, 20 μL of the plant extract was diluted with 1 mL of distilled water and was added with 0.075 mL of 5% sodium nitrite. Five minutes after the reaction, 0.15 mL of 10% aluminum chloride and, 6 min later, 0.5 mL of 1 mol/L sodium hydroxide were added to the solution. Their absorbance was, then, read at 510 nm. The total flavonoid content was calculated by the standard quercetin curve in mg/100 g FW.

Isolation, detection, and quantification of polyphenol compounds

The polyphenol compounds were isolated, detected, and quantified using an Agilent 1100 Series high-performance liquid chromatography device (the USA) equipped with a 20-μL injection loop, four-solvent gradient pump, degasification system, column oven (set at 25 °C), and diode array detector set at 250, 272, and 310 nm. The isolation was performed with a Dr. Maincsch ZORBAX Eclipse XDB Octadecyl silane column (with a length of 25 cm, an internal diameter of 4.6 mm, and a particle size of 5 μm). Data were processed in the Chemstation software package.

A dilution plan was used for better isolation of the components. To this end, the moving phase was initiated with a ratio of 10% acetonitrile and 90% acetic acid 1% solution and was reached the acetonitrile/1% acetic acid ratio of 25/75% at a flow rate of 1 mL/min. Then, it was reached the ratio of 65/35% at a flow rate of 1 mL/min. The isolation time was 15 min.

Statistical analysis

The data were statistically analyzed in the SAS (ver. 9.4) software package. The means were compared by the PLSD test at the *P* < 0.01 level, and the graphs were drawn in MS-Excel.
Results and discussion

The results of variance analysis revealed that the morphological and antioxidant traits of the quinoa were influenced significantly at the $P < 0.01$ level (Table 2).

Morphological traits

Shoot length

The highest shoot length (cm) was obtained from the treatment of S_{0TFN}, and the lowest was related to the treatments of S_{300TC} and S_{300TFN}, which did not differ from S_{300TFp} significantly. The shoots were significantly longer in the treatments of S_{0TFN} and S_{150TFN} than in the treatments of S_{0TC} and S_{150TC}, respectively. The treatments of S_{300TFN}, S_{300TC}, and S_{300TFp} also exhibited a significant increase in this trait versus the treatment of S_{300TC} (Fig. 1a).

Shoot dry weight

The plants treated with S_{0TFN} exhibited the highest and those treated with S_{0TC} or S_{300TC} exhibited the lowest shoot dry weight (g). A significant increase was observed in the shoot dry weight of the plants treated with S_{0TFN} or S_{150TFN} versus those treated with S_{0TC} or S_{150TC}. The treatments of S_{300TC} and S_{300TFN} also had significantly higher shoot dry weight than the treatments of S_{300TC} (Fig. 1b).

Root length

The longest and shortest roots length (cm) were observed in the treatments of S_{150TFN} and S_{300TFN}, respectively. The root length was significantly lower in the treatments of S_{0TFN} and S_{300TFN} than in the treatments of S_{0TC} and S_{300TC}. The root length was increased remarkably in the treatment of S_{150TFN} versus the other treatments (Fig. 1c). However, a significant increase was observed in the root length of plants treated with S_{300TFN} and S_{300TFp} versus those treated with S_{300TC} (Fig. 1c).

Root dry weight

The highest root dry weight (g) was obtained from the treatment of S_{0TFN}, which was significant compared to the other treatments. The lowest root dry weight was related to the treatment of S_{300TFN}. The treatments of S_{0TFN} and S_{300TFN} had significantly lower root dry weight than the treatments of S_{0TC} and S_{300TFN}, respectively. The plants treated with S_{150TFN} had significantly higher root dry weight than those treated with S_{150TFp}. The root weight was increased remarkably in the plants treated with S_{300TFp} versus those treated with S_{300TC} (Fig. 1d).

Since the treatment of S_{0TFN} increased plant growth remarkably compared to the other treatments (Fig. 1), it seems that Azotobacter plays an effective role in increasing plant growth by synthesizing and secreting biologically active compounds, e.g., auxins, gibberellins, vitamins B, nicotinic acid, pantotenic acid, biotins, etc., in the root environment (Karthikeyan et al. 2008). On the other hand, the quinoa plants treated with S_{0TFN} exhibited significantly higher growth than the zero salinity control (S_{0TC}) (Fig. 1) although the comparison of the plants treated with S_{0TFN} with those treated with S_{150TFN} shows that Trichoderma had an antagonistic effect on the activity of Azotobacter and reduced plants growth. Perhaps, buffer acidification by Trichoderma and its perception by the plants influenced the interaction of Trichoderma with Azotobacter and even with the plants themselves, thereby disrupting nutrient uptake. Acidification induced by Trichoderma at initial interaction stages plays an essential role in plant interaction with Trichoderma (Pelagio-Flores et al. 2017). Apparently, NSCC cation channels are activated by Ca$^{2+}$ signaling and through the effects of H$^{+}$ on inward-rectifying K$^{+}$ channels or by a specific pH sensor (Lager et al. 2010). The competition triggered between the ions during their uptake might have unbalanced the plants’ ion composition, subsequently affecting their morphological traits.

The shoot and root length and dry weight were significantly increased in the treatment of S_{150TFN} versus the other treatments of this salinity level (150 mM NaCl) (Fig. 1). Seemingly, the simultaneous application of Trichoderma and Azotobacter-containing biofertilizers at the low salinity level, which is normal salinity for quinoa as a halophyte plant, inducing the growth of the shoots and roots, especially the root length, reflecting the synergistic effect of Trichoderma and Azotobacter on the plant growth at low salinity conditions. Trichoderma can increase the availability of soil nutrients by secreting organic acids and acidifying the root environment (Pelagio-Flores et al. 2017). It can also increase the K content of plants (Yildirim et al. 2006). On the other hand, the increase in K$^{+}$ uptake can alleviate the negative effects of salinity (Shabala and Cuin 2008). Potassium is an activator of many enzymes that are necessary for photosynthesis and respiration, so its deficiency suppresses photosynthesis and even reduces plant growth. Additionally, K$^{+}$ plays a vital role in keeping and creating turgor pressure and adjusting plant water balance. On the other hand, the abundance of Na$^{+}$ under salinity stress and its substitution with K$^{+}$ at the colloid level and soil solution phase, which results in its greater uptake by the roots, increases its concentration and reduces the concentration of other ions, especially K$^{+}$, in the plant. It was reported the effects of Na$^{+}$ accumulation...
Table 2 The results of the variance analysis for the effect of salinity, biofertilizer, and Trichoderma on morphological traits and antioxidant of quinoa

Sources of variations	df	Shoot length (cm)	Shoot dry weight (g)	Root Length (cm)	Root dry weight (g)	Total phenols content (mg GAE 100 g−1 Fw)	Total flavonoids content (mg QE 100 g−1 Fw)	Leaf Na⁺ content (%)	Leaf K⁺ content (%)	Leaf K⁺/Na⁺
Replication	2	1.185 ns	0.014 ns	1.865 ns	0.003 ns	7.749 ns	0.106 ns	0.0007 ns	0.073 ns	24.445 ns
A	2	284.129**	1.753**	61.99**	0.067**	1267.38**	41.47**	0.0187**	29.56**	2031.9**
B	1	4.16 ns	0.698**	0.155 ns	0.006 ns	1615.18**	3.734**	0.0039**	0.038 ns	1099.4**
C	2	364.462**	14.87**	45.48**	0.329**	572.93**	12.90**	0.0001**	2.446**	539.3**
AB	2	6.16 ns	3.209**	31.28**	0.043**	1374.12**	0.436**	0.0026**	0.571**	671.6**
AC	4	100.462**	5.889**	37.71**	0.145**	1625.97**	1.279**	0.0006**	2.176**	843.7**
BC	2	92.722**	3.587**	1.09 ns	0.053**	3345.46**	2.991**	0.0003**	3.931**	223.5**
ABC	4	72.38**	4.58**	178.55**	0.058**	365.43**	4.973**	0.0008**	0.276**	666.9**
Experimental error	34	2.518	0.083	1.76	0.002	59.52	9.514	0.0005	0.06	10.28
Coefficient of variation	3.698 8.468	6.09	11.66	11.81	7.039	3.18	2.97	4.56		

Sources of variations	df	Leaf Ca²⁺ content (%)	Leaf Mg²⁺ content (%)	Leaf Ca²⁺/Na⁺	Leaf Mg²⁺/Na⁺
Replication	2	0.009 ns	0.0005 ns	0.089 ns	0.050 ns
A	2	0.104**	0.150**	128.32**	99.84**
B	1	0.018*	0.002 ns	2.16*	5.47**
C	2	0.029**	0.006*	5.40**	1.25**
AB	2	0.153**	0.236*	5.96**	9.39**
AC	4	0.052**	0.106**	3.49**	6.85**
BC	2	0.068**	0.084**	11.02**	12.80**
ABC	4	0.035**	0.061**	16.23**	16.40**
Experimental error	34	0.009	0.001	0.308	0.151
Coefficient of variation	5.98 4.85	7.005	6.28		

ns: nonsignificant; * and **: significant at the $P<0.05$ and $P<0.01$ levels, respectively
(Salinity = A, Trichoderma fungi = B, Bacterial biofertilizers = C)
and a change in the Na+/K+ ratio in cells on the biological processes of the plant (Sudhir and Murthy 2004). Yang et al. (2016) investigated the relationship between quinoa growth and two salt-resistant rhizobacteria in salinity stress and reported that both bacteria reduced Na+ uptake and the negative effects of salinity on the plants. Given the functions of K in the physiological processes of plants, it is necessary for plant survival in stressful conditions to keep K content at a proper level. Quinoa plants seem to use this mechanism to reduce Na+ accumulation and prevent the decline in the K+ content in salinity stress, thereby securing their survival. Our results suggest that the simultaneous application of Trichoderma and Azotobacter in low salinity stress can provide suitable conditions for plant growth by increasing K+/Na+ content and maintaining leaf cell homeostasis.

In the treatment of (S300T0F0) the length and dry weight of shoots and roots showed a significant increase compared to treatment (S300T0C). Because in this treatment the ratio of potassium to sodium did not show significant changes (Fig. 2c), Quinoa plants may use mechanisms such as increasing Proline content as an osmotic protector and increasing the activity of antioxidant enzymes to clear ROS.
from salinity stress (Shabala et al. 2012). Therefore, they have provided suitable conditions for plant growth.

In the treatment of S_300TFN, plant growth was significantly reduced compared to other treatments (Fig. 1). Trichoderma acidified the medium. This process, which is at least partially mediated by H^+-ATPases, influences root and shoot growth (Pelagio-Flores et al. 2017). The proton increase in the apoplastic may induce pH stress and disrupt the process of nutrient uptake by channels and nutrient transporters. It has been reported that NRT1.1 and OsNRT2.3b nitrate transporters are involved in H^+ resistance in Arabidopsis and rice, respectively, depending on their nitrate uptake activity (Fan et al. 2016). Vos et al. (2015) reported the antagonistic capability of Trichoderma with bacteria. On the other hand, excessive acidification of buffer may cause excessive uptake of some nutrients and their toxicity (Shavrukov and Hirai 2016).

The growth factors were not changed significantly by the treatment of S_0TFP versus the treatment of S_150TFP (Fig. 1). It seems that the application of Trichoderma at the zero salinity level had no effects on the activity of phosphate solubilizing bacteria. On the other hand, the shoot dry weight of the plants treated with S_150TFP was higher than those treated with S_150T0FP whereas their roots were shorter. Plants are capable of acidifying the rhizosphere to improve the availability or uptake of such nutrients like phosphates and Fe, especially in alkaline limy soils. Trichoderma and Pseudomonas both acidify the soil. It has been reported that only low pH can be good for plant growth and development (Hinsinger et al. 2003). The reduction of root growth may be related to the loss of the root meristem functioning due to acidification. Acidification by Trichoderma causes the redistribution of auxins among root cap cells, the bending of root tips, and its growth suppression in Arabidopsis. Acidity perception by the roots is the mediator of the interaction between Trichoderma and the plants (Pelagio-Flores et al. 2017). While over-acidification adversely impacts plant growth, it should be perceived by the plant. Apparently, various factors, e.g., Na^+ content, are involved in this perception.

At the high salinity level (300 mM NaCl–S_300), the application of Trichoderma along with phosphate solubilizing bacteria (S_300TFP) influenced plant growth significantly. These bacteria release such metabolites as organic acids containing hydroxyl (gluconic) and carboxyl (ketogluconic) groups to convert phosphates from insoluble forms to soluble forms. These organic acids chelate phosphate-attached cations and turn them into a soluble form that can be taken up by the plants. The secreted acids, also, reduce soil pH and make the attached phosphate available to the plants (Itelima et al. 2018). It seems that Trichoderma at high salinity level (S_300TFP) had an increasing effect on the activity of phosphate solubilizing bacteria and finally improved plant growth at this salinity level. Both Pseudomonas and Trichoderma acidify the medium. On the one hand, the increased concentration of H^+ may affect the activity of antiporter SOS1 and NSCC cation channels and increase Na^+ outflow from the root cells. On the other hand, the increased concentration of intracellular and extracellular Na^+ at high salinity levels can suppress cation channels. Na^+ blocks K^+-selective outwardly rectifying channel (KOR), thereby hindering the loss of cell K^+ content (Demidchik and Maathuis 2007). Consequently, the increased ratio of K^+/Na^+ provides proper conditions for the cell.

Leaf Na^+ content

The highest and lowest leaf Na^+ contents (%) were observed in the treatments of S_300TFN and S_0TC, respectively. The treatment of S_0TC had higher Na^+ content than the other treatments of zero salinity level (S_0). This trait was increased in the treatment of S_0TFN compared to the treatment of S_0T0C significantly. The leaf Na^+ content in the treatment of S_150TFP was significantly increased when compared to the other low salinity treatments (S_150). It was found that at high salinity levels (S_300), Na^+ content was decreased in the treatments containing Trichoderma (T) than those lacking it (T_0) significantly (Fig. 2a).

Leaf K^+ content

The leaf K^+ content (%) was the highest in the treatment of S_300TC, but it had no significant difference from the treatments of S_300T0C and S_150TFN. The lowest leaf K^+ content was observed in the treatment of S_0TFN. This trait was significantly increased in low and high salinity levels (S_150 and S_300) versus the zero salinity level (Fig. 2b).

Leaf K^+/Na^+ ratio

The highest leaf K^+/Na^+ ratio was obtained from the treatment of S_0TC, not differing from S_150TFN significantly. The lowest leaf K^+/Na^+ ratio was observed in the treatment of S_0TFN. The K^+/Na^+ ratio was significantly higher in the treatment of S_0TC than the other zero salinity treatments (S_0). The leaf K^+/Na^+ ratio was significantly decreased in the treatment of S_0TFN versus the other zero salinity treatments. The leaf K^+/Na^+ ratio was significantly higher in the treatment of S_150TFN than in the treatments containing 150 mM NaCl (S_150). The results revealed that at higher salinity levels (S_300), the Na^+ content was increased in the treatments applied with Trichoderma (T) than those lacking Trichoderma (T_0) significantly (Fig. 2c).
The treatments of S_{0TFN} and S_{150TC} were related to the highest and lowest leaf total flavonoid content (mg QE 100 g$^{-1}$ FW), respectively (Fig. 2g).

Leaf K$^+$/Na$^+$, Ca$^{2+}$/Na$^+$, and Mg$^{2+}$/Na$^+$ ratio

We observed that Trichoderma increased the K$^+$/Na$^+$ ratio at the low (S_{150}) and high (S_{300}) salinity levels (Fig. 2c). Razzaghi et al. (2014) reported that salinity increased K$^+$ and Na$^+$ uptake in quinoa plants. The colonization by the endophyte fungi Trichoderma might contribute to protecting ion homeostasis in quinoa by modulating ion accumulation and improving nutrient uptake. It also increases the K$^+$/Na$^+$ ratio in the cytosol by limiting Na$^+$ translocation to the leaves. Morales et al. (2011) state that quinoa plants are capable of accumulating salts in their cells by mechanisms like sequestration of Na$^+$ and compatible minerals in vacuoles, and to avoid salt stress, they use the mechanisms related to SOS1 (Na$^+$/H$^+$ antiport) for the outflow of Na$^+$ from cell cytoplasts to vacuoles and apoplast. It has been reported that the expression of the gene SOS1 is adjusted in plants exposed to salinity stress (Quan et al. 2017) and NHX1 (Na$^+$ and K$^+$/H$^+$) exchanger involves in preserving cytosol K$^+$/Na$^+$ ratio and controlling the osmotic potential in salinity-affected plants. The over-expression of the gene NHX1 increases the salinity tolerance of plants (Wu 2018). Also, there are reports as to the participation of endophyte fungi in increasing the transcription of the genes encoding K transporter with high K$^+$ affinity (HKT1) and the internal KAT1 and KAT2 potassium channels, which play a key role in homeostasis adjustment of Na$^+$ and K$^+$ (Gupta et al. 2020). Therefore, it is likely that Trichoderma plays a role in adjusting gene expression or the activity of ion transporters and channels at different salinity levels by reducing pH and increasing H$^+$ content.

There is competition among magnesium, calcium, potassium and ammonium in adsorption sites on root cell membranes (Hosseinzad et al. 2014). Our results showed that the highest and lowest leaf Ca$^{2+}$/Na$^+$ and Mg$^{2+}$/Na$^+$ ratios were observed in the treatments of S_{0TC} and S_{300TFP}, respectively (Fig. 2e). The interaction among the Trichoderma, biofertilizer and plant at three salinity levels may alter the activity of some membrane ion transporters and channels. Subsequently, the competition triggered among the ions for their uptake disrupts the balance in the ion composition of the plant.

Leaf antioxidants

Quinoa leaves have been claimed to be a potential and rich source of phenol and flavonoid compounds (Ruiz Carrasco
et al. 2016). In the treatments of S$_0$T$_0$C and S$_{150}$T$_0$C, phenolic compounds were accumulated by the plants for various reasons. The no-salinity level in the absence of biofertilizers and/or Trichoderma (the control) provided stressful conditions for the halophyte species quinoa so that the plant spent a great part of its photosynthetic products on survival by various mechanisms like accumulating phenols. It has been reported that at low salinity levels, the plant’s secondary metabolites can prevent oxidative stress-related destructive disorders by exhibiting antioxidant properties and indirectly modulating the functioning of several oxidative-related proteins (Hirose et al. 2010).

It was found in this study that at the salinity levels of 0 and 150 mM, the application of biofertilizers and Trichoderma, either individually or simultaneously, reduced total phenol content (Fig. 2f). When the salinity conditions change, quinoa plants may change the contents of these compounds and their uptake and mobilization as a means of enhancing their adaptation. Therefore, we investigated the Na$^+$ and K$^+$ contents of the leaves to better understand the mechanisms used by the quinoa plants at different salinity levels applied. The lowest total phenol content was observed in the treatment of S$_0$T$_0$F$_N$ (Fig. 2f). Since the plant growth was increased remarkably in this treatment, it can be said that most photosynthetic products were spent on plant growth. It has been reported that cytosol Na$^+$ is compartmentalized and mobilized into the vacuoles to prevent the detrimental effects of Na in plant cell cytosols (Gouiaa et al. 2012). In the treatments of S$_0$T$_N$F$_N$ and S$_0$T$_P$ versus the zero-salinity control, the leaf Na$^+$ content was increased (Fig. 2a) and the K$^+$/Na$^+$ ratio was decreased significantly (Fig. 2c). Since quinoa is a halophyte plant, it can be drawn from the increase in the leaf Na$^+$ content of this plant that when Trichoderma and bacteria were applied at the zero salinity level, the plants took up soil Na$^+$ and accumulated it in their leaves. It is likely that the N and/or P biofertilizers applied with Trichoderma were involved in the increased uptake of Na$^+$ by the roots and its accumulation in the leaves (the salinity of the farm soil was 0.65 dS/m; Table 1). The nutrient uptake by cation channels is non-selective, so the interaction of Trichoderma and bacteria may have increased the activity of the NH$_4^+$-transporter cation channel and subsequently, Na$^+$ uptake (Niu et al. 2013). Given the increase in the Na$^+$ content and the decrease in the K$^+$/Na$^+$ ratio of the leaves in the treatments of S$_0$T$_N$F$_N$ and S$_0$T$_P$ versus the control treatment (S$_0$T$_0$F$_P$). The significant increase in total phenol and flavonoid contents in this treatment (Fig. 2f, g) reflects that phenols and flavonoids might be involved in chelating toxic Na$^+$ and its sequestration in vacuoles and/or scavenging ROS synthesized by Na$^+$ stress, thereby mitigating ion-induced oxidative damages and protecting cytoplasm and chloroplast structures against the negative effects of salinity (Kanwal et al. 2013).

The total phenol and flavonoid contents were significantly increased in the treatment of S$_{300}$TF$_P$ (Fig. 2f g). Phenols act as the chelators of metal ions (Huang et al. 2005). It seems that the Na$^+$ in leaf cells is compartmentalized with the involvement of these compounds. When appropriate cell conditions are provided, Photosynthetic products are used to synthesize proteins and other material required for plant growth, thereby increasing plant growth in this treatment. In the treatment of S$_{300}$TF$_N$, no increases happened in the shoot and root length and biomass unlike the treatment of S$_{300}$TF$_P$, but the root growth was decreased significantly. In this treatment, nutrient uptake is seemingly disrupted due to soil acidification by Trichoderma on the one hand and the abundance of Na$^+$ on the other. A factor that can increase plant polyphenols is nutrient stress, especially N stress. In these conditions, plant growth decreases to a greater extent than photosynthesis. Consequently, the surplus carbon produced by photosynthesis is assigned to defensive carbon-based compounds, e.g., polyphenols. Hence, the plant’s polyphenol content increases with decreasing its growth (Zhao et al. 2007). The increased content of phenols under osmotic stress in different tissues of many plants can be related to the role of total phenols in adjusting the mechanism of the main metabolic processes of the plants, which influence their growth (Allah et al. 2015). At the salinity levels of 150 and 300 mM, total flavonoids were decreased versus the salinity level of 0 mM significantly (Fig. 2e). Flavonoids are synthesized at the end of the phenylpropanoid biosynthesis pathway. In this pathway, the PAL enzyme l-phenylalanine is deaminized into trans-cinnamic acid and then, secondary metabolites, e.g., flavonoids, anthocyanins, lignins, and other phenolic compounds, are biosynthesized because cinnamic acid is the precursor of both lignins and flavonoids (Saafi 2007). It seems that the defensive system of quinoa in salinity stress conditions is mainly based on increasing other phenols and it is likely that it has consumed more cinnamic acid of the phenylpropanoid pathway than flavonoids for synthesizing secondary metabolites like lignins.

Leaf Polyphenolic profile (HPLC)

In the control treatment (S$_0$T$_0$C), coumaric and cinnamic acids were the most and least abundant among the measured phenolic compounds (mg Kg$^{-1}$ DW), respectively. At the zero salinity levels, coumaric, rosmarinic, chlorogenic, caffeic, and cinnamic acids were higher in the treatments of S$_0$T$_N$F$_N$ and S$_0$T$_P$ than in the control (S$_0$T$_0$C). Coumaric, chlorogenic, and caffeic acids were increased in the treatment of S$_{150}$TF$_N$ versus the control (S$_0$T$_0$C). Increases were also observed in rosmarinic, chlorogenic, and caffeic acids in the treatment of S$_{150}$TF$_P$. The chlorogenic acid content was slightly increased in the treatment of S$_{300}$T$_0$ versus the control (S$_0$T$_0$C) Fig. 3a, b).
Among the measured flavonoids, quercetin and apigenin had the highest and lowest amounts in the control treatment (S₀T₀C), respectively. Quercetin, rutin, and apigenin were increased in the treatments of S₀TFN and S₀TFP versus the control (S₀T₀C). Quercetin of the treatment of S₁₅₀TFP was slightly higher than that of the control (S₀T₀C) (Fig. 3c).

Leaf Polyphenolic profile (HPLC)

The research performed HPLC analysis on the quinoa leaves to measure caffeic, chlorogenic, coumaric, rosmarinic, and cinnamic acids and the flavonoids of rutin, quercetin, and apigenin. Among the phenolic compounds studied here, coumaric and rosmarinic acids were dominant in the quinoa leaves.
leaves. Chlorogenic and caffeic acids were observed in lower quantities. Cinnamic acid was in a tiny amount (Fig. 3a, b). The amount of apigenin was increased in the treatments of S$_{150}$TF$_N$ and S$_{150}$TF$_P$, considerably, but it was slight in other treatments (Fig. 3c).

The endogenous accumulation of phenolic acids has been reported as a mechanism of plant tolerance of some abiotic stresses, such as toxic metals, in many plant species (Mohammadi et al. 2021; Mousavi et al. 2021). All phenolic acids and flavonoids measured in this research were significantly increased in the treatments of S$_{150}$TF$_N$ and S$_{150}$TF$_P$, which is consistent with high amounts of total flavonoids in these two treatments. Since the Na$^+$ content in these two treatments was increased versus the other zero salinity treatments and the K$^+$/Na$^+$ ratio was decreased (Fig. 2a, c), it can be drawn that the quinoa plants accumulated Na in their leaves and increased their polyphenols to chelate and compartmentalize detrimental ions and protect cell homeostasis. Lignin synthesis can be another reason for the increase in plant polyphenols. Hydroxycinnamic acids (including p-coumaric, sinapic, caffeic, and chlorogenic acids) are the precursor of lignin synthesis (Shahidi and Naczktuno 2003). The methylation of caffeic acid yields ferulic acid, which forms lignin precursors with p-coumaric acid. Finally, lignin is formed by the polymerization of p-coumaric, ferulic, and sinapic acids and their alcohols. Lignin accumulation and the early lignification of roots have been proven in metal stress conditions. Lignification has a protective role in plants and hinders the penetration of harmful metals (Zhou et al. 2018). Significant increases were recorded in caffeic, chlorogenic, and coumaric acids in the treatment of S$_{150}$TF$_N$ and chlorogenic, caffeic, and rosmarinic acids in the treatment of S$_{150}$TF$_P$. Lignin may be involved in the protection of the quinoa plants against salinity. Phenolic compounds cover a wide range of compounds, such as phenolic acids, flavonoids, and tannins (Kumaran and Karunakaran 2007). The increase in total phenol in the treatments of S$_{300}$TF$_N$ and S$_{300}$TF$_P$ can be related to other phenolic compounds, which were not measured in this research.

Conclusion

The results as to the plant morphology showed that the best treatment for plant growth under sever salinity was the application of only N biofertilizer with no Trichoderma. When Azotobacter was applied with Trichoderma under severe salinity the root growth was significantly decreased, resulting in a significant loss of plant growth. It seems that despite the impact of salinity and soil microorganisms on the amount of sodium and potassium ions, their final concentrations and the ratio of potassium to sodium of leaf are determined by the plant itself. Our results are related to not only the plant response to different levels of salt stress but also the interaction of antioxidants. Phenolic compounds can influence one another antagonistically or synergistically. The changes in the studied phenols can reflect the potential of different antioxidants in the face of salt stress and the interaction of microorganisms. Obviously these results need further studies.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s13762-022-04427-x.

Acknowledgements The authors wish to thank the Faculty of Science and Faculty of Agriculture at Urmia University for their support.

Author contributions GK carried out the experiment, wrote the manuscript with support from Dr Latifeh Pourakbar. LP conceived of the presented idea, developed the theory, supervised the findings of this work, contributed to the interpretation of the results, SSM conceived and planned the experiments, supervised to carry out experimental research. YRD supervised the lab analysis and materials. JPD verified the analytical methods. All authors discussed the results and contributed to the final manuscript.

Funding This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Consent to Participate The authors have agreed to be listed and approved the submitted version of the manuscript.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

Allah MMSA, El-Bassiouny HMS, Bakry BA, Sadak MS (2015) Effect of Arbuscular mycorrhiza and glutamic acid on growth, yield, some chemical composition and nutritional quality of wheat plant grown in newly reclaimed sandy soil. Res J Pharm Biol Chem Sci 6(3):1038–1054

Aysel S, Muaynever S (2004) Seasonal change in antioxidant activity, total phenolic and anthocyanine constituent of the stems of two Morus species (Morus alba L. and Morus nigra L.). Plant Grow Reg 44(3):251–256. https://doi.org/10.1007/s10725-004-4500-4

Aziz RK (2018) Toxicomicrobiomics: narrowing the gap between environmental and medicinal toxicogenomics. Omics: J Inte Boil 22(12):788–789. https://doi.org/10.1089/omi.2018.0183

Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR, Chet I, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9(3):e1003221. https://doi.org/10.1371/journal.ppat.1003221

Chang CC, Yang MH, Wen HM, Chern JC (2020) Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Dru Anal. https://doi.org/10.38212/2224-6614.2748
Demidchik V, Maathuis FJ (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175(3):387–404. https://doi.org/10.1111/j.1469-8137.2007.02128.x

Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Xu G (2016) Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Nat Acad Sci 113(26):7118–7123. https://doi.org/10.1073/pnas.1525184113

Gendy AS, Said-Al Ahl HA, Mahmoud AA, Mohamed HF (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. https://doi.org/10.1155/2014/701596

Gupta B, Huang B (2014) Alleviation of salt stress in plants: physiological, biochemical, and molecular characterization. Int J Genom. https://doi.org/10.1155/2014/4701596

Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248(1):43–59. https://doi.org/10.1023/A:1022371130939

Hirose Y, Fujita T, Ishii T, Ueno N (2010) Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chem 119(4):1300–1306. https://doi.org/10.1016/j.foodchem.2009.09.008

Hosseinzad BE, Chaparzadeh N, Dilmaghani K (2014) Effect of salicylic acid on growth parameters, osmolytes and osmotic potential in radish (Raphanus sativus L.) under salt stress. Huang J, Xu M, Ge Q, Lin M, Lin Q, Chen Y, Zou Y (2005) Controlled synthesis of high-ortho-substitution phenol–formaldehyde resins. J Appl Polym Sci 97(2):652–658. https://doi.org/10.1002/app.21808

Islam F, Yasmeen T, Ali S, Ali B, Farooq MA, Gill RA (2015) Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiol Plantarum 37:1–12

Itilma JU, Bang WI, Onyimba IA, Sila MD, Egbere OJ (2018) Biofertilizers as key player in enhancing soil fertility and crop productivity: a review

Kanwal S, Ashraf M, Shahbaz M, Iqbal MY (2013) Influence of nitrogen sources, bio-fertilizers and their interaction on growth, gas exchange, mineral nutrients and antioxidative processes and changes in phenolic compounds profile of okra (Abelmoschus esculentus L.) seedlings. Plant Grow Reg 64(3):263–273. https://doi.org/10.1007/s10725-011-9567-0

Lin YL, Chao YY, Huang WD, Kao CH (2011) Effect of nitrogen deficiency on antioxidant status and Cd toxicity in rice seedlings. Plant Grow Reg 64(3):263–273. https://doi.org/10.1007/s10725-011-9567-0

Mahdavikia H, Rezaei-Chiyaneh E, Rahimi A, Mohammadkhani N (2019) Effects of fertilizer treatments on antioxidant activities and physiological traits of basil (Ocimum basilicum L.) under water limitation conditions. J Med Plants Prod 8(2):143–151. https://doi.org/10.22092/JPMPB.2019.124092

Martinova D, Ribarova F, Atanassova M (2020) Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J Uni Chem Technol Metal 40(3):255–260

Mohammadi S, Pourakbar L, Moghaddam SS, Popović-Djordjević J (2021) The effect of EDTA and citric acid on biochemical processes and changes in phenolic compounds profile of okra (Abelmoschus esculentus L.) under mercury stress. Ecotox Environ Safe 208:111607. https://doi.org/10.1016/j.ecosafe.2020.111607

Morales AJ, Bajgain P, Garver Z, Maughan PJ, Udall JA (2011) Physiological responses of Chenopodium quinoa to salt stress. Int J Plant Physiol Biochem 3(13):219–232. https://doi.org/10.5897/IJPBB.9000034

Mousavi A, Pourakbar L, Moghaddam SS, Popović-Djordjević J (2021) The effect of the exogenous application of EDTA and maleic acid on tolerance, phenolic compounds, and cadmium phytoremediation by okra (Abelmoschus esculentus L.) exposed to Cd stress. J Environ Eng 9(4):105456. https://doi.org/10.1016/j.jece.2021.105456

Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112(2):391–408. https://doi.org/10.1093/aob/mcs285

Ortuño N, Castillo JA, Claros M, Navia O, Angulo D, Barja D, Angulo V (2013) Enhancing the sustainability of quinoa production and soil resilience by using bioproducts made with native microorganisms. Agronono 3(4):732–746. https://doi.org/10.3390/agronomy30404732

Ortuño N, Castillo JA, Miranda C, Claros M, Soto X (2017) The use of secondary metabolites extracted from Trichoderma for plant growth promotion in the Andean highlands. Ren Agric Food Sys 7:1–11

Pelagio-Flores R, Esparza-Reynoso S, Garnica-Vergara A, López-Bucio J, Herrera-Estrella A (2017) Trichoderma-induced acidification of the root environment and determines fungal phytostimulation. Front Plant Sci 8:822

Quan R, Wang J, Yang D, Zhang H, Zhang Z, Huang R (2017) AIN3 and SOS2 synergistically modulate plant salt tolerance. Sci Rep 7:1–11

Razzaghi F, Jacobsen SE, Jensen CR, Andersen MN (2014) Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought–mechanisms of tolerance. Funct Plant Biol 42:136–148

Reich M, Aghajanazadeh T, Helm J, Parmar S, Hawkesford MJ, De Kok LJ (2017) Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport genes in the C4 grass Lolium perenne. J Exp Bot 68:2169–2183.
Ruiz KB, Biondi S, Martínez EA, Orsini F, Antognoni F, Jacobsen SE (2016) Quinoa—a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosys Int J Deal Plant Biol 150(2):357–371

Saufi A (2007) Lignans in Phaleria macrocarpa and in Linum flavum var. compactum L. Doctoral dissertation Doctoral Thesis Heinrich Heine Dusseldorf Uni Germ 300–316

Shabal L, Mackay A, Tian Y, Jacobsen S, Zhou D, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol Planta 146(1):26–38. https://doi.org/10.1111/j.1399-3054.2012.01599.x

Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669. https://doi.org/10.1111/j.1399-3054.2007.01008.x

Shahidi F, Naczk M (2003) Phenolics in food and nutraceuticals. CRC Press

Shavrukov Y, Hirai Y (2016) Good and bad protons: genetic aspects of acidity stress responses in plants. J Expe Bot 67(1):15–30. https://doi.org/10.1093/jxb/erv437

Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

Sudhir P, Murthy SDS (2004) Effects of salt stress on basic process of photosynthesis. Photosynth 42(4):481–486. https://doi.org/10.1007/S11099-005-0001-6

Suzuki N, Koussevitzky SHAI, Mittler RON, Miller GAD (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Env 35(2):259–270. https://doi.org/10.1111/j.1365-3040.2011.02336.x

Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27(2):177–192. https://doi.org/10.1016/S1002-0160(17)60309-6

Vinale F, Sivasithamparam K, Ghisalberti EL, Ruocco M, Woo S, Lorio M (2012) Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun. https://doi.org/10.1177/1934578X1200701133

Vos CM, De Cremer K, Cammue BP, De Coninck B (2015) The toolbox of Trichoderma spp. in the biocontrol of B otrytis cinerea disease. Mol Plant Pathol 16(4):400–412. https://doi.org/10.1111/mpp.12189

Wu H (2018) Plant salt tolerance and Na+ sensing and transport. Crop J 6(3):215–225. https://doi.org/10.1016/j.cj.2018.01.003

Yang A, Akhtar SS, Iqbal S, Amjad M, Naveed M, Zahir ZA, Jacobsen SE (2016) Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Func Plant Biol 43(7):632–642. https://doi.org/10.1071/FP15265

Yildirim E, Taylor AG, Spittler TD (2006) Ameliorative effects of biological treatments on growth of squash plants under salt stress. Sci Hort 111(1):1–6. https://doi.org/10.1016/j.scienta.2006.08.003

Zhang S, Xu B, Gan Y (2019) Seed treatment with Trichoderma longibrachiatum T6 promotes wheat seedling growth under NaCl stress through activating the enzymatic and nonenzymatic antioxidant defense systems. Int J Mole Sci 20(15):3729. https://doi.org/10.3390/ijms20153729

Zhao X, Iwamoto T, Carey EE (2007) Antioxidant capacity of leafy vegetables as affected by high tunnel environment, fertilisation and growth stage. J Sci Food Agric 87(14):2692–2699. https://doi.org/10.1002/jsfa.3032

Zhou P, Li Q, Liu G, Xu N, Yang Y, Zeng W, Wang S (2018) Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress. Func Plant Biol 46(1):30–43. https://doi.org/10.1071/FP18099

Zhu Y, Wang Q, Wang Y, Xu Y, Li J, Zhao S, Liu Y (2021) Combined Transcriptomic and metabolomic analysis reveals the role of phe nylpropanoid biosynthesis pathway in the salt tolerance process of sophora alopecuroides. Int J Mole Sci 22(5):2399. https://doi.org/10.3390/ijms22052399

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.