PARNI for importance sampling
and density estimation

André van Hameren
IFJ-PAN, Kraków, Poland
Andre.Hameren@ifj.edu.pl
June 29, 2009

Abstract
We present an aid for importance sampling in Monte Carlo integration, which is of the general-purpose type in the sense that it in principle deals with any quadratically integrable integrand on a unit hyper-cube of arbitrary dimension. In contrast to most existing systems of this type, it does not ask for the integrand as an input variable, but provides a number of routines which can be plugged into a given Monte Carlo program in order to improve its efficiency “on the fly” while running. Due to the nature of its design, it can also be used for density estimation, i.e., for the analysis of data points coming from an external source.

1 Introduction
Numerical integration often is the only solution to integration problems encountered in scientific research. If the space over which the integral has to be performed, the integration space, has many dimensions, the Monte Carlo method usually appears to be the only feasible option. It has the advantage that it works for any quadratically integrable function, but the disadvantage that the convergence rate may be low, i.e., that many function evaluations may be needed to obtain a result to acceptable accuracy. Via the method of importance sampling, however, it is in principle possible to translate information about the integrand into an enhancement of the rate of convergence, up to the point where only one function evaluation is needed to complete the integral. In the latter case, the integration problem has essentially been solved analytically.

1This work is partly supported by the EU grant mTkd-CT-2004-510126 in partnership with the CERN Physics Department and by the Polish Ministry of Scientific Research and Information Technology grant No 620/E-77/6.PRUE/DIE 188/ 2005-2008.
Obviously, information about the integrand is obtained during the Monte Carlo integration process itself through the evaluation of the integrand at the integration points. Importance sampling based solely on this information is called *adaptive* importance sampling. It is the last resort to improve the rate of convergence, possibly only applied to a sub-region of the integration space. In particular, it can be useful for so-called *general-purpose* integration systems which are supposed to be able to deal with many different integrands. Several such systems have been developed and are being used extensively in the field of elementary particle phenomenology 1 2 3 4 5. Most of these use the evaluated integration points to adapt the treatment of sub-spaces in which they are generated during the integration process.

The ability to apply importance sampling successfully implies the availability of a probability density which looks like a normalized and strictly positive version of the integrand. An attempt to use importance sampling is essentially the search and construction of such a probability density. Consequently, given such a density, one can generate points in the integration space which are distributed following a normalized and strictly positive version of the integrand, or at least one has a tool to increase the efficiency of such generation process using straightforward methods like rejection. This is an important issue if one wants to perform Monte Carlo *simulations*, and in fact, many of the aforementioned general-purpose systems have been designed also with this goal in mind.

One technical item most of the mentioned general-purpose systems have in common is that they are *integrators*, possibly providing the probability density to be used for simulation after the integration process. More specifically, the integrand is an input variable, and the integration process is performed by the system itself. Sometimes, however, one has his own Monte Carlo program, and one would like to improve parts of it with adaptive importance sampling “on the fly”, without having to turn it into a function that can be used as the input in an initial “integration phase”. In this write-up, we present the program PARNI, which has been designed with exactly this in mind. It consists, apart of a trivial initialization, essentially of two routines that can be called inside a Monte Carlo program: one for the generation of integration points, and one to collect the evaluated function values at those points. The collection routine builds the probability density with which the integration points are generated, and works independently from the generation routine. This means it can take points from another generation process, and estimate the density with which they are generated. In particular, the function evaluation may be absent and all points may have weight one, so that PARNI can serve as a pure density estimator.

The outline of the paper is as follows. In Section 2 an issue concerning the possible overestimation of integration errors when using adaptive importance sampling is addressed. Section 3 explains how the algorithms work on which PARNI is based. In Section 4 a technical detail concerning its architecture is addressed. Section 5 explains how the program is used, and Section 6 gives some examples. Section 7 finally contains the summary.
2 Adaptive importance sampling

In this section we address an issue in the application of adaptive importance sampling in Monte Carlo integration concerning possible overestimates of the integration error. First of all, we assume that the integration/generation problem has been formulated such that the integration space is a hyper-cube $I_D = [0, 1]^D$ of a certain dimension D. Monte Carlo integration is based on the fact that for a quadratically integrable function f and a sequence of points $(x_i)_{i=1}^n$ in the hyper-cube distributed independently following a probability density g, the distribution of the average of the ratio f/g over the sequence converges, following the Central Limit Theorem, to a Gaussian distribution with expectation value

$$E\left(\frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{g(x_i)}\right) = \int_{I_D} f(x) \, d^Dx,$$

(1)

and variance

$$V\left(\frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{g(x_i)}\right) = \frac{1}{n} \left[\int_{I_D} \frac{f(x)^2}{g(x)} \, d^Dx - \left(\int_{I_D} f(x) \, d^Dx \right)^2 \right].$$

(2)

Therefore, the average can be interpreted as an estimate of the integral, with a possible integration error given by the square root of its variance. The variance can be estimated by

$$\frac{1}{n-1} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)^2}{g(x_i)} - \left(\frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{g(x_i)} \right)^2 \right],$$

(3)

and approaches zero for large values of n. In first instance, the only restrictions on the density g are that it is non-zero on the support of f, and that there is a useful, meaning not too complex, algorithm available to generate the sequence of points distributed following this density. Of course, the evaluation of the density at the integration points should be feasible, or say, at most be of a complexity comparable to the one of the evaluation of the integrand. A first candidate for the density g is unity on the hyper-cube. Importance sampling is the attempt to construct a density g such that the variance (2) is, for a given value of n, as small as possible.

In adaptive importance sampling, the evaluated integration points are used to update the density during the integration process. In this case, the Lévi Central Limit Theorem, which is the basis for the version of Monte Carlo integration presented above, does not hold anymore since it applies only in case the points are independently identically distributed. Theoretically, this is not a problem since one can apply the Martingale Central Limit Theorem [6]. In practice, however, it means that one possibly unnecessarily overestimates the integration error. To see how this happens, assume that a batch of n points has been generated with density g_1, and another batch with density g_2 which possibly depends on the first batch of data. The straightforward Monte Carlo estimate of the integral would be

$$Y = \frac{X_1 + X_2}{2} \quad \text{with} \quad X_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{g_1(x_i)} \quad \text{and} \quad X_2 = \frac{1}{n} \sum_{i=n+1}^{2n} \frac{f(x_i)}{g_2(x_i)}.$$

(4)
The variance of the estimate is given by

\[V(Y) = \frac{V(X_1) + V(X_2)}{4}. \]

(5)

The problem is now that nothing assures that \(V(X_1) < 3V(X_2) \) so that the result using both batches like this may be worse than the result using only the second batch.

The straightforward solution to this problem is to introduce an “optimization phase” in the integration process, in which points are generated and the integrand is evaluated to adapt the density, but do not contribute to the final estimate of the integral. The integral is estimated in a second “integration phase”, in which the optimized density is not changed anymore, and the Lévi Central Limit Theorem applies.

The optimal solution would be to weigh the contributions with the inverse of the variance, \(i.e., \) to take

\[Y = \frac{V(X_1)V(X_2)}{V(X_1) + V(X_2)} \left(\frac{X_1}{V(X_1)} + \frac{X_2}{V(X_2)} \right). \]

(6)

This choice gives the minimum variance for \(Y \), however, the variances have to be estimated too, and replacing them by their estimates in the above formula would lead to a biased estimator for the integral of \(f \).

We suggest to weigh contributions of equal sized batches of integration points, which are generated with the same density, with pre-determined weights. \textsc{parsi} in particular generates batches of constant size with the same density, and uses the information from a whole batch at once to update the density, with which the next batch is generated. From experience, weighing the contributions with the order in the sequence, so that the first batch gets a relative weight equal to 1, the second batch gets a relative weight equal to 2 etc., appears to be a safe choice in the sense that the contribution of the early batches is relatively low and the problem sketched above is avoided.

3 The algorithm

One ingredient of the algorithm to build the probability density is to divide the hyper-cube into sub-regions on which the density is constant, in a way similar to other systems, in particular the one in [3]. The second ingredient is to consider the probability density a weighted sum of probability densities restricted to those sub-regions. This essentially is an application of the \textit{multi-channel} method [7]. It has the advantage that it suits itself excellently for updating the probability density “on the fly” by collecting batches of integration points of constant size during the generation of which the density is not changed. The disadvantage is that it requires extra

\[\text{The correlation } E(X_1X_2) - E(X_1)E(X_2) \text{ is zero. This is an indication for the martingale structure of a sequence of Monte Carlo estimates using adaptive importance sampling.} \]

\[\text{Notice the difference with the application of the multi-channel method in [8], where each channel consists of a probability density on the full hyper-cube.} \]
memory during the computation, since the weights of all the sub-densities have to be stored, something which is avoided for example in [3].

More explicitly, at a given point during the Monte Carlo computation, the density is given by

$$g(x) = \sum_{k=1}^{m} w_k g_k(x),$$

(7)

where each g_k is the constant probability density on a sub-region A_k of the hyper-cube and the weights w_k are positive and sum up to

$$\sum_{k=1}^{m} w_k = 1.$$

(8)

The regions are non-overlapping hyper-rectangles, and their union is the hyper-cube:

$$A_k \cap A_l = \emptyset \quad \forall \; k \neq l \quad \text{and} \quad \bigcup_{k=1}^{m} A_k = I_D.$$

(9)

A triple (A_k, g_k, w_k) will be referred to as a channel number k.

The creation of new channels is incorporated such that it aims at equidistribution, i.e., it aims at moving the values of the channel weights towards the average $1/m$. Given a batch of evaluated integration points and a method how to update the weights, one of the updated weights, say w_k, will be the largest. Hyper-rectangle A_k is divided into two equal sized pieces, and g_k becomes a weighted sum of two probability densities. The weight of each of the these new densities in the full sum of densities simply becomes half of the original updated weight. The division of the original rectangle happens such that it is cut in the middle perpendicular to the dimension along which it has the longest edges. If it has several dimensions for which the edges are of equal length and the longest, one of them is chosen at random. This way, the hyper-rectangles tend to have the shape of hyper-cubes. After the division process, we have a new set of $m' = m + 1$ channels. For this set of channels, the division process is repeated until the weight efficiency

$$\frac{1}{m' \max_k w_k}$$

(10)

does not increase anymore (notice that m' increases while $\max_k w_k$ decreases with each division).

For updating the weights before the division process we have reserved several options. In order to achieve variance minimization, the relative weights should be taken proportional to

$$w_k \propto \sqrt{\text{vol}(A_k)^2 \int_{I_D} f(x)^2 g_k(x) \, d^D x},$$

(11)

4Realize that g_k is a probability density, so it is the indicator function of A_k divided by the volume of A_k.

5
where \(\text{vol}(A_k) \) is the volume of sub-region \(A_k \). The integral is estimated by \(F_k^{(p)} = \frac{\sum_{x_i \in A_k} f(x_i)^p}{F_k^{(0)}} \). \hspace{1cm} (12)

We do not calculate the numbers \(F_k^{(p)} \) per batch, but calculate them incrementally during the whole adaptation process, by dividing them by 2 if the corresponding channel is divided in two pieces during in the creation of channels.

Variance minimization might not lead to the optimal density to be used for simulation purposes; the density with which the simulation is most efficient. For this, one should aim at a more point-wise recovery of the integrand. Better results might then be expected by putting the relative weights proportional to

\[
 w_k \propto \text{vol}(A_k) \int_{\Omega} f(x) g_k(x) \, d^D x .
\] \hspace{1cm} (13)

The integral is estimated by \(F_k^{(1)} / F_k^{(0)} \).

In case PARNI is used for the task of density estimation, only the full weight coming with each data point is known, one cannot extract the value of an integrand, and the channel weights are put proportional to

\[
 w_k \propto S_k^{(1)}
\] \hspace{1cm} (14)

where

\[
 S_k^{(p)} = \sum_{x_i \in A_k} s_i^p
\] \hspace{1cm} (15)

and \(s_i \) is the weight coming with \(x_i \). This way essentially a multi-dimensional histogram with non-equal sized bins is being built.

With the creation of more and more channels, more and more memory is needed, which may not be available anymore at some point. PARNI provides the option to set a maximum to the number of channels. If this number is reached, PARNI will continue to divide channels, but it will also start to merge channels in order to keep the total number close to the maximum set. Merging is performed with the channels which came from the same parent channel during the division process, and have the smallest sum of weights of all such pairs. The original parent hyper-rectangle is restored, and it gets a channel weight which is the sum of the weights of the pair of daughter channels. Also the values of the quantities \(F_k^{(p)} \) and \(S_k^{(p)} \) are obtained by adding those of the daughters together.

4 Binary-tree structure

One technical detail that is worth mentioning because it highly contributes to the computational efficiency of the program is that the structure of sub-spaces is, like in [3], organized in a binary-tree structure. So for every hyper-rectangle, the program keeps track of its parent it was created from by the division process, and the daughters created by its own division. This means that the
program keeps track of twice as many hyper-rectangles as there are channels, but this disadvantage is fully compensated by the increase in computational efficiency. For example, in order to evaluate the built density at a given point in the hyper-cube, the hyper-rectangle has to be found in which the point is situated. Because of the binary-tree structure this can be done very quickly with a binary search. Also for the generation of a point in the hyper-cube following the built density a binary-tree search is used. The channel weights are put in a row on the unit interval, and a random number is thrown in. Now the interval, corresponding to the weight in the row, has to be found in which this random number exactly fell. This interval then corresponds to the channel delivering the next integration point.

5 The use of the program

The program is written in Fortran77 using long names, underscores in names, enddo and do while statements. It has been designed such that an arbitrary number of instances of the algorithm can work in parallel, dealing with completely different integrands living in different numbers of dimensions. Before PARNI can be used, some integer type global parameters have to be set. This happens in the header-file avh_parni.h. There is avh_parni_size, which is a measure of the total amount of memory one is willing to spend on all instances of PARNI together. This amount consists of the equivalent of this parameter times 4 double precisions plus 6 integers. Then there is avh_parni_ncopy, setting the maximal number of instances of PARNI, and finally there is avh_parni_dim, setting the largest dimension an instance of PARNI may be ordered to deal with.

Next, the user of the program has to implement the contents of the the routine

```fortran
subroutine avh_parni_random(rho ,nn)
```

which is supposed to generate double precision arrays rho of arbitrary length nn consisting of uniformly distributed (pseudo) random numbers. In practice one line with a call to an external routine of this type will suffice.

An instance of PARNI has to be initialized before the Monte Carlo loop with

```fortran
call avh_parni_init(ID ,itask ,ndimen ,nbatch ,nchmax)
```

All variables are input and integers, and the first one, ID, is the id of the instance of PARNI. This number should be larger than 0 and not larger than the value of avh_parni_ncopy. The second one, itask, specifies the way the channel weights are updated. The choice itask=1 corresponds to Eq.(13) and itask=2 corresponds to Eq.(11). For the task of density estimation, one has to put itask=11. The third input variable, ndimen, specifies the number of dimensions of the hyper-cube. The fourth input variable, nbatch, specifies the size of the batches of data points to be collected before a new adaptation step is performed. The larger this number, the more conservative the algorithm and the less channels will be created for a given total number of data points. From experience we find that this number should best be of the order of the
square-root of the total number of data points that is expected to be encountered. The fifth input variable, \(n_{\text{chmax}} \), is the maximal number of channels that one wishes to reach. If its value is put to 0, the number of channels will grow indefinitely.

Inside the Monte Carlo loop, an integration point distributed following the density built so far is generated by

```c
call avh_parni_generate(ID ,xx)
```

The first variable, \(ID \), is input and is the id of the instance of PARNI. The second variable, \(xx \), is output consisting of a double precision array of length \(ndimen \), where the latter is the number given on input at the initialization of this instance of PARNI. The weight coming with this integration point is not returned by this routine. Instead, one can obtain the value of the built probability density at any point inside the hyper-cube with the function

```c
avh_parni_density(ID ,xx)
```

Here, \(xx \) is input. The weight coming with an integration point generated by PARNI is given by 1 divided by the number obtained by evaluating this function at the generated point. Although this is less efficient than returning the weight immediately, we find that the gain in flexibility outweighs this disadvantage, in particular because the evaluation of the above function is performed very fast due to the binary-tree structure.

A data point is collected for the adaptation of the density with

```c
call avh_parni_adapt(ID ,value ,xx)
```

All variables are input. The third one, \(xx \), is the data point in the hyper-cube, and the second one, \(value \), is the full weight coming with this point, so including the weight from the generation of PARNI itself in the case of importance sampling.

Besides the necessary routines described above, there are some diagnostic routines available. With

```c
call avh_parni_marg(ID ,nunit ,label)
```

a file is created for each dimension with two columns of data corresponding to the marginal density in that dimension. In other words, it gives the density obtained when all other dimensions are “integrated out”. The integer input variable \(nunit \) refers to the unit the file is written to, and \(label \) is, if it is chosen to be positive, an extra label to the file name. If, for example, \(ID=13 \) and \(label=25 \), then the file name with the marginal density of dimension number 2 is PARNI13d2_25.

In case the integration space is 2-dimensional, the density can be visualized with the file created by

```c
call avh_parni_plot(ID ,nunit ,label)
```

In the example above, the name of the file name will be PARNI13p_25. It is in a format to be used by gnuplot [9]:
Figure 1: The density built by PARNI during the integration of the function in Eq.(16) with $\varepsilon = 10^{-5}$. The picture on the right is a zoom-in.

gnuplot> plot 'PARNIp13_25' w l
will visualize the 2-dimensional structure of rectangles, whereas

gnuplot> splot 'PARNIp13_25' w l
will visualize a full 3-dimensional picture of the density.

The number of channels that finally has been reached is send to standard output by

call avh_parni_result(ID)

Also an integration estimate with error estimate are printed, but the latter may be an overestimation.

Finally we want to remark that the program is distributed over 3 source files with a total length of less than 1500 lines including comments, and that all subroutines, functions and common blocks have names starting with avh_parni.

6 Some examples

In the first example, we use PARNI to integrate a function consisting of a truncated Cauchy-density

$$f(x) = \frac{N(x_0, \varepsilon)}{(x - x_0)^2 + \varepsilon^2},$$

where $N(x_0, \varepsilon)$ is the normalization such that the correct integral is equal to 1. We take $x_0 = 0.6$ and $\varepsilon = 10^{-5}$, so that relative to the unit interval the density becomes a sharp delta-like spike. In Fig.1 we show the density built by PARNI after 10^4 integration points applied to the adaptation in
batches of \(10^2\). We did not restrict the number of channels, and PARNI created 202 of them. To give a quantitative measure of the result: integration of the integrand with importance sampling using this density (so after its creation, not during) is done with a crude efficiency\(^3\) of about 23\%. Without any importance sampling, the Monte Carlo integration of this integrand would be performed with a crude efficiency of 0.0037\%.

The program VEGAS \(^1\) works very well for multi-dimensional integration problems for which the integrand is factorizable over the dimensions, i.e., when the integrand can be seen as a product of integrands each of them depending on only one of the dimensions. In the second example, we visualize why it is very important to use this knowledge about the integrand when available. We choose an integrand which is the product of truncated Cauchy-densities

\[
f(x, y) = \frac{N(x_0, a)}{(x - x_0)^2 + a^2} \cdot \frac{N(y_0, b)}{(y - y_0)^2 + b^2},
\]

with \((x_0, a) = (0.6, 0.02)\) and \((y_0, b) = (0.33, 0.04)\). Now we attack the integration problem in two different ways. In the first approach, we let one instance of PARNI deal with the full 2-dimensional problem at once. A rudimentary Monte Carlo program in this approach would look like

```fortran
call avh_parni_init(1, itask, 2, nbatch, nchmax) ! ndimen=2
result = 0d0
do iev=1, nev
   call avh_parni_generate(1, x)
   weight = integrand(x(1), x(2))
   call avh_parni_density(1, x)
   call avh_parni_adapt(1, weight, x)
   result = result + weight
enddo
result = result / nev
```

In the second approach, we let two instances of PARNI deal with the problem, each of them with one of the dimensions, just like VEGAS does. A rudimentary Monte Carlo program in this approach would look like

```fortran
call avh_parni_init(1, itask1, 1, nbatch1, nchmax1) ! ndimen=1
call avh_parni_init(2, itask2, 1, nbatch2, nchmax2) ! ndimen=1
result = 0d0
do iev=1, nev
   call avh_parni_generate(1, x1)
call avh_parni_generate(2, x2)
   weight = integrand(x1, x2)
   & / avh_parni_density(1, x1)
call avh_parni_adapt(1, weight, x1)
   result = result + weight
enddo
result = result / nev
```

\(^3\)The average weight divided by the maximal weight in the Monte Carlo process.
In order to compare the two approaches in a fair way, we demand that the sum of the number of channels used by these two instances should be the same as the number of channels used by the one instance dealing with the full problem. Fig.2 depicts the density built using 10^5 integration points in batches of 316 by one instance of PARNI dealing with the full integration problem. The number of channels is 200. The picture on the right is the top-view of the picture on the left, and shows the structure of rectangles. The picture on the left of Fig.3 shows the marginal densities in the two dimensions for this case. The picture on the right, on the other hand, shows the density built by each of the instances of PARNI when they deal with the dimensions separately, i.e., in case the VEGAS-approach is followed. In this picture, the densities look much nicer because more “bins” are available, namely 100 for each of them, whereas in the picture on the left this number is only of the order of $\sqrt{200}$. Since we are dealing with a factorizable integrand, we know that the marginal densities are sufficient to capture all information about the integrand, and we can thus confirm visually that the VEGAS-approach works much better. This is also shown more quantitatively by the crude efficiency of the integration of the integrand using the densities (again after their creation, not during): 66% for the VEGAS-approach against 15% for the other approach.

When the integrand is not factorizable, VEGAS does not work so well, and for example [3] has particularly been designed to deal with this problem. Also PARNI can deal with non-factorizable integrands, and as an example, we give some results for a 2-dimensional integration problem in
which the support of the integrand is concentrated around a circle. It is proportional to

\[f(x, y) \propto \exp \left(- \frac{(r - c)^2}{d^2} \right) \quad \text{with} \quad r = \sqrt{(x - \alpha)^2 + (y - \beta)^2}, \tag{18} \]

and we put \(\alpha = 0.57, \beta = 0.62, c = 0.3 \) and \(d = 0.01 \). The structure of rectangles built by \textsc{PARNI} after \(10^6 \) integration points in batches of \(10^3 \) is shown in Fig. 4. We did not put a restriction on the number of channels to be created, and \textsc{PARNI} created 1819 of them. If we try to deal with this integrand using the \textsc{VEGAS}-approach, around 2800 channels are created for either dimension. Still, the integration is less efficient: with the same number of integration points, the \textsc{VEGAS}-approach reaches an estimate of the relative error of 0.24\%, whereas the approach with one instance dealing with the full problem reaches an estimated 0.081\%. In comparison, without any importance sampling, one reaches an estimated relative error of 0.43\%.

7 Summary

We presented the program \textsc{PARNI}, a practical aid for importance sampling in Monte Carlo integration. It adapts automatically to integrands on the unit hyper-cube of in principle any dimension, and can therefore be considered to be of the general-purpose type. However, it does not ask for the integrand as an input variable, but provides a number of routines which should be incorporated into an existing Monte Carlo program, so that the optimization happens “on the fly” while the Monte Carlo is running. The generation of integration points and the adaptation of the probability density following which they are generated happen independently, and the program can also be used only to adapt the probability density using data from another source. In other words, it can also be used as a pure density estimator.
Figure 4: Structure of rectangles built during the integration of the integrand in Eq. (18).

References

[1] G. P. Lepage, “A New Algorithm For Adaptive Multidimensional Integration,” J. Comput. Phys. 27 (1978) 192.

[2] S. Kawabata, “A New version of the multidimensional integration and event generation package BASES/SPRING,” Comput. Phys. Commun. 88 (1995) 309.

[3] S. Jadach, “Foam: A general purpose cellular Monte Carlo event generator,” Comput. Phys. Commun. 152 (2003) 55 [arXiv:physics/0203033].

[4] T. Hahn, “The CUBA library,” Nucl. Instrum. Meth. A 559 (2006) 273 [arXiv:hep-ph/0509016].

[5] P. Nason, “MINT: a Computer Program for Adaptive Monte Carlo Integration and Generation of Unweighted Distributions,” arXiv:0709.2085 [hep-ph].

[6] A. F. W. van Hameren, “Loaded dice in Monte Carlo: Importance sampling in phase space integration and probability distributions for discrepancies,” arXiv:hep-ph/0101094.

[7] R. Kleiss and R. Pittau, “Weight optimization in multichannel Monte Carlo,” Comput. Phys. Commun. 83 (1994) 141 [arXiv:hep-ph/9405257].

[8] T. Ohl, “Vegas revisited: Adaptive Monte Carlo integration beyond factorization,” Comput. Phys. Commun. 120 (1999) 13 [arXiv:hep-ph/9806432].
[9] http://www.gnuplot.info/