Antioxidant and Antibacterial Activities of Four Local Medicinal Plants

Barna Goswami, Shamoly Akter¹, Nemai Chandra Nandi², Tanjina Akhtar Banu, Shahina Akter, Sadia Afrin³, Ahashan Habib and Salim Khan

Plant Tissue Culture Section, Biological Research Division, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka-1205, Bangladesh

Key words: Antioxidant activity, Medicinal plants, DPPH, Antibacterial activity

Abstract

Potential antioxidant and antibacterial activity of methanolic, chloroformic and n-hexane leaf extracts of four local important medicinal plants like Ocimum americanum, O. basilicum, O. gratissimum and Centella asiatica was investigated. The methanolic leaf extracts of these plant species exhibited the potent DPPH free radical scavenging activity (IC₅₀ value, 2.67 ± 0.01, 14.17 ± 0.11, 60.22 ± 0.01 and 2.39 ± 0.025 µg/ml, respectively). Methanolic leaf extract of C. asiatica showed strongest antioxidant activity. Chloroformic leaf extracts possessed moderate antioxidant activity (IC₅₀ value of 79.44 ± 0.05, 110.56 ± 0.02, 54.95 ± 0.05, 101.0 ± 1.0 µg/ml, respectively) in all samples. The lowest antioxidant activity was recorded from n-hexane leaf extracts of O. americanum, O. gratissimum, C. asiatica and Ocimum basilicum (IC₅₀ value 147.87 ± 0.06, 378.19 ± 2.65, 104.65 ± 0.39, 467.58 ± 0.52 µg/ml, respectively). Methanolic and chloro-formic leaf extracts showed antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria, namely Bacillus megaterium, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi. Methanolic leaf extract of O. americanum and chloroformic extract of C. asiatica showed excellent antimicrobial activity.

Introduction

Natural antioxidants are being extensively studied for their ability to protect organisms and cells from damage caused by oxidative stress. Medicinal plants are in general, harmless sources for obtaining natural antioxidants. There is an increasing demand to

¹Author for correspondence: <k2salim@yahoo.com>. ²Department of Botany, Jagannath University, Dhaka-1100, Bangladesh. ³Medicinal and Aromatic Plant Research Division, BCSIR Laboratories Chittagong, Chattogram 4220, Bangladesh. ⁴Incepta Pharmaceuticals Ltd., Savar-1341, Dhaka, Bangladesh.

DOI: https://doi.org/10.3329/ptcb.v30i2.50688
evaluate the antioxidant properties of the plant extracts and in the last years, the attention has been focused on the antioxidant products from natural sources (Lobo et al. 2010 and Amiri 2010). Many pharmacological studies have shown that extracts of some antioxidant plants possess anti-inflammatory, anti-allergic, anti-tumor, anti-bacterial, anti-mutagenic and anti-viral activities to a greater or lesser extent. Today the large numbers of drugs are derived from medicinal plants, like morphine from Papaver somniferum, ephedrine from Ephedra vulgaris etc. The medicinal plants are rich in secondary metabolites which are potential sources of drugs and essential oils of therapeutic importance (www.intechophen.com).

Ocimum spp. and Centella asiatica are widely used in Bangladesh by the traditional medical practitioners in day to day practice. Generally, Ocimum spp. of the Lamiaceae family rich in polyphenolic compounds and a large number of them are well known for their antioxidant properties (Klaudija et al. 2016). In this regard, O. basilicum, O. americanum and O. gratissimum are very important members of this family for their medicinal value. Ocimum sp. is extensively used in traditional medicine (Jannnarmadi et al. 2002) and exhibits phytotherapeutic properties (Maria et al. 2008), antimicrobial (Ram et al. 2011), antifungal (Zhang et al. 2009), as well as antioxidant and insect repellent activities (Telci et al. 2009 and Kweka et al. 2008).

C. asiatica is a prostrate stoloniferous plant that belongs to Apiaceae and indigenous to Bangladesh (Varrier 1997). The therapeutic use of C. asiatica with its wide range of application has been documented in South East Asia and Bangladesh in particular for centuries. C. asiatica is effectively being used in the treatment of fever, jaundice, dysentery, diarrhea, mental illness within the frame of traditional medicine of Bangladesh (Ahmed 2009).

Despite the popular use of these medicinal plants in Bangladesh there is no reliable data available about the antioxidant and antimicrobial potential of these plants. So, efforts should be made to evaluate the antioxidant and antimicrobial properties of these plants. The aim of this work was to analyze antioxidant and antibacterial activity of three widely used species of Ocimum, namely O. americanum, O. basilicum, O. gratissimum and Centella asiatica.

Materials and Methods
Leaves of four local important medicinal plants like Ocimum americanum, O. basilicum, O. gratissimum and Centella asiatica were collected from medicinal plant garden of BCSIR Laboratories Chittagong, Chattogram. After collection leaves were dried under shade at 25 - 27°C and powder was made using an electric blender. The powder was stored at 4°C in air tight container. The air-dried powdered leaf materials (200 g) of four plants were extracted with 550, 600 and 650 ml of solvents n-hexane, chloroform and methanol separately in succession. The plant extracts were then evaporated, dried and stored in a beaker at 4°C till use. 2, 2-diphenyl-1-picryl hydrazyl (DPPH) free radical scavenging
Antioxidant and Antibacterial Activities

181

assay was used for determining antioxidant activity. The antioxidant potential of the crude extract was determined on the basis of their scavenging activity of the stable dark-colored crystalline powder 2, 2-diphenyl-1-picryl hydrazyl free radical that has significant applications in laboratory research. The free radical scavenging property of extracts were analyzed by 1, 2-diphenyl-1-picryl hydrazyl assay developed by Brand-Williams et al. 1995. In determining DPPH free radical scavenging activity, different concentrations (1.75, 3.13, 6.25, 12.5, 25, 50, 100, 200 and 400 μg/ml) of the extracts and the positive control (Quercetin) were prepared with pure ethanol. Then 2 ml of 0.004% DPPH solution was added in test tube of different extracts. The test tubes were allowed to stand at dark for 30 min to complete the reaction and then absorbance was recorded at 517 nm. The decrease in absorbance with blank was also measured. Negative control was prepared in the same way as the sample except addition of sample or standard. Percent scavenging activity was calculated using the formula: scavenging activity = (A0 − A1)/A0 × 100%, where A0 is the absorbance of control, and A1 is the absorbance of sample or standard. The experiment was carried out in triplicate. By using the equation y = mx + c (where c is intercept and, m is slope); IC₅₀ value of extract was calculated.

Crude leaf extracts (n-hexane, chloroformic and methanolic) of O. americanum, O. basilicum, O. gratissimum and C. asiatica were used to evaluate the antibacterial activity by using disc diffusion method. One Gram-positive pathogenic bacteria (Bacillus megaterium ATCC 18) and three Gram-negative pathogenic bacteria Escherichia coli; ATCC 8739, Pseudomonas aurigiosa; ATCC 2783318 and Salmonella typhi; ATCC 13311 were used in this test. A single bacterial colony was cultured in 25 ml LB broth for 24 hrs at 37ºC and the liquid culture was spread uniformly on nutrient agar plates using a sterile cotton swab. The plates were kept for 15 minutes and then used for the sensitivity test. Gentamycin (10 mcg/disc) were used as standard antibiotic. The sterile filter paper discs were prepared by adding 500 μg extracts per disc. The negative control was 100% ethanol.

One Petri dish was arbitrarily divided in four parts where one negative control disc, one antibiotic disc and two extract discs were placed. The plates were then incubated at 37ºC for 18 to 24 hours. After the incubation, the plates were observed for inhibition zone and were measured using scale in millimeter. The tests were repeated three times to ensure reliability.

Results and Discussion

Antioxidant activity of leaf extracts of Ocimum americanum, O. basilicum, O. gratissimum, and Centella asiatica were examined by DPPH free radical scavenging assay. Quercetin was used as a standard. Among three leaf extracts of the plants methanolic leaf extract showed lowest IC₅₀ value (2.67 - 60.22 μg/ml) compared to standard Quercetin (2.28 ± 0.01 μg/ml) (Table 1). Chloroformic leaf extract exhibited lower IC₅₀ value (54.95 - 110.56 μg/ml) and n-hexane leaf extract showed the least antioxidant activity (147.87 - 467.58
µg/ml). Comparison of IC₅₀ values of different plant extracts with standard Quercetin are presented in Fig. 1. It was previously reported that cysteine, glutathione, ascorbic acid, tocopherol, polyhydroxy aromatic compounds and aromatic amines could reduce and decolorize DPPH by their hydrogen donating ability (Blois 1958).

Table 1. DPPH-free radical scavenging activity.

Solvent system	Plant species	IC₅₀ value µg/ml
Standard	Quercitin	2.28 ± 0.01
Methanolic	*O. americanum*	2.67 ± 0.01
	C. asiatica	2.39 ± 0.025
	O. basilicum	14.17 ± 0.11
	O. gratissimum	60.22 ± 0.01
Chloroformic	*O. americanum*	79.44 ± 0.05
	O. basilicum	110.56 ± 0.02
	O. gratissimum	54.95 ± 0.05
	C. asiatica	101.0 ± 1.0
n-hexane	*O. americanum*	147.87 ± 0.06
	O. basilicum	467.58 ± 0.52
	O. gratissimum	378.19 ± 2.65
	C. asiatica	104.65 ± 0.39

Results are the average of triplicate measurements ± Sd.

Fig. 1. Comparison of average IC₅₀ values of methanolic, chloroformic and n-hexane leaf extracts of *O. basilicum*, *O. americanum*, *O. gratissimum* and *C. asiatica* with (Quercitin). Values are taken by three replicate determinations (n = 3) ± Sd. IC₅₀ values of methanolic leaf extracts of all the plants are close to IC₅₀ value of standard.
Hossain et al. (2015). Therefore, methanolic leaf extracts seem to possess hydrogen donating capability as they tend to extract mostly polar compounds from the plant material and showed potent antioxidant activity.

The IC\textsubscript{50} value of methanolic leaf extracts of \textit{O. americanum}, \textit{O. basilicum} and \textit{C. asiatica} were found 2.67 ± 0.01, 14.17 ± 0.11, 2.39 ± 0.025 µg/ml, respectively (Table 1). On the other hand, methanolic leaf extract of \textit{O. gratissimum} showed the least antioxidant activity. DPPH-free radical scavenging activity of methanolic leaf extracts of \textit{C. asiatica}, \textit{O. americanum} and \textit{O. basilicum}, respectively are presented in Fig. 2. The IC\textsubscript{50} value of methanolic leaf extracts of \textit{O. americanum}, \textit{O. basilicum} and \textit{C. asiatica} clearly indicated that the concentration of leaf extracts was needed to scavenge 50% of the free radical which was very close to the IC\textsubscript{50} value of standard (2.28 µg/ml, where regression equation, \(y = 23.07x + 41.64\), \(R^2\) value = 0.566, data not shown). Therefore, methanolic leaf extract showed the potent antioxidant activity. \textit{C. asiatica} showed the highest antioxidant activity (Regression equation, \(y = 25.75x + 40.18\), \(R^2\) value = 0.524, data not shown) from methanolic leaf extract (Fig. 2). Yadav et al. 2017 also reported that \textit{C. asiatica} showed potential antioxidant activity using different solvent extracts. It was also in good agreement with the findings of Afrin et al. (2016), who reported that methanolic extract of \textit{Caesalpinia crista} leaves acts as an antioxidant. Agarwal et al. (2017) also reported that methanolic root extract of \textit{O. kilimandscharicum} and \textit{O. sanctum} showed potent antioxidant activity. Sunitha and Rani (2017) reported that methanolic seed extracts of \textit{O. americanum} showed the highest antioxidant activity. Strong antioxidant activity of methanolic extract of \textit{O. basilicum} was also reported by Jayasinghe et al. (2003).
On the other hand, chloroformic leaf extract of all plants used in this study showed moderate antioxidant activity by comparing the IC\textsubscript{50} value may be due to the presence of non-polar or less polar compounds. During this study, O. gratissimum and O. americanum showed moderate antioxidant activity of chloroformic leaf extract in comparison with other plants. IC\textsubscript{50} value of chloroformic leaf extracts of O. gratissimum and O. americanum were 54.95 ± 0.05 and 79.44 ± 0.05, respectively. Afrin et al. (2016) reported that the leaf extract of chloroformic solvent system exhibited 50% inhibition (IC\textsubscript{50}) at a concentration of 537.03 and 97.72 µg/ml by Cynometra ramiflora. Hakkim et al. (2008) also reported the antioxidant activity of O. gratissimum and O. americanum leaf extract.

N-hexane leaf extracts of all the medicinal plants showed the lowest antioxidant activity. The IC\textsubscript{50} value of leaf extracts were found to be 147.87 ± 0.06, 378.19 ± 2.65, 104.65 ± 0.39 and 467.58 ± 0.52 µg/ml for O. americanum, O. gratissimum, C. asiatica and O. basilicum, respectively. Patil et al. (2011) also reported that n-hexane extract of Ocimum sp. showed the lowest antioxidant activity. N-hexane extract of C. asiatica also showed the lowest in both antibacterial and antioxidant activity reported by Rattanakom and Yasurin (2014).

Table 2. Antibacterial activities of O. gratissimum, O. americanum, O. basilicum and C. asiatica leaf extracts.

Bacteria	Plant species	Antibiotic gentamycin (mm)	Methanolic leaf extract (mm)	n-hexane leaf extract (mm)	Chloroformic leaf extract (mm)
Escherichia coli (ATCC 8739)	O. gratissimum	21	25	-	10
Salmonella typhi (ATCC 13311)	C. asiatica	25	-	14	16
Bacillus megaterium (ATCC 18)	O. americanum	18	26	-	16
Pseudomonas aeruginosa (ATCC 2783318)	O. basilicum	19	25	-	9

In case of antibacterial screening, all the leaf extracts (methanolic, chloroformic and n-hexane) of all medicinal plants used in this study showed potent to moderate antibacterial activity against B. megaterium, S. aureus, E. coli, P. aeruginosa and S. typhi (Table 2). Methanolic and chloroformic leaf extracts showed notable zone of inhibition compared to n-hexane extract. Methanolic leaf extract produced zone of inhibition was in between 20 and 26 mm. Ocimum basilicum showed the highest inhibition zone (25 mm) compared to antibiotic gentamycin (19 mm) against Pseudomonas aeruginosa using methanolic leaf extract (Fig. 3a). Ocimum gratissimum also showed similar inhibition zone (25 mm) against E. coli using methanolic leaf extract (Fig. 3b). In case of methanolic leaf extract maximum zone of inhibition was obtained 26.0 mm (Fig. 3c) against Salmonella.
typhi by *O. americanum* for 500 µg/disc compared to standard gentamycin (18.0 mm inhibition). In this study, methanolic leaf extracts showed most potential antibacterial activity. Venugopal et al. (2015) reported that methanolic extracts of *Ocimum* sp. showed maximum inhibition zone against *S. aureus* and *B. subtilis* which supports the present observation. In chloroformic leaf extract inhibition zone ranged in between 9.0 - 19.0 mm (Table 2). Maximum zone of inhibition was 19.0 mm case of *C. asiatica* leaf extracts (Fig. 3d) obtained against *Bacillus megaterium* compared to standard gentamycin (25.0 mm inhibition). According to Anjana et al. (2016), chloroform extracts exhibited wide range of antibacterial activity than that of methanolic extract in *Ocimum*. On the other hand similar antioxidant activity *n*-hexane leaf extracts produced lower zone of inhibition against the tested microorganisms. *n*-hexane leaf extract of *O. basilicum*, *O. americanum* and *C. asiatica* produced inhibition zone was in between 9 and 14 mm.

Investigating all the results of antibacterial activity, it was found that the methanolic leaf extract of *O. americanum* showed excellent activity against both Gram-positive and
Gram-negative bacteria. Deepak et al. (2015) investigated the antimicrobial activity of six plant species which are used in Indian folklore medicine traditionally against bacterial and fungal infections.

The present study indicated that the methanolic leaf extracts of *O. americanum*, *O. basilicum*, *O. gratissimum* and *C. asiatica* have potent antioxidant activity. Therefore, it could be concluded that these medicinal plants are good sources of natural antioxidants and antibacterial activity and good source for natural drugs.

References

Afrin S, Pervin R, Sabrin F, Rony S R, Sohrab MH, Islam ME, Islam KD and Billah MM (2016) *In vitro* antioxidant activity, antimicrobial and preliminary cytotoxic activity of *Cynometra ramiflora* - a mangrove plant. JMBFS 6(2): 844-850.

Afrin S, Pervin R, Sabrin F, Rony S R, Sohrab MH, Islam ME, Islam KD and Billah MM (2016) Assessment of antioxidant, antibacterial and preliminary cytotoxic activity of chloroform and methanol extracts of *Caesalpinia crista* L. Leaf. Bangladesh. J. Bot. 45(5): 1061-1068.

Agarwal K, Singh D, Jyotshna J, Ahmad A, Shanker K, Tandon S and Luqman S (2017) Antioxidative potential of two chemically characterized *Ocimum* (Tulsi) species extracts. Biomedical Research and Therapy 4(9): 1574-1590.

Ahmed ZU (2009) Encyclopedia of Flora and Fauna of Bangladesh. Asiatic Society of Bangladesh Dhaka. 6: 155-156.

Amiri H (2010) Antioxidant activity of the essential oil and methanolic extract of *Teucrium orientale* (L.) subsp. taylori (Boiss.). Rech. f. Iran J. Pharm. Res. 9: 417-423.

Anjana B, Lipsa M and Souvagyalami S (2016) *In vitro* clonal propagation of an important medicinal plant *Ocimum tenuiflorum* and assessment of its antimicrobial and phytochemical activities. IJMARRP 3(1): 268-284.

Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200.

Brand-Williams W, Cuvelier ME and Berzet C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm.-Wiss. u.-Technol. 28: 25-30.

Deepak M, Arpita A, Rashmi A and Pratima M (2015) Micropropagation of an important medicinal plant *Ocimum sanctum* for field plantation. J. Soils Crop. 8: 232-236.

Hakkim FL, Arivazhagan G and Boopath R (2008) Antioxidant property of selected *Ocimum* species and their secondary metabolite content. J. Med. Plants Res. 2(9): 250-257.

Hossain SJ, Sultana MS, Ifterkharuzzaman M, Hassain SA and Taleb MA (2015) Antioxidant potential of common leafy vegetables in Bangladesh. Bangladesh J. Bot. 44: 51-57.

Javanmardi J, Khalighi A, Kashi A, Bais H and Vivanco J (2002) Chemical characterization of basil (*Ocimum basilicum* L.) found in local accessions and used in traditional medicines in Iran. J. Biol. Chem. 50: 5878-5883.

Jayasinghe C, Gotoh N, Aoki T and Wada S (2003) Phenolics composition and antioxidant activity of sweet basil (*Ocimum basilicum* L.). J. Agric. 51(15): 4442-4449.
Klaudija C, Petek M, Grdisa M, Pintar J, Bedekovic D, Custin H M and Satovic Z (2016) Medicinal plants of the family Lamiaceae as functional foods - A review. Czech J. Food Sci. 34(5): 377-390.

Kweka EJ, Mosha F, Lowassa A, Mahande AM and Kitau J (2008) Ethnobotanical study of some of mosquito repellent plants in north-eastern Tanzania. Malays. J. Pathol. 7: 1

Lobo V, Patil A, Phatak A and Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 4: 118-126.

Maria B, Zenovia O, Simona D, Ţefania S, Elena T, Marius Ţ and Craita MR (2008) Research regarding the volatile oils composition for Ocimum basilicum L. and their possible phytotherapeutic effects. Am. J. Ind. Med. 5: 35-40.

Patil D, Dinanath, K Mhaske, Dnyandeo, Wadhawa and Gurumeet (2011) Antibacterial and antioxidant study of Ocimum basilicum Labiatae (sweet basil). J. Adv. Pharma. Ed. Res. 2: 104-112.

Ram SV PSB, Rajendra CP, Dharmander S and Amit C (2011) Chemical composition and antibacterial activity of essential oil from two Ocimum sp. grown in sub-tropical India during spring-summer cropping season. Asian J. Agric. Sci. 6: 211-217.

Rattanakom S and Yasurin P (2014) Review: Antibacterial, antioxidant and chemical profile of Centella asiatica. Biomed Pharmacol J. 7(2): 3042.

Sunitha K and Rani NC (2017) Evaluation of antioxidant properties of Ocimum americanum L. Seeds. J. Pharm. Sci. Innov. 6(6): 2277-4572.

Telci I, Elmastas M and Sahin A (2009) Chemical composition and antioxidant activity of Ocimum minimum essential oils. Chemistry Int. 45: 568-571.

Varrier PS (1997) Indian medicinal plant. Orient Longman Limlited, Madras. 11: 51-52.

Venugopal G, Venkateswara and Allu PR (2015) In vitro propagation of O. tenuiflorum var. CIM-AYU from nodal explants. J. Applied Bioscience Res. 6: 1-7.

Yadav MK, Singh SK, Tripathia JS and Tripathi YB (2017) Phytochemical screening and In vitro antioxidant activity of Centella asiatica extracts. International J. Phytomedicine. 9: (61).

Zhang JW, Li SK and Wu WJ (2009) The main chemical composition and in vitro antifungal activity of the essential oils of Ocimum basilicum L. var. pilosum (Willd.) Benth. Mol. Med. 14: 273-278. www.intechophen.com

(Manuscript received on 31 July, 2020; revised on 22 September, 2020)