Abiodun O. Ajibade and Ayuba M. Umar*

Mixed convection flow in a vertical channel in the presence of wall conduction, variable thermal conductivity and viscosity

https://doi.org/10.1515/nleng-2020-0026
Received Sep 24, 2019; accepted Nov 3, 2020.

Abstract: This study theoretically investigates the effects of variable viscosity, thermal conductivity and wall conduction on a steady mixed convection flow of heat generating/absorbing fluid passes through a vertical channel. One of the channel plates moves with a constant velocity while the other is stationary. The governing flow equations are solved analytically using homotopy perturbation method (HPM). The effects of the thermophysical and hydrodynamics parameters are captured in graphs and tables. It has been observed that, both the velocity and temperature distributions decrease with increase in viscosity and boundary plate thickness near the heated plate while a reverse cases were observed near the cold plate. Increase in thermal conductivity ε decreases the fluid flow near the heated plate. When the boundary plate thickness is increased, the critical value of Gre to onset the reverse flow increases while increase in thermal conductivity reduces the critical value of Gre. It’s also noticed that the skin friction and rate of heat transfer at the heated plate decrease with increase in boundary plate thickness d.

Keywords: mixed convection, viscous dissipation, vertical channel, boundary plate thickness, mass flux, variable viscosity, variable thermal conductivity

Nomenclature

k_1: Thermal conductivity of plate p_1 ($Wm^{-1}s^{-1}$)
k_2: Thermal conductivity of plate p_2 ($Wm^{-1}s^{-1}$)
μ': Dimensional viscosity (m^2s^{-1})
k': Dimensional thermal conductivity of the fluid ($Wm^{-1}s^{-1}$)

A: Variable viscosity of the fluid (m^2s^{-1})
e: Variable thermal conductivity of the fluid ($Wm^{-1}s^{-1}$)
U: Dimensional velocity (ms^{-1})
y': Dimensional distance between the plates (m)
ρ: Fluid density (kgm^{-3})
g: Acceleration due to gravity (ms^{-2})
β: Thermal expansion coefficient (K^{-1})
T_f: Dimensional temperature of the fluid (K)
c_p: Specific heat at constant pressure ($Jkg^{-1}K^{-1}$)
Q_0: Heat absorption coefficient
T_0: Temperature of the cold plate (K)
T_w: Temperature of the heated plate (K)
T_{p1}: Dimensional temperature of plate p_1 (K)
T_{p2}: Dimensional temperature of plate p_2 (K)
T_{p1}: Temperature of plate p_1 (K)
T_{p2}: Temperature of plate p_2 (K)
h: Channel width (m)
x: Distance along y-direction (m)
y: Distance along x-direction (m)
k_{p1}: thermal conductivity ratio of fluid and plate p_1
k_{p2}$: thermal conductivity ratio of fluid and plate p_2
P': Dimensional pressure (Pa)
d': Dimensional plate thickness (m)
d: Plate thickness (m)

1 Introduction

Heat transfer and fluid flow have been matters of research for many years due to their applications in modern industries. Fluid flows are captured in many mathematical geometries. Such flows could be laminar or turbulent. Fluid dynamics has so many applications in lubrication industries, gas turbine power plant, polymer technology, food processing industries, plasma power plant, thermal and insulating engineering, MHD power generators etc. These fluid flows are driven either by natural, forced or mixed convection.
Ajay and Feffrey [1] studied combined forced and natural convection heat transfer where they showed that the velocity profile reduces near the channel plate \((y = 0)\) with increasing mixed convection while the reverse case was observed at the other plate \((y = 1)\). Jha et al. [2] examined mixed convection flow in a vertical tube filled with porous material. They found that the velocity decreases near the inner surface with increasing mixed convection while it increases on the surface of the outer cylinder. Mohamed [3] studied transient mixed convection heat transfer along a vertical stretching surface in the presence of variable viscosity and viscous dissipation. He concluded that the effect of the mixed convection on the velocity and temperature in the steady flow is more prominent than the transient flow. He further discovered that the flow and thermal distributions are enhanced as the strength of the mixed convection increases. Jha et al. [4] studied mixed convection flow in an inclined channel filled with porous material and concluded that the flow is reversal type, since the velocity profile increased by enhancing the value of mixed convection on the lower inclined channel wall while the trend increased with increase in negative value of the mixed convection on the heated wall. Finite element analysis of heat and mass transfer by MHD mixed convection flow of a non-Newtonian power-law nanofluid was investigated by Machal and Naikoti [5]. They concluded that, the velocity profile increases with increase in mixed convection while the reverse case was observed on the fluid temperature. Recently, Jha and Aina [6] studied effect of heat generation/absorption on MHD mixed convection flow in a vertical tube. They concluded that, heat generation increases the rate of heat transfer, while the reverse trend was observed in the case of heat absorption. Entropy generation and irreversibility analysis on a steady mixed convection flow in a vertical porous channel was investigated by Ajibade and Onoja [7]. They revealed that the velocity profile increases with increase in mixed convection while a reverse case was observed for temperature distribution. Jha and Aina [8] analysed the effect of induced magnetic field on MHD mixed convection flow in a vertical microchannel.

In lubrication industries, viscous dissipation effects cannot be overlooked since internal energy is generated as a result of fluid particles’ interaction which affects the fluid flow and thermal behaviour in a medium. Pantokratoras [9] studied effects of viscous dissipation in natural convection flow along a heated vertical plate. They concluded that the viscous dissipation has a strong effect on velocity profile as it helps the upward and opposes the downward flow. Jha and Ajibade [10] studied effect of viscous dissipation on natural convection flow between vertical parallel plates. They showed that the viscous dissipation heating within the channel increases the fluid temperature above the plate temperature when the Prandtl number of the working fluid is relatively small. Kumar and Sanchayan [11] investigated effects of viscous dissipation on the limiting value of Nusselt numbers for a shear driven flow between two asymmetrically heated plates. They concluded that the temperature profile and the driven temperature difference increase with an increase in viscous dissipation. In a related work, Fransisca et al. [12] examined heat transfer with viscous dissipation in Couette-Poiseuille flow and found that viscous dissipation has significant influence on the fluid temperature. Recently, Kabir et al. [13] investigated effects of viscous dissipation on MHD natural convection flow with heat generation and found that the velocity and temperature profiles increase with increasing viscous dissipation. Mohamed [14] examined mixed convection flow on a micropolar fluid over an unsteady stretching surface in the presence of viscous dissipation. He concluded that the velocity and the temperature profiles increase with increase in Eckert number. Prabhakar [15] examined effects of thermal diffusion and viscous dissipation on an unsteady Magnetohydrodynamics free convection flow past a vertical porous plate in the presence of a heat sink. Their work concluded that the velocity and temperature profiles increase with increase in viscous dissipation. RaihanulHaque et al. [16] examined effects of viscous dissipation on natural convection flow over a sphere with temperature dependent thermal conductivity in the presence of heat generation. They found that the velocity and temperature profiles increase with increase in viscous dissipation. All the reviewed articles mentioned above made a common assumption and that is to assume that the boundary plates in each of their investigation is of negligible thickness or rather, heat conduction through the boundary plates plays an insignificant role in the hydrodynamics and thermal behaviour within the channel. The boundary plate thickness of a material has significant effects on the heat flux and fluid flow through a channel with thick-plate boundaries. This is in the conclusion reached in an earlier investigation of Ajibade and Umar [17] in which it was discovered that the rate of heat transfer from the plate to the fluid decreases with growing thickness in the boundary plates. In the study of effects of wall heat conduction on the reforming process of methane in microreactor, Michael and Dimos [18] concluded that heat transport through the solid wall depends on the cross-sectional area of that solid. Hassab et al. [19] analysed effect of axial wall conduction on heat transfer between two parallel plates. Their result showed that, increase in wall thickness serves as thermal resistance to the heat trans-
fer. Ates et al. [20] analysed a transient conjugated heat transfer on a thick walled pipes and found that more heat penetrated backward through the upstream region by axial conduction in the thick wall. Mei et al. [21] examined criteria of axial wall heat conduction under two classical thermal boundary conditions and showed that the temperature gradient number of the thin-wall tube is higher than that of thick-wall tube. The effects of wall conduction on a mixed convection heat transfer in an externally finned pipes were studied by Moukalled et al. [22]. They observed that the axial wall conduction in the pipe wall is found to have strong effect on the flow and thermal fields. Other works that investigated the effect of boundary plates' thickness include the work of Kevin and Barbaros [23].

Convective flow in nature and engineering phenomena requires that viscosity and thermal conductivity of fluids vary with temperature. For instance, the viscosity of dry air at 100°C is 21.94 × 10^-5 kg/ms while at 200°C, it is 26.94 × 10^-5 kg/ms. The thermal conductivity of a dry air at 100°C is 31.39 × 10^-3 W/mK while at 200°C, it is 37.95 × 10^-3 W/mK (Adrian et al. [24]). Tarakaramu et al. [25] investigated the effects of variable thermal conductivity on 3D flow of nanofluid over a stretching sheet using numerical simulation while Dulal and Hiranmony [26] analysed the effects of temperature-dependent viscosity and variable thermal conductivity on mixed convective diffusion flow. They found that velocity profile increases while temperature decreases in increase in mixed convection. Subhas and Mehesha [27] studied heat transfer on a magnetohydrodynamics viscoelastic fluid flow over a stretching sheet with variable thermal conductivity and radiation and found that the variable thermal conductivity has an influence in enhancing the temperature and fluid flow. The works of Rahman et al. [28] and Naseem [29] have shown that the velocity and temperature profiles increase with increase in thermal conductivity. Vajravelu et al. [30], Singh and Shweta [31] and Isaac and Auselm [32] showed that, velocity distributions decrease with increase in viscosity while the temperature profiles increase with increase in variable viscosity. MHD effects on heat transfer over a stretching sheet embedded on a porous medium with variable viscosity, viscous dissipation and heat source/sink were studied by Hunegnaw and Naikoti [33]. Uwanta and Murtala [34] studied heat and mass transfer flow past an infinite vertical plate with variable thermal conductivity, heat source and chemical reaction. They concluded that, velocity and temperature profiles increase with increase in thermal conductivity. Sumayya et al. [35] investigated efficiency analysis of a straight fin with variable heat transfer and thermal conductivity. They concluded that, temperature profile increases with increase in thermal conductivity.

Devi and Prakash [36] examined temperature-dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet. They concluded that, increase in the viscosity decreases the velocity profile. The work of Animasaun [37] concluded that fluid velocity decreases while temperature increases with increases due to increasing viscosity. The works of Gopal and Jadav [38], Jadav and Hazarika [39], Gopal and Bandita [40], Bandita [41] and Kareem and Salawu [42] have shown that the velocity profiles decrease with increasing viscosity while the temperature profiles increase with increase in viscosity. Recently, Sreenivasulu et al. [43] studied variable thermal conductivity influence on hydromagnetic flow past a stretching cylinder in a thermally stratified medium with heat source/sink. They concluded that the velocity profile increases with increasing mixed convection and the temperature profile increases with increase in thermal conductivity. Muthamil et al. [44] investigated an internal heat generation of a dusty fluid passes through porous media of a stretching sheet using Range-Kutta fourth order method.

The aim of this work is to carry out a theoretical investigation on the effects of viscous dissipation, wall conduction, boundary plate thickness, variable viscosity and thermal conductivity on a steady mixed convection flow. Due to the wide application of viscous dissipation, conduction at the channel wall, boundary plate thickness in lubrication industries, cooling of nuclear reactors, food processing industries, cooling of electric appliances, plasma physics, aerodynamics etc., it is inappropriate to neglect these important parameters in natural and forced convection as results obtained with constant viscosity and thermal conductivity as well as neglecting the plate thickness and international heat generation as a result of fluid-particle interactions are either under-determined or over-determined as the case may be. Therefore, it is important to investigate the role of boundary plate thickness, wall conduction, viscous dissipation, variable viscosity and thermal conductivity on mixed convection flow of viscous incompressible heat generating/absorbing fluid.

Obtaining a closed form solution of this model is a very difficult task due to the coupling and nonlinearity nature of the governing equations. Various solution methods have been derived for such problems ranging from numerical solutions (Doh et al. [45], Kairi et al. [46], Kumar et al. [47], Rostami et al. [48], Hosseinzadeh et al. [49], Mukundan and Awasthi [50] etc.), perturbation methods and several other approximate solution techniques (Travis and Erturk [51], Singh et al. [52] etc.), thus, this problem has adopted
the Homotopy Perturbation Method to carry out its investigations.

2 Mathematical analysis

We consider a two-dimensional steady mixed flow of an incompressible viscous fluid passes through vertical parallel plates of some thickness d'. One of the plates moves in the direction of the fluid flow while the other is stationary (see figure 1). The plate at $y' = -d'$ which moves uniformly with velocity U is heated to temperature T_w while the other at $y' = h + d'$ is kept at ambient temperature T_0. In addition, an external pressure is applied to the flow which gave rise to mixed convection and also the presence of viscous dissipation was considered. The flow is assumed to be along x' direction and y' is normal to the plates. Internal energy generation is considered as a result of fluid particle and the thermophysical and hydrodynamics properties are assumed to be constant except for viscosity and thermal conductivity that both vary with temperature. The physical model describing the situation, following the works of (Ajibade and Umar [17], Ajibade and Umar [53]) is given as:

\[\frac{1}{\rho} \left(\mu^* \frac{d^2 u^*}{d y'^2} + g \beta(T^*_f - T_0) - \frac{1}{\rho} \frac{d P^*}{d x^*} \right) = 0 \] (1)

\[\frac{k_1}{\rho c_p} \frac{d^2 T^*_f}{d y'^2} = 0 \] (2)

\[\frac{k^*}{\rho c_p} \frac{d^2 T^*_p}{d y'^2} = 0 \] (3)

The first, second and third terms of the momentum equation (1) are the viscosity, thermal buoyancy, and pressure gradient effects while the first, second and third term of the energy equation (3) of the fluid are the thermal conductivity, heat generation/absorption and viscous dissipation effects respectively. Equations (2) and (4) are the energy equations of the bounding slabs p_1 and p_2 respectively. Since the flow is steady, we assume that the appropriate boundary conditions of the model are:

\[
\begin{align*}
 u^* &= U, \quad y' = 0, \\
 u^* &= 0, \quad y' = h, \\
 T^*_p &= T_w, \quad y' = -d', \\
 T^*_p &= T_f^*, \quad y' = 0, \\
 k_1 \frac{dT^*_p}{dy'} &= k_2 \frac{dT^*_f}{dy'} \quad y' = 0.
\end{align*}
\] (5)

The viscosity of the fluid and its thermal conductivity are both assumed to vary linearly with temperature so that

\[k^* = k_0 \left[1 - b \left(T^*_f - T_0 \right) \right] \]

\[\mu^* = \mu_0 \left[1 - a \left(T^*_f - T_0 \right) \right] \]

where μ_0 and k_0 represent the viscosity and thermal conductivity of fluid temperature T_0, a and b are the thermal factors that control the change in viscosity and thermal conductivity respectively with increase in temperature. In order to harmonize the various dimensions that are involved in the model, the velocity has been scaled up with U, the velocity of the moving plate while the horizontal distances; y' and d' were scaled up with h. All other dimensionless parameters are as described in eqn (6):

\[u = \frac{u^*}{U}, \quad y = \frac{y^*}{h}, \quad T_f = \frac{T^*_f - T_0}{T_w - T_0}, \quad T_p = \frac{T^*_p - T_0}{T_w - T_0}, \quad \frac{d}{h} = \frac{d'}{h}, \quad \frac{P}{\rho U^2} = \frac{P^*}{\rho U^2}, \quad \frac{x}{h} = \frac{x'}{h}, \frac{v_0}{U} \] (6)

Using the dimensionless quantities (6), the momentum and energy Eqs.(1) - (4) are presented as:

\[\left(1 - \lambda T_f \right) \frac{d^2 u}{dy^2} - \lambda \frac{dT_f}{dy} \frac{du}{dy} + \text{Br} T_f - \frac{dP}{dx} = 0 \] (7)

\[\frac{d^2 T_p}{dy^2} = 0 \] (8)

\[\left(1 - \varepsilon T_f \right) \frac{d^2 T_f}{dy^2} - \varepsilon \left(\frac{dT_f}{dy} \right)^2 = S \left(1 - \varepsilon T_f \right) T_f \] (9)

\[\frac{d^2 T_p}{dy^2} = 0 \] (10)

subject to the boundary conditions:

\[u = 1 \quad y = 0, \quad u = 0 \quad y = 1, \quad T_p = 1 \quad y = -d, \quad T_p = T_f \quad y = 0, \quad \frac{dT_p}{dy} = \left(1 - \varepsilon T_f \right) \frac{dT_f}{dy} \quad y = 0, \] (11)

\[T_p = T_f \quad y = 1, \quad \frac{dT_p}{dy} = \left(1 - \varepsilon T_f \right) \frac{dT_f}{dy} \quad y = 1, \]
where

\[S = \frac{Q_0 h^2}{k}, \quad Ec = \frac{U^2}{c_p(T_w - T_0)}, \quad Pr = \frac{\nu}{a}, \quad EcPr = Br, \]

\[\frac{k_0}{k_1} = \frac{k_0}{k_2} = 1Gre = \frac{Gr}{Re} = \frac{g\beta(T_w - T_0)h^3}{\nu^2}, \quad \frac{\nu}{U^2}, \]

\[\lambda = a(T_w - T_0), \quad \varepsilon = b(T_w - T_0). \]

The parameters of interest that appeared in the dimensionless eqn (10) are; heat generation/absorption, (S), viscous dissipation (Eckert number, Ec), Prandtl number (Pr), Grashof number and Reynold number (\(\frac{U^2}{c_p(T_w - T_0)} \)), viscosity and conductivity factor parameters (\(\lambda \)) and (\(\varepsilon \)) respectively. All other physical parameters are defined in nomenclature.

3 Method of solution

Several methods ranging from numerical, perturbations and many other approximate solution techniques are used to solve linear, nonlinear and coupled (partial or ordinary) differential equations. Homotopy Perturbation Method (HPM) is one of the easiest approximate solution since the first two iterations are of accuracy than the traditional perturbation techniques and it doesn’t require only a small parameter. The method was first initiated by He [54] where he presented the method by considering a nonlinear differential equation

\[A(u) - f(r) = 0, \quad r \in \Omega \]

subject to the boundary conditions

\[B\left(u, \frac{\partial u}{\partial n}\right) = 0, \quad r \in \Gamma, \]

where \(A \) is the general differential operator, \(B \) is a boundary operator, \(f(r) \) is a known analytic function, \(\Gamma \) is the boundary of the domain \(\Omega \). The operator \(A \) can be divided into two parts, namely, \(L \) and \(N \), where \(L \) is the linear and \(N \) nonlinear parts. Therefore, the nonlinear differential equation can be transformed as:

\[L(u) + N(u) - f(r) = 0. \]

Now the convex homotopy can be constructed from the nonlinear differential equation and its boundary condition as:

\[H(v, p) = (1 - p)[L(v) - L(u_0)] + p[A(v) - f(r)] = 0 \]

or

\[H(v, p) = L(v) - L(u_0) + pL(u_0) + p[N(v) - f(r)] = 0, \]

where \(p \in [0, 1] \) is an embedding parameter, \(u_0 \) is the initial approximation which satisfies the boundary conditions. Therefore, we have

\[H(v, 0) = L(v) - L(u_0) = 0 \]

\[H(v, 1) = A(v) - f(r) = 0 \]

(12)

Now the solution of the nonlinear differential equation is expressed as:

\[v = v_0 + pv_1 + p^2v_2 + p^3v_3 + \ldots \]

Setting \(p = 1 \), the approximate solution can be written as

\[v = v_0 + v_1 + v_2 + v_3 + \ldots \]

Therefore the convex homotopy of momentum and energy equations are expressed as:

\[H(u, p) = (1 - p)\left[\frac{d^2u}{dy^2} - \frac{d^2v_0}{dy^2} \right] + p\left[\frac{d^2u}{dy^2} + GreT_f \right. \]

\[-\lambda \frac{du}{dy} \frac{dT_f}{dy} - \lambda T_f \frac{d^2u}{dy^2} - \frac{dP}{dx} \right] = 0. \]

(13)

Since the zeroth order equations are linear and can be solved exactly with the boundary conditions, then initial approximation \(v_0 \), is not required. Therefore we have

\[\frac{d^2u}{dy^2} = p\left[\frac{dP}{dx} - GreT_f - \lambda \frac{du}{dy} \frac{dT_f}{dy} + \lambda T_f \frac{d^2u}{dy^2} \right] \]

(14)

such that

\[u = u_0 + pu_1 + p^2u_2 + p^3u_3 + \ldots, \]

\[T_f = T_{f0} + pT_{f1} + p^2T_{f2} + p^3T_{f3} + \ldots, \]

\[T_{p1} = T_{p10} + pT_{p11} + p^2T_{p12} + p^3T_{p13} + \ldots, \]

(15)

Substituting eqn(15) into eqn(14) and comparing the coefficients of \(p^0, p^1, p^2, p^3, \ldots \), we have

\[p^0 : \frac{d^2u_0}{dy^2} = 0, \]

(16)

\[p^1 : \frac{d^2u_1}{dy^2} = \frac{dP}{dx} - GreT_{f0} - \lambda \frac{du_0}{dy} \frac{dT_{f0}}{dy} + \lambda T_{f0} \frac{d^2u_0}{dy^2}, \]

(17)

\[p^2 : \frac{d^2u_2}{dy^2} = -GreT_{f1} + \lambda \frac{du_0}{dy} \frac{dT_{f1}}{dy} + \lambda T_{f0} \frac{d^2u_0}{dy^2} + \lambda T_{f0} \frac{d^2u_1}{dy^2} + \lambda T_{f1} \frac{d^2u_1}{dy^2}, \]

(18)

...
similarly, eqns (8), (9) and (10) can be transformed as

\[p^0 : \frac{d^2 T_{p2}}{dy^2} = 0, \]

\[p^1 : \frac{d^2 T_{p1}}{dy^2} = 0, \]

\[p^2 : \frac{d^2 T_{p1}}{dy^2} = 0, \]

\[p^0 : \frac{d^2 T_{p0}}{dy^2} = 0, \]

\[p^1 : \frac{d^2 T_{f1}}{dy^2} = \varepsilon T_{f0} \frac{d^2 T_{f0}}{dy^2} + \varepsilon \left(\frac{dT_{f0}}{dy} \right)^2 - Br \left(\frac{du_0}{dy} \right)^2 + Br e T_{f0} \left(\frac{du_0}{dy} \right)^2 + ST_{f0} - S \varepsilon T_{f0}, \]

\[p^2 : \frac{d^2 T_{f2}}{dy^2} = \varepsilon T_{f0} \frac{d^2 T_{f0}}{dy^2} + \varepsilon T_{f0} \frac{d^2 T_{f0}}{dy^2} + 2\varepsilon \frac{dT_{f0}}{dy} \frac{dT_{f0}}{dy} dT_{f0} - 2Br \frac{du_0}{dy} \frac{du_1}{dy} + 2Br e T_{f0} \frac{du_0}{dy} \frac{du_1}{dy} + ST_{f0} - S \varepsilon T_{f0}, \]

and the boundary conditions are transformed as

\[u_0 = 1, u_1 = u_2 = u_3 = ... = 0 \quad \text{at} \quad y = 0, \]

\[u_0 = u_1 = u_2 = u_3 = ... = 0 \quad \text{at} \quad y = 1, \]

\[T_{p0} = T_{f0}, \quad T_{p1} = T_{f1}, \quad T_{p2} = T_{f2}, \quad T_{p3} = T_{f3}, \quad ... \quad \text{at} \quad y = 0, \]

\[\frac{dT_{p0}}{dy} = \frac{dT_{f0}}{dy}, \quad \frac{dT_{p1}}{dy} = \frac{dT_{f1}}{dy}, \quad \frac{dT_{p2}}{dy} = \frac{dT_{f2}}{dy}, \quad \frac{dT_{p3}}{dy} = \frac{dT_{f3}}{dy}, \]

\[\left(\frac{dT_{f0}}{dy} \right)^2 + ST_{f0} - S \varepsilon T_{f0}, \]

\[T_{p0} = T_{f0}, \quad T_{p1} = T_{f1}, \quad T_{p2} = T_{f2}, \quad T_{p3} = T_{f3}, \quad ... \quad \text{at} \quad y = 1, \]

\[\frac{dT_{p0}}{dy} = -\varepsilon \frac{dT_{f0}}{dy}, \quad \frac{dT_{p1}}{dy} = -\varepsilon \frac{dT_{f1}}{dy}, \quad \frac{dT_{p2}}{dy} = -\varepsilon \frac{dT_{f2}}{dy}, \quad \frac{dT_{p3}}{dy} = -\varepsilon \frac{dT_{f3}}{dy}, \]

\[\left(\frac{dT_{f0}}{dy} \right)^2 - Br dT_{f0} \frac{du_0}{dy} \frac{du_1}{dy} + 2Br e T_{f0} \frac{du_0}{dy} \frac{du_1}{dy} + ST_{f0} - S \varepsilon T_{f0}, \]

\[T_{p0} = T_{p1} = T_{p2} = ... = 0 \quad \text{at} \quad y = 1 + d. \]
Solving from the above eqns(16), (19), (22) and (25) and applying the boundary conditions (28), we have
\[u_0 = A_0 y + A_1, \] \tag{29}
\[T_{p_{10}} = A_2 y + A_3, \] \tag{30}
\[T_{f_0} = A_4 y + A_5, \] \tag{31}
\[T_{p_{10}} = A_6 y + A_7, \] \tag{32}
\[A_0 = -1, \quad A_1 = 1, \quad A_2 = A_4 = A_6 = \frac{1}{1 + 2d}, \quad A_3 = A_5 = A_7 = 1 + A_2 d. \]

Solving eqns(17), (20), (23) and (26) and applying the boundary conditions (28) we have
\[u_1 = \frac{y^3}{2} \frac{dp}{dx} - \text{Gre} \left[A_6^3 \frac{y^3}{6} + A_7^3 \frac{y^3}{2} \right] - \lambda A_4 \frac{y^3}{2} + A_8 y + A_9, \] \tag{33}
\[T_{p_{11}} = A_{10} y + A_{11}, \] \tag{34}
\[T_{f_1} = \varepsilon A_2^3 \frac{y^2}{2} - Br \frac{y^2}{2} + Bre \left[A_4^3 \frac{y^3}{6} + A_5^3 \frac{y^3}{2} \right] + S \left[A_4 \frac{y^3}{6} + A_5 \frac{y^3}{2} \right]
- Se \left[A_2^{\frac{y^2}{12}} + A_6 A_5^{\frac{y^3}{3}} + A_7^{\frac{y^2}{2}} \right] + A_{12} y + A_{13}, \] \tag{35}
\[T_{p_{11}} = A_{14} y + A_{15}, \] \tag{36}
\[A_9 = 0, \quad A_8 = \text{Gre} \left[A_6^3 \frac{y^3}{6} + A_7^3 \frac{y^3}{2} \right] - \frac{\lambda A_4}{2} - \frac{1}{2} \frac{dp}{dx}, \]
\[A_{12} = \frac{Br}{2(1 + 2d)} - \frac{\varepsilon A_2^3}{2(1 + 2d)} - \frac{Bre}{(1 + 2d)} \left[A_6^3 \frac{y^3}{6} + A_7^3 \frac{y^3}{2} \right] - S \left[A_6^3 \frac{y^3}{6} + A_7^3 \frac{y^3}{2} \right], \]
\[+ \frac{Se}{(1 + 2d)} \left[A_2^{\frac{y^2}{12}} + A_6 A_5^{\frac{y^3}{3}} + A_7^{\frac{y^2}{2}} \right] + \frac{Br d}{(1 + 2d)} \left[A_6^3 \frac{y^3}{6} + A_7^3 \frac{y^3}{2} \right] \]
\[- \frac{S d}{(1 + 2d)} \left[A_2^{\frac{y^2}{12}} + A_6 A_5^{\frac{y^3}{3}} + A_7^{\frac{y^2}{2}} \right] + \frac{S eA_{14}^2 d}{(1 + 2d)}, \]
\[A_{10} = A_{12} - \varepsilon A_2 A_5, \quad A_{11} = A_{13} = A_{10} d, \]
\[A_{14} = A_{10} - Br + Bre \left[A_6^3 \frac{y^3}{6} + A_7^3 \frac{y^3}{2} \right] + S \left[A_6^3 \frac{y^3}{6} + A_7^3 \frac{y^3}{2} \right] - S \left[A_6^3 \frac{y^3}{6} + A_7^3 \frac{y^3}{2} \right]. \]

Solving eqns(18), (21), (24) and (27) and applying the conditions (28), we have
\[u_2 = -\varepsilon \text{Gre} A_2^3 \frac{y^3}{24} + \text{GreBr} \frac{y^3}{24} - \text{GreBre} \left[A_4 \frac{y^3}{120} + A_5 \frac{y^3}{24} \right] - \text{GreS} \left[A_4 \frac{y^3}{120} + A_5 \frac{y^3}{24} \right]
+ \text{GreA} \left[A_4 \frac{y^3}{360} + A_6 A_5 \frac{y^3}{60} + A_7 \frac{y^3}{24} \right] - \text{GreA}_{12} \frac{y^3}{6} - \text{GreA}_{13} \frac{y^3}{3} - \lambda \varepsilon A_2^3 \frac{y^3}{6} + Br \lambda \frac{y^3}{6}
- Br \lambda \left[A_4 \frac{y^3}{24} + A_5 \frac{y^3}{6} \right] - Sa \left[A_4 \frac{y^3}{24} + A_5 \frac{y^3}{6} \right] + Sa \lambda \left[A_2 \frac{y^3}{6} + A_4 A_5 \frac{y^3}{12} + A_7 \frac{y^3}{6} \right]
- \lambda A_{12} \frac{y^2}{2} + \lambda A_4 \frac{dp}{dx} \frac{y^3}{6} \right] - \text{GreA} \left[A_4 \frac{y^3}{24} + A_5 \frac{y^3}{6} \right] - \lambda \varepsilon A_2^3 \frac{y^3}{6} + \lambda A_4 A_8 \frac{y^2}{2}
+ \frac{\lambda \frac{dp}{dx}}{2} \left[A_4 \frac{y^3}{6} + A_5 \frac{y^2}{2} \right] - \text{GreA} \left[A_4 \frac{y^3}{12} + A_5 \frac{y^3}{3} + A_7 \frac{y^2}{2} \right] - \lambda \left[A_4 \frac{y^3}{6} + A_4 A_5 \frac{y^3}{6} \right] \]
\[A_{16} y + A_{17}, \]
\[T_{p_{31}} = A_{18}y + A_{19}, \quad (38) \]

\[T_{f_{2}} = e^{2} \left[\frac{A_{4} y^6}{6} + A_{5} A_{2} y^2 \right] - Bre \left[A_{4} y^3 + A_{5} y^2 \right] + Bre^2 \left[\frac{A_{4}^2 y^6}{12} + A_{4} A_{5} y^3 + A_{2}^2 y^2 \right] + Se \left[A_{4} y^3 + A_{5} A_{2} y^2 \right] - Se^2 \left[A_{4} y^3 + A_{5} A_{2} y^2 \right] + \varepsilon A_{4} A_{12} y^2 + Br \frac{dP}{dx} \quad (39) \]

\[- GreBr \left[A_{4} y^3 + A_{5} y^3 \right] + BrA_{8} y^2 - Bre \frac{dP}{dx} \left[A_{4} y^3 + A_{5} y^3 \right] + Bre^2 A_{4} y^4 + GreBr \left[A_{4} y^3 + A_{5} y^3 \right] + BrA_{12} y^2 + BrA_{13} y^2 + SeA_{4} y^4 + S^2 \left[A_{4} y^3 + A_{5} y^3 \right] - Se^2 \left[A_{4} y^3 + A_{5} y^3 \right] + GreA_{12} y^2 + GreS \left[A_{4} y^3 + A_{5} y^3 \right] + Gre \left[A_{4} y^3 + A_{5} y^3 \right] + GreA_{12} y^2 + GreA_{13} y^2 + GreA_{14} y^2 + GreA_{15} y^2 + GreA_{16} y^2 + GreA_{17} y^2 + GreA_{18} y^2 + GreA_{19} y^2 + GreA_{20} y^2 + GreA_{21} y^2 + GreA_{22} y^2 + GreA_{23} y^2 + GreA_{24} y^2 + GreA_{25} y^2 + GreA_{26} y^2 + GreA_{27} y^2 + GreA_{28} y^2 + GreA_{29} y^2 + GreA_{30} y^2 + GreA_{31} y^2 + GreA_{32} y^2 + GreA_{33} y^2 + GreA_{34} y^2 + GreA_{35} y^2 + GreA_{36} y^2 + GreA_{37} y^2 + GreA_{38} y^2 + GreA_{39} y^2 + GreA_{40} y^2 + GreA_{41} y^2 + GreA_{42} y^2 + GreA_{43} y^2 + GreA_{44} y^2 + GreA_{45} y^2 + GreA_{46} y^2 + GreA_{47} y^2 + GreA_{48} y^2 + GreA_{49} y^2 + GreA_{50} y^2 + GreA_{51} y^2 +GreA_{52} y^2 + GreA_{53} y^2 \]

\[+ \lambda^2 \left[A_{4} y^3 + A_{5} y^3 \right], \quad (40) \]

where

\[A_{17} = 0, \]
\[A_{20} = \frac{\text{Bre}}{(1 + 2d)} \left[\frac{A_4}{6} + \frac{A_5}{2} \right] - \frac{e^2}{(1 + 2d)} \left[\frac{A_4^2}{12} + \frac{A_4A_5}{6} + \frac{A_5^2}{2} \right] - \frac{\text{Bre}^2}{(1 + 2d)} \left[\frac{A_4^2}{20} + \frac{A_4A_5}{4} + \frac{A_5^2}{2} \right] \]

\[- \frac{\text{Se}}{(1 + 2d)} \left[\frac{A_4^2}{12} + \frac{A_4A_5}{3} + \frac{A_5^2}{2} \right] + \frac{\text{Se}^2}{(1 + 2d)} \left[\frac{A_4^2}{20} + \frac{A_4A_5}{4} + \frac{A_5^2}{2} \right] \]

\[+ \frac{\text{GreBre}}{(1 + 2d)} \left[\frac{A_4^2}{20} + \frac{A_4A_5}{4} + \frac{A_5^2}{3} \right] - \frac{\text{GreBre}}{(1 + 2d)} \left[\frac{A_4^2}{20} + \frac{A_4A_5}{4} + \frac{A_5^2}{3} \right] \]

\[+ \frac{\text{BrSe}}{(1 + 2d)} \left[\frac{A_4 + A_5}{120 + 24} \right] + \frac{\text{BrSe}}{(1 + 2d)} \left[\frac{A_4^2}{360} + \frac{A_4A_5}{60} + \frac{A_5^2}{24} \right] - \frac{\text{BrSe}}{(1 + 2d)} \left[\frac{A_4^2}{120} + \frac{A_5^2}{24} \right] \]

\[- \frac{\text{SeA}_4^2}{24(1 + 2d)} + \frac{\text{BrSe}}{(1 + 2d)} \left[\frac{A_4 + A_5}{120 + 24} \right] - \frac{\text{Se}}{(1 + 2d)} \left[\frac{A_4 + A_5}{120 + 24} \right] \]

\[+ \frac{\text{S}_2\text{e}}{(1 + 2d)} \left[\frac{A_4^2}{360} + \frac{A_4A_5}{60} + \frac{A_5^2}{24} \right] - \frac{\text{S}_2\text{e}}{(1 + 2d)} \left[\frac{A_4^2}{360} + \frac{A_4A_5}{60} + \frac{A_5^2}{24} \right] \]

\[- \frac{\text{BrSe}}{(1 + 2d)} \left[\frac{A_4 + A_5}{120 + 24} \right] + \frac{\text{BrSe}}{(1 + 2d)} \left[\frac{A_4^2}{90} + \frac{A_4A_5}{15} + \frac{A_5^2}{12} \right] + \frac{\text{S}_2\text{e}}{(1 + 2d)} \left[\frac{A_4^2}{90} + \frac{A_4A_5}{15} + \frac{A_5^2}{12} \right] \]

\[- \frac{\text{S}_2\text{e}}{(1 + 2d)} \left[\frac{A_4^2}{252} + \frac{A_4A_5}{36} + \frac{A_5^2}{12} \right] + \frac{\text{Se}}{(1 + 2d)} \left[\frac{A_4 + A_5}{6} + \frac{A_5}{3} \right] \]

\[+ \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4}{2} + \frac{A_5}{3} \right] - \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4^2}{3} + \frac{A_4A_5}{3} + \frac{A_5^2}{3} \right] - \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4}{2} + \frac{A_5}{3} \right] \]

\[+ \frac{\text{Se}^2\text{d}}{(1 + 2d)} \left[\frac{A_4^2}{4} + \frac{A_4A_5}{2} + \frac{A_5^2}{2} \right] + \frac{\text{Se}^2\text{d}}{(1 + 2d)} \left[\frac{A_4^2}{4} + \frac{A_4A_5}{2} + \frac{A_5^2}{2} \right] \]

\[+ \frac{\text{Bre}^2\text{d}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] + \frac{\text{Sed}}{(1 + 2d)} \left[\frac{A_4^2}{3} + \frac{A_4A_5}{2} \right] - \frac{\text{Brd}}{(1 + 2d)} \left[\frac{A_4}{3} + \frac{A_4A_5}{2} \right] \]

\[+ \frac{\text{Sed}}{(1 + 2d)} \left[\frac{A_4^2}{4} + \frac{A_4A_5}{2} + \frac{A_5^2}{2} \right] + \frac{\text{GreBre}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] - \frac{\text{BrSe}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] \]

\[+ \frac{\text{GreBre}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] - \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] \]

\[+ \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] - \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] \]

\[+ \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] - \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] \]

\[+ \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] - \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] \]

\[+ \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] - \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] \]

\[+ \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] - \frac{\text{Bred}}{(1 + 2d)} \left[\frac{A_4 + A_5}{3} + \frac{A_4A_5}{2} \right] \]
Now, the approximate solution of the momentum and energy eqns (7) and (9) of the fluid as \(p \to 1 \) are:

\[
A_{18} = A_{20} - \varepsilon A_5 A_{12} - \varepsilon A_4 A_{13},
\]

\[
A_{19} = A_{18},
\]

\[
A_{21} = A_{19},
\]

\[
A_{22} = \varepsilon^2 \left[\frac{A_0^3}{2} + A_0^2 A_5 \right] - Br \left[\frac{A_0}{2} + A_5 \right] + Br \varepsilon \left[\frac{A_0^2}{3} + A_4 A_5 + A_6^2 \right] + \varepsilon^2 A_4^3
\]

\[
+ \text{Se} \left[\frac{A_0^2}{3} + A_4 A_5 + A_6^2 \right] - \text{Se} \varepsilon \left[\frac{A_0^3}{4} + A_2 A_5 + \frac{3}{2} A_4 A_5^2 + A_6^3 \right] - Br A_4
\]

\[
+ Br \varepsilon^2 \left[\frac{A_0^2}{3} + A_4 A_5 + A_6^2 \right] + \text{Se} \left[\frac{A_0^2}{3} + A_4 A_5 + A_6^2 \right] - \text{Se} \varepsilon \left[\frac{A_0^3}{6} + \frac{2}{3} A_2 A_5^2 + A_4 A_6^2 \right]
\]

\[
+ Br \frac{dP}{dx} - GreBr \left[\frac{A_0}{3} + A_5 \right] - Br \lambda A_8 + 3 Br A_8 - Br \varepsilon \frac{dP}{dx} \left[\frac{2 A_0}{3} + A_5 \right]
\]

\[
+ GreBr \left[\frac{A_0^2}{4} + A_4 A_5 + A_6^2 \right] + Br \lambda \left[\frac{2 A_0^2}{3} + A_4 A_5 \right] - Br \left[A_4 A_8 + 2 A_5 A_8 \right]
\]

\[
+ \frac{Br \varepsilon^2 A_0^3}{6} - Br \varepsilon^2 + Br \varepsilon^2 \left[\frac{A_0^2}{24} + A_2^3 \right] + \text{Se} \left[\frac{A_0}{24} + A_5 \right] + Br \varepsilon \left[\frac{A_0^2}{24} + A_5 \right] + Br A_12
\]

\[
- Br \varepsilon^2 \left[\frac{A_0^2}{60} + \frac{A_4 A_5}{12} + \frac{A_6^2}{6} \right] + Br A_13 + \text{Se} \frac{A_0^2}{6} \frac{A_5}{6} - Br S \left[A_4 \frac{24}{24} + A_5 \right]
\]

\[
+ S^2 \left[\frac{A_0^2}{24} + A_5 \right] - S^2 \varepsilon \left[\frac{A_0^2}{12} + \frac{A_4 A_5}{6} + \frac{A_6^2}{3} \right] - S^2 \varepsilon \left[\frac{A_0^2}{15} + \frac{A_4 A_5}{3} + \frac{A_6^2}{3} \right] - S^2 \varepsilon \left[\frac{A_0^2}{15} + \frac{A_4 A_5}{3} + \frac{A_6^2}{3} \right]
\]

\[
+ S^2 \varepsilon^2 \left[\frac{A_0^2}{36} + \frac{A_4 A_5}{12} + \frac{5}{12} A_6^2 + \frac{A_6^2}{3} \right] - S^2 \varepsilon \left[\frac{2 A_4 A_12}{3} + A_5 A_12 \right]
\]

\[
- Se \left[A_4 A_{13} + 2 A_5 A_{13} \right] - \frac{3 \varepsilon^2 A_4^3}{2} + \frac{3 Br A_4}{2} - Br \varepsilon^2 \left[\frac{2 A_0^2}{3} + \frac{3 A_4 A_5}{2} \right]
\]

\[
- Se \left[\frac{2 A_0^2}{3} + \frac{3 A_4 A_5}{2} \right] + S^2 \left[\frac{5 A_0^2}{12} + \frac{4 A_4 A_5}{6} + \frac{3 A_4 A_5^2}{2} \right] - \varepsilon^2 A_4 A_5 + Br A_4 A_5
\]

\[
- Br \varepsilon \left[\frac{A_0 A_5}{2} + A_6^2 \right] - Se \left[\frac{A_0 A_5}{2} + A_6^2 \right] + S^2 \left[\frac{A_0^2}{3} + A_4 A_5 + A_6^2 \right] - \varepsilon A_5 A_{12} - \varepsilon A_4 A_{13},
\]

\[
A_{23} = -(1 + d) A_{22}
\]

Now, the approximate solution of the momentum and energy eqns (7) and (9) of the fluid as \(p \to 1 \) are:

\[
u = u_0 + u_1 + u_2 + ...
\]
The Nusselt number can be expressed as:

\[\text{Nu} = \frac{l_{(0,1)}}{(T_w - T_0)} \frac{h}{k'} \]

where \(l_{(0,1)} \) is the local surface heat flux, \(T_w \) and \(T_0 \) are the wall and ambient temperatures, respectively, \(h \) is the heat transfer coefficient, and \(k' \) is the dimensional variable thermal conductivity.

The critical values of mixed convection parameter \(\text{Gre} \) which signalled the onset of reverse flow at \(y = 1 \), can be obtained from the turning point of \(u \), i.e \(\frac{du}{dy}|_{y=1} = 0 \). Therefore, the influence of different parameters as they control the critical \(\text{Gre} \) are presented in table 2.

The skin friction at the plate surfaces can be defined as:

\[\tau_{(0,1)} = \mu^* \frac{du^*}{dy^*}|_{y^*=0,h} \]

where \(\mu^* \) is the dimensional variable viscosity. Thus, the local skin friction factor can be expressed as:

\[\tau = \tau_{(0,1)} \frac{h}{\mu U} = (1 - \lambda T_f) \frac{du}{dy}|_{y=0,1} \]

while the local surface heat flux is expressed as:

\[\left. \frac{dT_f}{dy} \right|_{y^*=0,h} \]

where \(k' \) is the dimensional variable thermal conductivity, together with the expression of Nusselt number.

\[\text{Nu}_h = \frac{l_{(0,1)}}{(T_w - T_0)} \frac{h}{k'} \]

Thus, the Nusselt number can be expressed as:

\[\text{Nu} = -(1 - \varepsilon T_f) \frac{dT_f}{dy}|_{y=0,1} \]
Validation

Setting \(Br = 0, \lambda = 0, \epsilon = 0, \frac{dP}{dx} = 0 \) and \(d = 0 \), the work of Jha and Ajibade [55] is recovered, see table 5.

Viscous dissipation and boundary thickness effects on a steady mixed convection flow in the presence of variable viscosity and thermal conductivity have been theoretically analysed. The flow is governed by six basic parameters, which are: \(Gre \), thermal buoyancy, \(S \) heat generating/absorbing, \(\lambda \), viscosity variation parameter and \(\epsilon \), thermal conductivity variation parameter, \(Br \) Brinkman number, \(q \) mass flux and \(d \) the boundary thickness. The value of \(Pr \) is chosen to be 0.71 throughout the work for air as the working fluid. The solutions for momentum and energy equations in the fluid section have been simulated for carefully selected values of the controlling parameters and the results are presented in figures 245. Also, the pressure gradient required to drive the flow to a prescribed mass flux is presented in table 1 while the critical values of the mixed convection parameter after which flow reversal is achieved near the stationary plate is given in table 2. The skin friction and the rate of heat transfer on the fluid-plate interface were tabulated in tables 3 and 4.

4 Results and discussion

Figures 2 and 3 show the effects of Brinkman number \(Br \) and \(\epsilon \), thermal conductivity variation parameter, \(Br \) Brinkman number, \(q \) mass flux and \(d \) the boundary thickness. The value of \(Pr \) is chosen to be 0.71 throughout the work for air as the working fluid. The solutions for momentum and energy equations in the fluid section have been simulated for carefully selected values of the controlling parameters and the results are presented in figures 245. Also, the pressure gradient required to drive the flow to a prescribed mass flux is presented in table 1 while the critical values of the mixed convection parameter after which flow reversal is achieved near the stationary plate is given in table 2. The skin friction and the rate of heat transfer on the fluid-plate interface were tabulated in tables 3 and 4.

Figures 2 and 3 show the effects of Brinkman number \(Br \) and \(\epsilon \) on the velocity and temperature profile. The velocity and temperature profiles for different values of Brinkman number and heat source/sink parameter are shown in figures 2 and 3.
Table 1: Variation of pressure gradient (d\(\frac{p}{dx}\)) for different values of \(S\), \(q\), \(d\) and \(Gre\) where \(\lambda = -0.3\), \(\epsilon = -0.3\), \(Br = 0.2\)

\(S\)	\(q\)	\(d = 0.2, Gre = 10\)	\(d = 0.2, Gre = 20\)	\(d = 0.5, Gre = 20\)
-0.4	-0.6376	5.5742	7.0079	
-0.2	-0.9155	5.0210	6.0491	
0	-1.1935	4.4677	5.0903	
0.2	-1.4715	3.9145	4.1316	
0.4	-1.7494	3.3612	3.1728	
-0.4	-14.7532	-8.5434	-7.1098	
-0.2	-15.0332	-9.0967	-8.0686	
0	-15.3112	-9.6499	-9.0273	
0.2	-15.5891	-10.2032	-9.9861	
0.4	-15.8671	-10.7565	-10.9449	

Table 2: Critical values of \(Gre\) at the stationary plate \(y = 1\) for different values of \(S\), \(\lambda\), \(d\) and \(\epsilon\) where \(q = 1\) and \(Br = 0.2\)

\(S\)	\(\lambda\)	\(d = 0.2, \epsilon = -0.2\)	\(d = 0.2, \epsilon = -0.4\)	\(d = 0.5, \epsilon = -0.4\)
-0.4	-0.2	54.57910812	52.84378325	67.22029661
-0.2	0.2	56.09504727	54.43472074	70.01808552
0	0.2	57.69881288	56.12581355	73.06158621
0.2	0.4	59.39826494	57.92682695	76.38465434
0.4	0.4	61.2023028	59.84883818	80.02766466
-0.4	-0.2	61.51931314	59.59863180	75.7150476
-0.2	0.4	64.02558277	62.22361979	80.59857570
0	0.4	66.74858497	65.09490123	86.16966963
0.2	0.4	69.71770381	68.24884547	92.57920319
0.4	0.4	72.96788618	71.72935347	100.0318533

Table 3: Skin friction \(\tau\) at the heated plate \(y = 0\) and cold plate \(y = 1\), for different values of \(S\), \(d\) and \(\lambda\) where \(Br = 0.2, \epsilon = -0.3, Gre = 10\) and \(q = 1\)

\(S\)	\(d = 0.2, \lambda = -0.2\)	\(d = 0.2, \lambda = -0.4\)	\(d = 0.5, \lambda = -0.4\)
-0.4	2.5218	3.5129	2.2957
-0.2	3.8385	3.3964	2.1362
0	2.2464	3.2811	1.9789
0.2	2.1104	3.1670	1.8236
0.4	1.9755	3.0539	1.6703
on velocity and temperature distributions. It is seen that the velocity increases at the heated plate with increase in Br. This is due to the fact that, Brinkman number is the ratio of heat produced by viscous dissipation to heat transported by molecular conduction. However, a decrease is observed near the cold plate with growing Br. This clearly reveals the effect of the pressure gradient and the impulsive motion by the heated plate to increase the velocity near the plate $y = 0$. On the other hand, figure 3 reveals that the temperature distribution decreases with increase in Brinkman number near the heated plate while an increase is observed near the cold plate as a result of energy diffusion towards the cold plate which increases the temperature of the fluid. It is also observed that the inter-facial temperature decreases at the heated plate with an increase in Br while an increase is observed near the cold plate. The effect of Br is more pronounced at the cold, thus increases the temperature at the region.

Figures 4 and 5 show the effects of heat generating/absorption parameter S on velocity and temperature distributions. The velocity increases with increase in heat generation $S < 0$ near the heated plate while it decreases

S	Nu_0	Nu_1	Nu_0	Nu_1	Nu_0	Nu_1
-0.4	0.6852	1.1133	0.7986	1.1820	0.6326	0.9635
-0.2	0.7643	1.0529	0.8861	1.1139	0.5320	0.8638
0	0.8370	0.9976	0.9639	1.0532	0.6143	0.7807
0.2	0.9034	0.9476	1.0321	0.9997	0.6805	0.7133
0.4	0.9635	0.9027	1.0911	0.9533	0.7316	0.6608

Table 4: Rate of heat transfer at the heated plate $y = 0$ and cold plate $y = 1$ for different values of S, d and ε where $Br = 0.2$, $Gre = 10$, $q = 1$ and $\lambda = -0.2$

S	Nu_0	Nu_1	Nu_0	Nu_1
1	1.0659	0.4434	1.0599	0.4440
0.5	1.0940	0.4703	1.0924	0.4704
-0.5	1.1593	0.5330	1.1576	0.5329
-1	1.1975	0.5697	1.1901	0.5690

Table 5: Comparison of present work and Jha and Ajibade (2010)

Figure 5: Temperature profile for different values of heat source/sink parameter S ($Br = 0.2$, $Gre = 10$, $\lambda = -0.3$, $\varepsilon = -0.3$, $d = 0.2$, $q = 1$)

Figure 6: Velocity profile for different values of mixed convection parameter Gre ($Br = 0.2$, $S = 0.4$, $\lambda = -0.3$, $\varepsilon = -0.3$, $d = 0.2$, $q = 1$)
Abiodun O. Ajibade and Ayuba M. Umar, Mixed convection flow in a vertical channel

Figure 7: Temperature profile for different values of mixed convection parameter Gre ($\text{Br} = 0.2, S = 0.4, \lambda = -0.3, \varepsilon = -0.3, d = 0.2, q = 1$)

Near the cold plate. However, near the heated plate, the velocity distribution decreases with increase in heat absorption $S > 0$ due to the fact that the heat generated is absorbed by the fluid particles which makes the fluid more dense, thus reduces the temperature and slow down the fluid flow. It is also observed that the temperature distribution increases across the channel with increase in heat generation $S < 0$. This is physically true since heat generated strengthens the convection current of the fluid thereby reduces the density of the fluid, thus increases the fluid temperature. This is attributed to the fact that, viscous dissipation, wall conduction and thermal conductivity add more heat to the fluid and the heat diffuses by pressure gradient. It is further noticed that the temperature distribution decreases with increase in heat absorption $S > 0$. This physically true, when heat is absorbed, then the fluid becomes dense and the temperature reduces. The effect of S on the inter-facial temperature is more pronounced at the heated plate than the cold plate.

Figures 6 and 7 show the effects of mixed convection Gre on the velocity and temperature distributions respectively. The velocity profile increases with increase in Gre near the heated plate. This is attributed to the role of heat generated from the wall and the internal heat generated which makes the fluid less dense and moves easily by the buoyancy forces. Near the cold plate, it has been observed that the velocity distribution decreases with increase in Gre as the fluid is more dense near the cold plate. On figure 7, the temperature profile increases with increase in Gre. This is physically true, since the heat generated by wall conduction and viscous dissipation diffuses by the buoyancy forces which strengthens convection current, which in return increases fluid velocity and consequently the sheared heating at every fluid sections. The effect of Gre on the inter-facial temperature is insignificant at the plates.

The effects of variable viscosity λ on velocity and temperature distributions are captured on figures 8 and 9. It is observed from figure 8 that the velocity distribution decreases near the heated plate with increase in viscosity while an increase has been observed near the cold plate. Decrease in velocity near the heated plate is due to the fact that there is an increase in convection current which in return increases the viscosity of the fluid, thereby increasing the viscous drag that decreases the velocity. However, the increase of velocity near the cold plate is

Figure 8: Velocity profile for different values of variable viscosity λ ($\text{Br} = 0.2, S = 0.4, \text{Gre} = 10, \varepsilon = -0.3, d = 0.2, q = 1$)

Figure 9: Temperature profile for different values of variable viscosity λ ($\text{Br} = 0.2, S = 0.4, \text{Gre} = 10, \varepsilon = -0.3, d = 0.2, q = 1$)
attributed to the decrease in heat which reduces the fluid viscosity, and eventually increases the fluid velocity. The temperature distribution decreases near the heated plate with increase in viscosity λ while it increases near the cold plate. The change in viscosity affects the inter-facial temperature on both the plates. It can be seen that the temperature at the heated plate decreases with increase in viscosity while a reverse case was observed at the cold plate.

The effects of thermal conductivity ε on velocity and temperature are depicted on figures 10 and 11. It is observed that the velocity distribution decreases with increase in thermal conductivity near the heated plate while it increases near the cold plate. On the other hand, the temperature distribution decreases with increase in thermal conductivity. This is attributed to increase in thermal conductivity which enhances heat transport within the system so that heat from the internal heating mechanism diffuses towards the cold plate at a rate proportional to the thermal conductivity. Consequently, convection current is weakened near the heated plate and strengthened near the cold plate. The effect of the thermal conductivity on the inter-facial temperature is little bit pronounced at the cold plate than the heated plate as a result of the energy generated which diffuses towards the plate thus increases the temperature.

Figures 12 and 13 show the different boundary layer thickness d effects on velocity and temperature distributions. It can be seen from figure 12 that the velocity distribution decreases with increase in boundary plate thickness d near the heated plate. This is physically true, since when the thickness of a material is increased, the heat flux reduces and cools down the fluid. Towards the cold plate, the velocity distribution increases. This is attributed to the fact that the energy dissipated diffuses towards the cold plate which strengthens the convection current, hence increases the fluid flow. The temperature distribution decreases near the heated plate with increase in boundary plate thickness. This is due to the fact that, increase in the thickness of a material reduces the heat flux through the system, which causes decrease in the temperature of the fluid. It is also observed that the boundary plate thickness has more effect on the inter-facial temperature at the heated plate than the cold plate.

Figures 14 and 15 display the velocity and temperature distributions for different values of mass flux q. The velocity distribution increases with increasing q. This is due to the fact that, increase in mass flux is attributed to increase in pressure gradient to boost the fluid particles’ flow. The temperature distribution decreases near the heated plate with increase in q while a reverse case is observed near the cold plate. Since the mass flux increases with growing pressure gradient, the effect of natural convection decreases so as to maintain the required flux within the channel. However, the effect of channel boundary motion is not there so that an increase is required in fluid temperature to drive the flow to the prescribed flow.

Table 1 shows the effect of dimensionless flow parameters on pressure gradient in the channel. It is observed that the pressure gradient increases with increase in mass flux q. That is, an increase in mass flux requires a corresponding increase in pressure gradient to drive the flow. This is obtained when Gre is relatively small. However, when Gre is large, the natural convection dominated
the heat transfer, pressure gradient acts against the flow so as to obtain the required mass flux, thus the positive values of pressure gradient at large Gre. The table also shows that, a decrease in pressure gradient is obtained by increasing heat absorption $S < 0$. This is due to the fact that, increase in heat generation leads to increase in convection current by buoyancy forces. It is further observed that the pressure gradient acts against the flow when the boundary thickness is increased for relatively small mass flux. However, when the mass is high, the required pressure gradient decreases for a corresponding increase in boundary thickness.

Table 2 shows the critical values of Gre which signal the onset of reverse flow at the cold plate $y = 1$. It can be seen that smaller critical values can be obtained by enhancing the thermal conductivity ε or the heat generation parameter $S < 0$. This is physically true, since increase in thermal conductivity or heat generation enhances the convection current which in return strengthens the boundary layer thickness of the fluid, hence reduces the density of the fluid thereby needs smaller value of Gre to nullify the boundary friction on the plate. However, when boundary plate thickness or heat absorption is increased, the convection current within the channel weakens which raises the required critical values of Gre to nullify the boundary friction. The critical value of Gre increases with increase in viscosity. A general view of this table indicates that, each physical quantity that boosts convection current requires a decrease in Gre while the reverse trend is observed for each physical quantity that
weakens the convection current.

Table 3 displays the skin friction τ between the fluid and the plates. It is observed that the skin friction increases at the heated plate with increase in viscosity λ while it decreases with an increase in boundary plate thickness. However, the skin friction decreases on the cold plate with increase in viscosity λ while a reverse trend is observed when the boundary plate thickness d is increased. On the other hand, when heat generation $S < 0$ is increased, then an increase in skin friction is observed on both the plates. It is further observed that the skin friction decreases with increase in heat absorption $S > 0$ on both boundary surfaces.

The rate of heat transfer Nu is depicted on table 4. It shows that the rate of heat transfer at both the plates increases with increase in thermal conductivity ϵ. This physically true, since when the thermal conductivity of a fluid is increased, thermal diffusivity becomes high thereby increasing the thermal boundary layer thickness of the fluid, thus increasing the rate of heat transfer. However, the rate of heat transfer decreases with increase in boundary plate thickness d on both the plates. This is due to the fact that the increase in plate thickness reduces the heat flux through the plate to the fluid which in return weakens the convection current of the fluid. It is also observed that the rate of heat transfer decreases on the heated plate with increase in heat generation $S < 0$ while a reverse trend is observed on the cold plate. It is further observed that the rate of heat transfer increases on the heated plate with increase in heat absorption $S > 0$ but a decrease is observed on the cold plate. This is physically true since fluid temperature decreases with heat absorption thereby reducing the temperature difference between the fluid and the cold plate while it increases same on the fluid interface with the heated plate.

5 Conclusion

The present work theoretically investigated the effects of viscous dissipation and boundary plate thickness on a steady mixed convection flow in the presence of variable thermal conductivity and viscosity. The work concluded that the velocity profile increases near the heated plate with increase in Br, Gre, and $S < 0$ while the reverse trends were observed near the cold plate. A decrease in velocity distribution is observed near the heated plate with increase in λ, d, ϵ and $S > 0$ while reverse cases were observed near the cold plate. It is also concluded that the temperature distribution decreases near the heated plate with increase in Br, λ, q and d while a reverse cases were observed near the cold plate. It’s further concluded that the skin friction and rate of heat transfer decrease with increase in boundary plate thickness d. The required critical value of Gre can be obtained by increasing the thermal conductivity while the pressure gradient increases with increase in mass flux. When Brinkman number (Br), viscosity (λ), thermal conductivity (ϵ), pressure gradient $(\frac{dP}{dx})$ and boundary plate thickness (d) are set to zero, the work of Jha and Ajibade [55] is recovered.

References

[1] Ajay KP, Jeffrey RK. Combined forced and natural convection heat transfer in a deep lid-cavity flow. J of Heat and Fluid Flow, 1996;17:460-467.

[2] Jha BK, Deborah D, Ajibade AO. Mixed convection flow in a vertical tube filled with porous material with time-periodic boundary condition: steady-periodic regime. Afr Mat. 2014;26(3-4):529-543.

[3] Mohamed A. Unsteady mixed convection heat transfer along a vertical stretching surface with variable viscosity and viscous dissipation. J of Egy Math Soc. 2014;22:529-537.

[4] Jha BK, Deborah D, Ajibade AO. Mixed convection in an inclined channel filled with porous material having time-periodic boundary conditions. Trans in Por Med. 2015;21(109):495-512.

[5] Macha M, Naikoti K. Finite element analysis of heat and mass transfer by mhd mixed convection stagnation-point flow of a non-newtonian power-law nanouid towards a stretching surface with radiation. J of Egy Math Soc. 2016;24:458-470.

[6] Jha BK, Aina B. Impact of heat generation/absorption on mhd mixed convection flow in a vertical tube having time periodic boundary condition: steady periodic regime. Heat Pipe Sci and Tech: An intern J. 2016;7:123-147.

[7] Ajibade AO, Onoja UT. Entropy generation and irreversibility analysis due to steady mixed convection ow in a vertical porous channel. Intern J of Heat and Tech. 2017;35(3):433-446.

[8] Jha BK, Aina B. effect of induced magnetic field on mhd mixed convection flow in vertical microchannel. Intern J of Appl Mech and Eng. 2017;22:567-582.

[9] Pantokratoras A. Effects of viscous dissipation in natural convection along a heated vertical plate. Amer J of Comp Math. 2005;29:553-564.

[10] Jha BK, Ajibade AO. Effect of viscous dissipation on natural convection flow between vertical parallel plates with time-periodic boundary conditions. Comm in Non-Lin Sci and Num Simul. 2012;17:1576-1587.

[11] Kumar PM, Sanchayan M. Viscous dissipation effects on the limiting value of nusselt numbers for a shear driven flow between two asymmetrically heated parallel plates. Front in Heat and Mass Trans. 2012;3:1-6.

[12] Fransisca JS, Tso CP, Dirk R. Heat transfer with viscous dissipation in Couette-poiseuille flow under asymmetric wall heat
[13] Kabir KH, Alim MA, Abdullah LS. Effects of viscous dissipation on mhd natural convection ow along a vertical wavy surface with heat generation. Amer J of Comp Math. 2013;3:91-98.

[14] Mohamed A. Mixed convection ow of a micropolar fluid from an unsteady stretching surface with viscous dissipation. J of Egy Math Soc. 2013;21:385-394.

[15] Prabhakar RB. Effects of thermal diffusion and viscous dissipation on unsteady mhd free convection ow past a vertical porous plate under oscillatory suction velocity with heat sink. Intern J of Appl Mech and Eng. 2014;19:303-320.

[16] Rainerullaque M, Alam MM, Mohammad M. Effects of viscous dissipation on natural convection ow over a sphere with temperature dependent thermal conductivity in presence of heat generation. Proc Eng. 2015;105:215-224.

[17] Ajibade AO, Umar AM. Steady natural convection Couette ow with wall conduction and thermal boundary condition of third kind. J of Appl Math and Mech ZAMM. 2020;page https://doi.org/10.1002/zamm.201900095.

[18] Michael JS, Dimos P. Effect of microreactor wall conduction on the reforming process of methane. Chem Eng Scie. 2005;6:6983-6997.

[19] Hassab MA, Khamis MM, Shawky IM. The effect of axial wall conduction on heat transfer parameters for a parallel-plate channel having a step change boundary conditions. Num Heat Tran: Part A. 2013;63:430-451.

[20] Ates A, Darici S, Bilir S. Transient conjugated heat transfer in thick walled pipes with uniform heat flux boundary conditions. 5th International conference on heat transfer Fluid Mech and Thermo 2007.

[21] Mei L, Wang QW, Zhixiong G. Investigation on evaluation criteria of axial wall heat conduction under two classical thermal boundary conditions. Appl Ener. 2016;162:1662-1669.

[22] Moukalled F, Darwish M, Acharya S. Inuence of wall conduction on mixed convection heat transfer in externally fnned pipes. Numer Heat Trans, Part A: Appl. 1995;28(2):157-173.

[23] Kevin DC, Barbaros C. The effects of axial conduction on heat transfer in a liquid microchannel ow. Intern J of Heat and Mass Trans. 2011;54(11-12):2542-2549.

[24] Adrian N, Stefen N, Martins S, Holger V. Interpolation correlation for uid properties of humid air in the temperature range 100°C to 200°C. Amer Inst of Phy and Amer Chem Soc. 1997;26(4):1111-1123.

[25] Tarakaramu N, Narayana PVS, Venkateswarlu B. Numerical simulation of variable thermal conductivity on 3D ow of nanofluid over a stretching sheet. Nonli Eng. 2020;9:233-243.

[26] Dulal P, Hiranmony M. Effects of temperature-dependent viscosity and variable thermal conductivity on mhd non-Darcy mixed convective diffusion of species over a stretching sheet. J of Egy Math Soc. 2016;22:123-133.

[27] Subhas MAA, Mahesha N. Heat transfer in mhd viscoelastic ow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation. Appl Math Mod. 2008;32:1965-1982.

[28] Rahma MM, Mamun AA, Azim MA. Effect of temperature dependent thermal conductivity on magnetohydrodynamics (mhd) free convection ow along a vertical plate with heat conduction. Nonli Anal: Mod and Contr. 2008;13(4):513-524.

[29] Naseem A. Visco-elastic boundary layer ow past a stretching plateband heat transfer with variable thermal conductivity. World J of Mech. 2011;1:15-20.

[30] Vajravelu K, Prasad KV, Chiu-on N. Unsteady convective boundary layer ow of a viscous uid at a vertical surface with variable uid properties. Nonli Anal: Real World Appl. 2013;14:455-464.

[31] Singh V, Shweta A. Flow and heat transfer of maxwell uid with variable viscosity and thermal conductivity over an exponentially stretching sheet. Amer J of Fluid Dyn. 2013;3(4):87-95.

[32] Isaac LA, Anselm OQ. Effects of variable viscosity, dufour, soret and thermal conductivity on free convective heat and mass transfer of non-Darcian ow past porous at surface. Amer J of Comp Math 2014;4:357-365.

[33] Hunegnaw D, Naikoti K. Mhd effects on heat transfer over a stretching sheet embedded in porous medium with variable viscosity, viscous dissipation and heat source/sink. Ain Shams Eng J. 2014;5:965-977.

[34] Uwanta IIJ, Murtalai S. Heat mass ow transfer past an in nite vertical plate with variable thermal conductivity, heat source and chemical reaction. Intern J of Eng and Sci. 2014;3(5):77-89.

[35] Sumaya S, Mohammad RK, Shayan A. Eficiency analysis of straight fni with variable heat transfer coecient and thermal conductivity. J of Mech Scie and Tech. 2014;26(4):1283-1290.

[36] Devi SPA, Prakash M. Temperature-dependent viscosity and thermal conductivity eects on hydromagnetic ow over a slendering stretching sheet. J of Nig Math Soc. 2015;34:318-330.

[37] Animasaun IL. Casson uid ow with variable viscosity and thermal conductivity along exponentially stretching sheet embedded in a thermally strati ed medium with exponentially heat generation. J of Heat and Mass tran Res. 2015;2:63-78.

[38] Gopal CH, Jadav K. Effects of variable viscosity and thermal conductivity on magnetohydrodynamics free convection dustty uid along a vertical porous plate with heat generation. Tur J of Phy. 2016;40:52-68.

[39] Jadav K, Hazarika GC. Effects of variable viscosity and thermal conductivity on mhd free convection ow of dusty uid along a vertical stretching sheet with heat generation. Intern Res J of Eng and Tech. 2016;2(3):1029-1038.

[40] Gopal CH, Bandita P. Effects of variable viscosity and thermal conductivity on magnetohydrodynamics free convection ow of a micropolar uid past a stretching plate through porous medium with radiation, heat generation and joule dissipation. Tur J of Phy. 2016;40:40-51.

[41] Bandita P. Effects of variable viscosity and thermal conductivity on the unsteady mhd slip ow of micropolar uid over a vertical plate. Intern J of Comp Appl Tech and Res. 2017;6(7):293-298.

[42] Kareem RA, Salawu SO. Variable viscosity and thermal conductivity eects of soret and dufour on inclined magnetic fiel in non-Darcy permeable medium with dissipation. Brit J of Math and Comp Sci. 2017;22(3):1-12.

[43] Sreenivasulu P, Poornima T, Bhaskar R. Variable thermal conductivity eects on hydromagnetic ow past a stretching cylinder in a thermally strati ed medium with heat source/sink. Inon in Heat and Mass Trans. 2017;9(20):1-7.

[44] Muthtamilselvan M, Gokulavani P, Ramya E, Deog-Hee D. Investigation on third kind. J of Appl Math and Mech ZAMM, 2020;page https://doi.org/10.1002/zamm.201900095.

[45] Vajravelu K, Prasad KV, Chiu-on N. Unsteady convective boundary layer ow of a viscous uid at a vertical surface with variable uid properties. Nonli Anal: Real World Appl. 2013;14:455-464.
channel with boundary conditions of third kind. Intern J of Nonl Sci and Num Simul. 2016;17(5):231-243.

[46] Kairi RR, Ram Reddy C, Raut S. Influence of viscous dissipation and thermo-diffusion on double diffusive convection over a vertical cone in a non-Darcy porous medium saturated by a non-Newtonian fluid with variable heat and mass fluxes. Nonlin Eng. 2017;7(1):65-72.

[47] Kumar A, Alam P, Kapoor S. Numerical investigation of mixed convective flow in parallel channel filled with porous medium. Nonlin Eng. 2014;3(4):203-208.

[48] Rostami AK, Hosseinzadeh K, Ganji DD. Hydrothermal analysis of ethylene glycol nanofluid in a porous enclosure with complex snowake shaped inner wall. Waves in Rand and Comp Med. 2020;1-18.

[49] Hosseinzadeh K, Asadi A, Mogharrebi AR, Ganji MEA. Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect. Journal of Therm Analy and Calo. 2020; https://doi.org/10.1007/s10973-020-09347-x

[50] Mukundan V, Awasthi A. Numerical techniques for unsteady nonlinear burgers equation based on backward differentiation formulas. Nonlin Eng. 2018;7(3):171-181.

[51] Travis JM, Erturk VS. Comparison of the method of variation of parameters to semi-analytical methods for solving nonlinear boundary value problems in engineering. Nonlin Eng. 2020; 9:1-13.

[52] Singh M, Naseem M, Kumar A, Kumar S. Homotopy analysis transform algorithm to solve time-fractional foam drainage equation. Nonlin Eng. 2016;5(3):161-166.

[53] Ajibade AO, Umar AM. Effects of viscous dissipation and wall conduction on steady mixed convection Couette flow of heat generating/absorbing fluid. Intern J of Appl Mech and Eng. 2019;24(a):12-35.

[54] He JH. Homotopy perturbation technique. Comp Meth in Appl Mech and Eng. 1999;178:257-262.

[55] Jha KB, Ajibade OA. Unsteady free convective Couette flow of heat generating/absorbing fluid. Intern J Ener Tech. 2010;2(12):1-9.