Inequalities in Accessing Healthcare in the United States of America: A Major Contributor to the Increasing COVID-19 Morbidity and Mortality

Olayinka Stephen Ilesanmi1,2*, Aanuoluwapo Adeyimika Afolabi1,2*, Oluwafunbi Awoniyi1,2

1Department of Community Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
2Department of Community Medicine, University College Hospital, Ibadan, Oyo State, Nigeria
3Rollins School of Public Health, Emory University, Atlanta, GA, USA

Corresponding Author: Aanuoluwapo Adeyimika Afolabi, Department of Community Medicine, University of Ibadan, Oyo State, Nigeria. Tel: +234-8146764516, Email: afoannade@gmail.com

Received July 14, 2021; Accepted November 20, 2021; Online Published December 5, 2021

Abstract

Introduction: Many COVID-19 cases and deaths have been reported from the United States (US). This study aimed to assess the health system inequalities as a determinant of COVID-19 case morbidity and mortality in the US.

Methods: This study collected data on US COVID-19 cases and deaths as of the 27th of January 2021 from the Worldometer and COVID-19 Community Vulnerability Index. The strength of association between the social vulnerability index (SVI), total COVID-19 deaths, and regional population in the US were determined using Pearson's correlation. P values < 0.05 were statistically significant.

Results: New York has the highest SVI (0.94) in the North-Eastern region and the highest percentage of non-Whites. California has the highest SVI (0.90) in the Western region and the highest proportion of Asians. In the mid-Western region of the US, Illinois has the highest SVI (0.88) and the highest proportion of African Americans and Asians. North Carolina has the highest SVI of (1.00) in the Southern region and the highest proportion of African Americans. A strong positive correlation exists between the SVI and total COVID-19 tests (P = 0.001) in the North-eastern and Southern regions (P = 0.025). In addition, a positive correlation (P < 0.039) exists between SVI and the total population in the Western and mid-Western regions (P < 0.003).

Conclusion: Multi-sectoral collaboration should be encouraged to promote equity in accessing COVID-19 healthcare in the US, especially in States with high COVID-19 SVI.

Keywords: Healthcare Policy, Health Services Accessibility, Health Status Disparities, Public Health

Introduction

The novel coronavirus (COVID-19) outbreak has swept across the globe and has accentuated the frailties and inequities existing in the state of the World's system.1-2 Prior to the COVID-19 pandemic, inequity has been evident in the unequal distribution of material and economic resources across different population groups motivated by education, conflicts, famine, low living standards, geographical location.3-4 It has therefore resulted in better access to healthcare for some populations than others.6

During the COVID-19 pandemic, however, the inherent inequities have made some population groups more vulnerable to the risk of COVID-19 morbidity and mortality than others.5 For example, in the United States of America (US), unequal access to healthcare has been reported against minority groups such as residents in areas of low socioeconomic status.5,7 It has therefore contributed to a reduction in the quality of life of individuals in these groups.5,7 In addition, poor access to nutritious and adequate diets in many states with a high population of minorities groups could have also increased the vulnerability of this group to COVID-19.7

In addition, the low income earned by many in numerous communities with a high minority population could lead to a delay in accessing adequate healthcare.7 Furthermore, the increasing rate of unemployment from 3.68%-3.86% in 2019 and 2020 respectively in the US, caused by quarantining, nationwide lockdown, and work closure, could have led to a fall in personal and household income.6,8 According to the Center for Disease Control and Prevention (CDC), people experiencing food insecurity are likely in poorer health than the rest of the population. They are more vulnerable to diabetes mellitus and hypertension.

People with these chronic medical conditions are at a high risk of severe symptoms if they contract COVID-19.10

Copyright © 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
These could have reduced economic capacity to meet dietary requirements, thus leading to household food insecurity and an increased vulnerability to infections which could have made many individuals increasingly susceptible to COVID-19. In addition, long-term exposure to adverse working conditions such as ergonomic hazards and working conditions that are associated with an increased risk of musculoskeletal and respiratory diseases could increase the burden of COVID-19.

Some essential service providers such as those working in food production, sanitation companies, and other service sectors are more likely to be disadvantaged. In most cases, these persons are commuters on public transport, and this could increase their chances of being infected with COVID-19. These factors could therefore explain to a reasonable extent the high proportion of COVID-19 cases and deaths in the US during the first wave of COVID-19 pandemic. Higher morbidity, case fatality, and transmission rate are all characteristic of the second wave of COVID-19. As the second wave ends and the third COVID-19 wave emerges, COVID-19 cases are expected to rise in the United States, especially in communities with a large proportion of minority groups.

It becomes pertinent to assess the inequities in healthcare access in the US as a gateway to identify potential population groups who may compromise the healthcare of persons in other communities and the entire US knowledge obtained in this regard. It would be needful to avert an overwhelmed state of the healthcare system associated with an increasing burden of the COVID-19. Such research would be essential to develop a proactive approach to strategize the modalities for reducing vulnerability to COVID-19 both at an individual and a regional level in the US. This study, therefore, aimed to assess the inequities in the healthcare system as a significant determinant of COVID-19 case morbidity and mortality in the US.

Methods

The current study collected data on COVID-19 cases and deaths as of the 27th of January 2021 from online repositories. The US COVID-19 data were retrieved from the social vulnerability index (SVI). The SVI is a certified measuring tool developed by the Centers for Disease Control and Prevention (CDC) to identify vulnerable communities, especially those needing extra resources throughout a natural or artificial disaster. The SVI is aimed at improving the response of policymakers and critical health officials to health emergencies. Several factors are assessed to determine the vulnerability of each community.

In this context, the healthcare system factors include the strength or weakness of the health system, healthcare accessibility, and health system preparedness. The indicators included health expenditure per capita, the aggregate cost of medical care, percent of the population with a primary care physician, per capita funding for total health emergency preparedness, number of health laboratories per 100,000 population, and emergency services per 100,000 population in the United States. The composite CCVI measuring tool was used to rank each state concerning others on a scale of “0”, indicating “least vulnerable,” to “1,” indicating “most vulnerable.” Using information retrieved from National Geographic, the 50 states in the US and the district of Columbia were grouped into regional zones, namely the North-Eastern, Southern, Mid-Western, and Western.

Population percentages based on race were obtained from the United States Census Bureau on the 1st of July 2019. The data obtained were entered into the Statistical Software for the Social Sciences, on which data analysis was done. The strength of association between the SDI, total COVID-19 deaths, total COVID-19 tests, total COVID-19 tests per million population, and the population of the United States of America regions were determined using Pearson’s correlation. P values < 0.05 were statistically significant.

Results

In the North-Eastern region of the US, New York has the highest SVI of 0.94. 2208 COVID19 deaths per million population were recorded in New York as of the 27th of January 2021. In New York, 31128149 COVID-19 tests had been conducted, with 1600126 COVID-19 tests per million population conducted out of a total population of 19453561 as of the reference date. New York had the highest percentage of African Americans, Hispanics, and Asians in the North-Eastern region (Table 1).

Vermont has the lowest SVI of 0 in the North-Eastern and has recorded 276 COVID-19 deaths per million population of the 27th of January 2021. In Vermont, 862821 COVID-19 tests had been conducted, with 1382750 COVID-19 tests per million population conducted out of a total population of 623989 of the reference date. In addition, Vermont has the lowest percentage of African Americans, Hispanics, and Asians in the North-Eastern region (Table 1).

In the Western region of the US, California has the highest SVI of 0.90, while Arizona has the second-highest of 0.82. 978 and 1737 COVID-19 deaths per million population were recorded in California and Arizona, respectively, as of the 27th of January 2021. In California, 41252482 COVID-19 tests had been conducted, with 104404 COVID-19 tests per million population conducted out of a total population of 39512223 of the reference date. California has the highest percentage of Asians in the Western region (Table 2).

Montana has the lowest SVI of 0.14 in the western region and has recorded 1124 COVID-19 deaths per million population as of the 27th of January 2021. In Montana, 927981 COVID-19 tests had been conducted, with 868264 COVID-19 tests per million population conducted out of a total population of 1068778 of the reference date. In addition, Montana has the lowest percentage of African Americans and Hispanics in the Western region (Table 2).

In the mid-Western region of the US, Illinois has the highest SVI of 0.88, while Missouri has the second-highest of 0.78. Also, 1653 and 1190 COVID-19 deaths per million population were recorded in Illinois and Missouri, respectively, as of the 27th of January 2021. In Illinois, 15633443 COVID-19 tests had been conducted, with 1233717 COVID-19 tests...
per million population conducted out of a total population of 12,671,821 as of the reference date. In addition, Illinois has the highest percentage of African Americans, Hispanics or Latinos, and Asians in the mid-Western region (Table 3).

Nebraska has the lowest SVI of 0.14 in the mid-western region and has recorded 985 COVID-19 deaths per million population as of the 27th of January 2021. In Nebraska, 9,149,097 COVID-19 tests had been conducted, with 472,966 COVID-19 tests per million population conducted out of a total population of 1,934,408 of the reference date. Nebraska has a relatively high population of Whites or Hispanics or Latinos in the mid-Western region (Table 3).

In the Southern region of the US, North Carolina has the highest SVI of 1.00. Also, 850 COVID-19 deaths per million population were recorded in North Carolina as of the 27th of January 2021. In North Carolina, 8,580,157 COVID-19 tests had been conducted, with 818,086 COVID-19 tests per million population conducted out of a total population of 10,488,084 as of the reference date. North Carolina has a higher proportion of Whites than other races (Table 4).

The District of Columbia has the lowest SVI of 0.02 in the Southern region and has recorded 1,268 COVID-19 deaths per million population as of the 27th of January 2021 (Table 4). In the District of Columbia, 10,643,297 COVID-19 tests had been conducted, with 1,508,084 COVID-19 tests per million population conducted out of a total population of 705,749 of the reference date. The District of Colombia has the highest proportion of African Americans in the Southern region (Table 4).

There is a strong positive correlation of 0.91 between the
SVI and the number of COVID-19 tests conducted ($P = 0.001$) and population ($P < 0.001$) in the North-Eastern region. There is a positive correlation of 0.576 between the SVI and total population ($P < 0.039$). The SVI and total COVID-19 tests are positively correlated in the Southern region of the US ($P = 0.025$). In the Mid-western region, there is a positive correlation of 0.78 between the SVI and total population ($P < 0.003$) (Table 5).

Discussion

This study revealed a strong positive correlation between the SVI and the number of COVID-19 tests conducted in the North-Eastern USA region. It implies that the more the number of COVID-19 tests conducted, the higher the SVI. Many states in the North-Eastern region of the US have a low SVI, characterized by health system preparedness and a strong health system. As a result, plans were put in place to
ensure access to rapid testing among many individuals. Such plans have been reported to have been conducted in many countries around the globe.18 Although the North-Eastern region is less vulnerable to COVID-19, the higher prevalence of the non-communicable disease among Whites (who are more in this region) is a risk factor for COVID-19 morbidity and comorbidity, and fatality. Therefore, to put COVID-19 case morbidity and mortality in check in the North-Eastern region, COVID-19 tests were provided and made accessible to many to protect them from COVID-19 infection and associated comorbidities. Therefore, this could explain our findings on the insignificant association between SVI and COVID-19 deaths per million in the North-Eastern USA region.

In the Western region of the US, we found a significant moderate positive association between the total population and SVI. It implies that residents of the Western Region of the US are at high risk for COVID-19 infection. Underlying factors responsible for this could include the large population of females compared to males, the aging population, and comorbidity associated with the aging population. For instance, literature has proven that women’s hormonal factors predispose them to infections than their male counterparts.19-21 The aging population is characterized by a higher risk of hypertension and reduced body immunity, all of which increase their vulnerability to COVID-19. As a result, the high SVI in the Western region translated to increased COVID-19 tests and reduced COVID-19 deaths, although at insignificant levels. Therefore, this finding suggests that increasing COVID-19 tests due to high SVI could reduce the expected proportion of COVID-19-related deaths.

In the Western region of the US, we found a significant moderate correlation between SVI and total COVID-19 tests conducted, COVID-19 tests per million, and total population. Therefore, it affirms the evidence presented in the literature on the greater vulnerability and higher rate of COVID-19 transmission in crowded communities.6 It shows that the high COVID-19 SVI in many States in the Western Region of the US influenced decision-making regarding total COVID-19 tests. However, a slight positive correlation was observed between the SVI and COVID-19 deaths per million. This finding shows that implementing COVID-19 tests and increasing the tests conducted per million population due to the high SVI is likely to reduce COVID-19 deaths. Therefore, commencing COVID-19 tests early enough during the COVID-19 outbreak would contribute towards placing COVID-19 deaths in check.

In the Mid-Western region of the US, we found a significantly strong positive correlation between SVI and total COVID-19 tests conducted, COVID-19 tests per million, and total population. A weak positive correlation was observed between SVI and COVID-19 deaths per population. This finding highlights that the COVID-19 SVI in the Mid-Western region increased COVID-19 deaths. Although the correlation was insignificant, it could be inferred that the total COVID-19 tests and tests per million helped to identify positive COVID-19 cases early enough. This would have helped prompt care for positive cases and reduce the proportion of deaths due to COVID-19. Prompt identification of COVID-19 cases through testing has been identified as a strategy to break the chain of transmission of COVID-19 and reduce COVID-19-associated deaths.23,24

Racial and ethnic minority groups such as African Americans, Native American Indians, and Hispanics earn less than non-Hispanic Whites and earn less income, and are less likely to have health insurance, afford required medications, and specialized care. These factors are associated with a higher risk for COVID-19 morbidity and mortality.25 For example, in societies such as Bronx and Brooklyn in New York, Hispanics and African Americans have been found to have obesity rates of 32\% and 27\%, respectively. Thus having an increased susceptibility to COVID-19.19 American Indians and Alaska natives have a high rate of COVID-19 hospitalization of about 5.3 times that non-Hispanic whites. Also, African Americans and Hispanics are nearly 4.7 times at risk for COVID19 hospitalization than non-Hispanic whites.26 Therefore, strategies to ensure the universal provision of COVID-19 services at reduced cost should be considered. These could

Table 5. Correlation Between the Social Vulnerability Index, COVID-19 Tests and Deaths, and the Population of the Regions in the United States

Region	Statistics	COVID-19 Deaths Per Million	Total COVID-19 Tests	COVID-19 Tests Per Million	Population
North-eastern	Pearson correlation with SVI	0.592	0.910	-0.167	0.977
	P value	0.093	0.001*	0.667	<0.001*
	N	9	9	9	9
Western	Pearson correlation with SVI	0.261	0.523	-0.238	0.576
	P value	0.388	0.067	0.434	0.039*
	N	13	13	13	13
Southern	Pearson correlation with SVI	0.059	0.542	-0.583	0.594
	P value	0.823	0.025	0.014*	0.012*
	N	17	17	17	17
Mid-western	Pearson correlation with SVI	0.047	0.780	0.846	0.684
	P value	0.885	0.003*	0.001*	0.014*
	N	12	12	12	12

Abbreviation: SVI, social vulnerability index.

*P<0.05.
include the inclusion of COVID-19 services as a part of the social protection services.

Strengths and Limitation
The findings from this study could have been limited using secondary data in the analysis. Despite this limitation, the data were retrieved from national and credible databases. Also, our findings provide relevant knowledge on the underlying factors influencing COVID-19 cases and deaths in the US; available knowledge regarding the second wave of the COVID-19 outbreak during this period adds more relevance to this study.

Conclusion
The pre-existing healthcare inequity has contributed to an increased vulnerability of minority groups in the US to COVID-19. If left unaddressed, the rapid spread of COVID-19 among these groups could promote the COVID-19 transmission rate in the US as the third wave emerges. Therefore, effective strategies need to be promptly implemented against healthcare inequity in the US to avert their ripple effect, and a bulk of this responsibility lies with policymakers. Firstly, the American public policy should embrace a policy that promotes fairness, justice, and equity to all. Secondly, policymakers should be more responsible and responsive towards enacting and enforcing the protection of civic rights, including access to quality healthcare and resources. Finally, equity in the provision of COVID-19 tests and management should be implemented early enough. Equity will promote the US’s overall progress, contribute to a considerable fall in the COVID-19 cases and deaths, and enhance some level of health system preparedness in the US, especially as the third wave of COVID-19 emerges. To achieve such multi-sectoral collaboration is essential.

Authors' Contributions
OSI conceptualized the study. OSI, AAA, and OA participated in data collection. OSI and AAA conducted data analysis. AAA wrote the initial draft of the manuscript. All three authors revised the manuscript for critical intellectual content and approved the final version of the manuscript.

Conflict of Interest Disclosures
The authors declared no conflict of interest.

Ethical Approval
This study utilized secondary data. As a result, ethical issues such as confidentiality, privacy, and informed consent were not considered. In addition, no ethical approval from an ethics board was required.

Funding/Support
None.

References
1. The Brussels Times. Oxfam: COVID-19 Led to Increase in Inequality in the World. Available at: https://www.brusselstim.es/news-contents/economic/151064/oxfam-covid-19-led-to-increase-in-inequality-in-the-world/. Accessed January 29, 2021.
2. Ilesanmi OS, Afolabi AA. Verifying the real estimates of COVID-19 deaths in Africa. Germs. 2020;10(4):392-395. doi:10.18683/germs.2020.1233.
3. Inequality.Org. Facts: Global Inequality. Available at: https://inequality.org/facts/globalinequality/. Accessed January 28, 2021.
4. Cash-Gibson L, Rojas-Gualdrón DF, Pericàs JM, Benach J. Inequalities in global health inequalities research: a 50-year bibliometric analysis (1966-2015). PLoS One. 2018;13(1):e0191901. doi:10.1371/journal.pone.0191901.
5. DW. Coronavirus Pandemic Exposes Global Inequalities, Says UN Chief. Available at: https://www.dw.com/en/coronavirus-pandemic-exposes-global-inequalities-says-un-chief/a-54228847. Accessed January 29, 2021.
6. Cole B. The Impact of the COVID-19 Pandemic on Access to Healthcare National Academy of Social Insurance: Health Policy Brief No 17; 1-31. Available at: www.nasi.org/sites/default/files/research/Brief%20on%20Impact%20on%20Access%20to%20Care.pdf. Accessed January 29, 2021.
7. Bambra C, Riordan R, Ford J, Matthews F. The COVID-19 pandemic and health inequalities. J Epidemiol Community Health. 2020;74(11):964-968. doi:10.1136/jech-2020-214401.
8. Statista. United States Unemployment rate from 1999 to 2020. Available at: https://www.statista.com/statistics/263710/unemployment-rate-in-the-united-states/. Accessed January 29, 2021.
9. U.S. Bureau of Labor Statistics. Unemployment Rates for States. Available at: https://www.bls.gov/web/laus/laumstrk.htm. Accessed January 29, 2021.
10. Unglesbee B, Howland D, Venkar K. The Impact of the Coronavirus on Food Insecurity in 2020. Available at: https://www.appannie.com/en/insights/market-data/coronavirusimpact-mobile-economy/. Accessed January 30, 2021.
11. Margarakis LL. Coronavirus Second Wave? Why Cases Increase. Available at: https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/first-andsecond-waves-of-coronavirus. Accessed January 29, 2021.
12. Roberts JD, Tehrani SO. Environments, behaviors, and inequalities: reflecting on the impacts of the influenza and coronavirus pandemics in the United States. Int J Environ Res Public Health. 2020;17(12):4484. doi:10.3390/ijerph17124484.

13. Worldometer. Coronavirus. Available at: https://www.worldometers.info/coronavirus/. Accessed January 28, 2021.

14. Surgo Ventures: Precision for COVID. The U.S. COVID Community Vulnerability Index (CCVI): Vulnerability — how well a community handles the repercussions of a COVID19 outbreak — matters. Available at: https://precisionforcovid.org/ccvi/. Accessed January 28, 2021.

15. Agency for Toxic Substances and Disease Registry. CDC Social Vulnerability Index. Available at: https://www.atsdr.cdc.gov/placeandhealth/svi/index.html. Accessed January 28, 2021.

16. National Geographic. United States Regions. Available at: https://www.nationalgeographic.org/maps/united-states-regions/. Accessed January 28, 2021.

17. IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp; 2012.

18. Haug N, Geyrhofer L, Londei A, et al. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat Hum Behav. 2020;4(12):1303-1312. doi:10.1038/s41562-020-01009-0.

19. Rubtsov AV, Rubtsova K, Kappler JW, Marrack P. Genetic and hormonal factors in female-biased autoimmunity. Autoimmun Rev. 2010;9(7):494-498. doi:10.1016/j.autrev.2010.02.008.

20. Taneja V. Sex hormones determine immune response. Front Immunol. 2018;9:1931. doi:10.3389/fimmu.2018.01931.

21. Ingersoll MA. Sex differences shape the response to infectious diseases. PLoS Pathog. 2017;13(12):e1006688. doi:10.1371/journal.ppat.1006688.

22. The Times of Israel. The Disconcerting Association Between Overpopulation and the COVID-19 Crisis. Available at: https://blogs.timesofisrael.com/the-disconcertingassociation-between-overpopulation-and-the-covid-19-crisis/. Accessed January 31, 2021.

23. Centres for Disease Control and Prevention. Testing Strategy for Coronavirus (COVID-19) in High-Density Critical Infrastructure Workplaces After a COVID-19 Case is Identified. Available at: https://www.cdc.gov/coronavirus/2019-ncov/community/worker-safety-support/hd-testing.html. Accessed April 20, 2021.

24. Center for American Progress. Health Disparities by Race and Ethnicity. Available at: https://www.americanprogress.org/issues/race/reports/2020/05/07/484742/healthdisparities-race-ethnicity/. Accessed January 30, 2021.

25. El Chaar M, King K, Galvez Lima A. Are black and Hispanic persons disproportionately affected by COVID-19 because of higher obesity rates? Surg Obes Relat Dis. 2020;16(8):1096-1099. doi:10.1016/j.soard.2020.04.038.

26. Mayo Clinic. Coronavirus Infection by Race: What’s Behind the Health Disparities? Available at: https://www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/coronavirus-infection-by-race/faq-20488802. Accessed January 30, 2021.