An overview on green house gas emission characteristics and energy evaluation of ocean energy systems from life cycle assessment and energy accounting studies

Subhashish Banerjee*, L. Duckers and R. E. Blanchard

Department of Business, Environment and Society, Coventry University, Priory Street, CV1 5FB, UK
1Department of Electronics and Electrical Engineering, Loughborough University, Leicestershires, LE11, 3TU, UK
*Corresponding author. E-mail: wave.banerjee@gmail.com

Received: May 28, 2013; Revised received: August 18, 2013; Accepted: October 15, 2013

Abstract: An analysis has been made as regards emission characteristics of ocean energy systems from life cycle assessment and scope of energy availability from energy accounting studies. Assessment tools developed and standardized were the indices like scope of Green house gases (GHG) emission per kWh power generation, percentage of CO2 saved compared to coal fired power station and the energy payback period. Emission characteristics of ocean energy systems were also compared with that from solar power, bio-fuels and wind energy systems. Four case studies were made comprising of wave energy converters, Ocean Thermal Energy Conversion (OTEC) system and tidal energy. It could be observed that CO2 emission percentage saved from ocean energy schemes were more than 95 per cent; and energy payback period varied between one year and a little higher than two years, depending on the type of the device.

Keywords: Barrage, Energy accounting, Global warming, Ocean thermal energy, Pelamis, Wave dragon

INTRODUCTION

Like all other renewable energy schemes, application of life cycle analysis (LCA) are useful for the ocean energy (OE) schemes as well, to assess the degree of benefits accrued from the saving of GHG emission. Energy payback period (EPBP) estimations from energy accounting (EA) studies are also considered important criterion for evaluating the scope of acceptability of the concerned OE device for power generation. The OE types considered in the present study include all three OE systems comprising of the wave schemes, ocean thermal energy conversion (OTEC) systems, as well as of the tidal energy (Thresher and Musial, 2010)

It may be relevant to add that though large scale commercial application of OE systems, other than barrage, are yet to come up; but pilot plant studies have proved successful in number of OE devices for all three OE systems. Case studies of some of the OE devices that have the potential of commercial application have been taken up in the present study. The scope of GHG emission saving capability as also of energy payback periods have been estimated from LCA and EA studies respectively (Helius and Reinout, 2007). In the present study, the case studies taken up included- two wave energy converters (Pelamis and Wave Dragon), one type of OTEC scheme (CC-OTEC) and a proposed barrage project (Severn barrage). A brief account of LCA and EA studies of above 4 cases are appended below.

Methodology adopted in LCA and EA estimations:

Life time emission of GHGs expressed in g/kWh power generation of an energy device, as per LCA estimations, would be = \(\sum_{i} G_{i} \times M_{i} / P_{l} \) + operational stage emission in g/kWh. (1)

In the above equation, \(G_{i} \) represents the gas emission in kg/kg of the inventory items; \(M_{i} \) is mass of the inventory items of the device; and \(P_{l} \) is the life time power generation of the device, expressed in kWh. Like all other renewable energy systems, in case of OE systems also the operational stage emission would be rather marginal, excepting OTEC schemes which do contribute some emission in its operational stage as well.

Likewise, energy payback period (EPBP) would be = \(\sum_{i} E_{i} / M_{i} / P_{a} \). (2)

Where, \(E_{i} \) is the embodied energy of the inventory items of the device expressed in MJ/kg; \(M_{i} \) is their respective mass in kg, \(P_{a} \) is the annual power generated by respective OE devices, also expressed in MJ (Mega Joule).

The data as regards \(G_{i} \) of inventory items was adopted from Danish model of LCA estimations as used for wind energy systems (Schleisner, 2000), estimating the emission characteristics of construction materials of OE devices as per ISO 14040 with LCA boundary conditions of ‘cradle to gate’ (ISO 14040, 2006). The results obtained as regards CO2 emission in particular, were corroborated...
from Bath University data source as well (Hammond and Jones, 2008), for checking up the degree of discrepancy of results (if any), since LCA has been known to be process specific and country specific (Blengini, 2008).

Ei, the embodied energy data of the inventory items were also adopted from both the Danish model ((Schleisner, 2000), and corroborated from Bath University data sources as well (Hammond and Jones, 2008).

Respective Gi values of GHGs of different inventory items, as are commonly used in OE devices, are shown below in table 1, giving the data base from Danish model.

The Gi values of respective inventory items as per Bath data source are shown in table 2, giving the emission characteristics of CO\textsubscript{2} only. Likewise in table 3 is shown the data base as regards embodied energy of respective inventory items of OE devices, for both Danish model as well as of Bath University data source. These three tables, giving the respective data base for estimating LCA and EA of OE systems are shown in Tables 1, 2 and 3.

CASE STUDIES OF OE DEVICES

In order to make LCA and EA studies, both lifetime and annual power generation data of different OE devices are required to be availed, in addition to the mass of all the inventory items of the device concerned. Thus knowing the life of a device, its annual power production and inventory data- both emission characteristics and energy pay back periods can be estimated from computation of Tables 1 and 2, and equation 1; as also of Table 3 and equation 2, respectively.

Four case studies as made from the above premise are appended below in Fig. 1.

LCA AND EA STUDIES OF 750kW PELAMIS TYPE WAVE ENERGY CONVERTER

Pelamis is a cylindrical type wave energy converter consisting of semi-submerged structure with cylindrical sections linked by hinged joints, as shown below in Fig.1. Its life period is reported to be around 20 years (Parker et al., 2007) with annual power generation of 2.5GWh, if placed in Ireland coast (Dalton et al., 2010). Thus its lifetime power production would be 50GWh. The distribution of mass of inventory materials of 750 kW Pelamis unit was learnt to be broadly constituting of steel: 380,000 kg and copper: 15000kg (Taylor, 2006).

The life time emission characteristics of Pelamis in g/kWh, could then be estimated employing the equation 1 and making computation of the above data with table 1, that gives mass of emitted gases in kg/kg of the inventory materials, as per the Danish model. The GHG equivalent of respective gases could also be determined multiplying the emission in g/kWh with their respective global warming potential (GWP) value; which for CO\textsubscript{2}, N\textsubscript{2}O and CH\textsubscript{4} are ‘1’, ‘310’ and ‘21’, respectively. The results thus obtained, are shown below in Table 4.

It would be evident from the above table that emission of CO\textsubscript{2} is only of relevance in assessment of GHG, despite its low GWP of only ‘1’; mainly because of its much

Table 1. Emissions in kg/kg of the construction materials as per the Danish model of LCA (Schleisner, 2000).

Materials concerned	CO\textsubscript{2} (kg)	NO\textsubscript{y} (g)	N\textsubscript{2}O (g)	CH\textsubscript{4} (g)	SO\textsubscript{2} (kg)
Steel*	2.3065	0.0095	0.000007	0.000004	0.0145
Aluminum*	3.4335	0.013	0.000105	0.000065	0.021
Copper	6.536	0.02319	0.00019	0.00016	0.03561
Plastics	3.113	0.01049	0.00009	0.000008	0.01475
Iron*	3.114	0.00889	0.00009	0.000006	0.01458
Concrete /Cement *	0.835	0.0025	0	0	0.00001

*Only mean values are considered.

Table 2. Bath data source giving CO\textsubscript{2} emission in kg/kg of inventory materials (Hammond and Jones, 2008).

Inventory materials	Steel	Copper	Iron	Concrete	Plastics	Aluminium
*CO\textsubscript{2} emission in kg/kg	2.83	3.0	1.91	0.95	2.53	8.26

* Only mean values are considered.

Table 3. Energy requirement in MJ / kg of the inventory materials of OE devices.

Materials	Steel	Iron /Cast iron	Copper	Aluminium	Glass	Concrete /Cement	Plastics
Embodied Energy MJ/kg	25.65	36.6	78.2	39.15	8.1	3.68	45.7
Embodied Energy –MJ/kg	25.4	25	70	34.1	18.50	3.01	45.7

*Danish model (Schleisner, 2000), ** Bath data (Hammond and Jones, 2008).
higher degree of emission compared to other gases. Because of the importance of CO$_2$, its emission was checked up from Bath University data base also as per table 2, which on computation yielded the value of 22.41 g/kWh. Both these two values fairly tallied with that of Parker et al. (2007) giving CO$_2$ emission to be 22.8 g/kWh. EPBP values as estimated from computation of Table 3 and Equation 2, based from annual energy production of Pelamis, showed the value of 1.21 year and 1.18 years, for Danish model and Bath data respectively.

CASE STUDY OF 7MW WAVE DRAGON

Wave Dragon (WD) is an overtopping type of wave energy converter. It focuses the incoming waves towards a huge reservoir (a floating ramp) with two wave reflectors and overtopping the reservoir water to run a number of turbines by converting the pressure head of water to power generation, as shown below in Fig.2. It has been claimed that its annual power generation when placed in Wales Coast would be 20 GWH (Millar et al., 2007). Also its life is claimed to be 50 years (Tedd, 2007) thereby with life time power production of 1000GWh. Its inventory data has been shown below in Table 5 (Russell, 2007).

Based from above data and table 1, giving emission characteristics of inventory items as per the Danish model, computation made on life time emission of gases of 7MW Wave Dragon is shown below in Table 6. Bath University data of CO$_2$ emission estimated from table 2, yielded results as 31.79 g/kWh, which is a little higher value than that, availed from Danish model. Computation of EPBP values, on the basis of 20GWh annual power generation of Wave Dragon, showed values of 1.75 years and 1.57 years, for Danish model and Bath data, respectively.

CASE STUDY OF 100MW CLOSED CYCLE OTEC

Electricity from OTEC is generated utilising the small temperature difference between warm surface seawater and deep cold seawater, usually following a Rankin cycle heat engine (Green and Guenther, 1990). OTEC however, requires power for its operations to generate the power. Hence, the terms gross energy output and the net energy availability comes up for OTEC schemes; the latter being usually 65 percent from its gross energy output, the value of which increases with larger sized OTEC plants (Vega, 1999).

In case of 100MW OTEC plant, net energy may obviously be presumed to be 75% of the gross power generated. Presuming the capacity factor to be at least 30% (as observed for most of OE schemes), annual power production from 100MW CC-OTEC would be = 100*0.75*0.3*365*24= 191.7 GWh; with life time power production of 5913GWh, considered for its 30 years life period. The mass of construction materials of the above OTEC plant is shown below in Table 7.

Life time emission of CO$_2$ estimated from the above data with computation as per equation 1, and table- 1 giving data of Danish model =27.18 g/kWh, with GHG equivalent

Table 4. Emission of gases in g/kWh of 750 kW Pelamis.

Gases	CO$_2$	NO$_x$	N$_2$O	CH$_4$	SO$_2$	Total GHG equivalent of gases
Amount in g/kWh	19.49	0.079	0.0006	0.0003	0.12	19.68

Fig. 1. Diagram of Pelamis at sea. Source: <http://www.pelamiswave.com/media/pelamisbrochure.pdf> [29.7.2009].
In addition to the above emission data, in case of OTEC the operational stage emission has also to be taken into account, as per equation 1; unlike the wave schemes. This needs adding up CO$_2$ emission from the working fluid NH$_3$ plus other sources of operational stage emission. The former was estimated to be 0.49g/kWh from the inventory data of Japanese researchers (Tahara et al., 2000); whereas the latter is reported to be a little less than 1g/kWh (Green and Guenther, 1990), presumed as 0.8 g/kWh- thus totalling 1.29g/kWh.

Adding up the above value during operational stage of CC-OTEC, its life time emission would be = 28.47g/kWh, as per Danish model and 27.67 g/kWh, as per Bath data source. It may be relevant to add that employing data source of NIRE-LCA software, which the Japanese researchers used (Tahara et al., 2000), the value arrived at was only 24.08 g/kWh for 100 MW CC-OTEC.

Computation of all these emission data divided by its life time power generation extending 100 years, the value of CO$_2$ emission showed 3.01 g/kWh for Danish model and 3.26g/kWh from Bath data source.

CRITICAL APPRAISAL OF RESULTS

It could be observed from the above results that Severn barrage project with 100 years life and high power generation capability showed minimum values of both CO$_2$ emission and energy payback period. In fact, these values are mainly influenced from the capability of annual power generation of the device concerned, its life period as well as of the mass and type of inventory materials of the device concerned.

Critical appraisal of results

Table 7. Inventory data of 100 MW CC-OTEC (Tahara et al., 2000).

Inventory materials	Steel*	Iron	Copper	Plastics	Concrete
Mass in tons	4157	16187	270	14216	75000

*Different types of steel clubbed together

It is to be noted that the above stated 750 kW Pelamis if placed in Portugal coast would have produced half the power than that availed (2.5 GWh annually) from its placement in Ireland coast (Dalton et al., 2010). Obviously, both CO$_2$ emission and energy payback period would have shown just double the value than that estimated from its application in Ireland coast. Likewise, if the life period of Wave Dragon were considered to be of 30 years duration (like OTEC), its values on CO$_2$ emission and energy payback period would have shown...
40% higher values than that estimated in the present study considered for 50 years life. Also, the discrepancy (though minor) of the results between Danish model and Bath data source, for the same device, are caused because of the varied data base of respective inventory items concerned.

It may be relevant to add that the values obtained from LCA and EA studies pertained only for the respective OE device concerned, without considering the input as would accrue for power transmission from cable lines etc. However, the results prove to be important as one of the assessment tools, making comparative study of the competing OE devices for their acceptability. It has hence been considered important to compare the above results of OE systems with other renewable energy types, like solar, bio-fuels and wind energy, as well as determining the GHG saving compared to coal fired generator. These studies have been made in the subsequent section.

COMPARATIVE STUDY ON CO₂ SAVING PERCENTAGE

CO₂ emission from coal fired generator, as obtained from LCA studies was found to be 900 g/kWh (Odeh and Cockerill, 2008). Considering this to be the 100 % emission, the percentage of CO₂ saved from the application of an energy device would be

\[
\% \text{CO}_2 \text{ saved} = 100 - \frac{\text{Emission of device concerned in g/kWh}}{900} \times 100
\]

It has also been noted that emission of CO₂ from solar power may vary between 58g/kWh and 35 g/kWh, depending on the technology adopted (Parliamentary office post note, 2006). In case of bio-fuels it varies between 25g/kWh and 93 g/kWh, depending on the type of bio-mass used (Parliamentary office post note, 2006). Wind energy shows the least value of 6 g/kWh (Crawford, 2009).

Based from the above data, GHG saving percent of different types of OE device, as determined from equation 3 are shown in Table 8 and Fig. 3, given below.

Table 8. Data from LCA studies of OE systems compared with other energy types.

Device concerned	Pelamis*	Wave*	CC-OTEC*	Severn*	Solar **	Bio-fuels **	Wind energy
CO₂ g/kWh	19.49	28.23	28.47	3.01	35	25	6
% CO₂ saved							
EPBP in years	1.21	1.75	2.35	0.53	-	-	-

*Only danish model considered; **Minimum values are considered

Fig.3. CO₂ emission of OE systems compared with other renewable energy types.

It could be inferred that CO₂ is the main contributor in GHG emission. Emission of CO₂ as determined from LCA studies and EPBP values estimated from EA studies, depend on annual energy production, device life, as also of mass and type of the inventory materials required. Amongst the OE systems, it is the barrage that showed maximum efficiency as regards CO₂ saving as also of...
achieving minimum energy pay back period. All the OE devices showed more than 95% CO\textsubscript{2} saving than the coal power plant. Amongst the other renewable energy types, it is only the wind energy that showed minimum emission, whence solar power showed maximum values, with bio-fuels comparable to the OE systems. Values of EPBP varied between less than one year to two years, with only OTEC showing a little higher than two years. Though LCA studies are known to be country specific and process specific, but results obtained from the present study, carried out using both Danish model and Bath data source, broadly conformed with each other.

Acknowledgments

The authors acknowledge their thanks to Dr. H.C. Sorensen and Dr. Ian Russel of Wave Dragon, for providing data as regards inventory matertials and other relevant details on Wave Dragon. Thanks are also due to Dr C. Taylor of Pelamis farm, OPD, as regards inventory data on Pelamis.

References

Blengini, G.A. (2008). Using LCA to evaluate impacts and resources conservation potential of composting: A case study of the Asti District in Italy. Resources, Conservation and Recycling, 52(12):1373-1381

Crawford, R.H. (2009). Life cycle analysis and greenhouse emissions of wind turbines and the effect of size on energy yield. Renewable and Sustainable Energy Reviews, 13(9): 2653-2660.

Dalton, G.J., Alcorn, R. and Lewis, T. (2010). Case study feasibility analysis of the Pelamis wave energy converter of Ireland, Portugal and North America. Renewable Energy, 35:443-445.

Elliott, E. (2004). Chapter-6 Tidal Power,” in Renewable energy, ed. by Boyle, G., Oxford University Press, 196-242

Green, H.J. and Guenther, P.R. (1990). Carbon Di-oxide release from OTEC cycles. International conference on ocean energy recovery. Report -SERI/TP-253-3594; UC category: 262 DE 89009504, held 28-30 November 1989 at Hawaii.

Hammond, G and Jones, C., (2008) Data on LCA & EA [Communication from Dept of Mechanical Engineering, University of Bath, UK] available from <www.bath.ac.uk/mech-eng/sert/embodied> [1st August 2009]

Helias, A. Udo de, H. and Reinout, H. (2007). Life cycle assessment for energy analysis and management. Applied Energy, 84:817-827.

ISO 14040 (2006). Environmental management. Life cycle assessment. Principles and framework. British Standards Institute, London

Kofoed J. P., Friggard P., Friis-Madsen E. and Sorensen H. C. (2006). Prototype testing of the wave energy converter wave dragon. Renewable Energy, 31(2): 181-189.

Millar, D.L., Smith, H.C. M. and Reeve, D.E. (2007). Modelling analysis of the sensitivity of shore line change to a wave farm’. Ocean Engineering, 34(5-6): 884-901

Odeh, N. A., Cockerill, T.T. (2008). Life Cycle analysis of UK coal fired power plants. Energy Conversion and Management, 49: 212-220

Parker, R. P. M., Harrison, G. P. and Chick J. P. (2007). Energy and carbon audit of an off-shore wave energy converter. J. Power and Energy, 221(8): 1119-1131

Parliamentary office of science & Technology, post note; Oct,2006, no-268 [availed from] <http://www.parliament.uk/documents/post/postpn268.pdf> [5.7.10]

Russel, I. (2007). Inventory materials of 7MW Wave Dragon [Personal communication from Business development manager of Wave Dragon firm]

Schleisner, L. (2000). Life cycle analysis of a wind farm and related externalities. Renewable Energy, 20: 279-288

Sir Robert Mc Alpine and Sons Ltd (1986). Tidal Power from the Severn, Engineering and Economic Studies: Cardiff Weston Scheme, Severn Tidal Power Group, Chapter 8, 1-16

Tahara, K., Kojima,T. and Inaba, A. (2000). Estimation of ocean thermal energy conversion system by using LCA methodology. OTEC. 8:31-41 [In Japanese]

Taylor, C. (2006) Inventory Materials of 750kW Pelamis [Personal communication from Chief Engineer of Pelamis farm, OPD]

Tedd, J. (2007). Testing, analysis, and control of wave dragon wave energy converter. “PhD Thesis (101207)”, Denmark; Aalborg University.

Throsre, R. and Mussial, W. (2010). Ocean renewable energy’s potential role in supplying future electrical need. Special issue on Marine Renewable Energy, Oceanography, 23 (2):16-21.

Vega, L.A., (1999) ‘Ocean Thermal Energy Conversion’, OTEC, 1-22

Woodlcombe-Adams C., Watson M., and Tom S., (2009). Severn Barrage tidal project: Implication for carbon emissions. Water & Environment Journal, 23(1): 63-68.