Bioactive natural products in COVID-19 therapy

Zhonglei Wang1,2*, Ning Wang3, Liyan Yang4* and Xian-qing Song3*

1Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China, 2School of Pharmaceutical Sciences, Tsinghua University, Beijing, China, 3General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China, 4School of Physics and Physical Engineering, Qufu Normal University, Qufu, China

The devastating COVID-19 pandemic has caused more than six million deaths worldwide during the last 2 years. Effective therapeutic agents are greatly needed, yet promising magic bullets still do not exist. Numerous natural products (cordycepin, gallinamide A, plitidepsin, telocinobufagin, and tylophorine) have been widely studied and play a potential function in treating COVID-19. In this paper, we reviewed published studies (from May 2021 to April 2022) relating closely to bioactive natural products (isolated from medicinal plants, animals products, and marine organisms) in COVID-19 therapy in vitro to provide some essential guidance for anti-SARS-CoV-2 drug research and development.

KEYWORDS
natural products, COVID-19, SARS-CoV-2, cordycepin, gallinamide A, plitidepsin, telocinobufagin, tylophorine

1 Introduction

The ongoing coronavirus disease 2019 (COVID-19) pandemic, the sixth public health emergency of international concern, has resulted in 505,035,185 cases and 6,210,719 deaths worldwide during the last 2 years (at the time of writing). (World Health Organization, 2022). The Alpha, Beta, Gamma, and Delta variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for COVID-19 have created recurrent pandemic alerts. (Nasreen et al., 2022). Alarmingly, the novel Omicron (South Africa) variant was firstly confirmed on 24 November 2021. Still, it became the most predominant strain internationally within months because of its increased transmissibility and extensive immune evasion ability. (Scott et al., 2021; Del Rio et al., 2022). Up to now, the devastating Omicron variant has spread to almost all countries. Effective measures, such as vaccines, (Andrews et al., 2022; Chandrareshkar et al., 2022) traditional medicine, (Liu et al., 2020; Alam et al., 2021) and small-molecule inhibitors, (Wang and Yang, 2020a; Reis et al., 2022; Sourimant et al., 2022) are greatly needed to reduce human-to-human transmission. However, promising magic bullets still do not exist. (Kozlov, 2022). As an indispensable resource for promising compounds, natural products have attracted significant attention in countering SARS-CoV-2 infection via targeting its main
protease (M^pro, also called 3CL^pro), (Jin et al., 2020; Mengist et al., 2020) RNA-dependent RNA polymerase (RdRp), (Hillen et al., 2020; Wang et al., 2021a) papain-like protease (PL^pro), (Yin et al., 2020; Gao et al., 2021) and spike (S) glycoprotein, (Töözer et al., 2020; Walls et al., 2020). Building on our previously published work, (Wang and Yang, 2020b; Yang and Wang, 2021) we systematically discuss the landmark studies (published between May 2021 and April 2022) relating to bioactive natural products in COVID-19 therapy in vitro to support anti-SARS-CoV-2 drugs research and development.

2 Promising bioactive natural products in COVID-19 therapy

Bioactive natural products, isolated from medicinal plants, animal products, and marine organisms, are widely studied (in vitro, animal models, and clinical trials) and play an important role in COVID-19 therapy. (Wei et al., 2020; Sahoo et al., 2021; Aqathama et al., 2022). Natural products are still considered one of the most positive and practical approaches to defeating the ongoing pandemic.

Tylophorine, a remarkable tylophora alkaloid, is an active pharmaceutical ingredient of the medicinal plant Cynanchum komarovii Al (Figure 1A) (An et al., 2001). NK007(S,R), a racemate of tylophorine malate, was prepared from S-tylophorine to improve its poor solubility. (Wang et al., 2010). NK007(S,R) displays significant inhibitory activity against SARS-CoV-2 at a half maximal effective concentration (EC50) of 0.030 μM in Vero cells, with an excellent selectivity profile (selectivity index, [SI] = 868). (Wang et al., 2021b). Hossain et al. (2022) found that tylophorine showed binding affinity (~8.5 kcal/mol) against abelson murine leukemia viral oncogene homolog one protein. Additionally, NK007(S,R) exhibits excellent in vivo antiviral efficacy in the COVID-19 golden hamster rat model by significantly reducing viral loads in the lungs. NK007(S,R) could protect against lung injury by decreasing lung inflammation with a dose of 5 mg/kg. (Wang et al., 2021b). Briefly, the abovementioned evidence has highlighted the superior activity of NK007(S,R) against SARS-CoV-2 infection in vitro and in the rat model. (Wang et al., 2021b). Numerous natural product-based nanomedicines have been sprung up during the past several decades in the field of medicinal chemistry, providing a valuable reference for anti-COVID-19 therapeutics. (Sharma et al., 2021). To evaluate the potential of the candidate NK007(S,R), Wang et al. (Wang et al., 2021b) prepared self-assembled poly (ethylene glycol)–poly (lactide-co-glycolide) nanoparticles, NP-NK007 and LP-NK007. The optimized NP-NK007 exhibited small particle size (145.8 nm), high NK007(S,R) loading (13.10%), maximized encapsulation efficiency (87.47%), and sustained release (66.51% in 48 h). The optimal lung-targeted liposome LP-NK007 exhibited smaller particle size (75 nm), higher drug loading (36.7%), and excellent encapsulation efficiency (62.4%). Subsequent experiments implied that the nanoparticles NP-NK007 and LP-NK007 are effective SARS-CoV-2 inhibitors with higher EC50 values of 0.007 and 0.014 μM, respectively, because they improve the accumulation and delivered efficiency of NK007(S,R) in the lung. (Wang et al., 2021b). Collectively, NK007(S,R) NPs could provide a workable strategy for overcoming the lack of COVID-19-targeting treatment. Theoretically, more validation studies in vivo are needed to systematically assess the anti-SARS-CoV-2 potential of NK007(S,R)-based nanoparticles.

Venenum Bufonis (Chinese name: ChanSu), a well-known secretion of a traditional medicine animal (toad Bufo bufo gargarizans), is commonly used in China to treat various diseases, including heart failure, infections, toothaches, and cancers. (Tian et al., 2017; Shen et al., 2022). For example, Huachansu injection, a valuable anticancer agent, has been used in tumour treatment in China for more than 30 years. (Wu et al., 2022a). ChanSu’s main active constituents are bufadienolides that have an unusual 2-pyrene ring, which contributes to their pharmacological activities via inhibiting Na^+/K^+ ATPase. (Prassas and Diamandis, 2008). Recently, Jin et al. (2021) demonstrated that six bufadienolides (bufalin, bufotalin, cinobufagin, cinobufotalin, resibufogenin, and telocinobufagin) have potent broad-spectrum antiviral activities in vitro (Figure 1B). Experiments showed that bufalin could inhibit virus replication in the nanomolar range, including MERS-CoV at a half-maximal inhibitory concentration (IC50) of 0.018 μM, SARS-CoV at an IC50 of 0.016 μM, and SARS-CoV-2 at an IC50 of 0.019 μM; cinobufagin can inhibit MERS-CoV, SARS-CoV, and SARS-CoV-2 replication at IC50 values of 0.017, 0.060, and 0.072 μM; telocinobufagin can inhibit MERS-CoV, SARS-CoV and SARS-CoV-2 replication with IC50 values of 0.027, 0.071, and 0.142 μM; bufotalin, cinobufotalin and resibufogenin can inhibit the MERS-CoV, SARS-CoV and SARS-CoV-2 replication in vitro with high IC50 values (0.027–1.612 μM). (Jin et al., 2021). This study showed that the unusual 2-pyrene ring in bufadienolides plays an essential role in inhibiting SARS-CoV-2 replication. Subsequent dose toxicity studies (10 mg/kg/day, 5 days) revealed that bufalin and cinobufagin have strong toxicity in the mouse model, while the pharmacokinetic model predicts that telocinobufagin has lower toxicity, better metabolic stability, excellent oral bioavailability, and proper anti-SARS-CoV-2 activity. (Jin et al., 2021). Taken together, telocinobufagin might be a more promising broad-spectrum inhibitor among the bufadienolides, and thus worthy of multifaceted properties investigation from in vitro studies to clinical practice.

Gallinamide A, possessing an αβ-unsaturated imide moiety, is a novel linear depsipeptide first isolated in 2008 from the marine cyanobacteria Schizothrix genus and Symplaca sp. with critical pharmacological effects (Figure 1C) (Linington et al., 2009; Taori et al., 2009). Gallinamide A is a highly selective
FIGURE 1
Promising natural products in COVID-19 therapy. (A) Tylophorine can be isolated from the medicinal plant Cynanchum komarovii AL. (B) Telocinobufagin can be isolated from the traditional medicinal animal toad Bufo gargarizans. (C) Gallinamide A can be isolated from the marine cyanobacteria Schizothrix genus. (D) Cordycepin can be isolated from the traditional medicine Cordyceps militaris Link. (E) Homofascaplysin A can be isolated from the marine sponge Fascaplysinopsis reticulata. (F) Wallichins C and D can be isolated from the medicinal fern Dryopteris wallichiana. (G) Licorice-saponin A3 and glycyrrhetinic acid can be isolated from the medicinal plant Glycyrrhiza uralensis Fisch.
covalent inhibitor targeting human cathepsin L-like cysteine proteases, which is a promising drug target. (Barbosa Da Silva et al., 2022). Gerwick’s group showed that gallinamide A had a 28- to 320-fold higher affinity and selectivity towards cathepsin L than cathepsin V or B. (Miller et al., 2014). In vitro, gallinamide A demonstrates significant activity against Trypanosoma cruzi at an IC_{50} of 0.005 µM by irreversible Michael addition. (Miller et al., 2014). It has been reported that gallinamide A can decrease viral load in VeroE6 cells with an IC_{50} of 0.088 µM and inhibit SARS-CoV-2 cathepsin L-mediated endosomal entry with an EC_{50} value of 0.028 µM in a dose-dependent manner. (Ashhurst et al., 2022). Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are two essential host determinants for SARS-CoV-2 infection and pathogenesis in vivo. (Hoffmann et al., 2020). Specifically, the S glycoprotein helps the virus enter inside the host cell via cellular receptor ACE2 binding; then TMPRSS2 helps SARS-CoV-2 contents fuse and release into the host cell cytosol via enzymatical activation of the S glycoprotein. (Liu et al., 2022). Based on combination drug therapies, Payne et al. (Ashhurst et al., 2022) recently demonstrated that the combined use of the cathepsin L inhibitor gallinamide A and the TMPRSS2 protease inhibitor nafamostat mesylate exerts a synergistic inhibitory effect in HEK-ACE2-TMPRSS2 cells via inhibiting multiple routes of SARS-CoV-2 entry. Taking gallinamide A as the lead, Payne et al. (Ashhurst et al., 2022) further explored and synthesized 32 analogues for the assessment of SARS-CoV-2 cathepsin L inhibitory activities; the study revealed two lead analogues of gallinamide A with EC_{50} values in the nanomolar range. Taken together, gallinamide A is a highly selective SARS-CoV-2 cathepsin L inhibitor, thus worthy of further investigation via combination therapies and lead optimization.

Natural products with broad-spectrum bioactivities and multi-organ protection are an essential class of anti-SARS-CoV-2 agents that play vital roles in COVID-19 therapy. (Wang and Yang, 2021). RdRp could regulate viral replication through catalyzing the RNA template–dependent development of phosphodiester bonds. (Wang et al., 2021a). The adenosine analogue cordycepin (3'-deoxyadenosine) is a unique fungal product isolated from the traditional medicine fungi Cordyceps militaris (Cunningham et al., 1950) and Ophiocordyceps sinensis (Figure 1D) (Zhou et al., 2008). Interestingly, cordycepin is known to have broad-spectrum pharmacological properties against several diseases (e.g., virulent RNA viruses) and multi-organ protective effects (e.g., acute lung injury). Specifically, cordycepin is a promising therapeutic against several viruses in vitro, including dengue virus, (Pany et al., 2021) Epstein-Barr virus, (Choi et al., 2019) and hepatitis C virus. (Ueda et al., 2014). Because of its close structural similarity to the cellular nucleoside adenosine (except for the absence of a hydroxyl group at the 3’-position of the five-membered ring), cordycepin is a possible potent anti-SARS-CoV-2 agent. Rabie et al. (Rabie, 2022) showed that cordycepin could inhibit SARS-CoV-2 replication in Vero E6 cells with an EC_{50} value of 2.01 µM and without observable cytotoxicity (SI > 49.8) in a time-dependent manner. It is worth noting that cordycepin is a long-acting antiviral for SARS-CoV-2 prevention with high metabolic stability, reaching maximal anti-SARS-CoV-2 potency within 1.5–2.0 days of treatment. (Rabie, 2022). With respect to the activation mechanism, cordycepin is rapidly converted in vivo to its mono-, di-, and triphosphate forms; then, the active form cordycepin triphosphate can serve as a substrate for the RNA-dependent RNA polymerase (RdRp) to terminate the synthesis of viral RNA sequences. (Rabie, 2022). Bibi et al. (2022) revealed that two pivotal amino acid residues (Asp760 and Asp761) play critical roles in the binding of cordycepin with RdRp. Notably, SARS-CoV-2 infection—even in mild cases—can increase the long-term risk of a broad range of cardiovascular and cerebrovascular complications in COVID-19 patients. (Wang and Yang, 2022c).

In terms of organ protection, cordycepin has unique advantages. For example, cordycepin plays a key role in long-term neuroprotection for traumatic brain injury (through inhibiting neutrophil infiltration and preserving neuroinflammation), (Wei et al., 2021) protecting diabetic hearts from ischemia/reperfusion injury (via up-regulating AMPK/Mfn2-dependent mitochondrial fusion and expression), (Yu et al., 2021) and ameliorating cerebral ischemic damage (via improving the memory ability, up-regulating the level of adenosine A1 receptors, and reducing dendritic morphology scathing). (Chen et al., 2021). Thus, cordycepin has its advantages in organ protection and broad-spectrum antiviral activities. Further study is still needed, however, to evaluate its antiviral potency in vitro.

The marine environment is a valuable source of structurally unique natural products with diverse bioactivity targeted at life-threatening diseases, including the emerging COVID-19. (Panggabean et al., 2022; Pokharkar et al., 2022; Zhang et al., 2022). Homofascaplysin A, isolated from the marine sponge Fascaplysinopsis reticulata (Figure 1E), is a well-established β-carboline alkaloid reported to exhibit promising activity against many viruses, including hepatitis C virus, (Ishida et al., 2001) human coronavirus NL63, (Tsai et al., 2020) and dengue virus. (Quintana et al., 2016). Kubanek et al. (Chhetri et al., 2022) revealed that homofascaplysin A can inhibit SARS-CoV-2 replication in Calu-3 cells at an EC_{50} value of 1.1 µM with relatively slight cytotoxicity (SI ~4.55). Additionally, Kubanek et al. (Chhetri et al., 2022) found that the viral load was substantially reduced (by >90%) for infections in harvested SARS-CoV-2 RNA after administration of 2.8 µM of homofascaplysin A. Therefore, homofascaplysin A could be used as a unique lead compound for the rapid screening of novel analogues with promising anti-SARS-CoV-2 activity and minimal cytotoxicity.

Chirality is a critical attribute of natural products. (Wang, 2019). Wallichin C and wallichin D, isolated from the medicinal fern Dryopteris wallichiana (Figure 1F), exhibit potent anti-SARS-CoV-2 activities in Vero-E6 cells at EC_{50} values of 4.5 and 12.1 µM, respectively. (Socolsky et al., 2012; Hou et al., 2022). The corresponding SI values of wallichins C and D
No.	Name	Structure	EC₅₀ or IC₅₀ (<μM)>	Strain	Refs
1	Aloin A	![Structure](image1.png)	15.68	Vero E6 cells	Lewis et al. (2022)
2	Aloin B	![Structure](image2.png)	17.51	Vero E6 cells	Lewis et al. (2022)
3	Andrographolide	![Structure](image3.png)	0.034	Calu-3 cells	Sa-Ngiamshuntorn et al. (2021), Schulte et al. (2022)
4	Aspulvinone D	![Structure](image4.png)	10.3	J774A.1 cells	Liang et al. (2022)
5	Aspulvinone M	![Structure](image5.png)	9.4	J774A.1 cells	Liang et al. (2022)
6	Aspulvinone R	![Structure](image6.png)	7.7	J774A.1 cells	Liang et al. (2022)
7	(+)-Aureol	![Structure](image7.png)	4.00	Calu-3 cells	Chhetri et al. (2022)
8	Baicalein	![Structure](image8.png)	1.11	E. coli BL21 cells	Wu et al., 2022a, Xiao et al. (2021)
9	Baicalin	![Structure](image9.png)	8.8	Vero E6 cells	Ngwe Tun et al. (2022)
10	Bromophycolide A	![Structure](image10.png)	6.90	Calu-3 cells	Chhetri et al. (2022)
11	Bufotalin	![Structure](image11.png)	0.072	Vero E6 cells	Jin et al. (2021)
12	Cannabidiol	![Structure](image12.png)	1.24	A549-ACE2 cells	Corpetti et al. (2021), Nguyen et al. (2022)

(Continued on following page)
TABLE 1 (Continued) Other promising natural products for treating SARS-CoV-2 infection in vitro.

No.	Name	Structure	EC_{50} or IC_{50} (µM)	Strain	Refs
13	Cannabidiolic acid	![Image](image1)	24 µg/mL	Vero E6 cells	van Breemen et al. (2022)
14	Cannabigerolic acid	![Image](image2)	37 µg/mL	Vero E6 cells	van Breemen et al. (2022)
15	Chebulagic acid	![Image](image3)	9.76	Vero E6 cells	Du et al. (2021)
16	Cinobufagin	![Image](image4)	0.072	Vero E6 cells	Corpetti et al. (2021), Nguyen et al. (2022)
17	Cinobufotalin	![Image](image5)	0.399	Vero E6 cells	Jin et al. (2021)
18	Cordagin	![Image](image6)	24.9	HEK293 cells	Yang et al. (2021a)
19	Curcumin	![Image](image7)	11.9	Vero E6 cells	Bahun et al. (2022)
20	Cyclopeniol	![Image](image8)	0.39	RAW264.7 cells	Thissera et al. (2021)
21	Cyclopeptin	![Image](image9)	0.40	RAW264.7 cells	Thissera et al. (2021)
22	Dehydrocyclopeptin	![Image](image10)	0.89	RAW264.7 cells	Thissera et al. (2021)
23	Dieckol	![Image](image11)	4.50	Vero E6 cells	Yan et al. (2021)

(Continued on following page)
Furthermore, phloroglucinol-terpenoids wallichins C and D exhibit potent inhibitory activities in SARS-CoV-2-infected Calu-3 cells at EC50 values of 20.2 and 30.0 μM, with moderate cytotoxicity (SI values were 4.88 and 2.14 μM, respectively). (Hou et al., 2022).

Notably, both wallichins C and D have the same core structure.

TABLE 1 (Continued) Other promising natural products for treating SARS-CoV-2 infection in vitro.

No.	Name	Structure	EC50 or IC50 (μM)	Strain	Refs
24	Digoxin	![Structure](image)	0.059	Vero E6 cells	Caohuy et al. (2021), Jin et al. (2021), Caohuy et al. (2022)
25	Dihydropyriracetin	![Structure](image)	1.14	Vero E6 cells	Su et al. (2021), Xiao et al. (2021)
26	Dihydrotanshinone I	![Structure](image)	8.14	Vero E6 cells	Ma and Wang. (2022)
27	Dithymoquinone	![Structure](image)	0.275 μg/mL	Vero E6 cells	Esharkawy et al. (2022)
28	Echinulin	![Structure](image)	3.90	Vero E6 cells	Alhadrami et al. (2022)
29	EGCG	![Structure](image)	4.24	Vero E6 cells	Chiu et al. (2022)
30	Ellagic acid	![Structure](image)	11.8	Vero E6 cells	Bahun et al. (2022)
31	(-)-Gallocatechin gallate	![Structure](image)	5.77	Vero E6 Cells	Xiao et al. (2021)
32	Glabridin	![Structure](image)	2.5	Vero E6 cells	Ngwe Tun et al. (2022)
33	Hesperidin	![Structure](image)	51.5	Vero E6 cells	Huang et al. (2022)
34	Isopetasin	![Structure](image)	0.37	Vero E6 cells	Urda et al. (2022)

(Continued on following page)
TABLE 1 (Continued) Other promising natural products for treating SARS-CoV-2 infection in vitro.

No.	Name	Structure	EC₅₀ or IC₅₀ (μM)	Strain	Refs
35	Ivermectin	![Ivermectin Structure](image)	0.55	Vero E6 cells	Chable-Bessia et al. (2022)
36	Licoflavone C	![Licoflavone C Structure](image)	1.34	Vero E6 cells	Corona et al. (2022)
37	LPC (14:0/0:0)	![LPC (14:0/0:0) Structure](image)	0.92	Vero E6 cells	Du et al. (2022)
38	LPC (16:0/0:0)	![LPC (16:0/0:0) Structure](image)	1.48	Vero E6 cells	Du et al. (2022)
39	LPC (16:0/18:1)	![LPC (16:0/18:1) Structure](image)	0.14	Vero E6 cells	Du et al. (2022)
40	Myricetin	![Myricetin Structure](image)	0.63	Vero E6 cells	Kato et al. (2021), Su et al. (2021)
41	Neferine	![Neferine Structure](image)	0.36	HEK293/hACE2 cells	Yang et al. (2021b)
42	(+)-Neoechinulin A	![(+)-Neoechinulin A Structure](image)	0.47	Vero E6 cells	Alhadrami et al. (2022)
43	Neoechinulin B	![Neoechinulin B Structure](image)	32.9	Vero E6 cells	Nishinchi et al. (2022)
44	Neopetasin	![Neopetasin Structure](image)	1.26	Vero E6 cells	Urda et al. (2022)
45	Oridonin	![Oridonin Structure](image)	2.16	Vero E6 cells	Zhong et al. (2022)
46	Petasin	![Petasin Structure](image)	10.79	Vero E6 cells	Urda et al. (2022)
47	PGG	![PGG Structure](image)	3.66	Vero E6 cells	Chiou et al. (2022)

(Continued on following page)
No.	Name	Structure	EC₅₀ or IC₅₀ (μM)	Strain	Refs
48	Piniterpenoid A	![Structure](image1)	64.5	Vero E6 cells	Li et al. (2021b)
49	Piniterpenoid C	![Structure](image2)	76.1	Vero E6 cells	Li et al. (2021b)
50	Plitidepsin	![Structure](image3)	0.0043	Vero E6 cells	Guisado-Vasco et al. (2022), Sachse et al. (2022)
51	Punicalagin	![Structure](image4)	6.19	Vero E6 cells	Saadh et al. (2021), Suručić et al. (2021)
52	Resibufogenin	![Structure](image5)	1.606	Vero E6 cells	Jin et al. (2021)
53	Salvianolic acid A	![Structure](image6)	2.49	Vero E6 cells	Zhong et al. (2022)
54	Sangivamycin	![Structure](image7)	0.015	Vero E6 cells	Bennett et al. (2022)
55	Scutellarein	![Structure](image8)	5.68	E. coli BL21 cells	Wu et al. (2022c)
56	(+)-Shikonin	![Structure](image9)	4.38	Vero E6 cells	Zhao et al. (2021), Ma et al. (2022)
57	Shikonin	![Structure](image10)	4.50	Vero E6 cells	Cui and Jia (2021), Zhao et al. (2021)
58	Sulforaphane	![Structure](image11)	2.40	Caco-2 cells	Ordonez et al. (2022)
59	Tanshinone IIA	![Structure](image12)	7.82 μg/mL	Vero E6 cells	Elebeedy et al. (2022)

(Continued on following page)
except for the chirality at C-14 position. The study has demonstrated that the slight differences in the chirality at C-14″ S (wallichin C) or C-14″ R (wallichin D) account for differences in their antiviral activities. (Hou et al., 2022). As for the activation mechanism, Zhou et al. (Hou et al., 2022) unambiguously showed that wallichins C and D have higher selectivity and stronger interaction toward the 3CLpro with Kd values of 12.0–16.6 μM, while not active against the TMPRSS2, spike glycoprotein, and ACE2 proteins. Taken together, wallichin C might be the more promising 3CLpro inhibitor, thus worthy of further investigation.

Among pharmacological interventions, traditional medicine plays a positive role in the prevention and treatment of the COVID-19 pandemic. (Lyu et al., 2021; Zhan et al., 2022). For example, the Qingfei Paidu decoction has shown amazing clinical efficacy in treating COVID-19 patients. (Li Y. et al., 2021). It is crucial to support scientific foundations for the clinical use of Chinese herbal medicine by exploring the underlying molecular mechanisms. (Cui et al., 2021; De Jin et al., 2021). Ye and co-workers (Yi et al., 2022) recently indicated that licorice-saponin A3 and its genine aglycone glycyrrhetinic acid, famous triterpenoids that could be isolated from the most frequently used medicinal plant Glycyrrhiza uralensis Fisch. (Figure 1G), show a remarkably different inhibitory potency against SARS-CoV-2 infection in Vero E6 cells at EC50 values of 0.075 μM (targeting SARS-CoV-2 nsp7 protein) and 3.17 μM (targeting the S protein receptor-binding domain [RBD]), respectively in a dose-dependent manner. Interestingly, licorice-saponin A3 and glycyrrhetinic acid were effective in inhibiting the SARS-CoV-2 spike RBD activities, with similar IC50 values of 8.3 and 10.9 μM, respectively. (Yi et al., 2022). To elucidate the remarkable difference between S-RBD inhibitory effects and their antiviral activities, the underlying molecular mechanisms were further explored by Ye and co-workers. Based on molecular docking analysis of licorice-saponin A3 with nsp7 (PDB ID:7GIT), Yi et al. (2022) propose that nsp7 is another vital target for licorice-saponin A3 via seven hydrogen bond interactions (binding energy −8.7 kcal/mol). Qingfei Paidu decoction extracted from 21 types of traditional Chinese medicines (including Glycyrrhiza uralensis Fisch.) could effectively treat COVID-19, highlighting an important contributor to the active components (such as licorice-saponin A3, glycyrrhetinic acid, and so on) in herbal medicine treatment. (Wu et al., 2022b). Importantly, the results provided valuable data on the “multi-components, multiple-pathways, and multi-targets” feature of traditional herbal medicine.

Glycosylation is an important structural modification that increases water solubility, enhances pharmacological activity, and improves the bioavailability of natural products. 11) In fact, GA mainly exists in the form of functional glycosides in

No.	Name	Structure	EC50 or IC50 (μM)	Strain	Refs
60	Telocinobufagin	![Structure](image1.png)	0.142	Vero E6 cells	Jin et al. (2021)
61	Thymohydroquinone	![Structure](image2.png)	0.023 μg/mL	Vero E6 cells	Esharkawy et al. (2022)
62	Tubercidin	![Structure](image3.png)	0.05	Calu-3 cells	Schultz et al. (2022)
63	Ugonin J	![Structure](image4.png)	2.38	Vero E6 Cells	Chiou et al. (2021)
64	5,3′,4′-trihydroxyflavone	![Structure](image5.png)	8.22	Vero E6 cells	Zhao et al. (2021)
65	7-OH-Cannabidiol	![Structure](image6.png)	3.60	A549-ACE2 cells	Nguyen et al. (2022)
plitidepsin is well-tolerated in humans and can lower viral eEF1A. Notably, Guisado-Vasco et al. (2022) showed that in vivo SARS-CoV-2 potency shortly. Further study is still needed to evaluate its anti-(NCT04382066 and NCT05121740) and will be reported in pneumocyte-like cells at IC₅₀ values of 0.00070, 0.00073, and 0.0043 μM for Omicron variants, 0.0039 μM for Delta variants, and 0.0043 μM for for treating SARS-CoV-2 infection

Innovative drug development is an arduous process; bioactive natural products greatly expedite the development of antiviral drugs. (Abdelmohsen et al., 2017). In addition to the abovementioned agents, numerous other natural products (Table 1) have exhibited highly efficacious anti-SARS-CoV-2 activities in vitro and clinical practice. For example, plitidepsin (Aplidin®), a eukaryotic translation elongation factor 1A (eEF1A) inhibitor of marine origin, was initially approved to treat multiple myeloma. (Rodon et al., 2021). Sachse et al. (2022) showed that plitidepsin is highly effective at inhibiting SARS-CoV-2 replication in a dose-dependent manner in Vero E6 cells at IC₅₀ values of 0.0052 μM for D614G variants, 0.0039 μM for Delta variants, and 0.0043 μM for Omicron variants. Furthermore, White et al. (2021) showed that plitidepsin can inhibit SARS-CoV-2 replication in Vero E6 cells, hACE2-293T cells and pneumocyte-like cells at IC₅₀ values of 0.00070, 0.00073, and 0.0016 μM, respectively, via targeting the host protein eEF1A. Notably, Guisado-Vasco et al. (2022) showed that plitidepsin is well-tolerated in humans and can lower viral load in SARS-CoV-2-infected chronic lymphocytic leukemia patients. Clinical trials of plitidepsin have been registered (NCT04382066 and NCT05121740) and will be reported shortly. Further study is still needed to evaluate its anti-SARS-CoV-2 potency in vivo and in vitro.

4 Conclusion and outlook

The devastating SARS-CoV-2 variants have caused over six million deaths worldwide. Natural products and small-molecule inhibitors have been widely studied (in vitro studies, animal models, and clinical trials) and play an essential function in treating COVID-19. Drug research and development is a highly time-consuming process. To date, Gilead’s controversial Veklury® (Remdesivir, RdRp inhibitor) was conditionally approved to combat the outbreak. (Kalil et al., 2021; Wang and Yang, 2022a). Pfizer’s oral broad-spectrum candidate Paxlovid® (PF-07321332, M⁺⁺ inhibitor) and Merck’s oral prodrug Lagevrio® (Molnupiravir, RdRp inhibitor) raise new hope for a COVID-19 cure. (Cully, 2022; Wang and Yang, 2022b). Promising clinical results have occurred, while small-molecule inhibitors still have a long way to go.

The substantial progress in treating COVID-19 patients is not sufficient. Multiple factors must be considered. The first feasible factor, optimized drug combination therapy (such as gallinamide A + remdesivir, licorice-saponin A3 + PF-07321332, telocinobufagin + molnupiravir, and cordycepin + tylorhine), targeting multiple targets, could not only enhance synergistic efficacy but also reduce drug resistance and toxicity. However, any potential combination would need to be tested in vitro and in vivo to verify the anticipated synergistic or additive effect. The second workable approach is natural product-based nanomedicines therapy. For example, the tylorhine-based lung-targeted liposome LP-NK007 could inhibit SARS-CoV-2 replication with a higher EC₅₀ value via improving the accumulation and efficient delivery in the lung. Third, natural product-based lead optimization offers a valuable reference for enhancing anti-SARS-CoV-2 potency and pharmacokinetic parameters. For example, taking gallinamide A as the lead, Payne et al. (Ashhurst et al., 2022) synthesized two highly selective SARS-CoV-2 cathepsin L inhibitors with nanomolar EC₅₀ values. Taken together, we hope natural products (with the help of natural product-based nanomedicines therapy, lead optimization, and drug combination) prove to be a compelling direction in COVID-19 therapy.

Author contributions

ZW conceived the review. NW, LY, and XS collected the literatures. ZW and LY wrote the manuscript. ZW and XS edited the manuscript. All authors read and approved the final version of the manuscript.

Funding

This work was supported by the project of the PhD research start-up fund of Qufu Normal University, China (Grant No. 614901 and 615201).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References

Abdelmohsen, U. R., Balasubramanian, S., Oelchlaeger, T. A., Grivcik, T., Pham, N. B., Quinn, R. J., et al. (2017). Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet. Infect. Dis. 17 (3), e80–e91. doi:10.1016/S1473-3099(16)30323-1

Aalam, S., Sarker, M., Rahman, M., Afroz, S., Richi, F. T., Zhao, C., et al. (2021). Traditional herbal medicines, bioactive metabolites, and plant products against COVID-19: Update on clinical trials and mechanism of actions. Front. Pharmacol. 12, 671498. doi:10.3389/fphar.2021.671498

Ahmadi, H. A., Burgio, G., Thissera, B., Orfali, R., Jiffri, S. E., Yaseen, M., et al. (2022). Noreochinulin A as a promising SARS-CoV-2 Mpro inhibitor. In vitro and in silico study showing the ability of simulations in discerning active from inactive enzyme inhibitors. Mar. Drugs 20 (3), 163. doi:10.3390/md20030163

Alqathama, A. A., Ahmad, R., Alsaedi, R. B., Alghamdi, R. A., Abkar, E. H., Alshehly, R. H., et al. (2022). The vital role of animal, marine, and microbial natural products against COVID-19. Phytochemistry 2022. doi:10.1016/j.phytochem.2022.120215

Al-Alousi, W., Al-Abdulmohsin, M., Almosawa, S., Al-Ali, M., Al-Bayati, M., Al-Hasani, A., et al. (2022). In vitro anti-CoV-2 replication in a patient with previous anti-CD20 monoclonal antibody-Plitidepsin as a successful rescue treatment for prolonged viral SARS-CoV-2 infection based on network analysis and molecular docking. Front. Pharmacol. 13, 602218. doi:10.3389/fphar.2022.602218

Amine, K., Belkaid, A., Mokhtar, H., Benabdelkader, M., Khanafer, A., et al. (2022). Target-based virtual screening and LC/MS-guided isolation procedure for identifying phloroglucinol-terpenoid inhibitors of SARS-CoV-2. Front. Pharmacol. 13, 101651. doi:10.3389/fphar.2022.101651

Amin, M., Soltani, M., Shakeri, S., Khatami, A., Amini, S., Alizadeh, H., et al. (2022). The inhibitory effects of PPG and ECGG against the SARS-CoV-2 3C-like protease. Biochem. Biophys. Res. Commun. 591, 130–136. doi:10.1016/j.bbrc.2020.12.106

Chiaou, W. C., Chen, C. J., Chen, Y. T., Yang, J. M., Hwang, I. H., Lyu, Y. S., et al. (2022). The inhibitory effects of PPG and ECGG against the SARS-CoV-2 3C-like protease. Biochem. Biophys. Res. Commun. 591, 130–136. doi:10.1016/j.bbrc.2020.12.106

Ammirante, V., Leitner, A., Piazzolla, M., Faraglia, C., Mancini, A., Del Prete, G., et al. (2022). Natural compounds inhibit SARS-CoV-2 nsp13 unwinding and ATPase enzyme activities. ACS Pharmacol. Transl. Sci. 5, 226–239. doi:10.1021/acsptsci.1c00253

Corretti, C., De Re, A., Seguella, I., Palena, I., Burgio, G., De Conno, B., et al. (2022). Cannabidiol inhibits SARS-CoV-2 spike (S) protein-induced cytotoxicity and inflammation through a PPARy-dependent TLRA/LPFR/Caspase-1 signaling suppression in Caco-2 cell line. Phytother. Res. 35 (12), 6893–6903. doi:10.1002/ptr.7302

Cui, H. R., Chen, K. D., Zhang, X. Y., and Shang, H. C. (2022). Network pharmacology-based analysis on bioactive compounds and mechanisms in Yaqifumai formula in the treatment of heart failure. TMR Med. Herb. Med. 4 (4), 27. doi:10.3388/mmh2021a1017001

Cully, M. (2022). "A tale of two antiviral targets—and the COVID-19 drugs that bind them. Nat. Rev. Drug Discov. 21 (1), 3–5. doi:10.1038/s41573-021-00202-8

Cunningham, K. G., Manson, W. I. L., I. A. M., Spring, F. S., and Hutchinson, S. A. (1950). Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166 (4231), 949. doi:10.1038/166949a0

De Jin, X. A., Zhang, Y., Zhao, S., Duan, L., Duan, Y., Lian, F., et al. (2021). Potential mechanism prediction of herbal medicine for pulmonary fibrosis associated with SARS-CoV-2 infection based on network analysis and molecular docking. Front. Pharmacol. 12, 602218. doi:10.3389/fphar.2022.602218

Del Rio, C., Omer, S. B., and Malani, P. N. (2022). Winter of omicron—the evolving COVID-19 pandemic. JAMA 327 (4), 319–320. doi:10.1001/jama.2021.24315

Du, R., Cooper, L., Chen, Z., Lee, H., Rong, L., Cui, Q., et al. (2021). Discovery of cholesterol and paniculagin as novel allosteric inhibitors of SARS-CoV-2 3Clpro. Antivir. Res. 190, 105075. doi:10.1016/j.antiviral.2021.105075

Du, Xinyi, Xu, Longxin, Ma, Yiming, Lu, Shuaixiao, Tang, Kegong, Qiao, Xiangyu, et al. (2022). Herbal inhibitors of SARS-CoV-2 Mpro effectively ameliorate acute lung injury in mice. J. IUBMB Life 74, 532–542. doi:10.1002/jub.2616

Elebedy, D., Badawy, I., Elmaaty, A. A., Saleh, M. M., Kandil, A., Gharem, A., et al. (2022). In vitro and computational insights revealing the potential inhibitory effect of Tanshinone II A against influenza A Virus. Comput. Biol. Med. 141, 105149. doi:10.1016/j.compbiomed.2021.105149

Eskarkawy, E. R., Almalki, F., and Hadda, I. (2022). In vitro potential antiviral SARS-CoV-19-activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorg. Chem. 120, 105587. doi:10.1016/j.bioorg.2021.105587

Gao, X., Qin, B., Chen, P., Zha, H., Hou, P., Woydra, J. A., et al. (2021). Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharmac. Sin. B 11 (1), 237–243. doi:10.1007/s41586-020-00225-8

Gualsas-Vasco, P., Carralón-González, M. M., Aguareles-Gorines, J., Martí-Ballestero, E. M., Sánchez-Manzano, M. D., Carnevali-Ruiz, D., et al. (2022). Pirithespim as a successful rescue treatment for prolonged viral SARS-CoV-2 replication in a patient with previous anti-CD20 monoclonal antibody-mediated B cell depletion and chronic lymphocytic leukemia. J. Hematol. Oncol. 15, 4. doi:10.1186/s41508-021-01220-8

Hillen, H. S., Kocik, G., Furrung, I., Dienemann, C., Tegtman, D., Cramer, P., et al. (2020). Structure of replicating SARS-CoV-2 polymerase. Nature 584 (7819), 141–156. doi:10.1038/s41586-020-2363-8

Hoffmann, M., Klein-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181 (2), 271–280. e8. doi:10.1016/j.cell.2020.02.052

Hossain, R., Sarkar, C., Hassan, S. M. H., Khan, R. A., Arman, M., Ray, P., et al. (2022). In silico screening of natural products as potential inhibitors of SARS-CoV-2 using molecular docking simulation. Chin. J. Integr. Med. 28 (3), 249–256. doi:10.1007/s11655-021-3904-5

Hou, B., Zhang, Y. M., Liao, H. Y., Fu, L. F., Li, D. D., Zhao, X., et al. (2022). Target-based virtual screening and LCSM-guided isolation procedure for identifying phosphoglucoisomerase inhibitors of SARS-CoV-2. J. Nat. Prod. 85 (8), 327–336. doi:10.1021/acs.jnatprod.1c00805
Protease-Glo luciferase assays.

10.16/j.apsb.2021.09.008 like protease inhibitors.

coronavirus disease 2019 (COVID-19) therapy.

Am.

the potential pharmacological mechanism of hesperidin and glucosyl hesperidin against COVID-19 based on bioinformatics analyses and antiviral assays.

J. Nat. Prod.

selective inhibitor of human cathepsin L.

Transduct. Target. Ther.

COVID-19: Crystal structure of SARS-CoV-2 main protease Mpro.

Signal

Acsp1sci.1c00240

Aspulvins A

from SARS-CoV-2 and discovery of its inhibitors.

pharmaceutics13111839

for emerging coronavirus infections.

Aloin isoforms (A and B) selectively inhibits proteolytic and deubiquitinating structural elucidation of gallinamide A.

E., et al. (2009). Antimalarial peptides from marine cyanobacteria: Isolation and

G-quadruplex in TMPRSS2 reduces SARS-CoV-2 infection.

Frontiers in Pharmacology frontiersin.org13

Li, X., Gao, J., Li, M., Cui, H., Jiang, W., Tu, Z. C., et al. (2021a). Aromatic

Ishida, J., Wang, H. K., Oyama, M., Cosentino, M. L., Hu, C. Q., Lee, K. H., et al. (2022). The discovery of herbal drugs and natural compounds as inhibitors of SARS-CoV-2 infection in vitro. J. Nat. Med. 76, 402–409. doi:10.1007/s11418-021-01596-w

Nishinaka, K., Ohashi, H., Nishioka, K., Yamasaki, M., Furuta, M., Mashiko, T., et al. (2022). Synthesis and antiviral activities of noochemin B and its derivatives. J. Nat. Prod. 85 (1), 284–291. doi:10.1021/acs.jnatprod.1c01120

Ordonze, A. A., Bullen, C. K., Villa-Rueda, A. F., Thompson, E. A., Turner, M. L., Merino, V. F., et al. (2022). Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice. Commun. Biol. 5, 242. doi:10.1038/s42003-022-03189-x

Pangbaegen, J. A., Adiguna, S. P. B., Rahmawati, S. I., Ahmad, P., Zainuddin, E. N., Bayu, A., et al. (2022) Antiviral activities of alfalfa-based sulfated polysaccharides. Molecules 27 (4), 1178. doi:10.3390/molecules27041178

Panya, A., Songgrakphun, P., Panwong, S., Jantake, K., Kaewkod, T., Tragoonru, Y., et al. (2021). Cordycepin inhibits virus replication in dengue virus-infected Vero cells. Molecules 26 (11), 3118. doi:10.3390/molecules26113118

Poharkar, O., Lakhmanan, H., Zyrwynov, G., and Turskan, M. (2022). In silico evaluation of antifungal compounds from marine sponges against COVID-19-associated mucormycosis. Mar. Drug 20 (3), 215. doi:10.3390/md20030215

Prassas, I., and Diamandis, E. P. (2008). Novel therapeutic applications of cardiac glycosides. Nat. Rev. Drug Discov. 7 (11), 926–935. doi:10.1038/nrd2682

Quintana, V. M., Piccin, L. E., Zénere, J. D. P., Damonte, E. B., Ponce, M. A., Castilla, V., et al. (2016). Antiviral activity of natural and synthetic β-carbolines against dengue virus. Antivir. Res. 134, 26–33. doi:10.1016/j.antiviral.2016.08.018

Rabie, A. M. (2022). Potent inhibitory activities of the adenosine analogue cordycepin on SARS-CoV-2 replication. ACS Omega 7, 2986–2969. doi:10.1021/acs.omega.1c00598

Reis, G., Silva E. A., Silva D. C., Thabane, I., Milagres, A. C., Ferreira, T. S., et al. (2022). Effect of early treatment with ivomecin among patients with Covid-19. N. Engl. J. Med. 386, 1721–1731. doi:10.1056/NEJMoa2151186

Rodon, J., Muñoz-Basagotia, J., Perez-Zoñi, D., Nogueira-Julian, M., Paredes, R., Mateu, L., et al. (2021). Identification of pleitxin as potent inhibitor of SARS-CoV-2-induced cytopathic effect after a drug repurposing screen. Front. Pharmacol. 12, 646678. doi:10.3389/fphar.2021.646678

Sa-Ngamsuntorn, K., Saksu, A., Piekulwong, Y., Thongpir, P., Kanjanaisarinr, P., Manopwisedjaroen, S., et al. (2021). Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component Andrographolide in human lung epithelial cells and cytotoxic evaluation in major organ cell representatives. J. Nat. Prod. 84, 1261–1270. doi:10.1021/acs.jnatprod.1c00734

Saidt, M. J., Almamayth, A. M., Alaraj, M., Dababneh, M. F., Sa’adeh, I., Aldalaen, S. M., et al. (2021). Panicalgin and zinc (II) ions inhibit the activity of SARS-CoV-2 3C-like protease in vitro. Eur. Rev. Med. Pharmacol. Sci. 25 (10), 3908–3913. doi:10.26355/eurrev_202105_25958

Sachie, M., Tenerio, R., de Castro, I. F., Muñoz-Basagotia, J., Perez-Zoñi, D., Raíz-Riegül, D., et al. (2022). Unraveling the antiviral activity of pleitxin against SARS-CoV-2 by subcellular and morphological analysis. Antivir. Res. 208, 105270. doi:10.1016/j.antiviral.2022.105270

Sahoo, A., Fuloria, S., Swain, S. S., Panda, K. S., Sekar, M, Subramanivam, V., et al. (2021). Potential of marine terpenoids against SARS-CoV-2: An in silico drug development approach. Biomolecules 9 (11), 1505. doi:10.3390/biomolecules9111505

Schulte, B., König, M., Escher, B. I., Wittenburg, S., Proe, M., Wolf, V., et al. (2022). Androgrophile derivatives target the KEAP1/NRF2 axis and possess potent anti-SARS-CoV-2 activity. ChemMedChem 17 (5), e202100732. doi:10.1002/cmdc.202100732

Schultz, D. C., Johnson, R. M., Ayyanan, K., Miller, J., Whig, K., Kamalia, B., et al. (2022). Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2. Nature 604, 134–140. doi:10.1038/s41586-022-04482-x

Scott, L., Hsiao, N. Y., Moyo, S., Singh, L., Jegalli, H., Dott, G., et al. (2021). Track Omecon’s spread with its molecular data. Science 374 (6574), 1454–1455. doi:10.1126/science.abn4543

Sharma, V., Sharma, A., and Bharate, S. B. (2021). Natural products in mitigation of pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses

Shen, Y., Cai, H., Ma, S., Zhu, W., Zhan, H., Li, J., et al. (2022). Telocinobufagin has antitumor effects in non-small-cell lung cancer by inhibiting STAT3 signaling. J. Nat. Prod. 85 (4), 765–775. doi:10.1021/acs.jnatprod.1c00761

Nguyen, L. C., Yang, D., Nicolaescu, V., Best, T. J., Gula, H., Saxena, D., et al. (2022) Cannabisabols inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Sci. Adv. 8, eabf6110. doi:10.1126/sciadv.abf6110

Ngove Tun, M. M., Tourne, K., Luva, E., Nwe, K. M., Minakami, S., Hirayama, K., et al. (2022). The discovery of herbal drugs and natural compounds as inhibitors of SARS-CoV-2 infection in vitro. J. Nat. Med. 76, 402–409. doi:10.1007/s11418-021-01596-w

Frontiers in Pharmacology 13

frontiersin.org
Bufospirostenin A and Bufogargarizin C, steroids with rearranged skeletons from *Bufo bufo gargarizans*, synergize with the coproduced HDAC inhibitor largazole. In *in vitro* studies, TSPEF34, a hybrid that synergizes with the coproduced HDAC inhibitor largazole, demonstrates antidepressant activity against human coronavirus NL63. Thissera, B., Sayed, A. M., Hassan, M. H., Abdelwahab, S. F., Amaeze, N., Nemer, V. T., et al. (2021). Bioguided isolation of cycloepenin analogues as potential SARS-CoV-2 Mpro inhibitors from *Penicillium citrinum* TDPEF34. Biomolecules 11 (9), 1366. doi:10.3390/biom11091366

Tian, H. Y., Ruan, L. J., Yu, T., Zheng, Q. F., Chen, N. H., Wu, R. B., et al. (2017). Bufusaponin A and Bufogargarizin C, steroids with rearranged skeletons from the toad *Bufo bufo gargarizans*. J. Nat. Prod. 80 (4), 1182–1186. doi:10.1021/acs.jnatprod.7b000192

Ueda, Y., Morii, K., Satoh, S., Dansako, H., Ibeda, M., Kato, N., et al. (2014). Anti-HCV activity of the Chinese medicinal fungus Cordyceps militaris. Biochem. Biophys. Res. Commun. 447 (2), 341–345. doi:10.1016/j.bbrc.2014.03.150

Ueda, L., Kuret, M. H., Drewe, J., Bossen, G., Butterweck, V., Klumkait, T., et al. (2022). The pentaerythritol pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Molecules 27 (12), 4569. doi:10.3390/molecules27124569

Wang, Z., Ye, F., Feng, Y., Xiao, W., Song, H., Zhao, L., et al. (2021b). Discovery and nanosized preparations of (S,R)-troleandomycin as novel anti-SARS-CoV-2 agents. ACS Med. Chem. Lett. 12 (11), 1840–1846. doi:10.1021/acsmedchemlett.1c00481

Wei, P., Wang, K., Luo, C., Huang, Y., Mislimu, D., Wen, H., et al. (2021). Cordycepin confers long-term neuroprotection against hypoxic/ischemic neuroinflammation and neurodevelopmental outcome. J. Neuroinflammation 18 (1), 137. doi:10.1186/s12974-021-01288-x

Wen, X. X., Zhao, M. Z., Zhao, C., Zhang, X., Qu, R., Lin, Y., et al. (2020). The global registry of COVID-19 clinical trials: Indicating the design of traditional Chinese medicine clinical trials. TMR Mod. Med. 5 (3), 140–146.

Wang, Z., Ye, F., Feng, Y., Xiao, W., Song, H., Zhao, L., et al. (2021b). Discovery and nanosized preparations of (S,R)-troleandomycin as novel anti-SARS-CoV-2 agents. ACS Med. Chem. Lett. 12 (11), 1840–1846. doi:10.1021/acsmedchemlett.1c00481

White, K. M., Rosales, R., Yildiz, S., Kehrer, T., Morin, L., Moreno, E., et al. (2021). Piplidipine has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF2. Science 371 (6532), 926–931. doi:10.1126/science.abl4058

World Health Organization WHO coronavirus (COVID-19) dashboard. Available at: https://covid19.who.int/ (Accessed April 22, 2022).

Wu, H., Cheng, H., Luo, S., Peng, C., Zhou, A., Chen, Z., et al. (2022a). Use of cellular metabolomics and lipidomics to decipher the mechanism of Huachansin injection-based intervention against human hepatocellular carcinoma cells. J. Pharm. Biomed. 212, 116546. doi:10.1016/j.jpb.2022.116546

Wu, Q., Yan, S., Wang, Y., Li, M., Xiao, Y., Li, Y., et al. (2022b). Discovery of 4’-O-methylcurcurin A as a potent SARS-CoV-2 main protease inhibitor. Biochem. Biophys. Res. Commun. 604, 76–82. doi:10.1016/j.bbrc.2022.03.052

Wu, Y., Xu, L., Cao, G., Min, L., and Dong, T. (2022c). Effect and mechanism of QingFei Paodu decoction in the management of pulmonary fibrosis and COVID-19. Am. J. Clin. Med. 9 (11), 3331–3342. doi:10.4172/2332-0823.1000536

Xiao, T., Cui, M., Zhong, C., Zhang, P., Ren, S., Bao, J., et al. (2022). Both bacalain and gallicatechin gallate effectively inhibit SARS-CoV-2 replication by targeting Mpro and Sepsis in Mice. Inflammation 45, 1076–1088. doi:10.1007/s11686-021-01636-3

Xiao, T., Wei, Y., Cui, M., Li, X., Ruan, H., Zhang, L., et al. (2021). Effect of dihydromyricetin on SARS-CoV-2 viral replication and pulmonary inflammation and fibrosis. Phytochemicals, 91, 153704. doi:10.1016/j.phytochem.2021.153704

Yan, G., Li, D., Lin, Y., Fu, Z., Qi, H., Liu, X., et al. (2022). Development of a simple and miniaturized sandwich-like fluorescence polarization assay for rapid screening of SARS-CoV-2 main protease inhibitors. Cell. Biosci. 11, 199. doi:10.1186/s13578-021-00720-3

Yang, J. L., Chen, R. H., Hamdoun, S., Coghi, P., Ng J. P., Zhang, D. W., et al. (2021a). Cordiagen prevents SARS-CoV-2 infection by targeting RBD-AE2 binding. Phytochemistry. 87, 155391. doi:10.1016/j.phytochem.2021.155391

Yang, L., and Wang, Z. (2021). Natural products, alone or in combination with FDA-approved drugs, to treat COVID-19 and lung cancer. Biomolecules 9 (6), 689. doi:10.3390/biom9060689

Yang, Y., Yang, P., Huang, C., Wu, Y., Zhou, Z., Wang, X., et al. (2021b). Inhibitory effect on SARS-CoV-2 infection of nerinein by blocking Ca2+-dependent membrane fusion. J. Med. Virol. 93 (10), 5825–5832. doi:10.1002/jmv.27117

Yi, Y., Li, L., Lai, X., Zhang, M., Kuang, Y., Bao, Y., et al. (2022). Natural triterpenoids from licorice potent inhibit SARS-CoV-2 infection. J. Adv. Res. 36, 201–210. doi:10.1016/j.jare.2021.jan.01142

Yin, W., Mao, C., Luan, X., Shen, D. D., Shen, Q., Su, H., et al. (2020). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368 (6498), 1499–1504. doi:10.1126/science.abc1560

Yu, H., Hong, X., Liu, L., Wu, Y., Xie, X., Fang, G., et al. (2021). Cordycepin decreases ischemia/reperfusion injury in diabetic hearts via upregulating AMPK/MDM2-dependent mitochondrial fission. Front. Pharmacol. 12, 754005. doi:10.3389/fphar.2021.754005

Zhan, Y. Q., Chen, R. H., Ma, Q. H., Deng, X., Yang, W., et al. (2022). Efficacy and safety of philinum (KD-1) capsule in the treatment of moderate COVID-19. Protocol for a randomized controlled trial. TMR Mod. Herb. Med. 5 (1), 5. doi:10.5338/mhmm2021p1204001

Zhang, S., Pei, R., Li, M., Su, H., Sun, H., Ding, Y., et al. (2022). Cocktail polysaccharides isolated from Ecklonia kurome against the SARS-CoV-2 infection. Carbohydr. Polym. 275, 118779. doi:10.1016/j.carbpol.2021.118779

Zhao, J., Ma, Q., Zhang, B., Guo, P., Zeng, D., Yang, W., et al. (2022). Exploration of SARS-CoV-2 3CLpro inhibitors by virtual screening methods, FRET detection, and CPP assays. J. Chem. Inf. Model. 62 (1), 5763–5773. doi:10.1021/acs.jcim.1c00189

Zhou, B., Feng, W., Du, S., Chen, B., Feng, Y., Hu, X., et al. (2022). Oridonin inhibits SARS-CoV-2 by targeting its 3C-like protease. Small, 8, 2000124. doi:10.1002/smll.202100124

Zhou, X., Luo, L., Dressel, W., Shadier, G., Krumbiegel, D., Schmidknecht, P., et al. (2008). Cordycepin is an immunoregulatory active ingredient of Cordyceps sinensis. J. Am. Chin. Med. 36 (05), 967–980. doi:10.11121/09612415X08006387