Renal sympathetic nervous system and the effects of denervation on renal arteries

Arun Kannan, Raul Ivan Medina, Nagapradeep Nagajothi, Saravanan Balamuthusamy

Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Resistant Hypertension; Sympathetic nervous system; Sympathectomy; Renal denervation; Radiofrequency ablation

Core tip: Resistant Hypertension is a serious condition that could result in various comorbidities, if left untreated. The pathogenesis involves activation of sympathetic nervous system at the renal level and systemic level. Surgical therapy targeted at the systemic level has serious systemic side effects. Renal denervation offers an unique way of mitigating the chronic activation of sympathetic nervous system and controlling the high blood pressure.

Kannan A, Medina RI, Nagajothi N, Balamuthusamy S. Renal sympathetic nervous system and the effects of denervation on renal arteries. World J Cardiol 2014; 6(8): 814-823 Available from: URL: http://www.wjgnet.com/1949-8462/full/v6/i8/814.htm DOI: http://dx.doi.org/10.4330/wjc.v6.i8.814

INTRODUCTION

American Heart Association[1] and Joint National Committee[2] define resistant hypertension as blood pressure...
that remains uncontrolled with the patient remaining compliant to 3 or more drugs, one of them being a diuretic. Care should be taken to differentiate resistant hypertension from uncontrolled hypertension, as the latter may be due to sub-optimal therapy, non-adherence to medications and secondary hypertension. The prevalence of resistant hypertension is often under estimated due to various reasons including inadequate sample size, exclusion of patients with resistant hypertension in larger studies[14]. Kaplan et al[15] have estimated that up to 5% of patients in general medicine clinics and approximately 50% of patients seen in renal clinics have resistant hypertension.

An important consideration in defining a patient with resistant hypertension is the frequent mislabeling of secondary hypertension as resistant hypertension and not addressing the issue of non-adherence to optimal therapy. This has been frequently reported in the literature including white-coat hypertension[9], non-compliance[9], secondary hypertension[9], and isolated systolic hypertension[9].

ROLE OF SYMPATHETIC NERVOUS SYSTEM IN HYPERTENSION

Renal sympathetic efferent and afferent nerves, which lie adjacent to the wall of the renal artery, are crucial for production of catecholamines contributing to hypertension. Surgical sympathectomy, targeted at removing sympathetic ganglia, to control hypertension has been reported even before the advent of newer antihypertensives[9]. Due to its profound side effects and the introduction of pharmaceutical sympatholytic agents, surgical sympathectomy is not a preferred procedure anymore. Renal denervation is a novel technique, which involves selective ablation of renal sympathetic nerve fibers and has demonstrated promising results in controlling resistant hypertension. The renal nerves are sensitive to ablation techniques such as radiofrequency and ultrasound.

RENA L SYMPATHETIC DENERVATION AND HYPERTENSION

Various types of primary and secondary hypertension, including essential hypertension[9], renovascular hypertension[10], hypertension associated with disordered sleep breathing[11], hypertension associated with Cushing’s syndrome[12] and primary aldosteronism, and preeclampsia, have been shown to have an association with sympathetic nervous system in various human and animal models.

Initially postulated to control circulation, sympathetic nervous system has been found to play a crucial role in initiation and maintenance of systemic hypertension through its effects on renal blood flow and perfusion[13,14].

Renal sympathetic nervous system consists of afferent and efferent sympathetic nerve fibers adjacent to the adventitious layer of the renal arteries. Efferent sympathetic nerves, when stimulated, have multitude of effects including increased renin secretion, decreased renal blood flow and increased renal tubular sodium absorption[13]. These changes contribute to the increased fluid retention and sustenance of vascular hypertension. Such sympathetic nerve fiber stimulation also contributes to increased renin mediated Angiotensin-Aldosterone activity further augmenting the hypertension.

The physiological effects of sympathetic nervous system in initiation, and maintenance of blood pressure makes it an excellent therapeutic target for drug and procedure based intervention in the management of hypertension. In animal models, Roman et al[16] has demonstrated that denervation resulted in leftward shift in the pressure natriuresis curve implying increased excretion of both water and sodium with no change in renal perfusion pressure.

Various types of hypertension have been shown to be ameliorated by renal denervation in different experimental models[19]. These experiments explored the role of efferent sympathetic nerve fibers in pathophysiology of development and maintenance of hypertension. Renal afferent sensory fibers act through a different mechanism in maintaining sodium and water homeostasis. These fibers are found primarily in the renal pelvic wall and they act through substance P and calcitonin gene related peptide, both of which act as primary neurotransmitters[27]. These fibers, by responding to changes in pressure in renal pelvis (mechanoreceptors) and chemical characteristics (chemo sensitive receptors) of urine, increase diuresis and natriuresis[18].

Activation of the efferent renal sympathetic nerve fibers can occur in response to augmented afferent signaling from renal sensory nerve fibers caused by various stimuli such as renal ischemia, hypoxia, and oxidative stress[19,20].

Renal afferent nerve fibers send signals to the hypothalamus and stimulate sympathetic outflow, causing hypertension and increased systemic vascular resistance[21,22]. Hausberg et al[23] reported similar effects of increased activity of sympathetic outflow due to renal afferent nerve signaling in end stage renal disease. In a recent study, Ceral et al[24] measured the serum drug levels of prescribed antihypertensive drugs to evaluate the adherence in individuals with difficult-to-control hypertension. In 65% patients, non-adherence was diagnosed. In upto 34 patients, no drugs were detected underscoring the importance of recognizing non-adherence in this population.

Such effects are also observed in patients with chronic kidney disease including end stage renal disease. Significant decreases in sympathetic activity have been demonstrated in patients with bilateral nephrectomy[25]. Converse[26] recorded the rate of sympathetic-nerve discharge to the muscular blood vessels in patients with chronic kidney disease with and without renal transplantation. He reported significant sympathetic over activity in End Stage Renal Disease (ESRD) patients with and without renal transplantation compared to normal subjects and in ESRD patients who had undergone nephrectomies. It has also been demonstrated that there is upto 30% sympathetic nerve re-innervation even in transplanted kidneys.

Further evidence of association of sympathetic over
activity with hypertension was seen in patients with obstructive sleep apnea. Marshall and Cooper elucidated that hypoxia seen in OSA results in increased sympathetic outflow to renal, cardiac and splanchnic beds and associated hypertension.

INTRA-RENAL FUNCTIONS OF THE RENAL SYMPATHETIC NERVOUS SYSTEM

It is elucidated that various physiological aspects of kidneys are regulated by sympathetic nervous system. Activation of sympathetic nerve fibers at the renal level results in increased release of norepinephrine and renin. This leads to renal vasoconstriction, decreased renal blood flow resulting in decreased glomerular filtration rate and increased renal tubular reabsorption of sodium and water at the tubular level. Figure 1 shows intra-renal mechanisms of renal sympathetic activity.

It is important to understand the physiological effects of sympathetic nervous system on the different ultrastructural components in the kidneys to be aware of the outcomes of sympathetic denervation.

Renal blood flow: there is a decrease in renal blood flow with increased renal sympathetic nervous system activity. This decrease in flow is primarily mediated through increased afferent renal arteriolar vasoconstriction. There is also efferent arteriolar constriction, which helps sustain effective filtration pressure to sustain glomerular filtration rate (GFR).

Renal tubules

There is extensive sympathetic innervation in the entire renal tubule. The innervations are most dense in the thick ascending loop of Henle (TALH) followed by the proximal tubule, distal tubule and the cortical collecting duct. Activation of the SNS suppresses the Na+K+ ATPase at the basolateral membrane, which provides the energy for most of the transcellular transport that occurs across the luminal side of the tubules. There is also increased activation and expression of the NHE3 exchanger in the apical membrane which leads to increased Na retention across the tubules. The NKCC2 transporter at the TALH is also activated with SNS activation, which enhances salt absorption at this segment further increasing salt retention.

Renin secretion

Activation of the ERSNS increases rennin mRNA and therefore increases plasma and renal renin secretion. The increased renin secretion is partially mediated through the effects on the baroreceptors at the afferent renal arterioles. This increased renin secretion happens at low renal perfusion pressure even with minimal sympathetic nervous activation. The baroreceptor mediated renin release does not occur at high renal perfusion pressure states.

Reno-renal reflex

Increased pelvic pressure or high salt intake activates ARSN and thereby inhibits the ERSNA hence decreases salt retention and decreases blood pressure in normal kidneys. However in ischemic kidneys or chronic hypertension there is a reversal of the reno-renal reflex and ARSN activity further enhances the sympatho excitatory state and increases salt retention and hypertension. This reversal of the reno-renal reflex is significant since there is a greater expression of the afferent sympathetic nerves in patients with hypertension when compared to normotensive controls.

The above mechanisms enunciate the intricate significance of SNS and renal physiology in the development and maintenance of hypertension.

The increased sympathetic fiber traffic can be measured by microneurography - a clinical method of measuring multi- and single fiber activity in skeletal muscle fibers in humans. The measurement of microneurography allows direct and accurate measurement of NE activity when compared to measurement of plasma catecholamines.

Organ specific (for example, cardiac and renal) norepinephrine release can be quantified by “Norepinephrine Spillover” technique, which involves measuring organ specific outward flux of endogenous norepinephrine.

Although, renovascular hypertension and hyperten-
sion due to chronic kidney disease are separate clinical entities than essential hypertension, they somehow share a common pathway with enhanced sympathetic nervous activity and activation of Renin Angiotensin Aldosterone System.

RENAL DENERVATION

Several experimental models have explored the role of renal sympathetic efferent and sensory afferent nerves in systemic and renal function by renal denervation. These experiments were done by surgical ligation and by surgical ablation of the renal nerve with phenol application in the adventitia of the renal arteries. The role of renal denervation was explored in clinically significant medical conditions such as hypertension[25], chronic kidney insufficiency[26] and in chronic heart failure in the past decades[27]. Dibona[28] elucidated the role of bilateral renal denervation in decreasing the sympathetic nerve fiber activity in various animal models including reno-vascular hypertension and chronic renal failure to reducing hypertension.

Renal denervation not only reduces renal sympathetic efferent activity selectively, but also decreases in whole body efferent sympathetic activity. Schlaich et al[29] and Krum et al[30] reported a considerable reduction in renal nor adrenaline spillover and a reduction in plasma renin activity[31]. Renal denervation also has shown to reduce whole-body noradrenaline spillover, evident by reduced sympathetic nerve signaling to the skeletal muscle vasculature. In a recent study, Hering et al[32] found substantial and rapid reduction in firing properties of single and multiple sympathetic vasoconstrictor nerve fibers.

The role of sympathetic nervous system in renovascular hypertension is well studied in animal models[33, 34]. Although, no study has been done in human models to evaluate the role of renal denervation in renovascular hypertension, the critical association of SNS activity and resistant hypertension is well established[35]. Table 1 shows different techniques of renal denervation.

| Table 1 Different techniques of renal denervation |
|-------------------------------------|-------------------------------|-----------------|-------------------|-------------------|-------------------|
| Approach | Technique | Device | Study | Follow-up | Outcome |
| Invasive | RF ablation | Balloon: | Renal hypertension ablation system trial[36] | 12 mo | Average reduction in BP = 30.6 ± 22.0 |
| | | OneShot | | | |
| | | Vessix | REDUCE-HTN | Ongoing | Ongoing |
| | | Non-balloon: | | | |
| | | Simplicity | SIMPLICITY I[37] | 24 mo | 32/14 |
| | | | SIMPLICITY II[38] | 6 mo | 32/12 |
| | | Spiral | Renal hypertension ablation system trial[39] | 12 mo | Average reduction in BP = 30.6 ± 22.0 |
| Ultrasound | | EnlightN | EnlightN I trial[40] | 6 mo | Reduction in BP = 26/10 |
| | | Paradise | REALISE[41] | 3 mo | Reduction in BP = 22/12 |
| Non-invasive | Ultrasound | TIVUS | TIVUS I | Ongoing study | |
| | | Verve | | | |
| | | Capillitn | | | |
| | | Vincristine | | | |
| | | Guanethidine | | | |
| | | Neurotoxin | Apex nano nanomagnetic therapy therapy[42] | | Animal studies |
| | | | Novoste[43] | | |

SURGICAL SYMPATHECTOMY

As previously mentioned, sympathectomy was considered an effective modality of controlling hypertension as early as 1930s[39]. Splanchnicectomy, which includes sympathectomy of abdominal organs, was poorly tolerated due to its significant side effects including orthostatic hypotension, palpitations, anhidrosis and ejaculation defects[40]. Later, more conservative surgeries were performed at the level of thoracic vertebra[41]. Although a satisfactory blood pressure control and improvement of survival was seen in almost 50% of patients, it was not widely performed due to its adverse systemic effects. Advent of novel anti hypertensive medications has shifted the focus towards drug therapy in controlling severe hypertension. Sympathectomy has been reserved for severe resistant hypertension not responsive to medications.

CLINICAL STUDIES ON RENAL DENERVATION

Renal denervation offers the advantage of sympathectomy, yet involves denervation at the renal level largely avoiding the adverse effects of sympathectomy. Table 2 shows different clinical trials on renal denervation.

We present the human data that has demonstrated favorable reduction in blood pressure after renal denervation.

In SIMPLICITY I trial, 45 patients were included and radiofrequency ablation was done using a treatment catheter (Simplicity by Ardian Inc, Palo Alto, CA, United States). This is a non-randomized, prospective proof of concept study. Patients were eligible if they had systolic blood pressure of 160 mmHg or more, despite optimal
therapy with three antihypertensive drugs or more (including a diuretic). The primary endpoint was safety and reduction in blood pressure after the procedure and secondary endpoints were effects of the procedure on renal noradrenaline spillover and renal function. Patients with secondary hypertension including reno-vascular hypertension were excluded. The follow-up period was 1 year. There was a significant reduction in systolic and diastolic blood pressure at 1- and 3-mo follow up which remained consistent through out the follow-up period. In this proof of principle study, they found that the reduction in blood pressure was consistent suggesting neither significant nerve fiber recovery nor the development of any counter-regulatory mechanisms. Six patents did not have any response to treatment suggesting a possible different mechanism in the development of resistant hypertension.

Table 2 Different clinical trials on renal denervation

Trial	Mean followup	Reduction in SBP/DBP	Location	Type	Primary outcome	Safety data
SIMPLICITY I 2009, (n = 50)[5]	6 mo	22/11	Australia/Europe	Catheter-based	Substantial and sustained BP reduction w/o serious adverse events	One case of Renal artery dissection
	12 mo	27/17			Substantial and sustained BP reduction w/o serious adverse events	
SIMPLICITY I F/u study 2011[5] (n = 15)	24 mo	32/14	Australia/Europe/United States	Catheter-based	Substantial BP reduction	Groin pseudoaneurysms
						Hypertensive emergency in 3 cases
SIMPLICITY II 2010, (n = 106)[5]	6 mo	32/12	Australia/Europe/United States	Catheter-based	Meaningful reduction in BP	
Mahfoud 2013, (n = 245)[5] (n = 236)	3 mo	19/13	Australia/Germany	Catheter-based	RDN improved BP relevantly in office and ambulatory scenarios	No adverse events reported
	6 mo	17/12			Improvement in severity of sleep apnea, glucose tolerance and BP	No adverse events reported
	12 mo	16/10				
Witowski et al[5]	6 mo	34/13	Poland/United States	Catheter-based	Improvement in symptoms and exercise capacity	No adverse events reported
Brandt et al[5] 2012 (n = 110)	6 mo	29/8	Austria/Germany	Catheter-based	Safety and continues benefit with denervation	Hypotension after denervation
Davies et al[5] 2012, (n = 7)	6 mo	7/0.6	United Kingdom/United States	Catheter-based		
Eser et al[5] 2012 (n = 106)	24 mo	32/12	Australia/Europe/United States	Catheter-based	Safe and BP beneficial in resistant HTN and CKD stage 3-4	
Hering et al[5] 2012 (n = 15)	6 mo	32/15	Australia/Europe/United States	Catheter-based	Safe and BP beneficial in resistant HTN and CKD stage 3-4	
	12 mo	33/19			No peri- or postprocedural complications reported	
Mahfoud et al[5], 2011	3 mo	28/10	Germany	Catheter-based	Reduction in BP and glycemic control	None reported
Lambert et al[5] 2012, (n = 46)	3 mo	16/6	Australia/Europe	Catheter-based	Quality of life improved after denervation but not directly associated to BP reduction	
Mahfoud et al[5] 2011, (n = 37)	1 mo	28/10				
	3 mo	32/12	Australia/Germany	Catheter-based	Improvement in glucose levels and insulin sensitivity in addition to BP reduction	No significant adverse events reported
Ott et al[5] 2013, (n = 19)	6 mo	16/7	Germany/United States	Catheter-based	Significantly improvement in peripheral and central BP	No changes in renal function and perfusion
Schlaich et al[5] 2013, (n = 9)	3 mo	18/4	Germany/Australia/Poland/United States	Catheter-based	RDN causes sustained lower BP in ESRD	One patient developed femoral pseudo-aneurysm
(n = 8)	6 mo	16/6				
(n = 6)	12 mo	28/5				
Steinberg et al[5] 2013, (n = 15)	12 mo	25/10	United States	Catheter-based	RDN patients displayed a significant reduction in systolic and diastolic pressure and maintained Ventricular tachyarrhythmias significantly improved after RDN Unilateral Renal sympathetic denervation does not lower BP	No Adverse events reported
Ukena et al[5] 2012, (n = 2)	6 mo	No Info	Germany/United States	Catheter-based		
Vaclavik et al[5] 2013, (n = 1)	3 mo	No effect in this unilateral procedure	Czech Republic	Catheter-based		

CKD: Chronic kidney disease.
The study has demonstrated safety in the patients who underwent the denervation procedure. However, it is important to note that the study was a randomized single blinded case controlled study, which included a sham procedure on the control arm. The primary outcome was decrease in office blood pressure and the secondary outcome was reduction in ambulatory blood pressure at the end of the 6 mo follow-up. Despite the failure of this trial to demonstrate a significant reduction in blood pressure when compared to a sham procedure, an inference cannot be drawn that renal artery denervation is not an effective therapeutic modality anymore. The efficacy of the denervation with this catheter has not been compared to other devices, which use other modalities of generating energy (ultrasound, laser, etc.) to ablate the renal nerves. Also the magnitude of denervation has not been assessed in the SIMPLICITY 3 trial. This raises the question if the denervation achieved in the SIMPLICITY 3 trial was adequate to achieve the clinical benefits seen in some of the European and Australian studies. Further analysis from this study would enlighten most of us with the reasons for the lack of benefit from renal artery denervation in this well performed study.

RENAL DENERVATION IN OTHER CONDITIONS

Obstructive sleep apnea

Witkowski et al. studied 10 patients with refractory hypertension and sleep apnea who underwent renal denervation and were evaluated at 3- and 6-mo after the procedure. Changes in ambulatory blood pressure and polysomnography were monitored during the follow-up period. Three and 6 mo after the denervation, decreases in median office systolic and diastolic BPs were: -34/13 mmHg at 6 mo. In addition to the reduction in blood pressure, there was also an improvement in glycemic control and decrease in apnea-hypopnea index.

Arrhythmias

Ukena et al. first reported the role of renal denervation in successfully treating two patients with refractory ventricular tachycardia storm.

In a recent study, Steinberg et al. enrolled 27 patients with atrial fibrillation (14 randomized to Pulmonary Vein Isolation alone and 13 randomized to Pulmonary Vein Isolation with Renal denervation. The follow-up period was 12 mo after ablation. At 12 mo, the reductions in systolic and diastolic blood pressures were successfully and significantly maintained ($P < 0.001$ vs pulmonary vein isolation only) resulting in a fall from baseline of 25 ± 5 mmHg and 10 ± 2 mmHg, respectively. This effect was thought to be due to increased atrial stretching and dilation (i.e., atrial substrate), when blood pressure is elevated resulting in deleterious atrial electrical consequences that promote AF. With the ablation of afferent renal nervous input, central sympathetic output is decreased and autonomic triggers and substrate potentiators of AF are at-
Renal denervation has been explored as a modality of treatment for resistant hypertension for several decades. Targeting renal nerves through a non-surgical approach has generated more interest in pursuing denervation as an option for hypertension refractory to conventional medical management. Despite controversies in the true prevalence of resistant hypertension, the existence of such a disease is beyond clinical doubt. Long-term patient outcomes including mortality and renal outcomes are yet to be substantiated with evidence from on-going and future trials with hard outcomes. Though the SIMPLICITY 3 trial did not reach primary outcomes, there could be other systemic benefits secondary to sympathectomy, which is yet to be proven in clinical trials. Also the effectiveness of denervation with the SIMPLICITY catheter has not been compared to other devices capable of denervating the renal arteries. With the established procedural safety from the SIMPLICITY
3 trial it might be safe and cost-effective to perform these procedures in an outpatient setting for a few selected patients who may still benefit from renal nerve denervation.

ACKNOWLEDGMENTS

Saravanan Balimuthusamy has a consultant agreement with Bard Peripheral Vascular.

REFERENCES

1. Calhoun DA, Jones D, Tector S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation 2008; 117: e510-e526 [PMID: 18574054 DOI: 10.1161/CIRCULATIONAHA.108.189141]

2. The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch Intern Med 1997; 157: 243-246 [PMID: 9385294]

3. Kaplan NM. Resistant hypertension. J Hypertens 2005; 23: 1441-1444 [PMID: 1603165]

4. Sarafidis PA, Bakris GL. State of hypertension management in the United States: confluence of risk factors and the prevalence of resistant hypertension. J Clin Hypertens (Greenwich) 2008; 10: 130-139 [PMID: 18256578]

5. Elliott WJ. High prevalence of white-coat hypertension in Spanish resistant hypertensive patients. Hypertension 2011; 57: 889-890 [PMID: 21448434 DOI: 10.1161/HYPERTENSIONAHA.111.170118]

6. Vrijens B, Vincze G, Kristanto P, Urquhart J, Burnier M. Adherence to prescribed antihypertensive drug treatments: longitudinal study of electronically dispensed dosing histories. BMJ 2008; 336: 1114-1117 [PMID: 18480115 DOI: 10.1136/bmj.39553.670231.25]

7. Staessen J, Amery A, Fagard R. Isolated systolic hypertension in the elderly. J Hypertens 1990; 8: 393-405 [PMID: 2163412]

8. Grimson KS. Total thoracic and partial to total lumbar sympathectomy and celiac ganglionicectomy in the treatment of hypertension. Ann Surg 1941; 114: 753-775 [PMID: 17859707]

9. Schlaich MP, Lambert E, Kaye DM, Krozowski Z, Campbell DJ, Lambergt G, Hastings J, Aggarwal A, Esler MD. Sympathetic augmentation in hypertension: role of norepinephrine, noradrenergic nerve reuptake, and Angiotension neumodulation. Hypertension 2004; 43: 169-175 [PMID: 14610101 DOI: 10.1161/01.HYP.0000103560.3395.9E]

10. Zoccali C, Mallamaci F, Parlongo S, Cutrupi S, Benedetto FA, Tripepi G, Bonanno G, Rapisarda F, Fatuzzo P, Seminara G, Cataliotti A, Stancanelli B, Malatino LS. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation 2002; 105: 1354-1359 [PMID: 11901048]

11. Narkiewicz K, Pesek CA, Kato M, Phillips BG, Davison DE, Somers VK. Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea. Hypertension 1998; 32: 1039-1043 [PMID: 9865701]

12. Iyotsa VP, Naseer A, Sreenivas V, Gupta N, Deepak KK. Effect of Cushing’s syndrome Endogenous hypercortisolism on cardiovascular autonomic functions. Auton Neurosci 2011; 160: 99-102 [PMID: 21177144 DOI: 10.1016/j.autneuro.2010.11.007]

13. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev 1997; 77: 75-197 [PMID: 9016301]

14. DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integ
Renal denervation and its effects

Kannan A et al. Renal denervation and its effects

[PMID: 8203638]

34 Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic nerve ablation for uncontrolled hypertension. N Engl J Med 2009; 361: 922-934 [PMID: 19710497 DOI: 10.1056/NEJMoa0901479]

35 Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton AS, Krum H, Lambert GW, Esler MD, Schlaich MP. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension 2013; 61: 457-464 [PMID: 23172929 DOI: 10.1161/HYPERTENSIONAHA.111.01949]

36 Xu Y, Gao Q, Gan XB, Chen L, Zhang L, Zhu QQ, Gao XY. Endogenous hydrogen peroxide in paraventricular nucleus mediates sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats. Exp Physiol 2011; 96: 1282-1292 [PMID: 21890522 DOI: 10.1113/expphysiol.2011.095793]

37 Kalatzis C, Touloupidis S, Bantis E, Patris E, Triantafyllidis A. Effects of renal denervation of the contralateral kidney on blood pressure and sodium and eosinoid excretion in the chronic phase of two-kidney, one-clip renovascular hypertension in rats. Scand J Urol Nephrol 2005; 39: 15-20 [PMID: 15764265 DOI: 10.1080/03665590410018774]

38 Grimmson KD, Wilson H, Phemister DB. The early and remote effects of total and partial paravertebral sympathectomy on blood pressure: an experimental study. Ann Surg 1937; 106: 801-825 [PMID: 17857081]

39 Doumas M, Faselis C, Papademetriou V. Renal sympathetic denervation and systemic hypertension. Am J Cardiol 2010; 105: 570-576 [PMID: 20152255 DOI: 10.1016/j.amjcard.2009.10.027]

40 Pfaff WW, Cade JR, De Quesada A, Jurkiewicz MJ. Reevaluation of thoracic sympathectomy for the management of malignant hypertension. Surg Forum 1968; 19: 172-174 [PMID: 5718603]

41 Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 2011; 57: 911-917 [PMID: 21403086 DOI: 10.1161/HYPERTENSIONAHA.110.163014]

42 Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 2010; 376: 1903-1909 [PMID: 21093036 DOI: 10.1016/S0140-6736(10)60399-9]

43 Brinkmann J, Heusser K, Schmidt BM, Menne J, Klein G, Baurersachs J, Haller H, Sweep FC, Diedrich A, Jordan J, Tank J. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension 2012; 60: 1485-1490 [PMID: 23045466 DOI: 10.1161/HYPERTENSIONAHA.112.201186]

44 Fadl Elmula FE, Hoffmann P, Fossun E, Brekke M, Gjønnes E, Narkiewicz K. Secondary rise in blood pressure after renal denervation. Lancet 2012; 380: 778 [PMID: 22920752 DOI: 10.1016/S0140-6736(12)61453-3]

45 Savard S, Frank M, Bobrie G, Plouin PF, Sapoval M, Azizi M. Eligibility for renal denervation in patients with resistant hypertension: when enthusiasm meets reality in real-life patients. J Am Coll Cardiol 2012; 60: 2422-2424 [PMID: 23141491 DOI: 10.1016/j.jacc.2012.08.1002]

46 Mahfoud F, Ukena C, Schmieder RE, Cremers B, Rump LC, Vonend O, Weil J, Schmidt M, Hübner UC, Zeller T, Bauer A, Ott C, Blessing E, Sobotka PA, Krum H, Schlaich M, Esler M, Böhm M. Ambulatory blood pressure changes after renal sympathetic denervation in patients with resistant hypertension. Circulation 2013; 128: 132-140 [PMID: 23780578 DOI: 10.1161/CIRCULATIONAHA.112.00949]

47 Witkowski A, Prebjbasz A, Florzak E, Kędzierska J, Śliwiński P, Bielek P, Michalowska I, Kabat M, Warchel E, Januszewicz M, Narkiewicz K, Somers VK, Sobotka PA, Januszewicz A. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 2011; 58: 559-565 [PMID: 21844482 DOI: 10.1161/HYPERTENSIONAHA.111.17799]

48 Ukena C, Bauer A, Mahfoud F, Schreieck J, Neuberger HR, Eick C, Sobotka PA, Gawaz M, Böhm M. Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol 2012; 101: 63-67 [PMID: 21960416 DOI: 10.1007/s00392-011-0365-5]

49 Steinberg JS, Pokushalov E, Mittal S. Renal denervation for arrhythmias: hope or hype? Curr Cardiol Rep 2013; 15: 392 [PMID: 23881576 DOI: 10.1007/s11886-013-0392-0]

50 Pokushalov E, Romanov A, Corbucci G, Artymoienko S, Baranova V, Turov A, Shirokova N, Karaskov A, Mittal S, Steinberg JS. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol 2012; 60: 1163-1170 [PMID: 22959858 DOI: 10.1016/j.jacc.2012.05.036]

51 Koomans HA, Geers AB, Boer P, Dorhout Mees EJ. Plasma volumes, noradrenaline levels and renin activity during posture changes in end-stage renal failure. Clin Physiol 1984; 4: 103-115 [PMID: 6373133]

52 Levitan D, Massry SG, Romoff M, Campese VM. Plasma catecholamines and autonomic nervous system function in patients with early renal insufficiency and hypertension: effect of clonidine. Nephron 1984; 36: 24-29 [PMID: 6361959]

53 Beretta-Piccoli C, Weidmann P, Schill F, Cottier T, Reubi JC. Enhanced cardiovascular pressor reactivity to norepinephrine in mild renal parenchymal disease. Kidney Int 1982; 22: 297-303 [PMID: 7176332]

54 Klein IH, Ligtenberg G, Oey PL, Koomans HA, Blankstien PJ. Sympathetic activity is increased in polycystic kidney disease and is associated with hypertension. J Am Soc Nephrol 2001; 12: 2427-2433 [PMID: 11675419]

55 Katholi RE, Whitlow PL, Hageman GR, Woods WT. Intra-renal adenosine produces hypertension by activating the sympathetic nervous system via the renal nerves in the dog. J Hypertens 1984; 2: 349-359 [PMID: 6397533]

56 Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, Sobotka PA, Böhm M, Cremers B, Esler MD, Schlaich MP. Renal denervation in moderate to severe CKD. J Am Soc Nephrol 2012; 23: 1250-1257 [PMID: 22595301 DOI: 10.1681/ASN.2011111062]

57 Suga R, Facchetti R, Bombelli M, Cesana G, Corrao G, Grassi G, Mancia G. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in patients with hypertension: when enthusiasm meets reality in real-life patients. J Hum Hypertens 2009; 23: 645-653
Kannan A et al. Renal denervation and its effects

61 Schlaich MP, Bart B, Hering D, Walton A, Marusic P, Mahfoud F, BöhM M, Lambert EA, Krum H, Sobotka PA, Schmieder RE, Ika-Sari C, Ekikis N, Strazynski N, Lambert GW, Esler MD. Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol 2013; 168: 2214-2220 [PMID: 23453868 DOI: 10.1016/j.ijcard.2013.01.218]

62 Esler MD, Krum H, Schlaich M, Schmieder RE, Böhm M, Sobotka PA. Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Simplicity HTN-2 randomized, controlled trial. Circulation 2012; 126: 2976-2982 [PMID: 22348063 DOI: 10.1161/CIRCULATIONAHA.112.130880]

63 Ott C, Janka R, Schmid A, Titze S, Ditting T, Sobotka PA, Veelken R, Uder M, Schmieder RE. Vascular and renal hemodynamic changes after renal denervation. Clin J Am Soc Nephrol 2013; 8: 1195-1201 [PMID: 23596677 DOI: 10.2215/CJN.08508012]

64 Hering D, Esler MD, Schlaich MP. Effects of renal denervation on insulin resistance. Expert Rev Cardiovasc Ther 2012; 10: 1381-1386 [PMID: 22344359 DOI: 10.1586/erc.12.140]

65 Byrd JB, Brook RD. A critical review of the evidence supporting aldosterone in the etiology and its blockade in the treatment of obesity-associated hypertension. J Hum Hypertens 2014; 28: 3-9 [PMID: 23698003 DOI: 10.1038/jhh.2013.42]

66 Holecki M, Dula wa J, Chudek J. Resistant hypertension in visceral obesity. Eur J Intern Med 2012; 23: 643-648 [PMID: 22939810 DOI: 10.1016/j.ejim.2012.04.012]

67 Rumantri MS, Vaz M, Jennings GL, Collier G, Kaye DM, Seals DR, Wiesner GH, Brunner-La Rocca HP, Esler MD. Neural mechanisms in human obesity-related hypertension. J Hypertens 1999; 17: 1125-1133 [PMID: 10466468]

68 Lohmeiner TE, Illescu R, Liu B, Henegar JR, Marie-Bikcan K, Irwin ED. Systemic and renal-specific sympathoinhibition in obesity hypertension. Hypertension 2012; 59: 331-338 [PMID: 22184321 DOI: 10.1161/HYPERTENSIONAHA.111.185074]

69 Ormiston JA, Watson T, van Pelt N, Stewart R, Stewart JT, White JM, Doughty RN, Stewart F, Macdonald R, Webster MW. Renal denervation for resistant hypertension using an irrigated radiofrequency balloon: 12-month results from the Renal Hypertension Ablation System (RHAS) trial. EuroIntervention 2013; 9: 70-74 [PMID: 23685297 DOI: 10.4244/EIJV9I1A11]

70 Worthley SG, Tsiofis CP, Worthley MI, Sinhal A, Chev DP, Meredith IT, Malaipan Y, Papademetriou V. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnListHTN I trial. Eur Heart J 2013; 34: 2132-2140 [PMID: 23782649 DOI: 10.1093/eurheartj/eht197]

71 Mabin T, Sapoval M, Cabane V, Stemmett J, Iyer M. First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension. EuroIntervention 2012; 8: 57-61 [PMID: 22580249 DOI: 10.4244/EIJV8I1A10]

72 Salman IM, Ameer OZ, Sattar MA, Abdullah NA, Yam MF, Najim HS, Abdulkarim MF, Abdullah GZ, Kaur G, Khan MA, Johns EJ. Characterization of renal hemodynamic and structural alterations in rat models of renal impairment: role of renal sympahto-excitaiton. J Nephrol 2011; 24: 68-77 [PMID: 20437405]

73 Koistinaho J. Hervonen A. Neuronal degeneration and lipo-pigment formation in rat sympathetic ganglion after treatment with high-dose guanethidine. Neurosci Lett 1989; 102: 349-354 [PMID: 2812512]

74 Barbash IM, Waksman R. Sympathetic renal hypertension beyond SYMPLICITY. Cardiovasc Revasc Med 2013; 14: 229-235 [PMID: 23928314 DOI: 10.1016/j.carrev.2012.02.004]

75 Brandt MC, Reda S, Mahfoud F, Lenski M, BöhM M, Hoppe UC. Effects of renal sympathetic denervation on arterial stiffness and central hemodynamics in patients with resistant hypertension. J Am Coll Cardiol 2012; 60: 1956-1965 [PMID: 23062529 DOI: 10.1016/j.jacc.2012.08.959]

76 Davies JE, Manisty CH, Petracco R, Barron AJ, Unsworth B, Mayet J, Hamady M, Hughes AD, Sevr PS, Sobotka PA, Francis DP. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol 2013; 162: 189-192 [PMID: 23031283 DOI: 10.1016/j.ijicard.2012.09.019]

77 Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, Hoppe UC, Vonend O, Rump LC, Sobotka PA, Krum H, Esler M, Böhm M. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation 2011; 123: 1940-1946 [PMID: 21518978 DOI: 10.1161/CIRCULATIONAHA.110.681969]

78 Lambert GW, Hering D, Esler MD, Marusic P, Lambert EA, Tanamas SK, Shaw J, Krum H, Dixon JB, Barton DA, Schlaich MP. Health-related quality of life after renal denervation in patients with treatment-resistant hypertension. Hypertension 2012; 60: 1479-1484 [PMID: 23071129 DOI: 10.1161/HYPERTENSIONAHA.112.208865]

79 Václavík J, Táborský M, Richter D. Unilateral catheter-based renal sympathetic denervation in resistant arterial hypertension shows no blood pressure-lowering effect. Clin Exp Hypertens 2013; 35: 192-194 [PMID: 22891761 DOI: 10.3109/10641963.2012.712177]

P-Reviewer: Cheng XW, Ilgenli TF, Skowasch D
S-Editor: Wen LL L-Editor: A E-Editor: Wu HL

WJC | www.wjgnet.com 823 August 26, 2014 | Volume 6 | Issue 8 |
