DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation

Nataniel Ruiz*,1,2, Yuanzhen Li1, Varun Jampani1, Yael Pritch1, Michael Rubinstein1, Kfir Aberman1

1 Google Research 2 Boston University

Project page: https://dreambooth.github.io/

Figure 1. With just a few images (typically 3-5) of a subject (left), DreamBooth—our AI-powered photo booth—can generate a myriad of images of the subject in different contexts (right), using the guidance of a text prompt. The results exhibit natural interactions with the environment, as well as novel articulations and variation in lighting conditions, all while maintaining high fidelity to the key visual features of the subject.

Abstract

Large text-to-image models achieved a remarkable leap in the evolution of AI, enabling high-quality and diverse synthesis of images from a given text prompt. However, these models lack the ability to mimic the appearance of subjects in a given reference set and synthesize novel renditions of them in different contexts. In this work, we present a new approach for “personalization” of text-to-image diffusion models. Given as input just a few images of a subject, we fine-tune a pretrained text-to-image model such that it learns to bind a unique identifier with that specific subject. Once the subject is embedded in the output domain of the model, the unique identifier can be used to synthesize novel photorealistic images of the subject contextualized in different scenes. By leveraging the semantic prior embedded in the model with a new autogenous class-specific prior preservation loss, our technique enables synthesizing the subject in diverse scenes, poses, views and lighting conditions that do not appear in the reference images. We apply our technique to several previously-unassailable tasks, including subject recontextualization, text-guided view synthesis, and artistic rendering, all while preserving the subject’s key features. We also provide a new dataset and evaluation protocol for this new task of subject-driven generation.

1. Introduction

Can you imagine your own dog traveling around the world, or your favorite bag displayed in the most exclusive showroom in Paris? What about your parrot being the main character of an illustrated storybook? Rendering such imaginary scenes is a challenging task that requires synthesizing instances of specific subjects (e.g., objects, animals) in new contexts such that they naturally and seamlessly blend into the scene.

Recently developed large text-to-image models have shown unprecedented capabilities, by enabling high-quality and diverse synthesis of images based on a text prompt written in natural language [51,58]. One of the main advantages of such models is the strong semantic prior learned from a large collection of image-caption pairs. Such a prior learns, for instance, to bind the word “dog” with various instances of dogs that can appear in different poses and contexts in an image. While the synthesis capabilities of these models are unprecedented, they lack the ability to mimic the appearance of subjects in a given reference set, and synthesize novel renditions of the same subjects in different contexts. The main reason is that the expressiveness of their output domain is limited; even the most detailed textual description of an object may yield instances with different appearances.

*This research was performed while Nataniel Ruiz was at Google.
Furthermore, even models whose text embedding lies in a shared language-vision space [50] cannot accurately reconstruct the appearance of given subjects but only create variations of the image content (Figure 2).

In this work, we present a new approach for “personalization” of text-to-image diffusion models (adapting them to user-specific image generation needs). Our goal is to expand the language-vision dictionary of the model such that it binds new words with specific subjects the user wants to generate. Once the new dictionary is embedded in the model, it can use these words to synthesize novel photorealistic images of the subject, contextualized in different scenes, while preserving their key identifying features. The effect is akin to a “magic photo booth”—once a few images of the subject are taken, the booth generates photos of the subject in different conditions and scenes, as guided by simple and intuitive text prompts (Figure 1).

More formally, given a few images of a subject (∼3-5), our objective is to implant the subject into the output domain of the model such that it can be synthesized with a unique identifier. To that end, we propose a technique to represent a given subject with rare token identifiers and fine-tune a pre-trained, diffusion-based text-to-image framework.

We fine-tune the text-to-image model with the input images and text prompts containing a unique identifier followed by the class name of the subject (e.g., “A [V] dog”). The latter enables the model to use its prior knowledge on the subject class while the class-specific instance is bound with the unique identifier. In order to prevent language drift [32, 38] that causes the model to associate the class name (e.g., “dog”) with the specific instance, we propose an autogenous, class-specific prior preservation loss, which leverages the semantic prior on the class that is embedded in the model, and encourages it to generate diverse instances of the same class as our subject.

We apply our approach to a myriad of text-based image generation applications including recontextualization of subjects, modification of their properties, original art renditions, and more, paving the way to a new stream of previously unassailable tasks. We highlight the contribution of each component in our method via ablation studies, and compare with alternative baselines and related work. We also conduct a user study to evaluate subject and prompt fidelity in our synthesized images, compared to alternative approaches.

To the best of our knowledge, ours is the first technique that tackles this new challenging problem of subject-driven generation, allowing users, from just a few casually captured images of a subject, synthesize novel renditions of the subject in different contexts while maintaining its distinctive features.

To evaluate this new task, we also construct a new dataset that contains various subjects captured in different contexts, and propose a new evaluation protocol that measures the subject fidelity and prompt fidelity of the generated results. We make our dataset and evaluation protocol publicly available on the project webpage.

2. Related work

Image Composition. Image composition techniques [13, 36, 67] aim to clone a given subject into a new background such that the subject melds into the scene. To consider composition in novel poses, one may apply 3D reconstruction techniques [6, 8, 39, 47, 65] which usually works on rigid objects and require a larger number of views. Some drawbacks include scene integration (lighting, shadows, contact) and the inability to generate novel scenes. In contrast, our approach enable generation of subjects in novel poses and new contexts.

Text-to-Image Editing and Synthesis. Text-driven image manipulation has recently achieved significant progress using GANs [9, 22, 27–29] combined with image-text representations such as CLIP [50], yielding realistic manipulations using text [2, 7, 21, 41, 46, 68]. These methods work well on structured scenarios (e.g. human face edit-
ing) and can struggle over diverse datasets where subjects are varied. Crowson et al. [14] use VQ-GAN [18] and train over more diverse data to alleviate this concern. Other works [4, 30] exploit the recent diffusion models [25, 25, 43, 55, 57, 59–63], which achieve state-of-the-art generation quality over highly diverse datasets, often surpassing GANs [15]. While most works that require only text are limited to global editing [14, 31], Bar-Tal et al. [5] proposed a text-based localized editing technique without using masks, showing impressive results. While most of these editing approaches allow modification of global properties or local editing of a given image, none enables generating novel renditions of a given subject in new contexts.

There also exists work on text-to-image synthesis [14, 16, 19, 24, 26, 33, 34, 48, 49, 52, 55, 64, 71]. Recent large text-to-image models such as Imagen [58], DALL-E2 [51], Parti [69], CogView2 [17] and Stable Diffusion [55] demonstrated unprecedented semantic generation. These models do not provide fine-grained control over a generated image and use text guidance only. Specifically, it is challenging or impossible to preserve the identity of a subject consistently across synthesized images.

**Controllable Generative Models.** There are various approaches to control generative models, where some of them might prove to be viable directions for subject-driven prompt-guided image synthesis. Liu et al. [37] propose a diffusion-based technique allowing for image variations guided by reference image or text. To overcome subject modification, several works [3, 42] assume a user-provided mask to restrict the modified area. Inversion [12, 15, 51] can be used to preserve a subject while modifying context. Prompt-to-prompt [23] allows for local and global editing without an input mask. These methods fall short of identity-preserving novel sample generation of a subject.

In the context of GANs, Pivotal Tuning [54] allows for real image editing by finetuning the model with an inverted latent code anchor, and Nitzan et al. [44] extended this work to GAN finetuning on faces to train a personalized prior, which requires around 100 images and are limited to the face domain. Casanova et al. [11] propose an instance-conditioned GAN that can generate variations of an instance, although it can struggle with unique subjects and does not preserve all subject details.

Finally, the concurrent work of Gal et al. [20] proposes a method to represent visual concepts, like an object or a style, through new tokens in the embedding space of a frozen text-to-image model, resulting in small personalized token embeddings. While this method is limited by the expressiveness of the frozen diffusion model, our fine-tuning approach enables us to embed the subject within the model’s output domain, resulting in the generation of novel images of the subject which preserve its key visual features.

### 3. Method

Given only a few (typically 3-5) casually captured images of a specific subject, without any textual description, our objective is to generate new images of the subject with high detail fidelity and with variations guided by text prompts. Example variations include changing the subject location, changing subject properties such as color or shape, modifying the subject’s pose, viewpoint, and other semantic modifications. We do not impose any restrictions on input image capture settings and the subject image can have varying contexts. We next provide some background on text-to-image diffusion models (Sec. 3.1), then present our fine-tuning technique to bind a unique identifier with a subject described in a few images (Sec. 3.2), and finally propose a class-specific prior-preservation loss that enables us to overcome language drift in our fine-tuned model (Sec. 3.3).

#### 3.1. Text-to-Image Diffusion Models

Diffusion models are probabilistic generative models that are trained to learn a data distribution by the gradual denoising of a variable sampled from a Gaussian distribution. Specifically, we are interested in a pre-trained text-to-image diffusion model $\mathbf{x}_0$ that, given an initial noise map $\epsilon \sim N(0, I)$ and a conditioning vector $c = \Gamma(P)$ generated using a text encoder $\Gamma$ and a text prompt $P$, generates an image $\mathbf{x}_{\text{gen}} = \mathbf{x}_0(\epsilon, c)$. They are trained using a squared error loss to denoise a variably-noised image or latent code $z_t := \alpha_t \mathbf{x} + \sigma_t \epsilon$ as follows:

$$
\mathbb{E}_{x, c, \epsilon, t} \left[ w_t \left( \mathbf{x}_0(\alpha_t \mathbf{x} + \sigma_t \epsilon, c) - \mathbf{x} \right)^2 \right]
$$

where $x$ is the ground-truth image, $c$ is a conditioning vector (e.g., obtained from a text prompt), and $\alpha_t, \sigma_t, w_t$ are terms that control the noise schedule and sample quality, and are functions of the diffusion process time $t \sim \mathcal{U}([0, 1])$. A more detailed description is given in the supplementary material.

#### 3.2. Personalization of Text-to-Image Models

Our first task is to implant the subject instance into the output domain of the model such that we can query the model for varied novel images of the subject. One natural idea is to fine-tune the model using the few-shot dataset of the subject. Careful care had to be taken when fine-tuning generative models such as GANs in a few-shot scenario as it can cause overfitting and mode-collapse - as well as not capturing the target distribution sufficiently well. There has been research on techniques to avoid these pitfalls [35, 40, 45, 53, 66], although, in contrast to our work, this line of work primarily seeks to generate images that resemble the target distribution but has no requirement of subject preservation. With regards to these pitfalls, we observe the peculiar finding that, given a careful fine-tuning setup
We generally find existing English words (e.g., “unique”, “special”) suboptimal since the model has to learn to disentangle them from their original meaning and to re-entangle them to reference our subject. This motivates the need for an identifier that has a weak prior in both the language model and the diffusion model. A hazardous way of doing this is to select random characters in the English language and concatenate them to generate a rare identifier (e.g. “xxxy5syty00”). In reality, the tokenizer might tokenize each letter separately, and the prior for the diffusion model is strong for these letters. We often find that these tokens incur the similar weaknesses as using common English words. Our approach is to find rare tokens in the vocabulary, and then invert these tokens into text space, in order to minimize the probability of the identifier having a strong prior. We perform a rare-token lookup in the vocabulary and obtain a sequence of rare token identifiers \( f(V) \), where \( f \) is a tokenizer; a function that maps character sequences to tokens and \( V \) is the decoded text stemming from the tokens \( f(V) \). The sequence can be of variable length \( k \), and find that relatively short sequences of \( k = \{1, ..., 3\} \) work well. Then, by inverting the vocabulary using the de-tokenizer on \( f(V) \) we obtain a sequence of characters that define our unique identifier \( V \). For Imagen, we find that using uniform random sampling of tokens that correspond to 3 or fewer Unicode characters (without spaces) and using tokens in the T5-XXL tokenizer range of \{5000, ..., 10000\} works well.

### 3.3. Class-specific Prior Preservation Loss

In our experience, the best results for maximum subject fidelity are achieved by fine-tuning all layers of the model. This includes fine-tuning layers that are conditioned on the text embeddings, which gives rise to the problem of language drift. Language drift has been an observed problem in language models [32, 38], where a model that is pre-trained on a large text corpus and later fine-tuned for a specific task progressively loses syntactic and semantic knowledge of the language. To the best of our knowledge, we are the first to find a similar phenomenon affecting diffusion models, where a model slowly forgets how to generate subjects of the same class as the target subject.

Another problem is the possibility of reduced output diversity. Text-to-image diffusion models naturally possess high amounts of output diversity. When fine-tuning on a small set of images we would like to be able to generate the subject in novel viewpoints, poses and articulations. Yet, there is a risk of reducing the amount of variability in the output poses and views of the subject (e.g. snapping to the few-shot views). We observe that this is often the case, especially when the model is trained for too long.

To mitigate the two aforementioned issues, we propose an autogenous class-specific prior preservation loss that encourages diversity and counters language drift. In essence, our method is to supervise the model with its own generated samples, in order for it to retain the prior once the few-shot fine-tuning begins. This allows it to generate di-

---

Figure 3. **Fine-tuning.** Given \( 3 \)–\( 5 \) images of a subject we fine-tune a text-to-image diffusion model with the input images paired with a text prompt containing a unique identifier and the name of the class the subject belongs to (e.g., “A [\( V \)] dog”), in parallel, we apply a class-specific prior preservation loss, which leverages the semantic prior that the model has on the class and encourages it to generate diverse instances belong to the subject’s class using the class name in a text prompt (e.g., “A dog”).

### Designing Prompts for Few-Shot Personalization

Our goal is to “implant” a new (unique identifier, subject) pair into the diffusion model’s “dictionary”. In order to bypass the overhead of writing detailed image descriptions for a given image set we opt for a simpler approach and label all input images of the subject “a [identifier] [class noun]”, where [identifier] is a unique identifier linked to the subject and [class noun] is a coarse class descriptor of the subject (e.g. cat, dog, watch, etc.). The class descriptor can be provided by the user or obtained using a classifier. We use a class descriptor in the sentence in order to tether the prior of the class to our unique subject and find that using a wrong class descriptor, or no class descriptor increases training time and language drift while decreasing performance. In essence, we seek to leverage the model’s prior of the specific class and entangle it with the embedding of our subject’s unique identifier so we can leverage the visual prior to generate new poses and articulations of the subject in different contexts.

### Rare-token Identifiers

We generally find existing English words (e.g. “unique”, “special”) suboptimal since the model has to learn to disentangle them from their original meaning and to re-entangle them to reference our subject.
verse images of the class prior, as well as retain knowledge about the class prior that it can use in conjunction with knowledge about the subject instance. Specifically, we generate data $x_{pr} = \hat{x}(z_{t1}, c_{pr})$ by using the ancestral sampler on the frozen pre-trained diffusion model with random initial noise $z_{t1} \sim \mathcal{N}(0, I)$ and conditioning vector $c_{pr} := \Gamma(f(\text{"a [class noun]"}))$. The loss becomes:

$$E_{x, c, e, e', t}[\|\hat{x}_0(\alpha_t x + \sigma_t e, c) - x\|^2_2 + \lambda u_t \|\hat{x}_0(\alpha_t x_{pr} + \sigma_t e', c_{pr}) - x_{pr}\|^2_2], \quad (2)$$

where the second term is the prior-preservation term that supervises the model with its own generated images, and $\lambda$ controls for the relative weight of this term. Figure 3 illustrates the model fine-tuning with the class-generated samples and prior-preservation loss. Despite being simple, we find this prior-preservation loss is effective in encouraging output diversity and in overcoming language-drift. We also find that we can train the model for more iterations without risking overfitting. We find that $\sim 1000$ iterations with $\lambda = 1$ and learning rate $10^{-5}$ for Imagen [58] and $5 \times 10^{-6}$ for Stable Diffusion [56], and with a subject dataset size of 3-5 images is enough to achieve good results. During this process, $\sim 1000$ "a [class noun]" samples are generated - but less can be used. The training process takes about 5 minutes on one TPUv4 for Imagen, and 5 minutes on a NVIDIA A100 for Stable Diffusion.

4. Experiments

In this section, we show experiments and applications. Our method enables a large expanse of text-guided semantic modifications of our subject instances, including recontextualization, modification of subject properties such as material and species, art rendition, and viewpoint modification. Importantly, across all of these modifications, we are able to preserve the unique visual features that give the subject its identity and essence. If the task is recontextualization, then the subject features are unmodified, but appearance (e.g., pose) may change. If the task is a stronger semantic modification, such as crossing between our subject and another species/object, then the key features of the subject are preserved after modification. In this section, we reference the subject’s unique identifier using [V]. We include specific Imagen and Stable Diffusion implementation details in the supp. material.

4.1. Dataset and Evaluation

Dataset We collected a dataset of 30 subjects, including unique objects and pets such as backpacks, stuffed animals, dogs, cats, sunglasses, cartoons, etc. Images for this dataset were collected by the authors or sourced from Unsplash[1]. We also collected 25 prompts: 20 recontextualization prompts and 5 property modification prompts for 10 objects; 10 recontextualization, 10 accessorization, and 5 property modification prompts for live subjects/pets. The full list of images and prompts can be found in the supplementary material.

For the evaluation suite we generate four images per subject and per prompt, totaling 3,000 images. This allows us
Encouraging diversity with prior-preservation loss.

Naive fine-tuning can result in overfitting to input image context and subject appearance (e.g. pose). PPL acts as a regularizer that alleviates overfitting and encourages diversity, allowing for more pose variability and appearance diversity.

Evaluation Metrics

One important aspect to evaluate is subject fidelity: the preservation of subject details in generated images. For this, we compute two metrics: CLIP-I and DINO [10]. CLIP-I is the average pairwise cosine similarity between CLIP [50] embeddings of generated and real images. Although this metric has been used in other work [20], it is not constructed to distinguish between different subjects that could have highly similar text descriptions (e.g. two different yellow clocks). Our proposed DINO metric is the average pairwise cosine similarity between the ViT-S/16 DINO embeddings of generated and real images. This is our preferred metric, since, by construction and in contrast to supervised networks, DINO is not trained to ignore differences between subjects of the same class. Instead, the self-supervised training objective encourages distinction of unique features of a subject or image. The second important aspect to evaluate is prompt fidelity, measured as the average cosine similarity between prompt and image CLIP embeddings. We denote this as CLIP-T.

4.2. Comparisons

We compare our results with Textual Inversion, the recent concurrent work of Gal et al. [20], using the hyperparameters provided in their work. We find that this work is the only comparable work in the literature that is subject-driven, text-guided and generates novel images. We generate images for DreamBooth using Imagen, DreamBooth using Stable Diffusion and Textual Inversion using Stable Diffusion. We compute DINO and CLIP-I subject fidelity metrics and the CLIP-T prompt fidelity metric. In Table 1 we show sizeable gaps in both subject and prompt fidelity metrics for DreamBooth over Textual Inversion. We find that DreamBooth (Imagen) achieves higher scores for both subject and prompt fidelity than DreamBooth (Stable Diffusion), approaching the upper-bound of subject fidelity for real images. We believe that this is due to the larger expressive power and higher output quality of Imagen.

Further, we compare Textual Inversion (Stable Diffusion) and DreamBooth (Stable Diffusion) by conducting a user study. For subject fidelity, we asked 72 users to answer questionnaires of 25 comparative questions (3 users per questionnaire), totaling 1800 answers. Samples are randomly selected from a large pool. Each question shows the set of real images for a subject, and one generated image of that subject by each method (with a random prompt). Users are asked to answer the question: “Which of the two images best reproduces the identity (e.g. item type and details) of the reference item?”, and we include a “Cannot Determine / Both Equally” option. Similarly for prompt fidelity, we ask “Which of the two images is best described by the reference text?”. We average results using majority voting and present them in Table 2. We find an overwhelming preference for DreamBooth for both subject fidelity and prompt fidelity. This shines a light on results in Table 1, where DINO differences of around 0.1 and CLIP-T differences of 0.05 are significant in terms of user preference. Finally, we show qualitative comparisons in Figure 4. We observe that DreamBooth better preserves subject identity, and is more faithful to prompts. We show samples of the user study in the supp. material.

4.3. Ablation Studies

Prior Preservation Loss Ablation

We fine-tune Imagen on 15 subjects from our dataset, with and without our proposed prior preservation loss (PPL). The prior preservation loss seeks to combat language drift and preserve the prior. We compute a prior preservation metric (PRES) by computing the average pairwise DINO embeddings between generated images of random subjects of the prior class and real images. This is our preferred metric, since, by construction and in contrast to supervised networks, DINO is not trained to ignore differences between subjects of the same class. Instead, the self-supervised training objective encourages distinction of unique features of a subject or image. The second important aspect to evaluate is prompt fidelity, measured as the average cosine similarity between prompt and image CLIP embeddings. We denote this as CLIP-T.
Recontextualization. We generate images of the subjects in different environments, with high preservation of subject details and realistic scene-subject interactions. We show the prompts below each image.

Table 3. Prior preservation loss (PPL) ablation displaying a prior preservation (PRES) metric, diversity metric (DIV) and subject and prompt fidelity metrics.

| Method                       | PRES ↓ | DIV ↑ | DINO ↑ | CLIP-I ↑ | CLIP-T ↑ |
|------------------------------|--------|-------|--------|----------|----------|
| DreamBooth (Imagen) w/ PPL   | 0.493  | 0.391 | 0.684  | 0.815    | 0.308    |
| DreamBooth (Imagen)          | 0.664  | 0.371 | 0.712  | 0.828    | 0.306    |

Table 4. Class name ablation with subject fidelity metrics.

| Method             | DINO ↑ | CLIP-I ↑ |
|--------------------|--------|----------|
| Correct Class      | 0.744  | 0.853    |
| No Class           | 0.303  | 0.607    |
| Wrong Class        | 0.454  | 0.728    |

4.4. Applications

Recontextualization We can generate novel images for a specific subject in different contexts (Figure 6) with descriptive prompts (“a [V] [class noun] [context description]”). Importantly, we are able to generate the subject in new poses and articulations, with previously unseen scene structure and realistic integration of the subject in the scene (e.g. contact, shadows, reflections).

Art Renditions Given a prompt “a painting of a [V] [class noun] in the style of [famous painter]” or “a statue of a [V] [class noun] in the style of [famous sculptor]” we are able to generate artistic renditions of our subject. Unlike style transfer, where the source structure is preserved and only the style is transferred, we are able to generate meaningful, novel variations depending on the artistic style, while preserving subject identity. E.g. as shown in Figure 7, “Michelangelo”, we generated a pose that is novel and not seen in the input images.

Novel View Synthesis We are able to render the subject under novel viewpoints. In Figure 7, we generate new images of the input cat (with consistent complex fur patterns)
Figure 7. Novel view synthesis, art renditions, and property modifications. We are able to generate novel and meaningful images while faithfully preserving subject identity and essence. More applications and examples in the supplementary material.

Property Modification

We are able to modify subject properties. For example, we show crosses between a specific Chow Chow dog and different animal species in the bottom row of Figure 7. We prompt the model with sentences of the following structure: “a cross of a [V] dog and a [target species]”. In particular, we can see in this example that the identity of the dog is well preserved even when the species changes - the face of the dog has certain unique features that are well preserved and melded with the target species. Other property modifications are possible, such as material modification (e.g. “a transparent [V] teapot” in Figure 6). Some are harder than others and depend on the prior of the base generation model.

4.5. Limitations

We illustrate some failure models of our method in Figure 8. The first is related to not being able to accurately generate the prompted context. Possible reasons are a weak prior for these contexts, or difficulty in generating both the subject and specified concept together due to low probability of co-occurrence in the training set. The second is context-appearance entanglement, where the appearance of the subject changes due to the prompted context, exemplified in Figure 8 with color changes of the backpack. Third, we also observe overfitting to the real images that happen when the prompt is similar to the original setting in which the subject was seen.

Other limitations are that some subjects are easier to learn than others (e.g. dogs and cats). Occasionally, with subjects that are rarer, the model is unable to support as many subject variations. Finally, there is also variability in the fidelity of the subject and some generated images might contain hallucinated subject features, depending on the strength of the model prior, and the complexity of the semantic modification.

5. Conclusions

We presented an approach for synthesizing novel renditions of a subject using a few images of the subject and the guidance of a text prompt. Our key idea is to embed a given subject instance in the output domain of a text-to-image diffusion model by binding the subject to a unique identifier. Remarkably - this fine-tuning process can work given only 3-5 subject images, making the technique particularly accessible. We demonstrated a variety of applications with animals and objects in generated photorealistic scenes, in most cases indistinguishable from real images.
References

[1] Unsplash. https://unsplash.com/.

[2] Rameen Abdal, Peihao Zhu, John Femiani, Niloy J Mitra, and Peter Wonka. Clip2stylegan: Unsupervised extraction of stylegan edit directions. arXiv preprint arXiv:2112.05219, 2021.

[3] Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended latent diffusion. arXiv preprint arXiv:2206.02779, 2022.

[4] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of natural images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18208–18218, 2022.

[5] Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kasten, and Tali Dekel. Text2live: Text-driven layered image and video editing. arXiv preprint arXiv:2204.02491, 2022.

[6] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualta, and Pratul P. Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (ICCV), pages 5855–5864, October 2021.

[7] David Bau, Alex Andonian, Audrey Cui, YeonHwan Park, Ali Jahanian, Aude Oliva, and Antonio Torralba. Paint by word, 2021.

[8] Mark Boss, Andreas Engelhardt, Abhishek Kar, Yuanzhen Li, Deqing Sun, Jonathan T Barron, Hendrik Lensch, and Varun Jampani. Samurai: Shape and material from unconstrained real-world arbitrary image collections. arXiv preprint arXiv:2205.15768, 2022.

[9] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[10] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9650–9660, 2021.

[11] Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michal Drozdzal, and Adriana Romero Soriano. Instance-conditioned gan. Advances in Neural Information Processing Systems, 34:27517–27529, 2021.

[12] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjuine Gwon, and Sungroh Yoon. Ilvr: Conditioning method for denoising diffusion probabilistic models. arXiv preprint arXiv:2108.02938, 2021.

[13] Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling, Weiyuan Li, and Liqing Zhang. Dovenet: Deep image harmonization via domain verification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8394–8403, 2020.

[14] Katherine Crowson, Stella Biderman, Daniel Kornis, Dashiell Stander, Eric Hallahan, Louis Castricato, and Edward Raff. Vgcan-clip: Open domain image generation and editing with natural language guidance. arXiv preprint arXiv:2204.08583, 2022.

[15] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

[16] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via transformers. Advances in Neural Information Processing Systems, 34:19822–19835, 2021.

[17] Ming Ding, Wendi Zheng, Wenyi Hong, and Jie Tang. Cogview2: Faster and better text-to-image generation via hierarchical transformers. arXiv preprint arXiv:2204.14217, 2022.

[18] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 12873–12883, 2021.

[19] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman. Make-a-scene: Scene-based text-to-image generation with human priors. arXiv preprint arXiv:2203.13131, 2022.

[20] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618, 2022.

[21] Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-guided domain adaptation of image generators. arXiv preprint arXiv:2108.00946, 2021.

[22] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.

[23] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Semantic object accuracy for generative text-to-image synthesis. IEEE transactions on pattern analysis and machine intelligence, 2020.

[24] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33:6840–6851, 2020.

[25] Ajay Jain, Chenichen Li, and Pieter Abbeel. Zero-shot text-guided object generation with dream fields. 2022.

[26] Tero Karras, Miika Aittala, Samuli Laine, Janne Hellsten, and Timo Aila. Alias-free generative adversarial networks. Advances in Neural Information Processing Systems, 34:852–863, 2021.

[27] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4401–4410, 2019.

[28] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and improving the image quality of stylegan. In Proceedings of the
[30] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models for robust image manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2426–2435, 2022.

[31] Gihyun Kwon and Jong Chul Ye. Clipstyler: Image style transfer with a single text condition. arXiv preprint arXiv:2112.00374, 2021.

[32] Jason Lee, Kyunghyun Cho, and Douwe Kiela. Countering language drift via visual grounding. In EMNLP, 2019.

[33] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip Torr. Controllable text-to-image generation. Advances in Neural Information Processing Systems, 32, 2019.

[34] Wenbo Li, Pengchuan Zhang, Lei Zhang, Quyuan Huang, Xiaodong He, Siwei Lyu, and Jianfeng Gao. Object-driven text-to-image synthesis via adversarial training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12174–12182, 2019.

[35] Yijun Li, Richard Zhang, Jingwan Lu, and Eli Shechtman. Few-shot image generation with elastic weight consolidation. arXiv preprint arXiv:2012.02780, 2020.

[36] Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman, and Simon Lucey. St-gan: Spatial transformer generative adversarial networks for image compositing. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9455–9464, 2018.

[37] Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang, Arman Chopikyan, Yuxiao Hu, Humphrey Shi, Anna Rohrbach, and Trevor Darrell. More control for free! image synthesis with semantic diffusion guidance. 2021.

[38] Yuchen Lu, Soumye Singhal, Florian Strub, Aaron Courville, and Olivier Pietquin. Countering language drift with seeded iterated learning. In International Conference on Machine Learning, pages 6437–6447. PMLR, 2020.

[39] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European conference on computer vision, pages 405–421. Springer, 2020.

[40] Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze the discriminator: a simple baseline for fine-tuning gans. In CVPR AI for Content Creation Workshop, 2020.

[41] Ron Mokady, Omer Tov, Michal Yarom, Oran Lang, Inbar Mosseri, Tali Dekel, Daniel Cohen-Or, and Michal Irani. Self-distilled stylenet: Towards generation from internet photos. In Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings, pages 1–9, 2022.

[42] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Praan Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

[43] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In International Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[44] Yotam Nitzan, Kfir Aberman, Qiru He, Orly Liba, Michal Yarom, Yossi Gandelsman, Inbar Mosseri, Yael Pritch, and Daniel Cohen-Or. Mystyle: A personalized generative prior. arXiv preprint arXiv:2203.17272, 2022.

[45] Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A Efros, Yong Jae Lee, Eli Shechtman, and Richard Zhang. Few-shot image generation via cross-domain correspondence. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10743–10752, 2021.

[46] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-driven manipulation of stylegan imagery. arXiv preprint arXiv:2103.17249, 2021.

[47] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988, 2022.

[48] Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao. Learn, imagine and create: Text-to-image generation from prior knowledge. Advances in neural information processing systems, 32, 2019.

[49] Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao. Mirrorgan: Learning text-to-image generation by redescription. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1505–1514, 2019.

[50] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.

[51] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[52] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning, pages 8821–8831. PMLR, 2021.

[53] Esther Robb, Wen-Sheng Chu, Abhishek Kumar, and Jia-Bin Huang. Few-shot adaptation of generative adversarial networks. ArXiv, abs/2010.11943, 2020.

[54] Daniel Roich, Ron Mokady, Amit H. Bermano, and Daniel Cohen-Or. Pivotal tuning for latent-based editing of real images. ACM Transactions on Graphics (TOG), 2022.

[55] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models, 2021.

[56] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[57] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022 Conference Proceedings, pages 1–10, 2022.
[58] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo-Lopes, Tim Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022.

[59] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi. Image super-resolution via iterative refinement. arXiv:2104.07636, 2021.

[60] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learning, pages 2256–2265. PMLR, 2015.

[61] Jiunming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In International Conference on Learning Representations, 2020.

[62] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. Advances in Neural Information Processing Systems, 32, 2019.

[63] Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. Advances in neural information processing systems, 33:12438–12448, 2020.

[64] Ming Tao, Hao Tang, Songsong Wu, Nicu Sebe, Xiao-Yuan Jing, Fei Wu, and Bingkun Bao. Df-gan: Deep fusion generative adversarial networks for text-to-image synthesis. arXiv preprint arXiv:2008.05865, 2020.

[65] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF: Structured view-dependent appearance for neural radiance fields. CVPR, 2022.

[66] Yaxing Wang, Abel Gonzalez-Garcia, David Berga, Luis Herranz, Fahad Shahbaz Khan, and Joost van de Weijer. Minegan: Effective knowledge transfer from gans to target domains with few images. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[67] Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang. Gp-gan: Towards realistic high-resolution image blending. In Proceedings of the 27th ACM international conference on multimedia, pages 2487–2495, 2019.

[68] Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu. Tedigan: Text-guided diverse face image generation and manipulation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 2256–2265, 2021.

[69] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2022.

[70] Richard Zhang, Philip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018.

[71] Zizhao Zhang, Yuanpu Xie, and Lin Yang. Photographic text-to-image synthesis with a hierarchically-nested adversarial network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6199–6208, 2018.