Association between coarse particulate matter and inflammatory and hemostatic markers in a cohort of midlife women

Emilie Davis¹,², Brian Malig¹, Rachel Broadwin¹, Keita Ebisu¹, Rupa Basu¹, Ellen B. Gold³, Lihong Qi³, Carol A. Derby⁴, Sung Kyun Park⁵ and Xiangmei (May) Wu¹*

Abstract

Background: Exposure to particulate matter air pollution has been associated with cardiovascular disease (CVD) morbidity and mortality; however, most studies have focused on fine particulate matter (PM₂.₅) exposure and CVD. Coarse particulate matter (PM₁₀₋₂.₅) exposure has not been extensively studied, particularly for long-term exposure, and the biological mechanisms remain uncertain.

Methods: We examined the association between ambient concentrations of PM₁₀₋₂.₅ and inflammatory and hemostatic makers that have been linked to CVD. Annual questionnaire and clinical data were obtained from 1694 women (≥ 55 years old in 1999) enrolled in the longitudinal Study of Women’s Health Across the Nation (SWAN) at six study sites from 1999 to 2004. Residential locations and the USEPA air monitoring network measurements were used to assign exposure to one-year PM₁₀₋₂.₅, as well as co-pollutants. Linear mixed-effects regression models were used to describe the association between PM₁₀₋₂.₅ exposure and markers, including demographic, health and other covariates.

Results: Each interquartile (4 μg/m³) increase in one-year PM₁₀₋₂.₅ exposure was associated with a 5.5% (95% confidence interval [CI]: 1.8, 9.4%) increase in levels of plasminogen activator inhibitor-1 (PAI-1) and 4.1% (95% CI: −0.1, 8.6%) increase in high-sensitivity C-creative Protein (hs-CRP). Stratified analyses suggested that the association with PAI-1 was particularly strong in some subgroups, including women who were peri-menopausal, were less educated, had a body mass index lower than 25, and reported low alcohol consumption. The association between PM₁₀₋₂.₅ and PAI-1 remained unchanged with adjustment for PM₂.₅, ozone, nitrogen dioxide, and carbon monoxide.

Conclusions: Long-term PM₁₀₋₂.₅ exposure may be associated with changes in coagulation independently from PM₂.₅, and thus, contribute to CVD risk in midlife women.

Keywords: Coarse particulate matter, Long-term exposure, Inflammation, Coagulation, Women, Menopause
Background
Cardiovascular disease (CVD) is the leading cause of death for men and women in the US [1]. Risk factors such as sex, age, increased blood pressure, high cholesterol, and smoking, only account for approximately 50% of cardiac events [2]. Evidence suggests that exposure to particulate matter air pollution is associated with cardiovascular morbidity and mortality, potentially through its ability to increase inflammation and coagulation [3].

Given the known adverse health effects, the United States Environmental Protection Agency (USEPA) regulates particulate matter by setting regulatory standards and enforcing mandatory monitoring for particulate matter by setting regulatory standards [4]. Specific regulatory standards exist for PM10 (PM10 − 2.5) and PM2.5 (PM2.5 − 10 μm aerodynamic diameter) [4]. Most available research has focused on the health impacts of PM2.5 exposure; however, potential health effects from exposure to coarse particulate matter with an aerodynamic diameter between 2.5 and 10 μm (PM10−2.5 or coarse particles) might differ from exposure to PM2.5 due to the components, sources, and size. Coarse particles are primarily generated by mechanical grinding and resuspension of solid material and may have a high biological content (such as pollen, fungi, and endotoxins) or crustal matter (such as aluminum and silicon and heavy metals) [5]. As a result of size difference, PM2.5 deposits deeper in the alveolar region of the lungs, while PM10−2.5 mainly deposits higher in the airways [4]. Our understanding of the health impacts from PM10−2.5 exposure is limited, and thus, no specific regulatory standards exist for PM10−2.5 [4].

Evidence also suggests that PM10−2.5 is associated with respiratory and cardiovascular morbidity and mortality [6–11], but the majority of the previous studies have focused on short-term exposure. Powell et al. reported a significant positive association between hospitalizations for CVD and same-day PM10−2.5 levels in a Medicare population, aged ≥65 years, in the US [9]. In a systematic review and meta-analysis, respiratory mortality and hospitalizations were increased by 1.4% (95% confidence interval (CI): 0.5–2.4%) and 1.0% (95% CI: 0.1–1.8%), respectively, per 10 μg/m³ increase in short-term PM10−2.5 exposure [12]. However, the associations between long-term PM10−2.5 exposure and mortality/morbidity, which may be derived from different mechanisms from short-term exposure, have been unclear. Early studies reviewed by Brunekreef and Forsberg did not present associations between mortality and morbidity with long-term exposure to PM10−2.5 [13]. The meta-analysis study Adar et al. reported a summary estimate of a 2.1% (95% CI: 1.6 to 5.8%) higher mortality rate per 10 μg/m³ increment in long-term PM10−2.5 concentration based on six cohort studies, but this association diminished after adjustment for PM2.5 [12]. Recent studies examining specific health endpoints have linked long-term exposure to coarse PM with right ventricular dysfunction and hypertension [14, 15]. Furthermore, few studies have assessed associations between PM10−2.5 and markers of inflammation and coagulation that are predictive of CVD. Investigating the association between particulate matter and CVD biomarkers could help postulate the underlying physiological mechanisms. Adar et al. found that the endotoxin component of the 5-year concentration of PM10−2.5 was associated with increased inflammation scores, while the copper component of PM10−2.5 was associated with an elevated coagulation score [16].

The Study of Women’s Health Across the Nation (SWAN) cohort was designed to follow a multi-racial/ethnic cohort of midlife women through menopausal transition [17]. With longitudinal biomonitoring across years, this study offers a unique opportunity to study CVD risks associated with long-term PM10−2.5 exposure. With previous work having shown associations between CVD markers and exposures to ambient PM2.5 and gaseous pollutants [18, 19], further research with respect to PM10−2.5 exposure and CVD markers in the SWAN cohort would advance the understanding of whether PM10−2.5 are associated with inflammation and coagulation. Moreover, with the ability to assess other air pollutants, this study could further evaluate confounding by co-pollutants and improve the understanding of the potential independent impact of PM10−2.5 exposure on CVD.

Methods
Study population
The SWAN study design and recruitment has been previously described [17]. The present study includes data from six sites: Chicago, Illinois; Detroit, Michigan; Los Angeles, California; Newark, New Jersey; Oakland, California; and Pittsburgh, Pennsylvania. Recruitment included non-Hispanic White women at all sites as well as women from one other racial/ethnic group at each site: African American in Chicago, Pittsburgh, and Detroit; Asian in Oakland (Chinese) and Los Angeles (Japanese); and Hispanic (including women of Central American, Mexican, and Caribbean origin) in Newark. The inclusion criteria for the study at baseline were: being 42 to 52 years of age, having an intact uterus and at least one ovary, no current use of exogenous hormones, not being pregnant or lactating, and having had at least one menstrual period in the last 3 months. Approximately 450 eligible women at each study site have been followed up with annual clinical assessments and interviews.

The present study includes serum samples collected at clinical visits 3 (1999–2000) through visits 7 (2003–2004), since PM2.5, a key component for calculating PM10−2.5 concentration, was not routinely measured nationwide until 1998.
CVD marker measurement and analysis
Fasting blood was drawn at each annual SWAN clinical visit and assayed as described previously [18, 20]. The inflammatory and hemostatic markers assessed in this study included high sensitivity C-reactive protein (hs-CRP), fibrinogen, factor VII coagulant (factor VIIc), tissue-type plasminogen activator antigen (tPA-ag), and plasminogen activator inhibitor Type 1 (PAI-1). They serve as markers of the following processes, including systemic inflammation (hs-CRP), formation of blood clots when endothelial damage occurs (fibrinogen and factor VIIc), and fibrinolysis (tPA-ag and PAI-1) [21].

Hs-CRP was measured in serum by immunonephelometry using Behring reagents. Fibrinogen and Factor VII-C were measured in frozen citrated plasma by an assay in which clotting time is measured and compared to a control on a MLA 1400 C coagulation analyzer. PAI-1 and tPA-ag, both free form and tPA-PAI-1 complexes, were measured in plasma using enzyme-linked immunosorbent assay (ELISA) technique (American Diagnostica). A human single chain tPA-ag was used as a standard calibrated against an international standard (National Institute for Biological Standards and Control, Hertfordshire, United Kingdom). PAI-1 was detected using a solid phased monoclonal antibody and a second enzyme-labeled goat antiserum (American Diagnostica) [22]. PAI-1, tPA-ag and hs-CRP were measured at every visit, while fibrinogen and factor VIIc were measured only for visits 3, 5 and 7. All bioassay analyses were conducted in the Medical Research Laboratory, Lexington Kentucky.

Additionally, hs-CRP values >10 mg/L were excluded from the analyses because they may be indicative of severe infection, major trauma, or chronic inflammatory disease (0.1% of all observations). For the other inflammatory and hemostatic markers, extreme values (outside the mean ±3 standard deviations after log transformation) were excluded from study (<3%) as they may indicate laboratory error.

Exposure assignment
A residential history was obtained for each SWAN participant. Each residence was geocoded, with its coordinate randomly moved up to 400 ft (approximately one block) away to maintain confidentiality. A 20 km circular buffer was created around each address using ArcGIS v10.0 (Environmental Systems Research Institute 2016). The exposure measured by the monitor located in the buffer will be assigned to the participant. For instances in which multiple monitors were located within the buffer, one was chosen based on 1) distance from the residence, and 2) number of visits with exposure data available, which could differ by monitor because of differences in operating dates. Priority was given to the closer monitor to reduce exposure misclassification, but the more distant monitor was chosen if the ratio of (available visits of the distant monitor / available visits of the closer monitor) was greater than the ratio of (the distance to the distant monitor / distance to the closer monitor). If a participant moved between visits, exposure was weighted based on time at each residence using the available move date. If no move date was available, exposure was estimated using the midpoint between the two visits.

Daily PM10–2.5 was calculated as the difference of daily PM2.5 and PM10 concentrations measured at the same monitoring site on the same day, whenever available. Ambient PM2.5 and PM10 concentrations were obtained from the USEPA air monitoring network, which were monitored every third or sixth day, or daily. The data for these measures were in a 24-h average concentration format. There were fewer monitors for PM10, and some monitors take measurements less frequently, which limited the number of measurements of PM10, and thus resulting in fewer calculated PM10–2.5 measurements. Furthermore, given the uncertainty of extreme values, the top and bottom 2.5% of PM10 and of PM2.5 data were trimmed.

To assess the potential confounding effects of ambient gases, ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2) concentrations were also obtained. The available data were daily 8-h maximum concentrations for ozone and CO, and one-hour maximum concentrations for NO2 and SO2. It should be noted that some monitors, specifically in Michigan, only monitored O3 during the summer time. All air pollutant data were downloaded from the USEPA Air Data website (https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html, accessed September 2010).

In this study, we focused on the impact of long-term PM10–2.5 exposure, namely the average prior one-year exposure. The six-month exposure was also calculated and considered as intermediate-exposure for a sensitivity analysis. Daily readings were used to calculate average exposure levels for six-month and one-year prior to each blood draw. To simplify, months were considered to be 30-day increments. A minimum of 9 days was necessary for calculating a one-month average; at least 5 months was necessary for a six-month average; and at least 10 months for a one-year average.

Covariates
The baseline questionnaire, completed when participants were recruited, collected non-time varying covariates on socioeconomic status, for example, residence address, date of birth (for calculating age), race/ethnicity categorized into White, African American, Asian, or Hispanic, and education (high school or less, some college, or college graduate).
At annual clinic visits, SWAN participants completed questionnaires providing visit-specific information related to medical history, psychosocial environment, lifestyle behaviors, menstrual bleeding patterns, illness, and use of medications since their last visit. Menopausal status was determined based on self-reported bleeding patterns according to standard definitions, and categorized into pre-, early peri-, late peri-, post-menopause, and unknown [23]. Height and weight were measured to calculate body mass index (BMI). Alcohol consumption was divided into three categories developed by Laura L Schott (EDC Coordinating Center): low = none or < 1 serving/month, moderate = up to 1/week or 0.3/day, and high = 2+/week or > 0.3/day.

Statistical analysis
For each air pollutant and CVD marker, summary statistics were calculated. Biomarker levels were log-transformed to meet the normality assumption. Correlations of markers and air pollutants were calculated based on visit 3 data, as it had the largest sample size among the included visits and serum samples and serves as the baseline for our study.

To study the association between PM$_{10–2.5}$ and CVD biomarkers, we used linear mixed-effects regression models with each biomarker as a continuous, dependent variable. The average prior one-year PM$_{10–2.5}$ exposure was included in a single-pollutant model along with covariates. A random intercept was used to account for co-variance of measurements, as multiple longitudinal measurements collected from the same woman are highly correlated. Site was included as a fixed effect because participants were nested within each site. First-order ante-dependence structure was specified for repeated measurements from each participant [19].

Potential covariates were evaluated based on statistical significance and Akaike Information Criterion (AIC) value to control for confounding and goodness of model fit, respectively, without adding over fitted covariates. With all potential covariates, a backward elimination of variables, one at a time, was performed. Variables that have been tested but not included in the final model were: season (cold/warm), physical activity score (continuous), depress symptom score (continuous), poverty score of the ZCTA the participant resided (continuous), antilipidemic medication use (yes/no), and depression medication (yes/no). These variables that were not statistically associated with outcome markers and whose elimination did not change AIC were excluded from the model. The final model included study site, race/ethnicity, education, and visit-specific variables including age (continuous), BMI (continuous), menopausal status, active smoking (yes/no), and alcohol consumption.

Visits after major CVD events, including myocardial infarction, coronary heart failure, stroke, percutaneous coronary intervention, and coronary artery bypass graft, were censored from analyses. We also censored visits for which women did not fast 12 h before blood draw. New Jersey data from visits six and seven were censored because only a few participants had serum sample data for those visits.

Potential effect modification was considered by targeting subgroups for stratification. These groups included BMI (below vs. equal to or above 25 kg/m2), current menopause transition stage (early or late peri-menopausal vs. post-menopausal; pre-menopausal was not considered due to small sample size), alcohol consumption category (low vs. medium or high), and education (high school or less vs. some college or more). Each stratified variable was omitted from the base model.

To evaluate the confounding by co-pollutants, we used two-pollutant models, incorporating each of PM$_{2.5}$, ozone, CO, NO$_2$, and SO$_2$, respectively, along with one-year PM$_{10–2.5}$ in the final models mentioned above, to evaluate the potential confounding effects of each co-pollutant.

Several sensitivity analyses were run excluding women who: had diabetes, were currently smoking, only had one or two visits, with pre-existing medical conditions (including major CVD events defined above, angina, hypertension, or diabetes) and/or medication use, and had unknown menopausal status and/or hormone use.

Analyses were performed in SAS 9.4 (SAS Institute, Cary, NC). All tests were two-sided and p-values < 0.05 were considered statistically significant. All results were expressed as the percent change in markers per respective interquartile range increase in air pollutant based on averaging times using the formula $\left[100 \times (\exp(\beta per \ \text{unit pollutant} \cdot IQR) - 1)\right]$.

Results
After applying the exclusions described above, 1694 women with 5982 observations during the study period were available for analyses. Approximately 68% of the women had three or more clinic visits between 1999 and 2004. The race/ethnicity distribution by study site for this population reflected the SWAN sampling strategy discussed previously. Over 50% of women in Chicago, Los Angeles, and Oakland had completed college, while in Detroit, Newark, and Pittsburgh, approximately 27% of the women had completed college. Most women in the study were overweight (25 < BMI \leq 30) or obese (BMI \geq 30), with the exception of women from the Oakland and Los Angeles sites. Additionally, most women in this study were neither current smokers nor high alcohol consumers (2+ servings/week or > 0.3 servings/day) (Table 1).

The distributions of CVD biomarkers by risk factor status reflect the potential risk factors associated with inflammation and coagulation (Table 2). Women who
were current smokers, had diagnosed diabetes, or were obese had higher levels of the inflammatory and hemostatic markers. African American and Hispanic women tended to have higher levels of the inflammatory/hemostatic markers while Asian women had lower.

The two inflammatory markers, hs-CRP and fibrinogen, were moderately correlated (Pearson correlation coefficient ($r = 0.39$)), as were the two hemostatic markers, PAI-1 and tPA-ag ($r = 0.50$).

The average prior one-year PM$_{10-2.5}$ exposures for all the SWAN sites were $10.9 \pm 3.6 \, \mu\text{g/m}^3$ (Table 3). The average prior six-month exposure was similar ($10.8 \pm 4.0 \, \mu\text{g/m}^3$), and had a slightly larger sample size ($N = 5466$) than the one-year exposure ($N = 5175$), because PM$_{2.5}$ measurements started from 1998 which limited the ability to calculate prior one-year exposure for some early visits. Los Angeles site had the highest levels of one-year PM$_{10-2.5}$ exposure at $17.5 \pm 2.3 \, \mu\text{g/m}^3$, while Pittsburgh had the lowest levels at $8.5 \pm 3.8 \, \mu\text{g/m}^3$. Due to the limited availability of PM$_{10}$ monitors, however, Los Angeles only had a small number of visits with co-located PM$_{10}$ and PM$_{2.5}$ monitors, and thus matched PM$_{10-2.5}$ data. Distributions of one-year average exposure of co-pollutants, including PM$_{2.5}$, ozone, CO, NO$_2$ and SO$_2$ exposure, can be found in Table S1.

We observed that an interquartile (4 $\mu\text{g/m}^3$) increase in the prior one-year exposure of PM$_{10-2.5}$ was associated with a 5.5% (1.8, 9.4%) increase in PAI-1 level. This association was consistent for the six-month exposure window, with a 4.0% (0.3, 7.8%) increase in PAI-1 per 4 $\mu\text{g/m}^3$ increase in PM$_{10-2.5}$. The inflammation marker, hs-CRP, was also associated with PM$_{10-2.5}$, with a 4.1%
Table 2: Distribution of inflammatory and hemostatic biomarkers by demographic factors for SWAN cohort, 1999–2004

Variable	Nb	hs-CRPa	Fibrinogen	Factor VIIc	tPA-ag	PAI-1
(Unit)		mg/l	mg/dl	%	ng/ml	ng/ml
N of samples	5982	4913	2638	2604	5634	5587
All participants	1694	1.6 (3.4)	367.8 (81.0)	130.9 (34.1)	7.1 (4.4)	14.6 (19.5)
Race/Ethnicity						
African American	32%	2.7 (4.4)	388.0 (86.4)	130.0 (34.2)	7.9 (4.7)	16.0 (20.2)
Asian	18%	0.8 (1.3)	354.9 (72.2)	129.0 (28.6)	6.2 (3.9)	11.2 (16.0)
Hispanic	6%	2.6 (4.0)	370.0 (79.8)	129.1 (34.2)	8.7 (4.3)	20.1 (22.0)
White	44%	1.6 (3.1)	362.8 (76.8)	134.6 (34.9)	6.9 (4.1)	14.0 (19.7)
p-value	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Education						
≤ High school	23%	1.7 (3.6)	373.6 (93.1)	134.1 (34.0)	7.4 (4.7)	15.8 (20.3)
Some college	30%	2.1 (3.7)	373.4 (74.3)	132.7 (33.2)	7.4 (4.4)	16.0 (21.4)
≥ College	45%	1.4 (3.0)	362.8 (81.6)	130.0 (33.2)	6.7 (4.3)	12.9 (17.8)
p-value	0.03	0.44	0.04	0.11	0.13	
Menopausal status						
Pre	345	1.6 (2.9)	352.2 (73.2)	129.1 (33.2)	7.1 (4.0)	15.2 (21.2)
Early peri	2297	1.5 (3.0)	362.4 (81.0)	127.2 (29.7)	7.0 (4.0)	14.5 (18.8)
Late peri	624	1.6 (3.5)	376.5 (85.0)	134.1 (32.7)	7.7 (4.7)	17.0 (23.2)
Post	2017	1.8 (3.7)	380.9 (82.5)	136.4 (34.8)	7.4 (4.9)	14.8 (19.4)
Unknown	687	2.0 (4.0)	362.6 (75.8)	136.0 (37.6)	6.6 (4.1)	12.2 (17.0)
p-value	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Body Mass Index (kg/m²)						
< 25	1947	0.8 (1.3)	344.8 (64.1)	123.5 (28.9)	5.4 (3.2)	8.4 (10.2)
25–30	1672	1.7 (2.6)	365.7 (72.9)	133.7 (34.9)	7.1 (3.6)	14.8 (17.5)
> 30	2178	3.9 (4.4)	395.3 (82.8)	137.3 (35.7)	8.8 (4.1)	22.6 (23.5)
p-value	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Current smoker						
Yes	805	2.4 (4.1)	390.9 (87.9)	128.1 (32.4)	7.9 (4.4)	18.7 (23.6)
No	4959	1.6 (3.1)	364.6 (78.5)	128.1 (32.4)	7.0 (4.3)	13.8 (18.5)
p-value	0.02	0.28	0.01	0.04	0.04	
Alcohol consumption						
Low	3084	1.7 (3.7)	375.8 (83.2)	132.7 (33.1)	7.3 (4.6)	15.4 (21.3)
Moderate	1463	1.7 (3.4)	367.2 (79.3)	130.0 (32.3)	7.0 (4.2)	14.2 (18.1)
High	1133	1.4 (2.5)	348.9 (75.0)	130.4 (36.0)	6.7 (4.3)	12.2 (17.2)
p-value	0.31	< 0.01	0.18	0.38	0.11	
Diagnosed diabetes						
Yes	530	4.4 (4.8)	401.1 (88.9)	141.9 (36.3)	9.1 (4.4)	24.4 (27.8)
No	5449	1.5 (3.1)	365.4 (80.3)	130.9 (32.3)	7.0 (4.3)	13.8 (18.2)
p-value	< 0.01	0.30	< 0.01	< 0.01	< 0.01	< 0.01
Any CVD event						
Yes	84	3.4 (4.3)	418.9 (99.1)	145.5 (29.9)	7.1 (4.4)	19.6 (23.7)
No	5898	1.6 (3.4)	367.1 (80.8)	130.9 (34.1)	8.5 (5.0)	14.5 (19.5)
p-value	0.03	0.08	0.52	0.41	0.25	

aData shown in each grid is the median followed by (interquartile range), excluding N
bFor ethnicity/education, the % show in this column are the percentage of participants in each category among all participants. Percentages do not always add up to 100% because of missing data. For the visit-specific variables, N is the number of observations, not women; each participant could have data from multiple visits and could be in different categories at different visits
cSample size varied by biomarkers. Visits without any blood data or any matched exposure data were excluded. Visits 6 and 7 in New Jersey site were censored due to small sample size. Visits that happened after any CVD events were excluded. Marker values out of reasonable ranges were excluded
dFor hs-CRP, values > 10 mg/l were not included due to the concern of possible severe inflammation
eAlcohol category consists of three categories developed by Laura L Schott (EDC Coordinating Center): low = none or < 1 serving/month, moderate = up to 1/week or 0.3/day, high = 2+/week or > 0.3/day
f*p-value are from the Type 3 test of fixed effects using mixed effect model, with all variables included as fixed effects and a random intercept account for covariance of measurements. Site was also included as a fixed effect and participants were nested within each site, as multiple longitudinal measurements collected from the same woman are highly correlated. First-order ante-dependence structure was specified for repeated measurements from each participant
(-0.1, 8.6%) and a 6.0% (1.7, 10.5%) increase in hs-CRP per 4 μg/m³ increase in prior one-year and six-month PM$_{10-2.5}$ exposure, respectively. Associations with other markers were not observed.

Sensitivity analyses were conducted with some subgroups removed. Positive associations between PM$_{10-2.5}$ and PAI-1 levels remained statistically significant in models that excluded women with diagnosed diabetes, those who reported current smoking, who did not complete at least three clinic visits, who reported medical preconditions, who reported medication use, and who had unknown menopausal status and hormone use, respectively (Table S2). The marginal association between PM$_{10-2.5}$ and hs-CRP became statistically significant in the model restricting analysis to women who completed three or more visits and in the model excluding smokers; however, the association disappeared in other sensitivity analyses.

Potential effect modifiers were evaluated for the one-year PM$_{10-2.5}$ exposure, and some subgroups appeared to have experienced elevated risks (Table 4). For a 4 μg/m³ increase in one-year PM$_{10-2.5}$, PAI-1 increased by 9.2% (1.4, 17.7%) in women with a BMI < 25, 7.5% (2.2, 13.2%) in peri-menopausal women, 7.6% (0.6, 15.1%) in women with equivalent or less than a high school education, and 7.5% (2.3, 13.0%) in women who reported low alcohol consumption. Additionally, women who reported low alcohol consumption had an 8.8% (2.7, 15.3%) increase in hs-CRP, and women with equivalent or less than a high school education had 2.4% (0.1, 4.7%) decrease in factor VIIc, per 4 μg/m³ increase in PM$_{10-2.5}$.

The stratification results for the other inflammatory and hemostatic markers were not statistically significant.

The co-pollutant models were conducted in subsets of observations compared with the single pollutant models of PM$_{10-2.5}$, given the availability of co-pollutant data. For most sites, 70–98% of serum samples had matched co-pollutant exposure, except for ozone in Detroit (0.5%) (not included in the analysis) and Newark (48%), NO$_2$ in Detroit (57%), Chicago (65%), and Newark (65%), and SO$_2$ in Oakland (53%) (Table S1). One-year PM$_{10-2.5}$ exposure appeared to be moderately correlated with one-year PM$_{2.5}$ ($r = 0.29$) and NO$_2$ ($r = 0.30$). The interquartile ranges for the prior one-year average exposures of co-pollutants was 3 μg/m³ for PM$_{2.5}$, 0.007 ppm for ozone, 0.3 ppm for CO, 5 ppb for NO$_2$, and 3.0 ppb for SO$_2$.

Our previous studies have found that one-year exposures to PM$_{2.5}$, NO$_2$, and CO were positively associated with PAI-1 [18, 19]. In two-pollutant models along with PM$_{10-2.5}$, PM$_{2.5}$, CO, and NO$_2$ were each still positively associated with PAI-1 levels, and the associations were stronger for PM$_{2.5}$, CO, and NO$_2$ than PM$_{10-2.5}$. In contrast, O$_3$ had a negative association with PAI-1. Nevertheless, these co-pollutants did not confound the association between PM$_{10-2.5}$ and PAI-1 (Fig. 1 and Table S3). Specifically, the positive association remained for PAI-1 and PM$_{10-2.5}$ from the single pollutant model when considering co-exposure to PM$_{2.5}$, with a 4.8% (1.0, 8.7%) increase per 4 μg/m³ increase in PM$_{10-2.5}$.
Similarly, PAI-1 increased by 4.8% (0.5, 9.4%) per 4 μg/m³ increase in PM₁₀⁻₂.₅ after adjustment for co-exposure to CO, and by 4.3% (0, 8.7%) per 4 μg/m³ increase in PM₁₀⁻₂.₅ independent of exposure to NO₂. Confounding by SO₂ cannot be evaluated, because in the subset of data with matched SO₂ measurements, PM₁₀⁻₂.₅ showed no association with PAI-1 regardless of including SO₂ or not. The availability of SO₂ measurements may have introduced bias for testing the association between PM₁₀⁻₂.₅ and PAI-1.

Discussion

This study provided new evidence for associations between long-term exposure to coarse particles and CVD markers. Specifically, we found that prior one-year PM₁₀⁻₂.₅ exposure levels were positively associated with the levels of PAI-1, and marginally positively associated with hs-CRP. Elevated PAI-1 increases the risk of thrombosis by inhibiting tPA activity, which initiates the fibrinolysis processes that break down excess blood clotting. Therefore, the associations we found suggested that elevated long-term exposure to coarse particles may increase the risk of thrombosis.

As mentioned earlier, very few studies were conducted on the associations of long-term exposure to PM₁₀⁻₂.₅ with CVD markers. Chen and Schwarz observed increased white blood cell count, a potential inflammatory marker, was associated with one-year local PM₁₀ levels (ranging 14.6–78.5 μg/m³) in the US [24]. In contrast, in England, Forbes et al. reported no associations between inflammatory markers, fibrinogen or hs-CRP, and chronic exposures to several outdoor pollutants, including PM₁₀ (ranging 11.0–36.1 μg/m³) [25]. Inconsistencies in study findings could have resulted from differences in air pollutant ranges, geographic and temporal differences in the composition of particles, and/or population differences. The Multi-Ethnic Study of Atherosclerosis estimated 5-year average PM₁₀⁻₂.₅ exposures between 2000 and 2006 varied by individuals, with a mean of 5.0 ± 1.7 μg/m³, and found positive, though not statistically significant, associations between long-term PM₁₀⁻₂.₅ concentrations and inflammation and coagulation markers [16]. The authors further identified that endotoxin and copper in PM₁₀⁻₂.₅ contributed most to inflammation and coagulation effects, respectively, which were robust to the adjustment for PM₂.₅. As an indicator of abrasive brake wear, copper is expected in substantial amount in PM₁₀⁻₂.₅ at most of the SWAN sites, which are major metropolitan areas with intense traffic flow, particularly in Los Angeles [26]. Our study echoes Adar et al’s findings, providing additional evidence on the impact of PM₁₀⁻₂.₅ coagulation among different locations and populations.

Our previous studies have identified associations between exposures to PM₂.₅ and ambient gases with inflammatory and hemostatic markers in the SWAN cohort. One-year exposure to PM₂.₅ was associated with increases in hs-CRP (% of change [95th% confidence interval]: 21% [6.6, 37%]) and PAI-1 (35% [19, 53%]) per 10 μg/m³ increase in PM₂.₅ concentrations [18]. One-year exposure to CO and NO₂ were also positively associated with PAI-1, though not statistically significant [19]. We note that, while the increased inflammation and
coagulation tendency associated with PM$_{10-2.5}$ was similar to that from PM$_{2.5}$. PM$_{10-2.5}$ exposure was weakly correlated with PM$_{2.5}$, regardless of whether long-term (Spearman $r = 0.30$, $p < 0.01$) or short-term ($r = 0.15$, $p < 0.01$) exposure. The two-pollutant analyses confirmed the associations with PM$_{2.5}$ and ambient gases, and further demonstrated that PM$_{10-2.5}$ created additional burden on inflammation and coagulation. The previous studies did not control for PM$_{10-2.5}$ so some of the associations observed may have been due to confounding by PM$_{10-2.5}$.

Considering the variations in chemical composition and the deposition locations within the lungs associated with their sizes, we expect that PM$_{10-2.5}$ cause health effects through mechanisms different from those of PM$_{2.5}$. However, it has been observed that coarse PM of low density, such as soil particles, have deposited deeper in the lung as well [27], suggesting that they could cause potential health impacts beyond size alone. A study using in vitro models found that PM$_{2.5}$ and PM$_{10-2.5}$ affected nasal and bronchial epithelial cells and immune response differently, but both increased release of IL-6 in bronchial epithelial cells [28]. Ljubimova et al. observed up regulation of genes encoding inflammatory cytokine pathways (IL13-Rα1 and IL-16) in the brains of rats exposed to PM$_{10-2.5}$ sourced from the Los Angeles Basin for 1 month, and found that PM$_{10-2.5}$ was the only particles contributing to this process [29]. A few toxicological studies has indicated that PM$_{10-2.5}$ may have stronger associations with inflammation and coagulation than PM$_{2.5}$ [30–34].

Furthermore, risks derived from short-term and long-term exposure may be generated through different mechanisms. Coagulation activation, indicated by the increase of PAI-1 levels, is a typical risk that has been associated with long-term exposure [35]. Two potential mechanisms could explain the increased PAI-1. One possibility is that, some PM$_{10-2.5}$ particles travel deeper in the lung and cause systemic inflammation and oxidative stress similar to that from PM$_{2.5}$. Generated by the endothelium, PAI-1 is activated by chronic inflammatory conditions and endothelium injury to inhibit fibrinolysis, the process that degrades blood clots; in other words, PAI-1 allows blood clot formation and shortens bleeding time. Another possible pathway is that PM$_{10-2.5}$ induces respiratory tract inflammation. Inflammatory cytokines produced in the respiratory tract can potentially enter the circulatory system where they can stimulate the liver to release coagulation factors that can alter hemostasis [4]. This could be a “false” coagulation signal that is not accompanied by systemic inflammation or blood vessel damage that initiates fibrinolysis, eventually increasing the potential for thrombosis. Under such circumstances, there may not be clear signs of systemic inflammation and/or endothelium injury. Overall, evidence from epidemiologic or toxicological studies is limited for systemic inflammation and altered hemostasis associated with the long-term exposure to PM$_{10-2.5}$. Given the marginal/unstable association with hs-CRP and absent relationship with fibrinogen and factor VIIc, we cannot conclude whether inflammation and thrombosis were from the same biological process, or differentiate whether such coagulation reflected vascular inflammation or deep vein thrombosis. Future studies are warranted to explore the physiological consequences and mechanisms involved with chronic exposure to PM$_{10-2.5}$, especially to the specific chemical species of PM$_{10-2.5}$.

Our findings also suggest that the associations between PAI-1 and one-year PM$_{10-2.5}$ exposure appeared particularly strong in some subgroups, including women with a BMI < 25, women who were peri-menopausal, women with equivalent or less than a high school education, and women who reported low alcohol consumption. That is to say, apart from toxicity of chemicals, physiological condition, i.e., BMI and menopausal status, and socioeconomic background, i.e., education, could influence vulnerability to external exposures. For women, the menopausal transition is a complex and multifaceted process that involves multiple organ systems and genetic variability where physiological impacts can manifest differently among individual women [17]. Being in midlife and experiencing a transition through menopause potentially increases women’s vulnerability to environmental exposures, such as air pollution.

This study had several strengths. First, SWAN is a large, multi-site, longitudinal study, which provided coverage of a wide range of ambient exposure levels and particle compositions associated with local sources. Also, with the same participants followed longitudinally and the same sampling/analytical approaches for measurement of biomarkers consistently used, our data provided a unique opportunity to examine health effects associated with long-term PM$_{10-2.5}$ exposure. Second, because residential history has been maintained for each SWAN participant, we were able to use ambient monitoring data, along with residential history, to assign exposure levels to participants. Finally, substantial demographic and health information collected in SWAN allowed us to examine the impact of effect modifiers, including time-varying menopausal status for this midlife population.

Meanwhile, the limitations of estimating PM$_{10-2.5}$ exposure need to be noted when interpreting our results. PM$_{10-2.5}$ was not routinely measured directly, its level was either calculated through the ambient monitor concentrations of PM$_{10}$ and PM$_{2.5}$ as we did, or obtained by modeling. Some studies used estimations from land use regression models, which were based on limited cross-sectional measurements to simulate long-term spatial variation [14, 16]. The 5-year average PM$_{10-2.5}$
exposures of the Multi-Ethnic Study of Atherosclerosis cohort were estimated using land use regression model, ranging from 3.8 ± 1.3 \(\mu g/m^3 \) in Winston-Salem, North Carolina to 5.6 ± 1.2 \(\mu g/m^3 \) in Chicago, Illinois [16]. Models based on satellite data are not applicable to this study, as most satellite data are only available after early 2000, and therefore, would not cover a significant amount of SWAN visits around 2000. Furthermore, PM\(_{10-2.5}\) concentrations were not commonly estimated through satellite data in the USA, as PM\(_{2.5}\) has been the primary focus. We acknowledge that PM\(_{10-2.5}\) concentration tends to be more heterogeneous across space than PM\(_{2.5}\), resulting in great uncertainty for PM\(_{10-2.5}\) estimations through nearby stationary monitors within a 20 km buffer. The assigned exposure may be overestimated or underestimated depending on whether there are sources nearby. We assume that the exposure assignment error tends to be non-differential [36]. Additionally, in this study, we calculated PM\(_{10-2.5}\) concentrations using data obtained from co-located PM\(_{10}\) and PM\(_{2.5}\) monitors to avoid potential bias. However, PM\(_{10}\) monitoring had been greatly reduced (typically every 6 days for PM\(_{10}\) compared to typically every 3 days for PM\(_{2.5}\)), which limited the ability to calculate PM\(_{10-2.5}\) data. This was a particular concern for the Los Angeles site, where only 24% of women had matched PM\(_{10-2.5}\) measurements. The mean average one-year PM\(_{10-2.5}\) exposure in our study ranged from 8.5 ± 3.8 \(\mu g/m^3 \) to 17.5 ± 2.3 \(\mu g/m^3 \) at different sites, which aligned with the levels reported in the literature.

A few other limitations also need to be considered. First, as a common issue in cohort studies, loss of follow-up was also observed in SWAN, which reduced statistical power. In our dataset, 35% of participants had completed one or two visits only, including almost all participants at Newark site and half of the participants at Los Angeles site, which was equivalent to 20% of visits. We were not able to run the regression model within these subjects because of the small sample size; however, sensitivity tests excluding these participants confirmed the associations we observed (Table S2), including those from stratified analyses (not shown). Second, potential confounding factors, such as, noise, greenness, household income, were not included in this analysis due to limited available data. Future studies are recommended to include them into considerations. Lastly, heterogeneity of PM\(_{10-2.5}\) compositions by study location may influence the associations with biomarkers, but composition information was not available to use in our study.

Conclusions

The results of this study support the hypothesis that long-term exposure to coarse particulate matter may contribute to inflammation and thrombosis, markers of CVD. The observed associations between long-term PM\(_{10-2.5}\) exposure and PAI-1 were independent, as they were not confounded by ambient PM\(_{2.5}\), ozone, NO\(_2\), or CO. Particular subgroups were more sensitive to PM\(_{10-2.5}\) exposure. Further epidemiological and toxicological studies are warranted to identify the specific mechanisms of how PM\(_{10-2.5}\) may affect these biomarkers.

Supplementary information

The online version contains supplementary material available at https://doi.org/10.1186/s12940-020-00663-1.

Additional file 1: Table S1. Distribution of prior one-year average PM\(_{2.5}\), ozone, CO, NO\(_2\), and SO\(_2\) concentrations by SWAN site, 1999–2004.

Table S2. Results of sensitivity test for the associations between PM\(_{10-2.5}\) and cardiovascular disease markers based on several models for SWAN cohort, 1999–2004.

Table S3. Adjusted associations between PM\(_{10-2.5}\) and PM\(_{2.5}\), Ozone, CO, NO\(_2\), SO\(_2\), and cardiovascular disease markers for SWAN cohort, 1999–2004. (docx 29 kb)

Abbreviations

CVD: Cardiovascular disease; PM\(_{10}\): Fine particulate matter; PM\(_{10-2.5}\): Coarse particulate matter; SWAN: Study of Women’s Health Across the Nation; US EPA: United States Environmental Protection Agency; hs-CRP: High sensitivity C-reactive protein; factor Vlla: Factor Vlla coagulant; tPA-ag: Tissue-type plasminogen activator antigen; PAI-1: Plasminogen activator inhibitor Type 1; ELISA: Enzyme-linked immunosorbent assay; O\(_3\): Ozone; CO: Carbon monoxide; NO\(_2\): Nitrogen dioxide; SO\(_2\): Sulfur dioxide; BMI: Body mass index; AIC: Akaike Information Criterion; ZCTA: ZIP code tabulation area.

Acknowledgements

The Study of Women’s Health Across the Nation (SWAN) has grant support from the National Institutes of Health (NIH), DHHS, through the National Institute on Aging (NIA); the National Institute of Nursing Research (NINR) and the NIH Office of Research on Women’s Health (ORWH) (Grants U01NR004061; U01AG012505, U01AG012535, U01AG012531, U01AG012539, U01AG012546, U01AG012553, U01AG012554, U01AG012495). The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the NIA, NINR, ORWH or the NIH.

The SWAN Repository (U101AG017719).

This publication was supported in part by the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through UCSF-CTSI Grant Number UL1 RR024131. Support for geocoding was provided by California Institute for Energy and Environment, University of California (Subaward No. POB228-X06).

Clinical Centers: University of Michigan, Ann Arbor – Sioban Harlow, PI 2011 – present, MaryFran Sowers, PI 1994–2011; Massachusetts General Hospital, Boston, MA – Joel Finkelstein, PI 1999 – present; Robert Nee, PI 1994–1999; Rush University, Rush University Medical Center, Chicago, IL – Howard Krakit, PI 2009 – present; Lynda Powell, PI 1994–2009; University of California, Davis/Kaiser – Ellen Gold, PI; University of California, Los Angeles – Gail Greendale, PI; Albert Einstein College of Medicine, Bronx, NY – Carol Detty, PI 2011 – present, Rachel Wildman, PI 2010–2011; Nanette Santora, PI 2004–2010; University of Medicine and Dentistry – New Jersey Medical School, Newark – Gerson Weiss, PI 1994–2004; and the University of Pittsburgh, Pittsburgh, PA – Karen Matthews, PI. NIH Program Office: National Institute on Aging, Bethesda, MD – Chhanda Dutta 2016–present; Winifred Rossi 2012–2016; Sherry Sherman 1994–2012; Marco Ory 1994–2001; National Institute of Nursing Research, Bethesda, MD – Program Officers.

Central Laboratory: University of Michigan, Ann Arbor – Daniel McConnell (Central Ligand Assay Satellite Services). SWAN Repository: University of Michigan, Ann Arbor – Sioban Harlow 2013–Present; Dan McConnell 2011–2013; MaryFran Sowers 2000–2011.
References

1. Garcia M, Mulvagh SL, Merz CN, Buring JE, Manson JE. Cardiovascular disease in women: clinical perspectives. Circ Res. 2016;118(8):1273–93.

2. Particle Pollution and Cardiovascular Effects [https://www.epa.gov/pmcoune/particle-pollution-and-cardiovascular-effects].

3. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78.

4. USEPA. Integrated Science Assessment (ISA) for Particulate Matter (Final Report, 2019). Washington, DC, EPA/600/R-19/188: U.S. Environmental Protection Agency; 2019.

5. Pijanowski TA, Loukiou K, Korhonon CH, Aurela M, Mäkelä T, Hillamo RE, et al. Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmos Environ. 2001;35(32):5381–91.

6. Chen YC, Weng YH, Chiu WY, Yang CY. Short-term effects of coarse particulate matter on hospital admissions for cardiovascular diseases: a case-crossover study in a Tropical City. J Toxicol Environ Health A. 2015;78(19):1241–53.

7. Lee H, Honda Y, Hashimura M, Guo YL, Wu CF, Kan H, et al. Short-term exposure to fine and coarse particles and mortality: a multicity time-series study in East Asia. Environ Pollut. 2015;207:43–51.

8. Malik BI, Green S, Basu R, Broadwin R. Coarse particles and respiratory emergency department visits in California. Am J Epidemiol. 2013;178(1):58–69.

9. Powell KR, Kral J, Wang Y, Bell ML, Peng RD. Ambient coarse particulate matter and hospital admissions in the Medicare cohort air pollution study, 1999-2010. Environ Health Perspect. 2015;123(11):1152–8.

10. Yorifuji T, Nashima S, Doi H. Associations of acute exposure to fine and coarse particulate matter and mortality among older people in Tokyo, Japan. Sci Total Environ. 2016;542(Pt A):354–9.

11. Zhao Y, Wang S, Lang L, Huang C, Ma W, Lin H. Ambient fine and coarse particulate matter pollution and respiratory morbidity in Dongguan, China. Environ Pollut. 2017;222:126–31.

12. Adar SD, Filigrana PA, Clements N, Peel A. Ambient coarse particulate matter and human health: a systematic review and meta-analysis. Curr Environ Health Rep. 2014;1:258–74.

13. Brunekeef B, Forsberg B. Epidemiological evidence of effects of coarse airborne particles on health. Eur Respir J. 2005;26(2):309–18.

14. D’Souza JC, Kavut SM, Elkayam LR, Sheppard L, Thorne PS, Jacobs DR Jr, et al. Ambient coarse particulate matter and the right ventricle: the multi-ethnic study of atherosclerosis. Environ Health Perspect. 2017;125(7):077019.

15. Honda T, Elot MN, Eaton CB, Whitel E, Stewart JD, Mu L, et al. Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women. Environ Int. 2017;105:79–85.

16. Adar SD, D’Souza J, Mendelsohn-Victor K, Jacobs DR, Cushman M, Sheppard L, et al. Markers of inflammation and coagulation after long-term exposure to coarse particulate matter: a cross-sectional analysis from the multi-ethnic study of atherosclerosis. Environ Health Perspect. 2015;123(6):541–8.

17. Sowers M, Crawford S, Sterinfeld B, Morganstein D, Gold E, Greendale G, et al. SWAN: A Multicenter, Multiethnic, Community-Based Cohort Study of Women and the Menopausal Transition. In: JK RAL, Marcus R, editors. Menopause: Biology and Pathobiology. San Diego: Academic Press; 2000. p. 175–88.

18. Green R, Broadwin R, Malik B, Basu R, Gold EB, Qi L, et al. Long- and short-term exposure to air pollution and inflammatory/hemostatic markers in midlife women. Epidemiology. 2016;27(2):211–20.

19. Wu XM, Basu R, Malik B, Broadwin R, Ekhu K, Gold EB, Qi L, Derby C, Green RS. Association between gaseous air pollutants and inflammatory, hemostatic and lipid markers in a cohort of midlife women. Environ Int. 2017;107:131–9.

20. Wang NC, Matthews KA, Banarit-Mitchell EJM, Chang C-CH, El Khoudary SR. Inflammatory/hemostatic biomarkers and coronary artery calcification in midlife women: an African-American and white race/ethnicity study: the study of Women’s health across the nation (SWAN) heart study. Menopause. 2016;23(6):653–61.

21. Chandler WL, Alesi MC, Alliaud MF, Henderson P, Vague P, Juhun-Vague I. Clearance of tissue plasminogen activator (TPA) and TPA/plasminogen activator inhibitor type 1 (PAI-1) complex: relationship to elevated TPA antigen in patients with high PAI-1 activity levels. Circulation. 1997;96(3):761–8.

22. Decker PJ, Alesi MC, Verstrekken M, Krzlow EfK, Juhun-Vague I, Collen D. Measurement of plasminogen activator inhibitor 1 in biologic fluids with a murine monoclonal antibody-based enzyme-linked immunosorbent assay. Blood. 1996;87(1(2)):220–5.

23. Derby CA, Crawford SL, Pasternak RC, Sowers M, Sterinfeld B, Matthews KA. Lipid changes during the menopause transition in relation to age and weight: the study of Women’s health across the nation. Am J Epidemiol. 2005;161(9):1352–61.

24. Chen JC, Schwartz J. Metabolic syndrome and inflammatory responses to long-term particulate air pollutants. Environ Health Perspect. 2008;116(5):612–7.

25. Forbes LJ, Patel MD, Rudnicka AR, Cook DG, Bush T, Stedman JR, Whincup PH, Strachan DP, Anderson RH. Chronic exposure to outdoor air pollution and markers of systemic inflammation. Epidemiology. 2009;20(2):245–53.
26. Pakbin P, Ning Z, Shafer MM, Schauer JJ, Sioutas C. Seasonal and spatial coarse particle elemental concentrations in the Los Angeles area. Aerosol Sci Technol. 2011;45(8):949–63.
27. Deng Q, Deng L, Mao Y, Guo X, Li Y. Particle deposition in the human lung: health implications of particulate matter from different sources. Environ Res. 2019;169:237–45.
28. Onishi T, Honda A, Tanaka M, Chowdhury PH, Okano H, Okuda T, et al. Ambient fine and coarse particles in Japan affect nasal and bronchial epithelial cells differently and elicit varying immune response. Environ Pollut. 2018;242:693–701.
29. Ljubimova JY, Braubach O, Patil R, Chiechi A, Tang J, Galstyan A, et al. Coarse particulate matter (PM2.5–10) in Los Angeles Basin air induces expression of inflammation and cancer biomarkers in rat brains. Sci Rep. 2018;8(1):5708.
30. Alexis NE, Lay JC, Zeman K, Bennett WE, Peden DB, Soukup JM, Devlin RB, Becker S. Biological material on inhaled coarse fraction particulate matter activates airway phagocytes in vivo in healthy volunteers. J Allergy Clin Immunol. 2006;117(6):1396–403.
31. Ljubimova JY, Braubach O, Patil R, Chiechi A, Tang J, Galstyan A, et al. Inflammation and tissue damage in mouse lung by single and repeated dosing of urban air coarse and fine particles collected from six European cities. Inhal Toxicol. 2010;22(5):402–16.
32. Kleinman MT, Sioutas C, Chang MC, Boere AJ, Cassee FR. Ambient fine and coarse particle suppression of alveolar macrophage functions. Toxicol Lett. 2003;137(3):151–8.
33. Monn C, Becker S. Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol Appl Pharmacol. 1999;155(3):245–52.
34. Schins RP, Lightbody JH, Borm PJ, Shi T, Donaldson K, Stone V. Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicol Appl Pharmacol. 2004;195(1):1–11.
35. Cesari M, Pahor M, Incalzi RA. Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther. 2010;28(5):e72–91.
36. Wilson WE, Suh HH. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J Air Waste Manag Assoc. 1997;47(12):1238–49.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.