Multivariate Regression Depth*

Marshall Bern1 and David Eppstein2

1 Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304, USA
bern@parc.xerox.com

2 Department of Information and Computer Science, University of California at Irvine, Irvine, CA 92697, USA
eppstein@ics.uci.edu

Abstract. The regression depth of a hyperplane with respect to a set of n points in \mathbb{R}^d is the minimum number of points the hyperplane must pass through in a rotation to vertical. We generalize hyperplane regression depth to k-flats for any k between 0 and $d-1$. The $k=0$ case gives the classical notion of center points. We prove that for any k and d, deep k-flats exist, that is, for any set of n points there always exists a k-flat with depth at least a constant fraction of n. As a consequence, we derive a linear-time $(1+\varepsilon)$-approximation algorithm for the deepest flat. We also show how to compute the regression depth in time $O(n^{d-2} + n \log n)$ when $1 \leq k \leq d - 2$.

1. Introduction

Linear regression asks for an affine subspace (a flat) that fits a set of data points. The most familiar case assumes $d - 1$ independent or explanatory variables and one dependent or response variable, and fits a hyperplane to explain the dependent variable as a linear function of the independent variables. Quite often, however, there may be more than one dependent variable, and the multivariate regression problem requires fitting a lower-dimensional flat to the data points, perhaps even a succession of flats of increasing dimensions. Multivariate least-squares regression is easily solved by separately fitting

* Work of Eppstein was done in part while visiting Xerox PARC, and supported in part by NSF Grant CCR-9912338. Portions of this paper appeared at the 16th ACM Symposium on Computational Geometry [3] and the 12th ACM/SIAM Symposium on Discrete Algorithms [4].
each dependent variable, but this is not correct for other common forms of regression such as least sum of errors [10] or least median of squares [18].

Rousseeuw and Hubert [20] introduced regression depth as a robust criterion for linear regression. The regression depth of a hyperplane H fitting a set of n points is the minimum number of points whose removal makes H into a nonfit. A nonfit is a hyperplane that can be rotated to vertical (that is, parallel to the dependent variable’s axis) without passing through any points. The intuition behind this definition is that a vertical hyperplane posits no relationship between the dependent and independent variables, and hence many points should have to be invalidated in order to make a good regression hyperplane combinatorially equivalent to a vertical hyperplane. Since this definition does not make use of the size of the residuals, but only their signs, it is robust in the face of skewed or heteroskedastic (data-dependent) error models, and the known lower bounds on regression depth [2], [12] translate into statistical terms as a high breakdown point, indicating that maximum-depth regression is also robust to a large number of outliers in the data. Regression depth also has a number of other nice properties including invariance under affine transformations, and a connection to the classical notions of center points and data depth.

This paper generalizes regression depth to the case of more than one dependent variable, that is, to fitting a k-flat to points in \mathbb{R}^d. Our goal is to achieve similar robustness properties to those of regression depth: a distance-free affine-invariant definition robust against heteroskedastic errors, and lower bounds on depth indicating a high breakdown point. This generalization is not obvious: for example, consider fitting a line to points in \mathbb{R}^3. Generic lines can be rotated wherever one likes without passing through data points, so how are we to distinguish one line from another?

We start by reviewing previous work (Section 2) and stating our basic definitions (Section 3). We then provide a lemma that may be of independent interest, on finding a family of large subsets of any point set such that the family has no hyperplane transversal (Section 4). We prove the existence of deep k-flats for any k (Section 5), and give tight bounds on depths of lines in \mathbb{R}^3 (Section 6). We discuss related generalizations of Tverberg’s theorem (Section 7), describe a possible duality between regression depth for k-flats and $(d - k - 1)$-flats (Section 8), and outline an algorithm for approximating the deepest flat (Section 9). We conclude by describing a fast algorithm for testing the depth of a flat (Section 10). Along with the results proven in each section, we list open problems for further research.

2. Previous Work

Regression depth was introduced by Rousseeuw and Hubert [20] as a combinatorial measure of the quality of fit of a regression hyperplane. An older notion, variously called data depth, location depth, halfspace depth, or Tukey depth, similarly measures the quality of fit of a single-point estimator. It has long been known that there exists a point of location depth at least $\lceil n/(d + 1) \rceil$ (a center point). Rousseeuw and Hubert provided a construction called the catline [7] for computing a regression line for a planar point set with depth at least $\lceil n/3 \rceil$ in linear time, and conjectured [19] that in higher dimensions as well there should always exist a regression hyperplane of depth $\lceil n/(d + 1) \rceil$. Steiger
and Wenger [22] proved that a deep regression hyperplane always exists, but with a much smaller fraction than \(1/(d+1)\). Amenta et al. [2] solved the conjecture using an argument based on Brouwer’s fixed-point theorem and a close connection between regression depth and center points; independently, Mizera [12] also proved Rousseeuw and Hubert’s conjecture.

On the algorithmic front, Rousseeuw and Struyf [21] found methods for testing the regression depth of hyperplanes. Their time bounds are exponential in the dimension, unsurprising since the problem is NP-complete for unbounded dimension [2]. Van Kreveld et al. gave an \(O(n \log^2 n)\) algorithm for computing a deepest line in \(\mathbb{R}^2\) [8], and Langerman and Steiger [9] improved this to an optimal \(O(n \log n)\) time bound.

3. Definitions

Although regression is naturally an affine rather than projective concept, our constructions and definitions live most gracefully in projective space. We view \(d\)-dimensional real projective space as a renaming of objects in \((d+1)\)-dimensional affine space. (Affine space is the familiar Euclidean space, only we have not specified a distance metric.) A \(k\)-flat, for \(1 \leq k \leq d\), through the origin of \((d+1)\)-dimensional affine space is a projective \((k-1)\)-flat. In particular a line through the origin is a projective point and a plane through the origin is a projective line. A projective line segment is the portion of a projective line between two projective points, that is, a pair of opposite planar wedges with vertex at the origin.

We can embed affine \(d\)-space into projective space as a hyperplane that misses the origin. There is a unique line through any point of this hyperplane and the origin, and hence each point of affine space corresponds to a unique projective point. There is, however, one projective hyperplane, and many projective \(k\)-flats for \(k < d-1\), without corresponding affine flats; these are the projective \(k\)-flats parallel to the affine space. We say that these flats are at infinity.

Each projective point \(p\) corresponds to a dual projective hyperplane \(D(p)\), namely the hyperplane orthogonal to \(p\) at the origin in \((d+1)\)-dimensional affine space. Similarly a projective \(k\)-flat dualizes to its orthogonal \((d-k)\)-flat. Notice that in projective space, unlike in affine space, there are no exceptional cases: each \(k\)-flat is the dual of a \((d-k)\)-flat.

Now let \(X\) be a set of points in \(d\)-dimensional projective space. From now on we just say “point,” “line,” etc., rather than “projective point,” “projective line,” when there is no risk of confusion. We now propose a key definition: a distance between flats with respect to the points in \(X\). The definition is more intuitive in the dual formulation than in the primal, but we give both below for completeness. Let \(D(F)\) denote the flat that is dual to flat \(F\) and let \(D(X)\) denote the set of hyperplanes that are dual to points of \(X\). A double wedge is the (closed) region between two projective hyperplanes.

Definition 1. The crossing distance between two flats \(F\) and \(G\) with respect to \(X\) is the minimum number of hyperplanes of \(D(X)\) intersected by a closed projective line segment with one endpoint on \(D(F)\) and the other on \(D(G)\). In the primal formulation the crossing distance between \(F\) and \(G\) is the minimum number of points of \(X\) in a double wedge that contains \(F\) in one bounding hyperplane and \(G\) in the other.
We now turn our attention to linear regression and, for ease of understanding, we return temporarily to d-dimensional affine space. Assume that we designate k dimensions as independent variables and $d-k$ as dependent variables. Let I denote the linear subspace spanned by the independent dimensions. We call a k-flat vertical if its projection onto I is not full-dimensional, that is, if its projection is not all of I. For example, let $k=1$ and $d=3$ and think of the x-axis as representing the independent variable; then any line contained in a vertical plane (that is, parallel to the yz-plane) is vertical.

In projective space a k-flat is vertical if and only if it contains a point in a particular $(d-k-1)$-flat at infinity, which we call the $(d-k-1)$-flat at vertical infinity and denote by V_{d-k-1}.

Definition 2. The regression depth of a k-flat F is its crossing distance from V_{d-k-1}. Equivalently, the regression depth of F is the minimum number of points whose removal makes F into a nonfit, where a nonfit is a k-flat with crossing distance zero from V_{d-k-1}.

In terms of the affine space in which statistics more naturally occur, the regression depth of F is the minimum number of points in a double wedge, one boundary plane of which contains F, and the other boundary plane of which is parallel to all the dependent coordinate axes. Any k-flat at infinity meets V_{d-k-1} and therefore has depth zero. Therefore, any method for selecting a k-flat of nonzero regression depth will automatically choose a k-flat coming from the original affine space, rather than one that exists only in the projective space used for our definitions.

Note that, unlike the case for ordinary least squares, there does not seem to be any way of solving k-flat regression separately for each dependent variable. Even for the problem of finding a line in \mathbb{R}^3, combining the solution to two planar regression lines may result in a nonfit.

4. Nontransversal Families

In order to prove that deep k-flats exist, we need some combinatorial lemmas on large subsets of points without a hyperplane transversal.

Definition 3. Let S be a set of points in \mathbb{R}^d. Then we say that a hyperplane H cuts S if each of the two open halfspaces bounded by H contains at least one point of S. We say that a family of sets is transversal if there is a hyperplane that cuts all sets in the family.

Lemma 1 [11], [25]. Let d be a constant, and assume we are given a set of n points in \mathbb{R}^d and a parameter p. Then we can partition the points into p subsets, with at most $2n/p$ points in each subset, such that any hyperplane cuts $o(p)$ of the subsets.

Lemma 2 [1]. Let $p \geq q > d$ be constants. Then there is a constant $C(p, q, d)$ with the following property: if F is any family of point sets in \mathbb{R}^d, such that any p-tuple of sets in F contains a transversal subfamily of q sets, then F can be partitioned into $C(p, q, d)$ transversal subfamilies.
Theorem 1. Let \(d \) be a constant. Then there is a constant \(P(d) \) with the following property: for any set \(S \) of \(n \) points in \(\mathbb{R}^d \), we can find a nontransversal family of \(d + 1 \) subsets of \(S \), such that each subset in the family contains at least \(\lceil n/P(d) \rceil \) points of \(S \).

Proof. Choose \(p \) to be a multiple of three, sufficiently large that the \(o(p) \) bound of Lemma 1 is strictly smaller than \(p/(3C(d + 1, d + 1, d)) \), and let \(P(d) = 2p \). By Lemma 1, partition \(S \) into \(p \) subsets of at most \(2n/p \) points, such that any hyperplane cuts few subsets.

Let \(F \) be the family consisting of the largest \(p/3 \) subsets in the partition. If the smallest member of \(F \) contains \(m \) points, then the total size of all the members of the partition would have to be at most \((p/3) \cdot 2n/p + (2p/3) \cdot m = 2n/3 + 2pm/3 \), but this total size is just \(n \), so \(m \geq n/(2p) \) and each member of \(F \) contains at least \(n/P(d) \) points.

If each \((d + 1)\)-tuple of sets in \(F \) were transversal, we could apply Lemma 2 and partition \(F \) into \(C(p, q, d) \) transversal subfamilies, one of which would have to contain at least \(|F|/C(p, q, d) = p/(3C(d + 1, d + 1, d)) \) subsets. However, this violates the \(o(p) \) bound of Lemma 1, so \(F \) must contain a nontransversal \((d + 1)\)-tuple. This tuple fulfills the conditions of the statement of the lemma.

Clearly, \(P(1) = 2 \) since the median partitions any set of points on a line into two nontransversal subsets. Figure 1 depicts two different constructions showing that \(P(2) \leq 6 \). Although the bound of six is tight for these two constructions (as can be seen by the example of points equally spaced on a circle) we do not know whether there might be a different construction that achieves a better bound; the best lower bound we have found is the following:

Theorem 2. \(P(2) \geq \pi/(2 \sin^{-1} \frac{1}{3}) \approx 4.622 \).

Proof. We form a distribution on the plane by centrally projecting the uniform distribution on a sphere. We show that any nontransversal triple for this distribution must have a set with measure at most \(1/4.622 \) times the total measure. The same bound then holds in the limit for discrete point sets formed by taking \(\epsilon \)-approximations of this distribution.

Let \(S_i, i \in \{1, 2, 3\} \), denote the three nontransversal subsets of the plane maximizing the minimum measure of any \(S_i \). Without loss of generality, each \(S_i \) is convex. Consider the three lines tangent to two of the \(S_i \), and separating them from the third set (such a line must exist since the sets are nontransversal). These lines form an arrangement with seven (possibly degenerate) faces: a triangle adjacent on its edges to three three-sided infinite cells, and on its vertices to three two-sided infinite cells. The sets \(S_i \) coincide with the three-sided infinite cells: any set properly contained in such a cell could be extended to the whole cell without violating the nontransversality condition, and if they instead coincided with the two-sided cells we could shrink the arrangement’s central triangle while increasing the sizes of all three \(S_i \). The two arrangements in Fig. 1 can both be viewed as such three-line arrangements, degenerate in different ways.

Each line in the plane lifts by central projection to a great circle on the sphere. Consider the great circles formed by lifting four lines: the three lines considered above and the line at infinity. Any arrangement of four circles on the sphere cuts the sphere in the pattern
of a (possibly degenerate) cuboctahedron (Fig. 2(a)). The three-sided infinite cells in the plane lift to quadrilateral faces of this cuboctahedron. Note that the area of a spherical quadrilateral is the sum of its internal angles, minus 2π.

Form the dual of the arrangement by treating each great circle as an “equator” and placing a pair of points at the corresponding two poles. The geodesics between these points form a cuboid pattern (Fig. 2(b)) such that the length of each geodesic is an angle complementary to one of the cuboctahedron quadrilaterals’ internal angles. Thus, the cuboid minimizing the maximum quadrilateral perimeter corresponds to the cuboctahedron maximizing the minimum quadrilateral area. However, any spherical cuboid has at least one face covering at least one-sixth of the sphere, and the minimum perimeter for such a quadrilateral is achieved when the quadrilateral is a square. Therefore, the regular cube minimizes the maximum perimeter and the regular cuboctahedron maximizes the minimum area. The ratio of a regular cuboctahedron’s square face area to the area of a full hemisphere is the value given, $\pi/(2 \sin^{-1} \frac{1}{3}) \approx 4.622$. □

![Fig. 1](image1.png)

Fig. 1. Construction of three nontransversal sets of $n/6$ points in \mathbb{R}^2: (a) catline, formed by partitioning the point set vertically into equal thirds, and making a ham sandwich cut of the leftmost and rightmost $2n/3$ points; (b) subdivision by three coincident lines into equal sixths.

![Fig. 2](image2.png)

Fig. 2. (a) Four great circles subdivide a sphere in the pattern of a cuboctahedron. (b) Four pairs of opposite points, connected by great circle arcs in the pattern of a cuboid.
We also do not know tight bounds on $P(d)$ for $d \geq 3$. The proof of Theorem 1 (using the best known bounds in Lemma 1 [11]) leads to upper bounds of the form $O(C(d + 1, d + 1, d)^{-d})$. We may be able to improve this somewhat, to $O(C(d + 1, d, d - 1)^{-d})$, by a more complicated construction: Project the points arbitrarily onto a $(d - 1)$-dimensional subspace, find a partition in the subspace, and use Lemma 2 to find a family F of $d + 1$ subsets such that no subfamily of d subsets has a transversal. As in the catline construction [7], group these subsets into d pairs, and form a ham sandwich cut in \mathbb{R}^d that partitions each subset in F in the same proportion $a : b$, and such that the half-subsets of size a are above or below the ham sandwich cut accordingly as the members of the family of $d + 1$ subsets are on one or the other side of a Radon partition of those subsets in \mathbb{R}^{d-1}. Without loss of generality, $a > b$; then choose the $d + 1$ subsets required by Lemma 1 to be the ones of size a.

Open Problem 1. Prove tighter bounds on $P(d)$ for $d \geq 2$.

5. **Deep Flats**

It was previously known that deep k-flats exist for $k = 0$ [16] and $k = d - 1$ [2], [22]. In this section we show that such flats exist for all other values of k.

We first need one more result, a common generalization of centerpoints and the ham sandwich theorem, known as the center transversal theorem:

Lemma 3 [5], [26]. Let $k + 1$ point sets be given in \mathbb{R}^d, each containing at least m points, where $0 \leq k < d$. Then there exists a k-flat F such that any closed halfspace containing F contains at least $\lceil m/(d - k + 1) \rceil$ points from each set.

The weaker bound $\lceil m/(d + 1) \rceil$ can be proven simply by choosing a flat through the centerpoint of each subset.

Theorem 3. Let d and $0 \leq k < d$ be constants. Then there is a constant $R(d, k)$ such that for any set of n points with k independent and $d - k$ dependent degrees of freedom, there exists a k-flat of regression depth at least $\lceil n/R(d, k) \rceil$.

Proof. Project the points vertically onto the subspace spanned by the k independent directions, in such a way that the inverse image of each point in the projection is a $(d - k)$-flat containing V_{d-k-1}. By Theorem 1, we can find a family of $k + 1$ subsets of the data points, each with $n/P(k)$ points, such that the k-dimensional projection of this family has no transversal. We then let F be the k-flat determined by applying Lemma 3 to this family of subsets.

Then consider any double wedge bounded by a hyperplane containing F and a hyperplane containing V_{d-k-1}. The vertical boundary of this double wedge projects to a hyperplane in \mathbb{R}^k, so it must miss one of the $k + 1$ subsets in the family. Within this missed subset the double wedge appears to be simply a halfspace through F. By Lemma 3, the double wedge must therefore contain at least $n/(d - k + 1)P(k)$ points. Thus if we let $R(d, k) = (d - k + 1)P(k)$ the theorem is satisfied. □
For $k = 0$ or $k = d - 1$ we know that $R(d, k) = d + 1$ [2]. However, exact values are not known for intermediate values of k.

Open Problem 2. Prove tighter bounds on $R(d, k)$ for $1 \leq k \leq d - 2$.

The following conjecture would follow from the assumption that $R(d, k)$ is a linear function of d for fixed k (as the $O(d)$ bound of Theorem 3 makes plausible), since $R(k, k) = 1$ and $R(k + 1, k) = k + 2$. It also matches the known results $R(d, 0) = R(d, d - 1) = d + 1$ and the bounds $R(d, 1) \leq 2d - 1$ and $R(3, 1) = 5$ of the following section. Finally, Ivan Mizera (personal communication) has pointed out that the conjectured bound is simply one plus the number of degrees of freedom of a k-flat in \mathbb{R}^d.

Conjecture 1. $R(d, k) = (k + 1)(d - k) + 1$.

Mizera has recently (in parallel with our work) generalized regression depth to a general measure-theoretic setting. In this setting the existence and depth of deepest regressors can be proved using methods from calculus and a relatively simple topological result such as the Borsuk–Ulam theorem. Under suitable smoothness or general position assumptions, the depth of a deepest regressor will be $1/(p + 1)$, where p is the dimension of the space of regressors. Mizera’s general results imply the analogue of Conjecture 1 for the case of smooth distributions.

6. Tighter Bounds for Lines

The method used in the proof of Theorem 3 shows that $R(d, 1) \leq 2d$. This can be slightly improved using a technique of overlapping sets borrowed from the catline construction.

Theorem 4. $R(d, 1) \leq 2d - 1$.

Proof. The proof of Theorem 3 can be viewed as projecting the points onto a horizontal line, dividing the line into two rays at the median of the points, and applying the center transversal theorem to the two sets of $n/2$ points contained in each ray. Instead, we project the points onto the horizontal line as before, but partition this line into three pieces: two rays containing $(d - 1)n/(2d - 1)$ points each, and a line segment in the middle containing the remaining $n/(2d - 1)$ points. We then apply the center transversal theorem to two sets S_1 and S_2 of $dn/(2d - 1)$ points each, formed by the points having a projection in the union of the middle segment and one of the two rays. This theorem finds a line such that no halfspace containing it has fewer than $n/(2d - 1)$ points in either of the sets S_i. We claim that this line has regression depth at least $n/(2d - 1)$.

To prove this, consider any double wedge bounded by two hyperplanes, one containing the regression line and the other vertical. The vertical hyperplane intersects the horizontal projection line in a single point. If this intersection point is in one of the two rays, then the vertical hyperplane misses the set S_i formed by the other ray and the middle segment.
In this case the double wedge contains the same subset of S_i as a halfspace bounded by the double wedge’s other bounding plane, and contains at least $n/(2d - 1)$ points of S_i.

In the remaining case the vertical boundary of the double wedge intersects the horizontal projection line in its middle segment. Within each set S_i, the double wedge differs from a halfspace (bounded by the same nonvertical plane) only within the subset of points projecting to this middle segment. However, the halfspace corresponding to the double wedge in S_j is complementary to the halfspace corresponding to the double wedge in S_2. Therefore, if we let X_i denote the set of points in the halfspace but not in the double wedge for each set S_j, then X_1 and X_2 are disjoint subsets of the middle $n/(2d - 1)$ points. The number of points in the double wedge within S_i must be at least $n/(2d - 1) - |X_i|$, so the total number of points in the double wedge is at least $2n/(2d - 1) - |X_1 \cup X_2| \leq 2n/(2d - 1) - n/(2d - 1) = n/(2d - 1)$.

Thus in all cases the double wedge contains at least $n/(2d - 1)$ points, showing that the line has depth at least $n/(2d - 1)$.

As evidence that this $2d - 1$ bound may be tight, we present a matching lower bound for $d = 3$.

Theorem 5. \(R(3, 1) = 5. \)

Proof. We have already proven that $R(3, 1) \leq 5$, so we need only show that $R(3, 1) \geq 5$. We work in the dual space, and construct an arrangement of n planes in \mathbb{R}^3, for n any multiple of 5, such that any line has depth at most $n/5$.

Our arrangement consists of five groups of nearly parallel closely spaced planes, which we label A_1, A_2, B_1, B_2, and C. Rather than describe the whole arrangement, we describe the line arrangements in the planar cross sections at $x = 1$ and $x = -1$. Recall that the depth of a line in the three-dimensional arrangement is the minimum number of planes crossed by any vertical ray starting on the line. Limiting attention to rays contained in the two cross sections (and hence to the planar depth of the two points where the given line intersects these cross sections) gives an upper bound on the depth of the line, and so a lower bound on $R(3, 1)$.

In the first cross section we place the groups of lines as shown in Fig. 3(a), with the region where A_1 and A_2 cross contained inside the triangle formed by the other three groups. Moreover, A_1 and A_2 do not cross side B_2 of the triangle, instead crossing group B_1 at points outside the triangle. The points where members of A_1 intersect each other are positioned on segment $CA_1 - A_1A_2$. Similarly, the crossings within A_2 are situated on segment $A_1A_2 - A_2B_1$. The crossings within B_1, B_2, and C are situated along the corresponding sides of the triangle formed by these three groups.

In the cross section formed as described above, points from most cells in the arrangement can reach infinity while crossing only one group, and so have depth at most $n/5$. It is only within the segments $CA_1 - A_1A_2$ and $A_1A_2 - A_2B_1$ that a point can have higher depth. The arrangement is qualitatively similar for nearby cross sections $x = 1 \pm \epsilon$. Therefore, any deep line in \mathbb{R}^3 must be either nearly parallel to A_1 and not near any B_i, or nearly parallel to A_2 and not near B_2.

In the second cross section (Fig. 3(b)), the groups A_i and B_i reverse roles: the point where B_1 and B_2 cross is contained in the triangle determined by the other three groups,
and the other details of the arrangement are situated in a corresponding manner. Therefore, any deep line would have to be either nearly parallel to B_1 and not near any A_i, or nearly parallel to B_2 and not near A_2.

There is no difficulty forming these two cross sections from a single plane arrangement, since (as shown in Fig. 3) the slopes of the lines within each group can remain the same in each cross section. However, the requirements imposed on a deep line by these two cross sections are contradictory, so no line can have depth more than $n/5$ in this arrangement.

We believe that a similar proof can be used to prove a more general $2d - 1$ lower bound on $R(d, 1)$ in any dimension, matching the upper bound in Theorem 4: form an arrangement with hyperplane groups A_i, B_i, and C, so that in one cross section the A_i meet in a vertex contained in a simplex formed by the other groups, and in the other cross section the groups A_i and B_i exchange roles. However, we have not worked out the details of where to place the intersections within groups, how to choose hyperplane angles such that the inner groups miss a face of the outer simplex in both cross sections, or which cells of the resulting arrangements can have high depth.

7. Generalizations of Tverberg’s Theorem

A Tverberg partition of a set of point sites is a partition of the sites into subsets, the convex hulls of which all have a common intersection. The Tverberg depth of a point t is the maximum cardinality of any Tverberg partition for which the common intersection contains t. Note that the Tverberg depth is a lower bound on the location depth. Tverberg’s theorem [23], [24] is that there always exists a point with Tverberg depth $[n/(d + 1)]$ (a Tverberg point); this result generalizes both the existence of center points (since any Tverberg point must be a center point) and Radon’s theorem [17] that any $d + 2$ points have a Tverberg partition into two subsets.
Another way of expressing Tverberg’s theorem is that for any point set we can find both a partition into \([n/(d + 1)]\) subsets, and a point \(t\), such that \(t\) has nonzero depth in each subset of the partition. Stated this way, there is a natural generalization to higher-dimensional flats:

Theorem 6. Let \(d\) and \(0 \leq k < d\) be constants. Then there is a constant \(T(d, k)\) such that for any set of \(n\) points with \(k\) independent and \(d - k\) dependent degrees of freedom, there exists a \(k\)-flat \(F\) and a partition of the points into \([n/T(d, k)]\) subsets, such that \(F\) has nonzero regression depth in each subset.

Proof. As in the proof of Theorem 3, we project the points onto the subspace spanned by the \(k\) independent directions, in such a way that the inverse image of each point in the projection is a \((d - k)\)-flat containing \(V_{d-k-1}\). By Theorem 1, we can find a family of \(k + 1\) subsets \(S_i\), each with \(n/P(k)\) points, such that the \(k\)-dimensional projection of this family has no transversal. We then find a Tverberg point \(t_i\) and a Tverberg partition of each set \(S_i\) into subsets \(T_{i,j}\), for \(1 \leq j \leq [n/(P(k)(d + 1))]\). We let \(F\) be the \(k\)-flat spanning these \(k + 1\) Tverberg points. We form each set \(T_j\) in our Tverberg partition as the union \(\bigcup T_{i,j}\). Some points of \(S\) may not belong to any set \(T_{i,j}\), in which case they can be assigned arbitrarily to any set \(T_i\).

Then consider any double wedge bounded by a hyperplane containing \(F\) and a hyperplane containing \(V_{d-k-1}\). The vertical boundary of this double wedge projects to a hyperplane in \(\mathbb{R}^k\), so it must miss one of the \(k + 1\) subsets \(S_i\). Within \(S_i\) the double wedge appears to be simply a halfspace through \(t_i\). It therefore contains at least one point of each set \(T_{i,j}\) and a fortiori at least one point of each set \(T_j\). Thus if we let \(T(d, k) = (d + 1)P(k)\) the theorem is satisfied.

We know that \(T(d, 0) = d + 1\) by Tverberg’s theorem, and the catline [7] shows that \(T(2, 1) = 3\). However, even in the case \(k = d - 1\) we do not know a tight bound; Rousseeuw and Hubert [19], [20] conjectured that \(T(d, d - 1) = d + 1\) but the best bounds from our previous paper [2] are \(T(d, d - 1) \leq d(d + 1)\) and \(T(3, 2) \leq 6\).

Open Problem 3. Prove tighter bounds on \(T(d, k)\) for \(1 \leq k \leq d - 1\).

8. **Duality**

There is a natural relation between finding a deep \(k\)-flat and finding a deep \((d-k-1)\)-flat: in both cases one wants to find a \(k\)-flat and a \((d - k - 1)\)-flat that are far apart from each other, and the problems only differ in which of the two flats is fixed at vertical infinity, and which is to be found.

In our previous paper [2] we exploited this connection in the following way, to show that \(R(d, d - 1) = d + 1\). A centerpoint (corresponding to \(R(d, 0)\)) is just a point far from a given “hyperplane at infinity”; in projective \(d\)-space, this hyperplane can be chosen arbitrarily, resulting in different centerpoint locations. We found an appropriate way to replace the input point set by a smooth measure, and modify the definition of
a centerpoint, in such a way that we could show that the modified centerpoint location varied continuously as a function of the position of the hyperplane at infinity. We then used a variant of the Brouwer fixed point theorem to show that this function is surjective. A hyperplane in the inverse image of the point at vertical infinity is the desired deep regression plane.

Conjecture 1 implies that \(R(d, k) = R(d, d - k - 1) \), and one would naturally hope for a proof of this equality generalizing our previous proof that \(R(d, d - 1) = R(d, 0) \). Currently, the main obstacle is that we do not know how to modify the definition of a deep \(k \)-flat in such a way as to choose a unique flat which varies continuously as a function of the location of the \((d - k - 1)\)-flat at infinity. A similar lack of a continuous version of Tverberg’s theorem blocked our attempts to prove that \(T(d, d - 1) = d + 1 \). We believe that if we can solve this technical difficulty, topological techniques should prove the essential equivalence of the \(k \) and \(d - k - 1 \) cases.

Open Problem 4. Does \(R(d, k) = R(d, d - k - 1) \) for \(1 \leq k \leq d - 2 \)?

Open Problem 5. Does \(T(d, k) = T(d, d - k - 1) \) for \(0 \leq k \leq d - 1 \)?

9. **Approximating the Deepest Flat**

We now show how to use our proof that deep flats exist as part of an algorithm for finding an approximate deepest flat. We begin with an inefficient exact algorithm.

Theorem 7. Let \(d \) and \(k \) be constants. Then we can find the deepest \(k \)-flat for a collection of \(n \) points in \(\mathbb{R}^d \), in time \(n^{O(1)} \).

Proof. Let \(A \) be the arrangement of hyperplanes dual to the \(n \) given points. The distance from points in \(\mathbb{R}^d \) to \(V_{d-k-1} \) is constant within each cell of \(A \), and all such distances can be found in time \(O(n^d) \) by applying a breadth first search procedure to the arrangement. The depth of a \(k \)-flat \(F \) is just the minimum depth of any cell of \(A \) pierced by \(F \). Any two flats that pierce the same set of cells of \(A \) have the same depth.

The space of \(k \)-flats forms a \(((k + 1)(d - k)) \)-dimensional algebraic set \(F^d_k \), in which the flats touching any \((d - k - 1) \)-dimensional cell of \(A \) form a subset of codimension one. The arrangement of these \(O(n^d) \) subsets partitions \(F^d_k \) into \(O(n^{d(k+1)(d-k)+\varepsilon}) \) cells, corresponding to collections of flats that all pierce the same set of cells. We can construct this arrangement, and walk from cell to cell maintaining a priority queue of the depths of the cells in \(A \) pierced by the flats in the current cell, in time \(O(n^{d(k+1)(d-k)+\varepsilon}) \).

We now use standard geometric sampling techniques to combine this exact algorithm with our lower bound on depth, resulting in an asymptotically efficient approximation algorithm.

Theorem 8. Let \(d \), \(k \), and \(\delta > 0 \) be constants. Then we can find a \(k \)-flat with depth within a \((1 - \delta)\) factor of the maximum, for a collection of \(n \) points in \(\mathbb{R}^d \), in time \(O(n) \).
The crossing distance between a point and a hyperplane can be found in time $O(n \log n)$ by examining the arrangement’s restriction to the hyperplane (as described later), and the same bound applies to testing the depth of a hyperplane or point. We show that, in contrast, the depth of a flat of any other dimension can be found in randomized time $O(n^{d-2} + n \log n)$. More generally, the crossing distance between a j-flat and a k-flat can be found in time $O(n^{j+k-1} + n \log n)$ when $1 \leq j, k \leq d - 2$.

We first show that the crossing distance can be reduced to finding a minimally covered point in a certain family of sets. Suppose we are given an arrangement of hyperplanes, a j-flat \mathcal{F}_1, and a k-flat \mathcal{F}_2. We wish to determine the line segment, having one endpoint on each flat, that crosses as few arrangement hyperplanes as possible.

We begin by parametrizing the space of relevant line segments. Without loss of generality the two flats do not meet (else the crossing distance is zero) so any pair of points from $\mathcal{F}_1 \times \mathcal{F}_2$ determines a unique line. The pair divides the line into two complementary line segments (one through infinity), so we need to augment each point of $\mathcal{F}_1 \times \mathcal{F}_2$ by an additional bit of information to specify each possible line segment. We do this topologically: \mathcal{F}_1 is a projective space, having as its double cover a j-sphere \mathcal{S}_1, and similarly the double cover of \mathcal{F}_2 is a k-sphere \mathcal{S}_2. The product $\mathcal{S}_1 \times \mathcal{S}_2$ supplies two extra bits of information per point, and there is a continuous two-to-one map from $\mathcal{S}_1 \times \mathcal{S}_2$ to the line segments connecting the two flats.

Now consider subdividing $\mathcal{S}_1 \times \mathcal{S}_2$ according to whether the corresponding line segments cross or do not cross a hyperplane \mathcal{H} of the arrangement. The boundary between crossing and noncrossing line segments is formed by the segments with an endpoint on a great sphere formed by intersecting \mathcal{H} with \mathcal{S}_1 or \mathcal{S}_2. The line segments that cross \mathcal{H} therefore correspond to a set $(\mathcal{H}_1 \times \mathcal{H}_2) \cup (\mathcal{H}_1 \times \mathcal{H}_2)$, where \mathcal{H}_i is a hemisphere bounded...
Fig. 4. Computing the crossing distance between two lines (1-flats) is equivalent to finding a minimally covered point on the torus $S_1 \times S_2$.

by the intersection of \mathcal{H} with S_i. A line segment crossing the fewest hyperplanes then corresponds to a point in the fewest such sets.

For example, Fig. 4 illustrates the case in which \mathcal{F}_1 and \mathcal{F}_2 are each lines. The space of line segments with one endpoint on \mathcal{F}_1 and the other endpoint on \mathcal{F}_2 is doubly covered by the two-dimensional torus $S_1 \times S_2$, which we have cut along two circles to show as a square. The solid dots represent the same line segment; the hollow dots represent the complementary line segment. Three covering sets of the form $(\mathcal{H}_1 \times \bar{\mathcal{H}}_2) \cup (\bar{\mathcal{H}}_1 \times \mathcal{H}_2)$ are shown; their boundaries are shown dotted, dashed, and solid respectively, and the interiors of the sets are shaded. (The dotted boundary happens to align with the circles that cut the torus down to a square.)

Since the union in each set of the form $(\mathcal{H}_1 \times \bar{\mathcal{H}}_2) \cup (\bar{\mathcal{H}}_1 \times \mathcal{H}_2)$ is a disjoint union, we can simplify the problem a bit by cutting each such set into two products of hemispheres. We summarize the discussion above with a lemma.

Lemma 4. Computing the crossing distance between flats \mathcal{F}_1 and \mathcal{F}_2 is equivalent to finding a point in a product of spheres $S_1 \times S_2$ that is covered by the fewest sets from a given family of subsets, each of which is a product of hemispheres $\mathcal{H}_1 \times \mathcal{H}_2$.

We now show how to solve the problem given in Lemma 4. We first consider the special case of the crossing distance between a point and hyperplane, that is, $j = 0$ and $k = d - 1$. In this case the product of spheres is a disjoint pair of $(d - 1)$-spheres, both covered identically by a family of hemispheres, so we can treat it as if it were just a single sphere. We would like to find a point on this sphere that is covered by the fewest hemispheres. We can build the entire arrangement of hemispheres in time $O(n^{d-1} + n \log n)$ using a slight modification of an algorithm for computing a hyperplane arrangement [6], and compute the number of hemispheres covering each cell by stepping from cell to cell in constant time per step. Any minimally covered cell gives a solution.
Next we consider the special case of the crossing distance between two lines, that is, \(j = k = 1 \). The product of spheres \(S_1 \times S_2 \) is just a 2-torus, and the products of hemispheres are just products of semicircles. We cut the torus into a square as in Fig. 4; each product of semicircles turns into a set of at most four rectangles. We refer to the horizontal and vertical projections of these rectangles as \textit{segments}.

We can now use a standard sweep-line algorithm to compute a point in \(S_1 \times S_2 \) covered by a minimum number of sets. Conceptually we sweep a vertical line from left to right across Fig. 4. We use a segment tree \[15\] to represent the vertical segments crossed by the sweep line; we assume that vertical represents \(S_2 \). As usual with segment trees, each vertical segment \(H_2 \) appears at \(O(\log n) \) nodes of the segment tree, exactly those nodes whose intervals are covered by \(H_2 \) but whose parents’ intervals are not covered by \(H_2 \). (Here we denote vertical segments by \(H_2 \), even though some of them are just “halves” of the original semicircles \(H_2 \).

We equip each node \(v \) of the segment tree with an additional piece of information: the minimum number of \(H_2 \) segments covering some point in the interval corresponding to \(v \). This \textit{coverage number} can be computed by taking the minimum of the numbers at \(v \)’s two children and adding the number of segments listed at \(v \) itself.

We sweep horizontally across the square. The \textit{events} in the sweep algorithm correspond to endpoints of segments on \(S_1 \). At each endpoint of a segment we update the segment tree along with the coverage numbers at its nodes. Coverage numbers change at only \(O(\log n) \) nodes: the ancestors of the nodes storing the newly inserted or deleted vertical segment. The coverage number at the root gives the minimally covered cell currently crossed by the sweep line. We also maintain the overall minimum covering seen so far, and update this minimum at each event. At the end of the sweep, the overall minimum gives the answer. We have obtained the following theorem.

Theorem 9. \textit{The crossing distance between two lines in an arrangement in} \(\mathbb{R}^d \), \textit{or the regression depth of a line in} \(\mathbb{R}^3 \), \textit{can be found in time} \(O(n \log n) \).

This bound is tight in the algebraic decision tree model of computing: Langerman and Steiger \[9\] proved an \(\Omega(n \log n) \) lower bound in this model for computing the depth of a point or line in \(\mathbb{R}^2 \), which is equivalent to the special case of our three-dimensional problem in which all the points are in a vertical plane.

For general \(j \) and \(k \), we use a randomized recursive decomposition in place of the segment tree.

Lemma 5. \textit{Given an arrangement of hyperplanes in} \(\mathbb{R}^d \), \textit{we can produce a recursive binary decomposition of} \(\mathbb{R}^d \), \textit{with high probability in time} \(O(n^d + n \log n) \), \textit{such that any halfspace bounded by an arrangement hyperplane has (with high probability) a representation as a disjoint union of decomposition cells with} \(O(n^{d-1} + \log n) \) \textit{ancestors}.

Proof. We apply a randomized incremental arrangement construction algorithm. Each cell in the recursive decomposition is an arrangement cell at some stage of the construction. The bound on the representation of a halfspace comes from applying the methods of \[14\], pp. 120–123] to the zone of the boundary hyperplane.
The same method applies essentially without change to spheres and hemispheres, so we can apply it to the sets occurring in Lemma 4. Each product of hemispheres occurring in Lemma 4 can be represented as disjoint unions of \(O(n^{j+k-2})\) products of cells in the product of the two recursive decompositions formed by applying Lemma 5 to \(S_1\) and \(S_2\). Since there are \(O(n)\) products of hemispheres, we have overall \(O(n^{j+k-1})\) products of cells.

The algorithm has a similar structure to the algorithm for the case \(j = k = 1\), only the simple sweep order for processing the cells of \(S_1\) is replaced by a depth-first traversal of the recursive decomposition of \(S_1\). As in the sweep algorithm, we maintain a coverage number for each cell of the decomposition of \(S_2\). The coverage number measures the fewest \(H_2\) hemispheres covering some point in that cell, where the \(H_2\) hemispheres come from pairs \(H_1 \times H_2\) for which \(H_1\) covers the current cell in the traversal of \(S_1\). These numbers are computed by taking the minimum number for the cell’s two children and adding the number of hemispheres whose decomposition uses that cell directly. When the traversal visits a cell in \(S_1\), we determine the set of hemispheres whose decomposition uses that cell, and update the numbers for the ancestors of cells covering the corresponding hemispheres in \(S_2\). Each hemisphere product leads to \(O(n^{j+k-2})\) update steps, so the total time for this traversal is \(O(n^{j+k-1})\). We also maintain the overall minimum covering seen so far, and take the minimum with the number at the root of the decomposition of \(S_2\) whenever the depth-first traversal reaches a leaf in the decomposition of \(S_1\).

When one flat—say \(F_1\)—is a line, this method’s time includes an unwanted logarithmic factor. To avoid this factor, we return to a sweep algorithm as the case \(j = k = 1\). We sweep across \(S_1\), using the hierarchical decomposition data structure for \(S_2\) in place of the segment tree. When the traversal reaches an endpoint of an interval \(H_1\), we update the cells for the corresponding hemisphere \(H_2\).

We summarize with the following theorem. It is likely that \(\varepsilon\)-cuttings can derandomize this result.

Theorem 10. The crossing distance between a \(j\)-flat and a \(k\)-flat can be found with high probability in time \(O(n^{j+k-1} + n \log n)\) for \(1 \leq j, k\). The depth of a \(k\)-flat for \(1 \leq k \leq d - 2\) can be found in time \(O(n^{d-2} + n \log n)\) with high probability.

Acknowledgments

The authors thank Peter Rousseeuw for helpful comments on a draft of this paper, Ivan Mizera for thoughts on Conjecture 1, and Joel Hass for topological assistance with Open Problem 4.

References

1. N. Alon and G. Kalai. Bounding the piercing number. *Discrete Comput. Geom.* 13(3–4):245–256, 1995.
2. N. Amenta, M. Bern, D. Eppstein, and S.-H. Teng. Regression depth and center points. *Discrete Comput. Geom.* 23(3):305–323, 2000. cs.CG/9809037.
3. M. Bern and D. Eppstein. Multivariate regression depth. *Proc. 16th Symp. Computational Geometry*, pp. 315–321. ACM, New York, June 2000. cs.CG/9912013.

4. M. Bern and D. Eppstein. Computing the depth of a flat. *Proc. 12th Symp. Discrete Algorithms*, pp. 700–701. ACM, New York, and SIAM, Philadelphia, PA, 2001. cs.CG/0009024.

5. V. L. Dol’nikov. A generalization of the sandwich theorem. *Mat. Zametki* 52(2):27–37, 1992.

6. H. Edelsbrunner. *Algorithms in Combinatorial Geometry*. EATCS Monographs on Theoretical Computer Science 10. Springer-Verlag, New York, 1987.

7. M. Hubert and P. J. Rousseeuw. The catline for deep regression. *J. Multivariate Anal.* 66:270–296, 1998. http://win-www.uia.ac.be/u/statist/publicat/catline_abstr.html.

8. M. van Kreveld, J. S. B. Mitchell, P. J. Rousseeuw, M. Sharir, J. Snoeyink, and B. Speckmann. Efficient algorithms for maximum regression depth. *Proc. 15th Symp. Computational Geometry*, pp. 31–40. ACM, New York, June 1999.

9. S. Langerman and W. Steiger. An $O(n \log n)$ algorithm for the hyperplane median in \mathbb{R}^2. *Proc. 11th Symp. Discrete Algorithms*, pp. 54–59. ACM, New York, and SIAM, Philadelphia, PA, January 2000.

10. Z. J. Liu. Robustness of least distances estimate in multivariate linear models. *Statistics and Decision* 19(2):17–25.

11. J. Matoušek. Efficient partition trees. *Discrete Comput. Geom.* 8(3):315–334, 1992.

12. I. Mizera. On depth and deep points: a calculus. *Inst. Math. Statist. Bull.* 27(4), 1998. http://www.dcs.fmph.uniba.sk/~mizera/PS/depthps.ps. Full version to appear in *Annals of Statistics*.

13. I. Mizera and M. Volauf. Continuity of halfspace depth contours and maximum depth estimators: diagnostics of depth-related methods. http://www.dcs.fmph.uniba.sk/~mizera/PS/mizvolps.ps. Submitted, 2000.

14. K. Mulmuley. *Computational Geometry: An Introduction Through Randomized Algorithms*. Prentice-Hall, Englewood Cliffs, NJ, 1994.

15. F. P. Preparata and M. I. Shamos. *Computational Geometry: An Introduction*. Springer-Verlag, New York, 1985.

16. R. Radon. A theorem on general measure. *J. London Math. Soc.* 21:291–300, 1946.

17. J. Radon. Mengen kon vexer Körper, die einen gemeinsamen Punkt Enthalten. *Math. Ann.* 83:113–115, 1921.

18. P. J. Rousseeuw. Least median of squares regression. *J. Amer. Statist. Assoc.* 79:871–880, 1984.

19. P. J. Rousseeuw and M. Hubert. Depth in an arrangement of hyperplanes. *Discrete Comput. Geom.* 22:167–176, 1999. http://win-www.uia.ac.be/u/statist/publicat/arrang_abstr.html.

20. P. J. Rousseeuw and M. Hubert. Regression depth. *J. Amer. Statist. Assoc.* 94(446):388–402, June 1999. http://win-www.uia.ac.be/u/statist/publicat/depth_abstr.html.

21. P. J. Rousseeuw and A. Struyf. Computing location depth and regression depth in higher dimensions. *Statist. Comput.* 8(3):193–203, August 1998. http://win-www.uia.ac.be/u/statist/publicat/comppdepth_abstr.html.

22. W. Steiger and R. Wenger. Hyperplane depth and nested simplices. *Proc. 10th Canad. Conf. Computational Geometry*. McGill University, 1998. http://cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-steiger-hyperplane.ps.gz.

23. H. Tverberg. A generalization of Radon’s theorem. *J. London Math. Soc.* 41:123–128, 1966.

24. H. Tverberg. A generalization of Radon’s theorem, II. *Bull. Austral. Math. Soc.* 24(3):321–325, 1981.

25. A. C. Yao and F. F. Yao. A general approach to d-dimensional geometric queries (extended abstract). *Proc. 17th Symp. Theory of Computing*, pp. 163–168. ACM, New York, May 1985.

26. R. T. Živaljević and S. T. Vrecica. An extension of the ham sandwich theorem. *Bull. London Math. Soc.* 22(2):183–186, 1990.

Received November 7, 2000, and in revised form October 31, 2001. Online publication March 27, 2002.