Immunomodulatory Activity, GC-MS Analysis and Pharmacokinetic Potential of Camellia Sinensis

Surbhi Pradhan (✉ surbhipradhan93@gmail.com)
Dev Bhoomi Group of Institutions https://orcid.org/0000-0001-7206-8950

R. C. Dubey
Gurukula Kangri University: Gurukula Kangri vishwavidyalaya

Research Article

Keywords: C. sinensis, cellular immunity, humoral immunity, GC-MS analysis, SwissADME

DOI: https://doi.org/10.21203/rs.3.rs-708099/v1

License: ☕️ ☀️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The immunomodulatory activities of medicinal plants are well-known. Medicinal plants found natural components enhance the immune system. However, both the *Camellia sinensis* is found a large number of bioactive compounds that make it strong to fight against ailments. It plays a significant role in cell-mediated and humoral immunity. The immunomodulatory activity of *C. sinensis* was carried out by neutrophil adhesion test, antibody titer and delayed-type hypersensitivity. The present study was aimed to investigate the immunomodulatory activity of methanolic extract of *Camellia sinensis* in Wistar albino rats. GC–MS analysis was carried out on the potent plant (*C. sinensis*) to recognize bioactive volatile compounds, for their therapeutic properties, respectively. *C. sinensis* treated animals showed a significant outcome at dose 200 mg. GC–MS analysis was carried out of the *C. sinensis* to recognize bioactive volatile compounds. Out of 20, five major compounds were found are 2-Pentanone, 4-hydroxy-4-methyl, Caffeine, 1-H Benzimidazole, 2-phenyl, Hexadecenoic acid, 15-methyl, methyl ester, Trans-13-Octadecenoic acid, methyl ester. In this study, *C. sinensis* has more potential to modulate the immune system in experimental animals. This study provides a substantial way to replace deleterious medicines and provides natural compounds that a part of the lifestyle to get rid of diseases. The highest % area was found is 1-H Benzimidazole 2-phenyl. The pharmacokinetic property of bioactive compound was carried out by SwissADME tool.

Introduction

The immune system plays a significant role to fight against foreign bodies (Rahayu *et al*., 2018). Medicinal plants are an abundant source of bioactive substances that are obliging to enhance the immune system of our body. In Ayurveda, traditional medicinal plants create attention to build up a body defense mechanism against various threatening diseases (Shukla and Mehta, 2015). The notion of immunomodulation relates to the non-specific activation of the immune system. It is a non-antigen-dependent reaction and triggers the function and activation of macrophages, granulocytes, natural killer cells, lymphocytes, and also the production of various effectors molecules by activated cells (Sumalatha *et al*., 2012). Immunomodulation is the process by which the immune system enhances towards the prevention and cure of many disorders in the human body such as respiratory disorder, inflammation in skin, cancer and some autoimmune diseases including rheumatoid arthritis and allergic manifestations (Tiwari *et al*., 2011). Usually, allopathic drugs are used to modulate the immune system but these drugs are extravagant for underprivileged people. Therefore, herbal medicines are the best alternative to replace these medicines (Nfambi *et al*., 2018). Tea is one of the most liked beverages procured from *Camellia sinensis* belongs to the family Theaceae. It contains many bioactive compounds such polyphenols, flavonoids, terpenoids, amino acids, etc. (Singh *et al*., 2009) A major polyphenol found in tea is epigallocatechin (EGCG) which is popular for its antimicrobial, antioxidant and immunomodulatory, anticarcinogenic and antimutagenic properties (Monobe *et al*., 2008). Wang *et al*. (2001) proved that tea bioactive compounds are responsible to strengthen the immune system.

Commonly, food polysaccharide found in algae, mushrooms, and plants is responsible to activate macrophage activity to engulf foreign particles which are effective in antitumor activity, immunomodulation, etc. (Schepetkin and Quinn, 2006). Tea extract consists of a broad range of biological activities, antioxidant, antiobesity, anticancer, and hepatoprotective activity (Leung *et al*., 2001; Salminen *et al*., 2012). The present study was aimed to evaluate the immunomodulatory parameters (neutrophil adhesion test, haemagglutination activity, and delayed-type hypersensitivity), identify the bioactive compound and pharmakokinetic property of bioactive compound of *C. sinensis*.

Material And Methods

Collection of Plant Sample

The young and healthy leaves of *C. sinensis* were collected from DTC, Dehradun, Uttarakhand. *C. sinensis* was identified and authenticated by Botanical Survey of India (BSI), Dehradun. The accession number given by BSI is 19a.

Extract Preparation

100 g of crushed leaves of *C. sinensis* was weighed and kept into the Soxhlet apparatus for about 6 hours for extraction. Petroleum ether, chloroform, acetone, methanol, ethanol, and water solvents were used for extraction. The methanolic of *C. sinensis* was selected based on their antimicrobial activity. The solvents of the extracts were evaporated by using Rota-evaporator and stored in a refrigerator for further use. According to our previous experiments, methanolic extract of *C. sinensis* was found more potent so, we use methanol extract of *C. sinensis* for the study.

Antigen Preparation:

Sheep red blood cells (SRBCs) were collected from the local slaughterhouse for antigen preparation. SRBCs and were washed three times with sterile pyrogen-free 0.9% saline. Cell concentration was adjusted 0.5×10^9 cell/ml for haemagglutination titer and delayed hypersensitivity reaction (Patel and Asdaq, 2010).
Animal Treatment

After assent from the institutional animal ethical committee and in (Ref. No. GKV/AHF/10/2018), laboratory breed of male Wistar albino rats weighing between 180 g and 200 g were procured from Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana. Husk (Paddy) was used as bedding and changed at regular interval of time. All animals were housed in polypropylene cages under standard environment maintained at 21±2 ºC and supplied with a standard pellet diet and water ad libitum in the Animal House (Reg. No. 1324/a/10/CPCSEA), Department of Pharmaceutical Sciences, Gurukula Kangri (Deemed to be University), Haridwar.

Experimental Design

The animals were divided into four groups containing six rats of each group, administered the following treatment. Group I: Normal control (saline). Group II: *Camellia sinensis* (50 mg/kg, p.o). Group III: *Camellia sinensis* (100 mg/kg, p.o). Group IV: *Camellia sinensis* (200 mg/kg, p.o).

Neutrophil adhesion test

A neutrophil adhesion test was carried out according to the method of Patel and Ashaq (2010). Rats were pre-treated orally with saline (Group I) as a control and the other 3 groups administered were methanolic extracts of *C. sinensis* On the 14th day of treatment, blood samples were collected by puncturing the retro-orbital plexus into heparinized vials and examined for total leucocyte counts (TLC) and Differential leucocyte count (DLC). After initial counts, the same blood samples were incubated with 80 mg/ml of nylon fibers for 15 min at 37°C and again analyzed for TLC. The product of TLC and neutrophil (%) gives the neutrophil index (NI) of the blood sample. Neutrophil adhesion (%) was enumerated as follows:

$$\text{Neutrophil adhesion (\%)} = \frac{\text{NI}_{u} - \text{NI}_{t}}{\text{NI}_{u}} \times 100$$

Where,

- **NIₜ**: Neutrophil index (untreated blood sample)
- **NIₜ**: Neutrophil index (treated blood sample with nylon fiber)

Haemagglutination antibody (HA) titer

Rats of groups I, II, III, and IV were immunized with 0.5 × 10⁹ SRBCs/rat by intraperitoneal route. Rats of groups II, III, and IV were pre-treated with methanolic *C. sinensis* extract for 14 days. The day of immunization with SRBCs was referred to as day 0. The animals were treated with plant extracts for 14 more days and blood samples were collected from each rat on day 15 for HA titer. The titer was determined by titrating serum dilutions with SRBC (0.025 × 10⁹ cells). The microtitre plates were incubated at room temperature for 2 hours and examined visually for agglutination reaction. The minimum concentration of serum showing haemagglutination was expressed as HA titer (Fulzele et al., 2003).

Delayed type hypersensitivity (DTH) response

The delayed-type hypersensitivity response was determined by following Bin-Hafeez et al., 2003). Six animals per group were immunized with 1× 10⁹ SRBC/rat, subcutaneously. On the fifth day, all the animals were again immunized with 1× 10⁹ SRBC in the left hind foot. The right footpad injected with the same volume of saline served as control. Plant extract (methanolic extract of *C. sinensis*) was administered orally. DTH response was measured at 24 h after SRBC challenge on day 5 and expressed as a mean percent increase in paw volume.

GC-MS analysis (bioactive compounds)

The GC-MS analysis of methanolic extracts of *C. sinensis* was carried out by Pradhan and Dubey, 2021.

Interpretation of results of GC-MS was conducted using the database of the National Institute Standard and Technology (NIST 2.0).

Statistical analysis

The significance of data were analyzed statistically by using one-way ANOVA followed by a post hoc t-test with Bonferroni’s comparison. All the value of results were expressed as mean±SD and p< 0.05 was considered significant.
Evaluation of Pharmacokinetic Properties of bioactive compound (1-H Benzimidazole 2-phenyl)

Pharmacokinetic properties and drug-likeness evaluation of GC-MS compound (highest peak) were carried out using SwissADME a free online web tool used in evaluating ADME properties and drug-likeness of small molecules. Lipinski's rule of five is helpful at the pre-clinical evaluation discovery of drugs (Tripathi et al., 2019).

Results

Neutrophil adhesion test

A blood sample incubated with nylon fibers diminution in the neutrophil count ascribed to the adhesion of neutrophil to the nylon fibers. Dosages of 100 mg and 200 mg showed significant results (p < 0.05), but dose 200 mg produced more significant result (p < 0.001). Therefore, a 200 mg dose was found more effective than the other doses of both the Camellia sinensis (Tables 1).

Haemagglutination titre

The administration of an increased dose of extracts significant result was observed at dose 100 mg (p < 0.01) and 200 mg (p < 0.001) of C.sinensis compared with the control group. At dose, 50 mg did not show non-significant results when compared with the control (Figure 1).

Delayed type hypersensitivity reaction

The delayed hypersensitivity reaction was observed significantly at dose 100 mg (p < 0.01) and 200 mg (p < 0.001) of C. sinensis as compared to control. However, dose 50mg was found non-significant compared to control (Figure 2).

GC-MS analysis (bioactive compounds)

In the present study, there are five major peaks observed at 7.53, 32.45, 34.03, 35.41, and 38.77 RT are 2-Pentanone, 4-hydroxy-4-methyl, Caffeine, 1-H Benzimidazole 2-phenyl, Hexadecenoic acid, 15-methyl, methyl ester, Trans-13-Octadecenoic acid, methyl ester (Table 2).

Evaluation of Pharmacokinetic Properties of bioactive compound (1-H Benzimidazole 2-phenyl) by Swiss ADME

The bioactive compounds were identified through GC-MS analysis and the pharmacological properties were determined by the SwissADME tool. Molecule fullfills the standard criteria expressed by Lipinski's rule of five, meaning the activity of the compounds high potency. In a null shell, the property of the molecules are considered according to absorption, low toxicity level, and orally bioavailable. The Bioavailability Radar gives an outline of the drug-likeness of a molecule (Figure 4). The region denote with pink colour indicates the different properties of the compound (Table: 3; Figure: 4 and 5).

Discussion

The present work was done to assess the immunostimulatory activity of C. sinensis in an animal model by studying different parameters such as neutrophil adhesion test, haemagglutination titer, and delayed-type hypersensitivity test. In this study methanolic extract of C. sinensis possesses immunomodulatory properties which enhance both cellular and humoral immunity. The extract was found to be more efficacious at high concentrations (200 mg), but at 100 mg concentration, the extract was quietly effective in modulating the immune system. The plant products aids to modulate the immune system either by stimulation or suppression (Wagner, 1984) and help to use an alternative drug for immune-compromised people. The drugs that stimulate the immune system are called immunostimulant drugs that help to enhance the non-specific and specific system such as macrophages, granulocytes, certain T-lymphocytes (Anarthe et al., 2014). Similarly, Camellia sinensis work as an immunostimulant to enhance the immune system (Monobe et al., 2008). C. sinensis showed more significant results at 50 mg (p < 0.05), 100 mg (p < 0.01) and 200 mg (p < 0.001) in neutrophil adhesion test. The percentage of neutrophil adhesion increase might be due to the upregulation of the β2 integrins adhering firmly to the nylon fiber that is present on the surface of neutrophils (Srikumar et al., 2005). Adhesion of neutrophils to nylon fiber correlates the margination of polymorphonuclear lymphocyte present in the blood vessel and the number of macrophages reached in the inflammation site (Patel and Asdaq, 2010).

The haemagglutination test correlates with humoral immunity. The C. sinensis extract showed effects on the humoral immune system. The results of C. sinensis were found to be most effective at 200 mg with a value of 469.33 (p < 0.001). Likewise, at 100 mg also C. sinensis was found to be significant with a value of 213.33 (p < 0.01). The humoral immune response is composed of B cells with antigens and eventually proliferating into plasma cells that secrete antibodies. Antibodies producing cells bind to antigens, and neutralizes it, and accelerates the elimination of antigens by readily ingesting phagocytic cells (Fulzele et al., 2003). This was indicated by the mean value of the haemagglutination titer that depicted a dose-dependent elevation for the production of antibodies (Nfambi et al., 2015). According to the
Coimbra and Gell classification (1975), the delayed-type hypersensitivity is also known as type IV cell-mediated immune response. This test directly correlates with the cell-mediated response and was found to be significant with C. sinensis at doses 100 mg (p < 0.01) and 200 mg (p < 0.001). In DTH, when challenged by the antigen, the T-lymphocytes were converted into lymphoblasts and producing lymphokines that attract more macrophages at the site of reaction. Due to the presence of flavonoids, the humoral immune response amplifies by proliferating macrophages and B-lymphocytes for the production of antibodies (Makare et al., 2001). It is used to analyze the skin response after inoculation of the antigen intradermal which depends on antigen-specific memory T-cells and the results were due to the augmentation of neutrophils and mononuclear cells. T-cell activation recruits the accumulation of macrophages which induces vasodilation, inflammation, and increases vascular permeability (Janeway et al., 2001; Goronzy and Weyand, 2007). It also uplifts the phagocytic activity and increases the production of lytic enzymes for the more efficient killing of microorganisms (Janeway et al., 2001). An increase in the DTH response indicates that plant extracts have a stimulatory effect on lymphocytes and accessory cell types required for the expression of the reaction (Mitra et al., 1999). By findings of immunomodulatory activity, C. sinensis has great potential to enhance the immune system. Whereas with the avail of GC-MS for finding the bioactive compounds that are amenable for boosting the immune system. The possible compounds present in the methanolic extract of C. sinensis by GC-MS analysis. About 20 peaks are observed in the GC-MS study of C. sinensis. The major and minor peaks were discussed (Table 2). It is explicit that these peaks are for the phytoconstituents (bioactive compounds) present in the plant which are responsible to possess many biological and therapeutic potential. The current study confirmed that the methanolic extract of C. sinensis possesses potent antimicrobial, antioxidant, anti-inflammatory, anti-cancerous properties.

The pharmacokinetic property and drug-likeness were carried out by Swiss ADME (Table 3; Figure 4 & 5). The bioactive compound extracted from our study somehow fulfills the standard requirement of Lipinski's rule. The inbuilt BOILED-Egg model finds out that showed 1-H Benzimidazole 2-phenyl) the ability of BBB penetration as well as GI absorption. The phytocompound was found PGP positive as substrate in the present predictive model. There is a possibility that 1-H Benzimidazole 2-phenyl) may not create impediment glycoprotein activity. The prophecy of the bioactive molecule may be from natural product through the computational study of pharmacokinetics, drug-likeness, bioavailability and medicinal chemistry friendliness are the potent research province for new drug development from the natural available compound by using the SwissADME online tool (Daina et al., 2017; Chakravarty et al., 2019). The present predictive study was done on phytocompounds of C. sinensis. It was well-known that the physicochemical properties such as solubility and lipophilicity prediction are also detected the small molecule whether progressing a successful drug candidate (Daina et al., 2017; Tripathi et al., 2019). The graphical representation of Blood-brain barrier and Gastrointestinal absorption predicted method (BOILED-Egg) has already been proposed as an accurate predictive model, which supports the computational prediction of the lipophilicity and polarity of studied small molecules (Karmakar et al., 2019). Furthermore, the leaf extract of C. sinensis has been used for the anti-inflammation, antimicrobial and immune enhancement drug in the experimental study done by the researchers (Shaharyar and Mazumder, 2017; Pradhan and Dubey, 2021).

Based on the study, the results prove that the leaves of Camellia sinensis has the potential to enhance the cell-mediated immunity and it may be effective in several immunocompromised clinical conditions.

Conclusions

The immunostimulatory effect produced by Camellia species helps in the stimulation of both cellular and humoral immune system and also increases the total leucocyte counts. This study proves the use of tea beverages shall be helpful to immunosuppressed people by enhancing the immune system. The GC-MS (Gas chromatography-Mass spectrometry analysis) depicted the biologically active compounds that are accountable for enhancing the immune system. The prediction of pharmacokinetics potential, bioavailability, drug-likeness and medicinal chemistry friendliness revealed that the bioactive compound present in C. sinensis can be a lead compound for new drug discovery for antimicrobial, immune enhancement and anti-inflammatory phytomedicine. However, it is suggested further in vivo and computational assay for toxicology, pharmacology and experimental bioavailability study for reliving phytocompound to validate the present augury.

Declarations

Acknowledgment

The authors acknowledge the Head of the Department of Botany and Microbiology for providing laboratory facility, Head of, Department of Pharmaceutical Sciences for availing Animal house facility and the Director of Tea Estate, Dehradun (Uttarakhand) for providing tea leaves.

Ethical statement

All the experimental were followed under the guidelines of Organisation for Economic Co-operation and Development (OECD) for the supervision and use of Laboratory Animals at Gurukula Kangri (Deemed to be University).

Consent to Participate
Not Applicable

Consent to Publish

Yes

Author Contribution

Surbhi Pradhan experimented and prepared the manuscript. R.C Dubey corrected and finalized the manuscript.

Funding

No funding source.

Competing Interest

The authors declare that they have no conflict of interest.

Availability of Data and Material

All data have been provided.

References

1. Anarthe SJ, Sunitha D, Raju MG. Immunomodulatory activity for methanolic extract of *Trigonella foenum graecum* whole plant in wistar albino rats. Am J Phytomed Clin Ther 2014;2(9):1081-1092.
2. Bin-Hafeez B, Haque R, Parvez S, Pandey S, Sayeed I, Raisuddin S. Immunomodulatory effects of fenugreek (*Trigonella foenum graecum* L.) extract in mice. Int Immunopharmacol 2003;3(2):257-265.
3. Daina A, Michielin O, Zoete V, SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. *Sci Rep.* 7 (2017) 42717.
4. Chakravarty S, Ray S, Talapatra SN, Antibacterial phytochemicals in Macrotlyoma uniforum (Lam.) Verdc. on DNA-gyrase B: An in silico study. *Research Journal of Life Sciences, Bioinformatics, Pharmaceuticals and Chemical Sciences* 5(2) (2019) 221-235.
5. ElezabethVijisaral D, Arumugam, S. Analysis of bioactive constituents from organic crude ethanol extracts from the local medicinal plant of *Cassytha filiformis* L (Lauraceae) by gas chromatography-mass spectrometry. Int J Pharm Sci Rev Res 2014;28:220-3.
6. Fulzele, S.V., Satturwar, P.M., Joshi, S.B., Dorle, A.K., 2003. Study of the immunomodulatory activity of Haridradi ghritain rats. Indian J. Pharmacol. 35, 51–54.
7. García JM, Prieto LJ, Guevara A, Malagon D, Osorio C. Chemical studies of yellow tamarillo (*Solanum betaceum* Cav.) fruit flavor by using a molecular sensory approach Molecules;2016;21(12), 1729.
8. Gideon AV. GC-MS analysis of phytochemical components of *Pseudogochidion anamalayanum* Gamble: An endangered medicinal tree. Asian J Plant Sci Res. 2015; 5(12):36-41.
9. Gong J, Zhang Q, Peng C, Fan J, Dong W. (2012). Curie-point pyrolysis–gas chromatography–mass spectroscopic analysis of theabrownins from fermented Zijuan tea. J Anal Appl Pyrolysis 2012;97, 171-180.
10. Goronzy JJ, Weyand CM (2007) The innate and adaptive immune systems. In: Goldman, L., editor. Cecil Medicine. 24. Vol. 44. Philadelphia: Saunders, an imprint of Elsevier Inc.
11. Gupta D, Kumar M (2017). Evaluation of in vitro antimicrobial potential and GC–MS analysis of *Camellia sinensis* and *Terminalia arjuna*. Biotechnol Rep 2017;13, 19-25.
12. Hagr TE, Adam IA, Almain AA, Mohammed MM. Phytochemical Screening, GC–MS Analysis, Antibacterial and Antioxidant Activity of Seeds Oil of *Annona Squamosa* L. Sudanese Medicinal Plant. J Phar Pharmacol 2019;7(1), 1-6.
13. Hameed RH, Abbas FM, Hameed IH. Analysis of Secondary Metabolites Released by *Pseudomonas fluorescens* Using GC–MS Technique and Determination of Its Anti-Fungal Activity. Indian J Public Health Res Dev 2018;9(5), 449-455.
14. Janeway CA, Travers Jr, Walport M, Shlomchik MJ (2001) The immune system in health and disease: immunobiology. 5. New York: Garland Publishing. p. 1-312.
15. Jasim H, Hussein AO, Hameed IH, Kareem MA (2015). Characterization of alkaloid constitution and evaluation of antimicrobial activity of *Solanum nigrum* using gas chromatography mass spectrometry (GC–MS). J Pharmacog Phytotherapy 2015;7(4), 56-72.
16. Jing Ruo TDFW, Yue-Xin LML (2002). Studies on Chemical Compositions and Antimicrobial Activity Of Volatile Oil of Dictyophora Echinovolvata J. Mycosystema 2002;(2):15.

17. Joshi, R, Meena, R, Patni V. Comparative phytochemical analysis of bioactive constituents present in in vitro and in vivo plant parts of merremiaegypti and merremiadissecta. J Pharmacog Phytochem 2018;7(1), 679-684.

18. Karmakar B, Talukdar P, Talapatra SN, An in silico study for two anti-inflammatory flavonoids of Nerium oleaner on proinflammatory receptors. Research Journal of Life Sciences, Bioinformatics, Pharmaceuticals and Chemical Sciences 5(1) (2019) 582-596

19. Kokila N, Mahesh B, Mruthunjaya K. Exploration of bioactive components of Thunbergia Coccinea, its Pharmacognostic, Antioxidant, GC-MS and Antihepgregylcemic Studies. Int J Pharm Pharm Sci 2020; 2(6):45-54.

20. Leung LK, Su Y, Chen R, Zang Z, Huang Y, Chen ZY (2001) Theaflavins in black and catechins in green tea are equally effective antioxidants. J Nutr 2001;131(9):2248-2251.

21. Makare N, Bodhankar S, Rangari V. Immunomodulatory activity of alcoholic extract of Magnifera indica L.in mice. J Ethanopharmacol 2001;78:133-49.

22. Mitra SK, Gupta M, Sarma DNK. Immunomodulatory effect of IM-133. Phytother Res 1999;13:341-3.

23. Monobe M, Ema K, Kato F, Maeda-Yamamoto M. Immunostimulating activity of a crude polysaccharide derived from green tea (Camellia sinensis) extract. J Agr Food Chem 2008;56(4):1423-1427.

24. Nfambi J, Bbosa GS, Sembajwe LF, Gakunga J, Kasolo JN. Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in Wistar albino rats. J Basic Clin Physiol and Pharmaco 2015;26(6), 603-611.

25. Patel P, Asdaq SMB. Immunomodulatory activity of methanolic fruit extract of Aegle marmelos in experimental animals. Saudi Pharm J 2010;18(3):161-165.

26. Patil A, Jadhov V. GC-MS analysis of bioactive components from methanol leaf extract of Toddalia asiatica (L.). Int J Pharm Sci Rev Res 2014;29(1), 18-20.

27. Rahayu RP, Prasetyo RA, Purwanto DA, Kresnoadi U, Iskandar RR, Rubianto M. The immunomodulatory effect of green tea (Camellia sinensis) leaves extract on immunocompromised Wistar rats infected by Candida albicans. Vet World 2018;11(6):765.

28. Rajan TV. The Gell-Coombs classification of hypersensitivity reactions: a re-intepretation. Trends Immunol 2003;24:376–9.

29. Peng CX, Wang QP, Liu HR, Gao B, Sheng J, Gong J. Effects of Zijuanpu-erh tea theabrownin on metabolites in hyperlipidemic rat feces by Py-GC/MS. J Anal Appl Pyrolysis 2013;104:226-233.

30. Pradhan, S., and Dubey, R. C. (2021). GC–MS analysis and molecular docking of bioactive compounds of Camellia sinensis and Camellia assamica. Arch. Microbiol. 203(5), 2501-2510.

31. Salminen WF, Yang X, Shi Q, Greenhaw J, Davis K, Ali AA. Green tea extract can potentiate acetaminophen-induced hepatotoxicity in mice. Food Chem Toxicol 2012;50:1439-46.

32. Schepetkin IA, Quinn MT. Botanical polysaccharides:Macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 2006;6:317–333.

33. Shaharyar M, Mazumder A. Benzimidazoles: A biologically active compounds. Arab J Chem 2011;10;S157-S173.

34. Sheibani E, Duncan SE, Kuhn DD, Dietrich AM, O'Keefe SF. (2016). SDE and SPME analysis of avor compounds in Jin Xuan Oolong tea. J Food Sci 2016;81(2):C348-C358.

35. Shukla S, Mehta A. Comparative phytochemical analysis and in vivo immunomodulatory activity of various extracts of Stevia rebaudiana leaves in experimental animal model. Front Life Sci 2015;8(1):55-63.

36. Singh Arora D, Jeet Kaur G, Kaur H (2009) Antibacterial activity of tea and coffee: their extracts and preparations. Int J Food Prop 12(2):286-294.

37. Soliman YA, Ibrahim AM, Tadros HR, Abou-Taleb AE, Moustafa AH, Hamed MA. (2016). Antifouling and antibacterial activities of marine bioactive compounds extracted from some red sea cucumber. Contemp Appl Sci 2016;3:83-103.

38. Srikumar, R., Parthasarathy, N. J., & Devi, R. S. (2005). Immunomodulatory activity of triphala on neutrophil functions. Biological and Pharmaceutical Bulletin, 28(8), 1398-1403.

39. Sumalatha RBP, Ballal SR, Acharya S. Studies on immunomodulatory effects of Salacia chinensis L. on albino rats. J App Pharm Sci 2012;2:98-107.

40. Tilwari A, Shukla NP, Pathirissey UD. Immunomodulatory activity of the aqueous extract of seeds of Abrus precatorius Linn (Jequirity) in mice. Iran J Immunol 2011;8(2):96-103.

41. Tripathi, P, Ghosh, S. and Talapatra, S. N. (2019). Bioavailability prediction of phytochemicals present in Calotropis procera (Alton) R. Br. by using Swiss-ADME tool. World Sci. News, 131:147-163.
42. Wagner H. In: Hiroshi Hikino, N.R. Farnsworth (Eds.), Economic and Medicinal Plant Research, vol. I. Academic Press, London, 1984;113–15.

43. Wang DW, Wang CW, Li JL, Zhao GZ. Components and activity of polysaccharides from coarse tea. J Agric Food Chem 2001;49:507–510.

Tables

Table 1: Neutrophil adhesion test of *C. sinensis*.

Treatment	TLC Neutrophil %	Neutrophil Index (NI)	Neutrophil adhesion %				
	UTB	NFTB	UTB	NFTB	UTB	NFTB	
Control							
7.56 ± 0.23	6.9 ± 0.19	25.15 ± 0.18	24.71 ± 0.39	190.31 ± 6.41	170.57 ± 5.69	10.35 ± 1.83	
Extract (50 mg)	7.88 ± 0.15	7.33 ± 0.26	27.81 ± 0.63	25.4 ± 0.93	219.34 ± 8.33	186.15 ± 7.08	15.09 ± 2.50*
Extract (100 mg)	8.11 ± 0.24	7.81 ± 0.21	30.08 ± 1.30	25.75 ± 1.40	244.26 ± 14.35	201.5 ± 15.57	17.50 ± 3.95*
Extract (200 mg)	8.23 ± 0.24	7.9 ± 0.19	36.5 ± 3.09	28.33 ± 2.13	300.96 ± 31.72	224.01 ± 20.10	25.22 ± 5.64***

All values are expressed as mean±Standard deviation of six observations. UTB, untreated blood; NFTB, nylon fiber treated blood. Values are statistically significant at P < 0.05*, P < 0.001*** when compared with control group.

Table 2: Activity of Pyto-components (bioactive compounds) identified in the methanolic extract of *Camellia sinensis*.
Compound name	RT	Molecular Formula	Molecular weight	Area %	Biological Activity
2-Pentanone, 4-hydroxy-4-methyl	7.53	C₆H₁₂O₂	116.16	23.90	Antimicrobial potential (Sheibani et al., 2016; Garcia et al., 2016)
Cyclohexasiloxane, dodecamethyl	20.45	C₁₂H₃₆O₆Si₆	444.92	1.03	Antimicrobial and Antioxidant (Gong et al., 2012; Jasim et al., 2015)
2',6' Dihydroxyacetophenone, bis(trimethylsilyl)ether	24.96	C₁₄H₂₄O₃Si₂	296.51	1.88	Antineoplastic (colorectal and colon cancer), Stimulant of erythropoiesis, Antiosteoporosis, Treatment of bone diseases, Antifungal, Carminative (Kokila et al., 2020).
Caffeine	32.45	C₈H₁₀N₄O₂	194.19	5.33	Antimicrobial property (inhibit synthesis of proteins and DNA by inhibiting the incorporation of adenine and thymidine) (Gupta and Kumar, 2017)
1-H Benzimidazole, 2-phenyl	34.03	C₁₃H₁₀N₂	194.23	33.46	Antimicrobial, Antiviral, Anticancer, Anti-inflammatory, Analgesic (Shaharyar and Mazumder, 2017)
7-Hexadecenoic acid, methyl ester, (Z)	35.27	C₁₇H₃₂O₂	268.4	1.02	Antibacterial (Hagr.,2019)
Hexadecanoic acid, 15-methyl, methyl ester	35.41	C₁₈H₃₆O₂	284.5	7.19	Antieczematic, Macrophage colony stimulating factor, Flavor, Antioxidant, Hypocholesterolemic, 5-alpha reductase inhibitor ((Kokila et al., 2020; Patil and Jadhov, 2016)
7-Octadecenoic acid, methyl ester	35.76	C₁₉H₃₆O₄	296.5	6.37	Antibacterial (Elezabeth and Arumugam, 2014)
Heptane, 1-bromo-6-methyl	35.98	C₈H₁₇Br	193.12	1.73	-
Oxacyclotetradecan-2-one	37.40	C₁₃H₂₄O₂	212.33	0.73	Antibacterial (Peng et al., 2013; Jing et al., 2002)
N(Trifluoroacetyl)N,O,O',O'tetraakis(trimethylsilyl)norepinephrine	38.43	C₂₂H₄₂F₃NO₄Si₄	553.9	0.39	Antibacterial (Soliman et al., 2016)
Trans-13-Octadecenoic acid, methyl ester	38.77	C₁₉H₃₆O₂	296.5	8.32	Cancer preventive, Anti-inflammatory activity, mood and sleep disorders and also in cannabinoid regulated depression, Anti-fungal activity (Gideon et al., 2015; Joshi et al., 2018;
Table 3: Pharmacokinetics of bioactive GC-MS compound by SwissADME.

Physicochemical Properties	
1-H Benzimidazole, 2-phenyl	C_{20}H_{16}N_{2}
Mol. wt.	284.35 g/mol

Lipophilicity

| Log P_{o/w} (WLOGP) | 4.75 |

Water Solubility

| Class | Moderately soluble |

Pharmacokinetics

| Gastrointestinal absorption | High |
| BBB permeant | Yes |

Druglikeness

Lipinski	Yes
Ghose	Yes
Veber	Yes
Egan	Yes
Bioavailability	0.55

Medicinal Chemistry

PAINS	0 alert
Synthetic accessibility	2.18
XLOGP3	\geq 3.5

Abbreviations: GI: Gastrointestinal absorption; BBB: Blood-brain barrier permeation

Figures
Figure 1
Haemagglutination titre of Camellia sinensis.

Figure 2
Delayed type hypersensitivity of Camellia sinensis.
Figure 3

GC-MS analysis of Camellia sinensis.

Figure 4

The Bioavailability Radar of 1-H Benzimidazole, 2-phenyl by SwissADME.
Figure 5

The BOILED-Egg represents for intuitive evaluation of passive gastrointestinal absorption (HIA) white part and brain penetration (BBB) yellow part as well as blue and red points PGP positive and negative in function of the position of the small molecules in the WLOGP-versus-TPSA graph (Molecule 1: 1-H Benzimidazole, 2-phenyl).