Data article

Dataset on the diversity of helminth parasites of freshwater fish in the headwaters of the Coatzacoalcos river, in Oaxaca, Mexico

Guillermo Salgado-Maldonadoa,*, Juan Manuel Caspeta-Mandujanob, Emilio Martínez-Ramírezc, Jesús Montoya-Mendozad, Edgar F. Mendoza-Francoe

a Instituto de Biología, Laboratorio de Helmintología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán CP 04510 Ciudad de México, Mexico
b Facultad de Ciencias Biológicas, Laboratorio de Parasitología de Animales Silvestres, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
c Departamento de Investigación, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional (CIDIIR Oaxaca IPN), área de Acuacultura. Calle Hornos N° 1003, Municipio Santa Cruz Xoxocotlán, C. P. 71230, Oaxaca, Mexico
d Laboratorio de Investigación Acuacola Aplicada, Tecnológico Nacional de México, Instituto Tecnológico de Boca del Río, Km 12 Carretera Veracruz-Córdoba, CP. Boca del Río 94290, Veracruz, Mexico
e Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México (EPOMEX), Universidad Autónoma de Campeche, San Francisco de Campeche, Campeche, Mexico

\section*{Article history:}
Received 1 July 2020
Revised 5 August 2020
Accepted 12 August 2020
Available online 19 August 2020

\section*{Keywords:}
Platyhelminthes
Nematoda
Acanthocephala
Monogenea
Trematoda
Cestoda
Metacercariae
geographical distribution

\section*{Abstract}
The data presented in this article are related to the research article entitled "Diversity of helminth parasites of freshwater fish in the headwaters of the Coatzacoalcos river, in Oaxaca, Mexico" published in International Journal for Parasitology: Parasites and Wildlife. This dataset document the diversity of helminth parasites found in 25 fish species from 8 families from rivers in the headwaters of the Coatzacoalcos river basin at the border between Oaxaca and Veracruz states, Isthmus of Tehuantepec zone, southeastern Mexico, in the northernmost end of Central America. We record here 48 species, 44 genera and 29 helminth families. Most of the helminth species recorded in this area has also been collected from Central American bodies of freshwater south of...
Specifications Table

Subject area	Biology; Animal science and Zoology.
Specific subject area	Platyhelminthes, Nematoda and Acanthocephala. Helminth ecto- and endo-parasites of tropical freshwater fish of northern end of Central America.
Type of data	Table.
How data were acquired	Microscope, survey. Each fish was examined under a stereo microscope in Petri dishes with river water for external examination, and with 0.6% saline solution for internal organs. External examination included the skin, scales, mouth, gill cavity, anus, and fins of each host; while internal examination included the brain, gut, mesenteries, kidneys, liver, gall bladder and muscles. We collected data on the number of species (species richness) and abundance distribution of helminths (number of individuals of each species).
Data format	Raw numbers in matrices of localities and fish-individual (lines) vs characteristics (location coordinates and altitude; host length, weigh and sex), and helminth parasite taxa (columns) recorded in each one fish host individually. A matrix per each one of 25 fish species.
Description of data collection	We examined 410 freshwater fishes from 25 species and eight families during March and April 2009; at seven sites in the headwaters of the Coatzacoalcos river basin. Fish were collected using electrofishing device, transferred to the laboratory and kept alive in aerated containers until they were examined for helminths, performed within 8 hours of capture. Each fish was measured (total and standard length; maximum deep) and examined under a stereo microscope in Petri dishes with river water (for external organs) or saline 0.6% solution (for internal organs inspection). Skin, scales, mouth, gill cavity, anus, and fins, as well as all internal organs and tissues except the blood and bones, of each host were examined. Fish were euthanized and the gill arches were removed, separated from the gill cavity and evaluated individually. After, internal organs were excised and examined for helminths under stereomicroscope.
Parameters for data collection	The platyhelminths (monogenea and digenea) and the acanthocephalan found were fixed in 4% hot formaldehyde, stained with Mayer’s paracarmine or Gomori’s triple stain and mounted whole on Canada balsam, to made permanent slides for microscopical examination. Nematodes were fixed also in 4% formalin and studied in nonpermanent slides with glycerin. Taxonomic identification was performed based on morphometric analysis of the specimens. A total of 48 helminth species are documented from 44 genera and 29 families.

(continued on next page)
Value of the Data

- These data are essential for phylogenetical and ecological hypothesis planning and further biogeographical studies; will assist to examine spatial variation in community structure of helminth parasites of freshwater fishes; may also assist to compare patterns of structure of assemblage vs appropriate null models; can be useful to compare population or community characteristics i. e. richness, densities, of tropical assemblages vs temperate or other regions.
- These kinds of data could be useful for general biologists, biogeographers, ecologists and parasitologists. Also for aquaculturists and veterinarians involved in aquatic organism especially fish management and production; as well as regulatory agencies and stakeholders who seek to protect the public and their goods or values by limiting the adverse environmental impacts of development.
- Parasite species knowledge of fishes and other aquatic organisms can be used to constraint controlled production of aquatic organisms or exploitation of natural resources. Likewise, environmental impact processes would take in account the likelihood that any aquacultural development will affect natural populations, native species or biodiversity in general, for example by accidentally introducing exotic, undesirerable alien species of parasites to the natural populations of fishes (see [1]; Salgado-Maldonado and Rubio-Godoy, 2015, [2] for examples).
- These data could be used for providing an assessment of human impacts on the environment, or to generate data utile for a public awareness of conservation objectives. For example, host parasite systems knowledge can be used to indicate changes in the status of biodiversity [3]. As well these data could support to explore characteristics of the structure of parasite assemblages as nestedness or patterns of decay of similarity with distance.

1. Data Description

Table 1 contains the list of the fish species and the number of individual fish examined ordered alphabetically by fish family. Common names of the fish species and locations of collection are also referred in this table.

Table 2 is a list of fish host – parasite associations, including the tissues or organs of the fish from which parasites were collected, and the localities and date of collection of helminth parasites collected from the 25 fish species examined from upper Coatzacoalcos river, Oaxaca, Mexico. Helminth parasites are ordered by Phylum (Monogenea, Trematoda, Cestoda), Acanthocephala and Nematoda (adults first, then larval forms).
Table 1
Fish families and species, common names, localities (RJ: Jaltepec River, EP El Platanillo River; RE Escondido River; RN Negro River; RG Grande River; RM Modelo River; RP Pánfilo River), dates (Ap, April, Ma, March 2009) and number of hosts examined from the headwaters of the Coatzacoalcos river, Mexico.

Family	Species	Common names	Locality	No. hosts examined
CHARACIDAE	Astyanax aeneus (Günther, 1860) [referred as Astyanax finitimis (Bocourt, 1868) by Schmitter-Soto, 2017]	Platilla, pepesca, Banded tetra	EP/Ma	19
			RN/Ma	24
			RG/Ma	1
			RP/Ap	20
			RJ/Ap	12
CICHLIDAE	Parachromis friedrichsthalii (Heckel, 1840)	Yellowjacket cichlid	RJ/Ap	1
	Paraneetroplus bulleri Regan, 1905	Mojarra, Corrientero	EP/Ma	2
	Theraps irregularis Günther, 1862	Arroyo cichlid	RE/Ap	16
	Thorichthys callolepis (Regan, 1904)	Mojarra de San Domingo	RN/Ma	6
	Thorichthys helleri (Steindachner, 1864)	Mojarra amarilla, Yellow cichlid	RE/Ap	7
	Thorichthys maculipinnis (Steindachner, 1864)	Mojarra	RN/Ma	3
	Trichromis salvini (Günther, 1862)	Mojarra, Yellow belly cichlid	RM/Ma	8
	Vieja guttulata (Günther, 1864)	Mojarra de Amatitlán, Amatitlán cichlid	EP/Ma	24
			RN/Ma	29
			RE/Ap	10
			RJ/Ap	6
	Vieja regani (Miller, 1974)	Mojarra, mojarra de Almoloya, Almoloya cichlid	RM/Ma	5
ELEOTRIDAE	Gobiomorus dormitor Lacepède, 1800	Guavina, Bigmouth sleeper	RN/Ma	6
			RM/Ma	4
			RP/Ap	4
			RE/Ap	1
			RJ/Ap	1
GOBIIDAE	Awaous banana (Valenciennes, 1837)	Gobio de río	RN/Ma	8
			RM/Ma	1
HEPTAPTERIDAE	Rhamdia guatemalensis (Günther, 1864)	Juile, Bagre, Guatemalan chulin	RN/Ma	1
			RE/Ap	5
MUGILIDAE	Agonostomus monticola (Bancroft, 1834)	Lisa de río, Mulet	RN/Ma	1
			RP/Ap	2
			RE/Ap	2
POECILIIDAE	Poecilia mexicana Steindachner, 1863	Shortfin molly	RE/Ap	13
	Poecilia sphenops Valenciennes, 1846	Guppi, Molly	RN/Ma	2
			RM/Ma	5
			RG/Ma	5
			RJ/Ap	10

(continued on next page)
Table 1 (continued)

Common names	Locality	No. hosts examined
Poeciliopsis gracilis (Heckel, 1848)	Porthole livebearer	RG/Ma 4
Priapella intermedia Álvarez and Carranza, 1952	Guayacón de los Chimalapas	RG/Ma 1
Pseudoxiphophorus bimaculatus (Heckel, 1848)	Guatopote manchado, Twospot livebearer	EP/Ma 4
Xiphophorus clemenciae Álvarez, 1959	Espadita, Yellow swordtail	RG/Ma 1
Xiphophorus mixei Kallman, Walter, Morizot and Kazianis, 2004	Mixe swordtail	EP/Ma 5
Xiphophorus monticolus Kallman, Walter, Morizot and Kazianis, 2004	Southern mountain swordtail	EP/Ma 9
Xiphophorus heleri Heckel, 1848	Espadita, Green swordtail	RJ/Ap 2
SYNBRANCHIDAE		
Ophisternon aenigmaticum Rosen and Greenwood, 1976	Falsa anguila, Fatlips swamp eel	EP/Ma 5

Table 3 list the abbreviations to the scientific names of the taxa of helminth parasites used in Supplementary Table 4.

Supplementary Table 4. document the raw data on helminth parasites of 25 fish species from the Headwaters of Coatzaicoalcos river, Mexico. One matrix for each fish species ordered alphabetically by fish families (see Table 1). Data include the name of the locality, coordinates in decimal degrees, altitude meters above sea level, date of collection, host number in the author’s field notes, host’ sex; host’ measurements documented for each one fish examined; and the raw number of helminth parasites recorded from each fish host.

2. Experimental design, materials and methods

We gathered data from a total of 410 freshwater fish from 25 species and eight families during March and April 2009. Fishes were caught at the upper reaches of the Coatzaicoalcos River basin. The area of study is located ~300 km from the mouth of the Coatzaicoalcos river in the Gulf of Mexico. We examined from 1 to 30 individuals of every available fish species from each of seven locations. Sample locations were chosen as follows: 1. El Platanillo river, tributary to Del Sol river (municipality Santo Domingo Petapa), coordinates 16.951111, -95.244167, altitude 416 m; 2. Río Grande (El Barrio), 16.792167, -95.016083, 220 m; 3. Río Negro (Santa María Chimalapa), 16.898528, -94.693694, 166 m; 4. Río Modelo (Santa María Chimalapa), 17.134778, -94.745000, 115 m; 5. Río Pánfilo (Matías Romero, Oaxaca), 17.083639, -94.873944, 60 m; 6. Río Jaltepec (Jesús Carranza, Veracruz), 17.388444, -95.056111, 40 m; 7. Río Escondido (Paraje San Francisco El Vado, Agencia Municipal Río Escondido, Santa María Chimalapa), 17.091083, -94.751694, 103 m. Note all sites in Oaxaca state, except # 6, which is in Veracruz state, Mexico. At each locality, fish were captured using nets or electrofishing device. Live fish were brought to the laboratory.
Table 2
Parasite – host associations, localities (RJ: Jaltepec River, EP El Platanillo River; RE Escondido River; RN Negro River; RG Grande River; RM Modelo River; RP Pánfilo River), and date of collection (Ap, April or Ma, March 2009), of helminth parasites collected from 25 fish species from upper Coatzacoalcos river, Oaxaca, Mexico

HELMINTH	FISH	HOST	SITE	LOCALITY, Date
MONOGENEA				
Aphanoblastella travassosi (Price, 1938)	*Rhamdia guatemalensis*	Gills	RN, Ma	
	Rhamdia laticauda	Gills	RE, Ap	
Guavinella tropica Mendoza-Franco, Scholz and Cabañas-Carranza, 2003	*Gobiomorus dormitor*	Gills	RN, RM, Ma; RE, Ap	
Gyrodactylus sp.	*Poecilia mexicana*	Fins	RE, Ap	
	Thorichthys callelepis	Fins	RN, Ma	
	Vieja guttulata	Gills	RN, Ma	
Salugsinus sp.	*Xiphophorus monticolus*	Gills	EP, Ma	
Sciadicleithrum sp.	*Paraneetroplus bulleri*	Gills	RE, Ap	
	Thorichthys callelepis	Gills	RN, Ma	
	Vieja guttulata	Gills	EP, Ma; RJ, Ap	
"Urocleidoides" cf. *strombicirrus* (Price and Bussing, 1967)	*Astyanax aeneus*	Gills	EP, RN, Ma; RP, Ap	
TREMATODA				
Auriculostoma astyanace Scholz, Aguirre-Macedo and Choudhury, 2004	*Astyanax aeneus*	Intestine	RG, Ma; RJ, Ap	
Crassicutis cichlasomae Manter, 1936	*Parachromis friedrichsthalii*	Intestine	RJ, Ap	
	Paraneetroplus bulleri	Intestine	RE, Ap	
	Thorichthys helleri	Intestine	RM, Ma	
	Trichromis salvini	Intestine	RM, Ma; RP, RE, RJ, Ap;	
	Vieja regain	Intestine	RM, Ma	
Creptotrema agonostomi Salgado-Maldonado, Cabañas-Carranza and Caspeta-Mandujano, 1998	*Agonostomus monticolus*	Intestine	RN, Ma; RP, RE, Ap	
	Astyanax aeneus	Intestine	RP, RJ, Ap	
Genarchella astyanctis (Watson, 1976)	*Astyanax aeneus*	Intestine	RM, Ma	
Genarchella isabellae (Lamothe-Argumedo, 1977)	*Thorichthys helleri*	Intestine	RM, Ma	
	Vieja guttulata	Stomach	EP, RN, Ma	
	Vieja regain	Stomach	RM, Ma	
Magnivitellinum cf. *simplex* Kloss, 1966	*Astyanax aeneus*	Intestine	RP, Ap	
Paracreptotrematoides cf. *heterandriae* (Salgado-Maldonado, Caspeta-Mandujano and Vázquez, 2012)	*Agonostomus bimaculatus*	Intestine	RP, Ap	
	Saccocoelioides cf. *sogandaresi* Lumsden, 1963	Intestine	RP, Ap	
	Epocilia sphenops	Intestine	RG, Ma	
	Poeciliopsis gracilis	Intestine	RG, Ma	
	Xiphophorus clemenciae	Intestine	RG, Ma	
Wallinia anindoi Hernández-Mena, Pinacho-Pinacho, García-Varela, Mendoza-Garfias and Pérez Ponce de León, 2019	*Astyanax aeneus*	Intestine and intestinal caeca	RN, Ma; RJ, Rp, Ap	

(continued on next page)
HELMINTH FISH HOST

METACERCARIAE

Host	Site	Locality, Date
Apharyngostrigea sp.	Mesentry, Gall bladder	RN, Ma; RJ Ap
A. aeneus		
Ascocotyle (Phagicola) diminuta (Stunkard and Haviland, 1924)		
Poeclia sphenops	Gills	RG, Ma
Centrocestus formosanus (Nishigori, 1924)		
Gobioramorpus dormitor	Gills	RN, Ma
Pseudoxiphophorus bimaculatus		
Thorichthys callolepis	Gills	RN, Ma
Xiphophorus clemenciae	Gills	RN, Ma
Cladocystis cf. trifolium (Braun, 1901)		
Thorichthys helleri	Intestine	RM, Ma
Trichromis salvinii	Mesentry	RG, Ma
Closotomus sp.		
A. aeneus	Gills, mesentry	EP, Ma
Rhandia guatemalensis	Mesentry, gill cavity,	RN, Ma; RP, Ap
	mesentry	
Rhandia laticauda	Fins	RE, Ap
Thorichthys callolepis	Fins, skin, mouth, mesentry	RN, Ma
Vieja guttulata	Gill cavity	RN, Ma
Crocodileicola pseudostoma (Willemoes-Suhrm, 1870)		
Rhandia guatemalensis	Intestine	RP, Ap
Diplodostomum sp.		
Poeclia sphenops	Eyes	RJ, Ap
Thorichthys callolepis	Eyes, gills	RN; Ma; RJ, Ap
Trichromis salvinii	Eyes	RN, Ma; RJ, Ap
Vieja guttulata	Eyes, brain, mesentry	RN, Ma; RJ, Ap
Posthodiplodostomum sp.		
Parachromis friderichstalii	Mesentry	RJ, Ap
Paraneetroplus pulleri	Muscle, mesentry	RE, Ap
Poeclia sphenops	Mesentry	RG, Ma; RJ, Ap
Trichromis salvinii	Muscle, eyes, mesentry	RJ, Ap
Vieja guttulata	Muscle, mesentry	RN, Ma
Vieja regain	Gills	RG, Ma
Tylodelphys sp.		
Parachromis friderichstalii	Mesentry	RJ, Ap
Trichromis salvinii	Mesentry	RJ, Ap
Uvulifer cf. ambloplitis (Hughes, 1927)		
Apharyngostrigea sp.		
Thorichthys callolepis	Intestine	RN, Ma
Vieja guttulata	Intestine	RN, Ma
Schyzocotyle achiolognathi (Yamaguti, 1934)		
Vieja guttulata	Intestine	RJ, Ap

CESTODA

Host	Site	Locality, Date
Cichlidocestus sp.		
Thorichthys callolepis	Intestine	RN, Ma
Vieja guttulata	Intestine	RN, Ma
Schyzocotyle achiolognathi (Yamaguti, 1934)		
Vieja guttulata	Intestine	RJ, Ap

METACESTODE

Host	Site	Locality, Date
Glossocercus sp.		
Poeclia sphenops	Liver	RJ, Ap

ACANTHOCEPHALA

Host	Site	Locality, Date
Neoechinorhynchus chimalapansis		
Salgado-Maldonado, Caspeta-Mandujano and Martínez-Ramírez, 2010		
Awaous banana	Intestine	RN, Ma

(continued on next page)
HELMINTH FISH HOST	SITE	LOCALITY, Date
NEMATODA		
Atractis vidali		
González-Solís and Moravec, 2002		
Vieja guttulata		
Capilliidae gen. sp.		
Astyanax aeneus		
Cucullanus angeli		
Cabañas-Carranza and Caspeta-Mandujano, 2007		
Vieja guttulata	Intestine	RN, Ma
Cucullanus mexicanus		
Caspeta-Mandujano and Moravec and Aguilar-Aguilar, 2000		
Rhamdia guatemalensis	Mesentery	RP, Ap
Cucullanus sp.		
Gobiomorus dormitor	Intestine	RE, Ap
Paraneetroplus bulleri	Intestine	RE, Ap
Thorichthys helleri	Intestine	RM, Ma
Vieja guttulata	Intestine	RE, Ap
Dichelyne mexicanus		
Caspeta-Mandujano, Moravec and Salgado-Maldonado, 1999		
Agonostomus monticola	Intestine	RP, Ap
(Caballero-Rodríguez, 1971)		
Gobiomorus dormitor	Stomach	RE, Ap; RN, Ma
Philometridae gen. sp.		
Ophisternon aenigmaticum	Skin	EP, RN, Ma
Paraneetroplus bulleri	Body cavity	RE, Ap
Theraps irregularis	Muscle	RN, Ma
Procamallanus (Spirocamallanus) rebcae	Intestine	RG, RM, Ma
(Andrade-Salas, Pineda-López and García-Magaña, 1994)		
Thorichthys helleri	Intestine	RE, Ap
Thorichthys maculipinnis	Intestine	RE, Ap
Pseudocapillaria (Ichthyocephaliora) ophisterni		
Moravec, Salgado-Maldonado and Jiménez-García, 2000		
Ophisternon aenigmaticum	Mesentery	RE, Ap
Railletnema kritscheri		
Moravec, Salgado-Maldonado and Pineda-López, 1993		
Paraneetroplus bulleri	Intestine	RE, Ap
Thorichthys helleri	Intestine	RM, Ma
Trichromis salvini	Intestine	RJ, Ap
Vieja guttulata	Intestine	RN, Ma; RE, Ap
Vieja regain	Intestine	RG, Ma
Rhabdochona kidderi		
Pearse, 1936		
Paraneetroplus bulleri	Intestine	RE, Ap
Rhamdia laticauda	Intestine	RE, Ap
Vieja guttulata	Intestine	EP, Ma; RE, Ap
Vieja regain	Intestine	RM, Ma
Rhabdochona sp.		
Theraps irregularis	Intestine	RN, Ma
Spinitectus mexicanus		
Caspeta-Mandujano, Moravec and Salgado-Maldonado, 2000		
Pseudoxiphophorus bimaculatus	Intestine	RP, Ap
LARVAL NEMATODES		
Acuariidae gen. sp.		
Astyanax aeneus	Intestine	EP, Ma
Paraneetroplus bulleri	Mesentery	EP, Ma
Trichromis salvini	Mesentery	RG, Ma
Xiphophorus mixei	Muscle	EP, Ma

(continued on next page)
HELMINTH	FISH HOST	SITE	LOCALITY, Date
Astyanax aeneus	Liver	RN, Ma; RP, Ap	
Awaous banana	Mesentery	RN, Ma	
Gobiomorus dormitor	Intestine, liver, muscle, mesentery	RM, RN, Ma; RE, RP, Ap	
Ophisternon aenigmaticum	Body cavity, Mesentery	RG, RM, RN, Ma; RJ, RP, Ap	
Paraneopterus bulleri	Liver, mesentery	RE, Ap	
Rhamdia guatemalensis	Mesentery	RC, Ma; RP, Ap	
Thorichthys callolepis	Liver	RJ, Ap	
Thorichthys helleri	Liver	RM, Ma	
Vieja guttulate	Intestine, mesentery	RE, RJ, Ap	
Vieja regani	Mesentery	RC, Ma	
Xiphophorus hellerii	Mesentery	RJ, Ap	

Falcaustra sp.

Gobiomorus dormitor	Intestine	RN, Ma
Poecilia mexicana	Intestine	RE, Ap
Hysterodactylus centrocepha (Pearse, 1936)	Intestine	RN, Ma
Vieja guttulate	Intestine	RN, Ma
Rhabdochona sp. larvae or female	unidentifiable to species	
Gobiomorus dormitor	Intestine	RM, Ma; RP, Ap
Ophisternon aenigmaticum	Intestine	RE, Ap
Thorichthys helleri	Intestine	RM, Ma
Vieja guttulate	Intestine	RN, Ma
Spiroloxys sp.		
Astyanax aeneus	Mesentery	RJ, Ap; RN, Ma
Gobiomorus dormitor	Mesentery	RN, Ma
Poecilia mexicana	Mesentery	RE, Ap
Thorichthys callolepis	Mesentery	RN, Ma
Xiphophorus clemenciae	Mesentery	RG, Ma

Table 3

Abbreviations to scientific names of helminth parasite taxa referred to in Supplementary Table 4.

Aas	Auriculostoma astyanacae	Gyr	Gyrodactylus sp.
Acu	Acuariidae	Hce	Hysterodactylus centrocepha (larvae)
Adi	Asccostylidae (Phagicolida) diminuta	Msi	Magnivitellium cf. Simplex
Aph	Apharyngostriega sp.	Nch	Neurokrinorhynchus chimalapausensis
Atr	Aphanoblastella traversi	Phe	Paracrepidotrematoide cf. heterandriae
Avi	Actractis vidali	Phi	Phylometridae gen. sp.
Cag	Creptotrema agonostomi	Pmi	Posthodiplostomum cf. minimum
Can	Cucullanus angeli	Pop	Pseudocapillaria ophisterni
Cap	Capillaria sp.	Pos	Posthodiplostomum sp.
Cci	Crassicrita cichlasomae	Pre	Procamallanus rebedae
Cfo	Centrocestus formosanus	Pte	Paracapillaria teixeirafreti
Cic	Cichidocestus sp.	Rha	Rhabdochona sp.
Cli	Clinostomum sp.	Rki	Rhabdochona kidleri
Cme	Cucullanus mexicanus	Rkr	Raillietnema kritscheri
Con	Contracaecum sp.	Sac	Schyzocytote aehiognathi
Cps	Crocodiliola pseudostoma	Sci	Sciadieolithrum sp.
Ctr	Cladocystis trifolioid	Sme	Spinitectus mexicanus
Cuc	Cullum sp.	Spi	Spiroloxy sp.
Dip	Diplomastomum sp.	Sso	Saccocoelioidea cf. sogandaresi
Dme	Dichelyne mexicanus	Tyl	Tylodelphis
Fal	Falcaustra sp.	Uam	Uvulifer amboletopsis
Gas	Genarchella astyanacit	Ust	Urocoididea cf. strombicirrus
Gis	Genarchella isabellae	Wam	Wallinia anindoi
Glo	Glossocercus sp.		
Gtr	Guavinecrops tropica		
and examined within 8 h of capture using standard procedures. Briefly, all the external surfaces, viscera, and musculature of each fish host were examined under a stereomicroscope, and all the helminths encountered in each fish were counted. Two kinds of data were collected from each individual fish: the number of helminth taxa (species richness) in each fish and the number of helminth individuals per helminth taxa (the abundance distribution). All helminths found were isolated and counted, and then fixed in 4% hot formaldehyde (cestodes, monogeneans and adult digeneans, as well as larvae of digeneans and nematodes). Some monogeneans were fixed with ammonium picrate [4] and mounted unstained in Gray–Wess medium [5], for analysis of sclerotized structures. Acanthocephalans were placed in distilled water, refrigerated overnight (6–12 h) to evert the proboscis, and then fixed in hot 10% formalin. Digeneans, monogeneans, cestodes, and acanthocephalans used for morphological examination of whole mounts, were stained with either Mayer's pararcarmine or Gomori's triple stain dehydrated using a graded alcohol series, cleared in methyl salicylate, and and mounted whole in Canada balsam. Nematodes were cleared in glycerine for light microscopy and stored in 70% ethanol. Taxonomic identification was performed based on morphometric analysis of the specimens [6].

Ethics statement

Fish were euthanized and the branchial arches were removed, separated from the brachial cavity and evaluated individually (protocol for the use of fish in research based on the NORM – 019 – STPS – 1993 established by the Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México EPOMEX, Campeche, Mexico; specimens collected under the Cartilla Nacional de Colector Científico FAUT-0105 issued by the Secretaría del Medio Ambiente y Recursos Naturales [SEMARNAT] to GSM).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the Universidad Nacional Autónoma de México, Mexico, though PAPIIT grant no IN220810 to GSM (UNAM, Dirección General de Asuntos del personal Académico, Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica). We thank Guillermo Salgado–Novelo, Luis Carlos Salgado–Novelo, Jessica Pérez Sánchez, Daniela Ávila, Dan Martín Carrillo Santillán, Itzel Stephania, Minerva Hermosillo Hernández, Aliberth Mora Bonilla, Mayra Soriano, Katy Díaz Infante, Abril G. Castellanos Salinas, Eufemia Cruz Arenas, Erika B. Cruz Vásquez, Erika Q. Santiago Pablo, Lucio J. Cruz Arenas, Marisol E. Almaraz Almaraz, Marly Martínez Anacleto and Víctor M. Ortiz Cruz for their assistance in the field and laboratory.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.106191.
References

[1] G. Salgado-Maldonado, R. Pineda-López, The Asian fish tapeworm, Bothriocephalus acheilognathi: a potential threat to native freshwater fish species in Mexico, Biol. Inv 3 (2003) 261–268.

[2] E. Velázquez-Velázquez, B. Méndez-Gómez, G. Salgado-Maldonado, W. Matamoros, The invasive tapeworm Bothriocephalus acheilognathi Yamaguti, 1934 in the endangered killifish Profundulus candalarius Hubbs, 1924 in Chiapas, Mexico, BioInvasions Rec. 4 (2015) 265–268, doi:10.3391/bir.2015.4.4.06.

[3] V.M. Vidal-Martínez, D. Pech, B. Sures, S.T. Purucker, R. Poulin, Can parasites really reveal environmental impact? Trend. Parasitol. 26 (2009) 44–51.

[4] R. Ergens, The suitability of ammonium picrate-glycerin in preparing slides of lower monogenoidea, Folia Parasitol. 16 (1969) 320.

[5] V.M. Vidal-Martínez, M.L. Aguirre-Macedo, T. Scholz, D. González-Solís, E.F. Mendoza-Franco, in: Atlas of the Helminth Parasites of Cichlid Fish of Mexico, Academia, Praha, 2001, p. 165.

[6] G. Salgado-Maldonado, J.M. Caspeta-Mandujano, E. Martínez-Ramírez, J. Montoya-Mendoza, E.F. Mendoza-Franco, Diversity of helminth parasites of freshwater fish in the headwaters of the Coatzacoalcos river, Oaxaca, Mexico, Int. J. Parasitol.: Parasites Wildl. 12 (2020) 142–149, doi:10.1016/j.jppaw.2020.05.008.