Studies on Photo Degradation of Indigo Carmine Dye by Mechanochemically Synthesized Nano Zinc Selenite

Vishwas B. Gaikwad1, Ashok V. Borhade2 and Sharad S. Gaikwad1

1. Chemistry Research Center, Department of Chemistry, Karmveer Rausaheb Thorat Arts, Bhausaheb Hire Commerce and Annasaheb Murkute Science College, Nashik 422 002, India
2. Chemistry Research Center, Department of Chemistry, Hansraj Pragsi Thakasi Arts and Ravjisa Yamasa Kshtriya Science College, Nashik 422 005, India

Received: April 03, 2011 / Accepted: April 20, 2011 / Published: September 25, 2011.

Abstract: In the present paper a novel mechanochemical synthesis method was introduced for the synthesis of zinc selenite. The product was obtained at 320 °C by mechanochemical method for a period of 20 h. The structural and microstructural properties of ZnSeO3 material was characterized by various analytical techniques like FT-IR, UV-DRS, XRD and SEM. The aim of the present work is to see the application of nanocrystalline material ZnSeO3 for photodegradation of indigo carmine dye with respect to various dye concentrations and amount of catalyst. The XRD analysis confirms orthorhombic structure of ZnSeO3 and the average particle size was found to be below 10 nm. Further, the effect of pH and dye concentration on photodegradation was studied. The photodegradation reaction was monitored on the UV-visible double beam spectrophotometer. ZnSeO3 treatment exhibited 93% degradation of indigo carmine dye.

Key words: Mechanochemical method, zinc selenite, indigo carmine, photodegradation.

1. Introduction

A variety of hazardous pollutants are discharged into the aquatic bodies from several industrial streams [1-2]. The dye from textile industries and other commercial dyestuffs have been a focus of environmental remediation in the last few years [2-4]. Conventional methods for the abatement of water pollution from dye and textile industries like adsorption, absorption, incineration and biodegradation were found to be ineffective and expensive. Moreover, they pose secondary disposal problems and associated increase in time and cost of operation [5-11].

Recent development in the real chemical water treatment techniques has lead to the improvement in oxidative degradation by photochemical methods. Photo-catalytic oxidation is cost effective and capable of degrading any complex organic chemicals when compared to other purification techniques. The formation of transient hydroxyl radicals (OH) during photooxidation are highly reactive than any oxidation agent. The photodegradation are generally classified into two categories such as homogeneous and heterogeneous processes. Homogeneous processes occur in presence of UV light in conjunction with an oxidants such as ozone and hydrogen peroxide. Heterogeneous processes occur in presence of oxidants and solid photocatalyst. Photocatalytic degradations are very sensitive to pH, catalyst dosage, type of effluent, effluent concentration and the charges between the effluent and the catalyst [12].

There are many methods for eliminating water pollutants. Widely used semiconductor photocatalysts such as ZnO, SnO2 and TiO2, shows photoactivity. In order to enhance the activity of the TiO2 catalyst, some researchers have tried to shift the Eg toward the visible
light region by adding transition metal oxides such as HfO₂, CdO, ZnO, Ge₂O₃ and In₂O₃ [13-15]. In this way, the beneficial effect of the Zn-doping of TiO₂ catalysts has already been reported in waste water treatment [5, 17]. Semiconductor photocatalysis has attracted a great deal of attention. The strong oxidative power of photogenerated holes on the surface of TiO₂ has made it the most practical photocatalytic material in fields such as environmental remediation [5, 17]. The photodegradation of organic compounds in colloidal and particulate TiO₂ catalyst suspensions has been well studied [18, 19]. ZnO is one of the representatives of the metal oxide class, which is important to the study of electrochemistry and catalysis. Other workers have tried to increase the reactivity of the semiconductors manipulating the morphology of the particle [20, 21]. However, this way is a complex one for obtaining semiconductors doped in small amounts with Zn and well-defined morphology, since there is a strong dependence on the preparation method and conditions [13, 22].

We reported the preparation of ZnSeO₃ powder and its photocatalytic activity in the degradation, a cationic dye usually used as a model to test for photocatalytic activity. In the present work, the scope was extended to cover indigo carmine (IC) which is an anionic dye usually used in the textile, food, and cosmetic industries. Indigo carmine is regarded as a highly toxic dye that may lead to tumours at the site of application, cause skin or eye irritation, and permanent injury to cornea and can be fatal if consumed. The toxicity tests of IC dye revealed long-term toxicity in mice and short-term toxicity in pigs [23-25]. In this report, the degradation of IC dye was investigated by using ZnSeO₃ nanocrystalline particles. The effect of various parameters such as pH, initial concentration of dye and intensity of UV light were studied.

2. Experiment

2.1 Synthesis of ZnSeO₃

The Zinc oxide, selenium dioxide, reagents used were analytical reagent grade (AR), Indigo carmine (C₁₆H₈N₂Na₂O₈S₂, Mol. Wt. 466.36 gm/mol) was purchased from research lab Fine Chem. Industries Mumbai, India. ZnSeO₃ Polycrystalline powder was prepared by using stoichiometric mixture of ZnO and SeO₂ and it was subjected to stepwise calcinations until terminal temperature of the reaction mixture occurred by heating in the muffle furnace with increase in temperature at the rate of 10 °C per minute from one temperature to the subsequent higher temperature. After heating at higher temperature the material was cooled and grinded with gap of 2 h by using mortar and pestle. Later on, the grinded material was further heated at 100 °C to 320 °C for 12 h. The material was again grinded with gap of 2 h using mortar and pestle.

2.2 Characterization of ZnSeO₃

The XRD analysis of the sample was carried out by DX-2000 X-ray powder diffractometer with CuKα monochromatic radiation. The mean particle size of the product was calculated by using Debye Scherrer’s equation from the full width at half maximum (FWHM) of the XRD pattern. FT-IR spectra of a powder sample was performed with KBr pellet on Shimadzu fourier transform infrared spectrophotometer 84000 S model. UV-DRS Spectra was carried out using JASCO UV-visible diffuse reflectance spectrophotometer. The structural morphology and association elemental composition is determined by scanning electron microscopy (SEM).

2.3 Photodegradation Study

The concentration of indigo carmine dye solution was 5 ppm. A 50 mL of dye solution was transferred into the reaction cell and then 50 mg of ZnSeO₃ nanocrystalline powder was added. This mixture was irradiated by UV lamp, which induced the photochemical reaction to proceed. Every 15 min the reaction mixture was taken and centrifuged to discard other sediment. These solutions were monitored on spectrophotometer (Shimadzu 1800) before and after...
reaction at wavelength 610 nm. Experiments were repeated to get better results. An investigation of the effects of reaction conditions was also done by varying conditions and monitors the activity.

3. Results and Discussion

3.1 UV-DRS

The UV-diffused reflectance spectrum for ZnSeO₃ is depicted in Fig. 1 and show the broad absorption edge cut off in the vicinity of 370 nm. The broad shoulder in nanocrystalline material in the UV-visible range probably shows the formation of nano ZnSeO₃. The band gap was calculated by using equation $E = \hbar \nu$ and is found to be 3.40 eV.

3.2 XRD

Fig. 2 shows the X-ray powder diffraction pattern of the mechanochemically synthesized nanocrystalline ZnSeO₃. Observed X-ray diffraction pattern for ZnSeO₃ nanoparticles shows high degree of crystallinity. All the peaks in XRD pattern match well with reported characteristic reflection peaks of ZnSeO₃ (JCPDS Card No.01-0864) and some peak from Card No. 31-1473. The crystallite size has been estimated from the X-ray peak broadening of (h, k, l) diffraction using Scherrer formula.

The average grain size of sample estimated from half width of the XRD (200) peak and found to be about 8.30 nm for ZnSeO₃. The XRD peaks correspond to the orthorhombic structure of the zinc selenite.

3.3 FT-IR

Fig. 3 shows the FTIR spectra of nanocrystalline ZnSeO₃. The bands around 887.24 cm⁻¹, 781 cm⁻¹, 522 cm⁻¹, 451 cm⁻¹ are possibly caused by the stretching vibration due to the interactions produced between the oxygen and the cation occurring the octahedral and tetrahedral sites. The bands at 1,668 cm⁻¹, 3,417 cm⁻¹ are due to the stretching vibrational modes of metal-oxygen bond.

3.4 SEM

The crystal morphology with elemental detection of milled powder for ZnSeO₃ is depicted in Fig. 4. A careful inspection of Fig.4 shows that some of crystals show tetragonal structure. The surface of the catalyst presents a spongy discrete particle appearance.
3.5 Effect of pH

The degradation of dye was carried out at pH = 7 (Natural pH Range), as per the effluents from factories may cover a wide range of pH. To carry the efficiency of degradation by ZnSeO$_3$ solution of several pH value (3, 5, 7 and 8) were investigated. In general it is known that the metal oxide particles in water exhibit amphoteric behavior and readily reacts with dye.

3.6 Effect of Dye Concentration

The study of initial concentration of indigo carmine dye on the photocatalytic efficiency was investigated with concentration of 5, 10, 15 and 20 ppm solution. It was observed that the increase in dye concentration, decrease in degradation efficiency. Hence, the photo-oxidation process will work faster at a low concentration of pollutants. These results are in good agreement with previous reports [26-28] that photodegradation of textile dye Reactive Red 2, C.I. Acid Yellow 17 and Direct Yellow 12 decreased with increasing concentrations. At high concentrations of dye, the deeper coloured solution would be less transparent to UV light and the dye molecules may absorb a significant amount of UV light causing less light to reach the catalyst and thus reducing the OH$^•$ radical formation. Since OH$^•$ radicals are of prime importance in the attack of the dye molecules, lowering the amount of OH$^•$ radicals would cause the photodegradation efficiency to decrease [29].

3.7 Effect of Amount of Catalyst

The experiment was carried out with and without catalyst (25 mg, 50 mg, 75 mg and 100 mg) at pH = 7 under the UV lamp. No degradation was found without catalyst loading dosage. Fig. 5 shows the % of untreated indigo carmine with time at pH = 7. The complete degradation of indigo carmine dye was found in the 120 min with catalyst of 50 mg gave a better results than other catalyst dosage when studied under same constant pH condition (Fig. 6). The amount has increased from 25 mg to 100 mg catalyst, this shows
Studies on Photo Degradation of Indigo Carmine Dye by Mechanochemically Synthesized Nano Zinc Selenite

Fig. 7 Effect of amount of photocatalyst on dye degradation.

that increase in catalyst loading decrease the rate of decoloration (Fig. 7). Therefore, 50 mg catalyst loading is considered to be an optimal value. This phenomenon may be explained as, with an increase in catalyst loading the light penetration through the solution becomes difficult. Increase in catalyst concentration decreases photo absorption which in turn reduces the dye adsorption onto the catalyst surface thus reducing the reaction rates [12, 30-32]. Fig. 7 shows the degradation of IC is higher for 50 mg catalyst loading after 120 min exposure to UV irradiation. Optimal concentration of the catalyst depends on working condition and the incident radiation [31, 33, 34].

4. Conclusions

The ZnSeO₃ synthesis was carried out under ecofrindly, easily and cheap solid state mechanochemical method. ZnSeO₃ was successfully employed in the degradation of indigo carmine dye. The optimization studies revealed the dependence of the degradation of indigo carmine on initial dye concentration and amount of the catalyst. This study highlights that the ZnSeO₃ can be used as the heterogeneous photocatalyst.

Acknowledgments

The authors are thankful to UGC, New Delhi for providing financial assistance. We are also thankful to Management, Maratha Vidya Prasark Samaj’s, Nashik and Principal, K.T.H.M. College, Nashik for providing necessary facilities in the department.

References

[1] R. Ganesh, G.D. Boardman, D. Michelsen, Fate of azo dyes in sludges, Water Res. 28 (1994) 1367.
[2] A. Yadav, S. Neraliya, A. Gopesh, Acute toxicity levels and ethological responses of Channa striatus to fertilizer industrial waste water, J. Environ. Biol. 28 (2007) 159-162.
[3] E.J. Weber, R.L. Adams, Electrochemical monitoring of water remediation by metallic iron, Environ. Sci. Technol. 29 (1995) 113.
[4] M. Nupur, P. Bhatnagar, Mutagenicity assessment of textile dyes from Sanganer (Rajasthan), J. Environ. Biol. 28 (2007) 123-126.
[5] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
[6] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341-357.
[7] L.N. Lewis, Chemical catalysis by colloids and clusters, Chem. Rev. 93 (1993) 2693-2730.
[8] O. Legrini, E. Oliveros, A.M. Braun, Photochemical processes for water treatment, Chem. Rev. 93 (1993) 671-698.
[9] P.V. Kamat, Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev. 93 (1993) 267-300.
[10] P. Deepak, A. Singh, Y. Satyawali, R.K. Gupta, Effect of carbon and nitrogen source amendment on synthetic dyes decolourizing efficiency of white-rot fungus, Phanerochaete chrysosporium, J. Environ. Biol. 29 (2008) 79-84.
[11] L. Sunantha, S. Vininantharath, P. Chaiprasingtand, S.R. Ha, Anaerobic degradation kinetics of reactivdye with different carbon sources, J. Environ. Biol. 29 (2008) 309-314.
[12] G.M. Madhu, M.A. Lourdu, A. Raj, K. Vasantha, K. Pai, S. Rao, Photodegradation of methylene blue dye using UV/BaTiO3, UV/H₂O₂ and UV/ H₂O₂/BaTiO3, oxidation processes, Ind. J. Chem. Technol. 14 (2007) 139-144.
[13] Y. Kim, J. Lee, H. Jeong, Y. Lee, M.H. Um, K.M. Jeong, et al., Methyl orange removal over Zn incorporated TiO₂ photo-catalyst, J. Ind. Eng. Chem. 14 (3) (2008) 396-400.
[14] K. Oyoshi, N. Sumi, I. Umezu, R. Souda, A. Yamazaki, H. Haneda, et al., Structure, optical absorption and electronic states of Zn⁺ ion implanted and subsequently annealed sol-gel anatase TiO₂ films, Nuclear Instruments and Methods in Physice Research Section B: Beam Interactions with Materials and Atoms 168 (2000)
A.R. Phani, M. Passacanando, S. Santucci, Synthesis of nanocrystalline ZnTiO₃ perovskite thin films by sol-gel process assisted by microwave irradiation, J. Phys. Chem. Solids 68 (2007) 317-323.

A. Fujishima, T. Rao, D. Tryk, Titanium dioxide photocatalysts, J. Photochem. Photobiol. C 1 (2001) 1-21.

A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO₂ surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.

G. Colon, M.C. Hidalgo, J.A. Navio, Photocatalytic deactivation of commercial TiO₂ samples during simultaneous photoreduction of Cr(VI) and photo-oxidation of salicylic acid, J. Photochem. Photobiol. A: Chem. 138 (2001) 79-85.

M.S.T. Gonçalves, A.M.F. Oliveira-Campos, E.M.M.S. Pinto, P.M.S. Plasência, M.J.R.P. Queiroz, Photochemical treatment of solutions of azo dyes containing TiO₂, Chemosphere 39 (5) (1999) 781-786.

D. Li, H. Haneda, Morphologies of zinc oxide particles and their effects on photocatalysis, Chemosphere 51 (2) (2003) 129-137.

D.L. Liao, B.Q. Liao, Shape, size and photocatalytic activity control of TiO₂ nanoparticles with surfactants, J. Photochem. Photobiol. A: Chem. 187 (2-3) (2007) 363-369.

A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures, Rev. Mex. Fis. 53 (2007) 18-22.

I. Othman, R.M. Mohamed, I.A. Ibrahim, M.M. Mohamed, Synthesis and modification of ZSM-5 with manganese and lanthanum and their effects on decolorization of indigo carmine dye, Appl. Catal. A 299 (2006) 95-102.

A. Mittal, J. Mittal, L. Kurup, Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption, J. Hazard. Mater. 137 (2006) 591-602.

I. Othman, R.M. Mohamed, F.M. Ibrahim, Study of photocatalytic oxidation of indigo carmine dye on Mn supported TiO₂, J. Photochem. Photobiol. A 189 (2007) 80-85.

S. Senthilkumara, K. PORKODI, Heterogeneous photocatalytic decomposition of crystal violet in UV-a-illuminated sol-gel derived nanocrystalline TiO₂ suspension, J. Colloid Interface Sci. 288 (2005) 184-189.

A.P. Toor, A. Verma, C.K. Jotshi, P.K. Bajpai, V. Singh, Photocatalytic degradation of direct yellow 12 dye using UV/TiO₂ in a shallow pound slurry reactor, Dyes Pigments 68 (2006) 53.

C.C. Liu, Y.H. Hsieh, P.F. Lai, C.H. Li, C.L. Kao, Photodegradation treatment of azo dye wastewater by UV/TiO₂ process, Dyes Pigments 68 (2006) 191-195.

I.K. Konstantinou, T.A. Albanis, TiO₂-assisted photocatalytic degradation of azo dye in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal. B 49 (2004) 1-14.

C. Zhu, L. Wang, L. Kong, X. Yang, S. Zheng, F. Chen, et al., Photocatalytic degradation of azo dyes by supported TiO₂ + UV in aqueous solution, Chemosphere 41 (2000) 303-309.

G.A. Epling, C. Lin, Photo assisted bleaching of dyes utilizing TiO₂ and visible light, Chemosphere 46 (2002) 561-570.

G.M. Madhu, M.A. Lourdu, A. Raj, K. Vasantha, K. Pai, S. Rao, Photocatalytic degradation of orange III, Chem. Prod. Finder 25 (2006) 19-24.

D. Chen, A.K. Ray, Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO₂, Appl. Catal. B. Environ. 23 (1999) 143-157.

A. Assabane, Y.A. Ichou, H. Tahiri, C. Guillard, J.M. Herrmann, Photocatalytic degradation of polycarboxylic benzoic acids in UV irradiated aqueous suspensions of titania: identification of intermediates and reaction pathway of the photomineralization of trimellitic Acid (1,2,4-benzoic tricarboxylic acid), Appl. Catal. B. Eviron. 24 (2000) 71-87.