On weakly equational Noetherian direct powers of groups and semigroups

A N Shevlyakov

1 Sobolev Institute of Mathematics, Pevtsova 13, Omsk, 644099, Russia
Omsk State Technical University, pr. Mira 11, Omsk, 644050, Russia
E-mail: a_shev10@mail.ru

Abstract. We study Diophantine equations over direct powers of groups and semigroups and prove that any direct power of a finite semigroup (group) with zero (resp. with the equational domain property) is weakly equationally Noetherian.

1. Introduction
There are many obvious connections between the equations over a certain algebraic structure A and equations over its direct power ΠA. Namely, the solution set of an equation over ΠA is a product of the solutions sets over the isomorphic copies of A.

However, properties of infinite systems of equations may be completely different over ΠA and A. In particular, any infinite system of equations over a finite algebraic structure A is equivalent to a finite system of equations (the weakly equationally Noetherian property), but there are infinite systems of equations S over the direct power ΠA such that S is not equivalent to any finite system over ΠA.

In the current paper we study weakly equationally Noetherian direct powers of finite algebraic structures and prove that any direct power of a finite semigroup (group) with zero (resp. with the equational domain property) is weakly equationally Noetherian (see Theorems 3.4 and 4.2).

2. Basic notions
Let \mathcal{L} be a language. Below we will consider the following languages:

$$
\mathcal{L}_s = \{\cdot\} \text{ semigroup language},
\mathcal{L}_g = \{\cdot, -1, 1\} \text{ group language},
\mathcal{L}_r = \{+, -, \cdot, 0\} \text{ ring language}.
$$

An equation over \mathcal{L} (\mathcal{L}-equation) is an atomic formula of \mathcal{L}. Let us give the examples of equations in various languages:

$$
x_1 x_2 = x_2 x_1, \quad x_2 x_1 = x_1 x_3 \text{ language } \mathcal{L}_s,
x_1^{-1} x_2^{-1} x_1 x_2 = 1, \quad x_1^{-1} x_2 x_1 = x_3 \text{ language } \mathcal{L}_g,
x_1^2 + x_2^2 = 0, \quad x_1 - x_1 x_2 - x_3 x_2 x_1 = 0 \text{ language } \mathcal{L}_r.
$$

1 Present address: Sobolev Institute of Mathematics, Pevtsova 13, Omsk, 644099, Russia
A system of \(\mathcal{L} \)-equations (system, for shortness) is an arbitrary set of equations. The solution set of a system \(\mathcal{S} \) over an algebraic structure \(\mathcal{A} \) is denoted by \(\mathcal{V}_\mathcal{A}(\mathcal{S}) \). An algebraic structure \(\mathcal{A} \) of a language \(\mathcal{L} \) is weakly equationally Noetherian iff any infinite system \(\mathcal{S} \) is equivalent to an appropriate finite system \(\mathcal{S}' \). \(\mathcal{L} \)-systems \(\mathcal{S}_1, \mathcal{S}_2 \) are called equivalent over an \(\mathcal{L} \)-algebraic structure \(\mathcal{A} \) if \(\mathcal{V}_\mathcal{A}(\mathcal{S}_1) = \mathcal{V}_\mathcal{A}(\mathcal{S}_2) \). A set \(\mathcal{Y} \subseteq \mathcal{A}^n \) is algebraic if there exists an \(\mathcal{L} \)-system \(\mathcal{S} \) with \(\mathcal{V}_\mathcal{A}(\mathcal{S}) = \mathcal{Y} \).

Let us define the language extension as follows: let \(\mathcal{L} \) be a language and \(\mathcal{A} \) be an algebraic structure of the language \(\mathcal{L} \). Then

\[
\mathcal{L}(\mathcal{A}) = \mathcal{L} \cup \{ a \mid a \in \mathcal{A} \}
\]

is the new language extended by constants that correspond to all elements of \(\mathcal{A} \). Thus, one can consider the languages \(\mathcal{L}_s(\mathcal{S}), \mathcal{L}_s(G), \mathcal{L}_s(R) \) (where \(S, G, R \) is a semigroup, group, ring respectively) and give the examples of equations over such languages:

\[
\begin{align*}
 x_1x_2 &= x_2x_1, & x_2x_1 &= x_1x_3 \text{ language } \mathcal{L}_s, \\
 x_1^{-1}x_2^{-1}x_1x_2 &= 1, & x_1^{-1}x_2x_1 &= x_3 \text{ language } \mathcal{L}_g, \\
 x_1^2 + x_2^2 &= 0, & x_1 - x_1x_2 - x_3x_2x_1 &= 0 \text{ language } \mathcal{L}_r.
\end{align*}
\]

Let

\[
\Pi \mathcal{A} = \prod_{i \in I} \mathcal{A}
\]

be a direct power of an \(\mathcal{L} \)-structure \(\mathcal{A} \), i.e. \(\Pi \mathcal{A} \) consists of the series \([a_i \mid i \in I] \) with the coordinate-wise operations. For example, if a language \(\mathcal{L} \) contain a multiplication, then this operation is defined over \(\Pi \mathcal{A} \) as follows:

\[
[a_i \mid i \in I] \cdot [b_i \mid i \in I] = [a_ib_i \mid i \in I].
\]

Let us take an \(\mathcal{L}(\Pi \mathcal{A}) \)-system \(\mathcal{S} = \{ E_j(X) \mid j \in J \} \) (\(E_j(X) \) are equations of the language \(\mathcal{L}(\Pi \mathcal{A}) \)). The \(i \)-th projection \(\pi_i(\mathcal{S}) \) is the \(\mathcal{L}(\mathcal{A}) \)-system \(\{ \pi_i(E_j(X)) \mid j \in J \} \). In particular, if one of the projections \(\pi_i(\mathcal{S}) \) is inconsistent, so is \(\mathcal{S} \).

One can directly prove the following result.

Lemma 2.1. An \(\mathcal{L}(\Pi \mathcal{A}) \)-system \(\mathcal{S} = \{ E_j(X) \mid j \in J \} \) over \(\Pi \mathcal{A} \) is consistent iff all projections \(\pi_i(\mathcal{S}) \) are consistent.

Proof. It is easy to see that the solution set of \(\mathcal{S} \) over \(\Pi \mathcal{A} \) is the product of the solution sets of all projections. Thus, \(\mathcal{V}_{\Pi \mathcal{A}}(\mathcal{S}) \neq \emptyset \) implies \(\mathcal{V}_\mathcal{A}(\pi_i(\mathcal{S})) \neq \emptyset \) for each \(i \in I \).

The aim of the current paper is the study of weakly equationally Noetherian property for direct powers of semigroups, groups and rings in the languages \(\mathcal{L}(\mathcal{S}), \mathcal{L}(\mathcal{G}), \mathcal{L}(\mathcal{R}) \) respectively.

3. Direct powers of finite semigroups

Let \(t(X), s(X) \) be terms of the semigroup language \(\mathcal{L}_s(\mathcal{S}) \). We write \(t(X) \approx s(X) \) if the terms \(t(X), s(X) \) are reduced to the common constant-free term \(t_0(X) \) by the deletion of all constants from \(t(X), s(X) \). For example,

\[
\begin{align*}
 s_1x_1s_2x_2 &\approx s_3x_1s_4x_2 \approx x_1s_5x_2 \approx x_1x_2s_6 \approx x_1x_2.
\end{align*}
\]

for any \(s_i \in \mathcal{S} \).

Two \(\mathcal{L}_s(\mathcal{S}) \)-equations \(t_1(X) = s_1(X), t_2(X) = s_2(X) \) are \(\approx \)-equivalent if one of the following conditions holds:
\[(i) \ t_1(X) \approx t_2(X) \ \text{and} \ s_1(X) \approx s_2(X); \]
\[(ii) \ t_1(X) \approx s_2(X) \ \text{and} \ s_1(X) \approx t_2(X); \]

The proof of the following lemma is straightforward.

Lemma 3.1. Let \(S \) be a finite semigroup and \(X \) be a finite set of variables. Then there exists a finite set of \(\mathcal{L}_a(S) \)-equations \(M = \{ t_i(X) = s_i(X) \mid 1 \leq i \leq m \} \) such that any \(\mathcal{L}_a(S) \)-equation \(t(X) = s(X) \) is \(\approx \)-equivalent over \(S \) to some equation from \(M \).

Lemma 3.2. Suppose a semigroup \(S \) contains zero, then any \(\mathcal{L}_a(S) \)-equation \(t(X) = s(X) \) is \(\approx \)-equivalent to an equation \(\tau(X) = \sigma(X) \) such that \(V_S(\tau(X) = \sigma(X)) \) is a nilpotent, i.e. any point \(P \in S^n \) satisfies the equation \(\tau(X) = \sigma(X) \). Moreover,

Proof. One should put \(\tau(X) = 0 \cdot t(X), \ \sigma(X) = 0 \cdot s(X). \)

Lemma 3.3. Let \(S \) be a semigroup with zero, \(I \) be the set of indexes for the direct power \(\Pi S \) and \(\Sigma = \{ t_i(X) = s_i(X) \mid i \in J \} \) \((J \subseteq I, \ X = \{ x_1, \ldots, x_n \}) \) be a system of \(\mathcal{L}_a(S) \)-equations. The system \(\Sigma \) is the coordinate-wise projection of an \(\mathcal{L}(\Pi S) \)-equation \(t(X) = s(X) \) over \(\Pi S \) iff any two equations in \(\Sigma \) are \(\approx \)-equivalent.

Proof. Suppose any two equations in \(\Sigma \) are \(\approx \)-equivalent, i.e. the left (right) part of any equation from \(\Sigma \) is reduced to the constant-free term \(t_0(X) \) (respectively, \(s_0(X) \)). For any index from \(i \in I \setminus J \) we add to \(\Sigma \) the trivial equation \(t_i(X) = s_i(X) \) with \(t_i(X) = 0 \cdot t_0(X), \ s_i(X) = 0 \cdot s_0(X). \) Finally, all equations from \(S \) may be wrapped into a single \(\mathcal{L}_a(\Pi S) \)-equation over the direct power \(\Pi S \).

Theorem 3.4. Let \(S \) be a finite semigroup with zero. Then \(\Pi S \) is weakly equationally Noetherian.

Proof. Let \(S \) be an infinite system of equations over \(\Pi S \) and \(S_i = \pi_i(S) \) \((i \in I) \) be the coordinate-wise projections of \(S \). By Lemma 3.1, there exists a finite set \(M \) of \(\mathcal{L}_a(S) \)-equations such that each \(S_i \) is equivalent to a system \(S'_i \subseteq M \).

For each \(t(X) = s(X) \in M \) we do the following operations.

Let \(I'_1 \subseteq I \) be the set of all indexes with \(t(X) = s(X) \in S'_i \), and \(I'_0 = I \setminus I'_1 \). Consider the following set of \(\mathcal{L}_a(S) \)-equations:

\[\{ t(X) = s(X) \mid i \in I'_1 \} \cup \{ 0 \cdot t(X) = 0 \cdot s(X) \mid i \in I'_0 \} \]

Obviously the set of equations above is wrapped into a single equation \(t(X) = s(X) \) over \(\Pi S \).

Thus, the processing of the set \(M \) gives the finite set of \(\mathcal{L}_a(\Pi S) \)-equations \(S' \) such that \(S' \) is equivalent to \(S \) over \(\Pi S \).

4. Direct powers of finite groups

Let us give the necessary definitions for the next theorem. A group \(G \) of the language \(\mathcal{L}_d(G) \) is called an equationally domain if any union \(Y_1 \cup Y_2 \) of algebraic sets \(Y_1, Y_2 \) is algebraic.

There are enough examples of equationally domains in the class of groups. In particular, all finite non-abelian groups and non-abelian free groups are equationally domains. There exists a simple criterion (see [1]) for a group to be an equationally domain:

Theorem 4.1. A group of the language \(\mathcal{L}(G) \) is an equationally domain iff the set

\[\{ (x, y) \mid x = 1 \ \text{or} \ y = 1 \} \]
is algebraic.

Obviously, any point \(P = (p_1, p_2, \ldots, p_n) \in G^n \) is algebraic over \(G \) in the language \(\mathcal{L}(G) \), since

\[P = V_G(\{x_1 = p_1, x_2 = p_2, \ldots, x_n = p_n\}). \]

By the definition of an equational domain, any finite set is also algebraic. Hence, any subset \(Y \subseteq G^n \) is algebraic over a finite group \(G \). The last fact will be used in the following theorem.

Theorem 4.2. Let \(G \) be a finite group and \(G \) is an equational domain. Then \(\Pi G \) is weakly equationally Noetherian.

Proof. Let \(S \) be a \(\mathcal{L}_q(G) \)-system in variables \(X = \{x_1, x_2, \ldots, x_n\} \) over \(\Pi G \) and \(\pi_i(S) \) be the coordinate-wise projections of \(S \). Let \(Y_i \subseteq G^n \) be the solution set of the system \(\pi_i(S) \). Since \(G \) is finite and equational domain, for each point \(P \in G^n \) there exists a term \(t_P(X) \) such that \(V_G(t_P(X)) = G^n \setminus P \). Then

\[Y_i = \bigcap_{P \not\in Y_i} V_G(t_P(X) = 1). \]

Let us prove that the system of equations

\[\{t_P(X) = 1 \mid P \not\in Y_i\} \]

is equivalent to a single equation

\[w_i(X_i) = \prod_{P \not\in Y_i} [t_P(X), a_i^{-1} t_P(X) a_i P] = 1, \quad (1) \]

where the constants \(a_i P \in G \) are defined as follows: since \(G \) is an equational domain, for the element \(t_P(P) \in G \setminus \{1\} \) there exists an element \(a_i P \) with

\[t_P(P), a_i^{-1} t_P(P) a_i P \neq 1. \]

Let us prove \(V_G(w(X_i)) = Y_i \). Indeed, if \(Q \not\in Y_i \) then

\[w_i(Q) = \prod_{P \not\in Y_i} [t_P(Q), a_i^{-1} t_P(Q) a_i P] = [t_Q(Q), a_i^{-1} t_Q(Q) a_i Q] \neq 1. \]

Otherwise \((Q \in Y_i) \):

\[w_i(Q) = \prod_{P \not\in Y_i} [t_P(Q), a_i^{-1} t_P(Q) a_i P] = \prod_{P \not\in Y_i} 1 = 1. \]

Obviously, any equation \(w(X_i) \) (1) is equivalent to

\[w_i(X_i) = \prod_{P \in G^n} [t_P(X_i), a_i^{-1} t_P(X_i) a_i P] = 1, \quad (2) \]

if we put \(a_i P = 1 \) for each \(P \in Y_i \).

Then the set of equations \(\{w_i(X_i) \mid i \in I\} \) may be wrapped into the \(\mathcal{L}_q(G) \)-equation over \(\Pi G \)

\[w(X) = \prod_{P \in G^n} [t_P(X), a_i^{-1} t_P(X) a_i P] = 1, \]

where \(a_i P = [a_i P \mid i \in I] \).

Thus, the system \(S \) is equivalent to the equation \(w(X) = 1 \), and the group \(\Pi G \) is weakly equationally Noetherian.
Acknowledgments
The work is supported by Mathematical Center in Akademgorodok, the agreement with Ministry of Science and High Education of the Russian Federation number 075-15-2019-1613

References
[1] Daniyarova E, Myasnikov A and Remeslennikov V 2017 *Algebraic geometry over algebraic structures* (Novosibirsk: SO RAN)
[2] DMR1 Daniyarova E, Myasnikov A and Remeslennikov V 2008 *Unification theorems in algebraic geometry* Algebra and Discrete Mathamatics, 1, 80–112.
[3] A. N. Shevlyakov 2019 *Weakly equationally Noetherian trees* IOP Conf. Series: Journal of Physics: Conf. Series 1210 012127.