Entomopathogenic fungus generated Nanoparticles for enhancement of efficacy in Culex quinquefasciatus and Anopheles stephensi

N. SONI, S. PRAKASH*

Environmental and Advanced Parasitology and Vector Control Biotechnology Laboratories, Department of Zoology, Dayalbagh Educational Institute, Dayalbagh, Agra 282 005, India

Abstract

Objective: To evaluate the efficacy of silver and gold generated larvicide with the help of entomopathogenic fungus Chrysosporium tropicum against the Culex quinquefasciatus and Anopheles stephensi larvae. Methods: The silver and gold nanoparticles were quantified and observed by the Micro-scan reader and X-ray diffraction technique. The larvicidal efficacy was then performed at six different log concentrations by the probit analysis. Results: The characterization study confirmed the spherical shaped and sized (20–50 and 2–15 nm) of silver and gold nanoparticles. The all larval stages of Cx. quinquefasciatus were found more susceptible to the synthesized silver nanoparticles. Whereas, the larvae of An. stephensi were found more susceptible to larvicide synthesized with gold nanoparticles. Conclusions: The results suggested that the silver and gold nanoparticles generated by the entomopathogenic fungus C. tropicum is an environmentally safer and greener approach for mosquito control and new possibility in vector control strategy.

1. Introduction

Mosquitoes are responsible for spreading serious diseases like malaria, filariasis, and dengue etc. Anopheles species are the most important species as they are capable vector for malaria parasites. Anopheles species are the most important species as they are capable vector for malaria parasites. Approximately half of the world’s population is at risk of malaria, particularly those living in lower-income countries. It infects more than five hundred million people per year and kills more than one million [1].

Culex mosquitoes are painful and persistent biters and are responsible for filariasis. Lymphatic Filariasis, commonly known as elephantiasis, is a painful and profoundly disfiguring disease. An estimated one hundred twenty million people in tropical and subtropical areas of the world are infected with lymphatic filariasis; of these, almost twenty five million men have genital disease (most commonly hydrocele) and almost fifteen million, mostly women, have lymphoedema or elephantiasis of the leg. Approximately 66% of those at risk of infection live in the WHO South-East Asia Region and 33% in the African Region [2].

It is known that larvicides play a vital role in controlling mosquitoes in their breeding sites. Two insecticidal bacteria have been used as larvicide to control larvae of nuisance and vector mosquitoes in many countries, Bacillus thuringiensis sp. Israelesis and B. sphaericus [3]. Field studies have shown that both are effective, but serious resistance, as high as 50 000–fold, has evolved where B. sphaericus is used against Culex mosquitoes. Unfortunately, the development of resistance against the larvicide in various mosquito populations has also been reported.

It is essential to control mosquito population so that people can be protected from mosquito borne diseases. Fungi and fungus – derived products are highly toxic to mosquitoes, yet
have low toxicity to non-target organisms [4]. The secondary metabolites of entomopathogenic fungi Chrysosporium [5–6], Fusarium [7] have been screened as a potential larvicides successfully.

Fungi are also been used in nanotechnology for producing nanoparticles. Therefore, present green synthesis has shown that the environmentally benign and renewable source of fungi used as an effective reducing agent for the synthesis of silver and gold nanoparticles. This biological reduction of metal would be boon for the development of clean, nontoxic and environmentally acceptable “green approach” to produce metal nanoparticles. Many of the species of fungi like Fusarium oxysporum [8], Aspergillus [9–10] and Verticillium species [11] used in nanotechnology for nanoparticles production. The formed silver and gold nanoparticles are highly stable and have significant mosquito larvicidal activity. Antiparasitic activities to determine the efficacies of synthesized silver nanoparticles using aqueous leaf extract of Mimosa pudica against the larvae of malaria vector, An. subpictus, filariasis vector Cx. quinquefasciatus and Rhipicephalus microplus have been evaluated [12]. Nehumlu nucifera synthesized silver nanoparticles using aqueous leaf extract against larvae of An. subpictus and Cx. quinquefasciatus; have been observed [13]. The larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Ae. aegypti and An. stephensi have been observed [14]. Recently, the silver and gold nanoparticles synthesized with C. tropicum have been tested as a larvicide against the Ae. aegypti larvae [15].

The present communication describes the larvicidal effect of silver and gold nanoparticles generated by entomopathogenic fungus C. tropicum. This can be another way to avoid resistance problem effectively minimized while using new fungal based nanolarvicide.

2. Materials and methods

2.1 Fungus strain, preparation of broth and culture of C. tropicum

The fungal strain of C. tropicum (MTCC 2828) was obtained from Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology Chandigarh India. This strain was routinely maintained in our laboratory on Sauaborad’s Dextrose Agar (SDA) medium at 25°C.

The broth was prepared for culture of C. tropicum by the method of Gardner and Pillai [16]. C. tropicum was grown in Sauaborad’s Dextrose Broth (SDB). Five 250 ml conical flask, each containing 100 ml Sauaborad’s dextrose broth (Dextrose 40 g, peptone 10 g, deionized water 1000ml) were autoclaved at 20 psi for 20 min. The broth was supplemented 50 μg/ml chloramphenicol as a bacteriostatic agent. C. tropicum colonies grown on the SDA plates were transferred to each flask using the inoculation needle. The conical flasks inoculated with C. tropicum were incubated 250C for 15 days.

2.2 Collection and maintenance of mosquito larvae in laboratory

Mosquito larvae were collected from various localities, including urban, rural and semi-urban regions of Agra (27°0, 10°N, 78°05'E), India and reared in deionized water containing glucose and yeast power. The colonies of Cx. quinquefasciatus and An. stephensi were maintained in the laboratory at a temperature of 25 °C, with a relative humidity of 75±5% and 14h photoperiod. The larvae of Cx. quinquefasciatus and An. stephensi were maintained in separate enamel containers as per the standard method [17].

2.3 Synthesis and characterization of silver and gold nanoparticles

After incubation the fungal biomass was separated from the medium by filtration through Whatman-1 filter paper and washed thrice in sterile distilled water to remove any nutrient media that might interact with the gold ions. Approximately 10g of C. tropicum biomass was transferred to a 250 ml conical flask containing 100 ml of distilled water and incubated for 72h at 25 °C and then the aqueous solution components were separated by filtration using Whatman-1 filter paper. To this solution (liquid fungal), AgNO3 and HAuCl4 (10−3M) was added and kept for 72h at 25°C. Simultaneously, control with fungal liquid of C. tropicum without AgNO3 and HAuCl4 was maintained under same conditions, separately.

Periodically, aliquots of the reaction solutions were removed and their absorption was measured in a Micro-Scan reader model no. MICROSCAN MS5608A. Then the solution was converted in the powder for XRD measurement. For XRD study, dried nanoparticles were coated on XRD grid and the spectra were recorded by using Bruker AXS D_8 Advance. The micrographs of silver and gold nanoparticles were obtained by Philips CM−10 Transmission electron microscope and confirmed by the Scanning electron microscope. Elemental analysis on single particle was carried out by EDX analysis.

2.4 Bioassays, data management and statistically analysis

Larvicidal activity of silver and gold nanoparticles generated by C. tropicum against Cx. quinquefasciatus and An. stephensi was assessed by using the standard method [18]. All mosquito larvae of Cx. quinquefasciatus and An. stephensi were separated and placed in a container in microbe free deionized water. After that different test concentrations of silver and gold nanoparticles in 100ml deionized were prepared in 250−ml beakers. Bioassays were conducted separately for each instar at six different log test concentrations (0.77, 1.07, 1.25, 1.38, 1.47, 1.55 ppm and 0.30, 0.60, 0.77, 0.90, 1.00, 1.08 ppm, respectively) of aqueous gold and silver nanoparticles. To test the larvicidal activity of silver and gold nanoparticles, 20 larvae of each stage were separately exposed to 100ml of test concentration. Similarly, the control (without silver and gold nanoparticles) was run to test the natural mortality. Thereafter, we could further examine the mortality which was determined after different time of the treatment, the experiment time. No food was offered to the larvae during the experiments. Experiments were replicated thrice to validate the results.
The data on the efficacy was subjected to probit analysis [19]. The control mortality was corrected by Abbott’s formula [20]. The relationship between probit and log concentrations were established as probit equations and probit regression lines were drown for each of larval stage.

3. Results

3.1 Micro-scan reader analysis of silver and gold nanoparticles

The presence of AgNPs and AuNPs in the cell free extract of C. tropicum was determined by visible analysis. The cell free extract of C. tropicum before immersion in AgNO₃ and HAuCl₄ was white in colour. Whereas, after exposure to 10⁻³ M aqueous solution of AgNO₃ and HAuCl₄ for 72h it turned into dark brown and ruby red in colour. The conversion of colourless solution to coloured solution in the presence of AgNO₃ and HAuCl₄ was the indication of synthesis of Ag and Au nanoparticles. Further the AgNPs and AuNPs generated by C. tropicum have been characterized by micro-scan reader after incubation. The Micro-scan reader spectra recorded form a fungal liquid before immersion of AgNO₃ and HAuCl₄ (curve 1) and after immersion in 10⁻³ M aqueous solution of AgNO₃ and HAuCl₄ for 72h (curve 2) (Figure 1a, b). The fungal liquid exposed to Ag⁺ and Au³⁺ ions show a distinct and fairly broad absorption band centered at 480 and 530 nm. The presence of these broad resonances indicates an aggregated structure of the silver and gold particles in the fungal liquid (cell free extract).

![Figure 1a. Micro-Scan spectra of silver and gold nanoparticles generated by C. tropicum before (without AgNO₃ and HAuCl₄) (1) and after immersion in 10⁻³ M aqueous AgNO₃ and HAuCl₄ solution for 72h (2).](image)

3.2 XRD analysis of silver and gold nanoparticles

The XRD patterns were obtained for the silver and gold nanoparticles synthesized by the C. tropicum. The presence of the intense peaks (38.4°, 44.4° and 64.2°) of the silver and gold nanoparticles (111), (200) and (211) appeared which are indexed as crystalline silver and gold face centered cubic phase. The XRD pattern clearly shows that the silver and gold nanoparticles formed by the reduction of Ag⁺ and AuCl⁻₄ ions by C. tropicum are crystalline in nature.

3.3 TEM, SEM and EDX analysis of silver and gold nanoparticles

After bioreduction, silver and gold nanoparticles were precipitated at the bottom of conical flask. This precipitate was washed out twice with double distilled water and then analyzed by employing Philips CM-10 Transmission Electron Microscope. The sample of silver and gold nanoparticles synthesized using fungal liquid was prepared by placing a drop of reaction mixture over copper grid and allowing water to evaporate. TEM micrograph of silver and gold nanoparticles has shown the spherical shaped and 20–50, 2–15 nm sized.

Scanning electron microscope pictures of silver and gold nanoparticles synthesized with C. tropicum have been obtained after 72h. The bright area clearly is seen in the image. The SEM images are showing distinctly the high density silver and gold nanoparticles synthesized by C. tropicum confirmed the development of silver and gold nanostructures.

Figure 2a, b shows the EDX (energy dispersive analysis of X-rays) spectrum recorded in the spot–profile mode from one of the densely populated silver and gold nanoparticles region on the surface of the film. Strong signals from the silver and gold atoms in the nanoparticles are observed, while weaker signals from Na, Ag, S, Pb and O signals are likely to be due to X-ray emission from proteins/enzymes present in the cell wall of the biomass.

![Figure 2a. EDX spectrum of silver and gold nanoparticles generated by C. tropicum.](image)

3.4 Efficacy of AgNPs and AuNPs against An. stephensi larvae

The larvae of An. stephensi were found susceptible to the C. tropicum AgNPs. The mortality was recorded after 24h. The efficacy for first instars (LC₅₀ 1.77, LC₉₀ 12.30, LC₉₉ 13.18 ppm), for second instars (LC₅₀ 10, LC₉₀ 15.13, LC₉₉ 17.78 ppm), for third instars (LC₅₀ 4, LC₉₀ 12.30, LC₉₉ 12.88 ppm) and for fourth instars (LC₅₀ 12, LC₉₀ 12.30, LC₉₉ 19.49 ppm) were recorded with their probit equations and confidential limits (Table 1). The
mortality rate was \(r = 0.90, 0.92, 0.90 \) and 0.97 for first, second, third and fourth instars. The chi-square values calculated at 4 df were 47.15, 32.53, 40.37 and 30.91 for first, second, third and fourth instars. These chi-square values for first, second, third and fourth instars of An. stephensi were found higher than the critical value of chi-square at 0.05 significance level.

The probit regression lines drawn for each of larval stage of An. stephensi (Figure 3a). The observed LC values have shown the degree of susceptibility of fungal AuNPs amongst the four larval stages of An. stephensi in order of first instar > second instar > third instar > fourth instar.

6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0

Log Concentrations (ppm)

First instar Second instar Third instar Fourth instar

Figure 3a. Relationship between probit of kill and log concentration of C. tropicum generated silver and b. gold nanoparticles showing probit regression line in instar of An. stephensi in the laboratory after 24 and 72h.

Table 1

Instars	Probit equations	\(LC_{50} \)	\(LC_{90} \)	\(LC_{99} \)
Silver nanoparticles				
First	\(Y=0.59+6.52x \)	1.77 (0.60–2.94)	12.30 (11.18–13.42)	13.18 (12.04–14.3)
Second	\(Y=0.41+5.52x \)	10 (8.88–11.12)	15.13 (13.96–16.3)	17.78 (16.58–18.98)
Third	\(Y=0.48+6.12x \)	4 (2.93–5.07)	12.30 (11.18–13.42)	12.88 (11.74–14.02)
Fourth	\(Y=0.41+5.38x \)	12 (10.86–13.14)	12.30 (11.18–13.42)	19.49 (18.21–20.77)
Gold nanoparticles				
First	** ** ** **			
Second	** ** ** **			
Third	\(Y=0.164+4.25x \)	12 (10.88–12.12)	36.30 (35.16–37.44)	47.86 (46.69–49.03)
Fourth	\(Y=0.17+3.86x \)	24 (22.88–24.12)	38.01 (36.84–39.18)	70.79 (69.54–72.04)

(** 100% mortality was observed)

Table 2

Instars	Probit equations	\(LC_{50} \)	\(LC_{90} \)	\(LC_{99} \)
Silver nanoparticles				
First	** ** ** **			
Second	** ** ** **			
Third	\(Y=0.34+5.97x \)	6 (4.96–7.04)	12.30 (11.18–13.42)	14.79 (13.65–15.93)
Fourth	\(Y=0.34+5.73x \)	8 (6.96–9.04)	13.18 (12.14–14.22)	16.59 (15.55–17.63)
Gold nanoparticles				
First	\(Y=0.17+4.50x \)	6 (4.83–7.17)	30.28 (31.09)	38.90 (37.7–40.02)
Second	\(Y=0.16+4.01x \)	18 (16.91–19.09)	36.30 (35.16–37.44)	60.25 (59.02–61.48)
Third	\(Y=0.14+3.8x \)	24 (22.88–25.12)	40.73 (39.56–41.9)	77.62 (76.34–78.9)
Fourth	\(Y=0.13+3.57x \)	30 (28.86–31.14)	52.48 (51.25–53.71)	102.31 (100.98–103.66)

(** 100% mortality was observed)

The larvae of An. stephensi were found susceptible to the C. tropicum AuNPs. The mortality was recorded after 72h. The first and second instars have shown 100% mortality against the C. tropicum AuNPs after 72h. Whereas, for third instars (LC50 6, LC90 12 ppm, LC99 14.79 ppm) and fourth instars (LC50 8, LC90 13.18 ppm, LC99 16.59 ppm) were calculated with their probit equations and confidential limits (Table 1). The mortality rate were \(r = 0.88 \) and 0.80 for third and fourth instars. These chi–square values for third and fourth instars of An. stephensi were found higher than the critical value of chi–square at 0.05 significance level.

The probit regression lines drawn for each of larval stage of An. stephensi (Figure 3b). In control group no mortality could be observed. The observed LC values have shown the degree of susceptibility of fungal AuNPs amongst the four larval stages of An. stephensi in order of first instar > second instar > third instar > fourth instar.

3.5 Efficacy of AgNPs and AuNPs against Cx. quinquefasciatus larvae

The C. tropicum AgNPs were found effective against all larval instars of Cx. quinquefasciatus. The mortality was scored after 1h of exposure. The first and second instar larvae have shown the 100% mortality to the silver nanoparticles generated by C. tropicum. The efficacy for third instars (LC50 6, LC90 12.30, LC99 14.79 ppm) and for fourth instars (LC50 8, LC90 13.18,
LC_{50} 16.59 ppm were observed with their probit equations and confidential limits (Table 2). The mortality rate was r = 0.98 and 0.99 for third and fourth instars. The chi-square values at 4 df were 37.02 and 34.25 for third and fourth instars. These chi-square values for third and fourth instars of Cx. quinquefasciatus were found higher than the critical value of chi-square at 0.05 significance level. The probit regression lines drown for each of larval stage of Cx. quinquefasciatus (Figure 4a). The observed LC values have shown the degree of susceptibility of fungal AgNPs amongst the four larval stages of Cx. quinquefasciatus in order of first instar > second instar > third instar > fourth instar.

Unlike other mosquito control agents, the entomopathogenic fungi synthesized AuNPs unique because fungal AuNPs have the ability to directly infect the host insect by penetrating into the cuticle and do not need to ingest by the insect to cause disease. There are preferential advantages when we use fungal AuNPs as biocontrol agent for mosquitoes. The fungal AuNPs have very narrow range, and considerable progress has been made in recent years in development of environmentally benign spores and mycelium–based biocontrol agent for the mosquito population. Fungal biocontrol agents have reduced inputs of harmful synthetic chemical pesticide in agriculture, horticultural, and forest system. Toxicity of silver nanoparticles in zebra fish models have been recorded [21]. Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebra fish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration–dependent increase in mortality and hatching delay was observed in Ag–NP treated embryos. Additionally, nanoparticles treatments resulted in concentration–dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag+ ions and stabilizing agents showed no significant defects in developing embryos.

The use of nanoparticles in insects and their potential for use in insect pest management have been focused [22]. The larvicidal potential of the hexane, chloroform, ethyl acetate, acetone, methanol, and aqueous leaf extracts of Nelumbo nucifera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of An. subpictus and Cx. quinquefasciatus have been tested [13]. Larvae were exposed to varying concentrations of plant extracts and synthesized silver nanoparticles for 24 h. Whereas, in our work the gold nanoparticles were synthesized using keratinophilic fungus C. tropicum and mortality was observed after 24, 48, and 72h.

The formulation of water dispersible nanopermethrin has been investigated for its larvicidal property [23]. The results extrapolated that nanopermethrin could serve selectively as a potential larvicide. The larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti and Anopheles stephensi has been tested [14]. They also tested the potential of C. lunatus silver nanoparticles against non–target fish species Poecilia reticulata, the most common organism in the habitats of A. aegypti and A. stephensi showed no toxicity at LC_{50} and LC_{90} doses of the AgNPs. Recently, the efficacy of fungus mediated silver and gold nanoparticles have been tested against the Ae. aegypti larvae [15]. Whereas, in the present study we have tested the C. tropicum synthesized gold nanoparticles against the all larval instars of Cx. quinquefasciatus, and An. stephensi.
5. Conclusions

In the present investigation we have tested the silver and gold nanoparticles generated by entomopathogenic fungus C. tropicum against the malaria and filariasis vector larvae An. stephensi and Cx. quinquefasciatus in the laboratory. The silver nanoparticles were found more effective than the gold nanoparticles on mosquito control. We can now conclude that the fungus generated silver and gold nanoparticles could be a better, environmentally safer and green approach for vector larval control.

Acknowledgements

We sincerely thank to acknowledge Prof P. S. Satsangi Sahab, Chairman, of Advisory Committee on Education, Dayalbagh Educational Institute. Prof. V. G. Das, Director, Dayalbagh Educational Institute for providing support and encouragements for the work. We also wish to thank DST–FIST (2003–2008) Government of India for facilitating equipments in our laboratory. We also thank to UGC, New Delhi, Major Research Project (39–599/2010) for financial support. We wish to thank Prof. Sahab Das, Dept. of Chemistry, Dayalbagh Educational Institute, for providing XRD facility and Dr. M. Shayama Prasad for SEM (NIO, Goa). We also thanks to Dr. Shashi Wadhawa for TEM (AIIMS, Delhi).

References

[1] World Health Organization. World malaria day. 2011; http://www.who.int/mediacentre/events/annual/malaria/en/index.html.
[2] World Health Organization. Global program to Eliminate Lymphatic Filariasis. 2010.
[3] Wirth MC, Walton WE, Federici BA. Evolution of resistance to the Bacillus sphaericus Bin toxin is phenotypically masked by combination with the mosquitoicidal proteins of Bacillus thuringienesis subspecies israelensis. Environ Microbiol 2010; 12: 1154–1160.
[4] Govindrajan M, Jebamesan A, Reetha D. Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus Say. Trop Biomed 2005; 22: 1–3.
[5] Verma P, Prakash S. Efficacy of Chrysosporium tropicum metabolite against mixed population of adult mosquito (Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti) after purification with flash chromatography. Parasitol Res 2010; 107: 163–166.
[6] Soni N, Prakash S. Effect of Chrysosporium keratinophilum metabolites against Culex quinquefasciatus after chromatographic purification. Parasitol Res 2010; 107: 1329–1336.
[7] Prakash S, Singh G, Soni N, Sharma S. Pathogenicity of Fusarium oxysporum against the larvae of Culex quinquefasciatus (Say) and Anopheles stephensi (Liston) in laboratory. Parasitol Res 2010; 107: 651–655.
[8] Soni N, Prakash S. Aspergillus niger metabolites efficacies against the mosquito larval Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti population after column chromatography. Am J Microbiol; 2: 15–20.
[9] Patil HB, Borse SY, Patil DR, Patil UK, Patil HM. Synthesis of silver nanoparticles by microbial method and their characterization. Arch Phy Res 2011; 2: 153–158.
[10] Ji G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L. Fungus mediated green synthesis of silver nanoparticles using Aspergillus terreus. In J Molec Sci 2012; 13: 466–476.
[11] Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischar R, Kumar PVA, Alam M, Sastry M, Kumar R. Bioreduction of AuCl4− ions by the fungus, Verticillium species and surface trapping of the gold nanoparticles formed. Angewandte Chemie International Edition 2001; 40: 3585–3588.
[12] Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C. Evaluation of green synthesized green silver nanoparticles against parasites. Parasitol Res 2011; 108: 1541–1549.
[13] Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 2011; 108: 693–702.
[14] Salunkhe RB, Patil SV, Patil CD, Salunke BK. Larvicidal potential of silver nanoparticles synthesized using fungi Cochliobolus lunatus against Aedes aegypti (Linnaurus, 1762) and Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 2011; 109: 823–831.
[15] Soni N, Prakash S. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 2012; 110: 175–184.
[16] Gardner JM, Pillai JS. Tolypocladium cylindrosporum (Deuteromycotina: Moniliales), a fungal pathogen of the mosquito Aedes australis. Mycopathol 1987; 97: 77–82.
[17] Gerberg EJ, Barnard DR, Ward RA. Manual for mosquito rearing and experimental techniques. J Am Mosq Control Assoc 1994; 5: 98.
[18] World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. 2005; WHO/CDS/WHOPES/GCDPP/03.
[19] Finney DJ, Probit analysis, 3rd edn. 1971, Cambridge University Press, Cambridge, UK.
[20] Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol 1925; 18: 265–266.
[21] Asharani PV, Lian WY, Gong Z, Valiyaveetil S. Toxicity of silver nanoparticles in zebra fish models. Nanotechnol 2008; 19: 255102.
[22] Bhattacharyya A, Bhaumik A, Usha RP, Mandal S, Epidi TT. Nanoparticles – a recent approach to insect pest control. African J Biotechnol 2010; 9: 3499–3493.
[23] Anjali CH, Khan SS, Goshen KM, Magdassi S, Mukherjee A, Chandrasekran N. Formulation of water dispersible nanopemethrin for larvicidal applications. Ecotoxicol Environ Safety 2010; 73: 1932–1936.