Charm quark system at the physical point of 2+1 flavor lattice QCD

Y. Namekawa1, S. Aoki1,2, K. -I. Ishikawa3, N. Ishizuka1,2, T. Izubuchi4, K. Kanaya2, Y. Kuramashi1,2,5, M. Okawa3, Y. Taniguchi1,2, A. Ukawa1,2, N. Ukita1 and T. Yoshi1,2 \\
(PACS-CS Collaboration)

1 Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
2 Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
3 Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
4 Riken BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA
5 RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 650-0047, Japan

(Dated: January 20, 2013)

Abstract

We investigate the charm quark system using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on 323 × 64 lattice. The dynamical up-down and strange quark masses are set to the physical values by using the technique of reweighting to shift the quark hopping parameters from the values employed in the configuration generation. At the physical point, the lattice spacing equals a-1 = 2.194(10) GeV and the spatial extent L = 2.88(1) fm. The charm quark mass is determined by the spin-averaged mass of the 1S charmonium state, from which we obtain m_{charm}^{\overline{MS}} (\mu = m_{charm}) = 1.260(1)(6)(35) GeV, where the errors are due to our statistics, scale determination and renormalization factor. An additional systematic error from the heavy quark is of order \alpha_s^2 f(m_Qa)(a\Lambda_{QCD}), which is estimated to be a percent level if the factor f(m_Qa) analytic in m_Qa is of order unity. Our results for the charmed and charmed-strange meson decay constants are f_D = 226(6)(1)(5) MeV, f_{Ds} = 257(2)(1)(5) MeV, again up to the heavy quark errors of order \alpha_s^2 f(m_Qa)(a\Lambda_{QCD}). Combined with the CLEO values for the leptonic decay widths, these values yield |V_{cd}| = 0.205(6)(1)(5)(9), |V_{cs}| = 1.00(1)(1)(3)(3), where the last error is on account of the experimental uncertainty of the decay widths.
I. INTRODUCTION

Precise determination of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix is an indispensable step to establish the validity range of the standard model, and to search for new physics at higher energy scales. Lattice QCD has been making steady progress in this direction. For the matrix elements such as $|V_{ud}|$ and $|V_{us}|$ in the first row which involve only light quarks, dynamical simulations including up, down and strange quarks have reached the point where the relevant pseudoscalar meson decay constants and form factors are being determined at subpercent precision. On the other hand, for $|V_{cd}|$ and $|V_{cs}|$ in the second row, the precision of lattice QCD calculation for the decay constants and form factors is still at 5 to 10% level. This is not clearly superior to non-lattice QCD determinations. Indeed, the estimate quoted in Particle Data Group (PDG) 2010, $|V_{cd}| = 0.230(11)$ \cite{1} with an accuracy of 5%, is obtained from neutrino and anti-neutrino experiments. \footnote{$|V_{cs}|$ is hard to be estimated from neutrino and anti-neutrino experiments, $|V_{cs}| = 0.94^{+0.32}_{-0.26} \pm 0.13$ \cite{1}.} Much effort is needed on the part of lattice QCD toward a better precision in the charm sector.

One of the difficulties with the charm quark in lattice QCD simulations at a typical cutoff $a^{-1} \approx 2 \text{ GeV}$ resides in significant cutoff errors due to the charm quark mass. The heavy quark mass correction is $m_Q a \sim 1$, and hence we must control errors to all orders of $m_Q a$ to achieve a few percent accuracy. The Fermilab action \cite{2} and the relativistic heavy quark action \cite{3, 4} have been proposed to meet this goal. In the present work we employ the relativistic formalism of Ref. \cite{3} to explore the charm quark system.

Another source that prevents precise evaluations in lattice QCD is the error associated with chiral extrapolations in the light quark masses. This problem has been increasingly alleviated through progress toward simulations with lighter and lighter dynamical quark masses and sophisticated application of chiral perturbation theory techniques. The acceleration of dynamical lattice QCD simulation using multi-time steps for infrared and ultraviolet modes \cite{5, 6} has made it possible to run simulations with light up, down and strange quark masses around their physical values \cite{7}. In such simulations, uncertainties due to chiral extrapolations are drastically reduced.

In fact we can proceed one more step and reweight \cite{8} dynamical simulations such that dynamical quark masses take exactly the physical values. A potential difficulty with dynamical lattice QCD is a large fluctuation of quark determinant ratios necessary for reweighting. We have demonstrated the feasibility of this procedure in Ref. \cite{9} by reweighting a set of PACS-CS configurations with $m_\pi = 152(6)$ MeV and $m_K = 509(2)$ MeV to those with $m_\pi = 135(6)$ MeV and $m_K = 498(2)$ MeV. Once the reweighting is successfully made, ambiguities associated with chiral extrapolations are completely removed. In the present work we employ the reweighting factors and the set of original dynamical configurations employed in Ref. \cite{9}. Hence our light quark masses sit at the physical point.

In this paper we present our work for the charm quark system treated with the relativistic heavy quark formalism \cite{3} on the 2+1 dynamical flavor PACS-CS configurations of $32^3 \times 64$ lattice generated with the Wilson-clover quark and reweighted to the physical point for up, down and strange quark masses. The lattice spacing is estimated as $a^{-1} = 2.194(10)$ GeV. We measure the masses and decay constants of charmonia, charmed mesons and charmed-strange mesons. We then calculate the charm quark mass and the CKM matrix elements.

This paper is organized as follows. Section II explains our method and simulation parameters. Section III describes our results for the charmonium spectrum and the charm quark
mass. In Sec. IV, we show our charmed meson and charmed-strange meson spectrum. Section V is devoted to present our pseudoscalar decay constants and the CKM matrix elements. Our conclusions are given in Sec. VI.

II. SET UP

Our calculation is based on a set of \(N_f = 2 + 1 \) flavor dynamical lattice QCD configurations generated by the PACS-CS Collaboration \([9] \) on a \(32^3 \times 64 \) lattice using the non-perturbatively \(O(a) \)-improved Wilson quark action with \(c_{SW}^P = 1.715 \) \([10] \) and the Iwasaki gauge action \([11] \) at \(\beta = 1.90 \). The aggregate of 2000 MD time units were generated at the hopping parameter given by \((\kappa_{ud}^0, \kappa_s^0) = (0.13778500, 0.13660000)\), and 80 configurations at every 25 MD time units were used for measurements. We then reweight those configurations to the physical point given by \((\kappa_{ud}, \kappa_s) = (0.13779625, 0.13663375)\). The reweighting shifts the masses of \(\pi \) and \(K \) mesons from \(m_\pi = 152(6) \) MeV and \(m_K = 509(2) \) MeV to \(m_\pi = 135(6) \) MeV and \(m_K = 498(2) \) MeV, with the cutoff at the physical point estimated to be \(a^{-1} = 2.194(10) \) GeV.

Observables at the physical point are evaluated through the formula

\[
\langle \mathcal{O}[U](\kappa_{ud}, \kappa_s) \rangle_{(\kappa_{ud}, \kappa_s)} = \frac{\langle \mathcal{O}[U](\kappa_{ud}, \kappa_s) R_{ud}[U] R_s[U] \rangle_{(\kappa_{ud}, \kappa_s)_{(\kappa_{ud}, \kappa_s}^0}}}{\langle R_{ud}[U] R_s[U] \rangle_{(\kappa_{ud}, \kappa_s)_{(\kappa_{ud}, \kappa_s}^0}},
\]

where the reweighting factors are defined as

\[
R_{ud}[U] = \left| \det \left[\frac{D_{\kappa_{ud}}[U]}{D_{\kappa_{ud}^0}[U]} \right] \right|^2,
\]

\[
R_s[U] = \det \left[\frac{D_{\kappa_s}[U]}{D_{\kappa_s^0}[U]} \right],
\]

and \(D_{\kappa_q}[U] \) is the Wilson-clover quark operator with the hopping parameter \(\kappa_q \). We refer to Ref. \([9] \) for details of our evaluation of the determinant ratio. Our parameters and statistics at the physical point are collected in Table \([\text{II}] \).

The relativistic heavy quark formalism \([3] \) is designed to reduce cutoff errors of \(O((m_Qa)^n) \) with arbitrary order \(n \) to \(O(f(m_Qa)(a\Lambda_{QCD})^2) \), once all of the parameters in the relativistic heavy quark action are determined nonperturbatively, where \(f(m_Qa) \) is an analytic function around the massless point \(m_Qa = 0 \). The action is given by

\[
S_Q = \sum_{x,y} \bar{Q}_x D_{x,y} Q_y,
\]

\[
D_{x,y} = \delta_{x,y} - \kappa_Q \sum_i \left[(r_s - \nu \gamma_i) U_{x,i} \delta_{x+i,y} + (r_s + \nu \gamma_i) U_{x,i}^\dagger \delta_{x,y+i} \right]
- \kappa_Q \left[(r_t - \nu \gamma_i) U_{x,i}^\dagger \delta_{x+i,y} + (r_t + \nu \gamma_i) U_{x,i} \delta_{x,y+i} \right]
- \kappa_Q \left[c_B \sum_{i,j} F_{ij}(x) \sigma_{ij} + c_E \sum_i F_{i4}(x) \sigma_{i4} \right],
\]

where \(\kappa_Q \) is the hopping parameter for the heavy quark. The parameters \(r_t, r_s, c_B, c_E \) and \(\nu \) are adjusted as follows. We are allowed to choose \(r_t = 1 \), and we employ a one-loop
perturbative value for \(r_s \) [12]. For the clover coefficients \(c_B \) and \(c_E \), we include the non-perturbative contribution in the massless limit \(c_{SW}^{NP} \) for three flavor dynamical QCD [10], and calculate the heavy quark mass dependent contribution to one-loop order in perturbation theory [12] according to

\[
c_{B,E} = (c_{B,E}(m_Q a) - c_{B,E}(0))^{PT} + c_{SW}^{NP}.
\]

The parameter \(\nu \) is determined non-perturbatively to reproduce the relativistic dispersion relation for the spin-averaged 1S state of the charmonium. Writing

\[
E(\vec{p})^2 = E(\vec{0})^2 + c_{\text{eff}}^2 |\vec{p}|^2,
\]

for \(|\vec{p}| = 0, (2\pi/L), \sqrt{2}(2\pi/L) \), and demanding the effective speed of light \(c_{\text{eff}} \) to be unity, we find \(\nu = 1.1450511 \) with which we have \(c_{\text{eff}} = 1.002(4) \). It is noted that the remaining cutoff errors are \(\alpha_s^2 f(m_Q a) (a \Lambda_{QCD}) \), instead of \(f(m_Q a) (a \Lambda_{QCD})^2 \), due to the use of one-loop perturbative values in part for the parameters of our heavy quark action.

We tune the heavy quark hopping parameter to reproduce an experimental value of the mass for the spin-averaged 1S states of the charmonium, given by

\[
M(1S)^{exp} = (M_{\psi_c} + 3 M_{J/\psi})/4 = 3.0678(3) \text{ GeV} \quad [1].
\]

This leads to \(\kappa_{\text{charm}} = 0.10959947 \) for which our lattice QCD measurement yields the value \(M(1S)^{lat} = 3.067(1)(14) \text{ GeV} \), where the first error is statistical, and the second is systematic from the scale determination. Our parameters for the relativistic heavy quark action are summarized in Table II.

We use the following standard operators to obtain meson masses,

\[
M^{fg}_\Gamma(x) = \bar{q}_f(x) \Gamma g(x),
\]

where \(f, g \) are quark flavors and \(\Gamma = I, \gamma_5, \gamma_\mu, i\gamma_\mu \gamma_5, \bar{\gamma}_\mu, \gamma_\nu / 2 \). The meson correlators are calculated with a point and exponentially smeared sources and a local sink. The smearing function is given by \(\Psi(r) = A \exp(-B r) \) at \(r \neq 0 \) and \(\Psi(0) = 1 \). We set \(A = 1.2, B = 0.07 \) for the \(ud \) quark, \(A = 1.2, B = 0.18 \) for the strange quark, and \(A = 1.2, B = 0.55 \) for the charm quark. The number of source points is quadrupled and polarization states are averaged to reduce statistical fluctuations. Statistical errors are analyzed by the jackknife method with a bin size of 100 MD time units (4 configurations), as in the light quark sector [3].

We extract meson masses by fitting correlators with a hyperbolic cosine function. For charmonium, Fig. 1 shows effective masses, from which we choose the fitting range to be \([t_{min}, t_{max}] = [10, 32] \). Similarly, Fig. 2 and Fig. 3 represent effective masses for charmed-strange mesons, we employ the fitting range \([t_{min}, t_{max}] = [14, 20] \) for pseudoscalar mesons, and \([t_{min}, t_{max}] = [10, 20] \) for the other channels.

We calculate the decay constant \(f_{PS} \) of the heavy-light pseudoscalar meson using the improved axial vector current \(A^\text{imp}_4 \).

\[
if_{PS \mu} = \langle 0 | A^\mu_4 | PS(p) \rangle, \quad (II.10)
\]

\[
A^\text{imp}_4 = \sqrt{2\kappa_4} \sqrt{2\kappa_Q} Z_{A_4} \left\{ \bar{q}(x) \gamma_4 \gamma_5 Q(x) + c_{A_4}^+ \partial_4^+ (\bar{q}(x) \gamma_5 Q(x)) + c_{A_4}^- \partial_4^- (\bar{q}(x) \gamma_5 Q(x)) \right\}, \quad (II.11)
\]
where $|PS\rangle$ is the pseudoscalar meson state and ∂^\pm is the lattice forward and backward derivative. For the renormalization factor Z_{A_4} and the improvement coefficients of the axial current $c_{A_4}^+$ and $c_{A_4}^-$, we employ one-loop perturbation theory to evaluate the mass-dependent contributions [13], adding the nonperturbative contributions in the chiral limit by

$$c_{A_4}^+ = (c_{A_4}^+(m_Qa) - c_{A_4}^+(0))^{\text{PT}} + c_{A_4}^{\text{NP}}, \quad (\text{II.12})$$

$$Z_{A_4} = (Z_{A_4}(m_Qa) - Z_{A_4}(0))^{\text{PT}} + Z_{A_4}^{\text{NP}}, \quad (\text{II.13})$$

with $c_{A_4}^{\text{NP}} = -0.03876106 [14]$ and $Z_{A_4}^{\text{NP}} = 0.781(20) [15]$.

The bare quark mass is determined through the axial vector Ward-Takahashi identity,

$$m_f^{AWI} + m_g^{AWI} = m_{PS} \langle 0|A_4^{\text{imp}}|^PS\rangle \langle 0|P|^PS\rangle, \quad (\text{II.14})$$

where P is the pseudoscalar meson operator. The renormalized quark mass in the $\overline{\text{MS}}$ scheme is given by

$$m_f^{\overline{\text{MS}}} = Z_m(m) m_f^{AWI}. \quad (\text{II.15})$$

Similar to the case of Z_{A_4}, the renormalization factor for the quark mass at the renormalization scale μ, $Z_m(\mu)$, is nonperturbatively determined at the massless point,

$$Z_m(\mu) = (Z_m(m_Qa) - Z_m(0))^{\text{PT}}(\mu) + Z_m^{\text{NP}}(\mu), \quad (\text{II.16})$$

with $Z_m^{\text{NP}}(\mu = 1/a) = 1.308(35) [13]$. The charm quark mass is then evolved to $\mu = m_f^{\overline{\text{MS}}}$ using $N_f = 3$ four-loop beta function [16]. We employ $N_f = 3$ based on the fact that our simulation includes $N_f = 2 + 1$ dynamical quarks.

III. CHARMONIUM SPECTRUM AND CHARM QUARK MASS

Our results for the charmonium spectrum on the physical point are summarized in Fig. 4 and Table III. Within the error of 0.5–1%, the predicted spectrum is in reasonable agreement with experiment.

Let us consider the $1S$ states more closely. Since these states are employed to tune the charm quark mass, the central issue here is the magnitude of the hyperfine splitting. Our result $m_{J/\psi} - m_{\eta_c} = 0.108(1)(0)$ GeV, where the first error is statistical and the second error is systematic from the scale determination, is 7% smaller than the experimental value of 0.117 GeV. In Fig. 5 we compare the present result on $N_f = 2 + 1$ flavor dynamical configurations with previous attempts on $N_f = 2$ dynamical and quenched configurations using the same heavy quark formalism and the Iwasaki gluon action [17]. We observe a clear trend that incorporation of dynamical light quark effects improves the agreement.

We should note that the continuum extrapolation is to be performed. A naive order counting implies that effects of $O(\alpha_s^2 f(m_Qa)(a\Lambda_{QCD}))$ from the relativistic heavy quark action is at a percent level. Another aspect is that dynamical charm quark effects and disconnected loop contributions, albeit reported to give a shift of only a few MeV [18], are not included in the present work. Additional calculations are needed to draw a definite conclusion for the hyperfine splitting of the charmonium spectrum.
Using Eq. (II.15), the charm quark mass is obtained as
\[
m_{\text{charm}}(\mu = m_{\text{charm}}^{\overline{\text{MS}}}) = 1.260(1)(6)(35) \text{ GeV},
\]
where the first error is statistical, the second is systematic from the scale determination, and the third from uncertainty in the renormalization factor. The systematic error due to the heavy quark of \(O(\alpha_s^2 f(m_Q a)(a \Lambda_{\text{QCD}}))\) is also to be estimated. Figure 6 compares our result with a recent \(N_f = 2 + 1\) lattice QCD estimation by the HPQCD Collaboration [19] in the continuum limit, which uses the HISQ form of the staggered quark action for the heavy quark on the MILC dynamical configurations.

IV. CHARMED MESON AND CHARMED-STRANGE MESON SPECTRUM

We calculate the charmed meson and charmed-strange meson masses which are stable on our lattice with the spatial size of \(L = 2.88(1) \text{ fm}\) and a lattice cutoff of \(a^{-1} = 2.194(10) \text{ GeV}\). The \(D^*\) and \(D_s^*\) meson decay channels are not open in our lattice setup. \(D_{s0}^*\) and \(D_{s1}^*\) meson masses are below the \(D\bar{K}\) threshold [1] but above the \(D_s\pi\) threshold. Their decays, however, are prohibited by the isospin symmetry. On the other hand, \(D_0^*\) and \(D_1^*\) meson masses are not computed since their decay channels are open, and therefore a calculation involving \(D\pi\) contributions is needed.

Our results are summarized in Fig. 4 and in Table IV and V. All our values for the heavy-light meson quantities are predictions, because the physical charm quark mass has already been fixed with the charmonium spectrum. The experimental spectrum are reproduced in 2\(\sigma\) level. The potential model predicts the \(D_{s0}^*\) meson mass is above the \(D\bar{K}\) threshold [20], which deviates from the experiment significantly. But, our result does not indicate such a large difference from the experimental value. A similar result is obtained in other lattice QCD calculations [21]. It should be noticed that our calculation does not cover \(D\bar{K}\) scattering states yet. \(D\bar{K}\) contamination for \(D_{s0}^*\) and \(D_{s1}^*\) meson masses can be considerably large. Further analysis is required to validate our results for \(D_{s0}^*\) and \(D_{s1}^*\) meson spectrum.

We compare our results for the hyperfine splittings \(m_{D^*} - m_D\) and \(m_{D_{s0}^*} - m_{D_s}\) with experiments in Fig. 8, where we also plot our previous results for \(N_f = 2\) and quenched QCD [17]. The deviation from the experimental value is 1.2\(\sigma\) for charmed mesons, and 2.3\(\sigma\) for charmed-strange mesons.

V. CHARMED MESON AND CHARMED-STRANGE MESON DECAY CONSTANTS AND CKM MATRIX ELEMENTS

Table VI presents our estimate of the pseudoscalar decay constants for \(D\) and \(D_s\) mesons. Figure 9 shows the experimental values [1] and our decay constants, as well as three recent lattice QCD results: HPQCD and UKQCD Collaboration [19] using HISQ heavy quark on the MILC staggered dynamical configurations, Fermilab lattice and MILC group [22] using the Fermilab heavy quark on the MILC configurations, and ETM Collaboration [23] who uses the twisted mass formalism. Our value for \(f_{D_s}\) is in accordance with experiment, while that for \(f_D\) is somewhat larger. Comparing four sets of lattice determinations, we observe, both for \(f_D\) and \(f_{D_s}\), an agreement between our values and those of the Fermilab group, while there seems to be a discrepancy between our values and those by the HPQCD and
UKQCD Collaboration and ETM Collaboration, though continuum extrapolation is needed on our part.

We plot the ratio of f_{Ds} to f_D in Fig. 10. Uncertainties coming from the renormalization factors cancel out, and that of the lattice cutoff to some extent. Our result is slightly smaller, but still $N_f = 2 + 1$ lattice results are mutually consistent within the errors of a few percent.

A. Estimating the CKM matrix elements

The standard model relates $|V_{cd}|$ to the leptonic decay width of the D meson $\Gamma(D \to l\nu)$ by

$$\Gamma(D \to l\nu) = \frac{G_F^2 f_D^2 m^2_D}{8\pi} \left(1 - \frac{m_l^2}{m_D^2}\right)^2 |V_{cd}|^2,$$

where G_F is the Fermi coupling constant, and m_l is the lepton mass in the final state. A lattice determination of the D meson decay constant f_D with the experimental value of $\Gamma(D \to l\nu)$ gives $|V_{cd}|$. $|V_{cs}|$ can be obtained in the same way.

We estimate $|V_{cd}|$ from our D meson mass and decay constant with the CLEO value of $\Gamma(D \to l\nu)$ [24]. Up to our heavy quark discretization error of $O(\alpha^2_s f_Q(a)(a\Lambda_{QCD}))$, we obtain

$$|V_{cd}|(\text{lattice}) = 0.205(6)(1)(5)(9),$$

where the first error is statistical, the second is systematic due to the scale determination, the third is uncertainty of the renormalization factor, and the forth represents the experimental error of the leptonic decay width. For comparison, the PDG value given by $|V_{cd}| = 0.230(11)$ [1] is about 10% larger (see Fig. 11).

Similarly, using the CLEO value of $\Gamma(D_s \to l\nu)$ [25], we find

$$|V_{cs}|(\text{lattice}) = 1.00(1)(1)(3)(3),$$

as compared to $|V_{cs}| = 1.02(4)$ from PDG [1].

For completeness we also record the ratio $|V_{cs}|/|V_{cd}|$ for which the systematic errors are partially dropped out.

$$\frac{|V_{cs}|}{|V_{cd}|}(\text{lattice}) = 4.87(14)(0)(0)(27).$$

The PDG value is $|V_{cs}|/|V_{cd}| = 4.45(26)$.

VI. CONCLUSION

We have reported our study of the charm quark system in $N_f = 2 + 1$ dynamical lattice QCD. Although carried out at a finite lattice spacing of $a^{-1} = 2.194(10)$ GeV, our results for the spectra of mesons involving charm quarks are consistent with experiment at a percent level, and so are those for the decay constants within a few percent accuracy. These results indicate that the heavy quark mass correction m_Qa in the charm quark system is under control by the relativistic heavy quark formalism of Ref. [3]. Of course, the continuum extrapolation and further reductions of statistical noises are required to obtain the result competitive with other approaches in the literature.
From methodological point of view, we have shown that the realistic heavy quark simulations with the light dynamical quark masses precisely tuned to the physical values are feasible. With the technique of reweighting, configuration generations are needed to be carried out approximately around the physical point, and a residual fine tuning to reach the physical point only requires a much less time consuming evaluation of the quark determinant ratios. Combined with the PACS-CS configuration generation at a smaller lattice spacing of $a^{-1} \approx 3$ GeV underway, we hope to return to the issue of continuum extrapolation for the charm quark system in future.

Acknowledgments

Numerical calculations for the present work have been carried out on the PACS-CS computer under the “Interdisciplinary Computational Science Program” of Center for Computational Sciences, University of Tsukuba. This work is supported in part by Grants-in-Aid of the Ministry of Education, Culture, Sports, Science and Technology-Japan (Nos. 18104005, 20105001, 20105002, 20105003, 20105005, 20340047, 20540248, 21340049, 22105501, 22244018, 22740138).

[1] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)
[2] A.X. El-Khadra et al., Phys. Rev. D 55, 3933 (1997); M.B. Oktay and A.S. Kronfeld, Phys. Rev. D 78, 014504 (2008).
[3] S. Aoki et al., Prog. Theor. Phys. 109, 383 (2003).
[4] N.H. Christ et al., Phys. Rev. D 76, 074505 (2007).
[5] M. Lüscher, JHEP 05, 052 (2003); Comput. Phys. Commun. 165, 199 (2005).
[6] M. Hasenbusch, Phys. Rev. Lett. B 519, 177 (2001); M. Hasenbusch and K. Jansen, Nucl. Phys. B 659, 299 (2003).
[7] S. Aoki et al. (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009).
[8] A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).
[9] S. Aoki et al. (PACS-CS Collaboration), Phys. Rev. D 81, 074503 (2010).
[10] S. Aoki et al. (CP-PACS and JLQCD Collaborations), Phys. Rev. D 73, 034501 (2006).
[11] Y. Iwasaki, Report No. UTHEP-118 (1983).
[12] S. Aoki et al., Nucl. Phys. B 697, 271 (2004).
[13] S. Aoki et al., Nucl. Phys. B 689, 127 (2004).
[14] T. Kaneko et al. (CP-PACS/JLQCD and ALPHA Collaboration), JHEP 0704, 092 (2007).
[15] S. Aoki et al. (PACS-CS Collaboration), JHEP 1008, 101 (2010).
[16] K.G. Chetyrkin, Phys. Lett. B 404, 161 (1997); J.A.M. Vermaseren et al., Phys. Lett. B 405, 327 (1997).
[17] Y. Kayaba et al. (CP-PACS Collaboration), JHEP 0702, 019 (2007); Y. Kayaba, Ph.D. thesis, University of Tsukuba, 2005.
[18] C. McNeile et al. (UKQCD Collaboration), Phys. Rev. D 70, 034506 (2004); P. de Forcrand et al. (QCD-TARO Collaboration), JHEP 0408, 004 (2004); C. Ehmann and G.S. Bali, PoS(LATTICE 2008), 114 (2008); L. Levkova and C.E. DeTar, Phys. Rev. D 83, 074504 (2011).
[19] E. Follana et al. (HPQCD and UKQCD Collaboration), Phys. Rev. Lett. 100 062002 (2008); C. McNeile et al. (HPQCD Collaboration), Phys. Rev. D 82, 034512 (2010); C.T.H. Davies et al., Phys. Rev. D 82, 114504 (2010).
[20] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[21] S.J. Dong et al. (χQCD Collaboration), PoS(LATTICE 2009), 090 (2009); M. Gong et al., PoS(LATTICE 2010), 106 (2010).
[22] J.A. Bailey et al. (Fermilab Lattice and MILC Collaboration), PoS(LATTICE 2010), 317 (2010).
[23] B. Blossier et al. (European Twisted Mass Collaboration), JHEP 0907, 043 (2009).
[24] J.P. Alexander et al. (CLEO Collaboration), Phys. Rev. D 79, 052001 (2009).
[25] B.I. Eisenstein et al. (CLEO Collaboration), Phys. Rev. D 78, 052003 (2008).
β	κ_{ud}	κ_s	# conf	MD time
1.90	0.13779625	0.13663375	80	2000

TABLE I: Simulation parameters. MD time is the number of trajectories multiplied by the trajectory length.

κ_{charm}	ν	τ_s	c_B	c_E
0.10959947	1.1450511	1.1881607	1.9849139	1.7819512

TABLE II: Parameters for the relativistic heavy quark action.

$J^P C$	Γ	operator	lattice	experiment
$m_{q\bar{q}}$ [GeV]	0^+	γ_5	2.986(13)	2.980(1)
$m_{J/\psi}$ [GeV]	1^{--}	γ_i	3.094(14)	3.097(0)
$m_{\chi_c^0}$ [GeV]	0^{++}	I	3.444(33)	3.415(0)
$m_{\chi_c^1}$ [GeV]	1^{++}	γ_5	3.506(30)	3.511(0)
m_{h_c} [GeV]	1^{+-}	$\gamma_i\gamma_j$	3.510(42)	3.525(0)

TABLE III: Charmonium spectrum in GeV units. The first error is statistical, and the second is systematic from the scale determination. Experimental data are also listed [1].

J^P	Γ	operator	lattice	experiment
m_D [GeV]	0^-	γ_5	1.871(10)	1.865(0)
m_{D^*} [GeV]	1^-	γ_i	1.994(11)	2.007(0)

TABLE IV: Charmed meson mass spectrum in GeV units. The first error is statistical, and the second is systematic from the scale determination. Experimental data are also listed [1].

J^P	Γ	operator	lattice	experiment
m_{D_s} [GeV]	0^-	γ_5	1.958(2)	1.968(0)
$m_{D_{s0}^*}$ [GeV]	1^-	γ_i	2.095(3)	2.112(1)
$m_{D_{s1}^*}$ [GeV]	0^+	I	2.335(35)	2.318(1)
$m_{D_{s1}}$ [GeV]	1^+	$\gamma_i\gamma_5$	2.451(28)	2.460(1)

TABLE V: Charmed-strange meson mass spectrum in GeV units. The first error is statistical, and the second is systematic from the scale determination. Experimental data are also listed [1].
TABLE VI: Our results for decay constants of D meson and D_s meson. The first error is statistical, the second is systematic from the scale determination, and the third is from the renormalization factor. Experimental data are also listed \cite{1}.

	lattice	experiment
$f_D [\text{MeV}]$	226(6)(1)(5)	206.7(8.9)
$f_{D_s} [\text{MeV}]$	257(2)(1)(5)	257.5(6.1)
f_{D_s}/f_D	1.14(3)(0)(0)	1.25(6)
FIG. 1: Effective masses for charmonium.
FIG. 2: Effective masses for charmed mesons.

FIG. 3: Effective masses for charmed-strange mesons.
FIG. 4: Our results for the charmonium mass spectrum normalized by the experimental values.

FIG. 5: Hyperfine splitting of the charmonium with different number of flavors.

FIG. 6: Comparison of the charm quark mass. The charm quark mass is obtained at $\mu = a^{-1}$, and evolved to $\mu = m_{\text{charm}}^{\overline{MS}}$ using four-loop beta function [16]. We employ $N_f = 3$ running based on the fact that our simulation includes $N_f = 2 + 1$ dynamical quarks, while HPQCD collaboration uses $N_f = 4$ reflecting fictitious dynamical charm quark effects [19].
FIG. 7: Our results for charmed meson masses (left panel) and charmed-strange meson masses (right panel) normalized by the experimental values.

FIG. 8: Our results for the hyperfine splittings of charmed meson (left panel) and charmed-strange meson (right panel).

FIG. 9: Comparison of pseudoscalar decay constants for the charmed meson (left panel) and charmed-strange meson (right panel).
Experiment

This work\((N_f=2+1, a^{-1}=2.2 \text{ GeV}) \)
HPQCD+UKQCD\((N_f=2+1, a=0) \)
Fermilab+MILC\((N_f=2+1, a=0) \)
ETMC\((N_f=2, a=0) \)

FIG. 10: Ratios of pseudoscalar decay constants for the charmed meson and charmed-strange meson.

Experiment

This work\((N_f=2+1, a^{-1}=2.2 \text{ GeV}) \)
HPQCD+UKQCD\((N_f=2+1, a=0) \)

FIG. 11: Comparison of the CKM matrix elements, \(|V_{cd}| \) (left panel) and \(|V_{cs}| \) (right panel).

FIG. 12: Ratio of the CKM matrix elements, \(|V_{cs}|/|V_{cd}| \).