Rhinoplasty in secondary nasal deformities: Subjective and objective outcome evaluation

ABSTRACT

Introduction: Secondary nasal deformities are associated with trauma and secondary cleft nose (after primary cleft nose surgery). Nasal deformities affect esthetic, function, and psychological status of the patient. The goal of the secondary rhinoplasty is to correct both form and function, so that this positively impacts on their facial appearance.

Aims: The study aimed to evaluate the patient satisfaction (subjective outcome) by rhinoplasty outcome evaluation questionnaire (ROEQ) preoperatively and postoperatively and esthetic outcome (objective outcome) by surgical team in patients with secondary nasal deformities.

Materials and Methods: Secondary rhinoplasty was done in 13 patients of traumatic and unilateral secondary cleft nose through the external approach. Objective outcome was assessed by surgical team with clinical measurement, radiograph (lateral cephalometric), and photographic documentation pre- and postoperatively. Clinical measurements include nasolabial and nasofrontal angle. The patients completed the ROEQ for the subjective outcome evaluation.

Results: There was significant improvement of subjective outcome (83.30%) based on the ROEQ and objective outcome based on the clinical measurement.

Conclusion: Our study suggests that secondary rhinoplasty in trauma and cleft patients leads to both subjective and objective improvement of the facial appearance.

Keywords: Nasal injury, rhinoplasty outcome evaluation, secondary cleft nose, secondary rhinoplasty

INTRODUCTION

Rhinoplasty is a surgical procedure that improves the form and function of the nose. In social cognition, facial appearance plays an important role. Symmetrical faces are considered to be more attractive. Thus facial asymmetries in persons with nasal deformities are probably a source of emotional and social distress.[1]

According to various literature, the incidence rate of posttraumatic nasal deformities varies from 9% to 62%.[2-7] Proper function of the nose is needed for normal respiration, humidification, speech production, smell sensation, and it also has a great role in facial esthetic. Secondary nasal deformities may be congenital or traumatic. Most common causes of nasal injuries are falls, motor vehicle accidents, and athletic injuries. The incidence is more in males as compare to females at the age of 11–20 years. The age and the environment play a key role in determining the injury type and pattern.[8]

The fracture of the nose is more common and about 39% of all facial fractures.[9]

Chandmani Tigga, Majumdar Swapan Kumar, Burman Subhasish, Mishra Siddartha, Hussain Mohsina
Department of Oral and Maxillofacial Surgery, Dr. R. Ahmed Dental College and Hospital, Kolkata, West Bengal, India

Address for correspondence: Dr. Chandmani Tigga, Behind Dr. P.K. Das House, Kokar, Near RIMS, Talab, Bariatu, Ranchi - 834 009, Jharkhand, India
E-mail: chandmanitigga@gmail.com

Received: 25 April 2020, Revised: 15 July 2020, Accepted: 12 September 2020, Published: 16 December 2020

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKLHRPMedknow_reprints@wolterskluwer.com

How to cite this article: Tigga C, Kumar MS, Subhasish B, Siddartha M, Mohsina H. Rhinoplasty in secondary nasal deformities: Subjective and objective outcome evaluation. Natl J Maxillofac Surg 2020;11:186-92.
Nasal deformity associated with congenital cleft lip is a complex defect that affects aesthetic and function. All the tissue layers may be involved in nasal deformity including the cartilaginous framework, the bony platform, the inner nasal lining, and the skin. The extend of deformity varies with the involvement of lip abnormality; it may be partial or complete and unilateral or bilateral. The mid-facial skeleton affected by fusion disorders of cleft lip and cleft palate. The worldwide incidence rate of cleft lip and palate is between 0.8 and 2.7 cases per 1000 live births.\[^{10}\]

Nose is an important organ of the body which has a significant role in a person’s self-respect and social acceptance. The main goal of corrective surgery of the nose is to achieve the new form of the nose which will be matched perfectly with the rest of the facial appearance.\[^{11}\]

Rhinoplasty is among the most commonly performed surgeries for both esthetic and functional purposes.\[^{12}\] Intermediate and definitive rhinoplasty is included in secondary rhinoplasty. Rhinoplasty performed before the completion of nasal growth is called intermediate rhinoplasty which is based on the two separate time periods. At the age between of 4 and 6 years for lip revision, to minimize any psychological distress. Ages between 8 and 12 years waiting until after alveolar bone grafting and completion of orthodontic alignment gives a skeletal base for the correction of nasal deformities. As compare with definitive rhinoplasty, the intermediate rhinoplasty techniques are more conservative.\[^{10}\]

Definitive rhinoplasty is done after maxillary and nasal growth completion. It is done in between 16 and 18 years of age. Different procedures such as osteotomy, septoplasty, and cartilage grafting is needed for definitive rhinoplasty according to the severity of soft tissue and skeletal deformities.\[^{13}\]

Different donor site for cartilage grafting are the rib, conchal, and nasal septum to achieve adequate nasal support. The primary aim of the secondary rhinoplasty is relief of nasal obstruction, the creation of symmetry and definition of the nasal base and tip, and management of nasal webbing and scarring.\[^{14}\]

Some individuals are more concern about their nasal profile, with a considerable decreased or increased nasofrontal and nasolabial angle being an important reason for the required rhinoplasty. The patient attractiveness is determined by the morphology of nasofrontal and nasolabial region in the profile view.\[^{15}\]

Nasolabial angle is measured between columellar and plane of the upper lip with its apex at subnasale. The ideal angle is 90°–95° for males and 100°–110° for females.\[^{9}\]

Nasofrontal angle is formed between the dorsum of the nose and glabellar part of the forehead. In a normal profile, the nasofrontal angle is about 125°.\[^{9}\]

MATERIALS AND METHODS

The study was approved by the Ethical Committee of our hospital (Reference number: 2015–2018). Thirteen patients of trauma (9) and secondary cleft nose (4) came to the department of oral and maxillofacial surgery. The age range was 17–40 years, and 8 male and 5 female patients were included. In our study, inclusion criteria were fracture of nose, as well as secondary cleft. Patients who were willing to participate in the study along with informed consent and readily available for periodic follow-up without any systemic disease were included in the study.

The clinical finding was nasal septum deviation, saddle nose (depressed nasal dorsum), short columella with nostril, and nasal obstruction. Pre and post–operative photographs (full face frontal view, basal view, left profile view, and right profile view) and radiograph (lateral cephalometric) were taken for the assessment of facial angle (nasolabial and nasofrontal) and objective (esthetics) outcome. Subjective outcome through rhinoplasty outcome evaluation questionnaire (ROEQ) (Alsarraf et al.; 2000) was assessed preoperatively and 6 months postoperatively.

Rhinoplasty outcome evaluation

The ROEQ is a tool which is used for the assessment of the result after the correction of secondary nasal deformities.\[^{16}\] ROEQ in which six questions were asked regarding the patient’s view on both nasal form and function [Table 1]. Each parameter was scored on a scale from 0 to 4, with 0 and 4 reflecting the worst and best scores, respectively. After getting total score, it was divided by 24 and multiplied by 100. An excellent score was considered of above 85% ROE score and shows high patient satisfaction. ROEQ was used to study the patient’s satisfaction level. The rhinoplasty satisfaction outcome evaluation is a tedious task to perform, especially when it is being performed by different consultants. To overcome this difficulty, we use the ROEQ to access our results.\[^{17}\] A commonly used evaluation method for nose satisfaction after ROE, assessing the state of the nose preoperatively and postoperatively.\[^{18}\]

Demographic profile

In our study, secondary deformities patients were secondary cleft and saddle nose.

The cleft lip and cleft palate in the poverty stricken Sub-Himalayan Garhwal region of India being a commonly
seen congenital abnormality and scarcity of studies about the demography of cleft in this region. The cleft in tropical counties such as India is worse due to poverty and illiteracy. Lack of multivitamins, inappropriate use of drugs and problems such as high fever and anemia during pregnancy are likely etiological factor in the development of cleft deformity. Drivedi et al.[19] found unilateral cleft were more common than bilateral and unilateral to bilateral ratio was 10.4:1. They noticed that left side defects were more common than the right side, and male-to-female ratio was 2:1. The isolated cleft lip (52.24%) was much higher than isolated cleft palate (13.47) or cleft lip associated with cleft palate (34.29). However, females had a higher incidence of the cleft palate than male.[19]

Out of four patients of unilateral secondary cleft lip and palate, one was on left and three were on the right side. The highest incidence of this deformity was recorded in 21 years (median age) in all female patients. The majority of our patients were poor and illiterate.

Saddle nose may be caused by many factors: biologic, genetic, and iatrogenic. The saddle nose may result from traumatism followed by septal abscess. The nose complex deformity of the saddle nose may be followed by other abnormalities such as nasal hypoplasia, septal deviation, low projection of nasal tip, and short columella. The etiological factor of the saddle nose is the infection such as hanseniasis, syphilis, tuberculosis, and blastomycoses.[20]

In our study, trauma was the main cause of saddle nose and reported nine patients.

The patient’s satisfaction varies based on gender, age, education level, culture, ethnicity, and most importantly, the patient’s level of expectation. Due to diversity of the procedure and difficulty in interpreting patient expectations, the postrhinoplasty satisfaction is low. A recent study suggested that meeting esthetic expectation was more important than meeting functional expectation to satisfy a patient.[17]

The limitation of this study was that the sample size was too small for additional analysis, to evaluate the predictors for patient satisfaction.

Surgical procedure

Rhinoplasty was performed through the open approach in which marginal with transcolumellar incision was used. Surgical procedures included lateral osteotomy and septoplasty. Septorhinoplasty was done for the correction of airway obstruction. In which deviated part of bony and cartilaginous part of septum was removed with the help of luc forceps after elevation of the mucoperichondrium and mucoperiosteum by giving incision on the deviated site of the septum. External nose correction was achieved by lateral osteotomy. Grafting for columellar and alar region strut graft was taken from conchal and septal cartilage [Figure 1a and b]. For dorsum onlay grafting, rib cartilage and iliac crest bone was used [Figure 1c and d]. Osteotomy and grafting was
done for esthetic purpose. Postoperatively, nasal cavities were packed loosely with vaseline lubricated gauze for the prevention of septal hematoma. It was removed after 48 h. At the end of operation, nasal splint (cast) was used on the nasal dorsum for stability of the nose. These splints were removed after 1 week.

RESULTS

Objective outcome

Nasolabial angle
Preoperative and postoperative photo and cephalometric analysis showed a significant improvement of the characteristic facial angle. The mean nasolabial angle was significantly higher than mean preoperative nasolabial angle ($t_{24} = 3.09; P < 0.0001$). The nasolabial angle altered from a median of 97°–105°, thus significant improvement was observed over nasolabial angle after surgery [Figure 2a, b, Table 2 and Graph 1].

Nasofrontal angle
The mean value of nasofrontal angle was significantly lower than mean preoperative nasofrontal angle, ($t_{24} = 3.09; P < 0.0001$). The median nasofrontal angle altered from 140° to 135°, thus significant improvement was observed over nasofrontal angle after surgery [Figure 2c, d, Table 3 and Graph 2].

Subjective outcome

Overall, patient’s satisfaction was high and changed from a median score of 41.66% preoperative to 83.30% postoperative. T-test showed that mean postoperative subjective outcome was significantly higher than mean preoperative subjective outcome ($t_{26} = 7.27; P < 0.0001$) [Table 4 and Graph 3].

DISCUSSION

The aim of the present study was to evaluate the subjective and objective outcome of rhinoplasty in secondary nasal deformities due to secondary cleft and trauma patients.

Nasolabial angle
The mean value of nasolabial angle was 105° after the surgery. Hence, we found that the significant improvement of the nasolabial angle was seen after the surgery [Figure 2a and b]. We agree in our findings with Powell and Humphreys study described a range of 90°–120° though in their “esthetic triangle” they found a range of 90°–105°. There is variation of the value in different ethnics, and average values for a Chinese population have been provided as 89° ± 11° in women and 87° ± 12° in men, and in an African-American population as 74° ± 15° in women and 72° ± 15° in men.[21]

For the Indian population, the ideal angle is 90°–95° for males and 100°–110° for females by V. P Sood.[9]

Nasofrontal angle
After the follow-up observation of 2 years, it was found that median nasofrontal angle decreased from 140° to 135° [Figure 2c and d] which correlates with the study of Gräber et al.; 1995[22] and Guyuron 1988.[23]

Subjective outcome

Table 2: Distribution of nasolabial angle in degree (°) of the patient

Descriptive statistics	Preoperative ($n=13$)	Postoperative ($n=13$)	t-test (t_{24})	P
Mean±SD	101.46±16.85	106.23±10.96	3.09	<0.01*
Median	97.00	105.00		
Range	80-130	85-130		

Table 3: Distribution of nasofrontal angle in degree (°) of the patients

Descriptive statistics	Preoperative ($n=13$)	Postoperative ($n=13$)	t-test (t_{24})	P
Mean±SD	137.31±7.33	132.62±5.12	3.23	<0.01*
Median	140.00	135.00		
Range	125-150	125-145		

Table 4: Distribution of subjective outcome (in percentage) of the patients

Descriptive statistics	Preoperative ($n=13$)	Postoperative ($n=13$)	t-test (t_{26})	P
Mean±SD	41.98±19.41	84.70±8.48	7.27	<0.0001*
Median	41.66	83.30		
Range	12-83	75-100		

P<0.01* significant; SD: Standard deviation

Figure 2: (a) Preoperative and (b) postoperative nasolabial angle. (c) Preoperative (d) postoperative nasofrontal angle.
In our study, patients satisfaction was high and changed from a median ROE score of 41.66%–83.30%. Thus, significant improvement was observed over subjective outcome after surgery, which was acceptable and correlated with other study of Alsarraf; reported mean postoperative ROE score increase of 44.5%. Celik and Altintas was noted improvement score of 75%. and Gassling et al.; seen mean postoperative score of 87.5%

Subjective outcome was associated with patient satisfaction from functional as well as an aesthetic point of view by using ROEQ, commonly used for cosmetic and post traumatic rhinoplasty. As compared to other aesthetic procedures, rhinoplasty patients are less satisfied with their appearance after surgery. There may be unexpected responses from patients even after good surgical correction because rhinoplasty has a huge psychological impact.

We identified two main areas of nasal defects in unilateral secondary cleft and traumatic nose. One was the depressed dorsum of the nose, and the other was a drooping tip. We have therefore, addressed these two defects in these patients. The dorsal graft is an excellent way to raise the depressed dorsum found in some unilateral cleft and traumatic nose defects. This graft also aids in supporting the tip of the nose which can be lifted by attaching the alar cartilages to it. In patients with short columella using only a strut graft from concha or septum to strengthen the medial crura of the lower lateral cartilages and considered adequate for lifting the nasal tip. Grafting onto the columella is aimed to strengthen the tip support and correct the buckled and malpositioned alar cartilages. The graft will increase the columella length, a nasolabial angle, the nasal projection, and the structural integrity of the tip support and nasal base. Preservation of nasal tip rotation and refinement are best corrected using interdomal transdomal sutures (Arnnop et al.; 2011). In our study of 13 patients, conchal cartilage, costochondral graft, septal cartilage, and anterior iliac crest bone graft were used in three, one, four, and two patients, respectively, along with lateral osteotomy. Out of 13 cases, three patients did not need any graft placement, only septorhinoplasty were done with lateral osteotomy to correct the nasal function and axis deviation through external approach. Overall, in 2 cases, ORIF was done along with rhinoplasty out of 13 cases. After 6 months follow-up, we assessed the objective parameter by clinical measurements, and we found the improvement of nasal function, characteristic facial angle [Figure 2a-d], symmetry of nostril, columella length, vertical positioning of alar base [Figure 3a and b], depressed nasal dorsum [Figure 3c and d], and nasal axis deviation [Figure 3e and f]. Arima et al. found no difference in quality of life between follow-up periods of 6 months and 10 years. Our data correlated with the study of Gassling et al.; 2015, Reddy et al.; 2013, and Pitak-Arnnop et al.; 2011.

In the literature, no reports exist that concerning the combined use of objective and quantitative measures of

Graph 1: Showing significant improvement of nasolabial angle

Graph 2: Showing significant improvement of nasofrontal angle

Graph 3: Showing significant improvement of subjective outcome
esthetich assessment and morphology to predict and evaluate the nasal and facial esthetics. However, our study has combinedly used both objective and subjective outcomes which are similar to that of Gassling et al., 2015.

Rhinoplasty in the cleft lip and palate improves both subjective and objective outcome of facial appearance and thus may help in the psychological rehabilitation of affected patient.

CONCLUSION

Our study suggests both objective and subjective improvement of facial appearance after secondary rhinoplasty in trauma and cleft lip and palate patients. We included nasal trauma patients with associated other facial fractures for this study. There was total male predominance in our study with only five female cases. The peak incidence of nasal trauma was mostly seen in males within the age group of 21–40 years. The secondary cleft nose patients were only female and treated within age of 17–20 years. Rhinoplasty contributes to function even though it was correlated to objective esthetic rating by the surgeon and subjective patient satisfaction as a result of their perceived improvement in the appearance. The mean postoperative subjective outcome was significantly higher than mean preoperative subjective outcome ($t_{19} = 7.27; P < 0.0001$). Thus, significant improvement was observed over subjective and objective outcome after the surgery.

Acknowledgments

Dr. Guha Goutam, Associate Professor, Department of Plastic surgery, R.G Kar Medical College and Hospital Kolkata.

Dr. Jana Utpal Professor, Department of Otorhinolaryngology Head and Neck Surgery, N.R.S.M.C and Hospital Kolkata. Department of OMFS staff and Hospital staff of Dr. R. Ahmed Dental College and Hospital, Kolkata.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Meyer-Marocott P, Gerdes AB, Reuther T, Stellzig-Eisenhauer A, Alpers GW. Persons with cleft lip and palate are looked at differently. J Dent Res 2010;89:400-4.
2. Fernandes SV. Nasal fractures: The taming of the shrewd. Laryngoscope 2004;114:587-92.
3. Gilbert JG. Treatment of posttraumatic nasal deformity. N Z Med J 1987;100:713-5.
4. Mondin V, Rinaldo A, Ferlito A. Management of nasal bone fractures. Am J Otolaryngol 2005;26:181-5.
5. Rohrich RJ, Adams WP Jr. Nasal fracture management: Minimizing secondary nasal deformities. Plast Reconstr Surg 2000;106:266-73.
6. Walldron J, Mitchell DB, Ford G. Reduction of fractured nasal bones; local versus general anaesthesia. Clin Otolaryngol Allied Sci 1989;14:357-9.
7. Watson DJ, Parker AJ, Slack RW. Manipulating broken noses. Lancet 1988;1:533.
8. Fonseca RJ, Walker RV, Barber HD, Powers MP, Frost DE. Nasal and maxillofacial trauma 4th ed Philadelphia, W.B Saunders Co Ltd Publisher 2013, P-491.
9. Sood V.P. Corrective Rhinoplasty. New Delhi C.B.S Publishers & Distributors; 2013.
10. Sykes JM, Senders CW. Pathologic anatomy of cleft lip, palate, and nasal deforms. Biological Basis of Facial Plastic Surgery. New York: Thieme Medical Publishers; 1993. p. 57-71.
11. Paludetti G, Almodor G, Scarano E, Deli R, Laneri de Bernart A, Maurizi M. Nasal obstruction and skull base development: Experimental study in the rat. Rhinology 1995;33:171-3.
12. Çelik M, Altuntaş A. The turkish version of the rhinoplasty outcomes evaluation questionnaire: Validation and clinical application. Balkan Med J 2019;36:129-33.
13. Wang TD. Secondary rhinoplasty in unilateral cleft nasal deformity. Facial Plast Surg 2007;23:123-7.
14. Shih CW, Sykes JM. Correction of the cleft-lip nasal deformity. Facial Plast Surg 2002;18:253-62.
15. Naini FB, Cobourne MT, McDonald F, Wertheim D. Aesthetic impact of the upper component of the nasolabial angle: A quantitative investigation. Journal of Oral and Maxillofacial Surgery, Med Pathol 2015;27:470-6.
16. Arima LM, Velasco LC, Tiago RS. Crooked nose: Outcome evaluations in rhinoplasty. Braz J Otorhinolaryngol 2011;77:510-5.
17. Khan N, Rashid M, Khan I, Sarwar SUR, Rashid HU, Khurshid M, et al. Satisfaction in Patients After Rhinoplasty Using the Rhinoplasty Outcome Evaluation Questionnaire. Cureus. 2019;11:e5283.
18. Mulder FJ, Masmuller DGM, de Vet RHCV, Don Griot JPW Aesthetics Assessment and patients Reported Outcome of Nasolabial Aesthetics in 18-year- old patients with unilateral cleft lip. Cleft Palate Craniofac J. 2019;56:1038-64.
19. Dvivedi J, Dvivedi S. A clinical and demographic profile of the cleft

Figure 3: (a) Preoperative and (b) postoperative symmetry of nostril, columella length, vertical positioning of alar base. (c) Preoperative and (d) postoperative nasal dorsum. (e) Preoperative and (f) postoperative nasal axis.
lip and palate in Sub-Himalayan India: A hospital-based study. Indian
J Plast Surg 2012;45:115-20.
20. de Almeida FS, Minarro LL, Palarissi PR, Sbirane E. Surgical
correction of the saddle Nose: Case Report. Int.Arch.Otorhinolaryngo
2009;13:450-4.
21. Farkas LG. Anthropometry of the attractive North American Caucasian
face. In: Farkas LG, editor. Anthropometry of the Head and Face. 2nd ed.
New York: Raven Press; 1994.
22. Gräber I, Jovanovic S, Berghaus A. Subjective and objective
evaluation of the outcome of rhinoplasty. A retrospective study.
Laryngorhinootologie 1995;74:495-9.
23. Guyuron B. Precision rhinoplasty. Part I: The role of life-size
photographs and soft-tissue cephalometric analysis. Plast Reconstr Surg
1988;81:489-99.
24. Alsarraf R. Outcomes research in facial plastic surgery: A review and
new directions. Aesthetic Plast Surg 2000;24:192-7.
25. Gassling V, Koos B, Birkenfeld F, Wiltfang J, Zimmermann CE.
Secondary cleft nose rhinoplasty: Subjective and objective outcome
evaluation. J Craniomaxillofac Surg 2015;43:1855-62.
26. Reddy SG, Devarakonda V, Reddy RR. Assessment of nostril symmetry
after primary cleft rhinoplasty in patients with complete unilateral cleft
lip and palate. J Craniomaxillofac Surg 2013;41:147-52.
27. Pitak-Arnnop P, Hemprich A, Dhanuthai K, Yildirim V, Pausch NC.
Panel and patient perceptions of nasal aesthetics after secondary cleft
rhinoplasty with versus without columellar grafting. J Craniomaxillofac
Surg 2011;39:319-25.