91 were known in the second half of last year: a new Swiss center for scientific computation (Centro svizzero di calcolo scientifico (CSCS)) will be opened in Manno nearby Lugano and the supercomputer to be installed there is a Japanese machine marketed by NEC Corporation (Tokio): the SX-3. In its initial configuration, the SX-3/Model 22 supercomputer will have two CPUs with a peak performance rate of 2.75 GFlops each (GI flop = 10^12 Mflops), and it is planned that the machine will be upgraded in the near future so as to have a peak performance rate as high as 22 GFlops. The SX-3 supercomputer is scheduled for installation in Manno in summer 1991 and it should be available to its first users next September.

Broadly speaking, it is good news that the HLR-91 project has entered now its final stage, and that a new machine with such an impressive compute performance will soon be available to the Swiss scientific community. However, if everybody agrees on the principle, the choice of the machine which finally prevailed for HLR-91 has raised some concern among part of that community. This supercomputer will be among the first ones of this type to be exported from Japan, and little is known about the availability of the numerous highly vectorized and multi-tasked application softwares required by scientists so as to take the maximum advantage of the enormous computing capability of this machine. This is in contrast with some other manufacturers, such as CRAY Research, which have sold for many years hundreds of supercomputers all around the world, and which offer an impressive list of performing application softwares. We should open here a parenthesis for the innocent reader: the special architecture of any type of supercomputer requires professional skill and important programming effort, when a user wants to take full advantage of the high power of the machine. Efficient programming on a supercomputer resembles program development on a personal computer as much as driving a Fi car resembles sitting at the wheel of the car of ‘monsieur tout le monde’.

Coming back to HLR-91, this concern was expressed by the Group of Swiss Computational Chemists (GSCC) which comprises ca. 70 members both from academia and industries. In a letter sent to Prof. J. Näsch, president of ETHZ, and to the persons in charge of negotiating the contracts with NEC, the GSCC pointed out that the availability of adequate application software in chemistry is essential for an efficient use of such a machine and that chemists generally do not have the time nor the skill (without mentioning copyright problems for commercial packages!) for a transport of their programs from the existing CRAYs to the NEC. According to the GSCC, these problems were seriously to be taken into account, because as much as 30% of the resources of the two CRAYs were devoted last year to computational chemistry applications. In addition, the question of adequate users support in Manno was raised by the GSCC.

In a long and detailed answer, Prof. Näsch explained that a fair and efficient repartition of the total resources available on the three Swiss HLRs would be performed and that users lacking for adequate software on the SX-3 would be allowed for many years to continue working on the existing CRAYs. However, this is only possible, if most new applications requiring CPU time on HLR take place in Manno, and several existing ones are transported to the SX-3 as well, enabling thus users without proper software for that machine to work on the CRAYs. In addition, Prof. Näsch mentioned that the availability of application software in computational chemistry would be part of the contract to be negotiated with NEC, which is in our opinion an essential point.

Finally, concerning the users support in Manno, the problem is that the staff of the GSCC will be limited to 19 people altogether, which means that users support will be minimal. In this respect, the position of Prof. Näsch is that Swiss universities and ETHs should try to organize their own support, which will be difficult to set up for both financial and staff limitation reasons.

In its last meeting, held March 20th 1991 in Bern, the GSCC discussed the present situation concerning HLR-91. It was the participants’ opinion that the reassuring answer from Prof. Näsch, mainly as far as the availability of computational chemistry software is concerned, enables them to be pretty optimistic about the possible use of the SX-3 for their applications. Indeed, it was reported during the meeting that in principle several packages should be available next fall: mathematical libraries, a graphic library and, as far as we are concerned, computational chemistry (AMBER, AMOSS, semi-empirical programs, etc…). Concerning the popular GAUSSIAN package, the question is still open and it seems impossible to make yet accurate provisions as to the date it will be available.

As to the practical access to the SX-3 machine, two 2 Mbauds (1 Mbaud = 10^9 bit per second) lines will be made available by the PTT between Manno and the ETHZ and EPFL, respectively. It is planned that in the future these lines will be upgraded to 34 Mbauds, which should be adequate for applications requiring extensive data transfer, such as graphics.

Though the programs to be initially installed represent undoubtedly the ‘vital minimum’ in computational chemistry, one may say as a conclusion that the perspectives offered to chemists by the HLR-91 project are promising and allow to be rather optimistic as to the possibility to perform large-scale molecular dynamics simulations or quantum chemical calculations on the SX-3 machine. However, many problems remain to be solved, before computational chemists can really start to explore and possibility exploit the enormous compute power of this new supercomputer.

1. Introduction

The way chemists write publications has changed significantly in the last 20 years. Three periods can be distinguished:

— **The period of the typewriter, the pen, and the ruler**: The chemist wrote his (or her) article once or several times by typewriter, added chemical and mathematical formulae by hand, made drawings of his equipment and plotted curves from his (analogous) measurements. Sometimes, a secretary could

Import of Chemical Information into Word Processors

Heiner G. Bührer

Abstract. Instead of drawing curves and sketches by hand and cutting and pasting pieces of paper containing chemical information, it is often easier and gives professional-looking results to perform evaluation and representation of data with specialized software. The resulting file can be imported into a suitable word processor. How this can be done with the help of some popular MS-DOS programs is described in the article.

Correspondence: Prof. Dr. H. G. Bührer, Industrielle Chemie, Chemieabteilung Technikum Winterthur, Ingenieurenschule CH-8401 Winterthur
91 were known in the second half of last year: a new Swiss center for scientific computation (Centro svizzero di calcolo scientifico (CSCS)) will be opened in Manno nearby Lugano and the supercomputer to be installed there is a Japanese machine marketed by NEC Corporation (Tokyo): the SX-3. In its initial configuration, the SX-3/Model 22 supercomputer will have two CPUs with a peak performance rate of 2.75 GFlops each (1 GFlop = 10^12 Mflops), and it is planned that the machine will be upgraded in the near future so as to have a peak performance rate as high as 22 GFlops. The SX-3 supercomputer is scheduled for installation in Manno in summer 1991 and it should be available to its first users next September.

Broadly speaking, it is good news that the HLR-91 project has entered now its final stage, and that a new machine with such an impressive compute performance will soon be available to the Swiss scientific community. However, if everybody agrees on the principle, the choice of the machine which finally prevailed for HLR-91 has raised some concern among part of that community. This supercomputer will be among the first ones of this type to be exported from Japan, and little is known about the availability of the numerous highly vectorized and multi-tasked application softwares required by scientists so as to take the maximum advantage of the enormous computing capability of this machine. This is in contrast with some other manufacturers, such as CRAY Research, which have sold for many years hundreds of supercomputers all around the world, and which offer an impressive list of performing application software. We should open here a parenthesis for the innocent reader: the special architecture of any type of supercomputer requires professional skill and important programming effort, when a user wants to take full advantage of the high power of the machine. Efficient programming on a supercomputer resembles program development on a personal computer as much as driving a Fi car resembles sitting at the wheel of the car of 'monsieur tout le monde'.

Coming back to HLR-91, this concern was expressed by the Group of Swiss Computational Chemists (GSCC) which comprises ca. 70 members both from academia and industries. In a letter sent to Prof. J. Nüesch, president of ETHZ, and to the persons in charge of negotiating the contracts with NEC, the GSCC pointed out that the availability of adequate application software in chemistry is essential for an efficient use of such a machine and that chemists generally do not have the time nor the skill (without mentioning copyright problems for commercial packages!) for a transport of their programs from the existing CRAYS to the NEC. According to the GSCC, these problems were seriously to be taken into account, because as much as 30% of the resources of the two CRAYS were devoted last year to computational chemistry applications. In addition, the question of adequate users support in Manno was raised by the GSCC.

In a long and detailed answer, Prof. Nüesch explained that a fair and efficient repartition of the total resources available on the three Swiss HLRs would be performed and that users lacking for adequate software on the SX-3 would be allowed for many years to continue working on the existing CRAYS. However, this is only possible, if most new applications requiring CPU time on HLR take place in Manno, and several existing ones are transported to the SX-3 as well, enabling thus users without proper software for that machine to work on the CRAYS. In addition, Prof. Nüesch mentioned that the availability of application software in computational chemistry would be part of the contract to be negotiated with NEC, which is in our opinion an essential point.

Finally, concerning the users support in Manno, the problem is that the staff of the GSCC will be limited to 19 people altogether, which means that users support will be minimal. In this respect, the position of Prof. Nüesch is that Swiss universities and ETHs should try to organize their own support, which will be difficult to set up for both financial and staff limitation reasons.

In its last meeting, held March 20th 1991 in Bern, the GSCC discussed the present situation concerning HLR-91. It was the participants' opinion that the reassuring answer from Prof. Nüesch, mainly as far as the availability of computational chemistry software is concerned, enables them to be pretty optimistic about the possible use of the SX-3 for their applications. Indeed, it was reported during the meeting that in principle several packages should be available next fall: mathematical libraries, a graphic library and, as far as we are concerned, computational chemistry (AMBER, AMOSS, semi-empirical programs, etc...). Concerning the popular GAUSSIAN package, the question is still open and it seems impossible to make yet accurate provisions as to the date it will be available.

As to the practical access to the SX-3 machine, two 2 Mbauds (1 Mbaud = 10^9 bit per second) lines will be made available by the PTT between Manno and the ETHZ and EPFL, respectively. It is planned that in the future these lines will be upgraded to 34 Mbauds, which should be adequate for applications requiring extensive data transfer, such as graphics.

Though the programs to be initially installed represent undoubtedly the 'vital minimum' in computational chemistry, one may say as a conclusion that the perspectives offered to chemists by the HLR-91 project are promising and allow to be rather optimistic as to the possibility to perform large-scale molecular dynamics simulations or quantum chemical calculations on the SX-3 machine. However, many problems remain to be solved, before computational chemists can really start to explore and possibly exploit the enormous compute power of this new supercomputer.

1. Introduction

The way chemists write publications has changed significantly in the last 20 years. Three periods can be distinguished:

— The period of the typewriter, the pen, and the ruler: The chemist wrote his (or her) article once or several times by typewriter, added chemical and mathematical formulae by hand, made drawings of his equipment and plotted curves from his (analogous) measurements. Sometimes, a secretary could

——

Import of Chemical Information into Word Processors

Heiner G. Bührer*

*Correspondence: Prof. Dr. H. G. Bührer Industrielle Chemie, Chemieabteilung Technikum Winterthur Ingenieurschule CH-8401 Winterthur

Abstract. Instead of drawing curves and sketches by hand and cutting and pasting pieces of paper containing chemical information, it is often easier and gives professional-looking results to perform evaluation and representation of data with specialized software. The resulting file can be imported into a suitable word processor. How this can be done with the help of some popular MS-DOS programs is described in the article.
do part of the job, however, most chemical publications required not only an office but also a chemical background.

- The period of the first word processors: Things changed a little, but not much. Word processing made it possible to write a text once only and edit it for the corrections to be made. Dictionaries in various languages corrected the spelling. Still, the first word processors did just what their name implies: write letters and numbers. Superscripts and subscripts were still added by hand, pen and template were used for benzene rings, etc.

- The period of chemical word processors: No longer was it a problem to use a subscript or unusual symbols like \(\infty \), \(R \), \(\infty \), \(\cup \), \(\cap \) or \(\approx \). A molecule like \(\text{CH}_3\text{O} \) was easily added into the text and chemical equations were readily drawn:

\[
\begin{align*}
\text{O} & \quad \rightarrow \\
\text{CH}_3\text{O} & \quad \rightarrow \\
\text{C} & \quad \rightarrow \\
\end{align*}
\]

Not only chemical texts, but also mathematical formulae were no longer a strenuous task to write. And even chemists with little talent for drawing could obtain sketches with limited effort:

Chemists want to be able to do the following:
- to import plots with measured laboratory data (ASCII data),
- to import graphs with calculated data points,
- to import files with professional drawings or molecular models.

For an introduction to data collection and transformation by suitable software see [2]. The present paper gives some ideas on how to bring 'import cases' into word processors such as ChemText or WordPerfect. A schematic representation is given in Fig. 2:

The paper is restricted to the following hardware and software:
- IBM computers or compatibles,
- MS-DOS word processors such as ChemText or WordPerfect or, more generally, word processors capable of importing files in the HPGL format (Hewlett-Packard Graphics Language; produces a vector file, which is a device-independent description of graphical information).

In practice these restrictions are not very serious: IBM computers stand in virtually every laboratory, MS-DOS is the industry's standard operating system and HPGL a popular file format used by many manufacturers (see also Chapt. 5).

The specific programs used and mentioned in this article are:
- 2020 Version 2.33.11, a spreadsheet software (Lotus-compatible) by Access Technology,
- Alchemy II [3] Version 2.01, a molecular modeling software by Tripos Ass.,
- ChemText Version 1.4, a chemical word processor used widely in the chemical industry, and the utility program FROMHPGL, by Molecular Design Ltd.,
- Harvard Graphics Version 2.12, probably the most widely used business graphics software, by Software Publishing Corp.,
- RCI software for reaction calorimetry by Mettler-Toledo AG. This is actually not MS-DOS software, but runs under the QNX operating system (Quantum Software Systems).

2. Preparing an ASCII File for Presentation

A large number of instruments provide chemical information in digital form, mostly as an ASCII file (American Standard Code for Information Interchange). In general, these instruments are connected to a printer or plotter; they do provide some kind of graphical output. However, if the chemist wants to manipulate the information or use a different form of presentation, he needs the results in digital form. A possible procedure is shown in the following example:

Reaction calorimetry is a powerful technique for scale-up of chemical processes. The computer (IBM PS/2 Model 70.368) of the reaction calorimeter used (RCJ, Mettler) provides an enormous amount of informa-

[Fig. 1. Schematic representation of an optimization procedure according to the Box and Wilson method]

[Fig. 2. Schematic representation of various 'import routes']
tion (several thousand data points per property) such as heat flow, temperatures, stirrer speed etc. as a function of time. The RCI software transforms all data points measured from the QNX operating system to MS-DOS. However, Harvard Graphics, the graphics software used, imports only 240 data points, which makes it necessary to use a data reduction utility like DATARED.BAS [4].

In a polymerization experiment two calculated properties, namely heat flow \(Q_{\text{r,calc}} \) [W] and conversion of monomer [%], should be imported into ChemText as a function of time \(t \) [min] for a certain time interval, giving a presentation with two y axes. DATARED.BAS reduces the number of data points for each property \(t, Q_{\text{r,calc}}, \text{conversion} \) to 240 in the time interval from 90 to 160 min. The ASCII data obtained are imported into the HarvardGraphics Main Menu (Create New Chart: Bar-Line; X Data Type: Number; Import/Export: Import ASCII data) and represented as a curve (Markers: 0). The graph is exported (Import/Export: Picture; Format: HPGL). With the utility FROMHPGL a metatile is obtained, saved to the Clipboard of ChemText and completed in the Main Menu. The resulting plot is presented in Fig. 3.

Text and chemical formulae are added without any problems in the main menu to the graph. The restriction to 240 data points is – at least in this case – not disadvantageous; the resolution of the heat flow curve is adequate.

3. Spreadsheet Calculations

Spreadsheets are a powerful tool for manipulating large amounts of chemical information with numerous calculations. However, most of them offer only limited graphic output. Again, this dilemma can be solved via Harvard Graphics.

An example for the use of a spreadsheet in chemical engineering is the calculation of the residence time distribution in a cascade of stirred tank reactors (Fig. 4).

The reactors in this cascade have been drawn in a CAD software (AUTOCAD), imported and completed in ChemText. The mathematical equation to be solved is:

\[
H(t/r) = \frac{n}{(n-1)!} e^{-nt/r} (nt/r)^{n-1}
\]

where

- \(H(t/r) \) amount of tracer substance leaving the reactor,
- \(n \) number of stirred tank reactors in a cascade = 1...∞,
- \(t \) time after addition of tracer substance,
- \(\tau \) mean residence time.

This function has been calculated for \(n = 1, 2, 3, ... , 10 \) in a spreadsheet software (20/20; Access Technology) and exported in Lotus format to Harvard Graphics. The presentation is plotted and exported again as an HPGL file. The result after conversion and

Fig. 3. Emulsion polymerization of styrene at 80° with K_2S_2O_8 as initiator

Fig. 4. Experiment for the determination of the residence time distribution in a cascade of three stirred tank reactors

Fig. 5. Residence time distribution in a cascade of n stirred tank reactors
The procedure gives scientifically correct and professional-looking graphs, ready for publication.

4. HPGL-Generating Software

The cases discussed in Chapts. 2 and 3 are relatively complicated and involve several steps. However, some programs offer direct ‘plot-to-file’ in the HPGL format. These files can then be imported directly into the word processor, or – in the case of ChemText – via FROMHPGL. The molecular modeling software ALCHEMY II is used as an example to show the import of such a file into ChemText.

A molecule like BHT (Butylated Hydroxytoluene) is modeled in ALCHEMY II [3], saved as an HPGL file (extension .PLT) and converted via FROMHPGL into a metafile (Fig. 6).

In this case colours are lost by the conversion! Alternatively, such models can be plotted with a HP plotter with up to 8 pen colours.

5. Conclusion

More and more instruments in the laboratory are providing ASCII data that can be manipulated in spreadsheets or graphics programs. The import of graphic files into word processors thus considerably enhances chemists’ desktop-publishing capabilities.

Additional help for the transformation of one graphic format to another is a file-conversion utility such as HiJaak by Inset Systems. It offers several possibilities:

- it handles an impressive list of vector (.CGM, .DXF, HPGL, .EPS, .GEM, Lotus.PIC, Hewlett-Packard .PCL etc.) and bitmapped formats (TIFF, .PCX, .IMG etc.),
- it converts vector to bitmapped formats as well as other vector formats (but not bitmapped to vector formats),
- during format conversion, colours can be converted to gray scales and vector images rotated and scaled.

Recently, some laboratory software became available, running under a user interface such as Windows 3.0 or GEM. If the word processor uses the same interface, import via a clipboard is straightforward. Another interesting feature is colour: With corresponding software and the availability of colour laser printers, it will become a desirable feature in the near future. However, it remains a challenging task to map the variety of data provided by scientific instruments to the colour capabilities of most word processors.

Received: May 4, 1991

[1] St. V. Kasparek, ‘Computer Graphics and Chemical Structures’, J. Wiley, New York 1990.
[2] W. Gottwald, R. Sossenheimker, ‘Angewandte Informatik im Labor’, VCH, Weinheim, 1989.
[3] H. G. Büttner, Chimia 1990.44, 259.
[4] A listing of DATARED.BAS which runs under BASICA can be obtained by sending a self-addressed envelope to the author.

ANNOUNCEMENT

Summer School (3rd Cycle out-of-town Seminar of Physical Chemistry) on Monte Carlo (MC) and Molecular Dynamics (MD) Simulations in Chemistry: Theory and Applications

Ovronnaz (Valais), Switzerland, September 9–13, 1991

Organized by J. Weber (Department of Physical Chemistry, University of Geneva) and M. Grätzel (Institute of Physical Chemistry, EPF-Lausanne). This summer school is intended for 3rd Cycle (graduate) students, post-docs and researchers (chemists, physicists, biochemists, crystallographers, etc.) interested in learning the basic principles of MC and MD computer simulations. In addition to these theoretical concepts, a survey of applications in the following areas will be presented: free energy calculations, modeling of macrocyclic receptors and their substrate complexes, MC simulations of chemical reactions, MD of condensed systems, simulations of the dynamic properties of zeolites and silica gels. Practical exercises on standard applications will be organized. Lectures by W.F. van Gunsteren (EPF-Zürich), G. Wipff (University of Strasbourg), S. Boudon (University of Strasbourg), M. Parrinello (IBM-Rüschlikon) and R. van Santen (University of Eindhoven). For further information, contact: Prof. J. Weber, Département de Chimie Physique, Université de Genève, 30, quai Ernest-Ansermet, CH-1211 Genève 4 (Tel: 022/702 65 30 and 022/702 65 29; EM: WEBER@SC2A.UNIGE.CH).
import into ChemText is presented in Fig. 5: The procedure gives scientifically correct and professional-looking graphs, ready for publication.

4. HPGL-Generating Software

The cases discussed in Chaps. 2 and 3 are relatively complicated and involve several steps. However, some programs offer direct ‘plot-to-file’ in the HPGL format. These files can then be imported directly into the word processor, or – in the case of ChemText – via FROMHPGL. The molecular modeling software ALCHEMY II is used as an example to show the import of such a file into ChemText.

A molecule like BHT (Butylated Hydroxytoluene) is modeled in ALCHEMY II [3], saved as an HPGL file (extension .PLT) and converted via FROMHPGL into a metafile (Fig. 6).

In this case colours are lost by the conversion! Alternatively, such models can be plotted with a HP plotter with up to 8 pen colours.

5. Conclusion

More and more instruments in the laboratory are providing ASCII data that can be manipulated in spreadsheets or graphics programs. The import of graphic files into word processors thus considerably enhances chemists’ desktop-publishing capabilities.

Additional help for the transformation of one graphic format to another is a file-translation utility such as HiJaak by Inset Systems. It offers several possibilities:

- it handles an impressive list of vector (.CGM, .DXF, HPGL, .EPS, .GEM, Lotus.PIC, Hewlett-Packard .PCL etc.) and bitmapped formats (TIFF, .PCX, .IMG etc.),
- it converts vector to bitmapped formats as well as to other vector formats (but not bitmapped to vector formats),
- during format conversion, colours can be converted to gray scales and vector images rotated and scaled.

Recently, some laboratory software became available, running under a user interface such as Windows 3.0 or GEM. If the word processor uses the same interface, import via a clipboard is straightforward. Another interesting feature is colour: With corresponding software and the availability of colour laser printers, it will become a desirable feature in the near future. However,

ANNOUNCEMENT

Summer School (3rd Cycle out-of-town Seminar of Physical Chemistry) on Monte Carlo (MC) and Molecular Dynamics (MD) Simulations in Chemistry: Theory and Applications

Ovronnaz (Valais), Switzerland, September 9–13, 1991

Organized by J. Weber (Department of Physical Chemistry, University of Geneva) and M. Grätzel (Institute of Physical Chemistry, EPF-Lausanne). This summer school is intended for 3rd Cycle (graduate) students, post-docs and researchers (chemists, physicists, biochemists, crystallographers, etc.) interested in learning the basic principles of MC and MD computer simulations. In addition to these theoretical concepts, a survey of applications in the following areas will be presented: free energy calculations, modeling of macrocyclic receptors and their substrate complexes, MC simulations of chemical reactions, MD of condensed systems, simulations of the dynamic properties of zeolites and silica gels. Practical exercises on standard applications will be organized. Lectures by W.F. van Gunsteren (EPF-Zürich), G. Wipff (University of Strasbourg), S. Boudon (University of Strasbourg), M. Parrinello (IBM-Rüschlikon) and R. van Santen (University of Eindhoven). For further information, contact: Prof. J. Weber, Département de Chimie Physique, Université de Genève, 30, quai Ernest-Ansermet, CH–1211 Genève 4 (Tel: 022/702 65 30 and 022/702 65 29; EM: WEBER@SC2A.UNIGE.CH).

Received: May 4, 1991

[1] St. V. Kasparek, ‘Computer Graphics and Chemical Structures’, J. Wiley, New York 1990.
[2] W. Gottwald, R. Sossemeiner, ‘Angewandte Informatik im Labor’, VCH, Weinheim, 1989.
[3] H. G. Büßer, Chimia 1990, 44, 259.
[4] A listing of DATARED.BAS which runs under BASICA can be obtained by sending a self-addressed envelope to the author.
Das Doktorat in der Chemie
Schlussbericht der Arbeitsgruppe des «Comité Suisse de la Chimie», CSC

1. Einleitung

Wie jede andere Wissenschaft, ist auch die Chemie einem kontinuierlichen Erneuerungsprozess unterworfen, der sowohl quantitativ als auch qualitativ sich ändert. Die Entwicklung ist nicht nur auf die Forschung beschränkt, sondern umfasst auch die Ausbildung der Chemiker und Chemikerinnen. Der Bachelorgrad ist der einzige akademische Titel in der Chemie, der weltweit anerkannt wird. Die Ausbildungswege, die zum Doktorat führen, unterscheiden sich international beträchtlich. Für die anderen akademischen Titel (Lizenziat, Diplome, etc.), die in den verschiedenen Ländern erworben werden können, gibt es keine einheitlichen Regelungen.

Die Tatigkeit der Doktoranden und Doktoranden und Dies betreffen nicht nur die wissenschaftlichen Forschungslabors, sondern auch die industriellen Anwendungsbereiche. Der die Frage stellt, ob diese den Anforderungen genügen, die den akademischen Titel exakt entsprechen. Ist der Doktorgrad die einzige akademische Titel in der Chemie, der weltweit anerkannt wird? Dox -o dichtung an der Synthese zu gelangen. Die Zusammenarbeit der Kommission ist am Schluss des Berichtes angegeben.

2. Bedeutung des Doktorats

2.1. Standpunkt der Hochschule

Der Doktorgrad ist der einzige akademische Titel in der Chemie, der weltweit anerkannt wird. Die Ausbildungswege, die zum Doktorat führen, unterscheiden sich international beträchtlich. Für die anderen akademischen Titel (Lizenziat, Diplome, etc.), die in den verschiedenen Ländern erworben werden können, gibt es keine einheitlichen Regelungen.

Die Tatigkeit der Doktoranden und Doktoranden und Dies betreffen nicht nur die wissenschaftlichen Forschungslabors, sondern auch die industriellen Anwendungsbereiche.
Das Doktorat in der Chemie
Schlussbericht der Arbeitsgruppe des «Comité Suisse de la Chimie», CSC

1. Einleitung

Wie jede andere Wissenschaft, ist auch die Chemie einem kontinuierlichen Erweiterungsprozess unterworfen, der gegenwärtig besonders schnell abläuft und deshalb Aufsehen und Besorgnis auslöst. Dieser Prozess hat Auswirkungen auf das Chemiestudium, dessen Zielsetzungen und Lehrinhalte regelmäßig überdacht und angepasst werden müssen. Derartige Überlegungen sind für uns heute von besonderer Aktualität, denn jetzt die Zukunft umschreiben und damit auch die schweizerische Chemie vor besonderen politischen und wirtschaftlichen Herausforderungen zu stellen.

Dass die Zahl der in der Schweiz ausgebildeten Chemiker den Bedarf in weitem nicht zu decken vermag, ist eine seit Jahren bekannte Tatsache. Nach neueren Untersuchungen fielen bei den Neuzulassungen 1980 in den schweizerischen Hochschulen die meisten 5 Jahren ca. 50% auf Chemiker ausländischer Herkunft. Dies bedeutet, dass die Schweizerische Chemie im zukünftigen Europa spielende Rolle zu spielen haben wird, und diese ist im Rahmen des Studiums bis zum Diplom zu erlernen.

Die Kommission Wagnière hat sich ausserdem zu verschiedenen Aspekten des Doktorats in der Chemie gelassen, zu denen auf die Repräsentanten der Industrie, die die Betreuung der Doktoranden dient in erster Linie ihrer Ausbildung. Diese Tätigkeit der Doktoranden dient in erster Linie ihrer Ausbildung. Die Resultate dieser Tätigkeit können auch von der Arbeitsgruppe von eminenten Be- deutung, denn die Forschung der meisten Arbeitskreise wird beim wissenschaftlichen und auch von der Industrie. Es drängte sich daher auf, die er- sprachliche Kommission durch Vertreter aus der Industrie zu ergänzen, um die verschiedenen Aufgaben zu übernehmen.

Prof. A. v. Zelewsky
Präsident – CSC
Abschluss des Doktorats nicht den Abschluss der Ausbildung. Aus- bzw. Weiterbildung ist heute ein lebenslanger Prozess, der nie aufhört, und der bemerkt wird, dass das einmal erworbene Wissen laufend erweitert wird.

Für Forcher, welche die akademische Laufbahn ergreifen wollen, ist anschließend an das Doktorat eine Forschungstätigkeit als Post- doktorand an einem erstklassigen ausländischen Forschungsinstitut unerlässlich.

2.2. Standpunkt der chemischen Industrie

Der grösste Teil der Studierenden in der Chemie, nämlich 80-85% schliesst das Studium mit dem Doktorat ab. Dieser sehr hohe Anteil an Doktoranden ist spezifisch für die Chemie und stellt einen Sonderfall dar. Manche hängen man in anderen naturwissenschaftlichen Disziplinen durchaus mit dem Diplom in das Berufsebine eintreten kann, kommt dies in der Chemie nur ausnahmsweise vor. Das Diplom gilt dann als Endes eigentlicher Studienabschluss.

Die Bevorzugung der promovierten Chemiker gegenüber ihren diplomierten Kollegen durch die Industrie mag überraschen, wenn man bedenkt, dass weniger als die Hälfte der neu angestellten Chemiker in der Forschung tätig sind, wo sie während der Dissertation erworbenen Kenntnisse direkt einsetzen können. Tradition und standespolitische Überlegungen mögen zum Teil für diese Bevorzugung verantwortlich sein. Ein weiterer Grund, warum diplomierte Chemiker eher selten eingestellt werden, könnte in der Konkurrenz durch die HTL-Chemiker liegen. Als wichtige Quelle stellen diese eine grössere fachliche Reife angebende, die dem diplomierten Chemiker noch fehlt. Offensichtlich besteht ein Zusammenhang zwischen der in der Regel Erkennungs-orientierten For- schung während dem Doktorat und der eher Anwendungs-orientierten Berufstätigkeit. Der promovierte Chemiker hat gelernt, auf einem Spezialgebiet Probleme zu lösen, und man kann von ihm erwarten, dass er diese Fähigkeit in die Praxis umsetzen kann.

Die Industrie bezeichnet die Qualität der promovierten Chemiker in der Regel als gut. Kritisiert wird jedoch die zu lange Dauer des Doktorats, die heute durchschnittlich 4,7 Jahre beträgt. Beim Eintritt in das Berufsleben hatten die Bewerber im Normalfall unter 30 Jahren Alt sein (ideal ca. 28 Jahre) und neben dem Doktorat über eine ein bis zwei- jährige Erfahrung auf einem ergän- zenden Gebiet (z.B. als Postdoktorand an einer ausländischen Hoch- schule) verfügen. Bei gleichen Quali- fikationen wird den jüngeren Kandidatendar Vorzüge gegeben. Die durchschnittlichen Einstellungenge- fälle in den 80er Jahren nur am promovierten Chemiker liegen zur Zeit in der Grösenumordnung von Fr. 80‘000.--; bei der Anstellung wer- den Weiterbildung und zusätzliche Erfahrungen (für eine Anstellung in der Forschung das Postdoktorat) deutlich stärker honoriert als eine längere Dauer des Doktorats. Kandida- ten, die nach dem Doktorat länger Zeit an der Hochschule verweilen, werden in der Industrie nicht ihrem Alter entsprechend hierarchisch gesteigert, weil sie nicht über eine ihrer Alters entsprechen- de Industrieerfahrung verfügen. Die Nationalität der Kandidaten spielt bei der Anstellung eine eher un- geschnittene Rolle. Darüber hinaus handelt es sich um den Begriff der Arbeitsmarkt und kontingentierten Aufenthalts- bewilligungen für Ausländer ab. Auf diesem Gebiet zeichnen sich aller- dings im Rahmen der Eingebietungs- stellungen in Europa neue Ent- wicklungen ab, und der Schweizer Chemiker werden sich an eine ver- stärkte ausländische Konkurrenz auf dem Arbeitsmarkt gewöhnen müssen.

2.3. Standpunkt der Kommission

Ein Vergleich der Vorstellungen von Hochschule und Industrie zeigt in den grundsätzlichen Aspekten weitgehende Übereinstimmung. Von seiten der Hochschulen ist man der Meinung, dass das Studium der Probleme der letzten 20 Jahre als eine Tendenz, nach der Matur ein Zehntel der Maturanden des HTL-Chemiker liegen. Als wichtige Quelle stellen diese eine grössere fachliche Reife angebende, die dem diplomierten Chemiker noch fehlt. Offensichtlich besteht ein Zusammenhang zwischen der in der Regel Erkennungs-orientierten For- schung während dem Doktorat und der eher Anwendungs-orientierten Berufstätigkeit. Der promovierte Chemiker hat gelernt, auf einem Spezialgebiet Probleme zu lösen, und man kann von ihm erwarten, dass er diese Fähigkeit in die Praxis umsetzen kann.

Die Industrie bezeichnet die Qualität der promovierten Chemiker in der Regel als gut. Kritisiert wird jedoch die zu lange Dauer des Doktorats, die heute durchschnittlich 4,7 Jahre beträgt. Beim Eintritt in das Berufsleben hatten die Bewerber im Normalfall unter 30 Jahren Alt sein (ideal ca. 28 Jahre) und neben dem Doktorat über eine ein bis zwei- jährige Erfahrung auf einem ergän- zenden Gebiet (z.B. als Postdoktorand an einer ausländischen Hoch- schule) verfügen. Bei gleichen Quali- fikationen wird den jüngeren Kandidatendar Vorzüge gegeben. Die durchschnittlichen Einstellungenge- fälle in den 80er Jahren nur am promovierten Chemiker liegen zur Zeit in der Grösenumordnung von Fr. 80‘000.--; bei der Anstellung wer- den Weiterbildung und zusätzliche Erfahrungen (für eine Anstellung in der Forschung das Postdoktorat) deutlich stärker honoriert als eine längere Dauer des Doktorats. Kandida- ten, die nach dem Doktorat länger Zeit an der Hochschule verweilen, werden in der Industrie nicht ihrem Alter entsprechend hierarchisch gesteigert, weil sie nicht über eine ihrer Alters entsprechen- de Industrieerfahrung verfügen. Die Nationalität der Kandidaten spielt bei der Anstellung eine eher un- geschnittene Rolle. Darüber hinaus handelt es sich um den Begriff der Arbeitsmarkt und kontingentierten Aufenthalts- bewilligungen für Ausländer ab. Auf diesem Gebiet zeichnen sich aller- dings im Rahmen der Eingebietungs- stellungen in Europa neue Ent- wicklungen ab, und der Schweizer Chemiker werden sich an eine ver- stärkte ausländische Konkurrenz auf dem Arbeitsmarkt gewöhnen müssen.

3. Dauer des Doktorats

Im Bericht Wagnière (1984) wurde für die Dauer des Doktorats im Normalfall 3 Jahre eingeschätzt. Diese Empfehlung konnte nicht verhindern, dass unterdessen die mittlere Dauer auf 4,7 Jahre gestie- gen ist. Dies bedeutet, dass die Dau- er des gesamten Studiums in den letzten 20 Jahren um mindestens ein Jahr zugenommen hat, und dass das Alter des durchschnittlichen promovierten Chemikers beim Ab- schluss des Studiums über 30 Jahre beträgt.

Die Kommission hat sich eingehend mit den Gründen dieser Ver- längerung befasst, allerdings ohne zu endgültigen Erkenntnissen zu kommen. Es ist angebracht zu be- merken, dass es sich nicht um ein spezifisches Problem der Chemie handelt, dass die für das Doktorat in Physik oder Biologie eher noch länger als dasjenige der Chemie. Die Gesamtdauer des Chemiestudi- ums in der Schweiz ist vor allem mit derjenigen in der BRD vergleichbar. Der Hauptunterschied, vor allem gegenüber den angelsächsischen Ländern, besteht jedoch darin, dass in der Schweiz der Studienbeginn spätestens nach der Promotion, was auch zu einem entsprechend hohen Alters beim Studienabschluss führt. Während in den USA- und in der BRD das Alter der Promotion im durchschnittlichen 18 oder 19 Jahren liegt, in der Schweiz der Maturabereitse in der Regel 20-25 Jahre. In Wirklichkeit sind jedoch heute über eine Hälfte der promovierten Chemiker alter als der Durchschnitt ihrer Alter, die Auf- schulung im Durchschnitt in der Schweiz der Maturabereitse in der Regel 20-25 Jahre.

2.4. Betreuung und Umfeld

Für das Zustandekommen der Dissertation spielt die Betreuung des Kandidaten eine wesentliche Rolle.
Die Art der Zusammenarbeit hängt weitgehend von der Personlichkeit der Beteiligten ab, und es können dafür keine allgemeinen Regeln aufgestellt werden. Wichtig ist eine klare Zielsetzung, Anfang und Ende und ein regelmaßiger und häufiger Kontakt zwischen Betreuer und Doktorand während der ganzen Dauer der Dissertation. Der Doktorand muss so angeleitet werden, dass er nicht nur seine Forschung ausführt, sondern auch progressive, eigene Vorschläge machen und realisieren kann und zu einer möglichst grossen Selbständigkeit in Planung und Ausführung gelangt. Durch periodische Berichte belegt der Kandidat seine Fortschritte und legt damit gleichzeitig den Grundstein für die Redaktion der Dissertation.

Zum guten Fortschritt der Dissertation kann das Umfeld ebenfalls einen Beitrag leisten. Durch den täglichen Kontakt mit Postdoktoranden, die für ihre Ausbildung nicht von Belang sind, weiträumiger entlastet werden. Nicht zuletzt leistet eine gute technische Ausrüstung mit Instrumenten und Geräten etc. einen wesentlichen Beitrag zur Effizienz.

4.3. Weiterbildung

Im Vergleich mit amerikanischen Hochschulen fällt auf, dass der amerikanische Doktorand im ersten Jahr ein sehr intensives Kursprogramm übersteht muss, und erst aufgrund seiner Leistungen wird er definitiv zum Doktorand zugelassen. Demgegenüber besteht das Doktorat in der Schweiz in wesentlichen in der Forschungsästhetik, obwohl an den meisten Instituten das zusätzliche Belegen von Vorlesungen verlangt wird. Die Frage nach der Notwendigkeit, im Sinne eines eigentlichen "Graduatsprogramms", wie es in den USA üblich ist, wurde bereits im Bericht Wagnière gestellt.

Die Kommission ist der Auffassung, ein derartiges Programm drängt sich nicht auf. Unser Diplom entspricht nicht dem amerikanischen "Bachelor", auf dem das amerikanische Doktorat aufbaut, sondern eher dem "Master of Science". Das "Master" Programm entspricht in etwa dem ersten Jahr des amerikanischen Doktorats. Mit anderen Worten, die entsprechende Phase liegt bei uns zwischen dem 2. Vordiplom und dem Diplom.

Selbstverständlich darf die theoretische Ausbildung der Doktoranden nicht auf der Stufe des Diploms abgeschlossen sein. Im Gegenteil, da unser Wissen immer schneller veraltet, ist es unbedingt nötig, dass auch Doktoranden sich stets weiterbilden. Dazu sind entsprechende Vorlesungen anzubieten. Der Aufwand soll etwa zwei Wochenenden während drei Jahren, mit Leistungsnachweis, umfassen. Darüber hinaus gehört der Besuch von Industrie- und Gruppenein- minaren sowie die aktive Beteiligung an wissenschaftlichen Kongressen ebenso zur Weiterbildung wie das regelmässige Verfolgen der Fachliteratur.

4.4. Redaktion der Dissertation

An verschiedenen Institutionen besteht die Möglichkeit, die zunehmend benützt wird, die klassische Dissertation durch das Einbinden der während des Doktorats entstehenden Publikationen, zu ersetzen. Die Kommission plädiert für die Beibehaltung der traditionellen Form der Dissertation. Es gehört zum Ausbildungsprozess, dass der Doktorand seine Resultate in einem grösseren Zusammenhang selbständig, versuspricht an Können und Erfahrung weitergeben werden, die Doktoranden simulieren. Durch Laboranten und Techniker können sie von Unterrichts- und Reseauarbeiten, die für ihre Ausbildung nicht von Belang sind, weiträumig entlastet werden. Nicht zuletzt leistet eine gute technische Ausrüstung mit Instrumenten und Geräten etc. einen wesentlichen Beitrag zur Effizienz.

5. Assistententätigkeit

Doktoranden, die als Assistenten tätig sind, werden je nach Einrichtung in ein bis zu 50% ihrer Arbeitszeit für Lehrverpflichtungen aufgenommen. Dieser Einsatz ist wünschenswert, da die damit verbundenen didaktischen und organisatorischen Erfahrungen von Nutzen sind. Sie ist notwendig, denn der Lehrbetrieb könnte ohne den Einsatz der Doktoranden an einigen Institutionen nicht aufrecht erhalten werden. Andererseits führt die zu grosse zeitliche Belastung zwangsläufig zu einer erheblichen Verlängerung des Doktorats. Es scheint daher zweckmäßig, die Assistententätigkeit zeitlich zu beschränken. Sie soll einen Wochentag während des Semesters nicht überschreiten. Zur Realisierung dieses Postulats müssen für die Betreuung der Praktika und für die übrigen Leistungen, die heute von den Doktoranden erbracht werden, neue Lösungen gefunden werden. Denkbare ist der vermehrte Einsatz von Postdoktoranden oder von permanent angestellten Laboranten, bzw. Technikern. Es versteht sich von selbst, dass ein Aufwand für den Unterricht von lediglich einem Wochentag während des Semesters nicht mit einer Vollassistentenabgegeben werden kann.

6. Entschädigung der Doktoranden

Die Kommission geht davon aus, dass sich der Doktorand unabhängig vom Elternhaus und ohne materielle Bedingungen von seiner Dissertation widmen soll. Es ist der Entwicklung der jungen Menschen nicht förderlich, wenn sie zu lange materiell von den Eltern abhängig bleiben. Der Doktorand hat im Prinzip keine Verpflichtungen gegenüber der Institution. Aus dieser Perspektive sind die Entschädigungen der Doktoranden als Stipendien zu verstehen, auch wenn sie in bezug auf Sozialleistungen und Einkommenssteuer von den Behörden fast als Gehalter eingestuft werden. Die im Zwischenbericht 1989 veröffentlichte mittlere Brutotentshändigung der Doktoranden (Fr. 31'000'–Jahr) beruhte auf Erhebungen und Schätzungen der Kommission. Diese Zahl hat zu einigen Kontroversen geführt. Sie wurde einerseits als unrealistisch über- schätzt bezeichnet, während andererseits die geschätzte Betrag als unangebrach hoch beanstandet wurde. Der Mittelwert von Fr. 31'000'–liegt jedoch unter 40% des Anfangsgehals eines promovierten Chemikers in der Grossindustrie (ca. Fr. 80'000'–). Dies drückt aus, dass es sich bei den Doktorandenent- schädigungen nicht um Gehalter im eigenen Sinne, sondern um Ausbildungsbeiträge handelt. Über die angemessene Höhe der entsprechenden Stipendien oder Gehalter kann man in guten Treuen verschiedener Meinung sein. Die Ansätze des Nationalfonds bilden eine gute Diskussionsgrundlage, dürfen aber in den grossen Ballonzentren wegen der hohen Mieten nicht ausreichen.

Wichtig ist, dass an den einzelnen Hochschulen einheitliche und verbindliche Regelungen bestehen, dass bei gleicher Leistung die Doktoranden gleich behandelt werden, Doktoranden, die weitere Verpflichtungen im Rahmen der Institution übernehmen, sollen dazu angemessen bezahlt werden, müssen sich aber bewusst sein, dass die Zeit, die sie für andere Tätigkeiten aufwenden, zu einer Verlängerung der Dissertation mit den entsprechenden Konsequenzen führen wird.

7. Übertritt Hochschule-Industrie

Der Übertritt von der Hochschule in das Berufsleben stellt für die promovierten Chemiker eine Zäsur dar, und sie haben oft grosse Mühe, sich auf dem Arbeitsmarkt zurecht zu finden. Auch wenn es gelingt, die Dauer des Doktorats zu senken, ist damit nichts gewonnen, wenn die Doktoranden nicht unmittelbar nach der Promotion die Hochschule verlassen und ein Postdoktorat oder eine Stelle in der Industrie annehmen werden. In dieser Hinsicht müssen die Kontakte zwischen Hochschule und Industrie ausgebaut werden. Erfreuliche An- sätze sind vorhanden und sollten weiter entwickelt werden. Die Industrie hat in der Hand, durch eine entsprechende Anstellungs- und Saläppolitik Signale zugunsten ihres Idealprofils des Chemikers zu setzen.

Der Fragenkomplex Industrie-Dissertation und Industrie-Stipendium wurde von der Kommission nicht behandelt.

8. Schlussbemerkungen

Die Kommission ist sich bewusst, dass ihre Empfehlungen zu den Rahmenbedingungen des Chemiestudiums nicht ohne Probleme und nicht von heute auf morgen ver- wirklicht werden können. Um so mehr ist die Einsicht aller Beteiligterforderlich, dass der Trend rasch ungekehrt werden muss. Den Universitäts- und Hochschulwird empfohlen, entsprechende Ausführungsbestimmungen für das Doktorat zu erlassen.

Prof. P. Müller

Vorstand Prof. P. Müller (Geneve), Mitglieder: Prof. P. Ennemenger (Fribourg), Prof. F. Gerson, Basel, Dr. H. Grenier/G. Haas (Chilla-/Graz, Basel), Prof. A. Huyler (Lausanne), Prof. R. Keese (Basel), Prof. E. Kovats (EPF-Lausanne), Prof. P. Pregosin (ETH-Zürich), Prof. R. Taggchi (Neuchâtel), Dr. R. Wagner (F. Hoffmann-La Roche AG, Basel), PD Dr. W. D. Weggen (Zürich).

Geneve, 14.2.1991
Le doctorat en chimie
Rapport final du groupe de travail du «Comité Suisse de la Chimie», CSC

Résumé. Le groupe de travail du CSC, composé de représentants des hautes écoles et de l'industrie pour l'élaboration d'un concept pour le doctorat en chimie, formule les recommandations suivantes:

- Tout au long du doctorat le candidat approfondit ses connaissances dans un domaine spécialisé et apporte une contribution authentique à la recherche scientifique.
- La durée du doctorat doit être réduite à 3 ans ou moins. Au cours de leur formation continue, les doctorants sont tenus de suivre des cours de niveau avancé à raison de 2h hebdomadaires avec contrôle des connaissances pendant trois ans.
- Les charges d'assistantat ne dépasseront pas un jour par semaine pendant les semestres.
- Les rémunérations (salarisées) des doctorants doivent couvrir leurs besoins indépendamment d'une contribution des parents. Les instituts et départements prévoient des règles uniformes et obligatoires à cet effet.
- Pour pouvoir réaliser ces objectifs sans perte de qualité, l'infrastructure des groupes de recherche ainsi que l'encadrement des doctorants doivent être améliorés.

1. Introduction

Comme toute autre discipline scientifique, la chimie est soumise à un processus de renouvellement continu, actuellement en accéléréation, qui provoque étonnement et interrogations. Ce processus a des répercussions directes sur les études de chimie, dont les buts et les contenus doivent régulièrement être mis en question et adaptés. De telles réflexions sont d'une grande actualité, étant donné que la Suisse, et avec elle la chimie suisse, est aujourd'hui confrontée à des défis politiques et économiques extraordinaires. Le rôle de la chimie suisse dans le nouvel ordre économique en Europe dépend entre autres de la qualité et du nombre de chimistes qu'elle forme. Il est bien connu depuis des années que le nombre de chimistes formés en Suisse ne satisfait pas, et de loin, la demande. Selon une enquête récente, le taux des étrangers, en particulier des Allemands, parmi les engagements nouveaux dans l'industrie suisse s'élève dans les 5 dernières années à 50%. Les plus récentes statistiques des engagements de l'industrie bâloise montrent même un taux d'étrangers de 70%. Ce n'est pas le lieu de discuter des causes de ce phénomène, mais nous rappelons néanmoins que des interventions issues de la composition de la commission.

Le doctorat, qui est l'unique titre académique en chimie reconnu universellement, est un processus qui donne lieu à des études d'au moins trois ans, plus rarement à un ou deux ans. Les études de céramique sont souvent plus longues que des études de chimie, atteignant parfois jusqu'à 5 ans. Pendant cette période, les doctorants doivent acquérir une formation scientifique et technique de haute qualité, ainsi que des compétences en recherche et en enseignement.

2. Signification du doctorat

2.1. Point de vue des universités

Le doctorat est le seul titre académique en chimie reconnu universellement. Les chemins qui y conduisent sont assez différents sur le plan international. Pour d'autres titres académiques (licences, diplômes, etc.) qui peuvent être obtenus dans différents pays, il n'existe pas de plans d'études uniformisés, et les titres du même nom ne sont pas nécessairement équivalents. Ceci exprime probablement l'idée que, pour l'université, les études de chimie doivent aboutir au doctorat. Pour pouvoir comprendre la chimie au niveau universitaire, une activité de recherche est indispensable, et cette dernière est seulement possible pendant la thèse. Le doctorat comprend un approfondissement des connaissances dans un domaine de spécialisation et une contribution authentique à la recherche scientifique, qui se situe à la limite des connaissances actuelles. Les résultats obtenus sont présentés et discutés dans la thèse dans un cadre plus large. De plus, l'acquisition d'une culture scientifique authentique, qui ne se limite pas au seul domaine de spécialisation mais comprend également les domaines avoisinants et les sciences dans leur entier, fait également partie du doctorat. Ceci qualifie le doctorant pour des responsabilités en tant que scientifique.

La recherche des doctorants sert en premier lieu leur formation. L'industrie, considérant que la recherche est, pour les groupes de travail, d'une importance primordiale, car la recherche de la plupart d'entre eux est portée par les doctorants. Leur performance détermine directement, et souvent d'une manière déterminante, la réputation des groupes de recherche et des institutions.

L'activité des doctorants ne se limite pas à la seule recherche et à la formation continue. Ils travaillent souvent comme assistants, et ils consacrent une bonne partie de leur temps à l'encadrement des étudiants dans les travaux pratiques ou des travaux de recherche. Ils sont également responsables de la gestion des informations.

Il est évident que le financement du doctorat ne marque pas la fin de la formation. La formation, ainsi que la formation continue, sont des processus permanents, qui permettent de se renouveler et d'élargir les connaissances acquises.

Pour les chercheurs qui désirent choisir la carrière académique, un stage de postdoctorant dans une institution étrangère de premier rang est indispensable.

2.2. Point de vue de l'industrie chimique

La plupart des étudiants en chimie, c'est-à-dire 80-85%, terminent leurs études avec le doctorat. Ce taux élevé de doctorants est spécifique pour la chimie et représente un cas unique. Dans les autres disciplines scientifiques on peut toutefois déceler une situation professionnelle avec un diplôme universitaire, mais en chimie ceci ne se fait que rarement. Le diplôme est peu considéré comme un diplôme de fin d'études.

La préférence de l'industrie chimique pour les doctorants peut paraître surprenante si l'on considère que moins de la moitié des chimistes nouvellement engagés travaillent en chimie. Ils sont majoritairement d'origine chimique, ce qui peut être mis en lien avec l'activité de recherche et l'accès aux connaissances acquises.

La professionnelle de l'industrie chimique pour les doctorants peut paraître surprenante si l'on considère que moins de la moitié des chimistes nouvellement engagés travaillent en chimie. Ils sont majoritairement d'origine chimique, ce qui peut être mis en lien avec l'activité de recherche et l'accès aux connaissances acquises, la liberté de penser et d'arriver à une synthèse. La composition de la commission est mentionnée en fin du rapport.

Le doctorat, qui est l'unique titre académique en chimie reconnu universellement, est un processus qui donne lieu à des études d'au moins trois ans, plus rarement à un ou deux ans. Les études de céramique sont souvent plus longues que des études de chimie, atteignant parfois jusqu'à 5 ans. Pendant cette période, les doctorants doivent acquérir une formation scientifique et technique de haute qualité, ainsi que des compétences en recherche et en enseignement.

La recherche des doctorants sert en premier lieu leur formation. L'industrie, considérant que la recherche est, pour les groupes de travail, d'une importance primordiale, car la recherche de la plupart d'entre eux est portée par les doctorants. Leur performance détermine directement, et souvent d'une manière déterminante, la réputation des groupes de recherche et des institutions.

L'activité des doctorants ne se limite pas à la seule recherche et à la formation continue. Ils travaillent souvent comme assistants, et ils consacrent une bonne partie de leur temps à l'encadrement des étudiants dans les travaux pratiques ou des travaux de recherche. Ils sont également responsables de la gestion des informations.

Il est évident que le financement du doctorat ne marque pas la fin de la formation. La formation, ainsi que la formation continue, sont des processus permanents, qui permettent de se renouveler et d'élargir les connaissances acquises.

Pour les chercheurs qui désirent choisir la carrière académique, un stage de postdoctorant dans une institution étrangère de premier rang est indispensable.
industrielle leur fait défaut. La nationalité des candidats est un problème secondaire lors de l'engagement, abstraction faite des problèmes de permis de travail et de permis de séjour pour étrangers.

Dans ce domaine de nouvelles tendances sont en train de se développer dans le cadre de l'unification en Europe, et les chefs d'industrie s'accordent à regretter l'accroissement de la sélection étrangère plus importante sur le marché du travail.

Du côté industriel, on critique parfois un manque de capacité de communication des jeunes chemises et des capacités de réflexions interdisciplinaires sous-développées.

2.3. Point de vue de la commission

La comparaison des vues des mille universitaires et industriels met en évidence l'importance dans les questions fondamentales. Du côté universitaire on est conscient du problème des thèses trop longues mais, malgré plusieurs essais, aucune démarche décisive n'a été entreprise.

La durée du doctorat ne peut pas être limitée d'une manière arbitraire. La question fondamentale est de savoir de quelle manière et dans quelles conditions la durée du doctorat peut être limitée sans porter atteinte à la qualité et la quantité de recherche chimique. Ebenfalls können die chemisches Bildungsinstitute und vertritt nicht disabled de maintenir la compétitivité des etats de recherche la qualité des thèses et sur la recherche de la qualité de recherche.

4. Aspects académiques

4.1. Admission et élimination des candidats

En Suisse la plupart des doctorats effectuent leur thèse dans l'institution où ils ont déjà obtenu leur diplôme. Le doctorant et le directeur de thèse se connaissent dès le départ de la thèse, par exemple depuis le travail de diplôme. Cette situation est exceptionnelle. Il est dépendant de l'agent principal (la thèse) et, d'autre part, de maintenir la compétitivité des groupes de recherche au niveau international.

La commission estime que l'introduction d'un tel programme ne s'impose pas. Notre diplôme ne correspond pas au baccalauréat (BS) américain, sur lequel le doctorat américain est basé, mais plutôt au «Master of Sciences». Le programme du «master» correspond, quant à lui, à la présention de l'étudiant américain. Autrement dit, la phase correspondante se situe dans notre système entre le deuxième examen de licence et de diplôme.

La durée du doctorat

Le rapport Wagnière (1984) recommandait 3 ans comme durée normale pour une thèse en chimie. Cette recommandation n'a pas pu être empêchée d'une augmentation de la durée moyenne à 4,7 ans, ce qui signifie que la durée des études de chimie, diplôme et doctorat compris, s'est prolongée au moins d'une année pendant les 20 dernières années et que l'âge moyen du chimiste à l'obtention du doctorat est supérieur à 30 ans.

La commission s'est préoccupée des causes responsables de cette prolongation, mais sans arriver à des conclusions définitives. Il convient de signaler que le s'agit plus d'un problème spécifique à la chimie, étant donné que le doctorat en physique ou en biologie est plutôt plus long que celui en chimie. La durée totale des études chimie en Suisse se compare assez bien à leur durée en RFA. La différence principale, surtout en comparaison avec les pays anglo-saxons, provient du début très tardif des études en Suisse. L'âge à l'examen équivalent à la maturité se situe en Europe à 18, 19 et 20 ans. En Suisse l'âge régulier à la maturité est de 19 à 20 ans, mais en réalité l'âge est plus élevé: A Zürich un tiers de la population étudiante a plus de 20 ans à la maturité (C.C. Kuenzle, Neue Zürcher Zeitung, 11 septembre 1990) et, de plus, on constate une tendance vers un décalage d'une année entre la maturité et le début des études. Une étude récente de l'Université de Genève (étudiants 90, rapport no. 2, «Commission de l'Enseignement du Rectorat») montre la structure d'âge suivante pour les étudiants au début des études: 37,5% moins de 20 ans, 38,2% 20-21 ans, 18,9% 22-29 ans et 4,5% 30 ans et plus. Ces chiffres mettent en évidence le fait que l'âge trop avancé des étudiants en fin d'études n'est pas seulement un problème interne des universités, mais aussi un problème spécifique à la chimie. Le fait que beaucoup d'étudiants n'arrivent pas à terminer leur diplôme dans les délais réglementaires de 8-9 semestres mais ont besoin d'un ou deux semestres supplémentaires entraîne une prolongation supplémentaire qui n'a pas nécessairement une incidence sur la durée du doctorat. Tous ces facteurs, sur lesquels la chimie n'exerce aucun contrôle, aggravent la question de la trop longue durée des thèses.

Le doctorat en chimie se fait en proche collaboration entre doctorant et professeur, entre enseignant et élève. Le comportement des deux partenaires détermine essentiellement le résultat. Du côté des enseignants il existe une tendance à aligner les sujets et à terminer les thèses trop longtemps, parce que leur productivité augmente avec l'expérience et parce qu'il n'y a pas assez de candidats pour la relève, celle-ci étant nécessaire pour pouvoir maintenir les groupes de recherche et l'enseignement. Les doctorants ne sont souvent pas conscients du fait qu'une longue durée de thèse ne conduit pas nécessairement à une thèse de qualité supérieure et peut, par contre, avoir des répercussions négatives. De plus, la participation aux colloques des instituts, une activité de recherche, hien que la participation active à des congrès scientifiques soit partie de la formation continue, au même titre que la lecture régulière de la littérature scientifique.

4.2. Encadrement

L'encadrement des doctorats joue un rôle important dans la réalisation d'une thèse. Le type de collaboration entre candidat et directeur de thèse dépend essentiellement du caractère des personnes et de ce fait, il n'est pas judicieux de formuler des règles générales. Ce qui est important, c'est que les objectifs de la thèse soient formulés dès le départ, et que des contacts soient réguliers et fréquents pendant toute la durée de la thèse. Le directeur de thèse doit être amené non seulement à exécuter sa recherche, mais à pouvoir faire progressivement des propositions de recherche et de réaliser pour arriver à un maximum d'indépendance en ce qui concerne planification et exécution. Par des rapports périodiques le candidat documente ses progrès et tient compte en même temps la phase de rédaction de la thèse.

L'environnement du doctorat peut faciliter beaucoup le progrès de sa thèse. Il est stimulé par le contact journalier avec des postdoctorants qui transmettent leurs connaissances et leur expérience, et il peut être déchiré des travaux d'enseignement et de routine sans rapport avec la formation, qui peuvent être exécutés par des laborantins ou des techniciens.

4.3. Formation permanente

En comparant notre formation des doctorants avec le système américain, on s'aperçoit que le doctorat américain doit passer un programme intensif de cours en première année, et c'est seulement en fonction de ses performances durant cette période que l'étudiant décide d'aller ou pas dans le doctorat. En Suisse, par contre, le doctorant connait principalement une activité de recherche, bien que la plupart des universités exigent l'inscription à des cours. La question de la nature d'un programme gradué selon le modèle américain a déjà été posée dans le rapport de la commission Wagnière.
5. Assistantat

Les doctorants qui sont engagés également comme assistants peuvent, selon les instituts, consacrer jusqu'à 50% de leur temps à l'enseignement. Cette activité d'assistantat est tout à fait souhaitable en soi, car l'expérience didactique et d'organisation qui y est liée peut s'avérer utile. Pour les instituts, elle est indispensable car, dans certains cas, l'enseignement ne pourrait pas être maintenu sans les doctorants. D'un autre côté, une participation trop importante dans l'enseignement de la part des doctorants conduit inévitablement à une prolongation considérable des thèses. Il semble d'ores et déjà souhaitable de limiter l'activité d'assistantat des doctorants. Elle ne devrait pas dépasser une journée hebdomadaire pendant le semestre. Pour pouvoir réaliser ce postulant, il faudra trouver de nouvelles solutions pour l'organisation des travaux pratiques et pour les autres tâches d'intérêt général dont les doctorants s'occupent actuellement. Une possible solution pourrait consister à avoir recours à des postdoctorants ou à des laborants ou techniciens. Il va de soi qu'une participation d'une journée hebdomadaire et seulement pendant le semestre dans l'enseignement ne peut pas être rémunérée par un poste d'assistant entier.

6. Rémunération des doctorants

La commission part du principe que le doctorant doit pouvoir se consacrer entièrement à sa thèse sans contraintes matérielles et sans être dépendant matériellement de sa famille. Il n'est pas propice au développement des jeunes gens de rester trop longtemps dépendant des parents. En principe, le doctorant n'a pas d'obligation vis-à-vis de l'institution. Dans cette perspective, sa rémunération peut se faire du salaire d'une bourse bien que, sur le plan des déductions sociales et de l'imposition, elle soit traitée presque systématiquement comme un salaire par les autorités politiques.

Les salaires brut moyens, publiés dans le rapport intermédiaire (Fr. 31'000.-/an) résultaient d'une enquête dans les instituts et départements. Cette somme a donné lieu à quelques controverses. Si certains la considéraient largement surestimée et non conforme à la réalité, d'autres la considéraient démesurée. Il faut rappeler ici que cette valeur moyenne de Fr. 31'000.-/an est en dessous du 40% du salaire de début d'un chimiste avec doctorat dans l'industrie bâloise. Ceci exprime le fait que les rémunérations des doctorants ne sont pas des salaires proprement dits, mais plutôt des subsides à la formation.

On pourrait discuter pendant longtemps et de bonne foi de la hauteur appropriée et équitable des bourses ou salaires pour doctorants. Les normes du Fonds National de la Recherche Scientifique devraient constituer une bonne base de discussion, mais elles sont probablement insuffisantes dans les grands centres en raison des loyers élevés. Il est important que, dans les différents universités, il existe des critères unifiés et obligatoires quant à la rémunération des doctorants, et que tous soient traités selon les mêmes normes à contribution identique. Les doctorants qui assument des charges supplémentaires dans le cadre des institutions doivent être rémunérés de façon appropriée, mais ils doivent être conscients du fait que le temps qu'ils consacrent à d'autres activités que leur thèse peut conduire à une prolongation de leurs études, avec toutes les conséquences que cela entraîne.

7. Transition université-industrie

Le passage de l'université à la vie professionnelle le constitue une rupture pour les chimistes après le doctorat, et ils éprouvent souvent des difficultés considérables à s'imposer sur le marché du travail. Même s'il est possible de limiter la durée des thèses, rien n'est encore gagné si les doctorants ne quittent pas l'université immédiatement après leur promotion pour faire un postdoctorat ou prendre un emploi dans l'industrie. Pour faciliter cette transition, les contacts entre les universités et l'industrie doivent être consolidés. Des initiatives encourageantes ont été prises depuis quelques années. L'industrie peut émettre des signaux par sa politique d'engagement et de salaire en faveur du profil idéal du chimiste.

Les questions concernant les thèses dans l'industrie ainsi que les bourses de l'industrie n'ont pas été abordées par la commission.

8. Remarques finales

La commission est parfaitement consciente du fait que ses recommandations au sujet des conditions du doctorat en chimie ne pourront pas être réalisées sans problèmes, ni d'un jour à l'autre. La compréhension et l'engagement de toutes les parties concernées est d'autant plus nécessaire pour pouvoir renverser la tendance actuelle. La commission recommande aux universités et hautes écoles d'édicter des mesures appropriées au sujet du doctorat.

Ost participé aux travaux de la commission: Président: Prof. P. Müller (Genève) Membres: Prof. F. Ennner (Fribourg), Prof. F. Gerson (Bâle), Dr. H. Greuter/Dr. G. Haas (Ciba-Geigy, Bâle), Dr. A. Huwwler (Lonza, Viége), Prof. R. Keeve (Berne), Prof. E. Kovats (EPF, Lausanne), Prof. P. Prévotz (ETH-Zürich), Prof. R. Tabachuki (Neuchâtel), Dr. R. Wagner (H. Hoffmann-La Roche AG, Bâle), PD Dr. W.-D. Woggen (Zürich).

Schweizsiicher Chemiker-Verband

Association Suisse des Chimistes

Protokoll der 72. Generalversammlung

Die Frühjahrstagung fand am Donnerstag/Freitag, 18. und 19. April 1991 in Agno statt und war dem Beauftragten der pharmazeutischen und chemischen Industrie im Tessin gewidmet. Diese Tagung wurde von Helsin SA, Biasca, Inpharzos SA, Cadempino und Taverner, Pharma
ton SA, Bioggio, Sapec SA, Bar
geno gestapt.

Generalversammlung: 19. April, Agno, 14.15 Uhr

Vorsitz: Dr. Walter Graf, Präsident des Schweizerischen Chemi-
kerverbandes.

Der Vorsitzende begrüßt die vertretenen Mitglieder des SCHV und bedankt sich im Namen aller Mit

W. von Philippson, W. Graf und D. Seebach v.l.n.r.

Vorankündigung

ausserordentliche Generalversammlung (a.o.GV)

Freitag, 27. September 1991
Chemische Institute der Universität Bern, Freiestrasse 3, 3012 Bern

Takundum: Beitritt zur «Neuen Schweizerischen Chemischen Gesellschaft»

Unterlagen werden rechtzeitig zugestellt

Der Präsident

W. Graf
Néanmoins, si des rapports intermédiaires appropriés sont exigés et si le candidat suit régulièrement la littérature dans son domaine, la phase finale de la thèse, y compris l’examen ou la soutenance, peut être réduite. Un délai d’environ trois mois devrait être suffisant.

5. Assistantat

Les doctorants qui sont engagés également comme assistants peuvent, selon les instituts, consacrer jusqu’à 50% de leur temps à l’enseignement. Cette activité d’assistantat est tout à fait souhaitable en soi, car l’expérience didactique et d’organisation qui y est liée peut s’avérer utile. Pour les instituts, elle est indispensable car, dans certaines universités et hautes écoles d’études supérieures, l’enseignement ne peut pas être remunéré par un poste d’assistant entier.

D’un autre côté, une participation trop importante dans l’enseignement de la part des doctorants conduit inévitablement à une prolongation considérable des thèses. Il semble dès lors souhaitable de limiter l’activité d’assistantat des doctorants. Elle ne devrait pas dépasser une journée hebdomadaire pendant le semestre. Pour pouvoir réaliser ce postulat, il faudra trouver de nouvelles solutions pour l’organisation des travaux pratiques et pour les autres tâches d’intérêt général dont les doctorants s’occupent actuellement. Une possible solution pourrait consister à avoir recours à des postdoctorants ou à des laborants ou techniciens. Il va de soi qu’une participation d’une journée hebdomadaire et seulement pendant le semestre dans l’enseignement ne peut pas être remunérée par un poste d’assistant entier.

6. Rémunération des doctorants

La commission part du principe que le doctorant doit pouvoir se consacrer entièrement à sa thèse sans contraintes matérielles et sans être dépendant matériellement de sa famille. Il n’est pas propice au développement des jeunes gens de rester trop longtemps dépendants des parents. En principe, le doctorant n’a pas d’obligation vis-à-vis de l’institution. Dans cette perspective, sa rémunération a pour caractère d’une bourse bien que, sur le plan des déductions sociales et de l’imposition, elle soit traitée presque systématiquement comme un salaire par les autorités politiques.

Les salaires bruts moyens, publiés dans le rapport intermédiaire (Fr. 31’000.–/an) résultent d’une enquête dans les instituts et départements. Cette somme a donné lieu à quelques controverses. Si certains la considéraient largement surestimée et non conforme à la réalité, d’autres la considéraient démesurée. Il faut rappeler ici que cette valeur moyenne de Fr. 31 000.–/an est en dessous du 40% du salaire de début d’un chimiste avec doctorat dans l’industrie bâloise. Ceci exprime le fait que les rémunérations des doctorants ne sont pas des salaires proprement dits, mais plutôt des subsides à la formation. On pourrait discuter pendant longtemps et de bonne foi de la hauteur appropriée et équitable des bourses ou salaires pour doctorants. Les normes des Fonds Nationale de la Recherche Scientifique devraient constituer une bonne base de discussion, mais elles sont probablement insuffisantes dans les grands centres en raison des loyers élevés.

Il est important que, dans les différentes universités, il existe des critères unifiés et obligatoires quant à la rémunération des doctorants, et que tous soient traités selon les mêmes normes à contribution identique. Les doctorants qui assument des charges supplémentaires dans le cadre des institutions doivent être rémunérés de façon appropriée, mais ils doivent être conscients du fait que le temps qu’ils consacrent à d’autres activités que leur thèse peut conduire à une prolongation de leurs études, avec toutes les conséquences que cela entraîne.

7. Transition université-industrie

Le passage de l’université à la vie professionnelle se constitue une rupture pour les chimistes après le doctorat, et ils éprouvent souvent des difficultés considérables à s’imposer sur le marché du travail. Même s’il est possible de limiter la durée des thèses, rien n’est encore gagné si les doctorants ne quittent pas l’université immédiatement après leur promotion pour faire un postdoctorat ou prendre un emploi dans l’industrie. Pour faciliter cette transition, les contacts entre les universités et l’industrie doivent être consolident. Des initiatives encourageantes ont été prises depuis quelques années. L’industrie peut remplir des signaux par sa politique d’engagement et de salaire en faveur du profil idéal du chimiste.

Les questions concernant les thèses dans l’industrie ainsi que les bourses de l’industrie n’ont pas été abordées par la commission.

8. Remarques finales

La commission est parfaitement consciente du fait que ses recommandations au sujet des conditions-cadres du doctorat en chimie ne pourront pas être réalisées sans problèmes, ni d’un jour à l’autre. La compréhension et l’engagement de toutes les parties concernées est d’autant plus nécessaire pour pouvoir renverser la tendance actuelle. La commission recommande aux universités et hautes écoles d’édicter des mesures appropriées au sujet du doctorat.

Ost participé aux travaux de la commission: Président: Prof. P. Müller (Genève) Membres: Prof. F. P. Emmer- negger (Fribourg), Prof. F. Gerson (Bâle), Dr. H. Greuter/Dr. G. Haas (Ciba-Geigy, Bâle), Dr. A. Hauwer (Lonza, Vögele), Prof. R. Reese (Berne), Prof. E. Kovats (EPF, Lausanne), Prof. P. Peregagni (ETH Zürich), Prof. R. Tabacchi (Neuchâtel), Dr. R. Wagner (H. Hoffmann-La Roche AG, Bâle), PD Dr. W.-D. Woggon (Zürich).

Schweizerischer Chemiker-Verband Association Suisse des Chimistes

Protokoll der 72. Generalversammlung

Die Frühjahrstagung fand am Donnerstag/Freitag, 18. und 19. April 1991 in Agno statt und war mit dem Beuch der pharmazeutischen und chemischen Industrie im Tessin gewidmet. Diese Tagung wurde von Helsing SA, Biasca, Inpharm SA, Cadempino und Taverne, Pharma- ton SA, Bioggio, Sapec SA, Bar- bengo gesponsert.

Generalversammlung: 19. April, Agno, 14.15 Uhr

Vorsitz: Dr. Walter Graf, Präsident des Schweizerischen Chemiker-Verbandes.

Der Vorsitzende begrüßt die ver- sammlten Mitglieder des SCHV und bedankt sich im Namen aller Mit-glieder bei den Organisatoren der äußerst interessanten und instruktiven Frühjahrstagung; Dr. F. Bri- gant (ATICEF), Dr. G. Calderari (Organisationskomitee), Dr. F. Giovanni (Organisationskomitee), Dr. R. Wandel (Tessin), Dr. A. Gazzaniga (Inpharmac), Dr. C. Mombelli (Pharmaton), Dr. A. Me- lera (Sapec).

Die fristgerecht zugestellte Trak- tandenliste wird ohne Änderungen genehmigt.

1. Das Protokoll der 71. Generalversammlung vom 27. April 1990 (vgl. Chimia 1990, 44, 261) wird genehmigt.

2. Der Jahresbericht des Präsi- denten (vgl. Chimia, 1991, 45, 94) wird diskussionslos geneh-
Der Präsident gibt bekannt, dass Dr. Georges Haas aus beruflichen Gründen aus dem Vorstand zurücktreten musste. Dr. George Haas, der vor allem im Ressort wissenschaftliche Weiterbildung und bei den Kooperationsverhandlungen mit der SCG mitgearbeitet hatte, wird für die vielen Arbeit und sein großes Engagement gedankt.

3. Der von Herrn Zigerlig verlesene Kassaberechnungsbereich der Revisions-Oberprüfer wird einstimmig genehmigt.

4. Zum Vorstand sowie Herrn P. Kurs wird einstimmig Decherge erteilt. Herrn Kurs wird für die gewissenhafte Führung der Buchhaltung gedankt.

5. Die Generalversammlung schliesst sich dem Vorschlag des Vorstandes an und beschliesst einstimmig, die Mitgliederbeiträge für 1991 nicht zu erhöhen und wie folgt festzusetzen:
- Ordentliche Mitglieder Fr. 80.-
- Studentenmitglieder Fr. 25.-
- Firmenmitglieder Fr. 500.-
- Seniorenmitglieder Fr. 35.-
- Ordentliche Mitglieder Fr. 20.-

(ohne Chimia)

6. Wahlen: Als Nachfolger von Dr. Georges Haas wird Dr. Daniel Bellar, Leiter der Zentralen Forschung, Cellis-Geigy AG, Basel, in den Vorstand gewählt.

7. Weiterbildungsprogramm und weitere Veranstaltungen des SCHV und der SCG:
- 1991: Vom 3.-7. Juni wird in Basel das Internationale HPLC-Symposium durchgeführt. Programm vgl. Chimia 1991, 45, 96.
- Vom 23.-26. September wird in München das 11. Internationale Farbensymposium unter der Leitung von Dr. Wysch, Cellis-Geigy AG, Basel, stattfinden. Das Ziel des Farbensymposiums ist, anhand von Erkenntnissen und Entwicklung der Farbenchemie auf den verschiedenen Gebieten von Wissenschaft und Praxis darzustellen.
- 27. September: Ausserordentliche Generalversammlung des SCHV in Bern (Chemische Institute)
- 1992: Ab 1992 werden die Veranstaltungen der neuen Gesellschaft durchgeführt werden. Geplant sind:
 - 26./27. März: Technisches Seminar: Total Quality Management, Fribourg.
 - 22. April: Centenary of the Geneva Conference 1892, Organic Chemistry: Its Language and Its State of the Art, Genf.
 - 4./5. Mai: 6th Modern Synthetic Methods Seminar, Interlaken: Chairman: Prof. R. Scheffold, Institut für organische Chemie, Universität Zürich.

8. Preisverleihungen: Sowohl die Preisverleihungen der SCG als auch der Max-Lützel Preis können anlässlich der diesjährigen Generalversammlung verliehen werden. Den Preis des Schweiz. Chemiker-Verbandes erhielt PD. Dr. Hans-Jürg Borschberg, ETH-Zürich, für seine Arbeit «Ueber die Repartition des triglyzeridem phosphatet per chromatographie en phase superkritische».

9. Orientierung über Gründung einer Neuen Schweizerischen Chemischen Gesellschaft und Aufsetzung des Schweiz. Chemiker-Verbandes und der Schweiz. Chemischen Gesellschaft: Der Vorstand orientiert über die Kooperationsverhandlungen, die zum Ziel haben, den Schweiz. Chemiker-Verband und die Schweiz. Chemische Gesellschaft zu einer Gesellschaft zusammenzuführen. Über die Kooperation zwischen dem Schweiz. Chemiker-Verband und der Schweiz. Chemischen Gesellschaft wurde 1989 schriftlich abgestimmt. 60,4% der Mitglieder haben an der Abstimmung teilgenommen. 98% waren für eine Kooperation zwischen beiden Gesellschaften. (Vgl. Protokoll der 71. Generalversammlung.)

9.1 Statuten-Entwurf der neuen Gesellschaft. Organisation, Sektion-Statut und 12-Punkteprogramm:
- Der Statuten-Entwurf wird allen Mitgliedern mit der Einladung zur ausserordentlichen Generalversammlung zugeführt. Organisationssstruktur: Es ist geplant, dass in der neuen Schweiz. Chemischen Gesellschaft Fachsektionen die verschiedenen Interessen und die Pflege bestimmter Gebiete wahrnehmen werden. Vorgelegt sind zur Zeit folgende Sektionen: Chemische Forschung, Industrielle Chemie, Medizinische Chemie, Analytische Chemie. Für Administration und Sekretariat, die Tagungen und kommerziellen Veranstaltungen (z.B. ILMAC) sowie für Verlag und Publikationen werden Ressorts geschaffen, die für diese Arbeiten zuständig sind. Der Vorstand besteht aus dem Präsidenten, 2 Vizepräsidenten, dem Schatzmeister und den Beisitzern sowie den Leitern der Sektionen und der Ressorts. Die Geschäftsführung besteht aus dem Präsidenten, den 2 Vizepräsidenten, dem Schatzmeister, 1–2 Beisitzern, dem Geschäftsleiter und dem Chefredaktor. Die Sektionsstatuten werden zur Zeit bearbeitet. Es ist vorgesehen, dass auch Fach- und Berufsverbände als Sektion aufgenommen werden können.

9.2 Vorgehen zur Neugründung: Damit sich der SCHV und die SCG zusammenschließen können, ist es notwendig, dass gegeben ist, vorerst bisher eine Nachfolgegesellschaft, die «Neue Schweizerische Chemische Gesellschaft», gegründet wird. Die Vorstände des SCHV und der SCG haben die Absicht, diese Gesellschaft zu gründen. Bis zum 21. April 1992 werden sowohl der SCHV und die SCG noch weiter bestehen. Bei einem Beitritt des SCHV und der SCG zur «Neuen Schweizerischen Chemischen Gesellschaft» werden die Mitglieder beider Gesellschaften automatisch Mitglieder der Neuen Schweizerischen Chemischen Gesellschaft. Mit diesem Akt werden dann der SCHV und die SCG aufgelöst.

9.3 Antrag und Abstimmung über Gründung der Nachfolgegesellschaft: Die Generalversammlung stimmt dem Antrag des Präsidenten, den Vorstand zur Gründung der «Neuen Schweizerischen Chemischen Gesellschaft» im Laufe 1991 zuverlässig, einstimmig zu.

9.4 Name der neuen Gesellschaft: Der Vorstand stellt den Antrag, die «Neue Schweizerische Chemische Gesellschaft» spä-

L. Gruber
11. Internationales Farbensymposium
11th International Colour Symposium

Montreux,
Schweiz/Switzerland,
23.–26. September 1991

Der Schweizerische Chemiker-Verband, die Schweizerische Chemische Gesellschaft und die Gesellschaft Deutscher Chemiker laden zum II. Internationalen Farbensymposium vom 23.–26. September 1991 in Montreux ein.

Struktur und Eigenschaften/Structure and Properties
Chairman: Prof. H. Harrmann

14.30–15.30 Postersession
15.30–16.15 Jenseits des Sichtbaren, Farbstoffe zweiter Ordnung
Dr. J. Kelemen, Ciba-Geigy AG, Basel
16.15–16.45 Pause/Break
16.45–17.30 Dyestuffs in Organic Nonlinear Optical Materials
Dr. M.G. Hutchings, ICI Colours & Fine Chemicals, Manchester
17.30–18.15 Das Polyemethin-Konzept
Prof. Dr. S. Dähne, Zentralinstitut für physikalische Chemie, Berlin-Adlershof

Farbe und Umwelt/Colours, Dyes and Environment
Chairman: Dr. R. Antiker

08.30–09.15 Oekologie/Toxikologie von Farbmitteln
Dr. K. Hunger, Hoechst AG, Frankfurt
09.15–09.45 Methaemoglobin-Bildung und Haemoglobin-Bindung bei aromatischen Aminen
Prof. Dr. H.G. Neumann, Universität Würzburg
09.45–10.15 Pause/Break
10.15–10.45 Ecological Assessment of Some Dyes
Dr. D. Brown, Ecological and Toxicological Association of the Dyestuffs Manufacturing Industry, Basel
10.45–11.15 Horizont 2000 – Die Alkaloide im Brennpunkt der weltweiten Gesetzgebung – Konsequenzen für die Farbstoffindustrie
Dr. R. Mälin, Sanofi AG, Basel
11.15–12.30 Die psychologische Wirkung der Farben auf den Menschen
Prof. Dr. M. Lässiger, Luzern

Abendvortrag/Evening Lecture
Chairman: Dr. D. Wysch
20.00–21.00 Experiments in Colour
Prof. H.W. Roesty, Universität Göttingen
Die psychologische Wirkung der Farben auf den Menschen
Prof. Dr. M. Luscher, Luzern

The Swiss Association of Chemists, the Swiss Chemical Society, and the Society of German Chemists invite to participate in the 11th International Colour Symposium

11. Internationales Farbensusymposium
11th International Colour Symposium

Montreux, Schweiz/Switzerland, 23.–26. September 1991

Der Schweizerische Chemiker-Verband, die Schweizerische Chemische Gesellschaft und die Gesellschaft Deutscher Chemiker laden zu diesem Einladung zu.

9.5. Einberufung einer ausserordentlichen Generalversammlung per 27. September 1991 in Bern: Es ist vorgesehen, dass im September 1991 die «Neue Schweizerische Chemische Gesellschaft» gegründet wird, der dann, bei positivem Ausgang der Abstimmung, am 21. April 1992 die Mitglieder des Schweizer Chemiker-Verbands und der Schweizer Chemischen Gesellschaft betreten werden. Am 27. September 1991 soll daher eine ausserordentliche Generalversammlung stattfinden, die über den Beitritt des SCHV zur «Neuen Schweizerischen Chemischen Gesellschaft» und die Auflösung des SCHV diskutieren und endgültig befinden soll.

11. Internationales Farbensusymposium
11th International Colour Symposium

Montreux, Schweiz/Switzerland, 23.–26. September 1991

Der Schweizerische Chemiker-Verband, die Schweizerische Chemische Gesellschaft und die Gesellschaft Deutscher Chemiker laden zum 11. Internationen Farbensusymposium vom 23.–26. September 1991 in Montreux ein.

The Swiss Association of Chemists, the Swiss Chemical Society, and the Society of German Chemists invite to participate in the 11th International Colour Symposium, September 23–26, 1991 at Montreux.

Wissenschaftliches Komitee/Scientific Committee:
Dr. D. Wyrsch (Chairman), Ciba-Geigy AG, Basel; Prof. Dr. H. Balli, Universität Basel; Prof. Dr. H. Moser, Sandoz AG, Basel; Prof. Dr. P. Mühler, Universität Genève; PD Dr. R. Naeff, Ciba-Geigy AG, Basel; Dr. R. Hupp, Hoechst AG, Frankfurt; Prof. Dr. P. Rys, ETH Zürich

Das Farbensymposium wird seit 1960 von deutschen und schweizerischen Farbenchemikern veranstaltet. Es setzt sich zum Ziel, anhand von Erkenntnissen und Entwicklungen die Bedeutung der Farbenchemie auf den verschiedenen Gebieten von Wissenschaft und Praxis darzustellen.

The Colour Symposium has been organized by German and Swiss chemical scientists since 1960. The aim is to present the importance of the dyestuff chemistry in science and technology by means of new research results and developments.

10. Diverses
Die Frage bezüglich Vermögen und Steuerpflicht des SCHV, resp. der Neuen Schweizerischen Chemischen Gesellschaft wird wie folgt beantwortet: Es ist geplant, dass das Vermögen des SCHV nach erfolgtem Beitritt und erfolgter Auflösung an die «Neue Schweizerische Chemische Gesellschaft» abgetreten wird. Der SCHV ist bisher nicht steuerpflichtig, da alle Arbeiten ehrenamtlich erledigt und keine Saläre ausbezahlt werden. Bei einer Auflösung für den SCHV Steuerpflichten anfallen, soll auf Anraten eines Mitgliedes juristisch geklärt werden. Die «Neue Schweizerische Chemische Gesellschaft» wird steuerpflichtig sein, da die Aufgaben nicht mehr ehrenamtlich erledigt werden können und die SCG, die ebenfalls betreten wird, schon jetzt steuerpflichtig ist.

Die Generalversammlung schliesst um 15.30 Uhr.

Für das Protokoll:
Beatrice Küchli

11. Struktur und Eigenschaften/Structure and Properties
Chairman: Prof. H. Harmann

14.30–15.30 Postsessions

15.30–16.15 Jenseits des Sichtbaren, Farbstoffe zweiter Ordnung
Prof. Dr. J. Kelemen, Ciba-Geigy AG, Basel
16.15–16.45 Pause/Break
16.45–17.30 Dye Colours in Organic Nonlinear Optical Materials
Prof. Dr. M. G. Hutchings, ICI Colours & Fine Chemicals, Manchester
17.30–18.15 Das Polymethin-Konzept
Prof. Dr. S. Dähne, Zentralinstitut für physikalische Chemie, Berlin-Adlershof

10. Abendvortrag/Evening Lecture
Chairman: Dr. D. Wyrsch

20.00–21.00 Experiments in Colour
Prof. H.W. Roesty, Universität Göttingen
Funktionelle Farbstoffe / Functional Dyes
Chairman: Prof. M. Matsuoka

08.30-09.15 The Functional Dyes: Definition, Design and Development
Prof. Dr. J. Griffiths, University of Leeds

09.15-09.45 Neue indigoide und chinonide Systeme
Prof. Dr. R. Gompper, Universität München

09.45-10.15 Pause/Break

10.15-10.45 Neue photochrome und chromogene Systeme
Dr. W. Fischer, Dr. E. Fischer-Reimann, Ciba-Geigy AG, Basel

10.45-11.15 Stimulation of Chemical and Structural Effects by Photodynamic Dyes – Design of Molecular Switches and Sensors
Prof. Dr. J. Dauh, Dr. C. Fischer, Dr. H. Sitz, Universität Regensburg

11.15-11.45 Darstellung und Charakterisierung neuartiger triphenylamino- und Kreoktonsäure-Farbstoffe
Dr. H.-T. Macholdt, Hoechst AG, Frankfurt

11.45-12.15 Triblockelektrische Effekte in Abhängigkeit von festkörperphysikalischen Eigenschaften
Dr. H.-T. Macholdt, Technische Universität München

Donnerstag, 26. September 1991

Wirt-Gast-Beziehungen in der Farbstoffchemie / Host-Guest Interactions in Dye Chemistry
Chairman: PD Dr. R. Rafa

08.30-09.15 Supramolekulare Strukturen
Prof. Dr. F. Vogtle, Universität Bonn

09.15-09.45 Pause/Break

09.45-10.30 Solvatochrome Farbstoffe als empirische Indikatoren der Lösungsmitelpolarität
Prof. Dr. Ch. Reichardt, Universität Marburg

10.30-11.00 From Colors to Crystals: What Can Inorganic Single Crystals Do for Nonlinear Optical Applications
D. Rytz, Sandoz Huningue SA, Huntingue

11.00-11.30 Studies of Several Novel Polymethine Dyes Used in Photography and Lasers
Prof. Dr. Z. Zheng-Hua, East China University of Chemical Technology, Shanghai

11.30-12.15 Polymere als Chromophore und Chromophore in Polymere
Prof. Dr. G. Wegner, Max-Planck-Institut für Polymerforschung, Mainz

12.15 Schlussworte/Closing remarks:
Dr. R. H. Rupp, Hoechst AG, Frankfurt

Information:
Secretary’s Office for SAC-Symposia
Institute of Organic Chemistry
University of Bern
Freiestrasse 3
CH-3012 Bern, Switzerland
Tel. 031 65 43 11, Fax 031 65 44 99

Mittwoch, 25. September 1991 / Wednesday, September 25, 1991

Funktionelle Farbstoffe / Functional Dyes
Chairman: Prof. M. Matsuoka
Mittwoch, 25. September 1991/Wednesday, September 25, 1991

Funktionelle Farbstoffe/Functional Dyes
Chairman: Prof. M. Matsuoka

08.30-09.15 The Functional Dyes. Definition, Design and Development
Prof. Dr. J. Griffiths, University of Leeds

09.15-09.45 Neue indigoide und chinoido Systeme
Prof. Dr. R. Gompper, Universität München

09.45-10.15 Pause/Break

10.15-10.45 Neue photochrome und chromogene Systeme
Dr. W. Fischer, Dr. E. Fischer-Reimann, Ciba-Geigy AG, Basel

10.45-11.15 Stimulation of Chemical and Structural Effects by Photo-
dynamic Dyes – Design of Molecular Switches and Sensors
Prof. Dr. J. Daut, Dr. C. Fischer, Dr. H. Stät, Universität Regensburg

11.15-11.45 Darstellung und Charakterisierung neuartiger triphonental-
tiger Quadratsäure- und Kreoksäure-Farbstoffe
Prof. Dr. H. Hartmann, D. Keil, Technische Hochschule Merseburg

11.45-12.15 Triblockelektrische Effekte in Abhängigkeit von festkörperl-
physikalischen Pigmenteigenschaften
Dr. H.-T. Macoldt, Hoechst AG, Frankfurt

Funktionelle Farbstoffe/Farbstoffe und Medizin
Functional Dyes/Dyes and Medicine
Chairman: Prof. D.M. Lewis

14.30-15.30 Postersession

15.30-16.15 Porphyrines, Phthalocyanines and Naphthalocyanines for Various Processes of Visible Light Driven Conversion Processes
Prof. D. Wöhre, Universität Bremen

16.15-16.45 Zur Spezifik der optischen und elektrischen Eigenschaften von aufgedampften Farbstoffschichten
Prof. Dr. H. Büttcher, Technische Universität Dresden

16.45-17.15 Pause/Break

17.15-17.45 Wandel in den Forschungsansätzen zur Chemotherapie von Tumoren
PD Dr. H. Seidel, Beckingwerke AG, Marburg

17.45-18.15 Farbstoffe in der Diagnostik
Dr. R. Herrmann, Boehringer Mannheim GmbH, Werk Tutzing

Donnerstag, 26. September 1991/Thursday, September 26, 1991

Wirt-Gast-Beziehungen in der Farbstoffchemie/ Host-Guest Interactions in Dye Chemistry
Chairman: PD Dr. R. Raef

08.30-09.15 Supramolekulare Strukturen
Prof. Dr. F. Vögtle, Universität Bonn

09.15-09.45 Pause/Break

09.45-10.30 Solvatochrome Farbstoffe als empirische Indikatoren der Lösungsmittelpolarität
Prof. Dr. Ch. Reichardt, Universität Marburg

10.30-11.00 From Colors to Crystals: What Can Inorganic Single Crystals Tell Us About Organic Semiconductors?
D. Rytz, Sandoz Huningue SA, Huningue

11.00-11.30 Studies of Several Novel Polymethine Dyes Used in Photography and Lasers
Prof. Dr. Z. Zheng-Hua, East China University of Chemical Technology, Shanghai

11.30-12.15 Polymere als Chromophore und Chromophore in Polyme-
ren
Prof. Dr. G. Wegner, Max-Planck-Institut für Polymerfor-
schung, Mainz

12.15 Schlussworte/Closing remarks:
Dr. R.H. Rupp, Hoechst AG, Frankfurt

Information:
Secretary’s Office for SAC-Symposia
Institute of Organic Chemistry
University of Bern
Freiestrasse 3
CH-3012 Bern, Switzerland
Tel. 031 65 43 11, Fax 031 65 44 99
Mittwoch, 25. September 1991/Wednesday, September 25, 1991

Funktionelle Farbstoffe/Functional Dyes
Chairman: Prof. M. Matsuoka

08.30-09.15 The Functional Dyes: Definition, Design and Development
Prof. Dr. J. Griffiths, University of Leeds

09.15-09.45 Neue indigoide und chinoidre Systeme
Prof. Dr. R. Gompper, Universität München

09.45-10.15 Pause/Break

10.15-10.45 Neue photochrome und chromogene Systeme
Dr. W. Fischer, Dr. E. Fischer-Reimann, Ciba-Geigy AG, Basel

10.45-11.15 Stimulation of Chemical and Structural Effects by Photodynamic Dyes – Design of Molecular Switches and Sensors
Prof. Dr. J. Daub, Dr. C. Fischer, Dr. H. Sitz, Universität Regensburg

11.15-11.45 Darstellung und Charakterisierung neuartiger triphenyl-

tiger Quadratsäure- und Krokonsäure-Farbstoffe
Dr. H.-T. Macholdt, Hoechst AG, Frankfurt

11.45-12.15 Tricolorlektrische Efferen in Abhängigkeit von festkörper-

physikalischen Pigmenteigenschaften
Dr. H.-T. Macholdt, Hoechst AG, Frankfurt

Schweizerische Chemische Gesellschaft
Société Suisse de Chimie

Protokoll
der Frühjahrerversammlung der Schweizerischen Chemischen Gesellschaft
vom 15. März 1991 in Basel
Zentrum für Lohn und Forschung, Kantonsspital Basel

A. Geschäftlicher Teil

Der Präsident Prof. W. von Philipsborn eröffnet um 9.20 Uhr die Sitzung, eine Ergänzung der Traktandenliste um Punkt 5a (erste Lesung einer Satzänderung gem. Art. 27) wird genehmigt.

1. Das Protokoll der Herbstversammlung vom 19. Oktober 1990 in Bern wird genehmigt.

2. Folgende Veranstaltungen sind geplant: SGC Herbstversammlung, Freitag 18. Oktober 1991 in Bern; SGC Frühjahrsversammlung ’Centenary of the Geneva Conference – Organic Chemistry: Its Language and Its State of the Art’, 22–24. April 1992 in Genf; XIXth International Conference on Coordination Chemistry, 19–24. Juli 1992 in Lausanne; XIIIth International Symposium on Medicinal Chemistry, 13–17. September 1992 in Basel.

3. Der Präsident diskutiert den im Anwes. / abgedruckten Jahresbericht des Vorstandes für 1990 und die Mutationen im Vorstand.

4. Der Schatzmeister Dr. J. Krahová kommentiert Kassenbericht und Jahresrechnung 1988 (vgl. Annex 2 und 3). Ohne die erforderliche Wertberichtigung der Wertschriften und die Verluste infolge des dollarkurses hätte die Gesellschaft ein positives Resultat erreicht; für das laufende Jahr wird ein ähnliches Ergebnis erwartet. Die Rechnung wurde durch die Revisoren Prof. J. Winkl und Dr. Z. Zeller geprüft und durch Akkamation der Mitglieder bestätigt erteilt.

5. Der Präsident des Redaktionskomitees Prof. Hellbrunner erteilte den Jahresbericht des Helv. Chim. Acta. Die Produktionskosten sind infolge des erhöhten Umfangs auf ca. 900 000 SFr. gestiegen, wobei aber die Kosten pro Seite konstant gehalten werden konnten. Die durchschnittliche Publikationsfrist von nur 2,4 Monaten macht unsere Zeitschrift sehr attraktiv.

A. Geschäftlicher Teil

5a. Art. 22 (Zeitschrift) und als Folge davon auch Art. 11 (Vorstand) müssen noch vor der Fusion geändert werden, um den rechtlichen Rahmen mit der Realität in Übereinstimmung zu bringen. Die alten und neuen Fassungen werden verlesen. Abstimmung erfolgt an der Herbstversammlung 1991.

6. Der Präsident berichtet über die Zusammenarbeit mit dem Schweizer Chemiker-Verband, die nach der Kooperation in der Realisierung des Zusammenschlusses eingetreten ist. Die neue Gesellschaft existiert bereits ein Statutentwurf, eine Gliederung (Organigramm) sowie die vier im Rahmen der Fusion zu gründenden Sektionen Chemische Forschung, Industrielle Chemie, Medizinische Chemie und Analytische Chemie (vorläufige Titel). Sowohl sich Kandidaten für die Leitung der neuen Schweizerischen Chemischen Gesellschaft zu Verfügung gestellt haben, wird der Vorstand ihre Gründung vorschlagen (voraussichtlich im Herbst 1991).

7. **Varia:** keine Wortmeldungen

Schluss der Sitzung: 10.00 Uhr
B. Wissenschaftlicher Teil

1. Der Präsident verleiht den Werner-Preis mit Medaille 1991 an Dr. Beat Ernst (Ciba-Geigy, Basel) «in Würdigung seiner bedeutenden Beiträge zur Naturstoffsynthese und zur Entwicklung neuer Synthese- methoden».

2. Symposium Free Radicals: From Molecules to Biochemical Processes (gemeinsam mit dem Schweiz. Chemiker-Verband) mit Vorträgen von Prof. N.A. Porter (Duke University, Durham, USA) «Stereochemical Control of Free Radical Additions, Oligomerizations, and Polymerizations», Prof. J.T. Groves (Princeton University, Princeton, USA) «Catalytic Asymmetric Hydroxylation with Metallocorphyrin Complexes», Prof. K.U. Ingold (National Research Council, Ottawa, Canada) «Rate Processes in Complex Systems: Studies on Cytochrom P-450 and Vitamin E», Prof. J. Régy (Universität Karlsruhe, Karlsruhe, Deutschland) «Generation and Control of Radical Intermediates by Enzymes. The Role of Coenzyme B12», Prof. S. Hanessian (Université de Montreal, Canada) «The Challenge of Sterecontrolled Ring Formation by Free Radical Reactions».

Der Präsident: Dr. E. Zass
Der Sekretär: Prof. W. von Philipsborn

Annex 1
Jahresbericht des Vorstandes für 1990

1. Mitglieder
Die Schweizerische Chemische Gesellschaft hatte am 31.12.1990 1535 (1551) Mitglieder, davon 16 (16) Ehren- und 14 (15) Freimitglieder (Zahlen des Vorjahres in Klammern). Die Gesellschaft beklagte im Jahr 1990 den Tod der folgenden 11 Mitglieder: Dr. R. Goncalves (Lissabon/Portugal), Dr. R. Gonsel (Yverdon), Dr. F. Hediger (Suhr), Dr. H. Jüger (Bettingen), Dr. K. Kagi (Rispen), Dr. P. Knies (Ermatingen), Dr. J. McAuley (Bexleyheath/UK), Dr. M. Märki (Allschwil), Prof. P. Pino (Zürich), Dr. H. Waldmann (Birsfelden), Dr. A. V. Willi (Haslach/BRD).

2. Vorstand
Prof. W. von Philipsborn (Präsident); Prof. A.E. Merbach (Vize-Präsident); Prof. J. Kalvoda (Schatzmeister); Prof. T. Gaumann, Dr. G. D. Bellus, Prof. D. Seebach, Prof. K. Müllcr (Beisitzer); Prof. E. Zass (Vertreter des Redaktionskomitees Helv. Chim. Acta).

Annex 2
Jahresrechnung 1990

1. Aktiven
Fr. Fr.
Wertschriftenbestand 2 617 254.45 2 815 954.45
Bankverbindlichkeiten − 132 175.05 − 134 875.05
Bankguthaben 552 800.92 497 682.94
Diverse Vorschüsse 37 803.90 20 842.65
Übrige Debitoren «HCA» 145 571.79 292 258.34
Ankaufswert 3 286 573.75 3 514 470.19

2. Passiven
Zeitschriftenfonds 2 407 616.64 2 414 899.78
Werner-Fonds 222 670.10 219 275.90
Spezialfonds 214 595.45 219 997.70
Total Vorzüge 2 844 882.19 2 854 173.38

3. Kooperation und Vorbereitung des Zusammenschlusses von SCG und SCHV
Der Koordinationsausschuss (SCG: W. von Philipsborn, A. Merbach; SCHV: W. Graf, G. Haas) hat in bisher acht Sitzungen die Richtlinien für die Zusammenarbeit der beiden Gesellschaften erarbeitet. Sie betraf im Berichtsjahr vor allem die gegenseitige Teilnahme an Vorstandssitzungen, eine thematische Absprache und ge- meinsame Abhaltung aller Tagungen und Symposien sowie die Zusam- menlegung der technischen Redaktionen von Helvetica Chimica Acta und Chimia. Ferner wurden die Beziehungen zu der Schweizerischen Akademie der Naturwissenschaften (SANW), dem Schweizerischen Komitee für Chemie (SCS) und den Schweizerischen Gesellschaften der analytischen Chemiker intensiviert. Die Grundla- gen für die Schaffung einer neuen chemischen Gesellschaft sind ausgearbei- tet und in einem Organigramm, Statutentwurf, Sekto- nenstatut, sowie einem 12-Punkte-Programm der in Aussicht genommene der neuen Gesellschaft zusammengefasst. Diese Vorlagen wurden vom Vorstand in den ordentlichen und einer ausserordentlichen Sitzung behandelt. Ein Zwischenbericht zu Han- den der Mitglieder beider Gesellschaften ist erschienen (Chimia 1990, 44, No. 12, Editorial).

4. Preise und Ehrungen
Der Vorstand hat den Paracelsus-Preis 1990 an Prof. R. Breslow (Columbia Univ., New York) «in Anerkennung seiner Pionierarbei- ten auf dem Gebiet der bio-organischen Chemie» und den Werner-Preis mit Medaille 1990 an Dr. H. Frei (Univ. of California, Berkeley) «für seine bedeutenden Beiträge zur Photochemie im Spektralbereich zwi- schen sichtbarem Licht und Infrarot» verliehen.

5. Schenkungen
Die Gesellschaft dankt der schweizerischen chemischen Industrie wiederum für namhafte Beiträge.

Zürich, den 8. März 1991

Der Präsident: Prof. W. von Philipsborn
Der Sekretär: Dr. E. Zass
Gewinn- und Verlustrechnung (Zeitschriftenfonds)

Ertrag
- Mitgliederbeiträge, Eintrittsgebühren: Fr. 71 265.00
- Mitgliederbeiträge für HCA: Fr. 79 171.05
- Abonnements laufender HCA: Fr. 762 621.20
- Nachlieferungen früherer Jahrgänge HCA: Fr. 9 382.65
- Inserate: Fr. 15 310.00
- Zinsertrag: Fr. 162 157.67
- Erfolg aus Verkauf (Bücher, Zeitschriften etc.): Fr. 2 050.60
- Ertrag aus Royalties/Dienstleistungen: Fr. 42 077.25
- Kursdifferenzen: -Fr. 22 628.77
- Buchgewinne und -verluste auf Wertschriften und Debitoren: Fr. 11 554.32

Verlust

Aufwand	Fr.
Personalaufwand	345 154.85
Beförderungs- und Transportspesen	80 337.95
Reise- und Versandgutschriften, Vorteile	63 143.14
Lektoraten, Expertenberatungen, Ausgaben, Aushilfen	4 195.80
Porti, Telefon	8 366.60
Mieten	22 400.30
Produktionskosten (Band 73, Band 72)	488 078.30
Büromaterial, Drucksachen, Werbekosten	74 809.05
Finanzschriften/Versicherungen	26 626.73
Vermögenssteuern	1 979.90
Beiträge, Vergabezinsen, Geschenke	25 155.85

Verlust

Fr.
-7 283.14
-6 252.05

Verlust

B) Details zur Bilanz und Gewinn-und-Verlustrechnung
1. Zeitschriftenfonds
Vermögen am 1. Januar
- Verlust
Vermögen am 31. Dezember

| 2. Wernervereinsfonds |
Vermögen am 1. Januar	Fr. 219 275.90
+ Einnahmen: Zinsen	Fr. 10 679.20
- Ausgaben: Auszeichnungen	-7 285.00
Vermögen am 31. Dezember	Fr. 222 670.10

| 3. Spezialfonds |
Vermögen am 1. Januar	Fr. 219 997.70
+ Einnahmen: Zinsen	Fr. 10 194.85
Vergaben	Fr. 8 000.00
- Ausgaben: Auszeichnungen	-23 597.10
Vermögen am 31. Dezember	Fr. 214 595.45

| 4. Vergabezinsen |
Ciba-Geigy AG, Basel	Fr. 2 000.00
F. Hoffmann-La Roche AG, Basel	Fr. 1 000.00
Sandoz AG, Basel	Fr. 2 000.00
Firmenich, Genève	Fr. 1 500.00
Lonza AG, Basel	Fr. 1 000.00
Givaudan SA, Genève	Fr. 300.00
Siegfried AG, Zofingen	Fr. 200.00
Fr. 8 000.00	

Annex 3

Bericht des Schatzmeisters für das Jahr 1990

Die Bilanz der Schweiz. Chemischen Gesellschaft schliesst per 31.12.1990 mit einer Vermögensabnahme von Fr. 9 291.19 ab (Vorjahr: Fr. 38 921.84). Während sich der Wernervereinsfonds um Fr. 3 394.20 erhöhte, reduzierte sich der Zeitschriftenfonds um Fr. 7 285.14 auf Fr. 2 407 616.64 und der Spezialfonds um Fr. 5 402.25 auf Fr. 214 595.45. Der Nominalwert des Gesellschafts-Portefeuilles reduzierte sich um Fr. 200 000.– auf Fr. 2 650 000.– wobei folgende Transaktionen erfolgten: Rückzahlungen (Nominal)

| Käufe (Nominal) |
| Fr. 100 000.– |
| Fr. 400 000.– |
| Fr. 700 000.– |

Infolge der niedrigen Anleihenziinsen wurden die aus dem Rückzahlungsumschuss der Verpflichtungen vorliegend zu zinslosen Abtretungen.

Gegenüber dem Vorjahr erhöhten sich die Gesamteinnahmen der Zeitschriftenrechnung um Fr. 141 250.09 auf Fr. 1 132 961.86. Der ab Januar 1990 vorgenommenen Teuerungsanpassung von Abonnementspreisen und Mitgliederbeiträgen sind die Einnahmen aus HCA-Abonnementspreisen auf Fr. 27 645.55 auf Fr. 762 621.20 und die Mitgliederbeiträge um Fr. 21 418.35 auf Fr. 42 077.25 gestiegen. Weitere Mehrexpen sind bei den Positionen Personalaufwand (-Fr. 3 292.20), Kosten für Buchgewinn und -verluste auf Wertschriften und Debitoren (-Fr. 2 352.65) angefallen. Ferner fallen insbesondere die Einnahmen aus Royalties und Dienstleistungen um Fr. 37 530.40 höher als im Vorjahr angefallen.

Insgesamt haben die Kostenreduktionen bei den Positionen Personalaufwand (-Fr. 3 292.20), Kosten für Buchgewinn und -verluste auf Wertschriften und Debitoren (-Fr. 2 352.65) sowie die Erträge aus Royalties und Dienstleistungen, insbesondere aus den Zeitschriftenrechnungen, um Fr. 37 530.40 höher als im Vorjahr angefallen.

Die Gesamtausgaben erhöhten sich gegenüber dem Vorjahr um Fr. 88 281.19 auf Fr. 1 140 245.24. Dies ist insbesondere auf die Produktionskosten für Band 73 der HCA zurückzuführen, die aufgrund der Zunahme der Seitenzahl von 432 um Fr. 69 830.15 über denjenigen des Vorjahres für Band 72 liegen.

In der Zeitschriftenrechnung mit einem Verlust von Fr. 7 283.14 (Vorjahr: Fr. 60 252.04) ergaben sich gegenüber 1989 folgende detaillierte Veränderungen der Erträge und Aufwendungen:

Veränderungen bei den Erträgen
Mitgliederbeiträge
Nachlieferungen HCA
Buchervermittlung
Fr. 21 418.35
Fr. 4 442.65
Fr. 1 723.05
Ertrag aus Royalties/ Dienstleistungen 37 530.40
Buchgewinne und -verluste auf Werschriften und Debitoren 69 222.43
Abonnements laufender HCA 27 645.55
Inserate 3 599.30
Zinsverluste 12 190.23
Kursdifferenzen -36 522.07
Total Veränderungen bei den Erträgen 141 250.09

Veränderungen bei den Aufwendungen
Personalaufwand -3 292.20
Beförderungs- und Transportspesen -11 455.19
Reise- und Versammlungsspesen 10 092.33
Lektoren- und Expertenhorar 330.60
Porto, Telefon 505.00
Mieten -429.95
Produktionskosten HCA 69 830.15
Büromaterial, Drucksachen 22 805.30
Finanzspesen, Versicherungen -4 237.60
Steuern -20.10
Beiträge, Vergabungen, Geschenke 2 352.65
Total Veränderungen bei den Aufwendungen 88 281.19

Diese Abweichungen ergeben zusammen eine Verlustverminderung des Zeitschriftenfonds gegenüber 1989 von total 52 968.91.

Die Vergabungen von total Fr. 8 000.–, die wir bestens verdanken, waren ausschliesslich dem Spezialfonds gutgeschrieben. Aus dem Wemerkfonds wurde ein Preis von Fr. 5 000.– an Herrn H. Frei und aus dem Spezialfonds Fr. 20 000.– an Prof. Dr. R. Breslow ausgeschiess. Für Urkunden und Spesen im Zusammenhang mit diesen Vergabungen wurden Fr. 5 882.10 ausgegeben, wovon Fr. 3 597.10 dem Spezialfonds belastet wurden.

Basel, im Februar 1991
Der Schatzmeister:
Dr. J. Kalvoda

Anmerkungen

31.12.1989 31.12.1990

1. Ehren- und Freimitglieder 31 30
 a) Ehrenmitglieder 16 16
 b) Freimitglieder mit HCA 10 10
 c) Freimitglieder ohne HCA 5 4

2. Mitglieder mit HCA Schweiz 349 331
 Neueneintritte +20
 Austritte -9
 Übertritte (Ausland und Mitglieder ohne HCA) -29
 Gestorben -

3. Mitglieder mit HCA Ausland 241 233
 Neueneintritte 7
 Austritte -7
 Übertritte (Schweiz und Mitglieder ohne HCA) -7
 Gestorben 1

4. Mitglieder ohne HCA 930 941
 Neueneintritte 27
 Austritte -45
 Übertritte (Schweiz und Ausland) 38
 Gestorben -9

Total 1 551 1 535

Zum Vergleich:
Total 1988 1 502
Total 1987 1 501
Total 1986 1 466

Der Mitgliederbestand reduzierte sich um 16 Mitglieder auf 1 535, wobei 38% unserer Mitglieder die HCA bezogen.

Die Abonnentenzahl hat im Jahre 1990 um 76 auf 1 518 abgenommen. Anzahl Exemplare

	1990	1989	1988	1987	1986
Mitglieder	602	628	633	661	679
Abonnenten	1 518	1 594	1 609	1 617	1 654
Tauschverkehr	40	47	47	46	50
Belege für Inserate	15	15	15	15	15
Ersatznummern	50	50	50	50	50
Lagerrest	175	266	246	211	151
Verstorben	2 400	2 600	2 600	2 600	2 600

Konferenzen

ESF/EUCHEM Conference on Stereochemistry, Bürgenstock

The 27th ESF/EUCHEM Conference on Stereochemistry, covering a wide range of topics in chemistry with emphasis on its interdisciplinary character in natural sciences, will be held at the Bürgenstock near Luzern, Switzerland from April 26 to May 2, 1992.

Inquiries and applications (no special forms are required) should be addressed before January 10, 1992, to the President: Prof. G. Erickson, Center of Neurochemistry, 5, rue Blaise Pascal, F-67084 Strasbourg, France or to the Secretariat: Prof. A. Pfaltz, Institute of Organic Chemistry, University of Basel, St. Johannpring 19, CH-4056 Basel, Switzerland.

Alfred-Werner-Stipendium

Das erste Alfred-Werner-Stipendium wurde Herrn Dr. Renato Zenobi, Zürich, Chemistry Department, Surface Science Center, University of Pittsburgh, USA, vergeben. Der Stipendiat der Stiftung für Stereochemie und die Mitglieder des Stiftungsrates haben sich bei der diesjährigen Ausschreibung des Stipendiums qualifiziert. Unter diesen wurden Herr Dr. Renato Zenobi das Stipendium zugesprochen. Zenobi hat an der ETH-Zürich Chemie studiert und 1986 mit einer Arbeit über IR-Oberton und photoakustische Spektroskopie bei Prof. M. Quack in Physikalischer Chemie promoviert. Anschliessend begann er an der Stanford University, California, USA, bei Prof. R.N. Zare eine Dissertation über Two-Step Laser Mass Spectrometry. Er wurde im Juli 1990 mit dieser bahnbrechenden Arbeit zum Ph.D. promoviert. Herzlich freute sich die Stiftung über den Erfolg ihres Studenten.

Das Alfred-Werner-Stipendium wird den 30jährigen Zürcher nun verliehen, trotz guten Angebots...
Ertrag aus Royalties/ Dienstleistungen 37 530.40
Buchgewinne und -verluste auf Wertschriften und Debiteuren 69 222.43
Abonnements laufender HCA 27 645.55
Inserate 3 599.30
Zinsverzöggerung 12 190.23
Kursdifferenzen -36 522.07
Total Veränderungen bei den Erträgen 141 250.09

Veränderungen bei den Aufwendungen
Personalaufwand -3 292.20
Beförderungs- und Transportkosten -11 455.19
Reise- und Versammlungskosten 10 092.33
Lektoren- und Expertenhonorare 330.60
Porto, Telefon 505.00
Mieten -429.95
Produktionskosten HCA 69 830.15
Büromaterial, Drucksachen 22 805.50
Finanzspesen, Versicherungen -2 437.60
Steuern -20.10
Beiträge, Vergabungen, Geschenke 2 352.65
Total Veränderungen bei den Aufwendungen 88 281.19

Diese Abweichungen ergeben zusammen eine Verlustverminderung des Zeitschriftenfonds gegenüber 1989 von total 52 968.91

Die Vergabungen von total Fr. 8 000.--, die wir bestens verdanken, wurden ausschliesslich dem Spezialfonds gutgeschrieben. Aus dem Wermervfonds wurde ein Preis von Fr. 5 000.-- an Herrn H. Frei und aus dem Spezialfonds Fr. 20 000.-- an Prof. Dr. R. Breslow ausgeschüttet. Für Urkunden und Spesen im Zusammenhang mit diesen Vergabungen wurden Fr. 5 882.10 ausgegeben, wovon Fr. 3 597.10 dem Spezialfonds belastet wurden.

Basel, im Februar 1991

Der Schatzmeister:
Dr. J. Kalovoda

Anmerkungen:

Mitgliederbewegung und Abonnentenzahl

31.12.1989 31.12.1990

1. Ehren- und Freimitglieder
 a) Ehrenmitglieder 31 30
 b) Freimitglieder mit HCA 16 16
 c) Freimitglieder ohne HCA 10 10

2. Mitglieder mit HCA Schweiz
 Neueintritte 349 331
 Austritte 20
 Übertritte (Ausland und Mitglieder ohne HCA) 29
 Gestorben

3. Mitglieder mit HCA Ausland
 Neueintritte 241 233
 Austritte 7
 Übertritte (Schweiz und Mitglieder ohne HCA) 7
 Gestorben 1

4. Mitglieder ohne HCA
 Neueintritte 930 941
 Austritte 27
 Übertritte (Schweiz und Ausland) 45
 Gestorben 38
 Total 1 886 1 551

Zum Vergleich:
 Total 1988 1 502
 Total 1987 1 501
 Total 1986 1 466

Der Mitgliederbestand reduzierte sich um 16 Mitglieder auf 1 535, wobei 38% unserer Mitglieder die HCA bezogen.

Die Abonnentenzahl hat im Jahre 1990 um 76 auf 1 518 abgenommen. Auflage und Verteilung unserer Zeitschrift entwickelte sich in den letzten fünf Jahren wie folgt:

Anzahl Exemplare	1990	1998	1988	1987	1986
Mitglieder	602	628	633	661	679
Abonnenten	1518	1594	1609	1617	1654
Tauschverkehr	40	47	47	46	50
Belege für Inserate	15	15	15	15	15
Ersatznummern	50	50	50	50	50
Lagerregister	175	266	246	211	151
Total	2400	2600	2600	2600	2600

Verstorbenen Mitglieder
Die Gesellschaft hatte im Jahr 1990 den Tod von 11 Mitglieder zu beklagen:
Dr. R. Goncalves (Lisboa/Portugal) Dr. J. McGhie (Bexleyheath/UK)
Dr. R. Gonset (Yverdon) Dr. M. Märky (Allschwil)
Dr. F. Hediger (Zürich) Prof. P. Pino (Zürich)
Dr. H. Jäger (Bettingen) Dr. H. Waldmann (Birsfelden)
Dr. K. Kägi (Riehen) Dr. A. V. Willi (Haslach/BRD)
Dr. F. Knie (Ermatingen)

Konferenzen

ESF/EUChEM Conference on Stereochemistry, Bürgenstock

The 27th ESF/EUChEM Conference on Stereochemistry, covering a wide range of topics in chemistry with emphasis on its interdisciplinary character in natural sciences, will be held at the Bürgenstock near Luzern, Switzerland from April 26 to May 2, 1992.

Inquiries and applications (no special forms are required) should be addressed before January 10, 1992, to the President: Prof. G. Ehrsson, Center for Neurochemistry, 5, rue Blaise Pascal, F-67084 Strasbourg, France or to the Secretariat: Prof. A. Pfaltz, Institute of Organic Chemistry, University of Basel, St. Johannstr 19, CH-4056 Basel, Switzerland.

Alfred-Werner-Stipendium

Das erste Alfred-Werner-Stipendium (eines pro Jahr für alle Naturwissenschaften) des Stanford University, Pennsylvania, USA, bei Prof. J.T. Yates über IR-Reflektionsspektroskopie von ein kristalloberflächen adsorbierten Molekülen arbeitet. Resultate aus den bisher bearbeiteten wissenschaftlichen Gebieten sind in einem guten Datendruck publiziert, in ehemals konfidenzbeinhalten und in einigen Patenten bekannt geworden.

Das Alfred-Werner-Stipendium wird den 30jährigen Zürcher nun veranlassen, trotz guten Angeboten
Ertrag aus Royalties/ Dienstleistungen 37 530.40
Buchgewinne und -verluste auf Wertschriften und Debitoren 69 222.43
Abonnements laufender HCA 27 645.55
Inserate 3 599.50
Zinsertrag 12 190.23
Kursdifferenzen -36 522.07
Total Veränderungen bei den Erträgen 141 250.09

Veränderungen bei den Aufwendungen
Personalaufwand -3 292.20
Beförderungs- und Transportspesen -11 455.19
Reise- und Versammlungsspesen 10 092.33
Lektoren- und Expertenhonorare 330.60
Porto, Telefon 505.00
Mieten -429.95
Produktionskosten HCA 69 830.15
Büromaterial, Drucksachen 22 805.50
Finanzspesen, Versicherungen -2 437.60
Steuern 20.10
Beiträge, Vergabungen, Geschenke 2 352.65
Total Veränderungen bei den Aufwendungen 88 281.19

Diese Abweichungen ergeben zusammen eine Verlustverminderung des Zeitschriftenfonds gegenüber 1989 von total 52 968.91.

Die Vergabungen von total Fr. 8 000.–, die wir bestens verdanken, wurden ausschließlich dem Spezialfonds gutgeschrieben. Aus dem Wern erfonds wurde ein Preis von Fr. 5 000.– an Herrn H. Frei und aus dem Spezialfonds Fr. 20 000.– an Prof. Dr. R. Breslow ausgeschüttet. Für Urkunden und Spesen im Zusammenhang mit diesen Vergaben wurden Fr. 5 882.10 ausgegeben, wovon Fr. 3 597.10 dem Spezialfonds belastet wurden.

Basel, im Februar 1991
Der Schatzmeister: Dr. J. Kalvoda

Anmerkungen

Mitgliederbewegung und Abonnentenzahl

31.12.1989	31.12.1990	
1. Ehren- und Freimitglieder	31	30
a) Ehrenmitglieder	16	16
b) Freimitglieder mit HCA	10	10
c) Freimitglieder ohne HCA	5	4
2. Mitglieder mit HCA Schweiz	349	331
Neueintritte	+20	
Austritte	-9	
Übertritte (Ausland und Mitglieder ohne HCA)	-29	
Gestorben	–	
3. Mitglieder mit HCA Ausland	241	233
Neueintritte	7	
Austritte	-7	
Übertritte (Schweiz und Mitglieder ohne HCA)	-7	
Gestorben	–	
4. Mitglieder ohne HCA	930	941
Neueintritte	27	
Austritte	-45	
Übertritte (Schweiz und Ausland)	38	
Gestorben	-9	
Total	1 551	1 535
Zum Vergleich: Total 1988	1 502	
Total 1987	1 501	
Total 1986	1 466	

Der Mitgliederbestand reduzierte sich um 16 Mitglieder auf 1 535, wobei 38% unserer Mitglieder die HCA bezogen.

Die Abonnentenzahl hat im Jahre 1990 um 76 auf 1 518 abgenommen.

Verstorbene Mitglieder
Die Gesellschaft hatte im Jahr 1990 den Tod von 11 Mitglieder zu beklagen:
Dr. R. Goncalves (Lisboa/Portugal)
Dr. R. Gonsel (Yverden)
Dr. H. Jäger (Bettingen)
Dr. K. Kägi (Riehen)
Dr. F. Knie (Ermatingen)
Dr. P. Knich (Haslach/BRD)
Dr. H. Waldmann (Birsfelden)
Dr. P. Knicl (Ermatingen)
Dr. H. Jager (Bettingen)
Dr. R. Gonsel (Yverden)
Dr. R. Goncalves (Lisboa/Portugal)

Anzahl Exemplare	1990	1989	1988	1987	1986
Mitglieder	602	628	633	661	679
Abonnenten	1518	1594	1609	1617	1654
Tauschverkehr	40	47	47	46	50
Beleger für Inserate	15	15	15	15	15
Ersatznummern	50	50	50	50	50
Lagerbestand	2400	2600	2600	2600	2600

Konferenzen

ESF/EUCHEM Conference on Stereochemistry, Bürgenstock

The 27th ESF/EUCHEM Conference on Stereochemistry, covering a wide range of topics in chemistry with emphasis on its interdisciplinary character in natural sciences, will be held at the Bürgenstock near Luzern, Switzerland from April 26 to May 2, 1992.

Inquiries and applications (no special forms are required) should be addressed before January 10, 1992, to the President: Prof. G. Edelmann, Center of Neurochemistry, Stanford University, California, USA, or to the Secretary: Prof. A. Pfitzner, Institute of Organic Chemistry, University of Basel, St. Johannstr. 19, CH-4056 Basel, Switzerland.

Alfred-Werner-Stipendium

Das erste Alfred-Werner-Stipendium an Dr. Renato Zeno di, Z. Chemistry Department, Surface Science Center, University of Pittsburgh, USA. Der Stiftungsrat der Stiftung für Stipendien auf dem Gebiete der Chemie hat an ihrer Frühjahrsversammlung zum erstenmal die neu geschaffene Alfred-Werner-Stipendium vergeben. Fünf junge Wissenschaftler haben sich bei diesem Förderprogramm zutragen, die durch jahrelange Arbeit auf dem Gebiete der Oberflächen Adsorption und Protection von Oberflächen, der Studium der Adsorption, der Adsorptionskinetik und der Adsorptionskinetik von Oberflächen den Stipendium erhielten. Der Stipendiumspreis von 15000 SFr. wurde an den Dr. Renato Zeno di, Z. Chemistry Department, Surface Science Center, University of Pittsburgh, USA, überreicht.

Die Ergebnisse der bisher bearbeiteten wissenschaftlichen Gebiete sind in einem guten Durcheinander von Publikationen, in denen eine Vielzahl von Konferenzen und in einigen Patenten bekannt geworden.

Das Alfred-Werner-Stipendium wird den 30jährigen Zürcher nun vererben, trotz guter Angebote.
Die schweizerische Grundlagenforschung auf dem internationalen Prüfstand: Weniger ist manchmal mehr

Die Ergebnisse der schweizerischen Grundlagenforschung werden von der übrigen Fachwelt ausserdentlich stark beachtet und benutzt. Zwar gehen weltweit betrachtet kaum mehr als 1,5% der wissen schaftlichen Publikationen in der Schweiz, doch erzielen die Forschungsresultate schweizerischer Wissenschaftler auf der internationalen Ebene eine überdurchschnittliche Anerkennung. Dies ist einerseits auf die gute Struktur und der Forschungsbereiche zurückzuführen, andererseits hat die Schweiz einen hohen Anteil an den Publikationen und Veröffentlichungen in internationalen Zeitschriften und Konferenzen. Die Schweizer Wissenschaftler werden oft als innovativ und kreativ bewertet, was ihnen eine gute Reputation in der internationalen Forschungsgemeinschaft einbringt.

Publizieren ist gut, gute Publikationen sind besser

Wissenschaftliche Forschung kann keine Landesgrenzen. Dabei stellt die Publikation der Forschungsergebnisse eine wichtige Rolle ein. Die Ergebnisse müssen transparent und förderlich sein. Die Herausforderung besteht darin, die internationale Wettbewerbs- und Konkurrenzfähigkeit der Schweizer Wissenschaftler zu fördern. Hierfür ist es notwendig, dass die Schweizer Wissenschaftler ihre Arbeiten in internationalen Zeitschriften und Konferenzen veröffentlichen. Die Schweizerische Forschungsrat hat deshalb mit dem Alfred-Wemer-Stipendium die Forschungswettbewerbsfähigkeit der Schweizer Wissenschaftler gefördert.

Die Alusuisse-Lonza Group with activities in the field of Aluminum, Chemistry, and Packaging has opened representative offices in Eastern Europe. They will be headed by Ede Horvath (Representation Budapest, Hungary), Dr. Zsuzsanna Stefanski (Representation Warsaw, Poland), and Karel Knap (Representation Prague, Czechoslovakia).

The Alusuisse-Lonza Group expects that it will be able to provide with this new coworkers a better service for the local markets and to build up new business opportunities.
Eurachem

In Europa werden etwa 3% des Bruttoinlandsproduktes für chemische Analysen aufgewendet. Obwohl die öffentliche Hand kaum wahrnimmt, ist eine Tätigkeit der Industrie, des Handels und der öffentlichen Hand ohne zuverlässige analytische Chemie nicht möglich, sei es bei der Entwicklung und Produktion von Umweltschutz oder bei der Gesundheitsüberwachung. Eurachem wurde gebildet um die Qualität und Vergleichbarkeit chemischer Analysen im wissenschaftlichen Wirtschaftsraum Europas zu fördern und so den freien Warenverkehr zu erleichtern. Eurachem ist ein Forum für die Zusammenarbeit innerhalb der analytisch-chemischen Gemeinde. In Abstimmung mit anderen Institutionen, die sich mit Fragen der Qualitätssicherung in Labors und Prüfstellen-Akkreditierung beschäftigen, werden von Eurachem folgende Schwerpunkte behandelt:

- Entwicklung von Qualitätssicherungssystemen basierend auf EN 45000 und GLP
- Weiterentwicklung von Qualitätssicherungssystemen basierend auf EN 45000 und GLP
- Arbeitsgruppen sind gebildet für die Bereiche QA-Ausbildung, Laborakkreditierung, Proficiency Testing und Ausbildungskurse.
- Sechstausend der EG- und EFTA-Länder – darunter die Schweiz – sind Mitglieder des Eurachem. Die Delegierten stammen aus staatlichen, industriellen und wissenschaftlichen Institutionen in einem Land in der Grundlagenforschungslandschaft Schweiz.
- Ihre Untersuchung haben die Bielefelder Forscher Instrumente angewendet, mit denen der Leistungsstand der Forschung eines Landes im weltweiten Vergleich und mittels harter Fakten beziffert werden kann. Nachdem die methodischen Anforderungen an die Forschungsaktivitäten gestiegen sind, sind die internationalen Publikationsgeschehen einen wichtigen Beitrag zur Überprüfung der Resultate der Schweizerischen Wissenschaft.

Die swiss chemical publication rate is indeed lower than expected, what is a challenge for the international visibility of Swiss research. The Eurachem network provides a platform for quality assurance and traceability in chemical analysis, which is crucial for the pharmaceutical industry and other sectors requiring reliable chemical analysis. The Swiss chemical research is internationally recognized, but there is room for improvement in the publication rates and impact factors, which are important metrics for evaluating research quality and global visibility.
Alusuisse-Lonza mit own representations in Hungary, Poland, and Czechoslovakia

The Alusuisse-Lonza Group with activities in the field of Aluminum, Chemistry, and Packaging has opened own representative offices in Eastern Europe. They will be headed by Ede Horvath (Representation Budapest, Hungary), Dr. Zygmunt Stefanis (Representation Warsaw, Poland), and Karel Knop (Representation Prague, Czechoslovakia).

Die schweizerische Grundlagenforschung auf dem internationalen Prüfpunkt: Weniger ist manchmal mehr

Die Ergebnisse der schweizerischen Grundlagenforschung werden von der üblichen Fachwelt ausserordentlich stark beachtet und benutzt. Zwar gehen weltweit betrachtet kaum mehr als 1,5% der wissenschaftlichen Publikationen auf das Konto der Forschungsinstitutionen in der Schweiz; doch erzielen die Forschungsergebnisse schweizerischer Wissenschaftler auf der internationalle Ebene eine überdurchschnittliche Aufmerksamkeit. Dieser Erfolg ist auf eine Vielzahl von Faktoren zurückzuführen, die zusammenwirken, um die schweizerische Forschung auf der internationalen Ebene zu stärken. Es handelt sich um eine Kombination von Faktoren, die den Forschungserfolg in der Schweiz beitragen: die Qualität der Forschungsergebnisse, die Effizienz der Forschungsinstitutionen, die internationale Zusammenarbeit und der positive Image der Schweizerischen Forschung.

Publizieren ist gut, gute Publikationen sind besser

Wissenschaftliche Forschung kann nur ohne eine umfassende Publikationspolitik durchgeführt werden. Die schweizerische Wissenschaftspolitik orientiert sich an den internationalen Standards und setzt sich dafür ein, dass Forschungsergebnisse schnell und effektiv verbreitet werden. Die Publikationen der schweizerischen Wissenschaftler werden in internationalen Zeitschriften und Konferenzen präsentiert, die in der Welt allgemein akzeptiert sind. Die schweizerische Forschung ist in der Lage, in internationalen Zeitschriften zu publizieren und ihre Ergebnisse in internationale Zeitschriften einzureichen. Die schweizerische Wissenschaft hat in den letzten Jahren eine erstaunliche Zunahme an internationalem Auftritt erreicht. Die schweizerische Wissenschaft ist auf der internationalen Ebene von großer Bedeutung.

Die Ergebnisse der schweizerischen Forschung werden von der üblichen Fachwelt ausserordentlich stark beachtet und benutzt. Zwar gehen weltweit betrachtet kaum mehr als 1,5% der wissenschaftlichen Publikationen auf das Konto der Forschungsinstitutionen in der Schweiz; doch erzielen die Forschungsergebnisse schweizerischer Wissenschaftler auf der internationalle Ebene eine überdurchschnittliche Aufmerksamkeit. Dieser Erfolg ist auf eine Vielzahl von Faktoren zurückzuführen, die zusammenwirken, um die schweizerische Forschung auf der internationalen Ebene zu stärken. Es handelt sich um eine Kombination von Faktoren, die den Forschungserfolg in der Schweiz beitragen: die Qualität der Forschungsergebnisse, die Effizienz der Forschungsinstitutionen, die internationale Zusammenarbeit und der positive Image der Schweizerischen Forschung.

Publizieren ist gut, gute Publikationen sind besser

Wissenschaftliche Forschung kann nur ohne eine umfassende Publikationspolitik durchgeführt werden. Die schweizerische Wissenschaftspolitik orientiert sich an den internationalen Standards und setzt sich dafür ein, dass Forschungsergebnisse schnell und effektiv verbreitet werden. Die Publikationen der schweizerischen Wissenschaftler werden in internationalen Zeitschriften und Konferenzen präsentiert, die in der Welt allgemein akzeptiert sind. Die schweizerische Wissenschaft hat in den letzten Jahren eine erstaunliche Zunahme an internationalem Auftritt erreicht. Die schweizerische Wissenschaft ist auf der internationalen Ebene von großer Bedeutung.

Die Ergebnisse der schweizerischen Forschung werden von der üblichen Fachwelt ausserordentlich stark beachtet und benutzt. Zwar gehen weltweit betrachtet kaum mehr als 1,5% der wissenschaftlichen Publikationen auf das Konto der Forschungsinstitutionen in der Schweiz; doch erzielen die Forschungsergebnisse schweizerischer Wissenschaftler auf der internationalle Ebene eine überdurchschnittliche Aufmerksamkeit. Dieser Erfolg ist auf eine Vielzahl von Faktoren zurückzuführen, die zusammenwirken, um die schweizerische Forschung auf der internationalen Ebene zu stärken. Es handelt sich um eine Kombination von Faktoren, die den Forschungserfolg in der Schweiz beitragen: die Qualität der Forschungsergebnisse, die Effizienz der Forschungsinstitutionen, die internationale Zusammenarbeit und der positive Image der Schweizerischen Forschung.

Publizieren ist gut, gute Publikationen sind besser

Wissenschaftliche Forschung kann nur ohne eine umfassende Publikationspolitik durchgeführt werden. Die schweizerische Wissenschaftspolitik orientiert sich an den internationalen Standards und setzt sich dafür ein, dass Forschungsergebnisse schnell und effektiv verbreitet werden. Die Publikationen der schweizerischen Wissenschaftler werden in internationalen Zeitschriften und Konferenzen präsentiert, die in der Welt allgemein akzeptiert sind. Die schweizerische Wissenschaft hat in den letzten Jahren eine erstaunliche Zunahme an internationalem Auftritt erreicht. Die schweizerische Wissenschaft ist auf der internationalen Ebene von großer Bedeutung.

Die Ergebnisse der schweizerischen Forschung werden von der üblichen Fachwelt ausserordentlich stark beachtet und benutzt. Zwar gehen weltweit betrachtet kaum mehr als 1,5% der wissenschaftlichen Publikationen auf das Konto der Forschungsinstitutionen in der Schweiz; doch erzielen die Forschungsergebnisse schweizerischer Wissenschaftler auf der internationalle Ebene eine überdurchschnittliche Aufmerksamkeit. Dieser Erfolg ist auf eine Vielzahl von Faktoren zurückzuführen, die zusammenwirken, um die schweizerische Forschung auf der internationalen Ebene zu stärken. Es handelt sich um eine Kombination von Faktoren, die den Forschungserfolg in der Schweiz beitragen: die Qualität der Forschungsergebnisse, die Effizienz der Forschungsinstitutionen, die internationale Zusammenarbeit und der positive Image der Schweizerischen Forschung.

Publizieren ist gut, gute Publikationen sind besser

Wissenschaftliche Forschung kann nur ohne eine umfassende Publikationspolitik durchgeführt werden. Die schweizerische Wissenschaftspolitik orientiert sich an den internationalen Standards und setzt sich dafür ein, dass Forschungsergebnisse schnell und effektiv verbreitet werden. Die Publikationen der schweizerischen Wissenschaftler werden in internationalen Zeitschriften und Konferenzen präsentiert, die in der Welt allgemein akzeptiert sind. Die schweizerische Wissenschaft hat in den letzten Jahren eine erstaunliche Zunahme an internationalem Auftritt erreicht. Die schweizerische Wissenschaft ist auf der internationalen Ebene von großer Bedeutung.

Die Ergebnisse der schweizerischen Forschung werden von der üblichen Fachwelt ausserordentlich stark beachtet und benutzt. Zwar gehen weltweit betrachtet kaum mehr als 1,5% der wissenschaftlichen Publikationen auf das Konto der Forschungsinstitutionen in der Schweiz; doch erzielen die Forschungsergebnisse schweizerischer Wissenschaftler auf der internationalle Ebene eine überdurchschnittliche Aufmerksamkeit. Dieser Erfolg ist auf eine Vielzahl von Faktoren zurückzuführen, die zusammenwirken, um die schweizerische Forschung auf der internationalen Ebene zu stärken. Es handelt sich um eine Kombination von Faktoren, die den Forschungserfolg in der Schweiz beitragen: die Qualität der Forschungsergebnisse, die Effizienz der Forschungsinstitutionen, die internationale Zusammenarbeit und der positive Image der Schweizerischen Forschung.

Publizieren ist gut, gute Publikationen sind besser

Wissenschaftliche Forschung kann nur ohne eine umfassende Publikationspolitik durchgeführt werden. Die schweizerische Wissenschaftspolitik orientiert sich an den internationalen Standards und setzt sich dafür ein, dass Forschungsergebnisse schnell und effektiv verbreitet werden. Die Publikationen der schweizerischen Wissenschaftler werden in internationalen Zeitschriften und Konferenzen präsentiert, die in der Welt allgemein akzeptiert sind. Die schweizerische Wissenschaft hat in den letzten Jahren eine erstaunliche Zunahme an internationalem Auftritt erreicht. Die schweizerische Wissenschaft ist auf der internationalen Ebene von großer Bedeutung.

Die Ergebnisse der schweizerischen Forschung werden von der üblichen Fachwelt ausserordentlich stark beachtet und benutzt. Zwar gehen weltweit betrachtet kaum mehr als 1,5% der wissenschaftlichen Publikationen auf das Konto der Forschungsinstitutionen in der Schweiz; doch erzielen die Forschungsergebnisse schweizerischer Wissenschaftler auf der internationalle Ebene eine überdurchschnittliche Aufmerksamkeit. Dieser Erfolg ist auf eine Vielzahl von Faktoren zurückzuführen, die zusammenwirken, um die schweizerische Forschung auf der internationalen Ebene zu stärken. Es handelt sich um eine Kombination von Faktoren, die den Forschungserfolg in der Schweiz beitragen: die Qualität der Forschungsergebnisse, die Effizienz der Forschungsinstitutionen, die internationale Zusammenarbeit und der positive Image der Schweizerischen Forschung.

Publizieren ist gut, gute Publikationen sind besser

Wissenschaftliche Forschung kann nur ohne eine umfassende Publikationspolitik durchgeführt werden. Die schweizerische Wissenschaftspolitik orientiert sich an den internationalen Standards und setzt sich dafür ein, dass Forschungsergebnisse schnell und effektiv verbreitet werden. Die Publikationen der schweizerischen Wissenschaftler werden in internationalen Zeitschriften und Konferenzen präsentiert, die in der Welt allgemein akzeptiert sind. Die schweizerische Wissenschaft hat in den letzten Jahren eine erstaunliche Zunahme an internationalem Auftritt erreicht. Die schweizerische Wissenschaft ist auf der internationalen Ebene von großer Bedeutung.
in USA in the Schweiz zurückzukehren, um sich mit eigenen Forschungsideen für eine Hochschultalfahrt zu profilierten. Er hat von Prof. Dr. v. den Bergh, EPF Lausanne, in seinem Institut ein Laboratorium zu beziehen, sowie an der dortigen Infrastruktur und der Forschungs- umgebung zu partizipieren. Die von Herrn Zenobi entwickelten neuen Methoden der Zweif-Schichten-Laser-Massenspektroskopie erlauben u.a., grosse Moleküle von Oberflächen in den Gasraum zu desorbierten, wobei man Auskunft über deren Wechselwirkung mit der Oberfläche auf molekularsem Niveau erhält. Diese Studien werden neue Ein- sichten in supramolekulare Zusammenhänge ergeben, das das Auseinanderhalten von Einzelheiten, d.h. schmutzigen, Grenzschichten und Oberflächen funktionieren. Die unter- suchten Systeme können z.B. aus dem Spektrum materialwissenschaftlicher, umwelt- und kosmo- chemischer oder pharmazeutischer Probleme bestehen.

Die Ausschreibung für das nächste Alfred-Wemer-Stipendium wird im Laufe des Sommersemesters in jedem Chemieinstitut jeder Schweizerischen Hochschule angekündigt. Der Ausschuss für die Einreichung von Bewerbungen ist der 1. Dezember 1991. Das Reglement des Stipendiums ist in den Institutssekretariaten einzusehen, oder beim Stiftungsratsvorsitzender der entsprechenden Hochschule oder beim Präsidenten der Stiftung, Prof. Dr. P. Müller, Département de Chimie, Organication de l’Université de Genève, Quai E. Ansermet 30, CH-1211 Genève, angefordert werden.

Die Stiftung für Stipendien auf dem Gebiete der Chemie ist eine privatwirtschaftliche Stiftung, zur Förderung des akademischen Nachwuchses auf dem Gebiete der Chemie. Sie wurde 1944 geschaffen und wird seitdem von den folgenden Firmen finanziell getragen: Ciba-Geigy AG, F. Hoffmann-La Roche AG, Lanza AG, Sandzoz AG, Nestlé AG, Firmenich SA, Siesegrief AG, Chemische Fabrik Uetikon AG, Cellulose Aktiengesellschaft AG, Vereinigte Farben und Appretur Thalwil, wie der Schweizerischen Vereinigung der Seifen- und Waschmittelindustrie Sülzwil, Zürich. Der Stiftungsrat wird von je einem Vertreter aller Schweizerischen Hochschulen mit Chemiedepartment und einer Zeitung von acht Vertretern Stifter und Donatoren gebildet. Die Geschäftsstelle und das Quästorat wird von Prof. Dr. K.J. Bosen, Lanza AG, Basel, betreut. Das Alfred-Werner-Stipendium wird für maximal vier Jahre zuge- wiesen. Es ist auf den Stipendiaten-Oberassistenten-Salaris der bestehenden Hochschule eingerichtet.

Publiziert ist gut, gute Publikationen sind besser.

Wissenschaftliche Forschung kennt keine Landesgrenzen. Dabei stellt die Publikation der Forschungsergebnisse noch immer das wichtigste Mittel zur Verbreitung wissenschaftlicher Erkenntnisse dar. Was in der Grundlagenforschung, in der Technologie im Bereich der Naturstoffwissenschaften und der Wirtschaftswissenschaften vor allem zählt, sind Forschungsarbeiten, die in den wissenschaftlichen Zeitschriften veröffentlicht und in der Publikation zwecks Selektion der besten Arbeiten durch ausge- wiesene Fachexperten bewertet worden sind. Wie konkurrenzfähig ein Land in der Grundlagenforschung ist, lässt sich daher auch an der Entwicklung der Forschungstätigkeiten messen, wie sie sich im internationalen Publikationsgeschehen spiegeln. Wie die erwähnte Analyse zeigt, stammt etwas mehr als ein Drittel aller naturwissenschaftlichen Publikationen allein aus den USA, ein weiteres Drittel kommt aus Großbritannien, Deutschland, Frankreich, Japan und der UdSSR. Forschung über die Forschung: der Transparenz zuliebe

Wissenschaftliche Publikationen sind wichtig, nicht einfach um ihrer selbst, sondern vor allem auch als Mittel zum Zweck. Tatsächlich scheint es alles andere als müsig sich zu fragen, wie folgenreich die veröffentlichten Forschungsergebnisse denn überhaupt sind. Zu forschen ist, ob die wissenschaftlichen Erkenntnisse beachtet und benutzt, was die Geltung und Nutzung der Forschungsveröffentlichungen betrifft. Diejenige Forschung die wir so hoch praktizieren sollte, um die Zukunft zu profilieren. Es ist auf den Stipendiaten-Oberassistenten-Salaris der bestehenden Hochschule eingerichtet.

Die schweizerische Grundlagenforschung auf dem internationalen Prüfstand: Weniger ist manchmal mehr.
der übrigen Fachwelt im allgemeinen deutlich überdurchschnittlich häufig zitiert worden sind. Die Unterschiede zwischen den einzelnen Forschungsgebieten sind allerdings bedeutend.

- Generell konnte sich die schweizerische Grundlagenforschung hinsichtlich der erzielten Aufmerksamkeit in der internationalen Fachwelt im Zeitraum 1981–1986 nochmals steigern. Dies im Vergleich zu den schon auf hohem Niveau liegenden Werten einer früheren Studie, die der Schweizerische Wissenschaftsrat im Jahre 1989 in Zusammenarbeit mit dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (SNF) veröffentlicht hat.

- Im internationalen Vergleich nimmt die schweizerische Forschung hinsichtlich ihrer Rezeption namentlich in folgenden Gebieten einen Spitzenplatz ein:

Aus dem SGCI-Jahresbericht 1990

Die Betonung des Sonderfalls Schweiz wird im Blick auf die Schaffung des europäischen Binnenmarktes zunehmend zu einem Hindernis, unterstreicht Dr. A.F. Leuenberger, Präsident der Schweizerischen Gesellschaft für Chemische Industrie (SGCI) im Vorwort des soeben veröffentlichten Jahresberichts des Branchenverbandes. Wichtig für die international tätigen Unternehmen der chemisch-pharmazeutischen Industrie sei es, bei grenzüberschreitenden Problemen z.B. Umweltschutz, Patentschutz und Gentechnik noch vermehrt eine internationale Harmonisierung der konkreten Regelungen anzustreben. Im internationalen Standortwettbewerb habe die Schweiz keine Punkte gutgemacht.

Im Berichtsjahr 1990 wurde eine zunehmende politische Entscheidungsschwäche sowie eine damit einhergehende Verlangsamung der politischen Entscheidungsprozesse beobachtet. Ein Grund dafür dürfte die allmähliche Verpolitisierung unserer demokratischen Rechtsmit tel sein, wodurch es möglich wird, industrielle Tätigkeiten nachhaltig zu behindern. Gefragt sind günstige Rahmenbedingungen, um die Qualität des Standortes Schweiz zu erhalten, wie beispielsweise Regelungen des Gesetzgebers, die eine marktgerechte industrielle Produktion ermöglichen und dem Unternehmer die notwendige Entscheidungsfreiheit belassen.

Biomedizinische Forschung, Chemie, Physik, sowie Ingenieur- und technische Wissenschaften. In der Breite der klinischen Medizin, wo gesammelt der erste Studie trotz Verhältnismäßig starke publizistischer Aktivität nur eine unterdurchschnittlich Aufmerksamkeit erzielt worden war, hat sich die Situation tendenziell etwas verbessert.

Ouelle: Der Stand der schweizerischen Grundlagenforschung im internationalen Vergleich (Daten für die Jahre 1981–1986). Wissenschaftsindikatoren auf der Grundlage bibliometrischer Daten, Herausgeber: SWR, Wissenschaftspolitik, Beat H. Nr. 51, Bern 1991.

Weitere Auskunft erteilt: Dr. Francesca De Pinto, wissenschaftl. Adjunkt, Schweiz. Wissenschaftsrat, Wildhainweg 9, Postfach 5675, 3001 Bern (Telefon: 031/6178 54; Telefax: 031/6177 54).

Vorträge

Laboratorium für Organische Chemie der ETH-Zürich

Organisch-chemische Kolloquien

Hörsaal CHN A31, Universitätstrasse 16, 8092 Zürich montags, jeweils 16.30 Uhr

1. Juli 1991 Prof. Dr. Hanke Hennecce
 Mikrobiologisches Institut, ETH Zentrum, Zürich
 »Wie diskriminiert ein Enzym zwischen den Substraten Phenylalanin und para-substituierten Phenylalanin-Analoge? Untersuchungen an Phenylalanin-tRNA Synthetase-Mutanten von E. coli und deren praktische Anwendung«

8. Juli 1991 fällt aus wegen Abteilungskonferenz

15. Juli 1991 Prof. Dr. Günther Helmschke
 Institut für Organische Chemie, Universität Heidelberg, BRD
 »Enantio- und diastereoselektive Diels-Alder Synthese: Grundlagen und Anwendungen«

Chemische Gesellschaft Zürich

Alle Vorträge finden statt: Mittwoch 17.15 Uhr
Hörsaal 15-G-19 der Universität Zürich-Irchel
Winterthurerstrasse 190, 8057 Zürich

3. Juli 1991 Prof. Dr. W. Bronner
 Institut für Anorganische Chemie
 RWTH Aachen, Aachen, BRD
 »Komplexe Übergangsmetallhydride«

10. Juli 1991 Prof. Dr. W. Kirns dispute Chemische Industrie II
 Ruhr-Universität Bochum, Bochum, BRD
 »Carbone und die O-H-Bindung«

Institut für Physikalische Chemie der Universität Basel

Klingelbergstrasse 80
Kolloquium über Physikalische Chemie
16.30 Uhr im kleinen Hörsaal (2. Stock)

3. Juli 1991 Prof. Dr. H. Hoffmann
 Institut für Physikalische Chemie I, Universität Bayreuth, BRD
 »Braunmegele: Ihre mikroskopische Struktur und makroskopische Eigenschaften«
der übrigen Fachwelt im allgemeinen deutlich überdurchschnittlich häufig zitiert worden sind. Die Unterschiede zwischen den einzelnen Forschungsgebieten sind allerdings bedeutend.

- Generell konnte sich die schwizerische Grundlagenforschung hinsichtlich der erzielten Aufmerksamkeit im internationalen Kontext in den letzten Jahren weiter ausbreiten, so dass sie auch internationaler Bekanntheit erlangte. Aus diesem Grund gab es in den letzten Jahren eine stark erhöhte Kapazität, die fast nur der Schweiz in internationalen Projekten zufließt.

- Im internationalen Vergleich nimmt die schwizerische Forschung hinsichtlich ihrer Rezeption namentlich in folgenden Gebieten einen Spitzenplatz ein: Biomedizinische Forschung, Chemie, Physik, sowie Ingenieur- und technische Wissenschaften. Der bundesweite Format der (Bundes-)Wissenschaftsministerien und der gemeinnützigen Organisationen sichert die Schweiz ein führendes Position in der internationalen Forschungsszene.

Weitere Auskünfte erteilt: Dr. Francesco Du Pozzo, Wissenschaftsadjunkt, Schweizer Wissenschaftsrat, Wildhainweg 9, Postfach 5675, 3001 Bern (Telefon: 031/6196 96; Telefax: 031/6178 54).

Aus dem SGCI-Jahresbericht 1990

Die Betonung des Sonderfalls Schweiz wird im Blick auf die Schaffung des europäischen Binnenmarktes zunehmend zu einem Hindernis, unterstreicht Dr. A.F. Leuenberger, Präsident der Schweizerischen Gesellschaft für Chemische Industrie (SGCI) im Vorwort des soeben vorgestellten Jahresberichts des Branchenverbandes. Wichtig für die international tätigen Unternehmen der pharmazeutischen Industrie sei es, bei grenzüberschreitenden Problemen mit z.B. Umweltschutz, Patentsschutz und Gentechnik noch vermehrt eine internationale Harmonisierung zu erzielen. Der Berichtsjahr 1990 wurde eine zunehmende politische Entscheidungswirkung sowie eine damit einhergehende Verlangsamung der politischen Entscheidungsprozesse beobachtet. Ein Grund dafür dürfte die allmähliche Verpolitisierung unserer demokratischen Rechtsmitte sein, wodurch es möglich wird, industrielle Entscheidungen nachhaltig zu beeinflussen. Gefragt sind günstige Rahmenbedingungen, um die Qualität des Standortes Schweiz zu erhalten. Als Beispiel dafür die Analyse der Entwicklung der pharmazeutischen Industrie in der Schweiz.

Laboratorium für Organische Chemie der ETH-Zürich Organisch-chemische Kolloquien

Hörsaal CHN A31, Universitätsstrasse 16, 8092 Zürich montags, jeweils 16.30 Uhr

1. Juli 1991 Prof. Dr. Hanke Hennecke Mikrobiologisches Institut, ETHEZ Zürich «Wie diskriminiert ein Enzym zwischen den Substraten Phenylalanin und para-substituierten Phenylalanin-Analoge? Untersuchungen an Phenylalanin-tRNA Synthesetautomaten von E. coli und deren praktische Anwendung»

8. Juli 1991 fällt aus wegen Abteilungskonferenz

15. Juli 1991 Prof. Dr. Günter Helmchen Institut für Organische Chemie, Universität Heidelberg, BRD («Enantio- und diastereoselektive Diels-Alder Synthese: Grundlagen und Anwendungen»)

Chemische Gesellschaft Zürich

Alle Vorträge finden statt: Mittwoch 17.15 Uhr Hörsaal 15-G-19 der Universität Zürich-Irchel Winterhurstrasse 190, 8057 Zürich

3. Juli 1991 Prof. Dr. W. Bronger Institut für Anorganische Chemie RWTH Aachen, Aachen, BRD («Komplexe Übergangsmetallhydride»)

10. Juli 1991 Prof. Dr. W. Kirmse Lehrstuhl für Organische Chemie II Ruhr-Universität Bochum, Bochum, BRD («Carbene und die O-H-Bindung»)

Institut für Physikalische Chemie der Universität Basel

Klingelbergstrasse 80
Kolloquium über Physikalische Chemie 16.30 Uhr im kleinen Hörsaal (2. Stock)

3. Juli 1991 Prof. Dr. H. Hoffmann Institut für Physikalische Chemie I, Universität Bayreuth, BRD («Braunengele: Ihre mikroskopische Struktur und makroskopische Eigenschaften»)
der übrigen Fachwelt im allgemeinen deutlich überdurchschnittlich häufig zitiert worden sind. Die Unterschiede zwischen den einzelnen Forschungsgebieten sind allerdings bedeutend.

- Generell konnte sich die schweizerische Grundlagenforschung hinsichtlich der erzielten Aufmerksamkeit in der internationalen Fachwelt im Zeitraum 1981-1986 nochmals steigern. Dies im Vergleich zu den schon auf hohem Niveau liegenden Werten einer früheren Studie, die der Schweizerische Nationalfonds im Jahre 1989 in Zusammenarbeit mit dem Schweizerischen Nationalrat zum Förderung der wissenschaftlichen Forschung (SNF) veröffentlicht hat.

- Im internationalen Vergleich nimmt die schweizerische Forschung hinsichtlich ihrer Rezeption namentlich in folgenden Gebieten einen Spitzenplatz ein:

Aus dem SGCI-Jahresbericht 1990

Die Betonung des Sonderfalls Schweiz wird im Blick auf die Schaffung des europäischen Binnenmarktes zunehmend zu einem Hindernis, unterstreicht Dr. A.F. Leuenberger, Präsident der Schweizerischen Gesellschaft für Chemische Industrie (SGCI) im Vorwort des soeben veröffentlichten Jahresberichts des Branchenverbandes. Wichtig für die international tätigen Unternehmen der chemisch-pharmazeutischen Industrie sei es, bei grenzüberschreitenden Problemen z.B. Umweltschutz, Patentschutz und Genehmigung der konkreten Regelungen anzustreben. Im internationalen Standortwettbewerb habe die Schweiz keine Punkte gutgemacht.

Im Berichtsjahr 1990 wurde eine zunehmende politische Entscheidungsschwäche sowie eine damit einhergehende Verlangsamung der politischen Entscheidungsprozesse beobachtet. Ein Grund dafür dürfte die allmähliche Verpolitisierung unserer demokratischen Rechtsmitte sein, wodurch es möglich wird, industrielle Tätigkeiten nachhaltig zu behindern. Gefragt sind günstige Rahmenbedingungen für den Zulauf von hochqualifizierten Naturwissenschaftlern in die Schweiz, um den Standortvorteil der schweizerischen chemischen Industrie zu erhalten und damit unseres Arbeitsplatzverlustes zu verhindern.

Vorträge

Laboratorium für Organische Chemie der ETH-Zürich Organisch-chemische Kolloquien

Hörsaal CHN A31, Universitätstrasse 16, 8092 Zürich
mondags, jeweils 16.30 Uhr

1. Juli 1991 Prof. Dr. Hanke Hennecke
 Mikrobiologisches Institut, ETH Zentrum, Zürich
 «Wie diskriminiert ein Enzym zwischen den Substraten Phenylalanin und para-substituierten Phenylalanin-Analoge? Untersuchungen an Phenylalanin-tRNA Syntheset-Mutanten von E. coli und deren praktische Anwendung»

8. Juli 1991
 fällt aus wegen Abteilungskonferenz

15. Juli 1991 Prof. Dr. Günter Helmez
 Institut für Organische Chemie, Universität Heidelberg, BRD
 «Enantio- und diastereoselektive Diels-Alder Synthese: Grundlagen und Anwendungen»

Chemische Gesellschaft Zürich

Alle Vorträge finden statt: Mittwoch 17.15 Uhr
Hörsaal 15-G-19 der Universität Zürich-Irchel
Winterthurerstrasse 190, 8057 Zürich

3. Juli 1991 Prof. Dr. W. Bröger
 Institut für Anorganische Chemie
 RWTH Aachen, Aachen, BRD
 «Komplexe Übergangsmetallhydride»

10. Juli 1991 Prof. Dr. W. Kirmse
 Lehrstuhl für Organische Chemie II
 Ruhr-Universität Bochum, Bochum, BRD
 «Carbone und die O-H-Bindung»

Institut für Physikalische Chemie der Universität Basel

Klingelbergstrasse 80
Kolloquium über Physikalische Chemie
16.30 Uhr im kleinen Hörsaal (2. Stock)

3. Juli 1991 Prof. Dr. H. Hoffmann
 Institut für Physikalische Chemie I, Universität Bayreuth, BRD
 «Brummele: Ihre mikroskopische Struktur und makroskopische Eigenschaften»
INFORMATION

Laboratorium für Physikalische Chemie der ETH Zürich
Competence Center in Computational Chemistry C4

Hörsaal CHN E 7, Universitätstrasse 2

2. Juli 1991
17.15 Uhr
Prof. Ed. Meyer
Texas A&M University College Station
‘Structure Analysis and MD Simulations of Native and Complete Elastase’
(gemeinsam mit dem Kolloquium für Physikalische Chemie)

4. Juli 1991
17.30 Uhr
Prof. R.M.J. Cotterill
Technical University of Denmark, Lyngby
‘Molecular Hyperdynamics and Neural Network Studies of Proteins’

9. Juli 1991
Cosimo De Caro
17.15 Uhr
Laboratorium für Physikalische Chemie, ETH Zürich
‘Holographisches, spektrales Lochbrennen: Von der Bildspeicherung zu den Bildkorrelationsexperimenten’

16. Juli 1991
Dr. Denis Petitprez
17.15 Uhr
Laboratorium für Physikalische Chemie, ETH Zürich
‘Infrared diode laser spectroscopy of instable species of astrophysical interest’

Laboratorium für Anorganische Chemie der ETH Zürich

Koordinationschemie und homogene Katalyse
Mittwoch
Universitätstrasse 6

1. Juli 1991
Dr. A. Vlcek, Jr.
17.15 Uhr
Czechoslovak Academy of Sciences, Prague
‘Photochemical and Thermal Reactivity of Mn-carboxyls with Quinones’

3. Juli 1991
Prof. Trevor G. Appleton
9.00 Uhr
Univ. of Queensland, St. Lucia
CAB B-9
‘NMR of Complexes with 13C-Enriched Ligands’

Bei der Redaktion eingetroffene Bücher

F.W. Lichtenhaller
‘Carbohydrates as Organic Raw Materials’
VCH Verlagsgesellschaft mbH, D–6940 Weinheim, 1991.

Personalia

Geburtstage

René Gebhard
Dr. phil. II, Chemiker, Riehen, Mitglied des SChV, feiert am 1.7.91 seinen 65. Geburtstag.

Erwin Greuter
Chemiker HTL, Herisau, Mitglied des SChV, feiert am 1.7.91 seinen 75. Geburtstag.

Gustav Székely
Dr. Chem., Seitalberg, Mitglied des SChV, feiert am 10.7.91 seinen 65. Geburtstag.

Rudolf Kupfer
Dr. Ing. Chem., Zürich, Mitglied des SChV, feiert am 11.7.91 seinen 70. Geburtstag.

Friedrich Lohse
Prof. Dr., Oberwil, Mitglied des SChV, feiert am 19.7.91 seinen 60. Geburtstag.

Max Peter
Dr. Ing. Chem., Pfaffhausen, Mitglied des SChV, feiert am 22.7.91 seinen 65. Geburtstag.

Werner Richarz
Prof. Dr., Zürich, Mitglied des SChV, feiert am 22.7.91 seinen 65. Geburtstag.

Vladimir Prelog
Prof. Dr., Zürich, Mitglied des SChV, feiert am 23.7.91 seinen 85. Geburtstag.

Rudolf Antiker
Dr. sc. techn., Binningen, Mitglied des SChV, feiert am 25.7.91 seinen 65. Geburtstag.

Eugen von Wietersheim
Dr. sc. techn., Bremgarten, Mitglied des SChV, feiert am 27.7.91 seinen 60. Geburtstag.

Andor Fürst
PD Dr. sc. techn., Basel, Mitglied des SChV, feiert am 28.7.91 seinen 75. Geburtstag.

Heinrich Frick
Dr. sc. techn., Riehen, Mitglied des SChV, feiert am 6.8.91 seinen 70. Geburtstag.

Tony Brechbühler
Dr. phil. II, Binningen, Mitglied des SChV, feiert am 10.8.91 seinen 70. Geburtstag.

Neue Mitglieder

Urs Brändli
Dr. sc. nat., Lenzburgerstrasse 1, 5600 Ammerswil

Markus Gautschi
Dipl. Chem. ETH, Ifangweg 2, 5734 Reinach

Dieter Müller
Dipl. Chem. ETH, Kleinmünsterstrasse 15, 4057 Basel

Michael Przybyski
Prof. Dr. rer. nat., Universität Konstanz

Akademische Ehrungen

Prof. Dr. Jack D. Dunitz, Professor der ETH Zürich für organische Chemie im Ruhestand, wurde der 1991 Buerger Award der American Crystallographic Association zugesprochen. Prof. Dunitz ist der erste europäische Wissenschaftler, dem dieser angestellte Preis im Juli 1991 verliehen wurde.

Die Deutsche Akademie der Naturforscher Leopoldina hat Prof. Dr. Albert Eschenmoser, Professor der ETH Zürich für allgemeine organische Chemie, die Cohnheus-Medaille, eine traditionsreiche, weltweit besonders hochgeschätzte Auszeichnung verliehen.

Berufungen/Wahlen

Université de Fribourg:

M. Thomas Bally a été nommé au rang de professeur associé ad personam de chimie physique, avec entrée en fonction au 1er avril 1991.

M. Reinhard Neier a été nommé au rang de professeur associé de chimie organique avec entrée en fonction au 1er avril 1991.

ETH-Zürich:

Als ordentlicher Professor für Lebensmitteltechnologie an der ETH-Zürich wurde auf den 1. April 1991 gewählt:

Felix Escher, geboren 1942, von Zürich, Dr. sc. techn., bis uninh Titularprofessor und wissenschaftlicher Adjunct am Institut für Lebensmittelwissenschaften der ETH-Zürich.

Als ausserordentlicher Professor für Pharmazeutische Chemie an der ETH-Zürich wurde auf den 1. April 1991 gewählt:

Gerd Folkers, geboren 1953, deutscher Staatsangehöriger, Dr. rer. nat., bis anhinh wissenschaftlicher Mitarbeiter am Institut für Pharmazeutische Chemie der Universität Tübingen.
Laboratorium für Physikalische Chemie der ETH Zürich

Hörsaal CHN E 7, Universitätstrasse 2

2. Juli 1991
17.15 Uhr
Prof. Ed. Meyer
Texas A+M University College Station
'Structure Analysis and MD Simulations of Native and Complex Elastase'
(gemeinsam mit dem Kolloquium für Physikalische Chemie)

4. Juli 1991
17.30 Uhr
Prof. R.M.J. Cotterill
Technical University of Denmark, Lyngby
'Molecular Hyperdynamics and Neural Network Studies of Proteins'

9. Juli 1991
17.15 Uhr
Cosimo De Caro
Laboratorium für Physikalische Chemie, ETH Zürich
'Holographisches, spektrales Lochbrennen: Von der Bildspeicherung zu den Bildkorrelationsexperimenten'

16. Juli 1991
17.15 Uhr
Dr. Denis Petitprez
Laboratorium für Physikalische Chemie, ETH Zürich
'Infrared diode laser spectroscopy of instable species of astrophysical interest'

Laboratorium für Anorganische Chemie der ETH Zürich

Koordinationschemie und homogene Katalyse
Mittwoch
Universitätstrasse 6
1. Juli 1991
Dr. A. Vlcek, Jr.
Czechoslovak Academy of Sciences, Prague
'Photochemical and Thermal Reactivity of Mn-carboxyls with Quinones'

3. Juli 1991
Prof. Trevor G. Appleton
Univ. of Queensland, St. Lucia
'NMR of Complexes with \textit{\textit{N}}-Enriched Ligands'

Bei der Redaktion eingetroffene Bücher

F.W. Lichtenthaler
'Carbohydrates as Organic Raw Materials'
VCH Verlagsgesellschaft mbH, D–6940 Weinheim, 1991.

Personalia

Geburtstage

René Gebhard
Dr. phil. II, Chemiker, Riehen, Mitglied des SCHV, feiert am 1.7.91 seinen 65. Geburtstag.

Erwin Greuter
Chemiker HTL, Herisau, Mitglied des SCHV, feiert am 1.7.91 seinen 75. Geburtstag.

Gustav Székely
Dr. Chem., Seilsberg, Mitglied des SCHV, feiert am 10.7.91 seinen 65. Geburtstag.

Rudolf Kupfer
Dr. Ing. Chem., Zürich, Mitglied des SCHV, feiert am 11.7.91 seinen 70. Geburtstag.

Friedrich Lohse
Prof. Dr., Oberwil, Mitglied des SCHV, feiert am 19.7.91 seinen 60. Geburtstag.

Max Peter
Dr. Ing. Chem., Pfaffhausen, Mitglied des SCHV, feiert am 22.7.91 seinen 65. Geburtstag.

Werner Richard
Prof. Dr., Zürich, Mitglied des SCHV, feiert am 22.7.91 seinen 65. Geburtstag.

Vladimir Prolog
Prof. Dr., Zürich, Mitglied des SCHV, feiert am 23.7.91 seinen 85. Geburtstag.

Rudolf Antiker
Dr. sc. techn., Binningen, Mitglied des SCHV, feiert am 25.7.91 seinen 65. Geburtstag.

Eugen von Wietersheim
Dr. sc. techn., Bregenz, Mitglied des SCHV, feiert am 27.7.91 seinen 60. Geburtstag.

Ander Fürst
PD Dr. sc. techn., Basel, Mitglied des SCHV, feiert am 28.7.91 seinen 75. Geburtstag.

Heinrich Frick
Dr. sc. techn., Riehen, Mitglied des SCHV, feiert am 6.8.91 seinen 70. Geburtstag.

Tony Brechbühler
Dr. phil. II, Binningen, Mitglied des SCHV, feiert am 10.8.91 seinen 70. Geburtstag.

André Menger
Dr. sc. techn., Zolothenzaz, Mitglied des SCHV, feiert am 31.8.91 seinen 60. Geburtstag.

Newe Mitglieder

Urs Brändli
Dr. sc. nat., Lenzburgerstrasse 1, 5600 Ammerswil

Klaus Schneider
Diplomchemiker, Ringstrasse 1, D–6200 Wiesbaden

Markus Gautschi
Dipl. Chem. ETH, Hafweg 2, 5734 Reinach

E. Vogel
Dr. Wurthenste-Chemie AG, 6105 Schachen

Dieter Müller
Dipl. Chem. ETH, Kleinmünzinger-anlage 15, 4057 Basel

Rolf Wandeler
Dr. sc. techn., Dipl. Ing. Chem., 6707 Inama

Akademische Ehrungen

Prof. Dr. Jack D. Dunitz, Professor der ETH Zürich für organische Chemie im Ruhestand, wurde der 1991 Buerger Award der American Crystallographic Association zugesprochen. Prof. Dunitz ist der erste europäische Wissenschaftler, dem dieser angestellte Preis im Juli 1991 verliehen wird.

Die Deutsche Akademie der Naturforscher Leopoldina hat Prof. Dr. Albert Eschenmoser, Professor der ETH Zürich für allgemeine organische Chemie, die Cothenius-Medaille, eine traditionsreiche, weltweit besonders hochgeschätzte Auszeichnung verliehen.

Berufungen/Wahlen

Université de Fribourg:

M. Thomas Bally a été nommé au rang de professeur associé ad personam de chimie physique, avec entrée en fonction au 1er avril 1991.

M. Reinhard Neier a été nommé au rang de professeur associé de chimie organique avec entrée en fonction au 1er avril 1991.

ETH-Zürich:

Als ordentlicher Professor für Lebensmitteltechnologie ist der ETH-Zürich wurde auf den 1. April 1991 gewählt:

1. April 1991 gewählt:

Felix Escher, geboren 1942, von Zürich, Dr. sc. techn., bis uneh Titularprofessor und wissenschaftlicher Adjunkt am Institut für Lebensmittelwissenschaften der ETH-Zürich.

Als ausserordentlicher Professor für Pharmazeutische Chemie an der ETH-Zürich wurde auf den 1. April 1991 gewählt:

Gerd Folkers, geboren 1953, deutscher Staatsangehöriger, Dr. rer. nat., bis unehn wissenschaftlicher Mitarbeiter am Institut für Pharmazeutische Chemie der Universität Tübingen.