New Insights into the Protein Turnover Regulation in Ethylene Biosynthesis

Gyeong Mee Yoon*

INTRODUCTION

Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.

Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA

*Correspondence: yoonm@purdue.edu

Received 1 June, 2015; accepted 8 June, 2015; published online 22 June, 2015

Keywords: 14-3-3, ACS, ethylene, phosphorylation, protein turnover
Ethylene Biosynthesis
Gyeong Mee Yoon

The ethylene biosynthetic pathway and its intermediates. S-adenosyl methionine (SAM) synthase uses methionine as a precursor for SAM. SAM is subsequently converted to 1-amino-cyclopropane-1-carboxylic acid (ACC) in the first committed step in the ethylene biosynthesis by a family of ACC synthase (ACS) proteins, resulting in the release of methylthioadenosine (MTA). ACC is then finally converted to ethylene by ACC oxidase (ACO). MTA is recycled back to Yang cycles. Dashed line indicates additional enzymatic steps in the Yang cycle.

MOLECULAR GENETIC EVIDENCE FOR POST-TRANSLATIONAL MODIFICATION OF ACC SYNTHASES

Treatment of Arabidopsis etiolated seedlings with ethylene results in the triple response (Guzman and Ecker, 1990). The triple response has been extensively used to identify Arabidopsis mutants with defects in ethylene perception and signaling, as well as mutants affecting ethylene biosynthesis. The ethylene biosynthesis mutants can be further categorized into two groups: (1) cytokinin-insensitive (cin) mutants which are impaired in response to cytokinin, resulting in reduced levels of ethylene production in response to cytokinin; (2) ethylene-overproducer (eto) mutants which result in constitutive ethylene response due to increased ethylene biosynthesis (Chae et al., 2003; Vogel et al., 1998). The recessive cin5 mutant was identified as the first example of the cin mutants, and further characterization of the mutant revealed that the corresponding cin5 mutation is a loss of function allele of the ACS5 gene. The cin5 mutant is severely insensitive to exogenous cytokinin, and as a result, it fails to display the triple response. However, it shows normal triple response to ethylene, suggesting ACS5 is the primary target of cytokinin-mediated ethylene induction in etiolated seedlings (Vogel et al., 1998). Other phytohormones, such as auxin, brassinosteroids and ABA are also known hormonal triggers that increase ethylene production (Arteca and Arteca, 2008; Woeste et al., 1999a; Yi et al., 1999; Zhang et al., 2009). In tomato, ethylene levels increase transcriptionally induced in response to auxin, and auxin treatment also alters the spatial expression pattern of the ACS genes (Tsuschisaka and Theologis, 2004). ABA has been shown to regulate ethylene production in apples, tomato and various plant species (Lara and Vendrell, 2000; Tari and Nagy, 1996; Zhang et al., 2009). In tomato, ethylene levels increase remarkably after ABA treatment and this coincides with the increase in the expression of LeACS2 (Zhang et al., 2009). Brassinosteroid is another phytohormone that enhances ethylene production by increasing the transcript abundance of ACS genes, but brassinosteroid in part promotes ethylene production by stabilizing ACS protein (Hansen et al., 2009; Yi et al., 1999). Cytokinin, however, stimulates ethylene production by acting on the stability of ACS proteins, thereby increasing the ethylene production in plants (Chae et al., 2003; Hansen et al., 2009; Vogel et al., 1998).

Analysis of eto mutants has provided further evidence that the stability of ACS proteins is regulated. Three eto mutants have been identified via genetic screens based on the constitutive triple response phenotype due to ethylene overproduction: eto1, eto2, and eto3 (Chae et al., 2003). Etiolated eto mutants
exhibit the constitutive triple response and this phenotypes is rescued by treatment of mutant seedlings with ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). This suggests that the *eto* mutants are affected in ethylene biosynthesis. The dominant *eto2* and *eto3* mutations alter the C-terminal domain of ACS5 and ACS9, both type-2 ACS proteins, as the result of a single base insertion and a missense mutation, respectively. The *eto2* and *eto3* mutants significantly produce more ethylene than wild-type seedlings, but this increase in ethylene production is not correlated to the ACS5 or ACS9 gene expression, thus suggesting that the mutants control the ACS function at the post-translational level similar to the action of cytokinin. These results reveal that the C-terminal domain of both ACS proteins is a target for post-translational modification for degradation (Chae and Kieber, 2005).

THE ROLE OF UBQUITINATION IN ETHYLENE BIOSYNTHESIS

Characterization of the *eto1* revealed that ubiquitination via the 26S proteasome pathway is involved in regulating ethylene biosynthesis by modulating the protein stability of type-2 ACS proteins. Recessive *eto1* produces a nearly 10-fold excess of ethylene compared to wild-type etiolated Arabidopsis seedlings and exhibits the constitutive triple response (Woeste et al., 1999b). Epistasis analysis demonstrates that ACS5 acts downstream of ETO1; the *eto1*-*cin5* double mutant produces significantly reduced amount of ethylene compared to *eto1* itself (Chae et al., 2003), indicating ETO1 plays a role as a negative regulator by acting through ACS5 in ethylene biosynthesis. (Wang et al., 2004). ETO1 encodes a novel plant-specific protein that contains a Broad-complex, Tramtrack, Bric-à-brac (BTB) and Tetrastrico-peptide repeat (TPR) with a coiled-coil domain (Wang et al., 2004). Proteins containing BTB motifs have been shown to participate in substrate recognition via their protein-protein interaction motifs and bridge substrates to Cullin 3 (CUL3)-based ubiquitin ligase complexes for degradation (Albagli et al., 1995; Pintard et al., 2004). The TPR motifs are involved in diverse protein-protein interactions, and also serve as a scaffold for the assembly of high-order protein complexes (Blatch and Lassle, 1999). ETO1 interacts with ACS5 and CUL3, and in the case of ACS5, this interaction is dependent on the C-terminus of ACS5, as ETO1 fails to interact with ACS5ΔC (Pintard et al., 2004; Wang et al., 2004). Consequently, these studies suggest that ETO1 serves as a substrate-specific adaptor to bridge ACS5 to the CUL3 to regulate ACS5 protein degradation. Analysis of ETO1 function in plants shows that ETO1 suppresses cytokinin-induced ACS protein stabilization via the C-terminus of ACS5. Overexpression of ETO1 inhibits cytokinin-induced ethylene biosynthesis, and overexpression of ACS5 results in a partial constitutive triple response which is suppressed by co-expression of ETO1 (Wang et al., 2004). However, additional data indicate that cytokinin-mediated stabilization and ETO1-mediated destabilization are at least partially independent effects; exogenous cytokinin treatment still increases ACS5 protein stability in etiolated *eto2* and *eto3* seedlings, suggesting cytokinin partially acts via an alternative mechanism that is independent of ETO1 and ACS5 C-terminus (Hansen et al., 2009).

Other factors that modify E3 ligase function involved in ethylene biosynthesis are the Related to the Ubiquitin (RUB) and RUB1 Conjugating Enzyme (RCE1) (Bostick et al., 2004; Larsen and Cancel, 2004). Like ubiquitin, RUB functions through a covalent attachment to target proteins. In Arabidopsis, RUB attaches to the cullins, thereby promoting the activity of the SCF (for Skp, Cdc53p/Cul1, and F-box protein) ubiquitin ligase complex for polyubiquitination of target proteins. Interestingly, RNA interference lines of RUB exhibit the partial triple response in etiolated seedlings due to the increase in ethylene biosynthesis, implying that conjugation of RUB to CUL3 is required for the activation of ETO1 containing CUL3 E3 ligase complex (Bostick et al., 2004). Analysis of the *rce1* mutant also demonstrated that the modification of RUB is required for regulating ethylene biosynthesis (Larsen and Cancel, 2004). RCE1 encodes a RUB conjugating enzyme, and has been shown to conjugate RUB to the SCF complex to modify the activity of the complex. The recessive *rce1* mutant displays the constitutive triple response and overproduces ethylene. Interestingly, the basis of ethylene overproduction phenotype of *rce1* is not due to enhanced ACS activity, but due to an increase of ACO activity. ACO is generally not a rate-limiting step in ethylene biosynthesis during vegetative Arabidopsis tissues; however, ethylene biosynthesis in *R. palustris* is limited by ACO activity during submergence. Elevated ethylene levels have been shown to increase ACO activity, which could explain the increased ACO activity in *rce1* (Vriezen et al., 1999).

THE ROLES OF PHOSPHORYLATION IN ETHYLENE BIOSYNTHESIS

Phosphorylation is one of the most abundant post-translational modifications which affect many important aspects of protein function, including activity, stability, subcellular localization and protein-protein interaction (Holt et al., 2009). Mounting evidence suggests that ethylene biosynthesis is regulated by phosphorylation events which likely influence ACS protein turnover. Studies from the application of kinase and phosphatase inhibitors to tomato suspension cell cultures and tissues indicated that phosphorylation regulates the activity and/or turnover of ACS (Kamioshihara et al., 2010). A CDPK present in the extracts of wounded tomato fruits phosphorylates LeACS2 (Mayfield et al., 2007). The extract containing CDPK activity phosphorylates the C-terminal domain of LeACS2 in vitro, but the activity of the LeACS2 does not show a significant increase, suggesting phosphorylation regulates the turnover of ACS rather than affecting the activity. The C-terminus of LeACS2 contains a consensus phosphorylation target site for a CDPK, and this CDPK recognition site is present in a subset of ACS isoforms (Fig. 2) (Kamioshihara et al., 2010). Unlike the target sites of MAPK in the C-terminal domain of the type-1 ACS proteins, phosphorylation of the CDPK target site, which lies immediately upstream from the target site for MAPK has not been shown to be phosphorylated in vivo and in vitro.

Among three types of ACS, protein stability of the type-1 and type-2 ACS proteins has been shown to be directly regulated by phosphorylation. Genetic and biochemical studies of a MAPK pathway have revealed that pathogen-activated Arabidopsis
MPK6 phosphorylates the type-1 ACS2 and ACS6, which leads to increased accumulation of these ACS proteins and, hence, increases ethylene production (Joo et al., 2008; Liu and Zhang, 2004). MPK6 phosphorylates 3 serine residues residing within the consensus MAPK target site in the C-terminus \textit{in vitro}, suggesting MPK6-mediated phosphorylation of ACS2 and ACS6 prevents their degradation, resulting in an increase in ethylene biosynthesis in response to pathogen attack. Li et al. (2014) report a similar result that rice MPK3 and 6 are involved in ethylene production via the Salt-Intolerance 1 receptor-like kinase (SIT1), but ACS stability was not discussed in their work.

Until recently, the effect of phosphorylation on type-2 ACS protein stability was not clear; neither direct phosphorylation nor responsible kinase has been identified. However, a recent study demonstrated that a Casein Kinase isoform 1.8 (CK1.8) phosphorylates the type-2 ACS5 protein, which in turn promotes the interaction between ETO1 and ACS5, resulting in the degradation of ACS5 protein (Tan and Xue, 2014). The ck1.8 mutant displays the constitutive triple response due to overproduction of ethylene similar to the eto mutant. Interestingly, the triple response of ck1.8 seedlings is only observed in the hypocotyl and hook, not in the roots, implying that CK1.8 affects specific aspects of ethylene-mediated seedling growth responses.

NEW PLAYERS AND THEIR ROLES IN ACS PROTEIN TURNOVER REGULATION IN ETHYLENE BIOSYNTHESIS

Several recent studies have identified novel regulatory factors which target multiple ACS isoforms belonging in different types of ACS (Fig. 3). This regulatory feature is distinct from that of previous known regulatory proteins with a type-specific target motif (e.g. ETO1/EOL E3 ligase for type-2 and MAPK3/6 for type-1 ACS). 14-3-3 proteins, novel regulator of ethylene biosynthesis, target all three types of ACS (Fig. 3) (Yoon and Kieber, 2013a). 14-3-3 proteins are a family of evolutionarily well-conserved dimer proteins that specifically interact with phosphoproteins and are involved in a diverse array of physiological processes (Darling et al., 2005; Dougherty and Morrison, 2004; Freeman and Morrison, 2011). Upon interaction with target proteins, 14-3-3 proteins change their localization, stability, and activity, resulting in changes in physiological responses (Freeman and Morrison, 2011). There are 13 functional 14-3-3 genes in Arabidopsis and their encoded proteins possess a highly conserved target binding domain, which can recognize a short stretch of peptide containing phosphoserine or phosphothreonin on target proteins (Aitken et al., 1992; De Boer et al., 2013; Denison et al., 2011). This could allow different 14-3-3 isoforms to function redundantly by recognizing similar sets of target proteins. However, increasing results suggest that a defined subset of 14-3-3 isoforms display specific functions, such as the regulation of stomatal opening, flowering time, and phytochrome signaling in Arabidopsis (Mayfield et al., 2007; Paul et al., 2008; Purvveshti et al., 2009; Tseng et al., 2012). It is unclear whether this is a result of biochemical specificity or simply differences in expression patterns of 14-3-3 isoforms in plants.

14-3-3 interacts with all three types of ACS proteins via an non-C-terminal domain of the proteins and there is no specificity in the interaction between 14-3-3 isoforms and ACS proteins in bimolecular fluorescence complementation assay (Yoon and Kieber, 2013a). 14-3-3 stabilizes ACS protein by direct interaction and by negatively regulating the stability of the E3 ligases, ETO1/EOLs, which specifically target the type-2 ACS proteins for degradation (Yoon and Kieber, 2013a). Studies from mammalian and yeast systems have suggested that the stability of F-box proteins which promote ubiquitination in the ubiquitin-proteasome pathway, is regulated based on the availability of substrates through an autocatalytic process (Ho et al., 2008; Wee et al., 2005). It is possible that 14-3-3 proteins preferentially interact with type-2 ACS proteins, which in turn leads to the depletion of the ACS proteins for the ETO1/EOLs, thus regulating the turnover of both sets of proteins. Alternatively, the interaction with dimeric 14-3-3 proteins may cause the ETO1/EOLs to dimerize, thereby promoting self-ubiquitination and subsequent degradation. Finally, the interaction with 14-3-3 proteins could enhance the interaction with distinct E3 ligases, such as XBAT32, leading to the ubiquitination and subsequent degradation of the ETO1/EOLs. Intriguingly, in mammalian cells, 14-3-3 interacts with and regulates the protein stability of short-lived p53 tumor suppressor protein and its cognate E3 ligases COP1 and MDM2 (Su et al., 2011; Yang et al., 2007). 14-3-3 stabilizes p53 by down-regulation of MDM2 and COP1 protein stability. This 14-3-3-mediated inverse stability regulation on p53 and MDM2 and COP shows a similar regulatory mechanism by which Arabidopsis 14-3-3 \(\psi \) control the protein stability of ACS5 and ETO1/EOLs, suggesting that the function of a subset of 14-3-3 isoforms in protein stability regulation is evolutionarily conserved between mammalian and plants. Several findings imply that 14-3-3 also regulates ACS stability independently of ETO1/EOLs (Yoon and Kieber, 2013a; 2013b). First, 14-3-3 interacts with ACS5t52, a type-2 ACS with a lack of TOE motif for ETO1/EOL interaction. Secondly, 14-3-3 directly interacts and stabilizes the sole type-3 ACS7 and type-1 ACS2, whose protein stability is not regulated by the ETO1/EOLs. Finally, 14-3-3 increases ACS stability in \(eto1/eol1/eol2 \) triple mutant. Thus, there is at least one other system acting to degrade type-2 ACS proteins in addition to the ETO1/EOLs, but in the manner dependent on 14-3-3 function. This is consistent with the observation that cytokinin and brassinosteroid increase type-2 ACS function partly through a TOE-independent mechanism (Hansen et al., 2009).

While 14-3-3 positively regulates ACS protein stability (Yoon and Kieber, 2013a; 2013b), studies from characterization of the \textit{RARE COLD INDUCIBLE} 1A (RC11A), which encodes a 14-3-3 \(\psi \) isoform suggest that 14-3-3 \(\psi \) negatively regulate the protein stability of ACS in response to cold stress (Catala et al., 2014).
rc11a mutant displays increased levels of ACS6 protein in response to cold treatment, and this change is not due to the changes of the ACS6 mRNA levels. However, the direct effect of 14-3-3 on ACS protein stability was not demonstrated in the study. Catala et al. suggest that the discrepancy of two studies might be contributed to the functional specificities of 14-3-3 isoforms; Yoon and Kieber (2013) used 14-3-3 ε, while Catala et al. (2014) used 14-3-3 γ isoform (Bomke, 2005; Fu et al., 2000; Paul et al., 2012). A recent study also reported that single 14-3-3 isoform could have distinct functions depending on the binding sites on a given target protein (Ganguly et al., 2005).

Identification and characterization of the role of CK1.8 have also brought new insights into the post-translational regulation in ethylene biosynthesis (Tan and Xue, 2014). CK1.8 is a conserved serine/threonine protein kinase that plays role in various physiological processes, including blue light signaling, flowering, microtubule organization and brassinosteroid signaling in rice (Ben-Nissan et al., 2008; Dai and Xue, 2010; Liu et al., 2003; Tan et al., 2013). As briefly discussed in the previous section, the cki1.8 mutant overproduces ethylene resulting from accumulation of ACS proteins. suggesting CK1.8 is a negative regulator of ACS protein stability. CK1.8 phosphorylates ACS5 at threonine residue 463 (T463) which is located within the TOE motif, and phosphorylation on this site promotes the interaction with ETO1, indicating the phosphorylation of T463 on ACS5 plays a negative role in ACS5 protein stability. However, T463 is not highly conserved in type-2 ACS proteins. It can be found in only in a subset of Arabidopsis type-2 ACS (ACS5 and ACS9), type-1 (ACS6), and tomato type-1 (LeACS2), suggesting that CK1.8 could target different ACS types rather than committing to regulate a specific type of ACS (Fig. 3). The role of CK1.8 is somewhat in contrast to what has been observed from other studies indicating that phosphorylation promotes ACS protein stability.

The roots curl in 1-N-naphthylphthalamic acid 1 (RCN1) gene encodes one of three regulatory/scaffolding A subunits of Arabidopsis PPI2A, and targets the type-1 protein ACS2 and ACS6 for regulating their stability (Skottke et al., 2011). Genetic studies revealed that the function of RCN1 requires ACS2 and ACS6 and the rcn1 mutant exhibits increased accumulation of the ACS6, suggesting phosphorylation promotes the protein stability of type-1 ACS. Strikingly, rcn1 shows different effects on type-2 ACS5 protein stability. In etiolated rcn1 seedlings, the accumulation of myc-tagged ACS5 is significantly reduced, whereas accumulation and turnover of the myc-ACS5 is not affected, indicating that RCN1 plays a positive role in ACS5 stability through the TOE motif of ACS5. However, RCN1-directed dephosphorylation on ACS5 has not been evidenced, suggesting the possibility that RCN1 may dephosphorylate the ETO1 complex. Both RCN1 and CK1.8 regulate the stability of ACS5 through the TOE domain, but it is not clear whether the effects of RCN1 on ACS5 are dependent on CK1.8 or ETO1/ EOLs.

Due to the lack of regulatory motifs in the C-terminal domain, including phosphorylation sites, it was considered that ACS7, the sole type-3 ACS, may not be subjected to proteasome-mediated degradation pathway, and that it may be more stable than other ACS proteins (Chae and Kieber, 2005). However, Lyzena et al., recently showed that the protein stability of ACS7 is also governed by the ubiquitin-mediated proteasomal degradation, and that degradation requires the RING-type E3 ligase XBAT32 (Lyzena et al., 2012). Interestingly, XBAT32 also confers protein instability to the type-2 ACS4, suggesting XBAT32-mediated degradation mechanism is not specific for the type-3 ACS. A cell-free degradation assay shows that changes in 4 lysine residues in the C-terminal domain of ACS4 results in accelerating degradation of ACS4 protein. This result is similar to the observation that K435R in the C-terminus of Flag-ACS7 promotes the turnover rate of the ACS7, suggesting the C-terminal lysine residues are not for ubiquitination, but for stabilization of ACS4 and ACS7. Shortly after, Xiong et al. raise interesting aspects of the protein stability regulation of ACS7. They showed that destabilization sequences of the ACS7 are located in the N-terminus of ACS7. The N-terminal 54 residues of the ACS7 confer significant instability to ACS7(1-54)-GUS and first 14 amino acids are responsible for negative regulation of the ACS7 protein stability (Xiong et al., 2014). One possible explanation for this may be due to the nature of the C-terminal fusion of the ACS7-GUS used in the study. Traditionally, the N-terminal fusion of ACS has been routinely utilized for studying the turnover of ACS to avoid masking the C-terminal regulatory domain and this may be blamed for concealing the destabilization signals located at the N-termini and making only the C-terminal signals available to degradation machinery. It is interesting to further study the role of the N-terminal domain of other types of ACS whether they also contain putative degradation sequences in their N-termini.

IDENTIFICATION OF NOVEL REGULATORS IN ETHYLENE BIOSYNTHESIS: THE POINT OF CROSS-TALK BETWEEN ETHYLENE AND OTHER BIOSYNTHETIC/SIGNALING PATHWAYS?

Several studies indicate that there are molecular components acting on the non-C-terminal domain of ACS proteins to regulate their stability. Cytokinin and brassinosteroid stabilize ACS5 and ACS9 and the effects of these two hormones on the protein stability are additive, suggesting cytokinin and brassinosteroid act through distinct TOE-independent mechanisms on these ACS proteins (Hansen et al., 2009). Genetic studies showed that cytokinin-mediated ACS stabilization requires a functional cytokinin signaling pathway (Hansen et al., 2009). Mutation in the signaling components, cytokinin receptors, AHP6s, and type-A and type-B transcription factors, in the cytokinin signaling pathway produce reduced amounts of ethylene in response to exogenous cytokinin. The effect of brassinosteroid in ethylene biosynthesis is somewhat distinguished from the typical triple response that has been observed with cytokinin treatment; BR treatment results in a shortened and thickened hypocotyl formation; but it does not induce an exaggerated hook formation; and shortening of the root and hypocotyl is less severe than for cytokinin-treated seedlings. Interestingly, the ethylene-insensitive mutant ein2-5 still shows cytokinin and BR induced hypocotyl phenotypes, although the extent is not as severe as in wild type, indicating this process is independent of the ethylene signaling pathway. Although it has not been demonstrated whether gibberellins regulates the turnover of ACS proteins, studies from the characterization of a gai;eto2 (gibberellin insensitive,ethylene overproducing) double mutant showed that GA signaling is required for ACS stabilization via the TOE-independent manner, as the overproduction phenotype of eto2 is abolished in the gai;eto2 double mutant (De Grauwe et al., 2008a; 2008b). Furthermore, 14-3-3-mediated ETO1/EOL-independent stabilization of ACS proteins also indicates the existence of an alternative mechanism to stabilize ACS proteins (Yoon and Kieber, 2013a). It is not clear whether the ETO1/EOL-independent mechanism acts in the same pathway that is utilized by the other factors, but is it of great interest to further study to identify molecular elements involving in these regulatory pathways.
Together, these studies indicate that there are molecular components that act as the points of cross-talk between ethylene biosynthesis and other hormonal signaling pathways. Identification of these elements will bring new insights into understanding the mechanism by which protein turnover of ACS is regulated to coordinate and merge different hormonal inputs to regulate ethylene production which effects on many diverse ranges of plant growth and development.

ACKNOWLEDGMENTS
The author thanks Alison Delong for critical reading of the manuscript and comments. This work was supported by a start-up fund by Purdue University to GMY.

REFERENCES
Abeles, F.B., Morgan, P.W., and Saltveit, M.E.J. (1992). Ethylene in plant biology. (San Diego, CA: Academic Press)
Aldrich, D.O., and Yang, S.F. (1977). Methionine metabolism in plant growth and development. The formation of these elements will bring new insights into understanding the mechanism by which protein turnover of ACS is regulated to coordinate and merge different hormonal inputs to regulate ethylene production which effects on many diverse ranges of plant growth and development.

ACKNOWLEDGMENTS
The author thanks Alison Delong for critical reading of the manuscript and comments. This work was supported by a start-up fund by Purdue University to GMY.

REFERENCES
Abeles, F.B., Morgan, P.W., and Saltveit, M.E.J. (1992). Ethylene in plant biology. (San Diego, CA: Academic Press)
Aldrich, D.O., and Yang, S.F. (1977). Methionine metabolism in plant growth and development. The formation of these elements will bring new insights into understanding the mechanism by which protein turnover of ACS is regulated to coordinate and merge different hormonal inputs to regulate ethylene production which effects on many diverse ranges of plant growth and development.

ACKNOWLEDGMENTS
The author thanks Alison Delong for critical reading of the manuscript and comments. This work was supported by a start-up fund by Purdue University to GMY.

REFERENCES
Abeles, F.B., Morgan, P.W., and Saltveit, M.E.J. (1992). Ethylene in plant biology. (San Diego, CA: Academic Press)
Aldrich, D.O., and Yang, S.F. (1977). Methionine metabolism in plant growth and development. The formation of these elements will bring new insights into understanding the mechanism by which protein turnover of ACS is regulated to coordinate and merge different hormonal inputs to regulate ethylene production which effects on many diverse ranges of plant growth and development.

ACKNOWLEDGMENTS
The author thanks Alison Delong for critical reading of the manuscript and comments. This work was supported by a start-up fund by Purdue University to GMY.
Su, C.H., Zhao, R., Zhang, F., Qu, C., Chen, B., Feng, Y.H., Phan, L., Chen, J., Wang, H., Wang, H., et al. (2011). 14-3-3σigma exerts tumor-suppressor activity mediated by regulation of CPT1P1 stability. Cancer Res. 71, 884-894.
Tan, S.T., and Xue, H.W. (2014). Casein kinase 1 regulates ethylene synthesis by phosphorylating and promoting the turnover of ACS5. Cell Rep. 9, 1692-1702.
Tan, S.T., Dai, C., Liu, H.T., and Xue, H.W. (2013). Arabidopsis casein kinase1 proteins CK1.3 and CK1.4 phosphorylate cytochrome2 to regulate blue light signaling. Plant Cell 25, 2618-2632.
Tari, I., and Nagy, M. (1996). Abscisic acid and ethrel abolish the inhibition of adventitious root formation of paclobutrazol-treated bean primary leaf cuttings. Biol. Plant. 38, 369-375.
Tseng, T.S., Whippo, C., Hangarter, R.P., and Briggs, W.R. (2012). The role of a 14-3-3 protein in stomatal opening mediated by PHOT2 in Arabidopsis. Plant Cell 24, 1114-1126.
Tsuchisaka, A., and Theologis, A. (2004). Unique and overlapping expression patterns among the Arabidopsis 1-amino cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 136, 2982-3000.
Van de Peul, B., De Bruyn, J., De Schutter, J., Van Der Straeten, D. (2014). 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front. Plant Sci. 5, 640.
Vogel, J.P., Woeste, K.E., Theologis, A., and Kieber, J.J. (1998). Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc. Natl. Acad. Sci. USA 95, 4766-4771.
Vriezen, W.H., Hulzink, R., Mariani, C., and Voesenek, L.A. (1999). 1-aminocyclopropane-1-carboxylic acid oxidase activity limits ethylene biosynthesis in the pea hypocotyls during submergence. Plant Physiol. 121, 189-196.
Wang, K.L., Yoshida, H., Lurin, C., and Ecker, J.R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 426, 945-950.
Wee, S., Geyer, P.K., Todda, T., and Wolf, D.A. (2005). Csn facilitates CulinRING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nat. Cell Biol. 7, 387-391.
Woeste, K.E., Vogel, J.P., and Kieber, J.J. (1999a). Factors regulating ethylene biosynthesis in elevated Arabidopsis Italiana seedlings. Physiol. Plant. 105, 478-484.
Woeste, K.E., Ye, C., and Kieber, J.J. (1999b). Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol. 119, 521-530.
Xiong, L., Xiao, D., Xu, X., Guo, Z., and Wang, N.N. (2014). The non-catalytic N-terminal domain of ACS7 is involved in the post-translational regulation of this gene in Arabidopsis. J. Exp. Bot. 65, 4397-4408.
Yang, S.F., and Hoffman, N.E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35, 34.
Yang, H.Y., Wen, Y.Y., Lin, Y.I., Pham, L., Su, C.H., Yang, H., Chen, J., and Lee, M.H. (2007). Roles for negative cell regulator 14-3-3 sigma in control of MdM2 activities. Oncogene 26, 7355-7362.
Yi, H.C., Joo, S., Nam, K.H., Lee, J.S., Kang, B.G., and Kim, W.T. (1999). Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylic synthase gene family in mang bean (Vigna radiata L.). Plant Mol. Biol. 41, 443-454.
Yoon, G.M., and Kieber, J.J. (2011a). 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25, 1016-1026.
Yoon, G.M., and Kieber, J.J. (2013b). ACC synthase and its cognate E3 ligase are inversely regulated by light. Plant Signal. Behav. 8, e26478.
Yoshida, H., Nagata, M., Saito, K., Wang, K.L., and Ecker, J.R. (2005). Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylic acid synthase. Proc. Natl. Acad. Sci. USA 102, 145-154.
Yoshida, H., Wang, K.L., Chang, C.M., Morit, K., Uchida, E., and Ecker, J.R. (2000). The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. C 62, 427-437.
Zamir, M., and Theologis, A. (1994). Ethylene biosynthesis and action: a case of conservation. The 26, 1579-1597.
Zhang, M., Yuan, B., and Leng, P. (2009). The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J. Exp. Bot. 60, 1579-1588.