Degree-based topological indices on anticancer drugs with QSPR analysis

M.C. Shanmukha*a,b,*, N.S. Basavarajappac, K.C. Shilpa*b,d, A. Ushe*a

* Department of Mathematics, Jain Institute of Technology, Davanagere, 577003, Karnataka, India
b Department of Computer Science and Engg., Bapuji Institute of Engineering and Technology, Davanagere, 577004, Karnataka, India
c Department of Mathematics, Bapuji Institute of Engineering and Technology, Davanagere, 577004, Karnataka, India
d Department of Mathematics, Alliance College of Engineering and Design, Alliance University, Anekal-Chandapura Road, Bangalore, Karnataka, India

ARTICLE INFO

Abstract

From last two to three decades, the world is facing the threat of finding treatment for Cancer. This disease is striking almost ten million people every year throughout the world. Anticancer drugs are those which are used to cure malignant disease i.e. Cancer. These anticancer drugs are available in different forms including alkalyting agents, hormones and anti metabolites. Various examinations reveals that, there will be a adjacent relationship between the characteristics of alkanes and the anticancer drugs viz. Boiling point, melting point, enthalpy etc. with their chemical structures. In this proposed work, various topological indices are defined on some anticancer drugs to help the researchers to know the physical characteristics and chemical reaction associated with them. We also discuss the QSPR analysis of thirteen degree based topological indices. Further, we showcase that the characteristics have good correlation with physico-chemical characteristics of anticancer drugs.

1. Introduction and terminologies

Cancer is the rapid growth of abnormal cells in the human body. Carcinogens are the substances that causes cancer. A carcinogen is a chemical substance with certain molecules in tobacco smoke. It has a potential to spread to other parts of the body. Some of the symptoms of this disease includes lump, abnormal bleeding, prolonger cough, weight loss etc. Main causes for this malignant disease are chewing tobacco, obesity, bad diet, laziness, more intake of alcohol. This dangerous disease can be cured by several treatments like surgery, radiotherapy, chemotherapy, hormone therapy, targeted therapy and more. Anticancer drugs are those which are used to cure the disease so called cancer, which includes alkylates and metabolites. The chemical graph theory is a discipline of mathematical chemistry that deals with the chemical graphs which shows chemical system. The chemical graph theory offers defining topological indices on anticancer drugs. In this work, several drugs are taken and using the degree based calculations, few topological indices are defined on various anticancer drugs to determine physical characteristics and chemical reactions associated with them [1,2,3].

Topological indices are the important attributes to analyse the physico-chemical characteristics of chemical compound structures. There are five different types of topological indices: Degree, distance, eigenvalue, matching and mixed. In this work degree based topological indices are stated on anticancer drugs. Generally, the chemical compound is represented as a graph where the elements denote vertices and the bonds connecting them denote edges. In a similar fashion, these anticancer drugs under this study are considered as chemical compounds and the said topological indices are defined. Graph theory offers some tools like QSAR, QSPR and QSTR where chemists or pharmacists use these data for further research work.

In this work, further we discuss QSPR analysis of said topological indices. We also show that the characteristics obtained are highly correlated with the characteristics of anticancer drugs using linear regression [4,5,6,7,8,9].

In theoretical chemistry drugs are represented as molecular graphs where vertex represents an atom and each edge represents link between the two atoms. Consider G (V, E) be a molecular graph with vertex and edge set respectively. The graphs considered are simple graphs with no cycle formation and multiple edges [4,10,11,12].

Definition 1.1. Estrada et al. in [13] proposed degree-based topological index ABC and defined as

\[\text{ABC}(G) = \sum_{e=uv \in E(G)} \sqrt{d_u + d_v - 2 \over d_u d_v} \]

* Corresponding author.
E-mail address: mshanmukha@gmail.com (M.C. Shanmukha).
Definition 1.2. Ghorbani et al. in [14] proposed ABC4 index and can be stated as,

\[ABC_4(G) = \sum_{e=uv \in G} \sqrt{s_u + s_v - \frac{2}{s_u s_v}} \]

Definition 1.3. The Randic index [15] proposed by Milan Randic and can be stated as

\[\chi(G) = \sum_{e=uv \in G} \sqrt{\frac{1}{d_u d_v}} \]

Definition 1.4. The sum-connectivity index is proposed by Zhou and Trinjistic [16], and is defined as

\[S(G) = \sum_{e=uv \in G} \sqrt{\frac{1}{d_u + d_v}} \]

Definition 1.5. The GA index is proposed by Vukicevic et al. [17] as

\[GA(G) = \sum_{e=uv \in G} \frac{2 \sqrt{d_u d_v}}{d_u + d_v} \]

Definition 1.6. The GA5 index proposed by Graovac et al. [18] and is stated as

\[GA_5(G) = \sum_{e=uv \in G} \frac{2 \sqrt{s_u s_v}}{s_u + s_v} \]

Definition 1.7. The first and second Zagreb indices are proposed by Gutman and Trinjistic [19], as

\[M_1(G) = \sum_{e=uv \in G} (d_u + d_v) \]
\[M_2(G) = \sum_{e=uv \in G} (d_u d_v) \]

Definition 1.8. Fajtlowicz proposed Harmonic index in [20] as,

\[H(G) = \sum_{e=uv \in G} \frac{2}{d_u + d_v} \]

Definition 1.9. Shirdel et al. in [21] proposed the hyper Zagreb index and is stated as,

\[HM(G) = \sum_{e=uv \in G} (d_u + d_v)^2 \]

Definition 1.10. Fath-Tabar et al. in [22] proposed the third Zagreb index as

\[ZG_3(G) = \sum_{e=uv \in G} |d_u - d_v| \]

Definition 1.11. Furtula et al. in [23] proposed the forgotten topological index and is stated as

\[F(G) = \sum_{e=uv \in G} [(d_u)^2 + (d_v)^2] \]

Definition 1.12. In chemical graph theory, there are some new degree-based graph types, which play an important role in finding total surface area and heat-formation of various chemical compounds. These graphs types are as follow Symmetric division index [24],

\[SSD(G) = \sum_{e=uv \in G} \left[\frac{P}{Q} \right] \]

where, \(P = \min \{d_u(v), d_v(w)\} \) and \(Q = \max \{d_u(v), d_v(w)\} \)

2. Degree based topological indices in QSAR studies

Here we defined 13° based topological indices, Atom-bond connectivity index ABC(G), Fourth atom-bond connectivity index ABC4(G), Randic index \(\chi(G) \), Sum-connectivity index S(G), Geometric-arithmetic index GA(G), Fifth Geometric arithmetic index GA5(G), First Zagreb index \(M_1(G) \), Second Zagreb index \(M_2(G) \), Harmonic index H(G), Hyper Zagreb index HM(G), Third Zagreb index ZG_3(G), Forgotten index F(G), Symmetric division index SSD(G) for modelling Five representative physical properties [Boiling point (BP), Melting point (MP), Enthalpy (E), Flash point (FP), Molar refraction (MR)] of the 17 anticancer drugs from Amathaspipiramide-E to Tambjamine-K. The values for these properties are taken from Chem Spider. The above mentioned degree based topological indices and the experimental values for the physical and chemical properties of 17 anticancer drugs (Figure 1) are represented in Tables 1, 2, and 3 respectively.

From the data of above Tables 2 and 3, it has been found that all the data values are normally distributed. Hence the regression model is suitable test to adopt and analyse the data.

3. Regression models

The above table data shows normally distributed values. Hence the study used regression analysis for the calculation purpose. Here we have checked the linear regression model as below

\[P = A + B(TI) \]

where \(P \) is the Physical property of anticancer drug, \(A \) is a constant and \(B \) is the regression coefficient and \(TI \) represents the topological index. These were calculated using SPSS software for the values of five physical properties and the thirteen topological indices of seventeen anticancer drugs.

Using (1), we can get the different linear models for the defined degree based topological indices, which are as follows.

1. Atom-bond Connectivity index ABC(G):

\[\begin{align*}
BP &= 232.702 + 18.457 [ABC(G)] \\
MP &= 97.481 + 6.385 [ABC(G)] \\
E &= 46.017 + 2.385 [ABC(G)] \\
FP &= 105.864 + 9.791 [ABC(G)] \\
MR &= 27.349 + 3.590 [ABC(G)]
\end{align*} \]

2. Fourth Atom-bond Connectivity index ABC4(G):

\[\begin{align*}
BP &= 242.956 + 24.290 [ABC_4(G)] \\
MP &= 84.818 + 9.517 [ABC_4(G)] \\
E &= 46.834 + 3.081 [ABC_4(G)] \\
FP &= 114.955 + 12.640 [ABC_4(G)] \\
MR &= 27.134 + 4.889 [ABC_4(G)]
\end{align*} \]

3. Randic index \(\chi(G) \):

\[\begin{align*}
BP &= 207.524 + 31.676 [\chi(G)] \\
MP &= 75.233 + 12.437 [\chi(G)] \\
E &= 42.806 + 3.966 [\chi(G)] \\
FP &= 89.052 + 17.119 [\chi(G)] \\
MR &= 19.758 + 6.397 [\chi(G)]
\end{align*} \]

4. Sum-Connectivity index S(G):

\[\begin{align*}
BP &= 219.568 + 29.619 [S(G)] \\
\end{align*} \]
Figure 1. Molecular structures of anticancer drugs.
Table 1. Various Anticancer drugs with its physico-chemical properties.

S.No.	Drugs	BP	MP	E	FP	MR
1	Amathaspiramide E	572.7	209.72	90.3	300.2	89.4
2	Aminopterin	782.27	344.45			114
3	Aspidostomide E	798.8	116.2	436.9	116	
4	Carmustine	309.6	120.99	63.8	141	
5	Caulibugulone E	373	129.46	62	179.4	52.2
6	Convolutamide A	629.9	97.9	334.7	130.1	
7	Convolutamine F	387.7	128.67	63.7	188.3	73.8
8	Convolutamidine A	504.9	199.2	81.6	259.2	68.2
9	Daunorubicin	770	208.5	117.6	419.5	130
10	Deguelin	560.1	213.39	84.3	244.8	105.1
11	Melatonin	512.8	182.51	7.84	264	
12	Minocycline	803.3	326.3	122.5	439.6	116
13	Perfragilin A	431.5	187.62	68.7	214.8	63.6
14	Podophyllotoxin	597.9	235.86	93.6	210.2	104.3
15	Pterocellin B	521.6	199.88	79.5	269.2	87.4
16	Raloxifene	728.2	289.58	110.1	394.2	136.6
17	Tambjamine K	391.7	64.1	3190.7	76.6	

MP = 86.175 + 11.026 [S(G)]
E = 45.580 + 3.682 [S(G)]
FP = 97.414 + 15.829 [S(G)]
MR = 22.568 + 5.950 [S(G)]

5. Geometric-Arithmetic index GA(G):

BP = 276.572 + 12.115 [GA(G)]
MP = 90.640 + 5.053 [GA(G)]
E = 51.708 + 1.5 [GA(G)]
FP = 134.852 + 6.163 [GA(G)]
MR = 31.169 + 2.552 [GA(G)]

6. Fifth Geometric-Arithmetic index GA5(G):

BP = 226.669 + 14.157 [GA5(G)]
MP = 81.299 + 5.563 [GA5(G)]
E = 51.953 + 1.175 [GA5(G)]
FP = 109.675 + 6.163 [GA5(G)]
MR = 31.169 + 2.552 [GA5(G)]

Table 2. Various Anticancer drugs with Topological Indices values.

Drugs	ABC(G)	ABCa(G)	χ(G)	S(G)	GA(G)	GAa(G)	M1(G)
Amathaspiramide E	10.773	9.079	7.112	7.076	14.403	11.748	70
Aminopterin	24.65	18.96	15.23	15.68	32.700	33.650	162
Aspidostomide E	18.813	11.346	12.35	13.00	17.548	26.906	148
Carmustine	7.847	6.775	5.757	5.482	10.634	10.738	46
Caulibugulone E	10.664	8.342	6.736	6.946	14.574	18.966	72
Convolutamide A	24.463	19.369	17.93	17.74	35.702	34.208	167
Convolutamine F	10.773	8.616	7.113	7.077	14.403	14.599	70
Convolutamidine A	12.016	8.962	7.93	7.544	16.273	15.753	88
Daunorubicin	32.295	22.564	17.89	18.89	40.190	33.116	216
Deguelin	23.398	17.507	15.19	14.80	31.954	32.526	168
Melatonin	12.865	9.676	8.203	8.419	17.493	17.809	84
Minocycline	26.081	19.093	15.54	16.12	34.271	35.014	184
Perfragilin A	12.992	9.836	7.968	8.171	17.172	17.491	90
Podophyllotoxin	22.02	16.42	12.95	13.86	30.909	30.53	158
Pterocellin B	19.027	11.250	11.69	12.93	26.452	20.788	132
Raloxifene	26.956	20.862	16.58	17.5	37.234	37.684	182
Tambjamine K	14.28	9.654	9.203	9.419	19.493	19.774	92
FP = 116.671 + 1.115 [M2(G)]
MR = 34.562 + 0.391 [M2(G)]

9. Harmonic index H(G):

BP = 218.618 + 32.191 [H(G)]
MP = 79.495 + 12.656 [H(G)]
E = 44.375 + 32.191 [H(G)]
FP = 96.112 + 17.286 [H(G)]
MR = 20.814 + 6.610 [H(G)]

10. Hyper Zagreb index HM(G):

BP = 242.453 + 0.508 [HM(G)]
MP = 109.795 + 0.161 [HM(G)]
E = 47.108 + 20.087 [HM(G)]
FP = 111.462 + 0.267 [HM(G)]
MR = 30.608 + 0.097 [HM(G)]

11. Third Zagreb index ZG3(G):

BP = 247.098 + 16.151 [ZG3(G)]
MP = 105.646 + 5.462 [ZG3(G)]
E = 47.108 + 20.087 [ZG3(G)]
FP = 109.841 + 8.890 [ZG3(G)]
MR = 38.887 + 2.703 [ZG3(G)]

Table 3. Various Anticancer drugs with Topological Indices values.

Drugs	M2(G)	H(G)	HM(G)	ZG3(G)	F(G)	SSD(G)
Amathaspiramide E	81	6.767	343	12	180	35.667
Aminopterin	185	14.53	786	32	416	80.33
Aspidostomide E	186	11.767	778	22	406	55
Carmustine	48	5.533	202	8	106	25.331
Cauhibugulone E	86	6.5	358	10	186	29.5
Convolutamide A	167	17.265	793	21	419	86.583
Convolutamine F	81	6.767	522	12	432	29.167
Convolutamydine A	109	6.738	666	20	250	40.083
Daunorubicin	270	16.919	1146	98	606	101.666
Deguelin	208	13.4	878	28	462	76.166
Melatonin	96	7.933	402	14	210	40.666
Minocycline	229	14.567	970	30	512	89
Pefragilin A	110	7.5	466	16	246	44
Podophyllotoxin	198	12.47	824	22	428	70.66
Pierocellin B	161	11.4	664	16	342	58.999
Raloxifene	215	16.2	890	24	460	83
Tambjamine K	104	8.933	434	14	226	44.667

Table 4. Correlation coefficients.

Index	ABC(G)	ABC4(G)	χ(G)	S(G)	GA(G)	GA5(G)	M1(G)	M2(G)	HM(G)	ZG3(G)	F(G)	SSD(G)
Boiling Point	0.826	0.789	0.819	0.821	0.728	0.794	0.849	0.844	0.827	0.837	0.744	0.815
Melting Point	0.726	0.762	0.767	0.747	0.745	0.779	0.727	0.698	0.663	0.837	0.559	0.767
Enthalpy	0.810	0.777	0.804	0.802	0.708	0.761	0.836	0.686	0.818	0.749	0.730	0.804
Flash Point	0.733	0.679	0.740	0.735	0.620	0.672	0.754	0.749	0.737	0.877	0.664	0.720
Molar Refraction	0.913	0.903	0.941	0.938	0.872	0.889	0.919	0.877	0.941	0.895	0.841	0.904

The significance of bold numbers denote highest correlation value.
Table 5. Statistical parameters for the linear QSPR model for ABC(G).

Physical Properties	N	A	b	r	F	p	Indicator
Boiling Point	17	232.702	18.457	0.826	32.119	0.000	significant
Melting Point	15	97.481	6.385	0.726	13.381	0.003	significant
Enthalpy	16	46.017	2.307	0.810	26.772	0.000	significant
Flash Point	16	105.864	9.791	0.733	16.221	0.001	significant
Molar Refraction	17	27.349	3.590	0.913	75.573	0.000	significant

The significance of bold numbers denote highest correlation value.

Table 6. Statistical parameters for the linear QSPR model for ABC4(G).

Physical Properties	N	A	b	r	F	p	Indicator
Boiling Point	17	242.956	24.290	0.789	24.649	0.000	significant
Melting Point	15	84.818	9.517	0.762	16.580	0.002	significant
Enthalpy	16	46.834	3.081	0.777	21.267	0.000	significant
Flash Point	16	114.955	12.646	0.679	11.977	0.004	significant
Molar Refraction	17	27.134	4.889	0.903	66.079	0.000	significant

The significance of bold numbers denote highest correlation value.
Table 7. Statistical parameters for the linear QSPR model for $\chi(G)$.

Physical Properties	N	A	b	r	F	p	Indicator
Boiling Point	17	207.524	31.676	0.819	30.638	0.000	significant
Melting Point	15	75.233	12.437	0.767	17.167	0.001	significant
Enthalpy	16	42.806	3.966	0.804	25.674	0.000	significant
Flash Point	16	89.052	17.119	0.740	16.907	0.001	significant
Molar Refraction	17	19.758	6.347	0.941	116.416	0.000	significant

The significance of bold numbers denote highest correlation value.

Table 8. Statistical parameters for the linear QSPR model for $S(G)$.

Physical Properties	N	A	b	r	F	p	Indicator
Boiling Point	17	219.568	29.619	0.821	31.014	0.000	significant
Melting Point	15	86.175	11.026	0.747	15.172	0.002	significant
Enthalpy	16	45.580	1.5	0.708	14.098	0.002	significant
Flash Point	16	97.414	15.829	0.735	16.448	0.001	significant
Molar Refraction	17	22.568	5.950	0.938	109.935	0.000	significant

The significance of bold numbers denote highest correlation value.

Table 9. Statistical parameters for the linear QSPR model for $GA(G)$.

Physical Properties	N	A	b	r	F	p	Indicator
Boiling Point	17	276.572	12.115	0.728	16.912	0.001	significant
Melting Point	15	90.640	5.053	0.745	14.93	0.002	significant
Enthalpy	16	51.708	1.5	0.708	14.098	0.002	significant
Flash Point	16	134.852	6.163	0.620	8.735	0.010	Significant
Molar Refraction	17	31.169	2.552	0.872	47.644	0.000	Significant

The significance of bold numbers denote highest correlation value.

Table 10. Statistical parameters for the linear QSPR model for $GA_5(G)$.

Physical Properties	N	A	b	r	F	p	Indicator
Boiling Point	17	226.669	14.157	0.794	25.640	0.000	Significant
Melting Point	15	100.234	0.913	0.727	13.472	0.003	Significant
Enthalpy	16	45.953	1.745	0.761	19.266	0.001	Significant
Flash Point	16	109.675	7.234	0.672	11.526	0.004	Significant
Molar Refraction	17	25.435	2.784	0.889	56.261	0.000	Significant

The significance of bold numbers denote highest correlation value.

Table 11. Statistical parameters for the linear QSPR model for $M_1(G)$.

Physical Properties	N	A	b	r	F	p	Indicator
Boiling Point	17	232.771	2.686	0.849	38.616	0.000	Significant
Melting Point	15	100.234	0.913	0.727	13.472	0.003	Significant
Enthalpy	16	46.094	0.334	0.836	32.541	0.000	Significant
Flash Point	16	106.537	1.414	0.754	18.503	0.001	Significant
Molar Refraction	17	28.756	0.511	0.919	81.435	0.000	Significant

The significance of bold numbers denote highest correlation value.

Table 12. Statistical parameters for the linear QSPR model for $M_2(G)$.

Physical Properties	N	A	b	r	F	p	Indicator
Boiling Point	17	250.418	2.138	0.844	37.243	0.000	Significant
Melting Point	15	109.887	0.692	0.698	11.405	0.005	Significant
Enthalpy	16	48.129	0.266	0.837	32.841	0.000	Significant
Flash Point	16	116.671	1.115	0.749	17.849	0.001	Significant
Molar Refraction	17	34.562	0.391	0.877	50.156	0.000	Significant

The significance of bold numbers denote highest correlation value.
FP = 117.165 + 2.870 [SSD(G)] \hspace{1cm} (65) \\
MR = 31.147 + 1.058 [SSD(G)] \hspace{1cm} (66)

4. Conclusion, study implications, limitations and future study

4.1. Conclusion

The Table 4 and graphs (Figure 2) indicates the correlated values of Physico-chemical properties of anticancer drugs with the defined degree based topological indices. It can be observed that \(M_1(G) = 0.849 \) index shows higher significant positive correlation with Boiling point (BP), when compared with other indices.

Similarly \(G_{5}(G) = 0.779 \) index gives positive correlated value with melting point (MP). In case of enthalpy, \(M_2(G) \) shows highest correlated value i.e. \(r = 0.837 \).

Flashing point (FP) offers highest correlated value of 0.754 from the physico-chemical properties.

Based on molar refraction (MR), \(\chi(G) \) and \(M_2(G) \) indices depicts highest positive correlation value i.e. \(r = 0.941 \).
Hence it can be remarked that all the physical and chemical properties of anticancer drugs are positively correlate with the defined degree based topological indices.

Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 shows the regression model of various physico-chemical properties. It can be observed that the regression model value r is more than 0.6 and p value shows less than 0.05. Hence it can be concluded that all the physico-chemical properties are highly significant.

4.2. Study implications

The work imply that these anti-cancer drugs may be considered for further study by pharmacists and chemists in designing the drugs using these topological indices values. May be the composition of these drugs, like the combinations may be tried for different ailments based on the range of the topological indices that are determined in the study. As the correlation coefficient has been found for the topological indices, the positively high correlated drugs may be considered for the combination of design of novel drugs.

4.3. Limitations

As the range of topological indices are not published by chemists anywhere in web/internet, the mathematicians may not be able to decide upon the values they obtain for different chemical compounds whether the compounds the researchers chose have future study or not. The best solution for this would be a joint venture of the study in future may be carried out by both mathematicians/statisticians and chemists/pharmacists.

4.4. Future study

In a similar fashion, a study may be carried out for different chemical structures and a conclusion may be given based on their topological indices range. May it be benzene structure or polymers or any chemical compounds can be taken for future study. A multidisciplinary project may be taken up by various disciplines researchers for a better result.

Declarations

Author contribution statement

Shanmukha M C, Basavarajappa N S, Shilpa K C, Usha A: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] Blanca Figueiredo, Consita Avila, The phylum bryozoa as a promising source of anticancer drugs, Mar. Drugs 17 (2019) 477, 1-23.
[2] W. Gao, W.F. Wang, M.R. Farahani, Topological indices study of molecular structure in anticancer drugs, J. Chem. (2016).
[3] Shouhar Kumar, Mohammad Kaleem Ahmad, Mohammad Waseem, Abbay K. Pandeey, Drug targets for cancer treatment: an overview, Med. Chem. 5 (3) (2015) 115-123.
[4] Adnan Aslam, Yasir Bashir, Safyan Ahmad, Wei Gao, On topological indices of certain dendrimer structures, Z. Naturforsch. 72 (6) (2017) 559-566.
[5] S.M. Hosamani, Deepa perigidad, shruti jamagoud yallava male and sharada gavade, QSRR analysis of certain degree based topological indices, J. Statis. Appl. Prob. 6 (2) (2017) 1-11.
[6] M. Randic, Comparative structure-property studies: regressions using a single descriptor, Croat. Chem. Acta 66 (1993) 289–312.
[7] M. Randic, Quantitative Structure-Property Relationship: boiling points and planar benzenoids, New J. Chem. 20 (1996) 1001–1009.
[8] M.C. Shanmukha, N.S. Basavarajappa, K.N. Anilkumar, Predicting physico-chemical properties of octane isomers using QSRR Approach, Malaya Journal of Mathematik. 8 (1) (2020) 104–116.
[9] Sakander Hayat, Muhammad Imran, Ja-Bao Liu, Correlation between the Estrada index and electronic energies for benzene hydrocarbons with applications to boron nanotubes, Int. J. Quant. Chem. (2019).
[10] Adnan Aslam, Safyan Ahmad, Wei Gao, On topological indices of boron triangular nanotubes, Z. Naturforsch. 72 (8) (2017) 711–716.
[11] Sakander Hayat, Shaokui Wang, Ja-Bao Liu, Valency-based topological descriptors of chemical networks and their applications, Appl. Math. Model. (2018).
[12] Sakander Hayat, Muhammad Imran, Ja-Bao Liu, An efficient computational technique for degree and distance based topological descriptors with applications, 2019.
[13] E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: modeling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849–855.
[14] M. Ghorbani, M.A. Hosseinizadeh, Computing ABC4 index of Nanostar dendrimers, Optoelectron. Adv. Mater-Rapid Commun. 4 (9) (2010) 1419–1422.
[15] M. Randic, On Characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
[16] B. Zhou, N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210–218.
[17] D. Vukicevic-B. Furtula, Topological index based on the ratios of geometrical and electronic energies for benzenoid hydrocarbons with applications to boron nanotubes, Int. J. Quant. Chem. (2019).
[18] A. Graovac, M. Ghorbani, M.A. Hosseinizadeh, Computing Fifth Geometric-Arithmetic index for nanostar dendrimers, J. Math. Nanosci. 1 (2011) 33–42.
[19] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351–361.
[20] S. Fajtlowicz, On conjectures of grahiti II, Congr. Numerantium 60 (1987) 189–197.
[21] G.H. Shiridel, H. RezaPour, A.M. Sayadi, The hyper-zagreb index of graph operations, Iran. J. Math. Chem. 4 (2) (2013) 213–220.
[22] Ali Astaneh-Ad, G. H Fath-Tabar, Computing the first and third Zagreb polynomials of certained product of graphs, Iran. J. Math. Chem. 2 (2) (2011) 73–78.
[23] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 213–220.
[24] V. Alexander, Upper and lower bounds of symmetric division deg index, Iran. J. Math. Chem. 5 (2) (2014) 91–98.