On automorphisms of finite p-groups

Hemant Kalra and Deepak Gumber

School of Mathematics
Thapar Institute of Engineering and Technology, Patiala - 147 004, India
emails: happykalra26@gmail.com, dkgumber@gmail.com

It is proved in [J. Group Theory, 10 (2007), 859-866] that if G is a finite p-group such that $(G, Z(G))$ is a Camina pair, then $|G|$ divides $|\text{Aut}(G)|$. We give a very short and elementary proof of this result.

2010 Mathematics Subject Classification: 20D15, 20D45.

Keywords: Camina pair, class-preserving automorphism.

1 Introduction Let G be a finite non-abelian p-group. The problem “Does the order, if it is greater than p^2, of a finite non-cyclic p-group divide the order of its automorphism group?” is a well-known problem [6, Problem 12.77] in finite group theory. Gaschütz [4] proved that any finite p-group of order at least p^2 admits a non-inner automorphism of order a power of p. It follows that the problem has an affirmative answer for finite p-groups with center of order p. This immediately answers the problem positively for finite p-groups of maximal class. Otto [7] also gave an independent proof of this result.

Fouladi et al. [3] gave a supportive answer to the problem for finite p-groups of co-class 2. For more details on this problem, one can see the introduction in the paper of Yadav [8]. In [8, Theorem A], Yadav proved that if G is a finite p-group such that $(G, Z(G))$ is a Camina pair, then $|G|$ divides $|\text{Aut}(G)|$. He also proved the important result [8, Corollary 4.4] that the group of all class-preserving outer automorphisms is non-trivial for finite p-groups G with $(G, Z(G))$ a Camina pair.

In this paper, we give different and very short proofs of these results of Yadav using elementary arguments.

Let G be a finite p-group. Then $(G, Z(G))$ is called a Camina pair if $xZ(G) \subseteq x^G$ for all $x \in G - Z(G)$, where x^G denotes the conjugacy class of x in G. In particular, if (G, G') is a Camina pair, then G is called a Camina p-group.

2 Proofs We shall need the following lemma which is a simple modification of a lemma of Alperin [12, Lemma 3].

Lemma 2.1. Let G be any group and B be a central subgroup of G contained in a normal subgroup A of G. Then the group $\text{Aut}_A^B(G)$ of all automorphisms of G that induce the identity on both A and G/B is isomorphic onto $\text{Hom}(G/A, B)$.

Theorem 2.2. Let G be a finite p-group such that $(G, Z(G))$ is a Camina pair. Then $|G|$ divides $|\text{Aut}(G)|$.

Proof. Observe that $Z(G) \leq G' \leq \Phi(G)$ and, therefore, $Z(G) \leq Z(M)$ for every maximal subgroup M of G. Suppose that $Z(G) < Z(M_1)$ for some maximal subgroup M_1 of G. Let $G = M_1 \langle g_1 \rangle$, where $g_1 \in G - M_1$ and $g_1^2 \in M_1$. Let $g \in Z(M_1) - Z(G)$. Then

$$|Z(G)| \leq ||g, G|| = ||g, M_1 \langle g_1 \rangle|| = ||g, \langle g_1 \rangle|| \leq p$$
implies that \(|Z(G)| = p\). The result therefore follows by Gaschütz [3]. We therefore suppose that \(Z(G) = Z(M)\) for every maximal subgroup \(M\) of \(G\). We prove that \(C_G(M) \leq M\). Assume that there exists \(g_0 \in C_G(M_0) - M_0\) for some maximal subgroup \(M_0\) of \(G\). Then \(G = M_0(g_0)\) and thus \(g_0 \in Z(G)\), because \(g_0\) commutes with \(M_0\). This is a contradiction because \(Z(G) \leq \Phi(G)\). Therefore \(C_G(M) \leq M\) for every maximal subgroup \(M\) of \(G\). Consider the group \(\text{Aut}^{Z(G)}_M(G)\) which is isomorphic to \(\text{Hom}(G/M, Z(G))\) by Lemma 2.1. It follows that \(\text{Aut}^{Z(G)}_M(G)\) is non-trivial. Let \(\alpha \in \text{Aut}^{Z(G)}_M(G) \cap (\text{Inn}(G))\). Then \(\alpha\) is an inner automorphism induced by some \(g \in C_G(M) = Z(M)\). Since \(Z(G) = Z(M)\), \(\alpha\) is trivial. It follows that

\[|(\text{Aut}^{Z(G)}_M(G))((\text{Inn}(G))| = |(\text{Aut}^{Z(G)}_M(G))((\text{Inn}(G))| = |Z(G)||G/Z(G)| = |G|, \]

because \(Z(G)\) is elementary abelian by Theorem 2.2 of [3]. This completes the proof.

Corollary 2.3. Let \(G\) be a finite Camina \(p\)-group. Then \(|G|\) divides \(|\text{Aut}(G)|\).

Proof. It is a well known result [2] that nilpotence class of \(G\) is at most 3. Also, it follows from [5, Lemma 2.1, Theorem 5.2, Corollary 5.3] that \((G, Z(G))\) is a Camina pair. The result therefore follows from Theorem 2.2.

An automorphism \(\alpha\) of \(G\) is called a class-preserving automorphism of \(G\) if \(\alpha(x) \in x^G\) for each \(x \in G\). The group of all class-preserving automorphisms of \(G\) is denoted by \(\text{Aut}_c(G)\). An automorphism \(\beta\) of \(G\) is called a central automorphism if \(x^{-1}\beta(x) \in Z(G)\) for each \(x \in G\). It is easy to see that if \((G, Z(G))\) is a Camina pair, then the group of all central automorphisms fixing \(Z(G)\) element-wise is contained in \(\text{Aut}_c(G)\).

Remark 2.4. It follows from the proof of Theorem 2.2 that if \(G\) is a finite \(p\)-group such that \((G, Z(G))\) is a Camina pair and \(|Z(G)| \geq p^2\), then

\[|\text{Aut}_c(G)| \geq |(\text{Aut}^{Z(G)}_M(G))((\text{Inn}(G))| = |G|. \]

Thus, in particular, we obtain the following result of Yadav [8].

Corollary 2.5 ([8 Corollary 4.4]). Let \(G\) be a finite \(p\)-group such that \((G, Z(G))\) is a Camina pair and \(|Z(G)| \geq p^2\). Then \(\text{Aut}_c(G)/\text{Inn}(G)\) is non-trivial.

The following example shows that Remark 2.4 is not true if \(|Z(G)| = p\).

Example 2.6. Consider a finite \(p\)-group \(G\) of nilpotence class 2 such that \((G, Z(G))\) is a Camina pair and \(|Z(G)| = p\). Since \(\text{cl}(G) = 2\), \(\exp(G/Z(G)) = \exp(G')\) and hence \(G' = Z(G) = \Phi(G)\). Let \(|G| = p^n\), where \(n \geq 3\), and let \(\{x_1, x_2, \ldots, x_{n-1}\}\) be the minimal generating set of \(G\). Then

\[|\text{Aut}_c(G)| \leq \prod_{i=1}^{n-1} |x_i^G| = p^{n-1} = |G/Z(G)|. \]

Acknowledgment: Research of first author is supported by Thapar Institute of Engineering and Technology and also by SERB, DST grant no. MTR/2017/000581. Research of second author is supported by SERB, DST grant no. EMR/2016/000019.

References

[1] J. L. Alperin, *Groups with finitely many automorphisms*, Pacific J. Math., 12 (1962), 1-5.
[2] R. Dark and C. M. Scoppola, *On Camina groups of prime power order*, J. Algebra, **181** (1996), 787-802.

[3] S. Fouladi, A. R. Jamali and R. Orfi, Automorphism groups of finite p-groups of co-class 2, J. Group Theory, **10** (2007), 437-440.

[4] W. Gaschütz, *Nichtabelsche p-Gruppen besitzen aussere p-Automorphismen*, J. Algebra, **4** (1966), 1-2.

[5] I. D. Macdonald, *Some p-groups of Frobenius and extra-special type*, Israel J. Math., **40** (1981), 350-364.

[6] V. D. Mazurov and E. I. Khukhro, *The Kourovka notebook, Unsolved problems in group theory*, 18th augmented edn. (Russian Academy of Sciences Siberian Division, Institute of Mathematics, 2014). Also available at ArXiv.

[7] A. D. Otto, *Central automorphisms of a finite p-group*, Trans. Amer. Math. Soc., **125** (1966), 280-287.

[8] M. K. Yadav, *On automorphisms of finite p-groups*, J. Group Theory, **10** (2007), 859-866.