We present AlphaX, a fully automated agent that designs complex neural architectures from scratch. AlphaX explores the exponentially grown search space with a distributed Monte Carlo Tree Search (MCTS) and a Meta-Deep Neural Network (DNN). MCTS intrinsically improves the search efficiency by dynamically balancing the exploration and exploitation at fine-grained states, while Meta-DNN predicts the network accuracy to guide the search, and to provide an estimated reward to speed up the rollout. As the search progresses, AlphaX also generates the training data for Meta-DNN. So, the learning of Meta-DNN is end-to-end. In 14 days with only 16 GPUs (1832 samples), AlphaX found an architecture that reaches the state-of-the-art accuracies on both CIFAR-10 (97.18%) and ImageNet (75.5% top-1 and 92.2% top-5). This demonstrates up to 10^4 speedup over the original searching for NASNet that used 500 GPUs in 4 days (20000 samples). On NASBench-101, AlphaX demonstrates 3x and 2.8x speedup over Random Search and Regularized Evolution. Finally, we show the searched architecture improves a variety of vision applications from Neural Style Transfer, to Image Captioning and Object Detection. Our implementation is available at https://github.com/linnanwang/AlphaX-NASBench101.

1. Introduction

Designing efficient neural architectures is extremely laborious. A typical design iteration starts with a heuristic design hypothesis from domain experts, followed by the design validation with hours of GPU training. The entire design process renders many of such iterations before finding a satisfying architecture. Neural Architecture Search (NAS) has emerged as a promising tool to alleviate human effort in this trial and error design process, but the tremendous computing resources required by current NAS methods motivates us to investigate the search efficiency.

AlphaGo/AlphaGoZero [35] recently show super-human performance in playing the game of Go, by using a specific search algorithm called Monte-Carlo Tree Search (MCTS)[15, 3]. Given the current game state, MCTS gradually builds an online model for its subsequent game states to evaluate the winning chance at that state, based on search experiences in the current and prior games, and makes a decision. Search experience is from the previous search trajectories (called rollouts) that have been tried, and their consequences (whether the player wins or not). Different from traditional MCTS approach that evaluates the consequence of a trajectory by random self-play to the end of a game, AlphaGo uses a predictive model (or value network) to predict
Table 1: Highlights of NAS search algorithms: compared with DeepArchitect and Wistuba, AlphaX offers a scalable online model, and is ready for distributed system.

Methods	Global Solution	Online Model	Exploration	Distributed	Image Net
DeepArchitect (MCTS)[30]	✓	-	adaptive UCT	✗	✗
Wistuba (MCTS)[42]	✓	Gaussian	adaptive UCT	✗	✗
MetaQNN (QL)[2]	×	ϵ-greedy	✗	✗	✗
Zoph (PG)[33]	×	RNN	✗	✗	✗
Regularized Evolution[32]	×	top-K mutation	✗	✗	✗
Random Search[34]	✓	random	✗	✗	✗
AlphaX (MCTS)	✓	meta-DNN	adaptive UCT	✗	✗

Figure 2: Overview of AlphaX search procedures: explanations of four steps are in sec. 3.2.

Bayesian Optimization (BO) is a popular method for the hyper-parameter search [12, 36, 41, 14]; It is proven to be an effective black-box optimization technique for small scale problems, e.g. finding good hyper-parameters for Stochastic Gradient Descent (SGD). In a large-scale problem, it demands a good, sophisticated high-dimensional representation kernel to work, requires calculating the inverse of a covariance matrix $O(n^2)$ that quadratically increases with samples n, so BO is not a practical algorithm for NAS.

Reinforcement Learning (RL): Several RL techniques have been investigated for NAS [2, 48]. Baker et al. proposed a Q-learning agent to design network architectures [2]. The agent takes an ϵ-greedy policy: with probability $1 - \epsilon$, it chooses the action that leads to the best expected return (i.e. accuracy) estimated by the current model, otherwise uniformly chooses an action. Zoph et al. built an RNN agent trained with Policy Gradient to design CNN and LSTM [48]. However, directly maximizing the expected reward in vanilla Policy Gradient could lead to local optimal solution [29]. In comparison, MCTS records both expected return and visitation counts of states to balance between exploration and exploitation at the state level.

Hill Climbing (HC): Elsken et al. proposed a simple hill climbing for NAS [5]. Starting from an architecture, they train every descendent network before moving to the best performing child. Liu et al. deployed a beam search which follows a similar procedure to hill climbing but selects the top-K architectures instead of only the best [18]. HC is akin to the vanilla Policy Gradient tending to trap into a local optimum from which it can never escape, while MCTS demonstrates provable convergence toward the global optimal given enough time [15].

Evolutionary Algorithm (EA): Evolutionary algorithms represent each neural network as a string of genes and search the architecture space by mutation and recombination [28, 38, 37, 13, 7, 20, 33, 43, 27, 39, 32]. Strings which represent a neural network with top performance are selected to generate child models. The selection process is in lieu of exploitation, and the mutation is to encourage exploration. Still, GA algorithms do not consider the visiting
statistics at individual states, and its performance is on par with random search for lacking an online model to inform decisions.

3. AlphaX: A Scalable MCTS Design Agent

3.1. Design, State and Action Space

Design Space: the neural architectures for different domain tasks, e.g. the object detection and the image classification, follow fundamentally different designs. This renders different design spaces for the design agent. AlphaX is flexible to support various search spaces with an intuitive state and action abstraction. Here we provide a brief description of two search spaces used in our experiments.

- **NASNet Search Space**: [49] proposes searching a hierarchical Cell structure as shown in Fig.3a. There are two types of Cells, Normal Cell (NCell) and Reduction Cell (RCell). Normal Cell maintains the input and output dimensions with the padding, while Reduction Cell reduces the height and width by half with the striding. Then, the network is constituted by stacking multiple cells.

- **NASBench Search Space**: [46] proposes searching a small Direct Acyclic Graph (DAG) with each node representing a layer and each edge representing the inter-layer dependency. Similarly, the network is constituted by stacking multiple such DAGs.

State Space: a state represents a network architecture, and AlphaX utilizes states (or nodes) to keep track of past trails to inform future decisions. We implement a state as a map that defines all the hyper-parameters for each network layers and their dependencies. We also introduce a special terminal state to allow for multiple actions. All the other states can transit to the terminal state by taking the terminal action, and the agent only trains the network, from which it reaches the terminal. With the terminal state, the agent freely modifies the architecture before reaching the terminal. This enables multiple actions for the design agent to bypass shallow architectures.

Action Space: an action morphs the current network architecture, i.e. current state, to transit to the next state. It not only explicitly specifies the inter-layer connectivity, but also all the necessary hyper-parameters for each layer. Unlike games, actions in NAS are dynamically changing w.r.t the current state and design spaces. For example, AlphaX needs to leverage the current DAG (state) in enumerating all the feasible actions of ‘adding an edge’. In our experiments, the actions for the NASNet search domain are adding a new layer in the left or right branch of a Block, in a Cell, creating a new Block with different input combinations, and the terminating. The actions for the NASBench search domain are either adding a node or an edge, and the terminating.

3.2. Search Procedure

This section elaborates the integration of MCTS and metaDNN in AlphaX. The MCTS is to analyze the most promising move at a state, while the meta-DNN is to learn the sampled architecture performance and to generalize to unexplored architectures so that MCTS can simulate many rollouts with only an actual network training in evaluating a new node. The superior search efficiency of AlphaX is due to balancing the exploration and exploitation at the finest granularity, i.e. state level, by leveraging the visiting statistics. Each node tracks these two statistics: 1) \(N(s,a) \) counts the selection of action \(a \) at state \(s \); 2) \(Q(s,a) \) is the expected reward after taking action \(a \) at state \(s \), and intuitively \(Q(s,a) \) is an estimate of how promising this search direction. Fig.2 demonstrates a typical searching iteration in AlphaX, which consists of **Selection**, **Expansion**, **MetaDNN assisted Simulation**, and **Backpropagation**. We elucidate each step as follows.

Selection traverses down the search tree to trace the current most promising search path. It starts from the root and stops till reaching a leaf. At a node, the agent selects actions based on UCB1 [1]:

\[
\pi_{tree}(s) = \arg \max_{a \in A} \left(\frac{Q(s,a)}{N(s,a)} + 2c \sqrt{\frac{2 \log N(s)}{N(s,a)}} \right),
\]

where \(N(s) \) is the number of visits to the state \(s \) (i.e. \(N(s) = \sum_{a \in A} N(s,a) \)), and \(c \) is a constant. The first term \(\left(\frac{Q(s,a)}{N(s,a)} \right) \) is the exploitation term estimating the expected accuracy of its descendants. The second term \(2c \sqrt{\frac{2 \log N(s)}{N(s,a)}} \) is the exploration term encouraging less visited nodes. The exploration term dominates \(\pi_{tree}(s) \) if \(N(s,a) \) is small, and the exploitation term otherwise. As a result, the agent favors the exploration in the beginning until building proper confidences to exploit. \(c \) controls the weight of exploration, and
it is empirically set to 0.5. We iterate the tree policy to reach a new node.

Expansion adds a new node into the tree. \(Q(s, a) \) and \(N(s, a) \) are initialized to zeros. \(Q(s, a) \) will be updated in the simulation step.

Meta-DNN assisted Simulation randomly samples the descendants of a new node to approximate \(Q(s, a) \) of the node with their accuracies. The process is to estimate how promising the search direction rendered by the new node and its descendants. The simulation starts at the new node. The agent traverses down the tree by taking the uniform-random action until reaching a terminal state, then it dispatches the architecture for training.

The more simulation we roll, the more accurate estimate of this search direction we get. However, we cannot conduct many simulations as network training is extremely time-consuming. AlphaX adopts a novel hybrid strategy to solve this issue by incorporating a meta-DNN to predict the network accuracy in addition to the actual training. We delay the introduction of meta-DNN to sec.3.3. Specifically, we estimate \(q = Q(s, a) \) with

\[
Q(s, a) \leftarrow \left(\text{Acc}(sim_0(s')) + \frac{1}{k} \sum_{i=1..k} \text{Pred}(sim_i(s')) \right) / 2
\]

where \(s' = s + a \), and \(sim(s') \) represents a simulation starting from state \(s' \). \(\text{Acc} \) is the actually trained accuracy in the first simulation, and \(\text{Pred} \) is the predicted accuracy from Meta-DNN in subsequent \(k \) simulations. If a search branch renders architectures similar to previously trained good ones, Meta-DNN updates the exploitation term in Eq.1 to increase the likelihood of going this branch.

Backpropagation back-tracks the search path from the new node to the root to update visiting statistics. Please note we discuss the sequential case here, and the backpropagation will be split into two parts in the distributed setting (sec.3.4). With the estimated \(q \) for the new node, we iteratively back-propagate the information to its ancestral as:

\[
\begin{align*}
Q(s, a) & \leftarrow Q(s, a) + q, \quad N(s, a) \leftarrow N(s, a) + 1 \\
\text{until it reaches the root node.}
\end{align*}
\]

3.3. The design of Meta-DNN and its related issues

Meta-DNN intends to generalize the performance of unseen architectures based on previously sampled networks. It provides a practical solution to accurately estimate a search branch with many simulations without involving the actual training (see the metaDNN assisted simulation for details). New training data is generated as AlphaX advances in the search. So, the learning of Meta-DNN is end-to-end. The input of Meta-DNN is a vector representation of architecture, while the output is the prediction of architecture performance, i.e. test accuracy.

The coding scheme for NASNet architectures is as follows: we use 6-digits vector to code a Block; the first two digits represent up to two layers in the left branch, and the 3rd and 4th digits for the right branch. Each layer is represented by a number in [1, 12] to represent 12 different layers, and the specific layer code is available in Appendix TABLE.4. We use 0 to pad the vector if a layer is absent. The last two digits represent the input for the left and right branch, respectively. For the coding of block inputs, 0 corresponds to the output of the previous Cell, 1 is the previous Cell, and \(i + 2 \) is the output of Block_i. If a block is absent, it is [0,0,0,0,0]. The left part of Fig.4 demonstrates an example of NASNet encoding scheme. A Cell has up to 5 blocks, so a vector of 60 digits is sufficient to represent a state that fully specifies both RCell and NCell. The coding scheme for NASBench architectures is a vector of flat adjacency matrix, plus the nodelist. Similarly, we pad 0 if a layer or an edge is absent. The right part of Fig.4 demonstrates an example of NASBench encoding scheme. Since NASBench limits nodes \(\leq 7, 7 \times 7 \) (adjacency matrix) + 7 (nodelist) = 56 digits can fully specify a NASBench architecture.

Now we cast the prediction of architecture performance as a regression problem. Finding a good metaDNN is heuristically oriented and it should vary from tasks to tasks. We calculate the correlation between predicted accuracies and true accuracies from the sampled architectures in evaluating the design of metaDNN. Ideally, the metaDNN is expected to rank an unseen architecture in roughly similar to its true test accuracy, i.e. \(\text{corr} = 1 \). Various ML models, such as Gaussian Process, Neural Networks, or Decision Tree, are candidates for this regression task. We choose Neural Networks as the backbone model for its powerful generalization on the high-dimensional data and the online training capability. More ablations studies for the specific choices of metaDNN is available in sec.4.2.
3.4. Distributed AlphaX

It is imperative to parallelize AlphaX to work on a large scale distributed systems, as each search iterations renders a DNN training that takes hours. Fig. 5 demonstrates the distributed AlphaX. There is a master node exclusively for scheduling the search, while there are multiple clients (GPU) exclusively for training networks. The general procedures on the server side are as follows: 1) The agent follows the selection and expansion steps described in Fig. 2. 2) The simulation in MCTS picks a network arch into the job queue, where arch represent the selected network architecture at iteration n, and rollout from (archn) is the node which it started the rollout from to reach archn. 3) The agent pre-emptively backpropagates \(q \leftarrow \frac{1}{k} \sum_{i=1,k} \text{Pred}(\text{sim}, s'))) based only on predicted accuracies from the Meta-DNN at iteration n.

\[
Q(s, a) \leftarrow Q(s, a) + \hat{q}, \quad N(s, a) \leftarrow N(s, a) + 1, \\
S \leftarrow \text{parent}(s), \quad a \leftarrow \pi_{\text{tree}}(s).
\]

4) The server checks the receive buffer to retrieve a finished job from clients that includes archz, accz. Then the agent starts the second backpropagation to propagate \(q \leftarrow \frac{accz+q}{2} \) (Eq. 2) from the node the rollout started (s \leftarrow \text{rollout from}(archz)) to replace the backpropagated \(\hat{q} \) with q:

\[
Q(s, a) \leftarrow Q(s, a) + q - \hat{q}, \\
S \leftarrow \text{parent}(s), \quad a \leftarrow \pi_{\text{tree}}(s).
\]

A popular approach to parallelize MCTS is by introducing a virtual loss, which is a method to avoid making all the processors to traverse the same trajectory by backpropagating a score (i.e. performance of the DNN) of 0 before the rollout finishes and the actual score becomes available to the agent [4, 6, 47, 35]. However, backpropagating a score of 0 can significantly bias the search because the accuracy of the DNN can be close to 1.0, and the variance of the scores among the efficient architectures is often small. Thus, 0 may be significantly smaller than the actual score, biasing the search to avoid the region. To solve this issue, we instead preemptively backpropagate the score \(\hat{q} \) predicted by the Meta-DNN which we can expect to be closer to the actual score until the actual training finishes.

The client constantly tries to retrieve a job from the master job queue if it is free. It starts training once it gets the job, then it transmits the finished job back to the server. So, each client is a dedicated trainer. We also consider the fault-tolerance by taking a snapshot of the server’s states every few iterations, and AlphaX can resume the searching from the breakpoint using the latest snapshot.

4. Experiment

4.1. Evaluations of Architecture Search

Experiment setup: Appendix Sec.9 provides the details of experiment setup.

4.1.1 Finding the Global Optimal on NASBench-101

Searching NASNet requires training thousands of networks, so it is not computationally feasible to conduct many trials to fairly evaluate a search algorithm. Current literatures mainly evaluate NAS algorithms with the final test accuracy, while [34] has shown many state-of-the-art NAS algorithms, e.g. DARTS [22], NAO[25], ENAS [31], cannot even outperform Random Search in the same setting. To truly evaluate a search algorithm, and to bypass the computational challenges, Christ et al collected NASBench [46] that enumerates all the possible DAGs of nodes \(\leq 7 \), constituting of (420k+) networks and their final test accuracies.

Figure 6: the RCell and NCell of AlphaX-1 that gives the highest accuracy in the search.
In our experiments, we limit the maximal nodes in a DAG ≤ 6 for repeating each algorithm for 200 trials, and the rest follows the same NASBench setting, i.e. taking a subset of NASBench-101 with 64521 valid networks. The search target is the network with the highest mean test accuracy (global optimal) at 108th epochs, which can be known ahead by querying the dataset. Our evaluation metric is the number of samples to reach the best performance architecture in testing. We choose Random Search (RS) [34] and Regularized Evolution (RE) [32] as the baseline, and experimental results are in Fig.7. We have run each algorithm for 200 independent trials, and each trial is a new search fed with a different random seed. The search terminates once it reaches the target (the global optimal). Fig.7 demonstrates AlphaX is 2.8x and 3x faster than RS and RE, respectively. As we analyzed in Fig.1, Random Search lacks an online model. Regularized Evolution only mutates on top-k performing models, while MCTS explicitly builds a search tree to dynamically trade off the exploration and exploitation at individual states. Please note that the slight difference in Fig.7a actually reflects a huge gap in speed as indicated by Fig.7b. This is due to the minor difference (within 0.5%) between the near optimal architectures and the global optimal.

4.1.2 Performance on the NASNet [49]

We perform the search on CIFAR-10 using 16 NVIDIA 1080 TI. One GPU works as a server, while the rest work as clients. All networks are trained in MXNet, and the rest implementations are in python. The client-server communications are through python sockets. To sample more architectures within limited resources, we early terminate the training at the 70th on each search clients. Then we rank architectures by their preliminary accuracies to perform an additional 530 epochs on good candidates. In acquiring the additional 530 epochs on good candidates. In acquiring the

![Image of NASNet-A and NASNet-B architectures](image)

Figure 7: Evaluations on NASBench-101: AlphaX is 3x, 2.8x faster than Random Search and Regularized Evolution on NASBench-101 (nodes ≤ 6). The results are from 200 trials with different random seeds.

Model	Space	Params	Err	GPU days	M
DenseNet-BC [11]	human	25.6 M	3.46	N/A	N/A
ResNeXt-29 [44]	human	68.1 M	3.58	N/A	N/A
NASNet-A+cutout [49]	NASNet	3.3M	2.65	2000	20000
NASNet-B [49]	NASNet	2.6M	3.73	2000	20000
NASNet-C [49]	NASNet	3.1M	3.73	2000	20000
AmoebaNet-A [32]	NASNet	3.2M	3.45±0.12	3150	20000
AmoebaNet-B+cutout [32]	NASNet	2.8M	2.50±0.05	3150	27000
PNAS [18]	NASNet	3.2M	3.41±0.09	225	1160
ENAS [31]	NASNet	4.6M	3.54	0.45	4/N/A
NAS v3 [48]	NAS	7.1M	4.47	22400	128000
NAS v3+cutout	NAS	7.4M	4.33	22400	128000
Hier-EA [21]	Hier-EA	15.7M	3.77±0.12	300	7000
DARTS+cutout [22]	DARTS	3.3M	2.76±0.09	4/N/A	
AlphaX-1+cutout	NASNet	3.59M	2.82±0.11	224	1832
AlphaX-2+cutout	NASNet	2.46M	3.11±0.08	224	1832

Table 2: The comparisons of our NASNet search results to other state-of-the-art results on CIFAR-10. Please note we split the data by their search spaces. M is the number of sampled architectures in the search.

Model	multi-adds	params	top1/top5 err
ShuffleNet (2x) [26]	569M	6.6 M	30.2/10.1
MobileNet-v1 [10]	524M	4.2 M	29.4/10.5
NASNet-A [49]	564M	5.3M	26.0/8.4
NASNet-B [49]	488M	5.3M	27.2/8.7
NASNet-C [49]	558M	4.9M	27.5/9.0
AmoebaNet-A [32]	555M	5.1M	25.5/8.0
AmoebaNet-B [32]	555M	5.3M	26.0/8.5
AmoebaNet-C [32]	570M	6.4M	24.3/7.6
PNAS [34]	588M	5.1M	25.8/8.1
DARTS [22]	574M	4.7M	26.7/8.7
AlphaX-1	579M	5.4M	24.5/7.8

Table 3: The error rate (%) comparisons of our best-performing architecture to other state-of-the-art results on ImageNet. The network setup follows the mobile setting defined in [49] with the input image of 224 × 224. Multi-adds represents the number of composite multiply-accumulate operations for an image.

For the subsequent ImageNet training, we construct the network for ImageNet with searched RCell and NCell according to Fig.2 in [49]. We set up the ImageNet training using the mobile configuration with the input image size of (224 × 224) [49] due to the limited computing resources, but a drastic improvement in top-1 accuracy is observable if setup the same architecture in a large setting, e.g. using 331 × 331 image size [49]. More details are available in the appendix.

Comparisons to State-of-the-Art Results: AlphaX ran autonomously for 14 days and sampled 1832 networks. We select AlphaX-1 and AlphaX-2. AlphaX-1 gives the best accuracy after fine-tuning additional 530 epochs, while AlphaX-2 gives the second best accuracy with 10% fewer parameters than AlphaX-1. Fig.6 demonstrates the archi-
accuracies in NASBench

Table 2 and Table 3 summarize state-of-the-art results on CIFAR10 and ImageNet. Notably, AlphaX-1 is on par with other approaches [49, 32, 31, 18] using approximately 10 times fewer samples (M) and GPU days in the search; the same architecture also gives the best ImageNet accuracy in the mobile setting. We compare with ENAS, NASNet, PNAS, and AmoebaNet, which use the same search domain. ENAS focus on reducing the network training time with Transfer Learning (parameter sharing), thereby it is significantly faster than AlphaX considering the training consumes the majority of the time. Though our approaches are orthogonal, Transfer Learning can further improve AlphaX by saving the training time on clients. AmoebaNet slightly outperforms AlphaX with a test error of 2.5%, after searching 27000 architectures. In comparison, AlphaX achieves a test error of 2.67%, by only searching an order of magnitude fewer architectures. In fact, other hyperparameters such as ScheduleDropPath in the fine-tuning stage significantly impact the final 1% of accuracy [49]. Both PNAS (ImageNet and CIFAR10) and DARTS (ImageNet) show weaker performance than AlphaX, despite the fact that DARTS performs well in CIFAR-10. We suspect that they converge to local minima due to their local search nature and highly complicated search space of NASNet. AlphaX escapes from local minima (Fig.9) with comparable computational demands. As we will see, the accuracy distribution of 420k networks from NASBench in Fig.8 also substantiates this point.

4.1.3 Qualitative Evaluations of AlphaX

Several interesting insights are observable in Fig.9. 1) MCTS explicitly builds a search tree to better inform future decisions based on prior rollouts. The choice of actions in MCTS is fine-grained, leveraging both the visiting statistics and value at individual states; while the random or evolutionary search is stateless, utilizing a coarse estimation of search direction (e.g. mutation). Therefore, MCTS is a lot faster than RS and RE in Fig.7. 2) MCTS invests more on the promising directions (high value path), and less otherwise (low value path). Unlike greedy based algorithms, e.g. hill climbing, MCTS consistently explores the search space as the search tree is similar to a balanced tree in Fig.9. All of these manifest that MCTS automatically balances the exploration and exploitation in the progress of the search. 3) the best performing network is not necessarily located on the most promising branch, and there are many local optimal branches (dark blue nodes). MCTS is theoretically guaranteed to find the global optimal in this non-convex search space, while PNAS or DARTs can easily trap into a local optimal.

4.2. Meta-DNN Design and its Impact

The metric in evaluating metaDNN is the correlation between the predicted v.s. true accuracy. We used 80% NASBench for training, and 20% for testing. Since DNNs have shown great success in modeling complex data, we start with Multilayer Perceptron (MLP) and Recurrent Neural Network (RNN) on building the regression model. Specific architecture details are available in appendix.10.
Figure 11: meta-DNN design ablations: True v.s. predicted accuracies of MLP, RNN and multi-stage MLP on architectures from NASBench. The scatter density is highlighted by color to reflect the data distribution; Red means high density, and blue otherwise.

Fig. 11d and Fig. 11e demonstrate the performance of MLP (corr=0.784) is 4% better than RNN (corr=0.743), as the MLP (Fig. 11b) performs much better than RNN (Fig. 11a) in the training set. However, MLP still mispredicts many networks around 0.1, 0.4 and 0.6 and 0.8 (x-axis) as shown in Fig. 11e. This clustering effect is consistent with the architecture distribution in Fig. 8 for having many networks around these accuracies. To alleviate this issue, we propose a multi-stage model, the core idea of which is to have several dedicated MLPs to predict different ranges of accuracies, e.g. [0, 25%], along with another MLP to predict which MLP to use in predicting the final accuracy. Fig. 11f shows multi-stage model successfully improves the correlation by 1.2% from MLP, and the mispredictions have been greatly reduced. Since the multi-stage model has achieved corr = 1 on the training set, we choose it as the backbone regression model for AlphaX. Fig. 7 demonstrates our meta-DNN successfully improves the search efficiency.

4.3. Algorithm Comparisons

Fig. 12 evaluates MCTS against Q-Learning (QL), Hill Climbing (HC) and Random Search (RS) on a simplified search space. Setup details and the introduction of the design domain are available in appendix 8. These algorithms are widely used in NAS [2, 19, 5, 9]. We conduct 10 trials for each algorithm. Fig. 12b demonstrates AlphaX is 2.3x faster than QL and RS. Though HC is the fastest, Fig. 12a indicates HC traps into a local optimal. Interestingly, Fig. 12b indicates the inter-quartile range of QL is longer than RS. This is because QL quickly converges to a suboptimal, spending a huge time to escape. This is consistent with Fig. 12a that QL converges faster than RS before the 50th samples, but random can easily escape from the local optimal afterward. Fig. 12b (MCTS v.s. AlphaX) further corroborates the effectiveness of meta-DNN.

4.4. Improved Features for Applications

CNN is a common component for Computer Vision (CV) models. Here, we demonstrate the searched architecture can improve a variety of downstream Computer Vision (CV) applications. Please check the Appendix Sec.11 for the experiment setup.

1) Object Detection: We replace MobileNet-v1 with AlphaX-1 in SSD [23] object detection model, and the mAP (mini-val) increases from 20.1% to 23.7% at the 300 × 300 resolution. (Fig.17)

2) Neural Style Transfer: AlphaX-1 is better than a shallow network (VGG) in capturing the rich details and textures of a sophisticated style image (Fig.18).

3) Image Captioning: we replace the VGG with AlphaX-1 in show attend and tell [45]. On the 2014 MSCOCO-val dataset, AlphaX-1 outperforms VGG by 2.4 (RELU-2), 4.4 (RELU-3), 3.7 (RELU-4), respectively (Fig.19).

5. Conclusion

We present AlphaX, the first scalable MCTS based design agent for NAS. AlphaX demonstrates superior search efficiency over mainstream algorithms on 3 different search domains, highlighting MCTS as a very promising search algorithm for NAS.
6. Pseudocode for AlphaX

In this section, we describe the pseudocode of the Distributed AlphaX. Algorithm 3 describes the search engine of AlphaX. Algorithm 2 is the server procedure to send the architecture to train chosen by the MCTS to the client and collect the architectures trained and their scores. Algorithm 1 is the client which trains and tests the architecture provided by the server.

Algorithm 1 Client

1: **Require:** Start working once building connection to the server
2: **while** True **do**
3: **if** The client is connected to server **then**
4: **network** ← Receive()
5: **accuracy** ← Train(**network**)
6: **else**
7: Wait for re-connection
8: **end if**
9: **end while**

Algorithm 2 Server

1: **while** size(TASK_QUEUE) > 2 **do**
2: **while** no idle client **do**
3: Continue \(\triangleright \) Wait for dispatching jobs until there are idle clients
4: **end while**
5: Create a new connection to a random idle client
6: **network** ← TASK_QUEUE.pop()
7: Send **network** to a Client
8: **if** Received_.Signal() **then**
9: **network**, **accuracy** ← Receive_.Result()
10: **else**
11: **state** ← rollout_.from(**network**)
12: Backpropagation(**state**, (**accuracy−\hat{q}(\text{state})**)/*2, 0*)
13: \(\triangleright \) Replace \(\hat{q} \) with \(q = Q(s, a) \) in Eq. 2
14: **end if**
15: **end while**

Algorithm 3 Search Engine (MCTS)

1: **function** Expansion(**state**)
2: Create a new node in a tree for **state**.
3: **for all** action available at **state** **do**
4: \(Q(\text{state}, \text{action}) \) ← 0, \(N(\text{state}, \text{action}) \) ← 0
5: **end for**
6: **end function**
7: **function** Simulation(**state**)
8: action ← none
9: **while** action is not term **do**
10: randomly generate an action
11: next_net ← Apply(**state**, action)
12: \(\triangleright \) Apply returns the next state when action is applied to state
13: **end while**
14: **end function**
15: **function** Backpropagation(**state**, q, n)
16: **while** state is not root **do**
17: state ← parent(**state**)
18: Q(**state**, action) ← Q(**state**, action) + q
19: N(**state**, action) ← N(**state**, action) + n
20: **end while**
21: **end function**
22: **Require:** Start from the root
23: **while** episode < MAX_episode **do**
24: Server()
25: **cur.state** ← root_node
26: i ← 0
27: **while** i < MAX_tree_depth **do**
28: i ← i + 1
29: next_action ← Selection(**cur.state**) \(\triangleright \) Select an action based on Eq. 1
30: **if** next_state not in tree **then**
31: next_state ← Expansion(next_action)
32: \(T_i \) ← Simulation(**next.state**) for \(t = 0...k \)
33: \(\hat{q}(\text{next.state}) \) ← \(\frac{1}{k}\sum_{i=1..k}\text{Pred}(T_i) \)
34: \(\triangleright \) k is the number of simulations we run using the Meta-DNN
35: **end if**
36: **end while**
37: Backpropagation(next_state, \(\hat{q} \)) \(\triangleright \) Preemptive backpropagation to send \(\hat{q} \)
38: **end if**
39: **end while**
40: **end while**
7. Details of the State and Action Space

This section contains the description of the state and action space for NASNet design space.

We constrain the state space to make the design problem manageable. The state space exponentially grows with the depth: a k layers linear network has n^k architecture variations, where n is the number of layer types. We leverage the GPU DRAM size, our current computing resources and the design heuristics from leading DNNs, to propose the following constraints on the state space: 1) a branch has at most 1 layer; 2) a cell has at most 5 blocks; 3) the depth of blocks is limited to 2; 5) we use the layers in TABLE.4.

Actions also preserve the constraints imposed on the state space. If the next state reaches out of the design boundary, the agent automatically removes the action from the action set. For example, we exclude the "adding a new layer" action for a branch if it already has 1 layer. So, the action set is dynamically changing w.r.t states.

8. Experimental Setup for Section 4.3

The state space we consider consists of small simple CNNs. We consider a convolution layer and a softmax layer. For a convolutional layer, we allow a range of 1 or 2 for stride, 32 or 64 for filters, and 2 or 4 for kernels. We set the maximum depth to 3. We constraint that the final layer is always a dense layer with output size set to the number of classes.

Actions consist of (1) add conv layer, (2) add softmax layer, (3) increment or decrement one of the parameters for a convolution layer in the current CNN. For MCTS, random, and Q-learning agents have a terminal action to terminate the episode.

MCTS with meta-DNN: We implemented MCTS search algorithm followed the procedure with 3.2. c from Eq.1 is set to 200. The design of meta-DNN is consistent with 3.3. The meta-DNN model uses SGD optimizer with 0.9 momentum rate. All parameters in fully connected layers are initialized with the random distribution. The learning rate is set to 0.0001.

MCTS without meta-DNN: we also present the results without meta-DNN, the experiment setup is consistent with above but without meta-DNN assisted simulation.

Random: agent selects action uniformly at random.

Q-learning: We implemented a tabular Q-learning agent with ϵ-greedy strategy. The learning rate is set to 0.2. We set the discount factor to be 1 in order not to prioritize short-term rewards. We fix ϵ to 0.2. We initialize the Q-value with 0.5.

Hill Climbing: For a hill climbing, an agent starts from a randomly chosen initial state. It trains every architecture in the child nodes and moves to the child node of which architecture performed the best, and repeat this procedure. Unlike MCTS and Q-learning which trains a NN only when it is a terminal state, hill climbing considers every state (and its child nodes) it visits to train. As such, we do not have a terminal action for hill climbing. As we observed that the hill climbing tends to stick to a local optimum, we restart from a randomly chosen initial state if it visits the same state twice in the trajectory.

9. Experiment Setup for Searching and Training

9.1. Setup for searching networks on NASBench

Regularized Evolution: We implemented Regularized Evolution[32] search algorithm for searching the best architecture on NASBench. The population size is set to 500. The tournament size is set to 50. We only mutate the best architecture in tournament set and replace the oldest individual in the population. Once we find the best architecture on NASBench set, we terminate the search process.

AlphaX: We implemented MCTS search algorithm followed the procedure with 3.2 on NASBench. c from Eq.1 is set to 2. The simulation times k from Eq.2 is set to 10. The design of meta-DNN is consistent with 4.2. The setup for meta-DNN is consistent with 10.

9.2. Setup for searching networks on CIFAR

We use 16 NV-1080ti gpus for searching procedure. One of them is the server running the searching program and remaining 15 gpus are clients for training the searched architectures. We use dictionary data structure in Python to save the searched architectures and convert to json file to store them in the disk. All of our training procedures are implemented in MXNET framework. The setup for training CIFAR-10 during the search are as follows: 1) We early terminate the training at the 70th epoch(3 periods of cosine restart learning rate schedule[24]) due to the limited computing resources; then we rank networks to filter out top ones to perform additional 560 epochs to acquire the final accuracy. 2) Cutout is applied [49] by using 1 crop
of size 16×16. 3) Our models use cosine restart learning rate schedule [24] with 3 periods, the base learning rate is 0.05 and the batch size is 144. 4) We use the momentum optimizer with momentum rate set to 0.9 and L2 weight decay. 5) We also use dropout ratio schedule in the training. The dropout ratio is set to 0.3 and dense dropout ratio is set to 0.2 for searching procedure and applied Schedule-DropPath [49] for the final training. 6) We use an auxiliary classifier located at 2/3 of depth of the network. The loss of the auxiliary classifier is weighted by 0.4[40]. 7) The weights of our models are initialized with Gaussian distribution subjected to 0.01 standard deviation. 8) we randomly crop 32x32 patches from upsampled images of size 40×40 and apply random horizontal flips consistent with [49].

9.3. Setup for ImageNet

The setup for training ImageNet are as follows: 1) We construct the network for ImageNet with searched $RCell$ and $NCell$ according to Fig.6 in [49]. 2) The input image size is 224×224 (the mobile setting across literature). 3) Our models for ImageNet use polynomial learning rate schedule, starting with 0.05 and decay through 200 epochs. 4) We use the momentum optimizer with momentum rate set to 0.9 and L2 weight decay. 5) Our model uses an auxiliary classifier located at 2/3 of depth of the network. The loss of the auxiliary classifier is weighted by 0.4[40]. 6) Dense dropout is applied to the final softmax layer with probability 0.5. 7) We set the batch size as 256. 8) The weights of our models are initialized with Gaussian distribution subjected to 0.01 standard deviation.

10. MetaDNN Architecture and Setup

10.1. Architecture and setup for recurrent neural network (RNN)

We use an LSTM model as our predictor which is consistent with [18]. The hidden state size is set to 100. The embedding size is set to 100 as well. The final LSTM hidden state goes through a fully-connected layer and sigmoid to regress the validation accuracy. Fig.15a shows the architecture of the RNN predictor.

The setup for training RNN predictor are as follows: 1) There are total of 20 epochs for each training. 2) The base learning rate is set to 0.00002 and the batch size is 128. 3) We use the Adam optimizer for training. 4) The embeddings of fully connected layers are initialized with Uniform distribution with initial bias 0.

10.2. Architecture and setup for multilayer perceptron (MLP)

We implement both multi-stage MLP model and single MLP to predict the network accuracy. Both of multi-stage model and single MLP model share the same architecture. We use 5 fully connected layers with 512, 2048, 2048, 512 and 1 nodes. The final fully-connected layer uses the sigmoid function to regress the validation accuracy. Fig.15b shows the architecture of the MLP predictor.

The setup for training MLP predictor are as follows: 1) There are total of 20 epochs for each training. 2) The base learning rate is set to 0.00002 and the batch size is 128. 3) We use the Adam optimizer for training. 4) The weights of our models are initialized with Uniform distribution with initial bias 0.

11. Setup for Vision Models

11.1. Object detection

We use AlphaX-1 model pre-trained on ImageNet dataset. The training dataset is MSCOCO for object detection [16] which contains 90 classes of objects. Each image is scaled to 300×300 in RGB channels. We trained the model with 200k iterations with 0.04 initial learning rate and the batch size is set to 24. We applied the exponential learning rate decay schedule with the 0.95 decay factor. Our
model uses momentum optimizer with momentum rate set to 0.9. We also use the L2 weight decay for training. We process each image with random horizontal flip and random crop[23]. We set the matched threshold to 0.5, which means only the probability of an object over 0.5 is effective to appear on the image. We use 8000 subsets of validation images in MSCOCO validation set and report the mean average precision (mAP) as computed with the standard COCO metric library[17].

11.2. Neural style

We implement the neural style transfer application by replacing the VGG model to AlplaX-1 model[8]. AlplaX-1 model is pre-trained on ImageNet dataset. In order to produce a nice result, we set the total 1000 iterations with 0.1 learning rate. We set 10 as the style weight which represents the extent of style reconstruction and 0.025 as the content weight which represents the extent of content reconstruction. We test different kinds of combinations of the outputs of different layers. Fig.16 shows the structure of AlphaX model, we found that for AlphaX-1 model, the best result can be generated by the concat layer of 13th normal cell as the feature for content reconstruction and the concat layer in first reduction cell as the feature for style reconstruction, the types of layers in each cell are shown in Fig.6 and Fig.14.

11.3. Image captioning

The training dataset of image captioning is MSCOCO[16], a large-scale dataset for the object detection, segmentation, and captioning. Each image is scaled to 224×224 in RGB channels and subtract the channel means as the input to a AlphaX-1 model. For training AlphaX-1 model, We use the SGD optimizer with the 16 batch size and the initial learning rate is 2.0. We applied the exponential learning rate decay schedule with the 0.5 decay factor in every 8 epochs.

Figure 16: Cell based architecture of AlphaX model
Figure 17: Object Detection: the object detection system is more precise with AlphaX-1 than MobileNet.

Figure 18: Neural Style Transfer: AlphaX-1 is better than VGG in capturing the style with sophisticated details and textures.

Figure 19: Image Captioning: AlphaX-1 captures more details than VGG in the captions.