ON THE SOLUTIONS OF THE DIOPHANTINE EQUATION

\[(x - d)^2 + x^2 + (x + d)^2 = y^n\] FOR D A PRIME POWER

ANGELOS KOUTSIANAS

ABSTRACT. We study the Diophantine equation \((x - d)^2 + x^2 + (x + d)^2 = y^n\) when \(n \geq 3\) and \(d = p^k, p\) a prime, using the characterization of primitive divisors on Lehmer sequences.

1. Introduction

The question when a sum of consecutive powers is a perfect power has a long and rich history. In 1875 Lucas [Luc75] asks for the solutions of equation

\[(1) \quad 1^2 + 2^2 + \cdots + x^2 = y^2\]

and it is until Watson [Wat18] gives a satisfied solution of the problem. In 1956, Schäffer [Sch56] generalises Lucas question and studies the equation

\[(2) \quad 1^k + 2^k + \cdots + x^k = y^n\]

where he proves that (2) has only finitely many solutions except from a finite number of pairs \((k, n)\) which he determines. In [BGP04] the authors complete solve (2) for \(k \leq 11\) while in [Pin07] the case \(n\) is even and \(k \leq 170\) odd is studied.

The last few years many mathematicians have focused on the most general equation

\[(3) \quad x^k + (x + d)^k + \cdots + (x + (r - 1)d)^k = y^n, \quad x, y, d, r, k, n \in \mathbb{Z}, n \geq 2.\]

and many specific cases have been studied. For example, the case \(k = 3, d = 1\) and \(r \leq 50\) is considered in [BPS16] and for \(k = 2, d = 1\) and \(r \leq 10\) in [Pat17]. Moreover, Bai and Zhang [ZB13] solve (3) for \(k = 2, d = 1\) and \(r = x + 1\) and in [Soy17] and [BPSS18] the authors are able to bound \(n\) when the last term of the sum is \(\ell\)-times the first one in terms of \(\ell\) and \(k\) under some conditions for \(\ell\). Finally, Patel and Siksek [PS17] prove that (3) has no solutions for \(k\) being even for almost all \(r \geq 2\).

Among the many different cases of (3) the case of three powers

\[(4) \quad (x - d)^2 + x^2 + (x + d)^2 = y^n\]

has attracted a lot of attention. Equation (4) has been studied for small values of \(k\) and \(d = 1\) in [BPS16] and [Zha14] and for \(d > 1\) in [Zha17] and [AGP17]. In this paper we consider the case \(k = 2\) of (4) and we study the equation

\[(5) \quad (x - d)^2 + x^2 + (x + d)^2 = y^n\]

\[\text{Date: March 29, 2018.}\]
\[\text{2010 Mathematics Subject Classification. Primary 11D61.}\]
\[\text{Key words and phrases. Exponential equation, Lucas–Lehmer sequences, primitive divisors.}\]
A very natural and interesting question is to study equation (5) for an infinitely family of d. Very recently Zhang [Zha17] proved that (4) has no solutions for \(k = 4 \) and \(n \geq 11 \) when \(d \) lies in a suitable infinitely family. In this paper we solve (5) when \(d \) is a prime power. A solution of (5) is called primitive if \((x, y) = 1\). Moreover, a solution is called non-trivial if \(x \neq 0 \).

Theorem 1.1. Let \(n \geq 3 \) be an integer. The non-trivial primitive solutions of (5) where \(d = p^b \) with \(b \geq 0 \) and \(p \leq 5000 \) are the ones in Table 1.

We have used the mathematical software package Sage [Dev17] for the computations in this paper. The code can be found at https://sites.google.com/site/angeloskoutsianas/research/code.

| \(p \) | \((|x|, y, b, n)\) |
|---|---|
| 7 | \((3, 5, 1, 3)\) |
| 79 | \((63, 29, 1, 3)\) |
| 223 | \((345, 77, 1, 3)\) |
| 439 | \((987, 149, 1, 3)\) |
| 727 | \((2133, 245, 1, 3)\) |
| 1087 | \((3927, 365, 1, 3)\) |
| 3109 | \((627, 29, 1, 5)\) |
| 3967 | \((27657, 1325, 1, 3)\) |
| 4759 | \((36363, 1589, 1, 3)\) |

Table 1. Non-trivial primitive solutions \((|x|, y, b, n)\).

2. **Lucas–Lehmer Sequences**

The characterization of primitive divisors of Lucas–Lehmer sequences in [BHV01] is used to prove Theorem 1.1. We have to recall the main definitions and terminology about Lehmer sequences and we recommend [BHV01] for a more detailed exposition.

Let \(\alpha, \beta \) be two algebraic integers such that \((\alpha + \beta)^2 \) and \(\alpha \beta \) are non-zero coprime rational integers and \(\alpha/\beta \) is not a root of unity. Then the Lehmer sequence associated to the Lehmer pair \((\alpha, \beta)\) is

\[
\tilde{u}_n = \tilde{u}_n(\alpha, \beta) = \begin{cases}
\frac{\alpha^n - \beta^n}{\alpha - \beta}, & n \text{ odd,} \\
\frac{\alpha^{n/2} - \beta^{n/2}}{\alpha^{1/2} - \beta^{1/2}}, & n \text{ even.}
\end{cases}
\]

Definition 2.1. Let \((\alpha, \beta)\) be a Lehmer pair. A prime number \(p \) is called primitive divisor of \(\tilde{u}_n(\alpha, \beta) \) if \(p \) divides \(\tilde{u}_n \) but does not divide \((\alpha^2 - \beta^2)^2 \cdot \tilde{u}_1 \cdots \tilde{u}_{n-1} \).

In case \(\tilde{u}_n \) has no primitive divisors then the pair \((\alpha, \beta)\) is called \(n \)-defective Lehmer pair. We say that an integer \(n \) is totally non-defective if no Lehmer pair is \(n \)-defective.

Theorem 2.1 ([BHV01]). Every integer \(n > 30 \) is totally non-defective, and for all prime \(n > 7 \).

Definition 2.2. Two Lehmer pairs \((\alpha_1, \beta_1)\) and \((\alpha_2, \beta_2)\) are equivalent if \(\alpha_1/\beta_1 = \beta_1/\beta_2 \in \{\pm 1, \pm \sqrt{-1}\} \).

For the integers \(1 \leq n \leq 30 \) the \(n \)-defective Lehmer pairs are completely described (up to equivalence) in [Vou95] (see [BHV01, Theorem C]) and [BHV01, Theorem 1.3].
3. A Lehmer sequence from primitive solutions of (5)

We suppose \(n \geq 3 \). We can rewrite (5) as

\[
3x^2 + 2d^2 = y^n
\]

Let \((x, y)\) be a non–trivial primitive solution of (5). This also implies that \(x, y, d \) are pairwise coprime. We rewrite equation (7) as

\[
(3x)^2 + 6d^2 = 3y^n,
\]

Let \(K = \mathbb{Q}(\sqrt{-6}) \) and write \(\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}] \) for its ring of integers. This has class group isomorphic to \((\mathbb{Z}/2\mathbb{Z})\). We factorise the left-hand side of equation (8) as

\[
(3x + d\sqrt{-6})(3x - d\sqrt{-6}) = 3y^n.
\]

It follows that

\[
(3x + d\sqrt{-6})\mathcal{O}_K = p_3 \cdot 3^n
\]

where \(p_3 \) is the unique prime of \(\mathcal{O}_K \) above 3 and 3 is an ideal of \(\mathcal{O}_K \). We have that \(p_3 \) is not principal.

Lemma 3.1. There are no non–trivial primitive solutions of (5) for \(n \) even.

Proof. This is an immediate consequence of (9) and the fact that \(p_3 \) is not principal ideal. \(\square \)

Let assume that \(n \) is an odd prime. Since \(p_3 \) is not principal, 3 is not either, and because \(p_3^2 = 3 \) we have,

\[
(3x + d\sqrt{-6})\mathcal{O}_K = p_3^{1-n} \cdot (p_33)^n = (\sqrt{3})^n.
\]

It follows that \(p_33 \) is a principal ideal. Write \(p_33 = (\gamma)\mathcal{O}_K \) where \(\gamma = u' + v'\sqrt{-6} \in \mathcal{O}_K \) with \(u', v' \in \mathbb{Z} \). We can easily prove that \(3 | u' \). Let \(u' = 3u \) and \(v' = v \). Then we have \(\gamma = 3u + v\sqrt{-6} \). After possibly changing the sign of \(\gamma \) we obtain,

\[
3x + d\sqrt{-6} = \frac{\gamma^n}{3^{(n-1)/2}}.
\]

Subtracting the conjugate equation from this equation, we obtain

\[
\frac{\gamma^n}{3^{(n-1)/2}} - \frac{\gamma^n}{3^{(n-1)/2}} = 2d\sqrt{-6},
\]

or equivalently,

\[
\frac{\gamma^n}{3^{n/2}} - \frac{\gamma^n}{3^{n/2}} = 2d\sqrt{-2}.
\]

Let \(L = \mathbb{Q}(\sqrt{-6}, \sqrt{3}) = \mathbb{Q}(\sqrt{-2}, \sqrt{3}) \). Write \(\mathcal{O}_L \) for the ring of integers of \(L \) and let

\[
\alpha = \frac{\gamma}{\sqrt{3}} \quad \text{and} \quad \beta = \frac{\gamma}{\sqrt{3}}.
\]

Lemma 3.2. Let \(\alpha, \beta \) be as above. Then, \(\alpha \) and \(\beta \) are algebraic integers. Moreover, \((\alpha + \beta)^2\) and \(\alpha \beta\) are non–zero coprime rational integers and \(\alpha/\beta\) is not a unit.
Proof. Let \(\gamma = 3u + v\sqrt{-6} \) be as above with \(u, v \in \mathbb{Z} \). Then
\[
(\alpha + \beta)^2 = 12u^2.
\]
So, \((\alpha + \beta)^2\) is a rational integer. If \((\alpha + \beta)^2 = 0\) then we have \(u = 0 \). However, from (12) and the fact that \(n \) is odd we understand that this can not happen. Clearly, \(\alpha\beta = \frac{\gamma}{3} \) is a non–zero rational integer.

We have to check that \((\alpha + \beta)^2\) and \(\alpha\beta\) are coprime. Suppose they are not coprime. Then there exist a prime \(q \) of \(\mathcal{O}_L \) dividing both. Then \(q \) divides \(\alpha, \beta \) and from equations (10) and (12) we understand that \(q \) divides \((y)\mathcal{O}_L\) and \((2d\sqrt{-2})\mathcal{O}_L\) which is a contradiction to the fact that \((x, y)\) is a non–trivial primitive solution, equivalent \(\gcd(y, r) = 1 \).

Finally, we need to show that \(\alpha/\beta = \frac{\gamma}{\bar{\gamma}} \in \mathcal{O}_K\) is not a root of unity. Since the only roots of unity in \(K \) are \(\pm 1 \) we conclude \(\gamma = \pm \bar{\gamma} \). Then, either \(v = 0 \) or \(u = 0 \) which both can not be hold because of (12).

\(\square \)

From Lemma 3.2 we have that the pair \((\alpha, \beta)\) is a Lehmer pair and we denote by \(\tilde{u}_k \) the associate Lehmer sequence. Substituting into equation (12), we see that
\[
(\alpha - \beta) \left(\frac{\alpha^n - \beta^n}{\alpha - \beta} \right) = d.
\]
Hence, we get:
\[
\frac{\alpha^n - \beta^n}{\alpha - \beta} = d/v = d'.
\]
We understand that \(v \mid d \). We define
\[
f_n(x, y) = \sum_{i=0}^{(n-1)/2} \binom{n}{2i+1} (-2)^i 3^{n-1-i} x^{n-1-2i} y^{2i}.
\]
After an elementary calculation we have
\[
\tilde{u}_n = f_n(u, v)
\]

4. Proof of Theorem 1.1

We use the Lehmer sequence of Section 2 to prove Theorem 1.1.

proof of Theorem 1.1 Let \((x, y)\) be a primitive solution of (7) for \(n \) an odd prime and \(d = p^b \) with \(p \neq 2, 3 \). Let \(K = \mathbb{Q}(\sqrt{-6}) \). We recall from Section 2 that there exists \(\gamma = 3u + v\sqrt{-6} \in \mathcal{O}_K \) with \(u, v \in \mathbb{Z} \) such that
\[
3x + p^b\sqrt{-6} = \frac{\gamma^n}{3(n-1)/2},
\]
and the elements
\[
\alpha = \frac{\gamma}{\sqrt{3}} \quad \text{and} \quad \beta = \frac{\bar{\gamma}}{\sqrt{3}}
\]
define Lehmer sequence \(\tilde{u}_k \). It holds that
\[
\tilde{u}_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} = p^b/v = p^{b'}.
\]
We consider the following cases:

Case \(b = 0 \): The equation \(3x^2 + 2 = y^n \) is a special case of the following lemma due to Nagell [Nag55].
Lemma 4.1. Let $D \geq 3$ be an odd number. Then the equation

\begin{equation}
2 + Dx^2 = y^n, \quad n > 2
\end{equation}

has no integer solutions (x, y, n) with $n \nmid h(-2D)$ where $h(-2D)$ is the class number of $\mathbb{Q}(\sqrt{-2D})$.

In our case we have $D = 3$ and $h(-6) = 2$, so in general there are no solutions of \ref{eq:22} for $b = 0$.

Case $v = p^b$: Then we have that the Lehmer sequence \tilde{a}_n is n–defective, because $p \mid (\alpha^2 - \beta^2)$, and so by [BV01] $n \leq 30$. From Lemma 4.4 we understand that there are no solutions for $n \leq 30$.

Case $1 < v < p^b$: From the definition of f_n we can see that this can not happen unless $n = p$ and $v = p^{b-1}$. So, we have to solve the equation

\begin{equation}
\Delta(u) = \left(\frac{p}{2i+1} \right) 2^{2i+1} \cdot 3^\frac{p-1}{2} i^{-2i} u^{p-1-2i} (p')^{2i} - \left(\frac{p}{2i+3} \right) 2^{2i+1} 3^\frac{p-1}{2} i^{-2i} u^{p-1-2i} (p')^{2i} \Rightarrow
\end{equation}

\begin{equation}
\Delta_i(u) = 2^3 3^\frac{p-1}{2} i^{-2i} u^{p-1-2i} (p')^{2i} \left(3 \left(\frac{p}{2i+1} \right) u^2 - 2 \left(\frac{p}{2i+3} \right) p^2 \right)
\end{equation}

Let choose a u_0 such that $\Delta_i(u) \geq 0$ for any $|u| \geq u_0$ for every i. Since the constant term of $f_p(u, p^{b-1})$ is $2^{2p+1} (p^{b-1})^{p-1} > p$ we have that $f_p(u, p^{b-1}) > p$ for $|u| \geq u_0$. Thus \ref{eq:22} has no solutions. From the above the constant u_0 is easily computable. \hfill \square

Case $v = 1$: For this case we need the following lemma.

Lemma 4.3. Let

\[
B = \begin{cases}
 p - 1 & \text{if } \left(\frac{-6}{p} \right) = 1 \\
 p + 1 & \text{if } \left(\frac{-6}{p} \right) = -1.
\end{cases}
\]

Let

\[
B_p := \max (7, B).
\]

Then $n \leq B_p$.
Proof. Recall that the exponent n is an odd prime. Suppose $n > 7$. By the theorem of Bilu, Hanrot and Voutier, $\tilde{u}_n = (\alpha^n - \beta^n)/(\alpha - \beta) = p^b$ is divisible by p while p divides neither $(\alpha^2 - \beta^2)^2 - 96u^2v^2$ nor the terms $\tilde{u}_1, \tilde{u}_2, \ldots, \tilde{u}_{n-1}$. Note that p does not divide $6v$. Let p be a prime of $K = \mathbb{Q}(\sqrt{-6})$ above p. As $(\alpha + \beta)^2$ and $\alpha\beta$ are coprime integers, and as α, β satisfy (20), we see that $\gamma, \overline{\gamma}$ are not divisible by p. We claim the multiplicative order of the reduction of $\gamma/\overline{\gamma}$ modulo \mathbb{F}_p divides B_p.

If -6 is a square modulo p, then $\mathbb{F}_p = \mathbb{F}_p$ and so the multiplicative order divides $p - 1 = B_p$. Otherwise, $\mathbb{F}_p = \mathbb{F}_p^*$. However, $\gamma/\overline{\gamma}$ has norm 1, and the elements of norm 1 in \mathbb{F}_p^* form a subgroup of order $p + 1 = B_p$. Thus in either case

$$ (\gamma/\overline{\gamma})^{B_p} \equiv 1 \pmod{p} $$

This implies that $p \mid \tilde{u}_n$. As p is primitive divisor of \tilde{u}_n we see that $n \leq B_p$, proving the lemma. □

From Lemma 4.3 we know that $n \leq b_p$. For the values of $n \leq B_p$ we have to solve the equation

$$ p^b = f_n(u, 1) \tag{24} $$

For the rest when we write $f_n(u)$ we mean $f_n(u, 1)$.

In general we do not expect solutions of (24) for big n and we prove that by showing that there are no solutions of the congruence equation

$$ p^b \equiv f_n(u) \pmod{s} \tag{25} $$

for $s = p, p \pm 1$. This elementary criterion works for almost all cases. However, there are pairs (p, n) for which it does not work. For these cases we do the following. We pick an integer s coprime to p and let t_s be the order of p at \mathbb{Z}_s^*. We define

$$ W_{s,p}(f_n) := \{p^k \mod{s} : k = 1, \ldots, t_s - 1\} \bigcap \{f_n(i) \mod{s} : i \in [1, s]\} \tag{26} $$

If $W_{s,p}(f_n) = \emptyset$ then we can conclude that $t_s \mid t$. Using many different s and taking lcm of the t_s we can find a number t such that if there exists a solutions of (24) then we have $t \mid b$. Then we check if there exists an integer l such that $p^l \equiv 1 \pmod{l}$ but $f_n(u) \not\equiv 1 \pmod{l}$ for all $u \in \mathbb{Z}$. If that holds then we have proved that (24) has no solutions. In practice, this method works for all $n \geq 5$ apart from $(p, n) = (3109, 5)$.

For $n = 3, 5$ the problem can be reduced to the problem of solving a certain S–unit equation\footnote{It can also be reduced to the problem of computing integral points on the elliptic curves $9y^2 - 2 = cx^3$.} Let consider the case $n = 3$. We have that $f_3(u) = 9u^2 - 2$. We define $L = \mathbb{Q}(\sqrt{2})$ and $\epsilon = 1 + \sqrt{2}$ be a generator of the free part of the unit group of L. Then for a prime p such that $\left(\frac{2}{p}\right) = 1$ let w be a generator of a prime ideal p in L such that $p \mid p$. For an element $x \in L$ we denote by \bar{x} its conjugate. Then we can prove that

$$ 3x - \sqrt{2} = (-1)^{b_1}e^{b_1}w^b. \tag{27} $$

Taking conjugate and subtracting we have

$$ 1 = (-1)^{b_1}e^{b_1}w^b(-\sqrt{2})^{-3} + (-1)^{b_1}e^{b_1}w^b(-\sqrt{2})^{-3} \tag{28} $$

for $c = 1, p, p^2$. However, for big p it is hard to compute the integral points on the elliptic curve.\footnote{The class number of L is 1.}
For $n = 5$ we have $f_5(u) = 45u^4 - 60u^2 + 4$, so $(15u^2 - 10)^2 - 80 = 5p^b$. Similar to the case $n = 3$ and working over $N = \mathbb{Q}(\sqrt{5})$ for $p \neq 2, 5$ we have

\[(15u^2 - 10) - 4\sqrt{5} = (-1)^{b_0} \epsilon^{b_1} 5^{b_2} w^b\]

where $b_0, b_1, b_2, b \in \mathbb{Z}$, $\epsilon = (1 + \sqrt{5})/2$ and w a generator\(^3\) of a prime p in N above p. Taking conjugate and subtracting we end up to the following S–unit equation

\[1 = (-1)^{b_0} \epsilon^{b_1} \sqrt{5}^{b_2} w^{b-3} - (-1)^{b_0} \epsilon^{b_1} (-\sqrt{5})^{b_2} w^{b-3}.\]

Using standard and well–known algorithms (see [Sma98], [Sma95], [TDW89], [TDW92]) we can find an upper bound for b in (28) and (30). Since we have the upper bound for b we can compute u looking for integer solutions of (24). In case the upper bound is very big we can use ideas from [Sma99] and [Kou17, Section 6.4] to reduce the number of candidates for b.

We have written a Sage script that does all the above computations. Finally, the complete list of primitive solutions of (5) with $d = p^b$ and $p \leq 5000$ are those in table [1].

Lemma 4.4. There are no n–defective pairs for the Lehmer pair (α, β) where $\alpha = \frac{2}{\sqrt{3}}$ and $\beta = \frac{2}{\sqrt{5}}$ for $v = p^b$.

Proof. It holds that $\alpha = \frac{2}{\sqrt{3}} = \sqrt{3}u + v\sqrt{-2}$ and $\beta = \sqrt{3}u - v\sqrt{-2}$. So, $(\alpha + \beta)^2 = 12u^2$ and $(\alpha - \beta)^2 = -8v^2$. Then from the definition of equivalence Lehmer pairs we understand that the pair $(\pm 12u^2, \mp 8v^2)$ has to be in tables 2 or 4 in [BHV01] (see also table 2 in [You95]). This never happens for $n > 5$.

Let consider the case $n = 3$. Because $v = p^b$ and $f_3(x, y) = 9x^2 - 2u^2$ the equation $f_3(u, p^b) = 1$ has never an integer solution (taking the equation mod 4). Similarly for $n = 5$. \hfill \square

Acknowledgement

The author would like to thank Professor Nikolaos Tzanakis for useful conversations and suggestions about an early draft of the paper. The author is also grateful to Professor John Cremona for providing access to the servers of the Number Theory Group of Warwick Mathematics Institute where all the computations took place.

References

[AGP17] A. Argáez-García and V. Patel. Perfect powers that are sums of cubes in a three term arithmetic progression. [arXiv:1711.06407] 2017.

[BGP04] Michael A. Bennett, Kálmán Győry, and Ákos Pintér. On the Diophantine equation $1^k + 2^k + \cdots + x^k = y^m$. Compositio Mathematica, 140(6):1417–1431, 2004.

[BHV01] Yu Bilu, G. Hanrot, and P. M. Voutier. Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math, (539):75–122, 2001.

[BPS16] Michael A. Bennett, Vandita Patel, and Samir Siksek. Superelliptic equations arising from sums of consecutive powers. Acta Arith., 172(4):377–393, 2016.

[BPS17] M. A. Bennett, V. Patel, and S. Siksek. Perfect powers that are sums of consecutive cubes. Mathematika, 63(1):230–249, 2017.

[BPSS18] A. Bérczes, I. Pink, G. Savaş, and G. Soydan. On the Diophantine equation $(x + 1)^k + (x + 2)^k + \cdots + (2x)^k = y^m$. Journal of Number Theory, 183:326 – 351, 2018.

[Dev17] The Sage Developers. Sage Mathematics Software (Version 8.0), 2017. [http://www.sagemath.org].

\(^3\)The class number of N is 1.
L. Hajdu. On a conjecture of Schäffer concerning the equation $1^k + \cdots + x^k = y^n$. *Journal of Number Theory*, 155:129 – 138, 2015.

Angelos Koutsianas. Computing All Elliptic Curves Over an Arbitrary Number Field with Prescribed Primes of Bad Reduction. *Experimental Mathematics*, 2017.

É Lucas. Question 1180. *Nouvelles Ann. Math.*, 14(2):336, 1875.

Trygve Nagell. Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns. *Nova Acta Soc. Sci. Upsal. (4)*, 16(2):38, 1955.

V. Patel. Perfect powers that are sums of consecutive squares. [arXiv:1707.06678](https://arxiv.org/abs/1707.06678) 2017.

Ákos Pintér. On the power values of power sums. *Journal of Number Theory*, 125(2):412–423, 2007.

V. Patel and S. Siksek. On powers that are sums of consecutive like powers. *Res. Number Theory*, 3:Art. 2, 7, 2017.

Juan J. Schäffer. The equation $1^p + 2^p + 3^p + \cdots + n^p = m^q$. *Acta Mathematica*, 95(1):155–189, 1956.

N. P. Smart. Determing the Small Solutions to S-unit Equations. *Mathematics of Computation*, 68(228):1687–1699, 1999.

G. Soydan. On the Diophantine equation $(x + 1)^k + (x + 2)^k + \cdots + (lx)^k = y^n$. *Publicationes Mathematicae Debrecen*, 2017.

Tzanakis and B. M. M. De Weger. On the Practical Solution of the Thue Equation. *Journal of Number Theory*, 31:99–132, 1989.

Tzanakis and B. M. M. De Weger. How to explicitly solve a Thue-Mahler equation. *Compositio Mathematica*, 84(3):223–288, 1992.

Paul M. Voutier, Primitive divisors of Lucas and Lehmer sequences. *Math. Comp.*, 64:869–888, 1995.

G. N. Watson. The problem of square pyramid. *Messenger of Math.*, 1918.

Z. Zhang and M. Bai. On the diophantine equation $(x+1)^2+(x+2)^2+\cdots+(x+d)^2 = y^n$. *Funct. Approx. Comment. Math.*, 49(1):73–77, 09 2013.

Zhongfeng Zhang. On the Diophantine equation $(x-1)^k + x^k + (x+1)^k = y^n$. *Publ. Math. Debrecen*, 85(1-2):93–100, 2014.

Zhongfeng Zhang. On the Diophantine equation $(x - d)^4 + x^4 + (x + d)^4 = y^n$. *Int. J. Number Theory*, 2017.