Research Article

Construction Safety Risk Assessment of Large-Sized Deep Drainage Tunnel Projects

Kai Hu,1,2 Junwu Wang,1 and Han Wu3

1School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
2School of Architecture and Material Engineering, Hubei University of Education, Wuhan 430070, China
3School of Civil Engineering and Architecture, Nanchang University, Nanchang 330000, China

Correspondence should be addressed to Junwu Wang; junwuwang@163.com

Received 24 August 2021; Accepted 7 December 2021; Published 21 December 2021

1. Introduction

With the continuous advancement of global climate change and urbanization, problems such as insufficient drainage system capacity and low drainage standards in major cities around the world have become increasingly prominent [1]. In particular, urban waterlogging and overflow pollution frequently occur, seriously threatening the development of urban green environmental protection as well as the safety of the population and their properties. Large-sized deep drainage tunnel projects (LSDDTPs) refer to the drainage tunnels buried in deep underground spaces, which are typically set in areas where waterlogging easily occurs, with a dense population, complex underground pipelines, and where the existing drainage system is difficult to reform [2]. At present, construction technology of LSDDTPs is underdeveloped and the construction safety risk is high. LSDDTPs are prone to land subsidence, damage to underground pipelines and surrounding buildings, and other safety accidents, resulting in huge economic losses and casualties. Determining how to correctly identify and reduce the construction safety risks of LSDDTPs and effectively avoid potential accidents caused by risk factors is a practical problem that must be solved.

In the field of engineering, project managers often run tunnel projects according to standard documents such as the Safety Evaluation Standard for Metro Construction (GB 50715–2011), the Safety Evaluation Standard for Metro Operations (GB/T 50438–2007), and Detailed Rules for the Safety Pre-Evaluation of Urban Rail Transit (AQ 8004–2007). These specifications are generally aimed at subway tunnel projects, which are typical large-diameter tunnel projects. However, LSDDTPs are typical small-diameter tunnel projects with the following characteristics: the shield machine starts separately; material transportation and the construction of a second lining are difficult, the control
technology of small turns is complex; and there is a great possibility of land subsidence [3]. The current specifications cannot be directly applied to the construction management of LSDDTPs, and thus, a scientific assessment model of LSDDTP construction safety risk is urgently required in engineering project management practices.

According to the general process of risk assessment research [4, 5], the construction safety risk assessment model of LSDDTPs includes the determination of three key components: the evaluation index, the index weight, and the risk grade.

The establishment of an evaluation index system is the foundation of risk evaluation. The integrity of the evaluation index system directly affects the accuracy of the evaluation results. The LSDDTP is a complex project, including the tunnel construction, the shaft construction, and ancillary work construction. There are obvious differences in technologies, materials, and management processes of different construction contents. Therefore, there are various intricate risk factors of LSDDTPs. At present, commonly used risk identification methods [6–11] only identify risks from one dimension, so they cannot identify risks of LSDDTPs comprehensively and completely, while the hierarchical holographic modeling (HHM) emphasizes identifying risks from multiple dimensions and perspectives [12, 13], which has been successfully implemented in other research fields [14, 15].

There is an obvious correlation between different construction contents of LSDDTPs, so there is an also obvious correlation between risk factors. For example, tunnel construction workers, construction materials, and construction machinery all enter the construction surface through the shaft, so the shaft construction safety has a direct impact on the tunnel construction safety. The weight of shaft construction safety risk index is obviously related to that of tunnel construction safety index. When evaluating construction safety risk of LSDDTPs, the impact on the safety risk level varies with the index. Therefore, the weight of each index must be calculated to ensure the scientific results of the LSDDTP construction safety risk assessment. At present, commonly used weight calculation methods, the analytic hierarchy process (AHP) [16] and the entropy weight method [17], cannot describe the relevance of LSDDTPs risk indicators in detail. While social network analysis (SNA) comprehensively integrates graph theory and other mathematical models to investigate the relationships among social actors or various tangible or intangible factors flowing through these relationships [18, 19]. Although SNA has been successfully applied in various fields, such as industry structure [20], contractual relationship [21], and disaster risk [22], there are few research achievements in the field of project risk.

There are few LSDDTPs under construction at present, so risk assessment of LSDDTPs has the characteristics of a small sample. Because of the complexity of LSDDTPs, its risk indicators are not only quantitative indicators, but also qualitative indicators. Therefore, the risk assessment of LSDDTPs has the problem of incompatibility between qualitative and quantitative indicators. Choosing the appropriate risk assessment method is key for the development of the LSDDTP construction safety risk assessment model. Previous studies have adopted various mathematical methods to build risk assessment models. These traditional evaluation methods such as the fuzzy evaluation [23], the grey clustering [24], and the backpropagation neural network (BPNN) [25] are not suitable for this study. The matter-element extension method (MEEM) used the node and classic domains to express the qualitative component of an evaluation object and adopts the correlation function to calculate the correlation degree of indicators, achieving the accurate evaluation.

The main contributions of this paper were as follows. (1) The HHM was used for the first time to completely construct the risk system of LSDDTPs, which effectively solved the problem of numerous risk factors of LSDDTPs. It also provided a basis for future research on LSDDTPs risk. (2) Based on the mathematical characteristics of risk network structure, this paper selected the SNA to calculate the objective weight of index, which effectively solved the problem of the strong correlation of LSDDTPs risk factors. (3) MEEM was selected to construct the risk assessment model of LSDDTPs, which effectively solved the incompatibility between qualitative and quantitative indicators in LSDDTPs risk factors and improved the calculation accuracy and interpretability. (4) The Donghu Deep Tunnel Project in Wuhan, China, was selected as the empirical research object, and various research results with engineering practice value were obtained.

The rest of the paper is structured as follows. Section 2 introduces the related research results and emphatically analyses the research gap. Section 3 introduces the research materials and methods, including the construction safety risk assessment system and risk assessment model of LSDDTPs. Section 4 presents the case analysis and Section 5 discusses the proposed model and case analysis. Section 6 summarizes the research conclusions and limitations of this paper.

2. Literature Review

Risk research of LSDDTPs is closely related to its engineering requirements. In developed countries, such as Britain or France, complete underground tunnel systems and underground drainage systems were built 100–200 years ago. Therefore, the research achievements of developed countries were mainly the engineering experience 100–200 years ago. In developing countries, such as China or Indonesia, the importance of underground tunnel system and drainage system has just been realized, and LSDDTPs will only be built in a few years. For example, the empirical research object of this paper (the Donghu Deep Tunnel Project is located in Wuhan, China) is the first LSDDTPs in China. Therefore, there are almost no risk research results for LSDDTPs. This is also the reason why this paper chooses LSDDTPs as the research object.

Zhang et al. [6] constructed an index system for the road engineering construction safety risk assessment in terms of five factors: men, materials, machinery, methods, and
environment. Based on the types of safety accidents, Sadeghi et al. [7] determined a construction safety risk evaluation index system for Malaysian architectural engineering. Aminbakhsh et al. [8] developed a construction safety risk assessment index system on the basis of safety accidents, physical disasters, and chemical disasters. Wu et al. [9] employed the factors of health, safety, and environment to propose a construction safety risk evaluation index system for LSDDTPs. According to the construction contents of open-cut underground engineering projects, Seo and Choi [10] developed a safety risk index system based on different construction contents. Yu and Wang [11] analysed the influence of several participating units on the construction safety risk and determined a construction safety risk evaluation index system in terms of the owner, construction, and design units. The majority of the current literature focuses on developing a construction safety risk index system from a specific dimension. Thus, not all the important risk factors can be identified, particularly those that are highly relevant to the project.

HHM is based on a multiperspective framework diagram to effectively identify the risks of the project system [12]. Chaves and Bahill [13] used the HHM to analyse the risks of solar energy integration into power grid system projects and demonstrated the comprehensiveness and integrity advantages of HHM via comparisons with other risk identification tools. Jiang et al. [14] employed the HHM to identify the risks of water resource systems, demonstrating the ability of HHM to dynamically and comprehensively identify the influencing factors in complex systems. Nakandala et al. [15] adopted the HHM to solve the problem of multiple factors in a risk assessment index of fresh supply chain.

Therefore, in the current paper, the HHM was employed to develop a construction safety risk list of LSDDTPs in terms of the risk source and construction unit in order to overcome the deficiency of incomplete and systematic risk identification.

The AHP has better interpretability as it can make full use of expert opinions, yet it is associated with poor calculation accuracy and subjectivity [16]. Although the entropy weight method makes full use of the evaluation index data, it has a high calculation accuracy and objectivity, while large deviations between the calculation results and the actual situation are common [17]. SNA has recently become a popular research method in social sciences [18]. By combing the overall network analysis and individual network analysis in SNA, Qin et al. [19] systematically divided the relationship between risk factors of green building projects in China and normalized the calculation results of the point centrality of indicators to the calculation results of weights of indicators. Chong et al. [20] effectively dealt with stereotyped data in industrial structure evaluation research based on the SNA and determined the key indicators from the network characteristics of risk factors via quantitative analysis methods. Gobbo et al. [21] implemented the SNA to analyse the key influencing factors of hospital employment contract networks in order to evaluate the corresponding complex network structures. Ghorbani et al. [22] successfully analysed the drought risk index system in Iran using the SNA.

Based on the above analysis, this paper adopts the SNA to calculate the weight of each index based on the network characteristics of risk, thus accounting for the accuracy and interpretability of the calculated weights.

Zhang et al. [23] used the fuzzy comprehensive evaluation method for the evaluation of karst groundwater quality. However, this method is prone to the ultrafuzzy phenomenon, and the membership function of each index must be preset artificially. Zhou and Thai [24] used grey theory to analyse the failure mode of oil tanker equipment failure predictions, yet this approach requires the high integrity of data series. Once the data information is incomplete, it is easy to predict. Zhang et al. [25] used the BPNN to construct the risk early warning model of sports events. However, construction of the BPNN requires a large number of training samples, which are often difficult to obtain for security risk assessments, reducing the application scope of the BPNN. MEEM is a goodness evaluation approach that is widely employed in information processing, decision-making, prediction, identification, evaluation, management, control, etc. [26–28]. Wang et al. [27] employed the MEEM to effectively evaluate the sustainability of the Chinese power generation industry, whereby the MEEM used the correlation function between matter-element characteristics to establish a matter-element evaluation model with multi-index parameters. The authors obtained systematic evaluation results through the correlation between indicators and targets, improving the calculation accuracy and interpretability. Li and Li [28] solved the incompatibility between qualitative and quantitative indicators in energy sustainability evaluations via the MEEM.

So the MEEM was selected in the current paper to build a risk assessment model.

3. Materials and Methods
3.1. Initial System of Construction Safety Risk of LSDDTPs
3.1.1. HHM Framework of Construction Safety Risk of LSDDTPs

Based on the HHM

Table 1 reports the HHM framework of construction safety risk for LSDDTPs.
3.1.2. Primary Selection of LSDDTP Construction Safety Risk Indicators. Due to differences in construction technology and site conditions, initial construction safety risk lists may vary with LSDDTPs. Therefore, the Wuhan Donghu Deep Tunnel was selected as an example to study the construction safety risk evaluation index of LSDDTPs. According to the HHM characteristics, the more research dimensions, the more complete the risk list is. However, when the research dimension exceeds 2, the risk list is too large. Therefore, according to the construction safety risk management requirements of the Donghu Deep Tunnel Project, we selected two dimensions, namely, the risk source and construction unit, and identified the relevant risk indicators (Table 2).

Table 2 reveals that the safety risk factors related to humans are almost equal to those of the tunnel and shaft constructions. Each engineering project type has different construction materials, construction machinery, construction technology, and construction environment, yet the factors related to the safety awareness, safety ability and safety responsibility of construction personnel are essentially the same and are a function of the human factor characteristics.

3.1.3. Assessment Criteria of Construction Safety Risk. Based on the subway construction safety evaluation standard (GB 50715–2011) and references [9, 29, 30], the construction safety risks of LSDDTPs were divided into five grades: very dangerous (I), dangerous (II), qualified (III), safe (IV), and very safe (V). Very dangerous (I) scores range between [0, 20], indicating that the construction safety risk of LSDDTP is very high and project management personnel should stop the construction immediately; dangerous (II) scores range between [20, 40], indicating a high construction safety risk and the project management personnel should decide whether to stop the construction and take immediate measures to reduce the construction safety risk; the qualified (III) score ranges within [40, 60], indicating that the construction safety risk is acceptable yet the project management personnel should take measures to reduce the construction safety risk; the safe (IV) score range is [60, 80], indicating that the construction safety risk is acceptable and the project management personnel only need to check the implementation of safety management measures; and very safe (V) score ranges within [80, 100], indicating that the construction safety risk is acceptable, and the project management personnel do not need to take any measures. Based on the risk matrix method [31], we determined the risk levels in terms of the possibility of risk events and the consequences of risk events (Table 3).

3.2. Evaluation Index Screening and Weight Calculations Based on the SNA

3.2.1. Introduction of the SNA. Following the construction of the social network structure, the SNA can evaluate the objective law of interactions between individuals and factions through the relationships amongst points [22]. At present, common methods used to calculate risk factor correlations include interpretative structural modelling (ISM) [32] and the Bayesian network method [33], amongst other analytical approaches. However, none of the current methods can quantitatively analyse the position of risk factors in the risk network. More specifically, we can only achieve an overall analysis, while the individual risk analysis based on the relationship between risk and influence is not possible. SNA is an effective tool for the investigation of the relationship between factors and can determine structural problems through both overall and individual analysis.

In this paper, each risk can be regarded as a point, and the relationship between risks can be regarded as the relationship between points. Therefore, the SNA can be used to determine the relationship between risks, achieving both an overall analysis of the risk network and an individual analysis of risks based on the relationship between risks and influences.

Commonly used SNA analysis tools of the overall network structure include central potential analysis, block model analysis, cohesive subgroup analysis, core-edge analysis, etc. [20], while commonly used analysis tools of individual networks include middleman analysis, point centrality analysis, and line centrality analysis. In this paper, point centrality analysis was selected, whereby the calculated point centrality of the index was normalized to the calculated index weight [19].

When analysing the construction safety risk network of LSDDTPs, there exist one or more risk factors with high control power when the risk is transmitted. The higher the value of centrality, the higher the transmission risk of the point.

Intermediate centrality C_i corresponding to point i is calculated as follows [19].

\begin{equation}
C_i = \frac{\sum_{j} \sum_{k} \sum_{i} b_{jk}(i)}{n},
\end{equation}

where $b_{jk}(i)$ represents the communication ability among i, j, and k and is calculated as [19]

\begin{equation}
b_{jk}(i) = \frac{g_{jk}(i)}{g_{jk}},
\end{equation}

where g_{jk} represents the number of shortcuts between points j and k and $g_{jk}(i)$ represents the number of shortcuts between points j and k and point i.

Equations (1) and (2) reveal that the point centrality of risk factors can be equal to the importance of risk factors in the risk network. The greater the point centrality of a risk factor, the greater the influence of the risk factor on other risk factors, and the more central the risk factor is located within the risk network, the greater the weight of the risk factor. We employed the Node Betweenness function of UCINET 6.0 to calculate point centrality.
3.2.2. Screening of Key Evaluation Indicators. Based on the construction safety risk evaluation index of LSDDTPs identified in Section 3.1.2, we adopted the questionnaire survey method to obtain the correlation among various risk factors. In particular, experts were invited to analyse the relationship between risk factors: 1 indicates that they believed that bank risk factors have influence on the bank risk factors and 0 otherwise.

A total of 200 questionnaires were distributed by e-mail, and 88 were recovered (44% recovery rate). There were 71 valid questionnaires, with an effective rate of 80.68%. The main form of invalid questionnaires was incomplete questionnaires. Table 4 reports the analysis of the professional background data of the 71 valid questionnaire participants.

Work units of respondents with valid questionnaires are reasonably distributed and almost all the experts from the participating units participated in this questionnaire survey. Approximately 87.32% of the respondents have more than three years’ work experience, 97.18% have a bachelor degree.
or above, and 74.64% have intermediate and higher titles. In addition, 85.92% of the respondents participated in the case study project, and the majority of respondents had management experience in similar projects. These statistical results ensure the quality of the questionnaire. It should be emphasized that few LSDDTPs have been built in recent years across the globe, thus the majority of questionnaire respondents only participated in 1–3 similar projects.

Based on the statistical results from the 71 valid questionnaires, the ratio of the first characteristic root to the second characteristic root was calculated in UCINET 6.0 software as 14.76. This value exceeds 3, proving that the questionnaire survey results met the consistency requirements [19]. Following this, the Node Betweenness function of UCINET 6.0 was employed to calculate the centre degree of points (Table 5).

Referring to previous research [19], we selected the secondary indicators with the top 20% of the centre degree of points as the key indicators (Table 6). The index weight was then determined by normalizing the point centrality of the secondary index with the top 20% of the point centrality [19].

It should be emphasized that the proportion of key indicators is artificially provided according to the research needs.

3.3. Safety Risk Assessment Model of LSDDTPs Based on the MEEM

3.3.1. Introduction of the MEEM

The MEEM is based on extension set theory, in which the relevance degree, relevance function, classical city, and node domain are key components [26]. By establishing the matter-element extension model and correlation function of the object to be evaluated, this method calculates the correlation degree between each index and each grade in the evaluation system to obtain the evaluation grade of the object to be evaluated [28].

The basic steps of the MEEM in the risk assessment process are as follows:

1. Determine the evaluation matter element and classical domain. Assuming that the evaluation system of the research object includes m indicators C_1, C_2, \ldots, C_m, the established evaluation model can be expressed as [26]

 $$ R = (U, C, U) $$

 $$ C = \begin{bmatrix} C_1 & V_1 \\ C_2 & V_2 \\ \vdots & \vdots \\ C_m & V_j \end{bmatrix} $$ \hspace{1cm} (3)

 where U indicates the risk evaluation grade to which the research object belongs to and V_j indicates the value range of the j-th risk index in the evaluation index set.

2. Following this, the classical domain can be determined as [26]

 $$ R_j = (U_j, C_m, U_j) $$

 $$ U_j = \begin{bmatrix} U_j & C_1 & (a_{j1}, b_{j1}) \\ C_2 & (a_{j2}, b_{j2}) \\ \vdots & \vdots \\ C_m & (a_{jm}, b_{jm}) \end{bmatrix} $$ \hspace{1cm} (4)
where U_j is the value range specified by evaluation index set C about risk grade U_j.

Step 2: determine the node area. The node field can be expressed as

$$R_U = (U, C_m, V)$$

where V is the value range specified by evaluation index set C about all grades U.

Step 3: establish correlation function. Based on the definition of the correlation degree in the extension engineering method, the correlation degree of the object to be evaluated is determined as

$$k_j(C_{ik}) = \begin{cases}
\frac{\rho(v_{ik}, U_j)}{\rho(v_{ik}, V) - \rho(v_{ik}, U_j)}, & \rho(v_{ik}, V) - \rho(v_{ik}, U_j) \neq 0, \\
-\rho(v_{ik}, V_j) - 1, & \rho(v_{ik}, V) - \rho(v_{ik}, U_j) = 0,
\end{cases}$$

$$\rho(v_{ik}, U_j) = v_{ik} - \frac{a_{ji} + b_{ji}}{2} = \frac{b_{ji} - a_{ji}}{2},$$

$$\rho(v_{ik}, V_j) = v_{ik} - \frac{a_{ji} + b_{ji}}{2} = \frac{b_{ji} - a_{ji}}{2},$$

Table 5: Calculation results of point centrality of all secondary indicators.

Ranking	Index	Point centrality	Ranking	Index	Point centrality	Ranking	Index	Point centrality
1	E11	75	17	D22	15.5	33	C11	0
2	E24	68.5	18	C24	14	33	B12	0
3	B11	59.5	19	A14	11.5	33	D12	0
4	D24	57.5	20	E13	8	33	A24	0
5	D26	57	21	B14	6	33	D25	0
6	D16	52	22	D21	4	33	C12	0
7	A12	49.5	23	A23	3.5	33	E12	0
8	D15	42.5	23	B21	3.5	33	B23	0
9	A22	36.5	25	E14	3	33	E21	0
10	D23	36	25	A21	3	33	C22	0
11	E23	34	27	C14	1.5	33	C21	0
12	A11	30.5	27	B24	1.5	33	E22	0
13	D11	28	27	A13	1.5	33	C23	0
14	B22	26	30	D14	1	33	E25	0
15	D13	23	30	C13	1	—	—	—
16	B12	22.5	30	E15	1	—	—	—

Table 6: Weights of the LSDDTP construction safety risk indicators.

Secondary index	Weight	Ranking	Secondary index	Weight	Ranging
E11	0.1404	1	D16	0.0974	6
E24	0.1283	2	A12	0.0927	7
B11	0.1114	3	D15	0.0796	8
D24	0.1077	4	A22	0.0684	9
D26	0.1067	5	D23	0.0674	10
where \(k_j(c_{ik}) \) is the correlation degree of the \(k \)-th second-level index in the \(i \)-th first-level index with respect to risk grade \(j \).

Step 4: multilevel extension evaluation.

\[
K(C_i) = (k_j(C_i)) = [\omega_1, \omega_2, \ldots, \omega_p].
\]

(1) Evaluation of secondary indicators: risk correlation matrix \(K(C_i) \) for each primary index is calculated by multiplying the weight vector of the secondary index and the correlation matrix of each risk level corresponding to the secondary index [26, 27]:

\[
\begin{bmatrix}
k_1(C_{i1}) & k_2(C_{i1}) & \cdots & k_m(C_{i1}) \\
\vdots & \vdots & \ddots & \vdots \\
k_1(C_{ip}) & k_2(C_{ip}) & \cdots & k_m(C_{ip})
\end{bmatrix}
\]

(9)

(2) Evaluation of first-class indicators: correlation matrix \(K(N) \) of the object to be evaluated for each risk grade is calculated by multiplying the weight vector of each primary index and the correlation matrix of each risk grade corresponding to the primary index [26, 27]:

\[
K(N) = [\omega_1, \omega_2, \ldots, \omega_n].
\]

\[
\begin{bmatrix}
k_1(C_1) & k_2(C_1) & \cdots & k_m(C_1) \\
k_1(C_2) & k_2(C_2) & \cdots & k_m(C_2) \\
\vdots & \vdots & \ddots & \vdots \\
k_1(C_n) & k_2(C_n) & \cdots & k_m(C_n)
\end{bmatrix}
\]

(10)

(3) Determination of risk level: if \(K_{j0}(N) = \max_{j=1,2,\ldots,n} K_j(N) \) is satisfied, it is said that the object to be evaluated \(N \) belongs to grade \(j \).

3.3.2. Proposed Risk Assessment Model

Core concepts of the LSDDTP construction safety risk assessment model proposed in this paper are as follows. (1) We combine the LSDDTP characteristics to construct the HHM framework of LSDDTP construction safety risk. According to the research requirements, the appropriate dimensions are selected to identify and construct the initial LSDDTP construction safety risk index system. (2) We integrate the SNA with overall and individual network analysis tools to screen the key risk indicators and calculate the weights of each indicator. (3) We employ the matter-element extension method to determine the corresponding relationship between the object to be evaluated and the evaluation grade using a correlation function and subsequently develop the LSDDTP construction safety risk evaluation model.

Figure 1 presents the flowchart of the risk assessment model proposed in this paper.

According to Figure 1, implementation steps of the LSDDTP construction safety risk assessment model are summarized as follows:

Step 1: considering the project management needs of the object to be evaluated, the appropriate dimensions are selected from Table 1 to construct the first-level index system. The initial index system of the construction safety risk assessment of LSDDTPs is determined via field and literature investigations as well as expert interviews.

Step 2: the correlation information among risks is obtained using the questionnaire survey. In addition, SNA individual network analysis and the point centrality calculation method are combined to screen the key secondary indicators and determine their weight.

Step 3: experts are invited to determine the scores of the secondary indicators in terms of the possibility of risk events and the consequences of risk events based on Table 3. The average score of each expert is selected as the score of the secondary index.

Step 4: based on extension mathematics, the node and classical domains of each LSDDTP construction safety risk index are determined via equations (4) and (5). Project data obtained in Step 3 is integrated with equation (3) to determine the matter element to be evaluated.

Step 5: the correlation degree of the object to be evaluated is calculated via equations (6)–(8).

Step 6: the comprehensive correlation degree is calculated via equations (9) and (10), and the construction safety risk level of LSDDTPs is determined according to the principle of maximum membership degree.

4. Case Analysis

4.1. Engineering Background and Data Sources

4.1.1. Engineering Background

The Donghu Deep Tunnel Project is located in Wuhan, China. Its main function is to transport the sewage from the core area of Donghu Lake in...
Wuhan to the Beihu Wastewater Treatment Plant for concentration. The principle tunnel collects the incoming water from each pretreatment station along the line and delivers it to the newly built Beihu Wastewater Treatment Plant, with a total length of approximately 17.5 km. The tunnel is a typical small-diameter tunnel project with a diameter within D3000 mm–D3400 mm. In addition, this tunnel was constructed via the shield method and adopts the prefabricated segment and a two-lining double-layer laminated structure. Eleven ultradepth shafts with small cross-sections are arranged along the main tunnel project, with 32.8 m–51.5 m depth. Amongst these, the largest cross section is a rectangle with 15 m × 11 m diameter, while the smallest cross section is a circle with a 12 m diameter.

The engineering characteristics and difficulties of the Donghu Deep Tunnel Project are summarized as follows:

1. Long-distance shield construction: the longest shield section reaches a length of 3.2 km, which requires a high measurement accuracy. Transportation efficiency of the segment and muck is low during construction. Poor ventilation in long-distance tunnels can easily lead to accidents.

2. Shield construction of the small section shaft. The wellhead size of the shaft in this project is very small and there are numerous cross constructions for the vertical transportation of the wellhead. This increases the potential of safety hazards for personnel and machinery.

3. The shield section of the main line deep tunnel passes through Donghu Lake, Yanxi Lake, and Beihu Lake. Thus, slurry leakage at the shield tail and water leakage at the hinge are likely to occur during shield tunnelling. In order to avoid this, when the shield crosses the lake bottom, it should strictly control the tunnelling parameters of the shield construction, adopt low-speed uniform propulsion, avoid large disturbances to the soil, and avert construction risks such as the collapse of the lake bottom and water seepage.

4.1.2. Data Source and Reliability Analysis. The secondary index data employed in this paper were obtained from field investigations and the expert questionnaire. Based on the comprehensive understanding of the site and management conditions at the Donghu Deep Tunnel Project, 20 experts adopted the rules in Table 3 to determine the scores of each secondary index in terms of the possibility of risk events and the consequences of risk events. The average score of each expert was taken as the secondary index score (Table 7).

In order to ensure the credibility and scientific basis of the survey results, the survey objects were selected as project managers, safety officers, and engineers who have been engaged in professional work for more than 10 years and hold intermediate (or higher) titles. A total of 20 questionnaires were distributed and collected, including 2 project managers, 8 safety officers, and 10 engineers.

In order to validate the returned questionnaire results, the reliability was tested prior to the analysis of the survey results [34]. Cronbach’s alpha confidence coefficient is typically employed to statistically measure the reliability of questionnaires. The greater Cronbach’s alpha coefficient, the higher the reliability [35]. In this paper, SPSS 19.0 was used to count the expert scores and subsequently test the reliability (Table 7). Cronbach’s alpha coefficient values of all the secondary indicators exceed 0.7, indicating that the data obtained from the questionnaire are highly credible.

4.2. Assessment of Construction Safety Risk. In the following, we describe the assessment of construction safety risk based on our proposed method:

Due to space limitations, this section focuses on the calculation of the A22 correlation degree.

(1) Determine the classical and node domains of each index. Based on the risk classifications in Table 3, the classical domain of each LSDDTP construction safety risk index is determined via equation (4):
Table 7: Score and reliability tests of secondary indicators.

Secondary index	Score	Cronbach’s alpha
E11	65.5	0.7312
E24	46	0.8063
B11	73.5	0.7526
D24	54.5	0.7045
D26	76	0.7290
D16	37.5	0.8421
A12	58	0.7935
D15	64.5	0.7357
A22	75	0.7603
D23	85.5	0.7271

Table 8: Correlation degree of each index to each risk level.

Index	I	II	III	IV	V	Risk level
A12	−0.4750	−0.3000	0.0500	−0.0455	−0.3438	III
A22	−0.6875	−0.5833	−0.3750	0.2500	−0.1667	IV
B11	−0.6688	−0.5583	−0.3375	0.3250	−0.1970	IV
D15	−0.5563	−0.4083	−0.1125	0.1452	−0.3039	IV
D16	−0.3182	0.0714	−0.0625	−0.3750	−0.5313	II
D23	−0.8188	−0.7583	−0.6375	−0.2750	0.6111	V
D24	−0.4313	−0.2417	0.1375	−0.1078	−0.3592	III
D26	−0.7000	−0.6000	−0.4000	0.2000	−0.1429	IV
E11	−0.5688	−0.4250	−0.1375	0.1897	−0.2959	IV
E24	−0.3611	−0.1154	0.1500	−0.2333	−0.4250	III

(2) Calculate the correlation degree of each index. The correlation degree of each index is calculated according to the scores in Table 7 and equations (6)–(8) (bold numbers in Table 8 indicate the maximum correlation degree).

According to Table 7, the index score of A22 is 75 and thus the correlation degrees between A22 and the five risk levels are determined as

\[
\begin{bmatrix}
U_i & A_{12} & \langle 20 \cdot (i - 1) \rangle, \langle 20 \cdot (i) \rangle \\
A_{22} & \langle 20 \cdot (i - 1) \rangle, \langle 20 \cdot (i) \rangle \\
B_{11} & \langle 20 \cdot (i - 1) \rangle, \langle 20 \cdot (i) \rangle \\
D_{15} & \langle 20 \cdot (i - 1) \rangle, \langle 20 \cdot (i) \rangle \\
D_{16} & \langle 20 \cdot (i - 1) \rangle, \langle 20 \cdot (i) \rangle \\
D_{23} & \langle 20 \cdot (i - 1) \rangle, \langle 20 \cdot (i) \rangle \\
D_{24} & \langle 20 \cdot (i - 1) \rangle, \langle 20 \cdot (i) \rangle \\
D_{26} & \langle 20 \cdot (i - 1) \rangle, \langle 20 \cdot (i) \rangle \\
E_{11} & \langle 20 \cdot (i - 1) \rangle, \langle 20 \cdot (i) \rangle \\
E_{24} & \langle 20 \cdot (i - 1) \rangle, \langle 20 \cdot (i) \rangle \\
\end{bmatrix}
\]

(11)

where \(i = 1, 2, 3, 4, 5 \): \(i = 1 \) represents a very dangerous (I) classical domain; \(i = 2 \) represents a dangerous (II) classical domain; \(i = 3 \) represents a qualified (III) classical domain; \(i = 4 \) represents a safe (IV) classical domain; and \(i = 5 \) represents very safe (V) classical domain.

Equation (5) is then used to determine the node domain of each LSDDTP construction safety risk index as follows:

\[
R_i = \begin{bmatrix}
V & A_{12} & \langle 0, 100 \rangle \\
A_{22} & \langle 0, 100 \rangle \\
B_{11} & \langle 0, 100 \rangle \\
D_{15} & \langle 0, 100 \rangle \\
D_{16} & \langle 0, 100 \rangle \\
D_{23} & \langle 0, 100 \rangle \\
D_{24} & \langle 0, 100 \rangle \\
D_{26} & \langle 0, 100 \rangle \\
E_{11} & \langle 0, 100 \rangle \\
E_{24} & \langle 0, 100 \rangle \\
\end{bmatrix}
\]

(12)

(3) Multilevel extension evaluation: Table 9 reports the calculated weights and correlation results of each secondary index collected via equation (10).
Based on the principle of maximum correlation degree [27, 28], the construction risk level of the Donghu Deep Tunnel Project was determined as IV. Thus, the construction safety risk of the project is acceptable and the project management personnel are only required to check the implementation of safety management measures.

4.3. Analysis of Weight and Risk Level Results

4.3.1. Analysis of Calculated Weights

According to the weight calculation results in Table 6, the weights of similar secondary indicators can be summed to obtain the weights of primary indicators. The weight of A (Men) is 0.1611 and contains two key secondary indicators, and the weight of B (Mechanical) is 0.1114, which only contains one key secondary index. Five of the 10 secondary indexes selected belong to D (Method), with a weight of 0.45888. C (Material) has a weight of 0 and does not include key secondary indicators. The weight of E (Environment) is 0.2687 and contains two key secondary indicators. Among the first-level indicators, Method (D) has the largest weight, reflecting the core position of construction technology and processes in the construction safety risk network of the Donghu Deep Tunnel Project. Due to the complexity and uniqueness of LSDDTPs, a large number of new processes and technologies were adopted in the construction process, bringing great challenges to construction management. LSDDTPs employ a large number of prefabricated engineering components of high construction quality. Therefore, LSDDTP projects involve less intensive material management.

The calculated first-level index weights are well interpretable and consistent with engineering practices. Managers of the Donghu Deep Tunnel Project should focus on technology-related project management. Moreover, it is more effective to reduce the technical risks of the project.

For the secondary construction index, E11 (failure to effectively detect changes in the surrounding environment of tunnel engineering) and E24 (excessive groundwater level) exhibited the greatest weights. Unlike general construction projects, the construction site of LSDDTPs is located deep underground as a typical semi-closed, tiny and complex space. Therefore, LSDDTPs are greatly affected by the construction environment. This is consistent with previous statistical analysis results of tunnel construction safety accidents [36, 37]. The managers of the Donghu Deep Tunnel Project should carefully monitor the construction environment of the tunnel project and the groundwater level of the shaft project. For noncritical secondary indicators, project managers should reduce the investment of management resources.

The five key secondary indicators of the engineering unit belonged to the deep tunnel project, with a total weight of 0.5215, while the five key secondary indexes belonged to shaft project, with a total weight of 0.4785. The number and weight distributions of the key secondary indicators for deep tunnel and shaft project are reasonably distributed within the engineering unit.

Our analysis demonstrates that the calculated weights are highly accurate and interpretable and also reflect the characteristics of the LSDDTP project.

4.3.2. Analysis of Risk Calculation Results

The risk assessment results in Table 9 determine the construction safety risk level of the Donghu Deep Tunnel Project to be IV, which is within the acceptable level of risk. Therefore, project management personnel are only required to check the implementation of safety management measures. There were not any serious accidents during the construction of the Donghu deep tunnel. The risk assessment results are consistent with engineering practices.

The risk levels of 10 key secondary indicators to be distinct, and thus differentiated management should be adopted. The risk grade of D16 (error in setting shield tunnelling parameters) is II, indicating a relatively high construction safety risk. Project managers should immediately suspend the shield construction, reconsult the address investigation documents, and conduct experimental analysis on the soil properties of the shield section in order to calculate the new shield tunnelling parameters. The new shield tunnelling parameters should be pretunnelled in the test section to ensure the accuracy of the new parameters.

The risk levels of A12 (insufficient safety skills of construction personnel in shield engineering), D24 (unreasonable safety investment in shaft construction), and E24 (exceptional groundwater level) are all determined as III. This indicates the construction safety risks to be acceptable, yet project management personnel should take measures to reduce construction safety risks. Project management personnel should strengthen safety education and training according to law, improve the safety awareness of on-site construction workers, and strengthen the implementation of safety education. Moreover, attention should be focused on auditing the implementation and use of safety investments and invest in increasing precipitation.

The risk levels of A22 (insufficient safety skills of construction personnel in shaft project), B11 (unreasonable selection of shield machine), D15 (backward installation technology of negative loop segment), D26 (error in setting drilling rig parameters), and E11 (failure to effectively detect the changes in the surrounding environment of tunnel engineering) are determined as IV. This indicates that the construction safety risk is acceptable, and project management personnel only need to check the implementation of safety management measures.

Table 9: Construction safety risk assessment results of the Donghu Deep Tunnel Project.

Risk level	I	II	III	IV	V	Results
Weighted correlation degree	−0.5433	−0.3711	−0.1446	**0.0120**	−0.2500	IV

9: Construction safety risk assessment results of the Donghu Deep Tunnel Project.
5. Discussion

5.1. Comparison of Weights Calculated via Different Methods.

Commonly used weight calculation methods can be divided into three categories: subjective weight, objective, and comprehensive weight calculation approaches. In this paper, the AHP [16] was used to calculate subjective weight, the entropy weight [17] method was used to determine the objective weight, and the level difference maximization method [9] was selected to derive the combined weight. Based on their knowledge and experience, the relevant managers of the Donghu Deep Tunnel Project employed the 1–9 scale method to judge the importance of secondary indicators. The results were then input into the YAAHP software. Table 10 reports the AHP-derived weights after passing the consistency test. The data of the entropy weight method were selected as the scores of each index. The index scores were input into EvaGear to obtain the index weight (Table 10). The data source of the comprehensive weight method was the questionnaire survey, whereby the indicator importance was scored (Table 10).

Table 10 reveals variations in the secondary indicator weights based on the entropy weight method, with an uneven distribution. However, when the AHP, comprehensive weight method, or SNA was adopted, the weight differences of the secondary indicators were reduced and the weight distribution was relatively uniform. The entropy weight method directly processes the evaluation information, and indexes with large variations and a high information content are allocated a greater weight. Thus, there may have been a difference in scores of individual indicators but a small difference in scores of most indicators in the secondary indicators of this paper. Distinct to the concept of “ignoring commonness and paying attention to differences” in the entropy weight method, the AHP can directly deal with evaluation information, while the weights can maintain as much evaluation information as possible. The comprehensive weight method harmonizes the results of the AHP and entropy weight method, and thus, it places attention on both interpretability and calculation accuracy. The SNA, which initializes at the risk network, not only retains as much evaluation information as possible, but also uses a variety of mathematical quantitative tools. Therefore, the SNA-calculated weights are different and exhibited an even distribution compared to those of the other methods. It should be emphasized that, due to the large number of indicators in the construction safety risk assessment of LSDDTPs, when using AHP to calculate the weight of each indicator, it is often necessary to pass multiple rounds of expert questionnaires before passing the consistency test.

In order to quantitatively analyse the weights calculated via the different methods, we tested the correlation of the corresponding secondary index weights using the nonparametric Kendall rank correlation coefficient \(K \). In particular, \(K \) is a rank-based correlation index that sorts two groups of sample datasets and describes the similarity between them [38]. This statistic is used to calculate the orderly correlation between two measurements. When the Kendall rank correlation coefficient is applied to the analysis of the weight calculation results, it can be considered that the more similar the weight calculation results of the two groups are, the more stable the calculation results of the two methods are [39].

We used SPSS 19.0, with the secondary index weights in Table 10 as the input, to calculate the nonparametric Kendall rank correlation coefficient (in Table 11, \(*\) indicates a significant correlation at the 0.01 level; \(\ast\) indicates a significant correlation at the 0.05 level; and no \(^*\) indicates no correlation).

Table 11 reveals that there was a significant difference between the SNA-derived weights and those obtained by other methods. This may be a result of the different calculation principles of the SNA. Note that current related research [19, 20] does not analyse the differences between the SNA and other weight calculation methods. In this paper, although the Kendall nonparametric correlation coefficient test proved the uniqueness of SNA in terms of weight calculations, it was not able to explain the advancement of SNA for this task. To the best of the author’s knowledge, there currently does not exist an effective mathematical tool to demonstrate the advancement of the weight calculation method.

5.2. Comparison of Results from Different Evaluation Methods.

The fuzzy comprehensive evaluation method, grey analysis, and BPNN are commonly used at present. The grey analysis and BPNN have high requirements for sample integrity and quantity and thus cannot be employed in this study. Therefore, we adopt the fuzzy comprehensive evaluation method for comparative discussions.

The fuzzy comprehensive evaluation method essentially determines the membership function according to the experience and judgment of experts prior to the evaluation. In order to avoid the influence of the calculated weights on the fuzzy comprehensive evaluation results, this paper adopted the SNA-derived weights as the index weights. The 20 experts from Section 4.3 were selected and divided into four expert evaluation groups based on different membership functions [23, 40–42]. Table 12 reports the results.

The different membership functions preset by the four expert groups induced variations in the results of the construction safety risk level of the Donghu Deep Tunnel Project. This was also true for the construction safety risk level of different secondary indicators. This difference can be attributed to the strong influence of subjective expert factors on the artificially preset membership function in the fuzzy comprehensive evaluation method, as well as the variations in the results of different membership functions [23, 40]. In this paper, the MEEM was used to directly calculate the correlation between the object to be evaluated and each risk level, without a preset membership function. This is considered as more advanced compared to the fuzzy comprehensive evaluation method.
We artificially determined the key indicators by selecting the top 20% indicators of point centrality (Section 3.2), and thus, it is necessary to analyze the parameters of the selection scale. Here, the risk evaluation results are calculated repeatedly for the index selection ratios of 10%, 30%, 40%, and 50% (Table 13).

Table 13: Evaluation results of the Donghu Deep Tunnel Project based on different key indicators.

Index	Selected scale	10%	20%	30%	40%	50%
	Overall risk	IV	IV	IV	IV	IV
	A12	IV	IV	IV	V	V
	A22	III	III	III	V	III
	B11	IV	IV	III	IV	IV
	D15	V	III	IV	V	V
	D16	IV	II	III	V	V
	D23	V	IV	III	V	V
	D24	II	V	IV	V	V
	D26	III	III	III	III	III
	E11	III	II	IV	V	V
	E24	IV	IV	V	IV	IV

Despite the progress made by this work to the relevant research, our proposed method has limiting factors. Improving these limitations is the focus of future research. In particular, the initial construction safety risk list developed in this paper is only valid for the Donghu Deep Tunnel Project. Its validity for other LSDDTPs requires further verification. Moreover, although we demonstrated the interpretability of the weights calculated via the SNA and identified its uniqueness in the weight calculation process, its advancement remains to be proved.

6. Conclusion

In the current paper, we integrated the HHM, SNA, and MEEM to perform the construction safety risk assessment of LSDDTPs. First, the HHM was employed to develop the safety risk framework of LSDDTPs across multiple dimensions. Taking the Donghu Deep Tunnel Project as an example, the construction safety risk list of LSDDTPs was comprehensively constructed from two dimensions (i.e., risk source and construction unit) in order to overcome the problems of incomplete and systematic risk identification. We then adopted the SNA to calculate the weight of each index from the network characteristics of risk factors, ensuring the accuracy and interpretability of the calculated weights. Taking the Donghu Deep Tunnel Project as an example, 10 secondary indicators (e.g., failure to effectively detect the changes in the surrounding environment of tunnel engineering and Excessive groundwater level) were selected as key indicators. The correlation function between matter-element features was subsequently implemented to establish a matter-element evaluation model with multi-index parameters. We thus obtained systematic evaluation results through the correlation between indicators and targets, with advantages in improved calculation accuracy and interpretability. Furthermore, the Donghu Deep Tunnel Project was selected as an example for empirical analysis. The corresponding construction safety risk assessment level was determined as IV, which is within the acceptable level of risk. The scientific validity and advancement of our proposed method were demonstrated compared to other methods (fuzzy comprehensive evaluation, AHP, entropy weight method, and comprehensive weight method).

Despite the progress made by this work to the relevant research, our proposed method has limiting factors. Improving these limitations is the focus of future research. In particular, the initial construction safety risk list developed in this paper is only valid for the Donghu Deep Tunnel Project. Its validity for other LSDDTPs requires further verification. Moreover, although we demonstrated the interpretability of the weights calculated via the SNA and identified its uniqueness in the weight calculation process, its advancement remains to be proved.

Table 10: Weights calculated via different approaches.

Index	SNA	AHP	Entropy weight	Comprehensive weight				
	Weight	Ranking	Weight	Ranking	Weight	Ranking	Weight	Ranking
E11	0.1404	1	0.1333	3	0.168	4	0.1541	4
E24	0.1283	2	0.1602	1	0.184	3	0.1745	2
B11	0.1114	3	0.1189	4	0.025	8	0.0626	7
D24	0.1077	4	0.1532	2	0.053	6	0.0931	5
D26	0.1067	5	0.0838	7	0.242	1	0.1787	1
D16	0.0974	6	0.0728	9	0.005	10	0.0321	10
A12	0.0927	7	0.0754	8	0.234	2	0.1706	3
D15	0.0796	8	0.0047	10	0.065	5	0.0409	9
A22	0.0684	9	0.0902	6	0.049	7	0.0655	6
D23	0.0674	10	0.1075	5	0.012	9	0.0502	8

Table 11: Test results of the Kendall nonparametric correlation coefficient.

Coefficient	AHP	Entropy weight	Comprehensive weight	SNA
AHP	1.000	0.111	0.333	0.422
Entropy weight	0.111	1.000	0.778	0.244
Comprehensive weight	0.333	0.778*	1.000	0.289
SNA	0.422	0.244	0.289	1.000

Table 12: Results of the fuzzy comprehensive evaluation.

Index	Group one	Group two	Group three	Group four
Overall risk	IV	III	IV	V
A12	IV	IV	IV	V
A22	III	III	V	III
B11	IV	IV	III	IV
D15	V	III	IV	V
D16	IV	II	III	
D23	V	IV	III	V
D24	II	V	IV	V
D26	III	III	III	III
E11	III	II	IV	V
E24	IV	IV	V	IV
Developing countries will build more LSDDTPs in the future. Therefore, it will be the future research direction to build a life-cycle risk management framework for LSDDTPs. In addition, based on the results of risk assessment in this paper, it is also of great research significance to build the risk early warning model of LSDDTPs.

Data Availability

The case analysis data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this study.

Acknowledgments

This study was supported by the Science and Technology Project of Wuhan Urban and Rural Construction Bureau, China (201943).

References

[1] F. Liu, X. D. Liu, and T. Xu, “Driving factors and risk assessment of rainstorm waterlogging in urban agglomeration areas: a case study of the Guangdong-Hong Kong-Macao greater bay area, China,” *Water*, vol. 13, no. 6, p. 770, 2021.

[2] H. C. Wu, G. R. Huang, and Q. Q. Meng, “Deep tunnel for regulating combined sewer overflow pollution and flood disaster: a case study in Guangzhou City, China,” *Water*, vol. 8, no. 8, p. 329, 2016.

[3] J. W. Wang, D. Hu, H. Wu, M. Y. Wang, and D. H. Liu, “Safety risk evaluation of shield construction of small diameter deep drainage tunnel,” *China Safety Science Journal*, vol. 30, no. 6, pp. 113–120, 2020.

[4] J. Wang, S.-c. Li, and L.-p. Li, “Attribute recognition model for risk assessment of water inrush,” *Bulletin of Engineering Geology and the Environment*, vol. 78, no. 2, pp. 1057–1071, 2019.

[5] G. Kou, Y. Peng, and G. X. Wang, “Evaluation of clustering algorithms for financial risk analysis using MCDM methods,” *Information Sciences*, vol. 275, pp. 1–12, 2014.

[6] X. Y. Zhang, S. F. Huang, and S. J. Yang, “Safety assessment in road construction work system based on group AHP-PCA,” *Mathematical Problems in Engineering*, vol. 2020, Article ID 6210569, 12 pages, 2020.

[7] H. Sadeghi, S. R. Mohandes, and M. R. Hosseini, “Developing an ensemble predictive safety risk assessment model: case of Malaysian construction projects,” *International Journal of Environmental Research and Public Health*, vol. 17, no. 22, p. 8395, 2020.

[8] S. Aminbakhsh, M. Gunduz, and R. Sommez, “Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects,” *Journal of Safety Research*, vol. 46, pp. 99–105, 2013.

[9] H. Wu, S. Liu, D. H. Liu, J. Wang, and H. Shi, “HSE risk assessment of major Sewage transport tunnel projects at the construction stage based on the Structural Entropy Weight Method and the Cloud Model,” *Advances in Civil Engineering*, vol. 2020, Article ID 8882903, 12 pages, 2020.

[10] J. W. Seo and H. H. Choi, “Risk-based safety impact assessment methodology for underground construction projects in Korea,” *Journal of Construction Engineering and Management*, vol. 134, no. 1, pp. 72–81, 2008.

[11] J. F. Yu and K. Wang, “Application of system Dynamics in safety risk of metro tunnel construction,” *Engineering Construction*, vol. 51, no. 10, pp. 40–44, 2019.

[12] Y. Y. Haines, S. Kaplan, and J. H. Lambert, “Risk filtering, ranking, and management framework using hierarchical logographic modeling,” *Risk Analysis: An Official Publication of the Society for Risk Analysis*, vol. 22, no. 2, pp. 383–397, 2002.

[13] A. Chaves and A. T. Bahill, “Comparison of risk analysis approaches and a case study of the risk of incorporating solar photovoltaic systems into a commercial electric power grid,” *Systems Engineering*, vol. 17, no. 1, pp. 89–111, 2014.

[14] Q. X. Jiang, T. Wang, Z. L. Wang, Q. Fu, Z. Zhou, and Y. Zhao, “HHIM- and RFRM-Based water resource system risk identification,” *Water Resources Management*, vol. 32, no. 12, pp. 4045–4061, 2018.

[15] D. Nakandala, H. Lau, and L. Zhao, “Development of a hybrid fresh food supply chain risk assessment model,” *International Journal of Production Research*, vol. 55, no. 14, pp. 4180–4195, 2017.

[16] P. H. Dos Santos, S. M. Neves, D. O. Sant’Anna, and C. H. D. Oliveira, “The analytic hierarchy process supporting decision making for sustainable development: an overview of applications,” *Journal of Cleaner Production*, vol. 212, pp. 119–138, 2019.

[17] R. Kumar, S. Singh, and P. S. Biliga, “Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: a critical review,” *Journal of Materials Research and Technology*, vol. 10, pp. 1471–1492, 2021.

[18] E. Otte and R. Rousseau, “Social network analysis: a powerful strategy, also for the information sciences,” *Journal of Information Science*, vol. 28, no. 6, pp. 441–453, 2002.

[19] X. Qin, H. Q. Li, and Y. Y. Mo, “Research on construction and evaluation of green building project risk assessment based on SNA perspective,” *Journal of Civil Engineering*, vol. 50, no. 2, pp. 119–131, 2017.

[20] Z. H. Chong, C. L. Qin, and X. Y. Ye, “Environmental regulation and industrial structure change in China: integrating spatial and social network analysis,” *Sustainability*, vol. 9, no. 8, p. 1465, 2017.

[21] S. C. D. Gobbo, E. B. Mariano, and J. A. Gobbo, “Combining social network and data envelopment analysis: a proposal for a Selection Employment Contracts Effectiveness index in healthcare network applications,” *Omega: The Journal of Death and Dying*, vol. 103, Article ID 102377, 2021.

[22] M. Ghorbani, A. Naderi, and K. Janeckova, “Sustainable Co-Management of arid regions in southeastern Iran: social network analysis approach,” *Journal of Arid Environments*, vol. 193, Article ID 104597, 2021.

[23] W. P. Zhang, B. Li, and Z. J. Liu, “Application of improved fuzzy comprehensive evaluation method in karst groundwater quality evaluation: a case study of Cengong county,” *Earth Science India*, vol. 14, no. 2, pp. 1101–1109, 2021.

[24] Q. J. Zhou and V. V. Hai, “Fuzzy and grey theories in failure mode and effect analysis for tanker equipment failure prediction,” *Safety Science*, vol. 83, pp. 74–79, 2016.

[25] H. J. Zhang, Y. L. Li, and H. L. Zhang, “Risk early warning safety model for sports events based on back propagation neural network machine learning,” *Safety Science*, vol. 118, pp. 332–336, 2019.
[26] H. Y. Zhang, X. T. Zhang, and H. Yu, “Comprehensive evaluation of shaped charge blasting effect of rock roadway based on entropy-weighted matter-element extension model,” Arabian Journal of Geosciences, vol. 14, no. 8, p. 716, 2021.

[27] Y. L. Wang, J. L. Yang, and M. H. Zhou, “Evaluating the sustainability of China’s power generation industry based on a matter-element extension model,” Utilities Policy, vol. 69, Article ID 101166, 2021.

[28] S. Q. Li and R. R. Li, “Energy sustainability evaluation model based on the Matter-Element Extension Method: a case study of Shandong Province, China,” Sustainability, vol. 9, no. 11, p. 2128, 2017.

[29] J. P. Liu, H. X. Shi, R. Wang, and Y.-T. Si, “Quantitative risk assessment for deep tunnel failure based on Normal Cloud Model: a case study at the ASHELE Copper Mine, China,” Applied Sciences-Basel, vol. 11, no. 11, p. 5208, 2021.

[30] Z. Q. Wu and S. L. Zou, “A static risk assessment model for underwater shield tunnel construction,” Sadhana-Academy Proceedings in Engineering Sciences, vol. 45, no. 1, p. 215, 2020.

[31] N. J. Duijm, “Recommendations on the use and design of risk matrices,” Safety Science, vol. 76, pp. 21–31, 2015.

[32] Z. Y. Liu, “Analysis of the influence factors of college students employment based on the Interpretative Structural Model,” Eurasia Journal of Mathematics, Science and Technology Education, vol. 13, no. 8, pp. 5107–5114, 2017.

[33] M. Y. Zhu, D. K. Chen, J. L. Wang, and Y. Sun, “Analysis of astronaut operating performance using an integrated Bayesian network aided by the fuzzy logic theory,” International Journal of Industrial Ergonomics, vol. 83, Article ID 103129, 2021.

[34] V. K. Aldridge, T. M. Dovey, and A. Wade, “Assessing test-retest reliability of psychological measures persistent methodological problems,” European Psychologist, vol. 22, no. 4, pp. 207–218, 2017.

[35] M. A. Bujang, E. D. Omar, and N. A. Baharum, “A review on sample size determination for Cronbach’s Alpha Test: a simple guide for researchers,” Malaysian Journal of Medical Sciences: MJMS, vol. 25, no. 6, pp. 85–99, 2018.

[36] Y. A. Kim, B. Y. Ryoo, Y. S. Kim, and W.-C. Huh, “Major accident factors for effective safety management of highway construction projects,” Journal of Construction Engineering and Management, vol. 139, no. 6, pp. 628–640, 2013.

[37] J. W. Zhang, Y. Y. Chen, and T. Chen, “Analysis on the law and characteristics of tunnel construction accidents in China from 2006 to 2016,” Modern Tunnelling Technology, vol. 55, no. 3, pp. 10–17, 2018.

[38] S. O. Susam and B. H. Ucer, “Testing independence for Archimedean copula based on Bernstein estimate of Kendall distribution function,” Journal of Statistical Computation and Simulation, vol. 88, no. 13, pp. 2589–2599, 2018.

[39] L. Niu and X. M. Liu, “Robust Mahalanobis distance based on Kendall rank correlation coefficient and its application,” Journal of Inner Mongolia University(Natural Science Edition), vol. 51, no. 2, pp. 123–128, 2020.

[40] C. C. Li, “Application of fuzzy comprehensive evaluation in selecting large sports venues,” Agro Food Industry Hi-Tech, vol. 28, no. 3, pp. 22–26, 2017.

[41] W. Y. Zeng and S. Feng, “An improved comprehensive evaluation model and its application,” International Journal of Computational Intelligence Systems, vol. 7, no. 4, pp. 706–714, 2014.

[42] J. Tian and J. Fu, “Safety comprehensive evaluation of spacecraft assembly process based on grey-fuzzy method,” Advances in Mechanical Engineering, vol. 2014, Article ID 383414, 9 pages, 2014.