Internal magnetic field in the zigzag-chain family
(Na,Ca)Cr$_2$O$_4$

H Nozaki1, H Sakurai2, M Harada1, Y Higuchi1, J H Brewer3,4, E J Ansaldo3 and J Sugiyama1

1 Toyota Central Research & Development Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
2 National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
3 TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 Canada
4 Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 Canada

E-mail: h-nozaki@mosk.tytlabs.co.jp

Abstract. In order to elucidate the magnetic nature for a novel one-dimensional zigzag chain compound, NaCr$_2$O$_4$, we have measured $\mu^+\text{SR}$ spectra using a powder sample in the temperature range between 2 and 200 K. Weak transverse field (wTF-) $\mu^+\text{SR}$ measurements indicated that the whole volume of the sample enters into an antiferromagnetic (AF) phase below $T_N = 125$ K. The zero field (ZF-) $\mu^+\text{SR}$ spectrum obtained below T_N exhibits a clear oscillation with a single muon-spin precession frequency (f_μ). This suggests that static AF order is formed below T_N and that all the implanted muons sense the same internal magnetic field. The temperature dependence of f_μ was found to be very similar to that for the intensity of the magnetic Bragg peak in neutron diffraction (ND) measurements. On the other hand, the ZF-$\mu^+\text{SR}$ spectrum for the isostructural compound, β-CaCr$_2$O$_4$, showed a rapidly damped oscillation below $T_N = 21$ K, supporting the formation of incommensurate AF order, as proposed by ND.

1. Introduction

The magnetic interaction on triangular crystal lattices is often frustrated in the sense that not all pair-wise interactions are satisfied. Such frustration leads to unconventional ground states, such as glassy, spin-ice and spin-liquid-like states. Among such frustrated systems, one-dimensional systems offer a typical showcase that relatively simple systems display glamorous magnetic phenomena [1, 2] and complex phases [3, 4, 5, 6, 7]. This is mainly due to the competition between nearest-neighbor (intra-chain) and next-nearest-neighbor (inter-chain) interactions. Following progress in the development of sample synthesis techniques, particularly synthesis under high-pressures, many novel geometrically frustrated materials have been found, resulting in a new dawn for the research of this field.

In order to identify the magnetic nature of several one-dimensional (1D) systems, we have previously studied with $\mu^+\text{SR}$ the Na$_x$Ca$_{1-x}$V$_2$O$_4$ family [8, 9, 10], the AMn$_2$O$_4$ with $A = $Li, Na, [11] the EuL$_2O_4$ where $L = $Eu, Gd, Yb, Lu [12], and the A$_2$Cr$_8$O$_{16}$ with $A = $K, Rb [13]. Following upon these experiments, we have started a $\mu^+\text{SR}$ experiment on the new 1D zigzag-chain family Na$_x$Ca$_{1-x}$Cr$_2$O$_4$ [14], which is a solid solution system between β-CaCr$_2$O$_4$ [15, 16].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
and novel NaCr$_2$O$_4$ [17]. Both compounds possess a CaFe$_2$O$_4$ (CFO)-type $Pnma$ structure and the goal in this experiment is to clarify the magnetic ground state of NaCr$_2$O$_4$ and to determine the magnetic phase diagram as a function of Ca content. Here, we report the μ^+SR result on NaCr$_2$O$_4$ and β-CaCr$_2$O$_4$, and compare it with the result obtained by neutron diffraction (ND) measurements.

2. Experimental

A polycrystalline sample of NaCr$_2$O$_4$ was synthesized under 7 GPa at 1573 K for 12 h. A stoichiometric mixture of NaCrO$_2$, Cr$_2$O$_3$, and CrO$_3$ was mixed and sealed in a gold capsule in a glove box filled with Ar gas. Then, the mixture was pressed in a belt-type press and then heated for 12 h. NaCrO$_2$ was prepared by firing a stoichiometric mixture of Na$_2$CO$_3$ and Cr$_2$O$_3$ at 1123 K for 15 h in a flowing Ar gas.

A polycrystalline sample of β-CaCr$_2$O$_4$ was synthesized by a conventional solid-state reaction under ambient pressure. The stoichiometric mixture of CaCO$_3$ and Cr$_2$O$_3$ was fired twice in an Ar gas flow at 1573 K for \sim12 h with an intermediate regrinding.

The details of the synthesis were described elsewhere [14]. A powder x-ray diffraction (XRD) analysis showed that the sample was almost single phase with an orthorhombic system of space group $Pnma$ at ambient T, but contains a small amount of Cr$_2$O$_3$ (less than 2 wt%). Magnetization measurements using a SQUID magnetometer indicated the presence of antiferromagnetic transition at 125 K ($= T_N$). The μ^+SR measurements were performed on the M20 surface muon beam line at TRIUMF.
3. Results and discussion

3.1. NaCr$_2$O$_4$

Figure 3. T dependences of (a) the muon-spin precession frequency (f_{μ}) and (b) the weak transverse field asymmetry (A_{TF}) for NaCr$_2$O$_4$. The data in (a) were obtained by fitting the ZF-μSR spectrum with eq. (1), while the data in (b) were estimated by fitting the wTF-μSR spectrum with $A_0P_{TF}(t) = A_{TF} \cos(2\pi f_{TF} + \phi_{TF}) \exp(-\lambda_{TF}t)$. In (a), the normalized structure factor for the magnetic Bragg peak 001 extracted from the neutron diffraction data [19] is also plotted for comparison.

Figure 1 shows the variation of the ZF-μSR time-spectrum with T for NaCr$_2$O$_4$. The spectra obtained below T_N exhibit a damped oscillation, which demonstrates the formation of static magnetic order. Note that there are four oscillatory signals in the ZF-spectrum below 120 K for the isostructural compound NaV$_2$O$_4$, due to the presence of four different muon sites in the lattice [8, 10]. In order to confirm the existence or absence of multiple oscillatory signals in the ZF-spectrum, Fig. 2 shows the T dependence of the Fourier transform frequency-spectra of the ZF-μSR time-spectra. It is clearly seen that there is only one signal with a wide frequency distribution. This is consistent with the damped oscillatory signal in the time-spectrum (Fig. 1). Furthermore, the full width at half maximum of the peak appears roughly T-independent, while the frequency of the oscillatory signal depends on T. This provides a clue to understand the origin of the wide distribution of the internal magnetic field (H_{int}) in the NaCr$_2$O$_4$ lattice. The amplitude of the oscillatory signal of the ZF-μSR spectrum at 2 K is smaller by $\sim 10\%$ than that at 110 K (see Fig. 1). In fact, as T decreases from T_N, the peak

Figure 4. Powder neutron diffraction patterns obtained at (a) 140 K and (b) 1.6 K for NaCr$_2$O$_4$ [19]. In (b), only the magnetic Bragg peaks are indexed, while the nuclear Bragg peaks are indexed in (a).
Figure 5. The ZF-μ+SR time-spectrum for β-CaCrO₄ obtained at 2 K. A solid line represents the best fit using an exponentially relaxing Bessel function \[J(2\pi f_{\mu} t) \].

The height of the Fourier power spectrum decreases, while the peak width increases (see Fig. 2). This suggests that there are additional oscillatory signals at low T due to the existence of the multiple muon sites. However, since it is difficult to fit the ZF-μ+SR spectra with multiple oscillatory signals, we tentatively fitted the spectrum by a combination of an exponentially relaxing cosine signal and a slowly relaxing non-oscillatory signal based on the above Fourier transform result. The former corresponds to the muon-spin precession signal due to \(H_{\text{int}} \), while the latter is the “1/3 tail” signal for a powder sample in an ordered state.

The expression for the fit function is:

\[
A_0 P_{ZF}(t) = A_{AF} \cos(2\pi f_{\mu} t + \phi) \exp(-\lambda_{AF} t) + A_{\text{tail}} \exp(-\lambda_{\text{tail}} t),
\]

where \(A_0 \) is the initial asymmetry at \(t = 0 \), \(f_{\mu} \) is the muon-spin precession frequency, \(\phi \) is the initial phase of the precession, \(A_{AF} \) and \(A_{\text{tail}} \) are the asymmetries for the two signals, and \(\lambda_{AF} \) and \(\lambda_{\text{tail}} \) are their exponential relaxation rates.

Figure 3 shows the \(T \) dependences of (a) \(f_{\mu} \) and (b) the normalized wTF asymmetry \([A_{TF}(T)/A_0] \) obtained with \(H_{TF} = 50 \text{ Oe} \) in order to check the volume fraction of nonmagnetic phase(s) in the sample. The \(f_{\mu}(T) \) curve shows an order-parameter-like \(T \) dependence. In (a), the normalized magnetic moment \(\sqrt{I_{\text{ND}}(T)/I_{\text{ND}}(T \to 0 \text{ K})} \) derived from the intensity of the magnetic Bragg peak \(I_{\text{ND}}(T) \) is also shown as a function of \(T \). The two \(T \) dependences are almost identical each other, as expected. The \(A_{TF}(T)/A_0 \) curve shows a step-like change between 0 and 1 at \(T_N \), suggesting the whole volume of the sample enters into a magnetic ordered state within the wTF-μ+SR resolution (around a few %). This is also consistent with the result of the XRD analysis that suggests the volume of impurity phase is below 2%.

Prior to the μ+SR result of CaCrO₄, we briefly explain the result of powder ND measurements on NaCrO₄ [19]. Figure 4 shows the powder ND pattern obtained at 1.6 and 140 K. Several magnetic Bragg peaks are clearly seen at 1.7 K and they are well indexed by the magnetic structure with \(\vec{k} = (1,0,1) \), where \(\vec{k} \) is the propagation vector. Our preliminary Rietveld analysis on the ND pattern suggested that the magnetic moments of the Cr ions aligns ferromagnetically along the \(b \)-axis, but antiferromagnetically along the \(a \)-axis. Although the Cr moments are proposed to be canted in the \(ac \)-plane [20], it is very difficult to determine the canted AF structure based only on the powder ND pattern.
3.2. β-CaCr$_2$O$_4$

Although the T dependence of wTF-μ^+SR parameters for β-CaCr$_2$O$_4$ with $T_N = 21$ K were studied with a pulsed muon beam together with ND [16], the microscopic magnetic nature was not fully clarified due to the limited time resolution of the pulsed muon beam.

Figure 5 shows the ZF-μ^+SR spectrum for β-CaCr$_2$O$_4$ obtained at the lowest T measured. One can clearly see a rapidly damped oscillation due to an inhomogeneous distribution of H_{int}, although static magnetic order is formed. When we fitted the ZF-spectrum with eq. (1) as for NaCr$_2$O$_4$, such fit provided that $\phi = -38.55^\circ$. This suggests the formation of incommensurate (IC) magnetic order [18], which is consistent with the ND result [16]. In fact, the ZF-spectrum was well fitted by a zeroth-order Bessel function of the first kind [$J(2\pi f_{AF} t)$], which is usually used for IC magnetic order [18, 21, 22].

Therefore, for the solid solution system, Na$_x$Ca$_{1-x}$Cr$_2$O$_4$, it is expected that IC order changes into commensurate order with x. This means the existence of a magnetic lock-in transition at a certain x. In order to clarify the magnetic phase diagram of Na$_x$Ca$_{1-x}$Cr$_2$O$_4$, further μ^+SR study is in progress.

Acknowledgments

We thank the staff of TRIUMF for help with the μ^+SR experiments. This work was supported by MEXT KAKENHI Grant No. 23108003 and JSPS KAKENHI Grant No. 26286084.

References

[1] Mao Z Q, He T, Rosario M M, Nelson K D, Okuno D, Ueland B, Deac I G, Schiffer P, Liu Y and Cava R J 2003 Phys. Rev. Lett. 90 186601
[2] Kimura S, Takeuchi T, Okunishi K, Hagiwara M, He Z, Kindo K, Taniyama T and Itoh M 2008 Phys. Rev. Lett. 100 057202
[3] Sugiyama J, Nozaki H, Brewer J H, Ansaldo E J, Takami T, Ikuta H and Mizutani U 2005 Phys. Rev. B 72 064418
[4] Sugiyama J, Nozaki H, Ikedo Y, Mukai K, Andreica D, Amato A, Brewer J H, Ansaldo E J, Morris G D, Takami T and Ikuta H 2006 Phys. Rev. Lett. 96 197206
[5] Sugiyama J, Nozaki H, Ikedo Y, Russo P L, Mukai K, Andreica D, Amato A, Takami T and Ikuta H 2008 Phys. Rev. B 77 092409
[6] Yamauchi T, Ueda Y and Møri N 2002 Phys. Rev. Lett. 89 057002
[7] Hikihara T, Kecke L, Momoi T and Furusaki A 2008 Phys. Rev. B 78 144404
[8] Sugiyama J, Ikedo Y, Goko T, Ansaldo E J, Brewer J H, Russo P L, Chow K H and Sakurai H 2008 Phys. Rev. B 78 224406
[9] Nozaki H, Sugiyama J, Mänsso M, Harada M, Pomjakushin V, Sikolenko V, Cervellino A, Roessli B and Sakurai H 2010 Phys. Rev. B 81 100410(R)
[10] Ofer O, Ikedo Y, Goko T, Mänsso M, Sugiyama J, Ansaldo E J, Brewer J H, Chow K H and Sakurai H 2010 Phys. Rev. B 82 094410
[11] Sugiyama J, Ikedo Y, Ofer O, Mänsso M, Ansaldo E J, Brewer J H, Chow K H, Sakurai H and Takayama-Muromachi E 2009 J. Phys. Soc. Jpn 78 084715
[12] Ofer O, Sugiyama J, Brewer J H, Ansaldo E J, Mänsso M, Chow K H, Kamazawa K, Doi Y and Hinatsu Y 2011 Phys. Rev. B 84 054428
[13] Sugiyama J, Nozaki H, Mänsso M, Prša K, Andreica D, Amato A, Isole M and Ueda Y 2012 Phys. Rev. B 85 214407
[14] Sakurai H 2014 Phys. Rev. B 89 024416
[15] Hill P M, Peiser H S and Rait J R 1956 Acta Cryst. 9 981
[16] Damay F, Martin C, Hardy V, Maignan A, André G, Knight K, Giblin S R and Chapon L C 2010 Phys. Rev. B 81 214405
[17] Sakurai H, Kolodiazhnyi T, Michiue Y, Takayama-Muromachi E, Tanabe Y and Kikuchi H 2012 Angew. Chem. Int. Ed. 51 6653
[18] Kalvius G M, Noakes D R and Hartmann O 2001 Handbook on the Physics and Chemistry of Rare Earths (Amsterdam: North-Holland) vol 32 chapter 206 pp 55–451
[19] Nozaki H 2012 unpublished work obtained in PSI
[20] Takeda H, Shimizu Y, Itoh M, Sakurai H and Takayama-Muromachi E 2013 J. Korean Phys. Soc. 62 1914
[21] Andreica D 2001 PhD Thesis IPP/ETH-Zurich
[22] Sugiyama J, Ikedo Y, Mukai K, Brewer J H, Ansaldo E J, Chow K H, Yoshida H and Hiroi Z 2006 Phys. Rev. B 73 224437