ARTIGO ORIGINAL

Confiabilidade da ultrassonografia de músculos esqueléticos em pacientes críticos de trauma

Reliability of skeletal muscle ultrasound in critically ill trauma patients

INTRODUÇÃO

Traumas graves são a principal causa de óbito e incapacidade em jovens adultos sem histórico pregresso de doença,(1) com taxa de mortalidade que varia entre 30 e 70%, sendo a recuperação dos sobreviventes marcada por sequelas neurológicas persistentes, comprometimento da condição funcional e redução da qualidade de vida.(2) Além disto, alterações na espessura e na ecogenicidade da musculatura ocorrem precoce e rapidamente em pacientes críticos,(3) associadas com diminuição da força muscular e piora dos desfechos funcionais.(4) Atualmente, em muitos países, a demanda por leitos para terapia intensiva excede em muito sua disponibilidade, e tal carência de leitos na unidade de terapia intensiva (UTI) é um fenômeno cada vez mais comum no mundo.(5,6)

Conflitos de interesse: Nenhum.

Resumo

Objetivo: Avaliar a segurança e a viabilidade da avaliação por ultrassonomografia do quadrilceps no pronto-socorro, e avaliar a confiabilidade intra e entre avaliadores para aquisição e análise de imagens de ultrassonografia da espessura e da ecogenicidade muscular em pacientes críticos de trauma.

Métodos: Estudo de precisão diagnóstica realizado por meio de exames e avaliações feitos por profissionais de saúde com diferentes níveis de especialização. Dois examinadores (um especialista e um novato) procederam à aquisição de imagens de ultrassom de dez pacientes. Um avaliador experiente, cego quanto aos examinadores, quantificou as imagens obtidas. Em um grupo à parte de dez pacientes, dois avaliadores (um especialista e um novato) quantificaram a espessura do músculo quadrilceps femoral, assim como sua ecogenicidade (métodos quadrado ou tracejado) em imagens adquiridas por um examinador.

Resultados: Identificou-se excelente confiabilidade quanto à aquisição da imagem e à sua análise (coeficientes de correlação intraclasses > 0,987; p < 0,001). O erro padrão dos valores de mensuração variou de 0,01 a 0,06 cm, para a espessura muscular, e de 0,75 a 2,04 unidades arbitrárias, para ecogenicidade muscular. Os valores de ecogenicidade foram mais elevados quando se utilizou o método quadrado do que quando se utilizou o método tracejado (p = 0,003).

Conclusão: A ultrassonografia é um método seguro, viável e confiável para avaliação muscular em pacientes críticos de trauma, independentemente do nível de especialização do avaliador.

Descritores: Trauma/diagnóstico por imagem; Músculo quadrilceps/diagnóstico por imagem; Departamento de emergência; Atrofia muscular/diagnóstico por imagem; Ultrassonografia; Técnicas e procedimentos diagnósticos
Vários pacientes politratizados são colocados, ainda no pronto-socorro, sob suporte para doença crítica, como ventilação mecânica invasiva, e ali permanecem por horas e, às vezes, muitos dias, o que enfatiza a relevância de se dar início à avaliação muscular já quando da admissão no pronto-socorro.

A avaliação da atrofia muscular esquelética demanda tipicamente técnicas de imagem sofisticadas e dispendiosas, como a absorbiometria radiográfica de dupla energia (D-XA), a tomografia computadorizada, a ressonância nuclear magnética ou métodos invasivos, como biópsia muscular. Esses métodos invasivos são desafiadores no tratamento de pacientes de trauma, já que tais recursos nem sempre estão disponíveis nas condições de terapia intensiva. Acrescente-se que o diagnóstico de fraqueza muscular, tradicionalmente realizado com uso de testes de força nos movimentos voluntários (por exemplo, escore total do sistema Medical Research Council), fica retardado em pacientes mecanicamente ventilados, em razão da sedação e da incapacidade de obedecer a comandos. A ultrassonografia é um método não invasivo para avaliação da espessura e da ecogenicidade de músculos esqueléticos. As mensurações ultrassonográficas da espessura de músculos periféricos foram validadas para sujeitos saudáveis. A ultrassonografia proporciona utilidade clínica para avaliação da trajetória de alterações na estrutura da musculatura esquelética durante a doença crítica. Em estudo recente realizado com pacientes críticos, a ecogenicidade muscular se associou com diminuição da força muscular e capacidade funcional ao despertar, o que sugere que a ecogenicidade poderia ser utilizada como marcador prognóstico, enquanto o paciente ainda não consegue realizar exames com movimentação voluntária.

A confiabilidade adequada, propriedade psicométrica que reflete o grau em que uma mensuração é considerada coerente e livre de erros, é crítica para qualquer mensuração e pré-requisito para utilizar mensurações na tomada de decisões válidas a respeito de pacientes. A confiabilidade da ultrassonografia de músculos esqueléticos em pacientes críticos ainda não foi plenamente estabelecida. Estudos prévios, que avaliaram a confiabilidade da avaliação ultrassonográfica quantitativa da espessura muscular, assim como sua ecogenicidade, só foram conduzidos na UTI, que se trata de um ambiente mais estável do que o pronto-socorro. Além disto, tais estudos só se focalizaram na análise de imagens; entretanto, a aquisição das imagens deve ser investigada, já que, na prática clínica, nem sempre é possível que as imagens sejam adquiridas por um mesmo avaliador.

Este estudo foi delineado com o objetivo de (i) verificar a segurança e a viabilidade da avaliação com ultrassonografia do músculo quadríceps femoral no pronto-socorro, e (ii) avaliar a confiabilidade intra e interavaliadores para aquisição e análise de imagens de ultrassonografia da espessura e da ecogenicidade muscular em pacientes críticos de trauma, envolvendo profissionais de saúde com diferentes níveis de especialização. Os achados preliminares deste estudo foram relatados previamente no formato de “Abstract”.

MÉTODOS

Este estudo de precisão diagnóstica foi realizado em um centro de trauma nível I de um hospital público de Brasília, após obtenção de aprovação do comitê institucional de ética (CAAE 19036013.8.0000.5553) e em conformidade com a declaração de Helsinque, de 1975. Obteve-se a assinatura de um Termo de Consentimento Livre e Esclarecido por parte de um membro da família, uma vez que os pacientes se encontravam sedados e intubados por ocasião da inscrição. As aquisições das imagens de ultrassonografia foram realizadas no pronto-socorro, durante as primeiras 24 horas após a admissão ao hospital, e após estabilização clínica do paciente. A inclusão de participantes ocorreu entre abril e junho de 2014. As imagens tiveram sua identificação removida e foram analisadas entre agosto de outubro de 2015.

O tamanho da amostra foi determinado segundo as recomendações de Walter et al. para condução de análises de confiabilidade com utilização de coeficientes de correlação intraclasses (CCIs); as pressuposições de base para o cálculo do tamanho da amostra incluíram o coeficiente de confiabilidade minimamente aceitável (CCI = 0,70), o coeficiente de confiabilidade previsto (CCI = 0,93, com base em estudo similar), três repetições da tarefa, e níveis de erro tipo I (β = 0,05) e tipo II (β = 0,20). Com utilização desta metodologia, computou-se um tamanho de amostra de nove indivíduos. Recrutamos dez pacientes por grupo para compensar potenciais atritos e dados não utilizáveis.

As condições para admissão de pacientes ao estudo foram: pacientes admitidos ao pronto-socorro com trauma de grande porte, idade acima de 18 anos e submetidos à ventilação mecânica. Os critérios de exclusão foram gravidez, antecedente de acidente vascular cerebral, doença muscular preexistente conhecida, amputação de membro inferior, fratura ou lesão cutânea que impedisse a realização da avaliação ultrassonográfica, ou suspeita clínica de morte cerebral.
A amostra consistiu em dois grupos de pacientes. O Grupo 1 (n = 10) foi utilizado para testar a confiabilidade da aquisição de imagem por dois diferentes examinadores: um radiologista detentor de título de especialista e um profissional novato, sem experiência prévia com ultrassonografia. Um avaliador cego procedeu à avaliação das imagens. O Grupo 2 (n = 10) foi utilizado para testar a confiabilidade da análise da imagem. Um examinador procedeu à aquisição de todas as imagens, que mais tarde foram quantificadas por dois analistas com diferentes níveis de experiência: um especialista, com experiência em análise de imagens, e um novato, sem experiência prévia.

A segurança da avaliação ultrassonográfica foi avaliada pelo registro da variabilidade nos parâmetros cardiovasculares e respiratórios junto ao leito. Os pacientes foram monitorados continuamente durante a avaliação. Um clínico checou os eventos adversos registrados no protocolo, por ocasião da avaliação. Registaram-se os seguintes eventos adversos: modificação acima de 20% dos parâmetros cardiovasculares ou respiratórios em repouso durante o posicionamento do paciente para avaliação; deslocamento ou remoção acidental de drenos, tubos, cateteres ou sonda vesical; autoextubação, extubação acidental ou remoção do tubo de traqueostomia; e queda do leito.

Quanto à aquisição de ultrassonografia muscular, um ultrassonografista experiente realizou sessão de treinamento de 20 minutos, utilizando as mesmas instruções para ambos os avaliadores, conforme descrito em estudo prévio.

Uma explicação técnica inicial a respeito do protocolo e da prática supervisionada em três pacientes foi realizada antes de se iniciar a aquisição dos pacientes do estudo. As regulagens para aquisição (frequência, profundidade e ganho) foram explicadas durante a sessão de treinamento e mantidas constantes entre os examinadores. Para análise das imagens, os dois avaliadores foram instruídos a respeito das regulagens básicas do programa, da localização da região de interesse e da identificação das estruturas anatômicas (gordura superficial, fáscia, músculo e osso).

As imagens de ultrassom foram adquiridas com um equipamento portátil de ultrassonografia SonoSite M-Turbo (Sonosite, Inc., Bothell, WA, EUA) equipado com um transdutor bidimensional linear de alta frequência (L38xi, largura de banda: 10 - 5MHz, profundidade máxima de scan: 9cm). Todas as imagens foram adquiridas no mesmo horário.

A ecogenicidade do músculo foi avaliada por meio da ecogenicidade do músculo reto femoral (Figura 2) com utilização de uma análise quantitativa com escala de cinza. Utilizaram-se dois métodos para delinear a região de interesse: método tracejado, no qual o avaliador marcava toda área muscular visível evitando a área óssea e fáscia circundante, para definir a região de interesse, e o método quadrado, no qual uma área padrão de 2 x 2cm era utilizada para determinar a região de interesse (se a área a ser analisada fosse menor que 2 x 2cm, examinava-se a maior área quadrada possível dentro dos limites anatômicos do músculo reto femoral). Calculou-se a ecogenicidade média da região de interesse por utilização de uma função de histograma do programa de computador, que foi expressa como um valor entre zero (=- negro) e 255 (= branco) em unidades arbitrárias (UA).

Análise estatística

Todas as análises estatísticas foram conduzidas com utilização do programa Statistical Package for Social Science (SPSS) para Mac, versão 21 (IBM, Chicago, Illinois, USA). Os dados foram testados quanto à normalidade.
Com utilização do teste de Shapiro-Wilk ($\alpha = 0,05$). A espessura e a ecogenicidade muscular foram expressas como a média ± desvio padrão (DP). Utilizaram-se também gráficos de Bland-Altman, para avaliar possível viés entre as sessões. Determinou-se a confiabilidade intra e interavaliadores pelo cálculo do CCI com intervalos de confiança de 95% (IC95%) e utilização da média das mensurações em uma escala de zero a 1, na qual 1 representa confiabilidade perfeita e zero, ausência de associação.\(^{(29)}\)

O erro padrão da mensuração (EPM) foi calculado para determinar o erro tipicamente associado com a mensuração da espessura ou ecogenicidade, a partir de exames de ultrassom captados entre as sessões de coleta de dados:

$$EPM = \sqrt{SS_{total}} \times \sqrt{n - 1} \times \sqrt{1 - CCI}$$

Nesta fórmula, SS_{total} representa a variância geral no modelo e n representa o número total de conjuntos de dados.\(^{(29)}\)

A variação média de coeficiente (CV) entre examinadores também foi calculada. As diferenças entre os dois examinadores e as duas técnicas foram avaliadas pela análise de variância (ANOVA). Valor de p inferior a 0,05 indica significância estatística.

RESULTADOS

Características dos pacientes

Vinte pacientes de trauma, submetidos à ventilação mecânica, foram consecutivamente recrutados a partir da Unidade de Trauma do pronto-socorro ($n = 10$ pacientes para aquisição de imagens e $n = 10$ pacientes para análise das imagens). A tabela 1 apresenta as características basais dos pacientes incluídos.

Segurança e viabilidade

Observamos variações pequenas na saturação de oxigênio, frequência respiratória e frequência cardíaca, relacionadas ao posicionamento dos pacientes durante a avaliação ultrassonográfica, dentro dos limites de segurança estabelecidos. Não se observou qualquer evento adverso e nem questão significativa de segurança relacionados a cateteres, extubação acidental ou queda do leito. A aquisição das imagens levou menos de 10 minutos por paciente.

Confiabilidade

A confiabilidade para um mesmo avaliador (intra) foi excelente para aquisição da imagem muscular (CCIs > 0,952) e análise (CCIs > 0,988), independentemente do nível de especialização do avaliador (Tabela 2). Semelhantemente, a confiabilidade entre avaliadores também foi excelente tanto para aquisição da imagem muscular (CCI > 0,977) quanto para análise (CCI > 0,961), independentemente do nível de especialização. Os valores de EPM variaram entre 0,01 e 0,06cm, para espessura muscular, e de 0,75 a 2,04UA, para ecogenicidade muscular.

Com relação à aquisição da imagem e à sua análise por diferentes avaliadores, a CV para espessura muscular foi mais baixa para a espessura total do quadríceps do que para espessura do reto femoral. Quanto a ecogenicidade, a CV foi mais baixa para o método quadrado do que para o tracejado (Tabela 3). Não ocorreram diferenças significantes, em termos de espessura ou ecogenicidade musculares entre os avaliadores com diferentes níveis de especialização.
Tabela 1 - Características demográficas e clínicas da amostra do estudo

Características	Aquisição	Análise
Idade (anos)	35,4 ± 12,5	37,1 ± 13,4
Sexo masculino	8 (80)	8 (80)
Escore APACHE II	15,8 ± 3,3	16,2 ± 2,7
IMC (kg/m²)	25,7 ± 8,3	24,9 ± 6,8
Escore de severidade da lesão	38,5 ± 18,0	39,4 ± 15,3
Sepse	7 (70)	6 (60)
Chocoe séptico	3 (30)	4 (40)
Falência de múltiplos órgãos	3 (30)	4 (40)

APACHE - Acute Physiologic and Chronic Health Evaluation; IMC - índice de massa corpórea. p > 0,05 para todas as comparações entre grupos. Resultados expressos como média ± desvio padrão ou n (%).

Figura 2 - Exemplo de processamento de imagem para medir a ecogenicidade muscular. A área selecionada representa a região de interesse com utilização do método quadrado (A) ou o método tracejado (B); a escala cinza é definida pelo histograma abaixo de cada imagem.

(p > 0,05), conforme apresenta a tabela 4. Os gráficos de Bland-Altman para cada condição não mostraram qualquer viés em termos de mensuração (ecogenicidade ou espessura) entre os três avaliadores (Figuras 3 e 4). Entretanto, os valores de ecogenicidade foram significativamente mais altos quando avaliados com o método quadrado em comparação com o tracejado (p < 0,001), tanto para aquisição da imagem quanto para a análise.

Tabela 2 - Confiabilidade entre avaliadores para três imagens adquiridas ou analisadas de espessura e ecogenicidade muscular, por avaliador

Parâmetro	Especialista	Novato
Aquisição (n = 10)		
Espessura - quadríceps (cm)	0,952 (0,821 - 0,988)	0,999 (0,998 - 1,000)
Espessura - reto femoral (cm)	0,999 (0,987 - 1,000)	0,997 (0,988 - 0,999)
Ecogenicidade - quadrado (UA)	1,000 (0,999 - 1,000)	0,996 (0,984 - 0,999)
Ecogenicidade - tracejado (UA)	0,999 (0,995 - 1,000)	0,987 (0,949 - 0,997)
Análise (n = 10)		
Espessura - quadríceps (cm)	0,999 (0,996 - 1,000)	1,000 (0,999 - 1,000)
Espessura - reto femoral (cm)	0,988 (0,994 - 1,000)	0,998 (0,992 - 1,000)
Ecogenicidade - quadrado (UA)	0,999 (0,998 - 1,000)	0,997 (0,989 - 0,999)
Ecogenicidade - tracejado (UA)	0,999 (0,997 - 1,000)	0,988 (0,954 - 0,997)

UA - unidades arbitrárias. Resultados expressos como coeficientes de correlação intrACLasses (intervalo de confiança de 95%).

DISCUSSÃO

Com base em nossos achados, a avaliação da espessura e da ecogenicidade muscular por meio de ultrasonografia nas primeiras 24 horas após a admissão ao hospital por meio do pronto-socorro é segura e viável em pacientes...
Tabela 3 - Confiabilidade entre avaliadores para aquisição e análise das imagens de espessura e ecogenicidade muscular

Parâmetro	CCI (ICC)	EPM	CV
Aquisição (n = 10)			
Espessura - quadríceps (cm)	0,990 (0,970 - 0,997)	0,06	2,55
Espessura - reto femoral (cm)	0,990 (0,964 - 0,997)	0,04	5,69
Ecogenicidade - quadrado (UA)	0,996 (0,986 - 0,999)	1,73	1,29
Ecogenicidade - tracejado (UA)	0,977 (0,934 - 0,994)	0,75	2,31
Análise (n = 10)			
Espessura - quadríceps (cm)	0,999 (0,997 - 1,000)	0,02	1,55
Espessura - reto femoral (cm)	0,999 (0,997 - 1,000)	0,01	4,57
Ecogenicidade - quadrado (UA)	0,994 (0,968 - 0,999)	2,04	2,54
Ecogenicidade - tracejado (UA)	0,961 (0,894 - 0,989)	1,02	3,99

CCI - coeficiente de correlação intraclasse; EPM - erro padrão da mensuração; CV - coeficiente de variação; UA - unidades arbitrárias. Resultados expressos como coeficientes de correlação intraclasse (intervalos de confiança de 95%) ou %.

Tabela 4 - Valores absolutos de espessura e ecogenicidade muscular para aquisição e análise por dois avaliadores com diferentes níveis de especialização

Parâmetro	Especialista	Novato	Valor de p
Aquisição (n = 10)			
Espessura - quadríceps (cm)	3,43 ± 0,87	3,47 ± 0,84	0,97
Espessura - reto femoral (cm)	1,86 ± 0,55	1,82 ± 0,52	0,96
Ecogenicidade - quadrado (UA)	77,4 ± 16,8	76,4 ± 16,7	0,98
Ecogenicidade - tracejado (UA)	69,1 ± 12,7	67,5 ± 16,1	0,94
Análise (n = 10)			
Espessura - quadríceps (cm)	3,18 ± 0,85	3,16 ± 0,88	0,99
Espessura - reto femoral (cm)	1,67 ± 0,48	1,72 ± 0,50	0,98
Ecogenicidade - quadrado (UA)	83,9 ± 18,6	81,8 ± 17,6	0,96
Ecogenicidade - tracejado (UA)	67,7 ± 14,6	65,1 ± 14,4	0,94

UA - unidades arbitrárias. Utilizou-se análise entre medidas da variância para testar as diferenças significativas entre avaliadores e técnicas; não se encontraram diferenças significativas para espessura ou ecogenicidade muscular entre os avaliadores com diferentes níveis de experiência ou entre as técnicas para espessura ou ecogenicidade muscular; entretanto, a ecogenicidade foi significativamente mais alta quando quantificada com o método quadrado em comparação com o método tracejado, tanto para aquisição quanto para análise (p < 0,001). Resultados expressos como média ± desvio padrão.

Quociente de massa muscular é um indicador comum para a avaliação da condição nutricional e da função da massa muscular. A perda muscular é comum e se associa com consequências em longo prazo que afetam drasticamente a recuperação. Ela ocorre precoce e rapidamente durante a primeira semana após admissão à UTI. Mais ainda, ela pode preceder a admissão à UTI, tendo início antes do que se demonstrou previamente, imediatamente após a admissão ao pronto-socorro. Até mesmo em pessoas jovens e saudáveis, curtos períodos de desuso muscular levam a substanciais perdas de massa muscular esquelética, acompanhada de uma precoce resposta de sinalização molecular catabólica. Modificações na ecogenicidade muscular em pacientes com condições agudas podem ocorrer mais precocemente e ser detectadas facilmente, o que aumenta a relevância destas avaliações em pacientes críticos de trauma a partir do pronto-socorro.

Recente estudo retrospectivo demonstrou que um nível baixo de massa muscular quando da admissão à UTI foi preditor independente de mortalidade e se associou com mais incapacidade e maior frequência de alta para hospitais de retaguarda. Além disto, pacientes com maior quantidade de músculos na admissão à UTI perderam significativamente mais espessura muscular do que os com músculos com menos espessura. Contudo, ainda não é claro se as modificações na espessura muscular em relação ao basal, ou a espessura muscular absoluta da admissão são os principais preditores de desfecho funcional e mortalidade. Além disto, é essencial padronizar protocolos operacionais para assegurar adequada confiabilidade para aquisição e análise das imagens. O que permite aos médicos tomar decisões bem embasadas a respeito do cuidado dos pacientes e melhor compreensão, comparação e metanálise dos dados de diferentes estudos.

A potencial variabilidade na aquisição de imagem por diferentes avaliadores foi sugerida como fator significante que impede o uso disseminado da ultrassonografia no ambiente clínico e de pesquisa. Nosso estudo utilizou dois profissionais de saúde, sendo um especialista e um novato, com diferentes níveis de especialização na utilização de ultrassonografia, após sessão de treinamento de 20 minutos. Mesmo com treinamento mínimo, nossos resultados demonstraram valores excelentes para CCI e CV, o que demonstra o potencial da ultrassonografia para ser incorporada no cuidado clínico rotineiro.
Mais ainda, as imagens foram todas obtidas em menos de 10 minutos por paciente. Corroboram nossos achados os dados de estudo recente em pacientes críticos, no qual se observou excelente confiabilidade entre avaliadores, contando com examinadores experientes e novatos. Zaidman et al. também relataram que era necessário treinamento mínimo para condução confiável de ultrassonografia muscular em meninos saudáveis e naqueles com distrofia muscular de Duchenne.

Há um crescente interesse na mensuração das modificações da ecogenicidade muscular, particularmente em pacientes críticos, que rapidamente apresentam atrofia muscular por desuso, assim como edema muscular. Uma forte correlação entre a ecogenicidade e a mensuração de fibrose na gordura intramuscular, a partir de biópsias musculares, também foi demonstrada em pacientes críticos. Avaliações subjetivas de ultrassonografia muscular com utilização de escala visual qualitativa demonstraram relativamente baixa concordância entre avaliadores, que se deteriorou ainda mais quando as imagens foram interpretadas por um observador inexperiente. Por esta razão, introduziram-se técnicas com auxílio de computador para
Confiabilidade da ultrassonografia de músculos esqueléticos em pacientes críticos de trauma

Figura 4 - Gráficos de Bland-Altman para concordância das avaliações entre avaliadores para espessura do reto femoral vasto intermediário e espessura do reto femoral. RF - reto femoral; VI - vasto intermediário.

melhorar a objetividade na interpretação das imagens.\(^{(38)}\) A quantificação da intensidade ecográfica muscular pode ser obtida por análise de uma escala de cinza.\(^{(18)}\)

Diferenças nas regulagens do sistema, como aumento do ganho, podem dar aparência embranquecida aos músculos, que pode ser confundida com aumento patológico da intensidade ecográfica;\(^{(39)}\) este fato salienta a importância de protocolos padronizados. Além disto, diferentes técnicas para delineamento da região de interesse podem levar a valores diferentes de ecogenicidade, como nosso estudo demonstrou. Para Sarwal et al.,\(^{(23)}\) parte da discrepância entre os métodos quadrado e tracejado pode resultar de uma variabilidade gerada durante a seleção da região de interesse. Com o método tracejado, a área selecionada pode incluir o tecido conjuntivo intermuscular, fáscia e vasos sanguíneos. A restrição a um quadrado predefinido, focalizado principalmente no tecido muscular, terá melhor coerência do que outras regiões de interesse. Devido ao baixo CV, a seleção da região de interesse pelo método quadrado pode ser preferível em pacientes críticos.

Nosso estudo tem algumas limitações. A avaliação da espessura muscular e uma área seccional em corte do músculo reto femoral foi descrita em pacientes críticos;\(^{(27,39)}\) entretanto, a observação de todos os limites do músculo não é possível na metade da coxa em alguns pacientes sem a utilização de um campo de imagem ampliado,\(^{(28)}\) o que não estava disponível com nosso sistema. Não avaliamos a concordância entre dias em razão de que a rápida perda muscular dentro de 48 horas já foi demonstrada em pacientes críticos\(^{(40)}\) e interferiria em nossa análise.
CONCLUSÕES

A ultrassonografia muscular representa atraente modalidade em diferentes ambientes da terapia intensiva, sendo segura e aplicável em pacientes críticos de trauma que permanecem no pronto-socorro. O protocolo de ultrassonografia apresentou excelente confiabilidade entre e intra-avaliadores tanto para aquisição de imagem quanto para sua análise, após breve sessão de treinamento com duração de 20 minutos, independentemente do nível de treinamento do avaliador, e pode ser utilizado em futuros estudos, para avaliação de modificações longitudinais.

AGRADECIMENTOS

Agradecemos a Regis Radaelli, pelo suporte no treinamento em ultrassonografia de músculos esqueléticos.

Financiamento: o financiamento deste projeto teve coparticipação do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 487.177/2013-4) da Fundação de Ensino e Pesquisa em Ciências da Saúde (FEPECS 41/2013) e da Fundação de Amparo à Pesquisa do Distrito Federal (FAP-DF 193.000.862/2014).

Luciana Vieira teve apoio financeiro da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, PDSE - 99999.004044/2015-00).

ABSTRACT

Objective: To evaluate the safety and feasibility of the ultrasound assessment of quadriceps in the emergency setting. To assess the intra- and interrater reliability for the acquisition and analysis of ultrasound images of muscle thickness and echogenicity in critically ill trauma patients between health professionals with different levels of expertise.

Methods: Diagnostic accuracy study. Two examiners (expert and novice) acquired ultrasound images from ten patients; an experienced, blinded analyst quantified the images. In a separate group of ten patients, two analysts (expert and novice) quantified quadriceps muscle thickness and echogenicity (square or trace method) from images acquired by one examiner.

Results: Excellent reliability was found for image acquisition and analysis (intraclass correlation coefficients > 0.987; p < 0.001). The standard error of the measurement values ranged from 0.01 - 0.06cm for muscle thickness and from 0.75 - 2.04 arbitrary units for muscle echogenicity. The coefficients of variation were < 6% for thickness and echogenicity. The echogenicity values were higher when using the square technique than when using the tracing technique (p = 0.003).

Conclusion: Ultrasound is safe, feasible, and reliable for muscle assessment in critically ill trauma patients, regardless of the assessor’s level of expertise.

Keywords: Trauma/diagnostic imaging; quadriceps muscle/diagnostic imaging; Emergency department; Muscular atrophy/diagnostic imaging; Ultrasonography; Diagnostic techniques and procedures

REFERÊNCIAS

1. Haagsma JA, Graetz N, Bolliger I, Naghavi M, Higashi H, Mullany EC, et al. The global burden of injury: incidence, mortality, disability-adjusted life years and time trends from the Global Burden of Disease study 2013. Inj Prev. 2016;22(1):3-18.
2. Miller RS, Patton M, Graham RM, Hollins D. Outcomes of trauma patients and procedures
2.04 arbitrary units for muscle echogenicity. The coefficients of variation were < 6% for thickness and echogenicity. The echogenicity values were higher when using the square technique than when using the tracing technique (p = 0.003).

Conclusion: Ultrasound is safe, feasible, and reliable for muscle assessment in critically ill trauma patients, regardless of the assessor’s level of expertise.

Keywords: Trauma/diagnostic imaging; quadriceps muscle/diagnostic imaging; Emergency department; Muscular atrophy/diagnostic imaging; Ultrasonography; Diagnostic techniques and procedures

REFERÊNCIAS

1. Haagsma JA, Graetz N, Bolliger I, Naghavi M, Higashi H, Mullany EC, et al. The global burden of injury: incidence, mortality, disability-adjusted life years and time trends from the Global Burden of Disease study 2013. Inj Prev. 2016;22(1):3-18.
2. Miller RS, Patton M, Graham RM, Hollins D. Outcomes of trauma patients who survive prolonged lengths of stay in the intensive care unit. J Trauma. 2000;48(2):229-34.
3. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2014;310(15):1591-600. Erratum in JAMA. 2014;311(6):625. Padhke, Rahul [corrected to Phadke, Rahul].
4. Parry SM, El-Ansary D, Cartwright MS, Sarval A, Berney S, Koopman R, et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care 2015;30(6):1151.e9-14.
5. Bing-Hua YU. Delayed admission to intensive care unit for critically surgical patients is associated with increased mortality. Am J Surg. 2014;208(2):268-74.
6. Hung SC, Kung CT, Hung CW, Liu BM, Liu JW, Chew G, et al. Determining delayed admission to intensive care unit for mechanically ventilated patients in the emergency department. Crit Care. 2014;18(4):485.
7. Payal P, Sonu G, Anil GK, Prach V. Management of polytrauma patients in emergency department: an experience of a tertiary care health institution of northern India. World J Emerg Med. 2013;4(1):15-9.
8. Aronsky D, Jones I, Lanaghan K, Slivov CM. Supporting patient care in the emergency department with a computerized whiteboard system. J Am Med Inform Assoc. 2008;15(2):184-94.
9. Mason S, Mountain G, Turner J, Arain M, Revue E, Weber EJ. Innovations to reduce demand and crowding in emergency care; a review study. Scand J Trauma Resusc Emerg Med. 2014;22:55.
10. Kellermann AL. Crisis in the emergency department. N Engl J Med. 2006;355(13):1300-3.
11. Hough CL. Improving physical function during and after critical care. Curr Opin Crit Care. 2013;19(6):486-95.
12. De Jonghe B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, Bousnarsar M, Cerf C, Renaud E, Mesratl F, Carlet J, Raphaël JC, Outin H, Bastuji-Garin S, Groupe de Réflexion et d’Étude des Neuromyopathies en Réanimation. Paéris acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288(22):2859-67.
13. Hough CL, Lieu BK, Caldwell ES. Manual muscle strength testing of critically ill patients: feasibility and interobserver agreement. Crit Care. 2011;15(1):R43.
14. Grimm A, Teschner U, Porzelius C, Ludewig K, Zietske J, Witte OW, et al. Muscle ultrasound for early assessment of critical illness neuromyopathy in severe sepsis. Crit Care. 2013;17(5):R227.
15. Mourtzakis M, Wischmeyer P. Bedside ultrasound measurement of skeletal muscle. Curr Opin Clin Nutr Metab Care. 2014;17(5):389-95.
16. Baldwin CE, Paratz JD, Bersten AD. Diaphragm and peripheral muscle thickness on ultrasound: intra-rater reliability and variability of a methodology using non-standard recumbent positions. Respir Med. 2011;105(7):1136-43.
17. Tillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen C, Leung R, Stollery D, et al. Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr. 2014;38(7):886-90.
18. Pillen S, Arts IM, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve. 2008;37(6):679-93.
19. Connolly B, MacBean V, Crowley C, Lunt A, Moxham J, Rafferty GF, et al. Ultrasound for the assessment of peripheral skeletal muscle architecture in critical illness: a systematic review. Crit Care Med. 2015;43(4):897-905.
20. Hebert JJ, Koppenhaver SL, Parent EC, Fritz JM. A systematic review of the reliability of rehabilitative ultrasound imaging for the quantitative assessment of the abdominal and lumbar trunk muscles. Spine (Phila Pa 1976). 2014;2010(3):E848-56.
21. Bunnell A, Ney J, Gelhorn A, Hough CL. Quantitative neuromuscular ultrasound in intensive care unit-acquired weakness: A systematic review. Muscle Nerve. 2015;52(5):701-8.
22. Baldwin CE, Bersten AD. Alterations in respiratory and limb muscle strength and size in patients with sepsis who are mechanically ventilated. Phys Ther. 2014;94(1):68-82.
23. Sarwal A, Parry SM, Berry MJ, Hsu FC, Lewis MT, Justus NW, et al. Interobserver reliability of quantitative muscle sonography in the critically ill population. J Ultrasound Med. 2015;34(7):1191-200.
24. Santana LV, Pinto N, Xavier A, Maldaner V, Melo R, Silva PE, et al. Interobserver reliability of quadriceps evaluation by ultrasound in mechanically ventilated polytrauma patients. Am J Respir Crit Care Med. 2016;193:A4006.
25. Walter SD, Eliajsiw M, Donner A. Sample size and optimal designs for reliability studies. Stat Med. 1998;17(1):101-10.
26. Zaidman CM, Wu JS, Wilder S, Darras BT, Rutkove SB. Minimal training is required to reliably perform quantitative ultrasound of muscle. Muscle Nerve. 2014;50(1):124-8.
27. Cartwright MS, Kwasnisky G, Griffin LP, Sarwal A, Walker FO, Harris JM, et al. Quantitative neuromuscular ultrasound in the intensive care unit. Muscle Nerve 2013;47(2):255-9.
28. Mendes P, Wickerson L, Helm D, Janaudis-Ferreira T, Brooks D, Singer LG, et al. Skeletal muscle atrophy in advanced interstitial lung disease. Respir Med. 2015;2010:953-9.
29. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231-40.
30. Bolton CF, Gilbert JJ, Hahn AE, Sibbald WJ. Polyneuropathy in critically ill patients. J Neurol Neurosurg Psychiatry. 1984;47(11):1223-31.
31. Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med. 2014;371(3):287-8.
32. Wall BT, Dirks ML, Snijders T, Senden JM, Dolmans J, van Loon LJ. Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol (Oxf). 2014;210(3):600-11.
33. Weis PJ, Looijaard WG, Dekker IM, Stapel SN, Girbes AR, Oudemans-van Straaten HM, et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care. 2014;18(2):R12.
34. Reid CL, Campbell IT, Little RA. Muscle wasting and energy balance in critical illness. Clin Nutr. 2004;23(2):273-80.
35. Puthucheary ZA, Hart N. Skeletal muscle mass and mortality - but what about functional outcome? Crit Care. 2014;18(1):110.
36. Puthucheary ZA, Phadke R, Rawal J, McPhail MJ, Sidhu PS, Rowlerson A, et al. Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med. 2015;43(8):1603-11.
37. Pillen S, van Keimpema M, Nievelstein RA, Verrips A, van Kruisbergen-Raaymann W, Zwarts MJ. Skeletal muscle ultrasoundography: Visual versus quantitative evaluation. Ultrasound Med Biol. 2006;32(9):1315-21.
38. Pillen S, Van Allen N. Muscle ultrasound from diagnostic tool to outcome measure–Quantification is the challenge. Muscle Nerve. 2015;52(3):319-20.