Deep RNA sequencing of *L. monocytogenes* reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs

Haley F Oliver†1, Renato H Orsi†1, Lalit Ponnala2, Uri Keich3,4, Wei Wang5, Qi Sun2, Samuel W Cartinhour6,7, Melanie J Filiatrault6,7, Martin Wiedmann1 and Kathryn J Boor*1

Address: 1Department of Food Science, Cornell University, Ithaca, NY, USA, 2Computational Biology Service Unit, Cornell University, Ithaca, NY, USA, 3Department of Computer Science, Cornell University, Ithaca, NY, USA, 4School of Mathematics and Statistics, University of Sydney, NSW, Australia, 5Life Sciences Core Laboratories Center, Cornell University, Ithaca, NY, USA, 6United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA and 7Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA

Email: Haley F Oliver - haf9@cornell.edu; Renato H Orsi - rho2@cornell.edu; Lalit Ponnala - ponnala@cac.cornell.edu; Uri Keich - uri@maths.usyd.edu.au; Wei Wang - ww77@cornell.edu; Qi Sun - qisun@tc.cornell.edu; Samuel W Cartinhour - sam.cartinhour@ars.usda.gov; Melanie J Filiatrault - melanie.filiatrault@ars.usda.gov; Martin Wiedmann - mw16@cornell.edu; Kathryn J Boor* - kjb4@cornell.edu

* Corresponding author †Equal contributors

Abstract

Background: Identification of specific genes and gene expression patterns important for bacterial survival, transmission and pathogenesis is critically needed to enable development of more effective pathogen control strategies. The stationary phase stress response transcriptome, including many σB-dependent genes, was defined for the human bacterial pathogen *Listeria monocytogenes* using RNA sequencing (RNA-Seq) with the Illumina Genome Analyzer. Specifically, bacterial transcriptomes were compared between stationary phase cells of *L. monocytogenes* 10403S and an otherwise isogenic ΔsigB mutant, which does not express the alternative σ factor σB, a major regulator of genes contributing to stress response, including stresses encountered upon entry into stationary phase.

Results: Overall, 83% of all *L. monocytogenes* genes were transcribed in stationary phase cells; 42% of currently annotated *L. monocytogenes* genes showed medium to high transcript levels under these conditions. A total of 96 genes had significantly higher transcript levels in 10403S than in ΔsigB, indicating σB-dependent transcription of these genes. RNA-Seq analyses indicate that a total of 67 noncoding RNA molecules (ncRNAs) are transcribed in stationary phase *L. monocytogenes*, including 7 previously unrecognized putative ncRNAs. Application of a dynamically trained Hidden Markov Model, in combination with RNA-Seq data, identified 65 putative σB promoters upstream of 82 of the 96 σB-dependent genes and upstream of the one σB-dependent ncRNA. The RNA-Seq data also enabled annotation of putative operons as well as visualization of 5'- and 3'-UTR regions.

Conclusions: The results from these studies provide powerful evidence that RNA-Seq data combined with appropriate bioinformatics tools allow quantitative characterization of prokaryotic transcriptomes, thus providing exciting new strategies for exploring transcriptional regulatory networks in bacteria.

See minireview http://jbiol.com/content/8/12/107.
Background
The development of powerful new DNA sequencing technologies has yielded new tools with the potential for dramatically revolutionizing scientific approaches to biological questions [1]. These new technologies can be used for a variety of applications, including genome sequencing, identification of DNA-methylation sites, population studies, chromatin precipitation (CHIP-Seq), and transcriptome studies (RNA-Seq). For RNA-Seq, cDNA is generated from an mRNA-enriched total RNA preparation and sequenced using high-throughput technology. Here, we used the Illumina Genome Analyzer to characterize the transcriptome of stationary phase *Listeria monocytogenes* 10403S and its isogenic ΔsigB mutant, which lacks the general stress response sigma factor, σB.

L. monocytogenes, a Gram-positive foodborne pathogen of the Firmicutes family, is the etiological agent of the disease known as listeriosis. As 20% of listeriosis cases result in death in humans, with an estimated annual human death toll of ~500 in the US alone [2], this disease is a considerable public health concern. As a foodborne pathogen (with 99% of human illnesses caused by a foodborne route of infection [2]), this bacterium also presents challenging food safety concerns due to its ability to survive and grow under many conditions that are typically applied to control bacterial populations in foods, such as low pH, low temperature and high salt conditions [3-5]. The alternative general stress response sigma factor, σB, is an essential component of a regulatory mechanism that contributes to the ability of *L. monocytogenes* to respond to and survive exposure to harsh environmental conditions [6].

Sigma factors are dissociable subunits of prokaryotic RNA polymerase responsible for enzyme recognition of a conserved DNA sequence encoding a transcriptional promoter site. Promoter recognition specificities of bacterial RNA polymerase are determined by the transient association of an appropriate sigma factor with core polymerase in response to conditions affecting the cell [7]. The regulon of a single alternative sigma factor can include hundreds of transcriptional units, thus sigma factors provide an effective mechanism for simultaneously regulating large numbers of genes under appropriate conditions [7]. Critical phenotypic functions regulated by alternative sigma factors range from bacterial sporulation [8] to stress response systems [6,9].

Through microarray analyses, the σB regulon in *L. monocytogenes* has been reported to encompass more than 200 genes, including both virulence and stress response genes, many of them up-regulated upon entry into stationary phase [10-12]. However, interpretation of microarray analyses is dependent on the quality of existing genome annotations, which are rarely experimentally verified. Further, transcripts that do not correspond to annotated features (e.g., noncoding RNA transcripts) cannot be identified. In addition, the utility of microarrays is limited by the genomic variation that exists among bacterial strains (i.e., ideally, a unique microarray should be constructed for each strain to be analyzed) and by technical biases such as cross-hybridization. Hence, microarray data can be difficult to analyze and occasionally, misleading [13,14]. Although interpretation of RNA-Seq data also relies on the availability of a genome sequence, it is probe- and annotation-independent and therefore, free of cross-hybridization and low-hybridization biases, hence enabling genome-wide identification of all transcripts, including small noncoding RNAs (ncRNAs). Moreover, because RNA-Seq technology can generate multiple reads corresponding to each transcribed nucleotide on the genome, it is usually possible to identify 5’ and 3’ transcript ends with high resolution [15]. Therefore, in combination with bioinformatics tools, RNA-Seq data can be used to identify transcriptional promoters and terminators. We used *L. monocytogenes* as a model system to explore application of RNA-Seq for the dual purposes of genome-wide transcriptome characterization in a bacterial pathogen and comprehensive quantification of target gene expression for the alternative sigma factor, σB.

Results
RNA-Seq provided comprehensive coverage of the *L. monocytogenes* transcriptome
RNA-Seq analyses were performed on two independent replicate RNA samples collected from both the *L. monocytogenes* strain 10403S and an otherwise isogenic ΔsigB mutant (FSL A1-254) that had been grown to stationary phase. cDNA was generated from mRNA-enriched total RNA preparations from each strain and sequenced using the Illumina Genome Analyzer to yield a total number of reads for each sample ranging from 3,300,716 to 5,236,748 (Table 1). As the 10403S genome has not been completely closed, the sequence reads were aligned to a 10403S pseudochromosome that was created for this study using the completely closed genome of the *L. monocytogenes* strain EGD-e (accession no. AL591824) as a reference (see Material and Methods for details). The total number of reads matching regions other than rRNA and tRNA ranged from 451,548 to 683,746, yielding between 5 × and 7.6 × coverage of the pseudogenome. Between 87.3% and 92.1% of the reads in a given RNA-Seq run matched uniquely to the 10403S pseudochromosome and thus were used in subsequent analyses. Reads that did not match the 10403S pseudochromosome (i.e., reads that showed >2 mismatches to the pseudochromosome) represented between 6.7% and 12.6% of the reads sequenced; another 0.1% to 0.7% of the reads matched to at least two different locations on the pseudochromosome and, therefore, were removed before further analyses. Reads identified as “matching two locations” did not
include those matching rRNA genes as the 10403S pseudochromosome created for this study was designed with only one unique rRNA gene sequence.

To allow for quantitative comparisons among genes and runs, the coverage for each run was normalized for the total number of reads in each run and for gene size. The normalized data are presented as the Gene Expression Index (GEI), which is expressed as the number of reads per 100 bases [16]. Although in silico analyses suggested that the sequencibility (i.e., the portion of the pseudochromosome that could yield unique 32 nt reads) of the 10403S pseudochromosome was 99.6% (Additional file 1: Sequencibility text file), approximately 77.5% of the genome was covered by reads from at least one of the four runs, suggesting that more than 20% of the genome is not transcribed or is transcribed at low levels.

RNA-Seq coverage correlated with qRT-PCR transcript levels indicating that RNA-Seq data are quantitative

We evaluated whether average GEI for specific genes correlated with transcript levels that had been measured using TaqMan qRT-PCR, the current gold standard for quantification of mRNA [17]. Based on transcript levels for 9 and 5 genes in 10403S and ΔsigB, respectively, log transformed average GEI and log transformed TaqMan qRT-PCR absolute copy numbers were correlated (p-value < 0.001; adj. R² = 0.83; Figure 1; Additional file 2: RNA-Seq average GEI and TaqMan qRT-PCR absolute copy number of select genes), supporting that RNA-Seq provides reliable quantitative estimates of transcript levels in L. monocytogenes. RNA-Seq was previously reported to provide quantitative data on transcript levels in yeast [15], and more recently, in Burkholderia cenocepacia [16], thus, our findings extend this important correlation to a new prokaryotic system.

Stationary phase L. monocytogenes transcribed at least 83% of annotated genes

Among the 2888 annotated coding sequences (CDS) in the 10403S pseudochromosome, 2417 (83.7%) showed

Table 1: Summary of RNA-Seq coverage data

Statistics	10403S replicate 1	10403S replicate 2	sigB replicate 1	sigB replicate 2
Reads that aligned uniquely with no mismatches (U₀)	2,290,717	3,111,726	2,320,447	3,866,492
Reads that aligned uniquely with 1 mismatch (U₁)	632,173	470,865	544,932	745,360
Reads that aligned uniquely with 2 mismatches (U₂)	234,886	110,882	173,903	181,684
USUM = U₀ + U₁ + U₂	3,157,776	3,693,473	3,039,282	4,793,536
Reads that did not align to the pseudochromosome (NM)	299,034	533,462	222,945	427,109
Total number of reads in the sample (Total = USUM + R + NM)	3,480,295	4,231,767	3,300,716	5,236,748
Percentage of unique alignments, i.e. 100(U₀/Total)	90.73	87.28	92.08	91.54
Reads that aligned to the 16S rRNA gene (16S)	490,381	482,845	434,263	760,863
Reads that aligned to the 23S rRNA gene (23S)	2,160,538	1,860,817	2,436,325	3,138,329
Reads that aligned to the 16S and 23S rRNA genes (16S + 23S)	2,650,919	2,919,170	2,295,080	3,899,192
Percentage of all reads that aligned to 16S and 23S rRNA genes	83.9	79	75.5	81.3
U_TOTAL = U_USUM - (16S + 23S)	506,857	774,303	744,202	894,344
Normalization factor (f_norm = 894,344/U_TOTAL)	1.765	1.155	1.202	1

*This indicates the factor that was used for normalization of replicates

Figure 1

Correlation between qRT-PCR and RNA-Seq. Correlation between qRT-PCR and RNA-Seq data for selected genes in L. monocytogenes 10403S (red) and the ΔsigB strain (blue). The selected genes are: ctc, gadA, gap, opuCA, rpoB (qRT-PCR data from both strains were available for these 5 genes), flaA, inlA, plcA and sigB (only qRT-PCR data from 10403S were available for these 4 genes).
an average GEI ≥ 0.7 in 10403S (average of two biological replicates) suggesting that at least 83% of the annotated *L. monocytogenes* genes are transcribed in stationary phase (Additional file 3: Cumulative frequency of average GEI in *L. monocytogenes* 10403S; see Materials and Methods for calculation of coverage, rational for defining transcribed genes, and criteria for classifying transcript levels as low, medium or high). Of these 2417 genes, 654 (22%) had high transcript levels, 586 (20.0%) had medium transcript levels, and 1177 (41.0%) had low transcript levels. A total of 471 genes (17%) had GEI < 0.7 and were considered "not transcribed". RNA-Seq data allowed visual examination of transcript units, aiding in identification of genes that are transcribed monocistronically or as part of an operon (Figure 2). A total of 355 transcription units appeared to represent operons; these units were identified and annotated (Additional file 4: Access database). A total of 1107 (38.3%) of the annotated 10403S CDS were located in these putative operons. Further experimental data are necessary to validate our predictions of transcription unit structure as some genes may have rho-dependent terminators that were not identified in this study and, therefore, they may be transcribed monocistronically despite the observation of GEI similar to those of their neighboring genes.

The three genes with the highest average GEI in 10403S all encoded predicted ncRNAs, including tmRNA, 6S and LhrA (Table 2). The annotated CDS (as annotated in EGD-e [18]) with the highest average GEI were lmo2257, fri, and lmo1847, which encode a hypothetical CDS, iron-binding ferritin, and an ABC transporter, respectively. Other genes with well defined functions and high average GEI include flaA, which encodes a flagellin protein, sod, which encodes a superoxide dismutase involved in detoxification, and cspB and cspL, which encode cold-shock proteins involved in adaptation to atypical conditions (Table 2).

Both positive and negative associations were observed between GEI and the TIGR classification of sets of genes to physiological role categories http://cmr.jcvi.org/cgi-bin/CMR/RoleIds.cgi (Table 3). For example, genes involved in protein synthesis and protein fate showed higher average GEI in stationary phase 10403S as compared to genes involved in other functions, while genes involved in viral functions and amino acid biosynthesis were significantly associated with low average GEI in 10403S. Moreover, a positive significant association was observed between codon bias and the average GEI in 10403S (p-value < 0.001; linear regression analysis).

Identification and annotation of noncoding RNAs (ncRNAs)

Overall, we identified 67 ncRNAs (Additional file 5: ncRNAs identified by RNA-Seq) that showed average GEI ≥ 0.7 in 10403S, indicating that these ncRNAs are transcribed in stationary phase *L. monocytogenes* (see Materials and Methods for more details on ncRNA annotation). Among the 67 ncRNAs identified as transcribed in the present study, 60 matched ncRNAs previously described in *L. monocytogenes* (Additional file 5: ncRNAs identified by RNA-Seq) [19-22]. These 60 ncRNAs included 6S RNA, tmRNA, several S-box RNA and T-box leader RNA mole-

Figure 2

View of RNA-Seq data using the Artemis genome browser. This region of the 10403S chromosome includes six coding genes, i.e. LMRG_02429 to LMRG_02435, and the 5’ end of LMRG_02436; genes are represented as blue arrows. The top part of the figure shows normalized RNA-Seq coverage (i.e. the number of reads that match an annotated gene after normalization across runs) with red and blue lines representing the two 10403S replicates and the green and black lines representing the ΔsigB strain. The horizontal line indicates a normalized RNA-Seq coverage of 49.16 reads. The middle part of the figure shows the three positive frames of translation with the coding regions and vertical black bars representing stop codons. The last line shows putative operons (white bars), a terminator (purple bar) downstream of LMRG_02430 and the chromosome coordinates. Notice the difference in coverage between LMRG_02431 (downstream of the terminator) and the other genes. All genes in the figure have sequencibility of 100% (See Additional file 1: Sequencibility text file for a complete sequencibility plot).
cules. A total of 7 putative ncRNAs identified here were not previously identified in *L. monocytogenes* and did not match ncRNA entries in Rfam (Table 4). The regions representing these putative ncRNAs showed contiguous coverage by RNA-Seq reads (i.e., at least 100 bp completely covered by RNA-Seq reads), but did not fully match annotated genes. Overall, 36 of the ncRNAs recently identified by tiling microarray analyses in *L. monocytogenes* strain EGD-e [20] were not identified in this study (see Additional file 6: ncRNAs previously described in *L. monocytogenes* strain EGD-e but not identified in this study for a list of these EGD-e ncRNAs). The most likely explanations for the absence of these EGD-e ncRNAs in 10403S are one or more of the following: (i) low (<0.7 GEI) or no RNA-Seq coverage in 10403S (indicating no transcription in stationary phase 10403S or loss of small RNAs during RNA isolation); (ii) the homolog may be absent in the *L. monocytogenes* 10403S genome (e.g., for EGD-e RliC; Table S3); (iii) ncRNAs determined to be antisense RNA in EGD-e [20] were not identified in 10403S, as the RNA-Seq protocol did not provide for directional reads; (iv) the corresponding 10403S genome region has not been com-

Locus	Gene name a	EGD-e locus b	Description	10403S Average GEI c
LMRG_04519	ssrA	NL	transfer-messenger RNA (tmRNA)	8566.2
LMRG_04503	ssrS	NL	6S RNA	7921.4
Noncoding	lhrA	NL	Hfq-binding RNA	4532.3
Noncoding	sbrE	NL	putative ncRNA	2359.9
LMRG_01574	lmo2257	Lmo2257	putative CDS	2066.3
LMRG_02041	fri	Lmo0943	non-heme iron-binding ferritin	1572.6
LMRG_04515	NGN	NL	bacterial signal recognition particle RNA	1462.2
LMRG_02926	NGN	NL	putative ncRNA	1407
LMRG_00994	lmo1847	Lmo1847	similar to adhesion binding proteins and lipoproteins with multiple specificity for metal cations (ABC transporter)	1378.9
LMRG_00378	flaA	Lmo0690	flagellin protein	1366.9
LMRG_04523	mpsB	NL	bacterial RNAse P class B	1243.8
LMRG_01165	cspB	Lmo2016	similar to major cold-shock protein	1109.5
Noncoding	NGN	NL	T-box leader	1086.7
LMRG_00891	sod	Lmo1439	superoxide dismutase	845.4
LMRG_00996	lmo1849	Lmo1849	similar to metal cations ABC transporter, ATP-binding proteins	827.4
LMRG_01986	lmo2711	Lmo2711	similar to hypothetical proteins	802.1
LMRG_00921	lmo1847	Lmo1847	similar to unknown proteins	738.5
LMRG_02618	lmo1916	Lmo1916	similar to B. subtilis SpoVG protein	702.9
LMRG_00814	hup	Lmo1934	similar to non-specific DNA-binding protein HU	631.8
LMRG_00995	lmo1848	Lmo1848	similar metal cations ABC transporter (permease protein)	621.2
LMRG_00922	rpsU	Lmo1469	30S ribosomal protein S21	609
LMRG_02619	lmo1917	Lmo1917	similar to B. subtilis SpoVG protein	577.3
Noncoding	NGN	NL	putative ncRNA	561.9
LMRG_00679	trxA	Lmo1233	thioredoxin	516.5
LMRG_01674	lmo2158	Lmo2158	similar to B. subtilis YwmG protein	509.2
LMRG_02633	ctc	Lmo2011	similar to B. subtilis general stress protein	496.4
LMRG_01479	lmo2363	Lmo2363	similar to glutamate decarboxylase	491
LMRG_00517	pdhD	Lmo1055	highly similar to dihydrolipoamide dehydrogenase, E3 subunit of pyruvate dehydrogenase complex	483.5
LMRG_00703	lmo1254	Lmo1254	similar to alpha,alpha-phosphotrehalase	395.9
LMRG_02718	lmo2373	Lmo2373	similar to phosphotransferase system beta-glucoside-specific enzyme IIB component	378.5
LMRG_01737	lmo2511	Lmo2511	similar to B. subtilis YydD protein	377.1
LMRG_00515	pdhB	Lmo1053	highly similar to pyruvate dehydrogenase (E1 beta subunit)	356.4
LMRG_00704	lmo1255	Lmo1255	similar to PTS system trehalose-specific enzyme IIBC	353.6
LMRG_00516	pdhC	Lmo1054	highly similar to pyruvate dehydrogenase (dihydrolipoamide acetyltransferase E2 subunit)	351.3
LMRG_01480	lmo2362	Lmo2362	similar to amino acid antipporter (acid resistance)	351.1
LMRG_02239	lmo2692	Lmo2692	unknown	344.1
LMRG_00875	lmo1423	Lmo1423	unknown	341.2
LMRG_01835	lmo2413	Lmo2413	similar to aminotransferase	333.1
LMRG_01429	lmo1541	Lmo1541	similar to unknown protein	318.8

aNGN = No gene name given;
bNL = No EGD-e locus;
cAverage normalized number of reads matching each of the σB-dependent genes in the two 10403S datasets divided by the length of the genes times 100 bp;
dThe high coverage of LMRG_01574 is restricted to the portion that overlaps with lhrA. LMRG_01574 may not be a valid coding gene;
eLMRG_02926 completely overlaps with the bacterial RNAse P class B noncoding gene. LMRG_02926 may not be a valid coding gene as no Pfam matches were found for the putative protein coded by this gene.
completed sequenced and closed (e.g., for EGD-e LhrC, which falls in a repetitive region in the EGD-e chromosome [19]), and (v) the EGD-e ncRNA did not meet our criterion of 100 bases of contiguous coverage.

Three putative ncRNAs with high GEI covered either part or all of each of three annotated CDS, suggesting that ncRNAs overlap with these CDS or that some putative CDS actually encode ncRNAs rather than proteins. Specifically, LMRG_01574 (lmo2257), LMRG_02926 (no homolog in EGD-e), and LMRG_1986 (lmo2711) overlapped with lhrA (partial overlap), with the bacterial RNAse P class B ncRNA (full overlap), and with the bacterial signal recognition particle RNA (partial overlap), respectively. In concert with our findings, lmo2257 was previously hypothesized not to be a CDS [19,21].

RNA-Seq identified 96 annotated CDS and one ncRNA as σ^B-dependent and provided comprehensive data on transcript levels for genes in the σ^B regulon

Our RNA-Seq data analyses identified a total of 96 genes as up-regulated by σ^B (Additional file 7: Genes up-regulated by σ^B). No annotated genes were identified as significantly down-regulated by σ^B in this study. Although various genes have been identified previously as down-regulated by σ^B [10,12,20], we have observed that genes with significantly higher transcript levels in the $\Delta\sigma^B$ strain (i.e., genes identified as down-regulated by σ^B): (i) are likely to be indirectly regulated by σ^B, as σ^B is a transcriptional activator, (ii) generally show a lower fold-difference in transcript levels between the parent strain and the $\Delta\sigma^B$ strain as compared to genes identified as up-regulated by σ^B [10], and (iii) have not been consistently identified as down-regulated by σ^B between different studies, even in microarray studies using the same strain and condition (see Figure 3, which indicates that only 7 genes were identified as down-regulated by σ^B in both of two separate studies with strain 10403S). Down-regulation of genes by σ^B thus appears stochastic as compared to up-regulation by σ^B. Overall, our findings suggest that RNA-Seq combined with stringent criteria for detection of statistically significant differences in transcript levels (i.e., the requirement for statistical significance for all four binomial comparisons) may generate fewer false positives as compared to some microarray-based approaches.

As illustrated in Figure 4A, RNA-Seq data are useful for predicting multi-gene operons controlled by a given regulator such as σ^B. Thirty-eight of the 96 genes up-regulated by σ^B are organized into a total of 20 operons, including (i) opuCABCD, which encodes the subunits of a glycine betaine/carnitine/choline ABC transporter, (ii) lmo0781-

Table 3: Associations between GEI and role categories

Role categories	Significancea
Low average GEI in 10403S	
Signal transduction	0.006
Amino acid biosynthesis	< 0.001
Transport and binding	0.003
Viral function	< 0.001
Cellular processes	0.011
DNA metabolism	0.011
Protein fate	< 0.001
Protein synthesis	< 0.001
Purines, pyrimidines, nucleosides, and nucleotides	0.043
Transcription	< 0.001
Unknown functions	0.043
High average GEI in 10403S	

a Based on one-sided Wilcoxon rank sum test and FDR correction.

Table 4: New L. monocytogenes ncRNAs identified in this study

Description	Coordinates in 10403S	Length	10403S Average GEIb	σ^B Average GEIc
rI64	222952..223741	790	1.99	2.17
rI65	409956..410100	145	43.80	82.82
rI66	938236..938563	328	14.47	29.94
rI67	1393256..1393469	241	52.11	65.68
rI68	2020305..2020575	271	189.49	224.23
rI69	2305436..2305610	175	20.62	49.18
rI70	2370319..2370547	229	45.73	17.84

b Average normalized number of reads matching each of the σ^B-dependent genes in the two 10403S datasets divided by the length of the genes times 100 bp.

c Average normalized number of reads matching each of the σ^B-dependent genes in the two $\Delta\sigma^B$ datasets divided by the length of the genes times 100 bp.
were over-represented among genes involved in cellular functions (q-value = 0.045). σB-dependent genes in this category include genes involved in pathogenesis (inlA, inlB, inlH), adaptation to atypical conditions (lmo0515, lmo0669, lmo2673, lrtC), detoxification (lmo1433, lmo2230), cell division (lmo1624) and an unknown protein that may be involved in toxin production and resistance (lmo0321).

We evaluated RNA-Seq transcript levels for the 96 σB-dependent genes identified here (Additional file 7: Genes up-regulated by σB). The average fold change (10403S GEI/ΔσB GEI) for the 96 σB-dependent genes ranged from 2.6 to 479.4. The σB-dependent genes with the highest average GEI in 10403S were lmo2158, lmo1602, and lmo0539, which encode a protein similar to B. subtilis Ywmg, an unknown protein, and a tagatose-1,6-diphosphate aldolase, respectively (Table 5).

An ~ 500 nt σB-dependent ncRNA was identified between Lmo2141 and Lmo2142 (Figure 4B); this ncRNA was recently designated rli47 [20]. To be consistent with the nomenclature for other σB-dependent ncRNA [21], we propose that rli47 be named sbrE (sigma B-dependent RNA). Although BLASTX searches (using 6 possible reading frames) and searches against the Pfam database did not yield significant matches, a σB-dependent promoter was identified upstream of the transcript and a Rho-independent terminator was found by TransTermHP (Figure 4B). The sequence for this putative ncRNA was also present in 17 other L. monocytogenes genomes, including EGD-e (GenBank accession no. NC_003210), F2365 (GenBank accession no. NC_002973), and 15 unfinished genome sequences by the Broad Institute [22].

HMM showed that 84% of σB-dependent genes and operons identified by RNA-Seq are preceded by σB promoters and therefore, appear to be directly regulated by σB

An HMM representing L. monocytogenes σB-dependent promoters was dynamically created by using an initial training set of experimentally verified L. monocytogenes σB-dependent promoters to search the RNA-Seq data. The final model yielded a total of 5,387 motifs with scores > 5.00 bits throughout the pseudochromosome sequence. Among these motifs, we identified 65 possible σB-dependent promoter sequences upstream of genes and operons identified as σB-dependent based on RNA-Seq data (see Figure 5 for the L. monocytogenes σB promoter sequence.
Because some of the genes with experimentally validated σ^B promoters were not found to be significantly up-regulated by σ^B in our study (e.g. prfA and the rsBV operon) and because the ltrC promoter, which was in the initial training set, had a score below our threshold of 5.00 bits in the final search, our annotation does not include all promoters present in the training set (i.e., only promoters identified upstream of genes that were significantly up-regulated by σ^B in the present study were annotated). Specifically, σ^B-dependent promoter sequences were found upstream of 15 of the 20 putative σ^B-dependent operons, 49 of the 58 monocistronic σ^B-dependent genes, and the one σ^B-dependent ncRNA identified here (Figure 4B). We compared RNA-Seq defined transcriptional start sites for 8 genes with σ^B promoters to transcriptional start sites determined by Rapid Amplification of cDNA Ends PCR (RACE-PCR) in a previous study [23]. Transcriptional start sites identified with RNA-Seq were located between 0 to 29 bases downstream (and therefore sometimes 3') of start sites determined by RACE-PCR (see Figure 4C for LMRG_01602 transcriptional start site mapped by RACE-PCR and RNA-Seq), indicating that
Table 5: Summary of genes up-regulated by σB

Locus	EGD-e locus	Description	Avg. fold change (WT/ΔsigB)	10403S Average GEI^a	ΔsigB Average GEI^a
		σB-dependent genes found by RNA-Seq and not previously identified by microarray analyses of stationary phase cells			
LMRG_00064	lmo0372	similar to beta-glucosidase	4.26	2.4	0.66
LMRG_00126^d	lmo0433 (inlA)	Internalin A	5.86	6.19	1.06
LMRG_00127^d	lmo0434 (inlB)	Internalin B	6	2.71	0.47
LMRG_00244	lmo0819	unknown	3.01	18.35	6.09
LMRG_00873^d	lmo1421	similar to glycine betaine/choline ABC transporter (ATP-binding protein)	28.44	5.27	0.67
LMRG_00877^d	lmo1425 (opuCD)	similar to betaine/carnitine/choline ABC transporter (membrane p)	3.56	22.59	6.51
LMRG_00878^d	lmo1426 (opuCC)	similar to glycine betaine/choline ABC transporter (osmoprotectant-binding protein)	3.77	19.78	5.41
LMRG_01151	lmo2003	similar to transcription regulator GntR family	14.67	3.15	0.32
LMRG_01963	lmo2733	similar to PTS system, fructose-specific IIAABC component	7.95	1.35	0.32
Noncoding ND		putative ncRNA, sbrE	186.09	2359.89	20.95
LMRG_01674	lmo2158	similar to B. subtilis YwmG protein	479.39	509.23	22.8
LMRG_01602	lmo1602	similar to unknown proteins	5.47	157.02	30.08
LMRG_01602^b	lmo0539	similar to tagatose-1,6-diphosphate aldolase	14.54	132.74	9.3
LMRG_02052	lmo0953	unknown	41.1	96.43	0
LMRG_00357	lmo0669	similar to arsenate reductase	75.93	64.6	0.89
LMRG_02119	lmo2674	similar to ribose 5-phosphate epimerase	5.42	52.93	9.94
LMRG_01794	lmo2454	unknown	84.5	50.24	0.76
LMRG_01850	lmo2398 (ltrC)	low temperature requirement C protein, also similar to B. subtilis YutG protein	2.8	50.03	18.94
LMRG_00745	lmo1295 (hfg)	similar to host factor-1 protein	4.83	49.77	11.19
LMRG_01948	lmo2748	similar to B. subtilis stress protein YdaG	207.5	49.37	0
LMRG_00583	lmo1140	unknown	11.93	47.84	4.28
LMRG_02036	lmo0937	unknown	54.38	44.68	0.91
LMRG_00484	lmo0796	conserved hypothetical protein	4.21	43.88	10.61
LMRG_02772	lmo1698	similar to ribosomal-protein-alanine N-acetyltransferase	4.1	42.94	10.92
LMRG_02736	lmo2391	conserved hypothetical protein similar to B. subtilis YtfK protein	11.76	39.48	4.54
RNA-Seq successfully approximates transcriptional start sites, but sometimes does not provide full sequence coverage to the 5' end of a transcript. Some transcriptional start sites could not be specifically mapped to a σ^B promoter site using RNA-Seq as some genes (e.g. *opuCA*) have multiple promoters. A dendrogram of the putative σ^B promoter sequences showed no apparent clustering of these promoter sequences by either average GEI in 10403S or by σ^B-dependence (average fold change). These results suggest that additional regulatory elements or mechanisms other than promoter sequence per se (e.g., RNA stability) also influence transcript levels and/or σ^B-dependence for these genes (data not shown).

Table 5: Summary of genes up-regulated by σ^B (Continued)

Gene ID	Description	GEI 10403S	GEI ΔsigB	Fold Change
LMRG_02011	Lmo0911 unknown	4.04	33.9	8.58
LMRG_01763	Lmo2485 similar to B. subtilis yviC protein	3.93	32.87	8.47
LMRG_00482	Lmo0794 similar to B. subtilis YwnB protein	67.02	32.5	0.72
LMRG_00278	Lmo0596 similar to unknown proteins conserved hypothetical protein	170.5	32.33	0.09
LMRG_02218	Lmo2673 similar to succinate semialdehyde dehydrogenase	150.5	31.92	0.11
LMRG_02013	Lmo0913 similar to succinate semialdehyde dehydrogenase	330.38	30.05	0.11
LMRG_00469	Lmo0781 similar to mannose-specific phosphotransferase system (PTS) component IID	59.58	29.59	0.65
LMRG_00470	Lmo0782 similar to mannose-specific phosphotransferase system (PTS) component IIC	18.99	29.59	1.58
LMRG_01360	Lmo1606 similar to DNA translocase similar to Chain A, Dihydrofolate Reductase	7.88	29.5	3.97
LMRG_02696	Lmo2572 similar to Chain A, Dihydrofolate Reductase	8.05	29.05	3.59
LMRG_02768	Lmo1694 similar to CDP-abequose synthase	155.31	27.51	0.2
LMRG_02216	Lmo2671 unknown	3.13	27.29	8.82
LMRG_02695	Lmo2573 similar to zinc-binding dehydrogenase	7.52	25.91	3.83
LMRG_00472	Lmo0784 similar to mannose-specific phosphotransferase system (PTS) component IIA	88.5	25.25	0.21
LMRG_02215	Lmo2670 conserved hypothetical protein	3	25.23	8.58
LMRG_02697	Lmo2571 similar to nicotinamidase	9.84	25.15	2.99

aAverage fold changes from the 10403S and ΔsigB. Genes with no matching reads in ΔsigB had their GEI set to 1 to allow for calculation of the fold change;

bAverage normalized number of reads matching each of the σ^B-dependent genes in the two 10403S datasets relative to the length of the genes times 100 bp;

cAverage normalized number of reads matching each of the σ^B-dependent genes in the two ΔsigB datasets relative to the length of the genes times 100 bp;

dGenes previously identified as σ^B-dependent under salt stress in *L. monocytogenes*10403S by Raengpradub et al., 2008.

RNA-Seq successfully approximates transcriptional start sites, but sometimes does not provide full sequence coverage to the 5’ end of a transcript. Some transcriptional start sites could not be specifically mapped to a σ^B promoter site using RNA-Seq as some genes (e.g. *opuCA*) have multiple promoters. A dendrogram of the putative σ^B promoter sequences showed no apparent clustering of these promoter sequences by either average GEI in 10403S or by σ^B-dependence (average fold change). These results suggest that additional regulatory elements or mechanisms other than promoter sequence per se (e.g., RNA stability) also influence transcript levels and/or σ^B-dependence for these genes (data not shown).

Figure 5
Logo of the σ^B promoter. This logo was created from the alignment of 65 σ^B promoters identified in this study.
RNA-Seq successfully identifies a number of previously identified as well as novel \(\sigma^B \)-dependent genes

To evaluate the ability of RNA-Seq to identify \(L. \) monocytogenes \(\sigma^B \)-dependent genes, we compared the \(\sigma^B \)-dependent genes identified here with those identified in two independent microarray studies by our research group. Specifically, we compared our results with microarray data reported by (i) Raengpradub et al. [10], who identified \(\sigma^B \)-dependent genes using \(L. \) monocytogenes strains and growth conditions identical to those in this study, and by (ii) Ollinger et al. [12], who identified \(\sigma^B \)-dependent genes by comparing transcripts from \(L. \) monocytogenes 10403S with a PrfA* (G155S) allele [24], which constitutively expresses the PrfA-regulated virulence genes [24-26], with those from an isogenic \(\Delta \)sigB mutant grown to stationary phase under the same conditions used here. Further, we compared our results with those from a microarray study using another \(L. \) monocytogenes strain (EGD-e) and its isogenic \(\Delta \)sigB mutant, grown under similar conditions (i.e., growth to early stationary phase [11]). Among the 96 \(\sigma^B \)-dependent annotated CDS identified in the present study, 72 were also identified as \(\sigma^B \)-dependent in previous microarray studies of stationary phase \(L. \) monocytogenes 10403S cells [10,12] (Figure 3). In addition, 64 (66.7%) of the 96 \(\sigma^B \)-dependent genes identified here were identified as positively regulated by \(\sigma^B \) in \(L. \) monocytogenes strain EGD-e cells grown to early stationary phase (8 h growth in BHI) [11]. Overall, 12 genes identified as \(\sigma^B \)-dependent in stationary phase cells in both previous microarray studies by our group [10,12], were not identified as \(\sigma^B \)-dependent by the RNA-Seq experiments reported here (Figure 3); 9 of these genes showed a \(\sigma^B \)-dependent promoter based on the HMM analyses in this study and are likely to be directly regulated by \(\sigma^B \) (see Additional file 8: Comparison of genes found to be \(\sigma^B \)-dependent by microarray analysis and not by RNA-Seq for further details on these genes).

Finally, a total of 13 annotated CDS identified as \(\sigma^B \)-dependent by RNA-Seq (including 9 genes that also showed a \(\sigma^B \)-dependent promoter in our HMM analysis) had not been identified as \(\sigma^B \)-dependent in either of the previous microarray studies with strain 10403S grown to stationary phase [10,12] (see Table 3). Among these 13 genes not previously identified as \(\sigma^B \)-dependent in stationary phase \(L. \) monocytogenes 10403S, five had previously been identified as \(\sigma^B \)-dependent in salt-stressed cells [10], including the well-characterized virulence genes \(\textit{inlA} \) and \(\textit{inlB} \), which have also been shown by qRT-PCR and promoter mapping to be directly regulated by \(\sigma^B \) [27]. In addition, two of these 13 genes had been identified as positively regulated by \(\sigma^B \) in \(L. \) monocytogenes strain EGD-e [11], even though they had not been identified as \(\sigma^B \)-dependent in previous microarray studies of strain 10403S [10,12]. For one of these genes (i.e. Imo0265), the microarray probe (designed based on the genome of \(L. \) monocytogenes strain EGD-e) showed a low hybridization index (HI; % match between strain-specific sequence and oligonucleotide probe) to 10403S (< 80%). Interestingly, Imo2003, which encodes a transcription regulator similar to the GntR family, was identified as \(\sigma^A \)-dependent by RNA-Seq, but had not been previously identified as \(\sigma^B \)-dependent in either 10403S or EGD-e.

Discussion

In this study, we used deep RNA sequencing to define and characterize the transcriptomes of \(L. \) monocytogenes strain 10403S and an otherwise isogenic \(\Delta \)sigB mutant, which does not express the general stress-response sigma factor, \(\sigma^B \). The data generated using this approach showed that (i) at least 83% of annotated \(L. \) monocytogenes genes are transcribed in stationary phase cells; and (ii) stationary phase \(L. \) monocytogenes transcribes 67 ncRNAs, including one \(\sigma^B \)-dependent ncRNA and seven ncRNAs that, to our knowledge, have not previously been identified in \(L. \) monocytogenes. Additionally, RNA-Seq data provided for quantitation of transcript levels and approximate identification of transcriptional start sites on a genome scale. Use of a novel, iterative, dynamic HMM, in combination with RNA-Seq data, identified putative \(\sigma^B \)-dependent promoters and further defined the \(L. \) monocytogenes \(\sigma^B \) regulon.

The majority of annotated \(L. \) monocytogenes genes are transcribed in stationary phase cells

While genome sequencing and microarray approaches have provided important insight into the biology of prokaryotic organisms, including a number of human bacterial pathogens, identification of all genes and their transcriptional patterns remains a major challenge in all areas of biology. Our results demonstrate that global probe-independent approaches for transcriptome characterization are valuable tools for analyzing bacterial transcriptomes [16,28,29]. A major challenge that currently hinders analysis of transcriptomic data generated by approaches such as RNA-Seq is the ability to differentiate between genes with low levels of transcription and background levels of coverage. Several approaches have been used to define cut-off values between background GEI and GEI indicative of low transcript levels (e.g., [15,30,31]). We chose a comparative analysis of \(L. \) monocytogenes 10403S transcript levels with those of a mutant strain that does not express a transcription factor (i.e., the alternative sigma factor \(\sigma^B \)) as a novel approach for robustly defining background RNA-Seq coverage. Our results show that a number of \(\sigma^B \)-dependent genes were solely \(\sigma^B \)-dependent (at least under the conditions used here), as supported by the lack of detectable RNA-Seq coverage in the \(\Delta \)sigB strain, despite considerable RNA-Seq coverage of the same genes in the isogenic parent strain 10403S. This is an important observation as a number of \(\sigma^B \)-dependent \(L. \) monocytogenes genes are also activated by other sigma factors (e.g., \(\sigma^A \) [32,33]). Using the average GEI for \(L. \) monocy-
cytogenes genes that were solely σ^{B}-dependent in the ΔsigB strain as a conservative cut-off value for transcribed genes, we found that approximately 83% of L. monocytogenes 10403S annotated CDS were transcribed in stationary phase cells. These transcribed genes include 355 putative operons, which cover a total of 1,107 genes, indicating that a considerable proportion of L. monocytogenes genes appear to be transcribed polycistronically. In comparison, a recent study using a tiling microarray identified 517 polycistronic operons that encompass 1,719 genes in L. monocytogenes EGD-e [20]. Taken together, these data indicate that the majority of annotated L. monocytogenes genes are transcribed. This conclusion is consistent with results from a whole-genome tiled microarray transcriptome study of E. coli MG1655 [34], which reported transcription of 4052 E. coli MG1655 genes in bacteria grown under different conditions, suggesting that about 98% of the E. coli MG1655 genes are transcribed.

Our results also demonstrate that RNA-Seq coverage levels (generated with the Illumina Genome Analyzer System) correlate well with quantitative RT-PCR-based mRNA transcript level data. Therefore, in combination with results from previous studies (e.g., in yeast [15,31], human cell lines [35], human tissue [36], murine tissue [30]), our findings indicate that RNA-Seq tools can be broadly applied in biological studies to enable quantitative analysis of transcript levels. We also found a positive correlation between RNA-Seq-based transcript levels and codon bias, consistent with the well-documented observation that genes with high codon bias are often highly expressed [37-39]. Genes in four role categories, including (i) signal transduction, (ii) viral functions, (iii) amino acid biosynthesis, and (iv) transport and binding, were significantly associated with lower transcript levels. These categories include a number of genes that encode proteins predominantly required for growth and survival under specialized environmental conditions (e.g., viral replication genes) or under conditions other than stationary phase (e.g., amino acid biosynthesis may be less important in stationary phase than during exponential growth as sufficient amino acids from dead bacteria are likely to be available for scavenging), and/or proteins that may only be required in small amounts. On the other hand, we found that genes in seven role categories, including (i) cellular processes, (ii) DNA metabolism, (iii) protein fate, (iv) protein synthesis, (v) purines, pyrimidines, nucleosides, and nucleotides, (vi) transcription, and (vii) genes encoding proteins with unknown functions, showed, on average, higher transcript levels in stationary phase L. monocytogenes. These findings suggest that genes in these particular categories are important for bacterial cells transitioning from exponential growth to stationary phase.

Overall, the L. monocytogenes genes with the highest transcript levels were ncRNAs, specifically the transfer-messenger RNA (tmRNA) and 6S RNA, consistent with the observation that tmRNAs are involved with bacterial recovery from a variety of stresses including entry into stationary phase, amino acid starvation, and heat shock [40]. 6S RNA accumulates in cells during stationary phase; cells lacking 6S RNA have reduced fitness relative to wildtype stationary phase cells [41]. In addition to down-regulating some housekeeping genes, 6S RNA has been shown to up-regulate expression of some σ^{B}-dependent genes in Gram-negative bacteria [41]. σ^{B} is the stationary phase stress response alternative sigma factor in E. coli [42]. Taken together, we hypothesize that 6S RNA plays a critical role in the ability of L. monocytogenes to survive stationary phase associated stress conditions.

Specific protein-encoding genes with very high transcript levels in stationary phase L. monocytogenes include fri, sod, cspB, and cspL, all genes with some previous evidence for contributions to L. monocytogenes stationary phase and stress survival [43-49]. flaA, which encodes a flagellin protein, was also highly transcribed in stationary phase cells at 37°C. Although L. monocytogenes has been reported to show flagellar motility only when grown at \leq 30°C [50,51], our results are consistent with the observation that strain 10403S, which was used in this study, has been shown to express flagellin at 37°C [51]. Interestingly, we also found some annotated CDS without known function to be highly transcribed, including lmo1847 and lmo1849, which encode putative ABC transporters based on BLAST and Pfam [52] searches, respectively, and lmo1468, which encodes an unknown protein.

RNA-Seq identifies ncRNA molecules in L. monocytogenes, including a σ^{B}-dependent ncRNA, in 10403S

Using RNA-Seq, we found 67 previously identified or putative ncRNAs that were transcribed in stationary phase L. monocytogenes. Of these, 7 represent ncRNAs that have not been identified previously as transcribed in L. monocytogenes. Sixty of the ncRNAs identified here have previously been reported by Toledo-Arana et al. [20], Nielsen et al. [53], Mandin et al. [22] and Christiansen et al. [19]. Interestingly, 16 L. monocytogenes ncRNAs with similarities to ncRNAs identified in other bacterial organisms are putative riboswitches. We also found that sbrE (rli47), which has no homologies to ncRNA entries in Pfam, appears to be directly regulated by σ^{B}, based on the considerably higher transcript levels (186 fold) present in the parent strain as compared to the sigB-null mutant, consistent with results from a recent tiling microarray study [20]. As the RNA isolation procedure used here selected against small RNA molecules (see Materials and Methods for details), it is likely that additional small ncRNAs not detected here (e.g., some small ncRNAs identified by Toledo-Arana et al. [20]), are also transcribed in stationary phase L. monocytogenes 10403S.
Prior to this study, *L. monocytogenes* ncRNAs, including potential σ^B^-dependent ncRNAs [53], had been identified using *in silico* modeling [22,53], co-precipitation with the RNA-binding protein Hfq [19], and, most recently, tiling microarrays [20]. While, among these approaches, tiling microarrays [20] provided the most comprehensive characterization of *L. monocytogenes* ncRNAs, deep RNA sequencing also identified a large number of transcribed *L. monocytogenes* ncRNAs, including ncRNAs with no similarities to previously identified ncRNAs. Our results, taken together with previous studies that have identified numerous novel transcripts with RNA-Seq in bacteria (S. meliloti [28], *B. cenocepacia* [16], *V. cholerae* [29]), yeast [15,31], mouse [30], Arabidopsis [54], human cell lines [35,55], and human tissue [36], clearly show the power of this technique for characterizing bacterial transcriptomes and ncRNAs.

The *L. monocytogenes* σ^B^-regulon is composed of at least 96 genes, including 82 genes and 1 ncRNA that are preceded by putative σ^B^-promoters

As alternative sigma factors, such as σ^B^, are known to play critical roles in gene regulation across bacterial genera [33], we used *L. monocytogenes* 10403S and an isogenic Δσ^B^ null mutant as a model system for exploring the use of RNA-Seq, in combination with *in silico* analyses, for characterization of transcriptional blueprints associated with bacterial regulatory elements. In our study, RNA-Seq identified 96 annotated CDS and one ncRNA SbrE (Rli47) that are up-regulated by σ^B^, and 81 (84.4%) were also identified as σ^B^-dependent in stationary phase cells in two previous microarray studies using the same strain background. Also, 63 of the 96 σ^B^-dependent genes identified here were reported as positively regulated by σ^B^ in another *L. monocytogenes* strain (EGD-e) grown to early stationary phase [11]. Twelve genes were identified as σ^B^-dependent in both previous microarray studies performed with the same *L. monocytogenes* strain background and the same conditions used here, but were not identified as σ^B^-dependent by RNA-Seq in this study. This disparity is likely due to the fact that the thresholds and statistical cutoffs used to define σ^B^-dependent genes were very stringent in the present study (e.g., a q-value < 0.05 in all four comparisons).

Overall, in addition to confirming a previously identified σ^B^-dependent ncRNA [20], RNA-Seq identified 13 genes that had not been defined as σ^B^-dependent in previous microarray studies of stationary phase *L. monocytogenes* 10403S cells [10,12], including 5 genes that had been identified as σ^B^-dependent in salt stressed cells, but not in stationary phase cells. One gene not previously identified as σ^B^-dependent was Lmo2003, which encodes a transcription regulator similar to the GntR family. The GntR family of regulators has been characterized as global regulators of primary metabolism in a number of bacteria [56-58]. This finding further supports that *L. monocytogenes* σ^B^-appears to be involved in a number of transcriptional regulatory networks [6]. Increasing evidence indicates that regulatory RNAs also contribute to regulatory networks that involve *L. monocytogenes* σ^B^-. For example, in addition to the σ^B^-dependent SbrE ncRNA described here, tiling array analyses also identified additional σ^B^-dependent ncRNAs. While previous *in silico* studies in *L. monocytogenes* strain EGD-e [53] identified four putative σ^B^-dependent ncRNAs (i.e., SbrA, SbrB, SbrC, SbrD), only SbrA was confirmed *in vivo* as σ^B^-dependent in EGD-e [20,53]. Even though our RNA-Seq analyses in 10403S identified SbrA transcripts, transcript levels for this ncRNA were not σ^B^-dependent under the conditions used in our study. The fact that SbrA was not found to be σ^B^-dependent in 10403S may be due to differences in strains or growth conditions used (e.g., Nielsen et al. [53] and Toledo-Arana et al. [20] used strain EGD-e, while we used strain 10403S). Further studies in different *L. monocytogenes* strains will thus be needed to understand the full complexity of regulatory networks in this pathogen, including those involving σ^B^- and ncRNAs.

The quantitative nature of RNA-Seq allowed us to also identify highly transcribed σ^B^-dependent genes, including Lmo2158 (which encodes a protein similar to the B. subtilis YwmG), Lmo1602 (which encodes an unknown protein), and Lmo0539 (which encodes a tagatose-1,6-diphosphate aldolase). Interestingly, none of these genes encode proteins that appear to contribute to any of the presently recognized σ^B^-dependent phenotypes in *L. monocytogenes*, such as acid resistance [9,59], oxidative stress resistance [59,60], or virulence [27,33,61,62]. As there are no published reports of construction and characterization of null mutations in these highly transcribed σ^B^-dependent genes, our data clearly suggest that σ^B^- and the σ^B^-regulon make additional important contributions to *L. monocytogenes* physiology that remain to be characterized.

In conjunction with appropriate bioinformatics tools, such as the iterative, dynamic HMM developed in this study to identify putative σ^B^-promoters, RNA-Seq data also allowed mapping of approximate transcriptional start and termination sites. Specifically, putative σ^B^-dependent promoters were identified upstream of (i) 49 monocistronic σ^B^-dependent genes, (ii) 15 σ^B^-dependent operons (covering a total of 40 genes), and (iii) 1 σ^B^-dependent ncRNA. By comparison, in the absence of genome wide transcriptional start site data, a previous study that solely relied on HMM and genome sequence...
data identified putative σ^B-dependent promoters upstream of only 40 genes that had been identified as σ^B-dependent by microarray analyses [10]. Our data reported here show that the majority of σ^B-dependent genes are directly regulated by σ^B and illustrate the power of combining RNA-Seq data and bioinformatics approaches for characterizing transcriptional regulatory systems. Specifically, combining transcriptional start site information with an HMM that identifies promoter motifs (e.g., the motif for σ^B-dependent promoters) provides a powerful approach for identifying genes directly regulated by a given transcription factor. This approach facilitates rapid genome-wide identification of putative transcriptional start sites, which currently represents a critical bottleneck in genome-wide characterization of transcriptional regulation and regulatory networks, as many current strategies for promoter mapping (e.g., primer extension, rapid amplification of cDNA ends (RACE-PCR), RNase protection assays) are time- and labor-intensive.

Conclusions
Using the human foodborne pathogen L. monocytogenes as a model system, we have shown that RNA-Seq provides a powerful approach to (i) rapidly, comprehensively, and quantitatively characterize prokaryotic genome-wide transcription profiles without hybridization bias, and (ii) characterize putative transcriptional start sites and operon structures. We also show that RNA-Seq transcriptomic evaluation of a bacterial strain bearing a deletion in a transcriptional regulator in comparison with its parent strain can provide rapid, comprehensive insights into the blueprints of prokaryotic transcriptional regulation. Such tools and approaches will revolutionize our ability to characterize genome-wide transcriptional regulatory networks, with wide ranging applications from medicine to ecology, e.g., by providing a means to quickly characterize transcriptional networks contributing to pathogen transmission and virulence as well as environmental growth and gene expression in bacteria used for specific purposes, such as bio-remediation. When applied to both genome and transcriptome sequencing, novel high throughput sequencing approaches can also provide rapid and comprehensive characterization of bacterial genomes, representing an important tool for initial rapid characterization of novel and emerging bacterial pathogens.

Methods
Strains and growth conditions
RNA-Seq was performed on the L. monocytogenes parent strain 10403S and a previously described [9] isogenic mutant (AsigB, FSL A1-254) with an internal non-polar deletion of sigB, which encodes the stress response alternative sigma factor σ^B.

Prior to RNA isolation, bacteria were grown in 5 ml Brain Heart Infusion (BHI) broth (BD Difco, Franklin Lakes, NJ) at 37°C with shaking (230 rpm) for 15 h, followed by transfer of a 1% inoculum to 5 ml pre-warmed BHI. After growth to OD$_{600}$ \approx 0.4, a 1% inoculum was transferred to a 300 ml nephelo flask (Bellco, Vineland, NJ) containing 50 ml pre-warmed BHI. This culture was incubated at 37°C with shaking until cells reached stationary phase (defined as growth to OD$_{600}$ = 1.0, followed by incubation for an additional 3 h). Two independent growth replicates and RNA isolations were performed for each strain.

RNA isolation, integrity and quality assessment
RNA isolation was performed as previously described [10]. Briefly, RNAProtect bacterial reagent (Qiagen, Valencia, CA) was added according to the manufacturer's instructions to the cultures grown to stationary phase; treated cells were stored at -80°C (for no longer than 24 h) until RNA isolation was performed. Bacterial cells were treated with lysozyme followed by 6 sonication cycles at 18W on ice for 30 s. Total RNA was isolated and purified using the RNEasy Midi kit (Qiagen) according to the manufacturer's protocol; RNA molecules <200 nt in length are not recovered well with this procedure, according to the manufacturer. RNA was eluted from the column using RNase-free water. Total RNA was incubated with RQ1 DNase (Promega, Madison, WI) in the presence of RNasin (Promega) to remove remaining DNA. Subsequently, RNA was purified using two phenol-chloroform extractions and one chloroform extraction, followed by RNA precipitation and resuspension of the RNA in RNase free TE (10 mM Tris, 1 mM EDTA; pH 8.0; Ambion, Austin, TX). UV spectrophotometry (Nanodrop, Wilmington, DE) was used to quantify and assess purity of the RNA.

Efficacy of the DNase treatment was assessed by TaqMan qPCR analysis of DNA levels for two housekeeping genes, rpoB [63] and gap [33]. qPCR was performed using TaqMan One-Step RT-PCR Master Mix Reagent and the ABI Prism 7000 Sequence Detection System (all from Applied Biosystems, Foster City, CA). Each RNA sample was run in duplicate and standard curves for each target gene were included for each assay to allow for absolute quantification of residual DNA. Data were analyzed using the ABI Prism 7000 Sequence Detection System software as previously described [64]. Normalization and log transformation were performed as described by Kazmierczak et al. [23]. All samples showed log copy numbers ≤ 1.5 and C$_t$ values > 35 for both rpoB and gap, indicating negligible levels of DNA contamination. As a final step, RNA integrity was assessed using the 2100 Bioanalyzer (Agilent, Foster City, CA).

mRNA enrichment
Removal of 16S and 23S rRNA from total RNA was performed using MicrobExpress™ Bacterial mRNA Purification Kit (Ambion) according to the manufacturer’s protocol with the exception that no more than 5 μg total
RNA was treated per enrichment reaction. Each RNA sample was divided into multiple aliquots of ≤ 5 μg RNA and separate enrichment reactions were performed for each sample. Enriched mRNA samples were pooled and run on the 2100 Bioanalyzer (Agilent) to confirm reduction of 16S and 23S rRNA prior to preparation of cDNA fragment libraries.

Preparation of cDNA fragment libraries
Ambion RNA fragmentation reagents were used to generate 60-200 nucleotide RNA fragments with an input of 100 ng of mRNA. Following precipitation of fragmented RNA, first strand cDNA synthesis was performed using random N₆ primers and Superscript II Reverse Transcriptase, followed by second strand cDNA synthesis using RNaseH and DNA pol I (Invitrogen, CA). Double-stranded cDNA was purified using Qiaquick PCR spin columns according to the manufacturer’s protocol (Qiagen).

RNA-Seq using the Illumina Genome Analyzer
The Illumina Genomic DNA Sample Prep kit (Illumina, Inc., San Diego, CA) was used according to the manufacturer’s protocol to process double-stranded cDNA for RNA-Seq, including end repair, A-tailing, adapter ligation, size selection, and pre-amplification. Amplified material was loaded onto independent flow cells; sequencing was carried out by running 36 cycles on the Illumina Genome Analyzer.

The quality of the RNA-Seq reads was analyzed by assessing the relationship between the quality score and error probability; these analyses were performed on Illumina RNA-Seq quality scores that were converted to phred format http://www.phrap.com/phred/. Quality scores are reported in Additional file 9: Distribution of quality scores for all RNA-Seq runs.

RNA-Seq data will be available in the NCBI GEO Short Read Archives: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15651.

RNA-Seq alignment and coverage
The program nucmer, which is part of the MUMmer package http://mummer.sourceforge.net/, was used to align the 10403S unfinished genome sequences (available at http://www.broad.mit.edu/annotation/genome/listeria_group/MultiHome.html) as supercontigs 5.1 to 5.21 against the finished genome sequence of the *L. monocytogenes* reference strain EGD-e [18] to create a pseudochromosome for 10403S. Creation of the 10403S pseudochromosome was performed using the order and orientation of the 10403S supercontigs provided by the alignment with EGD-e; the assembled pseudochromosome was 2.87 Mb long. The annotation of the genes in the individual 10403S supercontigs, as provided by the Broad Institute http://www.broad.mit.edu/annotation/genome/listeria_group/MultiHome.html was then mapped to the 10403S pseudochromosome (Additional file 10: Genbank (gbk) file with ncRNAs identified here). The 5S, 16S and 23S rRNA genes as well as the various tRNA genes in 10403S were identified using blastn and the EGD-e annotated rRNA and tRNA genes as a reference (Genbank ID: AL591824).

Based on quantitative analyses of RNA-Seq data, throughout this manuscript, transcript levels of a given gene are reported as the Gene Expression Index (GEI), which is expressed as number of reads per 100 bases. To obtain the GEI, the 10403S pseudochromosome was used to align Illumina RNA-Seq reads. These alignments were performed using the whole genome alignment software Eland (Illumina), which reports unique alignments of the first 32 bases of each read, allowing up to 2 mismatches. Coverage at each base position along the pseudochromosome was calculated by enumerating the number of reads that align to a given base. The coverage for each base from the first to last nt in an annotated CDS was summed then divided by 32 (i.e., the length of each aligned read) to obtain the RNA-Seq coverage for that gene before normalization. The following data were discarded prior to further analyses: (i) reads with more than 2 mismatches, (ii) reads that matched to multiple locations, (iii) reads that did not map to the chromosome, and (iv) reads that mapped to the 16S or 23S genes (Table 1). Reads identified as "matching two locations" did not include those matching rRNA genes as the 10403S pseudochromosome created for this study was designed with only one unique rRNA gene sequence. Reads matching the 16S and 23S genes were removed prior to normalizing the total number of aligned reads across the four samples because of the technical bias introduced by our deliberate partial removal of 16S and 23S transcripts from the samples. Despite removal of 16S and 23S rRNA, in a given run, between 1,860,817 and 3,138,329 reads aligned to the 23S gene and between 434,263 and 760,863 reads aligned to the 16S gene. In a given run, between 101,419 and 242,246 reads matched the 5S rRNA gene and between 7,778 and 62,699 reads matched the various tRNA genes present in the pseudochromosome.

Because of the inherent differences in the total number of reads among the four runs, the total number of reads for each run was normalized to the run with the highest coverage (i.e. ΔsigΔ replicate 2, Table 1). The ratio of total number of reads for ΔsigΔ replicate 2 to the total number of reads of 10403S replicate 1, 10403S replicate 2, or ΔsigΔ replicate 2 was used as a multiplier to normalize the approximate number of reads matching a given gene (Table 1). The GEI was then obtained by dividing the normalized number of reads matching each gene by the gene
length. The average GEI was the number of reads that match each nt in a given gene after normalization; this value represented the average of the 2 biological replicates for a given strain and is presented as reads per 100 bases (as opposed to reads per 1 base) to simplify identification of differences. The distribution of the coefficient of variation for each gene between replicates is depicted in Additional file 11: Coefficient of variation among RNA-Seq replicates by strain.

Identification of transcribed annotated CDS

Sequence reads matching annotated CDS in the 10403S genome were used to identify those annotated CDS that were transcribed under the experimental conditions used. As our RNA-Seq analyses included both a wildtype strain and an isogenic mutant with a deletion in a transcriptional regulator (i.e., the alternative sigma factor \(\sigma^B \)), our data also provide a novel approach for characterizing background RNA-Seq coverage for genes that are not transcribed, similar to a previous approach that used background RNA-Seq coverage of so-called "gene deserts" in human chromosomes to characterize background average GEI [65]. The observations that (i) eight genes that showed average GEI between 8.64 reads and 96.43 reads per 100 bases in the parent strain showed 0 reads per 100 bases in the \(\Delta\sigma^B \) strain; (ii) 42 genes with average GEI of 1.21 to 73.81 reads per 100 bases in the parent strain showed between 0.01 and 0.7 reads per 100 bases in the \(\Delta\sigma^B \) strain; and (iii) 0.7 reads per 100 bases is the approximate median of the average GEI in \(\sigma^B \)-dependent genes in the \(\Delta\sigma^B \) strain, clearly indicate that extremely low background RNA-Seq coverage is expected for genes that are not transcribed. Overall, 50/96 \(\sigma^B \)-dependent genes show an average GEI < 0.7 in the \(\Delta\sigma^B \) strain (Additional file 7: Genes up-regulated by \(\sigma^B \); genes with GEI < 0.7 reads are overrepresented in the \(\Delta\sigma^B \) strain (Figure 6). It is not unexpected that some \(\sigma^B \)-dependent genes showed average GEI \(\geq 0.7 \) as a number of genes are not solely dependent on \(\sigma^B \) and will still be transcribed in the absence of \(\sigma^B \) (e.g., \(\text{opuABCD} \) operon [32,66,67]). Based on these observations, we set an average GEI \(\geq 0.7 \) as a conservative cut-off to identify genes that are transcribed (i.e., we define genes with average GEI \(\geq 0.7 \) as being transcribed as the RNA-Seq data indicate that non-specific reads [e.g., from DNA] are highly unlikely to provide average GEI \(\geq 0.7 \).

Depending on RNA-Seq coverage, genes were classified into four categories, including (i) not transcribed (average GEI \(< 0.7 \)), (ii) low transcript levels (average GEI \(\geq 0.7 \) and \(< 10 \)), (iii) medium transcript levels (average GEI \(\geq 10 \) and \(< 25 \)), and (iv) high transcript levels (average GEI \(\geq 25 \)). While cut-offs between low, medium, and high transcript level categories were somewhat arbitrary, they were chosen to yield a relative distribution of genes into these categories similar to the distribution of yeast genes into low, medium, and high expression categories reported previously by Nagalakshimi et al. [15].

Annotation of Rho-independent terminators and putative operons

Potential operons were manually annotated based on the continuity of a similar level of RNA-Seq coverage across consecutive genes and the (i) absence of putative Rho-independent terminators between genes, and/or (ii) presence of a putative Rho-independent terminator at the end of a putative operon. Putative Rho-independent terminators in the 10403S pseudochromosome were identified using the program TransTermHP v.2.04 [68].

Discovery and annotation of regions transcribing ncRNAs

To aid in identification of transcribed ncRNAs, ncRNAs previously identified in *L. monocytogenes* EGD-e [19-22] were mapped onto the 10403S pseudochromosome and were identified as transcribed in 10403S in this study.

New putative ncRNAs (i.e., ncRNAs not previously reported or previously identified by Rfam) were manually identified using the genome browser Artemis [69]. Specifically, regions not matching annotated genes, but showing contiguous coverage by RNA-Seq reads (i.e., regions that contain at least 100 bp completely covered by RNA-Seq reads) were designated putative ncRNAs. Further, RNA-Seq reads that did not cover an entire annotated CDS, but showed partial contiguous coverage within a...
CDS, were also designated as putative ncRNAs. All ncRNAs, including those reported in previous publications [19,20,22,53], those identified by Rfam, and those with no matches to the Rfam database were annotated into a Genbank (gbk) file that is available as Additional file 10: Genbank (gbk) file with ncRNAs identified here. ncRNAs identified by RNA-Seq, but with no matches to the Rfam database were designated “putative ncRNA” and received designations from rli64 to rli70. The presence of rho-independent transcriptional terminators was used to assign the strand of putative ncRNAs. For two instances where terminators were not observed, the ncRNAs were annotated on both strands.

Differential expression analysis

To identify genes that showed significantly different transcript levels in the parent strain (10403S) and the ΔsigB strain, statistical analyses were performed using the normalized RNA-Seq coverage of each coding gene (as annotated by the Broad Institute). Normalized RNA-Seq coverage (i.e. the number of reads that match an annotated CDS after normalization across runs) was used in lieu of the GEI (in which the normalized RNA-Seq coverage number is divided by the gene length) for statistical analyses. Corresponding analyses were also performed for each region encoding a putative ncRNA transcript identified as described above. A coverage file of normalized RNA-Seq coverage is available in Additional file 12: Coverage file with the normalized RNA-Seq coverage for the 4 RNA-Seq runs.

For each gene, a binomial probability was calculated for the normalized RNA-Seq coverage, using each of the four possible comparisons between the 10403S and ΔsigB transcripts (i.e. 10403S replicate 1 vs ΔsigB replicate 1; 10403S replicate 1 vs ΔsigB replicate 2; 10403S replicate 2 vs ΔsigB replicate 1; 10403S replicate 2 vs ΔsigB replicate 2). The binomial probability was calculated under the hypothesis that genes that are not regulated by σB will show the same normalized number of reads in the two strains (p = 0.5 and q = 0.5). For a gene to be considered up-regulated by σB, the binomial probability of observing as many reads in the ΔsigB strain as those observed for 10403S had to be < 0.05 for each of the four possible combinations. Conversely, for a gene to be considered down-regulated by σB, the binomial probability of observing as many reads as those observed for ΔsigB had to have q-values < 0.05 for each of the four possible combinations. To control for multiple comparisons, a False Discovery Rate (FDR) approach was used. q-values (representing the FDR) were calculated using the program Q-Value [70] for R. Only genes with q-values < 0.05 and fold change ≥ 2 or ≤ 0.5 among all four possible comparisons between 10403S and ΔsigB were considered significantly up-regulated or down-regulated by σB.

Iterative HMM-based promoter identification

An initial training set containing 17 experimentally validated σB-dependent promoter motifs was used to build a Hidden Markov Model (HMM) of these motifs (Additional file 13: σB-dependent promoters used for HMM search). HMM construction and searches were performed using the program HMMer version 1.8.5. The HMM was constructed from unaligned sequences (using hmmt) and then used to search the 10403S pseudochromosome (using the hmmls tool). The null frequencies of each nucleotide used were those observed in the L. monocytogenes genome (i.e., A/T = 0.31 and G/C = 0.19).

To identify new promoter motifs that could be added to the training set, we used an iterative HMM approach. In each given HMM iteration, the only hits added to the training set were those that met four conservative criteria, including (i) location within 100 bp upstream of the start codon of an annotated CDS (or 100 bp upstream the first nt for the manually annotated noncoding genes), (ii) q-values < 0.05 (from the binomial probabilities) for σB dependence of a given gene (based on RNA-Seq data), and (iii) fold change ≥ 2 among all possible comparisons between 10403S and ΔsigB, and (iv) a score higher than the lowest score for which 50% of the motifs fall in non-coding regions (i.e. for each iteration, we adaptively chose a threshold score such that 50% of the motifs that score higher than this threshold lie in noncoding regions). After adding all hits that met these criteria (in a given iteration) to the training set, a new model was built and used to search the 10403S pseudochromosome. This process was repeated until no new motifs could be added to the training set; the final training set can be found in Additional file 13: σB-dependent promoters used for HMM search. When no new motifs that matched our criteria were discovered, the model was considered complete and the results from the last search were used for promoter identification. The final model was used to search the 10403S pseudochromosome for potential σB promoters. Potential σB promoters identified by this HMM upstream of σB-dependent genes and the σB-dependent putative ncRNA were visually evaluated. Potential σB promoters identified by HMM were considered probable σB promoters if the promoter was within 50 bp upstream of the transcriptional start site (as identified by RNA-Seq). In some instances, the transcriptional start site was not discernable due to an upstream gene transcript that overlapped with a σB-dependent gene transcript or because the gene had a low average relative normalized RNA-Seq coverage. For these instances, putative promoters were considered if they were located within 200 bp from the start codon of the σB-dependent gene. σB-dependent genes with probable σB promoters are described in Figure 7; the σB promoter sequence logo is presented in Figure 5http://weblogo.berkeley.edu/[71].
Figure 7
Alignment of the 65 putative σ_B-dependent promoters identified in this study. EGD-e homologs of genes or operons downstream of a given promoters are indicated on the left. Positions 3 to 6 in the alignment represent the -35 region while positions 24 to 29 represent the -10 region. Darker nucleotides are more conserved than lighter nucleotides in the alignment. Gene names that are boxed indicated promoters that have been experimentally validated (e.g., by RACE-PCR).
Correlation of RNA-Seq relative coverage (GEI) with TaqMan absolute transcript copy number

Average GEI was correlated with absolute transcript copy numbers quantified by TaqMan qRT-PCR. qRT-PCR-based transcript level data obtained for selected genes in L. monocytogenes grown under the same conditions used here (i.e., stationary phase) were obtained from previous studies and unpublished work (see Additional file 2: RNA-Seq average GEI and TaqMan qRT-PCR absolute copy number); qRT-PCR methods are detailed in Raengpradub et al. [10]. qRT-PCR data from these studies were used to calculate absolute transcript copy numbers (using a standard curve as described by Sue et al. [64]); values were log transformed.

Statistical Analyses

One-sided Wilcoxon rank sum tests were used to assess whether genes in certain role categories showed lower or higher average GEI in 10403S than genes in other role categories. One-sided Fisher's exact tests were used to assess whether σB-dependent genes were overrepresented in certain TIGR role categories http://cmr.jcvi.org/cgi-bin/CMR/RoleIds.cgi. Linear regression analysis was used to assess correlations between average GEI and qRT-PCR data as well as between codon bias and average GEI in 10403S. The effective number of codons used in a gene (Nc), a measure of the codon bias, was assessed using the program "chips" implemented in the EMBOSS package [72]. All tests were carried out in R (version 2.7.0; http://www.r-project.org/). Correction for multiple testing was performed using the procedure reported by Benjamini & Hochberg [73], as implemented in the program Q-Value [70]. Significance was set at 5%.

Data access

RNA-Seq data will be available in the NCBI GEO Short Read Archives. All RNA-Seq data are provided in an Access database file (Additional file 4: Access database). This database contains information on the annotated CDS and ncRNAs with their 10403S locus name, 10403S start and end coordinates, lengths, strand, EGD-e locus, EGD-e gene name, EGD-e common name, EGD-e role category, codon bias, GEI, average GEI in 10403S and ΔsigB strains, fold change for the four possible comparisons involving the two replicates with 10403S and the ΔsigB strains, q-values of the binomial tests, operon annotation, promoter annotation, list of σB-dependent genes identified in this study, and data from 3 other studies of the σB regulon in L. monocytogenes using microarrays including Ollinger et al. [12], Hain et al. [11], and Raengpradub et al. [10].

Abbreviations

GEI: Gene Expression Index; RNA-Seq: RNA Sequencing; ncRNA: noncoding RNA; RACE-PCR: Rapid Amplification of cDNA Ends PCR; FDR: False Discovery Rate; HMM: Hidden Markov Model

Additional file 1

Sequencibility text file. The resulting plot, when used in conjunction with the Artemis genome browser, shows the regions that can (0) and cannot (1) be sequenced in the 10403S pseudochromosome with the Illumina Genome Analyzer. Regions that cannot be sequenced appear as high peaks.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2164-10-641-S1.TXT]

Additional file 2

RNA-Seq average GEI and TaqMan qRT-PCR absolute copy number of select genes.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2164-10-641-S2.XLS]

Additional file 3

Cumulative frequency of average GEI in L. monocytogenes 10403S. The vertical line indicates an average GEI of 0.7 reads, which is the cutoff used to identify transcription. The graph shows that about 83% of the genes fall at the right of the average GEI cutoff of 0.7 reads and were therefore considered transcribed.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2164-10-641-S3.TIFF]

Additional file 4

Access database. All RNA-Seq data are provided in an Access database. This database contains information on the annotated CDS and ncRNAs with their 10403S locus name, 10403S start and end coordinates, lengths, strand, EGD-e locus, EGD-e gene name, EGD-e common name, EGD-e role category, codon bias, GEI, average GEI in 10403S and ΔsigB strains, fold change for the four possible comparisons involving the two replicates with 10403S and the ΔsigB strains, q-values of the binomial tests, operon annotation, promoter annotation, list of σB-dependent genes identified in this study, and data from the other 3 studies of the σB regulon in L. monocytogenes using microarrays including Ollinger et al. [12], Hain et al. [11], and Raengpradub et al. [10].

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2164-10-641-S4.MDB]
Additional file 5
ncRNAs identified by RNA-Seq.
Click here for file
[http://www.biomedcentral.com/content-supplementary/1471-2164-10-641-S5.XLS]

Additional file 6
ncRNAs previously described in L. monocytogenes strain EGD-e but not identified in this study.
Click here for file
[http://www.biomedcentral.com/content-supplementary/1471-2164-10-641-S6.XLS]

Additional file 7
Genes up-regulated by σB.
Click here for file
[http://www.biomedcentral.com/content-supplementary/1471-2164-10-641-S7.XLS]

Additional file 8
Comparison of genes found to be σB-dependent by microarray analysis and not by RNA-Seq.
Click here for file
[http://www.biomedcentral.com/content-supplementary/1471-2164-10-641-S8.XLS]

Additional file 9
Distribution of quality scores for all RNA-Seq runs. The quality of the RNA-Seq reads was analyzed using the correspondence between the quality score and error probability; these analyses were performed on Illumina RNA-Seq quality scores that were converted to phred format http://www.phrap.org/phred/
Click here for file
[http://www.biomedcentral.com/content-supplementary/1471-2164-10-641-S9.TIFF]

Additional file 10
Genbank (gbk) file with ncRNAs identified here.
Click here for file
[http://www.biomedcentral.com/content-supplementary/1471-2164-10-641-S10.GBK]

Additional file 11
Coefficient of variation among RNA-Seq replicates by strain. (A) Histogram of the coefficient of variation (standard deviation/mean) for genes with GEI > 0 in both replicates for 10403S and ΔsigB strain. There is less variation between ΔsigB replicates compared to the 10403S replicates, but very few genes have a coefficient > 0.6. (B) Histogram depicting the GEI of one replicate for genes where the other replicate GEI = 0. The replicate GEI of the gene for which the other replicate is 0 (zero) is typically very low (GEI < 0.7).
Click here for file
[http://www.biomedcentral.com/content-supplementary/1471-2164-10-641-S11.TIFF]

Additional file 12
Coverage file with the normalized RNA-Seq coverage for the 4 RNA-Seq runs.
Click here for file
[http://www.biomedcentral.com/content-supplementary/1471-2164-10-641-S12.ZIP]

Additional file 13
σB-dependent promoters used for HMM search.
Click here for file
[http://www.biomedcentral.com/content-supplementary/1471-2164-10-641-S13.XLS]

Acknowledgements
This work was funded by NIH-NIAID (RO1 AI052151 to K.J.B.). U.K. was supported by NSF (award no. 0644136). We thank P. Schweitzer and the staff at the Cornell DNA Sequencing and Genotyping Core Facility for sample preparation and sequencing and A. G. Clark and T. B. Sackton for helpful discussion.

References
1. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
2. Mead PS, Slutsker L, Dietz V, McLaughlin LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV: Food-related illness and death in the United States. Emerg Infect Dis 1999, 5(5):607-625.
3. Begley M, Gahan CG, Hill C: Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 2002, 68(12):6005-6012.
4. Phan-Thanh L, Gormon T: Analysis of heat and cold shock proteins in Listeria by two-dimensional electrophoresis. Electrophoresis 1995, 16(3):444-450.
5. Watkins J, Sleath KP: Isolation and enumeration of Listeria monocytogenes from sewage, sewage sludge and river water. J Appl Bacteriol 1981, 50(1):1-9.
6. Chaturongakul S, Raengpradub S, Wiedmann M, Boor KJ: Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol 2008, 16(8):388-396.
7. Kzmierczak MJ, Wiedmann M, Boor KJ: Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 2005, 69(4):527-543.
8. Piggot PJ, Hilbert DW: Sporulation of Bacillus subtilis. Curr Opin Microbiol 2004, 7(6):579-586.
9. Wiedmann M, Arvik T, Hurlej RJ, Boor KJ: General stress transcription factor σE and its role in acid tolerance and virulence of Listeria monocytogenes. J Bacteriol 1998, 180(14):3650-3656.
10. Raengpradub S, Wiedmann M, Boor KJ: Comparative analysis of the σB-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl Environ Microbiol 2008, 74(1):158-171.
11. Hain T, Hossain H, Chatterjee SS, Machata S, Volk U, Wagner S, Brors B, Haas S, Kuenne CT, Billion A, et al.: Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e σB regulon. BMC Microbiol 2008, 8:20.
12. Ollinger J, Bowen B, Wiedmann M, Boor KJ, Bergeltz TM: Listeria monocytogenes σE modulates PrfA-mediated virulence factor expression. Infect Immun 2009, 77(5):2113-2124.
13. Asmann YW, Wallace MB, Thompson EA: Transcriptome profiling using next-generation sequencing. Gastroenterology 2008, 135(5):1466-1468.
14. Mockler TC, Ecker JR: Applications of DNA tiling arrays for whole-genome analysis. Genomics 2005, 85(1):1-15.
15. Nagalakshmi U, Wang Z, Wernig K, Shou C, Raha D, Gerstein M, Snyder M: The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008, 320(5881):1344-1349.
16. Yoder-Himes DR, Chain PGS, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, Sorek R: Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci USA 2009, 106(10):3976-3981.
17. Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C: Real-time PCR quantification of precursor and mature microRNA. Methods 2008, 44(1):31-38.
BMC Genomics 2009, 10:641
http://www.biomedcentral.com/1471-2164/10/641

18. Glaser P, Frangoul L, Buchrieser C, Rusnicki C, Amend A, Baquero F, Berche P, Bloeker H, Brandt P, Chakraborty T, et al.: Comparative genomics of Listeria species. Science 2001, 294(5543):849-852.

19. Christiansen JK, Nielsen JS, Ebersbach T, Valentin-Hansen P, Segardt A, Kallipolitis BH: Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA (NY) 2006, 12(7):1383-1396.

20. Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guer-Reville H, Balestriero D, Loh E, Gripenland J, Tsien SS, Vaitkevicius K, et al.: The Listeria transcriptional landscape from saprophytism to virulence. Nature 2009, 459:905-906.

21. Nielsen JS, Olsen AS, Bonde M, Valentin-Hansen P, Kallipolitis BH: Identification of a sigma B-dependent small noncoding RNA in Listeria monocytogenes. J Bacteriol 2008, 190(18):6264-6270.

22. Mandin P, Repoila F, Vargassola M, Geissmann T, Cossart P: Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res 2007, 35:6262-6270.

23. Kuzmierczak MJ, Mitchoe SC, Boor KJ, Wiedmann M: Listeria monocytogenes σE regulates stress response and virulence functions. J Bacteriol 2003, 185(19):5722-5734.

24. Shetron-Rama LM, Mueller K, Bravo JM, Bouwer HG, Way SS, Freitag NE: Interplay of the RNA polymerase and stress response regulators in the epigenome in Arabidopsis. Cell 2008, 135(13):135-138.

25. McGann P, Raengpradub S, Ivanek R, Wiedmann M, Boor KJ: Differential regulation of Listeria monocytogenes internalin and invasin-like genes by σB and PrfA as revealed by subgenomic microarray analyses. Foodborne Pathog Dis 2008, 5(4):417-435.

26. Mueller KJ, Freitag NE: Pleiotropic enhancement of bacterial pathogenesis resulting from the constitutive activation of the Listeria monocytogenes regulatory factor PrfA. Infect Immun 2005, 73(4):1917-1926.

27. Kim H, Marquis H, Boor KJ: σE contributes to Listeria monocytogenes invasion by controlling expression of iniA and iniB. Microbiology 2005, 151(Pt 10):3215-3222.

28. Mao C, Evans C, Jensen RV, Sobral BW: Identification of new genes in Sinorhizobium meliloti using the Genome Sequencer FLX system. BMC Microbiol 2008, 8:72.

29. Liu JM, Livny J, Lawrence MS, Livny J, Lawrence MS, Boor KJ: Experimental discovery of flagellar RNAs in Vibrio cholerae by direct cloning, SSU/rRNA depletion and parallel sequencing. Nucleic Acids Res 2009, 37(6):e46.

30. Mortazavi A, Williams BA, McCue K, Scheffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth 2008, 5:621-628.

31. Wilhelm BT, Marguerat S, Watts S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J: Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 2008, 451(7199):1239-1243.

32. Chan YC, Cossart P, Wiedmann M: σB-dependent and σE-independent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth. Environ Microbiol Rep 2011, 3(4):161-167.

33. Kazmierczak MJ, Wiedmann M, Boor KJ: Contributions of Listeria monocytogenes σB and PrfA to expression of virulence and stress response genes during extra- and intracellular growth. Microbiology 2006, 152(6):1827-1838.

34. Tijaden B, Saxena RM, Stoyan S, Haynor DR, Kolker E, Rosenow C: Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. Nucleic Acids Res 2002, 30(17):3732-3738.

35. Sultan M, Schultz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatos A, Parkhomchuk D, et al.: A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 2008, 321(5891):956-960.

36. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008, 18(9):1509-1517.

37. Gouy M, Gautier C: Codon usage in bacteria: correlation with gene expressivity. Nucl Acids Res 1982, 10(22):7055-7074.

38. Ikemura T: Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 1985, 2(1):13-34.

39. Kanaya S, Yamada Y, Kudo Y, Ikemura T: Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene 1999, 238(1):143-155.

40. Keiler KC: Biology of trans-translation. Annu Rev Microbiol 2008, 62:133-151.

41. Tramouelaud A, Wasserman KM: σS RNA function enhances long-term cell survival. J Bacteriol 2004, 186(15):4978-4985.

42. Loewen SM, Shaq Y, Jiang X, Charbit A, Kleeba PE: Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes. Mol Microbiol 2006, 59(4):1185-1198.

43. Olsen KN, Larsen MH, Gahan CCM, Kallipolitis B, Wolf XA, Rea R, Hill C, Ingmer H: The Dps-like protein Frl of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells. Microbiology 2005, 151(3):925-933.

44. Schmid B, Klumpp J, Raimann E, Lossen MJ, Stepan R, Tasara T: Role of cold growth proteins (Csp) for growth of Listeria monocytogenes under cold and osmotic stress conditions. Environ Microbiol 2009, 75(6):1621-1627.

45. Vasconcelos J, Deneer HG: Expression of superoxide dismutase in Listeria monocytogenes. Appl Environ Microbiol 1994, 60(7):2360-2366.

46. Bigot A, Pagniez H, Botton E, Dubail I, Jacquet C, Charbit A, Raynaud C: Role of FiF and Fil of Listeria monocytogenes in flagellar assembly and pathogenicity. Infect Immun 2005, 73(9):5530-5539.

47. Way SS, Thompson LJ, Lopes E, Hajjar AM, Kollmann TR, Freitag NE, Wilson CB: Characterization of flagellin expression and its role in Listeria monocytogenes infection and immunity. Cell Microbiol 2004, 6(3):233-242.

48. Finn RD, Tate J, Coggill PC, Sammut SJ, Hotz H-R, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, et al.: The Pfam protein families database. Nucl Acids Res 2008, 36(suppl 1):D281-288.

49. Nielsen JS, Olsen AS, Bonde M, Valentin-Hansen P, Kallipolitis BH: Identification of a σD-dependent small noncoding RNA in Listeria monocytogenes. J Bacteriol 2008, 190(18):6264-6270.

50. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR: Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 2008, 133(3):532-536.

51. Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, McDonald H, Varhol R, Jones S, Marra M: Profiling the Hela S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques 2008, 45(1):81-94.

52. Chai Y, Kolker R, Losick R: A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation. J Bacteriol 2009, 191(8):2423-2430.

53. Hillerich B, Westpheling J: A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J Bacteriol 2006, 188(21):7477-7487.

54. Ogasaawara H, Ishida Y, Yamada K, Yamamoto K, Ishihama A: PdhR (pyruvatedehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli. J Bacteriol 2007, 189(15):5534-5541.

55. Ferreira A, O’Byrne CP, Boor KJ: Role of σB in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol 2001, 67(10):4451-4457.
60. Moorhead SM, Dykes GA: The role of the sigB gene in the general stress response of Listeria monocytogenes varies between a strain of serotype 1/2a and a strain of serotype 4c. Curr Microbiol 2003, 46(6):461-466.

61. Garner MR, Njaa BL, Wiedmann M, Boor KJ: Sigma B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect Immun 2006, 74(2):876-886.

62. Sleator RD, Clifford T, Hill C: Gut osmolarity: A key environmental cue initiating the gastrointestinal phase of Listeria monocytogenes infection? Med Hypotheses 2007, 69(5):1090-1092.

63. Sue D, Boor KJ, Wiedmann M: σB-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. Microbiology 2003, 149(Pt 11):3247-3256.

64. Sue D, Fink D, Wiedmann M, Boor KJ. σB-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology 2004, 150(Pt 11):3843-3855.

65. Core LJ, Waterfall JJ, Lis JT: Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 2008, 322(5909):1845-1848.

66. Cetin MS, Zhang C, Hutkins RW, Benson AK: Regulation of transcription of compatible solute transporters by the general stress sigma factor, σB, in Listeria monocytogenes. J Bacteriol 2004, 186(3):794-802.

67. Fraser KB, Sue D, Wiedmann M, Boor K, O’Byrne CP: Role of σB in regulating the compatible solute uptake systems of Listeria monocytogenes: osmotic induction of opuC is σB dependent. Appl Environ Microbiol 2003, 69(4):2015-2022.

68. Kingsford C, Ayanbule K, Salzberg S: Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 2007, 8(2):R22.

69. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics 2000, 16(10):944-945.

70. Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003, 100(16):9440-9445.

71. Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14(6):1188-1190.

72. Rice P, Longden I, Bleasby A: EMBOSS: the european molecular biology open software suite. Trends Genet 2000, 16(6):276-277.

73. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B 1995, 57(1):289-300.