Earth’s Mass Variability

Ramy Mawad
Al-Azhar University, Faculty of Science, Astronomy and Meteorology department

Email: ramy@azhar.edu.eg

Keywords: Earth, sea level, orbital perturbation, iceberg, pole, global warming, sun’s distance

Abstract

The perturbation of the Earth caused by variability of Earth’s mass as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November (before transit apoapsis two months), and become latter in February (after transit apoapsis to two months).

Keywords: Mass of the Earth, Global sea level, Solar gravity, orbit, perturbation, global warming, Iceberg.

1. Introduction

The Earth is the third planet from the Sun. It ranks fifth in size, and its mass is found to be about 5.98×10^{24} kg. Mass is a characteristic that is inherent, and it is independent of the object's environment and the method used to measure it. It is a scalar quantity, that is, a single value with and appropriate unit that has no direction. The mass of the Earth may be determined using Newton's law of gravitation. It is given as the force F, which given by $F = G \frac{m_1 \times m_2}{r^2} = m \times a$, where G is the Gravitational constant, m_1 is the mass of the planet, m_2 is the mass of the object, r is the radius of the planet, and a is the acceleration. Then we can estimate the mass of the Earth as 5.96×10^{24} kg.

The Earth’s mass have many values depending on the author’s estimation method, it is equal to 6.0×10^{24} kg (Giancoli, Douglas C., 1980), 6.0×10^{24} kg (Larouse, 1981), 5.83×10^{24} kg (Smith, Peter J., 1986), 5.98×10^{24} kg (Hewitt, 1987), 5.98×10^{24} kg (Beichner, Robert J. et. al., 2000), 6.0×10^{24} kg (The World Book Encyclopedia. Vol. 6. Chicago: World Book Inc., 2001), 5.972×10^{24} kg (Arnett, Bill, 2002), and $M = a r^2/G = 5.98 \times 10^{24}$ kg (Christine Lee, 2002).

The Earth gains mass each day, as a result of incoming debris from space. This occurs in the forms of "falling stars", or meteors, on a dark night. The actual amount of added material depends on each study, though it is estimated that 10 to the 8^{th} power kilograms of in-falling matter accumulates every day. The seemingly large amount, however, is insignificant to the
Earth’s total mass. The Earth adds an estimated one quadrillionth of one percent to its weight each day (Samantha Dong, 2002).

The flux of solar thermal energy incident on any point at the top of the Earth’s atmosphere is a function of the solar constant and of instantaneous values of the Earth’s axis of rotation, Each of these parameters changes with time to modulate the latitudinal distribution of insolation (Borisenkov et al., 1985). Borisenkov et al. 1985 combined the calculated effects of short and long period orbital perturbations with modeled effects of recorded sunspot and facular activity to examine patterns of terrestrial insolation.

Astronomical variation or variation of orbital parameters can be effect, the orbital parameters of Earth effect on the climate (Sharaf and Budnikova, 1969). In past, many studies assumed that there were no variations in the output of the sun itself; i.e., that solar constant is constant. Recent spaceborne measurements of the total solar irradiance have shown, whoever, that “solar constant” varies from day to day by as much as 0.3% as result of modulation by sunspots and bright faculae (Willson, 1984).

The Earth is move around the sun in ellipse orbit, position of the sun being at a focus of the ellipse. The sun-earth distance depending on sun and earth masses according to newton’s law of gravitation, \(r^2 = \frac{G}{F} m_s m_e \), where \(r \) the sun-earth distance, \(G \) constant of gravitational force of attraction, \(F \) the gravitational force of attraction, \(m_s \) mass of the sun, and \(m_e \) mass of the earth. The sun-earth distance perturbing from elliptical orbit, theoretically, everybody on the solar system provides non-zero force acting on our earth’s orbit; two bodies dominate when computing earth orbit perturbations, it is the main source of the earth’s orbital perturbation. The Earth is not a sphere; it is an oblate spheroid. There are also regions of higher mass and higher density called mascons that also introduce irregularities; it is another reason for orbital perturbation.

Those reasons considered theoretically by numerous studies. The author’s studies not found that the perturbation of Earth’s orbit is closed to forces from everybody and Earth’s shape, not empirical or experimental studies proved it. In addition the authors assumed that the Earth’s mass is constant and neglected the smallest increasing value of Earth’s mass; in addition no author proved that the Earth’s mass may be decrease. When Earth’s mass exchange it is lead to Earth’s orbital perturbation according to newton’s law. It is my aim in this paper, I aim is studying the relation between orbital perturbation of the Earth with Earth’s mass exchanges, but who can we done it?

The Earth contain land, water, and air, the total mass of the Earth is equal to summation of its components, the changeable of mass of any portion of the earth leads to a changing in the total Earth’s mass.

The scientists found changing in the atmosphere, it is reacting with solar wins, unfortunately not accurate measurements or estimation for atmospheric mass and it is so difficult to trace the
changeable in the mass or motion of the atmosphere. Then I prefer to neglect the changeable of atmospheric mass it in current study. I can glance that no changeable in the Earth’s land and no measurements for it, then we can assume in current study that the mass of the earth is constant. But the water in it different images it is have changeable, many activity and we show it. Fortunately, we have observation for sea level and ices of earth’s poles.

Most of this rise can be attributed to the increase in temperature of the sea and the resulting slight thermal expansion of the upper 500m of sea water. Additional contributions, as much as one-fourth of the total, come from water sources on land, such as melting snow and glaciers and extraction of groundwater for irrigation and other agricultural and human needs (Bindoff et. al., 2007). Sea level in last 100 years has been increasing at an average rate of about 1.8 mm per year (Douglas, 1997).

Observational and modeling studies of mass loss from glaciers and ice caps indicate a contribution to sea-level rise of 0.2 to 0.4 mm/yr averaged over the 20th century. Over this last million years, whereas it was higher most of the time before then, sea level was lower than today.

Scientists previously had estimated which is greater, ice going in or coming out, called the mass balance, important because it causes changes in global sea level. High-precision gravimetry from satellites in low-noise flight has since determined that in 2006, the Greenland and Antarctic ice sheets experienced a combined mass loss of 475 ± 158 Gt/yr, equivalent to 1.3 ± 0.4 mm/yr sea level rise. Notably, the acceleration in ice sheet loss from 1988-2006 was 21.9 ± 1 Gt/yr² for Greenland and 14.5 ± 2 Gt/yr² for Antarctica, for a combined total of 36.3 ± 2 Gt/yr². This acceleration is 3 times larger than for mountain glaciers and ice caps 12 ± 6 Gt/yr² (Rignot et. al, 2011).

From previous studies we found that the numerous of studies assumed the main source of sea level rising is polar ice caps and glaciers because the balance of Earth’s mass, they assumed that the total Earth’s mass is constant. But here in this study I will assumed that the Earth’s mass is variable, then the changing in global sea level as a portion of total Earth’s mass leads to Earth’s mass change as additional reason of changing or rising of sea level like changing in mountain glaciers and ice caps.

2. Data Selection

Geocentric Ephemeris data during the period 1995-2006 of the Sun is used in this paper from Astronomical Ephemeris Data from NASA data center (resolution is two days):

http://eclipse.gsfc.nasa.gov/TYPE/ephemeris.html

Sea level data for the TOPEX/Poseidon satellite altimeters based level series (joint mission of NASA and CNES). Satellite data were adjusted to give the same average level as the tide gauges. it downloaded in the same period 1995-2006 from (resolution is ten days):
3. Algorithm

We need to compare the perturbations in Earth’s orbit (Distance Shift) with oscillation in global sea level (Sea Level Shift). It is done by following steps.

3.1. Estimating the Global Sea Level Shift:

- Calculate the linear fitting of global sea level during the total period from given satellite data. We found it:

\[h = -6445.7 + 3.2305 \times y \, , \, R=0.97595 \quad \text{(1)} \]

Where \(y \) is the year including months and days as fraction in the year, and \(h \) is the sea level in millimeter.

- Completing the date to become daily by using Lagrange’s Interpolation Method.

- Subtract the sea levels from linear fitting (equation 1) to get the perturbation only “Global Sea Level Shift” as following formula:

\[\Delta h = H - h \quad \text{(2)} \]

Where \(H \) is the observed value of Global sea level and \(h \) is the calculated value of linear fitting of the seal levels with time as in equation (1).

- List the maximum and minimum peaks in global sea level in given period and record the amplitude \(A_{\text{sea}} \).

3.2. Estimating the Shift of Sun’s Distance:

- Read the Sun’s distance \(R \) from Geocentric Ephemeris data and complete it to become daily by using Lagrange’s Interpolation Method.

- Estimate the distance in elliptical orbit of the Earth around the Sun by using kepler’s equation as follows:

\[
T = \frac{367*Y - 7 \times (Y + (M+9)/12)}{4} + 275*M/9 + D - 730530
\]

\[
T = \text{intval}(T) + \text{UT}/24.0 \quad \text{(3)}
\]

Where \(T \) is time scale and \(Y \) is year, \(M \) is month and \(D \) day. The eccentricity of the Earth’s orbit \(e \) (0=circle, 0-1=ellipse, 1=parabola):

\[e = 0.016709 - 1.151 \times 10^{-9} \times T \quad \text{(4)} \]

The mean anomaly of the sun \(M \) (0 at perihelion; increases uniformly with time):
\[M = 356.0470 + 0.9856002585 \times T \quad \ldots (5) \]

The eccentric anomaly \(E \):

\[E = M + e \sin M \left(1 + e \cos M \right) \quad \ldots (6) \]

Then the elliptical distance \(r \) can be calculated from:

\[r = \sqrt{(\cos E - e)^2 + \left(\sqrt{1 - e^2} \times \sin E \right)^2} \quad \ldots (7) \]

- Now we ready to get the distance shift \(\Delta r \) between distance which is recorded in Geocentric Ephemeris data \(R \) and elliptical orbital distance \(r \) as follows:

\[\Delta r = r - R \quad \ldots (8) \]

- List the maximum and minimum peaks of distance shift \(\Delta r \) and record the amplitude \(A_{\text{dist}} \).

3.3. Sea Level Shift-Distance Shift comparisons:

- List the combination the sea level shifts and distance shifts in the same table.

- Filter the result data as following cases:

1. Find the sea level peaks which is happens after distance peaks, and which is have the same sign.

2. Find the sea level peaks which is happens after distance peaks, and which is have different sign.

3. Find the distance peaks which is happens after sea level peaks, and which is have the same sign.

4. Find the distance peaks which is happens after sea level peaks, and which is have different sign.

- Plot the time series for distance shift and sea level shift.

- Plot the amplitudes of associated distance shift \(A_{\text{dist}} \) and sea level shift \(A_{\text{sea}} \) for all cases.

4. Result and conclusions

From figure 1 we show that the sea level is rising with time as in linear fitting which is given in equation 1. When we plot the perturbation of the Earth’s orbit with oscillation in the sea level with the time as shown in figure 2.1, we found that the behavior of the both curves are very link in many parts, sometimes are parallels and sometimes are contrary, the figures from 2.2 to 2.4 gives more details in short periods.
Figure 1: The relation between sea level and time

Sea Level (mm)

Year

1996 1998 2000 2002 2004 2006
Figure 2.0: All Period (1995-2006)

Figure 2.1: Period (1995-1998)
Figure 2.2: Period (1998-2001)

Figure 2.3: Period (2001-2004)
We can show that the amplitude of the perturbation of Earth’s orbit increasing with time like rising of the sea level, it is indicate that the perturbation of Earth’s orbit is correlated to the sea level. By plotting the relation between amplitudes of the main peaks of the perturbation of the Earth’s orbit with fitting value which is given from linear fitting of the sea level which is given from equation 1 at the same time of the amplitude as shown in figure 3, we can found a strong correlation coefficient between them, the result date listed in table 1.

\[H = -6.124 + 0.35655A, \ R=0.77521 \] \hspace{1cm} \text{...(9)}

Where \(H \) is the fitting value of the sea level, and \(H \) is the \(A \) is the amplitude of the main peaks of the perturbation of the Earth’s orbit.

Mostly, we can notice that the main peaks happens two times per the year, the first peak is through and happen in around February month, and second peak is crest happens in November.

Now, we want to study the all peaks of the orbital perturbation with the sea level.

We want to study the peaks of sea level shifts and distance shifts in the four cases as shown in figures from 4.1 to 4.4, I found 297 peaks of sea level shifts happens in the selected period and
254 peaks of distance shifts happens in the selected period, we found the good correlations between sea level and perturbation in Earth’s orbit and oscillation in sea level as follows:

1. In the case of sea level peak happens after distance peak and which is have the same sign: the correlation is $R=0.577$ of $A_{\text{sea}}=9.5699 + 4.303 A_{\text{dist}}$ for 94 events from 297 events (32%) (figure 4.1).

2. In the case of sea level peak happens after distance peak and which is have different sign: the correlation is $R=0.54748$ of $A_{\text{sea}}=0.4371 + 0.064354 A_{\text{dist}}$ for 96 events from 297 events (32%) (figure 4.2).

3. In the case of distance peaks happens after sea level peak, and which is have the same sign: the correlation is $R=0.58206$ of $A_{\text{sea}}=0.47714 - 0.068226 A_{\text{dist}}$ for 91 events from 254 events (36%) (figure 4.3).

4. in the case distance peaks happens after sea level peak and which is have different sign: the correlation is $R=0.5$ of $A_{\text{sea}} = 0.38723 + 0.061758 A_{\text{dist}}$ for 94 events from 254 events (37%) (Figure 4.4).
Figure 3: The relationship between Amplitude of the orbital perturbation of the Earth and fit value of the Sea Level

\[y = -6.124 + 0.35655x \quad R = 0.77521 \]
Figure 4.1: sea level peak happens after distance peak and which is have the same sign

\[y = 9.5699 + 4.303x \quad R = 0.57744 \]

Sea Level Shift (mm)
Shift of Sun's Distance (Km *10^3)

94 events (32%)
Figure 4.2: sea level peak happens after Distance peak and which is have different sign

$y = 0.4371 + 0.064354x \quad R = 0.54748$
Figure 4.3: distance peaks happen after sea level peak, and which is have the same sign

\[y = 0.47714 - 0.068226x \]

\[R = 0.58206 \]
5. Conclusions

The oscillation in the global sea level have strong correlation with perturbation of the Earth’s orbit (figures 2.x, 3, 4.x), then the oscillation in global sea level indicating to the Earth’s mass is variable according to Newton's law of gravitation as additional reason of sea level rising.

The perturbation of the Earth caused by variability in Earth’s mass as additional reason with gravity of celestial bodies and shape of the Earth.

The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun.

The source of the rising in the global sea level is not closed in global warming and icebergs according to mass level, but the outer space is one of sources for this rising and may be it is the main source.
If the oscillation of sea level indicating to variability in Earth’s mass then the Earth eating waters from space in unknown mechanism, then we can say if the peaks of global sea level and perturbation in Earth’s orbit are associated, then this indicate to the mass of the Earth is varying, then the Earth collect or loss water from or to space. When the peaks are not associated then the other peaks caused by other reasons.

We have two types for peaks of Earth’s mass variability (perturbation):

1. **Main peaks:** The smallest velocity of the Earth in apoapsis, after this point the Earth moving toward the Sun in its orbit with increasing in velocity and opposite direction of solar wind, in this case the Earth eating and collecting matters from space greater than losing matters, then the mass is increasing in this epoch, when Earth reaching to November (before apoapsis) the mass of the Earth become greater (crest peak). After November (transit apoapsis) the Earth’s velocity and Sun’s gravity become to greater values, the Sun’s gravity with Earth’s velocity causing suddenly motion for the Earth, it is leads to losing mass from Earth into space, the earth eject matters quickly, the mass of the Earth become smallest value in February (through peak). Mostly it is happen two times in beginning and last of the year and the oscillation curves moving parallel.

2. **Small peaks:** It is happens in remainder parts of the year, we have two cases: 1) **Parallel case:** the both curves moving parallels, the crest peaks of the both curves happen together and the through peaks happen together. 2) **Opposite case:** the both curves moving opposite, crest peak of the sea level shift happens with through peak of distance shift and it is follows through peak of the sea level shift happens with crest peak of distance shift.

The type of **small peaks** need more studying, why some time parallel, and why some time opposite?

The reasons: 1) data of the global sea level and Sun’s distance is not daily, I depended on interpolations to predict the unavailable value, 2) in addition I used the daily maximum values as a peaks, it is not accrued method, 3) estimating the eccentric anomaly simple formula without iteration, 4) and not all of the peaks of the global of sea level caused closely by variability in the Earth’s mass but it causing by additional reasons too at the same time. Those reasons affecting in correlation between global sea level and orbital perturbation.

6. **Acknowledgment**

The authors thank the NASA data center and TOPEX/Poseidon for providing us the data.

7. **References**
- Leuliette, E. W, R. S. Nerem, and G. T. Mitchum, 2004
- Beichner, Robert J., John W. Jewett, and Raymond A. Serway. Physics for Scientists and Engineers. New York: Saunders College, 2000
- The World Book Encyclopedia. Vol. 6. Chicago: World Book Inc., 2001.
- Smith, Peter J. The Earth. New York: Macmillan Company, 1986
- Larouse. Astronomy. New York: Facts on File Publications, 1981
- Christine Lee – 2002
- Hewitt, Paul G. Conceptual Physics. N.P.: Addison-Wesley Publishing, 1987: 147.
- Characteristics of Earth. Encarta. 5 May 2002.
- Arnett, Bill. Earth. 05 May 2002. 27 May 2002
Giancoli, Douglas C. Physics. Englewood Cliffs, NJ: Prentice-Hall, 1980. 73.
The Earth. Enchanted Learning. 1999.
Borisenkov and Tsvetkov; Combined effects of Earth orbit perturbations and solar activity on terrestrial insolation. Part I: sample days and annual mean values; 1985
Leuliette, E. W, R. S. Nerem, and G. T. Mitchum, 2004
Rignot, Eric; I. Velicogna, M. R. van den Broeke, A. Monaghan, J. T. M. Lenaerts (March 2011). "Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise". Geophysical Research Letters 38 (5). doi:10.1029/2011GL046583. Retrieved 25 April 2013.
Bruce C. Douglas (1997). "Global Sea Rise: A Redetermination". Surveys in Geophysics 18 (2/3): 279–292. Bibcode:1997SGeo...18..279D. doi:10.1023/A:1006544227856.
Eustatic sea level. Oilfield Glossary. Schlumberger Limited. Retrieved 10 June 2011.
Table 1: List of main peaks of the amplitude in Earth’s orbit with fitting value of the sea level.

Amplitude	SeaLevel	Date	
40.0292442444	0.339160273972	1995-02-28	
45.2755881241	0.0679712328774	1995-04-15	
26.0796514021	1.01499452055	1995-07-31	
44.2110173559	1.88236164384	1995-11-06	
34.1766147514	2.83697814208	1996-02-22	
47.2822037801	4.76998224044	1996-09-28	
68.7268830195	6.12183972603	1997-02-28	
45.0336514618	6.33425616438	1997-03-24	
45.6352132941	7.90967808219	1997-09-18	
37.3720406656	8.40531643836	1997-11-13	
35.8564374612	9.35233972603	1998-02-28	
49.9340052634	9.4851	1998.2	1998-03-15
41.9530823067	9.97188767123	1998-05-09	
40.4519807461	11.2463863014	1998-09-30	
37.3635240676	11.547309589	1998-11-03	
31.8384980288	12.4943328767	1999-02-18	
54.2395749145	12.8660616438	1999-04-01	
38.5562519165	14.7601082192	1999-11-01	
72.7744707309	15.8207636612	2000-02-29	
90.3771521786	17.8243797814	2000-10-13	
112.156055434	19.043839726	2001-02-28	
89.3350029705	20.9378863014	2001-09-30	
69.4748318445	22.274339726	2002-02-28	
ID Number	Latitude	Longitude	Date
--------------------	-----------------	-----------------	---------------
88.1238754539	24.1064315068	2002-09-23	
72.3746106634	25.504839726	2003-02-28	
77.8877276214	27.7175109589	2003-11-05	
68.9716840449	28.7339371585	2004-02-28	
94.5541886864	30.6316352459	2004-09-30	
105.639822604	31.965839726	2005-02-28	
91.0594360335	33.7713794521	2005-09-20	
76.9812688836	35.196339726	2006-02-28	
83.8822270225	37.0903863014	2006-09-30	
Table 1: Result list of peaks of distance amplitudes and sea level amplitudes

Date	Distance Amplitude	Sea Level Amplitude
1/6/1995	-2.1048	
1/7/1995		3.5161
1/12/1995	-1.4944	
1/14/1995		2.6697
1/27/1995		5.0067
2/4/1995	-24.703	
2/12/1995	-23.343	
2/18/1995		-8.1917
2/28/1995	-40.029	
3/13/1995		8.5923
3/18/1995	45.144	
3/31/1995	37.19	
4/15/1995	45.276	
4/19/1995		-5.9038
5/2/1995	31.8	
5/6/1995		0.76713
5/13/1995	35.51	
5/19/1995		-2.0262
5/28/1995		-1.4205
5/29/1995		-1.4709
5/30/1995		-1.4513
6/1/1995	-6.412	
6/13/1995	1.6769	
6/18/1995		-4.5954
6/28/1995	-8.2123	
7/1/1995	-4.66	
7/2/1995	-4.8219	
7/9/1995	-3.7042	-1.0993
7/31/1995	-26.08	
8/11/1995	0.18032	
8/12/1995		-8.2015
8/15/1995		-8.0708
8/16/1995		-8.0722
8/26/1995	-8.7847	
9/10/1995	1.3296	
9/21/1995		0.88378
9/24/1995	-6.7144	
10/10/1995	4.0198	-7.7767
Date	Value	
--------------	---------	
10/23/1995	-3.5656	
11/2/1995	-2.8991	
11/3/1995	-2.9861	
11/6/1995	44.211	
11/12/1995	-1.7256	
11/13/1995	-1.7868	
11/14/1995	-1.7791	
11/25/1995	28.611	
11/30/1995	30.401	
12/1/1995	6.166	
12/7/1995	-9.8043	
12/8/1995	9.746	
12/22/1995	1.0391	
12/25/1995	2	
1/6/1996	10.149	
1/21/1996	0.29162	
1/31/1996	6.9661	
2/22/1996	-34.177	
2/28/1996	2.9541	
3/5/1996	5.3738	
3/16/1996	-3.0664	
3/20/1996	-5.5074	
4/3/1996	2.2888	
4/7/1996	-6.1197	
4/19/1996	-8.1726	
4/29/1996	1.2205	
5/3/1996	0.15629	
5/18/1996	-9.5058	
5/26/1996	-4.5228	
5/29/1996	-4.3646	
5/30/1996	-4.3675	
6/2/1996	-0.28073	
6/16/1996	-9.2432	
6/27/1996	3.634	
7/1/1996	0.64533	
7/15/1996	-7.8556	
7/29/1996	-2.8278	
8/3/1996	20.807	
8/6/1996	-2.3469	
8/7/1996	-2.3916	
8/8/1996	-2.3741	
8/11/1996	19.084	
8/17/1996	-2.6054	
Date	Value	
------------	-------	
8/26/1996	-1.5366	
8/31/1996	37.936	
9/11/1996	33.986	
9/27/1996	-6.8007	
9/28/1996	47.282	
10/12/1996	-5.8667	
10/13/1996	39.179	
10/16/1996	-5.8881	
10/26/1996	46.958	
11/4/1996	-1.6691	
11/13/1996	32.846	
11/23/1996	36.529	
11/25/1996	-8.1504	
12/14/1996	16.338	
12/16/1996	-0.45564	
12/21/1996	17.623	
1/13/1997	-6.2222	
1/19/1997	-5.4735	
1/23/1997	-10.61	
2/12/1997	-0.13748	
2/28/1997	-68.727	
3/1/1997	37.732	
3/9/1997	33.938	
3/17/1997	-8.2	
3/24/1997	45.034	
4/8/1997	-7.9486	
4/12/1997	0.87588	
4/22/1997	0.41525	
4/28/1997	-4.4109	
5/7/1997	-9.1701	
5/11/1997	0.13181	
5/22/1997	0.11276	
5/23/1997	-5.0459	
6/5/1997	-8.4548	
6/12/1997	6.2552	
6/21/1997	1.7155	
7/4/1997	-6.4744	
7/13/1997	0.20975	
7/20/1997	3.7547	
8/3/1997	-4.6763	
8/5/1997	4.2299	
8/16/1997	3.5792	
8/18/1997	3.6326	
Date	First Value	Second Value
------------	-------------	--------------
8/19/1997	4.9944	3.4938
8/28/1997		5.2192
8/31/1997	-3.6805	
9/14/1997		1.6414
9/18/1997	45.635	
10/2/1997	-4.7609	
10/6/1997		9.9314
10/16/1997	3.9959	
10/31/1997	-5.558	
11/1/1997	33.324	
11/2/1997	33.173	
11/13/1997	37.372	
11/17/1997	0.31919	
12/3/1997	18.451	
12/5/1997		6.0801
12/11/1997	20.255	
12/20/1997		1.9446
12/24/1997		2.0286
1/2/1998	-1.8497	
1/6/1998	-4.3396	
1/9/1998	-0.43143	
1/29/1998		6.2093
1/31/1998	-21.55	
2/9/1998	-18.825	
2/28/1998	-35.856	
3/5/1998		-2.0623
3/15/1998	49.934	
3/28/1998	42.971	
3/31/1998	44.09	
4/1/1998	1.816	
4/9/1998		9.2056
4/12/1998	9.077	
4/27/1998	-0.79241	2.2579
5/3/1998		3.4349
5/9/1998	41.953	
5/21/1998		-1.097
5/29/1998	22.763	
5/31/1998	22.869	
6/1/1998	0.24147	
6/8/1998		2.609
6/10/1998	5.455	
6/25/1998	-4.5505	
7/2/1998		-3.9108
Date	Value	
------------	--------	
7/5/1998	2.0734	
7/11/1998	-3.3699	
7/12/1998	-3.4114	
7/21/1998	-2.7525	
7/22/1998	-2.7782	
7/27/1998	-20.504	
8/1/1998	-2.1575	
8/8/1998	3.0455	
8/21/1998	-6.2491	
8/22/1998	-6.5317	
9/8/1998	39.74	
9/20/1998	33.547	
9/28/1998	-0.3933	
9/29/1998	-0.42603	
9/30/1998	40.452	
10/1/1998	-1.4273	
10/3/1998	-0.23984	
10/6/1998	0.70933	
10/21/1998	-9.3439	
11/2/1998	-5.5082	
11/3/1998	37.364	
11/17/1998	1.6554	
11/22/1998	20.308	
11/27/1998	-4.1711	
11/30/1998	22.748	
12/1/1998	-1.7489	
12/4/1998	-0.74036	
12/9/1998	5.2138	
12/19/1998	-9.1758	
12/28/1998	-5.2725	
1/1/1999	3.6411	
1/20/1999	3.5021	
1/21/1999	-16.714	
1/29/1999	-14.195	
2/6/1999	-2.0823	
2/12/1999	-1.965	
2/18/1999	-31.838	
2/25/1999	-4.6324	
3/5/1999	46.635	
3/17/1999	42.551	
3/26/1999	2.9122	
4/1/1999	54.24	
4/17/1999	43.801	
Date	Value	
--------------	---------	
4/22/1999	-3.9303	
4/29/1999	49.245	
5/14/1999	-0.49016	
5/18/1999	31.588	
5/25/1999	-1.952	
5/26/1999	33.239	
6/3/1999	0.17439	
6/14/1999	-3.3088	
6/20/1999	-7.9994	
6/28/1999	4.0685	
6/30/1999	3.7877	
7/1/1999	6.1154	
7/18/1999	-14.305	
7/20/1999	2.2789	
7/24/1999	-13.666	
7/31/1999	-17.924	
8/1/1999	-0.47325	
8/12/1999	-8.7651	
8/13/1999	-6.1905	
8/27/1999	0.55116	
8/30/1999	0.19821	
9/10/1999	-8.1166	
9/11/1999	-1.5717	
9/21/1999	1.6888	
9/26/1999	2.3084	
10/1/1999	-0.34106	
10/10/1999	-5.9809	
10/23/1999	0.63311	
10/25/1999	-3.6149	
10/31/1999	4.1199	
11/1/1999	0.46296	
11/10/1999	38.556	
11/12/1999	31.252	
11/21/1999	2.2393	
11/21/1999	34.413	
12/8/1999	-4.8277	
12/9/1999	-2.852	
12/23/1999	4.0612	
1/3/2000	-3.0909	
1/8/2000	2.519	
1/11/2000	2.2919	
1/17/2000	-8.7307	
1/18/2000	2.6536	
2/10/2000	-7.7076	
	-5.2985	
Date	Value	
------------	---------	
2/29/2000	-72.774	
3/1/2000	-38.627	
3/4/2000	3.6126	
3/7/2000	-42.7	
3/16/2000	2.7129	
3/17/2000	2.7341	
3/18/2000	2.6875	
3/20/2000	-36.536	
3/27/2000	3.706	
4/5/2000	-46.5	
4/16/2000	-1.6432	
4/20/2000	-35.268	
4/25/2000	-0.96327	
5/2/2000	-40.603	
5/6/2000	-2.0253	
5/15/2000	-0.90759	
5/16/2000	-0.91619	
5/17/2000	-0.88679	
5/21/2000	-24.343	
5/31/2000	-27.067	
6/13/2000	-6.4726	
6/14/2000	-6.4414	
6/15/2000	-6.4882	
6/21/2000	-7.0874	
6/29/2000	-8.7613	
7/14/2000	0.39666	
7/20/2000	12.507	
7/28/2000	10.64	
8/3/2000	-8.9379	
8/23/2000	0.44809	
9/8/2000	-1.8046	
9/16/2000	83.332	
9/24/2000	0.56288	
9/26/2000	79.478	
10/4/2000	-0.31313	
10/13/2000	90.377	
10/21/2000	1.3759	
10/22/2000	1.3575	
10/30/2000	76.273	
11/6/2000	4.0408	
11/7/2000	77.724	
11/22/2000	-1.0413	
11/30/2000	-0.354	
Date	Value	
------------	--------	
12/12/2000	-3.4108	
12/30/2000	3.6586	
1/21/2001	-5.4906	
2/28/2001	-112.16	
3/5/2001	6.4953	
3/10/2001	0.65129	
3/23/2001	-1.4862	
3/24/2001	-7.9714	
3/31/2001	-4.2144	
4/1/2001	-46.161	
4/9/2001	-40.441	
4/21/2001	-45.925	
4/22/2001	5.7017	
5/10/2001	-29.168	
5/19/2001	-31.274	
5/29/2001	-3.6745	
6/11/2001	-9.8353	
6/18/2001	-10.836	
7/2/2001	6.2317	
7/10/2001	11.695	
7/17/2001	10.366	
7/27/2001	-2.9895	
8/7/2001	30.426	
8/10/2001	3.5183	
8/17/2001	27.421	
8/18/2001	2.4626	
8/25/2001	3.0262	
9/7/2001	79.81	
9/15/2001	77.097	
9/17/2001	1.1646	
9/30/2001	89.335	
10/1/2001	47.117	
10/2/2001	47.352	
10/6/2001	4.2263	
10/18/2001	36.55	
10/22/2001	1.4147	
10/23/2001	1.4326	
10/24/2001	1.3828	
10/30/2001	42.06	
10/31/2001	42.034	
11/1/2001	81.066	
11/4/2001	4.7056	
11/26/2001	-0.73814	
Date	Value	
------------	---------	
12/2/2001	-0.45976	
12/3/2001	-0.47634	
12/29/2001	3.6695	
1/15/2002	-4.3888	
2/9/2002	7.9293	
2/28/2002	-69.475	
3/1/2002	0.9228	
3/12/2002	-4.3568	
3/14/2002	-7.5131	
3/29/2002	2.5926	
4/10/2002	6.8136	
4/12/2002	-48.168	
4/24/2002	2.5859	
4/29/2002	-34.037	
4/30/2002	-34.157	
5/1/2002	3.939	
5/12/2002	-2.7574	
5/27/2002	7.9675	
5/29/2002	2.7098	
5/30/2002	2.6932	
6/4/2002	3.2825	
6/7/2002	-18.868	
6/19/2002	-0.33224	
7/1/2002	7.1183	
7/10/2002	1.0178	
7/12/2002	1.852	
7/24/2002	10.057	
7/31/2002	6.4011	
8/1/2002	23.688	
8/6/2002	22.488	
8/12/2002	10.219	
8/25/2002	39.705	
8/31/2002	37.406	
9/1/2002	71.573	
9/4/2002	71.093	
9/7/2002	1.0777	
9/23/2002	88.124	
9/27/2002	7.0019	
10/7/2002	37.223	
10/8/2002	4.77	
10/20/2002	44.13	
10/21/2002	7.4265	
10/31/2002	34.479	
Date	Value	
---------------	--------	
11/1/2002	72.569	
11/8/2002	-1.8044	
11/9/2002	66.836	
11/14/2002	67.112	
11/26/2002	9.1322	
12/7/2002	14.971	
12/11/2002	4.0458	
12/13/2002	4.0743	
12/16/2002	16.74	
12/31/2002	-0.31832	
1/1/2003	1.7767	
1/8/2003	-1.8829	
1/31/2003	9.9921	
2/1/2003	9.9666	
2/7/2003	10.49	
2/24/2003	-2.3284	
2/28/2003	-72.375	
3/1/2003	-2.4867	
3/4/2003	-3.0065	
3/18/2003	5.5706	
3/29/2003	7.4058	
4/2/2003	-4.3533	
4/17/2003	4.2222	
5/2/2003	-5.6178	
5/7/2003	-0.026177	
5/16/2003	3.2456	
5/28/2003	6.0334	
6/1/2003	-29.59	
6/14/2003	-1.9162	
6/18/2003	-10.574	
6/20/2003	-0.92177	
6/25/2003	-11.768	
7/2/2003	-2.6374	
7/14/2003	3.8503	
7/24/2003	5.5069	
7/29/2003	-5.1896	
8/15/2003	30.171	
8/22/2003	-4.309	
8/25/2003	27.703	
9/12/2003	43.109	
9/25/2003	37.016	
9/28/2003	2.886	
10/4/2003	3.1032	
Date	Value 1	Value 2
-----------	----------	----------
10/10/2003	46.721	
10/20/2003		-1.7628
10/27/2003	35.224	
11/5/2003	77.888	0.0047447
11/6/2003		-0.07118
11/25/2003		4.3105
12/1/2003	23.941	
12/5/2003	24.913	
12/23/2003		-2.9934
12/27/2003	3.3766	
1/2/2004	4.4056	
1/18/2004		8.3826
1/26/2004		-17.72
1/31/2004		-16.658
2/13/2004		-7.9399
2/27/2004		4.2253
2/28/2004		-68.972
3/4/2004		-32.08
3/17/2004		2.4746
3/22/2004		5.7736
4/5/2004		-38.826
4/13/2004		-0.57219
4/19/2004		-47.492
4/23/2004		5.2319
5/5/2004		-0.81594
5/6/2004		-34.703
5/14/2004		1.4443
5/17/2004		-38.886
6/6/2004		-19.917
6/12/2004		-3.5549
6/13/2004		-21.549
7/7/2004		2.079
7/12/2004		7.5255
8/2/2004		1.4422
9/4/2004		-1.2131
9/11/2004		78.319
9/14/2004		9.8085
9/30/2004		94.554
10/2/2004		-2.1026
10/12/2004		0.63555
10/15/2004		85.169
10/19/2004		-0.19246
10/26/2004		89.565
Date	Value	
------------	-----------	
11/12/2004	5.4216	
12/1/2004	-2.3638	
12/28/2004	11.098	
1/14/2005	1.6975	
1/15/2005	1.7456	
1/16/2005	1.728	
1/23/2005	1.9433	
2/5/2005	0.58157	
2/28/2005	-105.64	
3/1/2005	-0.84346	
3/10/2005	12.574	
3/11/2005	-7.8665	
3/26/2005	1.5037	
3/31/2005	-4.16	
4/9/2005	-50.484	
4/16/2005	6.8204	
4/25/2005	-38.451	
4/28/2005	2.803	
5/7/2005	-43.291	
5/12/2005	6.0747	
5/26/2005	-25.406	
6/1/2005	1.0214	
6/3/2005	1.0962	
6/4/2005	-27.622	
6/25/2005	-5.1874	
6/28/2005	7.8053	
7/2/2005	-6.1702	
7/24/2005	0.77917	
7/25/2005	17.632	
8/1/2005	16.508	
8/3/2005	4.0725	
8/14/2005	0.82293	
8/22/2005	37.621	
8/31/2005	34.879	
9/2/2005	6.7547	
9/20/2005	91.059	
9/24/2005	-3.234	
10/3/2005	42.925	
10/17/2005	51.375	
10/20/2005	4.1569	
10/21/2005	4.0999	
10/31/2005	38.853	
11/1/2005	77.453	
Date	Value	
------------	--------	
11/6/2005	75.231	
11/9/2005	6.324	
11/11/2005	75.691	
12/7/2005	3.7075	
12/8/2005	3.7511	
12/9/2005	3.7398	
12/23/2005	9.1266	
1/15/2006	-1.7744	
2/16/2006	5.0022	
2/17/2006	4.9667	
2/18/2006	4.9697	
2/26/2006	4.3054	
2/28/2006	-76.981	
3/5/2006	5.189	
3/15/2006	4.0413	
3/22/2006	-5.164	
3/29/2006	-4.154	
3/31/2006	-3.7555	
4/1/2006	-46.239	
4/14/2006	-36.14	
4/15/2006	3.7998	
4/27/2006	-41.946	
5/7/2006	-1.9257	
5/13/2006	6.9536	
5/26/2006	3.5458	
5/27/2006	-2.421	
5/31/2006	-1.2046	
6/1/2006	-24.076	
6/6/2006	1.6216	
6/14/2006	-9.7434	
6/23/2006	-11.766	6.547
7/11/2006	4.6868	
7/16/2006	0.79062	
7/26/2006	-5.3102	
8/3/2006	5.6393	
8/12/2006	27.586	
8/16/2006	1.4759	
8/21/2006	24.614	
8/25/2006	2.9892	
9/11/2006	79.241	0.72211
9/12/2006	0.73932	
9/13/2006	0.6676	
9/20/2006	76.654	
Date	Value1	Value2
------------	---------	---------
9/30/2006	83.882	
10/1/2006	42.322	
10/7/2006	46.464	
10/18/2006		5.7386
10/23/2006	36.176	
10/29/2006		5.3427
11/3/2006	80.444	5.3607
11/27/2006		-0.33099
12/1/2006	27.545	
12/2/2006	27.722	
12/13/2006		7.965
12/24/2006	5.7105	
12/30/2006	7.0053	
