Abstract

We introduce the first generic text representation model that is completely nonsymbolic, i.e., it does not require the availability of a segmentation or tokenization method that attempts to identify words or other symbolic units in text. This applies to training the representations as well as to using them in an application. We demonstrate better performance than prior work on entity typing and text denoising.

1 Introduction

Character-level models can be grouped into three classes. (i) End-to-end models learn a separate model on the raw character (or byte) input for each task; these models estimate task-specific parameters, but no representation of text that would be usable across tasks is computed. Throughout this paper, we refer to $r(x)$ as the “representation” of $x$ only if $r(x)$ is a generic rendering of $x$ that can be used in a general way, e.g., across tasks and domains. The activation pattern of a hidden layer for a given input sentence in a multilayer perceptron (MLP) is not a representation according to this definition if it is not used outside of the MLP. (ii) Character-level models of words derive a representation of a word $w$ from the character string of $w$, but they are symbolic in that they need text segmented into tokens as input. (iii) Bag-of-character-ngram models, bag-of-ngram models for short, use character ngrams to encode sequence-of-character information, but sequence-of-ngram information is lost in the representations they produce.

Our premise is that text representations are needed in NLP. A large body of work on word embeddings demonstrates that a generic text representation, trained in an unsupervised fashion on large corpora, is useful. Thus, we take the view that group (i) models, end-to-end learning without any representation learning, is not a good general approach for NLP.

We distinguish training and utilization of the text representation model. We use “training” to refer to the method by which the model is learned and “utilization” to refer to the application of the model to a piece of text to compute a representation of the text. In many text representation models, utilization is trivial. For example, for word embedding models, utilization amounts to a simple lookup of a word to get its precomputed embedding. However, for the models we consider, utilization is not trivial and we will discuss different approaches.

Both training and utilization can be either symbolic or nonsymbolic. We define a symbolic approach as one that is based on tokenization, i.e., a segmentation of the text into tokens. Symbol identifiers (i.e., tokens) can have internal structure – a tokenizer may recognize tokens like “to and fro” and “London-based” that contain delimiters – and may be morphologically analyzed downstream.\footnote{Two comments on how we use the term “symbolic”. (i) Some define symbols as identifiers that have no internal structure, but uses of the term that allow for the possibility of internal structure are also frequent. For example, the Wikipedia entry for “symbol” states: “Numerals are symbols for numbers.” Most numerals have internal structure. (ii) The position-embedding representation of a text introduced below is a sequence of position embeddings. An embedding that represents a single character must be viewed as symbolic since a character is a symbol – just like a representation of text as a sequence of word embeddings is symbolic since each word corresponds to a symbol. But position embeddings do not represent single characters. See §4.}

We define a nonsymbolic approach as one that is tokenization-free, i.e., no assumption is made that there are segmentation boundaries and that
each segment (e.g., a word) should be represented (e.g., by a word embedding) in a way that is independent of the representations (e.g., word embeddings) of neighboring segments. Methods for training text representation models that require tokenized text include word embedding models like word2vec (Mikolov et al., 2013) and most group (ii) methods, i.e., character-level models like fastText skipgram (Bojanowski et al., 2017).

Bag-of-ngram models, group (iii) models, are text representation utilization models that typically compute the representation of a text as the sum of the embeddings of all character ngrams occurring in it, e.g., WordSpace (Schütze, 1992) and CHARAGRAM (Wieting et al., 2016). WordSpace and CHARAGRAM are examples of mixed training-utilization models: training is performed on tokenized text (words and phrases), utilization is nonsymbolic.

We make two contributions in this paper. (i) We propose the first generic method for training text representation models without the need for tokenization and address the challenging sparseness issues that make this difficult. (ii) We propose the first nonsymbolic utilization method that fully represents sequence information – in contrast to utilization methods like bag-of-ngrams that discard sequence information that is not directly encoded in the character ngrams themselves.

2 Motivation

Chung et al. (2016b) give two motivations for their work on character-level models. First, tokenization (or, equivalently, segmentation) algorithms make many mistakes and are brittle: “we do not have a perfect word segmentation algorithm for any one language”. Tokenization errors then propagate throughout the NLP pipeline.

Second, there is currently no general solution for morphology in statistical NLP. For many languages, high-coverage and high-quality morphological resources are not available. Even for well resourced languages, problems like ambiguity make morphological processing difficult; e.g., “rung” is either the singular of a noun meaning “part of a ladder” or the past participle of “to ring”. In many languages, e.g., in German, syncretism, a particular type of systematic morphological ambiguity, is pervasive. Thus, there is no simple morphological processing method that would produce a representation in which all inflected forms of “to ring” are marked as having a common lemma; and no such method in which an unseen form like “aromatizing” is reliably analyzed as a form of “aromatize” whereas an unseen form like “anti-trafficking” is reliably analyzed as the compound “anti+trafficking”.

Of course, it is an open question whether nonsymbolic methods can perform better than morphological analysis, but the foregoing discussion motivates us to investigate them.

Chung et al. (2016b) focus on problems with the tokens produced by segmentation algorithms. Equally important is the problem that tokenization fails to capture structure across multiple tokens. The job of dealing with cross-token structure is often given to downstream components of the pipeline, e.g., components that recognize multiwords and named entities in English or in fact any word in a language like Chinese that uses no overt delimiters. However, there is no linguistic or computational reason in principle why we should treat the recognition of a unit like “electromechanical” (containing no space) as fundamentally different from the recognition of a unit like “electrical engineering” (containing a space). Character-level models offer the potential of uniform treatment of such linguistic units.

3 Text representation model: Training

3.1 Methodology

Many text representation learning algorithms can be understood as estimating the parameters of the model from a unit-context matrix $C$ where each row corresponds to a unit $u_i$, each column to a context $c_j$, and each cell $C_{ij}$ measures the degree of association between $u_i$ and $c_j$. For example, the skipgram model is closely related to an SVD factorization of a pointwise mutual information matrix (Levy and Goldberg, 2014); in this case, both units and contexts are words. Many text representation learning algorithms are formalized as matrix factorization (e.g., (Deerwester et al., 1990; Hofmann, 1999; Stratos et al., 2015)), but there may be no big difference between implicit (e.g., (Pennington et al., 2014)) and explicit factorization methods; see also (Mohamed, 2011; Rastogi et al., 2015).

Our goal in this paper is not to develop new ma-
terial factorization methods. Instead, we will focus on defining the unit-context matrix in such a way that no symbolic assumption has to be made. This unit-context matrix can then be processed by any existing or still to be invented algorithm.

**Definition of units and contexts.** How to define units and contexts without relying on segmentation boundaries? In initial experiments, we simply generated all character ngrams of length up to \( k_{\text{max}} \) (where \( k_{\text{max}} \) is a parameter), including character ngrams that cross token boundaries; i.e., no segmentation is needed. We then used a skipgram-type objective for learning embeddings that attempts to predict, from ngram \( g_1 \), an ngram \( g_2 \) in \( g_1 \)'s context. Results were poor because many training instances consist of pairs \((g_1, g_2)\) in which \( g_1 \) and \( g_2 \) overlap, e.g., one is a subsequence of the other. So the objective encourages trivial predictions of ngrams that have high string similarity with the input and nothing interesting is learned.

In this paper, we propose an alternative way of defining units and contexts that supports well-performing nonsymbolic text representation learning: multiple random segmentation. A pointer moves through the training corpus. The current position \( i \) of the pointer defines the left boundary of the next segment. The length \( l \) of the next move is uniformly sampled from \([k_{\text{min}}, k_{\text{max}}]\) where \( k_{\text{min}} \) and \( k_{\text{max}} \) are the minimum and maximum segment lengths. The right boundary of the segment is then \( i + l \). Thus, the segment just generated is \( c_{i,i+l} \), the subsequence of the corpus between (and including) positions \( i \) and \( i + l \). The pointer is positioned at \( i + l + 1 \), the next segment is sampled and so on. An example of a random segmentation from our experiments is “@he@had@b eg" n@to@show @his@cap acity@f” where space was replaced with “@” and the next segment starts with “or@”.

The corpus is segmented this way \( m \) times (where \( m \) is a parameter) and the \( m \) random segmentations are concatenated. The unit-context matrix is derived from this concatenated corpus.

Multiple random segmentation has two advantages. First, there is no redundancy since, in any given random segmentation, two ngrams do not overlap and are not subsequences of each other. Second, a single random segmentation would only cover a small part of the space of possible ngrams. For example, a random segmentation of “a rose is a rose” might be “[a ros][e is a ros][e is][a rose]”. This segmentation does not contain the segment “rose” and this part of the corpus can then not be exploited to learn a good embedding for the fourgram “rose”. However, with multiple random segmentation, it is likely that this part of the corpus does give rise to the segment “rose” in one of the segmentations and can contribute information to learning a good embedding for “rose”.

We took the idea of random segmentation from work on biological sequences (Asgari and Mofrad, 2015; Asgari and Mofrad, 2016). Such sequences have no delimiters, so they are a good model if one believes that delimiter-based segmentation is problematic for text.

### 3.2 Ngram equivalence classes/Permutation

**Form-meaning homomorphism premise.** Nonsymbolic representation learning does not pre-process the training corpus by means of tokenization and considers many ngrams that would be ignored in tokenized approaches because they span token boundaries. As a result, the number of ngrams that occur in a corpus is an order of magnitude larger for tokenization-free approaches than for tokenization-based approaches. See supplementary for details.

We will see below that this sparseness impacts performance of nonsymbolic text representation negatively. We address sparseness by defining ngram equivalence classes. All ngrams in an equivalence class receive the same embedding.

The relationship between form and meaning is mostly arbitrary, but there are substructures of the ngram space and the embedding space that are systematically related by homomorphism. In this paper, we will assume the following homomorphism:

\[
g_1 \sim_\tau g_2 \iff \vec{v}(g_1) \sim_2 \vec{v}(g_2)
\]

where \( g_1 \sim_\tau g_2 \) iff \( \tau(g_1) = \tau(g_2) \) for string transduction \( \tau \) and \( \vec{v}(g_1) \sim_2 \vec{v}(g_2) \) iff \( \|\vec{v}(g_1) - \vec{v}(g_2)\|_2 < \epsilon \).

As a simple example consider a transduction \( \tau \) that deletes spaces at the beginning of ngrams, e.g., \( \tau(@Mercedes) = \tau(Mercedes) \). This is an example of a meaning-preserving \( \tau \) since for, say, English, \( \tau \) will not change meaning. We will propose a procedure for learning \( \tau \) below.

We define \( \sim_\tau \) as “closeness” – not as identity – because of estimation noise when embeddings are learned. We assume that there are no true synonyms and therefore the direction \( g_1 \sim_\tau g_2 \Rightarrow
\(\vec{v}(g_1) \sim \vec{v}(g_2)\) also holds. For example, “car” and “automobile” are considered synonyms, but we assume that their embeddings are different because only “car” has the literary sense “chariot”. If they were identical, then the homomorphism would not hold since “car” and “automobile” cannot be converted into each other by any plausible meaning-preserving \(\tau\).

**Learning procedure.** To learn \(\tau\), we define three templates that transform one ngram into another: (i) replace character \(a_1\) with character \(a_2\), (ii) delete character \(a_1\) if its immediate predecessor is character \(a_2\), (iii) delete character \(a_1\) if its immediate successor is character \(a_2\). The learning procedure takes a set of ngrams and their embeddings as input. It then exhaustively searches for all pairs of ngrams, for all pairs of characters \(a_1/a_2\), for each of the three templates. (This takes about 10 hours on a multicore server.) When two matching embeddings exist, we compute their cosine. For example, for the operation “delete space before M”, an ngram pair from our embeddings that matches is “@Mercedes” / “Mercedes” and we compute its cosine. As the characteristic statistic of an operation we take the average of all cosines; e.g., for “delete space before M” the average cosine is .7435. We then rank operations according to average cosine and take the first \(N_o\) as the definition of \(\tau\) where \(N_o\) is a parameter. For characters that are replaced by each other (e.g., 1, 2, 3 in Table 1), we compute the equivalence class and then replace the learned operations with ones that replace a character by the canonical member of its equivalence class (e.g., 2 \(\rightarrow\) 1, 3 \(\rightarrow\) 1).

**Permutation premise.** Tokenization algorithms can be thought of as assigning a particular function or semantics to each character and making tokenization decisions accordingly; e.g., they may disallow that a semicolon, the character “;”, occurs inside a token. If we want to learn representations from the data without imposing such hard constraints, then characters should not have any particular function or semantics. A consequence of this desideratum is that if any two characters are exchanged for each other, this should not affect the representations that are learned. For example, if we interchange space and “A” throughout a corpus, then this should have no effect on learning: what was the representation of “NATO” before, should now be the representation of “N TO”. We can also think of this type of permutation as a sanity check: it ensures we do not inadvertently make use of text preprocessing heuristics that are pervasive in NLP.

Let \(A\) be the alphabet of a language, i.e., its set of characters, \(\pi\) a permutation on \(A\), \(C\) a corpus and \(\pi(C)\) the corpus permuted by \(\pi\). For example, if \(\pi(a) = e\), then all “a” in \(C\) are replaced with “e” in \(\pi(C)\). The learning procedure should learn identical equivalence classes on \(C\) and \(\pi(C)\). So, if \(g_1 \sim_\tau g_2\) after running the learning procedure on \(C\), then \(\pi(g_1) \sim_\tau \pi(g_2)\) after running the learning procedure on \(\pi(C)\).

This premise is motivated by our desire to come up with a general method that does not rely on specific properties of a language or genre; e.g., the premise rules out exploiting the fact through feature engineering that in many languages and genres, “c” and “C” are related. Such a relationship has to be learned from the data.

### 3.3 Experiments

We run experiments on \(C\), a 3 gigabyte English Wikipedia corpus, and train word2vec skipgram (W2V, (Mikolov et al., 2013)) and fastText skipgram (FTX, (Bojanowski et al., 2017)) models on \(C\) and its derivatives. We randomly generate a permutation \(\pi\) on the alphabet and learn a transduction \(\tau\) (details below). In Table 2 (left), the columns “method”, \(\pi\) and \(\tau\) indicate the method used (W2V or FTX) and whether experiments in a row were run on \(C\), \(\pi(C)\) or \(\pi(\pi(C))\). The values of “whitespace” are: (i) ORIGINAL (whitespace as in the original), (ii) SUBSTITUTE (what \(\pi\) outputs as whitespace is used as whitespace, i.e., \(\pi^{-1}(\text{“”})\) becomes the new whitespace) and (iii) RANDOM (random segmentation with parameters \(m = 50\), \(k_{\text{min}} = 3\), \(k_{\text{max}} = 9\)). Before random segmentation, whitespace is replaced with “@” – this character occurs rarely in \(C\), so that the effect of conflating two characters (original “@” and whitespace) can be neglected. The random segmenter then indicates boundaries by whitespace – unambiguously since it is applied to text that contains no whitespace.

We learn \(\tau\) on the embeddings learned by W2V on the random segmentation version of \(\pi(C)\) (C-RANDOM in the table) as described in §3.2.  

---

3 An example of such an inadvertent use of text preprocessing heuristics is that fastText seems to default to lowercase ngrams if embeddings of uppercase ngrams are not available: when fastText is trained on lowercased text and then applied to uppercased text, it still produces embeddings.
Table 1: String operations that on average do not change meaning. “@” stands for space. ‡ is the left or right boundary of the ngram.

| substitution | predeletion | postdeletion |
|--------------|-------------|--------------|
| 2 → 1        | /r → r      | ‡@ → ‡      |
| 3 → 1        | @‡ → ‡‡     | e@ → e      |
| : →          | @‡ → ‡‡     | l@ → l      |
| ; →          | @H→H        | m@→m        |
| E→e          | @I→I        | ml→m        |
| C→c          |             |              |

Table 1 shows a selection of the \( N_o \) operations. Throughout the paper, if we give examples from \( \pi(C) \) or \( \tau(\pi(C)) \) as we do here, we convert characters back to the original for better readability. The two uppercase/lowercase conversions shown in the table (E→e, C→c) were the only ones that were learned (we had hoped for more). The post-deletion rule ml→m usefully rewrites “html” as “htm”, but is likely to do more harm than good. We inspected all 200 rules and, with a few exceptions like ml→m, they looked good to us.

Evaluation. We evaluate the three models on an entity typing task, similar to (Yaghoobzadeh and Schütze, 2015), but based on an entity dataset released by Xie et al. (2016) in which each entity has been assigned one or more types from a set of 50 types. For example, the entity “Harrison Ford” has the types “actor”, “celebrity” and “award winner” among others. We extract mentions from FACC (http://lemurproject.org/clueweb12/FACC1) if an entity has a mention there or we use the Freebase name as the mention otherwise. This gives us a data set of 54,334, 6085 and 6747 mentions in train, dev and test, respectively. Each mention is annotated with the types that its entity has been assigned by Xie et al. (2016). The evaluation has a strong cross-domain aspect because of differences between FACC and Wikipedia, the training corpus for our representations. For example, of the 525 mentions in dev that have a length of at least 5 and do not contain lowercase characters, more than half have 0 or 1 occurrences in the Wikipedia corpus, including many like “JOHNNY CARSON” that are frequent in other case variants.

Since our goal in this experiment is to evaluate tokenization-free learning, not tokenization-free utilization, we use a simple utilization baseline, the bag-of-gram model (see §1). A mention is represented as the sum of all character ngrams that embeddings were learned for. Linear SVMs (Chang and Lin, 2011) are then trained, one for each of the 50 types, on train and applied to dev and test. Our evaluation measure is micro \( F_1 \) on all typing decisions; e.g., one typing decision is: “Harrison Ford” is a mention of type “actor”. We tune thresholds on dev to optimize \( F_1 \) and then use these thresholds on test.

3.4 Results

Results are presented in Table 2 (left). Overall performance of FTX is higher than W2V in all cases. For ORIGINAL, FTX’s recall is a lot higher than W2V’s whereas precision decreases slightly. This indicates that FTX is stronger in both learning and application: in learning it can generalize better from sparse training data and in application it can produce representations for OOVs and better representations for rare words. For English, prefixes, suffixes and stems are of particular importance, but there often is not a neat correspondence between these traditional linguistic concepts and internal FTX representations; e.g., Bojanowski et al. (2017) show that “asphal”, “sphalt” and “phalt” are informative character ngrams of “asphaltic”.

Running W2V on random segmentations can be viewed as an alternative to the learning mechanism of FTX, which is based on character ngram cooccurrence; so it is not surprising that for RANDOM, FTX has only a small advantage over W2V. For C/D-SUBSTITUTE, we see a dramatic loss in performance if tokenization heuristics are not used. This is not surprising, but shows how powerful tokenization can be.

C/D-ORIGINAL is like C/D-SUBSTITUTE except that we artificially restored the space – so the permutation \( \pi \) is applied to all characters except for space. By comparing C/D-ORIGINAL and C/D-SUBSTITUTE, we see that the space is the most important text preprocessing feature employed by W2V and FTX. If space is restored, there is only a small loss of performance compared to A/B-ORIGINAL. So text preprocessing heuristics other than whitespace tokenization in a nar-
Table 2: Left: Evaluation results for named entity typing. Right: Neighbors of character ngrams. Rank $r = 1/r = 2$: nearest / second-nearest neighbor.

For tokenization-free embedding learning on random segmentation, there is almost no difference between original data (A/B-RANDOM) and permuted data (C/D-RANDOM). This confirms that our proposed learning method is insensitive to permutations and makes no use of text preprocessing heuristics.

We achieve an additional improvement by applying the transduction $\tau$. In fact, FTX performance for F-RANDOM ($F_1$ of .582) is better than tokenization-based W2V and FTX performance. Thus, our proposed method seems to be an effective tokenization-free alternative to tokenization-based embedding learning.

3.5 Analysis of ngram embeddings

Table 2 (right) shows nearest neighbors of ten character ngrams, for the A-RANDOM space. Queries were chosen to contain only alphanumeric characters. To highlight the difference to symbol-based representation models, we restricted the search to 9-grams that contained a delimiter at positions 3, 4, 5, 6 or 7.

Lines 1–4 show that “delimiter variation”, i.e., cases where a word has two forms, one with a delimiter, one without a delimiter, is handled well: “Abdulaziz” / “Abdul Azi”, “codenamed” / “code name”, “Quarterfinal” / “Quarter-Final”, “world-record” / “world-record”.

Lines 5–9 are cases of ambiguous or polysemous words that are disambiguated through “character context”. “stem”, “cell”, “rear”, “wheel”, “crash”, “land”, “scripts”, “through”, “downtown” all have several meanings. In contrast, the meanings of “stem cell”, “rear wheel”, “crash land”, “(write) scripts for” and “through downtown” are less ambiguous. A multiword recognizer may find the phrases “stem cell” and “crash land” automatically. But the examples of “scripts for” and “through downtown” show that what is accomplished here is not multiword detection, but a more general use of character context for disambiguation.

Line 10 shows that a 9-gram of “face-to-face” is the closest neighbor to a 9-gram of “facilitating”. This demonstrates that form and meaning sometimes interact in surprising ways. Facilitating a meeting is most commonly done face-to-face. It is not inconceivable that form – the shared trigram “fac” or the shared fourgram “faci” in “facilitate” / “fac” / “faci” – is influencing meaning here in a way that also occurs historically in cases like “ear” ‘organ of hearing’ / “ear” ‘head of cereal plant’, originally unrelated words that many English speakers today intuit as one word.

4 Utilization: Tokenization-free representation of text

4.1 Methodology

The main text representation model that is based on ngram embeddings similar to ours is the bag-of-ngram model. A sequence of characters is represented by a single vector that is computed as the sum of the embeddings of all ngrams that occur in the sequence. In most work on bag-of-ngram models, the sequences considered are words or phrases. In a few cases, the model is applied to longer sequences, including sentences and documents; e.g., (Schütze, 1992), (Wieting et al., 2016).

The basic assumption of the bag-of-ngram model is that sequence information is encoded in the character ngrams and therefore a “bag-of” approach (which usually throws away all sequence information) is sufficient. The assumption is not implausible: for most bags of character sequences, there is only a single way of stitching them to-
gether to one coherent sequence, so in that case information is not necessarily lost (although this is likely when embeddings are added). But the assumption has not been tested experimentally.

Here, we propose position embeddings, character-ngram-based embeddings that more fully preserve sequence information. The simple idea is to represent each position as the sum of all ngrams that contain that position. When we set \( k_{\text{min}} = 3, k_{\text{max}} = 9 \), this means that the position is the sum of \( (\sum_{3 \leq k \leq 9} k) \) ngram embeddings (if all of these ngrams have embeddings, which generally will be true for some, but not for most positions). A sequence of \( n \) characters is then represented as a sequence of \( n \) such position embeddings.

4.2 Experiments

We again use the embeddings corresponding to A-RANDOM in Table 2. We randomly selected 2,000,000 contexts of size 40 characters from Wikipedia. We then created a noise context for each of the 2,000,000 contexts by replacing one character at position \( i \) (15 \( \leq i \) \( \leq 25 \), uniformly sampled) with space (probability \( p = .5 \)) or a random character otherwise. Finally, we selected 1000 noise contexts randomly and computed their nearest neighbors among the 4,000,000 contexts (excluding the noise query). We did this in two different conditions: for a bag-of-ngram representation of the context (sum of all character ngrams) and for the concatenation of 11 position embeddings, those between 15 and 25. Our evaluation measure is mean reciprocal rank of the clean context corresponding to the noise context. This simulates a text denoising experiment: if the clean context has rank 1, then the noisy context can be corrected.

Table 4 shows that sequence-preserving position embeddings perform better than bag-of-ngram representations.

Table 5 shows an example of a context in which position embeddings did better than bag-of-ngrams, demonstrating that sequence information is lost by bag-of-ngram representations, in this case the exact position of “Seahawks”.

Table 3 gives further intuition about the type of information position embeddings contain, showing the ngram embeddings closest to selected position embeddings; e.g., “estseller” (the first 9-gram on the line numbered 3 in the table) is closest to the embedding of position 3 (corresponding to the first “s” of “best-selling”). The kNN search space is restricted to alphanumeric ngrams.

5 Discussion

Single vs. multiple segmentation. The motivation for multiple segmentation is exhaustive coverage of the space of possible segmentations. An alternative approach would be to attempt to find a single optimal segmentation.

Our intuition is that in many cases overlapping segments contain complementary information. Table 6 gives an example. Historic exchange rates are different from floating exchange rates and this is captured by the low similarity of the ngrams ic@exchang and ing@exchan. Also, the meaning of “historic” and “floating” is non-compositional: these two words take on a specialized meaning in the context of exchange rates. The same is true for “rates”: its meaning is not its general meaning in the compound “exchange rates”. Thus, we need a representation that contains overlapping segments, so that “historic” / “floating” and “exchange” can disambiguate each other in the first part of the compound and “exchange” and “rates” can disambiguate each other in the second part of the compound. A single segmentation cannot capture these overlapping ngrams.

What text-type are tokenization-free approaches most promising for? The reviewers thought that language and text-type were badly chosen for this paper. Indeed, a morphologically complex language like Turkish and a noisy text-type like Twitter would seem to be better choices for a paper on robust text representation.

However, robust word representation methods like FTX are effective for within-token generalization, in particular, effective for both complex morphology and OOVs. If linguistic variability and noise only occur on the token level, then a tokenization-free approach has fewer advantages.

On the other hand, the foregoing discussion of cross-token regularities and disambiguation applies to well-edited English text as much as it does to other languages and other text-types as the example of “exchange” shows (which is disambiguated by prior context and provides disambiguating context to following words) and as is also exemplified by lines 5–9 in Table 2 (right).

Position embeddings were independently proposed by Kalchbrenner et al. (2016), see Section 3.6 of their paper.
Table 3: Nearest ngram embeddings (rank \( r \in [1, 5] \)) of the position embeddings for “POS”, the positions 2/3 (best), 15/16 (monthly), 23/24 (comic), 29/30 (book) and 34/35 (publications) in the Wikipedia excerpt “best-selling monthly comic book publications sold in North America”

| POS | \( r = 1 \) | \( r = 2 \) | \( r = 3 \) | \( r = 4 \) | \( r = 5 \) |
|-----|-------------|-------------|-------------|-------------|-------------|
| 2   | wealthies  | accolades  | bestseller  | bestseller  | Billboard  |
| 3   | estseller  | wealthies  | bestseller  | accolades  | bestseller  |
| 15  | fortnight  | afternoon  | overnight    | allowance   | Saturdays   |
| 16  | n          | fortnight  | afternon    | Saturdays   | Wednesday   | magazines  |
| 23  | o          | superhero | ntagraphi   | adventure   | Astonishi   | bestseller |
| 24  | m          | superhero | ntagraphi   | anthology   | Daredevil   | Astonishi  |
| 29  | o          | anthology  | paperback   | superhero   | Lovecraft   | tagraphic  |
| 30  | o          | anthology  | paperback   | tagraphic   | Lovecraft   | agraphics  |
| 34  | o          | antagraphi | agraphics   | paperback   | hardcover   | aweekly    |
| 35  | b          | publishing | ublishers   | ub illicitio | antagraph | aperbacks |

Table 4: Mean reciprocal rank of text denoising experiment for bag-of-ngram text representation and position embedding text representation

|           | bag-of-ngram | position embeddings |
|-----------|--------------|---------------------|
| MRR       | .64          | .76                 |

Still, this paper does not directly evaluate the different contributions that within-token character ngram embeddings vs. cross-token character ngram embeddings make, so this is an open question. One difficulty is that few corpora are available that allow the separate evaluation of white-space tokenization errors; e.g., OCR corpora generally do not distinguish a separate class of white-space tokenization errors.

Position embeddings vs. phrase/sentence embeddings. Position embeddings may seem to stand in opposition to phrase/sentence embeddings. For many tasks, we need a fixed length representation of a longer sequence; e.g., sentiment analysis models compute a fixed-length representation to classify a sentence as positive / negative.

To see that position embeddings are compatible with fixed-length embeddings, observe first that, in principle, there is no difference between word embeddings and position embeddings in this respect. Take a sequence that consists of, say, 6 words and 29 characters. The initial representation of the sentence has length 6 for word embeddings and length 29 for position embeddings. In both cases, we need a model that reduces the variable length sequence into a fixed length vector at some intermediate stage and then classifies this vector as positive or negative.

So assessing position embeddings is not a question of variable-length vs. fixed-length representations. Word embeddings give rise to variable-length representations too. The question is solely whether the position-embedding representation is a more effective representation.

A more specific form of this argument concerns architectures that compute fixed-length representations of subsequences on intermediate levels, e.g., CNNs. The difference between position-embedding-based CNNs and word-embedding-based CNNs is that the former have access to a vastly increased range of subsequences, including substrings of words (making it easier to learn that “exchange” and “exchanges” are related) and cross-token character strings (making it easier to learn that “exchange rate” is noncompositional). Here, the questions are: (i) how useful are subsequences made available by position embeddings and (ii) is the increased level of noise and decreased efficiency caused by many useless subsequences worth the information gained by adding useful subsequences.

Independence of training and utilization. We note that our proposed training and utilization methods are completely independent. Position embeddings can be computed from any set of character-ngram-embeddings (including FTX) and our character ngram learning algorithm could be used for applications other than position embeddings, e.g., for computing word embeddings.

Context-free vs. context-sensitive embeddings. Word embeddings are context-free: a given word \( w \) like “king” is represented by the same embedding independent of the context in which \( w \) occurs. Position embeddings are context-free as well: if the maximum size of a character ngram is \( k_{\text{max}} \), then the position embedding of the center of
Table 5: Illustration of the result in Table 4. “rep. space” = “representation space”. We want to correct the error in the corrupted “noise” context (line 2) and produce “correct” (line 1). The nearest neighbor to line 2 in position-embedding space is the correct context (line 3, r = 1). The nearest neighbor to line 2 in bag-of-ngram space is incorrect (line 4, r = 1) because the precise position of “Seahawks” in the query is not encoded. The correct context in bag-of-ngram space is instead at rank r = 6 (line 5). “similarity” is average cosine (over eleven position embeddings) for position embeddings.

Table 6: Cosine similarity of ngrams that cross word boundaries and disambiguate polysemous words. The tables show three disambiguating ngrams for “exchange” and “rates” that have different meanings as indicated by low cosine similarity. In phrases like “floating exchange rates” and “historic exchange rates”, disambiguating ngrams overlap. Parts of the word “exchange” are disambiguated by preceding context (ic@exchan, ing@exchan) and parts of “exchange” provide context for disambiguating “rates” (xchange@ra).

Processing text vs. speech vs. images. Gillick et al. (2016) write: “It is worth noting that noise is often added . . . to images . . . and speech where the added noise does not fundamentally alter the input, but rather blurs it. [bytes allow us to achieve] something like blurring with text.” It is not clear to what extent blurring on the byte level is useful; e.g., if we blur the bytes of the word “university” individually, then it is unlikely that the noise generated is helpful in, say, providing good training examples in parts of the space that would otherwise be unexplored. In contrast, the text representation we have introduced in this paper can be blurred in a way that is analogous to images and speech. Each embedding of a position is a vector that can be smoothly changed in every direction. We have showed that the similarity in this space gives rise to natural variation.

Prospects for completely tokenization-free processing. We have focused on whitespace tokenization and proposed a whitespace-tokenization-free method that computes embeddings of higher quality than tokenization-based methods. However, there are many properties of edited text beyond whitespace tokenization that a complex rule-based tokenizer exploits. In a small explorative experiment, we replaced all non-alphanumeric characters with whitespace and repeated experiment A-ORIGINAL for this setting. This results in an $F_1$ of .593, better by .01 than the best tokenization-free method. This illustrates that there is still a lot of work to be done before we can obviate the need for tokenization.
6 Related work

In the following, we will present an overview of work on character-based models for a variety of tasks from different NLP areas.

The history of character-based research in NLP is long and spans a broad array of tasks. Here we make an attempt to categorize the literature of character-level work into three classes based on the way they incorporate character-level information into their computational models. The three classes we identified are: *tokenization-based models*, *bag-of-n-gram models* and *end-to-end models*. However, there are also mixtures possible, such as tokenization-based bag-of-n-gram models or bag-of-n-gram models trained end-to-end.

On top of the categorization based on the underlying representation model, we sub-categorize the work within each group into six abstract types of NLP tasks (if possible) to be able to compare them more directly. These task types are the following:

1. **Representation learning for character sequences:** Work in this category attempts to learn a generic representation for sequences of characters in an unsupervised fashion on large corpora. Learning such representations has been shown to be useful for solving downstream NLP tasks (Collobert et al., 2011; Kocmi and Bojar, 2016; Mikolov et al., 2013).

2. **Sequence-to-sequence generation:** This category includes a variety of NLP tasks mapping variable-length input sequences to variable-length output sequences. Tasks in this category include those that are naturally suited for character-based modeling, such as grapheme-to-phoneme conversion (Bisani and Ney, 2008; Kaplan and Kay, 1994; Sejnowski and Rosenberg, 1987), transliteration (Haizhou et al., 2004; Knight and Graehl, 1998; Sajjad, 2012), spelling normalization for historical text (Pettersson et al., 2014), or diacritics restoration (Mihalcea and Nastase, 2002). Machine translation and question answering are other major examples of this category.

3. **Sequence labeling:** NLP tasks that assign a categorical label to a part of a sequence (a character, a sequence of characters or a token) are included within this group. Part-of-speech tagging, named entity recognition, morphological segmentation and word alignment are exemplary instances of sequence labeling.

4. **Language modeling:** The other type of task for that character-based modeling has been important for a very long time is language modeling. In 1951, Shannon (Shannon, 1951) proposed a guessing game asking “How well can the next letter of a text be predicted when the preceding N letters are known?” This is basically the task of character-based language modeling.

5. **Information retrieval:** The information retrieval task is to retrieve the most relevant character sequence to a given character sequence (the query) from a set of existing character sequences.

6. **Sequence classification:** In this type of NLP task, a categorical label will be assigned to a character sequence (e.g., a document). Instances of this type are language identification, sentiment classification, authorship attribution, topic classification and word sense disambiguation.

6.1 **Tokenization-based Approaches**

We group character-level models that are based on tokenization as a necessary preprocessing step in the category of tokenization-based approaches. Those can be either models with tokenized text as input or models that operate only on individual tokens (such as studies on morphological inflection of words).

In the following paragraphs, we cover a subset of tokenization-based models that are used for representation learning, sequence-to-sequence generation, sequence labeling, language modeling, and sequence classification tasks.

**Representation learning for character sequences.** Creating word representations based on characters has attracted much attention recently.
Such representations can model rare words, complex words, out-of-vocabulary words and noisy texts. In comparison to traditional word representation models that learn separate vectors for word types, character-level models are more compact as they only need vector representations for characters as well as a compositional model.

Various neural network architectures have been proposed for learning token representations based on characters. Examples of such architectures are averaging character embeddings, (bidirectional) recurrent neural networks (RNNs) (with or without gates) over character embeddings and convolutional neural networks (CNNs) over character embeddings. Studies on the general task of learning word representations from characters include (Chen et al., 2015; Ling et al., 2015b; Luong et al., 2013; Vylomova et al., 2016). These character-based word representations are often combined with word embeddings and integrated into a hierarchical system, such as hierarchical RNNs or CNNs or combinations of both to solve other task types. We will provide more concrete examples in the following paragraphs.

**Sequence-to-sequence generation (machine translation).** Character-based machine translation is no new topic. Using character-based methods has been a natural way to overcome challenges like rare words or out-of-vocabulary words in machine translation. Traditional machine translation models based on characters or character n-grams have been investigated by (Lepage and Denoual, 2005; Tiedemann and Nakov, 2013; Vilar et al., 2007). Neural machine translation with character-level and subword units has become popular recently (Costa-Jussà and Fonollosa, 2016; Luong and Manning, 2016; Sennrich et al., 2016; Vylovoma et al., 2016). In such neural models, using a joint attention/translation model makes joint learning of alignment and translation possible (Ling et al., 2015b).

Both hierarchical RNNs (Ling et al., 2015b; Luong and Manning, 2016) and combinations of CNNs and RNNs have been proposed for neural machine translation (Costa-Jussà and Fonollosa, 2016; Vylomova et al., 2016).

**Sequence labeling.** Examples of early efforts on sequence labeling using tokenization-based models include: bilingual character-level alignment extraction (Church, 1993); unsupervised multilingual part-of-speech induction based on characters (Clark, 2003); part-of-speech tagging with subword/character-level information (Andor et al., 2016; Hardmeier, 2016; Ratnaparkhi and others, 1996); morphological segmentation and tagging ( Cotterell et al., 2016; Müller et al., 2013); and identification of language inclusion with character-based features (Alex, 2005).

Recently, various hierarchical character-level neural networks have been applied to a variety of sequence labeling tasks.

- Recurrent neural networks are used for part-of-speech tagging (Ling et al., 2015a; Plank et al., 2016; Yang et al., 2016b), named entity recognition (Lample et al., 2016; Yang et al., 2016b), chunking (Yang et al., 2016b) and morphological segmentation/inflection generation (Cao and Rei, 2016; Faruqui et al., 2016; Kann et al., 2016; Kann and Schütze, 2016a; Kann and Schütze, 2016b; Rastogi et al., 2016; Wang et al., 2016; Yu et al., 2016). Such hierarchical RNNs are also used for dependency parsing (Ballesteros et al., 2015). This work has shown that morphologically rich languages benefit from character-level models in dependency parsing.

- Convolutional neural networks are used for part-of-speech tagging (dos Santos and Zadrozny, 2014) and named entity recognition (dos Santos and Guimaraes, 2015).

- The combination of RNNs and CNNs is used, for instance, for named entity recognition.

**Language modeling.** Earlier work on sub-word language modeling has used morpheme-level features for language models (Bilmes and Kirchhoff, 2003; Ircing et al., 2001; Kirchhoff et al., 2006; Shaik et al., 2013; Vergyri et al., 2004). In addition, hybrid word/n-gram language models for out-of-vocabulary words have been applied to speech recognition (Hirsimäki et al., 2006; Kombrink et al., 2010; Parada et al., 2011; Shaik et al., 2011). Furthermore, characters and character n-grams have been used as input to restricted boltzmann machine-based language models for machine translation (Sperr et al., 2013).

More recently, character-level neural language modeling has been proposed by a large body of work (Bojanowski et al., 2015; Botha and Blunsom, 2014; Kim et al., 2016; Ling et al., 2015a; Mikolov et al., 2012; Shaik et al., 2013; Sperr
et al., 2013). Although most of this work is using RNNs, there exist architectures that combine CNNs and RNNs (Kim et al., 2016). While most of these studies combine the output of the character model with word embeddings, the authors of (Kim et al., 2016) report that this does not help them for their character-aware neural language model. They use convolution over character embeddings followed by a highway network (Srivastava et al., 2015) and feed its output into a long short-term memory network that predicts the next word using a softmax function.

**Sequence classification.** Examples of tokenization-based models that perform sequence classification are CNNs used for sentiment classification (dos Santos and Gatti, 2014) and combinations of RNNs and CNNs used for language identification (Jaech et al., 2016).

### 6.2 Bag-of-n-gram Models

Character n-grams have a long history as features for specific NLP applications, such as information retrieval. However, there is also work on representing words or larger input units, such as phrases, with character n-gram embeddings. Those embeddings can be within-token or cross-token, i.e., there is no tokenization necessary.

Although such models learn/use character n-gram embeddings from tokenized text or short text segments, to represent a piece of text, the occurring character n-grams are usually summed without the need for tokenization. For example, the phrase “Berlin is located in Germany” is represented with character 4-grams as follows: “Berlin is located in Germany.” Note that the input has not been tokenized and there are n-grams spanning token boundaries. We also include non-embedding approaches using bag-of-n-grams within this group as they go beyond word and token representations.

In the following, we explore a subset of bag-of-n-gram models that are used for representation learning, information retrieval, and sequence classification tasks.

**Representation learning for character sequences.** An early study in this category of character-based models is (Schütze, 1992). Its goal is to create corpus-based fixed-length distributed semantic representations for text. To train k-gram embeddings, the top character k-grams are extracted from a corpus along with their cooccurrence counts. Then, singular value decomposition (SVD) is used to create low dimensional k-gram embeddings given their cooccurrence matrix. To apply them to a piece of text, the k-grams of the text are extracted and their corresponding embeddings are summed. The study evaluates the k-gram embeddings in the context of word sense disambiguation.

A more recent study (Wieting et al., 2016) trains character n-gram embeddings in an end-to-end fashion with a neural network. They are evaluated on word similarity, sentence similarity and part-of-speech tagging.

Training character n-gram embeddings has also been proposed for biological sequences (Asgari and Mofrad, 2015; Asgari and Mofrad, 2016) for a variety of bioinformatics tasks.

**Information retrieval.** As mentioned before, character n-gram features are widely used in the area of information retrieval (Cavnar, 1995; Chen et al., 1997; Damashek, 1995; De Heer, 1974; McNamee and Mayfield, 2004; Kettunen et al., 2010).

**Sequence classification.** Bag-of-n-gram models are used for language identification (Baldwin and Lui, 2010; Dunning, 1994), topic labeling (Kou et al., 2015), authorship attribution (Peng et al., 2003), word/text similarity (Bojanowski et al., 2017; Eyecioglu and Keller, 2016; Wieting et al., 2016) and word sense disambiguation (Schütze, 1992).

### 6.3 End-to-end Models

Similar to bag-of-n-gram models, end-to-end models are tokenization-free. Their input is a sequence of characters or bytes and they are directly optimized on a (task-specific) objective. Thus, they learn their own, task-specific representation of the input sequences. Recently, character-based end-to-end models have gained a lot of popularity due to the success of neural networks.

We explore the subset of these models that are used for sequence generation, sequence labeling, language modeling and sequence classification tasks.

**Sequence-to-sequence generation.** In 2011, the authors of (Sutskever et al., 2011) already proposed an end-to-end model for generating text. They train RNNs with multiplicative connections on the task of character-level language modeling. Afterwards, they use the model to generate text.
and find that the model captures linguistic structure and a large vocabulary. It produces only a few uncapsitalized non-words and is able to balance parentheses and quotes even over long distances (e.g., 30 characters). A similar study by (Graves, 2013) uses a long short-term memory network to create character sequences.

Recently, character-based neural network sequence-to-sequence models have been applied to instances of generation tasks like machine translation (Chung et al., 2016b; Kalchbrenner et al., 2016; Lee et al., 2016; Wu et al., 2016; Yang et al., 2016a) (which was previously proposed on the token-level (Sutskever et al., 2014)), question answering (Golub and He, 2016) and speech recognition (Bahdanau et al., 2016; Chan et al., 2016; Eyben et al., 2009; Graves and Jaitly, 2014).

**Sequence labeling.** Character and character n-gram-based features were already proposed in 2003 for named entity recognition in an end-to-end manner using a hidden markov model (Klein et al., 2003). More recently, the authors of (Ma and Hovy, 2016) have proposed an end-to-end neural network based model for named entity recognition and part-of-speech tagging. An end-to-end model is also suggested for unsupervised, language-independent identification of phrases or words (Gerdjikov and Schulz, 2016).

A prominent recent example of neural end-to-end sequence labeling is the paper by (Gillick et al., 2016) about multilingual language processing from bytes. A window is slid over the input sequence, which is represented by its byte string. Thus, the segments in the window can begin and end mid-word or even mid-character. The authors apply the same model for different languages and evaluate it on part-of-speech tagging and named entity recognition.

**Language modeling.** The authors of (Chung et al., 2016a) propose a hierarchical multiscale recurrent neural network for language modeling. The model uses different timescales to encode temporal dependencies and is able to discover hierarchical structures in a character sequence without explicit tokenization. Other studies on end-to-end language models include (Kalchbrenner et al., 2016; Miyamoto and Cho, 2016).

**Sequence classification.** Another recent end-to-end model uses character-level inputs for document classification (Xiao and Cho, 2016; Zhang and LeCun, 2015; Zhang et al., 2015). To capture long-term dependencies of the input, the authors combine convolutional layers with recurrent layers. The model is evaluated on sentiment analysis, ontology classification, question type classification and news categorization.

End-to-end models are also used for entity typing based on the character sequence of the entity’s name (Yaghoobzadeh and Schütze, 2017).

### 7 Conclusion

We introduced the first generic text representation model that is completely nonsymbolic, i.e., it does not require the availability of a segmentation or tokenization method that identifies words or other symbolic units in text. This is true for the training of the model as well as for applying it when computing the representation of a new text. In contrast to prior work that has assumed that the sequence-of-character information captured by character ngrams is sufficient, position embeddings also capture sequence-of-ngram information. We showed that our model performs better than prior work on entity typing and text denoising.

**Future work.**

The most important challenge that we need to address is how to use nonsymbolic text representation for tasks that are word-based like part-of-speech tagging. This may seem like a contradiction at first, but Gillick et al. (2016) have shown how character-based methods can be used for “symbolic” tasks. We are currently working on creating an analogous evaluation for our nonsymbolic text representation.

### 7.1 Acknowledgments

This work was supported by DFG (SCHUE 2246/10-1) and Volkswagenstiftung. We are grateful for their comments to: the anonymous reviewers, Ehsan Asgari, Annemarie Friedrich, Helmut Schmid, Martin Schmitt and Yadollah Yaghoobzadeh.

### 8 Appendix

**8.1 Sparseness in tokenization-free approaches**

Nonsymbolic representation learning does not preprocess the training corpus by means of tokenization and considers many ngrams that would be ignored in tokenized approaches because they span token boundaries. As a result, the number of
Figure 1: The graph shows how many different character ngrams ($k_{\text{min}} = 3$, $k_{\text{max}} = 10$) occur in the first $n$ bytes of the English Wikipedia for symbolic (tokenization-based) vs. nonsymbolic (tokenization-free) processing. The number of ngrams is an order of magnitude larger in the nonsymbolic approach. We counted all segments, corresponding to $m = \infty$. For the experiments in the paper ($m = 50$), the number of nonsymbolic character ngrams is smaller.

ngrams that occur in a corpus is an order of magnitude larger for tokenization-free approaches than for tokenization-based approaches. See Figure 1.

8.2 Experimental settings

**W2V hyperparameter settings.** size of word vectors: 200, max skip length between words: 5, threshold for occurrence of words: 0, hierarchical softmax: 0, number of negative examples: 5, threads: 50, training iterations: 1, min-count: 5, starting learning rate: .025, classes: 0

**FTX hyperparameter settings.** learning rate: .05, lrUpdateRate: 100, size of word vectors: 200, size of context window: 5, number of epochs: 1, minimal number of word occurrences: 5, number of negatives sampled: 5, max length of word ngram: 1, loss function: ns, number of buckets: 2,000,000, min length of char ngram: 3, max length of char ngram: 6, number of threads: 50, sampling threshold: .0001

We ran some experiments with more epochs, but this did not improve the results.

8.3 Other hyperparameters

We did not tune $N_o = 200$, but results are highly sensitive to the value of this parameter. If $N_o$ is too small, then beneficial conflations (collapse punctuation marks, replace all digits with one symbol) are not found. If $N_o$ is too large, then precision suffers – in the extreme case all characters are collapsed into one.

We also did not tune $m = 50$, but we do not consider results to be very sensitive to the value of $m$ if it is reasonably large. Of course, if a larger range of character ngram lengths is chosen, i.e., a larger interval $[k_{\text{min}}, k_{\text{max}}]$, then at some point $m = 50$ will not be sufficient and possible segmentations would not be covered well enough in sampling.

The type of segmentation used in multiple segmentation can also be viewed as a hyperparameter. An alternative to random segmentation would be exhaustive segmentation, but a naive implementation of that strategy would increase the size of the training corpus by several orders of magnitude. Another alternative is to choose one fixed size, e.g., 4 or 5 (similar to (Schütze, 1992)). Many of the nice disambiguation effects we see in Table 2 (right) and in Table 6 would not be possible with short ngrams. On the other hand, a fixed ngram size that is larger, e.g., 10, would make it difficult to get 100% coverage: there would be positions for which no position embedding can be computed.

References

Beatrice Alex. 2005. An unsupervised system for identifying English inclusions in German text. In Annual Meeting of the Association for Computational Linguistics.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally normalized transition-based neural networks. In Annual Meeting of the Association for Computational Linguistics.

Ehsaneddin Asgari and Mohammad R. K. Mofrad. 2015. Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS ONE, 10(11):1–15.

Ehsaneddin Asgari and Mohammad R. K. Mofrad. 2016. Comparing fifty natural languages and twelve genetic languages using word embedding language divergence (WELD) as a quantitative measure of language distance. In Workshop on Multilingual and Cross-lingual Methods in NLP, pages 65–74.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and Yoshua Bengio. 2016. End-to-end attention-based large vocabulary speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 4945–4949.
Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun, Aitao Chen, Jianzhang He, Liangjie Xu, Fredric C Gey, Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for support vector machines. In Conference of the North American Chapter of the Association for Computational Linguistics / Human Language Technologies, pages 229–237.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015. Improved transition-based parsing by modeling characters instead of words with lstms. In Conference on Empirical Methods in Natural Language Processing.

Jeff Bilmes and Katrin Kirchhoff. 2003. Factored language models and generalized parallel backoff. In Conference of the North American Chapter of the Association for Computational Linguistics / Human Language Technologies.

Maximilian Bisani and Hermann Ney. 2008. Joint-sequence models for grapheme-to-phoneme conversion. Speech Communication, 50(5):434–451.

Piotr Bojanowski, Armand Joulin, and Tomas Mikolov. 2015. Alternative structures for character-level rnns. CoRR, abs/1511.06303.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics.

Jan A Botha and Phil Blunsom. 2014. Compositional morphology for word representations and language modelling. In International Conference on Machine Learning.

Kris Cao and Marek Rei. 2016. A joint model for word embedding and word morphology. Computing Research Repository (arXiv.org), abs/1606.02601.

W. Cavnar. 1995. Using an n-gram-based document representation with a vector processing retrieval model. NIST SPECIAL PUBLICATION SP, pages 269–269.

William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. 2016. Listen, attend and spell: A neural network for large vocabulary conversational speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 4960–4964.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for support vector machines. ACM TIST, 2(3):27:1–27:27.

Aitao Chen, Jianzhang He, Liangjie Xu, Fredric C Gey, and Jason Meggs. 1997. Chinese text retrieval without using a dictionary. ACM SIGIR Forum, 31(S1):42–49.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun, and Huan-Bo Luan. 2015. Joint learning of character and word embeddings. In International Joint Conference on Artificial Intelligence, pages 1236–1242.

Grzegorz Chrupala. 2013. Text segmentation with character-level text embeddings. CoRR, abs/1309.4628.

Grzegorz Chrupala. 2014. Normalizing tweets with edit scripts and recurrent neural embeddings. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 2: Short Papers, pages 680–686.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. 2016a. Hierarchical multiscale recurrent neural networks. CoRR, abs/1609.01704.

Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio. 2016b. A character-level decoder without explicit segmentation for neural machine translation. In Annual Meeting of the Association for Computational Linguistics.

Kenneth Ward Church. 1993. Charalign: A program for aligning parallel texts at the character level. In Annual Meeting of the Association for Computational Linguistics, pages 1–8.

Alexander Clark. 2003. Combining distributional and morphological information for part of speech induction. In Conference of the European Chapter of the Association for Computational Linguistics, pages 59–66.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12:2493–2537.

Marta R. Costa-Jussà and José A. R. Fonollosa. 2016. Character-based neural machine translation. In Annual Meeting of the Association for Computational Linguistics.

Ryan Cotterell, Tim Vieira, and Hinrich Schütze. 2016. A joint model of orthography and morphological segmentation. In Conference of the North American Chapter of the Association for Computational Linguistics / Human Language Technologies.

M. Damashek. 1995. Gauging similarity with n-grams. language-independent categorization of text. Science, 267:843–848.

T Sun De Heer. 1974. Experiments with syntactic traces in information retrieval. Information Storage and Retrieval, 10(3-4):133–144.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman. 1990. Indexing by latent semantic analysis. JASIS, 41(6):391–407.

Cícero Nogueira dos Santos and Maira Gatti. 2014. Deep convolutional neural networks for sentiment analysis of short texts. In International Conference on Computational Linguistics, pages 69–78.
Alex Graves. 2013. Generating sequences with recurrent neural networks. *CoRR*, abs/1308.0850.

Li Haizhou, Zhang Min, and Su Jian. 2004. A joint source-channel model for machine transliteration. In *Annual Meeting of the Association for Computational Linguistics*, page 159.

Christian Hardmeier. 2016. A neural model for part-of-speech tagging in historical texts. In *COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan*, pages 922–931.

Teemu Hirsimäki, Mathias Creutz, Vesa Siivola, Mikko Kurimo, Sami Virpioja, and Janne Pylkönen. 2006. Unlimited vocabulary speech recognition with morph language models applied to finnish. *Computer Speech & Language*, 20(4):515–541.

Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In *SIGIR '99: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, August 15-19, 1999, Berkeley, CA, USA*, pages 50–57.

Pavel Ircing, Pavel Krbec, Jan Hajic, Josef Psutka, Sanjeev Khudanpur, Frederick Jelinek, and WJ Byrne. 2001. On large vocabulary continuous speech recognition of highly inflectional language-czech. In *Proceedings of the 7th European Conference on Speech Communication and Technology*, volume 1, pages 487–490. ISCA: International Speech Communication Association.

Aaron Jaech, George Mulcaire, Shobhit Hathi, Mari Ostendorf, and Noah A. Smith. 2016. Hierarchical character-word models for language identification. *CoRR*, abs/1608.03030.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aäron van den Oord, Alex Graves, and Koray Kavukcuoglu. 2016. Neural machine translation in linear time. *CoRR*, abs/1610.10099.

Katharina Kann and Hinrich Schütze. 2016a. MED: The LMU system for the SIGMORPHON 2016 shared task on morphological reinflection. In *SIGMORPHON Workshop*.

Katharina Kann and Hinrich Schütze. 2016b. Single-model encoder-decoder with explicit morphological representation for reinflection. In *Annual Meeting of the Association for Computational Linguistics*.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze. 2016. Neural morphological analysis: Encoding-decoding canonical segments. In *Conference on Empirical Methods in Natural Language Processing*.

Ronald M Kaplan and Martin Kay. 1994. Regular models of phonological rule systems. *Computational Linguistics*, 20(3):331–378.

Cícero Nogueira dos Santos and Bianca Zadrozny. 2014. Learning character-level representations for part-of-speech tagging. In *International Conference on Machine Learning*, pages 1818–1826.

Ted Dunning. 1994. Statistical identification of language. Technical Report MCCS 940-273, Computing Research Laboratory, New Mexico State.

Kilian Evang, Valerio Basile, Grzegorz Chrupala, and Johan Bos. 2013. Elephant: Sequence labeling for word and sentence segmentation. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL*, pages 1422–1426.

Asli Eyecioglu and Bill Keller. 2016. ASOBEK at SemEval-2016 task 1: Sentence representation with character n-gram embeddings for semantic textual similarity. In *SemEval-2016: The 10th International Workshop on Semantic Evaluation*, pages 1320–1324.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and Chris Dyer. 2016. Morphological inflection generation using character sequence to sequence learning. In *Conference of the North American Chapter of the Association for Computational Linguistics / Human Language Technologies*.

Stefan Gerdjikov and Klaus U Schulz. 2016. Corpus analysis without prior linguistic knowledge: unsupervised mining of phrases and subphrase structure. *CoRR*, abs/1602.05772.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amanrag Subramanya. 2016. Multilingual language processing from bytes. In *North American Chapter of the Association for Computational Linguistics*, pages 1296–1306, June.

David Golub and Xiadong He. 2016. Character-level question answering with attention. In *Conference on Empirical Methods in Natural Language Processing*.

Alex Graves and Navdeep Jaitly. 2014. Towards end-to-end speech recognition with recurrent neural networks. In *International Conference on Machine Learning*, pages 1764–1772.

Alex Graves. 2013. Generating sequences with recurrent neural networks. *CoRR*, abs/1308.0850.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze. 2016. Neural morphological analysis: Encoding-decoding canonical segments. In *Conference on Empirical Methods in Natural Language Processing*.

Ronald M Kaplan and Martin Kay. 1994. Regular models of phonological rule systems. *Computational Linguistics*, 20(3):331–378.

Cícero Nogueira dos Santos and Victor Guimarães. 2015. Boosting named entity recognition with neural character embeddings. In *Fifth Named Entity Workshop*, pages 25–33.
Kimmo Kettunen, Paul McNamee, and Feza Baskaya. 2010. Using syllables as indexing terms in full-text information retrieval. In Human Language Technologies - The Baltic Perspective - Proceedings of the Fourth International Conference Baltic HLT 2010, Riga, Latvia, October 7-8, 2010, pages 225–232.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. 2016. Character-aware neural language models. In AAAI Conference on Artificial Intelligence, pages 2741–2749.

Katrin Kirchhoff, Dimitra Vergyri, Jeff Bilmes, Kevin Duh, and Andreas Stolcke. 2006. Morphology-based language modeling for conversational arabic speech recognition. Computer Speech & Language, 20(4):589–608.

Dan Klein, Joseph Smarr, Huy Nguyen, and Christopher D. Manning. 2003. Named entity recognition with character-level models. In Computational Natural Language Learning, pages 180–183.

Kevin Knight and Jonathan Graehl. 1998. Machine transliteration. Computational Linguistics, 24(4):599–612.

Tom Kocmi and Ondřej Bojar. 2016. Subgram: Extending skip-gram word representation with sub-strings. In Petr Sojka, Aleš Horák, Ivan Kopeček, and Karel Pala, editors, Text, Speech, and Dialogue: 19th International Conference, TSD 2016, Brno , Czech Republic, September 12-16, 2016, Proceedings, pages 182–189. Springer.

Stefan Kombrink, Mirko Hannemann, Lukáš Burget, and Hynek Hefmanský. 2010. Recovery of rare words in lecture speech. In International Conference on Text, Speech and Dialogue, pages 330–337. Springer.

Wanqiu Kou, Fang Li, and Timothy Baldwin. 2015. Automatic labelling of topic models using word vectors and letter trigram vectors. In Asia Information Retrieval Societies Conference (AIRS), pages 253–264.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural architectures for named entity recognition. In Conference of the North American Chapter of the Association for Computational Linguistics / Human Language Technologies.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann. 2016. Fully character-level neural machine translation without explicit segmentation. CoRR, abs/1610.03017.

Yves Lepage and Etienne Denoaul. 2005. Purest ever example-based machine translation: Detailed presentation and assessment. Machine Translation, 19(3-4):251–282.

Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix factorization. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montréal, Quebec, Canada, pages 2177–2185.

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramon Fernández, Silvio Amir, Luis Marujo, and Tiago Luís. 2015a. Finding function in form: Compositional character models for open vocabulary word representation. In Conference on Empirical Methods in Natural Language Processing, pages 1520–1530.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W. Black. 2015b. Character-based neural machine translation. CoRR, abs/1511.04586.

Minh-Thang Luong and Christopher D. Manning. 2016. Achieving open vocabulary neural machine translation with hybrid word-character models. In Annual Meeting of the Association for Computational Linguistics.

Minh-Thang Luong, Richard Socher, and Christopher D. Manning. 2013. Better word representations with recursive neural networks for morphology. In Computational Natural Language Learning.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end sequence labeling via bi-directional lstm-cnns-crf. In Annual Meeting of the Association for Computational Linguistics.

Paul McNamee and James Mayfield. 2004. Character n-gram tokenization for european language text retrieval. Information Retrieval, 7(1-2):73–97.

Rada Mihalcea and Vivi Nastase. 2002. Letter level learning for language independent diacritics restoration. In Computational Natural Language Learning.

Tomas Mikolov, Ilya Sutskever, Anoop Deoras, Hai Son Le, Stefan Kombrink, and Jan Cernocky. 2012. Subword language modeling with neural networks.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, pages 3111–3119.

Yasumasa Miyamoto and Kyunghyun Cho. 2016. Gated word-character recurrent language model. CoRR, abs/1606.01700.

Shakir Mohamed. 2011. Generalised Bayesian matrix factorisation models. Ph.D. thesis, University of Cambridge, UK.

Thomas Müller, Helmut Schmid, and Hinrich Schütze. 2013. Efficient higher-order CRFs for morphological tagging. In Conference on Empirical Methods in Natural Language Processing, pages 322–332.
Carolina Parada, Mark Dredze, Abhinav Sethy, and Ariya Rastrow. 2011. Learning sub-word units for open vocabulary speech recognition. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pages 712–721.

Fuchun Peng, Dale Schuurmans, Shaojun Wang, and Vlado Keselj. 2003. Language independent authorship attribution using character level language models. In Conference of the European Chapter of the Association for Computational Linguistics, pages 267–274.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1532–1543.

Eva Pettersson, Beáta Meygesi, and Joakim Nivre. 2014. A multilingual evaluation of three spelling normalisation methods for historical text. In Proceedings of the 8th Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, LaTeCH@EACL 2014, April 26, 2014, Gothenburg, Sweden, pages 32–41.

Barbara Plank, Anders Sögard, and Yoav Goldberg. 2016. Multilingual part-of-speech tagging with bidirectional long short-term memory models and auxiliary loss. In Annual Meeting of the Association for Computational Linguistics.

Pushpendre Rastogi, Benjamin Van Durme, and Raman Arora. 2015. Multiview LSA: representation learning via generalized CCA. In NAACL HLT 2015, The 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 - June 5, 2015, pages 556–566.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner. 2016. Weighting finite-state transductions with neural context. In Conference of the North American Chapter of the Association for Computational Linguistics / Human Language Technologies, pages 623–633.

Adwait Ratnaparkhi et al. 1996. A maximum entropy model for part-of-speech tagging. In Conference on Empirical Methods in Natural Language Processing, volume 1, pages 133–142. Philadelphia, USA.

Hassan Sajjad. 2012. Statistical models for unsupervised, semi-supervised and supervised transliteration mining. Computational Linguistics.

Hinrich Schütze. 1992. Word space. In Advances in Neural Information Processing Systems, pages 895–902.

Hinrich Schütze. 2017. Nonsymbolic text representation. In Proceedings of the 2017 Conference European Chapter of the Association for Computational Linguistics.

Terrence J Sejnowski and Charles R Rosenberg. 1987. Parallel networks that learn to pronounce english text. Complex systems, 1(1):145–168.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword units. In Annual Meeting of the Association for Computational Linguistics.

M Ali Basha Shaik, Amr El-Desoky Moussa, Ralf Schlüter, and Hermann Ney. 2011. Hybrid language models using mixed types of sub-lexical units for open vocabulary german lvcsr. In Annual Conference of the International Speech Communication Association, pages 1441–1444.

M. Ali Basha Shaik, Amr El-Desoky Moussa, Ralf Schlüter, and Hermann Ney. 2013. Feature-rich sub-lexical language models using a maximum entropy approach for german LVCSR. In Annual Conference of the International Speech Communication Association, pages 3404–3408.

Claude E Shannon. 1951. Prediction and entropy of printed english. Bell Labs Technical Journal, 30(1):50–64.

Henning Sperr, Jan Niehues, and Alex Waibel. 2013. Letter n-gram-based input encoding for continuous space language models. In Workshop on Continuous Vector Space Models and their Compositionality, pages 30–39, August.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. 2015. Highway networks. In ICML 2015 Deep Learning Workshop.

Karl Stratos, Michael Collins, and Daniel J. Hsu. 2015. Model-based word embeddings from decompositions of count matrices. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pages 1282–1291.

Ilya Sutskever, James Martens, and Geoffrey E. Hinton. 2011. Generating text with recurrent neural networks. In International Conference on Machine Learning, pages 1017–1024.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems, pages 3104–3112.

Jörg Tiedemann and Preslav Nakov. 2013. Analyzing the use of character-level translation with sparse and noisy datasets. In Recent Advances in Natural Language Processing, RANLP 2013, 9-11 September, 2013, Hissar, Bulgaria, pages 676–684.
Dimitra Vergyri, Katrin Kirchhoff, Kevin Duh, and Andreas Stolcke. 2004. Morphology-based language modeling for arabic speech recognition. In Annual Conference of the International Speech Communication Association, volume 4, pages 2245–2248.

David Vilar, Jan-T. Peter, and Hermann Ney. 2007. Can we translate letters? In Workshop on Statistical Machine Translation.

Ekaterina Vylomova, Trevor Cohn, Xuanli He, and Gholamreza Haffari. 2016. Word representation models for morphologically rich languages in neural machine translation. CoRR, abs/1606.04217.

Linlin Wang, Zhu Cao, Yu Xia, and Gerard de Melo. 2016. Morphological segmentation with window LSTM neural networks. In AAAI Conference on Artificial Intelligence.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2016. Charagram: Embedding words and sentences via character n-grams. In Conference on Empirical Methods in Natural Language Processing.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Ł. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean. 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint.

Yijun Xiao and Kyunghyun Cho. 2016. Efficient character-level document classification by combining convolution and recurrent layers. CoRR, abs/1602.00367.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. 2016. Representation learning of knowledge graphs with entity descriptions. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., pages 2659–2665.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2015. Corpus-level fine-grained entity typing using contextual information. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 715–725.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2017. Multi-level representations for fine-grained typing of knowledge base entities. In Conference of the European Chapter of the Association for Computational Linguistics.

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. 2016a. A character-aware encoder for neural machine translation. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 3063–3070.

Zhilin Yang, Ruslan Salakhutdinov, and William W. Cohen. 2016b. Multi-task cross-lingual sequence tagging from scratch. CoRR, abs/1603.06270.

Lei Yu, Jan Buys, and Phil Blunsom. 2016. Online segment to segment neural transduction. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 1307–1316.

Xiang Zhang and Yann LeCun. 2015. Text understanding from scratch. arXiv preprint, 1502.01710.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. In Advances in Neural Information Processing Systems, pages 649–657.