Prevalence, incidence and survival of heart failure: a systematic review

Sophia Emmons-Bell,1 Catherine Johnson,1 Gregory Roth

ABSTRACT

Studies of the epidemiology of heart failure in the general population can inform assessments of disease burden, research, public health policy and health system care delivery. We performed a systematic review of prevalence, incidence and survival for all available population-representative studies to inform the Global Burden of Disease 2020. We examined population-based studies published between 1990 and 2020 using structured review methods and database search strings. Studies were sought in which heart failure was defined by clinical diagnosis using structured criteria such as the Framingham or European Society of Cardiology criteria, with studies using alternate case definitions identified for comparison. Study results were extracted with descriptive characteristics including age range, location and case definition. Search strings identified 42360 studies over a 30-year period, of which 790 were selected for full-text review and 125 met criteria for inclusion. 45 sources reported estimates of prevalence, 41 of incidence and 58 of mortality. Prevalence ranged from 0.2%, in a Hong Kong study of hospitalised heart failure patients in 1997, to 17.7%, in a US study of Medicare beneficiaries aged 65+ from 2002 to 2013. Collapsed estimates of incidence ranged from 0.1%, in the Épidémiologie de l’Insuffisance Cardiaque Avancée en Lorraine (EPICAL) study of acute heart failure in France among those aged 20–80 years in 1994, to 4.3%, in a US study of Medicare beneficiaries 65+ from 1994 to 2003. One-year heart failure case fatality ranged from 4% to 45% with an average of 33% overall and 24% for studies across all adult ages. Diagnostic criteria, case ascertainment strategy and demographic breakdown varied widely between studies. Prevalence, incidence and survival for heart failure varied widely across countries and studies, reflecting a range of study design. Heart failure remains a high prevalence disease among older adults with a high risk of death at 1 year.

INTRODUCTION

Studies of the epidemiology of heart failure in the general population can inform assessments of disease burden, research, public health policy and health system care delivery. Past investigations of the occurrence of heart failure in the community have most often been performed in the high-income world, however prevalence is projected to rise in low-income and middle-income countries as populations age and the burden of heart failure risk factors such as elevated blood pressure increases in the coming decades.¹ Heart failure is also likely to confer significant economic burden to individuals and health systems.²

The Global Burden of Disease (GBD) study produces comprehensive and comparable estimates of disease burden for 370 causes for 204 countries and territories from 1990 to 2020, using disease modelling methods.³ Regular reviews of published scientific studies are performed to identify data on disease burden, including for heart failure. A focus of this review is the systematic identification of all available data from all countries, with care taken to account for stratification by age and sex, and sought over long timeframes to capture secular trends. Particular attention is paid to variation in disease case definitions and how this may influence observations. Previous reviews by other groups have focused on subtypes of heart failure, specific age groups⁴ ⁵ ³ specific geographic regions⁶ ⁷ ⁸ or were restricted to prevalence rates only. To date, no review has included prevalence, incidence and rates of survival, covered all geographic regions and included studies from 1990 to the current day. Here, we report the results of such a systematic review identifying data sources to inform the GBD 2020 study estimates of heart failure.

METHODS

Our review was designed to address specific challenges in the reporting of heart failure burden for the general population. Epidemiological studies of heart failure vary in study design and clinical definition, complicating efforts to produce comparable estimates of disease burden. For example, definitions of heart failure are heterogeneous and include clinical criteria established before non-invasive imaging was widely available, such as the Framingham and the European Society of Cardiology criteria. Some population-based studies also identify heart failure by International Classification of Disease (ICD) or Read codes, which have been shown to vary in some populations from classic clinical criteria level,¹² and reveal differences between estimates of heart failure prevalence or incidence when applying different clinical scores.

Beginning in 2015, the GBD study has performed an annual systematic review of the literature from 1990 onward to identify all primary data sources with population-representative estimates of the prevalence, incidence or survival rates of heart failure. For this current analysis, we searched PubMed using structured search criteria from 1990 to 2020. Additionally, we included papers sent to us via the network of over 3500 GBD study collaborators or identified in the citations of high-impact studies identified by expert reviewers.

To ensure comparability between data sources, the GBD study defines a gold-standard case definition for each of its 370 reported causes. The case definition for heart failure was that of a clinical diagnosis of heart failure using structured criteria such as the Framingham, European Society of...
Table 1 Studies reporting heart failure prevalence identified in systematic review

Study	Location	Diagnostic criteria	Setting	Age range
High-income				
Cuthbert, 2019	East Yorkshire, UK	Read codes for signs and symptoms	Patients from a single practice	
Leibowitz, 2019	Israel	Signs and symptoms	Cohort from Jerusalem Longitudinal Cohort Study	Born 1920–1921
Lindmark, 2019	Sweden	ICD-10 codes	Electronic medical records	18+
Smeets, 2019	Belgium	ICPC codes	Patients in participating hospitals	
Cho, 2018	Republic of Korea	ICD-10 codes	Health insurance patient sample (HIRA-NPS)	19+
Danielsen, 2017	Reykjavik, Iceland	AGES-Reykjavik Study criteria	Random sample from census	Born 1907–1935
Einarsson, 2017	Iceland	Ageing Study criteria	Hjartavéns Ageing Study	
Khera, 2017	USA	ICD-9 codes	Representative sample of Medicare records	65+
Piccinni, 2017	Italy	ICD-9 codes	Patients from participating hospitals	14+
Stork, 2017	Germany	ICD-10 codes	Insurance records	
Taylor, 2017	Australia	ICPC codes	Patients from randomly sampled practices	45+
Lee, 2016	Republic of Korea	ICD-10 codes	Health insurance records	19+
Tuppin, 2016	France	ICD-10 codes	Insurance records	
Jiménez-García, 2014	Madrid, Spain	Chart extraction	Public health system database	
Khan, 2014	USA	Signs and symptoms	Random sample of Medicare beneficiaries	65+
Tiller, 2013	Germany	Signs and symptoms	Cohort study in one community	
Zarrinkoub, 2013	Stockholm, Sweden	ICD-10 codes	Public health system database	
Mureddu, 2012	Lazio, Italy	ESC 2005 criteria	Random sample by mail	65–84
Carmona, 2011	Madrid, Spain	ICPC codes	Electronic medical records	14+
Engelfriet, 2011	The Netherlands	ICPC codes and E-codes	Representative general practice registries	
Leibowitz, 2011	Israel	Signs and symptoms	Cohort from Jerusalem Longitudinal Cohort Study	Born 1920–1921
Alehagen, 2009	Southeast Sweden	Signs and symptoms	Survey of rural municipality	70–80
Anguita Sanchez, 2008	Spain	Framingham criteria	Registry of participating hospitals	45+
Knox, 2008	Australia	Signs and symptoms	Patients in randomly sampled practices	
Ammar, 2007	Minnesota, USA	Framingham criteria	Random sample of county	45+
Abhayaratna, 2006	Canberra, Australia	Self-report verified by record review	Random sample from electoral roll	60–85
Azevedo, 2006	Porto, Portugal	Signs and symptoms	Population health survey	45+
Celia, 2005	Portugal	ESC 1995 criteria	Random sampling, primary care centres	25+
Di Bari, 2004	Dicomano, Italy	ESC 1995 criteria	Survey of the elderly in small town	65+
McAlister, 2004	Scotland	Read codes for signs and symptoms	Patients from participating hospitals	18+
Murphy, 2004	Scotland	Read codes for signs and symptoms	Patients from participating hospitals	
Ni, 2003	USA	Self-report	National health statistics	18+
Redfield, 2003	Minnesota, USA	Chart extraction	Random sample of single county	45+
Celia, 2002	Madeira, Portugal	ESC 1995 criteria	Random sampling, primary care centres	25+
Cortina, 2001	Asturias, Spain	Signs and symptoms	Random sample from census	40+
Davies, 2001	West Midlands, England	ESC 1995 criteria	Sample from primary health centres	45+
Kitzman, 2001	USA	Signs and symptoms	Recruitment from participating field centres	65+
Mosterd, 1999	Rotterdam, The Netherlands	Signs and symptoms	Cohort study of single suburb	55+
Kupari, 1997	Helsinki, Finland	Signs and symptoms	Random sampling of residents	Born 1904, 1909 or 1914
Kannel, 1991	USA	Framingham criteria	Framingham study	

Continued
Cardiology or Boston criteria. Heart failure identified by ICD, International Classification of Primary Care (ICPC) or Read codes was included if the diagnosis was verified by a physician. This definition captures the American College of Cardiology/American Heart Association stage C and D, which includes patients with prior or current heart failure, regardless of treatment status.

We screened the titles and abstract of all studies for relevance, the presence of data of interest and study type. In full-text review, we screened for representativeness, diagnostic criteria and epidemiological methodology. We excluded papers that focused only on subpopulations like veterans, data that were not representative and biased geographic selections. Sampled study groups were included as long as sampling resulted in a representative population. We additionally excluded papers without extractable data, such as descriptive reports of registries or heart failure patients, or data at the wrong demographic level, such as estimates of heart failure prevalence stratified by ejection fraction.

We extracted estimates of prevalence, incidence and mortality, defined as case-fatality, with-condition mortality rate, excess mortality rate or standardised mortality ratios. We report first author, publication date, data measure, diagnosis used to identify heart failure, case ascertainment strategy and any demographic restrictions. Additionally, we report estimates of prevalence, incidence and 1 year case fatality, collapsed into the broadest available age and sex categories. When estimates were only available in detailed age or sex categories (such as 10-year age groups or both sexes), we calculated effective sample sizes from reported SE based on the Wilson Score Interval, and then collapsed cases and sample sizes to re-estimate a mean value. Site-years were calculated as the sum of years covered by study, measure and location (eg, Cuthbert et al, 2019, contributes three site-years to the UK as it reports data between 2015 and 2017).

Title/Abstract screening and full-text extraction were performed by separate reviewers. All included papers were reviewed by CJ and GR. We present the full list of studies evaluated in the systematic review in the online supplemental material. Neither patients nor the general public were involved in the design or conduct of this systematic review of the literature.

RESULTS

The PubMed search returned 42,360 studies through 15 May 2020, of which 790 were selected for full-text review and 125 included (online supplemental figure 1). Forty-five sources reported estimates of prevalence, 41 reported estimates of incidence and 58 reported estimates of mortality (tables 1–3). The included studies were published between 1991 and 2019 and represent 51 countries and 911 site-source-years of data.

Design of these studies varied. Seventeen used random sampling or surveys of entire municipalities. Thirty-nine studies used large administrative databases, such as insurance records or state-wide hospital discharges, to identify the study population. Sixteen studies were cohort-based, including the Framingham, Atherosclerosis Risk in Communities Study and Jerusalem Longitudinal Cohort study. Forty-five studies reported patients presenting to participating hospitals, such as a single referral centre or several cooperating sites.

One hundred one of the 125 included studies reported data from high-income regions, which includes Western Europe, North America, Australasia, Southern Latin America and high-income Asia Pacific. Four studies reported data from Central Europe, Eastern Europe and Central Asia; three from Latin America and the Caribbean; two from North Africa and the Middle East; three from South Asia; seven from Southeast Asia, East Asia and Oceania and one from sub-Saharan Africa. The most common locations represented were the USA (23 studies), the UK (8), China (7) and Israel (6). The demographic profile of included patients varied by study (tables 1–3). Some studies restricted to certain age groups, such as patients aged 65+ years or those born in 1920–1921, while others included patients of all ages. One study surveyed only women.

Figure 1 shows reported values of heart failure prevalence, separated by demographic profile (studies including patients of all ages; all adults, referring to patients aged 18 years and older and older adults, referring to patients 50 and older). When collapsed into the broadest reported age and sex groups, estimates of heart failure prevalence ranged from 0.002 per capita, in a Hong Kong study that enrolled hospitalised heart failure patients and estimated prevalence from the site’s catchment area, to 0.18 per capita, in a US study of Medicare beneficiaries aged 65+ years that captured heart failure with ICD codes (figure 1).

The five highest prevalence values reported were from studies focusing on patients aged 50+ years. Among studies limited to older adults, the average of reported prevalence values was 8.3%. Among studies limited to all adults, average reported prevalence was 3.4%. Among studies enrolling patients of all ages, average reported prevalence was 1.3%.

The most common locations reporting prevalence were the USA (five studies), Spain (four studies), Australia (three studies), Portugal (three studies), China (three studies) and Sweden (three studies). In prevalence studies, heart failure was diagnosed by signs and symptoms (including Framingham, ESC and Boston...
Table 2: Studies reporting heart failure incidence identified in systematic review

Study	Location	Diagnostic criteria	Setting	Age range
Central Europe, Eastern Europe and Central Asia Rywik, 1999	Poland	ICD-9 codes	National healthcare records	
High-income Huusko, 2019	Southwest Finland	ICD-10 codes	Electronic medical records	18+
Li, 2019	USA	Signs and symptoms	Sample from existing population-based studies	40+
Lindmark, 2019	Sweden	ICD-10 codes	Electronic medical records	18+
Magnussen, 2019	Western Europe	Self-report, signs and symptoms or ICD-10	Patients in four cohort studies	
Uijl, 2019	The Netherlands	ICD-9 and ICD-10 codes	Two cohort studies (MORGEN, Prospect)	
Conrad, 2018	UK	ICD-10 codes	Electronic medical records	16+
Hinton, 2018	England	Read codes for signs and symptoms	Patients in 164 participating centres	18+
Shah, 2018	Massachusetts, USA	Framingham criteria	Framingham offspring study	
Tsao, 2018	USA	Framingham criteria	Framingham original and offspring study	
Einarsson, 2017	Iceland	Ageing Study criteria	Hjartavín’s Ageing Study	
Khera, 2017	USA	ICD-9 codes	Representative sample of Medicare records	65+
Piccinni, 2017	Italy	ICD-9 codes	Patients from participating hospitals	14+
Stork, 2017	Germany	ICD-10 codes	Insurance records	
Nayor, 2016	Massachusetts, USA	Framingham criteria	Framingham offspring study	
Sanganaralingham, 2016	USA	ICD-9 codes	Commercial insurance database	
Ohlmeier, 2015	Germany	ICD-10 codes	Insurance records	
Barasa, 2014	Sweden	ICD-9 and ICD-10 codes	Hospital discharges, death registry	18–84
Borne, 2014	Malmo, Sweden	ICD-9 and ICD-10 codes	Cohort study (MDC)	Born 1923–1950
Corrao, 2014	Lombardy, Italy	ICD-9 codes	Health services database	
Khan, 2014	USA	Signs and symptoms	Random sample of Medicare beneficiaries	65+
Rautiainen, 2013	Sweden	ICD-10 codes	Cohort study of two counties	Women Born 1914–1948
Shah, 2013	USA	Cardiovascular Health Study criteria	Cohort study in six communities (MESA)	
Zarrinkoub, 2013	Stockholm, Sweden	ICD-10 codes	Public health system database	
Wasywich, 2010	New Zealand	ICD-9 codes	Public health system database	18+
Curtis, 2008	USA	ICD-9 codes	Representative sample of Medicare records	65+
Loehr, 2008	USA	ICD-9 codes	Population-based cohort (ARIC)	45–64
van Jaarsveld, 2006	Northern Netherlands	ICPC codes	Sample from participating GPs	57+
de Giuli, 2005	UK	Chart extraction	Sample from general practice database	45+
Bleumink, 2004	Rotterdam, The Netherlands	European Society of Cardiology 2001 criteria	Cohort study of single suburb	55+
Lee, 2004	Canada	ICD-9 codes	Hospital discharges, death registry	20–105
McAlistor, 2004	Scotland	Read codes for signs and symptoms	Patients from participating hospitals	
Murphy, 2004	Scotland	Read codes for signs and symptoms	Patients from participating hospitals	18+
Fox, 2001	South London, UK	European Society of Cardiology 1995 criteria	Registry of participating practices	
Senni, 1999	Minnesota, USA	Framingham criteria	Random sample of single county	
Zannad, 1999	Lorraine, France	Signs and symptoms	Patients from participating hospitals	20–80
Remes, 1992	Eastern Finland	Boston criteria	Patients from participating hospitals	45–74
Kannell, 1991	USA	Framingham criteria	Framingham study	
North Africa and Middle East Al Suwaidi, 2004	Qatar	Framingham criteria	Patients in referral hospital	
Southeast Asia, East Asia and Oceania Tseng, 2011	Taiwan (Province of China)	ICD-9 codes	Random sample of insurance registrar	20+
Hung, 2000	China	ICD-9 codes	Patients in 11 participating hospitals	

ARIC, Atherosclerosis Risk in Communities Study; GP, general practitioner; ICD, International Classification of Disease; MDC, Malmö Diet and Cancer; MESA, Multi-Ethnic Study of Atherosclerosis; MORGEN, Monitoring Project on Risk Factors for Chronic Diseases.
Table 3 Studies reporting heart failure mortality identified in systematic review

Study	Location	Diagnostic criteria	Setting	Age range
Central Europe, Eastern Europe and Central Asia	Poland	ESC 2012 criteria	Polish cohort of ESC registry	18+
Gierasinski, 2016	Poland	ESC 2012 criteria	Polish cohort of ESC registry	18+
Parenta, 2013	Czechia	Signs and symptoms	Patients from participating hospitals	
High-income	Canapea, 2019	Italy	Signs and symptoms	
	China	ICD-10 codes	Randomized nested trial (GISSI-HF)	18+
	Chen, 2019	Sweden	Swedish Heart Failure Registry	
	Sterck, 2017	Germany	ICD-10 codes	
	Nakano, 2016	Denmark	ICD-10 codes	18+
	Schmidt, 2016	Denmark	ICD-8 and ICD-10 codes	
	Stacewicz, 2016	Lombardy, Italy	Chart extraction	
	Aziona, 2015	Canada	ICD-10 codes	
	Berkovitch, 2015	Israel	Signs and symptoms	
	Cole, 2015	Massachusetts, USA	Framingham criteria	18+
	Olmen, 2015	Germany	ICD-10 codes	
	Vanhecke, 2015	Belgium	ESC 2015 criteria	18+
	Barasa, 2014	Sweden	ICD-9 and ICD-10 codes	18–84
	Corran, 2014	Lombardy, Italy	ICD-9 codes	
	Sartipy, 2014	Sweden	ICD-10 codes	
	Tappin, 2014	France	ICD-10 codes	
	Chamberlain, 2013	Minnesota, USA	Framingham criteria	
	Hoekstra, 2013	The Netherlands	ESC 208 criteria	18+
	Lasson, 2013	Finland	Signs and symptoms	
	Mason, 2013	France	WHD classification	
	McKinty, 2013	Alberta, Canada	ICD-9 and ICD-10 codes	18+
	McIntyre, 2013	Massachusetts, USA	Framingham criteria	18+
	Nakano, 2013	Denmark	ICD-10 codes	18+
	Oster, 2013	Israel	ICD-9 codes	
	Chen, 2011	USA	ICD-9 codes	65+
	Ezekowicz, 2011	Alberta, Canada	ICD-9 and ICD-10 codes	18+
	Gamble, 2011	Alberta, Canada	ICD-9 and ICD-10 codes	
	Goda, 2010	Tokyo, Japan	Signs and symptoms	
	Novack, 2010	Israel	ICD-9 codes	
	Tribouilloy, 2010	France	Framingham and ESC 1995 criteria	20+
	Wosnich, 2010	New Zealand	ICD-9 codes	
	Hjord, 2009	Scotland	ICD-9 and ICD-10 codes	
	Amsalem, 2008	Israel	Signs and symptoms	
	Ko, 2008	Ontario, Canada	Framingham criteria	20–105
	Dhiba, 2008	Japan	Signs and symptoms	18+
	Ammar, 2007	Minnesota, USA	Framingham criteria	45+
	Ruthven, 2006	USA	ICD-9 codes	65+
	van Jaarsveld, 2006	Northern Netherlands	ICD-9 codes	57+
	Bleimeier, 2004	Rotterdam, The Netherlands	ESC 2001 criteria	55+
	Lee, 2004	Ontario, Canada	ICD-9 codes	65+
	Shubha, 2004	Minnesota, USA	ICD-9 codes	35–84
	Sosa, 2004	UK	ESC 2001 criteria	
	Lee, 2003	Ontario, Canada	ICD-9 codes	
	Cowas, 2000	West London, England	Adapted ESC 1995 criteria	
	Heile, 2000	South Wales, Australia	ICD-9 and ICD-10 codes	
	Tsuchihashi, 2000	Japan	Framingham criteria	
	Alexandre, 1999	California, USA	ICD-9 codes	18+
	Latin America and Caribbean	San Paulo, Brazil	Signs and symptoms	80
	Lalljie, 2007	Jamaica	Framingham criteria	
	AHR, 2013	India	ESC 2012 criteria	
	South Asia	SCASTM1, 2006	India	
	SCASTM1, 2001	India	ESC 1995 criteria	
	Southeast Asia, East Asia and Oceania	China	Boston criteria	
	Ling, 2019	Hong Kong Special Administrative Region of China	Framingham criteria	18+
	Hai, 2016	Hong Kong	ICD-9 codes	
	Hung, 2000	China	ICD-9 codes	18+
	Sub-Saharan Africa	Malawi	Framingham criteria	
	Mkande, 2016	United Republic of Tanzania	Framingham criteria	

Notes: CMS, Centers for Medicare & Medicaid Services; DHFR, Danish Heart Failure Registry; ESC, European Society of Cardiology; GISSI-HF, Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico-Heart Failure; GP, general practitioner.
criteria, and chart review) in 26 studies, and by ICD, ICPC or Read codes in 17 studies (table 1). Sampling techniques for these studies included random sampling from primary care centres, random sampling from official census records, review of electronic medical records and medical surveys administered to entire towns or populations.

Figure 2 shows reported values of heart failure incidence, separated by demographic profile. Reported estimates of heart failure incidence ranged from 100/100 000 person-years, in the French EPICAL study of acute heart failure in those aged 20–80 years, to 4300/100 000 person-years in a US study of Medicare beneficiaries (figure 2). Among studies limited to older adults, the average of reported incidence values was 1600/100 000 person-years. Among studies limited to all adults, average incidence was 840/100 000 person-years. Among studies enrolling patients of all ages, average reported incidence was 460/100 000 person-years.

Common locations reporting heart failure incidence were the USA (12 studies), the UK (6), Sweden (4) and the Netherlands (3). Heart failure incidence was diagnosed by signs and symptoms (including Framingham, ESC and Boston criteria, and chart review) in 16 studies, and by ICD, ICPC or Read codes in 25 studies (table 2). In these studies, sampling techniques included random sample of insurance registrar, hospital and death registry, population-based cohort and analysis of linked public health systems databases.

Figure 3 shows reported values of 1-year heart failure case fatality, separated by demographic profile. Reported estimates of 1-year case fatality ranged from 4%, in a study that randomly sampled Minnesota residents, to 45%, in a 1994 study of acute heart failure admissions in Birmingham (figure 3). Among studies limited to older adults, the average of reported 1-year case fatality values was 33%. Among studies limited to all adults, average reported 1-year case fatality was 24%. Among studies

Figure 1 Reported prevalence of heart failure in 45 studies identified in systematic review.
enrolling patients of all ages, average reported 1-year case fatality was 33%.

Common locations reporting heart failure case fatality were the USA (seven studies), Canada (6), India (5) and Israel (4). One-year heart failure case fatality was diagnosed by signs and symptoms (including Framingham, ESC and Boston criteria, and chart review) in 25 studies, and by ICD, ICPC or Read codes in 23 studies (table 3). In these studies, sampling techniques included random sample of primary or specialty care centres, review of electronic medical records or insurance records and medical surveys administrated to entire towns or populations.

Studies from 23 countries report estimates of heart failure prevalence or incidence (online supplemental figure 2). Additionally, studies from 23 countries report estimates of heart failure mortality (online supplemental figure 3). Figure 4 shows the number of data-years contributed by each study, coloured by geographic region. Of 911 total site-years of data, 817 were from high-income locations (figure 4). Studies varied in case ascertained criteria, heart failure diagnosis type, epidemiological design and demographic breakdown. Several papers reported on long-running studies like Framingham or the AGES-Reykjavik study, while others were estimates from a single year or site. Many studies included all patients managed for heart failure by participating hospitals, general practitioners or clinics; these often provided an estimate of catchment area to calculate prevalence or incidence. Some studies used large insurance databases or national administrative healthcare records to identify heart failure patients. Still others were reports of community-based surveys that invited patients to conduct a health screen and heart failure assessment. Many studies did not report specific diagnostic criteria beyond physician diagnosis and are noted as ‘signs and symptoms’ in the table. The age and sex breakdown of heart failure cases and sample sizes differed by study and were not always reported in granular detail; aggregated estimates reflect this variation.

DISCUSSION

Our prospective systematic review identified 125 studies reporting prevalence, incidence or mortality of heart failure, synthesising the landscape of epidemiological research on heart failure. Data reported in these studies will inform the GBD 2020 study, help elucidate the global epidemiology of heart failure and guide resources, research and interventions.

These studies describe a prevalence and incidence of heart failure that varies widely across locations. Much of the observed variation may reflect true changes in the age-specific burden of heart failure within specific populations. Our results suggest
that differences in study design and case ascertainment strategy may also contribute to the observed heterogeneity. Heart failure remains a condition frequently identified when patients develop acute symptoms and, at times, are clinically unstable. Especially relevant are differences in diagnostic criteria, whose sensitivity and specificities reflect clinical judgement across diverse and complex settings such as emergency departments and primary care offices. While some studies apply research-grade enrolment protocols in these settings or even extend surveillance to households, many remain simple counts of acute decompensation of heart failure. As technologies for non-invasive evaluation of heart failure improve, there is a need to shift studies of heart failure epidemiology from case identification based on physical examination and cardiac auscultation to a standardised application of rapid, inexpensive and robust laboratory and echocardiographic criteria.

While the GBD has developed methodology to estimate and correct for systematic bias between case definitions,13,14 alignment of standards for epidemiological studies of heart failure would improve the comparability between studies and reduce the need for statistical bias correction. National and international societies could help align criteria for epidemiological purposes similar to standardised reporting used for cardiac arrest and myocardial infarction, and standard data collection methods could be adopted for health surveys for non-communicable diseases. Additionally, this review presents collapsed estimates,
not ones standardised to a reference population, so heterogeneity in population structures remain present in the summarised estimates.

High-quality data from more geographical regions is also necessary to understand global patterns and the manner in which diverse pathophysiological aetiologies may affect patterns of heart failure. Although this review identified data from 51 countries, only 11 countries were outside of the high-income world: the Czech Republic, Poland, Antigua and Barbuda, Jamaica, Brazil, Oman, Qatar, India, China, Taiwan and Tanzania. Together, only 94 of 911 site-years of data were outside of the high-income world. Given this, covariates and statistical models are necessary to make estimates of the burden of heart failure in countries or regions where there is limited data. Further investments in data collection and population-based surveys in such locations would improve our understanding of global patterns. Additional data are also needed to better understand the causal pathways by which a wide variety of cardiovascular and other diseases drive the incidence of heart failure, and how these conditions vary across regions in their overall contribution to heart failure prevalence.

CONCLUSION
Prevalence, incidence and survival for heart failure varied widely across countries and studies, reflecting a range of study design.
Heart failure remains a high prevalence disease among older adults with a high risk of death at 1 year. This review synthesises all available published estimates of heart failure burden. Future efforts will include the use of geospatial statistical models to produce estimates of global disease burden due to heart failure. Given its place as a common final pathway for a broad set of conditions, an improved understanding of heart failure in the general population would be useful to guide research, resource allocation and policy, and to inform larger efforts to reduce the burden of non-communicable diseases.

Contributors SE-B screened the titles and abstracts of all papers, designed tables and figures, and authored the manuscript. CJ and GR planned the study, oversaw literature screening, reviewed all included papers, and revised the manuscript. GR managed the overall content and is the guarantor of this study. All authors critically reviewed the manuscript for intellectual content and integrity.

Funding This research was supported by the Cardiovascular Medical Research and Education Fund and the Bill and Melinda Gates Foundation. The funders had no role in study design.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval The University of Washington IRB Committee approved the Global Burden of Diseases, Injuries and Risk Factors Study (STUDY00009060).

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iD
Gregory Roth http://orcid.org/0000-0002-8355-9146

REFERENCES
1 Yusuf S, Reddy S, Ounpuu S, et al. Global burden of cardiovascular diseases: Part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 2001;104:2746–53.
2 Cook C, Cole G, Asaria P, et al. The annual global economic burden of heart failure. Int J Cardiol 2014;171:368–76.
3 GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet 2020;396:1204–22.
4 Shaddy RE, George AT, Jeecklin T, et al. Systematic literature review on the incidence and prevalence of heart failure in children and adolescents. Pediatr Cardiol 2018;39:415–36.
5 van Riet EES, Hoes AW, Wagenaar KP, et al. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail 2016;18:242–52.
6 Sakata Y, Shimokawa H. Epidemiology of heart failure in Asia. Circ J 2013;77:2209–17.
7 Sahle BW, Owen AJ, Mutowu MF, et al. Prevalence of heart failure in Australia: a systematic review. BMC Cardiovasc Disord 2016;16:32.
8 Woods JA, Katzenellenbogen JM, Davidson PM, et al. Heart failure among Indigenous Australians: a systematic review. BMC Cardiovasc Disord 2012;12:99.
9 Callender T, Woodward M, Roth G, et al. Heart failure care in low- and middle-income countries: a systematic review and meta-analysis. PLoS Med 2014;11:e1001699.
10 Ciapponi A, Alcanaz A, Calderón M, et al. Burden of heart failure in Latin America: a systematic review and meta-analysis. Rev Esp Cardiol 2016;69:1051–60.
11 Agbor VN, Esouma M, Ntusi NAB, et al. Heart failure in sub-Saharan Africa: a contemporaneous systematic review and meta-analysis. Int J Cardiol 2018;257:207–15.
12 Delekt A, Hansen SM, AlZuhairi KS, et al. The validity of the diagnosis of heart failure (ISO 0-I50.9) in the Danish national patient register. Dan Med J 2018;65:A5470.
13 Zheng P, Barber R, Sorensen RD. Trimming constrained mixed effects models: formulations and algorithms. J Comput Graph Stat 2021;0:1–13.
14 Murray CJL, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet 2020;396:1223–49.
Supplemental Material

In this supplement, we present the full list of studies evaluated in the systematic review and supplemental tables and figures.

References
Abhayaratna WP, Becker NG, Smith WT, Marwick TH, Jeffery IM, McGill DA. Prevalence of heart failure and systolic ventricular dysfunction in older Australians: the Canberra Heart Study. *Med J Aust* 2006; 184: 151–4.

Agarwal AK, Venugopalan P, de Bono D. Prevalence and aetiology of heart failure in an Arab population. *Eur J Heart Fail* 2001; 3: 301–5.

Al Suwaidi J, Bener A, Hajar HA, Numan MT. Does hospitalization for congestive heart failure occur more frequently in Ramadan: a population-based study (1991–2001). *Int J Cardiol* 2004; 96: 217–21.

Alehagen U, Ericsson A, Dahlström U. Are There Any Significant Differences Between Females and Males in the Management of Heart Failure? Gender Aspects of an Elderly Population With Symptoms Associated With Heart Failure. *J Card Fail* 2009; 15: 501–7.

Alexander M, Grumbach K, Remy L, Rowell R, Massie BM. Congestive heart failure hospitalizations and survival in California: Patterns according to race/ethnicity. *Am Heart J* 1999; 137: 919–27.

Ammar KA, Jacobsen SJ, Mahoney DW, *et al.* Prevalence and Prognostic Significance of Heart Failure Stages: Application of the American College of Cardiology/American Heart Association Heart Failure Staging Criteria in the Community. *Circulation* 2007; 115: 1563–70.

Amsalem Y, Garty M, Schwartz R, *et al.* Prevalence and significance of unrecognized renal insufficiency in patients with heart failure. *Eur Heart J* 2008; 29: 1029–36.

Ananthapuri Hospitals and Research Institute (AHRI) (India), Cosmopolitan Hospital (India), Government Medical College, Thiruvananthapuram, Jubilee Memorial Hospital (India). India - Trivandrum Heart Failure Registry 2013.

Anguita Sánchez M, Crespo Leiro MG, de Teresa Galván E, Jiménez Navarro M, Alonso-Pulpón L, Muñiz García J. Prevalence of Heart Failure in the Spanish General Population Aged Over 45 Years. The PRICE Study. *Rev Esp Cardiol Engl Ed* 2008; 61: 1041–9.

Atzema CL, Khan S, Lu H, *et al.* Cardiovascular Disease Rates, Outcomes, and Quality of Care in Ontario Métis: A Population-Based Cohort Study. *PLOS ONE* 2015; 10: e0121779.

Azevedo A. Population based study on the prevalence of the stages of heart failure. *Heart* 2006; 92: 1161–3.

Barasa A, Schaufelberger M, Lappas G, Swedberg K, Dellborg M, Rosengren A. Heart failure in young adults: 20-year trends in hospitalization, aetiology, and case fatality in Sweden. *Eur Heart J* 2014; 35: 25–32.
Berkovitch A, Maor E, Sabbag A, et al. Precipitating Factors for Acute Heart Failure Hospitalization and Long-Term Survival. *Medicine (Baltimore)* 2015; 94: e2330.

Bleumink GS, Knetsch AM, Sturkenboom MCJM, et al. Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. *Eur Heart J* 2004; 25: 1614–9.

Borné Y, Hedblad B, Essén B, Engström G. Anthropometric measures in relation to risk of heart failure hospitalization: a Swedish population-based cohort study. *Eur J Public Health* 2014; 24: 215–20.

Canepa M, Ameri P, Lucci D, et al. Modes of death and prognostic outliers in chronic heart failure. *Am Heart J* 2019; 208: 100–9.

Carmona M, Garcia-Olmos LM, Alberquilla A, et al. Heart failure in the family practice: a study of the prevalence and co-morbidity. *Fam Pract* 2011; 28: 128–33.

Ceia F, Fonseca C, Azevedo I, et al. Epidemiologia da Insuficiência Cardíaca em Cuidados Primários na Região Autónoma da Madeira: o Estudo EPICA-RAM [11]. *Rev Port Cardiol* 2005; 24: 17.

Ceia F, Fonseca C, Mota T, et al. Prevalence of chronic heart failure in Southwestern Europe: the EPICA study. *Eur J Heart Fail* 2002; 4: 531–9.

Chamberlain AM, McNallan SM, Dunlay SM, et al. Physical Health Status Measures Predict All-Cause Mortality in Patients With Heart Failure. *Circ Heart Fail* 2013; 6: 669–75.

Chen J, Normand S-LT, Wang Y, Krumholz HM. National and Regional Trends in Heart Failure Hospitalization and Mortality Rates for Medicare Beneficiaries, 1998-2008. *JAMA* 2011; 306: 1669.

Chen X, Savarese G, Dahlström U, Lund LH, Fu M. Age-dependent differences in clinical phenotype and prognosis in heart failure with mid-range ejection compared with heart failure with reduced or preserved ejection fraction. *Clin Res Cardiol* 2019; 108: 1394–405.

Cho H, Oh S-H, Lee H, Cho H-J, Kang H-Y. The incremental economic burden of heart failure: A population-based investigation from South Korea. *PLOS ONE* 2018; 13: e0208731.

Coles AH, Tisminetzky M, Yarzebski J, et al. Magnitude of and Prognostic Factors Associated With 1-Year Mortality After Hospital Discharge for Acute Decompensated Heart Failure Based on Ejection Fraction Findings. *J Am Heart Assoc* 2015; 4. DOI:10.1161/JAHA.115.002303.

Conrad N, Judge A, Tran J, et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. *The Lancet* 2018; 391: 572–80.

Corrao G, Ghirardi A, Ibrahim B, Merlino L, Maggioni AP. Burden of new hospitalization for heart failure: a population-based investigation from Italy: Burden of new hospitalization for heart failure. *Eur J Heart Fail* 2014; 16: 729–36.

Corrao G, Ghirardi A, Ibrahim B, Merlino L, Maggioni AP. Burden of new hospitalization for heart failure: a population-based investigation from Italy: Burden of new hospitalization for heart failure. *Eur J Heart Fail* 2014; 16: 729–36.

Cortina A, Reguero J, Segovia E, et al. Prevalence of heart failure in Asturias (a region in the North of Spain). *Am J Cardiol* 2001; 87: 1417–9.
Cowie MR. Survival of patients with a new diagnosis of heart failure: a population based study. *Heart* 2000; **83**: 505–10.

Curtis LH. Incidence and Prevalence of Heart Failure in Elderly Persons, 1994-2003. *Arch Intern Med* 2008; **168**: 418.

Cuthbert JJ, Gopal J, Crundall-Goode A, Clark AL. Are there patients missing from community heart failure registers? An audit of clinical practice. *Eur J Prev Cardiol* 2019; **26**: 291–8.

Danielsen R, Thorgeirsson G, Einasson H, *et al.* Prevalence of heart failure in the elderly and future projections: the AGES-Reykjavik study. *Scand Cardiovasc J* 2017; **51**: 183–9.

Davies M, Hobbs F, Davis R, *et al.* Prevalence of left-ventricular systolic dysfunction and heart failure in the Echocardiographic Heart of England Screening study: a population based study. *The Lancet* 2001; **358**: 439–44.

de Giuli F, Khaw K-T, Cowie MR, Sutton GC, Ferrari R, Poole-Wilson PA. Incidence and outcome of persons with a clinical diagnosis of heart failure in a general practice population of 696,884 in the United Kingdom. *Eur J Heart Fail* 2005; **7**: 295–302.

Di Bari M, Pozzi C, Cavallini MC, *et al.* The diagnosis of heart failure in the community. *J Am Coll Cardiol* 2004; **44**: 1601–8.

Einasson H, Thorgeirsson G, Danielsen R, Olafsson O, Aspelund T, Gudnason V. [Heart failure among elderly Icelanders: Incidence, prevalence, underlying diseases and long-term survival]. *Laeknabladid* 2017; **103**: 429–36.

Engelfriet PM, Hoogenveen RT, Boshuizen HC, van Baal PHM. To die with or from heart failure: a difference that counts: Is heart failure underrepresented in national mortality statistics? *Eur J Heart Fail* 2011; **13**: 377–83.

Ezekowitz JA, Kaul P, Bakal JA, Quan H, McAlister FA. Trends in heart failure care: has the incident diagnosis of heart failure shifted from the hospital to the emergency department and outpatient clinics? *Eur J Heart Fail* 2011; **13**: 142–7.

Fox K. Coronary artery disease as the cause of incident heart failure in the population. *Eur Heart J* 2001; **22**: 228–36.

Gamble J-M, Eurich DT, Ezekowitz JA, Kaul P, Quan H, McAlister FA. Patterns of Care and Outcomes Differ for Urban Versus Rural Patients With Newly Diagnosed Heart Failure, Even in a Universal Healthcare System. *Circ Heart Fail* 2011; **4**: 317–23.

Gioli-Pereira L, Marcondes-Braga FG, Bernardes-Pereira S, *et al.* Predictors of one-year outcomes in chronic heart failure: the portrait of a middle income country. *BMC Cardiovasc Disord* 2019; **19**: 251.

Goda A, Yamashita T, Suzuki S, *et al.* Heart failure with preserved versus reduced left ventricular systolic function: A prospective cohort of Shinken Database 2004–2005. *J Cardiol* 2010; **55**: 108–16.

Gu D, Huang G, He J. Investigation of prevalence and distributing feature of chronic heart failure in Chinese adult populatio. *Zhonghua Xin Xue Guan Bing Za Zhi* 2003; **31**: 3–6.

Hai J-J, Chan P-H, Huang D, *et al.* Clinical Characteristics, Management, and Outcomes of Hospitalized Heart Failure in a Chinese Population—The Hong Kong Heart Failure Registry. *J Card Fail* 2016; **22**: 600–8.
Hao G, Wang X, Chen Z, *et al.* Prevalence of heart failure and left ventricular dysfunction in China: the China Hypertension Survey, 2012–2015. *Eur J Heart Fail* 2019; 21: 1329–37.

Heller RF, Fisher JD, O’Este CA, Lim LL, Dobson AJ, Porter R. Death and readmission in the year after hospital admission with cardiovascular disease: the Hunter Area Heart and Stroke Register. *Med J Aust* 2000; 172: 261–5.

Hinton W, McGovern A, Coyle R, *et al.* Incidence and prevalence of cardiovascular disease in English primary care: a cross-sectional and follow-up study of the Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC). *BMJ Open* 2018; 8: e020282.

Hoekstra T, Jaarsma T, van Veldhuisen DJ, Hillege HL, Sanderman R, Lesman-Leegte I. Quality of life and survival in patients with heart failure. *Eur J Heart Fail* 2013; 15: 94–102.

Hung Y, Cheung N, Ip S, Fung H. Epidemiology of heart failure in Hong Kong, 1997. ; ; 4.

Huusko J, Kurki S, Toppila I, *et al.* Heart failure in Finland: clinical characteristics, mortality, and healthcare resource use. *ESC Heart Fail* 2019; 6: 603–12.

Jhund PS, MacIntyre K, Simpson CR, *et al.* Long-Term Trends in First Hospitalization for Heart Failure and Subsequent Survival Between 1986 and 2003: A Population Study of 5.1 Million People. *Circulation* 2009; 119: 515–23.

Jiménez-García R, Esteban-Vasallo MD, Rodríguez-Rieiro C, *et al.* Coverage and predictors of vaccination against 2012/13 seasonal influenza in Madrid, Spain: Analysis of population-based computerized immunization registries and clinical records. *Hum Vaccines Immunother* 2014; 10: 449–55.

Kannel WB, Belanger AJ. Epidemiology of heart failure. *Am Heart J* 1991; 121: 951–7.

Kaplon-Cieślicka A, Tymińska A, Peller M, *et al.* Diagnosis, Clinical Course, and 1-Year Outcome in Patients Hospitalized for Heart Failure With Preserved Ejection Fraction (from the Polish Cohort of the European Society of Cardiology Heart Failure Long-Term Registry). *Am J Cardiol* 2016; 118: 535–42.

Khan H, Kalogeropoulos AP, Zannad F, *et al.* Incident heart failure in relation to vascular disease: Insights from the Health, Aging, and Body Composition Study: Incident heart failure in relation to vascular disease. *Eur J Heart Fail* 2014; 16: 526–34.

Khera R, Pandey A, Ayers CR, *et al.* Contemporary Epidemiology of Heart Failure in Fee-For-Service Medicare Beneficiaries Across Healthcare Settings. *Circ Heart Fail* 2017; 10. DOI:10.1161/CIRCHEARTFAILURE.117.004402.

Kitzman DW, Gardin JM, Gottdiener JS, *et al.* Importance of heart failure with preserved systolic function in patients ≥65 years of age. *Am J Cardiol* 2001; 87: 413–9.

Knox SA, Harrison CM, Britt HC, Henderson JV. Estimating prevalence of common chronic morbidities in Australia. *Med J Aust* 2008; 189: 66–70.

Ko DT, Alter DA, Austin PC, *et al.* Life expectancy after an index hospitalization for patients with heart failure: A population-based study. *Am Heart J* 2008; 155: 324–31.

Kupari M, Lindroos M, Iivanainen AM, Heikkilä J, Tilvis R. Congestive heart failure in old age: prevalence, mechanisms and 4-year prognosis in the Helsinki Ageing Study. *J Intern Med* 1997; 241: 387–94.
Lalljie G, Lalljie S. Characteristics, treatment and short-term survival of patients with heart failure in a cardiology private practice in Jamaica. *West Indian Med J* 2007; **56**, DOI:10.1590/S0043-31442007000200007.

Lassus JPE, Siirilä-Waris K, Nieminen MS, *et al.* Long-term survival after hospitalization for acute heart failure — Differences in prognosis of acutely decompensated chronic and new-onset acute heart failure. *Int J Cardiol* 2013; **168**: 458–62.

Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting Mortality Among Patients Hospitalized for Heart Failure. ; : 7.

Lee DS, Johansen H, Gong Y, Hall RE, Tu JV, Cox JL. Chapter 14: Regional outcomes of heart failure in Canada. ; : 9.

Lee DS, Mamdani MM, Austin PC, *et al.* Trends in heart failure outcomes and pharmacotherapy: 1992 to 2000. *Am J Med* 2004; **116**: 581–9.

Lee H, Oh S-H, Cho H, Cho H-J, Kang H-Y. Prevalence and socio-economic burden of heart failure in an aging society of South Korea. *BMC Cardiovasc Disord* 2016; **16**: 215.

Leibowitz D, Stessman-Lande I, Jacobs J, *et al.* Cardiac Structure and Function in Persons 85 Years of Age. *Am J Cardiol* 2011; **108**: 465–70.

Leibowitz D, Stessman-Lande I, Sliman H, Jacobs JM, Stessman J, Gilon D. Longitudinal changes in cardiac function in the very elderly: the Jerusalem longitudinal cohort study. ; : 6.

Li R, Zhang J, Gao Y, Li J, Yan B, Wang G. Impact of Lung Function and SDB on Incident Myocardial Infarction and Heart Failure: A Community-based Study. *Lung* 2019; **197**: 339–47.

Lindmark K, Boman K, Olofsson M, *et al.* Epidemiology of heart failure and trends in diagnostic work-up: a retrospective, population-based cohort study in Sweden. *Clin Epidemiol* 2019; **Volume 11**: 231–44.

Loehr LR, Rosamond WD, Chang PP, Folsom AR, Chambless LE. Heart Failure Incidence and Survival (from the Atherosclerosis Risk in Communities Study). *Am J Cardiol* 2008; **101**: 1016–22.

Lyu S, Yu L, Tan H, *et al.* Clinical characteristics and prognosis of heart failure with mid-range ejection fraction: insights from a multi-centre registry study in China. *BMC Cardiovasc Disord* 2019; **19**: 209.

Magnussen C, Niiranen TJ, Ojeda FM, *et al.* Sex-Specific Epidemiology of Heart Failure Risk and Mortality in Europe. *JACC Heart Fail* 2019; **7**: 204–13.

Maison P, Desamericq G, Hemery F, *et al.* Relationship between recommended chronic heart failure treatments and mortality over 8 years in real-world conditions: a pharmacoepidemiological study. *Eur J Clin Pharmacol* 2013; **69**: 901–8.

Makubi A, Hage C, Sartipy U, *et al.* Heart failure in Tanzania and Sweden: Comparative characterization and prognosis in the Tanzania Heart Failure (TaHeF) study and the Swedish Heart Failure Registry (SwedeHF). *Int J Cardiol* 2016; **220**: 750–8.

McAlister FA, Bakal JA, Kaul P, *et al.* Changes in Heart Failure Outcomes After a Province-Wide Change in Health Service Provision A Natural Experiment in Alberta, Canada. *Circ Heart Fail* 2013; **6**: 76–82.
McAlister FA, Murphy NF, Simpson CR, et al. Influence of socioeconomic deprivation on the primary care burden and treatment of patients with a diagnosis of heart failure in general practice in Scotland: population based study. BMJ 2004; 328: 1110.

McManus DD, Saczynski JS, Lessard D, et al. Recent Trends in the Incidence, Treatment, and Prognosis of Patients With Heart Failure and Atrial Fibrillation (the Worcester Heart Failure Study). Am J Cardiol 2013; 111: 1460–5.

McSwain M, Martin TC, Amaraswamy R. The prevalence, aetiology and treatment of congestive cardiac failure in Antigua and Barbuda. West Indian Med J 1999; 48: 137–40.

Mosterd A. Prevalence of heart failure and left ventricular dysfunction in the general population; The Rotterdam Study. Eur Heart J 1999; 20: 447–55.

Mureddu GF, Agabiti N, Rizzello V, et al. Prevalence of preclinical and clinical heart failure in the elderly. A population-based study in Central Italy. Eur J Heart Fail 2012; 14: 718–29.

Murphy NF. National survey of the prevalence, incidence, primary care burden, and treatment of heart failure in Scotland. Heart 2004; 90: 1129–36.

Nakano A, Egstrup K, Svendsen ML, et al. Age- and sex-related differences in use of guideline-recommended care and mortality among patients with incident heart failure in Denmark. Age Ageing 2016; 45: 635–41.

Nakano A, Johnsen SP, Frederiksen BL, et al. Trends in quality of care among patients with incident heart failure in Denmark 2003–2010: a nationwide cohort study. BMC Health Serv Res 2013; 13: 391.

Nayor M, Enserro DM, Vasan RS, Xanthakis V. Cardiovascular Health Status and Incidence of Heart Failure in the Framingham Offspring Study. Circ Heart Fail 2016; 9. DOI:10.1161/CIRCHEARTFAILURE.115.002416.

Ni H. Prevalence of self-reported heart failure among US adults: results from the 1999 National Health Interview Survey. Am Heart J 2003; 146: 121–8.

Novack V, Pencina M, Zahger D, et al. Routine Laboratory Results and Thirty Day and One-Year Mortality Risk Following Hospitalization with Acute Decompensated Heart Failure. PLoS ONE 2010; 5: e12184.

Ohlmeier C, Mikolajczyk R, Frick J, Prütz F, Haverkamp W, Garbe E. Incidence, prevalence and 1-year all-cause mortality of heart failure in Germany: a study based on electronic healthcare data of more than six million persons. Clin Res Cardiol 2015; 104: 688–96.

Oster HS, Benderly M, Hoffman M, Cohen E, Shotan A, Mittelman M. Mortality in Heart Failure with Worsening Anemia: A National Study. 2013; 15: 5.

Ozierański K, Kaplon-Cieślicka A, Peller M, et al. Clinical characteristics and predictors of one-year outcome of heart failure patients with atrial fibrillation compared to heart failure patients in sinus rhythm. Atrial Fibrillation Polish Heart J; 2016:11.

Parenica J, Spinar J, Vitovec J, et al. Long-term survival following acute heart failure: The Acute Heart Failure Database Main registry (AHEAD Main). Eur J Intern Med 2013; 24: 151–60.

Piccinni C, Antonazzo IC, Simonetti M, et al. The Burden of Chronic Heart Failure in Primary Care in Italy. High Blood Press Cardiovasc Prev 2017; 24: 171–8.
Piccinni C, Antonazzo IC, Simonetti M, et al. The Burden of Chronic Heart Failure in Primary Care in Italy. High Blood Press Cardiovasc Prev 2017; 24: 171–8.

Rathore SS, Masoudi FA, Wang Y, et al. Socioeconomic status, treatment, and outcomes among elderly patients hospitalized with heart failure: Findings from the National Heart Failure Project. Am Heart J 2006; 152: 371–8.

Rautiainen S, Levitan EB, Mittleman MA, Wolk A. Total Antioxidant Capacity of Diet and Risk of Heart Failure: A Population-based Prospective Cohort of Women. Am J Med 2013; 126: 494–500.

Redfield MM, Jacobsen SJ, Burnett JC, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community appreciating the scope of the heart failure epidemic. ACC Curr J Rev 2003; 12: 50–1.

Remes J, Reunanen A, Aromaa A, Pyörälä K. Incidence of heart failure in eastern Finland: a population-based surveillance study. Eur Heart J 1992; 13: 588–93.

Rywik S, Broda G, Jasinski B. Heart Failure - Mortality and Hospital Morbidity in Polish Population. Kardiol Pol 1999; 50: 20–34.

Sangaralingham LR, Shah ND, Yao X, Roger VL, Dunlay SM. Incidence and Early Outcomes of Heart Failure in Commercially Insured and Medicare Advantage Patients, 2006–2014. 2017; : 11.

Sartipy U, Dahlström U, Edner M, Lund LH. Predicting survival in heart failure: validation of the MAGGIC heart failure risk score in 51 043 patients from the Swedish Heart Failure Registry: Validation of the MAGGIC heart failure risk score in 51 043 patients. Eur J Heart Fail 2014; 16: 173–9.

Schmidt M, Ulrichsen SP, Pedersen L, Bøtker HE, Sørensen HT. Thirty-year trends in heart failure hospitalization and mortality rates and the prognostic impact of co-morbidity: a Danish nationwide cohort study: Heart failure hospitalization, outcome, and co-morbidity. Eur J Heart Fail 2016; 18: 490–9.

Senni M, Tribouilloy CM, Rodeheffer RJ, et al. Congestive heart failure in the community: trends in incidence and survival in a 10-year period. Arch Intern Med 1999; 159: 29–34.

Shah RV, Rong J, Larson MG, et al. Associations of Circulating Extracellular RNAs With Myocardial Remodeling and Heart Failure. JAMA Cardiol 2018; 3: 871.

Shah SA, Kambur T, Chan C, Herrington DM, Liu K, Shah SJ. Relation of Short-Term Heart Rate Variability to Incident Heart Failure (from the Multi-Ethnic Study of Atherosclerosis). Am J Cardiol 2013; 112: 533–40.

Shahar E, Lee S, Kim J, Duval S, Barber C, Luepker RV. Hospitalized heart failure: rates and long-term mortality. J Card Fail 2004; 10: 374–9.

Shan C, Chen Y, Ma Y, et al. [Incidence and distribution of chronic heart failure in the elderly from Xinjiang]. Zhonghua Liu Xing Bing Xue Za Zhi Zhonghua LiuXingbingxue ZaZhi 2014; 35: 1007–10.

Shiba N, Shimokawa H. Chronic heart failure in Japan: Implications of the CHART studies. Vasc Health Risk Manag; : 12.

Smeets M, Vaes B, Mamouris P, et al. Burden of heart failure in Flemish general practices: a registry-based study in the Intego database. BMJ Open 2019; 9: e022972.
Sosin MD, Bhatia GS, Zarifis J, Davis RC, Lip GYH. An 8-year follow-up study of acute admissions with heart failure in a multiethnic population. *Eur J Heart Fail* 2004; 6: 669–72.

Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST) (India). India Sree Chitra Tirunal Institute for Medical Sciences and Technology Heart Failure Registry 2006.

Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST) (India). India Sree Chitra Tirunal Institute for Medical Sciences and Technology Heart Failure Registry 2001.

Staszewsky L, Cortesi L, Tettamanti M, *et al.* Outcomes in patients hospitalized for heart failure and chronic obstructive pulmonary disease: differences in clinical profile and treatment between 2002 and 2009: Outcomes and treatments in heart failure with COPD. *Eur J Heart Fail* 2016; 18: 840–8.

Störk S, Handrock R, Jacob J, *et al.* Epidemiology of heart failure in Germany: a retrospective database study. *Clin Res Cardiol* 2017; 106: 913–22.

Taylor CJ, Harrison C, Britt H, Miller G, Hobbs FR. Heart Failure and Multimorbidity in Australian General Practice. *J Comorbidity* 2017; 7: 44–9.

Tiller D, Russ M, Greiser KH, *et al.* Prevalence of Symptomatic Heart Failure with Reduced and with Normal Ejection Fraction in an Elderly General Population–The CARLA Study. *PLoS ONE* 2013; 8: e59225.

Tribouilloy C, Buiciuc O, Rusinaru D, Malaquin D, Lévy F, Peltier M. Long-term outcome after a first episode of heart failure. A prospective 7-year study. *Int J Cardiol* 2010; 140: 309–14.

Tsao CW, Lyass A, Enserro D, *et al.* Temporal Trends in the Incidence of and Mortality Associated With Heart Failure With Preserved and Reduced Ejection Fraction. *JACC Heart Fail* 2018; 6: 678–85.

Tseng C-H. Clinical features of heart failure hospitalization in younger and elderly patients in Taiwan: HEART FAILURE HOSPITALIZATION IN TAIWAN. *Eur J Clin Invest* 2011; 41: 597–604.

Tsuchihashi M, Tsutsui H, Kodama K, Kasagi F, Takeshita A. Clinical characteristics and prognosis of hospitalized patients with congestive heart failure--a study in Fukuoka, Japan. *Jpn Circ J* 2000; 64: 953–9.

Tuppin P, Cuerq A, de Peretti C, *et al.* Two-year outcome of patients after a first hospitalization for heart failure: A national observational study. *Arch Cardiovasc Dis* 2014; 107: 158–68.

Tuppin P, Rivière S, Rigault A, *et al.* Prevalence and economic burden of cardiovascular diseases in France in 2013 according to the national health insurance scheme database. *Arch Cardiovasc Dis* 2016; 109: 399–411.

Uijl A, Koudstaal S, Vaartjes I, *et al.* Risk for Heart Failure. *JACC Heart Fail* 2019; 7: 637–47.

van Jaarsveld CHM, Ranchor AV, Kempen GIJM, Coyne JC, van Veldhuisen DJ, Sanderman R. Epidemiology of heart failure in a community-based study of subjects aged ≥57 years: Incidence and long-term survival. *Eur J Heart Fail* 2006; 8: 23–30.

Vanhercke D, Pardaens S, Weytjens C, *et al.* Prevalence, Determinants, and Prognostic Significance of Pulmonary Hypertension in Elderly Patients Admitted with Acute Decompensated Heart Failure: A Report from the BIO-HF Registry. *Echocardiography* 2015; 32: 1333–8.
Wasywich CA, Gamble GD, Whalley GA, Doughty RN. Understanding changing patterns of survival and hospitalization for heart failure over two decades in New Zealand: utility of ‘days alive and out of hospital’ from epidemiological data. *Eur J Heart Fail* 2010; 12: 462–8.

Zannad F, Briancon S, Juilliere Y, et al. Incidence, clinical and etiologic features, and outcomes of advanced chronic heart failure: the EPICAL study. *J Am Coll Cardiol* 1999; 33: 734–42.

Zarrinkoub R, Wettermark B, Wändell P, et al. The epidemiology of heart failure, based on data for 2.1 million inhabitants in Sweden. *Eur J Heart Fail* 2013; 15: 995–1002.

Zarrinkoub R, Wettermark B, Wändell P, et al. The epidemiology of heart failure, based on data for 2.1 million inhabitants in Sweden. *Eur J Heart Fail* 2013; 15: 995–1002.
PubMed search string:

2017: "heart failure"[TIAB] AND (epidemiology[MeSH Terms] OR prevalence[TIAB] OR incidence[TIAB] OR mortality[TIAB]) AND ("1990/01/01"[PDAT] : "2016/09/02"[PDAT]) NOT "animal model" NOT rat NOT mice NOT diabetes[TIAB] NOT "renal transplant"[TIAB].

2020: "heart failure"[TIAB] OR "cardiac failure"[TIAB] AND (epidemiology[MeSH Terms] OR prevalence[TIAB] OR incidence[TIAB] OR “excess mortality”[TIAB] OR “case fatality”[TIAB]) AND ("2016/01/01"[PDAT] : "2020/1/2"[PDAT]) NOT “animal model” NOT rat NOT mice NOT diabetes[TIAB] NOT “renal transplant”[TIAB]. 4,469 initial studies were returned and 27 sources were added.
Table S1: Reported Prevalence of Heart Failure Point Estimates and Sample Sizes in 45 Studies Identified in Systematic Review.
When estimates were only reported in detailed age- or sex-categories (such as 10-year age groups or both sexes), we calculated effective sample sizes from reported standard error based on the Wilson Score Interval, and then collapsed cases and sample sizes to re-estimate a mean value for each year of the study.

Table S2: Reported Incidence of Heart Failure Point Estimates and Sample Sizes in 41 Studies Identified in Systematic Review.
When estimates were only reported in detailed age- or sex-categories (such as 10-year age groups or both sexes), we calculated effective sample sizes from reported standard error based on the Wilson Score Interval, and then collapsed cases and sample sizes to re-estimate a mean value for each year of the study.

Table S3: Reported One-Year Case Fatality of Heart Failure Point Estimates and Sample Sizes in 44 Studies Identified in Systematic Review.
When estimates were only reported in detailed age- or sex-categories (such as 10-year age groups or both sexes), we calculated effective sample sizes from reported standard error based on the Wilson Score Interval, and then collapsed cases and sample sizes to re-estimate a mean value for each year of the study.
Table S1: Reported Prevalence of Heart Failure Point Estimates and Sample Sizes in 45 Studies Identified in Systematic Review.

Study	Prevalence, %	Sample Size	
Abhayaratna WP, 2006	6.28 (4.94-7.63)	1273	
Agarwal AK, 2001	0.52 (0.49-0.55)	225000	
Alehagen U, 2009	11.2 (9.11-13.29)	886	
Ammar KA, 2007	2.41 (1.74-3.09)	2029	
Anguita Sánchez M, 2008	6.06 (4.77-7.36)	1322	
Azevedo A, 2006	7.66 (5.52-9.79)	609	
Carmona M, 2011	0.95 (0.4-1.5)	1279	
Cea F, 2002	10.49 (9.73-11.25)	6300	
Cea F, 2005	6.51 (4.79-8.23)	805	
Cho H, 2018	1.17 (1.16-1.19)	1727471	
Cortina A, 2001	5.12 (2.88-7.35)	391	
Cuthbert JJ, 2019	1.01 (0.81-1.22)	9390	
Danielsen R, 2017	3.63 (3.14-4.11)	5706	
Davies M, 2001	2.32 (1.85-2.79)	3960	
Di Bari M, 2004	9.11 (6.67-11.54)	549	
Dongfeng G, 2003	0.87 (0.72-1.01)	15518	
Einarsson H, 2017	3.6 (2.93-4.28)	2961	
Engelfriet PM, 2011	1.71 (1.59-1.82)	49517	
Hao G, 2019	1.41 (0.67-2.15)	1040	
Hung YT, 2000	0.23 (0.22-0.24)	744243	
Jiménez-García R, 2014	0.65 (0.64-0.66)	6200057	
Kannel WB, 1991	4.38 (3.73-5.03)	3819	
Khan H, 2014	16.8 (15.44-18.15)	2935	
Khera R, 2017	17.66 (17.64-17.68)	12749680	
Kitzman DW, 2001	8.57 (7.98-9.17)	8473	
Knox SA, 2008	1.8 (1.5-2.1)	7545	
Kupari M, 1997	8.18 (5.75-10.61)	501	
Lee H, 2016	0.88 (0.87-0.88)	38307984	
Leibowitz D, 2011	12.8 (9.97-15.03)	450	
Leibowitz D, 2019	15.08 (8.65-21.51)	126	
Lindmark K, 2019	1.63 (1.62-1.63)	37792514	
McAlister FA, 2004	0.71 (0.68-0.74)	307741	
McSwain M, 1999	2.55 (1.83-3.27)	1887	
Mosterd A, 1999	3.45 (2.97-3.94)	5540	
Mureddu GF, 2012	6.75 (5.61-7.88)	1881	
Murphy NF, 2004	1.5 (1.43-1.57)	114788	
Piccinin C, 2017	3.74 (3.68-3.81)	313787	
Redfield MM, 2003	2.2 (1.56-2.85)	2042	
Shan C, 2014	4.3 (3.66-4.95)	3852	
Smeets M, 2019	1.98 (1.96-2)	2559128	
Author	Year	Prevalence (95% CI)	Sample Size
---------------------	-------	---------------------	-------------
Stork S, 2017	3.9 (3.88-3.92)	3177564	
Taylor CJ, 2017	0.99 (0.98-1)	2593510	
Tiller D, 2013	9.66 (8.24-11.07)	1688	
Tuppin P, 2016	1.09 (1.08-1.09)	48514321	
Zarrinkoub R, 2013	3.57 (3.55-3.58)	4625034	

S1: Reported Prevalence of Heart Failure Point Estimates and Sample Sizes in 45 Studies Identified in Systematic Review [GAR1]
Table S2: Reported Incidence of Heart Failure Point Estimates and Sample Sizes in 41 Studies Identified in Systematic Review

Study	Incidence, per 100	Sample Size (in Person-Years)
Al Suwaidi J, 2004	0.14 (0.12-0.15)	134815
Barasa A, 2014	0.72 (0.7-0.75)	443995
Bleumink GS, 2004	1.44 (1.34-1.55)	50269
Borne Y, 2014	0.19 (0.18-0.21)	368053
Conrad N, 2018	0.52 (0.51-0.52)	24877519
Corrao G, 2014	0.73 (0.72-0.74)	3597225
Curtis LH, 2008	4.33 (4.3-4.36)	2070015
Einarsson H, 2017	0.17 (0.15-0.19)	188644
Fox KF, 2001	0.48 (0.46-0.5)	364792
Hinton W, 2018	0.12 (0.12-0.13)	5249994
Hung YT, 2000	0.67 (0.65-0.69)	676997
Huusko J, 2019	0.23 (0.15-0.31)	15594
Kannel WB, 1991	1.98 (1.91-2.04)	167280
Khan H, 2014	1.81 (1.65-1.97)	2935
Khera R, 2017	3.27 (3.26-3.28)	12749680
Lee DS, 2004	2.97 (2.97-2.98)	87491152
Li R, 2019	0.93 (0.84-1.02)	43204
Lindmark K, 2019	0.96 (0.96-0.97)	56268824
Loehr LR, 2008	0.65 (0.61-0.68)	198422
Magnusson C, 2019	0.52 (0.5-0.53)	999833
McAlister FA, 2004	0.2 (0.18-0.22)	307741
Murphy NF, 2004	0.87 (0.83-0.9)	307436
Navor M, 2016	0.49 (0.42-0.56)	38216
Ohlmeier C, 2015	1.11 (1.07-1.15)	247252
Piccinni C, 2017	0.59 (0.56-0.61)	338506
Rautiainen S, 2013	0.2 (0.18-0.21)	394059
Remes J, 1992	0.26 (0.19-0.33)	23034
Rywik S, 1999	0.44 (0.23-0.66)	4013
Sangaralingham LR, 2016	0.67 (0.67-0.67)	16360058
Senni M, 1999	2.4 (2.33-2.48)	147938
Shah RV, 2018	0.56 (0.27-0.85)	2681
Shah SA, 2013	0.27 (0.21-0.33)	33013
Stork S, 2017	0.65 (0.65-0.66)	4033768
Tsao CW, 2018	2.18 (2.1-2.27)	115703
Tseng C-H, 2011	0.36 (0.35-0.38)	741054
Uijl A, 2019	0.12 (0.11-0.13)	569362
Wasywich CA, 2010	0.19 (0.18-0.19)	80000000
Author(s)	Incidence (95% CI)	Sample Size
-------------------------	--------------------	-------------
Zannad F, 1999	0.1 (0.1-0.11)	1592263
Zarrinkoub R, 2013	0.66 (0.66-0.67)	4625034
de Giuli F, 2005	3.4 (3.4-3.4)	72608310
van Jaarsveld CHM, 2006	1.28 (1.14-1.42)	25662

Table S2: Reported Incidence of Heart Failure Point Estimates and Sample Sizes in 41 Studies Identified in Systematic Review.
Table S3: Reported One-Year Case Fatality of Heart Failure Point Estimates and Sample Sizes in 44 Studies Identified in Systematic Review

Study	Mortality at 1 year, %	Sample Size
AHRI, 2013	30.79 (28.18-33.4)	1205
Alexander M, 1999	32.2 (31.9-32.5)	90316
Ammar KA, 2007	4.08 (1.13-13.71)	49
Amsalem Y, 2008	28.82 (27.38-30.27)	3792
Atzema CL, 2015	14.77 (14.58-14.97)	125691
Barasa A, 2014	30.51 (30.37-30.64)	443956
Berkovitch A, 2015	30.02 (28.11-31.93)	2212
Bleumink GS, 2004	37 (33.48-40.52)	725
Chamberlain AM, 2013	9.66 (6.53-12.79)	352
Chen J, 2011	31.28 (31.24-31.32)	4866309
Coles AH, 2015	44.75 (42.9-46.6)	2780
Corrao G, 2014	29.36 (28.71-30.02)	18795
Cowie MR, 2000	38 (31.53-44.47)	220
Ezekowitz JA, 2011	17.02 (16.75-17.3)	72043
Gamble J-M, 2011	16.9 (16.62-17.17)	72043
Gioli-Pereira L, 2019	6.76 (4.88-8.65)	695
Goda A, 2010	4.36 (2.69-6.02)	597
Hai J-J, 2016	14.08 (11.86-16.29)	952
Heller RF, 2000	28.65 (25.65-31.65)	872
Hoekstra T, 2013	36.36 (31.53-41.19)	385
Kaplon-Cieslicka A, 2016	19.68 (16.53-22.82)	620
Lassus JPE, 2013	27.1 (23.58-30.61)	620
Lee DS, 2004	35.71 (35.39-36.02)	88440
Lyu S, 2019	7.02 (5.18-8.86)	755
Maison P, 2013	20.64 (15.86-25.42)	281
Makubi A, 2016	23.6 (19.47-27.73)	411
McAlister FA, 2013	33.27 (32.77-33.77)	34369
McManus DD, 2013	34.66 (33.72-35.61)	9748
Nakano A, 2013	15.11 (14.16-16.06)	5433
Nakano A, 2016	17.11 (16.64-17.59)	24301
Novack V, 2010	28.68 (27.7-29.66)	8246
Ohlmeier C, 2015	33.69 (33.41-33.97)	109363
Oster HS, 2013	29.16 (27.31-31.01)	2332
Ozieranski K, 2016	13.8 (10.99-16.61)	587
Parenica J, 2013	20.3 (18.95-21.65)	3438
Rathore SS, 2006	35.6 (35.01-36.19)	25086
SCTIMST, 2001	35.84 (32.32-39.36)	717
SCTIMST, 2006	30.53 (27.31-33.76)	786
Author	Case Fatality	Sample Size
-----------------------	---------------	-------------
Sartipy U, 2014	20.12 (19.77-20.47)	51043
Schmidt M, 2016	38.98 (38.79-39.16)	266692
Sosin MD, 2004	45.06 (38.62-51.51)	233
Staszewsky L, 2016	16 (15.4-16.61)	14111
Tuppin P, 2014	29.22 (28.89-29.56)	69958
Vanhercke D, 2015	26.93 (22.56-31.3)	401

Table S3: Reported One-Year Case Fatality of Heart Failure Point Estimates and Sample Sizes in 44 Studies Identified in Systematic Review.
Supplemental Figures

Figure S1: PRISMA diagram
Caption: Flowchart of studies identified in systematic review.

Figure S2: Countries with Studies Reporting Estimates of Heart Failure Prevalence or Incidence
Caption: Countries with studies reporting estimates of HF prevalence or incidence. Red represents countries with studies reporting both prevalence and incidence; blue represents countries with only studies reporting incidence; and green represents countries with studies only reporting prevalence. White represents countries with no studies reporting estimates of prevalence or incidence.

Figure S3: Countries with Studies Reporting Estimates of Heart Failure Mortality
Caption: Countries with studies reporting estimates of HF mortality. White represents countries with no studies reporting estimates of mortality.

Figure S4: Reported Prevalence of HF in 45 Studies Identified in Systematic Review by Year
Caption: Prevalence of heart failure (%, or per 100) reported in 45 studies by the mid-year of the data, colored according to study, and arranged by demographic profile. Multi-year studies are shown as same-colored and same-shape points connected by a line. “All adults” refers to studies restricted to patients 18+; “Older adults” refers to studies restricted to patients 50+; “All ages” refers to studies including patients of all ages. When estimates were only available in detailed age- or sex-categories (such as 10-year age groups or both sexes), we calculated effective sample sizes from reported standard error based on the Wilson Score Interval, and then collapsed cases and sample sizes to re-estimate a mean value for each year of the study.

Figure S5: Reported Incidence of HF in 41 Studies Identified in Systematic Review by Year
Caption: Incidence of heart failure (per 100 person-years) reported in 41 studies by the mid-year of the data, colored according to study, and arranged by demographic profile. Multi-year studies are shown as same-colored and same-shape points connected by a line. “All adults” refers to studies restricted to patients 18+; “Older adults” refers to studies restricted to patients 50+; “All ages” refers to studies including patients of all ages. When estimates were only available in detailed age- or sex-categories (such as 10-year age groups or both sexes), we calculated effective sample sizes from reported standard error based on the Wilson Score Interval, and then collapsed cases and sample sizes to re-estimate a mean value for each year of the study.
Figure S1: PRISMA diagram
Figure S2: Countries with Studies Reporting Estimates of Heart Failure Prevalence or Incidence
Figure S3: Countries with Studies Reporting Estimates of Heart Failure Mortality
Figure S4: Reported Prevalence of HF in 45 Studies Identified in Systematic Review by Year
Figure S5: Reported Incidence of HF in 41 Studies Identified in Systematic Review by Year