REVIEW

Recent advances in understanding *Streptomyces* [version 1; referees: 4 approved]

Keith F. Chater
Department of Molecular Microbiology, John Innes Centre, Norwich, UK

Abstract
About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for *Streptomyces*, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of *Streptomyces* with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall *Streptomyces* biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for *Streptomyces* developmental biology, *Streptomyces venezuelae*, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome immunoprecipitation sequencing (ChIP-seq) analysis and other methods based on “next-generation sequencing” has been the finding that 21% of *Streptomyces* mRNA species lack leader sequences and conventional ribosome binding sites. Further technical advances now emerging should lead to continued acceleration of knowledge, and more effective exploitation, of these astonishing and critically important organisms.
Introduction
The majority of antibiotics used in medicine, veterinary practice, and agriculture originate from *Streptomyces* bacteria. Genomic analysis has shown that any one strain has the potential to make tens of such secondary metabolites, and metagenomic analysis has revealed vast numbers of relevant biosynthetic gene sets. These organisms are therefore being studied ever more intensively in the expectation that they will contribute significantly to the provision of new therapeutic agents to combat the global emergence of antibiotic resistance among pathogenic bacteria, as well as providing other bioactive agents with medical applications. However, this is only one aspect of the interest and importance of streptomycetes. Ecologically, streptomycetes have key roles in the natural recycling of the globally abundant cell walls of fungi and plants. Some of them have evolved intimate partnerships with insects or plants, and a few have acquired pathogenic attributes. The interplay of these associations with *Streptomyces* molecular physiology is a strong theme in this review and has been underpinned by continuing in-depth analysis of the model organism *Streptomyces coelicolor* A3(2), which has been studied genetically for about 60 years.

Unusually for bacteria, streptomycetes grow as branching hyphal filaments to form a mat of fungus-like mycelium, from which emerge aerial branches that bear chains of spores (Figure 1). Very significant progress has been made recently in the analysis of this complex growth and development in both *S. coelicolor* and the emerging model species *Streptomyces venezuelae*, which sporulates very readily, even in liquid culture.

These two model organisms are providing new insights into how antibiotic production is integrated into overall physiology, taking advantage of the fact that, among the more than 20 secondary metabolites of *S. coelicolor*, two are pigmented antibiotics (the polyketide actinorhodin [ACT] and the red tripyrrole prodiginines [RED]), while *S. venezuelae* makes chloramphenicol and the polyketide jadomycin. These studies have pointed to an unexpected role for antibiotics themselves as regulatory ligands mediating autoregulation, cross-regulation, and interspecies interactions.

This wide-ranging topical snapshot of the genus has been compiled from a selection of the approximately 2,500 papers about *Streptomyces* published in 2014–2016. Where possible, I have cited review articles that provide context to the recent advances. In concentrating on whole organism physiology and evolution, I have excluded certain major *Streptomyces* research areas, notably taxonomy, systematics, and natural product chemistry.

Ecology and evolution
More than just soil organisms...
Streptomycetes, which are abundant in soil, are believed to have originated around 400 million years ago, when the land was being colonised by green plants. Their major role in the solubilisation of cell wall or surface components of plants, fungi, and insects suggests that they played a part in the composting of early land plants and hence in the formation of primeval soil. This conserved ecology over evolutionary time is reflected at the genome level: for example, *Streptomyces reticuli*, which is particularly active in cellulose degradation, has an estimated 456 genes for proteins involved in the binding, degradation, and utilisation of cellulose and other complex and simple carbohydrates. *S. coelicolor* also has eight genes for cellulase-like proteins, at least one of which is a true cellulase, even though *S. coelicolor* cannot grow with cellulose as its sole carbon source. This situation is widespread among streptomycetes, prompting speculation that most isolates have

Figure 1. Colonies of Streptomyces coelicolor A3(2). The fuzzy surface of these mould-like colonies is made up of aerial hyphae carrying chains of spores (photo, K.F. Chater).
evolved to live in mixed, cooperating communities, within which only a few species are competent to release amenable products from native cellulose. In addition, streptomycetes have had a long evolutionary association with fungi, with fungal cell walls being a key source of nutrition; thus, *S. coelicolor* has (at least) 13 chitinases regulated by the important global regulator DasR, which coordinates many aspects of *Streptomyces* biology in response to the chitin-derived ligands N-acetylglucosamine or N-acetylglucosamine-phosphate, as well as two chitosanases and a dedicated oligoglucosamine uptake system that are regulated independently of DasR.

Reinforcing their close association with plants (reviewed in [12]), streptomycetes are abundantly represented in metagenomic analysis of the rhizosphere, and they are among the most frequent endophytes: a search of PubMed for “Streptomyces endophyte” yielded 74 papers published in the last 15 years, with 38 dated 2013–2016. Many studies have focused on endophytes from traditional medicinal plants, often in the hope that the endophytes may be responsible for the medicinal properties (e.g. [14–19]). Indeed, *Streptomyces* endophytes produce various antagonists of plant disease agents and pests such as bacteria, fungi, and insects, consistent with potentially ancient adaptive benefits that might be turned to agricultural and medical use in the modern world. Streptomycetes may also stimulate plant growth, sometimes by producing phytohormones (e.g. [23,24]). Endophytic streptomycetes are also found in diverse non-medicinal dicot plants and in monocots including rice, suggesting (but not proving) that such interactions may date back hundreds of millions of years. Metagenomic evidence of particularly exuberant diversity of soil streptomycetes at low latitudes might reflect greater plant and insect diversity in the tropics (along with some degree of specificity in interactions between *Streptomyces* and plants or insects).

Streptomycetes are partners in other mutualistic interactions involving plants. Inoculation of the rhizosphere of rooted oak cuttings with *Streptomyces* sp. AcH 505 not only stimulated mycorrhizal development but also elicited plant defense mechanisms, leading to increased resistance to powdery mildew infection. Streptomycetes are also carried by ants that cultivate black food yeasts inside cavities (“domatia”) in host plants. In this mutualism, the plants secrete sugary exudates to the ants and yeasts, while the ants ward off predators and generally clean up their host. The streptomycetes produce inhibitors of other, unwanted, fungi that might invade the domatia.

In a broad survey, the streptomycetes involved in these plant–ant interactions fell into just four distinct taxa, while many other taxa were unrepresented, implying specific adaptations. Other cases of insect-borne streptomycetes preventing unwanted fungal invasion have been extensively reported in the last 20 years, such as in the cases of leaf-cutter ants and beewolf wasps: in the latter case, some degree of co-evolution of hosts and microbes has been taking place for perhaps 68 million years. Streptomycetes isolated from associations with diverse arthropods that feed on plant biomass are also highly enriched for two taxa having the ability to degrade cellulose completely, compared to random soil isolates, suggesting that this ability is valuable in the symbiosis.

The production of antibiotics by streptomycetes has long suggested that they may be formidable competitors in natural environments, but it was a surprise that, when growing on agar spread with other bacteria, the growing hyphal tips of most strains caused local lysis of what can reasonably be interpreted as their prey. Such predatory activity may add a new perspective to the benefits of streptomycetes to plants and insect mutualistic partners.

In a further illustration of the ecological diversity of streptomycetes, strains adapted to marine conditions are prominent in the microbiota of marine sponges.

Streptomycetes as pathogens: evolution and regulation of potato scab

Not all interactions of streptomycetes with complex eukaryotes are beneficial. Scab disease of potato and other tuber/root crops is caused by several different streptomycetes and (as in many cases of bacterial pathogenesis) involves a laterally acquired pathogenicity island that presumably evolved with the emergence of scab hosts, which are all flowering plants that evolved long after simpler plants had colonised the land. In *Streptomyces turdiscabies*, this entire DNA island can excise from the host genome and transfer into a new host, where it can again integrate via a site-specific recombinase at the palindromic sequence 5′-TCATGAA-3′. The presence of internal copies of this sequence can lead to modular excision of the island. Fixation of the pathogenicity genes in some other potato scab agents (*Streptomyces scabies* and *Streptomyces acidiscabies*) is correlated with degradation of the recombinase gene and/or its target sites or with loss of a module that encodes all the functions needed for mobilisation.

Remarkably, the expression of some of the pathogenicity genes, including those for the phytotoxin thaxtomin, is determined in part by the cellobiose sensor CebR, the universal regulator of *Streptomyces* cellulolytic genes, integrating pathogenicity-linked cellulolytic activity with more ancient overall responses to cellulose-related metabolites. The connection of pathogenicity with cellulose is further emphasised by the fact that thaxtomin is an inhibitor of plant cellulose synthase. The biosynthetic clusters for thaxtomin and a second phytotoxin, coronafacoyl phytotoxin, are under further control from pathway-specific regulatory genes that appear to respond to plant metabolites and from global regulatory genes (*bld* genes that regulate colony differentiation and antibiotic production, see below). In an extension of this regulatory scenario, the induction of a large swathe of glycohydrolytic enzymes of *S. scabies* is enhanced when cellulose in the medium is supplemented with suberin, a complex lipid- and polyaromatic-containing major component of the potato tuber periderm.

Although scab research has focused on the pathogenicity islands, comparative genomics has revealed 64 other genes that are common to four distinct scab agents but absent from non-pathogens, as well as an exceptionally high proportion of enzymes such as pectinases and cutinases that would aid or take advantage of pathogenicity.

Genome and pan-genome evolution, the role of recombination, and its molecular basis

Comparative genomics has been dramatically accelerated by the advent of cheap and rapid sequencing (but note that the quality of the deposited *Streptomyces* genome sequences is variable).
Early deductions about the core and accessory genes of streptomycetes have been refined\(^{11}\); the genomes of 17 diverse strains (ranging from 6.7 to 12.3 Mb) contained from 5,382 to 10,022 CDSs, of which 2,018 were universally present (the core genome, which occupies most of the central region of *Streptomyces* linear chromosomes), with most of the remaining genes being present in only one or a few genomes. This accessory genome totalled 32,574 genes, so the *Streptomyces* pan-genome comprises at least 34,592 genes. The accessory genes are mostly clustered at the chromosome ends, which are well known to be unstable and subject to replacement by recombination with incoming linear plasmids or conjuga\(^{2}\)lly transferred segments of chromosomes from other streptomycetes, but recent analyses have revealed an unexpectedly high level of historical recombination within representative core genes too, resulting in phylogenetic incongruence among these genes\(^{10,11,14}\). The recombination levels detected are high enough to raise the question of whether the evolutionary radiation of the genus has taken place over a significantly shorter time than has been widely accepted\(^{11}\). During divergence from common ancestors, such genetic exchange continued at a rate that decreased as divergence increased, generating a reticulate origin of extant streptomycetes, largely defined by a relatively small number of ancestral recombination events. Recombination associated with nascent divergence continues into the near-present, since recombination events detected by genome analysis of independent isolates of the same species are about 100-fold more frequent than those between species\(^{11}\). The fixation of particular recombination events is thought to reflect periods of rapid demographic expansion\(^{12-22}\).

The high frequency of genetic exchange implied by these studies may be because conjugal DNA transfer in streptomycetes is much more efficient than it is in most other bacteria, at least in the laboratory; instead of a complex type IV secretion apparatus transferring single-stranded DNA, streptomycetes employ the products of *traB* genes encoded by autonomous or chromosomally integrated plasmids to transfer double-stranded DNA\(^{46}\). *TraB* proteins belong to the FtsK/SpoIIIE family needed in many bacteria for formation of daughter cells, but, while FtsK/SpoIIIE proteins assemble in the nascent septum, *TraB* proteins assemble at growing hyphal tips. Transfer, which is ATP dependent, involves the interaction of *TraB* with short recognition sequences (consensus 5′-GACCGGAG-3′ in plasmid pSVH1): 25 clusters of four such sequences are also spaced along the chromosome of *S. coelicolor*, accounting for chromosome mobilisation\(^{45}\). Initial plasmid transfer is followed by the remarkable spread of the plasmid, sometimes throughout most of the recipient mycelium, in a process in which specialised Spd proteins assemble with *TraB* in the vegetative septa that occur roughly once every 10–20 μm\(^{45,46}\) (Figure 2). The importance of *TraB* for plasmid spread (presumably providing the ATPase-driven motor function lacking from Spd proteins) was nicely demonstrated by showing that the presence of *TraB* in a recipient permitted efficient spreading following the occasional transfer of a *traB*-deleted plasmid\(^{46}\).

It was a surprise when a recent cytological study showed that plasmid invasion events were associated with contact between the lateral walls of donor and recipient hyphae, and events involving donor tips were not seen\(^{49}\). This unexpected result may still be compatible with tip involvement: *TraB* may also assemble at nascent branch tips, some distance away from leading tips. In any case, the cytological analysis could presumably detect only transfer events that had occurred a significant time earlier, after subsequent plasmid multiplication and spread had already occurred, so the state of hyphae at the time of primary transfer could not be assessed.

Within-species comparative genomics

Generally, comparative genomics of closely related streptomycetes has had little attention, though marine isolates from two distinct sponges were interestingly closely related to the terrestrial *Streptomyces albus* G derivative J1074 (which is often used for heterologous expression work) in a study identifying candidate marine-adaptation genes present only in the two marine isolates and in some other marine actinomycetes\(^{15,47}\). Four further J1074-related organisms were subsequently found in 140 *Streptomyces* genomes available at the time, making this species group the most readily isolated to date\(^{15,47}\). This provided an opportunity to examine the dynamics of acquisition and loss of secondary metabolite biosynthetic gene sets in relatively recent evolution (i.e. within a species group). Ten biosynthetic gene clusters were specific to, and conserved among, the J1074 group, while a roughly equal number showed some degree of isolate specificity\(^{33,46}\).

New perspectives in growth and development of *Streptomyces*

Germination is controlled by several second messengers

Spore germination involves the action of “resuscitation-promoting factors” (Rpfs, specialised peptidoglycan hydrolases), probably as part of a peptidoglycan remodelling system\(^{48}\). At least one of five partially functionally redundant Rpfs of *S. coelicolor* is subject to multilevel regulation by different nucleotide second messengers: transcription initiation, controlled by the cAMP-binding protein previously associated with germination; transcriptional attenuation via a riboswitch responsive to cyclic di-AMP; and changing rates of proteolysis in response to levels of ppGpp\(^{49}\) (Figure 2).

Importance of cellulose-like glycan synthesis for hyphal growth

Streptomyces growth is unusual, but not unique, among bacteria in taking place at tips through the activities of a protein complex (“polarisome”). The key polarisome component, DivIVA, coordinates aspects of intracellular and cell surface growth in ways that may differ during vegetative and reproductive growth (for reviews, see 50,51). It is emerging that normal growth and development require deposition at hyphal tips of an uncharacterised glycan through the combined action of a cellulose synthase-like protein (ClsA) and GlxA, the product of the gene downstream of *clsA*, which is a copper oxidase that may oxidise the glycan as it is secreted\(^{50}\) (Figure 2). Like ClsA, GlxA is tip-located at least at some growth stages\(^{50}\), though the two proteins have not been analysed together. The synthesis of extracellular polysaccharides soon after germination, under the control of *clsA*, *glxA*, and the newly identified locus *mutAB*, is responsible for the aggregation of germlings, leading to the formation of mycelial clumps in submerged culture, a well-known problem in industrial fermentations\(^{52,53}\).
Membranous structures appear to subdivide the cytoplasm of vegetative hyphae into compartments

The recent application of advanced microscopic methods has suggested that vesicular, DNA-impermeable membranous structures may delimit compartments in vegetative hyphae in the absence of conventional septa, may account for the viability of some hyphal fragments of \textit{ftsZ} mutants, and may be implicated in the heterogeneous staining of vegetative hyphae with vital stains (interpreted as programmed death56–58) (Figure 2). These intriguing observations raise questions of how the structures are placed in time and space, how they affect the spread of plasmids through the mycelium (see above), and whether they might limit the spread of initially tip-localised phage infections. Addressing such questions may require inventive genetic approaches.

Complex and subtle influences on the initiation of aerial development, involving transcription, proteolysis, and hormone-like molecules

The onset of reproductive aerial growth is sensitive to diverse stresses and signals. In \textit{S. coelicolor}, most of the nine \(\sigma^B\)-like sigma factors (compared to four in \textit{Bacillus subtilis}) are involved in stress responses and/or differentiation. There is growing evidence of complex crosstalk interactions among the even larger number of anti-sigma and anti-anti-sigma factors for this class of \(\sigma\) factor, and it has been suggested that the signal input to regulate these interactions may involve some of the variable, but always multiple, collection of \textit{whiJ}-like gene sets present in \textit{Streptomyces} genomes: the clusters include anti-sigma genes of this type and have been implicated in development and antibiotic production51,59. In one such cluster, which is known to influence antibiotic production and differentiation, a small RNA antisense to the Sco4676–4677 intergenic region has been found to have complicated regulatory effects on Sco4676–4677 expression60.

Furthermore, particularly since the discovery that actinomycetes have a eukaryotic-like proteasome system, with ubiquitylation of targets being replaced by pupylation61, regulation at the level of protein degradation is becoming increasingly apparent. This has been reinforced by the cataloguing of pupylation/proteasome targets and the phenotypes of mutants in the system, which show

\textbf{Figure 2. Recent discoveries about germination and hyphal growth.} Three different nucleotide signalling molecules are involved in stimulating the production of peptidoglycan hydrolase (Rpf, for resuscitation-promoting factors), leading to remodelling of the spore wall and the emergence of a germ tube49. Continued hyphal elongation is co-ordinated by the DivIVA-based polarisome50 and (in addition to cell wall growth) involves the extracellular production of cellulose-like glycan catalysed by polarisome-linked CslA (cellulose synthase-like) associated with the copper oxidase GlxA52,53. MatAB proteins have an uncharacterised role in glycan production54. Vesicular membrane structures form in apparently irregular locations within hyphae, and some of them extend across the hyphal compartment, separating nucleoids57,58.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Recent discoveries about germination and hyphal growth. Three different nucleotide signalling molecules are involved in stimulating the production of peptidoglycan hydrolase(s) (Rpf, for resuscitation-promoting factors), leading to remodelling of the spore wall and the emergence of a germ tube49. Continued hyphal elongation is co-ordinated by the DivIVA-based polarisome50 and (in addition to cell wall growth) involves the extracellular production of cellulose-like glycan catalysed by polarisome-linked CslA (cellulose synthase-like) associated with the copper oxidase GlxA52,53. MatAB proteins have an uncharacterised role in glycan production54. Vesicular membrane structures form in apparently irregular locations within hyphae, and some of them extend across the hyphal compartment, separating nucleoids57,58.}
\end{figure}
changes in differentiation and antibiotic production levels \(^{63-64}\). Presumably, controlled proteolysis is involved in the death of some hyphal compartments that accompanies stages of growth and development \(^{66}\).

It has been known for decades that in *Streptomyces griseus* the repression of a central developmental regulatory gene, *adpA*, by the TetR-like protein ArpA is relieved by the accumulation of A-factor, an extracellular hormone-like gamma-butyrolactone (GBL). It now seems that *adpA* in most, perhaps all, other streptomycetes may be subject to regulation by similar ArpA-like repressors, but with species-specific GBL ligands, permitting coordinated sporulation of one species without triggering sporulation of nearby different species \(^{67}\). In an opposite scenario, *S. coelicolor* and *S. venezuelae* produce an identical GBL called SCB1 and SVB1, respectively, making it possible for them to respond to each other \(^{68,69}\).

Spectacular insights using a new model organism, *Streptomyces venezuelae*: time-lapse cell biology, heterodimeric regulatory proteins, global regulation by a cyclic di-GMP receptor, and developmental differences between species

Streptomyces colony development has usually been studied on solid agar medium, since *S. coelicolor* (like many other streptomycetes) does not undergo a full developmental cycle in liquid culture. Studies of surface-grown cultures are bedevilled by developmental asynchrony and heterogeneity, which are particularly problematic for high-resolution biochemical analysis, including “omic” approaches to the definition of the regulons controlled by developmental regulatory genes. These problems have been circumvented by the adoption of *S. venezuelae*, which grows very rapidly and undergoes comprehensive and near-synchronous differentiation in liquid culture, including under coverslips \(^{70}\). In a first illustration of the value of this system, a detailed time-lapse study has shown that the ParA and ParB chromosome segregation proteins play an important coordinating role in the transition from ongoing aerial growth to growth cessation and the onset of sporulation septation, and even have opposing influences on the rate of tip extension and eventual length of pre-sporulation hyphae \(^{71}\). Further advances are promised by the development of a microfluidics system that allows continuous direct observation of fluorescently marked key proteins through the entire developmental cycle \(^{72}\).

Submerged sporulation has allowed the highly successful combined application of microarray-based transcriptomics and chromosome immunoprecipitation sequencing (ChIP-seq) analysis to reveal two exciting and novel cases of very close interactions between different developmental regulators. In one case \(^{73}\), an atypical response regulator, BldM, has two rounds of activity: first, it forms a homodimer to activate other developmental regulatory genes and morphogenetic functions needed for aerial hyphae to grow and, second, it forms a heterodimer with another atypical response regulator, WhiI, to activate genes needed for the aerial hyphae to turn into spore chains. In another case \(^{74}\), with wide implications for all actinomycetes including pathogenic mycobacteria, two enigmatic proteins conserved across all actinomycetes have been found to bind to the same target promoters, activating some and repressing others. These proteins are WhiA, which is also present in Gram-positive Firmicutes and has a structure closely similar to that of eukaryotic homing endonucleases (but lacking key catalytic residues), and WhiB, the archetype of the large “Whi” family of iron-sulphur proteins represented throughout actinomycetes but found nowhere else (other Whi proteins conserved among streptomycetes include two other developmental regulators, WhbA and WhiD) \(^{75}\). The ChIP-seq/transcriptome profiles of targets of Bld and Whi regulators in *S. venezuelae* have provided many clues about the nature and coordination of the components contributing actively to development \(^{76,77}\).

It is likely that BldM, WhiI, WhiA, and WhiB respond to different signal inputs, and the elucidation of these signals is a major challenge (but see the next section). These four developmental activators, and most of the well-known developmental regulatory *bld* and *whi* genes and many of their targets, are among the large number of genes directly controlled by BldD \(^{35}\), a master repressor of development whose regulatory ligand has been revealed as cyclic di-GMP \(^{78}\). This important discovery begins to provide an explanation for the presence of eight actual or predicted diguanylate cyclase genes in *S. coelicolor*, some with associated cyclic di-GMP phosphodiesterase domains \(^{39}\). Notably, the [BldD] \(_4\);[cyclic di-GMP] \(_4\) complex is structurally new to science \(^{30,32}\).

Although it is highly probable that the developmental programmes of all streptomycetes are broadly the same, some of the details may differ between species. This seems to be the case with *whiG*, which encodes a sigma factor important in initiating sporulation septation of aerial hyphae. Although *whiG* transcription depends on WhiA and WhiB in *S. venezuelae* \(^{31}\), in *S. coelicolor* its transcription was nearly the same in *whiA* or *whiB* mutants as in the wild-type \(^{36}\). In another example, the promoter of the Whi-dependent *inoA* gene of *S. coelicolor* (for inositol phosphate synthetase) could bind truncated Whi in *vitro* \(^{37}\), indicating that Whi could bind DNA in the absence of BldM; yet in ChIP-seq analysis of an *S. venezuelae* bldM mutant, Whi did not bind to any targets \(^{39}\).

Other inter-species differences were previously noted between *S. coelicolor* and *S. griseus* \(^{8}\). A different kind of surprise concerning the WhiG sigma was the discovery in *Streptomyces chattanoogensis* that it can bind to target promoters in the absence of RNA polymerase core enzyme, including some in the gene cluster for natamycin production: binding was either to typical WhiG-binding sites or to CGTCA repeat elements, and was needed for gene activation \(^{39}\).

Could endogenous nitric oxide have an important developmental regulatory role?

Speculation about a possible role of nitric oxide as a regulatory ligand for WhiB and other Wbl proteins was stimulated by the extremely high affinity for nitric oxide of some Wbl proteins of streptomycetes and mycobacteria, which has been studied in detail at the molecular level \(^{40-42}\). It has generally been implied that the source of nitric oxide would be exogenous (e.g. produced by eukaryotic hosts as a defence mechanism). However, comparative genomics revealed the general presence in Wbl-containing actinomycetes of other nitric oxide-interacting proteins (or biochemically unstudied homologues) that might be involved in cycling nitric oxide, raising the possibility that *endogenous* nitric oxide might regulate development by interacting with Wbl proteins \(^{51}\).
This model was compromised by the absence of evidence for the conserved endogenous production of nitric oxide across actinomycetes, most of which do not have a conventional nitric oxide synthase. However, endogenous nitric oxide production involving conserved actinobacterial genes has now been convincingly demonstrated in \textit{S. coelicolor}\cite{84} and mycobacteria\cite{85,86} (Figure 3). Thus, in \textit{S. coelicolor}, organic nitrogen is converted by an unknown route to nitrate, which is reduced by nitrate reductase to nitrite\cite{84}. This mainly involves NarG2, one of three nitrate reductases in \textit{S. coelicolor}. NarG2 is predominant in growing hyphae and is induced by moderate hypoxic downshift, while NarG3 has a subordinate role and NarG1 is mainly active during germination\cite{87}. Nitrite was shown in turn to be the source of nitric oxide (albeit by an unknown route)\cite{84}. This source of nitric oxide mirrors a pathway important in eukaryotes\cite{88}, where endogenous nitric oxide is a major physiological signalling molecule, even influencing epigenetic changes\cite{89}.

The recycling of endogenous nitric oxide was also studied by \cite{84} and is illustrated in Figure 3, which also shows how recycling might be connected to the regulatory functions of Wbl proteins. Nitric oxide re-enters the nitrogen oxide cycle via flavohaemoglobin, which oxidises nitric oxide to nitrate. In a feedforward mechanism, nitric oxide is the ligand of NsrR, which represses the \textit{hmpA1} and \textit{hmpA2} genes for flavohaemoglobin and its own promoter\cite{84,85,86}. Remarkably, the affinity of NsrR for the \textit{hmpA} promoters is more sensitive to nitric oxide than is its affinity for the \textit{nsrR} promoter\cite{90}, permitting different strengths of induction of flavohaemoglobin as NO concentration increases. Another dimension of the cycle is provided by the interaction of endogenous nitric oxide with DevS, a protein kinase that activates the cognate response regulator DevR, which in turn activates the \textit{narG2} gene for the major nitrate reductase needed for nitric oxide production\cite{84}. Interestingly, an earlier report\cite{92} found that DevS could also phosphorylate the SCO3818 response regulator, which is very similar to DevR, and might therefore

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure_3.png}
\caption{Model integrating the nitrogen oxide cycle (ochre) with mycothiol cycling (yellow) and with morphological development mediated by Wbl proteins (red) in \textit{Streptomyces coelicolor}. In the nitrogen oxide cycle\cite{84}, nitrate generated intracellularly by an unknown pathway is reduced to nitrate mainly by the NarG2 enzyme\cite{87}. Nitrite is the source of nitric oxide (NO) (mechanism unknown)\cite{84}. Nitric oxide is oxidised to nitrate by flavohaemoglobins specified by SCO7428 (incorrectly given as SCO7472 in \cite{84}) and SCO7094, which are induced when nitric oxide binds to NsrR, the repressor of both genes\cite{84,90}. Internal nitric oxide also binds the haem-containing sensor kinase DevS, which then phosphorylates the cognate response regulator DevR. DevR-P induces Nar2 in an autoinducing feedforward loop\cite{84}. Nitric oxide binds strongly to Wbl proteins such as WblA, WhiB, and WhiD, modulating their regulatory activity\cite{81} and hence coordinating differentiation. Other regulatory components may take part in the action of Wbl proteins; for example, WhiB target genes are all also dependent on WhiA protein\cite{71}. It is speculated that the Wbl proteins are denitrosylated by the SCO4179 (nitrobindin?)-mediated transfer of nitric oxide to mycothiol (MSH) to generate MSNO\cite{51}. MSNO is denitrosylated by MSNO reductase, with the resulting oxidised mycothiol then being reduced to MSH by an undetermined mechanism.}
\end{figure}
also be involved in regulating the nitrogen oxide cycle: orthologues of SCO3818 are very widespread across actinobacteria, whereas DevS orthologues are more sporadic across the phylum (http://streptomyces.org.uk/actinoblast/).

Artificially engineered production of endogenous nitric oxide triggers the onset of production of at least one secondary metabolite (undecylprodiginines [RED]) by increasing the expression of the major RED pathway activator gene redD, but it inhibits the onset of aerial growth. It remains to be determined whether this is a straightforward reflection of the normal signalling activity of nitric oxide or whether the experimental procedures disrupt the normal balance of the nitrogen oxide cycle. In a further twist, it appears that endogenous nitrite can also serve as an extracellular signal to nearby mycelium.

Regulation of septum positioning and cell wall changes during the formation of spores

Many of the processes involved in sporulation septation and spore maturation require high levels of proteins that might interfere with growth if expressed inappropriately, so mechanisms to prevent untimely expression can be expected. Thus, production of some of these proteins, such as FtsZ, is repressed by the BldD:cyclic di-GMP complex. Timely increased expression of such division genes, presumably triggered by cyclic di-GMP hydrolysis, must also be accompanied by a mechanism for the regular positioning of sporulation septa. New evidence suggests that SepG, a small membrane protein encoded by a gene next to divIVA in many Gram-positive bacteria, provides the most basic anchor yet described for the building of sporulation septa, recruiting protein SsgB, which in turn recruits FtsZ (Figure 4). After septation, SepG relocates to the prespore periphery, where it may interact with the cell wall synthesising complex during spore wall remodelling. Five protein kinases, encoded by a cluster of adjacent genes, phosphorylate key proteins of this complex, keeping them inactive until sporulation septation begins: it is assumed that activation involves one or more of the more than 50 phosphatases encoded by the S. coelicolor genome.

The variable size, thinner walls, diffuse nucleoids, and heat sensitivity of sepG mutant spores are intriguingly reminiscent of the phenotype of mutants in the conserved whiD gene, which encodes a Wbl protein whose nitric oxide interactions have been particularly closely studied (e.g. 83 [see above]). Conceivably, sepF could be an important WhiD target (Figure 4).

Other aspects of cellular biochemistry that change during growth and development: lipids and glycogen

In a new perspective on development, the lipid composition of S. coelicolor differed strikingly when comparing cultures grown...
on solid or in liquid media, and mutants defective in ornithine lipid biosynthesis showed precocious development and antibiotic production98. It would be of interest to apply such an analysis to \textit{S. venezuelae}.

Studies of carbon storage metabolism in \textit{Streptomyces} and mycobacteria had revealed a new and widespread pathway for glycogen biosynthesis67,69. This GlgE pathway is duplicated in most streptomycetes, with the two sets being expressed differently during development, and the pathway generally exists alongside the classical GlgAC pathway. In an exception to this generalisation, \textit{S. coelicolor} has only one glgE gene set and lacks glgAC. This made it possible to construct glycogen-free mutants, leading to the finding that spores could be generated without the developmental accumulation of glycogen. Sporulation appeared to be normal, unless the strain/medium combination resulted in the accumulation in the toxic GlgE substrate maltose-1-phosphate94.

Stress responses and secondary metabolism
Connecting redox homeostasis to primary metabolism

Global stress responses often involve the action of alternative sigma factors, whose target regulators may be informative in understanding physiological and cell biological adjustments that have evolved to accommodate stresses. Thus, it was recently found that one SigR target, the ndgR gene, encodes a regulator of sulphur assimilation and branched-chain amino acid synthesis. NdgR is presumed to affect redox homeostasis at the levels of precursor and cofactor supply to redox buffering agents such as mycothiol and supply of CoA derivatives of branched-chain fatty acids for membrane biosynthesis99.

From global physiology to the expression of biosynthetic genes for secondary metabolites: new global regulators and expanding roles for cluster-situated regulatory genes

As a broad generalisation, antibiotic biosynthetic gene clusters depend on regulatory genes located within the cluster, which are themselves directly regulated by many higher level regulatory proteins, encoded by genes such as the developmental bld genes scattered around the chromosome100. New regulators continue to be identified: a TetR-like protein specified by Sco3201 has been found to bind to the promoters of several known developmental and antibiotic biosynthetic genes101, and the abrC cluster (Sco4596–8) encoding a response regulator (AbrC3) and two histidine protein kinases has been shown to influence secondary metabolism102,103. An accumulation of papers has shown that the promoter of the actII-orf4 gene that activates the ACT biosynthetic genes of \textit{S. coelicolor} binds at least eight, and possibly as many as 12, regulatory proteins104, a number to which AbrC3 has been added105. A different scenario was observed in the case of the novobiocin biosynthetic genes when heterologously expressed in \textit{S. coelicolor}: a promoter of these biosynthetic genes (instead of a regulatory gene) was a target for as many as 11 host-specified proteins and the cluster-situated NovG regulatory protein106. Only one of these 11 proteins, AbsC, is also known to bind to actII-orf4.

Regulatory genes such as actII-orf4 and novG that are situated within biosynthetic clusters were previously called “pathway specific”, but numerous observations have shown that they may have targets outside the cluster, so their renaming as “cluster-situated regulators” (CSRs) by 105 has proved prescient. In a striking recent example involving \textit{Streptomyces avermitilis}, a CSR belonging to a class with PAS-LuxR-like domains was shown to interact with genes for different pathways and with many other promoters for housekeeping genes106.

Small-molecule ligands for proteins that regulate antibiotic production: feedback and feedforward regulation and crosstalk within and between organisms

Some of the proteins regulating antibiotic production interact with known small-molecule ligands associated with different aspects of primary metabolism109. Another widespread scenario is the involvement of diffusible GBL and related signal molecules as the ligands of a subfamily of TetR-like regulators, like the A-factor/ArpA pair of \textit{S. griseus} (see above). This may operate differently in different species and different pathways. In \textit{S. venezuelae}, the SVB1 GBL receptor JadR3 has complex interactions with the promoters of both its own biosynthetic genes and jadomycin biosynthetic genes. This results in an integrated feedback and feedforward regulatory scheme that accounts for both the onset of the major period of jadomycin production and its subsequent down-regulation96. In \textit{S. coelicolor}, genome-wide ChIP-seq analysis has revealed an extensive network of regulatory interactions centred on ScbR (GBL receptor) and ScbR2 (pseudo-GBL receptor that binds antibiotics)107,108.

A major development in the regulation of antibiotic production concerns the activities of secondary metabolites themselves as regulatory ligands85,100. In one recent example from \textit{Streptomyces antibioticus}, the spirotetronate chlorothricin and some of its biosynthetic intermediates act as regulatory ligands for the CSR ChIF109. In another case involving the aminoacoumarin cacibioicin, a repressor of the biosynthetic genes, CabR, loses its DNA-binding activity in the presence of the end product or other aminocoumarins110.

Internal cross-pathway regulation mediated by end products has been subjected to closer analysis following the discovery of crosstalk between the chloramphenicol and jadomycin biosynthetic pathways in \textit{S. venezuelae}. JadR1, the main activator of the jadomycin gene cluster, was implicated in repressing chloramphenicol biosynthesis111, but a recent further analysis of this situation revealed that cross-regulation, though still observed, was markedly different when the experiments were done on a different medium112. It is not yet known whether these differences involve jadX, another newly identified regulatory gene in the jadomycin cluster113. Knocking out jadX prevented the well-known induction of jadomycin production by stress conditions while at the same time putting chloramphenicol biosynthesis under the control of these stresses, and it was shown that both jadomycins and chloramphenicol could interact with JadX113. Interestingly, genes for JadX-like proteins are present in some other antibiotic biosynthetic clusters113.

In \textit{S. coelicolor}, ScbR2, a protein closely similar to GBL-binding proteins, has been found to interact with jadomycins from \textit{S. venezuelae} (and other heterologously produced angucyclines) to relieve the ScbR2-mediated repression both of the global
regulatory gene adpA and of redD, encoding an activator of the RED pathway genes. Thus, S. coelicolor can respond to the presence of another species by undergoing developmental changes and switching on antibiotic production. Another example of such a response has been documented for lidamycin biosynthesis in Streptomyces globisporus, involving a widely conserved TetR-like global activator of antibiotic production, AtrA. AtrA directly activates lidamycin biosynthetic genes, but its activity is prevented by binding either a lidamycin biosynthetic intermediate, heptaene, or heterologously produced ACT. Inter-species interactions affecting antibiotic production are proving to be widespread among streptomycetes: a large-scale study of inter-organism interactions revealed many cases of production of secondary metabolites induced by growth close to another species, and another study found that low levels of lincomycin induced ACT production by S. coelicolor. It will be interesting to see whether ScbR2-, JadR1-, and JadX-like proteins are often involved in such crosstalk, or even in some of the more divergent interactions of streptomycetes with other microbes that continue to emerge from co-culture studies (for recent examples, see 118–121).

A high-resolution global survey of gene expression in S. coelicolor at different growth stages and the importance of translation-level regulation

Through the use of RNA sequencing to analyse the global transcription profile, and ribosome profiling (ribo-seq) to analyse translation, a near-comprehensive gene expression picture of S. coelicolor at different stages of growth in liquid culture has been obtained. This survey identified most of the transcription start sites in the entire genome, including those for 230 small RNAs. Amazingly, about 21% of protein-coding RNAs are leaderless (and lack conventional ribosome-binding sites). Moreover, clear changes were seen in translation rates between different growth stages, including increased efficiency of translation of mRNAs for major CSR genes at the end of the main growth phase but decreased efficiency for the biosynthetic genes that they control. It is not clear whether these changes reflect different codon usage, a relevant question given that several of the CSR genes for antibiotic production contain the very rare codon TTA. The protein-level expression of TTA-containing genes is usually dependent on the bldA gene, which encodes the cognate tRNA; abundance of this tRNA increases on the transition into stationary phase.

In an interesting counterpoint to the bldA story, the TTA codon in ccrA, the CSR gene controlling cephamycin C and clavulanic acid biosynthesis in S. clavuligerus, does not make the production of CcrA bldA-dependent. It has now turned out that many, but not all, TTA-containing genes in S. clavuligerus display the same anomaly. It would perhaps be worth examining the bldA dependence of these genes when introduced into S. coelicolor and of TTA-containing genes from S. coelicolor upon introduction into S. clavuligerus.

Technological advances

The last few years have seen steps forward in the development and application of diverse technologies for the study and exploitation of streptomycetes. The first systems for applying genome editing to streptomycetes will soon accelerate the construction of diverse kinds of mutants, while the discovery of a CRISPR-Cas system in S. avermitilis may open up new approaches. Along with new strategies for the cloning and deletion of very large segments of Streptomyces DNA, sufficient to encompass almost all antibiotic biosynthetic gene clusters, procedures are in place to exploit the ever-growing numbers of uncharacterised clusters emanating from genome sequencing, along the lines summarised by 134 and 135. Bioinformatic tools have been developed to predict the nature of the products of such clusters. One component of systems-based exploitation will be a panel of strong promoters, such as 20 promoters significantly stronger than the widely used ermE* that have been characterised in S. albus G137. Another promoter survey has identified promoters with very stable expression levels at different growth stages in two strains of S. coelicolor A3(2) and in other species. These are likely to be valuable standards in transcription studies.

Concluding remarks

The rapid recent progress summarised in this article seems set to accelerate further, particularly in light of the imminent application of powerful additions to the techniques available for Streptomyces research. Research targets will include further elucidation of the ligands that determine the activity of regulatory proteins, the ways in which developmentally important proteolysis is controlled, the search for the molecular factors involved in symbiotic associations, and the structural and functional characterisation of the DivIVA-centred polarisome that determines tip growth. In the course of such studies, an integrated picture of these diverse aspects of Streptomyces biology will begin to emerge. It is likely that this will require increasing input from computational biologists. The accumulating understanding of the biology of these key antibiotic-producing organisms can be expected to facilitate the development of new therapeutic agents in the global struggle against antibiotic-resistant pathogens.

Abbreviations

ACT, actinorhodin; ChIP-seq, chromosome immunoprecipitation sequencing; CSR, cluster-situated regulator; GBL, gamma-butyrolactone; RED, undecylprodigine.

Competing interests

The author declares that he has no competing interests.

Grant information

The authors declared that no grants were involved in supporting this work.

Acknowledgments

I thank the John Innes Centre for an Emeritus Fellowship. The writing of this (my final) review article has not directly involved anyone else, but it has been made possible by countless stimulating interactions with many colleagues over many years. I have also benefited greatly from the privilege of being a member of F1000, with organized access to the richness of Streptomyces literature. Finally, I thank Jean Chater for allowing me 50 years of indulgence in my fascination with bacterial genetics.
References

1. Charlop-Powers Z, Owen JG, Reddy BV, et al.: Chemical-biogeographic survey of secondary metabolism in soil. Proc Natl Acad Sci U S A. 2014; 111(10): 3757–62. PubMed Abstract | Publisher Full Text | Free Full Text

2. Charlop-Powers Z, Owen JG, Reddy BV, et al.: Global biogeographic sampling of bacterial secondary metabolism. eLife. 2015; 4: e05048. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

3. Hopwood DA: Streptomyces in Nature and Medicine: The Antibiotic Makers. Oxford University Press, New York, 2007. Publisher Full Text

4. Chater KF, Birs S, Lee KJ, et al.: The complex extracellular biology of Streptomyces. FEMS Microbiol Rev. 2010; 34(2): 171–98. PubMed Abstract | Publisher Full Text | Free Full Text

5. Wibberg D, Al-Dilaimi A, Busche T, et al.: Complete genome sequence of Streptomyces relicitu, an efficient degrader of crystalline cellulose. J Biotechnol. 2016; 222: 13–4. PubMed Abstract | Publisher Full Text | Free Full Text

6. Lim JH, Lee CR, Dhakshinamoorthy V, et al.: Molecular characterization of Streptomyces coelicolor A3(2) SCO6648 as a cellulase 1,4-β-cellulodioisase. FEMS Microbiol Lett. 2016; 363(3): pii: fvw245. PubMed Abstract | Publisher Full Text | Free Full Text

7. Tencori E, Urem M, Świątek-Polażyska MA, et al.: Multiple allosteric effectors control the affinity of Dafl for its target sites. Biochim Biophys Acta Gen Comp. 2015; 1841(1): 324–9. PubMed Abstract | Publisher Full Text

8. Barks EA, Vatsa P, Sanchez L, et al.: Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev. 2015; 80(1): 1–43. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

9. Seipte RF, Kaltenpeth M, Hutchings MI: Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev. 2012; 36(4): 862–76. PubMed Abstract | Publisher Full Text | Free Full Text

10. Liu M, Abdel-Mageed WM, Ren B, et al.: Endophytic Streptomyces sp. Y3111 from traditional Chinese medicine produced antibacterial plumrycins. Appl Microbiol Biotechnol. 2014; 98(3): 1077–85. PubMed Abstract | Publisher Full Text | Free Full Text

11. Vena P, Dubeau MP, Kimura A, et al.: Uptake of chitosan-derived D-glucosamine oligosaccharides in Streptomyces coelicolor A3(2). FEMS Microbiol Lett. 2015; 362(9): pii: fvu046. PubMed Abstract | Publisher Full Text | Free Full Text

12. Corti R, Chagas FO, Caraballo-Rodriguez AM, et al.: Endophytic Actinobacteria from the Brazilian Medicinal Plant Lycynhora ericoides Mart. and the Biological Potential of Their Secondary Metabolites. Chem Biodivers. 2016; 13(6): 727–36. PubMed Abstract | Publisher Full Text | Free Full Text

13. Chen X, Pizzatti C, Bonadial M, et al.: Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomyces. Front Microbiol. 2016; 7: 714. PubMed Abstract | Publisher Full Text | Free Full Text

14. Shyi Y, Chang X, Lo K: Isolation, characterization, and insecticidal activity of an endophyte of drunken horse grass, Achtherum inebrians. J Insect Sci. 2013; 13(1): 151. PubMed Abstract | Publisher Full Text | Free Full Text | Free Full Text

15. Xiao GP, Zhu CS, Feng JT, et al.: Effects of plant stress signal molecules on the production of wildtoringe in an endophytic actinomycete isolated from Tripterygium wilfordii Hook.S. FEMS Microbiol. 2015; 70(4): 571–9. PubMed Abstract | Publisher Full Text | Free Full Text

16. Singh SP, Gaur R: Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpeas. J Appl Microbiol. 2016; 121(2): 506–18. PubMed Abstract | Publisher Full Text | Free Full Text

17. Wang W, Zhao Y, Cao L, et al.: Illumina-based analysis of core actinobacteriome in roots, stems, and grains of rice. Microbiol Res. 2016; 190: 12–8. PubMed Abstract | Publisher Full Text | Free Full Text

18. Passari AK, Chandra P, Zohanpuia, et al.: Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect. Res Microbiol. 2016; 167(8): 692–705. PubMed Abstract | Publisher Full Text

19. Mukhavskaya T, Berzhanova R, Ignatova L, et al.: Bacterial endophytes of Trans-Ili Alatau region’s plants as promising components of a microbial preparation for agricultural use. Acta Biochim Pol. 2016; 63(2): 321–8. PubMed Abstract | Publisher Full Text | Free Full Text

20. Tchinda RA, Boudjeko T, Simao-Beaunoir AM, et al.: Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds. Microbes Environ. 2016; 31(1): 56–62. PubMed Abstract | Publisher Full Text | Free Full Text | Free Full Text

21. Peng SM, Wang BL, Xu JZ, et al.: Effect of different treatment on endophytic bacterial communities in continuous cropping of Chrysanthemum morifolium. Zhongguo Zhong Yao Za Zhi. 2014; 39(24): 4713–8. PubMed Abstract

22. Martiny JB: History Leaves Its Mark on Soil Bacterial Diversity. Microbiol. 2016; 7(3): pii: e00784-16. PubMed Abstract | Publisher Full Text | Free Full Text | Free Full Text | F1000 Recommendation

23. Kumbhar C, Mudkar P, Bhatla L, et al.: Widespread predatory abilities in the genus Streptomyces. Arch Microbiol. 2014; 196(4): 235–48. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

24. Huguet-Tapia JC, Bignell DR, Diaz Diaz C, et al.: Characterization of actinobacteria associated with three ant-plant mutualisms. Microb Ecol. 2015; 69(1): 192–203. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

25. Kortik F, Mailänder S, Bönn M, et al.: Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways. Mol Plant Microbe Interact. 2014; 27(9): 891–900. PubMed Abstract | Publisher Full Text | F1000 Recommendation

26. Hanshew AS, McDonald BR, Diaz Diaz C, et al.: Characterization of actinobacteria associated with three ant-plant mutualisms. Microb Ecol. 2015; 69(1): 192–203. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

27. Kortik F, Mailänder S, Bönn M, et al.: Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways. Mol Plant Microbe Interact. 2014; 27(9): 891–900. PubMed Abstract | Publisher Full Text | F1000 Recommendation

28. Huguet-Tapia JC, Bignell DR, Loria R: Characterization of the integration and modular excision of the integrative conjugative element PAISt in Streptomyces thermoreducens. PLoS One. 2014; 9(5): e96719. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

29. Chapleau M, Guérin JT, Farrokh A, et al.: Identification of genetic and environmental factors stimulating excision from Streptomyces scabiei chromosome of the toxigenic region responsible for pathogenicity. Mol Plant Pathol. 2016; 17(4): 501–9. PubMed Abstract | Publisher Full Text

30. Francis IM, Johnson S, Fanara S, et al.: The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies pathogenicity. Mol Plant Microbe Interact. 2014; 27(8): 875–86. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

31. Cheng Z, Bown L, Tahan K, et al.: Regulation of coronafacoyl phytotoxin production by the PAB-LuxR family regulator CtrB in the common scab pathogen Streptomyces scabies. PLoS One. 2015; 10(3): e0122450. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

32. Huguet-Tapia JC, Lefebvre T, Badger JH, et al.: Genome Content and Phylogenomics Reveal Both Ancestral and Lateral Evolutionary Pathways in Plant-Pathogenic Streptomyces Species. Appl Environ Microbiol. 2016; 82(7): 2146–55. PubMed Abstract | Publisher Full Text | Free Full Text | Free Full Text

33. Studholme DJ: Genome Update. Let the consumer beware: Streptomyces.
genome sequence quality. Microb Biotechnol. 2016; 9(1): 3–7. PubMed Abstract | Publisher Full Text | Free Full Text

42. Kim J, Kim Y, Jeong Y, et al.: Comparative Genomics Reveals the Core and Accessory Genomes of Streptomyces Species. J Microbiol Biotechnol. 2015; 25(10): 1659–605. PubMed Abstract | Publisher Full Text

43. Doroghazi JR, Buckley DH: Widespread homologous recombination within and between Streptomyces species. ISME J. 2010; 4(9): 1136–43. PubMed Abstract | Publisher Full Text

44. Feng K, Rong X, Huang Y: Widespread interspecies homologous recombination reveals reticulate evolution within the genus Streptomyces. Mol Phylogenet Evol. 2016; 102: 246–54. PubMed Abstract | Publisher Full Text | F1000 Recommendation

45. Thoma L, Muth G: The conjugal DNA-transfer apparatus of Streptomyces. Int J Med Microbiol. 2015; 305(2): 224–9. PubMed Abstract | Publisher Full Text

46. Thoma L, Vollmer B, Muth G: Fluorescence microscopy of Streptomyces conjugation suggests DNA-transfer at the lateral walls and reveals the spreading of the plasmid in the recipient mycelium. Environ Microbiol. 2016; 18(2): 598–608. PubMed Abstract | Publisher Full Text | F1000 Recommendation

47. Sjekle R, Strain-level diversity of secondary metabolism in Streptomyces albus. PLoS One. 2015; 10(1): e0116457. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

48. Sexton DL, St-Onge RJ, Haiser HJ, et al.: Recusitation-promoting factors are conserved lytic enzymes in the compartmentalization and morphogenesis of Streptomyces coelicolor. J Bacteriol. 2015; 197(5): 848–60. PubMed Abstract | Publisher Full Text | Free Full Text

49. St-Onge RJ, Haiser HJ, Youssef MR, et al.: Nucleotide second messenger-mediated regulation of a muralytic enzyme in Streptomyces. Mol Microbiol. 2015; 96(4): 737–55. PubMed Abstract | Publisher Full Text | Free Full Text

50. Chandra G, Chater KF: The absence of Pupylation σF1000FacultyRev:2795 Last updated: 30 Nov 2016

51. Chandra G, Chater KF: Nodwell JR: Are you talking to me? A possible role for γ-butyrolactone-sensing activator/repressor, JadR3, controls a regulatory mini-network for jadomycin biosynthesis. Mol Microbiol. 2014; 94(3): 493–503. PubMed Abstract | Publisher Full Text | F1000 Recommendation

52. Schlimpert S, Flärdh K, Buttner M: Fluorescence Time-lapse Imaging of the Complete S. venezuelae Life Cycle Using a Microfluidic Device. J Vis Exp. 2016; (108): 53863. PubMed Abstract | Publisher Full Text | Free Full Text

53. Donczew M, Mackiewicz P, Wnblad A, et al.: Para and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation. Open Biol. 2016; 6(4): 150263. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

54. Al-Bassam MM, Bibb MJ, Bush MJ, et al.: Response regulator homodimer formation controls a key stage in Streptomyces development. PLoS Genet. 2014; 10(8): e1004554. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

55. Bush MJ, Chandra G, Bibb MJ, et al.: Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis Shows that WhiA is a Transcription Factor That Coordinates Its Regulator with WhiB to Initiate Developmental Cell Division in Streptomyces. Mol Microbiol. 2016; 102(2): e00523–16. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

56. Bush MJ, Tschouri N, Schlimpert S, et al.: cd-GMP signalling and the regulation of developmental transitions in Streptomyces. Nat Rev Microbiol. 2015; 13(12): 749–60. PubMed Abstract | Publisher Full Text

57. Tsouri N, Schumacher MA, Schlimpert S, et al.: Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell. 2014; 158(5): 1136–47. PubMed Abstract | Publisher Full Text | Free Full Text

58. Tran NT, Den Hengst CD, Gomez-Esbrano JP, et al.: Identification and characterization of CcdB, a diguanylate cyclase involved in developmental processes in Streptomyces coelicolor. J Bacteriol. 2011; 193(12): 3100–8. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

59. Tschouri N: Cyclic Dinucleotide-Controlled Regulatory Pathways in Streptomyces Species. J Bacteriol. 2016; 198(4): 47–54. PubMed Abstract | Publisher Full Text | Free Full Text

60. Kelemen GH, Brown GL, Kormann JD, et al.: The positions of the sigma-factor genes, whiG and σG, in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2). Mol Microbiol. 1996; 21(3): 593–603. PubMed Abstract | Publisher Full Text

61. Zhang G, Tian Y, Hu K, et al.: Resuscitation-promoting factors are bacterial chaperones that facilitate survival in the aerobic environment. FEMS Microbiol Rev. 2014; 38(3): 345–70. PubMed Abstract | Publisher Full Text | Free Full Text

62. Liu S, Yu P, Yuan P, et al.: Sigma factor WhiGp, positively regulates natalomycin production in Streptomyces chattanoogensis L10. Appi Microbiol Biotechnol. 2015; 99(6): 2715–26. PubMed Abstract | Publisher Full Text | F1000 Recommendation

63. Green J, Rolfe MD, Smith LJ: Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence. 2014; 5(4): 794–809. PubMed Abstract | Publisher Full Text | Free Full Text

64. Chen Z, Hu Y, Cumming BM, et al.: Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide. Acc Chem Res. 2014; 47(10): 3196–205. PubMed Abstract | Publisher Full Text

65. Chen Z, Hu Y, Cumming BM, et al.: Mycobacterial WhiB6 Differentially Regulates ESX-1 and the Dos Regulon to Modulate Granuloma Formation and Virulence in Zebrafish. Cell Rep. 2016; 16(9): 2512–24. PubMed Abstract | Publisher Full Text

66. Serrano PN, Wang H, Crack JC, et al.: Nitrosylation of Nitric-Oxide-Sensing
Regulatory Proteins Containing [4Fe-4S] Clusters Gives Rise to Multiple Iron-Nitroxyl Complexes. Angew Chem Int Ed Engl. 2016; 55(47): 14575–14579.

P. Gasiak, Y. Oguchi, H. Kobayashi, T. et al.: Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling. Sci Rep. 2016; 6: 20208.

P. Cunningham-Bussell, A. Zhang, T. Nathaniel C. F. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc Natl Acad Sci U S A. 2013; 110(45): E4256–65.

P. Cunningham-Bussell, A. Bang, F. Nathaniel C. F. Nitrite impacts the survival of Mycobacterium tuberculosis in response to isoniazid and hydrogen peroxide. Microbiogogeny 2013; 2(6): 901–11.

F. Fischer, M. Falke, D. Pawlak, T. et al.: Oxygen-dependent control of respiratory nitrite reduction in mycelium of Streptomyces coelicolor A3(2). J Bacteriol. 2014; 196(23): 4152–62.

Lundberg JO, Weitzberg E, Gladwin MT: The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008; 7(2): 156–67.

S. Vasudevan, D. Bovee, R. Thomas DD: Nitric oxide, the new architect of epigenetic landscapes. Nitric Oxide. 2016; 59: 54–62.

J. Crack, J. McNicholl, J. Dodds EL, et al.: NsrR from Streptomyces coelicolor is a nitric oxide-sensing [4Fe-4S] cluster protein with a specialized regulatory function. J Biol Chem. 2015; 290(20): 12689–904.

J. Crack, J. Sviatunenko DA, McNicholl, J. et al.: Differentiated, Promoter-specific Response of [4Fe-4S] NsrR DNA Binding to Reaction with Nitric Oxide. J Biol Chem. 2016; 291(16): 8663–72.

W. Wang, W. Shu, D. Chen, L. et al.: Cross-talk between an orphan response regulator and a noncognate histidine kinase in Streptomyces coelicolor, FEMS Microbiol Lett. 2009; 294(2): 150–6.

J. Zhang, L. Willenme, J. Claessen, D. et al.: SepG coordinates sporulation-specific cell division and nucleoid organization in Streptomyces coelicolor. Open Biol. 2016; 6(4): 150164.

J. Ladwig, N. Franz-Wachtel, M. Haezi, F. et al.: Control of Morphological Differentiation of Streptomyces coelicolor A3(2) by Phosphorylation of MreC and PBP2. PLoS One. 2015; 10(4): e0125425.

M. Molle, V. Paltman, W. J, Findlay, K. C. et al.: WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3(2). J Bacteriol. 2000; 182(5): 1286–95.

J. Sandov-Calderon M, Nguyen DD, Kapono CA, et al.: Plasticity of Streptomyces coelicolor Membrane Composition Under Different Growth Conditions and During Development. Front Microbiol. 2015; 6: 1466.

M. Miah, F. Bbb, M. Jackson, B. J. et al.: Developmental delay in a Streptomyces venezuelae glgE null mutant is associated with the accumulation of α-maltose 1-phosphate. Microbiology. 2016; 162(7): 1208–19.

P. Kim, JN, Jeong Y, Yoon JS, et al.: Genomic-scale analysis reveals a role for Ngdh in the thiole oxidative stress response in Streptomyces coelicolor. BMC Genomics. 2015; 16(1): 116.

P. Liu, G. Chater, KF, Chandra, G. et al.: Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev. 2013; 77(1): 112–43.

P. Fu, D. Waack, P. Zhang, O. et al.: Structure and regulatory targets of SCO2201, a highly promiscuous TetR-like regulator of Streptomyces coelicolor M145, Biochim Biophys Acta Commun. 2014; 450(1): 513–8.

P. Rodriguez, H. Rico, S. Yepes, A. et al.: The two kinases, AbrC1 and AbrC2, of the atypical two-component system AbrC are needed to regulate antibiotic production and differentiation in Streptomyces coelicolor. Front Microbiol. 2015; 6: 400.

P. Rico S, Santamaría RI, Yepes A, E. et al.: Deciphering the regulon of Streptomyces coelicolor AbrC3, a positive response regulator of antibiotic production. Appl Environ Microbiol. 2014; 80(8): 2417–28.

P. Bekiesch P, Franz-Wachtel M, Nökl A, et al.: DNA affinity capturing identifies new regulators of the heterologously expressed novicidin gene cluster in Streptomyces coelicolor M512. Appl Microbiol Biotechnol. 2016; 100(10): 4485–509.

P. Huang J, Shi J, Mieß V, et al.: Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol. 2005; 56(5): 1276–87.

P. Vicente CM, Payaro TD, Santos-Aburto J, et al.: Pathway-specific regulation revisited: cross-regulation of multiple disparate gene clusters by PAS-LuxR transcriptional regulators. Appl Microbiol Biotechnol. 2015; 99(12): 5123–35.

P. Li, X. Wang, J. Li S, et al.: ScbR- and ScbR2-mediated signal transduction networks coordinate complex physiological responses in Streptomyces coelicolor. Sci Rep. 2015; 5: 14831.

P. Li, X. Yu, T. He Q, et al.: Binding of a biosynthetic intermediate to AtrA modulates the production of nodifidamycin by Streptomyces globisporus. Mol Microbiol. 2015; 96(6): 1257–71.

P. Li, Y. Li, J. Tian Z, et al.: Coordinative Modulation of Chlorothricin Biosynthesis by Binding of the Glycosylated Intermediates and End Product to a Responsive Regulator ChlF1. J Biol Chem. 2016; 291(10): 5406–17.

P. Wolafski M, Lebowski T, Kois-Ostrovska A, et al.: Two transcription factors, CabA and CabR, are independently involved in multilevel regulation of the biosynthetic gene cluster encoding the novel aminocinamicin, saccibio. Appl Microbiol Biotechnol. 2016; 100(7): 3147–64.

P. Xu, G. Wang, J. Wang L, et al.: “Pseudo” gamma-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem. 2010; 285(27): 27440–8.

P. Comforth DM, Foster KR: Antibiotics and the art of bacterial war. Proc Natl Acad Sci U S A. 2015; 112(35): 10827–8.

P. Imay Y, Sato S, Tanaka Y, et al.: Lincomycin at Subinhibitory Concentrations Potentiates Secondary Metabolite Production by Streptomyces spp. Appl Environ Microbiol. 2015; 81(11): 3869–79.

P. Robertson AW, Forget SM, Martinez-Farina CF, et al.: JadA Is a Disparate Natural Product Binding Protein. J Am Chem Soc. 2016; 138(7): 2200–8.

P. Wang, W, Ji J, Li X, et al.: Angucyclines as signals modulate the behaviors of Streptomyces coelicolor. Proc Natl Acad Sci U S A. 2014; 111(15): 5688–93.

P. Abudan MI, Smakman F, Grimbergren AJ, et al.: Socially mediated induction and suppression of antibiotic during bacterial coexistence. Proc Natl Acad Sci U S A. 2015; 112(30): 11054–9.

P. Schmidt DJ, Foster KR: Antibiotics and the art of bacterial war. Proc Natl Acad Sci U S A. 2015; 112(35): 10827–8.

P. Imay Y, Sato S, Tanaka Y, et al.: Lincomycin at Subinhibitory Concentrations Potentiates Secondary Metabolite Production by Streptomyces spp. Appl Environ Microbiol. 2015; 81(11): 3869–79.

P. Robertson AW, Forget SM, Martinez-Farina CF, et al.: JadA Is a Disparate Natural Product Binding Protein. J Am Chem Soc. 2016; 138(7): 2200–8.

P. Beierlein T, Orland A, König GM: Enhanced production of undecylprodigiosin in Streptomyces coelicolor by co-cultivation with the corallopyrrolin A-producing myxobacterium, Corallococcus coralloides. Biotechnol Lett. 2014; 36(3): 641–8.
123. Chater KF, Chandra G: The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in streptomyces. J Microbiol. 2008; 46(1): 1–11. PubMed Abstract | Publisher Full Text

124. Chandra G, Chater KF: Evolutionary flux of potentially bldA-dependent Streptomyces genes containing the rare leucine codon TTA. Antonie Van Leeuwenhoek. 2008; 94(1): 111–26. PubMed Abstract | Publisher Full Text

125. Jensen SE: Biosynthesis of clavam metabolites. J Ind Microbiol Biotechnol. 2012; 39(10): 1407–19. PubMed Abstract | Publisher Full Text

126. Ferguson NL, Peña-Castillo L, Moore MA, et al.: Proteomics analysis of global regulatory cascades involved in clavulanic acid production and morphological development in Streptomyces clavuligerus. J Ind Microbiol Biotechnol. 2016; 43(4): 537–55. PubMed Abstract | Publisher Full Text

127. Zeng H, Wen S, Xu W, et al.: Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol. 2015; 99(24): 10375–85. PubMed Abstract | Publisher Full Text

128. Liu Y, Tao W, Wen S, et al.: In Vitro CRISPR/Cas9 System for Efficient Targeted DNA Editing. MBio. 2015; 6(6): e01714–15. PubMed Abstract | Publisher Full Text | Free Full Text

129. Tong Y, Charusanti P, Zhang L, et al.: CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. ACS Synth Biol. 2015; 4(9): 1020–9. PubMed Abstract | Publisher Full Text | Free Full Text

130. Huang H, Zheng G, Jiang W, et al.: One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai). 2015; 47(4): 231–43. PubMed Abstract | Publisher Full Text

131. Qiu Y, Wang S, Chen Z, et al.: An Active Type I-E CRISPR-Cas System Identified in Streptomyces avermitilis. PLoS One. 2016; 11(2): e0149533. PubMed Abstract | Publisher Full Text | Free Full Text

132. Du D, Wang L, Tian Y, et al.: Genome engineering and direct cloning of antibiotic gene clusters via phage eBT1 integrase-mediated site-specific recombination in Streptomyces. Sci Rep. 2015; 5: 8740. PubMed Abstract | Publisher Full Text | Free Full Text

133. Antoraz S, Santamaria RI, Díaz M, et al.: Toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front Microbiol. 2015; 6: 461. PubMed Abstract | Publisher Full Text | Free Full Text

134. Baltz RH: Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol. 2016; 43(2–3): 343–70. PubMed Abstract | Publisher Full Text | Free Full Text

135. Breiting R, Takano E: Synthetic Biology of Natural Products. Cold Spring Harb Perspect Biol. 2016; 8(10): pii: a023994. PubMed Abstract | Publisher Full Text | Free Full Text

136. Weber T, Bliin K, Duddela S, et al.: antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015; 43(W1): W237–43. PubMed Abstract | Publisher Full Text | Free Full Text

137. Luo Y, Zhang L, Barton KW, et al.: Systematic Identification of a Panel of Strong Constitutive Promoters from Streptomyces albus. ACS Synth Biol. 2015; 4(9): 1001–10. PubMed Abstract | Publisher Full Text

138. Li S, Wang W, Li X, et al.: Genome-wide identification and characterization of reference genes with different transcript abundances for Streptomyces coelicolor. Sci Rep. 2015; 5: 15840. PubMed Abstract | Publisher Full Text | Free Full Text

139. Willemse J, Borst JW, de Waal E, et al.: Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev. 2011; 25(1): 89–99. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Referee Status: ✓ ✓ ✓ ✓ ✓

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Wolfgang Wohlleben, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
 Competing Interests: No competing interests were disclosed.

2 Paul J Dyson, Institute of Life Science, Swansea University Medical School, Swansea, UK
 Competing Interests: No competing interests were disclosed.

3 Klas Flardh, Department of Biology, University of Lund, Lund, Sweden
 Competing Interests: No competing interests were disclosed.

4 Rosemary Loria, Department of Plant Pathology, University of Florida, Gainesville, FL, USA
 Competing Interests: No competing interests were disclosed.