Regularities of operation cartridge filters

A Bahmetev, V Khuzin
Department of Hydraulics, water supply and water disposal, Voronezh State Technical University, 84, 20-letiya Oktyabrya, Voronezh 394006, Russia

E-mail: v.huzin@mail.ru

Abstract. The process of de-ironizing natural water by filtering through small-sized cartridge ceramic filters is considered. The process of filtration of the suspension through the filter wall, assuming that the filter wall and the sediment is not compressible. Considering, thus, the flow rate of filtrate is proportional to the pressure gradient of the square of the filter and inversely proportional to the resistance. In contrast to the works of V. A. Zhuzhikov, here the slurry is fed inside the cartridge filter. The results of theoretical and experimental studies are presented. Mathematical equations of filtration process are obtained when source water is supplied inside cartridge.

1. Introduction
Water de-gelation is an important point in water treatment technology. At present, there are many methods known to degenerate natural waters [1-7]. In this case, theoretical studies of water deselection by cartridge filters with a solid filter base are given. Cartridge filter is cylinder with cartridge of height H, inner diameter D, thickness of walls δ, averaged diameter of pores d.

The main characteristics when considering the filtration process are: filter cycle duration, filtration rate and other factors [8,9].

As is known, the duration of the filter cycle is determined either by the quality of the filtrate (if impurities slip into the filtrate, the filter is stopped for washing) or by loss of head (the filter is encircled to such an extent that filtration does not occur) or by exhaustion of the volume provided to the precipitate.

2. Research problem statement and theoretical part
V.A. Zhuzhikov [10,11] offered the formula for definition of limit time of filtering for cartridge filters. He considered process of filtering of suspension through a filtering partition with formation of a deposit on the cartridge filter, having assumed that the filtering partition and a deposit are not squeezed. At the same time suspension moved outside of the filtering element. For time of t_e during which the layer of a deposit accrues from the external radius of the filtering $R_{f,p,e}$ to $R_{s,e}$ deposit radius at external supply of suspension constant pressure difference ΔP, it received expression:

$$t_e = \frac{R_{f,p,e}^2}{4x_p \Delta P} \left[(y-a)(r_0 + r_{f,p}) \ln a + r_0 y \ln \frac{y}{a} \right]$$

(1)
where x_0 - the ratio of precipitate to filtrate volumes in the original slurry; R_0 and $r_{f.p.}$ - specific resistances of sediment and filter partition; $R_{f.p.e.}$, $R_{f.p.i.}$ - external and internal radiuses of a filtering partition; $a = (R_{f.p.e.} / R_{f.p.i.})^2$, $y = (R_{s.e.} / R_{f.p.i.})^2$.

![Figure 1](image-url)
Figure 1 Schematic section of filter cartridge with sediment layer: 1 - filter partition, 2 - precipitate at external water supply, 3 - precipitate at internal water supply.

Consider the filtration process under the same assumptions when feeding the suspension inside the cartridge filter [12]. Considering, like V.A. Zhujikov, the filtrate flow rate proportional to the pressure gradient of the filter area and inversely proportional to the resistance, we can record for an infinitely thin layer of filter baffle with a radius of R_f, located within the limits between the inner $R_{f.p.i.}$ and the outer $R_{f.p.e}$ radii:

$$
\frac{dV}{dt} = \frac{2\pi LR_{f.p.}}{r_{f.p.}} \frac{dP}{dR_{f.p.}}
$$

(2)

And for an infinitely thin layer of sediment with a radius R_s, located within the limits between the inner $R_{s.i.}$ and external $R_{s.e}$ radii:

$$
\frac{dV}{dt} = \frac{2\pi LR_s}{r_0} \frac{dP}{dR_s}
$$

(3)

By integrating equation (2) by the variable $R_{f.p.}$, ranging from $R_{f.p.i.}$ to $R_{f.p.e}$, and from P_i to P_e, we will receive:

$$
P_e - P_i = \frac{r_{f.p.}}{2\pi \cdot L} \frac{dV}{dt} \ln \frac{R_{f.p.e}}{R_{f.p.i}}
$$

(4)

where through P_i and P_e the pressures are indicated on the inner and outer sides of the filter partition, respectively.

By integrating equation (3) on the variable R_s within the range of $R_{s.i.}$ to $R_{s.e} = R_{f.p.i}$ and from P_0 to P_l, get:

$$
P_o - P_{l.p} = \frac{r_i}{2\pi \cdot L} \frac{dV}{dt} \ln \frac{R_{l.p}}{R_{f.p.e}}
$$

(5)

where P_o - pressure on the inner surface of the sediment layer.

Subtracting from (5) (4) yields for pressure difference.
\[\Delta P = P_0 - P_e = \frac{1}{2\pi \cdot L} \int_0^t \frac{dV}{dt} \left(r_0 \ln \frac{R_{s,i}}{R_{f,p,i}} - r \ln \frac{R_{f,p,e}}{R_{f,p,i}} \right) \]

(6)

During filtration, the value of the internal radius of the deposit \(R_{s,i} \) is a variable value decreasing from \(R_{s,e} = R_{f,p,i} \).

Consider the differential relationship between the amount of \(dV \) filtrate produced and the thickness of the formed sediment layer \(dR_{s,i} \) radius.

\[dV = \frac{2\pi \cdot R_{s,i} \cdot dR_{s,i}}{x_0} \]

(7)

Substituting (7) in (6) and integrating the obtained differential equation within the range from 0 to \(t_i \) and from \(R_{s,e} = R_{f,p,i} \) to \(R_{s,i} \), for the time \(t_i \) during which the sediment layer increases from the inner radius of the filtering partition \(R_{f,p,i} \) to the inner radius of the \(R_{s,i} \) precipitate.

\[t_i = \frac{R_{f,p,i}^2}{4x_0 \Delta P} \left[(1 - z) \cdot \left(r \ln a + r_0 \right) + r_0 \cdot z \cdot \ln z \right] \]

(8)

where \(z = R_{s,i}^2/R_{f,p,i}^2 \), in particular, at \(z = 0 \) (the whole inner surface of the filter is filled with sediment):

\[t'_{lim} = \frac{R_{f,p,i}^2}{4x_0 \Delta P} \left(r \ln a + r_0 \right) \]

(9)

The formula (9) defines the time of filtration before washing when the suspension is fed into the cartridge filter.

We will require equality of sediment volumes at external and internal suspension supply (in the limit case): \(y = 1 + a \). By dividing (1) by (9), we get:

\[\frac{t'_{lim}^e}{t'_{lim}^i} = \frac{-r_0 + r \ln a + r_0 \left(1 + a \right) \cdot \ln \left(1 + \frac{1}{a} \right)}{r_0 + r \ln a} \]

(10)

At a thickness tending to zero from (10) follows a thin filtering partition \((a \rightarrow 1) \):

\[\frac{t'_{lim}^e}{t'_{lim}^i} = 2\ln 2 - 1 = 0.386 \]

(11)

Thus, the productivity of the cartridge filter at the external feed of the slurry is more than 2.5 times higher than at the internal feed at the same pressure difference.

Due to the fact that in the practice of cartridge filters the thickness of the filter element partition can be considerably higher than the thickness of the sediment layer formed on it (partition) [13], productivity of cartridge filters at internal supply of suspension to the filter element will naturally be less than productivity of such filter at external supply of suspension. However, this reduction in productivity does not correspond to expression (10), but rather depends on the overall dimensions of the cartridge.

It should be noted that in all known applications of cartridge filters the liquid flow was directed towards the center, i.e. radially inward [14,15]. In this case, the slurry experiences an increase in velocity as it passes through the medium, so that any suspended particles not retained on the outer layers are all less and less likely to be retained internally.

When the suspension is fed internally, on the contrary, as the slurry passes through the medium, the speed of the slurry is reduced and, consequently, the probability of the slurry being held is increased.
Thus, feeding the suspension inside the filter cartridge, slightly reducing the productivity of the cartridge filters, significantly improves the process parameters of water degilation and therefore can be advantageous when using cartridge filters as small water treatment plants for water degilation [16,17].

3. Research results and suggestions

In view of the above, studies were carried out using an experimental plant consisting of four cartridge filters.

The feed water after the pre-aeration was supplied to the inside of the ceramic porous cartridge, the filter surface of which was defined as $S_f = \pi D H$. One important characteristic of cartridge filters is the surface porosity ε - the ratio of the pore area in a given section to the area of the entire section. Design characteristics of cartridge filters are given in Table 1.

Filter number	Overall dimensions, mm	Filter surface, S_f, m^2	Pore size, d, mm	Surface porosity, ε
F1	206 56 9 0,0387 80 0,0024			
F2	220 40 15 0,0289 100 0,0019			
F3	105 50 3 0,0184 50 0,0038			
F4	80 29 7 0,0078 40 0,0028			

Purification of water from iron compounds was carried out as it passed through filter pores. Through certain periods of t, the speed of filtering of V_f and pressure difference ΔP was measured. The results of the experiments are summarized in Table 2 and Table 3.

Time interval from the beginning of filtering, h	the Speed of filtering, V_f, m/h	Differential pressure, ΔP, kPa
F1	F2 F3 F4	F1 F2 F3 F4
0	2,45 2,45 2,60 0,66	14 19 9 11
24	2,58 2,56 2,57 0,67	24 26 15 18
48	2,51 2,49 2,60 0,67	35 37 22 32
72	2,45 2,45 2,57 0,67	46 48 32 44
82	2,39 2,40 2,54 0,66	56 57 40 48

Time interval from the beginning of filtering, h	Iron concentration in starting water, C_{st}, mg/dm3	Iron concentration in filtrate, C, mg/dm3
F1	F2 F3 F4	F1 F2 F3 F4
0	5,73 5,05 5,11 5,11	4,48 2,73 3,88 1,38
10	5,69 4,32 4,48 4,46	4,46 2,33 3,88 1,38
24	5,63 3,72 3,66 3,88	3,65 1,01 3,88 1,38
34	5,72 3,37 3,48 3,48	3,65 1,01 3,88 1,38
48	5,65 3,08 3,15 3,23	3,23 0,85 3,23 0,85
58	5,57 2,62 2,67 2,68	2,68 0,61 2,68 0,61
72	5,72 2,37 2,43 2,38	2,38 0,53 2,38 0,53
82	5,81 2,32 2,38 2,42	2,42 0,41 2,42 0,41
Processing of results of an experiment showed that at almost constant speed of filtering of V_f, differential pressure ΔP linearly increases in time:

$$\Delta P = \Delta P_0 + b_f t,$$

(12)

And the dependence of the iron concentration in the filtrate on the filtration time is well approximated by the equation

$$\ln \frac{C}{C_{mix}} = a + bt,$$

(13)

Mathematical processing of experimental data by least squares method allowed to obtain values of parameters included in equations (12) and (13). Their numerical values are shown in Table 4.

Table 4. Constants that determine the pressure drop and iron concentration in the filtrate versus time.

Filter number	Constant value of equations (12) - (13)			
	ΔP_0, Pa	b_f, Pa/s	a	b, 1/s
$\Phi 1$	12800	0,136	0,1676	2,7 $\cdot 10^6$
$\Phi 2$	16900	0,125	0,1566	2,6 $\cdot 10^6$
$\Phi 3$	7100	0,1	0,1325	2,7 $\cdot 10^6$
$\Phi 4$	9300	0,131	0,525	7,7 $\cdot 10^6$

From physical representations clearly [18,19], that resistance ΔP to a stream in the cartridge filter consists of resistance of the filtering partition ΔP_0 and resistance of a layer of a deposit. The resistance of the filter partition is subject to Stokes’ law:

$$\Delta P_0 = \frac{32 \cdot \mu \cdot \delta \cdot V_f}{\varepsilon \cdot d^2},$$

(14)

where μ - the dynamic viscosity of water.

The resistance of the sediment layer is proportional to its thickness at time t:

$$b_p \cdot t = k \cdot \frac{1}{S_f \cdot \rho_e} \int_0^t (C_m - C) \cdot S_f \cdot V_f \cdot dt \approx k V_f \cdot C_m \left(1 - e^{-a t}\right) \cdot t,$$

(15)

Hence for the proportionality factor k we get:

$$k = \frac{b_p}{V_f \cdot C_m \left(1 - e^{-a t}\right)},$$

(16)

K coefficient for all filters was identical $k = 240$ Pa/m \cdot dm3/mg.

The most important factor on which the constants a, b of kinetic equation (13) depend is the filtration rate V_f. The second significant factor determining these constants is the ratio χ of the amount of adhesion surface on which the iron particles adhere to the volume of water entering the surface per unit time. The adhesive surface is the total surface of the inner channels of pores of diameter d and length δ (wall thickness) [20].

$$S_{ad} = N \cdot \pi \cdot d \cdot \delta,$$

(17)

where $N = \frac{4 \cdot \varepsilon \cdot S_f}{\pi \cdot d^2}$ is the number of pores of diameter d on the surface S_f.

Thus
\[\chi = \frac{S_{\text{m}}}{V_f \cdot d} = \frac{4 \varepsilon \cdot \delta}{V_f \cdot d} \] \hspace{1cm} (18)

Taking this into account, assuming the dependencies \(a, b \) to \(V_f \) and \(\chi \) linear and using the least squares method to find the coefficients from the experimental data, we obtain:

\[a = -0.0085 + 125.52V_f + 4.82 \cdot 10^{-10} \cdot \chi \] \hspace{1cm} (19)

\[b = 1.3712 \cdot 10^{-6} + 6.289 \cdot 10^{-4} \cdot V_f + 5.852 \cdot 10^{-10} \cdot \chi \] \hspace{1cm} (20)

In these equations, the velocity \(V_f \) is measured in m/s and \(\chi \) in s/m.

The above equations of the mathematical model of operation of the cartridge filter can be used to select filters with specified technological characteristics.

References

[1] Nikoladze G 1978 De-gelation of natural and recycled waters (Moscow: Stroyizdat) p 161
[2] Zolotarev E, Ass G 1975 Purification of water from iron, fluorine, manganese and hydrogen sulphide (Moscow: Stroyizdat) p 173
[3] Kurt Schlenker 1965 Method of Groundwater De-Gelation Using EHS - Contact Cartridge Filter WWT 8 15–17
[4] ChiburayeV, Vybynova M, Rogovets A 1992 On the State and Tasks to Improve the Provision of Benign Water to the Population Materials of the seminar "Improving the Technological and Sanitary Reliability of Household and Drinking Water Supply Systems Moscow: The State of the Central Russian House
[5] Rakhmanin Y, Mikhailova R 1991 Modern criteria for hygienic evaluation of benign drinking water Collection of theses of reports of the Soviet-French symposium "Purity of capitals of the world." (Moscow) pp 22–25
[6] Rakhmanin Y, Ceskis A, Mikhailova R 1992 Current tasks of improving the system of drinking water requirements and quality control Hygiene and sanitation 3 42–47
[7] Rakhmanin Y, Malyukov A, Matyunin G 1992 Disinfection and purification of drinking water by portable combined water purifiers Hygiene and sanitation 9 50–53
[8] Sakash G 2007 Technical and economic efficiency of application for water clarification of cartridge filters Energy saving and water treatment 2 23–24
[9] Sakash G 2007 Suspension retention mechanism and recommended method for calculating ceramic filters Energy saving and water treatment 6 12–14
[10] Zhuzhikov V 1980 Filtration. Suspension separation theory and practice (Moscow: Chemistry) p 400
[11] Zhuzhikov V, Klenov V 1971 Calculation of filters of periodic action taking into account redistribution of pressures in compressible sediment and filter partition Chemical. Industry 9 56–60
[12] Korosteleva R, Hassen K 1975 De-gelation of groundwater on ceramic cartridge filters for agricultural water supply All-Union seminar "Experience of mechanization of water supply and sewerage of livestock farms and complexes" p 33–35
[13] Malinovskaya T 1971 Suspension separation in organic synthesis industry (Moscow: Chemical) p 191
[14] Melzer V, Rappoport J 1992 Testing of foamed polymetallic filter elements at the de-gelation station of Borovici, examination of design solutions and issuance of an opinion on the effectiveness of the de-gelation technology of JSC "Synthesis - ECO" Report on the topic HV - 92 (25/86) NIHKVOV AKH named after K.D. Panfilova p 15
[15] Melzer V, Rappoport J, Korabelnikov V, Bakhmetev A 1993 Development of the technology of construction and installation of factory manufacturing for water supply and water disposal from cottages, individual buildings and farms in the field of water supply Section 1.
"Analysis of existing drinking water preparation equipment and facilities in centralized and individual water supply systems of cottages and farms." Report of NIIKVOV p 32

[16] Bakhmetyev A 2000 Development of the technology of water de-gelation at small water treatment plants with solid filtering bases Autoreferat thesis for the degree of Candidate of Technical Sciences p 20

[17] Mendrish G, Rakhmanin Yu, Orlov G 1993 Engineering and sanitary and hygienic justification for the application of individual drinking water treatment plants. Stage 1. Technological, sanitary and operational assessment of various individual plants for natural water treatment Abstract report on topic 4.11/703 NIIKVOV p 39

[18] Lukin N, Lipman B 1961 Specific resistance of sewage sludge and method of its determination Collection of scientific works of AKH. Release 6

[19] Sakash G 2008 Recommended modes of operation and maintenance of cartridge filters with ceramic elements News of higher educational institutions. Construction NGASU 2 67–71

[20] Pinskaya G 1981 Adhesion of suspension particles during water filtration and method of calculation of process parameters of non-reactive filters Autoreferate of dissertation p 19