ARTICLE OPEN

Reversal of the magnetoelectric effect at a ferromagnetic metal/ferroelectric interface induced by metal oxidation

Zhaojin Chen1, Qiong Yang1✉1✉, Lingling Tao2✉1✉ and Evgeny Y. Tsymbal2✉1✉

Multiferroic materials composed of ferromagnetic and ferroelectric components are interesting for technological applications due to sizable magnetoelectric coupling providing new paradigms for electronic devices.1,2 The control of magnetic properties by an applied electric field rather than a magnetic field or a spin-polarized current requires much less energy than that in the single-phase multiferroics3–5, as a result of the strain-mediated6–11 and charge-mediated12–23 coupling mechanisms. In addition, the magnetoelectric effect in the ferromagnet/ferroelectric heterostructures can be employed in multiferroic tunnel junctions—non-volatile multilevel electronic devices.24–29

Over the last years, a wide range of multiferroic materials and structures have been assessed for technological applications.2 With these efforts, the challenge was the compatibility of these materials with silicon-based technologies.30 Most of the traditional perovskite ferroelectrics are incompatible with the complementary metal-oxide-semiconductor (CMOS) technology. In addition, ferroelectric properties of perovskites oxides often deteriorate with reduced film thickness that makes a composite structure impractical at the nanoscale.

Recently, ferroelectricity has been discovered in doped hafnia (HfO2) films31,32, which may help to address the abovementioned challenges. The origin of ferroelectric behavior was attributed to a non-centrosymmetric orthorhombic phase of HfO2 with the space group symmetry Pca21.33 Due to robust ferroelectricity at the nanometer scale and good compatibility with the CMOS technology, HfO2-based ferroelectrics have attracted significant attention.34–37 Considerable efforts have been invested in studying relevant properties to explore their applicability to non-volatile memory devices, such as ferroelectric random-access memories (FeRAM)38, ferroelectric field-effect transistors (FeFET)39,40, ferroelectric tunnel junctions (FTJs)41–52, and negative-capacitance field-effect transistors (NCFET)56,57. The HfO2-based ferroelectric thin films are also promising as a ferroelectric component in multiferroic heterostructures for the high-density memory applications.53–58. Based on density functional theory (DFT) calculations, a strong polarization-controlled magnetoelectric coupling has been predicted at the interface between ferromagnetic metal Ni and ferroelectric HfO2.59 Stimulated by this prediction, experimental studies of the magnetoelectric coupling at the Ni/Hf0.5Zr0.5O2 (HZO) interface have been conducted and revealed a sizable effect.52,59 The ferroelectric polarization control of magnetocristalline anisotropy and a coercive field have been demonstrated in ultrathin Al-doped-HfO2/Co/Pt heterostructures.58 A sizable tunneling magnetoresistance (TMR) has been observed in La0.7Sr0.3MnO3 (LSMO)/Hf0.5Zr0.5O2 (HZO)/Co magnetic tunnel junctions (MTJs).60 Interestingly, the TMR effect in these studies was reversed (i.e., the TMR changed from positive to negative) after a few tens of electric field cycling under the same DC bias. In addition, in a separate study, it was found that a CoOx layer formed at the Co/Hf0.5Zr0.5O2 interface after ~100 times of electric field cycling, leading to a high-resistance state in LSMO/HZO/Co multiferroic tunnel junctions.59

The latter results indicate that the effects of ferromagnetic metal oxidation play an important role in functional multiferroic devices. It is well known that oxygen ions in oxide materials can easily diffuse into the adjacent metal film under applied voltage causing oxidation of metal surface at the metal/oxide interfaces. The formation of an oxide layer produces a significant effect on magnetic properties, such as the interface magnetization, the...
magnetocrystalline anisotropy, the spin-orbit torque, and the TMR effect54-59. For example, it has been shown that the oxidation of the Co metal surface results in the formation of the Co–O bonding or antibonding states, which modifies the electronic and magnetic structure and leads to the reversal of the TMR effect60,61.

Since oxidation of a ferromagnetic metal is expected to occur in realistic devices based on ferromagnet/ferroelectric HfO\textsubscript{2} interfaces52, in this work, we systematically explore the effects of interfacial oxygen stoichiometry on magnetoelectric properties. We consider a Ni/HfO\textsubscript{2} heterostructure as a prototype model and, using first-principles DFT calculations, study the influence of metal oxidation and oxygen deficiency in HfO\textsubscript{2} on the magnetoelectric coupling. Consistent with our previous work49, we find that the pristine Ni/HfO\textsubscript{2} interface exhibits a “conventional” magnetoelectric effect driven by the depletion (accumulation) of the screening electronic charges, where the interfacial magnetization is enhanced (reduced) for ferroelectric polarization of HfO\textsubscript{2} screening electronic charges, where the interfacial magnetization structures by stacking 5.75 unit cell layers of HfO\textsubscript{2} and 9 faces52, in this work, we systematically explore the effects of interfacial oxygen stoichiometry on magnetoelectric properties. We consider a Ni/HfO\textsubscript{2} heterostructure as a prototype model and, using first-principles DFT calculations, study the influence of metal oxidation and oxygen deficiency in HfO\textsubscript{2} on the magnetoelectric coupling. Consistent with our previous work49, we find that the pristine Ni/HfO\textsubscript{2} interface exhibits a “conventional” magnetoelectric effect driven by the depletion (accumulation) of the screening electronic charges, where the interfacial magnetization is enhanced (reduced) for ferroelectric polarization of HfO\textsubscript{2} pointing away from (into) the ferromagnetic Ni layer (Fig. 1a, b).

When the oxygen deficiency at the interface increases, the reduced charge transfer between Ni and O atoms reduces the magnetoelectric coupling due to a smaller contribution to it from the Ni–O hybridization at the interface. Surprisingly, we find that the polarization-induced interfacial magnetoelectric effect is reversed when the interfacial Ni layer is oxidized by diffused oxygen ions from HfO\textsubscript{2} (Fig. 1c, d). We demonstrate that the reversed interface magnetoelectric effect is driven by the formation of the exchange-split Ni–O antibonding states, which are sensitive to ferroelectric polarization.

RESULTS

Interface structures and magnetic properties

To explore magnetoelectric properties of the Ni/HfO\textsubscript{2} interfaces, we follow our previous work49 and consider Ni/HfO\textsubscript{2}/Ni heterostructures by stacking 5.75 unit cell layers of HfO\textsubscript{2} and 9 monolayers of Ni along the (001) direction. Here, one unit cell layer of HfO\textsubscript{2} consists of 2 Hf monolayers and 2 O monolayers. We assume symmetric Ni/O interface terminations, which allows us to examine magnetic properties of the Ni/HfO\textsubscript{2} (001) interface for polarization pointing into the Ni layer or away from the Ni layer, using the same structural model with unidirectional polarization of HfO\textsubscript{2} (Fig. 2a). The in-plane lattice constant of the Ni/HfO\textsubscript{2}/Ni heterostructure is fixed to the experimental value of yttrium-stabilized zirconia (\(a = 5.185\,\text{Å}\)) which is a common substrate to grow HfO\textsubscript{2}-based ferroelectric thin films62,63.

The atomic structure of the defect-free (SDF) Ni/HfO\textsubscript{2}/Ni heterostructure is optimized with the two interfaces shown in Fig. 2a. The ferroelectric polarization of HfO\textsubscript{2} is pointing into (\(P_{\text{in}}\)) and away from (\(P_{\text{out}}\)) the Ni layer for the top and bottom interfaces, respectively. The average magnetic moments of the interfacial Ni atoms for the \(P_{\text{in}}\) and \(P_{\text{out}}\) interfaces are calculated to be 0.97 \(\mu_{\text{B}}\) (\(m_{\text{in}}\)) and 1.24 \(\mu_{\text{B}}\) (\(m_{\text{out}}\)), respectively (Table 1). Therefore, the magnetization difference \(\Delta m\) at the Ni/HfO\textsubscript{2} interface caused by ferroelectric polarization switching is 0.27 \(\mu_{\text{B}}\) (0.04 \(\mu_{\text{B}}\)/\(\text{Å}^2\)).

First, we study the effect of oxygen deficiency on the magnetoelectric coupling at the Ni/HfO\textsubscript{2} interface. Figure 2b shows the Ni/HfO\textsubscript{2} atomic structure with one oxygen vacancy at each interface (labeled SV-1). Another structure with two oxygen vacancies (labeled SV-2') at the interface is shown in Supplementary Fig. 1b. We find that the SV-1' interface is 0.42 eV higher in the total energy than the SV-1 interface. The average magnetic moments for the SV-1 and SV-1' structures are 0.71 \(\mu_{\text{B}}\) and 0.93 \(\mu_{\text{B}}\) for the \(P_{\text{in}}\) and \(P_{\text{out}}\) interfaces, respectively, resulting in a \(\Delta m\) of 0.22 \(\mu_{\text{B}}\) (Table 1). Figure 2c shows the Ni/HfO\textsubscript{2} atomic structure with two oxygen vacancies at each interface (labeled SV-2), and another structure with two oxygen vacancies (labeled SV-2') is shown in Supplementary Fig. 1c. The SV-2' interface has the total energy of 0.31 eV higher than the SV-2 interface. As seen from Table 1, the magnetization change driven by polarization reversal

Fig. 1 Magnetoelastic effect reversal induced by interfacial metal oxidation. The ferroelectric-induced interfacial magnetoelastic effect at the pristine defect-free (a, b) and oxidized-metal (c, d) Ni/HfO\textsubscript{2} interface. The vertical arrows represent ferroelectric polarization of the HfO\textsubscript{2} layer. Red and green colors at the Ni/HfO\textsubscript{2} interfaces denote an increase or decrease of the interface magnetization induced by the ferroelectric polarization, respectively. Red solid and open spheres at the Ni/HfO\textsubscript{2} interfaces in c and d indicate the diffused oxygen atoms and the remaining oxygen vacancies (Vo), respectively, which are amplified in the insert.

npj Computational Materials (2021) 204 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences
The difference in the magnetoelectric effect depending on the degree of the Ni layer oxidation. For the SD-1 and SD-1’ structures, where only one O atom per unit cell is diffused underneath the top Ni monolayer (Fig. 2d and Supplementary Fig. 1d), the interfacial Ni DOS (Fig. 3d and Supplementary Fig. 3d) are like those for the structures with one oxygen vacancy at the interface (Fig. 3b and Supplementary Fig. 3b), resulting in qualitatively similar magnetoelectric effects.

Interface electronic properties

The difference in the magnetoelectric effect depending on the interfacial oxygen stoichiometry can be understood from the analysis of the electronic structure. Figure 3 shows the spin-resolved density of states (DOS) projected onto the interfacial Ni atoms and diffused O for the Ni/HfO2/Ni heterostructures shown in Fig. 2. For the pristine defect-free structure (Fig. 3a), ferroelectric polarization of HfO2 shifts the DOS of the interfacial Ni atoms at the P_{out} (P_{in}) interface to high (low) energies (compare red and blue lines in Fig. 3a). Since around the Fermi energy the minority-spin DOS of Ni is much larger than the majority-spin DOS (compare top and bottom panels in Fig. 3a), this shift of the Ni DOS results in the depletion (accumulation) of the minority-spin electrons and hence an enhanced (reduced) magnetic moment of the Ni atoms at the P_{out} (P_{in}) interface.

In addition to the electrostatic doping, there is another contribution to the magnetoelectric effect resulting from the electronic hybridization between the interfacial Ni and O atoms dependent on polarization orientation. As was explained in our previous work, the weaker (stronger) hybridization between the O 2p and Ni 3d orbitals at the P_{in} (P_{out}) interface, due to the longer (shorter) Ni–O bonds induced by polar displacements of oxygen atoms at the interface, decreases (enhances) the electron charge transfer from Ni to O atoms resulting in the reduced (enhanced) magnetic moments of the interfacial Ni atoms (Supplementary Fig. 2). This effect is largely responsible for the change in the magnetoelectric coupling at the interfaces with one (SV-1 and SV-1’) or two oxygen vacancies (SV-2 and SV-2’) compared to the defect-free (SDF) interface. As seen from Table 1 and Supplementary Table 1, removing one or two O atoms from the interface, gradually decreases the magnetic moments of the Ni atoms at both P_{in} and P_{out} interfaces. This decrease is due to the reduced electron charge transfer from the interfacial Ni to O atoms (not related to ferroelectricity) reflected in the diminished overall rightward energy shift of the interfacial Ni DOS relative to the bulk Ni DOS (compare Fig. 3a and b, c which elevates the minority-spin population. The reduced charge transfer between Ni and O atoms with the decreased number of interfacial O atoms reduces the magnitude of the magnetoelectric coupling due to a smaller contribution to it from the Ni–O hybridization at the interface.

Diffusion of O atoms into the Ni layer affects differently the magnetoelectric coupling depending on the degree of the Ni layer oxidation. For the SD-1 and SD-1’ structures, the interfacial Ni DOS (Fig. 3d and Supplementary Fig. 3d) are like those for the structures with one oxygen vacancy at the interface (Fig. 3b and Supplementary Fig. 3b), resulting in qualitatively similar magnetoelectric effects.

Table 1. The average magnetic moments (in μ_B) for P_{in} (m_{in}) and P_{out} (m_{out}) interfaces with different Ni/HfO2 interface stoichiometries shown in Fig. 2 and Supplementary Fig. 1.

	SDF	SV-1	SV-1’	SV-2	SV-2’	SD-1	SD-1’	SD-2	SD-2’	
m_{out}	1.24	0.93	0.93	0.66	0.62	0.90	0.70	0.03	0.17	
m_{in}	0.97	0.71	0.71	0.54	0.44	0.58	0.59	0.38	0.29	
Δm	0.27	0.22	0.22	0.12	0.12	0.18	0.32	0.11	-0.35	-0.12

$*The average magnetic moment is calculated by summing up the magnetic moments of the four Ni atoms and available O atoms (including the diffused O atoms) at the interface and dividing the total interfacial magnetic moment by four.\n
is slightly reduced for the SV-2 ($\Delta m = 0.12 \mu_B$) and SV-2’ ($\Delta m = 0.18 \mu_B$) structures as compared to that for the SDF, SV-1, and SV-1’ structures.

Next, we explore the effect of Ni surface oxidation on the magnetoelectric coupling by constructing the structures, where the O atoms are moved inside the interfacial Ni layers forming a NiO layer. SD-1 (Fig. 2d) and SD-1’ (Supplementary Fig. 1d) structures are formed by moving one O atom inside the interfacial Ni layers. For the SD-1 interface, we find $m_{in} = 0.58 \mu_B$ and $m_{out} = 0.90 \mu_B$, resulting in $\Delta m = -0.32 \mu_B$. For the SD-1’ interface, which is 0.2 eV higher in energy than the SD-1 interface, m_{in} and m_{out} are 0.59 and 0.70 μ_B, respectively, resulting in $\Delta m = 0.11 \mu_B$ (Table 1). SD-2 (Fig. 2e) and SD-2’ (Supplementary Fig. 1e) structures are obtained by moving two O atoms inside the interfacial Ni layers. We find that the SD-2 interface is 0.17 eV lower in energy than the SD-2’ interface. From Table 1, it is seen that the interfacial magnetic moments for the SD-2 and SD-2’ structures are significantly reduced with m_{out} for the SD-2 interface being diminished nearly to zero. The calculated Δm for the SD-2 or SD-2’ structures is negative, indicating the reversal of the magnetoelectric effect with oxidation of Ni.
formation of the Ni bonds between the interfacial and bulk Ni atoms and the pristine interface (Fig. 3a). This effect stems from the broken background in Fig. 3e and Supplementary Fig. 3e) and the interfacial Ni monolayer as compared to the bulk Ni (gray

As seen from Fig.3e and Supplementary Fig. 3e, the minority-spin layer resulting in the formation of the NiO interfacial monolayer. DOS around the Fermi energy is signifi-

DOS of interfacial Ni and diffused O. a–e Spin-resolved density of states (DOS) of the interfacial Ni atoms at the Ni/HfO2 interfaces for polarization pointing into the Ni layer (Pin) or away from it (Pout) for a SDF, b SV-1, c SV-2, d SD-1, and e SD-2 structures. f DOS of diffused O atoms at the SD-2 interfaces for Pin and Pout. DOS of Ni and O atoms under the considered energy range are mainly contributed by the Ni 3d and O 2p orbitals, respectively. Each curve represents an averaged DOS per atom. The majority- and minority-spin DOS are plotted on top (positive) and bottom (negative) panels, respectively. The red and blue lines denote DOS at the Pin and Pout interfaces, respectively. The gray-filled curves correspond to the bulk-like DOS of Ni atoms at the central Ni layer a–e or O atoms at the central HfO2 layer f. The vertical dashed line indicates the position of Fermi energy (Ef).

However, the interfacial Ni DOS changes dramatically for the SD-2 and SD-2′ structures where two O atoms are diffused into the Ni layer resulting in the formation of the NiO interfacial monolayer. As seen from Fig. 3e and Supplementary Fig. 3e, the minority-spin DOS around the Fermi energy is significantly reduced for the interfacial Ni monolayer as compared to the bulk Ni (gray background in Fig. 3e and Supplementary Fig. 3e) and the pristine interface (Fig. 3a). This effect stems from the broken bonds between the interfacial and bulk Ni atoms and the formation of the Ni−O antibonding states near the Fermi energy. The antibonding states are clearly seen from the DOS projected onto the diffused O atoms shown in Fig. 3f. While the bonding states are located at energies around and below $E = -5$ eV, the exchange-split antibonding states appear in the energy window $-1 \text{ eV} < E < +1 \text{ eV}$ around the Fermi energy. The reduced minority-spin DOS is responsible for the sizable reduction of the magnetic moment of the Ni atoms at the interface compared to the pristine SDF structure (Table 1).

The effect of Ni oxidation resulting in the formation of the Ni−O antibonding states leads to the reversal of the magnetoelectric effect. This is due to the exchange-split Ni−O antibonding states which cross the Fermi energy with reversal of the ferroelectric polarization of HfO2. The effect is clearly seen from Fig. 3f displaying the portion of the antibonding states near the Fermi energy projected onto the diffused O atoms. While the minority-spin DOS corresponding to the Ni−O antibonding states is largely located above the Fermi energy independent of ferroelectric polarization orientation, the antibonding peak in the majority-spin DOS crosses the Fermi energy when the polarization is reversed. The same effect can be seen from the DOS projected onto the interfacial Ni atoms (Fig. 3e), though less pronounced due to the overlap in DOS between the antibonding and non-bonding Ni states. As a result, when the ferroelectric polarization of HfO2 is pointing into the Ni layer (Pin), the accumulation of the majority-spin electrons (blue line) in the Ni−O antibonding states enhances the magnetic moments of the interfacial Ni and O atoms. Whereas, when the polarization of HfO2 layer is pointing away from the Ni layer (Pout), the depletion of the majority-spin antibonding states (red line) reduces the magnetic moments of the interfacial Ni and O atoms. Therefore, the magnetoelectric effect of the oxidized Ni/HfO2 interface is reversed compared to the pristine defect-free Ni/HfO2 interface.

The effects of the interface stoichiometry on the interface magnetoelectric effect are visualized using spin-density plots shown in Fig. 4 (see also Supplementary Fig. 4). For the SDF structure (Fig. 4a), the depletion (accumulation) of the minority-spin electrons due to the polarization screening charge and the stronger (weaker) hybridization between the interfacial O and Ni atoms induced by O polar displacements at the Pout (Pin) interface leads to a larger spin density on the interfacial Ni and O atoms at the Pout interface than at the Pin interface. For the SV-2 structure (Fig. 4b), the electron charge transfer from the interfacial Ni to O atoms is reduced due to the reduced number of O atoms at the interface, raising the minority-spin population and thus lowering the spin density as compared to the SDF structure. At the same time, the decreased number of the interfacial O atoms reduces the contribution to the magnetoelectric coupling from the Ni−O hybridization at the interface, although the spin density and thus the magnetization are larger at the Pin interface than at the Pout interface. For the SD-2 structure (Fig. 4c), the spin density at both interfaces decreases significantly due to the formation of the NiO layer at the interface. It is seen that the spin density and thus the magnetization are larger at the Pin interface than at the Pout interface, implying that the magnetoelectric effect is reversed at the SD-2 interface compared to the SDF and SV-2 interfaces. The spin densities of the interfaces with other interface stoichiometries demonstrate similar trends (see Supplementary Fig. 4).

DISCUSSION

We would like to note that the predicted effects of the interface stoichiometry on the magnetoelectric effect at the interfaces between a ferromagnetic metal and an oxide ferroelectric are expected to be not only limited to the considered Ni/HfO2 interface but may have more general occurrence. In particular, the conventional magnetoelectric effect, where depletion (accumulation) of the screening electronic charges induced by ferroelectric polarization pointing away from (into) the ferromagnetic metal
layer leads to enhancement (reduction) of the interfacial magnetization, is expected to be typical for all elemental 3d metals, such as Fe, Co, and Ni, where the majority 3d bands are fully populated resulting in higher minority-spin DOS at the Fermi energy (Fig. 5a). On the other hand, oxidation of these metals at the interface in a metal/ferroelectric heterostructure due to the diffusion of oxygen atoms from the oxide ferroelectric into the ferromagnetic metal forms metal-oxygen bonding and antibonding states, with the latter being positioned at the Fermi energy. This may lead to the reversal of the magnetoelectric effect at the interfaces between 3d ferromagnetic metals and ferroelectric oxides due to majority-spin antibonding states controlling the polarization charge screening through accumulation or depletion of the antibonding majority-spin electrons. DOS stays for the density of states and E_F for the Fermi energy. Arrows denote majority (spin-up) and minority (spin-down) DOS.

From the experimental perspective, the determination of the interface stoichiometry is not a simple problem, especially for the interfaces which are not epitaxial (see, e.g., ref. 52). In this regard, a comparison with the results of DFT calculations, such as those presented here, may be challenging. A valuable approach (though not direct) is to measure a band alignment between a ferromagnetic metal and a ferroelectric oxide using, e.g., X-ray photoelectron spectroscopy64 and compare the results with the DFT calculations. Since the valence band offset is very sensitive to the interface termination it can provide valuable information about the interface structure. Valence band offsets for different interface structures are calculated in Supplementary Fig. 5 and Table 2, which may be useful for the experimentalists working in this field.

![Fig. 4 Spin densities.](image)

The spin densities of the Ni/HfO$_2$ interfaces defined as the difference between the majority- and minority-spin charge densities, at the P_{in} (top panels) and P_{out} (bottom panels) interfaces for a SDF, b SV-2, and c SD-2 interfaces. The spin densities are shown within the yz-plane and averaged along the x-direction.

![Fig. 5 Schematic of the magnetoelectric effect.](image)

a Conventional magnetoelectric effect, where accumulation (depletion) of the screening minority-spin electronic charges induced by ferroelectric polarization pointing into, P_{in} (away from, P_{out}) the ferromagnetic metal (M) layer leads to reduction (enhancement) of the interfacial magnetic moment (m); b Reversed magnetoelectric effect due to the interface metal oxidation forming M-3d/O-2p bonding and antibonding states, with the latter being positioned at the Fermi energy and controlling the polarization charge screening through accumulation or depletion of the antibonding majority-spin electrons. DOS stays for the density of states and E_F for the Fermi energy. Arrows denote majority (spin-up) and minority (spin-down) DOS.
In conclusion, the magnetoelectric effects at the Ni/HfO₂ interfaces where ferroelectric polarization of HfO₂ controls the interfacial magnetization of ferromagnetic Ni have been studied based on the DFT calculations for different interface stoichiometries. Consistent with the previous studies, it was found that for the ideal fully oxygen terminated Ni/HfO₂ interface, the interfacial magnetization is increased (decreased) when the ferroelectric polarization of HfO₂ points away from (into) the Ni layer by resulting in depletion (accumulation) of the minority-spin electrons of Ni. This conventional interfacial magnetoelectric effect is maintained with reducing the oxygen concentration at the Ni/HfO₂ interface, although its magnitude is diminished. However, when a NiO monolayer is formed at the Ni/HfO₂ interface due to diffusion of oxygen atoms from the HfO₂ surface into the Ni layer, the ferroelectric-induced magnetoelectric effect is reversed. This reversal is driven by the formation of the exchange-split Ni–O antibonding states resulting from the Ni oxidation. Due to the majority-spin Ni–O antibonding states controlling the ferroelectric polarization charge screening, the electron accumulation (depletion) enhances (reduces) the interface magnetization, leading to the reversed magnetoelectric effect as compared with that at the oxidized Ni/HfO₂ interface. The predicted effect of the ferromagnetic metal oxidation on the interfacial magnetoelectric coupling is of general significance, and therefore we expect similar behaviors occurring at other ferromagnetic metal/ferroelectric oxide interfaces. We, therefore, hope that our theoretical predictions will stimulate further experimental studies of the ferroelectrically-induced interfacial magnetoelectric effect and will improve the understanding of this phenomenon.

METHODS

DFT calculations

DFT calculations are performed using the Vienna Ab Initio Simulation Package (VASP) using the projector-enhanced wave (PAW) method. The generalized gradient approximation (GGA) within the Perdew-Burke-Ernzerhof (PBE) functional is used to describe the exchange and correlation effects. A 450 eV plane-wave cutoff and a 6 × 6 × 1 Monkhorst-Pack k-point mesh are used for structural relaxations of the Ni/HfO₂/Ni heterostructures and a 10 × 10 × 1 Monkhorst-Pack k-point mesh is then used in the self-consistent electronic structure calculation.

DATA AVAILABILITY

The data that support the findings of this work is in the manuscript's main text and Supplementary Information. Additional data are available from the corresponding author upon reasonable request.

Received: 28 September 2021; Accepted: 28 November 2021; Published online: 14 December 2021

REFERENCES

1. Eerenstein, W., Mathur, N. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).
2. Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).
3. Tsybail, E. Y. Spintronics Electric toggling of magnets. Nat. Mater. 11, 12–13 (2012).
4. Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spintronics. Nat. Commun. 5, 3404 (2014).
5. Zhi, Z. et al. Interfacial charge-mediated nonvolatile magnetoelectric coupling in Co₉₅Fe₃₀/Ba₅Sr₂TiO₆/Nb₅SrTiO₃ heterostructures. Sci. Rep. 5, 7740 (2015).
6. Rajapakshamahana, A. et al. Ferroelectric polarization control of magnetic anisotropy in PZrO₂TiO₂Nd₂Sr₂MnO₆ heterostructures. Phys. Rev. Mater. 3, 021401 (2019).
7. Bocinera, A. E. A. et al. Polarization-dependent magnetism of the Ni/BaTiO₃ interface. Phys. Rev. Mater. 4, 034402 (2020).
8. Velev, J. P. et al. Magnetic tunnel junctions with ferroelectric barriers: prediction of four resistance states from first-principles. Nano Lett. 9, 427 (2009).
9. Zhuravlev, M. Y., Maekawa, S. & Tysmal, E. Y. Electric switch and magnetic anisotropy in tunneling magnetoelectric multiferroic heterostructures. Phys. Rev. B 81, 104419 (2010).
10. Pinet, D., Goetz, S., Hesse, D. & Alexe, M. Reversible electrical switching of spin polarization in tunneling magnetoelectric multiferroic heterostructures. Nat. Mater. 11, 289–293 (2012).
11. Velev, J. P., Burton, J. D., Zhuravlev, M. Y. & Tysmal, E. Y. Predictive modelling of ferroelectric tunnel junctions. npj Comp. Mater. 2, 16009 (2016).
12. Huang, W. et al. Solid-state nanoscale on tunneling magnetoelectric multiferroic heterostructures. Nat. Mater. 10, 5649–5656 (2018).
13. Fang, M. et al. Nonvolatile multilevel states in multiferroic tunnel junctions. Phys. Rev. Appl. 12, 044049 (2019).
14. Vopson, M. M. Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40, 223–250 (2015).
15. Böscke, T. S., Müller, J., Bräunbacht, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).
16. Muller, J. et al. Ferroelectricity in simple binary ZrO₂ and HfO₂. Nano Lett. 12, 4318–4323 (2012).
17. Huan, T. D., Sharma, V., Rosset, G. A. & Ramprasad, R. Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90, 064111 (2014).
18. Sang, X., Grinley, E. D., Schenk, T., Schroeder, U. & LeBeau, J. M. On the structural origins of ferroelectricity in HfO₂ thin films. Appl. Phys. Lett. 106, 162905 (2015).
19. Jiang, P. et al. Wake-up effect in HfO₂-based ferroelectric films. Adv. Electron. Mater. 7, 2000728 (2020).
20. Khan, A. I., Keshavaria, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).
21. Choukri, A., Negrov, D., Tysmal, E. Y. & Zenkevich, A. Defects in ferroelectric HfO₂ thin films. Nanoscope 13, 11635 (2021).
22. Francois, T. et al. Demonstration of BEOL-compatible ferroelectric Hf₀.₃₂Zr₀.₆₈O₂ films with perpendicular CoFeB/MgO stacks. IEEE IEDM (2019). https://doi.org/10.1109/IEDM.2019.8993485.
23. Mueller, S. et al. MFM capacitors toward ferroelectric transistors: endurance and disturb characteristics of HfO₂-based FeFTET devices. IEEE Electron Device Lett. 39, 4199–4205 (2018).
24. Seo, M. et al. First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications. IEEE Electron Device Lett. 39, 1445–1448 (2018).
25. Ambriz-Vargas, F. et al. A complementary metal oxide semiconductor processor compatible ferroelectric tunnel junction. ACS Appl. Mater. Interfaces 9, 13262–13268 (2017).
26. Chourri, A. et al. Electron transport across ultrathin ferroelectric Hf₀.₃₂Zr₀.₆₈O₂ films on Si. Microelectron. Eng. 178, 250–253 (2017).
43. Goh, Y. & Jeon, S. Enhanced tunneling electroresistance effects in HfZrO-based ferroelectric tunnel junctions by high-pressure nitrogen annealing. Appl. Phys. Lett. 113, 052905 (2018).

44. Yoong, H. Y. et al. Epitaxial ferroelectric Hf$_5$Zr$_3$O$_{12}$ thin films and their implementations in memristors for brain-inspired computing. Adv. Funct. Mater. 28, 1806037 (2018).

45. Chen, L. et al. Ultra-low power Hf$_5$Zr$_3$O$_{12}$ based ferroelectric tunnel junction synapses for hardware neural network applications. Nanoscale 10, 15826–15833 (2018).

46. Mikheev, V. et al. Ferroelectric second-order memristor. ACS Appl. Mater. Interfaces 11, 32108–32114 (2019).

47. Cao, W. & Banerjee, K. Is negative capacitance FET a steep-slope logic switch? Nat. Commun. 11, 1196 (2020).

48. Hoffmann, M. et al. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 566, 464–467 (2019).

49. Yang, Q. et al. Magnetoelectric effect at the Ni/HfO$_2$ interface induced by ferroelectric polarization. Phys. Rev. Appl. 12, 024044 (2019).

50. Vermeulen, B. F. et al. Ferroelectric control of magnetism in ultrathin HfO$_2$/Co/Pt layers. ACS Appl. Mater. Interfaces 11, 34385–34393 (2019).

51. Wei, Y. et al. Magneto-ionic control of spin polarization in multiferroic tunnel junctions. npj Quantum Mater. 4, 62 (2019).

52. Dmitriyeva, A. et al. Magnetoelectric coupling at the Ni/Hf$_5$Zr$_3$O$_{12}$ interface. ACS Nano 15, 14891–14902 (2021).

53. Nukala, P. et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science 372, 630–635 (2021).

54. Rodmacq, B., Manchon, A., Ducruet, C., Auffret, S. & Dieny, B. Influence of thermal annealing on the perpendicular magnetic anisotropy of Pt/Co/AIO$_x$ trilayers. Phys. Rev. B 79, 024423 (2009).

55. Bi, C. et al. Reversible control of Co magnetism by voltage-induced oxidation. Phys. Rev. Lett. 113, 267202 (2014).

56. Bauer, U. et al. Magnetio-ionic control of interfacial magnetism. Nat. Mater. 14, 174–181 (2015).

57. Qiu, X. et al. Spin-orbit-torque engineering via oxygen manipulation. Nat. Nanotechnol. 10, 333–338 (2015).

58. Shimizu, T. et al. Ferroelectricity mediated by ferroelastic domain switching in HfZrO-based epitaxial thin films. J. Phys. Condens. Matter 28, 134010 (2016).

59. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

66. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

67. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

ACKNOWLEDGEMENTS

The authors thank Dr. Andrei Zenkevich for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grant No. 12073207) and the Outstanding Youth Science Foundation of Hunan Province, China (Grant No. 2021JJ20041). The research at University of Nebraska-Lincoln was supported by the National Science Foundation (NSF) through Materials Research Science and Engineering Center (MRSEC) (NSF Grant No. DMR-1420645).

AUTHOR CONTRIBUTIONS

Q.Y., L.L.T., and E.Y.T. designed the research. Z.J.C. and Q.Y. performed the first-principle calculations and wrote the manuscript. All authors discussed the results and reviewed the manuscript. E.Y.T. supervised the project.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

The online version contains supplementary material available at https://doi.org/10.1038/s41524-021-00679-2.

Correspondence and requests for materials should be addressed to Qiong Yang, Lingling Tao or Evgeny Y. Tsymbal.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021