Antimicrobial activity of Nigerian medicinal plants

Madubuike Umunna Anyanwu¹, Rosemary Chinazam Okoye²

ABSTRACT

Antimicrobial resistance (AMR) is currently one of the major threats facing mankind. The emergence and rapid spread of multi- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem- and colistin-resistant organisms) has put the world in a dilemma. The health and economic burden associated with AMR on a global scale are dreadful. Available antimicrobials have been misused and are almost ineffective with some of these drugs associated with dangerous side effects in some individuals. Development of new, effective, and safe antimicrobials is one of the ways by which AMR burden can be reduced. The rate at which microorganisms develop AMR mechanisms outpaces the rate at which new antimicrobials are being developed. Medicinal plants are potential sources of new antimicrobial molecules. There is renewed interest in antimicrobial activities of phytochemicals. Nigeria boasts of a huge heritage of medicinal plants and there is avalanche of researches that have been undertaken to screen antimicrobial activities of these plants. Scientific compilation of these studies could provide useful information on the antimicrobial properties of the plants. This information can be useful in the development of new antimicrobial drugs. This paper reviews antimicrobial researches that have been undertaken on Nigerian medicinal plants.

KEY WORDS: Antimicrobial activity, antimicrobial resistance, Nigerian medicinal plants

THE ANTIMICROBIAL RESISTANCE BURDEN

AMR is the ability of microorganisms such as bacteria and fungi to grow despite exposure to antimicrobial (antibacterial or antifungal) agent designed to inhibit their growth [1]. In general, microorganisms exhibit AMR by innate (e.g., absence of drug target site) and/or acquired (e.g., enzymatic degradation of drug) mechanisms conferred by AMR genes (ARGs) acquired via horizontal gene transfer (HGT) (transformation, transduction, and conjugation) from other microorganisms [1,2]. AMR includes two levels of resistance, the cellular level resistance (CELR), and the community level resistance (COLR) [3,4]. CELR develops via endogenous gene mutation or via HGT of resistance determinants from other microorganisms [4] while COLR occurs when a group of organisms become tolerant to environmental stress [5]. COLR is often observed among persisters (organisms that change their physiological state to become tolerant to lethal effect of drugs) in bacterial biofilms [4,5]. It was earlier thought that AMR evolved after the development of penicillin in 1940s, but historical reports, as well as studies on bacterial organisms from permafrost, had revealed that microorganisms exhibited innate AMR long before the development of any antimicrobial agent [6-8]. However, it is inappropriate use (abuse, misuse or overuse) of antimicrobials in human, animal, and plant settings that triggered the emergence of acquired AMR in microorganism[co]lamine[8].

Currently, AMR is one of the major threats to global health and factors such as global climatic change, globalization (increased international travel and food importation/exportation), and change in demographics are worsening the crisis [4,9,10]. The emergence and rapid spread (due to mobile genetic elements) of multi-drug- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem-, quinolone- and colistin-resistant bacteria) which exhibit resistance to virtually all antimicrobial agents currently known to man, has put the whole world in a dilemma [11]. These organisms (superbugs) jeopardize antimicrobial therapy resulting in untreatable and fatal infections [7]. There is no need reiterating their involvement in hospital-, nosocomial-, and community-linked infections worldwide [7,8]. The economic and health impact of AMR on a global scale is enormous and dreadful [4,7,10]. A recent review on “global crisis of AMR” chaired by Jim O’Neill, underestimated that about 700,000 lives are lost worldwide annually due to antimicrobial-resistant infections [11]. The report also estimated that by 2050, the societal and financial cost of not tackling the AMR crisis will be US$100 trillion [11,12]. Other recent studies estimated population reduction of between 11 million and 444 million people and a reduction in the size of the global economy by 0.1-3.1% by 2050, if effective antimicrobial agents are not developed [13,14]. The cost of developing a new antimicrobial has been estimated to be US$1 billion [7] and an estimation of US$50 billion is needed to tackle AMR crisis now before it
becomes uncontainable [11,12]. The impact of AMR is worse in developing nations, including Nigeria, where the cost of treatment of resistant infections and associated deaths are unaccounted for [15].

SEARCH FOR NEW PHYTOCHEMICALS WITH ANTIMICROBIAL ACTIVITY

It is largely recognized that most of the currently available antimicrobials which are mainly synthetic are almost inefficient and most of these agents elicit terrible effects to recipients [16-18]. For example, Stevens-Johnson syndrome and toxic epidermal necrolysis, and hypersensitivity reactions are associated with the administration of antimicrobials such as sulfonamide and fluoroquinolones, and penicillin, respectively [19,20]. All the experts that proposed strategies/solutions to tackle the AMR crisis recognized that development of new and safe antimicrobials is more critical than any other proffered solutions/strategies [7,11,12,21]. Many initiatives and programs have been set up by many countries/organizations with the aim of developing new, effective, and safe antimicrobials [21]. For instance, the 10x20 initiative proposed in 2010 is aimed at developing 10 new, safe, and effective antibiotics by 2020 [22]. Thus, researchers/scientists are now looking at every ecological niche including soil, plant, animal, and marine for potentially new and safe antimicrobial agent [23,24]. Unfortunately, the rate at which microorganisms develop AMR outpaces the rate of discovery/development of new drugs [7,11].

The African traditional medicine is the oldest medicinal system and often culturally referred to as the Cradle of Mankind [16,25]. Traditional herbal medicines have been used to treat infectious diseases for thousands of years in various parts of the world [26,27]. There has been a renewed interest in indigenous medicine worldwide because orthodox medicine is not widespread [17,27]. In poor countries, the health care has been sustained by other practices based on cultural alternatives [27]. In many developing countries, including Nigeria, 80% of patients use indigenous herbal remedies to treat infectious diseases [17,24,28]. Despite the availability of modern medicine in some communities, herbal medicines (medicinal plants) have continued to maintain popularity for historical and cultural reasons, in addition to their efficacy and cheaper cost [17,24,27]. They also represent sources of potentially important new pharmaceutical substances since all parts of a plant, from roots to seed heads and flowers, are employed in traditional remedies and can, therefore, act as sources of lead compounds [17]. Moreover, molecules from natural products have represented about 80% of drugs that have been put into the market [17,29]. The use of plant remedies has steadily increased worldwide in recent years as well as the search for new phytochemicals that potentially could be developed as useful drugs for the treatment of infectious diseases [16,24,28].

Nigeria is located in West Africa on the Gulf of Guinea. It is bordered in the East by Cameroon (1,690 km), Northeast by Chad (87 km), North by Niger (1,497 km), and West by Benin (773 km) and by the Atlantic Ocean in the South [Figure 1] [17]. The country is divided administratively into the Federal Capital Territory (Abuja) and 36 states [17], these states are grouped into 6 geographical regions. Covering an area of 923,768 km², Nigeria is a country rich in biodiversity, possessing an array of fauna and flora including about 20,000 species of insects, almost 1,000 species of birds, 247 species of mammals, 123 species of reptiles, about 1,000 species of fish [17,30]. Nigeria boasts a unique and diverse botanical heritage with over 7,995 plant species of which ca. 3000 species are used therapeutically [30-32]; although, many of its plant species are at risk of extinction due to inadaptability problems attributed to natural factors such as climate change (e.g., desertification) as well as anthropogenic factors (e.g., deforestation due to timber logging, bush clearing and burning, oil spillage, over-grazing and urbanization), among others [30,35]. The humid tropical climate of Nigeria supports the growth and development of many plant species that have been used in Nigerian traditional medicine even before the advent of Western medicine [17]. Not only is the Nigerian flora rich in diversity but it is also mostly endemic [16,34]. In addition to this unique botanical heritage, Nigeria has a cultural diversity with traditional healing being integral to each ethnic group [16,17].

Despite the well-documented ethnobotanical literature, very little scientific information (e.g., efficacy, phytochemistry) has become available on indigenous medicinally used plants in Nigeria [17,27,35]. From available literature, the earliest documents on antimicrobial activity of Nigerian plants seem to be those of Dalziel [36,37] in 1937 and 1957, respectively. Two decades later, few other publications on chemistry and antimicrobial activities of Nigerian plants appeared in the literature [38,39]. In the 1980s, few studies on antimicrobial activity of Nigerian plants became available in the literature [40-42]. However, from 1990 to date, there has been an avalanche of publications in the literature on the chemistry and antimicrobial properties of Nigerian medicinal plants. This recent emergence in the scientific validation of antimicrobial activities of Nigerian medicinal plants may be a result of increased public awareness, method advancements and a number of citations in local books confirming the need for such studies [16,36,37,43]. Further reasons for advancement of work on Nigerian medicinal plant include searching for new lead compounds to be developed as drugs or as templates for analog synthesis and the evaluation of traditional medicine and herbal medicinal products [17,24,44]. Medicinal effects of Nigerian plants are attributed to interaction of phytochemicals (such as alkaloids, tannins, phenols, saponins, flavonoids, and essential oils) and bioactive compounds contained in their tissues [16,45]. Scientific compilation of studies on antimicrobial activity of Nigerian plants would enhance understanding of the extent of research that has been undertaken to elucidate the antimicrobial potential of these plants. Such study could arouse interest on Nigerian plants with potential antimicrobial activity from which new antimicrobial molecules could possibly be isolated. This review highlights the findings of studies that have been undertaken on antimicrobial activity of Nigerian medicinal plants 1971-2016.
EXPERIMENTAL APPROACH USED IN ANTIMICROBIAL INVESTIGATION OF NIGERIAN PLANTS

Several steps are taken in evaluation of plants for antimicrobial activity. Selection of plants for antimicrobial screening is necessary to avoid unnecessary waste of time and resources [16]. Four standard approaches used for selecting plants include: (1) Random selection followed by chemical screening, (2) random selection followed by antimicrobial assays, (3) follow-up of antimicrobial activity reports, and (4) follow-up of ethnomedical or traditional uses of plants against infectious diseases [27,45-47]. Of these four approaches, the random selection followed by antimicrobial assay of plants against infectious diseases was the most common approach used by studies cited in this review [Table 1]. Selection of plant for antimicrobial investigation based on ethnomedical use is the best approach to avoid waste of resources and time [16,48]. It is important that selected plant is identified by an expert/plant taxonomist and deposited in a reliable herbarium for future identification and reproducibility of study [27]. While most of the studies on antimicrobial activity of Nigerian medicinal plants reported expert identification of selected plant(s), only few papers [49-60] reported deposition of plant in herbarium with the accompanying voucher number. Selection of the plant part to be evaluated may be based on ethnomedical use, randomly or follow-up of antimicrobial activity [61]. Different parts of a plant may contain varying types and amount of phytochemicals [47], thus the extent of extraction of these bioactive substances depends on the type of solvent used for extraction and the degree of binding with other substances in the plant material [24,61]. The majority of the antimicrobial screening studies on Nigerian plants assayed the leaf, while few analyzed the root, stem bark, fruit, and/or seed of selected plant(s) [Table 1].

The process of extraction in antimicrobial studies is critical as it determines to a large extent the result of the study [24,61]. In cases where the study is based on ethnomedical approach, an important factor to consider is the preparation of extract as described by the traditional healers to mimic as much as possible the way the herbal remedy is indigenously used [16,32]. In this way, the use of the plant in the traditional medicine can be correctly validated or invalidated. In cases where the antimicrobial activity of the plant is not based on ethnomedical approach, selection of solvent system largely depends on the specific nature of the bioactive compound being targeted [24]. In general, however, a good solvent used in plant extraction for antimicrobial bioassay should (i) have low toxicity, (ii) have relatively low boiling point so as to be easily removed from the compound after extraction, (iii) promote rapid physiological absorption of the desired compound in the extract in specific body compartments, (iv) have preservative action and inability to cause the quenching or dissociation of active principles, and (v) not interfere with the bioassay as the end product in extraction will contain traces of residual solvent [24,61]. Although aqueous (water) extraction is commonly used by the traditional healers, it has been shown that plant extracts obtained using organic solvents give more potent and consistent antimicrobial activity result than aqueous extract [16,24,62,63]. Studies indicated acetone as the most favorable solvent for plant extraction in antimicrobial studies [16,24,64]. Some of the antimicrobial screening papers in this review instead of using water or ethanol that is used in traditional medicine used organic solvent including ethyl acetate, methanol, butanol, petroleum ether and hexane for extraction [Table 1]. These organic solvents are not acceptable in indigenous preparation of plant extracts, thus the result could have been affected in a way [32].

Consideration should also be given to time and temperature of extraction as these as well as the solvent determines the extraction yield [24]. Some screening papers in this review

Figure 1: Map showing Nigeria and her neighbors [17,46]
Screening approach	Number of plants studied	Extract tested	Plant part analyzed	Assay	Highest activity	Reference	
Antimicrobial activity Pharmacological study	6	Ethanol	Leaf	AWD, MIC	V. amygdalina, 25 mg/ml against S. typhi A. djalonensis, against Proteus spp., E. coli and Shigella spp.	[86]	
	5	Methanol	Leaf	AWD	A. djalonensis, against Proteus spp., E. coli and Shigella spp.	[163]	
Antimicrobial activity Pharmacological study	3	Petroleum ether, methanol	Leaf	DD, MIC	T. roka, T. procumbens and M. angolensis (methanol extracts), 6.25 mg/ml, broad-spectrum	[249]	
Antibacterial activity Pharmacological study	3	Methanol	Leaf	AWD, MIC	G. latifolium, 75 mg/ml against P. multiannulatus A. senegalensis, 0.0625 mg/ml against Bacillus (B.) subtilis A. cissampelli and G. arborventus (root extract), against B. subtilis and E. coli	[206] [137]	
Pharmacological study	50	Ethanol	Various	MIC			
Antibacterial activity Pharmacological study	13	Methanol	Various	DD	A. schimperi (leaf extract), against P. aeruginosa	[150]	
Spices	8	Ethanol	Leaf and bark	AWD			
Curcubitaceae	3	Aqueous, ethanolic hexane	Leaf	AWD, MIC	X. aethiopica (ethanol seed extract), against M. charantia, L. cylindrical and T. cucumerina (ethanol extract), 2-9 mg/ml, broad-spectrum	[81]	
Orodental hygiene	18	Aqueous	Various	AWD, MIC	C. ferruginea (fruit extract), B. ferruginea (stem/twigs extract), A. leioearpus and T. glaucescens (root extracts), <2 mg/ml, broad-spectrum	[50]	
Pharmacological study	6	Aqueous, ethyl acetate, ethanol, methanol, butanol	Stem bark or root bark	AWD	M. senegalensis (ethanol root bark extract), against S. aureus	[248]	
Orodental hygiene	5	Aqueous (hot and cold), ethanol	Leaf	AWD	A. africana (ethanol extract), against K. pneumonia	[184]	
Pharmacological study	11	Methanol, chloroform, hexane, ethanolic, aqueous	Various	AWD, MIC	M. tormentosa (leaf), broad-spectrum; T. heudelotti (leaf), broad-spectrum	[48]	
Orodental hygiene	9	Aqueous, ethanolic	Root and stem	AWD, MIC	A. schimperi (ethanol root and stem extract), 1.56 mg/ml against S. aureus S. werneckei, 0.25 µg/ml against B. gingivalis	[251] [42]	
Pharmacological study	3	Aqueous, ethyl acetate, methanol	Leaf	AD, MIC	H. opposita (methanol extract), against Klebsiella spp.	[252]	
Antimicrobial activity Pharmacological study	5	Aqueous, ethanolic, methanol: Aqueous	Various	AWD	B. paradoxum (ethanol extract), against Klebsiella spp.	[253]	
Antibacterial activity	4	Aqueous (hot and cold), ethanol	Various	AWD	A. indica (ethanol leaf extract), against E. coli	[180]	
Wound healing	9	Aqueous, ethanolic	Leaf or stem	MIC	A. wilkesiana (ethanol extract) and P. globosa (ethanol and aqueous extract), 0.31 mg/ml against S. aureus A. conyozodes (ethanol extract), L. inermis (ethanol and aqueous extract) and P. globosa (aqueous extract), 0.31 mg/ml against B. subtilis C. papaya (aqueous extract), against A. butzleri G. kola, A. leioearpus, T. glaucescens, S. warnecke and V. doniana (aqueous extracts), against methicillin-resistant S. aureus, vancomycin-resistant Enterococcus, multidrug resistant B. cepacia and P. aeruginosa	[141] [94] [187]	
Orodental hygiene	10	Aqueous, ethanolic	Leaf	DD	C. papaya (aqueous extract), against A. butzleri G. kola, A. leioearpus, T. glaucescens, S. warnecke and V. doniana (aqueous extracts), against methicillin-resistant S. aureus, vancomycin-resistant Enterococcus, multidrug resistant B. cepacia and P. aeruginosa T. avicennioides and A. leioearpus, 0.3 mg/ml against S. pyogenes and B. subtilis	[166]	
Pharmacological study	2	Methanol	Root or stem	DD, MIC			
Pharmacological study	4	Aqueous (hot and cold), ethanol, methanol	Leaf	AWD	P. macrophyla (methanol extract), against S. aureus	[254]	
Pharmacological study	5	Ethanol	Leaf	AWD	B. nitida, C. alata and G. arborventus against T. rubrum, E. floccosum and B. haptosporus E. hirta (methanol extract), against Pseudomonas spp.	[255] [161]	
Antimicrobial activity Pharmacological study	4	Aqueous (hot), methanol	Leaf	AWD	E. camaldulensis, <0.0625 µg/ml against C. albicans	[112]	
Antimicrobial activity Pharmacological study	2	Aqueous methanol	Leaf	MIC			(Contd...)
Table 1: (Continued)

Screening approach	Number of plants studied	Extract tested	Plant part analyzed	Assay	Highest activity	Reference
Pharmacological study	2	Aqueous, ethanol, acetone, methanol	Leaf	AWD, MIC	V. doniana (acetone extract), 0.78 mg/ml against E. coli	[256]
Pharmacological study	2	Aqueous, ethanol	Leaf	AWD	B. alba (ethanol extract) against M. luteus	[158]
Spices	2	Methanol	Stem	AWD, MIC	A. leiocarpus, 3.125 mg/ml against C. krusei	[111]
Pharmacological study	4	Aqueous, ethanol	Seed	AWD, MIC	P guineense (aqueous extract), 30 mg/ml against S. aureus	[153]
Anti-infective activity	2	Methanol	Stem and root bark	DD	A. leioarpus against Lactobacillus spp.	[92]
Pharmacological study	2	Ethanol	Stem	AWD	O. gratissimum against Salmonella spp.	[168]
Pharmacological study	4	Aqueous	Leaf	AWD, MIC	A. hybridus, C. esculenta, and C. bicolor, 6.33 mg/ml against C. albicans, E. coli, and S. aureus, respectively	[106]
Orodental hygiene	5	Aqueous, ethanol, ethyl acetate	Root	AWD	V. doniana against S. aureus	[258]
Pharmacological study	3	Ethanol	Leaf	AWD, MIC	P. osun, 0.25 mg/ml against K. pneumoniae	[142]
Antifungal activity	8	Methanol	Various	AWD	C. occidentalis (root extract) against A. fumigatus	[174]
Pharmacological study	4	Aqueous, ethanol	Various	AWD, MIC	T. glaucescens and A. leioarpus (ethanol root extract), 0.625 mg/ml against E. coli, S. aureus, and S. dysenteriae	[143]
Skin infections	2	Aqueous, ethanol	Leaf and bark, or bark	DD	M. oppositifolius (aqueous extract), against Penicillium spp.	[79]
Pharmacological study	3	Aqueous (hot), ethanol	Leaf and bark	DD	V. amygdalinol (aqueous and ethanol extracts), against S. aureus and C. albicans	[181]
Pharmacological study	2	Ethanol	Leaf	AW	S. mahagoni, against S. aureus	[155]
Antimycobacterial	10	Ethanol, hexane, methanol	Various	MIC	A. leioarpus and T. avicennioides (hexane extract), 312 µg/ml against M. tuberculosis and BCG antigen	[259]
Pharmacological study	3	Ethanol, acetone	Leaf	DD, MIC	O. basilicum (ethanol extract), 0.5 mg/ml against E. coli, V. amygdalinol and G. latifolium (ethanol and acetone extract), 0.5-1 mg/ml against K. pneumoniae, P aeruginosa, and E. coli	[105]
Orodental hygiene	8	Aqueous	Various	AWD	T. glaucescens against P gingivalis, P intermedia, F. nucleatum, E. corrodens and C. rectus, P. corymbosa (leaf and twist extract), 800 µg/ml against M. tuberculosis	[169]
Antimycobacterial	11	Aqueous: methanol	Various	MIC	C. aconitifolius and A. digitata (butanol extract), against B. subtillis	[201]
Pharmacological study	4	Aqueous, ethyl acetate, butanol, hexane	Leaf	AWD	A. chimpleri, C. occidentalis and B. thonninig (leaf extract), against S. aureus and S. typhi	[176]
Antimicrobial activity	3	Aqueous	Leaf and stem bark	AWD	M. lucida, against Flavobacterium spp.	[262]
Antibacterial activity	3	Aqueous, ethanol	Leaf	AWD	A. muricata (stem bark methanol extract), 5.8 µg/ml (EC50) against Hepatitis C virus	[261]
Antiviral activity	5	Methanol	Various	Cell culture/RNA probe	T. avicennioides (ethanol stem bark extract), 18.2 µg/ml against methicillin-resistant S. aureus	[49]
Antibacterial	5	Aqueous, ethanol	Leaf or stem bark	MIC	M. leioarpus against C. krusei	[188]
Orodental hygiene	3	Aqueous, ethanol	Stem	AWD	S. mombin (stem bark extract), 61.1 µg/ml (91% inhibition) against M. tuberculosis	[122]
Antimicrobial activity	7	Aqueous, ethanol	Stem	AWD	S. wernerkei (bark and pulp extract), ≤1% concentration against B. melaninogenicus, B. ovalis, B. gigantica and B. asaccharolytica	[133]
Orodental hygiene	9	Aqueous	Various	MIC	C. erasum and B. coronatum extracts, <0.0625-5 mg/ml, broad-spectrum	[145]
Bryophyta	2	Ethanol, methanol, acetone	Whole	MIC	A. acalonicum (aqueous and ethanol leaf extract), T. glaucescens (aqueous and ethanol stem extract and A. cepa (aqueous and ethanol bulb extract), and S. longipedunculata (ethanol stem extract), 0.05 g/ml against M. tuberculosis	[235]
Antimycobacterial activity	12	Aqueous, ethanol	Various	Proportion		

(Contd...)
reported the use of hot aqueous solvents for extraction may be to increase yield or to mimic the extraction procedure used by the traditional practitioners [Table 1]. Nasir et al. [24] suggested that in studies where the aim is initial screening of plants for potential antimicrobial activities, the process may begin by using the crude extracts prepared from different organic and aqueous solvents and then followed by the utilization of various organic solvents for fractionation. Some publications on Nigerian medicinal plants reported fractionation of extracts with various organic solvents [65-72]. The storage conditions of plant material (whole/extract) have been shown to affect the result of antimicrobial studies by impacting microbial efficacy [16,64,73]. Some papers on Nigerian plants reported storage of extract in refrigerator at 4°C [18,59,60,74]. This storage condition is good because the activity/growth of possible extract-contaminating organisms would be inhibited and this in a way enhances the reliability of the result [16,75].

In vitro or in vivo method employed in assay of antimicrobial activity of plant extracts is critical. This relates to the fact that microbiological methods incorporate viable test microorganisms; therefore, predictability of the outcome is not always clear and subject to many environmental influences that may impact on a response [16,61]. Hence, there is need for standardization of methods which is often encountered with many problems [16,61]. The Clinical and Laboratory Standards Institute and the European Committee on Antimicrobial
Susceptibility Testing have standardized some of the methods used in antimicrobial assay [76] but it should be noted that these methods are standardized for standard drug preparations and not really for plant extracts [61]. Various in vitro methods are employed in assay of plant extracts for antimicrobial activity; these methods have been extensively reviewed [24,61,76,77]. The most critical step in in vitro assay of plant extract for antimicrobial activity is the inoculum size quantification of selected organism [24,76]. While bacterial/yeast inoculum size quantification is commonly done using the McFarland’s turbidity standard method [76], quantification of mold inoculum size is more difficult and requires biosafety equipment because they produce spores. Hemocytometric method is considered the best for quantifying fungal spores [78]. Few papers on antimicrobial activity of Nigerian plants against mold reported the use of hemocytometric method in quantifying spores of selected organism [79-81].

Review of over 400 papers on antimicrobial investigation of Nigerian medicinal plants revealed the use of various antimicrobial assay methods. Figure 2 represents proportion of studies and the methods used to assess antimicrobial activity of Nigerian plants from 1971–2016. Minimum inhibitory concentration (MIC) and Agar well diffusion (AWD) assays are the two most common methods used to investigate the antimicrobial activity of Nigerian medicinal plants. The MIC assay is a quantitative method of measuring antimicrobial activity based on the principle of contact of a test organism to a series of dilutions of test substance [16,24,76]. MIC is the lowest concentration of the antimicrobial agent that prevents visible growth of a microorganism under known conditions [24,76,82]. Assays involving MIC methodology (such as macro [test tubes] and micro [microtitre plates] broth dilution and agar dilution) are widely used and an accepted criterion for measuring the susceptibility of organisms to inhibitors [16,83]. This is supported by majority of publications on Nigerian plants representing 58.1% for extract and 1.9% for essential oil. The AWD is a widely used method of assay possibly because it indicates the concentration of the plant extract that exhibit the highest microbiostatic effect on the test organisms [24,76]. The method is qualitative and based on the principle of contact of a test organism to an equal volume of different concentrations of test substance inoculated into wells of equal depth and diffusing into cultured agar [24,76]. Although AWD resembles disc diffusion, it is preferred to disc diffusion because it gives a more consistent result [24,76] and this is supported by high proportion (57.6% for extract and 1% for essential oil) of publications on Nigerian medicinal plants which utilized this method. Some papers presented result obtained using both AWD and MIC assay [84-89]. However, variation in data obtained using MIC assay may be influenced by factors such as the inoculum size, the type of growth medium, the incubation time, and the inoculum preparation method [76,90,91].

The fact that a lower proportion of publications on antimicrobial activity of Nigerian plants (15.7% for extract and 1% for essential oil) used disc diffusion is a further indication that the investigators adopted more quantifiable methods of assaying antimicrobial activity of plants [16]. The use of disc diffusion in these studies may possibly be due to its simplicity and capacity to analyze a large number of test samples [16,24,76]. Some studies on Nigerian plant extract presented only disc diffusion data [80,92-99] while some papers (7.1%) reported results using both disc diffusion and MIC [48,69,100-106]. Although disc diffusion methodology is a quick simple means of screening for antimicrobial activity, it is associated with problems which may arise when investigating oil samples [16]. The associated problems that could yield inconsistent result with disc diffusion assay include variation in diffusion rates due to differences in chemical nature of the particular sample, lipophilic substances like essential oil or water-insoluble samples do not easily diffuse through the agar even with a pre-diffusion time allocation of 1 h [16,76,107]. Thus, false negatives may still be encountered and the possibility of activity could be underestimated [16]. Volatility of oily samples is another prominent factor to be considered [16]. Excessive incubation
time and temperature (such as during long incubation period 2-7 days of fungal incubation) may result in loss of a proportion of the oil due to evaporation, this too may impact on the false negatives [16,108]. Antimicrobial activity against a proportion of plant sample (especially essential oils) may be assessed following loss of hydrocarbon which is postulated to be very prone to evaporation [16,109].

Other antimicrobial investigation methods used to assess antimicrobial activity of extracts and essential oils of Nigerian plants include killing kinetics and bioautographic assays [16,76]. Although killing kinetics is labour-intensive and requires a number of steps where variables may be introduced, it provides descriptive information on the relationship between bacteriostatic and/or bactericidal activity in relation to the concentration of test substance over time (i.e. the method gives valuable information of the cidal action over time) [16,110]. Some publications on Nigerian plant extract reported data using killing kinetics [42,53,57,111]. Bioautographic assay (involving chromatography and biological systems) is mainly used to evaluate antimicrobial activity of isolated bioactive compounds [16,24,76], but it is also useful for assessing antimicrobial activity of crude plant extracts [24]. Antimicrobial activity of Nigerian plant extracts [65,68,70,71,112-127] and essential oils [32,128] have been assayed using bioautography [Figure 2]. However, no study on Nigerian plants has utilized biointeractive methods [16,129].

ANTIMICROBIAL INVESTIGATION ON NIGERIAN PLANT EXTRACTS

The majority of the papers on Nigerian medicinal plants were dedicated to antimicrobial activity of extracts. Identification of plants with potential antimicrobial activity from screening publications for further investigation is usually the first choice in antimicrobial studies, thus papers on antimicrobial screening are usually sought after [16]. Some screening studies in which several Nigerian medicinal plants were studied are presented in Table 1. It is widely accepted that extracts having activities where MIC values are below 8 mg/ml are considered to possess some antimicrobial activity [16,130] and natural products with MIC values below 1 mg/ml are considered noteworthy [16,131,132]. Some publications reported antimicrobial activities of Nigerian medicinal plant extracts with MIC less than or equal to 1 mg/ml against selected organisms [42,49,51,53,54,58,71,103,104,114,121,133,134-148] [Table 1]. Inhibitory zone diameter (IZD) is measured in millimeter (mm) when DD or AWD assays is used [76,149,150]. Kudi et al. [150] reported that plant extracts exhibiting IZD of 6mm and above against a selected pathogen are considered to possess some antimicrobial activity while Udgire and Pathade [151] suggested IZD of 10 mm and above. Because many organisms are now exhibiting high resistance to most antimicrobials, this study proposes that plant extract exhibiting IZD greater than or equal to 10 mm against selected organisms should be considered to possess antimicrobial activity whereas those showing IZD ≥20 mm against selected organisms are considered noteworthy. Some papers [32,101,121,145,152-159] on Nigerian plant extract reported IZD ≥20 mm.

Some publications were dedicated on study of specific genus of Nigerian plant such as *Pterocarpus* spp. [142], *Eucalyptus* spp. [69], and *Amaranthus* spp. [106]. Some Nigerian plant genus whose antimicrobial activity has been investigated by several authors include *Stachytarpheta* spp. [66,69,85,133], *Euphorbia* spp. [96,160-162], *Ocimum* spp. [97,142,105,163-168], *Terminalia* spp. [49,92,111,112,143,165,169-173], *Cassia* spp. [103,114,151,174-177], and *Allium* spp. [57,102,104,178-180]. Some specific species have been investigated by several researchers such as *Vernonia amygdalina* [86,94,97,105,141,179,181,182], *Psidium guajava* [87,121,163,183], *Jatropha curcas* [88,138,184], *Crimus jagus* [59,118,127], *Moringa oleifera* [147,185,186], *Anogeissus leiocarpus* [50,111,171,138,153,167,186-189], *Gongronema latifolium* [128,136], and *Fagara* (Zanthoxylum) *zanthoxyloides* [39,190] while some papers were dedicated to the study of specific species such as *Terminalia avicennioides* [58,71,117], *Stachytarpheta angustifolia* [69,70], and *Struchium sparganophora* [191,192].

Geographical and seasonal variations have been reported to affect the phytochemical constituents of plants and this in turn affects the result of antimicrobial activity [16,61]. No study has been conducted to assess the effect of seasonal change on Nigerian medicinal plants. South African studies reported little antimicrobial variability of plant extracts within 2 months interval [16,193]. Some papers on Nigerian plants focused on the antimicrobial screening together with other pharmacological investigations including toxicity [18,42,54,60,85,120,194,195]. Although medicinal plants are considered generally safe, they are known to contain potentially toxic, mutagenic, and/or carcinogenic substances [16]; therefore, it has been recommended that pharmacological studies should always be accompanied by toxicology screening [16,196,197]. Several papers included additional pharmacological assays to complement the antimicrobial investigations, such as the study on Nigerian *Stachytarpheta* spp. which includes antispasmodic properties [66,85]. Some authors investigated wound healing properties of plants together with antimicrobial property [18,59,60,141,155,198] while some studies reported antioxidant and antimicrobial properties together [48,59,60,99,199-203]. Ajali and Okoye [194] reported the anti-inflammatory and antimicrobial properties of *Olax viridis* and MIC assay showed considerable broad-spectrum activity (MIC 2000-4000 µg/ml) against selected pathogens. Williams et al. [204] reported antidiarrheal and antibacterial properties of *Guiera senegalensis* and MIC assay showed broad-spectrum activity (MIC 3.13 mg/ml) against selected pathogens. Kasim et al. [191] reported antitumor (using cell lines) and antimicrobial properties of *Struchium sparganophora* and MIC assay showed considerable activity (MIC 6.25 mg/ml) against *P. aeruginosa* and *C. albicans*. Some studies were dedicated to investigation of antimicrobial activity of Nigerian plants against multidrug resistant organisms such as methicillin-resistant *S. aureus* (MRSA) [49,124,147,157,205] and extended-spectrum β-lactamase (ESBLs)-producing organisms [206]. To ensure that resistant isolates were used, some investigators went
further to confirm resistance in isolates using disc diffusion assay [65,119,162,181,182,207].

It was observed that not much have been done on subterranean Nigerian plants. Few studies investigated the antimicrobial activity of subterranean plants such as *Allium* species [57,102,104,178-180] [Table 1] and *Dioscorea bulbifera* (Dioscoreaceae) which neither methanol nor ethanol tuber extracts showed promising antimicrobial activity (MIC 25 mg/ml against *S. aureus* and *E. coli*) [89]. This study recommends that further anti-infective studies be undertaken on medicinal bulbous plants of Nigeria. It was also observed that the majority of researchers on Nigerian plants investigated antimicrobial activity of leaf of selected plants whereas plant roots were barely studied [Tables 1 and 2]. The reason for avoidance of studies using root may be due to the destructive harvesting nature [16]. Elsewhere, it was shown that root and shoot of plants may exhibit similar antimicrobial activities [16,208]. Higher concentrations of secondary metabolites (alkaloids, tannis, flavonoids, saponins, etc.,) that are responsible for the antimicrobial activity of plants occur in bark, heartwood, roots, branch bases, and wound tissues [45,61]. The concentration varies from one plant species to another and from season to season and environment [61,209]. The mechanisms of antimicrobial activities of these metabolites have been extensively reviewed [24,45,210].

Antimicrobial Synergistic Activity of Nigerian Medicinal Plants

Because of the slow pace in development of new antimicrobials, there has been renewed interest in plants that have potential of increasing the effect of available standard (allopathic) antimicrobials. Time-kill kinetics showed that combining plant products together with allopathic antimicrobial drugs is effective in treating multidrug resistant infections [211]. In addition to antimicrobial activity of Nigerian plant extracts, some studies also investigated antimicrobial synergistic effect of these extracts with standard drugs [72,161,212,213] or antimicrobial synergistic effect of extracts from different plants [102]. Some of the studies used the agar diffusion checkerboard (ADCB) method in which the fractional inhibitory concentration (FIC) of the substances is determined by dividing the MIC of each of the substance in combination by the MIC of the substance alone, summation of the FICs gives the FIC index which is then used to classify the effect of the combination ratio as additive, synergistic, antagonistic or indifferent [72,75,76,214]. The overlay inoculum susceptibility disc (OISD) method involves measuring the IZD when antibiotic agar base containing sub-inhibitory concentration of the extract is overlaid with inoculated agar on which standard antibiotic disc is placed, percentage difference of IZD of the test in comparison with the control is then used to classify the effect of the extract as additive, synergistic, indifferent or antagonistic [72,214].

By ADCB method, methanol leaf extract of *Euphorbia hirta* exhibited synergistic effect in combination with nystatin (ratio, 6-9:4-1) against *C. albicans* [160]. Methanol leaf extracts of *Phyllanthus muellerianus* exhibited synergistic effect with ciprofloxacin against *Pseudomonas aeruginosa* and *Proteus mirabilis* using ADCB and OISD methods, respectively [72]. Using OISD method, Nweze and Onyishi [212] demonstrated that ethanol and methanol fruit extracts of *Xylopia aethiopica* exhibited synergistic effect in combination with different antimicrobials (ciprofloxacin, ofloxacin, gentamicin, fluconazole, and ketoconazole) against various organisms including *P. aeruginosa, E. coli, B. subtilis, S. aureus, C. albicans*, and *Aspergillus flavus*. The major concern surrounding the combined use of plant extracts and standard drugs is the toxicity effect that could result from interaction of phytochemicals with the active principle(s) in the drug [61,212]. Therefore, there is need for in vivo interaction and toxicity studies on Nigerian plants that showed potential antimicrobial synergism with standard drugs.

Antimicrobial Investigation on Essential Oils of Nigerian Medicinal Plants

Essential oils are volatile oils from aromatic plants responsible for the characteristic scent, odor or smell they exude [45]. Essential oil is found in the volatile steam distillation fraction of plants [45]. Several endemic Nigerian plants belonging to the family Lamiaceae, Myrtaceae, Compositae, Asteraceae, Liliaceae, and others are rich in essential oils [16,45]. Phytochemical screening of plants in these families in many publications [Tables 1 and 2], in this review, revealed the presence of terpenoid essential oils both mono and sesquerpenes. Some studies investigated antimicrobial activity of essential oils of Nigerian plants in different families [32,52,69,128,179,192,215-221]. It was observed that studies on geographical and seasonal variation have not been undertaken on essential oil of selected aromatic Nigerian plants. There is need to conduct these studies because they are important for potential commercialization [16]. Reporting the chemical composition of essential oil (both quantitative and qualitative) together with the antimicrobial activity could give some indication as to how the climatic or geographical factors may influence the phytochemicals and their resultant biological activity [16]. It has been reported that with antimicrobial studies, the chemical composition should ideally be used to correlate any structure activity relationships [16]. Studies on antimicrobial activity of Nigerian plant oils have indicated that the correlation between chemical structure and biological activity are integrated and the essential oil chemistry has provided insight into the antimicrobial activity [16,128,192]. Isolation of the bioactive compound β-caryophyllene from essential oil obtained from *Gongronema latifolium* and *Strachium sparganophora* [128,192] are attributes that enable the plant oils to elicit antimicrobial activity. Nonetheless, it should be noted that bioactive compounds from essential oil cannot independently and in combination be responsible for the overall activity of the plant [16,222].

There has been lack of set criteria in the literature by which essential oil is classified as having good, moderate or poor activity, and many researchers base the assessment on their own
Table 2: Antimicrobial compounds isolated from Nigerian traditional medicinal plants

Plant	Plant part used	Solvent	Compound	Antimicrobial activity	Bioactivity	Highest activity	Reference
P. crassipes K. Schum (Rubiaceae)	Leaf	Aqueous (hot)	Quercetin-3-O-rutinoside	Antibacterial	E. coli P. aeruginosa and C. ulcerans	6.25 mg/ml	[224]
T. avicennioides Guill. & Perr. (Combretaceae)	Root bark	Petroleum ether, ethyl acetate, chloroform, methanol	Friedelin	Antimycobacterial	Bacille Calmette Guerin (M. bovis) antigen	4.9 µg/ml	[117]
G. latifolium (Benth.) (Asclepiadaceae)	Leaf	Hydrodistillation (essential oil)	Arjunolic acid	Antibacterial	E. coli	39 µg/ml	[128]
C. alata Linn. (Leguminosae)	Seed	Ethanol	4-butylamine 10-methyl-6-hydroxy cannabinoids dronabinol	Antibacterial and antifungal (yeast and mold)	P. aeruginosa S. aureus, E. coli, K. pneumoniae, A. niger and C. albicans	40 µg/ml	[122]
S. mombin Linn. (Anacardiaceae)	Stem bark	Methanol	Mombitans I and II	Antimycobacterial	K. pneumonia	25 µg/ml	[192]
F. zanthoxyloides Lam. Zipern and Timler. (Rutaceae)	Root	Petroleum ether, chloroform, ethanol, aqueous	Canthine-6-one, chelerythrine and berberine	Antibacterial	K. aerogenes	50 µg/ml	[191]
S. sparganophora Linn. Ktze (Asteraceae)	Aerial part (essential oil from stem and leaf)	Hydrodistillation	β-caryophyllene, germacrene D, a-humulene, caryophyllene oxide and 1,8-cineole	Antibacterial	S. typhi P. aeruginosa, Proteus mirabilis, B. cereus and B. subtilis	0.1 µg/ml	[192]
R. communis Linn. (Euphorbiaceae)	Seed	Hexane	Cineole Limonene	Antibacterial	S. aureus	6.25 mg/ml	[207]
C. nigricans Vahl. (Leguminosae)	Leaf	Petroleum ether, methanol	Hydroxyestrangic acid ethy ester	Antibacterial	Broad spectrum, mold and yeast S. pyogenes P. aeruginosa C. albicans, N. gonorrhoeae and S. typhi P. aeruginosa	2000 µg/ml	[114]
P. guineense Schumach. and Thonn. (Piperaceae)	Fruit	Hydrodistillation	Myristicin	Antibacterial	C. albicans	5 mg/ml	[215]
J. gossypifolia Linn. (Euphorbiaceae)	Seed	Methanol	9-acetoxynerolidol (from chloroform partition)	Antifungal	C. albicans	5 mg/ml	[68]
L. pterodonta (DC.) Sch. Bip. (Asteraceae)	Aerial part (stem and leaf)	Hydrodistillation	Quercetin 3, 3', 4'-trimethyl ether	Antibacterial	S. aureus Bacillus subtilis, E. coli and P. aeruginosa K. pneumoniae, K. ozona and B. cereus	200 µg/ml	[116]
I. secundiflora Poir. (Fabaceae)	Aerial part (stem and leaf)	Methanol, acetone	Triacontyl methyl ether	Antibacterial	K. pneumonia, B. cereus, B. subtilis, S. aureus and K. ozona	50 µg/ml	[125]
L. pterodonta (DC.) Sch. Bip. (Asteraceae)	Aerial part (stem and leaf)	Hexane, ethyl acetate	Di-eicosanyl glycol or ethane-1,2-dieicosanoate	Antibacterial	K. pneumonia, B. cereus, S. aureus	50 µg/ml	[122]

(Contd...)
Plant	Plant part used	Solvent	Compound	Antimicrobial activity	Highest activity	Range	Reference
B. pinnatum (Lam) Oken. (Crussalaceae)*	Aerial part	Aqueous: Ethanol	Gallic acid and epigallocatechin 3-0-syringate	Antibacterial	*S. aureus*	25 µg/ml	[263]
C. prostrata (Linn.) Blume (Amaranthaceae)	Aerial part	Ethyl acetate	Ethyl hexadecanoate and 7, 9-Di-tert-butyl-1-oxa-aspiro (4,5) deca-6, 9-diene-2, 8-dione	Antimicrobial	*B. subtilis*, *S. aureus*, *E. coli*, *A. niger*, *P. aeruginosa*, *C. albicans*	1-15 mg/ml	[264]

Table 2: (Continued)

1. *E. coli*: Escherichia coli, *P. aeruginosa*: Pseudomonas aeruginosa, *C. ulcerans*: Candida ulcerans, *S. pyogenes*: Streptococcus pyogenes, *K. pneumonia*: Klebsiella pneumoniae, *N. gonorrhoeae*: Neisseria gonorrhoeae, *M. bovis*: Mycobacterium bovis, *S. aureus*: Staphylococcus aureus, *A. niger*: Aspergillus niger, *C. albicans*: Candida albicans, *M. tuberculosis*: Mycobacterium tuberculosis, *S. typhi*: Salmonella typhi, *P. mirabilis*: Proteus mirabilis, *N. gonorrhoeae*: Neisseria gonorrhoeae, *S. faecalis*: Streptococcus faecalis, *C. alata*: Cassia alata, *S. mombin*: Spondias mombin, *F. zanthoxyloides*: Fagara zanthoxyloides, *S. sparganophora*: Struchiium sparganophora, *R. communis*: Ricinus communis, *C. nigricans*: Cassia nigricans, *J. gossypifolia*: Jatropha gossypifolia, *I. secundiflora*: Indigofera secundiflora, *L. pterodonta*: Lagerra pterodonta, *B. pinnatum*: Bryophyllum pinnatum, *C. prostrata*: Cyathula prostrata
particular data attained [16]. Considering that essential oils have lower antimicrobial activities than extracts, they need to be classified differently [16]. It has been proposed that essential oils with MIC value less than or equal to 2mg/ml could be considered noteworthy [16]. Publications on Nigerian medicinal aromatic plant essential oils which reported antimicrobial activities MIC of less than or equal to 2mg/ml against selected pathogens include studies on Ocimum gratissimum (Lamiaceae) [223], Gongronema latifolium (Asclepiadaceae) [128], Allium sativum (Liliaceae), and Citrus reticulata (Rutaceae) [179]. There is need for studies on time-kill kinetics of essential oils of Nigerian medicinal plants to be undertaken to elucidate their microbicidal effect.

Bioactive Compounds from Nigerian Medicinal Plants

Different bioactive compounds with antimicrobial properties have been isolated from various Nigerian medicinal plants [Table 2]. This is made possible due to engagement of multidisciplinary approach (by collaboration between chemists, botanists, and microbiologists) which is integral to achieve high-quality research [16]. It has been proposed that isolated compounds with antimicrobial activities of 64–100 µg/ml are accepted as having clinical relevance [16,131]. Some authors specify that compounds with activities less than or equal to 10µg/ml are noteworthy [16,132,133]. Reports on isolated bioactive compounds from Nigerian plants exhibiting MIC values less than or equal to 10 µg/ml against selected organisms include Bello et al. [224], Mann et al. [117], and Kasim et al. [191] [Table 2]. Despite the availability of a number of publications on the isolation and identification of bioactive compounds from Nigerian plants, it should be noted that the complexity of plants and a single compound may not be responsible for the observed activity but rather a combination of compounds (either major or minor) interacting in an additive or synergistic manner [16,225].

IN VIVO AND FORMULATION STUDIES ON NIGERIAN MEDICINAL PLANTS

Considering that traditional medicines are esteemed not only for their therapeutic value but also from a holistic administrative approach in which the plant is given to treat the patient on various levels, one must not forget that there may be other physiological effects on the body that act beyond the symptomatic treatment of the disease when studying traditional medicine [16]. Although many studies on Nigerian medicinal plants have identified specific plant species as having antimicrobial activity in an in vitro model, it is necessary to subject these plants to animal models and human subjects to determine their efficacy in metabolic environments [16]. Two studies [59,226] on antimicrobial activity of Nigerian plants focused on in vivo models. Mice injected intraperitoneally with S. aureus and then dosed orally with 25–200 mg/kg body weight of Alchornea cordifolia aqueous/ethanol leaf extract improved significantly when compared to the control [226]. Topical treatment of excision wound on rats contaminated with S. aureus, B. subtilis, C. albicans and P. aeruginosa with 5% and 10% Crinum jagus methanol bulb extract ointment, resulted in significant reduction in isolation rate of these organisms except P. aeruginosa [59]. However, these studies used solvents/solvent mixture that are not acceptable in traditional medicine, therefore, there is need to include aqueous extract in in vivo screening assays to mimic traditional use of plant material [16]. This will enable adequate assessment of the efficacy of plants as used in traditional medicine. Nevertheless, it has been reported that solvent-derived extracts exhibit more antimicrobial activities than the aqueous extracts [16,227], thus raising concern in terms of antimicrobial efficacy when the traditional method is applied [16]. Therefore, there is great need to translate the applied knowledge gained from intricate assays and make it meaningful to the ethnic people who rely on traditional medicine [16]. Establishing suitable formulations that retain the efficacy demonstrated in the in vitro screening procedures has been reported to be the next logical step in the investigation of the antimicrobial efficacy of plant extracts and essential oils [16]. Formulations could be in form of tinctures, concoctions, teas, ointments, capsulation or tablets. Some studies on Nigerian plants focused on ointment formulations of plant extract which is applied topically. Suara et al. [228] examined the potential application of methanol extract of Plukenetia conophora into cream formulation, the ointment showed highest activity MIC 1mg/ml against Proteus mirabilis. Azubuik et al. [229] also examined ointment formulation of Azadirachta indica and Aloe barbadensis which gave highest activity MIC 2.5 mg/ml against B. subtilis, S. aureus and C. albicans, and 2 mg/ml against C. albicans, respectively. Muinat et al. [230] examined ointment formulation of Argemone mexicana, AWD assay showed inhibitory effect of the formulation on Trichophyton mentagrophyte. Udegbunam et al. [18] examined Pupalia lappacea methanol leaf extract ointment formulation on surgical wounds in rats, wound healing parameters assessed as well as microbiological assay (culture) showed inhibitory effect of the ointment on common wound-contaminating pathogens. Soap and ointment formulated using extract from 4 Nigerian medicinal plants proved effective in management of skin infections in selected individuals [165]. Studies are needed on assessment of potential antimicrobial activity of Nigerian plants’ essential oil formulations and plant extract formulations in other forms apart from cream ointment. Inclusion of studies assessing the feasibility and bioavailability/stability of the active ingredients of the formulations especially is important [16].

ACTIVITIES ATTRIBUTED TO THE SPECIFIC ETHNOBOTANY OF THE PLANT

It was observed in this review that the majority of plant directed antimicrobial studies focused on screening against a battery of pathogens, while very few ethnobotanical studies have been carried out on pathogen-specific infections where the selection of test organisms relate directly to the traditional use of the plant [16]. For adequate ethnobotanical study, it has been suggested that studies on plants should be done using organisms related to the diseases managed
with the plant in traditional medicine [16,27,61,142]. For instance, plants used for managing diarrhea should be tested against *E. coli*, *Salmonella typhi*, *Shigella dysenteriae*, *Vibrio cholerae*, *Campylobacter* spp., *Entamoeba histolytica*, etc., which are known to be associated with enteritis [231]. Plants utilized for skin infection should be tested against bacteria such as *Pseudomonas* spp. and *S. aureus* and fungal agents associated with skin diseases including *Epidermophyton* spp., *Trichophyton* spp., and *Microsporum* spp. [16,231]. Plants used for oral complaints should be tested against *Streptococcus mutans*, *Streptococcus sobrinus*, *Porphyromonas gingivalis*, and *Aggregatibacter actinomycetemcomitans* [16,232]. Although, studies relating to ethnobotanical use of Nigerian plants have been largely neglected (in terms of using pathogens targeted in ethnomedical setting), few studies focused on ethnobotanical use of studied plant on wound healing [18,60,142] and oral infection [42,135,169,170,233] taking into account the possible impact of microbial infection.

It was observed that few publications [135,168,204] have been dedicated to the antidiarrheal properties of Nigerian plants, and given the severity and mortality rates of diarrheal-related diseases especially in rural areas, not enough has been done on one of the most prevalent diseases affecting rural Nigerians [16]. Omojasola and Awe [135] studied 2 plants (*Anacardium occidentale* and *Gossypium hirsutum*) used traditionally to treat stomach ailments in Southwest Nigeria and reported MIC 0.05-0.10 mg/ml of their ethanol leaf extract against *S. aureus*, *E. coli*, *S. dysenteriae*, *Salmonella* spp., and *P. aeruginosa*.

Candida albicans is an organism (yeast) responsible for infections which are often prolific, requiring long-term antifungal treatment [16,233]. About 120 Nigerian medicinal plants were screened for antifungal activity [Table 1]. Reference, clinical and nonclinical *C. albicans* strains were used in the studies. The MIC of plant extract against the organism varied depending on the plant, solvent used and the strain of *C. albicans* used [16]. Nigerian plant extracts with the most promising antifungal activity include *Sesamum radiatum* (methanol leaf extract, MIC 28.2 µg/ml) [138], *Amaranthus hybridus* (aqueous leaf extract, MIC 6.33 mg/ml) [106], *Pterocarpus santalinoides* (ethanol fresh leaf extract, MIC 0.75 mg/ml) [142], *Balanites aegyptiaca* (aqueous leaf and root extract, MIC 3.125 mg/ml) [234], *Eucalyptus camaldulensis* (aqueous methanol leaf extract, MIC 0.0625 µg/ml) [112], *Commiphora africana* (ethanol root extract, MIC 2,000 µg/ml) [65], *Cymbopogon citratus* (chloroform leaf extract, MIC 32 µg/ml) [119], and *Cyathula prostrata* (ethanol leaf and stem extract, MIC 400 µg/ml) [154]. Kubmarawa et al. [137] reported antifungal activity of ethanol extract from various parts of *Acacia tortilis*, *Anogeissus leiocearpus*, *Jatropha curcas*, *Nauclea latifolia*, and *Vitex doniana* with MIC ranging from 0.5 to 2 mg/ml. There is need for further clinical assessment of these Nigerian plant extracts with considerable antifungal activity.

Some publications have been dedicated to investigation of antimycobacterial activity of Nigerian plant extract [54,55,57,118,122,125,189,235,236] [Tables 1 and 2]. Screening of antimycobacterial activity of 12 medicinal plants used in treating tuberculosis in Southwest Nigerian revealed that both methanol and ethanol extract of *Allium ascalonicum*, *Terminalia glaucescens*, *Allium cepa*, and ethanol extract of *Securidaca longepedunculata* inhibited *M. tuberculosis* at concentration of 0.05 g/ml [235]. On comparison with Bacille Calmette Guerin (BCG) (attenuated *Mycobacterium bovis*) antigen, 10 Nigerian medicinal plants used in herbal antitubercular recipes by traditional healers, showed potential antimycobacterial activity following preliminary MIC assay [189]. Hexane extract of various parts of *T. avicennioides* and *Anogeissus leiocearpus* exhibited activity (MIC 312 µg/ml) against *M. tuberculosis* and BCG antigen [236]. Chloroform root bark extract of *Uvaria afzelii* (Annonaceae) and hexane root bark extract of *Tetracera alnifolia* (Dilleniaceae) exhibited activity MIC 87.5 µg/ml and 93.31 µg/ml against *M. tuberculosis*, respectively [54]. Screening of aqueous/ethanol extract from various parts of 11 plants used for treating tuberculosis in the Northcentral region of Nigeria, showed that leaf/twist extract of *Paeteva corymbosa* exhibited the highest activity (MIC 800 µg/ml) against *M. tuberculosis* [55]. Methanol stem bark extract of *Spondias mombin* exhibited activity (MIC 61.1 µg/ml) against *M. tuberculosis* [122]. Bioactive compounds with potential antimycobacterial activity have been isolated from Nigerian medicinal plants [117,126] [Table 2]. The use of BCG antigen in conducting antimycobacterial test by some investigators may be possibly due to the difficulty (long incubation time, requirement for specialized media, and biosafety cabinet environment to avoid exposure) associated with culturing *M. tuberculosis*. Considering the zoonotic importance and the difficulty (long-term therapy and resistance - multidrug resistant tuberculosis [MDR TB] and extremely-drug-resistant TB [XDR TB]) in treating mycobacterial infections, there is need for more investigations on Nigerian plants for detection of potential antimycobacterial agent. Currently, there is awakened interest in search of new, safe, and effective antitubercular drugs globally [237].

Although Nigerian medicinal plants used in treatment of sexually-transmitted infections (STIs) showed antimicrobial activity [66,69,70,72,79,95,174,238,239], none of the studies used organisms such as *Neisseria gonorrhoeae*, *Treponema pallidium*, *Haemophilus ducreyi*, *Trichomonas vaginalis*, *Ureaplasma urealyticum*, and *Oligella urealytica* which are known to cause STIs [16]. Understandably, these organisms are fastidious and require more intensive culturing techniques, but their use is a necessary progression for further antimicrobial pharmacognosy studies since it can no longer be assumed that broad-spectrum activity is adequate for plants used for specific diseases [16].

STUDIES ON NIGERIAN MEDICINAL PLANTS BASED ON LOCALITY

A few antimicrobial-related papers have focused on the ethnobotany of specific geographical regions within Nigeria [92,117]. These studies investigated the antimicrobial activity of *Terminalia avicennioides* commonly used in the Nupe
traditional medicine for treating microbial infections, with the root bark extract of *T. avicennioides* yielding Friedelin with strong antimycobacterial activity (MIC 4.9 μg/ml) [Table 2]. Some studies investigated antimicrobial activity of plants used as chewing stick for maintaining oral hygiene within Southwest Nigeria [39,42,124,133,169,170,187,188,190,218,233,240].

ANTIMICROBIAL STUDIES ON NONFLOWERING AND PARASITIC NIGERIAN PLANTS

Two studies reported the antimicrobial activity of the fungus *Ganoderma* (Ganodermataceae) [241,242]. Ofordile et al. [241] screened four *Ganoderma* species in which *G. colossum* showed potential antimicrobial activity, further studies on this species resulted in isolation of Colossolactone E and 23-hydroxycolossolactone E which inhibited the growth of *B. subtilis* and *Pseudomonas syringae* [241]. Extracts of bryophytes *Calypneres erosum* (Calypneraceae) and *Bryum coronatum* (Bryaceae) exhibited broad-spectrum activity against selected Gram-positive and Gram-negative organisms with both plants having MIC 0.625 - 5 mg/ml [145] [Table 1]. Screening of the parasitic plant *Viscum album* (Loranthaceae) by diffusion method showed no promising antimicrobial activity [98,243].

FUTURE ANTIMICROBIAL RESEARCH ON NIGERIAN MEDICINAL PLANTS

There are some considerations that investigators of Nigerian plants need to adopt for adequate validation of antimicrobial activity of these plants. Van Vuuren [16] highlighted these considerations: Methods should be standardized and only noteworthy activities considered for publication, disc diffusion assays should be avoided especially when considering essential oil studies, isolation of bioactive compounds should be directed to plants having antimicrobial activity as identified in the screening procedures, attention needs to be directed toward the ethnobotanical use of the plant and the rational antimicrobial screening that follows, the use of nonpathogenic organism such as *Bacillus subtilis* for anti-infectivity studies should be avoided, studies on the efficacy of plants against resident beneficial bacteria such as *Lactobacillus acidophilus* and *Bifidobacterium bifidum* could yield information that may make plant extracts or oils more appropriate than the presently administered allopathic antimicrobials, which inevitably destroy the beneficial bacteria such as *Lactobacillus* such as *Bacillus subtilis* [2013;2:31].

Because the identification of a single active chemical entity responsible for the antimicrobial activity of a plant is less likely, research should be focusing on the investigation of a combination of compounds to achieve a greater efficacy [16]. Incorporation of interactive phytochemical studies with existing practices is crucial in the search for novel chemotherapeutic agents [16]. Regular or consistent administration of antimicrobials to determine if enhanced efficacy would be achieved with regular subtherapeutic administrations in comparison with single acute administrations should be considered in future research designs [16,244,245]. Extended time-kill experiments monitoring the viability of plant extracts overtime with regular dosages is crucial in determining the cidal effect of an antimicrobial [16].

CONCLUSION

The reviewed reports showed that there is a progressive trend in studies on antimicrobial activity of Nigerian medicinal plants. With advancement in laboratory techniques coupled with renewed interest in the field and the scientific validation of the traditional uses of medicinal plants, traditional medicine is increasingly being recognized as an accepted alternate regimen to orthodox health-care systems [16]. It is clear that many endemic Nigerian plants used in treating microbial infections and various ailments in traditional medicine, potentially possess antimicrobial activity. Bioactive compounds with antimicrobial activity have been isolated from Nigerian plants in different families. With further researches, new chemotherapeutic agents could possibly be developed from these plants.

REFERENCES

1. Schwarz S, Loeffler A, Kadlec K. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Vet Dermatol 2016.
2. Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med 2006;119 6 Suppl 1:53-10.
3. Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: Combating bacterial resistance in cells and in biofilm communities. Molecules 2015;20:5286-98.
4. Cheng G, Dai M, Ahmed S, Hao H, Wang X, Yuan Z. Antimicrobial Drugs in Fighting against Antimicrobial Resistance. Front Microbiol 2016;7:470.
5. Maisonneuve E, Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell 2014;157:539-48.
6. Aminov RI. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front Microbiol 2010;1:134.
7. Huttner A, Harbarth S, Carlet J, Cosgrove S, Goossens H, Holmes A, et al. Antimicrobial resistance: A global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrob Resist Infect Control 2013;2:31.
8. Giedraitiene A, Vitkauskiene A, Naginiene R, Pavilonis A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas) 2011;47:137-48.
9. Miranda CD, Tello A, Keen PL. Mechanisms of antimicrobial resistance in finfish aquaculture environments. Front Microbiol 2013;4:233.
10. World Health Organization, (WHO). Antimicrobial Resistance: Global Report on Surveillance; 2014. Available from: http://www.who.int/drugresistance/documents/surveillancereport/en/. [Last accessed on 2016 Jun 25].
11. The Review on Antimicrobial Resistance. Final Report, 2014. Available from: http://www.amr-review.org/Publications. [Last accessed on 2016 Sep 13].
12. Piddock LJ. Reflecting on the final report of the O’Neill Review on Antimicrobial Resistance. Lancet Infect Dis 2016;16:787-8.
13. Fitchett JR, Atun R. Antimicrobial resistance: Opportunity for Europe to establish global leadership. Lancet Infect Dis 2016;16:388-9.
14. Taylor J, Hafner M, Yerushalmi E, Smith R, Bellasio J, Vardavas R, et al. Estimating the economic costs of antimicrobial resistance:
Anyanwu and Okoye: Antimicrobial properties of Nigerian plants

15. Huynh BT, Padgett M, Garin B, Herindrainy P, Kermorvant-Duchemin E, Watier L, et al. Burden of bacterial resistance among neonatal infections in low income countries: How convincing is the epidemiological evidence? BMC Infect Dis 2015;15:127.

16. van Vuuren SF. Antimicrobial activity of South African medicinal plants. J Ethnopharmacol 2008;119:462-72.

17. Lifongo LL, Simbon CV, Ntie-Kang F, Babiaka SB, Judson PN. A bioactivity versus ethnobotanical survey of medicinal plants from Nigeria, West Africa. Nat Prod Bioprospect 2014;4:1-19.

18. Udegbunam SO, Udegbunam RI, Muogbo CC, Anyanwu MU, Nwachukwu MN. Wound healing and antibacterial properties of methanolic extract of Pupalia lappacea Juss in rats. BMC Complement Altern Med 2014;14:157.

19. Ferrandiz-Pulido C, Garcia-Patos V. A review of causes of Stevens-Johnson syndrome and toxic epidermal necrolysis in children. Arch Dis Child 2013;98:998-1003.

20. Patel TK, Barvaliya MJ, Sharma E, Tripathi D. A systematic review of the drug-induced Stevens-Johnson syndrome and toxic epidermal necrosis in Indian population. Indian J Dermatol Venerol Leprol 2013;79:39-98.

21. Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect 2015;6:22-9.

22. Infectious Diseases Society of America. The 10 x '20 Initiative: Pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 2010;50:1081-3.

23. Laport MS, Santos OC, Muricy G. Marine sponges: Potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 2009;10:86-105.

24. Nasir B, Fatima H, Ahmed M, Haq IU. Recent trends and methods in antimicrobial drug discovery from plant sources. Austin J Microbiol 2015;1:1002.

25. Gurbir-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol Aspects Med 2006;27:1-93.

26. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;12:564-82.

27. Adebayo JO, Krettili AU. Potential antimalariais from Nigerian plants: A review. J Ethnopharmacol 2011;133:289-302.

28. Willcox ML, Bodeker G. Traditional herbal medicines for malaria. BMJ 2004;329:1156-9.

29. Ntie-Kang F, Lifongo LL, Mbaze LM, Evkelle N, Owono Owono LC, Megnassan E, et al. Cameroonian medicinal plants: A bioactivity versus ethnobotanical survey and chemotaxonomic classification. BMC Complement Altern Med 2013;13:147.

30. Usman BA, Adelfalu NL. Nigerian forestry, wildlife and protected areas: An overview. J Ethnopharmacol 2011;14:17-21.

31. Enwereji EE. Important medicinal plants for treating HIV/AIDS medication for male infertility factor. Res J Med Plant 2009;4:14-20.

32. Akinyemi KO, Oladapo O, Okwara CE, Ibe CC, Fasure KA. Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity. BMC Complement Altern Med 2006;5:6. DOI: 10.1186/1472-6882-5-6.

33. Ndukwe KC, Okeke IN, Lamikanra A, Adesina SK, Aboderin O. Antibacterial activity of aqueous extracts of selected chewing sticks. J Contemp Dent Pract 2006;5:86-94.

34. Akinyemi KO, Oluwa OK, Omomigbehin EO. Antimicrobial activity of crude extracts of three medicinal plants used in South-West Nigerian folk medicine on some food borne bacterial pathogens. Afr J Trad Commp Med 2009;3:13-22.

35. Osibote EA, Ogunlesi M, Okeie W, Asekun T, Familoni OB. Assessment of antimicrobial activity of the essential oil from the stem powder of Cissus populnea and the leaves of Sesamum radiatum; herbal medication for male infertility factor. Res J Med Plant 2009;3:16-32.

36. Lavy TD, Adeniyi BA, Wan B, Franzblau SG, Mahady GB. In vitro susceptibility of Mycobacterium tuberculosis to extracts of Uvaria atezelli Scott Elliot and Tetragera alniloria Willd. Afr J Biomed Res 2011;14:17-21.

37. Nvau JB, Oladosu PO, Orishadipe AT. Antimycobacterial evaluation of some medicinal plants used in Plateau State of Nigeria for the treatment of tuberculosis. Agric Biol J North Am 2011;2:1270-2.

38. Kajubbe LA, Maruna K, Mohamed I, Ikibunle GF. Phytochemical and in vitro antibacterial evaluation of the extracts, portions and sub-portions of the ripe and unripe fruits of Nuclea latifolia. J Med Plants Res 2013;7:629-36.

39. Igboekwe CO, Lawal TD, Adeniyi DA. Antimicrobial activities and the bactericidal kinetics of Allium ascalonicum Linn. (Whole plant) against standard and clinical strains of Helicobacter pylori: Support for ethnomedical use. J Nat Sci Res 2014;4:48-57.

40. Naidu R, Kraft DL, Aly RS. Antibacterial activity of methanolic extracts of Terminalia avicennioides against fish pathogenic bacteria. J Med Plants Res 2012;6:103-6.

41. Ncube NS, Afolayan AJ, Okoh AI. Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. Afr J Biotechnol 2005;7:1797-806.
activity and elemental analysis of Cassia siberiana leaves using atomic absorption spectrometer. J Nat Prod Plant Resour 2013;16:19-24.

104. Katsa M, Gyar SD, Reuben CR. In vitro: Antibacterial activity of Allium roseum (Wild Allium or Rosy garlic) against some clinical isolates. J Microbiol Res 2014;2:30-3.

105. Okore C, Mbaneo F, Onyekwere B, Ugenyi A, Ozurumba A, Nwuah U, et al. Comparative analysis of phytochemical and antimicrobial effects of extracts of some local herbs on selected pathogenic organisms. GRF Davos Planet@RISK 2014;2:241-8.

106. Ndume CU, Iwuchukwu CD, Igbokwue AU. Antibacterial activity of four Nigerian medicinal plants. Sch J Agric Vet Sci 2016;3:172-80.

107. Hewitt W, Vincent S. Theory and Application of Microbiological Assay. London, UK: Academic Press, Inc., 2003.

108. Jørgensen AM, Schøffler J, Baehrheim HA. The effect of crude extracts of nine African chewing sticks on oral anaerobes. J Med Microbiol 1987;23:55-60.

109. Southwell I, Hayes A, Markham J, Leach D. The search for optimally bioactive Australian tea tree oil. Acta Hortic 1993;334:256-65.

110. Tan VH, Schilling AN, Nikolaou M. Modelling time-kill studies to discern the pharmacodynamics of meropenem. J Antimicrob Chemother 2005;56:699-706.

111. Odumosu BT, Kolude B, Adeniyi BA. Antimicrobial screening and kinetic study of two Nigerian medicinal plants against oral pathogens. CIBTech J Pharm Sci 2014;3:7-14.

112. Babayi H, Kolo I, Okogun JI, Ijah UJ. The antimicrobial activities of methanolic extracts of Eucalyptus caldulensis and Terminalia catappa against some pathogenic microorganisms. Biokemistri 2004;16:106-11.

113. Iwalewa EO, Naidoo Y, Bagla Y, Eloff JN. Nitric oxide producing effect of six extracts from Harungana madagascariensis Lam., ex. Poiret (Guttiferae) stem bark. Afr J Pharm Pharmacol 2009;3:14-20.

114. Ayo RG, Amupitan JO, Oyewale AO. Isolation, characterization and phytochemical analysis of the plant thugga from leaves of Cassia nigricans Vahl. Res J Med Plant 2009;3:69-74.

115. Zailani AH, Jada SM, Wurochekke UA. Antimicrobial activity of Waltheria indica. J Am Sci 2010;6:1591-4.

116. Ahmadu AA, Onanuga A, Ebeshi BU. Isolation of antibacterial flavonoids from the aerial parts of Indigofera securifolia. Pharmacogn J 2011;3:25-8.

117. Mann A, Ibrahim K, Oyewale AO, Amupitan JO, Fatope MO, Okogun JI. Antimycobacterial friedelane-terpenoid from the root bark of Terminalia avicennioides Am J Chem 2011;1:52-5.

118. Kehinde AO, Akintola AO. Anti-bacterial activity of extract of Cinnum jugul bulb against isolates of Mycobacterium tuberculosis. Afr J Biomed Res 2012;15:129-93.

119. Evangelista JA, Herba SA, Mawak JD, Oyewole OA. Antimicrobial activity of Cymbopogon citratus (lemon grass) and its phytochemical properties. Front Sci 2012;2:214-20.

120. Orisakeye OT, Olugbade TA. Studies on antimicrobial activities and phytochemical analysis of the plant Sterculia tragacanthica Lindi. Middle East J Sci Res 2012;11:924-7.

121. Okonful NL, Nwakanma NM, Mordi M, Ademolu O, Ezimoke I, NW a.C, Barroso JG, et al. Antimicrobial activities of the bulb of Crinum jagus (Linn). Int Educ Res J 2016;2:31-5.

122. Edet UU, Ehiabhi OS, Ogundwande IA, Walker TM, Schmidt JM, Setzer WN, et al. Analyses of the volatile constituents and antimicrobial activities of Gongronema latifolium (Benth.) and Gnetum africanum (L.). J Essent Oil Bearing Plant 2005;8:324-9.

123. Kagamou GP, Van Zyl R, Van Vuuren SF, Figureiredo AC, Barroso JG, Pedro LG, et al. Seasonal variation in essential oil composition, oil toxicity and the biological activity of solvent extracts of three South African Salvia species. South Afr J Bot 2008;74:230-7.

124. Fabiyi U, Okembo PO, Ansorg R. Antimicrobial activity of East African medicinal plants. J Ethnopharmacol 1999;60:79-84.

125. Gibbons S. Anti-staphylococcal plant natural products. Nat Prod Rep 2004;21:263-77.

126. Rios JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol 2005;100:80-4.

127. Zige DV, Ohimain EI, Nengimonyo B. Antimicrobial activity of ethanol selected microorganism. Biosci Res Commun 2004;60:25-8.

128. Bello M, Odama LE, Nandita B. Studies on the antibacterial activity of the extract of Stachyurapheta angustifolia. J Nig Med Univ 2003;17:116-21.

129. Omojasola PF, Awe S. The antibacterial activity of the leaf extracts of Anacardium occidentale and Gossypium hirsutum against some selected microorganism. Biosci Res Commun 2004;60:25-8.

130. Eleyimini AF. Chemical composition and antibacterial activity of Gongronema latifolium. J Zhejiang Univ Sci B 2007;8:352-8.

131. Kubmarawa D, Ajoku GA, Enwerem NM, Okorie DA. Preliminary phytochemical and antibacterial screening of 50 medicinal plants from Nigeria. Afr J Biotechnol 2007;6:1890-6.

132. Shittu LA, Bankole MA, Ahmed T, Bankole MN, Shittu RK, Saalu CL, et al. Antibacterial and antifungal activities of essential oils of crude extracts of Sesame radiatum against some common pathogenic microorganisms. Iran J Pharm Ther 2007;6:165-70.

133. Iroha IR, Amadi ES, Nwuzo AC, Alfukwa FN. Evaluation of the antibacterial Activity of extracts of Sida acuta against clinical isolates of Staphylococcus aureus isolated from human immunodeficiency virus/acquired immunodeficiency virus. Res J Pharm 2009;3:32-5.

134. Danlami U, Rebecca A, Machan DB, Auquo TS. Comparative study on the antimicrobial activities of the ethanol extracts of lemon grass and Polyalthia longifolia. J Appl Pharm Sci 2011;1:174-6.

135. Adetutu A, Morgan WA, Corcoran O. Ethnopharmacological survey and in vitro evaluation of wound-healing plants used in South-western Nigeria. J Ethnopharmacol 2011;137:50-6.

136. Osuagwu GG, Akomas CB. Antimicrobial activity of three species of Nigerian Pterocarpus (Jacq). Int J Med Arom Plants 2013;3:178-83.

137. Bamidele FA, Oguejide FO, Osejeyo OA, Shogeyinbo JA. In vitro antibacterial activity and preliminary Phytochemical screening of four plants on selected clinical pathogens. Int J Sci Res Publ 2013;3:250-5.

138. Uzo NS, Ohihimi EN, Njoku OE, Ijioka CE. Antimicrobial activity of ethanol extract of Senna alata leaves against some selected microorganism in Bayelsa State, Nigeria. Greener J Microbiol Antimicrob 2014;2:326-9.

139. Todela PO, Adebiyi AO, Aremu AJ. In vitro antibacterial activity of two mosques: Calypnepers eorum C. Mull and Bryum coronatum Schwaeagr from South-western Nigeria. Biol Life Sci 2014;5:77-84.

140. Akinpelu DA, Abioye EO, Aiyegoro OA, Okoh AI. Evaluation of antibacterial and antifungal properties of Alchornea laxiflora (Benth.) Pax. & Hoffman. Evidence-Based Compl Alt Med 2015. Available from: http://www.dx.doi.org/10.1155/2015/684839. [Last accessed on 2016 Oct 2].

141. Ogha JO, Osundare FA. Evaluation of antibacterial activity and preliminary phytochemical Screening of Morinda oleifera on pathogenic bacteria Int J Pharm Res 2015;5:310-15.

142. Saidu TB, Galadima M, Abalaka ME, Jigam AA. Antibacterial activity of eight medicinal plants against diarrhoea pathogens. Nig J Technol 2015;10. Available from: http://www.dx.doi.org/10.4314/njr.v10i1.S14. [Last accessed on 2016 Sep 3].

143. Clinical and Laboratory Standards Institute. (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. M100-S22. Vol. 32. Wayne, PA: CLSI; 2012. p. 62-78.

144. Kudi AC, Umodu JU, Eduvie LO, Gefu J. Screening of some Nigerian medicinal plants for antibacterial activity. J Ethnopharmacol 1999;67:225-8.

145. Udgire MS, Patade GH. Evaluation of antimicrobial activities and phytochemical constituents of extracts of Valeriana wallichii. Asian J Plant Sci Res 2013;3:35-9.
Antimicrobial properties of Nigerian plants

1. Adejumobi JA, Ogundiya MO, Kolapo AL, Okunade MB. Phytochemical composition and *in vitro* antimicrobial activity of *Anogeissus leiocarpus* on some common oral pathogens. J Med Plants Res 2008;2:193-6.

2. Aboaba OO, Ezech AR, Anabuiki CL. Antimicrobial activities of some Nigerian spices on some pathogens. Agric Biol J North Am 2011;2:1187-93.

3. Ogu GI, Nnenna MO, Nwachukwu PU, Igere BE. Antimicrobial and phytochemical evaluation of the leaf, stem bark and root extracts of *Cyathula prostrata* (L.) Blume against some human pathogens. J Intercult Ethnopharmacol 2012;1:35-43.

4. Udoumoh AF, Eze CA, Chah KF, Etuk EU. Antibacterial and surgical wound healing properties of ethanolic leaf extracts of *Swevetania mahagoni* and *Bouma procera*. Asian J Trad Med 2011;6:272-7.

5. Sadiq IS, Shuaibu M, Bello A, Tureta SG, Isha A, Izuagie T, et al. Phytochemistry and antimicrobial activities of *Cassia occidentalis* used for herbal remedies. J Chem Eng 2012;1:38-41.

6. Mankilik M, Mikailu A. Phytochemical content and antimicrobial activities of *Luffa aegyptiaca* (Sponge gourd) leaves. Int J Pharm Bioci 2014;1:1-4.

7. Ibrahim TA, Ajongbolo KF, Aladekoyi G. Phytochemical screening and antimicrobial activity of crude extracts of *Basella alba* and *Helianthus annuus* on selected food pathogens. J Microbiol Biotech 2014; Available from: http://www.roj.org.com/open-access/phytochemical-screening-and-antimicrobial-activity-of-crude-extracts-of-basella-alba-. Last accessed on 2016 Sep 10.

8. Kigigha LT, Onyema E. Antibacterial activity of bitter leaf (*Vernonia amygdalina*) soup on *Staphylococcus aureus* and *Escherichia coli*. Sky J Microbiol Res 2015;3:41-5.

9. Jackson C, Agboke A, Nwoke V. Phytochemical and antimicrobial properties of *Cyathula prostrata* (wild basil) and *Ocimum Gratissimum* against infectious diseases prevalent in Nigeria. Int J Med Plants Res 2008;2:094-7.

10. Ogundiya MO, Kolapo AL, Okunade MB, Adejumobi J. Evaluation of the antimicrobial activity of root and leaf extracts of *Ocimum gratissimum* against some enteric pathogen causing dysentery or diarrhea. Int J Trad Med 2014;1:1-5.

11. Kasim LS, Feroa V, Odukoya OA, Ukpo GE, Afilaka E, Nwuzo A. Preliminary investigation of the antibacterial activity of *Psidium guajava* extracts. Eur J Med Plants 2015;7:26-30.

12. Ogie-Odla EA, Ibahe TA, Ogbeomudia FO, Mokwunya IA. Phytochemical and antimicrobial activities of five plants in Edo State, Nigeria. Int J Life Sci 2014;3:11-5.

13. Lar PM, Ojije EE, Dashe E, Okumua JA. Antibacterial activity of *Moringa oleifera* leaf extract against some gram-negative bacterial isolates. Afr J Nat Sci 2011;14:57-62.

14. Abdullahi IS, Nasir IA, Sofowora A, Yahaya F, Ahmad AA, Hassan IA. Phytochemical screening and antimicrobial activities of ethanolic extracts of *Moringa oleifera* Lam. on isolates of some pathogens. J Appl Pharm 7:203. DOI: 10.4172/1920-4159.1000203.

15. Odeleye OF, Okunye OL, Abasoro C, Abatam TO. A study of the chemical composition of the volatile oil blend from *Allium sativum* (Tangerine fruit). Int J Pharm Sci 2013;4:246-52.

16. Ibekwe NN, Ovau JB, Oladosu PO, Usman AM, Ibrahim K, Boshoff HI, et al. Cytotoxicity of isolated compounds from the extracts of *Moringa oleifera* seed extracts on some cancer cell lines. J Microbiol Biotechnol Sci 2014;4:246-52.

17. Kasim LS, Olaleye KO, Fagbohun BA, Adejumo O. Chemical composition and antibacterial activity of essential oils from *Struchium sparganophora* Linn. Ktze Ateraceae. Adv Biotechnol Biotech 2014;2:246-52.

18. Buwa LV, Van Staden J. Effects of collection time on the antimicrobial activities of *Harpephyllum caffrum* bark. South Afr J Bot 2007;24-27.

19. Alali U, Okoye FS. Antimicrobial and anti-inflammatory activities of *Oxal vindis* root bark extracts and fractions. J Appl Res Nat Prod. 2009;2:27-32.

20. Marzwa UT, Sedipo OA, Khan IZ, Gulan I. Phytochemical, antimicrobial and toxicity studies of ethanolic leaf extract of *Phyllanthus amarus* Thonn and Schum (Euphorbiaceae). J Green Herb Chem 2015;4:21-30.

21. Taylor JL, Rabe T, McGaw LJ, Jäger AK, Van Staden J. Towards the scientific validation of traditional medicinal plants. Plant Growth Regul 2001;34:23-37.

22. Fennell CW, Lindsey KL, McGaw LJ, Sparg SG, Stafford GI, Elgorashi EE, et al. Assessing African medicinal plants for efficacy and safety. Pharmacological screening and toxicology. J Ethnopharmacol 2004;94:206-17.

23. Bobo OO, Ayepola OO. Evaluation of the antimicrobial activity of root and leaf extracts of *Terminalia glaucescens*. Adv Nat Appl Sci 2009;3:188-91.

24. Adamu HM, Abayeh OJ, Ibok NU, Katsu SE. Antifungal activity of extracts of some Cassia. *Detarium* and *Ziziphus* species against dermatomyces. Nat Prod Radi 2006;5:357-60.

25. Doughari JH, Okafor B. Antimicrobial Activity of *Senna alata* Linn. East Centr Afr J Pharm Sci 2007;10:17-21.

26. Dabai YU, Muhammad S. Antimicrobial activity of some Nigerian medicinal plants. Sci World J 2008;3:43-44.

27. Olamide SO, Agu GC. The assessment of the antimicrobial activities of ethanolic extracts of four Nigerian plants against some oral pathogens. Adv Nat Appl Sci 2008;2:89-93.

28. Ayepola OO. Evaluation of the antimicrobial activity of root and leaf extracts of *Terminalia glaucescens*. Adv Nat Appl Sci 2009;3:188-91.
Anyanwu and Okoye: Antimicrobial properties of Nigerian plants

198. Ikobi E, Igwilo CI, Awodele O, Azubuike C. Antibacterial and wound healing properties of methanolic extract of dried fresh Cosypsynum barbadense leaves. Asian J Biomed Pharm Sci 2012;2:32-7.

199. Oboh G. Antioxidant and antimicrobial properties of ethanolic extract of Ocimum gratissimum leaves. J Pharmacol Toxicol 2006;1:47-53.

200. Adeloye OA, Akinpelu AD, Ogundaini OA, Obafemi AC. Studies on antimicrobial, antioxidant and phytochemical analysis of Urena lobata leaves extract. J Phys Nat Sci 2007;1:1-9.

201. Oleyede GK, Onoja PA, Soyinka J, Oguntokun OW, Thonda E. Phytochemical screening, antimicrobial and antioxidant activities of four Nigerian medicinal plants. Ann Biol Res 2010;1:114-20.

202. Ajiboye AT, Musa MD, Otun KO, Jimoh AA, Bale AT, Lawal SO, et al. The studies of antioxidant and antimicrobial potentials of the leaf extract of Bauhinia monandra plant. Nat Prod Chem Res 2015;3:1-5.

203. Akinkpelu BA, Ibegbenu OA, Awotunde AI, Iwalewa EO, Igbeneghu OA, Ivalewa EO, Oyedapo OO. Antioxidant and antibacterial activities of saponin fractions of Erythrophleum suaveolens (Guill. and Peri.) stem bark extract. Acad J Sci Res Essays 2014;9:82-33.

204. Williams ET, Barmians JT, Akin numOf J, William A. Antidiarrhoeal effect of the root extracts of Guiera senegalensis in male mice. Afr J Pure Appl Chem 2008;3:152-7.

205. Muhammad SL. Phytochemical screening and antimicrobial activities of crude methanolic extract of Petleopis haboevis (Aubrev ex Keay) stem bark against drug resistant bacteria and fungi. Int J Technol Res Appl 2014;2:26-30.

206. Ikegbunam MN, Anagoh EK, Nwakilo AD, Afunwa AR, Esmine CO. Antimicrobial activity of selective medicinal plants of South-Eastern Nigeria on Pseudomonas species expressing extended spectrum beta-lactamase (ESBL). Eur J Med Plants 2014;4:1367-7.

207. Momoh AO, Oladunuju MK, Atoh TT. Evaluation of the antimicrobial and phytochemical properties of oil from castor seeds (Ricinus communis Linn.). Bull Environ Pharmacol Life Sci 2012;1:21-7.

208. Lewu, FB, Grieron DS, Afolayan AJ. The leaves of Pelargonium siodides may substitute for its roots in the treatment of bacterial infections. Biol Conserv 2006;128:582-4.

209. Gottlieb DR. Phytochemicals: Differentiation and function. Phytochem 1990;29:1715-24.

210. Compean KL, Pageau VA. Antimicrobial activity of plant secondary metabolites: A review. Res J Med Plants 2014;8:204-3.

211. Farooqui A, Khan A, Borgeitso I, Kazmi SU, Rubino S, Paglietti B. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against some clinical bacterial isolates. Bayero J Pure Appl Sci 2010;4:1949-53.

212. Gemechu A, Giday M, Worku A, Ameni G. Antimicrobial activity of selected medicinal plants (Fabaceae) stem bark. Indian J Pharm Sci 2010;72:334-9.

213. Hodges KK, Gill R. Infectious diarrhea, cellular and molecular mechanisms. Gut Microbes 2010;1:4-21.

214. Kachlany SC. Aggregatibacter actinomycetemcomitans leukotoxin from threat to therapy. J Dent Res 2010;89:561-70.

215. Eke AC, Akah PA, Okoli CO, Udubenam S, Okwumne N, Okeke C, et al. Medicinal plants used in wound care: A study of Passiflora aficana (Fabaceae) stem bark. Indian J Pharm Sci 2010;72:334-9.

216. Ihejiwerie OF, Ihejiwerie HJ. In vitro antimycobacterial activity of selected medicinal plants against Mycobacterium tuberculosis isolated from tuberculosis patients sputum. Afr J Biotechnol 2008;7:3182-7.

217. Mann A, Ibrahim K, Owewale AO, Amupitan JO, Joseph I. Antimycobacterial activity of some medicinal plants in Nigerian State, Nigeria. Afr J Infect Dis 2008;3:44-8.

218. Gwenda C, Gitay M, Worck A, Amenni G. In vitro anti-mycobacterial activity of selected medicinal plants against Mycobacterium tuberculosis and Mycobacterium bovis strains. BMC Complement Altern Med 2013;13:9.

219. Adeloye OA, Akinkpelu AD, Ogundaini OA, Obafemi AC. Studies on antimicrobial, antioxidant and phytochemical analysis of Urena lobata Leave extract. J Phys Nat Sci 2007;1:1-9.

220. Ogunjobi AA, Abiala MA. Antimicrobial activity of Senna alata and Phyllanthus amarus. Glob J Pharmacol 2013;7:198-202.

221. David OM, Famurewa O, Olawale AK. In vitro assessment of aqueous and ethanolic extracts from some Nigerian chewing sticks on bacteria associated with dental infections. J Afr Microbiol Res 2010;4:1949-53.

222. Oforidie LN, Uma NU, Kokubun T, Grayer RJ, Oguninde OT, Simmonds MS. Antimicrobial activity of some Ganoderma species from Nigeria. Phytother Res 2005;19:310-3.

223. Ovia Igweke AE, Akpajie OA, Akindele IA, Ajisegiri EA. Antimicrobial properties of Ganoderma applanatum (Pers.) Pat. From Benin city, Nigeria. Afr J Agric Food Environ 2015;11:65-9.

224. Foyeole FJ, Odeyemi AT, Oghegbeva SA. Studies of the chemical, phytochemical and antimicrobial activities of Viscum album (Mistletoe) on five different host plants. J Chem Biol Sci 2015;5:4172-80.
244. Etkin NL. Perspectives in ethnopharmacology: Forging a closer link between bioscience and traditional empirical knowledge. J Ethnopharmacol 2001;76:177-82.
245. Etkin NL, Elisabetsky E. Seeking a transdisciplinary and culturally germane science: The future of ethnopharmacology. J Ethnopharmacol 2005;100:23-6.
246. Ajayi AO. Antimicrobial nature and use of some medicinal plants in Nigeria. Afr J Biotechnol 2008;7:596-9.
247. Bamidele FA, Ogun浦东 FO, Shokeyinbo UA. Determination of antibacterial activity and phytochemistry of three herbal plants on clinical isolates. Int J Sci Technol Res 2014;3:365-60.
248. Tor-Anyiin TA, Anyam JV. Phytochemical evaluation and antibacterial activity: A comparison of various extracts from some Nigerian trees. Peak J Med Plant Res 2013;1:13-8.
249. Ayo RC, Audu OT, Amupitan JO, Uwaiya E. Phytochemical screening and antimicrobial activity of three plants used in traditional medicine in Northern Nigeria. J Med Plant Res 2013;7:191-7.
250. Osuagwu GG, Eijikene FO. The Antimicrobial activity of the leaves of some wild Cucurbitaceae species from South-East Nigeria. Int J Pharm Phar Res 2015;2:42-52.
251. Akande TA, Ajao AT. Chemotherapeutic values of four Nigerian chewing sticks on bacteria isolates from dental infection. Glob J Sci Front Res 2011;11:90-6.
252. Ojo OO, Anibijuwon II, Ojo OO. Studies on extracts of three medicinal plants of South-Western Nigeria: Hostulunda opposita, Lantana camara and Cymbopogon citratus. Adv Nat Appl Sci 2010;4:93-8.
253. Daniels AO, Olu M. Preliminary studies on the antimicrobial effects and phytochemical studies of some Nigerian medicinal plants on some human pathogens. Int J Curr Microbiol Appl Sci 2014;3:910-23.
254. Nwakaeze AE, Ioha IR, Ejikeugwu PC, Aflukwu FN, Udu-Ibiam OE, Oji AE, et al. Evaluation of antibacterial activities of some Nigerian medicinal plants against some resistant bacteria pathogens. Afr J Microbiol Res 2014;8:1832-6.
255. Okafor JI, Eze EA, Njoku OU. Antifungal activities of the leaves of Baphia nitida, Cassia alata, Ficus exasperata and Gossypium arboretum. Niger J Nat Prod Med 2001;5:59-60.
256. Nwachukwu E, Uzoeto HO. Antimicrobial activities of leaf of Vitex doniana and Cajanus cajan on some bacteria. Researcher 2010;2:37-47.
257. Okwuheie IC, Akanwa, FE. Antimicrobial activity of ethanol extract of four indigenous plants from Southeastern Nigeria. ARPN J Sci Technol 2013;3:350-5.
258. Osuntokun OT. Antibacterial and phytochemical properties of five African medicinal plants used as chewing sticks south-western part of Nigeria. Int J Multidiscip Res Dev 2015;2:146-52.
259. Mann A, Ibrahim K, Oyewale AO, Amupitan JO, Oyekun FI, et al. Antimycobacterial activity of some medicinal plants in Niger State, Nigeria. Afr J Infect Dis 2009;3:44-8.
260. Dada JD, Alade PI, Ahmad AA, Yadock LH. Antimicrobial activities of some medicinal plants from Soba-Zaria, Nigeria. Nig J Hosp Med 2002;12:55-6.
261. Falodun A, Erharuyi O, Imieje V, Falodun JE, Ahamafar J, Onyekaba T, et al. Anthepatitis C virus activity of five selected endemic medicinal plants of Nigeria. Afr J Pharm Res Dev 2016;6:6-10.
262. Adoni PO. Screening of the leaves of three Nigerian medicinal plants for antibacterial activity. Afr J Biotechnol 2008;7:2540-2.
263. Ogungbamila FO, Onavunmi GO, Adosun O. A new acylated flavan-3-ol from Bryophyllum pinnatum. Nat Prod Lett 1997;10:201-3.
264. Oladimeji OH, Usifo CO. Two oils from the ethyl-acetate fraction of Cyathula prostrata (L) Blume. Bull Environ Pharmacol Life Sci 2012;12:54-9.