Aviation Time Minimization of UAV for Data Collection over Wireless Sensor Networks

Jie Gong, Member, IEEE, Tsung-Hui Chang, Senior Member, IEEE, Chao Shen, Member, IEEE, Xiang Chen, Member, IEEE

Abstract

In this paper, we consider a scenario where an unmanned aerial vehicle (UAV) collects data from a set of sensors on a straight line. The UAV can either cruise or hover while communicating with the sensors. The objective is to minimize the UAV’s total aviation time from a starting point to a destination while allowing each sensor to successfully upload a certain amount of data using a given amount of energy. The whole trajectory is divided into non-overlapping data collection intervals, in each of which one sensor is served by the UAV. The data collection intervals, the UAV’s navigation speed and the sensors’ transmit powers are jointly optimized. The formulated aviation time minimization problem is difficult to solve. We first show that when only one sensor node is present, the sensor’s transmit power follows a water-filling policy and the UAV aviation speed can be found efficiently by bisection search. Then we show that for the general case with multiple sensors, the aviation time minimization problem can be equivalently reformulated as a dynamic programming (DP) problem. The subproblem involved in each stage of the DP reduces to handle the case with only one sensor node. Numerical results present insightful behaviors of the UAV and the sensors. Specifically, it is observed that the UAV’s optimal speed is proportional to the given energy and the inter-sensor distance, but inversely proportional to the data upload requirement.

J. Gong is with Guangdong Key Laboratory of Information Security Technology, School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China. Email: gongj26@mail.sysu.edu.cn.

T.-H. Chang is with School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China. Email: tsunghui.chang@ieee.org

C. Shen is with State Key Lab of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China. Email: chaoshen@bjtu.edu.cn

X. Chen is with the School of Electronics and Information Engineering, Sun Yat-Sen University, Guangzhou 510006, China, SYSU-CMU Shunde International Joint Research Institute and Key Lab of EDA, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China. Email: chenxiang@mail.sysu.edu.cn.
I. INTRODUCTION

Recently, wireless communication with unmanned aerial vehicles (UAVs) [1] has been considered as a promising technology to expand network coverage and enhance system throughput, by leveraging the UAVs’ high mobility [2] and line-of-sight (LOS) dominated air-ground channels [3]. One of the key applications is wide-area data collection in wireless sensor networks [4]. Conventional, each sensor node delivers their monitored data to a fusion center via multi-hop transmissions. Hence, a sensor node requires to not only transmit its own data, but also relay the others’. As a consequence, the sensors’ battery may drain quickly and the multi-hop network connection may be lost. By using the UAVs as mobile fusion centers, every sensor node can directly send observed data to a UAV. In addition, the LOS channel condition results in higher data rate for ground-to-air transmissions compared with ground-to-ground transmissions. However, as UAVs are energy constrained due to the limited on-board battery, it is paramount to shorten the aviation time needed for a data collection mission.

Different from the conventional communication techniques, there is a trajectory optimization issue for UAV-aided wireless communications. To improve network connectivity, UAVs’ deployment and movement were optimized to track the network topology in [5]. In [6], offline path planning of UAVs was addressed for collision avoidance and fuel efficiency. Joint UAV deployment and trajectory optimization problem was solved in [7] with a quantization theory approach, and joint trajectory and communication power control for multiple UAVs was studied in [8]. In addition, UAVs are widely used as mobile relays. Reference [9] studied the throughput maximization problem for a UAV relay and showed that the uplink power of users should follow a “staircase” water filling structure. In [10], joint optimization of multi-UAV beamforming and relay positions for throughput maximization was studied based on stochastic optimization techniques. A round trip “load-carry-and-deliver” protocol was tested and evaluated by experiments in [11]. Besides serving as relays, UAVs can also be used as mobile base stations (BSs) for emergent communications. BS placement was optimized in the 2D space [12] and 3D space [13], respectively, to minimize the required number of mobile BSs while maximizing their coverage. The coverage of UAVs as mobile BSs was analytically studied in [14] considering inter-UAV interference and beamwidth design.

In addition, there has been a growing research interest in applying UAV for data collection and dissemination in wireless sensor networks. The aerial link characterization based on practical
protocols and experiments was given in [15]. Reference [16] considered data collection via uplink transmission, and proposed to mitigate multi-sensor interference by adjusting the UAV heading and beamforming. Adaptive modulation strategy was adopted in [17] to improve energy efficiency of sensor nodes while guaranteeing user fairness. To avoid contention due to simultaneous data transmissions from multiple sensor nodes, a priority-based frame selection scheme was proposed in [18]. In [19], wake-up and sleep adaptation was applied for sensor nodes and UAV’s trajectory optimization was jointly considered to minimize the sensors’ energy consumption. One dimensional information dissemination problem is considered in [20], where the sensors are served in cyclical TDMA mode, and the service regions for all sensors are optimized.

It is worthwhile to note that most of the existing works mentioned above focus on enhancing energy efficiency or spectrum efficiency of sensor nodes, but overlook the fact that the limited aviation energy of UAVs is one of the fundamental bottlenecks in UAV-aided wireless networks. As a matter of fact, the dominant energy consumption of a UAV lies in the propulsion control system that accelerates the UAV and maintains its aviation height. In [21], a UAV’s energy consumption was modeled as a function of aviation speed and operation conditions such as climbing, hovering, and so on. A UAV trajectory optimization problem with detailed propulsion energy consumption considering both velocity and acceleration was studied in [22]. However, as the UAV’s energy consumption model is quite complex, the problems are difficult to be optimally solved. Intuitively, the energy consumption of a UAV is proportional to its aviation time. Therefore, the energy minimization problem can be handled alternatively by formulating an aviation time minimization problem. The UAV mission completion time minimization problem was studied in [23] by optimizing its trajectory subject to a link quality constraint between ground base station (GBS) and UAV in cellular networks. While in wireless sensor networks, there is still a lack of research efforts to consider both the UAV and sensors’ energy consumption as well as the quality of service of the sensor nodes at the same time.

In this paper, we study an aviation time minimization problem for a UAV which collects data from a set of energy constrained ground sensors. Each of the sensors wants to upload a certain amount of data to the UAV. The UAV can collect data either during navigation or hovering. We assume that the sensors are located on a line and the UAV’s trajectory is divided into non-overlapping data collection intervals, each of which is dedicated to data collection from one sensor node. The objective is to minimize the total aviation time of the UAV for flying from an initial point to a destination by jointly optimizing the division of intervals, the UAV speed,
as well as the sensors’ transmission power. The contributions of this paper are summarized as follows.

• The formulated UAV aviation time minimization problem is intrinsically difficult. We first consider the single-sensor scenario. While the problem is still difficult when only one sensor node is present, we reveal some insightful structures for the optimal solution. Specifically, we present an explicit condition on the feasibility of the problem. When the problem is feasible and if the data collection interval is given, we show that the optimal power allocation of the sensor follows a water-filling solution and the optimal speed can be efficiently obtained via bisection search. The data collection interval can be numerically found via a two-dimensional search.

• The algorithm for solving the single-sensor case can be extended for solving the general scenario with multiple sensor nodes. In particular, by judiciously exploiting the problem structure, we show that the aviation time minimization problem with multiple sensors can be equivalently formulated as a dynamic programming (DP) problem. In each stage of the DP, the optimal data collection interval for one sensor node is searched and the algorithm for the single-sensor case is used for finding the optimal UAV speed and sensor’s transmission power.

• Numerical results illustrate the optimal behaviors of the UAV and the sensor nodes under different scenarios. In particular, the UAV’s optimal speed is proportional to the sensors’ energy budgets and the inter-sensor distance, but inversely proportional to the amount of data to upload. For the randomly distributed sensors with random amount of data and energy, the average minimum aviation time increases with the average amount of data and decreases with the average amount of available energy.

The rest of the paper is organized as follows. Section II presents the system model and the problem formulation. Section III studies the single-sensor case. Then, the multi-sensor problem is solved in Section IV. Simulations are shown in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a scenario where a UAV flying over a set of N sensors for data collection. The sensors are located on a line, labeled by S_1, S_2, \ldots, S_N. Each sensor n needs to upload B_n information bits and is subject to a total energy budget E_n, where $n = 1, 2, \ldots, N$.
A UAV flies at a fixed height H from an initial point S_0 to a destination S_{N+1}, and applies time division protocol to sequentially receive the uplink data from the sensors. Specifically, the whole aviation range $[S_0, S_{N+1}]$ is divided into N non-overlapping intervals $[x_n, y_n], n = 1, 2, \ldots, N$ satisfying $S_0 \leq x_1 \leq y_1 \leq x_2 \leq y_2 \leq \cdots \leq x_N \leq y_N \leq S_{N+1}$. Each sensor node n uploads its data when the UAV flies in the interval $[x_n, y_n]$. If $x_n = y_n$, the UAV hovers above the location x_n and receives the data from sensor n. Otherwise, we assume the UAV flies with a constant speed $0 < v_n \leq v_{max}$ from x_n to y_n and receives the data during its aviation. As no sensor uploads data in the interval (y_n, x_{n+1}), the UAV flies with the maximum speed v_{max} in order to minimize the total aviation time. In this paper, the UAV’s acceleration/deceleration process is ignored for analytical tractability.

![Fig. 1. Data collection by a UAV from ground sensors along a line.](image)

A. Data Collection Modes

Since the UAV can receive data when either navigating or hovering, we respectively consider the data collection models for the two cases.

1) Data Collection during Aviation: If $v_n > 0$ and $x_n < y_n$, the UAV collects data from the ground node S_n during $[x_n, y_n]$. The aviation time or the data collection time is $t_n = (y_n - x_n)/v_n$. As the transmission distance changes during the flight, the transmit power and the data rate should also adapt to the varying path-loss fading. The LOS ground-to-air channel model between the UAV and the sensors with pathloss exponent $\alpha \geq 2$ is adopted [15]. With this model, the
instantaneous data rate in the transmission interval \([x_n, y_n]\) is given by

\[
R_n(t) = \frac{1}{2}W \log_2 \left(1 + \frac{p_n(t) \beta}{(x_n + v_n t - S_n)^2 + H^2} \right),
\]

(1)

for \(t \in [0, t_n]\) where \(W\) is the bandwidth, \(\beta\) is the reference signal-to-noise ratio (SNR) at the reference distance 1 meter, and \(p_n(t)\) is the transmission power of the \(n\)th sensor, which satisfies the total energy constraint

\[
\int_0^{t_n} p_n(t) dt \leq E_n.
\]

(2)

Besides, since each sensor \(n\) requires to upload \(B_n\) bits when the UAV flies over \([x_n, y_n]\), we have the data constraint as

\[
\int_0^{t_n} R_n(t) dt \geq B_n.
\]

(3)

Notice that there is a feasibility issue for data collection, i.e., with a given amount of sensor’s energy \(E_n\), is it feasible to upload \(B_n\) bits within the time duration \(t_n\)? Since the best channel quality is experienced when hovering right above the sensor \(n\), the maximum number of data bits \(B_n\) is related to the hovering mode, which is detailed below.

2) Data Collection when Hovering: If \(v_n = 0\) and \(x_n = y_n\), the UAV hovers above location \(x_n\) and sensor \(n\) uploads data with constant transmit power and data rate. Denote the transmission time when hovering above the location \(x_n\) by \(t_n = T_{h,n}(x_n)\). As the transmission link is static, \(p_n(t)\) should be a constant in this case. Thus, sensor \(n\)’s energy constraint (2) is simplified as

\[
T_{h,n}(x_n) p_n(t) \leq E_n.
\]

(4)

To fully utilize sensor \(n\)’s energy budget to minimize the aviation time, the transmission power should be maximized, i.e., \(p_n(t) = E_n/T_{h,n}(x_n)\). Then the data constraint (3) is simplified as

\[
\frac{T_{h,n}(x_n)}{2} W \log_2 \left(1 + \frac{\beta E_n}{T_{h,n}(x_n)((x_n - S_n)^2 + H^2)^{\frac{\alpha}{2}}} \right) \geq B_n.
\]

(5)

The function on the left hand side of (5) has the following property.

Lemma 1. The function \(f(x) = x \log_2(1 + \frac{a}{x}), a > 0, x > 0\) is an increasing function, and \(f(x) < \frac{a}{\ln 2}\).

Proof. See Appendix A.
Based on Lemma 1, the left hand side of (5) is an increasing function of $T_{h,n}(x_n)$. Hence, the minimum $T_{h,n}(x_n)$ satisfies (5) with equality, i.e.,

$$\frac{1}{2} T_{h,n}(x_n) W \log_2 \left(1 + \frac{\beta E_n}{T_{h,n}(x_n)((x_n - S_n)^2 + H^2)^{\alpha/2}} \right) = B_n.$$

(6)

The above transcendental equation can be effectively solved by either line search or bisection search. As the UAV experiences the best channel condition when hovering on top of the user ($x_n = S_n$), the feasibility condition can be derived based on (6) as follows.

Proposition 1. (Feasibility) For each sensor n, the data constraint (3) is feasible if and only if

$$B_n < \frac{W \beta E_n}{2 H^\alpha \ln 2}.$$

(7)

Proof. See Appendix B

Hovering mode may be needed when the amount of information bits is large or the amount of sensor’s energy is small. However, it may not be the most time efficient strategy when comparing to that the UAV cruising and collects data at the same time. Therefore, navigation and hovering modes have to be selected depending on the values of B_n and E_n, which will be incorporated in our problem formulation.

B. Problem Formulation

In this paper, we aim to minimize the total aviation time while guaranteeing that all the sensors’ data are successfully collected. If (7) holds for all $n = 1, 2, \cdots, N$, i.e., the data collection is feasible for all the sensors, the problem can be formulated as

$$\min_{x,y,v,p(t)} \left(\frac{S_{N+1} - S_0}{v_{\max}} - \sum_{n=1}^{N} (y_n - x_n) + \sum_{n=1}^{N} t_n \right)$$

(8a)

s.t. (2) and (3), \forall n,

$$S_0 \leq x_1 \leq y_1 \leq x_2 \leq \cdots \leq y_N \leq S_{N+1},$$

(8b)

$$t_n = \frac{y_n - x_n}{v_n} I_{x_n \neq y_n} + T_{h,n}(x_n) I_{x_n = y_n}, \forall n,$$

(8c)

$$0 \leq v_n \leq v_{\max}, \forall n,$$

(8d)

$$p_n(t) \geq 0, \forall n, t,$$

(8e)

where the optimization variables are the locations $x = \{x_1, x_2, \cdots, x_N\}$, $y = \{y_1, y_2, \cdots, y_N\}$, the UAV speeds $v = \{v_1, v_2, \cdots, v_N\}$, and the transmission power $p(t) = \{p_1(t), p_2(t), \cdots, p_N(t)\}$.
The function I_{event} is an indicator which equals 1 if the event is true and equals 0 otherwise. It can be seen that the interval variables x, y for the sensors are coupled in the constraint (8b), which makes (8) difficult to solve. To tackle the problem, we firstly consider a single-sensor case, and then show how the solution of the single-sensor case can be extended to the general multi-sensor case in (8).

III. AVIATION TIME MINIMIZATION FOR SINGLE-SENSOR CASE

For the single-sensor case $N = 1$, without loss of generality, we set $S_1 = 0$ (origin point in the horizontal axis) and ignore the sensor index for all notations. Then the problem (8) reduce to

$$\min_{x, y, v, p(t)} \left(\frac{S_2 - S_0}{v_{\text{max}}} - \frac{y - x}{v_{\text{max}}} \right) t$$

s.t.

$$\int_0^t \frac{1}{2} W \log_2 \left(1 + \frac{p(\tau) \beta}{((x + v\tau)^2 + H^2)^{\alpha/2}} \right) d\tau \geq B,$$ (9b)

$$\int_0^t p(\tau)d\tau \leq E,$$ (9c)

$$S_0 \leq x \leq y \leq S_2,$$ (9d)

$$t = \frac{y - x}{v} I_{x\neq y} + T_h(x) I_{x=y},$$ (9e)

$$0 \leq v \leq v_{\text{max}},$$ (9f)

$$p(t) \geq 0.$$ (9g)

Since the hovering mode has been studied in the previous section, we mainly focus on the navigation mode with $v > 0$ and $x < y$. The problem with only the navigation mode for the single-sensor case is given by

$$\min_{x, y, v, p(t)} \frac{S_2 - S_0}{v_{\text{max}}} + (y - x) \left(\frac{1}{v} - \frac{1}{v_{\text{max}}} \right)$$

s.t.

$$\int_0^{x-y/v} \frac{1}{2} W \log_2 \left(1 + \frac{p(\tau) \beta}{((x + v\tau)^2 + H^2)^{\alpha/2}} \right) d\tau \geq B,$$ (10b)

$$\int_0^{x-y/v} p(\tau)d\tau \leq E,$$ (10c)

$$S_0 \leq x < y \leq S_2,$$ (10d)

$$0 < v \leq v_{\text{max}}, \quad p(t) \geq 0.$$ (10e)
The problem \((10)\) includes the power allocation optimization over \(p(t)\), the UAV speed optimization over \(v\), and the data upload interval optimization over \(x\) and \(y\). These subproblems are solved separately as follows.

A. **Power Allocation**

Suppose that the upload interval \([x, y]\) and the UAV speed \(v\) are fixed and given. It is obvious that to minimize the aviation time, the sensor should allocate its power to maximize the uplink throughput on the left hand side of \((10b)\). Thus, let us consider the following throughput maximization problem

\[
\max_{p(\tau) \geq 0} \int_0^{y-x} \frac{1}{2} W \log_2 \left(1 + \frac{p(\tau) \beta}{(x + v\tau)^2 + H^2} \right) d\tau
\]

\[\text{s.t.} \quad \int_0^{y-x} p(\tau) d\tau \leq E.\]

\((11a)\)

\[\text{s.t.} \quad \int_0^{y-x} p(\tau) d\tau \leq E.\]

\((11b)\)

Denote \(s = x + v\tau\), we have \(ds = v\,d\tau\). By changing the variable from \(\tau\) to \(s\), the throughput maximization problem \((11)\) can be reformulated as

\[
\max_{p(s) \geq 0} \frac{1}{v} \int_x^y \frac{1}{2} W \log_2 \left(1 + \frac{p(s) \beta}{s^2 + H^2} \right) ds
\]

\[\text{s.t.} \quad \frac{1}{v} \int_x^y p(s) ds \leq E.\]

\((12a)\)

\[\text{s.t.} \quad \frac{1}{v} \int_x^y p(s) ds \leq E.\]

\((12b)\)

Notice that the UAV receives the data from the sensor if and only if \(p(s) > 0\). Otherwise, the UAV flies with the maximum speed. Therefore, the condition for \(p(s) > 0\) needs to be specified.

We have the following conclusion.

Theorem 1. Let \(p^*(s)\) be an optimal solution of the problem \((12)\). It holds that \(p^*(s) > 0\) for \(x < s < y\) if and only if \(x\), \(y\) and \(v\) satisfy

\[
(y - x)(\max\{x^2, y^2\} + H^2) - \int_x^y (s^2 + H^2) ds \leq \beta Ev.\]

\((13)\)

Moreover, the optimal power allocation \(p^*(s)\) is

\[
p^*(s) = \frac{1}{\gamma_0} - \frac{1}{\gamma(s)},\]

\((14)\)

where the water level is

\[
\frac{1}{\gamma_0} = \frac{vE}{y - x} + \frac{1}{(y - x)\beta} \int_x^y (s^2 + H^2) ds,
\]

\((15)\)
and the inverse of channel gain is

\[
\frac{1}{\gamma(s)} = \frac{(s^2 + H^2)^{\frac{\beta}{2}}}{\beta}.
\]

(16)

The corresponding optimal objective value of (12a) is

\[
B_{\text{max}}(x, y, v) = \left. \frac{W}{2v} \left(\frac{1}{\gamma_0(s^2 + H^2)^{\frac{\beta}{2}}} \right)^2 + \frac{\alpha s}{\ln 2} - \frac{\alpha H}{\ln 2} \arctan \left(\frac{s}{H} \right) \right|_{s=x}^{s=y}.
\]

(17)

Proof. See Appendix C.

![Graph](image)

Fig. 2. Illustration of water-filling power allocation.

The results in Theorem 1 are interpreted in Fig. 2. In this figure, the red solid curve represents the inverse of the channel gain \(1/\gamma(s)\), the blue dash-dotted line represents the water level \(1/\gamma_0\), and the area between the two curves represents the total energy budget. If \(x, y\) and \(v\) satisfy the condition (13), we have \(p(s) > 0\) for \(x < s < y\). However, if \(x, y'\) and \(v\) do not satisfy the condition (13) as shown in the figure, there must be another set of \(x, y\) and \(v\) where \(y < y'\) so that \(p(s) > 0\) for \(x < s < y\). Therefore, the data upload must be within the range \([x, y]\). Theorem 1 explicitly gives the feasible region of \(x, y, v\) for optimal data collection.
For the free space LOS channel model with $\alpha = 2$, the condition can be further simplified by calculating the integration. In particular, we have
\[
\int_x^y (s^2 + H^2)^{\frac{\alpha}{2}} ds = \int_x^y (s^2 + H^2) ds
\]
\[
= \frac{y^3 - x^3}{3} + (y - x)H^2
\]
\[
= (y - x)\left(\frac{x^2 + xy + y^2}{3} + H^2\right).
\] (18)

Replacing the term $\int_x^y (s^2 + H^2)^{\frac{\alpha}{2}} ds$ by the above expression, the condition (13) can be expressed as the following two conditions:

(a) $|x| \leq |y|$ and $2y^3 + x^3 - 3y^2x \leq 3\beta Ev$,

(b) $|x| \geq |y|$ and $3x^2y - 2x^3 - y^3 \leq 3\beta Ev$,

and the water level can be expressed as
\[
\frac{1}{\gamma_0} = \frac{vE}{y - x} + \frac{x^2 + xy + y^2}{3\beta} + \frac{H^2}{\beta}.
\] (19)

B. UAV Speed Optimization

With the optimal power allocation, the maximum throughput $B_{\text{max}}(x, y, v)$ in (17) has the following property.

Theorem 2. The maximum throughput $B_{\text{max}}(x, y, v)$ is a decreasing function of v.

Proof. See Appendix D. \qed

Based on Theorem 2, the feasibility of any solution $(x, y, v, p(t))$ is guaranteed if the minimum speed satisfies (13). The minimum speed can be written as a function of x and y, i.e.,
\[
v_{m}(x, y) = \min \left\{ v_{\text{max}}, \frac{1}{\beta E} \left((y - x)(\max\{x^2, y^2\} + H^2) + \int_x^y (s^2 + H^2)^{\frac{\alpha}{2}} ds \right) \right\}.
\] (20)

When $\alpha = 2$, the minimum speed can be rewritten as
\[
v_{m}(x, y) = \begin{cases}
\frac{2y^3 + x^3 - 3y^2x}{3\beta E}, & \text{if } |x| \leq |y| \text{ and } 2y^3 + x^3 - 3y^2x \leq 3\beta Ev_{\text{max}}, \\
\frac{3x^2y - 2x^3 - y^3}{3\beta E}, & \text{if } |x| \geq |y| \text{ and } 3x^2y - 2x^3 - y^3 \leq 3\beta Ev_{\text{max}}, \\
v_{\text{max}}, & \text{otherwise}.
\end{cases}
\] (21)
According to Theorems 1 and 2 for given \(x, y\) and the optimal power allocation, the optimization over \(v\) can be formulated as

\[
\min_v \frac{(S_2 - S_0)}{v_{\text{max}}} + (y - x) \left(\frac{1}{v} - \frac{1}{v_{\text{max}}} \right) \tag{22a}
\]

\[\text{s.t. } B_{\text{max}}(x, y, v) \geq B, \tag{22b}\]

\[v_{\text{m}}(x, y) \leq v \leq v_{\text{max}}, \tag{22c}\]

Problem (22) can be solved in two steps. Firstly, we check the feasibility of problem (22). Based on Theorem 2 if \(B_{\text{max}}(x, y, v_{\text{m}}(x, y)) \geq B\), (22) is feasible, and we go to the second step. As the objective function (22a) is a decreasing function of \(v\), the optimal speed, denoted by \(v^*(x, y)\), is the maximum feasible speed that satisfies (22b) in \([v_{\text{m}}(x, y), v_{\text{max}}]\). Since \(B_{\text{max}}(x, y, v)\) is a decreasing function of \(v\), \(v^*(x, y)\) can be found by bisection search algorithm. In summary, the algorithm to obtain the optimal \(v\) and \(p(s)\) for given \(x\) and \(y\) where \(x < y\) in problem (10) is summarized in Algorithm 1.

Algorithm 1 Calculate \(v\) and \(p(s)\) for given \(x, y\) in problem (10)

Input: \(\tilde{\beta}, H, W, \alpha, B, E, \delta, x\) and \(y\) where \(x < y\).

Output: \(v^*, p^*(s)\).

1. Calculate \(v_{\text{m}}(x, y)\) according to (20).
2. if \(B_{\text{max}}(x, y, v_{\text{m}}(x, y)) \geq B\) then
3. Set \(v_U = v_{\text{max}}, v_L = v_{\text{m}}(x, y), v = \frac{1}{2}(v_U + v_L)\).
4. while \(|v_U - v_L| > \delta\) do
5. if \(B_{\text{max}}(x, y, v) > B\) then
6. Update \(v_L = v\), and reset \(v = \frac{1}{2}(v_U + v_L)\).
7. else
8. Update \(v_U = v\), and reset \(v = \frac{1}{2}(v_U + v_L)\).
9. end if
10. end while
11. Set \(v^* = v\), and \(p^*(s)\) is calculated according to (14)-(16).
12. else
13. Problem (10) for given \(x\) and \(y\) is infeasible.
14. end if
In this algorithm, a precision parameter $\delta > 0$ is introduced, which is used to control the precision of v in the bisection search process. Line 2 examines the feasibility of the problem. If the inequality does not hold, there is no feasible solution for the given parameters, and the algorithm terminates. Otherwise, bisection search is launched as in lines 3-10. In line 4, the search process will continue if $|v_U - v_L| > \delta$. When the bisection search terminates, the optimal solution is recorded in line 11.

Remark: It is interesting to remark that the maximum throughput in (12) can be re-written as

$$B_{\text{max}}(x, y, v) = E \max_{p(s)} \frac{\frac{1}{y-x} \int_x^y \frac{1}{2} W \log_2 \left(1 + \frac{p(s)^2}{(s^2 + H^2)^\alpha} \right) ds}{\frac{v}{y-x} E},$$

(23)

where $p(s)$ is constrained by $\frac{1}{y-x} \int_x^y p(s) ds \leq \frac{v}{y-x} E$ which should be satisfied with equality to achieve the maximum. The term on the right side of the operator \max can be viewed as the energy efficiency (achievable data rate per unit power) with “average power budget” $\frac{v}{y-x} E$. Therefore, Theorem 2 says that the energy efficiency is a decreasing function of the power budget in fading channels. It extends the result from the AWGN channel [24] to the UAV LOS channel.

C. Data Collection Interval Optimization

Finally, we consider the problem of determining x and y in problem (10), which can be written as

$$\min_{x,y} \frac{(S_2 - S_0)}{v_{\text{max}}} + (y - x) \left(\frac{1}{v^*(x, y)} - \frac{1}{v_{\text{max}}} \right)$$

(24a)

s.t. $S_0 \leq x < y \leq S_2$,

(24b)

where $v^*(x, y)$ is the optimal solution of (22). As $v^*(x, y)$ is a complex function of x and y, there is no efficient algorithms other than two-dimensional line search to solve the problem (24). By sampling m points in the aviation range $[S_0, S_2]$ with identical inter-point distance, the total number of search pairs (x, y) where $x < y$ is $\frac{m(m+1)}{2}$. Thus, the complexity of the two-dimensional search is $O(m^2)$.

IV. Aviation Time Minimization for Multi-sensor Case

In the multi-sensor case, the data upload intervals for the sensors correlates with one another. In particular, if a sensor’s data upload interval is wide, the one next to it can only have a short
data upload interval. To deal with the inter-sensor correlation, we adopt the DP approach \cite{25} to solve the aviation time minimization problem for multiple sensors. Firstly, the basic concept of the DP algorithm is briefly reviewed as follows.

\textbf{A. Introduction to DP Algorithm}

The DP algorithm deals with decision making problems in dynamic systems which can be divided into \textit{stages}. The dynamic system expresses the evolution of the system \textit{states}, under the influence of control \textit{actions} taken at discrete instances of time (\textit{stage}). The system has the form

\begin{equation}
 s_{k+1} = f_k(s_k, u_k), \quad k = 0, 1, \cdot \cdot \cdot, K - 1,
\end{equation}

where

- k is the index of the stage,
- s_k is the system state that summarizes all the information available for decision making,
- u_k is the control action selected in stage k,
- f_k describes how the system state is updated.

Once an action u_k is taken under the state s_k in stage k, an additive cost $g_k(s_k, u_k)$ incurs. The objective is to minimize the total cost by finding the optimal control actions for a given initial state, which can be formulated as

\begin{equation}
 \min_{u_0, u_1, \cdot \cdot \cdot, u_{K-1}} \left\{ \sum_{k=0}^{K-1} g_k(s_k, u_k) + g_K(s_K) \right\}, \quad \forall s_0 \in S_0.
\end{equation}

Notice that the above problem is optimized jointly over the actions for all stages $u_0, u_1, \cdot \cdot \cdot, u_{K-1}$.

The Bellman’s equation in the following proposition tells us that the problem can be solved stage-by-stage efficiently.

\textbf{Proposition 2. (DP Algorithm) \cite{25}} Prop. 1.3.1, Vol. I] \textit{For every initial state s_0, the minimum cost of the basic problem \cite{26} is equal to $J_0(s_0)$, given by the last step of the following algorithm, which proceeds backward in time from stage $K - 1$ to stage 0:}

\begin{align}
 J_K(s_K) &= g_K(s_K), \quad \forall s_K \in S_K \\
 J_k(s_k) &= \min_{u_k \in U_k(s_k)} \left\{ g_k(s_k, u_k) + J_{k+1}(f_k(s_k, u_k)) \right\}, \quad \forall s_k \in S_k, k = K - 1, K - 2, \cdot \cdot \cdot, 0.
\end{align}
where S_k is the state space in stage k, $U_k(s_k)$ is the state-dependent action space in stage k, and (28) is called Bellman’s equation. Furthermore, if $u_k = \mu_k(s_k)$ minimize the right side of (28) for each s_k and k, the policy $\pi = \{\mu_0, \mu_1, \cdots, \mu_{K-1}\}$ is optimal.

The function $J_k(s_k)$ is termed as the optimal cost-to-go, i.e., the minimum cost for the $(K-k)$-stage problem that starts at stage k with state s_k and ends at stage K. Based on Proposition 2 instead of jointly optimizing $u_0, u_1, \cdots, u_{K-1}$ for all stages, the DP algorithm recursively optimizes the per-stage control action u_k as in (28) based on the optimal cost-to-go $J_{k+1}(s_{k+1})$ that has be calculated in the previous step.

B. DP-based Aviation Time Minimization

Now, we apply the DP algorithm to solve the aviation time minimization problem (8). Firstly, the objective function (8a) can be rewritten as

$$
\min_{x,y,v,p(t)} \frac{S_{N+1} - S_0}{v_{\text{max}}} + \sum_{n=1}^{N} \left(t_n - \frac{y_n - x_n}{v_{\text{max}}} \right)
$$

where the minimization over $v, p(t)$ for a given pair $x_n < y_n$ corresponds to the single-sensor navigation case (10) and can be efficiently solved by Algorithm 1. If $x_n = y_n$, i.e., the UAV hovers at location x_n, the minimization takes the value with $t_n = T_{h,n}(x_n)$ as the solution for (6). Thus, according to the results in Sections II-A2), III-A, and III-B we can define a cost function as

$$
g_n(x_n, y_n) = \min_{v_n, p_n(t)} \left(t_n - \frac{y_n - x_n}{v_{\text{max}}} \right)
$$

$$
= \begin{cases}
T_{h,n}(x_n), & \text{if } x_n = y_n, \\
(y_n - x_n) \left(\frac{1}{v_n(\tilde{x}_n, \tilde{y}_n)} - \frac{1}{v_{\text{max}}} \right), & \text{if } x_n < y_n \text{ and (22) is feasible,} \\
+\infty, & \text{elsewhere,}
\end{cases}
$$

for all $n = 1, 2, \cdots, N$, where $\tilde{x}_n = x_n - S_n$, $\tilde{y}_n = y_n - S_n$ are the horizontal coordinates relative to S_n, $v_n^*(\tilde{x}_n, \tilde{y}_n)$ is the optimal feasible solution of (22) that can be calculated via Algorithm 1 and $T_{h,n}(x_n)$ is the minimum hovering time obtained by solving (6). If $x_n < y_n$ while (22) is infeasible, we set the cost as infinity.

Based on the above cost function, we formulate the aviation time minimization problem as a DP problem. In particular, we have
- index of stage: n,
- system state in stage n: the end point of data upload for sensor $n-1$, denoted by $s_n = y_{n-1}$.

The state space is $\mathcal{S}_n = [S_0, S_{N+1}]$,
- control action in stage n: the data upload interval for sensor n, i.e., (x_n, y_n). The action space is $\mathcal{U}_n(s_n) = \{(x_n, y_n)|s_n \leq x_n \leq y_n \leq S_{N+1}\}$,
- state update rule: $s_{n+1} = f_n(s_n, x_n, y_n) = y_n$,
- per-stage cost: $g_n(x_n, y_n), n = 1, 2, \ldots, N$ as defined in (30), and $g_{N+1}(s_{N+1}) = \frac{S_{N+1}-S_0}{v_{\text{max}}}$.

As a result, the problem (29) can be rewritten as

$$\min_{x, y} \left[\sum_{n=1}^{N} g_n(x_n, y_n) + g_{N+1}(y_N) \right], \quad (31)$$

which can be solved by recursively calculating the cost-to-go function stage-by-stage as

$$J_{N+1}(s_{N+1}) = g_{N+1}(s_{N+1}) = \frac{S_{N+1} - S_0}{v_{\text{max}}}, \quad \forall s_{N+1} \quad (32)$$

$$J_n(s_n) = \min_{s_n \leq x_n \leq y_n \leq S_{N+1}} \left\{ g_n(x_n, y_n) + J_{n+1}(y_n) \right\}, \quad \forall s_n, n = N, N-1, \ldots, 1. \quad (33)$$

Then the minimum aviation time can be obtain in the last step, i.e.

$$T_{\text{min}} = J_1(S_0). \quad (34)$$

In addition, if the optimal control actions for (33) are $(x_1^*, y_1^*), (x_2^*, y_2^*), \ldots, (x_N^*, y_N^*)$, the optimal solution for the problem (29) is $x^* = \{x_1^*, x_2^*, \ldots, x_N^*\}$, $y^* = \{y_1^*, y_2^*, \ldots, y_N^*\}$. Thus, the optimal solution of the original problem (8) is x^*, y^* joint with the optimal speeds $v_n^*(x_n^* - S_n, y_n^* - S_n), n = 1, 2, \ldots, N$ from problem (22) and the optimal power allocation in (14).

It is remarkable that the computational complexity for the calculation of the cost-to-go functions $J_n(s_n)$ can be reduced by exploring the property of (33).

Proposition 3. Concerning the DP algorithm (32) and (33), for any given n and s_n, if the optimal solution (x_n^*, y_n^*) for the minimization problem in (33) satisfies $x_n^* > s_n$, we have $J_n(s_n') = J_n(s_n)$ for all $s_n' \in [s_n, x_n^*]$.

Proof. See Appendix E.

According to Proposition 3 to reduce the computational complexity, the calculation of $J_n(s_n)$ for a given n can be launched from the initial point S_0 to the destination S_{N+1}. When an optimal solution (x_n^*, y_n^*) for a given s_n is found and satisfies $s_n < x_n^*$, the calculation of $J_n(s_n')$ for $s_n' \in [s_n, x_n^*]$ can be omitted as the optimal solutions are equivalent to (x_n^*, y_n^*).

V. NUMERICAL RESULTS

Some numerical results are shown in this section. In the numerical simulations, we set $H = 100$ m, $\beta = 80$ dB $[20]$, and the channel bandwidth $W = 20$ kHz. According to the state-of-the-art in the industry $[2]$, we set the maximum speed $v_{\text{max}} = 26$ m/s.

A. Single-sensor Case Study

The optimal result for the single-sensor case versus different values of data upload requirement B and sensor energy constraint E with $S_0 = -5000$ m, $S_1 = 0$ m, $S_2 = 5000$ m are depicted in Figs. 3 and 4 respectively. It can be seen that the optimal transmission interval (x, y) is symmetric, which corresponds to the shortest average transmission distance from the sensor to the UAV. In Fig. 3 when $B > 5.7$ Mb, the optimal solution is hovering above the sensor to receive data. When 2.5 Mb < B < 5.7 Mb, both the length of data upload interval and the UAV speed decreases as the data upload requirement increases. The decrease of data upload interval increases the channel gain between the UAV and the sensor, and the decrease of the UAV speed increases the transmission time. When $B < 2.5$ Mb, the UAV can fly with the maximum speed while successfully receive all the uploaded data. In this range, the minimum data upload interval is depicted, and its length decreases as the data upload requirement decreases as the time required for data upload decreases.

In Fig. 4 the optimal result versus E is opposite to that versus B. In particular, when $E < 0.3$ J, the UAV also needs to hover above the sensor to receive data. When 0.3 J < E < 1.7 J, both the length of the data upload interval and the UAV speed increases as the amount of energy increases. While for $E > 1.7$ J, the UAV can fly with the maximum speed, and the minimum length of the data upload interval decreases as the amount of energy increases.

B. Multi-sensor Case Study

Then the data collection for multiple sensors is studied by simulation. In particular, the UAV flies from $S_0 = 0$ m to $S_{N+1} = 10000$ m, during which $N = 10$ sensors are deployed. The locations of the sensors $S_n, n = 1, \cdots, 10$ are fixed as 500m, 2500m, 4500m, 6500m, 7000m, 7500m, 8000m, 8500m, 9000m, and 9500m, i.e., the first four sensors are 2000m apart from one another (sparsely deployed), and the last six sensors are 500m apart from one another (densely deployed). We study the impact of required data and energy limitation respectively.
Fig. 3. Optimal solution \((x, y, v)\) versus \(B\) for the single-sensor case, with \(S_0 = -5000\) m, \(S_1 = 0\) m, \(S_2 = 5000\) m, and \(E = 1\) J.

Fig. 4. Optimal solution \((x, y, v)\) versus \(E\) for the single-sensor case, with \(S_0 = -5000\) m, \(S_1 = 0\) m, \(S_2 = 5000\) m, and \(B = 3\) Mb.
In Fig. 5, the amount of energy in each sensor is set identical, \(E_n = 1.2 \) J for all \(n = 1, 2, \ldots, N \), and the amount of data to be transmitted varies. We set \(B_1 = \cdots = B_4 = B_6 = B_{10} = 3 \) Mbits, \(B_5 = 2.5 \) Mbits, \(B_7 = B_9 = 3.5 \) Mbits, and \(B_8 = 7 \) Mbits. It can be seen that as the first four sensors are sparsely located, the upload intervals are disconnected. The reason is that it is not energy-efficient when the transmission distance is large. In this case, the UAV collects data from a sensor in a short range and then flies towards another with the maximum speed. For the last six sensors, as the amount of data to be transmitted increases from sensor \(S_5 \) to sensor \(S_8 \) and then decreases from \(S_8 \) to \(S_{10} \), the UAV’s speed firstly decreases and then increases accordingly so that the required data can be uploaded successfully. Particularly, as the amount of data in sensor \(S_8 \) is extremely large, the UAV hovers above it to collect data with maximum data rate, so that the overall aviation time is minimized.

In Fig. 6, we change the values of the amount of data bits as \(B_1 = \cdots = B_4 = B_6 = B_{10} = 2 \) Mbits, \(B_5 = 2.5 \) Mbits, \(B_7 = B_9 = 3.5 \) Mbits, and \(B_8 = 3.8 \) Mbits. Firstly, as the data bits in sensors \(S_1, \ldots, S_4 \) are limited, the UAV can successfully receive all the data bits when flying with maximum speed. In addition, as the data bits in sensor \(S_8 \) are reduced compared with Fig. 5, the hovering mode is not necessary any more. As the amount of data bits is still the largest, the
Fig. 6. Optimal solution \((x_n, y_n, v_n)\) for \(N = 10\) sensors with \(E_n = 1.2\) J for all \(n = 1, 2, \cdots, N\), \(B_1 = \cdots = B_4 = B_6 = B_{10} = 2\) Mbits, \(B_5 = 2.5\) Mbits, \(B_7 = B_9 = 3.5\) Mbits, and \(B_8 = 3.8\) Mbits.

aviation speed is quite low.

Then we set the amount of data in each sensor to be the same, i.e., \(B_n = 3\) Mbits for all \(n = 1, 2, \cdots, N\), while \(E_1 = \cdots = E_4 = 3.6\) J, \(E_5 = 3.2\) J, \(E_6 = E_{10} = 1.8\) J, \(E_7 = E_9 = 0.8\) J, and \(E_8 = 0.2\) J to evaluate the impact of the energy constraint. It can be seen that with sufficient amount of energy for the first four sensors, the UAV can fly with maximum speed while successfully receiving all the data. For the last six sensors, as the amount of energy firstly decreases and then increases from sensor \(S_5\) to sensor \(S_{10}\), the optimal speed also decreases at first and then increase. In particular, as the eighth sensor is quite energy stringent, the UAV hovers above it with zero speed to collect its data. In addition, the transmission intervals for the first four sensors shift towards the initial point so that more space can be reserved for the last six sensors which has limited energy budget.

Next, we reset the amount of energy as \(E_1 = E_2 = E_3 = E_7 = E_9 = 1.0\) J, \(E_4 = 1.2\) J, \(E_5 = 3.2\) J, \(E_6 = E_{10} = 2.0\) J, and \(E_8 = 0.6\) J and re-run the simulation, the result is shown in Fig. 8. It can be found that the UAV serves the first three sensors with medium aviation speed, as the limited amount of energy cannot support the maximum speed. Similarly, as the energy in sensor \(S_8\) is sufficient to support data collection during aviation, the hovering mode
Fig. 7. Optimal solution \((x_n, y_n, v_n)\) for \(N = 10\) sensors with \(B_n = 3\) Mbits for all \(n = 1, 2, \ldots, N\), and \(E_4 = \cdots = E_6 = 3.6\) J, \(E_5 = 3.2\) J, \(E_6 = E_{10} = 1.8\) J, \(E_7 = E_9 = 0.8\) J, and \(E_8 = 0.2\) J.

Fig. 8. Optimal solution \((x_n, y_n, v_n)\) for \(N = 10\) sensors with \(B_n = 3\) Mbits for all \(n = 1, 2, \ldots, N\), and \(E_1 = E_2 = E_3 = E_7 = E_9 = 1.0\) J, \(E_4 = 1.2\) J, \(E_5 = 3.2\) J, \(E_6 = E_{10} = 2.0\) J, and \(E_8 = 0.6\) J.
is not necessary. Compared with Figs. 5-8, the energy constraint has similar impact as the data requirement.

C. Average Performance Evaluation

We further evaluate the average performance with random data requirement, random energy and random locations. The amount of data in each sensor follows uniform distribution with a mean value \bar{B}, the amount of energy in each sensor follows uniform distribution with a mean value \bar{E}, and each pair (B_n, E_n) is set to satisfy the feasibility constraint (7). The sensors are uniformly distributed in the range $[S_0, S_{N+1}] = [0, 10000]$ m. The results are illustrated in Figs. 9 and 10. It can be seen in Fig. 9 that when the average amount of energy is sufficient, the average aviation time grows almost linearly with the increase of \bar{B}. But when the amount of energy is deficient (e.g., $\bar{E} = 0.15$ J), the average aviation time grows exponentially with the increase of \bar{B}. This is due to the different relations between the aviation time and the amount of data in hovering mode and aviation mode. In energy sufficient case, the UAV collects data mainly in aviation mode. While in energy constrained case, it collects data mainly in hovering mode.

In Fig. 10 it is observed that when the amount of data is small, the average aviation time is constant over all examined values of \bar{E}, which means that the UAV can fly with the maximum
speed and collect data during aviation. In addition, it is expected with the increase of \bar{E}, the curves converges to a fixed point with minimum aviation time, i.e., the UAV flies with the maximum speed. However, the figure shows that the convergence is slow, especially for large values of \bar{B}. For the case with $\bar{B} = 5.0 \text{ Mb}$, the curve firstly goes down exponentially, and then linearly with close-to-zero slope.

VI. CONCLUSION

In this paper, we have solved the aviation time minimization problem for completing the data collection mission in a one-dimensional sensor network. The analysis on hovering mode provides the feasibility condition for a successful data collection. The analysis on the single-sensor case reveals the optimal solution structures. Firstly, the optimal power allocation follows the classical water-filling policy. Secondly, the maximum amount of data bits that can be successfully uploaded during UAV’s aviation is a decreasing function of the UAV speed, which results in a simple bisection method to find the optimal aviation speed. For the multi-sensor case, we have shown that the division of data collection intervals can be optimized via the DP algorithm. According to the numerical results, it has been observed that the behavior of the UAV relies on the locations, the data amount and the energy amount of sensors. With a sufficient amount of energy, the UAV
can fly with maximum speed. Otherwise, its speed is proportional to the sensors’ energy budgets and the inter-sensor distance, but inversely proportional to the amount of data to be uploaded.

APPENDIX A

PROOF OF LEMMA 1

Since

\[f''(x) = -\frac{a^2}{x(x+a)^2} < 0, \]

(35)

\(f'(x) \) is decreasing. Therefore,

\[f'(x) = \log_2 \left(1 + \frac{a}{x} \right) - \frac{a}{x + a} > f'(+\infty) = 0, \]

(36)

which indicates that \(f(x) \) is increasing. In addition,

\[\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} a \log_2 \left(1 + \frac{a}{x} \right)^\frac{x}{a} = a \log_2 e. \]

(37)

Hence, \(f(x) < a \log_2 e = \frac{a}{\ln 2} \).

APPENDIX B

PROOF OF PROPOSITION 1

As

\[\frac{T_{h,n}(x_n)}{2} W \log_2 \left(1 + \frac{\beta E_n}{T_{h,n}(x_n)((x_n - S_n)^2 + H^2)^\frac{\alpha}{2}} \right) \]

\[\leq \frac{W\beta E_n}{2((x_n - S_n)^2 + H^2)^\frac{\alpha}{2} \ln 2} \]

\[\leq \frac{W\beta E_n}{2H^\alpha \ln 2}, \]

(38)

where the first inequality holds according to Lemma 1 and the gap can be arbitrarily small as \(T_{h,n}(x_n) \) tends to infinity. In the second inequality, the equality holds when \(x_n = S_n \). Hence, if \(B_n < \frac{W\beta E_n}{2H^\alpha \ln 2} \), there is always a feasible transmission mode so that \(B_n \) bits can be successfully transmitted.

If \(B_n \geq \frac{W\beta E_n}{2H^\alpha \ln 2} \) on the contrary, the left hand side of (5) is always less than \(B_n \). Therefore, the equation (6) is not feasible.
Appendix C

Proof of Theorem 1

The Lagrangian function of the problem (12) is expressed as

$$\mathcal{L} = \frac{W}{2v} \int_x^y \log_2 \left(1 + \frac{p(s)\beta}{(s^2 + H^2)^{\frac{\gamma}{2}}} \right) ds - \lambda \left(\frac{1}{v} \int_x^y p(s) ds - E\right),$$

(39)

By setting $\frac{\partial \mathcal{L}}{\partial p(s)} = 0$, we get the optimal power allocation expressed as (14), where $\gamma_0 = \frac{1}{\lambda}$ is the water level so that (12b) is satisfied with equality, and the channel gain is

$$\gamma(s) = \frac{\beta}{(s^2 + H^2)^{\frac{\gamma}{2}}}$$

(40)

which is equivalent to (16).

Based on (14) and (40), it can be found that $p^*(s) > 0$ must hold in a continuous interval.

Next, we derive the necessary and sufficient condition for $p^*(s) > 0$ for all $x < s < y$.

1) Sufficiency:

Suppose that $p^*(s) > 0$ for $x < s < y$. As $s^2 \leq \max\{x^2, y^2\}$ for any $x < s < y$, we have

$$\gamma(s) = \frac{\beta}{(s^2 + H^2)^{\frac{\gamma}{2}}} > \frac{\beta}{(\max\{x^2, y^2\} + H^2)^{\frac{\gamma}{2}}}.$$

(41)

As $p^*(s) > 0$, we have $\frac{1}{\gamma_0} > \frac{1}{\gamma(s)}$ holds for all $x < s < y$. To guarantee this, $\frac{1}{\gamma_0}$ must be larger than or equal to the maximum value of $\frac{1}{\gamma(s)}$, i.e.,

$$\frac{1}{\gamma_0} \geq \frac{(\max\{x^2, y^2\} + H^2)^{\frac{\gamma}{2}}}{\beta}.$$

(42)

On the other hand, according to (12b), i.e.,

$$\frac{1}{v} \int_x^y p^*(s) ds = \frac{1}{v} \int_x^y \left(\frac{1}{\gamma_0} - \frac{(s^2 + H^2)^{\frac{\gamma}{2}}}{\beta}\right) ds$$

$$= \frac{y - x}{v} \frac{1}{\gamma_0} - \frac{1}{v} \int_x^y \frac{(s^2 + H^2)^{\frac{\gamma}{2}}}{\beta} ds$$

$$\leq E,$$

(43)

we have

$$\frac{1}{\gamma_0} \leq \frac{vE}{y - x} + \frac{1}{y - x} \int_x^y \frac{(s^2 + H^2)^{\frac{\gamma}{2}}}{\beta} ds.$$

(44)

According to (42) and (44), we have

$$\frac{(\max\{x^2, y^2\} + H^2)^{\frac{\gamma}{2}}}{\beta} \leq \frac{vE}{y - x} + \frac{1}{y - x} \int_x^y \frac{(s^2 + H^2)^{\frac{\gamma}{2}}}{\beta} ds,$$

(45)

which is equivalent to (13). Therefore, the sufficiency is proved.
In addition, to maximize the throughput, (43) must be satisfied with equality, which results in equality condition in (44). Hence, (15) is obtained.

2) Necessity:
Suppose (13) (or equivalently (45)) holds true. We let $\frac{1}{\gamma_0}$ equals to the right hand side of (44). Then (43) is satisfied with equality, which guarantees that the power allocation is optimal as all the energy budget is fully utilized. Based on (45) and the equality of (44), we have

$$\frac{1}{\gamma_0} \geq \frac{(\max\{x^2, y^2\} + H^2)^\frac{\beta}{2}}{\beta} > \frac{(s^2 + H^2)^\frac{\beta}{2}}{\beta}$$

for all $x < s < y$. Therefore, we have $p^*(s) = \frac{1}{\gamma_0} - \frac{(s^2 + H^2)^\frac{\beta}{2}}{\beta} > 0$ for $x < s < y$, and hence, the necessity is proved.

The optimal throughput can be obtained by substituting $p(s)$ in (12a) with (14) and deducing as follows

$$B_{\text{max}}(x, y, v) = \frac{W}{2v} \int_x^y \log_2 \frac{\beta}{\gamma_0 (s^2 + H^2)^{\frac{\beta}{2}}} ds$$

$$= \frac{W}{2v} \left(s \log_2 \frac{\beta}{\gamma_0} \bigg|_x^y - \frac{\alpha}{2} \int_x^y \log_2 (s^2 + H^2) ds \right)$$

$$= \frac{W}{2v} \left(s \log_2 \frac{\beta}{\gamma_0} \bigg|_x^y - \frac{\alpha}{2} s \log_2 (s^2 + H^2) \right) \bigg|_x^y + \frac{\alpha}{2} \int_x^y s d(\log_2 (s^2 + H^2))$$

$$= \frac{W}{2v} \left(s \log_2 \frac{\beta}{\gamma_0 (s^2 + H^2)^{\frac{\beta}{2}}} \bigg|_x^y + \frac{\alpha}{\ln 2} \int_x^y \frac{s^2}{s^2 + H^2} ds \right)$$

$$= \frac{W}{2v} \left(s \log_2 \frac{\beta}{\gamma_0 (s^2 + H^2)^{\frac{\beta}{2}}} \bigg|_x^y + \frac{\alpha}{\ln 2} \int_x^y \left(1 - \frac{H^2}{s^2 + H^2} \right) ds \right)$$

$$= \frac{W}{2v} \left(s \log_2 \frac{\beta}{\gamma_0 (s^2 + H^2)^{\frac{\beta}{2}}} \bigg|_x^y + \frac{\alpha s}{\ln 2} - \frac{\alpha H}{\ln 2} \arctan \frac{s}{H} \right) \bigg|_x^y.$$

APPENDIX D

PROOF OF THEOREM 2

Based on (12a) and (12b), to achieve the maximum throughput, all the energy should be fully used, i.e.

$$\int_x^y p(s) ds = vE. \quad (48)$$

Replacing $p(s)$ in the above equation by (14), we have

$$\frac{1}{\gamma_0} = \frac{vE}{y - x} + \frac{1}{y - x} \int_x^y \frac{1}{\gamma(s)} ds. \quad (49)$$
According to the first line of (47), we have

\[
B_{\text{max}}(x, y, v) = \frac{W}{2v} \int_x^y \log_2 \frac{\gamma(s)}{\gamma_0} ds
\]

\[
= \frac{W}{2v} \left(\int_x^y \log_2 \frac{1}{\gamma_0} ds - \int_x^y \log_2 \frac{1}{\gamma(s)} ds \right)
\]

\[
= \frac{W}{2v} \left(a_1 \log_2 \left(\frac{1}{a_1} \left(vE + a_2 \right) \right) - a_3 \right),
\]

(50)

where

\[
a_1 = y - x,
\]

(51)

\[
a_2 = \int_x^y \frac{1}{\gamma(s)} ds,
\]

(52)

\[
a_3 = \int_x^y \log_2 \frac{1}{\gamma(s)} ds.
\]

(53)

Define a function

\[
g(u) = u \left(a_1 \log_2 \left(\frac{1}{a_1} \left(E + a_2 \right) \right) - a_3 \right).
\]

(54)

Since

\[
g''(u) = - \frac{a_1 E^2}{u(E + a_2)^2} < 0
\]

(55)

for all \(u > 0 \), \(g'(u) \) is a decreasing function of \(u \). Therefore,

\[
g'(u) = a_1 \log_2 \left(\frac{1}{a_1} \left(\frac{E}{u} + a_2 \right) \right) - a_3 - \frac{a_1 E}{E + a_2 u}
\]

\[
> g'(+\infty)
\]

\[
= a_1 \log_2 \left(\frac{a_2}{a_1} \right) - a_3
\]

\[
= (y - x) \log_2 \left(\frac{1}{y - x} \int_x^y \frac{1}{\gamma(s)} ds \right) - \int_x^y \log_2 \frac{1}{\gamma(s)} ds
\]

\[
\geq 0,
\]

(56)

where the first inequality holds due to the monotonicity of \(g'(u) \), and the second inequality holds due to the concavity of \(\log \) function. Based on (56), we conclude that \(g(u) \) is an increasing function of \(u \). Since \(B_{\text{max}}(x, y, v) = \frac{1}{2} Wg(y) \), it is a decreasing function of \(v \).
As \((x_n^*, y_n^*)\) is the optimal solution for the minimization problem in (33), we have
\[
J_n(s_n) = \min_{s_n \leq x_n \leq y_n \leq S_{N+1}} \{g_n(x_n, y_n) + J_{n+1}(y_n)\}
\]
\[
= g_n(x_n^*, y_n^*) + J_{n+1}(y_n^*). \tag{57}
\]
For a given \(s_n' \in [s_n, x_n^*]\), as \(s_n' \geq s_n\), we have \([s_n', S_{N+1}] \subseteq [s_n, S_{N+1}]\). Therefore,
\[
J_n(s_n') = \min_{s_n' \leq x_n \leq y_n \leq S_{N+1}} \{g_n(x_n, y_n) + J_{n+1}(y_n)\}
\]
\[
\geq \min_{s_n \leq x_n \leq y_n \leq S_{N+1}} \{g_n(x_n, y_n) + J_{n+1}(y_n)\} = J_n(s_n). \tag{58}
\]
Secondly, as \(s_n' \leq x_n^*\), we have \(s_n' \leq x_n^* \leq y_n^* \leq S_{N+1}\). Hence,
\[
J_n(s_n') = \min_{s_n' \leq x_n \leq y_n \leq S_{N+1}} \{g_n(x_n, y_n) + J_{n+1}(y_n)\}
\]
\[
\leq g_n(x_n^*, y_n^*) + J_{n+1}(y_n^*). \tag{59}
\]
Combining (58) and (59), we prove that \(J_n(s_n') = J_n(s_n)\) for all \(s_n' \in [s_n, x_n^*]\).

REFERENCES

[1] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles: opportunities and challenges,” IEEE Communications Magazine, vol. 54, no. 5, pp. 36–42, May 2016.
[2] Dji. INSPIRE 2: Power beyond imagination. [Online]. Available: http://www.dji.com/inspire-2
[3] R. Sun, “Dual-band non-stationary channel modeling for the air-ground channel,” Ph.D. dissertation, University of South Carolina, Jul. 2015.
[4] M. Dong, K. Ota, M. Lin, Z. Tang, S. Du, and H. Zhu, “UAV-assisted data gathering in wireless sensor networks,” The Journal of Supercomputing, vol. 70, no. 3, pp. 1142–1155, Dec. 2014.
[5] Z. Han, A. L. Swindlehurst, and K. J. R. Liu, “Optimization of MANET connectivity via smart deployment/movement of unmanned air vehicles,” IEEE Transactions on Vehicular Technology, vol. 58, no. 7, pp. 3533–3546, Sept. 2009.
[6] E. I. Grøtli and T. A. Johansen, “Path planning for UAVs under communication constraints using SPLAT! and MILP,” Journal of Intelligent & Robotic Systems, vol. 65, no. 1, pp. 265–282, Jan. 2012.
[7] E. Koyuncu, R. Khodabaksh, N. Surya, and H. Seferoglu, “Deployment and trajectory optimization for UAVs: A quantization theory approach,” arXiv:1708.08832, 2017.
[8] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multi-UAV enabled wireless networks,” arXiv:1705.02723, 2017.
[9] Y. Zeng, R. Zhang, and T. J. Lim, “Throughput maximization for UAV-enabled mobile relaying systems,” IEEE Transactions on Communications, vol. 64, no. 12, pp. 4983–4996, Dec. 2016.
[10] D. S. Kalogerias and A. P. Petropulu, “Mobile beamforming & spatially controlled relay communications,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 6405–6409.
[11] C.-M. Cheng, P.-H. Hsiao, H. Kung, and D. Vlah, “Maximizing throughput of UAV-relaying networks with the load-carry-and-deliver paradigm,” in IEEE Wireless Communications and Networking Conference, 2007, pp. 4417–4424.

[12] J. Lyu, Y. Zeng, R. Zhang, and T. J. Lim, “Placement optimization of UAV-mounted mobile base stations,” IEEE Communications Letters, vol. 21, no. 3, pp. 604–607, Mar. 2017.

[13] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage,” IEEE Wireless Communications Letters, vol. 6, no. 4, pp. 434–437, Aug. 2017.

[14] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage,” IEEE Communications Letters, vol. 20, no. 8, pp. 1647–1650, Aug. 2016.

[15] N. Ahmed, S. S. Kanhere, and S. Jha, “On the importance of link characterization for aerial wireless sensor networks,” IEEE Communications Magazine, vol. 54, no. 5, pp. 52–57, May 2016.

[16] F. Jiang and A. L. Swindlehurst, “Optimization of UAV heading for the ground-to-air uplink,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 5, pp. 993–1005, Jun. 2012.

[17] A. E. A. A. Abdulla, Z. M. Fadlullah, H. Nishiyama, N. Kato, F. Ono, and R. Miura, “An optimal data collection technique for improved utility in UAS-aided networks,” in IEEE Conference on Computer Communications (Infocom), Apr. 2014, pp. 736–744.

[18] S. Say, H. Inata, J. Liu, and S. Shimamoto, “Priority-based data gathering framework in UAV-assisted wireless sensor networks,” IEEE Sensors Journal, vol. 16, no. 14, pp. 5785–5794, Jul. 2016.

[19] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in UAV enabled wireless sensor network,” arXiv:1708.00221, pp. 1–4, Aug. 2017.

[20] J. Lyu, Y. Zeng, and R. Zhang, “Cyclical multiple access in UAV-aided communications: A throughput-delay tradeoff,” IEEE Wireless Communications Letters, vol. 5, no. 6, pp. 600–603, Dec. 2016.

[21] C. D. Franco and G. Buttazzo, “Energy-aware coverage path planning of UAVs,” in IEEE International Conference on Autonomous Robot Systems and Competitions, Apr. 2015, pp. 111–117.

[22] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with trajectory optimization,” IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 3747–3760, Jun. 2017.

[23] S. Zhang, Y. Zeng, and R. Zhang, “Cellular-enabled UAV communication: Trajectory optimization under connectivity constraint,” arXiv:1710.11619, 2017.

[24] S. Verdu, “On channel capacity per unit cost,” IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 1019–1030, Sep. 1990.

[25] D. P. Bertsekas, Dynamic programming and optimal control. Athena Scientific Belmont, MA, 2005.