The Migraine–Stroke Connection

Mi Ji Lee, Chungbin Lee, Chin-Sang Chung

Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
Stroke Center, Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Korea

Migraine and stroke are common neurovascular disorders which share underlying physiological processes. Increased risks of ischemic stroke, hemorrhagic stroke, and subclinical ischemic lesions have been consistently found in migraineurs. Three possible associations are suggested. One is that underlying pathophysiology of migraine can lead to ischemic stroke. Second, common comorbidities between migraine and stroke can be present. Lastly, some syndromes can manifest with both migraine-like headache and cerebrovascular disease. Future studies should be targeted on bidirectional influence of migraine on different stroke mechanisms and optimal prevention of stroke in migraine patients.

Keywords Migraine; Ischemic stroke; Hemorrhagic stroke; White matter hyperintensities

Introduction

Migraine is the most common neurological disorder, affecting 10% to 15% of the adult population. There are increasing evidences for an association between migraine and vascular diseases and, in particular, between migraine and ischemic stroke, subclinical brain lesions, cardiac events, and vascular mortality. Several underlying mechanisms may harbor beneath the connection between migraine and cerebrovascular disorders.

Ischemic strokes in migraine sufferers may be categorized as cerebral infarction occurring during the course of a typical migraine with aura attack (migrainous infarction) and cerebral infarction of other cause coexisting with migraine (migraine-related stroke). In this review, we will discuss epidemiology, clinical feature and possible mechanisms of increased stroke risk in migraineurs. We will also provide evidences for managing patients with both stroke and migraine.

Migrainous infarction

Epidemiology

Migrainous infarction is defined as a stroke that occurs during an attack of migraine with aura in which aura symptoms persist for > 60 minutes. An ischemic brain lesion must be demonstrated by neuroimaging in the appropriate territory of symptoms. The incidence of true migrainous infarction is very low. Migrainous infarction accounts for 0.2% to 0.5% of all ischemic strokes in cross-sectional studies using large stroke registries.

Clinical features and diagnosis

Diagnosis is based on International Classification of Headache Disorders (ICHD, Table 1). The ICHD criteria require a premorbid diagnosis of migraine with aura (MA) and a prolonged typical aura attack more than 60 minutes. Visual aura is the most common symptom (82.3%), followed by sensory dysfunction and aphasia. The posterior circulation is more frequently affected in
Cortical spreading depression can cause severe vasoconstriction instead of vasodilation. However, actual incidence of migrainous infarction is very rare despite of high prevalence of migraine, therefore cerebral arteries.

Table 1. The diagnostic criteria of migrainous infarction in International Classification of Headache Disorders, 3rd edition beta version (ICHD-3β)

A.	A migraine attack fulfilling criteria B and C
B.	Occurring in a patient with 1.2. Migraine with aura and typical of previous attacks except that one or more aura symptoms persists for > 60 minutes
C.	Neuroimaging demonstrates ischemic infarction in a relevant area
D.	Not better accounted for by another diagnosis

Table 2. Independent risk factors of ischemic stroke in migraineurs

Migraine with aura	
Women	
Age < 45 years	
Oral contraceptive use	
Smoking	

There are several hypotheses to explain the increased risk of ischemic stroke in migraine sufferers. First, migraine itself can precipitate an ischemic stroke. The concept of "cortical spreading depression (CSD)" has been accepted as the main pathogenetic mechanism of migraine aura, may precipitate an ischemic stroke. Potential mechanisms

Cortical spreading depression

The concept of “cortical spreading depression (CSD)” has been accepted as the main pathogenetic mechanism of migraine aura. Cerebral oligemia starts in aura phase, spreads gradually anteriorly, and is followed by hyperemia in a MA attack. As well as MA patients with migraine without aura (MO) also show posterior hypoperfusion during an attack in MR perfusion and PET studies. When the hemodynamic response to cortical spreading depression is inverted under pathological conditions, spreading depression can cause severe vasoconstriction instead of vasodilation. However, actual incidence of migrainous infarction is very rare despite of high prevalence of migraine, therefore cerebral blood flow even during the oligemic phase of CSD seen to be above the ischemic threshold. In addition to oligemia itself, an animal CSD model shows depolarization-induced ipsilateral release of matrix metalloprotease and subsequent altered integrity of the blood brain barrier. In human migraineurs, increased matrix metalloprotease is also found during migraine attacks and headache-free periods. Taken together, CSD, which is a unique pathophysiologic mechanism of migraine aura, may precipitate an ischemic stroke.

Migraine as a risk factor for cerebral infarction (migraine-related stroke)

Epidemiology

Migraine-related stroke refers to any stroke that occurs in migraineurs, and its incidence rate ranges from 1.44/100,000 to 1.7/100,000 persons per year. Migraine is an indirect or associated contributor to stroke. The Collaborative Group for the Study of Stroke in Young Women first suggested the relative risk (RR) of migraine for stroke was 2.0. Population-based studies and prospective studies consistently reported two-fold increased risk of ischemic stroke in patients with overall migraine. Potential risk factors for ischemic stroke in migraine include younger (< 45 years) age, female sex, smoking and oral contraceptive use (Table 2). Older (> 45 years) migraineurs also show an increased risk of stroke, although the association may be either greater or less in the age over 65. Cigarette smoking is still an important risk enhancer after age of 45. The risk varies with the subtypes of migraine. MA has been consistently reported as a stroke risk factor, with a pooled relative risk of 2.16 (95% CI 1.53-3.03) and a population-attributable risk of 3.5%. The risk increases with an increased frequency of migraine attack. Regarding MO, no additional risk for stroke has been found from updated meta-analyses. In men, the association with migraine and stroke is still controversial.

Mechanisms

There are several hypotheses to explain the increased risk of ischemic stroke in migraine sufferers. First, migraine itself can predispose to ischemic stroke. Second, common comorbidities between migraine and stroke can be present.
Endothelial dysfunction

Endothelial dysfunction might play a role connecting migraine and stroke. Endothelial dysfunction is characterized by reduction in vasodilator activities, increase in endothelial-derived vasoconstrictors, and consequent impairment of the vascular reactivity of the vasculature. It can lead to a procoagulatory, proinflammatory and proliferative state, which predisposes to atherosclerosis. Biomarkers of endothelial dysfunction, i.e., elevated vWF antigen, vWF activity, high-sensitivity C-reactive protein and reduced nitrate/nitrite levels, were found in migraineurs.\(^{42,43}\) Circulating endothelial progenitor cell (EPC) studies showed that the number and function of EPCs were decreased and negatively correlated with longer disease duration in migraine.\(^{44,46}\) Another study revealed that total number of EPC was not reduced but the number of activated EPCs was higher in migraineurs.\(^{40}\) Circulating endothelial microparticles are also elevated in women with MA, suggesting that endothelial activation might be involved in migraine pathophysiology.\(^{47}\) It is of interest whether endothelial dysfunction is present in systemic or cerebral vasculature. Systemic endothelial dysfunction has been widely tested in migraine with forearm blood flow by venous plethysmography, flow-mediated dilatation, and pulse-wave velocity analyses, yielding conflicting results.\(^{48-53}\) In contrast, cerebral vascular reactivity has been consistently reported to be decreased in migraine, especially in the posterior circulation.\(^{51,52}\) It seems that there is a lack of association between systemic and cerebral endothelial dysfunction in migraine.\(^{54}\) In the future, the clinical significance of cerebral endothelial dysfunction and therapeutic implications should be tested for reducing stroke risk of migraineurs.

Coagulation abnormalities

Platelet aggregation and increased levels of platelet-activating factor (PAF) and vWF are observed during migraine attacks.\(^{55-57}\) PAF is released from cerebral endothelial cells, platelets and mast cells in response to hypoxia and calcitonin gene-related peptide (CGRP), and in turn, prompts the release of vWF. vWF indirectly activates the platelet Ib\(b\)/Ila receptor and leading to hemostasis. Other reported that coagulation abnormalities—elevated prothrombin factor 1.2, decreased resistance to activated protein C, and protein S deficiency—are present in patients with MA.\(^{58,59}\) It is not clear whether plasma hypercoagulability is either the result or the cause of CSD.

Arterial dissection

Increased incidence of spontaneous cervical carotid or vertebral artery dissection was found in patients with migraine.\(^{60-62}\) In a meta-analysis, migraine is associated with a two-fold increased risk of cervical artery dissection (pooled OR = 2.06, 95% CI 1.33-3.19).\(^{63}\) Among the migraine subtypes, MO has the high-

Table 3. Suggested mechanisms of ischemic stroke in migraineurs

Genetic predisposition	Endothelial dysfunction	Coagulation abnormalities	Arterial dissection	Other comorbidities
MTHFR C677T polymorphism	Impaired endothelium-dependent vasodilation	Increased PAF, vWF, prothrombin factor 1.2 (F1.2)	Elevated serum elastase activity	Antiphospholipid antibody syndrome
ACE-DD polymorphism	Endothelial cell damage	Decreased resistance to activated protein C	MTHFR C677T polymorphism	Sneddon syndrome
rs7686623 in MEPE		Protein S deficiency	PHACTR1 polymorphism (protective)	Systemic lupus erythematosus
rs4975709 in IRAK4			Patent foramen ovale (controversial)	
			Increased shunt amount in patients with migraine and stroke	
			Associated with juxtacortical white matter	
Genetic associations			Other comorbidities	
The genetic association between ischemic stroke and MA has been suggested. Polymorphism in the MTHFR (methylene tetrahydrofolate reductase) gene is the candidate gene with mediates increased risk of ischemic stroke in MA.\(^{35,34}\) MTHFR gene encodes for a key enzyme for the metabolism of folate and homocysteine and is associated with susceptibility to MA.\(^{35,36,37}\) Angiotensin-converting enzyme gene deletion polymorphism (ACE-DD) is another possible connection. ACE-DD is related with von Willebrand factor.	MTHFR, methylene tetrahydrofolate reductase; ACE-DD, angiotensin-converting enzyme deletion/deletion; PAF, platelet-activating factor; vWF, von Willebrand factor.	Disorders can manifest with both migraine and cerebrovascular disease. Lastly, migraine-specific medication, especially vasoconstrictors, can be associated with increased risk of stroke. We will further discuss specific pathogenic mechanisms between migraine and stroke (Table 3).		
Migraine and subclinical brain lesions

WMH are more frequently found on neuroimaging in migraineurs than in non-migraine population. Earlier meta-analysis provided high odds ratio with 3.90 (95% CI 2.26–6.72) for having WMH in migraineurs. Recent meta-analysis estimated lower odds (OR 1.68, 95% CI 1.07–2.65) and showed the association only in MA, not in MO. Subclinical brain infarcts were found more in migraineurs than in controls, particularly in the posterior circulation. Increased risk of having WMH or subclinical infarcts is associated with increased headache frequency. Longitudinal MRI follow-up studies showed that WMH increase over time in migraineurs. However, large population-based prospective studies failed to document temporal associations between the number of migraine headache attacks and brain lesion progression. Clinical significance of WMH seen in migraine patients is still unclear. Cognitive dysfunction seems not to be associated with WMH in migraineurs.

Migraine and hemorrhagic stroke

In addition to higher risk of ischemic stroke, migraineurs also have a risk for developing hemorrhagic stroke. Women’s Health Study demonstrated increased risk for hemorrhagic stroke in women with active migraine with aura (adjusted HR 2.25, 95% CI 1.11–4.54). A meta-analysis revealed that the risk of hemorrhagic strokes was greater in females with any types of migraine and in female migraineurs aged less than 45 years. However, in a recent population-based study, the risk of hemorrhagic stroke increased irrespective of sex or age group (<45 years and ≥45 years). Types of hemorrhagic strokes included subarachnoid hemorrhage and intracerebral hemorrhage. Most of studies did not provide information about the presence of aneurysm. Mechanisms underlying the association between migraine and hemorrhagic stroke are unclear. Although the association is positive in public health aspect, the absolute incidence of hemorrhagic stroke is very low in general practice.

Hereditary conditions that cause both stroke and migraine

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL)

Migraine and ischemic stroke are common features of CADASIL, which is a disorder of small cerebral arteries. Transient ischemic attacks and ischemic strokes are the most frequent manifestations in CADASIL, occurring in 60%–85% of patients. Migraine with aura is reported in 20%–50% of patients with CADASIL, which is five times greater than in the general population. In a Korean cohort of CADASIL, headache is the most frequent symptom with a prevalence of 45.3%, followed by...
cerebral infarction. Headache is usually the first symptom, with an average age at onset of 30 years. The nature of headache is generally similar to those of classic migraine. However, older age of onset and higher frequency of atypical aura can be found in patients with CADASIL.

Notch-3 mutation is the gene involved in CADASIL, encoding a transmembrane receptor primarily expressed in systemic arterial smooth-muscle cells. Genetic testing is the gold standard for the diagnosis of CADASIL, showing very high sensitivity and specificity, reaching 100%. Skin biopsy can be helpful. Presence of granular osmiophilic material on electron-microscopic study of skin biopsy samples indicates arteriopathy of CADASIL, but the sensitivity is variable. MRI can present abnormalities prior to clinical onset. Characteristic imaging findings are T2 hyperintense lesions in the temporal pole, external capsule and corpus callosum.

Treatment of migraine with aura in CADASIL patients is generally not different with that of non-CADASIL migraineurs. Prophylactic treatment is rarely required as the frequency of attacks is low in most cases. If required, the usual prophylactic drugs such as antiepileptic drugs or beta blockers can be used. For acute treatment, vasoconstrictors such as triptans or ergot derivatives should be avoided.

Mitochondrial Encephalopathy, Lactic Acidosis and Stroke–like episodes (MELAS)

MELAS is a genetically heterogeneous mitochondrial disorder characterized by features of central nervous system involvement (seizures, hemiparesis, hemianopia, cortical blindness, sensorineural deafness, and/or episodic vomiting). Headache is a common manifestation, which is either a recurrent migraine-like attack or a presenting symptom of stroke–like episodes.

Moyamoya disease

Headache is commonly associated with moyamoya disease. MA, MO, and hemiplegic migraine are reported as presenting symptoms of moyamoya disease. However, the prevalence of migraine in moyamoya disease has not been investigated.

Migraine abortive drugs and the risk of stroke

Acute abortive medications for migraine attacks (e.g. ergotamine and triptans) have vasoconstrictive actions. Thus, some clinicians too much concern of cerebral vasospasm and consequent stroke when prescribing these agents. However, stroke rarely occurs in migraine patients who do not abuse ergots or triptans in the absence of contraindication.

Ergot derivatives

Ergotamine and dihydroergotamine are nonselective 5-HT1 agonists which have affinities for dopamine and noradrenaline receptors. Ergotamine in excessive dosage is often associated with cardiovascular events involving the coronary arteries and peripheral vascular system or also may cause cerebral vasospasm. Drug interaction with cytochrome P450 3A4 enzyme inhibitors (Macrolide antibiotics–Erythromycin and Clarithromycin; antifungal agents–Ketoconazole, Itraconazole, etc; protease inhibitors–Ritonavir etc; and antidepressants–Nefazodone, Fluoxetine and Fluvoxamine) may potentially increase the risk of cerebral ischemia. Although ergot is contraindicated in patients with history of stroke, it is not evident that ergot therapy can cause stroke at standard doses. So far, use of ergot alkaloids in migraine patients has not been statistically verified as a stroke risk factor.

Triptan (Selective 5-HT1B/1D agonist agent)

Triptans may present with stroke–like events but there is no convincing evidence. In several studies, triptan treatment is not associated with increased risk of stroke, even in the setting of overuse. Sumatriptan, the prototype of triptan, has once been reported to cause cerebral infarction in a patient with sinus thrombosis. A case of spinal cord infarction was reported during zolmitriptan use. In two population-based studies, however, there was no evidence that triptans lead an increased risk of vascular events.

Clinical pearls for managing migraine in patients with ischemic stroke

Treatment of migraine in patients with stroke

Some new antiplatelet agents and vasodilators can cause migraine-like headaches. Cilostazol, an antiplatelet drug that inhibits phosphodiesterase 3, has also vasodilatory activity. In CSPS–2 trial, 313 of 1,337 (23%) patients taking cilostazol complained for headache. In a study using healthy volunteers without primary headache, 11 of 12 volunteers reported cilostazol–induced headache, that were characterized by mild to moderate intensities, bilateral locations and pulsating nature. A case of spinal cord infarction was reported during zolmitriptan use. In two population-based studies, however, there was no evidence that triptans lead an increased risk of vascular events.
larly in patients with PFO. However, a recent small randomized controlled trial failed to prove efficacy of clopidogrel for migraine prophylaxis.

Antihypertensive agents are frequently prescribed among patients at risk of ischemic stroke. Beta–adrenergic blocker and calcium channel blocker are well established treatment for preventing migraine. Some angiotensin receptor blockers and angiotensin–converting–enzyme inhibitors has been reported as effective for prevention of episodic migraine. Candesartan has shown significantly better effect than placebo in reducing frequency, severity, and disability of migraine. Another randomized, double blinded, placebo-controlled study has shown that olmesartan reduced frequency and severity of migraine attacks. Lisinopril has favorable effect on the reduction of frequency, duration and severity in migraine attacks.

Statin has been reported to be efficacious for migraine prophylaxis in a case report using atorvastatin 20 mg and a small open-label prospective study using simvastatin 20 mg. A recent randomized controlled trial showed effectiveness of simvastatin 20 mg combined with vitamin D for preventive treatment of migraine. The positive result is supported by preclinical evidences that statin reduces expression of CGRP and substance P and attenuates NF-κB activation in trigeminal nucleus caudalis.

Prevention of stroke in migraineurs

Currently, there are no recommendations of pharmacotherapy for the primary prevention of ischemic stroke in migraineurs. Risk factor modification is a preferred method of primary prevention. Smoking cessation and abstinence from oral contraceptives are important. Antithrombotics are not recommended to reduce a risk of stroke in migraineurs. Antihypertensives and statins should be given with a proper indication. If needed, the selection of medications which have efficacy for migraine prophylaxis may be beneficial to reduce both migraine attacks and vascular risks in migraineurs.

Conclusion

In summary, an increased association with various types of stroke is present in migraineurs. Stronger association with stroke is present in MA with a possible causal impact via CSD. MO might not have a direct causal relationship to lead stroke, but share genetics, risk factors and comorbidities in common with stroke. Genetic syndromes can cause both migraine–like headache and stroke. Medications are another important point of patient care. The association and interaction between migraine drugs and stroke risks, and vice versa, should be considered for optimal patient management.

References

1. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 2013;33:629–808.
2. Milhaud D, Bogousslavsky J, van Melle G, Liot P. Ischemic stroke and active migraine. Neurology 2001;57:1805–1811.
3. Sochurkova D, Moreau T, Lemesle M, Menassa M, Giroud M, Dumas R. Migraine history and migraine–induced stroke in the Dijon stroke registry. Neuroepidemiology 1999;18:85–91.
4. Arboix A, Massons J, Garcia-Eroles L, Oliveres M, Balecels M, Targa C. Migrainous cerebral infarction in the Sagrat Cor Hospital of Barcelona stroke registry. Cephalalgia 2003;23:389–394.
5. Wolf ME, Szabo K, Griebe M, Forster A, Gass A, Hennerici MG, et al. Clinical and MRI characteristics of acute migrainous infarction. Neurology 2011;76:1911–1917.
6. Laurell K, Arto V, Bendtsen L, Hagen K, Kallela M, Meyer EL, et al. Migrainous infarction: a Nordic multicenter study. Eur J Neurol 2011;18:1220–1226.
7. Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol 1981;9:344–352.
8. Lauritzen M, Skyhøj Olsen T, Lassen NA, Paulson OB. Changes in regional cerebral blood flow during the course of classic migraine attacks. Ann Neurol 1983;13:633–641.
9. Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Posterior cerebral hypoperfusion in migraine without aura. Cephalalgia 2008;28:856–862.
10. Woods RP, Iacoboni M, Mazzotta JC. Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N Engl J Med 1994;331:1689–1692.
11. Drejer JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 2011;17:439–447.
12. Gursoy-Ozdemir Y, Yi Qi, Matsuoka N, Bolay H, Bempong D, Jin H, et al. Cortical spreading depression activates and up-regulates MMP-9. J Clin Invest 2004;113:1447–1455.
13. Leira R, Sobrino T, Rodriguez-Yanez M, Blanco M, Arias S, Castillo J. Mmp-9 immunoreactivity in acute migraine. Headache 2007;47:698–702.
14. Imamura K, Takeshima T, Fusayasu E, Nakashima K. Increased plasma matrix metalloproteinase–9 levels in migraineurs. Headache 2008;48:135–139.
15. Welch KM, Levine SR. Migraine-related stroke in the context of the International Headache Society classification of head pain. Arch Neurol 1990;47:458–462.
16. Broderick JP, Swanson JW. Migraine-related strokes. Clinical profile and prognosis in 20 patients. *Arch Neurol* 1987;44:868-871.

17. Henrich JB, Sandercock PA, Warlow CP, Jones LN. Stroke and migraine in the Oxfordshire Community Stroke Project. *J Neurol* 1986;233:257-262.

18. Women CGftSoSiY. Oral contraceptives and stroke in young women. *JAMA* 1975;231:718-722.

19. Carolei A, Marinic C, De Matteis G. History of migraine and risk of cerebral ischaemia in young adults. The Italian National Research Council Study Group on Stroke in the Young. *Lancet* 1996;347:1503-1506.

20. Lidegaard O. Oral contraceptives, pregnancy and the risk of cerebral thromboembolism: the influence of diabetes, hypertension, migraine and previous thrombotic disease. *Br J Obstet Gynaecol* 1995;102:153-159.

21. Tzourio C, Iglesias S, Hubert JB, Visy JM, Alperovitch A, Tehindrazanarivo A, et al. Migraine and risk of ischaemic stroke: a case-control study. *BMJ* 1993;307:289-292.

22. Etminan M, Takkouche B, Isorna FC, Samii A. Risk of ischemic stroke in people with migraine: systematic review and meta-analysis of observational studies. *BMJ* 2005;330:63.

23. Schurks M, Rist PM, Bigal ME, Buring JE, Lipton RB, Kurth T. Migraine and cardiovascular disease: systematic review and meta-analysis. *BMJ* 2009;339:b3914.

24. Spector JT, Kahn SR, Jones MR, Jayakumar M, Dalal D, Nazar A. Genetic predisposition to neurological symptoms in lacunar infarction. *Cerebrovasc Dis* 2004;17:273-279.

25. Kowa H, Fusayasu E, Ijiri T, Ishizaki K, Yasui K, Nakaso K, et al. Association of the insertion/deletion polymorphism of the angiotensin I-converting enzyme gene in patients of migraine with aura. *Neurosci Lett* 2005;374:129-131.

26. Paterna S, Di Pasquale P, Angiulli A, Cardinale A, et al. Angiotensin-1-converting enzyme gene deletion polymorphism of the angiotensin I-converting enzyme gene in patients of migraine with aura. *Neurosci Lett* 2005;374:129-131.

27. Lee, et al. Migraine and Stroke Connection 2007;38:2438-2445.

28. Buring JE, Hebert P, Romero J, Kottros A, Cook N, Manson J, et al. Migraine and subsequent risk of stroke in the Physicians’ Health Study. *Arch Neurol* 1995;52:129-134.

29. Gudmundsson LS, Scher AI, Aspelund T, Eliasson JH, Johansson M, Thorgersson G, et al. Migraine with aura and risk of cardiovascular and all cause mortality in men and women: prospective cohort study. *BMJ* 2010;341:c3966.

30. MacClellan LR, Giles W, Cole J, Woziak M, Stern B, Mitchell BD, et al. Probable migraine with visual aura and risk of ischemic stroke: the stroke prevention in young women study. *Stroke* 2007;38:2438-2445.
57. Moschiano F, D’Amico D, Ciusani E, Erba N, Rigamonti A, Schieroni F, et al. Coagulation abnormalities in migraine and ischaemic cerebrovascular disease: a link between migraine and ischaemic stroke? *Neural Sci* 2004;25 Suppl 3:5126-128.
58. Hering-Hanit R, Friedman Z, Schlesinger I, Ellis M. Evidence for activation of the coagulation system in migraine with aura. *Cephalalgia* 2001;21:137-139.
59. Tzourio C, Benslaima L, Guillou B, Aidi S, Bertrand M, Berthet K, et al. Migraine and the risk of cervical artery dissection: a case-control study. *Neuralogy* 2002;59:435-437.
60. Pezzini A, Granella F, Grassi M, Bertolino C, Del Zotto E, Immovilli P, et al. History of migraine and the risk of spontaneous cervical artery dissection. *Cephalalgia* 2005;25:575-580.
61. Rubinstein SM, Peerdeman SM, van Tulder MW, Riphagen I, Haldeman S. A systematic review of the risk factors for cervical artery dissection. *Stroke* 2005;36:1575-1580.
62. Rist PM, Diener HC, Kurth T, Schurks M. Migraine, migraine aura, and cervical artery dissection: a systematic review and meta-analysis. *Cephalalgia* 2011;31:886-896.
63. Debette S, Markus HS. The genetics of cervical artery dissection: a systematic review. *Stroke* 2009;40:e459-466.
64. Tzourio C, El Amrani M, Robert L, Alperovitch A. Serum elastase activity is elevated in migraine. *Ann Neural* 2000;47:648-651.
65. Debette S, Kamatani Y, Metso TM, Kloss M, Chauhan G, Engelster S, et al. Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. *Nat Genet* 2015;47:78-83.
66. Schwedt TJ, Demaerschalk BM, Dodick DW. Patent foramen ovale and migraine: a quantitative systematic review. *Cephalalgia* 2008;28:531-540.
67. Del Sette M, Angeli S, Leandri M, Ferriero G, Bruzzone GL, Finocchi C, et al. Migraine with aura and right-to-left shunt on transcranial Doppler: a case-control study. *Cerebrovasc Dis* 1998;8:327-330.
68. Reisman M, Christofferson RD, Jesurum J, Olsen JV, Spencer MP, Krabill KA, et al. Migraine headache relief after transcatheter closure of patent foramen ovale. *J Am Coll Cardiol* 2005;45:493-495.
69. Anzola GP, Frisoni GB, Morandi E, Casilli F, Onorato E. Shunt-associated migraine responds favorably to atrial septal repair: a case-control study. *Circulation* 2005;112:1419-1424.
70. Garg P, Servoss SJ, Wu JC, Bajwa ZH, Selim MH, Dineen A, et al. Lack of association between migraine headache and patent foramen ovale: results of a case-control study. *Circulation*
73. Dowson A, Mullen MJ, Peatfield R, Muir K, Khan AA, Wells C, et al. Migraine Intervention With STARFlex Technology (MIST) trial: a prospective, multicenter, double-blind, sham-controlled trial to evaluate the effectiveness of patent foramen ovale closure with STARFlex septal repair implant to resolve refractory migraine headache. *Circulation* 2008;117:1397–1404.

74. Anzola GP, Morandi E, Casilli F, Onorato E. Different degrees of right-to-left shunting predict migraine and stroke: data from 420 patients. *Neurology* 2006;66:765–767.

75. Adami A, Rossato G, Cerini R, Thijs VN, Pozzi-Mucelli R, Anzola GP, et al. Right-to-left shunt does not increase white matter lesion load in migraine with aura patients. *Neurology* 2008;71:101–107.

76. Yoon GJ, Kim JT, Chang J, Kim DE, Cho BH, Lee JH, et al. Right-to-left shunts as a cause of juxtacortical spots in patients with migraine. *Eur J Neurol* 2012;19:1086–1092.

77. Krause I, Lev S, Fraser A, Blank M, Lorber M, Stojanovich L, et al. Close association between valvar heart disease and central nervous system manifestations in the antiphospholipid syndrome. *Ann Rheum Dis* 2005;64:1490–1493.

78. Tietjen GE, Al-Qasmi MM, Gunda P, Herial NA. Sneddon’s syndrome: another migraine-stroke association? *Cephalalgia* 2006;26:225–232.

79. Tjensvoll AB, Harboe E, Goransson LG, Beyer MK, Greve OJ, et al. Changes of migraine-related white matter hyperintensities after 3 years: a longitudinal MRI study. *Headache* 2011;51:101–107.

80. Swartz RH, Kern RZ. Migraine is associated with magnetic resonance imaging white matter abnormalities: a meta-analysis. *Arch Neurol* 2004;61:1366–1368.

81. Bashir A, Lipton RB, Ashina S, Ashina M. Migraine and structural changes in the brain: a systematic review and meta-analysis. *Neurology* 2013;81:1260–1268.

82. Kruit MC, Launer LJ, Ferrari MD, van Buchem MA. Infarcts in brain lesions and cerebral functional impairments in migraine patients. *J Neuroimaging* 2013;23:47–52.

83. Hamedani AG, Rose KM, Peterlin BL, Mosley TH, Coker LH, Jack CR, et al. Migraine and white matter hyperintensities: the ARIC MRI study. *Neurology* 2013;81:1308–1313.

84. Palm-Meinders IH, Koppen H, Terwindt GM, Launer LJ, Konishi J, Moonen JM, et al. Structural brain changes in migraine. *JAMA* 2012;308:1889–1897.

85. Paemeleire K. Brain lesions and cerebral functional impairment in migraine patients. *J Neurol Sci* 2009;283:134–136.

86. Petrovski I, Levy N, Tournier-Lasserve E, Bousser M. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: from stroke to vessel wall physiology. *J Neurol Neurosurg Psychiatry* 2001;70:285–287.

87. Peters N, Herzog J, Ofenbeck C, Dichgans M. A two-year clinical follow-up study in 80 CADASIL subjects: progression patterns and implications for clinical trials. *Stroke* 2004;35:1603–1608.

88. Choi JC, Song SK, Lee JS, Kang SY, Kang JH. Headache among...
CADASIL patients with R544C mutation: prevalence, characteristics, and associations. Cephalalgia 2014;34:22–28.

101. Vahedi K, Chabriat H, Levy C, Joutel A, Tournier-Lasserve E, Bousser MG. Migraine with aura and brain magnetic resonance imaging abnormalities in patients with CADASIL. Arch Neurol 2004;61:1237–1240.

102. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996; 383:707–710.

103. Peters N, Opherk C, Bergmann T, Castro M, Herzog J, Dichgans M. Spectrum of mutations in biopsy-proven CADASIL: implications for diagnostic strategies. Arch Neurol 2005;62:1091–1094.

104. Markus HS, Martin RJ, Simpson MA, Dong YB, Ali N, Crosby AH, et al. Diagnostic strategies in CADASIL. Neurology 2002;59:1134–1138.

105. O’Sullivan M, Jarosz JM, Martin RJ, Deasy N, Powell JF, Markus HS. MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology 2001;56:628–634.

106. Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol 1984;16:481–488.

107. Zach V, Bezd D, Lipton RB, Ashina S. Headache associated with moyamoya disease: a case story and literature review. J Headache Pain 2010;11:79–82.

108. Park-Matsumoto YC, Tazawa T, Shimizu J. Migraine with aura–like headache associated with moyamoya disease. Acta Neurol Scand 1999;100:119–121.

109. Siddiqui MR, Khan SU, Hoque MA, Rahman KM, Mondol MB, Mohammad QD. Moyamoya disease presented as a case of hemiplegic migraine. BMJ Case Rep 2010; doi: 10.1136/bcr.02.2010.2764.

110. Tfelt-Hansen P, Saxena PR, Dahlof C, Pascual J, Lainez M, Henry P, et al. Ergotamine in the acute treatment of migraine: a review and European consensus. Brain 2000;123 (Pt 1):9–18.

111. Wammes-van der Heijden EA, Rahimtoola H, Leufkens HG, Tijssen CC, Egberts AC. Risk of ischemic complications related to the intensity of triptan and ergotamine use. Neurology 2006;67:1128–1134.

112. Miller M, Kumar AB, Callison CR. Refractory caffeine and ergot–induced cervico–cerebral vasospasm and stroke treated with combined medical and endovascular approach. Neuroradiology 2012;54:77–79.

113. Wooltorton E. Risk of stroke, gangrene from ergot drug inter-
129. Charles JA, Jotkowitz S, Byrd LH. Prevention of migraine with olmesartan in patients with hypertension/prehypertension. *Headache* 2006;46:503-507.

130. Schrader H, Stovner LJ, Helde G, Sand T, Bovim G. Prophylactic treatment of migraine with angiotensin converting enzyme inhibitor (lisinopril): randomised, placebo controlled, crossover study. *BMJ* 2001;322:19-22.

131. Liberopoulos EN, Mikhailidis DP. Could statins be useful in the treatment of patients with migraine? *Headache* 2006;46: 672-675.

132. Medeiros FL, Medeiros PL, Valenca MM, Dodick D. Simvastatin for migraine prevention. *Headache* 2007;47:855-856.

133. Buettner C, Nir RR, Bertisch SM, Bernstein C, Schain A, Mittleman MA, et al. Simvastatin and Vitamin D for Migraine Prevention: a Randomized Controlled Trial. *Ann Neurol* 2015.

134. Yin Z, Fang Y, Ren L, Wang X, Zhang A, Lin J, et al. Atorvastatin attenuates NF-kappaB activation in trigeminal nucleus caudalis in a rat model of migraine. *Neurosci Lett* 2009;465: 61-65.

135. Bucelli RC, Gonsiorek EA, Kim WY, Bruun D, Rabin RA, Higgins D, et al. Statins decrease expression of the proinflammatory neuropeptides calcitonin gene-related peptide and substance P in sensory neurons. *J Pharmacol Exp Ther* 2008;324:1172-1180.