EFFECT OF FOOD HOST TYPE, EXPOSURE TIME IN RESPONSIBILITY OF DIFFERENT STAGE OF Trogoderma granarium Everts KHABRA BEETLE FOR MICROWAVE RADIATION UNDER STORAGE IN BAGS

Emad Q. AL-Ebady
Plant Prot. Dept., College of Agriculture and Forestry, Mosul University. Iraq
E-mail: Semad82@yahoo.com

ABSTRACT
The results of food kind exposed to radiation exhibited a different mean mortality on adults reached 52.41, 58.70, 50.37 and 52.41% and for percent egg hatch reached 12.96, 17.78, 18.33 and 18.33% while the mean mortality in larvae reached 45.56, 46.48, 41.30 and 38.15%, and the percentage of pupae transformation to adults reached 47.96, 46.80, 45, 43.52%. Results were positively proportion with increasing the energy levels reached 22.08, 64.86, 65.14% for larvae, while the mean percentage of eggs hatching and the means percentages of pupae transformation to adults decrease with increasing energy levels reached 23.61, 17.66 and 10.28% for egg hatching, and 58.61, 40.31 and 29.17% for pupae transformation. The means of adults and larvae mortality increase with increasing the exposure period to radiation reached 31.39, 58.06, 72.78, 75.83 and 76.94%, and 21.67, 41.39, 54.72, 64.44 and 74.17% respectively. Means of eggs hatching percentage and pupae transferred to adults were proportionally decrease with increasing the exposure period. Also the storage of bags affected on mortality of adults Khapra beetle, which reached in bags 5.83%. Compared without bags reached zero, and the mean percentage of eggs hatching in bags treatment decrease reached 31.67% compared without bags reached 100%. While it was no differences in the larvae mortalities of both treatments. Also the pupae transferred to adults were proportionally decrease in bags treatment reached 89.17% compared in controlling without bags reached 100%.

Key Words: Microwave, Trogoderma granarium, Sacked grains.

INTRODUCTION
Stored grains and its products infected by stored insects during storage. The loss in stored grains by insects to attacking plants in the field. Which caused economic damage to store products Trogoderma granarium is one khapra beetle of the most serious pest of stored products in warm regions of the worlds. In Iraq it consider a primary pest of grains during storage especially on wheat, barley, cowpea, sesame, rice and the heavy infestation caused a complete damage to the grain because it prefer the germ of the grain and can not used in agriculture (Al-Iraqi 2010).
Many controlling measures were used against the stored products pests especially fumigation gases and insecticides. The adverse effects of chemical
control on environment and public health, as example the recent studies revealed that methyl bromide affect the ozone layer. Therefore the international societies attempt to adopt a plant to stop using methyl bromide and insecticides during beginning of 2005 in addition to that the appearance of resistant to insecticides (Mansor 1997). So it is necessary to look for alternative method to control the stored grains insects with any side effects.

Using microwave measure to control stored grain insects exhibited no adverse effects and control the insects successfully (Ayvas 2008) (Vadivambal 2009). Microwave radiation also kill the insects present in and out of the grains (Halverson, et al. 1999) , a study done by(Ismail 1998) proved that microwave radiation produced a good effect in killing all stages of red flour beetle and khapra beetle and ranged between 0-43.7% at energy levels 250-500 watt. While (Vadivambal, R.; D.S. Jayas and N.D.G. White 2007) found that the all adults of red flour beetle , Rusted grain beetle and grain weevil were kind when exposed for 28 Sec. to energy level 500 watt , (Yousif 2012). Confirmed that microwave radiation killed also the red flour beetle , Saw toothed grain beetle and Khapra beetle when exposed to 100, 300, 600 and 900 watt. Of energy for10, 30, 60 ,90 and 120 Sec. respectively .

The aim of this study is to find the effect of the sacked host kind and energy level and exposure period an adults and larval mortality , eggs hatching and pupation and adults emerge percentage respectively of Khapra beetle.

MATERIAL & METHODS

In this study we used two kinds of wheat (Hard and Soft wheat) and two kinds of barley (Black and White barley) and Khapra beetles were reared on each host for more than one generation to obtain stages of insect used in experiment. And exposed to microwave radiation using microwave oven (Cookworks) using three levels of energy (200, 500 and 800 watt) for five intervals (15, 30 , 45, 60 and 90 Sec.).

Exposure to Radiation :
1- Exposure of Adults: Fifty grams from each host mixed with 25 adults of Khapra beetle and put in bags made from fabric and measure 7x15 cm. three replicates were used for each host with control treatment . After exposure the samples were transported to incubator under 27±2°C and 70% relative humidity and the result will take mortality percentage of adults after 24h.

2- Exposure of eggs: In this study prepared 1Kg. from each varieties and add 100 pairs of insect adults after 72 hours to ensure the egg-laying insects were lifted from the grain . Fifty grams from each host put in bags made from fabric and measure 7x15 cm. three replicates were used for each host and control treatment . after exposure the samples were transported to incubator under 27±2°C and 70% R.H. and after 5 days eggs hatching been calculate for all treatments .

3- Exposure of Larvae : Taken Fifty grams from each host mixed with 25 third instars larvae of Khapra beetle and put in bags made from fabric and measure 7x15 cm. three replicates were used for each host and control treatment. After exposure the samples were transported to incubator under
27±2°C and 70% R.H. and the result will take mortality percentage of larvae after 24h.

4- **Exposure of pupae:** Taken Fifty grams from each host mixed with 25 pupae and put in the same bags mentioned previously. three replicates were used for each host and control treatment. After exposure the samples were transported to incubator under 27±2°C and 70% R.H. and the result will taken pupae transferred to adults after exit all living adults.

The results were analyzed statistically using (C.R.D.) and using Duncan’s test used to test the significant between means depending on (SAS). The values of correlation and equation of regression between mortality percentage , energy levels and exposure time were calculated (SAS. 2002).

RESULTS AND DISCUSSION

Infected sacked host kinds by *Trogoderma granarium* exposed to microwave showed a significant difference between the means of adults mortality percentages according to host kinds and reached the highest value 58.70% on soft wheat var. Semeto (Table 1). The previous table also showed that the means of adults mortality percentages were increased as increasing energy level (200, 500, 800 watt) and reached 22.08 , 64.85 and 73.47% respectively . from table (1) also we found a significant difference between the means of adults mortality percentage as increasing the exposure period to microwave radiation in comparison with control and from the interference between the sacked host kinds and energy level we found that the highs adults mortality percentage occurred on soft wheat var. Semeto and reached 78.89% , while the lowest mean of adult motility percentage found on white barley at energy level 200 watt and reached 15.56%. From the same table the results of the study showed that the storage of bags affected the killing of adults Khapra beetle , As the means of mortality in bags control var. reached 0, 6.67, 13.33 and 3.33% respectively compared treatment without bags reached zero.

Table (2) illustrate that the infected sacked host kinds energy level and time exposure to microwave radiation produced a different effects on the mean percentage of eggs hatching of khapra beetles the statistical analysis showed no significant different between the means of eggs hatching percentages according to sacked host kinds . From table (2) the mean of eggs hatching increased as increasing energy level and reached 23.61 , 17.66 and 10.28% respectively . the results of statistical analysis also revealed that there is a significant difference between the means of eggs hatching and energy levels and the mean eggs hatching percentage decreased with increasing the exposure period. In comparison with control .The interference results between the a lower mean of eggs hatching percentage and reached 7.78% at 800 watt energy on hard wheat var. Tamose 2 while the highest eggs hatching percentage and reached 26.67% on black barley at 200 watt energy . From the same table showed the mean percentage of eggs hatching in bags control var. decrease reached 30, 40, 26.67 and 30% respectively compared without bags reached 100%.
Table (1) Effect of food host type and period of exposure in response adult Khabra beetle to microwave radiation under storage in bags.

Host Type Food	Energy level / watt	Mean of adults mortality%	General mean effect					
	Control	15	30	45	60	90		
	Exposure period \ sec.							
Hard Wheat Tamuz 2	200	0.00 n	0.00 n	33.33 f-k	16.67 j-n	23.33 i-n	46.67 efg	20.00 f
	500	0.00 n	33.33 f-k	50.00 d-g	100 a	96.67 a	100 a	63.33d
	800	0.00 n	53.33 def	93.33 a	46.67 a	100 a	100 a	73.89 ab
Soft Wheat Semito	200	6.67 lmm	23.33 i-n	26.67 h-m	43.33 f-i	50 d-g	32.22 e	
	500	6.67 lmm	43.33 f-i	50 d-g	90.00 ab	100 a	100 a	65.00 cd
	800	6.67 lmm	70.00 bcd	96.67 a	100 a	100 a	100 a	78.89 a
Whaet Barly	200	13.33 k-n	6.67 lmm	16.67 j-n	23.33 i-n	16.67 j-n	15.56 f	
	500	13.33 k-n	33.33 i-n	66.67 cde	90.00 ab	93.33 a	90.00 ab	62.78d
	800	13.33 k-n	40.00 f-j	83.33 abc	100 a	100 a	100 a	72.78 abc
Black Barly	200	3.33 mn	16.67 j-n	16.67 j-n	30.00 h-l	50 d-f-k	20.05 f	
	500	3.33 mn	36.67 f-k	86.67 abc	83.33 abc	100 a	100 a	68.33 bcd
	800	3.33 mn	40.00 g-l	76.67 abc	100 a	100 a	100 a	68.33 bcd

Inter. Between Host Type & Exposure Times

General mean effect	Host Type Food	Energy level						
Inter. Between	H. W. Tamuz 2	0.00 k	28.89 g	58.89 def	71.11 a-d	73.33 abc	82.22 ab	52.41 b
	S. W. Semito	6.67 jk	45.56 g	57.78 ef	77.78 abc	81.11 abc	83.33 a	58.70 a
	Whaet Barly	13.33 ij	23.33 hi	55.56 fg	71.11 a-d	70.00 bcd	68.89 cde	50.37 b
	Black Barly	3.33 jk	27.78 h	60.00 def	71.11 a-d	78.89 abc	73.33 abc	52.41 b

Inter. Between Energy Level & Exposure Times

General mean effect	Host Type Food	Energy level						
Inter. Between	200	5.83 g	11.67 g	23.33 f	28.33 ef	30.00 ef	33.33 ef	22.08 c
	500	5.83 g	34.17 e	63.33 c	90.83 ab	97.50 ab	97.50 ab	64.86 b
	800	5.83 g	48.33 cd	50 d-f-k	99.17 a	100 a	100 a	73.47 a

Exposure times \ sec.

General mean effect	Host Type Food	Energy level				
5.83 d	31.39 c	58.06 b	72.78 a	75.83 a	76.94 a	52.41 b

Means with different letters in the same sectors showed a significant different at p= 5%

% Mortality control without bags = zero
Table (2) Effect of food host type and period of exposure Khabra beetle to microwave radiation on percentage of hatching eggs under storage in bags.

Host Type Food	Energy level / watt	Mean of percent eggs hatch %	General mean effect			
	Control 15 30 45 60 90	Exposure period \ sec.	Host Type Food	Energy level		
Hard Wheat Tamuz 2	200	30.00abc 26.67 abc 13.33 abc 13.33 abc 10.00 abc 10.00 abc	17.22 abc	H. W. Tamuz 2	30.00 ab 17.78 b-e 11.11 b-e 7.78 de 5.56 e 5.56 e	12.96 a
	500	30.00abc 13.33 abc 20.00 abc 10.00 abc 6.67 abc	3.33 bc	S. W. Semito	40.00 a 21.11 b-e 15.56 b-e 14.44 b-e 8.89 cde 6.67 e	17.78 a
	800	30.00abc 13.33 abc 0.00 c 0.00 c 0.00 c 3.33 bc 7.78 c	12.22 bc			
Soft Wheat Semito	200	40.00 a 23.33 abc 16.76 abc 36.67 ab 16.67 abc 13.33 abc 24.44 ab	26.11 a			
	500	40.00 a 23.33 abc 6.67 abc 0.00 c 0.00 c 0.00 c 12.22 bc				
	800	40.00 a 23.33 abc 6.67 abc 0.00 c 0.00 c 6.67 abc 19.44 abc				
Whaet Barly	200	26.67abc 26.67 abc 26.67 abc 26.67 abc 33.33 abc 16.67 abc 26.11 a				
	500	26.67abc 20.00 abc 33.33 abc 6.67 abc 13.33 abc 16.67 abc 19.44 abc				
	800	26.67abc 20.00 abc 6.67 abc 0.00 c 0.00 c 3.33 bc 9.44 c				
Black Barly	200	30.00abc 30.00 abc 30.00 abc 30.00 abc 13.33 abc 26.67 abc 26.67 a				
	500	30.00abc 20.00 abc 30.00 abc 3.33 abc 10.00 abc 6.67 abc 16.67 abc				
	800	30.00abc 33.33 abc 0.00 c 0.00 c 6.67 c 0.00 c 11.67 bc				

Means with different letters in the same sectors showed a significant different at p= 5%

% Mortality control without bags = 100
The results of table (3) showed that there is no significant effect of sacked host kind on the mean mortality percentage of khapra larvae, the results of table (3) showed that increasing energy levels (200, 500, 800 watt) increased the larvae mortality percentages and reached 23.06, 40.42, 65.14% respectively. The means mortality of larvae increased as increasing the time of exposure to radiation and reached 21.67, 41.30, 54.72, 64.44 and 74.17% at 15, 30, 45, 60 and 90 Sec. respectively in comparison with control treatment which reached 0.83%. The results of statistical analysis revealed a significant difference between the means of larvae mortality percentages and time of exposure to radiation and control. The interaction results between sacked host kind and energy level showed that the highest mean of larvae mortality noticed on hard and soft wheat at energy level 800 watt reached 68.89, 68.33% respectively, while the lowest mean of larvae mortality percentage found on black barley at 200 watt and reached 7.22% (Table 3). From the same table there was no effect of the bags in means mortality Khapra beetle larvae between comparison bags and non bags.

The results of table (4) showed that the sacked host kind exhibit no significant effect on mean percentage of transforming pupae to adults, the results of the same table showed that the mean percentage of pupae transformation to adults were decreased as increasing the energy level (200, 500, 800 watt) and reached 58.61, 49.31, 29.17% respectively. The statistical analyses confirmed a significant difference between the means of the pupae transformation percentages to adults and energy levels. The mean transformation of pupae reduced as increasing the exposure period 15, 30, 45, 60 and 90 Sec. reached 63.78, 45.60, 35.83, 25.56 and 15.28% respectively in comparison with 89.17% for control. At the same time were a significant different between the means of pupae transformation and exposure time and control. The results of interaction between sacked host kinds and energy levels showed that the lowest pupae transformation to adults occurred on white barley at 800 watt energy and reached 27.22%, while the highest mean of pupae transformation occurred on soft wheat var. Semeto at energy level 200 watt and reached 60%. showed pupae transferred to adults were proportionally decrease in controlling bags reached 89.17% compared in controlling without bags reached 100% (Table 4). This results agreed with (AL-Ebady and Marwa 2018) were found that the means of mortality percentages of all stages of *Callosobruchus maculatus* increased as increasing the level of energy and time of exposure, and agreed with (AL-Ebady and Mohammed 2018) were found that the lethal dose of energy reduce the percentage of transformation of larvae to pupae and pupae to adults.

The values of coefficient factor and the regression equation between mortality percentage of all stages of Khapra beetle and energy level and time of exposure were listed in table (5) and showed that larvae and pupae were more affected by exposure to microwave radiation on studied host in comparison with adults and eggs. The highest value of coefficient factor for pupae transformation occurred on soft wheat var. Semeto reached 91.5. The linear regression equation revealed that increasing energy levels and exposure
Table (3) Effect of food host type and exposure period in response Larvae Khabra beetle to microwave radiation under storage in bags.

Host Type Food	Energy level / watt	Mean of mortality%	General mean effect					
	Control	15	30					
		45	60					
		90						
Hard Wheat Tamuz 2	200	3.33 ij	6.67 hij	13.33 f-j	43.33 a-j	40.00 a-j	56.67 a-j	27.22 cde
	500	3.33 ij	36.67 a-j	40.00a-j	46.67 a-j	53.33 a-j	66.67 a-i	41.11 bcd
	800	3.33 ij	20.00 d-j	86.67 abc	100 a	100 a	100 a	68.33 a
Soft Wheat Semito	200	0.00 j	16.67 e-j	13.33 f-j	43.33 a-j	46.67 a-j	53.33 a-j	41.67 bcd
	500	0.00 j	36.67 g-j	36.67 a-j	46.67 a-j	56.67 a-j	73.33 a-g	28.89 cde
	800	0.00 j	43.33 a-j	83.33 a-d	90.00 ab	100 a	96.67 a	68.89 a
Whaet Barly	200	0.00 j	3.33 ij	6.67 hij	13.33 f-j	36.67 a-j	53.33 a-j	18.89 de
	500	0.00 j	40.00 a-j	40.00 a-j	53.33 a-j	60.00 a-j	76.67 a-f	45.00 bc
	800	0.00 j	16.67 e-j	66.67 a-i	80.00 a-e	96.67 ab	100 a	60.00 ab
Black Barly	200	0.00 j	6.67 hij	10.00 g-j	10.00 g-j	33.33 c-j	43.33 a-j	17.22 e
	500	0.00 j	16.67 e-j	23.33 c-j	36.67 a-j	56.67 a-j	70.00 a-j	33.89 cde
	800	0.00 j	16.67 e-j	76.67 a-f	93.33 ab	93.33 ab	100 a	63.33 ab

Means with different letters in the same sectors showed a significant different at p= 5%

%Mortality control without bags = zero
Table (4) Effect of food host type and exposure Khabra beetle to microwave radiation on percentage of transforming pupae to adults under storage in bags.

Host Type Food	Energy level / watt	Mean of percent of pupae transformed to adult%	General mean effect						
	Control	15	30	45	60	90		Host Type Food	Energy level
								Host Type Food	
Hard Wheat Tamuz 2	200	93.33 a	73.33 a-e	56.67 a-h	56.67 a-h	36.67 d-i	40.00 d-i	59.44 a	
	500	93.33 a	73.33 a-e	53.33 a-h	56.67 a-h	36.67 d-i	20.00 ghi	55.56 a	
	800	93.33 a	43.33 c-g	23.33 ghi	13.33 hi	0.00 i	0.00 i	28.89 c	
Soft Wheat Semito	200	90.00 ab	76.67 a-d	56.67 a-h	56.67 a-h	50.00 b-h	30.00 f-i	60.00 a	
	500	90.00 ab	63.33 a-g	46.67 c-h	36.67 d-i	30.00 f-i	16.67 hi	47.22 ab	
	800	90.00 ab	50.50 a-h	33.33 f-i	16.67 hi	0.00 i	0.00 i	31.67 bc	
Whaet Barly	200	90.00 ab	66.67 a-f	63.33 a-g	60.00 a-g	43.33 c-h	23.33 ghi	57.78 a	
	500	90.00 ab	73.33 a-e	53.33 a-h	26.67 f-i	36.67 d-i	20.00 ghi	50.00 a	
	800	90.00 ab	33.33 e-i	26.67 f-i	13.33 hi	0.00 i	0.00 i	27.22 c	
Black Barly	200	83.33 abc	76.67 a-d	63.33 a-g	53.33 a-h	46.67 c-h	20.00 ghi	57.22 a	
	500	83.33 abc	66.67 a-f	50.00 b-h	26.67 f-i	26.67 f-i	13.33 hi	44.44 ab	
	800	83.33 abc	56.67 a-h	20.00 ghi	13.33 hi	0.00 i	0.00 i	28.89 c	

Means with different letters in the same sectors showed a significant different at p=5%
% Mortality control without bags = 100
Table (5) Regressions equation and effect rate of the relation mortality Khabra beetle and microwave energy level and exposure time.

Host type food	Adults	percent of hatching eggs	Larvae	ratio of the conversion of pupae to adults				
	Effect rate	Regressions equation						
Hard Wheat Tamuz 2	73.4	Y=18.84+1.0797X-0.00472X²	66.8	Y=23.08+0.2529X	81.2	Y=13.556+0.80007X	83.8	Y=78.9-0.7735X
Soft Wheat Semito	75.5	Y=26.75+0.7990X	63.3	Y=33.67-0.69123X	89.6	Y=3.5913+1.6265X-0.009405X²	91.5	Y=73.16-0.7132X
Whaet Barly	61.6	Y=22.63+0.7408X	60	Y=24.957+0.089X-0.006870X²	87.2	Y=7.093+0.8548X	87.2	Y=79.816-1.0665X+0.00317X²
Black Barly	77.83	Y=17.374+1.054X	54.9	Y=31.87-0.4687X+0.007801X²+0.0000645X³	88.43	Y=5.5016+0.80516X+0.000528X²	89.7	Y=75.853-0.8085X

Y: Mortality Khabra beetle
X₁: Microwave energy level
X₂: Exposure time
تأثر نوع العائل الغذائي ومدة التعريض في استجابة الأطوار المختلفة لعنفسة الحبوب الشعريبة Trogoderma granarium (الخابرا) للأشعة المايكروية تحت ظروف الخزن المكيسة

عماد قاسم العبادي
جامعة الموصل / كلية الزراعة والغابات / قسم وقاية النبات
Email: semad82@yahoo.com

الخلاصة

أظهرت نتائج الدراسة تباين تأثير نوع العائل الغذائي للأشعة المايكروية إذ بلغت نسبة القتل في البيض 52.41% و58.7 و50.37% للكاملات و12.96% و17.78% و18.33% لفقس الحشرة، وبiteit النتائج تساببت متوسطات نفس قتل الكاملات والبرقاص بنسبة 23.06% و64.86% و73.47% للكاملات و60.12% و40.42% و65.14% للبرقاص فيما تساببت متوسطات نفس قتل البيض بنسبة تطور العذاري إلى كاملات بنسبة 49.31% و29.17% و30.38% و71.66% و17.66% و23.61% لفقس البيض والبريكس و58.61% و49.31% و29.17% نسبة تطور العذاري إلى كاملات و10.28% لفقس البيض و58.61% و49.31% و29.17% و71.66% و17.66% و23.61% لفقس البيض.

تأثر نوع العائل الغذائي ومدة التعريض في استجابة الأطوار المختلفة لعنفسة الحبوب الشعريبة Trogoderma granarium (الخابرا) للأشعة المايكروية تحت ظروف الخزن المكيسة.

تاريخ تسلم البحث: 29 /12 /2019 وقبوله: 20 /1/2020

الكلمات الدالة: الأطوار المايكروية، حبوب مكيسة، Trogoderma granarium
REFERENCES

AL-Ebady, Emad , Q. and M. A. Marwa.(2018). "The effect of legume type, energy level, and period of exposure to microwaves on the response of cowpea weevil Callosobruchus maculatus (Fab.) (Bruchidae: Coleoptera)." Syrian Journal of Agricultural Research SJAR, 5(4):276-287.

AL-Ebady, Emad, and S. A. Mohammed.(2018). "The effect of wheat type and method of exposure in response Khabra beetle to microwave radiation." Mesopotamia Journal of Agriculture. 46(2):314-302.

Al-Iraqi, Riadh Ahmed.(2010). Pest Stored Products and Control Method . Uneverstiy of Mosul , Iraq: Dar Ibn Alatheer, pp616.

SAS. 2002. SAS User’s Guide, ver. 9.1. SAS Institute, Cary, NC.

Ayvas, A. and S. Karaborklu .(2008). "Effect of cold storage and different diets on Ephestia kuehiella zaller (Lep.:Pyralidae). ." Journal Pest Science, 81(1):57-62.

Halverson, S. L., T. W. Phillips, T. S. Bigelow, and G. N. Mabata and M.E. Payton.(1999). "The control of various species of stored product insects with EHF energy." Annual Internationl Research Conference on Methyl Bromide Alternatives and Emission Reduction. San Diego: Californiam, November . 1-4.

Ismail, Aead Yousif.(1998). Use of non-ionizied electromagnetic radiation fields for control of red flour beetle Tribolium castaneum and Khapra beetle Trogoderma granarium. Mosul: Ph.D College of Agriculture and Forestry , University of Mosul , pp90.

Mansor, Mohammed.(1997). "Control of stored grain insects and products using ionizing radiation." Corn Bulletin and Development, 9(4):31-35.

Vadivambal, R.(2009). Disinfection of stored grain insects using microwave energy. Manitoba: Ph.D. Thesis . University of Manitoba , winnipeg . pp197.

Vadivambal, R.; D.S. Jayas and N.D.G. White.(2007) "Determination of mortality of lifestages of Tribolium castaneum (Coleoptera: Tenebrionidae)in stored barley using microwaves." Journal of Economic Entomology, 101(3):1011-1021.

Yousif, Shaymaa Mohameed Hisham.(2012). The uses of microwave radiation to control some insects of stored Rice and its effects on qualities. M.Sc. College of Education , University of Mosul , pp120.