An X-ray bright ERO hosting a type 2 QSO*

P. Severgnini1, A. Caccianiga1, V. Braito1,2, R. Della Ceca1, T. Maccacaro1, M. Akiyama3, F. J. Carrera4, M. T. Ceballos4, M. J. Page5, P. Saracco1, and M. G. Watson6

1 INAF - Osservatorio Astronomico di Brera (OAB), Via Brera 28, I-20121, Milano, Italy
2 Exploration of the Universe Division, NASA Goddard Space Flight Center, Greenbelt Road, Greenbelt, MD 20771
3 Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720, USA
4 Instituto de Fisica de Cantabria (CSIC-UC), Avenida de los Castros, 39005 Santander, Spain
5 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK
6 X-ray Astronomy Group, Department of Physics and Astronomy, Leicester University, Leicester LE1 7RH, UK

Received ...; accepted ...

Abstract. We present the XMM-Newton and the optical–VLT spectra along with the optical and the near–infrared photometric data of one of the brightest X-ray (F_{2–10 keV}~10^{-11} erg s^{-1} cm^{-2}) extremely red objects (R-K_{opt}~5) discovered so far. The source, XBS J0216-0435, belongs to the XMM-Newton Bright Serendipitous Survey and it has extreme X–ray–to–optical (~220) and X–ray–to–near–infrared (~60) flux ratios. Thanks to its brightness, the X-ray statistics are good enough for an accurate spectral analysis by which the presence of an X-ray obscured (N_H~10^{22} cm^{-2}) QSO (L_{2–10 keV}=4\times10^{46} erg s^{-1}) is determined. A statistically significant (~99%) excess around 2 keV in the observed–frame suggests the presence of an emission line. By assuming that this feature corresponds to the iron Kα line at 6.4 keV, a first estimate of the redshift of the source is derived (z_X~2).

The presence of a high redshift QSO2 has been finally confirmed through dedicated VLT optical spectroscopic observations (z_0=1.985±0.002). This result yields to an optical validation of a new X-ray Line Emitting Object (XLEO) for which the redshift has been firstly derived from the X-ray data. XBS J0216-0435 can be considered one of the few examples of X-ray obscured QSO2 at high redshift for which a detailed X-ray and optical spectral analysis has been possible. The spectral energy distribution from radio to X-rays is also presented. Finally from the near–infrared data the luminosity and the stellar mass of the host galaxy has been estimated finding a new example of the coexistence at high–z between massive galaxies and powerful QSOs.

Key words. galaxies: active - X-rays: galaxies - galaxies: individual: XBS J0216-0435

1. Introduction

Extremely red objects (R-K_{opt}~5, EROs) with bright X-ray fluxes (F_{2–10 keV}~10^{-14} erg s^{-1} cm^{-2}) and with high X-ray–to–optical and X-ray–to–NIR (near–infrared) flux ratios (F_{2–10 keV}/F_{opt}, F_{2–10 keV}/F_K~10) are among the best candidates to be obscured AGNs, i.e. the main ingredient of the X–ray Cosmic Background (Gilli et al. 2001a; Maiolino et al. 2003). Indeed, given the minimum redshift observed for extragalactic EROs with such high flux ratios (z\geq0.6, see e.g. Akiyama et al. 2001; Mignoli et al. 2003; Severgnini et al. 2005a and references therein; Maiolino et al. 2003) an X-ray flux ~10^{-14} erg s^{-1} cm^{-2} corresponds to L_{2–10 keV}~10^{43} erg s^{-1}, typical of AGN. Moreover, a factor of at least 10 higher in the F_{2–10 keV}/F_{opt} and F_{2–10 keV}/F_K ratios than those observed for unobscured AGNs (F_{2–10 keV}/F_{opt}, F_{2–10 keV}/F_K~1) can be easily justified by invoking the presence of an obscuring optically–thick medium (e.g. molecular torus) along the line of sight. In this case, while the UV and optical emission is totally or heavily suppressed by the large amount of dust, the X–ray emission is less affected by the absorbing medium producing high F_{2–10 keV}/F_{opt} and F_{2–10 keV}/F_K. If the above scenario is true, it implies that the selection of EROs with such high flux...
ratios at bright X–ray fluxes ($F_{(2–10\text{ keV})} \geq 10^{-13}\text{ erg s}^{-1}\text{ cm}^{-2}$) is an extremely efficient way to find the long sought high luminosity ($L_{(2–10\text{ keV})} > 10^{44}\text{ erg s}^{-1}$), X–ray obscured type 2 QSOs (hereafter QSO2).

In this paper we present XMM–Newton and VLT optical spectroscopic data of a very red X–ray selected source (XBS J0216–0435) belonging to the XMM–Newton Bright Serendipitous Survey (XBS) project (Della Ceca et al. 2005; Caccianiga et al. 2004; Severgnini et al. 2004). This source, given its bright X–ray flux and its high $F_{(2–10\text{ keV})}/F_{\text{opt}}$ and $F_{(2–10\text{ keV})}/F_{K}$, represents the prototype of the EROs in which a QSO2 is expected. The good X–ray statistics have made the spectral analysis possible and allowed us to give a first estimate of the redshift of the source ($z \sim 2$, Sect. 3). The X–ray properties found (the spectral shape, the amount of absorption and the presence of the FeK line) are typical of an obscured QSO. The presence of a high redshift QSO2 has been finally confirmed through dedicated VLT optical spectroscopic observations (Sect. 4).

Throughout this paper we assume $H_0 = 65\text{ km s}^{-1}\text{ Mpc}^{-1}$ and $\Omega_M = 0.3$, $\Omega_{\Lambda} = 0.7$. All the magnitudes are in the Vega system.

2. An ERO with extreme $F_{(2–10\text{ keV})}/F_{\text{opt}}$ and $F_{(2–10\text{ keV})}/F_{K}$ flux ratios

XBS J0216–0435 belongs to the XMM–BSS sample. The sample definition and selection criteria are described in Della Ceca et al. (2004). The X–ray source discussed here is in the XMM–Newton Subaru field SXDS4 and has a count rate in the 0.5–4.5 keV band of $(1.32 \pm 0.12) \times 10^{-2}\text{ counts s}^{-1}$ which corresponds to a $F_{(0.5–4.5\text{ keV})} \sim 10^{-13}\text{ erg cm}^{-2}\text{ s}^{-1}$ (see Della Ceca et al. 2004). Contrary to the majority (~90%) of the XMM–BSS sources, the optical counterpart of XBS J0216–0435 is much fainter than the POSS II limit (R = 21 mag).

Our own R–band and K–band photometric observations have been performed on January 2005 at the ESO New Technology Telescope (NTT) using the ESO Multi–Mode Instrument (EMMI, 1 hour of exposure time) and on October 2002 at the Telescopio Nazionale Galileo (TNG) using the Near Infrared Camera Spectrometer (NICS, 15 minutes of exposure) respectively. Both the observing runs were carried out under similar seeing conditions (~1.2′′). The optical and NIR images were reduced using standard iraf routines. The zero–points have been derived by measuring the instrumental magnitudes of standard stars observed just before and/or after the scientific target and assuming the average extinction reported in the Observatory web pages. Astrometric calibration was performed using the software package GAIA (version 2.6–9 by P.W. Draper) by matching sources found in the USNO catalogue (Monet et al. 1998). The typical uncertainty in the best fit solution is about 1″. A weak (R = 24.5 mag, see Figure 1, left panel) optical counterpart is visible within 4 arcsec from the X–ray position of the source (corresponding to the 90% confidence level X–ray error circle, see Della Ceca et al. 2004). Within the same distance from the X–ray position, two possible weak NIR objects are visible with a K′ ~ 19.5 mag (see Figure 1, right panel). The two NIR sources are separated by ~1″. Even though the quality of the data is not good enough to allow a morphological analysis, all the sources appear extended. We have positionally registered the R to the K′ image by using the 8 brightest sources in the field. We find that the optical source is spatially coincident with the southern NIR source. This latter is also the NIR source closest to the X–ray centroid position (less than 1″). Given the color of the two sources (R–K′ ~ 5 for the southern source and R–K′ > 6 for the northern one) these objects can be classified as EROs. Although the different optical–to–NIR colors of the two objects suggest that they could have different redshifts, the presence of a group of galaxies can not be ruled out. However, even in the case of a group, the X–ray emission observed is dominated by a powerful AGN (see Sect. 3) which, on the basis of VLT optical spectroscopic observations (see Sect. 4), is hosted in the southern ERO. This source is the object with the highest $F_{(2–10\text{ keV})}/F_{\text{opt}}$ (~220)

Fig. 1. R–band (left panel) and K–band (right panel) smoothed images (30″×30″) of XBS J0216–0435. North is to the top and east to the left. The circle of 4″ of radius marks the centroid of the X–ray position. The strong gradient present in the optical image is due to a very bright star (R = 9 mag) near the objects considered here.
among the XMM–BSS sources (see Fig. 6 in Della Ceca et al. 2003). Furthermore, taking into account the 2–10 keV X–ray emitting EROs collected from the literature by Brusa et al. (2005), XBS J0216-0435 is one of the EROs with the highest X–ray flux among those with the highest \(F_{\text{2–10 keV}}/F_{\text{opt}} \) (filled circle in Figure 2) and X–ray–to–NIR ratios (XBS J0216-0435 has a \(F_{\text{2–10 keV}}/F_{\text{K}} \) \(\sim \)60, see for comparison Fig. 4 of Brusa et al. 2005). We note that, as described in the next section, we have derived the X–ray flux from two different XMM–Newton observations separated by more than two years. The extremely high \(F_{\text{2–10 keV}}/F_{\text{opt}}(F_K) \) ratios quoted above are not likely due to an intrinsic variation of the source since the X–ray fluxes measured in the two observations are consistent within the errors.

\[F_{\text{opt}} = 1568 \, \text{Å} \times (2.15 \times 10^{-9} \, \text{cgs} \, \text{Å}^{-1} \times 10^{-0.4 \text{mag}}), \]

\(\Delta \chi^2 = 2.71 \)

Table 1. XMM-Newton observations of XBS J0216-0435

Obs. ID	EPIC-cameras	Net exposure time
011237	MOS1+MOS2	~39 ksec
2003	pn	~22 ksec
1701	MOS1+MOS2	~52 ksec

3. XMM-Newton data

3.1. X-ray observations

XBS J0216-0435 was serendipitously observed by the EPIC cameras on 08 August 2000 (OBS ID=0112371701, ~24 ksec exposure) and on 07 January 2003 (OBS ID=0112372001, ~28 ksec exposure). The observations were carried out in full frame mode and with the thin filter applied. The data have been processed using the SAS (Science Analysis Software) version 5.4. The latest calibration files and response matrices released by the EPIC team have been used to create new response matrices that include also the correction for the effective area of the source position in the detector (off–axis ~8 arcmin). Events files released from the standard pipeline have been filtered from high background time intervals and only events corresponding to patterns 0–12 and 0–4 have been used for the MOS and pn respectively. In the first of the two exposures, XBS J0216-0435 lies on a gap of the pn camera and only the MOS data are available. The net exposure times after data cleaning are reported in Table 1.

At the spatial resolution of XMM-Newton EPIC instruments, our source is consistent with a point–like object. This result does not discard the presence of a group of galaxies or a small cluster (core radius of order of 90 kpc, Mohr et al. 1999).

3.2. X-ray spectral analysis

The spectral analysis has been performed using XSPEC 11.2.0. The X-ray spectrum was extracted using a circular region of 28″ of radius in all the images except for the MOS data of the second observation where a smaller aperture (21″ of radius) has been used because of the proximity of a CCD gap. In all cases the background spectra were extracted from ~4 times larger source–free circular regions close to the object. In order to improve the statistics, MOS1 and MOS2 data of each observation have been combined together and, finally, MOS and pn spectra have been binned to have at least 20 total counts per energy channel. The MOS and pn spectra of the second observation were fitted simultaneously in the 0.5–10 keV band leaving free the relative normalizations. Total net counts of ~250 and ~740 have been accumulated in the first and second observation respectively. In the fitting procedure, the appropriate Galactic hydrogen column density along the line of sight (2.37\(\times \)10\(^{20}\) cm\(^{-2}\)) has been taken into account (Dickey & Lockman 1990). In the rest of the paper, and unless stated otherwise, errors are given at the 90% confidence level for one interesting parameter.
The photometric optical, NIR and X-ray properties of XBS J0216-0435 suggest that the observed X-ray emission could be due to the presence of an obscured AGN and/or a group or a small cluster of galaxies. While a pure thermal component (mekal thermal plasma model, Mewe, Gronenschild & van den Oord 1985; Kaastra 1992; Liedahl, Osterheld & Goldstein 1995) is rejected by the fit (assuming solar abundances and kT<10 keV the resulting χ^2/dof is higher than 2.5 for any z), by fitting the data with a single absorbed power-law model (typical of obscured AGN) we find a good description of the overall spectrum of the source (for both the observations we obtained a χ^2/dof ~ 1). The addition of a thermal component to the power-law model is not statistically required. These results make it unlikely that the X-ray emission is associated with a cluster/group of galaxies, and point towards the presence of a powerful, dominant AGN. Furthermore, as already discussed in Severgnini et al. 2005b and shown in Figure 3, by fitting the data with an absorbed power-law model, the presence of an excess around 2 keV (observed-frame) suggests line-like residuals. It is worth noting that the line-like residual has been observed only in the second observation where the statistics are better. We have verified that the equivalent width estimated for this line (see Table 2) is comparable to the upper limit measurable in the first observation. The data of the second observation have been fitted again adding a Gaussian component ($\Delta \chi^2$=10 for Δ d.o.f=3). Since the strongest feature expected in the X-ray spectrum of AGN is the neutral iron Kα line at 6.4 keV rest-frame (Reynolds et al. 1994), we have associated the 2 keV excess with this line. This places the source at $z=2.27\pm0.11$.

The optical VLT spectrum obtained for the object visible in the R-band (Fig. 1, left panel) gives a redshift of $z=1.985$ (see Sect. 4). This value is in excellent agreement with the one derived from the XMM-Newton data. We report in Table 2 the best fit (rest-frame) X-ray parameters and the intrinsic X-ray luminosity obtained by fixing the redshift to 1.985. These values refer to the data of the second observation where the line is observed. Although the quality of the data from the first observation are not good enough to detect the Fe line (we don’t use them in this part of the analysis), the continuum parameters obtained from the two observations are consistent within the errors.

On the basis of the optical redshift, the rest-frame energy of the line falls to 5.8$^{+0.7}_{-0.2}$ keV. This value is consistent with the rest-frame energy of the iron Kα line (6.4 keV). A detailed analysis of the line properties is not warranted by the quality of the data. Both the line broadening and the high EW$_{Fe-K\alpha}$ observed (see Table 2) could be due to the merging of several narrow ($\sigma=0.1$ keV) lines (e.g. 6.4 keV plus 6.7 keV). As reported in Table 2, the intrinsic column density measured is typical of obscured AGN ($N_H\geq10^{22}$ cm$^{-2}$) and the intrinsic luminosity places the source in the QSO regime ($L_{1.2-10keV}=4.1\times10^{45}$ erg s$^{-1}$).

6 Two other excesses of lower statistical significance ($\Delta \chi^2=4$) are present at ~2.37 keV and 3.19 keV (7.07 keV and 9.52 keV in the rest-frame assuming a $z=1.985$). The first one could be associated to the ionized iron Kβ line (7.05 keV).

Fig. 3. Mos+pn folded X-ray spectrum of XBS J0216-0435 (upper panel, solid points) obtained during the second (0112372001) observation. The data are fitted by a single absorbed power-law model (continuous lines). Ratio between data and model is plotted in the lower panel as a function of energy.

Fig. 4. Mos+pn folded X-ray spectrum of XBS J0216-0435 (upper panel, solid points) and the best–fit for the following model: single absorbed power-law model plus Gaussian line at the optical redshift of $z=1.985$ (continuous lines). Ratio between data and model is plotted in the lower panel as a function of energy.

In conclusion, the X-ray spectral analysis unambiguously reveals the presence of a dominant, high redshift and X-ray obscured QSO.

4. Optical spectroscopic data

4.1. Observation and data reduction

The object visible in the R-band (Fig. 1, left panel) has been observed spectroscopically at ESO VLT using FORS2 during the night between the 29th and the 30th of September 2005 (from UT=04:14:12 to UT=05:14:38, including overheads). Grism 300V+20 was used with no sorting filters and a slit width of 1.6 ″. The grism gives a spectral dispersion of 3.3 ″ pixel$^{-1}$. The slit was rotated -20 deg in order to include the second object possibly observed in the K-band image. However, only one source turned out to be visible in the spectrum. Two exposures...
Table 2. Rest–frame best fit parameters assuming an absorbed power–law at \(z = 1.985 \).

Obs. ID	\(\Gamma \)	\(N_H \) \((10^{22} \text{ cm}^{-2})\)	\(E_{p_{\text{rest}}} \) \((\text{keV})\)	\(E_{W_{\text{rest}}} \) \((\text{keV})\)	\(\sigma_{F_{\text{rest}}} \) \((\text{keV})\)	\(\chi^2/\text{dof} \)	\(F_{2-10 \text{keV}} \) \((10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1})\)	\(L_{2-10 \text{keV}} \) \((10^{41} \text{ erg s}^{-1})\)
011237	\(2.0_{-0.1}^{+0.2} \)	\(4.7^{+1.5}_{-1.3} \)	\(5.8^{+0.7}_{-0.2} \)	\(0.7^{+0.5}_{-0.4} \)	\(0.3_{-0.3}^{+0.7} \)	25.11/33	1.1	41.0

\(^a\) The flux is corrected only for the Galactic absorption.

\(^b\) The luminosity is corrected for Galactic and intrinsic absorption.

\(^c\) Statistical uncertainties are of about 20%.

of 2790 seconds each have been taken for a total of 5580 seconds. The DIMM seeing during the observation ranges from 0.90'' to 1.58'' with an average value of about 1.2''. The slit was not oriented along the parallactic angle, but the source was observed at a low airmass (between 1.1 and 1.25) and the slit width was large (1.6'') when compared to the average seeing so that only a marginal flux loss in the blue part of the spectrum may have occurred. Therefore, no correction has been applied. For the data reduction we have used the standard IRAF long-slit package following the standard steps.

4.2. Spectral analysis

The flux-calibrated spectrum is shown in Fig 5. At least three emission lines are clearly visible in the spectrum at 4624Å, 4899Å and 5696Å. These 3 lines are identified with C IV at \(\lambda_{\text{rest}} = 1549 \text{Å} \) (z = 1.985), He II at 1640Å (z = 1.987) and C III] at 1909Å (z = 1.984) respectively. Two weaker additional lines are then possibly identified at \(\sim 3960 \text{Å} \) with C II at \(\lambda_{\text{rest}} = 1336 \text{Å} \) and at \(\sim 8350 \text{Å} \) with Mg II at \(\lambda_{\text{rest}} = 2798 \text{Å} \). Using 3 strongest lines we estimate a redshift of \(z = 1.985 \pm 0.002 \), in excellent agreement with the one derived from X–rays.

The computed widths for the three strongest lines are between 900 km s\(^{-1}\) (He II) and 1400-1500 km s\(^{-1}\) (CIV and CII]). Considering the spectral resolution of the instrument the intrinsic width of the lines is consistent with being \(\leq 1200 \text{ km s}^{-1} \). This is close to the “standard” classification of type 2 AGN (FWHM<1000 km s\(^{-1}\)) while it is different from the line widths measured in “Narrow Lined QSO” (NLQSO) like those studied by Baldwin et al. \[1988\] (1700 - 2700 km s\(^{-1}\)). Another strong indication of the fact that XBS J0216-0435 is a “truly” type 2 QSO and not a QSO where the broad line region produces intrinsically narrow lines, is given by the He II/CIV line ratio. As suggested by Heckman et al. \[1995\] the He II/CIV line ratio can be used to distinguish between true type 2 objects and narrow line QSO. The former sources show a very strong He II (He II/CIV \(\sim 0.6-0.9 \)) while in the latter the HeII/CIV ratio is much lower (\(\sim 0.05 - 0.2 \)). The optical spectrum of XBS J0216-0435 shows a very prominent He II line (He II/CIV \(\sim 0.6 \)) in full agreement with the values observed in type 2 AGN (type 2 QSO, Sy2 and Narrow Line radio galaxies).

We conclude that, from the optical spectral point of view, XBS J0216-0435 is a type 2 QSO hosted by an ERO at \(z = 1.985 \). In particular, at the time of writing, XBS J0216-0435 is the only type 2 QSO at \(z \sim 2 \) found in the XMM–BSS survey (the identification rate is \(\sim 90\% \)). This implies that this kind of sources are quite rare at bright X–ray flux (\(\sim 10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2} \)).

5. Spectral Energy Distribution of XBS J0216-0435

Although the blue spectral coverage of the optical spectrum allows to give only a weak constrain on the absorption in the optical band (\(A_V \)), a more stringent lower limit can be derived by using the spectral energy distribution (SED) of the source. All the available photometric points for XBS J0216-0435 are shown in Fig. 6. While the X–ray, optical and NIR data have been derived from our own analysis (see Sect. 2 and 3.1), the mid-infrared (3.6, 4.5, 5.8, 8.0 and 24 \(\mu\)m) data are part of the second SWIRE–Spitzer data released catalogue\(^7\) for the XMM-LSS fields. As for the radio data, the object is covered both by the NVSS (NRAO VLA Sky Survey, Condon et al. \[1998\]) and by the FIRST (Faint Images of the Radio Sky at Twenty-cm, Becker et al. \[1995\]) surveys. In Fig. 6 the 5\(\sigma \) upper limit on the 1.4 GHz flux density derived from the FIRST survey, that is deeper than the NVSS, is plotted.

\(^7\) See http://swire.ipac.caltech.edu/swire/public/news_archive.html
We compare the photometry of XBS J0216-0435 with the SED of local type 1 radio–loud (RL) and radio–quiet (RQ) QSOs adapted from Elvis et al. [1994]. The two local SEDs have been normalized to the hard X–ray data of XBS J0216-0435. As it is shown from the figure, the SED of XBS J0216-0435 is consistent with that of a RQ–QSO. The optical/nIR data are inconsistent with the the SED of type 1 QSO because the optical/nIR photometric points are strongly affected by absorption. By comparing the rest–frame optical flux value measured for XBS J0216-0435 with the corresponding value expected from a RQ unabsorbed AGN we can estimate a more stringent lower limit on the optical absorption. In particular, we find that the intrinsic dust–obscuration associated to our source is $A_V >3$ mag, typical of type 2 AGN (e.g. Gilli et al. 2001a).

The mid–infrared emission of AGNs is due to the presence of dust tori absorbing and re-radiating a significant fraction of the total luminosity of the primary source. As it is shown from Figure 6, we find that the near and mid–infrared emission of XBS J0216-0435 is consistent with that of a type 1 QSO. This implies that, if the infrared emission associated to the AGN is not contaminated by other infrared sources (i.e. starlight and/or galactic dust), we don’t find evidence of a dependence of the re-radiated infrared continuum with the orientation along the line of sight of the torus (see e.g. Pier & Krolik 1992, Granato et al. 1997, Efstathiou et al. 1995, Nenkova et al. 2002). In this case, the X–ray/near and mid–infrared flux ratio observed in our source is similar to those of type 1 QSO, extending to high–z similar results obtained for high and low luminosity AGN at lower redshit (Lutz et al. 2004, Sturm et al. 2006).

6. QSO activity and massive galaxies

The extended appearance in the optical and NIR bands along with the extremely high X–ray to optical and NIR flux ratios suggest that the host galaxy dominates the emission observed for XBS J0216-0435 at these wavelengths. Taking into account the redshift of the source ($z=1.985$) and given its apparent magnitude ($K'\sim19.5$ mag), the resulting rest-frame (k-corrected) K–band absolute magnitude is $M_K\sim-25.5$ mag, i.e. ~1.6 times brighter than L_K^* galaxies at the same z (see Pozzetti et al. 2003, Saracco et al. 2006). Considering $L_*\sim2\times10^{11}L_\odot$ for galaxies at $z\sim2$ and assuming a stellar mass–to–light ratio of 0.5 (M/L)$_\odot$, we estimated a stellar mass of the order of $10^{11}M_\odot$ for the host galaxy.

This result implies that the powerful QSO2 in XBS J0216-0435 is hosted in a massive system. This source, along with similar results recently obtained for other high–z type 2 QSO (see e.g. Akiyama 2005, Severgnini et al. 2005a and Maiolino et al. 2006), represents a strong observational evidence of the link between high–z massive galaxies and powerful obscured AGN. The X–ray and optical spectral analysis of a bigger sample of this kind of sources will represent one of the most efficient methods to test a possible co-evolution between massive galaxy and AGN activity (Granato et al. 2004, Di Matteo et al. 2005, Hopkins et al. 2005) and to investigate if and how the AGN feedback can affect the galaxies evolution (see Bower et al. 2005).

7. Summary and Conclusions

We have presented here the X–ray and optical spectral analysis for one XMM–BSS ERO (XBS J0216-0435) having an extremely high X–ray to optical/nIR ratio. This object is the XMM–BSS source with the highest $F_{2–10 \text{ keV}}/F_{\text{opt}}$ (~220). The optical, NIR and X–ray photometric properties of XBS J0216-0435 suggest the presence of an X–ray obscured, optically type 2 QSO.

From the X–ray point of view, the spectral analysis confirms the presence of an obscured AGN. A statistically significant ($\sim99\%$) excess around 2 keV in the observed–frame suggests the presence of an emission line. By assuming that this feature corresponds to the iron K$_\alpha$ line at 6.4 keV the source is at $z\sim2$ with an intrinsic luminosity of the order of 10^{45} erg s$^{-1}$ and an intrinsic column density of $>10^{23}$ cm$^{-2}$, i.e. it is an X–ray obscured QSO.

Dedicated VLT spectroscopic data has allowed us to confirm the spectroscopic redshift ($z_{\text{red}}=1.985$) derived from the X–ray data. The optical spectral analysis confirms that XBS J0216-0435 is an absorbed AGN. In conclusion we are dealing with a high redshift, X–ray obscured, optically type 2 QSO.

This source represents one of the few X–ray emitting EROs for which the presence of an X–ray and optical obscured QSO can be unambiguously established (see also Severgnini et al. 2005a and Maiolino et al. 2006 and references therein). Even more, XBS J0216-0435 can be considered one of the few ex-
amples of X–ray obscured QSO at high redshift for which a detailed X–ray and optical analysis has been possible and for which a SED from radio to X–rays has been published (see also Sturm et al. [2006]).

We want to note that the physical properties derived for XBS J0216-0435 are also in excellent agreement with the relation found by Fiore et al. [2003] for type 2 AGNs. These authors show that there is a correlation between $F_{12-10 keV}/F_{opt}$ and $L_{2-10 keV}$ for optically obscured AGNs. In particular, they find that higher luminosity AGN have higher $F_{12-10 keV}/F_{opt}$. Following this relation the F_{X}/F_{opt} of XBS J0216-0435 is consistent with a 2–10 keV luminosity of the order of 10^{45} erg s$^{-1}$ in good agreement with what has been found in our analysis.

From the NIR data we have estimated the luminosity and the stellar mass of the host galaxy. An example of the coexistence between powerful QSO and massive galaxy has been found. This result confirms that the selection of X–ray emitting EROs with very high X–ray–to–optical or to–NIR ratio is a very efficient method to find not only high–z QSO but also a very massive galaxies and thus to study the fundamental connection between accretion and star–formation processes in the Universe.

Finally, it is worth noting that XBS J0216-0435 is an X–ray line–emitting source like those searched by Maccacaro et al. [2004] and Braito et al. [2005] with the FLEX (Finder of Line–Emitting X–ray sources) algorithm in the XLEO (X–ray Line–Emitting Object) project. Therefore, a systematic search for XLEO is likely to increase the number of known type 2 QSOs.

Acknowledgements. P. S. acknowledges a research fellowship from the Istituto Nazionale di Astrofisica (INAF). This work has received partial financial support from ASI (ASI/INAF n. I/023/05/0), by the Italian Ministry of Instruction, of University and of Research (MIUR) through grant Cofin-03-02-23. F. J. C. and M. T. C. acknowledge financial support from the Spanish Ministerio de Educacion y Ciencia under project AYA2003-00812. We thank C. Vignali, F. Cocchia, N. A. Webb for a careful reading of the paper and for useful comments which have improved the paper. The TNG telescope is operated on the island of La Palma by the Centro Galileo Galilei of the INAF in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofisica de Canarias. We would like to thank the staff members of the ESO and TNG Telescopes for their support during the observations.

References
Akiyama, M., Ohta, K. 2001, PASJ 53, 63
Akiyama, M. 2005, ApJ 629, 72
Alexander, D.M., Vignali, C., Bauer, F.E. et al. 2002, AJ 123, 1149
Alexander, D.M., Bauer, F.E., Brandt, W., et al. 2003, AJ 126, 539
Baldwin, J. A., McMahon, R, Hazard, C., Williams, R. E. 1988, ApJ 327, 103
Barger, A.J., Cowie, L.L., Capak, P., et al. 2003, AJ 126, 632
Becker, R. H., White, R. L.,Helfand, D. J. 1995, ApJ, 450, 559
Bower, R.G., Benson, A.J., Malbon, R., et al. 2005, MNRAS submitted [astro-ph/0511338]
Braito, V., Maccacaro, T., Caccianiga, A., Severgnini, P., Della Ceca, R. 2005, ApJ Letters, 621, 97
Brusa, M., Comastri, A., Daddi, E., et al. 2005, A&A 432, 69
Caccianiga, A., Severgnini, P., Braito, V., et al. 2004 A&A 416, 910
Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, AJ, 115, 1693
Della Ceca, R., Maccacaro, T., Caccianiga, A., et al. 2004, A&A 428, 383
Della Ceca, R., Caccianiga, A., Severgnini, P., et al. 2005 Proc. of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain) organized by the European Space Astronomy Centre (ESAC) of ESA
Dickey, J. M., Lockman, F. J. 1990, ARA&A, 28, 215
Di Matteo, T., Springel, V., Hernquist, L. 2005, Nature, 433, 604
Elstathiou, A., Rowan-Robinson, M. 1995, MNRAS, 273, 649
Elvis, M., Wilkes, B. J., McDowell, J.C., et al. 1994, ApJS, 95, 1
Fazio, G. G., Hora, J. L., Allen, L. E., et al. 2004, ApJS, 154, 10
Fiore, F., Brusa, M., Cocchia, F., et al. 2003, A&A 409, 79
Fukugita, M., Shimasaku, K., Ichikawa, T. 1995, PASP 107, 945
Gandhi, P., Crawford, C.S., Fabian, A.C., & Johnstone, R.M. 2004, MNRAS, 348, 529
Gilli, R., Salvati, M., Hasinger, G., et al. 2001a, A&A, 366, 407
Gilli, R., Risaliti, G., Severgnini, P., et al. 2001b, ASPC, 234, 459
Granato, G. L., Danese, L., Franceschini, A. 1997, ApJ, 486, 147
Granato, G.L., De Zotti, G., Silva, L., Bressan, A., Danese, L. 2004, ApJ 600, 580
Heckman, T, Kroll, J., Meurer, G., et al. 1995, ApJ 452, 549
Hopkins, P.F., Hernquist, L., Cox, T.J., et al. 2005, ApJS in press [astro-ph/0506398]
Kaastra J. S. 1992, An X-Ray Spectral Code for Optically Thin Plasmas. Internal SRON-Leiden Report, updated version 2.0
Liedahl D. A., Osterheld A. L., Goldstein W. H. 1995, ApJ Letter, 438, 115
Lutz, D., Maiolino, R., Spoon, H. W. W., Moorwood, A. F. M. 2004, A&As, 418, 465
Maccacaro, T., Gioia, I. M., Wolter, A., Zamorani, G., Stocke, J.T. 1988, ApJ 326, 680
Maccacaro, T., Braito, V., Della Ceca, R., Severgnini, P., Caccianiga, A. 2004, ApJ Letters, 617, 33
Maiolino, R., Mignoli, M., Pozzetti, L., et al. 2006, A&A 445, 457
Mainieri, V., Bergeron, J., Hasinger, G., et al. 2002, A&A 393, 425
Mewe, R., Gronenheid, E. H. B. M., van den Oord, G. H. J. 1985, A&AS 62, 19
Mignoli, M., Pozzetti, L., Comastri, A., et al. 2004, A&A 418, 827
Mohr, J.J., Mathiesen, B., Evrard, A.E. 1999, ApJ, 517, 627
Monet, D., Bird, A., Canzian, B., et al. 1998. The PMM USNO A2.0 Catalog (Washington DC: US Naval Observatory)
Nenkova, M., Ivezic, Z., Elitzur, M. 2002, ApJ, 570, L9
Pier, E.A., Krolik, J.H. 1992, ApJ, 401, 99
Pozzetti, L., Cimatti, A., Zamorani, G., et al. 2003, A&A 402, 837
Reynolds, C.S., Fabian, A.C., Makishima, K., Fukazawa, Y., Tamura, T. 1994, MNRAS 268, L55.
Rieke, G. H., Young, E. T., Engelbracht, C. W., et al. 2004, ApJS, 154, 25
Roche, N.D., Dunlop, J., Almaini, O. 2003, MNRAS 346, 803
Saracco, P., Fiano, A., Chincarini, G., et al. 2006, MNRAS in press [astro-ph/0512147]
Severgnini, P., Caccianiga, A., Braito, V., et al. 2003, A&A 406, 483
Severgnini, P., Della Ceca, R., Braito, V., et al. 2005a, A&A 431, 87
Severgnini, P., Braito, V., Caccianiga, A., et al. 2005b, Proc. of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain) organized by the European Space Astronomy Centre (ESAC) of ESA
Stevens J.A., Page M.J., Ivison R.J., et al. 2005, MNRAS, 360, 610
Sturm, E., Hasinger, G., Lehmann, I., et al. 2006, ApJ in press
Szokoly, G.P., Bergeron, J., Hasinger, G., et al. 2004, ApJSS 155, 271
Stevens, J.A., Page M.J., Ivison R.J., et al. 2003 MNRAS 342, 249
Ueda, Y., Akiyama, M., Ohta, K., Miyaji, T. 2003, ApJ, 598, 886
Willott, C.J., Simpson, C., Alamini, O. et al., 2003, MNRAS 339, 397

P. Severgnini et al.: X-ray bright ERO with an extreme X/O flux ratio