Selecting warm mix asphalt additives by the properties of warm mix asphalt mixtures – China experience

Article in The Baltic Journal of Road and Bridge Engineering · March 2015
DOI: 10.3846/bjrbe.2015.10

CITATION
1

READS
271

5 authors, including:

Zhaoxing Xie
Auburn University
27 PUBLICATIONS 27 CITATIONS

Junan Shen
Georgia Southern University
49 PUBLICATIONS 644 CITATIONS

All content following this page was uploaded by Junan Shen on 25 September 2015.
The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
The Baltic Journal of Road and Bridge Engineering, 2015, vol. 10, no. 1

Contents

Michail Samofalov, Vytautas Papinigis, Mantas Tunaitis
MECHANICAL STATE ANALYSIS OF DIFFERENT VARIANTS OF PILED RAFTS 1

Krzysztof Zakowski, Michal Narozny, Kazimierz Darowicki
PROTECTION OF BRIDGES AGAINST STRAY CURRENT CORROSION 11

Tarvo Mill, Artu Ellmann, Martti Kiisa, Johan Idnurm, Siim Idnurm, Milan Horemuz, Andrus Aavik
GEODETIC MONITORING OF BRIDGES DEFORMATIONS OCCURRING DURING STATIC LOAD TESTING 17

Raffaele Mauro, Marco Cattani, Marco Guerrieri
EVALUATION OF THE SAFETY PERFORMANCE OF TURBO-ROUNDABOUTS BY MEANS OF A POTENTIAL ACCIDENT RATE MODEL 28

Marek Pszczoła, Józef Judycki
COMPARISON OF CALCULATED AND MEASURED THERMAL STRESSES IN ASPHALT CONCRETE 39

Mauricio Pradena, Lambert Houben
ANALYSIS OF STRESS RELAXATION IN JOINTED PLAIN CONCRETE PAVEMENTS 46

Marcin Gajewski, Dariusz Sybilski, Wojciech Bankowski
THE INFLUENCE OF BINDER RHEOLOGICAL PROPERTIES ON ASPHALT MIXTURE PERMANENT DEFORMATION 54

Ali Ghorbani, Hadi Hasanzadehosseini, Masoud Karimi, Younes Daghhigh, Jurgis Medzvieckas
STABILIZATION OF PROBLEMATIC SILTY SANDS USING MICRO SILICA AND LIME 61

Alfredas Laurinavičius, Lina Bertuliene, Arina Minkevič
THE USE OF ROAD WEATHER INFORMATION SYSTEM DATA FOR THE FORECASTS OF CLIMATIC CONDITIONS 71

Xinheng Li; Zhaoxing Xie; Wenzhong Fan, Lili Wang, Junan Shen
SELECTING WARM MIX ASPHALT ADDITIVES BY THE PROPERTIES OF WARM MIX ASPHALT MIXTURES – CHINA EXPERIENCE 79

Afshin Jahangirzadeh, Shatirah Akib
EXPERIMENTAL STUDY FOR DETERMINATION OF COLLAR DIMENSIONS AROUND BRIDGE PIER 89

Migile Paliukaitite, Audrius Vaitkus, Adam Zolfa
INFLUENCE OF BITUMEN CHEMICAL COMPOSITION AND AGEING ON PAVEMENT PERFORMANCE 97

ABSTRACTS IN LITHUANIAN I

ABSTRACTS IN LATVIAN II

ABSTRACTS IN ESTONIAN III

The papers published in The Baltic Journal of Road and Bridge Engineering are indexed/abstracted in:

• United States Index Expanded (ISI Web of Science),
• INSPEC (Institution of Engineering and Technology),
• CiteBase (Brown University Library),
• TRIS (Transportation Research Information Services),
• VINITI (All-Russian Scientific and Technical Information Institute of Russian Academy of Sciences),
• SCOPUS (Elsevier),
• IGI Global (The International Construction Database),
• Ulrichsweb™,
• IndexCopernicus.
THE JOURNAL IS DESIGNED FOR PUBLISHING PAPERS CONCERNING THE FOLLOWING AREAS OF RESEARCH:

- road and bridge research and design,
- road construction materials and technologies,
- bridge construction materials and technologies,
- road and bridge repair,
- road and bridge maintenance,
- road traffic safety,
- road and bridge information technologies,
- environmental issues,
- road climatology,
- low-volume roads,
- normative documentation,
- quality management and assurance,
- road infrastructure and its assessment,
- assets management,
- road and bridge construction financing,
- specialist pre-service and in-service training;

besides, it publishes:
- advertising materials, reviews and bibliography,
- abstracts of PhD thesis, reports on conferences and workshops

The papers published in The Baltic Journal of Road and Bridge Engineering are indexed/abstracted by:

Index/Database	Publisher/Provider
Science Citation Index Expanded	Thomson Scientific
INSPEC	Database of Institution of Engineering and Technology
Current Abstracts, TOC Premier	EBSCO Publishing
TRIS Online	Transportation Research Information Services (TRIS)
TRIS Online Database	Bibliographic Database
VINITI	Database of All-Russian Scientific and Technical Information Institute of Russian Academy of Sciences
SCOPUS	Elsevier Bibliographic Database
ICONDA	The International Construction Database
Ulrichsweb™	Ulrichsweb™
IndexCopernicus	IndexCopernicus
EDITORIAL BOARD

Editor-in-Chief
Prof. Dr Donatas ČYGAS
Vilnius Gediminas Technical University,
Saulėtekio al. 11, 10223 Vilnius, Lithuania (Civil Engineering, 02T)

Editors
Prof. Dr Alfredas LAURINAVIČIUS
Vilnius Gediminas Technical University,
Saulėtekio al. 11, 10223 Vilnius, Lithuania (Civil Engineering, 02T)

Assoc. Prof. Dr Ainars PAEGLITIS
Riga Technical University,
Azenes str. 20, 1048 Riga, Latvia (Civil Engineering, 02T)

Prof. Dr Andrus AAVIK
Tallinn University of Technology,
Ehitajate tee 5, 9086 Tallinn, Estonia (Civil Engineering, 02T)

Managing Editor
Prof. Dr Daiva ŽILIONIENĖ
Vilnius Gediminas Technical University,
Saulėtekio al. 11, 10223 Vilnius, Lithuania (Civil Engineering, 02T)

INTERNATIONAL EDITORIAL BOARD

Prof. Dr Hojjat ADELI,
Ohio State University, 470 Hitchcock Hall,
2070 Neil Avenue, Columbus, OH 43210, USA (Civil Engineering, 02T)

Prof. Dr Dago ANTOV,
Tallinn University of Technology, Ehitajate tee 5,
19086 Tallinn, Estonia (Geography, 06P)

Dr Halil CEYLAN,
Center for Transportation Research and Education (CTRE),
482B Town Engineering Bldg.,
Iowa State University, Ames, IA 50011-3232, USA (Civil Engineering, 02T)

Dr Mindaugas DIMAITIS,
PE “Road and Transport Research Institute”,
I. Kanto g. 23, P.O. Box 2082, 44009 Kaunas,
Lithuania (Transport Engineering, 03T)

Dr Arvydas DOMATAS,
JSC “Kelpjokas”, I. Kanto g. 25,
44296 Kaunas, Lithuania (Informatics Engineering, 07T)

Prof. Dr Alfredo Garcia GARCIA,
Polytechnic University of Valencia, Camino de Vera, s/n;
46071 Valencia, Spain (Transport Engineering, 03T)

Dr Inge HOFF,
Research Institute "SINTEF", Hogskolerlingen 7,
7465 Trondheim, Norway (Civil Engineering, 02T)

Prof. Dr Siim IDNURM,
Tallinn University of Technology, Ehitajate tee 5,
19086 Tallinn, Estonia (Civil Engineering, 02T)

Prof. Dr Jozef JUDYCKI,
Technical University of Gdansk, 11/12 Narutowicza St.,
80-952 Gdansk, Poland (Civil Engineering, 02T)

Prof. Dr Habil Gintar KAKLAUSKAS,
Vilnius Gediminas Technical University, Saulėtekio al. 11,
10223 Vilnius, Lithuania (Civil Engineering, 02T)

Prof. Dr John Mungai KINUTHIA,
School of Technology, Division of Civil Engineering,
Postypridd CF37 1 DL, UK (Civil Engineering, 02T)

Prof. Dr Habil Ivan LEONOVICH,
Byelorussian State Technical University, Pr. Niezavisimosti 65,
220027 Minsk, Byelorussia (Civil Engineering, 02T)

Assoc. Prof. Dr Dainius MIŠKINIS,
LRA under the Ministry of Transport and Communications of
the Republic of Lithuania, J. Basanavičius g. 36/2, 03109 Vilnius,
Lithuania (Transport Engineering, 03T)

Prof. Dr Juris R. NAUDŽUNS,
Riga Technical University, Azenes str. 20,
1048 Riga, Latvia (Transport Engineering, 03T)

Dr Algis PAKALNIS,
PE “Road and Transport Research Institute”,
I. Kanto g. 23, P.O. Box 2082, 44009 Kaunas,
Lithuania (Transport Engineering, 03T)
1. Introduction

In the recent years, the asphalt industry has investigated the warm asphalt technology as a means to reduce the mixing and compaction temperatures of asphalt mixes. Warm mix asphalt (WMA) is an asphalt mixture which is mixed at temperatures lower than conventional hot mix asphalt (HMA). WMA technology not only reduces the mixing and compaction temperatures and decreases energy consumption, carbon dioxide emission, and asphalt oxidation but also extends paving season and increases distance for a better working environment (Alossta 2011; Carbonneau et al. 2008; Cygas et al. 2009; Gandhi 2008).

There are many WMA technologies widely used including foaming (i.e., Double Barrel Green and Asphamin), organic technology (i.e., Sasobit) and chemical technology (i.e., Evotherm and Rediset). The foamed asphalt technology relies on the fact that when the water is dispersed into hot asphalt binder and turns into steam, this results in expansion of the binder and a corresponding reduction in the mix viscosity (Kavussi, Hashemian 2011; Xiao et al. 2011). Sasobit is a long chain aliphatic hydrocarbon obtained from coal gasification. After crystallization, Sasobit forms a lattice structure in the binder, which is the basis of the structural stability of the binder containing Sasobit. The melting point of Sasobit is around 85 °C to 116 °C. Evotherm is a product developed by MeadWestvaco Asphalt Innovations. Evotherm uses a chemical additive technology and a "Dispersed Asphalt Technology" delivery system. By using this technology a unique chemistry customized for aggregate compatibility is delivered into a dispersed asphalt phase (emulsion). The emulsion provides aggregate coating, workability, adhesion, and improved compaction with no change in materials or job mix formula required. Rediset is a chemical additive free of water that has been recently developed by AkzoNobel. It is a combination of cationic surface-active agents (called surfactants) and rheology modifiers (organic additives).
in a solid form. The product typically comes in the form of beads also known as free-flowing pastilles for ease of handling and incorporation into the asphalt mixture production process (Kasozi 2010; Rogers 2011).

The properties of WMA mixes were influenced by WMA additives to some extent (Akisetty 2008; Biro et al. 2009; Cooper III et al. 2011; Gandhi 2008; Goh, You 2012; Hanz 2012; Kim et al. 2012; Sampath 2010; Shang et al. 2011; Sheth 2010; Xiao et al. 2010; You et al. 2008). For example, Sasobit® can reduce the rut depths of the mixes, and improve the tensile strength ratio (TSR) of the mixes (Biro et al. 2009; Gandhi 2008; Liu et al. 2011). Kim et al. (2012) reported the polymer-modified asphalt (PMA) mixtures containing the additives can satisfy the current Superpave mixture requirements and no statistical differences existed between the control and the warm PMA mixtures for the properties. Sheth (2010) reported that the WMA specimens exhibited similar air voids as HMA specimens at a lower temperature; the Indirect Tensile Strengths (IDT) and TSR values of all WMA specimens were lower than that of HMA specimens. Hanz (2012) investigated the impacts of warm mix asphalt on constructability and performance. The results showed that WMA reduced wet bond strength, but did not affect dry bond strength. In addition, the proper dosages of WMA additives should be selected based on the gradation used. Sampath (2010) evaluated the properties of four warm asphalt mixtures. The results indicated that the IDT and TSR values of the WMA specimens were higher than the controls; the WMA specimen with Sasobit® additive exhibited the lowest permanent deformation. Goh, You (2012) reported that a slight decrease in dynamic modulus was found when 0.25% Advera® WMA additive was added to the porous asphalt mixture containing reclaimed asphalt pavement (RAP) and WMA containing RAP was found to have the highest tensile strength among all of the mixtures tested. Hurley and Prowell (2005a, 2005b) evaluated three different WMA additives and concluded that all three technologies improved the compatibility of the asphalt mixtures and resulted in lower air voids compared to HMA. TSR values of WMA mixtures increased significantly when anti-stripping additives and hydrated lime was added in WMA mix (Hossain et al. 2012; Xiao et al. 2009, 2010).

It should be noted that these results are binder-type dependent and aggregate type dependent. In addition, comparative study about the properties of the mixtures with various different additives is limited. Thus, further investigation of the effect of various WMA additives on the properties of WMA is needed since the types of aggregate and aggregate gradation used and the environmental conditions in China are different from those of other countries.

The main objectives of the research project were 1) to examine and compare the properties of various WMA mixtures with different types of aggregate gradation; 2) to evaluate the effects of the WMA additives on the properties of WMA with different types of aggregate gradation. All results were compared with traditional HMA.

The WMA mixtures were manufactured with three most commonly used WMA additives of Sasobit, Evotherm and Rediset, styrene butadiene styrene (SBS) modified asphalt binder and crushed basalt aggregate. Selected physical, mechanical and performance properties of the WMA and control HMA were measured and evaluated.

2. Test program, materials and test methods

Typical pavement materials used in asphalt pavement construction in Suzhou, China were selected. Crushed basalt aggregate, SBS modified asphalt, and three WMA additives of Rediset, Evotherm and Sasobit were used. Fig. 1 showed the combination of the experimental design used in this

Fig. 1. Flowchart of experimental design
study. Table 1 presents the properties of SBS unmodified asphalt. Rediset, Evotherm and Sasobit were added at the rate of 2.0%, 0.6% and 2.0% by weight of asphalt binder according to the recommendation by the producers of the WMA additives. The rates are currently used as the optimum content for the corresponding additive in China, and thus accepted in the research.

Marshall mixture design method was used in the determination of the optimum asphalt content (OAC) for both HMA and WMA mixtures according to the asphalt mixture design standard methods of China (JTG E20-2011). Table 2 presents the adopted mixing and compaction temperature of both HMA and WMA mixtures. A reduction of 25 °C for mixing and compaction WMA were used which was actually recommended by the producers of WMA additives. Two typical aggregate gradations popularly used in the region, i.e., a continuous gradation (Asphalt Concrete (AC)-13) and a gap gradation (Stone Mastic Asphalt (SMA)-13), were adopted (Table 3 and Fig. 2). They are AC-13 and SMA-13 with a nominal maximum aggregate size of 13.2 mm, which are popularly used as the surface layer. The OAC for SMA-13 and AC-13 mixtures were 5.6% and 4.8%, respectively. Cellulose fibers were added into SMA at the rate of 0.3% by weight of the mixture.

Physical, mechanical and performance properties were selected for evaluation. The density and air voids were used to evaluate the physical properties. Marshall stability, flow value, and Indirect Tensile Strength (IDT) were used to evaluate the mechanical properties of asphalt mixtures. Tensile strength ratio (TSR), dynamic stability at high temperature and bending beam failure strain at low temperature were used to evaluate the performance properties such as the resistances to moisture damage, rutting and cracking, respectively.

Bulk specific gravity of asphalt mixtures was measured by surface dry method (T 0705-2011) of standard test methods of bitumen and bituminous mixtures for highway engineering of China (JTG E20-2011). Theoretical maximum specific gravity test of asphalt mixtures was conducted by vacuum method (T 0711-2011).

Marshall stability and flow test was performed by the standard test method (T 0709-2011). In this test, Marshall specimens were immersed in the water of 60±1 °C for 30° min. The load was applied to the specimen with a constant rate of movement for the testing machine head of 50.8 mm/min until the max load is reached. The maximum load and the maximum deformation were determined.

IDT and TSR were obtained by freeze-thaw splitting test of bituminous mixtures (T0729-2000) of standard test methods of bitumen and bituminous mixtures for highway engineering of China (JTG E20-2011). All specimens had the air void level of 6 to 8 percent in this test. During this testing, a load is applied to the specimen by forcing the bearing plates together at a constant rate of 50 mm/min. The load continued until the specimen cracks, and the maximum load is recorded. The indirect tensile strength is calculated using the Eq (1):

\[S_t = \frac{2000P}{\pi t D^2} \]

Table 1. Properties of SBS modified asphalt binders

Penetration at 25 °C, 0.1 mm	Softening point, °C	Ductility at 15 °C, cm	Ductility at 5 °C, cm	Kinematic viscosity at 135 °C, PaS
64	75	>100	38	1.8

Table 2. Mixing and compaction temperature

Mixture type	HMA	WMA		
	Mixing temperature, °C	Compaction temperature, °C	Mixing temperature, °C	Compaction temperature, °C
SMA-13	170	160	145	135
AC-13	165	155	140	130

Table 3. Aggregate gradation

Sieve, mm	Mixture type	16.0	13.2	9.5	4.75	2.36	1.18	0.6	0.3	0.15	0.075
Percentage passing, %	SMA-13	100	95.2	63.6	26.2	22.2	18.8	16.3	14.6	13.3	11.2
AC-13	100	96.2	71.3	43.4	28.7	21.5	15.9	12.2	9.7	7.3	
where S_t – indirect tensile strength, kPa; P – maximum load, Newtons; t – specimen thickness, mm; D – specimen diameter, mm.

The TSR is calculated as follows:

$$\text{TSR} = \frac{S_2}{S_1}$$

where S_1 – average indirect tensile strength of the dry condition, MPa; S_2 – average indirect tensile strength of the wet condition, MPa.

The dynamic stability was measured by the wheel tracking test of bituminous mixtures (T 0719-2011) of standard test methods of bitumen and bituminous mixtures for highway engineering of China (JTG E20-2011). In the dynamic stability test, the size of specimen is 300 mm long, 300 mm wide and 50 mm thick, and testing temperature is 60±0.5 °C. A wheel pressure of 0.7±0.05 MPa was applied onto the specimens. The traveling distance of the wheel was 230±10 mm. The traveling speed of the wheel was 42±1 times/min. The wheel was loaded for 60 minutes. The dynamic stability was determined as follows:

$$\text{DS} = \frac{(t_2 - t_1)42}{d_2 - d_1}$$

where DS – dynamic stability, times/mm; d_1 – rut depth after 45 min loading, mm; d_2 – rut depth after 60 min loading, mm; t_1, t_2 – loading time, 45 min and 60 min, respectively; N – loading frequency, typically 42 times/min.

Bending beam test at low temperature was conducted by the bending test of bituminous mixtures (T 0715-2011) of standard test methods of bitumen and bituminous mixtures for highway engineering of China (JTG E20-2011). In the this test, the size of specimen is 250 mm long, 30 mm wide and 35 mm thick, and testing temperature is −10 °C. The concentrated center load was applied on top at the mid-span, and the loading rate was 50 mm/min (Fig. 3). The load continued until the specimen failed, and the max deflection of the mid-span was recorded.

Bending failure strain was adopted to evaluate the low temperature performance. The bending failure strain was determined as follows:

$$\varepsilon = \frac{6hd}{L^2}$$

where ε – bending failure strain, με; h – beam height, mm; d – maximum deflection of the mid-span, mm; L – span length, mm.

3. Experimental specimen preparation

All specimens were prepared at the OAC obtained from mix design with the same compaction level. For each type of asphalt mixtures, three Marshall specimens were prepared for density test; five Marshall specimens were prepared for the Marshall stability and flow test; eight Marshall specimens were prepared for the freeze-thaw splitting test; three rut-resistance specimen slabs with a size of 300×300×40 mm, were prepared for the wheel tracking test; six specimens with a size of 30×250×35 mm, were prepared for the bending beam test. A total of 200 samples were used in this study.

4. Results and discussions

4.1. Bulk specific gravity and air void

Table 4 shows the test results of bulk specific gravity and air void of all the specimens. In general, the bulk specific gravity and air void of all the WMA specimens were similar to those of the controls for either SMA-13 or AC-1, illustrating that WMA specimens had a similar compaction property with the controls after the mixing and compaction temperature being reduced by 25 °C for WMA, regardless of the types of aggregate gradation.

Table 4. Bulk specific gravity and air voids
Mixture type

SMA-13 HMA (Control)
SMW Rediset additive
SMW Evotherm additive
SMW Sasobit additive
SMW Average
AC-13 HMA (Control)
SMW Rediset additive
SMW Evotherm additive
SMW Sasobit additive
SMW Average
The results indicated that the air voids of the WMA specimens with Rediset additive were the maximum, while the specific gravities are the minimum, regardless of the types of aggregate gradation. This finding showed WMA mixtures with Rediset additive may not be compacted as easily as the WMAs with other two WMA additives regardless of the types of aggregate gradation.

In addition, all SMA-13 mixtures had lower bulk specific gravity and air void than AC-13. It may partially be contributed to a higher OAC adopted in SMA-13 than AC-13 used in this study. The density of asphalt binder was significantly less than the aggregate, and more asphalt in the mixtures meant lower density of the mixtures. In addition, more asphalt in the mixtures made the compaction easier, and resulted in lower air voids of SMA-13.

4.2. Marshall stability and flow value

The Marshall stability and flow value are used to evaluate the mechanical strength and resistance to plastic flow at 60 °C. Table 5 showed the Marshall stability and flow value of the specimens.

In general, the average values of the Marshall stability and flow value of all the WMA specimens of SMA-13 are 18.1% and 6.9% higher than those of the controls, respectively, while those of all the WMA specimens of AC-13 are 10.4% and 9.7% higher than those of controls, respectively. A higher stability means a high strength, while a large flow means a low stiffness. This illustrated that all the WMA specimens had higher mechanical strength and a little bit low stiffness at 60 °C, compared with the controls no matter which aggregate gradation is used. In addition, all the WMA samples of SMA-13 and AC-13 had higher Marshall stability than 6.0 kN and 8.0 kN required by Technical Specification for Construction of Highway Asphalt Pavements (JTG F40–2004) for SMA-13 and AC-13, respectively. The flow values of all the WMA specimens of SMA-13 and AC-13 met the requirements of the specification (JTG F40–2004), 2–5 mm for SMA mixtures and 1.5–4 mm for AC mixtures.

For SMA-13, WMA specimens with Rediset, Evotherm and Sasobit additives had 6.8%, 20.7%, and 26.6% higher Marshall stability than the controls, respectively, and had 10.3%, 3.5%, and 10.3% higher flow value than the controls, respectively. These results illustrated that WMA specimens with Sasobit additive had the highest Marshall stability and flow value among three WMA. For AC-13, WMA specimens with Rediset, Evotherm and Sasobit additives had 9.5%, 6.1%, and 15.6% higher Marshall stability than the controls, respectively, and had 6.5%, 9.7%, and 9.7% higher flow value than the controls, respectively. These results showed WMA specimens with Sasobit additive had the highest Marshall stability and flow value among three WMA, as found for SMA-13. The increase in the Marshall stability and flow value is generally higher for SMA-13 over AC-13. At the same time, WMA specimens with Sasobit additive had the highest Marshall stability and flow value regardless of the types of aggregate gradation.

In addition, the average Marshall stability and flow value of WMA SMA-13 mixtures were a little bit lower than those of WMA AC-13, implying that WMA SMA-13 had slightly lower strength and better resistance to deform compared with WMA AC-13. It may partially be contributed to the higher OAC in SMA-13 and the difference of aggregate gradation between two asphalt mixtures used in this study.

4.3. Resistance to moisture damage

IDT strength may be used to evaluate the relative quality of bituminous mixtures in conjunction with laboratory mix design testing and the potential for rutting or cracking (ASTM D6931–12). The TSR value is used to evaluate the resistance to moisture damage of an asphalt mixture. Higher values of IDT and/or TSR imply better resistance to rutting or cracking. Table 6 and Figs 4 and 5 shows the IDT and TSR results of the WMA and control samples.

Generally, the average values of the IDT for WMA SMA-13 were 9.9% and 5.2% lower than those of the controls in dry and wet, respectively, and for WMA AC-13 specimens were 9.6% and 9.1% lower than those of the controls, respectively. The average values of TSR for the WMA SMA-13 and AC-13 were 4.3% and 1.3% higher than those of the controls, respectively. This indicated that most of the WMA used in this study may have slightly lower potential for rutting or cracking and better resistance.

Table 5. Marshall stability and flow value

Mixture type	Marshall stability, kN	Standard deviation	Flow, 0.1 mm	Standard deviation	
HMA (Control)	9.75	0.71	29	1.53	
SMA-13 WMA	Rediset additive	10.41	0.76	32	1.73
	Evotherm additive	11.77	0.91	30	2.08
	Sasobit additive	12.34	0.33	32	0.58
	Average	11.51	–	31	–
HMA (Control)	10.95	0.91	31	3.06	
AC-13 WMA	Rediset additive	11.99	0.75	33	2.08
	Evotherm additive	11.62	0.69	34	2.52
	Sasobit additive	12.66	0.38	34	1.53
	Average	12.09	–	34	–
to moisture damage than the control. In addition, the TSR of all the WMA and control mixtures was higher than 80%, the requirement of the specification (JTG F40-2004).

For SMA-13, WMA specimens with Rediset, Evotherm and Sasobit additives had 13.7%, 10.0%, and 2.8% lower IDT values in dry condition than the control, respectively, and had 6.3%, 10.9% lower and 1.7% higher IDT in wet condition than the control, respectively, consequently, had 8.9% higher, 1.1% lower and 5.0% higher TSR than the control, respectively. This illustrated that the WMA specimens with Rediset additive may have the best resistance to moisture damage, and the WMA specimens with Sasobit additive may have the best potential for rutting or cracking, compared to the other two additives.

Table 6. IDT and TSR

Mixture type	IDT in dry condition, MPa	Standard deviation	IDT in wet condition, MPa	Standard deviation	TSR, %	Standard deviation
HMA (Control)	2.11	0.16	1.74	0.10	82.3	2.56
SMA-13 WMA						
Rediset additive	1.82	0.15	1.63	0.13	89.6	1.33
Evotherm additive	1.90	0.19	1.55	0.13	81.4	2.24
Sasobit additive	2.05	0.12	1.77	0.11	86.4	0.78
Average	1.92	–	1.85	–	85.8	–
HMA (Control)	1.67	0.42	1.44	0.10	86.4	1.82
AC-13 WMA						
Rediset additive	1.55	0.11	1.35	0.10	87.1	0.95
Evotherm additive	1.43	0.21	1.24	0.18	86.9	0.19
Sasobit additive	1.56	0.08	1.38	0.08	88.4	0.63
Average	1.51	–	1.32	–	87.5	–

For AC-13, WMA specimens with Rediset, Evotherm and Sasobit additives had 7.2%, 14.4%, and 6.6% lower IDT in dry condition than the control, respectively, and had 6.3%, 13.9%, 4.2% lower IDT in wet condition than the control, respectively, as a result, had 0.8%, 0.6% and 2.3% higher TSR than the control, respectively. This illustrated that the WMA specimens with Sasobit additive may have the best resistance to moisture damage and potential for rutting or cracking, compared to other two additives.

The decrease in the IDT of WMA depended on the state of curing (i.e., in both dry and wet condition) and the aggregate gradation. The WMA specimens with Sasobit additive had the best potential for rutting or cracking regardless of the types of aggregate gradation. However,
the influence of WMA additives on the resistance to moisture damage of WMA seem be partly aggregate gradation-dependent, i.e. for the gap aggregate gradation (SMA-13), WMA with Rediset additive had the best resistance to moisture damage; for the continuous aggregate gradation (AC-13), WMA with Sasobit additive had the best resistance to moisture damage.

In addition, the average of TSR of WMA SMA-13 mixtures was 1.9% lower than that of WMA AC-13, while the average of IDT in dry condition and wet condition of WMA SMA-13 mixtures was 27.2% and 25% higher than that of the WMA AC-13, respectively. This implied that WMA SMA-13 had slightly lower resistance to moisture damage and significantly better potential for rutting or cracking, compared to WMA AC-13. It may partially be contributed to the difference of aggregate gradation between two asphalt mixtures, and the use of cellulose fibers and high percentage of mineral filler in SMA-13.

4.4. Resistance to rutting

The dynamic stability is widely used to evaluate the resistance to rutting of asphalt mixtures. The higher value of dynamic stability means the better resistance to rutting. Table 7 and Fig. 6 shows the dynamic stability of WMA and control HMA samples. In general, the average of dynamic stability of WMA SMA-13 specimens was 12.3% lower than that of the control, and that of WMA AC-13 specimens was 15.3% lower than that of the control. It illustrated that all the WMA for SMA-13 and AC-13 had lower resistance to rutting than the control. Furthermore, the dynamic stability of all WMA and control was significantly higher 2400 times/mm, the requirement of the specification (JTG F40–2004).

For SMA-13, WMA specimens with Rediset, Evotherm and Sasobit additives had 14.1%, 12.0%, and 10.8% lower dynamic stability than the control, respectively. This showed that WMA with Sasobit additive had the best resistance to rutting, compared to the mixtures with other two additives. For AC-13, WMA specimens with Rediset, Evotherm and Sasobit additives had 13.0%, 16.6%, and 16.4% lower dynamic stability than the control, respectively. This illustrated that WMA with Rediset additive had the best resistance to rutting, compared to those with other two additives.

The influence of WMA additives on the resistance to rutting of WMA is partly aggregate gradation-dependent, i.e. for the gap aggregate gradation (SMA-13), WMA with Sasobit additive had the best resistance to rutting; however, for the continuous aggregate gradation (AC-13), WMA with Rediset additive had the best resistance to rutting.

In addition, the average of dynamic stability of WMA SMA-13 mixtures was 3.7% higher than that of WMA AC-13. This implied that WMA SMA-13 had slightly better resistance to rutting, compared to WMA AC-13. This tendency was proved by the results of IDT and flow value too. It may partially be contributed to the difference of aggregate gradation between two asphalt mixtures, and the use of cellulose fibers and high percentage of mineral filler in SMA-13.

4.5. Resistance to cracking

The bending failure strain is widely used to evaluate the resistance to cracking at low temperature of asphalt mixtures. The higher value of bending failure strain means better resistance to cracking. Table 8 and Fig. 7 showed the bending failure strain at low temperature (−10 °C) of WMA and control samples.

In general, the average bending failure strain of WMA SMA-13 specimens was 7.6% higher than that of the control, and that of WMA AC-13 specimens was

Table 7. Dynamic stability

Mixture types	Dynamic stability, times/mm	Standard deviation
HMA (Control)	4773	116
SMA-13		
Rediset additive	4098	150
Evotherm additive	4200	178
Sasobit additive	4257	138
Average	4185	–
AC-13		
Rediset additive	4147	140
Evotherm additive	3977	177
Sasobit additive	3987	155
Average	4037	–

Fig. 6. Average dynamic stability
12.8% lower than that of the control. It indicated that all the WMA SMA-13 had higher resistance to cracking than the control, while the WMA AC-13 had lower resistance to cracking than the control. Furthermore, the bending failure strain of all WMA and control were higher than 2500 µε, the requirement of the specification (JTG F40-2004).

For SMA-13, WMA specimens with Rediset, Evotherm and Sasobit additives had 1.4%, 12.7%, and 8.7% higher bending failure strain than the control, respectively. This illustrated that WMA with Evotherm additive had the best resistance to cracking, compared to the other two additives. For AC-13 WMA specimens with Rediset, Evotherm and Sasobit additives had 8.4%, 16.0%, and 14.1% lower bending failure strain than the control, respectively. This indicated that WMA with Rediset additive had the best resistance to cracking among three WMA.

The above results showed the influence of WMA additives on the resistance to cracking of WMA is aggregate gradation-dependent, i.e. all the WMA additives improved the resistance to cracking of WMA mixtures with gap aggregate gradation (SMA-13); on the contrary, all the WMA additives reduced the resistance to cracking of WMA mixtures with continuous aggregate gradation (AC-13). Furthermore, for the gap aggregate gradation (SMA-13), Evotherm additive had the most positive effect on the resistance to cracking of WMA; on the contrary, for the continuous aggregate gradation (AC-13), Evotherm additive had the most negative effect on the resistance to cracking of WMA.

In addition, WMA SMA-13 mixtures with Evotherm and Sasobit had 7.1% and 1.2% higher bending failure strain than corresponding WMA AC-13, respectively. This implied that WMA SMA-13 with Evotherm and Sasobit had slightly better resistance to cracking, compared to WMA AC-13. This regulation was proved by the results of IDT. It may partially be contributed to the use of cellulose fibers in SMA-13. However, WMA SMA-13 mixtures with Rediset had 11.5% lower bending failure strain than corresponding WMA AC-13. The cause of the result needs more research.

5. Conclusions

From the results obtained from the study the following conclusions can be made:

1. Warm asphalt mix of stone mastic asphalt and asphalt concrete had similar densities and air voids with the controls after the compaction temperature for warm mix was reduced by 25 °C, indicating warm asphalt mix had similar compaction property with the controls regardless of the types of aggregate gradation. The three warm asphalt mix additives performed equally in regard to the compaction property.

2. Marshall stability and flow of all the warm asphalt mix samples met the requirement of the specification for both stone mastic asphalt and asphalt concrete. All the warm mix specimens had higher Marshall stability and flow value than the controls. Warm mix of both stone mastic asphalt and asphalt concrete with Sasobit additive had the highest Marshall stability and highest flow value among the three additives. For stone mastic asphalt, the Sasobit additive performed best, Evotherm additive was the second in regard to Marshall stability; for asphalt concrete, the Sasobit additive performed best, Rediset additive was the second in regard to Marshall stability.

3. The indirect tensile strength of the warm mix specimens was 1.7%–14.4% lower than that of controls for either

Mixture type	Bending failure strain, µε	Standard deviation
HMA (Control)	2657	143
Rediset additive	2695	165
Evotherm additive	2993	118
Sasobit additive	2888	166
Average	2859	–
SMA-13 WMA		
Rediset additive	3045	154
Evotherm additive	2794	118
Sasobit additive	2855	107
Average	2898	–

Fig. 7. Average bending failure strain
stone mastic asphalt or asphalt concrete, the illustrating warm mix specimens had lower potential for rutting or cracking. Both stone mastic asphalt and asphalt concrete with Sasobit additive had the highest indirect tensile strength.

4. For stone mastic asphalt, the Sasobit additive performed best, Evotherm additive was the second in regard to indirect tensile strength in dry condition; for asphalt concrete, the Sasobit additive performed best, Rediset additive was the second in regard to indirect tensile strength in wet condition. For stone mastic asphalt, the Sasobit additive performed best, Rediset additive was the second in regard to indirect tensile strength in wet condition; for asphalt concrete, the Sasobit additive performed best, Rediset additive was the second in regard to indirect tensile strength in wet condition.

5. Most of the warm mix specimens had slightly higher tensile strength ratio than the controls, indicating better resistance to moisture damage. Warm stone mastic asphalt with Rediset additive had the highest tensile strength ratio, while warm asphalt concrete with Sasobit additive had the highest tensile strength ratio. The influence of the warm mix additives on tensile strength ratio is gradation-dependent. For stone mastic asphalt, the Rediset additive performed better in regard to tensile strength ratio than other two warm mix additives; for asphalt concrete, the Sasobit additive performed better in regard to tensile strength ratio than other two warm mix additives. Tensile strength ratio of all the warm mix samples met the requirement of the specification.

6. All the warm mix for stone mastic asphalt and asphalt concrete had lower dynamic stability than the controls, indicating a lower resistance to rutting than the controls. Among three warm mixes, stone mastic asphalt specimens with Sasobit additive had the highest dynamic stability, while warm asphalt concrete specimens with Rediset additive had the highest dynamic stability. Therefore, the influence of the warm mix additives on dynamic stability is gradation-dependent.

7. For stone mastic asphalt, the Sasobit additive performed best, Evotherm additive was the second in regard to dynamic stability; for asphalt concrete, the Rediset additive performed best, Sasobit additive was the second in regard to dynamic stability. Stone mastic asphalt specimens had slightly higher dynamic stability than asphalt concrete. Dynamic stability of all the warm mix samples met the requirement of the specification.

8. All the stone mastic asphalt specimens had higher bending failure strain than the controls, indicating higher resistance to cracking than the controls, while the warm asphalt concrete specimens had lower resistance to cracking than the controls. Among three warm mixes, stone mastic asphalt with Sasobit had the highest bending failure strain, while warm asphalt concrete with Rediset additive had the highest bending failure strain. Therefore, the influence of the warm mix additives on bending failure strain is gradation-dependent.

9. For stone mastic asphalt, the Evotherm additive performed best, Sasobit additive was the second in regard to bending failure strain; for asphalt concrete, the Rediset additive performed best, Sasobit additive was the second in regard to bending failure strain. Warm stone mastic asphalt with Evotherm and Sasobit had slightly higher bending failure strain than corresponding warm asphalt concrete. Bending failure strain of all the warm asphalt mix samples met the requirement of the specification.

10. Overall, warm mix with Rediset had the best performance in anti-stripping for stone mastic asphalt, while that with Sasobit had the best for asphalt concrete. Warm mix with Sasobit had the relative best performance in rutting resistant for stone mastic asphalt, while that with Rediset had the best for asphalt concrete. Warm mix with Evotherm had the best performance in low temperature shrinkage resistant for stone mastic asphalt, while that with Rediset had the best for asphalt concrete.

Acknowledgments
This study was sponsored by the National Natural Science Foundation of China, China (Project No. 51378328) and by the Jiangsu Dept of Transportation, China (Project No. [2012]35), to which the writers are very grateful.

References
Akisetty, C. K. K. 2008. Evaluation of Warm Asphalt Additives on Performance Properties of CRM Binders and Mixtures. PhD thesis, Clemson: Clemson University. 13–18.
Alossta, A. 2011. Evaluation of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt for Field and Laboratory-Compacted Specimens. PhD thesis, Tempa: Arizona State University. 5–9.
Biro, S.; Gandhi, T. S.; Amirkanhian, S. N. 2009. Mid-RanAge Temperature Rheological Properties of Warm Asphalt Binder, Journal of Materials in Civil Engineering 21(7): 316–323. http://dx.doi.org/10.1061/(ASCE)0899-1561(2009)21:7(316)
Carbonneau, X.; Henriat, J. P.; Létaudin, F. 2008. Environmentally Friendly Energy Saving Mixes, in Proc. of the 4th Euroasphalt and Eurobitume Congress. 2008, Copenhagen, Denmark, 500–510.
Cooper III, S. B.; Mohammad, L. N.; Elseifi, M. A. 2011. Laboratory Performance Characteristics of Sulfur-Modified Warm-Mix Asphalt, Journal of Materials in Civil Engineering 23(9): 1338–1345. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000303
Čygas, D.; Laurinavičius, A.; Perveneckas, Z.; Vaitkus, A. 2009. Analysis and Evaluation of Possibilities for the Use of Warm Mix Asphalt in Lithuania, The Baltic Journal of Road and Bridge Engineering 4(1): 80–86. http://dx.doi.org/10.3846/1822-427X.2009.4.80-86
Gandhi, T. 2008. Effects of Warm Asphalt Additives on Asphalt Binder and Mixture Properties. PhD thesis, Clemson: Clemson University. 11–24.
Goh, S.; You, Z. 2012. Mechanical Properties of Porous Asphalt Pavement Materials with Warm Mix Asphalt and RAP, Journal of Transportation Engineering 138(1): 90–97. http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000307
Hanz, A. J. 2012. Quantifying the Impacts of Warm Mix Asphalt on Constructability and Performance. PhD thesis, Madison: University of Wisconsin – Madison, 7–48.
Hossain, Z.; Zaman, M.; Edgar A. O.; Chen, D. H. 2012. Effectiveness of Water-Bearing and Anti-Stripping Additives in Warm
Hurley, G. C.; Prowell, B. D. 2005a. Evaluation of Aspha-min® for Use In Warm Mix Asphalt. NCAT Report 05-04. Auburn: National Center for Asphalt Technology, 9–21.

Hurley, G. C.; Prowell, B. D. 2005b. Evaluation of Sasobit for Use in Warm Mix Asphalt. NCAT Report 05-06. Auburn: National Center for Asphalt Technology.

Kasozi, A. M. 2010. Properties of Warm Mix Asphalt from Two Field Projects: Reno, Nevada and Manitoba, Canada. MS thesis, Reno: University of Nevada, 10–25.

Kavussi, A.; Hashemian, L. 2011. Properties of WMA–Foam Mixes Based on Major Mechanical Tests, Journal of Civil Engineering and Management 17(2): 207–216.

Kim, H.; Lee, S.; Amirkhanian, S. 2012. Influence of Warm Mix Additives on PMA Mixture Properties, Journal of Transportation Engineering 138(8): 991–997.

Liu, J.; Saboundjian, S.; Li, P.; Connor, B.; Brunette, B. 2011. Laboratory Evaluation of Sasobit-Modified Warm-Mix Asphalt for Alaskan Conditions, Journal of Materials in Civil Engineering 23(11): 1498–1505.

Rogers, W. 2011. Influence of Warm Mix Additives Upon High RAP Asphalt Mixes. PhD thesis, Clemson: Clemson University, 29–35.

Sampath, A. 2010. Comprehensive Evaluation of Four Warm Asphalt Mixture Regarding Viscosity, Tensile Strength, Moisture Sensitivity, Dynamic Modulus and Flow Number. MS thesis, Iowa: University of Iowa, 8–11.

Shang, L.; Wang, S.; Zhang, Y.; Zhang, Y. 2011. Pyrolyzed Wax from Recycled Cross-Linked Polyethylene as Warm Mix Asphalt (WMA) Additive for SBS Modified Asphalt, Construction and Building Materials 25(2): 886–891.

Sheth, N. M. 2010. Evaluation of Selected Warm Mix Asphalt Additives. MS thesis, Iowa: University of Iowa, 5–7.

Xiao, F.; Punith, V. S.; Putman, B.; Amirkhanian, S. N. 2011. Utilization of Foaming Technology in Warm-Mix-Asphalt Mixtures Containing Moist Aggregates, Journal of Materials in Civil Engineering 23(9): 1328–1337.

Xiao, F.; Zhao, W.; Gandhi, T.; Amirkhanian, S. N. 2010. Influence of Antistripping Additives on Moisture Susceptibility of Warm Mix Asphalt Mixtures, Journal of Materials in Civil Engineering 22(10): 1047–1055.

You, Z.; Goh, S. W. 2008. Laboratory Evaluation of Warm Mix Asphalt: a Preliminary Study, International Journal of Pavement Research and Technology 1(1): 34–40.

Received 8 October 2012; accepted 8 January 2013
ABSTRACTS IN LITHUANIAN

Michail Samofalov, Vytautas Papinigis, Mantas Tūnaitis. 2015. Pamatų plokščių ant polių skirtingų variantų mechaninio būvio analizė, The Baltic Journal of Road and Bridge Engineering 10(1): 1–10.

Santrauka. Pagrindo plokščių tradicinės projektavimo metodikos aprašo plokštę ant pagrindo arba plokštę ant polių. Šiuo darbu nagrinėjami pagrindo plokštės projektavimo variantai, kai plokštę vienu metu iš dalies atremta į polius ir iš dalies atsireiška tiesiogiai į grunto pagrindą. Visų variantų apkrovimo sąlygos ir mechaninės grunto savybės pasirinktos vienodos, skaitinio modeliavimo priešalos irgi yra tos pačios. Uždavinys sprendžiamas siekiant išanalizuoti visų variantų (plokštė be polių, iš dalies į polius atremta plokštė, visiškai į polius atremta plokštė) pagrindo plokštės įtemtųjį ir deformuotųjį būvį, sugretinti rezultatus, nustatyti racionaliausią atvejį. Apžvelgiant į gautus skaičiavimo rezultatus sugretinti pagrindo plokštės nuosėdžių ir lenkiamieji momentai, medžiagų sąnaudos.

Reikšminiai žodžiai: pagrindo plokštė su poliais, sąveika tarp plokštės ir grunto, variantai, baigtinių elementų metodas, projektavimas.

Krzysztof Zakowski, Michal Narozny, Kazimierz Darowicki. 2015. Tiltų apsauga nuo klaidžiojančiosios srovės sukeltos korozijos, The Baltic Journal of Road and Bridge Engineering 10(1): 11–16.

Santrauka. Straipsnyje pateiktas Siennickio tilto korozijos nuo klaidžiojančiosios srovės tyrimas. Korozijos priežastis – neteisingai suprojektuota tramvajaus linijos, einančios šiuo tiltu, trauka. Nebuvo naudota jokia dielektrinė izoliacija tarp tramvajaus bėgių ir plieninės tilto konstrukcijos. Aprašyta daug apsaugų nuo klaidžiojančiosios srovės metodų. Pateiktos pavojingo tilto charakteristikos. Gdansko technologijos universiteto Elektrochemijos, korozijos ir medžiagų inžinerijos katedros specialistai suprojektavo ir pasiūlė taikyti katodinės apsaugos išorine srovė sistemą. Siekiant patikrinti apsaugos sistemos efektyvumą, atlikti įvairūs tyrimai.

Reikšminiai žodžiai: plieninis tiltas, gelžbetonis, korozija, klaidžiojančioji srovė, katodinė apsauga.

Tarvo Mill, Artu Ellmann, Martti Kiisa, Juhan Idnurm, Siim Idnurm, Milan Horemuz, Andrus Aavik. 2015. Tilto deformacijų, atsirandancių tilto bandymo statine apkrova metu, geodezinė stebėsena, The Baltic Journal of Road and Bridge Engineering 10(1): 17–27.

Santrauka. Pastaruoju metu metų antžeminio laserinio skenavimo technologija sparčiai vystosi ir yra naudojama įvairiose srityse, ypač įvairūse pastatų ir istorinių paminklų tyrimui. Nors antžeminio laserinio skenavimo duomenų naujodijos deformacijų stebėsenai buvo tiriamas ir anksciau, pirmenybė vis dar teikia įprastinėms tyrimų technologijoms. Kadangi antžeminiai laseriniai skeneriai leidžia surinkti daug ypač detalių geometrinių duomenų nuo žemės paviršiaus, įdomu išauginti metrolodijų šios technologijos privalumus, vykdamas statinių deformacijų stebėseną. Pagrindinis šio tyrimo tikslas – išbandyti antžeminę laserinio skenavimo technologijos pritaikymą deformacijų, atsirandancių tilto apkrovos metu. Kiekvieną raidavimą, kurį panaudotas gelžbetonio gaminio tilto, pastatytu 1953 m., bandymo statine apkrova metu. Vienas iš pagrindinių sijų centrinė dalis 12 m² ploce buvo veikė įvairių nustatytų įtvirtinimų technologijų, kas leido atsirandė klaidų atsirandusios gėrimo sijos įėmė su didžiulių deformacijų. Pagrindinis šio tyrimo tikslas – išbandyti antžeminą laserinio skenavimo technologijos pritaikymą deformacijų stebėsenos, atliktos unikalaus tilto bandymo apkrova metu, rezultatai. Pateikia specialų stebėsenos metodologiją, kurį panaudota gelžbetonio gaminio tilto, pastatytu 1953 m., bandymo statine apkrova metu. Vienos iš pagrindinių sijų centrinių dalis 12 m² ploce buvo veikė įvairių nustatytų įtvirtinimų technologijų, kas leido atsirandės klaidų atsirandusios gėrimo sijos įėmė su didžiulių deformacijų. Nors po bandymo nustatytas daugelio pločio atsiranda mas pagrindinės sijos įėmė ir didžiulės vertikaliosios deformacijos, tilsas nesugriuvo. Antžeminio laserinio skenavimo stebėsenos rezultatai buvo patikrinti didelio tikslumo niveliavimu. Tyrimo rezultatai patvirtino, kad antžeminio laserinio skenavimo tikslumas gali siekė ±2,8 mm 95% pasitikėjimo lygiui.

Reikšminiai žodžiai: antžeminis laserinis skenavimas, tikslus niveliavimas, bandymas apkrova, deformacijų stebėsena, gamininė sija.
Raffaele Mauro, Marco Cattani, Marco Guerrieri. 2015. Greitųjų žiedinių sankryžų saugumo charakteristikos vertinimas potencialaus avaringumo modelio pagalba, *The Baltic Journal of Road and Bridge Engineering* 10(1): 28–38.

Santrauka. Greitosios žiedinės sankryžos (angl. *turbo roundabouts*) yra ypatinga kelių susikirtimo išdėstymo schema, suprojektuota siekiant padidinti dvių juostų žiedinių sankryžų saugumą, kartu išlaikant puikų jų pralaidumą. Pagrindinis šios naujos koncepcijos žiedinės sankryžos požymis – negalėjimas judėti iš vienos juostos į kitą – tai užtikrina atitvarai, žymintys eismo juostas. Šiame straipsnyje aprašytas greitųjų žiedinių sankryžų saugumo tyrimas taikant potencialaus avaringumo modelį. Modelio pagrindinė sudaro potencialaus konflikto sąvoka: kiekvienas eismas sukelia kiekvieną konfliktą, kurie gali sukelti eismo įvykių dydį. Eismo įvykių skaičius, tenkantis kiekvienam konfliktui, yra proporcingas skaičiui, kiek kartų šis eismo manevras atliekamas sankryžoje. Norint nustatyti konfliktų eismo sąlygas, taigi ir potencialius konfliktus, nustatyti kiek eismo įvykių tipai sankryžose. Norint nustatyti prognozuojamą eismo įvykių dydį, yra svarbu žinoti eismo intensyvumą, eismo įvykių tikimybę kiekvienam kritiniam eismo įvykiui. Šiuo atveju reikėtų naudoti modelį, naudojant realius avaringumo ir eismo intensyvumo duomenis. Modelio korektiūrą sudaro, sukurtos gamintojo ir ekspertų, kuri kiekvienas pritarė kuo mažiau štuma eismo įvykių sušvelninantys šaltiniai, tai svarbu liekančios arealų. Gyvenimui panaudoti modelį būtų skiriantys sąlygos kiekvienam eismo įvykiui, tačiau galbūt svarbu nustatyti, kad modelio vertė, peržiūrėti, kaip modelio parengėjai gali nustatyti, kaip modelio reikšmės gali būti pavojingos. **Reikšminiai žodžiai:** greitosios žiedinės sankryžos, dviejų eismo juostų sankryža, potencialūs konfliktai, potencialaus avaringumo modelis.

Marek Pszczola, Józef Judycki. 2015. Apskaičiuotų ir išmatuotų temperatūrinių įtempių palyginimas asfaltbetonyje, *The Baltic Journal of Road and Bridge Engineering* 10(1): 39–45.

Santrauka. Straipsnyje pateiktas apskaičiuotų ir išmatuotų temperatūrinių įtempių, atsiradusiuose asfaltbetonyje, palyginimas. Temperatūrinių įtempių, atsiradusiuose asfaltbetonyje, palyginimui, sudarymo tempėjimo metu vėžulio skersmuoje, nustatytų temperatūrinių įtempių, reikia žinoti eismo intensyvumą, eismo įvykių tikimybę kiekvienam kritiniam eismo įvykiui. Reikšminga išmatuotų temperatūrinių įtempių, atsiradusių asfaltbetonyje, temperatūros priklausančių standumo moduliu. Šiuo atveju svarbu žinoti, kad modelinės ir realios temperatūros įtempių, atsiradusiuose asfaltbetonyje, nustatymo metu, būtų skiriantys sąlygos kiekvienam eismo įvykiui, tačiau galbūt svarbu nustatyti, kad modelio reikšmės gali būti pavojingos. **Reikšminiai žodžiai:** temperatūrinių įtempių, žema temperatūra, valkšnumo bandymas, standumo modulis.

Mauricio Pradena, Lambert Houben. 2015. Įtempių relaksacijos analizė nearmuotose betono dangose, *The Baltic Journal of Road and Bridge Engineering* 10(1): 46–53.

Santrauka. Betyrinė betono dangos susidarymo procesas siejamas su eismo įtempių reakcijomis. Tai reiškia, kad betono dangos susidarymo metu, eismo įtempių reakcijos, atsiranda įtempių relaksacijos procesas, kuris gali sukelti betono dangos susidarymo procesą. Šio proceso modeliavimas leidžia nustatyti, kaip eismo įtempių reakcijos, atsiranda įtempių relaksacijos procesas, betono dangos susidarymo procesą. Šiai reikšmei svarbu žinoti, kad modelinės ir realios temperatūros įtempių, atsiradusiuose asfaltbetonyje, nustatymo metu, būtų skiriantys sąlygos kiekvienam eismo įvykiui, tačiau galbūt svarbu nustatyti, kad modelio reikšmės gali būti pavojingos. **Reikšminiai žodžiai:** Įtempių relaksacijos analizė, nearmuotose betono dangose, užpildo susijungimą.
Pagrindinis šio darbo tikslas – nustatyti rišiklio eksploatacinų savybių parametra, kurių pagerintų asfalto mišinio kokybės įmanoma įvertinti atsparumo liekamajai deformacijai požiūriu. Nustatyta koreliacija tarp autorių siūlomo valžšumo bandymo kartotine apkrova, atlikto su asfaltiniu rišikliu, ir bituminio mišinio atsparumo provėžų susidarymui bandymo rezultatų. Atlitka rezultatų analizė ir nustatyta koreliacija tarp pasiūlyto funkcinio parametra ir provėžų gilio. Galima teigti, kad kartu su brangiu atsparumo provėžų susidarymui bandymu pradiniame mišinio projektavimo etape tikslinga atlikti ir nesudėtingą bandymų dinaminį šūties geometriją.

Reikšminiai žodžiai: rišiklio eksploatacinų savybių parametrų, liekamoji deformacija, provėžų susidarymas, dinaminis šūties geometrijos.

Alfredas Laurinavičius, Lina Bertulienė, Arina Minkevič. 2015. Kelių oro sąlygų informacinės sistemos duomenų įtraukimas į intelektinę transporto sistemos, Lietuvos hidrometeorologijos tarnyba, Kelių oro sąlygų informacinė sistema, kritulių prognozė, kelių priežiūra žiemą. Reikšminiai žodžiai: intelektinė transporto sistemos, Lietuvos hidrometeorologijos tarnyba, Kelių oro sąlygų informacinė sistema, kritulių prognozė, kelių priežiūra žiemą.

Xinsheng Li, Zhaoxing Xie, Wenzhong Fan, Lili Wang, Junan Shen. 2015. Šiltai maišyto asfalto priedų parinkimas pagal šiltai maišyto asfalto mišinių savybes: Kinijos patirtis, The Baltic Journal of Road and Bridge Engineering 10(1): 79–88. Santrauka. Šio tyrinio tikslas – parinkti pačius efektyviausius priedus šiltai maišyto asfalto projektuose ir atlikti laboratorinius bandymus, Maršalo stabilumo, užšalimo ir įtakos įtaka eksploatacinei vertybei. Ekspertams siūloma maišyto asfalto mišino galimybė atlikti bandymus pagal autorių siūlomą procedūrą. Atlikta rezultatų analizė, kuriai parodė, kad: 1) visų bandinių savitasis svoris ir oro tuštymo kiekis buvo panašūs į kontrolinių bandinių; 2) šiltai maišyto skaldos ir mastikos asfaltui Maršalo stabilumo ir takumo reikšmė buvo atitinkamai 6,8–26,6 % ir 3,5–10,3 % didesnė nei kontrolinių bandinių, o šiltai maišyto asfaltbetonio buvo atitinkamai 6,1–15,6 % ir 6,5–9,7 % didesnė nei kontrolinių bandinių; 3) dviejų tipų mišinių netiesioginis tempiamasis stipris buvo atitinkamai 1,7–14,4 % mažesnis nei kontrolinių bandinių; 4) šiltai maišyto asfalto bandinių dinaminis stabumas buvo 10,8–16,6 % mažesnis nei kontrolinių bandinių; 5) šiltai maišyto skaldos ir mastikos asfalto
vidutinė lenkimo yramoji deformacija buvo 7,6 % didesnė nei kontrolinių bandinių, o šiltai maišyto asfaltbetonio
buvo 12,8 % mažesnė nei kontrolinių bandinių; 6) šiltai maišyto asfalto mišinių su „Sasobit“ ir „Rediset“ priedais
eksplotacinės savybės buvo daug geresnės ir tinkamesnės pietyričių Kinijai, kur provēžų susidarymas yra pagrindinis
asfaltbetonio dangų defektas.

Reikšminiai žodžiai: šiltai maišytas asfaltas, priedai, užpildo granulometrinė sudėtis, savybės, lyginamasis tyrimas.

Afshin Jahangirzadeh, Shatirah Akib. 2015. Eksperimentinis tyrimas tilto tauro sprastasienės matmenims
nustatyti, The Baltic Journal of Road and Bridge Engineering 10(1): 89–96.

Santrauka. Sprastasienės forma ir dydis yra svarbus veiksnyms, darantis įtaką jos kaip priemonės kovai su
išplovomis poveikio. Dabarreniai tyrimai rodo, kad išplovos duobės gylis mažėja naudojant stačiakampio formos
sprastasienės aplink apvalius taurus. Šio tyrimo metu nustatymo apytiksliaus stačiakampių sprastasienių
matmenys, padaugėjus, sumažinti iki minimumo laikiną išplovą aplink modeliuojamą tilto taurą. Modeliuojant at-
lktį įvairių dydžių stačiakampių sprastasienių poveikio tilto taurose tyrimai priėmę srovę ir pasrovii. Pastebėta, kad
neatsižvelgiant į stačiakampės sprastasienės sprastasienės matmenų, optimalus stačiakampės sprastasienės ilgio ir tauro skers-
mens santykis priėmę srovę ir pasrovii. Yra atitinkama 0,86 ir 1,42. Apskaičiuotas optimalus sprastasienės plotis
yra 2,8 karto didesnis nei tauro skersmuo. Naudojant šiuos optimizuotus sprastasienės matmenis, nedimensinis
išplovos gylis pasiekė minimalią 0,034 reikšmę po 72 val. Išplovos gylis sumažėjimas pasiekė 98 % per 72 val.

Reikšminiai žodžiai: tilto tauro modelis, išplova, stačiakampė sprastasienė, sprastasienės
ilgis pasrovii, sprastasienės ilgis prieš srovę.

Miglė Paliukaitė, Audrius Vaitkus, Adam Zofka. 2015. Bitumo cheminės sudėties ir senėjimo įtaka asfalto dangos
funkcionavimui, The Baltic Journal of Road and Bridge Engineering 10(1): 97–104.

Santrauka. Bitumo kokybė – vienas svarbiausių veiksnių, lemiančių asfalto maišinio savybės ir visos asfalto dangos
konstrukcijos funkcionavimą eksplotaciojų metu. Naftos kilmė ir technologinis perdirbimo procesas yra svarbi-
ausios bitumo kokybės lemiančios priežastys. Tačiau neatsižvelgiant į stačiakampių sprastasienių poveikio tilto taurose
prastasienės, lemiančios bitumo savybų kitimą: bitumo senėjimą asfalto mažymo, saugojimo, transportavimo ir klojimo metu bei palengvina
didėjančią oksidaciją asfalto dangos konstrukcijos eksplotacios metu. Lietuvos rinkai tiekiamų tikimų skirtingų gamintojų
bitumui atitinka Eiropos standarte pateiktą fizikinių savybių reikalavimą, tačiau pastebėti tam tikri bitumo
savybių nepastovumo procesai: bitumas yra skystesnis ir mažiau lipnus klojimo temperatūroje; sumažėjusi kohezija, patikslėjus priešingas tankinant; sumažėjusi kohezija, pateikta išplovos sunkininkų
dažnai naudotų sužinoma bitumo atsparumo provėžų susidarymo įtaka asfalto dangos konstrukcijos eksplotaciojų metu. Eksperimentinio tyrimo metu nustatytas bitumo atsparumo
provėžų susidarymui remiantis Jungtinių Amerikos Valstijų bitumo eksploatacinių charakteristikų reikalavima,
remiantis atlikto darbo rezultatais, pateiktos bitumo komponentės sudėties rekonomendacijos ribos vertės. Darbo tikslas – nustatyti cheminės bitumo sudėties
ir struktūros kitimo įtaka asfalto dangos funkcionavimui. Eksperimentinio tyrimo metu nustatytas bitumo atsparumo
provėžų susidarymui remiantis Jungtinių Amerikos Valstijų bitumo eksploatacinių charakteristikų reikalavimais. Remiantis atlikto darbo rezultatais, pateiktos bitumo komponentės sudėties rekonomendacijos ribos vertės.

Reikšminiai žodžiai: bitumo cheminė sudėtis, senėjimas, nafta, asfalto dangos provėžas.
ABSTRACTS IN LATVIAN

Michail Samofilov, Vytautas Papinigis, Mantas Tūnaitis. 2015. Dažādu pāļu režģoga variantu mehāniskā stāvokļa analīze, The Baltic Journal of Road and Bridge Engineering 10(1): 1–10.

Kopsavilkums. Režģogu projekēšanas metodes tradicionālā ietver balstu režģogus ar vai bez pāļiem. Šī raksta mērķis ir apskatīt variantus, kad režģogs ir daļēji balstīts uz pāļiem un daļēji uz grunti. Visiem režģogu variantiem slodžu shēmas, kā arī konstrukciju mehāniskās ipašības un aprēķinu metodes ir pieņemtas vienādas. Raksta uzdevums ir visiem režģoga variantiem analizēt spriegumu-deformācijas stāvokli (režģogā bez pāļiem, ar daļēju pāļu skaitu un ar pilnu pāļu skaitu). Lēgūtie rezultāti tiek salīdzināti un noteikts racionālākais režģoga veids. Pētījumā rezultātā tiek salīdzināti režģoga sešās, lieces momentu un izmaksu lielumi.

Atslēgvārdi: pāļu režģogs, grunts – režģoga savstarpējā iedarbība, varianti, galīgo elementu analīze, projekēšana.

Krzysztof Zakowski, Michal Narozny, Kazimierz Darowicki. 2015. Tiltu aizsardzība pret klaidstrāvu koroziju, The Baltic Journal of Road and Bridge Engineering 10(1): 11–16.

Kopsavilkums. Raksts veltīts pētījumam par klaidstrāvas korozijas risku Sienicki tiltā. Korozijas riska cēlonis ir uz tilta esošais un nepareizi izprojektētais tramvaja sliežu ceļš. Starp sliedēm un tērauda konstrukcijām nav izbūvēti elektrību nevadoši izolatori. Rakstā parakstītas dažādas metodes, kas var novērst klaidstrāvas koroziju. Aprakstīti apdraudētā tiltu raksturojumi. Pret klaidstrāvu koroziju tiek piedāvāta katodaizsardzības sistēma, kas izstrādāta Gdaņskas Tehnoloģiju universitātes Elektroķīmijas, korozijas un materiālu inženierzinātņu nodaļā. Lai noteiktu aizsardzības sistēmas efektivitāti, tika veikti elektropotenciāla mērījumi pārbaudes paraugiem.

Atslēgvārdi: tērauda tilti, dzelzsbetons, klaidstrāva, katodaizsardzība.

Tarvo Mill, Artu Ellmann, Martti Kiisa, Juhan Idnurm, Siim Idnurm, Milan Horemuz, Andrus Aavik. 2015. Tiltu deformāciju ģeodēziskais monitoring veicot tiltu statisko slogošanu, The Baltic Journal of Road and Bridge Engineering 10(1): 17–27.

Kopsavilkums. Pēdējos gados ir ātri attīstījušās virszemes lāzerskenēšanas tehnoloģijas. Tās var pielietot daudzām vajadzībām, tomēr tās galvenais pielietojums ir dažādu ēku un vēstures pieminekļu uzmērīšanai. Virszemes lāzerskenēšanas tehnoloģija ir izmantota jau iepriekš, tomēr vairāk līdz šim pielieto tradicionālās mērījumu veidu tehnoloģijas. Kopš virszemes lāzerskenēšanas spēj iegūt ļoti detalizētu virsmas ģeometrijas datu, ir interesanti izpētīt tās ātri izpildātu katodaizsardzības sistēmā, kas izstrādāta Tartu Tehnoloģijas universitātes Čehvārti un Sarakstolāds inženierzinātņu nodaļā. Kopsavilkumā noteicams, ka tiltu monitoringa tehnoloģija var sasniegt ±2.8 mm pie 95% ticamības līmeņa.

Atslēgvārdi: virszemes lāzerskenēšana, precīzā nivelēšana, pārbaude ar slodzi, deformāciju monitorings, konsolsistēmas sija.
Raffaele Mauro, Marco Cattani, Marco Guerrieri. 2015. Turbo lokveida ceļa mezglu drošības izvērtējums ar potenciālo negadījumu koeficienta modeli, The Baltic Journal of Road and Bridge Engineering 10(1): 28–38.

Kopsavilkums. Turbo lokveida ceļu mezglu ir konkrēts ceļa mezglu tips, kas projektēts lai uzlabotu divjoslu lokveida ceļa mezglu satiksmes drošības līmeni saglabājot to izcilo caurlaides spēju. Galvenā šī jaunā koncepta lokveida ceļa mezgla īpatnība ir tā, ka nav iespējams mainīt braukšanas joslas, ko nodrošina fiziskas barjeras, kas atdala joslas. Dotajā rakstā ar nolūku izvērtēt satiksmes drošības līmeni uzlabojumu, apskatīts potenciālo negadījumu koeficienta lietojums turbo lokveida ceļu mezglā. Modelis balstās uz potenciāla konflikta koncepciju: vispārējā gadijumā katrs ceļa mezglā esošs transportlīdzeklis veic manevru sērijas, kas potenciāli sevī ietver sadursmes iespējas. Ar katru kritisko manevru saistīto negadījumu skaits ir proporcionāls manevru skaitam ceļu mezglā. Ar nolūku definēt kritiskos manevrus un izveidot potenciālos konfliktus, turbo lokveida ceļa mezglus izstrādā interaktīvi tipoloģijas. Lai prognozētu iespējamus negadījumus, jāievieto datu bāzi par satiksmes intensitāti un katra kritiska manevra bīstamību. Šos rādītājus noteica kalibrējot modeli, kas balstīts uz datiem par satiksmes intensitāti un negadījumiem, kas fiksēti parastajos vienjoslu un divjoslu lokveida ceļos. Pēc tam ar modela palīdzību salīdzināja četru ievadu parasto un turbo lokveida ceļu mezglus. Salīdzinājumā attēloti tikai tādas būtiskas projekta atšķirības kā ģeometriskas elementus, kas ir nozīmīgi ceļa mezglā drošības punktus. Modelis izveidojas, lai uzlabotu divjoslu lokveida ceļa mezglu drošību. Saglabājot izcilu caurlaides spēju, modelis lietojot potenciālu konfliktu koncepciju, veic vienkāršu manevru sērijas izmēru kalibrējumu ceļošanas parametriem. Rezultāti salīdzinājumā ar parasto lokveida ceļa mezglu vienajā telpā ir ievērojami zemāki negadījumu koeficienti, jo nav konfliktspunktu ceļa mezglā savukārt.

Atslēgvārdi: turbo lokveida ceļu mezgli, 2-joslu lokveida ceļu mezgli, potenciāli konflikti, potenciālo negadījumu koeficienta modelis.

Marek Pszczoła, Józef Judycki. 2015. Aprēķināto un izmērīto termālo spriegumu salīdzinājums asfaltbetonā, The Baltic Journal of Road and Bridge Engineering 10(1): 39–45.

Kopsavilkums. Atdzesējot asfaltbetona paraugus, tajos rodas termāls spriegums, kuriem ir salīdzinājums rakstā. Termiskos spriegumus noteica ar iespēlētā parauga termisko spriegumu testu. Termiskas spriegumus veic un ieraksta informāciju par parastajiem asfaltbetona segas un specifiskajiem termiskajiem spriegumiem. Modelis balstīts uz parastajām asfaltbetona segas spriegumu testa metodiem. Saskaņā ar parastajiem asfaltbetona segas testu radās parasti ar D-E-80B SBS polimērmodificētā asfaltbetona sega, kurā strīdīgs negadījums. Atslēgvārdi: termiskie spriegumi, asfaltbetona sega, šļūdes testa metodes.
Dotajā rakstā pētījas iespējas izmantot ceļa meteoroloģisko apstākļu sistēmas informāciju, lai dotā raksta galvenais uzdevums ir ieteikt saistvielas parametrus, kas, raugoties no paliekošo deformāciju (risu) novēršanas viedokļa, ļautu prognozēt labu asfalta maisījuma kvalitāti. Papildus tam rakstā analizēta korelācija starp autoru ieteiktajiem atkārtotajam bīdes – lielāko testu un bituminēta maisījuma vispārīgu uzbriešanas procentu. Rezultāti ir analizēti un ir parādīta korelācija starp autoru ieteiktajiem parametriem un lielāko testu uzbriešanas potenciālu.

Atslēgvārdi: saistvielas parametri paliekošās deformācijas, risu veidošanās, dinamiskās šlūdes reometrs.
apstākļiem, kur galvenie asfalta segu bojājumi ir risu veidošanās un dilšana, relatīvi labākus rezultātus uzrādīja siltā asfalta maisijumi ar Sasobit un Rediset piedevām.

Atslēgvārdi: siltais asfalta maisijums, piedevas, granulometrija, ipašības, salīdzinošie pētījumi.

Afsin Jahangirzadeh, Shatirah Akib. 2015. Eksperimentālās pētījumi par balstu aizsargājoša apbetonējuma dimensiju noteikšanu, *The Baltic Journal of Road and Bridge Engineering* 10(1): 89–96.

Kopsavilkums. Aizsargājoša apbetonējuma formai un izmēriem ir jābūt tādiem, lai nodrošinātu pretizskalojumu efektivitāti. Pašreizējie pētījumi rāda, ka straujas izskalošotās bedres pieaug, un ja ap apanu balstu izmanto taisnstūra formas aizsargājošu apbetonējumu. Šajā pētījuma noteiktas aptuvenas dimensijas taisnstūra veida aizsargājošo apbetonējumu, kas samazinātu izskalojumu starpbalsta modelē. Tika pētīts taisnstūra veida aizsargājoša apbetonējuma izmēru ietekmi uz izskalojumu starpbalsta modelē, ja apbetonējums novietota augšteces vai lejtecē, pūš. Tika novērots, ka neatkarīgi no taisnstūra veida aizsargājošā apbetonējuma izmēram augstecē un lejtecē ir attiecināta jābūt 0.86 un 1.42. Optimalais taisnstūra veida aizsargājoša apbetonējuma platums ir jābūt 2.8 reizes lielākam par balsta diametru. Izmantojot šos optimizētus izmērus, bezdimensiju izskalojuma dzīļums var sasniedz 0.034 72 stundu laikā. Izskalojuma dzīļuma procenotājais samazinājums var sasniedz 92% 72 stundu laikā.

Atslēgvārdi: tītā balts modelis, izskalojumi, taisnstūra veida aizsargājoša apbetonējuma izmērs, aizsargājošā apbetonējuma platums, augšteces aizsargājoša apbetonējuma garums, lejtecē aizsargājoša apbetonējuma garums.

Miglė Paliukaitė, Audrius Vaitkus, Adam Zofka. 2015. Bitumena novecošanas un ķīmiskā sasatāva ietekme uz segas darbspēju, *The Baltic Journal of Road and Bridge Engineering* 10(1): 97–104.

Kopsavilkums. Bitumena kvalitāte asfaltbetona maisijumos ir viens no svarīgākajiem faktoriem, kas ietekmē visu segas konstrukcijas darbu kalpošanas periodā. Sevišķi būtiski bitumena ipašības ietekmē jēlnaftas tips un rafinēšanas tehnoloģija. Vienlaicīgi jāzīmēt arī tā, ka bitumena izmēri un īpašības ietekmē asfalta novērojumu veidošanos procesā, uzglabāšanas, transportēšanas un ieklāšanas laikā. Bitumena īpašības ietekmē asfalta novērojuma veidošanos procesu. Lietuvas tirgū, atbilst Eiropas standartam prasībām attiecībā uz bitumena fizikālajām ipašībām, kaut gan var pierādzīt to īpašību nestabilitāti, izskalošanu, pievērstie matemātiskie modeli un arī bitumena ķīmiskā sasatāva ietekmes asfalta novērojumam. Bitumena kvalitāte un ķīmiskais sastāvs asfalta segas darba mūžā. Bitumena ķīmiskais sastāv ir vienkārši izpētījuma objekts, kas var aprakstīt kā lielāka daudzstāvīgās ķīmiskās sastāvdaļas, kas var izteikt bitumena ķīmisko sastāvu.

Atslēgvārdi: bitumena ķīmiskais sastāvs, fizikāli mehāniskie raksturīgumi, novecošana, risu veidošanās asfalta.
ABSTRACTS IN ESTONIAN

Michail Samofalov, Vytautas Papinigis, Mantas Tünaitis. 2015. Erinevate variantide vaiastatud parve mehhaanilise seisukorra analüüs, The Baltic Journal of Road and Bridge Engineering 10(1): 1–10.

Kokkuvõte. Traditsioonilised parve projekteerimismeetodid kirjeldavad mitte vaiastatud ja vaiastatud parvi. Käesolevas artiklis on esitatud vaiastatud parve projekteerimismeetodeid, kus parv on samasuguselt osaliselt toe-tatud vaidale ja osaliselt toetud maapinnale. Köigi variantide koormustingimused ja mehhaanilised omadused eeldatakse olevat ühesugused, üldised arvsimulatsiooni eeldused on samuti samad. Eesmärgiks on analüüsida parve köigi variantide pinge- ja deformatsioonilolu ja koormustingimused osaliselt vaiastatud ja täielikult vaiastatud parv, võrrelda tulemusi ja määratleda köige ratsionaalsem olukord. Tulemuste põhjal on võrdeldud parve vajumisi, paindemomente ja materjalide maksumusi.

Võtmesõnad: vaiastatud parv, pinnase/parve koosmõju, variandid, lõplike elementide meetod, projekteerimine.

Krzysztof Zakowski, Michal Narozny, Kazimierz Darowicki. 2015. Sildade kaitstmine uitvoolu korrosiooni vastu, The Baltic Journal of Road and Bridge Engineering 10(1): 11–16.

Kokkuvõte. Esitatud on Siennicki silla uitvoolu juhtumi uuring. Korrosiooniriski põhjustas ebakorrekte silda uletava trammilini projekteerimine. Rööbaste ja silla terasekonstruktsiooni vahel ei kasutatud dielektrilist isolatsiooni. Kirjeldatud on mitmeid uitvoolu korrosiooni vastaseid kaitsemeetodeid. Voolu katoodkaitsemetodeem võrreldud ja projekteeriti Gdanski Tehnoloogiaülikooli elektrokeemia, korrosiooni ja materjalide osakonna poolt. Kaitsemeetodi efektiivsuse määramiseks teostati Coupon-tehnilist asjaomast mõõtme ja potentsiaali mõõtmis.

Võtmesõnad: terassild, armeeritud betoon, korrosioon, uitvool, katoodkaitse.

Tarvo Mill, Artu Ellmann, Martti Kiisa, Juhan Idnurm, Siim Idnurm, Milan Horemuz, Andrus Aavik. 2015. Silla staatilisel koormamisel tekkivate deformatsioonide geodeetiline määramine, The Baltic Journal of Road and Bridge Engineering 10(1): 17–27.

Kokkuvõte. Terrestrilise laserskaneerimise tehnoloogia on viimastel aastatel kõrgelt arenenud ja seda teh-noloogiat on kasutatud mitmetel elualadel, aga peamiselt erinevate ehitiste ja ajaloomälestiste mõõdistamisel. Terrestrilise laserskaneerimise andmetest kasutati deformatsioonide määramiseks varem katsetatud, aga traditsioonilised mõõdistamistehnoloogiad on siiski enameliitstud. Kuna terrestrilised laserskannerid on võimalikud omandama pinnalt suure hulga geomeetrilisi andmeid, on huvi uurida terrestrilise laserskaneerimise metrooloogilisi eeliseid ja konstruktsiooni geodeetilise määramiseks. Uuringus on esitatud unikaalset silla koormuskatsetamisel. Uuringus esitatud unikaalset silla koormuskatsetamisel tekkivad deformatsioonide tulemused. Töötati välja spetsiaalne mõõdistusmeetodika, mida rakendati 1953. aastal ehitatud betoonist staatilisel koormatüübis. Silla koormused maksimaalne jõuga kuni 1962 kN (200 t) asetati 12 m² pinnale ühe peatala keskosas; nii ekstreemse koormuse rakandamiselt eeldati silla kokku kük-kumist. Uuringus täheldati peatalas paljude pragude teksti ja maandusväärsed vertikaalsed deformatsioone, nii läbivajumist (–4.2 cm) kui ka tõusu (+2.5 cm), küll aga sild ei kukunud kokku. Laserskaneerimise mõõdistusresultaad võrreldi kõrgtäpselt nivelleerimise tulemustega. Uuringu tulemusted kinnitasid, et terrestrilise laserskaneerimise täpsus võib olla 95% tõenäosusega ±2.8.

Võtmesõnad: terrestrilise laserskaneerimine, kõrgtäpne nivelleerimine, koormuskatse, deformatsioonide määramine, konsooltala.
Raffaele Mauro, Marco Cattani, Marco Guerrieri. 2015. Turbo-ringristmike ohutuse hindamine potentsiaalse önnetustasemene moduliga, *The Baltic Journal of Road and Bridge Engineering* 10(1): 28–38.

Kokkuvõte. Turbo-ringristmikud on teeristmiku lahendus, mis suurendab kaherealiste ringristmike ohutust, säilitades nende suurepäraste läbimõjukuse ja ettevaatavuse. Selle nimetus on saanud tõlgitakse turunenimise eest, mis on eriti oluline mõlemas suunas. Arutelu keskendub potentsiaalse önnetustasemene moduliga kasutatud turbo-ringristmikel, esmakordus hinnata nende ohutuse parandamist. Modul basseerub potentiaalsete konfliktide konseptsioonil: iga ristmikku ületab sõiduk sooritab rea manöövri, mis potentsiaalsete võivad põhjustada önnetuse sõltuvalt tegelikust liiklusest. Iga kriitilise manöövri seotud önnetuste arv on proporsionaalne selle manöövri esinemisajaga. Kriitiliste manöövrite seetõttu on võimalik tagada konfliktide kindlaks määramiseks võeti kasutusele spetsiifiline potentsiaalõnnetusüliühendus ringristmikele. Eeldavate teod poole kannab eesmärk käsitletakse potentsiaalse õnnetustasemene modeli kasutamist turbo-ringristmikel, eesmärgiga hinnata nende ohutuse parandamist. Modul basseerub potentiaalsete konfliktide konseptsioonil: iga ristmikku ületab sõiduk sooritab rea manöövri, mis potentsiaalsete võivad põhjustada önnetuse sõltuvalt tegelikust liiklusest. Iga kriitilise manöövri seotud önnetuste arv on proporsionaalne selle manöövri esinemisajaga.

Võtmesõnad: turbo-ringristmik, kaherealine ringristmik, potentsiaalne konflikt, potentsiaalne önnetustaseme modul.

Marek Pszczoła, Józef Judycki. 2015. Arvutatud ja mõõdetud asfaltbetooni temperatuuripinge võrdlus, *The Baltic Journal of Road and Bridge Engineering* 10(1): 39–45.

Kokkuvõte. Artiklis esitatakse arvutatud ja mõõdetud temperatuuripinge võrdlus, mis tekivad asfaltbetoonist proovikehades nende jahutamisel. Temperatuuripinge arvutus teostati kasutades teoreetilist seost, mis põhineb temperatuurist sõltuvalt jääkustmoodulil. Uudne lähenedemine artiklis on, et temperatuuripinge väärtused kasutatakse madalal temperatuuril, mida kasutati temperatuuripinge katsel. Jääkustmooduli seiskamiselt liigendatud tagasid mõõdetud ja arvutatud temperatuuripinge väärtused, hea kokkujäetavused. Voolavaksetel mõõdetud temperatuuri tõenäosuslikus võrdluses võeti arvesse ainult põhilisi mõõdud. Nad esined vasakul ja reaalne mõõdetud temperatuuripinge võrgus.

Võtmesõnad: temperatuuripinge, madalad temperatuurid, voolavakset, jääkustmoodul.

Mauricio Pradena, Lambert Houben. 2015. Vuukidega armeerimata betoonkatte pingerelaksatsiooni analüüs, *The Baltic Journal of Road and Bridge Engineering* 10(1): 46–53.

Kokkuvõte. Pea ehitamistekird vahetab betoonkattes varases staadiumis praod betooni sisepingetega tulemusena, mistõttu on arvatavaks, et betoonkatte alam ohutust on vähendatud. Arutelus võib arvestada modellide ehitamise võimaluse võimaliku ja vö...
sioon nimetud funktsionaalse omaduse ja roopasügavuse vahel. Tänu sellele võib segu projekteerimisprotseduuris kalli asfaltsegu roopakatse asendada lihtsa bituumeni dünaamiline nihe reomeetri katsega.

Vötmesõnad: sideaine toimivusnõue, jäävdeformatsioon, roobas, dünaamiline nihe reomeeter.

Ali Ghorbani, Hadi Hasanzadehshooiili, Masoud Karimi, Younes Daghigh, Jurgis Medzvieckas. 2015. Probleemaliste mõlliste liivate stabiliseerimine kasutades mikroränioksiidi ja lupja, The Baltic Journal of Road and Bridge Engineering 10(1): 61–70.

Kokkuvõte. Käesolevas uuringus kasutati probleemalise mõllise liivate stabiliseerimiseks mikroränioksiid-lubja lisandit. Valmistati proovikehad 0, 1, 2, 5, 10 ja 15% (massi-%) mikroränioksiidi ja 0, 1, 3 ja 5% (massi-%) lupja. Kasutatud liisand mõju liivate pinnaste stabilisaatorina hinnati mitteotsese surve katsega, CBR-iga ja pundumiskatsega. Mitteotsese survekatse tulemusena prüvitseriti 10% mikroränioksiid ja 3% lubja lasid vanuselt 50 korda suuremat survetugevust, kui stabiliseerimata proovikehad. Teisest küljest, proovikehad 1% lubja sisaldusega näitasid suuri pundumise väärtuseid, aga ainult 1% ränioksiidi lisamine vähendas pundumist märkimisväärsetelt. Mitteotsese survekatse tulemusena prüvitseriti 1% mikroränioksiid ja 1% lubja lasid vanuselt survetugevust, kui stabiliseerimata proovikehad ning nendel proovikehadel oli ka väiksem pundumispotentiaal. Neid liisand sisalduse kogused estasid loikatavat paralleeline, kasutamiseks tee-ehitusobjektidel. Samuti elektronmikroskoobi ülevärses püstolite proovikehadel tekitasid prüvitsete kitsatud kivilehitisliku mikrostruktuuri, mis on kinni tugevuse kasvu peamine põhjuseks.

Vötmesõnad: liivate stabiliseerimine, mikroränioksiid, lubi, CBR, jäävdeformatsioon, liivate võimendamine.

Alfredas Laurinavičius, Lina Bertulienė, Arina Minkevič. 2015. Teilmajaamade infosüsteemi andmete kasutamine ilmaprognoosiks, The Baltic Journal of Road and Bridge Engineering 10(1): 71–78.

Kokkuvõte. Artiklis uuriti võimalusi kasutada teilmajaamade infosüsteemi andmeid sadamaste alguse prognoosiks teedel, mida hooldavad riigi teehooldeettevõtted. Artiklis tuvastatakse, et ilmaprognooside tähtsus on eriti külmal aastaajal. On esitatud ilmaprognooside tulemusi kõrgõl. Osa liitmise õhupooride hulka esinevad rõõmustajad, kui ilmaprognoosid alati liitmise õhupooride hulka esinevad rõõmustajad. Ilmaprognooside tulemusid on määratud millises raadiuses on prognoose soovitav teha.

Vötmesõnad: intelligentsed transpordisüsteemid (ITS), Leedu Hüdrometeoroloogiateenistus, teilmajaamade infosüsteem, sademete prognoos, teede talihoole.

Xinsheng Li, Zhaoxing Xie, Wenzhong Fan, Lili Wang, Junan Shen. 2015. Sooja asfaltsegu lisandite valik lähtudes sooja asfaltsegu segu omadustest – Hiina kogemus, The Baltic Journal of Road and Bridge Engineering 10(1): 79–88.

Kokkuvõte. Uuringu eesmärgiks oli valida kõige efektiivsemad sooja asfaltsegu (WMA) lisandid tuginedes mitmele praktilisele laborikatsetule — tihedus, Marshall'i stabiilsus, külmumis-sulamiskindlus, dünaamiline stabiilsus ja tala paindedeformatsioon. WMA segu projekteerimisel kasutati kolme traditsiooniliselt kasutatavat lisandit, kahte tüüblikülgceta mineramaterjali sõelkõverat, ühe purustatud mineraalmaterjali ja ühe modifitseeritud bituumenit. Tulemused näitasid, et: (1) kõigi segude proovikehade külma ning õhupooride hulka olid sarased kontrollsekse; (2) sooja kilnustikmasfalti Marshall'i statiitse ja voolavuse väärtused olid vastavalt 6.8%–26.6% ja 3.5%–10.3% kõrgemad kontrollsegu; (3) kahe tõmbetugevuse väärtused neist kahel segul olid 1.7%–14.4% madalamad kontrollsegu; (4) kahe tõmbetugevuse suhe sooja asfaltsegu kontrollsegu 1.3% kõrgemad kontrollsegu ning soojal asfaltbetoonil samad näitusid vastavalt 6.1%–15.6% ja 6.5%–9.7% kõrgemad; (4) sooja asfaltbetooni dünaamiline stabilisus oli kontrollsegu 10.8%–16.6% madalam; (5) keskmise paindedeformatsioon prüvitseriti 1% mikroränioksiidi ja 1% lubja asfaltbetoonil 12.8% madalam, kui kontrollsegu; (6) kokkuvõtteks omad moodi segad segad Sasobit ja Rediset lisandiga suhteliselt paraimada omaduse, mis on vajalikud Kagu-Hiinas, kus roobaste teke ja murenemine on asfaltkatete peamisteks defektideks.

Vötmesõnad: woo asfaltsegu, lisandid, sõelkõver, omadused, võrdlev uuring.

Afshin Jahangirzadeh, Shatirah Akib. 2015. Sillasamba tüvesevõru mõõtmete katseline määramine, The Baltic Journal of Road and Bridge Engineering 10(1): 89–96.

Kokkuvõte. Samba tüvesevõru mõõtmete katseline määramine. Uuring näitab, et tüvesevõru augu sügavus väheneb, kui ümber õmbruse turbulentsi kasutatakse kandilist tüvesevõru. Uuring määratleb kandilise tüvesevõru ligilähedase optimaalse mõõtmete minimiseerimaks utmumise vähendamiseks mo-
delleeritud sillasamba ümbruses. Erinevate mõõtmetega tüvešvörusid katsetati nii üles- kui ka allavoolu. Selgas, et sõltumata kandilise tüvešvöoru mõõtmetest eeldati, et ülesvoolu on 0.86 ja allavoolu 1.42. Optimaalne tüvešvöoru laius peaks olema 2.8 kordne samba diameeter. Kasutades optimeeritud tüvešvöoru mõõtmeid, saavutas uhtumise sügavus min mittedimensionaalseks väärteiks 72 tunni jooksul 0.034. Uhtumissügavuse vähemine 72 tunni jooksul oli 98%.

Võtmesõnad: sillasamba mudel, uhtumine, kandiline tüvešvöoru, tüvešvöoru laius, allavoolu tüvešvöoru pikkus, ülesvoolu tüvešvöoru pikkus.

Miglė Paliukaitė, Audrius Vaitkus, Adam Zofka. 2015. Bituumeni keemilise koostise ja vananemise mõju katte tööele, *The Baltic Journal of Road and Bridge Engineering* 10(1): 97–104.

Kokkuvõte. Asfaltsegudes kasutatava bituumeni kvaliteet on üks tähtsamaid faktoreid, mis mõjutab kogu katteendikonstruktsiooni käitumist tema tööea jooksul. Eriti mõjutavad bituumeni omadusi toonnafta tüüp ja rafineerimistehnoloogia. Samal ajal tuleb hinnata ka teisi bituumeni omadusi muutvaid protsesse, nagu bituumeni vananemine segu valmistamisel, ladustamisel, transpordil, laotamisel ning aja jooksul jätkuv bituumeni oksüdeerumine kattes. Erinevatel tootjatel pärinev ja Leetu imporditav bituumen rahuldab Euroopa standardite füüsikaliste omaduste nõudeid, ehki keotud bituumeni omaduste muutused on täheldavad: bituumen on laotamistemperatuuril vedelam ja vähem kleepuv; vähenedud sidusus, suurenenud pragunemine tihendamisel; vähenedud nake bituumeni ja mineraalmateriali vahel; tajutavate omaduste (lõhn, värv) muutused, jm. Need tähelepanekud on tõstatanud diskussiooni bituumeni kvaliteedi parandamise potentsiaalsetest võimalustest, kvaliteedi hindamise sobilistest metoodikatest ning omaduste soovitatavate piirväärtuste määramisest. Käesoleva artikli eesmärgiks on näidata bituumeni keemilise koostise struktuuri mõju asfaltkatte käitumisele. Käitumise näitajaks on roobaste tekkimisega kasutades USA-s arsendatud bituumenite Performance Grade süsteemi. Katselise uuringu käigus näitati bituumeni fraktsioonilise koostise piirväärtused.

Võtmesõnad: bituumeni keemiline koostis, füüsikal-mehhanilised omadused, vananemine, roopa teke asfaltkatte.