Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Genetic diversity in the yellow head nidovirus complex

Priyanjali K.M. Wijegoonawardane a,1, Jeff A. Cowley a, Thuy Phan a, Richard A.J. Hodgson a,2, Linda Nielsen c,d, Wansika Kiatpathomchai c,d, Peter J. Walker a,b,*

a CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
b CSIRO Livestock Industries, Australian Animal Health Laboratory (AAHL), 5 Portarlington Road, Geelong, Victoria 3220, Australia
c Centrex Shrimp, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
d National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Klong Luang, Pathumthani, 12120, Thailand

A R T I C L E I N F O

Article history:
Received 18 April 2008
Returned to author for revision 23 May 2008
Accepted 7 August 2008
Available online 2 September 2008

Keywords:
Yellow head virus
Gill-associated virus
Phylogeny
Replicase gene
Genotypic variation
Genotypes

A B S T R A C T

Penaeus monodon shrimp collected from across the Indo-Pacific region during 1997–2004 were screened for the presence of yellow head-related viruses. Phylogenetic analyses of amplified ORF1b gene segments identified at least six distinct genetic lineages (genotypes). Genotype 1 (YHV) was detected only in shrimp with yellow head disease. Genotype 2 (GAV) was detected in diseased shrimp with the less severe condition described as mid-crop mortality syndrome and in healthy shrimp from Australia, Thailand and Vietnam. Other genotypes occurred commonly in healthy shrimp. Sequence comparisons of structural protein genes (ORF2 and ORF3), intergenic regions (IGRs) and the long 3′-UTR supported the delineation of genotypes and identified both conserved and variant structural features. In putative transcription regulating sequences (TRSs) encompassing the sub-genomic mRNA 5′-termini, a core motif (5′-GUCAAUUA/ACAG-3′) is absolutely conserved. A small (83 nt) open reading frame (ORF4) in the 3′-UTR of GAV is variously truncated in all other genotypes and a TRS-like element preceding ORF4 is invariably corrupted by a A → G/U substitution in the central core motif (5′-UU/G/U)ACAG-3′. The data support previous evidence that ORF4 is a non-functional gene under construction or deconstruction. The 3′-UTRs also contain predicted 3′-terminal hairpin-loop structures that are preserved in all genotypes by compensatory nucleotide substitutions, suggesting a role in polymerase recognition for minus-strand RNA synthesis.

Crown Copyright © 2008 Published by Elsevier Inc. All rights reserved.

Introduction

Yellow head disease (YHD) emerged in 1990 in farmed black tiger shrimp (Penaeus monodon) in Thailand (Limsuwan, 1991). It is a devastating disease that can cause total crop losses within a few days following the appearance of gross signs (Chantanachookin et al., 1993). The causative agent, yellow head virus (YHV), is a bacilliform, enveloped, (+) ssRNA virus classified in the genus Okavirus, family Roniviridae within the order Nidovirales (Walker et al., 2005). A related nidovirus, gill-associated virus (GAV), occurs commonly as a chronic infection in healthy wild and farmed P. monodon in eastern Australia (Spann et al., 1995; Cowley et al., 2000a; Walker et al., 2001). GAV has been associated with a disease described as mid-crop mortality syndrome (MCMS) in which mortalities progressively accumulate from the mid-late juvenile stage onwards (Spann et al., 1997; Walker et al., 2001). A variant YHV genotype has also been detected in healthy P. monodon broodstock from Thailand (Soowan- nayan et al., 2003) and YHV or related viruses have been reported in P. monodon and Penaeus japonicus farmed in Taiwan (Wang et al., 1996; Wang and Chang, 2000). However, these viruses were not associated with typical YHD and their relationships to YHV or GAV remain unconfirmed. There are also reports of YHD or YHV in P. monodon in several other countries in the Asian region including the Philippines, India, Indonesia, Sri Lanka, Malaysia, Vietnam and China (Walker et al., 2001) but these have rarely been confirmed by laboratory analysis.

Like other nidoviruses, the polyadenylated, (+) RNA genomes of YHV (26,662 nt) and GAV (26,235 nt) are expressed from a nested set of genomic and subgenomic mRNAs (Cowley and Walker, 2002; Cowley et al., 2002a; Sittidilokratna et al., 2008). The genomes are organized similarly (5′-ORF1a/ORF1b-ORF2-ORF3-ORF4-polyA-3′). ORF1a encodes a long polyprotein (pp1a) containing 3C-like and papain-like proteases required for auto-processing, and overlaps ORF1b which encodes a ‘DD’ RNA-dependent RNA polymerase, helicase, metal-ion-binding, exoribonuclease, uridylate-specific endoribonuclease and ribose-2′-O-methyl transferase domains (Cowley et al., 2000b; Ziebuhr et al., 2003; Sittidilokratna et al., 2002, 2008). A-1
ribosomal frame-shift element at the ORF1a/ORF1b overlap facilitates translation of the complete pp1ab polyprotein (Cowley et al., 2002a). ORF2 encodes the nucleoprotein (p20) and ORF3 encodes a polyprotein that is processed to generate two envelope glycoproteins (gp116 and gp64) and a small N-terminal triple-membrane-spanning (TMS) fragment of unknown function (Cowley and Walker, 2002; Jitrapakdee et al., 2003; Cowley et al., 2004a; Sittidilokratna et al., 2006). ORF4 is a short open reading frame that, although possibly expressed in GAV (Cowley and Walker, 2008), is severely truncated in YHV and unlikely to encode a functional protein (Sittidilokratna et al., 2008). Intergenic regions (IGRs) upstream of ORF2 and ORF3 contain conserved transcription regulatory sequences (TRSs) that facilitate transcription of two sub-genomic mRNAs (sgmRNAs) which, together with the genome-length mRNA, form a 3′-coterminal nested set characteristic of nidoviruses (Cowley et al., 2002a; Sittidilokratna et al., 2008). The genome sequences of YHV and GAV are ∼79% identical, with amino acid sequence identity ranging from ∼73% in gp116 to ∼84% in pp1ab (Sittidilokratna et al., 2008). Based on levels of sequence divergence, YHV and GAV have been regarded as closely related variants that are likely to represent geographic topotypes in a larger complex (Cowley et al., 1999; Walker et al., 2001). Currently, they are each classified as the species Gill-associated virus (Walker et al., 2005).

This paper reports the analysis of tissue samples from healthy and diseased *P. monodon* collected from several countries in the Indo-Pacific region. Analysis of partial ORF1b sequences identified at least six distinct genetic lineages (genotypes) of yellow head-related viruses of which only YHV (genotype 1) was detected in shrimp from YHD-outbreak ponds. Sequencing of the structural gene region of representatives of genotypes 3, 4 and 5 identified significant diversity, particularly in IGRs and the N-terminal gp116 region, but preservation of TRS-like elements and a 3′-terminal hairpin structure likely to be involved in negative-strand RNA synthesis.

Results

*A new genotype (genotype 3) detected in healthy *P. monodon* broodstock and postlarvae*

In an initial study, a semi-nested RT-PCR targeting a 279 nt ORF1b sequence located just downstream of helicase domain motif VI was used to detect YHV-related viruses in 38 apparently healthy *P. monodon* broodstock sampled from commercial hatcheries in Central Thailand in March 2000. PCR products were amplified from 25 (66%) of the broodstock (Fig. 1A). Nucleotide sequences were determined for six of these in addition to PCR products amplified from juvenile shrimp from YHD outbreaks in Thailand and Taiwan and healthy broodstock and postlarvae from hatcheries in Australia, Vietnam and Sarawak in Malaysia (Table 1). Using 25 sequences, ClustalX was used to align the 231 nt sequence of the nested PCR primers (equivalent to the sequence A\(^{17496}\) to A\(^{17722}\) in the GAV reference strain; GenBank AF227196). An unrooted neighbour-joining phylogenetic tree generated from this alignment segregated the sequences into three clusters (Fig. 1B). One cluster (genotype 1) included the YHV reference strain (GenBank AV052786) and all eight viruses from juvenile shrimp from YHD outbreaks. Whilst slight nucleotide variation occurred between some of these viruses, the sequences of one Thai (THA-00-D11) and three of the four Taiwanese viruses (TWN-00-D1, TWN-00-D2, TWN-00-D3) were identical. The second cluster (genotype 2) included the GAV reference strain, the two other Australian viruses from either healthy or MCMS-affected shrimp, and one of the five Vietnamese viruses from healthy postlarvae (VNM-01-H65). The third phylogenetic cluster (genotype 3), which has not been described previously, comprised all viruses from healthy broodstock from Thailand and Sarawak and the other four Vietnamese viruses detected in healthy postlarvae. The Vietnamese viruses appeared to form a sub-group within genotype 3.

Other genotypes detected in *P. monodon* from various Indo-Pacific regions

A more extensive study was conducted using a larger set of *P. monodon* sampled over a wider geographic range. A new RT-nested PCR designed to amplify a 722 nt ORF1b gene segment encompassing the semi-nested RT-PCR sequence was used in initial analyses. This test was further modified to utilize degenerate primer pairs YH30-F2/R2 and YHV31-F2/R2 to better accommodate sequence variations among the known genotypes and was applied to ∼200 *P. monodon* sampled between 1997 and 2004 from Indonesia, the Philippines, Taiwan, Vietnam, Thailand, Malaysia, India, Sri Lanka, Mozambique and Australia (Table 1). Samples included whole postlarvae as well as gill, lymphoid organ, hepatopancreas or whole head tissues of juvenile farmed shrimp or adult broodstock from hatcheries. Most samples were from healthy shrimp but some originated from shrimp either displaying typical signs of YHD or that were moribund and collected from MCMS-affected ponds in Australia.

In total, 57 of the ∼200 samples generated nested PCR amplicons yields suitable for sequencing. Sequences of these 57 viruses, together with YHV and GAV reference strain sequences, were aligned using ClustalX. An unrooted neighbour-joining tree generated from the alignment of the 688–671 nt segment (equivalent to the GAV reference strain sequence G\(^{17259}\) to G\(^{17629}\)) segregated the viruses into six major clusters well supported by bootstrap values (≥70%) (Fig. 2). The clustering of viruses in genotypes 1, 2 and 3 substantiated previous findings with the 231 nt sequence in that all 13 viruses clustering within the other lineages. Pair-wise comparisons of the 688–671 nt segment revealed 35 unique 223 aa sequences that extended from the start of the pp1ab region to the 3′-terminus of the genome-length mRNA, form a 3′-coterminal nested set characteristic of nidoviruses (Cowley et al., 2002a; Sittidilokratna et al., 2008). Based on levels of sequence divergence, YHV and GAV have been regarded as closely related variants that are likely to represent geographic topotypes in a larger complex (Cowley et al., 1999; Walker et al., 2001). Currently, they are each classified as the species Gill-associated virus (Walker et al., 2005).
sequences using the neighbour-joining distance matrix. The viruses clustered into the same phylogenetic lineages as defined by the nucleotide sequences, except that the three genotype 6 viruses merged with viruses clustering in genotype 2 (data not shown).

Partial genome sequence analysis of genotype 3, 4 and 5 viruses

Partial genomic sequences of representatives of genotypes 3 (VNM-02-H93), 4 (IND-02-H9) and 5 (THA-03-SC21) were compiled from three to five fragments amplified by RT-nested PCR, RT-semi-nested PCR and 3′-poly(A)-anchored RT-PCR. For genotypes 3 and 4, the ~6.15 kb sequence extended from IGR1 to the 3′-poly(A) tail and thus encompassed ORF2 (N protein) and ORF3 (glycoproteins) and the genome 3′-UTR. Due to the poor quality of tissue available to extract RNA, no sequence was obtained for the central ORF3 region or the near 3′-terminal region of genotype 5. Comparisons with genomic sequences of the reference strains of YHV (genotype 1) and GAV (genotype 2) identified high levels of overall nucleotide sequence
Table 1

Samples of shrimp (Penaeus monodon) collected from sites in the Indo-Pacific region

Sample code*	Collection date	Sample origin	Life stage	Tissues type	Health status	Genotype
AUS-97-MCMS1	1997	Queensland, Australia	Sub-adult	LO	Healthy	MCMS 2 (GAV)
AUS-97-MCMS2	24-04-1997	Queensland, Australia	Adult	gill	Healthy	MCMS 2 (GAV)
AUS-97-MCMS3	1997	Queensland, Australia	Sub-adult	LO	Healthy	MCMS 2 (GAV)
AUS-00-H1	2000	Queensland, Australia	Sub-adult	LO	Healthy	2 (GAV)
AUS-00-H2	2000	Queensland, Australia	Sub-adult	LO	Healthy	2 (GAV)
AUS-00-H4	23-01-2004	Indonesia	Sub-adult	Muscle	Healthy	3
AUS-04-H7	23-01-2004	Indonesia	Sub-adult	Muscle	Healthy	3
AUS-04-H10	23-02-2004	Indonesia	Sub-adult	Muscle	Healthy	3
AUS-04-H11	10-02-2004	Indonesia	Sub-adult	Muscle + pleopod	Healthy	3
IND-02-H5	15-06-2002	Nellore, India	PI14	Whole	Healthy	4
IND-02-H7	15-06-2002	Nellore, India	PI15	Whole	Healthy	4
MOZ-04-H1	13-01-2004	Mozambique	Brooder	Gill	Healthy	3
MOZ-04-H6	13-01-2004	Mozambique	Brooder	Gill	Healthy	6
MOZ-04-H8	13-01-2004	Mozambique	Brooder	Gill	Healthy	6
MOZ-04-H11	13-01-2004	Mozambique	Brooder	Gill	Healthy	6
MYS-03-H1	06-06-2003	Malaysia	Brooder	LO + pleopod	Healthy	3
MYS-03-H3	06-06-2003	Malaysia	Sub-adult	Pleopod	Healthy	3
MYS-03-H4	06-06-2003	Malaysia	Sub-adult	Pleopod	Healthy	3
MYS-03-H5	06-06-2003	Malaysia	Sub-adult	Pleopod	Healthy	3
MYS-03-H11	06-06-2003	Malaysia	Sub-adult	Pleopod	Healthy	5
PHL-03-H8	02-10-2003	Iloilo, Philippines	PI12	Whole	Healthy	5
THA-00-H3	2000	Thailand	Brooder	Pleopod	Healthy	3
THA-00-H7	2000	Thailand	Brooder	Pleopod	Healthy	3
THA-00-H8	2000	Thailand	Brooder	Pleopod	Healthy	3
THA-00-H10	2000	Thailand	Brooder	Pleopod	Healthy	3
THA-00-H11	2000	Thailand	Brooder	Pleopod	Healthy	3
THA-00-H12	2000	Thailand	Brooder	Pleopod	Healthy	3
THA-00-D1	2000	Thailand	Sub-adult	Pleopod	Diseased	1 (YHV)
THA-00-D9	2000	Thailand	Sub-adult	Pleopod	Diseased	1 (YHV)
THA-00-D11	2000	Thailand	Sub-adult	Pleopod	Diseased	1 (YHV)
THA-00-D12	2000	Thailand	Sub-adult	Pleopod	Diseased	1 (YHV)
THA-00-DRH	2000	Thailand	Sub-adult	Half head	Diseased	1 (YHV)
THA-03-D1	2003	Nankorn, Thailand	Juvenile	Gill	Diseased	1 (YHV)
THA-03-D2	2003	Nankorn, Thailand	Juvenile	Gill	Diseased	1 (YHV)
THA-03-D3	2003	Nankorn, Thailand	Juvenile	Gill	Diseased	1 (YHV)
THA-03-D4	2001	Nakorn Pathom, Thailand	Juvenile	Gill	Diseased	1 (YHV)
THA-01-D8	2001	Nakorn Pathom, Thailand	Juvenile	Gill	Diseased	1 (YHV)
THA-01-D9	2001	Nakorn Pathom, Thailand	Juvenile	Gill	Diseased	1 (YHV)
THA-01-D10	2001	Nakorn Pathom, Thailand	Juvenile	Gill	Diseased	1 (YHV)
THA-03-D29	2003	Chachoengsao, Thailand	Juvenile	Gill	Diseased	1 (YHV)
THA-03-D30	2003	Chachoengsao, Thailand	Juvenile	Gill	Diseased	1 (YHV)
THA-03-D33	2003	Rachaburi, Thailand	Juvenile	Gill	Diseased	1 (YHV)
THA-02-D34	2002	Thailand	Juvenile	Gill	Diseased	1 (YHV)
THA-04-H20	28-03-2004	Supanburi, Thailand	PI20	Whole	Healthy	2 (GAV)
THA-03-HA	2003	Thailand	Adult	Gill	Healthy	2 (GAV)
THA-03-HB	2003	Thailand	Adult	Gill	Healthy	2 (GAV)
THA-03-HC	2003	Thailand	Adult	Gill	Healthy	2 (GAV)
THA-04-HK	16-04-2004	Prathum Thani, Thailand	Adult	Gill	Healthy	2 (GAV)
THA-03-D8	27-10-2003	Thailand	Brooder	Gill + pleopod	Diseased	1 (YHV)
THA-03-HB	30-09-2003	Thailand	Brooder	Gill + pleopod	Healthy	2 (GAV)
THA-03-SC21	2003	Thailand	Sub-adult	Gill	Slow growth	5
TNN-00-D1	2000	Taiwan	Sub-adult	Gill	Diseased	1 (YHV)
TNN-00-D2	2000	Taiwan	Sub-adult	Gill	Diseased	1 (YHV)
TNN-00-D3	2000	Taiwan	Sub-adult	Gill	Diseased	1 (YHV)
TNN-00-D4	2000	Taiwan	Sub-adult	Gill	Diseased	1 (YHV)
TNN-03-H9	05-07-2003	Taiwan	Juvenile	Pleopod	Healthy	3
TNN-03-H11	05-07-2003	Taiwan	Juvenile	Pleopod	Healthy	3
VMN-01-H41	2001	Vietnam	PI	Whole	Healthy	3
VMN-01-H42	2001	Vietnam	PI	Whole	Healthy	3
VMN-01-H2	2001	Vietnam	PI	Whole	Healthy	3
VMN-01-H82	2001	Vietnam	PI	Whole	Healthy	3
VMN-01-H65	2001	Vietnam	PI	Whole	Healthy	2 (GAV)
VMN-02-H81	02-02-2002	Vietnam	PI	Whole	Healthy	3
VMN-02-H258	01-02-2002	Nha Trang, Vietnam	PI12	Whole	Healthy	3
VMN-02-H278	06-03-2002	Hon Chong, Vietnam	PI12	Whole	Healthy	3
VMN-02-H264	02-03-2002	Ca Na, Vietnam	PI12	Whole	Healthy	3
VMN-01-H77	31-12-2001	Phan Thiet, Vietnam	PI	Whole	Healthy	2 (GAV)
VMN-02-H64	18-01-2002	Nha Trang, Vietnam	PI13	Whole	Healthy	2 (GAV)
identity between the genotypes and a similar genome organization (S...IGR1-ORF2-IGR2-IGRF3-IGR3-ORF4-UTR-polyA-3').

Nucleoprotein gene

ORF2 gene amino acid sequence lengths (144 aa) were identical for GAV and the genotype 3, 4 and 5 viruses and slightly longer for YHV (146 aa). Sequence identity varied between 84.0% (GAV and YHV) and 94.4% (GAV and genotype 3), with most variability, including the two amino acid insertions in YHV, occurring in N- and C-terminal regions (Fig. 3A). Phylogenetic analysis using the N gene sequences (Fig. 3B) confirmed the relationships determined using the ORF1b sequence, with genotypes 2 and 3 and genotypes 4 and 5 clustering on separate branches and genotype 1 (YHV) being more distantly related.

Glycoprotein gene

In YHV and GAV, ORF3 encodes a polyprotein (pp3) that is cleaved to generate envelope glycoproteins gp116 and gp64, and an N-terminal TMS fragment that has yet to be identified in virions or infected cells (Jitrapakdee et al., 2003; Cowley and Walker, 2002). The pp3 sequences of the genotype 3 (1642 aa) and genotype 4 viruses (1638 aa) were similar in length to GAV (1640 aa) and somewhat shorter than YHV (1666 aa). A ClustalX alignment of the pp3 sequences indicated overall identity to vary between 75.4% (genotypes 1 and 2) and 86.7% (genotypes 2 and 3). Identity was lower in gp116 (71.3%–83.4%) than gp64 (81.8%–92.4%). For the four genotypes, YHV was most distantly related in all three polypeptides generated by pp3 processing. All 50 cysteine residues located in the predicted ectodomains were perfectly conserved and, of the 25 likely disulphide bridges, two occurred in the TMS fragment, 12 in gp116, and 11 in gp64. Predicted N-linked glycosylation sites are less well conserved amongst the genotypes. Both sites in the GAV TMS ectodomain also exist in genotypes 3 and 4 but only one is present in YHV. In the gp116 ectodomain, GAV contains eight potential sites, YHV contains seven of which six are present in GAV (Cowley and Walker, 2002; Jitrapakdee et al., 2003). All seven potential sites in genotype 3 are shared with GAV as are six of the seven sites in genotype 4, the other being unique. Five of the potential sites in gp116 are conserved across all four genotypes. In the gp64 ectodomain, all four potential N-linked glycosylation sites are conserved across the genotypes.

TMHMM hydropathy profiles of the pp3 sequences of genotypes 3 and 4 predicted six transmembrane (TM) helices with ectodomains between helices (TM1–TM2, TM3–TM4, and TM5–TM6) and a membrane topology identical to that predicted previously for YHV and GAV (Fig. 4). SignalP3.0 analysis of each pp3 predicted two signal peptidase type I-like cleavage sites immediately downstream of TM3 and TM5. The TM3 cleavage sites of genotypes 3 (AFA228; ST), genotype 4 (SFA228; KE) and genotype 5 (AFS228; QE) correspond to those used in YHV (AFA228; TI) and GAV (TPA228; KE) to generate the gp116 N-terminus (Cowley and Walker, 2002; Jitrapakdee et al., 2003). The TM5 cleavage site generates the gp116 C-terminus and the gp64 N-terminus. Although this site is highly conserved in YHV and GAV (ASA129; LA), substitutions were observed upstream of the point of cleavage in genotype 3 (ATA105; LA) and genotype 4 (VSS109; LA). As indicated, there is marked variability in the amino acid sequence immediately downstream of the TM3 cleavage site (Fig. 4). Although all seven cysteine residues are preserved, there are differences in the number and location of N-linked glycosylation sites and, in YHV, there is a large sequence deletion at the gp116 N-terminus.

Intergenic regions, ORF4 and 3′-UTR

The IGRs upstream of ORF2 (IGR1) and ORF3 (IGR2) and the ~650 nt 3′-terminal region downstream of ORF3 were aligned using ClustalX and compared. As observed previously (Cowley et al., 2002a; Sittidilokratna et al., 2002), IGR1 is significantly longer in YHV (352 nt) than in GAV (93 nt) but each contains a highly conserved motif predicted to function as a TRS. In GAV, the 5′-terminus of sub-genomic (sg) mRNA1 is located within the TRS and the terminal seven nucleotides (5′-AAACCU-) are preserved in YHV (Cowley et al., 2002a; Sittidilokratna et al., 2008). As shown in Figure 5A, IGR1 lengths in the genotype 3 (91 nt), 4 (112 nt) and 5 (104 nt) viruses are similar to GAV and contain a highly conserved block of 25 nt including a 13 nt motif (5′-GGUCUUUAACAC-3′) encompassing the sgRNA1 5′-terminus that is conserved across all five genotypes. IGR2 sequences (54–57 nt) are highly conserved across all genotypes. In the most conserved block of 24 nt (5′-AUL(G/U)UCUCUUAACACCUUAAUUUU-U3′), substitutions occur at only two positions, one in genotype 4 (G/U) and another in genotypes 3 and 4 (U/A) (Fig. 6A). WebLog presentation of ClustalX alignments indicated that the sequence 5′-GUCUUUAACACCUUAAUU-U3′, encompassing the 5′-termini of sgRNA1 and 2 of GAV, is invariant in all five genotypes (Fig. 5B).

In GAV, the 3′-terminal region downstream of ORF3 contains a TRS-like element followed by a short ORF4 predicted to encode an unidentified 83 aa (9.2 kDa) polypeptide (Cowley and Walker, 2002). In YHV, the TRS-like sequence is highly conserved but ORF4 is severely truncated (20 aa) (Sittidilokratna et al., 2008). As shown in Figure 5A, the 3′-terminal regions of genotype 3, 4 and 5 viruses also contain TRS-like elements immediately upstream of truncated ORF4 sequences. This region is highly conserved across all five genotypes, with a conserved block of 22 nt sequence encompassing the TRS-like element (5′-UAGCUA(U/J)UU(G/U)UCACCUUUU-A3′) containing only a U insertion in genotype 3 and a G/U substitution in YHV. This sequence includes 9 of 15 nt that were invariant and two others dominantly present in the WebLog analysis of IGR1 and IGR2 (Fig. 5B). However, in the putative IGR3 of all genotypes, the conserved 5′-A nucleotide of the sgRNA terminal sequence motif (5′-ACAC) is corrupted by a G(U) substitution (Fig. 6A).

Due to multiple insertions and deletions, ORF4 in YHV (20 aa) (Sittidilokratna et al., 2008) and genotypes 3 (36 aa), 4 (36 aa) and 5 (37 aa) is severely truncated relative to GAV (83 aa). Nevertheless, a ClustalX alignment of the ORF4 sequences indicated that 16 of 20 aa in the N-terminal region upstream of the insertion/deletions were conserved across all five genotypes (Fig. 5C).

A ClustalX alignment of available sequences for YHV, GAV and genotypes 3 and 4 indicated that the 128–131 nt 3′-UTR extending from the GAV ORF4 termination codon to the poly(A) tail is extremely conserved (data not shown). MFOLD analysis showed the sequences formed similar RNA hairpin structures stabilized by four helices (ΔG = −32.4 to −41.3 kcal/mol) (Fig. 6). Significantly, compared to YHV, the integrity of helix 2 in GAV and genotypes 3 and 4 was preserved by compensatory nucleotide changes in either one or both strands (C=G→U.A, G.C→A.U and U.G→C.G). Both strands of YHV helix 4 possessed compensatory C:G→U.A changes and the leading strand possessed a C→AU change.

Table 1 (continued)

Sample codea	Collection date	Sample origin	Life stage	Tissues type	Health status	Genotype
VNM-02-H93	04-01-2002	Hon Khao, Vietnam	P110	Whole	Healthy	3
VNM-02-H6	04-01-2002	Ngoc Hien, Vietnam	P112	Whole	Healthy	2 (GAV)
VNM-02-H5	01-04-2002	Vietnam	Sub-adult	Muscle	Healthy	3
VNM-02-H70	04-01-2002	Hon Khao, Vietnam	P110	Whole	Healthy	3

* a Shrimp sample code assignment: country of origin-year of collection-health status-identification number/code. Abbreviations: healthy (H), diseased (D), mid-crop mortality syndrome (MCMS), slow growth (SG), lymphoid organ (LO), postlarvae (PL).
Fig. 2. Unrooted, neighbour-joining phylogenetic tree constructed from a ClustalX multiple alignment of a 668–671 nt sequence in the ORF1b replicase gene obtained for 57 viruses including the reference strains of YHV (THA-98-Ref) and GAV (AUS-96-Ref). The samples were collected from throughout the Indo-Pacific region from 1997–2004. The sources of viruses and their codes are described in Table 1. Bootstrap values shown at key branch nodes were determined for 1000 replicates. Horizontal branch lengths indicate phylogenetic distance calculated as the number of nucleotide substitutions per total nucleotide residues. The clustering of viruses into the six discrete genetic lineages (genotypes 1 to 6) is indicated.
allowing the formation of additional A:U and U:A base pairs that extended the helix. Moreover, a two nucleotide (UA) insertion maintained a hairpin loop size (6 nt) in YHV comparable to the loops of GAV (7 nt) and genotypes 3 (7 nt) and 4 (6 nt). The conformity of these low energy RNA secondary structures suggests that they may be important for the viral polymerase binding and initiation of anti-genomic RNA synthesis.

Discussion

Yellow head virus is a major pathogen of farmed *P. monodon* shrimp and is listed by the World Organisation for Animal Health as causing a notifiable disease (OIE, 2007). This paper provides evidence for the existence of at least six distinct genetic lineages of YHV distributed across most of the natural geographic range of *P. monodon* from Africa, through South and Southeast Asia, to eastern Australia. Viruses assigned to genotypes other than genotype 1 (YHV) or 2 (GAV) were detected exclusively as low level infections in apparently healthy shrimp. All viruses clustering with the 1998 Chachoengsao (Thailand) reference YHV isolate (genotype 1) occurred in shrimp displaying typical signs of YHD sampled from pond outbreaks in Thailand and Taiwan between 2000 and 2003. Some genotype 2 (GAV) viruses were detected in moribund Australian shrimp sampled from MCMS-affected ponds. However, whilst similar in histopathology to YHD, MCMS is far less severe, developing less rapidly and rarely causing mass mortalities (Owens, 1997; Spann et al., 1997). GAV is also far less virulent (∼ 10^6-fold by LD50) than YHV in experimental bioassays (Sittidilokratna and Walker, unpublished) and occurs at a high prevalence in healthy wild and farmed *P. monodon* along eastern Australia (Spann et al., 1995; Cowley et al. 2000a, Walker et al., 2001) due to its likely maintenance in a natural cycle by vertical transmission (Cowley et al., 2002b, Cowley and Walker, 2008). Although one virus (THA-03-SG21) assigned to genotype 5 was detected in a shrimp affected by a condition of unknown aetiology described as monodon slow growth syndrome (MSGS) (Chayaburakul et al., 2004), there is no evidence to suggest its causal association with this condition for which at least one other virus (Laem Singh virus) has been implicated (Sritunyalucksana et al., 2006).

The nucleotide sequence comparisons of an ORF1b gene region overlapping the highly conserved helicase domain delineated at least six genotypes, although the genotype 6 viruses were not distinguishable from genotype 2 (GAV) viruses when deduced amino acid sequences were compared. Extensive surveys have failed to provide evidence of genotypes other than genotype 2 in eastern Australian *P. monodon*. It appears, therefore, that GAV is an endemic natural infection of this tiger shrimp population and that other genotypes have not been introduced to Australia because of a prohibition on the importation of live crustaceans (Doyle et al., 1996). Many genotype 2 viruses found at lower prevalence in healthy *P. monodon* sampled from hatcheries in Thailand and Vietnam showed no clear segregation from Australian viruses, suggesting their possible recent introduction through the export of eastern Australian broodstock. The exclusive clustering of Indian viruses in genotype 4 and Mozambique viruses (with one exception) in genotype 6 may also reflect their isolation from the active trade in *P. monodon* sampled from hatcheries in Thailand and Vietnam showed no clear segregation from Australian viruses, suggesting their possible recent introduction through the export of eastern Australian broodstock. The exclusive clustering of Indian viruses in genotype 4 and Mozambique viruses (with one exception) in genotype 6 may also reflect their isolation from the active trade in *P. monodon* broodstock and seed that occurs throughout East and South-East Asia. It has been hypothesized that, prior to the advent of aquaculture, efficient vertical transmission allowed individual genotypes to co-evolve with penaeid shrimp host populations in geographic isolation (Cowley et al., 2004b). Although there has been no recorded traffic in shrimp to between Australia and Africa for aquaculture purposes, the translocation of viruses via shipping routes cannot be excluded.

The 3′-terminal genome regions of YHV, GAV and representative genotypes 3, 4 and 5 viruses were examined to establish the extent to which the structural protein genes have diverged, the relevance of the
putative ORF4 gene, the conservation of TRS elements in the IGRs and whether RNA secondary structures potentially important for polymerase recognition might exist in the 3′-UTR. Sequence relationships in the structural protein genes were largely consistent with genotype assignments based on the phylogeny of the ORF1b gene sequence and supported the view that YHV is more distant from each of the other genotypes. The YHV nucleoprotein encoded by ORF2 is 2 aa longer and sequence variations, which occur primarily near the N- and C-termini, include substitutions in the binding site of monoclonal antibody (MAb) Y20 which has been used for differential detection of YHV and GAV (Sithigorngul et al., 2000, 2002, 2007; Soowanayan et al., 2003; Sittidilokratna et al., 2006). MAb Y20 should also detect genotypes 3, 4 and 5 as their sequences are identical to GAV in this region. In contrast, the binding site for MAb Y19 and Y14 (IVPDPSL) is preserved across all five genotypes and appears to be a useful group-specific epitope (Sittidilokratna et al., 2006).

In ORF3, YHV is also most divergent in terms of the length of the expressed polyprotein (pp3) and sequence identity of each of the three glycoproteins (gp116, gp64 and the TMS protein) that are released by proteolytic processing (Jitrapakdee et al., 2003). Sequence divergence is most significant in gp116 due to insertions of several amino acid blocks at its N-terminus, the longest of which occurs immediately downstream of the TM3 domain signal peptidase type I cleavage site. It is not yet clear how these insertions might affect the structure of gp116 but it is conceivable they may be responsible for the high virulence of YHV. The efficiency of proteolytic cleavage of virion surface proteins influences virulence and pathogenicity in several diverse groups of RNA viruses (Nagai et al., 1976; Nagai and Klenk, 1977; Rubin and Fields, 1980; Toyoda et al., 1987; Gorman et al., 1988; Scolaro et al., 1990; Gotto and Kawaoka, 1998). Persistent YHV infection in some palemonid shrimp species in the Pacific Rim (Nagai et al., 1976; Nagai and Klenk, 1977; Rubin and Fields, 1980; Toyoda et al., 1987; Gorman et al., 1988; Scolaro et al., 1990; Gotto and Kawaoka, 1998).

Potential N-linked glycosylation sites are indicated in bold face and underlined in the alignment and denoted (†) on the illustration. Six predicted transmembrane-spanning domains (TM1–TM6) are numbered.
Maines et al., 2005; Beerens and Snijder, 2006). The highly conserved nature of the ronivirus 3'‐UTR RNA structure suggests it may also act as a polymerase recognition signal for minus‐strand RNA synthesis.

Materials and methods

Shrimp samples

Between 1997 and 2004, postlarvae and tissues of juvenile and adult *P. monodon* were sampled from hatcheries and farms in India, Taiwan, Malaysia, Vietnam, Indonesia, Thailand and the Philippines. Tissue from Mozambique shrimp was provided via a commercial breeding facility in Malaysia. Pools of postlarvae as well as gill tissue, pleopods or whole heads were collected into alcohol preservative (80% ethanol, 20% glycerol) and stored at ambient temperature until processed. Fresh tissue collected from Australian *P. monodon* was snap frozen on dry ice and stored at −80 °C. Details of the origin and nature of the *P. monodon* samples are listed in Table 1.

RNA isolation

Total RNA was isolated from preserved shrimp tissues as soon as possible after receipt. Pools of 10–15 postlarvae or 10–50 mg tissue were processed using TRIzol reagent (Invitrogen). RNA was re‐suspended in 20–40 μl RNase‐free sterile distilled water, quantified by spectrophotometry (A260 nm) and stored at −80 °C.

Fig. 5. (A) Conserved sequences in the intergenic regions upstream of ORF2, ORF3 and ORF4 in the reference genotype 1 (THA‐98‐Ref) and genotype 2 (AUS‐96‐Ref) isolates and representatives of genotypes 3 (VNM‐02‐H93), 4 (IND‐02‐H9) and 5 (THA‐03‐SG21). The initiation and termination codons of flanking ORFs are indicated in bold face and underlined. The position in each sequence corresponding to the 5′‐terminal adenosine of GAV sgmRNA1 and sgmRNA2 is shaded. The highly conserved 14 nt sequence surrounding the terminal adenosine is underlined, as is the region upstream of ORF4 in which the sequence is partially conserved. Nucleotide substitutions (uridine) in the conserved regions are shaded in black. Identical nucleotides in all aligned sequences are indicated (*). (B) WebLogo presentation of nucleotides conserved and less conserved between genotypes 1, 2, 3, 4 and 5 in the TRS elements in IGR1 and in IGR2 as well as between the TRS elements of both IGRs. The cDNA rather than RNA sequence was analysed. (C) Multiple alignment of the putative genotype 2 (GAV) ORF4 gene amino acid sequence with the comparable truncated sequences of genotypes 1, 3, 4 and 5. Amino acids shared in all 5 genotypes are indicated (*).
RT-PCR amplification of ORF1b gene fragments for phylogenetic analysis

Several RT-PCR methods were used to amplify ORF1b gene segments. All PCR primer sequences are described in Table 2. In initial analyses, a semi-nested one-step RT-PCR employing sense primer 2s12 and antisense primers 2a12 and 2a43 was used to amplify 575 bp and 279 bp products, the larger product being amplified only when viral RNA levels were sufficiently high. An RT-nested PCR used subsequently to amplify longer (1346 bp and 719 bp) products employed primers 2s38M and 2a43M for PCR and primers 2s113 and 2a114 for nested PCR. After new variants were identified, 8-fold degenerate consensus primers were designed to broaden PCR specificity. The target sites of the reverse PCR primer (YH30-R2) and both nested PCR primers (YH31-F2 and YH31-R2) were not changed but the forward PCR primer (YH30-F2) was moved to a more conserved genome region, reducing the amplicon length to 1004 bp.

Semi-nested RT-PCRs (15 μl) contained 0.2 x MMLV-RT Buffer (Epicentre Biotechnologies), 0.5 x Elongase Buffer A and 0.5 x Elongase Buffer B (Invitrogen), 0.8 mM dithiothreitol, 5% DMSO, 0.8 mM each dNTP, 20 U RNasin ribonuclease inhibitor (Promega), 2.5 U MMLV RT

Fig. 6. Conserved RNA secondary structures predicted using M-fold to form in the 3′-UTR sequence of genotypes 1, 2, 3 and 4 downstream of the putative ORF4 gene to the genome 3′-polyA tail. Helices 1 to 4 are indicated and the positions of all nucleotide differences that occurred amongst the four genotypes, including compensatory changes that preserved base-pairing in helix 2 and that maintained helix 4 in genotype 1, are indicated.

Genotype 1 Genotype 2 Genotype 3 Genotype 4
Table 2

PCR Primer sequences

PCR Primer*	5′-3′ Sequence
ORF1b gene fragments for phylogenetic comparisons	
2s12	CGCTTACATCTATCTGATGAC
2a12	GTGTCGACCTCTTCTGCTCCT
2a43	GAGATATTGATCTTTGATTTCTG
2s38M	CGTGCCTGCTGCTGCTGCTGCTG
2a43M	AGATCTTGGTATGCTAATTTG
2s113	AGATCTTGGTATGCTAATTTG
2a114	TTGTTGAGCTGATTGGAGG
YH30-F2	CTACATCTAATCATATCATCAANAYCA
YH30-R2	GAGATNTYTGCTTGTATTG
YH31-F2	CARATCACTGGAATTTG
YH31-R2	TTGTCTGAGCTGATTGGAGG

ORF3 gene 5′- and 3′-termini of genotypes 3 and 4	
GAV217F	CTAACAGMBCGACGCTACAGCTGATGAC
GAV199F	GTGACCTTGACATATTGACGATG
GAV224R	TAKAAGTATATGTGGATATTCCTC
GAV225R	TGGAGACCTGAAAAAGTGGATG
GAV228R	TACATCACTGGAATTTG

Central ORF3 gene region of genotypes 3 and 4	
GAV237F	CGCCATAGTATGACGACAGAAATCTT
GAV238R	CGGATGATGATGATGATGATG
GAV239F	GATCTGGAGCATACAAGTTCAAGAGC
GAV240R	GATCTGGAGCATACAAGTTCAAGAGC
GAV246R	GATCTGGAGCATACAAGTTCAAGAGC
GAV247R	GATCTGGAGCATACAAGTTCAAGAGC
GAV251F	ATGACAGAATCTAATAAGCTGACAGG
GAV252R	AGCGCGGCGAGATGAGATG

Genomic 3′-termini of genotypes 3, 4 and 5	
Uni-P	GCCGAAGTCTGACGAT
GAV196R	GTGACCTTGAGATG
GAV197F	CTGGAGCATATAAGGCG
GAV198F	TGGAGACCTGAAAAAGTGGATG
GAV199F	GTGACCTTGAGATG

ORF2 plus IGR1 and IGR2 of genotypes 3 and 4	
ORF2-4F	GAV219F
ORF2-4R	GAV224R

DNA spanning ORF2, IGR1 and IGR2 of genotype 5	
GenosF-P1-P	ACACGCGACAGCTGCTGCGAG
GenosR2-N	TGCATCAGCTGGAGATG

Mixed nucleotide abbreviations: R=A/G, Y=C/T, M=A/C, W=A/T, D=A/G/T, H=A/T/C.
* Primer codes: forward (F), reverse (R), sense (S), antisenese (A).

(Epichent Biotechnologies), 0.45 U Elongase (Invitrogen), 0.2 U DyNAzyme II (Finzymes), 0.5 μmol each primer (2s12, 2a43 and 2a43) and 100 ng RNA. Reactions were incubated at 48 °C/45 min, 94 °C/60 s followed by 45 cycles of 94 °C/20 s, 55 °C/30 s, 62 °C/20 s and 70 °C/120 s and then at 70 °C/5 min and 25 °C/60 s.

In the RT-nested PCR, cDNA was synthesized in a 20 μl reaction containing 1–3 μg total RNA, 50 ng random hexamer primers (Promega), 1 mM each dNTP and either 100 U SuperScript II or III reverse transcriptase (Invitrogen) as described by the manufacturer. In the PCR, 1 μl cDNA (equivalent to 50–150 ng RNA) was amplified in a 25 μl reaction containing 1 x Taq DNA polymerase buffer (10 mM Tris–HCl pH 9.0, 50 mM KCl, 0.1% Triton X-100), 1.5 mM MgCl2, 17.5 pmol each of primers 2s38M and 2a43M, 200 μM each dNTP and 1.25 U Taq DNA polymerase (Promega). The reaction was incubated at 94 °C/1 min followed by 35 cycles of 94 °C/30 s, 56 °C/30 s, 72 °C/1 min and then at 72 °C/1 min. A 2 μl aliquot of PCR was added to nested PCR (25 μl final) prepared as above but containing primers 2s113 and 2a114. PCR cycling conditions were the same except that the extension time was reduced to 45 s.

The consensus RT-nested PCR used 1 μl random-primed cDNA and primers YH30-F2 and YH30-R2 in the PCR, with primers YH31-F2 and YH31-R2 used in the nested PCR. The reaction conditions were as described except for the use of a 58°C annealing temperature and a 60 s extension time in the PCR. An iCycler (BioRad) thermal cycler was used in all PCRs.

3′-polyA-anchored PCR to amplify 3′-terminal genome sequences

Based on sequences available for the reference YHV (GenBank AF540644) and GAV (GenBank AF039647) isolates, degenerate PCR primers were designed to target a C-terminal region of ORF3 (GAV199F) and regions downstream in the ORF3–ORF4 IGR (GAV198F and GAV197F). A degenerate reverse primer (GAV196R) was targeted to a sequence just upstream of the 3′-polyA tail. In the 3′-polyA-anchored PCR method (Cowley and Walker, 2002), cDNA was synthesized using the Uni-dT16-A/G primer was amplified by PCR using primers GAV199F and Uni-P. This PCR amplified low amounts of a 1044 bp DNA product for the genotype 3 (VNM-02-H93) and 4 (IND-02-H9) viruses but none was detected for the genotype 5 (THA-03-SG21) virus. Using these PCR products as templates, semi-nested (primers GAV197F and Uni-P) and nested PCR (primers GAV198F and GAV196R) were used to amplify 507 bp and 744 bp products, respectively, which overlapped and included the 3′-polyA tail. As these PCRs did not amplify products for genotype 5, a region from ORF3 to a position downstream of ORF4 in GAV was amplified by semi-nested PCR using random-primed cDNA and primers GAV198F and GAV196R for PCR (~0.7 kb product) and primers GAV197F and GAV196R for semi-nested PCR (~0.4 kb product). Primer sequences are described in Table 2.

RT-PCR amplification of ORF3

For genotypes 3 and 4, the 5′- and 3′-terminal fragments of the ~4.9 kb ORF3 gene were amplified by RT-PCR using random-primed cDNA and the PCR primer pairs GAV217F/GAV224R (~1.3 kb product) and GAV219F/GAV224R (~0.7 bp product), respectively. A semi-nested PCR employing the primer pair GAV219F/GAV224R (~0.7 bp product) was used to obtain better yields of the 3′-terminal fragment. Reverse primers GAV224R and GAV225R targeted sequences of the 3′-polyA-anchored PCR products that were relatively conserved amongst genotypes 1, 2, 3 and 4. These and subsequent PCRs to generate long fragments of the ORF3 gene employed the Expand Long Template PCR system (Roche) with Buffer 3 adjusted to contain 3.0 mM MgCl2 according to the manufacturer’s instructions.

Amplification of the central ORF3 region of genotypes 3 and 4 was attempted by RT-PCR using random-primed cDNA and the primer pairs GAV239F/GAV240R (~3.5 kb product) and GAV237F/GAV238R (~3.1 kb product), respectively, designed to sequences determined for the 5′- and 3′-terminal fragments. As no product was amplified for genotype 3, the PCR was repeated using primer GAV239F in combination with degenerate reverse primer GAV247R designed to a sequence relatively conserved in genotypes 1 and 2. This PCR used similar reaction and cycling conditions and amplified the expected ~1.1 kb DNA product. Using the sequence of this fragment, primer GAV251F was designed and a semi-nested PCR employing this primer and primers GAV252R and GAV246R was used to amplify a ~2.6 kb product spanning the remaining ORF3 gene sequence. Primer sequences are described in Table 2.

RT-PCR amplification of ORF2 and flanking IGR1 and IGR2 sequences

The ORF2 gene and flanking IGR1 and IGR2 sequences of genotypes 3 and 4 were amplified by RT-semi-nested PCR using random-primed cDNA and degenerate sense primers targeting a ORF1b gene (ORF2-4F) sequence relatively conserved between genotypes 1 and 2 and primers targeting ORF3 gene sequences (ORF2-5R and ORF2-6R) more highly conserved amongst genotypes 1, 2, 3, and 4. PCR using the Expand Long Template PCR system (Roche) generated poor ~0.8 kb
amplicon yields. Semi-nested PCR amplified good yields of the expected ~0.75 kb products, in addition to others, and these were gel purified prior to sequence analysis. The ORF2 gene and IGR1 and IGR2 sequences of genotype 5 (THA-03-SG21) were derived from a cloned ~3.2 kb DNA product amplified using primers targeting sequences within the ORF1b (Geno5-F1-P) and ORF3 genes (Geno5-R2-N) and the Superscript II One-Step RT-PCR system (Invitrogen). Primer sequences are described in Table 2.

Nucleotide sequence analysis

Prior to being sequenced in both orientations, DNA products amplified by PCR were either purified directly using QIAquick columns (QIAGEN), with or without prior resolution in 0.8% agarose-TAE gels. Sequencing employed PCR primers listed in Table 2 and additional sequence-specific primers for long PCR products. Sequencing reactions used 3.3 μM primer and ABI Prism BigDye Terminator V3.0 or V3.1 reagent and were analyzed at the Australian Genome Research Facility. Sequence chromatograms were edited using SeqEd 1.0.3 (ABI). Deduced amino acid sequences were generated using MacVector 7.0 software. All nucleotide sequences have been deposited in Genbank under accession numbers EU784957-EU785043.

Phylogenetic analysis

Multiple sequence alignments were generated using ClustalX Version 1.82 software (Thompson et al., 1997). Unrooted neighbour-joining trees, constructed using the distance matrix described by Saitou and Nei (1987), were generated using the PHYLIP output of ClustalX. The robustness of neighbour-joining trees was evaluated by bootstrap analysis of a 1000 replicates. Trees were presented graphically using NJ-plot and drawn using TreeView Version 1.6.6 (Page, 1996).

Acknowledgments

The authors would like to thank Dr Nusra Sittidilokratna and Prof. Boonsirn Withychumnarnkul of CENTEX Shrimp (Thailand), Tran Hoa and Dang Oanh of Cantho University, Mr Su Chen of Farming Intelligence Technology Corporation (Vietnam), Dr Celia Lavilla-Boonsaeng, V., Panyim, S., and Nei, M. for the significance of the virulence of Newcastle disease virus genome. Adv. Exp. Med. Biol. 440, 297–302. Gotto, H., Kawaoka, Y. 1998. A novel mechanism for the acquisition of virulence by a human influenza A virus. Proc. Natl. Acad. Sci. (USA) 95, 10224–10228.

Hsue, B., Masters, P. 1997. A bulged stem–loop structure in the 3′ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. J. Virol. 71, 7567–7578.

Hsue, B., Masters, P. 1998. An essential secondary structure in the 3′ untranslated region of the mouse hepatitis coronavirus genome. Adv. Exp. Med. Biol. 440, 297–302. Jirapakkadee, S., Unajak, S., Sittidilokratna, N., Hodgson, R.J., Cowley, J.A., Walker, P.J., Panyim, S., Boonsaeng, V., 2003. Identification and analysis of gp116 and gp64 structural glycoproteins of yellow head nidovirus of Penaeus monodon shrimp. J. Gen. Virol. 84, 863–873.

Limswovan, C., 1991. Handbook for Cultivation of Black Tiger Prawns. Tasametak Co. Ltd., Bangkok (in Thai).

Lin, Y.J., Liu, C.L., Lai, M.M., 1994. Identification of the cis-acting signal for minus strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in DNA replication and transcription. J. Virol. 68, 8131–8140.

Longyant, S., Sithigorngul, P., Rukpratanporn, S., Sithigorngul, W., Menasveta, P., 2005. Differences in susceptibility of palaeonoid shrimp species to yellow head virus (YHV) infection. Dis. Aquat. Org. 64, 5–12.

Maines, T.R., Young, M., Dinh, N.N., Brinton, M.A., 2005. Two cellular proteins that interact with a stem loop in the simian hemorrhagic fever virus 3′+NCR RNA. Virus Res. 109, 109–124.

Nagai, Y., Klenk, H.D., 1975. Activation of precursors to both glycoproteins of Newcastle disease virus by proteolytic cleavage. Virology 77, 125–134. Nagai, Y., Klenk, H.D., Rott, R., 1976. Proteolytic cleavage of the viral glycoproteins and significance for the virulence of Newcastle disease virus. Virology 72, 494–508. Nanda, S.K., Johnson, R.F., Liu, Q., Leibowitz, J.L., 2004. Mitochondrial HSP70, HSP40, and HSP90 are closely related but distinct prawn viruses. Dis. Aquat. Org. 36, 153–167.

References

Beeren, N., Snijder, E.J., 2006. RNA signals in the 3′-terminal of the genome of Equine arteritis virus are required for viral RNA synthesis. J. Gen. Virol. 87, 1977–1983. Buchy, P., 1996. Cloning and expression of the replication of positive-stranded RNA viruses of plants and animals. Adv. Virus Res. 47, 159–251.

Chantarachookin, C., Boonyaratpalin, S., Kasornchanda, J., Direkbusaratan, S., Ekpanithanpong, U., Supamataya, K., Sriraiaratana, S., Flegel, T.W., 1993. Histology and ultrastructure reveal a new granulosis-like virus in Penaeus monodon affected by yellow head disease. Dis. Aquat. Org. 17, 145–157.

Chayaburakul, K., Nash, G., Pratapnutt, P., Sriraiaratana, S., Withychumnarnkul, B., 2004. Multiple pathogens found in growth-retarded black tiger shrimp Penaeus monodon cultivated in Thailand. Dis. Aquat. Org. 60, 89–96.

Cowley, J.A., Walker, P.J., 2002. The complete sequence of gill-associated virus of Penaeus monodon pawns indicates a gene organisation unique among nidoviruses. Arch. Virol. 147, 1977–1987.

Cowley, J.A., Walker, P.J., 2008. Molecular biology and pathogenesis of coronaviruses. In: Perlman, S., Gallagher, T., Snijder, E.J. (Eds.), Nidoviruses. ASM Press, Washington D.C., pp. 361–377.

Cowley, J.A., Dimmock, C.M., Wongteerasupaya, C., Boonsaeng, V., Panyim, S., Walker, P.J. 1999. Yellow head virus from Thailand and gill-associated virus from Australia are closely related but distinct prawn viruses. Dis. Aquat. Org. 36, 153–157.
Sittidilokratna, N., Petchampai, N., Boonsaeng, V., Walker, P.J., 2006. Structural and antigenic analysis of the yellow head virus nucleocapsids protein. Virus Res. 116, 21–29.

Soowannayan, C., Flegel, T.W., Sithigorsngul, P., Slater, J., Hyatt, A., Cameri, S., Wise, T., Crane, M.St.J., Cowley, J.A., McCulloch, R., Walker, P.J., 2003. Detection and differentiation of yellow head complex viruses using monoclonal antibodies. Dis. Aquat. Org. 57, 193–200.

Spann, K.M., Cowley, J.A., Walker, P.J., Lester, R.J.G., 1997. Gill-associated virus from cultured Penaeus monodon from Queensland, Australia. Dis. Aquat. Org. 31, 169–179.

Sritunyalucksana, K., Apisawetakan, S., Boon-Nat, A., Withyachumnarnkul, B., Flegel, T.W., 2006. A new RNA virus found in black tiger shrimp Penaeus monodon from Thailand. Virus Res. 118, 31–38.

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24, 4876–4882.

Williams, G.D., Chang, R.-Y., Brian, D.A., 1999. A phylogenetically conserved hairpin-type 3′ untranslated region pseudoknot functions in coronavirus RNA replication. J. Virol. 73, 8349–8355.

Ziebuhr, J., Bayer, S., Cowley, J.A., Gorbalenya, A.E., 2003. The 3C-like protease of an invertebrate nidovirus links coronavirus and potyvirus homologs. J. Virol. 77, 1415–1426.