Acute Ischemia Induced by High Density Culture Increases Cytokine Expression and Diminishes the Function and Viability of Highly Purified Human Islets of Langerhans

Kate E. Smith, MS¹,², Amy C. Kelly, BS³, Catherine G. Min, MS¹,², Craig S. Weber, BS⁴, Fiona M. McCarthy, PhD³, Leah V. Steyn, PhD¹, Vasudeo Badarinarayana, PhD⁵, J. Brett Stanton, BS¹, Jennifer P. Kitzmann, MPH¹, Peter Strop, PhD⁵, Angelika C. Gruessner, PhD⁶, Ronald M. Lynch, PhD⁴, Sean W. Limesand, PhD³, and Klearchos K. Papas, PhD¹

¹Department of Surgery, University of Arizona, Tucson AZ
²Department of Physiological Sciences GIDP, University of Arizona, Tucson AZ
³School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ
⁴Department of Physiology, University of Arizona, Tucson AZ
⁵Sanofi-Aventis Group, Tucson, AZ
⁶Department of Surgery, SUNY Upstate Medical University, Syracuse, NY
Corresponding author:

Klearchos K. Papas, PhD
Department of Surgery
University of Arizona
Medical Research Building
1656 E. Mabel Street, Room 122
Tucson AZ 85724
Telephone: (520) 626-5853
Fax: (520) 626-3770
E-Mail: kkpapas@surgery.arizona.edu

AUTHORSHIP AND FUNDING

Kate E. Smith – Coordinated and contributed to physiological assessments and analyses, contributed directly to manuscript preparation and content, figures, and review. This author declares no conflicts of interest.

Amy C. Kelly – Coordinated and conducted RNAseq analysis and directly contributed to manuscript preparation and content, figures, and review. This author declares no conflicts of interest.

Catherine Min – Contributed to physiological assessments, analysis, and manuscript review. This author declares no conflicts of interest.
Craig S. Weber – Contributed to physiological assessments, analysis, and manuscript review. This author declares no conflicts of interest.

Fiona M. McCarthy – Contributed to RNAseq analysis and manuscript review. This author declares no conflicts of interest.

Leah V. Steyn – Contributed to physiological assessments and manuscript review. This author declares no conflicts of interest.

Vasudeo Badarinarayana – Contributed to RNAseq analysis and manuscript review. This author declares no conflicts of interest.

Peter Strop – Contributed to study design, manuscript review, and funding. This author declares no conflicts of interest.

Angelika C. Gruessner – Conducted statistical analysis and manuscript review. This author declares no conflicts of interest.

J. Brett Stanton – Performed fluorescence microscopy and quantification and contributed to manuscript review. This author declares no conflicts of interest.

Jennifer P. Kitzmann – Consulted on physiological assessments and manuscript review. This author declares no conflicts of interest.

Ronald M. Lynch – Contributed to study design, consulted on physiological assessments, and manuscript review. This author declares no conflicts of interest.

Sean W. Limesand - Contributed to study design, manuscript preparation, content, statistics, and review. This author declares no conflicts of interest.

Klearchos K. Papas – Principal Investigator, contributed directly to study funding, conception, design, data analysis and presentation, manuscript preparation, and review. Dr. Papas declares a financial interest in Giner, Inc. This interest has been properly disclosed to the University of
Arizona Institutional Review Committee and is managed by a Financial Conflict of Interest Management Plan in accordance with its conflict of interest policies.

FUNDING

Support for this study was provided by the Sanofi-Aventis Group, the Heart, Lung, and Blood Training Grant (T32HL007249), NIH/NIDDK Phase 1 SBIR Grant (Giner, Inc.) R43 DK100999, and the Juvenile Diabetes Research Foundation (JDRF Grant JDRF: 5-2013-141) for their generous support.

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
ABBREVIATIONS

ARG1, Arginase 1, AP1, Activator protein 1, B2M, Beta-2 microglobulin, CCL2, C-C motif chemokine ligand 2, CCL20, C-C motif chemokine ligand 20, CCL3, C-C motif chemokine ligand 3, CCL3L3, C-C motif chemokine ligand 3-like 3, CPM, Counts per million, CSF2, Colony stimulating factor 2, CSF3, Colony stimulating factor 3, CXCL1, C-X-C motif chemokine ligand 1, CXCL3, C-X-C motif chemokine ligand 3, CXCL5, C-X-C motif chemokine ligand 2, CXCL8, C-X-C motif chemokine ligand 8, DNA, deoxyribonucleic acid, FDA/PI, fluorescein diacetate/propidium iodide, FLT1, Fms related tyrosine kinase 1, FOS, Fos proto-oncogene, AP-1 transcription factor subunit, FPKM, Fragments per kilobase per million mapped reads, GO, Gene Ontology, GSIS, Glucose Stimulated Insulin Secretion, HBA2, Hemoglobin subunit alpha 2, HBB, Hemoglobin subunit beta, HGF, Hepatocyte growth factor, HIF1A, Hypoxia inducible factor 1 alpha subunit, HK1, Hexokinase 1, HMOX1, Heme Oxygenase 1, HPRT1, Hypoxanthine Phosphoribosyltransferase 1, ICAM1, Intercellular adhesion molecule 1, IE, Islet Equivalents, IIDP, Integrated Islet Distribution Program, IL6, Interleukin 6, ITx, Islet transplantation, JUN, Jun proto-oncogene, AP-1 transcription factor subunit, KCNJ11, potassium voltage-gated channel subfamily J member 11, KCNJ3, potassium voltage-gated channel subfamily J member 3, OCR, Oxygen Consumption Rate, RNAseq, RNA Sequencing, RPLP0, Ribosomal Protein Lateral Stalk Subunit P0, SC-βs, Stem Cell Derived β Cells, SELE, Selectin E, SLC2A1, Solute Carrier Family 2 Member 1, SLC38A4, Solute Carrier Family 38 Member 4, T1D, type 1 diabetes, TNF, Tumor Necrosis Factor, UPP1, uridine phosphorylase 1, VCAM1, Vascular cell adhesion molecule 1
ABSTRACT

Background: Encapsulation devices have the potential to enable cell based insulin replacement therapies (such as human islet or stem cell derived β cell transplantation) without immunosuppression. However, reasonably sized encapsulation devices promote ischemia due to high β cell densities creating prohibitively large diffusional distances for nutrients. It is hypothesized that even acute ischemic exposure will compromise the therapeutic potential of cell based insulin replacement. In this study, the acute effects of high-density ischemia were investigated in human islets to develop a detailed profile of early ischemia induced changes and targets for intervention.

Methods: Human islets were exposed in a pairwise model simulating high density encapsulation to normoxic or ischemic culture for 12 hours, after which viability and function were measured. RNA sequencing (RNAseq) was conducted to assess transcriptome-wide changes in gene expression.

Results: Islet viability after acute ischemic exposure was reduced compared to normoxic culture conditions (p<0.01). Insulin secretion was also diminished, with ischemic β cells losing their insulin secretory response to stimulatory glucose levels (p<0.01). RNAseq revealed 657 differentially expressed genes following ischemia, with many that are associated with increased inflammatory and hypoxia-response signaling and decreased nutrient transport and metabolism.
Conclusions: In order for cell based insulin replacement to be applied as a treatment for type 1 diabetes, oxygen and nutrient delivery to β cells will need to be maintained. We demonstrate that even brief ischemic exposure such as would be experienced in encapsulation devices damages islet viability and β cell function, and leads to increased inflammatory signaling.
INTRODUCTION

Islet transplantation (ITx), a form of cell based insulin replacement therapy, is an attractive approach for the treatment of uncontrolled or “brittle” type 1 diabetes (T1D). However, large scale application of ITx is limited by the need for lifelong immunosuppression and a shortage of human cadaveric pancreas donors, which is exacerbated by the need for islets from multiple pancreata per patient to achieve insulin independence1,2. Encapsulation (immunoisolation) devices have the potential to address these critical limitations. They have demonstrated efficacy in protecting transplanted islets even in the absence of immunosuppression, and may allow for alternative cell based insulin replacement therapies for T1D, for example by enabling the use of stem-cell derived β cells (SC-βs) which can be sourced on a virtually unlimited scale3-10.

However, encapsulating therapeutic β cell doses into reasonably sized (postage stamp) immunoisolation devices creates a high density environment in which the availability of nutrients (especially glucose and oxygen) is limited, leading to ischemia7. This has ultimately hindered the clinical application of macro-encapsulation in β cell replacement therapies. Insufficient oxygen is a particular concern for the insulin secreting β cells within islets. β cells lack sufficient levels of the enzyme lactate dehydrogenase α (LDHα) to generate ATP using aerobic glycolysis, and overexpression of LDHα in β cells diminishes their glucose responsiveness11,12. Moreover, once separated from their native vasculature, islets depend solely on diffusion for the delivery of oxygen and energetic substrates. Deprivation of these critical nutrients and the accumulation of toxic metabolites leads to impaired insulin secretion and eventual cell death13-19. These effects
are even more pronounced in islets with large diameters, and clinical ITx outcomes are improved for patients receiving preparations comprised of smaller average diameter islets20-22.

Considering the recent surge of interest in immunoisolation devices and the benefits that their application can offer, it will be of critical importance to understand how these devices impact \(\beta\) cell physiology in order to facilitate successful clinical outcomes. Therefore, we investigated the viability, insulin secretion, and transcriptional adaptations of highly purified human islets with an emphasis on \(\beta\) cell function, stress, and inflammation following acute ischemic exposure in high density \textquotedblleft pellet\textquotedblright model. This model has been characterized previously in the context of islet shipping, and is used here to simulate and study the effects of the high density environments created by delivery of therapeutic \(\beta\) cell doses in reasonably sized immunoisolation devices23,24.

MATERIALS AND METHODS

Islet Source and Maintenance. Human islets (n=11 independent preparations) were obtained from the Integrated Islet Distribution Program (IIDP), the University of Minnesota, the University of Arizona, the McGill University Health Centre, and the University of California - San Francisco. Islets were cultured in oxygen permeable silicone rubber membrane GReX vessels (Wilson Wolf, St Paul, MN). Islet culture media consisted of CMRL 1066 (Mediatech, Inc., Manassas, VA) supplemented with 0.5% Human Serum Albumin (HSA, BioChemed Services, Winchester, VA), 1% heparin (SAGENT, Schaumburg, IL), 1% L-Glutamine (Mediatech, Inc.), and 1% Penicillin/Streptomycin (GE Healthcare Life Sciences, Logan, UT). Prior to experiments, islets were maintained at 25\(^\circ\)C and ambient pO\(_2\) supplemented with 5\% CO\(_2\).
Induction of Pelletized Culture. Following standard culture, islets from each donor were divided into normoxic and ischemic conditions. Ischemia was modeled through high density, “pelletized” culture in which 10 000 islet equivalents (IE) as quantified by DNA were allowed to settle in the bottom of a 1.5 mL centrifuge tube. This condition was selected since it mimics both traditional islet shipping conditions as well as the high density environments that can result from encapsulation. For the normoxic condition, an equal number of islets were cultured in a 10 cm² GRex vessel (Wilson Wolf). Normoxic and ischemic islets were cultured for 12 hours at 37°C, ambient O₂, and 5% CO₂.

Islet Encapsulation. In order to test the effects of high density encapsulation on human islets and verify comparable effects to pelletized culture, 8000 IE as quantified by DNA were loaded into 4.5µl (0.34cm²) TheraCyte (TheraCyte, Laguna Hills, CA) devices using a Hamilton syringe. Devices were then placed into oxygen permeable, 10 cm² GRex vessel (Wilson Wolf) filled with culture media and maintained for 12 hours at 37°C, ambient O₂, and 5% CO₂. Encapsulated islets were compared to matched pellets and controls prepared as described above.

Measurement of DNA. Islets were suspended in 1 mL of AT Buffer (1M solution of ammonium hydroxide in nanopure water, supplemented with 0.2% Triton X-100) and sonicated using a Sonic Dismembrator Model 500 (Fisher Scientific, Waltham, MA) for 30 seconds at 11% amplitude. DNA was assessed using a Quant-iT PicoGreen dsDNA kit (Life Technologies, Carlsbad, CA) according to manufacturer instructions. 96 well plates were read using a SpectraMax M5 plate reader and SoftMax Pro software (Molecular Devices, Sunnyvale, CA).
Measurement of Oxygen Consumption Rate Normalized to DNA (OCR/DNA). After 12 hours, islets and media were mixed to ensure homogenous sampling. OCR was conducted as previously described26. Briefly, islets were resuspended in Media 199 (Mediatech, Inc.) warmed to 37°C and divided evenly between 3 OCR chambers of known volumes, or conducted on whole devices as in the case of encapsulated islets (Instech Laboratories, Inc., Plymouth Meeting, PA). Measurements of pO\textsubscript{2} in each chamber over time were recorded using fiber optic sensors and NeoFox viewer software (Ocean Optics, Inc., Dunedin, FL). The oxygen consumption rate in nanomoles of O\textsubscript{2} per minute was then estimated from the slope of the decline in pO\textsubscript{2} over time. This value was normalized to the DNA content of each chamber (as described above) to give a final measurement of OCR/DNA (nmol O\textsubscript{2}/min*mg DNA).

Measurement of % Viability by fluorescein diacetate/propidium iodide (FDA/PI) staining. From each condition, 100µl samples of islets were combined with 377.6µl of dithizone (Sigma-Aldrich, St. Louis, MO). To this, 1.39µl of fluorescein diacetate (Sigma-Aldrich) and 21.05µl of propidium iodide (Sigma-Aldrich) were added for final concentrations of 0.067µM and 4.0µM respectively. Islets were incubated in the dark for 20 minutes, after which they were allowed to settle and 100µl of islets were placed on a slide for imaging. To determine the proportion of live vs. dead cells, islets were imaged on a Zeiss Observer.Z1 (Zeiss, Oberkochen, Germany) using the 10X objective and an AxioCam MRm camera with ZEN 2012 (blue addition) software (Zeiss).
β Cell Function. The Biorep Technologies Peri-4.2 Perfusion System (Biorep Technologies, Inc., Miami Lakes, FL) was used to measure dynamic glucose stimulated insulin secretion (GSIS). Triplicate measurements using 100 IE each underwent baseline stimulation with 2.8 mM glucose in oxygen-saturated (95% O₂) Krebs-Ringer Bicarbonate buffer (KRB) for 20 minutes before and after a 40 minute stimulation period with 16.7 mM glucose. Perfusate was collected at a rate of 100 μl/min in a 96 well plate. Perfusate was tested for insulin content using an insulin ELISA (Mercodia, Winston-Salem, NC). ELISA plates were read using Softmax Pro software and a SpectraMax M5 plate reader (Molecular Devices). Insulin content was normalized to DNA as described above.

RNA Library Preparation. Paired normoxic and ischemic islets from 4 donors were selected at random for high throughput RNA Sequencing (RNAseq). For RNA samples, islets were collected in microcentrifuge tubes and washed twice in 1X DPBS to remove serum. RNA was isolated using the RNeasy Mini Kit (Qiagen, Valencia, CA) according to manufactures instructions. RNA quality was assessed by Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA), and a minimum RIN of 7.0 was required for inclusion in the study. Libraries were prepared using the Illumina TruSeq Stranded mRNA Sample Preparation Kit (Illumina, San Diego, CA). mRNA was sequenced using Illumina HiSeq 2000 sequencer and quantified into transcripts using EA-Quintiles mRNAv8 pipeline.

RNAseq Analysis. Briefly, 50x50 base, paired-end reads were checked for quality by comparison to intergenic and ribosomal sequences. Sequencing reads were aligned to the human UCSC known gene transcriptome using RSEM v1.2.0 and transcript abundance was quantified.
An average of 97.4 ± 0.4% of total reads mapped to reference genomes. The aligned reads for each gene were summarized as described in Li and Dewey 201127. All genes and isoforms have been assigned a normalized coverage rate in fragments per kilobase per million mapped reads (FPKM). Differential gene expression was performed using the edgeR R package scripts (bioconductor.org) using paired sample statistical procedures28,29. A paired-sample (generalized paired t test) analysis was conducted to investigate the effects of ischemia while adjusting for baseline differences between patients. Genes with a $p<0.05$ following Benjamini-Hochberg correction were considered to be statistically significant.

Functional Analysis of Differentially Expressed Genes.

Significantly up or downregulated genes were submitted to KOBAS 2.0 in order to determine which canonical pathways were enriched by ischemia, as well as to determine associated Gene Ontology (GO) terms30. Significant enrichments were defined as a corrected $p<0.05$ following a Fisher’s Exact Test with Benjamini Hochberg correction in KOBAS 2.0. To summarize GO enrichment and reduce redundant terms, ReviGO was used to cluster similar GO terms using small (0.5) SimRel similarity and the whole Uniprot as the database for categorical GO term sizes 31. Significant pathways were manually curated to remove irrelevant pathways containing redundant or nonspecific gene findings. Preferential association between the lists of up- and down-regulated genes was also evaluated.

RT qPCR Array. Results from RNAseq were compared to RTqPCR results for a single islet preparation. Purified islet total RNA was run on RT² ProfilerTM PCR Array Human Hypoxia Signaling Pathway plates (Qiagen) using iQ5 Real-Time PCR Detection System (Bio-Rad
Laboratories, Irvine, CA). Fold changes were determined according to manufactures instructions. Gene expression was normalized to housekeeping genes \textit{RPLP0, B2M, and HPRT1}.

\textbf{Statistics.} Statistical analysis of physiological parameters was conducted in SAS 9.4 (SAS Institute Inc., Cary, NC). OCR/DNA data were analyzed using Wilcoxon Signed Rank Test. Matched FDA/PI and OCR/DNA data were analyzed using a Student’s t test. Perifusion data were analyzed using a generalized linear mixed model for repeated measurements. Fold changes from the RT qPCR array were correlated to fold changes from RNAseq using linear regression analysis in GraphPad Prism version 6.07 (GraphPad Software, Inc., La Jolla, CA). Unless otherwise indicated, data represent mean ± standard deviation.

\textbf{RESULTS}

\textbf{Donor Metrics.} Individual donor characteristics and islet quality parameters (\% viability measured by membrane integrity staining, purity, and cold ischemia time) as reported by the distributing isolation center are presented in Table 1.

\textbf{Pellet Model Characterization and Comparison to Encapsulation.} The viability of islets from \textit{n=2} human islet preparations was compared under matched normoxic, pelletized, and encapsulated conditions in order to confirm that the ischemic damage caused by the pellet condition is similar to what is caused in devices loaded at high densities7. Pelletized islets and encapsulated islets showed similar \% reductions in OCR/DNA values versus control (57.7 ± 19.5\% and 80.3 ± 21.1\% respectively).
Islet Viability. Islet viability was determined in n=8 independent islet preparations. Average OCR/DNA values for normoxic islets align closely with clinical averages observed for both islet auto and allotransplantation32,33. Islet OCR/DNA values are reduced following warm ischemic exposure (p<0.01, Fig. 1), which correlates to lower, although not entirely diminished, viability. In a sub-cohort of n=4 independent islet preparations, OCR/DNA results were compared to FDA/PI staining. Staining revealed a significant loss of viability for control vs. pelletized islets (\% 87.3 ± 1.0% vs. 8.8 ± 5.5\% respectively, p<0.01). OCR/DNA measurements for matched samples were similarly reduced for control vs. pelletized islets (122.9 ± 53.3 and 53.4 ± 12.0 nmol O$_2$/min*mg DNA respectively, p<0.05).

β Cell Function. GSIS was measured in a subset of control and ischemic islet pairs (n=4 independent preparations, Fig. 2). GSIS of ischemic islets is virtually absent compared to control islets. Basal secretion was not different between control and ischemic islets (Fig. 3A). However, under stimulatory glucose concentrations (Fig. 3B), ischemic islets secrete less insulin than control islets (p<0.01). Normoxic islets show elevated (p<0.01) insulin secretion in response to stimulatory glucose concentrations while ischemic islets are unresponsive.

Global Gene Expression Changes Following Ischemia. An average of 19 932 ± 138 genes were detected with RNAseq. Of these, 657 genes were differentially expressed in ischemic versus control islets (p<0.05) (Fig. 4A). Genes most up-regulated include immune molecules interleukins 6 and 8 (IL6, IL8), chemokine 3 (CCL3), and chemokine 3 like (CXCL3). Genes most down-regulated include the inward rectifier K$^+$ Channel K$_{ir}$ 3.1 (KCNJ3) and Na$^+$ Coupled Neutral Amino Acid Transporter 4 (SLC38A4) (Fig. 4B).
Fold changes calculated from RNAseq correlated (p<0.0001, r²=0.75) to fold changes calculated by RT qPCR array (Figure S1, SDC, http://links.lww.com/TP/B421). The high correlation between independent measures of gene expression corroborates findings from RNAseq model.

Functional analysis of differentially expressed genes.

Canonical pathways significantly associated with differentially expressed genes were identified (Table 2). Specific differentially expressed genes associated with inflammation and cytokine signaling, and also associated with pathways for the HIF-1α response, AP-1 (FOS) signaling, and ion transport are detailed in Fig. 5. Enriched GO terms were in agreement with pathway findings, showing enhancement of cytokine signaling and inflammation as well as downregulation of cellular ion transport (Table 3). Genes associated with hypoxia and nutrient deprivation (including SLC2A1, HK1, HMOX1, ARG1, and UPP1) were also upregulated (p<0.05).

DISCUSSION

Ischemia remains a pervasive issue that directly influences the outcomes of cell based insulin replacement therapies such as ITx. In this study, we implement an ischemic model that has previously been used to study islet shipping, and captures the conditions seen in high density islet encapsulation, including a significant reduction of islet viability which is associated with oxygen and nutrient deprivation, and consistent with results from the transcriptome analysis. Furthermore, we demonstrate that the viable population of islets following acute ischemia exhibits significant β cell dysfunction corresponding to global alterations in gene expression. Inflammatory responses were evident in the gene signatures of islets following
ischemia, with concurrent downregulation of genes involved in nutrient and ion transport. The persistence of β cell dysfunction due to ischemic stress has been previously demonstrated, whether due to cellular reprogramming or ischemia-reperfusion injury, and the endurance of a concurrent proinflammatory signature is likely, given the present work. Interestingly, kidney capsule islet transplants represent a commonly used in vivo correlate to our high-density in vitro model in which islets are transplanted as a “pellet” below the renal capsule. Although this method induces less ischemic stress than what might be experienced in an immunoisolation device, when these islets are exposed to nerve growth factor (which has an anti-apoptotic effect), graft function is improved. This supports our finding that even acute ischemia is detrimental to islet viability and function, and indicates that early mitigation of these factors is beneficial to transplant outcomes.

The differential gene expression profile caused by acute ischemia was predominantly increased inflammatory and stress response signaling. More specifically, there was increased expression of key inflammatory genes (including TNF and IL6), which are known to contribute to islet death in the peritransplant period by the instant blood mediated inflammatory reaction. The link between hypoxia and this proinflammatory profile has been demonstrated previously in rat islets. This increased inflammatory signaling may be important not only from an immunological standpoint, but also in the context of β cell function. TNFα has previously been shown to inhibit glucose stimulated insulin secretion in β cell lines as well as downstream insulin signaling in adipocytes. The potential damage to insulin signaling is compelling, as autocrine insulin signaling in β cells has been demonstrated to influence insulin expression. Key genes involved in the coupling of glucose sensing to insulin secretion (for example KCNJ11, which
encodes the major subunit of the ATP sensitive K⁺ channel) are also significantly downregulated. Together with the effects of inflammatory factors, these changes may underlie the significant loss of β cell function. By mitigating these damaging adaptations, loss of islets in the peritransplant period may be minimized and ultimately help to facilitate lower curative doses of islets for diabetes reversal⁴⁶.

Lifelong immunosuppression remains a critical barrier which limits the application of β cell replacement therapies. Implantable macro-encapsulation devices are a possible solution and have been demonstrated to be allo-protective in animal models as well as in humans³,⁴⁷. However, packing therapeutic β cell doses into practically-sized devices results in a high density environment in which diffusion of oxygen and nutrients is severely limited. This study demonstrates that such high density environments are damaging to β cell function, and may ultimately affect transplant outcomes⁵,⁴⁸. Addressing the effects if ischemia by ensuring adequate nutrient delivery will be critical to the success of cell based insulin replacement therapies going forward. With respect to maintaining oxygenation, numerous advances have been made with regard to supplying oxygen to the pancreas during the preservation period as well as to isolated islets during culture⁴⁹,⁵⁰. Attempts have also been made to supply islets in encapsulation devices with oxygen, and this remains an active area of research although a permanent solution has yet to be achieved³.
ACKNOWLEDGMENTS

The authors would like to acknowledge the members of the Papas laboratory and collaborators, including William Purivs, Nicholas Price, Ivan Georgiev, Anna Maria Burachek, Alexandra Hoeger, Diana Molano, Jana Jandova, Kristina Rivera, Aikaterina Assimacopoulos, and Breonna Smith for their support. We would like to thank our collaborators at the University of California – San Francisco, McGill University Health Centre, and the University of Minnesota as well as the Integrated Islet Distribution Program for supplying islets used in these studies, as well as Dr. Linda Tempelman and Dr. Jan Burt for their advisement and mentorship. We would additionally like the ARCS Foundation Phoenix Chapter for their generous support.
REFERENCES

1. Barton FB, Rickels MR, Alejandro R, et al. Improvement in outcomes of clinical islet transplantation: 1999-2010. *Diabetes Care*. 2012; 35(7):1436-1445.

2. Sakuma Y, Ricordi C, Miki A, et al. Factors that affect human islet isolation. *Transplant Proc*. 2008; 40(2):343-345.

3. Ludwig B, Reichel A, Steffen A, et al. Transplantation of human islets without immunosuppression. *Proc Natl Acad Sci U S A*. 2013; 110(47):19054-19058.

4. Sasikala M, Rao GV, Vijayalakshmi V, et al. Long-term functions of encapsulated islets grafted in nonhuman primates without immunosuppression. *Transplantation*. 2013; 96(7):624-632.

5. Sorenby AK, Kumagai-Braesch M, Sharma A, Hultenby KR, Wernerson AM, Tibell AB. Preimplantation of an immunoprotective device can lower the curative dose of islets to that of free islet transplantation: Studies in a rodent model. *Transplantation*. 2008; 86(2):364-366.

6. Colton CK. Oxygen supply to encapsulated therapeutic cells. *Adv Drug Deliv Rev*. 2014; 67-68:93-110.
7. Papas KK, Avgoustiniatos ES, Suszynski TM. Effect of oxygen supply on the size of implantable islet-containing encapsulation devices. *Panminerva Med*. 2016; 58(1):72-77.

8. Dominguez-Bendala J, Inverardi L, Ricordi C. Stem cell-derived islet cells for transplantation. *Curr Opin Organ Transplant*. 2011; 16(1):76-82.

9. Kirk K, Hao E, Lahmy R, Itkin-Ansari P. Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape. *Stem Cell Res*. 2014; 12(3):807-814.

10. Russ HA, Parent AV, Ringler JJ, et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. *EMBO J*. 2015; 34(13):1759-1772.

11. Alcazar O, Tiedge M, Lenzen S. Importance of lactate dehydrogenase for the regulation of glycolytic flux and insulin secretion in insulin-producing cells. *Biochem J*. 2000; 352 Pt 2:373-380.

12. Sekine N, Cirulli V, Regazzi R, et al. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. potential role in nutrient sensing. *J Biol Chem*. 1994; 269(7):4895-4902.
13. Dionne KE, Colton CK, Yarmush ML. Effect of hypoxia on insulin secretion by isolated rat and canine islets of langerhans. *Diabetes*. 1993; 42(1):12-21.

14. Kent BD, McNicholas WT, Ryan S. Insulin resistance, glucose intolerance and diabetes mellitus in obstructive sleep apnoea. *J Thorac Dis*. 2015; 7(8):1343-1357.

15. Ip M, Mokhlesi B. Sleep and glucose intolerance/diabetes mellitus. *Sleep Med Clin*. 2007; 2(1):19-29.

16. Fang Y, Zhang Q, Tan J, Li L, An X, Lei P. Intermittent hypoxia-induced rat pancreatic beta-cell apoptosis and protective effects of antioxidant intervention. *Nutr Diabetes*. 2014; 4:e131.

17. Williams SJ, Huang HH, Kover K, et al. Reduction of diffusion barriers in isolated rat islets improves survival, but not insulin secretion or transplantation outcome. *Organogenesis*. 2010; 6(2):115-124.

18. Giuliani M, Moritz W, Bodmer E, et al. Central necrosis in isolated hypoxic human pancreatic islets: Evidence for postisolation ischemia. *Cell Transplant*. 2005; 14(1):67-76.

19. Lablanche S, Cottet-Rousselle C, Argaud L, et al. Respective effects of oxygen and energy substrate deprivation on beta cell viability. *Biochim Biophys Acta*. 2015; 1847(6-7):629-639.
20. Tannock IF. Oxygen diffusion and the distribution of cellular radiosensitivity in tumours.
 Br J Radiol. 1972; 45(535):515-524.

21. Lehmann R, Zuellig RA, Kugelmeier P, et al. Superiority of small islets in human islet transplantation. *Diabetes*. 2007; 56(3):594-603.

22. Suszynski TM, Wilhelm JJ, Radosevich DM, et al. Islet size index as a predictor of outcomes in clinical islet autotransplantation. *Transplantation*. 2014; 97(12):1286-1291.

23. Ichii H, Sakuma Y, Pileggi A, et al. Shipment of human islets for transplantation. *Am J Transplant*. 2007; 7(4):1010-1020.

24. Papas KK, Colton CK, Gounarides JS, et al. NMR spectroscopy in beta cell engineering and islet transplantation. *Ann NY Acad Sci*. 2001; 944:96-119.

25. Colton CK, Papas KK, Pisania A, et al. Characterization of islet preparations. In: Halberstadt C, Emerich D, eds. *Cellular transplantation: From laboratory to clinic*. Oxford, UK: Elsevier, Inc; 2007:85-133.

26. Papas KK, Pisania A, Wu H, Weir GC, Colton CK. A stirred microchamber for oxygen consumption rate measurements with pancreatic islets. *Biotechnol Bioeng*. 2007; 98(5):1071-1082.
27. Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. *BMC Bioinformatics*. 2011; 12:323.

28. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*. 2010; 26(1):139-140.

29. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. *Nucleic Acids Res*. 2012; 40(10):4288-4297.

30. Xie C, Mao X, Huang J, et al. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. *Nucleic Acids Res*. 2011; 39(Web Server issue):W316-22.

31. Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. *PLoS One*. 2011; 6(7):e21800.

32. Kitzmann JP, Pepper AR, Gala-Lopez B, et al. Human islet viability and function is maintained during high-density shipment in silicone rubber membrane vessels. *Transplant Proc*. 2014; 46(6):1989-1991.
33. Papas KK, Bellin MD, Sutherland DE, et al. Islet oxygen consumption rate (OCR) dose predicts insulin independence in clinical islet autotransplantation. *PLoS One*. 2015; 10(8):e0134428.

34. Cantley J, Walters SN, Jung MH, et al. A preexistent hypoxic gene signature predicts impaired islet graft function and glucose homeostasis. *Cell Transplant*. 2013; 22(11):2147-2159.

35. Emamaullee J, Liston P, Korneluk RG, Shapiro AM, Elliott JF. XIAP overexpression in islet beta-cells enhances engraftment and minimizes hypoxia-reperfusion injury. *Am J Transplant*. 2005; 5(6):1297-1305.

36. Szot GL, Koudria P, Bluestone JA. Transplantation of pancreatic islets into the kidney capsule of diabetic mice. *J Vis Exp*. 2007; (9):404. doi(9):404.

37. Hata T, Sakata N, Yoshimatsu G, et al. Nerve growth factor improves survival and function of transplanted islets via TrkA-mediated beta cell proliferation and revascularization. *Transplantation*. 2015; 99(6):1132-1143.

38. Pierucci D, Cicconi S, Bonini P, et al. NGF-withdrawal induces apoptosis in pancreatic beta cells in vitro. *Diabetologia*. 2001; 44(10):1281-1295.
39. Shimoke K, Sasaya H, Ikeuchi T. Analysis of the role of nerve growth factor in promoting cell survival during endoplasmic reticulum stress in PC12 cells. *Methods Enzymol.* 2011; 490:53-70.

40. Nilsson B, Ekdahl KN, Korsgren O. Control of instant blood-mediated inflammatory reaction to improve islets of langerhans engraftment. *Curr Opin Organ Transplant.* 2011; 16(6):620-626.

41. de Groot M, Schuurs TA, van Schilfgaarde R. Causes of limited survival of microencapsulated pancreatic islet grafts. *J Surg Res.* 2004; 121(1):141-150.

42. Peraldi P, Hotamisligil GS, Buurman WA, White MF, Spiegelman BM. Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. *J Biol Chem.* 1996; 271(22):13018-13022.

43. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. *Proc Natl Acad Sci U S A.* 1994; 91(11):4854-4858.

44. Kim HE, Choi SE, Lee SJ, et al. Tumour necrosis factor-alpha-induced glucose-stimulated insulin secretion inhibition in INS-1 cells is ascribed to a reduction of the glucose-stimulated Ca2+ influx. *J Endocrinol.* 2008; 198(3):549-560.
45. Xu GG, Rothenberg PL. Insulin receptor signaling in the beta-cell influences insulin gene expression and insulin content: Evidence for autocrine beta-cell regulation. *Diabetes*. 1998; 47(8):1243-1252.

46. Bennet W, Groth CG, Larsson R, Nilsson B, Korsgren O. Isolated human islets trigger an instant blood mediated inflammatory reaction: Implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. *Ups J Med Sci*. 2000; 105(2):125-133.

47. Sweet IR, Yanay O, Waldron L, et al. Treatment of diabetic rats with encapsulated islets. *J Cell Mol Med*. 2008; 12(6B):2644-2650.

48. Suzuki K, Bonner-Weir S, Trivedi N, et al. Function and survival of macroencapsulated syngeneic islets transplanted into streptozocin-diabetic mice. *Transplantation*. 1998; 66(1):21-28.

49. Papas KK, Avgoustiniatos ES, Tempelman LA, et al. High-density culture of human islets on top of silicone rubber membranes. *Transplant Proc*. 2005; 37(8):3412-3414.

50. Scott WE, 3rd, Weegman BP, Ferrer-Fabrega J, et al. Pancreas oxygen persufflation increases ATP levels as shown by nuclear magnetic resonance. *Transplant Proc*. 2010; 42(6):2011-2015.
FIGURE LEGENDS

Fig. 1. Human Islet Viability is Reduced Following Acute Ischemia. Following 12 hours of control (normoxic) or ischemic exposure, islet viability was determined by OCR/DNA. Shown above are values for n=8 paired experiments. * indicates p=0.01. Data mean is indicated by +, whiskers indicate minimum and maximum values. Box bounds indicate upper and lower quartiles, and the median value is indicated by the line within the box.

Fig. 2. Human Islet Function is Absent Following Acute Ischemic Exposure. In order to determine β cell function, glucose stimulated insulin secretion (GSIS) was measured on a perifusion system. Shown above are the insulin secretion profiles for control and ischemic islets. The figure indicates mean ± SD values for n=4 pairs of islets.

Fig. 3. Basal and Stimulated Insulin Secretion in Normoxic versus Ischemic Human Islets. Area under the curve was calculated and divided by the corresponding time interval to give the average insulin secretion rate for basal and stimulated portions of the curves shown in Fig. 2. Shown in A, there is no significant difference in the rate of insulin secretion under basal conditions. However, shown in B, ischemic islets show significantly lower insulin secretion than do normoxic islets under stimulated conditions. * indicates p=0.006 vs. stimulated normoxic condition. Similarly, ischemic islets do not have a significant increase in insulin secretion under stimulatory glucose conditions, while normoxic islets do show a significant increase. # indicates p=0.009 vs. basal rate. Means for n=4 samples are indicated by +, whiskers indicate minimum and maximum values. Box bounds indicate upper and lower quartiles, and the median value is indicated by the line within the box.
Fig. 4. RNAseq Summary. Shown above is a summary of differential expression for RNA sequencing data. Shown in A is a volcano plot indicating the distribution of genes detected by log2(Fold Change) and log2(CPM). Differentially expressed genes are shown in red, and nondifferentially expressed genes are indicated in black. In B, the most up and down regulated genes in ischemic islets as determined by fold change are shown. Genes had a minimum CPM cutoff value of 1.

Fig. 5. Heatmaps for Significantly Enriched Pathways. Genes in enriched pathways as well as related DE genes of interest were plotted as heatmaps. Shown in A is a heatmap detailing changes in inflammatory genes, while B shows changes in genes involved in the hypoxia response, cell death, ion transport, and cell damage. FPKM values were converted to FPKM+1 prior to log transformation. Values in heat maps represent Log2(Fold Change).
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Table 1 Donor Metrics. Shown above are characteristics of donors from which islets were isolated and included in the present study.

Donor ID	Age (Years)	BMI	Cold Ischemia Time (Hours)	Islet Purity (%)	Islet Viability (%)	Sex	RNA Seq
D1	44	36.7	9.9	85	90	F	Yes
D2	39	26.9	13.6	90	93	F	N/A
D3	40	33.9	3.5	95	95	M	Yes
D4	44	23	12.2	80	90	F	Yes
D5	52	32.2	8.5	85	95	F	N/A
D6	61	31.1	5.6	90	95	F	Yes
D7	54	40.3	5.5	95	97	M	N/A
D8	45	27.6	6.3	95	86	M	N/A
D9	44	22.8	0.6	90	98	M	N/A
D10	44	26.5	9.5	80	85	M	N/A
D11	35	24.8	14.0	95	97	M	N/A

Average ± SD

| Age | 45.6 ± 7.4 | BMI | 29.6 ± 5.7 | Cold Ischemia Time | 8.1 ± 4.3 | Islet Purity | 89.1 ± 5.8 | Islet Viability | 92.8 ± 4.5 | RNA Seq | N/A | N/A |

35
Table 2 Signaling Pathways Enriched Following Acute Ischemia in Human Islets. Shown above is a summary of the most enriched pathways in ischemic human islets. Top pathways were determined for upregulated genes using KOBAS 2.0, drawing from KEGG, PID, and Reactome databases. Significance was defined as a p<0.05 following Fisher’s exact test with Benjamini-Hochberg correction. The number of genes differentially expressed in islets and annotated in these pathways are presented in DE genes column and compared to the total number of genes annotated to that pathway in the databases to generate frequency. Note that although Malaria and Rheumatoid Arthritis appeared in the top 10 pathways shown above, they were excluded from the list due to appearance from nondisease specific inflammatory genes including CCL2, CCL20, CCL3L3, CSF2, CSF3, CXCL1, CXCL5, CXCL8, FLT1, FOS, HBA2, HBB, HGF, ICAM1, IL6, JUN, SELE, and VCAM1

Canonical Pathway	Database	DE Genes	Corrected P-Value
TNF signaling pathway	KEGG PATHWAY	23	4.1x10^{-8}
Cytokine-cytokine receptor interaction	KEGG PATHWAY	25	4.1x10^{-4}
HIF-1-alpha transcription factor network	PID	17	4.3x10^{-4}
Cellular Senescence	Reactome	16	9.8x10^{-4}
Chemokine receptors bind chemokines	Reactome	9	9.8x10^{-4}
Extracellular matrix organization	Reactome	20	1.6x10^{-4}
NOD-like receptor signaling pathway	KEGG PATHWAY	10	2.7x10^{-3}
Cellular responses to stress	Reactome	18	3.3x10^{-3}
AP-1 transcription factor network	PID	15	4.8x10^{-3}
ATF-2 transcription factor network	PID	13	8.7x10^{-3}
Table 3 Gene Ontology (GO) Terms Associated with Significantly Up or Downregulated Genes Following Acute Ischemia in Human Islets. GO terms were summarized using the REVIGO tool. Above are the most affected GO terms categorized by molecular function and biological process.

GO Category	UP Following Acute Ischemia	DOWN Following Acute Ischemia
Molecular Function	• RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity	
	• Serine-type endopeptidase inhibitor activity	
	• Cytokine receptor binding	• Ion transmembrane transporter activity
Biological Process	• Blood vessel development	• Homophilic cell adhesion via plasma membrane adhesion molecules
	• Immune system process	• Cell-cell signaling
	• Inflammatory response	
SDC, Figure 1. Verification of RNAseq Model. In order to verify sequencing results, RNA samples from n=1 of the control vs. ischemic pairs which were submitted for RNA Seq were also assessed with RT qPCR. A significant correlation (p<0.0001) was established, R² = 0.75.

![Graph showing correlation between RT qPCR and RNAseq fold change, with R² = 0.754.]