Impact of atmospheric pollution on asthma and bronchitis based on lichen biomonitoring using IAP, IHI and GIS in Algiers Bay (Algeria)

Kamel Ghennam · Fouzia Attou · Fatiha Abdoun

Received: 2 December 2020 / Accepted: 23 February 2021 / Published online: 17 March 2021 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract We investigated the association between air pollution and asthma and bronchitis hospital admissions in Algiers city (Algeria). In addition, we used geographic information systems (GIS) and statistical methods to evaluate their correlation with the atmospheric pollution estimated by the lichen biomonitoring method of the index of atmospheric purity (IAP), the index of human impact (IHI) and environmental parameters. Thus, we georeferenced 976 local patients (including 771 patients with asthma and 205 patients with bronchitis). Then, we compared the patients to the spatial distribution of IAP in thirty-five areas (communities). The results revealed a significant difference in the mean spatial variation in the diseases among those areas. In fact, maps and generalized linear models (GLMs) revealed a significant negative correlation between IAP and diseases. Therefore, redundancy analysis (RDA) and Monte Carlo tests described a significant effect of IAP, urbanization and the number of roads on the distribution of diseases. We hope our findings contribute to enriching the literature on health research with a low-cost method of monitoring outdoor air pollution.

Keywords Index atmospheric purity (IAP) · Lichens · Asthma · Pollution

Introduction

Air pollution has expanded considerably, especially affecting people with respiratory illnesses. The topic of the health impacts of air pollution has been the subject of debate in many scientific studies. Some studies suspect that urban pollution can affect respiratory diseases such as COVID-19 (Comunian et al., 2020; Suhaimi et al., 2020) as well as bronchitis, sarcoidosis (Kampa & Castanas, 2008; Nhunga et al., 2018), asthma, allergies and rhinitis (Just et al., 2007; Martin & Maystre, 1988). In addition, some studies have revealed that asthma is worse in children than in adults (Hewua et al., 2017; Khreis et al., 2018).

Therefore, several quantitative methods using lichen diversity have been described to monitor air pollution: the index of atmospheric purity (IAP) (LeBlanc & De Sloover, 1970), the index of poleotolerance (IP) (Trass, 1973), the index of air quality (IQA) (Kirschbaum
& Wirth, 1997), the lichen biodiversity index (IBL) (Abas & Awang, 2017; Nimis, 1999), lichen-air quality index (LiAQI) (Boonpeng et al., 2018) and the lichen diversity value (LDV) (Asta et al., 2002).

As a passive biomonitoring method using lichen, the IAP has been adopted more often than the other cited indices (Conti & Cecchetti, 2001; Falla et al., 2000; Käffer et al., 2011).

Studies based on IAP have been frequently applied in many countries (Herzig et al., 2020) worldwide, including Switzerland, Argentina (Estrabou et al., 2011), Austria (Zechmeister & Hohenwallner, 2006), Korea (Jayalalac et al., 2015), France (Gombert et al., 2006), Spain (Blasco et al., 2008), Brazil (Käffer et al., 2011), Italy (Kricke & Loppi, 2002; Loppi & Nascimbene, 1998) and India (Das et al., 2013).

Despite these studies, none investigated the association between asthma or bronchitis distribution and IAP levels.

Algiers is exposed to intense atmospheric pollution, and some studies have revealed that the atmosphere of Algiers city is severely polluted (Boughedaoui et al., 2004; Kerbach et al., 1998).

Thus, an expansive network of air pollution monitoring in the city Sama-Safia was set up in 2002 but abandoned in early 2009.

To monitor this air pollution with easy- and low-cost methods, the fluctuations in this pollution can be spatiotemporally assessed. We chose the IAP index, and we explored its accuracy by assessing its correlation with asthma and bronchitis.

We investigated whether there is a significant link between air pollution, as established by the API, and the distribution of respiratory diseases. This study aims to use maps of atmospheric pollution in a geographic information system (GIS) and statistical analysis to describe the impact of air pollution on the prevalence of different categories of respiratory diseases in Algiers Bay.

The second objective is to determine the degree of precision of the IAP and IHI indices and the environmental variables used to evaluate the air quality in this area.

Materials and methods

Study area

Algiers, the capital of Algeria, is located southwest of the Mediterranean (Fig. 1). It covers an area of 200 km² and is populated by at least 2,809,396 inhabitants according to the National Statistical Office.

The topography of the region is rugged and plays a role in the distribution of pollution. The city is divided into two parts: the eastern side and city centre, which has an altitude varying from 0 to 200 m representing the continuity of the Metija Plain, and the western side, which is at a higher altitude, between 0 and 400 m, represented by the Bouzaréah massif.

Some urban forests are present on the western side and around the study area. Our study area mainly involves the centre of the Algiers metropolis. It is bounded between the longitudes 2°58′ and 3°12′ east and the latitudes 36°43′ and 36°49′ north. Its climate is characterized by an annual average precipitation of 590 mm, ranging from 700 mm in wet years to 500 mm in dry years; a minimum annual average temperature of 10 °C; and a maximum temperature of 30 °C. The prevailing winds are north and northeast.

Algiers is located in the bioclimatic sub-humid phase in the warm winter.

Many roads and highways with heavy motor vehicle traffic run throughout the city, supporting a fleet that has almost doubled from approximately 566,000 vehicles in 1997 to 1,103,017 vehicles in 2007 National Office of Statistics. In Algiers Bay, there is a very dense urban area as well as many industrial areas located on both sides of the city, contributing to its pollution (Boughedaoui et al., 2004; Ghennam, 2011, 2017; Rahali, 2003).

Data and variables

For the evaluation of the air quality, we used the IAP (LeBlanc & De Sloover, 1970). We applied this method to a systematic survey carried out at 111 stations in 1110 olive (Olea europaea) tree areas, where we observed 35 lichen species (Ghennam & Abdoun, 2017). The formula of IAP is

\[
IAP = \frac{1}{10} \sum_{i=1}^{n} Q_i \times r_i
\]

where \(n\) = number of species, \(Q_i\) = ecological index of each species (\(Q\) for a species is determined by adding together the number of its companion...
species present at all investigated sites and then dividing this total by the number of sites) and
\(r_i \) = cover of species (Gombert et al., 2006).

In this study, the calculated IAP values of each municipality corresponded to the average IAP for all stations inside their administrative borders. Then, we collected all respiratory illness data from the main Algerian hospital, Mustapha Pacha University Hospital, in the centre of the study area. We obtained all data for patients with asthma (benign, moderate and severe) and those with chronic bronchitis (with or without emphysema) that were hospitalized between 2006 and 2016 (Table 1).

Hence, we included only the patients who resided in Algiers, georeferenced them according to their addresses, and then added them into the pollution-monitoring database.

Then, we superposed the various variables and carried out statistical analyses.

For the environmental variables, the GIS database contained all the data on the index of air purity (IAP) until 2016. It also included information about land use, the index of human impact (IHI) proposed by Gombert et al. (2004) and all environmental variables. We calculated the values with the mean of the data recorded for every station within the administrative boundaries of each municipality.

To characterize these environmental variables, we used the averages of the environmental variables and explored disease data recorded at the community level (Table 1).

The number of roads ‘Nb. Rt’, highways ‘Aut’, vegetation cover ‘VC’, urbanization ‘Urb’, altitude ‘ALT’ and distance from road ‘D. Rt’ represented the environmental data (Ghennam & Abdoun, 2017).
Table 1 Summarized description of data collected (respiratory diseases and environmental variables) [N: effective, Se: error mean, IAP: index atmospheric purity, RD: road number, VC: vegetation cover, URB: urbanization, ALT: altitude, X: latitude, Y: longitude. * Source: University Hospital Mustapha Bacha, Algiers, Algeria (2006–2016). ** Source: Ghennam and Abdoun 2017]

Communities	Code	**Respiratory diseases Log(N)**	**Environmental parameters**	**Spatial data**										
		Total	Asthma	Bronchitis	IAP	IHI	RD	VC	URB	ALT	X (m)	Y (m)		
		Mean ± se	Mean ± se	Mean ± se	Mean ± se									
BACHEDJERAH	BD	0.564 ± 0.108	0.739 ± 0.04	0.389 ± 0.088	0.389 ± 0.088	0.389 ± 0.088	0	24	3	1	6	2	511,331	4,065,344
CASBAH	CSB	0.389 ± 0.088	0.389 ± 0.088	0	0	1.563	25	5	2	6	2	504,290	4,068,077	
SIDI M’HAMED	SDM	1.421 ± 0.167	1.531 ± 0.26	1.255 ± 0.176	4.571	1	3	6	1	504,290	4,072,164			
BAB EL OUED	BAO	0.36 ± 0.059	0.301	0.477	3.714	20	4	2	6	2	508,081	4,067,075		
HUSSEIN DEY	HCD	0.556 ± 0.114	0.724 ± 0.122	0.389 ± 0.088	4.178	14	2	4	3	1	521,827	4,065,842		
DAR EL BAÏDA	DRB	0.46 ± 0.087	0.46 ± 0.087	0	4.2	20	2	3	5	1	508,955	4,065,061		
EL MAGHARIA	MGR	0	0	0	4.46	23	3	3	5	1	511,531	4,065,147		
EL HARRACH	HAR	0.376 ± 0.075	0.401 ± 0.1	0.301	4.46	20	2	3	5	1	524,073	4,070,436		
BORDJ EL KIFFAN	BEK	0.464 ± 0.062	0.54 ± 0.062	0.389 ± 0.088	4.468	20	2	3	5	1	504,692	4,067,492		
ALGER CENTRE	AC	1.81 ± 0.183	1.907 ± 0.031	1.666 ± 0.033	4.693	22	4	3	6	2	516,000	4,066,763		
MOHAMMADIA	MMD	0.434 ± 0.133	0.699	0.301	4.787	22	2	3	4	1	502,725	4,072,716		
BIRKHADEM	BK	0.772 ± 0.135	0.773 ± 0.244	0.772 ± 0.073	5.058	22	1	3	5	2	499,723	4,074,540		
BOLOGHINE IBNOU ZIRI	BOL	0.301 ±	0.301	0.301	5.068	16	2	3	4	6	502,725	4,072,716		
RAÏS HAMIDOU	RH	0.389 ± 0.088	0.487	0.301	5.068	28	3	2	4	1	504,685	4,070,480		
BAB EZZOUAR	BAZ	0.646 ± 0.091	0.753 ± 0.151	0.54 ± 0.062	5.798	22	3	2	6	1	516,198	4,065,733		
BIR MOURAD RAÏS	BMR	0.376 ± 0.075	0.452 ± 0.151	0.301	6.404	24	4	1	5	4	505,151	4,066,170		
EL BIAR	ELB	0.5 ± 0.199	0.699	0.301	6.44	24	3	2	5	3	504,685	4,070,480		
KOUBA	KOB	0.728 ± 0.148	0.773 ± 0.244	0.661 ± 0.184	7.012	24	2	3	5	3	507,703	4,066,585		
OUED KORICHE	SOR	0.301 ±	0.301	0	7.62	22	3	2	5	3	503,859	4,072,424		
BORDJ EL BAHRI	BEB	0.301	0.301	0	7.711	24	3	2	6	1	523,350	4,073,116		
DÉLY BRAHIM	DLB	0.54 ± 0.101	0.69 ± 0.088	0.389 ± 0.088	7.881	16	2	4	3	3	500,090	4,069,773		
OULED FAYET	OF	0.477 ±	0.477	0	8.634	5	1	4	2	2	495,735	4,066,676		
MOHAMED BELOUIZDAD	BEL	0.767 ± 0.216	0.919 ± 0.327	0.54 ± 0.239	8.840	20	2	5	4	2	506,093	4,068,021		
EL MARSA	MRS	0	0	0	9.25	24	2	4	5	1	523,350	4,073,116		
EL MOURADIA	MOR	0.651 ± 0.147	0.651 ± 0.267	0.651 ± 0.048	9.493	32	1	4	4	4	504,273	4,068,084		
EL ACHOUR	ELA	1.342	1.342	0	9.496	9	2	4	3	2	500,354	4,067,097		
EL MADANIA	EMD	1.031 ± 0.181	1.155 ± 0.3	0.845	10.044	18	2	2	5	3	505,660	4,067,169		
DRARIA	DRA	0	0	0	13.3	22	2	3	3	6	502,219	4,064,576		
BOUZARÉAH	BOZ	0.376 ± 0.075	0.401 ± 0.1	0.301	14.482	13	2	3	5	5	499,338	4,072,461		
Analysis methods

We used cartography and GIS to carry out the thematic analyses with Geo-concept software version 7.3 (GeoConcept S. A. Bagneux France), where we developed maps of IAP by municipality calculating the average of the IAP of the samples located in the territory of each municipality. Then, we represented the different diseases in histogram form for each community. For the statistical tests, we used the Shapiro–Wilk normality test to examine the compatibility of an empirical normal distribution and to be able to apply the means comparison test of several groups with the Kruskal–Wallis test (Taeger & Kuhnt, 2014). The generalized linear model (GLM) and AIC criteria were used to identify the environmental effect on respiratory diseases, and IAP modelling of the different asthma and bronchitis cases was performed using a generalized linear model (Dunn & Smyth, 2018; Harrell & Frank, 2015). To study the relationship and the influence of air pollution and environmental parameters on respiratory diseases, we used redundancy analysis (RDA), which was completed by a Monte Carlo permutation test (Borcard et al., 2018).

Results and discussion

Spatial variation in illnesses

Over the period from 2006 to 2016, the total number of patients with respiratory diseases were 976, including 771 with asthma (265 cases were benign, 465 were moderate and 41 were severe) and 205 with bronchitis (124 with emphysema and 81 without emphysema). The Shapiro–Wilk normality test revealed that the distribution of diseases (log N) did not follow the normal law (p value < 0.05). The results of the Kruskal–Wallis test showed that the difference was significant between the averages recorded for each disease (p value < 0.05).

According to Fig. 2 and Table 1, we observed that the communities recording a high number of asthma cases were CHÉRAGA, CRG 0.36 ± 0.059, 0.389 ± 0.088, 0.301 14.482 13 2 4 3 5 496,142 4,070,526 and OUED SMAR, OSM 0 0 0 16.22 6 2 4 1 1 514,184 4,064,325. The communities recording a high number of bronchitis cases were BEN AKNOUN, BAK 0.477 0.477 0 16.2828 22 3 3 4 5 501,098 4,069,322 and BENI MESSOUS, BMS 0 0 0 17.15 14.75 2 3 3 6 496,693 4,071,573.

Table 1 (continued)

Communities	Code	*Respiratory diseases Log(N)	**Environmental parameters	**Spatial data								
		Total	Asthma	Bronchitis	IAP	IHI	RD	VC	URB	ALT	X (m)	Y (m)
CHÉRAGA	CRG	0.36 ± 0.059	0.389 ± 0.088	0.301	14.482	13	2	4	3	5	496,142	4,070,526
OUED SMAR	OSM	0	0	0	16.22	6	2	4	1	1	514,184	4,064,325
BEN AKNOUN	BAK	0.477	0.477	0	16.2828	22	3	3	4	5	501,098	4,069,322
BENI MESSOUS	BMS	0	0	0	17.15	14.75	2	3	3	6	496,693	4,071,573
HYDRA	HDR	0.659 ± 0.119	0.619 ± 0.159	0.778	26.1128	11	1	5	2	5	503,288	4,067,829
EL HAMMAMET	EHM	0	0	0	27.93	5.5	1	5	1	6	495,374	4,073,758

*Respiratory diseases Log(N)

**Environmental parameters

**Spatial data

Table 1 (continued)
communities of SDM and AC, and the average values occurred in the communes HDR, EMD, MOR, BEL, KOB and BK. Low values characterized the remaining communities. The mean test comparison showed a wide spatial variability in respiratory illness that was statistically significant (p value < 0.05).

![Spatial variation in respiratory diseases in Algiers Bay, Algeria (2006–2016) [1–35 classed by IAP 0–28, Table 1]](image)

Fig. 2 Spatial variation in respiratory diseases in Algiers Bay, Algeria (2006–2016) [1–35 classed by IAP 0–28, Table 1]
Relation between IAP and illnesses

The spatial distribution of respiratory illness on the function of IAP spatial distribution (Fig. 3a, Table 1) showed that the respiratory diseases in the most polluted zones were in communities low IAP values, except for the two communities BAK and HDR, which presented high IAP values but had a large number of disease cases.

In addition, we observed three times more hospitalizations for asthma than for bronchitis. On the other hand, we registered the absence of diseases in the communities EHM, BMS, OSM and DRA that had moderate and high levels of pollution. Two other communes, MRS and MGR, showed high and very high levels of pollution.

Regarding the spatial distribution of asthma with IAP (Fig. 3b, Table 1), we observed the predominance of moderate asthma followed by mild asthma. Severe asthma occurred in five communities: RH, BOZ, BAZ, HAR and HDR. Figure 3c (Table 1) illustrates the spatial distribution of bronchitis with or without emphysema in relation to IAP, and bronchitis with or without emphysema occurred in a high number of patients in two communities (AC and SDM).

Analysis with GLM model, RDA and Monte Carlo test

The GLMs (Fig. 4, Table 2) were statistically significant, explaining an analogous negative effect between respiratory diseases and IAP.

Fig. 3 Spatial distribution maps of respiratory diseases and the atmospheric purity index (IAP) in Algiers Bay, Algeria [(a) respiratory illness, (b) asthma (Mil: mild, Mod: moderate and Sev: severe), (c) bronchitis (Brw: without emphysema and Brt: with emphysema)]
For the RDA analysis, the environmental and IAP parameters explained 87.9% (RDA1 = 68.33% and RDA2 = 19.57%) of the total respiratory disease variability (Fig. 5). We distinguished three groups of communities: A and B were positively correlated with IAP, VC and ALT and negatively correlated with IHI, URB and RN as well as with respiratory illnesses. Group C was positively correlated with IHI, URB, RN and respiratory illnesses and negatively correlated with IAP, VC and ALT (Fig. 5).

In addition, mild asthma mainly occurred in three communities, CRG, MMD and BOL, whereas BEB and MRS showed very high IHI values and occur at a low altitude. In addition, the highest number of severe asthma cases characterized community RH. The results of the Monte Carlo permutation test (Table 3) showed that URB, IAP, and RN significantly affected the variability in the distribution of respiratory diseases. However, ALT, IHI and VC were nonsignificant (p value > 0.05, Table 3).

Discussion

The association between outdoor air pollution and asthma hospitalizations is well established in the scientific literature. Air pollution increases hospitalizations for asthma, according to Cakmak et al. (2012), Ding et al. (2017), Guo et al. (2018), Hebbern and Cakmak (2015) and Pan et al. (2014). However, studies concerning the link between air pollution and asthma hospitalizations are limited in developing countries (Cai et al., 2014).

In Algiers (Algeria), IAP maps showed a very high level of pollution, according to the European level of pollution (Conti & Cecchetti, 2001).

Table 2 Results of the generalized linear model (GLM)

Disease	GLM	Asthma	Bronchitis					
	Total	Mild	Moderate	Severe	Total	BRwith	BRwithout	
Intercept	Estimate	3.956161	2.78199	3.50878	1.07330	2.67996	2.1045	1.86690
	P value	<2e-16	<2e-16	<2e-16	0.0000622	<2e-16	<2e-16	<2e-16
IAP	Estimate	−0.126929	−0.10811	−0.13770	−0.13638	−0.13586	−0.1225	−0.15807
	P value	85 <2e-16	3.26e-13	<2e-16	0.000808	7.93e-14	0.0000000587	0.000000204
Among the thirty-five areas (communities), only six showed high pollution, and two showed moderate pollution. The most polluted areas of the city were situated in the north-eastern part of Algiers Bay. A low altitude less than 50 m with a high level of IHI and an IAP less than 12.5 characterized these areas.

This result was due to the neighbouring industrial area and traffic (Fig. 1) causing intense pollution (Boughedaoui et al., 2004).

Our study indicated a statistically significant association between air pollution based on the index of atmospheric purity (IAP) and the spatial distribution of local asthma and bronchitis hospitalization for 2006–2016 in Algiers city.

The statistical test indicates that IAP, urbanization (URB) and road number (RN) significantly explained the variability in the spatial distribution of respiratory disease. These results confirm that an IAP, such as the air pollution index (API), can be used to evaluate the health risks of air pollution in China, the USA and the UK (Li et al., 2015; Shen et al., 2017). However, ALT, IHI and vegetation cover VC did not have a significant effect. Alcock et al. (2017) concluded the same for the nonsignificant association of vegetation and asthma hospitalizations with high air pollution. The community Rais Hamidou (RH) is the only studied community with both a low IAP and a high number of cases of severe asthma; this can be explained by the presence of a cement factory and a quarry.

There were three times more cases of patients being admitted to hospitals with asthma than with bronchitis. This observation can be explained by the fact that some cases of bronchitis can be treated without hospitalization.

Three communities recorded a high number of asthma cases, and nine recorded an average value of cases. These areas were the most polluted areas. The same observation occurred for chronic bronchitis cases, and the recorded peaks occurred in two areas (communities) with the highest level of pollution and situated next to the Algiers port. On the other hand, the community with the lowest level of pollution and far from the urban centre did not record any patient admissions.

These results corroborate an increase in asthma exacerbation and asthma cases due to an increase in air pollution (Just et al., 2006; Kim et al., 2015; Kim et al., 2013; Ozcan & Cubukcu, 2015; Tian et al., 2017; Veremchuk et al., 2018; Zora et al., 2013).

There were some limitations to the present study. First, smoking habits associated with asthma were not included in our database. Second, the study was not extended to smaller hospitals around the study zone.

Table 3 Statistical influence of the significant and nonsignificant (grey case) environmental factors on respiratory illnesses according to RDA ($\alpha = 5\%$)

	df	AIC	F	Pr (> F)
URB	1	−43.338	5.9199	0.005
IAP	1	−40.732	3.1329	0.025
RN	1	−40.238	2.6261	0.045
ALT	1	−39.694	2.0774	0.110
IHI	1	−39.767	2.1504	0.115
VC	1	−38.915	1.3052	0.300

Conclusion

In conclusion, our results contribute to the scientific literature on the link between air pollution and respiratory diseases using lichen-based methods with...
significant results and new data in Africa. The study revealed a significant association between air pollution level and asthma or bronchitis hospitalizations. However, the risk of asthma hospitalizations is more probable than that of bronchitis hospitalizations. We found a statistically significant negative correlation between IAP and the spatial distribution of respiratory diseases; in contrast, IAP was positively correlated with urbanization and the number of roads.

The use of IAP in lichenic biomonitoring and its association with the distribution of respiratory diseases, along with the visualization of IAP on GIS, forms a very effective tool in studying the impact of air pollution on the health of populations and is useful for decision-making. Finally, it is important to improve this low-cost method of biomonitoring air quality for public health.

Acknowledgements The authors thank the Ministry of Health and Hospital Reform, Mustapha Pacha University Hospital and the respiratory service Manager, Professor MAKHLOUF M.T. for the use of their data.

Authors’ contributions Individual contributions to the paper were the following: Ghennam k conceptualization; formal analysis; funding acquisition; investigation; methodology; project administration; resources; software validation; visualization; writing-original draft; writing-review and editing. Attou F supervision; visualization; review and editing; formal analysis. Abdoun F supervision; visualization; project administration; review and editing.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Abas, A., & Awang, A. (2017). Air pollution assessment using lichen biodiversity index (LBI) in Kuala Lumpur. *Malaysia. Pollution Research*, 36(2), 241–248.

Alcock, I., White, M., Cherrie, M., Wheeler, B., Taylor, J., McNinnes, R., & Fleming, L. (2017). Land cover and air pollution are associated with asthma hospitalisations: A cross-sectional study. *Environment International*, 109, 29–41. https://doi.org/10.1016/j.envint.2017.08.009

Asta, J., Erhardt, W., Ferretti, M., Fornasier, F., Kirschbaum, U., Nimis, P., & Van Haluwyn, C. (2002). European guideline for mapping lichen diversity as an indicator of environmental stress. *British Lichen Society*, 1–19.

Blasco, M., Domeno, C., & Nerin, C. (2008). Lichens biomonitoring as feasible methodology to assess air pollution in natural ecosystems: combined study of quantitative PAHs analyses and lichen biodiversity in the Pyrenees Mountains. [Research Support, Non-U.S. Gov’t]. *Analytical Bioanalytical Chemistry*, 391(3), 759–771. https://doi.org/10.1007/s00216-008-1890-6

Boonpeng, C., Sriviboon, C., Poliyam, W., Sangiamdee, D., Watthanai, S., & Boonpragob, K. (2018). Assessing atmospheric pollution in a petrochemical industrial district using a lichen-air quality index (LiAQI). *Ecological Indicators*, 95, 589–594. https://doi.org/10.1016/j.ecolind.2018.08.012

Borcard, D., Gillet, F., & Legendre, P. (2018). *Numerical ecology with R*. Springer.

Boughedhaoui, M., Kerbachi, R., Kessali, D., & Joumard, R. (2004). Mesure de la pollution plombifère dans l’air ambiant d’Alger. *Pollution Atmospheric*, 181, 2268–3798.

Cai, J., Zhao, A., Zhao, J., Chen, R., Wang, W., Ha, S., & Kan, H. (2014). Acute effects of air pollution on asthma hospitalization in Shanghai, China. [Research Support, Non-U.S. Gov’t]. *Environmental Pollution*, 191, 139–144. https://doi.org/10.1016/j.envpol.2014.04.028

Cakmak, S., Dales, R. E., & Coates, F. (2012). Does air pollution increase the effect of aeroallergens on hospitalization for asthma? *The Journal of Allergy and Clinical Immunology*, 129(1), 228–231. https://doi.org/10.1016/j.jaci.2011.09.025

Comunian, S., Dongo, D., Milanì, C., & Palestini, P. (2020). Air pollution and Covid-19: The role of particulate matter in the spread and increase of Covid-19’s morbidity and mortality. *International Journal of Environmental Research and Public Health*, 17(12), 44–87. https://doi.org/10.3390/ijerph17124487

Conti, M., & Cecchetti, G. (2001). Biological monitoring: lichens as bioindicators of air pollution assessment—a review. *Environmental Pollution*, 114(3), 471–492.

Das, P., Joshi, S., Rout, J., & Upreti, D. K. (2013). Lichen diversity for environmental stress study: Application of index of atmospheric purity (IAP) and mapping around a paper mill in Barak Valley, Assam, northeast India. *Tropical Ecology*, 54(3), 355–364.

Ding, L., Zhu, D., Peng, D., & Zhao, Y. (2017). Air pollution and asthma attacks in children: A case-crossover analysis in the city of Chongqing, China. *Environmental Pollution*, 220(Pt A), 348–353. https://doi.org/10.1016/j.envpol.2016.09.070

Dunn, P. K., & Smyth, G. K. (2018). *Generalized linear models with examples in R*. Springer.

Estrabou, C., Filippini, E., Soria, J. P., Schelotto, G., & Rodriguez, J. M. (2011). Air quality monitoring system using lichens as bioindicators in Central Argentina. *Environmental Monitoring and Assessment*, 182(1–4), 375–383. https://doi.org/10.1007/s10661-011-1882-4

Fulla, J., Laval-Gilly, P., Henrion, M., Morlot, D., & Ferard, J. F. (2000). Biological air quality monitoring a review (ipa). *Environmental Monitoring and Assessment*, 64, 627–644.

Ghennam, K. (2011). *Les lichens dans l’Algérois, étude de leur biodiversité et biosurveillance par SIG de la qualité de l’air*. University of sciences and technology Houari Boumedienn, Algeria.
Ghennam, K. (2017). Bio-surveillance sur S.I.G. de la qualité de l’air dans l’Algérie par la biodiversité des lichens et les végétaux supérieurs. Thèse de Doctorat (PHD), University of sciences and technology Houari Boumedienn Algeria.

Ghennam, K., & Abdoun, F. (2017). Bio-surveillance par SIG de la qualité de l’air d’une cité méditerranéenne (Alger), diversité lichénique, indice de pureté atmosphérique (IPA) et indice d’impact humain (IIH). Revue d’Ecologie (Terre et Vie), Vol. 72(2), 134–146.

Gombert, S., Asta, J., & Seaward, M. R. D. (2004). Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (III) and other environmental factors in an urban area (Grenoble, southeast France). [Research Support, Non-U.S. Gov’t]. Science of the Total Environment, 324(1–3), 183–199. https://doi.org/10.1016/j.scitotenv.2003.10.036

Gombert, S., Asta, J., & Seaward, M. R. D. (2006). Lichens and tobacco plants as complementary biomonitors of air pollution in the Grenoble area (Isère, southeast France). Ecological Indicators, 6(2), 429–443. https://doi.org/10.1016/j.ecolind.2005.06.001

Guo, H., Huang, S., & Chen, M. (2018). Air pollutants and asthma patient visits: Indication of source influence. Science of the Total Environment, 625, 355–362. https://doi.org/10.1016/j.scitotenv.2017.12.298

Harrell, J., & Frank, E. (2015). Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer.

Hebern, C., & Cakmak, S. (2015). Synoptic weather types and aeroallergens modify the effect of air pollution on hospitalisations for asthma hospitalisations in Canadian cities. [Research Support, Non-U.S. Gov’t]. Environmental Pollution, 204, 9–16. https://doi.org/10.1016/j.envpol.2015.04.010

Hehua, Z., Qing, C., Shanyan, G., Qijun, W., & Yuhong, Z. (2017). The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. [Review]. Environmental Research, 159, 519–530. https://doi.org/10.1016/j.envres.2017.08.038

Herzig, R., Schindler, C., Urech, M., Rihm, B., Lötscher, H., & Thomann, G. (2020). Recalibration and validation of the Swiss lichen bioindicatiom methods for air quality assessment. Environmental Science and Pollution Research, 27, 28795–28810. https://doi.org/10.1007/s11356-020-09001-x

Jayalalac, U., Oh, S. O., Parka, J. S., Sung, J. H., Kim, S. H., & Hur, J. S. (2015). Evaluation of air quality using lichens in three 2015FST (ipa) Forest Science and Technology, 1–8. https://doi.org/10.1080/21580103.2014.1003983

Just, J., Nikasinovic, L., Laoudi, Y., & Grimfeld, A. (2007). Pollution de l’air et asthme de l’enfant Air pollution and asthma in children. Revue française d’allergologie et d’immunologie clinique, 47, 207–213.

Just, J., Nisakinovic, L., Laoudi, Y., & Grimfeld, A. (2006). Air pollution and asthma in children. [Review]. Archives de Pediatrie, 13(7), 1055–1060. https://doi.org/10.1016/j.archped.2006.03.147

Kaffér, M. I., Martins, S. M. A., Alves, C., Pereira, V. C., Fachel, J., & Vargas, V. M. F. (2011). Corticolous lichens as environmental indicators in urban areas in southern Brazil. Ecological Indicators, 11(5), 1319–1332. https://doi.org/10.1016/j.ecolind.2011.02.006

Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. [Review]. Environmental Pollution, 151(2), 362–367. https://doi.org/10.1016/j.envpol.2007.06.012

Kerbuchi, B., Bougheddaoui, M., Koutai, N., & Lakki, T. (1998). La pollution par les oxydes d’azote et l’ozone à Alger. Pollution Atmospherique, 86–101.

Kheirs, H., Hoogk, K., & Nieuwenvuijzen, M. J. (2018). Full-chain health impact assessment of traffic-related air pollution and childhood asthma. Environment International. https://doi.org/10.1016/j.envint.2018.03.008

Kim, J., Kim, H., & Kweon, J. (2015). Hourly differences in air pollution on the risk of asthma exacerbation. [Research Support, Non-U.S. Gov’t]. Environmental Pollution, 203, 15–21. https://doi.org/10.1016/j.envpol.2015.03.040

Kim, K. H., Jahan, S. A., & Kabir, E. (2013). A review on human health perspective of air pollution with respect to allergies and asthma. [Research Support, Non-U.S. Gov’t Review]. Environment International, 59, 41–52. https://doi.org/10.1016/j.envint.2013.05.007

Kirschbaum, U., & Wirth, V. (1997). Les lichens bio-indicateurs: les reconnaître, évaluer la qualité de l’air; E. Ulmer.

Kricke, R., & Loppi, S. (2002). BIOINDICATION The IAP approach. In P. L. Nimis, C. Scheidegger, & P. A. Wolseley (Eds.), Monitoring with lichens – monitoring lichens (pp. 21–37). Kluwer Academic Publishers.

LeBlanc, S. F., & De Slooever J. D. (1970). Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Canadian Journal of Botany, 48, 1485–1496.

Li, L., Lin, G. Z., Liu, H. Z., Guo, Y., Ou, C. Q., & Chen, P. Y. (2015). Can the Air Pollution Index be used to communicate the health risks of air pollution? Environmental Pollution, 205, 153–160. https://doi.org/10.1016/j.envpol.2015.05.038

Loppi, S., & Nascimbene, J. (1998). Lichen bioindication of air quality in the Mt. Amiata geothermal area (Tuscany, Italy). Geothermics, 27(3), 295–304. https://doi.org/10.1016/S0375-6505(98)00003-0

Martin, J., & Maystre, L. Y. (1988). Santé et pollution de l’air: Presses Polytechniques et Universitaires Romandes.

Nhunga, N. T. T., Schindler, C., Tran Minh Diend, Probst-Hensch, N., Perezza, L., & Künzli, N. (2018). Acute effects of ambient air pollution on lower respiratory infections in Hanoi children: An eight-year time series study. Environment International. https://doi.org/10.1016/j.envint.2017.10.024

Nimis, P. L. (1999, 26–27 November 1998). Linee-guida per la biodiversità dei licheni epifiti Paper presented at the Biomonitoraggio della Qualità dell’Aria sul Territorio Nazionale, Roma.

Ozcan, N. S., & Cubukcu, K. M. (2015). Evaluation of Air Pollution Effects on Asthma Disease: The case of Izmir. procedia - Social and Behavioral Sciences, 202, 448–455. https://doi.org/10.1016/j.sbspro.2015.08.201

Pan, H. H., Chen, C. T., Sun, H. L., Ku, M. S., Liao, P. F., Lu, K. H., & Lue, K. H. (2014). Comparison of the effects of air pollution on outpatient and inpatient visits for asthma: a population-based study in Taiwan. [Comparative Study]. PLoS One, 9(5), e96190. https://doi.org/10.1371/journal.pone.0096190

Rahali, M. (2003). Étude de la pollution plombique et globale dans la région d’Alger, en utilisant les lichens comme indicateurs biologiques.
Shen, F., Ge, X., Hu, J., Nie, D., Tianb, L., & Chen, M. (2017). Air pollution characteristics and health risks in Henan Province, China. *Environmental Research, 156*, 625–634. https://doi.org/10.1016/j.envres.2017.04.026

Suhaimi, N. F., Jalaludin, J., & Latif, M. T. (2020). Demystifying a possible relationship between COVID-19, air quality and meteorological factors: Evidence from Kuala Lumpur, Malaysia. *Aerosol and air quality research, 20*, 1520–1529. https://doi.org/10.4209/aaqr.2020.05.0218

Taeger, D., & Kuhnt, S. (2014). *Statistical hypothesis testing with SAS and R*: Wiley Online Library.

Tian, Y., Xiang, X., Juan, J., Sun, K., Song, J., Cao, Y., & Hu, Y. (2017). Fine particulate air pollution and hospital visits for asthma in Beijing, China. *Environmental Pollution, 230*, 227–233. https://doi.org/10.1016/j.envpol.2017.06.029

Trass, H. (1973). Lichen sensitivity to the air pollution and index of poleotolerance (IP). *Folia Cryptog Estonica*(Tartu), 3, 19–22.

Veremchuk, L. V., Tsarouhas, K., Vitkina, T. I., Mineeva, E. E., Gvozdenko, T. A., Antonyuk, M. V., & Golokhvast, K. S. (2018). Impact evaluation of environmental factors on respiratory function of asthma patients living in urban territory. *Environmental Pollution, 235*, 489–496. https://doi.org/10.1016/j.envpol.2017.12.122

Zechmeister, H. G., & Hohenwallner, D. (2006). A comparison of biomonitoring methods for the estimation of atmospheric pollutants in an industrial town in Austria. *Environmental Monitoring and Assessment, 117*(1–3), 245–259. https://doi.org/10.1007/s10661-006-0991-y

Zora, J. E., Sarnat, S. E., Raysoni, A. U., Johnson, B. A., Li, W. W., Greenwald, R., & Sarnat, J. A. (2013). Associations between urban air pollution and pediatric asthma control in El Paso, Texas. *Science of the Total Environment, 448*, 56–65. https://doi.org/10.1016/j.scitotenv.2012.11.067

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.