INTRODUCTION The clinical outcomes and factors associated with treatment failure of post-traumatic osteomyelitis have been investigated in many studies. However, limb functionality and quality of life following treatment for this condition have not been thoroughly studied.

METHODS This cross-sectional study included 47 patients with post-traumatic osteomyelitis of the lower limb. Functional outcome was assessed using the Lower Extremity Functional Score (LEFS), and quality of life was assessed using the validated Malay version of the Short Form-36 questionnaire version 2.

RESULTS The mean follow-up period was 4.6 (range 2.3–9.5) years, and the median age of the patients was 44 years. Osteomyelitis was located in the tibia for 26 patients and in the femur for 21 patients. Osteomyelitis was consequent to internal infection in 38 patients and due to infected open fractures in nine patients. 42 (89.4%) patients had fracture union and control of infection. Bone defect was found to be a significant contributing factor for treatment failure (p = 0.008). The median LEFS for the success group was 65, compared to 49 for the failure group. Although the success group showed better scores with regard to quality of life, the difference between the two groups was not statistically significant.

CONCLUSION Treatment of post-traumatic osteomyelitis of the lower limb had a high success rate. The presence of a bone defect was associated with treatment failure. Successfully treated patients had significantly better functional outcomes than those in whom treatment failed.

Keywords: femur, functional outcome, health-related quality of life, osteomyelitis, tibia
two and six weeks of injury or surgery; and chronic, when the infection occurred after six weeks of injury or surgery. The Cierny-Mader classification is divided into two categories to incorporate anatomic and physiological status (Table I).

PTO was managed in two stages (Fig. 1). The first stage involved the elimination of infection by radical debridement, while the second stage involved bone reconstruction when required. The first stage included removal of the implant (n = 22), stabilisation of fractures with external fixation and antibiotic therapy for six weeks (n = 47), obliteration of dead space with local antibiotics (n = 4) and soft-tissue coverage with flaps (n = 4). The second stage included autologous bone grafting (n = 3), bone transport using circular external fixation (n = 4) and bone transport using monolateral external fixation (n = 4).

During patient review, a physical examination was performed to evaluate the clinical outcome of the procedures. The success of treatment was established when participants demonstrated fracture union, with a stable wound and absence of infection. Union was defined as the ability to bear weight without pain, with radiological evidence of fracture union. Failure of treatment was established when participants had non-union and/or infection.

Once consent was obtained for the study, patients were provided two sets of questionnaires. The first one was the Short Form-36 version 2 (SF-36v2) questionnaire to assess quality of life, which had been translated and validated in the Malay language. Patients were assessed by an author not involved in their clinical management.

SF-36 is a generic outcome tool with 36 questions related to physical and mental health. The physical health components included physical function, physical role, bodily pain and general health. The mental health component contained four measurements: vitality, social functioning, emotional role and mental health. Scoring was performed by entering data using the QualityMetric Health Outcomes scoring software 4.5 (QualityMetric Incorporated, Lincoln, RI, USA). The software produced a T-score based on the mean and standard deviation of the 2009 United States (US) general population. Scores below 50 were interpreted as below those of the US general population, and scores above 50 were interpreted as above those of the US general population.

The second questionnaire was the Lower Extremity Functional Score (LEFS), which contained 20 questions regarding the participant’s ability to perform everyday tasks. The maximum score was 80, and lower scores indicated an increasing disability. LEFS was sensitive to changes in participants’ physical function and was easy to administer and score.

The questionnaire results were calculated using the scoring system and analysed with IBM SPSS Statistics for Windows version 21.0 (IBM Corp, Armonk, NY, USA) using the Spearman correlation test, Mann-Whitney U test, Kruskal-Wallis test and UNIANOVA. Median and interquartile ranges were calculated for all data.

RESULTS

Patients were followed up for a mean duration of 4.6 (range 2.3–9.5) years. The median age of the patients was 44 years, with an interquartile range of 31 years. A majority of the patients were male (n = 44, 93.6%) and only 3 (6.4%) were female (Table II). The most common presenting symptoms were pain (89.4%), followed by fever (36.2%), redness (34.0%), warmth (31.9%) and discharge (21.3%). One-third of the patients (n = 16, 34.0%) were unemployed after completing treatment. Nearly half of our patients (n = 21, 44.7%) returned to work in the private sector, while only a minority were self-employed (n = 4, 8.5%) or worked in the government sector (n = 3, 6.4%). 3 (6.4%) of the patients were students.

The most common comorbidities observed were diabetes mellitus (n = 9, 19.1%) and hypertension (n = 4, 8.5%). More than half of the patients were smokers (n = 27, 57.4%).

The fracture profile showed that a majority of patients (n = 41, 87.2%) sustained PTO due to traffic accidents. Only 1 (2.1%) patient had an industrial injury and another 5 (10.6%) patients were injured in a fall. Slightly more than half of our patients (n = 28, 59.6%) sustained an open fracture, while the rest had a closed fracture (n = 19, 40.4%). The incidence of tibia fracture was slightly higher (n = 26, 55.3%) than the incidence of femur fracture (n = 21, 44.7%). Also, a majority of patients (n = 38, 80.9%) received an implant: either a plate (66%) or an intramedullary device (34%).

In general, more than two-thirds of patients (n = 32, 68.1%) were classified as Cierny-Mader type B, with Cierny-Mader type A making up the rest (n = 15, 31.9%). No patient was classified as

Table I. Cierny-Mader classification of osteomyelitis.
Type of osteomyelitis

Anatomical staging
Type I
Type II
Type III
Type IV
Physiological staging
Type A
Type B
Type C

Fig. 1 Flowchart shows distribution of 57 patients treated for post-traumatic osteomyelitis.
Table II. Treatment outcome based on patient factors.

Variable	No. of patients	p-value
	Treatment success (n = 42)	Treatment failure (n = 5)
Gender	0.700	
Male	39	5
Female	3	0
Occupation	0.490	
Government	3	0
Private sector	20	1
Self-employed	3	1
Student	3	0
Unemployed	13	3
Mechanism of injury	0.740	
Road traffic accident	37	4
Industrial	1	0
Fall	4	1
Comorbidity	0.370	
Diabetes mellitus	9	0
Hypertension	3	1
Nil	30	4
Smoking	0.640	
Yes	24	3
No	18	2
Type of fracture	0.320	
Closed	18	1
Open	24	4
Site of osteomyelitis	0.400	
Tibia	24	2
Femur	18	3

Participates (n = 32, 68.1%) presented after six weeks of infection or had infections that were chronic in nature.

Overall, 22 (46.8%) patients had two or fewer surgeries when compared to 25 (53.2%) patients, who had more than two surgeries (Table III). Although not of statistical significance, trends showed that local factors, such as bone defect and higher grade of anatomical staging, were more important than systemic factors, such as comorbidities or physiological condition of the host, for determining the number of surgeries that would be required.

Microbiology results were available for 29 patients. The two most common micro-organisms isolated were *Staphylococcus aureus* and methicillin-resistant *Staphylococcus aureus*. Other micro-organisms cultured included *Pseudomonas aeruginosa*, *Klebsiella* species, *Proteus* species, *Enterobacter* species, *Acinetobacter baumannii* and mixed growth (Fig. 2).

In our study, 42 (89.4%) patients demonstrated fracture union and infection control. Only 5 (10.6%) patients had failure of treatment (or non-union with or without infection). Two patients had infected non-union, two patients had non-union with control of infection and one patient had fracture union with persistent infection.

Age of patients was not associated with treatment failure (Table IV). However, the presence of bone defect was significantly
associated with treatment failure ($p = 0.008$). Other variables, such as comorbidities, gender, occupation, mechanism of injury, type of fracture, type of infection, presence of an implant, site of infection, the onset of infection, presence of wound or pus, and smoking, were not associated with treatment failure. Patients who were successfully treated had significantly better LEFS than those whose treatment failed. However, quality of life was not significantly different among patients for whom treatments succeeded and failed with respect to either the physical or mental domain.

DISCUSSION

Nearly 90% of patients with PTO in our study had a successful clinical outcome. This result was similar to other studies that described a failure rate of approximately 10%–30%. At long-
We observed that the presence of a bone defect was the only significant factor associated with treatment failure. Tice et al reported that *P. aeruginosa* infection and treatment with vancomycin were important factors for the recurrence of osteomyelitis,[7,8] Jorge et al reported that *P. aeruginosa* infection was a significant factor for recurrence.[9] They noted that elderly patients and intraoperative blood transfusion were also independently associated with the recurrence of PTO. There were only two patients with PTO caused by *P. aeruginosa*, with one failure. Gonzalez and Weinzweig found that diffuse osteomyelitis (Cierny-Mader type IV) was a significant factor for treatment failure.[10] Impaired host factor (Cierny-Mader type B) was an important variable for failure in some studies.[4,7]

Table V. SF-36 findings for the normal Malaysian population.[6]

Variable	SF-36 score
Physical function	85.98 ± 17.91
Role physical	82.03 ± 32.12
Bodily pain	69.96 ± 17.59
General health	66.74 ± 19.99
Vitality	66.79 ± 17.68
Social function	83.73 ± 19.28
Role emotional	79.23 ± 35.92
Mental health	74.66 ± 17.19

SF-36: Short Form-36 questionnaire

The quality of life of patients who were successfully treated was not significantly different from that of patients whose treatment failed. However, these values were lower than the SF-36 values of the normal Malaysian population (Table V).[6] Our result was similar to that of Liener et al, who also observed that the quality of life of patients following treatment of PTO was lower when compared to a normal random sample population.[10] However, Schep et al noted that quality of life according to SF-36 was not significantly different after successful treatment with distraction osteogenesis for lower limb reconstruction.[14]

In conclusion, the success rate for PTO in the lower limb was high in our cohort of patients. The presence of a bone defect was associated with treatment failure. The functional outcome of successfully treated patients was significantly better than that of patients with treatment failure. However, the difference in quality of life was not statistically significant between the two groups.

REFERENCES

1. Lowenberg DW, Buntic RF, Buncke GM, Parret BM. Long-term results and costs of muscle flap coverage with Ilizarov bone transport in lower limb salvage. J Orthop Trauma 2013; 27:576-81.
2. Lazzarini L, Mader JT, Calhoun JH. Osteomyelitis in long bones. J Bone Joint Surg Am 2004; 86:2305-18.
3. Sanders J, Mauffrey C. Long bone osteomyelitis in adults: fundamental concepts and current techniques. Orthopedics 2013; 36:368-75.
4. Simpson AH, Deakin M, Latham JA. Chronic osteomyelitis. The effect of the extent of surgical resection on infection free survival. J Bone Joint Surg Br 2001; 83-A:403-7.
5. Siegel HL, Patzakis MJ, Holton PD, Sherman R, Shepherd L. Limb salvage for chronic tibial osteomyelitis: an outcomes study. J Trauma 2000; 48:484-9.
6. Tuite SA, Schapa GR, Strackee SD. Long-term results of multiple-stage treatment for posttraumatic osteomyelitis of the tibia. J Trauma 2004; 56:633-42.
7. Gonzalez MH, Weinzweig N. Muscle flaps in the treatment of osteomyelitis of the lower extremity. J Trauma 2005; 58:1019-23.
8. Bhandari M, Guyatt GH, Swiontkowski MF, et al. A lack of consensus in the assessment of fracture healing among orthopaedic surgeons. J Orthop Trauma 2002; 16:562-6.
9. Azman AB, Saranaks S, Rugayah B, et al. Quality of life of the Malaysian general population: results from a postal survey using the SF-36. Med J Malaysia 2003; 58:694-711.
10. Binkley JM, Stratford PW, Lott SA, Riddle DL. The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network, Phys Ther 1999; 79:371-83.
11. Egol KA, Singh JR, Nuovo U. Functional outcome in patients treated for chronic posttraumatic osteomyelitis. Bull NYU Hosp Jt Dis 2009; 67:313-7.
12. Tice AD, Haaglund PA, Shoulz DA. Risk factors and treatment outcomes in osteomyelitis. J Antimicrob Chemother 2003; 51:261-8.
13. Liener UC, Enninghout N, Högel J, Kinzl L, Suger G. [Quality of life after surgical treatment of ostietitis]. Unfallchirurg 2003; 106:456-60. German.
14. Jorge LS, Chueire AG, Fucuta PS, et al. Predisposing factors for recurrence of chronic posttraumatic osteomyelitis: a retrospective observational cohort study from a tertiary referral center in Brazil. Patient Saf Surg 2017; 11:17.
15. Schep NW, van Lieshout EM, Patka P, Vogels LM. Long-term functional and quality of life assessment following post-traumatic distraction osteogenesis of the lower limb. Strategies Trauma Limb Reconstr 2009; 4:107-12.
16. Campbell R, Berry MG, Deva A, Harris IA. Aggressive management of tibial osteomyelitis shows good functional outcomes. Eplasty 2011; 11:e3.