PRELIMINARY PHARMACOGNOSTICAL AND PHYTOCHEMICAL EVALUATION OF AROGYAVARDHINI COMPOUND- AN EMERGING FORMULATED MEDICINE FOR METABOLIC SYNDROME

Padhar Bharatkumar C1, Dave Alankruta R2, Harisha CR3, Shukla VJ4
1Ph.D Scholar, Department of Kayachikitsa, I.P.G.T & R.A, Gujarat Ayurved University Jamnagar, India
2Associate Prof. & I/C Head of Department of Kayachikitsa, I.P.G.T & R.A, Gujarat Ayurved University Jamnagar, India
3Head of Pharmacognosy laboratory, I.P.G.T & R.A, Gujarat Ayurved University Jamnagar, India
4Head of Pharmaceutical laboratory, I.P.G.T & R.A, Gujarat Ayurved University Jamnagar, India
*Corresponding Author’s mail: dr.bharat1987@yahoo.in

Received 18 Dec 2015; Review Completed 02 Jan 2016; Accepted 04 Jan 2016, Available online 15 Jan 2016

ABSTRACT
Context: Arogyavardhini Compound is an emerging formulated herbo-mineral formulation for treatment of metabolic syndrome. Metabolic syndrome is group of risk factors like, increased waist circumference, insulin resistance, increased triglycerides, decreased high density lipoproteins and hypertension for coronary artery diseases and type 2 diabetes mellitus. Arogyavardhini compound consist equal quantity of Arogyavardhini Rasa and single bulb garlic powder. Arogyavardhini Rasa having proven anti dyslipidemiaic and weight reducing effect and Garlic having anti diabetic, anti dyslipidemic, antihypertensive effect, the combination called Arogyavardhini Compound has been formulated for management of metabolic syndrome.
Aim: Authentication of raw drug of Arogyavardhini Compound and phytochemical evaluation of finished product.
Materials and methods: Arogyavardhini Compound was evaluated on the basis of powder microscopy and analytical parameters like pH, Ash value, acid insoluble ash, water soluble extract, methanol extract and high performance thin layer chromatography. Results: Powder microscopy revealed the presence of Annular vessels of Musta, Starch grains of Vacha, Stone cells of Pippali, Stone cells of Chitraka, Oleoresins of Shunthi, etc. Physicochemical parameters such as total Ash value (15.91%), water soluble extract (13.5%), methanol soluble extract (17.2%) were assessed in preliminary physicochemical parameters like pH, Ash value, acid insoluble ash, water soluble extract, methanol extract and high performance thin layer chromatography.
Conclusion: Pharmacognostical study revealed genuinity of raw drugs. Physico-chemical and HPTLC studies inferred that the formulation meets the minimum quality standards as reported in the API at a preliminary level. The inference from this study may be used as reference standard in the further quality control researches.
Key Words: Arogyavardhini Compound, HPTLC, Pharmacognosy, Physicochemical analysis.

INTRODUCTION
Nature is mother of mankind. It blesses us through various minerals and herbs to live a healthy and wealthy long life. Since ancient times, humanity has depended on the mixture of the plant and mineral resources for food clothing, protection and traditional medicine to cure a number of diseases. Arogyavardhini Compound is an emerging herbo-mineral formulation of thirteen ingredients (Table No:1) formulated for treatment of metabolic syndrome. In Ayurveda metabolic syndrome can be compared with Avaranayana Madhumeha, which is condition of excessive accumulation of Meda (Fatty tissues), Kleda and Kaptha leading Aavarana (Obstruction) of Vata resulting in excretion of Ojas (Essence of body tissues) with urine. Drugs of Arogyavardhini Compound like Kaijali (Combination of mercury and sulphur) have Yogavahi (increasing potency of formulation and not altering the pharmacological action of contents in combinations), Tamrabhasma having Lekhan and Sihaalurah properties, Abhraka Bhasma have Pramehahar property, Lauha Bhasma have Sihaalayahara and Rasayan properties, Shilajatu and Guggulu have Lekhan, Rasayan, Pramehahar properties, Triphala have Pramehahara and Rasayan properties, Katuki have Pramehahar, Medahar properties. Lasuna have Rasayan and Avaran har properties. So it can be said...
that overall effect of formulation may be Lekhan, Sthaulyahar, Pramehahar, Avaranhar and Rasayan and thus it will be useful in condition of Avarananya Madhumeha also called as metabolic syndrome.

There are several components of Arogyavardhini vati which are known to have hypolipidemic effects, i.e., Picrorrhiza kurroa, Terminalia chebula, Terminalia bellerica, Emblica officinalis, and Guggulu. Lasuna also possesses anti-hyperlipidemic, anti-diabetic and anti-hypertensive activity. So the combination of Arogyavardhini Rasa and Lasuna may exert significant effect on metabolic syndrome.

Metabolic syndrome is a disorder of energy utilization and storage, diagnosed by a co-occurrence of three out of five of the following medical conditions: abdominal (central) obesity, elevated blood pressure, elevated fasting plasma glucose, high serum triglycerides, and low high-density cholesterol (HDL) levels. Metabolic syndrome increases the risk of developing cardiovascular disease, particularly heart failure, and diabetes. Some studies have shown the prevalence in the USA to be an estimated 34% of the adult population and the prevalence increases with age.

During the past decades there has been increasing public interest in natural products and therapies in both developing and developed countries. So, we cannot assure drug industries insolation from adulterations and quality decrement. Therefore, quality control for efficacy and safety of herbal products is of main concern. Maintaining the quality standards of the formulation is a challenge. The development of this traditional system of medicine with the perspective of safety, efficacy and quality will help not only to preserve the traditional heritage but also to rationalize the use of the natural products in healthcare. Initial steps in quality standardization of compound formulation is to establish the presence of each ingredient in the finished product, followed by the pharmaceutical analysis. In the present study, Arogyavardhini Compound was subjected to pharmacognostical (powder microscopy), HPTLC, densitogram and pharmaceutical evaluation for various physicochemical parameters in order to prepare a preliminary profile of formulation for future.

MATERIAL AND METHODS

Collection of raw materials: All the raw drug materials were collected from the pharmacy attached with institute. The ingredients and parts used of the drugs are given in table-1.

| Table 1: Ingredients of Arogyavardhini Compound: |
|------------------------------|-----------------|------------|--------|
| **Content** | **Latin name** | **Part used** | **Ratio** | **Form** |
| Suddha Parada | Terminalia chebula Linn. | - | - | 1 part Powder |
| Suddha Gandhaka | Emblica officinalis Linn. | - | - | 1 part Powder |
| Loha Bhasma | Terminalia bellirica Roxb. | - | - | 1 part Bhasma |
| Abharaka Bhasma | Commiphora mukul Hook. | - | - | 1 part Bhasma |
| Tamra Bhasma | Ricinus communis Linn | - | - | 1 part Bhasma |
| Haritaki | Terminalia chebula Linn. | Fruit | 2 part | Churna |
| Amalaki | Emblica officinalis Linn. | Fruit | 2 part | Churna |
| Bibhitaki | Terminalia bellirica Roxb. | Fruit | 2 part | Churna |
| Suddha Shilajatu | - | - | 3 part | Churna |
| Suddha Guggulu | Commiphora mukul Hook. | Gum | 4 part | Churna |
| Eranda Moola | Ricinus communis Linn | Root | 4 part | Churna |
| Katuki | Picrorhiza Kurrora Roxb. | Root/Rhizome | 22 part | Churna |
| Nimba Patra Svarasa | Azadirachta Indica A.Juss | Leaves Juice | Mardana for 2 days | |
| Single bulb Lasuna | Allium ascalonicum Linn. | Bulb | 44 part | Churna |

Pharmacognostical study: Raw drugs were identified and authenticated by the Pharmacognosy laboratory. The identification was carried out based on organoleptic characters of powder (Churna), later pharmacognostical evaluation of the powder (Churna) was carried out. Powder (Churna) was dissolved in small quantity of distilled water, filtered through filter paper, studied under the Corlzeiss trinocular microscope attached with camera, with stain and without stain. The microphotographs were also taken under the microscope.

Method of preparation of Arogyavardhini Compound: Arogyavardhini rasa was prepared by standard method mentioned in Ayurveda. Kaijali (black mercury sulphide), Loha bhasma (incinerated iron) Abhraka Bhasma (incinerated mica), Tamrabhasma (incinerated copper), Haritaki powder, Bibhitaka powder, Amalaki powder, Shuddhi Shilajit (Black Bitumin), Erandmula, Suddha Guggulu and Katuki powder were weighed accurately. First Kaijali and Bhasma placed in Khalva and mixed properly, than remaining powder added in this mixture and mixed thoroughly. Nimbpatra Svarasa was added till the mixture immersed completely and trituration was carried out till the mixture get semisolid form and dried. Same procedure was followed for second Bhavana also.

Single bulb Lasuna was collected from green vegetable grocer market of local area. Lasuna was first made into
past and then dried in oven at 60 °C temperature for 4-5 days.

Dried paste of Lasuna was made into fine powder and sieved in mesh no.80. The equal quantity of Lasuna powder was mixed well with Arogayvardhini Rasa in mass mixing machine till the homogeneous mixture was obtained.

Pharmaceutical evaluation: Arogayvardhini Compound was analyzed by using qualitative and quantitative parameters at pharmaceutical laboratory. The common parameters mentioned for Churna in Ayurved pharmacopoeia of India and C.C.R.A.S guidelines are total Ash value, pH value, water and methanol soluble extracts.

Organoleptic evaluation: Organoleptic features like color; odor and taste of the Arogayvardhini Compound were recorded and are placed in table no 2.

Table 2: organoleptic characters of Arogayvardhini Compound:

Parameter	Results
Color	Dark grayish
Odor	Like garlic odor
Test	Bitter, astringent
Consistency	Fine course powder

Microscopic evaluation: Microscopic evaluation was conducted by dissolving powder of Arogayvardhini Compound in the distilled water and studied under microscope for the presence of characteristics of ingredient drugs. The diagnostic characters are Scleroids of Haritaki (Image:01), Parenchyma cells of Lasuna (Image:02), Rhomboidal crystals of Katukai (Image:03), Stone cells with brown contents of Katukai (Image:04), Elongated parenchyma cells of Lasuna (Image:05), Stone cells of Haritaki (Image:06), Pitted scleroid of Bibhitaka (Image:07), Parenchyma cells with prismatic crystals of Lasuna(Image:08), Parenchyma cells with rhomboidal crystals of Katuki/Image:09), Spindly shaped fibers of single bulb Lasuna (Image:10), Silica deposition of Amalaki (Image:11), Mesocarp cells of Amalaki (Image:12), Fragment of annular vessels of Lasuna (Image:13), Simple fibers of Amalaki (Image:14), Trichomes of Bibhitaka (Image:15), Parenchyma cells and brown contents of Erandmula (Image:16), Pitted vessels of Katuki (Image:17), Lignified fibers of Erandmula (Image:18)Simple trichome of Nimbpatra (Image:19) and Tannin contents of Haritaki(Image:20).

Physico-chemical parameters: Physico-chemical parameters of the Churna like loss on drying, pH values were found within the normal range. Methanol and water soluble extractive values were found to be 17.2% and 13.5% respectively. Details is shown in table no.3

Table 3: Physico-chemical analysis of Arogayvardhini Compound

Parameter	Value
Loss on drying at 110 °C	3.00 %
Ash Value	13.50%
Acid insoluble Ash	0.077%
Water soluble extract	26.72%
Methanol Soluble extract	14.96%
pH (By pH indicator paper)	6.5

High performance thin layer chromatography:

Densitometry scanning of the HPTLC pattern showed 09 spots at corresponding RF values 0.01, 0.03, 0.11, 0.16, 0.23, 0.28, 0.37, 0.50, 0.88, in short wave UV 254 nm, and 07 spots at corresponding Rf values 0.01, 0.03, 0.07, 0.11, 0.06, 0.24, 0.36, obtained in long wave UV 366 nm (Table no.4). Though it cannot be possible to identify particular chemical constituent from the spot obtained, the pattern may be used as a reference standard for further quality control researches. (Images: 21-23)
Table 4: Rf Values of Arogyavardhini Compound:

Rf Values at 254 nm	Rf Values at 366 nm.
HPTLC	
0.01, 0.03, 0.11, 0.16, 0.23, 0.28, 0.37, 0.50, 0.88.	0.01, 0.03, 0.07, 0.11, 0.06, 0.24, 0.36.

DISCUSSION

Powder microscopy of Arogyavardhini Compound revealed the diagnostic characters like Scleroids of Haritaki, Parenchyma cells of Lasuna, Rhomboidal crystals of Katuki, Stone cells with brown contents of Katuki, Elongated parenchyma cells of Lasuna, Stone cells of Haritaki, Pitted scleroid of Bibhitaka, Parenchyma cells with prismatic crystals of Lasuna, Parenchyma cells with rhomboidal crystals of Katuki, Spindle shaped fibers of single bulb Lasuna, Silica deposition of Amalaki, Mesocarp cells of Amalaki, Fragment of annular vessels of Lasuna, Simple fibers of Amalaki, Trichomes of Bibhitaka, Parenchyma cells and brown contents of Erandmula, Pitted vessels of Katuki, Lignified fibers of Erandmula, Simple trichome of Nimbpatra and Tannin contents of Haritaki which authenticate genuineness of the raw drugs of Arogyavardhini Compound.

Taste of Arogyavardhini Compound was Tikta (bitter), because Katuki is in maximum quantity in Arogyavardhini Rasa and having strong bitter taste results in bitterness of formulation. Garlic is in equal quantity of Arogyavardhini Rasa in this formulation may resulted in garlic like odor of formulation.

Moisture contents should be minimum to prevent degradation of product. Excess of water in formulation encourage microbial growth, presence of fungi or insects and deterioration following hydrolysis. Arogyavardhini Compound contains 5.58% w/w moisture, showing that the Churna should be protected...
from humid atmosphere. Ash values are the criteria to judge the identity and purity of crude drugs were total ash, water soluble and acid insoluble ashes are considered. Arogyavardhini Compound contained 15.91% w/w total ash and 0.077% w/w acid insoluble ash. The results revealed that Arogyavardhini Compound is free from unwanted organic compounds and production site was good enough keeping sample free from dust and other solid matters. The 13.5% w/w of water soluble extractives and 17.2% w/w methanol soluble extractives were present in Arogyavardhini Compound indicating that the drug is having good solubility in water.²⁹

REFERENCES

1. In: Ayurvedic Formulary of India, part-1A, 20/4. 2nd ed. New Delhi: Dept. of ISM and M, Ministry of Health and Family Welfare, Govt. of India. 2003:58.
2. Agnivesha, Charaka, Dridhabala, Charaka Samhita, Sutra Stithana, KayyantaShirashiyaha Adhyaya, 17/8, edited by Yadavaji Trikanjani Acharya, 1 ed. Chaukhamba Surbharati Prakashana, Varanasi; 2011:198.
3. Ras-tarangini, Taranga 06 / 112, “Rasvigyana commentary” by Kashinath Shastri, 11th ed. Delhi: Motil Banarasidas publication; 2009, p. 126.
4. Ras-tarangini, Taranga 17 / 46, “Rasvigyana commentary” by Kashinath Shastri, 11th ed. Delhi: Motil Banarasidas publication; 2009, p. 420.
5. Ras-tarangini, Taranga 10 / 72, “Rasvigyana commentary” by Kashinath Shastri, 11th ed. Delhi: Motil Banarasidas publication; 2009, p. 234.
6. Ras-tarangini, Taranga 20 / 83, “Rasvigyana commentary” by Kashinath Shastri, 11th ed. Delhi: Motil Banarasidas publication; 2009, p. 507.
7. Ras-tarangini, Taranga 22 / 25, “Rasvigyana commentary” by Kashinath Shastri, 11th ed. Delhi: Motil Banarasidas publication; 2009, p. 586.
8. Bhavamishra, Bhavprakasha Nighantu, Haritakayadi varga 3 / 43, commentary by Pandit Brahma Shankar Mishra, 1st ed. Varanasi: Chaukhamba Bharati Akademy; 2010, p. 12.
9. Bhavamishra, Bhavprakasha Nighantu, Haritakayadi varga 46 / 152, commentary by Pandit Brahma Shankar Mishra, 1st ed. Varanasi: Chaukhamba Bharati Akademy; 2010, p. 67.
10. Bhavamishra, Bhavprakasha Nighantu, Haritakayadi varga 77/ 221-223, commentary by Pandit Brahma Shankar Mishra, 1st ed. Varanasi: Chaukhamba Bharati Akademy; 2010. p. 126.
11. Lee HS, Yoo CB, Ku SK. Hypolipemic effect of water extracts of Picrorrhiza kurroa in atherogenic diet induced Padhar. Complement Ther Med. 2009;17:16–22.
12. Peyman M, Surush M, Milad M, Shahin A, Shadi S. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds. Iran J Basic Med Sci. 2013 Oct; 16(10): 1031–1048.
13. http://en.wikipedia.org/wiki/Metabolic.syndrome#cite_note-1
14. Anonymous. Guidelines on Quality of Herbal Medicinal Products/Traditional Medicinal Products, EMEA/CVM/P/81400 Review, London: European Agency for the Evaluation of Medicinal Products (EMEA) publications; 2005.
15. Anonymous. The Use of Essential Drugs, Eighth report of the WHO Expert committee. Geneva: World Health Organization publications; 1990.
16. Wickramasinghe M, Bandaranayake. Quality control, Screening, toxicity, and regulation of herbal drugs. In: Ahmad I, Aqil F, Owais M, editors. Modern phytochemistry, turning medicinal plants into drugs, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2006. p. 27–57.
17. Mukherjee PK, Wahi A. Integrated approaches towards drug development from Ayurveda and other Indian systems of medicine. J Ethnopharmacol 2006; 103:25-35.
18. Satheesh KP, Kumar KV, Menta L, Gopal Rao K, Elsheikh Musad MM, Koko Mohamed ME. Standardization of a Polyherbal Ayurveda FormulationNishmalaki Churna Tablet. J Pharm Res 2011; 4:1483-7.
19. Wallis TE. Text Book of Pharmacognosy. 5 th ed. New Delhi: CBS Publishers; 1985. p. 571.
20. Khandelwal KR. Practical Pharmacognosy techniques and experiments. 19th ed. Pune: Nirali Prakashan; 2010. p. 12.
21. Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. 42 nd ed. Pune: Nirali Prakashan; 2008. P.102.
22. Anonymous. The Ayurvedic Pharmacopoeia of India, Part 2, Vol. 1, 1 st ed. New Delhi: Department of AYUSH, Ministry of Health and Family welfare, Government of India; 2008, p.140.
23. Anonymous. Quality control methods for medicinal plant materials, Geneva: World Health Organization; 1998.
24. Anonymous, Parameters for qualitative assessment of Ayurveda and Siddha drugs, Part A, New Delhi: CCRAS; 2005. pp. 31.
25. Stahl E. A Laboratory hand book. Berlin: Springer-Verlag; 1969. P.102.
26. Gupta AK, introduction to pharmaceutics Vol.-1,3rd ed. New Delhi: CBS publishers and distributors; 1994.p.270.