Unconventional quantum criticality in the kicked rotor

Jiao Wang\(^1\), Chushun Tian\(^2\), Alexander Altland\(^3\)

\(^1\)Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, China
\(^2\)Institute for Advanced Study, Tsinghua University, Beijing 100084, China
\(^3\)Institut für Theoretische Physik, Universität zu Köln, Köln 50937, Germany

(Dated: January 31, 2014)

The quantum kicked rotor (QKR) driven by \(d\) incommensurate frequencies realizes the universality class of \(d\)-dimensional disordered metals. For \(d > 3\), the system exhibits an Anderson metal-insulator transition which has been observed within the framework of an atom optics realization. However, the absence of genuine randomness in the QKR reflects in critical phenomena beyond those of the Anderson universality class. Specifically, the system shows strong sensitivity to the algebraic properties of its effective Planck constant \(\hbar \equiv 4\pi/q\). For integer \(q\), the system may be in a globally integrable state, in a 'super-metallic' configuration characterized by diverging response coefficients, Anderson localized, metallic, or exhibit transitions between these phases. We present numerical data for different \(q\)-values and effective dimensionalities, with the focus being on parameter configurations which may be accessible to experimental investigations.

PACS numbers: 05.45.Mt, 64.70.Tg, 72.15.Rn, 71.30.+h

I. INTRODUCTION

The (quasiperiodic) quantum kicked rotor is a quantum particle on a unit radius ring whose dynamics is described by the time dependent Hamiltonian

\[
\hat{H}(t) = \frac{1}{2} (\hat{\hbar}\hat{n})^2 + K \cos \theta f_d(t) \sum_m \delta(t-m), \tag{1}
\]

where \(\hat{\hbar}\) and \(\hat{n} = -i\partial_\theta\) are coordinate and angular momentum operator, respectively. The Hamiltonian \(\hat{H}\) describes kicking of the particle at unit time intervals and an amplitude depending on the angular position. The quasiperiodic quantum kicked rotor given by Eq. (1) differs from its more widely known sibling, the standard QKR\(^4\), in that the kicking strength itself, \(\sim K f_d(t)\) is explicitly time dependent, where the modulating function, \(f_d(t) = \prod_{i=1}^{d-1} \cos(\omega_i t + \phi_i)\) depends on \(d-1\) incommensurate frequencies \(\omega_i\). \((\phi_i\) are constant phase offsets.) Much like that the standard QKR has been shown to lie in the universality class of quasi-one-dimensional disordered metals\(^2\), the quasiperiodic QKR corresponds to a \(d\)-dimensional metal\(^9\). (The mapping to a \(d\)-dimensional effective system will be made explicit below.) The Anderson localization phenomena characteristic for both one-dimensional\(^{12,13}\) and higher dimensional\(^{10,14}\) metallic systems have been seen in cold atom experiments. Strikingly, a three-dimensional quasiperiodic QKR has been experimentally shown to undergo an Anderson metal-insulator transition upon variation of the kicking amplitude.

The fact that the rotor is a deterministic chaotic, rather than a stochastic disordered systems manifests itself in various anomalies emerging at specific values of the global kicking strength, \(K\), and Planck’s constant \(\hbar\) (see Refs.\(^7,13,14\) for review on anomalies of the standard rotor). Of particular interest are ‘quantum resonances’ arising at values \(\hbar/(4\pi) = p/q\), where \(p, q\) are co-prime integers. At these values, the Hamiltonian \(\hat{H}\) commutes with translations \(\hat{n} \rightarrow \hat{n} + q\) in angular momentum space. The one-dimensional \((d=1)\) standard rotor then ceases to be Anderson localized and behaves like a finite size metallic system of extension \(q\) instead leading to a quadratic growth of the rotor’s energy at large times. (For \(q\) larger than the localization length \(\xi\) of the system a crossover to localization takes place.) In Refs.\(^{2,11}\) we analytically shown that in \(d > 1\) the same mechanism may lead to novel type of quantum criticality, outside the Anderson universality class. Basic features of this phenomenon can be understood by observing that at the resonant values the rotor becomes effectively finite in the \(n\)-coordinate, while it remains infinitely extended in the \(d-1\) auxiliary dimensions as-

![FIG. 1: Angular momentum space of the quasiperiodic QKR at a resonant value \(\hbar = 4\pi p/q\). The system becomes effectively finite in \(n\)-direction but remains infinite in its \(d-1\) auxiliary dimensions (\(d = 2\) in the figure.) Physical observables can be computed by probing the sensitivity to boundary conditions in \(n\)-direction or, equivalently, to an Aharonov-Bohm flux, \(\phi\) piercing the system. The ensuing physics then crucially depends on whether wave functions are extended, a), or localized, b), in the auxiliary directions.](image-url)
sociated to the additional driving frequencies. Upon compactification of the ‘unit cell’ in $n$ direction, the system assumes the topology of a $d$-dimensional cylinder, and physical observables such as the expectation value of the rotor’s energy, $E(t) = \langle \hat{n}(t)^2 \rangle$, can be computed by probing its sensitivity to changes in the boundary conditions in the compact $n$-direction. The behavior of the above expectation value, which in the metallic analogy is the Fourier transform of the frequency dependent optical conductivity, crucially depends on the localization properties in the infinitely extended $d - 1$ dimensions of the cylinder (cf. Fig. 1) In dimensions $d \geq 3$, above the Anderson metal-insulator transition, wave functions are extended, the system then resembles an ordinary metal, with finite optical conductivity. However, below the Anderson transition, or in low dimensions $d \leq 3$, wave functions are localized, which means that ‘transport’ in $n$-direction is via a discrete spectrum of (localized) states. In this phase the system has much in common with a ‘super-metallic’ quantum dot and the discreteness of its spectrum implies a diverging optical conductivity. Some-what counter-intuitively, this supermetallic conduction behavior is rooted in strong Anderson localization in the transverse directions.

In Ref. 2, the existence of a supermetallic phase in low dimensions, and of a metal-supermetal transition in dimensions $d > 3$ was predicted on the basis of a field theoretic analysis. The purpose of the present paper is to put these results to a numerical test. At the same time, we will pay attention to anomalies arising at small values $q = 1, 2$ where the system becomes integrable and instead of localization, quasiperiodic oscillatory patterns is observed (cf. the left column of Tab. 1 in which the main observations of this paper are summarized). We have also identified anomalies arising at $q = 4$, where the integrability is partially restored and consequently the generic picture breaks down and metallic regimes are absent (Tab. 1 right column.) The general conclusion will be that the adjustability of the two principal parameters ($K, \hbar$) provides us with a spectrum of opportunities to realize critical phenomena pertaining to the physics of integrability, chaos, and localization. The physics addressed in the present paper should be well in reach of current experiments.

The rest of the paper is organized as follows: in section III we introduce the Floquet operator underlying our analysis. In sections IV, V, and VI we will simulate its dynamics to explore the behavior at the smallest resonant values, $q = 1, 2$, ‘generic’ resonant values $q = 3, 5, \ldots$, and the anomalous value $q = 4$, respectively. We conclude in section VII.

II. FLOQUET OPERATOR

Below, we will apply fast Fourier transform techniques to simulate the quantum evolution of the initial state $|n = 0\rangle$ at integer times $t$ as $|\psi(t)\rangle = \prod_{s=1}^{t} \hat{U}'(s)|0\rangle$, where

$$\hat{U}'(s) \equiv e^{-\frac{i\Delta s^2}{\hbar}} e^{-\frac{\omega}{\hbar} f_{s}(s) \cos \theta},$$

(2)

is the Floquet operator. Using these states we numerically compute the expectation value $E'(t) = \langle \hat{n}'^2(t) \rangle = -\langle \psi(t)| \hat{D}_q^2 |\psi(t)\rangle$ to learn about the physical properties of the system. The operator (2) explicitly depends on the discrete time, $s$, and in this non-autonomous hides the effective dimensionality of the system. Following ideas introduced in Refs. 2, 16, we briefly review how the time dependence of $U'$ may be eliminated at the expense of introducing $d - 1$ additional dimensions. To this end, let us interpret $|\theta_0 \equiv \theta, \theta_1, \ldots, \theta_{d-1}\rangle$ as a $d$-dimensional coordinate vector, comprising a ‘real’ angular coordinate, $\theta$, and a generalization of the parameters $\theta_{i=1} \ldots d$ entering the definition of the kicking function, $f_{s}$, to ‘virtual’ coordinates. Corresponding to the ‘coordinate state’, we have a $d$-dimensional angular momentum state, $|n \equiv n, n_1, \ldots, n_{d-1}\rangle$, where $n_i \equiv -i\partial n_i$ is conjugate to $\theta_i$. The gauge transformed operator

$$\hat{U} \equiv e^{-i(s+1) \sum_{i=1}^{d-1} \omega_i n_i} \hat{U}'(s) e^{i\sum_{i=1}^{d-1} \omega_i n_i} = e^{-i\left(\frac{\omega}{\hbar} \sum_{i=1}^{d-1} \omega_i n_i\right)} e^{-\frac{\omega}{\hbar} \sum_{i=1}^{d-1} \cos \theta_i},$$

(3)

then turns out to be time-independent. It acts in the effectively $d$-dimensional Hilbert space corresponding to the states above.

Physical observables are to be computed at a fixed value of the phases $\theta_1, \ldots, \theta_{d-1}$, which means a trace over the conjugate momenta. In the definition of our observables, $E(t)$, this trace is implicit. In the following sections, we will explore the behavior of the expectation value for various values of the parameters $q, K, d$. In doing so, we will be met with a different types of behavior, where a saturation $E(t) \rightarrow \infty$ const. indicates Anderson localization, $E(t) \sim t$ is a characteristic for diffusive dy- namics in the angular momentum space, and $E(t) \sim t^2$ for super-metallic behavior. In cases with localization, the time $t \sim \tau$ at which saturation sets in marks the localization time. Finally, persistent quasiperiodic fluctuations in $E(t)$ are indicative of integrable dynamics.

In our simulations below, we will employ both representations, $\hat{U}$ and $\hat{U}'$, and the expectation values $\langle \hat{n}'^2(t)\rangle$ obtained in this way will be denoted $E(t)$ and $E'(t)$, respectively. The gauge equivalence of the two representa- tion implies $E(t) = E'(t)$.

III. INTEGRABLE DYNAMICS AT $q = 1, 2$

For $q = 1, 2$, the function $E(t)$ exhibits quasiperiodic oscillations, irrespective of the values of $K$ and $d$. The origin of these oscillations is the integrability of the rotor
TABLE I: Summary of main results.

| parameter | \( q = 1, 2 \) | \( q = 3, 5, 6 \ldots \) | \( q = 4 \) |
|-----------|----------------|-----------------|-----------|
| \( \langle \hat{n}^2(t) \rangle \) | phase | \( \langle \hat{n}^2(t) \rangle \) | \( \langle \hat{n}^2(t) \rangle \) | \( \langle \hat{n}^2(t) \rangle \) |
| \( d = 2 \) | quasiperiodic oscillation | supermetal | \( t_\xi \sim K^2 \) | supermetal | \( t_\xi \sim K \) |
| \( d = 3 \) | quasiperiodic oscillation | integrable | \( \sim t^2 \) | \( \ln t_\xi \sim K^2 \) | \( \sim t^2 \) |
| \( d = 4 \) | quasiperiodic oscillation | metal | \( \sim t^2 (K < K_c) \) | \( \sim t (K \geq K_c) \) | \( \sim t_\xi \sim (K_c - K)^{-\alpha} \) |

at \( q = 1, 2 \). Indeed, it is straightforward to verify that

\[
\langle n \prod_{s=1}^{t} U^\dagger(s) | m \rangle = \begin{cases} 
J_{n-m}(\frac{K}{\hbar} \sum_{i=1}^{t} f_d(i)), & q = 1, \\
(-)^{n-m} \sum_{p} J_{n-m}(\frac{K}{\hbar} \sum_{s=1}^{t} (-)^{p} f_d(s)), & q = 2,
\end{cases}
\]

\( J_n(x) \) is the Bessel function and \( P \) is the parity of the (discrete) time \( t \): for even (odd) \( t \) we have \( P = +1 \) (−1), and we are staying in the un-gauged one-dimensional representation of the system. Using these matrix elements we obtain

\[
\frac{\langle \hat{n}^2(t) \rangle}{t^2(K/\hbar)^2} = \begin{cases} 
\left( \sum_{s=1}^{t} f_d(s) \right)^2, & q = 1, \\
\left( \sum_{s=1}^{t} (-)^s f_d(s) \right)^2, & q = 2,
\end{cases}
\]

This shows that \( E(t)/[t^2(K/\hbar)^2] \) which collapses onto a universal curve, independent of \( K \), but dependent on \( d \). Fig. 2 compares simulations and the analytical result \( 14 \) for \( d = 3, q = 2 \), and parameters \( (\omega_1, \phi_1) = 2\pi((\sqrt{5} - 1)/2, \sqrt{3} - 1), (\omega_2, \phi_2) = 2\pi(\sqrt{2}, \sqrt{14} - 3) \). Analytical results and numerics are in perfect agreement. The curves illustrate how the rotor’s energy exhibits quasiperiodic oscillations of rather small amplitude. The immobility of the system in \( n \)-space effectively makes it as an insulator.

FIG. 2: Both simulations and analytic results – in perfect agreement – show that \( \langle \hat{n}^2(t) \rangle \) (in unit of \( \frac{1}{2}(K/\hbar)^2 \)) exhibits quasiperiodic oscillations.

IV. METAL-SUPERMETAL TRANSITION AT \( q = 3, 5, 6 \ldots \)

We now consider the value \( q = 3 \), which defines the first configuration where integrability is lost. The resulting phenomenology crucially depends on the effective dimensionality of the system, and we discuss various cases separately. Numerically, we have found the system’s behavior at \( q = 5, 6, 7 \ldots \) is the same as at \( q = 3 \).

A. QKR as a supermetal at \( d = 2, 3 \)

To realize a \( d = 2 \) dimensional system, we modulate the pulse amplitude with one frequency \( \omega_1 \) (\( d = 2 \)) and simulate the dynamics \( 2 \) with the parameters \( (\omega_1, \phi_1) \) given above. Results for \( E(t) \) are shown in Fig. 3(a), where the \( \sim t^2 \) asymptotic at large times reflects supermetallic behavior. For large \( K \) (e.g., \( K = 64 \)) the energy growth displays a clear metal-supermetal crossover.

To better expose its origin, we simulate the 2D dynamics in terms of \( \hat{U} \), Eq. 3, and compare the expectation value \( E(t) = \langle \hat{n}^2(t) \rangle \) to the momentum dispersion in the virtual direction \( \langle \hat{n}_1^2(t) \rangle \). The results shown in Fig. 3(b) demonstrate localization in the virtual direction and delocalization in the real \( n \)-direction. It is also evident that the crossover to supermetallic growth and localization in the virtual direction takes place at the same time, \( t_\xi(K) \). The inset of Fig. 3(b) explicitly shows the exponential decay of a wave function amplitude projected onto the \( n_1 \)-direction, denoted as \( P(n_1) \). These results indicate that the analytic predictions obtained for large \( q \) in Refs. 9, 15 remain valid even for small \( q \).

We next discuss the scaling behavior of \( t_\xi(K) \). To this end we extrapolate the short and the long time power laws pertaining to the metallic (supermetallic) growth to larger (smaller) times in \( E(t) \). In a double-logarithmic representation, this produces two straight lines with a crossing point whose time coordinate we identify with \( t_\xi \) (cf. Fig. 3(a).) The results of this analysis are shown in Fig. 3(a), and a power law fit obtains \( t_\xi \propto K^{1.95 \pm 0.05} \). This is in excellent agreement with the analytic prediction\( 2, 15 \) \( t_\xi \propto D qK^{3q-1} K^2 \), where \( D \) is the classical diffusion coefficient. At small values of \( K \) the diffusion constant becomes subject to short time correlation corrections oscillatory in \( K \), and this leads to the growth of deviations off the \( K^2 \) asymptotic.
The above results show that the behavior of $E(t)$ at $q = 3$ is explained by the same physical mechanisms as in the analytically studied $q \gg 1$ case: for short times, $t \ll \xi$, the dynamics of wave packets in angular momentum space is diffusive. At the corresponding frequency scales, $\omega \sim t^{-1} \gg \xi$, where $\Delta \xi$ is the spacing between adjacent localized levels, the spectrum probed by the response function effectively looks continuous, or metallic. In the long time regime, $t \gg \xi$, wave packets are localized, and the conjugate frequencies $\omega \ll \Delta \xi$ are small enough to probe individual localized states. A straightforward analysis shows that this leads to a divergent optical conductivity, or linear scaling $\sim t$ of the function $E(t)$.

In the case of $d = 3$, simulations of the rotor driven by two frequencies $\omega_{1,2}$ show that $E^2(t)$ crosses over from linear to quadratic increase at time $\sim \xi$, as in $d = 2$. However, as shown in Fig. 4(b), $t_{\xi}$ now grows exponentially in $K^4 \sim D^2$. Again we see that at small values of $K$ short time correlation corrections oscillatory in $K$ leads to the growth of deviations off the $K^4$ asymptotic. This scaling reflects the exponential dependence of the localization length on the square of the diffusion coefficient characteristic for effectively 2-dimensional (localization is in the $d - 1$ dimensional virtual space) disordered systems. This is a manifestation of unitary Anderson localization in the 2-dimensional virtual space, as expected by the field theoretic analysis.

Indeed, the $q$-periodicity in $n$-direction introduces an Aharonov-Bohm flux, $\phi$, namely the Bloch momentum piercing the system (cf. Fig. 1) which effectively breaks the time-reversal symmetry of quantum dynamics within a unit cell. To confirm this symmetry we further perform a study of spectrum statistics. To this end we approximate $\omega_{1,2}/(2\pi)$ by rational number and compactify the unit cell in $n_{1,2}$-direction. For the ensuing torus we perform numerical diagonalization and find the quasienergy spectrum for fixed Bloch momentum $\phi$. Then, by scanning $\phi$ we obtain a large ensemble. This allows us to compute the level spacing distribution, denoted as $P(s)$. As exemplified in Fig. 4(a), the results are in excellent agreement with the Wigner surmise for the circular unitary ensemble (CUE). (We recall for the standard one-dimensional QKR, it has been analytically shown that the unitary symmetry leads to a simple, universal linear to quadratic crossover in the rotor’s energy growth.)

**B. Metal-supermetal transition at $d = 4$**

Moving up in dimensionality, we introduced a third frequency/phase pair $(\omega_3, \phi_3) = 2\pi((\sqrt{7} + 1)/2, \sqrt{7} - 4)$
to simulate the system at $d = 4$. Fig. 6 shows results of $E(t)$ for different values of $K$. Our simulations indicate that at $K_c = 11.8 \pm 0.1$ the long-time behavior undergoes a transition from quadratic to linear large time asymptotics. This is the Anderson transition separating an Anderson localized from a metallic phase in three dimensional virtual space. We have found that the localization time for small deviations of $K$ off the critical values scales as $t_\xi \sim (K_c - K)^{-c}$ (Fig. 6 inset) with a critical exponent $c = 4.5 \pm 0.3$. These observations are again in agreement with the large $q$ results obtained in Ref. 5.

Unlike in $d = 2, 3$, simulations of the 4-dimensional operator (3), i.e. of the function $E(t)$, are difficult. However, the observed value of $K_c$ and the value of the critical exponent $c$ can both be understood from scaling arguments: Anderson localization in virtual space leads to a frequency dependent renormalization of the diffusion coefficient, $D \to D(\omega)$, where $\omega$ is Fourier conjugate to the observation time. Similar to discussions in Sec. 1, the periodicity in $n$-direction renders Anderson transition in the $(d - 1)$-dimensional virtual space of unitary type. Correspondingly, by using the standard renormalization group analysis the leading (localization) correction is given by $D(\omega) \approx D[1 - \frac{1}{2\pi q^2 D} \int \frac{d^{d-1}}{(2\pi)^{d-1}} (-i\omega + D\phi^2)^{-1}]$. For $d \geq 3$ the integral suffers ultraviolet divergence and requires a short distance cutoff $\sim O(K/h)$. Then, a rough estimate for the onset of strong localization follows from the equality of the constant classical contribution to the quantum correction, i.e. from the condition $D(\omega = 0) \approx 0$. Doing the integral, we obtain the equivalent condition (for $d = 4$)

$$\left(4q^2 \pi^3\right)^{1/5} \frac{K_c}{8h} = O(1), \quad (5)$$

which is well satisfied by the observed value $K_c \approx 11.8$ (at which the left hand side of Eq. 5 equals 1.4.)

Beyond perturbation theory, the diffusion coefficient $D(\omega)$ scales as $D(\omega) = \omega^\nu f((K - K_c)\omega^{-\frac{1}{1}})$, where $f(x)$ is some scaling function, and $\nu > 0$ is the localization length critical exponent, i.e. $\xi \sim (K_c - K)^{-\nu}$. Noting that $\omega \sim t^{-1}$, we conclude that in the virtual space the wave packet expansion saturates at large times when $(K_c - K)t^{\nu} \gg 1$. This implies that in the supermetallic phase the metal-supermetal crossover occurs at $t_\xi \sim (K_c - K)^{-3\nu}$, i.e. we have arrived at the identification $\alpha = 3\nu$. Our simulations predict that $1.4 \leq \nu \leq 1.6$ consistent with general results for the 3-dimensional Anderson transition of unitary type.

The above results for $K_c$ and $\alpha$ corroborates the view that the phase transition observed at $q = 3$ is in the universality class of the Anderson metal-insulator transition. Below the critical value $K = K_c$, the system effectively behaves as a finite system of extension $q\xi^3$ and finite size quantization of energy levels then is responsible for the supermetallic scaling of response coefficients.

V. ANOMALOUS SUPERMETALLIC BEHAVIOR AT $q = 4$

Numerical experiments further show that for larger values of $q(= 5, 6, 7, \ldots)$ the QKR behaves in the same way
as the $q = 3$ case. This suggests that the unconventional quantum criticality occurs for generic $q$. This notwithstanding, anomalous behavior is observed for $q = 4$: Regardless of the dimension, $d$, the energy growth exhibits a linear-quadratic crossover with the crossover time $t_{c} \sim K$. (See Fig. 7 as exemplified by the case of $d = 3$.)

To understand why unusual things happen at this $q$ value, notice that in the QKR context, the kinetic energy operator $\exp(-i\frac{\hbar}{2}q_{\pi}/q)$ takes the value of $\exp(-i(1)$) for odd $n$. On general grounds, we expect integrability to be (partially) restored. Indeed, we find that the level spacing distribution is dramatically different from the $q = 3$ case: strikingly, it is symmetric with respect to $s = 1$ and only for small $s$ it follows the Wigner surmise of CUE type (see Fig. 5(b)).

Moreover, our numerical analysis for $q = 4$ shows that an initial regime of diffusion – a manifestation of stochasticity – is followed by a strong tendency to localize already at times $t > K$ parametrically shorter than in the generic case (cf. Fig. 4.) While we do not fully understand the origin of this behavior, it appears to be outside the standard Anderson universality class. In addition, it is interesting to notice that at $q = 4$ no localization-delocalization transition is observed. We believe that this is intrinsic to the partial restoration of integrability. Further research is required to understand these phenomena and to explore if there exist any other anomalous $q$ values.

VI. DISCUSSION

In this paper we have numerically explored the QKR driven by $d - 1$ incommensurate frequencies and at resonant values of Planck’s constant $\hbar = 4\pi/q$. Compared to the standard rotor, the presence of additional driving frequencies, and the fine tuning of Planck’s constant provide the option to realized qualitatively novel types of quantum criticality. We have seen that, depending on the value of $q$, the system may be integrable at $q = 1, 2$, be in the Anderson universality class on a circumference $q$ cylinder of dimensionality $d$ ($q = 3, 5, 6, \ldots$), or in an anomalously localized regime ($q = 4$). The option to change the universality class of the system by a well defined change of a single control parameter provides us with a high-quality test bed of our understanding of Anderson type quantum criticality. It stands to reason that the configurations explored in this paper, $d = 2, 3, 4$ and $q = 1, 2, 3, 4$ are within the reach of state-of-art atom-optics setups \cite{10, 12, 20, 22}. In current experiments the expansion of atomic clouds can be observed over several hundred kicks \cite{10, 12, 20, 22} and a quantitative comparison to our results should be possible.

Acknowledgements

Discussions with D. Delande, S. Fishman, J. C. Garreau, and I. Guarneri are gratefully acknowledged. This work is supported by the NSFC (Grant Nos. 11275159, 11335006, and 11174174), the Tsinghua University ISRP (No. 2011Z02151), and the Sonderforschungsbereich TR12 of the Deutsche Forschungsgemeinschaft.

1. G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, in Stochastic Behavior of Classical and Quantum Hamiltonian Systems, Lecture Notes in Physics 93, edited by G. Casati and J. Ford (Springer, New York, 1979).
2. F. M. Izrailev, Phys. Rep. 196, 299 (1990).
3. B. Chirikov and D. Shepelyansky, Scholarpedia 3, 3550 (2008).
4. S. Fishman, Scholarpedia 5, 9816 (2010).
5. S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. Lett. 49, 500 (1982).
6. D. R. Grempel, R. E. Prange, and S. Fishman, Phys. Rev. A 29, 1639 (1984).
7. C. Tian and A. Altland, New J. Phys. 12, 043043 (2010).
8. F. L. Moore, J. C. Robinson, C. F. Bharucha, B. Sun-
daram, and M. G. Raizen, Phys. Rev. Lett. 75, 4598 (1995).
9 C. Tian, A. Altland, and M. Garst, Phys. Rev. Lett. 107, 074101 (2011).
10 J. Chabé, G. Lemarié, B. Gréaud, D. Delande, P. Szriftgiser, and J. C. Garreau, Phys. Rev. Lett. 101, 255702 (2008).
11 G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau, Phys. Rev. Lett. 105, 090601 (2010).
12 M. Lopez, J. F. Clément, P. Szriftgiser, J. C. Garreau, and D. Delande, Phys. Rev. Lett. 108, 095701 (2012).
13 S. Wimberger, I. Guarneri, and S. Fishman, Nonlinearity 16, 1381 (2003).
14 M. Sadgrove and S. Wimberger, Adv. At. Mol. Opt. Phys. 60, 315 (2011).
15 C. Tian and A. Altland, unpublished.
16 G. Casati, I. Guarneri, and D. L. Shepelyansky, Phys. Rev. Lett. 62, 345 (1989).
17 K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 78, 4083 (1997).
18 W. H. Oskay, D. A. Steck, V. Milner, B. G. Klappauf, and M. G. Raizen, Opt. Commun. 179, 137 (2000).
19 M. B. d’Arcy, R. M. Godun, M. K. Oberthaler, D. Castettari, and G. S. Summy, Phys. Rev. Lett. 87, 074102 (2001).
20 C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, Phys. Rev. Lett. 96, 160403 (2006).
21 J. F. Kanem, S. Maneshi, M. Partlow, M. Spanner, and A. M. Steinberg, Phys. Rev. Lett. 98, 083004 (2007).
22 G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Gréaud, and D. Delande, Phys. Rev. A 80, 043626 (2009).