G-essence with Yukawa interactions

I. Kulnazarov, K. Yerzhanov, O. Razina, Sh. Myrzakul, P. Tsyba, R. Myrzakulov

1 Eurasian International Center for Theoretical Physics, Eurasian National University, Astana 010008, Kazakhstan
2 Department of Physics, CSU Fresno, Fresno, CA 93740, USA

Received: 9 March 2011 / Revised: 11 June 2011 / Published online: 22 July 2011
© Springer-Verlag / Società Italiana di Fisica 2011

Abstract We study the g-essence model with Yukawa interactions between a scalar field ϕ and a Dirac field ψ. For the homogeneous, isotropic and flat Friedmann–Robertson–Walker universe filled with such g-essence, the exact solution of the model is found. Moreover, we reconstruct the corresponding scalar and fermionic potentials which describe the coupled dynamics of the scalar and fermionic fields. It is shown that some particular g-essence models with Yukawa interactions correspond to the usual and generalized Chaplygin gas unified models of dark energy and dark matter. Also we present some scalar–fermionic Dirac–Born–Infeld models corresponding g-essence models with Yukawa interactions which again describe the unified dark energy–dark matter system.

1 Introduction

One of the most puzzling discovery of the last years in physics is the current acceleration of the universe [1, 2]. An unknown energy component, dubbed as dark energy, is proposed to explain this acceleration. Dark energy almost equally distributes in the universe, and its pressure is negative. The simplest and most theoretically appealing candidate of dark energy is the cosmological constant that is the ΛCDM model. In this case, the equation of state parameter $\omega = -1$. Although the ΛCDM model is in general agreement with the current astronomical observations, but has some difficulties e.g. to reconcile the small observational value of dark energy density with estimates from quantum field theories. So although the ΛCDM model is the most obvious choice, but it suffers from coincidence problem and the fine-tuning problems. It is thus natural to pursue alternative possibilities to explain the mystery of dark energy. In order to explain the acceleration that is dark energy, many kinds of models have been proposed, such as quintessence, phantom, k-essence, tachyon, f-essence, Chaplygin gas and its generalizations, etc.

In the last years, the k-essence model has received much attention. It was originally proposed as a model for inflation [3], and then as a model for dark energy [4–7]. Since from it was proposed, k-essence was been studied intensively. It is still worth investigating in a systematic way the possible cosmological behavior of the k-essence. Quite recently, the so-called g-essence model has been proposed [8–11], which is a more generalized model than k-essence. In fact, the g-essence contains, as particular cases, two important models: k-essence and f-essence. Note that f-essence is the fermionic counterpart of k-essence.

To our knowledge, in the literature there are relatively few works on the dark energy models with fermionic fields. However, in the recent years several approaches were made to explain the accelerated expansion by choosing fermionic fields as the gravitational sources of energy (see e.g. refs. [8–33]). In particular, it was shown that the fermionic field plays very important role in: (i) isotropization of initially anisotropic spacetime; (ii) formation of singularity free cosmological solutions; (iii) explaining late-time acceleration. In particle physics, the Yukawa interaction plays an important role. It has the form

$$U = -g \bar{\psi} \phi \psi.$$ (1.1)

It describes the interaction between a scalar field ϕ and a Dirac field ψ. Some properties of the Yukawa interaction (1.1) related with the gravitational field were considered in [34–38]. With the Yukawa interaction (1.1) is related the so-called Yukawa potential,

$$V(x) = -g^2 x^{-1} e^{-mx}$$ (1.2)

which is negative, that is, the corresponding force is attractive. The relation between the Yukawa potential (1.2) and the accelerated expansion of the universe were studied by some authors (see e.g. [39]). In this paper, we focus on so-called
g-essence model [8–11] which is some hybrid construction of k-essence and f-essence. If exactly, we will consider the g-essence with the Yukawa interaction (1.1). The formulation of the gravity-fermionic theory has been discussed in detail elsewhere [40–44], so we will only present the result here.

This paper is organized as follows. In the following section, we briefly review g-essence. In Sect. 3, we introduce the g-essence model with the Yukawa interaction. In Sect. 4, we construct the solution of the particular g-essence model with the scalar–fermionic Yukawa interaction. The unified scalar–fermionic Chaplygin gas model of dark energy and dark matter from the g-essence model with the Yukawa interaction were constructed in Sect. 5 and its extension for the generalized Chaplygin gas case in Sect. 6. The scalar–fermionic Dirac–Born–Infeld (DBI) counterpart of the g-essence model with the Yukawa interaction (3.1) was constructed in Sect. 7. Finally, we shall close with a few concluding remarks in Sect. 8. The metric signature used is (+, −, −, −) and units have been chosen so that 8πG = c = ħ = 1.

2 Basics of g-essence

The action of g-essence has the form [8–11]

\[S = \int d^4x \sqrt{-g} [R + 2K(X, Y, \phi, \psi, \bar{\psi})] \tag{2.1} \]

where \(K \) is the g-essence Lagrangian and is some function of its arguments, \(\phi \) is a scalar function, \(\psi = (\psi_1, \psi_2, \psi_3, \psi_4)^T \) is a fermionic function and \(\bar{\psi} = \psi^+ \gamma^0 \) is its adjoint function, the curvature scalar \(R \). Here

\[X = 0.5g^{\mu\nu}\nabla_\mu \phi \nabla_\nu \phi, \]

\[Y = 0.5i \left[\bar{\psi} \Gamma^\mu D_\mu \psi - (D_\mu \bar{\psi}) \Gamma^\mu \psi \right] \tag{2.2} \]

are the canonical kinetic terms for the scalar and fermionic fields, respectively. \(\nabla_\mu \) and \(D_\mu \) are the covariant derivatives. The fermionic fields are treated here as classically commuting fields. The model (2.1) admits important two reductions: k-essence and f-essence. In this sense, it is the more general essence model and in [8–11] it was called g-essence. Note that to find the equations of motion we need the variations

\[\delta \sqrt{-g} = -0.5g_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu}, \tag{2.3} \]

\[\delta R = (R_{\mu\nu} + g_{\mu\nu} \Box - \nabla_\mu \nabla_\nu) \delta g^{\mu\nu}, \tag{2.4} \]

\[\delta K = K'' \delta \phi + K'' \delta \bar{\psi} + K''' \delta \psi, \tag{2.5} \]

where \(\nabla_\nu V_\mu \equiv \partial_\nu V_\mu - \Gamma^\sigma_{\mu\nu} V_\sigma \) is the covariant derivative of a vector \(V_\mu \) and the curved d’Alembertian on a scalar \(\phi \) is

\[\Box \phi = \frac{1}{\sqrt{-g}} \partial^\mu (\sqrt{-g} \partial_\mu \phi). \tag{2.6} \]

We now consider the dynamics of the homogeneous, isotropic and flat FRW universe filled with g-essence. In this case, the background line element reads

\[ds^2 = dt^2 - a^2(dx^2 + dy^2 + dz^2) \tag{2.7} \]

and the vierbein is chosen to be

\[(e^a_\mu) = \text{diag}(1, 1/a, 1/a, 1/a), \quad (e^a_\mu) = \text{diag}(1, a, a, a). \]

In the case of the FRW metric (2.7), the equations corresponding to the action (2.1) look like [8–11]

\[3H^2 - \rho = 0, \tag{2.9} \]

\[2\dot{H} + 3H^2 + p = 0, \tag{2.10} \]

\[K_X \ddot{\phi} + (K_X + 3HK_X)\dot{\phi} - K_{\phi} = 0, \]

\[K_Y \ddot{\psi} + 0.5(3HK_Y + \dot{K}_Y)\psi - iy^0K_{\tilde{\phi}} = 0, \]

\[K_Y \ddot{\psi} + 0.5(3HK_Y + \dot{K}_Y)\psi + iK_{\psi}y^0 = 0, \]

\[\dot{\rho} + 3H(\rho + p) = 0, \tag{2.14} \]

where \(K_X = dK/dX, K_Y = dK/dY, K_{\phi} = dK/d\phi, K_{\psi} = dK/d\psi, \tilde{K}_Y = dK/d\tilde{\psi}, \) and \(H = \dot{a}/a \) denotes the Hubble parameter, the dot represents a differentiation with respect to time \(t \). Here the kinetic terms, the energy density and the pressure take the form

\[X = 0.5\dot{\phi}^2, \quad Y = 0.5i(\bar{\psi} \gamma^0 \psi - \psi \gamma^0 \bar{\psi}) \tag{2.15} \]

and

\[\rho = 2K_X X + K_Y Y - K, \quad p = K. \tag{2.16} \]

Note that the equations of g-essence (2.9)–(2.14) can be rewritten as

\[3H^2 - \rho = 0, \tag{2.17} \]

\[2\dot{H} + 3H^2 + p = 0, \tag{2.18} \]

\[(a^3K_X \dot{\phi})_t - a^3K_{\phi} = 0, \tag{2.19} \]

\[(a^3K_Y \psi_j^0)_t + 2iK_{\psi_j^0} = 0, \tag{2.20} \]

\[(a^3K_Y \psi_j^0)_t + 2iK_{\psi_j^0} = 0, \tag{2.21} \]

\[\dot{\rho} + 3H(\rho + p) = 0. \tag{2.22} \]

Also we present the useful formula

\[K_Y Y = 0.5iK_Y (\bar{\psi} \gamma^0 \psi - \psi \gamma^0 \bar{\psi}) = -0.5(K_{\psi} \psi + K_{\tilde{\phi}} \bar{\psi}) \tag{2.23} \]
and the equation for $u = \bar{\psi}\psi$:

$$[\ln (u \alpha^3 K Y)]_t = -iK Y^{-1} (\bar{\psi}\gamma^0 K \bar{\psi} - K \phi \gamma^0 \phi).$$ \hfill (2.24)

Finally, we note that some exact solutions of g-essence (2.9)–(2.14) were presented in [15].

2.1 Purely kinetic g-essence

Let us consider the purely kinetic g-essence, that is, when $K = K(X, Y)$. In this case, the system (2.9)–(2.14) becomes

1. $3H^2 - \rho = 0$, \hfill (2.25)
2. $2\dot{H} + 3H^2 + p = 0$, \hfill (2.26)
3. $a^3 K_X \dot{\phi} - \sigma = 0$, \hfill (2.27)
4. $a^3 K_Y \psi_j^2 - \xi_j = 0$, \hfill (2.28)
5. $a^3 K_Y \psi_j^2 - \xi^*_j = 0$, \hfill (2.29)
6. $\rho + 3H(\rho + p) = 0$, \hfill (2.30)

where $\sigma(\xi)$ is the real (complex) constant. Hence we immediately get the solutions of the Klein–Gordon and Dirac equations, respectively, as

$$\phi = \sigma \int \frac{dt}{a^3 K_X}, \quad \psi_j = \sqrt{\frac{\xi_j}{a^3 K_Y}}.$$ \hfill (2.31)

Also the following useful formula holds:

$$X = \frac{0.5\sigma^2}{a^6 K_X^2} \quad \text{or} \quad K_X = \frac{\sigma}{a^3 \sqrt{2X}}.$$ \hfill (2.32)

2.2 K-essence

Let us now consider the following particular case of g-essence (2.1):

$$K = K_1 = K_1(X, \phi)$$ \hfill (2.33)

that corresponds to k-essence. Then the system (2.9)–(2.14) takes the form of the equations of k-essence (see e.g. [3–6])

1. $3H^2 - \rho_k = 0$, \hfill (2.34)
2. $2\dot{H} + 3H^2 + p_k = 0$, \hfill (2.35)
3. $K_{1X} \dot{\phi} + (\dot{K}_{1X} + 3H K_{1X})\dot{\phi} - K_{1\phi} = 0$, \hfill (2.36)
4. $\dot{\rho}_k + 3H(\rho_k + p_k) = 0$, \hfill (2.37)

where the energy density and the pressure are given by

$$\rho_k = 2K_{1X} X - K_1, \quad p_k = K_1.$$ \hfill (2.38)

As is well known, the energy-momentum tensor for the k-essence field has the form

$$T_{\mu\nu} = K_X \nabla_\mu \phi \nabla_\nu \phi - g_{\mu\nu} K$$

$$= 2K_X X u_{1\mu} u_{1\nu} - K g_{\mu\nu}$$

$$= (\rho_k + p_k) u_{1\mu} u_{1\nu} - p_k g_{\mu\nu}.$$ \hfill (2.39)

It is interesting to note that in the case of the FRW metric (2.7), purely kinetic k-essence and F(T)-gravity (modified teleparallel gravity) are equivalent to each other, if $\alpha = e^{\frac{\xi}{\sqrt{2X}}} [45, 46]$.

2.3 F-essence

Now we consider the following reduction of g-essence (2.1):

$$K = K_2 = K_2(Y, \psi, \dot{\psi})$$ \hfill (2.40)

that is, f-essence [8–11]. The energy-momentum tensor for the f-essence field has the form

$$T_{\mu\nu} \equiv \frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g_{\mu\nu}}$$

$$= 0.5i K_Y [\bar{\psi} \Gamma(\mu D_\nu) \psi - D(\mu \bar{\psi} \Gamma_\nu)] - g_{\mu\nu} K$$

$$= K_Y u_{2\mu} u_{2\nu} - K g_{\mu\nu}$$

$$= (\rho_f + p_f) u_{2\mu} u_{2\nu} - p_f g_{\mu\nu}.$$ \hfill (2.41)

For the FRW metric (2.7), the equations of the f-essence become [8–11]

1. $3H^2 - \rho_f = 0$, \hfill (2.42)
2. $2\dot{H} + 3H^2 + p_f = 0$, \hfill (2.43)
3. $K_{2Y} \dot{\psi} + 0.5(3H K_{2Y} + \dot{K}_{2Y})\psi - i\gamma^0 K_{2\phi} = 0$, \hfill (2.44)
4. $K_{2Y} \dot{\psi} + 0.5(3H K_{2Y} + \dot{K}_{2Y})\psi + iK_{2\phi} \gamma^0 = 0$, \hfill (2.45)
5. $\dot{\rho}_f + 3H(\rho_f + p_f) = 0$, \hfill (2.46)

where

$$\rho_f = K_{2Y} Y - K_2, \quad p_f = K_2.$$ \hfill (2.47)

3 Model

In this section, we consider the action (2.1) with the following particular g-essence Lagrangian:

$$K = \alpha_1 X + \alpha_2 X^n + \alpha_3 V_1(\phi) + \beta_1 Y$$

$$+ \beta_2 Y^n + \beta_3 V_2(\bar{\psi}, \psi) + \eta U_1(\phi) U_2(\bar{\psi}, \psi),$$ \hfill (3.1)

where α_j, β_j, η are some real constants. As the search for exact solutions of the coupled system of differential equations (2.9)–(2.14) for the g-essence Lagrangian (3.1) is a
very hard job, let us simplify the problem e.g. as $V_2 = V_2(u)$, $\beta_2 = 0$, $U_1 = \phi$, $U_2 = u$. Then the system (2.9)–(2.14) takes the form

$$3H^2 - \rho = 0,$$

$$2\dot{H} + 3H^2 + p = 0,$$

$$\dot{\phi} + [3H + (\ln (a_1 + a_2 X^{n-1}))], \dot{\phi}$$

$$\frac{\alpha_3 V_{1\theta} + \eta u}{a_1 + a_2 X^{n-1}} = 0,$$

$$\dot{\psi} + 1.5H \psi - i\beta_1^{-1}\gamma\phi(\beta_3 V_{2u} \psi + \eta \phi \psi) = 0,$$

$$\dot{\psi} + 1.5H \psi + i\beta_1^{-1}(\beta_3 V_{2u} \psi + \eta \phi \psi)\gamma = 0,$$

$$\rho + 3H(\rho + p) = 0,$$

where

$$\rho = a_1 X + a_2(2n - 1)X^n - a_3 V_1 - \beta_3 V_2 - \eta \phi u,$$

$$p = a_1 X + a_2 X^n + a_3 V_1 + \beta_1 Y + \beta_2 V_2 + \eta \phi u.$$

Hence and from (2.23)–(2.24) we get

$$\rho + p = 2a_1 X + 2a_2 X^n + \beta_1 Y = -2\dot{H},$$

$$\beta_1 Y = -(\beta_3 V_1' + \eta \phi)u,$$

$$u = \frac{c}{\beta_1 a_3^2}.$$

4 Solution

In this section, we want to present the exact solution of the system (3.2)–(3.7). But first note that for six unknown functions a, ϕ, ψ, $\bar{\psi}$, V_1, V_2 we have five differential equations (3.2)–(3.6) so that we need one more equation (see e.g. [47–49]). Such an equation we take to be

$$a = \tilde{a}_0 \phi^k,$$

where $\tilde{a}_0 = a_0 \phi_{0}^{-k}$, $k = \lambda/\delta$. Then we obtain the following solution:

$$a = a_0 t^\lambda,$$

$$\phi = \phi_{0}t^\delta,$$

$$\psi_l = \frac{c_l}{a_0^{1.5}\delta}e^{-i\delta}, \quad (l = 1, 2),$$

$$\psi_k = \frac{c_k}{a_0^{1.5}\delta}e^{i\delta}, \quad (k = 3, 4),$$

where c_{l} obey the condition

$$c = |c_1|^2 + |c_2|^2 - |c_3|^2 - |c_4|^2$$

and

$$D = \frac{2}{\beta_1 u_0 [2(\delta - 1) + 3\lambda + 1]} t^{2(\delta - 1) + 3\lambda + 1}$$

$$+ \frac{2(-n)\alpha_2 n\delta^2n\phi_{0}^2}{u_0 [2(\delta - 1) + 3\lambda + 1]} t^{2n(\delta - 1) + 3\lambda + 1}$$

$$- \frac{2\lambda}{u_0 (3\lambda - 1)} t^{3\lambda - 1} + D_0.$$

This solution is correct if

$$\delta = 2 - 3\lambda$$

or

$$\delta = \frac{3\lambda - 2n}{1 - 2n}.$$

The corresponding potentials take the form

$$V_1(\phi) = l_1 \left(\frac{\phi}{\phi_0}\right)^{\frac{2(\delta - 1)}{\lambda}} + l_2 \left(\frac{\phi}{\phi_0}\right)^{\frac{2n(\delta - 1)}{\lambda}}$$

$$+ l_3 \left(\frac{\phi}{\phi_0}\right)^{\frac{\delta - 1}{\lambda}} + V_{10},$$

$$V_2(u) = q_1 \left(\frac{u}{u_0}\right)^{\frac{2(\lambda - 1)}{\lambda}} + q_2 \left(\frac{u}{u_0}\right)^{\frac{2n(\lambda - 1)}{\lambda}}$$

$$+ q_3 \left(\frac{u}{u_0}\right)^{\frac{\lambda - 1}{\lambda}} + q_4 \left(\frac{u}{u_0}\right)^{\frac{\delta}{\lambda}}$$

$$- \alpha_3 \beta_3^{-1} V_{10}.$$
5 Unified scalar–fermionic Chaplygin gas model of dark energy and dark matter from g-essence with Yukawa interactions

The most popular models of dark energy and dark matter such as e.g. the \(\Lambda \)CDM and a quintessence-CDM model assume that dark energy and dark matter are distinct entities. Another interpretation of the observational data is that dark energy and dark matter are different manifestations of a common structure. The first definite model of this type was proposed in [50, 51], based upon the Chaplygin gas, an exotic perfect fluid obeying the equation of state (EoS)

\[
p = -\frac{A}{\rho}, \tag{5.1}
\]

which has been extensively studied for its mathematical properties [52]. The general class of models, in which a unification of dark energy and dark matter is achieved through a single entity, is often referred to as quartessence. Among other scenarios of unification that have recently been suggested, interesting attempts are based on k-essence. In this section we extend this scenario to the g-essence model with Yukawa interactions which gives us the Chaplygin gas unified model of dark energy and dark matter. To do it, let us consider the g-essence model given by the following scalar–fermionic DBI Lagrangian:

\[
K = U\sqrt{1 + V_1X + V_2Y^2}, \tag{5.2}
\]

where in general \(U = U(\phi, \bar{\psi}, \psi), V_1 = V_1(\phi, \bar{\psi}, \psi), V_2 = V_2(\phi, \bar{\psi}, \psi) \). Note that the g-essence model (5.2) is constrained in two particular cases: (i) the scalar DBI model as \(U = U(\phi), V_1 = V_1(\phi), V_2 = 0 \); (ii) the fermionic DBI model as \(U = U(\bar{\psi}, \psi), V_1 = 0, V_2 = V_2(\bar{\psi}, \psi) \). Substituting the expression (5.2) into (2.16) we get

\[
p = U\sqrt{1 + V_1X + V_2Y^2}, \tag{5.3}
\]

\[
p = -\frac{U}{\sqrt{1 + V_1X + V_2Y^2}}, \tag{5.4}
\]

where we assume that

\[
U = \eta \phi u, \quad V_1 = V_1(\phi, \bar{\psi}, \psi), \quad V_2 = V_2(\phi, \bar{\psi}, \psi). \tag{5.5}
\]

It is the g-essence model with Yukawa interactions \(U = \eta \phi u \). These equations give the following EoS:

\[
p = -\frac{U^2}{\rho}. \tag{5.6}
\]

It is the Chaplygin gas model [50, 51] but with the variable function \(U \) (Yukawa interactions). From (5.6) and (2.14), we get

\[
\rho = a^{-3} \left[6 \int U^2(a^5 da + C) \right]^{0.5}
\]

\[
= z^{-0.5} \left[C + \int U^2(z) dz \right]^{0.5}, \tag{5.7}
\]

where \(C = \text{const}, \ z = a^6 \). From these formulas we obtain the following expression for the EoS parameter:

\[
\omega = -\frac{U^2}{\rho^2} = -1 - \frac{z \ln \rho}{\rho} = -1 - \frac{zU^2}{C + \int U^2(z) dz}
\]

\[
= -\frac{h'}{C + h} = -z \left[\ln(C + h) \right]', \tag{5.8}
\]

where \(h = \int U^2(z) dz, \ h' = dh/dz \). In principle, now it is not difficult to construct solutions of the g-essence equations corresponding to the different expressions for \(U \). Here we just present the expressions for the energy density and pressure. Consider some examples. (i) Let \(U = \mu = \text{const} \). Then from (5.7) and (5.6) we obtain the expressions for the energy density and the pressure

\[
\rho = z^{-0.5} [C + \mu^2 z]^{0.5} = [Ca^{-6} + \mu^2]^{0.5} \tag{5.9}
\]

and

\[
p = -\frac{\mu^2 z^2v + 0.5}{(C + \frac{\mu^2}{2v+1}z^{2v+1})^{0.5}} = -\frac{\mu^2}{(Ca^{-6} + \mu^2)^{0.5}}, \tag{5.10}
\]

respectively. The EoS parameter is given by

\[
\omega \equiv -\frac{\mu^2 z^{2v+1}}{C + \frac{\mu^2}{2v+1}z^{2v+1}}. \tag{5.11}
\]

So this example corresponds to the usual Chaplygin gas [50, 51]. As is well known, in this case, for small \(a \) \(a^6 \ll C\mu^{-0.5} \), the energy density and the pressure take the forms, approximately,

\[
\rho \approx C^{0.5} a^{-3}, \quad p \approx 0 \tag{5.12}
\]

with \(\omega = 0 \), which corresponds to a matter-dominated universe. For a large value \(a \), it follows that

\[
\rho \approx \mu, \quad p \approx -\mu \tag{5.13}
\]

that is, \(\omega = -1 \), which corresponds to a dark energy-dominated universe. So this simple and elegant model smoothly interpolates between a dust dominated phase, where \(\rho \approx C^{0.5} a^{-3} \), and a de Sitter phase, where \(\rho \approx -\rho \),
through an intermediate regime described by the EoS for stiff matter, \(p = \rho \).

(ii) Now let us consider the case when \(U = \mu z^\nu \), where \(\mu \) and \(\nu \) are some real constants. In this case, (5.7) gives the following expression for the pressure:

\[
\rho = \varepsilon^{-0.5} \left[C + \frac{\mu^2}{2v+1} z^{2v+1} \right]^{0.5} = \left[Ca^{-6} + \frac{\mu^2}{2v+1} a^{12v} \right]^{0.5}.
\]

(5.14)

Here \(\nu \) must be negative, because otherwise, \(a \to \infty \) implies \(\rho \to \infty \), which is not the case for expanding Universe. Equation (5.6) gives the expression for the energy density:

\[
\rho = \frac{\mu^2 z^{2v+0.5}}{(C + \frac{\mu^2}{2v+1} z^{2v+1})^{0.5}} = \frac{\mu^2 a^{12v}}{(Ca^{-6} + \frac{\mu^2}{2v+1} a^{12v})^{0.5}}.
\]

(5.15)

The EoS parameter is given by

\[
\omega = -\frac{\mu^2 z^{2v+1}}{C + \frac{\mu^2}{2v+1} z^{2v+1}} = -\frac{\mu^2 a^{12v}}{Ca^{-6} + \frac{\mu^2}{2v+1} a^{12v}}.
\]

(5.16)

The deceleration parameter \(q \) has the expression

\[
q = -\frac{\ddot{a}}{aH^2} = \frac{\rho + 3p}{2\rho} = \frac{Ca^{-6} + 2\mu^2 (3v+2) a^{12v}}{2(Ca^{-6} + \frac{\mu^2}{2v+1} a^{12v})}.
\]

(5.17)

For accelerating universe, \(q \) must be negative i.e., \(\ddot{a} > 0 \). Hence we have

\[
a^{-6(2v+1)} < \frac{2\mu^2 (3v+2)}{C(2v+1)},
\]

(5.18)

This means that for a small value of the scale factor we have a decelerating universe while for large values of scale factor we have an accelerating universe. The transition between these two phases occurs when the scale factor is equal to

\[
a = a_c = \left[\frac{2\mu^2 (3v+2)}{C(2v+1)} \right]^{-\frac{1}{6(2v+1)}}.
\]

(5.19)

6 Unified scalar–fermionic generalized Chaplygin gas model of dark energy and dark matter from g-essence with Yukawa interactions

In the previous section we constructed the unified scalar–fermionic Chaplygin gas model of dark energy and dark matter using the particular g-essence with Yukawa interactions having the scalar–fermionic DBI Lagrangian form (5.2). In this section we extend these results of the previous section for the scalar–fermionic generalized Chaplygin gas case. For this purpose, we consider the particular g-essence model with Yukawa interactions which has the following scalar–fermionic DBI Lagrangian form

\[
K = U \left(1 + V_1 X^\frac{1}{n} + V_2 Y^\frac{1}{n} \right)^\mu,
\]

(6.1)

where

\[
U = \eta \phi u, \quad V_1 = V_1(\phi, \bar{\psi}, \psi),
\]

(6.2)

\[
V_2 = V_2(\phi, \bar{\psi}, \psi).
\]

Substituting this expression into (2.16) we get

\[
\rho = U \left(1 + V_1 X^\frac{1}{n} + V_2 Y^\frac{1}{n} \right)^\mu,
\]

(6.3)

\[
\rho = -U \left(1 + V_1 X^\frac{1}{n} + V_2 Y^\frac{1}{n} \right)^{\mu-1}.
\]

(6.4)

These equations give

\[
\rho = \left(-\frac{U}{\rho_0} \right)^{\frac{1}{\mu}} = \left(U^{\alpha+1} \right)^{\frac{1}{\rho_0}} = -\frac{A}{\rho^\alpha},
\]

(6.5)

where \(\alpha = n(1-n)^{-1}, A = (-U)^{\alpha+1} \). It is the scalar–fermionic generalized Chaplygin gas model [50, 51]. From (2.16) and (6.5) we get

\[
\rho = a^{-3} \left[3(1+\alpha) \int (-U)^{\alpha+1} a^{3(1+\alpha)-1} da + C \right]^{\frac{1}{1-\alpha}},
\]

(6.6)

where \(C = \text{const}, z = a^{3(1+\alpha)} \). At the same time, for the pressure we obtain the following expression

\[
p = -(-U)^{\alpha+1} \int (-U)^{\alpha+1} dz \right]^{-\frac{\alpha}{1-\alpha}},
\]

(6.7)

These formulas give the following expression for the EoS parameter:

\[
\omega = \frac{z(-U)^{\alpha+1}}{C + \int (-U)^{\alpha+1} dz}.
\]

(6.8)

Now we can consider different types solutions of the g-essence equations. For example, if for simplicity, we consider the case \(\omega = \text{const} \). Then from (6.8) we obtain the following expression for the function \(U \):

\[
U = -A_0 \frac{1}{\tau_0} a^{-3(1+\omega)},
\]

(6.9)
where A_0 is an integration constant. Let us consider some examples: (i) if $\omega = -1$ (the de Sitter case) then $U = -A_0^\frac{1}{A}$; (ii) if $\omega = 0$ (the dust case) then $U = -A_0^\frac{1}{A} a^{-3}$; (iii) if $\omega = 1$ (the stiff matter case) then $U = -A_0^\frac{1}{A} a^{-6}$ and so on. Now, the construction of solutions of the Friedmann, Klein–Gordon and Dirac equations is a formal problem so we omit it here.

7 Scalar–fermionic DBI generalization of the g-essence model with Yukawa interaction (3.1)

Our aim in this section is to construct the scalar–fermionic DBI generalization of the g-essence model with Yukawa interaction (3.1). To do it, we note that the model (3.1) is some approximation of the following scalar–fermionic DBI model:

$$K = \epsilon A \left[\sqrt{1 + A^{-1} \left[2\alpha_1 X + 2\alpha_2 X^n + 2\beta_1 Y + 2\beta_2 Y^m \right] - 1} \right] + V,$$

where $\epsilon = +1$, A is const and

$$V = \omega_3 V_1(\phi) + \omega_3 V_2(\tilde{\psi}, \psi) + \eta U_1(\phi) U_2(\tilde{\psi}, \psi).$$

From (7.1) we get

$$p = \epsilon A \left[\sqrt{1 + A^{-1} \left[2\alpha_1 X + 2\alpha_2 X^n + 2\beta_1 Y + 2\beta_2 Y^m \right] - 1} \right] + V,$$

where $\epsilon = +1$, A is const and

$$V = \omega_3 V_1(\phi) + \omega_3 V_2(\tilde{\psi}, \psi) + \eta U_1(\phi) U_2(\tilde{\psi}, \psi).$$

The study of the system of equations of g-essence (2.9)–(2.14) with the expressions for the pressure and the energy density given by (7.3)–(7.4) is a very hard job. Let us simplify the problem. Let $\alpha_2 = \beta_1 = 0$ and $m = 2$. Then (7.3)–(7.4) take the form

$$p = \epsilon A \left[\sqrt{1 + A^{-1} \left[2\alpha_1 X + 2\beta_2 Y^2 \right] - 1} \right] + V,$$

$$\rho = \frac{\epsilon A}{\sqrt{1 + A^{-1} \left[2\alpha_1 X + 2\beta_2 Y^2 \right]}} + \epsilon A - V$$

which corresponds to the EoS

$$p = \frac{\epsilon A^2}{\rho - \epsilon A + V} - \epsilon A + V.$$

The corresponding EoS parameter is given by

$$\omega = \frac{\epsilon A - V}{\rho (\rho - \epsilon A + V)} - \epsilon A + V.$$
there might be other exact solutions of the g-essence different from the power law solution. Anyway, our results obtained in the present work showed that the g-essence with the Yukawa interactions can describes the accelerated expansions of the universe. In fact, we have shown that some particular g-essence models with Yukawa interactions correspond to the usual and generalized Chaplygin gas unified models of dark energy and dark matter. Also we presented some scalar–fermionic DBI models which again can describe the unified dark energy–dark matter system.

Acknowledgements We would like to thank the anonymous referees for providing us with constructive comments and suggestions to improve this work.

References

1. S. Perlmutter et al., Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–588 (1999). arXiv:astro-ph/9812133
2. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). arXiv:astro-ph/9805201
3. C. Armendariz-Picon, T. Damour, V.F. Mukhanov, k-inflation. Phys. Lett. B 458, 209–218 (1999). arXiv:astro-ph/9904075
4. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Essentials of k-essence. Phys. Rev. D 63, 103510 (2001). arXiv:astro-ph/0006373
5. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85, 4438–4441 (2000). arXiv:astro-ph/0004134
6. T. Chiba, T. Okabe, M. Yamaguchi, Kinetically driven quintessence. Phys. Rev. D 62, 023511 (2000). arXiv:astro-ph/9912463
7. R. De Putter, E.V. Linder, Kinetik k-essence and quintessence. Astropart. Phys. 28, 263–272 (2007). arXiv:0705.0400
8. R. Myrzakulov, Fermionic k-essence. arXiv:1011.4337v5
9. K. Esmakhanova, N. Myrzakulov, G. Nugmanova, L. Chechin, R. Myrzakulov, Integrable and nonintegrable FRW cosmological models induced by some second-order ordinary differential equations. arXiv:1104.3705
10. G.N. Nugmanova, Sh.R. Myrzakul, O.V. Razina, K.R. Esmakhanova, N.S. Serikbayev, R. Myrzakulov, Some cosmological aspects of Horava-Lifshitz gravity: integrable and nonintegrable models. arXiv:1104.5374
11. Sh. Myrzakul, K. Esmakhanova, K. Myrzakulov, G. Nugmanova, R. Myrzakulov, FRW cosmological models with integrable and nonintegrable differential equations of state. arXiv:1105.2771
12. M.O. Ribas, F.P. Devecchi, G.M. Kremer, Fermions as sources of accelerated regimes in cosmology. Phys. Rev. D 72, 123502 (2005). arXiv:gr-qc/0510199
13. L.L. Samojeden, F.P. Devecchi, G.M. Kremer, Fermions in Brans-Dicke cosmology. Phys. Rev. D 81, 027301 (2010). arXiv:1001.2285
14. L.L. Samojeden, G.M. Kremer, F.P. Devecchi, Accelerated expansion in bosonic and fermionic 2D cosmologies with quantum effects. Europhys. Lett. 87, 100101 (2009). arXiv:0906.3315
15. K.K. Yerzhanov, P.Yu. Tsyba, Sh.R. Myrzakul, I.I. Kulnazarov, R. Myrzakulov, Accelerated expansion of the Universe driven by G-essence. arXiv:1012.3031
16. M.O. Ribas, G.M. Kremer, Fermion fields in Einstein-Cartan theory and the accelerated-decelerated transition in a primordial universe. Gravit. Cosmol. 16, 173–177 (2010). arXiv:0902.2696
17. Y.F. Cai, J. Wang, Dark energy model with spinor matter and its quintom scenario. Class. Quantum Gravity 25, 165014 (2008). arXiv:0806.3890
18. J. Wang, S.-W. Cui, C.-M. Zhang, Thermodynamics of spinor quintom. Phys. Lett. B 683, 101–107 (2010). arXiv:0806.3890
19. M.O. Ribas, F.P. Devecchi, G.M. Kremer, Cosmological model with non-minimally coupled fermionic field. Europhys. Lett. 81, 19001 (2008). arXiv:0710.5155
20. R. Rakhi, G.V. Vijayagovindan, K. Indulekha, A cosmological model with fermionic field. arXiv:0912.1222
21. R. Rakhi, G.V. Vijayagovindan, P.A. Noble, K. Indulekha, A cosmological model with fermionic field and Gauss-Bonnet term. Int. J. Mod. Phys. A 25, 1267–1278 (2010). arXiv:0910.3761
22. L.P. Chimento, F.P. Devecchi, M. Forte, G.M. Kremer, Phantom cosmologies and fermions. Class. Quantum Gravity 25, 085007 (2008). arXiv:0707.4455
23. S.V. Anischenko, S.L. Cherkas, V.L. Kalashnikov, Cosmological production of fermions in a flat Friedmann universe with linearly growing scale factor: exactly solvable model. arXiv:0911.0769
24. B. Saha, Nonlinear spinor field in cosmology. Phys. Rev. D 69, 124006 (2004). arXiv:gr-qc/0308088
25. B. Saha, G.N. Shikin, Nonlinear spinor field in Bianchi type-I Universe filled with perfect fluid: exact self-consistent solutions. J. Math. Phys. 38, 5305 (1997)
26. B. Saha, Spinor field in bianchi type-I universe: regular solutions. Phys. Rev. D 64, 123501 (2001). arXiv:gr-qc/0107013
27. B. Saha, Spinor fields in Bianchi type-I Universe, physics of particles and nuclei. Phys. Part. Nucl. 37, S13–S44 (2006) (Suppl.)
28. B. Saha, Nonlinear spinor field in Bianchi type-I cosmology: inflation, isorotipization, and late time acceleration. Phys. Rev. D 74, 124030 (2006)
29. B. Vakili, H.R. Sepangi, Time reparameterization in Bianchi type I spinor cosmology. Ann. Phys. 323, 548–565 (2008). arXiv:0709.2988
30. H. Wei, Spinor dark energy and cosmological coincidence problem. Phys. Lett. B 695, 307–311 (2011). arXiv:1002.4230
31. T. Dereli, N. Ozdemir, O. Sert, Einstein-Cartan-Dirac theory in (1+2)-dimensions, arXiv:1002.0958
32. A.B. Balantekin, T. Dereli, An exact cosmological solution of the coupled Einstein-Majorana fermion-scalar field equations. Phys. Rev. D 75, 024039 (2007). arXiv:gr-qc/0701025
33. C. Armendariz-Picon, P. Greene, Spinors, inflation, and non-singular cyclic cosmologies. Gen. Relativ. Gravit. 35, 1637–1658 (2003). arXiv:hep-th/0301129
34. O. Zannuso, L. Zambelli, G.P. Vacca, R. Percacci, Gravitational corrections to Yukawa systems. arXiv:0904.0938
35. A. Rodigast, T. Schuster, Gravitational corrections to Yukawa and φ4 interactions. arXiv:0908.2422
36. A. Loeb, N. Weiner, Cores in dwarf galaxies from dark matter with a Yukawa potential. arXiv:1011.6374
37. P.S. Miao, R.P. Woodard, Leading log solution for inflationary theory & to scalar QED. arXiv:gr-qc/0608037
38. A. Atazadeh, H.R. Sepangi, Accelerated expansion in modified gravity with a Yukawa-like term. arXiv:gr-qc/0602028
39. S. Weinberg, Gravitation and Cosmology (The University of Chicago Press, Chicago, 1972)
40. S. Weinberg, Cosmology (Cambridge, New York, 2007)
41. R.M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984)
42. L.H. Ryder, Quantum Field Theory (Cambridge University Press, Cambridge, 1996)
43. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)
45. R. Myrzakulov, $F(T)$ gravity and k-essence. arXiv:1008.4486
46. R. Myrzakulov, Pure kinetic k-essence as the cosmic speed-up. Int. J. Theor. Phys. 50, 1876–1886 (2011). arXiv:1008.0779
47. E. Elizalde, R. Myrzakulov, V.V. Obukhov, D. Saez-Gomez, ΛCDM epoch reconstruction from $F(R, G)$ and modified Gauss-Bonnet gravities. Class. Quantum Gravity 27, 095007 (2010). arXiv:1001.3636
48. R. Myrzakulov, D. Saez-Gomez, A. Tureanu, On the ΛCDM universe in $f(G)$ gravity. Gen. Relativ. Gravit. 43, 1671–1684 (2011). arXiv:1009.0902
49. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. arXiv:1011.0544
50. A.Y. Kamenshchik, U. Moschella, V. Pasquier, An alternative to quintessence. Phys. Lett. B 511, 265 (2001)
51. M.C. Bento, O. Bertolami, A.A. Sen, Generalized Chaplygin gas, accelerated expansion and dark energy-matter unification. Phys. Rev. D 66, 043507 (2002)
52. R. Jackiw, Lectures on Fluid Dynamics (Springer, New-York, 2002)