High-throughput Evaluation of Epilepsy-associated KCNQ2 Variants Reveals Functional and Pharmacological Heterogeneity

Carlos G. Vanoye, Reshma R. Desai, Zhigang Ji, Sneha Adusumilli, Nirvani Jairam, Nora Ghabra, Nishtha Joshi, Eryn Fitch, Katherine Helbig, Dianalee McKnight, Amanda Lindy, Fanggeng Zou, Ingo Helbig, Edward C. Cooper, and Alfred L. George, Jr.

SUPPLEMENTARY MATERIAL

Supplemental Figures

Fig. S1 KCNQ2 variants analyzed in this study
Fig. S2 Comparison of automated and manual patch clamp recording of KCNQ2/KCNQ3
Fig. S3 Whole-cell currents from literature KCNQ2 variants (homozygous state)
Fig. S4 Whole-cell currents from literature KCNQ2 variants (heterozygous state)
Fig. S5 Manual and automated patch clamp analyses of KCNQ2 variants (heterozygous state)
Fig. S6 Whole-cell currents of KCNQ2 population variants (homozygous state)
Fig. S7 Whole-cell currents of KCNQ2 population variants (heterozygous state)
Fig. S8 Whole-cell currents of KCNQ2 epilepsy variants (homozygous state)
Fig. S9 Whole-cell currents of KCNQ2 epilepsy variants (heterozygous state)
Fig. S10 Retigabine effects on KCNQ2 variants expressed in the homozygous state
Fig. S11 Retigabine effects on KCNQ2 variants expressed in the heterozygous state

Supplemental Tables

Table S1 KCNQ2 variant information
Table S2 Sequence of mutagenic primers used to generate KCNQ2 variants
Table S3 Data from manual and automated patch clamp recording of KCNQ2 in CHO-Q3 cells
Table S4 Functional properties of homozygous KCNQ2 variants under control conditions
Table S5 Functional properties of heterozygous KCNQ2 variants under control conditions
Table S6 Functional properties of homozygous KCNQ2 variants after exposure to retigabine
Table S7 Functional properties of heterozygous KCNQ2 variants after exposure to retigabine
Figure S1. KCNQ2 variants analyzed in this study. Location and classification of the 81 KCNQ2 variants analyzed in this study. BFNE-associated variants are shown as blue dots, DEE-associated variants as red dots, the purple dot represents a variant associated with both BFNE and DEE, and population variants are denoted as green dots. Variant Q586P (marked by *) is associated with unknown phenotype category. Literature variants are underlined.
Figure S2. Comparison of automated and manual patch clamp recording of KCNQ2/KCNQ3. Whole cell current density recorded from CHO-Q3 cells electroporated with wild type KCNQ2 (Q2-WT) using either automated (A) or manual (B) patch clamp.
Figure S3. Whole-cell currents from literature KCNQ2 variants expressed as homozygous channels. Average XE-991-sensitive whole-cell currents recorded by automated patch clamp from CHO-Q3 cells electroporated with KCNQ2 variants from the literature set and normalized to wild type channel peak current recorded in parallel. For variant R201C, whole-cell currents were recorded from CHO-K1 cells co-electroporated with KCNQ3-WT plus KCNQ2-variant. Scale bars are 200 ms (horizontal) and 25% of WT channel current density (vertical).
Figure S4. Whole-cell currents from literature KCNQ2 variants expressed as heterozygous channels. Average XE-991-sensitive whole-cell currents recorded by automated patch clamp from CHO-Q3 cells co-electroporated with wild type plus variant KCNQ2 cDNA from the literature set and normalized to wild type channel peak current recorded in parallel. Scale bars are 200 ms (horizontal) and 25% of WT channel current density (vertical).
Figure S5. Manual and automated voltage clamp analyses of KCNQ2 variants expressed in the heterozygous state yield similar biophysical properties. A. Average whole-cell currents recorded at +40 mV from CHO-Q3 cells co-expressing variant + wild type KCNQ2 and normalized to WT channel peak current that was measured in parallel. B. Change (Δ) in voltage-dependence of activation $V_{1/2}$ determined for heterozygous KCNQ2 variants relative to the WT channel $\Delta V_{1/2}$ measured in parallel. Black symbols represent mean ± SEM voltage-clamp data from literature reported variants (error bars are smaller than data symbol in some cases), while automated patch clamp results are shown as blue for BFNE, red for DEE, or purple symbols for BFNE/DEE pathogenic variants. All experimental data are presented as open circles with filled circles representing mean values. na = not available in the literature.
Figure S6. Average whole-cell currents recorded from CHO-Q3 cells electroporated with population KCNQ2 variants. Average XE-991-sensitive whole-cell currents recorded by automated patch clamp from CHO-Q3 cells electroporated with rare population KCNQ2 variants and normalized to wild type channel peak current measured in parallel. Scale bars are 200 ms (horizontal) and 25% of WT channel current density (vertical).
Figure S7. Average whole-cell currents recorded from CHO-Q3 cells co-electroporated with selected population variants plus wild type KCNQ2. Average XE-991-sensitive whole-cell currents recorded by automated patch clamp from CHO-Q3 cells co-electroporated with rare population variants plus wild type KCNQ2 and normalized to wild type channel peak current recorded in parallel. Scale bars are 200 ms (horizontal) and 25% of WT channel current density (vertical).

Variant	Variant	Variant	Variant
WT	F104L	I238V	I278V
Q375E	P410L	A502V	R604C
T605S	G737S	F701del	S751L
R760H	T771I	N780T	R854C
Figure S8. Whole-cell currents from epilepsy-associated KCNQ2 variants expressed as homozygous channels. Average XE-991-sensitive whole-cell currents recorded by automated patch clamp from CHO-Q3 cells electroporated with epilepsy-associated KCNQ2 variants and normalized to wild type channel peak current recorded in parallel. Variant labels: **Blue** = BFNE-associated; **Red** = DEE-associated; **Black** = unknown phenotype category (Q586P). For A193D and P335L, whole-cell currents were recorded from CHO-K1 cells co-electroporated with KCNQ3-WT plus KCNQ2-variant. Scale bars are 200 ms (horizontal) and 25% of WT channel current density (vertical).			
Figure S9. Average whole-cell currents recorded from CHO-Q3 cells co-electroporated with epilepsy-associated variants plus wild type KCNQ2. Average XE-991-sensitive whole-cell currents recorded by automated patch clamp from CHO-Q3 cells co-electroporated with epilepsy-associated KCNQ2 variants plus WT KCNQ2 and normalized to wild type channel peak current recorded in parallel. Variant labels: **Blue** = BFNE-associated; **Red** = DEE-associated; **Black** = unknown phenotype category (Q586P). Scale bars are 200 ms (horizontal) and 25% of WT channel current density (vertical).			
Figure S10. Retigabine effects on whole-cell currents recorded from KCNQ2 variants expressed in the homozygous state. A) Ratio of whole-cell currents recorded at +40 mV after exposure to 10 μM retigabine and divided by the current measured under control conditions (n = 15-86). B) Change in voltage-dependence of activation $V_{1/2}$ determined for whole-cell currents after exposure to 10 μM retigabine (n = 5-74). Dashed lines indicate average effect of retigabine on current amplitude and change in voltage-dependence of activation $V_{1/2}$ in the wild type channel. All experimental data are presented as open circles with larger filled circles representing mean values for BFNE (blue), DEE (red), BFNE/DEE (purple), unclear phenotype (white) or population (grey) variants. For complete list of results, see Supplemental Table 6.			
Figure S11. Retigabine effects on whole-cell currents recorded from epilepsy-associated KCNQ2 variants expressed in the heterozygous state. Normalized current-voltage relationships for each variant expressed in the heterozygous state recorded in the absence of retigabine (WT	variant, open squares) compared with heterozygous variants recorded in the absence of retigabine (WT	variant +retigabine, orange filled diamonds). Currents were first normalized to cell capacitance, then re-normalized to the peak current for WT channels recorded in parallel (WT	WT, filled circles). Variant labels: Blue = BFNE-associated; Red = DEE-associated; Purple = BFNE/DEE; Black = unknown phenotype category. Complete data sets are presented in Table S7.
Figure S11 - continued. Retigabine effects on whole-cell currents recorded from epilepsy-associated KCNQ2 variants expressed in the heterozygous state. Normalized current-voltage relationships for each variant expressed in the heterozygous state recorded in the absence of retigabine (WT	variant, open squares) compared with heterozygous variants recorded in the absence of retigabine (WT	variant +retigabine, orange filled diamonds). Currents were first normalized to cell capacitance, then re-normalized to the peak current for WT channels recorded in parallel (WT	WT, filled circles). Variant labels: **Blue** = BFNE-associated; **Red** = DEE-associated; **Purple** = BFNE/DEE; **Black** = unknown phenotype category. Complete data sets are presented in Table S7.
Figure S11 - continued. Retigabine effects on whole-cell currents recorded from epilepsy-associated KCNQ2 variants expressed in the heterozygous state. Normalized current-voltage relationships for each variant expressed in the heterozygous state recorded in the absence of retigabine (WT	variant, open squares) compared with heterozygous variants recorded in the absence of retigabine (WT	variant + retigabine, orange filled diamonds). Currents were first normalized to cell capacitance, then re-normalized to the peak current for WT channels recorded in parallel (WT	WT, filled circles). Variant labels: Blue = BFNE-associated; Red = DEE-associated; Purple = BFNE/DEE; Black = unknown phenotype category. Complete data sets are presented in Table S7.
Nucleotide	Amino Acid	Channel Domain	Phenotype
------------	------------	----------------	-----------
c.128C>T	p.Ala43Val	N-term	PV
c.242T>C	p.Leu81Pro	N-term	BFNE
c.312C>G	p.Phe104Leu	TMD: S1	PV
c.338C>T	p.Ser113Phe	TMD: S1-S2-Link	DEE
c.343A>C	p.Ile115Leu	TMD: S1-S2-Link	PV
c.388G>A	p.Glu130Lys	TMD: S2	DEE
c.431G>A	p.Arg144Gln	TMD: S2-S3-Link	DEE
c.430C>T	p.Arg144Trp	TMD: S2-S3-Link	DEE
c.578C>A	p.Ala193Asp	TMD: S2-S3-Link	DEE
c.587C>T	p.Ala196Val	TMD: S4	DEE
c.593G>A	p.Arg198Gln	TMD: S4	DEE
c.601C>T	p.Arg201Cys	TMD: S4	DEE
c.602G>A	p.Arg201His	TMD: S4	DEE
c.608T>C	p.Leu203Pro	TMD: S4	DEE
c.612G>T	p.Gln204His	TMD: S4	BFNE
c.620G>A	p.Arg207Gln	TMD: S4	DEE
c.619C>T	p.Arg207Trp	TMD: S4	BFNE
c.629A>G	p.Arg210His	TMD: S4	DEE
c.635A>G	p.Arg212Gly	TMD: S4	BFNE
c.634G>T	p.Arg212Trp	TMD: S4	DEE
c.640C>T	p.Arg214Trp	TMD: S4	BFNE
c.684C>A	p.His228Gln	TMD: S4-S5-Link	BFNE
c.683A>G	p.His228Arg	TMD: S4-S5-Link	DEE
c.682C>T	p.His228Tyr	TMD: S4-S5-Link	BFNE
c.712A>G	p.Ile238Val	TMD: S5	PV
c.727C>T	p.Leu243Phe	TMD: S5	BFNE
c.821C>T	p.Thr274Met	TMD: P-loop	DEE
c.827C>T	p.Thr276Ile	TMD: P-loop	DEE
c.826A>C	p.Thr276Pro	TMD: P-loop	DEE
c.830C>T	p.Thr277Ile	TMD: P-loop	DEE
c.833T>C	p.Ile278Thr	TMD: P-loop	DEE
c.832A>G	p.Ile278Val	TMD: P-loop	PV
c.835G>T	p.Gly279Cys	TMD: P-loop	DEE
c.836C>A	p.Gly278Ser	TMD: P-loop	DEE
c.838T>C	p.Tyr280His	TMD: P-loop	DEE
c.841C>T	p.Thr281Arg	TMD: P-loop	DEE
c.841G>T	p.Gly281Trp	TMD: P-loop	DEE
c.846C>A	p.Asp282Glu	TMD: P-loop	DEE
c.844G>C	p.Asp282His	TMD: P-loop	DEE
c.851A>G	p.Tyr284Cys	TMD: P-loop	BFNE
c.850T>G	p.Tyr284Asp	TMD: P-loop	DEE
c.850T>C	p.Tyr284His	TMD: P-loop	DEE
c.850T>A	p.Tyr284Asn	TMD: P-loop	DEE
c.871A>G	p.Arg291Gly	TMD: P-loop	DEE
c.[875T>C;877C>T]	p.Leu292Pro;Leu293Phe	TMD: S6	DEE
Table S1 – (continued) KCNQ2 variant information

Nucleotide	Amino Acid	Channel Domain	Phenotype	MAF (gnomAD)	ClinVar	PubMed ID
c.881C>G	p.Ala294Gly	TMD: S6	BFNE	0	PATH	17129708
c.881C>T	p.Ala294Val	TMD: S6	DEE	0	PATH	17129708
c.913_915delTTC	p.Phe305del	TMD: S6	DEE	0	N/A	26554332; 28728838; 18640800
c.916G>C	p.Ala306Pro	TMD: S6	DEE	0 PATH	9425895; 26138355	
c.916G>A	p.Ala306Thr	TMD: S6	DEE	0 PATH	31152295	
c.917C>T	p.Ala306Val	TMD: S6	DEE	0 PATH	31152295	
c.998G>A	p.Arg333Gln	C-term	BFNE 0.000004	PATH/LP 25215089; 14534157		
c.997C>T	p.Arg333Trp	C-term	DEE	0 PATH	16039833	
c.1004C>T	p.Pro335Leu	C-term	DEE	0 PATH/LP	28667141	
c.1123G>C	p.Glu151Asp	C-term	DEE 0.000018	PATH	N/A	
c.1229C>T	p.Pro410Leu	C-term	PV 0.000043	VUS		
c.1505C>T	p.Ala502Val	C-term	PV 0.000036	VUS		
c.1545G>C	p.Glu515Asp	C-term	PV 0.002517	BL/B/VUS 19380078		
c.1627G>A	p.Val543Met	C-term	BFNE 0.000004	PATH/LP 28399683		
c.1678C>T	p.Ala560Val	C-term	DEE 0 PATH/LP 22275249			
c.1700T>A	p.Val567Met	C-term	DEE 0 LP 2788506			
c.1732G>G	p.Met578Val	C-term	BFNE 0 PATH/LP 25982755			
c.1742G>A	p.Arg581Gln	C-term	DEE 0 PATH/LP 27864847			
c.1757A>C	p.Gln586Pro	C-term	DEE 0 VUS			
c.1764A>T	p.Arg588Ser	C-term	BFNE 0 PATH	25982755		
c.1810C>T	p.Arg604Cys	C-term	PV 0.000008	VUS		
c.1814C>G	p.Thr605Ser	C-term	PV 0.000056	VUS/LB		
c.1910T>G	p.Leu637Arg	C-term	BFNE 0 PATH	25982755		
c.1988A>G	p.Glu663Gly	C-term	PV 0.000047	N/A		
c.2101_2103delTCT	p.Phe701del	C-term	PV 0.000009	N/A		
c.2209G>A	p.Gly737Ser	C-term	PV 0.000016	VUS		
c.2252G>T	p.Ser751Leu	C-term	PV 0.000065	VUS		
c.2264A>G	p.Tyr755Cys	C-term	PV 0.002853	B/LB		
c.2266G>A	p.Gly756Ser	C-term	PV 0.000264	LB		
c.2279G>A	p.Arg760His	C-term	PV 0.000059	VUS		
c.2312C>T	p.Thr771Ile	C-term	PV 0.000047	VUS		
c.2338A>C	p.Asn780Thr	C-term	PV 0.009194	B		
c.2377G>C	p.Val793Leu	C-term	PV 0.000025	VUS		
c.2560T>C	p.Arg854Cys	C-term	PV 0.000226	B/LB		
c.2570C>T	p.Thr857Ile	C-term	PV 0.000019	N/A		
c.2572G>A	p.Gly858Ser	C-term	PV 0.000030	VUS		
Nucleotide change	Amino acid change	Forward Primer	Reverse Primer			
------------------	------------------	---------------	---------------			
c.128C>T	p.Ala43Val	GCTGATCGCCGTCGCTAGGCCCCACAAG	CGGAGCGCCAGATCGACAGCGCCGCCCTTC			
c.2427C>C	p.Leu81Pro	GCAAGATTCGCCTACACACCGTGGGACGCCC	TGTAGGGAAATATTCTCGAGCTGGTAGAAGAG			
c.3122G>G	p.Phe104Leu	CTGTGTTTGTCCTCGCTCCTGCTTGTGTTTTC	AGGACAGGAAACCAAGGAGAACATCGAGCTG			
c.3388C>T	p.Ser113Phe	GTGTTTACCACATCAACGAGTAGTGAAGAGCTCTG	TTGATGTTGAAATACACAGCAAGACGAGCCAGAG			
c.3434A>C	p.Ile115Leu	TTCCACACCCCAACGGATATGAAAGAGCTGGGAGG	ACTCTCTAGGAGTGGAAACACACGACGGAGG			
c.3880A>A	p.Glu130Lys	CTATGCTTCTGGACATCCGGGACGCTGGC	TAGACATGCGAAGTATCCTACGCACACCAAC			
c.4005T>C	p.Arg134Trp	GTACCCTGCTTGACCTGGGGGACAGCCTG	AGATCCACGACAAATCACCACCCAGACAAAC			
c.4216G>A	p.Arg146Gln	TACTCCGTTGAGATCCTGAGCATTG	CAGATGTACCAGAATCCTACGCACACCAAC			
c.578C>A	p.Ala193Asp	CGCCGTTAGACACCTGCGTCGCTGGCACGACC	CAGATGCAGAAGATCGTGCAGGCAGCTG			
c.587C>T	p.Ala196Val	GCCAAGATCGCCTGGGGGACAGCCTGCGGG	CGGAGCAAGATGCGGAAACAGGTTGGCCGG			
c.5930G>A	p.Arg198Gln	TCTGCGTTCTGGGAGAGCGGCTGCTGAGAAT	CGCGAGCTTGGGACGACAGATGCGGAGCCAG			
c.6010C>T	p.Arg201Cys	GTGCTGGGCCTGCTCGATACGCAGAAGCCTGATC	CTCTGGCAAGGACACAGCTGCGCTGGAGCAGAGT			
c.6020G>A	p.Arg203His	CTGCAGTCCTTCGAGACCTGGGACAGATTG	TCTCGCAAGAAGATCAGGCTGCGCTGGGAGCAGAT			
c.6087C>T	p.Leu203Pro	TTCGGCCAGAACATCAGGCTGCTGGAATG	GCAAGATCGGAGAAGCGCAGCCTGGCAGG			
c.6122G>A	p.Arg207Gln	ATGGCTCTGACAGTGATCAGGCTGCTGACG	ATGCACTACAGAAATCAGGCTGCGCTGGGAGC			
c.6200A>A	p.Arg207Trp	CAGATTTGTCGAGATGATCGCTGCGCGACAG	ATCCTCGGAGAATCAGGCTGCGCTGGGAGC			
c.6290G>A	p.Arg210His	GCGGAGTTCGAGACCTGGGAGGAGGACG	CGGAAGCCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.635A>G	p.Asp212Gly	GATCGCCATGGGGCCTGGGAGGACGAGCTG	GCGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.6340T>T	p.Asp212Trp	TGATCGCCATGAGACCTGGGAGGACGAGCTG	CGAGGGCTGCGCTGGGACGACAGCTGCGCTGGGAGC			
c.6400T>T	p.Arg214Trp	TGACGGCTGCGGAGGACGACCTGGGAGGACGAGCTG	GCGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.6484A>G	p.His228Gln	ATGGCGCTGGGCCGCGGCGAGGACGAGCTG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.6838A>G	p.His229Arg	ATGGCGCTGGGCCGCGGCGAGGACGAGCTG	CGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.6843G>A	p.His228Trp	CGGAGCTGCTGGGCCGCGGCGAGGACGAGCTG	CGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.6852G>A	p.His228Gly	ATGGCGCTGGGCCGCGGCGAGGACGAGCTG	GCGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.6874C>T	p.Leu228Pro	TGAACTCCACCGCTGGGACGAGCTG	AGGAAGCCGAGAATGCGAAGCGTTGAACCGT			
c.6907T>T	p.Glu229Thr	TACCCGCTGATCCAGCTGGGACGAGCTG	AGGAAGCCGAGAATGCGAAGCGTTGAACCGT			
c.7202C>T	p.Leu243Pro	TCGCTCCATTCTCAGCTGGGACGAGCTG	AGGAAGCCGAGAATGCGAAGCGTTGAACCGT			
c.8210C>T	p.Thr274Met	GCTTGCGCTGGGCCGCGGCGAGGACGAGCTG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8272T>T	p.Thr276Ile	CCGTCGAGCCACCTTCTGGGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8264C>C	p.Thr276Pro	CAGCCTGGCCTCAGCCCTGCTGCCGGACGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8300T>T	p.Thr277Ile	TGACCCGATGGTCTGGGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8337C>C	p.Thr278Thr	CAGAACCCTTCTGGGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8324A>G	p.Thr278Val	CAGAACCCTTCTGGGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8350G>T	p.Gly279Cys	ACCACCGCTGCTGGGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8366G>A	p.Gly279Ser	ACCACCGCTGCTGGGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8387C>T	p.Tyr280His	ATGGGCGACGAGCGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8410G>A	p.Gly281Arg	ATGGGCGACGAGCGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8410T>T	p.Gly281Trp	ATGGGCGACGAGCGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8464A>C	p.Asp282Glu	TACCGGGAAAGCTGGGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8446C>C	p.Asp282His	TACCGGGAAAGCTGGGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8510A>G	p.Tyr284Cys	GGGGCGACGAGCGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8507G>G	p.Tyr284Asp	GGGGCGACGAGCGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
c.8507C>C	p.Tyr284His	GGGGCGACGAGCGACGAGCTGACG	TCGGAGCTGCTGGGACGACAGCTGCGCTGGGAGC			
Table S2 - continued. Sequence of mutagenic primers used to generate KCNQ2 variants.

Nucleotide change	Amino acid change	Forward Primer	Reverse Primer
c.850T>A	p.Tyr284Xn	GGGGACAAAGAACCCTCCAGGCTGGAGAAGGCA	TGGGCGTCTTGGGCGTCCCGTATGGTG
c.871A>G	p.Arg291Gly	ACCCTGACGCGCTCCCCACTTCTGGGCG	CCCGCAGCGAGCGGGCTGGTCAGG
c.[875T>C;877C>T]	p.Leu292Pro/Leu293Phe	CAGGCGCTTTGGGCGCTCCCCACTTCTGGGCG	TTGGCGGCAAGGGCTGGGCTTCCAAGGTCG
c.881C>T	p.Ala306Pro	CTTCTCTTGCTGCCCAGGCTAGGCTTGGG	AAGGGGCACTCAAGGGAGGAGGTTG
c.913_G>delTTC	p.Phe305del	TTGCCTCTCTGGAGCTTTGAGCGCTACATTG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.916C>G	p.Ala306Thr	CTTCTCTCTCGGCTTGGGCTAGGCTTGGG	AGGCGGCTGAGAAGGACAGCAGGAGGTTG
c.916G>A	p.Ala306Val	CTTCTCTCTCGGCTTGGGCTAGGCTTGGG	AGGCGGCTGAGAAGGACAGCAGGAGGTTG
c.998G>A	p.Arg333Gln	GAGAGAGAGGGAGACCCGGACAGGAGGCTTGGG	GGGTTGCGCTCCTCTCTCAAGGGCTGGGCTTGGG
c.997C>T	p.Arg333Trp	TGGGACGCTGAGAGGAGGACAGGAGGCTTGGG	TGGGCGTCTTGGGCGTCCCGTATGGTG
c.1004C>T	p.Pro335Leu	AGGGCGGACAGGACAGCGAGGCGCTGGATGCAGTTGAAA	GGGAGACCGCTGAGGAGGACAGGAGGCTTGGG
c.1123C>G	p.Gln375Glu	TACAGTCTGAGAATCTTACATCTGAGGCGCTGGG	GATGGAGGGCTGAGGAGGACAGGAGGCTTGGG
c.1229C>T	p.Pro410Leu	AGGACCCCCGGCGGAGGAGGCTGCTATGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1505C>T	p.Ala502Val	GTGGCGGCGCTGCTGAGGCTCAGAAGGCAGAGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1545G>C	p.Glu515Asp	CCGAGAGAGAGGAGGAGGACAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1627G>A	p.Val543Met	CAGAGGCGCTGAGGAGGACAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1678C>T	p.Arg560Trp	GAGGAGGCGCTGAGGAGGACAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1700T>A	p.Val567Asp	ATGGAGGGCTGAGGAGGACAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1732A>G	p.Met578Val	TGAGCACTGCTGGGCAATATTAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1745G>A	p.Arg581Gln	TCCAGAGAGAGGAGGAGGACAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1757A>C	p.Gln586Pro	AGGACCCCCGGCGGAGGAGGCTGCTATGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1764A>T	p.Arg588Ser	TGGGCGGCGCTGAGGAGGACAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1810G>C	p.Glu560Ser	GAGGACCCCCGGCGGAGGAGGCTGCTATGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1814C>G	p.Thr565Ser	AGGGCGGAGGAGGACAGGAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1910G>A	p.Leu637Arg	AGGGCGGAGGAGGACAGGAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.1998A>G	p.Glu663Gly	GGGGCGGAGGAGGACAGGAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.2103_2103delTCT	p.Phe701del	CCAGGACAGGAGGAGGACAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.2209G>A	p.Gly737Ser	GAGGACCCCCGGCGGAGGACAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.2225C>T	p.Ser751Ile	GAGGAGGGCTGCTGGGCTGCTGCTGCTG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.2264A>G	p.Tyr755Cys	TGGGCGGCGCTGCTGCTGCTGCTGCTG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.2266G>A	p.Gly756Ser	TGGGCGGCGCTGCTGCTGCTGCTGCTG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.2279G>A	p.Arg760His	GGGAACCGAGGAGGAGGACAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.2312C>T	p.Thr771Ile	CAGGGCGGCGCTGCTGCTGCTGCTGCTG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.2339A>C	p.Asn780Thr	AGGGCGGAGGAGGACAGGAGGAGGCTTGGG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.2373G>C	p.Val793Ile	TGGGCGGCGCTGCTGCTGCTGCTGCTG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.2500C>T	p.Arg854Cys	CAGGGCGGCGCTGCTGCTGCTGCTGCTG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.2570G>A	p.Phe857Ile	CAGGGCGGCGCTGCTGCTGCTGCTGCTG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
c.2572G>A	p.Phe857Ile	CAGGGCGGCGCTGCTGCTGCTGCTGCTG	CAGGGCGCTGAGAAGGACAGCAGGAGGTTG
Table S3. Manual patch clamp and high throughput functional results.
See Excel file:
[Link](https://digitalhub.northwestern.edu/files/151bf778-d6be-49a9-b4b7-6f75ba9c0e2e)

Table S4. Functional properties of CHO-Q3 cells electroporated with homozygous variant KCNQ2 cDNA recorded under control conditions.
See Excel file:
[Link](https://digitalhub.northwestern.edu/files/5e63c462-56c3-4cf5-9468-f4e2e20af714)

Table S5. Functional properties of CHO-Q3 cells co-electroporated with heterozygous variant plus wild type KCNQ2 cDNA recorded under control conditions.
See Excel file:
[Link](https://digitalhub.northwestern.edu/files/33bd2d57-21b4-4d10-aa59-07e1d8551ada)

Table S6 Functional properties of CHO-Q3 cells electroporated with homozygous variant KCNQ2 cDNA recorded following exposure to retigabine.
See Excel file:
[Link](https://digitalhub.northwestern.edu/files/ffb6d08c-4af6-41f9-b319-26b593987e01)

Table S7. Functional properties of CHO-Q3 cells co-electroporated with heterozygous variant plus wild type KCNQ2 cDNA recorded following exposure to retigabine.
See Excel file:
[Link](https://digitalhub.northwestern.edu/files/b2c17941-0e0e-4255-b0fd-cf34f4628ea6)