The 4-girth-thickness of the complete multipartite graph

Christian Rubio-Montiel

Abstract

The g-girth-thickness $\theta(g,G)$ of a graph G is the smallest number of planar subgraphs of girth at least g whose union is G. In this paper, we calculate the 4-girth-thickness $\theta(4,G)$ of the complete m-partite graph G when each part has an even number of vertices.

Keywords: Thickness, planar decomposition, complete multipartite graph, girth.

2010 Mathematics Subject Classification: 05C10.

1 Introduction

The thickness $\theta(G)$ of a graph G is the smallest number of planar subgraphs whose union is G. Equivalently, it is the smallest number of parts used in any edge partition of $E(G)$ such that each set of edges in the same part induces a planar subgraph.

This parameter was introduced by Tutte [20] in the 60s. The problem to calculate the thickness of a graph G is an NP-hard problem [16] and a few of exact results can be found in the literature, for example, if G is a complete graph [2, 5, 6], a hypercube [15], or a complete multipartite graph for some particular values [21, 22]. Even for the complete bipartite graph there are only partial results [7, 13].

Some generalizations of the thickness for complete graphs have been studied, for instance, the outerthickness θ_o, defined similarly but with outerplanar instead of planar [12], the S-thickness θ_S, considering the thickness on a surface S instead of the plane [4], and the k-degree-thickness θ_k taking a restriction on the planar subgraphs: each planar subgraph has maximum degree at most k [9].

The thickness has applications in the design of circuits [1], in the Ringel’s earth-moon problem [14], and to bound the achromatic numbers of planar graphs [3], etc. See the survey [17].
In [19], the author introduced the g-girth-thickness $\theta(g, G)$ of a graph G as the minimum number of planar subgraphs of girth at least g whose union is G, a generalization of the thickness owing to the fact that the g-girth-thickness is the usual thickness when $g = 3$ and also the arboricity number when $g = \infty$ because the girth of a graph is the size of its shortest cycle or ∞ if it is acyclic. See also [11].

In this paper, we obtain the 4-girth-thickness $\theta(4, K_{n_1,n_2,\ldots,n_m})$ of the complete m-partite graph K_{n_1,n_2,\ldots,n_m} when n_i is even for all $i \in \{1, 2, \ldots, m\}$.

2 Calculating $\theta(4, K_{n_1,n_2,\ldots,n_m})$

Given a simple graph G, we define a new graph $G \bowtie G$ in the following way: If G has vertex set $V = \{w_1, w_2, \ldots, w_n\}$, the graph $G \bowtie G$ has as vertex set two copies of V, namely, $\{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n\}$ and two vertices x, y are adjacent if $w_i w_j$ is an edge of G, for the symbols $x, y \in \{u, v\}$. For instance, if w_1w_2 is an edge of a graph G, the graph $G \bowtie G$ has the edges u_1u_2, v_1v_2, u_1v_2 and v_1u_2. See Figure 1.

![Figure 1: An edge of G produces four edges in $G \bowtie G$.](image)

On the other hand, an acyclic graph of n vertices has at most $n - 1$ edges and a planar graph of n vertices and girth $g < \infty$ has at most $\frac{g-2}{g-2}(n-2)$ edges, see [8]. Therefore, a planar graph of n vertices and girth at least 4 has at most $2(n-2)$ edges for $n \geq 4$ and at most $n-1$, otherwise. In consequence, the 4-girth-thickness $\theta(4, G)$ of a graph G is at least $\left\lceil \frac{|E(G)|}{2(n-2)} \right\rceil$ for $n \geq 4$ and at least $\left\lceil \frac{|E(G)|}{n-1} \right\rceil$, otherwise.

Lemma 2.1. If G is a tree of order n then $G \bowtie G$ is a bipartite planar graph of size $2(2n-2)$.

Proof. By induction over n. The basis is given in Figure 1 for $n = 2$. Now, take a tree G with $n + 1$ vertices. Since it has at least a leaf, we say, the vertex w_1 incident to w_2, then we delete w_1 from G and by induction hypothesis, $H \bowtie H$ is a bipartite planar of size $2(2n-2)$ edges for $H = G \setminus \{w_1\}$. Since H is connected, the vertex labeled w_2 has at least a neighbour, we say, the vertex labeled w_3, then $u_2v_3v_2$ is a path in $H \bowtie H$ and the edge $u_2v_2 \notin E(H \bowtie H)$. Add the paths $u_2v_1v_2$ and $u_2u_1v_2$ to $H \bowtie H$ such that both of them
are “parallel” to $u_2v_3v_2$ and identify the vertices u_2 as a single vertex as well as the vertices v_2. This proves that $G \bowtie G$ is planar. To verify that is bipartite, given a proper coloring of $H \bowtie H$ with two colors, we extend the coloring putting the same color of v_3 to v_1 and u_1. Then the resulting coloring is proper. Due to the fact that we add four edges, $H \bowtie H$ has $2(2n - 2) + 4 = 2(2(n + 1) - 2)$ edges and the lemma follows.

Now, we recall that the arboricity number or ∞-girth-thickness $\theta(\infty, G)$ of a graph G equals (see [18])

$$\max \left\{ \left\lfloor \frac{|E(H)|}{|V(H)|-1} \right\rfloor : H \text{ is an induced subgraph of } G \right\}.$$

We have the following theorem.

Theorem 2.2. If G is a simple graph of $n \geq 2$ vertices and e edges, then

$$\left\lceil \frac{e}{n-1} \right\rceil \leq \theta(4, G \bowtie G) \leq \theta(\infty, G).$$

Proof. Since $G \bowtie G$ has $2n \geq 4$ vertices, $4e$ edges and

$$\frac{|E(G \bowtie G)|}{2(|V(G \bowtie G)| - 2)} = \frac{4e}{2(2n - 2)} = \frac{e}{n-1}$$

it follows the lower bound

$$\left\lceil \frac{e}{n-1} \right\rceil \leq \theta(4, G \bowtie G).$$

To verify the upper bound, take an acyclic edge partition $\{F_1, F_2, \ldots, F_{\theta(\infty, G)}\}$ of $E(G)$. Therefore, $\{F_1 \bowtie F_1, F_2 \bowtie F_2, \ldots, F_{\theta(\infty, G)} \bowtie F_{\theta(\infty, G)}\}$ is an edge partition of $E(G \bowtie G)$ (where $F_i \bowtie F_i := E((F_i) \bowtie (F_i))$ and (F_i) is the induced subgraph of the edge set F_i for all $i \in \{1, 2, \ldots, \theta(\infty, G)\}$). Indeed, an edge $x_jy'_j \in E(G \bowtie G)$ is in $F_i \bowtie F_i$ if and only if $w_jw'_j \in E(G)$ is in F_i. By Lemma 2.1 the result follows.

Corollary 2.3. If G is a simple graph of $n \geq 2$ vertices and e edges with $\theta(\infty, G) = \left\lceil \frac{e}{n-1} \right\rceil$, then

$$\theta(4, G \bowtie G) = \left\lfloor \frac{e}{n-1} \right\rfloor.$$

Next, we estimate the arboricity number of the complete m-partite graph.

Lemma 2.4. If $K_{n_1, n_2, \ldots, n_m}$ is the complete m-partite graph then $\theta(\infty, G) = \left\lceil \frac{e}{n-1} \right\rceil$ where $n = n_1 + n_2 + \ldots + n_m$ and $e = n_1n_2 + n_1n_3 + \ldots + n_{m-1}n_m$.

Proof. By induction over n. The basis is trivial for $K_{1,1}$. Let $G = K_{n_1, n_2, \ldots, n_m}$ with $n > 2$ and $H = G \setminus \{u\}$ a proper induced subgraph of G for any vertex u. By the induction hypothesis,

$$\theta(\infty, H) = \max \left\{ \left\lceil \frac{|E(F)|}{|V(F)|-1} \right\rceil : F \leq H \right\} = \left\lceil \frac{|E(H)|}{(n-1)-1} \right\rceil,$$

where $F \leq H$ indicates that F is an
induced subgraph of H. Since u is an arbitrary vertex and by the hereditary property of the induced subgraphs, we only need to show that

\[
\frac{|E(H)|}{n-2} \leq \frac{e}{n-1}
\]

because

\[
\max \left\{ \left[\frac{|E(F)|}{|V(F)| - 1} \right] : F \leq G \right\} = \max \left\{ \left[\frac{e}{n-1} \right], \left[\frac{|E(H)|}{n-2} \right] : H = G \setminus \{u\}, u \in V(G) \right\}.
\]

We prove it in the following way. Without loss of generality, u is a vertex in a part of size n_m.

Since

\[
\begin{align*}
n_1 &+ n_1n_2 + \ldots + n_1n_m + n_2^2 + n_1n_2 + \ldots + n_1n_m + \\
n_2 &+ \ldots + n_2n_m + n_2n_1 + n_2^2 + \ldots + n_2n_m \\
&\vdots \\
n_{m-1} &+ n_{m-1}n_1 + n_{m-1}n_2 + \ldots + n_{m-1}n_m
\end{align*}
\]

then $e + n_1 + n_2 + \ldots + n_{m-1} \leq n(n_1 + n_2 + \ldots + n_{m-1})$ and

\[
\begin{align*}
en - e - n(n_1 + n_2 + \ldots + n_{m-1}) + (n_1 + n_2 + \ldots + n_{m-1}) &\leq en - 2e \\
(n-1)(e - (n_1 + n_2 + \ldots + n_{m-1})) &\leq e(n - 2)
\end{align*}
\]

and the result follows. \qed

Now, we can prove our main theorem.

Theorem 2.5. If $G = K_{2n_1,2n_2,\ldots,2n_m}$ is the complete m-partite graph then $\theta(4, G) = \left\lceil \frac{n}{n-1} \right\rceil$ where $n = n_1 + n_2 + \ldots + n_m$ and $e = n_1n_2 + n_1n_3 + \ldots + n_{m-1}n_m$.

Proof. We need to show that $G = K_{n_1,n_2,\ldots,n_m} \bowtie K_{n_1,n_2,\ldots,n_m}$. Let (W_1, W_2, \ldots, W_m) be an m-partition of K_{n_1,n_2,\ldots,n_m}. The graph $K_{n_1,n_2,\ldots,n_m} \bowtie K_{n_1,n_2,\ldots,n_m}$ has the partition $(U_1 \cup V_1, U_2 \cup V_2, \ldots, U_m \cup V_m)$ where U_i and V_i are copies of W_i for $i \in \{1, 2, \ldots, m\}$. Take two vertices x_i and y_j in different parts, without loss of generality, $U_1 \cup V_1$ and $U_2 \cup V_2$. If the vertex x_i is in U_1 and y_j is in U_2 then they are adjacent because w_iw_j is an edge of K_{n_1,n_2,\ldots,n_m} is m-complete. Similarly for $x_i \in V_1$ and $y_j \in V_2$. If x_i is in U_1 and y_j is in V_2, then also they are adjacent because w_iw_j is an edge of K_{n_1,n_2,\ldots,n_m}. By Corollary 2.3 and Lemma 2.4 the theorem follows. \qed

Due to the fact that $\theta(4, G) = \theta(3, G) = \theta(G)$ for any triangle-free graph G, we obtain an alternative proof for the thickness of the complete bipartite graph $K_{2n_1,2n_2}$ that is given in [7].

Corollary 2.6. If $G = K_{2n_1,2n_2}$ is the complete bipartite graph then $\theta(G) = \left\lceil \frac{e}{n-1} \right\rceil$ where $n = n_1 + n_2$ and $e = n_1n_2$.

4
Acknowledgments

The authors wish to thank the anonymous referees of this paper for their suggestions and remarks.

C. Rubio-Montiel was partially supported by PAIDI/007/19.

References

[1] A. Aggarwal, M. Klawe and P. Shor, *Multilayer grid embeddings for VLSI*, Algorithmica 6 (1991), no. 1, 129–151.

[2] V. B. Alekseev and V. S. Gončakov, *The thickness of an arbitrary complete graph*, Mat. Sb. (N.S.) 101(143) (1976), no. 2, 212–230.

[3] G. Araujo-Pardo, F. E. Contreras-Mendoza, S. J. Murillo-García, A. B. Ramos-Tort and C. Rubio-Montiel, *Complete colorings of planar graphs*, Discrete Appl. Math. 255 (2019), 86–97.

[4] L. W. Beineke, *Minimal decompositions of complete graphs into subgraphs with embeddability properties*, Canad. J. Math. 21 (1969), 992–1000.

[5] L. W. Beineke and F. Harary, *On the thickness of the complete graph*, Bull. Amer. Math. Soc. 70 (1964), 618–620.

[6] L. W. Beineke and F. Harary, *The thickness of the complete graph*, Canad. J. Math. 17 (1965), 850–859.

[7] L. W. Beineke, F. Harary and J. W. Moon, *On the thickness of the complete bipartite graph*, Proc. Cambridge Philos. Soc. 60 (1964), 1–5.

[8] J. A. Bondy and U.S.R. Murty, *Graph theory*, Graduate Texts in Mathematics, vol. 244, Springer, New York, 2008.

[9] N. K. Bose and K. A. Prabhu, *Thickness of graphs with degree constrained vertices*, IEEE Trans. on Circuits and Systems 24 (1977), 184–190.

[10] G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. Mélot, *House of Graphs: a database of interesting graphs*, Discrete Appl. Math. 161 (2013), no. 1-2, 311–314, Available at http://hog.grinvin.org Accessed: 2018-02-14.

[11] H. Castañeda-López, P. C. Palomino, A. B. Ramos-Tort, C. Rubio-Montiel and C. Silva-Ruíz, *The 6-girth-thickness of the complete graph*, [arXiv:1709.07466](https://arxiv.org/abs/1709.07466) in review.
[12] R. K. Guy and R. J. Nowakowski, The outerthickness & outercoarseness of graphs. I. The complete graph & the n-cube, Topics in combinatorics and graph theory, Physica-Verlag HD, 1990, 297–310.

[13] S. Isao and H. Ozaki, On the planar decomposition of a complete bipartite graph, Siam J. Appl. Math. 16 (1968), no. 2, 408–416.

[14] B. Jackson and G. Ringel, Variations on Ringel’s earth-moon problem, Discrete Math. 211 (2000), no. 1-3, 233–242.

[15] M. Kleinert, Die Dicke des n-dimensionalen Würfel-Graphen, J. Combin. Theory 3 (1967), 10–15.

[16] A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 1, 9–23.

[17] P. Mutzel, Odenthal T. and M. Scharbrodt, The thickness of graphs: a survey, Graphs Combin. 14 (1998), no. 1, 59–73.

[18] C. Nash-Williams, Decomposition of finite graphs into forests, J. London Math. Soc. 39 (1964), 12.

[19] C. Rubio-Montiel, The 4-girth-thickness of the complete graph, Ars Math. Contemp. 14 (2018), no. 2, 319–327.

[20] W. T. Tutte, The thickness of a graph, Indag. Math. 25 (1963), 567–577.

[21] Y. Yang, A note on the thickness of $K_{i,m,n}$, Ars Combin. 117 (2014), 349–351.

[22] Y. Yang, Remarks on the thickness of $K_{n,n,n}$, Ars Math. Contemp. 12 (2017), no. 1, 135–144.

División de Matemáticas e Ingeniería
FES Acatlán
Universidad Nacional Autónoma de México
Naucalpan 53150
State of Mexico
Mexico
christian.rubio@apolo.acatlan.unam.mx