Review

Crossing Bridges between Extra- and Intra-Cellular Events in Thoracic Aortic Aneurysms

Yoshito Yamashiro and Hiromi Yanagisawa

Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan

Thoracic aortic aneurysms (TAAs) are common, life-threatening diseases and are a major cause of mortality and morbidity. Over the past decade, genetic approaches have revealed that 1) activation of the transforming growth factor beta (TGF-β) signaling, 2) alterations in the contractile apparatus of vascular smooth muscle cells (SMCs), and 3) defects in the extracellular matrix (ECM) were responsible for development of TAAs. Most recently, a fourth mechanism has been proposed in that dysfunction of mechanosensing in the aortic wall in response to hemodynamic stress may be a key driver of TAAs. Interestingly, the elastin-contractile unit, which is an anatomical and functional unit connecting extracellular elastic laminae to the intracellular SMC contractile filaments, via cell surface receptors, has been shown to play a critical role in the mechanosensing of SMCs, and many genes identified in TAAs encode for proteins along this continuum. However, it is still debated whether these four pathways converge into a common pathway. Currently, an effective therapeutic strategy based on the underlying mechanism of each type of TAAs has not been established. In this review, we will update the present knowledge on the molecular mechanism of TAAs with a focus on the signaling pathways potentially involved in the initiation of TAAs. Finally, we will evaluate current therapeutic strategies for TAAs and propose new directions for future treatment of TAAs.

Key words: Elastin-contractile unit, Mechanosensing of SMCs, TGF-β, Extracellular matrix (ECM), Signaling pathways, Thoracic Aortic Aneurysm (TAA)

Introduction

Aortic aneurysms are characterized by an abnormal enlargement of the aortic lumen, usually asymptomatic, and are associated with a high risk of mortality from dissection and/or rupture. Aortic aneurysms can occur in the portion of the aorta above the diaphragm, termed thoracic aortic aneurysms (TAAs), or in the portion below the diaphragm, termed abdominal aortic aneurysms (AAAs). Whereas AAAs have been linked to atherosclerosis and chronic inflammation (reviewed in1, 2), TAAs are often associated with heritable and degenerative diseases such as Marfan syndrome (MFS) and Loey-Dietz syndrome (LDS). MFS patients were found to have mutations in the FBN1 gene, which encodes the extracellular matrix (ECM) protein fibrillin-1, a major component of microfibrils; structures that serves as a scaffold for elastin deposition and provides structural support and stability to elastic laminae in the aorta3). Heritable TAAs without syndromic features have also been reported and are classified as familial thoracic aortic aneurysms/aortic dissections (TAAD). A number of nonsyndromic TAAD genes that have been identified so far turned out to be genes involved in regulation of smooth muscle cell (SMC) contraction (reviewed in4, 5). Interestingly, regardless of the cause, TAAs are often accompanied by the disruption of elastic laminae. Indeed, mutations in several genes encoding for components of elastic laminae such as fibrillin-4, microfibril-associated glycoprotein 2 (MAGP2), and lysyl oxidase (LOX), a cross-linking enzyme for elastin and collagen, have also been implicated in TAAs6-8. The discovery of gene mutations in TAAs has rapidly progressed by introduction of next generation sequencing technology combined with human genetics studies.

Most recently, it has been proposed that dysfunction of the mechanosensing in the aortic wall in
was the primary cause of aneurysm formation (reviewed in \(^{14, 15}\)). TGF-\(\beta \) plays important roles in embryogenesis, development and normal tissue homeostasis by affecting cell proliferation and differentiation, and extracellular matrix (ECM) synthesis. Binding of TGF-\(\beta \) ligands to TGF-\(\beta \) receptors activates downstream signaling pathways, including the phosphorylation (\(\rho \)-) of Smad2 and Smad3 (known as canonical pathway), leading to the translocation of Smad4 into the nucleus and the activation of transcription of Smad-targeted genes \(^{16}\). Connective tissue growth factor (CTGF) and plasminogen-activator inhibitor-1 (PAI-1) are both well known target genes downstream of this canonical pathway and are involved in aortic wall remodeling. TGF-\(\beta \) also affects Smad-independent pathways (known as non-canonical pathways), which are the mitogen-activated protein kinase (MAPK) cascades that include extracellular signal-regulated kinase 1 and 2 (ERK1/2), Jun N-terminal kinase (JNK) and p38 \(^{17, 18}\).

Dysregulation of TGF-\(\beta \) activity has been implicated in the pathogenesis of MFS \(^{19}\), and mutations in the genes encoding the TGF-\(\beta \) receptor type II (TGFBRII) and type I (TGFBRI) were identified in LDS \(^{20, 21}\). In MFS, it was proposed that defects in fibrillin-1 causes impaired tethering of the large latent complex (LLC), response to hemodynamics may be a key driver of pathogenesis of TAAs (Fig. 1; reviewed in \(^{9, 10}\)). In particular, abnormal mechanosensing of SMCs due to the loss of elastic laminae-SMC connections (Fig. 2) and the resultant alteration of actin cytoskeletal remodeling, play causative roles in the formation of aortic aneurysms \(^{11}\). These observations are consistent with the concept of an “elastin-contractile unit” that is involved in the mechanosensing of SMCs and maintenance of aortic wall integrity \(^{4, 12}\).

In this review, we will summarize the knowledge obtained from patients and mouse models (Table 1-3, respectively), and the underlying signaling pathways involved in pathogenesis of TAAs (Fig. 3). Finally, we will discuss current and future therapeutic strategies for TAAs.

Defective Fibrillin-1 and Activation of TGF-\(\beta \) Signaling in TAAs

The pathogenesis of MFS in humans and mouse models was initially suggested to be due to a weakening of the aortic wall as a result of abnormal fibrillin-1 \(^{3, 13}\). Subsequently, it was proposed that increased transforming growth factor beta (TGF-\(\beta \)) signaling was the primary cause of aneurysm formation (reviewed in \(^{14, 15}\)). TGF-\(\beta \) plays important roles in embryogenesis, development and normal tissue homeostasis by affecting cell proliferation and differentiation, and extracellular matrix (ECM) synthesis. Binding of TGF-\(\beta \) ligands to TGF-\(\beta \) receptors activates downstream signaling pathways, including the phosphorylation (\(\rho \)-) of Smad2 and Smad3 (known as canonical pathway), leading to the translocation of Smad4 into the nucleus and the activation of transcription of Smad-targeted genes \(^{16}\). Connective tissue growth factor (CTGF) and plasminogen-activator inhibitor-1 (PAI-1) are both well known target genes downstream of this canonical pathway and are involved in aortic wall remodeling. TGF-\(\beta \) also affects Smad-independent pathways (known as non-canonical pathways), which are the mitogen-activated protein kinase (MAPK) cascades that include extracellular signal-regulated kinase 1 and 2 (ERK1/2), Jun N-terminal kinase (JNK) and p38 \(^{17, 18}\).

Dysregulation of TGF-\(\beta \) activity has been implicated in the pathogenesis of MFS \(^{19}\), and mutations in the genes encoding the TGF-\(\beta \) receptor type II (TGFBRII) and type I (TGFBRI) were identified in LDS \(^{20, 21}\). In MFS, it was proposed that defects in fibrillin-1 causes impaired tethering of the large latent complex (LLC),
and die postnatally within the first two weeks). Mutations in genes encoding proteins in the TGF-β signaling pathway, including the TGF-β ligand \(\text{TGFB2} \), \(\text{SMAD3} \) and \(\text{SMAD4} \) were identified and shown to predispose affected individuals to thoracic aortic diseases. Interestingly, the causative mutations in these genes were shown to be loss-of-function mutations; however, paradoxical activation of TGF-β signaling was observed in the aorta of these MFS-related mouse models.

Surprisingly, treatment of these MFS mice with TGF-β neutralizing antibodies prevented progression of TAAs in some studies, while promoting aneurysm expansion in others. In addition, SMC-specific \(\text{Tgfbr2} \) disruption in \(\text{Fbn1C1039G/} \text{ʴ} \) mice showed activation of the non-canonical pathway and acceleration of aneurysm growth. It is interesting to note that \(\text{Ltbp3} \) deficiency prevented the aneurysm phenotype in \(\text{Fbn1}^{\text{mgR/mgR}} \) mice with reduced disruption of elastic fibers and decreased Erk1/2 and Smad2/3 activation. Thus, it is plausible that improper localization of the LLC to microfibrils mediated by LTBP3 contributes to progression of TAA in MFS.

Since the identification of fibrillin-1 as a gene responsible for syndromic TAAs, substantial progress has been made in identifying the altered signaling pathways in this disease, however, the mechanism by which is composed of proTGF-β dimers covalently bound to latent TGF-β binding proteins (LTBPs)-1, -3, or -4, to microfibrils. Active TGF-β is released from the LLC by activators such as integrin \(\alpha v \beta 6 \), thrombospondin-1 (TSP1), matrix metalloproteinases (MMPs) and reactive oxygen species (ROS). It was hypothesized that mutations in fibrillin-1 disrupt binding of the LLC to fibrillin-1 and increase bioavailability of TGF-β in the aortic wall.

Several mouse models of MFS have provided some clues regarding the molecular pathogenesis of thoracic aortic diseases. \(\text{Fbn1}^{\text{mgR/mgR}} \) mice, which have only 20% of the amount of normal fibrillin-1, were established as the first MFS mouse model. \(\text{Fbn1}^{\text{C1039G/} \text{ʴ}} \) mice, which harbor a disease-causing missense mutation in fibrillin-1, were also generated and recapitulated the aortic aneurysm phenotype. Both types of MFS mice showed upregulation of p-Smad2/3 (canonical pathway) and p-Erk1/2 (noncanonical pathway) as well as fragmentation of elastic laminae. The severity of the aortic aneurysm, however, differed between these MFS mice; \(\text{Fbn1}^{\text{C1039G/} \text{ʴ}} \) mice exhibit slowly progressing aortic root aneurysms but rarely showed dissection or rupture, whereas \(\text{Fbn1}^{\text{mgR/mgR}} \) mice showed a more severe phenotype with rapidly enlarging aortic root aneurysms and frequent dissections and/or ruptures. \(\text{Fbn1}^{-/-} \) mice exhibit the most severe aortic phenotype and die postnatally within the first two weeks. Mutations in genes encoding proteins in the TGF-β signaling pathway, including the TGF-β ligand \(\text{TGFB2} \), \(\text{SMAD3} \) and \(\text{SMAD4} \) were identified and shown to predispose affected individuals to thoracic aortic diseases. Interestingly, the causative mutations in these genes were shown to be loss-of-function mutations; however, paradoxical activation of TGF-β signaling was observed in the aorta of these MFS-related mouse models.

Surprisingly, treatment of these MFS mice with TGF-β neutralizing antibodies prevented progression of TAAs in some studies, while promoting aneurysm expansion in others. In addition, SMC-specific \(\text{Tgfbr2} \) disruption in \(\text{Fbn1}^{\text{C1039G/} \text{ʴ}} \) mice showed activation of the non-canonical pathway and acceleration of aneurysm growth. It is interesting to note that \(\text{Ltbp3} \) deficiency prevented the aneurysm phenotype in \(\text{Fbn1}^{\text{mgR/mgR}} \) mice with reduced disruption of elastic fibers and decreased Erk1/2 and Smad2/3 activation. Thus, it is plausible that improper localization of the LLC to microfibrils mediated by LTBP3 contributes to progression of TAA in MFS.

Since the identification of fibrillin-1 as a gene responsible for syndromic TAAs, substantial progress has been made in identifying the altered signaling pathways in this disease, however, the mechanism by
or how loss-of-function mutations in TGF-β components lead to heightened TGF-β activity.

which fibrillin-1 controls the bioavailability of TGF-β signaling has not been determined. Additionally, it is not known whether upregulation of TGF-β signaling pathway is the primary driver for TAA pathogenesis,

Table 1. Summary of selected time points with significant findings on MFS and TGF-β related TAAs studies.

Year	Description	Reference
1991	FBN1 (encoding fibrilin-1 protein) gene mutations cause Marfan syndrome.	Dietz et al. 3)
1997	Fibrillin-1 deficiency recapitulated vascular phenotype of Marfan syndrome in mice.	Pereira et al. 32)
1999	Dysfunction of fibrillin-1 mimic Marfan syndrome, generating Fbn1_−/− mice.	Pereira et al. 33)
2003	Identified the upregulation of TGF-β activity in Marfan syndrome.	Neptune et al. 19)
2004	Missense mutation of fibrillin-1 mimic Marfan syndrome, generating Fbn1C1039G/− mice.	Judge et al. 34)
2004-2005	Identification of TGFBRI and TGFBRII mutation driven Marfan syndrome.	Mizuguchi et al. 20)
2006	Angiotensin receptor blockade as therapeutic target in mice.	Loeys et al. 21)
2010	Identification of SMAD3 mutation cause aortic aneurysm.	Van de Laat et al. 30)
2012	Identification of TGFB2 mutation driven Marfan syndrome.	Lindsay et al. 36)
2015	Ltbp3 deficiency prevents aneurysm phenotype in Fbn1_−/− mice.	Zilberberg et al. 44)

Table 2. Summary of selected time points with important findings in familial TAAs studies.

Year	Description	Reference
2006	Mutation in MYH11 (encoding smooth muscle myosin heavy chain) cause a familial TAAD.	Zhu et al. 45)
2007	Mutations in ACTA2 (encoding α-SMA) lead to familial TAAD.	Guo et al. 48)
2010	Mutations in MLCK (myosin light chain kinase) cause familial TAAD.	Wang et al. 52)
2013	PRKG1 variant (p.R177Q) cause familial TAAD.	Guo et al. 53)
2016	Foxe3 deficiency reduced SMCs density and mutations predispose to TAAs.	Kuang et al. 54)
2017	Disruption of Acta2 in SMCs activate ROS and NF-κB signaling, leading At1r expression.	Chen et al. 51)

Table 3. Summary of selected time points with significant findings linked to TAAs and fibulin-4, fibulin-5 and LOX mediated elastic fibers disruption.

Year	Description	Reference
2002	Inactivation of LOX leads to aortic aneurysms in mice.	Maki et al. 6)
2002	Fibulin-5 is essential for elastic fiber assembly.	Yanagisawa et al. 67)
2006	ELN (encoding elastin protein) mutations cause aortic disease in patients with cutis laxa.	Szabo et al. 80)
2006	Fibulin-4 knockout mice abolished elastogenesis and are embryonic lethal.	McLaughlin et al. 7)
2006	Fibulin-4 is necessary for elastic fiber formation and connective tissue development.	Huchtagowder et al. 77)
2007	Fibulin-4 knockout mice showed dilatation, tortuous ascending aorta.	Hanada et al. 79)
2007	Mutations in FBLN4 cause aortic aneurysm.	Dasouki et al. 78)
2010	Smooth muscle specific deletion of Fbln4 cause TAAs. Generating Fbln4SMKO mice.	Huang et al. 83)
2013	Losartan prevent aortic aneurysm in Fbln4SMKO mice.	Huang et al. 84)
2015	Abnormal mechanosensing in SMCs initiate aneurysm formation in Fbln4SMKO mice.	Yamashiro et al. 11)
Alteration of SMC Contractile Apparatus in TAAs

Familial thoracic aortic aneurysms and dissections (familial TAAD) are autosomal dominant disorders and refer to an inherited predisposition to thoracic aortic disease in the absence of syndromic features. Mutations in the MYH11 gene, which encodes for the thick filaments in the smooth muscle-specific isoform of myosin heavy chain, were identified in familial TAAD with patent ductus arteriosus (PDA)\(^4^5, 46\). These mutations led to deletion of the C-terminal region of \(\text{MYH11}\) and were predicted to decrease myosin motor activity. A rare variant of \(\text{MYH11R247C}\) was also reported in TAAD and mice carrying homozygous \(\text{Myh11R247C}\) were generated\(^47\). The \(\text{Myh11R247C}\) mice exhibited decreased aortic contraction but no aortic aneurysms; however, they developed severe neo-intima formation after injury due to an increased proliferation of SMCs. In addition, \(\text{ACTA2}\), which encodes the SMC-specific isoform of \(\eta\)-actin, was also identified as a causal gene in familial TAAD\(^48\). Although \(\text{Acta2}\) null mice did not develop aortic aneurysms, they showed compromised vascular contractile force,
tone and blood flow\(^9\), as well as increased neointima formation after vascular injury due to proliferation of SMCs and activation of focal adhesion kinase (FAK)\(^50\). Furthermore, it has recently been shown that Acta2-null mice have increased angiotensin II (Ang II) signaling in a ligand-independent manner. Loss of SM-actin led to an increase in ROS generation and an upregulation of Ang II type 1a receptor (Agtr1a) expression, thereby increasing the sensitivity to Ang II by 100-fold in SMCs\(^31\). These studies indicate that mutations in SMC contractile genes not only affect contractile force generation but also alter the intrinsic properties of SMCs.

Other mutations linked to familial TAAD are dominant negative mutations in the gene encoding for the myosin light chain kinase (MYLK), which controls SMC contraction\(^32\). One PRKG1 variant (p.R117Q), which encodes a type I cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG1) that is activated upon binding of cGMP and controls SMC relaxation, was also identified as a causal mutation in TAAD\(^53\). Additionally, in the forkhead family of transcription factors, forkhead box E3 (FOXE3) mutations have been reported in TAAD. Foxe3\(^/-^-\) mice had decreased SMC density in the aortic media and increased SMC apoptosis leading to dysfunction of the aortic wall\(^54\). Mechanistically, these mutations lead to reduction of SMC contraction.

Rare variants in MFAP5 (encoding Microfibril-Associated Glycoprotein 2, MAGP2) and MAT2A (encoding methionine adenosyltransferase 2A) have also been found in TAAD\(^8, 55\). MFAP5 is a component of elastic fibers and associates with the microfibrils. Although the Mfap5 knockout alone did not show an obvious phenotype, double knockout mice for Mfap5 and Mfap2, which encode an evolutionary-related protein known as MAGP1, caused age-dependent aortic dilation\(^56\). MAT2A is involved in the synthesis of S-adenosylmethionine, which serves as a methyl group donor for methylation reaction \textit{in vivo}. In both cases, the alteration of these genes caused haploinsufficiency or loss-of-function and predispose the affected individuals to TAAD.

In the aortic wall, endothelial cells (ECs) and SMCs constantly interact with each other, either directly or in a paracrine fashion. Nitric oxide (NO) is involved in vascular tone\(^57\) and is produced from L-arginine by a calcium-dependent endothelial nitric oxide synthase (NOS-3; known as eNOS). NO regulates the degree of SMC contraction by stimulating soluble guanylyl cyclase (sGC), which generates cyclic GMP and activates protein kinase G, thereby activating myosin light chain phosphatase (MLCP) and causing SMC relaxation\(^58\). Endothelial dysfunction causes altered NO production, increased aortic wall stiffness and increased pulse wave velocity\(^59\). Such endothelial dysfunction has been reported in MFS patients\(^60, 61\) and in the Fbn1C1039G/+ mice\(^62\). However, how the dysregulation of endothelial cells and NO signaling contribute to the development of TAAs remains unexplored.

Disruption of Elastic Fibers in TAAs

Elasticity is provided by elastic fibers, which play a crucial role by maintaining structural integrity in the medial layer of the aorta. The major components of elastic fibers are polymerized elastin and microfibrils (consisting predominantly of fibrillin-1). Normally, monomers of elastin, known as tropoelastin, form small aggregates (known as coacervates), that are transported to and deposited onto microfibrils. These elastin aggregates are then cross-linked by lysyl oxidase (LOX) to form mature, insoluble elastic fibers\(^63\). Fibulins (FBLNs) play a critical role in elastic fiber assembly, and to date, seven members of the FBLN family have been identified\(^64, 65\). Among these members, FBLN3, 4 and 5 possess high homology to each other and are involved in elastic fiber assembly\(^7, 66-68\). An immuno-electron microscopy (EM) study showed that fibulin-4 is localized on microfibrils and fibulin-5 on elastin\(^69\). Subsequent research revealed that fibulin-5 promotes coacervation of tropoelastin and its deposition onto microfibrils\(^70\) by interacting with LTBP-4, thereby leading to cross-linking and elastic fiber assembly\(^71, 72\). In addition, Lox and Loxl1 (lysyl oxidase-like protein 1) are recruited to elastic fibers in a fibulin-4-dependent and fibulin-5-dependent manner, respectively\(^73, 74\). Inactivation or loss-of-function mutations of LOX reduces the crosslinking of collagen and elastin and causes aortic aneurysms\(^75\).

Although elastic fiber disruption was frequently observed in the aneurysmal wall of MFS patients, MFS mouse models\(^76\) and FBLN4 deficiency\(^77-79\), an aneurysm phenotype was uncommon in patients with mutations in ELN (encoding elastin protein)\(^80\). In addition, Eln deficiency in mice led to increased SMC proliferation and thickening of the aortic wall with narrowing of the lumen\(^81\). Similarly, aortic aneurysms were never observed in mice deficient in Fibulin-5 (Fibln5) or in cfitis laxa patients with FBLN5 deficiency\(^67, 82\). These observations suggest that a disrupted elastin core is not sufficient to cause TAAs and that elastin and microfibrils have distinct roles in protecting the vessel wall from the development of TAAs.
Loss of Elastin-Contractile Units Results in Abnormal Mechanosensing of SMCs in TAA

SMC-specific deletion of Fbln4 in mice (Fbln4^{SMKO}), showed ascending aortic aneurysms with marked disruption of elastic fibers, thickened medial wall, increased phosphorylation of ERK1/2 signaling and decreased expression of SMC differentiation markers⁸⁵. In addition, angiotensin-converting enzyme (ACE) was highly expressed in the aneurysmal walls and subsequent activation of angiotensin II signaling in the aortic wall was responsible for driving the aneurysm phenotype⁸⁴. In this Fbln4^{SMKO} model, aneurysms are completely prevented by administration of an ACE inhibitor or angiotensin II type 1 receptor (AT1R) blockade (ARB) within the first month of life. ARB treatment initiated after the establishment of an aneurysm did not reverse the aneurysm phenotype, indicating that the signals required for maintenance of aneurysms might be independent of angiotensin II-AT1R⁸⁴. Furthermore, the actin depolymerizing factor cofillin, which severs polymerized actin and triggers disassembly of actin fibers, was activated (=dephosphorylated) by its phosphatase slingshot-1 (Ssh1), resulting in accelerated actin remodeling^{11, 85}. In the Fbln4^{SMKO} aneurysmal wall, the ratio of monomeric actin (G-actin) to filamentous actin (F-actin) was significantly increased compared to control mice¹³. The increased G-actin potentially affects aneurysm expansion by sequestering myosin regulatory light chain 2 (MLC2) in the cytoplasm and inhibiting its binding to the transcriptional co-activator serum response factor (SRF), which induces the transcription of SMC contractile genes, including Acta2, Myh11 and Cnn1 (calponin 1)⁸⁶. Similarly, mice that have integrin-linked kinase (ILK) deletion in vascular SMCs (SM22Cre^{Ilk^{Fl/Fl}}) showed aneurysmal dilatation, alteration in RhoA/Rho-associated protein kinase (ROCK) signaling, decreased F-actin and abnormal localization of MRTF-A⁸⁷. ILK is located at focal adhesions and links the ECM to the actin cytoskeleton via β1- and β3-integrins. Since integrin cytoplasmic domains lack actin-binding sites and enzymatic activity, signaling is propagated through a series of linker proteins including vinculin, paxillin, talin, α-actinin and kinases such as FAK and ILK (reviewed in⁸⁸⁻⁹⁰). Therefore, deletion of ILK in vascular SMCs may lead to the impaired activation of RhoA/ROCK and down-regulation of SMC contractile genes due to reduced nuclear MRTF-A.

Interestingly, disruption of elastic laminae-SMC connections was observed in Fbln4^{SMKO} aortas, along with a remarkable, moth eaten-like, irregular appearance of the elastin located between the SMC layers (Fig. 2). In wild-type aortas, extensive connections exist between the elastic laminae and SMCs via elastin extensions and cell surface receptors, such as integrin receptors. The elastin extensions attach to the cell surface at the sites of membrane-associated dense plaques; sites where intracellular actin filaments attached to cell membrane⁸³. This “elastin-contractile unit” of the aorta plays a critical role in the proper transmission of the mechanical force between elastic laminae and SMCs (Fig. 2). Disruption of genes involved in the extracellular or intracellular portion of the elastin-contractile unit have been shown to lead to aortic aneurysms in humans and mice (reviewed in⁹⁰). In Fbln4^{SMKO} aortas, mechanosensitive molecules such as early growth response 1 (Egr1), ACE and TSP1, all of which were shown to respond to pressure overload of the aorta, were highly up-regulated, and phosphorylation of cofilin was significantly decreased (=activated) in the aneurysmal wall¹¹. These observations suggested that a loss of elastin-contractile units resulted in abnormal mechanosensing of the Fbln4^{SMKO} aortas. The fact that down-regulation of Shh1 by a phosphatidylinositol-3 kinase (PI3K) inhibitor led to an increase in phosphorylated cofilin and prevented the aneurysms expansion in Fbln4^{SMKO} mice, indicates that abnormal mechanosensing may be driving the aneurysmal phenotype. Similarly, it was reported that impaired microfibril-cardiomyocyte connections in Fbn1^{C1039G}/^{C1039G} mice caused down-regulation of phosphorylated FAK and affected intracellular signaling in the heart⁹². Furthermore, compound heterozygous mice for Fbn1 and Igtb1 (encoding the integrin β1 gene) developed cardiomyopathy while Fbn1^{C1039G}- mice appeared normal⁹². We speculate that in the aorta, the elastin-contractile units composed of elastin extensions, SMC receptors and actin filaments, form a structural and functional unit that transmits mechanical stress from the ECM to the SMCs, as well as maintains cellular tension through actin cytoskeletal remodeling.

Prospective Strategies for Treatment of TAA

Current therapeutic strategies to treat TAAs are limited to surgical endovascular procedures such as stent grafts and aortic replacements⁹³. So far, effective therapeutic strategies based on the etiology of each TAA type have not been established. Further understanding of the underlying mechanism of TAAs is required to establish an effective treatment for TAAs.

In the Fbn1^{C1039G}/^{C1039G} mice, treatment with losartan (ARB) prevented aortic root enlargement from exceeding normal levels and recovered pathologic changes, such as elastic fiber fragmentation, in the medial layer⁹⁰. The first prospective trial was reported in 2008; losar-
Aortic root growth in young children with severe MFS)94). Although this trial was a small cohort study with only 18 patients, the success of losartan to prevent TAA in MFS patients led to the initiation of randomized trials of losartan worldwide. In 2013, an open-label, randomized controlled trial was conducted as a series of double-blind trials, which assessed 235 MFS patients over the age of 18 years. This trial reported that losartan reduced the aortic dilatation rate in the ascending aorta in patients who had undergone aortic root replacement95). Subsequent analyses revealed that MFS patients with FBN1 haploinsufficiency seem to be more responsive to losartan therapy for the inhibition of aortic root growth compared with dominant-negative patients96). The largest randomized trial, which enrolled 608 patients with MFS between the ages of 6 months to 25 years, demonstrated that both groups treated with losartan or atenolol (β blocker) showed a decrease in the growth of aortic root with no significant difference between the groups97). Recent trials from European countries comparing losartan to β blockers or placebo reached similar conclusions98, 99).

A more recent study in Fbn1mgR/mgR mice showed that neither losartan nor TGF-β neutralizing antibodies prevented aneurysm formation; however, a combination of both treatments starting at postnatal day (P)16 and P45, respectively, effectively prevented aortic aneurysms in these mice42). Other potential therapeutic targets that have been identified include MMPs and PI3K. Inhibition of MMP activity by doxycycline and deletion of Mmp2 gene attenuated aneurysm formation in the Fbn1C0395Δ and Fbn1mgR/mgR mice100), and two PI3K inhibitors, Wortmannin and LY294002, independently prevented TAA progression in the Fbn1SMKO mice11). It is therefore likely that a multidrug regimen targeting various molecular pathways will be required to prevent TAs.

Conclusion

For the past 20 years, hyperactivation of TGF-β signaling pathways, disruption of the vascular SMCs contractile apparatus and impairment of ECM synthesis have been identified as causal events for TAs. Molecular signaling pathways have been linked to initiation of TAs although it is still debated whether these pathways converge into a common pathway or are independent of each other (Fig. 3). Currently, we have not established effective therapeutic strategies based on the etiology of each TAA type. Accumulating recent reports suggest that studying a better understanding of the mechanobiology of SMCs will shed light on advanced therapeutic strategies based on the underlying pathophysiology of TAs.

Acknowledgement

The authors thank Christina Papke, Rachel Sides, and Elaine Davis for critical reading of the manuscript and valuable comments. The work in Yanagisawa laboratory was supported in part by MEXT KAKENHI (Grant Number JP 17H04289), The Naito Foundation, Astellas Foundation for Research on Metabolic Disorders, and the National Institutes of Health (R01HL 106305) to HY and Grants-in-Aid for Young Scientists (B) (Grant Number 15K20898), Japan Heart Foundation Research Grant, The Inamori Foundation and Japan Foundation for Applied Enzymology to YY.

Conflicts of Interest

None.

References

1) Davis FM, Rateri DL and Daugherty A: Abdominal aortic aneurysm: novel mechanisms and therapies. Curr Opin Cardiol, 2015; 30: 566-573
2) Brangsch J, Reimann C, Colletti F, Buchert R, Botnar RM and Makowski MR: Molecular Imaging of Abdominal Aortic Aneurysms. Trends Mol Med, 2017; 23: 150-164
3) Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Paffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, Stetten G, Meyers DA and Francomano CA: Marfan-Syndrome Caused by a Recurrent Denovo Missense Mutation in the Fibrillin Gene. Nature, 1991; 352: 337-339
4) Karimi A and Milewicz DM: Structure of the Elastin-Contractile Units in the Thoracic Aorta and How Genes That Cause Thoracic Aortic Aneurysms and Dissections Disrupt This Structure. Can J Cardiol, 2016; 32: 26-34
5) Milewicz DM, Prakash SK and Ramirez F: Therapeutics Targeting Drivers of Thoracic Aortic Aneurysms and Acute Aortic Dissections: Insights from Predisposing Genes and Mouse Models. Annu Rev Med, 2017; 68: 51-67
6) Maki JM: Inactivation of the Lysyl Oxidase Gene Lox Leads to Aortic Aneurysms, Cardiovascular Dysfunction, and Perinatal Death in Mice. Circulation, 2002; 106: 2503-2509
7) McLaughlin PJ, Chen Q, Horiguchi M, Starcher BC, Stanton JB, Broekelmann TJ, Marmorstein AD, McKay B, Mecham R, Nakamura T and Marmorstein LY: Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice. Mol Cell Biol, 2006; 26: 1700-1709
8) Barbier M, Gross MS, Aubart M, Hanna N, Kessler K,
Guo DC, Tosolini L, Ho-Tin-Noe B, Regalado E, Varret M, Abifadel M, Milleron O, Odent S, Dupuis-Girod S, Faivre L, Edouard T, Dulac Y, Busa T, Gouya L, Milewicz DM, Jondeau G and Boileau C: MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections. Am J Hum Genet, 2014; 95: 736-743

9) Humphrey JD, Milewicz DM, Tellides G and Schwartz MA: Dysfunctional Mechano-sensing in Aneurysms. Science, 2014; 344: 476-478

10) Humphrey JD, Schwartz MA, Tellides G and Milewicz DM: Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ Res, 2015; 116: 1448-1461

11) Yamashiro Y, Papke CL, Kim J, Ringuette LJ, Zhang QJ, Liu ZP, Mirzaei H, Wagenseil JE, Davis EC and Yanagisawa H: Abnormal mechano-sensing and cofilin activation promotes the progression of ascending aortic aneurysms in mice. Science Signaling, 2015; 8:

12) Davis EC: Smooth muscle cell to elastic lamina connections in developing mouse aorta. Role in aortic medial organization. Lab Invest, 1993; 68: 89-99

13) Dietz HC and Perytz RE: Mutations in the Human Gene for Fibrillin-1 (Fbn1) in the Marfan-Syndrome and Related Disorders. Human Molecular Genetics, 1995; 4: 1799-1809

14) Lindsay ME and Dietz HC: Lessons on the pathogenesis of aneurysm from heritable conditions. Nature, 2011; 473: 308-316

15) Andelfinger G, Loey B and Dietz H: A Decade of Discovery in the Genetic Understanding of Thoracic Aortic Disease. Can J Cardiol, 2016; 32: 13-25

16) Derynck R and Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 2003; 425: 577-584

17) Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM and Derynck R: TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J, 2007; 26: 3957-3967

18) Yamashita M, Fatyol K, Jin C, Wang X, Liu Z and Zhang YE: TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell, 2008; 31: 918-924

19) Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY and Dietz HC: Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet, 2003; 33: 407-411

20) Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T, Allard D, Varret M, Claustres M, Morisaki H, Ihara M, Kinoshita A, Yoshiura K, Junien C, Kajii T, Jondeau G, Ohta T, Kishino T, Furukawa Y, Nakamura Y, Niikawa N, Boileau C and Matsumoto N: Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet, 2004; 36: 855-860

21) Loey B, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N, Xu FL, Myers LA, Spevak PJ, Cameron DE, De Backer J, Hellemans J, Chen Y, Davis EC, Webb CL, Wess K, Coucke P, Rifkin DB, De Paepe AM and Dietz HC: A syndrome of altered cardiovascular, craniofacial, neuro-cognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet, 2005; 37: 275-281

22) Saharinen J and Keski-Oja J: Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBP, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell, 2000; 11: 2691-2704

23) Isohagi Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, Charbonneau NL, Reinhardt DP, Rifkin DB and Sakai LY: Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibrill-associated protein. J Biol Chem, 2003; 278: 2750-2757

24) Wipff PJ and Hinz B: Integrins and the activation of latent transforming growth factor beta 1 - An intimate relationship. European Journal of Cell Biology, 2008; 87: 601-615

25) Dong XC, Zhao B, Iacob RE, Zhu JH, Kolsak AC, Lu CF, Engen JR and Springer TA: Force interacts with macromolecular structure in activation of TGF-beta. Nature, 2017; 542: 55+4

26) Schulzcherry S and Murphyuhrich JE: Thrombospondin Causes Activation of Latent Transforming Growth-Factor-Beta Secreted by Endothelial-Cells by a Novel Mechanism. Journal of Cell Biology, 1993; 122: 923-932

27) Yu Q and Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes & Development, 2000; 14: 163-176

28) Ge GX and Greenspan DS: BMP1 controls TGF beta 1 activation via cleavage of latent TGF beta-binding protein. Journal of Cell Biology, 2006; 175: 111-120

29) Barcellos-Hoff MH and Dixa TA: Redox-mediated activation of latent transforming growth factor-beta 1. Molecular Endocrinology, 1996; 10: 1077-1083

30) Horiguchi M, Ota M and Rifkin DB: Matrix control of transforming growth factor-beta function. J Biochem, 2012; 152: 321-329

31) Rifkin DB: Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta activity. J Biol Chem, 2005; 280: 7409-7412

32) Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R, Reinhardt DP, Sakai LY, Biery NJ, Bunton T, Dietz HC and Ramirez F: Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nature Genetics, 1999; 7: 178-182

33) Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, Biery NJ, Dietz HC, Sakai LY and Ramirez F: Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-I. Proceedings of the National Academy of Sciences of the United States of America, 1999; 96: 3819-3823

34) Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY and Dietz HC: Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. Journal of Clinical Investigation, 2004; 114: 172-181

35) Carta L, Smaldone S, Zilberberg L, Loch D, Dietz HC, Rifkin DB and Ramirez F: p38 MAPK is an early determinator of promiscuous Smad2/3 signaling in the aortas
of fibrillin-1 (Fbn1)-null mice. J Biol Chem, 2009; 284: 5630-5636
36) Lindsay ME, Schepers D, Bolar NA, Doyle JJ, Gallo E, Fert-Bober J, Kempers MJ, Fishman EK, Chen Y, Myers L, Bjeda D, Oswald G, Elias AF, Levy HP, Anderlid BM, Yang MH, Bongers EM, Timmermans J, Braverman AC, Canham N, Mortier GR, Brunner HG, Byers PH, Van Eyk J, Van Laer L, Dietz HC and Loeys BL: Loss-of-function mutations in TGFβ2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet, 2012; 44: 922-927
37) Boileau C, Guo DC, Hanna N, Regalado ES, Detaing D, Gong L, Varret M, Prakash SK, Li AH, d’Indy H, Braverman AC, Grandchamp B, Kwartzler CS, Gouy L, Santos-Cortez RL, Abifadel M, Leal SM, Mutl C, Shendure J, Gross MS, Rieder MJ, Vahanian A, Nickerson DA, Michel JB, National Heart L, Blood Institute Go Exome Sequencing P, Jondeau G and Milewicz DM: TGFβ2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet, 2012; 44: 916-921
38) van de Laar IM, Oldenburg RA, Pols G, Roos-Hesselink JW, de Graaf BM, Verhagen JM, Hoedemaekers YM, Willemens R, Severijnen LA, Venselaar H, Vriend G, Pattynama PM, Collee M, Majoors-Krakauer D, Poldermans D, Frohn-Mulder IM, Micha D, Timmermans J, Hilhorst-Hofstee Y, Bierma-Zeinstra SM, Willems PJ, Kroos JM, Oei EH, Oostera BA, Wessels MW and Bertolli X: Smad4 Deficiency in Smooth Muscle Cells Initiates the Formation of Aortic Aneurysm. Circ Res, 2016; 118: 388-399
39) Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu GS, Calvi C, Podowski M, Neunte ER, Halushka MK, Bedja D, Gabrielsson K, Rifkin DB, Carta L, Ramirez F, Huesa DL and Dietz HC: Lossartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science, 2006; 312: 117-121
40) Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, van Erp E, Lindsay ME, Kim D, Schoenhoff F, Cohn RD, Loeys BL, Thomas CJ, Pathaik S, Marugan JJ, Judge DP and Dietz HC: Noncanonical TGFβeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science, 2011; 332: 358-361
41) Cook JR, Clayton NP, Carta L, Galatioto J, Chiu E, Smaldone S, Nelson CA, Cheng SH, Wentworth BM and Ramirez F: Dimorphic Effects of Transforming Growth Factor-beta Signaling During Aortic Aneurysm Progression in Mice Suggest a Combinatorial Therapy for Marfan Syndrome. Arteriosclerosis Thrombosis and Vascular Biology, 2015; 35: 911-U195
42) Li W, Li Q, Jiao Y, Qin L, Ali R, Zhou J, Ferruzzi J, Kim RW, Geirsson A, Dietz HC, Offermanns S, Humphrey JD and Tellides G: Tgfb2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. J Clin Invest, 2014; 124: 755-767
43) Zilberberg L, Phoon CKL, Robertson I, Dabovic B, Ramirez F and Rifkin DB: Genetic analysis of the contribution of LTBP-3 to thoracic aneurysm in Marfan syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2015; 112: 14012-14017
44) Zhu L, Vranckx R, Khau Van Kien P, Lalande A, Boisset N, Mathieu F, Wegman M, Glancy L, Gasc JM, Brunotte F, Bruneval P, Wolf JE, Michel JB and Jeunemaitre X: Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet, 2006; 38: 343-349
45) Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, Guo D, Estrella AL, Safi HJ, Brasier AR, Vick GW, Marian AJ, Raman CS, Buja LM and Milewicz DM: MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet, 2007; 16: 2453-2462
46) Kuang SQ, Kwartzler CS, Byanova KL, Pham J, Gong L, Prakash SK, Huang J, Kamm KE, Stull JT, Sweeney HL and Milewicz DM: Rare, nonsynonymous variant in the smooth muscle-specific isoform of myosin heavy chain, MYH11, R247C, alters force generation in the aorta and phenotype of smooth muscle cells. Circ Res, 2012; 110: 1411-1422
47) Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, Bourgeois S, Estrella AL, Safi HJ, Sparks E, Amor D, Ades L, McConnell V, Willoughby CE, Abuelo D, Willing M, Lewis RA, Kim DH, Scherer S, Tunng PP, Ahn C, Buja LM, Raman CS, Shete SS and Milewicz DM: Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet, 2007; 39: 1488-1493
48) Schöldmeyer LA, Braun R, Taffet G, Debiasi M, Burns AE, Bradley A and Schwartz RJ: Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. FASEB J, 2000; 14: 2213-2220
49) Papke CL, Cao J, Kwartzler CS, Villamizar C, Byanova KL, Lim SM, Sreenivasappa H, Fischer G, Pam J, Rees M, Wáng M, Chaponnier C, Gabbiani G, Khakoo AY, Chandra J, Trache A, Zimmer W and Milewicz DM: Smooth muscle hyperplasia due to loss of smooth muscle alpha-actin is driven by activation of focal adhesion kinase, altered p53 localization and increased levels of platelet-derived growth factor receptor-beta. Hum Mol Genet, 2013; 22: 3123-3137
50) Chen J, Peters AM, Papke CL, Villamizar C, Ringuette LJ, Cao J, Wang M, Sa M, Sa G, Giong L, Byanova K, Xiong J, Zhu MX, Madonna R, Kee P, Geng YJ, Brasier A, Davis EC, Prakash SK, Kwartzler CS and Milewicz DM: Loss of Smooth Muscle alpha-actin Leads to NF-kappaB-Dependent Increased Sensitivity to Angiotensin II in Smooth Muscle Cells and Aortic Enlargement. Circ Res, 2017;
51) Wang L, Guo DC, Cao J, Gong L, Kamm KE, Regalado E, Li L, Shete S, He WQ, Zhu MS, Offermanns S, Gilchrist D, Elefteriades J, Stull JT and Milewicz DM: Mutations in myosin light chain kinase cause familial...
aortic dissections. Am J Hum Genet, 2010; 87: 701-707

53) Guo DC, Regalado E, Castell DE, Santos-Cortez RL, Gong L, Kim JJ, Dyack S, Horne SG, Chang G, Jon- deau G, Boileau C, Coselli JS, Li Z, Leaf SM, Shendure J, Rieder MJ, Bamshad MJ, Nickerson DA, Gen TACRC, National Heart L, Blood Institute Grand Opportunity Exome Sequencing P, Kim C and Milewicz DM: Recurrent gain-of-function mutation in PRKG1 causes thoro-racic aortic aneurysms and acute aortic dissections. Am J Hum Genet, 2013; 93: 398-404

54) Kuang SQ, Medina-Martinez O, Guo DC, Gong L, Regalado ES, Reynolds CL, Boileau C, Jondeau G, Prakash SK, Kwartler CS, Zhuo LY, Peters AM, Duan XY, Bamshad MJ, Shendure J, Nickerson DA, Santos-Cortez RL, Dong X, Leaf SM, Majesky MW, Swindell EC, Jam- rich M and Milewicz DM: FOXE3 mutations predis-pose to thoracic aortic aneurysms and dissections. J Clin Invest, 2016; 126: 948-961

55) Guo DC, Gong L, Regalado ES, Santos-Cortez RL, Zhao R, Cai B, Veeraraghavan S, Prakash SK, Johnson RJ, Mullenburg A, Willing M, Jondeau G, Boileau C, Panu H, Moran R, Debacker J, Gen TACRC Investigators NHL, Blood Institute Go Exome Sequencing P, Montalcino Aortic C, Bamshad MJ, Shendure J, Nickerson DA, Leaf SM, Raman CS, Swindell EC and Milewicz DM: MAT2A mutations predispose individuals to thoracic aortic aneu-rysms. Am J Hum Genet, 2015; 96: 170-177

56) Combs MD, Knutson RH, Broekelmann TJ, Toenness HM, Brett TJ, Miller CA, Kober DL, Craft CS, Atkin- son JJ, Shipley JM, Trask BC and Mecham RP: Microfi- bril-associated glycoprotein 2 (MAGP2) loss of function has pleiotropic effects in vivo. J Biol Chem, 2013; 288: 28869-28880

57) Zhao Y, Vanhoutte PM and Leung SW: Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci, 2015; 129: 83-94

58) Hussain MB, Hobbs AJ and MacAllister RJ: Autoregula- tion of nitric oxide-soluble guanylate cyclase-cyclic GMP signalling in mouse thoracic aorta. Br J Pharmacol, 1999; 128: 1082-1088

59) Hadi HA, Carr CS and Al Suwaidi J: Endothelial dysfunc-tion: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag, 2005; 1: 183-198

60) Wilson DG, Bellamy MF, Ramsey MW, Goodfellow J, Brownlee M, Davies S, Wilson JF, Lewis MJ and Stuart AG: Endothelial function in Marfan syndrome - Selective impairment of flow-mediated vasodilation. Circulation, 1999; 99: 909-915

61) Takata M, Amiya K, Watanabe M, Omori K, Imai Y, Fujita D, Nishimura H, Kato M, Morota T, Nawata K, Ozeki A, Watanabe A, Kawarasaki S, Hosoya Y, Nakao T, Maemura K, Nagai R, Hirata Y and Komuro I: Impairment of flow-mediated dilation correlates with aortic dilation in patients with Marfan syndrome. Heart Ves-sels, 2014; 29: 478-485

62) Chung AW, Au Yeung K, Cortes SF, Sandor GG, Judge DP, Dietz HC and van Bremen C: Endothelial dysfunction and compromised eNOS/Akt signaling in the thoracic aorta during the progression of Marfan syndrome. Br J Pharmacol, 2007; 150: 1075-1083

63) Wagenseil JE and Mecham RP: New insights into elastic fiber assembly. Birth Defects Res C Embryox Today, 2007; 81: 229-240

64) Argraves WS, Greene LM, Cooley MA and Gallagher WM: Fibulins: physiological and disease perspectives. EMBO Rep, 2003; 4: 1127-1131

65) de Vega S, Iwamoto T and Yamada Y: Fibulins: multiple roles in matrix structures and tissue functions. Cell Mol Life Sci, 2009; 66: 1890-1902

66) McLaughlin PJ, Bakall B, Choi J, Liu Z, Sasaki T, Davis EC, Marmorstein AD and Marmorstein LY: Lack of fibul-in-3 causes early aging and herniation, but not macu-lar degeneration in mice. Hum Mol Genet, 2007; 16: 3059-3070

67) Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagi-sawa M, Richardson JA and Olson EN: Fibulin-5 is an elastin-binding protein essential for elastic fibre develop-ment in vivo. Nature, 2002; 415: 168-171

68) Nakamura T, Lozano PR, Ikeda Y, Iwanga Y, Hinek A, Minamisawa S, Cheng CF, Kobuke K, Dalton N, Takada Y, Tashiro K, Ross Jr J, Honjo T and Chien KR: Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature, 2002; 415: 171-175

69) Kobayashi N, Kostka G, Garbe JH, Keene DR, Bach-inger HP, Hanisch FG, Markova D, Tsuda T, Timpl R, Chu ML and Sasaki T: A comparative analysis of the fibul-in protein family. Biochemical characterization, binding interactions, and tissue localization. J Biol Chem, 2007; 282: 11805-11816

70) Hirai M, Ohbayashi T, Horiguchi M, Ohkawa K, Hag-iwarra A, Chien KR, Kita T and Nakamura T: Fibulin-5/ DANCE has an elastogenic organizer activity that is abro-gated by proteolytic cleavage in vivo. J Cell Biol, 2007; 176: 1061-1071

71) Hirai M, Horiguchi M, Ohbayashi T, Kita T, Chien KR and Nakamura T: Latent TGF-beta-binding protein 2 binds to DANCE/fibulin-5 and regulates elastic fiber assembly. EMBO J, 2007; 26: 3283-3295

72) Noda K, Dabovic B, Takagi K, Inoue T, Horiguchi M, Hirai M, Fujikawa Y, Akama TO, Kusumoto K, Zilber-berg L, Sakai LY, Koli K, Naitoh M, von Melchner H, Suzuki S, Rifkin DB and Nakamura T: Latent TGF-beta binding protein 4 promotes elastic fiber assembly by interacting with fibulin-5. Proc Natl Acad Sci U S A, 2013; 110: 2852-2857

73) Horiguchi M, Inoue T, Ohbayashi T, Hirai M, Noda K, Marmorstein LY, Yabe D, Takagi K, Akama TO, Kita T, Kimura T and Nakamura T: Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc Natl Acad Sci U S A, 2009; 106: 19029-19034

74) Liu XQ, Zhao Y, Gao JG, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J and Li TS: Elastic fiber homeo-stasis requires lysyl oxidase-like 1 protein. Nature Genet-ics, 2004; 36: 178-182

75) Lee VS, Halabi CM, Hoffman EP, Carmichael N, Leshchiner I, Lian CG, Bierhals AJ, Vuzman S, Brigham M, Genomic M, Mecham RP, Frank NY and Stitziel NO: Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans. Proc Natl Acad Sci U S A, 2016; 113: 8759-8764

76) Dietz HC: TGF-beta in the pathogenesis and prevention of disease: a matter of aneurysmic proportions. Journal
of Clinical Investigation, 2010; 120: 403-407

77) Huchagowder V, Sausgruber N, Kim KH, Angle B, Marmorstein LY and Urban Z: Fibrin-4: a novel gene for an autosomal recessive cutis laxa syndrome. Am J Hum Genet, 2006; 78: 1075-1080

78) Dasouki M, Markova D, Garola R, Sasaki T, Charbonneau NL, Sakai LY and Chu ML: Compound heterozygous mutations in fibrin-4 causing neonatal lethal pulmonary artery occlusion, aortic aneurysm, arachnodactyly, and mild cutis laxa. Am J Med Genet A, 2007; 143A: 2635-2641

79) Hanada K, Vermeier M, Garinis GA, de Waard MC, Kunen MG, Myers L, Maas A, Duncker DJ, Meijers C, Dietz HC, Kanaar R and Essers J: Perturbations of vascular homeostasis and aortic valve abnormalities in fibrin-4 deficient mice. Circ Res, 2007; 100: 738-746

80) Szabo Z, Crepeau MW, Mitchell AL, Stephan MJ, Puntel RA, Yin Yoke K, Kirk RC and Urban Z: Aortic aneurysmal disease and cutis laxa caused by defects in the elastin gene. J Med Genet, 2006; 43: 255-258

81) Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, Eichwald E and Keating MT: Elastin is an essential determinant of arterial morphogenesis. Nature, 1998; 393: 276-280

82) Lacro RV, Dietz HC, Sleeper LA, Yetman AT, Bradley TJ, Colan SD, Pearson GD, Selamet Tierney ES, Levine JC, Arz AM, Benson DW, Braverman AC, Chen S, De Backer J, Gelb BD, Grossfeld PD, Klein GL, Lai WW, Liou A, Loeyls BL, Markham LW, Olson AK, Paridon SM, Pemberton VL, Pierpont ME, Pyeritz RE, Radoszewski E, Roman MJ, Sharkey AM, Stylianou MP, Wechsler SB, Young LT, Mahony L and Pediatric Heart Network I: Atenolol versus losartan in children and young adults with Marfan's syndrome. N Engl J Med, 2014; 371: 2061-2071

83) Huchagowder V, Papke CL, Ikeda Y, Lin Y, Patel M, Inagami T, Le VP, Wagenseil JE and Yang H: Angiotensin-converting enzyme-induced activation of local angiotensin signaling is required for ascending aortic aneurysms in fibrin-4-deficient mice. Sci Transl Med, 2013; 5: 183ra158, 181-111

84) Moriyama K, Iida K and Yahara I: Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells, 1996; 1: 73-86

85) Olson EN and Nordheim A: Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol, 2010; 11: 353-365

86) Mengler O, Arnould F, Ropers J, Aegester P, Detaint D, Delorme G, Attias D, Tubach F, Dupuis-Girod S, Plau ch H, Barthel Mt, Sassolas F, Pagnaud N, Naunion D, Thomas-Chabaneix J, Dulac Y, Edouard T, Wolf JE, Faivre L, Odent S, Basquin A, Habib G, Collignon P, Boileau C and Jondeau G: Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur Heart J, 2015; 36: 2160-2166

87) Milleron O, Arnould F, Roques J, Aegerter P, Detaint D, Delorme G, Attias D, Tubach F, Dupuis-Girod S, Plau ch H, Barthel Mt, Sassolas F, Pagnaud N, Naunion D, Thomas-Chabaneix J, Dulac Y, Edouard T, Wolf JE, Faivre L, Odent S, Basquin A, Habib G, Collignon P, Boileau C and Jondeau G: Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur Heart J, 2015; 36: 2160-2166

88) Harburger DS and Calderwood DA: Integrin signalling at a glance. Journal of Cell Science, 2009; 122: 159-163

89) Wiesner S, Legate KR and Fassler R: Integrin-actin interac tions. Cellular and Molecular Life Sciences, 2005; 62: 1081-1099

90) Dedhar S, Williams B and Hannigan G: Integrin-linked kinase (ILK): a regulator of integrin and growth-factor signalling. Trends in Cell Biology, 1999; 9: 319-323

91) Davis EC: Smooth-Muscle Cell to Elastic Lamina Con nections in Developing Mouse Aorta - Role in Aortic Medi cal Organization. Laboratory Investigation, 1993; 68: 89-99

92) Cook JR, Carta L, Benard L, Chemaly ER, Chiu E, Rao SK, Hampton TG, Yurchenco P, Gen TACRC, Costa KD, Hajjar RJ and Ramirez F: Abnormal muscle mecha nosignaling triggers cardiomyopathy in mice with Marfan syndrome. J Clin Invest, 2014; 124: 1329-1339

93) Calero A and Illig KA: Overview of aortic aneurysm management in the endovascular era. Semin Vasc Surg, 2016; 29: 3-17

94) Brooke BS, Habashi JP, Judge DP, Patel N, Loeyls B and Dietz HC: Angiotensin II blockade and aortic-root dilata tion in Marfan's syndrome. New England Journal of Medicine, 2008; 358: 2787-2795

95) Groenink M, den Hartog AW, Franken R, Radonic T, de Waard V, Timmermans J, Scholte AJ, van den Berg MP, Spijkerboer AM, Marquering HA, Zwinderman AH and Mulder BJ: Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a randomized controlled trial. Eur Heart J, 2013; 34: 3491-3500

96) Franken R, den Hartog AW, Radonic T, Michi D, Mauger i A, van Dijk FS, Meijers-Heijboer HE, Timmermans J, Scholte AJ, van den Berg MP, Groenink M, Mulder BJ, Zwinderman AH, de Waard V and Pals G: Beneficial Outcome of Losartan Therapy Depends on Type of FBN1 Mutation in Marfan Syndrome. Circ Cardiovasc Genet, 2015; 8: 383-388

97) Milleron O, Arnould F, Ropers J, Aegester P, Detaint D, Delorme G, Attias D, Tubach F, Dupuis-Girod S, Plau ch H, Barthel Mt, Sassolas F, Pagnaud N, Naunion D, Thomas-Chabaneix J, Dulac Y, Edouard T, Wolf JE, Faivre L, Odent S, Basquin A, Habib G, Collignon P, Boileau C and Jondeau G: Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur Heart J, 2015; 36: 2160-2166

98) Fortezza A, Evangelista A, Sanchez V, Teixido-Tura G, Sanz P, Gutierrez L, Gracia T, Centeno J, Rodriguez-Pal omares J, Rufianchans JJ, Cortina J, Ferreira-Gonzalez I and Garcia-Dorado D: Efficacy of losartan vs. atenolol for the prevention of aortic dilation in Marfan syndrome: a randomized clinical trial. Eur Heart J, 2016; 37: 978-985

99) Chung AW, Yang HH, Radomski MW and van Bree men C: Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in marfan syndrome through the inhibition of matrix metallopro teinase-2 and -9. Circ Res, 2008; 102: e73-85