Introduction & aim

Serotonergic neurons are involved in the pathogenesis and the pharmacotherapy of major depression and anxiety disorders (Post et al. 2018). Yet, the precise mechanisms behind their involvement have not been determined. Moreover, available treatments (including selective serotonin reuptake inhibitors) seem to be effective in the treatment of depression, but more than two-thirds of depressed patients remain symptomatic after the initial intervention, and 20% of these fail to respond to any intervention (Gaynes 2009).

The recent development of optogenetic tools has made it possible to design new methods of treating mental disorders. Optogenetics has been widely used to control neuronal activity with high spatial and temporal resolution. There are many opsins that are used in optogenetics to excite or inhibit neuronal activity (Muir, Bagot 2019).
The outward proton pump enhanced ArchT3.0 (eArchT3.0) allows for efficient optogenetic silencing (Krol et al. 2019). This research was aimed at creating lentiviral vectors for the optogenetic inhibition of the serotonergic neurons using the proton pump archaerhodopsin-3.

Methods

To attenuate firing specifically in serotonergic neurons, vectors expressing the proton pump archaerhodopsin-3 under the control of TPH2 promoter were used. Viral vectors were constructed based on plasmids designed by the N. Nishitani group (Nishitani et al. 2019). Lentiviral particles (LVV) were obtained by transfecting HEK293 cells with the mixture of plasmids for the virus assembly (pPAX2 and pMD2.G), as well as a TPH2-eArchT3.0-eYFP-WPRE plasmid carrying the sequence of the archaerhodopsin-3 (eArchT3.0) and a yellow fluorescent protein (eYFP) or TPH2-Venus-WPRE plasmid that was used as a control. Wistar rats were stereotaxically injected with the virus in the dorsal raphe nucleus (DRN). One week after infection, animals were deeply anesthetized and green light (560 nm) was applied to the DRN for 3 min. Then animals were perfused, the brain was collected, frozen and sectioned. Expression of eArchT3.0-eYFP and c-Fos in the TPH-positive neurons was investigated immunohistochemically using confocal microscopy. The number of c-Fos, YFP, and TPH2 expressing neurons was determined. The expression of c-Fos was used as a marker of the neuron’s activity.

Results

One week after the LVV injection, the specific expression of eArchT3.0-eYFP in serotonergic neurons was confirmed by immunohistochemistry. The majority of the TPH2 immunoreactive cells expressed eArchT3.0-eYFP that was detectable without immunohistochemical enhancement (fig. 1). Green light illumination for 3 min via optic fiber placed above the DRN decreased c-Fos expression in eYFP- or Venus-positive cells in TPH2-eArchT3.0 injected rats, compared with the TPH2-Venus injected rats (fig. 2). These observations demonstrated that continuous green light illumination for 3 min inhibited the activity of serotonergic neurons.

Conclusion

Our experiment demonstrated that the injection of TPH2-eArchT vector in the DRN evokes the expression of the proton pump archaerhodopsin-3.
References

Flavell, S. W., Greenberg, M. E. (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. *Annual Review of Neuroscience*, vol. 31, pp. 563–590. PMID: 18558867. DOI: 10.1146/annurev.neuro.31.060407.125631 (In English)

Gaynes, B. N. (2009) Identifying difficult-to-treat depression: Differential diagnosis, subtypes, and comorbidities. *The Journal of Clinical Psychiatry*, vol. 70, suppl. 6, pp. 10–15. PMID: 19922739. DOI: 10.4088/JCP.8133su1c.02 (In English)

Greer, P. L., Greenberg, M. E. (2008) From synapse to nucleus: Calcium-dependent gene transcription in the control of synapse development and function. *Neuron*, vol. 59, no. 6, pp. 846–860. PMID: 18817726. DOI: 10.1016/j.neuron.2008.09.002 (In English)

Krol, A., Lopez Huerta, V. G., Corey, T. E. C. et al. (2019) Two eARCHT3.0 lines for optogenetic silencing of dopaminergic and serotonergic neurons. *Frontiers in Neural Circuits*, vol. 13, article 4. PMID: 30774584. DOI: 10.3389/fncir.2019.00004 (In English)

Muir, J., Bagot, R. C. (2019) Optogenetics: Illuminating the neural circuits of depression. In: J. Quevedo, A. F. Carvalho, C. A. Zarate (eds.), *Neurobiology of depression: Road to novel therapeutics*. p.: Academic Press, pp. 147–157. DOI: 10.1016/B978-0-12-813333-0.00014-7 (In English)

Nishitani, N., Nagayasu, K., Asaoka, N. et al. (2019) Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable stress and anxiety-related behaviors in mice and rats. *Neuropsychopharmacology*, vol. 44, no. 4, pp. 721–732. PMID: 30377380. DOI: 10.1038/s41386-018-0254-y (In English)

Post, R. J., Warden, M. R. (2018) Melancholy, anhedonia, apathy: The search for separable behaviors and neural circuits in depression. *Current Opinion in Neurobiology*, vol. 49, pp. 192–200. PMID: 29529482. DOI: 10.1016/j.conb.2018.02.018 (In English)