Development of Microsatellite Primers in the Protected Species Viola elatior (violaceae) Using Next-Generation Sequencing

Authors: Mélina Celik, Jérôme Wegnez, Chantal Griveau, Josie Lambourdière, Jose Utge, et. al.
Source: Applications in Plant Sciences, 3(5)
Published By: Botanical Society of America
URL: https://doi.org/10.3732/apps.1500011
Development of microsatellite primers in the protected species *Viola elatior* (Violaceae) using next-generation sequencing

MÉLINA CELIK²,⁵, JÉRÔME WEGNEZ², CHANTAL GRIVEAU², JOSIE LAMBOURDIERÈ³, JOSE UGTE³, FLORENCE NOËL⁴, JAWAD ABDELKRIM³, AND NATHALIE MACHON⁴

²Conservatoire Botanique National du Bassin Parisien, UMS 2699 Inventaire et Suivi de la Biodiversité, Muséum National d'Histoire Naturelle, 61 Rue Buffon, 75005 Paris, France; ³Service de Systématique Moléculaire, UMS 2700 CNRS-MNHN, CP26, 57 Rue Cuvier, 75231 Paris Cedex 05, France; and ⁴Muséum National d'Histoire Naturelle, Département d'Ecologie et gestion de la Biodiversité, UMR 7204 CESCO, Paris, France

- **Premise of the study:** *Viola elatior* (Violaceae) is a Eurasian perennial plant species in which French populations are threatened by anthropogenic pressures. Microsatellite primers were developed to investigate its genetic structure and diversity.

- **Methods and Results:** Eight microsatellite markers were isolated using next-generation sequencing. Loci were amplified and screened for 138 individuals in 17 populations from France. Two of the eight polymorphic loci presented no variability across populations. The total number of alleles per locus varied from two to four. Observed heterozygosity ranged from 0.051 to 1.000. All primers amplified successfully in the closely related species *V. pumila*.

- **Conclusions:** This set of microsatellites offers a valuable tool for assessing population genetic diversity of the species to improve its conservation and base management efforts. High observed heterozygosity values probably reflect the particular mating system of the species and suggest an important tendency to clonality.

**Key words:** conservation; microsatellites; next-generation sequencing; population genetics; *Viola elatior*; Violaceae.

---

Viola elatior Fr. (Violaceae) is a perennial plant species that is found in large alkaline floodplains in continental climates in Eurasia (Eckstein et al., 2006). The species has both chasmogamous and cleistogamous flowers, with chasmogamous flowers opening first in April–May, allowing cross pollination. Later, in June–July, plants develop cleistogamous flowers, leading to self-pollination (Eckstein et al., 2006). In France, populations are found only in the eastern half of the country, mainly in floodplains subject to large groundwater variations.

French populations are threatened by anthropogenic pressures (agricultural practices, economic development of territories, regulation of river flows, and water regime modification of alluvial plains). Despite a wide geographic range, these populations are fragmented due to their specific ecology, hence *V. elatior* is considered in Ile-de-France to be a rare and vulnerable species (Auvert et al., 2011).

To characterize the genetic structure of the French populations of *V. elatior* and to quantify gene flow among them, we developed a set of variable microsatellite markers that are the first reported for *V. elatior*. These loci will be valuable as part of a conservation program aimed at identifying and strengthening connectivity between these populations. Their use can be extended to another closely related species, *V. pumila*, for which amplification was carried out successfully.

**METHODS AND RESULTS**

Microsatellite markers were isolated by following a high-throughput genomic sequencing approach developed by Abdelkrim et al. (2009). Genomic DNA used to isolate the microsatellite loci was extracted from a single individual of *V. elatior* (V2-18; Appendix 1), utilizing the DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) according to a protocol for herbarium specimens. Genomic shotgun sequencing was conducted using an Ion Torrent Personal Genome Machine (PGM) System with a Sequencing 400 Kit (Life Technologies, Saint Aubin, France). First, a single-stranded DNA library was constructed using physical fragmentation of gDNA with the Bioruptor Sonication System (Diagenode, Seraing, Belgium). Then, an emulsion PCR was performed to enrich the library and, finally, amplified fragments were sequenced. Shotgun sequencing generated 17,340 random sequences. These reads were converted into a FASTA format file and screened for the presence of microsatellites using MSATCOMMANDER version 1.0.8-beta (Faircloth, 2008). A search was performed for di-, tri-, and tetranucleotides with a minimum of six, six, and five repeats, respectively, and a minimum product size of 80 bp. Primers were designed using Primer3 (Rozen and Skaletsky, 1999) as implemented in MSATCOMMANDER. The minimum primer annealing temperature was set to 55°C, primer size was between 18–22 bp with an optimal size of 20 bp, and other settings were left at default values.

Under these conditions, a total of 75 microsatellite loci were found (53 dinucleotides, 17 trinucleotides, and five tetranucleotides), and primers were designed successfully for 32 of them (22 dinucleotides and 10 trinucleotides). Among them, loci that contained repeats of (AT) bases were discarded, while loci larger than 100 bp were preferentially selected. At the end of selection, 17 loci were retained for the following analyses of polymorphism.

---

1 Manuscript received 4 February 2015; revision accepted 9 March 2015. The authors thank Olivier Bardet (Conservatoire Botanique National du Bassin Parisien [CBNBP]), Frédéric Hendoux (CBNBP), and Yorick Ferraz (Conservatoire Botanique National du Franche-Comté [CBNPC]) for their help during plant sampling in Saône, Marne, and Marais-de-Saône. This research was funded by GRTgaz Val-de-Seine and Conseil Régional d'Ile-de-France.

5 Author for correspondence: melina.celik@gmail.com

doi:10.3732/apps.1500011

Applications in Plant Sciences 2015 3(5): 1500011; http://www.bioone.org/loi/apps © 2015 Celik et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA).
Total genomic DNA was extracted from sampled specimens using the NucleoSpin 96 Plant Kit (Macherey-Nagel, Hoerdt, France) (Appendix 1). To detect polymorphic markers, on two populations, using an M13 protocol as described in Schuelke (2000). An M13 tail was added on the 5′ end of the forward primers. Cycling was performed on a C1000 Touch Thermal Cycler (Bio-Rad, Marnes-la-Coquette, France). Conditions of PCR amplification were as follows: 94°C (5 min); 30 cycles at 94°C (30 s), 58–59°C (45 s), 72°C (45 s); then eight cycles at 94°C (30 s), 53°C (45 s), 72°C (45 s); and a final elongation at 72°C for 30 min. Thereafter, 1 μL of the PCR product containing the fluorescent dye-labeled fragments was added to 8.8 μL of formamide and 0.2 μL of GeneScan 500 LIZ Size Standard (Applied Biosystems, Life Technologies) and subsequently run on an ABI PRISM 3130 Genetic Analyzer (Applied Biosystems). Subsequent analyses were conducted with the polymorphic markers for all specimens of each population.

Genotypes were called using GeneMapper software (version 5; Applied Biosystems). Two loci did not amplify, and seven loci were monomorphic across all populations (Table 1; Appendix 1). Eight polymorphic loci were characterized. Two of them (Ve10 and Ve24) possessed the same two fixed heterozygous alleles for all populations. Locus Ve24 showed inconsistent peaks, whereas Ve10 presented a clear signal without variability across populations and was therefore discarded from analysis. For the remaining six loci, allelic variability was calculated for the 138 individuals collected in 17 different populations in French floodplains of the Seine (Ile-de-France and Champagne-Ardenne), the Marne (Champagne-Ardenne), the Saône (Bourgogne), and in the Marais de Saône (Franche-Comté) (Table 2). Allele frequencies at each locus and observed and expected heterozygosities were calculated using GenAlEx version 6.5 (Peakall and Smouse, 2006, 2012). Tests for deviation from Hardy–Weinberg equilibrium (HWE) and for linkage disequilibrium were performed using GENEPOP version 4.2 (Raymond and Rousset, 1995; Rousset, 2008). The number of alleles observed per locus ranged from two to four, and the observed heterozygosity ranged from 0.051 to 1.000 (mean = 0.593). After Bonferroni correction, no linkage disequilibrium was detected for any loci. High observed heterozygosity values probably reflect the particular mating system of the species.
and suggest an important tendency to clonality (Eckstein et al., 2006). The significant deviation from HWE for almost all loci could be explained by a better ability of the heterozygous to reproduce asexually. This mode of reproduction might have been underestimated in this species and deserves further study. Amplifications for the seven polymorphic loci were carried out successfully on the closely related species Viola pumila Chaix.

CONCLUSIONS

These eight newly developed microsatellite markers should be useful to compare genetic diversity, structure, and connectivity across the landscape within Viola elatior. They should offer a valuable tool for understanding the consequences of habitat fragmentation on this species' population genetic structure and will help to inform management practices.

LITERATURE CITED

ABDELKRM, J., B. C. ROBERTSON, J.-A. L. STANTON, AND N. J. GEMMILL. 2009. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46: 185–192.

AUVERT, S., S. FLOCH, M. RAMBAUD, A. BEYLOT, AND F. HENDOUX. 2011. Liste rouge régionale de la flore vasculaire d’Île-de-France. Muséum national d’Histoire naturelle, Paris, France.

ECKSTEIN, R. L., N. HOLZEL, AND J. DANIELKA. 2006. Biological Flora of Central Europe: Viola elatior, V. pumila and V. stagnina. Perspectives in Plant Ecology, Evolution and Systematics 8: 45–66.

FABRETH, B. C. 2008. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Molecular Ecology Resources 8: 92–94.

PEARALL, R., AND P. E. SMOUSE. 2006. GenAIEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.

PEARALL, R., AND P. E. SMOUSE. 2012. GenAIEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28: 2337–2339.

RAYMOND, M., AND F. ROUSSET. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.

ROUSSET, F. 2008. GENEPOP’007: A complete reimplementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8: 103–106.

ROZEN, S., AND H. J. SKALETSKY. 1999. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

SCHIEKLE, M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18: 233–234.

APPENDIX 1. Voucher and locality information for specimens of Viola elatior and V. pumila used in this study. Vouchers of representative specimens are stored at the Muséum National d’Histoire Naturelle (MNHN/FABR) (V. elatior: FABR06834, Villefranche, France; V. pumila: FABR07471, Gap, France).

| Species                      | Geographic coordinates | Collector                     | Specimen ID no. |
|------------------------------|------------------------|-------------------------------|-----------------|
| Viola elatior Fr.            | 48°26’11.43”N, 3°17’37.63”E | Jérôme Wegnez, Chantal Griveau | V1-1, V1-11, V1-12, V1-13, V1-16, V1-19, V1-20, V1-21 |
| Viola elatior Fr.            | 48°27’6.17”N, 3°16’48.82”E | Jérôme Wegnez, Chantal Griveau | V2-3, V2-30, V2-34, V2-35, V2-36, V2-5, V2-6, V2-8, V2-18 |
| Viola elatior Fr.            | 48°25’17.04”N, 3°15’11.89”E | Jérôme Wegnez, Chantal Griveau | V3-11, V3-12, V3-13, V3-14, V3-15, V3-17, V3-20 |
| Viola elatior Fr.            | 48°26’27.04”N, 3°15’0.79”E | Jérôme Wegnez, Chantal Griveau | V4-3, V4-24, V4-25, V4-26, V4-27, V4-28, V4-29, V4-33, V4-34 |
| Viola elatior Fr.            | 48°30’26.97”N, 3°29’36.02”E | Jérôme Wegnez, Chantal Griveau | V5-1, V5-10, V5-15, V5-21, V5-25, V5-28, V5-3, V5-5 |
| Viola elatior Fr.            | 48°26’41.37”N, 3°16’41.99”E | Jérôme Wegnez, Mélina Celik | V7-27, V7-28, V7-29, V7-3, V7-30, V7-31, V7-32, V7-9 |
| Viola elatior Fr.            | 48°26’40.05”N, 3°16’49.96”E | Jérôme Wegnez, Mélina Celik | V8-2, V8-20, V8-21, V8-22, V8-23, V8-24, V8-28, V8-29, V8-3, V8-31 |
| Viola elatior Fr.            | 48°29’1.2”N, 3°24’39.11”E | Jérôme Wegnez, Mélina Celik | V9-1, V9-10, V9-11, V9-12, V9-13, V9-14, V9-15 |
| Viola elatior Fr.            | 48°29’39.64”N, 3°24’58.02”E | Jérôme Wegnez, Mélina Celik | V10-23, V10-24, V10-25, V10-26, V10-27, V10-28, V10-29, V10-30 |
| Viola elatior Fr.            | 48°28’28.3”N, 3°21’26.74”E | Jérôme Wegnez, Mélina Celik | V11-1, V11-10, V11-11, V11-12, V11-13, V11-14, V11-15, V11-16 |
| Viola elatior Fr.            | 48°27’51.33”N, 3°21’20.58”E | Jérôme Wegnez, Mélina Celik | V12-31, V12-32, V12-4, V12-5, V12-6, V12-7, V12-8, V12-9 |
| Viola elatior Fr.            | 48°32’16.10”N, 3°38’23.51”E | Jérôme Wegnez, Mélina Celik | V15-1, V15-10, V15-11, V15-12, V15-13, V15-14, V15-15, V15-16 |
| Viola elatior Fr.            | 48°31’18.49”N, 4°15’16.3”E | Jérôme Wegnez, Mélina Celik | V16-31, V16-32, V16-4, V16-5, V16-6, V16-7, V16-8, V16-9 |
| Viola elatior Fr.            | 48°9’58.7”N, 4°3’58.82”E | Jérôme Wegnez, Mélina Celik | V17-1, V17-10, V17-11, V17-12, V17-13, V17-14, V17-15, V17-16 |
| Viola elatior Fr.            | 49°1’16.11”N, 4°13’37.54”E | Frédéric Hendoux | V18-31, V18-32, V18-4, V18-5, V18-6, V18-7, V18-8, V18-9 |
| Viola elatior Fr.            | 46°37’41.09”N, 4°57’7.40”E | Olivier Bardet | V19-1, V19-10, V19-11, V19-12, V19-13, V19-14, V19-15, V19-16 |
| Viola elatior Fr.            | 47°12’57.9”N, 6°6’22.94”E | Yorick Ferrez | V20-31, V20-32, V20-4, V20-5, V20-6, V20-7, V20-8, V20-9 |
| Viola pumila Chaix           | 48°26’44.0”N, 3°17’14.0”E | Jérôme Wegnez | Vp1-Vp12 |

*Stored in the Conservatoire Botanique National du Bassin Parisien, Paris, France.

http://www.bioone.org/loi/apps

3 of 3 Applications in Plant Sciences 2015 3(5): 1500011

doi:10.3732/apps.1500011

Celik et al.—Viola elatior microsatellites