Abstract. Previous studies have reported that the expression levels of microRNA (miR)-28-3p are downregulated in prostate cancer (PCa) compared with those in adjacent normal tissues. However, to the best of our knowledge, the function and underlying mechanisms of miR-28-3p in PCa have not been reported. The present study aimed to explore the role of miR-28-3p and its mechanism in the development of PCa. In the present study, miR-28-3p and ADP-ribosylation factor 6 (ARF6) expression levels were analyzed using reverse transcription-quantitative PCR (RT-qPCR). Cell proliferation, colony formation, apoptosis, migration and invasion were determined using Cell Counting Kit-8, colony forming, flow cytometry and Transwell assays, respectively. The association between miR-28-3p and ARF6 was investigated using a dual luciferase reporter assay. ARF6, Rac1, Erk1/2 and phosphorylated (p)-Erk1/2 protein expression levels were analyzed using western blotting. The results of the present study revealed that miR-28-3p expression levels were downregulated, whereas ARF6 expression levels were upregulated in PCa cell lines (LNCaP, 22Rv-1, PC-3 and DU145) compared with those in the normal prostate line RWPE-1. The overexpression of miR-28-3p promoted cell apoptosis, and inhibited cell proliferation, colony formation, migration and invasion. However, the knockdown of miR-28-3p exerted the opposite results. The results of the dual luciferase reporter assays, RT-qPCR and western blotting indicated that ARF6 was a target gene of miR-28-3p. Finally, rescue experiments demonstrated that ARF6 overexpression attenuated the effects of the miR-28-3p mimic by upregulating Rac1 and p-Erk1/2 expression in PCa cells. In conclusion, these findings indicated that miR-28-3p may inhibit the biological behaviors of PCa cells by targeting ARF6, and therefore may represent a novel therapeutic candidate for PCa.

Introduction

Prostate cancer is the second most commonly diagnosed cancer and the sixth leading cause of cancer-associated mortality among men worldwide, with an estimated 1,276,000 new prostate cancer cases and 359,000 deaths in 2018 (1). As PCa is an androgen-dependent cancer, where endocrine therapy (castration and antihormone therapy) is one of the main methods used to treat the disease (2). The majority of patients with PCa are initially responsive to androgen-deprivation therapy; however, this treatment not only increases the risk of dementia, but it may also induce PCa-related androgen receptor mutations (3,4), which renders PCa difficult to treat. At present, to the best of our knowledge, the pathogenesis of PCa remains poorly understood. An enhanced understanding of the mechanisms involved in the occurrence and development of PCa will be of significant value to the early diagnosis, treatment and monitoring of the disease (5).

MicroRNAs (miRNAs/miRs) are a class of small non-coding RNAs that target specific mRNA sequences to inhibit protein translation (6). It has been reported that miRNAs are involved throughout the entire tumorigenesis process, where they have been closely associated with tumor cell proliferation, differentiation, invasion and metastasis (7). It has also been extensively reported that the expression levels of miRNAs in human cancer tissues are dysregulated (8). In fact, miRNAs have been proposed as alternative biomarkers and therapeutic tools for PCa prognosis and diagnosis (9). For example, miR-15a and miR-16 have been reported to function as tumor suppressors in PCa by inhibiting cell proliferation, differentiation, invasion and metastasis (7). It has also been extensively reported that the expression levels of miRNAs in human cancer tissues are dysregulated (8). In fact, miRNAs have been proposed as alternative biomarkers and therapeutic tools for PCa prognosis and diagnosis (9). For example, miR-15a and miR-16 have been reported to function as tumor suppressors in PCa by inhibiting cell proliferation and invasion (10). In another study, miR-449a induced PCa cell cycle arrest by targeting histone deacetylase 1 (11). Furthermore, inhibitors of miR-346, miR-361-3p and miR-197 were found to significantly inhibit PCa migration and invasion (12).

Previously, Fuse et al (13) identified 56 downregulated miRNAs in PCa tissues in comparison to that in adjacent non-PCa tissues, including miR-28-3p. To the best of our knowledge, the role of miR-28-3p in PCa has not been reported. A previous study demonstrated that the knockdown
of ADP-riboseylation factor 6 (ARF6) may exert an inhibitory effect on the hormone-independent PCa cell line, PC-3, and the molecular mechanisms associated with these changes were suggested to be due to the downregulation of phosphorylated (p)-Erk1/2 and Rac1 expression (14). In addition, the stable overexpression of the androgen driver tetraspanin 1 markedly promoted cell migration and upregulated the expression of ARF6 (15). However, it remains unclear whether miRNAs can target ARF6 in PCa.

The present study aims to explore the role of miR-28-3p and its mechanism in the development of PCa. miR-28-3p and ARF6 expression was quantified in both PCa tissues and cell lines. Based on these previous findings, the role of miR-28-3p and ARF6 in relation to the biological behaviors of PCa cells was investigated.

Materials and methods

Cell lines and culture. Four human PCa cell lines (LNCaP, 22Rv-1, PC-3 and DU145) and normal prostate cells (RWPE-1) were purchased from The Cell Bank of Type Culture Collection (Thermo Fisher Scientific, Inc.) and cultured in RPMI-1640 medium (Gibco; Thermo Fisher Scientific, Inc.) supplemented with 10% FBS (Gibco; Thermo Fisher Scientific, Inc.) containing bovine pituitary extract (50 µg/ml; Thermo Fisher Scientific, Inc.) and epidermal growth factor (5 ng/ml, Invitrogen; Thermo Fisher Scientific, Inc.). All cells were maintained in a humidified atmosphere with 5% CO$_2$ at 37°C.

Reverse transcription-quantitative PCR (RT-qPCR). Total RNA was extracted using 0.5 ml NucleoZOL reagent (Gene Company, Ltd.) from LNCaP, 22Rv-1, PC-3, DU145 and RWPE-1 cells, according to the manufacturer’s protocol. Total RNA was reverse transcribed into cDNA using a Prime Script™ RT reagent kit (cat. no. DRR037A; Takara Bio, Inc.). The reverse transcription reaction protocol was as follows: 37°C for 15 min and 85°C for 5 sec. qPCR was subsequently performed using a SYBR Green Real-Time PCR Master mix (Thermo Fisher Scientific, Inc.). The following thermocycling conditions were used for qPCR: 50°C for 2 min, initial denaturation at 95°C for 10 min, followed by 40 cycles of 95°C for 30 sec, 55°C for 1 min and 72°C for 30 sec. The following primer sequences were used for qPCR: miR-28-3p forward, 5'-UGA ‑3') were obtained from Shanghai GenePharma Co., Ltd. 5'-UCUACUCUUUCUAGAGGUGUGUGA-3'), miR-28-3p inhibitor (5'-UCC AGG AGC UCACA ACU CGU AGU-3') and inhibitor NC (5'-UCUACUCUUUCUAGAGGUGUGUGA-3') were obtained from Shanghai GenePharma Co., Ltd. The ARF6 gene was synthesized and then cloned into the pcDNA3.1 vector (Thermo Fisher Scientific, Inc.). To construct the pcDNA-ARF6 recombinant plasmid. Transfection of the empty vector pcDNA3.1 was used as negative control (pcDNA). DU145 cells were seeded at a density of 1x105 cells/well in 24-well plates. Transfection of each oligonucleotide or plasmid into DU145 cells was performed using Lipofectamine™ 2000 (Invitrogen; Thermo Fisher Scientific, Inc.) according to the manufacturer’s protocol. Briefly, 5 µl Lipofectamine 2000 was incubated in 250 µl serum-free RPMI-1640 medium for 5 min at 37°C. An appropriate amount of miR-28-3p mimic (25 nM), miR-28-3p inhibitor (50 nM), mimic NC (25 nM), inhibitor NC (50 nM), pcDNA (2 μg) or pcDNA-ARF6 (2 μg) was added and incubated for a further 20 min at room temperature. Following the incubation, the final mixture was added to each well and incubated at 37°C with cells for 48 h. Subsequently, cells were used for the follow-up experiments.

Cell Counting Kit-8 (CCK-8) assay. Cell proliferation was analyzed using CCK-8 reagent (Beyotime Institute of Biotechnology). Briefly, cells were seeded into 96-well plates at a density of 1x104 cells/well and cultured for 0, 24, 48, 72 or 96 h. Following the incubation, 10 μl CCK-8 solution was added to each well and further incubated for 2 h at 37°C. The absorbance was measured at a wavelength of 450 nm using a microplate reader.

Colony formation assay. Cell proliferation was also analyzed using a colony forming assay. Briefly, transfected cells in the logarithmic growth phase were collected, and 800 cells/well were plated into a 6-well plate and incubated at 37°C. The state of the cells was observed until the number of cells in the majority of the individual colonies in the well was ≥50. Following the incubation, the cells were fixed with 4% paraformaldehyde at 4°C for 1 h and stained with clean, impurity-free 0.1% crystal violet dye solution for a further 2 min at room temperature. Images of colonies were captured with a digital camera and counted.

Flow cytometric analysis of apoptosis. Flow cytometry was performed to detect cell apoptosis using an Annexin V-fluorescein isothiocyanate apoptosis measurement kit (BD Biosciences). Briefly, following transfection, the cells (1x106/well) were washed twice with cold PBS, and stained with 5 µl Annexin V and 10 µl PI for 15 min in the dark at room temperature. Apoptotic cells were analyzed using a BD FACSVersus™ flow cytometer (BD Biosciences) and data were analyzed with the FlowJo software Version 10 (FlowJo LLC). The percentage of early and late apoptotic cells was calculated.

Transwell assays. The migratory and invasive abilities of cells were analyzed using Transwell assays. For the migration assays, cells were seeded into 24-well plates, before 1x105 cells suspended in serum-free RPMI-1640 medium were added to the upper chambers of Transwell plates (Corning, Inc.), whilst
RPi-M1640 medium supplemented with 20% FBS was added to the lower chamber. After 24 h of incubation at 37°C, the cells remaining in the upper chamber were removed with a cotton swab, while cells that had migrated to the lower chamber were fixed with 4% paraformaldehyde for 0.5 h at room temperature and stained with 0.5% crystal violet for 15 min at room temperature. Migratory cells from each group were visualized and counted in three randomly selected fields of view using a light microscope (magnification, x400; Olympus Corporation). The percentage migrated area was obtained from 293T cells using PrimerSTAR® Max DNA Polymerase (cat. no. R045A; Takara Biotechnology Co., Ltd.) and cloned into the psiCHECK™-2 dual luciferase reporter vector (Promega Corporation) to construct a wild-type (WT) dual-luciferase recombinant plasmid (ARF6-WT). The following primer sequences were used for amplified: forward, 5'-CCTCGAGTGACTTCCAGCAGATGGGATG-3' and reverse, 5'-ATTTGCGGCCCCATATCGTGGCT-3'. The following thermocycling conditions were used for qPCR: Initial denaturation at 95°C for 5 min, denaturation at 95°C for 30 sec, followed by 32 cycles of 55°C for 30 sec, 72°C for 45 s and 72°C for 10 sec. ARF6-Mut were synthesized by Universal biological systems (Anhui) Co., Ltd. (https://www.genericbiol.com/) by mutating the specific binding sequence for miR-28-3p in the 3'-UTR of ARF6. 293T cells purchased from The Cell Bank of Type Culture Collection of The Chinese Academy of Sciences and were cultured in DMEM (Invitrogen; Thermo Fisher Scientific, Inc.) and 10% FBS (Gibco; Thermo Fisher Scientific, Inc.; cat. no. 34080) on a VersaDoc™ gel imaging system (Bio-Rad Laboratories, Inc.). Densitometric analysis was performed using the Image J software (version 1.51; National Institutes of Health).

Results

Expression levels of miR-28-3p and ARF6 in human PCa cell lines. To investigate the role of miR-28-3p and ARF6 in human PCa cell lines, miR-28-3p and ARF6 expression levels were analyzed in four PCa cell lines (LNCaP, 22Rv-1, PC-3 and DU145). Compared with those detected in RWPE-1 cells, the expression levels of miR-28-3p were significantly downregulated in the four PCa cell lines (Fig. 1A), and DU145 cells exhibited the greatest decrease in miR-28-3p expression. Conversely, the mRNA expression levels of ARF6 were significantly upregulated in the four PCa cell lines compared with those detected in RWPE-1 cells (Fig. 1B), and DU145 cells had the highest expression levels of ARF6. Therefore, DU145 cells were selected for use in subsequent experiments, including the establishment of miR-28-3p mimic/-inhibitor-transfected cells.

Transfection efficiency of miR-28-3p inhibitor and mimic in DU145 cells. To determine the role of miR-28-3p in PCa cells, the human PCA cell line, DU145, was transfected with the miR-28-3p mimic, which is a chemically synthesized double-stranded oligonucleotide that mimics the endogenous mature function of miR-28-3p, or a miR-28-3p inhibitor, which is a modified antisense oligonucleotide that inhibited miR-28-3p function. Cells transfected with the mimic NC or inhibitor NC were used as controls. A total of 48 h post-transfection, the expression levels of miR-28-3p were determined using RT-qPCR. The results revealed that
transfection with the miR-28-3p mimic upregulated the expression levels of miR-28-3p by ~30-fold, whereas transfection with the miR-28-3p inhibitor downregulated the expression of miR-28-3p in DU145 cells compared with those in cells transfected with the respective NCs (Fig. 2). These results indicated that the miR-28-3p mimic and inhibitor were able to effectively regulate miR-28-3p expression levels in DU145 cells.

Effect of miR-28-3p on the proliferation of DU145 cells. The effects of miR-28-3p on the proliferation of DU145 cells were determined using a CCK-8 assay. The results demonstrated that the proliferation of miR-28-3p mimic-transfected cells was significantly decreased compared with the mimic NC-transfected cells (Fig. 3A). Conversely, the knockdown of miR-28-3p expression in cells significantly increased the proliferation compared with the inhibitor NC-transfected cells (Fig. 3A). To further analyze cell proliferation, colony formation experiments were performed. The results revealed that the number of colonies was significantly decreased in the miR-28-3p mimic group compared with that in the mimic NC group (Fig. 3B and C). Compared with the inhibitor NC group, the number of colonies was significantly increased in the miR-28-3p inhibitor group.

Effect of miR-28-3p on the apoptosis of DU145 cells. A total of 48 h post-transfection with the miR-28-3p mimic or inhibitor, cell apoptosis was determined by flow cytometry. The results revealed that the apoptotic rate was significantly increased in the miR-28-3p mimic group compared with that in the mimic NC group (Fig. 4A). Compared with the inhibitor NC group, the apoptotic rate was significantly decreased in the miR-28-3p inhibitor group. In addition, the ratio of Bcl-2/Bax was detected by western blotting. The results revealed that miR-28-3p overexpression reduced the Bcl-2/Bax ratio, which may aggravate apoptosis, whereas inhibition of miR-28-3p expression upregulated the Bcl-2/Bax ratio, which could inhibit apoptosis (Fig. 4B).

Effect of miR-28-3p on the migration and invasion of DU145 cells. Whether miR-28-3p regulated human PCa cell migration and invasion was investigated in the PCa cell line, DU145, following transfection with the miR-28-3p mimic, miR-28-3p inhibitor, mimic NC or inhibitor NC. The results revealed that the migratory and invasive abilities of DU145 cells were significantly decreased in the miR-28-3p mimic group compared with those in the mimic NC group (Fig. 5). By contrast, the migration and invasion were significantly increased in the miR-28-3p inhibitor group compared with those in the inhibitor NC group (Fig. 5). These results indicated that miR-28-3p may be a negative regulator of PCa migration and invasion.

ARF6 is a direct target gene of miR-28-3p. TargetScan was used to predict the potential gene target of miR-28-3p. The 3’-UTR of ARF6 was identified to contain a complementary site for the seed region of miR-28-3p (Fig. 6A). To further validate whether miR-28-3p targeted ARF6, a dual luciferase reporter assay was used to determine the relationship between miR-28-3p and ARF6 in the 293T cell line. As
transfection with the miR-28-3p mimic significantly decreased the relative luciferase activity of the ARF6-WT 3' UTR compared with that in cells following the transfection of mimic NC. Transfection with the miR-28-3p inhibitor significantly increased the relative luciferase activity of the ARF6-WT 3' UTR compared with that in cells after the transfection of inhibitor NC. Furthermore, these effects were abolished when the nucleotides in the seed binding site of the ARF6 3' UTR were mutated. Moreover, the effect of miR-28-3p on the expression levels of ARF6 was analyzed using RT-qPCR and western blotting. The results revealed that overexpression of miR-28-3p significantly downregulated the mRNA expression levels of ARF6 in DU145 cells compared with those in the mimic NC-transfected cells (Fig. 6B). Conversely, knockdown of miR-28-3p significantly upregulated the mRNA expression levels of ARF6 compared with those in the inhibitor NC-transfected cells (Fig. 6B). In addition, overexpression of miR-28-3p significantly downregulated the protein expression levels of ARF6 in DU145 cells compared with those in the mimic NC-transfected cells, whereas knockdown of miR-28-3p significantly upregulated the protein expression levels of ARF6 compared with those in the inhibitor NC-transfected cells (Fig. 6C). These results suggested that ARF6 may be a direct target gene of miR-28-3p.

Effect of ARF6 and miR-28-3p overexpression on DU145 cells. The transfection efficiency of pcDNA-ARF6 was
validated using RT-qPCR (Fig. 7A). As expected, the expression levels of ARF6 in cells transfected with pcDNA-ARF6 were significantly upregulated compared with those in the pcDNA-transfected cells. To investigate the effect of ARF6 on the miR-28-3p mimic-transfected DU145 cells, pcDNA-ARF6 was transfected into miR-28-3p mimic-transfected DU145 cells. The results of the CCK-8 assay demonstrated that the overexpression of ARF6 significantly attenuated the miR-28-3p mimic-induced inhibitory effect on cell proliferation (Fig. 7B), which was consistent with the results of the cell colony formation assay (P<0.05; Fig. 7C and D).

Apoptosis was further determined by flow cytometry and western blotting after co-transfecting cells with miR-28-3p mimic and pcDNA-ARF6 for 48 h. The results revealed that the apoptotic rate was significantly decreased (Fig. 8A) and the ratio of Bcl-2/Bax was markedly elevated (Fig. 8B) following co-transfection compared with that in the miR-28-3p mimic-transfected group; however, the apoptotic rate was not completely recovered to the same levels as the control. Finally, migratory and invasive abilities were determined using Transwell assays. The results showed that the overexpression of ARF6 in miR-28-3p mimic-transfected cells promoted both migration (P<0.01) and invasion (P<0.01) compared with those in the miR-28-3p mimic group (Fig. 9). These findings suggested that AFR6 may attenuate miR-28-3p mimic-induced inhibitory effects.

Effect of miR-28-3p overexpression and knockdown on p-Erk1/2 and Rac1 expression. To further determine the molecular mechanism of the miR-28-3p-mediated biological functions, the effect of miR-28-3p overexpression and
knockdown on p-Erk1/2 and Rac1 expression was analyzed. The results demonstrated that the overexpression of miR-28-3p significantly downregulated the protein expression levels of p-Erk1/2/Erk1/2 and Rac1 in DU145 cells compared with those in the mimic NC-transfected cells, but exerted no effect on Erk1/2 expression (Fig. 10). Meanwhile, the knockdown of miR-28-3p significantly upregulated the protein expression levels of p-Erk1/2/Erk1/2 and Rac1 compared with those in the inhibitor NC-transfected cells, but had no effect on Erk1/2 expression.

Effect of ARF6 and miR-28-3p overexpression on p-Erk1/2 and Rac1. To further determine the mechanism by which miR-28-3p and ARF6 affected the biological functions of PCa
cells, the effect of the overexpression of these two factors on p-Erk1/2 and Rac1 expression was investigated. As shown in Fig. 11, the results revealed that transfection with the miR-28-3p mimic significantly downregulated the protein expression levels of Rac1 and p-Erk1/2/Erk1/2, without altering total Erk1/2 expression. Notably, the co-overexpression of ARF6 partially reversed the effects of the miR-28-3p mimic on Rac and p-Erk1/2 expression. Thus, miR-28-3p and ARF6 may mediate the Erk signaling pathway.

Discussion

PCa is a malignant epithelial tumor that occurs in the prostate (17). Numerous miRNAs, such as miR-1, miR-21, miR-106b, miR-141, miR-145, miR-205, miR-221 and miR-375 (18), have been reported to be implicated in PCa progression. Among them, miR-28-3p was discovered to play a major role in several tumor types. For example, the overexpression of miR-28-3p increased the migration and invasion of colorectal cancer cells in vitro (19). Another previous study found that the expression levels of miR-28-3p were significantly upregulated in esophageal squamous cell carcinoma (ESCC) tissues and it was therefore suggested to be a potential novel serum miRNA marker to screen for ESCC (20). In addition, some miRNAs in urine supernatants, including miR-28-3p, were found to be potential noninvasive markers for bladder cancer diagnosis (21).

Fuse et al (13) screened 56 downregulated miRNAs in PCa tissues in comparison to non-PCa tissues and discovered that miR-222 and miR-31 inhibited the proliferation, invasion and migration of the hormone-independent PCa cell lines, PC3 and DU145. Nevertheless, to the best of our knowledge, the role of miR-28-3p in PCa remains unclear.
In the present study, the expression levels of miR-28-3p were found to be downregulated in PCa cells compared with those in RWPE-1 cells; thus, it was hypothesized that miR-28-3p may play a role in the development of PCa. To confirm this hypothesis, miR-28-3p-overexpressing and -knockdown models were established in PCa cells, and miR-28-3p overexpression was discovered to inhibit the cell proliferation, migration and invasion, and induce the apoptosis of PCa cells. miR-28-3p knockdown was found to promote the cell proliferation, migration and invasion, whilst inhibiting the apoptosis of PCa cells. These results indicated that miR-28-3p may serve as a tumor suppressor in PCa and could represent a target for PCa treatment.

To further investigate the mechanism of miR-28-3p in PCa, potential targets of miR-28-3p were predicted using bioinformatics software and ARF6 was identified as a candidate target gene of miR-28-3p. Subsequently, ARF6 was confirmed as a direct target of miR-28-3p using a dual luciferase reporter.
ZHANG et al: miR-28-3p INHIBITS PROSTATE CANCER BY TARGETING ARF6

10

assay, RT-qPCR and western blotting. ARF6 is a small GTPase that mainly regulates membrane trafficking and actin remodeling (22). Previous studies have shown that the upregulated expression of ARF6 may be closely associated with the invasion, migration and metastasis of multiple malignant tumor types (23), such as glioma (24), melanoma (25), breast cancer (26), lung cancer (27) and PCa (28). Shan et al (14) also reported that the knockdown of ARF6 effectively inhibited the proliferation, migration and invasion of PC-3 cells. Thus, miR-28-3p was hypothesized to affect PCa cell behavior via targeting ARF6 expression. In the present study, rescue experiments revealed that ARF6 overexpression could reverse the effect of the miR-28-3p mimic on proliferation, apoptosis, migration and invasion. These data indicated that ARF6 may be involved in miR-28-3p-mediated PCa progression.

Erk1/2 is a member of the mitogen-activated protein kinase signaling pathway, and Erk1/2 phosphorylation has been found to promote the proliferation, migration and invasion of PCa cells (29). Ral1, one of the best-characterized members of the small GTPase family, has been reported to be involved in the organization of the actin cytoskeleton, cell proliferation, tumorigenesis and metastasis (30). ARF6 has also been identified as a potent modulator of Erk and Ral1 activity. Hu et al (31) reported that ARF6 regulated glioma cell migration and invasion via a Ral1-dependent pathway. Tague et al (32) revealed that ARF6 promoted melanoma cell invasion by enhancing Erk1/2 phosphorylation. In hepatocellular carcinoma cells, the knockdown of ARF6 inhibited cell migration and invasion by decreasing Erk1/2 phosphorylation levels and Ral1 activity (33). In PC-3 PCa cells, the knockdown

Figure 8. Apoptosis of DU145 cells following transfection of the miR-28-3p mimic and ARF6 overexpression vector. (A) Flow cytometry was used to assess apoptosis. The apoptotic rate was significantly increased in the miR-28-3p mimic group compared with that in the mimic NC group, whereas the miR-28-3p mimic + pcDNA-ARF6 group exhibited significantly inhibited apoptosis levels compared with the miR-28-3p mimic group. (B) Western blotting was used to detect the expression of protein related with cell apoptosis. The ratio of Bcl-2/Bax was markedly elevated in miR-28-3p mimic + pcDNA-ARF6 group compared with that in the miR-28-3p mimic + pcDNA group. *P<0.05, **P<0.01, miR, microRNA; ARF6, ADP-ribosylation factor 6; pcDNA, pcDNA3.1; NC, negative control.
of ARF6 inhibited proliferation, migration and invasion by downregulating p-Erk1/2 and Rac1 expression (14). Thus, the present study sought to determine whether miR-28-3p regulated p-Erk1/2 and Rac1 expression by targeting ARF6 in PCa. Western blotting showed that transfection with the miR-28-3p mimic downregulated p-Erk1/2 and Rac1 protein expression levels, indicating that miR-28-3p may suppress p-Erk1/2 and Rac1 in PCa. Furthermore, rescue experiments revealed that the overexpression of ARF6 attenuated the inhibitory effects of the miR-28-3p mimic on p-Erk1/2 and Rac1. Taken together, these results suggested that miR-28-3p may suppress p-Erk1/2 and Rac1 expression, at least partly, by targeting ARF6 in PCa.

In conclusion, the present results suggested that miR-28-3p may act as a tumor suppressor gene in PCa and may be involved in PCa by targeting ARF6 to downregulate the expression of p-Erk1/2 and Rac1. Therefore, miR-28-3p may represent a novel target for the treatment of PCa. However, this study has its own limitations. For example, the effect of miR-28-3p in
Figure 10. Effect of miR-28-3p overexpression and knockdown on p-Erk1/2 and Rac1. (A) Western blotting was performed to determine the effect of miR-28-3p overexpression and knockdown on p-Erk1/2 and Rac1 expression. Protein expression levels of (B) Rac1, (C) Erk1/2 (molecular weight at 44 and 42 kDa, respectively) and (D) p-Erk1/2 (molecular weight at 44 and 42 kDa, respectively) in DU145 cells following transfection with the miR-28-3p mimic or inhibitor. "P<0.01, ""P<0.001. miR, microRNA; p-, phosphorylated; NC, negative control.

Figure 11. Effect of miR-28-3p and ARF6 overexpression on p-Erk1/2 and Rac1 expression. (A) Western blotting was performed to analyze the effect of miR-28-3p and ARF6 overexpression on p-Erk1/2 and Rac1 expression. Protein expression levels of (B) Rac1, (C) Erk1/2 (molecular weight at 44 and 42 kDa, respectively) and (D) p-Erk1/2 (molecular weight at 44 and 42 kDa, respectively) in DU145 cells after transfection with miR-28-3p mimic and pcDNA-ARF6. "P<0.05, ""P<0.01, """"P<0.001. miR, microRNA; NC, negative control; pcDNA, pcDNA3.1; ARF6, ADP-ribosylation factor 6; p-, phosphorylated.
PCa was only explored in PCa DU145 cells and will need to be investigated in different cell lines in the future to verify the current findings.

Acknowledgements

Not applicable.

Funding

The present study was supported by grant from the Natural Science Foundation of Fujian Province (grant no. 2018J01219).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

JZ and YY conceived and designed the experiments. HL and SY performed the experiments and analyzed the data. JZ and YY wrote and revised the manuscript. All authors read and approved the final manuscript. JZ and YY confirm the authenticity of all the raw data.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68: 394–424, 2018.

2. Nagaya N and Horie S: Endocrine therapy for prostate cancer. Clin Calcium 28: 1527-1533, 2018 (In Japanese).

3. Nead KT, Sinha S and Nguyen PL: Androgen deprivation therapy in prostate cancer: A comprehensive Perspective. Tewari, AK (ed). Springer, London, pp.369-381, 2013.

4. Gao H, Ingolia NT, Weissman JS and Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 460: 835-840, 2010.

5. Tutar Y: miRNA and cancer: computational and experimental approaches. Curr Pharm Biotechnol 15: 429, 2014.

6. Kroh J, Loeding I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11: 597-610, 2010.

7. Vanacore D, Boccellino M, Rossetti S, Cavaleri C, D’Aniello C, Di Franco R, Romani FJ, Montanari M, La Mantia E, Piscitelli R, et al: Micrornas in prostate cancer: An overview. Oncotarget 8: 50240-50251, 2017.

8. Luu HN, Lin HY, Sørensen KD, Ogunwobi OO, Kumar N, Sacher R, ONECTR Consortium: MicroRNAs in prostate cancer: An overview. Clin Cancer Res 16: 3929-3940, 2010.

9. Almeida M, Nicoloso MS, Zeng L, Ivan C, Spizzo R, Gafà R, Aparecida K, Zhang X, Gambari R, Ferrari F, et al: Strand-specific miR-28-5p and miR-28-3p have distinct effects in colorectal cancer cell lines. Cancer Invest 31: 124-132, 2013.

10. Almeida M, Nicoloso MS, Zeng L, Ivan C, Spizzo R, Gafà R, Aparecida K, Zhang X, Gambari R, Ferrari F, et al: Strand-specific miR-28-5p and miR-28-3p have distinct effects in colorectal cancer cell lines. Cancer Invest 31: 124-132, 2013.

11. Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, Giardina C and Daihaya R: miR-449A targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28: 1714-1724, 2009.

12. Fletcher CE, Sulipce E, Combe S, Shibakawa A, Leach DA, Hamilton MP, Chrysostomou SL, Sharp A, Welf J, Yuan W, et al: Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer. Oncogene 38: 5700-5724, 2019.

13. Fuse M, Kojima S, Enokida H, Chiyomura T, Yoshino H, Nobata N, Kinoshita T, Sakamoto S, Noya Y, Nakagawa M, et al: Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. J Hum Genet 57: 691-699, 2012.

14. Han W and Li J: Structure-activity relationship analysis of 3-phenylpyrazole derivatives as androgen receptor antagonists. J Biomol Struct Dyn 38: 2582-2591, 2020.

15. Wang J, Zhang X, Li J, Wang GF and Wei Q: Strain RNA interference-mediated ApoB-ribosylation factor 6 silencing inhibits proliferation, migration and invasion of human prostate cancer PC-3 cells. Nan Fang Yi Ke Da Xue Xue Bao 36: 735-743, 2016 (In Chinese).

16. Hongu T, Yamauchi Y, Funakoshi Y, Katagiri N, Ohbayashi N and Kanaho Y: Pathological functions of the small GTPase Arf6 in cancer progression: Tumor angiogenesis and metastasis. Small GTPases 7: 47-53, 2016.

17. Livak KJ and Schmittgen TD: Analysis of relative gene expression using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408, 2001.

18. Luu HN, Lin HY, Sørensen KD, Ogunwobi OO, Kumar N, Sacher R, ONECTR Consortium: MicroRNAs in prostate cancer: An overview. Clin Cancer Res 16: 3929-3940, 2010.

19. Almodovar J, De la Serna S, Muñoz A, Pérez Rodriguez M, et al: Engagement of Her2 with GEP100 induces autonomous invasive activity during WNT5A-mediated melanoma invasion and metastasis. Sci Signal 6: ra14, 2013.

20. Huang Z, Zhang L, Zhu D, Zhou H, Qi LW, Wu L, Zhu J, Cheng W, Zhang H, et al: A novel serum microRNA signature to screen esophageal squamous cell carcinoma. Cancer Med 6: 109-119, 2017.

21. Hashimoto S, Onodera Y, Hashimoto A, Otsuka Y, Handa H, et al: MicroRNAs in urine supernatant as potential non-invasive markers for bladder cancer detection. Neoplasia 63: 799-808, 2016.

22. Tong Z, Ostanin K, Rogers A, Grossmann KF, Tripp SR, et al: Adenosine diphosphate-ribosylation factor 6 is required for epidermal growth factor-induced glioblastoma cell proliferation. Cancer 115: 4989-4972, 2017.

23. Li R, Peng C, Zhang X, Wu Y, Fan S and Xiao Y: Roles of Arf6 in cancer cell invasion, metastasis and proliferation. Life Sci 182: 80-84, 2017.

24. Li M, Wang J, Ng SS, Chan CY, He ML, Yu F, Lai H, Shi C, Chen Y, Yew DT, et al: Adenosine diphosphate-ribosylation factor 6 is required for epidermal growth factor-induced glioblastoma cell proliferation. Cancer 115: 4989-4972, 2017.

25. Grossmann AH, Yoo JH, Clancy J, Sorensen LK, Sedgwick A, Tong Z, Ostanin K, Rogers A, Grossmann KF, Tripp SR, et al: The small GTPase Arf6 stimulates: Tumor angiogenesis and metastasis. Small 15: 429, 2014.

26. Hashimoto S, Onodera Y, Hashimoto A, Tanaka M, Hamaguchi M, Yamada A and Sabe H: Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci USA 101: 6647-6652, 2004.

27. Menjú T, Hashimoto S, Hashimoto A, Otsuka Y, Handa H, Ogawa E, Toda Y, Wada H, Date H, Sabe H, et al: Engagement of overexpressed Her2 with GEP100 induces autonomous invasive activities and provides a biomarker for metastases of lung adenocarcinoma. PLoS One 6: e25301, 2011.

28. Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, Liang D, Hu Q, et al: Arf6, induced by mutant Kras, promotes proliferation and Warburg effect in pancreatic cancer. Cancer Lett 388: 303-311, 2017.

29. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P and Chereshe DA: Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137: 481-492, 1997.

30. Burridge K and Wennerberg K: Rho and Rac take center stage. Cell 116: 167-179, 2004.
31. Hu B, Shi B, Jarzynka MJ, Yiin JJ, D’Souza-Schorey C and Cheng SY: ADP-ribosylation factor 6 regulates glioma cell invasion through the IQ-domain GTPase-activating protein 1-Racl-mediated pathway. Cancer Res 69: 794-801, 2009.

32. Tague SE, Muralidharan V and D’Souza-Schorey C: ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling Pathway. Proc Natl Acad Sci USA 101: 9671-9676, 2004.

33. Hu Z, Du J, Yang L, Zhu Y, Yang Y, Zheng D, Someya A, Gu L and Lu X: GEPl00/Arf6 is required for epidermal growth factor-induced ERK/Rac 1 signaling and cell migration in human hepatoma HepG2 cells. PLoS One 7: e38777, 2012.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.