Critical Scaling of Compression-Driven Jamming of Frictionless Spheres

Anton Peshkov and Stephen Teitel

University of Rochester

NSF Grant No. DMR-1809318
Center for Integrated Research Computing at the University of Rochester

preprint at arxiv:2010.09848, soon to appear in PRE
Athermal isotropic compression-driven jamming:

work has focused on quasi-static compression and behavior in the jammed solid phase above ϕ_J

We are interested in behavior in the liquid phase below ϕ_J, particularly to probe for a diverging time scale as $\phi \to \phi_J$ from below.

Do stress-isotropic (compression-driven) and stress-anisotropic (shear-driven) jamming have the same critical universality?

Ikeda et al, PRL 124, 058001 (2020) computed the relaxation time τ of initial unjammed configurations below ϕ_J. A common divergence of τ for both random isotropic configurations and for configurations in steady-state simple shear, suggests that compression-driven and shear-driven jamming have a common universality.

Nishikawa et al, J Stat Phys 182, 37 (2021) have questioned Ikeda et al’s results; find $\tau \sim \ln N$ when the system becomes sufficiently large, so τ has no proper thermodynamic limit.
Athermal isotropic compression at a finite compression rate:

We probe time scales below ϕ_J by compressing at a finite rate $\dot{\epsilon}$. The finite rate introduces a control time scale with which to probe the critical time scale.

We measure the bulk viscosity, which we find to diverge at ϕ_J, and compare to the shear viscosity to look for a universality of stress-isotropic and stress-anisotropic jamming.

Model: size-bidisperse, soft core spheres, in non-Brownian suspension

$$N_s = N_b = N/2 \quad d_b/d_s = 1.4 \quad \phi = \frac{1}{L_D \sum_i V_i}$$

packing fraction

one-sided harmonic elastic contact interaction

$$f^\text{el}_{ij} = -\frac{d}{d\mathbf{r}_i} \left[\frac{1}{2} k_e \left(1 - \frac{r_{ij}}{d_{ij}} \right)^2 \right] \quad r_{ij} = |\mathbf{r}_i - \mathbf{r}_j| \quad d_{ij} = (d_i + d_j)/2$$

viscous dissipative drag due to host medium

$$f^\text{dis}_i = -k_d V_i \left[\mathbf{v}_i - \mathbf{v}_{\text{host}} (\mathbf{r}) \right]$$

dynamics:

$$m_i \ddot{\mathbf{r}}_i = \sum_j f^\text{el}_{ij} + f^\text{dis}_i$$

dimensionless parameters:

$$\dot{\epsilon} t_0, \quad t_0 = (D/2) k_d V_s d_s^2 / k_e = 1$$

$$Q \lesssim 1 \Rightarrow \text{overdamped} \quad N = 16,384$$

$$Q = \sqrt{m_s k_e / k_d V_s d_s} \quad 32,768$$
Results: pressure p

2D

\[\phi < \phi_J : \quad p \to 0 \text{ as } \dot{\epsilon} \to 0 \]

\[\phi > \phi_J : \quad p \to \text{constant as } \dot{\epsilon} \to 0 \]

3D

\[\phi < \phi_J : \quad \zeta \to \text{constant as } \dot{\epsilon} \to 0 \]

\[\phi > \phi_J : \quad \zeta \to \infty \text{ as } \dot{\epsilon} \to 0 \]
Critical scaling ansatz:

\[p = \dot{\varepsilon}^q f \left(\frac{\phi - \phi_J}{\dot{\varepsilon}^{1/z\nu}} \right) \]

\(\phi > \phi_J: \) since \(p \to \text{constant as } \dot{\varepsilon} \to 0, \)
then \(f(x \to +\infty) \to |x|^{qz\nu} \)

\(\phi < \phi_J: \) since \(\zeta \equiv p/\dot{\varepsilon} \to \text{constant as } \dot{\varepsilon} \to 0, \)
then \(f(x \to -\infty) \to |x|^{-(1-q)z\nu} \)

\[\lim_{\dot{\varepsilon} \to 0} p \sim (\phi - \phi_J)^y \]
\[y = qz\nu \]

\[\lim_{\dot{\varepsilon} \to 0} \zeta \sim (\phi_J - \phi)^{-\beta} \]
\[\beta = (1 - q)z\nu \]

plot \(p/\dot{\varepsilon}^q \) vs \((\phi - \phi_J)/\dot{\varepsilon}^{1/z\nu} \) – data for different \(\dot{\varepsilon} \)
should collapse to a common curve.
\[p = \dot{\varepsilon}^q f \left(\frac{\phi - \phi_J}{\dot{\varepsilon}^{1/z\nu}} \right) \]
\[\zeta = p/\dot{\varepsilon} \]
\[\lim_{\dot{\varepsilon} \to 0} p \sim (\phi - \phi_J)^y \]
\[\lim_{\dot{\varepsilon} \to 0} \zeta \sim (\phi_J - \phi)^{-\beta} \]
\[y = qz\nu \]
\[\beta = (1 - q)z\nu \]

Test of sensitivity of fitted parameters to size of data window used in fit
Conclusions:

	compression	simple shearing (numerical results)	theory: marginal stability
2D	$\beta = 2.63 \pm 0.09$	$\beta = 2.77 \pm 0.20$ [1], $\beta = 2.58 \pm 0.10$ [2]	$\beta = 2.83$ [4]
	$y = 1.12 \pm 0.04$	$y = 1.08 \pm 0.03$ [1], $y = 1.09 \pm 0.01$ [2]	
3D	$\beta = 3.07 \pm 0.15$	$\beta = 2.56$ [3], $\beta = 2.8$ [4], $\beta = 2.94$ [5], $\beta = 3.8 \pm 0.1$	$\beta = 2.83$ [4]
	$y = 1.22 \pm 0.03$	$y = 1.16 \pm 0.01$ [6]	

compression:

- **bulk viscosity:**
 \[\phi < \phi_J \lim_{\dot{\epsilon} \to 0} p/\dot{\epsilon} \sim (\phi - \phi_J)^{-\beta} \]

- **pressure:**
 \[\phi > \phi_J \lim_{\dot{\epsilon} \to 0} p \sim (\phi - \phi_J)^y \]

shearing:

- **pressure analog of shear viscosity:**
 \[\phi < \phi_J \lim_{\dot{\gamma} \to 0} p/\dot{\gamma} \sim (\phi - \phi_J)^{-\beta} \]

- **pressure on yield stress line:**
 \[\phi > \phi_J \lim_{\dot{\gamma} \to 0} p_\gamma \sim (\phi - \phi_J)^y \]

Our results are consistent with a common universality for stress-isotropic compression-driven jamming vs stress-anisotropic shear-driven jamming (though 3D is tentative)

[1] Olsson and Teitel, PRE 83, 020201(R) (2011)
[2] Olsson and Teitel, PRL 109, 108001 (2012)
[3] Kawasaki et al, PRE 91, 012203 (2015)
[4] DeGiuli et al, PRE 91, 062206 (2015)
[5] Lerner et al, PNAS 109, 4798 (2012)
[6] Olsson, PRL 122, 108003 (2019)