Silencing of phosphoinositide dependent protein kinase orthologs reduces hypersensitive cell death in *Nicotiana benthamiana*

Akinori Kiba1,*, Kotoko Fukui1, Maki Mitani1, Ivan Galis2, Yuko Hojo2, Tomonori Shinya2, Kouhei Ohnishi3, Yasufumi Hikichi1

1Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan; 2Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan; 3Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan

*E-mail: akiba@kochi-u.ac.jp Tel & Fax: +81-88-864-5196

Received April 1, 2020; accepted May 11, 2020 (Edited by M. Sekine)

Abstract Phosphatidic acid plays an important role in plant immune responses against phytopathogenic bacteria in *Nicotiana benthamiana*. Here we focused on phosphoinositide dependent protein kinases (PDKs) as a candidate required for phosphatidic acid signaling. Based on *Arabidopsis* PDK sequences, we identified four putative PDK orthologs in *N. benthamiana* genome. To address the role of PDKs in plant defense responses, we created all four *NbPDKs*-silenced plants by virus-induced gene silencing. The *NbPDKs*-silenced plants showed a moderately reduced growth phenotype. Induction of hypersensitive cell death was compromised in the *NbPDKs*-silenced plants challenged with *Ralstonia solanacearum*. The hypersensitive cell death induced by bacterial effectors was also reduced in the *NbPDKs*-silenced plants. The *NbPDKs*-silenced plants showed decreased production of salicylic acid, jasmonic acid and jasmonoyl-L-isoleucine, as well as hydrogen peroxide after inoculation with *R. solanacearum*. These results suggest that *NbPDKs* might have an important role in the regulation of the hypersensitive cell death via plant hormone signaling and oxidative burst.

Key words: effector-triggered immunity, hypersensitive cell death, *Nicotiana benthamiana*, phosphoinositide dependent protein kinase, *Ralstonia solanacearum*, virus-induced gene silencing.

It has been shown that phospholipid-based signaling cascades are important for plant immune responses (Canonne et al. 2011; Munnik 2001; Testerink and Munnik 2005). Recently, we identified the SEC14 gene encoding a phospholipid transfer protein from *N. benthamiana* (*NbSEC14*). Suppression of phospholipase C and phospholipase D activity, and production of diacylglycerol and phosphatidic acid (PA) were observed in *NbSEC14*-silenced plants, resulting in compromised disease resistance against phytopathogenic bacteria (Kiba et al. 2012, 2014, 2016). Silencing of PA phosphatase caused over accumulation of PA, resulting in enhanced disease resistance against phytopathogenic bacteria (Nakano et al. 2013). Induction of hypersensitive cell death (HCD) was also accelerated in PA phosphatase-silenced plants (Nakano et al. 2015). These results suggest an important role of PA in the induction of immune responses and HCD in *N. benthamiana*. To this end, PA functions as a signal molecule in responses to both biotic and abiotic stresses (Liu et al. 2013).

Previously, PA production was activated by osmotic stresses, such as salinity, drought, hyperosmotic stress, and treatment with the drought-related stress hormone abscisic acid (Munnik 2001). PA is also formed after wounding of leaves in various plants, including soybean, sunflower, pepper, broad bean, and castor bean (Munnik 2001; Testerink and Munnik 2005). The chitin elicitor induces the PA biosynthesis, leading to phytoalexin accumulation in rice cells (Yamaguchi et al. 2005), and PA is also produced after Cf-4 mediated pathogen recognition (de Jong et al. 2004). Taken together, PA has an important role in protection of plants against abiotic and biotic stresses. Recently, PA-binding proteins have been characterized as the targets of PA, being involved in the regulation of plant growth, development, and stress responses (Liu et al. 2013; McLoughlin and Testerink 2013). While many proteins with PA-binding properties have been identified mainly in *Arabidopsis thaliana*, it is still poorly understood how PA-binding proteins function in *N. benthamiana* and *R. solanacearum*.
solanaearum interaction. In this study, we focused on phosphoinositide dependent kinases (PDKs) from *N. benthamiana* as candidates for PA-mediated signaling components required for immune responses against *R. solanaearum*, namely HCD induction.

Nicotiana benthamiana was grown in a cultivation room as before (Maimbo et al. 2007). *Ralstonia solanaearum* strain 8107 (Rs8107), which is an incompatible pathogen inducing HCD on *N. benthamiana* (Kiba et al. 2003) and Agrobacterium tumefaciens were cultured as described previously (Maimbo et al. 2010). The bacterial suspensions were infiltrated by syringes using standard procedures (Maimbo et al. 2010). Total RNA was isolated using a NucleoSpin RNA Plant kit (Macherey-Nagel, Düren, Germany). A 1-µg sample of total RNA was used as the template for reverse transcription with a ReverTra Ace® qPCR RT Kit (Toyobo Co., Ltd. Tokyo, Japan). The sequence analysis was performed with the reagents for the Big Dye Terminator Cycle Sequencing Kit (Applied Biosystems, Foster, CA, USA) and an Applied Biosystems 3100 Automated Sequencer (Applied Biosystems, Warrington, UK). cDNA fragments for the conserved region of *NbPDK2-1* to *NbPDK2-4* sequences (*NbPDKs*) were amplified with specific pairs of primers (Supplementary Figure S1, Table S1), and then cloned into the pPVX201 (Kiba et al. 2012). The binary plasmids were transformed into *A. tumefaciens* strain GV3101, and the transformant was inoculated into *N. benthamiana* leaves as described previously (Maimbo et al. 2007). qRT-PCR was performed using the method described in Maimbo et al. (2007). Briefly, the qRT-PCR was carried out in 20 µl of reaction mixture, containing 1µl of cDNA template, 10 pM of the respective primers (Supplementary Table S1) and THUNDERBIRD qPCR MIX (Toyobo Co.), on an Applied Biosystems 7300 real-time PCR instrument. All values were normalized to the expression values of the actin gene, which was used as an internal standard in each cDNA stock. Cell death was measured by ion conductivity method (Ito et al. 2014a, b) using a Twin Cord B-173 conductivity meter (HORIBA, Kyoto, Japan). Phytohormone contents were determined by a triple quadrupole Liquid Chromatography/Mass Spectrometer LC-MS/MS 6410 (Agilent Technologies, USA) equipped with a Zorbax SB-C18 column [2.1 mm i.d. × 50 mm, (1.8 µm), Agilent Technologies]. Hormone amounts were calculated from the ratio of the endogenous hormone peak and the known amounts of stable isotope labeled internal standards, and related to the actual fresh mass of the samples used for extraction (Kiba et al. 2014). Visualization of H2O2 in situ was carried out by 3,3′-diaminobenzidine (DAB) staining as described by Nakano et al. (2013).

Based on PDK1 sequences from *Arabidopsis thaliana*, we searched for PDK orthologs in *N. benthamiana* using the sol genomics network (https://solgenomics.net/). We identified 4 PDK orthologs in the *N. benthamiana* genome. Database analysis of PDK orthologs showed high similarity to PDK2 from Nicotiana and other plants, and we therefore designated them as *NbPDK2-1, NbPDK2-2, NbPDK2-3* and *NbPDK2-4* (Supplementary Figure S1A, B). Deducing amino acid sequences of the full-length cDNAs of the *NbPDK2-1, NbPDK2-2* and *NbPDK2-3* contained STKc-PDK1 and PH domains. In contrast, *NbPDK2-4* lacked half of STKc-PDK1 and PH domains (Supplementary Figure S1A, C). In *Arabidopsis*, PDK1 was activated by binding of PA to PH domain, and STKc-PDK1 was required for the enzymatic activity (Anthony et al. 2004). In the present study, *NbPDK2-1, 2* and *3* contained conserved both STKc-PDK1 and PH domain, suggesting that *NbPDK2-1, 2* and/or 3 act as signaling component downstream of PA (Supplementary Figure S1).

Then, we created constructs for obtaining all four PDKs (*NbPDKs*) silenced plants (Supplementary Figure S2). Suppression of all *NbPDKs* after initiation of VIGS was estimated by qRT-PCR (Supplementary Figure S3A). The *NbPDKs*-silenced plants showed moderately dwarf phenotype (Supplementary Figure S3B, C), consistent with previous reports on phospholipid signaling having a role in plant growth (Xue et al. 2007). Therefore, our NbPDKs might also act as downstream phospholipid signaling components during plant growth. To address the role of *NbPDKs* in plant defense responses, we inoculated Rs8107 to clarify the silencing effect of *NbPDKs* on HCD. The induced cell death appeared in the control plants 18–24 h after inoculation, whereas suppression of cell death was observed in *NbPDKs*-silenced plants (Figure 1A). The induced level of HCD marker *hin1* gene was also suppressed in *NbPDKs*-silenced plants (Figure 1B). These results suggested that NbPDK2s act as positive regulator for HCD in *N. benthamiana* (Figure 1). In tomato, PDK1 phosphorylates cell death inhibitor Adi3, and gene silencing of *Adi3* caused MAPK dependent cell death. Chemical inhibitor of PDK1, OSU-03012, also reduced viability of tomato prooplasts (Devarenne et al. 2006), indicating a negative regulation of HCD by PDK1 in tomato cells. Therefore, the role of PDKs in HCD regulation may be different between *N. benthamiana* plants and tomato plants. In addition, silencing the *NbPDKs* also had inhibitory effect on the induction of HCD by the *Agrobacterium*-mediated transient expression of *R. solanaearum* effectors, AvrA and PopP1 (Poueymiro et al. 2009, Figure 1C). Plants have evolved the innate immune system to recognize pathogens effector proteins by their cognate resistance proteins, resulting in the initiation of effector-triggered immunity (ETI) (Gassmann and Bhattacharjee 2012). ETI is characterized as specific, sustainable and robust immune
response with HCD (Jones and Dangl 2006). Therefore, our results demonstrate that NbPDKs contributes to induction of HCD in responses to Rs8107, as well as effectors-induced HCD, suggesting the involvement of NbPDKs in ETI induction.

During the HCD induction by Rs8107 inoculation, hydrogen peroxide production was detected in control plants. In contrast, reduced hydrogen peroxide levels were observed in NbPDKs-silenced plants (Figure 2A). Reactive oxygen species reportedly play a role in HCD induction (Torres 2010; Yoshioka et al. 2003; Zhang et al. 2009). It has been reported that activated PDK1 stimulates OXI1/AGC2-I required for oxidative signaling in A. thaliana (Anthony et al. 2006). The PA-PDK1 signaling cascade also induces a respiratory burst in plants (Rentel et al. 2004; Yu et al. 2010). Our present data confirm the involvement of NbPDKs in triggering reactive oxygen production (Figure 2A), and therefore, NbPDKs might be playing an important role in HCD regulation via oxidative signals.

As shown in Figure 2B, jasmonic acid (JA), JA-L-isoleucine, as well as salicylic acid (SA) accumulated in control plants by 18 and 24 h after inoculation with Rs8107, whereas reduced levels of all plant hormones
were observed in NbPDKs-silenced plants. Plant hormonal signals are critical for HCD induction. In tomato plants, JA signaling pathway is reportedly required for HCD-inducible β-cryptogein signaling (Starý et al. 2019). The increased resistance against powdery mildew was correlated with cell death, H2O2 accumulation, and upregulated expression of SA-dependent defense genes in N. benthamiana (Guo et al. 2019). Now, our present data also show involvement of NbPDKs in JA and SA signaling at the level of biosynthesis of these hormone (Figure 2B). Therefore, NbPDKs might have an important role in HCD induction, via regulation of JA and SA biosynthetic pathways.

In summary, we demonstrate that NbPDKs contribute to induction of HCD in plants. From our findings, while undergoing ETI induction, NbPDKs may be activating oxidative burst, JA and SA-mediated signaling in plants, during HCD induction. Further studies will be required to clarify the role of individual PDKs (NbPDK2-1 to 2-4) and complex mechanisms by which the NbPDK proteins are engaged in HCD induction.

Acknowledgements
The authors thank S. Genin for the provision of P35S-PopP1 and P35S-AvrA, and D. Baulcombe for the pPVX201 vector. This work was supported by Cabinet Office grant in aid, the Advanced Next-Generation Greenhouse Horticulture by IoP (Internet of Plants), Japan. This research was also supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) as part of Joint Research Program implemented at the Institute of Plant Science and Resources, Okayama University in Japan. LC-MS/MS instrumentation was supported by the Japan Advanced Plant Science Network. AK is also grateful for financial support from Grants in Aid for Scientific Research to AK (24500666) from the Ministry of Education, Science, Sports, and Culture, Japan, The Asahi Glass Foundation, The Agricultural Chemical Research Foundation and Sapporo Bioscience Foundation.

Author contributions
A.K., K.O. and Y.H. designed the research; A.K., K.F., M.M., I.G. and Y.H. performed the research; A.K., I.G. and T.S. analyzed the data and wrote the article.

References
Anthony RG, Henriques R, Helfer A, Meszaros T, Rios G, Testerink C, Munnik T, Deak M, Koncz C, Bögre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23: 572–581
Anthony RG, Khan S, Costa J, Pais MS, Bögre L (2006) The Arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXII. J Biol Chem 281: 37536–37546
Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signal Behav 6: 13–18
de Jong CF, Laxalt AM, Bargmann BO, de Wit PI, Joosten MH, Munnik T (2004) Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39: 1–12
Devarenne TP, Ekengren SK, Pedley KF, Martin GB (2006) Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death. EMBO J 25: 255–265
Gassmann W, Bhattacharjee S (2012) Effector-triggered immunity signaling: From gene-for-gene pathways to protein-protein interaction networks. Mol Plant Microbe Interact 25: 862–868
Guo WL, Chen BH, Guo YY, Yang HL, Mu JY, Wang YL, Li XZ, Zhou JG (2019) Improved powdery mildew resistance of transgenic Nicotiana benthamiana overexpressing the Ocimum basilicum CmSGTI Gene. Front Plant Sci 10: 955
Ito M, Takahashi H, Sawasaki T, Ohnishi K, Hikichi Y, Kiba A (2014a) Novel type of adenylyl cyclase participates in tabtoxinine-β-lactam-induced cell death and occurrence of wildfire disease in Nicotiana benthamiana. Plant Signal Behav 9: e27420
Ito M, Yamamoto Y, Kim CS, Ohnishi K, Hikichi Y, Kiba A (2014b) Heat shock protein 70 is required for tabtoxinine-β-lactam-induced cell death in Nicotiana benthamiana. J Plant Physiol 171: 173–178
Jones JD, Dangl JL (2006) The plant immune system. Nature 444: 323–329
Kiba A, Galis I, Hojo Y, Ohnishi K, Yoshioka H, Hikichi Y (2014) SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana. PLoS One 9: e98150
Kiba A, Imanaka Y, Nakano M, Galis I, Hojo Y, Shinya T, Ohnishi K, Hikichi Y (2016) Silencing of Nicotiana benthamiana SEC14 phospholipid transfer protein reduced jasmonic acid dependent defense against Pseudomonas syringae. Plant Biotechnol 33: 111–115
Kiba A, Nakano M, Vincent-Pope P, Takahashi H, Sawasaki T, Endo Y, Ohnishi K, Yoshioka H, Hikichi Y (2012) A novel Sec14 phospholipid transfer protein from Nicotiana benthamiana is up-regulated in response to Ralstonia solanacearum infection, pathogen associated molecular patterns and effector molecules and involved in plant immunity. J Plant Physiol 169: 1017–1022
Kiba A, Tomiyama H, Takahashi H, Hamada H, Ohnishi K, Okuno T, Hikichi Y (2003) Induction of resistance and expression of defense-related genes in tobacco leaves infiltrated with Ralstonia solanacearum. Plant Cell Physiol 44: 287–295
Liu Y, Su Y, Wang X (2013) Phosphatidic acid-mediated signaling. Adv Exp Med Biol 991: 159–176
Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A (2007) Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol 145: 1588–1599
Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A (2010) A glycopolypeptide-like protein regulates defense responses in Nicotiana plants against Ralstonia solanacearum. Plant Physiol 152: 2023–2035
McLoughlin F, Testerink C (2013) Phosphatidic acid, a versatile water-stress signal in roots. Front Plant Sci 4: 525
Munnik T (2001) Phosphatidic acid: An emerging plant lipid second messenger. Trends Plant Sci 6: 227–233
Nakano M, Nishihara M, Yoshioka H, Takahashi H, Sawasaki T, Ohnishi K, Hikichi Y, Kiba A (2013) Suppression of DSI phosphatidic acid phosphatase confirms resistance to Ralstonia solanacearum in Nicotiana benthamiana. PLoS One 8: e75124
Nakano M, Yoshioka H, Ohnishi K, Hikichi Y, Kiba A (2015) Cell death-inducing stresses are required for defense activation in DS1-phosphatidic acid phosphatase-silenced *Nicotiana benthamiana*. *J Plant Physiol* 184: 15–19

Poueymiro M, Cunnac S, Barberis P, Deslandes L, Peeters N, Cazale-Noel AC, Boucher C, Genin S (2009) Two type III secretion system effectors from *Ralstonia solanacearum* GM11000 determine host-range specificity on tobacco. *Mol Plant Microbe Interact* 22: 538–550

Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, et al. (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in *Arabidopsis*. *Nature* 427: 858–861

Starý T, Satková P, Piterková B, Mieslerová B, Luhová L, Mikulík J, Kašparovský T, Petřivalský M, Lochman J (2019) The elicitin β-cryptogein’s activity in tomato is mediated by jasmonic acid and ethylene signalling pathways independently of elicitin-sterol interactions. *Planta* 249: 739–749

Testerink CT, Munnik T (2005) Phosphatidic acid: A multifunctional stress signaling lipid in plants. *Trends Plant Sci* 10: 368–375

Torres MA (2010) ROS in biotic interactions. *Physiol Plant* 138: 414–429

Xue H, Chen X, Li G (2007) Involvement of phospholipid signaling in plant growth and hormone effects. *Curr Opin Plant Biol* 10: 483–489

Yamaguchi T, Minami E, Ueki J, Shibuya N (2005) Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspension-cultured rice cells. *Plant Cell Physiol* 46: 579–587

Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) *Nicotiana benthamiana* gp91phox homologs NbrbohA and NbrbohB participate in H$_2$O$_2$ accumulation and resistance to *Phytophthora infestans*. *Plant Cell* 15: 706–718

Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in *Arabidopsis thaliana*. *New Phytol* 188: 762–773

Zhang H, Fang Q, Zhang Z, Wang Y, Zheng X (2009) The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in *Nicotiana benthamiana*. *J Exp Bot* 60: 3109–3122