Introduction

Potato (Solanum tuberosum) is the fourth-largest food crop in the world, following maize, wheat, and rice. More than 4,500 potato varieties are cultivated in over 100 countries (Pieterse and Judd 2014). As the number of known varieties increases, it becomes difficult to identify them by morphological markers. Thus, reliable methods of correctly identifying cultivars are strongly needed to assess the genetic diversity of the potato germplasm.

SSR markers, or microsatellites, consist of tandemly repeated DNA sequences with a core unit of 1–6 base pairs (bp). They have many positive features useful for the genetic profiling of individuals, including abundance in plant genomes, multi-allelic co-dominant patterns, ease of use, and high variability in the number of core-motif repeats. In the long-core motif (e.g. tetra-, penta-, and hexa-nucleotide) SSRs, neighbor alleles are more easily separated from each other, while di-nucleotide SSRs are subject to a lower level of separation of neighbor alleles and a higher level of stuttering, which make the interpretation of electropherograms and the allele call less reliable (Cipriani et al. 2008). Long nucleotide repeats are widely adopted for genetic profiling in humans and animals (Butler et al. 2004, Butler 2006, Hammond et al. 1994, Hellmann et al. 2006, Ruitberg et al. 2001). Meanwhile, regarding plants, the use of long nucleotide repeats has been limited to the variety identification of a few crops: grape (Cipriani et al. 2008, 2010), Eucalyptus (Faria et al. 2011), olive (De la Rosa et al. 2013), peach (Dettori et al. 2015), and tea (Wang et al. 2016).

In the present paper, we propose a new set of long-core motif SSR markers for potato with the aim of minimizing genotyping errors.

Materials and Methods

Plant materials and DNA extraction

Ten potato cultivars of in vitro cultures were obtained from the University of Idaho as representative cultivars in the United States. Potato tubers of Japanese cultivars were obtained from the Hokkaido Research Organization (HRO) Kitami Agricultural Experiment Station (9 cultivars), the Nagasaki Agricultural and Forestry Technical Development Center (8 cultivars), and the NARO Hokkaido Agricultural Research Center (49 cultivars) (Table 3). For each cultivar tested, DNA was extracted using the GM quicker 2 kit (Nippon Gene, Toyama, Japan) according to the supplier’s protocol.
PCR and DNA fragment analysis

Fifty-six SSR markers with a tetra-nucleotide motif from Spud DB (Hirsch et al. 2014) were initially selected. Using 4 Japanese and 4 US major cultivars, a preliminary test of PCR amplification was performed. After the screening, 8 markers were selected for efficient discrimination of cultivars.

Octplex PCR reactions were carried out in a 5 µL reaction mixture with 2.5 ng genomic DNA, 0.1 U of KOD - Multi & Epi- (Toyobo, Osaka, Japan) and appropriate concentrations of the primer pairs shown in Table 1. The forward primers were labeled with any of 6-FAM, HEX, NED, and PET fluorescent dyes. The PCR reactions were carried out with the following thermal profile: one cycle at 94°C for 2 min followed by 30 cycles at 98°C for 10 sec, 63°C for 30 sec, and 68°C for 30 sec. Electrophoresis was performed in a Genetic Analyzer 310 (Thermo Fisher Scientific, Waltham, MA, USA). The PCR products were analyzed using GeneMapper v3.7 software (Thermo Fisher Scientific). For each locus, peaks were assigned letters in alphabetical order from the smallest to the largest (Table 2). The number of peaks and the number of profiles per marker were evaluated based on amplification of the 76 test cultivars. Discrimination power (DP) was calculated as $DP = 1 - \sum P_i^2$ where P_i is the frequency of the i^{th} profile.

Results and Discussion

A total of 1,729 tetra-nucleotide SSRs were annotated by Spud DB (Hirsch et al. 2014). Among them, 56 SSRs were selected based on a high number of repeats, and were tested for each locus, the peaks were assigned letters in alphabetical order from the smallest to the largest (Table 2). The number of peaks and the number of profiles per marker were evaluated based on amplification of the 76 test cultivars. Discrimination power (DP) was calculated as $DP = 1 - \sum P_i^2$ where P_i is the frequency of the i^{th} profile.

Table 1. Eight tetra-nucleotide SSR primers selected for identification of potato cultivars

Marker ID*	Chr.	Motif	Forward (5’→3’)	Reverse (5’→3’)	Conc. peak range (bp)
4026/4027	1	C(TAT)n(TAG)n	NED-AACCTTGCGAGGATAAGTGCAGC	ACTATACACAGCTGCCCCTGAAACTACAG	0.09 265–346
8242	2	C(TTT)n	FMG-CATCGTATGGCTTAGTGTTGG	GCAAACCGAGAAAGCTAACAAC	0.08 191–218
12002	3	A(CAT)n	NED-CCATGAACTGAGTTTTTCTGGC	TTGAATCTTGTGCTACTAAAGCTAG	0.10 209–235
16410	4	A(TAC)n	FM-GATGTTTTGAGTAGAATTCTCACCAG	TTTCCTGCCCCCTTTTTATTTG	0.16 258–354
31924	8	A(TAC)n	VIC-CGAGAACACACAAATGCTCAG	GAAACGCAATTACATTTTACATCG	0.07 136–250
35584	9	G(AAA)n	VIC-ACTAGTGCACAACTCAGTCGAGGTTG	GTTCATGATATTCTCCTACGTGCTTTG	0.08 84–111
43016	11	A(TCC)n	PET-CAAGCTCTAGTAAAGCCTAC	TTTGCCTAAAAAGTTGTAGTTGAGG	0.07 184–227
46514	12	T(ATC)n	PET-TGGTCTTTGTCTCTTTTGTG	GGAATGGAACTACGGCTTCTG	0.12 150–172

*Marker IDs are the same as in Spud DB (http://solanaceae.plantbiology.msu.edu/pgsc_download.shtml).

Table 2. Characteristics of 8 tetra-nucleotide SSR primers

Marker ID*	No. of peaks	No. of profiles	Discrimination power	Averaged peak size (bp)
4026/4027	7	27	0.912	265.0 307.4 312.9 319.7 339.3 343.0 345.5
8242	3	31	0.942	190.6 193.5 194.5 198.4 206.3 214.2 218.2
12002	7	28	0.920	208.9 212.9 216.9 217.8 224.5 230.7 234.6
16410	12	36	0.927	257.6 266.9 271.0 279.0 281.0 310.3 325.2 335.9 339.5 346.3 349.9 353.6
31924	6	22	0.918	135.6 213.5 218.2 222.2 223.0 249.9
35584	6	17	0.874	84.0 91.9 95.9 99.8 103.7 111.2
43016	7	16	0.725	184.3 188.0 192.0 199.5 203.5 215.0 226.9
46514	7	18	0.869	129.9 131.2 152.5 156.9 161.1 165.1 172.0

For each locus, peaks were assigned letters in alphabetical order from the smallest to the largest.
Table 3. Profiling of 76 potato cultivars using 8 tetra-nucleotide SSR primers

Cultivar	Source	4026/4027	8242	12002	16410	31924	35584	43016	46514
Ainoaka	Nagasaki	AB	CF	BCD	BE	BD	CF	D	ABE
Alyutaka	Nagasaki	ABF	ABF	BD	BE	BD	C	G	AFE
Alturas	Idaho	C	BC	CE	DEK	BDE	B	DFG	AE
Astarte	NARO BD	BDCF	D	DE	AB	BD	BE	D	AE
Atlantic	NARO BDG	ACD	CDEF	BDK	BD	BCE	DFG	A	AC
Beniakari	NARO BG	BF	PDFG	BEK	DE	CEF	D	AC	
Benimaru	NARO BDG	AB	CDFG	EHIK	AB	BE	CE	AE	
Cal white	Idaho	DG	ABC	BCF	CDK	BE	BF	D	E
Chelsea (Jenny)	NARO B	BDCF	ACD	DEFK	BCD	ABE	D	AE	
Cherie	NARO BD	ABCD	CD	DEG	AD	BF	DF	E	
Clearwater	Idaho A	B	BCF	DK	BE	B	D	E	
Cynthia	NARO AB	BF	CD	DEHK	BD	B	CD	ABE	
Dansyakuimono (Irish Cobber)	NARO B	AB	CF	CBK	AB	BC	D	E	
Hanashibetsu	Hokkaido	BCD	AF	PDFG	BE	BCE	B	AD	AE
Haruka	NARO BC	BF	BCDG	BEG	BD	BCEF	DEG	AEF	
Hikaru	NARO BCFG	BFDEF	DE	BEK	ABCE	BCF	D	ACF	
Hokkaido 50	NARO B	BF	CDF	BEK	AB	BC	D	AE	
Hokkai 98 (Inca Rouge)	NARO B	CG	F	EK	F	B	D	E	
Hokaikogane	NARO BG	AB	CDF	EHE	ABE	BC	D	AE	
Hugenmara	Nagasaki	ABF	AF	BCD	BE	AB	B	G	AE
Inca no hitomi	NARO D	F	FG	FG	K	E	B	D	E
Inca no meizame	NARO B	CG	F	EK	F	B	D	E	
Inca Purple	NARO BCFG	BCF	CDF	EK	AB	B	AC	ACE	
Inca Red	NARO B	BF	DF	EK	AC	BD	C	D	ABE
Kitakari	NARO ABF	ABF	CDF	BCEK	BE	D	C	AFG	
Kitahime	NARO BC	F	CG	EFGK	BCE	BEF	DE	E	
Kitamurasaki	NARO BCFG	BC	BD	BEK	ADE	EF	D	AE	
Kitamurasani	NARO F	GFG	BD	BE	DE	BD	BE	E	ACE
Koganemaru	NARO B	BF	AB	CD	BEK	BDE	ABE	DG	ACE
Konabukichi	Hokkaido	BG	AB	CD	CE	BD	B	D	A
Konayuki	Hokkaido	AB	CDF	EHIK	AB	E	CD	AE	
Konayutaka	Hokkaido	BDF	AB	DEF	BEK	BE	BC	D	AE
Matilda	NARO BD	CDG	DG	BEI	CD	ABE	D	EG	
May Queen	NARO BDG	CDF	CGF	BEG	BE	EF	ABE		
Nishiyutaka	Nagasaki	B	BCF	CD	BEK	B	BE	Null	AEG
Norin I	NARO B	AB	CDF	BHIK	AB	BCF	D	AE	
Norking Russet	NARO BF	BC	BCD	DE	BCE	BF	Null	AEG	
Northern Ruby	NARO CG	BCF	CD	CEK	ABDF	BF	DE	AE	
Okhotchk Chip	Hokkaido	BG	CDF	BCF	EK	BD	BDEF	DF	AF
Oojoiro	NARO B	AD	DF	BHIK	A	BCE	D	E	
Piruka	NARO BF	ABC	BCD	BEK	BD	CE	CGD	ACE	
Prevalent	NARO CD	CDF	BD	D	BCE	AB	CE	E	
Ranger Russet	Idaho B	CF	BDG	DEK	CD	BC	Null	AE	
Runnar Chip	NARO BDF	BCF	BCD	BEK	CBDF	DB	DFG	ABE	
Red Andes	NARO B	ABG	F	BDF	BDF	BE	D	ADF	
Red Moon	NARO B	BDF	CD	AEK	CF	AB	BCDF	ACE	
Rina Chip	Hokkaido	BCFG	ACF	BCD	BEK	BE	BC	DG	AE
Russet Bannock	Idaho AEC	BCF	CF	DK	BDE	BC	D	EG	
Russet Burbank	Idaho BG	BDG	BCFG	DGK	BC	BEF	DE	AE	
Russet Norkotah	Idaho BD	BCDG	CDFG	BDK	BCD	BC	D	AEF	
Saikai 31 (Dragon Red)	Nagasaki	ACE	AF	BCD	BEL	BD	BCF	D	ABE
Sakurahubiki	NARO EG	AB	CD	CEK	BD	BC	D	AEG	
Sanjumaru	Nagasaki	AC	BDF	BC	BE	B	D	DFG	EA
Sanyenimo (Vermont Gold Coin)	NARO BG	ABGD	BCF	BCGK	B	BE	Null	AE	
Sayakane	Hokkaido	BD	CF	CDF	E	BCD	BCE	D	AE
Sayaka	NARO BC	BF	CG	BFG	BD	BDEF	DE	AE	
Setoyutaka	Nagasaki	DE	ABF	BDF	BEH	AB	BCF	CC	DAE
Shadow Queen	NARO CG	BCF	CD	BEK	ABCD	BCF	DE	DFG	AE
Shepody	Idaho ABG	CDFG	BCDG	BDG	BE	Null	ABEG		
Shigetsu	NARO BF	ABF	CD	BEK	ABD	BC	DG	ACE	
Snow March	Hokkaido	BDG	ABCF	CDE	BKE	B	BCE	DEG	AE
Snowden	NARO BDG	ABCF	CDF	BEK	B	BCD	D	ABE	
Star Ruby	NARO BDG	BCF	BD	CD	BCE	DFG	A	ACE	
Tawaramurasaki	NARO BAC	AC	BDF	BEK	BDF	B	G	A	
Tokachikogane	NARO BF	BCF	BD	BEK	ABD	BCE	DG	ACE	
Toyu	NARO BF	AC	BDF	BEK	BDF	BE	CG	D	
Toyoshirou	NARO BGD	AB	CDF	EL	BDE	BC	D	AE	
Umatilla Russet	Idaho BG	CF	BC	DK	BDE	B	D	CE	
Waseshio	NARO F	CDF	CG	AEK	BE	B	C	AE	
Western Russet	Idaho BD	CF	BDG	DEK	BD	B	D	AEF	
Yukitasara	NARO BF	BCF	C	EK	D	B	D	ACE	
Yukitsubara	Hokkaido	BC	C	CDF	BDG	DE	BC	E	AE

Symbols of the peaks are described in Table 2. Null indicates a cultivar in which no peaks are obtained with the corresponding primer pair.
suggested that these two cultivar pairs respectively have the same genomic organization other than the corresponding gene for skin color.

Cultivar identification of potato has been reported previously, and the markers described by Ghislain et al. (2004, 2009) have been used widely. Since these markers are mainly di- and tri-nucleotide SSRs, the lower separation of neighboring alleles and the relatively high level of stutter bands are inevitable. In fact, Reid et al. (2011) reported that one allele of STM3023 (di-nucleotide SSRs) is located at the stutter position for the other allele, resulting in a complication of the allele call. Additionally, simplex PCR and the various annealing temperatures of the primers are time-consuming and labor-intensive.

The set of tetra-nucleotide SSRs described here has no or extremely little stuttering, resulting in good reproducibility and reliability of allele calling. The 8-plex PCR conditions designed in this study allow simple and rapid analysis of cultivars. These markers will be helpful for the rapid identification of potato cultivars, and consequently for protecting plant breeders’ rights.

Acknowledgments

The authors would like to thank the University of Idaho, HRO Kitami Agricultural Experiment Station, Nagasaki Agricultural and Forestry Technical Development Center, and NARO Hokkaido Agricultural Research Center for providing us with potato materials.

Literature Cited

Butler, J.M., E. Buel, F. Crivellente and B.R. McCord (2004) Forensic DNA typing by capillary electrophoresis: using the ABI Prism 310 and 3100 genetic analyzers for STR analysis. Electrophoresis 25: 1397–1412.

Butler, J.M. (2006) Genetics and genomics of core short tandem repeat loci used in human identity testing. J. Forensic Sci. 51: 253–265.

Cipriani, G., M.T. Marrazzo, G. Di Gaspero, A. Pfeiffer, M. Morgante and R. Testolin (2008) A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol. 8: 127.

Cipriani, G., A. Spadotto, I. Jurman, G. Di Gaspero, M. Crespian, S. Meneghetti, E. Frare, R. Vignani, M. Cresti, M. Morgante et al. (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor. Appl. Genet. 121: 1569–1585.

De la Rosa, R., A. Belaj, A. Muñoz-Merida, O. Trelles, I. Ortiz-Martin, J.J. Gonzalez-Plaza, V. Valpuesta and C.R. Beuzon (2013) Development of EST-derived SSR markers with long-core repeat in olive and their use for paternity testing. J. Am. Soc. Hortic. Sci. 138: 290–296.

Dettori, M.T., S. Micali, J. Giovinazzi, S. Scalabrin, I. Verde and G. Cipriani (2015) Mining microsatellites in the peach genome: development of new long-core SSR markers for genetic analyses in five Prunus species. Springerplus 4: 337.

Faria, D.A., E.M.C. Mamani, G.J. Pappas Jr. and D. Grattagapiglia (2011) Genotyping systems for Eucalyptus based on tetra-, penta-, and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests. Tree Genet. Genomes 7: 63–77.

Ghislain, M., D.M. Spooner, F. Rodriguez, F. Villamon, J. Nuñez, C. Vásquez, R. Waugh and M. Bonierbale (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor. Appl. Genet. 108: 881–890.

Ghislain, M., J. Núñez, M. Rosario Herrera, J. Pignataro, F. Guzman, M. Bonierbale and D.M. Spooner (2009) Robust and highly informative microsatellite-based genetic identity kit for potato. Mol. Breed. 23: 377–388.

Hammond, H.A., L. Jin, Y. Zhong, C.T. Caskey and R. Chakraborty (1994) Evaluation of 13 short tandem repeat loci for use in personal identification applications. Am. J. Hum. Genet. 55: 175–189.

Hellmann, A.P., U. Rohleder, C. Eichmann, I. Pfeiffer, W. Parson and U. Schleenbecker (2006) A proposal for standardization in forensic canine DNA typing: allele nomenclature of six canine-specific STR loci. J. Forensic Sci. 51: 274–281.

Hirsch, C.D., J.P. Hamilton, K.L. Childs, J. Cepela, E. Crisovan, B. Vaillancourt, C.N. Hirsch, M. Habermann, B. Neul and C.R. Buell (2014) Spud DB: A resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding. Plant Genome 7: 1–12.

Milbourne, D., R.C. Meyer, A.J. Collins, L.D. Ramsay, C. Gehhardt and R. Waugh (1998) Isolation, characterisation and mapping of long repeat optimized microsatellites (SSRs) for genetic analyses in five Prunus species. Springerplus 4: 337.

Pieterse, L. and J. Judd (2014) World Catalogue of potato varieties 6th edition. Agrimedia, Clenze.

Reid, A., L. Hof, G. Felix, B. Ruecker, S. Tams, E. Milczynska, D. Esselink, G. Uenk, B. Vosman and A. Weitz (2011) Construction of an integrated microsatellite and key morphological characteristic database of potato varieties on the EU Common Catalogue. Euphytica 212: 239–249.

Ruitberg, C.M., D.J. Reeder and J.M. Butler (2001) STRBase: A short tandem repeat DNA database for the human identity testing community. Nucleic Acids Res. 29: 320–322.

Wang, R.J., X.F. Gao, X.R. Kong and J. Yang (2016) An efficient identification strategy of clonal tea cultivars using long-core motif SSR markers. Springerplus 5: 1152.