THE TULCZYJEW TRIPLE IN MECHANICS ON A LIE GROUP

KATARZyna GRABOWSKA* AND MARCIN ZAJAC

Department of Physics, University of Warsaw
Pasteura 5, 02-093 Warszawa, Poland

(Communicated by Manuel de León)

Abstract. Tulczyjew triple for physical systems with configuration manifold equipped with a Lie group structure is constructed and discussed. Systems invariant with respect to group and subgroup actions are considered together with appropriate reductions of the Tulczyjew triple. The theory is applied to free and constrained rigid-body dynamics.

1. Introduction. Tulczyjew triple is a very useful commutative diagram built on maps that are essential in Lagrangian and Hamiltonian description of physical systems. In fact the name Tulczyjew triple refers not to one diagram but a collection of diagrams adapted to various physical situations. The very first triple introduced by Tulczyjew in his numerous works (e.g. [30, 31, 33]) served for autonomous analytical mechanics. It was then adapted and generalised for time-dependent mechanics, mechanics on algebroids [8, 10, 19], constrained mechanics on Dirac algebroids [9], for field theory [7], for higher order systems [11] etc. The concept of Tulczyjew triple also points to the certain philosophy of interpreting concepts of variational calculus within physical theories.

There exist many important physical systems with a configuration space which is a Lie group and with Lagrangian and Hamiltonian invariant under the group action. The most known is a free rotating rigid body but one can also mention a heavy top as well as infinite dimensional examples of ideal fluid and magnetohydrodynamics [16]. In such cases the dynamics may be reduced with respect to the group action leading to simplified equations with reduced number of degrees of freedom.

The aim of our paper is to construct the reduced version of Tulczyjew triple in finite dimensional case, when the configuration manifold is a Lie group. The Tulczyjew triple on a Lie group has already been considered in literature. One may point e.g. to [3, 4, 6, 12]. In [3, 4] Essen and Gumral analyse reduction of the Tulczyjew triple based on a semidirect product. Semidirect product structure in the total space of the bundle tangent to a Lie group is also used in [6] together with the very rich theory of Marsden-Weinstein reduction. In our paper we prefer to keep things as simple as possible without introducing to much structure. On the other hand, there is an extensive literature about more general concept of mechanics on Lie algebroids initiated by Weinstein [36] and Liebermann [21] and developed

2010 Mathematics Subject Classification. Primary: 22E70, 53D05, 53Z05, 70E17, 70H33.

Key words and phrases. Tulczyjew triple, Lie groups, classical mechanics, double vector bundles, rigid body.

The first author is supported by the Polish National Science Centre grant under the contract number DEC-2012/06/A/ST1/00256.
by many others, especially Martinez and his collaborators [22, 23, 24, 25]. As we have mentioned before, there also exists the carefully constructed Tulczyjew triple based on the structure of an algebroid (not necessarily Lie type) [8, 10]. In this context our work fills a certain gap between classical Tulczyjew triple and its algebroidal generalization showing that mechanics on Lie agebroids is indeed obtained by reduction from the full ‘tangent bundle’ case.

The paper is organized as follows. In section 1.1 we introduce the notation and basic geometric background for our further work. In section 1.2 we recall three canonical isomorphisms of double vector bundles κ_M, α_M, β_M needed for classical Tulczyjew triple. In particular we present a way of constructing these maps that is later applied to a group-case situation. Section 1.3 contains a short description of the Tulczyjew triple and its role in Lagrangian and Hamiltonian mechanics. In section 1.4 we present a concise introduction to geometry of Lie groups especially tangent and cotangent bundles of a manifold that is a Lie group based on [2]. Next two sections contain main results of our paper. We construct the Tulczyjew triple over a manifold that is a Lie group. We use trivialised bundles $\mathbb{T}T^*G$, \mathbb{T}^*T^*G and trivialised isomorphisms between them. We end section 2.5 with the diagram of trivialised Tulczyjew triple and its application to mechanics. In section 2.6 we consider nonholonomic constraints invariant with respect to the group action. Section 3 contains the reduction of the Tulczyjew triple and its nonholonomic version with respect to the group structure. Section 4 contains reduction with respect to the subgroup of the initial group G. Finally, in section 5 we apply derived formalism to the free rigid body dynamics, the Heavy Top and Suslov problem.

1.1. Notation. Let M be a smooth manifold of dimension m. In an open subset $\mathcal{U} \subset M$ we introduce local coordinates $(q^i)_{i=1}^m$. The tangent and cotangent bundles will be denoted by $\tau_M : \mathcal{T}M \to M$ and $\pi_M : \mathcal{T}^*M \to M$ respectively. We have induced coordinates (q^i, \dot{q}^j) in $\tau_M^{-1}(\mathcal{U})$. Thus, we can write τ_M as

$$\tau_M : \mathcal{T}M \ni (q^i, \dot{q}^j) \mapsto (q^i) \in M.$$

The tangent bundle plays the role of a set of positions and velocities of a mechanical system. It is also called a space of infinitesimal configurations. Let $\gamma : \mathbb{R} \ni t \mapsto \gamma(t) \in M$ be a smooth curve. The tangent vector to this curve at point $t_0 \in I$ will be denoted by $\dot{\gamma}(t_0)$ or equivalently $\frac{d}{dt}_{t=t_0} \gamma$.

Local induced coordinates in $\tau_M^{-1}(\mathcal{U}) \subset \mathcal{T}^*M$ will be denoted by (q^i, p_j). The projection π_M may be locally written as

$$\pi_M : \mathcal{T}^*M \ni (q^i, p_j) \mapsto (q^i) \in M.$$

The cotangent bundle represents a set of positions and momenta of a physical system and is also called the phase space of a system.

We introduce induced coordinates in iterated tangent and cotangent bundles

$$(q^i, \dot{q}^j, \delta q^k, \delta \dot{q}^l) \text{ in } \mathbb{T}^2\mathbb{T}M,$$

$$(q^i, p_j, \dot{q}^k, \dot{p}_l) \text{ in } \mathbb{T}T^*M,$$

$$(q^i, \dot{q}^j, p_k, \phi_l) \text{ in } \mathbb{T}^*\mathbb{T}M,$$

$$(q^i, p_j, \pi_k, x^l) \text{ in } \mathbb{T}^*\mathbb{T}^*M.$$

The above four bundles play a crucial role in our paper. They have rich geometric structure. Each of them is a double vector bundle i.e. it has two compatible structures of a vector bundle (see [13],[18],[26]). One can show that there exist a
canonical isomorphism of vector bundles T^*T^*M and T^*TM denoted by γ_M [15, 18].
In fact such an isomorphism of T^*E^* and T^*E exists for any vector bundle E. In coordinates, for $E = TM$ it reads

$$\gamma_M : T^*T^*M \rightarrow T^*TM, \quad (q^i, p_j, \pi_k, x^l) \mapsto (q^i, x^l, -\pi_k, p_j).$$

(1)

The following projection ζ_M is a part of the double vector bundle structure of T^*TM [15, 18].

$$\zeta_M : T^*TM \rightarrow T^*M, \quad (q^i, \dot{q}^i, p_k, \phi^l) \mapsto (q^i, \phi^l).$$

(2)

The cotangent bundle has a natural structure of a symplectic manifold denoted by (T^*M, ω_M) [20]. The symplectic form is the differential of the canonical Louville form defined as

$$\theta_M : \tau^*M \ni v \mapsto \langle \tau^*M(v), \pi_M(v) \rangle \in \mathbb{R},$$

where τ^*M and π_M are two structures of a vector bundle in τ^*M. In coordinates, for $v = (q^i, p_j, \dot{q}^k, \dot{p}_l)$ we can write

$$\theta_M = p_idq^i, \quad \omega_M := d\theta_M = dp_i \wedge dq^i.$$

(3)

1.2. Canonical isomorphisms of iterated tangent and cotangent bundles.

In this section we will discuss important examples of double vector bundles i.e. tangent and cotangent bundles of TM and T^*M. In particular we will consider three isomorphisms of these double vector bundles that form the classical version of the Tulczyjew triple.

Double vector bundle TTM may be represented by the following diagram

$$\begin{array}{ccc}
TTM & \xrightarrow{\tau_{TM}} & TT_{TM} \\
\downarrow \tau_{TM} & & \downarrow \tau_{TM} \\
TM & = & TM \\
\downarrow \tau_{M} & & \downarrow \tau_{M} \\
M & = & M
\end{array}$$

(4)

The two vector bundle projections in coordinates read

$$\tau_{TM} : TTM \ni (q^i, \dot{q}^i, \delta q^k, \delta \dot{q}^l) \rightarrow (q^i, \dot{q}^i) \in TM,$$

$$\tau_{TM} : TTM \ni (q^i, \dot{q}^i, \delta q^k, \delta \dot{q}^l) \rightarrow (q^i, \delta q^k) \in TM.$$

The map τ_{TM} is just the canonical projection from the tangent bundle onto the manifold while τ_{TM} is a result of applying tangent functor to τ_M. It is well known that there exists the canonical isomorphism

$$\kappa_M : TTM \longrightarrow TTM, \quad (q^i, \dot{q}^i, \delta q^k, \delta \dot{q}^l) \mapsto (q^i, \delta q^k, \dot{q}^i, \delta \dot{q}^l).$$

(5)

Let us recall the definition of κ_M, because we shall need it later for M being a Lie group. Each element of TTM is an equivalence class of homotopies $\mathbb{R}^2 \ni (s, t) \rightarrow \chi(s, t) \in M$, i.e.

$$v = \frac{d}{ds}|_{s=0} \frac{d}{dt}|_{t=0} \chi.$$

The map κ_M is defined on representatives. If $\chi(s, t)$ is a homotopy from class v then $\kappa_M(v)$ is the equivalence class of a homotopy $\bar{\chi}(s, t) := \chi(t, s)$, i.e. χ with
flipped arguments. We have then
\[\kappa_M : \frac{d}{ds} \big|_{s=0} \frac{d}{dt} \big|_{t=0} \chi \mapsto \frac{d}{ds} \big|_{s=0} \frac{d}{dt} \big|_{t=0} \tilde{\chi}. \] (6)

It is clear from the definition that \(\kappa_M \) interchanges two vector bundle structures in \(TTM \). It is an isomorphism of double vector bundles with the following diagram

\[\begin{array}{c}
TTM \\
\kappa_M \\
\downarrow \pi_{TM} \\
TTM \\
\downarrow \pi_{TM} \\
TM \\
\end{array} \]

The Tulczyjew isomorphism \(\alpha_M \) which constitutes the Lagrangian side of the Tulczyjew triple is dual to the above vector bundle isomorphism \(\kappa_M \) (see e.g. [28]). It is clear that the bundle \(\pi_{TM} : T^*TM \to TM \) is dual to the bundle \(\pi_{TM} \). The bundle \(T\pi_M : TT^*M \to TM \) is dual to \(TTM \) with respect to the pairing

\[\langle \langle \rho, v \rangle \rangle = \frac{d}{dt} \big|_{t=0} \langle \xi(t), \gamma(t) \rangle, \] (8)

where \(v \in TTM \) and \(\rho \in TT^*M \) are tangent vectors such that \(T\pi_M(v) = \pi_M(\rho) \), and \(\gamma, \xi \) are curves

\[\gamma : \mathbb{R} \ni t \mapsto TM, \quad \xi : \mathbb{R} \ni t \mapsto T^*M, \] (9)

representing \(v \) and \(\rho \) respectively, chosen in such a way that they have the same projection on \(M \). The evaluation \(\mathbb{R} \ni t \mapsto \langle \xi(t), \gamma(t) \rangle \) is therefore well-defined. Let us notice that \(\langle \langle \cdot, \cdot \rangle \rangle \) is nondegenerate. In coordinates for \(v = (q^i, \delta q^k, \dot{q}^k, \dot{\tilde{p}}_l) \) and \(\rho = (q^i, p_j, \dot{q}^k, \dot{p}_l) \) (8) reads

\[\langle \langle \rho, v \rangle \rangle = \delta q^i \dot{p}_l + \delta \dot{q}^k p_j. \]

Using the pairing above and formula (5) one can easily find \(\alpha_M \) in coordinates

\[\alpha_M : TT^*M \to T^*TTM, \quad (q^i, p_j, \dot{q}^k, \dot{p}_l) \mapsto (q^i, \dot{q}^k, \dot{p}_l, p_j). \]

The map \(\alpha_M \) is an isomorphism of double vector bundles. It is also a symplectomorphism of bundles \((T^*TM, \omega_{TM})\) and \((TT^*M, d_T\omega_M)\), where \(\omega_{TM} \) is a canonical symplectic form on \(T^*TM \) [14, 35, 28, 34]. The form \(d_T\omega_M \) is a canonical symplectic form on \(TT^*M \) - a tangent lift of the canonical symplectic form on \(T^*M \). In natural coordinates we have

\[\begin{aligned}
d_T\omega_M &= dp_i \wedge dq^i + dp_j \wedge dq^j, \\
\omega_{TM} &= dp_i \wedge dq^i + d\phi_j \wedge dq^j.
\end{aligned} \]

The third important isomorphism in the context of our paper is the map \(\beta_M \) derived from the symplectic form on \(T^*M \)

\[\beta_M : T^*TM \to T^*TM, \quad \gamma \mapsto \omega_M(\gamma, v). \]

It is an isomorphism of double vector bundles \(TT^*M \) and \(T^*TM \) and antisymplectomorphism with respect to \(\omega_{TM} \) and \(d_T\omega_M \). In coordinates it reads

\[\beta_M : TT^*M \to T^*TM, \quad (q^i, p_j, \dot{q}^k, \dot{p}_l) \mapsto (q^i, p_j, -\dot{p}_l, \dot{q}^k). \] (10)

The above map can be used to produce vector fields on the cotangent bundle from functions on it. For a smooth function \(f : T^*M \to \mathbb{R} \) we define the vector field \(X_f \) composing \(df \) with the inverse of \(\beta_M \)

\[X_f : T^*M \to TT^*M, \quad (q^i, p_j) \mapsto \beta^{-1}_M \circ df(q^i, p_j), \]
The vector field X_f is called the Hamiltonian vector field of the function f.

Let us notice, that once we have one of the maps $\alpha_M, \beta_M, \kappa_M$ we can define the other two using canonical structures present on any vector bundle E. Maps κ_M and α_M are connected by duality while β_M is related to α_M by composition with γ_M of formula (1). It means that each of these three mappings contains the same information.

1.3. The Tulczyjew triple. We will now present a point of view on describing a mechanical system which is alternative to the one present in most textbooks [17]. Its essence lies in the so-called Tulczyjew triple. Tulczyjew triple enables us to describe systems in both Lagrangian and Hamiltonian approach and shows the relation between the two. It is important to notice, that the triple is based only on canonical structures of proper bundles. We will not derive here the whole formalism whose origin lies in reinterpretation of the variational description of statical systems. One can find the thorough analysis with all the details in numerous Tulczyjew papers e.g. [28, 29, 30, 31, 32, 33].

The Tulczyjew triple is a geometrical structure presented in the following diagram

The right-hand side of the diagram is related to Lagrangian formalism while the left-hand side to Hamiltonian one. Both formalisms are based on the same scheme and the only difference is in generating objects on both sides and their physical interpretation. We will discuss now more precisely Lagrangian and Hamiltonian description in the language of Tulczyjew triple. For simplicity, we will consider only autonomous systems i.e. with no external forces.

Let M be the configuration manifold of the system and $L : TM \to \mathbb{R}$ its Lagrangian. The dynamics of the system is a subset

$$\mathcal{D} := \alpha_M^{-1} \circ dL(TM)$$

of TT^*M. Since $dL(TM)$ is a Lagrangian submanifold in T^*TM, and α_M is a symplectomorphism, the dynamics is a Lagrangian submanifold in TT^*M. From physical point of view it is a (possibly implicit) first order differential equation for a trajectory in the phase space. A curve $\eta : \mathbb{R} \supset I \to T^*M$ is a phase trajectory if $\dot{\eta}(t) \in \mathcal{D}$ for $t \in I$.

Now let us assume that Hamiltonian $H : T^*M \to \mathbb{R}$ of the system exists. The dynamics of the system is then the image of the Hamiltonian vector field X_H i.e.

$$\mathcal{D} = X_H(T^*M) = \beta_M^{-1}(dH(T^*M)).$$

Phase space trajectories are integral curves of the field X_H.
The dynamics of the system may be projected on $T\times T^*M$. The projection $\Lambda = T\pi_M \times \pi_T(D)$ is a subset of Cartesian product of TM and T^*M therefore it can be understood as a relation between these two manifolds. If the dynamics comes from Lagrangian it is a graph of the Legendre map $\lambda = \zeta_M \circ dL$. If the dynamics comes from Hamiltonian it is a graph of a map ‘in opposite direction’. In general, it can be a relation that is not a map at all. In such a case in place of Lagrangian submanifolds than functions on manifolds [20, 34].

1.4. The tangent and cotangent bundle of a Lie group. In this section we shall briefly recall some basic information about geometry of Lie groups. One can find the detailed description of this subject in [2]. Let (G, \cdot) be a Lie group. For each $g \in G$ we introduce left and right translations

$$
\begin{align*}
 l_g : G &\rightarrow G : x \mapsto gx, \\
 r_g : G &\rightarrow G : x \mapsto xg.
\end{align*}
$$

Both maps are diffeomorphisms. In our constructions, according to the tradition, we shall rather use left translation. The left and right translation maps define a family of group automorphisms

$$
\text{Ad}_g : G \rightarrow G, \quad x \mapsto l_g \circ r_g^{-1}(x) = gxg^{-1}.
$$

The tangent map Tl_g^{-1} restricted to T_gG is a linear isomorphism between T_gG and $T_eG = g$. We can therefore trivialise the bundle TG as follows

$$
\iota : TG \rightarrow G \times g, \quad v_g \mapsto (g, Tl_g^{-1}(v_g)).
$$

The trivialised version of the tangent bundle of G is a bundle $pr_1 : G \times g \rightarrow G$. Each element $X \in g$ defines a vector field X^l on a group G given by $X^l(g) := Tl_g(X)$. In the following we shall use the notation $gX := Tl_g(X)$. The field X^l is by definition left invariant i.e. $X^l(l_g(x)) = Tl_g(X(x))$. The flow of a left invariant vector field will be denoted by ϕ^X_t. The exponential map $\exp : g \rightarrow G$ is given by the flow at e

$$
\exp(tX) = \phi^X_t(e).
$$

For matrix groups it is equivalent to a well known matrix exponential defined by the power series.

The tangent space g is equipped with the bracket $[X, Y]_g := [X^l, Y^l](e)$ therefore it has a natural structure of a Lie algebra. In the following we will skip the index g in $[\cdot, \cdot]_g$ if it does not lead to any confusion. The Lie bracket defines a map $\text{ad}_X : g \rightarrow g, \quad Y \mapsto [X, Y]$. There is a well known relation between Ad and ad maps

$$
\text{ad}_X = \frac{d}{dt}_{|t=0} \text{Ad}_{\exp(tX)}.
$$

Now let T^*G be the cotangent bundle of G. Trivialisation $TG \simeq G \times g$ by ι leads to the trivialisation of T^*G, namely $T^*G \simeq G \times g^*$ where g^* is dual to g. More precisely we use $\xi := (\iota^*)^{-1}$

$$
\xi : T^*G \rightarrow G \times g^*, \quad b_g \mapsto (g, (Tl_g)^*(b_g)),
$$

where b_g is a tangent covector at point g. We will denote elements of g^* by capital letters from the beginning of the alphabet while elements of g will be denoted by capital letters from the end of the alphabet.
Once we have trivialisations ι and ξ we can trivialise any iterated tangent and cotangent bundle. We will use the fact that if V is a vector space then $TV \simeq V \times V$ and $T^*V \simeq V \times V^*$.

2. Tulczyjew triple on a Lie group. One of the advantages of the Tulczyjew triple is the possibility of reducing it with respect to the symmetries of the system. In this section we will consider a symmetry associated to the group action on itself. Our task is to find a trivialised form of Tulczyjew triple in the case $M = G$ and then reduce it with respect to the symmetry. In particular, we have to find trivialised isomorphisms κ_G, α_G and β_G.

2.1. Canonical involution of iterated tangent bundle on a Lie group. Using trivialisation ι we get $TTG \simeq T(G \times \mathfrak{g}) \simeq G \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g}$. The diagram representing a double vector bundle $G \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g}$ reads

\[
\begin{array}{c}
g \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \\
G \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \\
G \times \mathfrak{g} \\
G \times \mathfrak{g} \\
\end{array}
\]

where pr_{12} refers to ι_{T^G} and pr_{13} refers to ι_{T^G} (see diagram (4)).

Let $v = (g, X, Y, Z) \in G \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g}$ be a trivialised element of TTG at point (g, X) (i.e. in $gX \in TG$). In the following we shall not distinguish between elements of TTG (and other iterated tangent and cotangent bundles of the group) and their trivialised versions. It means, that by $v = (g, X, Y, Z)$ we will understand an element of TTG, such that after trivialisation it takes the above form. The homotopy representing vector v can be written as

\[\chi : \mathbb{R}^2 \to G, \quad (s, t) \mapsto g \exp(sY) \exp(tX + stZ).\]

Indeed, one can easily check that

\[\frac{d}{ds}|_{s=0} \frac{d}{dt}|_{t=0} \chi = (g, X, Y, Z) \in G \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g}.
\]

Then $\tilde{\chi}$ reads

\[\tilde{\chi}(s, t) = g \exp(tY) \exp(sX + stZ) \in G.
\]

Differentiating $\tilde{\chi}$ with respect to t at $t = 0$ and s at $s = 0$ respectively we get

\[\frac{d}{ds}|_{s=0} \frac{d}{dt}|_{t=0} \tilde{\chi} = (g, Y, X, -\text{ad}_X Y + Z) = (g, Y, X, Z - [X, Y]) \in G \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g}.
\]

Finally, the trivialised κ_G has the following form

\[
\begin{array}{c}
\kappa_G : G \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \to G \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \\
\end{array}
\]

\[
\kappa_G : G \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \to G \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g}, \quad (g, X, Y, Z) \mapsto (g, Y, X, Z - [X, Y]).
\]
2.2. Bracket of vector fields on a Lie group. In this section we shall derive a formula for trivialised bracket of vector fields on G. Composing a vector field $\xi : G \to T G$ with i we get a trivialised vector field

$$i \circ \xi : G \ni g \to (g, X(g)) \in G \times \mathfrak{g}.$$

where $X(g) = Tl_{g}^{-1}(\xi(g))$. One can now ask the following question: if ξ, η are vector fields on G, then what is a trivialised version of a vector field $[\xi, \eta]$, i.e. what is the value of $Tl_{g}^{-1}([\xi, \eta](g))$? If ξ and η are left invariant then the answer to this question is trivial and comes from the definition of a Lie structure in \mathfrak{g}. Let us then consider the case when ξ and η are in general not left invariant vector fields.

We will start with a useful formula that one can easily prove. Let ξ, η be vector fields on G. Then we have

$$\kappa_G(T\eta(\xi)) - T\xi(\eta) = [\xi, \eta]_{\xi},$$

where $[\xi, \eta]_{\xi}$ is a vertical lift of $[\xi, \eta]$ to ξ. More precisely, $[\xi, \eta]_{\xi}$ is an element tangent to the curve

$$\mathbb{R} \ni t \to \xi(g) + t[\xi, \eta](g) \in TG.$$

The formula is well known in the literature, but it is unclear who was the first one to use it. It holds for any smooth manifold not just a Lie group. Let the trivialised versions of fields ξ, η be as follows

$$i \circ \xi = (g, X(g)) \in G \times \mathfrak{g}, \quad i \circ \eta = (g, Y(g)) \in G \times \mathfrak{g},$$

It turns out that the trivialised version of (19) is

$$pr_2 \circ i([\xi, \eta](g)) = pr_2 \circ TY(Tl_g X(g)) - pr_2 \circ TX(Tl_g Y(g))) + [X(g), Y(g)]_{\mathfrak{g}}.$$ (20)

If we put $DX := pr_2 \circ TX \circ Tl_g$, $DY := pr_2 \circ TY \circ Tl_g$ and denote $pr_2 \circ i([\xi, \eta](g))$ by $[X, Y](g)$ we can write

$$[X, Y](g) = DY(X(g)) - DX(Y(g)) + [X(g), Y(g)]_{\mathfrak{g}}.$$ (21)

2.3. Tulczyjew isomorphism on a Lie group. The trivialised version of α_G can be obtained from the trivialised κ_G by duality. For that we need trivialised bundles T^*TG and TT^*G. The diagram representing the trivialised double vector bundle $TT^*G \simeq G \times \mathfrak{g}^* \times \mathfrak{g} \times \mathfrak{g}^*$ reads

![Diagram](image-url)
where \(pr_{12} \) and \(pr_{13} \) correspond to \(\tau_{T^*G} \) and \(T\pi_{G} \) respectively. For the bundle
\[T^*TG \cong G \times g \times g^* \times g^* \]
we get

\[
G \times g \times g^* \times g^* \xrightarrow{pr_{12}} G \times g \times g^* \xrightarrow{pr_{13}} G \times g *
\]

with \(pr_{12} \) and \(pr_{14} \) corresponding to \(\tau_{TG} \) and \(\zeta_{TG} \) respectively.

Since \(\alpha_G \) is dual to \(\kappa_G \) the same holds for trivialised versions \(\tilde{\alpha}_G \) and \(\tilde{\kappa}_G \). The diagram dual to (17) reads

\[
G \times g \times g^* \times g^* \xrightarrow{pr_{12}} G \times g \times g^* \xrightarrow{pr_{13}} G \times g^*
\]

The pairing between trivialised versions of \(T^*T^*G \) and \(T^*T^*G \) treated as vector bundles over \(T^*G \) is obvious. For \((g, X, Y, Z) \in T^*T^*G \cong G \times g \times g \times g^* \times g^* \) we get

\[
\langle (g, X, A, B), (g, X, Y, Z) \rangle = \langle A, Y \rangle + \langle B, Z \rangle.
\]

For \((g, X, Y, Z) \in T^*T^*G \cong G \times g \times g \times g^* \times g^* \) and \((g, X, Y, Z) \in T^*TG \cong G \times g \times g \times g \) we obtain the formula

\[
\langle \langle (g, X, A, B), (g, X, Y, Z) \rangle \rangle = \langle A, Z \rangle + \langle B, X \rangle,
\]

which is a trivialised version of the pairing (8). Finally, for \(\tilde{\alpha}_G \) being the trivialised \(\alpha_G \) we have

\[
\tilde{\alpha}_G : G \times g^* \times g \times g^* \to G \times g \times g^* \times g^*, \quad (g, A, X, B) \mapsto (g, X, B - \text{ad}_X^*(A), A).
\]

In the end, we shall write the formula for \(\tilde{\alpha}_G^{-1} \) that will be more useful than \(\tilde{\alpha}_G \) itself

\[
\tilde{\alpha}_G^{-1}(g, X, C, D) = (g, D, X, C + \text{ad}_X^*(D)).
\]
The trivialised Louville form on $G \times g^*$ will be denoted by $\tilde{\theta}_G$. Using the diagram (22) we get

$$\tilde{\theta}_G : G \times g^* \times g \times g^* \ni w \to \langle pr_{12}(w), pr_{13}(w) \rangle \in \mathbb{R},$$

which means that taking $w = (g, A, X, B)$ we obtain

$$\tilde{\theta}_G(g, A, X, B) = \langle (g, A), (g, X) \rangle = \langle A, X \rangle.$$

Let Φ, Ψ be vector fields on T^*G, such that in trivialisation they have the following form

$$\phi(g, A) = (g, A, X(g, A), B(g, A)), \quad \psi(g, A) = (g, A, Y(g, A), C(g, A)).$$

Let us notice, that Φ and Ψ depend on g and A and they do not have to be left invariant. To find the trivialised version of ω_G we shall use the Cartan formula for differential

$$\omega_G(\Phi, \Psi) = d\theta_G(\Phi, \Psi) = \Phi\theta_G(\Psi) - \Psi\theta_G(\Phi) - \theta_G([\Phi, \Psi]), \quad (26)$$

and the following notation for derivations. For $Y : G \times g^* \to g$, $D_X Y$ is a derivation of Y with respect to the first argument and in the direction of X, more precisely

$$(D_X Y)(g, A) = pr_2 \circ TY(g, A, X, 0).$$

For $B \in g^*$ we write $D_B Y$ for the derivation with respect to the second argument and in the direction of B, i.e.

$$(D_B Y)(g, A) = pr_2 \circ TY(g, A, 0, B).$$

Applying trivialisation to first two elements from (26) means replacing Φ and Ψ by ϕ and ψ. We get then

$$\phi\tilde{\theta}_G(\psi) = \langle A, (D_X Y)(g, A) \rangle + \langle B, Y \rangle + \langle A, (D_B Y)(g, A) \rangle,$$

similarly

$$\psi\tilde{\theta}_G(\phi) = \langle A, (D_Y X)(g, A) \rangle + \langle C, X \rangle + \langle A, (D_C X)(g, A) \rangle.$$

The third component in formula (26), after trivialisation, is $\tilde{\theta}_G([\phi, \psi])$. Let us rewrite ϕ as $X(g, A) + B(g, A)$, where X and B are components of the field ϕ in two different directions. We will do the same for ψ. The bracket of fields ϕ and ψ may be written as

$$[\phi, \psi] = [X + B, Y + C] = [X, Y] + [X, C] + [B, Y] + [B, C].$$

To express the first component we use the formula (21)

$$[X, Y] = D_X Y - D_Y X + [X, Y]_g.$$

The next terms are

$$[X, C] = D_X C - D_C X,$$

$$[B, Y] = D_B Y - D_Y B,$$

$$[B, C] = D_B C - D_C B,$$

where we apply the same notation for differentiating with respect to the first and second arguments of C and B. In all the above terms only $D_B Y$ and $D_C X$ are components along g, so they have a contribution to the value of the Louville form. The value of θ_G on $[\phi, \psi]$ reads

$$\tilde{\theta}_G([\phi, \psi]) = \langle A, D_X Y - D_Y X + [X, Y]_g + D_B Y - D_C X \rangle.$$
Finally, we can rewrite (26) and obtain the full expression for \(\tilde{\omega}_G(\phi, \psi) \) [1]

\[
\tilde{\omega}_G(\phi, \psi) = (B, Y) - (C, X) - (A, [X, Y])_g.
\] (27)

Once we have a symplectic form on a the cotangent bundle to the group, we can find the map \(\tilde{\beta}_G \)

\[
\tilde{\beta}_G : G \times g^* \times g \times g^* \to G \times g^* \times g^* \times g, \quad v \mapsto \tilde{\omega}_G(\cdot, v),
\]

\[
\tilde{\beta}_G(g, A, X, B) = (g, A, -B + \text{ad}_X^*(A), X).
\] (28)

Let us also write the inverse of (28)

\[
\tilde{\beta}_G^{-1}(g, A, B, X) = (g, A, X, -B + \text{ad}_X^*(A)).
\]

The map \(\tilde{\beta}_G \) may be trivialised in an alternative way. According to formula (1) the bundles \(T^*T^*G \) and \(T^*TG \) are canonically isomorphic by \(\gamma_G \). \(\tilde{\beta}_G \) may be then defined as composition of \(\alpha_G \) and \(\gamma_G^{-1} \). We can proceed similarly in case of \(\tilde{\beta}_G \) by putting \(\tilde{\beta}_G = \tilde{\gamma}_G^{-1} \circ \tilde{\alpha}_G \). We just have to find a trivialisation of \(\gamma_TG \). It turns out, that

\[
\tilde{\gamma}_G : G \times g^* \times g^* \times g \to G \times g \times g^* \times g^*, \quad (g, A, B, X) \mapsto (g, X, -B, A).
\]

The composition \(\tilde{\beta}_G = \tilde{\gamma}_G^{-1} \circ \tilde{\alpha}_G \) gives precisely the formula (28).

2.5. Tulczyjew triple on a Lie group. The trivialised Tulczyjew triple is the following diagram

\[
\begin{array}{ccc}
G \times g^* \times g^* \times g & \xleftarrow{\tilde{\beta}_G} & G \times g^* \times g \\
p_{12} & & p_{12} \\
G \times g & \xrightarrow{p_{11}} & G \\
p_{1} & & \\
G & \xrightarrow{pr_1} &
\end{array}
\]

(29)

Using \(\tilde{\alpha}_G \) and \(\tilde{\beta}_G \) we can construct the dynamics from Lagrangian or Hamiltonian.

Let the configuration space of the system be a Lie group \(G \) and let \(L : TG \to \mathbb{R} \) be the Lagrangian of the system. Composing \(L \) with \(i \) we can introduce a trivialised Lagrangian \(\tilde{L} = L \circ i^{-1} \)

\[
\tilde{L} : G \times g \to \mathbb{R}.
\]

The trivialised dynamics of the system is a set

\[
G \times g^* \times g \times g^* \supset \tilde{D} := \tilde{\alpha}_G^{-1} \circ d\tilde{L}(G \times g),
\]

that may be written as

\[
d\tilde{L}(g, X) = \left(g, X, \frac{\partial \tilde{L}}{\partial g}, \frac{\partial \tilde{L}}{\partial X} \right) \in G \times g \times g^* \times g^*,
\]

\[
\tilde{D} = \left\{ (g, A, X, B) : A = \frac{\partial \tilde{L}}{\partial X}, \quad B = \frac{\partial \tilde{L}}{\partial g} + \text{ad}_X^*(A) \right\}.
\] (30)

The trivialised dynamics is a Lagrangian submanifold in \(G \times g^* \times g \times g^* \) with respect to \(d_T \tilde{\omega}_G \). In case when \(\tilde{L} \) is regular, the dynamics is an image of the vector field on \(G \times g^* \) otherwise it is an implicit differential equation on curves in \(G \times g^* \).
Now, let $H : T^*G \to \mathbb{R}$ be a Hamiltonian of the system. Then, as for a Lagrangian, we can introduce the trivialised Hamiltonian $\tilde{H} : G \times g^* \to \mathbb{R}$ composing H with ξ. Using $\tilde{\beta}_G$ mapping we define on $G \times g^*$ a Hamiltonian vector field of \tilde{H}

$$\tilde{X}_H := \tilde{\beta}_G^{-1} \circ d\tilde{H},$$

that can be written as

$$d\tilde{H}(g, A) = \left(g, A, \frac{\partial \tilde{H}}{\partial g}, \frac{\partial \tilde{H}}{\partial A} \right),$$

$$\tilde{X}_H(g, A) = (g, A, C), \quad X = \frac{\partial \tilde{H}}{\partial A}, \quad C = -\frac{\partial \tilde{H}}{\partial g} + \text{ad}^*_X(A). \quad (31)$$

2.6. Nonholonomic constraints. Nonholonomic constraints invariant with respect to the left group action can also be included in the picture. In principle this can be achieved in two ways – by modifying the structure of the triple itself or by modifying the procedure of generating submanifolds from Hamiltonian and Lagrangian. In the present paper we shall follow the ideas of [9] where the presence of nonholonomic constraints modifies maps constituting Lagrangian and Hamiltonian. Since we work with very particular mechanical system we do not have to use the formalism that general. Instead of working with Dirac algebroids we go back to the very definition of nonholonomic constraints given e.g. in [8].

Let us recall that in variational calculus constraints are given by a subset of the set of all admissible variations of admissible paths of a system. If M is the manifold of positions of the system and TM is the manifold of infinitesimal configurations then constraints C are represented as a subset of TTM, i.e. the bundle of infinitesimal variations. Conditions on velocities $\tau_M(C) \subset TM$ or positions $\tau_M \circ \tau_M(C) \subset M$ are in a sense secondary, because they are consequences of the choice of C. There are however procedures of constructing C from a subset $S \subset TM$ taking into account the nature of the system. In the literature there are at least two such procedures present. They are called vakonomic constraints and nonholonomic constraints. We shall work with nonholonomic constraints.

Let S be an affine subbundle of TM representing conditions on velocities for nonholonomic mechanical system. The model vector subbundle will be denoted by $\nu(S)$. From [8] (Def.2, Sec.5) it follows that infinitesimal nonholonomic constraints are given by the subset

$$C_S = \{ \delta v \in TT M : \tau_M(\delta v) \in S, \quad T\tau_M(\delta v) \in \nu(S) \}. \quad (32)$$

The relation α_M^S that replaces α_M of Tulczyjew triple is dual to κ_M restricted to C_S. We shall construct the appropriate relation in the case $M = G$ and S is invariant with respect to the group action.

A left invariant affine subbundle S of TG in trivialisation gives $G \times s$ for appropriate affine subspace s of g. Its model vector subspace will be denoted by $\nu(s)$. Then the trivialised version of C_S is

$$C_s = \{ (g, X, Y, Z) \in G \times g \times g \times g : \quad X \in s, \quad Y \in \nu(s) \}. \quad (33)$$

Let now $(g, A, X, B) \in G \times g^* \times g \times g^*$ and $(g, X, C, D) \in G \times g \times g^* \times g^* \simeq T^*TG$. The element (g, A, X, B) is in the relation $\tilde{\alpha}_G^S$ with (g, X, C, D) if $X \in s$ and...
for all \(Y \in \mathfrak{v}(s) \)
\[
\langle A, Z - \text{ad}_X Y \rangle + \langle B, Y \rangle = \langle C, Y \rangle + \langle D, Z \rangle,
\]
which means
\[
D = A, \quad C - B + \text{ad}_X^* A \in \mathfrak{v}(s)^0.
\]
Composing the above relation with the canonical isomorphism \(T^* T^* G \simeq T^* T G \) we get the relation \(\tilde{\beta}_G^S \) that replaces \(\tilde{\beta}_G \). Thus, the Tulczyjew triple in presence of nonholonomic constraints is composed of relations. Special arrow with triangle head distinguishes relation which is not a map.

\[
\begin{array}{c}
G \times g^* \times g^* \times g \xrightarrow{\tilde{\beta}_G^S} G \times g^* \times g \xleftarrow{\tilde{\alpha}_G^S} G \times g \times g^* \times g^*.
\end{array}
\]

Elements \((g, A, B, X) \in T^* T^* G \) and \((g, A, X, C) \in T T^* G \) are in relation \(\tilde{\beta}_G^S \) if
\[
X \in \mathfrak{s}, \quad B + C - \text{ad}_X^* A \in \mathfrak{v}(s)^0.
\]
Nonholonomic dynamics in Lagrangian form is the following subset of \(T T^* G \)
\[
\tilde{D}_L^S = \left\{ (g, A, X, C) : \quad A = \frac{\partial \tilde{L}}{\partial X}, \quad C = \frac{\partial \tilde{L}}{\partial g} + \text{ad}_X^* (A) + \xi, \quad X \in \mathfrak{s}, \quad \xi \in \mathfrak{v}(s)^0 \right\}.
\]
Nonholonomic dynamics in Hamiltonian form is the following subset of \(T T^* G \)
\[
\tilde{D}_H^S = \left\{ (g, A, X, C) : \quad X = \frac{\partial \tilde{H}}{\partial A} \in \mathfrak{s}, \quad C = -\frac{\partial \tilde{H}}{\partial g} + \text{ad}_X^* (A) + \xi, \quad \xi \in \mathfrak{v}(s)^0 \right\}.
\]
The above nonholonomic picture can be reduced with respect to the group action. It will be done in section (3.5).

3. Reduced Tulczyjew triple. As we have mentioned in previous section Tulczyjew triple can be reduced with respect to symmetries of the system. The result of the reduction is a triple based on a vector bundle which is not a tangent bundle to any manifold. What we usually get is a triple based on an algebroid [10]. In this section we shall assume that Lagrangian and Hamiltonian are invariant with respect to the group action on itself prolonged to \(T G \) and \(T^* G \). We start with reducing \(\tilde{\alpha}_G, \tilde{\beta}_G \) and \(\kappa_G \) and then we shall use them to construct reduced Tulczyjew triple.

3.1. Reduced involution of the iterated tangent bundle. The group \(G \) acts on the tangent bundle \(T G \) by a tangent lift of left translation i.e. by \(T l_g \). We can consider orbits of this action, identifying points on the same orbit. Using the isomorphism \(T G/G \simeq \mathfrak{g} \) we obtain
\[
\tau : T G \rightarrow \mathfrak{g}.
\]
Finding the reduction of \(T T G \) means applying the tangent functor to projection \(\tau \)
\[
T \tau : T T G \rightarrow \mathfrak{g} \times \mathfrak{g} \simeq \mathfrak{g} 	imes \mathfrak{g}.
\]
After trivialisation both \(\tau \) and \(T \tau \) may be written as
\[
pr_2 : \quad G \times \mathfrak{g} \rightarrow \mathfrak{g},
\]
\[
pr_{24} : \quad G \times \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g} \times \mathfrak{g},
\]
where \(\tau \) corresponds to \(pr_2 \) and \(T \tau \) corresponds to \(pr_{24} \). Once we have reduced the bundle \(T T G \), we can try to reduce \(\kappa_G \). It is important to notice that the result of
such a reduction may not be a map any more. Let us denote the reduced version of $\tilde{\kappa}_G$ by κ. Dividing by the group action in both source and target TTG of κ_G we see that the elements $(X_1,Y_1) \in g \times g$ and $(X_2,Y_2) \in g \times g$ are in relation κ if $Y_2 = Y_1 - [X_1,X_2]$. The image $\kappa(g,X,B)$ contains more than one pair (X_2,Y_2). The following diagram is commutative in generalized sense of relations, not maps.

\[
\begin{array}{ccc}
G \times g \times g \times g & \xrightarrow{\tilde{\kappa}_G} & G \times g \times g \\
\downarrow pr_{24} & & \downarrow pr_{24} \\
g \times g & \xrightarrow{\kappa} & g \times g
\end{array}
\]

3.2. **Reduced Tulczyjew isomorphism.** As we stated, the map $\tilde{\alpha}_G$ acts between trivialised bundles TT^*G and T^*TG. The bundle $T^*TG \simeq G \times g \times g^* \times g^*$ can be reduced to $g \times g^*$ by means of symplectic reduction with respect to a certain coisotropic submanifold $K \subset T^*TG$. In trivialisation K becomes \tilde{K}

\[
\tilde{K} := \{(g,X,0,A) \in G \times g \times g^* \times g^* \}
\]

and consists of differentials of functions on $G \times g$ invariant with respect to the action of G on first component. Symplectic reduction coincides with dropping the first element in $(g,X,0,A)$ and forgetting about 0 on the third place

\[
G \times g \times g^* \times g^* \supset \tilde{K} \xrightarrow{pr_{24}} g \times g^*
\]

(41)

Group G acts on T^*G by the cotangent lift of the left action on G. If we divide the cotangent bundle by this action we get (in trivialisation)

\[
pr_{24} : T^*G \simeq G \times g^* \rightarrow g^*.
\]

Applying the tangent functor to this map we obtain

\[
pr_{24} : G \times g^* \times g \times g^* \rightarrow g^* \times g^*.
\]

(42)

Reduction of $\tilde{\alpha}_G$ should be in some sense composed of $\tilde{\alpha}_G$ and both above reductions (41, 42). The fiber of pr_{24} in (42) over (A,B) contains all elements of $G \times g^* \times g \times g^*$ of a form (g,A,X,B). Acting by $\tilde{\alpha}_G$ we get

\[
\tilde{\alpha}_G(g,A,X,B) = (g,X,B - ad^*_X(A),A).
\]

Element $(g,X,B - ad^*_X(A),A)$ belongs to \tilde{K} if $B = ad^*_X(A)$. Then we can apply pr_{24} from (41).

Finally, a pair (A,B) is in relation with a pair (X,A) if $B = ad^*_X(A)$. In particular it means, that there is no proper (X,A) for each element (A,B). However, one can easily notice the opposite: for each pair (X,A) there exist an element $(A,B = ad^*_X(A))$ that is in relation with (X,A). Thus, the relation α_g is a map ‘in the opposite direction’ comparing to the original map $\tilde{\alpha}_G$:

\[
\alpha_g : g \times g^* \rightarrow g^* \times g^*(X,A) \rightarrow (A,ad^*_X(A)).
\]

(43)
The appropriate diagram is

\[
G \times g^* \times g \times g^* \xrightarrow{\tilde{\alpha}_G} G \times g \times g^* \times g^* \quad (44)
\]

\[
g^* \times g^* \xleftarrow{\alpha_g} g \times g^*
\]

3.3. Reduced map related to the symplectic form. The \(\tilde{\beta}_G\) map acts between spaces \(G \times g^* \times g \times g^*\) and \(G \times g^* \times g^* \times g\), i.e. trivialised versions of \(TT^*G\) and \(T^*T^*G\) respectively. The first of these bundles has already been reduced in the previous subsection. The bundle \(T^*T^*G \cong G \times g^* \times g^* \times g\) reduces to \(g^* \times g\) by means of a symplectic reduction with respect to certain coisotropic submanifold \(C \subset T^*T^*G\).

In trivialisation \(\tilde{C} := \{(g, A, 0, X) \in G \times g^* \times g^* \times g\}\) and consists of differentials of functions on \(G \times g^*\) invariant with respect to the action of \(G\) on the first component. Symplectic reduction coincides with dropping the first element in \((g, A, 0, X)\) and forgetting zero on the third place.

\[
G \times g^* \times g^* \times g \ni \tilde{C} \xrightarrow{pr_{24}} g^* \times g
\]

As in case of \(\alpha_g\), applying \(\tilde{\beta}_G\) to \((g, A, X, B)\) we obtain an element of \(\tilde{C}\) if \(-B + \text{ad}_X^*(A) = 0\). The appropriate diagram reads

\[
G \times g^* \times g \xrightarrow{\tilde{\beta}_G} G \times g^* \times g^* \rightarrow g^* \times g^* \ni \tilde{C} \xrightarrow{pr_{24}} g^* \times g
\]

The reduced relation \(\beta_g\) is again a map ‘in the opposite direction’ comparing to the original \(\tilde{\beta}_G\)

\[
\beta_g : g^* \times g \rightarrow g^* \times g^*, \quad (A, X) \rightarrow (A, \text{ad}_X^*(A)). \quad (47)
\]

Note that \(\beta_g\) is associated to the canonical geometric structure on \(g^*\) namely linear Poisson bivector. It is in the full agreement with the fact that reducing phase space with respect to symmetries usually leads from symplectic to Poisson structure.

3.4. Reduced Tulczyjew triple. The reduced Tulczyjew triple is the following diagram

\[
g^* \times g \xrightarrow{\tilde{\beta}_g} g^* \times g^* \xrightarrow{\tilde{\alpha}_g} g \times g^* \rightarrow g^* \times g \rightarrow g\]

\[
pr_2 \quad pr_2 \quad pr_1 \quad pr_1 \quad pr_1 \quad pr_1
\]
It may be used to describe systems with Lagrangian and Hamiltonian invariant under the group action. The right-hand side represents the reduced Lagrangian formalism while the left-hand side represents the reduced Hamiltonian formalism.

Let L be a Lagrangian of the system defined on $\mathcal{T}G$ and invariant under the group action

\[L(v) = L(Tl_g(v)) \quad g \in G, v \in \mathcal{T}G. \]

(49)

Since L is invariant, we can introduce the reduced Lagrangian

\[L(v_g) = L(Tl_g^{-1}(v_g)) =: l(X) \quad X \in \mathfrak{g}, \quad l : \mathfrak{g} \rightarrow \mathbb{R}. \]

The reduced dynamics is the set

\[d = \alpha_g \circ dl(g) \subset \mathfrak{g}^* \times \mathfrak{g}^*, \]

i.e.

\[d = \left\{ (A, B) \in \mathfrak{g}^* \times \mathfrak{g}^* : \exists X \in g \quad A = \frac{\partial l}{\partial X}, \quad B = \text{ad}^*_X \left(\frac{\partial l}{\partial X} \right) \right\}. \]

(50)

Now let us assume that the Hamiltonian of the system does exists and it is invariant under the group action i.e. $H(b) = H(Tl_g^*(b))$ for each $b \in \mathcal{T}^*G$. Then we can introduce the reduced Hamiltonian h

\[H(b_g) = H(Tl_g^*(b_g)) =: h(B) \quad B \in \mathfrak{g}^*, \quad h: \mathfrak{g}^* \rightarrow \mathbb{R}. \]

The Hamiltonian vector field of h is given by $X_h := \beta_g(dh)$

\[X_h : \mathfrak{g}^* \rightarrow \mathfrak{g}^* \times \mathfrak{g}^*, \quad B \mapsto \langle B, \text{ad}^*_X(B) \rangle. \]

(51)

One can also show, that the reduced Legendre map combining the Lagrangian and the Hamiltonian side has a form

\[\lambda_g : \mathfrak{g} \rightarrow \mathfrak{g}^*, \quad X \mapsto \frac{\partial l}{\partial X}. \]

(52)

If the Legendre map is an isomorphism, then as in the non-reduced case, the dynamics d is an image of the Hamiltonian vector field X_h of a proper reduced Hamiltonian h

\[h(B) = \langle B, \lambda_g^{-1}(B) \rangle - l(\lambda_g^{-1}(B)). \]

All elements of the reduced mechanics may be put into the diagram of the reduced Tulczyjew triple
3.5. Reduced nonholonomic Tulczyjew triple. Nonholonomic Tulczyjew triple can be reduced much in the same way as above, i.e. relations β^S_0 and α^S_0 can be composed with symplectic reductions with respect to coisotropic submanifolds \tilde{K} and \tilde{C} respectively and with projection with respect to the group action on T^*G. As a result we get the following reduced relations

$$\mathfrak{g}^* \times \mathfrak{g} \xrightarrow{\beta^S_0} \mathfrak{g}^* \times \mathfrak{g}^* \xrightarrow{\alpha^S_0} \mathfrak{g} \times \mathfrak{g}^*.$$
(53)

A pair $(A, X) \in \mathfrak{g}^* \times \mathfrak{g}$ is in relation β^S_0 with a pair $(A, B) \in \mathfrak{g}^* \times \mathfrak{g}^*$ if

$$X \in \mathfrak{s}, \quad B - \text{ad}^*_X A \in \mathfrak{v}(\mathfrak{s})^0.$$
(54)

A pair $(X, A) \in \mathfrak{g} \times \mathfrak{g}^*$ is in relation α^S_0 with a pair $(A, B) \in \mathfrak{g}^* \times \mathfrak{g}^*$ if

$$X \in \mathfrak{s}, \quad B - \text{ad}^*_X A \in \mathfrak{v}(\mathfrak{s})^0.$$
(55)

The reduced nonholonomic dynamics in Lagrangian form is a set

$$d^S = \left\{ (A, B) \in \mathfrak{g}^* \times \mathfrak{g}^* : \forall X \in \mathfrak{s}, \quad A = \frac{\partial l}{\partial X}, \quad B - \text{ad}^*_X (A) \in \mathfrak{v}(\mathfrak{s})^0 \right\}.$$
(56)

The reduced nonholonomic dynamics in Hamiltonian form is a set

$$d^S = \left\{ (A, B) \in \mathfrak{g}^* \times \mathfrak{g}^* : \frac{\partial h}{\partial A} \in \mathfrak{s}, \quad B - \text{ad}^*_h (A) \in \mathfrak{v}(\mathfrak{s})^0 \right\}.$$
(57)

4. Tulczyjew triple reduced with respect to the subgroup. In this section, we will reduce the Tulczyjew triple (29) with respect to the left action of a subgroup of G on a manifold G. Let $H \subset G$ be a closed subgroup and let \mathfrak{h} denote the Lie algebra of H. The space of orbits of this action will be denoted by M. It carries a natural structure of smooth manifold, moreover the left action of H on G defines a bundle

$$\rho : G \to M : g \mapsto \rho(g),$$

which is a principal bundle (with left action). The element $\rho(g)$ is the orbit of an element g, i.e. the set $\rho(g) = [g]_H := \{ hg \in G : h \in H \}$. Vectors tangent to fibres of a principal bundle are usually identified with elements of a Lie algebra of the structure group. It is however not convenient for our purposes since we have already trivialised TG to $G \times \mathfrak{g}$. What we need is an identification compatible with this trivialisation. One can easily show that the kernel of $T_{\mathfrak{g}}\rho$ may be identified with a subspace $\text{Ad}_{\mathfrak{g}^{-1}}(\mathfrak{h}) \subset \mathfrak{g}$ and that the subspace $\text{Ad}_{\mathfrak{g}^{-1}}(\mathfrak{h})$ does not depend on a representative g of an orbit $\rho(g)$ but on the orbit itself. We have therefore identifications

$$T_{\rho(g)}(M) \simeq \mathfrak{g}/\text{Ad}_{\mathfrak{g}^{-1}}(\mathfrak{h}),$$
(58)

$$T^*_{\rho(g)}(M) \simeq (\mathfrak{g}/\text{Ad}_{\mathfrak{g}^{-1}}(\mathfrak{h}))^* \simeq \text{Ad}_{\mathfrak{g}^{-1}}(\mathfrak{h})^\circ.$$
(59)

where $\text{Ad}_{\mathfrak{g}}(\mathfrak{h})^\circ$ is annihilator of $\text{Ad}_{\mathfrak{g}}(\mathfrak{h})$ in \mathfrak{g}^*. On the other hand, the action of H on TG defines a set of orbits denoted by TG/H. Elements v, v' belong to one orbit if $v' = T_{h}(v)$ for some $h \in H$. We have trivialisation

$$TG/H \simeq M \times \mathfrak{g}.$$

We can therefore define a reduction of a tangent bundle TG with respect to the tangent lift of the action of H on G

$$\tau_{(H)} : TG \to M \times \mathfrak{g}.$$
Similarly, we can reduce the bundle \mathbb{T}^*G with respect to the cotangent lift of the action of H on G
\[
\pi(H) : \mathbb{T}^*G \to M \times \mathfrak{g}^*.
\]
We can now apply tangent functors to reductions $\tau(H)$ and $\pi(H)$
\[
\mathbb{T}\tau(H) : \mathbb{T}\mathbb{T}G \to \mathbb{T}(M \times \mathfrak{g}) \simeq TM \times \mathfrak{g} \times \mathfrak{g},
\]
\[
\mathbb{T}\pi(H) : \mathbb{T}\mathbb{T}^*G \to \mathbb{T}(M \times \mathfrak{g}^*) \simeq TM \times \mathfrak{g}^* \times \mathfrak{g}^*.
\]
In the following, we will not distinguish in notation between $\mathbb{T}\tau(H)$, $\mathbb{T}\pi(H)$ and its trivialised versions. Therefore we can write
\[
\mathbb{T}\tau(H) : G \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \to TM \times \mathfrak{g} \times \mathfrak{g},
\]
\[
(g, X, Y, Z) \longmapsto (\rho(g), Y_{\rho(g)}X, Z),
\]
\[
\mathbb{T}\pi(H) : G \times \mathfrak{g}^* \times \mathfrak{g} \times \mathfrak{g}^* \to TM \times \mathfrak{g}^* \times \mathfrak{g}^*,
\]
\[
(g, A, X, B) \longmapsto (\rho(g), X_{\rho(g)}, A, B).
\]
where $Y_{\rho(g)}$ and $X_{\rho(g)}$ denote equivalence classes of Y and X, respectively, in $\mathfrak{g}/\text{Ad}_{g^{-1}}(h)$.

The bundles $\mathbb{T}^*\mathbb{T}G$ and $\mathbb{T}^*\mathbb{T}^*G$ may be reduced by means of symplectic reduction with respect to certain coisotropic submanifolds $K_H \subset \mathbb{T}^*\mathbb{T}G$ and $C_H \subset \mathbb{T}^*\mathbb{T}^*G$. These submanifolds consists of differentials of functions on $G \times \mathfrak{g}$ and $G \times \mathfrak{g}^*$ respectively, invariant with respect to the action of H on the first component. The trivialised versions of K_H and C_H will be denoted by \bar{K}_H and \bar{C}_H, i.e.
\[
\bar{K}_H = \{ (g, X, C, D) \in G \times \mathfrak{g} \times \mathfrak{g}^* \times \mathfrak{g}^* : C \in \text{Ad}_{g^{-1}}(h)^o \},
\]
\[
\bar{C}_H = \{ (g, A, B, X) \in G \times \mathfrak{g}^* \times \mathfrak{g} \times \mathfrak{g} : B \in \text{Ad}_{g^{-1}}(h)^o \}.
\]
Symplectic reduction gives us
\[
G \times \mathfrak{g} \times \mathfrak{g}^* \times \mathfrak{g}^* \supset \bar{K}_H \xrightarrow{\Sigma} \mathbb{T}^*M \times \mathfrak{g} \times \mathfrak{g}^*,
\]
\[
(g, X, C, D) \longmapsto (\rho(g), C, X, D)
\]
and
\[
G \times \mathfrak{g}^* \times \mathfrak{g} \times \mathfrak{g} \supset \bar{C}_H \xrightarrow{\Xi} \mathbb{T}^*M \times \mathfrak{g}^* \times \mathfrak{g},
\]
\[
(g, A, B, X) \longmapsto (\rho(g), B, A, X)
\]
Now we can write similar reduction for $\bar{\kappa}_G$ as in subsection 3.1. We will denote it by κ_h. Applying (62) to both source and target of $\bar{\kappa}_G$ we obtain that elements $(\rho(g), Y_{\rho(g)}X, Z)$ and $(\rho(g'), X'_{\rho(g')}Y', Z')$ of $TM \times \mathfrak{g} \times \mathfrak{g}$ are in relation κ_h if
\[
\rho(g) = \rho(g'), X'_{\rho(g')} = X_{\rho(g)}; \ Y'_{\rho(g')} = Y_{\rho(g)}; \ Z' = Z - [X, Y].
\]
The reduced κ_h is not a map again, but only a relation. The following diagram is commutative in the sense of relations
\[
G \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \xrightarrow{\bar{\kappa}_G} G \times \mathfrak{g} \times \mathfrak{g}
\]
\[
\xrightarrow{\mathbb{T}\tau(H)} \xrightarrow{\mathbb{T}\pi(H)} \mathbb{T}M \times \mathfrak{g} \times \mathfrak{g}
\]
Similarly, applying the reduction (64) and projection (63) to (24) one can derive the formula for reduced $\tilde{\alpha}_G$ which will be denoted by α_h. Again, α_h is a map ˈ in
the opposite direction’ comparing to the original map $\tilde{\alpha}_G$

$$
\begin{align*}
T^*M \times g \times g^* \xrightarrow{\alpha_h} T^*M \times g^* \times g^*,
\end{align*}
$$

(67)

The following diagram is commutative in a sense of relations

$$
\begin{align*}
G \times g^* \times g \times g^* \xrightarrow{\tilde{\alpha}_G} G \times g \times g^* \times g
\end{align*}
$$

(68)

Finally, applying the reduction (65) and projection (63) to (28) one can derive the formula for reduced $\tilde{\beta}_G$ which will be denoted by β_h. The relation β_h is a map ‘in the opposite direction’ comparing to the original map $\tilde{\beta}_G$.

$$
\begin{align*}
T^*M \times g^* \times g \rightarrow T^*M \times g^* \times g^*,
\end{align*}
$$

(69)

The following diagram is commutative in a sense of relations

$$
\begin{align*}
G \times g^* \times g \times g^* \xrightarrow{\tilde{\beta}_G} G \times g^* \times g^* \times g
\end{align*}
$$

(70)

Above structures may be used to describe systems with Lagrangian and Hamiltonian invariant under the action of the subgroup of G. Let L be a Lagrangian invariant under the action of a subgroup $H \subset G$ i.e $L(Tl_h(v)) = L(v)$. We can introduce a reduced Lagrangian $l: M \times g \rightarrow \mathbb{R}$

$$
L(v_g) = L(Tl_h^{-1}(v_g)) =: l(m, X), \quad m = \rho(g) \in M, \quad X \in g.
$$

The differential of l at a point $(m, X) \in M \times g$ is

$$
\begin{align*}
dl(m, X) = \left(m, \frac{\partial l}{\partial m}, X, \frac{\partial l}{\partial X} \right) \in T^*M \times g \times g^*.
\end{align*}
$$

The reduced dynamics is a subset $d_h \subset T^*M \times g^* \times g^*$,

$$
d_h = \{ (m, X_m, A, B) : \exists X \in X_m : A = \frac{\partial l}{\partial X}, \quad B = \frac{\partial l}{\partial m} + \text{ad}_X \left(\frac{\partial l}{\partial X} \right) \}.
$$

(71)

The Legendre map is given by

$$
\lambda_h : M \times g \rightarrow M \times g^*, \quad (m, X) \longmapsto \left(m, \frac{\partial l}{\partial X} \right).
$$
Let us assume that Hamiltonian of the system exists and it is invariant under the action of H. The dynamics is then an image of the Hamiltonian vector field $\mathcal{X}_h := \beta_h \circ dh$

\[
\mathcal{X}_h : M \times g^* \to TM \times g^* \times g^*,
\]

\[(m, A) \mapsto (m, X_m, A, B), \quad X = \frac{\partial h}{\partial A}, \quad B = -\frac{\partial h}{\partial m} + \text{ad}^*_\beta h (A).
\]

5. Examples.

5.1. Rigid body dynamics. We will present now an application of the reduced Tulczyjew formalism for a particular physical system which is a rigid body fixed at one point and free to rotate about it.

Let us fix the initial position of the rigid body in \mathbb{R}^3. Then any other position can be identified with an element $R \in G = SO(3)$ and any movement can be described by a curve $t \mapsto R(t)$ in G. Trajectory of a point $q \in \mathbb{R}^3$ of the body is given by a curve $t \mapsto R(t)q$ where we consider the natural action of $SO(3)$ on \mathbb{R}^3. Let $(\cdot \vert \cdot)$ denote the canonical Euclidean scalar product on \mathbb{R}^3. Lagrangian of a rigid body reads

\[
L(\dot{R}) = \frac{1}{2} \int_V \rho(q)(\dot{R}q \vert \dot{R}q) d^3q,
\]

where ρ is a mass density function of the rigid body, $\dot{R}q$ denotes vector tangent to $t \mapsto R(t)q \in \mathbb{R}^3$ at $t = 0$ and integration is over the whole volume of the rigid body with respect to the canonical density d^3q on \mathbb{R}^3.

The Lagrangian (72) is a function on $T_{SO(3)}$. One can easily see that it is invariant under the transformation (49). It means that we can introduce the reduced Lagrangian

\[
l : so(3) \to \mathbb{R}, \quad l(X) = \frac{1}{2} \int_V \rho(q)(Xq \vert Xq) d^3q,
\]

where Xq denotes vector tangent to the curve $t \mapsto \exp(tX)q \in \mathbb{R}^3$. Let us note that the integral in above formula depends in a bilinear and symmetric way on X, therefore it defines a bilinear symmetric form on $so(3)$ called moment of inertia. Let us denote this form by I i.e

\[
I : so(3) \times so(3) \to \mathbb{R}, \quad (X, Y) \mapsto \int_V \rho(q)(Xq \vert Yq) d^3q \quad (74)
\]

Due to nondegeneracy it defines an isomorphism

\[
\tilde{I} : so(3) \to so^*(3), \quad X \mapsto I(X, \cdot).
\]

We can now rewrite l using (74)

\[
l(X) = \frac{1}{2} I(X, X).
\]

Once we have l we can easily find the reduced dynamics. Using the formula (50) we obtain

\[
d = \{(A, \dot{A}) \in so(3)^* \times so(3)^* : \exists X \in so(3) \ A = \tilde{I}(X), \ \dot{A} = \text{ad}^*_X \tilde{I}(X)\}.
\]

(76)

Since \tilde{I} is an isomorphism we can rewrite (76) as

\[
d = \{(A, \dot{A}) \in so(3)^* \times so(3)^* : \hat{\dot{A}} = \text{ad}^*_{\tilde{I}^{-1}(A)}A\}.
\]

(77)
It is easy to see that d is an image of the Hamiltonian vector field on $\mathfrak{so}^*(3)$ with respect to the canonical Poisson structure for Hamiltonian function

$$h : \mathfrak{so}^*(3) \to \mathbb{R}, \quad h(A) = \frac{1}{2}\langle A, I^{-1}(A) \rangle.$$

(78)

Let us notice that \tilde{I} is the Legendre map for Lagrangian l, $A = \tilde{I}(X)$ is the canonical momentum and l is hiperregular.

Since \tilde{I} is an isomorphism, we can transport Hamiltonian vector field from $\mathfrak{so}^*(3)$ to $\mathfrak{so}(3)$ and get

$$\tilde{I}(\dot{X}) = \text{ad}_X^*(\tilde{I}(X)).$$

(79)

Now we identify $(\mathfrak{so}(3), [\cdot, \cdot])$ with (\mathbb{R}^3, \times) denoting by \tilde{X} the element of \mathbb{R}^3 corresponding to X. Moreover, the dual space to \mathbb{R}^3 may be as well identified with \mathbb{R}^3 by means of a scalar product. The resulting \tilde{I} will be denoted by I. Equation (79) assumes the traditional form of Euler equation [16]

$$\dot{\tilde{I}}(\dot{X}) - \dot{\tilde{I}}(\tilde{X}) \times \tilde{X} = 0.$$

5.2. The heavy top. The $SO(3)$ symmetry from the previous example may be broken by introducing a constant gravitational field to the picture. The Lagrangian of the system has to be modified by adding the potential energy term. Let $\bar{g} \in \mathbb{R}^3$ denote the magnitude of the field. Let also \bar{u} denote a vector from fixed point of the rigid body to its center of mass in initial position (corresponding to the neutral element of the group). Then the potential energy is a function

$$V : SO(3) \to \mathbb{R}, \quad V(R) = \mu(R\bar{u} | \bar{g}),$$

and trivialized Lagrangian reads

$$\tilde{L} : SO(3) \times \mathfrak{so}(3) \to \mathbb{R}, \quad \tilde{L}(R, X) = \frac{1}{2}I(X, X) - \mu(R\bar{u} | \bar{g}).$$

(80)

The above Lagrangian is not invariant with respect to the whole group action, however it is invariant with respect to the subgroup H – the isotropy subgroup of \bar{g}. H is of course isomorphic to $SO(2)$ since for $h \in H$ we have

$$V(hR) = \mu(hR\bar{u} | \bar{g}) = \mu(R\bar{u} | h^T \bar{g}) = \mu(R\bar{u} | \bar{g}) = V(R).$$

As a consequence of H-invariance, the differential of V at R belongs to $(\text{Ad}_{R^{-1}h})^\circ$, more precisely, in trivialisation of $T^*SO(3)$ to $SO(3) \times \mathfrak{so}(3)^*$, $pr_2(dV(R)) \in (\text{Ad}_{R^{-1}h})^\circ$.

Since (80) is invariant under $SO(2)$ we can introduce the reduced Lagrangian. Denoting by M the quotient manifold $SO(3)/SO(2)$ we get

$$l : M \times \mathfrak{so}(3) \to \mathbb{R}, \quad l(m, X) = \frac{1}{2}I(X, X) - v(m),$$

(81)

where, of course $v(m) = V(R)$ for any $R \in m$. The space of momenta is then $M \times \mathfrak{so}(3)^*$. The dynamics is a subset of $T(M \times \mathfrak{so}(3)^*) \simeq TM \times \mathfrak{so}(3)^* \times \mathfrak{so}(3)^*$. According to (71) reduced dynamics reads

$$d_{\mathfrak{so}(2)} = \left\{ (m, X_m, A, \dot{A}) : \exists X \in X_m \quad A = \tilde{I}(X), \quad \dot{A} = \text{ad}_{\tilde{I}^{-1}(A)}^*(A) - dv(m) \right\}.$$

(82)
Remember that the space T^*_mM is identified with $(\text{Ad}_R - h)^\circ \subset \mathfrak{so}(3)^*$ and $dv(m) = dV(R)$ for $R \in m$. The dynamics is an image of the Hamiltonian vector field of the reduced Hamiltonian
\[
h(m, A) = \frac{1}{2} \langle A, \tilde{I}^{-1}(A) \rangle + v(m).
\] (83)

Since \tilde{I} is an isomorphism we can transport the Hamiltonian vector field from $M \times \mathfrak{so}(3)^*$ to $M \times \mathfrak{so}(3)$ obtaining
\[
\chi(m, X) = (m, X_m, X, \dot{X}) \in T(M \times \mathfrak{so}(3)), \quad \tilde{I}(\dot{X}) = \text{ad}_X^* (\tilde{I}(X)) - dv(m).
\]
In the literature one usually uses the representation of $(\mathfrak{so}(3), \{\cdot, \cdot\})$ as (\mathbb{R}^3, \times). In this representation, and notation of previous example,
\[
\tilde{I}(\dot{X}) = \tilde{I}(\dot{X}) \times \dot{X} - \mu \ddot{u} \times (R^{-1} \ddot{y})
\]
where R is any element of m.

5.3. The Suslov problem. Linear Suslov problem, proposed and discussed in [27], concerns rigid body subject to linear constraints forcing angular velocity to be perpendicular to certain axis. We shall consider an affine version of Suslov problem described in [5] in our notation it would be given by a left invariant subbundle $S \subset T\text{SO}(3)$ represented in trivialization by an affine subspace $s \subset \mathfrak{so}(3)$ given e.g. by a nonzero element ξ of $\mathfrak{so}(3)^*$ and a real number k, i.e.
\[
v(S) = \text{SO}(3) \times s, \quad s = \{X \in \mathfrak{so}(3) : \langle \xi, X \rangle = k\}.
\]
The model vector subspace $v(s)$ is then the kernel of ξ and its annihilator is spanned by ξ itself. For the Lagrangian given by the formula (74) we get the dynamics
\[
d^S = \{(A, \dot{A}) \in \mathfrak{so}(3)^* \times \mathfrak{so}(3)^* : \langle \xi, \tilde{I}^{-1}(A) \rangle = k, \quad \dot{A} = \text{ad}^*_{\tilde{I}^{-1}(A)} A + \lambda \xi, \quad \lambda \in \mathbb{R}\}.
\] (84)
Using the identification of $(\mathfrak{so}(3), \{\cdot, \cdot\})$ with (\mathbb{R}^3, \times) as above and the fact that \tilde{I} is an isomorphism we get equations
\[
\tilde{I}(\dot{X}) = \tilde{I}(\dot{X}) \times \dot{X} + \lambda \xi, \text{ together with } (\xi | \dot{X}) = k.
\] (85)

REFERENCES

[1] R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems, Birkhäuser Verlag, Basel, 1997.
[2] J. J. Duistermaat and J. A. C. Kolk, Lie Groups, Universitext, Springer-Verlag, 2000.
[3] O. Esen and H. Gumral, Tulczyjew’s triplet for Lie groups I: Trivializations and reductions, J. Lie Theory, 24 (2014), 1115–1160.
[4] O. Esen and H. Gumral, Tulczyjew’s triplet for Lie groups II: Dynamics, arXiv:1503.06566.
[5] L. C. García-Naranjo, A. J. Maciejewski, J. C. Marrero and M. Przybylska, The inhomogeneous Suslov problem, Phys. Let. A, 378 (2014), 2389–2394.
[6] E. García-Torano Andrés, É. Guzmán, J. C. Marrero and T. Mestdag, Reduced dynamics and Lagrangian submanifolds of symplectic manifolds, J. Phys. A: Math. Theor., 47 (2014), 225203, 24pp.
[7] K. Grabowska, A Tulczyjew triple for classical fields, J. Phys. A: Math. Theor., 45 (2012), 145207, 35pp.
[8] K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A: Math. Theor., 41 (2008), 175204 (25pp).
[9] K. Grabowska and J. Grabowski, Dirac algebroids in Lagrangian and Hamiltonian mechanics, J. Geom. Phys., 61 (2011), 2233–2253.
[10] K. Grabowska, J. Grabowski and P. Urbański, Geometrical Mechanics on algebroids, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 559–575.
[11] K. Grabowska and L. Vitagliano, Tulczyjew triples in Higher derivative field theory, *J Geom. Mech.*, 7 (2015), 1–33.

[12] J. Grabowski and G. Marmo, Deformed Tulczyjew triples and Legendre transform, Geometrical structures for physical theories, I (Vietri, 1996), *Rend. Sem. Mat. Univ. Politec. Torino*, 54 (1996), 279–294.

[13] J. Grabowski and M. Rotkiewicz, Higher vector bundles and multi-graded symplectic manifolds, *J. Geom. Phys.*, 59 (2009), 1285–1305.

[14] J. Grabowski and P. Urbański, Tangent lifts of Poisson and related structures, *J. Phys. A*, 28 (1995), 6743–6777.

[15] J. Grabowski and P. Urbański, Algebroids - general differential calculi on vector bundles, *J. Geom. Phys.*, 31 (1999), 111–141.

[16] D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré quations and semidirect products with applications to continuum theories, *Adv. in Math.*, 137 (1998), 1–81.

[17] J. Klein, *Espaces variationnels et mécanique*, *Ann. Inst. Fourier*, 12 (1962), 1–124.

[18] K. Konieczna and P. Urbański, Double vector bundles and duality, *Archivum Mathematicum*, 35 (1999), 59–95.

[19] M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, *J. Phys. A*, 38 (2005), R241–R308.

[20] P. Liebermann and Ch. M. Marle, *Symplectic Geometry and Analytical Mechanics*, Reidel Publishing Company, Dordrecht, 1987.

[21] P. Liebermann, Lie algebroids and mechanics, *Archivum Mathematicum*, 32 (1996), 147–162.

[22] E. Martínez, Lagrangian mechanics on Lie algebroids, *Acta Appl. Math.*, 67 (2001), 295–320.

[23] E. Martínez, Geometric formulation of Mechanics on Lie algebroids, in *Proceedings of the VIII Fall Workshop on Geometry and Physics*, Medina del Campo, (1999), Publicaciones de la RSME, 2 (2001), 209–222.

[24] E. Martínez, Variational calculus on Lie algebroids, *ESAIM: Control, Optimisation and Calculus of Variations*, 14 (2008), 356–380.

[25] E. Martínez, T. Mestdag and W. Sarlet, Lie algebroid structures and Lagrangian systems on affine bundles, *J. Geom. Phys.*, 44 (2002), 70–95.

[26] J. Pradines, Geometrie differentielle au-dessus d’un groupeoid, *C. R. Acad. Sci. Paris, série A*, 266 (1968), 1194–1196.

[27] G. K. Suslov, *Theoretical Mechanics*, Gostekhizdat, 1946.

[28] W. M. Tulczyjew, Hamiltonian systems, Lagrangian systems, and the Legendre transformation, *Symposia Mathematica*, Vol. XII (Convegno di Geometria Simplessica e Fisica Matematica, INDAM, Rome, 1973), Academic Press, London, (1974), 247–258.

[29] W. M. Tulczyjew, Sur la différentielle de Lagrange, *C. R. Acad. Sci. Paris, série A*, 280 (1975), 1295–1298.

[30] W. M. Tulczyjew, Les sous-varietes lagrangiennes et la dynamique hamiltonienne, *C.R. Acad. Sc. Paris*, 283 (1976), 15–18.

[31] W. M. Tulczyjew, Les sous-varietes lagrangiennes et la dynamique lagrangienne, *C.R. Acad. Sc. Paris*, 283 (1976), 675–678.

[32] W. M. Tulczyjew, The legendre transformation, *Ann. Inst. H. Poincare*, 27 (1977), 101–114.

[33] W. M. Tulczyjew, *Geometric Formulation of Physical Theories. Statics and Dynamics of Mechanical Systems*, Monographs and Textbooks in Physical Science. Lecture Notes, 11, Bibliopolis, Naples, 1989.

[34] W. M. Tulczyjew and P. Urbański, A slow and careful Legendre transformation for singular Lagrangians, *The Infeld Centennial Meeting, Warsaw, (1998)*, *Acta Phys. Polon. B*, 30 (1999), 2909–2978.

[35] P. Urbański, Double vector bundles in classical mechanics, *Rend. Sem. Mat. Univ. Pol. Torino*, 54 (1996), 405–421.

[36] A. Weinstein, Lagrangian mechanics and grupoids, *Fields Inst. Comm.*, 7 (1996), 207–231.

Received February 2016; revised October 2016.

*e-mail address: Katarzyna.Konieczna@fuw.edu.pl
E-mail address: Marcin.Zajac@fuw.edu.pl*