Intraoperative vancomycin powder to reduce surgical site infections after posterior spine surgery: a systematic review and meta-analysis

Hua Luo, Yu Ren, Yongwei Su, Feng Xue and Zhenghua Hong

1Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
2Department of Pharmacy, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
3The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
4Department of Orthopaedics, Fengxian District Central Hospital, Shanghai, People’s Republic of China

• The purpose of the study was to evaluate the effect of local application of vancomycin powder (VP) to prevent surgical site infections (SSIs) after posterior spine surgery.
• A comprehensive search of Web of Science, EMBASE, Pubmed, Ovid, and Cochrane Library databases for articles published was performed to collect comparative studies of intrawound vancomycin in posterior spine surgery before March 2021. Two reviewers independently screened eligible articles based on the inclusion and exclusion criteria, assessed the study quality, and extracted the data. Revman 5.4 software was used for data analysis.
• A total of 22 articles encompassing 11,555 surgical patients were finally identified for meta-analysis. According to the information provided by the included literature, the combined odds ratio showed that topical use of VP was effective for reducing the incidence of SSIs ($P < 0.00001$) after posterior spine surgery without affecting its efficacy in the treatment of deep infections ($P < 0.00001$). However, there is no statistical significance in superficial infections. In a subgroup analysis, VP at a dose of 1, 2, and 0.5–2 g reduced the incidence of spinal SSIs. The result of another subgroup analysis suggested that local application of VP could significantly reduce the risk of SSIs, whether it was administered after posterior cervical surgery or thoracolumbar surgery. Moreover, the percentage of SSIs due to gram-positive germs ($P < 0.00001$) and MRSA ($P < 0.0001$) could reduce after intraoperative VP was used, but did not significantly reduce to gram-negative germs.
• The local application of VP appears to protect against SSIs, gram-positive germs, and MRSA (methicillin-resistant Staphylococcus aureus) infections after the posterior spinal operation.

Introduction

Surgery site infections (SSIs) is one of the common complications affecting surgical management and patient recovery. Related studies report that the incidence of SSIs is 1–14% (1, 2, 3, 4, 5). The incidence of SSIs is mainly due to the physical condition of the patient and the operation method. Studies have shown that diabetes and posterior spinal surgery are high-risk factors for infection. Comparatively, posterior spinal surgery is a more severe trauma and the posterior vascular supply is poorer, harder to confront bacteria, which leads to the infection rate to be higher than that of anterior surgery. For anterior cervical surgery, the incidence of deep SSIs was 0.4% (6), while for posterior cervical surgery was 0.7% (7). Systemic antibiotics were used before surgery, which was recommended by the evidence-based clinical guideline for prophylactic antibiotics in spinal surgery (8). However, the incidence of SSIs still ranges from 1 to 10%. Once SSIs occur, the impact on patients will be catastrophic, which results in increased hospitalization costs, extended length of hospitalization, and even the need for another operation (1, 9). Hence, further measures to prevent SSIs need to be found.

Keywords
• vancomycin powder
• posterior spinal operation
• surgical site infections
• meta-analysis
In the spine SSIs microflora, the most common bacteria is *Staphylococcus aureus* (45.2%), followed by *Staphylococcus epidermidis* (31.4%), and methicillin-resistant pathogens (34.3%) of all SSIs (10). In recent years, scholars began to study vancomycin powder (VP) spray, local to lower spine SSIs because of its antimicrobial activity on most of the gram-positive bacteria and cost-effectiveness. In addition, many predecessors have performed a meta-analysis to study the relieving effect of vancomycin in spinal surgery. However, the results of vancomycin in posterior spinal surgery are contradictory. Different surgical approaches have various surgical indications and different infection rates. In posterior surgery, some scholars have found that the application of vancomycin could reduce the occurrence of SSIs and that it is statistically significant. As some conclusions are contrary to it, whether local application of vancomycin can prevent SSIs after posterior spinal surgery remains inconclusive.

In this study, we performed a meta-analysis to answer the following questions: (i) whether local spraying of VP can reduce SSIs in the posterior spine; (ii) whether local application of vancomycin can reduce SSIs in different surgical areas; (iii) which dosage of VP is suitable for posterior spinal operation; (iv) what is the effect of the application of vancomycin on infectious bacteria.

Materials and methods

This meta-analysis was conducted in agreement with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (11). The PRISMA Checklist is provided in the supplementary materials (see section on Supplementary materials provided at the end of the article). The protocol was registered on PROSPERO (Registration No: CRD42021241661).

Search strategy

All articles published before March 2021 in PubMed, Web of Science, EMBASE, Ovid, and Cochrane Library databases were searched using the terms ‘vancomycin’, ‘posterior’, and ‘spinal or spine’. The search strategy used for the PubMed search were: ‘((‘posterior’[All Fields] OR ‘posterior[s]’[All Fields]) AND (‘spine’[MeSH Terms] OR ‘spine’[All Fields] OR ‘spines’[All Fields] OR ‘spines’[All Fields] OR (‘spinal’[All Fields] OR ‘spinally’[All Fields] OR ‘spinals’[All Fields]) AND (‘vancomycin’[MeSH Terms] OR ‘vancomycin’[All Fields] OR ‘vancomycines’[All Fields] OR ‘vancomycins’[All Fields] OR ‘vancomycin’[MeSH Terms] OR ‘vancomycin’[All Fields] OR ‘vancocin’[All Fields] OR ‘vancomycin’[All Fields] OR ‘vancomycins’[All Fields])’. No language restrictions were applied during the search. We also searched the reference lists of articles retrieved from the electronic search for related articles. In addition, the reference lists of systematic review and meta-analysis articles concerning prophylactic VP and spinal surgery were scanned. Two independent researchers (HL and HZH) performed the searches and made decisions regarding the inclusion and exclusion criteria. When the two researchers had different opinions about the eligibility of a study for inclusion or a consensus was not reached, it was then decided by the senior researcher after a group discussion.

Inclusion criteria: (i) clinical retrospective or prospective studies; (ii) subjects who had undergone open posterior spinal surgery but had no preoperative infection in the spinal region; (iii) intervention measures and intraoperative application of vancomycin in the incision was the main difference between the experimental group and the control group; (iv) outcome index was the rate of SSIs.

Exclusion criteria: (i) case reports, reviews, letters, animal trials, and republished literature; (ii) no control group was established; (iii) non-posterior spinal surgery; (iv) the sample included patients with suspected preoperative spinal tract infection.

Data extraction and study assessment

Two investigators (HZH and HL) independently extracted all the related data from selected studies. Disagreements were resolved by consensus, and a third reviewer addressed the disagreements if investigators were unable to reach a consensus. Data extracted included the first author's name, year of publication, type of study, sample size, SSIs case number (superficial and deep SSIs), bacterial type of infection, surgical area (cervical spine, thoracolumbar spine), the dosage of VP, and the follow-up time. A simplified version of the Oxford Centre for Evidence-based Medicine (OCEBM) guide (12) was used to evaluate the evidence. The Newcastle–Ottawa scale (NOS) was used to evaluate the literature quality of the retrospective cohort studies (13).

Statistical analysis

The meta-analysis was performed by using RevMan 5.4 software provided by the Cochrane collaboration, and the GRADEpro software was used to examine the following domains: study design, risk of bias, inconsistency, indirectness, and imprecision. First, the heterogeneity among the studies was qualitatively and quantitatively evaluated by Q test and I² value calculation. When *P* > 0.1 and I² < 50, the heterogeneity was not significant and the data were combined with a fixed-effect model. When the heterogeneity was significant (*P* < 0.1 or I² > 50), the random-effects model merged the data. The odds ratio (OR) and 95% confidence interval (CI) were used to indicate the difference of effects for the data of chloric variables. When OR < 1, it indicated that the event was beneficial to
the test group; when $P < 0.05$, it was suggested that the difference was statistically significant; when $P > 0.05$, the difference was not statistically significant.

Results

Study characteristics

A total of 284 articles were revealed from PubMed, Web of Science, EMBASE, Ovid, and Cochrane Library databases. Of this, 123 were duplicates and hence excluded. After carefully reading the titles and abstracts of the articles, a further 124 irrelevant articles were excluded and 37 articles were selected. After reading the full text, 15 articles were excluded. Of these 15 deleted studies, one study used combination surgeries using the anterior and posterior approach, 2 studies didn’t report the rate of SSIs, 2 studies didn’t include the control group, 3 studies used different methods to clean the surgical site between the control and intervention group, 5 studies didn’t mention the exact number of the posterior spinal surgery, 3 studies reported the same result, and we included only one study. Finally, a total of 22 studies that followed the inclusion and exclusion criteria were chosen for the present meta-analysis (Fig. 1). All these studies are retrospective trials registering a total of 11 555 patients eligible for meta-analysis ($n = 161$), and the random-effects model was used to merge the extracted data. Results show that compared with the control group, before closing the wound, the topical use of VP can effectively reduce the posterior spine SSIs, and the result was statistically significant (OR: 0.43, 95% CI: 0.32–0.60; $P < 0.00001$, Fig. 2). The grading of Recommendation, Assessment, Development, and Evaluation (GRADE) for this outcome was moderate (O) (Table 3). SSIs are mainly divided into superficial and deep incisional infections in terms of site, and the effect of local application of VP may be different between the two. Some researchers will adjust the spraying according to different situations, such as the patient’s wound size or weight dose. Of course, there are some researchers using the fixed dose of 1 g or 2 g. Additionally, relevant studies have shown that differences in spinal surgery areas may affect the occurrence of SSIs. Therefore, three subgroup analyses were conducted in this paper according to different vancomycin doses, surgical areas, and infected sites.

Effectiveness of wound spraying with vancomycin powder in the prevention of spinal SSIs

We used 5.4 RevMan software to combine the OR of the results of 22 studies and found significant heterogeneity ($I^2 = 41\%$), and the random-effects model was used to merge the extracted data. Results show that compared with the control group, before closing the wound, the topical use of VP can effectively reduce the posterior spine SSIs, and the result was statistically significant (OR: 0.43, 95% CI: 0.32–0.60; $P < 0.00001$, Fig. 2). The grading of Recommendation, Assessment, Development, and Evaluation (GRADE) for this outcome was moderate (O) (Table 3). SSIs are mainly divided into superficial and deep incisional infections in terms of site, and the effect of local application of VP may be different between the two. Some researchers will adjust the spraying according to different situations, such as the patient’s wound size or weight dose. Of course, there are some researchers using the fixed dose of 1 g or 2 g. Additionally, relevant studies have shown that differences in spinal surgery areas may affect the occurrence of SSIs. Therefore, three subgroup analyses were conducted in this paper according to different vancomycin doses, surgical areas, and infected sites.

Table 1 Characteristics of the included studies.

Reference	Design	Sample size	Follow-up (months)
Adhikari et al.	Retrospective	158	–
Byvaltsev et al.	Retrospective	214	–
Delgado-López et al.	Retrospective	300	–
Devin et al.	Retrospective	2056	1
Dwan et al.	Retrospective	565	3
Emohare et al.	Retrospective	303	–
Garg et al.	Retrospective	538	3
Gun-Ill et al.	Retrospective	571	3
Haimoto et al.	Retrospective	515	6
Heller et al.	Retrospective	683	3
Hill et al.	Retrospective	300	1
Li et al.	Retrospective	569	12
Liu et al.	Retrospective	334	–
Maajid et al.	Retrospective	303	3
Martin et al.	Retrospective	306	1
Martin et al.	Retrospective	289	1
Oktay et al.	Retrospective	209	3
Pahys et al.	Retrospective	518	–
Strom et al. (cervical)	Retrospective	171	12
Strom et al.	Retrospective	253	12
Sweet et al.	Retrospective	1732	12
Takeuchi et al.	Retrospective	668	3

5 points. All these studies were evaluated by NOS score and were of high-technical quality (Table 2).

Effectiveness of wound spraying with vancomycin powder in the prevention of deep and superficial SSIs

Subgroup analysis of the included studies that explicitly indicated deep and superficial infections was performed, $P > 0.1, I^2 < 50$. The heterogeneity was not significant, and
A review of vancomycin in posterior spine surgery

The fixed-effect model was used to combine OR values of the extracted data. The results showed that the local use of VP could play a significant preventive effect in deep infections (OR: 0.37, 95% CI: 0.24–0.57; P < 0.000001, I² = 31%, moderate GRADE, Fig. 3 and Table 3). However, there was no statistically significant difference in superficial infections between the VP and control groups (OR: 1.10, 95% CI: 0.58–2.10; P = 0.77, I² = 0%, low GRADE, Fig. 3 and Table 3).

Effectiveness of different doses of vancomycin powder in the prevention of spinal SSIs
At present, there is no separate report on the dose gradient titer of VP. We can only conduct separate subgroup analysis on the dose of 1g, 2g and 0.5–2 g VP, and the results showed that VP sprayed on the wound, at a dose of 1 (OR: 0.34, 95% CI: 0.25–0.46; P < 0.000001, I² = 50%, Fig. 4A), 2 (OR: 0.41, 95% CI: 0.23–0.74; P = 0.003, I² = 77%, Fig. 4B), and 0.5–2 g (OR: 0.47; 95% CI: 0.34–0.66; P < 0.0001, I² = 0%, Fig. 4C), respectively could reduce the occurrence of SSIs after posterior spine surgery. The results had a general meaning, and a fixed quantity of VP has a preventive effect on spinal SSIs, and there was a statistically significant difference in the results. The GRADE for these outcomes was moderate (⊕⊕⊕◯) (Table 3).

Effectiveness of wound spraying with VP at different surgical areas
Relevant studies have shown that the difference in spine surgery areas may affect the incidence of SSIs. Therefore, we conducted a subgroup analysis based on the surgery area (cervical spine, thoracic spine, and lumbar spine) as the included studies did not provide enough information about thoracic spine surgery, and most of the thoracic areas.

Study or Subgroup	Intrawound Vancomycin	Control	Events	Total	Odds Ratio M-H, Random, 95% CI
Adhikari et al., 2020	3	98	8	70	2.44 [0.25, 23.94]
Byvaltsev et al., 2019	5	107	12	197	0.39 [0.13, 1.14]
Delgado-López et al., 2020	12	150	16	150	0.73 [0.33, 1.60]
Devin et al., 2018	21	986	56	1090	0.41 [0.25, 0.68]
Devan et al., 2013	0	193	25	372	0.94 [0.69, 1.25]
Eremohare et al., 2014	5	98	12	207	0.89 [0.31, 2.61]
Garg et al., 2018	7	228	6	310	1.60 [0.53, 4.84]
Gun-Ill et al., 2016	15	275	31	296	0.49 [0.26, 0.84]
Haimoto et al., 2018	0	247	15	268	0.03 [0.00, 0.56]
Heller et al., 2015	9	342	18	341	0.48 [0.21, 1.10]
Hill et al., 2014	5	150	11	150	0.44 [0.15, 1.29]
Li et al., 2016	8	206	30	336	0.45 [0.26, 0.80]
Liu et al., 2015	5	180	11	154	0.37 [0.13, 1.09]
Maaajid et al., 2018	4	153	17	150	0.21 [0.07, 0.64]
Martin et al., 2014	8	156	8	150	0.96 [0.35, 2.63]
Martin et al., 2015	6	115	12	174	0.74 [0.27, 2.04]
Oktay et al., 2021	2	102	7	109	0.29 [0.06, 1.19]
Pahys et al., 2013	0	156	11	97	0.02 [0.00, 0.41]
Strom et al., 2013	0	156	11	97	0.02 [0.00, 0.41]
Strom et al., 2013 (Cervical)	2	79	10	92	0.21 [0.05, 0.80]
Sweet et al., 2011	2	911	21	821	0.08 [0.02, 0.36]
Takeuchi et al., 2020	1	314	9	354	0.12 [0.02, 0.97]
Total (95% CI)	5409	6146	100.0%		0.43 [0.32, 0.66]

Figure 2
Forest plot of comparison: vancomycin vs control, outcome: surgical site infections.

www.efortopenreviews.org
spine surgery involves the thoracolumbar junction, we analyzed the thoracic and lumbar spine area as a whole. In 22 studies, 1071 patients underwent cervical spine surgery (16, 26, 29, 31, 33), and the incidence of SSIs in the VP group was 1.8% (8/433) and 4.1% (26/638) in the control group. The results showed that the incidence of SSIs had been decreased in the VP group compared to the control group (OR: 0.44; 95% CI: 0.20–0.94; Fig. 5A), which was statistically significant (\(P < 0.05\)). Of them, 10 studies included a total of 4549 cases undergoing thoracic and lumbar spine surgery (14, 15, 16, 19, 21, 25, 26, 28, 32, 34), 2187 cases in the experimental group, and 2362 cases in the control group. The results showed that the VP group had reduced infection of the spine surgery site compared with the control group (2.4% vs 6.1%). The difference was statistically significant (OR: 0.42; 95% CI: 0.30–0.59, Fig. 5B). Subgroup analysis shows that local application of vancomycin could reduce the incidence of SSIs in cervical, thoracic, and lumbar surgery. The level of evidence was moderate (\(⊕⊕⊕\)).

Table 3: Grading of Recommendations Assessment, Developing, and Evaluation used to assess the systematic review outcomes. Vancomycin was compared to control for patients with posterior spine surgery.

Outcomes	Anticipated absolute effects, per 1000*	Relative effect, OR (95% CI)	Number of Participants	Number of Studies	Certainty of the evidence (GRADE)
SSIs	Risk with control Risk with vancomycin (95% CI)	Relative effect, OR (95% CI)			
	55 25 (18–34)	0.43 (0.32–0.60)	11 555	22	⊗⊗⊗ Moderate
Superficial SSIs	33 36 (19–66)	1.10 (0.38–2.10)	1112	4	⊗⊗⊗ Low
Deep SSIs	35 13 (9–20)	0.37 (0.24–0.57)	4291	9	⊗⊗⊗ Moderate
Dose of 1 g	75 27 (20–36)	0.34 (0.25–0.46)	4590	12	⊗⊗⊗ Moderate
Dose of 2 g	36 15 (8–27)	0.41 (0.23–0.74)	2327	3	⊗⊗⊗ Moderate
Dose between 0.5 –and 2 g	44 21 (16–30)	0.47 (0.34–0.66)	4638	7	⊗⊗⊗ Moderate
Cervical	41 18 (8–38)	0.44 (0.20–0.94)	1071	5	⊗⊗⊗ Moderate
Thoracolumbar	61 26 (19–37)	0.42 (0.30–0.59)	4549	10	⊗⊗⊗ Moderate
Infectious bacteria	61 32 (25–43)	0.51 (0.39–0.69)	4731	13	⊗⊗⊗ Low
MRSA	17 3 (2–7)	0.20 (0.10–0.43)	4731	13	⊗⊗⊗ Moderate
Gram-positive bacteria	41 15 (10–23)	0.35 (0.23–0.56)	3591	11	⊗⊗⊗ Moderate
Gram-negative bacteria	15 14 (8–26)	0.98 (0.54–1.79)	2908	10	⊗⊗⊗ Low

The risk in the intervention group (and its 95% CI) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). All studies were observational.

OR, odds ratio.

Figure 3

The subgroup analysis of the surgical site infections (SSIs) in deep and superficial SSIs.
A review of vancomycin in posterior spine surgery

Vancomycin is a glycopeptide antibiotic widely used in the treatment of gram-positive bacterial infections. Studies have shown that vancomycin can reduce the risk of MRSA infections. For this reason, we have analyzed infectious bacteria after the topical use of vancomycin. A total of 13 pieces of literature reported on the types of bacteria infected after topical vancomycin application (14, 16, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 33). The results showed that the use of vancomycin could significantly reduce the positive rate of bacterial culture (OR: 0.51; 95% CI: 0.39–0.69; P < 0.00001, I^2 = 6%, low GRADE, Fig. 6 and Table 3). We conducted a subgroup analysis of different bacterial types. The results showed that vancomycin could significantly reduce the infection of MRSA (OR: 0.20; 95% CI: 0.10–0.43; P < 0.00001, I^2 = 0%, Fig. 7A) and gram-positive bacteria (OR: 0.35; 95% CI: 0.23–0.56; P < 0.00001, I^2 = 14%, moderate GRADE, Fig. 7B and Table 3) but was not statistically significant for the prevention of gram-negative bacterial infections (OR: 0.98; 95% CI: 0.54–1.79; P = 0.95, I^2 = 0%, low GRADE, Fig. 7C and Table 3).

Sensitivity analysis

The sensitivity analysis of the included studies was carried out with the method of one-by-one exclusion, and the OR values of the remaining studies were combined after excluding any study. No single study was found to have a significant impact on the final results.

The funnel plot of bias risk

Figure 8 shows that small sample studies may be the leading cause of bias.
Discussion

SSIs are one of the most common acquired hospital infections (36, 37), and the incidence of spinal SSIs can be as high as 14%. It not only increases the morbidity and mortality of patients (38) but also causes a severe burden to hospitals, patients and their families, and indeed for the whole medical and health system. Spinal SSIs will increase the risk of nerve injury, spinal instability, bone nonunion, deformity, etc. In addition, SSIs treatment needs to increase the application of antibiotics, repeated debridement, revision, and prolonged hospital stay (39, 40, 41). It is reported that the additional medical costs incurred by SSIs in about 500,000 patients in the United States every year can be as high as 10 billion US dollars (42). Studies have shown that about 60% of SSIs can be
prevented, and reducing SSIs has become an important goal in improving medical care and health and to improve the quality of work (43). According to the latest guidelines for antibiotic prophylaxis in spinal surgery issued by the Spinal Society of North America (44), prophylactic use of antibiotics such as cephalosporins in spinal surgery can reduce the infection rate of patients at the surgical site because the common pathogens of SSIs are mostly gram-positive bacteria such as cephalosporin-sensitive *Staphylococcus aureus* and *Staphylococcus epidermidis* (45).

However, the incidence of spinal SSIs can still reach 0.7–10% with intravenous antibiotic prevention alone, among which, in patients with other diseases (such as diabetes), the incidence of SSIs can get to 2.0–10%, and in patients without these complications, the incidence of SSIs is about 0.7–4.3%.

Figure 7

The subgroup analysis of different bacterial types.
Vancomycin is a glycopeptide antibiotic widely used in the treatment of gram-positive bacterial infections. Animal experiments have confirmed that spreading VP at the incision can effectively remove *Staphylococcus aureus* (46), while the toxic, and side effects of local application of VP are low. According to the level obtained from surgical drains, the local concentration of vancomycin has been revealed to range between 263 and 2938 µg/mL on the day of surgery and with a trend down to undetectable levels on postoperative day 4 (34). This generates a concentration nearly 1000-fold higher than the minimum inhibitory concentration for MRSA and coagulase-negative *Staphylococcus*, thereby reducing the development of resistant bacteria (34, 47). However, intrawound application of VP may select gram-negative infections in spine surgery (48). Since O’Neill and Sweet first reported the use of intraoperative VP at the spinal wound site, it has been supported by the majority of researchers (34, 49). The primary point is that this prophylactic method can decrease healthcare costs, the resources used, improve the quality of life during hospitalization, and reduce postoperative wound infection rates. Additionally, few side effects of intrawound vancomycin used have been revealed during spinal surgeries. However, the randomised control trial (RCT) by Tubaki et al. showed that the local use of vancomycin could not significantly affect the occurrence of spinal SSIs (50). Since then, the discussion about whether local spraying of vancomycin effectively prevents spinal SSIs has not been concluded. There are many studies on the effectiveness of local use of vancomycin in spinal surgery, but no studies focus on posterior spinal surgery. Posterior spinal surgery is a high-risk factor for SSIs (39) and its infection rate is different from other spinal surgery. So in this study, we analyzed whether the local application of vancomycin can prevent SSIs after posterior spinal surgery. Most studies support the conclusion that intrawound VP used in posterior spinal surgery can reduce the postoperative incidence of wound infection without apparent side effects. However, five articles demonstrate no significant difference (14, 16, 20, 28, 29). Hence, it is necessary to assess the efficiency of intraoperative VP in posterior spinal surgery based on the available evidence.

This study combines the latest research results published in recent years, conducted multi-group subgroup analysis according to different surgical areas, vancomycin doses, and infection types, and explored the impact of intraoperative local application of VP on SSIs after posterior spinal surgery in more detail. Data collation and analysis of the 22 included studies found that local spraying of VP can reduce the incidence of SSIs after spinal surgery as a whole (OR: 0.43, \(P < 0.00001 \)), mainly to reduce the incidence of deep SSIs after posterior spinal surgery. Superficial infections were not statistically significant. In addition, two studies reported that vancomycin causes adverse reactions such as pseudoarthrosis (20, 26). The incidence of adverse reactions with vancomycin was not statistically significant. Studies have found that the difference in SSIs may be related to different spine surgery areas. Therefore, we conducted a subgroup analysis based on the surgery area (cervical spine, thoracolumbar spine) and found that vancomycin can effectively reduce spinal SSIs of thoracolumbar and cervical spine surgery.

In most studies, the dose of vancomycin for topical application is 1 g or 2 g. Animal experiments and *in vitro* experiments have found that topical application of vancomycin can inhibit the activity of osteoblasts, thereby affecting bone healing. When the dose of vancomycin is greater than 3 mg/cm², it can inhibit the proliferation and migration activity of osteoblasts (51). Codschmidt (52) *et al.*’s *in vitro* study on the concentration-dependent effect of vancomycin showed that when the concentration of vancomycin was greater than 4000 µg/mL, it inhibited the growth of fibroblasts. At present, there is no uniform standard for the safety of the dosage of vancomycin. It is often used by surgeons based on clinical experience, and there are not sufficient pharmacokinetic studies. However, according to current research results, the dosage of vancomycin applied locally does not exceed 2 g. Our research results also show that 1 g, 2 g, and 0.5–2 g vancomycin application can effectively reduce the infection of the posterior spinal incision. A retrospective study on the preventive use of vancomycin in spinal surgery showed that the incidence of SSIs was 6.7%, and the positive rate of gram-negative bacteria in the experimental group was significantly higher than that of the control. Most of them were mixed bacterial infections (53). Our study showed that the topical use of vancomycin could significantly reduce MRSA and gram-positive bacterial infections. However, it was not statistically significant for the prevention of Gram-negative bacterial infections.
Of all the documents included in this study, 15 articles support the intraoperative local application of VP, while the other 5 articles hold different views, and 2 articles did not evaluate the conclusions. The types of surgery and administration methods used in each study are different, and risk factors for the infection are different. Differences in SSIs determination criteria and follow-up time, etc., may be the reasons for disagreements. The primary factors of the included study, such as age, gender, and complications (diabetes, hypertension, obesity, and coronary heart disease), may also cause SSIs. Confounding factors affect the evaluation of the efficacy of vancomycin in reducing SSIs. Although the 15 studies supporting the application of VP have different sample sizes, the types of surgery used are all conventional spinal surgery, and the postoperative follow-up time is generally longer. At the same time, these studies have minimized the differences in other infection risk factors between the experimental and control groups, thereby effectively avoiding the interference of these factors in the research results. Although the different conclusions put forward by the other five studies should have been paid enough attention to, they still exist. The question still needs to be further explored. In addition, the Centers for Disease Control and Prevention defines SSIs as surgery-related infections that occur within 30 days after surgery without internals or within 1 year after surgery with internals (54). Many (24, 28, 29) conducted studies only followed up for 1 month after spinal internal fixation, which is likely to underestimate the incidence of postoperative SSIs. The potential difference between the experimental group and the control group infection rate is also easily ignored and increased heterogeneity.

Limitations
This review carries potential limitations. First of all, the studies we included are retrospective cohort studies, lacking prospective studies and RCT studies. According to the role of Cochrane Collaboration Guidelines, the inclusion of randomized controlled studies in a meta-analysis is most suitable for evaluating the impact of interventions on the disease because randomized controlled trials can eliminate potential biases that affect research results. Therefore, our research results will be affected by bias. Secondly, the included studies lack a unified standard for the definition of SSIs, which could affect the evaluation of SSIs. The sample size included in the study, surgical methods (such as traditional and minimally invasive surgical internal fixation and non-internal fixation), complications, surgical indications, surgical area, and antibiotic application differences will affect the evaluation of vancomycin efficacy and increase the bias risk. Thirdly, the included studies did not fix the potential confounding factors, which led to the limited adaptability of the research results of reducing SSIs of the spine. Therefore, we could not further evaluate the confounding factors that affect SSIs, such as age, BMI, concomitant diseases, smoking, etc. Fourthly, differences in follow-up time will underestimate the incidence of deep SSIs and long-term complications. As there is a lack of uniform standards for the use of VP, it is often based on the experience of surgeons, which could affect the evaluation of the efficacy and safety of vancomycin. Therefore, we need to evaluate further the effect of vancomycin use on infection at the spinal surgery site. To further clarify the impact of topical application of VP on SSIs after spinal surgery, more large-sample, high-quality clinical studies should be conducted in the future, such as randomized controlled trials withstand medication regimens, unified SSIs determination criteria, and follow-up time limits, etc. At the same time, the pharmacokinetics of VP, drug-resistant bacteria, and the potential complications need to be further studied. Nevertheless, the overall quality of the cohort studies included in the pooled analysis is good, and the level of evidence is moderate, and multicenter double-blind, randomized controlled trials are necessary to confirm these findings.

Conclusion
Local application of VP has become an option for spinal surgeons to reduce SSIs. This study extracted and analyzed relevant literature and found that the local application of VP can effectively reduce the incidence of SSIs, but was not statistically significant for superficial SSIs. Local application of vancomycin can provide a high-concentration bactericidal environment with few systemic adverse reactions that is convenient to use, easy to manage, and inexpensive, which can effectively reduce medical costs and resources and improve the quality of life of patients during hospitalization.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/EOR-21-0077.

ICMJE Conflict of Interest Statement
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding Statement
No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.
Intrawound vancomycin powder: The influence of local administration of vancomycin powder on deep surgical site infection risk and the consequences of performing surgical procedures with or without such prophylaxis. A systematic review and meta-analysis of studies that evaluate health care interventions: explanation and elaboration.

Clarke M, Devereaux PJ, Kleijnen J & Moher D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.

E1425–E1431.

Intrawound vancomycin decreases the risk of surgical site infection after posterior spine surgery: a multicenter analysis. Spine 2018 43 65–71. (https://doi.org/10.1097/BRS.0000000000001371)

Delgado-López PD, Martin-Alonso J, Martin-Velasco V, Castilla-Diez JM, Galacho-Harriero A, Ortega-Cubero S, Herrero-Gutiérrez AI & Rodriguez-Salazar A. Vancomycin powder for the prevention of surgical site infection in posterior elective spinal surgery. Neurosurgery 2020 81 64–75. (https://doi.org/10.1093/neuros/nejv.2019.07.004)

Compilative effectiveness and cost-benefit analysis of topical vancomycin powder in posterior spinal fusion for spine trauma and degenerative spine disease. Spine 2013 38 S1 566–571. (https://doi.org/10.1097/BRS.0b013e318281997f)

Cost savings analysis of intrawound vancomycin powder in posterior spinal surgery. Spine Journal 2014 14 2710–2715. (https://doi.org/10.1016/j.spinee.2014.03.011)

Cost of using local intrawound vancomycin powder affects deep surgical site infection and the responsible organisms after spinal surgery? A retrospective case series with a Historical Control Group. Asian Spine Journal 2020 14 72–78. (https://doi.org/10.3161/asj.2018.02.0298)

Local administration of vancomycin powder in posterior lumbar fusion surgery. Kuirghiu 2019 2 58–64. (https://doi.org/10.11711/hirurgia201902158)

The use of vancomycin powder decreases postoperative wound infections following spinal fusion with instrumentation. Journal of Spinal Disorders 1995 8 278–283. (https://doi.org/10.1097/00005816-199508000-00003)

Salvage of instrumental lumbar fusions complicated by surgical wound infection. Spine 1996 21 2163–2169. (https://doi.org/10.1097/00005816-199609150-00021)

Infection after spinal fusion using internal fixation instrumentation. Orthopedic Clinics of North America 1972 3 99–111. (https://doi.org/10.1016/S0030-5898(10)80218-9)

The influence of surveillance methods on surgical wound infection rates in a tertiary care spinal surgery service. Spine 1998 23 366–370. (https://doi.org/10.1097/00007632-199802010-00016)

Deep surgical site infection after anterior decompression and fusion with plate fixation for cervical spondylotic radiculopathy or myelopathy. Clinical Neurology and Neurosurgery 2016 141 13–18. (https://doi.org/10.1016/j.clineuro.2015.11.003)

Fehlings MG, Smith JS, Kopjar B, Arnold PM, Yoon ST, Vaccaro AR, Brodke DS, Janssen ME, Chapman JR, Sasso RC, et al. Perioperative and delayed complications associated with the surgical treatment of cervical spondylotic myelopathy based on 302 patients from the AOSpine North America Cervical Spondylotic Myelopathy Study. Journal of Neurosurgery: Spine 2012 16 425–432. (https://doi.org/10.3171/2011.12.SPINE11467)

Snellen EP, Toton JW & North American Spine Society: Antibiogram prophylaxis in spine surgery: an evidence-based clinical guideline for the use of prophylactic antibiotics in spine surgery. Spine Journal 2009 9 142–146. (https://doi.org/10.1016/j.spinee.2008.05.008)

Radcliff KE, Neusser AD, Millhouse PW, Harrop JD, Kepler CK, Rasouli MR, Albert TJ & Vaccaro AR. What is new in the diagnosis and prevention of spine surgical site infections. Spine Journal 2015 15 336–347. (https://doi.org/10.1016/j.spinee.2014.09.022)

Abdul-Jabbar A, Berven SH, Hu SS, Chou D, Mummaneni PV, Takemoto S, Ames C, Deviren V, Tay B, Weinstein P, et al. Surgical site infections in spine surgery: identification of microbiological and surgical characteristics in 239 cases. Spine 2013 38 E1425–E1431. (https://doi.org/10.1097/BRS.0b013e3182a24a68)

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J & Moher D. PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Medicine 2009 6 e1000100. (https://doi.org/10.1371/journal.pmed.1000100)

Bob Phillips CB, Sackett D, Badenoch D, Strauss S, Haynes B & Dawes M. Oxford Centre for evidence-based medicine: levels of evidence: March (2009), 2009. (available at: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009)

Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M & Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses: [cited 2021 Mar 25]. (available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp)

Adhikari P, Nabiyev VN, Bahadir S, Ayhan S, Yuksel S, Paalooglu S & Acaroglu E. Does the application of topical intrawound vancomycin powder affect deep surgical site infection and the responsible organisms after spinal surgery? A retrospective case series with a Historical Control Group. Asian Spine Journal 2020 14 72–78. (https://doi.org/10.3161/asj.2018.02.0298)

Byvatlevs VA, Stepanov IA, Borisov VE & Kalinina AA. Local administration of vancomycin powder in posterior lumbar fusion surgery. Kuirghiu 2019 2 58–64. (https://doi.org/10.11711/hirurgia201902158)

Surgical site infections in spine surgery: an evidence-based clinical guideline for the use of prophylactic antibiotics in spine surgery. Spine 2016 41 523–528. (https://doi.org/10.1097/BRS.0000000000001129)

Reduction in surgical site infection with suprafascial intrawound application of vancomycin powder in instrumented posterior spinal fusion: a retrospective case-control study. Journal of Neurosurgery: Spine 2018 29 193–198. (https://doi.org/10.3171/2017.12.SPINE17997)

Hämamoto S, Schär RT, Nishimura Y, Hara M, Wakabayashi T & Ginsberg HJ. Intrawound vancomycin powder decreases staphylococcal surgical site infections after posterior instrumented spinal arthrodesis. Journal of Spinal Disorders and Techniques 2015 28 584–589. (https://doi.org/10.1097/SDS.0000000000000045)

The use of vancomycin powder reduces surgical reoperation in posterior instrumented and noninstrumented spinal surgery. Acta Neurochirurgica 2014 156 749–754. (https://doi.org/10.1007/s00701-014-2222-2)
25. Li X, Qin Y & Wang X. The effect of local application of vancomycin powder after posterior lumbar interbody fusion surgery on prevention of surgical site infection and fusion rate. Chinese Journal of Spine and Spinal Cord 2016 26 1109–1114. (https://doi.org/10.3969/j.issn.1004-406X.2016.12.10)

26. Liu N, Wood KB, Schwab JH, Cha TD, Puhkan RD, Osler PM & Grottkauf BE. Comparison of intrawound vancomycin utility in posterior instrumented spine surgeries between patients with tumor and nontumor patients. Spine 2015 40 1586–1592. (https://doi.org/10.1097/BRS.0000000000001133)

27. Maajid S, Ali N, Senir, Mir AA, Motten T, Dar RA, Dar RA & Bhat MA. Effect of prophylactic intra-operative instillation of vancomycin powder on surgical site infections following spinal surgery: a retrospective case control study. JK Practitioner 2018 23 19–24.

28. Martin JR, Adogwa O, Brown CR, Bagley CA, Richardson WJ, Lad SP, Kuchibhatla M & Gottfried ON. Experience with intrawound vancomycin powder for spinal deformity surgery. Spine 2014 39 177–184. (https://doi.org/10.1097/01.BRS.0000442465.85388.5A)

29. Martin JR, Adogwa O, Brown CR, Kuchibhatla M, Bagley CA, Lad SP & Gottfried ON. Experience with intrawound vancomycin powder for posterior spinal fusion surgery. Journal of Neurosurgery: Spine 2015 26 26–33. (https://doi.org/10.3171/2014.9.JNEURO13826)

30. Oktay K, Özyos KM, Çetinalep NE, Erman T & Güzel A. Efficacy of prophylactic application of vancomycin powder in preventing surgical site infections after instrumented spinal surgery: a retrospective analysis of patients with high-risk conditions. Acta Orthopaedica et Traumatologica Turcica 2021 55 48–52. (https://doi.org/10.5152/AOTT.2021.18372)

31. Pahys JM, Pahys JR, Cho SK, Kang MM, Zebala LP, Hawasli AH, Sweet FA, Lee DH & Riew KD. Methods to decrease postoperative infections following posterior cervical spinal surgery. Journal of Bone and Joint Surgery: American Volume 2013 95 549–554. (https://doi.org/10.2106/JBJS.K.00756)

32. Strom RG, Pacience D, Kalhorn SP & Frempong-Boadu AK. Lumbar laminectomy and fusion with routine local application of vancomycin powder: decreased infection rate in instrumented and non-instrumented cases. Clinical Neurology and Neurosurgery 2013 115 1766–1769. (https://doi.org/10.1016/j.clineuro.2013.04.005)

33. Strom RG, Pacience D, Kalhorn SP & Frempong-Boadu AK. Decreased risk of wound infection after posterior cervical fusion with routine local application of vancomycin powder. Spine 2013 38 991–994. (https://doi.org/10.1097/01.BRS.0000412885.81290.31)

34. Sweet FA, Roh M & Silva C. Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: efficacy, drug levels, and patient outcomes. Spine 2011 36 2084–2088. (https://doi.org/10.1097/01.BRS.0000381818.9221c)

35. Takeuchi H, Oda I, Oshima S, Suzuki M & Fujiya M. Is the administration of vancomycin to operative field effective? Studying from operative wound drainage tube culture. European Journal of Orthopaedic Surgery and Traumatology 2020 30 215–219. (https://doi.org/10.1007/s00142-019-0627-9)

36. Klevens RM, Edwards JR, Richards Jr CL, Horan TC, Gaynes RP, Pollock DA & Cardo DM. Estimating health care-associated infections and deaths in U.S. Hospitals. 2002. Public Health Reports 2007 122 160–166. (https://doi.org/10.1177/003335490712202005)

37. Marcus B. Treatment of large, complex, non-healing wounds with cryopreserved amniotic suspension allograft: a case series. Journal of Wound Care 2016 25 (Supplement 10) S18–S24. (https://doi.org/10.12968/jowc.2016.25.Sup10518)

38. Lieber B, Han B, Strom RG, Mullin J, Frempong-Boadu AK, Agarwal N, Kazemi N & Tabbosh M. Preoperative predictors of spinal infection within the national surgical quality inpatient database. World Neurosurgery 2016 89 517–524. (https://doi.org/10.1016/j.wneu.2015.12.085)

39. Calderone RR, Garland DE, Capen DA & Oster H. Cost of medical care for postoperative spinal infections. Orthopedic Clinics of North America 1996 27 171–182. (https://doi.org/10.1016/S0030-5898(20)32060-5)

40. Olsen MA, Nepple JJ, Riew KD, Lenke LG, Bridwell KH, Mayfield J & Fraser VJ. Risk factors for surgical site infection following orthopaedic spinal operations. Infection Control and Hospital Epidemiology 2008 29 477–484, discussion 485. (https://doi.org/10.1016/j.ice.2015.01.015)

41. Petilin JM, Glassman SD, Dimar JR & Carreon LY. Clinical outcomes after lumbar fusion complicated by deep wound infection: a case-control study. Spine 2012 37 1370–1374. (https://doi.org/10.1097/BRS.0b013e318244d93)

42. van Middendorp JJ, Pull ter Gunne AF, Schuetz M, Habil D, Cohen DB, Hosman AJ & van Laarhoven CJ. A methodological systematic review on surgical site infections following spinal surgery: part 2: prophylactic treatments. Spine 2012 37 2034–2045. (https://doi.org/10.1097/BRS.0b013e3182566562)

43. Anderson DJ, Podgorny K, Berrios-Torres S, Bratzzler DW, Dellinger EP, Greene L, Nyquist AC, Saiman L, Yokoe DS, Maragakis LL & et al. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infection Control and Hospital Epidemiology 2014 35 (Supplement 2) S66–S88. (https://doi.org/10.1086/676022)

44. Shaffer WG, Baisden JI, Fernandez R, Matz PG & North American Spine Society. An evidence-based clinical guideline for antibiotic prophylaxis in spine surgery. Spine Journal 2013 13 1387–1392. (https://doi.org/10.1016/j.spinee.2013.06.030)

45. Hidron AI, Edwards JR, Jean P, Horan TC, Sievert DM, Pollock DA, Fridkin SK, National Healthcare Safety Network Team & Participating National Healthcare Safety Network Facilities. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infection Control and Hospital Epidemiology 2013 29 996–1011.

46. Zebala LP, Chuntarapas T, Kelly MP, Talcott M, Greco S & Riew KD. Intrawound vancomycin powder eradicates surgical wound contamination: an in vivo rabbit study. Journal of Bone and Joint Surgery: American Volume 2014 96 46–51. (https://doi.org/10.2106/JBJS.L.01257)

47. Armaghani SJ, Menje TJ, Lovejoy SA, Mencio GA & Martus JE. Safety of topical vancomycin for pediatric spinal deformity: nontoxic serum levels with supratherapeutic drain levels. Spine 2014 39 1683–1687. (https://doi.org/10.1097/BRS.0000000000000465)

48. Heller A, Mcff TE, Lai SM & Burton DC. Intrawound vancomycin powder decreases staphylococcal surgical site infections following posterior instrumented spinal arthrodesis. Journal of Spinal Disorders and Techniques 2015 28 E584–E589. (https://doi.org/10.1089/JSD.2015.000045)

49. O’Neill KR, Smith JG, Abtahi AM, Archer KR, Spengler DM, McGirt MJ & Devlin CJ. Reduced surgical site infections in patients undergoing posterior spinal stabilization of traumatic injuries using vancomycin powder. Spine Journal 2011 11 641–646. (https://doi.org/10.1016/j.spinee.2011.04.025)

50. Tubaki VR, Rajasekaran S & Shetty AP. Effects of using intravenous antibiotic only versus local intrawound vancomycin antibiotic powder application in addition to...
intravenous antibiotics on postoperative infection in spine surgery in 907 patients. Spine 2013 38 2149–2155. (https://doi.org/10.1097/BRS.000000000000015)

51. Eder C, Schenk S, Trifinopoulos J, Kümek B, Kienzl M, Schildböck S & Ogon M. Does intrawound application of vancomycin influence bone healing in spinal surgery? European Spine Journal 2016 25 1021–1028. (https://doi.org/10.1007/s00586-015-3943-9)

52. Goldschmidt E, Rasmussen J, Chabot JD, Gandhoke G, Luzzi E, Merlotti L, Proni R, Loresi M, Hamilton DK, Okonkwo DO, et al. The effect of vancomycin powder on human dural fibroblast culture and its implications for dural repair during spine surgery. Journal of Neurosurgery: Spine 2016 25 665–670. (https://doi.org/10.3171/2016.3.SPINE151491)

53. Ghobrial GM, Thakkar V, Andrews E, Lang M, Chitale A, Oppenlander ME, Maulucci CM, Sharan AD, Heller J, Harrop JS, et al. Intraoperative vancomycin use in spinal surgery: single institution experience and microbial trends. Spine 2014 39 550–555. (https://doi.org/10.1097/BRS.0000000000000241)

54. Mangram AJ, Horan TC, Pearson ML, Silver LC & Jarvis WR. Guideline for prevention of surgical site infection, 1999. Centers for Disease Control and Prevention (CDC). Hospital Infection Control Practices Advisory Committee. American Journal of Infection Control 1999 27 97–132; quiz 3–4; discussion 96. (https://doi.org/10.1016/S0196-6533(99)70088-X)