Discovering Mathematical Objects of Interest—A Study of Mathematical Notations

André Greiner-Petter1, Moritz Schubotz1,2, Fabian Müller2, Corinna Breitinger1,5, Howard S. Cohl3, Akiko Aizawa4, Bela Gipp1,5
1 University of Wuppertal, Germany (andre.greiner-petter@zbmath.org, [last]@uni-wuppertal.de)
2 FIZ-Karlsruhe, Germany (first.last@fiz-karlsruhe.de)
3 National Institute of Standards and Technology, U.S.A ([first.last]@nist.gov)
4 National Institute of Informatics, Japan ([last]@nii.ac.jp)
5 University of Konstanz, Germany ([first.last]@uni-konstanz.de)

ABSTRACT

Mathematical notation, i.e., the writing system used to communicate concepts in mathematics, encodes valuable information for a variety of information search and retrieval systems. Yet, mathematical notations remain mostly unutilized by today’s systems. In this paper, we present the first in-depth study on the distributions of mathematical notation in two large scientific corpora: the open access arXiv (2.5B mathematical objects) and the mathematical reviewing service for pure and applied mathematics zbMATH (61M mathematical objects). Our study lays a foundation for future research projects on mathematical information retrieval for large scientific corpora. Further, we demonstrate the relevance of our results to a variety of use-cases. For example, to assist semantic extraction systems, to improve scientific search engines, and to facilitate specialized math recommendation systems.

The contributions of our presented research are as follows: (1) we present the first distributional analysis of mathematical formulae on arXiv and zbMATH; (2) we retrieve relevant mathematical objects for given textual search queries (e.g., linking $p_n^{(\alpha,\beta)}(x)$ with Jacobi polynomial); (3) we extend zbMATH’s search engine by providing relevant mathematical formulae; and (4) we exemplify the applicability of the results by presenting auto-completion for math inputs as the first contribution to math recommendation systems. To expedite future research projects, we have made available our source code and data.

CCS CONCEPTS

• Information systems → Mathematics retrieval; Novelty in information retrieval; Information extraction; Recommender systems; Near-duplicate and plagiarism detection.

KEYWORDS

Mathematical Objects of Interest, Mathematical Information Retrieval, Distributions of Mathematical Objects, Term Frequency-Inverse Document Frequency, Mathematical Search Engine

This paper is published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their personal and corporate Web sites with the appropriate attribution.

WWW ’20, April 20–24, 2020, Taipei, Taiwan © 2020 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04. https://doi.org/10.1145/3366423.3380218

1 INTRODUCTION

Taking into account mathematical notation in the literature leads to a better understanding of scientific literature on the Web and allows one to make use of semantic information in specialized Information Retrieval (IR) systems. Nowadays applications in Math Information Retrieval (MathIR) [21], such as search engines [4, 8, 10, 11, 13, 22, 25], semantic extraction systems [23, 28, 30], recent efforts in math embeddings [26, 35, 37, 43], and semantic tagging of math formulae [16, 31] either consider an entire equation as one entity or only focus on single symbols. Since math expressions often contain meaningful and important subexpressions, these applications could benefit from an approach that lies between the extremes of examining only individual symbols or considering an entire equation as one entity. Consider for example, the explicit definition for Jacobi polynomials [46, (18.5.7)]

$$p_n^{(\alpha,\beta)}(x) = \frac{\Gamma(\alpha+n+1)}{n!\Gamma(\alpha+\beta+n+1)} \sum_{m=0}^{n} \binom{n}{m} \frac{\Gamma(\alpha+\beta+n+m+1)}{\Gamma(m+n+1)} \left(x-1\right)^m. \quad (1)$$

The interesting components in this equation are $p_n^{(\alpha,\beta)}(x)$ on the left-hand side, and the appearance of the gamma function $\Gamma(s)$ on the right-hand side, implying a direct relationship between Jacobi polynomials and the gamma function. Considering the entire expression as a single object misses this important relationship. On the other hand, focusing on single symbols can result in the misleading interpretation of Γ as a variable and $\Gamma(\alpha+n+1)$ as a multiplication between Γ and $(\alpha+n+1)$. A system capable of identifying the important components, such as $p_n^{(\alpha,\beta)}(x)$ or $\Gamma(\alpha+n+1)$, is therefore desirable. Hereafter, we define these components as Mathematical Objects of Interest (MOIs) [37].

The importance of math objects is a somewhat imprecise description and thus difficult to measure. Currently, not much effort has been made in identifying meaningful subexpressions. Kristianto et al. [28] introduced dependency graphs between formulae. With this approach, they were able to build dependency graphs of mathematical expressions, but only if the expressions appeared as single expressions in the context. For example, if $\Gamma(\alpha+n+1)$ appears as a stand-alone expression in the context, the algorithm will declare a
dependency with Equation (1). However, it is more likely that different forms, such as \(\Gamma(s) \), appear in the context. Since this expression does not match any subexpression in Equation (1), the approach cannot establish a connection with \(\Gamma(s) \). Kohlhase et al. studied in [27, 33, 34] another approach to identify essential components in formulae. They performed eye-tracking studies to identify important areas in rendered mathematical formulae. While this is an interesting approach that allows one to learn more about the insights of human behaviors of reading and understanding math, it is inaccessible for extensive studies.

This paper presents the first extensive frequency distribution study of mathematical equations in two large scientific corpora, the e-Print archive arXiv.org (hereafter referred to as arXiv\(^1\)) and the international reviewing service for pure and applied mathematics zbMATH\(^2\). We will show that math expressions, similar to words in natural language corpora, also obey Zipf’s law [15], and therefore follows a Zipfian distribution. Related research projects observed a relation to Zipf’s law for single math symbols [16, 23]. In the context of quantitative linguistics, Zipf’s law states that given a text corpus, the frequency of any word is inversely proportional to its rank in the frequency table. Motivated by the similarity to linguistic properties, we will present a novel approach for ranking formulae by their relevance via a customized version of the ranking function BM25 [7]. We will present results that can be easily embedded in other systems in order to distinguish between common and uncommon notations within formulae. Our results lay a foundation for future research projects in MathIR.

Fundamental knowledge on frequency distributions of math formulae is beneficial for numerous applications in MathIR, ranging from educational purposes [3] to math recommendation systems, search engines [22, 25], and even automatic plagiarism detection systems [29, 39, 41]. For example, students can search for the conventions to write certain quantities in formulae; document preparation systems can integrate an auto-completion or auto-correction service for math inputs; search or recommendation engines can adjust their ranking scores with respect to standard notations; and plagiarism detection systems can estimate whether two identical formulae indicate potential plagiarism or are just using the conventional notations in a particular subject area. To exemplify the applicability of our findings, we present a textual search approach to retrieve mathematical formulae. Further, we will extend zbMATH’s faceted search by providing facets of mathematical formulae according to a given textual search query. Lastly, we present a simple auto-completion system for math inputs as a contribution towards advancing mathematical recommendation systems. Further, we show that the results provide useful insights for plagiarism detection algorithms. We provide access to the source code, the results, and extended versions of all of the figures appearing in this paper via L\(\text{\TeX}\) [45]. L\(\text{\TeX}\) converted all mathematical expressions into MathML with parallel markup, i.e., presentation and content MathML. In this study we only consider the subsets no-problem and warning, which generated no errors during the conversion process. Nonetheless, the MathML data generated still contains some errors or falsely annotated math. For example, we discovered several instances of affiliation and footnotes, SVG\(^6\) and other unknown tags, encoded in MathML. Regarding the footnotes, we presumed that authors falsely used mathematical environments for generating footnote or affiliation marks. We used the \(\text{\TeX}\) string, provided as an attribute in the MathML data, to filter out expressions that match the string ‘{}*{}’, where ‘*’ indicates any possible expression. In addition, we filtered out SVG and other unknown tags. We assume that these expressions were generated by mistake due to limitations of \(\text{\TeX}\). The final arXiv dataset consisted of 841,008 documents, which contained at least one mathematical formula. The dataset contained a total of 294,151,288 mathematical expressions.

In addition to arXiv, we investigated zbMATH, an international reviewing service for pure and applied mathematics which contains abstracts and reviews of articles, hereafter uniformly called zbMATH. zbMATH is a free open-source XML database engine, which is fully compatible with the latest XQuery standard [6, 19]. Since our implementations rely on XQuery, we are able to switch to any other database which allows for processing via XQuery.

2 DATA PREPARATION

\(\text{\TeX}\) is the de facto standard for the preparation of academic manuscripts in the fields of mathematics and physics [5]. Since \(\text{\TeX}\) allows for advanced customizations and even computations, it is challenging to process. For this reason, \(\text{\LaTeX}\) expressions are unsuitable for an extensive distribution analysis of mathematical notations. For mathematical expressions on the web, the XML formatted MathML\(^4\) is the current standard, as specified by the World Wide Web Consortium (W3C). The tree structure and the fixed standard, i.e., MathML tags, cannot be changed, thus making this data format reliable. Several available tools are able to convert from \(\text{\LaTeX}\) to MathML [36] and various databases are able to index XML data. Thus, for this study, we have chosen to focus on MathML. In the following, we investigate the databases arXMLiv (08/2018) [32] and zbMATH\(^3\) [40].

The arXMLiv dataset (≈1.2 million documents) contains HTML versions of the documents from the e-Print archive arXiv.org. The HTML5 documents were generated from the TEX sources via \(\text{\LaTeX}\) [45]. \(\text{\LaTeX}\) converted all mathematical expressions into MathML with parallel markup, i.e., presentation and content MathML. In this study we only consider the subsets no-problem and warning, which generated no errors during the conversion process. Nonetheless, the MathML data generated still contains some errors or falsely annotated math. For example, we discovered several instances of affiliation and footnotes, SVG\(^6\) and other unknown tags, encoded in MathML. Regarding the footnotes, we presumed that authors falsely used mathematical environments for generating footnote or affiliation marks. We used the \(\text{\LaTeX}\) string, provided as a parameter in the MathML data, to filter out expressions that match the string ‘{}*{}’, where ‘*’ indicates any possible expression. In addition, we filtered out SVG and other unknown tags. We assume that these expressions were generated by mistake due to limitations of \(\text{\LaTeX}\). The final arXiv dataset consisted of 841,008 documents which contained at least one mathematical formula. The dataset contained a total of 294,151,288 mathematical expressions.

We used BaseX\(^3\) for our experiments.}

\(^1\)https://arxiv.org/ [Accessed: Sep. 1, 2019]

\(^2\)https://zbmath.org [Accessed: Sep. 1, 2019]

\(^3\)https://www.w3.org/TR/MathML3/ [Accessed: Sep. 1, 2019]

\(^4\)https://zbmath.org [Accessed: Sep. 1, 2019]

\(^5\)Scalable Vector Graphics
We split the datasets according to the 20 major article categories of (mathematics) were still too large for a single database. Thus, we split those categories into two equally sized parts.

8 MathML

(formula into its components. Since to discover all possible mathematical objects. Hence, we split every MOIs. For an extensive frequency distributional analysis, we aim potential MOI on its own and potentially consists of multiple other

8.1 Data Wrangling

Since we focused on the frequency distributions of visual expressions, we only considered presentational MathML (pMML). Rather than normalizing the pMML data, e.g., via MathMLCan [9], which would also change the tree structure and visual core elements in pMML, we only eliminated the attributes. These attributes are used for minor visual changes, e.g., stretched parentheses or inline limits of sums and integrals. Thus, for this first study, we preserved the core structure of the pMML data, which might provide insightful statistics for the MathML community to further cultivate the standard. After extracting all MathML expressions, filtering out falsely annotated math and SVG tags, and eliminating unnecessary attributes and annotations, the datasets required 83GB of disk space for arXiv and 6GB for zbMATH, respectively.

In the following, we indexed the data via BaseX. The indexed datasets required a disk space of 143.9GB in total (140GB for arXiv and 3.9GB for zbMATH). Due to the limitations7 of databases in BaseX, it was necessary to split our datasets into smaller subsets. We split the datasets according to the 20 major article categories of arXiv6 and classifications of zbMATH. To increase performance, we use BaseX in a server-client environment. We experienced performance issues in BaseX when multiple clients repeatedly requested data from the same server in short intervals. We determined that the best workaround for this issue was to launch BaseX servers for each database, i.e., each category/classification.

Mathematical expressions often consist of multiple meaningful subexpressions, which we defined as MOIs. However, without further investigation of the context, it is impossible to determine meaningful subexpressions. As a consequence, every equation is a potential MOI on its own and potentially consists of multiple other MOIs. For an extensive frequency distributional analysis, we aim to discover all possible mathematical objects. Hence, we split every formula into its components. Since MathML is an XML data format (essentially a tree-structured format), we define subexpressions of equations as subtrees of its MathML format.

6A detailed overview of the limitations of BaseX databases can be found at http://docs.baxse.org/wiki/Statistics [Accessed: Sep. 1, 2019].
7The arXiv categories astro-ph (astro physics), cond-mat (condensed matter), and math (mathematics) were still too large for a single database. Thus, we split those categories into two equally sized parts.

Listing 1 illustrates a Jacobi polynomial \(P_n^{(\alpha,\beta)}(x) \) in pMML. The element on line 14 contains the invisible times \(\times \) character. By definition, the <math> element is the root element of MathML expressions. Since we cut off all other elements besides pMML nodes, each <math> element has one and only one child element8. Thus, we define the child element of the <math> element as the root of the expression. Starting from this root element, we explore all subexpressions. For this study, we presume that every meaningful mathematical object (i.e., MO) must contain at least one identifier.

Hence, we only study subtrees which contain at least one <mi> node. Identifiers, in the sense of MathML, are symbolic names or arbitrary text10, e.g., single Latin or Greek letters. Identifiers do not contain special characters (other than Greek letters) or numbers. As a consequence, arithmetic expressions, such as \((1+2)^2\), or sequences of special characters and numbers, such as \(\{1,2,...\} \cap \{-1\}\), will not appear in our distributional analysis. However, if a sequence or arithmetic expression consists of an identifier somewhere in the pMML tree (such as in \(\{1,2,...\} \cap A\)), the entire expression will be recognized. The Jacobi polynomial \(P_n^{(\alpha,\beta)}(x) \), therefore consists of the following subexpressions: \(P_n^{(\alpha,\beta)} \), \((\alpha,\beta)\), (\(x\)), and the single identifiers \(P_n \), \(n \), \(\alpha \), \(\beta \), and \(x \). The entire expression is also a mathematical object. Hence, we take entire expressions with an identifier into account for our analysis. In the following, the set of subexpressions will be understood to include the expression itself.

For our experiments, we also generated a string representation of the MathML data. The string is generated recursively by applying one of two rules for each node: (i) if the current node is a leaf, the node-tag and the content will be merged by a colon, e.g., \(<\text{mi}>x</\text{mi}>\) will be converted to \(\text{mi}:x\); (ii) otherwise the node-tag wraps parentheses around its content and separates the children by a comma, e.g., \(<\text{mrow}><\text{mo}>\times</\text{mo}></\text{mrow}>\) will be converted to \(\text{mrow}(\text{mi}:x,\text{mi}:x)\). Furthermore, the special UTF-8 characters for invisible times (U+2062) and function application (U+2061) are replaced by \(\text{ivt}\) and \(\text{fa}\), respectively. For example, the gamma function with argument \(x+1\), \(\Gamma(x+1)\) would be represented by

\[
\text{mrow}(\text{mi}:\Gamma,\text{mo}:\text{ivt},\text{mrow}(\text{mo}:+,\text{mrow}(\text{mi}:x,\text{mi}:x,\text{mo}:+,\text{mi}:1,\text{mo}:)));
\]

(2)

Between \(\Gamma\) and \((x+1)\), there would most likely be the special character for invisible times rather than for function application, because \(\text{ivtxml}\) is not able to parse \(\Gamma\) as a function. Note that this string conversion is a bijective mapping. The string representation reduces the verbose XML format to a more concise presentation. Thus, an equivalence check between two expressions is more efficient.

2.2 Complexity of Math

Mathematical expressions can become complex and lengthy. The tree structure of MathML allows us to introduce a measure that reflects the complexity of mathematical expressions. More complex expressions usually consist of more extensively nested subtrees in the MathML data. Thus, we define the complexity of a mathematical expression by the maximum depth of the MathML tree. In XML the content of a node and its attributes are commonly interpreted as children of the node. Thus, we define the depth of a single node as 1 rather than 0, i.e., single identifiers, such as \(<\text{mi}>\times</\text{mi}>\),
Another problem often appears for arrays or similar visually complex expressions with a maximum complexity of 218 and an average complexity of 5.01. For instance, the expression with the highest complexity in arXiv consists of 350,206,974 unique mathematical subexpressions, which raised the average document length to 2,982.87. For zbMATH, the algorithm traverses upwards through the MathML tree, the XQuery will trigger database requests in every iteration. Hence, the downwards implementation performs better, since there is only one database request for every expression rather than for every subexpression.

Since we only minimize the pMML data rather than normalizing it, two identically rendered expressions may have different complexities. For instance, \(<mrow><mi>a</mi><mi>b</mi><mi>c</mi></mrow></> consists of two distinct subexpressions, but both of them are displayed the same. Another problem often appears for arrays or similar visually complex structures. The extracted expressions are not necessarily logical subexpressions. We will consider applying more advanced embedding techniques such as special tokenizers [14], symbol layout trees [24, 25], and a MathML normalization via MathMLCan [9] in future research to overcome these issues.

3 FREQUENCY DISTRIBUTIONS OF MATHEMATICAL FORMULAE

By splitting each formula into subexpressions, we generated longer documents and a bias towards low complexities. Note that, hereafter, we only refer to the mathematical content of documents. Thus, the length of a document refers to the number of math formulae—here the number of subexpressions—in the document. After splitting expressions into subexpressions, arXiv consists of 2.5B and zbMATH of 61M expressions, which raised the average document length to 2,982.87 for arXiv and 45.47 for zbMATH, respectively.

For calculating frequency distributions, we merged two subexpressions if their string representations were identical. Remember, the string representation is unique for each MathML tree. After merging, arXiv consisted of 350,206,974 unique mathematical subexpressions with a maximum complexity of 218 and an average complexity of 5.01. For high complexities over 70, the formulae show some erroneous structures that might be generated from MathML by mistake. For example, the expression with the highest complexity in arXiv is a long sequence of a polynomial starting with \(P_q(t_1, t_2, t_3, t_4) = \) followed by 690 summands. The complexity is caused by a high number of unnecessarily deeply nested \(<mrow>\) nodes. The highest complexity with a minimum document frequency of two is 39, which is a continued fraction. Since continued fractions are nested fractions, they naturally have a large complexity. One of the most complex expressions (complexity 20) with a minimum document frequency of three was the formula

\[
\left(\frac{\sum_{j=1}^{n} \sum_{i=1}^{n} \left(\sum_{m=1}^{n} T(e_j, \ldots, e_m) \right)^{n_{m+1}}}{\sum_{j=1}^{n} \sum_{i=1}^{n} \left(\sum_{m=1}^{n} T(e_j, \ldots, e_m) \right)^{n_{m+1}}} \right)^{1/3} \leq \|T\|.
\]

In contrast, zbMATH only consisted of 8,450,496 unique expressions with a maximum complexity of 26 and an average complexity of 3.89. One of the most complex expressions in zbMATH with a minimum document frequency of three was

\[
M_p(r, f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right)^{1/p}.
\]

As we expected, reviews and abstracts in zbMATH were generally shorter and consisted of less complex mathematical formulæ. The dataset also appeared to contain fewer erroneous expressions, since expressions of complexity 25 are still readable and meaningful.

Figure 1 shows the ratio of unique subexpressions for each complexity in both datasets. The figure illustrates that both datasets share a peak at complexity four. Compared to zbMATH, the arXiv expressions are slightly more evenly distributed over the different levels of complexities. Interestingly, complexities one and two are not dominant in either of the two datasets. Single identifiers only make up 0.03% in arXiv and 0.12% in zbMATH, which is comparable to expressions of complexity 19 and 14, respectively. This finding illustrates the problem of capturing semantic meanings for single identifiers rather than for more complex expressions [30]. It also substantiates that entire expressions, if too complex, are not suitable for capturing the semantic meanings [28]. Instead, a middle ground is desirable, since the most unique expressions in both datasets have a complexity between 3 and 5. Table 1 summarizes the statistics of the examined datasets.

3.1 Zipf’s Law

In linguistics, it is well known that word distributions follow Zipf’s Law [15], i.e., the \(r \)-th most frequent word has a frequency that scales to

\[
f(r) \propto \frac{1}{r^\alpha}.
\]

Figure 1: Unique subexpressions for each complexity in arXiv and zbMATH.

Category	arXiv	zbMATH
Documents (%)	841,008	1,349,297
Formulae (%)	294,151,288	11,747,860
Subexpressions	2,508,620,512	61,355,307
Unique Subexpressions	350,206,974	8,450,496
Average Document Length	2,982.87	45.47
Average Complexity	5.01	3.89
Maximum Complexity	218	26

Table 1: Dataset overview. Average Document Length is defined as the average number of subexpressions per document.
we split every expression into its subexpressions, we generated an \(\alpha \) where

\[f(r) \propto \frac{1}{(r + \beta)^\alpha}, \]

(6)

where \(\alpha \approx 1 \) and \(\beta \approx 2.7 \). In a study on Zipf’s law, Piantadosi [15] illustrated that not only words in natural language corpora follow this law surprisingly accurately, but also many other human-created sets. For instance, in programming languages, in biological systems, and even in music. Since mathematical communication has derived as the result of centuries of research, it would not be surprising if mathematical notations would also follow Zipf’s law. The primary conclusion of the law illustrates that there are some very common tokens against a large number of symbols which are not used frequently. Based on this assumption, we can postulate that a score based on frequencies might be able to measure the peculiarity of a token. The infamous TF-IDF ranking functions and their derivatives [2, 7] have performed well in linguistics for many years and are still widely used in retrieval systems [20]. However, since we split every expression into its subexpressions, we generated an anomalous bias towards shorter, i.e., less complex, formulae. Hence, distributions of subexpressions may not obey Zipf’s law.

The plots for each complexity class contain some interesting fluctuations. We can spot a set of five single identifiers that are most frequently used throughout arXiv: \(n, i, x, t, \) and \(k \). Even though the distributions follow Zipf’s law accurately, we can explore that these five identifiers are proportionally more frequently used than other identifiers and clearly separate themselves above the rest (notice the large gap from \(k \) to \(a \)). All of the five identifiers are known to be used in a large variety of scenarios. Surprisingly, one might expect that common pairs of identifiers would share comparable frequencies in the plots. However, typical pairs, such as \(x \) and \(y \), or \(\alpha \) and \(\beta \), possess a large discrepancy.

The plot of complexity two also reveals that two expressions are proportionally more often used than others: \((x) \) and \((t) \). These two expressions appear more than three times as often in the corpus than any other expression of the same complexity. On the other hand, the quantitative difference between \((x) \) and \((t) \) is negligible. We may assume that arXiv’s primary domain, physics, causes this power law. Interestingly, there is not much difference in the distributions between both datasets. Both distributions seem to follow the same power law, with \(\alpha = 1.3 \) and \(\beta = 15.82 \). Moreover, we can observe that the developed complexity measure seems to be appropriate, since the complexity distributions for formulæ are similar to the distributions for the length of words [15]. In other words, more complex formulæ, as well as long words in natural languages, are generally more specialized and thus appear less frequent throughout the corpus. Note that colors of the bins for complexities fluctuate for rare expressions because the color represents the maximum rather than the average complexity in each bin.

3.2 Analyzing and Comparing Frequencies

Figure 3 shows in detail the most frequently used mathematical expressions in arXiv for the complexities 1 to 5. The orange dashed line visible in all graphs represents the normal Zipf’s law distribution from Equation (5). We explore the total frequency values without any normalization. Thus, Equation (5) was multiplied by the highest frequency for each complexity level to fit the distribution. The plots in Figure 3 demonstrate that even though the parameter \(\alpha \) varies between 0.35 and 0.62, the distributions in each complexity class also obey Zipf’s law.

The plots for each complexity class contain some interesting fluctuations. We can spot a set of five single identifiers that are most frequently used throughout arXiv: \(n, i, x, t, \) and \(k \). Even though the distributions follow Zipf’s law accurately, we can explore that these five identifiers are proportionally more frequently used than other identifiers and clearly separate themselves above the rest (notice the large gap from \(k \) to \(a \)). All of the five identifiers are known to be used in a large variety of scenarios. Surprisingly, one might expect that common pairs of identifiers would share comparable frequencies in the plots. However, typical pairs, such as \(x \) and \(y \), or \(\alpha \) and \(\beta \), possess a large discrepancy.

The plot of complexity two also reveals that two expressions are proportionally more often used than others: \((x) \) and \((t) \). These two expressions appear more than three times as often in the corpus than any other expression of the same complexity. On the other hand, the quantitative difference between \((x) \) and \((t) \) is negligible. We may assume that arXiv’s primary domain, physics, causes the quantitative disparity between \((x) \) and \((t) \), and the other tokens. The primary domain of the dataset becomes more clearly visible for higher complexities, such as \(SU(2) \) (C3) or \(\text{kms}^{-1} \) (C4).

Another surprising property of arXiv is that symmetry groups, such as \(SU(2) \), appear to play an essential role in the majority of articles on arXiv, see \(SU(2) \) (C3), \(SU(2) \) (C4), and \(SU(2) \times SU(2) \) (C5), among others. The plots of higher complexities [12], which we do not show here, made this even more noticeable. Given a complexity of six, for example, the most frequently used expression was \(SU(2)_L \times SU(2)_R \), and for a complexity of seven it was \(SU(3) \times SU(2) \times U(1) \). Given a complexity of eight, ten out of the top-12 expressions were from symmetry group calculations.

It is also worthwhile to compare expressions among different levels of complexities. For instance, \((x) \) and \((t) \) appeared almost
Figure 3: Overview of the most frequent mathematical expressions in arXiv for complexities 1-5. The color gradient from yellow to blue represents the frequency in the dataset. Zipf’s law (5) is represented by a dashed orange line.

Figure 4: The top-25 most frequent expressions in arXiv (left) and zbMATH (right) for complexities 1-4. A line between both sets indicates a matching set. Bold lines indicate that the matches share a similar rank (distance of 0 or 1).

six million times in the corpus, but \(f(x) \) (at position three in C3) was the only expression which contained one of these most common expressions. Note that subexpressions of variations, such as \((x_0)\), \((t_0)\), or \((t - t')\), do not match the expression of complexity two. This may imply that \((x)\), and especially \((t)\), appear in many different scenarios. Further, we can examine that even though \((x)\) is a part of \(f(x) \) in only approximately 3% of all cases, it is still the most likely combination. These results are especially useful for recommendation systems that make use of math as input. Moreover, plagiarism detection systems may also benefit from such a knowledge base. For instance, it might be evident that \(f(x) \) is a very common expression, but for automatic systems that work on a large scale, it is not clear whether duplicate occurrences of \(f(x) \) or \(\Xi(x) \) should be scored differently, e.g., in the case of plagiarism detection.

Figure 3 shows only the most frequently occurring expressions in arXiv. Since we already explored a bias towards physics formulas in arXiv, it is worth comparing the expressions present within both datasets. Figure 4 compares the 25-top expressions for the complexities one to four. In zbMATH, we discovered that computer
science and graph theory appeared as popular topics, see for example $G = (V, E)$ (in C3 at position 20) and the Bachmann-Landau notations in $O(\log n)$, $O(n^2)$, and $O(n^3)$ (C4 positions 2, 3, and 19).

From Figure 4, we can also deduce useful information for MathIR tasks which focus on semantic information. Current semantic extraction tools [30] or BIE\text{}XML [45] still have difficulties distinguishing multiplications from function calls. For example as mentioned before, BIE\text{}XML [45] adds an invisible times character between $f(x)$ rather than a function application. Investigating the most frequently used terms in zbMATH in Table 4 reveals that u is most likely considered to be a function in the dataset: $u(x)$ (rank 13), $u(x)$ (rank 16), $u(0)$ (rank 17), ∇u (rank 22). Manual investigations of extended lists reveal even more hits: $u_0(x)$ (rank 30), Δu (rank 32), and $u(x, t)$ (rank 33). Since all eight terms are among the most frequent 35 entries in zbMATH, it implies that u can most likely be considered to imply a function in zbMATH. Of course, this does not imply that u must always be a function in zbMATH (see $f(u)$ on rank 14 in C3), but this allows us to exploit probabilities for improving MathIR performance. For instance, if not stated otherwise, u could be interpreted as a function by default, which could help increase the precision of the aforementioned tools.

Figure 4 also demonstrates that our two datasets diverge for increasing complexities. Hence, we can assume that frequencies of less complex formulae are more topic-independent. Conversely, the more complex a math formula is, the more context-specific it is. In the following, we will further investigate this assumption by applying TF-IDF rankings on the distributions.

4 RELEVANCE RANKING FOR FORMULAE

Zipf’s law encourages the idea of scoring the relevance of words according to their number of occurrences in the corpus and in the documents. The family of BM25 ranking functions based on TF-IDF scores are still widely used in several retrieval systems [7, 20]. Since we demonstrated that mathematical formulae (and their subexpressions) obey Zipf’s law in large scientific corpora, it appears intuitive to also use TF-IDF rankings, such as a variant of BM25, to calculate their relevance. In its original form [7], Okapi BM25 was calculated as follows

$$bm25(t, d) := \frac{(k + 1) \cdot \text{IDF}(t) \cdot \text{TF}(t, d)}{\text{TF}(t, d) + k \left(1 - b + \frac{b \cdot \text{AVG}_{dl}}{\text{AVG}_{cor}}\right)},$$ \hspace{1cm} (7)

where TF (t, d) is the term frequency of t in the document d, $|d|$ the length of the document d (in our case, the number of subexpressions), AVG$_{dl}$ the average length of the documents in the corpus (see Table 1), and IDF (t) is the inverse document frequency of t, defined as

$$\text{IDF}(t) := \log \frac{N - n(t) + \frac{1}{2}}{n(t) + \frac{1}{2}},$$ \hspace{1cm} (8)

where N is the number of documents in the corpus and $n(t)$ the number of documents which contain the term t. By adding $\frac{1}{2}$, we avoid log 0 and division by 0. The parameters k and b are free, with b controlling the influence of the normalized document length and k controlling the influence of the term frequency on the final score. For our experiments, we chose the standard value $k = 1.2$ and a high impact factor of the normalized document length via $b = 0.95.$

As a result of our subexpression extraction algorithm, we generated a bias towards low complexities. Moreover, longer documents generally consist of more complex expressions. As demonstrated in Section 2.1, a document that only consists of the single expression $p^\beta_n(x)$, i.e., the document had a length of one, would generate eight subexpressions, i.e., it results in a document length of eight. Thus, we modify the BM25 score in Equation (7) to emphasize higher complexities and longer documents. First, the average document length is divided by the average complexity AVG$_c$ in the corpus that is used (see Table 1), and we calculate the reciprocal of the document length normalization to emphasize longer documents.

Moreover, in the scope of a single document, we want to emphasize expressions that do not appear frequently in this document, but are the most frequent among their level of complexity. Thus, less complex expressions are ranked more highly if the document overall is not very complex. To achieve this weighting, we normalize the term frequency of an expression t according to its complexity $c(t)$ and introduce an inverse term frequency according to all expressions in the document

$$\text{ITF}(t, d) := \log \frac{|d| - \text{TF}(t, d) + \frac{1}{2}}{\text{TF}(t, d) + \frac{1}{2}}.$$ \hspace{1cm} (9)

Finally, we define the score $s(t, d)$ of a term t in a document d as

$$s(t, d) := \frac{(k + 1) \cdot \text{IDF}(t) \cdot \text{ITF}(t, d) \cdot \text{TF}(t, d)}{\max_{t' \in \mathcal{d}(d)} \left(1 - b + \frac{\text{AVG}_{dl}}{|d| \cdot \text{AVG}_{cor}}\right) \cdot \text{TF}(t', d) + k \left(1 - b + \frac{\text{AVG}_{dl}}{|d| \cdot \text{AVG}_{cor}}\right)}.$$ \hspace{1cm} (10)

The TF-IDF ranking functions and the introduced $s(t, d)$ are used to retrieve relevant documents for a given search query. However, we want to retrieve relevant subexpressions over a set of documents. Thus, we define the score of a formula (mBM25) over a set of documents as the maximum score over all documents

$$\text{mBM25}(t, D) := \max_{d \in D} s(t, d),$$ \hspace{1cm} (11)

where D is a set of documents. We used Apache Flink [38] to count the expressions and process the calculations. Thus, our implemented system scales well for large corpora.

Table 2 shows the top-7 scored expressions, where D is the entire zbMATH dataset. The retrieved expressions can be considered as meaningful and real-world examples of MOIs, since most expressions are known for specific mathematical concepts, such as Gal(\mathbb{Q}/Q), which refers to the Galois group of \mathbb{Q} over Q, or $L^2(\mathbb{R}^2)$, which refers to the L^2-space (also known as Lebesgue space) over \mathbb{R}^2. However, a more topic-specific retrieval algorithm is desirable. To achieve this goal, we (i) retrieved a topic-specific subset of documents $D_q \subset D$ for a given textual search query q, and (ii) calculated the scores of all expressions in the retrieved documents. To generate D_q, we indexed the text sources of the documents from arXiv and zbMATH via elasticsearch (ES) and performed the pre-processing steps: filtering stop words, stemming, and ASCII-folding. Table 3 summarizes the settings we used to retrieve MOIs from a topic-specific subset of documents D_q. We also set a minimum hit frequency according to the number of retrieved documents an expression appears in. This requirement filters out uncommon notations.\footnote{https://github.com/elastic/elasticsearch [Accessed Sep. 2019]. We used version 7.0.0}\footnote{This means that non-ASCII characters are replaced by their ASCII counterparts or will be ignored if no such counterpart exists.}
Table 2: Top \(k\) ranked expressions retrieved from a topic-specific subset of documents \(D_k\). The search query \(q\) is given above the tables. Retrieved formulae are annotated by a domain expert with green dots for relevant and red dots for non-relevant hits. A line is drawn if a hit appears in both result sets. The line is colored in green when the hit was marked as relevant.

Figure 5 shows the results for five search queries. We asked a domain expert from the National Institute of Standards and Technology (NIST) to annotate the results as related (shown as green dots in Figure 5) or non-related (red dots). We found that the results range from good performances (e.g., for the Riemann zeta function) to bad performances (e.g., beta function). For instance, the results were quite sensitive to the chosen settings.

C3	C4	C5	C6	C7						
114.84 \((n^2) \)	129.44 \(i, j = 1, \ldots, n \)	119.21 \(\text{Gal}\left[Q/\mathbb{Q}\right] \)	110.83 \((1 +	z	^2) \)	98.72 \(\text{div} \left[\nabla u	^2 - 2 \nabla u\right] \)		
108.85 \(q^{-1} \)	108.52 \(x_j \)	112.55 \(f(z)	^p \)	105.69 \(f(re^{i\theta}) \)	–				
100.19 \(z^{n-1} \)	108.50 \(\hat{x} = A(x) \)	110.52 \((1 +	x	^2) \)	94.14 \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \)	–				
100.06 \((c_n) \)	106.66 \(x - x_0	\)	109.19 \(f(x)	^p \)	92.33 \(\left(\nabla u	^2 - 2 \nabla u\right) \)	–
100.05 \(B(G) \)	105.52 \(S_{2n+1} \)	106.22 \(\nabla u	^2 \)	87.27 \(\log n/\log \log n \)	–				
99.87 \(\log_2 n \)	104.91 \(L_2([\mathbb{R}]^2) \)	102.86 \(n(n - 1)/2 \)	78.54 \(O(n \log^2 n) \)	–						
99.65 \(\xi(x) \)	103.70 \(\hat{x} = Ax + Bu \)	101.40 \(O(n^{-1}) \)	–	–						

Table 3: Settings for the retrieval experiments.

Beta Function	Riemann Zeta Function	‘Bezout Function’	‘Trigonometric Function’
\(x_0 \) \| \(\xi(x) \) \| \(x - x_0	\) \| \(\text{cos}(\theta) \)	
\(x^2 \) \| \(\sqrt{x^2} \) \| \(\text{log}(x) \) \| \(\text{tan}(x) \)			
\((x + 1)^2 \) \| \((x + 1)^3 \) \| \((x + 1)^4 \) \| \((x + 1)^5 \)			
\((x + 1)^6 \) \| \((x + 1)^7 \) \| \((x + 1)^8 \) \| \((x + 1)^9 \)			
\((x + 1)^10 \) \| \((x + 1)^11 \) \| \((x + 1)^12 \) \| \((x + 1)^13 \)			
\((x + 1)^14 \) \| \((x + 1)^15 \) \| \((x + 1)^16 \) \| \((x + 1)^17 \)			
\((x + 1)^18 \) \| \((x + 1)^19 \) \| \((x + 1)^20 \) \| \((x + 1)^21 \)			

Figure 5: Top-20 ranked expressions retrieved from a topic-specific subset of documents \(D_k\). The search query \(q\) is given above the plots. Retrieved formulae are annotated by a domain expert with green dots for relevant and red dots for non-relevant hits. A line is drawn if a hit appears in both result sets. The line is colored in green when the hit was marked as relevant.

Table 3: Settings for the retrieval experiments.

Retrieved Doc.	Min. Hit Freq.	Min. DF	Max. DF
arXiv	40	7	50
zbMATH	200	7	10
arXiv	10k	10k	10k

Riemann proposed that the real part of every non-trivial zero of the Riemann zeta function \(\zeta(x) \) is \(1/2 \). If this hypothesis is correct, all the non-trivial zeros lie on the critical line consisting of the complex numbers \(1/2 + it \).
Table 4: The top-5 frequent mathematical expressions in the result set of zbMATH for the search queries 'Riemann Zeta Function' (top) and 'Eigenvalue' (bottom) grouped by their complexities (left) and the hits reordered according to their relevance scores (right). The TF-IDF score was calculated with normalized term frequencies.

Expression	TF-IDF	mBM25
$\zeta(s)$	15,051	4,663
$\sigma + it$	11,709	2,460
$\sum_{n=1}^{\infty}$	9,768	2,163
$\log T$	8,913	1,485
$\frac{1}{2} + it$	8,634	1,415

Table 5: Suggestions to complete $E = m'$ and $E = \{m, c\}' (the right-hand side contains m and c) with term and document frequency based on the distributions of formulae in arXiv.

Term	TF-IDF	mBM25
E = mc²	558 376	558 376
E = m cosh θ	23 23	39 38
E = mc_0	7 7	41 36
E = $\sqrt{1 - \frac{a^2}{c^2}}$	12 6	23 23
E = $\sqrt{1 - \frac{b^2}{c^2}}$	10 6	35 17
E = mc²	6 6	10 8

5 APPLICATIONS

The presented results are beneficial for a variety of use-cases. In the following, we will demonstrate and discuss several of the applications that we propose.

Extension of zbMATH’s Search Engine: Formula search engines are often counterintuitive when compared to textual search, since the user must know how the system operates to enter a search query properly (e.g., does the system support LaTeX inputs?). Additionally, mathematical concepts can be difficult to capture using only mathematical expressions. Consider, for example, someone who wants to search for mathematical expressions that are related to eigenvalues. A textual search query would only retrieve entire documents that require further investigation to find related expressions. A mathematical search engine, on the other hand, is impractical since it is not clear what would be a fitting search query (e.g., $Ax = \lambda Bx$). Moreover, formula and textual search systems for scientific corpora are separated from each other. Thus, a textual search engine capable of retrieving mathematical formulæ can be beneficial. Also, many search engines allow for narrowing down relevant hits by suggesting filters based on the retrieved results. This technique is known as faceted search. The zbMATH search engine also provides faceted search, e.g., by authors, or year. Adding facets for mathematical expressions allows users to narrow down the results more precisely to arrive at specific documents.

Our proposed system for extracting relevant expressions from scientific corpora via mBM25 scores can be used to search for formulæ even with textual search queries, and to add more filters for faceted search implementations. Table 4 shows two examples of such an extension for zbMATH’s search engine. Searching for ‘Riemann Zeta Function’ and ‘Eigenvalue’ retrieved 4,739 and 25,248 documents from zbMATH, respectively. Table 4 shows the most frequently used mathematical expressions in the set of retrieved documents. It also shows the reordered formulæ according to a default TF-IDF score (with normalized term frequencies) and our proposed mBM25 score. The results can be used to add filters for faceted search, e.g., show only the documents which contain $u \in W_0^1(\Omega)$. Additionally, the search system now provides more intuitive textual inputs even for retrieving mathematical formulæ. The retrieved formulæ are also interesting by themselves, since they provide insight into the relationships that the system has learned.

The differences between TF-IDF and mBM25 ranking illustrates the problem of an extensive evaluation of our system. From a broader perspective, the hit $Ax = \lambda Bx$ is highly correlated with the input query ‘Eigenvalue’. On the other hand, the raw frequencies revealed a prominent role of $\text{div}(\nabla u_{p-2} \cdot \nabla u)$. Therefore, the top results of the mBM25 ranking can also be considered as relevant.

Math Notation Analysis: A faceted search system allows us to analyze mathematical notations in more detail. For instance, we can retrieve documents from a specific time period. This allows one to study the evolution of mathematical notation over time [1], or for identifying trends in specific fields. Also, we can analyze standard notations for specific authors since it is often assumed that authors prefer a specific notation style which may vary from the standard notation in a field.

Math Recommendation Systems: The frequency distributions of formulæ can be used to realize effective math recommendation
A. Greiner-Petter, et al.

Figure 6: The top ranked expression for ‘Jacobi polynomial’ in arXiv and zbMATH. For arXiv, 30 documents were retrieved with a minimum hit frequency of 7.

tasks, such as type hinting or error-corrections. These approaches require long training on large datasets, but may still generate meaningless results, such as $G_i = \{(x, y) \in \mathbb{R}^n : x_i = x_j\}$ [42]. We propose a simpler system which takes advantage of our frequency distributions. We retrieve entries from our result database, which contain all unique expressions and their frequencies. We implemented a simple prototype that retrieves the entries via pattern matching. Table 5 shows two examples. The left side of the table shows suggested autocompleted expressions for the query ‘$E=\cdots$’.

The right side shows suggestions for $‘E=\cdots’$, where the right-hand side of the equation should contain m and n in any order. A combination using more advanced retrieval techniques, such as similarity measures based on symbol layout trees [24, 25], would enlarge the number of suggestions. This kind of autocomplete and error-correction type-hinting system would be beneficial for various use-cases, e.g., in educational software or for search engines as a pre-processing step of the input.

Plagiarism Detection Systems: As previously mentioned, plagiarism detection systems [29, 39, 41] would benefit from a system capable of distinguishing conventional from uncommon notations. The approaches described by Meuschke et al. [39] outperform existing approaches by considering frequency distributions of single identifiers (expressions of complexity one). Considering that single identifiers make up only 0.03% of all unique expressions in arXiv, we presume that better performance can be achieved by considering more complex expressions. The conferred string representation also provides a simple format to embed complex expressions in existing learning algorithms.

Expressions with high complexities that are shared among multiple documents may provide further hints to investigate potential plagiarisms. For instance, the most complex expression that was shared among three documents in arXiv was Equation (3). A complex expression being identical in multiple documents could indicate a higher likelihood of plagiarism. Further investigation revealed that similar expressions, e.g., with infinite sums, are frequently used among a larger set of documents. Thus, the expression seems to be a part of a standard notation that is commonly shared, rather than a good candidate for plagiarism detection. Resulting from manual investigations, we could identify the equation as part of a concept called generalized Hardy-Littlewood inequality and Equation (3) appears in the three documents [12, 18, 17]. All three documents shared one author in common. Thus, this case also demonstrates a correlation between complex mathematical notations and authorship.

Semantic Taggers and Extraction Systems: We previously mentioned that semantic extraction systems [23, 28, 30] and semantic math taggers [16, 31] have difficulties in extracting the essential components (MOIs) from complex expressions. Considering the definition of the Jacobi polynomial in Equation (1), it would be beneficial to extract the groups of tokens that belong together, such as $P_n^{(\alpha, \beta)}(x)$ or $\Gamma(\alpha + m + 1)$. With our proposed search engine for retrieving MOIs, we are able to facilitate semantic extraction systems and semantic math taggers. Imagine such a system being capable of identifying the term ‘Jacobi polynomial’ from the textual context. Figure 6 shows the top relevant hits for the search query ‘Jacobi polynomial’ retrieved from zbMATH and arXiv. The results contain several relevant and related expressions, such as the constraints $\alpha, \beta > -1$ and the weight function for the Jacobi polynomial $(1-x)^a(1+x)^b$, which are essential properties of this orthogonal polynomial. Based on these retrieved MOIs, the extraction systems can adjust their retrieved math elements to improve precision, and semantic taggers or a tokenizer could re-organize parse trees to more closely resemble expression trees.

6 CONCLUSION & FUTURE WORK

In this study we showed that analyzing the frequency distributions of mathematical expressions in large scientific datasets can provide useful insights for a variety of applications. We demonstrated the versatility of our results by implementing prototypes of a type-hinting system for math recommendations, an extension of zbMATH’s search engine, and a mathematical retrieval system to search for topic-specific MOIs. Additionally, we discussed the potential impact and suitability in other applications, such as math search engines, plagiarism detection systems, and semantic extraction approaches. We are confident that this project lays a foundation for future research in the field of MathIR.

We plan on developing a web application which would provide easy access to our frequency distributions, the MOI search engine, and the type-hinting recommendation system. We hope that this will further expedite related future research projects. Moreover, we will use this web application for an online evaluation of our MOI retrieval system. Since the level of agreement among annotators will be predictably low, an evaluation by a large community is desired.

In this first study, we preserved the core structure of the MATHML data which provided insightful information for the MATHML community. However, this makes it difficult to properly merge formulas. In future studies, we will normalize the MATHML data via MathML-Can [9]. In addition to this normalization, we will include wildcards.
for investigating distributions of formula patterns rather than exact expressions. This will allow us to study connections between math objects, e.g., between $f(z)$ and $f(x+1)$. This would further improve our recommendation system and would allow for the identification of regions for parameters and variables in complex expressions.

Acknowledgments
Discovering Mathematical Objects of Interest was supported by the German Research Foundation (DFG grant GI-1259-1).

REFERENCES
[1] Florian Cajori. A History of Mathematical Notations. Vol. 1 & 2, London, UK: The Open Court Company, 1929.
[2] Akiko N. Aizawa. An information-theoretic perspective of tf-idf measures. In: Inf. Process. Manage. (2003), pp. 45–65. doi: 10.1016/S0306-4573(02)00021-3.
[3] Glenn Gordon Smith and David Ferguson. Diagrams and math notation in e-learning: growing pains of a new generation. In: International Journal of Mathematical Education in Science and Technology (5 2004), pp. 681–695. doi: 10.1080/0020739042000232583.
[4] Ashish Lohia, Kirti Sinha, Soujanya Vadapalli, and Kamalakar Karlapalem. An Architecture for Searching and Indexing Latex Equations in Scientific Literature. In: Proc. COMAD. Goa, India: Computer Society of India, 2005, pp. 122–130.
[5] Alex Gaudeul. Do Open Source Developers Respond to Competition?: The BibTeX Case Study. In: Review of Network Economics (2 June 2007), pp. 239–263. doi: 10.2202/1446-9022.1119.
[6] Christian Grün, Sebastian Gath, Alexander Holupirek, and Marc Scholl. XQuery Full Text Implementation in BaseX. In: Database and XML Technologies. Springer Berlin, 2009, pp. 114–128.
[7] Stephen E. Robertson and Hugo Zaragoza. The Probabilistic Relevance Framework: BM25 and Beyond. In: Foundations and Trends in Information Retrieval (2009), pp. 333–389. doi: 10.1561/1500000019.
[8] Shahab Kamali and Frank Wm. Tompa. A new mathematics retrieval system. In: Proc. CICM. Toronto, Toronto, Canada: ACM, 2010, pp. 1413–1416. doi: 10.1145/1871437.1871635.
[9] David Formánek, Martin Liška, Michal Růžička, and Petr Sojka. Normalization of Digital Mathematics Library Content. In: Proc. of OpenMath/ MathUI CICM-WiP. Bremen, Germany, 2012, pp. 91–103.
[10] Michael Kohlhase, Bogdan A. Matican, and Corneliu-Claudiu Prodescu. MathWebSearch 0.5: Scaling an Open Formula Search Engine. In: Proc. CICM. Bremen, Germany: Springer Berlin Heidelberg, 2012, pp. 342–357. doi: 10.1007/978-3-642-31374-5_23.
[11] Shahab Kamali and Frank Wm. Tompa. Retrieving documents with mathematical content. In: Proc. ACM SIGIR. Dublin, Ireland: ACM, 2013, pp. 353–362. doi: 10.1145/2484028.2484083.
[12] Gustavo Araujo and Daniel Pellegrino. On the constants of the Bohnenblust-Hille inequality and Hardy–Littlewood inequalities. In: CoRR (2014). arXiv: 1407.7120.
[13] Giovanni Yoko Kristianto, Goran Topic, Florence Ho, and Akiko Aizawa. The MCAT Math Retrieval System for NTCIR-11 Math Track. In: Proc. NTCIR. Tokyo, Japan: National Institute of Informatics (NII), 2014.
[14] Aldo Lipani, Linda Andersson, Florina Piroi, Mihai Lupu, and Allan Hanbury. TUW-IMP at the NTCIR-11 Math-2. In: Proc. NTCIR. Tokyo, Japan: National Institute of Informatics (NII), 2014.
[15] Steven T. Piantadosi. Zipf’s word frequency law in natural language: A critical review and future directions. In: Psychonomic Bulletin & Review (Mar. 2014), pp. 1112–1130. doi: 10.3758/s13423-014-0585-6.
[16] Pao-Yu Chien and Pu-Jen Cheng. Semantic Tagging of Mathematical Expressions. In: Proc. WWW’2015. Florence, Italy: ACM, 2015, pp. 195–204. doi: 10.1145/2736277.2741108.
[17] Daniel Pellegrino. A short communication on the constants of the multilinear Hardy–Littlewood inequality. In: CoRR (2015). arXiv: 1510.00367.
[18] Jamilson R. Campos, Wasthenny Cavalcante, Vinicius V. Fávaro, Daniel Núñez-Alarcon, Daniel Pellegrino, and Diana M. Serrano-Rodríguez. Polynomial and multilinear Hardy–Littlewood inequalities: analytical and numerical approaches. In: CoRR (2015). arXiv: 1503.00618.
[19] Leonard Wörteler, Michael Grossniklaus, Christian Grün, and Marc Scholl. Function inlining in XQuery 3.0 optimization. In: Proc. 15th DBLP. Pittsburgh, PA, USA: ACM, 2015, pp. 45–48. doi: 10.1145/2815072.2815079.
[20] Jörn Beel, Bela Gipp, Stefan Langer, and Corinna Breitinger. Research-paper recommender systems: a literature survey. In: Int. J. on Digital Libraries (2016), pp. 305–338. doi: 10.1007/s00799-015-0156-0.
[21] Ferruccio Guidi and Claudio Sacerdotti Coen. A Survey on Retrieval of Mathematical Knowledge. In: Mathematics in Computer Science (2016), pp. 409–427. doi: 10.1007/s11786-016-0274-0.
[22] Shunsuke Ohashi, Giovanni Yoko Kristianto, Goran Topic, and Akiko Aizawa. Efficient Algorithm for Math Formula Semantic Search. In: IEICE Transactions (2016), pp. 979–988. doi: 10.1587/transinf.2015DAP0023.
[23] Moritz Schubotz, Alexey Grigorev, Marcus Leich, Howard S. Littlewood inequalities: analytical and numerical approaches. In: Proc. ACM CIKM. Tehran, Iran: ACM, 2015, pp. 195–204. doi: 10.1145/2815072.2815079.
[24] Moritz Schubotz, Alexey Grigorev, Marcus Leich, Howard S. Cohn, Norman Meuschke, Bela Gipp, Abdou S. Youssef, and Volker Markl. Semantification of Identifiers in Mathematics for Better Math Information Retrieval. In: Proc. ACM SIGIR. Full Paper. Pisa, Italy: ACM, 2016, pp. 135–144. doi: 10.1145/2911451.2911503.
[25] Kenny Davila and Richard Zanibbi. Layout and Semantics: Combining Representations for Mathematical Formula Search. In: Proc. ACM SIGIR. Shinjuku, Tokyo: ACM, 2017, pp. 1165–1168. doi: 10.1145/3077136.3080748.
[26] Liangcai Gao, Zhiwen Jiang, Yue Yin, Ke Yuan, Zuooyu Yan, and Zhi Tang. Preliminary Exploration of Formula Embedding for Mathematical Information Retrieval: can mathematical formulae be embedded like a natural language? In: CoRR (2017). arXiv: 1707.05154.

[27] Andrea Kohlhase, Michael Kohlhase, and Michael Fürsich. Visual Structure in Mathematical Expressions. In: Proc. CICM. Edinburgh, UK: Springer, 2017, pp. 208–223. DOI: 10.1007/978-3-319-62075-6_15.

[28] Giovanni Yoko Kristianto, Goran Topic, and Akiko Aizawa. Utilizing dependency relationships between math expressions in math IR. In: Information Retrieval Journal (2017), pp. 132–167. DOI: 10.1007/s10791-017-9296-8.

[29] Norman Meuschke, Moritz Schubotz, Felix Hamborg, Tomás Skopal, and Bela Gipp. Analyzing Mathematical Content to Detect Academic Plagiarism. In: Proc. ACM CIKM. Singapore: ACM, 2017, pp. 2211–2214. DOI: 10.1145/3132847.3133144.

[30] Moritz Schubotz, Leonard Krämer, Norman Meuschke, Felix Hamborg, and Bela Gipp. Evaluating and Improving the Extraction of Mathematical Identifier Definitions. In: Proc. CLEF. Springer, 2017, pp. 82–94. DOI: 10.1007/978-3-319-65813-1_7.

[31] Abdou Youssef. Part-of-Math Tagging and Applications. In: Proc. CICM. Cham: Springer International Publishing, 2017, pp. 356–374.

[32] Deyan Ginev. arXMLiv08.2018 dataset, an HTML5 conversion of arXiv.org. SIGMathLing – Special Interest Group on Math Linguistics. 2018. URL: https://sighmathling.kwarc.info/resources/arxmliv/.

[33] Andrea Kohlhase. Factors for Reading Mathematical Expressions. In: Proceedings of the Conference "Lernen, Wissen, Daten, Analysen", LWDA 2018, Mannheim, Germany; August 22-24, 2018. Mannheim, Germany: CEUR-WS.org, 2018, pp. 195–202.

[34] Andrea Kohlhase, Michael Kohlhase, and Taweechai Ouypornkochagorn. Discourse Phenomena in Mathematical Documents. In: Proc. CICM. Hagenberg, Austria: Springer, 2018, pp. 147–163. DOI: 10.1007/978-3-319-96812-4_14.

[35] Kriste Krstovski and David M. Blei. Equation Embeddings. In: CoRR (2018). arXiv: 1803.09123.

[36] Moritz Schubotz, André Greiner-Petter, Philipp Scharpf, Norman Meuschke, Howard S. Cohl, and Bela Gipp. Improving the Representation and Conversion of Mathematical Formulae by Considering their Textual Context. In: Proc. ACM/IEEE JCDL. Fort Worth, USA: ACM, 2018, pp. 233–242. DOI: 10.1145/3197026.3197058.

[37] André Greiner-Petter, Terry Ruas, Moritz Schubotz, Akiko Aizawa, William I. Grosky, and Bela Gipp. Why Machines Cannot Learn Mathematics, Yet. In: Proc. BIRNDL at ACM SIGIR. Paris, France: CEUR-WS.org, 2019, pp. 130–137.

[38] Fabian Hueske and Timo Walther. Apache Flink. In: Encyclopedia of Big Data Technologies. Springer, 2019. DOI: 10.1007/978-3-319-63962-8_303-1.

[39] Norman Meuschke, Vincent Stange, Moritz Schubotz, Michael Kramer, and Bela Gipp. Improving Academic Plagiarism Detection for STEM Documents by Analyzing Mathematical Content and Citations. In: Proc. ACM/IEEE JCDL. Urbana-Champaign, USA, June 2019, pp. 120–129. DOI: 10.1109/JCDL.2019.00026.

[40] Moritz Schubotz and Olaf Teschke. Four decades of \LaTeXX at zbMATH. In: Newsletter of the European Mathematical Society (EMS) (2019), pp. 50–52. DOI: 10.4171/NEWS/112/15.

[41] Moritz Schubotz, Olaf Teschke, Vincent Stange, Norman Meuschke, and Bela Gipp. Forms of Plagiarism in Digital Mathematical Libraries. In: Proc. CICM. Prague, Czech Republic: Springer, 2019, pp. 258–274. DOI: 10.1007/978-3-030-23250-4_18.

[42] Michihiro Yasunaga and John Lafferty. TopicEq: A Joint Topic and Mathematical Equation Model for Scientific Texts. In: CoRR (2019). arXiv: 1902.06034.

[43] Abdou Youssef and Bruce R. Miller. Explorations into the Use of Word Embedding in Math Search and Math Semantics. In: CICM. Prague, Czech Republic: Springer, 2019, pp. 291–305. DOI: 10.1007/978-3-030-23250-4_20.

[44] André Greiner-Petter, Moritz Schubotz, Fabian Müller, Corinna Breitinger, Howard S. Cohl, Akiko Aizawa, and Bela Gipp. Discovering Mathematical Objects of Interest - A Study of Mathematical Notations. In: Proceedings of the Conference "Lernen, Wissen, Daten, Analysen", LWDA 2018, Mannheim, Germany; August 22-24, 2018. Mannheim, Germany: CEUR-WS.org, 2018, pp. 195–202.

[45] Bruce R. Miller. LaTeX to XML/HTML/MathML Converter. http://dlmf.nist.gov/LaTeXML/. Accessed: 2019-09-01.

[46] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/. Release 1.0.25 of 2019-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
Listing 2: Use the following BibTeX code to cite this article

```bibtex
@inproceedings{GreinerPetter2020,
  author = {André Greiner-Petter and Moritz Schubotz and Fabian Müller and Corinna Breitinger and Howard S. Cohl and Akiko Aizawa and Bela Gipp},
  title = {Discovering Mathematical Objects of Interest - A Study of Mathematical Notations},
  booktitle = {Proceedings of The Web Conference 2020 (WWW '20), April 20--24, 2020, Taipei, Taiwan},
  doi = {10.1145/3366423.3380218}
}
```