An Empirical Model for Solvation Based on Surface Site Interaction Points

Derek P. Reynolds,* Maria Chiara Storer, Christopher A. Hunter*

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)

Supplementary Information

Section	Title	Page
1	Comparison of free energies (-Δ\(\Delta G^0\) kJ mol\(^{-1}\)) of transfer of alkanes from gas phase into n-hexadecane with transfer into other solvents.	S2
2	Complex formation between aromatic acceptors and H-bond donors	S3
3	Substructure fragments	S6
4	Free energy of formation for H-bonded 1:1 complexes	S7
5	Individually optimised solvent constants	S37
6	Solvent H-bond parameters \(\alpha_s\) and \(\beta_s\)	S38
7	Calculated and experimental free energies of transfer in workbook Excel1.xlsx	S40
8	Correlation between Molecular Surface Area and the number of Surface Site Interaction Points	S44
9	Description of calculation procedure exemplified in workbook Excel2.xlsx	S48
Section 1:

Comparison of free energies ($-\Delta G^0$ kJ mol$^{-1}$) of transfer of alkanes from gas phase into n-hexadecane with transfer into other solvents.

Table S1: Free energies ($-\Delta G^0$ kJ mol$^{-1}$) of transfer of alkanes from gas phase to solvent (Solvents were only included if at least 10 transfer values were available)

Alkane solvent	Hexadecane	CC4	Hexane	Propionitrile	Tetrahydrofuran	Chlorobenzene	Acetone	Propane	Cyclohexane	Methodanol	Ethanol	Propan-1-ol	Propan-2-ol
n-pentane	12.3	13.5	13.0	11.0	13.3	13.9	11.3	11.3	11.3	9.5	10.2	10.3	10.6
n-hexane	15.2	17.0	16.9	15.6	16.2	16.8	15.5	15.5	15.5	13.7	12.8	13.0	13.1
n-heptane	18.1	19.9	20.0	16.1	19.1	19.8	16.0	17.3	16.8	14.3	15.5	15.6	15.6
n-octane	21.0	23.1	22.6	18.3	22.0	22.8	18.4	19.7	19.5	16.1	18.1	18.1	18.1
n-nonane	23.9	26.0	25.3	20.7	24.8	25.8	20.9	23.5	21.9	18.4	20.1	20.3	20.7
n-decane	26.7	BN/A	28.7	BN/A	BN/A	BN/A	BN/A	25.2	BN/A	BN/A	22.4	BN/A	BN/A
2-methylpentane	14.3	16.0	16.1	12.6	15.4	15.9	12.8	13.6	13.1	11.2	12.3	12.3	12.3
2,25-dimethylhexane	18.9	20.5	20.8	16.7	20.1	20.8	16.8	17.9	17.5	15.4	16.4	16.4	16.4
2,2,4-trimethylpentane	17.7	BN/A	BN/A	BN/A	19.5	BN/A	BN/A	16.9	BN/A	BN/A	15.3	15.4	15.4
2,2,4,trimethylpentane	19.9	21.2	21.0	17.2	20.5	21.3	17.3	18.4	18.0	15.2	16.8	16.8	16.8
3,3-dimethylhexane	22.9	BN/A	24.6	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	18.0	BN/A	BN/A
cyclopentane	14.1	BN/A	15.5	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	11.0	11.6	12.1
cyclohexane	16.9	18.4	17.7	15.2	17.9	18.4	14.8	15.7	16.0	13.9	14.5	14.5	14.4
cycloheptane	21.1	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	18.0	BN/A	BN/A
methylcyclohexane	16.6	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	15.9	BN/A	BN/A
methylcycloheptane	18.9	BN/A	17.1	19.5	16.4	17.2	BN/A	BN/A	BN/A	BN/A	15.4	BN/A	BN/A
ethylcyclohexane	22.1	23.3	22.6	19.1	22.4	23.2	18.9	20.1	20.2	16.9	18.6	18.7	18.7
methane	1.8	0.8	0.1	0.1	0.3	1.3	0.1	0.1	0.1	1.5	1.7	1.7	1.7
ethane	2.8	4.2	4.3	3.5	3.0	3.4	2.9	2.2	2.2	2.2	2.5	2.5	2.7
propane	6.0	7.6	7.5	BN/A	6.7	5.7	BN/A	4.8	5.2	5.2	5.5	5.5	5.5
butane	9.2	11.2	10.9	9.3	9.7	8.9	9.6	7.2	8.0	7.2	8.3	8.3	8.3
cyclopropane	7.5	BN/A	8.3	BN/A	BN/A	BN/A	BN/A	6.6	6.6	6.6	BN/A	BN/A	BN/A
2,2-dimethylpropane	10.4	BN/A	11.6	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A	BN/A

Figure S1: Comparison of free energies ($-\Delta G^0$ kJ mol$^{-1}$) of transfer of alkanes from gas phase into n-hexadecane with transfer into other solvents (x axis: hexadecane and y axis: solvent2)
Section 2:
Complex formation between aromatic acceptors and H-bond donors

H-bond parameters for the polar interaction sites on the π-faces of aromatic hydrocarbons

Aromatic acceptors	β
benzene	2.00
toluene	2.20
ortho-, meta- or para-xylene	2.40
mesitylene	2.70
hexamethylbenzene	3.10

Solvent parameters for CCl₄ from ref [1] and alpha values for donors from ref [2]

CCl₄ solvent: \(\alpha_s = 1.4 \) and \(\beta_s = 0.6 \)

Calculated \(-\Delta G^0_{CCl₄} \text{(kJ mol}^{-1}\) = \((\alpha - 1.4)(\beta - 0.6) - 6 \)

Figure S2:
Calculated vs experimental \(-\Delta G^0\) for formation of 1:1 complexes between benzene acceptors and alcohol and phenol H-bond donors in CCl₄ \((\text{rmsd} = 0.35 \text{ kJ mol}^{-1}, n = 38)\)
Table S2
Calculated vs experimental ΔG^0 for formation of 1:1 complexes between benzene acceptors and alcohol and phenol H-bond donors in CCl$_4$

H-Bond Donor	α	H-Bond Acceptor	β	$-\Delta G^0$ Calculated kJ mol$^{-1}$	$-\Delta G^0$ Experiment kJ mol$^{-1}$	Reference
Methanol	2.90	benzene	2.00	-3.90	-4.21*	[3]
2-Methylphenol	3.50	benzene	2.00	-3.06	-3.39	[4]
4-methylphenol	3.70	benzene	2.00	-2.78	-2.87	[4]
phenol	3.80	benzene	2.00	-2.64	-2.77	[4]
1-naphthol	3.90	benzene	2.00	-2.64	-2.60	[4]
2-naphthol	3.90	benzene	2.00	-2.50	-2.98	[4]
4-fluoro phenol	3.90	benzene	2.00	-2.50	-2.80	[5]
4-nitrophenol	4.70	benzene	2.00	-1.38	-1.70	[4]
tert-Butyl alcohol	2.70	toluene	2.20	-3.92	-4.13	[6]
4-methylphenol	3.70	toluene	2.20	-2.32	-2.89	[4]
1-naphthol	3.80	toluene	2.20	-2.16	-2.44	[4]
phenol	3.80	toluene	2.20	-2.16	-1.86	[4]
4-fluoro phenol	3.90	toluene	2.20	-2.00	-1.98	[5]
4-methylphenol	3.70	o-xylene	2.40	-1.86	-2.22	[4]
phenol	3.80	o-xylene	2.40	-1.68	-1.97	[4]
2-naphthol	3.90	o-xylene	2.40	-1.50	-1.93	[4]
tert-Butyl alcohol	2.70	m-xylene	2.40	-3.66	-3.55	[6]
Methanol	2.90	m-xylene	2.40	-3.30	-3.87	[6]
4-methylphenol	3.70	m-xylene	2.40	-1.86	-2.26	[4]
2-naphthol	3.90	m-xylene	2.40	-1.50	-1.97	[4]
tert-Butyl alcohol	2.70	p-xylene	2.40	-3.66	-4.00	[6]
4-methylphenol	3.70	p-xylene	2.40	-1.86	-2.05	[4]
phenol	3.80	p-xylene	2.40	-1.68	-1.89	[4]
1-naphthol	3.80	p-xylene	2.40	-1.68	-1.68	[4]
2-naphthol	3.90	p-xylene	2.40	-1.50	-1.81	[4]
4-fluoro phenol	3.90	p-xylene	2.40	-1.50	-1.71	[7]
tert-Butyl alcohol	2.70	mesitylene	2.70	-3.27	-3.35	[6]
Methanol	2.90	mesitylene	2.70	-2.85	-3.54	[6]
2-Methylphenol	3.50	mesitylene	2.70	-1.59	-1.72	[4]
4-methylphenol	3.70	mesitylene	2.70	-1.17	-1.63	[4]
1-naphthol	3.80	mesitylene	2.70	-0.96	-1.09	[4]
phenol	3.80	mesitylene	2.70	-0.96	-1.39	[4]
4-fluoro phenol	3.90	mesitylene	2.70	-0.75	-1.28	[5]
tert-Butyl alcohol	2.70	Hexamethylbenzene	3.10	-2.75	-2.47	[6]
4-methylphenol	3.70	Hexamethylbenzene	3.10	-0.25	-0.17	[4]
phenol	3.80	Hexamethylbenzene	3.10	0.00	-0.13	[4]
4-fluoro phenol	3.90	Hexamethylbenzene	3.10	0.25	0.02	[5]

Footnote to table: * reported value converted from mole fraction standard state to molar standard state
References for Section 2

1. Hunter, C.A., *Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox*. Angew Chem Int Ed Engl, 2004. 43(40): p. 5310-24.
2. Calero, C.S., et al., *Footprinting molecular electrostatic potential surfaces for calculation of solvation energies*. Phys Chem Chem Phys, 2013. 15(41): p. 18262-73.
3. Koné, M., et al., *Can Quantum-Mechanical Calculations Yield Reasonable Estimates of Hydrogen-Bonding Acceptor Strength? The Case of Hydrogen-Bonded Complexes of Methanol*. The Journal of Physical Chemistry A, 2011. 115(47): p. 13975-13985.
4. Joesten, M.D. and L.J. Schaad, *Hydrogen Bonding*. 1974: Marcel Dekker, New York.
5. Laurence, C., et al., *The pK(BHX) database: toward a better understanding of hydrogen-bond basicity for medicinal chemists*. J Med Chem, 2009. 52(14): p. 4073-86.
6. Murthy, A.S.N. and C.N.R. Rao, *Spectroscopic Studies of the Hydrogen Bond*. Applied Spectroscopy Reviews, 1968. 2(1): p. 69-191.
7. Laurence, C. and M. Berthelot, *Observations on the strength of hydrogen bonding*. Perspectives in Drug Discovery and Design, 2000. 18(1): p. 39-60.
Section 3:

Substructure fragments

For each molecule the SMILES string was analysed and a SMARTS based substructure code from table S3 was assigned to each heavy atom. Aromatic groups were assigned an additional code to describe a SSIP in the centre of the n-face of each aromatic 6 membered ring.

Table S3: Description of the substructure fragments used to describe the solutes and details of the number SSIPs and the associated parameters assigned to each fragment.
Section 4: Free Energy of Formation for H-bonded 1:1 complexes

a) Benzene

Solvent	α_S	C_a	β_S	C_β
Benzene	1.40	2.50	2.00	1.09

Figure S4a

{Graph showing a linear relationship with y = 1.1031x and $R^2 = 0.8977$}

Free energy calculation for 1:1 Association

$$-\Delta G^0 = \alpha\beta - \alpha\beta_S - \alpha_S\beta - C_a - C_\beta$$
Compound	Boiling Point	Reaction Product	Temperature			
2,2,3,3-Tetrafluoropropan-1-ol	3.50	di-n-butylamine	7.90			
2,2,3,3-Tetrafluoropropan-1-ol	3.50	Trioclylamine	7.00			
2,2,3,3-Tetrafluoropropan-1-ol	3.50	tributylamine	6.80			
phenol	3.80	Trioclylamine	7.00			
phenol	3.80	tributylamine	6.80			
Propan-1-ol	2.60	di-n-butylamine	7.90			
Propan-1-ol	2.60	Trioclylamine	7.00			
Propan-1-ol	2.60	tributylamine	6.80			
2,6-Dimethylphenol	3.30	tetrahydrofuran	5.90			
phenol	3.80	tetrahydrofuran	5.90			
4-tert-Butylphenol	3.60	acetonaphthene	5.50			
phenol	3.80	acetonaphthene	5.50			
4-bromophenol	4.10	acetonaphthene	5.50			
4-fluorophenol	3.90	N,N-dimethylacetamide	8.50			
4-bromophenol	4.10	N,N-dimethylacetamide	8.30			
4-nitrophenol	4.70	N,N-dimethylacetamide	8.50			
4-bromophenol	4.10	Propan-2-one	5.70			
phenol	3.80	Propan-2-one	5.70			
phenol	3.80	1,1,3,3-Tetramethylene	8.50			
4-chlorophenol	4.10	1,1,3,3-Tetramethylene	8.50			
4-bromophenol	4.10	1,1,3,3-Tetramethylene	8.50			
4-nitrophenol	4.70	1,1,3,3-Tetramethylene	8.50			
4-tert-Butylphenol	3.60	Propan-2-one	5.70			
2-Methoxyphenol	2.40	triethylamine	7.50			
2-Methoxyphenol	2.40	N,N-Dimethylformamide	7.70			
2-Methoxyphenol	2.40	dimethyl sulphoxide	8.60			
phenol	3.80	dimethyl sulphoxide	8.60			
2-Methoxyphenol	2.40	pyridine	7.20			
butan-1-ol	2.70	tripropylamine	6.60			
butan-1-ol	2.70	triethylamine	7.50			
butan-1-ol	2.70	tributylamine	6.80			
phenol	3.80	diethyl ether	5.30			
phenol	3.80	Hexamethylphosphoramid	10.90			
3-methylphenol	3.70	pyridine	7.20			
4-methylphenol	3.70	pyridine	7.20			
4-Methoxyphenol	3.70	2-methylpyridine	7.60			
4-Methylphenol	3.70	2-methylpyridine	7.60			
3-methylphenol	3.70	2-methylpyridine	7.60			
phenol	3.80	2-methylpyridine	7.60			
4-chlorophenol	4.10	2-methylpyridine	7.60			
4-nitrophenol	4.70	2-methylpyridine	7.60			
4-Methoxyphenol	3.70	3-methylpyridine	7.50			
4-Methylphenol	3.70	3-methylpyridine	7.50			
3-methylphenol	3.70	3-methylpyridine	7.50			
phenol	3.80	3-methylpyridine	7.50			
4-chlorophenol	4.10	3-methylpyridine	7.50			
4-nitrophenol	4.70	3-methylpyridine	7.50			
	4-Methoxyphenol	3.70	4-methylpyridine	7.70	6.72	7.04
---	----------------	------	------------------	------	------	------
	4-methylphenol	3.70	4-methylpyridine	7.70	6.72	7.29
	3-methylphenol	3.70	4-methylpyridine	7.70	6.72	7.84
	phenol	3.80	4-methylpyridine	7.70	7.29	8.32
	4-chlorophenol	4.10	4-methylpyridine	7.70	9.00	9.29
	4-Methoxyphenol	3.70	pyridine	7.20	5.57	5.94
	4-nitrophenol	4.70	4-methylpyridine	7.70	12.42	12.49
	4-Methoxyphenol	3.70	4-N,N-dimethylanpyridine	9.30	10.40	10.01
	4-methylphenol	3.70	4-N,N-dimethylanpyridine	9.30	10.40	10.44
	3-methylphenol	3.70	4-N,N-dimethylanpyridine	9.30	10.40	10.78
	phenol	3.80	4-N,N-dimethylanpyridine	9.30	11.13	11.08
	4-chlorophenol	4.10	4-N,N-dimethylanpyridine	9.30	13.32	12.32
	3-methylphenol	3.70	dibutyl ether	5.00	0.51	1.59
	3-methylphenol	3.70	1,4-dioxane	4.70	-0.18	3.73
	3-methylphenol	3.70	anisole	3.30	-3.40	0.00
	3-methylphenol	3.70	N,N-Dimethylformamide	7.70	6.72	8.66
	3-methylphenol	3.70	N,N-dimethylacetamide	8.50	8.56	9.84
	3-methylphenol	3.70	cyclohexanone	6.20	3.27	4.60
	3-methylphenol	3.70	dimethyl sulfoxide	8.60	8.79	11.04
	3-methylphenol	3.70	tetrahydropyran	5.80	2.35	4.09
	3-methylphenol	3.70	Ethyl ethanoate	5.40	1.43	2.88
	phenol	3.80	1,4-dioxane	4.70	0.09	3.78
	2,3-Dimethylphenol	3.50	pyridine	7.20	4.53	7.02
	2,4-Dimethylphenol	3.50	pyridine	7.20	4.53	6.11
	2,5-Dimethylphenol	3.60	pyridine	7.20	5.05	5.94
	3,5-Dimethylphenol	3.70	pyridine	7.20	5.57	6.71
	4-bromophenol	4.10	pyridine	7.20	7.65	8.66
	4-bromophenol	4.10	triethylamine	7.50	8.46	9.91
	4-chlorophenol	4.10	pyridine	7.20	7.65	9.17
	4-chlorophenol	4.10	triethylamine	7.50	8.46	8.05
	3,4-Dimethylphenol	3.60	pyridine	7.20	5.05	6.54
	3,4-Dimethylphenol	3.60	triethylamine	7.50	5.71	6.87
	2,6-Dimethylphenol	3.30	pyridine	7.20	3.49	4.13
	phenol	3.80	N,N-Dimethylformamide	7.70	7.29	9.02
	phenol	3.80	N,N-dimethylacetamide	8.50	9.21	10.57
	phenol	3.80	cyclohexanone	6.20	3.69	4.40
	phenol	3.80	tetrahydropyran	5.80	2.73	4.13
	tert-Butyl alcohol	2.70	N,N-diethylacetamide	8.50	2.06	0.85
	phenol	3.80	Tributylphosphine oxide	10.70	14.49	17.46
	phenol	3.80	triethyl phosphate	8.80	9.93	11.58
	4-nitrophenol	4.70	triethyl phosphate	8.80	16.05	17.17
	phenol	3.80	triphenylphosphine oxide	10.10	13.05	15.12
Free energy calculation for 1:1 Association

\[-\Delta G^0 = \alpha \beta - \alpha \beta_S - \alpha_S \beta - C_\alpha - C_\beta\]

Table S4b

Reference	Donor	Alpha	Acceptor	Calc.	Expt.	
[16]	4-methylphenol	3.70	Methyl ethanoate	4.70	-0.18	2.72
[16]	4-methylphenol	3.70	N,N-diethylacetamide	8.50	8.56	11.04
[17]	4-phenylazophenol	4.30	Tributylphosphine oxide	10.70	18.84	21.11
[16]	4-methylphenol	3.70	Ethyl ethanoate	5.40	1.43	2.72
[16]	4-methylphenol	3.70	Ethyl 4-methylbenzoate	5.40	1.43	2.72
[16]	4-methylphenol	3.70	N,N-diethyl-4-methylbenzamide	7.90	17.86	8.66
[18]	3,5,5-Trimethyl-hexanoic acid phenylamide	2.90	Diethyl ethylphosphonate	9.20	4.41	7.87
[19]	4-methylphenol	3.70	Diethyl ethylphosphonate	9.20	10.17	12.24
[20]	4-methylphenol	3.70	Diethyl ether	5.30	1.20	2.72
[21]	4-methylphenol	3.70	n-butyl-di-tert-butylphosphine oxide	10.20	12.47	16.44
[22]	4-phenylazophenol	4.30	N,N-di-n-hexylacetamide	8.40	12.17	13.73
[23]	4-methylphenol	3.70	4-methylpyridine	7.70	6.72	8.51
[24]	2,6-Dimethylphenol	3.30	tetrahydrofuran	5.90	1.02	2.17
[25]	pyrrole	3.00	2,4,6-trimethylpyridine	8.10	3.37	2.95
[25]	pyrrole	3.00	3,5-Dimethylpyridine	8.00	3.21	2.65
[25]	pyrrole	3.00	4-methylpyridine	7.70	2.73	1.68
[25]	pyrrole	3.00	pyridine	7.20	1.93	1.68
[25]	pyrrole	3.00	2-methylpyridine	7.60	2.57	1.99
[25]	pyrrole	3.00	3-methylpyridine	7.50	2.41	1.67
[25]	pyrrole	3.00	triethylamine	7.50	2.41	2.17
[26]	propan-2-ol	2.70	2,4,6-trimethylpyridine	8.10	1.54	1.50
[26]	propan-2-ol	2.70	pyridine	7.20	0.37	0.02
[26]	benzyl alcohol	3.00	pyridine	7.20	1.93	3.95

Figure S4b

Solvent	α_s	C_α	β_s	C_β
Toluene	1.40	2.50	2.00	1.09

rmsd = 1.6836, n = 46

\[y = 1.1368x, R^2 = 0.8994\]

-10 -5 0 5 10 15 20 25 30 35 40

Expt. $-\Delta G_0$ kJ/mol

Calculated $-\Delta G_0$ kJ/mol
	Compound					
[26]	propan-2-ol	2.70	triethylamine	7.50	0.76	-0.02
[26]	benzyl alcohol	3.00	triethylamine	7.50	2.41	3.24
[26]	propan-2-ol	2.70	3,5-Dimethylpyridine	8.00	1.41	1.49
[26]	benzyl alcohol	3.00	3,5-Dimethylpyridine	8.00	3.21	3.84
[26]	benzyl alcohol	3.00	4-methylpyridine	7.70	2.73	3.18
[26]	propan-2-ol	2.70	4-methylpyridine	7.70	1.02	1.49
G12	pyrrole	3.00	2,4-Dimethylpyridine	7.20	1.93	2.00
G6	phenol	3.80	tetrahydrofuran	5.90	2.97	4.68
G77	3-Chlorophenol	4.20	triethylamine	7.50	9.01	6.98
G77	3-nitrophenol	4.60	triethylamine	7.50	11.21	8.49
G100	phenol	3.80	Tri-n-octylphosphine oxide	11.30	15.93	17.27
[26]	propan-2-ol-D	2.70	triethylamine	7.50	0.76	0.78
[26]	benzyl alcohol-D	3.00	triethylamine	7.50	2.41	4.07
[26]	propan-2-ol-D	2.70	3,5-Dimethylpyridine	8.00	1.41	2.95
[26]	benzyl alcohol-D	3.00	3,5-Dimethylpyridine	8.00	3.21	4.58
[26]	propan-2-ol-D	2.70	4-methylpyridine	7.70	1.02	1.85
[26]	benzyl alcohol-D	3.00	4-methylpyridine	7.70	2.73	3.80
[26]	benzyl alcohol-D	3.00	2,4,6-trimethylpyridine	8.10	3.37	5.02
[26]	propan-2-ol-D	2.70	2,4,6-trimethylpyridine	8.10	1.54	3.52
[27]	Methanol-D	2.90	triethylamine	7.50	1.86	4.74
[27]	Methanol-D	2.90	2,4,6-trimethylpyridine	8.10	2.76	6.18
[20]	propan-2-ol-D	2.70	pyridine	7.20	0.37	1.46
[20]	benzyl alcohol-D	3.00	pyridine	7.20	1.93	3.33
c) Hexane

Solvent	α_s	C_α	β_s	C_β
Hexane	1.20	2.62	0.60	2.62

Figure S4c

Solvent	rmsd	n
Hexane	0.6833	6

$$y = 0.9694x$$

$$R^2 = 0.9745$$

Free energy calculation for 1:1 Association

$$-\Delta G^0 = \alpha \beta - \alpha \beta_s - \alpha_s \beta - C_\alpha - C_\beta$$

Reference	Donor	Acceptor	Calc. $-\Delta G^0$	Expt. $-\Delta G^0$
[28]	2,2,2-trifluoroethanol	triethylamine	7.50	11.25
[1]	Hexafluoropropan-2-ol	pyridine	7.20	15.78
[28]	2,2,2-trifluoroethanol	2,4,6-trimethylpyridine	8.10	12.75
[1]	2,2,2-trifluoroethanol	pyridine	7.20	10.50
[28]	1-naphthol	di-n-butylamine	7.90	12.98
[28]	Hexafluoropropan-2-ol	tetrahydrothiophene	3.90	4.89
d) Cyclohexane

Solvent	α_s	C_α	β_s	C_β
Cyclohexane	1.20	2.61	0.60	2.61

Figure S4d

![Graph](image)

Free energy calculation for 1:1 Association

$$-\Delta G^0 = \alpha \beta - \alpha \beta_s - \alpha_s \beta - C_\alpha - C_\beta$$

Table S4d

Reference	Donor	Alpha	Acceptor	Calc. ΔG^0	Expt. ΔG^0	
[1]	phenol	3.80	tetrahydrothiophene	3.90	2.58	5.31
[1]	4-chlorophenol	4.10	tetrahydrothiophene	3.90	3.57	5.71
[1]	Hexafluoropropan-2-ol	4.50	tetrahydrothiophene	3.90	4.89	6.68
[1]	4-nitrophenol	4.70	diethyl ether	5.30	10.45	7.99
[1]	4-tert-Butylyphenol	3.60	tetrahydrothiophene	3.90	1.92	3.02
[1]	4-chlorophenol	4.10	tripropylamine	6.60	11.40	13.81
[29]	4-fluorophenol	3.90	triethylamine	7.50	12.63	12.22
[28]	3-trifluoromethylphenol	4.30	tetrahydrothiophene	3.90	4.23	4.10
[1]	2,2,2-trifluoroethanol	3.70	pyridine N-oxide	9.00	15.00	16.54
[1]	4-chlorophenol	4.10	tributylamine	6.80	11.98	13.64
[1]	4-fluorophenol	3.90	pyridine N-oxide	9.00	16.68	18.66
[1]	4-chlorophenol	4.10	tetrahydrofuran	5.90	9.37	8.04
[1]	3-methylphenol	3.70	1,4-dioxane	4.70	4.25	6.16
[1]	4-chlorophenol	4.10	triethylamine	7.50	14.01	13.06
[1]	4-tert-Butylyphenol	3.60	N,N-dimethylacetamide	8.50	12.96	13.81
[1]	4-chlorophenol	4.10	diethyl ether	5.30	7.63	6.56
[1]	phenol	3.80	triethylamine	7.50	11.94	11.01
[1]	3-nitrophenol	4.60	diethyl ether	5.30	9.98	11.70
[1]	4-fluorophenol	3.90	1,4-dioxane	4.70	5.07	4.74
[1]	Propan-1-ol	2.60	pyridine N-oxide	9.00	5.76	7.36
[1]	4-nitrophenol	4.70	triethylamine	7.50	18.15	17.69
[1]	1-naphthol	3.80	4-methylpyridine	7.70	12.46	11.18
[1]	phenol	3.80	pyridine N-oxide	9.00	15.84	17.00
Compound	Log P	Solvent	Log P	Solvent		
-----------------------------------	--------	--------------------	--------	---------------		
4-tert-Butylphenol	3.60	tetrahydrofuran	5.90	Ethanol		
Hexafluoropropan-2-ol	4.50	pyridine N-oxide	9.00	tert-Butyl alcohol		
1-naphthol	3.80	pyridine	7.20	1,4-dioxane		
4-fluorophenol	3.90	Hexamethylphosphoramid	10.90	Isopropanol		
tert-Butyl alcohol	2.70	pyridine N-oxide	9.00	1,4-dioxane		
4-tert-Butylphenol	3.60	pyridine	7.20	tert-Butyl alcohol		
2-naphthol	3.90	diethyl ether	5.30	tert-Butyl alcohol		
4-tert-Butylphenol	3.60	pyridine	7.20	tert-Butyl alcohol		
3-trifluoromethylphenol	4.30	Ethyl ethanoate	5.40	tert-Butyl alcohol		
1-naphthol	3.80	diethyl ether	5.30	tert-Butyl alcohol		
2-naphthol	3.90	tetrahydrofuran	5.90	tert-Butyl alcohol		
3-trifluoromethylphenol	4.30	cyclohexanone	6.20	tert-Butyl alcohol		
3-fluorophenol	4.10	diethyl sulphide	3.60	tert-Butyl alcohol		
4-chlorophenol	4.10	pyridine N-oxide	9.00	tert-Butyl alcohol		
4-tert-Butylphenol	3.60	triethylamine	7.50	tert-Butyl alcohol		
1-naphthol	3.80	3-methylpyridine	7.50	tert-Butyl alcohol		
3,5-dichlorophenol	4.50	triethylamine	7.50	tert-Butyl alcohol		
3-nitrophenol	4.60	triethylamine	7.50	tert-Butyl alcohol		
Ethanol	2.70	pyridine N-oxide	9.00	tert-Butyl alcohol		
4-chlorophenol	4.10	pyridine	7.20	tert-Butyl alcohol		
3-trifluoromethylphenol	4.30	diethyl sulphide	3.60	tert-Butyl alcohol		
4-chlorophenol	4.10	1,4-dioxane	4.70	tert-Butyl alcohol		
1-naphthol	3.80	2-methylpyridine	7.60	tert-Butyl alcohol		
phenol	3.80	dibutyl ether	5.00	tert-Butyl alcohol		
phenol	3.80	diethyl sulphide	3.60	tert-Butyl alcohol		
4-fluorophenol	3.90	benzonitrile	4.80	tert-Butyl alcohol		
3-methylphenol	3.70	diethyl ether	5.30	tert-Butyl alcohol		
3-methylphenol	3.70	tetrahydrofuran	5.90	tert-Butyl alcohol		
Methanol	2.90	pyridine N-oxide	9.00	tert-Butyl alcohol		
3-fluorophenol	4.10	dibutyl ether	5.00	tert-Butyl alcohol		
4-fluorophenol	3.90	4-N,N-dimethylaminopyridine	9.30	tert-Butyl alcohol		
4-fluorophenol	3.90	Diethyl chloromethylphosphonate	8.50	tert-Butyl alcohol		
phenol	3.80	Diethyl chloromethylphosphonate	8.50	tert-Butyl alcohol		
2-tert-Butylphenol	3.40	Diethyl isopropylphosphonate	9.10	tert-Butyl alcohol		
4-fluorophenol	3.90	pyridine	7.20	tert-Butyl alcohol		
4-fluorophenol	3.90	3-bromopyridine	6.00	tert-Butyl alcohol		
3-fluorophenol	4.10	pyridine	7.20	tert-Butyl alcohol		
3-fluorophenol	4.10	Ethyl ethanoate	5.40	tert-Butyl alcohol		
1-naphthol	3.80	1,4-dioxane	4.70	tert-Butyl alcohol		
2-naphthol	3.90	1,4-dioxane	4.70	tert-Butyl alcohol		
4-fluorophenol	3.90	dimethyl sulfoxide	8.60	tert-Butyl alcohol		
4-fluorophenol	3.90	N,N-Dimethylformamide	7.70	tert-Butyl alcohol		
4-chlorophenol	4.10	n-butylamine	8.00	tert-Butyl alcohol		
4-methylphenol	3.70	triethylamine	7.50	tert-Butyl alcohol		
[28]	4-methylphenol	3.70	diethyl ether	5.30	5.75	5.67
[28]	4-methylphenol	3.70	tetrahydrofuran	5.90	7.25	7.21
[28]	4-methylphenol	3.70	1,4-dioxane	4.70	4.25	5.98
[28]	4-methylphenol	3.70	Propan-2-one	5.70	6.75	6.46
[28]	4-methylphenol	3.70	cyclohexanone	6.20	8.00	7.28
[28]	4-methylphenol	3.70	tetrahydrothiophene	3.90	2.25	1.84
[3]	butan-1-ol	2.70	cyclohexanone	6.20	2.40	1.50
[31]	Butan-2-ol	2.50	pyridine N-oxide	9.00	4.92	7.02
[29]	4-fluorophenol	3.90	2,2,2-Trifluoroethylamine	4.60	4.80	4.39
[29]	4-fluorophenol	3.90	Benzylamine	7.20	11.82	11.76
[29]	4-fluorophenol	3.90	Cyclopropylamine	6.90	11.01	10.61
[29]	4-fluorophenol	3.90	Pyrrolidine	8.80	16.14	15.74
[29]	4-fluorophenol	3.90	quinuclidine	9.10	16.95	17.19
[29]	4-fluorophenol	3.90	3,5-Dichloropyridine	5.00	5.88	5.82
[29]	4-fluorophenol	3.90	3-Chloropyridine	6.00	8.58	9.27
[29]	4-fluorophenol	3.90	1-Methyl-1H-imidazole	9.10	16.95	17.33
[29]	4-fluorophenol	3.90	Dimethylcyanamide	6.50	9.93	11.47
[29]	4-fluorophenol	3.90	tetrahydrofuran	5.90	8.31	8.94
[29]	4-fluorophenol	3.90	diethyl ether	5.30	6.69	7.12
[29]	4-fluorophenol	3.90	2,2,5,5-tetramethyltetrahydrofuran	6.20	9.12	9.53
[29]	4-fluorophenol	3.90	Propan-2-one	5.70	7.77	8.55
[29]	4-fluorophenol	3.90	Ethyl ethanoate	5.40	6.96	8.06
[29]	4-fluorophenol	3.90	N,N-dimethylacetamide	8.50	15.33	16.39
[29]	4-fluorophenol	3.90	dibutyl sulphoxide	8.70	15.87	19.82
[29]	4-fluorophenol	3.90	N,N-Dimethylthioacetamide	6.00	8.58	8.33
[29]	4-fluorophenol	3.90	tetrahydrothiophene	3.90	2.91	3.31
[29]	4-fluorophenol	3.90	diethyl sulphide	3.60	2.10	2.83
[29]	4-fluorophenol	3.90	dibutyl sulphide	3.60	2.10	2.80
[29]	4-fluorophenol	3.90	1-Fluoropentane	2.90	0.21	0.82
[29]	4-fluorophenol	3.90	1-Chloropentane	2.20	-1.68	-0.59
[29]	4-fluorophenol	3.90	1-Bromopentane	2.30	-1.41	-0.77
[29]	4-fluorophenol	3.90	1-Iodopentane	2.50	-0.87	-1.27
[28]	4-nitrophenol	4.70	n-butylamine	8.00	19.90	18.58
[28]	4-nitrophenol	4.70	1,4-dioxane	4.70	8.35	10.08
[28]	3-Chlorophenol	4.20	N,N-dimethylacetamide	8.50	17.70	15.06
[1]	4-chlorophenol	4.10	morpholine	7.20	13.14	15.52
[1]	3-trifluoromethyl-4-nitrophenol	5.10	triethylamine	7.50	20.91	21.62
[1]	Pentafluorophenol	4.50	pyridine N-oxide	9.00	21.72	21.05
[1]	3,4-dichlorophenol	4.40	triethylamine	7.50	16.08	15.69
[1]	4-cyanophenol	4.60	triethylamine	7.50	17.46	16.94
e) Carbon Tetrachloride

Solvent	α_s	C_a	β_s	C_β
CCl$_4$	1.40	2.58	0.60	2.58

Figure S4e

![Graph showing a linear regression with calculated and experimental values of ΔG^0.]

Table S4e

Reference	Donor	Alpha	Acceptor	Beta	Calc. $-\Delta G^0$	Expt. $-\Delta G^0$
[1]	3-Chlorophenol	4.20	aniline	4.50	4.92	4.22
[1]	3-Chlorophenol	4.20	pyridine	7.20	12.48	9.81
[28]	phenol	3.80	tetrahydrothiophene	3.90	1.92	0.83
[28]	1-naphthol	3.80	toluene	2.20	-2.16	-2.44
[28]	3-trifluoromethylphenol	4.30	tetrahydrothiophene	3.90	3.57	2.63
[29]	4-chlorophenol	4.10	tetrahydrofuran	5.90	8.31	8.22
[28]	4-chlorophenol	4.10	triethylamine	7.50	12.63	12.06
[28]	phenol	3.80	diethyl ether	5.30	6.69	6.12
[28]	1-naphthol	3.80	triethylamine	7.50	10.56	10.49
[32]	4-fluorophenol	3.90	1,4-dioxane	4.70	4.25	5.88
[29]	4-nitrophenol	4.70	triethylamine	7.50	16.77	16.44
[28]	phenol	3.80	pyridine N-oxide	9.00	14.16	14.41
[28]	1-naphthol	3.80	pyridine	7.20	9.84	10.74
[33]	Ethanol	2.70	pyridine N-oxide	9.00	4.92	4.48
[29]	4-chlorophenol	4.10	pyridine	7.20	11.82	11.98
[28]	phenol	3.80	diethyl sulphide	3.60	1.20	0.24
[34]	4-fluorophenol	3.90	benzonitrile	4.80	4.50	4.56
[28]	3-fluorophenol	4.10	dibutyl ether	5.00	5.88	5.96
[28]	4-fluorophenol	3.90	4-N,N-dimethylaminopyridine	9.30	15.75	16.05
[28]	1-naphthol	3.80	triethylamine	7.50	10.56	11.43
[28]	2,2,2-trifluoroethanol	3.70	triethylamine	7.50	9.87	10.56

Free energy calculation for 1:1 Association in CCl$_4$ solvent $C_\alpha = C_\beta = 2.58$ therefore:

$$-\Delta G^0 = \alpha \beta - \alpha_\beta - \alpha_\beta - C_\alpha - C_\beta$$

$$\Delta G^0 = \alpha \beta - \alpha_\beta - \alpha_\beta - 5.16$$

$$\alpha \beta - \alpha_\beta + \alpha_\beta - 6$$

$$= (\alpha - \alpha_\beta)(\beta - \beta_\beta) - 6$$
	Compound	X	Y	Z			
29	phenol	3.80	N	pyridine			
29	Ethanol	2.70			7.20	9.84	9.64
29	2,2,2-trifluoroethanol	3.70			8.50	4.27	3.92
29	2,2,2-trifluoroethanol	3.70			8.60	12.17	11.40
29	2,2,2-trifluoroethanol	3.70			8.60	12.40	12.13
29	2,2,2-trifluoroethanol	3.70			10.90	17.69	17.63
29	2,2,2-trifluoroethanol	3.70				5.30	4.18
29	2,2,2-trifluoroethanol	3.70				5.73	4.93
29	2,2,2-trifluoroethanol	3.70				7.70	9.20
29	phenol	3.80			4.60	3.60	3.66
29	phenol	3.80			5.30	5.28	5.40
29	phenol	3.80			8.50	12.96	12.14
29	phenol	3.80			5.70	6.24	5.89
29	phenol	3.80			8.60	13.20	13.15
29	Methanol	2.90			5.70	1.65	1.03
29	Methanol	2.90			10.10	8.25	9.20
29	Ethanol	2.70			5.20	-0.02	-1.11
29	Octan-1-ol	2.70			5.30	0.11	-0.65
29	tert-Butyl alcohol	2.70			5.70	0.63	-1.34
29	propan-2-ol	2.70			8.50	4.27	2.60
29	4-fluorophenol	3.90			6.00	7.50	7.72
29	4-fluorophenol	3.90			8.80	14.50	13.98
29	Methanol	2.90			5.30	1.05	0.41
29	Methanol	2.90			5.10	0.75	0.78
29	Methanol	2.90			10.70	9.15	9.05
29	Methanol	2.90			8.80	6.30	6.69
29	Methanol	2.90			8.60	6.00	5.24
29	Methanol	2.90			7.70	4.65	4.22
29	4-chlorophenol	4.10			8.50	15.33	14.39
29	4-fluorophenol	3.90			4.80	4.50	4.44
29	4-fluorophenol	3.90			3.60	1.50	0.65
29	propan-2-ol	2.70			2.58	7.20	2.09
29	propan-2-ol	2.70			5.30	0.11	-0.55
29	tert-Butyl alcohol	2.70			3.23	7.70	2.64
29	tert-Butyl alcohol	2.70			2.58	7.20	0.83
29	tert-Butyl alcohol	2.70			5.30	0.11	-0.74
29	tert-Butyl alcohol	2.70			2.20	-3.92	-4.13
29	phenol	3.80			4.80	4.08	3.82
29	phenol	3.80			7.70	11.04	10.71
29	phenol	3.80			6.80	8.88	8.20
29	phenol	3.80			5.40	5.52	5.44
29	phenol	3.80			7.90	11.52	11.39
29	phenol	3.80			8.00	11.76	11.52
29	phenol	3.80			4.50	3.36	3.46
29	phenol	3.80			4.70	3.84	5.18
-----	-----	-----	-----				
[28]	phenol	3.80	Ethyl ethanoate	5.40	5.52	5.56	
[28]	phenol	3.80	anisole	3.30	0.48	0.00	
[28]	phenol	3.80	tetrahydrofuran	5.90	6.72	6.87	
[28]	phenol	3.80	acetonitrile	5.10	4.80	4.89	
[28]	phenol	3.80	benzoyl chloride	2.50	-1.44	-2.09	
[28]	phenol	3.80	acetoacetate	2.50	-1.44	-2.21	
[28]	4-fluorophenol	3.90	1-methyl-2-pyridine	8.80	14.50	13.58	
[28]	4-fluorophenol	3.90	anisole	3.30	0.75	2.06	
[28]	pentachlorophenol	3.60	triphenylphosphate	10.10	14.90	15.87	
[28]	pentachlorophenol	3.60	Propan-2-one	5.70	5.22	5.38	
[28]	pentachlorophenol	3.60	triethyl phosphate	8.80	12.04	12.25	
[31]	4-fluorophenol	3.90	triphenylphosphate	10.10	17.75	17.12	
[28]	4-fluorophenol	3.90	diethyl ether	7.10	11.25	11.53	
[28]	1-naphthol	3.80	triphenylphosphate	10.10	16.80	17.20	
[28]	Methanol	2.90	pyridine	7.20	3.90	2.72	
[28]	Ethanol	2.70	Propan-2-one	5.70	0.63	0.45	
[28]	2,2,2-trifluoroethanol	3.70	Ethyl ethanoate	5.40	5.04	4.79	
[28]	Hexafluoropropan-2-ol	4.50	1,4-dioxane	4.70	6.71	8.84	
[28]	tert-Butyl alcohol	2.70	Ethyl ethanoate	5.40	0.24	-0.43	
[32]	4-fluorophenol	3.90	(Me2N)2C=NH	10.20	18.00	18.31	
[28]	3-fluorophenol	4.10	pyridine	7.20	11.82	11.55	
[28]	3-fluorophenol	4.10	dimethyl sulfoxide	8.60	15.60	15.24	
[28]	3-fluorophenol	4.10	Ethyl ethanoate	5.40	6.96	7.31	
[28]	Propan-1-ol	2.60	pyridine	7.20	1.92	1.46	
[28]	tert-Butyl alcohol	2.70	Propan-2-one	5.70	0.63	0.00	
[28]	4-Methoxyphenol	3.70	triethylamine	7.50	9.87	9.32	
[28]	2-isopropylphenol	3.60	tetrahydrofuran	5.90	5.66	5.15	
[28]	2-tert-Butylphenol	3.40	N,N-dimethylacetamide	8.50	9.80	10.68	
[28]	3-methylphenol	3.70	pyridine	7.20	9.18	8.94	
[28]	2-isopropylphenol	3.60	dibutyl ether	5.00	3.68	2.76	
[28]	2-tert-Butylphenol	3.40	dibutyl ether	5.00	2.80	2.67	
[28]	2-Methylphenol	3.50	dibutyl ether	5.00	3.24	2.40	
[28]	2-Methylphenol	3.50	diethyl ether	5.30	3.87	3.07	
[28]	2-Methylphenol	3.50	tetrahydrofuran	5.90	5.13	4.28	
[28]	4-nitrophenol	4.70	benzene	2.00	-1.38	-1.70	
[28]	4-nitrophenol	4.70	aniline	4.50	6.87	6.96	
[28]	butan-1-ol	2.70	pyridine	7.20	2.58	2.37	
[28]	3-trifluoromethylphenol	4.30	N,N-dimethylacetamide	8.50	16.91	16.46	
[28]	phenol	3.80	tripropylamine	6.60	8.40	8.68	
	Compound	pKb					
-----	---------------------------------	------	--------	--------			
28	1-naphthol	3.80	benzene	2.00			
28	1-naphthol	3.80	mesitylene	2.70			
1	4-tert-Butylphenol	3.60	N,N-dimethylacetamide	8.50			
28	2-naphthol	3.90	p-xylene	2.40			
1	4-tert-Butylphenol	3.60	pyridine	7.20			
28	2-naphthol	3.90	m-xylene	2.40			
28	2-naphthol	3.90	o-xylene	2.40			
1	3,5-dichlorophenol	4.50	triethylamine	7.50			
1	3,5-dichlorophenol	4.50	aniline	4.50			
28	2-naphthol	3.90	benzene	2.00			
36	Ethanol	2.70	1-methyl-2-pyrrolidone	8.30			
35	Methanol	2.90	triethylamine	7.50			
33	Ethanol	2.70	triethylamine	7.50			
31	4-fluorophenol	3.90	cyclohexyl fluoride	3.30			
37	4-fluorophenol	3.90	Dichloromethane	2.00			
37	4-fluorophenol	3.90	1,2-Dichloroethane	2.40			
37	4-fluorophenol	3.90	cyclohexyl chloride	2.50			
37	4-fluorophenol	3.90	cyclohexyl bromide	2.50			
37	4-fluorophenol	3.90	cyclohexyl iodide	2.30			
38	4-fluorophenol	3.90	benzene	2.00			
38	4-fluorophenol	3.90	Octan-1-ol	5.30			
28	4-fluorophenol	3.90	Chlorobenzene	1.40			
29	4-fluorophenol	3.90	pyridine	7.20			
32	4-fluorophenol	3.90	ammonia	6.80			
38	4-fluorophenol	3.90	trimethylamine	7.80			
38	4-fluorophenol	3.90	tripropylamine	6.60			
38	4-fluorophenol	3.90	tributylamine	6.80			
31	4-fluorophenol	3.90	1-methyl-2-pyrrolidone	8.30			
38	4-fluorophenol	3.90	methanol	4.80			
38	4-fluorophenol	3.90	Ethanol	5.20			
38	4-fluorophenol	3.90	water	4.50			
32	4-fluorophenol	3.90	pyrimidine	5.40			
2	2,2,2-Trifluoro-1,1-bis(trifluoromethyl)ethanol	4.90	Tributylphosphine oxide	10.70			
36	Butan-2-ol	2.50	1-methyl-2-pyrrolidone	8.30			
39	4-fluorophenol	3.90	Tetramethylene sulfone	6.30			
28	phenol	3.80	Diphenyl Sulfone	5.90			
39	4-fluorophenol	3.90	Diphenyl Sulfone	5.90			
39	4-fluorophenol	3.90	Dimethyl Sulfone	6.20			
28	phenol	3.80	Dibutyl Sulfone	6.40			
39	4-fluorophenol	3.90	Dibutyl Sulfone	6.40			
36	4-bromophenol	4.10	1-methyl-2-pyrrolidone	8.30			
29	4-chlorophenol	4.10	1-methyl-2-pyrrolidone	8.30			
36	1-naphthol	3.80	1-methyl-2-pyrrolidone	8.30			
29	4-Methoxyphenol	3.70	1-methyl-2-pyrrolidone	8.30			
29	phenol	3.80	1-methyl-2-pyrrolidone	8.30			
36	4-methylphenol	3.70	1-methyl-2-pyrrolidone	8.30			
---------------	----------------	----------------	--------	--------			
[36]	pentachlorphenol	3.60	1-methyl-2-pyrrolidone	8.30	10.94	11.58	
[36]	Hexafluoropropan-2-ol	4.50	1-methyl-2-pyrrolidone	8.30	17.87	17.69	
[36]	2,2,2-trifluoroethanol	3.70	1-methyl-2-pyrrolidone	8.30	11.71	11.30	
[29]	phenol	3.80	Nitrobenzene	3.70	1.44	3.27	
[29]	phenol	3.80	cyclohexanone	6.20	7.44	6.66	
[29]	phenol	3.80	Trimethyl phosphate	8.50	12.96	12.53	
[29]	phenol	3.80	2,6-dimethylpyridine	7.80	11.28	10.79	
[29]	phenol	3.80	2,4,6-trimethylpyridine	8.10	12.00	11.66	
[29]	phenol	3.80	1,1,3,3-Tetramethylurea	8.50	12.96	12.17	
[29]	phenol	3.80	4-methylpyridine	7.70	11.04	10.39	
[29]	4-fluorophenol	3.90	acetonitrile	5.10	5.25	5.13	
[31]	4-fluorophenol	3.90	Ethyl ethanoate	5.40	6.00	6.52	
[29]	4-fluorophenol	3.90	cyclohexanone	6.20	8.00	7.53	
[29]	4-fluorophenol	3.90	diethyl ether	5.30	5.75	5.76	
[31]	4-fluorophenol	3.90	Trimethyl phosphate	8.50	13.75	14.12	
[31]	4-fluorophenol	3.90	tetrahydrofuran	5.90	7.25	7.42	
[29]	4-fluorophenol	3.90	dimethyl sulfoxide	8.60	14.00	14.43	
[40]	4-fluorophenol	3.90	1,1,3,3-Tetramethylurea	8.50	13.75	13.92	
[29]	4-fluorophenol	3.90	N,N-dimethylaniline	4.20	3.00	2.57	
[40]	4-fluorophenol	3.90	N,N-Dimethylformamide	7.70	11.75	11.98	
[31]	4-fluorophenol	3.90	N,N-dimethylethylacetamide	8.50	13.75	13.82	
[29]	4-fluorophenol	3.90	Hexamethylphosphoramide	10.90	19.75	20.31	
[31]	4-fluorophenol	3.90	4-methylpyridine	7.70	11.75	11.92	
[29]	4-fluorophenol	3.90	triethylamine	7.50	11.25	11.01	
[29]	4-chlorophenol	4.10	Ethyl ethanoate	5.40	6.96	6.84	
[29]	4-chlorophenol	4.10	Propan-2-one	5.70	7.77	7.90	
[29]	4-chlorophenol	4.10	dimethyl sulfoxide	8.60	15.60	15.42	
[29]	4-chlorophenol	4.10	1,1,3,3-Tetramethylurea	8.50	15.33	14.97	
[29]	4-chlorophenol	4.10	N,N-Dimethylformamide	7.70	13.17	12.30	
[29]	4-chlorophenol	4.10	Hexamethylphosphoramide	10.90	21.81	21.59	
[29]	4-bromophenol	4.10	cyclohexanone	6.20	9.12	8.12	
[29]	4-bromophenol	4.10	dimethyl sulfoxide	8.60	15.60	15.80	
[29]	4-bromophenol	4.10	1,1,3,3-Tetramethylurea	8.50	15.33	15.15	
[29]	4-bromophenol	4.10	N,N-dimethylethylacetamide	8.50	15.33	14.68	
[29]	4-bromophenol	4.10	Hexamethylphosphoramide	10.90	21.81	22.39	
[29]	4-bromophenol	4.10	pyridine	7.20	11.82	11.84	
[29]	4-bromophenol	4.10	triethylamine	7.50	12.63	12.41	
[29]	4-iiodophenol	4.10	dimethyl sulfoxide	8.60	15.60	16.12	
[29]	4-iiodophenol	4.10	1,1,3,3-Tetramethylurea	8.50	15.33	15.16	
[29]	4-iiodophenol	4.10	1-methyl-2-pyrrolidone	8.30	14.79	15.27	
[29]	4-iiodophenol	4.10	Hexamethylphosphoramide	10.90	21.81	22.56	
[29]	4-iiodophenol	4.10	pyridine	7.20	11.82	11.03	
[29]	4-iiodophenol	4.10	triethylamine	7.50	12.63	12.96	
[29]	3-methylphenol	3.70	cyclohexanone	6.20	6.88	5.98	
[29]	3-methylphenol	3.70	dimethyl sulfoxide	8.60	12.40	12.41	
[29]	3-methylphenol	3.70	1,1,3,3-Tetramethylurea	8.50	12.17	11.58	
-------	------------	-------	------------	-------			
[28]	3-methylphenol	3.70	N,N-dimethylacetamide	8.50			
[29]	3-methylphenol	3.70	1-methyl-2-pyrrolidone	8.30			
[29]	3-methylphenol	3.70	Hexamethylphosphoramide	10.90			
[29]	3-methylphenol	3.70	triethylamine	7.50			
[29]	4-Methoxyphenol	3.70	Propan-2-one	5.70			
[29]	4-Methoxyphenol	3.70	cyclohexanone	6.20			
[29]	4-Methoxyphenol	3.70	dimethyl sulphoxide	8.60			
[29]	4-Methoxyphenol	3.70	1,1,3,3-Tetramethyleurea	8.50			
[29]	4-Methoxyphenol	3.70	N,N-dimethylacetamide	8.50			
[29]	4-Methoxyphenol	3.70	Hexamethylphosphoramide	10.90			
[29]	4-Methoxyphenol	3.70	pyridine	7.20			
[29]	4-nitrophenol	4.70	Nitrobenzene	3.70			
[29]	4-nitrophenol	4.70	dimethyl sulphoxide	8.60			
[29]	4-nitrophenol	4.70	1,1,3,3-Tetramethyleurea	8.50			
[28]	4-nitrophenol	4.70	N,N-dimethylacetamide	8.50			
[29]	4-nitrophenol	4.70	1-methyl-2-pyrrolidone	8.30			
[29]	Methanol	2.90	Ethyl ethanoate	5.40			
[28]	Methanol	2.90	Trimethyl phosphate	8.50			
[29]	Methanol	2.90	2,6-dimethylpyridine	7.80			
[29]	Methanol	2.90	2,4,6-trimethylpyridine	8.10			
[29]	Methanol	2.90	Hexamethylphosphoramide	10.90			
[29]	Methanol	2.90	4-methylpyridine	7.70			
[29]	Ethanol	2.70	Ethyl ethanoate	5.40			
[29]	Ethanol	2.70	diethyl ether	5.30			
[29]	Ethanol	2.70	1,1,3,3-Tetramethyleurea	8.50			
[29]	Ethanol	2.70	N,N-Dimethylformamide	7.70			
[29]	Ethanol	2.70	Hexamethylphosphoramide	10.90			
[29]	Ethanol	2.70	pyridine	7.20			
[29]	butan-1-ol	2.70	Propan-2-one	5.70			
[29]	butan-1-ol	2.70	cyclohexanone	6.20			
[28]	butan-1-ol	2.70	diethyl ether	5.30			
[28]	butan-1-ol	2.70	tetrahydrofuran	5.90			
[28]	butan-1-ol	2.70	triethylamine	7.50			
[29]	tert-Butyl alcohol	2.70	Hexamethylphosphoramide	10.90			
[29]	2,2,2-trifluoroethanol	3.70	acetonitrile	5.10			
[29]	2,2,2-trifluoroethanol	3.70	Trimethyl phosphate	8.50			
[29]	2,2,2-trifluoroethanol	3.70	2,4,6-trimethylpyridine	8.10			
[29]	2,2,2-trifluoroethanol	3.70	1,1,3,3-Tetramethyleurea	8.50			
[29]	2,2,2-trifluoroethanol	3.70	pyridine	7.20			
[29]	Hexafluoropropan-2-ol	4.50	acetonitrile	5.10			
[29]	Hexafluoropropan-2-ol	4.50	Ethyl ethanoate	5.40			
[29]	Hexafluoropropan-2-ol	4.50	Propan-2-one	5.70			
[29]	Hexafluoropropan-2-ol	4.50	diethyl ether	5.30			
[29]	Hexafluoropropan-2-ol	4.50	tetrahydrofuran	5.90			
[29]	Hexafluoropropan-2-ol	4.50	2,4,6-trimethylpyridine	8.10			
[29]	Hexafluoropropan-2-ol	4.50	dimethyl sulphoxide	8.60			

S21
[29]	Hexafluoropropan-2-ol	4.50	1,1,3,3-Tetramethylurea	8.50	18.49	17.77
[29]	Hexafluoropropan-2-ol	4.50	N,N-dimethylacetamide	8.50	18.49	18.15
[29]	Hexafluoropropan-2-ol	4.50	Hexamethylphosphoramide	10.90	25.93	24.93
[29]	Hexafluoropropan-2-ol	4.50	pyridine	7.20	14.46	15.88
[31]	4-fluorophenol	3.90	quinuclidine	9.10	15.25	15.22
[28]	Methanol	2.90	tributylamine	6.80	3.30	3.46
[28]	Methanol	2.90	tripropylamine	6.60	3.00	3.00
[28]	Methanol	2.90	3-bromopyridine	6.00	2.10	1.45
[28]	Methanol	2.90	2-methylpyridine	7.60	4.50	2.76
[28]	Methanol	2.90	1,4-dioxane	4.70	0.15	1.00
[28]	Ethanol	2.70	1,4-dioxane	4.70	-0.67	0.13
[28]	2,2,2-trifluoroethanol	3.70	1,4-dioxane	4.70	3.43	4.60
[28]	Propan-1-ol	2.60	triethylamine	7.50	2.28	1.72
[28]	Butan-2-ol	2.50	triethylamine	7.50	1.59	1.30
[28]	Butan-2-ol	2.50	pyridine	7.20	1.26	1.87
[28]	phenol	3.80	dibutyl ether	5.00	4.56	4.56
[28]	phenol	3.80	tetrahydrofuran	5.80	6.48	6.43
[28]	phenol	3.80	1,4-dioxane	4.70	3.84	3.89
[28]	phenol	3.80	n-hexylamine	7.70	11.04	10.73
[28]	4-chlorophenol	4.10	1,4-Diazabicyclo[2.2.2]octane	8.90	16.41	18.41
[31]	4-fluorophenol	3.90	tetrahydrofuran	5.80	7.00	7.12
[41]	4-fluorophenol	3.90	dibutyl ether	5.00	5.00	5.02
[41]	4-fluorophenol	3.90	1,3-Dioxolane	4.10	2.75	2.57
[32]	4-fluorophenol	3.90	1-Methyl-1H-imidazole	9.10	15.25	15.52
[31]	4-fluorophenol	3.90	1-Methylpyrrolidine	7.90	12.25	12.85
[42]	4-fluorophenol	3.90	Dimethylcyanamide	6.50	8.75	8.90
[42]	4-fluorophenol	3.90	propionitrile	5.20	5.50	5.48
[31]	4-fluorophenol	3.90	chloroacetonitrile	3.90	2.25	2.42
[42]	4-fluorophenol	3.90	3,5-Dichloropyridine	5.00	5.00	4.85
[42]	4-fluorophenol	3.90	3-Chloropyridine	6.00	7.50	7.47
[42]	4-fluorophenol	3.90	3-Fluoropyridine	6.10	7.75	7.70
[42]	4-fluorophenol	3.90	2-methylpyridine	7.60	11.50	11.58
[31]	4-fluorophenol	3.90	3-methylpyridine	7.50	11.25	11.52
[42]	4-fluorophenol	3.90	Benzylamine	7.20	10.50	10.73
[31]	4-fluorophenol	3.90	N,N-Dimethylbenzamide	8.00	12.50	12.92
[31]	4-fluorophenol	3.90	Methyl ethanoate	4.70	4.25	5.92
[43]	4-fluorophenol	3.90	Nitrobenzene	3.70	1.75	1.71
[31]	4-fluorophenol	3.90	N,N-Dimethylthioacetamide	6.00	7.50	6.92
[44]	4-fluorophenol	3.90	cyclopentanone	5.90	7.25	7.25
[44]	4-fluorophenol	3.90	3-Methylbutan-2-one	5.70	6.75	6.85
[44]	4-fluorophenol	3.90	Propan-2-one	5.70	6.75	6.73
[44]	4-fluorophenol	3.90	Pentan-3-one	5.60	6.50	6.50
[44]	4-fluorophenol	3.90	acetophenone	5.50	6.25	6.33
[44]	4-fluorophenol	3.90	benzophenone	5.40	6.00	6.10
[45]	4-fluorophenol	3.90	2,4,6-trimethylpyridine	8.10	12.75	13.06
[31]	4-fluorophenol	3.90	2,6-dimethylpyridine	7.80	12.00	11.92
31	4-fluorophenol	3.90	2-Chloropyridine	5.40	6.00	6.12	
45	4-fluorophenol	3.90	2-Fluoropyridine	5.20	5.50	5.42	
37	4-fluorophenol	3.90	1,1,1-Trichloroethane	1.50	-3.75	-3.99	
46	4-fluorophenol	3.90	isopropylamine	8.00	12.50	12.67	
31	4-fluorophenol	3.90	2,2,2-Trifluoroethylamine	4.60	4.00	4.35	
32	4-fluorophenol	3.90	p-xylene	2.40	-1.50	-1.71	
32	4-fluorophenol	3.90	tetrahydrothiophene	3.90	2.25	1.71	
32	4-fluorophenol	3.90	aniline	4.50	3.75	3.19	
31	4-fluorophenol	3.90	pyridine N-oxide	9.00	15.00	15.52	
32	4-fluorophenol	3.90	Triethylphosphine oxide	10.10	17.75	18.03	
28	phenol	3.80	dibutyl sulfoxide	8.70	13.44	13.34	
3	Propan-1-ol	2.60	Propan-1-ol	5.30	-0.36	0.55	
3	propan-2-ol	2.70	Propan-2-ol	5.50	0.37	-0.67	
3	butan-1-ol	2.70	cyclopentanone	5.90	0.89	1.07	
28	phenol	3.80	cyclopentanone	5.90	6.72	6.69	
28	phenol	3.80	Triethylphosphine oxide	10.10	16.80	18.83	
3	phenol	3.80	Trimethylphosphine oxide	10.70	18.24	18.31	
28	Methanol	2.90	triphenylphosphine oxide	10.10	8.25	7.53	
29	Methanol	2.90	Diethyl ethylphosphonate	9.20	6.90	6.97	
29	Methanol	2.90	Diethyl chloromethylphosphonate	8.50	5.85	5.82	
3	Methanol	2.90	m-xylene	2.40	-3.30	-3.87	
3	Methanol	2.90	mesitylene	2.70	-2.85	-3.54	
3	Methanol	2.90	Chlorobenzene	1.40	-4.80	-4.54	
3	2-isopropylphenol	3.60	nitromethane	3.70	0.82	0.45	
3	Methanol	2.90	nitromethane	3.70	-1.35	-3.99	
3	2-isopropylphenol	3.60	acetophenone	5.50	4.78	4.68	
3	2-isopropylphenol	3.60	benzophenone	5.40	4.56	3.67	
3	2-isopropylphenol	3.60	diethyl ether	5.30	4.34	3.37	
3	2-isopropylphenol	3.60	1,4-dioxane	4.70	3.02	4.56	
35	Methanol	2.90	benzene	2.00	-3.90	-4.21	
35	Methanol	2.90	Ethylamine	7.90	4.95	4.71	
35	Methanol	2.90	Methylamine	7.80	4.80	4.38	
35	Methanol	2.90	diethylamine	7.90	4.95	4.41	
35	Methanol	2.90	trimethylamine	7.80	4.80	3.62	
35	Methanol	2.90	quinuclidine	9.10	6.75	5.74	
35	Methanol	2.90	3,5-Dichloropyridine	5.00	0.60	-1.02	
35	Methanol	2.90	3-Fluoropyridine	6.10	2.25	0.85	
35	Methanol	2.90	3,5-Dimethylpyridine	8.00	5.10	3.64	
35	Methanol	2.90	1,3-Dioxolane	4.10	-0.75	-0.51	
35	Methanol	2.90	tetrahydrofuran	5.90	1.95	0.75	
35	Methanol	2.90	tetrahydrothiophene	3.90	-1.05	-2.00	
35	Methanol	2.90	cyclohexyl fluoride	3.30	-1.95	-2.37	
35	Methanol	2.90	cyclohexyl chloride	2.50	-3.15	-2.80	
31	4-fluorophenol	3.90	dibutyl sulfoxide	8.70	14.25	15.42	
31	4-fluorophenol	3.90	toluene	2.20	-2.00	-1.98	
31	4-fluorophenol	3.90	mesitylene	2.70	-0.75	-1.28	
	Compound 1	Compound 2	Compound 3	Compound 4			
---	-----------------------------	-----------------------------	-----------------------------	-----------------------------			
[31]	4-fluorophenol	Hexamethylbenzene	3.90	3.10			
[31]	4-fluorophenol	n-butylamine	8.00	12.50			
[31]	4-fluorophenol	di-n-butylamine	7.90	12.25			
[31]	4-fluorophenol	diethylamine	7.90	12.25			
[31]	4-fluorophenol	1,4-Diazabicyclo[2.2.2]octane	8.90	14.75			
[31]	4-fluorophenol	cyclohexylidimethylamine	7.80	12.00			
[31]	4-fluorophenol	3,5-Dimethylpyridine	8.00	12.50			
[31]	4-fluorophenol	2,2,5,5-tetramethyltetrahydrofuran	6.20	8.00			
[31]	4-fluorophenol	Ethyl formate	4.50	3.75			
[31]	4-fluorophenol	Methyl formate	4.50	3.75			
[31]	4-fluorophenol	nitromethane	3.70	1.75			
[31]	4-fluorophenol	Trimethylphosphine oxide	10.70	19.25			
[31]	4-fluorophenol	Tributylphosphine oxide	10.70	19.25			
[31]	4-fluorophenol	dimethyl sulphide	3.50	1.25			
[31]	4-fluorophenol	dibutyl sulphide	3.60	1.50			
[31]	4-fluorophenol	1-Fluoropentane	2.90	-0.25			
[31]	4-fluorophenol	1-Chloropentane	2.20	-2.00			
[31]	4-fluorophenol	1-Bromopentane	2.30	-1.75			
[31]	4-fluorophenol	1-Lodopentane	2.50	-1.25			
[28]	Methanol	benzophenone	5.40	1.20			
[28]	Ethanol	benzophenone	5.40	0.24			
[28]	2,2,2-trifluoroethanol	tetrahydrofuran	5.90	6.19			
[28]	Propan-1-ol	diethyl ether	5.30	-0.36			
[28]	Propan-1-ol	Propan-2-one	5.70	0.12			
[28]	Propan-1-ol	benzophenone	5.40	-0.24			
[28]	butan-1-ol	1,4-Diazabicyclo[2.2.2]octane	8.90	4.79			
[28]	tert-Butyl alcohol	benzophenone	5.40	0.24			
[28]	phenol	benzophenone	5.40	0.24			
[28]	phenol	3-Methylbutan-2-one	5.70	6.24			
[28]	phenol	propionitrile	5.20	5.04			
[28]	phenol	chloroacetonitrile	3.90	1.92			
[28]	phenol	Dimethylcyanamide	6.50	8.16			
[28]	phenol	Diethyl chloromethylphosphonate	8.50	12.96			
[28]	phenol	Diethyl isopropylphosphonate	9.10	14.40			
[28]	phenol	Diethyl ethylphosphonate	9.20	14.64			
[28]	phenol	toluene	2.20	-2.16			
[28]	phenol	o-xylene	2.40	-1.68			
[28]	phenol	p-xylene	2.40	-1.68			
[28]	phenol	mesitylene	2.70	-0.96			
[28]	phenol	Hexamethylbenzene	3.10	0.00			
[28]	4-methylphenol	Hexamethylbenzene	3.10	-0.25			
[28]	phenol	Tetramethylene sulfone	6.30	7.68			
[28]	phenol	1,4-Diazabicyclo[2.2.2]octane	8.90	13.92			
[28]	propan-2-ol	2-methylpyridine	7.60	3.10			
[28]	propan-2-ol	3-methylpyridine	7.50	2.97			
[28]	propan-2-ol	4-methylpyridine	7.70	3.23			

S24
	Name	Log P	Octanol/Water	Octanol/Carbon Toluene	Octanol/Gasoline	Octanol/Kerosene
[28]	propan-2-ol	2.70	2-Chloropyridine	5.40	0.24	-2.38
[28]	propan-2-ol	2.70	2-Fluoropyridine	5.20	-0.02	-2.51
[28]	propan-2-ol	2.70	3-Chloropyridine	6.00	1.02	-1.84
[28]	propan-2-ol	2.70	2,6-dimethylpyridine	7.80	3.36	0.54
[28]	propan-2-ol	2.70	3,5-Dimethylpyridine	8.00	3.62	0.59
[28]	propan-2-ol	2.70	2,4,6-trimethylpyridine	8.10	3.75	0.92
[28]	4-fluorophenol	3.90	Cyclopropylamine	6.90	9.75	9.37
[28]	3-fluorophenol	4.10	N,N-dimethylacetamide	8.50	15.33	14.64
[16]	4-methylphenol	3.70	triethlyamine	7.50	9.87	9.72
[28]	4-methylphenol	3.70	N,N-dimethylacetamide	8.50	10.12	10.88
[16]	4-methylphenol	3.70	pyridine	7.20	9.18	8.80
[16]	4-methylphenol	3.70	aniline	4.50	2.97	2.48
[28]	4-methylphenol	3.70	benzene	2.00	-2.78	-3.26
[28]	4-methylphenol	3.70	toluene	2.20	-2.32	-2.89
[28]	4-methylphenol	3.70	m-xylene	2.40	-1.86	-2.26
[28]	4-methylphenol	3.70	o-xylene	2.40	-1.86	-2.22
[28]	4-methylphenol	3.70	p-xylene	2.40	-1.86	-2.05
[28]	4-methylphenol	3.70	mesitylene	2.70	-1.17	-1.63
[28]	3-nitrophenol	4.60	N,N-dimethylacetamide	8.50	19.28	18.41
[28]	2-Methylphenol	3.50	benzene	2.00	-3.06	-3.39
[28]	2-Methylphenol	3.50	mesitylene	2.70	-1.59	-1.72
[28]	1-naphthol	3.80	p-xylene	2.40	-1.68	-1.68
[28]	2-tert-Butylphenol	3.40	N-Methylacetamide	8.20	9.20	9.62
[28]	2-tert-Butylphenol	3.40	tetrahydrofuran	5.90	4.60	5.02
[28]	4-chlorophenol	4.10	dibutyl ether	5.00	5.88	6.28
[28]	4-chlorophenol	4.10	benzenophenone	5.40	6.96	6.69
[28]	4-chlorophenol	4.10	dibutyl sulphide	3.60	2.10	2.51
[28]	4-Methoxyphenol	3.70	benzenophenone	5.40	5.04	5.02
[28]	pentachlorophenol	3.60	N,N-Dimethylformamide	7.70	9.62	9.62
[28]	pentachlorophenol	3.60	N,N-diethylacetamide	8.50	11.38	11.72
[28]	pentachlorophenol	3.60	1-methyl-2-pyridone	8.80	12.04	12.13
[28]	pentachlorophenol	3.60	pyridine	7.20	8.52	11.30
[28]	pentachlorophenol	3.60	2,4,6-trimethylpyridine	8.10	10.50	12.97
[28]	pentachlorophenol	3.60	tetrahydropyran	5.80	5.44	4.60
[28]	pentachlorophenol	3.60	Ethyl ethanoate	5.40	4.56	3.77
[28]	pentachlorophenol	3.60	cyclohexanone	6.20	6.32	5.44
[28]	pentachlorophenol	3.60	Trimethylphosphine oxide	10.70	16.22	17.15
[28]	pentachlorophenol	3.60	Diethyl chloromethylphosphonate	8.50	11.38	11.30
[28]	pentachlorophenol	3.60	Trimethyl phosphate	8.50	11.38	11.30
[28]	pentachlorophenol	3.60	Diethyl ethyolphosphonate	9.20	12.92	12.97
[47]	1-naphthol	3.80	Trimethylphosphine oxide	10.70	18.24	18.71
[28]	phenol	3.80	quinoline	7.30	10.08	9.85
[28]	phenol	3.80	tert-butylamine	8.10	12.00	11.24
[28]	Pentaffluorophenol	4.50	triphenylphosphine oxide	10.10	23.45	21.55
[1]	3,4-dichlorophenol	4.40	triethylamine	7.50	14.70	14.16
[1]	4-cyanophenol	4.60	triethylamine	7.50	16.08	15.57
[28]	4-fluorophenol	3.90	Pyridazine	6.70	9.25	9.41
[38]	4-fluorophenol	3.90	Pyrazine	5.10	5.25	5.25
[36]	3-isopropylphenol	3.70	1-methyl-2-pyrrolidone	8.30	11.71	11.81
[36]	Cyclohexanol	2.60	1-methyl-2-pyrrolidone	8.30	3.24	3.82
[39]	4-fluorophenol	3.90	N,N-Dimethylmethanesulfonamide	5.95	7.37	7.42
[36]	benzyl alcohol	3.00	1-methyl-2-pyrrolidone	8.30	6.32	5.88
[41]	4-fluorophenol	3.90	1,2-Dimethoxyethane	5.30	5.75	5.82
[42]	4-fluorophenol	3.90	Piperidine	8.30	13.25	13.58
[42]	4-fluorophenol	3.90	N-methylpiperidine	7.70	11.75	12.04
[42]	4-fluorophenol	3.90	Quinoline	7.30	10.75	10.78
[42]	4-fluorophenol	3.90	tert-Piperidine	8.10	12.75	12.49
[34]	4-fluorophenol	3.90	N,N-Diethylformamide	7.70	11.75	11.87
[44]	4-fluorophenol	3.90	2,4-Dimethyl-3-pentanone	5.50	6.25	6.16
[44]	4-fluorophenol	3.90	3,3-Dimethyl-2-butanone	5.70	6.75	6.68
[48]	4-fluorophenol	3.90	3,4-Dimethylpyridine	8.00	12.50	12.78
[48]	4-fluorophenol	3.90	4-Methoxyypyridine	7.80	12.00	12.15
[48]	4-fluorophenol	3.90	2-Methoxypyridine	5.30	5.75	5.65
[48]	4-fluorophenol	3.90	2-Cyanopyridine	5.00	5.00	4.85
[46]	4-fluorophenol	3.90	2-Propen-1-amine	7.40	11.00	11.07
[32]	4-fluorophenol	3.90	Morpholine	7.20	10.50	10.61
[35]	Methanol	2.90	Dimethylamine	8.10	5.25	4.44
[31]	4-fluorophenol	3.90	C-hexylamine	8.10	12.75	13.22
[31]	4-fluorophenol	3.90	Dimethylamine	8.10	12.75	12.62
[31]	4-fluorophenol	3.90	N-Methylformamide	7.40	11.00	10.22
[28]	propan-2-ol	2.70	3,4-Dimethylpyridine	8.00	3.62	0.50
[28]	4-cyanophenol	4.60	N,N-Dimethylacetamide	8.50	19.28	18.41
[49]	4-phenylazophenol	4.30	Tributylphosphine oxide	10.70	23.29	22.61
[49]	4-nitrophosphene	4.70	Tributylphosphine oxide	10.70	27.33	28.49
[47]	1-naphthol	3.80	Tri-cyclohexylphosphine oxide	11.30	19.68	21.29
[47]	1-naphthol	3.80	Tri-n-octylphosphine oxide	11.30	19.68	19.84
[47]	1-naphthol	3.80	Tributylphosphine oxide	10.70	18.24	19.39
[47]	1-naphthol	3.80	Triethyl phosphate	8.80	13.68	14.44
[47]	1-naphthol	3.80	Diethyl sulfoxide	8.70	13.44	14.05
[47]	1-naphthol	3.80	N,N-di-n-hexylacetamide	8.40	12.72	13.36
[3]	tert-Butyl alcohol	2.70	Toluene	2.20	-3.92	-4.13
[3]	tert-Butyl alcohol	2.70	o-xylene	2.40	-3.66	-4.72
[3]	tert-Butyl alcohol	2.70	m-xylene	2.40	-3.66	-3.55
[3]	tert-Butyl alcohol	2.70	p-xylene	2.40	-3.66	-4.00
[3]	tert-Butyl alcohol	2.70	Mesitylene	2.70	-3.27	-3.35
[3]	tert-Butyl alcohol	2.70	Hexamethylbenzene	3.10	-2.75	-2.47
f) Dichloromethane

Solvent	α_s	C_α	β_s	C_β
CH2Cl2	1.80	2.16	1.40	1.76

Figure S4f.1 Dichloromethane: All donors

Free energy calculation for 1:1 Association

$$-\Delta G^0 = \alpha \beta - \alpha \beta_s - \alpha_s \beta - C_\alpha - C_\beta$$

Figure S4f.2 Dichloromethane: H-bond acceptors with 4-fluorophenol as acceptor

Free energy calculation for 1:1 Association

$$-\Delta G^0 = \alpha \beta - \alpha \beta_s - \alpha_s \beta - C_\alpha - C_\beta$$

Reference	Donor	Acceptor	Calc. $-\Delta G^0$	Expt. $-\Delta G^0$		
[1]	4-fluorophenol	3.90	1,4-dioxane	4.70	0.49	0.83
[1]	phenol	3.80	pyridine N-oxide	9.00	8.76	10.27
[1]	4-fluorophenol	3.90	Hexamethylphosphoramid	10.90	13.51	13.52
[1]	4-fluorophenol 3.90	N,N-Dimethylformamide 7.70	6.79	6.71		
[1]	4-fluorophenol 3.90	dimethyl sulphoxide 8.60	8.68	8.23		
[1]	4-fluorophenol 3.90	cyclohexanone 6.20	3.64	2.88		
[1]	4-fluorophenol 3.90	triphenylphosphine oxide 10.10	11.83	10.68		
[1]	4-fluorophenol 3.90	diphenyl sulphoxide 7.50	6.37	6.36		
[36]	2,2,2-trifluoroethanol 3.70	1-methyl-2-pyrolidone 8.30	6.67	6.33		
[36]	4-fluorophenol 3.90	1-methyl-2-pyrolidone 8.30	8.05	8.84		
[36]	Hexafluoropropan-2-ol 4.50	1-methyl-2-pyrolidone 8.30	12.19	12.49		
[36]	Butan-2-ol 2.50	1-methyl-2-pyrolidone 8.30	-1.61	-0.34		
[39]	4-fluorophenol 3.90	Diphenyl Sulfone 5.90	3.01	1.26		
[39]	4-fluorophenol 3.90	Dimethyl Sulfone 6.20	3.64	2.68		
[39]	4-fluorophenol 3.90	Diethyl Sulfone 6.40	4.06	3.59		
[29]	4-fluorophenol 3.90	tetrahydrofuran 5.90	3.01	4.29		
[29]	4-fluorophenol 3.90	diethyl ether 5.30	1.75	2.83		
[29]	4-fluorophenol 3.90	2,2,5,5-tetramethyltetrahydrofuran 6.20	3.64	4.97		
[29]	4-fluorophenol 3.90	Ethyl formate 4.50	0.07	0.47		
[29]	4-fluorophenol 3.90	Ethyl ethanoate 5.40	1.96	2.18		
[29]	4-fluorophenol 3.90	N,N-dimethylacetamide 8.50	8.47	8.97		
[29]	4-fluorophenol 3.90	pyridine N-oxide 9.00	9.52	10.87		
[29]	4-fluorophenol 3.90	Trimethyl phosphate 8.50	8.47	7.98		
[29]	4-fluorophenol 3.90	triethyl phosphate 8.80	9.10	7.51		
[36]	Cyclohexanol 2.60	1-methyl-2-pyrolidone 8.30	-0.92	-0.23		
[39]	4-fluorophenol 3.90	N,N-Dimethylmethanesulphonamide 5.95	3.11	1.83		
[18]	3,5,5-Trimethyl-hexanoic acid phenylamide 2.90	Diethyl ethylphosphonate 9.20	2.14	1.31		
[50]	Pentafluorophenol 4.50	water 4.50	1.93	2.40		
[47]	1-naphthol 3.80	Tri-cyclohexylphosphine oxide 11.30	13.36	14.65		
[47]	1-naphthol 3.80	Tri-n-octylphosphine oxide 11.30	13.36	14.44		
[47]	1-naphthol 3.80	Tributylphosphine oxide 10.70	12.16	13.78		
[47]	1-naphthol 3.80	Trimethylphosphine oxide 10.70	12.16	12.87		
[47]	1-naphthol 3.80	triethyl phosphate 8.80	8.36	9.54		
[47]	1-naphthol 3.80	dibutyl sulphoxide 8.70	8.16	9.93		
[47]	1-naphthol 3.80	N,N-di-n-hexylacetamide 8.40	7.56	9.32		
[6]	1-naphthol 3.80	1,1,3,3-Tetramethylurea 8.50	7.76	7.70		
[51]	Indole 3.10	N,N-diethylacetamide 8.30	2.79	1.49		
[51]	Indole 3.10	Ethyl ethanoate 5.40	-1.24	-1.76		
[51]	tert-Butyl alcohol 2.70	N,N-diethylacetamide 8.50	-0.05	-3.06		
[52]	4-fluorophenol 3.90	N,N-Dicyclohexyl-2,2-dimethylpropionamide 7.60	6.58	7.48		
[6]	1-naphthol 3.80	pyridine N-oxide 9.00	8.76	9.35		
[28]	phenol 3.80	pyridine N-oxide 9.00	8.76	10.25		
g) Chloroform

Solvent	α_s	C_α	β_s	C_β
CHCl3	2.10	1.78	1.30	2.11

Figure S4g

Reference	Donor	Acceptor	Calc. ΔG^0 (kJ/mol)	Expt. ΔG^0 (kJ/mol)	
[49]	4-phenylazophenol	Tributylphosphine oxide	10.70	14.06	13.58
[49]	4-nitrophenol	Tributylphosphine oxide	10.70	17.82	17.95
[49]	3-trifluoromethyl-4-nitrophenol	Tributylphosphine oxide	10.70	21.58	21.29
[53]	phenol	Tributylphosphine oxide	10.70	9.36	9.90
[53]	4-Methoxyphenol	Tributylphosphine oxide	10.70	8.42	9.30
[47]	1-naphthol	Tri-cyclohexylphosphine oxide	11.30	10.38	12.17
[47]	1-naphthol	Tri-n-octylphosphine oxide	11.30	10.38	10.89
[47]	1-naphthol	Tributylphosphine oxide	10.70	9.36	10.76
[47]	1-naphthol	Trimethylphosphine oxide	10.70	9.36	10.06
[47]	1-naphthol	triethyl phosphate	8.80	6.13	8.34
[9]	phenol	dimethyl sulphoxide	8.60	5.79	7.15
[51]	tert-Butyl alcohol	N,N-diethylacetamide	8.50	-2.30	-2.33
[6]	phenol	Tri-n-octylphosphine oxide	11.30	10.38	8.03

Free energy calculation for 1:1 Association

$$\Delta G^0 = \alpha \beta - \alpha \beta_s - \alpha_s \beta - C_\alpha - C_\beta$$
h) 1,2-Dichloroethane

Solvent	α_s	C_{α}	β_s	C_{β}
CH$_2$Cl$_2$CH$_2$Cl$_2$	1.70	2.23	1.60	1.41

Figure S4h

```
rmsd = 1.0058  n = 34

y = 1.0241x
R² = 0.8865

Free energy calculation for 1:1 Association
$-\Delta G^0 = \alpha\beta - \alpha'\beta' - \alpha\beta - \alpha'\beta - \alpha \alpha' - \beta \beta'$
```

Table S4h

Reference	Donor	Acceptor	Calc. $-\Delta G^0$ kJ/mol	Expt. $-\Delta G^0$ kJ/mol						
[1]	4-fluorophenol 3.90	1,4-dioxane 4.70	0.46	0.45						
[1]	4-fluorophenol 3.90	Hexamethylphosphoramidê 10.90	14.10	14.55						
[1]	4-fluorophenol 3.90	N,N-Dimethylformamide 7.70	7.06	7.30						
[1]	3-fluorophenol 4.10	dibutyl ether 5.00	1.80	2.96						
[1]	4-fluorophenol 3.90	dimethyl sulphoxide 8.60	9.04	9.43						
[1]	4-fluorophenol 3.90	cyclohexanone 6.20	3.76	2.96						
[1]	4-fluorophenol 3.90	triphenylphosphine oxide 10.10	12.34	11.65						
[1]	3-fluorophenol 4.10	dimethyl sulphoxide 8.60	10.44	10.63						
[1]	3-fluorophenol 4.10	Ethyl ethanoate 5.40	2.76	2.27						
[9]	2-Methoxyphenol 2.40	dimethyl sulphoxide 8.60	-1.46	1.26						
[9]	phenol 3.80	dimethyl sulphoxide 8.60	8.34	8.19						
[54]	3,4-Dimethylphenol 3.60	3-Methyl-4-pyrimidine 7.20	4.28	6.12						
[54]	4-Methoxyphenol 3.70	3-Methyl-4-pyrimidine 7.20	4.84	6.34						
[54]	phenol 3.80	3-Methyl-4-pyrimidine 7.20	5.40	6.82						
[54]	3-fluorophenol 4.10	3-Methyl-4-pyrimidine 7.20	7.08	7.09						
[54]	4-chlorophenol 4.10	3-Methyl-4-pyrimidine 7.20	7.08	7.90						
[54]	4-bromophenol 4.10	3-Methyl-4-pyrimidine 7.20	7.08	8.00						
[54]	3-Chlorophenol 4.20	3-Methyl-4-pyrimidine 7.20	7.64	8.50						
[54]	3-Bromophenol 4.20	3-Methyl-4-pyrimidine 7.20	7.64	8.61						
[54]	3,4-dichlorophenol 4.40	3-Methyl-4-pyrimidine 7.20	8.76	9.42						
[54]	3-nitrophenol 4.60	3-Methyl-4-pyrimidine 7.20	9.88	9.54						
[54]	3,5-dichlorophenol 4.50	3-Methyl-4-pyrimidine 7.20	9.32	10.14						
Reference	Compound	3.60	3.80	3.90	4.10	4.20	4.40	4.60	4.50	3.80
-----------	-------------------------------	------	------	------	------	------	------	------	------	------
[54]	3,4-Dimethylphenol									
[54]	4-Methoxyphenol	3.70								
[54]	phenol	3.80								
[54]	4-Fluorophenol	3.90								
[54]	4-Chlorophenol	4.10								
[54]	3-Chlorophenol	4.20								
[54]	3-Bromophenol	4.20								
[54]	3,4-Dichlorophenol	4.40								
[54]	3-Nitrophenol	4.60								
[54]	3,5-Dichlorophenol	4.50								
[6]	Phenol	3.80								
	Phenol									11.30

Tri-n-octylphosphine oxide
Table S4i

Reference	Donor	Acceptor	Calc. ΔG^0	Expt. ΔG^0	
[1]	4-fluorophenol	3.90 triethylamine	7.50	9.07	10.49
[1]	4-fluorophenol	3.90 1,4-dioxane	4.70	2.07	3.10
[1]	4-fluorophenol	3.90 Hexamethylyphosphoramid	10.90	17.57	17.46
[1]	4-fluorophenol	3.90 N,N-Dimethylformamide	7.70	9.57	9.93
[1]	4-fluorophenol	3.90 benzonitrile	4.80	2.32	2.72
[1]	4-fluorophenol	3.90 4-N,N-dimethylaminopyridine	9.30	13.57	13.58
[1]	4-fluorophenol	3.90 pyridine	7.20	8.32	9.14
[1]	4-fluorophenol	3.90 3-bromopyridine	6.00	5.32	6.16
[1]	4-fluorophenol	3.90 dimethyl sulphoxide	8.60	11.82	12.57
[1]	Methanol	2.90 triethylamine	7.50	2.97	4.36
[5]	4-nitrophenol	4.70 Benzylamine	7.20	12.96	14.50
[5]	4-nitrophenol	4.70 pyridine	7.20	12.96	13.68
[5]	4-nitrophenol	4.70 tributylamine	6.80	11.64	13.81
[5]	4-nitrophenol	4.70 triethylamine	7.50	13.95	16.32
[6]	phenol	3.80 pyridine	7.20	7.74	8.84
[6]	3,4-dichlorophenol	4.40 pyridine	7.20	11.22	12.00
[6]	3-nitrophenol	4.60 pyridine	7.20	12.38	12.64
[6]	2-Chlorophenol	4.00 pyridine	7.20	8.90	6.36
[6]	2,6-Dichlorophenol	3.20 pyridine	7.20	4.26	6.56
[6]	4-nitrophenol-D	4.70 triethylamine	7.50	13.95	16.89
[6]	4-nitrophenol-D	4.70 tributylamine	6.80	11.64	14.09
[6]	4-nitrophenol-D	4.70 pyridine	7.20	12.96	13.97

Figure S4i

Free energy calculation for 1:1 Association

$$-\Delta G^0 = \alpha \beta - \alpha \beta_s - \alpha_s \beta - C_a - C_\beta$$
j) Perfluorohexane

Solvent	α_s	C_α	β_s	C_β
Perfluorohexane	1.2	2.41	0.60	2.41

Figure S4j

Table S4j

Reference	Donor	Acceptor	Calc. $-\Delta G^0$	Expt. $-\Delta G^0$
[1]	2,2,2-trifluoroethanol	dimethyl sulphoxide	8.60	14.75
[1]	2,2,2-trifluoroethanol	Propan-2-one	5.70	7.50
[1]	2,2,2-trifluoroethanol	N,N-Dimethylformamide	7.70	12.50
[1]	2,2,2-trifluoroethanol	Tributylphosphine oxide	10.70	20.00
[1]	2,2,2-trifluoroethanol	dimethyl sulphoxide	8.60	19.73
[1]	2,2,2-trifluoroethanol	Propan-2-one	5.70	13.98
[1]	2,2,2-trifluoroethanol	Methyl formate	4.50	9.54
[1]	2,2,2-trifluoroethanol	Methyl formate	4.50	7.86
[1]	2,2,2-trifluoroethanol	Tributylphosphine oxide	10.70	28.32

$\text{rmsd} = 1.7411 \quad n = 15$

$y = 0.9792x \quad R^2 = 0.927$
References for Section 4

1. Cabot, R., C.A. Hunter, and L.M. Varley, Hydrogen bonding properties of non-polar solvents. Org Biomol Chem, 2010. 8(6): p. 1455-62.

2. Cook, J.L., et al., Solvent effects on hydrogen bonding. Angew Chem Int Ed Engl, 2007. 46(20): p. 3706-9.

3. Murthy, A.S.N. and C.N.R. Rao, Spectroscopic Studies of the Hydrogen Bond. Applied Spectroscopy Reviews, 1968. 2(1): p. 69-191.

4. Góralski, P. and M. Tkaczyk, Calorimetric investigations of association in ternary systems. Part 4.—The influence of solvation on enthalpy of complex formation in phenol-tetrahydrofuran and 2, 6-dimethylphenol–tetrahydrofuran systems. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1987. 83(9): p. 3083-3092.

5. Libuś, W., M. Mecik, and W. Sułek, Solvent effect in hydrogen-bond formation between p-nitrophenol and amines. Journal of Solution Chemistry, 1977. 6(12): p. 865-879.

6. Grigorev, B., Personal communication of data retrieved from HYBOT database (O. Raevsky, V. Grigorev, S. Trepalin, HYBOT program package, Registration by Russian State Patent Agency No. 990090 of 26.02.99).

7. van Brabant-Govaerts, H. and P. Huyskens, Comparative Study of Enthalpies of Hydrogen Bond Formation of Enamino and Amino Ketones. Bulletin des Sociétés Chimiques Belges, 1981. 90(10): p. 987-996.

8. Spencer, J., et al., Solvation effects on the thermodynamics of hydrogen bonded systems. 3. The Journal of Physical Chemistry, 1977. 81(24): p. 2237-2240.

9. Spencer, J., R. Harner, and C. Penturelli, Solvation effects on the thermodynamics of hydrogen bonding systems. The Journal of Physical Chemistry, 1975. 79(23): p. 2488-2493.

10. Spencer, J., et al., Solvation effects on the thermodynamics of hydrogen bonded systems. II. The Journal of Physical Chemistry, 1976. 80(8): p. 811-814.

11. Spencer, J., et al., Solvent effects on amine-n-butyl alcohol hydrogen-bonded complexes. The Journal of Physical Chemistry, 1986. 90(18): p. 4443-4447.

12. Spencer, J., et al., Solvent effects on hydrogen-bond formation. The Journal of Physical Chemistry, 1985. 89(10): p. 1888-1891.

13. Codoñer, A., et al., Determination of the complexes between dimethylphenols and pyridine by a dielectric constant method in non-polar solvents. Journal of the Chemical Society, Perkin Transactions 2, 1986(4): p. 573-578.

14. Werner, R., J. Quinn, and J. Haken, Intermolecular interaction in solution—IV. The influence of solvent on the association of proton donors and acceptors. Spectrochimica Acta Part A: Molecular Spectroscopy, 1982. 38(8): p. 887-897.

15. Prezhdo, V., O. Prezhdo, and E. Vaschenko, Studies on the proton acceptor ability of phosphoryl compounds. Journal of molecular structure, 1996. 385(2): p. 137-144.

16. Adams, H., et al., Quantification of the effect of conformational restriction on supramolecular effective molarities. J Am Chem Soc, 2013. 135(5): p. 1853-63.

17. Henkel, S. and C.A. Hunter, Private Communication. 2021.

18. Chekmeneva, E., et al., Evidence for partially bound states in cooperative molecular recognition interfaces. J Am Chem Soc, 2008. 130(52): p. 17718-25.

19. Chekmeneva, E., et al., Steric desolvation enhances the effective molarities of intramolecular H-bonding interactions. Org Biomol Chem, 2012. 10(30): p. 6022-31.

20. Hunter, C.A., M.C. Misuraca, and S.M. Turega, Comparative analysis of the influence of H-bond strength and solvent on chelate cooperativity in H-bonded supramolecular complexes. Chemical Science, 2012. 3(8): p. 2462-2469.

21. Sun, H., et al., Relationship between chemical structure and supramolecular effective molarity for formation of intramolecular H-bonds. J Am Chem Soc, 2013. 135(35): p. 13129-41.
22. Henkel, S., et al., Enhanced Chelate Cooperativity in Polar Solvents. Journal of the American Chemical Society, 2017. 139(19): p. 6675-6681.
23. Robertson, C.C., et al., Hydrogen bonding vs. halogen bonding: the solvent decides. Chemical Science, 2017. 8(8): p. 5392-5398.
24. Góralski, P. and M. Tkaczyk, Calorimetric investigations of association in ternary systems. Part 4.—The influence of solvation on enthalpy of complex formation in phenol-tetrahydrofuran and 2,6-dimethylphenol–tetrahydrofuran systems. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1987. 83(9): p. 3083-3092.
25. Brandstädt, E., U. George, and A. Kolbe, Hydrogen bonding between pyrrole and amines. Journal of molecular liquids, 1985. 31(2): p. 107-114.
26. Mendel, J., A. Mögel, and A. Kolbe, H/D isotopic effect on the hydrogen bond between tertiary amines and alcohols. Journal of molecular liquids, 1984. 29(2): p. 127-134.
27. Cole, A.R.H., L.H. Little, and A.J. Michell, Solvent effects in infra-red spectra. O • E and S • H stretching vibrations. Spectrochimica Acta, 1965. 21(7): p. 1169-1182.
28. Joesten, M.D. and L.J. Schaad, Hydrogen Bonding. 1974: Marcel Dekker, New York.
29. Laurence, C., et al., An enthalpic scale of hydrogen-bond basicity. 4. Carbon pi bases, oxygen bases, and miscellaneous second-row, third-row, and fourth-row bases and a survey of the 4-fluorophenol affinity scale. J Org Chem, 2010. 75(12): p. 4105-23.
30. Abraham, M.H., et al., Hydrogen-bonding. Part 4. An analysis of solute hydrogen-bond basicity, in terms of complexation constants (log K), using F1 and F2 factors, the principal components of different kinds of basicity. Journal of Physical Organic Chemistry, 1989. 2(3): p. 243-254.
31. Abboud, J.L.M., et al., Studies on amphiprotic compounds. 4. Application of the .alpha.H2 hydrogen-bonding acidity scale to complexation between pyridine N-oxide and monomeric hydrogen-bond donors in cyclohexane. The Journal of Organic Chemistry, 1990. 55(7): p. 2230-2232.
32. Laurence, C. and M. Berthelot, Observations on the strength of hydrogen bonding. Perspectives in Drug Discovery and Design, 2000. 18(1): p. 39-60.
33. Pimental, G.C. and A.L. McClellan, The Hydrogen Bond. 1960, San Francisco: W. H. Freeman.
34. Le Questel, J.-Y., M. Berthelot, and C. Laurence, Can semi-empirical calculations yield reasonable estimates of hydrogen-bonding basicity? The case of nitriles. Journal of the Chemical Society, Perkin Transactions 2, 1997(12): p. 2711-2718.
35. Koné, M., et al., Can Quantum-Mechanical Calculations Yield Reasonable Estimates of Hydrogen-Bonding Acceptor Strength? The Case of Hydrogen-Bonded Complexes of Methanol. The Journal of Physical Chemistry A, 2011. 115(47): p. 13975-13985.
36. Graton, J., et al., Hydrogen-Bond Acidity of OH Groups in Various Molecular Environments (Phenols, Alcohols, Steroid Derivatives, and Amino Acids Structures): Experimental Measurements and Density Functional Theory Calculations. J Phys Chem A, 2013. 117(49): p. 13184-93.
37. Ouvrard, C., Berthelot, M, and Laurence, C, The first basicity scale of fluoro-, chloro-, bromo- and iodo-alkanes: some cross-comparisons with simple alkyl derivatives of other elements. J Chem Soc [Perkin 2], 1999: p. 1357-1362.
38. Laurence, C., et al., The pK(BHX) database: toward a better understanding of hydrogen-bond basicity for medicinal chemists. J Med Chem, 2009. 52(14): p. 4073-86.
39. Chardin, A., et al., Hydrogen-bond basicity of the sulfonyl group. The case of strongly basic sulfonamidates RSO2NNMe3. Journal of the Chemical Society, Perkin Transactions 2, 1996(6): p. 1047-1051.
40. Le Questel, J.-Y., et al., Hydrogen-bond basicity of secondary and tertiary amides, carbamates, ureas and lactams. Journal of the Chemical Society, Perkin Transactions 2, 1992(12): p. 2091-2094.
41. Berthelot, M., F. Besseau, and C. Laurence, *The Hydrogen-Bond Basicity pKHB Scale of Peroxides and Ethers*. European Journal of Organic Chemistry, 1998. **1998**(5): p. 925-931.
42. Besseau, F., J. Graton, and M. Berthelot, *A Theoretical Evaluation of the pKHB and ΔH Hydrogen-Bond Scales of Nitrogen Bases*. Chemistry – A European Journal, 2008. **14**(34): p. 10656-10669.
43. Besseau, F., C. Laurence, and M. Berthelot, *Hydrogen-bond basicity of esters, lactones and carbonates*. Journal of the Chemical Society, Perkin Transactions 2, 1994(3): p. 485-489.
44. Besseau, F., Lucon, M, Laurence, C and Berthelot, M, *Hydrogen-bond basicity pKHB scale of aldehydes and ketones*. J Chem Soc [Perkin 2], 1998: p. 101-108.
45. Berthelot, M., et al., *Hydrogen-bond basicity pKHB scale of six-membered aromatic N-heterocycles*. Journal of the Chemical Society, Perkin Transactions 2, 1998(2): p. 283-290.
46. Graton, J., et al., *Hydrogen-bond basicity pKHB scale of aliphatic primary amines*. Journal of the Chemical Society, Perkin Transactions 2, 1999(5): p. 997-1002.
47. Pike, S.J. and C.A. Hunter, *Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors*. Organic & Biomolecular Chemistry, 2017. **15**(45): p. 9603-9610.
48. Berthelot, M., Laurence, C, Safar, M and Besseau, F, *Hydrogen-bond basicity pKHB scale of six-membered aromatic N-heterocycles* J Chem Soc [Perkin 2], 1998: p. 283-90.
49. Pike, S.J., J.J. Hutchinson, and C.A. Hunter, *H-Bond Acceptor Parameters for Anions*. Journal of the American Chemical Society, 2017. **139**(19): p. 6700-6706.
50. Wolff, H. and W. Zeller, *Infrared study of water-pentafluorophenol and water-4-fluorophenol complexes*. The Journal of Physical Chemistry, 1982. **86**(26): p. 5243-5247.
51. Werner, R.L., J.M. Quinn, and J.K. Haken, *Intermolecular interaction in solution—IV. The influence of solvent on the association of proton donors and acceptors*. Spectrochimica Acta Part A: Molecular Spectroscopy, 1982. **38**(8): p. 887-897.
52. Chardin, A., et al., *Carbonyl oxygen as a hydrogen-bond super-base: The amidates*. Journal of Physical Organic Chemistry, 1994. **7**(12): p. 705-711.
53. Dominelli-Whiteley, N., et al., *Strong Short-Range Cooperativity in Hydrogen-Bond Chains*. Angewandte Chemie International Edition, 2017. **56**(26): p. 7658-7662.
54. Kasende, O. and T. Zeegers-Huyskens, *Infrared study of hydrogen-bonded complexes involving phenol derivatives and polyfunctional bases. 2. 3-Methyl-4-pyrimidone, 1-methyl-2-pyrimidone, 1, 4, 4-trimethylcytosine, and 1, 3-dimethyluracil*. The Journal of Physical Chemistry, 1984. **88**(12): p. 2636-2641.
55. Hunter, C.A., *Corrected experimental value*. 2021.
Section 5:
Individually optimised solvent constants

Table S5:
Individually optimised constants for polar organic solvents and comparison of calculated transfer free energies with experimental data

Solvent	Conc. of polar atom. X=O or N	αS1	Cq1	βS1	Cq2	αS2	Cq2	βS2	Cq2	C0	N	rmsd kJ mol⁻¹
Tetrathydrofuran	6.22	1.20	2.62	0.60	2.78	5.30	-3.46	3.26				
Diethyl Ether	5.61	1.20	2.54	0.60	3.07	5.30	-3.62	2.17				
Di-n-butyl ether	4.4	1.2	2.63	0.6	3.09	5.30	-4.58	1.18				
Acetonitrile	7.31	1.20	-0.78	0.60	2.56	1.50	2.68	5.15	-4.26	6.01		
Butyronitrile	6.54	1.20	-0.81	0.60	2.63	1.50	2.68	5.15	-3.45	3.80		
Acetone	6.05	1.20	-0.79	0.60	2.72	1.50	2.69	5.15	-3.10	1.41		
Butanone	6.45	1.20	-0.60	0.60	2.77	1.50	2.71	5.80	-4.12	2.32		
Cyclohexanone	5.98	1.20	-0.86	0.60	2.86	1.50	2.71	5.80	-4.12	1.82		
Methanol	7.95	1.20	2.77	0.60	2.65	3.50	-5.03	6.90	-6.49	2.69		
ETHANOL	7.04	1.20	2.77	0.60	2.85	3.50	-5.62	6.90	-6.39	0.91		
Propan-1-ol	6.42	1.20	2.76	0.60	2.89	3.50	-5.97	6.90	-6.52	0.66		
Propan-2-ol	6.37	1.20	2.73	0.60	2.99	3.50	-5.80	6.90	-6.35	0.21		
Butan-1-ol	5.93	1.20	2.68	0.60	2.98	3.50	-6.91	6.90	-6.26	0.73		
Butan-2-ol	5.92	1.20	2.69	0.60	2.89	3.50	-6.39	6.90	-6.38	1.28		
2-Methylpropan-1-ol	5.90	1.20	2.73	0.60	3.00	3.50	-5.94	6.90	-6.67	0.69		
2-Methylpropan-2-ol	5.82	1.20	2.72	0.60	2.97	3.50	-5.93	6.90	-6.82	1.06		
Pentan-1-ol	5.50	1.20	2.75	0.60	2.91	3.50	-6.31	6.90	-6.51	0.95		
3-Methylbutan-1-ol	5.50	1.20	2.77	0.60	3.00	3.50	-5.68	6.90	-6.82	0.39		
Hexan-1-ol	5.16	1.20	2.84	0.60	2.94	3.50	-5.90	6.90	-6.88	0.38		
Heptan-1-ol	4.84	1.20	2.76	0.60	3.02	3.50	-6.19	6.90	-6.30	0.08		
Octan-1-ol	4.57	1.20	2.76	0.60	3.03	3.50	-7.03	6.90	-6.66	0.88		
Decan-1-ol	4.10	1.20	2.83	0.60	2.95	3.50	-6.22	6.90	-6.49	1.29		

Footnote to table S5:
The H-bond parameters αS and βS were previously derived using Equation (1) (see Section 6). The constants in italic bold were optimised in order to minimise the rmsd between calculated and experimental free energies in the solvent/water partition models.
Section 6:
Solvent H-bond parameters α_S and β_S

\[
\Delta G^o / \text{kJ mol}^{-1} = -(\alpha - \alpha_S)(\beta - \beta_S) + 6 \tag{1}
\]

Table S6a

Values of α_S and β_S used to model partition into non-polar organic solvents as compared with published values derived from equation (1).

Simple solvents	Partition model	Association (eqn. 1)	Partition model	Association (eqn. 1)	References
	α	Published range	β	Published range	
Alkanes					
Carbon tetrachloride	1.40	0.60			[1, 4-6]
Dichloromethane	1.80	1.40	1.30	0.8-1.3	[2, 4, 7, 8]
Chloroform	2.10	2.1-2.4	1.60	1.6	[2, 4-9]
1,2-Dichloroethane	1.70	1.60			[2]
Chlorobenzene	1.40	1.4	1.40	1.1-1.8	[2]
Benzene	1.40	1.0-1.3	2.00	1.6-2.2	[1, 2, 4]
Toluene	1.40	1.0-1.1	2.00	1.6-2.2	[7, 10-15]

Table S6b

Values of α_S and β_S used to model partition into polar organic solvents compared with published values derived from equation (1) (N.B. To model partition of solutes, additional descriptors are required to model the alkane component of the solvent with $\alpha_S = 1.2$ and $\beta_S = 0.6$).

Ethers	Partition model	Association (eqn. 1)	Partition model	Association (eqn. 1)	References
Diethyl Ether	1.20	5.30			[11]
Di-n-octyl ether		0.9	5-5.3		[11]
Di-n-hexyl ether		1.0	5.3		[3]
Di-n-butyl ether	1.20	5.30			[11]
Tetrahydrofuran	1.20	0.9	5.90	5.3-5.9	[1, 9]

Nitriles	Partition model	Association (eqn. 1)	Partition model	Association (eqn. 1)	References
Acetonitrile	1.50	1.5-1.7	5.15	4.7-5.1	[1, 5, 6]
Propionitrile	1.50	5.15			
Butyronitrile	1.50	5.15			
n-butyl cyanide		1.7	5.2		[11]

Ketones	Partition model	Association (eqn. 1)	Partition model	Association (eqn. 1)	References
Acetone	1.50	1.2-1.5	5.80	5.7-5.8	[1, 4, 6, 7]
Butanone	1.50	5.80			
Cyclohexanone	1.50	1.5	5.80	5.8	[12]
2-Heptanone	1.50	1.5	5.80	5.8	[11]
References for Section 6

1. Cook, J.L., et al., Solvent effects on hydrogen bonding. Angew Chem Int Ed Engl, 2007. 46(20): p. 3706-9.
2. Cabot, R., C.A. Hunter, and L.M. Varley, Hydrogen bonding properties of non-polar solvents. Org Biomol Chem, 2010. 8(6): p. 1455-62.
3. Amenta, V., et al., Molecular recognition probes of solvation thermodynamics in solvent mixtures. Org Biomol Chem, 2011. 9(21): p. 7571-8.
4. Cabot, R. and C.A. Hunter, A thermodynamic study of selective solvation in solvent mixtures. Org Biomol Chem, 2010. 8(8): p. 1943-50.
5. Pike, S.J., J.J. Hutchinson, and C.A. Hunter, H-Bond Acceptor Parameters for Anions. Journal of the American Chemical Society, 2017. **139**(19): p. 6700-6706.
6. Pike, S.J., et al., H-Bond donor parameters for cations. Chemical Science, 2019. **10**(23): p. 5943-5951.
7. Chekmeneva, E., et al., Evidence for partially bound states in cooperative molecular recognition interfaces. J Am Chem Soc, 2008. **130**(52): p. 17718-25.
8. Pike, S.J. and C.A. Hunter, Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors. Organic & Biomolecular Chemistry, 2017. **15**(45): p. 9603-9610.
9. Cook, J.L., et al., Preferential solvation and hydrogen bonding in mixed solvents. Angew Chem Int Ed Engl, 2008. **47**(33): p. 6275-7.
10. Hunter, C.A., M.C. Misuraca, and S.M. Turega, Dissection of complex molecular recognition interfaces. J Am Chem Soc, 2011. **133**(3): p. 582-94.
11. Amenta, V., et al., Influence of solvent polarity on preferential solvation of molecular recognition probes in solvent mixtures. J Phys Chem B, 2012. **116**(49): p. 14433-40.
12. Chekmeneva, E., et al., Steric desolvation enhances the effective molarities of intramolecular H-bonding interactions. Org Biomol Chem, 2012. **10**(30): p. 6022-31.
13. Adams, H., et al., Quantification of the effect of conformational restriction on supramolecular effective molarities. J Am Chem Soc, 2013. **135**(5): p. 1853-63.
14. Sun, H., et al., Relationship between chemical structure and supramolecular effective molarity for formation of intramolecular H-bonds. J Am Chem Soc, 2013. **135**(35): p. 13129-41.
15. Henkel, S., et al., Enhanced Chelate Cooperativity in Polar Solvents. Journal of the American Chemical Society, 2017. **139**(19): p. 6675-6681.
Section 7: Calculated and experimental free energies of transfer in workbook Excel 1.xlsx

Free energies of transfer are expressed as \(-\Delta G^0 \) in kJ mol\(^{-1}\) and therefore increasing values of free energy correspond to increasing values of partition coefficient. Experimental and calculated free energies of transfer are listed and compared in the five worksheets of the workbook Excel 1.xlsx:

1 Training set expt. v calc.
This sheet contains a list of the 219 solutes that comprise the training set for the model. For each solute are listed the name and SMILES string with experimental and calculated free energy of transfer \(-\Delta G^0 \) from water to 35 different solvents. A summary table (B2:D39) lists the number of data points and rmsd between calculated and experimental values for each solvent and a graph displays calculated (y axis) versus experimental (x axis) values.

2 Validation set expt. v calc.
This sheet contains a list of 84 solutes that had not been used for training the model. For each solute are listed the name and SMILES string with experimental and calculated free energy of transfer from water to hexadecane and water to wet octanol. The rmsd between calculated and experimental values for each solvent is summarised in a table (B2:D4) and a graph displays calculated (y axis) versus experimental (x axis) values.

3 Expt. v calc. by SSIMPLE
This sheet contains a list of the same set of 219 solutes as listed in sheet 1 together with experimental free energy of transfer \(-\Delta G^0 \) from water to 34 different solvents and results of calculations performed using the SSIMPLE approach described previously\([1, 2]\). The SSIP descriptions of the molecules were obtained using the in house footprinting code (version 6.0.0, commit ID 18b2ca65) which implements these methods. A summary table (B2:D39) lists the number of data points and rmsd between values calculated with SSIMPLE and experimental values for each solvent and a graph displays calculated (y axis) versus experimental (x axis) values.

4 Octanol_water comparison
This sheet contains a list of 189 solutes for which free energy of transfer \(-\Delta G^0 \) from water to wet octanol was available. These values are compared with calculated values using three different methods:

a) Abraham solvation equation\([3]\) using solvent coefficients for octanol taken from reference \([4]\). Calculated logP values are in column I and are converted to \(-\Delta G^0 \) in column K. Rmsd between calculated and experimental 1.1 kJ mol\(^{-1}\)

b) cLogP calculated using Advanced Algorithm Builder software \([5]\). Calculated logP values are in column N and are converted to \(-\Delta G^0 \) in column P. Rmsd between calculated and experimental 0.8 kJ mol\(^{-1}\)

c) \(-\Delta G^0 \) calculated by our new method are in column T. Rmsd between calculated and experimental 1.6 kJ mol\(^{-1}\)

5 Expt. gas to solvent
This sheet contains a list of the 219 solutes that were used as the training set for the model. For each solute is listed the name and SMILES string and experimental free energy of transfer \(-\Delta G^0 \) from gas to 35 different solvents.
Sources of Data

Experimental values of gas to solvent transfer free energies were obtained from literature sources as described below. These values were used to obtain water to solvent transfer free energies.

Acree and co-workers have published Abraham model correlations for describing logK, where K is the dimensionless gas-to-solvent partition constant (see Eq. (S7.1))

\[
K = \frac{\text{molar concentration of solute in extraction solvent}}{\text{molar concentration of solute in the gas phase}}
\]

(S7.1)

Experimental values of logK (with concentrations in each phase defined in terms of mol litre\(^{-1}\)) have been reported for more than 50 common solvents. The values for logK were usually derived by conversion from other experimental measures such as:

- Raoult’s law infinite dilution activity coefficients, \(\gamma_{\text{solute}}^\infty\)

\[
\log K = \log \left(\frac{RT}{\gamma_{\text{solute}}^\infty V_{\text{solute}} (VP)_{\text{solute}}^0} \right)
\]

\(R = \text{Gas constant}; \ T = \text{Temperature}; \ V_{\text{solute}} = \text{Molar volume of the solvent} \)

\((VP)_{\text{solute}}^0 = \text{Vapour pressure of the solute at } T\)

- Henry’s law constants, \(K_{\text{Henry}}\)

\[
\log K = \log \left(\frac{RT}{K_{\text{Henry}} V_{\text{solute}}} \right)
\]

\(V_{\text{solute}} = \text{Molar volume of the solvent}\)

- Solubilities: where data was available for crystalline solutes dissolved in both the anhydrous solvent and water and where the solute gas-to-water partition coefficient, \(K_w\), is known.

Further details can be found in publications by Abraham, Acree and co-workers\[6-13\].

Experimentally determined values of logK at 298 K were extracted from the appropriate references and converted into the free energy (-\(\Delta G^0\)/kJ mol\(^{-1}\)) for transfer from gas phase to solvent by the usual formula i.e. eqn. (S7.2).

\[
-\Delta G^0_{\text{Gas} \rightarrow \text{Solvent}} = RT \ln K = 2.303RT \log K
\]

\(R = \text{Gas constant}=0.0083145 \text{ kJ mol}^{-1} \text{ K}^{-1}\)

\(T = \text{Temperature K}\)

A list of solvents and references to the published data can be found in Table S7. Some additional values for partition of water from gas to propan-2-ol, acetone and tetrahydrofuran were derived from published values of the infinite dilution activity coefficients. [14]

Free energies of transfer (-\(\Delta G^0\)) from water to wet octanol were derived from log\(P_{\text{octanol}}\) values extracted from various commercially available databases. If several alternative log\(P_{\text{octanol}}\) values were available then an average value was used.

The values of \(-\Delta G^0_{\text{Solvent1} \rightarrow \text{Solvent2}}\) observed for transfer of a solute between two solvents were calculated from the experimentally determined gas-to-solvent values (eqn. (S7.3)). Values calculated in this way for partition between water and an organic solvent refer to a hypothetical dry solvent:

\[
-\Delta G^0_{\text{Solvent1} \rightarrow \text{Solvent2}} = -\Delta G^0_{\text{Gas} \rightarrow \text{Solvent2}} - (-\Delta G^0_{\text{Gas} \rightarrow \text{Solvent1}})
\]

(S7.3)

In order to conduct the feasibility study it was desirable to limit the size of the initial data set. Compounds were only selected if they had measured gas-to-solvent logK values available for water and several other solvents. An easily manageable set of 219 compounds was chosen as an initial training set and included a variety of common functional groups. Another set of 84 similar compounds was identified for which log\(P_{\text{octanol}}\) values and experimental gas to hexadecane and gas to water logK were available. This set of 84 solutes was used for validation of the parameters derived by analysis of the training set. New descriptors will need to be
added in future in order to extend the model to include solutes that contain other functional groups and to deal with intramolecular interactions.

Table S7: Solvents and references to experimental logK data.

Solvent	Reference
Hexadecane (i.e. Abraham L descriptor)[6-13]	3-Methylbutan-1-ol[8]
Hexane[15-17]	2-Methylpropan-2-ol[8]
Cyclohexane[15, 16]	2-Methylpropan-1-ol[8]
Water[6, 10, 11, 18]	Butan-2-ol[8]
Carbon tetrachloride[9, 15, 16]	Propan-2-ol[8]
Acetone[10]	Decan-1-ol[8]
Tetrahydrofuran[13, 15, 16]	Octan-1-ol[8]
Diethyl Ether[8, 13]	Heptan-1-ol[8]
Di-n-butyl ether[8, 15, 16, 19]	Hexan-1-ol[8]
Acetonitrile[15, 16, 18]	Pentan-1-ol[8]
Propionitrile[7, 15, 16]	Butan-1-ol[8]
Butyronitrile[7, 15, 16]	Propan-1-ol[8, 18]
Butanone[6, 10]	Ethanol[8, 15, 16]
Cyclohexanone[6, 10]	Methanol[8]
Dichloromethane[9]	Chlorobenzene[11, 15, 16]
Chloroform[9, 15, 16]	Benzene[15, 16]
1,2-Dichloroethane[12, 15, 16]	Toluene[15, 16]
Perfluoroalkane[20]	

References for Section 7

1. Hunter, C.A., *A surface site interaction model for the properties of liquids at equilibrium*. Chem. Sci., 2013. 4: p. 1687-1700.
2. Calero, C.S., et al., *Footprinting molecular electrostatic potential surfaces for calculation of solvation energies*. Phys Chem Chem Phys, 2013. 15(41): p. 18262-73.
3. Abraham, M.H., *Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes*. Chemical Society Reviews, 1993. 22(2): p. 73-83.
4. Zissimos, A.M., et al., *Calculation of Abraham descriptors from solvent–water partition coefficients in four different systems; evaluation of different methods of calculation*. Journal of the Chemical Society, Perkin Transactions 2, 2002(3): p. 470-477.
5. Japertas, P., R. Didziapetris, and A. Petrauskas, *Fragmental Methods in the Design of New Compounds. Applications of Advanced Algorithm Builder*. Quant. Struct.-Act. Relat., 2002. 21: p. 23-37.
6. Tong, X., et al., *Updated Abraham model correlations for correlating solute transfer into dry butanone and dry cyclohexanone solvents*. Physics and Chemistry of Liquids, 2018. 56(5): p. 571-583.
7. Hart, E., et al., *Development of Abraham model correlations for describing the transfer of molecular solutes into propanenitrile and butanenitrile from water and from the gas phase*. Physics and Chemistry of Liquids, 2018. 56(6): p. 821-833.
8. Grubbs, L.M., et al., *Mathematical correlations for describing solute transfer into functionalized alkane solvents containing hydroxyl, ether, ester or ketone solvents*. Fluid Phase Equilibria, 2010. 298(1): p. 48-53.
9. Sprunger, L.M., et al., *Correlation and prediction of solute transfer to chloroalkanes from both water and the gas phase*. Fluid Phase Equilibria 2009. 281: p. 144–162.
10. Abraham, M.H., et al., *The partition of compounds from water and from air into wet and dry ketones*. New Journal of Chemistry, 2009. 33(3): p. 568-573.
11. Abraham, M.H., et al., *Partition of compounds from water and from air into the wet and dry monohalobenzenes*. New Journal of Chemistry, 2009. 33(8): p. 1685-1692.
12. Sprunger, L.M., et al., *Correlation and prediction of partition coefficients for solute transfer to 1,2-dichloroethane from both water and from the gas phase*. Fluid Phase Equilibria, 2008. 273(1–2): p. 78-86.
13. Abraham, M.H., A.M. Zissimos, and J.W.E. Acree, *Partition of solutes into wet and dry ethers; an LFER analysis*. New Journal of Chemistry, 2003. 27(7): p. 1041-1044.
14. Bergmann, D.L. and C.A. Eckert, Measurement of limiting activity coefficients for aqueous systems by differential ebulliometry. Fluid Phase Equilibria, 1991. 63(1): p. 141-150.
15. Katritzky, A.R., et al., A general treatment of solubility. 1. The QSPR correlation of solvation free energies of single solutes in series of solvents. J Chem Inf Comput Sci, 2003. 43(6): p. 1794-805.
16. Katritzky, A.R., et al., A general treatment of solubility. 2. QSPR prediction of free energies of solvation of specified solutes in ranges of solvents. J Chem Inf Comput Sci, 2003. 43(6): p. 1806-14.
17. Stephens, T.W., et al., Correlation of solute transfer into alkane solvents from water and from the gas phase with updated Abraham model equations. Global J. Phys. Chem., 2012. 3: p. 1-42.
18. Katritzky, A.R., et al., A general treatment of solubility. 3. Principal component analysis (PCA) of the solubilities of diverse solutes in diverse solvents. J Chem Inf Model, 2005. 45(4): p. 913-23.
19. Abraham, M.H., A.M. Zissimos, and W.E. Acree Jr, Partition of solutes from the gas phase and from water to wet and dry di-n-butyl ether: a linear free energy relationship analysis. Physical Chemistry Chemical Physics, 2001. 3(17): p. 3732-3736.
20. Abraham, M.H., W.E. Acree, and E. Matteoli, (Combined and averaged values for partition into perfluorohexane, perfluoroheptane and perfluoroctane) The factors that influence solubility in perfluorooalkane solvents. Fluid Phase Equilibria, 2016. 421: p. 59-66.
Section 8:
Correlation between Molecular Surface Area and the number of Surface Site Interaction Points

The Van der Waals surface areas were determined using the 0.002 e bohr$^{-3}$ isosurface calculated with NWChem (Density Functional Theory B3LYP/6-31G* basis set)[1]. The surface areas were calculated by summing the number of points on the isosurface, but scaling the contribution of each point by the local density of points within a radius of 0.5 Å.

Figure S8. Plot of number of SSIPs (x axis) v molecular surface area (Å2) (y axis)

Table S8: Molecular Surface Areas and Numbers of SSIPs for 219 Compounds of the Training Set

SMILES	Solute name	Compound Class	Molecular Surface Area (Å2)	No. of SSIPs
CCCCC	n-pentane	Alkane-Acyclic Linear	132.2	24
CCCCC	n-hexane	Alkane-Acyclic Linear	152.8	28
CCCCC	n-heptane	Alkane-Acyclic Linear	172.4	32
CCCCC	n-octane	Alkane-Acyclic Linear	191.9	36
CCCCC	n-nonane	Alkane-Acyclic Linear	211.6	40
CCCCC	n-decane	Alkane-Acyclic Linear	230.7	44
CCCCC	isopentane	Alkane-Acyclic Branched	128.5	24
CCCCC	2-methylpentane	Alkane-Acyclic Branched	148.2	28
CCCCC	3-methylpentane	Alkane-Acyclic Branched	145.7	28
CCCCC	3-methylhexane	Alkane-Acyclic Branched	165.9	32
CCCCC	2,2-dimethylpentane	Alkane-Acyclic Branched	160.9	32
CCCCC	3-methylheptane	Alkane-Acyclic Branched	185.7	36
CCCCC	2,5-dimethylhexane	Alkane-Acyclic Branched	183.3	36
CCCCC	2,2,4-trimethylpentane	Alkane iso-octane	175.3	36
CCCCC	2,3,4-trimethylpentane	Alkane iso-octane	173.2	36
CCCCC	2-methylcyclohexane	Alkane-Acyclic Branched	208.0	40
CCCCC	2,2,5-trimethylhexane	Alkane-Acyclic Branched	195.9	40
CCCCC	3,3-diethylpentane	Alkane-Acyclic Branched	185.6	40
CCCCC	2-methylcyclohexane	Alkane-Acyclic Branched	227.1	44
CCCCC	cyclopentane	Alkane-Cyclic	115.2	20
CCCCC	cyclohexane	Alkane-Cyclic	130.1	24
CCCCC	cyclooctane	Alkane-Cyclic	162.7	32
CCCCC	methylcyclopentane	Alkane-Cyclic Branched	133.6	24
CCCCC	methylcyclohexane	Alkane-Cyclic Branched	147.5	28
CCCCC	ethylcyclohexane	Alkane-Cyclic Branched	165.2	32
CCCCC	cis-1,2-dimethylcyclohexane	Alkane-Cyclic Branched	162.7	32
CCCCC	trans-1,4-dimethylcyclohexane	Alkane-Cyclic Branched	165.2	32
Reference for Section 8

1. Aprà, E., et al., *NWChem: Past, present, and future*. The Journal of Chemical Physics, 2020. 152(18): p. 184102.
Section 9: Description of calculation procedure exemplified in workbook Excel 2.xlsx

The calculation procedure is exemplified for 266 solutes in four worksheets of the workbook Excel 2.xlsx and the fifth worksheet lists the experimental partition data used in the development of the model. In the first two sheets, the calculated free energy contributions for transfer from the reference state to solvent are summed for each compound in the training set and used to compute free energies of transfer from water to organic solvent.

1 ΔG water->nonpolar
This sheet contains the parameters for water and a table of non-polar solvents and their associated parameters (blue cells). Entering a solvent ID from the table into the highlighted yellow cell (L4) pulls in data from the other sheets and calculates the free energies of transfer from water into the non-polar solvent selected. Plots are shown of the calculated (x axis) versus the experimental (y axis) free energies of transfer.

2 ΔG water->polar
This sheet contains a table of polar organic solvents and their associated parameters (blue cells). Entering a solvent ID from the table into the highlighted yellow cell (L4) pulls in data from the other sheets and calculates the free energies of transfer. Plots are shown of the calculated (x axis) versus the experimental (y axis) free energies of transfer.

3 Solute Functional Groups
This sheet contains a table of the functional group fragmentation of the training set of compounds (blue cells). Data are pulled in from the other sheets and used to calculate the solvation energies of each fragment in three different solvents (water, the non-polar solvent selected in cell L4 on the ΔG water->nonpolar sheet, and the polar solvent selected in cell L4 on the ΔG water->nonpolar sheet).

4 SSIP ΔGs
This sheet contains a table of the SSIP description of solute functional groups and the associated parameters (blue cells). Data are pulled in from the other sheets, and the solvation energies of the SSIPs are summed to obtain solvation energies for each functional group in three different solvents (water, the non-polar solvent selected in cell L4 on the ΔG water->nonpolar sheet, and the polar solvent selected in cell L4 on the ΔG water->nonpolar sheet).

5 Experimental Data
This sheet tabulates experimental free energies (−ΔG°) for solute transfer from water to organic solvents.