Planetary Birkhoff normal forms∗

Luigi Chierchia & Gabriella Pinzari

Dipartimento di Matematica
Università “Roma Tre”
Largo S.L. Murialdo 1, I-00146 Roma (Italy)
lugi@mat.uniroma3.it, pinzari@mat.uniroma3.it

October 17, 2011

Abstract

Birkhoff normal forms for the (secular) planetary problem are investigated. Existence and uniqueness is discussed and it is shown the classical Poincaré variables and the rps–variables (introduced in [6]), after a trivial lift, lead to the same Birkhoff normal form; as a corollary the Birkhoff normal form (in Poincaré variables) is degenerate at all orders (answering a question of M. Herman). Non-degenerate Birkhoff normal forms for partially and totally reduced cases are provided and an application to long–time stability of secular action variables (eccentricities and inclinations) is discussed.

Keywords: Planetary system. Birkhoff normal form. Birkhoff invariants. N–body problem. Long–time stability.

MSC2000 numbers: 70F10, 70K45, 70F15, 70F07, 70E55, 34C20, 34D10

Contents

1 Introduction 2

2 Planetary BNF 4

3 Poincaré and RPS variables 8

4 Proof of the normal form theorem 15

∗Acknowledgments. Partially supported by European Research Council under FP7 project “New connections between dynamical systems and Hamiltonian PDEs with small divisors phenomena”.

1 Introduction

Let us consider the planetary \((1 + n)\)-body problem, i.e., the motions of \(1 + n\) point-masses, interacting only through gravity, with one body (“the Sun”) having a much larger mass than the other ones (“the planets”).

A fundamental feature of this Hamiltonian system (for negative decoupled energies) is the separation between fast degrees of freedom, roughly describing the relative distances of the planets, and the slow (or “secular”) degrees of freedom, describing the relative inclinations and eccentricities (of the osculating Keplerian ellipses). A second remarkable feature of the planetary system is that the secular Hamiltonian has (in suitable “Cartesian variables”) an elliptic equilibrium around zero inclinations and eccentricities. Birkhoff normal form (hereafter “BNF”) theory\(^1\) comes, therefore, naturally in. Such theory yields, in particular, information on the secular frequencies (first order Birkhoff invariants) and on the “torsion” (or “twist”) of the secular variables (the determinant of the second order Birkhoff invariants). Indeed, secular Birkhoff invariants are intimately related to the existence of maximal and lower dimensional KAM tori\(^2\), or, as we will show below (§ 6), one can infer long-time stability for the “secular actions” (essentially, eccentricities and mutual inclinations).

A natural question is therefore the construction of BNFs for the secular planetary Hamiltonian.

Already Arnold in 1963 realized that this is not a straightforward task in view of secular resonances, i.e., rational relations among the first order Birkhoff invariants.

\(^1\)See [12] for generalities and Appendix A below for the theory for rotational invariant systems.

\(^2\)Compare [2], [16], [10], [7] and [6] for maximal tori and [9], [3] and [6] for lower dimensional elliptic tori.
holding identically on the phase space. Incidentally, Arnold was aware of the so–
called rotational resonance (the vanishing of one of the “vertical” first order Bikhoff
invariants) but did not realize the presence of a second resonance of order \(2n - 1\)
discovered by M. Herman (compare [10] and [1]). These resonances, apart from
being an obstacle for the construction of BNFs, constituted also a problem for the
application of KAM theory. This problem was overcome, in full generality, only in
2004 [10] using a weaker KAM theory involving only information on the first order
Birkhoff invariants, waving the check of Kolmogorov’s non–degeneracy (related to
full torsion\(^3\)); for a short description of the main ideas involved, see [6, Remark
11.1, (iii)].

In particular the question of the torsion of the secular Hamiltonian remained open.
M. Herman investigated such question thoroughly using Poincaré variables [11] but
declared not to know if some of the second order Birkhoff invariants was zero even
in the \(n = 2\) case (compare the Remark towards the end of p. 24 in [11]).

A different point of view is taken up in [6], where a new set of variables, called RPS
(“Regularized Planetary Symplectic”) variables, is introduced in order to study
the symplectic structure of the phase space of the planetary system. Such variables
are based on Deprit’s action–angles variables ([8], [5]), which may be used for a
symplectic reduction lowering by one the number of degrees of freedom. A further
reduction is possible (at the expense of introducing a new singularity) leading to a
totally reduced phase space, compare [6, §9] and § 5.1 below. On the reduced phase
spaces, one can construct BNFs ([6, Sect 7 and 9]; § 2, § 5.1 below). Following such
strategy one can show that the matrix of second order Birkhoff invariants (for the
reduced system) is non–degenerate and prove full torsion. In particular, it is then
possible to construct a large measure set of maximal non–degenerate KAM tori ([6,
§11]).

In this paper we consider and clarify various aspects of BNFs for the planetary
system. In particular we analyze the connection between the BNF in the classical
setting (Poincaré variables) and in the new setting of [6]. It turns out that after lift–
ing in a trivial way the RPS variables to the full dimensional phase space, such vari–
ables and the Poincaré variables are related in a very simple way, namely, through
a symplectic map which leaves the action variables \(\Lambda\) (conjugated to the mean
anomalies) fixed and so that the correspondence between the respective Cartesian
variables is close to the identity map (and independent of the fast angles); compare
Theorem 3.1 below. Since, up to such class of symplectic maps, the BNF is unique,
one sees that the BNF in Poincaré variables is degenerate at all orders, answering
negatively the question of M. Herman; see Theorem 2.1 below. We mention also
that the construction of BNF for rotational invariant Hamiltonian (such as the sec–
ular planetary Hamiltonian) is simpler than the standard construction: in fact, one
needs to assume non–resonance of the first order Birkhoff invariant for those Tay–

\[^3\]That is, the non–vanishing of the determinant of the matrix formed by the second order
Birkhoff invariants.
lor modes $k \neq 0$ such that $\sum_i k_i = 0$ (and not just $k \neq 0$); compare Appendix A.

By this remark one sees that the secular resonances (both the rotational and the Herman resonance) do not really affect the construction of BNFs.

In § 5.1 we discuss the construction, up to any order, of the BNFs in the totally reduced setting (generalizing Proposition 10.1 in [6]) and, for completeness, we consider (§ 5.2) the planar planetary problem (in which case the Poincaré and the RPS variables coincide) and, after introducing a (total) symplectic reduction, we discuss BNFs in such reduced setting, comparing, in particular, with the detailed analysis in [11].

Finally, in § 6, we use the results of § 5.1 in order to prove that, in suitable open non–resonant phase space regions of relatively large Liouville measure, the eccentricities and mutual inclinations remain small and close to their initial values for times which are proportional to any prefixed inverse power of the distance from the equilibrium point (zero inclinations and zero eccentricities); such result is somewhat complementary to Nehorošev’s original result [13], where exponential stability of the semi major axes was established, but no information on possible large (order one) variation of the secular action was given.

2 Planetary BNF

After the symplectic reduction of the linear momentum, the $(1+n)$–body problem with masses $m_0, \mu m_1, \cdots, \mu m_n$ ($0 < \mu \ll 1$) is governed by the $3n$–degrees of freedom Hamiltonian

$$
\mathcal{H}_{\text{plt}} = \sum_{1 \leq i \leq n} \left(\frac{|y^{(i)}|^2}{2M_i} - \frac{M_i \bar{m}_i}{|x^{(i)}|} \right) + \mu \sum_{1 \leq i < j \leq n} \left(\frac{y^{(i)} \cdot y^{(j)}}{m_0} - \frac{m_im_j}{|x^{(i)} - x^{(j)}|} \right)
$$

where $x^{(i)}$ represent the difference between the position of the i^{th} planet and the position of the Sun, $y^{(i)}$ are the associated symplectic momenta rescaled by μ, $x \cdot y = \sum_{1 \leq i \leq 3} x_i y_i$ and $|x| := (x \cdot x)^{1/2}$ denote, respectively, the standard inner product in \mathbb{R}^3 and the Euclidean norm;

$$
M_i := \frac{m_0 m_i}{m_0 + \mu m_i}, \quad \bar{m}_i := m_0 + \mu m_i.
$$

(2.2)

The phase space is the “collisionless” domain of $\mathbb{R}^{3n} \times \mathbb{R}^{3n}$

$$
\{(y,x) = ((y^{(1)}, \ldots, y^{(n)}), (x^{(1)}, \ldots, x^{(n)})) \text{ s.t. } 0 \neq x^{(i)} \neq x^{(j)}, \forall i \neq j\},
$$

(2.3)

endowed with the standard form $\omega = \sum_{i=1}^n dy^{(i)} \wedge dx^{(i)} = \sum_{i=1}^n \sum_{j=1}^3 dy^{(i)}_j \wedge dx^{(i)}_j$ where $y^{(i)}_j, x^{(i)}_j$ denote the j^{th} component of $y^{(i)}, x^{(i)}$.
When \(\mu = 0 \), the Hamiltonian (2.1) is integrable: its unperturbed limiting value \(h_{\text{plt}} \) is the sum of the Hamiltonians

\[
h_{\text{plt}}^{(i)} = \frac{|y^{(i)}|^2}{2M_i} - \frac{M_i \bar{m}_i}{|x^{(i)}|}, \quad (y^{(i)}, x^{(i)}) \in \mathbb{R}^3 \times \mathbb{R}^3_\ast := \mathbb{R}^3 \times (\mathbb{R}^3 \setminus \{0\})
\]

(2.4)
corresponding to uncoupled Two–Body Newtonian interactions.

In Poincaré coordinates – which will be reviewed in the next section – the Hamiltonian (2.1) takes the form

\[
H_p(\Lambda, \lambda, z) = h_h(\Lambda) + \mu f_p(\Lambda, \lambda, z), \quad z := (\eta, p, \xi, q) \in \mathbb{R}^{4n}
\]

(2.5)
where \((\Lambda, \lambda) \in \mathbb{R}^n \times T^n \); the “Kepler” unperturbed term \(h_h \), coming from \(h_{\text{plt}} \) in (2.1), becomes

\[
h_h := \sum_{i=1}^{n} h_h^{(i)}(\Lambda) = -\sum_{i=1}^{n} \frac{\bar{m}_i^2 M_i^3}{2\Lambda_i^2}.
\]

(2.6)

Because of rotation (with respect the \(k^{(3)} \)–axis) and reflection (with respect to the coordinate planes) invariance of the Hamiltonian (2.1), the perturbation \(f_p \) in (2.5) satisfies well known symmetry relations called d’Alembert rules, see (3.26)–(3.31) below. By such symmetries, in particular, the averaged perturbation

\[
f_{\text{av}}(\Lambda, z) := \frac{1}{(2\pi)^n} \int_{T^n} f_p(\Lambda, \lambda, z) d\lambda
\]

(2.7)
is even around the origin \(z = 0 \) and its expansion in powers of \(z \) has the form

\[
f_{\text{av}} = C_0(\Lambda) + Q_h(\Lambda) \cdot \frac{\eta^2 + \xi^2}{2} + Q_v(\Lambda) \cdot \frac{p^2 + q^2}{2} + O(|z|^4),
\]

(2.8)
where \(Q_h, Q_v \) are suitable quadratic forms. The explicit expression of such quadratic forms can be found, e.g., in [10, (36), (37)] (revised version).

By such expansion, the (secular) origin \(z = 0 \) is an elliptic equilibrium for \(f_{\text{av}} \) and corresponds to co–planar and co–circular motions. It is therefore natural to put (2.8) into BNF in a small neighborhood of the secular origin; see, e.g., [12] for general information on BNFs and Appendix A for Birkhoff theory for rotational invariant Hamiltonian systems.

As a preliminary step, one can diagonalize (2.8), i.e., find a symplectic transformation

\[
\tilde{\Phi}_p : (\Lambda, \tilde{\lambda}, \tilde{z}) \in \tilde{M}_p^{6n} \rightarrow (\Lambda, \lambda, z) \in M_p^{6n} := \tilde{\Phi}_p(\tilde{M}_p^{6n})
\]

(2.9)
(the domain \(\tilde{M}_p^{6n} \) will be specified in (2.15) below) defined by \(\Lambda \rightarrow \Lambda \) and

\[
\lambda = \tilde{\lambda} + \varphi(\Lambda, \tilde{z}), \quad \eta = \rho_h(\Lambda) \tilde{\eta}, \quad \xi = \rho_h(\Lambda) \tilde{\xi}, \quad p = \rho_v(\Lambda) \tilde{p}, \quad q = \rho_v(\Lambda) \tilde{q},
\]

(2.10)

\[\text{Q} \cdot u^2\text{ denotes the 2–indices contraction } \sum_{i,j} Q_{ij} u_i u_j \text{ (} Q_{ij}, u_i \text{ denoting the entries of } Q, u).\]
with \(\rho_h, \rho_v \in \text{SO}(n) \) diagonalizing \(Q_h, Q_v \). In this way, (2.8) takes the form
\[
\tilde{H}_p(\Lambda, \tilde{\lambda}, \tilde{z}) = H_p \circ \tilde{\Phi}_p = h_k(\Lambda) + \mu \tilde{f}(\Lambda, \tilde{\lambda}, \tilde{z}) \, ,
\]
with the average over \(\tilde{\lambda} \) of \(\tilde{f}^{av} \) given by
\[
\tilde{f}^{av}(\Lambda, \tilde{z}) = C_0(\Lambda) + \sum_{i=1}^{n} \sigma_i \tilde{\eta}_i^2 + \tilde{\xi}_i^2 + \sum_{i=1}^{n} \varsigma_i \tilde{p}_i^2 + \tilde{q}_i^2 + O(|\tilde{z}|^4) \, , \quad \tilde{z} = (\tilde{\eta}, \tilde{\xi}, \tilde{p}, \tilde{q}) .
\]
(2.12)

The \(2n \) real vector \(\Omega := (\sigma, \varsigma) = (\sigma_1, \ldots, \sigma_n, \varsigma_1, \ldots, \varsigma_n) \) is formed by the eigenvalues of the matrices \(Q_h \) and \(Q_v \) in (2.8) and are called the first order Birkhoff invariants.

It turns out that such invariants satisfy identically the following two secular resonances
\[
\sum_{i=1}^{n} \sigma_i + \varsigma_i = 0 \, , \quad \varsigma_n = 0 .
\]
(2.13)

Such resonances strongly violate the usual non–degeneracy assumptions needed for the direct construction of BNFs.

The first resonance, discovered by M. Herman, is still quite mysterious (see, however, [1]), while the second resonance is related to the existence of two non–commuting integrals, given by the horizontal components \(C_1 \) and \(C_2 \) of the total angular momentum \(C := \sum_{i=1}^{n} x^{(i)} \times y^{(i)} \) of the system (compare [2]).

Actually, the effect of rotation invariance is deeper: the vanishing of the eigenvalue \(\varsigma_n \) is just “the first order” of a “rotational” proper degeneracy, as explained in the following theorem, which will be proved in § 4.

Let \(w := (u, v) = (u_1, \ldots, u_{2n}, v_1, \ldots, v_{2n}) \), \(\tilde{w} := (u_1, \ldots, u_{2n-1}, v_1, \ldots, v_{2n-1}) \) and
\[
G(\Lambda, \tilde{w}) := \sum_{i=1}^{n} \Lambda_i - \frac{1}{2} \sum_{i=1}^{2n-1} (u_i^2 + v_i^2) .
\]
(2.14)

Theorem 2.1 For any \(s \in \mathbb{N} \), there exists \(\varepsilon > 0 \), an open set \(\mathcal{A} \subseteq \{a_1 < \cdots < a_n\} \) such that, if
\[
\mathcal{M}_B^{6n} := \mathcal{A} \times \mathbb{T}^n \times B_{\varepsilon}^{4n-2} \times B_{2\sqrt{G}}^2 ,
\]
one can construct a symplectic map ("Birkhoff transformation"),
\[
\Phi_B : (\Lambda, l, w) \in \mathcal{M}_B^{6n} \rightarrow (\Lambda, \tilde{\Lambda}, \tilde{z}) \in \tilde{\mathcal{M}}_B^{6n} := \Phi_B(\mathcal{M}_B^{6n})
\]
(2.15)

with the following properties. The pull–back of the Hamiltonian (2.11) takes the form
\[
\mathcal{H}_B(\Lambda, l, w) := \tilde{H}_p \circ \tilde{\Phi}_B = h_k(\Lambda) + \mu f_B(\Lambda, l, w)
\]
(2.16)

where the average \(f_B^{av}(\Lambda, w) := \int_{\mathbb{T}^n} f_B dl \) is in BNF of order \(s \):
\[
f_B^{av}(\Lambda, w) = C_0 + \Omega \cdot r + P_s(r) + O(|w|^{2s+2}) \quad w := (u, v) \quad r_i := \frac{u_i^2 + v_i^2}{2} ,
\]
(2.17)
being homogeneous polynomial in r of order s, parameterized by Λ. Such normal form is unique up to symplectic transformations Φ which leave the Λ’s fixed and with the \bar{z}–projection independent of l and close to the identity in w, i.e.,

$$\Pi_{\bar{z}} \Phi = w + O(|w|^2). \tag{2.18}$$

Furthermore, the normal form (2.16)–(2.17) is “infinitely degenerate”, in the sense that H_b does not depend on (u_{2n}, v_{2n}). In particular, there exists a unique polynomial $\bar{P}_s : \mathbb{R}^{2n-1} \to \mathbb{R}$ (parameterized by Λ) such that

$$P_s(r) = \bar{P}_s(\bar{r}) \quad \text{where} \quad \bar{r} := (r_1, \cdots, r_{2n-1}). \tag{2.19}$$

Remark 2.1

(i) Notice that the w–projection of \mathcal{M}_B^{6n} corresponds to a neighborhood of $w = 0$, which is small only in the $4n - 2$ components of w, while it is large (maximal) in the remaining 2 components (compare Appendix B for the natural radius $2\sqrt{G}$ in the variables (u_{2n}, q_{2n})). Indeed, to construct the normal form, by rotation invariance, it is not necessary to assume that all inclinations are small, but one can take the mutual inclinations to be small. This corresponds to consider $2n - 1$ secular degrees of freedom (roughly, corresponding to n couples of eccentricities–perihelias and $n - 1$ couples of inclinations–nodes) instead of $2n$. The overall inclination–node of the system (corresponding to the remaining 2 secular variables) is allowed to vary globally.

(ii) Theorem 2.1 depends strongly upon the rotational invariance of the Hamiltonian (2.1), that is, on the fact that such Hamiltonian commutes with the three components of the angular momentum C. To exploit explicitly such invariance, we shall use a set of symplectic variables (“RPS variables”), introduced in [6] (in order to describe the symplectic structure of the planetary N–body problem and to check KAM non–degeneracies).

(iii) The RPS variables are obtained as a symplectic regularization of a set of action–angle variables, introduced by Deprit in 1983 ([8], [5]), which generalize to an arbitrary number n of planets the classical Jacobi’s reduction of the nodes ($n = 2$). The remarkable property of the Deprit’s variables is that there appear a conjugate couple (C_3 and ζ below) plus an action variable G which are integrals. Thus, the conjugate integrals are also cyclic and are responsible for the proper degeneracy of the planetary Hamiltonian. Furthermore, the RPS variables have a cyclic couple (p_n, q_n) below, which foliates the phase space into symplectic leaves (the sets $\mathcal{M}^{6n-2}_{(p_n, q_n)}$ in (3.14) below), on which the planetary Hamiltonian keeps the same form. So, the construction of the “non degenerate part” of the normal form can be made up to any order (and is the same) on each leaf [6]. In particular, the even order of the remainder in (2.17) is due to invariance by rotations around the C–axis of the system. Finally, we prove that such normal form can be uniquely lifted to the degenerate normal form (2.17)–(2.19) on the phase space \mathcal{M}_p^{6n} in (2.9).

The proof is based on the remarkable link between RPS and Poincaré variables, described in the following section (see Theorem 3.1).
3 Poincaré and RPS variables

In this section we first recall the definitions of the Poincaré and RPS variables\(^5\) and then discuss how they are related. Recall that the Poincaré variables have been introduced to regularize around zero eccentricities and inclinations the Delaunay action–angle variables. Analogously, the RPS variables have been introduced to regularize around zero eccentricities and inclinations the Deprit action–angle variables.

- Fix \(2n\) positive “mass parameters\(^6\)” \(M_i, \bar{m}_i\) and consider the two–body Hamiltonians \(h_i(y^{(i)}, x^{(i)}) := h_{\text{plt}}^{(i)}\) as in (2.4). Assume that \(h_i(y^{(i)}, x^{(i)}) < 0\) so that the Hamiltonian flow \(\phi_{h_i}^{t}(y^{(i)}, x^{(i)})\) evolves on a Keplerian ellipse \(\varepsilon_i\) and assume that the eccentricity \(e_i \in (0, 1)\). Let \(a_i, P_i\) denote, respectively, the semi major axis and the perihelion of \(\varepsilon_i\). Let \(C^{(i)}\) denote the \(i\)th angular momentum \(C^{(i)} := x^{(i)} \times y^{(i)}\).

- To define Delaunay variables, one needs the “Delaunay nodes”
 \[
 \bar{\nu}_i := k^{(3)} \times C^{(i)} \quad 1 \leq i \leq n ,
 \]
 where \((k^{(1)}, k^{(2)}, k^{(3)})\) is the standard orthonormal basis in \(\mathbb{R}^3\).

- To define Deprit variables, consider the “partial angular momenta”
 \[
 S^{(i)} := \sum_{j=1}^{i} C^{(j)} , \quad S^{(n)} := \sum_{j=1}^{n} C^{(j)} =: C ;
 \]
 (notice that \(C\) is the total angular momentum of the system) and define the “Deprit nodes”
 \[
 \begin{align*}
 \nu_{i+1} &:= S^{(i+1)} \times C^{(i+1)} , \quad 1 \leq i \leq n - 1 \\
 \nu_1 &:= \nu_2 \\
 \nu_{n+1} &:= k^{(3)} \times C =: \bar{\nu} .
 \end{align*}
 \]

For \(u, v \in \mathbb{R}^3\) lying in the plane orthogonal to a vector \(w\), let \(\alpha_w(u, v)\) denote the positively oriented angle (mod 2\(\pi\)) between \(u\) and \(v\) (orientation follows the “right hand rule”).

- The classical Delaunay action–angle variables \((\Lambda, \Gamma, \Theta, \ell, g, \theta)\) are defined as
 \[
 \begin{align*}
 \Lambda_i &:= M_i \sqrt{\bar{m}_i a_i} \\
 \ell_i &:= \text{mean anomaly of } x^{(i)} \text{ on } \varepsilon_i \\
 \Gamma_i &:= |C^{(i)}| = \Lambda_i \sqrt{1 - e_i^2} \\
 g_i &:= \alpha_{C^{(i)}}(\bar{\nu}_i, P_i) \\
 \Theta_i &:= C^{(i)} \cdot k^{(3)} \\
 \theta_i &:= \alpha_{k^{(3)}}(k^{(1)}, \bar{\nu}_i)
 \end{align*}
 \]

\(^5\)For full details, see [10], and references therein, and [6].

\(^6\)The RPS variables will depend upon these mass parameters, which, in the planetary case, will obviously coincide with (2.2).
• The Deprit action–angle variables \((\Lambda, \Gamma, \Psi, \ell, \gamma, \psi)\) are defined as follows. The variables \(\Lambda, \Gamma\) and \(\ell\) are in common with the Delaunay variables (3.4), while
\[
\gamma_i := \alpha_{C(i)}(\nu_i, P_i) \quad \Psi_i := \begin{cases} |S^{(i+1)}|, & 1 \leq i \leq n - 1 \\ C_3 := C \cdot k^{(3)} & i = n \end{cases}
\]
\[
\psi_i := \begin{cases} \alpha_{S^{(i+1)}}(\nu_{i+2}, \nu_{i+1}) & 1 \leq i \leq n - 1 \\ \zeta := \alpha_{k^{(3)}}(k^{(1)}, \nu) & i = n. \end{cases}
\]

Define also \(G := |C| = |S^{(n)}|\).

Notice that:

• Delaunay’s variables are defined on an open set of full measure \(\mathcal{P}^{6n}_{\text{Del}}\) of the Cartesian phase space \(\mathcal{P}^{6n} := \mathbb{R}^{3n} \times \mathbb{R}^{3n}_*\), namely, on the set where \(e_i \in (0, 1)\) and the nodes \(\bar{\nu}_i\) in (3.1) are well defined.

• Deprit’s variables are defined on an open set of full measure \(\mathcal{P}^{6n}_{\text{Dep}}\) of \(\mathcal{P}^{6n}\) where \(e_i \in (0, 1)\) and the nodes \(\nu_i\) in (3.3) are well defined.

• On \(\mathcal{P}^{6n}_{\text{Del}}\) and \(\mathcal{P}^{6n}_{\text{Dep}}\), the “Delaunay inclinations” \(i_i\) and the “Deprit inclinations” \(\iota_i\), defined through the relations
\[
\cos i_i := \frac{C^{(i)} \cdot k^{(3)}}{|C^{(i)}|}, \quad \cos \iota_i := \begin{cases} \frac{C^{(i+1)} \cdot S^{(i+1)}}{|C^{(i+1)}||S^{(i+1)}|} & 1 \leq i \leq n - 1 \\ \frac{C \cdot k^{(3)}}{|C|} & i = n \end{cases}
\]
are well defined and we choose the branch of \(\cos^{-1}\) so that \(i_i, \iota_i \in (0, \pi)\).

Finally:

• The Poincaré variables are given by \((\Lambda, \lambda, z) := (\Lambda, \lambda, \eta, \xi, p, q)\), with the \(\Lambda\)'s as in (3.4) and
\[
\lambda_i = \ell_i + g_i + \theta_i \quad \begin{cases} \eta_i = \sqrt{2(\Lambda_i - \Gamma_i)} \cos (\theta_i + g_i) \\ \xi_i = -\sqrt{2(\Lambda_i - \Gamma_i)} \sin (\theta_i + g_i) \\ p_i = \sqrt{2(\Gamma_i - \Theta_i)} \cos \theta_i \\ q_i = -\sqrt{2(\Gamma_i - \Theta_i)} \sin \theta_i \end{cases}
\]
The rps variables are given by \((\Lambda, \lambda, z) := (\Lambda, \lambda, \eta, \xi, p, q)\) with (again) the \(\Lambda\)'s as in (3.4) and

\[
\begin{align*}
\lambda_i &= \ell_i + \gamma_i + \psi_{i-1}^n, \\
\eta_i &= \sqrt{2(\Lambda_i - \Gamma_i)} \cos (\gamma_i + \psi_{i-1}^n), \\
\xi_i &= -\sqrt{2(\Lambda_i - \Gamma_i)} \sin (\gamma_i + \psi_{i-1}^n), \\
p_i &= \sqrt{2(\Gamma_{i+1} + \Psi_{i-1} - \Psi_i)} \cos \psi_i^n, \\
q_i &= -\sqrt{2(\Gamma_{i+1} + \Psi_{i-1} - \Psi_i)} \sin \psi_i^n
\end{align*}
\]

(3.8)

where

\[
\Psi_0 := \Gamma_1, \quad \Gamma_{n+1} := 0, \quad \psi_0 := 0, \quad \psi_i^n := \sum_{i \leq j \leq n} \psi_j.
\]

Remark 3.1 From the definitions (3.8)–(3.9) it follows that the variables

\[
\begin{align*}
p_n &= \sqrt{2(\Psi_{n-1} - \Psi_n)} \cos \psi_n = \sqrt{2(G - C_3)} \cos \zeta, \\
q_n &= -\sqrt{2(\Psi_{n-1} - \Psi_n)} \sin \psi_n = -\sqrt{2(G - C_3)} \sin \zeta
\end{align*}
\]

(3.10)

are defined only in terms of the integral \(C\). Thus, they are integrals (hence, cyclic) in Hamiltonian systems which commute with the three components of the angular momentum \(C\) (or, equivalently, in systems which are invariant by rotations).

Let \(\phi_p\) and \(\phi_{rps}\) denote the maps

\[
\phi_p : (y, x) \rightarrow (\Lambda, \lambda, z), \quad \phi_{rps} : (y, x) \rightarrow (\Lambda, \lambda, \xi).
\]

(3.11)

The main point of this procedure is that:

- The map \(\phi_p\) can be extended to an analytic symplectic diffeomorphism on the set \(\mathcal{P}_{\text{Del}}^{6n}\) which is defined as \(\mathcal{P}_{\text{Del}}^{6n} \star\), but with \(e_i\) and \(i_i\) allowed to be zero.

- The map \(\phi_{rps}\) can be extended to an analytic symplectic diffeomorphism on the set \(\mathcal{P}_{\text{Dep}}^{6n}\) which is defined as \(\mathcal{P}_{\text{Dep}}^{6n} \star\), but with \(e_i\) and \(i_i\) allowed to be zero.

The image sets \(\mathcal{M}_{\text{max,p}}^{6n} := \phi_p(\mathcal{P}_{\text{Del}}^{6n})\) and \(\mathcal{M}_{\text{max,rps}}^{6n} := \phi_{rps}(\mathcal{P}_{\text{Dep}}^{6n})\) are defined by elementary inequalities following from the definitions (3.7) and (3.8) (details in Appendix B). Notice in particular that

- \(e_i = 0\) corresponds to the Poincaré coordinates \(\eta_i = 0 = \xi_i\) and the RPS coordinates \(\eta_i = 0 = \xi_i\);

- \(i_i = 0\) corresponds to the Poincaré coordinates \(p_i = 0 = q_i\);

- \(\iota_i = 0\) corresponds to the the RPS coordinates \(p_i = 0 = q_i\). In particular \(p_n = 0 = q_n\) corresponds to the angular momentum \(C\) being parallel to the \(k^{(3)}\)-axis.
Let \tilde{z} denote the set of variables

$$\tilde{z} := (\eta, \xi, \tilde{p}, \tilde{q}) := ((\eta_1, \ldots, \eta_n), (\xi_1, \ldots, \xi_n), (p_1, \ldots, p_{n-1}), (q_1, \ldots, q_{n-1})) \ .$$

(roughly, \tilde{z} are related to eccentricities–perihelia, and mutual inclinations–nodes of the instantaneous ellipses \mathbf{e}_i). Then, $\mathcal{M}^{6n}_{\text{max, rps}}$ can be written as

$$\mathcal{M}^{6n}_{\text{max, rps}} := \phi_{\text{rps}}(P_{\text{Dep}}^{6n}) = \{(\Lambda, \lambda, \tilde{z}) \in \mathcal{M}^{6n-2}_{\text{max}} \mid p_n^2 + q_n^2 < 4G(\Lambda, \tilde{z})\} \quad (3.13)$$

where $G(\Lambda, \tilde{z})$ is just the length of the total angular momentum expressed in rps variables as given in (2.14) and $\mathcal{M}^{6n-2}_{\text{max}}$ is a given subset of $\mathbb{R}^n_+ \times \mathbb{T}^n \times \mathbb{R}^{4n-2}$ (compare the end of Appendix B).

We have already observed that for rotation invariant systems the variables (p_n, q_n) are cyclic. In this case, the phase space $\mathcal{M}^{6n}_{\text{max, rps}}$ is foliated into symplectic leaves

$$\mathcal{M}^{6n-2}_{(p_n^*, q_n^*)} := \phi_{\text{rps}}(P_{\text{Dep}}^{6n}) = \{(\Lambda, \lambda, z) \in \mathcal{M}^{6n}_{\text{max, rps}} \mid p_n = p_n^*, \quad q_n = q_n^*\} \quad (3.14)$$

In the next section, for the application to the planetary problem, we shall substitute the set $\mathcal{M}^{6n-2}_{\text{max}}$ in the definition (3.13) of $\mathcal{M}^{6n}_{\text{max, rps}}$ with a smaller set $\mathcal{M}^{6n-2}_{\text{max}}$: compare (4.2) below.

Consider the common domain of the maps ϕ_p and ϕ_{rps} in (3.11), i.e. the set $P^{6n}_{\text{Dep}} \cap P^{6n}_{\text{Dep}}$. In particular, on such set, $0 \leq e_i < 1$, $0 \leq i_i < \pi$, $0 \leq \iota_i < \pi$. On the ϕ_{rps}–image of such domain consider the symplectic map

$$\phi_{\text{rps}}^p : (\Lambda, \lambda, z) \to (\Lambda, \lambda, z) := \phi_p \circ \phi_{\text{rps}}^{-1} \quad (3.15)$$

which maps the rps variables onto the Poincaré variables. Such a map has a particularly simple structure:

Theorem 3.1 The symplectic map ϕ_{rps}^p in (3.15) has the form

$$\lambda = \lambda + \varphi(\Lambda, z) \quad z = Z(\Lambda, z) \quad (3.16)$$

where $\varphi(\Lambda, 0) = 0$ and, for any fixed Λ, the map $Z(\Lambda, \cdot)$ is 1:1, symplectic\(^7\) and its projections verify, for a suitable $\mathcal{V} = \mathcal{V}(\Lambda) \in \text{SO}(n)$, with $O_3 = O(|z|^3)$,

$$\Pi_\eta Z = \eta + O_3 \ , \ \Pi_\xi Z = \xi + O_3 \ , \ \Pi_p Z = \mathcal{V} p + O_3 \ , \ \Pi_q Z = \mathcal{V} q + O_3 \ . \quad (3.17)$$

To prove Theorem 3.1, we need some information on the analytical expressions of the maps ϕ_p and ϕ_{rps}.

\(^7\)I.e., it preserves the two form $d\eta \wedge d\xi + dp \wedge dq$.

11
• The analytical expression of the Cartesian coordinates \(y^{(i)}\) and \(x^{(i)}\) in terms of the Poincaré variables (3.7) is classical:

\[
x^{(i)} = \mathcal{R}_p^{(i)} x^{(i)}_{pl}, \quad y^{(i)} = \mathcal{R}_p^{(i)} y^{(i)}_{pl}
\]

(3.18)

where \(\mathcal{R}_p^{(i)}\) is the Poincaré rotation matrix and \(x^{(i)}_{pl}, y^{(i)}_{pl}\) is the planar Poincaré map. Explicitly,

- The planar Poincaré map is given by

\[
x^{(i)}_{pl} = (x_1^{(i)}, x_2^{(i)}, 0), \quad y^{(i)}_{pl} = (y_1^{(i)}, y_2^{(i)}, 0) = \beta_i \partial_{\lambda_i} x^{(i)}_{pl}
\]

(3.19)

where

\[
\begin{aligned}
 x_1^{(i)} &= \frac{1}{m_i} \left(\frac{\Lambda_i}{M_i} \right)^2 \left(\cos u_i - \frac{\xi_i}{2\lambda_i} (\eta_i \sin u_i + \xi_i \cos u_i) - \frac{\eta_i}{\sqrt{\Lambda_i}} \sqrt{1 - \frac{\eta_i^2 + \xi_i^2}{4\Lambda_i}} \right) \\
 x_2^{(i)} &= \frac{1}{m_i} \left(\frac{\Lambda_i}{M_i} \right)^2 \left(\sin u_i - \frac{\eta_i}{2\lambda_i} (\eta_i \sin u_i + \xi_i \cos u_i) + \frac{\xi_i}{\sqrt{\Lambda_i}} \sqrt{1 - \frac{\eta_i^2 + \xi_i^2}{4\Lambda_i}} \right) \\
 \beta_i &= \frac{m_i^2 M_i^4}{\Lambda_i^3}
\end{aligned}
\]

and \(u_i = u_i(\Lambda_i, \lambda_i, \eta_i, \xi_i) = \lambda_i + O((\eta_i, \xi_i))\) is the unique solution of the (regularized) Kepler equation

\[
u_i = \frac{1}{\sqrt{\Lambda_i}} \sqrt{1 - \frac{\eta_i^2 + \xi_i^2}{4\Lambda_i}} (\eta_i \sin u_i + \xi_i \cos u_i) = \lambda_i ;
\]

(3.21)

- The Poincaré rotation matrix is given by

\[
\mathcal{R}_p^{(i)} = \begin{pmatrix}
1 - q_i^2 c_i & -p_i q_i c_i & -q_i s_i \\
-p_i q_i c_i & 1 - p_i^2 c_i & -p_i s_i \\
q_i s_i & p_i s_i & 1 - (p_i^2 + q_i^2) c_i \\
\end{pmatrix}
\]

(3.22)

where \(c_i = \frac{1}{2\lambda_i - \eta_i^2 - \xi_i^2}\) and \(s_i = \sqrt{c_i(2 - (p_i^2 + q_i^2) c_i)}\).

• The formulae of the Cartesian variables in terms of the RPS variables, differ from the formulae of the Poincaré map (3.18) just for the rotation matrix. Namely, one has

\[
x^{(i)} = \mathcal{R}_{rps}^{(i)} x^{(i)}_{pl}, \quad y^{(i)} = \mathcal{R}_{rps}^{(i)} y^{(i)}_{pl}
\]

(3.23)

\[\text{Compare, e.g., [3].}\]
where \(x^{(i)}_{pl}, y^{(i)}_{pl} \) is the planar Poincaré map defined above. The expression of the RPS rotation matrices \(\mathcal{R}^{(i)}_{\text{RPS}} \) is a product of matrices

\[
\mathcal{R}^{(i)}_{\text{RPS}} = \mathcal{R}^*_n \mathcal{R}^*_{n-1} \cdots \mathcal{R}^*_i \mathcal{R}_i
\]

(3.24)

where \(\mathcal{R}_i, \mathcal{R}_i^* \) are 3 x 3 unitary matrices (\(\mathcal{R}_1 \equiv \text{id} \)) given by

\[
\mathcal{R}_i^* = \begin{pmatrix}
1 - q_i^2 \zeta_i^* & -p_i q_i \zeta_i^* & -q_i \sigma_i^* \\
-p_i q_i \zeta_i^* & 1 - p_i^2 \zeta_i^* & -p_i \sigma_i^* \\
q_i \sigma_i^* & p_i \sigma_i^* & 1 - (p_i^2 + q_i^2) \zeta_i^*
\end{pmatrix}, \quad 1 \leq i \leq n
\]

(3.25)

\[
\mathcal{R}_i = \begin{pmatrix}
1 - q_{i-1} \zeta_i & -p_{i-1} q_{i-1} \zeta_i & -q_{i-1} \sigma_i \\
-p_{i-1} q_{i-1} \zeta_i & 1 - p_{i-1}^2 \zeta_i & -p_{i-1} \sigma_i \\
q_{i-1} \sigma_i & p_{i-1} \sigma_i & 1 - (p_{i-1}^2 + q_{i-1}^2) \zeta_i
\end{pmatrix}, \quad 2 \leq i \leq n
\]

where \(\zeta_i, \sigma_i, \zeta_j^*, \sigma_j^* \) are analytic functions of \(\frac{\eta^2 + \zeta_i^2}{2} \) and \(\frac{\eta^2 + \zeta_i^2}{2} \)'s, for \(2 \leq i \leq n, 1 \leq j \leq n \) even in \(z \), with \(\mathcal{R}_{i+1}, \mathcal{R}_i^* \) independent of \((p_n, q_n) \), for \(1 \leq j \leq n - 1 \) (for the analytic expression, see [6, Appendix A.2]).

Notice that the only matrix in (3.24) depending on \((p_n, q_n) \) is \(\mathcal{R}_n^* \).

Extending results proven in [6], we now show that \(\phi^\text{RPS}_p \) in (3.15) “preserves rotations and reflections” (Lemma 3.1 below).

Consider the following symplectic transformations

\[
\mathcal{R}_{1\rightarrow2} \left(\Lambda, \lambda, z \right) := \left(\Lambda, \frac{\pi}{2} - \lambda, \mathcal{S}_{1\rightarrow2} z \right); \quad \mathcal{R}_3 \left(\Lambda, \lambda, z \right) = \left(\Lambda, \lambda, \mathcal{S}_{34} z \right)
\]

(3.26)

\[
\mathcal{R}_g \left(\Lambda, \lambda, z \right) = \left(\Lambda, \lambda + g, \mathcal{S}_g z \right)
\]

where, denoting the imaginary unit by \(i \),

\[
\mathcal{S}_{1\rightarrow2}(\eta, \xi, p, q) := (-\xi, -\eta, q, p)
\]

\[
\mathcal{S}_{34}(\eta, \xi, p, q) := (\eta, \xi, -p, -q)
\]

\[
\mathcal{S}_g : \left(\eta_j + i \xi_j, \eta_j + i \xi_j \right) \rightarrow \left(e^{-ig}(\eta_j + i \xi_j), e^{-ig}(p_j + i q_j) \right)
\]

(3.27)

Such transformations correspond, in Cartesian coordinates, to, respectively, reflection with respect to the plane \(x_1 = x_2 \), the plane \(x_3 = 0 \) and a positive rotation of \(g \) around the \(k^{(3)} \)-axis:

\[
\mathcal{R}_{1\rightarrow2} : \quad x^{(i)} \rightarrow (x^{(i)}_2, x^{(i)}_1, x^{(i)}_3), \quad y^{(i)} \rightarrow (-y^{(i)}_2, -y^{(i)}_1, -y^{(i)}_3)
\]

\[
\mathcal{R}_3 : \quad x^{(i)} \rightarrow (x^{(i)}_1, x^{(i)}_2, -x^{(i)}_3), \quad y^{(i)} \rightarrow (y^{(i)}_1, y^{(i)}_2, -y^{(i)}_3)
\]

(3.28)

\[
\mathcal{R}_g : \quad x^{(i)} \rightarrow \mathcal{R}_3(g) x^{(i)}, \quad y^{(i)} \rightarrow \mathcal{R}_3(g) y^{(i)}
\]

13
where $R_3(g)$ denotes the matrix
\[
R_3(g) := \begin{pmatrix}
\cos g & -\sin g & 0 \\
\sin g & \cos g & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad g \in \mathbb{T}.
\] (3.29)

For future use, consider also the following transformations, which are obtained by suitably combining $R_{1\leftrightarrow 2}$ and R_g:
\[
\begin{cases}
R_1^-(\Lambda, \lambda, z) := R_{1\leftrightarrow 2} R_{1\rightarrow 2} R_{\frac{\pi}{4}} = (\Lambda, \pi - \lambda, S_{14}^-z) \\
R_2^-(\Lambda, \lambda, z) := R_{\frac{\pi}{4}} R_{1\rightarrow 2} R_{-\frac{\pi}{4}} = (\Lambda, -\lambda, S_{23}^-z)
\end{cases}
\] (3.30)

where
\[
S_{14}^- (\eta, \xi, p, q) := (-\eta, \xi, p, -q), \quad S_{23}^- (\eta, \xi, p, q) := (\eta, -\xi, -p, q).
\] (3.31)

Notice in particular:

- (D’Alembert rules) Being \mathcal{H}_{plt} invariant by rotations around $k^{(3)}$ and by reflections with respect to the coordinate planes, the averaged perturbation f_{av}^p does not change under the transformations $z \rightarrow Sz$, where S is as in (3.27) or in (3.31).

In particular, by D’Alembert rules, the expansion (2.8) follows.

Lemma 3.1 The map ϕ^{RPS}_p in (3.15) satisfies $\phi^{RPS}_p R = R \phi^{RPS}_p$, for any $R = R_{1\leftrightarrow 2}$, R_1^-, R_2^-, R_3^-, R_g as in (3.26)–(3.31).

Proof It is enough to prove Lemma 3.1 for the transformations in (3.26) and (3.27). But this follows from the fact that both in Poincaré variables and in RPS variables the transformations in (3.28) have the form in (3.26)–(3.27).

Proof of Theorem 3.1 For the proof of (3.16) (since ϕ^{RPS}_p is a regular map), we can restrict to the open dense set where none of the eccentricities e_i or of the nodes ν_{i+1} or $\bar{\nu}_i$ vanishes. In such set the angles γ_i, g_i, θ_i and ψ_i are well defined. By the definitions of λ_i in (3.7) and of λ_i in (3.8), one has
\[
\lambda_i - \lambda_i = \left(\ell_i + g_i + \theta_i\right) - \left(\ell_i + \gamma_i + \psi^n_{i-1}\right) = (g_i - \gamma_i) + \theta_i - \psi^n_{i-1}.
\]

The shifts $g_i - \gamma_i = \alpha_{C^{(i)}}(\bar{\nu}_i, P_i) - \alpha_{C^{(i)}}(\nu_i, P_i) = \alpha_{C^{(i)}}(\bar{\nu}_i, \nu_i)$ (compare their definitions in (3.4) and (3.5)), as well as the angles θ_i and ψ_j depend only on the angular momenta $C^{(1)}, \ldots, C^{(n)}$; hence, they do not depend upon λ.

14
With similar arguments one proves the second equation in (3.16). Injectivity of \(\mathcal{Z}(\Lambda, \cdot) \) follows from the definitions. That, for any fixed \(\Lambda \), \(\mathcal{Z}(\Lambda, \cdot) \) is symplectic, is a general property of any map of this form which is the projection over \(z \) of a symplectic transformation \((\Lambda, \lambda, z) \rightarrow (\Lambda, \lambda, z)\) which leaves \(\Lambda \) unchanged.

Notice now that \(\phi_{rps} \) preserves the quantities

\[
|z|^2 = |\bar{z}|^2 = 2(|\Lambda|_1 - C_3), \tag{3.32}
\]

and the quantities

\[
\eta_i^2 + \xi_i^2 = \eta_i^2 + \xi_i^2 = 2(\Lambda_i - \Gamma_i) \tag{3.33}
\]

Therefore, it also preserves

\[
|\langle p, q \rangle|^2 = |\langle p, q \rangle|^2. \tag{3.34}
\]

From the previous equalities one has that \(\phi_{rps} \) sends injectively \((\eta, \xi) = 0\) to \((\eta_i, \xi_i) = 0\) and \((p, q) = 0\) to \((p, q) = 0\).

From the analytical expressions of \(\phi_p \) and \(\phi_{rps} \) there follows that, when \((p, q) = 0\), the Poincaré variables \((\eta, \xi)\) and \(\lambda\) and the Deprit’s \((\eta, \xi)\) and \(\lambda\) respectively coincide. Therefore, from (3.16) and (3.33), we have \(\varphi(\Lambda, 0) = 0\) and the first two equations in (3.17) follow. The fact that the remainder is \(O(|z|^3)\) is because \(\mathcal{Z}(\Lambda, \cdot)\) is odd in \(z\), as we shall now check. In fact, using Lemma 3.1 with \(R = R_1 \) or \(R = R_2 \), one finds that the \((\eta, q)\)–projection of \(\mathcal{Z}(\Lambda, \cdot)\) is odd in \((\eta, q)\), even in \((\xi, p)\); the \((\xi, p)\)–projection of \(\mathcal{Z}\) is odd in \((\xi, p)\), even in \((\eta, q)\). In particular, \(\mathcal{Z}(\Lambda, \cdot)\) is odd in \(z\).

Equation (3.34) and the fact that \(\mathcal{Z}\) is odd imply that \((p, q) = \mathfrak{R}(p, q) + O(|z|^3)\), with \(\mathfrak{R} \in SO(2n)\). Since \(p\) is odd in \((\xi, p)\) and \(q\) is odd in \((\eta, q)\), one has that \(\mathfrak{R}\) is block diagonal: \(\mathfrak{R} = \text{diag}[\mathcal{V}_p, \mathcal{V}_q]\). The fact that \(\mathcal{V}_p = \mathcal{V}_q := \mathcal{V}\) follows from Lemma 3.1, taking \(R = R_{1 \rightarrow 2} \).

\section{Proof of the normal form theorem}

For the proof of Theorem 2.1, we need some results from [6], to which we refer for details.

Let \(\mathcal{H}_{rps} \) denote the planetary Hamiltonian expressed in RPS variables:

\[
\mathcal{H}_{rps}(\Lambda, \lambda, \bar{z}) := \mathcal{H}_{plt} \circ \phi_{rps}^{-1} = h_k(\Lambda) + \mu f_{rps}(\Lambda, \lambda, \bar{z}) \tag{4.1}
\]

where \(\mathcal{H}_{plt} \) is as in (2.1) and \(\phi_{rps} \) as in (3.11).

Notice that, as \(\mathcal{H}_{plt} \) is rotation invariant, the variables \(p_n, q_n \) in (3.10) are cyclic for \(\mathcal{H}_{rps} \). Hence, the perturbation function \(f_{rps} \) depends only on the remaining variables \((\Lambda, \lambda, \bar{z})\), where \(\bar{z}\) is as in (3.12).
To avoid collisions, consider the ("partially reduced") variables in a subset of the maximal set $\mathcal{M}_{\text{max}}^{6n-2}$ in (3.13) of the form

$$(\Lambda, \lambda, \bar{z}) \in \mathcal{M}_{\text{max}}^{6n-2} := \mathcal{A} \times \mathbb{T}^n \times B^{4n-2}$$

where \mathcal{A} is a set of well separated semi major axes

$$\mathcal{A} := \{ \Lambda : a_j < \bar{a}_j < a_{j+1} \text{ for } 1 \leq j \leq n \}$$

where $a_1, \ldots, a_n, \bar{a}_1, \ldots, \bar{a}_n$, are positive numbers verifying $a_j < \bar{a}_j < a_{j+1}$ for any $1 \leq j \leq n$, $\bar{a}_{n+1} := \infty$; B^{4n-2} is a small $(4n-2)$–dimensional ball around the "secular origin" $\bar{z} = 0$.

As in the Poincaré setting, the Hamiltonian \mathcal{H}_{RPS} enjoys D’Alembert rules (namely, the symmetries in (3.27) and in (3.31)). Indeed, since the map ϕ_{RPS} in (3.15) commutes with any transformations \mathcal{R} as in (3.26)–(3.31) and \mathcal{H}_p is \mathcal{R}–invariant, one has that \mathcal{H}_{RPS} is \mathcal{R}–invariant:

$$\mathcal{H}_{\text{RPS}} \circ \mathcal{R} = \mathcal{H}_p \circ \phi_{\text{RPS}} \circ \mathcal{R} = \mathcal{H}_p \circ \mathcal{R} \circ \phi_{\text{RPS}} = \mathcal{H}_p \circ \phi_{\text{RPS}} = \mathcal{H}_{\text{RPS}}.$$ (4.4)

This implies that the averaged perturbation $f_{\text{av}}^{\text{RPS}}$ also enjoys D’Alembert rules and thus has an expansion analogue to (2.8), but independent of (p_n, q_n):

$$f_{\text{av}}^{\text{RPS}}(\Lambda, \bar{z}) = C_0(\Lambda) + Q_h(\Lambda) \cdot \frac{\eta^2 + \xi^2}{2} + \bar{Q}_e(\Lambda) \cdot \frac{\bar{p}^2 + \bar{q}^2}{2} + O(|\bar{z}|^4)$$ (4.5)

with Q_h of order n and \bar{Q}_e of order $(n-1)$. Notice that the matrix Q_h in (4.5) is the same as in (2.8), since, when $p = (\bar{p}, p_n) = 0$ and $q = (\bar{q}, q_n) = 0$, Poincaré and RPS variables coincide.

The first step is to construct a normal form defined on a suitable lower dimensional domain

$$(\Lambda, \bar{\lambda}, \bar{z}) \in \tilde{\mathcal{M}}^{6n-2} := \mathcal{A} \times \mathbb{T}^n \times \tilde{B}^{4n-2}$$

(4.6)

(where \tilde{B}^{4n-2} is an open ball in \mathbb{R}^{4n-2} around $\bar{z} = 0$).

The existence of such normal form for the Hamiltonian (4.5) at any order s defined over a set of the form (4.6) is a corollary of [6, §7]. Indeed (by [6]), one can first conjugate $\mathcal{H}_{\text{RPS}} = h_k + \mu f_{\text{RPS}}$ to a Hamiltonian

$$\tilde{\mathcal{H}}_{\text{RPS}} = \mathcal{H}_{\text{RPS}} \circ \tilde{\phi} = h_k + \mu \tilde{f}_{\text{RPS}},$$ (4.7)

so that the average $\tilde{f}_{\text{av}}^{\text{RPS}}$ has the quadratic part into diagonal form:

$$\tilde{f}_{\text{av}}^{\text{RPS}}(\Lambda, \bar{z}) = C_0(\Lambda) + \sum_{i=1}^n \sigma_i \frac{\bar{\eta}_i^2 + \bar{\xi}_i^2}{2} + \sum_{i=1}^{n-1} \varsigma_i \frac{\bar{p}_i^2 + \bar{q}_i^2}{2} + O(|\bar{z}|^4)$$ (4.8)
where \(\tilde{z} = (\tilde{\eta}, \tilde{\xi}, \tilde{p}, \tilde{q}) \) and \(\sigma_i, \varsigma_i \) denote\(^9\) the eigenvalues of the matrices \(Q_h \) and \(\bar{Q}_v \) in (4.5). Here, \(\tilde{\phi} \) denotes the “symplectic diagonalization” which lets \(\Lambda \rightarrow \bar{\Lambda} \) and

\[
\lambda = \tilde{\lambda} + \tilde{\phi}(\Lambda, \tilde{z}) , \quad \eta = U_h(\Lambda)\tilde{\eta} , \quad \zeta = U_h(\Lambda)\tilde{\xi} , \quad \bar{p} = \bar{U}_v(\Lambda)\tilde{p} , \quad \bar{q} = \bar{U}_v(\Lambda)\tilde{q} ,
\]

(4.9)

where \(U_h \in SO(n) \) and \(\bar{U}_v \in SO(n-1) \) put \(Q_h \) and \(\bar{Q}_v \) into diagonal form and will be chosen later. Notice that \(\tilde{\phi} \) leaves the set \(\mathcal{M}^{6n-2} \) in (4.2) unchanged.

Next, we can use Birkhoff theory for rotation invariant Hamiltonians, which allows to construct BNF for rotation invariant Hamiltonian for which there are no resonance (up to a certain prefixed order) for those Taylor indices \(k \) such that \(\sum k_i = 0 \) (rather than \(k \neq 0 \) as in standard Birkhoff theory; compare Appendix A below). Indeed, as shown in [6, Proposition 7.2], the first order Birkhoff invariants \(\Omega = (\sigma, \varsigma) \in \mathbb{R}^n \times \mathbb{R}^{n-1} \) do not satisfy any resonance (up to any prefixed order \(s \)) over a \((s\text{-dependent}) \) set \(\mathcal{A} \) chosen as in (4.3), other than \(\sum_{i=1}^n \sigma_i + \sum_{i=1}^{n-1} \varsigma_i = 0 \) and \(\varsigma_n = 0 \). Thus, one can find a Birkhoff normalization \(\tilde{\phi} \) defined on the set (4.6), which conjugates \(\bar{H}_{\text{RPS}} = h_{K} + \mu \tilde{f}_{\text{RPS}} \) to

\[
\tilde{H}_{\text{RPS}} := \bar{H}_{\text{RPS}} \circ \tilde{\phi} = h_{\text{K}} + \mu \tilde{f}_{\text{RPS}} ,
\]

(4.10)

where \(\tilde{f}_{\text{RPS}} \) is in the form (2.17), with \(r \) of dimension \(n + (n-1) = 2n - 1 \) and \(\tilde{\Omega} = (\sigma, \tilde{\varsigma}) \) replacing \(\Omega \) and \(\bar{P}_s \) as in (2.19).

It is a remarkable fact, proved in [6], that both the transformations \(\tilde{\phi} \) and \(\bar{\phi} \) above leave \(G(\Lambda, \tilde{z}) \) in (2.14) unchanged

\[
G \circ \tilde{\phi} = G \circ \bar{\phi} = G ,
\]

(4.11)

(i.e., they commute with \(R_s \)). Therefore, if we denote

\[
\mathcal{M}^{6n} := \{(\Lambda, \lambda, (\tilde{z}, \bar{p}_n, q_n)) : (\Lambda, \lambda, \tilde{z}) \in \mathcal{M}^{6n-2}, p_n^2 + q_n^2 < 4G(\Lambda, \tilde{z})\} \quad (4.12)
\]

\[
\mathcal{M}_{6n}^{B} := \{(\Lambda, \tilde{\lambda}, (\tilde{z}, \bar{p}_n, q_n)) : (\Lambda, \tilde{\lambda}, \tilde{z}) \in \tilde{\mathcal{M}}^{6n-2}, p_n^2 + q_n^2 < 4G(\Lambda, \tilde{z})\} \quad (4.13)
\]

where \(\mathcal{M}^{6n-2} \) and \(\tilde{\mathcal{M}}^{6n-2} \) are as in (4.2) and (4.6), respectively, we have that \(\tilde{\phi} \) and \(\bar{\phi} \) can be lifted to symplectic transformations

\[
\tilde{\Phi}_{\text{RPS}} : \mathcal{M}^{6n} \rightarrow \mathcal{M}^{6n} , \quad \bar{\Phi}_{\text{RPS}} : \mathcal{M}_{6n}^{B} \rightarrow \mathcal{M}^{6n} \quad (4.14)
\]

through the identity map on \((p_n, q_n)\). Moreover:

(i) since \(\mathcal{H}_{\text{RPS}} \) is \((p_n, q_n)\)-independent,

\[
\mathcal{H}_{\text{RPS}} \circ \tilde{\Phi}_{\text{RPS}} = \bar{\mathcal{H}}_{\text{RPS}} , \quad \mathcal{H}_{\text{RPS}} \circ \bar{\Phi}_{\text{RPS}} = \tilde{\mathcal{H}}_{\text{RPS}} \quad (4.15)
\]

where \(\tilde{\mathcal{H}}_{\text{RPS}} \) and \(\bar{\mathcal{H}}_{\text{RPS}} \) are as in (4.7) and in (4.10), respectively;

\(^9\)In [6], the matrix \(Q_h \) is denoted by \(Q_h \); the \((n-1)\) components of \(\varsigma \) are denoted by \(\varsigma_i \). Beware that here we denote by \(\varsigma_i \) also the \(n \) components of \(\varsigma \) in (2.12). Actually, it will turn out that \(\varsigma_i = \tilde{\varsigma}_i \) (for \(i \leq n - 1 \)): compare (i) in Remark 4.1 below.
(ii) Φ_{RPS} is given by (4.9), with $(\bar{p}, p_n), (\bar{q}, q_n), (\bar{q}, q_n)$, $U_v := \text{diag}[\bar{U}_v, 1]$ replacing $\bar{p}, \bar{q}, \bar{p}, \bar{q}, U_v$, respectively;

(iii) Φ_{RPS} is of the form (2.18) (with w and \tilde{z} replaced by (\bar{z}, p_n, q_n) and (\bar{z}, p_n, q_n), respectively), since a similar property holds for $\bar{\phi}$.

Proof of Theorem 2.1. We prove only existence of the normal form; uniqueness follows from the same argument of standard BNF theory: compare [12].

Let $\bar{\mathcal{H}}_p$ as in (2.11), where $\bar{\Phi}_p$ is as in (2.9)–(2.10), for suitable fixed matrices ρ_h, ρ_v diagonalizing Q_h, Q_v in (2.8). If \mathcal{V} is as in (3.17), Eqs. (2.8), (4.5) and Theorem 3.1 imply that

$$\mathcal{V}^t Q_v \mathcal{V} = Q_v := \text{diag}[\bar{Q}_v, 0].$$

(4.16)

Thus, Q_v is diagonalized by the matrix $\mathcal{V}^t \rho_v$. We can therefore choose U_h and \bar{U}_v in (4.9) taking

$$U_h := \rho_h, \quad U_v := \text{diag}[\bar{U}_v, 1] = \mathcal{V}^t \rho_v .$$

(4.17)

Analogously, let $\bar{\Phi}_{\text{RPS}}, \bar{\Phi}_{\text{RPS}}$ as in (4.14), ϕ_{RPS}^p as in (3.15). Consider the transformation

$$\Phi_b := \Phi_b' \circ \bar{\Phi}_{\text{RPS}}$$

(4.18)

where

$$\Phi_b' := \bar{\Phi}_p^{-1} \circ \phi_{\text{RPS}}^p \circ \bar{\Phi}_{\text{RPS}}.$$

(4.19)

By (4.15), Φ_b transforms $\bar{\mathcal{H}}_p$ into

$$\mathcal{H}_b := \bar{\mathcal{H}}_p \circ \Phi_b$$

$$= \bar{\mathcal{H}}_p \circ \bar{\Phi}_p \circ \Phi_b$$

$$= \bar{\mathcal{H}}_p \circ \bar{\Phi}_p \circ \bar{\Phi}_p^{-1} \circ \phi_{\text{RPS}}^p \circ \bar{\Phi}_{\text{RPS}} \circ \bar{\Phi}_{\text{RPS}}$$

$$= \mathcal{H}_p \circ \phi_{\text{RPS}}^p \circ \bar{\Phi}_{\text{RPS}} \circ \bar{\Phi}_{\text{RPS}}$$

$$= \mathcal{H}_{\text{RPS}} \circ \bar{\Phi}_{\text{RPS}} \circ \bar{\Phi}_{\text{RPS}}$$

$$= \mathcal{H}_{\text{RPS}} = h_K + \mu \bar{f}_{\text{RPS}} := h_K + \mu f_b$$

where $f_{\text{av}} = \bar{f}_{\text{RPS}}$ has just the claimed form.

To conclude, we have to check (2.18). It is sufficient to prove such equality (with w replaced by (\bar{z}, p_n, q_n)) for the transformation Φ'_b in (4.18) (by item (iii) above). But this is an immediate consequence of (2.10), (3.17), (4.17), (4.19) and item (ii) above.

Remark 4.1 As a byproduct of the previous proof, we find that the matrices Q_v in (2.8) and $Q_v = \text{diag}[Q_v, 0]$ in (4.16) have the same eigenvalues, so that the invariants ς_i and $\bar{\varsigma}_i$ in (2.8) and (4.8) coincide (for $i \leq n - 1$).
5 Further reductions and BNFs

In this section we discuss complete symplectic reduction by rotations, together with the respective BNFs, both in the spatial and planar cases (indeed, as in the three-body case, the planar case cannot be simply deduced from the spatial one in view of singularities). The BNFs constructed in the spatial case (§ 5.1) is at the basis of the dynamical application given in § 6.

5.1 The totally reduced spatial case

Proposition 5.1 below is a generalization at arbitrary order s of [6, Proposition 10.1]; the proof is reported, for completeness, in Appendix C.

Let us consider the system $H_b = h_k + \mu f_\mu$ given by Theorem 2.1. Since the couple $(p_n, q_n) = (u_{2n}, v_{2n})$ does not appear into H_b, we shall regard H_b as a function of $(6n - 2)$ variables (Λ, l, \tilde{w}), where $\tilde{w} = (\tilde{u}, \tilde{v}) := (u_1, \ldots, u_{2n-1}, v_1, \ldots, v_{2n-1})$ is taken in the set $\mathcal{M}^{6n-2}_b := \mathcal{A} \times \mathbb{T}^n \times B^2_{\varepsilon n^{-2}}$. Without changing names to functions, we have a Hamiltonian of the form (compare (2.16)–(2.17))

\[
\begin{cases}
H_b(\Lambda, l, \tilde{w}) = h_k + \mu f_\mu(\Lambda, l, \tilde{w}) \\
f^{av}_b(\Lambda, \tilde{w}) = C_0 + \tilde{\Omega} \cdot \tilde{r} + \frac{1}{2} \tilde{r} \cdot \tilde{r}^2 + \tilde{P}_3 + \cdots + \tilde{P}_s + P(\Lambda, \tilde{w})
\end{cases}
\]

(5.1)

with \tilde{P}_j homogeneous polynomials of degree j in $\tilde{r}_i := \sqrt{\tilde{u}_i^2 + \tilde{v}_i^2}$ and $P(\Lambda, \tilde{w}) = O(|\tilde{w}|^{2s+2})$. We recall that H_b has been constructed, starting from the Hamiltonian H_{RPS} in (4.1), as $H_b = H_{RPS} \circ \tilde{\phi} \circ \tilde{\phi}$ where $\tilde{\phi}$, $\tilde{\phi}$ are given, respectively, in (4.7) and (4.10). Recall also that, since $\tilde{\phi}$ and $\tilde{\phi}$ verify (4.11), the function G in (2.14) is an integral for H_b.

Incidentally, notice that, since $\tilde{\phi}$ and $\tilde{\phi}$ leave Λ’s unvaried, their respective \tilde{z}, \tilde{z}–projections actually preserve the Euclidean length of \tilde{z}, \tilde{z}:

\[
|\Pi_{\tilde{z}} \circ \tilde{\phi}(\Lambda, \lambda, \tilde{z})| = |\tilde{z}| , \quad |\Pi_{\tilde{z}} \circ \tilde{\phi}(\Lambda, \lambda, \tilde{z})| = |\tilde{z}| .
\]

(5.2)

The Hamiltonian (5.1) is thus preserved under the G–flow, i.e., under the transformations, which we still denote by R_g, defined as in (3.26)–(3.27), with (Λ, λ, z) replaced by (Λ, l, \tilde{w}). It is therefore natural to introduce the symplectic transformation

\[
\phi : \begin{cases}
(\Lambda, G, \hat{\lambda}, \hat{\gamma}, \tilde{w}) \rightarrow (\Lambda, l, \tilde{w}) \\
\hat{w} = (\hat{u}, \hat{v}) , \quad \hat{u} = (\hat{u}_1, \cdots, \hat{u}_{2n-2}) , \quad \hat{v} = (\hat{v}_1, \cdots, \hat{v}_{2n-2})
\end{cases}
\]

which acts as the identity on Λ and, on the other variables, is defined by the following formulae

\[
\phi : l_j = \hat{l}_j + \hat{\gamma} \quad u_j + i v_j = \begin{cases}
e^{-i\hat{\gamma}}(u_j + i \hat{v}_j) , \quad j \neq 2n - 1 \\
e^{-i\hat{\gamma}}\sqrt{\hat{\gamma}^2 - |\hat{w}|^2} , \quad j = 2n - 1
\end{cases}
\]

(5.3)
where \(\varrho = \varrho(\Lambda, G) \) is defined by
\[
\varrho^2 := 2 \left(\sum_{1 \leq j \leq n} \Lambda_j - G \right).
\] (5.4)

The map \(\hat{\phi} \) is well defined \((G, \hat{g}, \Lambda, \hat{l}, \hat{w}) \in \mathbb{R}_+ \times \mathbb{T} \times \hat{\mathcal{M}}^{6n-4} \), where \(\hat{\mathcal{M}}^{6n-4} \) is the subset of \((\Lambda, \hat{l}, \hat{w}) \in \mathcal{A} \times \mathbb{T}^n \times \mathbb{R}^{4(n-1)} \) described by the following inequalities
\[
|\hat{w}| < \varrho < \varepsilon.
\] (5.5)

As it immediately follows from (5.3), the action variables \(G \) is the integral (2.14). Hence, its conjugated variable \(\hat{g} \) is cyclic for the Hamiltonian, parametrized by \(G, \hat{H} := H_{b} \circ \hat{\phi} \circ \hat{\phi} \circ \hat{\phi} = h_k + \mu \hat{f} \) . (5.6)

and we may regard \(\hat{H} \) as a Hamiltonian of \((3n - 2)\) degrees of freedom. Notice, however, that \(\hat{H} \) is no longer in normal form.

Now, let \(\mathcal{A} \) and \(\varepsilon \) be, respectively, as in (4.3) and (5.5), and, for \(0 < \hat{\delta} < \delta < \varepsilon \), define the following sets
\[
\hat{\mathcal{A}} = \mathcal{A}(\delta, \delta) := \{ \Lambda \in \mathcal{A} : \hat{\delta} < \varrho < \delta \},
\] (5.7)
\[
\hat{\mathcal{M}}^{6n-4} = \hat{\mathcal{M}}^{6n-4}(\delta, \delta) := \{ \Lambda \in \hat{\mathcal{A}}(\delta, \delta) , \hat{\lambda} \in \mathbb{T}^n , |\hat{w}| \leq \frac{1}{4} \hat{\delta} \}. \tag{5.8}
\]

Proposition 5.1 (BNF for the fully reduced spatial planetary system)

For any integer \(s \geq 2 \), there exists \(0 < \delta^* < \varepsilon \), and for any \(0 < \hat{\delta} < \delta < \delta^* \) one can find a real–analytic symplectic transformation \(\phi_s: (\Lambda, \hat{\lambda}, \hat{w}) \in \hat{\mathcal{M}}^{6n-4}(\delta, \delta) \rightarrow (\Lambda, \hat{\lambda}, \hat{w}) \in \hat{\mathcal{M}}^{6n-4} \) such that the planetary Hamiltonian \(\hat{H} \) in (5.6) (regarded as a function of \((6n - 4)\) variables, parametrized by \(G \)) takes the form
\[
\begin{align*}
\hat{\mathcal{H}} = \mathcal{H} \circ \phi_s(\Lambda, \hat{\lambda}, \hat{w}) &= h_k(\Lambda) + \mu \hat{f}(\Lambda, \hat{\lambda}, \hat{w}) \quad \text{with} \\
\hat{f}_{\text{av}} &= \hat{\mathcal{P}}_s + O(|\hat{w}|^{2s+1}) , \quad \hat{\mathcal{P}}_s := \hat{C}_0 + \hat{\Omega} \cdot \hat{r} + \frac{1}{2} \hat{\tau} \cdot \hat{r}^2 + \hat{\mathcal{P}}_3 + \cdots + \hat{\mathcal{P}}_s \tag{5.9}
\end{align*}
\]

where \(\hat{w} = (\hat{u}, \hat{v}) = (\hat{u}_1, \cdots, \hat{u}_{2n-2}, \hat{v}_1, \cdots, \hat{v}_{2n-2}) \) and the \(\hat{\mathcal{P}}_j \)'s are homogeneous polynomials of degree \(j \) in \(\hat{r}_i = \frac{\hat{u}_i^2 + \hat{v}_i^2}{2} \), with coefficients depending on \(\Lambda \).

The first order Birkhoff invariants \(\hat{\Omega}_i \) of such normal form do not satisfy identically any resonances and the matrix \(\hat{\tau} \) of the second order Birkhoff invariants is non singular. The transformation \(\phi_s \) may be chosen to be \(\delta^{2s+1} \)-close to the identity.

\[^{10}\text{The number } 1/4 \text{ in (5.8) is arbitrary: one could replace it by any } 0 < \vartheta < 1.\]
The totally reduced planar case

Let us now restrict to the planar setting, that is, when the coordinates $y^{(i)}$, $x^{(i)}$ in (2.1) are taken in \mathbb{R}^2 instead of \mathbb{R}^3. Also in this case, in view of the presence of the integral $\sum_{i=1}^n x_1^{(i)} y_2^{(i)} - x_2^{(i)} y_1^{(i)}$, a (total) symplectic reduction is available (compare, also, [9]).

In the case of the planar problem, the instantaneous ellipses \mathfrak{e}_i defined in §3 become coplanar and both the Poincaré variables (Λ, λ, z) and RPS variables (Λ, λ, z) reduce to the planar Poincaré variables. Analytically, the planar Poincaré variables can be derived from (3.7) by setting $\theta_i = 0$ and disregarding the p and q.

To avoid introducing too many symbols, we keep denoting the planar Poincaré variable

$$(\Lambda, \lambda, z) = (\Lambda, \lambda, \eta, \xi) \in \mathcal{M}_{4n} := A \times \mathbb{T}^n \times B_{2n} \subseteq \mathbb{R}^n_+ \times \mathbb{T}^n \times \mathbb{R}^{2n}$$

where A can be taken as in (4.3) above and B_{2n} the $(2n)$–dimensional open ball around the origin, whose radius (related to eccentricities, as in the spatial case), is chosen so small to avoid collisions; beware that $z = (\eta, \xi)$, here, is $2n$–dimensional.

The planetary Hamiltonian in such variables is given by $H_{pl}(\Lambda, \lambda, z) =$ $K_{ep}(\Lambda) + \mu f_{pl}(\Lambda, \lambda, z)$ obtained from H_p in (2.5) by putting, simply, $p = 0 = q$; clearly, also the expression of the averaged perturbation, f_{av}^{pl}, can be derived in the same way from (2.7).

Since, in particular, the “horizontal” first order Birkhoff invariants σ do not satisfy resonances of any finite order on A, the Birkhoff–normalization up to the any order can be constructed in the planar case and it coincides with the expression of f_{av}^b in (2.17), where one has to take $w = (u, v) =: (\tilde{\eta}, \tilde{p}), (\tilde{\xi}, \tilde{q}) = (\tilde{\eta}, 0), (\tilde{\xi}, 0))$. We recall in fact that the transformation Φ_b in Theorem 2.1 sends injectively $\tilde{p} = 0 = \tilde{q}$ to $p = 0 = q$ and hence the restriction $\Phi_b|_{\tilde{p}=0=\tilde{q}}$ performs the desired normalization in the planar case.

Let us denote by

$H_{pl}(\Lambda, \tilde{\lambda}, \tilde{z}) = h_b(\Lambda) + \mu \tilde{f}_{pl}(\Lambda, \tilde{\lambda}, \tilde{z}) , \quad (\Lambda, \tilde{\lambda}, \tilde{z}) \in \tilde{\mathcal{M}}_{4n} := \tilde{A} \times \mathbb{T}^n \times B_{2n}^\tilde{e}$

the planar Birkhoff–normalized system, that is, the system such that the averaged perturbation $\tilde{f}_{av}^{pl}(\Lambda, \tilde{z})$ is in BNF: the BNF of order 4 is given by

$$\tilde{f}_{av}^{pl}(\Lambda, \tilde{z}) = C_0(\Lambda) + \sum_{1 \leq i \leq n} \sigma_i(\Lambda) \tilde{r}_i + \frac{1}{2} \sum_{1 \leq i,j \leq n} \tilde{\tau}_{ij}(\Lambda) \tilde{r}_i \tilde{r}_j + O(|\tilde{z}|^6)$$

with $\tilde{r}_i := \frac{\eta_i^2 + \xi_i^2}{2}$.

The asymptotic evaluation of the first order invariants σ and especially of planar torsion $\tilde{\tau}$ in (5.11) for general $n \geq 2$ can be found in the paper by J. Féjoz [10]
and in the notes by M. Herman [11]. However, since the asymptotics considered in such papers is slightly than the one considered in [6] for the general spatial case different\(^{12}\), we collect here the asymptotic expressions of \(\sigma\) and \(\bar{\tau}\) as they follow from [6] (compare also below for a short proof):

- The first order Birkhoff invariants \(\sigma\) into (5.11) satisfy

\[
\sigma_j = \begin{cases}
-\frac{3}{4} m_1 m_2 \frac{a_1}{a_2^2} \left(\frac{a_1}{a_2} + O(\frac{a_1}{a_2})^2 \right), & j = 1 \\
-\frac{3 m_j}{4 a_j^2} \sum_{1 \leq i < j} m_i a_i^2 \left(1 + O(a_j^{-2}) \right), & 2 \leq j \leq n
\end{cases}
\]

(5.12)

- The second order Birkhoff invariants \(\bar{\tau}\) into (5.11) satisfy, for\(^{13}\) \(n = 2\),

\[
\bar{\tau} = m_1 m_2 \frac{a_1^2}{a_2^2} \left(\frac{3}{4 \Lambda_1^2} - \frac{9}{4 \Lambda_1 \Lambda_2} - \frac{9}{4 \Lambda_2^2} \right) \left(1 + O(a_2^{-5/4}) \right),
\]

(5.13)

and for\(^{14}\) \(n \geq 3\),

\[
\bar{\tau} = \begin{pmatrix} \bar{\tau} + O(\delta) & O(\delta) \\
O(\delta) & \bar{\tau}_{nn} + O(\delta^2) \end{pmatrix}
\]

where \(\delta := a_n^{-3}\)

(5.14)

with \(\bar{\tau}\) of rank \((n - 1)\) and

\[
\bar{\tau}_{nn} = -\frac{3 m_n}{\Lambda_n^2} \sum_{1 \leq j < n} m_j \frac{1}{a_n} \left(\frac{a_j^2}{a_n^3} + O\left(\frac{a_j^4}{a_n^4} \right) \right).
\]

(5.15)

- Eq. (5.12) implies in particular non resonance of the \(\sigma_j\)'s into a domain of the form of (4.3) (with \(a_j\), \(\bar{\sigma}_j\) depending on \(s\)).

\(^{12}\)In [10], [11] the semi major axes \(a_1 < \cdots < a_n\) are taken well spaced in the following sense: at each step, namely, when a new planet (labeled by “1”) is added to the previous \((n - 1)\) (labeled from 2 to \(n\) \(a_2, \cdots, a_n\) are taken \(O(1)\) and \(a_1 \to 0\). In [6] one takes \(a_1, \cdots, a_{n-1} = O(1)\) and \(a_n \to \infty\). The reason of the different choice relies upon technicalities related to the evaluation of the “vertical torsion” (i.e., the entries of the torsion matrix in (2.17) with indices from \(n + 1\) to \(2n\)) in the spatial case. The asymptotics in [10] and [11] does not allow (as in [6]) to evaluate at each step the new torsion simply picking the dominant terms, because of increasing errors (of \(O(1)\)): compare the discussion in [11, end of p. 23]. To overcome these technicalities (and to avoid too many computations), Herman introduces a modification of the Hamiltonian and a new fictitious small parameter \(\delta\), also used in [10]. Notice that, since Herman computes the asymptotics using Poincaré variables, by the presence of the 0–eigenvalue \(\varsigma_n\), he could not use the limit \(a_n \to \infty\), being such limit singular (not continuous) for the matrices \(\rho_v\) in (2.10).

\(^{13}\)The evaluation of the planar three–body torsion (5.13) is due to Arnold. Compare [2, p.138, Eq. (3.4.31)], noticing that in [2] the second order Birkhoff invariants are defined as one half the \(\bar{\tau}_{ij}\)'s and that \(a_2^4\) should be \(a_2^2\). Compare also with [11, beginning of p. 21], (where a factor \(a_2^2\) at denominator of each entry is missing).

\(^{14}\)Compare (5.14) and (5.15) with the inductive formulae obtained in the other asymptotics in [11, end of p. 21].
• Using (5.13)–(5.15) and \(\Lambda_i^2 = m_i^2 m_0 a_i (1 + O(\mu)) \), one finds that, for \(n \geq 2 \) and \(0 < \delta_* < 1 \) there exist \(\bar{\mu} > 0 \), \(0 < a_1 < a_1 < \cdots < a_n < a_n \) such that, on the set \(\mathcal{A} \) defined in (4.3) and for \(0 < \mu < \bar{\mu} \), the matrix \(\tau \) is non–singular:

\[
\det \bar{\tau} = \bar{d}_n (1 + \delta_n), \quad |\delta_n| < \delta_* \quad \text{and} \quad \bar{d}_n = (-1)^{n-1} \frac{117}{48} \left(\frac{3}{m_0} \right)^{n-1} \frac{m_2}{m_0 m_n} a_1^3 a_2^2 \prod_{j=2}^{n} \frac{1}{a_j^2}. \tag{5.16}
\]

Proof of (5.12)–(5.15). Eqs. (5.12)–(5.15) can be obtained, \(e.g. \), as a particular case of more general formulae, proved in [6]: For Equation (5.12), for \(n = 2 \), use [6, Eq. (7.5)], and “Herman resonance” \(\sigma_1 = -\varsigma - \sigma_2 \); in the case \(n \geq 3 \), compare the asymptotic expression of \(\sigma_n \) after [6, Eq. (7.7)]. Equation (5.13) corresponds to [6, Eq. (8.33)]. Equation (5.14) is obtained from [6, Eq. (8.45)] picking only the entries which are relative to the horizontal variables \(\tilde{\eta}_2 i + \tilde{\xi}_2 i \). In particular, the matrix \(\tilde{\tau} \) of (5.14) is the horizontal part (that is, the upper left \((n-1) \times (n-1) \) submatrix) of the matrix \(\hat{\tau} \) of [6, Eq. (8.45)]. For Eq. (5.15), notice that \(\bar{\tau}_{nn} \) is the upper left entry of the \(2 \times 2 \) matrix \(\bar{\tau} \) in [6] and use the asymptotics for \(r_1(\alpha_2, \alpha_1) \) given in [6, Eq. (8.32)].

We describe, now, briefly a \(\text{(total) symplectic reduction for the planar problem} \) and discuss the relative BNF. The discussion is based on tools and arguments similar to those used in § 5.1 above for the spatial case.

Indeed, quite analogously to the spatial case, the Hamiltonian (5.10) is preserved under the \(G \)–flow, where now \(G \) denotes the function in (2.14) with \(\bar{z} = (\eta, \xi, 0, 0) \). Therefore, as in (5.3), one introduces the symplectic transformation \(\hat{\phi}_{pl} \) which lets \(\Lambda \rightarrow \Lambda \) and

\[
\hat{\phi}_{pl} : \quad (\hat{\lambda}_j + \hat{\xi}_j) = \begin{cases} e^{-ig}(\hat{\eta}_j + i\hat{\xi}_j), & \text{for } j \neq n, \\ e^{-ig} \sqrt{g^2 - |\hat{z}|^2}, & \text{for } j = n, \end{cases} \tag{5.17}
\]

where \(g^2 \) is as in (5.4) and \(\hat{z} \) has components \((\hat{\eta}_1, \cdots, \hat{\eta}_{n-1}, \hat{\xi}_1, \cdots, \hat{\xi}_{n-1}) \).

Again, in order for \(\hat{\phi}_{pl} \) to be well defined, the domain \(\hat{\mathcal{M}}_{pl}^{\text{inv}} \) of \((G, \bar{g}, \Lambda, \hat{\lambda}, \hat{z}) \) will be taken of the form

\[
(\Lambda, G) \in \mathcal{A} \times \mathbb{R}_+, \quad (\hat{\lambda}, \bar{g}) \in \mathbb{T}^{n+1}, \quad \hat{z} \in \mathbb{R}^{2n}, \quad |\hat{z}| < \varrho(\Lambda, G) < \epsilon^* \leq \bar{\epsilon}, \tag{5.18}
\]

where \(\mathcal{H}, \bar{\epsilon} \) are as in (5.10). We denote by \(\mathcal{H}_{pl} := \mathcal{H}_{pl} \circ \hat{\phi}_{pl} \) the planar “reduced Hamiltonian”.

Adapting the proof of Proposition 5.1 above to the planar case, we then have:

\(^{15}\bar{\mu} \) is taken small only to simplify (5.16), but a similar evaluation hold with \(\bar{\mu} = 1 \). Notice that the normal planar torsion is not sign–definite [Herman]. A similar results holds true also in the spatial case [6, Eq. (8.38)]. \(^{16}\)In [6, Eq. (8.33)], \(\bar{\tau} \) is denoted by \(\tau_{pl} \).
• For any \(s \in \mathbb{N} \), one can always find a set of symplectic variables \((\Lambda, \tilde{\lambda}, \tilde{z})\) varying on some domain \(\mathcal{N}_{pl}^{4n-2} \subseteq \mathbb{R}^n \times \mathbb{T}^n \times \mathbb{R}^{2n-2}\) of the form (5.7)–(5.8) with \(6n-4\) replaced by \(4n-2\), such that, in such variables, the reduced Hamiltonian \(\hat{\mathcal{H}}_{pl}\) is put into the form

\[
\hat{\mathcal{H}}_{pl} = h_K + \mu \hat{f}_{pl},
\]

with \(\hat{f}_{pl}\) in normal form of order \(2s\). The first and second Birkhoff invariants are given by

\[
\begin{align*}
\hat{\sigma}_i(\Lambda; G) &= \sigma_i(\Lambda) - \sigma_n(\Lambda) + O(\varrho^2), \\
\hat{\tau}_{ij}(\Lambda; G) &= \tau_{ij}(\Lambda) - \tau_{in}(\Lambda) - \tau_{jn}(\Lambda) + \tau_{nn}(\Lambda) + O(\varrho^2).
\end{align*}
\]

Using (5.12)–(5.15), one immediately sees that

• The invariants \(\hat{\sigma}\) and \(\hat{\tau}\) in (5.19) are asymptotically close (for \(a_1, \cdots, a_{n-1} = O(1), a_n \to \infty\) and \(\varrho \to 0\)) to the unreduced \(\sigma\) and \(\tau\) (for \(i,j \leq n-1\)).

Therefore, the following corollary follows at once.

Corollary 5.1 Fix \(n \geq 2\) and \(0 < \delta_* < 1\), \(s \geq 4\). Then, there exist \(\bar{\mu} > 0\),
\(0 < a_1 < \bar{a}_1 < \cdots < a_n < \bar{a}_n\) such that for any \(\mu < \bar{\mu}\) and for any \(\Lambda \in \mathcal{A}_G\), where \(\mathcal{A}_G\) is the set in (5.18), the first order Birkhoff invariants \(\hat{\sigma}\) are non–resonant up to the order \(s\) and the matrix \(\hat{\tau}\) is non–singular: \(\det \hat{\tau} = \tilde{d}_n(1 + \delta_n)\), with \(|\delta_n| < \delta_*\) and

\[
\tilde{d}_n = \begin{cases} m_1 m_2 a_1^2 a_2^3 4A_1^2, & n = 2 \\ \tilde{d}_{n-1}, & n \geq 3 \end{cases}
\]

where \(\tilde{d}_n\) is as in (5.16).

6 Long–time stability of planetary actions

In the 70’s N.N. Nehorošev [13] proved exponential stability of the semi major axes in the planetary problem: during the motion, the semi major axes\(^{17}\) \(a_i(t)\) stay close to their initial values for exponentially long times, i.e.,

\[
|a_i(t) - a_i(0)| < C \mu^b, \quad \forall \ |t| \leq \frac{1}{C \mu^a} \exp \left(\frac{1}{C \mu^a} \right),
\]

for suitable positive constants \(C, a, b\), provided \(\mu\) is sufficiently small and that the initial values \(a_i(0)\) are in the well separated regime (4.3). The numbers \(C, a\) and \(b\) given by Nehorošev, were later improved in [14].

Notice that, while the semi major axes stay close to their initial values, the “secular” Poincaré variables \(z = (\eta, \xi, p, q)\) in (3.7) (also used by Nekhoroshev in describing

\(^{17}\)Which are related to the Poincaré variables \(\Lambda\) as in (3.4).
the motion) may, in principle, vary on a relatively large ball B_r^{4n} around the origin: indeed, in [13] and [14] no information is given on possible “order one” variations of eccentricities and relative inclinations.

Here, we prove a complementary result, namely, that in a suitable partially18 non–resonant open set in phase space, the secular actions related to eccentricities and inclinations stay close to their initial values for arbitrarily long times compared to the distance from the secular equilibrium. More precisely, we have:

Theorem 6.1 Let \mathcal{A} be as in (4.3); let $s \geq 2$, $\tau > n - 1$ and δ^* be as in Proposition 5.1. Then, there exists $c^* > 1$ and $0 < \epsilon^* < \delta^*/2$ such that, for any $0 < \hat{\epsilon} < \epsilon < \epsilon^*$, $(c^*\hat{\epsilon})^3 < \mu < (\hat{\epsilon}/c^*)^{3/2}$ and $\kappa > 0$, one can find an open set $\mathcal{A}_* \subseteq \mathcal{A}$, of Lebesgue measure

\[
\text{meas } \mathcal{A}_* \geq (1 - c^*/\kappa) \sqrt{\hat{\epsilon}} \text{ meas } \mathcal{A},
\]

so that the following holds. Let \mathcal{M}_{pn}, \mathcal{M}'_{pn} be the phase space regions in (5.7), (5.8) given, respectively, by $\mathcal{M}_{\text{pn}}^{6n-4}(\hat{\epsilon}, \epsilon)$ with \mathcal{A} replaced by \mathcal{A}_* and by $\mathcal{M}_{\text{pn}}^{6n-4}(\hat{\epsilon}/2, 2\epsilon)$ with \mathcal{A} replaced by \mathcal{A}_* and $1/4$ replaced by $3/4$. Then, any trajectory generated by $\tilde{\mathcal{H}}$ with initial datum in \mathcal{M}_{pn} remains in \mathcal{M}'_{pn} and satisfies19

\[
\max_i \{|\Lambda_i(t) - \Lambda_i(0)|\} < \epsilon^2, \quad \max_j \{|\tilde{r}_j(t) - \tilde{r}_j(0)|\} < \kappa \epsilon^2
\]

for all $|t| \leq t$ with

\[
t = \frac{\kappa}{c^* \mu} \epsilon^{2s-1}.
\]

In particular, the action variables \tilde{r}_j verify $\max_j \{|\tilde{r}_j(t) - \tilde{r}_j(0)|\} < \epsilon^{9/4}$ provided $\tilde{r}_j(0) \leq \epsilon^2$ and $\Lambda_j(0)$ belong to a set of density $(1 - c^*\epsilon^{1/4})$.

Remark 6.1 Stability estimates hold up exponentially long times in completely non–resonant regions, i.e., essentially in an open neighborhood of KAM tori. Let $\mathcal{K} \subseteq \mathcal{M}_{\text{pn}}$ denote the Kolmogorov set (i.e., the union of KAM tori) of $\tilde{\mathcal{H}}$. Then, for initial data on the open set \mathcal{K}_d around \mathcal{K}, hence, of measure20

\[
\text{meas } \mathcal{K}_d \geq \text{meas } \mathcal{K} \geq (1 - \sqrt{\hat{\epsilon}}) \text{ meas } \mathcal{M}_{\text{pn}}
\]

one can replace (6.4) with $|t| \leq t_{\text{exp}}(d) := \frac{\kappa \epsilon^2}{c^* d^\sigma} e^{\sqrt{c^*} \sigma} \epsilon^{2s-1}$ for some $0 < \sigma < 1 < \sigma'$.

Here is a sketch of proof. The set \mathcal{K}_d is a high order non resonant set, being equivalent to the direct product $\mathcal{N}_d \times \mathbb{T}^{3n-2}$, where \mathcal{N}_d is $(\alpha, K) \sim (d^{1-\sigma}, d^{-\sigma})$

18I.e., Λ–non–resonant, but possibly resonant in the secular variables.

19Recall that $\tilde{\mathcal{w}} = (\tilde{u}, \tilde{v}) = (\tilde{u}_1, \cdots, \tilde{u}_{2n-2}, \tilde{v}_1, \cdots, \tilde{v}_{2n-2})$ and that $\tilde{r}_j = \frac{\tilde{u}_j^2 + \tilde{v}_j^2}{2}$.

20See [6].
non–resonant for the frequency map \((\Lambda, \Tilde{r}) \mapsto \varpi_1(\Lambda, \Tilde{r}) = \partial_{(\Lambda, \Tilde{r})}(h_\delta(\Lambda) + \mu \Tilde{P}_2(\Lambda, \Tilde{r}))\).

Here, \(h_\delta\) and \(\Tilde{P}_2\) are as in \((5.9)\).

By Averaging Theory, one can find an open set \(\tilde{A}_1 \subset \tilde{A}\), a number \(0 < c < 1\) and a real–analytic symplectic transformation

\[
\Phi : \ ((\Lambda, r), \vartheta) \in \tilde{A}_1 \times \mathbb{T}^{2n-2} \times \mathbb{T}^{3n-2} \mapsto \Phi((\Lambda, r), \vartheta) \in \tilde{M}^{6n-4},
\]

where \(\tilde{M}^{6n-4}\) is as in \((5.7)–(5.8)\) and \(\mathcal{I}_\delta\) is the interval \((c\delta, \delta) \subset \mathbb{R}_+\), which conjugates the Hamiltonian \((5.9)\) (with \(s = 2\)) to a new Hamiltonian of the form

\[
H((\Lambda, r), \vartheta) := \hat{H} \circ \Phi((\Lambda, r), \vartheta) = h_\delta(\Lambda) + \mu \Tilde{P}_2(\Lambda, r) + O(\mu^2; (\Lambda, r), \vartheta).
\]

Consider the frequency map \((\Lambda, \Tilde{r}) \mapsto \varpi_1(\Lambda, \Tilde{r}) := \partial_{(\Lambda, \Tilde{r})}(h_\delta + \mu \Tilde{P}_2)\) and, for any \(0 < \gamma_2 \leq \gamma_1\) and \(\tau' > 3n - 2\), consider the generalized \((\gamma_1, \gamma_2, \tau')\)–Diophantine numbers of the form\(^{21}\)

\[
\mathcal{D}_{\gamma_1, \gamma_2, \tau'} := \bigcap_{0 \neq k = (k_1, k_2) \in \mathbb{Z}^n \times \mathbb{Z}^{2n-2}} \left\{ \omega \in \mathbb{R}^{3n-2} : |\omega \cdot k| \geq \begin{cases} \frac{\gamma_1}{|k_1|^{\tau'}} & \text{if } k_1 \neq 0 \\ \frac{\gamma_2}{|k_2|^\tau} & \text{otherwise} \end{cases} \right\}.
\]

By KAM theory\(^{22}\), for any \(\omega \in \mathcal{D}_{\gamma_1, \gamma_2, \tau'}\) lying in the \(\varpi_1\)–image of \(\tilde{A}_1 \times \mathbb{T}^{2n-2}\), one can find a Lagrangian, analytic torus \(\mathcal{T}_\omega := \phi(\mathbb{T}^{3n-2}; \omega) \in \mathcal{K}\), defined by an embedding

\[
\phi(\cdot; \omega) : \vartheta \in \mathbb{T}^{3n-2} \mapsto \phi(\vartheta; \omega) = (\nu(\vartheta; \omega), \vartheta + u(\vartheta; \omega)) \in \tilde{A}_1 \times \mathbb{T}^{2n-2} \times \mathbb{T}^{3n-2}
\]

with \(\vartheta \mapsto \vartheta + u(\vartheta; \omega)\) a diffeomorphism of \(\mathbb{T}^{3n-2}\), such that, on \(\mathcal{T}_\omega\) the Hamiltonian flow is \(\dot{\vartheta} = \omega\). Being \(\mathcal{T}_\omega\) Lagrangian, the embedding \(\phi(\cdot; \omega)\) can be lifted to a symplectic transformation \((y, \vartheta) \mapsto \tilde{\phi}(y, \vartheta; \omega)\) defined around \(\mathcal{T}_\omega\) such that \(\tilde{\phi}(0, \vartheta; \omega) = \phi(\vartheta; \omega)\) which – since \(\mathcal{T}_\omega = \phi(\mathbb{T}^{3n-2}; \omega) = \tilde{\phi}(0, \mathbb{T}^{3n-2}; \omega)\) is invariant and is run with frequency \(\omega\) – puts \(H\) in Kolmogorov normal form

\[
K_\omega := H \circ \tilde{\phi}(y, \vartheta; \omega) = c(\omega) + \omega \cdot y + Q(y, \vartheta; \omega) \quad (6.5)
\]

namely, with \(c(\omega)\) independent of \(\vartheta\) and \(Q(y, \vartheta; \omega) = O(y^2)\). Notice incidentally that the matrix \(\int_{\mathbb{T}^{3n-2}} Q_{yy} \, d\vartheta\), being close to the block–diagonal matrix \(Q_0 = \text{diag} [\partial^2 h_\delta \circ \varpi^{-1}(\omega), \varpi \circ \varpi^{-1}(\omega)]\), satisfies the so–called Kolmogorov condition to be not singular, which, together with \((6.5)\), says that the tori of \(\mathcal{K}\) are indeed Kolmogorov tori. From \((6.5)\) using standard Averaging Theory (since \(\omega\) is Diophantine), one sees that, if \(|y| \leq d = \text{const} \frac{\gamma_2}{K^\tau_{\tau + 1}}\), one can conjugate \(K_\omega\) to

\[
K_\omega^{aw} = c(\omega) + \omega \cdot y + \tilde{Q}(y; \omega) + \hat{Q}(y, \vartheta; \omega).
\]

where \(\hat{Q}\) does not depend on \(\vartheta\) and \(|\hat{Q}(y, \vartheta)| \leq \text{const} \frac{d^2 e^{-(\xi)(\frac{1}{\tau'} + 1)}}{K^\tau_{\tau + 1}}\).

This implies the claim with \(\sigma = 1/(\tau' + 1)\) and \(\sigma' = 2\). \(\square\)

\(^{21}\)The set \(\mathcal{D}_{\gamma_1, \gamma_2, \tau'}\) has been used for the first time in \([2]\). For \(\gamma_1 = \gamma_2\) it corresponds to the usual Diophantine set.

\(^{22}\)Compare \([4, \text{Theorem } 1.4]\).
Proof of Theorem 6.1 Let $\kappa > 0$ and $\vartheta \in (0, 1)$. Let, also, ϵ, θ and μ be such that
\[
\hat{\epsilon} < \epsilon < \epsilon^* < \min\left\{\frac{3}{64}\delta^*, \frac{3}{64}\delta_\ast\right\}, \quad \theta \in (2, 3), \quad \left(c\frac{64}{3}\vartheta\hat{\epsilon}\right)^\theta < \mu < \left(\frac{64}{3}\delta^*\right)^{\frac{\theta}{\theta - 1}},
\] with c and δ_\ast to be defined below; finally, let
\[
\hat{\epsilon} < \epsilon < \epsilon^*, \quad \vartheta\hat{\epsilon} < \hat{\epsilon} < \epsilon, \quad \frac{\vartheta\hat{\epsilon}}{\epsilon} < \tilde{\vartheta} < 1, \quad \epsilon^2 := \epsilon^2 + \epsilon^2 - \epsilon^2
\] (6.7)
Notice that, by the choice of ϵ^* in (6.6), $\hat{\epsilon}$ verifies $\epsilon < \hat{\epsilon} < 2\epsilon$.
Pick two positive numbers $\tilde{\gamma}_0$ and $\tilde{\eta}$, with $\tilde{\gamma}_0^{-1}$ and $\tilde{\eta}$ so small that
\[
\tilde{\eta} \leq \frac{1}{2}, \quad \left(1 + \frac{2}{\tilde{\gamma}_0} + \tilde{\eta}\right)\vartheta\hat{\epsilon} \leq \tilde{\vartheta}\hat{\epsilon}, \quad \frac{nc}{\tilde{\gamma}_0}\left(\frac{64}{3}\vartheta\hat{\epsilon}\right)^2 \leq \frac{1}{4}(\epsilon^2 - \epsilon^2),
\] (6.8)
and, moreover,
\[
\frac{(\vartheta\tilde{\eta})^2}{4(n - 1)} + \frac{c}{\tilde{\gamma}_0} \frac{64}{3} \vartheta^2 \left(2\left(1 + \tilde{\eta} + \frac{1}{\tilde{\gamma}_0}\right) + \frac{c}{\tilde{\gamma}_0} \frac{64}{3}\right) < \kappa.
\] (6.9)
The number c in (6.6) and (6.9) will be defined below, independently of $\tilde{\eta}$, $\tilde{\gamma}_0$, θ, κ, $\hat{\epsilon}$ and ϵ. Notice that, because of the definition of $\hat{\epsilon}$ in (6.7), the numbers $\tilde{\gamma}_0$ and $\tilde{\eta}$ depend on ϑ, $\tilde{\vartheta}$, κ, but not upon $\hat{\epsilon}$ and, moreover, that the number $\tilde{\gamma}_0$ can be chosen to be
\[
\tilde{\gamma}_0 = \frac{\text{const}(\vartheta)}{\kappa}.
\] (6.10)
Now, let $\tilde{\mathcal{M}}_{\text{reg}}^{6n-4} := \mathcal{A} \times \mathbb{T}^n \times B_\frac{4}{3}\vartheta\hat{\epsilon}^{-1}$; let $\hat{\mathcal{H}}$ be as in Proposition 5.1 and let $\hat{\mathcal{H}}_{\text{reg}} : \tilde{\mathcal{M}}_{\text{reg}}^{6n-4} \to \mathbb{R}$ be an analytic extension of $\hat{\mathcal{H}}$ on $\tilde{\mathcal{M}}_{\text{reg}}^{6n-4}$, namely a real–analytic Hamiltonian on $\tilde{\mathcal{M}}_{\text{reg}}^{6n-4}$ such that
\[
\hat{\mathcal{H}}_{\text{reg}} = \tilde{\mathcal{H}} = h_K + \mu\tilde{f}
\] on $\tilde{\mathcal{M}}_{\tilde{\vartheta}}^{6n-4}(\tilde{\epsilon}, \tilde{\epsilon})$, (6.11)
where, for $\tilde{\vartheta}$, $\tilde{\epsilon}$ and $\tilde{\epsilon}$ as in (6.7),
\[
\tilde{\mathcal{M}}_{\tilde{\vartheta}}^{6n-4}(\tilde{\epsilon}, \tilde{\epsilon}) := \{\Lambda \in \mathcal{A}, |\tilde{\omega}| < \tilde{\vartheta}\hat{\epsilon}, \tilde{\epsilon} < \vartheta < \tilde{\epsilon}\} \times \mathbb{T}^n \subseteq \mathcal{A} \times \mathbb{T}^n \times B_{\frac{4}{3}\vartheta\hat{\epsilon}^{-1}}^{4(n-1)} \subseteq \tilde{\mathcal{M}}_{\text{reg}}^{6n-4}.
\] (6.12)
Since \tilde{f}_{av} is in (2s)–BNF (5.9) and the polynomial $\tilde{P}_s = \tilde{C}_0 + \Omega\tilde{\vartheta} + \frac{1}{2}\tilde{\vartheta}^2\tilde{\vartheta}^2 + \tilde{P}_3 + \cdots + \tilde{P}_s$ is obviously analytic on $\tilde{\mathcal{M}}_{\text{reg}}^{6n-2}$, we can choose $\hat{\mathcal{H}}_{\text{reg}}$ of the form $\hat{\mathcal{H}}_{\text{reg}} = h_K + \mu\tilde{f}_{\text{reg}}$ with $\tilde{f}_{\text{av}} - \tilde{P}_s + O(|\tilde{\omega}|^{2s+1})$, having the same normal form \tilde{P}_s as \tilde{f}_{av}.
By (6.11), all the motions of $\hat{\mathcal{H}}_{\text{reg}}$ which remain confined in $\tilde{\mathcal{M}}_{\tilde{\vartheta}}^{6n-4}(\tilde{\epsilon}, \tilde{\epsilon})$ are indeed motions of $\hat{\mathcal{H}}$.
Put $n_1 := n$, $n_2 := 2(n - 2)$, $H_0 := h_K$, $P := \tilde{f}_{\text{reg}}$, $\rho_0 := \frac{\tilde{\epsilon}}{\tilde{c}_0}\max\{\sqrt{\tilde{\vartheta}}, \sqrt{\tilde{\epsilon}}\}$, $V := \mathcal{A}_{\rho_0}$, $\tilde{\epsilon} := \frac{64}{3}\vartheta\hat{\epsilon}$, $a := \frac{1}{2\vartheta_{\tilde{\vartheta}+1}}$, where \tilde{c}_0 will be defined below and \mathcal{A}_{ρ_0} denotes the set
\{ \Lambda \in \mathcal{A} : B_{\rho_0}(\Lambda) \subseteq \mathcal{A} \}. Notice that \(\mathcal{A}_{\rho_0}^- \) is non-empty for small \(\epsilon^* \), because of the choice of \(\mu \) in (6.6). Let \(\epsilon_* \) be as in Proposition D.1 in Appendix D and take, in (6.6), \(\delta^* := \epsilon^* \), so that, by the above choice of \(\epsilon, \bar{\epsilon} = \frac{64}{3} \delta \bar{\epsilon} < \frac{64}{3} \epsilon^* < \epsilon_* \), which fulfills one of the assumptions of Proposition D.1. Notice that: (i) \(\tilde{f}_{\text{av}} \) has the same BNF as \(\tilde{f}_{\text{av}} \), hence, in particular, the first order Birkhoff invariants are non-resonant; (ii) that assumptions (D.2) of Proposition D.1 are trivially implied by (6.6) and the above choice of \(a \) and \(\theta \). This allows to apply Proposition D.1 with \(n_1, n_2, H_0, P, \ldots \) as above.

We then find suitable \(c_0, c_*, \rho_*, \mathcal{A}_* \subseteq \mathcal{A}_{\rho_0}^- \subseteq \mathcal{A} \), \(\phi_* \) as in the thesis of Proposition D.1. Take in (6.6) and (6.9), \(c := c_* \) and, in the definition of \(\rho_0, \bar{c}_0 := c_0 \), so that \(\rho_0 = \rho_* \). Notice also that: \(\rho_* := \frac{\gamma_0}{\bar{c}_0} \max \{ \sqrt{\frac{n}{\bar{\epsilon}}}, \sqrt{\bar{\epsilon}} \} \geq \sqrt{\bar{\epsilon}} \); by (D.7), the definition of \(\rho_0 \), the assumption on \(\mu \) in (6.6) and, finally (6.10), \(\mathcal{A}_* \) is easily seen to satisfy (6.2); the transformation \(\phi_* \) acts as

\[
\phi_*(\mathcal{A}_*) \rho_* \times \mathbb{T}_{s_0/24} \times B_{\vartheta(\bar{\epsilon})}^{4(n-1)} \rightarrow (V_*)^{\lambda_1} \rho_* \times \mathbb{T}_{s_0/6} \times B_{\vartheta(\bar{\epsilon})}^{4(n-1)}
\]

(6.13)

and transforms \(\mathcal{H}_{\text{reg}} \) into \(\mathcal{H}_*: = \mathcal{H}_{\text{reg}} \circ \phi_* \) with

\[
\mathcal{H}_*(\Lambda_*, l_*, w_*) = h_*(\Lambda_*) + \mu N_*(\Lambda_*, r_*) + \mu P_*(\Lambda_*, u_*, v_*) + \mu c_*(\frac{n}{\bar{\epsilon}})^a f_*(\Lambda_*, l_*, w_*) \cdot
\]

(6.14)

In applying Proposition D.1, take in (D.5) \(\gamma_0 = \bar{\gamma}_0 \) and \(\eta = \bar{\eta} \), where \(\bar{\gamma}_0, \bar{\eta} \) satisfy (6.8)–(6.9) above, with \(c = c_* \). By (D.5), the transformation \(\phi_* \) satisfies

\[
\phi_*\left((\mathcal{A}_*) \rho_/2 \times \mathbb{T}_{s_0(1+\frac{1}{\gamma_0})/48} \times B_{\vartheta(1+\frac{1}{\gamma_0})}^{4(n-1)}\right) \subseteq (\mathcal{A}_*) \rho_/4 \times \mathbb{T}_{s_0/48} \times B_{\vartheta(\bar{\epsilon})}^{4(n-1)}
\]

(6.15)

and, by the first inequality in (6.8),

\[
\phi_*\left((\mathcal{A}_*) \rho_*(1+\eta)/2 \times \mathbb{T}_{s_0(1+\eta+\frac{1}{\gamma_0})/48} \times B_{\vartheta(1+\eta+\frac{1}{\gamma_0})}^{4(n-1)}\right)
\]

\[\subseteq (\mathcal{A}_*)^{\rho_*(1+\eta)/2} \times \mathbb{T}_{s_0(1+\eta+\frac{2}{\gamma_0})/48} \times B_{\vartheta(\bar{\epsilon})}^{4(n-1)}\]

(6.16)

Let \(\vartheta, \bar{\epsilon} \) and \(\epsilon \) be as in (6.6) and define the set

\[
\mathcal{M}_{\rho_0^4}^{6\epsilon_0-4}(\bar{\epsilon}, \epsilon) := \{ \Lambda \in \mathcal{A}_* , \| \bar{w} \| < \vartheta \bar{\epsilon}, \bar{\epsilon} \leq \epsilon < \epsilon \} \times \mathbb{T}^n \;
\]

(6.17)

notice that \(\mathcal{M}_{\rho_0^4}^{6\epsilon_0-4}(\bar{\epsilon}, \epsilon) \subseteq \mathcal{A}_* \times \mathbb{T}^n \times B_{\vartheta(\bar{\epsilon})}^{4(n-1)} \subseteq \mathcal{M}_{\text{reg}}^{6\epsilon_0-4} \).

From the above definitions (see (6.7), (6.8) (6.12)) the following inclusions follow

\[
\mathcal{M}_{\rho_0^4}^{6\epsilon_0-4}(\bar{\epsilon}, \epsilon) \subseteq \mathcal{M}_{\vartheta}^{6\epsilon_0-4}(\bar{\epsilon}, \epsilon) \subseteq \mathcal{M}_{\text{reg}}^{6\epsilon_0-4}.
\]

28
We will prove that motions of \mathcal{H}_{reg} with initial data $(\Lambda(0), \tilde{t}(0), \tilde{w}(0))$ in $\mathcal{M}_{\eta}^{6n-4}(\tilde{\epsilon}, \epsilon)$ remain in $\mathcal{M}_\eta^{6n-4}(\tilde{\epsilon}, \epsilon)$ for $|t| \leq t$. At the end, to obtain the thesis of the theorem, we shall take $\theta = 3$, $\tilde{\vartheta} = 1/4$, $\tilde{\epsilon} = \tilde{\epsilon}/2$ and $\vartheta = 3/4$.

Consider now motions of \mathcal{H}_{reg} with initial data in $\mathcal{M}_\eta^{6n-4}(\tilde{\epsilon}, \epsilon)$. Taking the real part in (6.15), all such motions are the ϕ-images of some subset of motions of \mathcal{H}_* with initial data $(\Lambda_*(0), l_*(0), w_*(0)) \in (\mathcal{A}_*)_{\rho_*/2} \times \mathbb{T}^n \times B_{\vartheta \tilde{\epsilon}(1+1/\tilde{\epsilon})}^{4(n-1)}$.

Using (6.4), (6.14), one finds that for $r_* := u_*^2 + v_*^2$, with $w_* = (u_*, v_*)$, satisfy, for an eventually smaller value of c^*,

$$|(\Lambda_*)_i(t) - (\Lambda_*)_i(0)| \leq \mu c_* e^{-(\frac{1}{c_*})^a} |t| \leq \mu c_* e^{-(\frac{1}{c_*})^a} \leq \min\left\{\tilde{\eta} \frac{\tilde{\epsilon}}{2}, \frac{\tilde{\epsilon}^2 - \epsilon^2}{4n}\right\} \leq \min\left\{\tilde{\eta} \frac{\tilde{\epsilon}}{2}, \frac{\tilde{\epsilon}^2 - \epsilon^2}{4n}\right\}. \quad (6.18)$$

Similarly, taking the derivatives of (6.14) with respect to $w_* = (u_*, v_*)$ and using that, on the domain of ϕ_* in (6.13), $|\mathcal{P}_*| \leq \tilde{c}(2\tilde{\epsilon} \tilde{\eta})^{2+1}$, for some constant \tilde{c} depending only on \mathcal{P}, one finds that, for an eventually larger value of c^* in (6.4),

$$|(r_*)_j(t) - (r_*)_j(0)| \leq \mu \left(\tilde{c}(2\tilde{\epsilon} \tilde{\eta})^{2+1} + c_* e^{-(\frac{1}{c_*})^a}\right) |t| \leq \frac{(\tilde{c} \tilde{\eta})^2}{4(n-1)}. \quad (6.19)$$

Inequalities (6.18)–(6.19) imply that for $|t| \leq t$, the motion $t \rightarrow (\Lambda_*(t), l_*(t), w_*(t))$ remain confined inside the set $(\mathcal{A}_*)_{\rho_*(1+\tilde{\eta})/2} \times \mathbb{T}^n \times B_{\vartheta \tilde{\epsilon}(1+\tilde{\eta})}^{4(n-1)}$ (6.21).

In particular,

$$|w_*|_\infty \leq |w_*|_2 < \tilde{\epsilon} \left(1 + \tilde{\eta} + \frac{1}{\tilde{\gamma}_0}\right). \quad (6.20)$$

By (6.16) and the fact that $\tilde{\eta} \leq \frac{1}{2}$, the ϕ-images $t \rightarrow (\Lambda(t), \tilde{t}(t), \tilde{w}(t))$ of such motions remain confined in $(\mathcal{A}_*)_{3\rho_*/4+\rho_*/2} \times \mathbb{T}^n \times B_{\vartheta \tilde{\epsilon}}^{4(n-1)} \subseteq (\mathcal{A}_*)_{\rho_*} \times \mathbb{T}^n \times B^{4(n-1)}$. We now prove that such trajectories are confined in $\mathcal{M}_{\tilde{\eta}}^{6n-4}(\tilde{\epsilon}, \epsilon)$, and hence, by (6.11), they are actually motions of \mathcal{H}. By the definition of $\mathcal{M}_{\tilde{\eta}}(\tilde{\epsilon}, \epsilon)$, we have to prove that

$$\tilde{\epsilon} < \tilde{g}(\Lambda(t), G) < \epsilon, \quad \forall |t| \leq t. \quad (6.21)$$

Using (D.6), (6.8) and that, by (6.6), $\mu < (\tilde{\epsilon}/c_*)^{3/2}$, one finds the following bound for the Λ–projection of ϕ_*:

$$|\Lambda - \Lambda_*|_1 \leq \frac{n c_*}{\tilde{\gamma}_0} \mu^{a/2} \sqrt{\mu \frac{64}{3} \vartheta \tilde{\epsilon} \leq \frac{1}{4} (\tilde{\epsilon}^2 - \epsilon^2)}. \quad (6.22)$$
By this inequality and the first bound in (6.18), we have

\[2|\Lambda(t) - \Lambda(0)|_1 \leq 2|\Lambda_\star(t) - \Lambda_\star(0)|_1 + 2\sup|\Lambda_\star - \Lambda|_1 \leq \hat{\epsilon}^2 - \hat{\epsilon}^2, \]

(6.22)

proving the first inequality in (6.3). Moreover, since, by (6.17), \(\hat{\epsilon} < \varrho(\Lambda(0), G) < \epsilon, \)

\[\hat{\epsilon}^2 = \hat{\epsilon}^2 - (\hat{\epsilon}^2 - \hat{\epsilon}^2) \]
\[< \varrho(\Lambda(0), G)^2 + 2|\Lambda(t)|_1 - 2|\Lambda(0)|_1 \]
\[= \varrho(\Lambda(t), G) < \epsilon^2 + \hat{\epsilon}^2 - \hat{\epsilon}^2 = \hat{\epsilon}^2, \]

(6.23)

which proves (6.21). To conclude, it remains to prove the bound in (6.3) for the actions \(\hat{r}_j. \)

Assumption (6.6) and the bounds in (D.6) imply that \(w_\star \) and \(\hat{w} \) are at most at the distance

\[|\hat{w} - w_\star|_\infty \leq \frac{c_\star 64}{\gamma_0} \vartheta \hat{\epsilon}. \]

(6.24)

There follows from (6.20) and (6.24) that

\[|\hat{w}(t)|_\infty \leq |w_\star|_\infty + |w_\star(t) - \hat{w}(t)|_\infty < \vartheta \hat{\epsilon}(1 + \bar{\eta} + \frac{1}{\gamma_0}) + \frac{c_\star 64}{\gamma_0} \vartheta \hat{\epsilon} \]

(6.25)

giving finally, by (6.9) and (6.19),

\[|\hat{r}(t) - \hat{r}(0)|_\infty \leq |r_\star(t) - (r_\star)(0)|_\infty + |\hat{w} - w_\star|_\infty (|w_\star|_\infty + |\hat{w}|_\infty) \]
\[\leq \frac{(\vartheta \hat{\epsilon}\bar{\eta})^2}{4(n - 1)} + \frac{c_\star 64}{\gamma_0} \vartheta^2 \hat{\epsilon}^2 \left(2(1 + \bar{\eta} + \frac{1}{\gamma_0}) + \frac{c_\star 64}{\gamma_0} \vartheta \right) \]
\[\leq \kappa \epsilon^2 < \hat{\epsilon}^2. \]

Theorem 6.1 actually implies stability of eccentricities \(e_1, \ldots, e_n \) and of the mutual inclinations \(\hat{i}_1, \ldots, \hat{i}_{n-2} \), where \(e_i \) and \(\hat{i}_j \) are defined as\(^{23}\)

\[e_i = \sqrt{1 - \left(\frac{|C(i)|}{\Lambda_i}\right)^2}, \quad \cos \hat{i}_j = \frac{C^{(j+1)} \cdot S^{(j)}}{|C^{(j+1)}|S^{(j)}|}, \]

(6.26)

\(C^{(j+1)} \) and \(S^{(j)} \) being as in (3.2). Indeed, we have the following

Corollary 6.1 For any \(c > 0 \), there exists \(C > 0 \) such that, for all motions starting in the set \(M_\star \) of Theorem 6.1, \(e_i \) and \(\hat{i}_j \) verify

\[\max\{|e_i(t) - e_i(0)|, |\hat{i}_j(t) - \hat{i}_j(0)|\} \leq c \epsilon, \quad \forall |t| \leq \frac{C}{\mu \epsilon^{2s-1}}. \]

(6.27)

\(^{23}\)Notice that in the completely reduced setting the number of independent inclinations is \((n - 2)\). Indeed, the overall inclination of \(C \) has no physical meaning by rotation invariance and the inclination \(\hat{i}_{n-1} \) between \(S^{(n-1)} \) and \(C^{(n)} \) is a function of \(\Lambda_1, \ldots, \Lambda_n, e_1, \ldots, e_n, \hat{i}_1, \cdots, \hat{i}_{n-2} \) and \(G \).
\textbf{Proof} For ease of computations, we shall consider the functions
\[\epsilon_i := \epsilon_i^2 \quad \text{and} \quad i_j := 1 - \cos^2 i_j \] (6.28)
and we shall check that, for any \(\bar{c} > 0 \), one has
\[\max\{|\epsilon_i(t) - \epsilon_i(0)|, |i_j(t) - i_j(0)|\} \leq \bar{c} \epsilon^2, \] (6.29)
which implies, clearly, (6.27). The proof of (6.29) comes from the relation between \(\epsilon_i, i_j \) and the variables \((\Lambda, \tilde{l}, \bar{w})\); in particular, on how \(\epsilon_i \) and \(i_j \) are related to the stable actions \(\Lambda_1, \ldots, \Lambda_n, \tilde{r}_1, \ldots, \tilde{r}_{2n-2} \).

Recall that the RPS variables \((\Lambda, \lambda, \bar{z})\) are related to the variables \((\Lambda, \tilde{l}, \bar{w})\) by \((\Lambda, \lambda, \bar{z}) = \phi(\Lambda, \tilde{l}, \bar{w})\) with
\[\phi := \tilde{\phi} \circ \tilde{\phi} \circ \hat{\phi} \circ \tilde{\phi} \] (6.30)
where \(\tilde{\phi}, \tilde{\phi} \) and \(\hat{\phi} \) are as in § 5.1 and where we have denoted by \(\phi \) the \((6n-2)\)-dimensional transformation obtained from the \((6n-4)\)-dimensional transformation \(\phi_s \) given by Proposition 5.1, lifted on \(G \) and \(\hat{g} \) in the obvious way (see the proof of Theorem 5.1 in Appendix C). Let us remark the following facts:

(i) the transformation \(\tilde{\phi} \) in (6.30), is defined in (4.9). Its \(\Lambda \)-projection is the identity and, we claim, its \(\bar{z} \)-projection of \(\phi \) is \(\Lambda^2 - \frac{5}{2} \)-close to the identity. Indeed, such projection is defined by the matrices \(U_h \) and \(\bar{U}_v \) in (4.9), which make the quadratic part in (4.5) diagonal. By induction: For \(n = 2 \), \(Q_v \) is of order 1, so \(\bar{U}_v = 1 \), and \(Q_h \) is \(2 \times 2 \). Its explicit expression can be found in [6, Appendix B]. Using such expression one readily checks that, for \(n = 2 \), \(U_h \) is actually \(\Lambda^2 - \frac{5}{2} \)-close to the identity. For \(n \geq 2 \), as proven in [6, Eq. (8.10)], with \(\delta \) just after Eq. (7.7), the matrices \(U_h^+ \) and \(\bar{U}_v^+ \) at rank \(n \) are related to the corresponding ones \(\bar{U}_h \) and \(U_v \) at rank \((n-1) \) by \(U_h^+ = \text{diag} [U_h, 1] + O(\Lambda^{-6}), \ U_v^+ = \text{diag} [U_v, 1] + O(\Lambda^{-6}) \) and the claim follows.

(ii) \(\tilde{\phi} \) is the Birkhoff transformation defined in (4.10) which acts as the identity on \(\Lambda \) (Appendix A), and is \(O(|\bar{w}|^2) \)-close to the identity in the \(\tilde{w} \)-variables (parity). By items (iii) and (iv) below, the projection \(\Pi \circ (\hat{\phi} \circ \phi) \) is \(\epsilon^2 \)-close to the identity, where \(\epsilon \) is any number such that \(\phi(\Lambda, G) < \epsilon \);

(iii) \(\hat{\phi} \) is explicitly given in (5.3); recall that the Euclidean length \(|\bar{w}|^2 \) is sent into \(\phi(\Lambda, G)^2 \), with \(\phi(\Lambda, G)^2 \) as in (5.4);

(iv) \(\tilde{\phi} \) is constructed in (the proof of) Proposition 5.1. In particular, it leaves \((\Lambda, G) \) fixed and is \(\epsilon^{2s+1} \)-close to the identity in \(\tilde{w} \);

(v) in terms of the RPS variables \((\Lambda, \lambda, \bar{z})\), the functions \(\epsilon_i = \epsilon_i(\Lambda, \rho, r), i_j = i_j(\Lambda, \rho, r) \) are \textit{rational functions} of \(\Lambda_i \) and of \(\rho_i := \frac{\eta_i^2 + \xi_i^2}{2} \) and \(r_j := \frac{p_j^2 + q_j^2}{2} \) explicitly given by
\[\epsilon_i = \frac{\rho_i}{\Lambda_i} (2 - \frac{\rho_i}{\Lambda_i}), \quad i_j = 2r_j \epsilon_{j+1}, \quad \epsilon_{j+1} := \frac{2 \mathcal{L}_j - \left|z_{j-1}\right|^2 - r_j}{2(\Lambda_{j+1} - \rho_{j+1})(2\mathcal{L}_{j+1} - \left|z_j\right|^2)} \]
where \(\xi_i := \sum_{1 \leq j \leq 1} \Lambda_j \), \(z_i = (\eta_1, \ldots, \eta_{i+1}, \xi_1, \ldots, \xi_{i+1}, p_1, \ldots, p_i, q_1, \ldots, q_i) \).

Such expressions may be found from (3.8) above; compare also [6, Appendix A.2], for more details.

From (i)–(v) above there follows that \(\epsilon_i, i_j \), expressed in the variables \((\Lambda, \tilde{\tau}) \) have the form, respectively \(\epsilon_i(\Lambda, \tilde{\tau}) + \tilde{\epsilon}_i(\Lambda, \tilde{\tau}), i_j(\Lambda, \tilde{\tau}) + \tilde{i}_j(\Lambda, \tilde{\tau}) \) where \(\tilde{\epsilon}_i, \tilde{i}_j \) are functions of order \(O(\epsilon^2 \Lambda_2^{-5/2} + \epsilon^3) \). This, by (6.3), implies (6.29) and hence (6.27).

\[\text{A BNFs and symmetries} \]

In this appendix we analyze the properties of Birkhoff–normalizations \(\check{\phi} \) used in (4.10) for, respectively, partial and total reduction in case of symmetries.

Let us consider\(^{24} \) again the transformation \(\mathcal{R}_g, \mathcal{R}_{1-2} \) and \(\mathcal{R}_{3-} \) in (3.26)–(3.27), but generalized replacing \(\lambda, \eta, \xi, p, q \) with \(\tilde{\lambda} \in \mathbb{T}^n, (\tilde{\eta}, \tilde{\xi}) \in \mathbb{R}^{2m_1}, (\tilde{p}, \tilde{q}) \in \mathbb{R}^{2m_2} \), for some \(n, m_1 \) and \(m_2 \in \mathbb{N} \). Put \(m := m_1 + m_2 \). Let \(\mathcal{A} \) be an open, bounded set of parameters in \(\mathbb{R}^n \), consider a function \(f : \mathcal{A} \times B_{2m}^2 \to \mathbb{R} \) of the form of \(\tilde{f}_{\text{BNS}} \) in (4.8), with the numbers \(n, n-1 \) into the summands replaced by \(m_1, m_2 \).

Proposition A.1 Let \(f \) be \(\mathcal{R}_g, \mathcal{R}_{1-2} \) and \(\mathcal{R}_{3-} \)–invariant. Assume that the first order Birkhoff invariants \(\bar{\Omega} = (\sigma, \zeta) \) verify, for some integer \(s \),

\[
\inf_{\mathcal{A}} |\bar{\Omega} \cdot k| > 0, \quad \forall \, k \in \mathbb{Z}^m : \quad \sum_{i=1}^{m} k_i = 0, \quad 0 < |k|_1 := \sum_{i=1}^{m} |k_i| \leq 2s. \quad (A.1)
\]

Then, there exists \(0 < \tilde{\epsilon} \leq \epsilon \) and a symplectic transformation

\[
\check{\phi} : (\Lambda, \tilde{\lambda}, \tilde{z}) = (\Lambda, \tilde{\lambda}, (\tilde{\eta}, \tilde{\xi}, \tilde{p}, \tilde{q})) \in \mathcal{A} \times \mathbb{T}^n \times B_{2m}^2 \to (\Lambda, \tilde{\lambda}, \tilde{z}) \in \mathcal{A} \times \mathbb{T}^n \times B_{2m}^2
\]

which puts \(f \) into BNF up to the order \(2s \). Furthermore, \(\check{\phi} \) leaves the \(\Lambda \)–variables unchanged, acts as a \(\tilde{\lambda} \)–independent shift on \(\lambda \), is \(\tilde{\lambda} \)–independent on the remaining variables, preserves the function \(G(\Lambda, \tilde{z}) := |\Lambda| - |\tilde{z}|_2^2/2 \) and finally verifies

\[
\check{\phi} \circ \mathcal{R} = \mathcal{R} \circ \check{\phi} \quad (A.2)
\]

for any \(\mathcal{R} = \mathcal{R}_g, \mathcal{R}_{1-2}, \mathcal{R}_{3-} \). Moreover, (A.2) holds for any of such \(\check{\phi} \)'s.

Remark A.1 (i) Since \(\check{\phi} \) commutes with \(\mathcal{R}_{3-} \), its \((\tilde{p}, \tilde{q}) \)–projection

\[
\Pi(\tilde{p}, \tilde{q}) \check{\phi} = (\tilde{p}, \tilde{q}) + O((|\tilde{p}, \tilde{q}|)^3)
\]

\(^{24}\)Clearly, Proposition A.1 below is general. However, to avoid to introduce too many symbols, we use notations (i.e., \(\mathcal{A}, n, \bar{\Omega} = (\sigma, \zeta), \tilde{\epsilon}, \check{\phi}, \tilde{\lambda}, \tilde{z} = (\tilde{\eta}, \tilde{\xi}, \tilde{p}, \tilde{q}), \check{\lambda}, \check{z} = (\tilde{\eta}, \tilde{\xi}, \tilde{p}, \tilde{q})) \) already used in the paper, which make the application transparent: compare the second item in Remark A.1 below.
is odd in \((\breve{p}, \breve{q})\); its \((\breve{\eta}, \breve{\xi})\) and \(\breve{\lambda}\)–projections

\[\Pi_{\breve{\lambda}} \breve{\phi} = \breve{\lambda} + \breve{\varphi}(\Lambda, \breve{z}) , \quad \Pi_{(\breve{\eta}, \breve{\xi})} \breve{\phi} = (\breve{\eta}, \breve{\xi}) + O((|\breve{\eta}, \breve{\xi}|)^3) \]

are even in \((\breve{p}, \breve{q})\). Using also the commutation with \(\mathcal{R}_\pi\), one finds that the \((\breve{\eta}, \breve{\xi})\)–projection of \(\phi\) is odd in \((\breve{\eta}, \breve{\xi})\).

(ii) It is not difficult to derive \(\mathcal{R}_g\), \(\mathcal{R}_{\text{inv}}\) and \(\mathcal{R}_{-}\)–invariance of \(\hat{f}_{\text{RPS}}\) from that of \(f_{\text{RPS}}\) in (4.1) (or see the comments between [6, Eq. (7.24) and Eq. (7.25)]).

(iii) Proposition A.1 is closely related to [6, Proposition 7.3]. The difference being that, in [6], (A.2) was proven only for \(\mathcal{R}_g\). To extend the proof in [6], we briefly recall the setting, referring to [6] for full details.

Proof of Proposition A.1. We recall that \(\breve{\phi}\) can be constructed in \((2s - 2)\) steps, as a product \(\phi_2 \circ \cdots \circ \phi_{2s-2}\). The first step is as follows. To uniform notations, put \(w = (u,v) := \left((\breve{\eta}, \breve{p}), (\breve{\xi}, \breve{q})\right)\). One introduces the “Birkhoff coordinates”

\[
(t, t^*) = \left((t_1, \ldots, t_m), (t^*_1, \ldots, t^*_m)\right) : \quad t_j = \frac{u_j - \text{iv}_j}{\sqrt{2}}, \quad t^*_j = \frac{u_j + \text{iv}_j}{\sqrt{2}}. \quad (A.3)
\]

Consider then the polynomial of degree 4 \((f\text{ is even in }w, \text{ since it is }\mathcal{R}_g\text{–invariant})\) into the expansion of \(f\) in powers of \(w\):

\[
\mathcal{P}_4 = \sum_{|\alpha|+|\alpha^*|=4} c^{(4)}_{\alpha,\alpha^*} \prod_{1\leq j\leq m} t_j^{\alpha_j} t_j^{*-\alpha^*_j}. \quad (A.4)
\]

Let \(\phi_2\) be the time–one flow generated by the Hamiltonian

\[
K_4(\Lambda, (t,t^*)) = \sum_{|\alpha|+|\alpha^*=2} c^{(4)}_{\alpha,\alpha^*} \prod_{1\leq j\leq n} t_j^{\alpha_j} t_j^{*-\alpha^*_j}. \quad (A.5)
\]

Since \(f\) is \(\mathcal{R}_g\)–invariant, \(K_4\) is so, hence \(G\) is an integral for the \(K_4\)–flow; taking this flow at time \(\theta = 1\), we have that \(\phi_2\) preserves \(G\). Notice that \(f\) being \(\mathcal{R}_{1\cdots 2}\) – invariant implies that the coefficients \(c^{(4)}_{\alpha,\alpha^*}\) in (A.4) satisfy \(c^{(4)}_{\alpha,\alpha^*} = c^{(4)}_{\alpha^*,\alpha}\). So, the function \(K_4\) in (A.5) is skew–symmetric in \((t, t^*)\): \(K_4(\Lambda, (t,t^*)) = -K_4(\Lambda, (t^*,t))\). Writing the motion equations of \(K_4\) with initial datum \((\Lambda, \pi/2 - \lambda, t^*, t)\), the claim follows. The function \(f_2 := f \circ \phi_2 = f(\Lambda, \cdot) \circ Z_2(\Lambda, \cdot)\) where \(Z_2(\Lambda, \cdot)\) is the projection on \((t, t^*)\) of \(\phi_2\), is now in normal form of order 4 and it is easy to seen to be again \(\mathcal{R}_{1\cdots 2}\) – invariant; so that the procedure can be iterated. The commutation with \(\mathcal{R}_{\text{inv}}\) is proved similarly. The (standard) proof of independence of (A.2) upon the choice of \(\phi\) is omitted.

\[\text{25In [6] } A, \bar{\Omega}, \Lambda, \breve{\lambda}, \breve{z}, \breve{\bar{\xi}}, \mathcal{R}_g, \breve{c}, \breve{\bar{c}} \text{ are denoted } B, \Omega, I, \varphi, w, \bar{w}, \mathcal{R}^{\delta}, \breve{r}, r, \text{ respectively.}\]
B Domains of Poincaré and RPS variables

In this appendix, for completeness, we describe analytically the global domains $\mathcal{M}^{6n}_{\text{max},p}$, $\mathcal{M}^{6n}_{\text{max},\text{rps}}$.

- The domain $\mathcal{M}^{6n}_{\text{max},p}$ is the subset of $(\Lambda, \lambda, z) \in \mathbb{R}^n_+ \times \mathbb{T}^n \times \mathbb{R}^{4n}$ where their respective action variables satisfy
 \[0 < \Gamma_i \leq \Lambda_i, \quad -\Gamma_i < \Theta_i \leq \Gamma_i \] \hspace{1cm} (B.1)
 where the action variables Γ_i, Θ_i are regarded as functions of the Poincaré variables in (3.7) i.e.,
 \[\Gamma_i = \Lambda_i - \frac{n_i^2 + \xi_i^2}{2}, \quad \Theta_i = \Lambda_i - \frac{n_i^2 + \xi_i^2}{2} - \frac{p_i^2 + q_i^2}{2} \]

- The domain $\mathcal{M}^{6n}_{\text{max, rps}}$ is the subset of $(\Lambda, \lambda, z) \in \mathbb{R}^n_+ \times \mathbb{T}^n \times \mathbb{R}^{4n}$ where\(^{26}\) the action variables satisfy
 \[
 \begin{cases}
 0 < \Gamma_i \leq \Lambda_i, & 1 \leq i \leq n, \\
 |\Psi_{i-1} - \Gamma_{i+1}| < \Psi_i \leq \Psi_{i-1} + \Gamma_{i+1}, & 1 \leq i \leq n-1, \\
 -\Psi_{n-1} < \Psi_n \leq \Psi_{n-1}.
 \end{cases}
 \] \hspace{1cm} (B.2)
 Here, Γ_i, Ψ_i are regarded as functions of the rps–variables as in (3.8), i.e.,
 \[
 \begin{align*}
 \Gamma_i &= \Lambda_i - \frac{n_i^2 + \xi_i^2}{2}, & 1 \leq i \leq n, \\
 \Psi_i &= \sum_{j=1}^{i+1} \Lambda_j - \sum_{j=1}^{i+1} \frac{n_j^2 + \xi_j^2}{2} - \sum_{j=1}^{i} \frac{p_j^2 + q_j^2}{2}, & 1 \leq i \leq n-1, \\
 \Psi_n &= \Psi_{n-1} - \frac{p_n^2 + q_n^2}{2}.
 \end{align*}
 \] \hspace{1cm} (B.3)

Notice in particular that the only inequality in (B.2) involving (p_n, q_n) is the third one. Using (compare (B.3))

\[\Psi_n + \frac{p_n^2 + q_n^2}{2} = \Psi_{n-1} = |C| = G(\Lambda, z) = |\Lambda|_1 - |z|_2^2 \]

one has that such inequality is just the second one in (3.13), i.e., \(\sqrt{p_n^2 + q_n^2} < 2\sqrt{G} \). The set $\mathcal{M}^{6n-2}_{\text{max}}$ in (3.13) is then defined by the first two inequalities into (B.2), with $\Gamma_1, \ldots, \Gamma_n, \Psi_1, \ldots, \Psi_{n-1}$ functions of Λ and z as in (B.3).

\[^{26}\text{Recall that: } \Gamma_i = |C^{(i)}| = \Lambda_i \sqrt{1 - e_i^2}; \Psi_{n-1} = |C|; \Psi_n := C_3 = C \cdot k^{(3)}; \Psi_i = |S^{(i+1)}| = |S^{(i)} + C^{(i+1)}| \].

34
C Proof of Proposition 5.1

The proof is obtained as a generalization of [6, Proposition 10.1]: in [6] the proof is divided into four steps, and here we just remark how to modify such steps, in order to get the generalization at arbitrary order. For the purpose of this proof we shall use the notations adopted in [6], which we now recall. The variables \((\Lambda, \hat{1}, \hat{w}) = (\Lambda, \hat{1}, (\hat{u}, \hat{\omega}))\) defined in (5.3) are denoted there by \((\Lambda, \hat{\alpha}, \hat{z})\), with again \(\hat{z} = (\hat{u}, \hat{v})\). The variables \(\hat{r}_1, \ldots, \hat{r}_{2n-2}\) correspond to \(R_1, \ldots, R_{2n-2}\) in [6, Proposition 10.1]. Moreover, in [6], the variables \((\Lambda, G), (\hat{\lambda}, \hat{g})\) are called \(I, \hat{\varphi}\), respectively, and the same convention is next used during the proof: \(\varphi^*, \varphi^*, \hat{\varphi}\) are names for \((\lambda^*, g^*)\), and so on. Notice also that functions \(\hat{H}, \hat{f}\), in (5.6) and the function \(\mathcal{P}\) in (5.1) for \(2s = 4\) are called, in [6], \(\hat{H}, \hat{f}, \hat{P}\), while the average \(\hat{f}^{av}\) is denoted \(\hat{f}_{G, av}\), compare [6, Eqs. (7.30), (9.7), (10.1)].

Step 1 Fix \(s \in \mathbb{N}, \theta \in (0, 1)\). We shall prove Proposition 5.1 with \(\theta := \theta + 2s\eta\). Replace the function \(f^{(\theta)}\) defined just after [6, Eq. (10.16)] by the function

\[
 f^{(\theta)} = \hat{C}_0(\Lambda, \theta) + \theta^2 \left(\hat{\Omega} \cdot \hat{R} + \frac{\theta^2}{2} \hat{\tau}(\Lambda) \cdot \hat{R}^2 + \hat{P}_3(\hat{R}; \Lambda) + \cdots + \hat{P}_s(\hat{R}; \Lambda) + \theta^2 Q(\Lambda, \hat{z}, \theta) \right), \tag{C.1}
\]

where \(f^{(\theta)} - \theta^2 + Q(\Lambda, \theta) = \hat{C}_0(\Lambda, \theta) + \theta^2 \left(\hat{\Omega} \cdot \hat{R} + \frac{\theta^2}{2} \hat{\tau}(\Lambda) \cdot \hat{R}^2 + \cdots + \hat{P}_s(\hat{R}; \Lambda) \right)\) is a polynomial in the variables \(\hat{R}_i = \frac{\theta^2 + s^2}{2}, \) which is of degree \(2s\) in \((\hat{u}, \hat{v})\). Next, comparing to [6, Eq. (10.26)], the remainder \(\alpha^{2s+2} Q\) in (C.1) is

\[
 \alpha^{2s+2} Q(\Lambda, \hat{z}, \alpha) = \mathcal{P}(\Lambda, \alpha \phi^{(1)}(\hat{z})) \tag{C.2}
\]

with \(\mathcal{P}\) as in (5.1) and, quite analogously to [6, Eq. (10.17)], \(\phi^{(1)}(\hat{z})\) denotes the projection on \(\hat{z}\) of the transformation (5.3) with \(\hat{g}_\cdot \hat{g} = 0, g\) replaced by 1 and \(\hat{w}\) replaced by \(\hat{z}\). Notice that the functions \(\hat{\Omega}\) and \(\hat{\tau}\) are \(\theta^2\)-close to the functions defined in [6, Eq. (10.6)–(10.7)]. In particular, \(\hat{\Omega}\) do not satisfy resonances up to order \(2s\), for small \(\theta^*\). Replace then the definition of the function \(F\) just before [6, Eq. (10.19)] with

\[
 F(\hat{z}, \alpha) := \partial_\alpha f^{(\alpha)} - \hat{C}_0(\Lambda, \alpha) \alpha^{-2} \tag{C.3}
\]

Then, quite similarly, for small values of \(\alpha\), by Implicit Function Theorem, one finds an equilibrium point \(\hat{z}_e(\Lambda, \alpha)\) for \(F\) which satisfies, instead of [6, Eq. (10.21)], the following estimate (with possibly a bigger value of \(c_4\))

\[
 |\hat{z}_e| \leq 2m |F(0, \alpha)| \leq c_4 \alpha^{2s},
\]

Footnote 27: Notice incidentally that the monomials \(\hat{P}_1 := \hat{\Omega} \cdot \hat{R}, \hat{P}_2 := \frac{1}{2} \hat{\tau} \hat{R}^2, \ldots, \hat{P}_s\) in (C.1) are related to the corresponding monomials \(\hat{P}_1 := \Omega \cdot \hat{r}, \hat{P}_2 := \frac{1}{2} \hat{r} \hat{r}^2, \ldots, \hat{P}_s\) in (5.1) simply replacing in \(\hat{P}_j\) \(\hat{r}_i\) with \(\hat{r}_i\) for \(i \neq 2n - 1\) and \(\hat{r}_{2n-1}\) with \(g^2 - \sum_{1}^{2n-2} \hat{r}_j\). Such invariants may be taken to be, up to \(O(\theta^2)\), as the first approximation of the invariants \(\hat{\Omega}, \hat{\tau}, \ldots, \hat{P}_s\) in (5.9).
with \(m \) as in [6, Eq. (10.19)]. Thus, the function \(\tilde{f}_{G, \text{av}} \) has an equilibrium point \(\tilde{z}_e(\Lambda, G) := g(\Lambda, G)w_e(\Lambda, g(\Lambda, G)) \) satisfying \(|\tilde{z}_e(\Lambda, G)| \leq CG(\Lambda, G)^{2s+1}\), with a suitable constant \(C \) independent of \(\Lambda \) and \(G \).

Next, instead of taking \(g < \varepsilon_2 \), where \(\varepsilon_2 \) is an upper bound for \(g \) with the property at the end of [6, Step 1] take \(g(\Lambda, G) \leq \delta^s \), where \(\delta^s \) is so small that, for \(g(\Lambda, G) \leq \delta^s \), the following inequality holds

\[
|z_e(\Lambda, G)| \leq CG(\Lambda, G)^{2s+1} \leq \eta g(\Lambda, G). \tag{C.4}
\]

Step 2 Define a change of variables \((I, \varphi^*, z^*) \to (I, \tilde{\varphi}, \tilde{z}) \) defined by [6, Eq. (10.22)] and by the last equation at the end of [6, Step 2], but modify the choice of the domain of \(\varphi^* \) as follows

\[
I \in \mathcal{A} \times \mathbb{R}_+, \quad \varphi^* \in \mathbb{T}^{n+1}, \quad |z^*| \leq (\theta + (2s - 1)\eta)g = (\theta - \eta)g \leq \delta^s \tag{C.5}
\]

By the triangular inequality, (C.4) and Equation [6, Eq. (10.22)], \(\phi^* \) is well defined on such domain. Exploiting the definition of \(\phi^* \) and (C.4) one finds that \(\phi^* \) (acts as the identity on \(I = (\Lambda, G) \), as a \(\varphi^* \)-independent shift on \(\varphi^* \) and moreover) verifies

\[
|\phi^*(I, \varphi^*, z^*) - (I, \varphi^*, z^*)| \leq CG(\Lambda, G)^{2s+1},
\]

with \(C \) independent of \(\varphi^* \) and \(z^* \). Finally, letting \(\mathcal{H}^* := \hat{\mathcal{H}} \circ \phi^* = h_k + \mu \varphi^* \), one has that the averaged perturbation becomes\(^{28}\)

\[
(f^*)^{\text{av}}(I, z^*) := (f \circ \phi^*)^{\text{av}} = \hat{f}^{\text{av}} \circ \phi^* = C^s(I) + \Omega^*(\Lambda) \cdot R^* + \frac{1}{2} \tau^*(\Lambda) \cdot (R^*)^2 + \cdots + P^*_s(R^*, \Lambda) + Q^*(I, z^*), \tag{C.6}
\]

for suitable \(\Omega^*, \tau^*, \cdots, P^*_s \), which are \(g^2 \)-close to \(\hat{\Omega}, \hat{\tau}, \cdots, \hat{P}_s \) in (C.1) and \(Q^* \) defined as in [6, Eqs. (10.25)–(10.26)], with \(\hat{P} \) replaced by the function \(P \) in (5.1). In particular, \(\Omega^* \) do not satisfy resonances up to order \(2s \), provided \(\delta^s \) is suitably small.

Step 3 Replace [6, Eqs. (10.27)–(10.30)] as follows. Denote by

\[
Q^*(I, z^*) = \sum_{k \in \{0, \ldots, 2s\}, k \neq 1} Q^*_k + O(|z^*|^{2s+1}) \tag{C.7}
\]

the Taylor expansion around \(z^* = 0 \) of \(Q \) in (C.6). In the case \(2s = 4 \), \(Q_0^*, Q_2^*, Q_3^*, Q_4^* \) correspond to the functions \(Q_0^*, Q^*, C^*, F^* \) of [6, Eq. (10.27)]. By the definition of \(Q^* \), it is not difficult to see that \(Q^*_k \) are \(g^{(2s-k+2)} \)-close to zero. Since \(Q_2^* \) is \(g^{2s} \)-close to zero, for an eventually smaller \(\delta^s \), one can find a symplectic transformation \(\phi^* : (I, \varphi^*, z^*) \to (I, \varphi^*, z^*) \) which leaves \(I \) unvaried, as a \(\varphi^* \)-independent shift on \(\varphi^* \), is linear on \(w^* \) and puts \(\Omega^* \cdot R^* + Q_2^* \) into the normal form \(\Omega^* \cdot R^* \), where \(\Omega^* \) are \(g^{2s} \)-close of \(\Omega^* \) and hence do not satisfy resonances up to order \(2s \) for an eventually smaller \(\delta^s \). Such

\(^{28}\)The operation of composition with \(\phi^* \) commutes with \(\lambda^*-\text{averaging} \), since \(\phi^* \) acts \(\varphi^* \)-independent shift on \(\varphi^* \). This fact is common to the transformations \(\phi^*, \tilde{\phi}_{2s-2} \) below and it will not be mentioned anymore.
transformation \(\phi^* \) is easily seen to be \(g^{2s+1} \)-close to the identity and the transformed Hamiltonian \(H^\ast := H^* \circ \phi^* = h_\nu(A) + \mu f^\ast(A, l^\ast, w^\ast) \) \(g^s \)-independent and has the quadratic part of \((f^*)^{av} = (f^*)^{av} \circ \phi^* \) in diagonal form. Finally, since \(\phi^* \) is \(g^{2s+1} \)-close to the identity, with an eventually small \(\delta^* \) for which \(|z^* - z^| \leq C g^{2s+1} \leq \eta \), one can take as domain of \(\phi^* \) the set

\[
I \in A \times \mathbb{R}_+ , \quad \varphi^* \in T^{n+1} , \quad |z^*| \leq (\vartheta + (2s - 2)\eta) \theta = (\theta - 2\eta) \theta(A, G) \leq \delta^* , \quad (C.8)
\]

which implies that \(z^* \) satisfies (C.5). Moreover, \(\phi^* \) puts \(f^{av} \) into the form

\[
f^{av} = f^{av}_{\phi^*} = C^*(I) + \Omega^* \cdot R^* + \frac{1}{2} \tau^* \cdot (R^*)^2 + \cdots P^*_k(R^*, \Lambda)
\]

where \(Q^*_k \) are monomials of degree \(k \) in \(z^* \), which are \(g^{2s} \)-close to \(Q^*_k \) in (C.7) and hence \(g^{2s+2-k} \)-close to zero. This implies in particular that \(\Omega^* \) are \((2s)\) non resonant and the matrix \(\tau^* \) is \(g^2 \)-close to \(\tau \) in (C.1), hence, non–singular. Notice that, in the case \(2s = 4 \), \(C^*, \Omega^* , \tau^* \) correspond to the functions \(C_0, \Omega, \tau \) in the last equation in [6, Step 3].; \(Q^*_3 \), \(Q^*_4 \) to the functions \(C^*, F^* \).

Step 4 Apply now a Birkhoff transformation \(\phi_{2s-2} \) in \((2s - 2)\) steps (which is possible thanks to non–resonance of \(\Omega^* \)). From the claimed properties of the polynomials \(Q^*_k \) in Step 3 above, one has that \(\phi_{2s-2} \) can be chosen to be \(g^{2s+1} \)-close to the identity, and acting as a the identity on \(I \), as a \(\phi^* \)-independent shift on \(\phi^* \). Letting \(\delta^* \) to be so small that \(|\tilde{z} - z^*| \leq C g^{2s+1} \leq (2s - 2)\eta \), one has that the domain of \(\phi_{2s-2} \) may be chosen to be \(I \in A \times \mathbb{R}_+ , \varphi^* \in T^{n+1} , \tilde{z} \leq \vartheta \theta(A, G) \leq \delta^* \), so that \(z^* \) satisfies (C.8). This implies in particular that \(\tilde{\phi} := \phi^* \circ \phi^* \circ \phi_{2s-2} \) is well defined on the domain defined in (5.7) above, with \(\vartheta = 1/4 \) and arbitrary \(\delta < \delta \leq \delta^* \). Moreover, the \((\Lambda, \lambda, \tilde{z})\)-projection of \(\phi^* \), \(\phi_s := \Pi_{(\Lambda, \lambda, \tilde{z})} \circ \phi^* \) is easily seen to be symplectic with respect to the 2–form \(d\Lambda \wedge d\lambda + d\tilde{z} \wedge d\tilde{w} \) and satisfying the thesis of Theorem.

D Properly–degenerate averaging theory

In this Appendix we shall prove a result in averaging theory, which is needed in the proof of Theorem 6.1.

Let us fix some standard notations: \(B^m_r(z) \) denotes the complex ball of radius \(r \) in \(\mathbb{C}^m \), centered in \(z \); the ball around the origin \(B^m_r(0) \) is simply denoted by \(B^m_r \). If \(V \subseteq \mathbb{R}^m \) is an open set, \(V_\rho \) denotes the complex set \(\bigcup_{x \in V} B^m_{\rho}(x) \) and \(T^m_\rho \) denotes the complex neighborhood of \(T^m \) given by \(\{ x \in \mathbb{C}^m : |\text{Im} x_j | < s, 1 \leq j \leq m \} / (2\pi \mathbb{R}^m) \). Also, if \(f(u, \varphi) = \sum_{k \in \mathbb{Z}^m} f_k(u) e^{ik \cdot \varphi} \) is a real-analytic function on \(W_{e,s} = V_\rho \times T^m_\rho \), \(||f||_{e,s} \) denotes its “sup–Fourier” norm: \(||f||_{e,s} := \sum_{k \in \mathbb{Z}^m} \sup_{V_\rho} |f_k| e^{||k|| s} \), where \(|k| := |k|_1 := \sum_{i=1}^n |k_i| \).

Proposition D.1 Let \(n_1, n_2 \in \mathbb{N} \); let \(V \) be an open set in \(\mathbb{R}^{n_1} \); \(W_{\rho_0, e_0, s_0} := V_{\rho_0} \times T_{s_0}^{n_1} \times B_{2\rho_2}^{2n_2} \); let \(H(I, \varphi, p, q; \mu) : W_{\rho_0, e_0, s_0} \rightarrow \mathbb{C} \) be a real–analytic Hamiltonian on \(W_{\rho_0, e_0, s_0} \) of the form

\[
H(I, \varphi, p, q; \mu) := H_0(I; \mu) + \mu P(I, \varphi, p, q; \mu)
\]

(D.1)
where the average $P_{av} := \int_{\mathbb{T}^n_1} P(I, \varphi, p, q; \mu) \frac{d\varphi}{(2\pi)^n}$ has an elliptic equilibrium in $p = q = 0$ for all $I \in V$. Assume that the map $I \to \partial^2 H_0(I; \mu)$ is a diffeomorphism of V; that the first order Birkhoff invariants Ω of P_{av} do not satisfy resonances on V up to the order $2s$. Let $\tau > n - 1$.

There exist positive numbers c_*, c_0 such that, for all $0 < a < \frac{1}{4(\tau + 1)}$ one can find a number $0 < \epsilon_* < 1$ such that for all

\[\gamma_0 \geq 1 \quad \text{and} \quad 0 < \epsilon < \epsilon_* \quad \text{and} \quad (c_* \epsilon)^{\frac{1}{2(\tau + 1)}} < \mu < \left(\frac{\epsilon}{c_* \gamma_0} \right)^{\frac{1}{1 - 2n(\tau + 1)}} \]

(D.2)

one can find an open set $V_* \subseteq V_{\rho_0/32}$ a positive number c and a real-analytic symplectic transformation

\[\phi_* : (V_*)_{\rho_*} \times \mathbb{T}^n_1 \times B^{2n_2} \rightarrow (V_*)_{3\rho_*} \times \mathbb{T}^n_1 \times B^{2n_2} \]

(D.3)

where $\rho_* := \frac{\gamma_0}{c_0} \max\{ \sqrt{B}, \sqrt{2} \} \mu^{a/2} \leq \frac{\rho_0}{32}$, which carries H into $H_* := H \circ \phi_*$, where

\[H_*(I, \varphi, p, q) = H_0(I) + \mu N_*(I, r) + \mu P_*(I, p, q) + \frac{c}{2} \epsilon^2 \mu \epsilon^{-\frac{1}{4(\tau + 1)}} f_*(I, \varphi, p, q) \]

(D.4)

where N_* is a polynomial of degree s in $r_i = \frac{p_i^2 + q_i^2}{2}$ whose coefficients are $(\epsilon, \mu/\epsilon)$–close to those BNF associated to P_{av}; P_* has a zero of order $(2s + 1)$ in $(p, q) = 0$ for all $I \in (V_*)_{\rho_*}$ and f_* is uniformly bounded by 1.

The transformation $\phi_* \ may \ be \ chosen \ so \ as \ to \ satisfy

\[\phi_* \left((V_*)_{\rho_*/2} \times \mathbb{T}^n_1(1 + \frac{1}{\gamma_0})/48 \times B^{2n_2}_{3\epsilon(1 + \frac{1}{\gamma_0})/64} \right) \supseteq (V_*)_{\rho_*/4} \times \mathbb{T}^n_1(1 + \frac{1}{\gamma_0})/48 \times B^{2n_2}_{3\epsilon(1 + \frac{1}{\gamma_0})/64} \]

\[\phi_* \left((V_*)_{\rho_*} \times \mathbb{T}^n_1(1 + \frac{1}{\gamma_0})/48 \times B^{2n_2}_{3\epsilon(1 + \frac{1}{\gamma_0})/64} \right) \subseteq (V_*)_{3\rho_*} \times \mathbb{T}^n_1(1 + \frac{1}{\gamma_0})/48 \times B^{2n_2}_{3\epsilon(1 + \frac{1}{\gamma_0})/64} \]

(D.5)

for all $\eta \in (0, 1)$ and, moreover, if $(I_*, \varphi_*, p_*, q_*)$ is short for $\phi_*(I, \varphi, p, q)$, the following bounds

\[|I_* - I| \leq \frac{c_*}{\gamma_0} \min\{ \sqrt{\mu \epsilon}, \frac{\mu}{\sqrt{\epsilon}} \} \mu^{a/2} \]

\[|\varphi_* - \varphi| \leq \frac{c_*}{\gamma_0} \mu^{a(6\tau + 5)/2} \]

\[\max\{ |p_* - p|, |q_* - q| \} \leq \frac{c_*}{\gamma_0} \max\{ \epsilon, \frac{\mu}{\sqrt{\epsilon}} \} . \]

(D.6)

The set V_* can be chosen to have Lebesgue measure

\[\text{meas } V_* \geq (1 - f_*(\epsilon, \mu)\mu^{-a(\tau + 1)/2}) \text{meas } V, \]

(D.7)

with $f_*(\epsilon, \mu) := \sqrt{\frac{c_*}{\gamma_0}} \max\{ \sqrt{\frac{\epsilon}{\mu}}, \sqrt{\frac{\mu}{\epsilon}} \}$.

If, instead of (D.2), one assumes

\[\gamma_0 \geq 1 \quad \text{and} \quad 0 < \epsilon < \epsilon_* \quad \text{and} \quad 0 < \mu < \frac{1}{c_* \gamma_0} \epsilon (\log \epsilon)^{-2(\tau + 1)} \]

(D.8)

38
Moreover, denoting by \bar{g} the gradient replaced by \bar{g} (such that \bar{W} real-analytic on $\alpha > V$ in normal form and $E := |\bar{g}| = (\bar{g})_0 = k_f = v/\alpha = \bar{v}_0$ depend only on γ, ϵ). Assume that $\Psi : (I, \varphi) \to (I, \varphi, p, q)$ finally let $k_\star \geq \gamma$ s be as above and $\|Q_*\| \leq 1$.

The proof is based upon a technical result proven in [15] or [4].

Lemma D.1 (Averaging Theory) Let K, s and s be positive numbers such that $Ks \geq 6; \alpha > 0$ and $\ell \in \mathbb{N}$. Let $H(u, \varphi) = h(I) + f(u, \varphi)$, with $f(u, \varphi) = \sum_k f_k(u) e^{ik\varphi}$, be real-analytic on $W_{v,s+s} := A_r \times B_{r_p} \times B_{r_q} \times \mathbb{T}_{s+s}$, where $A \times B \times B' \subseteq \mathbb{R}^\ell \times \mathbb{R}^m \times \mathbb{R}^m$ and $v = (r, r_p, r_q)$. Finally, let A be a (possibly trivial) sub-lattice of \mathbb{Z}^ℓ and let ω denote the gradient $\partial_I h$. Assume that

$$\omega \cdot k \geq \alpha \quad \forall I \in A_r, \forall k \notin A, |k| \leq K$$

$$E := \|f\|_{v,s+s} < \frac{\alpha d}{2^\ell c_m Ks}, \text{ where } d = \min\{rs, r_p r_q\}, \quad c_m := \frac{e(1 + em)}{2} .$$

Then, there exists a real-analytic, symplectic transformation

$$\Psi : (I', \varphi', p', q') \in W_{v/2,s+s/6} \to (I, \varphi, p, q) \in W_{v,s+s}$$

such that

$$H_* := H \circ \Psi = h + g + f_* ,$$

with g in normal form and f_* small:

$$g = \sum_{k \in \Lambda} g_k(I', p', q') e^{ik\varphi'}, \quad \|g - \Pi A T_k f\|_{v/2,s+s/6} \leq \frac{12}{\Pi} \frac{2^\ell c_m E^2}{\alpha d} \leq \frac{E}{4} ;$$

$$\|f_*\|_{v/2,s+s/6} \leq e^{-Ks/6} E .$$

Moreover, denoting by $z = z(I', \varphi', p', q')$, the projection of $\Psi(I', \varphi', p', q')$ onto the z-variables ($z = I, \varphi, p$ or q) one has

$$\max\{\alpha s |I - I'|, \alpha r |\varphi - \varphi'|, \alpha r_p |p - p'|, \alpha r_q |q - q'|\} \leq 9E .$$

Proof of Proposition D.1

Assume (D.2). Pick two numbers C_0 and $C \geq 1; \alpha$ the numbers c_* and ϵ_* of the statement verify $c_* \geq (2CC_0)^2$ and $\epsilon_* \leq \left(\frac{1}{(2CC_0)^2}\right)^{1-\epsilon(1+1)}$. The proof will be based on
the following inequalities (implied by (D.2)) for $\tilde{\epsilon}$ and μ and on the definition of the number $\tilde{\gamma} = \tilde{\gamma}(\tilde{\epsilon}, \mu)$ as

$$\left\{ \begin{array}{l}
\tilde{\epsilon} < \left(\frac{1}{(2CC_0)^2} \right)^{\frac{1}{1-4\alpha(\tau+1)}} \\
\left(2CC_0 \right)^2 \tilde{\epsilon} \frac{1}{1-4\alpha(\tau+1)} < \mu < \left(\frac{\tilde{\epsilon}}{(2CC_0)^2} \right)^{\frac{1}{1-2\alpha(\tau+1)}} \\
\tilde{\gamma} := 2C\gamma_0 \max \left\{ \sqrt{x}, \sqrt{\tilde{\epsilon}} K^\tau, \sqrt{\tilde{\epsilon}} K^\tau \right\} \mbox{ with } \tilde{K} := \frac{1}{\mu^\alpha} .
\end{array} \right. \quad (D.15)$$

The numbers C_0 and C will be chosen later, independently of γ_0, a and, obviously, on $\tilde{\epsilon}$ and μ.

Step 1 (Averaging over the “fast angles” φ’s)

Let $(I_0, \varphi_0, p_0, q_0)$ denote the variables in (D.1). We can assume that $P_{\varphi_0}(p_0, q_0; I_0)$ is in BNF of order 2s. The first step consists in removing, in H, the dependence on φ up an exponential order (namely, up to $O(e^{-1/\mu^a})$). Let ρ_0, ϵ_0, s_0 denote the analyticity radii of H in I_0, (p_0, q_0), φ_0, respectively and take $\tilde{\epsilon} \leq \epsilon_0$. We apply Lemma D.1 , with equal scales, i.e., taking $\alpha_1 = \alpha_2 = \alpha$ (see below). Next, we take $\ell := \ell_1 + \ell_2 = n_1$, $m = n_2$, $h = H_0$, $f = \mu P$, $B = B' = \{0\}$, $r_p = r_q = \epsilon_0$, $s = s_0$, $s = 0$, $\Lambda = \{0\}$, $A = \tilde{D}$, $r = \tilde{\rho}$, where \tilde{D}, $\tilde{\rho}$ are defined as follows. Let $\tau > n_1$, $\tilde{M} := \max_{i,j} \sup_{\varphi_0} |\partial^2_{ij} H_0(I_0)|$, $c_0 := \frac{32\tilde{M}}{r}$, $\tilde{\rho} := \max \{ \sqrt{\frac{\mu}{\tau}}, \sqrt{\tilde{\epsilon}} \} \mu^{a/2}$. Take

$$\tilde{D} := \tilde{\omega}_0^{-1} \left(D_{\gamma,\tau}^{n_1} \right) \cap V \quad \text{and} \quad \tilde{\rho} := \frac{32\gamma_0}{c_0} \tilde{\rho} = \frac{\tilde{\gamma}}{2MK^{\tau+1}} \leq \rho_0 , \quad (D.16)$$

where $D_{\gamma,\tau} \subseteq \mathbb{R}^{n_1}$ is the set of (γ, τ)–diophantine numbers in \mathbb{R}^{n_1}, i.e.,

$$D_{\gamma,\tau} := \left\{ \omega \in \mathbb{R}^{n_1} : |\omega \cdot k| \geq \frac{\tilde{\gamma}}{|k|^\tau} \text{ for all } k \in \mathbb{Z}^{n_1}, k \neq 0 \right\} .$$

Let now ρ_\ast, V_\ast be defined as

$$\rho_\ast = \frac{\tilde{\rho}}{32} = \frac{\gamma_0}{c_0} \tilde{\rho} , \quad V_\ast := \tilde{D}_{\rho_\ast} . \quad (D.17)$$

The following measure estimate is standard, since $\tilde{\omega}_0 = \partial H_0$ is a diffeomorphism of V and $\tau > n_1$,

$$\text{meas} \left(V \setminus V_\ast \right) \leq \text{meas} \left(V \setminus \tilde{D} \right) \leq C_0 \tilde{\gamma} \text{meas} \left(V \right) \quad (D.18)$$

where C_0 is a suitable number depending only on V. Take in (D.15) $C_0 \geq \tilde{C}_0$ and $C > 2^{-1} \sqrt{\frac{s_0\tilde{M}^2 g c_{n_2} \mu}{\| p_0, q_0, e_0, s_0 \|}}$. By a standard argument, for $I_0 \subseteq D_\rho$, the unperturbed frequency map $\tilde{\omega}_0 = \partial H_0$ verifies (D.10), with $\alpha_1 = \alpha_2 = \alpha := \frac{1}{2K^{\tau}}$, r and A as above. The smallness condition (D.11) is easily checked by the choices (D.15): since $\tilde{\epsilon} \tilde{K} = \tilde{\epsilon} \mu^{-a} < \epsilon^{1-1/(2\alpha(\tau+1))} < 1$ and $C > 2^{-1} \sqrt{\frac{s_0\tilde{M}^2 g c_{n_2} \mu}{\| p_0, q_0, e_0, s_0 \|}}$,

$$E = \mu \| P \|_{\| p_0, q_0, e_0, s_0 \|} \leq \frac{4C^2}{s_0\tilde{M}^2 g c_{n_2}} \frac{\mu}{\tilde{\epsilon} \tilde{K}} \leq \frac{\tilde{\gamma}^2}{s_0\tilde{M}^2 g c_{n_2} \tilde{K}^{2\tau+2}} \leq \frac{\alpha \tilde{\rho}}{2\tilde{M}^2 g c_{n_2} K s_0} .$$
Inequality $K s_0 \geq 6$ is also trivially satisfied. Thus, by Proposition D.1, we find a real-analytic symplectomorphism

$$\tilde{\phi} : (\bar{I}, \bar{\varphi}, \bar{p}, \bar{q}) \in \bar{D}_{\rho_0/2} \times \mathbb{T}^{n_1}_{s_0/6} \times B^{n_2}_{\epsilon_0/2} \to (I_0, \varphi_0, p_0, q_0) \in \bar{D}_{\rho_0} \times \mathbb{T}^{n_1}_{s_0} \times B^{n_2}_{\epsilon_0} \quad (D.19)$$

and H is transformed into

$$\tilde{H}(\bar{I}, \bar{\varphi}, \bar{p}, \bar{q}) = H \circ \tilde{\phi}(\bar{I}, \bar{\varphi}, \bar{p}, \bar{q}) = H_0(\bar{I}) + \mu \tilde{N}(\bar{I}, \bar{p}, \bar{q}) + \mu e^{-K s/6} \tilde{P}(\bar{I}, \bar{\varphi}, \bar{p}, \bar{q}).$$

By (D.13), $\|\tilde{P}\|_{\epsilon, \bar{s}} \leq \bar{C}$ and

$$\sup_{\tilde{D}_{\rho/2}} |\tilde{N} - P_{\text{av}}| \leq \frac{\bar{C} \mu K^{2r+1}}{\gamma^2}. \quad (D.20)$$

Since $\bar{\epsilon} < \epsilon_0$, in particular, $\tilde{\phi}$ is defined on the smaller set $W(\rho_0/2, \bar{\epsilon}), s$, and the following inclusion holds

$$\tilde{\phi} : \tilde{D}_{\rho/2} \times \mathbb{T}^{n_1}_{s_0/6} \times B^{n_2}_{\epsilon_0/2} \to \tilde{D}_{\rho} \times \mathbb{T}^{n_1}_{s_0} \times B^{n_2}_{\epsilon_0} \quad (D.21)$$

as it follows from the following inequalities

$$|I_0 - \bar{I}| \leq \frac{\bar{C} \mu K^{\tau}}{\gamma} = \frac{\mu \bar{C}}{2 C_0 K^{1/2}} \min\{\sqrt{\frac{\epsilon}{\mu}}, \frac{1}{\sqrt{\epsilon}}\} \leq \frac{2 C_0 \max\{\sqrt{\frac{\epsilon}{\mu}}, \sqrt{\epsilon}\}}{128} \leq \frac{\bar{\rho}}{128}$$

$$|p_0 - \bar{p}|, |q - \bar{q}| \leq \frac{\bar{C} \mu K^{\tau}}{\gamma} = \frac{\mu \bar{C}}{2 C_0 K^{1/2}} \min\{\sqrt{\frac{\epsilon}{\mu}}, \frac{1}{\sqrt{\epsilon}}\} \leq \frac{3}{256} < \frac{\epsilon}{2}$$

$$|\varphi_0 - \bar{\varphi}| \leq \frac{\bar{C} \mu K^{2r+1}}{\gamma^2} = \frac{\bar{C}}{4 C_0^2} \min\{\frac{\epsilon}{\mu}, \frac{\mu}{\epsilon}\} \leq \frac{s_0}{192 C_0^2}. \quad (D.22)$$

Notice that the former bounds in each line follow from (D.14); the latter ones follows from the definition of $\bar{\rho}$ in (D.16), from (D.15), Cauchy estimates and $\gamma_0 \geq 1$.

Step 2 (Determination of the elliptic equilibrium for the “secular system”)

In view of (D.20), $\tilde{N} - P_{\text{av}}$ is of order $\mu K^{2r+1} \gamma^{-2}$, Using the Implicit Function Theorem and standard Cauchy estimates for small values of this parameter, for any fixed $\bar{I} \in D_{\rho/2}$, \tilde{N} also has an equilibrium point $(p_e(I), q_e(I))$ which satisfies, by (D.15) and taking $C \geq \sqrt{64 \bar{C}/3}$ and using $\gamma_0 \geq 1$

$$|\{p_e(I), q_e(I)\}| \leq \frac{\bar{C} \mu K^{2r+1}}{\gamma^2} = \frac{\bar{C}}{4 C_0^2} \min\{\frac{\epsilon}{\mu}, \frac{\mu}{\epsilon}\} \leq \frac{3}{256} \min\{\frac{\epsilon}{\mu}, \frac{\mu}{\epsilon}\} < \frac{\epsilon}{8} \quad (D.23)$$

Consider now a neighborhood of radius $3\bar{\epsilon}/8$ around $(p_e(I), q_e(I))$. We let

$$\hat{\phi} : (\bar{I}, \bar{\varphi}, \bar{p}, \bar{q}) \in \bar{D}_{\rho/4} \times \mathbb{T}^{n_1}_{s_0/12} \times B^{n_2}_{\epsilon_0/8} \to (\bar{I}, \bar{\varphi}, \bar{p}, \bar{q}) \in \bar{D}_{\rho/2} \times \mathbb{T}^{n_1}_{s_0/6} \times B^{n_2}_{\epsilon_0/2} \quad (D.24)$$

the transformation which acts as

$$\hat{\tilde{I}} = \bar{I}, \quad \hat{\bar{p}} = p_e(\bar{I}) + \bar{p}, \quad \hat{\bar{q}} = q_e(\bar{I}) + \bar{q}, \quad \hat{\bar{\varphi}} = \bar{\varphi} - \partial_{\bar{I}} \left(\bar{p} + p_e(\bar{I})\right) \cdot \left(\bar{q} - q_e(\bar{I})\right).$$

Such transformation is easily seen to be symplectic, having

$$\hat{s}(\hat{\tilde{I}}, \hat{\bar{p}}, \hat{\bar{\varphi}}, \hat{\bar{q}}) = \hat{\tilde{I}} \cdot \hat{\bar{\varphi}} + \left(\hat{\bar{p}} + p_e(\bar{I})\right) \cdot \left(\hat{\bar{q}} - q_e(\bar{I})\right)$$

41
as generating function. Notice that \(\hat{\phi} \) is well defined, since, in view of (D.15), (D.23), Cauchy estimates, one has

\[
|\tilde{p} - \hat{p}| = |p_\epsilon| \leq \frac{3}{256\gamma_0^2} \min\{\epsilon, \frac{\mu}{\epsilon}\}, \quad |\tilde{q} - \hat{q}| = |q_\epsilon| \leq \frac{3}{256\gamma_0^2} \min\{\epsilon, \frac{\mu}{\epsilon}\}
\]

\[
|\phi - \hat{\phi}| \leq \hat{C} \max\left\{\frac{\tilde{c}^2K^{r+1}}{\gamma}, \frac{\mu K^{3r+2}}{\gamma^3}\right\} \leq \frac{\hat{C}}{2C\gamma_0}\mu^{a(6_\tau+5)/2} \leq \frac{s_0}{192\gamma_0} < \frac{s_0}{12}
\]

where we have used \(\mu < 1 \) and \(C \geq \frac{192}{s_0}\hat{C} \).

Finally, \(\hat{\phi} \) puts \(\hat{H} \) into the form \(\hat{H} := \hat{H} \circ \hat{\phi} = H_0(\hat{I}) + \mu \hat{N}(\hat{I}, \hat{p}, \hat{q}) + \mu e^{-Ks/6} \hat{P}(\hat{I}, \hat{\phi}, \hat{p}, \hat{q}) \), with \(\hat{N} := \hat{N} \circ \hat{\phi} \), \(\hat{P} := \hat{P} \circ \hat{\phi} \). Observe that \(\|\hat{P}\|_{C^4} \leq C \) and \(\hat{N} \) has an elliptic equilibrium point into the origin and, being \(\mu \hat{K}^{2r+1} \gamma^{-2} \)-close to \(P_{av} \) (see (D.20)), its quadratic part is \(\mu \hat{K}^{2r+1} \gamma^{-2} \)-close to be diagonal.

Step 3 (Symplectic diagonalization of the secular system)

We now proceed to diagonalize the quadratic part of \((\hat{p}, \hat{q}) \) of \(\hat{N} \). By (D.20), since \(P_{av} \) is in BNF, one has that \(\hat{N} \) is \(\mu \hat{K}^{2r+1} \gamma^{-2} \)-close to be diagonal. Therefore, one finds a symplectic transformation \(\hat{\phi} : (\hat{I}, \hat{\phi}, \hat{p}, \hat{q}) \in \hat{D}_{\hat{\rho}/8} \times T^{n_1}_{s_0/24} \times B_{3s/16}^{n_2} \rightarrow (\hat{I}, \hat{\phi}, \hat{p}, \hat{q}) \in \hat{D}_{\hat{\rho}/4} \times T^{n_1}_{s_0/12} \times B_{3s/8}^{n_2} \) (D.26)

which is estimated by

\[
|\hat{p} - \hat{p}|, |\hat{q} - \hat{q}| \leq \frac{\hat{C}\mu e^2\hat{K}^{2r+1}}{\gamma^2} = \frac{\hat{C}}{4\gamma_0^2} \min\{\epsilon^2, \mu\} \leq \frac{3}{256\gamma_0^2} \min\{\epsilon^2, \mu\} < \frac{3\epsilon}{16}
\]

\[
|\phi - \hat{\phi}| \leq \frac{\hat{C}\mu e^2\hat{K}^{3r+2}}{\gamma^3} \leq \frac{\hat{C}}{2C\gamma_0}\mu^{a(6_\tau+5)/2} \leq \frac{s_0}{192\gamma_0} < \frac{s_0}{24}
\]

having used again Cauchy estimates, \(\gamma_0 \geq 1 \), \(\epsilon^2 < \epsilon < 1 \) and the second inequality in (D.25). By construction, the quadratic part of \(\hat{N} \), where \(\hat{N} \) is defined by the equality

\[
\hat{H} := \hat{H} \circ \hat{\phi} = H_0(\hat{I}) + \mu \hat{N}(\hat{I}, \hat{p}, \hat{q}) + \mu e^{-Ks/6} \hat{P}(\hat{I}, \hat{\phi}, \hat{p}, \hat{q}), \quad (\hat{P} := \hat{P} \circ \hat{\phi})
\]

is in diagonal form. Moreover, choosing an eventually bigger \(c_\ast \), one has that the first order Birkhoff invariants \(\hat{\Omega} \) of \(\hat{N} \), being \(\mu \hat{K}^{2r+1} \gamma^{-2} \)-close to the corresponding ones of \(P_{av} \), are non resonant of order \(2s \). Notice that, since \(\hat{N} \) is \(\mu \hat{K}^{2r+1} \gamma^{-2} \)-close to \(\hat{N} \), by (D.20), is also \(\mu \hat{K}^{2r+1} \gamma^{-2} \)-close to be in \(2s \)-BNF.

Step 4 (Birkhoff normal form of the secular part)

We finally use Birkhoff theory to put \(\hat{N} \) in BNF of order \(2s \). This is possible since, as above remarked, the first order Birkhoff invariants \(\hat{\Omega} \) of \(\hat{N} \) are non resonant up to the order \(2s \). Recalling that \(\hat{N} \) is \(\mu \hat{K}^{2r+1} \gamma^{-2} \)-close to be in \(2s \)-BNF, we then find a real-analytic and symplectic transformation

\[
\hat{\phi} : (\hat{I}, \hat{\phi}, \hat{p}, \hat{q}) \in \hat{D}_{\hat{\rho}/16} \times T^{n_1}_{s_0/48} \times B_{3s/32}^{n_2} \rightarrow (\hat{I}, \hat{\phi}, \hat{p}, \hat{q}) \hat{D}_{\hat{\rho}/8} \times T^{n_1}_{s_0/24} \times B_{3s/16}^{n_2}
\]

(D.28)

which acts as the identity on the \(\hat{I} \)-variables and, on the other variables, is estimated by

\[
|\hat{p} - \hat{p}|, |\hat{q} - \hat{q}| \leq \frac{\hat{C}\mu^3\hat{K}^{2r+1}}{\gamma^2} = \frac{\hat{C}}{4\gamma_0^2} \min\{\epsilon^3, \mu\} \leq \frac{3}{256\gamma_0^2} \epsilon < \frac{3}{32} \epsilon
\]

\[
|\phi - \hat{\phi}| \leq \frac{\hat{C}\mu^3\hat{K}^{3r+2}}{\gamma^3} \leq \frac{\hat{C}}{2C\gamma_0}\mu^{a(6_\tau+5)/2} \leq \frac{s_0}{192\gamma_0} < \frac{s_0}{48}
\]

(D.29)
by Cauchy estimates, \(\mu < 1 \) and again by the second inequality in (D.25). Moreover, \(\tilde{\phi} \) puts \(\tilde{H} \) into the form

\[
\tilde{H} := \hat{H} \circ \tilde{\phi} := H_0(\hat{I}) + \mu \tilde{N}(\hat{I}, \tilde{r}) + \mu \tilde{P} + \mu e^{-Ks/6} \tilde{f}
\] (D.30)

where \(\tilde{N} \) is a polynomial of degree \(s \) in \(\tilde{r}_i = \tilde{p}_i^2 + \tilde{q}_i^2/2 \) and \(\tilde{P} \) has a zero of order \((2s + 1) \) in \((\tilde{p}, \tilde{q}) = 0 \).

Step 5 (Conclusion)

Take the transformation \(\phi \) in (D.3) as \(\phi := \tilde{\phi} \circ \tilde{\phi} \circ \hat{\phi} \circ \tilde{\phi} \) where \(\tilde{\phi}, \hat{\phi}, \tilde{\phi}, \hat{\phi} \) are as above, \(H_\star = \tilde{H}, N_\star = \tilde{N}, P_\star = \tilde{P} \) as in (D.30) and \(f_\star \) by default. The transformation \(\phi \) is easily seen to be well defined by the definitions of \(V_\star \) and of \(\rho_\star \) in (D.17) and by the inclusions (D.21), (D.24), (D.26) and (D.28). Moreover, the bounds (D.22), (D.25), (D.27) and (D.29) and usual telescopic arguments easily imply (D.5) and (D.6). This completes the proof of the first part of the proposition.

The proof that (D.8) implies (D.9) in place of (D.4), (D.6) and (D.7) proceeds along the same lines above, replacing the “power low” choice of \(\tilde{K} \) and \(\tilde{\gamma} \) in (D.15) with the following “logarithmic” ones

\[
\tilde{K} := \frac{6(2s + 1)}{s_0}(\log(\epsilon^{-1}))^{-1}, \quad \tilde{\gamma} := 2C_\gamma \max\{\sqrt{\frac{\mu}{\epsilon}}, \sqrt{\epsilon}\} \tilde{K}^{\gamma+1}.
\]

References

[1] K. Abdullah and A. Albouy. On a strange resonance noticed by M. Herman. *Regul. Chaotic Dyn.*, 6(4):421–432, 2001.

[2] V.I. Arnold. Small denominators and problems of stability of motion in classical and celestial mechanics. *Russian Math. Surveys*, 18(6):85–191, 1963.

[3] L. Biasco, L. Chierchia, and E. Valdinoci. Elliptic two-dimensional invariant tori for the planetary three-body problem. *Arch. Rational Mech. Anal.*, 170:91–135, 2003. See also: Corrigendum. *Arch. Ration. Mech. Anal.*, 180:507–509, 2006.

[4] L. Chierchia and G. Pinzari. Properly–degenerate KAM theory (following V.I. Arnold). *Discrete Contin. Dyn. Syst. Ser. S*, 3(4):545–578, 2010.

[5] L. Chierchia and G. Pinzari. Deprit’s reduction of the nodes revised. *Celestial Mech.*, 109(3):285–301, 2011.

[6] L. Chierchia and G. Pinzari. The planetary n-body problem: Symplectic foliation, reductions and invariant tori. *Invent. Math.*, 2011. http://dx.doi.org/10.1007/s00222-011-0313-z.

[7] L. Chierchia and F. Pusateri. Analytic Lagrangian tori for the planetary many-body problem. *Ergodic Theory Dynam. Systems*, 29(3):849–873, 2009.
[8] A. Deprit. Elimination of the nodes in problems of n bodies. *Celestial Mech.*, 30(2):181–195, 1983.

[9] J. Féjoz. Quasiperiodic motions in the planar three-body problem. *J. Differential Equations*, 183(2):303–341, 2002.

[10] J. Féjoz. Démonstration du ‘théorème d’Arnold’ sur la stabilité du système planétaire (d’après Herman). *Ergodic Theory Dynam. Systems*, 24(5):1521–1582, 2004.

[11] M.R. Herman. Torsion du problème planétaire, edited by J. Fejóz in 2009. Available in the electronic ‘Archives Michel Herman’ at http://www.college-de-france.fr/default/EN/all/equdif/archives_michel_herman.htm.

[12] H. Hofer, E. Zehnder. *Symplectic Invariants and Hamiltonian Dynamics*. Birkhäuser Verlag, Basel, 1994.

[13] N. N. Nehorošev. An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. *Uspehi Mat. Nauk*, 32(6(198)):5–66, 287, 1977.

[14] L. Niederman. Stability over exponentially long times in the planetary problem. *Nonlinearity*, 9(6):1703–1751, 1996.

[15] J. Pöschel. Nekhoroshev estimates for quasi-convex Hamiltonian systems. *Math. Z.*, 213(2):187–216, 1993.

[16] P. Robutel. Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions. *Celestial Mech. Dynam. Astronom.*, 62(3):219–261, 1995. See also: Erratum, *Celestial Mech. Dynam. Astronom.*, 84(3):317, 2002.