Sir

Angiokeratoma of Fordyce is a localized form of angiokeratoma, which typically manifests as multiple vascular, warty papules usually found on the scrotum bilaterally.1,2 It was first described in 1896 by J A Fordyce in a 60-year-old male with bilateral varicocele. Histopathologically, it is characterised by vascular dilatation and lacunae formation in papillary dermis with or without thrombosis.1 We report an unusual case of unilateral scrotal angiokeratoma associated with a contralateral varicocele.

A 68-year-old male presented with multiple asymptomatic cutaneous lesions on his scrotum, which had first appeared 3 years earlier and had progressively increased in number. His medical history was remarkable for hypertension and hypercholesterolemia. Examination revealed multiple, red-purple, 2–3 mm in diameter papules that only affected the right side of the scrotum and did not cross the midline [Figure 1]. Clinical differential diagnosis included angiokeratoma of Fordyce and angiokeratoma circumscriptum neviforme (ACN). Biopsy specimens of the lesions showed dilated blood vessels in the papillary dermis [Figure 2a]. These ectatic vessels were in intimate contact with the epidermis. Focal thrombosis was present [Figure 2b]. Immunohistochemical study revealed that the endothelial cells that lined the dilated vascular structures stained positive for CD31 [Figure 2c]. On the basis of age of presentation, and the clinical and histopathological features, a diagnosis of angiokeratoma of Fordyce was made. Ultrasonography of the abdomen and pelvis showed no significant abnormality. However, a grade II left-side varicocele was detected by physical examination and confirmed by Doppler sonography.

Angiokeratoma of Fordyce usually develops in late adulthood or in elderly patients, although it may sometimes manifest in childhood or adolescence. The lesions are commonly multiple and they typically arise on the scrotum bilaterally, but are occasionally found on the shaft or glans of the penis, the thighs, the abdomen, and the buttocks.1

The cause of scrotal angiokeratoma is still unknown, although several factors have been postulated regarding its pathophysiology. These include: (i) a reduction of venous supportive elastic tissues, (ii) a direct injury of the dermal capillaries and (iii) a chronic local scrotal venous hypertension.3,4 With regard to this last point, some conditions that may increase the blood pressure in the scrotal veins, such as hernias, epididymal or urinary tract tumours and particularly, varicoceles may contribute to the development of scrotal angiokeratoma.4

Varicocele is a venous dilatation caused by valvular insufficiency in the internal spermatic vein. It can affect up to 15% of all adult males.4 Approximately 90% of varicoceles appear on the left side owing to the anatomical difference between the two sides contributing to a higher venous pressure on the left side of the scrotum. Thus, while the right internal spermatic vein empties directly into the inferior caval vein, the vein of the left testicle ascends vertically to the left renal vein.4,5

Unilateral angiokeratoma of the scrotum has been very rarely reported. To our knowledge, only five cases have been described in the literature, including our patient.3,4,6,7 Comparing our case with those reported previously [Table 1], we wish to highlight the following: (a) in all cases except one,7 the angiomatous lesions were associated with a varicocele; (b) in three of these four patients,3,4,6 excluding ours, the angiokeratomas were limited to the left side of the scrotum, and they were in association with a left-sided varicocele. In our patient, however, the angiokeratomas were restricted to the right scrotum and, curiously, they were associated with a varicocele of the contralateral testicle. In the present case and in those previously mentioned, the association of angiokeratomas with varicoceles may be simply coincidental, considering that varicoceles are fairly common. However, it is also possible that in those patients with unilateral left-sided angiokeratomas and

Table 1: Cases of unilateral angiokeratoma of the scrotum

Reference	Age	Side affected	Associated varicocele
Bechara et al.5	21	Left	(+) Ipsilateral
Erkek et al.4	66	Left	(+) Ipsilateral
Piqué-Duran et al.8	66	Left	(+) Ipsilateral
Pande et al.7	32	Left	(-)
Present case	68	Right	(+) Contralateral

Figure 1: Multiple angiokeratomas on the right side of the scrotum

Figure 2a: Histopathological examination showed dilated blood vessels in the papillary dermis (H and E, original magnification ×25)
ipsilateral left-side varicocele, the unilateral development of the angiomatous lesions could have been caused by increased venous pressure due to ipsilateral varicocele.

The reason why the angiomatous lesions developed unilaterally in our case was unknown. A possible explanation would be the presence of mosaicism, which would cause angiokeratomas to develop only in genetically susceptible areas. In this respect, it has been supposed that, at least in some patients, scrotal angiokeratomas may be due to a congenital defect affecting the walls of the venules, but the lesions only become clinically apparent in adulthood. In this regard, the main differential diagnosis in our case was ACN; however, ACN is typically present at birth and usually involves the lower extremities. Finally, another possibility could be that a previous injurious factor (e.g., chronic irritation) only affecting the right scrotum may have triggered the development of the vascular lesions restricted to this area.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Masuria BL, Gupta LK, Batra A, Kothiwala RK. Angiokeratoma of Fordyce on unusual site. Indian J Dermatol Venereol Leprol 1999;65:240-1.
2. Imperial R, Helwig EB. Angiokeratoma of the scrotum (Fordyce type). J Urol 1967;98:379-87.
3. Bechara FG, Altmeyer P, Jansen T. Unilateral angiokeratoma scroti: A rare manifestation of a vascular tumor. J Dermatol 2004;31:39-41.
4. Erkek E, Basar MM, Bagci Y, Karaduman A, Bilen CY, Gokoz A. Fordyce angiokeratomas as clues to local venous hypertension. Arch Dermatol 2005;141:1325-6.
5. Raheem OA. Surgical management of adolescent varicocele. Surgical management of adolescent varicocele: Systematic review of the world literature. Urol Ann 2013;5:133-9.
6. Piqué-Duran E, Pérez-Cejudo JA, Cameselle-Martinez D, García-Vázquez O. Angiokeratoma de Fordyce unilateral. Actas Dermosifiliogr 2013;104:163-4.
7. Pande SY, Kharkar D, Mahajan S. Unilateral angiokeratoma of Fordyce. Indian J Dermatol Venereol Leprol 2004;70:377-9.
8. Patrizi A, Neri I, Trevisi P, Landi C, Bardazzi F. Congenital angiokeratoma of Fordyce. J Eur Acad Dermatol 1998;10:195-6.
9. Das A, Mondal AK, Saha A, Chowdhury SN, Gharami RC. Angiokeratoma circumscriptum neviforme: An entity, few and far between. Indian Dermatology Online Journal. 2014;5(4):472-4.

Marcos A. González-López, Germana Consuegra, Marina Lacalle, M. Carmen González-Vela

Departments of Dermatology, Pathology, Marques de Valdecilla University Hospital, University of Cantabria, IDIVAL, C/Avda. de Valdecilla s/n E-39008, Santander, Spain

Correspondence: Dr. Marcos A. González-López, Department of Dermatology, Marques de Valdecilla University Hospital, University of Cantabria, IDIVAL, C/Avda. de Valdecilla s/n E-39008, Santander, Spain. E-mail: marcosgL@aedv.es

Figure 2b: The ectatic vessels were in intimate contact with the epidermis. Focal thrombosis was present (H and E, original magnification ×100)

Figure 2c: The endothelial cells that lined the dilated vascular structures showed positivity for CD31 with immunohistochemical staining (CD31, original magnification ×250)
Bilateral subungual epidermoid inclusions of big toes

Sir,

Epidermoid cysts are among the most common benign skin tumors. However, their location in the nail apparatus is infrequent. Subungual epidermoid inclusions were first described by Sammam in the toe nail and later, in the fingernail by Lewin.1 Multiple bilateral subungual epidermoid inclusions are a rare presentation. We hereby describe a case of multiple bilateral subungual epidermoid inclusions of both big toes in an Indian farmer.

A 68-year-old farmer presented with multiple soft masses under the nails of both big toes of approximately 10 years duration. There was intermittent purulent discharge from the lesions associated with pain that used to resolve with systemic antibiotic therapy and rest. However, this was not followed by any diminution in the size of the lesions. The frequency of such episodes was 3–4 times a year and no inciting factors could be identified on history. Other toenails or fingernails were unaffected. He gave a history of working bare-foot and kneeling often in the fields. Examination revealed multiple bilateral soft, cyst-like nodules under the distal free edge of both big toes' nails [Figure 1]. In addition, onycholysis, subungual hyperkeratosis and yellowish discoloration of nail plates were observed. X-rays of the feet did not reveal any abnormality. Excision biopsy from one of the lesions revealed bulbous elongation of the rete ridges with cyst formation that contained compact keratin. The granular layer was absent in the cyst wall [Figure 2]. These findings were consistent with clinical diagnosis of subungual epidermoid inclusions. Punch excision of the lesions in multiple sessions was planned. However, after the first session, the patient was lost to follow-up.

Subungual epidermoid inclusion, also known as subungal onycholemmal cyst, is an uncommon benign tumor of nail unit. Exact etiology is not known and trauma is supposed to play a key role, considering their location at distal ends of nail units. Sammam proposed that trauma could lead to dermal fibroblast proliferation in the nail bed leading to sequestration of nail bed epithelium into the dermis with resultant cyst formation.1,2 Others consider them to result from vestigial follicular units and thus, the term "follicular microcysts of the nail bed" has been proposed. Fanti and Tosti, in their series of eight cases, have described two main types of subungual epidermoid cysts; bone-located epidermoid cysts and subungual epidermoid cysts (also known as subungual epidermoid inclusions). Bone-located epidermoid cysts are painful and associated with osteolysis. They are best referred to as epidermoid implantation cysts or intraosseous epidermoid cysts.2-4 On the contrary, subungual epidermoid inclusions have no associated bone involvement. Subungual epidermoid inclusions may have varied presentation such as clubbing, ridging, onycholysis, onychauxis, paronychia, subungual hyperkeratosis, pincer nail deformity and onychodystrophy.1,2,5,6 Our patient with no bony involvement and characteristic histology fits in the second category of subungual epidermoid inclusions although multiple and bilateral occurrence of lesions has not been described in the literature. Subungual epidermoid inclusions are characterized by gradually increasing swelling in the distal phalanx of digits mostly of