"Measurement of the W to tau nu Cross Section in pp Collisions at sqrt(s) = 7 TeV with the ATLAS experiment"

The ATLAS Collaboration ; Aad, Georges ; Jez, Pavel

ABSTRACT

The cross section for the production of W bosons with subsequent decay W to tau nu is measured with the ATLAS detector at the LHC. The analysis is based on a data sample that was recorded in 2010 at a proton-proton center-of-mass energy of sqrt(s) = 7 TeV and corresponds to an integrated luminosity of 34 pb^-1. The cross section is measured in a region of high detector acceptance and then extrapolated to the full phase space. The product of the total W production cross section and the W to tau nu branching ratio is measured to be 11.1 +/- 0.3 (stat) +/- 1.7 (syst) +/- 0.4 (lumi) nb.

CITE THIS VERSION

The ATLAS Collaboration ; Aad, Georges ; Jez, Pavel ; et. al. Measurement of the W to tau nu Cross Section in pp Collisions at sqrt(s) = 7 TeV with the ATLAS experiment. In: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, Vol. 706, no.4-5, p. 276-294 (2012) http://hdl.handle.net/2078.1/138092 -- DOI : 10.1016/j.physletb.2011.11.057

Le dépôt institutionnel DIAL est destiné au dépôt et à la diffusion de documents scientifiques émanant des membres de l'UCLouvain. Toute utilisation de ce document à des fins lucratives ou commerciales est strictement interdite. L'utilisateur s'engage à respecter les droits d'auteur liés à ce document, principalement le droit à l'intégrité de l'œuvre et le droit à la paternité. La politique complète de copyright est disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit and dissemination of scientific documents from UCLouvain members. Usage of this document for profit or commercial purposes is strictly prohibited. User agrees to respect copyright about this document, mainly text integrity and source mention. Full content of copyright policy is available at Copyright policy

Available at: http://hdl.handle.net/2078.1/138092
Measurement of the $W \rightarrow \tau \nu_{\tau}$ cross section in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment

ATLAS Collaboration*

ARTICLE INFO

Article history:
Received 20 August 2011
Received in revised form 21 November 2011
Accepted 27 November 2011
Available online 1 December 2011
Editor: H. Weerts

Keywords:
W boson
Standard Model
τ Lepton

ABSTRACT

The cross section for the production of W bosons with subsequent decay $W \rightarrow \tau \nu_{\tau}$ is measured with the ATLAS detector at the LHC. The analysis is based on a data sample that was recorded in 2010 at a proton–proton center-of-mass energy of $\sqrt{s} = 7$ TeV and corresponds to an integrated luminosity of 34 pb^{-1}. The cross section is measured in a region of high detector acceptance and then extrapolated to the full phase space. The product of the total W production cross section and the $W \rightarrow \tau \nu_{\tau}$ branching ratio is measured to be $\sigma_{W \rightarrow \tau \nu_{\tau}}^{tot} = 11.1 \pm 0.3$ (stat) ± 1.7 (syst) ± 0.4 (lumi) nb.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

The study of processes with τ leptons in the final state is an important part of the ATLAS physics program, for example in view of searches for the Higgs boson or supersymmetry [1–3]. Decays of Standard Model particles to τ leptons, in particular $Z \rightarrow \tau \tau$ and $W \rightarrow \tau \nu_{\tau}$, are important background processes in such searches. Studies of the $W \rightarrow \tau \nu_{\tau}$ decay complement the measurement of W production in the muon and electron decay modes [4,5]. In addition, $W \rightarrow \tau \nu_{\tau}$ decays can be used to validate the reconstruction and identification techniques for τ leptons and the measurement of the missing transverse energy (E_{T}^{miss}), which are both fundamental signatures in a wide spectrum of measurements at the LHC.

At next-to-next-to-leading order (NNLO), the $W \rightarrow \tau \nu_{\tau}$ signal is predicted to be produced at $\sqrt{s} = 7$ TeV with a cross section times branching ratio of $\sigma \times BR = 10.46 \pm 0.52$ nb [6–8]. Since purely leptonic τ decays cannot be easily distinguished from electrons and muons from $W \rightarrow \ell \nu_{\ell}$ or $W \rightarrow \nu_{\ell} \ell$, the analysis presented in this Letter uses only hadronically decaying τ leptons (τ_{h}). Events from $W \rightarrow \tau \nu_{\tau}$ production contain predominantly low-p_T W bosons decaying into τ leptons with typical visible transverse momenta between 10 and 40 GeV. In addition, the distribution of the missing transverse energy, associated with the neutrinos from the W and τ_{h} decays, has a maximum around 20 GeV and a significant tail up to about 80 GeV.

Previous measurements at hadron colliders of W boson production with the subsequent decay $W \rightarrow \tau \nu_{\tau}$ based on pp collisions were reported by the UA1 Collaboration [9] at center-of-mass energies of $\sqrt{s} = 546$ GeV and $\sqrt{s} = 630$ GeV and by the CDF and D0 Collaborations [10,11] at a center-of-mass energy of $\sqrt{s} = 1.8$ TeV.

In this Letter, we describe the measurement of this process with $\sqrt{s} = 7$ TeV pp collision data, which were recorded with the ATLAS experiment at the LHC.

2. The ATLAS detector

The ATLAS detector is described in Ref. [12]. The cylindrical coordinate system is defined with polar angles θ relative to the beamline and azimuthal angles ϕ in the plane transverse to the beam. Pseudorapidities η are defined as $\eta = -\ln \tan \frac{\theta}{2}$. Transverse momenta, p_T, are defined as the component of momentum perpendicular to the beamline. Distances are measured in the η–ϕ plane as $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$.

Measurements of charged-particle trajectories and momenta are performed with silicon detectors in the pseudorapidity range $|\eta| < 2.5$, and also by a straw-tube tracking chamber in the range $|\eta| < 2.0$. Together, these systems form the inner tracking detector, which is contained in a 2 T magnetic field produced by a superconducting solenoid. These tracking detectors are surrounded by a finely segmented calorimeter system which provides three-dimensional reconstruction of particle showers up to $|\eta| < 4.9$. The electromagnetic calorimeter uses liquid argon as the active material and comprises separate barrel ($|\eta| < 1.5$), end-cap ($1.4 < |\eta| < 3.2$) and forward ($3.2 < |\eta| < 4.9$) components. The hadron
calorimeter is based on scintillating tiles in the central region ($|\eta| < 1.7$). It is extended up to $|\eta| = 4.9$ by end-caps and forward calorimeters which use liquid argon. The muon spectrometer measures the deflection of muon tracks in the field of three large superconducting toroidal magnets. It is instrumented with trigger and high-precision tracking chambers.

The trigger system consists of three levels. The first level is implemented as a hardware trigger, while the decision on the following levels is based on software event processing similar to the offline reconstruction.

3. Data samples

The data used in this measurement were recorded in proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 7\text{ TeV}$ during the 2010 LHC run. The integrated luminosity of the data sample, considering only data-taking periods where all relevant detector subsystems were fully operational, is 34 pb^{-1} [13,14]. The data were collected using triggers combining the two main signatures of $W \rightarrow t\bar{t}\nu\nu$ decays, namely the presence of a hadronically decaying τ lepton and missing transverse energy.

Processes producing W or Z bosons that subsequently decay into electrons or muons constitute important backgrounds to this measurement if the lepton from the decay or an accompanying jet is misidentified as a hadronically decaying τ lepton. Here, the missing transverse energy signature arises from a W decay neutrino or the misreconstruction of jets or of other objects in the event. Also, $W \rightarrow \tau \nu \nu$ decays with the τ decaying leptonically are considered as a background. Incompletely reconstructed $Z \rightarrow \tau\tau$ and tt decays can also enter the signal sample. The number of background events from these electroweak processes is referred to as N_{EM} in the following.

The production of W and Z bosons in association with jets is simulated with the PYTHIA [15] generator with the modified LO parton distribution function (PDF) MRSTLO* [16] and normalized to the NNLO cross section; tt processes are generated with MCFM/NLO [17], where parton showers and hadronization are simulated with HERWIG [18] and the underlying event with JIMMY [19]. The TAUOLA [20] and PHOTOS [21] programs are used to model the decay of τ leptons and the QED radiation of photons, respectively.

All simulated samples include multiple proton-proton interactions (pile-up) produced with PYTHIA using the ATLAS MC10 tune [22]. Those samples are passed through a full detector simulation based on GEANT4 [23,24]. The simulated events are reweighted so that the distribution of the number of reconstructed primary vertices per bunch crossing matches the data.

Due to their large production cross sections, QCD processes provide a significant background if quark/gluon jets (QCD jets) are misidentified as hadronic τ decays and a significant amount of $E_{\text{T}}^{\text{miss}}$ is measured, mainly due to incomplete reconstruction. The number of QCD background events N_{QCD} is estimated directly from data.

4. Object reconstruction

Electron candidates, which together with muons are relevant for the electroweak background, are reconstructed from a cluster in the electromagnetic calorimeter matched to a track in the inner tracking detector. The cluster must have a shower profile consistent with an electromagnetic shower [25]. Muon candidates are reconstructed by combining tracks in the muon spectrometer with tracks in the inner tracking detector [26].

Jets are reconstructed with the anti-k_t algorithm [27] with a radius parameter $R = 0.4$. The jet energies are calibrated [28] using a p_t- and η-dependent calibration scheme, corrected for losses in dead material and outside the jet cone [29]. All jets considered in this analysis are required to have a transverse momentum above 20 GeV and a pseudorapidity in the range $|\eta| < 4.5$.

Reconstructed jets within $|\eta| < 2.5$ provide the starting point (seed) for the reconstruction of hadronic τ decays. The direction of a $t\bar{t}$ candidate is taken directly from the corresponding seed jet. The energy is calibrated by applying a dedicated correction extracted from Monte Carlo to the sum of energies of the cells that form the clusters of the seed jet [30]. Therefore, the energy of the $t\bar{t}$ refers to the visible decay products. The transverse momentum is calculated as $p_T = E \sin \theta$, i.e. $t\bar{t}$ candidates are treated as massless. Good-quality tracks are associated with a $t\bar{t}$ candidate if they are found within $\Delta R < 0.2$ around the seed jet axis. At least one track must be associated to the candidate. The $t\bar{t}$ identification [30] is based on eight observables: The invariant mass of the τ decay products is calculated separately using the associated tracks and the associated clusters. The fact that the τ decay products are typically more collimated than QCD jets is quantified by calculating the transverse momentum-weighted radius from tracks and the energy-weighted radius from electromagnetic energy information. The fraction of transverse energy within $\Delta R < 0.1$ of the $t\bar{t}$ seed direction is used as well. Further discrimination is provided by the fraction of the transverse $t\bar{t}$ momentum carried by the highest-p_T track and the fraction of transverse energy deposited in the electromagnetic calorimeter, for which higher values are expected in case of hadronic τ decays compared to QCD jets. For $t\bar{t}$ candidates with more than one associated track, the τ lifetime is also exploited by measuring the decay length significance of the associated secondary vertex in the transverse plane. The single most discriminating of these quantities is the energy-weighted radius

$$R_{\text{EM}} = \frac{\sum_{i} \Delta R_{i}/0.4 E_{\text{T}}^{\text{EM}} \Delta R_{i}}{\sum_{i} \Delta R_{i}/0.4 E_{\text{T}}^{\text{EM}}},$$

where i iterates over cells in the first three layers of the electromagnetic calorimeter associated with the $t\bar{t}$ candidate, ΔR_{i} is defined relative to the $t\bar{t}$ seed axis, and E_{T}^{EM} is the cell transverse energy.

These eight variables are combined in a boosted decision tree discriminator (BDT) [31], which provides an output value between 0 (background-like) and 1 (signal-like) with a continuous gradient of signal and background efficiency. This discriminator was optimized using a combination of $W \rightarrow t\bar{t}\nu\nu$ and $Z \rightarrow \tau\tau$ Monte Carlo samples for the signal. The background was modeled from dijet events selected from data. For $t\bar{t}$ transverse momenta (p_{T}^{n}) above 20 GeV, the efficiency of the $t\bar{t}$ identification at the tighter working point of the BDT identification considered for this measurement is about 30% with a jet rejection factor of 100 for $t\bar{t}$ candidates with one track, while for candidates with three tracks it is about 35% with a rejection factor of 300 [30]. Additional requirements on the calorimeter and tracking properties of $t\bar{t}$ candidates are used to discriminate against electrons and muons.

The missing transverse energy in the event, $E_{\text{T}}^{\text{miss}}$, is reconstructed as $\sqrt{(E_{\text{T}}^{\text{miss}})^2 + (E_{\text{T}}^{\text{miss}})^2}$, where $(E_{\text{T}}^{\text{miss}}, E_{\text{T}}^{\text{miss}})$ is the vector sum of all calorimeter energy clusters in the region $|\eta| < 4.5$, corrected for identified muons [32]. With good approximation, the resolution of $E_{\text{T}}^{\text{miss}}$ components is proportional to $a \propto \sqrt{E_{T}}$, where the scaling factor a depends on both the detector and reconstruction performance and $\sum E_{T}$ is calculated from all calorimeter energy clusters. The factor a is about $0.5 \sqrt{\text{GeV}}$ for minimum bias events [33].
In order to reject events with large reconstructed E_T^{miss} due to fluctuations in the energy measurement, we define the significance of E_T^{miss} as

$$S_{E_T^{miss}} = \frac{E_T^{miss}[\text{GeV}]}{0.5\sqrt{\text{GeV}/\sqrt{\sum E_T[\text{GeV}]}}} \quad (2)$$

$S_{E_T^{miss}}$ is found to provide better discrimination between the signal and the background from QCD jets than a simple E_T^{miss} requirement.

5. Event selection

Events are selected using triggers based on the presence of a τ_h jet and E_T^{miss}. In the earlier part of the 2010 data taking, corresponding to an integrated luminosity of 11 pb$^{-1}$, a loosely identified τ_h candidate with $p_T^{\tau_h} > 12$ GeV (as reconstructed at the trigger level) in combination with $E_T^{miss} > 20$ GeV was required. In the second part of the period (24 pb$^{-1}$), a tighter τ_h identification and higher thresholds of 16 GeV and 22 GeV had to be used for $p_T^{\tau_h}$ and E_T^{miss} respectively, due to the increasing luminosity. The signal efficiencies of these two triggers with respect to the offline selection are estimated from the simulation to be (81.3 ± 0.8)% and (62.7 ± 0.7)%, respectively.

Events satisfying the trigger selection are required to have at least one reconstructed jet that is formed by three or more tracks with $p_T > 150$ MeV. Further selection requirements based on calorimeter information are applied to reject non-collision events and events containing jets that were incompletely reconstructed or significantly affected by electronic noise in the calorimeters.

The calorimeter has a lower resolution for jets in the barrel-endcap transition regions. In order to ensure a uniform E_T^{miss} resolution, events are rejected if a jet or a τ_h candidate with $1.3 < |\eta| < 1.7$ is found. In events where E_T^{miss} is found to be collinear to one of the jets, the reconstructed E_T^{miss} is likely to originate from an incomplete reconstruction of this jet. Therefore, a minimum separation $|\Delta \phi(jet, E_T^{miss})| > 0.5$ rad is required.

In order to suppress backgrounds from other leptonic W and Z decays, events containing identified electrons or muons with $p_T > 15$ GeV are rejected. The highest-p_T identified τ_h candidate in the event is considered for further analysis and required to be in the pseudorapidity range $|\eta| < 2.5$ and to have $20 < p_T^{\tau_h} < 60$ GeV. A minimum E_T^{miss} of 30 GeV is required and events are rejected if $S_{E_T^{miss}} < 6$.

6. Background estimation

The number of expected events from signal and electroweak background processes is obtained from simulation. This is justified by the good agreement between data and simulation observed in the ATLAS W cross section measurements [4,5] through decays into electrons or muons. It is further validated using a high-purity data sample of $W \rightarrow \mu \nu_\mu$ events, in which the muon is removed and replaced by a simulated τ_h lepton. Thus, only the τ decay and the corresponding detector response are taken from simulation while the underlying W kinematics and all the other properties of the event are obtained from the $W \rightarrow \mu \nu_\mu$ events selected in data.

Fig. 1 compares the distribution of $S_{E_T^{miss}}$ for the τ_h-embedded data sample with simulated $W \rightarrow \tau_h \nu_\tau$ events. A good agreement is observed within the statistical uncertainties, which adds further confidence in the electroweak background event model provided by the simulated event samples used in this analysis.

The background contribution from QCD jet production, for which the cross section is large and the selection efficiency is low, cannot be reliably modeled using simulated events alone and is thus estimated from data. In addition to the signal-dominated data set defined by the selection described in Section 5, three background control regions are defined by inverting the requirements on the $S_{E_T^{miss}}$ and/or the τ_h identification (ID), resulting in the following four samples:

- Region A: $S_{E_T^{miss}} > 6.0$ and τ_h candidates satisfying the signal τ_h-ID requirements described in Section 4;
- Region B: $S_{E_T^{miss}} < 4.5$ and τ_h candidates satisfying the signal-region τ_h-ID requirements;
- Region C: $S_{E_T^{miss}} > 6.0$ and τ_h candidates satisfying a looser τ_h-ID but failing the signal-region τ_h ID requirements;
- Region D: $S_{E_T^{miss}} < 4.5$ and τ_h candidates satisfying a looser τ_h-ID but failing the signal-region τ_h ID requirements.

Here, the looser τ_h-ID region is defined by selecting τ_h candidates with a lower value of the BDT output.

After ensuring that the shape of the $S_{E_T^{miss}}$ distribution for the QCD background is independent of the τ_h-ID requirement and assuming that the signal and electroweak background contributions in the three control regions are negligible, an estimate for the number of QCD background events in the signal region A is provided by

$$N_{QCD}^A = N^B N^C / N^D, \quad (3)$$

where N^i represents the number of observed events in region i.

In order to take into account the residual signal and EW background contamination in the control regions $i = B, C, D$, the number of selected events, N^i, needs to be replaced in Eq. (3) by $N^i - c_i (N_A - N_{QCD}^A)$, where

$$c_i = \frac{N_{sig}^i + N_{EW}^i}{N_{sig}^i + N_{EW}^i} \quad (4)$$

is the ratio of simulated signal and EW background events in the control region i and the signal region. Therefore Eq. (3) becomes

$$N_{QCD}^A = \frac{[N^B - c_i (N_A - N_{QCD}^A)] [N^C - c_i (N_A - N_{QCD}^A)]}{N^D - c_D (N_A - N_{QCD}^A)}. \quad (5)$$

The statistical error on N_{QCD}^A includes both the uncertainty on the calculation of the c_i coefficients, due to the Monte Carlo statis-
The measured fiducial cross section of the decay \(W \rightarrow \tau \nu \) is measured in a phase space region given by the geometrical acceptance of the detector and by the kinematic selection of the analysis (as described in Section 5). This region is defined based on the decay products from a simulated hadronic \(\tau \) decay and corresponds to the criteria presented in Table 2.

Here, the visible \(\tau \) momentum \(p_\tau^{vis} \) and pseudorapidity \(\eta_\tau^{vis} \) are calculated from the sum of the four-vectors of the decay products from the simulated hadronic \(\tau \) decay, except for the neutrinos. This momentum also includes photons radiated both from the \(\tau \) lepton and from the decay products themselves, considering only photons within \(\Delta R < 0.4 \) with respect to the \(\tau \). The minimum \(E_T^{miss} \) requirement translates into a cut on the transverse component of the sum of the simulated neutrino four-vectors (\(\sum p_T \)).

The fiducial cross section, including the branching ratio \(\text{BR}(W \rightarrow \tau \nu) \), is computed as

\[
\sigma_{W \rightarrow \tau \nu}^\text{fid} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{C_W L},
\]

where \(N_{\text{obs}} \) is the number of observed events in data, \(N_{\text{bkg}} \) is the number of estimated (QCD and EW) background events (signal region A in Table 1), and \(L \) is the integrated luminosity. \(C_W \) is the correction factor that takes into account the efficiency of trigger, \(\tau \) reconstruction and identification and the efficiency of all selection cuts within the acceptance:

\[
C_W = \frac{N_{\text{reco}, \text{all cuts}}}{N_{\text{gen}, \text{kin/geom}}},
\]

where \(N_{\text{reco}, \text{all cuts}} \) is the number of fully simulated signal events passing the reconstruction, trigger and the selection cuts of the analysis and \(N_{\text{gen}, \text{kin/geom}} \) is the number of simulated signal events within the fiducial region defined above.

With the kinematic and geometrical signal acceptance

\[
A_W = \frac{N_{\text{gen}, \text{kin/geom}}}{N_{\text{gen, all}}},
\]

where \(N_{\text{gen, all}} \) is the total number of simulated signal events while \(N_{\text{gen, kin/geom}} \) is the denominator of \(C_W \), the total cross section

\[
\sigma_{W \rightarrow \tau \nu}^\text{tot} = \sigma_{W \rightarrow \tau \nu}^\text{fid} / A_W = \frac{N_{\text{obs}} - N_{\text{bkg}}}{A_W C_W L}
\]

can be obtained. \(A_W \) and \(C_W \) are determined using a PYTHIA Monte Carlo signal sample described in Section 3. The fiducial acceptance is found to be \(A_W = 0.0975 \pm 0.0004 \) (MC stat) and the correction factor \(C_W = 0.0799 \pm 0.0011 \) (MC stat).

The measured fiducial cross section of the decay \(W \rightarrow \tau \nu \) is

\[
\sigma_{W \rightarrow \tau \nu}^\text{fid} = 0.70 \pm 0.02 \text{ (stat) nb and the total cross section is found to be } \sigma_{W \rightarrow \tau \nu}^\text{tot} = 7.2 \pm 0.2 \text{ (stat) nb.}
\]

Several alternative analyses are performed to confirm these results. For example, the BDT \(\tau \) ID is replaced by a simpler identification based on cuts on three of the ID variables only [30]. Also, in order to study the influence of pile-up on the result, the signal selection is restricted to events with only one reconstructed primary vertex. In both cases consistent results are found.

Table 1

\(N^1 \) (Data)	A	B	C	D
	2335	4796	1577	27636
\(N_{bkg, W} (W \rightarrow \tau \nu \nu) \)	1811±25	683±16	269±8	93±5
\(N_{bkg, W} \)	284±7	118±4	388±9	90±4
\(c_i \)	0.38±0.01	0.31±0.01	0.087±0.003	
\(N_{QCD} \)	127±8	3953±75	885±45	27444±166

Fig. 2. (a) \(S_E^{miss} \) distribution in the combined region AB, extended over the full \(S_E^{miss} \) range. The QCD background shape has been extracted from regions CD. Monte Carlo signal and EW background in regions AB are also shown; (b) the \(\tau \) identification variable \(R_E \) in the combined region AC. The QCD background shape has been extracted from regions BD. Monte Carlo signal and EW background in regions AC are also shown.
8. Systematic uncertainties

Table 3 summarizes the systematic uncertainties. The main sources are discussed in the following.

8.1. Monte Carlo predictions

The trigger efficiency is determined in Monte Carlo for the combined E_{T}^{miss} and τ_{h} triggers used in the two data periods. The differences between the measured trigger responses of the two trigger components in data and Monte Carlo are used to determine the systematic uncertainty. A pure and unbiased sample enriched with $W \rightarrow \tau_{h}v_{\tau}$ events is obtained in data by applying an independent $\tau_{h}(E_{T}^{miss})$ trigger and selected cuts of the event selection like the BDT τ_{h} ID. The corresponding $E_{T}^{miss}(\tau_{h})$ trigger part is applied to this sample and the response of this trigger is compared to the response in Monte Carlo. The observed differences are integrated over the offline $p_{T}^{\tau_{h}}$ and E_{T}^{miss} range used for the cross section measurement. The total systematic uncertainty after the combination of the different trigger parts is 6.1%.

The signal and background acceptance depends on the energy scale of the clusters used in the computation of E_{T}^{miss} and S_{Emiss} and the energy scale of the calibrated τ_{h} candidates. Based on the current knowledge of the calibration the uncertainty due to cluster energy within the detector region $|\eta| < 3.2$ is at most 10% for p_{T} of 500 MeV and within 3% at high p_{T} [34]. In the forward region $|\eta| > 3.2$ it is estimated to be 10%. The effect on E_{T}^{miss} and S_{Emiss} has been evaluated by scaling all clusters in the event according to these uncertainties and recalculating E_{T}^{miss} and $\sum E_T$. At the same time, the τ_{h} energy scale has been varied according to its uncertainty [30]. This uncertainty depends on the number of tracks associated to the τ_{h} candidate, its p_{T} and the η region in which it was reconstructed, and ranges from 2.5% to 10%. In addition, the sensitivity of the signal and background efficiency to the E_{T}^{miss} resolution has been investigated [33]. Consequently, the yield of signal and EW background varies within 6.7% and 8.7%, respectively.

The identification and reconstruction efficiency of τ_{h} candidates was studied with Monte Carlo $W \rightarrow \tau_{h}v_{\tau}$ and $Z \rightarrow \tau\tau$ samples and was found to vary with different simulation conditions such as different underlying event models, detector geometry, hadronic shower modeling and noise thresholds for calorimeter cells in the cluster reconstruction. In Ref. [30], these uncertainties are evaluated as a function of $p_{T}^{\tau_{h}}$ separately for candidates with one or multiple tracks and low or high multiplicity of primary vertices in the event. The corresponding changes in the signal and EW background efficiencies are found to be 9.6% and 4.1%, respectively.

The probability of a jet or electron to be misidentified as a τ_{h} candidate has been evaluated in data and compared with the expectation from Monte Carlo. The rate of jets that are misidentified as a τ_{h} candidate was calculated using a selection of $W \rightarrow \ell v_{\ell} + jets$ events (with $\ell = e, \mu$) and measuring the fraction of reconstructed candidates that are found by the τ_{h} identification. The difference of this misidentification rate in Monte Carlo compared to that in data is 30% and this was applied as a systematic uncertainty to the fraction of events mimicked by a jet. The overall uncertainty on the EW background is 7.2%. The misidentification probability of
8.2. QCD background estimation

Two different sources of systematic uncertainty arising from the method of estimating the QCD background events from data have been studied. The stability of the method and the small correlation of the two variables (t_{ℓ} ID and S_{T}^{miss}) used to define the control regions have been tested by varying the S_{T}^{miss} threshold. The systematic uncertainty due to the correction for signal and EW background contamination in the control regions was obtained by varying the fraction of these events in the regions within the combined systematic and statistical uncertainties on the Monte Carlo predictions discussed above. The total uncertainty on the QCD background estimation is 3.4%.

8.3. Acceptance

The theoretical uncertainty on the geometric and kinematic acceptance factor A_{W} is dominated by the limited knowledge of the proton PDFs and the modeling of W boson production at the LHC.

The uncertainty resulting from the choice of the PDF set is evaluated by comparing the acceptance obtained with different PDF sets (the default MRST LO*, CTEQ6.6 and HERAPDF 1.0 [36]) and within one PDF set by re-weighting the default sample to the different error eigenvectors available for the CTEQ6.6 NLO PDF [37].

The uncertainty is 1.6% and 1.0%, respectively, which combines to 1.9%.

The uncertainty on the modeling of W production was evaluated by comparing the default sample acceptance to that obtained from an MC@NLO sample where the parton shower is modeled by HERWIG. The difference in acceptance is found to be smaller than 0.5%.

9. Results

The results of the analysis relevant to the cross section measurement are summarized in Table 4. Within the acceptance region defined in Table 2 they translate into a fiducial cross section σ_{W}^{fid} of

$$0.70 \pm 0.02 \text{ (stat)} \pm 0.11 \text{ (syst)} \pm 0.02 \text{ (lumi)} \text{ nb}$$

and a total cross section σ_{W}^{tot} of

$$7.2 \pm 0.2 \text{ (stat)} \pm 1.1 \text{ (syst)} \pm 0.2 \text{ (lumi)} \text{ nb}.$$
Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; summarizes CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNOS, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSR, Greece; ISF, MINERVA, G, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MURST (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNS and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[1] ATLAS Collaboration, CERN-OPEN-2008-020, 2008.
[2] ATLAS Collaboration, arXiv:1105.5003 [hep-ex].
[3] ATLAS Collaboration, ATLAS Note ATL-PHYS-PUB-2010-006, 2010.
[4] ATLAS Collaboration, ATLAS Conference Note ATLAS-CONF-2011-041, 2011.
[5] ATLAS Collaboration, arXiv:1109.5141 [hep-ex].
[6] C. Anastasiou, J. Dixon, K. Melnikov, F. Petriello, Phys. Rev. D 69 (2004) 094008.
[7] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63 (2009) 189.
[8] ATLAS Collaboration, JHEP 1012 (2010) 060.
[9] UAI Collaboration, C. Albajar, et al., Phys. Lett. B 185 (1–2) (1987) 231.
[10] CDF Collaboration, F. Abe, et al., Phys. Rev. Lett. 68 (23) (1992) 3398.
[11] D0 Collaboration, B. Abbott, et al., Phys. Rev. Lett. 84 (2000) 5710.
[12] ATLAS Collaboration, JINST 3 (2008) S08003.
[13] ATLAS Collaboration, Eur. Phys. J. C Part. Fields 71 (2011) 1.
[14] ATLAS Collaboration, ATLAS Conference Note ATLAS-CONF-2011-011, 2011.
[15] T. Sjöstrand, S. Mrenna, P. Skands, JHEP 0605 (2006) 026.
[16] A. Sherstnev, R.S. Thorne, Eur. Phys. J. C Part. Fields 55 (2008) 553.
[17] S. Frixione, R.B. Webber, JHEP 0206 (2002) 029.
[18] G. Corcella, et al., JHEP 0101 (2001) 010.
[19] J.M. Butterworth, J.R. Forshaw, Z. Phys. C 72 (1996) 637.
[20] S. Jadach, J.H. Kuhn, Z. Was, Comput. Phys. Comm. 64 (1990) 275.
[21] E. Barberio, B.V. Eikj, Z. Was, Comput. Phys. Comm. 66 (1991) 115.
[22] ATLAS Collaboration, ATLAS Note AT-LHC-PUB-2010-014, 2010.
[23] GEANT4 Collaboration, S. Agostinelli, et al., Nucl. Instrum. Meth. A 506 (2003) 250.
[24] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823.
[25] ATLAS Collaboration, arXiv:1110.3174 [hep-ex].
[26] ATLAS Collaboration, ATLAS Conference Note ATLAS-CONF-2011-063, 2011.
[27] M. Cacciari, P.G. Salam, G. Soyez, JHEP 0804 (2008) 063.
[28] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1512.
[29] T. Barillari et al., ATLAS Note ATL-PHYS-PUB-2009-001, 2009.
[30] ATLAS Collaboration, ATLAS Note AT-LHC-PUB-2011-077, 2011.
[31] V. Freund, R. Shapire, in: Proceedings 13th International Conference on Machine Learning, 1996.
[32] ATLAS Collaboration, JHEP 1009 (2010) 056.
[33] ATLAS Collaboration, ATLAS Conference Note ATLAS-CONF-2010-057, 2010.
[34] ATLAS Collaboration, ATLAS Conference Note ATLAS-CONF-2011-080, 2011.
[35] ATLAS Collaboration, ATLAS Conference Note ATLAS-CONF-2011-040, 2011.
[36] H1 Collaboration, ZEUS Collaboration, JHEP 1001 (2010) 109.
[37] P.M. Nadolsky, et al., Phys. Rev. D 78 (2008) 013004.
[38] Particle Data Group, K. Nakamura, et al., J. Phys. G 37 (2010).

ATLAS Collaboration

G. Aad 48, B. Abbott 111, J. Abdallah 11, A.A. Abdelalim 49, A. Abdessalem 118, O. Abdinov 10, B. Abi 112, M. Abolins 88, H. Abramowicz 153, H. Abreu 115, E. Acerbi 89a, 89b, B.S. Acharya 164a, 164b, D.L. Adams 24, T.N. Addy 56, J. Adelman 175, M. Aderholz 99, S. Adomeit 98, P. Adragna 75, T. Adye 129, S. Aefskey 22, J.A. Aguilar-Saavedra 124a, M. Aharrouchi 81, S.P. Ahlen 21, F. Ahles 48, A. Ahmad 148, M. Ahsan 40, G. Aielli 133a, 133b, T. Akdogan 18a, T.P.A. Åkesson 79, G. Akimoto 155, A.V. Akimov 94, A. Akiyama 67, M.S. Alam 1, M.A. Alam 76, J. Albert 169, S. Albrand 55, M. Aleksa 29, I.N. Aleksandrov 65, F. Alessandria 89a, C. Alexa 25a, G. Alexandre 153, G. Alexandre 49, T. Alexopoulos 9, M. Alhrool 20, M. Aliev 15, G. Alimonti 89a, J. Alison 120, M. Aliyev 10, P.P. Allport 73, S.E. Allwood-Spiers 53, J. Almond 82, A. Aloisio 102a, 102b, R. Alon 171, A. Alonso 79, M.G. Alviggi 102a, 102b, K. Amako 66, P. Amaral 29, C. Amelung 22, V.V. Ammosov 128, A. Amorim 124a, 8, G. Amorós 167, N. Amram 130, C. Anastopoulos 29, L.S. Ancu 16, N. Andari 115, T. Andeen 24, C.F. Anders 20, G. Anders 58a, K.J. Anderson 30, A. Andreaza 89b, V. Andrei 58a, M.-L. Andrieux 55, X.S. Anduaga 70, A. Angerami 34, F. Anghinolfi 29, N. Anjos 124a, A. Annovi 47, A. Antonaki 8, M. Antonelli 47, A. Antonov 96, J. Antos 144b, F. Anulli 132a, S. Aoun 83,
