Epidermal Barrier Dysfunction in Atopic Dermatitis
Disfunção da Barreira Epidérmica na Dermatite Atópica

Tiago Fernandes Gomes1, Rebeca Calado2, Margarida Gonçalo1,2

1Dermatology Department, Centro Hospitalar de Leiria, Portugal
2Dermatology Department, Centro Hospitalar e Universitário de Coimbra, Portugal
3Clinic of Dermatology, Faculty of Medicine, University of Coimbra, Portugal

ABSTRACT – Impaired skin barrier is one of the hallmarks of atopic dermatitis (AD), with abnormalities in the cornified envelope, lipid lamellae, tight junctions and cutaneous microbiome. These findings are also present in nonlesional skin of AD individuals, suggesting that epidermal barrier defects may be the initial step towards the development of AD and eventually other atopic diseases (atopic march). It is currently known that pathophysiology of AD involves an interplay between this dysfunctional skin barrier and a predominantly type 2 skewed innate and adaptive immune responses, which further disrupt the skin barrier through type 2 cytokines.

In this setting, there is enhanced penetration of environmental and food allergens through a deficient barrier, leading to an increased susceptibility to sensitization. During the sensitization process, thymic stromal lymphopoietin (TSLP) polarizes skin dendritic cells to a T-helper 2 response, and TSLP seems to be a key cytokine in the sensitization of food allergy, allergic asthma and rhinitis.

In this review, the authors describe the current knowledge of the pathophysiology of the epidermal barrier, its disruption in AD and how it may be involved in the development of atopic comorbidities and the role of barrier repair therapy on the prevention of the atopic march progression.

KEYWORDS – Dermatitis, Atopic; Epidermis; Membrane Proteins; Tight Junctions; Staphylococcus aureus.

INTRODUCTION

Atopic dermatitis (AD) is a chronic relapsing eczematous dermatosis that affects up to 20% of children and 10% of adults, with 45% beginning within the first 6 months of life and 60% during the first year. According to the Global Burden of Disease study, its prevalence has remained stable from 1997 to 2017 in the developed western countries, while it is still rising in the developing countries as industrialization increases.

Family history of AD is the strongest identifiable risk factor, since the heritability of AD is estimated to be approximately 75% Polymorphisms of immune response genes include alterations in the T-helper (Th) type 2 signaling pathway and other immune related genes, such as interleukin(IL)-31, IL-33, thymic stromal lymphopoietin (TSLP) and its receptors, Toll-like receptor (TLR) 2 and high affinity IgE receptor. Genes encoding skin barrier proteins have also been implicated in AD. Filaggrin gene mutations are the strongest risk factor (3-5 times higher risk for AD) and may be the initial step towards the development of both AD and other atopic diseases. Pathophysiology involves an interplay between a dysfunctional skin barrier and type 2 skewed innate and adaptive immune responses, with an inappropriate activation of Th2 cells and type 2 innate lymphoid (ILC2) cells, particularly in the acute phase, with production of IL-4, IL-5, IL-13, IL-25, IL-31. Subsequently, after the sustained activation of Th2, Th22 and, in a smaller degree, Th17 cells, a Th1 activation occurs and in chronic lesions, there is an increase in Th1 cells, interferon-γ, IL-5, IL-12 and GM-CSF. The main immune pathways involved vary between different ethnicities and may dictate different clinical presentations: higher Th2/Th22 activation in European American patients, stronger Th17/Th22 pathways in Asians, attenuated Th1/Th17 activation in African Americans and a strong Th17 skewing in early-onset pediatric AD. AD is frequently associated with other atopic comorbidities, with increasing evidence suggesting that skin defects may trigger further...
atopic manifestations by enhancing allergen penetration through a defective epidermis and a type 2 skewed immune response triggering IgE-mediated sensitization to food and environmental allergens and predisposing individuals to other atopic diseases that integrate the so-called “atopic march”.

In this review, the authors describe the current knowledge of the pathophysiology of the epidermal barrier and its disruption in AD, how it may be involved in the development of atopic comorbidities and eventual preventive measures.

1. Atopic March
The traditional atopic march model is defined as a progression of AD to food allergy, allergic asthma and rhinitis during the first years of life.17 AD is considered the first step of this progression with barrier dysfunction, inflammatory immune profile and microbial dysbiosis enhancing allergen sensitization.18,19 However, according to other authors an alternative atopic march model considers AD followed by any of the other atopic manifestations.19 Belgrave et al investigated two prospective cohorts, with a total of 9801 children, and concluded that only 3.1% of children followed the classic progression whereas according to the alternative model the prevalence of the atopic march increases to 10.5%.20 Apart from the genetic background, environmental factors also influence the atopic march.18

2. Skin Barrier in AD
The skin provides an excellent barrier to prevent pathogen and allergen invasion, minimizing physical and chemical insults, and controlling the normal insensible water loss.21,22
Skin barrier comprises the stratum corneum (air-liquid barrier), tight junctions (liquid-liquid barrier), Langerhans cells and the innate immune cells (immunological barrier) and the microbiome (biological barrier).23,24 Chemical and physical properties of the stratum corneum (SC) and tight junctions control permeation of environmental insults, while the competitive microbiome and the interplay between innate and adaptive immune systems allow an immediate and long-lasting protection against pathogens.25

Impaired skin barrier in AD includes abnormalities in the cornified envelope, lipid lamellae, tight junctions and cutaneous microbiome, which are also present in nonlesional AD skin, thus suggesting that epidermal barrier defects precede the development of the clinical AD manifestations,26 and, eventually, other related allergic diseases.

2.1 The stratum corneum in AD
The SC composed of a continuous sheet of protein-enriched cells (corneocytes) connected by corneodesmosomes, embedded in an intercellular matrix of multilamellar organized lipids (Fig. 1),21 is the main barrier against the entry of external agents. It limits pathogen colonization through its low water content, acidic pH, resident microflora and surface antimicrobial lipids and peptides.21,27

2.1.1 Cornified envelope
Corneocytes have a cornified envelope, a tough protein/lipid polymer structure composed of involucrin, loricrin, small proline-rich proteins (SPRP), envoplakin, periplakin and cysteine protease inhibitor A, that are cross-linked by transglutaminase.28 The internal surface of the cornified envelope is linked to the intracellular keratin filaments,22 and involucrin, envoplakin and periplakin of the external surface form covalent ester linkages with ω-hydroxyceramides in the
intercellular lipid cement. The external lipid bilayer of the plasma membrane is replaced by a layer of acylceramides, forming the corneocyte lipid envelope.29

The surface area of AD corneocytes in lesional skin is significantly smaller than non-lesional and normal control skin, due to aberrant cornified envelope which impairs the adequate flattening of corneocytes.20 Actually, proteins of the cornified envelope such as loricrin, involucrin and SPRP3 (and their encoding genes) are reduced,21-24 translating a very late onset of terminal differentiation in granular keratinocytes. Moreover, lack or low levels of SPRP, specialized in cross-linking loricins, were responsible for bilayer disorganization21,24 and were correlated with pruritus and concomitant asthma.31

2.1.2 Filaggrin

Filaggrin (FLG) is a protein which aggregates keratin filaments and forms tight bundles within the keratinocyte cytoskeleton, therefore contributing to corneocyte collapse and flattening.2,7,27,28 Upon degradation, FLG releases hygroscopic amino acids and other molecules, including trans-urocanic acid and pyrrolidone-5-carboxylic acid, which together with sodium and chloride ions, urea and lactate form the natural moisturizing factor (NMF). This is essential for the low skin pH, the acidic epidermal pH gradient, cutaneous hydration, degradation, corneified envelope which impairs the adequate flattening of corneocytes, and prevent allergen penetration.71 Upon ultraviolet protection and epidermal barrier integrity.7,37,38 Low skin pH, the acidic epidermal pH gradient, cutaneous hydration, degradation, corneified envelope which impairs the adequate flattening of corneocytes, and prevent allergen penetration.71

2.1.3 Corneodesmosomes

Corneodesmosomes are the main intercellular adhesive structure in the SC and provide tensile strength for corneocytes to resist shearing forces.9,40 Their extracellular parts contain two desmosomal cadherins, desmoglein 1 and desmocollin 1, and corneodesmosin, the major constitutional difference from desmosomes.39,41 CDSN gene is downregulated in AD skin,33,42 but corneodesmososome integrity and CDSN gene expression can also be modulated by Th2 cytokines (IL-4, IL-13, IL-22, IL-25 and IL-31).42 In murine skin and cultured human keratinocytes, IL-4 decreases the number of corneodesmosomes and downregulates desmoglein 1 expression.43

Exogenous and endogenous proteases control corneodesmosome cleavage. Kallikrein-related peptidases (KLK) and cathepsins produced by keratinocytes, are involved in the cleavage of the corneodesmosome junctions,19-41 whereas protease inhibitors like the lympho-epithelial Kazal type inhibitor (LEKTI) encoded by the serine protease inhibitor Kazal-type 5 gene (SPINK5), inhibit KLKs.7,44 Desquamation follows corneodesmosome cleavage in a pH-dependent way. In the deep stratum corneum, neutral pH allows a strong LEKTI and KLK interaction and prevents corneodesmosome cleavage. However, as pH lowers in the superficial SC, LEKTI/KLK dissociate, allowing corneodesmosome degradation and desquamation.50,61 SPINK5 polymorphisms are associated with AD in certain populations,43-45and AD is associated with increased activity of SC serine proteases,46,47 whose activity was correlated with total serum IgE and peripheral blood eosinophilia.48 Moreover, since KLKs upregulates TSLP mRNA expression, lack of LEKTI is also associated with keratinocyte overexpression of TSLP,50 a cytokine that enhances Th2 skewing not only during the sensitization process, but also during the inflammatory loop that perpetuates AD.

2.1.4 Lipid lamellae

Intercellular lipids, which represent 10%-15% of the total SC mass, form the extracellular SC matrix with densely packed lipid layers (lipid lamellae)28,29 that control water retention within the SC and prevent allergen penetration.71

Lipid lamellae are formed by an equimolar ratio of cholesterol, free fatty acids (FFA) and ceramides,29,72,73 which by weight represent 45%-50% of ceramides, 25% of cholesterol, 10%-15% of free fatty acids, 5% of cholesterol sulphate and a small percentage of triacylglycerol species.22,71 Aberrant lipid proportion results in skin barrier disfunction,28,24 and cholesterol, ceramides and FFA must be supplied in the adequate proportion to recover barrier disruption. In an acutely damaged skin, topical applications of a single or two of the three key lipids actually delays barrier recovery, whereas topical equimolar mixtures normalize recovery rates.72

Glucosylceramides, sphingomyelin and phospholipids stored in lamellar bodies inside the keratinocytes of the upper stratum spinosum and granulosum are the precursors of these SC lipids.73 At the
interface with the SC, lamellar bodies fuse with the cell membrane and secrete these lipid precursors into the extracellular space as well as β-glucocerebroside, acid sphingomyelinase and phospholipase A, which are further metabolized to give rise to ceramides and FFAs.87,88 Ceramides contain mostly very long fatty acid chains linked via an amide to a sphingosine chain and have substantial quantities of highly hydrophobic α-esterified ceramides arranged in lamellar membranes that control water retention.75 Cholesterol sulfate is broken down by sterol sulfatase to cholesterol.76 A reduction in the length of the chains of ceramides and FFAs,75,77 creates shorter and less condensed membrane ceramides with higher water permeability.25 This may be due to an altered expression of fatty acid elongases (ELOVL),78 as shown by a reduced expression of ELOVL1, ELOVL3 and ELOVL6 in lesional skin.75,80

SC lipids (both ceramides and FFAs) are decreased in AD,71 and ceramide levels are significantly correlated with SCORAD and TEWL.81 Reduction in α-esterified fatty acid sphingosine ceramides in the SC of AD patients was correlated with high TEWL, sensitization to food allergens and clinical manifestations of food allergy.53

The immune response, namely Th2 cytokines (IL-4/IL-13) in AD, also play a negative role in ceramide metabolism,75,81 by reducing mRNA levels encoding sphingomyelinase and glucocerebrosidase and downregulating ELOVL1, ELOVL3 and ELOVL6 expression.75,80,82 These lipid barrier defects have been associated with both pediatric and adult AD. However, some lipid-associated mediators, such as fatty acyl-CoA reductase 2 and fatty acid 2-hydroxylase are preferentially downregulated in pediatric AD.15

2.2 Tight Junctions

Tight junctions (TJ) are cell-cell junctions located in stratum granulosum, that seal the paracellular pathway to reduce epithelial permeability and restrict the movement of molecules within the intercellular space,9,83 namely water, ions, proteins and also Langerhans cells’ dendrites.9,26,84 TJ are formed by transmembrane proteins (claudins, occludins, junctional adhesion molecule A and tricellulin) and cytosolic plaque proteins (Zonula occludens (ZO)-1, ZO-2, ZO-3, multi-PDZ domain protein 1, membrane-associate guanylate kinase and cingulin).85-87

The epidermis is very rich in claudin-1 and claudin-488 but their levels are reduced in AD, causing barrier disfunction assessed by lower transepithelial electrical resistance and higher paracellular permeability.89,90 Claudin-1 knockout mice die within the first day of life due to a severely defective epidermal barrier,91 altered ceramide composition and insufficient filaggrin processing, supporting that a defective stratum granulosum may lead to an aberrant stratum corneum.90,92,93 Also, low claudin-1 levels in AD lesional skin90,92-94 correlate both with TJ barrier95 and abnormal epidermal differentiation and inflammation.88 However, claudin-1 levels in nonlesional skin have shown both reduced or normal values in cohorts from similar ancestries.89,92-94

Variants of claudin-1 gene (CLDN1) have been associated with AD risk in an African-American cohort,76,89 early onset AD in an Ethiopian cohort,95 and AD with specific IgE to environmental molds,96 but not in a Finish cohort.51 There is also evidence that levels of claudin-4, claudin-23 and ZO-1, may be decreased in some AD patients.89,94

As for filaggrin and lipid lamellae, TJs influence and are influenced by the immune response, although contradictory results have been reported. De Benedetto et al observed an inverse correlation between epidermal claudin-1 expression and markers of Th2 polarity (blood eosinophilia and serum total IgE),99 whereas Tokumasu et al found no correlation between claudin-1 level and IL-4 in AD patients.90 IL-33 down-regulates CLDN1 expression in keratinocytes,97 and low claudin-1 levels induce IL-1β production and promote inflammation in the presence of Staphylococci, even non-pathogenic strains.93

TJs are also critical in containing viral spread, and claudin-1 reduction enhances susceptibility to herpes simplex virus 1 (HSV-1) infection.98

2.3 Immune skin barrier and antimicrobial peptides

The epidermal immunological barrier includes both cellular and humoral components. Resident skin cells have a vast group of surveillance receptors that recognize pathogens and other insults and activate innate immunity with cytokine and chemokine production and recruitment of neutrophils, monocytes, macrophages, dendritic cells (DC) and T lymphocytes, that will then be involved in the adaptive immune response.25

Keratinocytes bear membrane and cytosolic pathogen recognition receptors (PRRs), namely TLRs, RIG-I-like receptors, NOD-like receptors and DNA receptors25,99 that recognize pathogen-associated molecular patterns (PAMPs), such as bacterial lipopolysaccharides or viral RNA, and damage associated molecular patterns (DAMPs), namely hyaluronic acid, heat shock proteins, oxidized lipids or lipoproteins.25,83,100 Upon activation by PAMPs or DAMPs, keratinocytes produce antimicrobial peptides and inflammatory cytokines of the innate immunity,25,100 namely defensins, cathelicidins, S100 proteins, ribonucleases and dermcidin, with a broad spectrum activity against bacteria, virus, fungi and parasites. They also have immunomodulatory properties and are involved in skin barrier maintenance.101 Human β-defensins (HBD) and cathelicidins (LL-37) increase upon cutaneous infection, inflammation or wound, but their expression is lower in AD skin.102,103 Furthermore, Th2-derived cytokines suppress HBD expression,103,104 with TSLP inhibiting HBD-2 through a JAK2/STAT3-dependent pathway.105 Lower expression of LL-37, HBD-2 and HBD-3 in lesional skin has been associated with eczema herpeticum and bacterial skin infections,102,104,106 and the susceptibility to the latter is further aggravated by the reduced dermcidin levels in AD sweat.106

Epidermal DC, namely Langerhans cells (LC), have similar PRRs, which upon activation, induce dendrite elongation to uptake extra-TJ antigens, before TJ barriers seal again the intercellular space.84 Then, DC migrate to regional lymph nodes where they present the antigen to lymphocytes.107 Therefore, the innate immune system mounts an effective defense against pathogens and initiates the adaptive immune response.99 Dermal innate lymphoid cells (ILC) also contribute to natural immune defense and liaison with the acquired immune response,108 but in AD there is a very significant predominance of IL-5/IL-13 producing ILC (ILC2), causing a shift to a type 2 immune response.109,110

2.4 The biological barrier and Staphylococcus aureus in AD

Skin commensals are essential for skin microbiome equilibrium and activation of resident T cells and keratinocytes, as they educate them in combatting skin pathogens.111 In AD this equilibrium is impaired and significantly compromises this biological barrier and enhances infectious complications.112,113

Staphylococcus aureus (S. aureus) colonizes AD skin in an extent significantly correlated with disease activity.114,115 Risk factors for S. aureus colonization include decreased levels of filaggrin and filaggrin
degradation products, lower levels of coagulase-negative Staphylococcus, altered lipid profiles, deficiency of antimicrobial peptides and overexpression of Th2 cytokines as IL-4 and IL-13 downregulate LL-37 and HBD-3. Also, fewer coagulase-negative Staphylococci, such as S. epidermidis and S. hominis, allow a shift to S. aureus predominance during AD flares. This can be reversed by topical application of coagulase-negative Staphylococcus strains and other non-pathogenic bacteria, which also decrease SCORAD and pruritus, and alleviate cutaneous inflammation in AD. Moreover, antimicrobial or anti-inflammatory treatment of AD flares also increases skin microbiome diversity.

S. aureus exotoxins increase proinflammatory cytokines and proteases that affect keratinocytes and various immune cells in AD skin. Toxic shock syndrome toxin-1 (TSST-1), staphylococcal enterotoxins (SEA, SEB, SEC, SED), exfoliative toxins (ETA and ETB), and leucocidin, behave as superantigens and induce polyclonal T and B cell proliferation and class switching to IgE and production of allergen-specific IgE in mucosal B cells, and SEB increases IL-31 expression, involved in pruritus, inhibits keratinocyte differentiation and suppresses filaggrin expression.

S. aureus may impair the usual tolerance to food and enhance food sensitization. Nasal carriage of S. aureus and skin colonization occur more frequently in children with AD and food allergy and patients with allergic rhinitis. MRSA colonization is associated with higher levels of peanut specific IgE, and increased and persistent levels of specific IgE to egg white and peanut, independent of eczema severity. In mice models, S. aureus enterotoxins, like SEB, in combination with ovalbumin enhance epicutaneous sensitization with specific IgE against SEB and ovalbumin, and augment ovalbumin induced airway hyperresponsiveness and lung inflammation, via an IL-17A-dependent pathway. Also, oral administration of SEB with ovalbumin resulted in immune responses to ovalbumin, with decreased regulatory T-cell function, impairment of immune tolerance and a predominant Th2 response.

In AD, vicious cycles between S. aureus infection and AD exacerbation induce TSLP and favor Th2/Th17-type inflammation, specific allergen sensitization and tissue damage. In summary, S. aureus colonization and dysbiosis in AD influence disease severity (IgE anti-S. aureus toxins), further disrupt the skin barrier, enhance food sensitization, inhibit oral tolerance induction and promote allergic responses in other organs, which may, therefore, be regarded as one of drivers of the atopic march.

3. Environmental allergens and epidermal sensitization through AD skin

Physical, chemical and immunological epidermal barrier defects in AD may explain an increased sensitization to environmental and food allergens, due to their enhanced penetration but some of these allergens also contribute to skin barrier defects, as shown for S. aureus.

3.1 Environmental allergens and protease activity

Many aeroallergens (pollen, house-dust mite (HDM), cockroaches, Aspergillus sp, Penicillium sp) and some food-derived allergens have protease activity, which in addition to endogenous proteases further disrupt the skin barrier and enhance inflammation, IgE production and allergen sensitization. Epidermal cytokines and chemokines induced by mite proteases attract and activate inflammatory cells and APC, suggesting the role of mite proteases in the initiation of sensitization through the skin.

Proteases from cockroaches and mites activate protease-activated receptor 2, delay epidermal barrier recovery and lamellar body secretion after acute barrier disruption, therefore enhancing penetration of allergens, irritants and molecules from other environmental allergens and microbes, that initiate and perpetuate inflammation.

Moreover, aeroallergens and food-derived allergens with protease activity enhance specific IgE production and are further specifically recognized by IgE in sensitized patients. In human keratinocytes, HDM allergens stimulate innate IL-33 production, and environmental proteases promote Th2 skewing and IgE production.

Therefore, barrier disruption aggravated by environmental proteases increases accessibility and IgE sensitization to these proteases, with subsequent initiation and perpetuation of inflammation both in the skin and other organs exposed to similar environmental allergens.

3.2 Impaired cutaneous barrier and percutaneous sensitization

As previously referred, epidermal barrier disruption, further aggravated by itching, allows skin-resident APC, such as LC or DC, to reach the upper epidermis with their dendrites and capture environmental antigens more easily. Furthermore, barrier disrupted keratinocytes release alarmins and type-2 cytokines which behave as immune adjuvants, become coated with IgE, easily recognize and process aeroallergens or food allergens and cause both immediate and delayed allergic reactions. Many AD patients have increased IgE-mediated reactivity to aeroallergens, food proteins and microbial antigens which may precipitate atopic flares in IgE sensitized patients. However, there is not enough evidence to recommend strict avoidance of such allergens to improve or prevent AD.

Other cutaneous disorders with skin barrier disruption have an increased risk of allergen sensitization, corroborating the relation between skin barrier disruption and allergic sensitization. In Netherton syndrome, an autosomal recessive disorder caused by loss of function mutations in SPINK5 with consequent deficiency of LEKTI-1/KLK inhibition, increased protease activity, enhanced degradation of corneodesmosomes and SC detachment, there is severe skin inflammation and allergic manifestations with elevated IgE, TSLP and TNF-α production. Peeling skin syndrome type B, another rare autosomal recessive genodermatosis caused by CDSN mutations, is associated with severe food allergies, allergic asthma and rhinitis.

3.3 TSLP and Th2 cytokines in food allergy, allergic asthma and allergic rhinitis

TSLP, an IL-7-like cytokine mainly expressed by epithelial cells and keratinocytes at barrier surfaces, is critically involved in body-environment interactions, Th2 responses and type 2 inflammation in multiple disease settings, including food allergy, allergic asthma and allergic rhinitis.

TSLP is highly expressed in acute and chronic AD lesions, where it can be induced by environmental (allergens, virus, helminths, cigarette smoke or chemicals) or endogenous triggers (Th2-related cytokines and IgE), suggesting its effect on Th2 amplification. TSLP polarizes skin DCs to a Th2 response during sensitization to food and aeroallergens presented through the damaged skin barrier of AD skin (face, lips, hands). Actually, in the cutaneous ambience rich in ILC2 and TSLP, IL-5 and IL-4/IL-13, APC that migrate to the
draining lymph nodes will sensitize naïve CD4+ T cells that will differentiate into allergen-specific Th2 cells that will promote class switching to IgE and form allergen-specific IgE memory B and plasma cells. In a further exposure, allergens recognized by specific IgEs bound to high affinity FcεRI receptors on mast cells and basophils, cause immediate symptoms of food allergy (localized or generalized urticaria, gastrointestinal symptoms or even anaphylaxis), allergic asthma (bronchospasm, mucus production, and dyspnea), allergic rhinitis (pruritus, sneezing and rhinorrhea), and allergic conjunctivitis (pruritus, red eye and weeping).

TSLP seems to be a key cytokine in sensitization to food exposed through the skin, as it increases antigen-specific serum IgE levels and enhances accumulation of intestinal mast cells involved in intestinal food allergy. In murine models, sensitization to ovalbumin and peanut through AD-like skin induced TSLP increase in the skin, whereas knock-out mice lacking TSLP receptor were not prone to food allergy.

Similar pathways of sensitization to aeroallergens through AD skin development and skin of allergic asthma also involve TSLP production by keratinocytes, and asthmatic patients have high expression of TSLP in the serum and airway epithelium. Experimental models also implicate TSLP in allergic rhinitis, with TSLP receptor-deficient mice having less IgE production and less severe early responses in allergic rhinitis.

A phase III trial with tezepelumab, a human monoclonal antibody against TSLP in patients with severe uncontrolled asthma, showed a significantly lower annualized rate of asthma exacerbations compared to the placebo group. However, in a phase Ila study, tezepelumab in combination with topical steroids did not achieve statistically significant improvement in moderate to severe AD.

Dupilumab as well as JAK inhibitors progressively reverse the lesional transcriptome in AD and significantly reduce type 2 inflammation genes expression, epidermal hyperplasia, T cells, DC and Th17/Th22 activity. However, these drugs have not been introduced early enough to evaluate their capacity to prevent sensitization to environmental allergens and, consequently, influence the atopic march.

4. Early barrier intervention and immune modulation – future perspectives on AD prevention and treatment

In the last decades, several studies have tried to modify the IgE-sensitization-promoting microenvironment of AD skin to prevent the atopic march, but results have not been convincing.

Emollients and other general measures that enhance skin barrier repair from the very early days of life have generated contradictory results, eventually related to the diversity of emollients used. In fact, paraffin-based/alcohol-based/petroleum-based emollients can be detrimental in AD, since the occlusion inhibits keratinocyte differentiation and enhances S. aureus colonization, whereas triple physiologic lipid-based barrier repair therapies composed of a ceramide-dominant mixture of the key SC lipids (α 3:1:1 molar ratio of ceramides, cholesterol and free fatty acids) seem more effective. They reduce TEWL in AD children as they amplify lipid production and delivery to the SC intercellular spaces, replenish the lamellar bilayers, and prevent Th2 cytokine-induced reduction in SC ceramide content. Ongoing large randomized trials (PEBBLES and PreventADALL) are evaluating the effect of such emollients in preventing AD and food allergy in the first 12 months of life in infants with a family history of allergic disease.

CONCLUSION

Epidermal defects causing chemical, physical, immunological and biological disruption of the skin barrier are a key feature of AD. Abnormalities in the cornified envelope, filaggrin, lipid lamellae and tight junctions lead to a vulnerable epidermis, itching and abnormal innate immune response with fewer antimicrobial peptides and dysbiosis. A Th2 shifted immune response further compromises the barrier by downregulating the synthesis of relevant epidermal components.

There is increasing evidence suggesting that a disrupted skin barrier in AD, along with a type 2 skewed immune response, allows IgE sensitization and subsequent development of food allergy and airway hyperreactivity, and is, therefore, the initial event in the atopic march. Nevertheless, a better characterization of AD skin defects and how they really influence progression to other atopic diseases still needs further study. Therapies targeting these defects also need to be further studied as they may have beneficial implications in the prevention of AD and other atopic diseases that represent a real burden for the patients and the society.

Conflicts of Interest: The authors have no conflicts of interest to declare. Financing Support: This work has not received any contribution, grant or scholarship. Provenance and Peer Review: Not commissioned; externally peer reviewed.

Conflitos de Interesse: Os autores declaram não possuir conflitos de interesse. Suporte Financeiro: O presente trabalho não foi suportado por nenhum subsídio ou bolsa. Proveniência e Revisão por Pares: Não comissionado; revisão externa por pares.

ORCID
Tiago Fernandes Gomes: https://orcid.org/0000-0003-2469-4871
Rebeca Calado: https://orcid.org/0000-0002-3661-9724
Margarida Gonçalo: http://orcid.org/0000-0001-6842-1360

Corresponding Author: Tiago Fernandes Gomes
Address: Dermatology Department - Centro Hospitalar de Leiria
Rua das Olhalvas - 2410-197, Leiria - Portugal
E-mail: tiagofgomesd@gmail.com

© Author(s) (or their employer(s)) 2021 SPDV Journal. Re-use permitted under CC BY-NC. No commercial re-use.
© Autor(es) (ou seu(s) empregador(es)) 2021 Revista SPDV. Reutilização permitida de acordo com CC BY-NC. Nenhuma reutilização comercial.

REFERENCES
1. Bieber T. Atopic Dermatitis. N Engl J Med. 2008;358:1483-94. doi:10.1056/NEJMra074081
2. Laughter MR, Maymone MB, Mashayekhi S, Arents BN, Karimkhan C, Langen MA, et al. The global burden of atopic dermatitis: lessons from the GBD Study - 1990 to 2017. Br J Dermatol. 2020;184:304-9. doi:10.1111/bjd.19580
3. Elnose C, Thomsen SF. Twin Studies of Atopic Dermatitis: Interpretations and Applications in the Flaregen Era. J Allergy. 2015:2015:1-7. doi:10.1111/jad.13286-1
4. Langen SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet. 2020;396:345-60. doi:10.1016/S0140-6736(20)31286-1
5. Kim J, Kim BE, Leung DY. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019;40:84-92. doi:10.2500/aap.2019.40.4202
6. Sinu S, Wang Y, Long JY. Genetic and epigenetic studies of atopic dermatitis. Allergy. Clin Immunol. 2016;12:52. doi:10.1186/s13223-016-0158-5
7. Cabanillas B, Novak N. Atopic dermatitis and filaggrin. Curr Opin Immunol. 2016;42:1-8. doi:10.1016/j.coi.2016.05.002
8. Smieszek SF, Welsh S, Xiao C, Wang J, Polymenopoulos C, Birznieks G, et al. Correlation...
of age-of-onset of Atopic Dermatitis with Filaggrin loss-of-function variant status. Sci Rep. 2020;10:2721. doi:10.1038/s41598-020-56577-7
9. De Benedetto A, Kobo A, Beck LA. Skin barrier disruption: a requirement for allergen sensitization? J Invest Dermatol. 2012;132:949-63. doi:10.1038/jid.2011.435
10. Fuji M. Current understanding of pathophysiological mechanisms of atopic dermatitis: interactions among skin barrier dysfunction, immune abnormalities and pollutants. Biof Pharmac Bull. 2020;43:12-9. doi:10.1248/bpb.19-00088
11. Moyle M, Cevikbas F, Harden JL, Guttman-Yassky E. Understanding the immune landscape in atopic dermatitis: The era of biologics and emerging therapeutic approaches. Exp Dermatol. 2019;28:756-68. doi:10.1111/exd.13911
12. Torres T, Ferreira EO, Gontijo M, Mendes-Bastos P, Selores M, Filipe P. Update on Atopic Dermatitis. Acta Med Port. 2019;32:606-13. doi:10.24364/amap.11963
13. Grobe W, Bieber T, Novak N. Pathophysiology of atopic dermatitis. J Dtsch Dermatol Ges. 2019;17:433-40. doi:10.1111/ddg.13819
14. Nomura T, Wu J, Kabashima K, Guttman-Yassky E. Endophenotypic Variations of Atopic Dermatitis by Age, Race, and Ethnicity. J Allergy Clin Immunol Pract. 2020;8:1840-52. doi:10.1016/j.jaip.2020.02.022
15. Brunner PM, Israel A, Zhang N, Leonard A, Wen HC, Huyyn T, et al. Early-onset pediatric atopic dermatitis is characterized by TH2/TH1/TH2-centered inflammation and lipid alterations. J Allergy Clin Immunol. 2018;141:2094-106. doi:10.1016/j.jaci.2018.02.040
16. Esaki H, Brunner PM, Renert-Kovály T, Csazmárová T, Huyyn T, Tran G, et al. Early-onset pediatric atopic dermatitis is T H 2 but also T H 17 polarized in skin. J Allergy Clin Immunol. 2016;138:1639-51. doi:10.1016/j.jaci.2016.07.013
17. Spergel JM. From atopic dermatitis to asthma: The atopic march. Ann Allergy Asthma Immunol. 2010;105:99-106.
18. Aw M, Penn J, Gouveau GM, Lim, Sehmi R. Atopic March: Collegium Internationale Allergologicum Update 2020. Int Arch Allergy Immunol. 2020;181:1-10. doi:10.1159/000500298
19. Hill DA, Camargo CA, Poller AS, Spergel JM. A march by any other name. Ann Allergy Asthma Immunol. 2018;121:137-8. doi:10.1016/j.anai.2018.04.014
20. Belgrave DC, Granrul R, Simpson A, Guiver J, Bishop C, Buchan I, et al. Developmental profiles of epidermis, wheezes, and rhinitis: two population-based birth cohort studies. PLoS Med. 2014;11:e1001745. doi:10.1371/journal.pmed.1001745.
21. Procházková A, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Med. 2008;11:1605-22.10.1602.2008.0076x
22. Madison KC. Barrier Function of the Skin: “La Raison d’Être” of the Epidermis. J Invest Dermatol. 2003;123:231-41. doi:10.1046/j.1523-1747.2003.12359.x
23. Kubo A, Nagao K, Amagai M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J Clin Invest. 2012;122:440-7.
24. Skabytska Y, Kaessler S, Votz T, Biedermann T. How the innate immune system trains immunity: lessons from studying atopic dermatitis and cutaneous bacteria. J Dtsch Dermatol Ges. 2019;17:143-53. doi:10.1111/ddg.12843
25. Margolis DJ, Gupta J, Apter AJ, Hoffstad O, Papadopoulos M, Rebbeck TR, et al. The persistence of atopic dermatitis and filaggrin (FLG) mutations in US longitudinal cohort. J Allergy Clin Immunol. 2012:130:912-17. doi:10.1016/j.jaci.2012.07.008
26. Margolis DJ, Gupta J, Apter AJ, Hoffstad O, Papadopoulos M, Rebbeck TR, et al. Exome Sequencing of Filaggrin and Related Genes in African-American Children with Atopic Dermatitis. J Invest Dermatol. 2014;134:2272-4. doi:10.1038/jid.2014.126
27. Leung DYM, Calatroni A, Zaramela LS, LeBeau PK, Dyjack N, Brar K, et al. The nonlesional skin of atopic dermatitis highlights differences between Singaporean Chinese and European populations. Br J Dermatol. 2011;165:106-14. doi:10.1111/j.1365-2133.2011.10331.x
28. Rapino T, Tsang J, Cajois M, Jiang L, Bossuyt P, Drukker M, et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet. 2007;39:493-500. doi:10.1038/ng1975
29. González-Tarancón R, Sanmartín R, Lorente F, Salvador-Rupérez E, Hernández-Martin A, Rello L, et al. Prevalence of FLG loss-of-function mutations R501X, 2282del4, and R2447X in Spanish children with atopic dermatitis. Pediatr Dermatol. 2020;37:98-102. doi:10.1111/pde.14025
30. Chen H, Common JEA, Haines RL, Balakrishnan A, Brown SJ, Goik CS, et al. Wide spectrum of filaggrin-null mutations in atopic dermatitis highlights differences between Singaporean Chinese and European populations. Br J Dermatol. 2011;165:106-14. doi:10.1111/j.1365-2133.2011.10331.x
56. Wu, J., Guttman-Yassky, E. Efficacy of biologics in atopic dermatitis. Expert Opin Biol Ther. 2020;20:525-38. doi:10.1080/14712598.2020.1722998

57. Guttman-Yassky, E, Bissontette, R, Ungar, B, Saxena, P, Tanasou, M, Ardeleanu, M, Esaki, H, et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143:155-72. doi:10.1016/j.jaci.2018.08.022

58. Pavul AB, Song T, Kim HJ, Dal Duca E, Krueger JG, Dubin C, et al. Oral Janus kinase/SYK inhibition (ASD002) suppresses inflammation and improves epidermal barrier markers in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;144:1011-24. doi:10.1016/j.jaci.2019.07.013

59. Ishida-Yamamoto A, Igawa S. The biology and regulation of corneodesmosomes. Cell Tissue Res. 2015;360:477-82. doi:10.1007/s00441-014-2037-5

60. Rawlings AV, Voegeli R. Stratum corneum proteases and dry skin conditions. Cell Tissue Res. 2013;351:217-35. doi:10.1007/s00441-014-1501-x

61. Ishida-Yamamoto A, Igawa S, Kishibe M. Order and disorder in corneocyte adhesion. J Dermatol. 2011;38:645-54. doi:10.1111/j.1600-0645.2010.03127.x

62. Lee UH, Kim BE, Kim DJ, Cho YG, Ye YM, Leung DY. Atopic dermatitis is associated with reduced corneodesmosin expression: role of cytokine modulation and effects on viral penetration. Br J Dermatol. 2017;176:537-40. doi:10.1111/bjd.15100

63. Hatake Y, Adachi Y, Elias PM, Crumrine D, Nose K, Kodashima K, et al. The Th2 cytokine, interleukin-4, abrogates the cohesion of normal stratum corneum in mice: implications for pathogenesis of atopic dermatitis. Exp Dermatol. 2013;22:30-5. doi:10.1111/exd.12047

64. Furia L, Hovananian A. Netherton syndrome: defective kallikrein inhibition in the skin leads to skin inflammation and allergy. Biol Chem. 2014;395:945-58. doi:10.1515/hb-2014-0137

65. Zhao DP, Di Z, Zhang L, Wang L, Mao L, Lv Y, et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatol Venereol. 2012;26:572-7. doi:10.1111/j.1468-3083.2011.03420.x

66. Kuwamoto T, Okafuji I, Yoshioka T, Saito M, Nishikomori R, Heike T, et al. SPINK5 polymorphism is associated with disease severity and food allergy in children with atopic dermatitis. J Allergy Clin Immunol. 2005;115:636-8. doi:10.1016/j.jaci.2004.12.1114

67. Li Y, Li Y, Li W, Guo X, Zhou S, Zheng H. Genetic polymorphisms in serine protease inhibitor Kazal-type 5 and risk of atopic dermatitis. Medicine. 2020;99:e21256. doi:10.1097/MD.00000000000021256

68. Voegeli R, Rawlings AV, Breitenits M, Doppler S, Schreiter T, Führer JW. Increased stratum corneum serine protease activity in acute eczematous atopic skin. Br J Dermatol. 2009;161:70-7. doi:10.1111/j.1365-2133.2009.09142.x

69. Nomura H, Suganuma M, Takenchi T, Kano M, Isokane Y, Suragawa K, et al. Multifaceted analyses of epidermal serine protease activity in patients with atopic dermatitis. Int J Mol Sci. 2020;21:913. doi:10.3390/ijms21030913

70. Taka T. TSFP Expression: Cellular Sources, Triggers, and Regulatory Mechanisms. Allergol Int. 2012;61:13-17. doi:10.3232/alra.2011-0395

71. Wahlab J, Gebert A, Neubert RH. Lipids in the Skin and pH. Curr Probl Dermatol. 2018;54:64-70. doi:10.1159/000489519

72. Elias PM. Stratum Corneum Defensive Functions: An Integrated View. J Invest Dermatol. 2011;131:2136-8. doi:10.1038/jid.2011.175

73. Tobi Y, Tabishib M, Kusaka-Kishikuma A, Ota Y, Tokura Y. Impaired Tight Junctions in Atopic Dermatitis Skin and in a Skin-Equivalent Model Treated with Interleukin-17. Koval M, ed. PLoS One. 2016:e0161759. doi:10.1371/journal.pone.0161759

74. Azad S, Winge MC, Wahlgren CF, Bühle KD, Nordenstjeld M, Tayan F, et al. The tight junction gene Claudin-1 is associated with atopic dermatitis among Ethiopians. J Eur Acad Dermatol Venereol. 2016;30:1939-41. doi:10.1111/jdv.13806

75. Yu HS, Kang MJ, Kwon JW, Lee SY, Lee E, Yang SJ, et al. Claudin-1 polymorphism modifies the effect of mold exposure on the development of atopic dermatitis and production of IgE. J Allergy Clin Immunol. 2015;135:827-30.e5. doi:10.1016/j.jaci.2014.10.040

76. Ryu WJ, Lee H, Bae HC, Jeon J, Ryu HJ, Kim J, et al. IL-33 down-regulates CLDN1 expression through the ERK/STAT3 pathway in keratinocytes. J Investig Dermatol. 2018;140:313-22. doi:10.1016/j.jid.2018.02.017

77. De Benedetto A, Silva KA, Rafaels NM, più RC, Carlucci G. Assay Validation for Detection of Atopic Dermatitis. J Invest Dermatol. 2011;131:242-6.e5. doi:10.1038/jid.2011.02.014

78. Kumar H, Kowalska A, Pogorzelska M, Pathogen Recognition by the Innate Immune System. Int Rev Immunol. 2011;30:16-34. doi:10.3109/08830185.2010.529976

79. Chambers ES, Vukmanovic-Stjepic M. Skin barrier immunity and ageing. Immunology. 2020;160:116-25. doi:10.1111/imm.13152

80. Niyonsaba F, Kiotuonavanon C, Cheesalappathom P, Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol. 2017;26:989-98. doi:10.1111/exd.13314

81. Cheesalappathom P, Ogawa H, Niyonsaba F. Current insights into the role of human L-defensins in atopic dermatitis. Clin Exp Immunol. 2017;190:155-66. doi:10.1111/cei.13013

82. Ong PY, Oh Tateke Y, Brandner M. Atopic dermatitis and local cytokine milieu. J Invest Dermatol. 2002;119:357-67. doi:10.1046/j.1523-1747.2002.01241.x

83. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CL, et al. Cytokine milieu of atopic dermatitis is accompanied by changes in stratum corneum lipid composition. J Dermatol Sci. 2017;88:57-66. doi:10.1016/j.jdermsci.2017.05.005

84. Yuki T, Tobiishi M, Kusaka-Kikushima A, Ota Y, Tokura Y. Impaired Tight Junctions in Atopic Dermatitis Skin and in a Skin-Equivalent Model Treated with Interleukin-17. Koval M, ed. PLoS One. 2016:e0161759. doi:10.1371/journal.pone.0161759

85. Azad S, Winge MC, Wahlgren CF, Bühle KD, Nordenstjeld M, Tayan F, et al. The tight junction gene Claudin-1 is associated with atopic dermatitis among Ethiopians. J Eur Acad Dermatol Venereol. 2016;30:1939-41. doi:10.1111/jdv.13806

86. Bulsér K, Bergmann S, Hesig M, Naegel A, Zorn-Kruppa M, Brandner M. The role of tight junction defects in skin barrier function and dermatal absorption. J Control Release. 2016;242:105-18. doi:10.1016/j.jconrel.2016.08.007

87. Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction domains. J Exp Med. 2009;206:2937-46. doi:10.1083/jem.20091527
127. Shiomori T, Yoshida S, Miyamoto H, Makishima K. Relationship of nasal carriage of Staphylococcus aureus to pathogenesis of perennial allergic rhinitis. J Allergy Clin Immunol. 2000;105:449-54. doi:10.1067/mci.2000.104256

128. Zeldin Y, Weiner Z, Cohen A, Kalinin M, Schlesinger AT, Kidon M, et al. Efficacy of nasal Staphylococcus aureus eradication by topical nasal mupirocin in patients with perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2008;100:608-11. doi:10.1016/j.san.2006.05.031

129. Jones AL, Curran-Everett D, Leung DYM. Food allergy is associated with Staphylococcus aureus colonization in children with atopic dermatitis. J Allergy Clin Immunol. 2016;137:1247-1248.e3. doi:10.1016/j.jaci.2016.01.010

130. Yu J, Oh MH, Park JJ, Myers AC, Dong C, Zhu Z, et al. Epicutaneous exposure to Staphylococcal superantigen enterotoxin B enhances allergic lung inflammation via an IL-17A dependent mechanism. PLoS One. 2012;7:e39032. doi:10.1371/journal.pone.0039032

131. Ganesan K, Neilson CV, Hadalsotn A, Schleimer RP, Luo X, Bryce PJ. Impairing oral tolerance promotes allergy and anaphylaxis: A new murine food allergy model. J Allergy Clin Immunol. 2009;123:231-8.e4. doi:10.1016/j.jaci.2008.10.011

132. Celiz Sizmen Z, Cevhertas L, Nadeau K, Alidás CA, Environmental factors in epidermal barrier dysfunction. J Allergy Clin Immunol. 2020;145:1517-28. doi:10.1016/j.jaci.2020.04.024

133. Nakamura T, Hirayasa Y, Takai T, Mitsuishi K, Okuda M, Kato T, et al. Reduction of skin barrier function by proteolytic activity of a recombinant house dust mite major allergen Der f 1. J Investig Dermatol. 2006;126:2719-23. doi:10.1038/sj.jid.5507058

134. Takai T, Takeda S. Barrier dysfunction caused by environmental proteases in the pathogenesis of allergic diseases. Allergol Int. 2011;60:25-35.

135. Jeong SK, Kim HJ, Youm JK, Ahn SK, Choi EH, Suh MH, et al. Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J Investig Dermatol. 2008;128:1920-9. doi:10.1093/jid/sxm088

136. Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387:1109-22. doi:10.1016/S0140-6736(15)00149-3

137. Arjona Aguilera C, Albarroa Plancheles C, Tercador Sanchez J. Differential Diagnosis of genetic disorders associated with moderate to severe refractory eczema and elevated immunoglobulin E. Actas Dermosifiliogr. 2016;107:616-24. doi:10.1016/j.ad.2016.01.004

138. Adhikary PP, Tan Z, Page BDG, Hedtrich S. Thymic stromal lymphopoietin as a druggable target – a silver-lining for atopic dermatitis. J Allergy Clin Immunol. 2017;128:1331-41.e9. doi:10.1016/j.jaci.2020.04.024

139. Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE, et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin–basophil axis. J Allergy Clin Immunol. 2014;133:205-8.e9. doi:10.1016/j.jaci.2015.04.026

140. Kojima Y, Suh MH, et al. Food allergy: a complex interaction between atopic dermatitis and Staphylococcus aureus isolated from patients with atopic dermatitis. Adv Dermatol Allergol. 2018;35:74-82.

141. Gueniche A, Knaudt B, Schuck E, Volz T, Bastien P, Martin R, et al. Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: A prospective, randomized, double-blind, placebo-controlled clinical study. Br J Dermatol. 2008;159:1357-63. doi:10.1111/j.1365-2133.2008.08838.x

142. Volz T, Skabytsya Y, Guenova E, Chen KM, Frick JS, Kirschning CJ, et al. Nonpathogenic bacterial exopolysaccharides are potent activators of the human innate immune system. J Immunol. 2015;194:3798-805. doi:10.4049/jimmunol.1402411

143. De Groot JH, Taberner P, Haines HE, Cheverton E, Sutton BJ. The Allergic March from Staphylococcus aureus Superantigens to Immunoglobulin E. In: Mantero G, editor. Superantigens and Superantigenic. Berlin: KARGER; 2007. p. 106-36. doi:10.1007/978-3-8055-9065-8

144. Rietmeijer C, Zannelli SC, Rincon Garriga JM, Eigenmann PA. Food allergy in mice is modulated through the thymic stromal lymphopoietin pathway. Clin Transl Allergy. 2015;5:1-8. doi:10.1186/2166-0160-0160-0090-2

145. Li Y, Wang W, Lu Z, Li Y, Chen Y, Huang K, et al. Elevated expression of IL-33 and TSLP in the airways of human asthmatics in vivo: a potential biomarker of severe refractory disease. J Immunol. 2018;200:2253-62. doi:10.4049/jimmunol.1701455

146. Menzies-Gow A, Corren J, Burdlin A, Chupp G, Israel E, Wechsler ME, et al. Tezepelumab in
1. Which of the following statement is false regarding filaggrin?
 a. Filaggrin aggregates keratin filaments to form tight bundles within keratinocyte cytoskeleton.
 b. Filaggrin degradation is essential for the elimination of the natural moisturizing factor.
 c. Filaggrin mutations confer a 3-5 times higher risk for AD.
 d. FLG mutations are associated with early-onset AD.
 e. Filaggrin mutations increased the risk of allergic sensitization in children with eczema.

2. Which of the following statement is true about lipid metabolism in skin barrier?
 a. Cholesterol, free fatty acids and ceramides are the three major components of the lipid lamellae.
 b. Glucosylceramides, sphingomyelin and phospholipids are stored in lamellar bodies in keratinocytes of the stratum basale.
 c. Human skin ceramides with short chain fatty acids control better water retention.
 d. In AD, there is a shift towards long-chain ceramides and FFAs and longer ceramide membranes.
 e. Th2 cytokines in atopic dermatitis play a positive role in ceramide metabolism.

3. Considering Staphylococcus aureus colonization in atopic dermatitis, select the wrong sentence:
 a. S. aureus colonization is significantly correlated with disease activity.
 b. Decreased levels of filaggrin are a risk factor for S. aureus colonization.
 c. LL-37 and HBD-3 are downregulated by IL-4 and IL-13 in AD.
 d. S. aureus colonization is significantly correlated with disease activity.
 e. S. aureus proteases can impair the SC barrier function.

4. Regarding epidermal sensitization through AD skin, select the incorrect sentence:
 a. Alarmins and type-2 cytokines enhance activation and maturation of Langerhans cells and Th2 polarization.
 b. TSLP expression is decreased in acute and chronic AD lesions.
 c. TSLP polarizes skin DCs to a Th2 response during the sensitization to food and aeroallergens.
 d. Disrupted skin barrier favors IgE sensitization and subsequent airway hyperreactivity.
 e. Environmental allergens may precipitate atopic flares in IgE sensitized patients.

Correct answers: 1 – b; 2 – a; 3 – d; 4 – b.