New flux based dose–response relationships for ozone for European forest tree species

P. Büker a, *, Z. Feng b, J. Uddling c, A. Briolat a, R. Alonso d, S. Braun e, S. Elvira f, P.E. Karlsson g, D. Le Thiec h, R. Marzouli i, G. Mills j, E. Oksanen j, G. Wieser k, M. Wilkinson l, L.D. Emberson a

a Stockholm Environment Institute at York, Environment Department, University of York, Heslington, York, YO10 5DD, United Kingdom
b Research Centre for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqiao Road, Haidian District, 100085 Beijing, China
c Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, 40530 Gothenburg, Sweden
d Ecotoxicology of Air Pollution, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
e Institut für Angewandte Pflanzenbiologie (IAP), Sandgrubenstraße 25/27, 4124 Schönchenbuch, Switzerland
f Dipartimento di Matematica e Fisica “Nicola Tartaglia”, Università Cattolica del Sacro Cuore, via Musei 41, 25121 Brescia, Italy
g Swedish Environmental Research Institute, IVL, Box 5302, 40014 Gothenburg, Sweden
h UMR Ecologie et Ecophysiologie Forestières, INRA, Rue D’Amance, 54280 Champenoux, France
i Centre for Ecology and Hydrology, Environment Centre Wales, Denioll Road, Bangor, Gwynedd, LL57 2OW, United Kingdom
j Department of Biology, University of Eastern Finland, Post Box 111, 80101 Joensuu, Finland
k Department for Natural Hazards and Alpine Timberline, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Hofburg 1, 6020 Innsbruck, Austria
l Centre for Sustainable Forestry & Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4HL, United Kingdom

ARTICLE INFO

Article history:
Received 19 December 2014
Received in revised form 30 April 2015
Accepted 27 June 2015
Available online 10 July 2015

Keywords:
Trees
Ozone flux
Dose–response relationships
Model-based risk assessment

ABSTRACT

To derive O3 dose–response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate.

Crown Copyright © 2015 Published by Elsevier Ltd. All rights reserved.

1. Introduction

A large body of evidence has shown that ozone (O3) causes damage to trees (Wittig et al., 2009; Matsysek et al., 2010). These O3 effects range from impacts such as visible injury on foliage (Schaub, 2005), decreasing leaf chlorophyll content and photosynthesis (Wittig et al., 2009), changes in carbon allocation (Paolotti et al., 2009) and biomass production (Wittig et al., 2009), premature leaf senescence (Pell et al., 1999), and altered tree water use (Sun et al., 2012). By synthesising information expressed as O3 flux based dose–response relationships (DRR) derived from field-experiments, critical levels (CLs) have been identified above which O3 damage would be expected to occur (LRTAP Convention, 2010; Mills et al., 2011). The United Nations Convention on Long-Range Transboundary Air Pollution (LRTAP Convention) has used such CLs as a policy tool to identify areas of CL exceedance across Europe and subsequently to formulate European emission reduction strategies to improve air quality.
This study presents the next stage in the derivation of DRR for forest trees, which use the accumulated stomatal O₃ flux above a threshold ‘y’ as the dose metric (Emerson et al., 2007), often referred to as PODy (Phytotoxity Ozone Dose above a threshold ‘y’), and the relative change in annual whole tree biomass production as the response metric (Karlsson et al., 2007). Current CLs for forest trees are based on an analysis performed by Karlsson et al. (2007) on Norway spruce (27 data points from 3 countries and 8 experiments) and beech/birch (38 data points from 3 countries and 14 different experiments) and were set to values for which there was a >95% confidence of finding a significant effect at the percentage loss chosen (LRTAP Convention, 2010; Mills et al., 2011). Since the publication of Karlsson et al. (2007), additional experimental data have become available that extend the species under investigation and increase the range of environmental conditions under which the fumigation or filtration experiments were performed. In addition, new methods to assess the influence of soil moisture on stomatal O₃ flux have been developed (Büker et al., 2012).

In performing this re-analysis including all currently available forest tree data, we addressed the following sources of uncertainty in flux-effect modelling for forest tree species: i. the parameterisation of the stomatal flux model; ii. the choice of the ‘y’ threshold (which is considered to statistically represent the plants’ ability to detoxify a certain level of O₃ dose (Pleijel et al., 2007)); iii. the influence of reduced water-availability on stomatal O₃ flux and; iv. whether particular groupings of species, e.g. according to plant functional types (PFTs), with similar O₃ sensitivities can be identified. We also compared regression functions based on the same updated dataset using the updated flux methodology with those using the formerly accepted concentration-based approach (AOT40).

To investigate the parameterisation of the flux model, this study applied two different methods to estimate stomatal O₃ fluxes. The first method was that used previously by Karlsson et al. (2007), but with updates to include new parameterisations defined in the 2010 revision of the UNECE Mapping manual (LRTAP Convention, 2010). These ‘real species’ parameterisations incorporate new data to define parameter values and also identify climate specific parameterisations to account for different species ecotypes. A second method tested the suitability of a simplified parameterisation, i.e. standard functions that describe the effect of light, vapour pressure deficit and temperature on stomatal conductance (gₛ) irrespective of species, called simplified parameterisation or simple model from hereon. Application of this method was used to test the hypothesis that a simplified parameterisation of the multiplicative gₛ model leads to a similarly robust DRR as compared to the ‘real species’ parameterisation. As such it examined whether there is a need for a rigorous species-specific parameterisation of the model, which often complicates large-scale application of the flux based method both for flux-effect as well as total O₃ deposition estimation.

This study also presented the opportunity to compile new dose—response functions and datasets for two species (i.e. Holm oak and poplar) not considered in Karlsson et al. (2007). This allowed a more thorough investigation of the uncertainty in the current CLs related to the selection of the ‘y’ threshold. Karlsson et al. (2007) used a single ‘y’ value of 1.6 nmol O₃ m⁻² s⁻¹ based on a previous analysis (Karlsson et al., 2004), which found that this value gave higher R² values for flux—effect relationships when compared with thresholds of 0.0, 3.2 and 4.8 nmol O₃ m⁻² s⁻¹. Since it is more statistically robust to test a number of ‘y’ thresholds (Feng et al., 2012), the analysis presented here set out to trial a far wider and incrementally refined number of ‘y’ threshold values than has been performed previously for forest tree species.

Another key area of uncertainty investigated here is the influence of reduced water availability on PODy and hence O₃ sensitivity. Some of the new datasets are derived from experimental O₃ fumigations or filtrations conducted under varying levels of water supply. This allows the effect of reduced water availability on PODy to be investigated using a new soil water balance method described in Büker et al. (2012). This is particularly important as the exclusion of data representing non-optimal water supply, which is known to reduce gₛ (Büker et al., 2012) and therefore stomatal O₃ flux, has been cited as reason why the stomatal flux approach sometimes does not provide a substantial improvement of DRR developed using the concentration based AOT40 index (e.g. Karlsson et al., 2007).

Finally, this study also investigated whether species groupings of O₃ sensitivity can be defined. Past studies have been rather inconclusive in defining DRR that are able to represent different tree PFTs. For example, Karlsson et al. (2004, 2007) found Norway spruce, Scots pine and birch/beech to be more sensitive than Aleppo pine and oak such that no obvious distinction could be made between broadleaf and needleleaf trees. In contrast, a meta-analysis performed for forest trees by Wittig et al. (2009) found evidence for gymnosperms being less sensitive than angiosperms when related to O₃ concentrations. Also, broadleaf evergreen species have been reported to be more resistant to O₃ than broadleaf deciduous species (Calatayud et al., 2010, 2011; Zhang et al., 2012). However, a study by Reich (1987) suggested that when taking into account O₃ uptake (or flux) per leaf life span, conifers and hardwoods have similar sensitivity in terms of declines in photosynthesis and growth. This analysis provided an opportunity to investigate these issues in further detail using more advanced methods for estimating stomatal O₃ flux.

The overall aim of this study was to evaluate the performance of PODy and AOT40 metrics in predicting biomass reductions for forest trees. This was achieved through analysis of the statistical performance of linear regressions of DRR constructed using data collected from fumigation and filtration studies. This work was conducted with a view to developing new DRR that could be used in the derivation of critical levels within the LRTAP Convention.

2. Materials and methods
2.1. Estimating stomatal conductance gₛ

The stomatal conductance (gₛ) algorithm of the DO3SE (Deposition of O₃ for stomatal exchange) model was used as the basis for estimates of gₛ for all model runs. The model employs a multiplicative algorithm, based on that first developed by Jarvis (Jarvis, 1976), modified for O₃ flux estimates (Emerson et al., 2000a, 2000b, 2001, 2007; Büker et al., 2012) to estimate leaf/needle gₛ (the inverse of rₛ (stomatal resistance)) as:

\[gₛ = g_{max} \cdot f_{phen} \cdot f_{PPFD} \cdot f_{SW} \cdot f_{min} \cdot f_{D} \cdot f_{D} \cdot f_{SW} \]

where the species-specific maximum gₛ (g_{max}) is modified by relative response functions (scaled from 0 to 1) to account for gₛ variation with leaf/needle age over the course of the growing season (f_{phen}) and the functions f_{PPFD}, f_{D}, f_{D} and f_{SW} relating gₛ to irradiance (described as photosynthetic photon flux density, PPFD, μmol/m²/s), temperature (T, degrees Celsius), vapour pressure deficit of the air (D, kPa) and soil water, respectively. f_{SW} can either be related to soil water potential (SWP in MPa) or plant available soil water expressed in volumetric terms (PAW in % vol/vol). f_{min} is the minimum daylight gₛ under field conditions, expressed as a fraction of g_{max}.

1 AOT40 — Ozone concentrations accumulated over a threshold of 40 ppb.
2.2. Estimating gs for ‘real’ species modelling

The parameters and functions used for the estimation of ‘real’ species gs are those defined in the mapping manual of the Convention on Long-Range Transboundary Air Pollution (LRTAP Convention, 2010) with the exception of gmax values which have been revised according to newly available datasets since the publication of Karlsson et al. (2007) (i.e. LRTAP Convention, 2010; Marzuoli et al., 2009) and a recently modified diffusivity ratio of O3 to water vapour of 0.663 (Grünhage et al., 2012); i.e. a phenology function which is defined either by latitude according to LRTAP Convention (2010) or by information provided by holders of the experimental data included in this study (see Section 2.5 and Table 1 and Table S1 for further details) and; iii. the parameterisation for poplar, which was taken from Marzuoli et al. (2009) since a parameterisation for this species was previously not defined. All parameterisations used here are described in Table 1.

Parameter/Units	Beech	Birch	Temperate oak	Norway spruce	Norway spruce	Holm oak	Aleppo pine	Scots pine	Poplar
Region	CCE	NE	ACE	NE	ME	ME	ACE		
gmax (mmol O₃ m⁻² PLAs⁻¹)	150	240	255	125	130	195	230	190	575/540
fmin	0.13	0.1	0.06	0.1	0.16	0.02	0.15	0.1	0.1
SGS² (year day)	LF or DP	LF	LF or DP	DP	1–365	1–365	DP	DP	DP
EGS² (year day)	LF or DP	LF	LF or DP	DP	DP	1–365	1–365	DP	DP
fphen_lim (year day)	–	–	–	–	–	–	–	–	–
fphen_lim (year day)	–	–	–	80	80	320	320	–	–
fphen_a	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.8	0.0
fphen_b	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	1.0	1.0	(1.0)	(1.0)
fphen_c	1.0	1.0	1.0	1.0	0.3	0.1	1.0	1.0	1.0
fphen_d	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	1.0	1.0	(1.0)	(1.0)
fmin	0.4	0.0	0.0	0.0	0.0	1.0	1.0	0.8	0.0
fphen_e	days	20	20	20	20	130	130	40	40
fphen_e	days	30	30	30	–	60	60	40	40
light_a	0.006	0.0042	0.003	0.006	0.012	0.013	0.006	0.006	
Tmax	°C	5	5	0	0	1	10	0	11
T0	°C	16	20	20	20	14	23	27	20
VPDmax	kPa	3.3	2.7	3.25	2.8	4.0	4.0	3.2	2.8
VPDmin	kPa	1.0	0.5	1.0	0.8	0.5	2.2	1.0	0.6
SWP/PAW	MPa%/vol⁻¹	If SWP, distinction between boreal/temperate	Mediterranean forest tree species; details of SWP and PAW parameterisation in Table 3 and Table S1.						

Table 1

2.3. Estimating gs using a simplified parameterisation

A second set of model runs was based on a simplified parameterisation of the model to test the feasibility of using less parameter-intensive estimates of environmental influences on gs for tree species and groups of species. This simple model kept the same fSW and fphen formulation and parameterisation as described in Table 1. However, the formulations for fppfd, fL and fD have been revised with the intention to develop standard functions that can be used for all tree species. This simplified formulation of the flux model represents a new development of the “generic” tree modelling concept presented in LRTAP Convention (2010), and includes for the first time flux based DRR. These functions, described by a single formulation, are detailed in the following equations.

\[
f_{\text{ppfd}} = f_{\text{min}} + 0.9*(1 - \exp(light_a*PPFD))
\]

\[
f_{D} = \min(1, 1 - 0.64*\ln(D))
\]

Table 2

Site	Tmin (°C)	T0 (°C)	Tmax (°C)
Birmensdorf	9	21	45
Kuopio	3	16	45
Ostad	1	17	45
Schönenbach	7	20	45
Zugberg	5	18	45
Col du Donon	–1	13	45
Ebro delta	12	25	45
Headley	6	20	45
Curno	10	24	45
Grignon	7	17	45

Table 3

Site	Data Source
Birmensdorf	Data provided by data holders of experiments presented in Table 3. See also Table S1.
Kuopio	Data provided by data holders of experiments presented in Table 3. See also Table S1.
Ostad	Data provided by data holders of experiments presented in Table 3. See also Table S1.
Schönenbach	Data provided by data holders of experiments presented in Table 3. See also Table S1.
Zugberg	Data provided by data holders of experiments presented in Table 3. See also Table S1.
Col du Donon	Data provided by data holders of experiments presented in Table 3. See also Table S1.
Ebro delta	Data provided by data holders of experiments presented in Table 3. See also Table S1.
Headley	Data provided by data holders of experiments presented in Table 3. See also Table S1.
Curno	Data provided by data holders of experiments presented in Table 3. See also Table S1.
Grignon	Data provided by data holders of experiments presented in Table 3. See also Table S1.

Note: The Table 1 values are set at 200 °C to simulate the weak response to high temperatures of Norway spruce and birch trees growing under Northern European conditions (the stomatal response is instead mediated by high VPD values). Hence, the Tmax value should be viewed as a forcing rather than descriptive parameter.

[a] “Generic” deciduous parameterisation used as surrogate.

[b] Parameterisation as given by Marzuoli et al. (2009) for young poplar trees, apart from gmax, which is based on site-specific measurements (575 mmol O₃ m⁻² PLAs⁻¹ – Curno, 540 mmol O₃ m⁻² PLAs⁻¹ – Grignon; italics represent values taken from beech ACE parameterisation).

[c] boreal/temperate SWP = min{1, max(fmin, 0.355 [–LWPpd]¹[0.006])}; Mediterranean ISWP = min{1, max(fmin, 0.619 [–LWPpd]¹[0.044])}, where LWPpd is the predawn leaf water potential (MPa); fPAW = min{1, max(fmin, fmin + (1 – fmin))(100 PAW/FC – PAWmin)/(PAWmin – PAWmin)}, where FC is the field capacity, PAWmin is the soil texture dependent soil water content at minimum soil water potential and PAWmin is 50% of PAW. For details see Büker et al. (2012).

[d] LF = Latitude function according to LRTAP Convention (2010); DP = Data provided by data holders of experiments presented in Table 3. See also Table S1.

[e] NE = Northern Europe; ACE = Atlantic Central Europe; CCE = Continental Central Europe; ME = Mediterranean Europe.
This f_r (except for its “min” formulation) is supported by the theory on tree hydraulics and has been shown to hold for a broad range of tree species (Oren et al., 1999). The commonly used bell-shaped f_r (LRTAP Convention, 2010) is given by:

$$f_r = \max\left(f_{\text{min}}, \left(\frac{T - T_{\text{min}}}{T_{\text{opt}} - T_{\text{min}}} \right)^{bTR} \right)$$

where T_{min}, T_{opt} and T_{max} are the species-specific minimum, optimum and maximum T, respectively. bTR is defined as:

$$bTR = \left(\frac{T_{\text{max}} - T_{\text{opt}}}{T_{\text{opt}} - T_{\text{min}}} \right)$$

Eq. (4) was only applied, if $T_{\text{min}} < T < T_{\text{opt}}$ and $T < T_{\text{min}}$.

$FST = f_{\text{min}}$

While traditionally f_r drops to 0 if $T_{\text{max}} > T > T_{\text{opt}}$, here a non-limiting T effect on g_s is assumed if $T_{\text{max}} > T > T_{\text{opt}}$, i.e. the effect of T on stomatal closure within this T range is thus assumed to be mediated through the effect of T on D: If $T_{\text{max}} > T > T_{\text{opt}}$

$$f_r = 1$$

and if $T > T_{\text{max}}$, then

$$f_r = 0$$

The f_r parameterisation was defined by analysing the site-specific growing season 24-h T at each site and using the 1st percentile and mean temperatures as the T_{min} and T_{opt} values respectively. The growth period was defined as the ‘real’ species parameterisation (Table 1 and Table S1). Hence, this parameterisation is site- rather than species-specific. T_{max} was fixed at 45 $^\circ$C which is an average maximum T below which the most drought-adapted European trees can maintain their physiological activity (Larcher, 2003). The simplified parameterisation of f_r for all sites is also described in Table 2. Finally, f_{min} was set to 0.1 for the simplified parameterisation.

2.4. Estimating PODy and AOT40

The calculation of PODy requires estimates of stomatal O$_3$ flux (F_{St}) which are made according to the LRTAP Convention (2010). F_{St} (nmol O$_3$ m$^{-2}$ Projected Leaf Area (PLA) s$^{-1}$) is calculated according to Eq. (9) which accounts for deposition to the cuticle through incorporation of the leaf surface resistance (r_c) and boundary layer resistance (r_b) terms:

$$F_{\text{St}} = c(z_1) g_s \frac{r_c}{r_b + r_c}$$

where $c(z_1)$ is the concentration of O$_3$ at the top of the canopy (nmol m$^{-3}$) at height z_1 (m), g_s is in m s$^{-1}$, r_b is the leaf quasi-laminar resistance and r_c the leaf surface resistance, both given in s m$^{-1}$. For further details on the resistance scheme see LRTAP Convention (2010). The accumulated F_{St} above an O$_3$ stomatal flux threshold of y (nmol m$^{-2}$ s$^{-1}$) provides the PODy index and is calculated according to Eq. (10).

$$\text{PODy} = \sum_{i=1}^{n} \max\left[F_{\text{St}}, y; 0\right] \ast \Delta t$$

where F_{St} is the stomatal O$_3$ flux (nmol O$_3$ m$^{-2}$ PLA h$^{-1}$) and y is the threshold stomatal flux per projected leaf area (PLA) (in nmol O$_3$ m$^{-2}$ s$^{-1}$). The calculation of PODy is based on hourly values (F_{St}), so $\Delta t = 1$ h. n is the number of hours within the defined growth period. We trialled small y increments of 0.1 from 0 to 6 nmol O$_3$ m$^{-2}$ PLA s$^{-1}$ to facilitate a more precise determination of the ‘y’ threshold.

Estimates of AOT40 (Accumulated OVer a Threshold of 40 ppb ozone) are performed using the methodology outlined in the LRTAP Convention (2010):

$$AOT40 = \sum_{i=1}^{n} \max\left[c_i - 40, 0\right] \ast \Delta t$$

where 40 is the threshold concentration (in ppb) and the calculation of AOT40 is based on hourly values (c_i) so that $\Delta t = 1$ h and n is again the number of hours within the defined growth period.

The model runs were performed using the interfaced version of DO2SE (http://www.sei-international.org/do3se). This code has been rigorously tested and provides a definitive set of algorithms that represent the current formulations and parameterisations to derive PODy (LRTAP Convention, 2010) as well as AOT40 values.

2.5. Description of sites and datasets

This study used O$_3$ experimental fumigation or filtration data sets collected for eight different species: birch (Betula pendula), beech (Fagus sylvatica), temperate oak (Quercus robur or petraea), Norway spruce (Picea abies), Scots pine (Pinus sylvestris), Aleppo pine (Pinus halepensis), Holm oak (Quercus ilex) and poplar hybrids (Populus maximowicz × Populus berolinensis or Populus deltoides × Populus nigra). These datasets were from ten different sites in seven countries (Sweden, Finland, U.K., France, Switzerland, Spain and Italy), thereby representing all major European climatic zones defined in the UNECE Mapping Manual (LRTAP Convention, 2010). Six experiments from France, Italy, Spain and Sweden contained reduced water supply treatments created either by i. reduced irrigation for up to 10 weeks, ii. reduced precipitation (with the help of an Open Top Chamber (OTC) roof) for up to 20 weeks or iii. no irrigation but full precipitation for the entire growing season. Further details of these treatments by dataset are provided in Table 3.

One of the datasets that had been included in the earlier study by Karlsson et al. (2007) is excluded from this study due to too few replicates having been conducted in the experiment. This study also includes three new datasets for Holm oak and poplar collected from sites in France, Italy and Spain (Table 3).

Apart from two open-field systems in Grignon (Le Thiec, pers. comm.; Ahmad et al., 2012) and Kuopio (Oksanen, 2003), all other sites were equipped with Open Top Chambers (OTC) for the exposure of young trees to O$_3$. Details about the individual experiments can be found in Table 3 and the papers referenced therein. The control treatment in these experiments was either charcoal-filtered or ambient (non-filtered) air, and the O$_3$ treatments were ambient air, charcoal filtered plus additional O$_3$ or ambient air plus additional O$_3$. The response parameter used for the derivation of the DRR was wherever possible total biomass; where root biomass was not available, above-ground biomass was used.

In LRTAP Convention (2010), the growing season is estimated using the latitude model for forests that do not have a year-round growth habit. However, the experiments included in this analysis were predominantly performed in OTCs and the fumigation or filtration periods were sometimes outside of the latitude function-derived growth period. Hence, only experiments that captured 60% or more of this period were included here to ensure that O$_3$ exposures covered the majority of the estimated growing season. Table S1 gives the O$_3$ flux accumulation period, as defined by the
fumigation or filtration period.

The calculation of PODy required that the practitioner of each experimental site provided a full complement of hourly meteorological data from which T, D and $PPFD$ could be determined according to standard methods (Jones, 1992). Hourly canopy height O$_3$ concentration data as well as a seasonal profile of soil water status was also required.

2.6. Derivation of O$_3$ flux based dose–response relationships

The PODy and AOT40 were accumulated over the entire length of each individual growing season of each experiment. When experiments covered multiple growing seasons, the PODy and AOT40 of the fumigation periods of all growing seasons were summed and then divided by the number of growing seasons to obtain the mean annual PODy and AOT40.

In order to standardise the biomass response data from experiments of differing duration, the following formula (Fuhrer, 1994) was applied to calculate the mean annual percentage reduction in biomass relative to the control (RB_{annual}):

$$RB_{annual} = 100\times\left(\frac{B_{treat}}{B_{control}}\right)^{1/n}$$

(12)

where B_{treat} and $B_{control}$ represent the biomass at ambient or elevated O$_3$ exposures and a control at zero AOT40 or PODy respectively, and n is the number of growing seasons. This equation assumes a constant ozone-induced percentage reduction in biomass accumulation across years in multi-year experiments.

For experiments that used non-filtered ambient air (NF) rather than CF as control treatment or that had a PODy or AOT40 of greater than 0 for the CF treatment, the biomass of the control was calculated as the Y-intercept value resulting from the linear regression of biomass (Y-axis) and O$_3$ exposure (X-axis) data (Fuhrer, 1994). The reduction in biomass for each treatment was calculated relative to the hypothetical biomass at zero AOT40 or zero PODy, which enabled the comparison of experiments that had either CF or NF control treatments. Species were investigated either as single or groups of species. Broader species groupings allowed analysis of responses according to plant functional types, with needleleaf trees (Picea abies, Pinus halepensis and Pinus sylvestris) and broadleaf deciduous trees (Betula pendula, Fagus sylvatica, Populus spec., Quercus robur and Quercus petraea) being used as comparative groupings.

For the derivation of concentration- and flux-based DRR, the relationships between RB_{annual} and the mean annual AOT40 or PODy were fitted using the linear regression and mixed linear regression in R (version 3.1.3) and covering data from all O$_3$ treatments including the control, without forcing the regression through 1 on the Y-axis. Each data point included in the regression analysis represented a single value for each species, treatment and harvest of each experiment. The R^2 and confidence intervals (C.I.) of the slope of the regression line were used to test the robustness of DRR.

For the linear regression and mixed linear regression the function gls and lme were used, respectively (package nlme; Pinheiro et al., 2015). A correction for heteroscedasticity was made using the option weights = varPower(). The Akaike Information Criteria (AIC) was used to decide which regression type was appropriate. In most cases the simple regression with heteroscedasticity correction yielded the lowest AIC (and hence the strongest regression), except for the groups “needleleaf trees” and “Quercus ilex and P. halepensis”, where the inclusion of species as cluster improved the AIC. The ‘y’ thresholds of the PODy indices that yield intercept C.I. that include 100% can be deemed to provide statistically robust DRR.

However, it is also useful to set some objective criteria by which a clear indication of the relative performance of different ‘y’ (nmol m$^{-2}$ s$^{-1}$) thresholds can be assessed when comparing between species and PFTs. This was achieved by analysing key attributes of the (mixed) linear regressions between PODy and biomass reduction, namely the Y-axis intercept and its C.I. and R^2 values of each dose–response regression with incrementally increasing ‘y’ thresholds. These attributes used two criteria: a) that the C.I. of the intercept includes 100% and b) that the R^2 value is within 2% of the maximum R^2 value.

Table 3

Species	Site	Exposure system	Control treatment	Ozone treatments	Experimentation duration (yrs)	Red. H$_2$O treatment	Tree age at start of experiment (yrs)	Response parameter	Reference		
Betula pendula	Birmensdorf (CH)	OTC	CF	CF, CF++, CF+++	1	No	Cuttings	Total biomass	Uddling et al. (2004)		
			Ostad (S)	OTC	NF	NF, NF+, NF++	1, 2	No	1	Perennial biomass	Karlsson et al. (2004)
			Kuopio (FIN)	Open-field	AA	AA+	2, 2, 5	No	1	Total biomass	Karlsson et al. (2004)
			Schönenvonbuch (CH)	OTC	CF	NF	2	No	1	Total biomass	Braun and Flückiger (1995)
			Zugerberg (CH)	OTC	CF	NF	2, 3	No	1	Total biomass	Braun and Flückiger (1995)
Fagus sylvatica	Ebro Delta (SP)	OTC	CF	NF, NF+	1, 2, 3, 4	Yes	3	Total biomass	Ottoisson et al. (2003), Karlsson et al. (2004)		
			Schönenvonbuch (CH)	OTC	CF	NF	2	No	1	Total biomass	Braun and Flückiger (1995)
			Zugerberg (CH)	OTC	CF	NF	1, 2, 3	No	1	Total biomass	Alonso et al. (2003), Elvira et al. (2007)
Pinus halepensis	Ebro Delta (SP)	OTC	CF	NF, NF+	3	Yes	2	Total biomass	Alonso et al. (2003), Elvira et al. (2007)		
Pinus sylvestris	Headley (U.K.)	OTC	CF	NF	2	No	1	Above-ground biomass	Marzouki et al. (2009), Pollastrini et al. (2010)		
Populus spec.	Curro (I)	OTC	CF	NF	1	Yes	1–2	Above-ground biomass	Le Thiec, pers. comm., Ahmad et al. (2012)		
			Grignon (F)	Open-field	NF	NF+, NF++	1	No	1	Above-ground biomass	Alonso et al. (2014)
Quercus ilex	Ebro Delta (SP)	OTC	CF	NF, NF+	2	Yes	2	Total biomass	Dixon et al. (1998)		
Quercus robur or petraea	Col-du-Donon (F)	OTC	CF	NF, NF+	2	Yes	2	Above-ground biomass	Medlyn et al. (1999)		

* Either *Populus maximowicz* × *Populus berolinensis* (Curro) or *Populus deltoides* × *Populus nigra* (Grignon).
3. Results

3.1. Derivation of y threshold

The y range according to the criteria outlined in Section 2.6 is largest for beech/birch and broadleaf deciduous trees, and smallest for Holm oak and Aleppo pine (black bars in Fig. 1; Table 4). The confidence intervals of the intercept were smaller for needleleaf as compared of broadleaf trees. The maximum R² was highest for Holm oak and Aleppo pine and smallest for Norway spruce (Fig. 1; Table 4).

Table 4

Overview of ‘y’-range for species and species-groups according to criteria defined in Section 2.6.

Species/Species-group	‘y’-range
Picea abies	0.2–1.2
Fagus sylvatica & Betula pendula	1.6–5.1
Quercus ilex & Pinus halepensis	0.0–0.7
Broadleaf deciduous trees	1.3–3.8
Needleleaf trees	0.9–2.5

Fig. 1. Intercept and R² for various O₃ flux thresholds (y) of each species or species group. The black bars represent the y range where the confidence interval of the intercept includes 100% and where the R² is within 2% of the maximum R².
Fig. 2. Dose–response relationships for Picea abies for O₃ indices A) AOT40, B) standard “real species” model POD₁ and C) simplified model POD₁.

Fig. 3. Dose–response relationships for Fagus sylvatica and Betula pendula for O₃ indices A) AOT40, B) standard “real species” model POD₃ and C) simple model POD₃.
NB: The displacement of the intercept (and its C.I.) of Norway spruce is due to one value dominating the intercept above \(y = 4.7 \text{ nmol m}^{-2} \text{ s}^{-1} \).

For the following definition of DRR, exemplary 'y' thresholds (rounded to the next natural number) closest to the maximum \(R^2 \) of each species and species group were chosen.

3.2. Dose–response relationships

For *Picea abies* (Fig. 2), the flux based DRR using the simple model is on a par with the AOT40 based DRR (\(R^2 = 0.37 \) and 0.38; intercept = 1.0 and 1.0; slope = \(-0.0019\) and \(-0.0024\), respectively; for standard errors (S.E.) and confidence intervals (C.I.), see Tables S2 and S7), while the flux based DRR using the standard "real-species" model is slightly less strong (\(R^2 = 0.34 \); intercept = 1.0; slope = \(-0.0022\); for S.E. and C.I., see Table S2).

The DRR for *Betula pendula* and *Fagus sylvatica* (Fig. 3) based on the flux based index POD3 with both gs model parameterisations (\(R^2 = 0.70 \) and 0.68; intercept = 0.99 and 1.00; slope = \(-0.0137\) and \(-0.0097\) for the "real-species" and simple model, respectively; for S.E. and C.I., see Table S3) and the concentration-based index AOT40 (\(R^2 = 0.68 \); intercept = 0.99; slope = \(-0.0076\); for S.E. and C.I., see Table S7) perform equally well.

For the Mediterranean evergreen species *Quercus ilex* and *Pinus halepensis* (Fig. 4), both the POD1 response relationships using the "real species" and simple model (\(R^2 = 0.72 \) and 0.63; intercept = 1.01 and 1.01; slope = \(-0.0024\) and \(-0.0037\), respectively; for S.E. and C.I., see Table S4) clearly outperform the AOT40-based DRR (\(R^2 = 0.42 \); intercept = 1.00; slope = \(-0.0005\); for S.E. and C.I., see Table S7).

Fig. 5 shows the stronger flux-based DRR (\(R^2 = 0.52 \) and 0.45; intercept = 1.00 and 1.00; slope = \(-0.0042\) and \(-0.0038\) for the "real species" and simple model, respectively; for S.E. and C.I., see Table S5) as compared to the AOT40–based DRR (\(R^2 = 0.38 \); intercept = 1.00; slope = \(-0.0021\); for S.E. and C.I., see Table S7) for three needleleaf tree species. The performance of all needleleaf tree DRR is better than the separate respective DRR for *Picea abies* alone (Fig. 2).

Fig. 6 compares the POD3-response relationships for five broadleaf deciduous tree species using the "real-species" and simple model with the AOT40–response relationship. While the differences in the \(R^2 \) are fairly small (0.41, 0.38 and 0.34 for AOT40, "real species" and simple model, respectively), the slopes differ much more (\(-0.0061\), \(-0.0098\), \(-0.0082\) for AOT40, "real species" and simple model, respectively; for S.E. and C.I., see Tables S6 and S7). The performance of all broadleaf deciduous tree DRR is worse than the separate respective DRR for the two broadleaf species *B. pendula* and *Fagus sylvatica* (Fig. 3).

The Tables S2 to S7 provide an overview of all AOT40-and flux-based DRR.

3.3. Effect of reduced water supply

Datasets of six experiments using five different species (*Picea abies*, *P. halepensis*, *Quercus robur*, *Q. ilex* and *Populus spec.*.) comprised data points representing both well-watered and reduced-water conditions. The data points of the reduced water supply treatments are positioned within the general data cloud of Figs. 2 and 4–6 (not indicated in these figures), which suggests that they do not represent clearly distinguishable O3-uptake or

Fig. 4. Dose–response relationships for Mediterranean evergreen species *Quercus ilex* and *Pinus halepensis* for O3 indices A) AOT40, B) standard “real species” model POD1 and C) simple model POD1.
Fig. 5. Dose–response relationships for needleleaf tree species for A) AOT40, B) standard “real species model” POD2 and C) simple model POD2.

Fig. 6. Dose–response relationships for broadleaf deciduous tree species for A) AOT40, B) standard “real species model” POD3 and C) simplified parameterisation POD3.
-response conditions as compared to the well-watered treatments. To more clearly observe the size of the effect of reduced water supply on \(g_s \) and consequently on PODy, the experimental datasets that included a water stress treatment (15 data points in total) were directly compared with the well-watered treatments of the same experiments using the “real species” model. These two sets of PODy data were plotted against each other so that the deviation from the 1:1 line indicated the effect of water stress on PODy (Fig. 7).

There was a significant (at 95% confidence level) but small (9%) deviation from the 1:1 line, suggesting that the effect of reduced water availability on \(g_s \) and hence \(O_3 \) flux was small in the experiments included in this study.

4. Discussion

We analysed data from 24 European field experiments to derive \(O_3 \) flux-based DRR for Norway spruce, beech and birch, Holm oak and Aleppo pine, as well as the two PFTs of broadleaf deciduous trees and needleleaf trees.

The inclusion of Holm oak and Aleppo pine datasets for the first time enabled the derivation of a combined DRR for Mediterranean trees only (a separate DRR for Holm oak was recently published by Alonso et al. (2014)). Despite these two species representing different PFTs, their grouping is justified due to both of them being evergreen, physiologically active throughout the year and able to cope well with Mediterranean climatic conditions, including drought. However, it should be noted that broadleaf deciduous species are also common in the Mediterranean and that these species have been shown to be more sensitive to \(O_3 \) than the broadleaf evergreen species Holm oak used in this study (Calatayud et al., 2011).

Rather than suggesting species- or PFT-specific “suitable” \(y \) thresholds, we give a range of different species- or PFT-specific \(y \) thresholds according to statistical criteria outlined in Section 2.6. Firstly, this study shows that all of the \(y \) thresholds (from 0 to 6) provide statistically robust DRR for all species and PFTs when considering the intercept CIs, with the exception of \(y \) thresholds above 4.7 mmol m\(^{-2}\) s\(^{-1}\) for needleleaf trees. This study therefore supports the current \(y \) thresholds used by LRTAP Convention (2010). When considering the intercept and \(R^2 \) statistics in combination (to aid the objective comparison of these key statistical characteristics between species and PFTs), the study suggests that needleleaf trees may have a lower \(y \) as compared to broadleaf deciduous trees, which might be an indication that the latter have a higher detoxification potential. In fact, Temmerman et al. (2002), Musselman et al. (2006) and Dizengremel et al. (2009) discuss the concept of varying detoxification potentials of trees in detail. They agree that given the biochemical processes (i.e. antioxidant capacity, turnover and transport) that are known to be involved in ozone scavenging, it is certain that plants have a capacity for detoxification and that this varies between species. However, the complexity of these biochemical processes currently makes it difficult to quantify this capacity either absolutely or in relative terms for different species or species groups.

The new flux-based DRR for Norway spruce is associated with a lower \(R^2 \) (0.34) than reported by LRTAP Convention (2010) \((R^2 = 0.55)\), mainly because one dataset that had been used in these two previous studies and that was characterised by high PODy values had to be excluded due to a limited replication of experimental treatments. In addition, a new parameterisation \(\gamma_{\text{max}} \) and changes in the start and end of the phenological period (these changes applied to all species involved in this study) have also caused differences by increasing the maximum stomatal \(O_3 \) flux and changing its accumulation period.

In contrast, the new DRR for beech/birch with \(R^2 \) values of 0.70 is an improvement over DRR reported previously \((R^2 = 0.64)\) in LRTAP Convention, 2010). This result is also supported by a recent epidemiological study (Braun et al., 2014) that also emphasised the transferability of DRR derived from young trees to mature trees.

The grouping of species into PFTs of broadleaf deciduous and needleleaf trees has led to fairly robust DRR; while the DRR for broadleaf deciduous trees was less robust than for beech and birch, the DRR for needleleaf trees was actually more robust than for the Norway spruce. The new DRR for PFTs clearly and uniformly demonstrate substantial loss in biomass with increasing \(O_3 \) flux for European trees. As such, these new DRR for PFTs (plus that for Mediterranean trees) will expand the applicability of the flux based risk assessment method.

It would be desirable to use these new DRR to describe the relative sensitivities of different species and species groups. Ordinarily, this would be described by the slope of the regressions (provided for each of the \(y \) threshold increments in the supplementary material in Table S2 to S6). However, this is complicated by the fact that the slope of the regression will also depend upon the \(y \) threshold, with higher \(y \) thresholds tending to have steeper slopes (as the index accumulates less quickly). Therefore it is not so straightforward to compare species sensitivities based on slopes alone. However, if we were to assume that all species had a \(y \) threshold of 1 as suggested by LRTAP Convention (2010), we would get the following ranking in terms of sensitivity of the species groups and plant functional types (from higher to lower sensitivity): Beech/birch > Broadleaf deciduous trees > Needleleaf trees > Holm oak/Aleppo pine > Norway spruce.

For application on a broader-scale, we tested the concept of using a simplified parameterisation to estimate PODy by comparing flux–effect relationships derived using the “real species” parameterisation with those that were derived using the simplified parameterisation. These two approaches differed in terms of the parameterisation of their PPFD, \(T \) and \(D \) functions. Based on the statistical analysis of the DRR (see Tables S2 to S6), the model using the simplified parameterisation slightly outperformed the “real species” model for Norway spruce, whereas for all other

\[\text{Well-watered vs. reduced-water PODy} \]

Fig. 7. Regression for PODy of well-watered vs. reduced-water treatments for five experiments representing the following trees species: *Picea abies*, *Pinus halepensis*, *Quercus robur*, *Quercus ilex* and *Populus spec.* The 1:1 line (dashed) is also shown. N.B. Reduced-water represents instances when \(g_s \) was limited by soil water availability according to the DO3SE model (Büker et al. (2012)).
species or PFT the opposite was the case (especially for the Mediterranean tree species). These results indicate that for Norway spruce, beech/birch, broadleaf deciduous trees and — to a lesser extent — needleleaf trees the differences in the performance between both models is not so severe that the application of the simple model would introduce a major loss in accuracy in predicting O₃ fluxes. However, the same is not the case when applying the simplified parameterisation for Mediterranean tree species, where presumably significant uncertainties would be introduced as compared to the “real species” model, thereby questioning the general suitability of the simplified parameterisation of the model.

As such, the less parameter-intensive use of the simplified parameterisation for large scale (e.g. pan-European) risk assessments is not yet possible. It would be useful to further assess whether the uncertainty introduced by applying the simplified parameterisation would vary significantly between European climatic zones and tree species.

The inclusion of datasets representing experiments performed under restricted water availability neither substantially improved nor worsened the DRR; the data points from restricted water experiments fell within the range of data points from well-watered experiments. This provides further support for the use of flux based methods in comparison to the consumption-based AOT₄₀ approach, which cannot account for environmental impacts on O₃ uptake by plants. The difference in the performance between the flux based and the AOT₄₀-based DRR found in this study was comparable to earlier studies by Karlsson et al. (2007) and the LRTP Convention (2010), despite the fact that the DΟ₂SE model now has a much more sophisticated soil moisture deficit module that has been successfully validated (Büker et al., 2012). Further analysis found that the reduced water treatments applied in the various experiments did lead to significant but small reductions in modelled gs, hence leading only to slight reductions in O₃ flux (Fig. 7), which is in contrast to earlier — mostly Mediterranean — studies, for instance by Alonso et al. (2014), who used a local parameterisation of the flux model. The periods of reduced water availability were too short and moderate to represent severe drought conditions. However, actual Mediterranean conditions are likely to incur far greater soil water stress over longer time periods than were applied in the experimental studies investigated in this analysis, with consequent limitations on gs and hence reduced PODy. Therefore it is imperative to include the FSW function in models used to estimate PODy values. More prolonged episodes of reduced water availability would have had to be applied to significantly reduce gs and hence O₃ fluxes, which could have led to an even more pronounced difference in the performance of the AOT₄₀ as compared to the flux based risk assessment approach.

5. Conclusions

The analysis presented here derived new O₃ flux based DRR for nine European forest tree species using varying statistically derived flux thresholds according to the species sensitivity to O₃. Flux based DRR were mostly more robust than concentration based DRR. The study showed that it is possible to define DRR both by species as well as by plant functional types and that the use of a simplified parameterisation of the gs model can provide reasonable accuracy in the calculation of PODy for non-Mediterranean tree species. The findings suggest that critical levels as published by the UNECE (LRTP Convention, 2010) could be re-defined using the updated PODy estimates and biomass response datasets presented here. They also support the y thresholds for broadleaf and needleleaf species (the former having a higher y threshold than the latter) based on an objective characterisation of key statistical parameters and how these compare between species and PFT groupings.

Acknowledgements

We would like to thank the UK Department for Environment, Food and Rural Affairs (Defra) (AQQ0601) for their continuous financial support in developing and applying the DΟ₂SE model as part of contract AQQ0601. This research was part-funded by the European FP7-ENV-2011/282910 ECLAIRE (effects of climate change on air pollution impacts and response strategies for European ecosystems) project.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.envpol.2015.06.033.

References

Ahmad, R., Zuliy-Fodil, Y., Passaqueto, C., Bethenod, O., Roche, R., Repellin, A., 2012. Ozone and aging up-regulate type II metacaspase gene expression and global metacaspase activity in the leaves of field-grown maize (Zea mays L.) plants. Chemosphere 87, 789—795. http://dx.doi.org/10.1016/j.chemosphere.201112.081.
Alonso, R., Elvira, S., González-Fernández, I., Calvet, H., García-Gómez, H., Bermejo, V., 2014. Drought stress does not protect Quercus ilex L. from ozone effects: results from a comparative study of two subspecies differing in ozone sensitivity. Plant Biol. 16, 357—384. http://dx.doi.org/10.1111/plb.12073.
Alonso, R., Elvira, S., Inclán, R., Bermejo, V., Castillo, F.J., Gimeno, B.S., 2003. Responses of Aleppo pine to ozone. In: Developments in Environmental Science. Elsevier, pp. 211—230.
Braun, S., Flückiger, W., 1995. Effects of ambient ozone on seedlings of Fagus sylvatica L. and Picea abies (L.) Krst. New. Phytol. 129, 33—44.
Braun, S., Schindler, C., Rühm, B., 2014. Growth losses in Swiss forests caused by ozone: epidemiological data analysis of stem increment of fagus sylvatica L. and Picea abies Krat. Environ. Pollut. 192, 128—138. http://dx.doi.org/10.1016/j.envpol.2014.05.016.
Büker, P., Morrissey, T., Broaliat, A., Clark, R., Simpson, D., Tuovinen, J.-P., Alonso, R., Barth, S., Baumgartner, M., Gruhle, N., Karlsson, P.E., King, J., Lagergren, F., Matyssek, R., Nunn, A., Ogaya, R., Perinles, J., Rhea, L., Schaub, M., Ud Delhi, J., Werner, W., Embersdon, L.D., 2012. DΟ₂SE modelling of soil moisture to determine ozone flux to forest trees. Atmos. Chem. Phys. 12, 5537—5562. http://dx.doi.org/10.5194/acp-12-5537-2012.
Calatayud, V., Cerveró, J., Calvo, E., García-Breijo, F.-J., Reig-Armimiana, J., Sanz, M.J., 2011. Responses of evergreen and deciduous Quercus species to enhanced ozone levels. Environ. Pollut. 159, 55—63. http://dx.doi.org/10.1016/j.envpol.2010.09.024.
Calatayud, V., Marco, F., Cervero, J., Sánchez-Peña, G., Sanz, M.J., 2010. Contrasting ozone sensitivity in related evergreen and deciduous shrubs. Environ. Pollut. 158, 3580—3587. http://dx.doi.org/10.1016/j.envpol.2010.08.013.
De Tommerman, L., Vandemeeren, K., D’haese, D., Botter, K., Assard, H., Ceulemans, R., 2002. Ozone effects on trees, where uptake and detoxification meet. Dendrobiology 47.
Dixon, M., Le Thiec, D., Garric, J.P., 1998. Reactions of Norway spruce and beech trees to 2 years of ozone exposure and episodic drought. Environ. Exp. Bot. 40, 77—91.
Dizengremel, P., Le Thiec, D., Hasenfratz-Sauder, M.-P., Vautier, M.-N., Bagard, M., Jolivet, Y., 2009. Metabolic-dependent changes in plant cell redox power after ozone exposure. Plant Biol. 11, 35—42.http://dx.doi.org/10.1111/j.1438-8677.2009.00261.x.
Elvira, S., Alonso, R., Gimeno, B.S., 2007. Simulation of stomatal conductance for Aleppo pine to estimate its ozone uptake. Environ. Pollut. 146, 617—623. http://dx.doi.org/10.1016/j.envpol.2006.08.008.
Embersdon, L.D., Ashmore, M.R., Cambridge, H.M., Simpson, D., Tuovinen, J.-P., 2000a. Modelling stomatal ozone flux across Europe. Environ. Pollut. 109, 403—413. http://dx.doi.org/10.1016/S0269-7491(00)00220-1.
Embersdon, L.D., Wieser, G., Ashmore, M.R., 2000b. Modelling of stomatal conduc-
tance and ozone flux of Norway spruce: comparison with field data. Environ. Pollut. 109, 393—402.
Embersdon, L.D., Ashmore, M.R., Simpson, D., Tuovinen, J.-P., Cambridge, H.M., 2001. Modelling and mapping ozone deposition in Europe. Water Air Soil Pollut. 130, 577—582. http://dx.doi.org/10.1023/A:1013866812067.
Feng, Z., Tang, H., Uddling, J., Plejel, H., Kobayashi, K., Zhu, J., Oue, H., Guo, W., 2012. A stomatal ozone flux-response relationship to assess ozone-induced yield loss of winter wheat in subtropical China. Environ. Pollut. 164, 16—23. http://
Matyssek, R., Karnosky, D.F., Wieser, G., Percy, K., Oksanen, E., Grams, T.E.E., Marzuoli, R., Gerosa, G., Desotgiu, R., Bussotti, F., Ballarin-Denti, A., 2009. Ozone and Climate: A Quantitative Approach to Environmental Plant Physiology, second ed. Cambridge University Press, Cambridge, UK.

Karlsson, P.E., Uddling, J., Skärby, L., Wallin, G., Seldén, G., 2003. Impact of ozone on the growth of birch (Betula pendula) saplings. Environ. Pollut. 124, 483–495. http://dx.doi.org/10.1016/S0269-7491(03)00010-1.

Karlsson, P.E., Uddling, J., Braun, S., Broadmeadow, M., Elvira, S., Gimeno, B.S., Le Thiec, D., Oksanen, E., Vanderveer, K., Wilkinson, M., Emberson, L., 2004. New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. Atmos. Environ. 38, 2283–2294. http://dx.doi.org/10.1016/j.atmosenv.2004.01.027.

Karlsson, P.E., Braun, S., Broadmeadow, M., Elvira, S., Emberson, L., Gimeno, B.S., Le Thiec, D., Novak, K., Oksanen, E., Schaub, M., Uddling, J., Wilkinson, M., 2007. Risk assessments for forest trees: the performance of the ozone flux versus the AOT concepts. Environ. Pollut. 146, 608–616. http://dx.doi.org/10.1016/j.envpol.2006.06.012.

Larcher, W., 2003. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, fourth ed. Springer, Berlin, Heidelberg, New York.

LRTAP Convention, 2010. Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads & Levels and Air Pollution Effects, Risks and Trends. In: Chapter 3: Mapping Critical Levels for Vegetation.

Marzuoli, R., Gerosa, G., Desotgiu, R., Bussotti, F., Ballarin-Denti, A., 2009. Ozone flux and foliar injury development in the ozone-sensitive poplar clone Oxford (Populus maximowiczii × Populus boriesii): a dose–response analysis. Tree Physiol. 29, 67–76.

Matyssek, R., Karnosky, D.F., Wieser, G., Percy, K., Oksanen, E., Grams, T.E.E., Kubiske, M., Hanke, D., Pretzsch, H., 2010. Advances in understanding ozone impact on forest trees: messages from novel phytotron and free-air fumigation studies. Environ. Pollut. 158, 1990–2006. http://dx.doi.org/10.1016/j.envpol.2009.11.033.

Medlyn, B.E., Badeck, F.-W., De Pury, D.G.G., Barton, C.V.M., Broadmeadow, M., Ceulemans, R., De Angelis, P., Forsttreuter, M., Jach, M.E., Kellomäki, S., 1999. Effects of elevated CO2 on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ. 22, 1475–1495.

Mills, G., Pleijel, H., Braun, S., Bükker, P., Bermejo, V., Calvo, E., Danielsson, H., Emberson, L., Fernández, I.G., Grünhage, L., Harmens, H., Hayes, F., Karlsson, P.-E., Simpson, D., 2011. New stomatal flux-based critical levels for ozone effects on vegetation. Atmos. Environ. 45, 5064–5068. http://dx.doi.org/10.1016/j.atmosenv.2011.06.009.

Muxzelman, R., Lefohn, A., Masmalan, W., Heath, R., 2006. A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos. Environ. 40, 1869–1888. http://dx.doi.org/10.1016/j.atmosenv.2005.10.064.

Oksanen, E., 2003. Physiological responses of birch (Betula pendula) to ozone: a comparison between open-soil grown trees exposed for six growing seasons and potted seedlings exposed for one season. Tree Physiol. 23, 603–614.

Oren, R., Serrry, J.S., Katul, G.G., Pataki, D.E., Ewers, B.E., Phillips, N., Schäfer, K.V.R., 1999. Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22, 1515–1526.

Ottosson, S., Wallin, G., Skärby, L., Karlsson, P.-E., Medina, E.-L., Rantfors, M., Pleijel, H., Seldén, G., 2003. Four years of ozone exposure at high or low phosphorus reduced biomass in Norway spruce. Trees 17, 299–307.

Paoletti, E., Conran, N., Bernasconi, P., Gunhardt-Goerg, M.S., Vollmerweider, P., 2009. Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) to leaves of seedlings and mature trees under controlled and ambient conditions. Sci. Total Environ. 407, 1631–1643. http://dx.doi.org/10.1016/j.scitotenv.2008.11.061.

Pell, E.J., Sinn, J.P., Brendley, B.W., Samuelson, L., Vinten-Johansen, C., Tien, M., Skillman, J., 1999. Differential response of four tree species to ozone-induced acceleration of foliar senescence. Plant Cell Environ. 22, 779–790.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., The R Development Core Team, 2015. Nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-120.

Pleijel, H., Danielsson, H., Emberson, L., Ashmore, M.R., Mills, G., 2007. Ozone risk assessment for agricultural crops in Europe: further development of stomatal flux and flux–response relationships for European wheat and potato. Atmos. Environ. 41, 3022–3040. http://dx.doi.org/10.1016/j.atmosenv.2006.12.002.

Pollastrini, M., Desotgiu, R., Cascio, C., Bussotti, F., Cherubini, P., Saurer, M., Gerosa, G., Marzuoli, R., 2010. Growth and physiological responses to ozone and mild drought stress of tree species with different ecological requirements. Trees 24, 695–704. http://dx.doi.org/10.1016/j.tree.2009.04.039-4.

Reich, P.B., 1987. Quantifying plant response to ozone: a unifying theory. Tree Physiol. 3, 63–91.

Schaub, M., 2005. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions. Environ. Pollut. 133, 553–567. http://dx.doi.org/10.1016/j.envpol.2004.04.036.

Sun, G., McLaughlin, S.B., Porter, J.H., Uddling, J., Mulholland, P.J., Adams, M.B., Pederson, N., 2012. Interactive influences of ozone and climate on streamflow of forested watersheds. Glob. Change Biol. 18, 3395–3409. http://dx.doi.org/10.1111/j.1365-2486.2012.02787.x.

Tarvainen, L., Wallin, G., Rantfors, M., Uddling, J., 2013. Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand. Oecologia 173, 1179–1189. http://dx.doi.org/10.1007/s00442-013-2703-y.

Uddling, J., Hall, M., Wallin, G., Karlsson, P.E., 2005. Measuring and modelling stomatal conductance and photosynthesis in mature birch in Sweden. Agric. For. Meteorol. 132, 115–131. http://dx.doi.org/10.1016/j.agrformet.2005.07.004.

Wittig, V.E., Anssworth, E.A., Naidu, S.L., Karnosky, D.F., Long, S.P., 2009. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Glob. Change Biol. 15, 396–424. http://dx.doi.org/10.1111/j.1365-2486.2008.01774.x.

Zhang, W., Feng, Z., Wang, X., Niu, J., 2012. Responses of native broadleafed woody species to elevated ozone in subtropical China. Environ. Pollut. 163, 149–157. http://dx.doi.org/10.1016/j.envpol.2011.12.035.