B-meson decays to $\eta^\prime \rho$, $\eta^\prime f_0$, and ηK^*

P. del Amo Sanchez, J. P. Lees, V. Poireau, E. Prencipe, V. Tisserand, J. Gara Tico, E. Grauges, M. Martinelli, A. Palano, M. Pappagallo, G. Eigen, B. Stugu, L. Sun, M. Battaglia, D. N. Brown, B. Hooberman, L. T. Kerth, Yu. G. Kolomensky, G. Lynch, I. L. Osipenkova, T. Tanabe, C. M. Hawkes, A. T. Watson, H. Koch, T. Schroeder, D. J. Asgeirsson, C. Hearty, T. S. Mattison, J. A. McKenna, A. Khan, A. Randle-Conde, V. E. Blinov, A. R. Buzykaev, V. P. Druzhinin, V. B. Golubev, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, K. Yu. Todyshev, A. N. Yushkov, M. Bondioli, C. Curry, D. Kirkby, J. A. Lankford, M. Mandelker, E. C. Martin, D. P. Stoker, H. Atmacan, J. W. Gary, F. Liu, O. Long, G. M. Vitug, C. Campagnari, T. M. Hong, D. Kovalsky, J. D. Richman, A. M. Eisner, C. A. Heusch, J. Kroseberg, W. S. Lockman, A. J. Martinez, T. Schalck, B. A. Schumm, A. Seiden, L. O. Winstrom, C. H. Cheng, D. A. Doll, B. Echenard, D. G. Hiltin, P. Ongmongkolkul, F. C. Porter, A. Y. Rakitin, R. Andreassen, M. S. Dubrovin, G. Mancinelli, B. T. Meadows, M. D. Sokoloff, P. C. Bloom, W. T. Ford, A. Gaz, J. F. Hirschauer, M. Nagel, U. Nauenberg, A. Penzofer, J. G. Smith, R. Wagner, R. Ayad, W. H. Toki, T. M. Kurbach, J. Merkel, A. Petzold, B. Spaan, K. Wacker, M. J. Kobel, K. R. Schubert, R. Schwartz, D. Bernard, M. Verderi, P. J. Clark, S. Playfer, J. E. Watson, M. Andreotti, D. Bettoni, C. Bozzi, R. Calabrese, A. Cecchi, G. Cibinetto, E. Fioravanti, P. Franchini, E. Luppini, M. Munerato, M. Negrini, A. Petrella, L. Piemontese, R. Baldini-Ferroli, A. Calcuttura, R. de Sangro, G. Finocchiaro, M. Nicolaci, S. Pacetti, P. Patteri, I. M. Peruzzi, M. Piccolo, M. Rama, A. Zallo, R. Contris, E. Guido, M. Lo Vetere, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, S. Tosi, B. Bhuyan, C. L. Lee, M. Morii, A. Adametz, J. Marks, S. Schenk, U. Uwer, F. U. Bernlochmer, H. M. Lacker, T. Lueck, A. Volk, P. D. Dauncey, M. Tibbetts, P. K. Behera, U. Mullik, C. Chen, J. C. Cochran, H. B. Crawley, L. Dong, W. T. Meyer, S. Prell, E. I. Rosenberg, A. E. Rubin, Y. Y. Gao, A. V. Gritsan, Z. J. Guo, A. Arnaud, M. Davier, D. Derkach, J. F. Irino da Costa, G. Grosdidier, F. Le Diberder, A. M. Lutz, B. Malaescu, A. Perez, P. Roudet, M. H. Schune, J. Serrano, V. Sordini, A. Stocchi, L. Wang, G. Wormser, D. J. Lange, D. M. Wright, I. Bingham, J. P. Burke, C. A. Chavez, J. P. Coleman, R. J. Fry, E. Gabathuler, R. Gamet, D. E. Hutchcroft, D. J. Payne, C. Touramanis, A. J. Bevan, F. Di Lodovico, R. Sacco, M. Sigamani, G. Cowan, S. Paramesvaran, A. C. Wren, D. N. Brown, C. L. Davis, A. G. Denig, M. Fritsch, W. Gradl, A. Hafner, K. E. Alwyn, D. Bailey, R. J. Barlow, G. Jackson, G. D. Lafferty, T. J. West, J. Anderson, R. Cenci, A. Jawahery, D. A. Roberts, G. Simi, J. M. Tuggle, C. Dallapiccola, E. Salvati, R. Cowan, D. Dujmic, P. H. Fisher, G. Sciolla, M. Zhao, D. Lindemann, P. M. Patel, S. H. Robertson, M. Schram, P. Biassoni, A. Lazzaro, V. Lombardo, F. Palombo, S. Stracka, F. C. Ungaro, L. Cremaldi, R. Godang, R. Kroeger, P. Sonnek, D. J. Summers, H. W. Zhao, X. Nguyen, M. Sinard, P. Taras, G. De Nardoa, D. Monorchioa, G. Onoratoa, C. Sciacca, G. Raven, H. L. Snoek, C. P. Jessop, K. J. Knoepfel, J. M. LoSecco, W. F. Wang, L. A. Corwin, K. Honscheid, R. Kass, J. P. Morris, A. M. Rahimi, N. L. Blount, J. Fra, R. Frey, O. Igonska, J. A. Kolb, R. Rahmat, N. B. Sinev, D. Strom, J. Strube, E. Torrence, G. Castellib, F. Eftelas, N. Gagliardi, M. Margonib, M. Morandina, M. Posocco, M. Rotondo, F. Simonettob, R. Strollib, E. Ben-Haim, G. R. Bonneau, H. Briand, G. Calderinib, J. Chauveau, O. Hamon, Ph. Leruste, G. Marchiori, J. Ocariz, J. Prendik, S. Sitt, M. Biasinib, E. Manonib, C. Angelinib, G. Batignanib, S. Bettarinib, M. Carpinellib, G. Casarosab, A. Cervellib, F. Fortib, M. A. Giordib, A. Lusianib, N. Nerib, E. Paoloniib, G. Rizzoz, J. J. Walshb, D. Lopes Pegnab, C. Lu, J. Olsen, A. J. Smith, V. B. Telnov, F. Anulli, E. Baracchinib, G. Cavotob, R. Faccinib, F. Ferrarotto, F. Ferronib, M. Gaspero, L. Li Gion, M. A. Mazzonib, G. Piredda, F. Renga, M. Ebert, T. Hartmann, T. Leddib, H. Schröder, W. Wald, T. Adye,
Charmless two-body decays of B mesons are a powerful probe for testing the standard model (SM) and searching for new physics phenomena \[1\]. Decays to final states containing η or η' mesons exhibit a distinctive pattern of interference among the dominant amplitudes and are also sensitive to a potentially large flavor-singlet contribution \[2\]. B meson decays to the final states $\eta\rho$ and $\eta'K^*$ (892) have been investigated theoretically within the SM by means of perturbative QCD (pQCD) \[3\], QCD Factorization (QCDF) \[4\], Soft Collinear Ef-
The predicted branching fractions to the final states $\eta K^+(892)^+$ and $\eta' K^*(892)^+$ are in the range of a few times 10^{-6}, whereas the branching fraction for $B^0 \rightarrow \eta' \rho^0$ is suppressed to $10^{-7} - 10^{-8}$. There is some disagreement on the predictions of the branching fraction for $B^+ \rightarrow \eta' \rho^+$. SCET calculations give a value of 0.4×10^{-6}, whereas pQCD and QCDF predict a branching fraction of $(6 - 9) \times 10^{-6}$. There are no theoretical predictions for the branching fraction of $B^0 \rightarrow \eta' f_0$. Experimentally, searches for these decays have been performed by the BaBar [2] and Belle [3] collaborations. The former claimed evidence for the $\eta' p^+$, $\eta' K^*(892)^+$, and $\eta' K^*(892)^0$ final states, while the latter establishes upper limits that are in poor agreement with the branching fractions, in the range $(4 - 9) \times 10^{-6}$, measured by BaBar.

Very few predictions exist for B-meson decays to $\eta' K^0_s (1430)$ and $\eta' K^* (1430)$. In Ref. [2], based on pQCD, the branching fraction of $B \rightarrow \eta' K^0_s (1430)$ is predicted to be in the range $(20 - 80) \times 10^{-6}$, while in Ref. [10] the branching fraction of $B \rightarrow \eta' K^* (1430)$ is calculated to be $\sim 2 \times 10^{-6}$, exploiting QCDF calculations. No searches for the $\eta' K^0_s (1430)$ and $\eta' K^* (1430)$ final states have been reported. In a recent study of $B \rightarrow \omega K^*$ decays [11], where K^* denotes the spin 0, 1, or 2 states $K^0_s (1430), K^* (892)$, and $K^* (1430)$, the tensor and scalar K^* components were found to be significantly larger than the vector $K^* (892)$, a fact which was not anticipated by theory.

In this paper, we report measurements of the branching fractions of B mesons decaying to the final states $\eta' \rho$, $\eta' f_0$, and $\eta' K^*$. Where applicable, we also measure the charge asymmetry $\mathcal{A}_{ch} \equiv (\Gamma^- - \Gamma^+)/\Gamma^+$, where the superscript to the decay width refers to the charge of the B^\pm meson or to the charge of the kaon in the neutral B decays.

For this analysis we use the full BaBar dataset, collected at the PEP-II asymmetric-energy $e^+ e^- \rightarrow \pi^+ \pi^-$ collider located at the SLAC National Accelerator Laboratory, consisting of $467 \times 10^6 B \bar{B}$ pairs originating from the decay of the $Y(4S)$ resonance, produced at a center-of-mass (CM) energy $\sqrt{s} = 10.58$ GeV. The BaBar detector is described in detail elsewhere [12].

We reconstruct B-daughter candidates through their decays $\eta' \rightarrow \eta \pi^+ \pi^- \left(\eta'_{\pi\pi}\right)$, $\eta' \rightarrow \rho^0 \gamma \left(\eta'_{\rho}\right)$, $\eta \rightarrow \gamma \gamma$, $\rho^0 \rightarrow \pi^+ \pi^0$, $\rho^0 \rightarrow \pi^+ \pi^-$, $f_0 (980) \rightarrow \pi^+ \pi^-$ [13], $K^0 \rightarrow K^+ \pi^-$, $K^+ \rightarrow K^+ \pi^0 (K_{K^+ \pi^0}^0)$, $K^{*+} \rightarrow K^0 \pi^+ (K_{K^{*+} \pi^+}^0)$, $K^0_s \rightarrow \pi^+ \pi^-$, and $\rho^{0} \rightarrow \gamma \gamma$. We use both $\eta' \rightarrow \eta \pi^+ \pi^-$ and $\eta' \rightarrow \rho^0 \gamma$ for $\eta' K^*$, but due to the larger backgrounds affecting the η'_{ρ} channel, we do not use the $\eta' \rightarrow \rho^0 \gamma$ decay mode for the $\eta' \rho$ and $\eta' f_0$ final states. We require the invariant masses of the B-daughter candidates to satisfy the following requirements: $910 < m(\eta') < 1000$ MeV, $510 < m(\eta) < 580$ MeV, $510 < m(\rho/f_0) < 1060$ MeV, $750 < m(K^*) < 1550$ MeV, $488 < m(K_{\rho K}^0) < 508$ MeV, and $120 < m(\pi^0) < 150$ MeV; these mass intervals are chosen to include sidebands to estimate the background levels. We require the photon energy of the π^0 candidates to be greater than 30 MeV in the laboratory frame, while the minimum energy is 100 MeV for the photons of η candidates and 200 MeV for the photons from the $\eta' \rightarrow \rho^0 \gamma$ decay. A fit constraining the two pion tracks from the K^0_s decay to originate from the same decay vertex is performed and a K^0_s candidate is selected if its flight length exceeds three times its uncertainty. Daughter particles from η', η, ρ, f_0, and K^* decays are rejected if their particle identification signatures are consistent with those of electrons or protons; K^* candidates are required to be positively identified as kaons, and pions must fail this criterion. Unless otherwise stated, charge-conjugate reactions are always implied.

A B-meson candidate is characterized by two kinematic variables, whose small correlation is accounted for in the correction of the fit bias: the energy-substituted mass $m_{ES} \equiv \sqrt{s}/4 - p_B^γ$ and the energy difference $\Delta E \equiv E_B - \sqrt{s}/2$, where (E_B, \mathbf{p}_B) is the B-meson four-momentum vector in the $Y(4S)$ rest frame. Signal events peak at 0 in ΔE and at the B mass [14] in m_{ES}, with a resolution in $\Delta E (m_{ES})$ of 20-35 MeV (3 MeV). We select events with $5.25 < m_{ES} < 5.29$ GeV and $|\Delta E| < 0.2$ GeV.

The dominant backgrounds arise from random combinations of particles in continuum $e^+ e^- \rightarrow q\bar{q}$ events ($q = u, d, s, c$). The angle θ_T between the thrust axis [15] of the B candidate in the $Y(4S)$ rest frame and that of the remaining particles in the event is used to suppress this background. Jet-like continuum events peak at $|\cos \theta_T|$ close to 1, while spherical B decays exhibit a flat distribution for this variable. Further rejection is achieved by restricting the range of the helicity angle of the ρ or K^* meson. The helicity angle θ_H is defined in the rest frame of the ρ or K^* and corresponds to the angle between two vectors: one is the momentum of the daughter pion and the other is the direction of the boost into this rest frame from the B meson rest frame; for the ρ^+ candidate we use the positively charged pion. Table I summarizes the requirements we apply on $|\cos \theta_T|$ and $\cos \theta_H$. After the selection criteria have been applied, the average number of combinations per event in data is between 1.1 and 1.3, and we select the candidate with the highest χ^2 probability in a geometric fit to a common B-decay vertex. In this way the probability of selecting the correctly reconstructed event is a few percent higher with respect to a random selection.

Further signal/background separation is provided by a Fisher discriminant \mathcal{F} exploiting four variables sensitive to the production dynamics and event shape: the polar angles, with respect to the beam axis in the $e^+ e^-$ CM frame, of the B candidate momentum and of the B thrust axis; and the zeroth and second angular moments
The signal component is studied from the Monte Carlo (MC) simulation of the decay process and the response of the detector and reconstruction chain. Signal events selected in simulation contain both properly reconstructed and incorrectly reconstructed B-meson candidates, which are labeled as ”self-crossfeed” (SXF). SXF occurs either when some particles from the correct parent B meson are incorrectly assigned to intermediate resonances or when particles from the rest of the event are used in the signal B reconstruction. The fraction of SXF events ranges between 14% and 32% and we do not separate correctly reconstructed events from SXF in the fit. For the scalar $K\pi$ component, we use the LASS model, which consists of the $K_0^*(1430)$ resonance together with an effective-range nonresonant component. Backgrounds arising from $B\bar{B}$ decays to charmless final states are modeled from the simulation. We select the channels (20-40 for each final state) which have a high probability of passing our selection and build a sample of simulated specimens of these, weighting each component by its branching fraction, either measured or estimated.

We model from this sample the PDFs for the $B\bar{B}$ background component and fix its yield (25-350 events, depending on the final state) to the MC prediction. Backgrounds arising from $b \to c$ transitions have distributions very similar to those of $q\bar{q}$ events and thus they are absorbed by the continuum component. For the $\eta'\rho$ modes, we estimate the contribution of the nonresonant $\eta'\pi\pi$ with a fit of the data, selecting only the central region (which excludes the region across the ρ and f_0 resonances) of the $\eta'\pi\pi$ Dalitz plot. The expected nonresonant component is then included in the charmless $B\bar{B}$ background PDF. This procedure is not necessary for the $\eta'K^*$ fits, since the nonresonant $\eta'K\pi$ component is already included in the LASS model.

PDF shapes for the signals and $B\bar{B}$ background are determined from fits to MC samples, while for the $q\bar{q}$ component we use data sidebands, which we obtain excluding the signal region $5.27 < m_{ES} < 5.29$ GeV and $|\Delta E| < 0.075$ GeV. The calibration of m_{ES} and ΔE is checked by means of large data control samples of B decays to charmless mesons with topology similar to the decays under study (e.g. $B^+ \to D^0(K^+\pi^-\pi^0)\pi^+$).

We use a combination of Gaussian, exponential, and polynomial functions to parameterize most of the PDFs. For the m_{ES} distribution of the $q\bar{q}$ background component, we use a parameterization motivated by phase-space arguments. The following are free to vary in the fit: the signal and $q\bar{q}$ background yields and charge asymmetries A_{ch}, along with the parameters that most strongly influence the shape of the continuum background.

We perform fits to ensembles of simulated experiments in order to evaluate the potential bias Y_0 on the fitted signal yield, which originates from our neglect of the correla-

TABLE I: Selection requirements on $\cos \theta_T$ and $\cos \theta_H$ for the different modes.

State	$\cos \theta_T$	$\cos \theta_H$ range
$\eta'\rho^0/f_0$	< 0.9	$[-0.95, 0.95]$
$\eta'\rho^+$	< 0.9	$[-0.80, 1]$
$\eta'\pi\pi K^0$	< 0.9	$[-0.85, 1]$
$\eta'\pi\pi K^0+$	< 0.6	$[-0.85, 1]$
$\eta'\pi\pi K^0+$	< 0.9	$[-0.75, 1]$
$\eta'\pi\pi K^0+$	< 0.7	$[-0.75, 1]$
$\eta'\pi\pi K^0+$	< 0.9	$[-0.90, 1]$
$\eta'\pi\pi K^0+$	< 0.7	$[-0.90, 1]$

$L_{0,2}$ of the energy flow, excluding the B candidate. The moments are defined by $L_j = \sum_i p_i \times |\cos \theta_i|^j$, where i labels a track or neutral cluster, θ_i is its angle with respect to the B thrust axis, and p_i is its momentum. The mean of F is shifted so that it is independent of the B-flavor tagging category for $q\bar{q}$ background. The Fisher variable provides about one standard deviation discrimination between B-decay events and continuum background.

We obtain the yields and the charge asymmetries A_{ch} from extended maximum-likelihood (ML) fits to the six event categories. We distinguish among several categories: $q\bar{q}$ background, $B\bar{B}$ background, and signal component(s) (one for $\eta'\rho^+$, two for $\eta'\rho^0/f_0$, and three for the $\eta'K^*$ modes). For each event i and category j we define the probability density functions (PDFs) $P_j(x)$ for the variable x, with the resulting likelihood L:

$$
P_j = P_j(m_{ES}^i)P_j(\Delta E^i)P_j(F^i) $$

$$
L = \frac{e^{-\sum_j Y_j}}{N!} \prod_{i=1}^N \sum_j Y_j P_j $$

where Y_j is the yield for category j and N is the number of events entering the fit. Where applicable, we split the yields by the flavor of the decaying B meson in order to measure A_{ch}. We find correlations among the observables to be significant in the $B\bar{B}$ components, whereas those are small in the data samples, which contain mostly $q\bar{q}$ background. An exception occurs in the $B^+ \to \eta'_{\rho^0} K^{+}\pi^+$ mode, for which the correlation between m_{K^*} and $\cos \theta_H$, if not taken into account, may cause large biases in the yield of the different K^* components. In this case the factors for m_{K^*} and $\cos \theta_H$ in Eq. [11] are replaced with a two-dimensional non-parametric PDF [17]. We discuss below our treatment of the somewhat larger correlations found in simulated signal events.
nations among the variables. Each such experiment has the same number of signal and background candidates as the data; given that correlations among fit variables are negligible for the PDFs, while signal and background events are taken from fully simulated MC samples. In computing the branching fraction B for each mode, we subtract Y_0 from the fitted signal yield Y and divide by the selection efficiency ε for signal events, the number of B mesons in our sample, and the product of the branching fractions of the intermediate resonances, $\prod B_i$. We assume the branching fraction of $Y(4S)$ to B^+B^- and $B^0\bar{B}^0$ to be the same and equal to 50%, consistent with the measurements of ε is evaluated from the simulation.

The different submodes of $\eta'K^{*0}$ and $\eta'K^{*+}$ are combined by adding their $-2\ln L$ curves. For the significance of observation S we take the difference between the value of $-2\ln L$ for the zero signal hypothesis and the value at its minimum. For modes with a significance below five standard deviations, we quote a 90% confidence level (C.L.) upper limit, corresponding to the branching fraction below which lies 90% of the total of the likelihood integral, in the region where the branching fraction is positive.

The correlated and uncorrelated systematic uncertainties are taken into account in the above evaluations by convolving the likelihood function given by the fitter with a Gaussian function representing the systematic uncertainties. The results are collected in Table II.

We show in Fig. 1 the data and the fit functions projected over the variable m_{ES}, while in Fig. 2 we do the same for the $\pi\pi$ and $K\pi$ invariant masses and for $\cos\theta_H$. In these plots the signals are enhanced by the imposition of cuts on $\ln L$ and the fit variables, which retain 40-65% of the signal events.

We evaluate the systematic uncertainties due to the modeling of the signal PDFs by varying the relevant parameters by their uncertainty, derived from the consistency of fits to the above mentioned data control samples. The fit bias arises mostly from correlations among the fit variables, which are modeled by the MC; the associated uncertainty is the sum in quadrature of half the correction itself and its statistical uncertainty; this is the dominant source in most cases (2.1 – 15.4 events), especially for the $\eta' \to \rho^{0}\gamma$ modes. We verify that the correlations among the variables in SXF events are the major source of bias by performing a dedicated study on simulated experiments in which the SXF component is not embedded. The uncertainty for the SXF fraction is estimated by varying the fraction predicted by the MC by 2.5% (5%) relative for each photon (π^0) in the final state (most of this uncertainty originates from the simulation of neutral particles). We estimate the uncertainty on the charmless $B\bar{B}$ background by repeating the fit with the yield of this component varied by its estimated uncertainty (±20%). For the S-wave $K\pi$ components, we vary the LASS parameters by the uncertainties found in [19] (the resulting uncertainties vary from 0.1 to 14.9 events).

Multiplicative systematic uncertainties (which do not affect the signal significance) account for imperfect knowledge of the luminosity, tracking efficiency, π^0 and K_0^0 reconstruction efficiencies, and the uncertainty on the measured branching fractions of intermediate resonances. In the nominal fit we do not account for interference among the different spin K^* components. We estimate in a separate calculation, which takes into account the acceptance functions of our analysis, the potential impact of interference when the relative strong phases between the components are varied over the full range; we find that the uncertainties range from 1.5% to 14.1%.

From the analysis of a variety of data control samples, the bias on A_{ch} is found to be negligible for pions and -0.01 for kaons, due to differences of K^+ and K^- interactions in the detector material. We correct the fitted A_{ch} by $+0.01$ in the modes where a charged kaon is present and assign a systematic uncertainty of 0.02, mainly due to the bias correction.

In conclusion, we have measured the branching fraction of B mesons to nine different final states; we claim observation of four of these, while we obtain robust ev-
We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BaBar. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NRF (Norway), MES (Russia), MICINN (Spain) STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA), the Binational Science Foundation (USA-Israel), and the University of Colorado at Boulder Graduate School Faculty Fellowship program.

* Now at Temple University, Philadelphia, Pennsylvania 19122, USA
† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
‡ Also with Università di Roma La Sapienza, I-00185 Roma, Italy
§ Now at University of South Alabama, Mobile, Alabama 36688, USA
* Also with Università di Sassari, Sassari, Italy

[1] H.-Y. Cheng and J. G. Smith, Ann. Rev. Nucl. Part. Sci. 59, 215 (2009).
[2] M. Beneke and M. Neubert, Nucl. Phys. B 651, 225 (2003).
[3] X. Liu et al., Phys. Rev. D 73, 074002 (2006); A. G. Akeroyd, C. H. Chen, and C. Q. Geng, Phys. Rev. D 75, 054003 (2007).
[4] M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).
[5] W. Wang, Y. M. Wang, D. S. Yang, and C. D. Lu, Phys. Rev. D 78, 034011 (2008).
[6] C.-W. Chiang and Y.-F. Zhou, JHEP 03, 055 (2009).
[7] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 98, 051802 (2007).
[8] Belle Collaboration, J. Schümann et al., Phys. Rev. D 75, 092002 (2007).
Mode	Y (events)	Y_{0} (events)	ε (%)	$\prod B_{i}$	S_{i} (%)	B (10$^{-6}$)	B U.L. (10$^{-6}$)	A_{ch}
$\eta'\rho^{0}$	37±15	9±5	23.4	17.5	2.0	1.5±0.8±0.3	2.8	–
$\eta'f_{0}$	8±8	4±2	25.9	17.5	0.5	0.2$^{+0.4}_{-0.1}$±0.1	0.9	–
$\eta'\rho^{+}$	128±22	15±8	14.3	17.5	5.8	9.7$^{+11}_{-19}$±1.1	–	0.26±0.17±0.02
$\eta'K^{*(892)^{0}}$	4.0	3.1$^{+0.9}_{-0.4}$±0.3	4.4	0.02±0.23±0.02				
$\eta'K^{*(892)^{+}}$	3.8	4.8$^{+1.0}_{-1.4}$±0.8	7.2	–0.26±0.27±0.02				
$\eta'K^{*(892)^{0}}_{K^{0}_{S}+}$	14±8	2±1	11.5	5.8	2.0	3.9$^{+2.1}_{-1.5}$±0.5	–	1.00±0.78
$\eta'K^{*(892)^{+}}_{K^{+}+}$	26±19	6±3	9.7	9.8	1.1	4.7$^{+4.5}_{-2.9}$±1.3	–	0.05±0.66
$\eta'K^{*(892)^{0}}_{K^{0}_{S}+}$	23±10	3±2	19.1	4.0	2.6	5.5$^{+2.4}_{-1.7}$±0.7	–	0.47±0.37
$\eta'K^{*(892)^{+}}_{K^{+}+}$	34±15	10±5	16.2	6.8	1.6	4.8$^{+3.2}_{-2.8}$±1.2	0.24±0.44	
$\eta'(K\pi)^{0}$	5.6	7.4$^{+1.5}_{-1.4}$±0.6	–	–0.19±0.17±0.02				
$\eta'(K\pi)^{0}_{K_{S}^{0}}$	106±21	12±6	20.2	11.7	4.9	8.5$^{+2.9}_{-2.2}$±1.0	–	0.39±0.20
$\eta'(K\pi)^{0}_{K^{+}}$	115±36	21±11	17.6	19.6	2.7	5.8$^{+3.2}_{-2.2}$±1.0	0.32±0.31	
$\eta'(K\pi)^{0}_{K^{+}}$	2.9	6.0$^{+2.2}_{-2.0}$±0.9	9.3	0.06±0.20±0.02				
$\eta'(K\pi)^{0}_{K^{+}}$	36±15	2±1	13.9	5.8	2.4	8.8$^{+3.8}_{-2.8}$±1.3	0.33±0.41	
$\eta'(K\pi)^{0}_{K^{+}}$	185±51	31±15	12.8	9.8	2.8	26.5$^{+9.0}_{-8.0}$±5.9	0.23±0.27	
$\eta'(K\pi)^{0}_{K^{+}}$	18±12	1±1	18.6	4.0	1.6	5.1$^{+3.8}_{-3.2}$±0.9	0.13±0.59	
$\eta'(K\pi)^{0}_{K^{+}}$	-29±22	-8±4	17.4	6.8	–	3.8$^{+4.1}_{-3.9}$±1.5	–	0.40±0.14
$\eta'K_{2}^{(1430)^{0}}$	5.3	13.7$^{+3.1}_{-2.9}$±1.2	–	0.14±0.18±0.02				
$\eta'K_{2}^{(1430)^{0}}$	42±13	2±1	15.1	5.8	3.7	9.8$^{+3.9}_{-3.2}$±0.9	0.58±0.32	
$\eta'K_{2}^{(1430)^{0}}$	125±26	20±10	10.6	9.8	4.1	21.7$^{+5.4}_{-5.0}$±3.0	–	0.05±0.20
$\eta'K_{2}^{(1430)^{+}}$	7.2	28.0$^{+4.6}_{-4.2}$±2.6	–	0.15±0.13±0.02				
$\eta'K_{2}^{(1430)^{+}}$	42±11	5±3	9.9	2.9	3.5	27.1$^{+8.3}_{-8.1}$±4.5	0.29±0.25	
$\eta'K_{2}^{(1430)^{+}}$	115±28	20±10	8.5	4.9	2.9	46.2$^{+14.8}_{-13.8}$±12.2	–0.33±0.24	
$\eta'K_{2}^{(1430)^{+}}$	42±10	5±2	15.3	2.0	4.5	25.9$^{+7.4}_{-7.1}$±2.7	0.44±0.23	
$\eta'K_{2}^{(1430)^{+}}$	62±16	14±7	12.4	3.4	3.0	24.1$^{+8.7}_{-8.3}$±4.1	0.22±0.25	

99. 171803 (2007).
[17] K. S. Cranmer, Comput. Phys. Commun. 136, 198 (2001).
[18] The B"{A}B"{A}R detector Monte Carlo simulation is based on GEANT4, S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003) and EvtGen, D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[19] LASS Collaboration, D. Aston et al., Nucl. Phys. B 296, 493 (1988).
[20] B"{A}B"{A}R Collaboration, B. Aubert et al., Phys. Rev. D 72, 072003 (2005); 74, 099909(E) (2006).
[21] ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 241, 278 (1990).