The increase of MICA gene A9 allele associated with gastric cancer and less schirrous change

S-S Lo*,1,2, Y-J Lee3, C-W Wu2, C-J Liu4, J-W Huang1 and W-Y Lui1

1I-Lan Hospital, DOH, Taipei, Taiwan; 2Division of General Surgery, Taipei-Veterans General Hospital, National Yang Ming University, No. 201, Sec 2, Shih-pai Road, Taipei, Taiwan; 3Department of Medical Research and Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; 4School of Dentistry, National Yang Ming University, Taiwan

Since surgical resection is the principal treatment of gastric cancer, early detection is the only effective strategy against this disease at present. Recently, a new polymorphic gene family, the major histocompatibility complex class I chain-related (MIC) genes located about 40 kb centromeric to HLA-B gene has been proposed. This family consists of five genes (A, B, C, D and E). Among them, MICA has five various alleles (A4, A5, A5.1, A6 and A9), which can be used as a polymorphic marker for genetic mapping and for disease susceptibility. The MICA polymorphism was studied in our gastric cancer patients to see if there is any possible correlation with genetic predisposition and clinicopathological factors. Genomic DNA was extracted from fresh or frozen peripheral blood leukocytes in 107 patients with gastric adenocarcinoma who underwent gastrectomy in our hospital and 351 noncancer controls. MICA polymorphism was analysed by using PCR-based technique. The results showed both phenotypic and allele frequencies of allele A9 in patients with gastric cancer were significantly higher than controls (33 vs 17.6%, P = 0.005; 17 vs 9.9%, P = 0.02). Gastric adenocarcinoma with allele A9 was associated with less schirrous change than those without (P = 0.014). MICA gene A9 allele might confer the risk of gastric cancer and associate with less schirrous change. The mechanisms among them deserve further investigation.

British Journal of Cancer (2004) 90, 1809–1813. doi:10.1038/sj.bjc.6601750 www.bjcancer.com

Patients and Methods

Subjects

In all, 107 consecutive gastric cancer patients who underwent gastrectomy in Taipei-VGH were enrolled into this study and their clinicopathological factors were recorded according to our prospective database. A total of 351 control subjects were selected from people who came for routine physical check up. Those with autoimmune disorders, blood disease and previous malignancy

Although the global incidence of gastric cancer is decreasing, gastric cancer is still one of the leading cancers in most Asian countries. Its current incidence in Taiwan is 15.19 per 100 000. Since surgical resection is the principal treatment, early detection is the only effective strategy against this disease at present. Human leukocyte antigen (HLA) has been reported to be associated with tumour susceptibility (Lee et al, 1996b), lymph node metastasis (Ogoshi et al, 1996), induction of cytotoxic T-lymphocytes (Nabeta et al, 2000) and HER-2/neu overexpression (Kono et al, 2002) in patients with gastric adenocarcinoma. However, its application in tumour screening or prognosis remains to be investigated.

Recently, a new polymorphic gene family, the major histocompatibility complex (MHC) class I chain-related genes located about 40 kb centromeric to HLA-B gene have been identified (Bahram et al, 1994). This family consists of five genes: MHC class I chain-related gene A (MICA), gene B (MICB), gene C (MICC), gene D (MICD) and gene E (MICE). MICC, MICD, MICE are pseudogenes, while MICA and MICB encode proteins that are involved in cellular responses to stress (Bahram and Spies, 1996; Groh et al, 1998).

Among them, MICA has a triplet repeat microsatellite polymorphism (GCT)n in the transmembrane region, which consists of five alleles, A4, A5, A5.1, A6 and A9 (Mizuki et al, 1997). According to the open reading frame of the MICA cDNA, the microsatellite encodes polyalanine and therefore the number of alanine residues differs by the number of triplet repeats. For example, an A4 is defined to contain four GCT repeats and A5.1 contains five triplet repeats plus one additional nucleotide insertion (GCCT) causing a frameshift mutation. The alleles vary among individuals, and hence polymorphism of MICA can be used for genetic mapping and analyzes of disease susceptibility. For example, increased frequency of MICA A6 allele was found in patients with oral squamous cell carcinoma (Liu et al, 2002), Behcet’s disease (Molinotti et al, 2001), and ulcerative colitis (Sugimura et al, 2001). In addition, increased frequency of A9 allele was reported in psoriatic arthritis (Gonzalez et al, 2001) and type 1 diabetes (Lee et al, 2000).

We investigated the MICA polymorphism associated with gastric cancer patients in Taiwan in order to see if there is possible correlation with genetic predisposition and clinicopathological factors.
were excluded. After an informed consent was obtained, blood was
drawn from the subjects to extract genomic DNA.

Polymorphysim analysis

A PCR-based polymorphism analysis was used in this study.
Genomic DNA was extracted from fresh or frozen peripheral blood
leukocytes by standard technique (Buffone and Darlington, 1985;
Lee et al, 1996a). Primers (MICA5F, 5'-CTTACCAGGGAAG
TGCTG-3' and MICA5R, 5'-CCCTACACTCCAGGAAACTGC-3')
flanking the transmembrane region were designed based on the
reported sequence (Bahram et al, 1994; Ota et al, 1997). The
MICA5F primer corresponds to the intron 4 and exon 5 boundary
regions, and MICA5R is located in intron 5 (Ota et al, 1997).
MICA5R was 5' end-labelled with fluorescent dye (Applied
 Biosystems, Foster City, CA, USA) was used to do the PCR reaction. The
amplification reaction mixture (15 µl) contained 50 ng genomic
DNA, 10 mM Tris-HCl (pH 9.0), 50 mM KCl, 1.5 mM MgCl2, 0.01% gelatin, 0.1% Triton X-100, 0.2 mM of each dNTP, 0.5 µM of each primer and 0.5 U Prozyme DNA polymerase (Protech Enterprise,
Taipei, Taiwan). A GeneAmp PCR system (Perkin-Elmer Corporation,
Foster City, CA, USA) was used to do the PCR reaction. The
reaction mixture was denatured at 95°C for 5 min followed by 10
cycles at 94°C for 15 s, 55°C for 15 s, 72°C for 30 s, then by an
additional 20 cycles at 89°C for 15 s, 55°C for 15 s, 72°C for 30 s,
and by a final extension at 72°C for 10 min.

Then the PCR products were denatured for 5 min at 100°C,
mixed with formamide-containing stop buffer, and subjected to
electrophoresis on 4% polyacrylamide gel containing 8-M urea in
an ABI Prism 377-18 DNA sequencer (Applied Biosystem). The
number of microsatellite repeats was estimated automatically with
an ABI Prism 377-18 DNA sequencer (Applied Biosystem). The
polymorphysim analysis

Analyses with clinicopathological factors

Any possible significant alteration of MICA allele will be analysed
with their clinicopathological factors, which are based on Japanese
criteria (Japanese Gastric Cancer Association, 1998) and include
age, sex, tumour location, tumour size, cellular differentiation,
gross appearance, histological patterns, stromal reaction (cancer–
stroma relationship), depth of invasion, lymph node status and
tumour stage to see if there is correlation among them. Based on
the amount of stromal tissue, stromal reaction (cancer–stroma
relationship) of gastric cancer was classified into scirrhous,
medullary and intermediate types by observation of H&E stained
pathological sections (Japanese Gastric Cancer Association, 1998).
In this study the scirrhous type was quantitatively defined as
tumour stroma occupied more than 50% of tumour area, less than
10% in medullary type and 10–50% in the intermediate type. The
three categories were determined under ×40 (low power field)
magnification field.

Statistical analysis

The difference of phenotype and gene frequencies between patients
and normal controls were analysed by using χ² test. Significant
alteration of MICA allele also was analysed with clinicopathological
factors by using χ² test. Statistically significant difference was
defined as P<0.05.

RESULTS

To establish the phenotypic frequencies of MICA alleles in
Taiwanese population, we have analysed 351 normal samples.
The controls’ ages ranged from 22 to 71 years (mean + s.d. = 42.1 ± 10.7). Age did not affect the MICA alleles distribution.
The gender distribution of the control was 185:166, male to
female. The analyses concluded that A4 is 31%, A5 is 50%, A5.1 is
36%, A6 is 8% and A9 is 18%. This is important for this study,
since the frequencies are different in various areas (Table 1). With
this information available to us, we then analysed and compared
samples from 107 patients with gastric adenocarcinoma who
underwent gastrectomy in our hospital. Although no significant
difference of frequency of A4, A5, A5.1 and A6 alleles was found
between normal controls and gastric cancer patients, both the
phenotypic and allelic frequencies of A9 were significantly higher
than those in normal controls (33 vs 17.6%, P = 0.005; 17 vs 9.9%,
P = 0.02) (Tables 2 and 3).

We further examined whether the A9 allele might contribute to
the clinicopathological factors of these patients. Several clinicopathological factors such as age, sex, tumour location, size, gross
appearance, histological patterns, depth of invasion, lymph node
status and TNM staging were included in the analyses. Among
these factors, we found that gastric cancer with allele A9 was
strongly associated with less schirrous reaction (stromal reaction)
compared with ‘non-A9’ gastric tumours (P = 0.014) (Table 4),
suggesting that gastric cancer patients with allele A9 associated
with less schirrous reaction.

Table 1 Phenotypic frequencies of MICA alleles in various countries

Allele	Taiwana (n = 351) (%)	Japanb (103) (%)	Spainb (342) (%)	Swedenb (153) (%)
A4	31	20	33	26
A5	50	52	21	56
A5.1	36	17	43	66
A6	8	46	55	9
A9	18	31	29	18

*Current study. bPetersdorf et al (1999).

Table 2 Phenotype frequencies of MICA gene in gastric carcinoma patient and normal control

Phenotype	Normal (N = 351)	Gastric ca (N = 107)	P-value	Corrected P
A4	107	35	0.663	3.315
A5	174	59	0.313	1.565
A5.1	127	40	0.821	4.105
A6	27	13	0.153	0.765
A9	62	35	0.001*	0.005*

*Statistical significance.
In this study, we have shown that the MICA allele A9 was significantly correlated with gastric adenocarcinoma and less schirrous change in gastric cancer tissue. These findings suggest that MICA allele A9 may be important in the etiology and immune reaction of gastric adenocarcinoma. Although status of stromal reaction is not routinely included in pathological report, it was reported to be a prognostic indicator of gastric cancer (Wu et al., 1997). Stromal reaction of tumour was shown to relate with cancer desmoplastic reaction (Ohtani et al., 1992), angiogenesis (Engels et al., 1997), tumour invasion and metastasis, tumour cell proliferation (Wernet, 1997), tumour cell adhesion molecules and production of matrix-degrading enzyme by stromal cells to facilitate tumour invasion and metastasis (Wernet, 1997). Currently, the cellular and molecular events of stromal reaction were proposed to be similar to those of wound healing (Dvorak, 1986) and inflammatory diseases, such as ulcerative disease and Crohn’s disease (Ohtani, 1998). In these inflammatory lesions, the aberration of the immune system is speculated to be the cause of the diseases. Stromal reaction of

Table 3 Allelic frequencies of MICA gene in gastric carcinoma patient and normal control

Allele	Normal (N = 702)	Frequency	Gastric ca (N = 214)	Frequency	P-value	Corrected P
A4	161	22.9%	19	1.22		
A5	262	37.3	34	1.965		
A5.1	177	25.2	23	2.455		
A6	32	4.5	7	1.225		
A9	70	9.9	17	0.02a		

*aStatistic significance.

Table 4 Clinicopathological features of gastric cancer with A9 phenotype MICA

Parameter	A9 (n = 35)	Non-A9 (n = 72)	P-value
Age			
<65	15	26	0.617
>65	20	46	
Sex			
Male	26	55	0.978
Female	9	17	
Tumour location			
Upper 1/3	7	9	0.512
Middle 1/3	10	28	
Lower 1/3	18	34	
Whole	0	1	
Tumour size			
<4 cm	19	30	0.287
4–8 cm	12	35	
>8 cm	4	7	
Cell differentiation			
Well	1	1	0.424
Moderate	19	30	
Poor	15	41	
Borrmann type			
O	19	30	0.256
II	5	11	
III+IV	11	31	
Infiltration type			
Alpha	12	24	0.466
Beta	12	18	
Gamma	11	31	
Stromal reaction			
Medullary	9	23	0.014a
Intermediate	25	33	
Schirrous	1	16	
Ming classification			
Infiltrative	15	26	0.560
Expanding	20	46	
Lauren’s classification			
Intestinal type	22	36	0.191
Diffuse type	13	36	
Depth of tumour invasion			
T1	14	28	0.744
T2	6	10	
T3+T4	15	34	

Table 4 (Continued)

Parameter	A9 (n = 35)	Non-A9 (n = 72)	P-value
Lymph node metastasis			
Negative	23	36	0.123
Positive	12	36	
Liver metastasis			
Negative	33	71	0.221
Positive	2	1	
Peritoneal dissemination			
Negative	34	70	1.000
Positive	1	2	
TNM stage			
I	18	34	0.292
II	7	6	
III	6	21	
IV	4	11	

*aStatistic significance.

DISCUSSION

In this study, we have shown that the MICA allele A9 was significantly correlated with gastric adenocarcinoma and less schirrous change in gastric cancer tissue. These findings suggest that MICA allele A9 may be important in the etiology and immune reaction of gastric adenocarcinoma. Although status of stromal reaction is not routinely included in pathological report, it was reported to be a prognostic indicator of gastric cancer (Wu et al., 1997). Stromal reaction of tumour was shown to relate with cancer desmoplastic reaction (Ohtani et al., 1992), angiogenesis (Engels et al., 1997), tumour invasion and metastasis, tumour cell proliferation (Wernet, 1997), and immune reactions (Saiki et al., 1996). Tumour stroma is composed of new blood vessels, inflammatory cells and connective tissue (Dvorak, 1986). Tumour stromal reaction include many complicated interrelated processes, including production of cytokine (interleukine) to induce immune T cells to elicit tumour regression (Nabeta et al., 2000), expressing adhesion molecules and production of matrix-degrading enzyme by stromal cells to facilitate tumour invasion and metastasis (Wernet, 1997). Currently, the cellular and molecular events of stromal reaction were proposed to be similar to those of wound healing (Dvorak, 1986) and inflammatory diseases, such as ulcerative disease and Crohn’s disease (Ohtani, 1998). In these inflammatory lesions, the aberration of the immune system is speculated to be the cause of the diseases. Stromal reaction of
tumour can also be regarded as an immune response to a neogrowth. Therefore, the host immune reactions can be regarded as a factor in modulating the aggressiveness of a tumour. For desmoplastic reaction, it is still uncertain whether it is defensive for the host or it is facilitating the tumour growth, although a poorer survival was reported in patients with gastric cancer and breast cancer (Cardone et al., 1997; Caporale et al., 2001). As shown in the current study, less scirrhous (less desmoplastic reaction) type tumour appeared in A9 allele group (P = 0.014) and was probably resulted from some host immune mechanism.

MICA encodes a molecule similar to MHC class I antigens and may share the same capacity of binding to short peptides or small ligands. MICA is expressed in fibroblasts, epithelial cells (Bahram et al., 1994), keratinocytes, endothelial cells and monocytes (Zwirner et al., 1998), and may play a role in the immune response (Bahram et al., 1994). Its expression is regulated by a promoter heat shock element similar to those of heat shock protein (HSP) genes (Groh et al., 1996). High levels of MICA expression in epithelial cell lines together with upregulation of MICA after heat shock may represent a new molecular mechanism of exposing stressed epithelial cells to the immune system (Bahram et al., 1996). It is shown that HSPs are involved in the formation of malignancy (Bonay et al., 1994; Kawanishi et al., 1999), including gastric adenocarcinoma (Liu et al., 1999; Maehara et al., 2000). In addition, they are expressed by transformed/cancer cells, which are important targets for T lymphocytes. High levels of MICA expression in epithelial cells after heat shock (stress) may not be coincident. It may provide a mechanism of exposing transformed cells to the mucosal immune system allowing γδ T cells (Bahram et al., 1996; Groh et al., 1998), a subset of T cells expressing the γδ T cell receptors (TCRs) γδ heterodimer (Haas et al., 1993), to recognise and destroy transformed/damaged cells. Although γδ T cells constitute only about 5% of circulating T cells, they are distributed throughout the human intestinal epithelium and may function as sentinels that respond to self-antigens. Interestingly, MICA is almost exclusively expressed intestinal epithelium. Recently, it was shown that NK cells and antigen-specific effector T cells could be triggered by MIC engagement of NKG2D (Bauer et al., 1999), a receptor expressed on most NK cells, γδ T cells and CD8+ γδ T cells involved in the innate and adaptive immune responses (Bauer et al., 1999). However, circulatory MICA secreted by neoplasms can downregulate the expression of NKG2D and impair the responsiveness of effector T cells (Groh et al., 2001). Whether MICA A9 antigen product can result in altered immunity and susceptibility to gastric cancer via reactions with HSPs or γδ T cell or NKG2D need further investigation (Groh et al., 1998, 2001, 2002; Bauer et al., 1999).

In summary, all of the above findings suggesting MICA may relate with host immunity. Since its alleles vary among individuals and may confer variable disease susceptibility, analyses of MICA alleles maybe useful in cancer investigation. Our results demonstrated that Taiwanese carrying an A9 allele have higher risk to gastric cancer. Furthermore, gastric cancers with A9 allele are associated with less scirrhous change. Further investigation can study the mechanism of activity of MICA A9 allele. Identification of the mechanism of association of MICA A9 allele with gastric cancer could help the individuals most likely benefit from cancer screening and prevention program and may suggest novel treatment modality.

ACKNOWLEDGEMENTS

This study was supported by a grant from Taipei-Veterans General Hospital (VGH-91-295)

REFERENCES

Bahram S, Bresnahan M, Geraghty DE, Spies T (1994) A second lineage of mammalian major histocompatibility complex class I gene. Proc Natl Acad Sci USA 91: 6259–6263

Bahram S, Mizuki N, Inoko H, Spies T (1996) Nucleotide sequence of the human MHC class I MICA gene. Immunogen 44: 80–81

Bahram S, Spies T (1996) The MIC gene family. Respir Immunol 147: 328–333

Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Recognition of stress-induced MICA on virus-infected cells. J Exp Clin Cancer Res 28: 21–24

Cardone A, Tolino A, Zacone R, Borruto CG, Tagartia E (1997) Prognostic value of desmoplastic reaction and lymphocytic infiltration in the management of breast cancer. Panminerva Med 39: 174–177

Dvorak HF (1986) Tumors: wounds that do not heal, similarities between tumor stroma generation and wound healing. N Engl J Med 266: 1650–1659

Engel K, Fox SB, Harris AL (1997) Angiogenesis as a biologic and prognostic indicator in human breast cancer. EXS 79: 113–136

Gonzalez S, Brautbar C, Martinez-Borra J, Lopez-Vazquez A, Segal R, Blanco-Gelaz MA, Enk CD, Safriman C, Lopez-Larrea C (2001) Polymorphism in MICA rather than HLA-B/C genes is associated with psoriatic arthritis in the Jewish population. Human Immunol 62: 632–638

Goto K, Ota M, Ando H, Mizuki N, Nakamura S, Inoue K, Yabuki Y, Katoke S, Katsuyama Y, Kimura M, Inoko H, Ohno S (1996) MICA gene polymorphisms and HLA-B27 subtypes in Japanese patients with HLA-B27-associated acute anterior uveitis. Invest Ophthalmol Vis Sci 39: 634–637

Goto K, Ota M, Ohno S, Mizuki N, Ando H, Katsuyama Y, Makosyownych WP, Kimura M, Bahram S, Inoko H (1997) MICA gene and ankylosing spondylitis: linkage analysis via a transmembrane-encoded triplet repeat polymorphism. Tissue Antigens 49: 503–507

Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T (1996) Cell stress-regulated human major histocompatibility complex class I gene expressed in gastro-intestinal epithelium. Proc Natl Acad Sci USA 93: 12445–12450

Haas W, Pereira P, Tonegawa S (1993) Gamma/delta cells. Ann Rev Immunol 11: 637–685

Japanese Gastric Cancer Association (1998) Japanese classification of gastric carcinoma. In Gastric Cancer, Kobori O, Siewert JR (eds). 2nd English edn, Vol 1, p 10–24

Kawanishi K, Shinozaki H, Doki Y, Sakita I, Inoue M, Yano M, Tsujinaka T, Japanese Gastric Cancer Association (1998) Japanese classification of gastric cancer. In Cancer 85: 1649–1657

Katoke K, Takahashi A, Amemiya H, Ichihara F, Sugai H, Iizuka H, Fujii H, Matsumoto Y (2002) Frequencies of HER-2/neu overexpression relating to HLA haplotype in patients with gastric cancer. Int J Cancer 98: 216–220

© 2004 Cancer Research UK
Lee HH, Chao HT, Ng HT, Choo KB (1996) Direct molecular diagnosis of CYP21 mutations in congenital adrenal hyperplasia. *J Med Genet* 33: 371–375

Lee JE, Lowy AM, Thompson WA, Lu M, Loflin PT, Skibber JM, Evans DB, Curley SA, Mansfield PF, Reveille JD (1996) Association of gastric adenocarcinoma with HLA class II gene DQBI*0301. *Gastroenterology* 111: 426–432

Lee YJ, Huang FY, Wang CH, Lo FS, Tsan KW, Hsu CH, Huang CY, Chang SC, Chang JG (2000) Polymorphism in the transmembrane region of the MICA gene and type 1 diabetes. *J Pediatr Endocrinol Metab* 13: 489–496

Liu CJ, Lee YJ, Liu HF, Dang CW, Chang CS, Leu YS, Chang KW (2002) The increase in the frequency of MICA gene A6 allele in oral squamous cell carcinoma. *J Oral Pathol Med* 31: 323–328

Liu X, Ye L, Dang CW, Chang CS, Leu YS, Chang KW (2002) The increase in the frequency of MICA gene A6 allele in oral squamous cell carcinoma. *J Oral Pathol Med* 31: 323–328

Liu X, Ye L, Dang CW, Chang CS, Leu YS, Chang KW (2002) The increase in the frequency of MICA gene A6 allele in oral squamous cell carcinoma. *J Oral Pathol Med* 31: 323–328

Molinotti C, Govoni M, Trotta F, Filippini D, Paolazzi G, Viggiani M (2001) Association of MICA alleles and HLA-B51 in Italian patients with Behcet's disease. *Oncology* 58: 144–151

Maehara Y, Oka E, Abe T, Tokunaga E, Shibahara K, Kakeji Y, Sugimachi K (2000) Overexpression of the heat shock protein HSP70 family and p53 protein and prognosis for patients with gastric cancer. *Oncology* 58: 144–151

Mizuki N, Ota M, Kimura M, Ohno S, Ando H, Katsuyama Y, Yamazaki M, Watanabe K, Goto K, Nakamura S, Bahram S, Inoko H (1997) Trinucleotide repeat polymorphism with exon 5 of the MICA gene (MHC class I chain-related gene A): allele frequency data in the nine population groups Japanese, Northern Han, Hui, Uygur, Kazakhstan, Iranian, Saudi Arabian, Greek and Italan. *Tissue Antigens* 49: 448–454

Nabeta Y, Sahara H, Nagata M, Hirohashi Y, Sato Y, Wada T, Yamashita T, Kikuchi K, Sato N (2000) Induction of cytotoxic T lymphocytes from peripheral blood of human histocompatibility antigen (HLA)-A31(+) gastric cancer patients by in vitro stimulation with antigenic peptide of signet ring cell carcinoma. *Ipas J Cancer Res* 91: 616–622

Ogoshi K, Takima T, Mitomi T, Tsuji K (1996) HLA antigens are candidate markers for prediction of lymph node metastasis in gastric cancer. *Clin Exp Metastasis* 14: 277–281

Ohtani H (1998) Stromal reaction in cancer tissue: pathophysiologic significance of the expression of matrix-degrading enzymes in relation to matrix turnover and immune/inflammatory reactions. *Pathol Int* 48: 1–9

Ohtani H, Kuroiwa A, Obinata M, Osima A, Nagura H (1992) Identification of type I collagen producing cells in human gastrointestinal carcinoma by non-radioactive in situ hybridization and immunoelectron microscopy. *J Histochem Cytochem* 40: 1139–1146

Ota M, Katsuyama Y, Misuki N, Ando H, Furikata K, Ono S, Pivetti-Pezzi P, Tabbra KF, Palimeris GD, Nikbin B, Davatchi F, Chams H, Geng Z, Bahram S, Inoko H (1997) Trinucleotide repeat polymorphism with exon 5 of the MICA gene (MHC class I chain-related gene A): allele frequency data in the nine population groups Japanese, Northern Han, Hui, Uygur, Kazakhstan, Iranian, Saudi Arabian, Greek and Italan. *Tissue Antigens* 49: 448–454

Petersdorf EW, Shuler KB, Longton GM, Spies T, Hansen JA (1999) Population study of allelic diversity in the human MHC class I-related MICA gene. *Immunogenetics* 49: 605–612

Saiki Y, Ohtani H, Naito Y, Miyazawa M, Nagura H (1996) Immunophenotypic characterization of Epstein–Barr virus-associated gastric carcinoma: massive infiltration by proliferating CD8+ T-lymphocytes. *Lab Invest* 75: 67–76

Sugimura K, Ota M, Matsuzawa J, Katsuyama Y, Ishizuka K, Mochizuki T, Mizuki N, Seki SS, Homma T, Inoko H, Asakura H (2001) A close relationship of triplet repeat polymorphism in MHC class I chain-related gene A (MICA) to the disease susceptibility and behavior in ulcerative colitis. *Tissue Antigens* 57: 9–14

Wernet N (1997) The multiple roles of tumor stroma. *Virch Arch* 430: 433–443

Wu CW, Hsieh MC, Lo SS, Tsay SH, Li AF, Lui WY, P'eng FK (1997) Prognostic indicators for survival after curative resection for patients with carcinoma of the stomach. *Dig Dis Sci* 42: 1265–1269

Zwirner NW, Fernandez-Vina MA, Stastny P (1998) MICA, a new polymorphic HLA-related antigen, is expressed mainly by keratinocytes, endothelial cells, and monocytes. *Immunogenetics* 47: 139–148