The link between chronic pain and Alzheimer’s disease

Song Cao¹,²,³, Daniel W. Fisher³, Tain Yu² and Hongxin Dong*²

Abstract

Chronic pain often occurs in the elderly, particularly in the patients with neurodegenerative disorders such as Alzheimer’s disease (AD). Although studies indicate that chronic pain correlates with cognitive decline, it is unclear whether chronic pain accelerates AD pathogenesis. In this review, we provide evidence that supports a link between chronic pain and AD and discuss potential mechanisms underlying this connection based on currently available literature from human and animal studies. Specifically, we describe two intertwined processes, locus coeruleus noradrenergic system dysfunction and neuroinflammation resulting from microglial pro-inflammatory activation in brain areas mediating the affective component of pain and cognition that have been found to influence both chronic pain and AD. These represent a pathological overlap that likely leads chronic pain to accelerate AD pathogenesis. Further, we discuss potential therapeutic interventions targeting noradrenergic dysfunction and microglial activation that may improve patient outcomes for those with chronic pain and AD.

Keywords: Chronic pain, Alzheimer’s disease, Locus coeruleus, Norepinephrine, Noradrenergic system, Microglia, Prefrontal cortex

Introduction

Chronic pain, defined as pain lasting more than 3 months, is very common in the elderly and is a significant issue in both individual clinical practices and the healthcare system. The prevalence of chronic pain in older people living in the community is reported to be 38.5% [1], which is higher than that in the adult population at large (19%) [2] and schoolchildren (6%) [3]. Though chronic pain is often understood as aberrations in sensory processes, it is also highly associated with cognitive, emotional, and social dysfunction [4]. In contrast to acute pain, cognitive and emotional deficits seem to be particularly prominent when pain turns chronic, and the many failed treatments that solely target peripheral mechanisms of pain underly the increased complexity of pain perception with chronicity [5, 6]. Dysfunctions in pain perception mediated by the central nervous system (CNS) are likely to play a key role in the process of pain chronification, and central sensitization in pain processing pathways influences cognitive and emotional processing, which has been supported by both human [7, 8] and animal work [9, 10]. Together, a bidirectional interaction likely exists between chronic pain and cognitive deficits.

Alzheimer’s disease (AD), a neurodegenerative disorder and most common form of dementia, characterized by cognitive and behavioral impairments, is often co-morbid with chronic pain. The reported prevalence of chronic pain in AD patients was 45.8%, based on a recent meta-analysis [11]. In fact, pain may be underestimated in AD patients as they may be unable to communicate their pain and request attention as effectively as their cognitively normal peers [12]. Importantly, pain is observed more prevalently in patients with severe dementia [13], and intensity of pain is also positively correlated with dementia severity [14–16]. Though a bi-directional correlation exists between chronic pain and AD, a clear mechanistic link remains elusive. Growing evidence suggests patients with chronic pain or AD share some common pathologies, including abnormalities of the noradrenergic system in the locus coeruleus (LC) [17], activation of microglia in brain areas such as the frontal cortex, and increased central neuroinflammation in these regions [18]. The LC extends axons that innervates most brain area and is the main center of
norepinephrine (NE) synthesis and subsequent neurotransmission in the CNS. Interestingly, it has been suggested that changes in LC-NE signaling contributes to microglial dysfunction [19].

In this review, we provide current evidence for the link between chronic pain and AD and the overlapping pathological changes in these two disorders. Additionally, we discuss the possibility that chronic pain aggravates AD pathogenesis through dysfunction of LC-NE signaling and subsequent microglial activation-induced neuroinflammation.

The link between chronic pain, cognitive impairment, and dementia

It has been reported that chronic pain is associated with increased self-rated and objective cognitive deficits [15, 20]. These cognitive deficits are not specific to a particular pain modality and can be observed in fibromyalgia [21], postherpetic neuralgia [22], and chronic back pain [23], to name a few. Epidemiological analyses of community-dwelling residents and pain clinics estimate that at least 50% of people living with pain report cognitive problems [24], and a similar proportion demonstrate impairment on objective cognitive tests [25]. Further, clinical observations indicate that the intensity of pain is positively correlated with the degree of cognitive impairment [10, 26, 27].

Chronic pain is also associated with dementia. In the Einstein Aging Study, one of the longest running prospective cohort studies of aging, 1114 elderly participants [28] were assessed and 114 (10%) of the subjects developed dementia over 4.4 years [29]. In this study, higher levels of pain interference, defined as the degree of pain-related impairment in activities of daily living, were associated with a higher probability of developing dementia [29]. However, it is reported that there was no relationship between the intensity of pain and developing dementia [29], which may be due to (1) dementia patients and their caregivers routinely underreport pain intensity, (2) chronic pain may manifest differently in dementia patients, and (3) more severe cognitive impairments leading to reduced ability to articulate pain concerns [30–32]. Another study [33] also supported pain interference being significantly and positively associated with AD and related dementia (ADRD). In this cohort of 25,009 older adults (> 65 years), those with pain interference either with or without osteoarthritis had significantly higher odds of ADRD relative to those without osteoarthritis or pain interference [33]. Overall, these studies suggest that chronic pain, especially in patients with pain interference, may hasten dementia pathogenesis in addition to its effects on subclinical cognitive dysfunction.

Another similarity is that chronic pain and AD display abnormalities of gray matter volume, and neuroimaging suggests that cognitive decline in patients with chronic pain may be related to gray matter volume changes in the brain [4]. Many of these altered brain areas are involved in sensory perception, the affective component of pain, and cognition [34, 35]. For instance, gray matter volume loss has been found in the amygdala, entorhinal cortex, parahippocampal gyrus, anterior cingulate cortex, thalamus, and insula [36–38]. Additionally, reduced gray matter volume in brain areas involved in cognitive function, such as the dorsolateral prefrontal cortex (dPFC) [39], medial prefrontal cortex (mPFC) [37], and hippocampus [40]. We found that postherpetic neuralgia patients displayed decreased gray matter volume in the frontal lobe compared with healthy controls or otherwise healthy herpes zoster patients [41]. Interestingly, some of these areas are among earliest sites of degeneration in AD [42], and cortical gray matter volume is correlated with cognitive decline in AD [43]. Though different pathological mechanisms may exist and independently contribute to gray matter atrophy in chronic pain and AD, an interaction may be present in these two disease states that synergistically increases neurodegeneration and cognitive decline.

To date, a considerable number of animal experiments have investigated the cellular and molecular mechanisms between chronic pain and cognitive deficits [44, 45]; however, few studies have focused on whether a common mechanism underlies cognitive decline in comorbid chronic pain and AD. In one notable study [45], chronic inflammatory pain accelerated cognitive impairment in 5-month old APP/PS1 mice, a prominent AD model, but not in wildtype animals. As APP/PS1 mice rarely develop overt cognitive deficits before 9–12 months of age, the development of memory impairment in this study suggests that chronic pain accelerates AD pathogenesis and subsequent cognitive decline. While this study suggests animal models may be useful for investigating a mechanistic relationship between AD and chronic pain, this investigation still needs to be done.

Chronic pain induces dysfunction of the LC-NE system and pro-inflammatory microglial activation

The LC has been implicated in a variety of physiological functions including attention, memory, emotion, stress reactions, and pain modulation [46]. The LC is located in the dorsal pontine nucleus and provides descending noradrenergic input to the spinal cord, forming the LC-spinal descending pain modulation system. It also extensively projects to most regions of the brain, particularly the frontal cortices and the limbic system [47], and is well known as the predominant source of the neurotransmitter NE in the brain [48].
Chronic pain induces dysfunction of LC-NE system

Dysfunction of LC-NE system associated with chronic pain has been reported mostly in animals. Significant increases in the expression of tyrosine hydroxylase, dopamine beta-hydroxylase (DBH), the NE transporter, the α2-adrenoceptor, and burst firing have been seen in the LC of rats with a chronic constriction injury, a widely used neuropathic pain model [47, 49]. This results in more NE release [50, 51], although these changes were only evident when pain became chronic (28-day pain duration) and not during the acute period (7-day pain duration) [47, 49]. Although most of the animal studies reported that the LC is activated in chronic pain, one study showed opposite results [52]. In particular, in streptozocin-treated rats, a model of diabetic neuropathy, LC firing activity and expression levels of tyrosine hydroxylase, pCREB, and the NE transporter were reduced in the LC when anxiety-like and depression-like behaviors were observed, a time point considered to be representative of chronic pain [52]. The distinct nociceptive sensitivity time-courses as well as the LC functions between the chronic constriction injury and streptozocin models indicate that specific neuroplastic mechanisms depend on pain modality [52], which adds a layer of complexity in determining how chronic pain may be affected by LC-NE neurotransmission.

Changes in LC function and plasticity will affect NE transmission in numerous brain regions, and it is very possible that changes in LC-NE function are not uniform but instead vary based on downstream targets. For example, abnormally increased LC-PFC neurotransmission has been widely reported in animals with chronic pain and leads to increased noradrenergic fiber sprouting and intrinsic excitability in the PFC, mediated in part by α2-adrenoceptors and HCN channels [53]. This increase in plasticity in the PFC coincides with shifting NE neurotransmission in other specific brain areas innervated by the LC [54]. Despite this increase in noradrenergic markers, microdialysis techniques showed that 28 days after chronic constriction injury, no significant difference was found in basal NE release in the LC and PFC in rats [49]. However, another study showed that in the PFC, the sensitivity of α2-adrenoceptors is enhanced, and 6 weeks after spinal nerve ligation, the NE content of the PFC was augmented significantly, coupled with impaired attention [50]. These data suggest that pain duration is an important factor for the neuroplastic LC changes and also suggest that changes in LC-NE neurotransmission is likely more nuanced than those determined by measuring basal neurotransmission alone [47].

Overall, chronic pain-induced LC-NE system dysfunction during chronic pain is complex and likely depends on the chronic pain duration, modality, and downstream neuron function and location. However, in terms of brain regions that are affected by cognition, such as the PFC, enhanced neurotransmission of NE results in increased excitability that coincides with aberrant cognitive and emotional behaviors.

Chronic pain induces microglial activation and neuroinflammation

Microglia are the primary innate immune cells in the CNS, which is otherwise relatively immunoisolated [55]. As one of the constituent cells of blood-brain barrier, microglia express many kinds of receptors which recognize exogenous or endogenous insults to the CNS and initiate an immune response [56]. For example, it has been reported that microglia control the spread of neurotropic virus infection [57], which can induce encephalitis and neurodegeneration [58].

Microglial activation includes pro-inflammatory activation and anti-inflammatory activation [59, 60]. Microglial pro-inflammatory activation promote neuropsychiatric disease through release of pro-inflammatory molecules such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, inducible nitrous oxide synthase (iNOS), and reactive oxygen species [60]. Activated microglia due to chronic pain may play critical roles in pain occurrence and maintenance [61]. In chronic pain, neuroinflammation driven by microglia is a characteristic feature [62]. In fact, microglia are initiators of a postinjury, neuroimmune response that contributes to the transition from acute to chronic pain [63]. In the chronic pain state, pro-inflammatory microglia release cytokines and chemokines associated with inflammation, such as IL-6, IL-1β, and TNF-α [64, 65]. This pro-inflammatory state leads to changes in synaptic remodeling, brain connectivity, and network function [66].

Chronic pain-induced microglial activation and neuroinflammation have been reported in both humans and animal models. In one study using PET-MRI, patients with chronic lower back pain showed increased microglia and astrocyte activation in the thalamus and the putative somatosensory representations of the lumbar spine and leg, as evidenced by elevated signal of translocator protein, a marker of microglia and astrocytes [67]. In another study, by using [11C]PBR28 PET, microglial activation signal was widely elevated in certain cortical regions of patients with fibromyalgia, a condition typified by chronic, neuropathic pain [68].

Additionally, a large number of animal studies have shown that chronic pain increases microglial pro-inflammatory activation and neuroinflammation in the brain. Specifically, microglial activation has been detected in the PFC [64, 69, 70], hippocampus [71], anterior cingulate cortex [72], amygdala, nucleus accumbens, thalamus, and sensory cortex [64, 73, 74] in different kinds of chronic pain animal models [75]. For instance, rats with spared nerve injury showed microglial activation in the PFC as evidenced by increased expression of CD68, iNOS,
IL-1β, IL-6, TNF-α, and 8-OH-dG [70, 74]. Spared nerve injury mice also displayed TNF-α upregulation in bilateral hippocampi [65]. Similarly, rats with spinal nerve ligation showed microglial activation in the PFC [69], and mice with chronic constriction injury developed increased microglial inflammation in the mPFC, hippocampus, and amygdala evidenced by increased CD11b and TNF-α expression [64].

In all, chronic pain is associated with upregulation of pro-inflammatory microglia in varied brain areas, including those responsible for cognition and emotion. Microglial activation induces neuronal dysfunction, such as the LC-NE dysfunction, which may feed forward to enhance further microglia-driven neuroinflammation.

Chronic pain may aggravate AD neuropathogenesis through LC-NE-induced microglial neuroinflammation

Chronic pain and AD brains not only display abnormal LC structure and function but also dynamic changes in NE turnover in LC-projecting areas [47, 76]. Although the shifts of NE content may not perfectly overlap in all brain areas in these two disease states, LC-NE pathological changes in select regions could be one of the initiators that leads to a final common outcome: pro-inflammatory activation of microglia and neuronal dysfunction.

Dysfunction of the LC-NE system in AD brain

Similar to chronic pain, the function and structure of the LC are disrupted in AD, and the LC is one of the earliest brain regions affected during AD development and progression [77]. A loss of LC-noradrenergic neurons is observed in autopsy specimens of AD patients, with estimated 50% [78] to 60% [79] LC cell loss, which is more dramatic than the 41% neuron loss observed in the PFC [80]. However, there is evidence that axonal sprouting and dendritic arborization increases, perhaps as compensation for the loss of cells [81]. Concomitantly, increased activity of surviving LC neurons in AD patients is also reported [82, 83], and post-mortem autoradiography detected significantly decreased NE transporter in the human AD brain, again suggesting compensatory mechanisms adjusted for cell loss [84].

Due to the complexity in these degenerative and compensatory mechanisms, it is not surprising that there are conflicting reports of the levels of NE in various brain areas in AD patients. Some reported a decrease in NE and some demonstrated that NE levels in AD patients remain constant or even elevated in the cerebrospinal fluid [76, 78, 85]. These differences in NE neurotransmission across studies may also reflect different points in AD pathogenesis. Therefore, although neuron loss occurs in the LC, NE content does not necessarily decrease in the AD brain, as the system likely compensates by increasing LC excitability and decreasing NE reuptake, and increased NE early in the disease may further exacerbate neurodegeneration. Although noradrenergic neuron loss in the LC correlates significantly with the duration of AD [86], NE concentration decreases were found in brain regions associated with cognitive deficits, namely the midtemporal cortex and the orbital-frontal cortex [78]. Mirroring the loss of LC neurons in humans, animal models of AD also demonstrated significant aberrations in the LC-NE system. For instance, the APP/PS1 mouse has demonstrated degenerated noradrenergic neurons and fibers in the LC [87]. Further, hyperphosphorylated tau causes reduced NE neurotransmission from the LC to the forebrain and certain subcortical areas, such as the hippocampus, suggesting that tau may be one of the AD-related mediators of LC dysfunction [88]. These studies suggest that patients with AD have a progressive decrease in LC neurons, and part of the clinical symptoms of AD may be due to reduced noradrenergic neurotransmission mediated by LC degeneration, especially in mid- and late-stages of disease progression [89].

NE turnover influences microglial activation and neuroinflammation

Homeostasis of the LC-NE system is important for controlling central inflammation because numerous studies have shown that NE can effectively inhibit inflammation, including microglia-related neuroinflammation [19]. On the other hand, recent studies indicate that NE could be pro-inflammatory [90]. Therefore, when the homeostasis of LC-NE system is destroyed, either excessive or insufficient NE may lead to neuroinflammation.

Microglia are well equipped to respond to NE signaling by expressing the noradrenergic α1A, α2A, β1, and β2 receptors [91, 92] and strong interactions exist between NE and microglia [87, 97]. Some evidence supports that pro-inflammatory activation of microglia may be due to activation of the LC and abnormal and excessive release of NE [90]. NE enhances Aβ-mediated IL-1β secretion through action at β-adrenoceptors in THP-1 cells [93]. NE also increases COX-2 and prostaglandin E2 production induced by LPS via β-adrenoceptors in rat primary microglia [94]. NE plays both roles as a facilitator or a suppressor for microglial pro-inflammatory reactions via activating cAMP and modulating downstream MAPK and NF-kB signaling [95]. Therefore, chronic pain-induced LC-NE neuron hyperactivity and increased supply of NE to brain areas such as PFC may result in microglial pro-inflammatory activation and exacerbate neuroinflammation in these areas in AD [64, 70].

However, more evidence indicates that NE inhibits microglial activation and suppresses the production of pro-inflammatory factors such as IL-6 and TNF-α [91].
Studies suggested that NE dampens microglial reactivity [96], as NE negatively regulated the transcription of inflammatory genes encoding pro-inflammatory cytokines and chemokines in microglia [97, 98], likely through direct action on adrenergic receptors on these cells [92]. For instance, noradrenergic depletion with DSP4 treatment increased microglial activation and the expression of iNOS and COX2 in the hippocampus and the frontal cortex of aged APP V717 transgenic mice [87]. Co-activation of β1 and β2 in hippocampal slice cultures reduced microglial activation from a pro-inflammatory LPS plus oxygen-glucose deprivation insult and resulted in an overall reduction in TNF-α, IL-6, and MCP-1 [99]. Similarly, β-adrenergic agonism in microglia co-cultured with cortical neurons protected these cells from death by downregulating TNF-α, IL-6, and free radical expression [100, 101]. In line with the dampening of microglial activation, catecholamines also inhibit nitric oxide production from microglia, perhaps by causing a decrease in iNOS [101].

Activated microglia and neuroinflammation promote AD pathogenesis

Microglial activation and neuroinflammation increase in AD
Recently, inflammation-associated PET studies demonstrated microglial activation in the brains of AD patients. In addition, microglial activation was found occurring before cognitive decline in AD patients, suggesting that it may be an early precipitant of AD progression [102]. By using PET-MRI in AD patients, two peaks of microglial activation were detected during the trajectory of AD pathogenesis, which may represent an early protective peak and a later pro-inflammatory peak [103].

Microglial activation and neuroinflammation are found in the brains of AD animal models. For example, microglia show increased proliferation in well-characterized mouse models of AD, including APP/PS1, 5XFAD, and APP23 mice [104, 105], and increased expression of pro-inflammatory markers such as CD36, CD14, CD11c, MHC-II, and iNOS [106, 107].

Microglial activation may play a dual role in AD. At the early stage of AD, activated microglia display mainly anti-inflammatory phenotypes [108], while chronic activation of microglia contributes to neurotoxicity and induces synapse loss by triggering pro-inflammatory cascades [109, 110]. Similar to microglial activation in chronic pain, loss of microglial homeostatic functioning and subsequent transition to prolonged and pathological neuroinflammation exists in AD patients [109, 110]. Despite the complexity in the role of microglia in AD pathogenesis, studies suggest that during AD progression, microglia predominantly support pro-inflammatory processes and promote cognitive decline. In fact, reactivations of microglia and neuroinflammation are now considered characteristics of AD pathogenesis [111].

Microglial activation and neuroinflammation hastens AD pathogenesis via Aβ

Microglia are found clustered around amyloid plaques in both humans [112] and AD mice [113] and have been shown to regulate plaque dynamics [114]. Under non-pathological conditions, microglia play an important role in regulating Aβ deposition [115], and abundant evidence suggests that properly functioning microglia are involved in the clearance of Aβ and limiting the expansion of plaques [116, 117]. With early exposure to Aβ, activated microglia may phagocytose toxic Aβ and produce survival-promoting trophic factors in the AD brain [118]. However, some studies show that microglia become activated with prolonged exposure to Aβ and will undergo a pro-inflammatory response [114, 119], resulting in the secretion of synaptotoxic/neurotoxic cytokines, chemokines, and reactive oxygen/nitrogen species [118, 120, 121]. This is highlighted by studies in post-mortem AD brains and mouse models, where prolonged Aβ deposition leads to alterations in microglia, such as P2X7 receptor upregulation and activation of the innate immune response characterized by release of pro-inflammatory cytokines, acute phase proteins, and complement components [122–124] that cause microglia-mediated synapse and neuron loss [125].

In addition, microglia may release large amounts of fibrillar Aβ and can promote Aβ plaque formation [126]. In addition to directly mediating neurodegeneration, microglia-derived ASC specks may cross-seed Aβ in AD, causing progression of the proteinopathy and spread of pathogenesis across the brain [127]. Although the relationship between microglia and Aβ is complex, the sustained presentation of Aβ seems to promote pro-inflammatory activation of microglia that ultimately furthers the synapse loss that is so highly correlated with cognitive decline.

Microglial activation aggravates AD via tau pathology

Neurofibrillary tangles in the brain of AD patients increase in parallel with colocalized expression of microglial pro-inflammatory activation and tau kinases [128]. Hyperphosphorylated tau, misfolded tau, and truncated tau co-occurs with microglia proliferation and increased expression of inflammatory genes such as Aif1 (encoding IBA-1), Ptgs2 (encodes COX2), IL-1β, IL-6, and Tnf-α in the LC [128]. These findings suggest that activated microglia may participate in driving tau pathology in AD.

It has been extensively reported that trans-synaptic propagation of tau occurs through anatomically connected synapses; however, microglia are implicated in spreading tau [129] by endocytic phagocytosis and
exocytic release of exosomes in pathways independent of synaptic transmission [130]. Microglial uptake and exosomal release of tau may play a key role for tau spreading between cells in the brain [130]. In vitro, microglia isolated from human AD cases and rTg4510 tauopathy mice are capable releasing tau seeds [129]. These microglia took up tau in the conditioned media but cannot entirely neutralize its seeding activity. These data suggest that microglia only have limited capacity to take up and break down seed competent tau, and inefficiency in this process may play a role in the spread of tau pathology [129]. In addition, evidence indicates that reactive microglia are sufficient to drive tau pathology and are highly correlated with the spread of pathological tau in the brain [131], while depletion of microglia suppresses tau propagation [130]. In transgenic tau mouse models, when microglia were activated by deleting CX3CR1, tau pathology was increased [131, 132]. These studies suggest that microglial activation contributes to tau pathology during AD pathogenesis.

Therapeutic implications of targeting the LC-NE system and microglia in co-morbid chronic pain and AD

Increasing NE

Maintaining the balance of the LC-NE system may help the prevention and treatment of AD. Animal studies suggested that modulation of microglial activation by increasing NE level would be one approach for AD alleviation [133]. NE could be neuroprotective against Aβ toxicity through redox cycling and reduction of intracellular oxidative stress [134]. The NE precursor L-threo-3,4-dihydroxyphenylserine (L-DOPS) rescued spatial memory deficits in DBH−/− AD mice [135]. It is also reported that L-DOPS restored the balance of inflammation, facilitated microglia migration and Aβ phagocytosis, and reversed learning deficits in DSP4-induced LC lesion AD mice [87]. Thus, increasing NE concentrations may facilitate anti-inflammatory functions of microglia in AD and promote microglial migration and phagocytosis of Aβ.

Although aforementioned animal studies showed that increasing NE levels can improve AD symptoms, the efficacy of this kind of treatment still needs to be tested clinically. In a clinical trial in AD patients, atomoxetine, a selective noradrenergic reuptake blocker, did not improve cognitive function [136]. However, as the relative NE levels and downstream pathological changes are varied based on disease stage and brain location, increased NE may result in microglial activation and inflammation priming if it occurs during certain phases of AD pathogenesis [137], and increased NE is even suspected to be the etiological factor of AD [138].Addressing this issue will help to judge the feasibility of NE therapy during different stages of AD pathogenesis.

Meanwhile, if AD patients have co-morbid chronic pain, it needs to be realized that LC-NE system dysfunction is likely the result of a combination of the two disease processes. Patients with AD have a decrease in noradrenergic neuron in the LC, although some studies suggest that the remaining noradrenergic neurons can compensate for this cell loss by increasing their activity and may even increase NE neurotransmission in the AD brain during certain stages of the disease [83, 138]. A dichotomy may emerge between AD patients with co-morbid chronic pain and those without: in the AD patient without chronic pain, there may be a relative deficiency of NE in brain regions, especially when compensatory mechanisms have been exhausted, and increasing NE supply in these brain areas may be beneficial; however, in AD patients with chronic pain, NE neurotransmission may be enhanced in brain areas such as the mPFC and hippocampus, which could possibly result in microglial pro-inflammatory activation [70]. Therefore, in AD patients with chronic pain, supplementation of NE via reuptake inhibitors may paradoxically exacerbate AD pathogenesis.

Inhibiting microglial activation

Another possible way to prevent and relieve AD is to directly inhibit pathological activation of microglia. Minocycline, a semisynthetic tetracycline derivative, is widely used to inhibit microglial activation [139]. In AD animals, minocycline reduced AD symptoms by reducing neuroinflammation, CNS pathology, and preventing cell death [140, 141]. For instance, in APP/PS mice, minocycline increased the survival of new dentate granule cells and improved behavioral performance in a hippocampus-dependent learning task [142]. In Tg2576 mice, minocycline attenuated deficits in learning and memory in Aβ-infused rats [140]. Clinical trials showed that minocycline is effective to treat chronic pain such as peripheral and autonomic neuropathies in type 2 diabetic patients [143], rheumatoid arthritis [144], and affective pain evaluated by McGill Pain Questionnaire in a cohort of patients with neuropathic pain, although the pain intensities did not change [145]. These data suggest that minocycline can reduce chronic pain and microglial activation in AD patient. However, the efficacy of minocycline in AD patients remains to be revealed, although one clinical trial is evaluating minocycline’s efficacy in patients with mild cognitive impairment or AD (NCT01463384).

Conclusions and future directions

This review discusses the link between chronic pain and AD and a potential mechanism underlying this connection. Dysfunction of LC-NE system that may trigger pro-inflammatory activation of microglia in chronic pain
could be one of the bridges between chronic pain and AD aggravation (Fig. 1).

Though chronic pain-induced LC-NE dysfunction may aggravate AD pathogenesis through pro-inflammatory microglia, the pattern of LC-NE dysfunction in the co-morbid AD and chronic pain state is not elucidated. Whether chronic pain induces neuronal loss in the LC has not been reported yet, but it is possible, especially with long-lasting pain (i.e., > 3 months). Studies to examine whether chronic pain can induce or aggravate cognitive deficits as well as behavioral and psychiatric symptoms in aged and AD models would be helpful in beginning to confirm a causal relationship, and tracking AD-related biomarkers and pro-inflammatory factors released from activated microglia in brain regions related to AD pathogenesis, such as the PFC and hippocampus, would further help define pathological mechanisms.
Abbreviations
AD: Alzheimer’s disease; ASC: Apoptosis-associated speck-like protein containing a CARD; AP: Amyloid-beta; CNS: Central nervous system; COX2: Cyclooxygenase 2; CREB: cAMP-response element binding protein; DHP: Dopamine beta-hydroxylase; HCN: Hyperpolarization-activated cyclic nucleotide-gated, IL: Interleukin; iNOS: Inducible nitrous oxide synthase; LC: Locus coeruleus; L-DOPS: L-threo-3,4-dihydroxyphenylserine; LPS: Lipopolysaccharide; MAPK: Mitogen-activated protein kinase; MCP-1: Monocyte chemotactic protein 1; mPFC: Medial prefrontal cortex; MRI: Magnetic resonance imaging; NE: Norepinephrine; NF: Nerve fiber; α2: Tumor necrosis factor alpha

Acknowledgements
Not applicable.

Authors’ contributions
This work was primarily written by SC, DWF, TY, and HD. The figures were produced by SC. All authors read and approved the final manuscript.

Funding
This work is supported by the NIH grants R01AG062249-01 and RF1AG057884-02 (Dong H) and partly supported by the National Natural Science Foundation of China (81660201 to Cao S) and the Excellent Young Talents Project of Zunyi Medical University (18sy-004 to Cao S).

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi 56300, Guizhou, China. 2 Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi 56300, Guizhou, China. 3 Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA.

Received: 28 May 2019 Accepted: 27 September 2019
Published online: 06 November 2019

References
1. Larson C, Hansson EE, Sundquist J, Jakobsson U. Chronic pain in older adults: prevalence, incidence, and risk factors. Scand J Rheumatol. 2017;46:27–52.
2. Breivik H, Collett B, Ventafridda V, Cohen R. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10:287–333.
3. van Dijk A, McGrath P, Pickett W, VanDenkerhof EG. Pain prevalence in nine-to-13-year-old schoolchildren. Pain Res Manag. 2006;11:234–40.
4. Malfliet A, Coppieters I, Van Wilgen P, Kregel J, De Pauw R, Dolphens M. Verifiable convergence of the Dutch central sensitization inventory: associations with psychophysical pain measures, quality of life, disability, and pain cognitions in patients with chronic spinal pain. Pain Pract. 2018;18:77–87.
5. Tajarian M, Leu D, Zou Y, Sahbaie P, Li W, Khan H, Hsu Y, Kingley W, Huang TT, Becerra L, Clark JD. Brain neuroplastic changes accompany anxiety and memory deficits in a model of complex regional pain syndrome. Anesthesiology. 2014;121:852–65.
6. Moriarty O, McGuire BE, Finn DP. The effect of pain on cognitive function: a review of clinical and preclinical research. Prog Neurobiol. 2011;93:385–404.
7. van Kooten J, Binnekade TT, van der Wouden JC, Stek ML, Scherder EJ, Husebo BS, Smalbrugge M, Hertogh CM. A review of pain prevalence in Alzheimer’s vascular, frontotemporal and lewy body dementia. Dement Geriatr Cogn Disord. 2016;41:220–32.
8. Kregel J, Schumacher C, Dorphens M, Malfliet A, Goubert D, Lenoir D, Cagnie B, Meeus M, Coppieters I. Convergent validity of the Dutch central sensitization inventory: associations with psychophysical pain measures, quality of life, disability, and pain cognitions in patients with chronic pain. Pain Pract. 2018;18:77–87.
9. Rajkumar AP, Ballard C, Fossey J, Orrell M, Moniz-Cook E, Woods RT, Murray R, Wittaker R, Stafford J, Knapp M, et al. Epidemiology of pain in people with dementia living in care homes: longitudinal course, prevalence, and treatment implications. J Am Med Dir Assoc. 2017;18:453.e451–6.
10. Whitlock EL, Diaz-Ramirez LG, Glymour MM, Boscardin WJ, Covinsky KE, Smith AK. Association between persistent pain and memory decline and dementia in a longitudinal cohort of elders. JAMA Intern Med. 2017;177:1146–53.
11. van Kooten J, Smalbrugge M, van der Wouden JC, Stek ML, Hertogh C. Prevalence of pain in nursing home residents: the role of dementia stage and dementia subtypes. J Am Med Dir Assoc. 2017;18:522–7.
12. Rajkumar AP, Ballard C, Fossey J, Orelli M, Moniz-Cook E, Woods RT, Murray J, Wittaker R, Stafford J, Knapp M, et al. Epidemiology of pain in people with dementia living in care homes: longitudinal course, prevalence, and treatment implications. J Am Med Dir Assoc. 2017;18:453.e451–6.
13. Cravello L, Di Santo S, Varraissi G, Benincasa D, Marchettini P, de Tommaso M, Shofany J, Assogna F, Perotta D, Palmer K, et al. Chronic pain in the elderly with cognitive decline: a narrative review. Pain Ther. 2019;8(1):53–65. https://doi.org/10.1007/s40122-019-0111-7.
14. van Kooten J, Smalbrugge M, van der Wouden JC, Stek ML, Hertogh C. Prevalence of pain in nursing home residents: the role of dementia stage and dementia subtypes. J Am Med Dir Assoc. 2017;18:522–7.
15. Rajkumar AP, Ballard C, Fossey J, Orelli M, Moniz-Cook E, Woods RT, Murray J, Wittaker R, Stafford J, Knapp M, et al. Epidemiology of pain in people with dementia living in care homes: longitudinal course, prevalence, and treatment implications. J Am Med Dir Assoc. 2017;18:453.e451–6.
16. Whitlock EL, Diaz-Ramirez LG, Glymour MM, Boscardin WJ, Covinsky KE, Smith AK. Association between persistent pain and memory decline and dementia in a longitudinal cohort of elders. JAMA Intern Med. 2017;177:1146–53.
17. Scherder EJ, Eggemont L, Plooy J, Oudshoorn J, Vuijk PJ, Pickering G, Lautenbacher S, Achtenberg W, Oosterman J. Relationship between chronic pain and cognition in cognitively intact older persons and in patients with Alzheimer’s disease. The need to control for mood. Gerontology. 2008;54:50–8.
18. Hayashida K, Obata H. Strategies to treat chronic pain and strengthened impaired noradrenergic inhibitory system. Int J Mol Sci. 2019;20:2822.
19. Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23:1018–27.
20. Gyoneva S, Traynelis SF. Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors. J Biol Chem. 2018;288:15291–302.
21. Pickering G, Pereira B, Clere F, Sorel M, de Montgazon G, Navez M, Shofany J, Assogna F, Perotta D, Palmer K, et al. Chronic pain in the elderly with cognitive decline: a narrative review. Pain Ther. 2019;8(1):53–65. https://doi.org/10.1007/s40122-019-0111-7.
22. Pickering G, Pereira B, Clere F, Sorel M, de Montgazon G, Navez M, Picard P, Roux D, Morel V, Salimani R, et al. Cognitive function in older patients with postherpetic neuralgia. Pain Pract. 2014;14:1E1–7.
23. Bach GS, Gibson SJ, Georgiou-Karistianis N, Gummarra MJ. Relationship between self-reported cognitive difficulties, objective neuropsychological test performance and psychological distress in chronic pain. Eur J Pain. 2018;22:601–13.
24. Baker KS, Gibson SJ, Georgiou-Karistianis N, Gummarra MJ. Everyday executive functioning in chronic pain: specific deficits in working memory and emotion control, predicted by mood, medications, and pain interference. Clin J Pain. 2016;32:673–80.
25. Dick B, Eccleston C, Crombez G. Attentional functioning in fibromyalgia, rheumatoid arthritis, and musculoskeletal pain patients. Arthritis Rheum. 2002;47:639–44.
26. Brown SC, Glass JM, Park DC. The relationship of pain and depression to cognitive function in rheumatoid arthritis patients. Pain. 2002;96:79–84.
27. Grilli M. Chronic pain and adult hippocampal neurogenesis: translational implications from preclinical studies. J Pain Res. 2017;10:2281–8.
28. Katz MJ, Lipton RB, Hall CB, Zimmerman ME, Sanders AE, Verghese J, Dickson DW, Derby CA. Age-specific and sex-specific prevalence and incidence of mild cognitive impairment, dementia, and Alzheimer dementia in blacks and whites: a report from the Einstein Aging Study. Alzheimer Dis Assoc Disord. 2012;26:335–43.
29. Ezatti A, Wang C, Katz MJ, Derby CA, Zammit AR, Zimmerman ME, Pavlovic JM, Slivenski MJ, Lipton RB. The temporal relationship between pain intensity and pain interference and incident dementia. Curr Alzheimer Res. 2019;16(2):109–115. https://doi.org/10.2174/1566539516666181216162424.

30. Corbett A, Husebo B, Makango M, Staniland A, Cohen-Mansfield J, Anland D, Ballard C. Assessment and treatment of pain in people with dementia. Nat Rev Neurol. 2012;8:264–74.

31. Husebo BS, Acheson W, Flo E. Identifying and managing pain in people with Alzheimer’s disease and other types of dementia: a systematic review. CNS Drugs. 2016;30:481–97.

32. Santos S, Castano M. The use of visual analog scales to compare pain between patients with Alzheimer’s disease and patients without any known neurodegenerative disease and their caregivers. Am J Alzheimers Dis Other Dement. 2014;29:320–5.

33. Ikram M, Innes K, Sambamourthi U. Association of osteoarthritis and pain with Alzheimer’s diseases and related dementias among older adults in the United States. Osteoarthr Cartil. 2019;27(10):1470–80. https://doi.org/10.1016/j.joca.2019.05.021.

34. Baliki MN, Apkarian AV. Nociception, pain, negative moods, and behavior selection. Neuron. 2015;87:474–91.

35. Ng SK, Urquhart DM, Fitzgerald PB, Cicuttini FM, Hussain SM, Fitzgibbon BM. Evidence for brain and gray matter volume changes in osteoarthritis. Ann Rheum Dis. 2013;72(10):1745–8.

36. Ezzati A, Wang C, Katz MJ, Derby CA, Zammit AR, Zimmerman ME, Pavlovic JM, Cao et al. Journal of Neuroinflammation. 2015;12:268.

37. Kang D, McAuley JH, Kassem MS, Gatt JM, Gustin SM. What does the grey matter volume change. Am J Transl Res. 2018;10:184.

38. Zhang Y, Yu T, Qin B, Li Y, Song G, Yu B. Microstructural abnormalities in the gray matter in chronic pain patients. Brain. 2015;138:604–15.

39. plungin – norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2017;40:145–56.

40. Mutso AA, Radzicki D, Baliki MN, Banisadr G, Centeno MV, Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR. Comorbid anxiety-like behavior and locus coeruleus impairment in diabetic peripheral neuropathy: a comparative study with the chronic constriction injury model. Prog Neuro-PsychoPharmacol Biol Psychiatry. 2016;71:145–56.

41. Cordeiro Matos S, Zamfir M, Longo G, Ribeiro-da-Silva A, Seguela P. Noradrenergic fiber sprouting and altered transduction in neuropathic prefrontal cortex. Brain Struct Funct. 2018;223:1149–64.

42. Taylor BK, Westlund KN. The noradrenergic locus coeruleus as a chronic pain generator. J Neurosci. 2017;38:1336–46.

43. Butovsky O, Weiner HL. Microglial signatures and their role in health and disease. Nat Rev Neurosci. 2018;19:622–35.

44. Miner JJ, Diamond MS. Mechanisms of restriction of viral neuroinvasion at the blood-brain barrier. Curr Opin Immunol. 2016;38:18–23.

45. Fekete R, Cserpe C, Lenart N, Toth K, Orsolits B, Martinez B, Mehes E, Szabo B, Nemeth V, Gondi C, et al. Microglia control the spread of neurotropic virus infection via P2Y1 signalling and recruit monocytes through P2Y12-independent mechanisms. Acta Neuropathol. 2018;136:461–82.

46. Jang H, Boltz D, Sturm-Ramirez K, Shepherd KR, Jao Y, Webster R, Smeyne RJ. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc Natl Acad Sci U S A. 2009;106(14063–8.

47. Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neurol Immunol. 2008;20:399–418.

48. Hants BC, Wexman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci. 2006;26:4308–17.

49. Chen G, Zhang YQ, Qadi YJ, Serhan CN, Jj RR Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron. 2018;100:292–311.

50. Ma L, Nagai J, Ueda H. Microglial activation mediates de novo lysophosphatic acid production in a model of neuropathic pain. J Neurochem. 2010;115:643–53.

51. Barcelon EE, Cho WH, Jun SB, Lee SJ. Brain microglial activation in chronic pain-associated affective disorder. Front Neurosci. 2019;13:213.

52. Liu Y, Zhou L, Wang J. TNF-alpha differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci. 2017:37871–81.

53. Inoue K, Tsuda M. Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci. 2018;19:138–52.

54. Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR, Hill E, Hsu S, Izquierdo-Garcia D, Jj RR, et al. Evidence for brain glial activation in patients with Alzheimer’s disease and related dementias among older adults in the United States. Osteoarthr Cartil. 2019;27(10):1470–80. https://doi.org/10.1016/j.joca.2019.05.021.

55. Albrecht DS, Forsberg A, Sandstrom A, Bergan C, Kadotoff D, Protosenko E, Lamp J, Lee VC, Hoflund CO, Catana C, et al. Brain glial activation in fibromyalgia - a multi-site positron emission tomography study. Brain Behav Immun. 2019:75;72–83.

56. Burke NN, Kerr DM, Moniary O, Finn DP, Roche M. Minocycline modulates neuropathic pain behaviour and cortical M1-M2 microglial gene expression in a rat model of depression. Brain Behav Immun. 2014;44:147–56.

57. Xu N, Tang XH, Pan W, Xie ZM, Zhang GF, Ji MH, Yang JJ, Zhou MT, Zhou MT. Bone cancer pain by inhibiting microglia activation in hippocampus. Anesth Analg. 2019. https://doi.org/10.1213/ANE.0000000000004063.

58. Miyamoto K, Kume K, Ohsawa M. Role of microglia in mechanical allodynia in the anterior cingulate cortex. J Pharmacol Sci. 2017:1134158–65.

59. Taylor AM, Mehrabani S, Liu S, Taylor AJ, Cahill CM. Topography of microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173:649–65.

60. Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and neurodegenerative disease and their caregivers. Am J Alzheimers Dis Other CNS Drugs. 2016;30:481–96.

61. Minen JJ, Diamond MS. Mechanisms of restriction of viral neuroinvasion at the blood-brain barrier. Curr Opin Immunol. 2016;38:18–23.

62. Dements D, Keating SE, Perrotti D, Pezzi CA, Yoo DH, et al. Microglial M1/M2 polarization and neurodegenerative disease and their caregivers. Am J Alzheimers Dis Other Dement. 2014;29:320–5.

63. Ikram M, Innes K, Sambamourthi U. Association of osteoarthritis and pain with Alzheimer’s diseases and related dementias among older adults in the United States. Osteoarthr Cartil. 2019;27(10):1470–80. https://doi.org/10.1016/j.joca.2019.05.021.

64. Baliki MN, Apkarian AV. Nociception, pain, negative moods, and behavior selection. Neuron. 2015;87:474–91.

65. Ng SK, Urquhart DM, Fitzgerald PB, Cicuttini FM, Hussain SM, Fitzgibbon BM. Evidence for brain and gray matter volume changes in osteoarthritis. Ann Rheum Dis. 2013;72(10):1745–8.

66. Ezzati A, Wang C, Katz MJ, Derby CA, Zammit AR, Zimmerman ME, Pavlovic JM, Cao et al. Journal of Neuroinflammation. 2015;12:268.

67. plungin – norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28:403–50.

68. llorea-Torralba M, Borges G, Neto F, Mico JA, Berrocoso E. Noradrenergic locus coeruleus pathways in pain modulation. Neuroscience. 2016;33893–113.

69. Valentino RJ, Van Bockstaele E. Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol. 2008;583:194–203.

70. Alba-Delgado C, Llorea-Torralba M, Horillo J, Ortega JE, Mico JA, Sanchez-Blazquez P, Meana JJ, Berrocoso E. Chronic pain leads to concomitant noradrenergic impairment and mood disorders. Biol Psychiatry. 2013;73:354–62.

71. Soto T, Eisenach JC, Hayashida K. Peripheral nerve injury and gabapentin, but not their combination, impairs attentional behavior via direct effects on noradrenergic signaling in the brain. Pain. 2014;155:1935–42.
Yang JH, Lee EO, Kim SE, Suh YH, Chong YH. Norepinephrine in Alzheimer's disease. Front Neurosci. 2015;9:220.

Simic G, Babic Leko M, Way S, Hannington CR, Delalle I, Jovanov-Milosevic N, Bazadona O, Buse L, de Silva R, Di Giovanni G, et al. Monoaminergic neuropathology in Alzheimer's disease. Prog Neurobiol. 2017;151:101–38.

Matthews KL, Chen CP, Esiin MM, Keene J, Minger SL, Francis PT. Noradrenergic changes, aggressive behavior, and cognition in patients with dementia. Biol Psychiatry. 2002;51:407–16.

German DM, Manaye KF, White CL 3rd, Woodward DJ, McIntre DD, Smith WK, Kalaria RN, Mann DM. Disease-specific patterns of locus coeruleus cell loss. Ann Neurol. 1992;32:667–76.

Andrade-Moras E, Oliveira-Pinto AV, Castro-Fonseca E, da Silva CG, Guimarães DM, Szczupak D, Parente-Bruno DR, Carvalho LR, Polichio L, Gomes BV, et al. Cell number changes in Alzheimer's disease relate to dementia, not to plaques and tangles. Brain. 2013;136:3738–52.

Sztó P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA. Changes in adrenoreceptors in the prefrontal cortex of subjects with dementia: evidence of compensatory changes. Neuroscience. 2007;146:471–80.

Sztó P, Leverenz JB, Peskind ER, Kyawai E, Rohde K, Miller MA, Raskind MA. Tyrosine hydroxylase and norepinephrine transporter mRNA expression in the locus coeruleus in Alzheimer's disease. Brain Mol Mol Brain Res. 2000;84:135–40.

Hoogendijk WJ, Feenstra MG, Botterblom MH, Gillius J, Sommer IE, Kamphorst W, Eikelenboom P, Swaab DF. Increased activity of surviving locus ceruleus neurons in Alzheimer's disease. Ann Neurol. 1999;45:892–91.

Gulya R, Brooks-Nieder D, Nag S, Pavlova E, Kasa P, Beliczai Z, Legradi A, Cao J, Nakley AE, Huh Y, Terrando N, Maixner W. Neuroinflammation and central inflammation in Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A. 2010;107:6058–63.

Mravec B, Lejavova K, Vargovic P, Ondicova K, Horvathova L, Novak P, Manz M, Tanaka J. Effects of norepinephrine on rat cultured microglial cells that express alpha1, alpha2, beta1 and beta2 adrenergic receptors. J Neuroinflammation. 2016:13:15.

Itoi K, Ohara S, Kobayashi K. Selective ablation of dopamine beta-hydroxylase neurons in the brain by immunotoxin-mediated neuronal targeting: new insights into brain catecholaminergic circuitry and catecholamine-related diseases. Adv Pharmacol. 2013;68:155–66.

Barnard DF, Gabbella KM, Kulp AC, Parker AD, Dugan PB, Johnson JD. Sex differences in the regulation of brain IL-1beta in response to chronic stress. Psychoneuroendocrinology. 2019;103:203–11.

Liu H, Leak RK, Hu X. Neurotransmitter receptors on microglia. Stroke Vasc Neurol. 2016;1:52–8.

Mori K, Ozaki E, Zhang B, Yang L, Yokoyama A, Takeda I, Maeda N, Sakana M, Tanaka J. Effects of norepinephrine on rat cultured microglial cells that express alpha1, alpha2, beta1 and beta2 adrenergic receptors. Neuropharmacology. 2002;43:1026–34.

Yang JH, Lee EO, Kim SE, Suh YH, Chong YH. Norepinephrine differentially modulates the innate inflammatory response provoked by amyloid-beta peptide via action at beta-adrenoceptors and activation of cAMP/PKA pathway in human THP-1 macrophages. Exp Neurol. 2012; 236:199–206.

Schlaechter JC, Fiebelk B, Haake E, de Oliveira AC, Candelario-Jall E, Heneka MT, Hub M. Norepinephrine enhances the LPS-induced expression of COX-2 and secretion of PGE2 in primary rat microglia. J Neuroinflammation. 2010;7:2.

Kato TA, Yamauchi Y, Hori Kawa H, Monai J, Mizoguchi Y, Seki Y, Hayakawa K, Utsumi H, Kanba S. Neurotransmitters, psychotropic drugs and microglia: clinical implications for psychiatry. Curr Med Chem. 2013;20:331–44.
121. Balducci C, Forkoni G. Novel targets in Alzheimer’s disease: a special focus on microglia. Pharmacol Res. 2018;130:402–13.
122. Cameron B, Landreth GE. Inflammation, microglia, and Alzheimer’s disease. Neurobiol Dis. 2010;37:503–9.
123. Cabalaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement. 2016;12:719–32.
124. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.
125. Neniskyte U, Neher JJ, Brown GC. Neuronal death induced by nanomolar amyloid beta is mediated by primary phagocytosis of neurons by microglia. J Biol Chem. 2011;286:39904–13.
126. Wegiel J, Wang KC, Imaki H, Rubenstein R, Wronska A, Osuchowski M, Lipinski WJ, Walker LC, LeVine H. The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP (Sw) mice. Neurobiol Aging. 2001;22:49–61.
127. Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, Veira-Saecker A, Schwartz S, Santarelli F, Kummer MP, et al. Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature. 2017;552:355–61.
128. Andres-Benito P, Fernandez-Duenas V, Carmona M, Escobar LA, Torrejon-Escobrano B, Aso E, Ciruela F, Ferrer I. Locus coeruleus at asymptomatic early and middle Braak stages of neurofibrillary tangle pathology. Neuropathol Appl Neurobiol. 2017;43:373–92.
129. Hopp SC, Lin Y, Oakley D, Roe AD, DeVois SL, Hanlon D, Hyman BT. The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J Neuroinflammation. 2018;15:269.
130. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B. Depletion of microglia and inhibition of exosome synthesis hampers tau propagation. Nat Neurosci. 2015;18:1584–93.
131. Maphis N, XU G, Kokiko-Cochran ON, Jiang S, Cardona A, Ransohoff RM, Lamb BT, Bhaskar K. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain. 2015;138:1738–55.
132. Bhaskar K, Konenth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT. Regulation of tau pathology by the microglial fractalkine receptor. Neuron. 2010;68:19–31.
133. Tejera D, Heneka MT. Microglia in Alzheimer’s disease: the good, the bad and the ugly. Curr Alzheimer Res. 2016;13:370–80.
134. Jiang KA, Lee EO, Kim HS, Chong YH. Norepinephrine provides short-term neuroprotection against Abeta1-42 by reducing oxidative stress independent of NF2 activation. Neurobiol Aging. 2014;35:2465–73.
135. Hammerschmidt T, Kummer MP, Tervel D, Martinez A, Gorji A, Pape HC, Rommelfanger KS, Schroeder JP, Stoll M, Schultz J, et al. Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APPPS1 mice. Biol Psychiatry. 2013;73:454–63.
136. Mohs RC, Shioivitz TM, Tarot PN, Porsteinsson AP, Baker KD, Feldman PD. Atomoxetine augmentation of cholinesterase inhibitor therapy in patients with Alzheimer disease 6-month, randomized, double-blind, placebo-controlled, parallel-trial study. Am J Geriatr Psychiatry. 2009;17:752–9.
137. Finnell JE, Moffitt CM, Hesser LA, Harrington E, Nelson MN, Wood CS, Wood SK. The contribution of the locus coeruleus-norepinephrine system in the emergence of defeat-induced inflammatory priming. Brain Behav Immun. 2019;79:102–13. https://doi.org/10.1016/j.bbi.2019.01.021.
138. Fitzgerald PJ. Is elevated norepinephrine an etiological factor in some cases of Alzheimer’s disease? Curr Alzheimer Res. 2010;7:506–16.
139. Tilkia T, Fiebich BL, Goldstein G, Keinanen R, Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci. 2001;21:2580–8.
140. Choi Y, Kim HS, Shin KY, Kim EM, Kim M, Kim HS, Park CH, Jeong YH, Yoo J, Lee JP, et al. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacology. 2007;32:393–404.
141. Daulatzai MA. Pharmacotherapy and Alzheimer’s disease: the M-drugs (melatonin, minocycline, modafinil, and memantine) approach. Curr Pharm Des. 2016;22:2411–30.
142. Bisacca B, Lindvall O, Tesco G, Ekdael CT, Nitsch RM. Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer’s disease. Neurodegene Dis. 2012;9:187–98.
143. Syngle A, Verma I, Krishan P, Garg N, Syngle V. Minocycline improves peripheral and autonomic neuropathy in type 2 diabetes. MIND study. Neurol Sci. 2014;35:1067–73.