Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system

Xusheng Wanga,†, Haiyan Chenb,†, Xiaowei Zenga,†, Wenpeng Guoc,†, Yu Jinc,†, Shan Wangd, Ruiyun Tiand, Yanjiang Hane, Ling Guof, Jimin Hand, Yaojiong Wub,d,*, Lin Meia,*

aSchool of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
bTsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
cThe First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen 518000, China
dSchool of Life Sciences, Tsinghua University, Beijing 100084, China
eNanFang PET/CT Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
fDepartment of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen 518055, China

Received 27 April 2018; received in revised form 26 June 2018; accepted 22 August 2018

\textbf{KEY WORDS}
Mesenchymal stem cells; Nanoparticle; Drug delivery; KrasG12D; Lung cancer

\textbf{Abstract} Low targeting efficiency limits the applications of nanoparticles in cancer therapy. The fact that mesenchymal stem cells (MSC) trapped in the lung after systemic infusion is a disadvantage for cell therapy purposes. Here, we utilized MSC as lung cancer-targeted drug delivery vehicles by loading nanoparticles (NP) with anti-cancer drug. MSC showed a higher drug intake capacity than fibroblasts. In addition, MSC showed predominant lung trapping in both rabbit and monkey. IR-780 dye, a fluorescent probe used to represent docetaxel (DTX) in NP, delivered via MSC accumulated in the lung. Both in vitro MSC/A549 cell experiments and in vivo MSC/lung cancer experiments validated the intercellular transportation of NP between MSC and cancer cells. In vivo assays showed that the MSC/NP/DTX drug delivery system exerted primary tumor inhibition efficiency similar to that of a NP/DTX drug system. Collectively, the MSC/NP drug delivery system is promising for lung-targeted drug delivery for the treatment of lung cancer and other lung-related diseases.

© 2019 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Low targeting efficiency limits the applications of nanoparticles in cancer therapy. Mesenchymal stem cells (MSC) have great potential for treating tissue injury and degenerative disease and for use in immune disorder therapy. Additionally, anti-tumorigenic effects and low immunogenicity make MSC a kind of ideal vehicle for anti-tumor drug delivery. While most MSC are trapped in the lung after intravenous administration, which is an unwanted result when MSC are used for cell therapy. Here, we utilized the disadvantage of MSC as an advantage in lung-targeted drug delivery. Even though drug-releasing MSC-mediated inhibition of lung metastasis has previously been described, more systemic studies are still desired. As a drug delivery vehicle, MSC showed larger NP/DTX intake capacities than fibroblasts. The in vivo distribution of MSC has been extensively studied in mice, but related studies have rarely been performed in larger animals, such as rabbits and monkeys.

About 30% of human tumors carry mutation of RAS gene. Of the three genes in this family (composed of K-ras, N-ras and H-ras), K-ras is the most frequently mutated member in human tumors, including adenocarcinomas of the pancreas and lung. Kras mice were used in this study as in vivo tumor model to test tumor inhibit efficiency of the MSC drug delivery system. And MR imaging and Micro-PET-CT was performed to monitor tumor size and metabolism in vivo, respectively. In addition, intracellular processing of NP has been extensively explored, but intercellular transportation has rarely been studied. Here, we established 3D in vivo cell model to prove that NP could be intercellular transported from the MSC to A549 lung cancer cells, which was further supported by the in vivo lung cancer model.

There was study showed that mouse bone marrow MSC can be a reservoir for doxorubicin (DOX) and can be released not only in the form of DOX metabolites but also in its original and active form. Further assay showed MSC efficiently absorb and release paclitaxel (PTX) in an active form. Similar result was observed in DOX and gemcitabine, and all these drug exhibit an inhibitory effect on tongue (PTX) in an active form. Similar result was observed in DOX and gemcitabine, and all these drug exhibit an inhibitory effect on tongue (PTX) in an active form. Further assay showed MSC efficiently absorb and release paclitaxel (PTX) in an active form. Similar result was observed in DOX and gemcitabine, and all these drug exhibit an inhibitory effect on tongue (PTX) in an active form. Further assay showed MSC efficiently absorb and release paclitaxel (PTX) in an active form. Similar result was observed in DOX and gemcitabine, and all these drug exhibit an inhibitory effect on tongue (PTX) in an active form. Further assay showed MSC efficiently absorb and release paclitaxel (PTX) in an active form. Similar result was observed in DOX and gemcitabine, and all these drug exhibit an inhibitory effect on tongue (PTX) in an active form.

2. Materials and methods

2.1. Animals

The Nu/Nu mice (6–8 weeks old) used for cell and drug in vivo tracing were purchased from Guangdong Medical Laboratory Animal Center, Guangzhou, China. Kras (Kras) mice (Jax mice, Stock No: 008179) carrying a Lox-Stop-Lox (LSL) sequence followed by the K-ras G12D point mutation allele were used as a lung cancer model in this study. To induce lung cancer in Kras mice, 7- to 8-week-old mice received 64 μL of cre adenovirus (AdCre) solution through the nasal cavity. The virus solution was prepared by mixing 30 μL of AdCre (10^10 pfu), 70 μL of EMEM, and 0.5 μL of 2 mol/L CaCl2 and placed in room temperature for 20 min. Rabbits (3–4 months old, 3–4 kg, New Zealand white rabbits) were purchased from Guangdong Medical Laboratory Animal Center, Guangzhou, China. The monkey (M. fascicularis, 8 months old, 5 kg) was used for in vivo tracing of NP and MSC. Further assay showed MSC efficiently absorb and release paclitaxel (PTX) in an active form. Similar result was observed in DOX and gemcitabine, and all these drug exhibit an inhibitory effect on tongue (PTX) in an active form.

2.2. MR imaging, micro-PET-CT and IVIS spectrum

For in vivo tracing of Fe3O4 NP and MSC in the monkey, 1 mL of iron oxide NP suspension (Aladdin Industrial Co., Ltd., Shanghai, China, 5 mg/mL) was mixed in MSC culture medium (1 x 10^7 MSC) for 5 h. The MSC were harvested and resuspended in 5 mL of PBS and injected into the monkey via the left arm vein. MR imaging of the monkey was performed at 1, 2, 3, 5, and 7 days post-MSC injection. MR imaging of the monkey before MSC injection was used as a blank control. For MR imaging of lung cancer in mice, MSC (1 x 10^6 cells carrying NP with ~25 μg of DTX) were resuspended in 100 μL of PBS and administered to AdCre-induced Kras mice via intravenous injection. Kras mice without AdCre induction and PBS-treated AdCre/Kras mice served as negative controls. The activity concentrations were determined by the mean pixel intensity within each VOI and converted to μCi/mL using a 3T MRI scanner, with slice thickness (SL) = 1.0 mm, repetition time (TR) = 5000 ms, and echo time (TE) from 10.6 to 159 ms.

A micro-PET/CT scan was performed on a SIEMENS Inveon scanner (Siemens Healthine, Munich, Germany). The clinical package of 18F-FDG (10 mCi) obtained from a regional vendor was diluted to 200 μCi/100 μL for each mouse/injection (200 μCi, 3.7 MBq). The FDG solution was drawn into a 1-mL syringe with a 26G 1/2-inch needle, and the radioactivity of the entire syringe was measured with a dose calibrator. The FDG solution was injected via an intravenous route, the injection time was recorded, and the residual radioactivity of the syringe was measured again with the dose calibrator. The animals were then incubated at room temperature for 1 h for FDG uptake. The injected FDG activity for each mouse was calculated using the following formula:

Injected activity (μCi) = activity in syringe before injection – activity in syringe after injection (1) Micro-PET/CT images were reconstructed using a 3D ordered subset expectation maximum (OSEM) algorithm, and CT correction was applied for attenuation correction. In the PET images, ROIs were measured with Inveon Research Workplace (IRW) 3.0 software (Siemens Healthine, Munich, Germany). The ROI was determined by manually super-imposing the ellipsoid volume of interest (VOI) to the target tissue. The activity concentrations were determined by the mean pixel intensity within each VOI and converted to μCi/mL using a 3D ordered subset expectation maximum (OSEM) algorithm, and CT correction was applied for attenuation correction.
calibration constant. Assuming a tissue density of 1 g/mL, the ROI activity was converted to μCi/g and normalized as percent injected dose per gram (%ID/g).

Bioluminescence imaging of luciferase-labeled cell tracing in mice and rabbits and the fluorescence imaging of IR-780-labeled DTX were performed using an IVIS 100 camera (Caliper-PerkinElmer). For the cell tracing, IVIS imaging was performed 10 min after intraperitoneal injection of β-luciferin (10 mL/kg) at a concentration of 15 mg/mL in Dulbecco’s PBS. For the IR-780-labeled DTX, the fluorescence imaging (excitation at 720 nm, emission at 780 nm) was performed at 3 and 12 h after the drug injection.

2.3. Cell culture, 3D cell spheres and cell imaging

Human MSC were isolated from human placentas and cultured as described previously. AT59 cells were purchased from the American Type Culture Collection (ATCC, Rockville, MD, USA) and cultured in DMEM (Gibco-Invitrogen) supplemented with 10% (v/v) FBS (Gibco-Invitrogen) and 1% (v/v) antibiotics (100 units/mL penicillin and 100 μg/mL streptomycin). MSC and AT59 cells were seeded on 100-mm culture dishes, and when cells reached 40% confluence, the medium was exchanged with 5 mL of new medium containing 40 μL of 1.0 × 10^6 pfu GFP-adenovirus or Ad-tdTomato-adenovirus or luciferase-adenovirus for 4 h to obtain GFP-MSC, tdTomato-A549 cells, and luciferase-MSC, respectively. Human mammary fibroblasts (HMFs) were cultured in DMEM supplemented with 10% calf serum (CS), 2 mmol/L L-glutamine, and penicillin/streptomycin. All cultures were maintained at 37 °C in a humidified atmosphere containing 5% CO₂.

To form 3D spheroids, passage 5–7 MSC and AT59 cells were cultured using a hanging drop method. Briefly, GFP-MSC and tdTomato-A549 cells were mixed at a ratio of 1:2, with a total of 30,000 cells in 35 μL of growth medium per drop were plated in hanging drops and incubated for 36 h to form spheroids. Then, the spheroids were collected to obtain frozen tissue sections and for microscopic analysis.

MSC grown on coverslips were fixed in 1% PFA (paraformaldehyde). MSC and AT59 cell spheroids were fixed in 3% PFA and embedded in OCT for tissue sectioning (8–10 μm thickness). Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI). After mounting, samples were visualized under a confocal microscope (Olympus FluoView FV1000, Olympus, Tokyo, Japan). The 3D cell imaging was performed under an Olympus FluoView FV1000 two-photon microscope with an Olympus 25 × 1.0 NA water-immersion objective lens. A Spectra Physics Mai-Tai IR laser was tuned to 920 nm for two-photon excitation of GFP and tdTomato.

2.4. Nanoparticle/DTX formation, MSC intake and LC–MS assay

Poly(lactide-co-glycolide) (PLGA, MW = 10,000), N-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), N-hydroxysuccinimide (NHS), 1,3-dissopyrrolylcarbodiimide (DCC), triethylamine (TEA) and IR-780 were purchased from Sigma–Aldrich (St. Louis, MO, USA). Docetaxel was provided by Shanghai Jinde Biotechnology Co., Ltd. (Shanghai, China). Doxorubicin hydrochloride (DOX-HCl) was purchased from Dalian Meilun Biology Technology Co., Ltd. (Dalian, China). Methoxy-poly(ethylene glycol)-amine (M-PEG-NH₂, MW = 2000) and FITC-poly(ethylene glycol)-amine (FITC-PEG-NH₂, MW = 2000) were purchased from Shanghai Yare Biotech, Inc. (Shanghai, China). Cy5-poly(ethylene glycol)-amine (Cy5-PEG-NH₂, MW = 2000) was provided by Xi’an ruixi Biological Technology Co., Ltd. (Xi’an, China). All other chemicals and reagents were of the highest quality and were commercially available and received as received.

The copolymer PLGA-b-PPEG was synthesized as described in our previous report. In brief, PLGA (5.0 g, 0.5 mmol) dissolved in anhydrous dichloromethane was activated by DCC (0.206 g, 1 mmol) and NHS (0.115 g, 1 mmol) at room temperature for 24 h under dry argon. The reaction by-product dicycloyhexylcarbodiurea (DCU) was removed by filtration, and the activated PLGA (PLGA-NHS) was precipitated in anhydrous ether, filtered, and washed with methanol. The PLGA-NHS was dried in vacuo at 40 °C for 24 h. The PLGA-NHS (2 g, 0.2 mmol) was dissolved in 25 mL of anhydrous dichloromethane. Then, M-PEG-NH₂ (0.5 g, 0.25 mmol) was added to the organic solution under magnetic stirring. The reaction was carried out for 12 h under a dry argon atmosphere, and the resulting solution was precipitated in cold anhydrous ether. The precipitated copolymer PLGA-b-PPEG was filtered, washed with methanol, and finally dried under vacuum for 24 h. Moreover, the fluorescence-labeled copolymers PLGA-b-PPEG-FITC and PLGA-b-PPEG-Cy5 were prepared using the same procedure except FITC-PEG-NH₂ and Cy5-PEG-NH₂, respectively, were used in the reaction instead of M-PEG-NH₂. A routine assay for nanoparticle size was performed, the nanoparticle size was ranged from 50–200 nm.

The anti-cancer drug DTX-loaded PLGA-b-PPEG NP were prepared using a modified nanoprecipitation method as previously described. Briefly, 10 mg of DTX powder and 100 mg of the copolymer PLGA-b-PPEG were dissolved in 8 mL of acetone by vortexing. This solution was added dropwise to 100 mL of aqueous solution containing 0.03% TPGS under stirring. The mixture was then stirred uncovered overnight to completely remove the acetone. The NP suspension was centrifuged at 20,000 rpm (Backman, J-30I, CA, USA) for 15 min and then washed three times to remove the emulsifier TPGS and uncapped drug. Finally, the resulting product, DTX-loaded PLGA-b-PPEG NP (designated as NP/DTX), was obtained by lyophilization. IR-780-loaded PLGA-b-PPEG NP (designated as NP/IR-780) and fluorescent dye Cy5-labeled drug-free PLGA-b-PPEG-Cy5 NP (designated as Cy5-NP) were prepared in a similar manner. For preparation of DOX-loaded PLGA-b-PPEG-FITC NP (designated as FITC-NP/DOX), 10 mg of DOX-HCl was neutralized with an excess amount of TEA and 100 mg of the copolymer PLGA-b-PPEG-FITC were dissolved in 8 mL of acetone. Then, the solution was added dropwise into 100 mL of aqueous solution containing 0.03% TPGS under stirring in the dark. The subsequent procedure was similar to that of the formulation of NP/DTX. The size and size distribution of NP were measured using dynamic light scattering (DLS) with a Malvern Mastersizer 2000 (Zetasizer Nano ZS90, Malvern Instruments Ltd., UK). The morphology of the NP was observed with transmission electron microscopy (TEM, Tecnai G2 20, FEI Company, Hillsboro, Oregon, USA). The prepared NP were approximately 120–130 nm in diameter, which potentially resulted in high cellular uptake through endocytosis. The size distribution and TEM images of NP/DTX are
shown in Supporting Information Fig. S1. The NP were nearly spherical and approximately 100 nm in size (smaller than the size obtained using a DLS analysis). This difference can be ascribed to the tendency of NP to shrink and collapse when dried.

GFP-MSC and MSC were plated at a density of 4.0×10^5 cells per 100-mm well in glass-bottomed dishes (MatTek Corporation), when cells reached 80% confluence, the medium was exchanged with 5 mL of new medium containing 100 μL of 2 mg/mL Nano/DTX. After 3 h, the cells were collected and resuspended in PBS, and 1.0×10^5 MSC in 100 μL of PBS were injected into mice via the tail vein.

LC/MS analysis was performed on a system equipped with an Alliance HPLC Waters 2695 system (Waters, USA) and a Quattro Premier XE mass spectrometer (Waters, USA). The MS system consisted of an ESI interface and a triple quadrupole (QqQ) mass analyzer. The MS parameters were as follows. Capillary voltage was set at 3.0 kV in positive ion mode. Source temperature was maintained at 130 °C, while the desolvation temperature was set at 300 °C. N₂ was used as the desolvation gas (flow rate of 800 L/h) and cone gas (flow rate of 60 L/h), and Ar was used as the collision gas (flow rate of 0.15 mL/min). The MS and MS/MS spectra were obtained in MS scan mode and daughter scan mode, respectively. The quantification was performed in multi-reaction monitoring (MRM) mode.

2.5. Western blotting

Cell lysates were prepared in a lysis buffer containing 1% Triton X-100, 1% deoxycholic acid, 2 mmol/L CaCl₂ and protease inhibitors (10 μg/mL leupeptin, 10 μg/mL aprotinin, 1.8 mg/mL iodoacetamide and 1 mmol/L phenylmethyl sulfonyl fluoride) and quantified with a BCA protein assay kit (Pierce). Equal amounts of total protein were subjected to electrophoresis on 12% bis-Tris gels, transblotted onto nitrocellulose membranes and probed with the primary antibody anti-clathrin [D3C6] (1:500, Cell Signal Technology, No. 4796) followed by peroxidase-conjugated secondary antibody (GeneTex). Immunoreactive bands were detected using an ECL kit according to the manufacturer’s instructions. Subsequent reprobing using anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was performed as an internal loading control.

2.6. Statistical analyses

Results are expressed as the mean ± SEM unless stated otherwise. Statistical comparisons between two groups were evaluated with Student’s t-test (unpaired t-test, two-tailed). A probability (P) value of 0.05 was considered to indicate statistical significance.

3. Results

3.1. MSC have great capacity in nanoparticle/drug intake

First, to explore the drug intake capacity of MSC, immunofluorescence (IF) staining was utilized, and extensive NP (PLGA-PEG-FITC, the NP was 50–200 nm in diameter and the electron microscope image was showed in Fig. 1a) and doxorubicin (DOX) aggregation was detected 3 h after DOX/NP intake (Fig. 1b). An LC–MS quantitative assay of the DTX dose at 1, 3, 7, 12, and 24 h after MSC intake showed that DTX intake reached a peak at 12 h, with over $36 \mu g$ in 10^6 MSC, compared to only $15 \mu g$ of DTX detected in the same number of fibroblasts (Fig. 1c), indicating the high capacity of MSC for NP/DTX intake. This result was further supported by the significantly increased expression of clathrin, an important mediator of endocytosis, in

Figure 1 Drug intake capacity of MSC and in vivo distribution of drug, NP and MSC. (a) The size assay of PLGA-PEG nanoparticles. Upper, the size distribution of nanoparticle. Lower, the electron microscopy image of the nanoparticle. Scale bar: 200 nm. (b) An abundance of nanoparticles (green, left) and doxorubicin (DOX, red)-loaded nanoparticles (green) were taken up by MSC (right). NP, nanoparticles. A representative result from more than 5 independent experiments is shown. Scale bar, 10 μm. (c) Quantitative analysis of DTX intake by MSC and fibroblasts. DTX intake by MSC peaked at 12 h with $30 \mu g$ of DTX in 10^6 cells. Comparatively, the DTX intake by fibroblasts peaked at 12 h with $15 \mu g$ of DTX in 10^6 cells. n = 3 for both MSC and fibroblasts at each time point. (d) Western blotting analysis of clathrin expression at 1, 3, 7, 12, and 24 h after NP intake by both MSC and fibroblasts. Four independent experiments were performed.
MSC (Fig. 1d). These data support that MSC have a great potential in nanoparticle/drug intake.

3.2. MSC are lung-predominant distributed in mice, rabbits and monkey

The lung-predominant distribution of MSC in mice was further confirmed with an in vivo imaging system (IVIS) assay, which showed that luciferase-labeled MSC (Luci-MSC) were only detected in the lung 24 h after injection (upper); ex vivo imaging showed similar results (lower) (Fig. 2a). Furthermore, 3D reconstruction imaging of the in vivo distribution of MSC in mice indicated that Luci-MSC uniquely merged in lung position (Fig. 2b). Intravenous injection of Luci-MSC in rabbits revealed that the luciferase signal could only be detected in the lung 12 h after injection, and ex vivo imaging showed a uniform distribution in lung tissue (Fig. 2c). In this study, a cynomolgus monkey was used to further analyze the in vivo distribution of NP and MSC in primates. To detect MSC in monkey, MSC infused with iron oxide (Fe₃O₄) NP were intravenously injected into the monkey. Magnetic resonance imaging (MRI) showed that Fe₃O₄ NP signal is extensively detected in the lung on the 1st day after injection, and the MSC in the monkey lung tissue were maintained for approximately 5 days (Fig. 2d). These result proved that MSC are lung-predominant distributed in both small and large animals.

3.3. The duration of MSC and the target of MSC/NP system in vivo

Low immunogenicity is a significant feature of allogenic transplantation of MSC. In this study, a comparative assay was performed to study the in vivo duration of MSC. MSC, fibroblast and RAW264.7 cells were equally transfected with Lenti-Luciferase virus, and infused to mice via intravenous injection. The in vivo distribution and tracing

Figure 2 In vivo tracing of MSC in mice, rabbits and monkey. (a) In vivo imaging system (IVIS) assays showed that MSC (luciferase expression, bioluminescence signal) could only be detected in the lung area of mice. Ex vivo analysis of different mouse organs showed similar results. n=10 mice, 3 rabbits. H, heart; Li, liver; S, spleen; L, lung; K, kidney. (b) 3D reconstruction imaging of the in vivo distribution of MSC in mice. Results are representative of more than 3 independent experiments. (c) IVIS assay of MSC in rabbit, a strong bioluminescence signal was detected in both in vivo and ex vivo assay of rabbit lung. n=3 rabbits. The results shown were obtained from 3 independent experiments. (d) MR imaging assay of iron oxide (Fe₃O₄) nanoparticle-labeled MSC in a cynomolgus monkey, MRI assays were performed at 0 (before MSC/NP injection), 1, 3, 5, and 7 days post-injection of MSC/NP. n=1 monkey, and 1 MRI assay was performed at each time point. L, lung; H, heart; S, stomach; K, kidney.
of these cells were assayed by IVIS at 1, 3, 5 and 7 days after cell injection. The result showed that MSC were only detected in the lung area and maintained at least for 7 days, while the fibroblasts and RAW264.7 cells were detected in other tissues and maintained only for approximately 3 days (Fig. 3a). To analyze the in vivo drug distribution of the MSC/NP drug delivery system, IR780 was used for in vivo drug tracing. Briefly, 1×10^6 MSC carrying NP/IR780 were injected into nude mice, and an IVIS imaging spectrum was obtained 3 and 12 h after injection; regular NP/IR780 were injected as the control group. The results showed that at 3 h after injection the IR780 signal in the lung area in the MSC/NP/IR780 system composed $\sim 60\%$ of the whole body signal, and the ratio was 25$\%$ for the NP/IR780 injection. At 12 h, the IR780 signal ratios in the lung area in the MSC/NP/IR780 and NP/IR780 groups were approximately 80$\%$ and 20$\%$, respectively (Fig. 3c and d), this result was further supported by ex vivo data of MSC/NP/IR780 distribution in different organ (Fig. 3e). In conclusion, MSC are long-time maintained in vivo, and MSC/NP system could efficiently target the drug to lung tissue.

3.4. Nanoparticles were intercellular transported from MSC to cancer cells in both vitro and in vivo model

There are two possible approaches for the transport of the anticancer drug in the MSC/NP system to the lung cancer cells; one approach is the release of the drug from the MSC followed by drug intake by the lung cancer cells, and the other approach is the release of a NP/drug package by MSC followed by the uptake of the NP/drug package by the lung cancer cells. To verify that NP can be transported intercellularly between MSC and lung cancer cells, both in vivo and in vitro studies were performed. For the in vitro study, MSC (GFP-labeled) and A549 (lung cancer cell line, tdTomato-labeled) cells were co-cultured in hanging drop medium to form 3D spheres (Fig. 4a) in which Cy-5-labeled PLGA-PEG NP were carried in MSC. Imaging of 3D sphere sections showed that 36 h after co-culture, the NP diffused dynamically from MSC to A549 cells (Fig. 4b). For the in vivo analysis, GFP-labeled and Cy5-NP-carrying MSC were...
intravenously injected into Cre-virus induced \(\text{Kras}^{\text{G12D}} \) mice with primary lung cancer. Lung tissue sections revealed that there was also extensive diffusion of NP from MSC to adjacent lung cells (Fig. 4c). These \textit{in vivo} and \textit{in vitro} results indicate that dynamic intercellular NP transportation occurred between MSC and cancer cells.

3.5. \text{MSC/NP/DTX} system efficiently inhibit tumor growth \textit{in vivo}

To assay the \textit{in vivo} tumor inhibition efficiency of the MSC/NP/DTX system, a lung cancer and tumor inhibit model in \(\text{Kras}^{\text{G12D}} \) mice was established (Fig. 5a). In the MSC/NP/DTX group, \(1 \times 10^6 \) MSC with NP/DTX (MSC) was injected intravenously every 5 days. The NP/DTX group (DTX dose, 10 mg/kg body weight) was also injected at an equal dose into a control group. Thirty days after tumor initiation, a PET-CT assay showed that there was significantly higher \(^{18}\text{F}-\text{FDG} \) uptake in the lungs of the lung cancer model group. Consistently, an MRI assay showed that there was obvious tumor formation. Comparatively, the PET-CT assay did not show notably higher uptake of \(^{18}\text{F}-\text{FDG} \) in the lungs of the NP/DTX-treated group, and the MRI results showed that there was a small amount of tumor formation. Importantly, in the MSC/NP/DTX-treated group, the PET-CT and MRI showed results similar to those of the NP/DTX group, with

Figure 4 Intercellular transportation of NP in the MSC/NP system. (a) GFP-labeled MSC (carrying Cy5 nanoparticles) and tdTomato-labeled A549 cells formed 3D spheres after incubation in a hanging drop culture. Scale bar, 30 μm. For tissue section assays, a representative result is shown from over 6 sections of 4–6 spheres or tissues. (b) In tissue section assays, numerous Cy5-nanoparticles were detected in A549 cells, indicating dynamic intercellular transportation of nanoparticles between MSC and cancer cells. Scale bar, 20 μm. (c) GFP-labeled and Cy5-nanoparticle-carrying MSC were infused into \(\text{Kras}^{\text{G12D}} \) lung cancer tumor mice via i.v. injection. Tissue section imaging was performed 24 h later, and Cy5-nanoparticles were detected in lung cells adjacent to the MSC. Scale bar, 20 μm.
lower \(^{18}\)F-FDG uptake and less tumor formation than the lung cancer model group (Fig. 5b). In addition, tumor weights on the 35th day after primary tumor initiation further confirmed that MSC/NP/DTX and NP/DTX treatment exhibited similar tumor inhibition efficiency (Fig. 5c). The ex vivo assay of the lung tissues (21st day post-Add-Cre induction) from mice in the 4 different groups further validated the tumor inhibition capacity of the MSC/NP/DTX system. The \(^{18}\)F-FDG intake in the MSC/NP/DTX group was greatly reduced and was quantified as the percent injected dose per gram of tissue (%ID/g) with a decay correction \((P<0.001)\) (Fig. 5d and e). Accordingly, the lung volume in the MSC/NP/DTX group was significantly less than that in the lung cancer group \((P<0.001, \text{ Fig. 5f})\). These data indicate efficient in vivo lung tumor inhibition of the MSC/NP/DTX system.

4. Discussion

The promising features of MSC, including their regenerative potential and capacity to differentiate into different cell lineages, have generated great interest of scientists to engage in more studies with intriguing perspectives on cell-based therapies\(^{19–21}\). MSC are the most commonly used adult stem cells in regenerative medicine that can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes\(^{22–24}\). Currently, hundreds of MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health\(^{25–27}\).

In this study, we tried to utilize MSC as a drug carrier to deliver DTX to lung tumors. There are three obvious advantage for MSC used as lung-targeted drug carrier. Firstly, MSC can be easily...
isolated and cultured from bone marrow of the patients28, and transplanted into patients again for treatment to avoid immune rejection29. Secondly, it is now well-accepted that MSC exhibit a natural high tumor affinity, which allows them to home to tumors and then retain in tumors in vivo although the detailed mechanism remains unclear30,31. Above all, lung-predominant distribution is the most significant feature of MSC used as lung-targeted drug carrier. In this study, MSC are majorly distributed in lung after intravenous injection in mice, rabbits and monkey. While all the transplanted MSC are xenogenic, thus a systematical study of the in vivo maintenance and tumor inhibit efficiency of an allogenic or autogenic MSC are still desired. The intercellular transportation of nanoparticle between MSC and cancer cells was proved in this study, while the underlying mechanism still need further exploration. Probably, the nanoparticle intercellular transportation was proceeded an exocytosis-endocytosis procedure. In addition, the intercellular transportation efficiency need to be determined with an elegant method.

Exosomes also have been exploited as drug delivery vehicles for anti-cancer drugs in several studies, in which exosomes or exosome-like vesicles loaded with Dox or PTX. The chemotherapeutic was shown to traffic to tumor tissues and reduce tumor growth in mice and without the effects that observed mice that treated with free drug32,33. Pascucci et al.17 observed that PTX-treated MSC mediated anti-tumorigenic effects because of their capacity to uptake the drug and subsequently release it in extracellular vesicles. Further assay showed that exosome vesicles fused more effectively with the cancer cell membrane than polymer-based synthetic nanoparticles. Intriguingly, even we observed the intercellular transportation of nanoparticles between MSC and their nearby A549 cells, it still unclear whether this process was mediated by exosomes released by MSC. And it will be interesting to explore the role of exosomes in the intercellular transportation of nanoparticle between different cells.

Collectively, this study quantified the DTX intake capacity of MSC and verified the lung targeting ability of MSC, NP and a drug mimic in an MSC/NP drug delivery system. Both in vivo and in vitro studies support the proposed intercellular transportation of NP from MSC to cancer cells. In addition, the MSC/NP/DTX system had tumor inhibition efficiency similar to that of NP/DTX but with only 1/8 the DTX dose. Given the passive lung targeting ability, low immunogenicity and tissue repair-promoting of MSC and the extensive pre-clinical and clinical research basis for application of MSC, MSC may also be useful in lung-targeted drug delivery for chronic pneumonia treatment and other lung related diseases, in addition to being used as a drug carrier for primary and metastatic lung cancer treatment.

Acknowledgments

We thank Changqian Tian for assistant with MR imaging assay, Tianbin Wang for PET-CT assay and Qince Sun for IVIS assay. This work was supported by grants from the Natural Science Foundation of China (Nos. 81771966, 31171040, 31401187 and 31571429), the Fundamental Research Funds for the Central Universities (Lin Mei, China), the Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2014A030300636, China), the Natural Science Foundation of Guangdong, China (2015A030311041, 2015A030313763), Science and Technology Planning Project of Guangdong Province, China (Nos. 2016A020217001 and 2014A020212466), the Shenzhen Science and Technology Innovation Committee (JCYJ20160301152300347, JCYJ20160531195129079, JCYJ20170412095722235, JCYJ2016042-9171931438, and GJHZ20150316160614842, China) and Guangdong Province Medical Science and Technology Research Funds (A2016445, China).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.apsb.2018.08.006.

References

1. Cheng W, Nie JP, Gao NS, Liu G, Tao W, Xiao XJ, et al. A multifunctional nanoparticle against multidrug resistant cancer: merging the best of targeted chemo/gene/photothermal therapy. Adv Funct Mater 2017;27:1704135.
2. Zhang M, Kim YK, Cui PF, Zhang JL, Qiao JB, He YJ, et al. Folate-conjugated polyspermine for lung cancer-targeted gene therapy. Acta Pharm Sin B 2016;6:336–43.
3. Huang ZX, Xie Q, Guo GP, Wang KM, Meng XX, Yuan BY, et al. DNA aptamer selected for specific recognition of prostate cancer cells and clinical tissues. Chin Chem Lett 2017;28:1252–7.
4. Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 2012;18:759–65.
5. Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008;18:500–7.
6. Lee M, Jeong SY, Ha J, Kim M, Jin HJ, Kwon SJ, et al. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochem Biophys Res Commun 2014;446:983–8.
7. Pessina A, Leonetti C, Artuso S, Benetti A, Dessy E, Pascucci L, et al. Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model. J Exp Clin Cancer Res 2015;34:82.
8. Zhao Y, Tang S, Gao J, Alahdali M, Cao S, Yang Z, et al. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy. Sci Rep 2017;7:44758.
9. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AL. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 2001;169:12–20.
10. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzioni S, Tessone A, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003;108:863–8.
11. Bos JL. Ras oncogenes in human cancer—a review. Cancer Res 1989;49:4682–9.
12. Avrush J, Zhang XF, Kyriakos JM. Raf meets Ras in a signal-transduction pathway. Trends Biochem Sci 1994;19:279–83.
13. Khorasaghi R, Der CJ. The Ras signal transduction pathway. Cancer Metastasis Rev 1994;13:67–89.
14. Mills NE, Fishman CL, Rom WN, Dubin N, Jacobson DR. Increased prevalence of K-Ras oncogene mutations in lung adenocarcinoma. Cancer Res 1995;55:1444–7.
15. Pellegrata NS, Sessa F, Renault B, Bonato M, Leone BE, Solcia E, et al. K-Ras and p53 gene-mutations in pancreatic-cancer—ductal and nonductal tumors progress through different genetic lesions. Cancer Res 1994;54:1556–60.
16. Pessina A, Piccirillo M, Mines E, Catalani P, Gribaldo L, Marafante E, et al. Role of SR-4987 stromal cells in the modulation of doxorubicin toxicity to in vitro granulocyte-macrophage progenitors (CFU-GM). Life Sci 1999;65:513–23.
17. Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 2014;192:262–70.

18. Cocce V, Faronato D, Brini AT, Masia C, Gianni AB, Piovani G, et al. Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma. Sci Rep 2017;7:9376.

19. Le Blanc K, Rasmussen I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidential mesenchymal stem cells. Lancet 2004;363:1439–41.

20. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999;5:309–13.

21. Shi YF, Hu GZ, Su JJ, Li WZ, Chen Q, Shou PS, et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res 2010;20:510–8.

22. Prockop DJ. Marrow stromal cells as stem cells for continual renewal of nonhematopoietic tissues and as potential vectors for gene therapy. J Cell Biochem 1998;72:5284–5.

23. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 2005;309:314–7.

24. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–7.

25. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant 2016;25:829–48.

26. Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patients bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007;211:27–35.

27. Bartolucci J, Verdugo FJ, Larrea R, Abarzuza E, Goset C, Rojo P, et al. Phase 1/2 randomized clinical trial of intravenous infusion of umbilical cord mesenchymal stem cells in patients with chronic cardiopathy with stable heart failure (RIMECARD). Eur Heart J 2016;37:527.

28. Zhu HB, Cao BR, Zhen ZP, Laxmi AA, Li D, Liu SR, et al. Controlled growth and differentiation of MSCs on grooved films assembled from monodisperse biological nanofibers with genetically tunable surface chemistries. Biomaterials 2011;32:4744–52.

29. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 2008;26:831–41.

30. Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 2009;27:2614–23.

31. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007;13:5020–7.

32. Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013;7:7698–710.

33. Rani S, Ryan AE, Grif fi n MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 2015;23:812–23.