The Influences of Sintering Process on the Characteristics of Corbiculacea (Etok) Shells Based Hydroxyapatite Powder

M R M Roslan¹, N F M Nasir¹,², N F Mohammad¹,², C E Meng, M S Mohamed³,⁴ and M N Abdullah⁵

¹Biomedical Engineering Programme, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis, Malaysia
²Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis, Malaysia
³Bioprocessing and Biomanufacturing Research Centre, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
⁴Department of Bioprocess Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
⁵Natural Intention Sdn. Bhd., 34700 Simpang, Perak

*nashrul@unimap.edu.my

Abstract. Hydroxyapatite (HA) powders were prepared via chemical solution through aqueous solution of calcium hydroxide and phosphoric acid. The calcium precursor was extracted from the calcium carbonate of Corbiculacea shells while the phosphate precursor originated from the commercially available phosphoric acid. The final product of HA powders is then manipulated through the sintering process at 500°C while the other sample was used as it is. XRD result shows significant changes in its crystallinity, crystallite size and lattice parameters after the sintering process. By sintering the HA, the crystallite size and crystallinity were increases as much as 6.25% and 5.31% respectively. SEM on the other hand showed different morphology for both sintering and non-sintering HA powders. For the sintering HA, the grains size is higher which is 5.00µm compared to non-sintering HA which is 3.91µm due to the agglomeration.

1. Introduction
Natural resources from local biodiversity have a huge potential as biomedical materials as they are abundant in nature, sustainable and inexpensive [1-5]. Hydroxyapatite (HA) with chemical formula Ca₁₀(PO₄)₆(OH)₂ is a naturally occurring mineral from calcium phosphate [6]. It have hexagonal symmetry spatial group P63/m with lattice parameters a=0.95nm and c=0.68nm [7]. HA have a wide application of areas such as biomaterials [8], adsorbents [9] and catalysis [10]. Owing to its enormous application, the demand of HA is practically high, however, the cost of production is the main issue as it requires expensive chemical [11]. Thereby, researchers had come out with the HA production based on biowaste such as eggshells [12], corals [13], fish bones [14] and seashells [15]. The shells of Malaysian sea molluscs such as Corbiculae (Etok) and Polymesoda Expansa (Lokan) which are harvested as a local seafood delicacy had been also investigated as a suitable HA resource [16-18]. Seashells composed of high calcium amount and considered as the easiest and cheapest way in synthesising the HA [19]. Synthesising HA involves several methods which are hydrothermal [20], sol
gel [21], microemulsion [22] and chemical precipitation [23], [24]. Nevertheless, the chemical precipitation method from suitable calcium and phosphorus is the most convenient and low cost in producing the HA powder [25]. The characteristics such as crystallinity, morphology and particle size of synthesised HA powder influenced its effectiveness in its application [26]. Currently, sintering technology could manipulate its bioceramics properties such as its microstructure, composition and surface chemistry [27]. In another research [28], sintering process was evaluated upon its morphology. It shows that the density of HA was increased as the sintering temperature increases. The HA’s grain also shows denser particle as the sintering temperature had increased. Generally, HA sintering is challenging, as the OH functional group is tended to decompose to other materials such as tricalcium phosphate (TCP) and anhydrous calcium phosphate at 1200°C to 1450°C. Dehydroxylation process is incorporated with heating process and resulted the released of OH group in the form of water molecules [27], [29] and consequently causing the decomposition. Dehydroxylation took place at temperature less than 800°C whereby above 800°C to 1350°C, the dehydroxylation is accelerated [27]. Hence, the objective of this work is to evaluate the role of sintering process upon the physicochemical of HA powder synthesised from Corbiculacea (Etok) shells through chemical precipitation method.

2. Materials and methods

2.1. Materials
Corbiculacea (Etok) shells were purchased from local market in Kuala Perlis, Perlis, Malaysia. Phosphoric acid (H₃PO₄) with 95%, ammonia solution (NH₃) with 25% was purchased from Merck. All the chemicals were used without further purification.

2.1.1. Method in preparation of calcium oxide (CaO)
The collected shells were cleaned in boiling water to remove any dirt and the left over flesh by using distilled water for 30 minutes. After cleaning with distilled water, the shells were dried in oven at 100°C for 1 hour. The next process is crushing the shells into powder by using grinder machine (Mill Powder Tech). The powder is in the calcium carbonate (CaCO₃) form. The powder was then heated at 1100°C for 3 hours by using furnace to transform CaCO₃ into CaO powder.

2.1.2. Method in preparation of hydroxyapatite (HA)
To synthesis the HA, chemical precipitation method was used. Generally, CaO is the calcium precursor while H₃PO₄ is the phosphate precursor. Molarity of calcium to phosphate were calculated to follow the ratio of 1.67 which is the ratio of HA’s Ca/P. After calculating the molarity of both precursor, the calcium oxide powder was mixed in distilled water by using magnetic stirrer to form the calcium hydroxide (Ca(OH)₂). After that, the solution was titrated by using H₃PO₄ solution at 5.5 ml/min. The overall pH value of the solution was monitored and maintained at pH11 by adding some drops of NH₃. After finishing all the titration process, the gelatinous solution was formed and the solution was left to age for 24 hours. The gelatinous solution was filtered by using filter paper after 24 hours ageing. The product after filtering process was washed with distilled water and dried in oven at 110°C for 6 hours to remove possible moisture completely. The HA cake formed was then powdered by using mortar and pestle. The powder was divided into two: HA powder without sintering (the control) and the sintered HA powder. The sintered HA powder was obtained by using furnace at 500°C.

2.1.3. Method of characterization
X-Ray diffraction (XRD) is the analysis to evaluate the phase and the crystallinity of the HA powder. The powder was evaluated by using Brucker D2 Phaser. To prepare the sample, an amount of the powder was compacted into the XRD holder and scanned under the range of 10° to 90° with step size 0.1° and scan rate 5°/min. The XRD pattern obtained was validated to standard powder diffraction file by using X’pert Highscore Plus V.2.2.5 software. The crystallinity degree was calculated by using equation (1):

\[X_c = \frac{V_{112/300}}{I_{300}} \]

(1)
where X_c is the fraction of crystalline phase; I_{300} is the intensity at (300) reflection; $V_{112/300}$ is the intensity of hollow between (112) and (300) diffractions. The crystallinity size, X_s in direction perpendicular to the crystallographic plan was calculated by using Scherrer’s formula [30] as in equation (2);

$$\text{Crystallite size, } X_s = \frac{k\lambda}{FWHM \cos \theta}$$

where X_s is crystallite size (nm); λ is the wavelength of monochromatic X-ray beam (nm) ($\lambda=0.15406\text{nm for CuK}_\alpha$ radiation); FWHM is the full width at half maximum of the diffraction peak under consideration (rad). The diffraction peak at $2\theta=32.25^\circ$ which assign to (112) plane was chosen for calculation of crystallite size since it is sharper and isolated from others. The morphology within HA powder and sintered samples were examined on Scanning Electron Microscope model JEOL (JSM-6010LV).

3. Results and discussion

3.1. XRD analysis

The XRD spectrum of synthesized HA from both samples are shown in Figure 1. The diffraction peaks at 2θ values of 32.25°, 33° and 44.40° are corresponded to (112), (300) and (210) Miller’s plane of HA respectively in PDF 01-074-0565. The XRD patterns attained are in good agreement with the standard data of HA. The diffraction peak at 25.88° corresponded to (002) was selected to calculate the crystallite size and crystallinity by using Scherrer equation due to the peak is isolated from the others. All the calculated values were presented in Table 1 including the a and c axises. By observing both of the XRD patterns, it can be seen that the sintered HA has the sharper peaks, for example the peak at (210) plane. In the other hand, the broad diffraction peaks were observed by the non-sintering HA sample. This suggests that the HA with sintering process having higher crystallinity compared the non-sintering one. The HA without sintering samples behave as monocrystalline. The fraction of crystalline phase is evaluated based on equation (1). The evaluated degrees for both samples as shown in Table 1. Both crystallinity and crystallite size values are higher for HA sintered at 500°C compared to HA without sintering which indicated the strong dependence of the crystallinity of prepared HA. This is agreed by [26] and in similar trend with [31]. Higher crystallinity of HA is favorable for bone tissue application as the HA is more biocompatible and could mimic the natural bone [32]–[35]. The value of lattice parameters shows that the a axis is similar for both sample but for c axis, the value is slightly higher for sintering HA. The increment in value is due to calcinations or sintering process [31]. Comparing the lattice parameters of both samples with the standard HA, it can be seen that the lattice parameter a had decreased. This happened due to the substitution of CO$_3^{2-}$ [36]. Literally, the CO$_3^{2-}$ was present in the HA’s lattice structure due to the carbon dioxide from the environment dissolve in distilled water during the mixing process [37].
Figure 1. The XRD pattern of synthesised HA

Table 1. The crystalline parameters of synthesised HA

Samples	Crystal axis a-axis (nm)	Crystal volume c-axis (nm)	Crystallinity, Xc (%)	Crystallite size, Xs (nm)
HA without sintering	9.26	6.85	23.26	74.97
HA sintering 500°C	9.26	6.89	28.57	81.22

3.2. SEM analysis

The image of SEM is shown in Figure 2 and 3 for HA without sintering and HA sintering at 500°C sample respectively. From the both of images, measuring the particle size is quite difficult due to high agglomeration. Both of the samples show an irregular shape particle. By differentiating both samples, the sintered HA sample have a huge agglomeration between the particles. The average grain size of sintered HA is also bigger compared to non-sintering HA which is 5.00µm and 3.91µm respectively. During the sintering process, there’s a development of grain growth between the grain network accompanied by the movement of grain boundary [38]. Thereby, the sintering sample tended to form bigger particles size as the grains boundary were developed.
5.00µm

Figure 2. SEM images of HA without sintering process

3.91µm

Figure 3. SEM images of HA with sintering process at 500°C

Figure 2. The XRD pattern of synthesised HA

4. Conclusion
HA powders based on Corbiculacea shells were successfully synthesised via chemical precipitation. By manipulating the sintering process of HA’s sample, it influenced the phase and crystalline structure of HA. The higher crystallinity and crystallite size could be gained by sintering the HA powder. Through the sintering process, SEM analysis showed an agglomeration between the particles. The grain size also had increased through the sintering process.

References
[1] Roslan MR, Nasir NM, Cheng EM and Mamat N 2016 Preliminary characterization of nano HA-Bubuk Wangi rice starch tissue scaffold. International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) pp. 1560-1564.
[2] Roslan MR, Nasir NM, Cheng EM, and Mamat N 2016 The characterization of nano HA-Balik Wangi rice starch tissue engineering scaffold. Int. J. Mech. Mechatron. Eng. 16, 36-41.
[3] Razali KR, Nasir NM, Cheng EM, Tan MK, Zakaria A and Mamat N 2016 Preliminary Analysis of nHa Based Tissue Engineering Scaffold Dielectric Characteristics. ARPN Journal of Engineering and Applied Sciences, 11(8), 4987-4990.
[4] Mohd NNF, Sucinda A, Cheng EM, Majid A, Amin NAM, Rahim R, Jusoh M and Abdul KMF 2018 The study of brown rice starch effect on hydroxyapatite composites. International Journal of Engineering and Technology (UAE), 7(2.5), 69-72.
[5] Mohd RMR, Mohd KNL, Abdul KMF, Mohd NNF, Cheng EM, Beh CY, Tan JS and Mohamed MS 2021 The state of starch/hydroxyapatite composite scaffold in bone tissue engineering with consideration for dielectric measurement as an alternative characterization technique. Materials, 14(8), 1960.
[6] Hajimirzaee S, Chansai S, Hardacre C, Banks CE and Doyle AM 2019 Effects of surfactant on morphology, chemical properties and catalytic activity of hydroxyapatite, J. Solid State Chem., vol. 276, pp. 345–351, Aug. 2019.
[7] Vallet-Regui M and Salinas AJ 2019 Ceramics as bone repair materials, Bone Repair Biomaterials, Elsevier, pp. 141–178.
[8] Zhou H and Lee J 2011 Nanoscale hydroxyapatite particles for bone tissue engineering Acta Biomater., vol. 7, no. 7, pp. 2769–2781.
[9] Lin K, Pan J, Chen Y, Cheng R, and Xu X. 2009 Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders, J. Hazard. Mater., vol. 161, no. 1, pp. 231–240.
[10] Zhang D, Zhao H, Zhao X, Liu Y, Chen H and Li X 2011 Application of hydroxyapatite as catalyst and catalyst carrier. *Progress in Chemistry*, 23(4), p.687.

[11] Karunakaran G, Cho EB, Kumar GS, Kolesnikov E, Karpenkov DY, Gopinathan J, Pillai MM, Selvakumar R, Boobalan S and Gorshenkov MV 2019 Sodium dodecyl sulfate mediated microwave synthesis of biocompatible superparamagnetic mesoporous hydroxyapatite nanoparticles using black Chlamys varia seashell as a calcium source for biomedical applications. *Ceramics International*, 45(12), pp.15143-15155.

[12] Derkus B, Arslan YE, Emregul KC and Emregul E 2016 Enhancement of aptamer immobilization using egg shell-derived nano-sized spherical hydroxyapatite for thrombin detection in neuroclin. *Talanta*, 158, pp.100-109.

[13] Nandi SK, Kundu B, Mukherjee J, Mahato A, Datta S. and Balla VK 2015 Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration. *Materials science and engineering: C*, 49, pp.816-823.

[14] Shi P, Liu M, Fan F, Yu C, Lu W and Du M 2018 Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. *Materials Science and Engineering: C*, 90, pp.706-712.

[15] Núñez D, Elgueta E, Varaprasad K and Oyarzún P 2018 Hydroxyapatite nanocrystals synthesized from calcium rich bio-wastes. *Materials Letters*, 230, pp.64-68.

[16] Roslan MRM, Nasir NFM, Mohammad NF, Meng CE, Amin NAM, Khalid MFA, Zakaria MZ, Azizan MM and Jusoh M 2021 Synthesizing and Optimization the Hydroxyapatite Based on Corbiculacea Seashells. In *Intelligent Manufacturing and Mechatronics* (pp. 975-981)

[17] Roslan MR, Nasir NM, Gilani MA, Mohammad NF, Cheng EM, Khalid MA, Zoolfakar AS, Amin NAM and Khan SF 2020 Preliminary study of the polymesoda expansa based hydroxyapatite for medical devices coating application. *AIP Conference Proceedings Vol. 2306*, No. 1, p. 020033

[18] Roslan MR, Nasir NFM, Khalid MFA, Mohammad NF, Meng CE, Hashim NNN, You BC, Majid MSA and Amin NAM, 2019 The optimization of the hydroxyapatite (HA) material characteristics produced from Corbiculacea (Etok) shells. *Journal of Physics: Conference Series Vol. 1372*, No. 1, p. 012077

[19] Eziefula UG, Ezeh JC and Eziefula BI 2018 Properties of seashell aggregate concrete: A review. *Construction and Building Materials*, 192, pp.287-300.

[20] J EIJS, Wood, DJ and Milne SJ 2006 Hydrothermal synthesis of hydroxyapatite. *Journal of Physics: Conference Series Vol. 26*, No. 1, p. 064

[21] Liu DM, Troczynski T and Tseng WJ 2001 Water-based sol–gel synthesis of hydroxyapatite: process development. *Biomaterials*, 22(13), pp.1721-1730.

[22] Koumoulidi, GC, Katsoulidis AP, Ladavos AK, Pomonis PJ, Trapalis CC, Sdouko, AT and Vaimakis TC, 2003 Preparation of hydroxyapatite via microemulsion route. *Journal of colloid and interface science*, 259(2), pp.254-260.

[23] Abidi SSA and Murtaza Q 2014 Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction. *Journal of Materials Science & Technology*, 30(4), pp.307-310.

[24] Rujitanapanich S, Kumpapan P and Wanjanoi P 2014 Synthesis of hydroxyapatite from oyster shell via precipitation. *Energy Procedia*, 56, pp.112-117.

[25] Safranova TV, Korneichuk SA, Putilyav VI and Krut’Ko VK 2012 Ceramics based on calcium hydroxyapatite synthesized from calcium acetate, calcium hydroxide, and potassium hydrophosphate. *Glass and Ceramics*, 69(1), pp.30-36.

[26] Pang YX and Bao X 2003 Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. *Journal of the European Ceramic Society*, 23(10), pp.1697-1704.

[27] Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A and Berzina-Cimdina L 2015 Fabrication, properties and applications of dense hydroxyapatite: a review. *Journal of functional biomaterials*, 6(4), pp.1099-1140.

[28] Khiri MZA, Matori KA, Zaid MHM, Abdullah CAC, Zainuddin N, Alibe IM, Rahman NAA, Wahab SAA, Azma, AZK and Effendy N 2019 Crystallization behavior of low-cost biphasic
hydroxyapatite/β-tricalcium phosphate ceramic at high sintering temperatures derived from high potential calcium waste sources. Results in Physics, 12, pp.638-644.

[29] Ramesh S, Tan, CY, Sopyan I, Hamdi M and Teng WD 2007 Consolidation of nanocrystalline hydroxyapatite powder. Science and Technology of Advanced Materials, 8(1-2), pp.124-130.

[30] Taherian M 2018 Synthesis of hydroxyapatite-bioglass nanocomposite using modified Sol-gel method. Journal of Environmental Friendly Materials, 2(1), pp.23-25.

[31] Poovendran K and Wilson K 2019 Amalgamation and characterization of porous hydroxyapatite bio ceramics at two various temperatures. Materials Science in Semiconductor Processing, 100, pp.255-261.

[32] Gopi D, Indira J and Kavitha L 2012 A comparative study on the direct and pulsed current electrodeposition of hydroxyapatite coatings on surgical grade stainless steel. Surface and Coatings Technology, 206(11-12), pp.2859-2869.

[33] Poorraeisi M and Afshar A 2018 The study of electrodeposition of hydroxyapatite-ZrO2-TiO2 nanocomposite coatings on 316 stainless steel. Surface and Coatings Technology, 339, pp.199-207.

[34] Shojae P and Afshar A 2015 Effects of zirconia content on characteristics and corrosion behavior of hydroxyapatite/ZrO2 biocomposite coatings codeposited by electrodeposition. Surface and Coatings Technology, 262, pp.166-172.

[35] Thanh DTM, Nam PT, Phuong NT, Van AN, Hoang T. and Dai LT 2013 Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel. Materials Science and Engineering: C, 33(4), pp.2037-2045.

[36] Zapanta-Legeros R 1965 Effect of carbonate on the lattice parameters of apatite. Nature, 206(4982), pp.403-404.

[37] Sari M and Yusuf Y 2018 Synthesis and Characterization of Hydroxyapatite based on Green Mussel Shells (Perna viridis) with Calcination Temperature Variation Using the Precipitation Method. International Journal of Nanoelectronics & Materials, 11(3).

[38] Youness RA, Taha MA, Elhaes H and Ibrahim M 2017 Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis. Materials Chemistry and Physics, 190, pp.209-218.