Actinobacteria and Cyanobacteria Diversity in Terrestrial Antarctic Microenvironments Evaluated by Culture-Dependent and Independent Methods

Adriana Rego¹,², Francisco Raio¹, Teresa P. Martins¹, Hugo Ribeiro¹,², António G. G. Sousa¹, Joana Séneca¹, Mafalda S. Baptista¹,², Charles K. Lee³,⁴, S. Craig Cary³,⁴, Vitor Ramos†, Maria F. Carvalho¹, Pedro N. Leão¹ and Catarina Magalhães¹,⁵

¹ Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal,
² Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal,
³ International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand,
⁴ School of Science, University of Waikato, Hamilton, New Zealand,
⁵ Faculty of Sciences, University of Porto, Porto, Portugal

Bacterial diversity from McMurdo Dry Valleys in Antarctica, the coldest desert on earth, has become more easily assessed with the development of High Throughput Sequencing (HTS) techniques. However, some of the diversity remains inaccessible by the power of sequencing. In this study, we combine cultivation and HTS techniques to survey actinobacteria and cyanobacteria diversity along different soil and endolithic micro-environments of Victoria Valley in McMurdo Dry Valleys. Our results demonstrate that the Dry Valleys actinobacteria and cyanobacteria distribution is driven by environmental forces, in particular the effect of water availability and endolithic environments clearly conditioned the distribution of those communities. Data derived from HTS show that the percentage of cyanobacteria decreases from about 20% in the sample closest to the water source to negligible values on the last three samples of the transect with less water availability. Inversely, actinobacteria relative abundance increases from about 20% in wet soils to over 50% in the driest samples. Over 30% of the total HTS data set was composed of actinobacterial strains, mainly distributed by 5 families: Sporichthyaceae, Euzebyaceae, Patulibacteraceae, Nocardioidaceae, and Rubrobacteraceae. However, the 11 actinobacterial strains isolated in this study, belonged to Micrococcaceae and Dermacoccaceae families that were underrepresented in the HTS data set. A total of 10 cyanobacterial strains from the order Synechococcales were also isolated, distributed by 4 different genera (Nodosilinea, Leptolyngbya, Pectolyngbya, and Acaryochloris-like). In agreement with the cultivation results, Leptolyngbya was identified as dominant genus in the HTS data set. Acaryochloris-like cyanobacteria were found exclusively in the endolithic sample and represented 44% of the total 16S rRNA sequences, although despite our efforts we were not able to properly isolate any strain from this Acaryochloris-related group. The importance of combining cultivation and sequencing techniques is highlighted, as
INTRODUCTION

The continent of Antarctica comprises about 0.34% ice-free areas (Convey, 2011) characterized by extreme cold and dry conditions (Wierzchos et al., 2004). In the McMurdo Dry Valleys (henceforth Dry Valleys), the largest ice-free region of the Antarctic continent (Pointing et al., 2009) and the coldest and driest desert on earth (Wood et al., 2008), the environmental stresses range from high variations in temperature (Doran et al., 2002), low nutrient availability and soil moisture (Buelow et al., 2016) to high ultraviolet solar radiation incidence (Perera et al., 2018).

Under such constraints, embracing the limits of physiological adaptability, microorganisms developed specialized strategies to survive, such as the colonization of edaphic and endolithic microenvironments (Walker and Pace, 2007), the entry into dormancy states (Goordial et al., 2017) and the biosynthesis of secondary metabolites (Wilson and Brimble, 2009; Tian et al., 2017).

Oligotrophic soils from the Dry Valleys are considered to be microbiologically distinct from all other soils worldwide (Fierer et al., 2012b) and High Throughput Sequencing (HTS) studies have proved their bacterial diversity is much larger than previously thought (Lee et al., 2012; Wei et al., 2016).

The Antarctica Dry Valleys soils are usually dominated by Actinobacteria, the prevalent phylum in cold arid soils (Pointing et al., 2009; Van Goethem et al., 2016; Goordial et al., 2017). Although the molecular basis behind actinobacteria dominance in cryoenviornments is still unknown (Goordial et al., 2015), metabolic activity at subzero temperatures has been detected (Soina et al., 2004). The formation of spores allows the survival in desert-like habitats (Mhammodipanah and Wink, 2016) and cyst-like resting forms have been described for non-sporulating actinobacteria species (Soina et al., 2004).

In addition to soil environments, rocky niches are of particular relevance in the Dry Valleys ecosystems since they provide protection to different biota from harsh environmental conditions such as intense solar radiation exposure, temperature fluctuations, wind, and desiccation (Cockell and Stokes, 2004; Walker and Pace, 2007). These rock-inhabiting organisms are very important in Dry Valleys because of the extent of rock-exposed surface, thus accounting largely for the productivity and biomass in this system (Omelon, 2008; Pointing and Belnap, 2012). Dry Valleys hypolithic and endolithic communities are often dominated by cyanobacteria (Omelon, 2008; Chan et al., 2012; Van Goethem et al., 2016). Indeed, as primary colonizers after the retreat of glaciers, cyanobacteria are leading components of Dry Valleys ecosystem, enabling colonization by other microorganisms (Vincent, 2000). They are well adapted to the stress of desiccation and despite most of the Dry Valleys soils lack any visible cyanobacterial growth, their presence was detected through HTS even in low moisture soil samples (Wood et al., 2008).

In fact, HTS techniques have revolutionized the traditional biodiversity studies based on culturing approaches and opened an array of new opportunities to explore previously hard to access environments, as are extreme environments. These approaches can be used to study both cultured and uncultured diversity, being of particular relevance in these types of environments – where the unique environmental conditions are hard to mimic in the laboratory. Cultivation-independent studies have revealed that in the Dry Valleys, abiotic factors drive the diversity and structure of microbial communities (Pointing et al., 2009; Lee et al., 2012; Magalhães et al., 2012). Aridity seem to be the most preponderant factor shaping bacterial communites, not only in Dry Valleys but across multiple deserts (Kastovská et al., 2005; Pointing et al., 2007; Wood et al., 2008). The type of habitat (lithic vs. soil) also has a preponderant role in shaping the bacterial community composition as shown for Antarctic and other hyper-arid deserts (Azúa-Bustos et al., 2011; Stomeo et al., 2013; Makhalanyane et al., 2015).

Although HTS techniques promised to be able to replace bacterial culturing (Venter et al., 2004), cultivation techniques are still necessary to improve taxonomic resolution and even diversity coverage (Lagier et al., 2015; Choi et al., 2017; Ramos et al., 2017), as well as to recover whole genomes or allow physiological and metabolic studies (Sørensen et al., 2002; Ramos et al., 2018; Lambrechts et al., 2019). The information provided by the bacterial isolates can further allow to understand the cultivation requirements and develop directed cultivation techniques leading to potential novel discoveries (Ramos et al., 2018; Tahon et al., 2018). Antarctic bacteria, by evolving in such extreme conditions are particularly interesting in terms of biotechnological applications, including for bioremediation (Gran-Scheuch et al., 2017; Lee et al., 2018), antimicrobials (Gesheva and Vasileva-Tonkova, 2012; Tedesco et al., 2016) and production of anti-freezing molecules (Muñoz et al., 2017).

Combined approaches encompassing culture dependent and independent techniques to retrieve a broader bacterial diversity have been employed for Antarctic studies (Babalola et al., 2009; Aislable et al., 2013). However, only a fraction of the taxa recovered did overlap, highlighting the complementarity of both approaches. In a comprehensive study Lambrechts et al. (2019) have shown that over 85% of Antarctic soil bacterial sequences available in databases still belong to uncultured genera or higher
taxonomic level. Even for extensively studied phyla, such as actinobacteria, there are reports of uncultured phylotypes (Smith et al., 2006; Babalola et al., 2009).

By mimicking natural conditions, novel micro-culturing techniques, including soil substrate membrane system (SSMS) (Pudasaini et al., 2017) and extended incubation times (Tahon and Willems, 2017) have reduced the gap between the cultured and uncultured approaches. Several Antarctic studies have successfully retrieved novel genera and families, including first isolates of novel taxa of recalcitrant bacteria, by employing novel cultivation approaches (van Dorst et al., 2016; Pulschen et al., 2017; Tahon and Willems, 2017; Tahon et al., 2018). In the present study, we combine HTS and microbial cultivation techniques as culture-independent and dependent approaches to survey actinobacteria and cyanobacteria diversity along different soil and endolithic micro-environments of Victoria Valley, one of the Dry Valleys. Novel cultivation techniques, previously fruitful in retrieving novel and recalcitrant taxa from Antarctic and other deserts, were included. A comprehensive insight of the main factors shaping endolithic and edaphic microbial communities, such as moisture levels and pH is addressed.

MATERIALS AND METHODS

Samples Location and Collection
Substrate from a rock with endolithic colonization (END) and from a soil transect with a gradient of water availability were collected in Victoria Valley during the K020 Mission in January 2013, integrated in the NZTABS international program. For the transect, a total of six sites between T1 and T6 were sampled from a 32 m transect with increasing distance from a water pond near the main water source in the Victoria Valley – Lake Vida (Figure 1 and Table 1). Several scoops of soil were collected aseptically and stored in a sterile Whirl-Pak. All samples were kept at −30°C in Lifeguard solution (MoBio) in the 1st week after sample and then at −80°C until further analysis.

Physicochemical Analysis of Transect Soil Samples
Water Activity (Aw) was measured in situ in all sampling points using a portable water activity analyzer (PaWKit AquaLab, Decagon). Conductivity and pH were also measured in all soil samples using a CyberScan PC 510 Bench Meter (Eutech Instruments) following the slurry technique which consists in mixing 1:2.5 mass ratio of samples and de-ionized water (Edmeades et al., 1985).

Sample code	Latitude	Longitude	Aw	pH	Cond (µS/cm)
T1	S77 20.241	E161 38.593	1.06	7.09	61
T2	S77 20.240	E161 38.584	1.02	8.02	314
T3	S77 20.238	E161 38.578	1.01	7.36	2530
T4	S77 20.237	E161 38.565	0.6	8.39	21
T5	S77 20.235	E161 38.547	0.15	8.41	122
T6	S77 20.232	E161 38.526	0.28	8.39	21
Bacterial Community Diversity Analysis

Environmental DNA (eDNA) was extracted using a modification of the CTAB extraction protocol (Barrett et al., 2006). The 16S rRNA gene was amplified by PCR using the universal primer pair 27F/1492R (Weisburg et al., 1991) and then sequenced by pyrosequencing technology. Briefly, the 16S rRNA gene was amplified for the V3-V4 hypervariable region with barcoded fusion primers containing the Roche-454 A and B Titanium sequencing adapters, an eight-base barcode sequence, the forward (5′-ACTCTACGGGAGGCAG-3′) and reverse (5′-TACNVRRGTHTCIAATYG -3′) primers (Wang and Qian, 2009). The PCR reaction was performed using 5 U of Advantage Taq polymerase (Clontech), 0.2 µM of each primer, 0.2 mM dNTPs, 6% DMSO and 2–3 µL of template DNA. The PCR conditions employed were: initial denaturation step at 94°C for 3 min, followed by 25 cycles of 94°C for 30 s, 44°C for 45 s and 68°C for 60 s and a final elongation step at 68°C for 10 min. The amplicons were quantified by fluorimetry with PicoGreen (Invitrogen), pooled at equimolar concentrations and sequenced in the A direction with GS 454 FLX Titanium chemistry, according to the manufacturer’s instructions (Roche, 454 Life Sciences) at Biocant (Cantanhede, Portugal). The 454-machine-generated FASTA (fna) and quality score (.qual) files were processed using the QIIME (Quantitative insights into microbial ecology) pipeline (Caporaso et al., 2010). Initially, raw reads were demultiplexed and subjected to a quality filtering – sequences with a quality score below 25 were removed. The next step, Pick OTUs (Operational Taxonomic Units) (Seath et al., 1973) was performed in parallel with 3 different workflows: pick_de_novos_otus.py, pick_otus.py (closed-reference method) and pick_open_reference_otus.py (open-reference method). The OTU table obtained from the open-reference method was selected for the downstream analyses. Essentially, all sequences were clustered into OTUs at 97% sequence similarity using UCLUST (Edgar, 2010) and the reads aligned to the Greengenes v13_8 (GG) (DeSantis et al., 2006) database using PyNAST. For the taxonomic assignment, the RDP Classifier 2.2 (Wang et al., 2007) was used with the UCLUST method. For each sample, alpha and beta diversity metrics were calculated using weighted and unweighted UniFrac metrics (Lozupone and Knight, 2005). The R packages phyloseq (McMurdie and Holmes, 2013) and ggplot2 (Wickham, 2009) were used for downstream analysis and visualization including alpha diversity calculations and relative and total abundance taxonomy summary charts.

Isolation of Actinobacteria and Cyanobacteria

Some of the environmental samples that were collected in Victoria Valley were also used for bacterial isolation, based on their composition as estimated by HTS. Samples T5 and T6 from soil transect were selected for the isolation of actinobacteria, while endolithic and transect samples T1 and T3 were used for the isolation of cyanobacteria. In addition, sample T6 was also used for attempting to isolate low-abundance cyanobacteria in an actinobacteria-dominated sample. It is known that the cultivable fraction of the microbial richness is typically below 1% (Epstein, 2013), so in order to improve the cultivability and maximize the recovery of microbial strains from the samples, different culture strategies – including pre-treatments – were employed as described below.

Culture Strategies for the Isolation of Actinobacteria

For the transect sample T6, 0.5 g of the original sample (soil) was weighted under sterile conditions and 5 mL of sterile saline solution (0.85% NaCl at the temperature of 4°C) were added to resuspend the sample. The solution was vortexed for 10 min and allowed to settle for 2 min in an ice bath. Sequential dilutions (down to a dilution factor of 10−2) of the supernatant were performed, inoculated (in duplicate) on solid media (as described below) and incubated at three different temperatures (4, 9 and 19°C). All the media were supplemented with 50 mg/L of cycloheximide (BioChemica) and streptomycin (BioChemica) to inhibit the growth of fungi or other eukaryotes and Gram-negative bacteria, respectively. The dilutions were plated onto an oligotrophic medium – Nutrient-poor sediment extract (NPS) – primarily made with an extract from the original Antarctica soil sample and then with sand collected from a beach in northern Portugal (Francelos Beach, Vila Nova de Gaia, Portugal), to simulate the oligotrophic environmental conditions. Previous works have indicated that soil-extract agar is able to retrieve a wider and more diverse range of biodiversity when compared to traditional media (Hamaki et al., 2005). Briefly, ca. 500 g of substrate was mixed with 500 mL of distilled water, homogenized and allowed to settle. For medium preparation, 100 mL of the supernatant solution was mixed with 900 mL of distilled water and 17 g of bacteriological agar. Obtained colonies were then streaked in the same medium and in richer media, in order to investigate which one could render a higher biomass growth. The richer media used were: modified nutrient-poor sediment extract (MNPS): 5 g/L soluble starch, 1 g/L potassium nitrate, 100 mL/L substrate extract and 17 g/L agar; International Streptomyces Project medium 2 (ISP2) (Shirling and Gottlieb, 1966) and raffinose histidine agar (RH) (Vickers et al., 1984). Bacterial colonies were successively streaked until pure colonies were achieved.

For the transect sample T5, a more selective approach was used. The soil sample (0.5 g) was weighted under sterile conditions and 2.5 mL of sterile saline solution were added to resuspend the sample. The solution was incubated on an ultrasound for 1 min and vortexed for 5 min. The sample was then submitted to two different pre-treatments to maximize the selection of sporulating actinobacteria: (1) heat-shock, which consisted in the incubation of 1 mL of the suspension at 50°C, for 5 min and (2) incubation with antibiotics (Hameš-Kočabaš and Uzel, 2012), consisting in the incubation of 1 mL of the suspension with 20 mg/L of streptomycin (BioChemica) and nalidixic acid (BioChemica), at 28°C for 30 min. For each pre-treatment, serial dilutions (down to a dilution factor of 10−2) were performed and plated onto different media selective for actinobacteria: Actinomycete Isolation Agar (AIA): sodium caseinate 2 g/L, L-asparagine 0.1 g/L, sodium propionate 4 g/L,
in the centrifugation of the samples at 4,500 g. Samples were submitted to a washing process, which consisted of suspending the pelleted samples in BG110 medium (without nitrogen source) and discarding the supernatant. The inoculation was carried out by adding an equal part of the pelleted samples to (a) glass Erlenmeyer’s of 100 mL with liquid medium [BG110 medium (Rippka, 1988)], (b) to solid Z8 or BG110 agar plates, and allowing to grow at 19°C, under a 12:12 h light (20–30 µmol m⁻² s⁻¹ photon irradiance):dark cycle. Plates were prepared with 1.5% agarose and supplemented with 0.5% of cycloheximide (5 mL/L), to prevent the growth of eukaryotic microorganisms. When visible growth was detected in the liquid/solid media, aliquots were transferred and streaked onto solid Z8 or BG110 medium plates. The single colonies were selected and re-streaked aseptically to fresh Z8 and/or BG110 medium plates. The procedure was repeated until isolation was achieved (Rippka, 1988). Cyanobacterial isolates were visually inspected under a microscope (Leica DMLB) and then transferred to Z8, both in liquid and solid (agar) medium. Isolates are maintained in the LEGE Culture Collection (Ramos et al., 2018).

Identification of Bacterial Isolates Through 16S rRNA Gene Sequence Amplification

After isolation of pure cultures, each bacterial isolate was grown in 10 mL of liquid medium (composition according to the medium from which the isolated was retrieved) in 50 mL Falcon tubes/100 mL Erlenmeyer’s, until enough biomass was obtained to extract DNA. DNA was extracted using the E.Z.N.A.® Bacterial DNA Kit (OMEGA bio-tek) and PureLink Genomic DNA Mini Kit – Gram-negative bacterial cell protocol (Invitrogen), for bacterial and cyanobacterial strains, respectively. The manufacturer’s instructions were followed, and DNA was eluted in 100 µL of elution buffer. The integrity of the gDNA was assessed by agarose gel electrophoresis (0.8% agarose gel prepared in TAE buffer 1X, stained with 1 µL of SYBR® Safe DNA Gel Stain from Thermo Fisher Scientific). One microliter of DNA (with loading dye) was loaded onto each lane before electrophoresis at 80 V for 30 min. The 16S rRNA gene was amplified by PCR in a Veriti®-96-Well Thermal Cycler (Thermo Fisher Scientific) using primer pair 27F/1492R (Weisburg et al., 1991) (1465 bp) for bacteria and primer pairs CYA106F, CYA359F, CYA718R (Nubel et al., 1997) and 1492R (Weisburg et al., 1991) (combinations CYA106F – CYA718R: ~675 bp and CYA359F – 1492R: ~1130 bp) for cyanobacteria.

For bacteria, the PCR reaction was prepared in a volume of 10 µL containing 1× TaKaRa PCR Buffer (TAKARA BIO INC.), 1.5 mM MgCl₂ (TAKARA BIO INC.), 250 µM dNTPs (TAKARA BIO INC.), 1.5 µL of each primer (2 µM), 0.25 mg/mL of UltraPure™ BSA (Life Technologies), 0.25 U TaKaRa Taq™ Hot Start Version (TAKARA BIO INC.) and 1 µL of template DNA. The PCR conditions were: initial denaturation step at 98°C for 2 min, followed by 30 cycles of a denaturation step at 94°C for 30 s, annealing at 48°C for 90 s and extension at 72°C for 2 min, followed by a final extension step at 72°C for 10 min. PCR products (3 µL loaded in each well) were separated by electrophoresis on a 1.5% (w/v) agarose gel during 30 min at 150 V. The ladder utilized was GRS ladder 1 kb (Grisp). The gel was stained with 1 µL SYBR® Safe DNA Gel Stain (Thermo Fisher Scientific), visualized using UV-light at Gel Doc XR+ System (BIO-RAD) and analyzed with the Image Lab™ software (BIO-RAD). For cyanobacteria, the PCR reaction was prepared in a volume of 20 µL containing 1× Green GoTaq® Flexi Buffer (Promega), 2.5 mM MgCl₂ (Promega), 500 µM of DNTP Mix (Promega), 0.1 µM of each of the primers, 0.5 U of GoTaq® DNA Polymerase (Promega) and 2 µL of template DNA. The PCR conditions executed were: initial denaturation step at 92°C for 4 min, followed by 35 cycles of a denaturation step at 92°C for 30 s, annealing at 50°C for 30 s and extension at 72°C for 1 min, followed by a final extension step at 72°C for 5 min.

The PCR products of bacteria and cyanobacteria were then sequenced by Sanger sequencing at i3S (Porto, Portugal) and GATC Biotech (Constance, Germany), respectively. Raw forward and reverse sequences (ab1 files) were imported into Geneious 8.1.9 (Kearse et al., 2012) for de novo assembling.

Phylogenetic Analysis of Bacterial Isolates

The obtained sequences (approximately 1,400 and 1,100 bp for actinobacteria and cyanobacteria, respectively) were submitted to a blast(n) analysis against the NCBI Nucleotide collection database and the sequences from the first 5 blast(n) matches were retrieved. The multiple sequence alignment (using the ClustalW algorithm) and the phylogenetic analysis were performed in MEGA7 (Kumar et al., 2016). The alignments were manually curated to remove short sequences and gap regions. The best nucleotide substitution model was determined by the corrected Akaike Information Criterion (AICc) in MEGA7. The phylogenetic trees were reconstructed using the Maximum Likelihood statistical method, bootstrap (with 500 replications) and the correspondent best nucleotide substitution model (TN93 + G and GTR + G + I).
RESULTS AND DISCUSSION

The hyper-arid desert of McMurdo Dry Valleys, located in Victoria Land is considered one of the most inhospitable habitats, being restricted to microbial colonization (Pointing et al., 2009). In these environments, abiotic factors such as moisture, pH and conductivity, clearly drive the diversity and structure of the microbial communities (Pointing et al., 2009; Magalhães et al., 2012; Magalhães et al., 2014).

In this study, a transect of soil samples was collected in Victoria Valley, with a clear decrease in water availability (AW) from the wetter sampling sites (T1, T2, and T3) to the drier ones (T5 and T6) (Table 1). Soil pH ranged from neutral (7.09) to moderately alkaline (8.41), increasing with the distance to water availability.

Cyanobacteria and Actinobacteria Diversity and Distribution

The bacterial community composition across the transect was assessed through 454 pyrosequencing of the 16S rRNA gene. A total of 180499 sequences were obtained for the seven studied samples, which after quality filtering decreased to 71447. The number of sequences per sample ranged between 2950 (endolithic sample) to 17570 (sample T6). In total 4530 different OTUs (at 97% identity) were retrieved (Supplementary Table S1).

Alpha-diversity results indicated that bacterial diversity was not fully covered from the sequencing effort in transect samples as a plateau phase was not reached, with the exception of the endolithic sample (Supplementary Figure S1). Two different beta-diversity metrics were employed – weighted and unweighted UniFrac (Lozupone and Knight, 2005), both phylogeny-based. The resultant output was summarized by Principal Coordinates Analysis (PCoA) (Figures 2B,C). The principal coordinate 1 (PC1) explained 28.9% and 42.4% of the amount of variation for unweighted and weighted analyses, respectively. From both plots, it is observable a similar clustering pattern – samples T1 and T2 cluster together, as well as samples T4, T5, and T6. Further, sample T3 and END seem to be distributed separately from the other samples. This clustering pattern may be indicative of a switch in habitat type from moisture soils, comprising T1 and T2, which were the ones closer to the water source, to open arid soils, comprising locations T4, T5, and T6 and correspond to the locations which are further away from the water source.

In accordance with previous reports for Antarctic (Pointing et al., 2009; Van Goethem et al., 2016) and hot hyperarid deserts (Azúa-Bustos et al., 2011; Stomeo et al., 2013; Makhalanyane et al., 2015), the type of habitat (endolithic vs. soil) dramatically constrains bacterial community composition. Clearly distinct taxonomic and phylogenetic composition was observed in the two niches under study (Figure 3). Also consistent with previous studies (Van Goethem et al., 2016), diversity indices (alpha-diversity) revealed soil samples as more diverse than the endolithic sample, according to the number of observed OTUs (Supplementary Figure S1) and the richness and diversity of the sample (Figure 2A). A total of 34 bacterial phyla were detected across all the samples, with the phyla Actinobacteria, Proteobacteria, Cyanobacteria, and Bacteroidetes being the most abundant and present in all samples (Figure 3A). Actinobacteria, Acidobacteria, and Bacteroidetes are usually the dominant phyla described for Dry Valleys (Aislabie et al., 2006; Cary et al., 2010). Interestingly, in contrast to previous studies (Smith et al., 2006; Fierer et al., 2012b; Van Goethem et al., 2016), Proteobacteria was highly represented on the transect and endolithic samples. This phyla is generally dependent on high organic soil contents, which is not the case of most oligotrophic Antarctic soils (Cary et al., 2010; Chan et al., 2013). As expected,
Acidobacteria, considered an oligotrophic phylum (Fierer et al., 2012b), was also well represented and dispersed among the different samples (Figure 3A).

In this study, special attention was given to the distribution of Actinobacteria and Cyanobacteria – the most abundant heterotrophic and autotrophic phylum, respectively.

Cyanobacteria are usually the dominant phyla in lithic-associated communities (Chan et al., 2012) across multiple deserts (Pointing et al., 2007; Crits-Christoph et al., 2016; Khomutovska et al., 2017; Perera et al., 2018). In this study cyanobacteria close related to *Acaryochloris* were found exclusively in the endolithic sample and represented 44% of the total relative abundance (Figure 3B). Up till now, the two described species of *Acaryochloris* are marine (Miyashita et al., 2003; Partensky et al., 2018) but cyanobacteria closely related to these taxa have already been associated with endolithic...
communities in Antarctic Dry Valleys and Atacama granite and calcite rocks, respectively (de Los Ríos et al., 2007; Crits-Christoph et al., 2016), and within the underexplored cold desert of Pamir mountains (Khomutovska et al., 2017). These niches provide a barrier to penetration of organisms, protection against harmful solar irradiance as well as a microclimate distinct from the exterior of the rock, with higher moisture levels (Friedmann, 1980; de Los Ríos et al., 2007; Wierzchos et al., 2012). On the other hand, one of the main factors that influence the composition of endolithic photosynthetic communities is the quantity and quality of light available (de Los Ríos et al., 2005). Curiously, the same applies for the distribution of Acaryochloris in marine environments (Chan et al., 2007; Partensky et al., 2018). This genus is characterized by having sheathed and non-motile cells, but its chief distinctive character is the presence of chlorophyll d (chl d) as the major photosynthetic pigment (Miyashita et al., 2003; Partensky et al., 2018).

Over 30% of the total bacterial relative abundance in the current dataset was attributable to actinobacterial strains, mainly distributed by two families – Euzebyaceae and Rubrobacteraceae (Figures 3A,B). Members of Euzebya genus have been reported from Victoria Valley’s hypolithic and endolithic communities (Van Goethem et al., 2016). The Rubrobacter genus, commonly found in Dry Valleys (Wei et al., 2016) has been reported as dominant genus of endolithic microbial communities in Atacama Desert (Cris-Christoph et al., 2016; Meslier et al., 2018). Water availability seemed to clearly define a threshold or a limit for colonization of some bacterial phyla, mainly cyanobacteria, along the soil transect. The HTS data show that the percentage of cyanobacteria decreases from about 20% in sample T1 to negligible values on the last three samples of the transect (T4–T6) (Figure 3A). On sample T1, Leptolyngbya and Pseudanabaena genera were well represented while in sample T2, the genus Phormidium was the most abundant (Figure 4). Leptolyngbya is usually associated with lake and maritime Antarctic communities (Taton et al., 2006; Zakhia et al., 2008), while Phormidium is commonly found in Antarctic water-saturated soils and river beds (Vincent et al., 1993) but both were found in polar deserts (Michaud et al., 2012). These findings suggest, as already shown for Antarctic (Pointing et al., 2007; Wood et al., 2008; Van Goethem et al., 2016) and other hyper-arid deserts (Kastovská et al., 2005), that water availability and thus distance to aquatic ecosystems shapes the taxonomic composition of the cyanobacterial communities. In fact, in hyper-arid habitats, water availability was shown to be the main driver and most limiting environmental factor for cyanobacteria distribution (Warren-Rhodes et al., 2006, 2007). In agreement, the results obtained in this study suggest the existence of a biological threshold for cyanobacterial colonization and survival, observed between 1–0.6 of water availability (Aw), while moving from sample T3–T4 (Table 1). Limited photosynthetic activity is related to limiting moisture levels (Tracy et al., 2010) and might be a reason for cyanobacterial activity reduction and distribution.

Among cyanobacteria, Synechococcales (represented by the genera Acaryochloris, Leptolyngbya, and Pseudanabaena) and Oscillatoriales (Phormidium) orders dominated on the studied samples. Interestingly, Chroococci (Caiola et al., 1993) a desiccation tolerant cyanobacteria, dominant in arid and hyper-arid deserts, was not detected in this study.

Previous studies have stated that Oscillatoriales are capable of overcoming Chroococci in certain cold desert conditions, namely Phormidium have been suggested to pursue a competitive advantage in colonizing cold-habitats (de la Torre et al., 2003; Pointing et al., 2007). This group is also commonly associated with places with higher availability of water, as described by Steven et al. (2013) in Arctic desert soils. Filamentous cyanobacteria are known to be able to thrive successfully under extreme environmental constraints due to their mucilage production, motility or the production of akinetes in the case of some heterocyst-differentiating cyanobacteria (Murik et al., 2017; Ručová et al., 2018).

The dominance of coccoid, Acaryochloris-like cyanobacteria in the endolithic sample and its absence in soil samples seems to indicate a high level of specialization and adaptation to this type of environment. Indeed, as stated by Partensky et al. (2018) chl d allows Acaryochloris to thrive in (micro)habitats enhanced by light radiations other than the visible spectrum, remarkably those from the infrared region. The isolation of any strain would be of great relevance to help shed some light about the possible presence of this pigment (and in its eventual ecophysiological role) in the detected Acaryochloris-like cyanobacterium, which seems to be an important component of polar, endolithic communities. The existence of aridity-associated phylotypes, as suggested by the data presented, was already documented for other cold-deserts (Pointing et al., 2007). Inversely, actinobacteria abundance increases from about 20% in wet soils to roughly 50% in the driest samples and also with higher pH (Figure 3A and Table 1). This pattern suggests that actinobacteria is favored with the decrease in moisture content, contrary to cyanobacteria. A similar shift was observed by Takebayashi et al. (2007) from members of Proteobacteria to actinobacteria with decreasing in water availability. Germination and growth at 0.5 Aw has been previously reported for actinobacteria (Evans et al., 2014; Stevenson and Hallsworth, 2014) and Barnard et al. (2013) have shown that actinobacteria relative abundance increase with...
desiccation. Interestingly, and in contrast with what we observed, it has been shown that the relative abundance of actinobacteria of Namib desert increased with an increase in moisture (Armstrong et al., 2016) while the opposite has been shown to occur for Chihuahuan desert (Clark et al., 2009). Recent studies revealed the major predictors of moisture preferences are not phylogeny but physiological traits (Lennon et al., 2012), which can explain such contradictory observations. Also, soils with high pH usually support higher relative abundances of actinobacteria and lower of Acidobacteria when compared to more acidic soils (Fierer et al., 2012a). A comprehensive study with 88 different soils revealed a positive correlation between soil pH and actinobacteria abundance (Lauber et al., 2009), as we report in this study. The shift observed within actinobacteria distribution across the soil transect studied, might be a result not only of a decrease in water availability but a combination with pH increase.

Among Actinobacteria, families Sporichthyaceae, Euzeybaceae, Patulibacteraceae, and Nocardioidaceae were the most abundant (Figure 3C). The genus Rubrobacter (Pointing et al., 2009) was present in all samples, with a higher frequency in endolithic in the last three samples of the transect. Previous studies have detected Rubrobacter in Dry Valleys soils (Aislabie et al., 2013; Wei et al., 2016), and the observed distribution suggests that this genus might be widely adapted to this environment.

Members of Sporichthyaceae family, with a higher distribution in sample T5, have been reported from Dry Valleys soil (Van Goethem et al., 2016) and cryptoendolithic communities (de la Torre et al., 2003) as well as Atacama desert soils (Idris et al., 2017). The distribution of Patulibacteraceae and Nocardioidaceae families increased in samples with lower water availability. Although at low frequencies, the Nocardioides genus was detected in all soil samples, suggesting, as for Rubrobacter, an important role for this genus in this arid environment. In fact, members of Nocardioides genus have been previously found in other desert soils, as Atacama (Idris et al., 2017) and Badain Jaran (Sun et al., 2018) deserts, which have inclusively led to novel species being isolated (Tuo et al., 2015).

Members of Euzeybaceae were detected particularly in END and T3 sample (Figure 3C), which is corroborated by previous works that have found the presence of members of the Euzeybys genus in Dry Valleys hypolithic and endolithic communities (Van Goethem et al., 2016). In Atacama desert, their presence was also detected in endolithic microhabitats (Meslier et al., 2018). According to the literature, Euzeybys seems to be highly adapted to endolithic and hypolithic environments, however, our study seems to be the first that detected the presence of this genus in the Dry Valleys soils. Remarkably, the endolithic sample was the only among those studied to harbor actinobacteria affiliated with Streptomycetaceae, a family commonly found and retrieved by cultivation from Dry Valleys soils samples (Cameron et al., 1972; Babalola et al., 2009).

Culture-Dependent Isolation and Diversity of Actinobacterial Strains

Culture-based studies on Dry Valleys have initially proposed a dominance of a small number of aerobic groups, and few anaerobic isolates for endolithic (Friedmann, 1982) and edaphic habitats. Although, nowadays Antarctic soils have been extensively studied by culture-based approaches, these studies have still retrieved only a small number of bacterial phyla, from which only a small fraction of genera have been cultivated (Lamberechts et al., 2019).

However, molecular-based phylogenetic studies have revealed microbial diversity of Antarctic Dry Valley as remarkably high (Smith et al., 2006). At least 14 different bacterial phyla have been described from Dry Valleys bacterial lithic communities – dominated by Acidobacteria, Actinobacteria and Bacteroidetes (Cary et al., 2010). Still, culture-based studies have in general, retrieved some specific genera of the actinobacteria phylum such as Arthrobacter, Brevibacterium, Corynebacterium, Micrococcus, Nocardia, and Streptomyces (Johnson et al., 1972). Due to the low cultivable fraction of the microbial richness [typically below 1% (Epstein, 2013)], different strategies to improve the culturability of microorganisms have started to be used, including pre-treatment strategies and oligotrophic media (Xiong et al., 2013), which have provided fruitful results, in particular in Antarctic ecosystems (van Dorst et al., 2016; Pulschen et al., 2017; Tahon and Willems, 2017; Tahon et al., 2018). In fact, previous studies have revealed Antarctic edaphic bacteria resistant to cultivation but recently, Pulschen et al. (2017) has shown that it is possible to grow recalcitrant bacteria from Antarctic soils by using longer incubation periods, lower temperatures and oligotrophic media.

In the present study, different culture isolation strategies, including mimicking of oligotrophic conditions and application of selective pre-treatments were used, in order to isolate actinobacteria strains from Victoria Valley samples. Attempts to isolate actinobacteria were only successful in sample T5, where we used two different pre-treatments – heat shock and incubation with antibiotics. Eleven actinobacterial strains were isolated and identified in this study (Table 2), and they all belonged to the Micrococcales order, affiliated with two different families (Micrococcaceae and Dermacoccaceae) and four different genera (Micrococcus, Kocuria, Dermacoccus, and Flexivirga).

According to pyrosequencing data, the dominant actinobacteria family in sample T5 was Sporichthyaceae, followed by Patulibacteraceae, Nocardioidaceae, and Rubrobacteraceae (Figure 3C). For the Sporichthyaceae family, there are no records of cultivation isolates in Antarctica. Curiously, according to the pyrosequencing data, Micrococcaceae were not found in sample 5 and Dermacoccaceae were not detected in any sample (Figure 5B). Bacterial species from Micrococcaceae family are commonly retrieved from Antarctic culture-based studies (Johnson et al., 1972; Liu et al., 2000; Cary et al., 2010). The obtained isolates were assigned to two different and less common genera from this family – Micrococcus and Kocuria. The Kocuria genus has resulted from the phylogenetic and chemotaxonomic division of Micrococcus genus and both include species isolated in Antarctica (Liu et al., 2000; Reddy et al., 2003). Despite being considered a less common genus, members of Kocuria genus are recurrently isolated across desert soils (Gommeaux et al., 2010; Schulze-Makuch et al., 2018), inclusive new species (Li et al., 2006). Species from the Dermacoccus
Isolate	Accession number	Closest relative (identified species)	Number of obtained isolates	Accession number (NCBI)	Query cover (%)	Identity (%)	Isolation source	Phylum
Micrococcus sp. strain AT1	MH741266	Micrococcus yunnanensis strain YIM 65004	1	NR_116578.1	100	99	Soil–T5¹	Actinobacteria
Micrococcus sp. strain AT2	MH741267	Micrococcus yunnanensis strain YIM 65004	1	NR_116578.1	100	99	Soil–T5¹	Actinobacteria
Dermacoccus nishinomiyaensis strain AT4	MH741268	Dermacoccus nishinomiyaensis strain JPR-06	1	HE716948.1	100	99	Soil–T5¹	Actinobacteria
Dermacoccus nishinomiyaensis strain AT6	MH741269	Dermacoccus nishinomiyaensis strain A-153	1	MF952731.1	100	99	Soil–T5¹	Actinobacteria
Kocuria sp. AT6(2)	MH741270	Kocuria rhizophila strain TA68	1	NR_026452.1	100	99	Soil–T5¹	Actinobacteria
Micrococcus sp. strain AT7	MH741271	Micrococcus yunnanensis strain YIM 65004	1	NR_116578.1	100	99	Soil–T5¹	Actinobacteria
Micrococcus sp. strain AT9	MH741272	Micrococcus aloeverae strain AE-6	1	NR_134088.1	100	99	Soil–T5²	Actinobacteria
Kocuria rhizophila strain AT14	MH741273	Kocuria rhizophila strain TA68 16S	1	NR_026452.1	100	99	Soil–T5²	Actinobacteria
Micrococcus sp. Strain AT19	MH741274	Micrococcus yunnanensis strain YIM 65004	2	NR_116578.1	100	99	Soil–T5³	Actinobacteria
Flexivirga sp. Strain AT20	MH741275	Flexivirga endophytica strain YIM 7505	1	NR_151942.1	100	98	Soil–T5³	Actinobacteria
Kocuria sp. strain AT22	MH741276	Kocuria rhizophila strain TA68	1	NR_026452.1	100	99	Soil–T5²	Actinobacteria
Leptolyngbya frigida strain AR4-GA-1C	MH742927	Leptolyngbya frigida ANT.L52B.3	1	AY493612.1	100	99	Soil – T6⁴	Cyanobacteria
Leptolyngbya frigida strain AR3-EB-1A	MH742928	Leptolyngbya frigida ANT.L52B.3	2	AY493612.1	100	99	Soil – T1⁴	Cyanobacteria
Nodosilinea sp. strain TM-3.1	MH742933	Leptolyngbya antarctica ANT.LAC.1	4	AY493588.1	100	98	Soil – T3⁵	Cyanobacteria
Nodosilinea sp. strain TM-3.5	MH742934	Phormidium priestleyi ANT.LACV5.1	1	AY493581.1	100	98	Soil – T1⁴ and T3⁵	Cyanobacteria
Leptolyngbya frigida strain AR3-B-1A	MH742929	Leptolyngbya frigida ANT.L52B.3	1	AY493612.1	98	98	Soil – T1	Cyanobacteria
Unidentified Synechococcales strain AR3-H-2A	MH742931	Phormidium priestleyi ANT.LACV5.1	1	AY493586.1	100	98	Soil – T1⁴	Cyanobacteria
Plectolyngbya hodgsonii strain AR4-AB-1B	MH742930	Plectolyngbya hodgsonii ANT.LG2.1	1	AY493615.1	100	99	Soil – T6⁴	Cyanobacteria
Leptolyngbya frigida strain AR3-EA3	MH742932	Leptolyngbya frigida ANT.L52B.3	1	AY493612.1	100	100	Soil – T1⁴	Cyanobacteria
Nodosilinea sp. LEGE 13457	KT951670.1	Leptolyngbya antarctica ANT.LAC.1	1	AY493588.1	100	99	END⁴	Cyanobacteria
Nodosilinea sp. LEGE 13458	KU951755.1	Leptolyngbya antarctica ANT.LAC.1	1	AY493588.1	100	99	END⁴	Cyanobacteria

The isolates non-identified, clonal strains and strains in isolation process were excluded from the Table. 1Isolation in AIA medium, at 28°C, PT1, dilution 10^{−1}. 2Isolation in AIA medium, at 28°C, PT2, not diluted. 3Isolation in SCN medium, at 28°C, PT2, substrate inoculated. 4Isolation in Z8 medium, at 19°C.
genus have also been previously isolated from Galindez Island, maritime Antarctica (Vasileva-Tonkova et al., 2014). One of the reasons behind Micrococcaceae cultivation amenability can be related to the production of cyst-like resting forms. It has been shown that Micrococcus species from permafrost harbor such cyst-like cells, that provide protection to adverse external factors and are responsible for their survival under prolonged exposure to subzero temperatures (Soina et al., 2004). In addition, another study revealed that members of Micrococcaceae family have higher growth rates in water addition samples, when comparing to other bacterial groups (Schwartz et al., 2014), suggesting that members of this family are adapted to intend for transient water inputs in arid soils. For the remaining genus – Flexivirga – there is no report for previous isolation in Antarctica, however, one of the 5 closest hits at NCBI (Flexivirga sp. M20-45) was isolated from an alpine forest soil by Franca, L. and Margesin, R. (unpublished). In the phylogenetic tree (Figure 6) the isolate AT20 groups with the strain Flexivirga sp. ID2601S, retrieved from an evaporation core by Kim et al. (unpublished). According
Rego et al. Bacterial Diversity in Antarctic Microenvironments

FIGURE 6 | Phylogenetic tree of the 16S rRNA gene nucleotide sequences of the obtained actinobacterial isolates and their closest matches at NCBI 16S database. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura–Nei model. A discrete Gamma distribution was used to model evolutionary rate differences among sites [5 categories (+G, parameter = 0.4569)]. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 59 nucleotide sequences. Sequences of strains isolated in Antarctic or cold-environments are highlighted and the sequences obtained in this study are in bold.

MH671539.1 Micrococcus sp. strain Actino-43
MH707195.1 Micrococcus sp. strain CDRSL-4D
MH412689.1 Micrococcus sp. strain LPSUB9
MH411234.1 Micrococcus sp. strain urmia17
MH392735.1 Bacillus strain urmia8
MG937727.1 Micrococcus yunnanensis strain SML M226
MF093190.1 Micrococcus luteus strain B8
LT631758.1 Micrococcus luteus strain R-53632
KX289439.1 Micrococcus sp. CSA41
KX289382.1 Micrococcus sp. DS34
KX108873.1 Micrococcus yunnanensis strain KA-20
KU937307.1 Micrococcus yunnanensis strain AN-06
KM886194.1 Micrococcus sp. 13-33-7
KM361869.1 Micrococcus sp. NS13
KJ440244.1 Micrococcus sp. 76A3b
KJ84923.1 Micrococcus sp. CZGRN6
KF903860.1 Micrococcus luteus strain 2B
KC203087.1 Micrococcus sp. WY22
HM352387.1 Micrococcus sp. PNA4
HG796192.1 Micrococcus sp. O-1
EU096818.1 Micrococcus sp. G541
AM403126.3 Micrococcus sp. V7
MHT741266 Micrococcus sp. strain AT1
MHT741274 Micrococcus sp. strain AT19
MHT741267 Micrococcus sp. strain AT2
MHT741271 Micrococcus sp. strain AT7
MHT741272 Micrococcus sp. strain AT9
MH741276 Kocuria sp. strain AT22
MHT741273 Kocuria rizophila strain AT14
MHT741279 Kocuria sp. strain AT6(2)
KJ476722.1 Kocuria rizophila strain DSM 11926
KT387335.1 Kocuria rizophila strain NT 92
MF185118.1 Kocuria sp. strain BAB-2793
MF458878.1 Kocuria sp. strain PYRL19
MG195150.1 Kocuria rizophila
MG346060.1 Uncultured bacterium clone A28
MH096001.1 Kocuria sp. strain PCH206
MH518205.1 Kocuria sp. strain CLC-F23
MH539869.1 Kocuria sp. strain 101
MH539151.1 Kocuria sp. strain 301
HM263223.1 Uncultured bacterium clone ncd260c07c1
MHT41269 Dermacoccus nishinomiyaensis strain AT4
HE716946.1 Dermacoccus nishinomiyaensis strain JPR-06
KM376574.1 Dermacoccus nishinomiyaensis strain BCX-20
HM332765.1 Uncultured bacterium clone ncd1002g02c1
JF729454.1 Uncultured bacterium clone ncd2627g08c1
MHT41269 Dermacoccus nishinomiyaensis strain AT6
CP000899.1 Dermacoccus nishinomiyaensis strain M25
KJ744019.1 Dermacoccus sp. 100S24
KJ744022.1 Dermacoccus sp. 76H2a
KX289376.1 Dermacoccus sp. DS28
MF952731.1 Dermacoccus nishinomiyaensis strain A-153
MHT41075 Flexirvirga sp. strain AT20
KP326340.1 Flexirvirga sp. ID20015
AB245398.1 Actinomycesl bacterium Gssoil 907
NR 151942.1 Flexirvirga endophyltica strain YIM 7505
KP899206.1 Flexirvirga sp. M20-45
KX1515661.1 Flexirvirga sp. YIM 7505
AF132790 Gloeobacter violaceus PCC 7421

FIGURE 6
to the phylogenetic analysis and the 16S rRNA similarity, the isolate AT20 might represent a new species from the *Flexivirga* genus.

Culture-Dependent Isolation and Diversity of Cyanobacterial Strains

Cyanobacteria dominance and adaptive success in Antarctica is well known (Vincent, 2007; Quesada and Vincent, 2012). They thrive particularly in lakes and ponds through the establishment of benthic microbial mats (Vincent, 2000). Pioneer studies on Dry Valleys cyanobacterial distribution, have proven that the majority of cryptoendolithic cyanobacteria-dominated communities belong to the *Phormidium* genus (Friedmann, 1986).

Here, attempts were made to isolate cyanobacteria from soil and endolithic rock samples. In total 10 cyanobacterial strains from the order Synechococcales were obtained (Table 2), distributed by 3 different genera (*Nodosilinea, Leptolyngbya, Plectolyngbya, and an unidentified Synechococcales*).

From END sample, it was only possible to isolate two clonal strains (*Nodosilinea* sp. LEGE 13457 and LEGE 13458) with high phylogenetic (Figure 7) and morphological (Supplementary Figure S2) similarities to one *Leptolyngbya antarctica* strain previously isolated from a benthic microbial mat in Dry Valleys and eastern Antarctic lakes (Taton et al., 2006). Although they were identified with over 99% similarity to *L. antarctica* ANT.LAC.1, the phylogenetic analysis indicates that LEGE 13457 and LEGE 13458 strains fit within the clade harboring *Nodosilinea* strains and is placed away from the reference strain *Leptolyngbya boryana* PCC6306 (Figure 7). This apparent inconsistency is due to the current status of the taxonomy of cyanobacteria, which is in a protracted process of revision (Komárek, 2016; Walter et al., 2017). Thus, our findings suggest that a taxonomic revision of the species *L. antarctica* (West and G.S.West) Anagnostidis and Komárek (1988) is needed, something that was already demonstrated by Taton et al. (2006). According to the pyrosequencing data, over 40% of the total bacterial abundance of the END sample was composed of strains from *Acaryochloris* genus and only 0.4% of *Leptolyngbya*, however, and despite our efforts we were not able to properly isolate any strain from *Acaryochloris* genus. As abovementioned, this would be very important to better explore the role of chl *d* for the successful adaptation of this cyanobacterium in endolithic habitats from Antarctica, in a similar manner as it was exposed for marine counterparts (Chen et al., 2007). Also, sequences from *Nodosilinea* strains were not detected by the pyrosequencing technology. Interestingly, *L. antarctica* ANT.LAC.1 is the only strain from Antarctica present on the clade harboring the referred isolated strains (LEG 13457 and LEGE 13458; Figure 7). *L. antarctica* has been detected from several environments not exclusively in Antarctica, and has been found as a dominant OTU in Arctic soil crusts (Pushkareva et al., 2015).

Attempts were made to isolate cyanobacteria from three soil transect samples, T1 – the sample with highest water availability, T3 and also T6 – with an arid soil-type habitat. From sample T1, three strains identified as *Leptolyngbya frigida* and one unidentified Synechococcales were obtained. According to the phylogenetic tree, the unidentified Synechococcales strain is most closely related to uncultured cyanobacterium strains from Antarctica, and according to the matrix of distances it only shares 97.5% of similarity to *Phormidemis priestleyi* ANTLACV5.1, suggesting it can represent a new species. In agreement with the cultivation results, the pyrosequencing data revealed that the dominant genera corresponded to *Leptolyngbya, Pseudanabaena*, and *Phormidium*, however, *Phormidemis* genus remained undetected (Figure 4). Interestingly, from sample T3, a identical strain (100% similarity at the 16S rRNA) from the one obtained in sample T1, unidentified Synechococcales strain AR3-H-2A and a *Nodosilinea* sp. strain, with high identity to the ones isolated in END sample, were retrieved. According to the pyrosequencing data, the sample T3 contained well-represented strains from *Pseudanabaenaceae family* (Figure 3B) and a lower distribution of the *Phormidium* genus (Figure 4). Concerning the sample with lowest water availability – sample T6 – two strains identified as *Plectolyngbya hodgsonii* and *L. frigida* were obtained. From the phylogenetic tree (Figure 7) is possible to verify that the obtained *Plectolyngbya* isolates group together in a subclade formed only by Antarctic strains. The pyrosequencing data revealed that this sample only contained 0.1% of cyanobacteria from the *Synechococaceae* family and did not detect any from *Leptolyngbyaceae* to which the isolated strains were affiliated (Figure 5C).

All the 16S rRNA gene sequences from obtained strains are more closely-related to other Antarctic or cold-environment cyanobacteria strains (Figure 7). Particularly, the clade of *L. frigida* is composed in its majority of strains isolated in Antarctica or cold-environments. Notably, most of the closest relatives at NCBI correspond all to the same study (Taton et al., 2006) that assessed the cyanobacteria diversity in Antarctic lakes, including in the Dry Valleys.

Culture-Dependent vs. Culture-Independent Approach

Over 99% of microorganisms from the environment are recalcitrant to cultivation in the laboratory (Kaebirlein et al., 2002) and the revolution of HTS techniques has opened an array of opportunities with new discoveries and access to previously unknown and uncultivable diversity. However, a few bottlenecks such as limited detection of minority populations (Lagier et al., 2012), difficulty to discriminate the lowest taxonomic level and the fraction of unassigned sequences (Rinke et al., 2013) have renewed the interest in bacterial cultivation practices for “non-cultivable” species. Together with the development of new approaches to retrieve bacteria previously considered as uncultivable, the rebirth of culture in microbiology (Kaebirlein et al., 2002; Lagier et al., 2018) has emerged. The use of culture media and diffusion chambers to simulate natural environments (Kaebirlein et al., 2002),
FIGURE 7 | Phylogenetic tree of the 16S rRNA gene nucleotide sequences of the obtained cyanobacterial isolates and their closest matches at NCBI 16S database. The evolutionary history was inferred by using the Maximum Likelihood method based on the General Time Reversible model. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.2861)). The rate variation model allowed for some sites to be evolutionarily invariable (+I, 34.68% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 48 nucleotide sequences. Sequences of strains isolated in Antarctic or cold-environments are highlighted and the sequences obtained in this study are in bold.

co-culture (Stewart, 2012) and most recently culturomics (Lagier et al., 2016) have yielded great improvements in culturability. Actually, the combination of HTS methods with culture-dependent techniques has started to be used to identify new bacterial species (Ma et al., 2014).

Here, a combined approach including HTS and culture-dependent techniques (including mimetization of the natural conditions and use of pre-treatments) was employed. In this study, the isolation of the same cyanobacterial species (including clonal strains) from different samples and different microenvironments, suggests, as already reported (Taton et al., 2006), that the cultivation conditions may have selected for some specific genera. While, OTU-level rarefaction curve of END sample has reached a plateau (Supplementary Figure S1), indicating that we have captured most of the bacteria diversity, 50% of the isolated strains were not detected by HTS sequencing technology. Factors such as bias in DNA extraction (Zielińska et al., 2017) due to the protocol used, differential PCR amplification or the different distribution of rRNA operons in the different bacteria can influence the proportion of rRNA phylotypes (Klappenbach et al., 2000).

Concerning the isolation of actinobacteria, the combination of pre-treatments with culture conditions clearly dictated the success in isolation of T5 sample. Interestingly, none of the isolated strains from this study that were affiliated with Micrococaceae and Dermacoccaceae were represented in the pyrosequencing data set of samples from which isolates.
were retrieved (T5, Figure 3C). As already demonstrated by Pulschen et al. (2017) and Tahon and Willems (2017), it is possible to retrieve recalcitrant bacteria from Antarctic samples by adopting some simple approaches such as longer incubation periods, use of low-temperatures and oligotrophic media. By applying these approaches Tahon and Willems (2017) were able to obtain at least 12 representatives of novel genera or families and two potential first cultured isolates of novel taxa.

It is important to note that due to samples being preserved at −80°C on life-guard solution, some diversity may have not been recovered due to a decrease in viability associated with storage in this solution and temperatures. In addition, other variables can influence the ability of bacteria to grow, from culture media composition (Xiong et al., 2013) to more complex requirements, as the presence of specific growth signals (Lewis et al., 2010) or dependency on other microorganism(s) (Davis et al., 2011). Also, the percentage of active members of the community that can be cultivable is usually low. It has been previously suggested that in arid soils, such as Antarctica Dry Valleys, the cyanobacterial populations are not actively growing (Aislabie et al., 2013), as they originate probably from wind dispersion (Michaud et al., 2012).

Previous studies have also demonstrated that the complementarity of culture-dependent and independent approaches is represented by only a fraction of species detected concomitantly (Lagier et al., 2012; Pudasaini et al., 2017; Tahon and Willems, 2017). The low complementarity can be explained by the limitations presented of both approaches. Further Carini et al. (2017) have shown that relic DNA accounts for about 40% of the prokaryotic 16S rRNA amplified genes. In colder soils, DNA from non-viable cells can persist even for longer periods, thus an inflation in bacterial diversity might be one of the reasons for the reduced overlap observed.

As already suggested, a combined approach using HTS to guide the culture-based isolation process (Babalola et al., 2009) and the use of pre-treatments and specific culture media (Pulschen et al., 2017), can improve the identification and culture retrieval of new bacterial species.

The limited sampling sites covered by this study can result in some bias. Although might reduce the confidence of our hypothesis, most of the results presented are supported by previous studies that should, however, be further explored in future sampling campaigns in the Dry Valleys.

CONCLUSION

This study combined pyrosequencing and cultivation techniques to assess the actinobacteria and cyanobacteria diversity of Dry Valleys microenvironments. The effect of environmental parameters on the distribution of these communities, in particular along a soil transect with a gradient of water availability, was also evaluated. This study highlights the capacity of Dry Valleys prokaryotic communities to thrive below thresholds that are considered to be life-limiting. The major role of actinobacteria and cyanobacteria, the dominant heterotrophs and phototrophs, in Dry Valleys ecosystem is supported by their distribution across environmental gradients.

Our findings are in agreement with other studies, by demonstrating that Dry Valleys bacterial diversity and abundance is driven by environmental forces. The effect of one particular environmental parameter – water availability – was evaluated and a clear shift between microbial communities was registered. This shift was characterized by a pattern of phyla replacement as distance to the water source increased, likely resulting from a shift in habitat from high moisture soils to open arid soils.

Our results revealed that the type of habitat (endolithic vs. soil) dramatically constrains the bacterial community composition, characterized by a clearly distinct taxonomic and phylogenetic composition between both characterized habitats. Cyanobacteria dominated over the remaining phyla in the endolithic environment. The gradient of water availability (Figure 5A) and pH seems (Table 1) to dictate the distribution of cyanobacteria and actinobacteria, suggesting that actinobacteria is favored with the decrease in moisture content and increase in pH, contrary to cyanobacteria. However, caution is necessary when extrapolating from these results since a reduced number of samples were analyzed here. Finally, our study further illustrates the importance of combining cultivation and sequencing techniques. Indeed, despite the power of HTS technologies, we show that culture-dependent methods employed in this study were able to retrieve taxa that were not detected in any of the pyrosequencing data. By combining the two approaches, we have improved the coverage of the diversity present in the samples and were able to retrieve both abundant and rare members of the communities. The isolation of microorganisms from this environment remains challenging, and future work will include further optimization of isolation strategies and culture conditions.

AUTHOR CONTRIBUTIONS

AR, MC, PL, and CM designed and conceived the research study and experiments. AR, FR, TM, HR, MB, and JS developed the experimental work. AR, AS, VR, and PL analyzed the data. AR wrote the main manuscript text with support of CM, MC, VR, PL, and MB. SC and CL coordinated Antarctica sampling campaign. All authors improved, reviewed, and approved the final manuscript.

FUNDING

This project was funded by Portuguese Science and Technology Foundation (FCT) through a grant to CM (NITROLIMIT project - PTDC/CTA-AMB/30997/2017) and to PL (IF/01358/2014), and through a Ph.D. scholarship to AR (SFRH/BD/140567/2018). Antarctic campaign was conducted as part of the New Zealand Terrestrial Antarctic Biocomplexity Survey (nzTABS), through an award from the New Zealand Foundation for Research and Technology (FRST) and an award from Antarctica New Zealand to SC (UOWX0710) that supported all field
science and a post-doctoral fellowship to CL (UOWX0715). The work was also supported through awards from the New Zealand Marsden Fund to CL and SC (UOW1003), the New Zealand Ministry of Business, Innovation and Employment to SC and CL (UOWX1401), the United States National Science Foundation to SC (ANT-0944556 and ANT-1246292). The Portuguese Polar Program (PROPOLAR) funded CM participation in the Antarctic Campaign through FCT nacional funds (PIDDAC).

This research was partially supported by the Strategic Funding DID/Multi/04423/2019 through national funds provided by FCT and ERDF in the framework of the programme PT2020.

ACKNOWLEDGMENTS

We are sincerely grateful to Antarctica New Zealand for providing logistics support during K020 event.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2019.01018/full#supplementary-material

REFERENCES

Aislabie, J. M., Chhour, K., Saul, D. J., Miyasuchi, S., Ayton, J., Paetzold, R. F., et al. (2006). Dominant Bacteria in Soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol. Biochem. 38, 3041–3056. doi: 10.1016/j.soilbio.2006.02.018

Aislabie, J. M., Lau, A., Dsouza, M., Shepherd, C., Rhodes, P., and Turner, S. J. (2013). Bacterial community of soils of the Lake Wellman Area, Darwin Mountains, Antarctica. Extremophiles 17, 775–786. doi: 10.1007/s00792-013-0560-6

Anagnostidis, K., and Komárek, J. (1988). Modern approach to the classification system of cyanophytes. 3 - oscillatoriaceae. Algal. Stud. 6, 1–8. doi: 10.1080/003434434

Azúa-Bustos, A., González-Silva, C., Mancilla, R. A., Salas, L., Gómez-Silva, B., McKay, C. P., et al. (2011). Hypolitic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb. Ecol. 61, 568–581. doi: 10.1007/s00248-010-9784-5

Babalola, O. O., Kirby, B. M., Le Roes-Hill, M., Cook, A. E., Cary, S. C., Burton, S. G., et al. (2009). Phylogenetic analysis of actinobacterial populations associated with antarctic dry valley mineral soils. Environ. Microbiol. 11, 566–576. doi: 10.1111/j.1462-2920.2008.01809.x

Barnard, R. L., Osborne, C. A., and Firestone, M. K. (2013). Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 7, 2229–2241. doi: 10.1038/ismej.2013.104

Barrett, J., Virginia, R., Wall, D., Cary, S., Hacker, S., and Aislabie, J. (2006). Co-variation in soil biodiversity and biogeochemistry in Northern and Southern Victoria Land, Antarctica. Antarct. Sci. 18, 535–548. doi: 10.1017/S0954101306000000

Buelow, H. N., Winter, A. S., Van Horn, D. J., Barrett, J. E., Gooseff, M. N., Barrett, J. E., Clokie, S. J., Mann, N. H., Scanlan, D. J., Whitworth, A. L., et al. (2007). Pigment composition and adaptation in free-living and symbiotic strains of acaryochloris marina. FEMS Microb. Ecol. 61, 65–73. doi: 10.1111/j.1574-6941.2007.00320.x

Buelow, H. N., Winter, A. S., Van Horn, D. J., Barrett, J. E., Gooseff, M. N., Barrett, J. E., Clokie, S. J., Mann, N. H., Scanlan, D. J., Whitworth, A. L., et al. (2007). Pigment composition and adaptation in free-living and symbiotic strains of acaryochloris marina. FEMS Microb. Ecol. 61, 65–73. doi: 10.1111/j.1574-6941.2007.00320.x

Buolow, H. N., Winter, A. S., Van Horn, D. J., Barrett, J. E., Clokie, S. J., Mann, N. H., Scanlan, D. J., Whitworth, A. L., et al. (2007). Pigment composition and adaptation in free-living and symbiotic strains of acaryochloris marina. FEMS Microb. Ecol. 61, 65–73. doi: 10.1111/j.1574-6941.2007.00320.x

Carini, P., Marsden, P. J., Leff, J. W., Morgan, E. E., Strickland, M. S., and Fierer, N. (2017). Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2:16242. doi: 10.1038/n microbiol.2016.242

Cary, S. C., McDonald, I. R., Barrett, J. E., and Cowan, D. A. (2010). On the rocks: the microbiology of Antarctic Dry Valley Soils. Nat. Rev. Microbiol. 8, 129–138. doi: 10.1038/nrmicro2281

Chan, Y., Lapac, D. C., Lau, M. C., Ha, K. Y., Warren-Rhodes, K. A., Cockell, C. S., et al. (2012). Hypolitic microbial communities: between a rock and a hard place. Environ. Microbiol. 14, 2272–2282. doi: 10.1111/j.1462-2920.2012.02821.x

Convey, P. (2011). Antarctic terrestrial biodiversity in a changing world. Polar Biol. 34, 1629–1641. doi: 10.1007/s00300-011-1068-0

Crites-Christoph, A., Robinson, C. K., Ma, B., Ravel, J., Wierzchos, J., Ascaso, C., et al. (2016). Phylogenetic and functional substrate specificity for endolithic microbial communities in hyper-arid environments. Front. Microbiol. 7:301. doi: 10.3389/fmicb.2016.00301

Davis, K. E., Sangwan, P., and Janssen, P. H. (2011). Acidobacteria, rubrobacteridae and chloroflexi are abundant among very slow-growing and mini-colony-forming soil bacteria. Environ. Microbiol. 13, 798–805. doi: 10.1111/j.1462-2920.2010.02384.x

de la Torre, J. R., Goebel, B. M., Friedmann, E. L., and Pace, N. R. (2003). Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 69, 3858–3867. doi: 10.1128/AEM.69.7.3858-3867.2003

de los Ríos, A., Wierzchos, J., Sancho, L. G., Green, T. G. A., and Ascaso, C. (2005). Ecological diversity of cryptoendolithic lichens colonizing granite in continental Antarctica. Lichenologist 37, 383–395. doi: 10.1080/00222950514969

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., et al. (2006). Greengenes, a chimera-checked 16S RNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072. doi: 10.1128/AEM.03066-05

Frontiers in Microbiology | www.frontiersin.org

16 May 2019 | Volume 10 | Article 1018
Doran, P. T., Priscu, J. C., Lyons, W. B., Walsh, J. E., Fountain, A. G., McKnight, D. M., et al. (2002). Antarctic climate cooling and terrestrial ecosystem response. Nature 415, 517–520. doi: 10.1038/nature710

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. doi: 10.1093/bioinformatics/btq461

Edmeades, D. C., Wheeler, D. M., and Clinton, O. E. (1985). The chemical composition and ionic strength of soil solutions from New Zealand Topsoils. Aust. J. Soil Res. 23, 151–165.

Epstein, S. S. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. doi: 10.1093/bioinformatics/btq461

Edmeades, D. C., Wheeler, D. M., and Clinton, O. E. (1985). The chemical composition and ionic strength of soil solutions from New Zealand Topsoils. Aust. J. Soil Res. 23, 151–165.

Epstein, S. S. (2013). Isolating ‘uncultivable’ microorganisms in pure culture in a simulated natural environment. Science 339, 1127–1129. doi: 10.1126/science.1210633

Kastovská, K., Elster, J., Sibat, M., and Santrůcková, H. (2005). Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb. Ecol. 50, 396–407. doi: 10.1007/s00248-005-0246-4

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. doi: 10.1093/bioinformatics/bts199

Klomutnova, N., Jerzak, M., Kostrewska-Szalwowska, I., Kwiatkowski, J., Suska-Malyska, M., Szczesniewski, M., et al. (2017). Life in extreme habitats: diversity of endolithic microorganisms from Cold Desert Ecosystems of Eastern Pamir. Pol. J. Ecol. 65, 303–319. doi: 10.3163/15052249PJJE2017.65.4.001

Klappenbach, J. A., Dunbar, J. M., and Schmidt, T. M. (2000). rDNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66, 1328–1333. doi: 10.1128/aem.66.4.1328-1333.2000

Komárek, J. (2016). A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur. J. Phycol. 51, 346–353. doi: 10.1080/09670262.2016.1163738

Kota, J. (1972). Instructions for Preparation of Modified Nitrogen Solution Z8 for Algol. Oslo: Norwegian Institute for Water Research.

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. doi: 10.1093/molbev/msw054

Lacrap-Bugler, D. C., Lee, K. K., Archer, S., Gillman, L. N., Lau, M. C. Y., Leung, J. S., et al. (2017). Global diversity of desert hypolith cyanobacteria. Front. Microbiol. 8.867. doi: 10.3389/fmicb.2017.00867

Lager, J. C., Armougom, F., Million, M., Hugon, P., Pagnier, I., Robert, C., et al. (2012). Microbial culturomes: paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 18, 1185–1193. doi: 10.1111/j.1469-0691.2012.03143.x

Lager, J. C., Deboueg, G., Million, M., Cadoret, F., Bilen, M., Fenollar, F., et al. (2018). Culturing the human microbiota and culturomes. Nat. Rev. Microbiol. 16, 540–550. doi: 10.1038/s41579-018-0041-0

Lager, J. C., Khelaifia, S., Alou, M. T., Ndongo, S., Dione, N., Hugon, P., et al. (2016). Cultivation of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1:16203. doi: 10.1038/nmicrobiol.2016.203

Lager, J. C., Hugon, P., Khelaifia, S., Fournier, P., La Scola, B., and Raoult, D. (2015). The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin. Microbiol. Rev. 28, 237–264. doi: 10.1128/CMA.00014-14

Lambrechts, S., Willems, A., and Tahan, G. (2019). Uncovering the uncultivated majority in an aquatic soil toward a synergistic approach. Front. Microbiol. 10:242. doi: 10.3389/fmicb.2019.00242

Lauber, C. L., Hamady, M., Knight, R., and Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120. doi: 10.1128/AEM.00335-09

Lee, C. K., Barbier, B. A., Bottos, E. M., McDonald, I. R., and Cary, S. C. (2012). The Inter-Valley soil comparative survey: the ecology of dry valley edaphic microbial communities. ISME J. 6, 1046–1057. doi: 10.1038/ismej.2011.170

Lee, G. L. Y., Ahmad, S. A., Yasid, N. A., Zulkharnain, A., Convey, P., Johari, W. L. W., et al. (2018). Biodegradation of phenol by cold-adapted bacteria from Antarctic Soils. Pol. Biol. 41, 553–562. doi: 10.1007/s00335-017-2216-y

Lennon, J. T., Zachary, T. A., Lehmkuhl, B. K., and Schoolmaster, D. R. (2012). The majority in antarctic soils: toward a synergistic approach. Proc. Natl. Acad. Sci. 109, 21390–21395. doi: 10.1073/pnas.1215210110

Lozupone, C., and Knight, R. (2005). UniFrac?: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235. doi: 10.1128/AEM.71.12.8228

Ma, L., Kim, J., Hatzenpichler, R., Karymov, M. A., Hubert, N., Hanan, I. M., et al. (2014). Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in human microbiome project’s most wanted taxa. Proc. Natl. Acad. Sci. 111, 9768–9773. doi: 10.1073/pnas.1404753111
Puškareva, E., Pessi, I. S., Wilmutte, A., and Elster, J. (2015). Cyanobacterial community composition in arctic soil crusts at different stages of development. *FEMS Microbiol. Ecol.* 91, 1–10. doi: 10.1093/femsec/fiv143

Quesada, A., and Vincent, W. F. (2012). "Cyanobacteria in the Cryosphere: Snow, Ice and Extreme Cold." in *Ecology of Cyanobacteria II*, ed. B. A. Whitten (Cham: Springer), 387–399. doi: 10.1007/978-94-007-3855-3_14

Ramos, V., Morais, J., Castelo-Branco, R., Pinheiro, A., Martins, J., Regueiras, A., et al. (2018). Cyanobacterial diversity held in microbial biological resource centers as a biotechnological asset: the case study of the newly established Faber collection culture. *J. Appl. Physiol.* 30, 1437–1451. doi: 10.1017/s01108118-1369-y

Ramos, V. M. C., Castelo-Branco, R., Léao, P. N., Martins, J., Carvalhal-Gomes, S., Sobrinho da Silva, F., et al. (2017). Cyanobacterial diversity in microbial mats from the hypersaline lagoon system of Arraúma, Brazil: an in-depth polyphasic study. *Front. Microbiol.* 8:1223. doi: 10.3389/fmicb.2017.01223

Reddy, G. S., Prakash, J. S., Prabahar, V., Matsumoto, G. I., Stackebrandt, E., and Shivas, S. (2003). Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an antarctic cyanobacterial mat sample. *Int. J. Syst. Evol. Microbiol.* 53, 183–187. doi: 10.1016/s1350-4487(02)00276-4

Rippka, R. (1988). Isolation and purification of cyanobacteria. *Methods Enzymol.* 167, 3–27. doi: 10.1016/0076-6879(88)67004-2

Ručová, D., Goga, M., Matúš, M., and Bažek, M. (2018). Adaptations of cyanobacterium nostoc commune to environmental stress: comparison of morphological and physiological markers between european and antarctic populations after re-hydration. *Czech Polar Rep.* 8, 84–93. doi: 10.5817/CPR2018-1-6

Schulze-Makuch, D., Wagner, D., Kounaves, S. P., Mangelsdorf, K. D., de Vera, J. P., et al. (2018). Transitory microbial habitat in the hyperarid atacama desert. *Proc. Natl. Acad. Sci.* 115, 2670–2675. doi: 10.1073/pnas.1714311115

Schwarz, E., Van Horn, D. J., Buelow, H. N., Oike, J. G., Gooseff, M. N., Barrett, J. E., et al. (2014). Characterization of growing bacterial populations in mcmurdo dry valley soils through stable isotope Probing with 18O-water. *FEMS Microbiol. Ecol.* 89, 415–425. doi: 10.1093/femsec/fiv143

Seetha, P. H. A., Sokal, R. R., and Freeman, W. H. (1973). Numerical taxonomy. the principles and practice of numerical classification. *Syst. Zool.* 24, 263–268.

Shirling, E. B., and Gottlieb, D. (1966). Methods for characterization of streptomyces species. *Int. J. Syst. Bacteriol.* 16, 313–340.

Smith, J. J., Tow, L. A., Stafford, W., Cary, C., and Cowan, D. A. (2006). Bacterial diversity in three different antarctic cold desert mineral soils. *Microb. Ecol.* 51, 413–421. doi: 10.1007/s00248-006-9022-3

Soinsa, V. S., Mulyukin, A. L., Demkina, E. V., Vorobyova, A. E., and El-Registan, G. I. (2004). The structure of resting bacterial populations in soil and subsoil permafrost. *Astrobiology* 4.345–358. doi: 10.1089/ast.2004.4.345

Serensen, S. R., Ronen, Z., and Aamand, J. (2002). Growth in coculture stimulates metabolism of the phylurea herbicide isoproturon by sphingomonas sp. *Strain SRS2*. *Appl. Environ. Microbiol.* 68, 3478–3485. doi: 10.1128/AEM.68.7.3478-3485.2002

Steven, B., Lionard, M., Kuske, C. R., and Vincent, W. F. (2013). High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert. *PLoS One* 8:e71489. doi: 10.1371/journal.pone.0071489

Stevenson, A., and Hallsworth, J. E. (2014). Water and temperature relations of soil actinobacteria. *Environ. Microbiol. Rep.* 6, 744–755. doi: 10.1111/1758-2229.12199

Stewart, E. J. (2012). Growing unculturable bacteria. *J. Bacteriol.* 194, 4151–4160. doi: 10.1128/jb.00345-12

Stomeo, F., Valverde, A., Pointing, S. B., McKay, C. P., Warren-Rhodes, K. A., Tuffin, M. I., et al. (2013). Hypothetical and soil microbial community assembly along an aridity gradient in the namib desert. *Extremophiles* 17, 329–337. doi: 10.1007/s00792-013-0519-5

Sun, Y., Shi, Y. L., Wang, H., Zhang, T., Yu, L. Y., Sun, H., et al. (2018). Diversity of bacteria and the characteristics of actinobacteria community structure in badain jaran desert and tengger Desert of China. *Front. Microbiol.* 9:1068. doi: 10.3389/fmicb.2018.01068
Tahon, G., Trygat, B., Lebbe, L., Carlier, A., and Willems, A. (2018). Abitidibacterium utsteinense sp. nov., the first cultivated member of candidate phylum FBP, isolated from ice-free Antarctic soil samples. Syst. Appl. Microbiol. 41, 279–290. doi: 10.1016/j.syapm.2018.01.009
Tahon, G., and Willems, A. (2017). Isolation and characterization of aerobic anoxygenic phototrophs from exposed Soils from the Sør Rondane Mountains, East Antarctica. Syst. Appl. Microbiol. 40, 357–369. doi: 10.1016/j.syam.2017.05.007
Takebayashi, S., Narihiro, T., Fujiy, I., and Hiraishi, A. (2007). Water availability is a critical determinant of a population shift from proteobacteria to actinobacteria during start-up operation of mesophilic fed-batch composting. Microb. Environ. 22, 279–289. doi: 10.1246/mse.2007-279
Taton, A., Grubisic, S., Ertz, D., Hodgson, D. A., Piccardi, R., Biondi, N., et al. (2006). Polyphasic study of antarctic cyanobacterial strains. J. Phycol. 42, 1257–1270. doi: 10.1111/j.1529-8817.2006.00278.x
Tedesco, P., Maisa, I., Esposito, P. F., Tortorella, E., Subko, K., Chidinna Christiana Ezeeofor, C. C., et al. (2016). Antimicrobial activity of monoclonal antibodies produced by bacterial strains isolated from the ross Sea (Antarctica). Mar. Drugs 14:5. doi: 10.3390/md14050083
Tian, Y., Li, Y. L., and Zhao, F. C. (2017). Secondary metabolites from polar organisms. Marine Drugs 15:528. doi: 10.3390/md15030028
Tracy, C. R., Streten-Joyce, C., Dalton, R., Nusser, K. E., Karen, S., Gibb, K. S., et al. (2010). Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in Northern Australia. Environ. Microbiol. 12, 592–607. doi: 10.1111/j.1462-2920.2009.01998.x
Tuo, L., Dong, Y. P., Habden, X., Liu, J. M., Guo, L., Liu, X. F., et al. (2015). Nocardioides deserti sp. nov., an actinobacterium isolated from desert soil. Int. J. Syst. Evol. Microbiol. 65, 1604–1610. doi: 10.1099/ijs.0.001417
van Dorst, J. M., Hince, G., Snape, I., and Ferrari, B. C. (2016). Novel culturing techniques select for heterotrophs and hydrocarbon degraders in a subantarctic soil. Sci. Rep. 6:36724. doi: 10.1038/srep36724
Van Goethem, M. W., Makkahlyane, T. P., Valverde, A., Cary, S. C., and Cowan, D. A. (2016). Characterization of bacterial communities in lithobiots and soil niches from Victoria Valley, Antarctica. FEMS Microbiol. Ecol. 92:fw0651. doi: 10.1093/femsec/fw0651
Vasileva-Tonkova, E., Romanovskaya, V., Gladka, G., Goulimaova, D., Tomova, I., Stoiilova-Dishева, M., et al. (2014). Ecophysiological properties of cultivable heterotrophic bacteria and yeasts dominating in phytocenoses of galáncide island, Maritime Antarctica. World J. Microbiol. Biotechnol. 30, 1387–1398. doi: 10.1007/s11274-013-1555-2
Venter, J. C., Remington, R., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74. doi: 10.1126/science.1093857
Vickers, J. C., Williams, S. T., and Ross, G. W. (1984). A Taxonomic Approach to Selective Isolation of Streptomyces from Soil,” in Biological, Biochemical and Biomedical Aspects of Actinomycetes, eds L. Ortiz-Ortiz, L. F. Bojalil, and V. D. Howell (London: Academic Press), 553–561. doi: 10.1016/b978-0-12-528620-2.00062-07
Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of RNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. doi: 10.1128/AEM.00602-07
Wang, Y., and Qian, P. Y. (2009). Conservative fragments in bacterial 16S rRNA genes and primer design for 16S rDNA amplicons in metagenomic studies. PLoS One 4:e7401. doi: 10.1371/journal.pone.0007401
Warren-Rhodes, K., Rhodes, K. L., Liu, S., Zhou, P., and McKay, C. P. (2007). Nanoclimate environment of cyanobacterial communities in china’s hot and Cold Hyperarid Deserts. J. Geophys. Res. Biogeosci. 112G01016. doi: 10.1029/ 2006G000260
Warren-Rhodes, K. A., Rhodes, K. L., Pointing, S. B., Ewing, S. A., Lapac, D. C., Gómez-Silva, B., et al. (2006). Hypolitchic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52, 389–398. doi: 10.1007/s00248-006- 9055-7
Wei, S. T., Lapac-Bugler, D. C., Lau, M. C., Caruso, T., Rao, S., de los Ríos, A., et al. (2016). Taxonomic and functional diversity of soil and hypolithic microbial communities in miers Valley, McMurdo Dry Valleys, Antarctica. Front. Microbiol. 7:1642. doi: 10.3389/fmicb.2016.01642
Weisburg, W. G., Barns, S. M., Pelletie, D. A., and Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703. doi: 10.1128/jb.173.2.697-703.1991
Wickham, H. (2009). Ggplot2: Elegant Graphics for Data Analysis. Berlin: Springer Science & Business Media.
Wierzchos, J., de los Ríos, A., and Acsa, C. (2012). Microorganisms in desert rocks: the edge of life on earth. Int. Microbiol. 15, 173–183. doi: 10.24326/1501.0170
Wierzchos, J., De Los Ríos, A., Sancho, L. G., and Acsa, C. (2004). Viability of endolithic micro-organisms in rocks from the mcmurdo dry valleys of Antarctica established by confocal and fluorescence microscopy. J. Microsc. 216, 57–61. doi: 10.1111/j.0022-2720.2004.01386.x
Wilson, Z. E., and Brimble, M. A. (2009). Molecules derived from the extremes of life. Nat. Prod. Rep. 26, 44–71. doi: 10.1039/ b800164m
Wood, S. A., Ruckert, A., Cowan, D. A., and Cary, S. C. (2008). Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J. 2, 308–320. doi: 10.1038/isme.2007.104
Xiong, Z., Wang, J. F., Hao, Y. Y., and Wang, Y. (2013). Recent advances in the discovery and development of marine microbial natural products. Mar. Drugs 11, 700–717. doi: 10.3390/md11030700
Zakhlia, F., Jungholt, A., Taton, A., Vincent, W. F., and Wilmette, A. (2008). “Cyanobacteria in Cold Ecosystems,” in Psychrophiles: From Biodiversity to Biotechnology, eds R. Margren, F. Schinner, J. C. Marx, and C. Gerday (Berlin: Springer).
Zielinski, S., Radkowski, P., Blendsoworska, A., Ludwik-Gałęowska, A., Łoś, J. M., and Łoś, M. (2017). The choice of the DNA extraction method may influence the outcome of the soil microbial community structure analysis. MicrobiologyOpen 6:00453. doi: 10.1002/mbo3.453

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Rego, Raio, Martins, Ribeiro, Sousa, Séneca, Baptista, Lee, Cary, Ramos, Carvalho, Lelo and Magalhães. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.