LCR and AFD of the Products of Nakagami-m and Nakagami-m Squared Random Variables: Application to Wireless Communications Through Relays

Caslav Stefanovic1,2 · Ivan Milovanovic3 · Stefan Panic1 · Mihajlo Stefanovic4

Accepted: 19 October 2021 / Published online: 1 November 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

The paper considers level crossing rate (LCR) and average fade duration (AFD) of the product of independent and identically distributed (i.i.d) Nakagami-m (NM) and double NM squared (also known as gamma-gamma) random variables (RVs). The derived statistics are then directly applied to the radio-frequency (RF) - free space optical (FSO), dual-hop (DH), amplify-and-forward (AF) relaying system over non turbulent-induced-fading channels (nTIFCs) and turbulent-induced-fading channels (TIFCs). The obtained results for LCR and AFD of DH-AF, RF-FSO system over TIFCs and nTIFCs are numerically evaluated and graphically presented for various system model parameters.

Keywords AFD · AF relaying · FSO · LCR · second order statistical (SOS) · FSO

Caslav Stefanovic, Ivan Milovanovic, Stefan Panic, and Mihajlo Stefanovic authors have contributed equally to this work.

Caslav Stefanovic
caslav.stefanovic@pr.ac.rs; caslav.stefanovic@uc3m.es

Ivan Milovanovic
imilovanovic@singidunm.ac.rs

Stefan Panic
stefan.panic@pr.ac.rs

Mihajlo Stefanovic
mihajlo.stefanovic@elfak.ni.ac.rs

1 Department of Informatics, Faculty of Sciences, Lole Ribara 29, Kosovska Mitrovica 38220, Serbia

2 Present Address: Department of Signal Theory and Communications, Universidad Carlos III de Madrid, 28911 Leganés, Spain

3 Department, Singidunum University, Danijelova 32, Belgrade 11000, Serbia

4 Department of Telecommunications, Faculty of Electronic Engineering, Aleksandra Medvedeva 14, Nis 18000, Serbia
1 Introduction

The relaying wireless systems play an important role in wireless communications. The huge variety of technologies that includes relays are all radio-frequency (RF) relaying schemes, all free-space-optical (FSO) relaying schemes, mixed RF-FSO relaying schemes, millimeter-wave (mmW)-FSO relaying schemes [1–4]. In particular, amplify-and-forward (AF) relaying systems has been proposed for application in fronthaul/backhaul 5G systems [5], vehicle-to-everything (V2X) communications [6, 7], unmanned ariel vehicle (UAV) communications [8], device-to-device (D2D) communications [9], mobile-to-mobile (M2M) communications [10–13] and underwater optical-wireless (UOW) communications [14]. The FSO relaying enabled communications can ensure high capacity and wide bandwidth [15]. Moreover, FSO communications are (1) cost effective, (2) non sensitive to co-channel interference and (3) spectrum license free that makes this type of technology a promising choice for future wireless systems. The main factor of FSO system performance degradation is caused by atmospheric turbulence (also known as scintillation). The weather conditions and pointing errors can result in an additional FSO system performance deterioration. The references [16–18] investigates RF-FSO relay systems while FSO-FSO relay systems are explored in [19]. The secrecy performance evaluation of cooperative RF-FSO system is investigated in [20]. Moreover, the re-configurable intelligent surface (RIS) assisted RF-FSO communications link is investigated in [21] while the satellite-aerial-terrestrial link is considered in [22]. The above-mentioned works consider the first-order statistics (FOS) of mixed RF-FSO relay systems.

Besides the FOS, the second order statistics (SOS) such as average level crossing rate (LCR) and average fade duration (AFD) can more adequately characterize the time-variant fading channels. The LCR of gamma-gamma random variable (RV) is addressed in [23], while the LCR over Malaga turbulence-induced-fading channels (TIFCs) is addressed in [24]. The LCR expression of the ratio of two gamma-gamma RVs is derived in [25]. Moreover, the SOS over log-normal TIFCs of multi-hop FSO system with pointing errors are addressed in [26], while the SOS over gamma-gamma RVs of multi-hop FSO transmission system is considered in [27]. The SOS of V2V of mixed RF-FSO-RF over NM non TIFCs (nTIFCs) and gamma-gamma TIFCs are considered in [6]. The [28, 29] gives some experimental results for SOS of FSO systems. Moreover, SOS of satellite-UAV FSO communications where the TIFC is modeled with Log-normal distribution are presented in [30]. The Nakagami-m (NM) RV can be used to model nTIFC in RF environments [31–33], while gamma-gamma (double squared NM) RV is the most often used to model the fading for FSO communications in moderate to strong TIFC environments [34–36].

This paper considers the SOS of the product of independent and identically distributed (i.i.d) NM RV and gamma-gamma RV (modeled as the product of two squared NM RVs). The derived statistical measures are directly applied to dual-hop (DH) AF relay RF-FSO communications over mixed nTIFC and TIFC. The derived integral expressions as well as the closed form approximations for LCR and AFD are numerically evaluated and graphically presented in relation to DH AF RF-FSO system model set of parameters. To the best of author’s knowledge there is no publications on the SOS of DH-AF mixed RF-FSO systems.
2 System Model

The cascaded, double and composite fading channels can be modeled as the product of RVs \([26, 27, 37–41]\). On the other hand, interference limited environments can be modeled as the ratio of RVs \([42–44]\). Thus, the products and the ratios of RVs play an important role in the performance analysis of wireless communication systems. It has been shown by \([45]\, Eq. (39)] that the signal envelope at the output of AF relaying over non turbulence-induced-fading channels (nTIFCs) for fixed gain relays can be modeled as the product of N Rayleigh RVs. The FSO multi-hop AF relaying over turbulence-induced-fading channels (TIFCs) are considered as a product of log-normal RVs in \([26]\, Eq. (13)]

Thus, we model the fading signal envelope from source to destination, \(z_{SD}\) of DH-AF relay (shown in Fig. 1) as the product of the NM RV, \(y_{NM,1}\) and gamma-gamma RV, \(y_{GG}\) (modeled as the product of two NM squared i.i.d RVs, \(y_{NM,2}^2\) and \(y_{NM,3}^2\), respectively) \([31]\, Eq. (2.55)]:

\[
\begin{align*}
z_{SD} &= y_{NM,1}^{Ihop} y_{GG}^{Ihop} = y_{NM,1}^{Ihop} y_{NM,2}^2 y_{NM,3}^2
\end{align*}
\]

where \(y_{NM,j}\) are NM RVs, representing the signal envelopes over nTIFC and TIFC from source to destination, whose probability density functions (PDFs) in terms of fading severity parameters and average powers, denoted as \(m_{NMi}\) and \(\omega_{NMi}\) respectively, are:

\[
p_{Y_{NM,j}}(y_{NM,j}) = \frac{2(m_{NM}/\omega_{NM})^{m_{NM}}}{\Gamma(m_{NM})} y_{NM,j}^{2m_{NM}-1} e^{-\frac{m_{NM} y_{NM,j}^2}{\omega_{NM}}} y_{NM,j}^2
\]

The PDFs parameters of the FSO NM squared RVs can be expressed as \([46]\, Eqs. (10–11)] and \([34]\, Eqs. (7–8)], respectively:

\[
\omega_{NM2} = \omega_{NM3} = 1
\]

\[
\alpha_{GG} = m_{NM2} = \left[\exp \left(\frac{0.49\delta^2}{(1 + 0.18d^2 + 0.56\delta^{12/5})^{1/6}} \right) - 1 \right]^{-1}
\]

Fig. 1 Simplified scheme of RF-FSO dual-hop AF relaying
\[\beta_{GG} = m_{NM3} = \left[\exp \left(\frac{0.51 \delta^2 (1 + 0.69 \delta^{1/2})^{-5/6}}{(1 + 0.9d^2 + 0.62d^2 \delta^{1/2})^{5/6}} \right) - 1 \right]^{-1} \]

where \(\alpha_{GG} \) and \(\beta_{GG} \) are FSO small-scale and large-scale atmospheric cell parameters, respectively, \(\delta^2 = 0.5C_n^2k_{FSO}^2L_{FSO}^{1/6} \) is the FSO Rytov variance and \(d = \sqrt{k_{FSO}D_{FSO}^2/4L} \) is the FSO wave number. Moreover, \(C_n^2 \) is FSO refractive index, \(k_{FSO} = 2\pi/\lambda \) is FSO wave-number \((\lambda \text{-wavelength})\), \(D_{FSO} \) is FSO receiver aperture diameter and \(L \) is FSO distance between source and destination.

3 Second Order Statistics (SOS)

The level crossing rate (LCR) of the product of NM and double squared NM RV for a given threshold \(z_{th,SD} \) can be expressed as \(\dot{z}_{SD} \) [39, Eq. (20)],

\[N_{Z_{SD}}(z_{th,SD}) = \int_0^\infty \dot{z}_{SD} p_{Z_{SD}Z_{SD}}(z_{th,SD} \dot{z}_{SD}, d\dot{z}_{SD} \)

which can be for independent RVs further expressed as in [45, Eq. (13)]:

\[
p_{Z_{SD}Z_{SD}Y_{NM,2}Y_{NM,3}}(z_{SD} \dot{z}_{SD} Y_{NM,2} Y_{NM,3}) = p_{Z_{SD}/Z_{SD}Y_{NM,2}Y_{NM,3}}(z_{SD} \dot{z}_{SD} Y_{NM,2} Y_{NM,3}) \\
\times p_{Z_{SD}/Y_{NM,2}Y_{NM,3}}(\dot{z}_{SD}/Y_{NM,2} Y_{NM,3}) p_{Y_{NM,2}/Y_{NM,3}}(Y_{NM,3}) p_{Y_{NM,3}/Y_{NM,3}}(Y_{NM,3})
\]

where, \(p_{Z_{SD}/Y_{NM,2}Y_{NM,3}}(z_{SD} \dot{z}_{SD} Y_{NM,2} Y_{NM,3}) = \left| \frac{dy_{NM,1}}{dz_{SD}} \right| p_{Y_{NM,1}}(z_{SD}/Y_{NM,2} Y_{NM,3}) \).

The variance of \(\dot{Z}_{SD} \), denoted as \(\sigma_{Z_{SD}}^2 \), under assumption that \(\dot{Z}_{SD} \) is a zero mean Gaussian RV can be expressed through the variances of \(Y_{NM,1} \), \(Y_{NM,2} \) and \(Y_{NM,3} \), denoted as, respectively, \(\sigma_{Y_{NM,1}}^2 \), \(\sigma_{Y_{NM,2}}^2 \) and \(\sigma_{Y_{NM,3}}^2 \):

\[
\sigma_{Z_{SD}}^2 = \gamma_{NM,2}^4 \gamma_{NM,3}^4 \sigma_{Y_{NM,1}}^2 \left(1 + \frac{4\sigma_{Z_{SD}}^2}{\gamma_{NM,2}^4 \gamma_{NM,3}^4} + \frac{4\sigma_{Z_{SD}}^2}{\gamma_{NM,2}^4 \gamma_{NM,3}^4} \right)
\]

where derivation of the \(\sigma_{Z_{SD}}^2 \) is provided in the Appendix. After evaluating the integral [47, Eq. (16)],

\[
\int_0^\infty \dot{z}_{SD} p_{Z_{SD}/Z_{SD}Y_{NM,2}Y_{NM,3}}(z_{th,SD} \dot{z}_{SD} Y_{NM,2} Y_{NM,3}) d\dot{z}_{SD} = \frac{1}{\sqrt{2\pi}} \sigma_{Z_{SD}} \]

the \(N_{Z_{SD}}(z_{th,SD}) \) can be expressed after some manipulations as:

\[
N_{Z_{SD}}(z_{th,SD}) = \frac{8^{m_{NM1}/2} \alpha_{NN1}^m \sigma_{Y_{NM,1}}^2 \beta_{GG} \sigma_{Y_{NM,2}}^2 \gamma_{NN1}^{2m_{NM1}+1} \sqrt{2\pi \Gamma(m_{NM1}) \Gamma(\alpha_{GG}) \Gamma(\beta_{GG})}}{J_1}
\]
where,
\[
J_1 = \int_0^\infty dy_{NM,2} \int_0^\infty dy_{NM,3} \times \sqrt{1 + \frac{4z_{th,SD}^2}{y_{NM,2}^6} \frac{\sigma_{y_{NM,1}}^2}{\sigma_{y_{NM,2}}^2} + \frac{4z_{th,SD}^2}{y_{NM,3}^6} \frac{\sigma_{y_{NM,1}}^2}{\sigma_{y_{NM,3}}^2}} \]

\[
\times e^{\frac{\alpha_{NM} y_{NM,2}^2 - \beta_{NM} y_{NM,3}^2}{2}} - (2\alpha_{GG} - 4m_{NM1} + 1) \ln(y_{NM,2}) \times e^{2(\beta_{GG} - 4m_{NM1} + 1) \ln(y_{NM,3})}
\]

The \(J_1 \) can be approximated by [45], Eq. I.3:
\[
\int_0^\infty dy_{NM,2} \int_0^\infty g(y_{NM,2}, y_{NM,3}) e^{-\gamma f(y_{NM,2}, y_{NM,3})} dy_{NM,3} \approx \frac{2\pi g(y_{NM,2}(0), y_{NM,3}(0))}{\gamma} \left[e^{-\gamma f(y_{NM,2}(0), y_{NM,3}(0))} \right] \]

\[
(12)
\]

where, \(y_{NM,2}(0) \) and \(y_{NM,3}(0) \) are positive and real values obtained from the defined set of equations,
\[
\frac{\partial f(y_{NM,2}(0), y_{NM,3}(0))}{\partial y_{NM,2}(0)} = 0, \quad \frac{\partial f(y_{NM,2}(0), y_{NM,3}(0))}{\partial y_{NM,3}(0)} = 0
\]

\[
(13)
\]

and where \(detB \) is determinant of 2 \times 2 matrix \(B \),
\[
B = \begin{bmatrix}
\frac{\partial^2 f(y_{NM,2}(0), y_{NM,3}(0))}{\partial y_{NM,2}(0) \partial y_{NM,3}(0)} & \frac{\partial^2 f(y_{NM,2}(0), y_{NM,3}(0))}{\partial y_{NM,2}(0) \partial y_{NM,1}(0)} \\
\frac{\partial^2 f(y_{NM,2}(0), y_{NM,3}(0))}{\partial y_{NM,3}(0) \partial y_{NM,1}(0)} & \frac{\partial^2 f(y_{NM,2}(0), y_{NM,3}(0))}{\partial y_{NM,3}(0) \partial y_{NM,1}(0)}
\end{bmatrix}
\]

\[
(14)
\]

The LCR can be approximated for the following choice of the parameter \(\gamma \) and the functions \(g(y_{NM,2}, y_{NM,3}) \) and \(f(y_{NM,1}, y_{NM,2}) \), respectively: \(\gamma = 1 \),
\[
g(y_{NM,2}, y_{NM,3}) = \sqrt{1 + \frac{4z_{th,SD}^2}{y_{NM,2}^6} \frac{\sigma_{y_{NM,1}}^2}{\sigma_{y_{NM,2}}^2} + \frac{4z_{th,SD}^2}{y_{NM,3}^6} \frac{\sigma_{y_{NM,1}}^2}{\sigma_{y_{NM,3}}^2}}
\]

\[
(15)
\]

\[
f(y_{NM,1}, y_{NM,2}) = \frac{m_{NM1}}{\omega_{NM1}} \frac{z_{th,SD}}{y_{NM,2}^4 y_{NM,3}^4} + \alpha_{GG} y_{NM,2}^2 + \beta_{GG} y_{NM,3}^2
\]

\[
- (2\alpha_{GG} - 4m_{NM1} + 1) \ln(y_{NM,2}) - (2\beta_{GG} - 4m_{NM1} + 1) \ln(y_{NM,3})
\]

Finally, the closed form approximation of \(N_{ZSD} (z_{th,SD}) \) becomes:
\(N_{zd}(z_{th,SD}) \approx \frac{16\pi (m_{NM1}/\omega_{NM1})^{m_{NM1}} a_{GG}^G \beta_{GG}^G \sigma_{Y_{NM3}}^2 z_{th,SD}^{2m_{NM1} - 1}}{\sqrt{2\pi \Gamma(m_{NM1})^{\Gamma(a_{GG}^G)\Gamma(\beta_{GG}^G)}}} \times \sqrt{\frac{1 + \frac{4z_{th,SD}^2}{\gamma_{NM3}^2 (0)y_{NM3}^2 (0)}}{\frac{\sigma_{Y_{NM1}}^2}{\gamma_{NM3}^2 (0)y_{NM3}^2 (0)}} + \frac{4z_{th,SD}^2}{\gamma_{NM3}^2 (0)y_{NM3}^2 (0)}} \times \frac{\sigma_{Z_{SD}}^2}{\gamma_{NM3}^2 (0)y_{NM3}^2 (0)}} \times \sqrt{\det B} \times e^{-\frac{m_{NM1}}{\gamma_{NM3}^2 (0)y_{NM3}^2 (0)}} + a_{GG}^G y_{NM3}^2 (0) + \beta_{GG}^G y_{NM3}^2 (0) \times e^{(2a_{GG}^G - 4m_{NM1} + 1) \ln (y_{NM3} (0)) + (2\beta_{GG}^G - 4m_{NM1} + 1) \ln (y_{NM3} (0))} \right) \) (17)

The AFD can be then computed as [31, Eq. (2.106)], [48, Eq. (2.9)]:

\[
AFD(z_{th,SD}) = \frac{F_{zd}(z_{th,SD})}{N_{zd}(z_{th,SD})} \tag{18}
\]

where \(F_{zd}(z_{th,SD}) \) is the cumulative distribution function (CDF) for the specified threshold \(z_{th,SD} \). The \(F_{zd}(z_{SD}) \) can be expressed as [31, Eq. (2.107)], [48, Eq. (2.4)]:

\[
F_{zd}(z_{SD}) = \int_0^{z_{SD}} p_{zd}(s) ds \tag{19}
\]

where \(p_{zd}(z_{SD}) \) is the probability density function (PDF) at the output of DH-AF RF-FSO proposed model and can be further expressed as:

\[
p_{zd}(z_{SD}) = \frac{4(a_{GG}^G)^{m_{NM1}} \gamma_{NM3}^2 \gamma_{NM2}^2}{\Gamma(m_{NM1})^{\Gamma(a_{GG}^G)\Gamma(\beta_{GG}^G)}} \times \left(\frac{z_{SD}^2}{\gamma_{NM3}^2 (0)y_{NM3}^2 (0)} \right)^{m_{NM1}} (m_{NM1} - 1)! \times \frac{\Gamma(a_{GG}^G)\Gamma(\beta_{GG}^G)}{4(a_{GG}^G)^{a_{GG}^G} \gamma_{NM2}^2 \gamma_{NM3}^2} \left(\frac{\omega_{NM1}}{m_{NM1}} \right)^{m_{NM1}} \sum_{k=0}^{m_{NM1}} \frac{(\frac{z_{SD}^2}{\gamma_{NM3}^2 (0)y_{NM3}^2 (0)})^k}{k!} J_2 \tag{20}
\]

where \(J_2 \) in (21) is given:

\[
J_2 = \int_0^{\infty} dy_{NM2} \int_0^{\infty} \frac{y_{NM2}^{2a_{GG}^G - 4k - 1}}{y_{NM3}^{2\beta_{GG}^G - 4k - 1}} \times e^{-\frac{m_{NM1} \gamma_{NM3}^2 (0)}{\gamma_{NM2}^2 (0)y_{NM3}^2 (0)}} \times e^{-a_{GG}^G y_{NM2}^2 (0) + \beta_{GG}^G y_{NM3}^2 (0)} \times dy_{NM3} \tag{21}
\]
The closed form approximation of $F_{\text{sd}}(z_{\text{sd}})$ can be calculated with a help of (12)-(14) for the following choices of parameter γ and functions $g(Y_{NM2},Y_{NM3})$ and $f(Y_{NM2},Y_{NM3})$, respectively: $\gamma = 1$, $g(Y_{NM2},Y_{NM3}) = 1$

$$f(Y_{NM2},Y_{NM3}) = \frac{m_{NM1}}{\omega_{NM1} y_{NM2}^4 y_{NM3}^4} + \alpha_{GG} y_{NM2}^2 + \beta_{GG} y_{NM3}^2$$

$$- (2\alpha_{GG} - 4k - 1) \ln(y_{NM2}) - (2\beta_{GG} - 4k - 1) \ln(y_{NM3})$$

(23)

Finally, the closed form $F_{Z_{\text{sd}}}(z_{\text{th},SD})$ is:

$$F_{Z_{\text{sd}}}(z_{\text{th},SD}) \approx \frac{4(\alpha_{GG})^y_{GG}(\beta_{GG})^\beta_{GG}(\frac{m_{NM1}}{\omega_{NM1}})^{m_{NM1}}(m_{NM1} - 1)!}{\Gamma(m_{NM1})\Gamma(\alpha_{GG})\Gamma(\beta_{GG})} \times \left(\frac{\omega_{NM1}}{4(\alpha_{GG})^y_{GG}(\beta_{GG})^\beta_{GG}m_{NM1}} \right)^{m_{NM1}} - \sum_{k=0}^{m_{NM1} - 1} \frac{(\frac{m_{NM1}^2}{\omega_{NM1}})^k}{k!} J_3$$

(24)

where,

$$J_3 \approx \sqrt{\det B} \times e^{-\frac{2\pi}{me}}$$

$$\times e^{(2\alpha_{GG} - 4k - 1) \ln(y_{NM2}(0)) + (2\beta_{GG} - 4k - 1) \ln(y_{NM3}(0))}$$

(25)

4 Numerical Results

The second order statistics (SOS) are provided through LCR and AFD statistical measures. The variance of NM RV in (8) is expressed as $\sigma^2_{Y_{NM1}} = \pi^2 f_m^2 m_{NM1}^2$, where f_m is the maximum Doppler frequency. Moreover, the considered SOS are evaluated for $\omega_{NM1} = 1$. The variance of NM squared RVs, $\sigma^2_{Y_{NM2}}$ and $\sigma^2_{Y_{NM3}}$ in (8) are modeled as a zero mean Gaussian RV and expressed as, $\sigma^2_{Y_{NM1}} = \sigma^2_{Y_{NM2}} = f_0 \pi^2 \sigma^2_{GG} |Y_{GG}|$ [24], Eq. (13)]. Further, $\langle Y_{GG} \rangle = 1$ for double NM squared RV [46], Eqs. (10–11), the σ^2_{GG} is given by [46], Eq. (15)] and $f_0 = \frac{1}{\pi n \sqrt{2}}$ is the FSO quasi frequency, where $t_0 = \sqrt{\frac{2L}{ut}}$ is turbulence FSO correlation time, λ is the FSO wavelength, L is the FSO distance and ut is the speed of the wind directed towards the FSO part of the system [24].

Figure 2 shows that the closed form $N_{Z_{\text{sd}}}(z_{\text{th},SD})$ provided in (10) and presented for various RF-FSO sets of parameters (f_m, λ), constant $ut = 1m/s$ and $L=200m$ and under different turbulence-induced-fading channel (TIFC) and non TIFC (nTIFC) conditions, $(\alpha_{GG} = 3, \beta_{GG} = 3, m_{NM1} = 3), (\alpha_{GG} = 2, \beta_{GG} = 2, m_{NM1} = 2)$ and $(\alpha_{GG} = 1, \beta_{GG} = 1, m_{NM1} = 1)$ fits well with exact integral form solution provided in (17). Moreover, in the case when output signal experience increase in nTIFC and TIFC severity values, $N_{Z_{\text{sd}}}(z_{\text{th},SD})$ decreases, as
expected. The impact of the maximal Doppler frequency for \(f_m = 90 \text{Hz} \) and \(f_m = 120 \text{Hz} \) and FSO optical windows for \((\lambda = 850 \text{nm}, \text{and} \lambda = 1550 \text{nm}) \) on \(N_{ZSD}(z_{th,SD}) \) is investigated. By increasing the FSO wavelength, the curves slightly decrease. Contrary, by increasing observed \(f_m \), the graphs slightly increase. Furthermore, it can be observed that \(nTIFC \) and \(TIFC \) parameters have stronger impact on \(N_{ZSD}(z_{th,SD}) \) than \(f_m \) and \(\lambda \) which means that RF and FSO channel severity conditions have much stronger impact on \(N_{ZSD}(z_{th,SD}) \). It can be further observed that for the \(z_{th,SD} \) values around 0 dB, \(N_{ZSD}(z_{th,SD}) \) reaches higher values due to the probability of increased signal envelope shifts from above to below \(z_{th,SD} \) threshold level and vice versa. Interestingly, around \(z_{th,SD} = 0 \), the \(N_{ZSD}(z_{th,SD}) \) is mainly independent of TIFC and \(nTIFC \) conditions. On the other hand for smaller and higher \(z_{th,SD} \) dB values, the \(N_{ZSD}(z_{th,SD}) \) takes lower values since the probability that signal envelope is either above or below \(z_{th,SD} \) dB threshold.

The \(AFD(z_{th,SD}) \) statistics is provided in Fig. 3. It can be noticed that curves fitting between closed form approximate expression and exact integral analytical expression for observed system RF-FSO DH-AF parameters is achieved, especially for higher \(z_{th,SD} \) dB values. By increasing \(nTIFC \) and \(TIFC \) RF-FSO severities, the \(AFD(z_{th,SD}) \) increases for lower thresholds values while the \(AFD(z_{th,SD}) \) decreases for higher thresholds values. Furthermore, the effect of various RF maximal Doppler frequencies \((f_m = 90 \text{Hz} \) and \(f_m = 120 \text{Hz} \) and various FSO wavelengths \((\lambda = 850 \text{nm}, \text{and} \lambda = 1550 \text{nm}) \) on \(AFD(z_{th,SD}) \) is also provided. It can be noticed that the impact of TIFC severities on the \(AFD(z_{th,SD}) \) for the observed severity parameters is stronger than observed \(f_m \) or \(\lambda \).

![Fig. 2 Comparison of exact and approximated results for LCR for different system model parameters under different TIFC and nTIFC conditions](image-url)
The paper considers second order statistics of the product of NM and double squared NM RVs. The provided statistical measures can be used in RF-FSO dual-hop (DH) amplify-and-forward (AF) relaying systems over turbulence-induced-fading channels (TIFCs) and non TIFCs (nTIFCs). Namely, we provide closed form approximative expressions as well as integral form exact expressions for LCR and AFD. The numerical examples show that approximations fit well with exact expressions, especially in higher signal envelope dB output regime. The system performance improvement can be reached for the RF-FSO system by designing the system with higher TIFC and nTIFC severity parameters. Moreover, the observed TIFC and nTIFC severities of the considered RF-FSO DH AF relaying system have stronger impact on \(N_{Z_{SD}}(z_{th,SD}) \) and \(AFD(z_{th,SD}) \) than observed \(f_m \) and \(\lambda \). Our future works are going to extend the proposed model to include the impact of co-channel interference in RF part of the system and pointing errors in FSO part of the system.

Appendix A

The variance of \(\dot{Z}_{SD} \) denoted as \(\sigma^2_{Z_{SD}} \) and given by (8) is obtained under the assumption that \(Z_{SD} \) is a zero-mean Gaussian RV [45]. Based on (1), the first derivative of \(Z_{SD} \) can be written as:

\[
\dot{Z}_{SD} = y^2_{NM,2} y^2_{NM,3} \dot{y}_{NM,1} + 2 y_{NM,1} y_{NM,2} y^2_{NM,3} \dot{y}_{NM,2} + 2 y_{NM,1} y^2_{NM,2} y_{NM,3} \dot{y}_{NM,3}
\] (A1)
where $\dot{Y}_{NM,1}$, $\dot{Y}_{NM,2}$ and $\dot{Y}_{NM,3}$ are the first derivatives of $Y_{NM,1}$, $Y_{NM,2}$ and $Y_{NM,3}$, respectively. Since the linear transformation of the Gaussian RVs is a zero mean Gaussian RV, the variance of $\sigma^2_{Z_{SD}}$ can be expressed through the variances of $\dot{Y}_{NM,1}$, $\dot{Y}_{NM,2}$ and $\dot{Y}_{NM,3}$ denoted as $\sigma^2_{Y_{NM,1}}$, $\sigma^2_{Y_{NM,2}}$ and $\sigma^2_{Y_{NM,3}}$, respectively:

$$
\sigma^2_{Z_{SD}} = y^4_{NM,2} y^4_{NM,4} \sigma^2_{Y_{NM,1}} + 4 y^2_{NM,1} y^2_{NM,2} y^2_{NM,3} \sigma^2_{Y_{NM,2}} + 4 y^2_{NM,1} y^2_{NM,2} y^2_{NM,3} \sigma^2_{Y_{NM,3}}
$$

(A2)

After using substitution $y_{NM,1} = \frac{Z_{SD}}{y^2_{SM,2} y^2_{NM,3}}$ and some algebra $\sigma^2_{Z_{SD}}$ is obtained as given by (8).

Author Contributions The authors equally contributed to this work.

Funding Information This work has not been funded.

Availability of data and material The authors confirm that the data supporting the findings of this study are available within the article.

Declarations

Conflicts of interest/Competing interests The authors declare that they have no conflict of interest or competing interests.

Code availability Not applicable.

References

1. Talha, B., & Pätzold, M. (2011). Channel models for mobile-to-mobile cooperative communication systems: A state of the art review. *IEEE Vehicular Technology Magazine, 6*(2), 33–43.
2. Park, J., Chae, C. B., & Yoon, G. (2017). Amplify-and-forward two-way relaying system over free-space optics channels. *Journal of Communications and Networks, 19*(5), 481–492.
3. Zhang, J., Pan, X., Pan, G., & Xie, Y. (2020). Secrecy analysis for multi-relaying RF-FSO systems with a multi-aperture destination. *IEEE Photonics Journal, 12*(2), 1–11.
4. Zhang, Y., Zhang, J., Yang, L., Ai, B., & Alouini, M. S. (2020). On the performance of dual-hop systems over mixed FSO/mmWave fading channels. *IEEE Open Journal of the Communications Society, 1*, 477–489.
5. Douik, A., Dahrouj, H., Al-Naffouri, T. Y., & Alouini, M. S. (2016). Hybrid radio/free-space optical design for next generation backhaul systems. *IEEE Transactions on Communications, 64*(6), 2563–2577.
6. Stefanovic, C., Pratesi, M., & Santucci, F. (2019). Second order statistics of mixed RF-FSO relay systems and its application to vehicular networks. In: IEEE ICC’19 ONF Symposium
7. Stefanovic, C., Pratesi, M., & Santucci, F. (2018). Second Performance evaluation of cooperative communications over fading channels in vehicular networks. In: Second URSI Atlantic Science Radio Meeting
8. Fawaz, W., Abou-Rjeily, C., & Assi, C. (2017). UAV-aided cooperation for FSO communication systems. *IEEE Communications Magazine, 56*(1), 70–75.
9. Bhargav, N., da Silva, C. R. N., Chun, Y. J., Leonardo, E. J., Cotton, S. L., & Yacoub, M. D. (2018). On the product of two κ-μ random variables and its application to double and composite fading channels. *IEEE Transactions on Wireless Communications, 17*(4), 2457–2470.
10. Milosevic, N., Stefanovic, M., Nikolic, Z., Spalevic, P., & Stefanovic, C. (2018). Performance analysis of interference-limited mobile-to-mobile κ-μ fading channel. *Wireless Personal Communications, 101*(3), 1685–1701.
11. Milosevic, N., Stefanovic, C., Nikolic, Z., Bandjur, M., & Stefanovic, M. (2018). First- and second-order statistics of interference-limited mobile-to-mobile Weibull fading channel. *Journal of Circuits, Systems and Computers*, 27(11), 1685–1701.
12. Stefanovic, C., Panic, S., Mladenovic, V., Jovkovic, S., & Stefanovic, M. (2020). Higher order statistics of cooperative mobile-to-mobile relay communications over composite fading channels. *International Journal of Ad Hoc and Ubiquitous Computing*, 35(2), 61–70.
13. Hajri, N., Khedhiri, R., & Youssef, N. (2020). On selection combining diversity in dual-hop relaying systems over double rice channels: Fade statistics and performance analysis. *IEEE Access*, 8, 72188–72203.
14. Li, S., Yang, L., Da Costa, D. B., Zhang, J., & Alouini, M. S. (2020). Performance analysis of mixed RF-UWOC dual-hop transmission systems. *IEEE Transactions on Vehicular Technology*, 69(11), 14043–14048.
15. Liu, W., Ding, J., Zheng, J., Chen, X., & Chih-Lin, X. I. (2020). Relay-assisted technology in optical wireless communications: A survey. *IEEE Access*, 8, 194384–194409.
16. Liang, H., Gao, C., Li, Y., Miao, M., & Li, X. (2020). Performance analysis of mixed MISO RF/SIMO FSO relaying systems. *Optics Communications*, 478, 126344.
17. Sharma, S., Madhukumar, A. S., & Swaminathan, R. (2020). Performance of dual-hop hybrid FSO/RF system with pointing errors optimization. In: Proceeding of the 2020 IEEE 91st vehicular technology conference (VTC2020-Spring), pp. 1–5
18. Panic, S., Mohanchenko, S., Stefanovic, C., & Stefanovic, M. (2020). First order outage statistics of asymmetrical RF-OW dual-relay communications. *The University Thought-Publication in Natural Sciences*, 10(1), 57–62.
19. Nor, N. A. M., Ghassemlooy, Z., Bohata, J., Saxena, P., Komanec, M., Zvanovec, S., et al. (2016). Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel. *Journal of Lightwave Technology*, 35(1), 45–53.
20. Juel, N. H. (2021). Secrecy performance analysis of mixed and exponentiated Weibull RF-FSO cooperative relaying system. *IEEE Access*, 9, 72342–72356.
21. Salhab, M. A., & Yang, L. (2021). Mixed RF/FSO relay networks: RIS-equipped RF source vs RIS-aided RF source. *IEEE Wireless Communications Letters*, 10(8), 1712–1716.
22. Liu, X., Gu, C., Guo, K., Cheng, M., Lin, M., & Zhu, W.-P. (2021). Robust beamforming and outage performance of uplink multiuser satellite-aerial-terrestrial networks with mixed RF-FSO channels. *IEEE Photonics Journal*, 13(4), 1–8.
23. Yura, H. T., & Hanson, S. G. (2010). Mean level signal crossing rate for an arbitrary stochastic process. *Journal of the Optical Society of America A*, 27(4), 797–807.
24. Jurado-Navas, A., Balsells, J. M. G., Castillo-Vazquez, M., Puerta-Notario, A., Monroy, I. T., & Olmos, J. J. V. (2017). Fade statistics of M-turbulent optical links. *EURASIP Journal on Wireless Communications and Networking*, 2017, 112. https://doi.org/10.1186/s13638-017-0898-z.
25. Stefanovic, D., Stefanovic, C., Djosic, D., Milic, D., Rancic, D., & Stefanovic, M. (2019). LCR of the ratio of the product of two squared Nakagami-m random processes and its application to wireless. In: Proceedings of the 2019 18th IEEE international symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–4
26. Issaid, C. B., & Alouini, M. S. (2019). Level crossing rate and average outage duration of free space optical links. *IEEE Transactions on Communications*, 67(9), 6234–6242.
27. Stefanovic, C., Panic, S., Djosic, D., Milic, D., & Stefanovic, M. (2021). On the second order statistics of N-hop FSO communications over N-gamma-gamma turbulence induced fading channels. Physical Communication, p. 101289
28. Vetelino, F. S., Young, C., & Andrews, L. (2007). Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence. *Applied Optics*, 46(18), 3780–3789.
29. Kim, H. K., Higashino, T., Tsukamoto, K., & Komaki, S. (2011). Optical fading analysis considering spectrum of optical scintillation in terrestrial free-space optical channel. *IEEE International Conference on Space Optical Systems and Applications*, pp. 58–66.
30. Le, H. D., & Pham, A. T. (2021). Level crossing rate and average fade duration of satellite-to-UAV FSO channels. *IEEE Photonics Journal*, 13(1), 1–14.
31. Stüber, L. G. (1996). *Principles of mobile communication*. Mass, USA: Kluwer Academic.
32. Suljovic, S., Milic, D., Panic, S., Stefanovic, C., & Stefanovic, M. (2020). Level crossing rate of macro diversity reception in composite Nakagami-m and Gamma fading environment with interference. *Digital Signal Processing*, 102, 102758. https://doi.org/10.1016/j.dsp.2020.102758.
33. Stefanovic, C., Jaksic, B., Spalevic, P., Panic, S., & Trajcevski, Z. (2013). Performance analysis of selection combining over correlated Nakagami-m fading channels with constant correlation model for desired signal and cochannel interference. *Radioengineering*, 22(4), 1176–1181.
34. Al-Ahmadi, S. (2014). The gamma-gamma signal fading model: A survey. *IEEE Antennas and Propagation Magazine, 56*(5), 245–260.

35. Petkovic, M., Zdravkovic, N., Stefanovic, C., & Djordjevic, G. (2014). Performance analysis of SIM- FSO system over Gamma–Gamma atmospheric channel. In: XLIX International Scientific Conference on Information, Communication and Energy Systems and Technologies—ICEST 2014, vol. 1, pp. 19–22.

36. Datsikas, C. K., Peppas, K. P., Sagias, N. C., & Tombras, G. S. (2010). Serial free-space optical relaying communications over gamma-gamma atmospheric turbulence channels. *IEEE/OSA Journal of Optical Communications and Networking, 2*(8), 576–586.

37. Badarneh, O. S., Muhaidat, S., Sofotasios, P. C., Cotton, S. L., Rabie, K., & da Costa, D. B. (2018). The N* Fisher–Snedecor F cascaded fading model. In: Proceedings of the 14th international conference on wireless and mobile computing, networking and communications (WiMob), p. 1–7.

38. Karagiannidis, G. K., Sagias, N. C., & Mathiopoulos, P. T. (2007). N* Nakagami: A novel stochastic model for cascaded fading channels. *IEEE Transactions on Communications, 55*(8), 1453–1458.

39. Bithas, P. S., Kanatas, A. G., da Costa, D. B., Upadhyay, P. K., & Dias, U. S. (2018). On the double-generalized gamma statistics and their application to the performance analysis of V2V communications. *IEEE Transactions on Communications, 66*(1), 448–460.

40. Stefanovic, C., Panic, S., Bhatia, V., & Kumar, N. (2021). On second-order statistics of the composite channel models for UAV-to-ground communications with UAV selection. *IEEE Open Journal of the Communications Society, 2*, 534–544. https://doi.org/10.1109/OJCOMS.2021.3064873.

41. Stefanovic, C., Panic, S. R., Bhatia, V., Kumar, N., & Sharma, S., (2021). On higher-order statistics of the channel model for UAV-to-ground communications. In: Proceedings of the 2021 IEEE 93rd vehicular technology conference (VTC2021-Spring), pp. 1–5. https://doi.org/10.1109/VTC2021-Spring.51267.2021.9448754.

42. Al-Hmood, H., Abbas, R. S., & Al-Raweshidy, H. S. (2020). Ratio of products of mixture gamma variates with applications to wireless communications. *IEEE Transactions on Communications*. arXiv preprint arXiv:2007.10826.

43. Stankovic, A., Stefanovic, C., Sekulovic, N., Popovic, Z., & Stefanovic, M. (2012). The distribution of minimum of ratios of two random variables and its application in analysis of multi-hop systems. *Radioengineering, 21*(4), 1156–1162.

44. Matovic, A., Mekic, E., Sekulovic, N., Stefanovic, M., Matovic, M., & Stefanovic, C. (2013). The distribution of the ratio of the products of two independent: variates and its application in the performance analysis of relaying communication systems. *Mathematical Problems in Engineering*. https://doi.org/10.1155/2013/147106.

45. Hadzi-Velkov, Z., Zlatanov, N., & Karagiannidis, G. K. (2009). On the second order statistics of the multihop rayleigh fading channel. *IEEE Transactions on Communications, 57*(6), 1815–1823.

46. Al-Habash, A., Andrews, L. C., & Phillips, R. L. (2001). Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. *Optical Engineering, 40*(8), 1554–1562.

47. Yacoub, M. D., Bautista, J. V., & Guedes, L. G. R. (1999). On higher order statistics of the Nakagami- m distribution. *IEEE Transactions on Vehicular Technology, 48*(3), 790–794.

48. Stefanovic, C., Djosic, D., Panic, S., Milic, D., & Stefanovic, M. (2020). A framework for statistical channel modeling in 5G wireless communication systems. 5G Multimedia communications: Technology, multiservices, deployment, CRC Press 2020, pp. 31–54.

49. Gradsteyn, I. S., & Ryzhik, I. M. (2000). *Table of Integrals, Series, and Products* (6th ed.). New York: Academic.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Caslav Stefanovic was born in Niš, Serbia, in 1982. He graduated at the Faculty of Electronic Engineering, University of Niš, Serbia acquiring a M.Sc. degree in the field of telecommunications. He has received Ph.D degree at the same University in 2017. Under EUROWEB + project, he has spent ten months as a Postdoc Researcher at L’Aquila University, Italy. From 2018–2021 he was working as an Assistant Professor at the Faculty of Sciences and Mathematics, University of Priština, Kosovska Mitrovica, Serbia. Since 2021 he is with the department of Signal Theory and Communications, Carlos III University of Madrid as a CONEX + Fellowship awardee. His main research interests are performance evaluation and channel modeling of wireless communications systems for 5G and beyond 5G systems. He has published his research results in eminent journals and conference proceedings. Some of the publications have been awarded among the best papers.

Ivan Milovanovic was born on 27.05.1985. in Niš, Serbia. He graduated at the University of Singidunum, Belgrade, Serbia in 2009 acquiring a M.Sc. degree with major in the field of information technologies. He has received Ph.D. degree same University in 2015. He published significant number of papers in the field of Information and Communications technologies.

Stefan Panic was born in 1983 in Pirot, Serbia. He has received his M.Sc. and Ph.D. from the Faculty of Electronic Engineering, University of Niš, Serbia in 2007 and 2010, respectively. Currently, he works as Full Professor at the Faculty of Sciences and Mathematics in Kosovska Mitrovica, Serbia. In 2018/2019 he had a postdoc position at Tomsk Polytechnic University, Russia. His primary research interests are statistical communication theory, optical and wireless communications for 5G and beyond 5G systems. He has written or co-authored a great number of journal publications and books. He is the Editor of MDPI Information, Hindawi International Journal of Antennas and Propagation, Hindawi Wireless Communications and Mobile Computing and University Thought journals. He has been organizing committee member of ETIC 2019, IFOST 2019, MIT 2016 and MIT 2013 conferences.
Mihajlo Stefanovic was born in Nis, Serbia in 1947. He received B.Sc., M.Sc. and Ph.D. degrees in Electrical Engineering from the Faculty of Electronic Engineering (Department of Telecommunications), University of Nis, Serbia, in 1971, 1976 and 1979, respectively. His primary research interests are statistical communication theory, optical and satellite communications. He has written or co-authored a great number of journal publications. Dr. Stefanovic is a full-time professor with the Department of Telecommunications, Faculty of Electronic Engineering, University of Nis, Serbia.