Abstract. As the understanding of cancer grows, new therapies have been proposed to improve the well-known limitations of current therapies, whose efficiency relies mostly on early detection, surgery and chemotherapy. Mesenchymal stem cells (MSCs) have been introduced as a promising and effective therapy. This fact is due to several useful features of MSCs, such as their accessibility and easy culture and expansion in vitro, and their remarkable ability for ‘homing’ towards tumors, allowing MSCs to exert their anticancer effects directly into tumors. Additionally, MSCs offer the practicability of being genetically engineered to carry anticancer genes, increasing their specificity and efficacy for fighting tumors. In the present study, the antitumoral efficacy and post-implant survival of mice bearing lymphomas implanted intratumorally were determined using mouse bone marrow-derived (BM)-MSCs transduced with soluble TRAIL (sTRAIL), full length TRAIL (fTRAIL), or interferon β (IFNβ), naïve BM-MSCs, or combinations of these. The percentage of surviving mice was determined once all not-implanted mice succumbed. It was found that the percentage of surviving mice implanted with the combination of MSCs-sTRAIL and MSCs-iIFN-β was 62.5%. Lymphoma model achieved 100% fatality in the non-treated group by day 41. On the other hand, the percentage of surviving mice implanted with MSCs-sTRAIL was 50% and with MSCs-iIFN-β 25%. All the aforementioned differences were statistically significant (P<0.05). In conclusion, all implants exhibited tumor size reduction, growth delay, or apparent tumor clearance. MSCs proved to be effective anti-lymphoma agents; additionally, the combination of soluble TRAIL and IFN-β resulted in the most effective antitumor and life enlarging treatment, showing an additive antitumoral effect compared with individual treatments.

Introduction

Cancer is one of the most lethal diseases. Conventional treatment consists of surgery, chemotherapy and radiotherapy. This therapeutic scheme, based on 5FU and oxaliplatin is useful only when cancer is detected early, but it lacks specificity and is not practical in the presence of metastases (1). Moreover, this therapy has remained mostly unchanged for decades. Besides, all the aforementioned treatments, and particularly radiotherapy and chemotherapy, produce severe harmful effects (2). Recently, new approaches that focus on cancer mechanisms to increase specificity in cancer cell elimination efficacy and safety are being intensively analyzed. Some of these new therapies introduce the use of nanoparticles, monoclonal antibodies, miRNAs, gene and cell therapy with the use of cells as delivery vectors for antitumoral proteins (3-10). All promise to be more specific, efficacious and safer than conventional treatments.
In the present study, engineered mesenchymal stem cells (MSCs) were used as antitumoral therapy, considering that MSCs gather several desirable features (11) as anticancer weapons, such as their abundance in tissues, particularly in bone marrow (BM) (12) and adipose tissue (13). Besides, these cells have the outstanding ability for ‘homing’ to the tumor microenvironment. Homing allows MSCs to exert their anticancer effects directly towards tumors (14). Nevertheless, a serious limitation for using MSCs as anticancer therapy is that it is hard to predict the naïve MSCs behavior in the tumor, as these cells, under the influence of the tumor microenvironment, can improve tumor growth (15-17). Thus, an alternative is needed that increases the anticancer potency of MSCs and reduces the risk of favoring cancer progression instead of fighting it. Achieving this goal is possible since MSCs offer the practicability of being genetically engineered to overexpress coded proteins and find and attack malignant cells. Therefore, engineering MSCs can ensure that these cells specifically attack malignant cells and overcome the naïve MSCs efficacy for fighting tumors. To transduce murine BM-MSCs, the murine soluble fraction of the TNFα-related apoptosis-inducing ligand (sTRAIL) and interferon β (IFNβ) was chosen, considering the following features of each transgene: sTRAIL is a powerful anticancer protein extensively used due to the selective apoptotic effect that this protein induces in malignant cells. TRAIL targets the death receptors (DR)4 and DR5, which activate apoptosis by a caspase-8 derived process; the aforementioned receptors are mainly overexpressed by malignant cells (18,19). sTRAIL exerts its function once it has been trimerized and bound with cell receptors. However, Wong et al (19) pointed out that full-length (fl)TRAIL can induce apoptosis more efficiently than soluble (s)TRAIL. Interferon beta (IFNβ) is a type I member of the interferon family with pleiotropic roles, including immunomodulator, antiproliferative and cancer-inhibitory activity (20). IFNβ has already been examined and reported as an effective gene therapy agent (21); however, it was hypothesized in the present study that the combination of both proteins could increase the reach of monotherapy efficiency. To achieve this goal, a murine syngeneic model of lymphoma was used, with an immunocompetent strain (BALB/c) and BM-MSCs freshly obtained from mice belonging to the same BALB/c strain. The purpose of the present study was to determine the percentage of surviving mice and lymphoma reduction in mice implanted with MSCs carrying sTRAIL or IFNβ transgenes and their combinations.

Materials and methods

Mice. BALB/c mice were born, grown and maintained in the Laboratory of Animal Experimentation of the Autonomous University of Nuevo Leon. Male mice aged 4 to 8 weeks were used to isolate BM-MSCs. A total of 72 female BALB/c mice (12 weeks old) weighing 19-22 g were used to induce solid lymphomas and evaluate the in vivo anti-lymphoma efficacy. From mice birth and throughout the experiments until the last mouse was euthanized, all animals were kept in individually ventilated cages at 25°C with sterilized air with EPA filters (UREA;tac; LAB&Bio), with 50% humidity, ≤500 ppm of CO₂, ≤15 ppm of NH, and a light/dark cycle of 12/12 h. Access to food (Labdiet 5001; LabSupply) and purified sterile water was provided ad libitum.

Lymphoma cells. The thymic lymphoma cell line L5178Y was used to produce lymphomas; the clone that was used (3.7.2C) was derived from the L5178YS cell line. In vitro, these cells grow in suspension; in vivo, when inoculated intramuscularly, they produce solid lymphomas, and when injected intraperitoneally, they grow abundantly and produce ascites. The L5178Y cell line was purchased from the American Type Culture Collection (cat. no. CRL-9518®; ATCC®) and cultured as instructed by the manufacturer. The culture medium was Dulbecco’s modified Eagle’s medium (DMEM) high glucose medium (4.5 g/l), 0.1% pluronic, 100 µg gentamycin/ml, 2.5 µg amphotericin B/ml, and 10% fetal bovine serum (FBS; Gibco; Thermo Fisher Scientific, Inc.).

Lentiviral vectors. Lentiviral vectors were produced and provided by Cyagen Biosciences, Inc. as a gene delivery tool, named as follows: pLV[Exp]-EGFP/Neo-EF1A>[sMurTRAIL], pLV[Exp]-EGFP/Neo-EF1A>[mIfnb1[NM_010510.1], pLV[Exp]-EGFP/Neo-EF1A>[MuriLI2-70p)]. The lentiviral vectors were of 3rd generation and also included an integration cassette for G-418 (geneticin; Gibco; Thermo Fisher Scientific, Inc.) resistance for cell selection and a green fluorescent protein (GFP) gene to evaluate transgene integration.

MSC isolation and cell culture. BM-MSCs were obtained and characterized as previously described (22). Briefly, six mice were placed inside a CO₂ chamber to sacrifice them (70% vol/min); immediately after, their femurs and tibias were dissected under aseptic conditions. Their epithysis was removed, and using a hypodermic needle (27 gauge), their BM was obtained by perfusing the shafts inner barrel with 500-1,000 µl DMEM/Nutrient Mixture F-12 (DMEM F-12) medium supplemented (s) with 10% FBS, 100 µg gentamicin/ml, and 2.5 µg amphotericin B/ml (Gibco; Thermo Fisher Scientific, Inc.) and poured into T-25 cell culture flasks (Corning, Inc.). The first cell passage was accomplished as follows: The aforementioned preparations were incubated for 24 h at 37°C in a 5% CO₂ humid atmosphere. The expended medium and the non-adherent cells were discarded. The culture flasks with the adherent cells were replenished with 4 ml fresh medium and incubated as before until the cell monolayer reached 80% confluence (7-10 days). The second passage was performed by discarding the spent medium and incubating the cell monolayer with a solution of 0.25% trypsin and 0.1% EDTA (Gibco; Thermo Fisher Scientific, Inc.) in sterile phosphate-buffered saline (PBS), washing trice with PBS and inoculating 5x10⁵ cells in a new culture flask with fresh 5 ml of supplemented DMEM F-12 and incubating it as before. The procedure described for the second passage was repeated in each of the following passages.

MSC characterization. The characterization of MSCs and the assays performed with them were accomplished with cell cultures from passage 3 or 4. MSCs were characterized by immunocytochemistry and their multipotency was evaluated (Fig. 1). Cells were fixed with methanol-acetone (1:1) at 4°C per 10 min. Regarding immunocytochemistry, CD90
and CD105 surface markers were investigated using specific monoclonal antibodies included in the mouse and rabbit specific HRP/DAB (ABC) detection IHC kit (cat. no. ab64264; Abcam). Antibodies were diluted in PBS to 1:200 (CD90) and 1:25 (CD105). MSC multipotency was examined by inducing the cells to differentiate to osteoblasts or chondroblasts, using the appropriate reagents in the Mouse Mesenchymal Stem Cell Functional Identification kit (cat. no. SC010; R&D Systems, Inc.) and following the manufacturer's instructions. The osteoblasts were identified by staining with the Von Kossa technique and chondroblasts with Alcian blue. Cells were fixed with 4% paraformaldehyde for 20 min at ambient temperature. In Von Kossa staining, slides were submerged in saturated lithium carbonate solution for 20 min, and then washed with water and submerged in a 5% silver nitrate solution. Slides were exposed to bright light for 60 min and then were submerged in a 5% sodium thiosulfate solution for 5 min. Finally, the slides were counterstained with neutral red. In Alcian blue staining, exposed to bright light for 60 min and then were submerged in a 5% silver nitrate solution. Slides were washed with water and counterstained with neutral red at ambient temperature for 2 min.

Construct design. All transgene constructs contained murine sequences of the genes of interest, a promoter cassette for Elongation Factor 1-Alpha (EF1-α sequences of the genes of interest, a promotor cassette for Construct design.

The aforementioned protein concentrations were quantified with Bradford reagent (Bio-Rad Laboratories, Inc.). After, 40 µg protein concentrate (5 µl) was submitted to resolving polyacrylamide gel electrophoresis (PAGE) at 100 V for 60 min. Protein was adjusted at 500 µl with ultrapure sterile water, chilled in ice for 20 min, centrifuged at 16,000 x g at 4°C for 5 min, and the supernatant was collected.

Western blot analysis. The aforementioned protein concentrations were quantified with Bradford reagent (Bio-Rad Laboratories, Inc.). After, 40 µg protein concentrate (5 µl) was submitted to 2% sodium dodecyl sulfate (SDS), 4% stacking and 12% resolving polyacrylamide gel electrophoresis (PAGE) at 100 V for 120-150 min and the protein bands were electro-transferred to a 0.45-µm mesh polyvinylidene fluoride membrane (Bio-Rad Laboratories, Inc.) at 100 V for 60 min. Protein was Electro-transfer to a PVDF membrane. The membrane was blocked for 1 h with 5% skimmed milk in Tris-buffered saline with Tween-20 (TBST) at 4°C. The protein bands of sTRAIL, flTRAIL, or IFNβ were identified with rabbit monoclonal antibodies anti-murine TRAIL (1:200; cat. no. ab10516; Abcam) or 1:500 rabbit polyclonal anti-murine IFNβ (cat. no. ab85803; Abcam), as primary antibodies, incubated overnight at 4°C. The secondary antibody was an HRP-conjugated anti-rabbit polyclonal antibody (1:10,000; cat. no. W4011; Promega
Corporation), incubated for 2.5 h at 4°C. Dilutions of all antibodies were performed with Tris-buffered saline (TBS buffer) in 5% skimmed milk.

The marked protein bands were revealed with the luminol kit Clarity Western ECL blotting substrate (Bio-Rad Laboratories, Inc.) following the manufacturer's protocol and analyzed with the Molecular Imager Chemidoc XRS+ Imaging System (Bio-Rad Laboratories, Inc.) equipped with the Image Lab software.

Commercial recombinant proteins were used as positive controls in all western blot assays; soluble TRAIL recombinant protein (cat. no. 315-19; PeproTech, Inc.) which consists in the extracellular fraction of murine TRAIL, weighing 20 kDa; ~200 ng of recombinant protein was loaded into the gel well. IFNβ standard (cat. no. IF011; Merck KGaA) consisted of recombinant murine IFNβ weighing 22 kDa; ~2 kU was loaded into the gel well.

Induction of lymphomas. L5178Y cells (5x10⁵) were inoculated in the right gastrocnemius with a 27-gauge syringe. The cells were suspended in 100 µl of saline solution for a total of 72 female BALB/c mice. The mice exhibited mild discomfort immediately after inoculation; however, no sign of discomfort was observed overnight. The implanted leg of each mouse was measured with a Vernier calibrator to calculate discomfort was observed overnight. The implanted leg of each mouse was measured with a Vernier calibrator to calculate discomfort immediately after inoculation; however, no sign of discomfort was observed overnight. The implanted leg of each mouse was measured with a Vernier calibrator to calculate discomfort immediately after inoculation; however, no sign of discomfort was observed overnight. The implanted leg of each mouse was measured with a Vernier calibrator to calculate discomfort immediately after inoculation; however, no sign of discomfort was observed overnight. The implanted leg of each mouse was measured with a Vernier calibrator to calculate discomfort immediately after inoculation; however, no sign of discomfort was observed overnight. The implanted leg of each mouse was measured with a Vernier calibrator to calculate discomfort immediately after inoculation; however, no sign of discomfort was observed overnight.

Analysis of results. The number of deceased mice from all groups was monitored daily. When the last not-implanted mouse with BM-MSCs carrying lymphomas succumbed, the percentage of surviving mice from each group and the number of days elapsed since the lymphoma cells were inoculated were registered.

Statistical analysis. The survival rate was analyzed with a Kaplan-Meier estimator with a Mantel-Cox test to assess statistical significance with SPSS software (SPSS Statistics for Windows; version 22.0; IBM Corp.). Statistical analysis was conducted using GraphPad Prism version 7.00 for Windows (GraphPad Software, Inc.). Differences between the analyzed groups were determined with the t-test and one-way ANOVA (followed by Tukey’s post hoc test). P<0.05 was considered to indicate a statistically significant difference.

Ethical considerations. The present study was approved (approval no. BI15-005) by the Scientific Research and Bioethics Committee and the Institutional Animal Care Committees of the School of Medicine of the Autonomous University of Nuevo Leon (Monterrey, Mexico). The mice were handled according to the Mexican Standard NOM-062-ZOO-1999. The mice were kept in the animal facility of the Department of Immunology in individually ventilated cages (Lab & Bio) that maintain filtered air flow and a barrier that protects them from contact with external agents. The system records pressure, oxygen, CO₂, humidity, temperature, and ammonia concentration. Furthermore, this system maintains all these parameters in uniform conditions. The cages were cleaned every 2-3 days by the technical personnel of the vivarium. The model was euthanized if the tumor exceeded 10% of the normal mouse body weight according to the international manual Institutional Animal Care and Use Committee (2002) and would be euthanized by inhalation of CO₂ with subsequent cervical dislocation and monitoring of vital signs. They were
also euthanized if they showed signs of severe pain according to the Rodent Management Laboratory Manual accepted by the American Association for the Accreditation of Animal Care Laboratories (29): decreased intake of water and food, weight loss (>20%), bristly coat, dry skin, lacerations, posture, abnormal gait, head tilt, lethargy, bloating, diarrhea, seizures, discharge from body orifices and dyspnea. The experimental groups were kept under close care from the day of inoculation until the last mouse in the control group succumbed. The mice succumbed due to tumor growth. However, the mice in the experimental groups that survived until the last mouse in the untreated group were sacrificed on the same day that the last untreated mouse lived.

Results

BM-MSCs express TRAIL and IFNβ. BM-MSC isolated from mice presented fibroblast morphology in culture and were characterized by expression of CD90 and CD105 superficial markers that presented >95% positive cell staining (Fig. 1A-C). In addition, BM-MSC differentiated to chondroblasts and osteoblasts, showing positivity to Alcian blue and Von Kossa stains, respectively (Fig. 1D and E). A representative field of transduced BM-MSCs is shown in Fig. 2D. All cells fluoresced intensely in green due to expression of the GFP gene and geneticin selection, denoting an efficient integration of each gene construct. The percentage of transduction efficiency of BM-MSC-sTRAIL and -fTRAIL was 90% and for BM-MSC-IFNβ was 95%. For protein expression, western blot results are shown in Fig. 2E and F. The protein bands, whose images are demonstrated in Fig. 2E, correspond to sTRAIL and an sTRAIL standard, respectively, with both weighing ~20 kDa (control). The image of fTRAIL, revealing a ladder of five bands; the smallest one weighs ~20 kDa, which matches the 2 soluble TRAIL standard control; however, 4 heavier bands of ~30, ~39, ~45, and ~60 kDa were also revealed. In Fig. 2F, two IFNβ bands are demonstrated, one weighing ~22 kDa and a slightly heavier ~24 kDa band. Alongside as control, the recombinant IFNβ standard shows a single band weighing ~22 kDa.

BM-MSC expressing sTRAIL and IFNβ reduce solid lymphoma engraftment. On day 7 post-inoculation (PI), a slight inflammation was observed in all inoculated subjects. PI leg volumes on day 9, comparing the non-inoculated and inoculated groups are revealed in Fig. 3; considering one standard deviation as a reference, it displays the totality of the study subjects with tumor engraftment.

First, deceased mice from the untreated group were registered by day 26 PI; therefore, the last tumor measure with full subjects' groups was on day 23 PI. Fig. 4A highlights the most relevant results: the untreated group shows the largest tumor (average 2.5 cm³) and first deceased mouse at day 26 PI; on the other hand, the group with combined treatment of IFNβ and sTRAIL showed the smallest tumor (1.2 cm³) by day 23, and the first mouse succumbed by day 29 PI. Notably, separated treatments of both sTRAIL and IFNβ also showed considerably smaller tumors (compared with the untreated group) but slightly larger than the combined one (1.3 and 1.5 cm³, respectively).
BM-MSC expressing sTRAIL, fTRAIL and IFNβ treatments do not affect mice weight. During the study, mice weights were documented. Any mouse that exhibited a loss of ≥20% of the baseline weight was withdrawn from the study and euthanized. The weight of all groups during the study is revealed in Fig. 4B; mice showed stable weight by day 19 PI; however, important weight variability was registered thereafter. All mice were carefully observed to detect a disability to eat or drink; however, despite massive tumors, mice were eating and drinking; thus, weight variability was associated with tumor growth. All subjects gained weight according to the developed tumor mass.

In addition, tumor tissues were analyzed with a light microscope. A section of the tumor of untreated mice was compared with tissue of the inoculated leg of surviving mice. Images of histological sections are revealed in Fig. 5. It was demonstrated how the tumor tissue almost completely displaced muscle tissue (Fig. 5B and D), exhibiting basophilic predominance of lymphocyte (tumoral cell) nuclei, which in contrast to a surviving mouse, most of the tissue was...
BM-MSC expressing sTRAIL and IFNβ increase survival of mice with solid lymphoma engraftment. The last untreated mouse died at day 41 PI; thus, a cut-off point was established. All groups comparing each treated group against the untreated group were analyzed. In Fig. 6A, a Kaplan-Meier estimator with the most relevant results is demonstrated: 100% of untreated mice succumbed due to the tumor by day 41 PI. On the other hand, the combined treatment of IFNβ and sTRAIL showed a 62.5% survival rate. Additionally, the separated groups of IFNβ and sTRAIL showed 25 and 50% survival, respectively, in addition to initial tumor mass, which showed a similar result, suggesting an additive effect. The log-rank test showed significant differences between the groups (P<0.05). All P-values are included in Table I.

To confirm these results, the combination treatment of BM-MSC expressing sTRAIL and IFNβ was repeated. The results are presented in Fig. 6B. The control treatment of naïve BM-MSCs was added. At first, both treatments reduced tumor growth in the right gastrocnemius; however, near day 20, mice of the groups treated with naïve BM-MSCs presented an increase in tumor volume. On day 36 PI, the last mouse of the naïve BM-MSC group was euthanized, and 40% of survivors remained in the group treated with sTRAIL plus IFNβ.

All treatments showed anti-tumorigenic activity to some extent. Independent treatments showed poorer antitumor activity than combined ones. IFNβ exhibited the lowest therapeutic activity with a 25% survival rate, sTRAIL showed 37.5%. Combined treatment showed 37.5% survival rate, indicating a non-additive effect since it remained nearly the same as when treatment was performed with sTRAIL alone. Notably, saline solution had a 25% survival rate. A combined treatment of MSC naïve, IFNβ and sTRAIL showed a 50% survival rate, indicating a slight improvement over sTRAIL and IFNβ alone, suggesting MSC antitumoral effect.

Discussion

Cancer xenograft in vivo murine models have been a frequent approach in numerous research groups; indeed, the chimeric models of human tissue in immunodeficient mice have allowed achievement of tremendous advances and testing several cancer models and treatments (30). The current landscape deems murine models as the cornerstone in biomedical research (31).

MSC approaches in murine cancer models involve the following criteria: first, a cancer model; that is, a tumor-inducing cell line in vivo of certain tissue; second, determination of the source of the MSCs, as there are significant phenotypic and genotypic differences among the cells in terms of regenerative capacity, multipotency, isolation yield, and overall behavior within the tumor; third, one or more anticancer transgenes to be expressed and delivered; and finally, fourth, a mouse strain according to the aims of the study (32). CD105, CD90 and CD73 are main markers highly expressed by BM-MSCs (33). In the present study, CD105 and CD90 were only evaluated. CD73 expression on MSCs was reported to be reverted or enhanced, respectively by the transgenes alone or combined.

Molecular Medicine Reports 25: 206, 2022
by it and vice versa, affecting other cells. T-cells are the most important line of defense regarding cancer development; nonetheless, tumors can produce TGF-β, which favors T cell conversion to regulatory T-cell, which exhibits protumor effects by immunosuppression (38).

B-cell subsets have demonstrated cooperative or opposite roles within the tumors. Immunosuppressive regulatory B cells or tumor-infiltrating lymphocytes have protumor effects as they tend to be up to 25% of cells within the tumor mass, can produce lymphotoxin, an angiogenesis-inducing protein (39), and secrete antibodies against tumor-specific antigens (such as p53) (40) with variable outcomes. On the other hand, there are also effector B-cells with antitumor effects by antigen presentation, CD4 T-cell activation, and macrophage conversion to antitumoral M1 phenotype (41). In aims for an improved understanding of cancer development and treatments, in our opinion, a homogenous, syngeneic model provides substantial advantages.

To the best of our knowledge, there are no reports of lymphoma immunocompetent models with combined TRAIL (soluble fraction and complete) and IFNβ treatments. Soluble TRAIL required several accessories to be secreted extracellularly to exert its intended function: an isoleucine zipper to facilitate ligand trimerization (25), a signal sequence-derived Gaussia princeps luciferase (26) to conduct protein extraction, and a furin cleavage site to eliminate all upstream accessory sequences (24); all transgenes proved to be recognizable as they were easily detected by western blotting. FlTRAIL showed 5 bands (weighing ~20, ~30, ~39, ~45 and ~60 kDa), which differs from a 24-25 kDa expected weight; however, similar reports suggested a glycosylated version of the protein (27) or possible oligomerization of the ligand. Additionally, a ~20 kDa
band suggests the expression of soluble TRAIL as well. IFNβ showed 2 bands (~22 and ~24 kDa), similar to flTRAIL; the smaller band matched the recombinant standard, and the observed ~24 kDa band is probably a glycosylated version of the protein.

TRAIL has been examined in numerous studies and clinical trials due to its unique property of targeting transformed cells, but its short half-life and toxicity make it impractical; thus, the need for a dose-based therapy by cell delivery is plausible. Soluble TRAIL fraction is normally secreted by the cell to procure DR4+ or DR5+ cells more easily than the complete protein; thus, flTRAIL is anchored to the cell membrane. Therefore, it requires a markedly closer cell-cell approach to trigger apoptosis. Notably, Yuan et al (27) demonstrated that flTRAIL exhibited a more efficient cell-killing effect in TRAIL sensitive and resistant cell lines in vitro. Conversely, in the present in vivo study, sTRAIL resulted in the best single-gene treatment in tumor-reducing effects (with an average volume of 1.4 cm³ leg-tumor size as opposed to flTRAIL with 1.5 cm³) and survivability (50% compared with 37.5% for flTRAIL). This finding could be due to inherent differences between in vitro and in vivo models and protein presentation, as multimers of flTRAIL are more likely as they are suspended more efficiently through the tumor. Furthermore, to reduce variation during the administration of the MSCs in each of the experimental groups, the inoculation of cells was performed less than 1 h after cell counting further avoiding any reduction in viability.

IFNβ has been intensively studied in several models (21,42,43) with abundant evidence of its anticancer activity, namely, immune system stimulation, angiogenesis, and malignant cell inhibition using S-phase accumulation (44-46). In the present study, IFNβ treatment dealt relatively poor tumor-reducing activity while administered alone, as it exhibited only 25% of survival rate. Notably, combined treatment with sTRAIL showed a 62.5% survival rate, which surpasses both single-gene treatments (sTRAIL and IFNβ), suggesting an additive effect.

IFNβ was unexpectedly ineffective. Interferons type I have direct effects on T-cells; for instance, IFNβ-based treatment is the first choice to treat multiple sclerosis by modulation of T cell activity (47); therefore, malignant T cells are inherently influenced by it. However, the specific nature of such effects is unclear as current information is notably paradoxical due to the complex effect IFNβ exerts on T cells (48). To elucidate this subject goes beyond the aim of the present study. On the other hand, IFNβ can induce apoptosis by upregulation and enhanced sensitivity of endogenous TRAIL and upregulation of TRAIL-R1 and TRAIL-R2 in cancer cell lines; moreover, there is evidence that IFNβ induces a lengthened S-phase which also potencies TRAIL's apoptosis-inducing effect in nasopharyngeal (49), and cervical carcinomas (50).

It is well known that more than caspase cascade activation, TRAIL can also modulate NF-κB signaling (51,52), which is controversial as NF-κB can upregulate the expression of survival factors such as members of the apoptosis family inhibitor and Bcl-xL (53). Conversely, TRAIL-dependent NF-κB activation triggers apoptosis rather than survival in epithelial cell lines and T cells (54,55). In addition, TRAIL
sensitivity can be upregulated by IFNs by overexpression of the TRAIL-R2 DR5 (56-58). IFNβ induces TRAIL-R2 expression in ME-180 cells in the S phase (50), and in melanoma and breast cancer cells, IFNβ induces apoptosis by an extrinsic pathway dependent on TRAIL expression. TRAIL overexpression is a Stat1 dependent process associated with activation of the TRAIL promoter (59).

Related to the MSC treatment, first, 50% survival was observed, but in a second experiment, recurrence and tumor growth after day 26 was identified. This finding showed that MSCs present immunoregulatory properties, as they can inhibit T-cell proliferation and migratory properties and are resistant to natural killer cell-mediated cytolyis. Those attributes contribute to the application of MSC-based delivery of therapeutic genes to solid tumors (60). However, MSC could improve cancer development by increasing the expression of immunosuppressive cytokines such as IL-10 when activated with signals from the tumor microenvironment (22,61,62). In addition, it was observed that the saline solution (placebo) group showed a 25% survival rate, which was reasonably expected considering all mice were immunocompetent. Mice reached immune maturity, which could be explained as a local immunological reaction due to intramuscular solution inoculation that resulted in mild bleeding and muscle inflammation, acting as a local adjuvant.

By day 41 PI, the surviving mice reduced the tumor to the point of being imperceptive. The histological analysis of the untreated mice showed almost no proper muscle tissue but instead was completely saturated with lymphoid cells; by contrast, treated mice showed seemingly healthy muscle tissue, with histologically normal muscle fibers and few scattered lymphoid cells. This finding bifurcates into two rather simplistic yet actual possibilities: i) The main component of the tumor microenvironment is tumor infiltrating lymphocytes of different phenotypes as helper and cytotoxic T cells; these cells could be normal, healthy lymphoid cells due to the immune surveillance induced by the malignant cells, which in this scenario, are seemingly depleted; or ii) Remaining transformed lymphoma cells within the muscle tissue represent an ongoing immunological process rather than a terminated one (63,64). Both scenarios could be elucidated by finer cell characterization, a longer-term observation period to detect relapse, and larger subject groups. In addition, the combined treatment of sTRAIL and IFNβ did recover the tissue morphology mainly due to extended tumor damage. Thus, the mechanism of tissue repair after cancer elimination needs improvement.

In conclusion, the present findings demonstrated that MSCs are effective anti-lymphoma vehicles, as non-treated mice developed massive tumor masses and succumbed. Moreover, in this model, sTRAIL had improved tumor-reducing effects, and IFNβ enhanced it.

Acknowledgements

The authors would like to thank Dr Sergio Lozano (Autonomous University of Nuevo Leon, Monterrey, Mexico) for reviewing the manuscript.

Funding

No funding was received.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

AGQR and CAGV contributed to designing, performing experiments, analysis and discussion of results. HMR helped to design of experiments, wrote, analyzed and corrected the manuscript. SSF designed the experiments, performed literature analysis and discussion of results. MCSC and AYLF helped in the management and in the care with murine model. ASFD helped in the standardization of immunohistochemistry and with the software of the fluorescence microscope. GPR helped with statistical analysis. RMDOL contributed to designing of transgenes of lentivirus. JFI edited the text, analyzed the results and reviewed the final manuscript. ENGT contributed to the design of experiments, analysis of the results, discussion and correction of the manuscript. AGQR, CAGV and ENGT confirm the authenticity of all the raw data. All authors have read and approved the final version of the manuscript.

Ethics approval and consent to participate

The present study was approved (approval no. BI15-005) by the Scientific Research and Bioethics Committee and the Institutional Animal Care Committees of the School of Medicine of the Autonomous University of Nuevo Leon (Monterrey, México).

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Urrutioocoechea A, Alemany R, Balart J, Villanueva A, Viñals F and Capellá G: Recent advances in cancer: An Overview. Curr Pharm Des 16: 3-10, 2010.
2. Herskovic A, Martz K, Al-Sarraf M, Leichman L, Brindle J, Vaitkevicius V, Cooper J, Byhardt R, Davis L and Emami B: Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N Engl J Med 326: 1593-1598, 1992.
3. Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V and Mijakovic I: Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19: 1979, 2018.
4. Baetke SC, Lammers T and Kiessling F: Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 88: 20130207, 2015.
5. Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16: 203-221, 2017.
6. Iorio MV and Croce CM: MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review, EMBO Mol Med 4: 143-150, 2012.
7. Ling H, Fabbri M and Calin GA: MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 176: 139-148, 2013.
8. Loebinger M, Sage E, Davies D and Janes S: TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. Br J Cancer 103: 1692-1697, 2010.
19. Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S
20. Pan G, O’Rourke K, Chinnaiyan A, Gentz R, Ebner R, Ni J
21. Yu JM, Jun ES, Bae YC and Jung JS: Mesenchymal stem cells
22. Karp JM and Leng Teo GS: Mesenchymal stem cell homing: The
23. Frese K and Tuveson D: Maximizing mouse cancer models. Nat
24. Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S and
25. Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE,
26. Matosevic S: Viral and nonviral engineering of natural killer
27. Liu X, Hu J, Li M, Yu X, Zuo H, Gao J, Zhang M, Li Z and Guo Z: CD73+ Mesenchymal stem cells ameliorate myocardial
28. Li Q, Hou H, Li M, Yu X, Zuo H, Gao J, Zhang M, Li Z and Guo Z: CD73+ Mesenchymal stem cells ameliorate myocardial
29. Song N, Gao L, Qiu H, Huang C, Cheng H, Zhou H, Lv S, Chen L and Wang J: Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vivo and in a mouse model of allogeneic bone marrow transplant. Int J Mol Med 36: 139-149, 2015.
30. Seccichero P, Zorzet S, Tripodo C, Corallini F, Melloni E, Caruso L, Bosco R, Ingrao S, Zavan B and Zauli G: Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-hodgkin’s lymphoma xenografts. PLoS One 5: e11140, 2010.
31. Tu E, Chia PZC and Chen W: TGFβ in T cell biology and tumor immunity: Angel or devil? Cytokine Growth Factor Rev 25: 1-8, 2014.
32. Yuen GJ, Demissie E, Pillai S and Burnet M: B lymphocytes and cancer: A love-hate relationship. Trends Cancer 2: 747-757, 2017.
33. Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mourtz D and Ponnazhagan S: Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther 15: 1446-1453, 2008.
34. Dong Z, Greene G, Pettengill J, Dinnn, C, Dinne, C, Euei I, Wu L, Bucana CD, Balbald MD, Bielenberg D and Filider IJ: Suppression of angiongenesis, tumorigenicity, and metastasis by human prostate cancer cells engineered to produce interferon-beta. Cancer Res 69: 872-879, 1999.
35. Presta S and Langer JA: Interferons and their actions. Ann Rev Biochem 56: 727-777, 1987.
36. Qin X, Runkel L, Deck C, Dedios C and Borsoum J: Interferon-beta induces S phase accumulation selectively in human transformed cells. Cancer Biol Ther 4: 709-715, 2005.
37. Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mourtz D and Ponnazhagan S: Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther 15: 1446-1453, 2008.
38. Teige I, Liu Y and Issazadeh-Navikas S: IFN-β Inhibits T cell activation and decreases capacity of central nervous system APCs. J Immunol 177: 3542-3553, 2006.
39. Makowska A, Wahab L, Braunschweig T, Kapetanakis NI, Vokuhl C, Denecke B, Shen L, Busson P and Kontny U: Interferon-beta induces apoptosis in nasopharyngeal carcinoma cells via the FAS-mediated signaling pathway. Oncotarget 9: 14228-14250, 2018.
40. Vannucchi S, Chiantore MV, Fiorucci G, Percario ZA, Leone S, Affabris E and Romeo G: TRAIL is a key target in S-phase slowing-dependent apoptosis induced by interferon-β in cervical carcinoma cells. Oncogene 24: 2536-2546, 2005.
41. Yang J, LeBlanc FR, Daghe SA, Hamele CE, Olson TL, Feith DJ and Ponnazhagan S: Doxycycline-inducible expression of the doxycycline-inducible promoter. PLoS One 5: 3-6, 2010.
42. Kim MH, Biliñar TR and Seol DW: The susceptible form of trimeric TRAIL, a potent inducer of apoptosis. Biochem Biophys Res Commun 303: 935-944, 2003.
43. Yan C, Li S, Li Z, Peng H, Yuan X, Jiang L, Zhang Y, Fan D, Hu X, Yang M and Xiong D: Human umbilical cord mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res 62: 3603-3608, 2002.
44. González-Villarreal C, Rodríguez M and Sain-Fenández S: How desirable and undesirable features of naïve or genetically engineered mesenchymal stem cells are being considered in preclinical or clinical assays. J BUON 12: 821-830, 2007.
45. Qin JY, Zhang L, Chen KL, Hulur I, Xiang AP, Ren BZ and Lahn BT: Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5: 3-6, 2010.
46. Stern B, Olsen LC, Tröle C, Ravneberg H and Pryme IF: Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells. Trends Cell Mol Biol 10: 19-24, 2007.
47. Yuan Z, Kolluri KK, Sage EK, Gowers KH and James SE: Mesenchymal stem cell delivery of full-length tumor necrosis factor-related apoptosis-inducing ligand is superior to soluble type for cancer therapy. Cytoteraphy 17: 885-896, 2015.
48. Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, Glick S, Ingrao J, Klassen-Ross T, Lacroix-Alexander MB, Martin-Choulet N, et al: Coding of facial expressions of pain in the laboratory mouse. Nat Methods 7: 447-449, 2010.
49. Committee on Rodents, Institute of Laboratory Animal Resources, Commission on Life Sciences and the National Research Council: Laboratory Animal Management Rodents, North America. Washington, D.C., USA, pp 99, 1996.
50. Bankert RB, Egilmez NK and Hess SD: Human-SCID mouse chimeric models for the evaluation of anti-cancer therapies. Trends Immunol 22: 386-393, 2001.
51. Haozzi P: Murine models in critical care research. Crit Care 15: 250-259, 2011.
52. Frese K and Tuveson D: Maximizing mouse cancer models. Nat Rev Cancer 7: 654-658, 2007.
53. Boxall SA and Jones E: Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int 2012: 975871, 2012.
54. Bao Q, Werkmeister JA, Deane JA and Gargett CE: Identification and characterization of human endometrial mesenchymal stem/stromal cells and their potential for cellular therapy. Stem Cells Transl Med 5: 1127-1132, 2016.
55. Li Q, Hou H, Li M, Yu X, Zuo H, Gao J, Zhang M, Li Z and Guo Z: CD73+ Mesenchymal stem cells ameliorate myocardial
56. Baetu TM, Kwon H, Sharma S, Grandvaux N and Hiscott J: Disruption of NF-kappaB signaling reveals a novel role for NF-kappab in the regulation of TNF-related apoptosis-inducing ligand expression. J Immunol 167: 3164-3173, 2001.
55. Shetty S, Brown Gladden J, Henson ES, Hu X, Villanueva J, Haney N and Gibson SB: Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) up-regulates death receptor 5 (DR5) mediated by NFkappaB activation in epithelial derived cell lines. Apoptosis 7: 413-420, 2002.
56. Sedger LM, Shows DM, Blanton RA, Peschon JJ, Goodwin RG, Cosman D and Wiley SR: IFN-gamma mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J Immunol 163: 920-926, 1999.
57. Meng RD and El-Deiry WS: P53-independent upregulation of KILLER/DR5 TRAIL receptor expression by glucocorticoids and interferon-gamma. Exp Cell Res 262: 154-169, 2001.
58. Shigeno M, Nakao K, Ichikawa T, Suzuki K, Kawakami A, Abiru S, Miyazoe S, Nakagawa Y, Ishikawa H, Hamasaki K, et al: Interferon-alpha sensitizes human hepatoma cells to TRAIL-induced apoptosis through DR5 upregulation and NF-kappa B inactivation. Oncogene 22: 1653-1662, 2003.
59. Choi EA, Lei H, Maron DJ, Wilson JM, Barsoum J, Fraker DL, El-Deiry WS and Spitz FR: Stat1-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand and the cell-surface death signaling pathway by interferon beta in human cancer cells. Cancer Res 63: 5299-5307, 2003.
60. Bao Q, Zhao Y, Niess H, Conrad C, Schwarz B, Jauch KW, Huss R, Nelson PJ and Bruns CJ: Mesenchymal stem cell-based tumor-targeted gene therapy in gastrointestinal cancer. Stem Cells Dev 21: 2355-2363, 2012.
61. Taraballi F, Pasto A, Bauza G and Varner C: Immunomodulatory potential of mesenchymal stem cell role in diseases and therapies: A bioengineering prospective. J Immunol Regen Med 4: 100017, 2019.
62. Monteran L and Erez N: The Dark side of fibroblasts: Cancer-Associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol 10: 1835, 2019.
63. Yu P and Fu YX: Tumor-infiltrating T lymphocytes: Friends or foes? Lab Invest 86: 231-245, 2006.
64. Badalamenti G, Fanale D, Incorvaia L, Barraco N, Listi A, Maragliano R, Vincenzi B, Calò V, Iovanna JL, Bazan V and Russo A: Role of tumor-infiltrating lymphocytes in patients with solid tumors: Can a drop dig a stone? Cell Immunol 343: 103753, 2019.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.