The Composition and Distribution of Dust Along the Line of Sight Towards the Galactic Center

J.E. Chiar, A.G.G.M. Tielens, D.C.B. Whittet, W.A. Schuttle, A.C.A. Boogert, D. Lutz, E.F. van Dishoeck, M.P. Bernstein

ABSTRACT

We discuss the composition of dust and ice along the line of sight to the Galactic Center (GC) based on analysis of mid-infrared spectra (2.4–13 µm) from the Short Wavelength Spectrometer on the Infrared Space Observatory (ISO). We have analyzed dust absorption features arising in the molecular cloud material and the diffuse interstellar medium along the lines of sight toward Sagittarius A* and the Quintuplet sources, GCS3 and GCS4. It is evident from the depth of the 3.0 µm H₂O and the 4.27 µm CO₂ ice features that there is more molecular cloud material along the line of sight toward Sgr A* than GCS3 and 4. In fact, Sgr A* has a rich infrared ice spectrum with evidence for the presence of solid CH₄, NH₃, and possibly HCOOH.

Hydrocarbon dust in the diffuse interstellar medium along the line of sight to the GC is characterized by absorption features centered at 3.4 µm, 6.85 µm, and 7.25 µm. Ground-based studies have identified the 3.4 µm feature with aliphatic hydrocarbons, and ISO has given us the first meaningful observations of the corresponding modes at longer wavelengths. The integrated strengths of these three features suggest that hydrogenated amorphous carbon is their carrier.

We attribute an absorption feature centered at 3.28 µm in the GCS3 spectrum to the C-H stretch in aromatic hydrocarbons. This feature is not detected, and its C-C stretch counterpart appears to be weaker, in the Sgr A* spectrum. One of the key questions which now arises is whether aromatics are a widespread component of the diffuse interstellar medium, analogous to aliphatic hydrocarbons.

Subject headings: dust, extinction — ISM: molecules — Galaxy: center — infrared: ISM: lines and bands — infrared: stars

1Based on observations made with ISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.

2NASA/Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035 and SETI Institute, Mountain View, CA 94043. mailto:chiar@misty.arc.nasa.gov

3Kapteyn Astronomical Institute, P.O. Box 800, 9700 AV Groningen, The Netherlands

4Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY 12180

5Leiden Observatory, P.O. Box 9513, 2300 RA Leiden, The Netherlands

6present address: California Institute of Technology, Downs Laboratory of Physics, Mail Code 320-47, Pasadena, CA 91125

7Max-Planck-Institut für extraterrestrische Physik, Postfach 1603, 85740 Garching, Germany

8NASA/Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035 and SETI Institute, Mountain View, CA 94043
1. Introduction

Bright infrared (IR) sources combined with 30 magnitudes of visual extinction have made the Galactic Center (GC) an attractive line of sight for the study of interstellar dust composition. Absorption features in the spectra of GC IR sources have been used extensively to characterize interstellar grain material, including silicates (Becklin et al. 1978; Roche & Aitken 1985) and hydrocarbons (Willner et al. 1979; McFadzean et al. 1989; Sandford et al. 1991; Pendleton et al. 1994). Previous observations of the GC suggested the presence of absorptions expected in icy grain material, most notably the 3 μm band of H$_2$O-ice (e.g., McFadzean et al. 1989), but until recently, the explanation that one or more molecular clouds obscure the GC and contribute to its total extinction had not been completely accepted since the 3μm feature has a substantially different profile than that observed in dense cloud sources (Tielens et al. 1996; Wada et al. 1991). The presence of molecular cloud material in the GC was confirmed via detection of solid CO$_2$ feature by the Short Wavelength Spectrometer (SWS) on the Infrared Space Observatory (ISO) (Gerakines et al. 1999; de Graauw et al. 1996b; Lutz et al. 1996).

Solid organic material is a well-established component of the diffuse interstellar medium. The complex 3.4 μm feature, ubiquitous along sightlines which sample the diffuse ISM in our Galaxy and other galaxies (e.g., Pendleton et al. 1994, Bridger, Wright, & Geballe 1993), is identified with short-chained aliphatic hydrocarbons with a methylene/methyl (-CH$_2$/-CH$_3$) group ratio between 2–2.5 (Sandford et al. 1991; Pendleton et al. 1994). The CH deformation mode at 6.8 μm was detected in KAO data (Tielens et al. 1996), although the weaker 7.3 μm band could not be confirmed at the time. One model proposes that organic refractory matter in the diffuse ISM is the product of energetic processing of simple ices (such as CO, H$_2$O, CH$_3$OH) in dense clouds (e.g., Allamandola, Sandford, & Valero 1988; Greenberg et al. 1995; Strazzulla, Castornia, & Palumbo 1995; Moore, Ferrante, & Nuth 1996). However, the discovery of spectroscopic similarity between diffuse interstellar and circumstellar organics has prompted a reassessment of the origin of organic matter in the ISM (Lequeux & Jourdain de Muizon 1990; Chiar et al. 1998b). The striking similarity of the circumstellar and interstellar 3.4 μm features indicates that at least some of the organic carriers which lead to the 3.4 μm absorption in the diffuse ISM originate as stardust (Chiar et al. 1998b). The case for production of the 3.4 μm band carrier in dense clouds and thus its presence in organic refractory mantles is further weakened by the finding of Adamson et al. (1999) that, unlike the 9.7 μm silicate feature (e.g., Aitken et al. 1986), the 3.4 μm feature along the line of sight toward Sgr A* (IRS7) is not polarized. Hence, the 3.4 μm band is not produced by a carrier residing in a mantle on a silicate core, but rather by very small (unaligned) grains. Nevertheless, energetic processing of ices in dense clouds may still play some role in the production of interstellar organics since diffuse ISM dust cycles into dense clouds fairly rapidly ($\sim 3 \times 10^7$ years; McKee 1989; Jones et al. 1994).

Hydrogenated Amorphous Carbon (HAC) is a possible candidate for the organic component of diffuse interstellar dust (Tielens et al. 1996; Pendleton et al. 1994), and several laboratory groups are attempting to produce HAC analogs with a -CH$_2$/-CH$_3$ ratio which matches the observed feature
(e.g., Furton et al. 1999; Duley et al. 1998). Previous comparisons of HACs with the interstellar 3.4 μm feature have shown that many HACs produced in the laboratory are lacking in -CH$_3$ groups relative to -CH$_2$- groups, providing an unsatisfactory fit to the observed feature (e.g., Pendleton et al. 1994). Recently, Duley et al. (1998) have shown that the 3.38 μm -CH$_3$ subfeature is strengthened at lower temperatures (77 K), and the resulting HAC with -CH$_2$/-CH$_3$ < 1, provides a better match to the 3.4 μm interstellar feature, compared with higher temperature (e.g., 300 K) HACs.

Recently, a feature near 6.2 μm was discovered along sightlines toward the GC Quintuplet sources and several dusty late-type WC Wolf-Rayet stars, and has been attributed to the aromatic C-C stretch in polycyclic aromatic hydrocarbon molecules (PAH) in the diffuse ISM along the line of sight (Schutte et al. 1998). PAHs are a certain component of the carbonaceous material in the Galaxy, as shown by the dominance and ubiquitous presence of the family of PAH emission features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm in diffuse emission in the Galactic disk (Giard et al. 1988; Ristorcelli et al. 1994; Mattila et al. 1996). Therefore, the detection of the aromatic C-C stretch at 6.2 μm in diffuse ISM sightlines is not surprising; its carrier may be in the form of gaseous polycyclic aromatic hydrocarbons (PAHs) or PAH clusters with sizes up to a few thousand C atoms (Schutte et al. 1998). The corresponding C-H stretch at ~ 3.3 μm was not detected in absorption in the diffuse ISM, although high signal-to-noise data, necessary to detect this weak feature, were not available for many sightlines. However, an absorption feature at 3.25 μm is detected in ground-based data in five heavily extincted molecular cloud sightlines (Sellgren et al. 1995; Brooke, Sellgren, & Geballe 1999).

In this paper we discuss the composition of the hydrocarbon dust component as well as the molecular cloud ices, along the line of sight to the Galactic Center based on 2.5–13 μm spectra from the Infrared Space Observatory’s Short Wavelength Spectrometer (ISO-SWS). ISO-SWS had revealed the previously elusive 2.95 μm NH$_3$ feature in dense cloud material along the GC line-of-sight. These observations have also provided us with the first meaningful observations of hydrocarbon modes at long wavelengths (5–8 μm) corresponding to the well-studied 3.4 μm absorption feature, associated with the diffuse ISM, allowing us to narrow down the list of possible hydrocarbon candidates (§5.1). We also present the first detection of aromatic absorption, at 3.28 μm, unassociated with molecular cloud dust. This paper is organized as follows: In §2 we briefly discuss what is known about the nature of the sources, and in §3 we explain the data reduction, and present the ISO-SWS spectra of 3 sources in the Galactic Center. In the following sections, we discuss the nature of the molecular cloud IR absorption features (§4) and hydrocarbon absorption features (§5) along the line of sight. Finally, we discuss possible scenarios for the origin of hydrocarbons in the GC region (§6) and summarize our results (§7).

2. The Nature of the Sources

In this paper we analyze spectra from ISO-SWS for three sightlines toward the Galactic Center: Sgr A*(and Sgr A W-IRS3), GCS3, and GCS4. The IR sources contained in the ISO beam along
the line of sight toward Sgr A* and Sgr A W-IRS3, suffer visual extinction ~ 31 magnitudes (Rieke et al. 1989, and references therein), and contain M giants and supergiants, and H II regions (Eckart et al. 1995; Sellgren et al. 1987; Lebofsky et al. 1982; Wollman, Smith, & Larson 1982). GCS3 and 4, located near the GC Radio Arc, approximately 14' NE of the Galactic Center, corresponding to a projected distance of about 30 pc (assuming a distance of 8.2 kpc), were first discovered in the polarimetric study by Kobayashi et al. (1983). Visual extinction estimates are similar to that for the GC, $A_V \sim 29$ magnitudes (Figer et al. 1999 and references therein). Detailed imaging of the region revealed that GCS3 and 4 consist of a compact group of at least 5 IR sources, which have since become known as the Infrared Quintuplet (Nagata et al. 1990; Okuda et al. 1990), although more recent imaging and spectroscopic investigations (Moneti et al. 1992, 1994) have shown that this region contains several bright and many faint IR sources. The nature of these objects is still a question of debate: several studies have suggested that the Quintuplet cluster consists of young stars surrounded by thick shells or cocoons of hot dust (e.g., Moneti et al. 1994). A very recent photometric study has proposed that these stars are actually massive late-type dusty WC Wolf-Rayet stars (Figer, McLean, & Morris 1999).

3. Observations and Data Reduction

Infrared spectra of Sagittarius A* (Lutz et al. 1996), Sagittarius A W-IRS3, and Quintuplet (AFGL 2004) sources GCS3 and GCS4 were obtained with ISO-SWS in 1996 and 1997. The reader is referred to de Graauw et al. (1996a) for a more detailed description of SWS and its capabilities. Observational details and coordinates are listed in Table 1. The ISO-SWS $14'' \times 20''$ beam was centered on the coordinates listed in Table 1; the Sgr A* and Sgr A W-IRS3 positions are only several arcseconds apart, and therefore probe similar lines of sight in the relatively large ISO beam. The observations of GCS3 were centered on GCS3-I and included all four GCS3 objects; GCS4, located some 15'' away from GCS3-I probes a unique sightline in this region. Data for GCS3 and GCS4 have been presented in Schutte et al. 1998; we have re-reduced these data using the most up-to-date calibration files (see below). Astronomical Observing Template 1 (AOT1), speed 4, was used to obtain data for SgrA* in the 2-45 μm spectral region (Lutz et al. 1996), giving resolving power $R \sim 800 - 1700$ depending on the wavelength region. AOT1 speed 3 data were obtained for the GCS3 and 4 in the full 2–45 μm spectral region with $R \sim 480 - 1020$. Higher resolution data were obtained for GCS3 with AOT6 in the 3.1–3.5 ($R \sim 2000$) and 5.3–7.0 μm ($R \sim 1350$) spectral regions, and for Sgr A W-IRS3 in the 7.4–8.0 μm ($R \sim 1700$) spectral region.

In the present paper, we discuss the 2.5–13 μm spectral region which contains the strongest absorption features of hydrocarbons and ices, except for the 15.3 μm CO$_2$ band which has been discussed extensively by Gerakines et al. (1999) and references therein. The data were reduced using the SWS Interactive Analysis package (de Graauw et al. 1996a) and the Observers SWS Interactive Analysis Package (OSIA). Version 7 of the SWS calibration files were used. The flux-calibrated spectra from 2.5–13 μm are shown in Fig. 1. Optical depth spectra were determined by fitting
local low order polynomial continua as described in the following sections. No evidence for broad molecular emission features (e.g., due to PAHs) was apparent in the spectra, thus continua were chosen assuming only the presence of absorption. Optical depths of the dust absorption features are listed in Table 2.

4. The Molecular Cloud Features

Molecular cloud absorption features of solid-state H$_2$O, CO$_2$, and CH$_4$ along the line of sight to the Galactic Center are assigned based on their previous identification in known molecular cloud sources. Consistent with the uneven distribution of molecular cloud material, these features vary in depth across the GC field, whereas absorption features due to dust in the diffuse interstellar medium are observed at approximately constant depth (§5.1). It is evident from the depth of the 3.0 µm ice feature (Fig. 1) that there is more molecular cloud material along the line of sight toward Sgr A* than towards GCS3 and 4. Thus, we use the Sgr A* spectra to characterize the molecular cloud dust that is present along the line of sight to the Galactic Center. Optical depth plots of the molecular cloud features are presented in Fig. 2; column densities are listed in Table 3. We discuss these features in detail below.

4.1. H$_2$O-ice at 3.0 and 6.0 µm

4.1.1. The 3 µm feature

The 3 µm optical depth profiles for the GC sources (Fig. 3) were determined by fitting a local second degree polynomial in the 2.5–4.2 µm region. These profiles are very similar to each other and at the same time distinctly different from the H$_2$O-ice absorption features observed towards molecular clouds elsewhere in the Galaxy (McFadzean et al. 1989; Butchart et al. 1986). Figure 3 compares the 3 µm water-ice feature observed in the Taurus dark cloud in the line of sight towards the background K-giant Elias 16 (from Smith et al. 1989), with those of the GC sources, SgrA*, GCS3 and 4. Clearly, the 3 µm band in the Galactic Center shows a blue absorption wing, peaking at about 2.95 µm. (The aliphatic hydrocarbons absorption band at 3.4 µm is discussed in §5.1). While initially this difference in profile was taken to imply that this band might be due to water of hydration in silicates rather than H$_2$O-ice (Tielens et al. 1996; Wada et al. 1991; Tielens & Allamandola 1987), the absence of this band in local sightlines through the diffuse ISM sheds some doubt on that interpretation (e.g. Whittet et al. 1997). The discovery of solid CO$_2$ by ISO now firmly links the 3.0 µm band in the GC to H$_2$O-ices (de Graauw et al. 1996b; Lutz et al. 1996; Whittet et al. 1997; Gerakines et al. 1999).

We consider the possibility that the 3.0 µm band could be due to diluted mixtures of H$_2$O with other molecules, such as CO, O$_2$, and NH$_3$ as suggested by Schutte & Greenberg (1989). Drawing
upon extensive laboratory studies by the Leiden (http://www.strw.leidenuniv.nl/~lab/; Gerakines et al. 1995, 1996) and NASA/Ames Astrophysics Laboratory groups, we attribute the difference in the 3.0 \(\mu \text{m} \) profile between the GC and local molecular clouds to a higher abundance of other species – notably ammonia – in the H\(_2\)O-ice in the former relative to the latter regions. Possibly, this increased abundance of NH\(_3\)-ice in the GC region relative to H\(_2\)O-ice reflects the increase in the N/O elemental abundance ratio with decreasing galacto-centric radius (Simpson et al. 1995; Rubin et al. 1988). A detailed discussion of the laboratory results for H\(_2\)O:NH\(_3\) mixtures will be discussed in a subsequent paper (J. Chiar & M. Bernstein, in preparation). We describe the laboratory fits to the 3 \(\mu \text{m} \) profile, and determination of H\(_2\)O-ice column density along with the discussion of the 6 \(\mu \text{m} \) ice profile below.

4.1.2. The 6 \(\mu \text{m} \) feature

The 5.5–6.5 \(\mu \text{m} \) spectral region contains the vibrational modes of several molecules of astrophysical interest: O-H bend in H\(_2\)O (6.0 \(\mu \text{m} \)), C=O stretch in carbonyl groups (occurring in aldehydes, ketones, and carboxylic acids; 5.7–5.9 \(\mu \text{m} \)), and C-C stretch in aromatic materials (6.2 \(\mu \text{m} \)). The spectra of all GC sources show an absorption feature around 6.0 \(\mu \text{m} \) (Fig. 4). Sources in or behind local molecular clouds also show a feature at 6.0 \(\mu \text{m} \) (Fig. 6) due mostly to the O-H bending mode in H\(_2\)O-ice, although trace amounts of other molecules may contribute to the absorption (Keane et al. 2000; Schutte et al. 1996b; Tielens & Allamandola 1987). In contrast, Galactic Wolf-Rayet WC-type stars show an absorption feature at 6.2 \(\mu \text{m} \) attributed to the C-C stretch in aromatic materials (Schutte et al. 1998; see also Fig. 4 and §5.2.1). Visual inspection of Fig. 4 reveals that the 6 \(\mu \text{m} \) profile of Sgr A* is strikingly different than those of GCS3 and 4, the latter two instead show a similarity to the 6.2 \(\mu \text{m} \) band observed towards late-type dusty WC stars such as WR118 (cf. §5.2 and Schutte et al. 1998). Given the greater depth of the 3.0 \(\mu \text{m} \) ice band in Sgr A*, compared to GCS3 and GCS4 (Fig. 1), the 6.0 \(\mu \text{m} \) band of this source is likely to contain a dominant ice component.

Determination of the 6 \(\mu \text{m} \) profile for Sgr A* depends heavily on the choice of continuum, leading to uncertainties in the red side of the profile and peak optical depth, and minor changes in the peak position. We carried out first and second degree polynomial fits to the 5.5–8.5 \(\mu \text{m} \) spectrum of Sgr A* in order to quantify the differences in the profiles resulting from each. Figs. 5 and 6 show two possible continuum choices and the resulting optical depth spectra, respectively. Peak positions of \(\lambda \sim 6.05 \) (second degree polynomial fit) and 6.10 \(\mu \text{m} \) (first degree polynomial fit), and peak optical depths (at 6.05 \(\mu \text{m} \)) of 0.20 (first degree) and 0.14 (second degree) are obtained. We adopt the second degree continuum fit, as this provides a good estimate of the continuum for the absorption features at 6.0, 6.85, and 7.25 \(\mu \text{m} \).\(^9\) For consistency, we also adopt second degree polynomial continuum fits for GCS3 and 4; the optical depth spectra are shown in Fig. 4.

\(^9\)A local continuum in the 7.3–8.0 \(\mu \text{m} \) region is used for the CH\(_4\) feature at 7.68 \(\mu \text{m} \). See §4.3 for further discussion.
Rather than identifying the carrier of the 6 μm feature in the GC sources in isolation, we use the 3 μm profile as a constraint for the nature and abundances of the carriers of the corresponding 6 μm feature. Most of the 6 μm absorption in protostellar objects is explained by simple amorphous H$_2$O-ice mixtures, so we first attempt to match the GC 3- and 6-μm profiles with only pure H$_2$O-ice (using laboratory data from Leiden Observatory’s database at: http://www.strw.leidenuniv.nl/~lab/). This procedure shows that fitting the 6 μm band with pure H$_2$O-ice causes the optical depth of the 3 μm band to be overestimated by a factor of 2–3.5 for all 3 objects. This is demonstrated in Fig. 7 (bottom panels) for SgrA* and in Fig. 8 for GCS3 (top panels) and 4 (bottom panels). The mixture used, amorphous H$_2$O at 30 K is a realistic analog for ices in these sightlines, and provides the best fit to the Sgr A* 6 μm profile when the 3 μm spectrum is ignored. Such a discrepancy between the 3 and 6 μm H$_2$O-ice optical depth has been noted for some massive young stellar objects (Gibb et al. 2000; Keane et al. 2000). For these sources scattering at near-IR wavelengths in the disk-like environment of the protostar may reduce the apparent optical depth at 3.0 μm (Pendleton et al. 1990). For the Galactic Center sources, ice absorption is not local to the sources but rather occurs along the line-of-sight and, hence, this effect should not play a role. Thus, we conclude that, despite the good fit, the 6.0 μm band cannot be due to H$_2$O-ice alone.

The 3 μm band towards Sgr A* shows an excess blue absorption wing relative to other observed interstellar ice bands (cf. Fig. 3). Likely, this is due to the presence of NH$_3$ in the ice (e.g., Schutte & Greenberg 1989). There is evidence that the 6 μm profile in protostellar objects is also due to a mixture of other molecules with H$_2$O (Schutte et al. 1996b; Keane et al. 2000; Gibb et al. 2000). Thus, we favor a multicomponent “fit” to the 3- and 6-μm ice features, and have used the extensive databases at Leiden Observatory and NASA-Ames Astrophysical Laboratories to determine the carriers (in addition to H$_2$O-ice) responsible for the two features. These databases contain mixtures of H$_2$O-ice with CH$_3$OH, CH$_4$, O$_2$, H$_2$CO, HCOOH, CO, and CO$_2$ as minor components, as well as pure ices of these molecules, at temperatures ranging from 10–245 K (http://www.strw.leidenuniv.nl/~lab/; J. Chiar & M. Bernstein, in preparation). A formal chi-squared fitting routine is used to fit the profiles in the SgrA* spectrum. The “best” fit, shown in Fig. 7 (top panels), consists of H$_2$O:NH$_3$:CO$_2$ (100:30:6, 15 K) and HCOOH at 10K. Summing these mixtures provides an impressive fit to the 3 μm feature including the so-called long-wavelength wing (3.4 μm absorption is due to diffuse ISM dust; this region is excluded from the fit), and can account for much of the absorption at 6 μm. Formaldehyde (H$_2$CO) has been discussed as a candidate for the red side of the 6 μm feature in protostellar objects (Schutte et al. 1996a; Keane et al. 2000); the Sgr A* profile (which is tightly constrained on the red side, regardless of continuum choice), limits the amount of H$_2$CO relative to H$_2$O-ice to \sim 2%.

Residual absorption resulting from subtracting the “fit” from the astronomical data is shown in Fig. 9 (top panel). Much of this remaining absorption is accounted for by a component at 6.2 μm, similar to the WR118 6.2 μm profile (Figs. 4, 9). See §5.2.1 for a detailed discussion of this component. Only a small portion of the 6 μm profile remains unaccounted for in the Sgr A* spectrum (Fig. 9, bottom panel). Additional organic acid mixtures, such as HCOOH at a range of
temperatures and host matrices, are needed to resolve this issue.

The weakness of the 6 µm ice components in GCS3 and 4 make a chi-squared analysis of the 3- and 6-µm bands unwarranted (see the middle panels in Fig. 8), however their 3-µm profiles and the relative depths of their 3- and 6-µm bands can be used to help constrain the nature of the ices. Pure H$_2$O does not provide a satisfactory match to the 3- and 6-µm profiles, as discussed above (Fig. 8). The 3 µm profiles of these sources are well-matched by the same H$_2$O:NH$_3$:CO$_2$ mixture used to fit the Sgr A* profiles, suggestive of a consistent NH$_3$/H$_2$O ratio for dense clouds towards the Galactic Center. A 6.2 µm WR118-like component accounts for the remainder of the 6 µm profile, as for Sgr A*. Fig. 8 shows that all of the 6 µm absorption in the Quintuplet spectra is accounted for by the sum of the ice mixture (H$_2$O:NH$_3$:CO$_2$, 15 K) and a 6.2 µm “diffuse ISM” component (represented by the WR118 spectrum). Detailed discussion of the 6.2 µm feature is deferred to §5.2.1.

To summarize, using the available databases of interstellar ice analogs, the 3- and 6-µm profiles observed toward Sgr A*, GCS3, and GCS4 are best represented by the ice mixture, H$_2$O:NH$_3$:CO$_2$ (100:30:6, 15K), with a small amount of HCOOH at 10K (for Sgr A*), in addition to a diffuse ISM component at 6.2 µm. Pure H$_2$O cannot account for the shape of the 3 µm profile or the relative depths of the 3 and 6 µm features. Water-ice column densities (Table 3) are determined by the fit to the 3 µm profile (Fig. 7 [top left, dotted line], Fig. 8 [left panels, solid line]), using $N = \int \tau_\nu d\nu / A$, and $A = 2 \times 10^{-16}$ cm molecule$^{-1}$ (Hagen et al. 1981). Column density for HCOOH is determined using the 6 µm fit (Fig. 7 [top right, dashed line]), and $A = 6.7 \times 10^{-17}$ cm molecule$^{-1}$ (Maréchal 1987).

4.2. CO$_2$ and CH$_3$OH-ice, and CO

Solid CO$_2$ absorption features at 4.27 µm (stretching mode) and 15.2 µm (bending mode) have been discussed extensively by Gerakines et al. (1999). Fits to the CO$_2$ profiles showed that toward the sources in the present paper, CO$_2$ ice is embedded in a mainly polar matrix at temperatures < 50 K.

We searched for solid CH$_3$OH absorption features at 3.54 µm (C-H stretch), 3.9 µm (combination mode), and 6.85 µm (C-H deformation mode) in the Sgr A* spectrum. The C-H stretch mode occurs in the red wing of the 3.4 µm aliphatic hydrocarbon feature. In order to obtain a limit on the depth of a possible CH$_3$OH feature at 3.54 µm, a local second degree polynomial was fitted between 3.4–3.7 µm. A second degree polynomial continuum was fitted in the 3.6–4.1 µm region to estimate the 3.9 µm feature depth. Although we detect a feature centered at 6.85 µm towards SgrA*, its width is too narrow to be due to CH$_3$OH (see §5.1), thus the continuum on either side of the observed 6.85 µm feature is used to deduce a limit for the CH$_3$OH feature. Limits on the optical depths are $\tau_{3.54} < 0.01$, $\tau_{3.9} < 0.001$, $\tau_{6.85} < 0.005$. Using the integrated absorbance values for pure CH$_3$OH ($A = 5.3 \times 10^{-18}, 2.8 \times 10^{-18}, 1.2 \times 10^{-17}$ cm molecule$^{-1}$, for the 3.54, 3.9, and
6.85 µm features, respectively; Hudgins et al. 1993), the average calculated CH$_3$OH column density is < 0.5 × 1017 cm$^{-2}$, resulting in an abundance of < 4% relative to H$_2$O-ice. This is similar to the value, N(CH$_3$OH)/N(H$_2$O) < 5%, found for the quiescent Taurus dark cloud (Chiar, Adamson, & Whittet 1996), and significantly less than the abundance found for some high mass protostars where N(CH$_3$OH)/N(H$_2$O) is as high as 30% (Allamandola et al. 1992; Skinner et al. 1992; Dartois et al. 1999).

Carbon monoxide is present primarily in the gas-phase in these lines of sight. Limiting values for the solid CO column densities derived in this work are listed in Table 3. These values agree with those independently analyzed by Gerakines et al. (1999).

4.3. CH$_4$-ice

The deformation mode of solid methane (CH$_4$) occurs near 7.68 µm, and has been detected in three protostellar sources to date (d'Hendecourt et al. 1996; Boogert et al. 1996, 1998). We detect this absorption feature in the Sgr A* and Sgr A W-IRS3 spectra with $\tau_{7.68} \simeq 0.02$ (Fig. 10). Fits to the higher quality Sgr A W-IRS3 AOT6 spectrum were carried out using the database at Leiden Observatory (Boogert et al. 1997). This spectrum is best-fitted by CH$_4$ embedded in a polar matrix containing molecules such as H$_2$O and/or CH$_3$OH at temperatures ranging from 10–80 K. Nonpolar mixtures do not provide a good fit as they peak at shorter wavelengths and have more narrow profiles than the observed feature. Our result is consistent with recent studies of solid CH$_4$ toward protostellar objects which have shown that CH$_4$ embedded in a polar matrix provides the best fit to the observed profile (Boogert et al. 1996; d'Hendecourt et al. 1996). We adopt the matrix-independent integrated absorption strength, $A = 7.3 \times 10^{-18}$ cm molecule$^{-1}$ to compute the column density of CH$_4$ towards SgrA*: N(CH$_4$) = $3 \pm 1 \times 10^{16}$ cm$^{-2}$, resulting in N(CH$_4$)/N(H$_2$O) = 0.02 ± 0.01, within the range, 0.4-4%, found for protostellar objects (Boogert et al. 1996; d'Hendecourt et al. 1996).

The peak optical depth of the C-H stretching mode of solid CH$_4$, at 3.32 µm, is expected to be the same as that of the deformation mode (Hudgins et al. 1993; Boogert et al. 1997). Since this feature falls in the blue wing of the 3.4 µm aliphatic hydrocarbon feature (§5.1), its presence cannot be confirmed.

Assuming a similar N(CH$_4$)/N(H$_2$O) ratio for GCS3 and GCS4 as for Sgr A*, a feature with optical depth $\tau_{7.68} < 0.01$ is expected for the C-H deformation mode. The current data do not have sufficient S/N in this wavelength region to detect such a weak feature; limiting values for $\tau_{7.68}$ and N(CH$_4$) are given in Tables 2 and 3, respectively.
5. The Diffuse ISM features

Aliphatic hydrocarbons are known to be a widespread component of the diffuse ISM as shown by the ubiquitous presence of the 3.4 µm C-H stretch absorption feature in all studied sightlines. ISO-SWS data have now given us irrefutable evidence for the corresponding deformation modes at longer wavelengths. Contrarily, aromatic hydrocarbons, which have C-H and C-C stretch modes at ∼3.3 and 6.2 µm, respectively, are not yet well-established as a universal component of the diffuse ISM. We discuss these hydrocarbon features toward the GC in the following sections. Aliphatic hydrocarbon features detected toward Sgr A* are shown in Fig. 11; Fig. 12 displays both aliphatic and aromatic hydrocarbon absorption features observed toward GCS3.

5.1. The 3.4, 6.85, and 7.25 µm aliphatic hydrocarbon features

Saturated aliphatic hydrocarbons exhibit CH stretching modes at ∼3.4 µm (methyl and methylene groups), and CH deformation modes at ∼6.9 µm (methyl and methylene groups) and ∼7.3 µm (methyl group). The profile of the 3.4 µm absorption features toward Sgr A* (Fig. 11), GCS 3 (Fig. 12), and 4 is consistent with previous ground-based observations: substructure in the feature is identified with the CH stretch in methyl (-CH$_3$) and methylene (-CH$_2$-) groups, with an average ratio of -CH$_2$/-CH$_3$ ≃ 2 − 2.5, in saturated aliphatic hydrocarbons (Pendleton et al. 1994; Sandford et al. 1991). Subfeatures due to the symmetric and asymmetric vibrational stretching modes of the CH groups are indicated in the 3.2–3.9 µm optical depth spectrum for GCS3 (Fig. 12).

The Sgr A* spectrum shows clear absorption features at 6.85 µm and 7.25 µm (Fig. 11) due to the asymmetric and symmetric CH deformation modes, respectively. The 6.85 µm band is also weakly present in the spectrum of GCS3, and may be present in the spectrum of GCS4, consistent with the relatively weaker 3.4 µm absorption features (Table 2, Fig.4). We do not attempt to quantify the central wavelengths of the weak 6.85 µm features in the GCS3 and 4 spectra; within reasonable uncertainties they are similar to that in Sgr A*. The signal-to-noise of the GCS3 and 4 spectra in the 7 µm region is not sufficient to detect the 7.25 µm band; limits are given in Table 2. Using the Sgr A* spectrum, and assuming –CH$_2$–/-CH$_3$ = 2.5, we calculated the expected ratio of integrated intensities for the 3.4, 6.85 and 7.25 µm bands for branched and normal saturated aliphatic hydrocarbons from values by Wexler (1967) (Table 4). The 6.85 and 7.25 µm feature profiles are estimated using Lorentzian curves with FWHM = 0.12 µm (26 cm$^{-1}$), and 0.10 µm (19 cm$^{-1}$), respectively, assuming that the 6.85 µm feature is partially filled in by emission features (due to H$_2$ and [ArII]; see Lutz et al. 1996). Integrated intensities for the astronomical data (Sgr A*) are determined using the equation $\tau_{\text{int}} = \int \tau_\nu d\nu$, and are listed in Table 4.

Integrated intensity ratios predicted for (branched) saturated aliphatic hydrocarbons are well-matched by those calculated from our Sgr A* spectrum (Table 4). Hydrogenated amorphous carbon (HAC) material can contain a substantial fraction of saturated aliphatic hydrocarbon groups, and
in fact a HAC analog with H/C = 0.5 and \(sp^3/sp^2 = 0.5 \) provides a reasonable match to the relative strength of the 3.4, 6.85, and 7.25 \(\mu \)m features in the Sgr A* spectrum (Fig. 13; Furton et al. 1999).

Protostars also show a prominent feature at 6.85 \(\mu \)m which appears to be associated with carriers residing in ices along the line of sight (Keane et al. 2000). The 6.85 \(\mu \)m ice band, however, extends from approximately 6.5–7.2 \(\mu \)m, much broader than that observed towards Sgr A*, GCS3 and 4 (Fig. 6). The ice profile varies in peak wavelength, width and depth for different protostellar objects, and also correlates with the 3 \(\mu \)m ice feature (Keane et al. 2000), whereas no such strong variation in the feature is observed toward the GC, even though there are clearly different amounts of molecular cloud ices. Moreover, the 6.85 \(\mu \)m optical depth is very similar in the three Galactic Center sources despite the large differences in ice optical depth. Therefore, we attribute the 6.85 \(\mu \)m feature to dust in the diffuse interstellar medium, related to the 3.4 \(\mu \)m aliphatic hydrocarbon feature, rather than molecular cloud ices.

5.2. Aromatic hydrocarbon features

5.2.1. The 6.2 \(\mu \)m band

All the GC sources show evidence for the presence of a 6.2 \(\mu \)m (FWHM = 34±5 cm\(^{-1}\)) feature. This feature has been previously detected in ISO spectra of GC sources and 4 Wolf-Rayet stars and is attributed to the C-C stretch in aromatic hydrocarbons (Schutte et al. 1998).

The 6.2 \(\mu \)m profiles presented here were determined by first finding a satisfactory fit to the 3- and 6-\(\mu \)m ice features as described in §4.1, then subtracting this “fit” from the 6 \(\mu \)m absorption feature to obtain a residual spectrum (Figs. 7, 8, 9). The 6.2 \(\mu \)m profile for WR118 is used as a template “diffuse ISM” spectrum since this line of sight is known to contain no molecular cloud material, based on non-detections of typical molecular cloud features (H\(_2\)O-ice and CO\(_2\); van der Hucht et al. 1996; Schutte et al. 1998). In the cases of GCS3 and GCS4, this procedure leads to a residual which closely matches the (scaled) WR118 6.2 \(\mu \)m profile. Fig. 8 (right panels) shows the result of adding the scaled WR118 profile to the ice fits for these sources, and shows that the 3 and 6 \(\mu \)m profiles can be fully accounted for by ices plus a diffuse ISM component. In the case of Sgr A*, only the red side of the residual is accounted for by a diffuse ISM (WR118-like) component. The excellent match of the red wing of the profiles gives us confidence that Sgr A* does contain the same 6.2 \(\mu \)m feature seen in GCS3, 4 and the WR stars.

The 6.2 \(\mu \)m feature is most likely carried by dust which is unassociated with molecular cloud material since it is detected in lines-of-sight which are known to contain no ices (such as H\(_2\)O, CO\(_2\); Schutte et al. 1998). In the Galactic Center, the source with the strongest ice bands (Sgr A*) has the smallest 6.2 \(\mu \)m feature. For all the sources studied, there appears to be a trend of increasing 6.2 \(\mu \)m feature depth with \(A_V \) and \(\sigma_{9.7} \) (Schutte et al. 1998), however the depth of the 6.2 \(\mu \)m feature in the Sgr A* spectrum seems to be anomalously weak with respect to its 9.7 \(\mu \)m silicate optical depth.
and its extinction, compared to sources in the solar neighborhood (Schutte et al. 1998) and GCS3 and 4. A depth of $\tau_{6.2} \sim 0.13$ would be expected for Sgr A* if this quantity was correlated with the silicate depth. In contrast, the observed depth is only 0.05 (Table 2). Hence it seems that the 6.2 μm feature is carried by an independent component whose abundance varies with respect to that of the silicates. We note that the total visual extinction (A_V) also seems to vary independently of the 9.7 μm silicate band (Roche & Aitken 1985).

Presence of aromatic hydrocarbons can also be determined from observations of the complementary 3.3 μm C-H stretch feature. This feature is discussed in more detail below.

5.2.2. The 3.28 μm aromatic hydrocarbon feature

The AOT6 spectrum of GCS 3 exhibits a weak absorption feature centered at 3.28 μm, with $\Delta \nu = 25 \pm 5$ cm$^{-1}$, which we attribute to the C-H stretch in aromatic hydrocarbons (Fig. 12). The C-H stretch in solid methane occurs near 3.32 μm, far from the observed feature, therefore we can rule out methane as a possible candidate for the absorption. The lower resolution/signal-to-noise AOT1 spectrum is also consistent with the presence of absorption centered at 3.28 μm. Presence of this feature in the AOT1 spectrum of GCS4 cannot be ruled out. An absorption feature centered at $\lambda_0 \sim 3.25$ μm ($\Delta \nu = 74$ cm$^{-1}$) has been detected in molecular cloud sources and is attributed to aromatic hydrocarbon molecules at low temperature (Sellgren et al. 1995; Brooke et al. 1999). The difference in central wavelength and width between these different environments cannot be accounted for by uncertainties in the continuum fit, but rather demonstrates the difference in the temperature and/or carrier of the aromatic material in these regions. Although there is a strong Pfund δ atomic hydrogen line at 3.30 μm, there is no evidence for an underlying absorption feature at 3.28 μm, to a limit of $\tau_{3.28} < 0.02$, in the Sgr A* spectrum. This limit is consistent with the weakness of the 6.2 μm aromatic band in Sgr A*, thus we conclude that the 3.28 μm and 6.2 μm feature are due to the same material.

Gas-phase PAHs are not a likely carrier of the 3.28 μm absorption feature: based on the temperature dependence of the gas-phase PAH profile determined in the laboratory by Joblin et al. (1995), a temperature of 600-1300 K is implied for the feature observed toward GCS3. While such a high temperature is consistent with PAH emission - indeed 3.28 μm is also the position of the unidentified infrared emission feature - to get a PAH absorption feature would require an extraordinarily large column of hot gas. Comparison of the peak positions of matrix-isolated laboratory PAHs given by Hudgins & Sandford (1998a,1998b) with our astronomical data show that neutral PAHs such as pyrene frozen in ices may be a good candidate for the observed feature. Laboratory studies carried out in the Astrophysics laboratory at NASA Ames of pyrene in H$_2$O ice show a fair match to the 3.28 μm feature (Fig. 14). However, this does not provide simultaneously a good fit to the observed interstellar 6.2 μm band (cf., §4.1.2, Fig. 14). In fact, as pointed out by Schutte et al. (1998), neutral PAHs have too weak an absorption feature to account for the observed strength of the 6.2 μm feature. For that reason, Schutte et al. (1998) attributed the 6.2 μm band
to ionized PAHs whose CC modes are intrinsically much stronger. Nevertheless, this assignment still requires 10% of the available carbon in the form of PAH cations for GCS3 and 4.

An origin of the 3.28 μm band in HACS is also possible. HACs, when heated, lose much of their hydrogen and their aromatic component grows in strength. The spectral characteristics of heat-treated HACs (Scott & Duley 1996; Blanco et al. 1988) resemble those observed toward GCS3. At present, we cannot distinguish observationally whether free-flying, ionized PAHs or HACs are the carriers of the 3.28 μm band in the diffuse ISM.

6. Origin and Evolution of Aliphatic and Aromatic Hydrocarbon Dust

Whereas the distribution of aliphatic hydrocarbon dust, detected via the 3.4, 6.85, and 7.25 μm features, toward the GC shows little variation, aromatic hydrocarbons identified via their C-H stretch (3.28 μm) and C-C stretch (6.2 μm), however, may not be evenly distributed throughout the GC region (§5.2). It has recently been proposed that the Quintuplet sources are dusty late-type WC stars. WC stars are descendants of massive ($M > 25M_\odot$) OB stars where substantial mass loss and mixing have uncovered freshly synthesized material at the stellar surface. These objects are rich in He, C, and O (\simeq 10:3:1 by number), but there is no evidence for H or N ($< 10^{-2}$ and 10^{-3} relative to He by number; Willis 1982; Nugis 1982; Torres 1988). Thus, aromatic dust associated with the 6.2 μm C-C stretch feature, detected toward GCS3, GCS4, and the well-known WR stars, may instead be associated with the environment of these objects instead of the general diffuse ISM. One of the IR sources (IRS6E) included in the ISO-SWS beam centered on Sgr A* has been identified as a late-type WC star (Krabbe et al. 1995); this may explain the presence of a small amount of 6.2 μm absorption (relative to its deep 9.7 μm silicate feature). However, while the WC stars may be responsible for producing the carrier(s) of the C-C stretch (6.2 μm), they cannot be a significant contributor to the carrier(s) of the C-H stretch (3.28 μm). Presently, the connection between 3.28 and 6.2 μm absorption features is not well established observationally.

Various models have been proposed for the origin and evolution of these dust components – ices, aliphatic, and aromatic dust – in the ISM. Of particular relevance are the processing of interstellar ices leading to organic grains (Greenberg 1989) and the processing of Hydrogenated Amorphous Carbon (Scott & Duley 1996; Blanco et al. 1988). Ices are generally thought to form by accretion on preexisting silicate cores inside dense molecular clouds. These ices can be photolyzed by penetrating UV photons and may be converted into an organic refractory mantle. Laboratory studies have shown that this process may lead to a material with IR characteristics matching the observed interstellar 3.4 μm bands well (Greenberg et al. 1995; Allamandola, Sandford, & Valero 1988). However, such residues invariably show much stronger absorption in the 5-8 μm range due to residual oxygen bonded to the carbon structures. Such bands are not observed in the spectra of sources showing the 3.4 μm feature (Figs. 4, 11). Our results thus strengthen the argument (Chiar et al. 1998b; Adamson et al. 1999; see §1) that the 3.4 μm carrier is not an organic refractory mantle produced by irradiation of ices in molecular clouds.
Alternatively, HAC, which in structure is akin to soot, could be an important stardust component injected into the ISM by low mass stars during the AGB phase of their evolution, in agreement with the strength of the 3.4 µm absorption band in the protoplanetary object CRL 618 (Chiar et al. 1998b). Extensive analysis of interstellar observations require that the amount of C locked up in HAC relative to H-nuclei is \(\sim 8 \times 10^{-5} \) (Furton et al. 1999). This depends on the extent to which the carbonaceous material is hydrogenated, but the adopted value H/C~ 0.5 is most consistent with other HAC properties (Furton et al. 1999). It has been suggested that HAC could also be formed through accretionary processes in the diffuse ISM but plausible chemical mechanisms have not been identified (Duley & Williams 1995). Nevertheless, HACs are thought to evolve in the diffuse ISM: under the influence of FUV irradiation (or heating), HACs lose H and their structure is transformed from an aliphatic structure into a more aromatic structure (Ogmen & Duley 1988; Furton & Witt 1993). This process will be counteracted by hydrogenation. In photodissociation regions, the astrophysical sites of these processes, both UV irradiation and exposure to atomic hydrogen will occur at the same time (Furton & Witt 1993). The relative amount of aromatic and aliphatic carbon is then set by the balance between these two processes and this will determine the relative strength of the 3.3 (and 6.2) µm band compared to the 3.4 µm band. We note here that, if the 3.3 and 6.2 bands observed in GCS 3 are associated with the diffuse ISM rather than circumstellar dust, we may actually be observing both the aromatic and aliphatic components involved in this process along these lines of sight. However, models of this type have problems too. In particular, theoretical studies of dust destruction and observational studies of elemental depletions suggest that the lifetime of stardust is much shorter (3 \(\times 10^8 \) yr) than the injection timescale by old stars (5 \(\times 10^9 \) yr), which suggests that dust formation in the ISM is very important (Jones et al. 1994, 1996). Now, in the models, ices accreted inside dense molecular clouds, would be rapidly destroyed when the molecular cloud is dispersed. In an evolutionary sense, ices would have little influence on the dust composition in the diffuse ISM. However, it has been suggested that organic residues produced by UV photolysis of interstellar ices are rapidly carbonized (H, O, and N are lost) by the strong far-UV fields in the diffuse ISM and that this leads to a HAC-like mantle (Jenniskens et al. 1993). It remains puzzling then that, while interstellar ice, as well as silicate, features can be polarized, the 3.4 µm aliphatic hydrocarbon feature is not (Adamson et al. 1999). Possibly, this might imply a link between the aliphatic hydrocarbon carriers of the 3.4 µm feature and the aromatic carrier of the 2175Å bump which is also not polarized (Martin et al. 1999). In any case, a HAC-like material with very little oxygen impurities, is the carrier of the 3.4, 6.85, and 7.25 µm features. Further observations, particularly of the 3.28, 3.4, and 6.2 µm bands will be instrumental in settling the origin and evolution of this component.

7. Summary

We have identified molecular cloud and diffuse interstellar medium material along the line of sight to the Galactic Center using ISO-SWS data for 3 sightlines. The amount of molecular cloud material varies across the GC field, and the amount of diffuse ISM material shows little variation.
This is supported by our observations of the 3 μm H$_2$O-ice feature which ranges between $\tau_{3.0} = 0.16 - 0.50$, and the 3.4 μm aliphatic hydrocarbon feature which ranges between $\tau_{3.4} = 0.15 - 0.21$. The line of sight towards Sgr A* contains the largest column of molecular cloud material, relative to GCS3 and 4, apparent from the depth of the 3 μm ice feature. Towards all GC sources discussed in the present paper, CO$_2$ ice is detected, and CO is present mainly in the gas phase. Towards Sgr A*, solid CH$_4$ has also been firmly identified. As the amount of solid CO$_2$ relative to H$_2$O is higher toward the Quintuplet sources compared to Sgr A*, there may be more than one molecular cloud associated with the overall GC region. However, the processes that control the solid CO$_2$ abundance are not well understood (e.g., Whittet et al. 1998; Gerakines et al. 1999).

In many ways, the molecular clouds along the line of sight toward the Galactic Center are similar to local molecular clouds in terms of abundances of key solid state molecules (Table 6). Water-ice remains the most abundant solid state molecule; the solid CO$_2$/H$_2$O ratio is within the range found for local molecular clouds (Gerakines et al. 1999); CH$_3$OH/H$_2$O is similar to that observed in quiescent clouds such as Taurus (Chiar et al. 1996), and does not resemble the higher abundance observed toward heavily embedded massive protostars. While solid CO is not detected in the sightlines discussed here, a weak 4.67 μm feature has been detected previously (McFadzean et al. 1989). The CO/H$_2$O ratio implied is < 10%. The 3.0 μm ice profile is indicative of the temperature, as well as the content of the ices. The profile observed toward the GC is distinct from that seen in local molecular clouds such as Taurus. It is consistent with cold (\sim 15 K) ices, similar to local quiescent dense clouds, but setting this feature apart from those studied in local clouds is substructure at 2.95 μm indicative of a relatively high abundance (up to \sim 30%, relative to H$_2$O) of NH$_3$ in the ices. Toward local molecular cloud sources, the solid NH$_3$/H$_2$O abundance is observed to be \sim 10% (e.g., Whittet et al. 1996, Lacy et al. 1998). The high ammonia abundance in GC molecular clouds could reflect the higher N/O ratio in the inner Galaxy.

Aliphatic hydrocarbons, first detected via their 3.4 μm CH stretch feature, are a widespread component of the diffuse interstellar medium. ISO-SWS has for the first time detected the corresponding C-H deformation modes at 6.85 and 7.25 μm in the line of sight towards the Galactic Center. The ratio of integrated intensities for these three absorption features are consistent with the predicted values for saturated aliphatic hydrocarbons (Wexler 1967). Hydrogenated amorphous carbon containing a substantial fraction of saturated aliphatic hydrocarbon groups provides a convincing match to the observed hydrocarbon absorption features, and is the likely carrier of these features.

Aromatic hydrocarbons, detected via their 3.3 μm C-H and 6.2 μm C-C stretching vibrations, do not appear to be evenly distributed throughout the Galactic Center. Absorption at 3.28 μm is detected in the line-of-sight toward GCS3, but not toward Sgr A*. In addition, the 6.2 μm absorption feature toward Sgr A* is much weaker than that toward the Quintuplet sources. Although our results suggest that the 3.28 and 6.2 μm features are due to the same carrier, it remains unclear whether the C-C stretch absorption feature could instead be produced by dusty C-rich WR stars, and is thus independent of the C-H stretch feature.
J.E.C. was supported by a National Research Council associateship for a portion of this work. J.E.C. is currently supported by NASA’s Long Term Space Astrophysics program under grant 399-20-61-02. D.C.B.W. is supported by NASA through grants NAG5-7598, NAG5-7884, and JPL contract 961624.

REFERENCES

Adamson, A. J., Whittet, D. C. B., Chrysostomou, A., Hough, J. H., Aitken, D. K., Wright, G. S., & Roche, P. F. 1999, ApJ, 512, 224

Aitken, D. K., Briggs, G. P., Roche, P. F., Bailey, J. A., & Hough, J. H. 1986, MNRAS, 218, 363

Allamandola, L. J., Sandford, S. A., Tielens, A. G. G. M., & Herbst, T. M. 1992, ApJ, 399, 134

Allamandola, L. J., Sandford, S. A., & Valero, G. J. 1988, Icarus, 76, 225

Becklin, E. E., Matthews, K., Neugebauer, G., & Willner, S. P. 1978, ApJ, 219, 121

Blanco, A., Bussoletti, E., & Colangeli, L. 1988, ApJ, 334, 875

Boogert, A. C. A., Helmich, F. P., van Dishoeck, E. F., Schutte, W. A., Tielens, A. G. G. M., & Whittet, D. C. B. 1998, A&A, 336, 352

Boogert, A. C. A., Schutte, W. A., Helmich, F. P., Tielens, A. G. G. M., & Wooden, D. H. 1997, A&A, 317, 929

Boogert, A. C. A., et al. 1996, A&A, 315, L377

Bridger, A., Wright, G., & Geballe, T. 1993, in Conference Abstract Volume of Infrared Astronomy with Arrays: The Next Generation, ed. I. McLean, UCLA Dept. of Astronomy, Los Angeles, 537

Brooke, T. Y., Sellgren, K., & Geballe, T. R. 1999, ApJ, 517, 883

Butchart, I., McFadzean, A. D., Whittet, D. C. B., Geballe, T. R., & Greenberg, J. M. 1986, A& A, 154, L5

Chiar, J. E., Adamson, A. J., & Whittet, D. C. B. 1996, ApJ, 472, 665

Chiar, J. E., Gerakines, P. A., Whittet, D. C. B., Pendleton, Y. J., Tielens, A. G. G. M., & Boogert, A. C. A. 1998a, ApJ, 498, 716

Chiar, J. E., Pendleton, Y. J., Geballe, T. G., & Tielens, A. G. G. M. 1998b, ApJ, 507, 281

Dartois, E., Schutte, W., Geballe, T. R., Demyk, K., Ehrenfreund, P., & d’Hendecourt, L. 1999, A&A, 342, L32
de Graauw, T., et al. 1996a, A&A, 315, L49

de Graauw, T., et al. 1996b, A&A, 315, L345

d’Hendecourt, L., et al. 1996, A&A, 315, L365

Duley, W. W., Scott, A. D., Seahra, S., & Dadswell, G. 1998, ApJ, 503, L183

Duley, W. W., & Williams, D. A. 1995, MNRAS, 272, 442

Eckart, A., Genzel, R., Hofmann, R., Sams, B. J., & Tacconi-Garman, L. E. 1995, ApJ, 445, L23

Figer, D. F., McLean, I. S., & Morris, M. 1999, ApJ, 514, 202

Furton, D. G., Laiho, J. W., & Witt, A. N. 1999, ApJ, 526, 752

Furton, D. G., & Witt, A. N. 1993, ApJ, 415, L51

Gerakines, P. A., Schutte, W. A., & Ehrenfreund, P. 1996, A&A, 312, 289

Gerakines, P. A., Schutte, W. A., Greenberg, J. M., & van Dishoeck, E. F. 1995, A&A, 296, 810

Gerakines, P. A., et al. 1999, ApJ, 522, 357

Giard, M., Serra, G., Caux, E., Pajot, F., & Lamarre, J. M. 1988, A&A, 201, L1

Gibb, E. L., et al. 2000, ApJ, in press

Greenberg, J. M. 1989, in Interstellar Dust: IAU Symposium no. 135, ed. L. J. Allamandola & A. G. G. M. Tielens (Dordrecht: Reidel), 345

Greenberg, J. M., Li, A., Mendoza-Gomez, C. X., Schutte, W. A., Gerakines, P. A., & De Groot, M. 1995, ApJ, 455, L177

Hagen, W., & Tielens, J. M., A. G. G. M. Greenberg, 1981, Chem. Phys., 56

Hudgins, D. M., & Sandford, S. A. 1998a, J. Phys. Chem. A, 102, 329

Hudgins, D. M., & Sandford, S. A. 1998b, J. Phys. Chem. A, 102, 344

Hudgins, D. M., Sandford, S. A., Allamandola, L. J., & Tielens, A. G. G. M. 1993, ApJS, 86, 713

Jenniskens, P., Baratta, G. A., Kouchi, A., De Groot, M. S., Greenberg, J. M., & Strazzulla, G. 1993, A&A, 273, 583

Joblin, C., Boissel, P., Leger, A., D’Hendecourt, L., & Defourneau, D. 1995, A&A, 299, 835

Jones, A. P., Tielens, A. G. G. M., & Hollenbach, D. J. 1996, ApJ, 469, 740

Jones, A. P., Tielens, A. G. G. M., Hollenbach, D. J., & MCKee, C. F. 1994, ApJ, 433, 797
Keane, J. V., Tielens, A. G. G. M., Boogert, A. C. A., Schutte, W. A., & Whittet, D. C. B. 2000, A&A, submitted

Kobayashi, Y., Okuda, H., Sato, S., Jugaku, J., & Dyck, H. M. 1983, PASJ, 35, 101

Krabbe, A., et al. 1995, ApJ, 447, L95

Lacy, J. H., Faraji, H., Sandford, S. A., & Allamandola, L. J. 1998, ApJ, 501, L105

Lebofsky, M. J., Rieke, G. H., & Tokunaga, A. T. 1982, ApJ, 263, 736

Lequeux, J., & Jourdain de Muizon, M. 1990, A&A, 240, L19

Lutz, D., et al. 1996, A&A, 315, L269

Maréchal, Y. 1987, J. Chem. Phys., 87, 6344

Martin, P. G., Clayton, G. C., & Wolff, M. J. 1999, ApJ, 510, 905

Mattila, K., Lemke, D., Haikala, L. K., Laureijs, R. J., Leger, A., Lehtinen, K., Leinert, C., & Mezger, P. G. 1996, A&A, 315, L353

McFadzean, A. D., Whittet, D. C. B., Bode, M. F., Adamson, A. J., & Longmore, A. J. 1989, MNRAS, 241, 873

McKee, C. F. 1989, ApJ, 345, 782

Moneti, A., & Cernicharo, J. 2000, in ISO Beyond the Peaks: The 2nd ISO workshop on analytical spectroscopy, E61

Moneti, A., Glass, I., & Moorwood, A. 1992, MNRAS, 258, 705

Moneti, A., Glass, I. S., & Moorwood, A. F. M. 1994, MNRAS, 268, 194

Moore, M. H., Ferrante, R. F., & Nuth, J. A. I. 1996, Planet. Space Sci., 44, 927

Nagata, T., Woodward, C. E., Shure, M., Pipher, J. L., & Okuda, H. 1990, ApJ, 351, 83

Nugis, T. 1982, in Wolf Rayet stars: Observations, Physics, Evolution, ed. C. W. H. de Loore & A. J. Willis (Dordrecht: Kluwer), 131

Ogmen, M., & Duley, W. W. 1988, ApJ, 334, L117

Okuda, H., et al. 1990, ApJ, 351, 89

Pendleton, Y. J., Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., & Sellgren, K. 1994, ApJ, 437, 683

Pendleton, Y. J., Tielens, A. G. G. M., & Werner, M. W. 1990, ApJ, 349, 107
Rieke, G. H., Rieke, M. J., & Paul, A. E. 1989, ApJ, 336, 752
Ristorcelli, I., Giard, M., Meny, C., Serra, G., Lamarre, J. M., Le Naour, C., Leotin, J., & Pajot, F. 1994, A&A, 286, L23
Roche, P. F., & Aitken, D. K. 1985, MNRAS, 215, 425
Rubin, R. H., Simpson, J. P., Erickson, E. F., & Haas, M. R. 1988, ApJ, 327, 377
Sandford, S. A., Allamandola, L. J., Tielens, A., Sellgren, K., Tapia, M., & Pendleton, Y. 1991, ApJ, 371, 607
Schutte, W. A., et al. 1999, A&A, 343, 966
Schutte, W. A., Gerakines, P. A., Geballe, T. R., van Dishoeck, E. F., & Greenberg, J. M. 1996a, A&A, 309, 633
Schutte, W. A., & Greenberg, J. M. 1989, in Dust in the universe, ed. M. E. Bailey & D. A. Williams (Cambridge and New York: Cambridge University Press), 403
Schutte, W. A., et al. 1996b, A&A, 315, L333
Schutte, W. A., et al. 1998, A&A, 337, 261
Scott, A., & Duley, W. W. 1996, ApJ, 472, L123
Sellgren, K., Brooke, T. Y., Smith, R. G., & Geballe, T. R. 1995, ApJ, 449, L69
Sellgren, K., Hall, D. N. B., Kleinmann, S. G., & Scoville, N. Z. 1987, ApJ, 317, 881
Simpson, J. P., Colgan, S. W. J., Rubin, R. H., Erickson, E. F., & Haas, M. R. 1995, ApJ, 444, 721
Skinner, C. J., Tielens, A. G. G. M., Barlow, M. J., & Jusztanont, K. 1992, ApJ, 399, L79
Smith, R. G., Sellgren, K., & Tokunaga, A. T. 1989, ApJ, 344, 413
Strazzulla, G., Castorina, A. C., & Palumbo, M. E. 1995, Planet. Space Sci., 43, 1247
Tielens, A. G. G. M., & Allamandola, L. J. 1987, in Interstellar Processes, ed. D. Hollenbach & H. Thronson (Dordrecht: Kluwer), 397
Tielens, A. G. G. M., Tokunaga, A. T., Geballe, T. R., & Baas, F. 1991, ApJ, 381, 181
Tielens, A. G. G. M., Wooden, D. H., Allamandola, L. J., Bregman, J., & Witteborn, F. C. 1996, ApJ, 461, 210
Torres, A. V. 1988, ApJ, 325, 759
van der Hucht, K. A., et al. 1996, A&A, 315, L193
Wada, S., Sakata, A., & Tokunaga, A. T. 1991, ApJ, 375, L17

Wexler, A. S. 1967, Appl. Spectrosc. Rev., 1, 29

Whittet, D. C. B., et al. 1997, ApJ, 490, 729

Whittet, D. C. B., et al. 1998, ApJ, 498, L159

Whittet, D. C. B., et al. 1996, ApJ, 458, 363

Willis, A. J. 1982, in Wolf Rayet stars: Observations, Physics, Evolution, ed. C. W. H. de Loore & A. J. Willis (Dordrecht: Kluwer), 87

Willner, S. P., Russell, R. W., Puetter, R. C., Soifer, B. T., & Harvey, P. M. 1979, ApJ, 229, L65

Wollman, E. R., Smith, H. A., & Larson, H. P. 1982, ApJ, 258, 506
Fig. 1.— ISO-SWS spectra from 2.5–13 μm of SgrA* (AOT6), GCS4 (AOT1) and GCS3 (AOT1). The GCS3 spectrum has been divided by 4 for presentation purposes.

Fig. 2.— Molecular cloud dust absorption features identified in Sgr A*. In order to highlight the molecular cloud features, the 3.29–3.62 region has been removed from the “ice” profile. All data are AOT1, speed 4, except for the 7 μm region which is AOT6.
Fig. 3.— Optical depth profiles of the 3 μm ice feature for Taurus dense cloud (Elias 16, dashed line; adapted from Smith et al. 1989) compared with the Galactic Center sources Sgr A* (top), GCS3 (middle), GCS4 (bottom). All GC sources show excess blue absorption compared to the Taurus ice profile. Spectra have been normalized to have a depth of 1.0 at 3.05 μm.
Fig. 4.— The 6.0 μm region of Sgr A*, GCS3, GCS4, and WR 118. The spectrum of WR118 is from Schutte et al. (1998). Narrow absorption lines (FWHM ~ 0.01μm) in the spectrum of GCS3 (and Sgr A*) are due to cold gas-phase H₂O along the line of sight (Moneti & Cernicharo 2000).
Fig. 5.— 5.5–8.5 μm flux spectrum of Sgr A* showing second [top] and first [bottom] degree continuum fits. The resulting optical depth spectra are shown in Figure 6.
Fig. 6.— Comparison of the 6 μm feature in Sgr A* using two different continuum fits as shown in Fig. 5. Optical depth spectra resulting from the second degree polynomial fit [thin solid line] and first degree polynomial fit [thick solid line] are shown. The optical depth spectrum of the protostellar object NGC 7538 IRS9 [dashed line; Keane et al. 2000] is shown for comparison, and is offset for clarity. All three spectra have been scaled to 1 at their peak optical depth.
Fig. 7.— The 2.6–3.9 µm [left panels] and 5.6–7 µm [right panels] optical depth spectra for Sgr A*. The top panels show the result of the fitting procedure when both profiles are used to constrain the fit. The “best” fit is obtained with: H$_2$O:NH$_3$:CO$_2$ (3:1:0.03, 15K) (dotted line) and HCOOH at 10K (dashed line). The sum of the two laboratory mixtures is shown by the smooth solid line. The bottom panels show the result of the fitting procedure when only the 6 µm profile is considered. In this case, although the 6 µm band is reasonably matched with pure H$_2$O at 30 K (smooth solid line), the depth of the 3 µm profile is overestimated by the laboratory spectrum [bottom, left panel]
Fig. 8.— The 2.6–3.9 µm [left panels] and 5.6–6.7 µm [center and right panels] spectral region of GCS3 [top panels] and GCS4 [bottom panels]. Comparison of the laboratory mixtures H$_2$O:NH$_3$:CO$_2$ (3:1:0.03, 15K) [smooth solid line] and pure H$_2$O at 30K [dashed line] are shown for the 3 and 6 µm spectral regions in the left and center panels, respectively. Similar to Sgr A*, the H$_2$O:NH$_3$:CO$_2$ mixture represents these profiles better than pure H$_2$O-ice. The right panels show the result of summing the H$_2$O:NH$_3$:CO$_2$ mixture with a WR118-like 6.2 µm component [heavy solid line].
Fig. 9.— [Top panel] The 6 μm residual for Sgr A* obtained after subtracting the best-fitting laboratory mixtures shown in Fig. 7. The heavy line represents the WR118 6.2 μm optical depth spectrum, divided a factor of 1.25. The bottom panel shows the “fit” resulting from the summation of the best-fitting laboratory ices and the scaled WR118 6.2 μm feature.
Fig. 10.— The 7.55–7.8 μm optical depth spectrum of Sgr A* shown with best-fitting laboratory mixture: H₂O:CH₄ (3:1, 10K) (smooth solid line).
Fig. 11.— Aliphatic hydrocarbon absorption features identified in Sgr A* (AOT1 data). Shown are the well-known 3.4 μm C-H stretch absorption feature and its corresponding deformation modes at 6.85 and 7.25 μm.
Fig. 12.— Hydrocarbon features toward GCS3, combining AOT6 (3.2-3.5 μm) and AOT1 (3.5-3.6 μm) data. The optical depth spectrum was created by fitting a local second degree polynomial continuum to the combined spectra in 3.1–3.7 μm region. Aliphatic hydrocarbon subfeatures at \sim 3.38 μm (-CH$_3$ asymmetric stretch), 3.42 μm (-CH$_2$- asymmetric stretch), 3.48 μm (-CH$_3$ symmetric stretch), and 3.50 μm (-CH$_2$- symmetric stretch) are indicated. The latter two subfeatures are blended. Also present is an aromatic hydrocarbon feature at 3.28 μm.
Fig. 13.— Mid-IR spectrum of SgrA* compared with laboratory HAC (dashed line; from Furton et al. 1999. Bottom panel shows a close-up of the 3.4 μm feature compared with HAC).
Fig. 14.— The aromatic C-H stretch [left] and C-C stretch [right] spectral regions in GCS3 compared with a H$_2$O:C$_{16}$H$_{10}$ (14 K) laboratory mixture (smooth solid line). The 6.2 µm band in the laboratory mixture is scaled based on the strength of the 3.28 µm band. It is apparent that a PAH in ice mixture cannot account for most of the observed 6.2 µm absorption. Spectra shown are AOT6.
Source	Other ID	Position (J2000)	AOT^a	UTC date	t_{int} (sec)	
Sgr A*		17 45 40.0	−29 00 29	1.4	1996 Feb. 19	6528
Sgr A-W IRS3		17 45 39.6	−29 00 23	6	1997 Mar. 14	1086
GCS3-I MGM 5-4^b		17 46 14.9	−28 49 34	1.3	1996 Aug. 29	3454
				6	1996 Oct. 8	3226
GCS4 MGM 5-3^b		17 46 15.6	−28 49 47	1.3	1996 Sept. 9	3454

^aAOT 1.m represents Astronomical Observing Template 1, speed m.

^bMGM identification from survey by Moneti, Glass, & Moorwood 1992
Table 2. Optical Depthsa

Source	Dense Cloud Dust Features	Diffuse Cloud Dust Features								
	$\tau_{3.0}$	$\tau_{4.27}$	$\tau_{6.13}$b	$\tau_{7.68}$	$\tau_{3.28}$	$\tau_{3.4}$	$\tau_{6.2}$c	$\tau_{6.85}$	$\tau_{7.25}$	$\tau_{9.7}$d
Sgr A*	0.50 ± 0.01	0.70 ± 0.01	0.13 ± 0.02	0.017 ± 0.003	< 0.02	0.21 ± 0.01	0.05 ± 0.01	0.05 ± 0.01	0.03 ± 0.01	3.52
GCS3	0.23 ± 0.02	0.48 ± 0.02	0.03 ± 0.01	< 0.02	0.026 ± 0.005	0.16 ± 0.01	0.10 ± 0.02	0.04 ± 0.01	< 0.03	2.38
GCS4	0.16 ± 0.01	0.22 ± 0.02	0.02 ± 0.01	< 0.03	< 0.05	0.15 ± 0.01	0.08 ± 0.02	< 0.03	< 0.03	2.24

aOptical depth values for GCS3 are from AOT6 data where available; $\tau_{7.68}$ for Sgr A* is from AOT6 data; all others are determined from AOT1 spectra.

bOptical depth is from the maximum allowable depth of the H$_2$O:NH$_3$:CO$_2$ mixture at 6.13 μm, which is constrained by the depth of the 3 μm feature. See §4.1 for details.

cOptical depth is that of the residual feature after subtracting the ice component. See §4.1 and §5.2.1 for details.

dSilicate optical depths from Schutte et al. 1996 and W. Vriend, D. Kester, & A. Tielens, in preparation.
Table 3. Ice Column Densitiesa

Source	$N(H_2O)$	$N(CO_2)^b$	$N(CO)$	$N(CH_4)$	$N(HCOOH)$	$N(H_2CO)$	$N(CH_3OH)$
Sgr A*	12.4 ± 2.5	1.7 ± 0.2	< 1.5	0.30 ± 0.07	0.8 ± 0.2	< 0.3	< 0.5
GCS3	4.7 ± 0.4	1.1 ± 0.1	< 0.9	< 0.3	⋯	⋯	⋯
GCS4	3.0 ± 0.3	0.7 ± 0.2	< 0.9	< 0.5	⋯	⋯	⋯

aColumn densities in units of 10^{17} cm$^{-2}$

bGerakines et al. 1999

Table 4. Aliphatic Hydrocarbon Bands: Sgr A*

Band (μm)	$\tau(\lambda_0)$	Integrated Area (cm$^{-1}$)
3.4 (SgrA*)	0.21 ± 0.01	29
6.85 (SgrA*)	0.05 ± 0.01	1.6
7.25 (SgrA*)	0.03 ± 0.01	0.7

Relative Integrated Intensity

$A(6.85\mu m)/A(7.25\mu m)$	Observed	Expecteda
2.3	2.5 (branched), 5 (normal)	
0.06	0.07	
0.02	0.03 (branched), 0.02 (normal)	

aExpected integrated absorption area intensity for saturated aliphatic hydrocarbons from Wexler 1967

Table 5. Aromatic Hydrocarbon Bands: GCS3a

Band (μm)	$\tau(\lambda_0)$	FWHM (cm$^{-1}$)	Integrated Area (cm$^{-1}$)
3.28	0.026 ± 0.005	25 ± 5	0.8 ± 0.3
6.2	0.10 ± 0.02	34 ± 5	3.6 ± 0.6

aUncertainty does not reflect uncertainties in continuum choice
Table 6. Comparison of Ice Abundances toward Sagitarius A* and NGC 7538 IRS9a

Molecule	SgrA*	NGC 7538 IRS9	Ref.b
H\textsubscript{2}O	100	100	1
NH\textsubscript{3}	20 – 30	10	2
CO\textsubscript{2}	14	20	3
CO	< 12	15	4
CH\textsubscript{3}OH	< 4	7	5
CH\textsubscript{4}	2	2	6
HCOOH	6	3	7

aAbundances are percent relative to H\textsubscript{2}O-ice.

bReferences are for NGC 7538 IRS9 ice column densities. Column densities for Sgr A* are from this paper.

References. — 1. Tielens et al. 1991, 2. Lacy et al. 1998, 3. Gerakines et al. 1999, 4. Chiar et al. 1998a, 5. Dartois et al. 1999, 6. Boogert et al. 1998, 7. Schutte et al. 1999.