1. Introduction

In this paper, we are concerned with the initial-boundary value problem of a parabolic equation with nonstandard growth condition

\[u_t = \text{div} \left(b(x,t)|u|^{r(x)^{-1}} \nabla u \right) + \text{div} \left(\tilde{a}(u^{r(x)}, x, t) \right) + f(u, x, t), \quad (x, t) \in Q_T = \Omega \times (0, T) \]

(1)

where \(b(x,t) \geq 0 \) is a \(C(\overline{Q_T}) \) function, \(r(x) > 0 \) is a \(C(\overline{\Omega}) \) function, \(\tilde{a}(s, x, t) = \{a_i(s, x, t)\}, \quad a_i(s, x, t) \in C(\mathbb{R} \times \overline{Q_T}) \), and \(\Omega \subset \mathbb{R}^N \) is a bounded domain with a smooth boundary \(\partial \Omega \). These kinds of equations can be regarded as nonlinear variation of the classical heat equation, the well-known paradigm to explain the diffusion process. In particular, when \(b(x,t) \equiv 1, a_i = 0, r(x) = r \) is a constant; equation (1) is with the type

\[u_t = \Delta u^r + g(\nabla u, u, x, t), \quad (x, t) \in Q_T, \]

(2)

which includes the so-called porous medium equation (PME), the fast diffusion equation (FDE) when \(r > 1 \), and the slow diffusion equation (SDE) when \(r < 1 \). Correspondingly, if \(r^* = \max_{s \in \overline{\Omega}} r(s) > 1 \), then equation (1) is a degenerate parabolic equation and has a slow diffusion characteristic. If \(r^* = \max_{s \in \overline{\Omega}} r(s) < 1 \), then equation (1) is a singular parabolic equation and has a fast diffusion characteristic.

In fact, equation (2) itself has a wide number of applications, ranging from plasma physics to filtration in porous media, thin films, Riemannian geometry, relativistic physics, and many others. It has at the same time tested as the testing ground from the development of new methods of analytical investigation, since it offers a variety of surprising phenomena that strongly deviate from the heat equation standard, for example, free boundary, limited regularity, mass loss, and extinction or quenching. There exists an abundant literature on these topics, one can refer to \([1-10] \) and the references therein. In this literature, the nonlinearities are with power types that lead to degenerate or singular parabolicity, and we can gather these collectively under the name “the porous medium equation with standard growth conditions.” Since, in equation (1), the nonlinearity is with variable exponent, so it is called as “with nonstandard growth condition.”

From another perspective, since \(b(x,t) \geq 0 \), equation (1) is a special case of the usual reaction-diffusion equation

\[u_t = \text{div} \left(b(u,x,t) \nabla u \right) + \text{div} \left(\tilde{a}(u,x,t) \right) + f(u, x, t), \quad (x, t) \in Q_T. \]

(3)
If \(b(u, x, t) \) is degenerate in the interior of \(\Omega \), this equation is a hyperbolic-parabolic mixed type equation theoretically. To ensure the uniqueness of a weak solution to this equation, the entropy condition and the corresponding entropy solution are required, one can refer to references [11–16] for the details. In this paper, we assume that

\[
b(x, t) > 0, (x, t) \in \Omega \times (0, T).
\]

(4)

As a consequence, equation (1) is a pure nonlinear parabolic equation and has not the hyperbolic characteristic.

The porous medium equation with nonstandard growth conditions was first proposed by Antontsev and Shmarev in [17]. The existence, uniqueness, and localization properties of solutions to equation

\[
u_t = \text{div} \left(|u|^{q(x)} \nabla u \right) + g(\nabla u, u, x, t),
\]

(5)

had been studied. Another property proved in [17] is the finite speed of propagation, which permits one to consider the free boundary problem. The work [18] by Duque etc. implemented a finite element method with adaptive mesh to approximate the solution of the porous medium equation with nonstandard growth conditions in 2D domains with free boundary. The equidistribution principle deduced by de Boor [19] and the moving mesh for partial differential equations by Huang and Russell [20] were used there. Recently, when \(b(x) = b(x) \) with \(b(x) > 0, x \in \Omega \), and

\[
b(x) = 0, x \in \partial \Omega,
\]

(6)

the well-posedness of weak solutions to equation (1) has been studied by the author [21]. Roughly speaking, if \(b(x) \) satisfies (6) and

\[
\int_{\Omega} b(x)^{-1} dx < \infty,
\]

(7)

the uniqueness of weak solution to equation (1) has been proved by the author [21]. Roughly speaking, if \(b(x) \) satisfies (6) and

\[
u(x, 0) = u_0(x), x \in \Omega,
\]

(8)

has been proved in [21]. This result can be comprehended as that, the degeneracy of diffusion coefficient \(b(x) \) on the boundary (6) acts as a role as the usual boundary value condition

\[
u(x, t) = 0, (x, t) \in \partial \Omega \times (0, T).
\]

(9)

In this paper, different from [21], the diffusion coefficient \(b(x, t) \) is dependent on the time variable \(t \); moreover, we merely assume that \(b(x, t) \geq 0 \) satisfies (4) and do not restrict the similar condition as (7). As a compensation, a partial boundary value condition

\[
u(x, t) = 0, (x, t) \in \Sigma = \{(x, t) \in \partial \Omega \times (0, T) : b(x, t) > 0\},
\]

(10)

is imposed as follows. One can see that, unlike the usual Dirichlet boundary value condition (9), in which \(\partial \Omega \times (0, T) \) is a cylinder, \(\Sigma \subset \partial \Omega \times (0, T) \) appearing in (10) is just a submanifold and generally can not be expressed as a cylinder type as \(\Gamma \times (0, T) \) with \(\Gamma \subset \partial \Omega \). The first aim of this paper is to study the stability of weak solutions based on this partial boundary value condition. Another aim of this paper is to study the existence of a strong solution to equation (1). The details are provided below. It is well-known that, for the usual porous medium equation

\[
u_t = \Delta u^q, (x, t) \in Q_T,
\]

(11)

there holds

\[
\frac{\partial u}{\partial t} \in L^2(Q_T),
\]

(12)

and \(u \) is with the Hölder continuity [5]. However, for a porous medium equation with nonstandard growth conditions, weak solutions in [17, 18, 21–30] do not satisfy the regularity as (12). Thus, in this paper, we will try to make up for some gaps in such a field, considering that the weak solutions of equation (1) have the property (12).

Definition 1. Let \(u(x, t) \) be a nonnegative function satisfying

\[
u \in L^\infty(Q_T), u_t \in L^2(0, T; W^{-1,2}(\Omega)), \sqrt{b(x, t)u^{q(x)-1}}||u|| \in L^\infty(0, T; L^2(\Omega)).
\]

(13)

If for any function \(\varphi \in C_0^0(Q_T) \), there is

\[
\left\| Q_t \left(-\frac{\partial \varphi}{\partial t} + b(x, t)|u|^{q(x)-1}\nabla u \nabla \varphi \right) \right\| dxdt + \sum_{i=1}^N \left\| Q_t \left(u^{q(x)}(x, t) \varphi_{x_i}(x, t) \right) dxdt \right\| = \int Q_t (u(x, t) - u_0(x)) dx dt,
\]

(14)

then \(u(x, t) \) is said to be a weak solution of the initial-boundary value problem of equation (1), provided that initial value (6) is true in the sense

\[
\lim_{t \to 0} \left\| Q_t (u(x, t) - u_0(x)) \right\| dx dt = 0, O(x) \in C_0^0(\Omega),
\]

(15)

and the partial boundary value condition (10) is true in the sense of the trace.

Definition 2. Let \(u(x, t) \) be a nonnegative function satisfying (14) and

\[
u \in L^\infty(Q_T), \sqrt{u^{q(x)-1}u_t} \in L^2(Q_T), \sqrt{b(x, t)|u|^{q(x)-1}}||u|| \in L^\infty(0, T; L^2(\Omega)),
\]

(16)
then \(u(x, t) \) is said to be a strong solution of the initialboundary value problem of equation (1), provided that initial value (6) is true in the sense of (15), and the partial boundary value condition (10) is true in the sense of the trace.

Since \(b(x, t) \) satisfies (4), (16) means that \(u_i^{(x)} \) and \(\nabla u_i^{(x)} \) exist almost everywhere in \(QT \). This is the reason that we call \(u(x, t) \) is a strong solution of equation (1).

From Definition 2, for all \(\varphi(x, t) \) in \(L^2(Q; T) \), we have

\[
\int_{Q_T} u \varphi(x, t) \, dx \, dt + \int_{Q_T} b(x, t \log u \varphi(x, t) \, dx \, dt
- \int_{Q_T} b(x, t) u_i^{(x)} \, dx \, dt
+ \sum_{i=1}^{N} \int_{Q_T} a_i (u_i^{(x)}, x, t) \varphi_i \, dx \, dt
= \int_{Q_T} f(u, x, t) \varphi(x, t) \, dx \, dt,
\]

which implies that

\[
\|u_i\|_{L^2(Q; T; W^{-1,2}(\Omega))} \leq c. \tag{18}
\]

Thus, if \(u(x, t) \) is a strong solution of equation (1), then it is a weak solution.

Theorem 3. If \(r(x) \) is a \(C^1(\bar{\Omega}) \) function, \(r(x) \geq r > 1 \), \(a_i(s, x, t) \in C(\mathbb{R} \times \bar{Q}_T), i = 1, 2, \ldots, N, u_0(x) \geq 0 \) satisfies

\[
0 \leq u_0 \in L^{\infty}(\Omega), \sqrt{b(x, 0)} \|u_0^{(x)}\| \in L^2(\Omega), \tag{19}
\]

then the initial boundary value problem of equation (1) has a nonnegative weak solution.

Theorem 4. If \(r(x) \) is a \(C^1(\bar{\Omega}) \) function, \(r(x) \geq r > 1 \), \(a_i(s, x, t) \in C(\mathbb{R} \times \bar{Q}_T), i = 1, 2, \ldots, N, u_0(x) \geq 0 \) satisfies (19), \(b(\cdot) \) satisfies (4) and

\[
\begin{align*}
\frac{\partial}{\partial s} a_i (u_i^{(x)}, x, t) \bigg|_{s=0} & \leq c(M), \tag{21}
\end{align*}
\]

then the initial boundary value problem of equation (1) has a nonnegative weak solution for any \(|s| \leq M + 1, M = \|u_0(x)\|_{L^{\infty}(\Omega)}, f(s, x, t) \) is a continuous function satisfies (20), then the initial boundary value problem of equation (1) has a nonnegative strong solution.

Throughout this paper, the constant \(c \) may be different from one to another, \(c(M) \) represents the constant \(c \) depends on \(M \), and \(c(T) \) represents the constant \(c \) depends on \(T \).

Theorem 5. Let \(u(x, t) \) be a weak solution of equation (1) with the initial value (8) and with the partial homogenous value condition (10),

\[
\int_{\Omega} |\log u|^2 |\nabla u|^2 \, dx \leq c(T). \tag{22}
\]

If \(0 < r^- \leq r(x) \in C^1(\bar{\Omega}), f(s, x, t) \) is a Lipschitz function on \(\mathbb{R} \times \bar{Q}_T \), for every given \(t \in [0, T] \), \(b(x, t) \) is a differential function on the spatial variables \(x_i \), \(i = 1, 2, \ldots, N, a_i(s, x, t) \in C(\mathbb{R} \times \bar{Q}_T) \) and satisfies

\[
\left| a_i (u_i^{(x)}, x, t) - a_i (u_i^{(x)}, x, t) \right| \leq c(M)|b(x, t)|, \tag{23}
\]

\[
\int_{\Omega} b(x, t)^{-1} |\nabla b|^2 \, dx \leq c(T), \tag{24}
\]

then the solution \(u(x, t) \) is unique.

One can see that there are functions satisfying condition (24). For example, if \(\Gamma \subset \partial \Omega \) is a relatively open set of \(\partial \Omega \), and let \(d_T(x) = \text{dist}(x, \Gamma) \). Then, for any \(f(t) \in C^1[0, T], b(x, t) = f(t)d_T(x)^2 \) is a function satisfying (24).

We note that, if \(r(x) \equiv r \) is a constant, then condition (22) is naturally true. By the way, just as one reviewer has suggested, one can study Theorem 3 and Theorem 4 when \(r(x) \geq r^- > 0 \) and \(f(s, x, t) \) is just a Carathéodory function.

2. The Proof of Theorems 3-4

In this section, we give the proof of the existence theorems.

Proof of Theorem 3. By the monotone convergent method [5], since \(f(s, x, t) > 0 \) when \(s < 0 \), there is a nonnegative weak solution \(u_i \) of the following initial-boundary value problem

\[
\begin{align*}
\frac{u_{it}}{n} = & \text{div} \left(\left(b(x, t) + \frac{1}{n} \right) |u_i^{(x)}|^{r(s)} \nabla u_i \right) + \text{div} \left(a_i (u_i^{(x)}, x, t) \right) + f(u_i, x, t), \quad (x, t) \in Q_T, \\
0 = & u_i(x, t), \quad (x, t) \in \partial \Omega \times (0, T), \\
\end{align*}
\]
which satisfies

\[u_n \in L^\infty(Q_T), 0 \leq u_n(x, t) \leq \|u_0(x)\|_{L^\infty(\Omega)} + 1, \quad (27) \]

\[\left(b(x, t) + \frac{1}{n} \right) u_n \to \nabla u_n \in L^2(Q_T). \quad (28) \]

Multiplying (26) by \(\phi = u_n^{(s)} \), then we obtain

\[
\begin{align*}
\int_{Q_T} u_n u_n^{(s)} dx dt &= \int_{Q_T} \frac{b(x, t) + 1}{n} u_n^{(s)-1} \nabla u_n u_n^{(s)} dx dt \\
&+ \sum_{i=1}^{N} \int_{Q_T} a_i \left(u_n^{(s)}, x, t \right) \frac{\partial u_n}{\partial x_i} u_n^{(s)} dx dt \\
&+ \int_{Q_T} f(u_n, x, t) u_n^{(s)} dx dt.
\end{align*}
\] (29)

In the first place, by a similar calculation as that in [21], we can extrapolate that

\[
\int_{Q_T} \left(b(x, t) + \frac{1}{n} \right) u_n^{(s)-1} |\nabla u_n|^2 dx dt \leq c, \quad (30)
\]

\[
\int_{\Omega} \left(b(x, t) + \frac{1}{n} \right) |\nabla u_n^{(s)}|^2 dx \leq c(T), \quad (31)
\]

and show that

\[
\left[\left(b(x, t) + \frac{1}{n} \right) u_n^{(s)-1} \right]^\frac{1}{2} \nabla u_n \to b(x, t)^\frac{1}{2} u_n^{(s)-1} \nabla u_n, \quad (32)
\]

weakly in \(L^2(Q_T) \).

In the second place, for all \(\varphi(x, t) \in L^2(0, T; W^{1,2}_0(\Omega)) \), we have

\[
\begin{align*}
\int_{Q_T} u_n \varphi(x, t) dx dt + \int_{Q_T} \frac{b(x, t) + (1/n)}{r(x)} \nabla u_n^{(s)} \nabla \varphi dx dt \\
- \int_{Q_T} \frac{b(x, t) + (1/n)}{r(x)} u_n^{(s)} \log u_n \nabla \varphi dx dt \\
+ \sum_{i=1}^{N} \int_{Q_T} a_i \left(u_n^{(s)}, x, t \right) \varphi x_i dx dt \\
= \int_{Q_T} f(u_n, x, t) \varphi(x, t) dx dt,
\end{align*}
\] (33)

from this equality, by (27) and (31), it is easy to get

\[\|u_n\|_{L^2(0, T; W^{-1,2}(\Omega))} \leq c. \quad (34) \]

Moreover, from (27), there is a nonnegative function, \(u_n \to u \) weakly star in \(L^\infty(Q_T) \). For any \(\phi \in C^0_0(\Omega), 0 \leq \phi \leq 1, \)

by (34), we can show that

\[\left\| \phi u_n^{(s)} \right\|_{L^2(0, T; W^{-1,2}(\Omega))} \leq c. \quad (35) \]

Since \(H^s_0(\Omega) \to W^{1,2}(\Omega) \) when \(s > (N/2) + 1, \) then \(W^{-1,2}(\Omega) \to H^-s(\Omega) \). Accordingly,

\[\left\| \phi u_n^{(s)} \right\|_{L^2(0, T; H^{-s}(\Omega))} \leq c. \quad (36) \]

In addition, we have

\[
\int_{Q_T} \nabla \left(\phi u_n^{(s)} \right) \nabla \varphi dx dt \leq c(\phi) \left(1 + \int_{0}^{T} \left\| \nabla u_n^{(s)} \right\|^2 dx dt \right) \leq c(\phi), \quad (37)
\]

where \(\Omega_\varphi = \text{supp} \phi \). Thus,

\[\left\| \phi u_n^{(s)} \right\|_{L^2(0, T; W^{1,2}_0(\Omega))} \leq c. \quad (38) \]

Since \(W^{1,2}_0(\Omega) \to L^2(\Omega) \to L^2(Q_T) \), Aubin’s compactness theorem in [31] yields that there is a function \(\nu \) such that \(\phi u_n^{(s)} \to \nu \) strongly in \(L^2(Q_T) \). Then, \(\phi u_n^{(s)} \to \nu \) almost everywhere in \(Q_T \), by that \(u_n \to u \) weakly star in \(L^\infty(Q_T) \), we know that \(\nu = u^{(s)} \). The arbitraries of \(\phi \) yields \(u_n \to u \) almost everywhere in \(Q_T \).

Thus, since \(a_i(x, t, s, \varphi, \nu) \) and \(f(u, s, t) \) are continuous functions on \(R \times Q_T \), we have

\[a_i(u_n, x, t) \to a_i(u, x, t), \text{ a.e. in } Q_T, \quad i = 1, 2, \ldots, N, \quad (39) \]

\[f(u_n, x, t) \to f(u, x, t), \text{ a.e. in } Q_T. \quad (40) \]

Let \(n \to \infty \) in (29). By (32), (39), and (40), we know \(u(x, t) \) satisfies (13) and (14).

The last but not the least, by a process of limit, in a similar way as that in [17], we can choose the test function \(\varphi(x, t) = \chi_{[t_1, t_2]}(\phi(x)) \) in which \(\phi(x) \in C_0^\infty(\Omega) \) and \(\chi_{[t_1, t_2]} \) is the characteristic function of \([t_1, t_2] \subset (0, T) \). Then

\[
\int_{t_1}^{t_2} \int_{\Omega} \left[b(x, t) u^{(s)-1} \nabla \nu \varphi + \sum_{i=1}^{N} a_i \left(u^{(s)}, x, t \right) \phi \varphi x_i \right] dx dt \]

\[= \int_{\Omega} \left(u(x, t_2) - u(x, t_1) \right) \phi(x) dx, \quad (41) \]

Let \(t = t_2 \) and \(t_1 \to 0 \). Then we have (15).

Finally, since \(b(x, t) > 0 \) when \(x \in \Sigma \) in (10), by (32), we know that the trace of \(u(x, t) \) on \(\Sigma \) is well defined, the details are given in Section 4 as follows. Till now, we have shown that \(u \) is a weak solution of equation (1) with the initial value (6) and the partial boundary value condition (10).
Proof of Theorem 4. We consider the regularized problem (26) and obtain (27)–(32) as in the proof Theorem 3.

Let us multiply $u_{nt}^{(s)}$ on both sides of equation (26), integrate it over $Q_t = \Omega \times (0, t)$. Then

$$
\int_{Q_t} r(x) u^{(s)+1} u_{nt}^2 \text{d}x\text{d}t = \int_{Q_t} \text{div} \left(\left(b(x, t) + \frac{1}{n} \right) \left| \nabla u^{(s)} \right| \nabla u_n \right) \cdot u_{nt}^2 \text{d}x\text{d}t + \int_{Q_t} f(u_n, x, t) u_{nt}^{(s)} \text{d}x\text{d}t
$$

$$
+ \sum_{i=1}^N \int_{Q_t} \frac{\partial a_i (u^{(s)}, x, t)}{\partial x_i} u_{nt}^{(s)} \text{d}x\text{d}t.
$$

(42)

Since $u_n \geq 0$,

$$
u_n^{(s)+1} \nabla u_n = \frac{1}{r(x)} \nabla u_n^{(s)} - \frac{\nabla r}{r(x)} u_n^{(s)} \ln u_n,
$$

\begin{align*}
\int_{Q_t} \text{div} \left(\left(b(x, t) + \frac{1}{n} \right) \left| \nabla u_n^{(s)} \right| \nabla u_n \right) u_{nt}^{(s)} \text{d}x\text{d}t &= \int_{Q_t} \text{div} \left(\left(b(x, t) + \frac{1}{n} \right) \left(\frac{1}{r(x)} \nabla u_n^{(s)} - \frac{\nabla r}{r(x)} u_n^{(s)} \ln u_n \right) \right) u_{nt}^{(s)} \text{d}x\text{d}t \\
&= -\int_{Q_t} \left(b(x, t) + \frac{1}{n} \right) \frac{1}{2 r(x)} \frac{\partial}{\partial t} \left| u_n^{(s)} \right| ^2 \text{d}x\text{d}t \\
&\quad + \int_{Q_t} \left(b(x, t) + \frac{1}{n} \right) \frac{\nabla r}{r(x)} u_n^{(s)} \ln u_n \frac{\partial}{\partial t} \left| u_n^{(s)} \right| ^2 \text{d}x\text{d}t.
\end{align*}

(43)

we have

$$
\int_{Q_t} r(x) u_n^{(s)+1} u_{nt}^2 \text{d}x\text{d}t + \int_{Q_t} \left(b(x, t) + \frac{1}{n} \right) \frac{1}{2 r(x)} \frac{\partial}{\partial t} \left| u_n^{(s)} \right| ^2 \text{d}x\text{d}t
$$

$$
= \int_{Q_t} \left(b(x, t) + \frac{1}{n} \right) \frac{\nabla r}{r(x)} u_n^{(s)} \ln u_n \frac{\partial}{\partial t} \left| u_n^{(s)} \right| ^2 \text{d}x\text{d}t
$$

$$
+ \int_{Q_t} f(u_n, x, t) u_{nt}^{(s)} \text{d}x\text{d}t.
$$

(44)

Since $b_i(x, t) \leq 0$,

$$
-\int_{Q_t} b_i(x, t) \frac{\nabla r}{r(x)} u_n^{(s)} \ln u_n \nabla u_n^{(s)} \text{d}x\text{d}t
$$

$$
\leq \frac{1}{2} \int_{Q_t} \left(\frac{b_i(x, t)}{2 r(x)} \right) \left| \nabla u_n^{(s)} \right| ^2 + 4 \left(\frac{1}{r(x)} \ln u_n \right) ^2 \text{d}x\text{d}t
$$

$$
\leq \frac{1}{2} \int_{Q_t} \frac{b_i(x, t)}{2 r(x)} \left| \nabla u_n^{(s)} \right| ^2 \text{d}x\text{d}t + c,
$$

(45)

by the assumption $r(x) \geq r > 1$,

$$
-\int_{Q_t} \left(b(x, t) + \frac{1}{n} \right) \frac{\nabla r}{r(x)} \left[r(x) u_n^{(s)+1} \ln u_n + u_n^{(s)+1} \right] u_{nt} \text{d}x\text{d}t
$$

$$
\leq \frac{1}{4} \int_{Q_t} r(x) u_n^{(s)+1} \text{d}x\text{d}t + 4 \int_{Q_t} \frac{u_n^{(s)+1}}{r(x)} \text{d}x\text{d}t + \int_{Q_t} \left(b(x, t) + \frac{1}{n} \right) \left(\frac{\nabla r}{r(x)} \ln u_n + 1 \right) ^2 \text{d}x\text{d}t
$$

$$
\leq \frac{1}{4} \int_{Q_t} r(x) u_n^{(s)+1} \text{d}x\text{d}t + c,
$$

(46)

we have

$$
\int_{Q_t} \left(b(x, t) + \frac{1}{n} \right) \frac{\nabla r}{r(x)} u_n^{(s)} \ln u_n \frac{\partial}{\partial t} u_n^{(s)} \text{d}x\text{d}t
$$

$$
= \int_{Q_t} \left(b(x, t) + \frac{1}{n} \right) \frac{\nabla r}{r(x)} u_n^{(s)} \ln u_n \frac{\partial}{\partial t} u_n^{(s)} \text{d}x\text{d}t
$$

$$
- \int_{Q_t} b_i(x, t) \frac{\nabla r}{r(x)} u_n^{(s)} \ln u_n \frac{\partial}{\partial t} u_n^{(s)} \text{d}x\text{d}t
$$

$$
\leq \int_{Q_t} \left(b(x, t) + \frac{1}{n} \right) \frac{\nabla r}{r(x)} u_n^{(s)+1} \ln u_n \nabla u_n^{(s)+1} \text{d}x\text{d}t
$$

$$
+ \frac{1}{2} \int_{Q_t} \left(b(x, t) + \frac{1}{n} \right) \frac{\nabla r}{r(x)} u_n^{(s)+1} \text{d}x\text{d}t + \frac{1}{4} \int_{Q_t} r(x) u_n^{(s)+1} u_{nt}^2 \text{d}x\text{d}t + c.
$$

(47)

By the assumption $|\left(\partial \nabla u_n \right) a_i (u^{(s)}, x, t) | \leq c$ and

$$
\left| \frac{\partial}{\partial x_i} a_i u_n^{(s)} \right| \leq c(M)
$$

(48)

when $|u_n| \leq M + 1$, we have

$$
\int_{Q_t} \frac{\partial}{\partial x_i} u_n^{(s)} \text{d}x\text{d}t
$$

$$
= \int_{Q_t} r(x) u_n^{(s)+1} \frac{\partial}{\partial u_n} a_i (u^{(s)}, x, t) u_n^{(s)+1} \text{d}x\text{d}t
$$

$$
+ \frac{\partial}{\partial x_i} a_i (u^{(s)}, x, t) u_{nt} \text{d}x\text{d}t
$$

$$
\leq 4 \int_{Q_t} \left| \frac{\partial}{\partial u_n} a_i (u^{(s)}, x, t) \right| ^2 b(x, t) ^{-1} r(x) u_n^{(s)+1} \text{d}x\text{d}t
$$

$$
+ \frac{1}{4} \int_{Q_t} r(x) u_n^{(s)+1} u_{nt} \text{d}x\text{d}t
$$

$$
+ \frac{1}{4} \int_{Q_t} r(x) u_n^{(s)+1} u_{nt} \text{d}x\text{d}t
$$

$$
\leq \frac{1}{2} \int_{Q_t} b_i (x, t) \nabla u_n^{(s)+1} \left| u_n - 1 \right| \text{d}x\text{d}t + \frac{1}{4} \int_{Q_t} r(x) u_n^{(s)+1} u_{nt} \text{d}x\text{d}t.
$$

(49)
Moreover, we have
\[
\left\| \int_{Q_T} f(u_n, x, t) u_n^r dx dt \right\| \leq c + \frac{1}{4} \int_{Q_T} \rho(x) u_n^{r-1} u_n^2 dx dt,
\]
\[\text{(50)}\]
\[
\int_{Q_T} \left(b(x, t) + \frac{1}{n} \right) \frac{1}{r(x)} \left| \nabla u_n^{r(x)} \right|^2 dx dt = \frac{1}{2} \int_{Q_T} \left(b(x, t) + \frac{1}{n} \right) \frac{1}{r(x)} \left| \nabla u_n^{r(x)} \right|^2 dx dt.
\]
\[\text{(51)}\]
\[
\int_{Q_T} \frac{b_j(x, t)}{r(x)} \left| \nabla u_n^{r(x)} \right|^2 dx dt.
\]
Now, combining with (44)–(51), we have
\[
\int_{Q_T} r(x) u_n^{r(x)-1} u_n^2 dx dt \leq c.
\]
\[\text{(52)}\]
Then
\[
\int_{Q_T} \left| u_n^r \right|^2 dx dt \leq c.
\]
\[\text{(53)}\]
Since \(b(x, t) > 0\) when \(x \in \Omega\), by Sobolev embedding theorem, (32) and (53) implies that \(u_n^{r(x)} \to u_i \) a.e. in \(Q_T\).

Since \(u_n \to u\) weakly star in \(L^\infty(Q_T)\), by the uniqueness property of the weak convergence, we know that \(u_i = u^{r(x)}\).

Accordingly, \(a_i(s, x, t) \in C^i(\mathbb{R} \times Q_T)\), we have
\[
\lim_{n \to \infty} a_i \left(u_n^{r(x)}, x, t \right) = a_i \left(u_i^{r(x)}, x, t \right), \quad i = 1, 2, \cdots, N,
\]
\[\text{(54)}\]
as well as
\[
\lim_{n \to \infty} f \left(u_n^{r(x)}, x, t \right) = f \left(u_i^{r(x)}, x, t \right),
\]
\[\text{(55)}\]
by that \(f(u, x, t)\) is a continuous function.

Moreover, for any \(\varphi(x, t) \in C_0^\infty(Q_T)\),
\[
\lim_{n \to \infty} \int_{Q_T} \left(\sqrt{u_n^{r(x)-1}} u_n \right. - \left. \sqrt{u_i^{r(x)-1}} u_i \right) \varphi(x, t) dx dt
\]
\[
\leq \lim_{n \to \infty} \int_{Q_T} \frac{2}{r(x)} \left(u_n^{r(x)-1} - u_i^{r(x)-1} \right) \varphi(x, t) dx dt
\]
\[
= \lim_{n \to \infty} \int_{Q_T} \frac{2}{r(x)} \left(u_n^{r(x)-1} - u_i^{r(x)-1} \right) \varphi(x, t) dx dt = 0.
\]
\[\text{(56)}\]
Thus,
\[
\sqrt{u_n^{r(x)-1}} u_n \to \sqrt{u_i^{r(x)-1}} u_i \text{ in } L^2(Q_T).
\]
\[\text{(57)}\]

Let \(n \to \infty\) in (29). By (32), (35), (39), (56), and (57), we know \(u(x, t)\) satisfies (14) and (16). The initial value (6) and the partial boundary value condition have the same meaning as those in Theorem 3.

3. The Stability Based on the Partial Boundary Value Condition

In this section, we will prove Theorem 5.

Lemma 6. Let \(u_i \in L^{p^*}((0, T); W_l^{1, l^*}(\Omega))\) for any \(p > 1, p^* = p / p - 1\). For any continuous function \(h(s), H(s) = \int_0^s h(s) ds, a. c. t_1, t_2 \in (0, T), \)
\[
\int_{t_1}^{t_2} h(u) u dx dt = \left[\int \left(H(u(x, t_2)) - H(u(x, t_1)) \right) dx \right].
\]
\[\text{(58)}\]

This Lemma can be seen as a generalization of Lemma 2.2 in [32]. We postpone the reader to it for details.

Theorem 7. Let \(0 < r^* \leq r(x) \in C^j(\bar{\Omega}), f(s, x, t)\) be a Lipschitz function on \(\mathbb{R} \times Q_T, b(s, x, t) \in C(Q_T)\) with that \(b(s, x, t) > 0\) if \(x \in \Omega\) and for every given \(t \in [0, T], b(s, x, t)\) be a differential function on the spatial variables \(x_i, i = 1, 2, \cdots, N, a_i(s, x, t) \in C(\mathbb{R} \times Q_T)\) and satisfy
\[
\int_\Omega b(x, t)^{-1} \left| \nabla b \right|^2 dx \leq c,
\]
\[\text{(59)}\]
\[
\left| a_i \left(u_i^{r(x)}, x, t \right) - a_i \left(v_i^{r(x)}, x, t \right) \right| \leq c g_i(x, t),
\]
\[\text{(60)}\]
with \(\Omega = (0, T)\), \(x_i \in \mathbb{R}\) and \(\eta = (0, T)\).

If \(u(x, t), v(x, t)\) are two nonnegative weak solutions of equation \((1)\) with the initial value \(u_0(x), v_0(x)\), respectively, with the same homogeneous partial boundary value condition
\[
u(x, t) = 0, (x, t) \in \Sigma = \{ (x, t) \in \partial \Omega \times (0, T): b(x, t) > 0 \},
\]
\[\text{(61)}\]
and satisfying
\[
\int_\Omega \left| \log u \right|^2 \left| \nabla u \right|^2 dx \leq c, \quad \int_\Omega \left| \log v \right|^2 \left| \nabla v \right|^2 dx \leq c,
\]
\[\text{(62)}\]
then
\[
\int_\Omega \left| u(x, t) - v(x, t) \right| dx \leq c \int_\Omega \left| u_0(x) - v_0(x) \right| dx.
\]
\[\text{(63)}\]

Proof. Let \(g_i(s) = \int_0^s h_n(t) dt, h_n(s) = 2n(1 - n|s|)\). Here and the after, \(n\) is a positive integer.
\[
\lim_{n \to \infty} g_i(s) = \text{sgn } s, \lim_{n \to \infty} h_n(s) = 0.
\]
\[\text{(64)}\]

Supposed that \(\chi_{[r^*, r]}(t)\) is the characteristic function of \([r, s] \subset (0, T), \) since \(u(x, t)\) and \(v(x, t)\) are with the same homogeneous partial boundary value condition (61), we
then choose
\[X_{\tau, n}(t) g_n \left(b(x, t) \left(u^{(x)} - v^{(x)} \right) \right) \]
\[\frac{\partial(u - v)}{\partial t} \]
as the test function. Thus
\[\int_{\tau}^{\infty} \int_{\Omega} g_n \left(b(x, t) \left(u^{(x)} - v^{(x)} \right) \right) \frac{\partial(u - v)}{\partial t} \, dx \, dt
+ \int_{\tau}^{\infty} \int_{\Omega} \frac{b(x, t)}{r(x)} \left(\nabla u^{(x)} - \nabla v^{(x)} \right) \cdot \nabla \left(u^{(x)} - v^{(x)} \right) \, dx \, dt
\cdot \left(b(x, t) \cdot h_n \left(b(x, t) \left(u^{(x)} - v^{(x)} \right) \right) \right) \, dx \, dt
+ \int_{\tau}^{\infty} \int_{\Omega} \frac{b(x, t)}{r(x)} \left(\nabla u^{(x)} - \nabla v^{(x)} \right) \cdot \nabla v \left(u^{(x)} - v^{(x)} \right) \, dx \, dt
\cdot h_n \left(b(x, t) \left(u^{(x)} - v^{(x)} \right) \right) \, dx \, dt
= \int_{\Omega} \int f(u(x, t) - f(v, x, t)) \, dx \, dt. \]
\[\leq \lim_{n \to \infty} \int_{\tau}^{\infty} \int_{\Omega} b(x, t) \left(\nabla u^{(x)} \right)^2 + \left| \nabla v^{(x)} \right|^2 \, dx \]
In the fourth place, since $|\nabla b| \leq c$, using (64) and the Lebesgue dominated convergence theorem,

$$\lim_{n \to \infty} \left| \int_\Omega b(x, t) \left[u^{(x)} \log u - v^{(x)} \log v \right] \nabla v \cdot \nabla b \cdot \left(u^{(x)} - v^{(x)} \right) \cdot h_u \left(b(x, t) \left(u^{(x)} - v^{(x)} \right) \right) dx dt \right| = 0,$$

is obviously.

In the fifth place, since

$$|a_i \left(u^{(x)}, x, t \right) - a_i \left(v^{(x)}, x, t \right)| \leq c g_i(x, t), i = 1, 2, \ldots, N,$$

satisfies (60), using the Lebesgue dominated convergence theorem, we can extrapolate

$$\lim_{n \to \infty} \left| \int_\Omega \int_\Omega \left[a_i \left(u^{(x)}, x, t \right) - a_i \left(v^{(x)}, x, t \right) \right] b_{ij}(x, t) \cdot \left(u^{(x)} - v^{(x)} \right) \cdot h_u \left(b(x, t) \left(u^{(x)} - v^{(x)} \right) \right) dx dt \right| = 0.$$

Also by the H"older inequality, we are easily to obtain

$$\lim_{n \to \infty} \left| \int_\Omega \int_\Omega \left[a_i \left(u^{(x)}, x, t \right) - a_i \left(v^{(x)}, x, t \right) \right] b_{ij}(x, t) \cdot \left(u^{(x)} - v^{(x)} \right) \cdot h_u \left(b(x, t) \left(u^{(x)} - v^{(x)} \right) \right) dx dt \right| = 0.$$

In the sixth place,

$$\lim_{n \to \infty} \left| \int_\Omega \int_\Omega \left[f(u(x, t) - f(v(x, t)) \right] g_{ij} \left(b(x, t) \left(u^{(x)} - v^{(x)} \right) \right) dx dt \leq c \int_\Omega |u(x, t) - v(x, t)| dx dt.$$

At last, by Lemma 6, choosing $p = p' = 2$, by (64), we have

$$\lim_{n \to \infty} \int_\Omega g_{ij} \left(b \left(u^{(x)} - v^{(x)} \right) \right) \frac{\partial(u - v)}{\partial t} \right| dx = 0,$$

Then, letting $n \to \infty$ in (66), we have

$$\int_\Omega |u(x, t) - v(x, t)| dx \leq c \int_\Omega |u(x, t) - v(x, t)| dx$$

By the Gronwall inequality, we have

$$\int_\Omega |u(x, s) - v(x, s)| dx \leq c \int_\Omega |u(x, t) - v(x, t)| dx.$$

By the arbitraries of t, we have

$$\int_\Omega |u(x, s) - v(x, s)| dx \leq c \int_\Omega |u_0(x) - v_0(x)| dx.$$

At last, since conditions (22), (23), and (24) imply all the assumptions in Theorem 7 are true, we have Theorem 4.

4. The Explanation of the Partial Boundary Value Condition

In [21], condition (7) guarantees

$$\int_\Omega |\nabla u^{(x)}| dx < \infty,$$

then we can define the trace of $u^{(x)}$ on $\partial \Omega$, and the homogeneous boundary value condition (9) is valid. But in this paper, we do not assume

$$\int_\Omega b(x, t)^{-1} dx \leq c(T),$$

which is similar as condition (7), how to guarantee the partial boundary value condition (10) is true in the sense of the trace? Actually, by the character of $u(x, t)$ defined in Definition 1

$$\sqrt{b(x, t)} |u^{(x)}| \in L^\infty (0, T; L^2(\Omega)),$$

it is not difficult to show that

$$b(x, t) |u^{(x)}|^2 \in L^1 (Q_T).$$

Now, for a given small constant δ and for any $t \in (0, T)$, if we denote

$$\Omega_{\delta, t} = \{ x \in \Omega : b(x, t) > \delta \} \cap \{ x \in \Omega : d(x) \leq \lambda \}$$

where $d(x) = \text{dist}(x, \partial \Omega)$ is the distance function from the boundary $\partial \Omega$, then

$$\lim_{\lambda \to 0} \Omega_{\delta, t} \lambda = \Sigma_{\delta} = \{ x \in \partial \Omega : b(x, t) > \delta \}.$$
If we denote that
\[\Sigma_0 = \{(x, t) \in \partial \Omega \times (0, T): b(x, t) = 0\}, \]
\[\Sigma = \{(x, t) \in \partial \Omega \times (0, T): b(x, t) > 0\}, \]
\[\sum_0 \cap \Sigma = \partial \Sigma, \] (89)
then
\[\bigcup_{\delta > 0} \Sigma_{\delta t} \times (0, T) = \Sigma \bigcup \partial \Sigma. \] (90)

Since \(b(x, t) \) satisfies (4) and (86), we have
\[\int_{\Omega_{\delta t}} |\nabla u^{(x)}| \, dx \leq c(\delta) \int_{\Omega_{\delta t}} b(x, t) |\nabla v^{(x)}| \, dx < \infty. \] (91)

Then, we can define the trace of \(u^{(x)} \) on \(\Sigma_{\delta t} \). By the arbitrariness of \(\delta \), we can define the trace of \(u^{(x)} \) on \(\Sigma_{\delta t} \). In other words, no matter whether condition (84) is true or not, we can always define the trace of \(u^{(x)} \) (also \(u \)) on \(\Sigma_{\delta t} \) due to that \(b(x, t) > 0 \) on \(\Sigma \), and so the partial homogenous value condition (10) is always valid. Certainly, we should point out that, on the remained part of the boundary
\[\Sigma_1 = \partial \Omega \times (0, T) \setminus \Sigma = \{(x, t) \in \partial \Omega \times (0, T): b(x, t) = 0\} \] (92)
whether the trace of \(u^{(x)} \) can be defined or not is unknown, unless condition (84) is supplied.

5. Conclusion
Since the beginning of this century, the evolutionary \(p(x) \)-Laplacian equations \(u_t = \text{div}(b(u, u, x, t) \nabla u^{(p(x)-2)} - u^{(p(x)-2)} g(u, u, u, x, t)) \) have been studied by many mathematicians in [32–37]. So far, however, there has been little discussion about the porous medium equation with nonstandard growth conditions. Therefore, this study makes a major contribution to research in the related fields by imposing a reasonable partial boundary value condition matching up with the equation. The unusual is that this partial boundary value condition is based on a submanifold \(\Sigma \subset \partial \Omega \times (0, T) \). In addition, since the equation is with nonstandard growth conditions, how to deal with the nonlinearity becomes difficult, especially when we try to prove that \(\sqrt{u^{(x)}}^{-1} u_t \in L^2(Q_T) \).

Data Availability
There is not any data in this paper.

Conflicts of Interest
The author declares that he has no competing interests.

Acknowledgments
The paper is supported by Natural Science Foundation of Fujian Province (2019J01858), supported by the Science Foundation of Xiamen University of Technology, China.

References
[1] J. L. Vazquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Equations of Porous Medium Type, Oxford University Press, 2006.
[2] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, NJ, USA, 1964.
[3] J. Smoller, Shock Waves and Reaction Diffusion Equations, Academic Press, New York, NY, USA, 1983.
[4] A. S. Alexander, A. G. Victor, P. K. Sergei, and P. M. Alexander, Blow-Up in Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, NY, USA, 1995.
[5] Z. Wu, J. Zhao, J. Yin, and H. Li, Nonlinear Diffusion Equations, World Scientific Publishing, Singapore, 2001.
[6] E. DiBenedetto, Degenerate Parabolic Equations, Spring-Verlag, New York, NY, USA, 1993.
[7] A. Razani, “Subsonic detonation waves in porous media,” Physica Scripta, vol. 94, no. 8, article 085209, 2019.
[8] A. Razani, “Chapman-Jouguet travelling wave for a two-steps reaction scheme,” Italian Journal of Pure and Applied Mathematics, vol. 41, pp. 544–553, 2018.
[9] S. Benbernou, S. Gala, and M. A. Ragusa, “On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space,” Mathematical Methods in the Applied Sciences, vol. 37, no. 15, pp. 2320–2325, 2014.
[10] S. Gala and M. A. Ragusa, “Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices,” Applicable Analysis, vol. 95, no. 6, pp. 1271–1279, 2016.
[11] Y. Li and Q. Wang, “Homogeneous Dirichlet problems for quasilinear anisotropic degenerate parabolic–hyperbolic equations,” Journal of Differential Equations, vol. 252, no. 9, pp. 4719–4741, 2012.
[12] B. Andreianov, M. Bendahmane, K. H. Karlsen, and S. Ouaor, “Well-posedness results for triply nonlinear degenerate parabolic equations,” Journal of Differential Equations, vol. 247, no. 1, pp. 277–302, 2009.
[13] K. Kobayasi and H. Ohwa, “Uniqueness and existence for anisotropic degenerate parabolic equations with boundary conditions on a bounded rectangle,” Journal of Differential Equations, vol. 252, no. 1, pp. 137–167, 2012.
[14] H. Zhan, “The solutions of a hyperbolic–parabolic mixed type equation on half-space domain,” Journal of Differential Equations, vol. 259, no. 4, pp. 1449–1481, 2015.
[15] H. Zhan and Z. Feng, “Stability of hyperbolic-parabolic mixed type equations with partial boundary condition,” Journal of Differential Equations, vol. 264, no. 12, pp. 7384–7411, 2018.
[16] H. Zhan and Z. Feng, “Partial boundary value condition for a nonlinear degenerate parabolic equation,” Journal of Differential Equations, vol. 267, no. 5, pp. 2874–2890, 2019.
[17] S. N. Antontsev and S. I. Shmarev, “A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions,” Nonlinear Analysis: Theory, Methods & Applications, vol. 60, no. 3, pp. 515–545, 2005.
evolutionary PDEs with nonstandard growth conditions, Atlantis Studies in Differential Equations, vol. 363 of Lecture Notes in Mathematics, pp. 12–20, Springer, Berlin, 1974.

[20] W. Huang and R. D. Russell, "Moving mesh strategy based on a gradient flow equation for two-dimensional problems," SIAM Journal on Scientific Computing, vol. 20, pp. 998–1015, 1998.

[21] H. Zhan, "On the solutions of a porous medium equation with exponent variable," Discrete Dynamics in Nature and Society, vol. 2019, Article ID 9290582, 15 pages, 2019.

[22] L. Diening, P. Nägele, and M. Ružička, "Monotone operator theory for unsteady problems in variable exponent spaces," Complex Variables and Elliptic Equations, vol. 57, no. 11, pp. 1209–1231, 2010.

[23] S. Antontsev and S. Shmarev, "Anisotropic parabolic equations with variable nonlinearity," Publicacions Matemàtiques, vol. 53, pp. 355–399, 2009.

[24] A. H. Erhardt, "Compact embedding for $p(x,t)$-Sobolev spaces and existence theory to parabolic equations with $p(x,t)$-growth," Revista Matemática Complutense, vol. 30, no. 1, pp. 35–61, 2017.

[25] S. Antontsev and S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions, Atlantis Studies in Differential Equations, Atlantis Press, Paris, 2015.

[26] S. Antontsev and S. Shmarev, "Vanishing solutions of anisotropic parabolic equations with variable nonlinearity," Journal of Mathematical Analysis and Applications, vol. 361, no. 2, pp. 371–391, 2010.

[27] S. Antontsev and S. Shmarev, "On the localization of solutions of doubly nonlinear parabolic equations with nonstandard growth in filtration theory," Applicable Analysis, vol. 95, no. 10, pp. 2162–2180, 2015.

[28] B. Amaziane, L. Pankratov, and A. Piatnitski, "Nonlinear flow through double porosity media in variable exponent Sobolev spaces," Nonlinear Analysis: Real World Applications, vol. 10, no. 4, pp. 2521–2530, 2009.

[29] R. M. P. Almeida, S. N. Antontsev, and J. C. M. Duque, "Discrete solutions for the porous medium equation with absorption and variable exponents," Mathematics and Computers in Simulation, vol. 137, pp. 109–129, 2017.

[30] S. Lian, W. Gao, C. Cao, and H. Yuan, "Study of the solutions to a model porous medium equation with variable exponent of nonlinearity," Journal of Mathematical Analysis and Applications, vol. 342, no. 1, pp. 27–38, 2008.

[31] J. P. Aubin, "Un théorème de compacité," Comptes Rendus de l’Académie des Sciences, vol. 256, pp. 5042–5044, 1963.

[32] Z. Li, B. Yan, and W. Gao, "Existence of solutions to a parabolic $p(x)$-Laplace equation with convection term via L^∞ estimates," Electronic Journal of Differential Equations, vol. 46, pp. 1–21, 2015.

[33] S. Antontsev and S. Shmarev, "Parabolic equations with double variable nonlinearities," Mathematics and Computers in Simulation, vol. 81, no. 10, pp. 2018–2032, 2011.

[34] S. Lian, W. Gao, H. Yuan, and C. Cao, "Existence of solutions to an initial Dirichlet problem of evolutionary $p(x)$-Laplace equations," Annales de l’Institut Henri Poincare (C) Non Linear Analysis, vol. 29, no. 3, pp. 377–399, 2012.

[35] J. Aramaki, "H"older continuity with exponent $(1 + \alpha)/2$ in the time variable for solutions of parabolic equations," Electronic Journal of Differential Equations, vol. 96, pp. 1–6, 2015.

[36] A. S. Tersenov and A. S. Tersenov, "Existence of Lipschitz continuous solutions to the Cauchy–Dirichlet problem for anisotropic parabolic equations," Journal of Functional Analysis, vol. 272, no. 10, pp. 3965–3986, 2017.

[37] C. Cowan and A. Razani, "Singular solutions of a p–Laplace equation involving the gradient," Journal of Differential Equations, vol. 269, no. 4, pp. 3914–3942, 2020.