Circulating growth factors data associated with insulin secretagogue use in women with incident breast cancer

Zachary A.P. Wintroba, Jeffrey P. Hammel, George K. Nimako, Dan P. Gaile, Alan Forrest, Alice C. Ceacareanu

Abstract

Oral drugs stimulating insulin production may impact growth factor levels. The data presented shows the relationship between pre-existing insulin secretagogues use, growth factor profiles at the time of breast cancer diagnosis and subsequent cancer outcomes in women diagnosed with breast cancer and type 2 diabetes mellitus. A Pearson correlation analysis evaluating the relationship between growth factors stratified by diabetes pharmacotherapy and controls is also provided.

© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Clinical and Translational Research
More specific subject area	Biomarker Research, Cancer Epidemiology
Type of data	Tables
How data was acquired	Tumor registry query was followed by vital status ascertainment, and medical records review
	Luminex®-based quantitation of growth factors (epidermal growth factor, fibroblast growth factor 2, vascular endothelial growth factor, hepatocyte growth factor, platelet-derived growth factor BB, and tumor growth factor-β) from plasma samples was conducted.
	A Luminex®200™ instrument with Xponent 3.1 software was used to acquire all data
Data format	Analyzed
Experimental factors	Growth factors were determined from the corresponding plasma samples collected at the time of breast cancer diagnosis
Experimental features	The dataset included 97 adult females with diabetes mellitus and newly diagnosed breast cancer (cases) and 194 matched controls (breast cancer only). Clinical and treatment history were evaluated in relationship with cancer outcomes and growth factor profiles. A growth factor correlation analysis was also performed.
Data source location	United States, Buffalo, NY - 42° 53' 50.3592"N; 78° 52' 2.658"W
Data accessibility	The data is with this article

Value of the data

- This dataset shows the observed relationship between baseline insulin secretagogues use, circulating growth factor levels at the time of cancer diagnosis and breast cancer outcomes.
- Reported data may guide future studies evaluating pharmacotherapy-induced growth factor modulation in breast cancer.
- These observations can assist future study design in evaluating the relationship between diabetes pharmacotherapy safety and circulating growth factors levels at the time of cancer diagnosis.

1. **Data**

Reported data represents the observed association between use of insulin secretagogues preceding breast cancer and the growth factor profiles at the time of cancer diagnosis in women with diabetes mellitus (Table 1). Data in Table 2 includes the observed correlations between growth factors stratified by type 2 diabetes mellitus pharmacotherapy and controls. C-peptide correlation with each of the studied growth factors is presented in Table 2, however details regarding its determination from plasma, association with cancer outcomes and insulin secretagogues use has been already reported by us [2].
Biomarker	Biomarker grouping	Concentration	Control	No Secretagogue	Any Secretagogue	Unadjusted P-value (MVP)			
						p¹			
						p²			
						p³			
						Global test			
EGF	Median, ng/ml	–	20.26	29.60	26.63	0.002			
	(25th–75th)		(12.25–37.04)	(18.76–56.42)	(15.35–53.77)	(0.002)			
	Quartiles	1.60–13.61	57 (29.4%)	6 (12.8%)	10 (20.0%)	0.020			
		13.79–23.29	51 (26.3%)	10 (21.3%)	12 (24.0%)	0.280			
		23.70–44.72	47 (24.2%)	13 (27.7%)	12 (24.0%)	0.740			
		45.35–382.99	39 (20.1%)	18 (38.3%)	16 (32.0%)	0.070			
	OS-Based Optimization	1.60–113.10	5 (2.6%)	49 (25.3%)	14 (28.0%)	0.220			
		116.01–382.99	5 (2.6%)	3 (6.0%)	14 (28.0%)	0.430			
	DFS-Based Optimization	1.60–5.20	12 (6.2%)	4 (8.0%)	4 (8.0%)	0.490			
		5.39–382.99	182 (93.8%)	46 (97.9%)	46 (92.0%)	0.240			
FGF-2	Median, pg/ml	–	16.15	30.58	14.66	0.048			
	(25th–75th)		(4.32–34.43)	(7.13–49.11)	(3.20–42.68)	(0.034)			
	Quartiles	1.60–4.18	49 (25.3%)	10 (21.3%)	14 (28.0%)	0.220			
		4.76–17.34	51 (26.3%)	9 (19.1%)	13 (26.0%)	0.620			
		17.51–39.78	52 (26.8%)	11 (23.4%)	9 (18.0%)	0.430			
		40.30–1147.64	42 (21.6%)	17 (36.2%)	14 (28.0%)	0.780			
	OS-Based Optimization	1.60–10.15	72 (37.1%)	15 (31.9%)	19 (38.0%)	0.510			
		10.21–1147.64	122 (62.9%)	32 (68.1%)	31 (62.0%)	0.530			
	DFS-Based Optimization	1.60–14.61	87 (44.8%)	17 (36.2%)	25 (50.0%)	0.380			
		14.68–1147.64	107 (55.2%)	30 (63.8%)	25 (50.0%)	0.380			
HGF	Median, pg/ml	–	289	347	348	0.160			
	(25th–75th)		(129–439)	(193–507)	(136–576)	0.240			
Biomarker	Biomarker grouping	Concentration	Control	No Secretagogue	Any Secretagogue	Unadjusted P-value (MVP)			
-----------	--------------------	---------------	---------	-----------------	------------------	-------------------------			
						p¹	p²	p³	Global test
Quartiles	13.02–130.22	50 (25.8%)	11 (23.4%)	12 (24.0%)	0.670	0.021	0.350	0.110	
	130.72–312.56	52 (26.8%)	10 (21.3%)	11 (22.0%)					
	314.96–472.00	53 (27.3%)	13 (27.7%)	7 (14.0%)					
	505.37–6728.77	39 (20.1%)	13 (27.7%)	20 (40.0%)					
OS-Based	13.02–1148.76	188 (96.9%)	45 (95.7%)	48 (96.0%)	0.660	(0.770)	(0.960)	(0.840)	(0.960)
Optimization	1169.11–6728.77	6 (3.1%)	2 (4.3%)	2 (4.0%)	0.000	(0.250)	(0.460)	(0.640)	
DFS-Based	13.02–919.06	185 (95.4%)	44 (93.6%)	44 (88.0%)	0.710	0.090	0.490	0.170	
Optimization	920.11–6728.77	9 (4.6%)	3 (6.4%)	6 (12.0%)					
PDGF-BB	Median, pg/ml (25th–75th)	2055 (615–5402)	1341 (309–2802)	1105 (205–3211)	0.100	0.037	0.710	0.053	
	Quartiles	60–414	43 (22.2%)	13 (27.7%)	17 (34.0%)	0.610	0.210	0.800	0.460
		440–1618	47 (24.2%)	12 (25.5%)	14 (28.0%)				
		1660–4332	49 (25.3%)	13 (27.7%)	10 (20.0%)				
		4355–15,480	55 (28.4%)	9 (19.1%)	9 (18.0%)				
OS-Based	60–2687³	109 (56.2%)	34 (72.3%)	35 (70.0%)	0.046	0.080	0.800	0.046	
Optimization	2694–15,480	85 (43.8%)	13 (27.7%)	15 (30.0%)	(0.014)	(0.035)	(0.940)	(0.017)	
DFS-Based	60–10,400¹	186 (95.9%)	44 (93.6%)	49 (98.0%)	0.450	0.690	0.350	0.490	
Optimization	10,944–15,480	8 (4.1%)	3 (6.4%)	1 (2.0%)	(0.690)	(0.710)	(0.450)	(0.690)	
TGF-β	Median, pg/ml (25th–75th)	3007 (1996–4053)	4063 (2678–4872)	3425 (2417–4414)	0.013	0.070	0.450	0.017	
		–							

Note: MBA® Wntrob et al./Data in Brief 11 (2017) 459–468
Quartiles	453–2151	57 (29.4%)	7 (14.9%)	9 (18.0%)	0.060	0.110	0.440	0.052
	2155–3157	52 (26.8%)	11 (23.4%)	10 (20.0%)				
	3183–4303	43 (22.2%)	11 (23.4%)	18 (36.0%)				
	4311–12,026	42 (21.6%)	18 (38.3%)	13 (26.0%)				

OS-Based Optimization

Quartiles	453–5545	176 (90.7%)	39 (83.0%)	43 (86.0%)	0.130	0.330	0.680	0.260
	5557–12,026	18 (9.3%)	8 (17.0%)	7 (14.0%)	(0.220)	(0.890)	(0.320)	(0.480)

DFS-Based Optimization

Quartiles	453–1881	42 (21.6%)	6 (12.8%)	6 (12.0%)	0.180	0.130	0.910	0.160
	1907–12,026	152 (78.4%)	41 (87.2%)	44 (88.0%)	(0.210)	(0.470)	(0.800)	(0.370)

VEGF Median, pg/ml (25th–75th)

Quartiles	1.60–43.56	52 (26.8%)	8 (17.0%)	13 (26.0%)	0.210	0.680	0.120	0.320
	44.52–97.48	51 (26.3%)	9 (19.1%)	16 (32.0%)				
	97.87–192.64	45 (23.2%)	16 (34.0%)	8 (16.0%)				
	194.47–4197.81	46 (23.7%)	14 (29.8%)	13 (26.0%)				

OS-Based Optimization

Quartiles	1.60–37.94	45 (23.2%)	7 (14.9%)	10 (20.0%)	0.220	0.630	0.510	0.450
	38.42–4197.81	149 (76.8%)	40 (85.1%)	40 (80.0%)	(0.150)	(0.810)	(0.570)	(0.370)

DFS-Based Optimization

Quartiles	1.60–37.94	45 (23.2%)	7 (14.9%)	10 (20.0%)	0.220	0.630	0.510	0.450
	38.42–4197.81	149 (76.8%)	40 (85.1%)	40 (80.0%)	(0.150)	(0.810)	(0.570)	(0.370)

Unadjusted p-values: p^1, compares no secretagogue versus control; p^2, compares any secretagogue versus control; p^3, compares any secretagogue versus no secretagogue (as per Kruskal–Wallis test); global test, compares all categories (as per Wilcoxon, type 3 error test); MVP denotes the p-value of each multivariate adjusted analysis corresponding to the earlier described unadjusted analyses. For more information, please see Section 2.7 below and our previously published analysis work flow1. MVP = p-value of the multivariate adjusted analysis. Epidermal growth factor (EGF), fibroblast Growth Factor 2 (FGF-2), hepatocyte growth factor (HGF), platelet-derived growth factor BB (PDGF-BB), tumor growth factor (TGF), vascular endothelial growth factor (VEGF).

Overall survival (OS)- and disease-free survival (DFS)-optimized growth factor ranges associated with poorer outcomes (i.e. the group with a lower survival probability) are represented in bold.
Table 2
Growth factor correlations by secretagogues use.

Compared Biomarkers	Group	Unadjusted Correlation	Adjusted Correlation			
		Pearson Correlation 95% Confidence Interval	p-value	Pearson Correlation 95% Confidence Interval	p-value	
C-Peptide EGF	All Subjects (n=291)	-0.098 -0.210 to 0.018	0.096	**-0.136 -0.247 to -0.020**	0.021	
	Controls (n=194)	-0.104 -0.242 to 0.037	0.147	-0.141 -0.278 to 0.001	0.051	
	No Secretagogue (n=43)	-0.395 -0.622 to -0.108	0.008	**-0.388 -0.624 to -0.087**	0.012	
	Any Secretagogue (n=54)	0.166 -0.106 to 0.416	0.226	0.229 -0.050 to 0.474	0.103	
C-Peptide FGF-2	All Subjects (n=291)	-0.161 -0.271 to -0.047	0.006	**-0.178 -0.288 to -0.064**	0.002	
	Controls (n=194)	-0.122 -0.259 to 0.019	0.089	-0.125 -0.263 to 0.017	0.083	
	No Secretagogue (n=43)	-0.391 -0.619 to -0.103	0.008	**-0.364 -0.607 to -0.059**	0.019	
	Any Secretagogue (n=54)	-0.105 -0.362 to 0.168	0.448	-0.071 -0.340 to 0.208	0.618	
C-Peptide HGF	All Subjects (n=291)	0.035 -0.080 to 0.150	0.549	0.006 -0.109 to 0.122	0.913	
	Controls (n=194)	0.173 0.033 to 0.306	0.016	**0.165 0.024 to 0.300**	0.0219	
	No Secretagogue (n=43)	-0.204 -0.475 to 0.103	0.186	-0.275 -0.540 to 0.040	0.082	
	Any Secretagogue (n=54)	-0.034 -0.299 to 0.236	0.804	-0.025 -0.299 to 0.252	0.861	
C-Peptide PDGF-BB	All Subjects (n=291)	-0.111 -0.223 to 0.004	0.058	-0.093 -0.206 to 0.023	0.116	
	Controls (n=194)	-0.087 -0.176 to 0.105	0.618	-0.082 -0.222 to 0.060	0.254	
	No Secretagogue (n=43)	-0.122 -0.408 to 0.185	0.432	-0.134 -0.428 to 0.185	0.405	
	Any Secretagogue (n=54)	-0.068 -0.330 to 0.204	0.625	-0.049 -0.321 to 0.229	0.730	
C-Peptide TGF-β	All Subjects (n=291)	0.063 -0.053 to 0.177	0.285	0.018 -0.098 to 0.133	0.767	
	Controls (n=194)	-0.036 -0.176 to 0.105	0.618	-0.064 -0.205 to 0.078	0.375	
	No Secretagogue (n=43)	0.254 -0.050 to 0.515	0.096	0.230 -0.088 to 0.505	0.150	
	Any Secretagogue (n=54)	0.035 -0.235 to 0.300	0.803	0.035 -0.243 to 0.308	0.807	
C-Peptide VEGF	All Subjects (n=291)	-0.127 -0.238 to -0.012	0.030	**-0.136 -0.247 to -0.020**	0.021	
	Controls (n=194)	-0.096 -0.233 to 0.046	0.184	-0.095 -0.234 to 0.047	0.189	
	No Secretagogue (n=43)	-0.389 -0.617 to -0.100	0.009	**-0.350 -0.596 to -0.043**	0.024	
	Any Secretagogue (n=54)	0.068 -0.203 to 0.330	0.622	0.119 -0.162 to 0.382	0.404	
EGF	All Subjects (n=291)	0.730 0.672 to 0.780	<0.001	0.734 0.675 to 0.783	<0.001	
	Controls (n=194)	0.717 0.641 to 0.779	<0.001	0.725 0.650 to 0.786	<0.001	
	No Secretagogue (n=43)	0.812 0.677 to 0.894	<0.001	0.824 0.689 to 0.903	<0.001	
	Any Secretagogue (n=54)	0.307 0.042 to 0.531	0.022	0.342 0.072 to 0.564	0.013	
EGF	All Subjects (n=291)	0.311 0.203 to 0.411	<0.001	0.291 0.182 to 0.394	<0.001	
	Controls (n=194)	0.107 -0.034 to 0.244	0.137	0.087 -0.055 to 0.226	0.229	
	No Secretagogue (n=43)	0.544 0.291 to 0.726	<0.001	0.583 0.332 to 0.757	<0.001	
	Any Secretagogue (n=54)	0.157 -0.115 to 0.408	0.252	0.127 -0.154 to 0.389	0.371	
EGF	All Subjects (n=291)	-0.023 -0.138 to 0.092	0.694	-0.007 -0.123 to 0.108	0.900	
	Controls (n=194)	0.016 -0.125 to 0.157	0.824	0.009 -0.133 to 0.151	0.898	
	No Secretagogue (n=43)	-0.117 -0.403 to 0.190	0.451	-0.093 -0.393 to 0.225	0.567	
	Any Secretagogue (n=54)					
---	---	---	---	---	---	
EGF (n=291)	0.052	-0.219 to 0.315	0.707	-0.080	-0.348 to 0.120	0.573
Controls (n=194)	0.196	0.082 to 0.304	<0.001	0.172	0.058 to 0.282	0.003
No Secretagogue (n=43)	0.153	-0.154 to 0.433	0.324	0.170	-0.150 to 0.457	0.291
FGF (n=291)	0.621	0.545 to 0.687	<0.001	0.627	0.552 to 0.693	<0.001
Controls (n=194)	0.621	0.526 to 0.700	<0.001	0.627	0.533 to 0.706	<0.001
No Secretagogue (n=43)	0.662	0.451 to 0.803	<0.001	0.691	0.483 to 0.825	<0.001
FGF-2 (n=291)	0.336	0.075 to 0.554	0.012	0.366	0.101 to 0.583	0.007
Controls (n=194)	0.138	0.024 to 0.249	0.018	0.133	0.018 to 0.245	0.023
No Secretagogue (n=43)	0.264	-0.040 to 0.523	0.084	0.299	-0.014 to 0.558	0.058
PDGF-BB (n=291)	0.127	0.012 to 0.239	0.030	0.120	0.005 to 0.233	0.041
Controls (n=194)	0.054	-0.087 to 0.194	0.453	0.048	-0.095 to 0.189	0.509
No Secretagogue (n=43)	0.288	-0.014 to 0.541	0.058	-0.046	-0.310 to 0.225	0.743
PDGF-BB (n=291)	0.805	0.760 to 0.842	<0.001	0.805	0.760 to 0.842	<0.001
Controls (n=194)	0.845	0.780 to 0.881	<0.001	0.845	0.799 to 0.881	<0.001
No Secretagogue (n=43)	0.754	0.586 to 0.859	<0.001	0.763	0.592 to 0.868	<0.001
PDGF-BB (n=291)	0.8	0.677 to 0.879	<0.001	0.792	0.660 to 0.876	<0.001
Controls (n=194)	0.057	-0.058 to 0.171	0.328	0.074	-0.042 to 0.188	0.208
No Secretagogue (n=43)	0.093	-0.048 to 0.231	0.195	0.087	-0.056 to 0.226	0.233
PDGF-BB (n=291)	0.247	-0.022 to 0.483	0.069	0.226	-0.053 to 0.472	0.107
Controls (n=194)	0.116	0.001 to 0.228	0.048	0.091	-0.025 to 0.205	0.122
No Secretagogue (n=43)	0.113	-0.028 to 0.250	0.116	0.099	-0.043 to 0.238	0.170
PDGF-BB (n=291)	0.02	-0.282 to 0.318	0.901	-0.036	-0.344 to 0.279	0.824
Controls (n=194)	0.294	0.029 to 0.521	0.029	0.304	0.031 to 0.535	0.028
No Secretagogue (n=43)	0.034	-0.081 to 0.149	0.562	0.032	-0.084 to 0.147	0.584
PDGF-BB (n=291)	0.031	-0.110 to 0.171	0.666	0.025	-0.118 to 0.166	0.736
Controls (n=194)	0.024	-0.278 to 0.322	0.876	0.095	-0.223 to 0.395	0.557
No Secretagogue (n=43)	-0.091	-0.350 to 0.182	0.513	-0.078	-0.346 to 0.202	0.584
PDGF-BB (n=291)	-0.120	-0.232 to -0.005	0.040	-0.103	-0.216 to 0.012	0.080
Controls (n=194)	-0.145	-0.280 to -0.004	0.044	-0.155	-0.290 to -0.013	0.032
No Secretagogue (n=43)	-0.110	-0.397 to 0.197	0.481	-0.055	-0.360 to 0.261	0.734
2. Experimental design, materials and methods

Evaluation of growth factor profile association with insulin secretagogue use and BC outcomes was carried out under two protocols approved by both Roswell Park Cancer Institute (EDR154409 and NHR009010) and the State University of New York at Buffalo (PHP0840409E). Demographic and clinical patient information was linked with cancer outcomes and growth factor profiles of corresponding plasma specimen harvested at BC diagnosis and banked in the Roswell Park Cancer Institute Data Bank and Bio-Repository.

2.1. Study population

As described in the original research article by Wintrob et al. [1], all incident breast cancer cases diagnosed at Roswell Park Cancer Institute (01/01/2003-12/31/2009) were considered for inclusion (n = 2194). Medical and pharmacotherapy history were used to determine the baseline presence of diabetes.

2.2. Inclusion and exclusion criteria

Inclusion criteria were as follows: minimum 18 years of age at diagnosis, presence of pre-existing diabetes at breast cancer diagnosis, and having available banked treatment-naïve plasma specimens in the Institute's Data Bank and Bio-Repository. That is, the blood had to be collected prior to the initiation of any cancer-related therapy (surgery, radiation or pharmacotherapy).

Subjects were excluded if they were male, had prior cancer history or unclear date of diagnosis, incomplete clinical records, type 1 or unclear diabetes status. For a specific breakdown of excluded subjects, please see the original research article by Wintrob et al. [1].

A total of 97 female subjects with breast cancer and baseline diabetes mellitus were eligible for inclusion in this analysis.

2.3. Control-matching approach

Each of the 97 adult female subjects with breast cancer and diabetes mellitus (defined as “cases”) was matched with two other female subjects diagnosed with breast cancer, but without baseline diabetes mellitus (defined as “controls”). The following matching criteria were used: age at diagnosis, body mass index category, ethnicity, menopausal status and tumor stage (as per the American Joint Committee on Cancer). Some matching limitations applied [1].

PDGF-BB	VEGF
Any Secretagogue (n=54)	0.051 -0.220 to 0.314 0.716 0.059 -0.220 to 0.329 0.679
All Subjects (n=291)	0.078 -0.037 to 0.192 0.182 0.081 -0.035 to 0.195 0.168
Controls (n=194)	**0.143** **0.003 to 0.279** 0.045 0.138 -0.004 to 0.275 0.056
No Secretagogue (n=43)	0.047 -0.257 to 0.342 0.764 -0.011 -0.321 to 0.302 0.947
Any Secretagogue (n=54)	-0.107 -0.364 to 0.166 0.439 -0.047 -0.318 to 0.232 0.744
All Subjects (n=291)	0.100 -0.016 to 0.212 0.089 0.098 -0.018 to 0.211 0.096
Controls (n=194)	0.044 -0.098 to 0.184 0.542 0.040 -0.103 to 0.181 0.583
No Secretagogue (n=43)	0.208 -0.099 to 0.478 0.177 0.280 -0.035 to 0.544 0.077
Any Secretagogue (n=54)	-0.033 -0.299 to 0.236 0.810 -0.034 -0.306 to 0.244 0.814

Significant correlations are displayed in bolded text. The differences that are only significant in either adjusted or unadjusted correlations are further denoted by an outline. Epidermal growth factor (EGF), fibroblast Growth Factor 2 (FGF-2), hepatocyte growth factor (HGF), platelet-derived growth factor BB (PDGF-BB), tumor growth factor (TGF), vascular endothelial growth factor (VEGF).
2.4. Demographic and clinical data collection

Clinical and treatment history was documented by medical chart review. Vital status was obtained from the Institute’s Tumor Registry, a local database updated biannually with data obtained from the National Comprehensive Cancer Networks’ Oncology Outcomes Database. Outcomes of interest were overall survival (death from breast cancer) and disease-free survival (breast cancer recurrence and/or death). Mean overall and disease-free survival were 113.3 and 107.3 months respectively, both with a minimum follow-up of 25.6 months. For additional details concerning data collection, specific definitions regarding censoring and drug use (including the number of insulin users per analyzed group), and a comprehensive demographic report, please see the original article by Wintrob et al. [1].

2.5. Plasma specimen storage and retrieval

All the plasma specimens retrieved from long-term storage were individually aliquoted in color coded vials labeled with unique, subject specific barcodes. Overall duration of freezing time was accounted for all matched controls ensuring that the case and matched control specimens had similar overall storage conditions. Only two instances of freeze-thaw were allowed between biobank retrieval and biomarker analyses: aliquoting procedure step and actual assay.

2.6. LuminexASSays

A total of 6 biomarkers (epidermal growth factor, fibroblast growth factor 2, vascular endothelial growth factor, hepatocyte growth factor, platelet-derived growth factor BB, and tumor growth factor-β) were quantified according to the manufacturer protocol. The following Luminex® biomarker panels were utilized in this study: TGFβ-64K (tumor growth factor-β), HCYTOMAG-60K (platelet-derived growth factor BB), and HAGP1MAG-12K (epidermal growth factor, fibroblast growth factor 2, vascular endothelial growth factor, and hepatocyte growth factor) produced by Millipore Corporation, Billerica, MA. C-peptide determinations were done according to the manufacturer protocol as previously reported [2].

2.7. Biomarker-pharmacotherapy association analysis

Biomarker cut-point optimization was performed for each analyzed biomarker. Biomarker levels constituted the continuous independent variable that was subdivided into two groups. Cut-point selection was determined by p-value optimization using the log rank method with respect to survival (both overall and disease-free) as the dependent variable with the condition of a minimum biomarker group size of 10 patients. The results of this analysis yielded the cut-point for each biomarker that would provide the most significant separation of a Kaplan-Meier survival probability curve by assigning the subject to their respective biomarker category, specifically above or below the identified cut-point. Thus identifying potential biomarker ranges associated with poorer outcomes, specifically, ranges associated with a lower survival probability. Quartiles were also constructed. The resultant biomarker categories were then ztested for association with type 2 diabetes mellitus therapy and controls by Fisher’s exact test. The continuous biomarker levels were also tested for association with diabetes therapy and controls across groups by the Kruskal–Wallis test and pairwise by the Wilcoxon rank sum. Multivariate adjustments were performed accounting for age, tumor stage, body mass index, estrogen receptor status, and cumulative comorbidity. The biomarker analysis was performed using R Version 2.15.3. Please see the original article for an illustration of the analysis workflow [1].

Correlations between biomarkers stratified by type 2 diabetes mellitus pharmacotherapy and controls were assessed by the Pearson method. Correlation models were constructed both with and without adjustment for age, body mass index, and the combined comorbidity index. Correlation analyses were performed using SAS Version 9.4.
Funding Sources

This research was funded by the following grant awards: Wadsworth Foundation Peter Rowley Breast Cancer Grant awarded to A.C.C. (UB Grant number 55705, Contract CO26588).

Acknowledgements

Authors acknowledge the valuable help of Dr. Chi-Chen Hong with case-control matching.

Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.02.038.

References

[1] Z. Wintrob, J.P. Hammel, T. Khoury, G.K. Nimako, H.-W. Fu, Z.S. Fayazi, D.P. Gaile, A. Forrest, A.C. Ceacareanu, Insulin use, adipokine profiles and breast cancer prognosis, Cytokine 89 (2017) 45–61.
[2] Z. Wintrob, J.P. Hammel, T. Khoury, G.K. Nimako, Z.S. Fayazi, D.P. Gaile, A. Forrest, A.C. Ceacareanu, Circulating adipokines data associated with insulin secretagogue use in breast cancer patients, Data Brief 10 (2016) 238–247.