New insights into the role of plasmids from probiotic Lactobacillus pentosus MP-10 in Aloreña table olive brine fermentation

Hikmate Abriouel1, Beatriz Pérez Montoro1, Juan José de la Fuente Ordoñez1, Leyre Lavilla Lerma1, Charles W. Knapp2 & Nabil Benomar1

In silico analysis of Lactobacillus pentosus MP-10 plasmids (pLPE-1 to pLPE-5) suggests that plasmid-borne genes mediate the persistence of lactobacilli during olive fermentation and enhance their probiotic properties and their competitiveness in several ecological niches. The role of plasmids in the probiotic activities of L. pentosus MP-10 was investigated by plasmid-curing process which showed that plasmids contribute in increased metal tolerance and the biosequestration of several metals such as iron, aluminium, cobalt, copper, zinc, cadmium and mercury. Statistically significant differences in mucin adhesion were detected between the uncured and the cured L. pentosus MP-10, which possibly relied on a serine-rich adhesin (sraP) gene detected on the pLPE-2 plasmid. However, plasmid curing did not affect their tolerance to gastro-intestinal conditions, neither their growth ability under predetermined conditions, nor auto-aggregation and pathogen co-aggregation were changed among the cured and uncured L. pentosus MP-10. These findings suggest that L. pentosus MP-10 plasmids play an important role in gastro-intestinal protection due to their attachment to mucin and, thus, preventing several diseases. Furthermore, L. pentosus MP-10 could be used as a bioquencher of metals in the gut, reducing the amount of these potentially toxic elements in humans and animals, food matrices, and environmental bioremediation.

Table olive fermentation is the oldest practice by our ancestors to preserve vegetables and to also produce different flavours and textures. Additionally, fermented table olives remain an important economy for many production countries and a component of the Mediterranean diet (and recommended as part of the Healthy Eating Pyramid published in 2010, https://dietamediterranea.com/). The high nutritional value of fermented table olives (e.g., their content of carbohydrates, fiber, minerals, vitamins, fatty acids, and amino acids) and their role as potential source of probiotic lactobacilli of vegetable origin1–5 make them very attractive from an economic and social point of view. Lactobacillus genus is the most representative and heterogeneous member of lactic acid bacteria (LAB) group currently consisting of 237 species (as of December 2018 in www.bacterio.net) since they harbour in their genome a plethora of genes involved with a wide array of functional properties6,7. Lactobacillus spp. are principal bacteria in olive fermentation processes, possessing many biochemical and physiological traits to ferment several carbohydrates and tolerate stress8. These phenotypes are important as the brine environment represent harsh conditions for bacterial growth with low nutrient availability, saltiness, low pH and the presence of antimicrobials (e.g., phenolic compounds and oleuropein); thus, highly robust L. plantarum and L. pentosus are frequently isolated from the end of olive fermentation1,9. Furthermore, Perpetuini, et al.10 demonstrated by transposon mutagenesis that the high capacity of L. plantarum and L. pentosus to survive in the hostile, brine environments was due to critical genes encoding proteins involved in carbohydrate metabolism, membrane structure and function, and

1Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071, Jaén, Spain. 2Centre of Water, Environment, Sustainability and Public Health; Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, Scotland, United Kingdom. Correspondence and requests for materials should be addressed to H.A. (email: hikmate@ujaen.es)
gene-expression regulation. They further suggested that the *obad* gene, which encodes a putative membrane protein strictly specific to *L. pentosus/L. plantarum* species, may be one of the key elements involved in their efficient adaptation to several conditions in many fermented food processes and natural ecosystems.

Aloreña green table olive fermentation is a spontaneous process relying on *L. pentosus* strains and yeasts. Resistance, persistence and predominance of *Lactobacillus* spp. in green table olive fermentation is due to their genetic variation and plasticity related to their chromosome and plasmids. In fact, *L. pentosus* species isolated from olive fermentation harbours the largest genome recognized to date and several plasmids (range: n = 5 to 7). However, *L. plantarum* contains the largest plasmids among the genus *Lactobacillus* such as *L. plantarum* 16, which harbors 10 plasmids ranging 6.46–74.08 kb. Most of the *Lactobacillus* plasmids are cryptic; however, they possess important properties such as antibiotic resistance, exopolysaccharide production, antimicrobial activity, bacteriocin synthesis, bacteriocin resistance, carbohydrate metabolism, host colonization and probiotic activity. On the other hand, megaplasmids were also detected in *Lactobacillus* sp., up to 490 kb. In this study, we analyzed in silico five plasmids harboured by *L. pentosus* MP-10 isolated from naturally fermented Aloreña green table olive. Moreover, we aimed to better understand the underlying functional and probiotic properties of these plasmids using curing plasmid experiments; in particular, we examined their physiological traits in metal tolerance and biosorption, antimicrobial activity and adaptation to gastro-intestinal conditions to determine possible probiotic applications of this bacterium.

Results

General features of *L. pentosus* MP-10 plasmids. We have already reported the sequencing of *L. pentosus* MP-10 genome, which consisted of a single circular chromosome of 3,698 kbp and five plasmids ranging 29–46 kbp (accession numbers FLYG01000001 to FLYG01000006). Sequence annotation was done using the Prokka annotation pipeline, version 1.11 as previously reported by Abriouel et al. The general features of the circular five plasmids are reported in Table 1. The average GC content of *L. pentosus* MP-10 plasmids ranged 39.52–42.50%, slightly lower than the host chromosome (with GC value of 46.32%). Furthermore, the GC contents of *L. pentosus* MP-10 plasmids were among the highest of known *L. pentosus* plasmids. All open reading frames in *L. pentosus* MP-10 plasmids are greater than 34 amino acids (Tables 2–6). Blast search for homology revealed lower identity with other plasmids in the database; however depending on coverage percentage, some regions harboring several genes in *L. pentosus* MP-10 plasmids were highly related with plasmids of *Lactobacillus* species isolated from foods like fermented olives, kimchi, koumiss, tofu or raw sausages and also from human saliva (Table 1).

In silico analysis of plasmid properties in *L. pentosus* MP-10. Analysis of the annotated CDs of each *L. pentosus* MP-10 plasmid revealed the presence of five genes involved in mobilization (*mobA*) gene) distributed in all plasmids except the pLPE-2 plasmid (Tables 2–6). These genes are likely required for plasmid relaxation and mobilization by conjugative plasmids. Also, conjugation-related genes were found, e.g., *traG_1* and *traG_2* and pLPE-5 (*traG_3*) plasmids (Tables 5 and 6). A gene encoding for a bacteriophage peptideglycan hydrolase that may have been involved in growth was found in pLPE-4 (*XX999_00013* and *XX999_00049*).

The presence of mobile genetic elements in *L. pentosus* MP-10 plasmids (pLPE-2, pLPE-3, pLPE-4 and pLPE-5) was already reported by Abriouel et al. such as four putative transposon Tn552 DNA-invertase bin3 (four different genes of the same family), transposase DDE domain proteins (4 genes in pLPE-2 and pLPE-5 plasmids), transposases of the mutator family (3 genes in pLPE2, pLPE3 and pLPE5 plasmids) and transposases (2 genes in pLPE-2 and pLPE-3 plasmids). Concerning integrases, one phage integrase family protein (pLPE-1 plasmid) and 9 integrase core domain proteins were detected in pLPE-2, pLPE-3 and pLPE-5 plasmids (Tables 3, 4 and 6). A gene *pinR* coding for DNA invertase from prophage was detected in pLPE-5 plasmid (Table 5).

Chloride- (*clA* _2*) and sodium- (*nhaA3* _4*) transport genes harbourd by pLPE-2 plasmid (Table 3) indicated that this plasmid was involved in salt-tolerance in brine solutions (plasmid curing experiments). Furthermore, a
Gene ID	Gene	Position	Strand	Gen length (bp)	Protein description	GO terms	Similarity to proteins in Lactobacillus
XX999_03518	XX999_03518	804–950	−	147	Hypothetical protein	—	98% identity in *L. paracasei* subsp. *paracasei* Lpp70
XX999_03519	XX999_03519	963–1271	−	309	Phage integrase family protein	—	87% identity in *Lactobacillus*
XX999_03520	XX999_03520	1238–1651	−	414	Hypothetical protein	—	99% identity in *L. plantarum* IPLA88
XX999_03521	XX999_03521	1871–2215	+	345	Toxin MazF	DNA binding (MF); RNA binding (MF); endoribonuclease activity (MF); 5′-phosphomonoesters (MF); negative regulation of cell growth (BP); regulation of mRNA stability (BP); RNA phosphodiester bond hydrolysis, endonucleolytic (BP)	100% identity in *L. pentosus*
XX999_03522	XX999_03522	2675–3739	−	1065	Hypothetical protein	—	99% identity in *L. xiangfangensis*
XX999_03523	XX999_03523	3901–4380	−	480	Hypothetical protein	—	100% identity in *L. pentosus*
XX999_03524	XX999_03524	4989–5576	−	588	Initiator Replication protein	—	98% identity in *L. plantarum*
XX999_03525	XX999_03525	6296–6490	−	195	Hypothetical protein	—	100% identity in *L. pentosus* IG1
XX999_03526	mobA_4	7058–8221	+	1164	Mobilization protein A	Conjugation (BP); DNA binding (MF); DNA-directed RNA polymerase activity (MF); DNA topoisomerase type I activity (MF); cytoplasm (CC); metal ion binding (MF)	100% identity in *L. pentosus*
XX999_03527	XX999_03527	8218–8910	+	693	Hypothetical protein	—	100% identity in *L. pentosus*
XX999_03528	XX999_03528	9111–9866	−	756	Initiator Replication protein	—	100% identity in *L. plantarum* IPLA88
XX999_03529	XX999_03529	10508–10957	+	450	Hypothetical protein	—	100% identity in *L. pentosus*
XX999_03530	XX999_03530	10954–11157	+	204	Hypothetical protein	—	100% identity in *L. pentosus*
XX999_03531	XX999_03531	11306–11668	−	363	Hypothetical protein	—	100% identity in *L. pentosus*
XX999_03532	XX999_03532	11912–12271	−	360	Hypothetical protein	—	99% identity in *L. brevis*
XX999_03533	XX999_03533	12284–12871	−	588	Site-specific tyrosine recombinase XerC	—	99% identity in *L. plantarum* 2025
XX999_03534	XX999_03534	12949–13212	+	264	Putative regulator PrIF	Regulation of cell growth (BP); DNA binding (MF); sequence-specific DNA binding transcription factor activity (MF); cytoplasm (CC); transcription, DNA-templated (BP); enzyme binding (MF); negative regulation of transcription, DNA-templated (BP)	100% identity in *L. plantarum*
XX999_03535	ndoA_2	13212–13559	+	348	mRNA interferase EndoA	DNA binding (MF); RNA binding (MF); endoribonuclease activity (MF); endoribonuclease activity, producing 5′-phosphomonoesters (MF); negative regulation of cell growth (BP); regulation of mRNA stability (BP); RNA phosphodiester bond hydrolysis, endonucleolytic (BP)	98% identity in *Lactobacillus*
XX999_03536	XX999_03536	14021–15085	−	1065	Hypothetical protein	—	99% identity in *L. xiangfangensis*
XX999_03537	XX999_03537	15164–15751	−	588	Hypothetical protein	—	100% identity in *L. pentosus*
XX999_03538	XX999_03538	15993–16928	−	936	Initiator Replication protein	—	99% identity in *L. plantarum* subsp. *plantarum*
XX999_03539	XX999_03539	17648–17842	−	195	Hypothetical protein	—	100% identity in *L. pentosus* IG1
XX999_03540	mobA_5	18410–19573	+	1164	Mobilization protein A	Conjugation (BP); DNA binding (MF); DNA-directed RNA polymerase activity (MF); DNA topoisomerase type I activity (MF); cytoplasm (CC); metal ion binding (MF)	95% identity in *L. plantarum*
XX999_03541	XX999_03541	19570–20262	+	693	Hypothetical protein	—	98% identity in *L. plantarum* 2025
XX999_03542	XX999_03542	20463–21218	−	756	Initiator Replication protein	—	100% identity in *L. plantarum* IPLA88
XX999_03543	XX999_03543	21860–22309	+	450	Hypothetical protein	—	100% identity in *L. pentosus*
XX999_03544	XX999_03544	22306–22509	+	204	Hypothetical protein	—	100% identity in *L. pentosus*
XX999_03545	XX999_03545	22658–23020	−	363	Hypothetical protein	—	100% identity in *L. pentosus*
XX999_03546	XX999_03546	23264–23623	−	360	Hypothetical protein	—	100% identity in *L. pentosus*
XX999_03547	XX999_03547	23636–24223	−	588	Site-specific tyrosine recombinase XerC	—	99% identity in *L. plantarum* 2025

Continued
copy of the same genes clcA_1, nhaS3_1, nhaS3_2 and nhaS3_3 were also found in L. pentosus MP-10 chromosome with the aim to potentiate chloride and sodium tolerance in brines.

Genes related to carbohydrate metabolism were found on plasmids (besides on the chromosome) such as L-Lactate dehydrogenase in pLPE-5 plasmid (ldh_7 and ldl_8 genes) (Table 6), genes involved in glucose uptake and metabolism such as glcU_1 and gdhIV_1 genes in pLPE-3 plasmid (Table 4), and a gene involved in xylan catabolic process (axcAi_3) in pLPE-5 (Table 5). However, another gene involved in xylan catabolic process (XX999_00089) was only detected in pLPE-3 plasmid, but not on the chromosome (Table 4).

Toxins reported in L. pentosus MP-10 plasmids include mazF-toxin encoding gene (XX999_03521) detected in pLPE-1 plasmid, genes coding for Zeta toxins in pLPE-3 (XX999_00053) and pLPE-4 (XX999_00024) plasmids, and also for antitoxins such as RelB antitoxin (XX999_00026) in pLPE-4 plasmid and the bifunctional antitoxin/transcriptional repressor RelB in pLPE-5 plasmid (XX999_03554) (Tables 2, 4–6). MazF toxin is a desirable property in probiotic bacteria, and is only detected in plasmid DNA of L. pentosus MP-10, not in the chromosome. However, L. pentosus MP-10 has to protect itself from the MazF toxin without any MazE antitoxin. On the other hand, RelB antitoxins were found both on plasmids and on the chromosome; however, no RelB toxins were detected. Zeta toxins were detected both on the chromosome (one gene) and also on plasmid DNA (two genes); however, no antitoxin was detected.

Other coding genes for several functions, such as a serine-rich adhesin for platelets precursor (sraP gene), were detected in pLPE-2 plasmid but not on the chromosome (Table 3); genes coding for vitamin biosynthesis such as panE_1 and panE_2 genes coding for 2-dehydropantoate 2-reductase (biosynthesis of vitamin B5), a gene XX999_00068 coding for prephenate dehydratase (biosynthesis of phenylalanine, tyrosine and tryptophan), were such as genes coding for 2-dehydropantoate 2-reductase (biosynthesis of vitamin B5), a gene (Table 5). However, another gene involved in xylan catabolic process (XX999_00089) was only detected in pLPE-3 plasmid, but not on the chromosome (Table 4).

Regarding their responses to stress, in-silico analysis of plasmid sequences revealed the presence of yhdN_1 gene coding for a general stress protein 69 (in pLPE-3, Table 4) and several genes coding for metal tolerances, such as cadmium resistance transporter (XX999_03594) and a putative positive regulator of cadmium resistance (cadC) and two operons of arsenic resistance (in pLPE-5, Table 6). One of the operons consists of aarsR (arsenic resistance operon repressor ArsR) and aarsB (arsenic pump membrane protein (ArsB)), but lacks aarsC gene (arsenate reductase ArsC); the other aars operon contains aarsA (arsenic pump-driving ATPase (ArsA)) and aarsD gene (arsenic resistance operon trans-acting repressor (ArsD)). The synteny of arsenic-resistance genes was examined by comparing the annotated sequences of plasmid DNA and pWCFS103 plasmids (aligned by MAUVE algorithm) from L. pentosus MP-10 and L. plantarum WCFS1, respectively. Comparison revealed that the synteny of genes was similar (Fig. 2), being arsenic operons in pLPE-5 of L. pentosus MP-10 composed of two copies each gene: aarsB [coding for trivalent As(III) efflux permease ArsB], aarsA [coding for trivalent As(III)-stimulated ATPase ArsA], aarsD [coding for trivalent As(III) metallochaperone ArsD] and aarsR_3 gene [a trivalent As(III)-responsive repressor (ArsR)]. On the other hand, aarsC gene (aarsC2 coding for reductase ArsC), as a part of aars operon with aarsB and aarsR genes, was found in L. pentosus MP-10 chromosome, as well as two aarsR gene copies (aarsR_1 and aarsR_2).

Table 2. Genes determined in pLPE-1 plasmid of Lactobacillus pentosus MP-10 isolated from naturally fermented Aloreña table olives. BP, biological process; CC, cellular component; MF, molecular function.

Gene ID	Gene	Position	Strand	Gen length (bp)	Protein description	GO terms	Similarity to proteins in Lactobacillus
XX999_03548	XX999_03548	24300–24563	+	264	Putative regulator PrIP	Regulation of cell growth (BP); DNA binding (MF); sequence-specific DNA binding transcription factor activity (MF); cytoplasm (CC); transcription, DNA-templated (BP); enzyme binding (MF); negative regulation of transcription, DNA-templated (BP)	100% identity in L. plantarum MP-10
ndoA_3	XX999_03549	24563–24910	+	348	mRNA interferase EndoA	DNA binding (MF); RNA binding (MF); endoribonuclease activity (MF); endonucleolytic (BP); RNA phosphodiester bond hydrolysis, endonucleolytic (BP)	98% identity in Lactobacillus
XX999_03550	XX999_03550	25372–26436	−	1065	Hypothetical protein	—	99% identity in L. xiangiangensis
XX999_03551	XX999_03551	26515–27102	−	588	Hypothetical protein	—	100% identity in L. pentosus
XX999_03552	XX999_03552	27344–28279	−	936	Initiator Replication protein	—	99% identity in L. plantarum subsp. plantarum

In vitro detection of functional properties in L. pentosus MP-10 plasmids. Effect of plasmid curing on growth of L. pentosus MP-10. The MIC of acridine orange (AO) was of 0.15 mg/ml; as such, we used 0.1 mg/ml as the sub-MIC for plasmid curing in this strain. After confirming L. pentosus MP-10 being cured of plasmids (data not shown), we compared the growth kinetics of uncured and cured L. pentosus MP-10C. The presence of plasmids did not affect the growth in MRS broth at 37 °C in any experimental conditions: presence/absence of plasmids did not significantly affect the growth in MRS broth at 37 °C in any experimental conditions.
Gene ID	Gene	Position	Strand	Gen length (bp)	Protein description	GO terms	Similarity to proteins in Lactobacillus
XX999_03611	clcA_2	2632–2853	+	951	Ribonucleoside-diphosphate reductase subunit beta ndF2	ATP binding (MF); oxidoreductase activity (MF); hydrolyase activity (MF); sporulation resulting in formation of a cellular spore (BP); negative regulation of sporulation resulting in formation of a cellular spore (BP)	99% identity in L. pentosus DSM 20314
XX999_03612	soj_3	20479–20826	+	486	Hypothetical protein	—	100% identity in L. plantarum
XX999_03613	yusO	1539	—	523	Hypothetical protein	—	100% identity in L. plantarum DSM 20314
XX999_03614	nrdF2_2	24087–25037	−	951	Ribonucleoside-diphosphate reductase subunit beta ndF2	Ribonucleoside-diphosphate reductase activity, threonin diphosphate as acceptor (MF); ribonucleoside-diphosphate reductase complex (CC); DNA replication (BP); deoxyribonucleoside diphosphate metabolic process (BP); deoxyriboadenosine synthesis (BP)	100% identity in L. pentosus IG1
XX999_03615	sraP	25052–25978	−	927	Ribonucleoside-diphosphate reductase 2 subunit beta	Ribonucleoside-diphosphate reductase activity, threonin diphosphate as acceptor (MF); ribonucleoside-diphosphate reductase complex (CC); DNA replication (BP); deoxyribonucleoside diphosphate metabolic process (BP); deoxyriboadenosine synthesis (BP)	100% identity in L. pentosus IG1
XX999_03616	nrdF	26085–28253	−	2169	Ribonucleoside-diphosphate reductase 2 subunit alpha	Ribonucleoside-diphosphate reductase activity, threonin diphosphate as acceptor (MF); ATP binding (MF); DNA replication (BP)	100% identity in L. pentosus DSM 20314

Continued
absence of 6.5% NaCl, different pH ranges (1.5 to 7.0), nor the presence of bile salts (1.8 or 3.6%) - no differences in 600 nm absorbances were detected over 24 h of incubation - (Figs S1–A,B, S2). In a similar manner, pH monitoring during their incubation also did not exhibit any significant differences between cured and uncured strains in regards to their acidification capacity (Fig. S1–C). Furthermore, no differences in the growth were detected between the cured and uncured L. pentosus MP-10 strains in the presence of xylan as the only carbohydrate source (Fig. S1–D). However, at high salt concentration of 8% usually found in brine, significant differences were detected between the cured and uncured L. pentosus MP-10 strains, with the uncured strain being the most tolerant (Fig. S1–E).

Table 7 shows that curing had no significant effect on the growth of uncured and cured L. pentosus MP-10 in the presence of phenolic compounds naturally present in the brines; both the cured and uncured strains tolerated more than 200 mg/ml of olive-leaf extract.

Effect of plasmid curing on antimicrobial resistance and probiotic features. We determined the MIC of different antibiotics and biocides between uncured and cured strains, and the results did not show any significant differences in response between both strains except for clindamycin, which exhibited 20 fold increase in the MIC in the uncured L. pentosus MP-10. Thus, plasmids have no role in the susceptibility to the antibiotics and biocides tested, except clindamycin (Table 7).

Regarding the probiotic features, the uncured and the cured L. pentosus MP-10 had performed similarly in auto-aggregation and co-aggregation with all pathogens tested (Table 7), which suggest that plasmids had neither

Table 3. Genes determined in pLPE-2 plasmid of Lactobacillus pentosus MP-10 isolated from naturally fermented Aloreña table olives.

Gene ID	Gene	Position (bp)	Strand	Gen length (bp)	Protein description	GO terms	Similarity to proteins in Lactobacillus L. plantarum
XX999_03638	XX999_03638	28260–28697	–	438	Putative Ndi1-like protein	—	100% identity in L. plantarum AV01
XX999_03639	XX999_03639	29395–29496	–	102	Hypothetical protein	—	100% identity in L. plantarum 2165
XX999_03640	XX999_03640	29486–29845	–	360	Putative hydrolase	—	99% identity in L. plantarum 2165
XX999_03641	XX999_03641	30683–30943	–	261	Hypothetical protein	Recombinase activity (MF); DNA binding (MF); DNA integration (BP)	100% identity in L. plantarum AV01
XX999_03642	XX999_03642	30999–31250	+	252	Transposase	—	100% identity in L. pentosus
XX999_03643	XX999_03643	31304–32146	+	843	Integrase core domain protein	—	99% identity in L. plantarum
XX999_03644	XX999_03644	32416–32805	–	390	Integrase core domain protein	—	99% identity in L. plantarum
XX999_03645	XX999_03645	32896–33381	–	486	Hypothetical protein	—	100% identity in L. plantarum
XX999_03646	nhaS3_4	33487–34641	+	1155	High-affinity Na(+)/H(+) antiporter NhaS3	—	100% identity in L. pentosus IG1

Table 3. Genes determined in pLPE-2 plasmid of Lactobacillus pentosus MP-10 isolated from naturally fermented Aloreña table olives. BP, biological process; CC, cellular component; MF, molecular function.
Gene ID	Gene	Position	Strand	Gen length (bp)	Protein description	GO terms
XX999_00053	XX999_00053	146–412	−	267	Zeta toxin	—
XX999_00054	XX999_00054	586–783	−	198	Hypothetical protein	—
XX999_00055	XX999_00055	1002–1931	+	930	Integrase core domain protein	—
XX999_00056	XX999_00056	1934–2152	+	219	Hypothetical protein	—
XX999_00057	soj_1	3395–4204	+	810	Chromosome-partitioning ATPase Soj	DNA binding (MF); ATP binding (MF); chromosome segregation (BP); hydrolase activity (MF)
XX999_00058	XX999_00058	4197–4532	−	336	Hypothetical protein	—
XX999_00059	XX999_00059	4598–4771	+	174	Hypothetical protein	—
XX999_00060	XX999_00060	5611–6453	−	843	Integrase core domain protein	—
XX999_00061	XX999_00061	6507–6758	−	252	Transposase	—
XX999_00062	XX999_00062	6826–7092	−	267	Divergent AAA domain protein	—
XX999_00063	ivE_1	7372–8394	−	1023	Putative branched-chain-amino acid aminotransferase	Isoleucine biosynthetic process (BP); leucine biosynthetic process (BP); valine biosynthetic process (BP); L-leucine transaminase activity (MF); L-valine transaminase activity (MF); L-isoleucine transaminase activity (MF)
XX999_00064	panE_1	8444–9463	−	1020	2-dehydropantoate 2-reductase	Cytoplasm (CC); 2-dehydropantoate 2-reductase activity (MF); pantothenate biosynthetic process from valine (BP); NADP binding (MF)
XX999_00065	yvdD_1	9990–10559	−	570	LOG family protein YvdD	—
XX999_00066	XX999_00066	10970–11968	+	999	Integrase core domain protein	—
XX999_00067	panE_2	12688–13698	+	1011	2-dehydropantoate 2-reductase	Cytoplasm (CC); 2-dehydropantoate 2-reductase activity (MF); pantothenate biosynthetic process from valine (BP); NADP binding (MF)
XX999_00068	XX999_00068	13686–14087	+	402	Prephenate dehydratase	—
XX999_00069	XX999_00069	14032–14613	−	582	Transposase, Mutator family	—
XX999_00070	aonB_1	14954–16543	−	1590	Asparagine synthetase B [glutamine-hydrolyzing]	Asparagine synthase (glutamine-hydrolyzing) activity (MF); ATP: aspartate-ammonia ligase activity (MF); ATP binding (MF); cytoplasm (CC); asparagine biosynthetic process (BP); glutamine metabolic process (BP); cellular amino acid biosynthetic process (BP); cellular amino acid catabolic process (BP); amino acid binding (MF); identical protein binding (MF); L-asparagine biosynthetic process (BP)
XX999_00071	bin3_2	17298–17972	−	675	Putative transposon Tn552 DNA-invertase bin3	Recombinase activity (MF); DNA binding (MF); DNA integration (BP); transposition (BP)
XX999_00072	ltrA_1	18520–19686	+	1167	Group II intron-encoded protein LtrA	RNA-directed DNA polymerase activity (MF); endonuclease activity (MF); intron homing (BP); mRNA processing (BP)
XX999_00073	hsaA_1	20060–20479	+	420	Transcriptional regulator HsaA	DNA binding (MF); sequence-specific DNA binding (MF); transcription, DNA-templated (BP); pathogenesis (BP)
XX999_00074	XX999_00074	20536–20991	+	456	hypothetical protein	—
XX999_00075	XX999_00075	20988–21206	+	219	hypothetical protein	—
XX999_00076	XX999_00076	21421–21912	+	492	hypothetical protein	—
XX999_00077	XX999_00077	22017–22805	+	789	flavodoxin	—
XX999_00078	XX999_00078	22823–23476	+	654	NmrA-like family protein	—
XX999_00079	XX999_00079	23512–24384	+	873	Alpha/beta hydrolase family	—
XX999_00080	hsrA_2	24631–24924	+	294	putative transport protein HsrA	Plasma membrane (CC); integral component of membrane (CC); transmembrane transport (BP)
XX999_00081	efpA	24921–25958	+	1038	putative MFS-type transporter EfpA	Plasma membrane (CC); integral component of membrane (CC); transmembrane transport (BP)
XX999_00082	XX999_00082	26043–26618	+	576	flavodoxin	—
XX999_00083	glcU_1	26631–27491	+	861	Glucose uptake protein GlcU	Plasma membrane (CC); rhamnose transmembrane transporter activity (MF); integral component of membrane (CC); sporulation resulting in formation of a cellular spore (BP)
XX999_00084	yygN_1	27580–28431	+	852	Glyoxal reductase	Methylglyoxal reductase (NADPH-dependent) activity (MF)
XX999_00085	gdhIV_1	28460–29245	+	786	Glucose 1-dehydrogenase 4	Identical protein binding (MF); glucose 1-dehydrogenase (NADP)(S); activity (MF)
XX999_00086	adhR_1	29308–29703	+	396	HTH-type transcriptional regulator AdhR	DNA binding (MF); transcription, DNA-templated (BP); regulation of transcription, DNA-templated (BP)
XX999_00087	XX999_00087	29700–30434	+	735	putative oxidoreductase	Oxidoreductase activity (MF)
XX999_00088	yhdN_1	30459–31436	+	978	General stress protein 69	Oxidoreductase activity (MF)
XX999_00089	XX999_00089	31514–32101	+	588	Polysaccharide decactylase	Hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds (MF); polysaccharide binding (MF); endo-1,4-beta-xylanase activity (MF); xylan catabolic process (BP)
XX999_00090	XX999_00090	32681–33805	−	1125	hypothetical protein	—
XX999_00091	XX999_00091	33809–34024	−	216	hypothetical protein	—

Continued
any role in auto-aggregation nor co-aggregation processes. Regarding acid and bile tolerance, no differences were detected between the uncured and the cured L. pentosus MP-10 (Table 7).

Adhesion to mucin was measured in both the uncured and the cured L. pentosus MP-10, and the results showed a statistically significant increase in adhesion capacity to mucin in the uncured L. pentosus MP-10 (Table 7).

Discussion

Olive brine represents a stressful environment for the growth and survival of many bacteria due to the harsh conditions (i.e., high salt concentration, presence of phenolic compounds and low-nutrient availability), which provide selective pressures for the maintenance of LAB. As such, L. plantarum and L. pentosus have the genetic tools to survive and grow in the hostile olive-brine conditions\(^{26}\), and these genetic traits are widely distributed on both the chromosome and the plasmids, with several genes having multiple copies to enhance their adaptability and fitness in different ecological niches.

In this study, L. pentosus MP-10, isolated from Aloreña green table olives, harboured five plasmids with an average GC content (39.52–42.50%) slightly lower than the host chromosome (46.32%), this difference was less than 10% as reported by Nishida\(^ {25}\) for the majority of plasmids. pLPE-5 had remarkably the lowest average GC content (39.52%) than the other four plasmids (pLPE-1, pLPE-2, pLPE-3 and pLPE-4), suggesting it is possibly a recent acquisition from another bacterium. *In-silico* analysis of plasmid sequences revealed the presence of genes involved in mobilization (mobA) and conjugation (traG) distributed in several plasmids, which suggest their role in gene mobilization and secretion using a type-IV secretion mechanism\(^ {26}\). Furthermore, mobile genetic elements (e.g., transposon, transposase, integrase and invertase) were also found in several plasmids\(^ {24}\) suggesting a frequent genetic diversification among the L. pentosus MP-10. Furthermore, bacteriophage peptidoglycan hydrolases were found in pLPE-4 and pLPE-5 plasmids; these lysozyme-like proteins may play a key role in L. pentosus MP-10 growth, its cell-wall structure, and immunomodulatory properties as reported by Rolain, et al.\(^ {27}\).

Metabolic profile within L. pentosus MP-10 plasmids include carbohydrate enzymes such as L-lactate dehydrogenase, glucose uptake and metabolism and xylan catalytic enzymes. L-lactate dehydrogenase was codified by two genes (ldh\(_7\) and ldh\(_8\)) located on pLPE-5 plasmid; however, six L-lactate dehydrogenase (ldh\(_1\), ldh\(_2\), ldh\(_3\), ldh\(_4\), ldh\(_5\) and ldh\(_6\)) and four D-lactate dehydrogenase (XX999_00315, XX999_00955, XX999_02047 and XX999_02719) coding genes were also present on the chromosome. Both enantiomers (L-lactate and D-lactate) are produced by L. pentosus MP-10 being D-and L-lactate dehydrogenases involved in the reversible metabolism of D- and L-lactate, respectively. This finding is of great interest suggesting that the use of L. pentosus MP-10 as a probiotic may help human to metabolise D-lactate obtained from exogenous sources (e.g., diet and the carbohydrate-fermenting bacteria normally present in the gastrointestinal tract) since mammalian cells lack sufficient D-lactate dehydrogenase required to utilise D-lactic acid—leading to chronic fatigue syndrome and D-lactic acidosis or D-lactate encephalopathy associated with short bowel syndrome\(^ {28–30}\). Further, L-lactate dehydrogenase genes present on the plasmids may enhance their metabolic activity during the fermentation process to produce more L-lactate and energy. However, the presence of L-lactate dehydrogenase (ldh\(_7\) and ldh\(_8\)) coding genes on pLPE-5 plasmid did not enhance the acidification capacity, as results were similar after 8 and 24 h incubation in both cured and uncured L. pentosus MP-10, suggesting that these genes either have a minor role in lactate production or they are regulated. Further experiments, based on differential relative expression of ldh\(_7\) gene in both the cured and uncured L. pentosus MP-10 strains, revealed lower expression level in the cured strain (Fig. S3), thus the low activity of lactate dehydrogenase gene in the cured strain is enough to give rise to a substantial lactate accumulation in the fermentation broth in a manner similar as the uncured strain. Regarding glucose uptake and metabolism, glucose uptake and metabolism and xylan catalytic enzymes. L-lactate dehydrogenase was codified by two genes (ldh\(_7\) and ldh\(_8\)) located on pLPE-5 plasmid; however, six L-lactate dehydrogenase (ldh\(_1\), ldh\(_2\), ldh\(_3\), ldh\(_4\), ldh\(_5\) and ldh\(_6\)) and four D-lactate dehydrogenase (XX999_00315, XX999_00955, XX999_02047 and XX999_02719) coding genes were also present on the chromosome. Both enantiomers (L-lactate and D-lactate) are produced by L. pentosus MP-10 being D-and L-lactate dehydrogenases involved in the reversible metabolism of D- and L-lactate, respectively. This finding is of great interest suggesting that the use of L. pentosus MP-10 as a probiotic may help human to metabolise D-lactate obtained from exogenous sources (e.g., diet and the carbohydrate-fermenting bacteria normally present in the gastrointestinal tract) since mammalian cells lack sufficient D-lactate dehydrogenase required to utilise D-lactic acid—leading to chronic fatigue syndrome and D-lactic acidosis or D-lactate encephalopathy associated with short bowel syndrome\(^ {28–30}\).

Among defense mechanisms found on plasmids, genes encoding the mazF toxin (pLPE-1), Zeta toxins (pLPE-3 and pLPE-4), and also antitoxins such as RelB antitoxin (pLPE-4) and the bifunctional antitoxin/tran
scriptional repressor RelB (pLPE-5) were detected in L. pentosus MP-10 plasmids. RelBE and MazEF are known as sequence-specific endo-ribonucleases that inhibit the global translations of cellular mRNAs\(^ {31}\). MazF toxin is a desirable trait for probiotic bacteria, as its antimicrobial property inhibits several pathogens in foods and the gastrointestinal tract\(^ {32}\). However, L. pentosus MP-10 must protect itself from the mazF toxin, as no MazE antitoxin was detected. Either their protection relies on other mechanisms because mazEF is functional being only expressed in the uncured strain (Fig. S3). On the other hand, genes for RelB antitoxins were found both on plasmids and on the chromosome; however, no RelB-toxin genes were detected. So this antitoxin may contribute a greater defense against other bacteria possessing RelB toxins, possibly increasing its competitiveness and survival in

Table 4. Genes determined in pLPE-3 plasmid of Lactobacillus pentosus MP-10 isolated from naturally fermented Aloreña table olives. BP, biological process; CC, cellular component; MF, molecular function.

Gene ID	Gene	Position	Strand	Gen length (bp)	Protein description	GO terms
XX999_00092	topB_4	34147–35697	–	1551	DNA topoisomerase 3	**Magnesium ion binding (MF); DNA binding (MF); DNA topoisomerase type I activity (MF); DNA topoisomera...
several ecological niches including gastrointestinal tract. This feature was mainly linked to plasmid being relB antitoxin gene over-expressed in the uncured strain (Fig. S3). Zeta toxins, which are kinases that kill bacteria through global inhibition of peptidoglycan synthesis, are detected both on the chromosome and also on plasmid DNA of \emph{L. pentosus} MP-10, however no antitoxin was detected. Overall, \emph{L. pentosus} MP-10 harbored in their plasmids incomplete toxin-antitoxin systems unlike what occur naturally in bacterial genomes, since several toxins or antitoxins were detected without self protection.

Data obtained by \emph{in-silico} analysis suggests that plasmid-borne genes mediate the persistence of lactobacilli under olive fermentation conditions and enhance their probiotic properties; however, this hypothesis requires further studies for confirmation. As such, plasmid curing experiments carried out with \emph{L. pentosus} MP-10 showed several differences between the uncured and the cured strains regarding metal tolerances, removal and mucin adhesion. However, plasmid curing did not affect their tolerance to gastro-intestinal conditions (e.g., acids and bile salts); neither their ability to grow under determined conditions (i.e., different pH intervals, bile salts or sodium chloride of 6.5%) nor their colony morphology were changed after plasmid curing (data not shown). However, at high concentration of chloride of 8% (commonly added to brines), \emph{L. pentosus} pLPE-2 plasmid plays a key role in salt tolerance. In this sense, the results suggest that the plasmids did not govern the fermentation of carbohydrates under these conditions, however different results were obtained by Adeyemo and Onilude which showed that plasmid curing had a significant negative effect on growth, physiological characteristics and colony morphology of \emph{L. plantarum} isolated from fermented cereals. In this study, plasmids in \emph{L. pentosus} MP-10 may confer a selective advantage, providing other physiological properties in certain environments such as gut and brines and thus allowing metal tolerance and removal, salt tolerance and adherence to mucin and thus their persistence in competitive ecological niches. Mucin adhesion declined in the cured \emph{L. pentosus} MP-10 since a serine-rich adhesin for platelets precursor gene (sraP, detected in pLPE-2 plasmid) may be involved in mucin adhesion mechanisms similarly as reported by Hevia, \textit{et al.} for an extracellular serine/threonine-rich protein as a novel aggregation-promoting factor with affinity to mucin in \emph{Lactobacillus plantarum} NCIMB 8826. The role of \emph{L. pentosus} MP-10 plasmids in mucin adhesion was confirmed by relative expression gene analysis as reported by Pérez Montoro \textit{et al.}, since \textit{recA} and \textit{pgm} genes considered as potential biomarkers of mucin adhesion were over-expressed in the uncured strain (Fig. S3). However, auto-aggregation and co-aggregation with some pathogens were not changed after plasmid curing of \emph{L. pentosus} MP-10.

With respect to metals, which are considered non-biodegradable and non-thermodegradable and are of high concern in both developing and developed countries because of their impact on the environment and health (water and food), the wild strain \emph{L. pentosus} MP-10 showed greater tolerance to their increased concentrations (MICs higher than 1 mg/ml, except for cadmium and mercury) of iron, cobalt, copper, aluminium and zinc. This suggests that high contamination of metals in the environment from natural and anthropogenic sources may be tolerable by the bacteria. The self-protective mechanisms displayed by \emph{L. pentosus} MP-10 as a response to metals is promoted by their architecture (cell wall and membrane) and also by their resistance determinants located on the chromosome and the plasmids. Moreover, several chromosomally encoded cation transporters (e.g., encoded by \textit{czcD} gene) have a predicted substrate range, including cadmium, cobalt and zinc; although the increased
Gene ID	Gene Description	GO terms	Similarity to proteins in Lactobacillus
XX999_0001	XX999_00000	hypothetical protein	100% identity in L. plantarum 90ak
XX999_0002	XX999_00002	DNA topoisomerase III	100% identity in L. paraplantarum DSM 10667
XX999_0003	topB_1	DNA topoisomerase 3	100% identity in L. paraplantarum DSM 10667
XX999_0004	topB_2	DNA topoisomerase 3	98% identity in L. pentosus IG1
XX999_0005	XX999_00005	hypothetical protein	100% identity in L. plantarum 1p1610
XX999_0006	XX999_00006	hypothetical protein	100% identity in L. sakei WkKim0063
XX999_0007	XX999_00007	hypothetical protein	100% identity in L. pentosus
XX999_0008	traG_1	Conjugation transfer protein TraG	99% identity in L. kefirtranslaciens subsp. kefirtranslaciens DSM 5016
XX999_0009	XX999_00009	hypothetical protein	96% identity in L. fermentum MTC2 8711
XX999_0010	XX999_0010	hypothetical protein	97% identity in L. paraplantarum
XX999_0011	XX999_0011	hypothetical protein	91% identity in L. plantarum
XX999_0012	XX999_0012	hypothetical protein	99% identity in L. brevis DmCS_003
XX999_0013	XX999_0013	hypothetical protein	99% identity in L. brevis KB290
XX999_0014	XX999_0014	hypothetical protein	98% identity in L. plantarum Nizo2239
XX999_0015	XX999_0015	hypothetical protein	99% identity in L. parabuchneri DSM 15352
XX999_0016	XX999_0016	hypothetical protein	100% identity in L. plantarum 2023
XX999_0017	XX999_0017	hypothetical protein	100% identity in L. plantarum CMPG5300
XX999_0018	XX999_0018	hypothetical protein	100% identity in L. plantarum Nizo2239
XX999_0019	XX999_0019	hypothetical protein	98% identity in L. paracollinoides DSM 15502
XX999_0020	XX999_0020	hypothetical protein	100% identity in L. parakefiri JCM 8573
XX999_0021	mobA_1	Mobilization protein A	100% identity in L. pentosus
XX999_0022	XX999_0022	hypothetical protein	100% identity in L. pentosus
XX999_0023	XX999_0023	hypothetical protein	100% identity in L.
XX999_0024	XX999_0024	hypothetical protein	100% identity in L.
XX999_0025	XX999_0025	hypothetical protein	100% identity in L.
XX999_0026	XX999_0026	hypothetical protein	100% identity in L.
XX999_0027	XX999_0027	hypothetical protein	100% identity in L.
XX999_0028	XX999_0028	hypothetical protein	100% identity in L.
XX999_0029	XX999_0029	hypothetical protein	100% identity in L.
XX999_0030	XX999_0030	hypothetical protein	100% identity in L.
XX999_0031	dpmM	Modification methylase DpnIA	100% identity in L.
XX999_0032	bin3_1	Putative transposon Tn552 DNA-invertase bin3	100% identity in L.
XX999_0033	XX999_0033	FRG domain protein	100% identity in L.
XX999_0034	hrsA_1	putative transport protein HrsA	100% identity in L.
XX999_0035	XX999_0035	putative hydrolase	100% identity in L.
XX999_0036	XX999_0036	hypothetical protein	100% identity in L.

Note: The table above lists the gene IDs, their descriptions, and their similarity to proteins in Lactobacillus species. The GO terms column indicates the biological processes, molecular functions, and cellular components associated with the gene products. The similarity to proteins in Lactobacillus is indicated with the percentage identity and the specific strain or species the identity was observed in. The table is an excerpt from a scientific report, and the full content would include additional details and context not shown here.
Gene ID	Gene	Position	Strand	Gen length (bp)	Protein description	GO terms	Similarity to proteins in Lactobacillus
XX999_00037	XX999_00037	29820–30473	+	654	S-adenosyl-L-homocysteine hydrolase	Adenosylhomocysteine activity (MF); cytoplasm (CC); one-carbon metabolic process (BP)	
XX999_00038	XX999_00038	31017–32141	–	1125	hypothetical protein	—	
XX999_00039	XX999_00039	32145–32360	–	216	hypothetical protein	—	
XX999_00040	topB_3	32482–34617	–	2136	DNA topoisomerase 3	Magnesium ion binding (MF); DNA binding (MF); DNA topoisomerase type I activity (MF); DNA topological change (BP); DNA recombination (BP); chromosome separation (BP)	
XX999_00041	XX999_00041	34624–35034	–	411	hypothetical protein	—	
XX999_00042	XX999_00042	35050–35907	–	858	hypothetical protein	—	
XX999_00043	XX999_00043	35913–36287	–	375	hypothetical protein	—	
XX999_00044	traG_2	36302–37846	–	1545	Conjugation transfer protein TraG	Conjugation (BP); DNA binding (MF); plasma membrane (CC); integral component of membrane (CC)	
XX999_00045	XX999_00045	37890–38060	–	171	hypothetical protein	—	
XX999_00046	XX999_00046	38076–38546	–	471	hypothetical protein	—	
XX999_00047	XX999_00047	38549–38917	–	369	hypothetical protein	—	
XX999_00048	XX999_00048	38904–39521	–	618	hypothetical protein	—	
XX999_00049	XX999_00049	39536–40690	–	1155	Bacteriophage peptidoglycan hydrolase	—	
XX999_00050	XX999_00050	40691–42004	–	1314	hypothetical protein	—	
XX999_00051	XX999_00051	42001–42108	–	108	hypothetical protein	—	
XX999_00052	XX999_00052	42101–43795	–	1695	AAA-like domain protein	—	

Table 5. Genes determined in pLPE-4 plasmid of Lactobacillus pentosus MP-10 isolated from naturally fermented Aloreña table olives. BP, biological process; CC, cellular component; MF, molecular function.

resistance towards different metals are displayed by plasmids (especially the pLPE-5 plasmid). Similar results were obtained by van Kranenburg et al., which reported that the plasmid-borne (pWCFS103) cadC gene coding for a transcription regulator of the cadmium operon was responsible of the increased resistance to cadmium in L. plantarum WCFS1. Furthermore, the synteny of arcs genes in both L. pentosus MP-10 and L. plantarum WCFS1 was similar suggesting their evolutionary relatedness. Arsenic and cadmium are among the most toxic elements widely occurring in the environment, often a threat to food and water supply. Arsenic is known as a group A “known” carcinogen according to the United States Environmental Protection Agency (USEPA) and contributes to a range of other illnesses such as cardiovascular and peripheral vascular diseases, neurological disorders, diabetes mellitus and chronic kidney disease. Detoxification of this metal was earlier established by bacteria. Thus, tolerance of L. pentosus MP-10 is necessary to prevent damage to their cells.

The ability of L. pentosus MP-10 to bind different metals was demonstrated by SEM and EDX analysis. This is of great importance with regards to their application as an adjunct to improve food safety and quality by bio-remediating metals and probiotically reduce metal toxicity among human intestinal microbiota and thus protecting the host. Also, we demonstrated that L. pentosus MP-10 contributed to metal removal, especially mercury and cadmium (81 and 67%, respectively).

Metal- and antibiotic-resistance genes often co-exist on the same plasmid, however in this case, we did not find any genes coding for clindamycin resistance on plasmids, which was the only antibiotic with different susceptibility after plasmid curing. Thus, clindamycin resistance in L. pentosus MP-10 may rely on other plasmid-associated genes that we could not deciphered yet.

Conclusions

In-silico analysis of L. pentosus MP-10 plasmids suggests that plasmid-borne genes mediate the persistence of lactobacilli under olive-fermentation conditions and enhance their probiotic properties with genes encoding for carbohydrate metabolism, defense mechanisms, metal tolerance and mobilization increasing subsequently its competitiveness and survival in several ecological niches. Plasmid curing demonstrated the role of plasmids in the increased metal tolerance, and bioremoval of several metals (e.g., iron, aluminium, cobalt, copper, zinc, cadmium and mercury). This probiotic property by L. pentosus MP-10 should be exploited to detoxify metals in intestines; basically they could bioquench the metals in the gut thus reducing their toxic exposure to humans and animals, in the food matix and in environmental bioremediation.

Materials and Methods

Bacteria and growth conditions. Lactobacillus pentosus MP-10 isolated from naturally-fermented Aloreña green table olives‘ were cultured in de Man Rogosa and Sharpe (MRS) broth (Fluka, Madrid, Spain) at 37 °C for 24 h. Pathogenic bacteria used in this study included Listeria innocua CECT 910, Staphylococcus aureus CECT 4468, Escherichia coli CCUG 47553, and Salmonella Enteritidis UJ3449, which were cultured in Tryptone...
Gene ID	Gene	Position	Strand	Gen length (bp)	Protein description	GO terms	Similarity to proteins in *Lactobacillus*
XX999_03555	XX999_03555	763–1230	+	468	Hypothetical protein	—	95% identity in *L. plantarum Nizo2814*
XX999_03554	XX999_03554	1634–1915	+	282	Bifunctional antitoxin/transcriptional repressor RelB	DNA binding (MF); transcription, DNA-templated (BP); regulation of transcription, DNA-templated (BP)	99% identity in *L. plantarum*
XX999_03555	XX999_03555	1956–2147	+	192	Hypothetical protein	—	98% identity in *L. plantarum Nizo2814*
XX999_03556	XX999_03556	2224–2502	−	279	Hypothetical protein	—	100% identity in *L. farraginis DSM 18382*
XX999_03557	XX999_03557	2525–2734	−	210	Hypothetical protein	—	100% identity in *L. delivorans DSM 14421*
XX999_03558	mobA_6	3004–5061	+	2058	Mobilization protein A	Conjugation (BP); DNA binding (MF); DNA-directed RNA polymerase activity (MF); DNA topoisomerase type I activity (MF); cytoplasm (CC); metal ion binding (MF)	99% identity in *L. plantarum 2025*
XX999_03559	XX999_03559	5168–5461	+	294	Hypothetical protein	—	100% identity in *L. plantarum 2025*
XX999_03560	XX999_03560	5501–6115	+	615	Hypothetical protein	—	100% identity in *L. plantarum*
XX999_03561	XX999_03561	6117–6455	+	339	Hypothetical protein	—	100% identity in *L. plantarum 2025*
XX999_03562	XX999_03562	6476–6838	+	363	Hypothetical protein	—	100% identity in *L. plantarum IPLA88*
XX999_03563	XX999_03563	6807–7466	+	660	Hypothetical protein	—	100% identity in *L. plantarum CMPG5300*
XX999_03564	XX999_03564	7478–9496	+	2019	AAA-like domain protein	Conjugation (BP); plasma membrane (CC)	99% identity in *L. plantarum*
XX999_03565	XX999_03565	9489–10904	+	1416	Hypothetical protein	—	99% identity in *L. plantarum TMW 1.25 pl125–4*
XX999_03566	XX999_03566	10906–12075	+	1170	Bacteriophage peptidoglycan hydrolase	—	99% identity in *L. paraplantarum*
XX999_03567	XX999_03567	12090–12767	+	618	Hypothetical protein	—	100% identity in *L. plantarum 2025*
XX999_03568	XX999_03568	12685–13059	+	375	Hypothetical protein	—	99% identity in *L. plantarum Nizo2814*
XX999_03569	XX999_03569	13060–13518	+	459	Hypothetical protein	—	100% identity in *L. plantarum 2025*
XX999_03570	trcG_3	13515–15044	+	1530	Conjugal transfer protein TraG	Conjugation (BP); DNA binding (MF); plasma membrane (CC); integral component of membrane (CC)	99% identity in *L. plantarum*
XX999_03571	XX999_03571	15057–15470	+	414	Hypothetical protein	—	99% identity in *L. plantarum Nizo2814*
XX999_03572	XX999_03572	15483–16352	+	870	Hypothetical protein	—	99% identity in *L. L. plantarum Nizo2814*
XX999_03573	topR_5	16369–18507	+	2139	DNA topoisomerase 3	Magnesium ion binding (MF); DNA binding (MF); DNA topoisomerase type I activity (MF); DNA topological change (BP); DNA recombination (BP); chromosome separation (BP)	98% identity in *L. plantarum SRCM1101060*
XX999_03574	XX999_03574	18629–18844	+	216	Hypothetical protein	—	100% identity in *L. plantarum Nizo1838*
XX999_03575	XX999_03575	18848–19039	+	192	Hypothetical protein	—	83% identity in *L. collinoides*
XX999_03576	XX999_03576	18993–19250	+	258	Hypothetical protein	—	99% identity in *L. plantarum Nizo2029*
XX999_03577	aexA1_3	19530–20243	+	714	Acetylxylin esterase precursor	Xylan catabolic process (BP); acetylxylin esterase activity (MF)	100% identity in *L. plantarum Nizo2029*
XX999_03578	XX999_03578	20326–20994	−	669	Integrase core domain protein	—	100% identity in *L. tuccti DSM 20183*
XX999_03579	XX999_03579	20957–21163	−	207	Hypothetical protein	—	100% identity in *L. brevis 47 f*
XX999_03580	ldh_7	21343–22305	+	963	L-lactate dehydrogenase	L-lactate dehydrogenase activity (MF); cytoplasm (CC); glycolytic process (BP); cellular carbohydrate metabolic process (BP)	100% identity in *L. plantarum*
XX999_03581	XX999_03581	22735–22869	+	135	Hypothetical protein	—	95% identity in *L. backii TMW 1.1991*
XX999_03582	XX999_03582	23089–23295	−	207	Hypothetical protein	—	100% identity in *L. brevis 47 f*
XX999_03583	ldh_8	23475–24437	+	963	L-lactate dehydrogenase	L-lactate dehydrogenase activity (MF); cytoplasm (CC); glycolytic process (BP); cellular carbohydrate metabolic process (BP)	100% identity in *L. plantarum*
XX999_03584	XX999_03584	24867–25001	+	135	Hypothetical protein	—	95% identity in *L. backii TMW 1.1991*
XX999_03585	XX999_03585	24998–25501	−	504	Transposase DDE domain protein	—	100% identity in *L. plantarum subsp. plantarum P-8*

Continued
Gene ID	Gene	Position	Strand	GO terms	Similarity to proteins in Lactobacillus
XX999_03586	XX999_03586	25459–25797	–	339 Hypothetical protein	98% identity in L. plantarum IPLA8
XX999_03587	XX999_03587	26046–26384	–	339 Hypothetical protein	100% identity in L. plantarum IPLA8
XX999_03588	XX999_03588	26499–27041	+	543 Hypothetical protein	100% identity in L. pentosus
XX999_03589	XX999_03589	27059–27859	+	801 Adenylate and Guanylate cyclase catalytic domain protein	100% identity in L. pentosus
XX999_03590	adeE_3	27925–28629	+	705 Demethylmenaquinone methyltransferase	84% identity in L. parakeferi DSM 10518
XX999_03591	XX999_03591	28680–28781	+	102 Hypothetical protein	100% identity in L. parakeferi DSM 10518
XX999_03592	XX999_03592	28794–29021	+	228 ASCH domain protein	100% identity in L. plantarum Nizo2029
XX999_03593	XX999_03593	29337–30368	+	1032 Integrate core domain protein	99% identity in L. plantarum WCFS1
XX999_03594	XX999_03594	30453–31067	–	615 Cadmium resistance transporter	100% identity in L. plantarum SF2A35B
XX999_03595	cadC	31069–31437	–	369 putative positive regulator of cadmium resistance	100% identity in L. plantarum WCFS1
XX999_03596	npr_2	31787–33187	+	1401 NADH peroxidase	100% identity in L. plantarum Nizo1839
XX999_03597	XX999_03597	33361–33615	+	255 Hypothetical protein	—
XX999_03598	XX999_03598	33533–33862	–	330 Hypothetical protein	100% identity in L. plantarum WCFS1
XX999_03599	arsB	33879–35174	–	1296 Arsical pump membrane protein	99% identity in L. plantarum SF2A35B
XX999_03600	arsA	35233–36963	–	1731 Arsenical pump-driving ATPase	100% identity in L. plantarum WCFS1
XX999_03601	arsD	37047–37409	–	363 Arsenical resistance operon trans-acting repressor ArsD	100% identity in L. plantarum WCFS1
XX999_03602	arsR_3	37396–37755	–	360 Arsenical resistance operon repressor	100% identity in L. plantarum WCFS1
XX999_03603	pinR	39098–39679	+	582 Putative DNA-invertase from lambdoid prophage Rac	100% identity in L. backii TMW 1.1992
XX999_03604	bin3_3	40077–40709	+	633 Putative transposon Tn552 DNA-invertase bin3	100% identity in L. backii TMW 1.1992
XX999_03605	XX999_03605	40806–41168	+	363 Hypothetical protein	98% identity in L. backii TMW 1.1992
XX999_03606	XX999_03606	41577–41990	–	414 Hypothetical protein	100% identity in L. backii TMW 1.1992
XX999_03607	parA	41987–42871	–	885 Chromosome partitioning protein ParA	100% identity in L. hokkaidonensis ICM 18461
XX999_03608	XX999_03608	43459–44988	+	1530 Hypothetical protein	100% identity in L. backii TMW 1.1992
XX999_03609	XX999_03609	45128–45235	–	108 Hypothetical protein	—
XX999_03610	XX999_03610	45885–46475	–	591 Transposase, Mutator family	99% identity in L. brevis TMW 1.2113

Table 6. Genes determined in pLPE-5 plasmid of *Lactobacillus pentosus* MP-10 isolated from naturally fermented Aloreña table olives. BP, biological process; CC, cellular component; MF, molecular function.

Soya Broth (TSB; Fluka, Madrid, Spain) at 37°C for 24 h. Cultures were maintained in 20% glycerol at −20°C and −80°C for short- and long-term storage, respectively.

In silico analysis of *L. pentosus* MP-10 plasmid sequences. The genome sequence of *L. pentosus* MP-10 consisted of a single circular chromosome of 3,698,214 bp, with an estimated mol% G + C content of...
Figure 2. MAUVE visualization of the alignment of the pLPE-5 plasmid from *L. pentosus* MP-10 with the pWCF1303 plasmid from *L. plantarum* WCFS1. Arsenic- and cadmium-resistance genes are indicated.

Antibiotic	MIC (µg/ml)	
	L. pentosus MP-10 (uncured)	*L. pentosus* MP-10C (cured)
Amoxicillin	0.2	0.2
Ampicillin	2	2
Chloramphenicol	8	8
Ciprofloxacin	16	16
Clindamycin	2	0.1
Gentamicin	0.1	0.1
Kanamycin	4	4
Streptomycin	4	4
Teicoplanin	256	256
Tetracycline	16	16
Trimethoprim	0.125	0.125
Trimethoprim/sulfometoxazole	0.125/2.38	0.125/2.38
Vancomycin	2048	2048

Biocide	MIC (µg/ml)	
Benzalconium Chloride	2	2
Triclosan	32	32

Phenolic compounds	MIC (µg/ml)	
Auto-aggregation	20.58 ± 2.54a	13.49 ± 0.54a
Co-aggregation + *L. innocua* CECT 910 (%)	32.87 ± 2.14a	36.13 ± 2.33a
Co-aggregation + *S. aureus* CECT 4468 (%)	28.61 ± 0.99a	28.69 ± 0.72a
Co-aggregation + *E. coli* CCUG 47553 (%)	16.14 ± 2.09a	14.15 ± 3.24a
Co-aggregation + *S. Enteritidis* UJ 3449 (%)	12.27 ± 1.50a	13.17 ± 2.87a
Acid tolerance pH 2.0 (%)	100 ± 0.04a	100 ± 0.01a
Acid tolerance pH 2.5 (%)	100 ± 0.03a	100 ± 0.02a
Acid tolerance pH 3.0 (%)	100 ± 0.01a	100 ± 0.02a
Bile tolerance at 1%	+	+
Bile tolerance at 2%	+	+
Bile tolerance at 3%	+	+
Bile tolerance at 4%	+	+
Mucin adhesion (%)	55.93 ± 0.34a	51.92 ± 1.06a

Table 7. Antibiotic and biodice susceptibility, and probiotic properties of cured and uncured *L. pentosus* MP-10 isolated from Aloreña Green table olives. ±SD, standard deviations of three independent experiments. *Different lowercase letters represent significant differences according to 2-sided Tukey’s HSD between strains (p < 0.05). +, Presence of growth in MRS-agar with different concentrations of bile salts.
In vitro analysis of *L. pentosus* MP-10 plasmid properties.

Plasmid curing. First, we determined the minimum inhibitory concentrations (MIC) of acridine orange (AO) to *L. pentosus* MP-10 using the broth micro-dilution method. Overnight cultures, grown in MRS broth at 37 °C for 24 h, were diluted 1/10 (v/v) in fresh MRS broth and 20 μl were added to each well of 96-well microtiter plates. 180 μl of MRS broth supplemented with AO at different concentrations (12.5–400 μg/ml) were then added to the wells and incubated at 37 °C under aerobic conditions for 24 h. Bacterial growth was evaluated by the presence of turbidity. MIC was defined as the lowest concentration of AO that inhibited visible growth. Each experiment was done in triplicate.

Plasmid curing (eliminating the plasmid from cells) of *L. pentosus* MP-10 was done as described by Adeyemo and Onilude with some modifications. Briefly, MRS broth (4 ml) supplemented with the sub-MIC of AO, as determined in this study, was inoculated with a selected colony of *L. pentosus* MP-10 grown onto MRS agar; then the cultures were incubated at 37 °C for 72 h. Serial dilutions of bacterial cultures in NaCl (0.85%) were plated onto MRS agar, and the resulting colonies, obtained after incubation for 48 h at 37 °C, were inoculated into MRS broth to obtain a pure culture. Cultures were maintained in 20% glycerol at −20 °C and −80 °C for short- and long-term storage, respectively.

To confirm that the resulting colonies were cured of plasmids, bacterial cultures (uncured and cured) were subjected to plasmid isolation as described by Abriouel, *et al.* and visualized on 0.8% agarose gel electrophoresis (iNtRON Biotechnology) in 1×TBE (Tris-Boric acid-EDTA).

In addition to plasmid isolation, plasmid-borne genes were amplified by PCR using the Prokka annotation pipeline, version 1.11 (Seemann, 2014) as previously reported by Abriouel, *et al.* The predicted CDSs of plasmids were annotated by using BLAST (Basic Local Alignment Search Tool) and the associated GO (Gene Ontology) terms were obtained using Swiss-Prot database.

The general metabolic pathways of *L. pentosus* MP-10 plasmids were reconstructed using BlastKOALA (last updated March 4, 2016) as part of the KEGG (Kyoto Encyclopedia of Genes and Genome) tool in the pathway database (http://www.genome.jp/kegg/pathway.html) for annotating genomes; here, we used the annotated genes predicted in each *L. pentosus* MP-10 plasmid as the input query.

To evaluate the alignment and the synteny of genes between the *L. pentosus* MP-10 and *L. plantarum* WCFS1 plasmid data sets, comparison was done by using Mauve algorithm in Lasergene’s MegAlign Pro software (Lasergene 14).

Metal	MIC (μg/ml)	L. pentosus MP-10 (uncured)	L. pentosus MP-10C (cured)
Mercury (Hg)	2	1	
Cobalt (Co)	2048	2048	
Copper (Cu)	2048	2048	
Zinc (Zn)	1024	1024	
Aluminium (Al)	2048	2048	
Iron (Fe)	4096	4096	
Cadmium (Cd)	8	1	

Table 8. Tolerance of cured and uncured *L. pentosus* MP-10 isolated from Aloreña Green table olives to heavy metals. ±SD, standard deviations of three independent experiments. *Different lowercase letters represent significant differences according to 2-sided Tukey’s HSD between strains (p < 0.05).*

46.32% and 5 plasmids ranging 29–46 kb (accession numbers FLYG01000001 to FLYG01000006) were annotated using the Prokka annotation pipeline, version 1.11 (Seemann, 2014) as previously reported by Abriouel, *et al.* The predicted CDSs of plasmids were annotated by using BLAST (Basic Local Alignment Search Tool) and the associated GO (Gene Ontology) terms were obtained using Swiss-Prot database.

The general metabolic pathways of *L. pentosus* MP-10 plasmids were reconstructed using BlastKOALA (last updated March 4, 2016) as part of the KEGG (Kyoto Encyclopedia of Genes and Genome) tool in the pathway database (http://www.genome.jp/kegg/pathway.html) for annotating genomes; here, we used the annotated genes predicted in each *L. pentosus* MP-10 plasmid as the input query.

To evaluate the alignment and the synteny of genes between the *L. pentosus* MP-10 and *L. plantarum* WCFS1 plasmid data sets, comparison was done by using Mauve algorithm in Lasergene’s MegAlign Pro software (Lasergene 14).
Effect of plasmid curing on growth, safety and functional properties of *L. pentosus* MP-10.

Growth properties. To test whether there is any differences in growth between the uncured and the cured *L. pentosus* MP-10 strains, MRS broth was inoculated (1% v/v) with overnight cultures of each strain and then incubated at 37 °C for 24 h. Growth rates (OD600nm) were measured each hour using Microtiter plate reader (iMark Microplate Absorbance Reader, Bio-Rad instrument). Additionally, we measured pH at different time intervals (following 0, 8 and 24 h of incubation at 37 °C).

To determine the effect of pH on the growth of both strains, MRS broth was adjusted to different pH ranges (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5 and 7.0) with phosphate buffer, and they were inoculated (1% v/v) overnight cultures of both strains and then incubated at 37 °C for 24 h, as described above.

Figure 3. SEM (A,C,E,G,I,K,M,O) and EDX (B,D,F,H,J,L,N,P) analysis of uncured *L. pentosus* MP-10 without metal (A,B) and with Al (C,D), Cd (E,F), Co (G,H), Cu (I,J), Fe (K,L), Hg (M,N) and Zn (O,P).
To test whether brine conditions had an effect on the growth of the plasmid-cured versus uncured *L. pentosus* MP-10 strains in MRS broths under the following experimental conditions: unsupplemented vs. those supplemented with either 6.5% (or high concentration of 8%) NaCl or phenolic compounds, or modified MRS broth (without glucose) added with xylan (5 g/l) were inoculated with both strains as described above. Phenolic compounds were obtained from previously pulverized olive leaves using RETSCH laboratory ball mills (Retsh MM 400). The leaf extracts were resuspended in LSM broth, centrifuged and the resulting supernatant was filtered (0.45 µm) and added at different concentrations (0.780 to 200 mg/ml) to MRS broth. The cultures were incubated at 37 °C for 24 h and the OD₆₀₀nm was measured as described above.

In all cases, experiments were done in triplicate.

Evaluation of metal tolerance. The sensitivity of both *L. pentosus* strains (MP-10 and MP-10C (cured)) towards metals: cadmium (CdSO₄·8H₂O), cobalt (CoCl₂), copper (CuCl₂·2H₂O), iron (FeSO₄·7H₂O), mercury (HgCl₂), aluminium (Al₂O₃), or zinc (ZnCl₂) was tested in LSM broth supplemented with 0 to 10 mg/ml of each metal and then inoculated with 2% (v/v) of an overnight culture of each strain. After 24 h of incubation at 37 °C, the MIC that completely inhibited visible growth.

To analyse the removal of metals by cured and uncured *L. pentosus* MP-10, MRS broth supplemented with ½MIC of each metal was inoculated with 2% (v/v) of an overnight culture of each strain. After 24 h at 37 °C, the MIC added: Fe at 2 mg/ml; Al, Co and Cu at 1 mg/ml; Zn at 0.5 mg/ml; Cd at 4 µg/ml and Hg at 1 µg/ml and 0.5 µg/ml were considered “100%” baselines to calculate relative metal removal rates (as a percentage).

Metal concentrations were measured using 7900 ICP-Mass Spectrometer (Agilent, USA) with graphite tube atomizer and autosampler, a superior matrix tolerance and advanced collision/reaction cell (CRC) technology to remove the polyatomic interferences that can affect some of the trace elements. The spectrometer software was Agilent ICP-MS MassHunter Work Station, which provides simple autotuning functions, and a Method Wizard automates the method setup process.

Biosorption of metals by *L. pentosus* MP-10 was further examined using scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy before and after metal uptake. For this, a drop of the bacterial pellet, which had been previously exposed to a metals (as previously described), were disposed into microporous capsules (ANAME, Spain), dried and then dehydrated in a series of 20, 40, 60, 80, and 100% ethanol solutions (15 min each) before suspension in acetone for 1 h. After this, the capsules were subjected to critical-point drying before examination by SEM (FESEM, MERLIN de Carl Zeiss, Oxford).

Safety and probiotic properties. To determine differences in antimicrobial (antibiotic and biocide) susceptibility of *L. pentosus* MP-10C versus wild strain, we determined the MIC of several antimicrobials following the method previously described by Casado Muñoz, et al. using LSM broth (Oxoid).

To determine if plasmids further play a role in several probiotic properties, we analyzed acid- and bile- tolerances, auto-aggregation, co-aggregation with pathogens (*L. innocua* CECT 910, *S. aureus* CECT 4468, *E. coli* CCUG 47553, and *S. Enteritidis* UJ3449) and mucin adhesion in both *L. pentosus* strains (MP-10 and MP-10C) according to the methods reported by Pérez Montoro et al. 35.

Gene expression analysis. To analyse the role of plasmid in several metabolic and probiotic properties, both the uncured and cured *L. pentosus* strains were subjected to RNA extraction using Direct-zol™ RNA Miniprep (Zymo Research, California, USA) according to the manufacturer’s instructions. RNA quantification and quality assessment were carried out by using a NanoDrop 2000 spectrophotometer (Thermo Scientific). RNAs were adjusted to a concentration of 500 ng/ml and frozen at −80 °C until required for analysis.

The expression of selected genes (Table S1) was determined by quantitative, real-time PCR (qRT-PCR) using SensiFAST™ SYBR & Fluorescein One-Step Kit (BIOLINE) as reported in Pérez Montoro et al. 35.

Statistical analysis. All analyses were performed in triplicate. Statistical descriptors were calculated using Excel 2007 (Microsoft Corporation, Redmond, Washington, US), e.g., determining averages and standard deviations. Statistical comparison of growth and probiotic properties assays were conducted by analysis of variance (ANOVA) using Statgraphics Centurion XVI software (Statpoint Technologie, Warrenton, Virginia, US). The same software was used to perform Shapiro–Wilk and the Levene tests to check data normality and to perform 2-sided Tukey’s multiple contrast to determine the pair-wise differences between strains. Level of significance was set at *P < 0.05.*

References
1. Abriouel, H. *et al.* Characterization of lactic acid bacteria from naturally-fermented Manzanilla Aloreña green table olives. *Food Microbiol.* 32, 308–316 (2012).
2. Abriouel, H. *et al.* In silico genomic insights into aspects of food safety and defense mechanisms of a potentially probiotic *Lactobacillus pentosus* MP-10 isolated from brines of naturally fermented Aloreña green table olives. *PLoS ONE* 12(6), e0176801 (2017).
3. De Bellis, P., Valerio, F., Sisto, A., Lonigro, S. L. & Lavermicocca, P. Probiotic table olives: Microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain *Lactobacillus paracasei* IMPC2.1 in an industrial plant. *Int. J. Food Microbiol.* 140, 6–13 (2010).
Abriouel, H., Ben Omar, N., Lucas, R., Martínez-Cañamero, M. & Gálvez, A. Bacteriocin production, plasmid content and plasmid architecture of Lactobacillus plantarum subsp. paracasei strain BM4, Jundishapur. J. Microbiol. 10(11), e12894 (2017).

Lyons, S. et al. Characterization of the genetic locus responsible for the production of enterocin P structural gene in enterococci isolated from food sources. J. Microbiol. Res. 5(1), 11–22 (2015).

Kowgli, N. G. & Chhabra, L. D. Lactic acidosis: an underrecognized complication of short bowel syndrome. Gastroenterol. Res. Pract. 2015, 476215 (2015).

Zhang, Y. et al. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell. 29(3), 414–423 (2013).

W right, S. G. & Chen, S. H. Isolation and characterization of a lactic acid bacteria strain from olive oil. J. Food Sci. 66(6), 1372–1374 (1998).

Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14), 2086–9 (2014).

Nishida, H. Comparative analyses of base compositions, DNA sizes, and dinucleotide frequency profiles in archaeal and bacterial chromosomes and plasmids. Int. J. Evol. Biol. 2012, 342482 (2012).

Alvarez-Martinez, C. E. & Christie, P. J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73, 755–808 (2009).

Rolain, J. M. et al. Identification of key peptidoglycan hydrolases for morphogenesis, autolysis, and peptidoglycan composition of Lactobacillus plantarum. J. Bacteriol. 191(11), 3253–3262 (2009).

Mutschler, H., Gebhardt, M., Shoeman, R. L. & Meinhart, A. A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 9(3), e1001033 (2011).

Hevia, A. et al. An extracellular Serine/Threonine-rich protein from Lactobacillus plantarum NCIMB 8826 is a novel aggregation-promoting factor with affinity to mucin. Appl. Environ. Microbiol. 79, 6059–6066 (2013).

Gómez-Montoro, B. et al. Fermented Aloreña Table Olives as a Source of Potential Probiotic Lactobacillus pentosus Strains. Front. Microbiol. 7, 1583 (2016).

Chiang, P. Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Appl. Microbiol. Biotechnol. 93(3), 903–16 (2012).

Ventura, M., Turroni, F. & van Sinderen, D. Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut. Bioeng. Bugs. 3(2), 73–79 (2012).

Hurtado, A., Reguant, C., Bordons, A. & Rozes, N. Lactic acid bacteria from fermented table olives. Food Microbiol. 31, 1–8 (2012).

Abriouel, H., Benomar, N., Lucas, R. & Gálvez, A. Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally fermented Aloreña green table olives. Int. J. Food Microbiol. 144, 487–496 (2011).

Perpetuini, G. et al. Identification of critical genes for growth in olive brine by transposon mutagenesis of Lactobacillus pentosus C11. Appl. Environ. Microbiol. 79(15), 4568–75 (2013).

Abriouel, H., Benomar, N., Pérez Pulido, R., Martínez Cañamero, M. & Gálvez, A. Annotated genome sequence of Lactobacillus plantarum strain IAM1274, a strain isolated from Spanish-style green olive fermentations. J. Bacteriol. 193, 4559–4560 (2011).

Abriouel, H. et al. Complete genome sequence of a potentially probiotic Lactobacillus pentosus MP-10 isolated from fermented Aloreña table olives. Genome Announc. 4, e00854–16 (2016).

Maldonado-Barragán, A., Caballero-Guerrero, B., Lucena-Padrós, H. & Ruiz-Barba, J. L. Genome Sequence of Lactobacillus paracasei SP112, a Potential Probiotic Bacterium. J. Bacteriol. 193(19), 5605 (2011).

Guidone, A. et al. Functional properties of Lactobacillus plantarum strains: A multivariate screening study. LWT—Food Sci. Technol. 56, 69–76 (2014).

Siezen, R. J., Johan, E. T. & van Hylckama Vlieg, J. E. T. Comparative analyses of base compositions, DNA sizes, and dinucleotide frequency profiles in archaeal and bacterial chromosomes and plasmids. Genome Res. 13, 553–563 (2003).

Halttunen, T., Salminen, S., Jussi, M., Raija, T. & Kalle, L. Reversible surface binding of cadmium and lead by lactic acid and other probiotic bacteria. J. Food Res. Int. 38, 764–770 (2013).

Chen, J. et al. Characterization of Four Novel Plasmids from Lactobacillus plantarum BM4, Jundishapur. J. Microbiol. 10(11), e12894 (2017).

Steedy, J. R. et al. Increased d-lactic acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo 23(4), 621–628 (2009).

VanElzakker, M. B. Chronic fatigue syndrome from vagus nerve infection: a psychoneuroimmunological hypothesis. Med. Hypotheses 81(3), 414–423 (2013).

Anticipating the birth of the first baby. Science 2005, 1108–1110 (2005).

Abriouel, H. et al. Characterization of the genetic locus responsible for the production of enterocin P structural gene in enterococci isolated from food sources. J. Microbiol. Res. 5(1), 11–22 (2015).

Kowgli, N. G. & Chhabra, L. D. Lactic acidosis: an underrecognized complication of short bowel syndrome. Gastroenterol. Res. Pract. 2015, 476215 (2015).

Zhang, Y. et al. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell. 12, 913–923 (2003).

Xu, Y., Gurtler, J. B., Fratamico, P. M., Hu, J. & Jurea, V. K. Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food. Cell & Bioscience 2, 39 (2012).

Mutschler, H., Gebhardt, M., Shoeman, R. L. & Meinhart, A. A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 9(3), e1001033 (2011).

Hevia, A. et al. An extracellular Serine/Threonine-rich protein from Lactobacillus plantarum NCIMB 8826 is a novel aggregation-promoting factor with affinity to mucin. Appl. Environ. Microbiol. 79, 6059–6066 (2013).

Pérez-Montoro, B. et al. Proteomic analysis of Lactobacillus pentosus for the identification of potential markers of adhesion and other probiotic features. Food Res. Int. 111, 58–66 (2018).

Halttunen, T., Salminen, S., Jussi, M., Raija, T. & Kalle, L. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. Int. J. Food Microbiol. 125(2), 170–175 (2008).

Abernathy, C. O., Thomas, D. J. & Calderon, R. L. Health effects and risk assessment of arsenic. J. Nutr. 133(Suppl. 1), 1536S–85S (2003).

Rahman, M., Tondel, M., Ahmad, S. A. & Axelson, O. Diabetes mellitus associated with arsenic exposure in Bangladesh. Am. J. Epidemiol. 148, 198–203 (1998).

Tchounouw, P. B., Patolla, A. K. & Centeno, J. A. Carcinogenic and systemic health effects associated with arsenic exposure & a critical review. Toxicol. Pathol. 31, 575–88 (2003).

Monachesi, M., Burton, J. P. & Reid, G. Bioremediation and Tolerance of Humans to Heavy Metals through Microbial Processes: a Potential Role for Probiotics? Appl. Environ. Microbiol. 78(18), 6397–6404 (2012).

Adiyenumo, S. M. & Onilude, A. A. Plasmid Curing and Its Effect on the Growth and Physiological Characteristics of Lactobacillus plantarum Isolated from Fermented Cereals. J. Microbiol. Res. 5(1), 11–22 (2015).

Abriouel, H., Ben Omar, N., Lucas, R., Martínez-Cañamero, M. & Gálvez, A. Bacteriocin production, plasmid content and plasmid location of enterocin P structural gene in enterococci isolated from food sources. Lett. Appl. Microbiol. 42(4), 331–337 (2006).

Casado Muñoz, M. C., Benomar, N., Lema, L. L., Gálvez, A. & Abriouel, H. Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Aloreña table olives throughout fermentation process. Int. J. Food Microbiol. 172, 110–18 (2014).

Acknowledgements
We acknowledge the contributions by research grants: AGL2013-43571-P (Ministerio de Economía y Competitividad, MINECO, FEDER), and Research Team (EI_BIO01_2017). The technical and human support provided by CICT of Universidad de Jaén (UJA, MINECO, Junta de Andalucía, FEDER) are gratefully acknowledged.

Author Contributions
H.A. and N.B. designed the experiments. H.A., N.B. and C.K. wrote the main manuscript text. H.A., B.P.M., J.F.O. and L.L.L. did the experiments and prepared figures and tables. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-47384-1.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019