Abstract

Schizophrenia is a psychiatric disorder affecting approximately 1% of the world population and is characterised by the presence of positive and negative symptoms and cognitive deficits. Whilst current therapeutics ameliorate positive symptoms, they are largely ineffective in improving negative symptoms and cognitive deficits. The cholinergic neurotransmitter system heavily influences cognitive function and there is evidence that implicates disruption of the central cholinergic system in schizophrenia. Historically, targeting the cholinergic system has been impeded by poor selectivity leading to intolerable side effects warranting the need to develop more targeted therapeutic compounds. In this review we will summarise evidence supporting the roles of the cholinergic system, particularly the muscarinic M₁ receptor, in the pathophysiology of schizophrenia and discuss the potential of a promising new class of candidate compounds, allosteric ligands, for addressing the difficulties involved in targeting this system. The body of evidence presented here highlights the dysfunction of the cholinergic system in schizophrenia and that targeting this system by taking advantage of allosteric ligands is having clinically meaningful effect on cognitive deficits.

Key words: Central nervous system; Antipsychotic; Allosteric; Cholinergic; Schizophrenia; Mutagenesis; Cognition; Muscarinic
of cholinergic system: Potential approach to treating cognitive deficits of schizophrenia. World J Pharmaco 2016; 5(1): 32-43
Available from: URL: http://www.wjgnet.com/2220-3192/full/v5/i1/32.htm DOI: http://dx.doi.org/10.5497/wjp.v5.i1.32

INTRODUCTION
Cognitive impairment is associated with multiple disease states and usually has a big impact on quality of life. Schizophrenia is a psychiatric disorder with a predominant age of onset from late teens to early adulthood that affects approximately 1% of the world population. It is diagnosed by the presence of what are characterised as positive and negative symptoms and cognitive deficits. Unlike neurological disorders no major lesion was apparent in the central nervous system (CNS) from subjects with schizophrenia and therefore many of the hypotheses as to its cause have been based on the actions of drugs that either worsen or ameliorate the symptoms of the disorder.

The dopamine hypothesis
With the serendipitous discovery that chlorpromazine had unexpected therapeutic benefit when given to psychotic individuals there was a significant effort to develop a range of what became known as first generation neuroleptic drugs[2]. Subsequently, it was determined that the ability of these drugs to reduce the severity of positive symptoms in some people with schizophrenia was directly related to the ability of first generation neuroleptic drugs to act as antagonists at the dopamine D2 receptor[3].

The dopamine hypothesis was the first attempt to encapsulate the biological mechanisms underpinning schizophrenia. This hypothesis grew from an understanding that the early antipsychotics block the dopamine D2 receptor and that drugs which increase CNS dopamine function cause or worsen psychosis. The original dopamine hypothesis proposed that widespread hyperactivity of the dopamine neurotransmitter system contributes to the pathophysiology of schizophrenia (reviewed in[4]).

The dopamine hypothesis was the first attempt to encapsulate the biological mechanisms underpinning schizophrenia. This hypothesis grew from an understanding that the early antipsychotics block the dopamine D2 receptor and that drugs which increase CNS dopamine function cause or worsen psychosis. The original dopamine hypothesis proposed that widespread hyperactivity of the dopamine neurotransmitter system contributes to the pathophysiology of schizophrenia (reviewed in[4]).

The serotonin hypothesis
Clozapine is the archetypal drug that led to the development of a family of drugs termed second-generation neuroleptics[5]. Whilst the second-generation drugs were developed to bind to some of the receptors targeted by clozapine it is notable that none of these drugs have achieved the extended therapeutic reach of clozapine such as improving the cognitive deficits[6]. An early second generation neuroleptic drug, risperidone, was suggested to have significant benefits compared to first generation neuroleptic drugs[7,8] which were presumed to be due, at least in part, to its ability to antagonise the serotonin 2A receptor[9]. The clinical benefit obtained by risperidone, added to the observation that drugs such as lysergic acid diethylamide could cause psychotic symptoms by stimulating the serotonergic system[10], became the evidence to support the serotonin hypothesis of schizophrenia.

Initial interest in the serotonergic system stems from the observation that drugs affecting serotonin receptors produce psychotomimetic effects[11] and the discovery that second generation neuroleptics bind to various serotonin receptors[12,13]. These observations have led to investigation of the serotonin system both post-mortem and in vivo; a recent meta-analysis[14] demonstrated a moderately higher level of the serotonin receptor subtype 5-HT1A and a substantially lower levels of the 5-HT2A receptor subtype in the prefrontal cortex of post-mortem subjects with schizophrenia.

The glutamate hypothesis
The glutamate hypothesis is somewhat unique as it is founded in the observation that phencyclidine could cause a broad range of symptoms in normal individuals[15] and exacerbate psychotic symptoms in patients with schizophrenia but no drug targeting the glutamatergic system has proved useful in treating the disorder[16]. Further investigation has revealed elevated glutamate activity particularly in the medial prefrontal cortex and basal ganglia of un-medicated and first episode patients, demonstrated by magnetic resonance spectroscopy studies (reviewed in[17]). Of studies in post-mortem brain tissue, the most robust finding has been widespread differences in glutamatergic pyramidal neuron morphology, particularly lower numbers[18] and lengths of dendrites and lower numbers of dendritic spines in deep cortical layer III of the dorsolateral prefrontal cortex. There have also been mixed reports of differences in mRNA and protein levels of receptor subunits, transporters, and synthesis enzymes (post-mortem glutamatergic differences in schizophrenia reviewed in[19]).

The cholinergic hypothesis
Preceding all of these neurotransmitter hypotheses was the cholinergic hypothesis which was founded on the observation that some subjects with schizophrenia had remission or an improvement in symptom severity...
after coma induced by a dose of acetylcholine (ACh)27. Since those early experiments components of the cholinergic system, the muscarinic receptors, have been targeted by drugs such as clozapine and olanzapine that reduce the symptoms of schizophrenia28 and drugs such as benzatropine which were used to control the extrapyramidal side effects associated with treating with first generation antipsychotic drugs29. Whilst these neuropsychopharmacological findings are important to consideration of the role of the cholinergic system in schizophrenia, other studies which have advanced our understanding of the cholinergic system and how it may be affected in the disorder have been important in refining the cholinergic hypotheses of schizophrenia.

The cholinergic system consists of several distinct pathways; the most well studied being the pathway that projects from the basal forebrain to most of the CNS30. This pathway extensively modulates the dopamine system by affecting striatal dopamine release31; the glutamate system by potentiating NMDA receptors32, and the serotonergic system via projections to the dorsal raphe nucleus where ACh inhibits the release of serotonin33 (cholinergic interactions in schizophrenia reviewed in34). Whilst the modulatory interactions of the cholinergic system with other neurotransmitter systems provide mechanisms which can implicate that system in schizophrenia there are also several lines of evidence to suggest that the cortical muscarinic M\textsubscript{1} receptor, a component of the cholinergic system, is particularly implicated in the pathophysiology of schizophrenia.

Although there have been several reviews discussing the cholinergic system and its role in schizophrenia35,36, there have recently been some exciting advances in developing drugs to target the cholinergic system37-39 that make a review of the area timely. This is particularly the case because the cognitive deficits of schizophrenia are largely non-responsive to current drug treatments40 whereas preliminary data suggest that the new drugs targeting the cholinergic system will improve cognition41. Cognitive deficits are a core feature of schizophrenia and are made up of deficits in the domains of speed of processing, attention/vigilance, working memory, verbal learning and memory, visual learning and memory, reasoning and problem solving, and social cognition (reviewed in42). The impact of these deficits in people with schizophrenia is now considered the most debilitating of all the symptom domains associated with the disorder. Therefore, this review will first summarize the cholinergic system, then briefly review evidence supporting its role, particularly the muscarinic M\textsubscript{1} receptor, in cognition and the pathophysiology of schizophrenia and finally discuss the potential of a promising new class of candidate compounds and how they target the muscarinic M\textsubscript{1} receptor for addressing the difficulties involved in targeting this system.

OVERVIEW OF THE CHOLINERGIC SYSTEM

ACh is a modulatory neurotransmitter43 in the CNS and peripheral autonomic and somatic nervous systems. It is essential to the function of all branches of the peripheral nervous system44 and has been associated with a large number of cognitive processes in the CNS. Two classes of integral membrane receptor mediate signal transmission: The ionotropic nicotinic receptors (nAChR), and the metabotropic muscarinic receptors.

Within the CNS, cholinergic neurons are predominantly located in the basal forebrain as cortical projection neurons (reviewed in45) and striatal interneurons (Figure 1). The projection neurons arise from four cell groups (Ch1-4) in the basal forebrain46 and from the pedunculopontine-lateral dorsal tegmental area in the brainstem. These cell groups are not exclusively composed of cholinergic neurons, but contain a diverse mix of other neurotransmitter systems including GABAAergic, peptide transmitter, and catecholaminergic neurons. These projection neurons modulate all regions of cortex including the hippocampal formation46. In addition to the projection nuclei of the basal forebrain, striatal cholinergic interneurons interact heavily with the dopaminergic projections from the substantia nigra pars compacta and the ventral tegmental area (VTA)47 (The human cholinergic brain architecture is extensively reviewed in48).

ACh acts in part via the family of five muscarinic (M\textsubscript{1-5}) receptors; they have a differential expression pattern throughout the human CNS49. Point mutation and other studies suggest that the structural position of the muscarinic receptor transmembrane domains relative to one another affect the differential binding specificity of ligands to these receptors49,50. Significantly, the orthosteric site on the five muscarinic receptors is highly conserved and this has presented a challenge to the development of receptor-specific drugs.

Muscarinic M\textsubscript{1} receptors

Of the five muscarinic receptors, the muscarinic M\textsubscript{1} receptor is the predominant muscarinic receptor in all cortical areas49 where it is located on excitatory neurons to modulate their firing, for example, by potentiating NMDA receptors51 and at cholinergic synapses52. Mouse knockout and knock down studies have elucidated some of its roles in CNS function. For example, in muscarinic M\textsubscript{1} receptor knockout mice, mitogen activated protein kinase (MAPK) signalling is impaired in cortical neuronal cultures53 and hippocampal slices54. The role of MAPK in hippocampal long term potentiation54 and neuronal plasticity55 demonstrate a potential mechanism by which muscarinic M\textsubscript{1} receptors modulate learning and memory. Gamma oscillations (20-80 Hz) of neuronal firing patterns are associated with memory56, hippocampal gamma oscillations induced by muscarine, a muscarinic agonist, but not those induced by kainite, a glutamatergic kainite receptor agonist, are completely absent from muscarinic M\textsubscript{1} receptor knockout mice57. Another study reported that muscarinic M\textsubscript{1} receptor knockout mice had fewer and shorter dendrites and disrupted cortical tonotopic maps in the auditory cortex58. Additionally,
muscarinic M\(_1\) receptor knockout mice had impaired experience dependent plasticity in the auditory cortex\(^{[59]}\), implicating the muscarinic M\(_1\) receptor in auditory cortical organisation, sensory processing, and learning. Additionally, muscarinic M\(_1\) receptor knockout mice are deficient in working memory and memory consolidation processes where the hippocampus and cerebral cortex interact\(^{[60]}\). These studies together implicate muscarinic M\(_1\) receptors in various aspects of learning and memory.

In addition to their cognitive effects, muscarinic M\(_1\) receptors are implicated in the response to a number of brain-penetrant drugs in mice. Muscarinic M\(_1\) receptor knockout mice are highly resistant to seizures induced by pilocarpine, a muscarinic agonist, which does not suppress the voltage dependent K\(^+\) M current in these animals. Conversely, muscarinic M\(_2\)–4 receptor knockout mice display wild-type seizure response and M current suppression when administered pilocarpine\(^{[61]}\). As M current suppression is considered the mechanism by which pilocarpine seizures are produced\(^{[62]}\), the muscarinic M\(_1\) receptors mediate this drug induced seizure response by modulating M currents in sympathetic neurons\(^{[61]}\). Muscarinic M\(_1\) receptor knockout mice displayed an elevated striatal level of extracellular dopamine and increased locomotor activity, which neuroleptic treatment attenuated\(^{[63]}\). In addition, muscarinic M\(_1\) receptor knockout mice had an increased sensitivity to amphetamine administration, in both the locomotor response and striatal dopamine levels\(^{[63]}\) demonstrating an interaction between the cholinergic and dopaminergic systems. This interaction is supported by the report of an increase in morphine-induced analgesia and lower rates of self-administration of morphine and cocaine in muscarinic M\(_1\) receptor knockout mice\(^{[64]}\). Taken together, these studies implicate the muscarinic M\(_1\) receptor in the both the response to these drugs and as a mechanism by which the cholinergic system interacts with the dopamine reward pathway.

THE CHOLINERGIC SYSTEM IN THE PATHOPHYSIOLOGY OF SCHIZOPHRENIA

The cholinergic system’s role in schizophrenia is supported by research involving neuropsychopharmacological agents, post-mortem brain tissue, and neuroleptic drug treatments. In addition to these three areas of research, a landmark single photon emission computed tomography (SPECT) study showed widespread lower levels of muscarinic receptor binding in the cerebral cortex in patients with schizophrenia who were medication free compared to healthy control subjects\(^{[65]}\).

Neuropsychopharmacology

Several neuropsychopharmacological studies provide evidence to support the role of muscarinic receptors in schizophrenia. Administering a muscarinic antagonist, scopolamine, to healthy control subjects produced deficits in spatial and working memory as well as sustained visual attention\(^{[66]}\). In another report this group demonstrated that scopolamine produced deficits in spatial and object working memory using the n-back paradigm\(^{[67]}\), which is used to assess working memory function in patients with schizophrenia. Additionally, acute administration of scopolamine to healthy subjects produced deficits in maintenance of working memory\(^{[68]}\). Another study demonstrated higher doses of scopolamine as well as atropine and Ditran, two other muscarinic antagonists, produced hallucination, and delirium in addition to cognitive deficits in healthy
control subjects\(^{[69]}\). Thus blocking muscarinic receptor activity mimics both positive and cognitive symptoms observed in patients with schizophrenia.

Sleep disturbances, including impaired sleep continuity, abnormal REM latency\(^{[70]}\) and decreased slow wave sleep\(^{[71]}\) observed in patients with schizophrenia have been associated with impaired sleep dependent memory consolidation, as well as negative symptom severity\(^{[71]}\). Administration of cholinergic agonists to healthy volunteers causes shortening of REM latency during sleep\(^{[72,73]}\) and altered REM latency in a subset of patients with schizophrenia more severely than healthy control subjects\(^{[24]}\). These findings demonstrate that pharmacological manipulation of the cholinergic system can mimic and worsen the sleep disturbances observed in patients with schizophrenia. These studies add support to the body of evidence implicating the cholinergic system in the pathology of schizophrenia.

Post mortem studies

A role for the muscarinic M\(_4\) receptor in schizophrenia is supported by a variety of post-mortem studies investigating radioligand binding and mRNA levels in multiple brain regions (Table 1), which report a decrease in muscarinic M\(_4/M_4\) receptor binding and muscarinic M\(_4\) receptor mRNA levels in multiple brain regions (reviewed in\(^{[81]}\)). Notably, we reported a decrease in muscarinic M\(_4\)\(^{[78]}\), but not M\(_3\), M\(_5\)\(^{[77]}\) or M\(_4\)\(^{[76]}\) receptor protein in the cortex of subjects who had schizophrenia confirming that the M\(_4\) receptor is selectively decreased in people with the disorder. More recently, we\(^{[78]}\) reported lower binding of \(^{[3]}\)H]pirenzepine (\(^{[3]}\)H]PRZ), a muscarinic M\(_4/M_4\) receptor selective antagonist, in the dorsolateral prefrontal cortices from people with schizophrenia to be limited to a subset (approximately 25%) of subjects; these subjects had 75% lower binding to muscarinic receptors in Brodmann area (BA) 9 when compared to both healthy control subjects and other subjects with schizophrenia. These data underpin the proposal of a subgroup within schizophrenia that have a muscarinic receptor deficit schizophrenia (MRDS). This hypothesis is pertinent to the growing acceptance that schizophrenia is a syndrome of disorders that may well have differing aetiologies\(^{[79]}\).

Although \(^{[3]}\)H]PRZ binds to both muscarinic M\(_3\) and M\(_4\) receptors, its selectivity for the muscarinic M\(_4\) receptor was increased under the conditions used for the study that identified MRDS\(^{[80]}\). Furthermore, we previously showed that muscarinic M\(_4\), but not M\(_3\), receptor mRNA and \(^{[3]}\)H]PRZ binding levels were significantly lower in BA 9 in subjects with schizophrenia\(^{[78]}\). These data, combined with the high abundance of muscarinic M\(_3\) receptors relative to the other muscarinic receptor types within the cerebral cortex\(^{[81]}\), strongly implicates muscarinic M\(_3\) receptors in the pathophysiology of the MRDS group. More recent work has demonstrated lower \(^{[3]}\)H]PRZ binding in BAs 6, 10, 24, 44 and 46 in the same cohort\(^{[81,82]}\); these findings are consistent with the widespread loss of cortical muscarinic receptors in people with schizophrenia reported in the SPECT study\(^{[83]}\).

Table 1 Muscarinic receptors in post-mortem studies

Ref.	Receptor Type	Regions	Results
[114]	M\(_4\)/M\(_4\)	CPu	Lower binding
[115]	M\(_4\)/M\(_4\)	CPu	Lower binding
[116]	M\(_4\)/M\(_4\)	CPu	M\(_3\): no difference; M\(_4\): below sensitivity in both SCZ and HC
[117]	M\(_4\)/M\(_4\)	PFC	Lower binding
[76]	M\(_4\)/M\(_5\)	DLPFC, PCx	Lower binding and M\(_3\): mRNA levels in DLPFC; no difference in binding, lower M\(_4\) and M\(_5\): mRNA levels in PCx
[118]	M\(_4\)	PMC	Lower levels
[119]	M\(_4\)/M\(_4\)	ACC	Lower binding
[120]	M\(_4\)/M\(_4\)	ACC	No difference
[121]	M\(_4\)/M\(_5\)/M\(_5\)	STG	Lower M\(_4\)/M\(_5\): binding non-significant; lower M\(_5\)/M\(_5\): binding
[77]	M\(_4\)/M\(_5\)	DLPFC, PCx	M\(_4\): and M\(_5\): binding and M\(_3\): mRNA no difference; M\(_3\): mRNA below sensitivity in both SCZ and HC
[122]	M\(_4\)/M\(_4\)	Hipp	Lower binding; lower M\(_4\): mRNA no difference in M\(_3\): mRNA levels
[123]	M\(_4\)/M\(_5\)	PMC	Lower M\(_4\)/M\(_5\): binding; no difference in M\(_3\): binding
[78]	M\(_4\)	DLPFC	Lower binding in subset of SCZ subjects
[81]	M\(_4\)/M\(_5\)	PMC	Lower M\(_4\): binding in subset of SCZ subjects; no difference in mRNA levels or M\(_3\): binding
[82]	M\(_4\)	DLPFC, ACC, BrA	Lower binding in subset of SCZ subjects

* / * Indicates that the radioligand used in the study binds both receptor types listed. CPu: Caudate-putamen; SCZ: Subjects with schizophrenia; HC: Non-psychiatric healthy control; PFC: Prefrontal cortex; DLPFC: Dorsolateral prefrontal cortex; PCx: Parietal cortex; PMC: Premotor cortex; ACC: Anterior cingulate cortex; STG: Superior temporal gyrus; Hipp: Hippocampus; BrA: Broca’s area.

Neuroleptic drug treatment

Traditional antipsychotic therapies achieve their action by blockade of central dopamine D2 receptors (reviewed in\(^{[84]}\)); unfortunately, these drugs can cause extrapyramidal side effects (EPS) such as tremors and dyskinesia similar to those seen in people with Parkinson’s disease\(^{[84]}\). Adjunctive anti-cholinergic agents are often used to combat EPS, due to the interaction between the dopaminergic and cholinergic systems in the basal ganglia, particularly the VTA\(^{[85]}\). The non-specific muscarinic antagonist procyclidine, however, exacerbated positive symptoms in patients with schizophrenia treated
with the antipsychotic flupentixol\(^{[85]}\), while the muscarinic M\(_1\) preferring antagonist biperiden worsened positive symptoms and ameliorated the negative symptoms in patients who were otherwise drug free for at least 2 wk\(^{[87]}\). Patients with schizophrenia who were taking benzatropine, a muscarinic antagonist, as an adjunctive therapy had impaired semantic organisation\(^{[88]}\). These studies show that pharmacological interventions affecting the central cholinergic tone in patients with schizophrenia has a complex effect on symptomatology, and that more specific modulation of the system may be beneficial for ameliorating the symptoms of the disorder.

Xanomeline: A proof of principle drug trial in schizophrenia

A small, double-blind, placebo controlled trial of an agonist selective for the muscarinic M\(_1\) and M\(_3\) receptors, xanomeline, was conducted in a cohort of treatment resistant schizophrenia patients\(^{[39]}\). The xanomeline treated group showed significant improvement in both positive and negative symptoms as measured using the positive and negative syndrome scale and the brief psychiatric rating scale as well as improvements in a battery of cognitive tests, particularly in working memory and verbal and visual learning\(^{[39]}\). Unfortunately, peripheral adverse events were observed including vomiting, nausea and gastrointestinal distress similar to those observed in previous Alzheimer’s disease trials\(^{[89,90]}\); this led to the discontinuation of xanomeline. This compound highlighted two important points regarding muscarinic receptors as drug targets. Firstly, its efficacy in the schizophrenia trial\(^{[39]}\) supports the body of evidence suggesting that muscarinic receptors, particularly muscarinic M\(_1\) and M\(_3\) receptors, are viable targets for treatment of schizophrenia. Secondly, the problem of selectivity for specific muscarinic receptors. High selectivity for individual muscarinic receptors is difficult to achieve with orthosteric ligands, due to the high homology between their orthosteric binding pockets. The side effects observed in the xanomeline trials were considered to be the result of “off target” activation of muscarinic receptors, particularly muscarinic M\(_1\) and M\(_3\) receptors\(^{[89,90]}\). Clearly, there is a need for ligands that are more selective, both for drug development and investigating individual receptors both in vivo and in vitro; allosteric compounds present a possible solution.

RECEPTOR ALLOSTERISM

An allosteric site is a binding site on a receptor distinct from the orthosteric binding site of the endogenous ligand that can be activated by proteins or small molecules to elicit a biologic response (allosteric agonist) or modulate the response of an endogenous molecule, orthosteric agonist or orthosteric antagonist biding to the orthosteric site (allosteric modulator). Allosteric modulators increase [positive allosteric modulator (PAM)] or decrease [negative allosteric modulator (NAM)] the ability of orthosteric ligands to activate or inactivate the receptor. These terms describing allosterism are defined according to the guidelines set out by the International Union of Basic and Clinical Pharmacology\(^{[91]}\).

Characterisation of putative M\(_1\) receptor allosteric site

In an attempt to better understand the muscarinic M\(_1\) receptor and aid drug development, site-directed mutagenesis techniques have identified amino acid residues of the muscarinic M\(_3\) receptor implicated in the binding of compounds to the orthosteric site, the allosteric site, and in the functional cooperativity between the orthosteric and allosteric sites. From these studies, the allosteric site is considered to be a pocket deep in the transmembrane domains (TMs; reviewed in\(^{[92]}\)). Recent X-ray crystallographic determination of the structures of the muscarinic M\(_2\)\(^{[93]}\) and M\(_3\)\(^{[94]}\) receptors has confirmed the orthosteric site is located in a pocket that forms a channel between the TMs for these receptors. The differential binding specificity of ligands to the different receptors is thought to relate to the structural position of the transmembrane domains relative to one another\(^{[95,96]}\).

An early study characterising the allosteric site of the muscarinic M\(_1\) receptor performed alanine scanning of the extracellular loop (ECL) amino acid residues conserved across the five muscarinic receptors. The authors found that the only residue to have any appreciable effect on the binding characteristics of gallamine (NAM) was Tyr400, found in the 3\(^{rd}\) ECL, leading them to hypothesise that the allosteric site of gallamine is close in space to the orthosteric site\(^{[97]}\). More recently, other residues that are implicated in binding to the allosteric site (Figure 2A) and functional cooperativity between the allosteric and orthosteric sites (Figure 2B) of the muscarinic M\(_1\) receptor were identified in the 2\(^{nd}\), 3\(^{rd}\), 4\(^{th}\), 6\(^{th}\), and 7\(^{th}\) TMs and the 2\(^{nd}\) ECL\(^{[95,96]}\). Computer modelling of the residues identified in mutagenesis studies has predicted a putative binding site which is topographically distinct from the orthosteric site, mainly composed of residues from ECL2, TMII, and TMVI\(^{[96]}\). Notably, these studies using 1-(4-methoxybenzyl)-4-oxo-1, 4-dihydroquinoline-3-carboxylic acid (BQCA)\(^{[96]}\) and a structural derivative of BQCA (benzoquinazolinone 12)\(^{[95]}\) found that mutating the Tyr400 residue completely abolished binding to the allosteric site of the muscarinic M\(_1\) receptor; in agreement with the study using gallamine. Interestingly, the residues implicated in allosteric binding to the muscarinic M\(_1\) receptor are highly conserved across all five muscarinic receptors, while residues implicated in the functional cooperativity between the orthosteric and allosteric sites are not; leading the authors to hypothesise that these residues underlie the muscarinic M\(_1\) receptor specific cooperativity of these ligands\(^{[96]}\).

Muscarinic M\(_1\) receptor allosteric compounds

There has been considerable interest in using allosteric ligands to target GPCRs implicated in a variety of disease
Allosteric affinity reversed amphetamine induced hyperlocomotion in 1-[4-(pyridine-2-yl)piperidin-1-yl]-4-oxo-4-H-quinolinizine-3-carboxylic acid (PQCA) [37], attenuated scopolamine deficits in novel object recognition, self-ordered spatial search, and delayed alternation Y-maze tasks in rats, cynomolgus macaques, and rhesus macaques, respectively [111]. The efficacy of PQCA in these three models of cognitive function further supports the role of the muscarinic M1 receptor in cognition and demonstrates the potential of this class of compound as useful therapeutics. Additionally, Merck have taken MK-7622, a muscarinic M1 receptor PAM based on the BQCA scaffold, 1-[(1'-2-methylbenzyl)-1,4'-bipiperidin-4-yl]-1H-benzo[d]imidazol-2(3H)-one (TBPPB), which reversed amphetamine induced hyper-locomotion in rats [103], a model predictive of antipsychotic-like activity; LuAE51090, which improved mouse performance on the delayed alternation Y-maze [104], a model of working memory; and GSK1034702, which improved episodic memory in humans on the nicotine withdrawal model of cognitive dysfunction [105]. Additionally, [11C]GSK1034702 was clinically trialled as a positron emission tomography (PET) ligand (clinicaltrials.gov identifier: NCT00937846) to assess its blood brain barrier penetration and distribution in vivo; unfortunately [11C]GSK1034702 was deemed unsuitable as a PET ligand for quantification of muscarinic M1 receptors in vivo [105].

Notably, Researchers at Merck Laboratories identified the first highly selective PAM of the muscarinic M1 receptor: BQCA [106]. BQCA increases ACh affinity for human cloned muscarinic M1 receptors demonstrating a selective, dose dependant potentiation of ACh's ability to displace [3H]n-methyl scopolamine ([3H]NMS), a pan muscarinic antagonist, binding to muscarinic M1 receptors expressed in Chinese hamster ovary cells [107]. Further, BQCA has been demonstrated to potentiate muscarinic M1 receptors cloned from rhesus, dog, mouse and rat muscarinic M1 receptors as well as selectively potentiate native mouse muscarinic M1 receptors in vivo [107,108]. Recently, we demonstrated that BQCA dose dependently potentiates ACh's ability to displace [3H]NMS in human brain homogenate and that a subset of individuals with schizophrenia with a loss of cortical muscarinic M1 receptors [108] have a decreased response to BQCA's modulation of ACh binding [109]. Modification of this compound by chemical motif substitution [97,110] is ongoing. A selective muscarinic M1 receptor PAM based on the BQCA scaffold, 1-[(1'-2-methylbenzyl)-1,4'-bipiperidin-4-yl]-4-oxo-4-H-quinolinizine-3-carboxylic acid (PQCA) [37], attenuated scopolamine deficits in novel object recognition, self-ordered spatial search, and the object retrieval detour tasks in rats, cynomolgus macaques, and rhesus macaques, respectively [111]. The efficacy of PQCA in these three models of cognitive function further supports the role of the muscarinic M1 receptor in cognition and demonstrates the potential of this class of compound as useful therapeutics. Additionally, Merck have taken MK-7622, a muscarinic M1 receptor PAM to phase II clinical trial (clinicaltrials.gov identifier: NCT01852110) as an adjunct therapy to an acetylcholinesterase inhibitor (donepezil, rivastigmine or galantamine) for the treatment of cognitive impairment and disease progression in Alzheimer's disease. This highlights the promise of allosteric modulators as pro-cognitive agents.

CONCLUSION

Allosteric modulators of muscarinic M1 receptors provide a promising method for developing effective, well-tolerated therapies to redress cognitive impairment, particularly in schizophrenia and other diseases characterised by significant cognitive impairment. Historically, treating any disorder with drugs targeting muscarinic receptors has been hampered by the difficulties associated with targeting the orthosteric binding site, particularly the propensity for "off target" side effects, due to the high degree of homology between the orthosteric binding sites of the five muscarinic receptors. Fortunately, the discovery of highly selective allosteric ligands provides a
potential solution to this problem and provides a unique opportunity to maintain physiological firing patterns, unattainable using orthosteric ligands. However, allosteric modulation comes with its own host of idiosyncrasies to be considered when developing ligands targeting this region of the receptors. At the level of preclinical pharmacology, allosteric compounds provide an exciting opportunity to tease out specific downstream signalling pathways, selectively targeting them to achieve highly specific fine-tuning of receptor response. Additionally, by iterative chemical substitutions of the base compound, multiple parameters can be modified to tailor compounds to specific needs, enhancing some aspects of signalling while inhibiting or not affecting others. Although these aspects of allosteric provide unique opportunities, they also highlight a need for care when testing compounds and appropriate modelling paradigms, as particular effects could be overlooked or masked by classical drug screening methods. The emergence of allosteric ligands provides us with the exciting opportunity to develop well-tolerated, highly selective therapies with the ability to fine tune distinct pathways addressing subtle pathological changes in complex disease states.

REFERENCES

1. Dean B. Signal transmission, rather than reception, is the underlying neurological abnormality in schizophrenia. Aust N Z J Psychiatry 2000; 34: 560-569 [PMID: 10954386 DOI: 10.1046/j.1440-1614.2000.t00477.x]

2. Dean B, Moller HJ, Svensson TH, Geyer MA, Rajkowska S, Einar M. Major problems and solutions to filling the drying drug pipeline for psychiatric disorders: a report from the inaugural 2012 CNP Think Tank. Int J Neuropsychopharmacol 2014; 17: 137-148 [PMID: 24063634 DOI: 10.1017/S1461145713001077]

3. Andén NE, Butcher SG, Corrodi H, Fuxe K, Ungerstedt U. Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur J Pharmacol 1970; 11: 303-314 [PMID: 5477307 DOI: 10.1016/0014-2999(70)9006-3]

4. Carlsson A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1988; 1: 179-186 [PMID: 3075131 DOI: 10.1016/0893-133X(88)90012-7]

5. Toda M, Abi-Dargham A. Dopamine hypothesis of schizophrenia: making sense of it all. Curr Psychiatry Rep 2007; 9: 329-336 [PMID: 17880866 DOI: 10.1001/s11920-007-0041-7]

6. Fan JB, Zhang CS, Gu NF, Li XW, Sun WW, Wang HY, Feng GY. A biochemical and pharmacological association study plus meta-analysis. Psychiatr Res 2012; 197: 245-253 [PMID: 21303373 DOI: 10.1016/j侧重于疏远小于2012.01.006]

7. Moncrieff J. A critique of the dopamine hypothesis of schizophrenia and psychosis. Harv Rev Psychiatry 2009; 17: 214-225 [PMID: 19499420 DOI: 10.1080/1067322092978996]

8. Kendler KS. Schaffner KF. The dopamine hypothesis of schizophrenia: An historical and philosophical analysis. PSS 2011; 18: 41-63 [DOI: 10.1333/582011.00050]

9. Dean B. Neurochemistry of schizophrenia: the contribution of neuroimaging postmortem pathology and neurochemistry in schizophrenia. Curr Top Med Chem 2012; 12: 2375-2392 [PMID: 23279177 DOI: 10.2174/15680266121221200909]

10. Baldessarini RJ. Frankenbourg FR. Clozapine. A novel antipsychotic agent. N Engl J Med 1991; 324: 746-754 [PMID: 1671793 DOI: 10.1056/NEJM199103143241107]

11. Meltzer HY. Treatment-resistant schizophrenia—the role of clozapine. Curr Med Res Opin 1997; 14: 1-20 [PMID: 9524789 DOI: 10.1185/00330979701133388]

12. Borison RL, Pathiraja AP, Diamond BI, Meibach RC. Risperidone: clinical safety and efficacy in schizophrenia. Psychopharmac Bull 1992; 28: 213-218 [PMID: 13081027]

13. Leysen JE, Gommers W, Ens A, de Chaffoy de Courcelles D, Stoop JC, Janssen PA. Biochemical profile of risperidone, a new antipsychotic. J Pharmacol Exp Ther 1988; 247: 661-670 [PMID: 2460616]

14. Vardy MM, Kay SR. LSD psychosis or LSD-induced schizophrenia? A multimethod inquiry. Arch Gen Psychiatry 1983; 40: 877-883 [PMID: 6870484 DOI: 10.1016/0003-6647(83)90009-4]

15. Woolley DW, Shaw E. A biochemical and pharmacological suggestion about certain mental disorders. Proc Natl Acad Sci USA 1954; 40: 228-231 [PMID: 16589461 DOI: 10.1073/pnas.40.4.228]

16. Leysen JE, Niemeegers CJ, Tollenaare JP, Laduron PM. Serotonergic component of neuroleptic receptors. Nature 1978; 272: 168-171 [PMID: 564466 DOI: 10.1038/272168a0]

17. Meltzer HY. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 2011; 11: 59-67 [PMID: 21420806 DOI: 10.1016/j.coph.2011.02.007]

18. Selvaraj S, Arnone D, Cappai A, Howes O. Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev 2014; 45: 233-245 [PMID: 24971825 DOI: 10.1016/j.neubiorev.2014.06.005]

19. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Brenner JD, Heninger GR, Bowers MB, Charney DS. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 1995; 13: 9-19 [PMID: 8526975 DOI: 10.1016/0893-133X(94)90013-1]

20. Lahti AC, Koffel B, LaPorte D, Tammenga CA. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 1995; 13: 9-19 [PMID: 8526975 DOI: 10.1016/0893-133X(94)90013-1]

21. Citrome L. Unmet needs in the treatment of schizophrenia: new targets to help different symptom domains. J Clin Psychiatry 2014; 75 Suppl 1: 21-26 [PMID: 24581451 DOI: 10.4088/JCP.13J0104]

22. Poels EM, Kegeles LS, Kantrowitz JE, Jarvis DC, Lieberman JA, Abi-Dargham A, Gergis RR. Glutamatergic abnormalities in schizophrenia: a review of proton MRS findings. Schizophr Res 2014; 152: 325-332 [PMID: 24481122 DOI: 10.1016/j.schres.2013.12.013]

23. Broadbelt K, Bye B, Jones LB. Evidence for a decrease in basolateral dendritic pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr Res 2002; 58: 75-81 [PMID: 12363393 DOI: 10.1016/S0920-9964(02)00201-3]

24. Glantza LA, Lewis DA. Reduced dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65-73 [PMID: 10632234 DOI: 10.1001/ archpsyc.57.1.65]

25. Garey LD, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR, Hirsch SR. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 1998; 65: 446-453 [PMID: 9771764 DOI: 10.1136/jnnp.65.5.446]

26. Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 2015; 1338: 38-57 [PMID: 25315318 DOI: 10.1111/nyas.12547]

27. Cohen LH, Thale T, Tissenbaum MJ. Acetylcholine treatment of schizophrenia. Arch Neurol Psychiatry 1948; 51: 171-175 [DOI: 10.1001/archneur.1948.00600100060016]

28. Byrnes FD, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, Seeman P, Wong DT. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 1996; 14: 87-96 [PMID: 8822531 DOI: 10.1016/0893-133X(94)00129-N]

29. Brunton LL, Cabner B, Knollmann BC. Goodman & Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill, 2011: 2084
30 Mesulam MM. The cholinergic innervation of the human cerebral cortex. Prog Brain Res 2004; 145: 67-78 [PMID: 14650690 DOI: 10.1016/s0079-6123(03)50004-8]

31 Zhang W, Yamada M, Gomeza J, Basile AS, Wess J. Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J Neurosci 2002; 22: 6347-6352 [PMID: 12151512]

32 Sur C, Mallorca PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn PJ. N-desmethyllanzopine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci USA 2003; 100: 13674-13679 [PMID: 14595031 DOI: 10.1073/pnas.1835612100]

33 Koyama Y, Koyama Y. Mutual interactions among cholinergic, noradrenergic and serotonergic neurons studied by ionophoresis of these transmitters in rat brainstem nuclei. Neuroscience 1993; 55: 1117-1126 [PMID: 8232901 DOI: 10.1016/0304-4522(93)90325-A]

34 Searr E, Gibbons AS, Neo J, Sudawal M, Dean B. Cholinergic connectivity: it’s implications for psychiatric disorders. Front Cell Neurosci 2013; 7: 55 [PMID: 23653591 DOI: 10.3389/fncel.2013.00055]

35 Sarter M, Lustig C, Taylor SF. Cholinergic contributions to the cognitive symptoms of schizophrenia and the viability of cholinergic treatments. Neuropsychopharmacology 2012; 62: 1544-1553 [PMID: 21156184 DOI: 10.1016/j.neuropharm.2010.12.001]

36 Sarter M, Nelson CL, Bruno JP. Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophr Bull 2005; 31: 117-138 [PMID: 15888431 DOI: 10.1093/schbul/sbi006]

37 Kuduk SD, Chang RK, Di Marco CN, Pitts DR, Greshock TJ, Watson J, Lund J, Davies CH, Peters G, Dodds CM, Swirski B, Lawrence P, Bentley GD, O’Neill BV, Robertson J, Watson S, Jones GA, Maruff P, Croft RJ, Laruelle M, Bullmore ET. The potent M1 receptor allosteric agonist GSK1034702 improves properties based on a quinolizidinone carboxylic acid scaffold. J Med Chem 2011; 54: 4773-4780 [PMID: 21682298 DOI: 10.1021/jm200400m]

38 Nathan PJ, Watson J, Lund J, Davies CH, Peters G, Dodds CM, Swirski B, Lawrence P, Bentley GD, O’Neill BV, Robertson J, Watson S, Jones GA, Maruff P, Croft RJ, Laruelle M, Bullmore ET. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int J Neuropsychopharmacol 2013; 16: 721-731 [PMID: 22992339 DOI: 10.1017/S1461744712000752]

39 Shekhar A, Potter WZ, Lightfoot J, Lienenman J, Dubé S, Malinckrodt C, Bymaster FP, McKinzie DL, Felder CC. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 2008; 165: 1033-1039 [PMID: 18593778 DOI: 10.1176/appi.ajp.2008.06091591]

40 Nielsen RE, Levander S, Kjaersdam Telléus G, Jensen SO, Østergaard Christensen T, Leucht S. Second-generation antipsychotic and cognitive symptoms of schizophrenia and the viability of cholinergic treatments. Eur Neuropsychopharmacol 2011; 215: 205-229 [PMID: 21291293 DOI: 10.1007/s00213-010-2153-8]

41 Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK. Identification of separable cognitive factors in schizophrenia. Schizophr Res 2004; 72: 29-39 [PMID: 15531405 DOI: 10.1016/j.schres.2004.09.007]

42 Dale H. Chemical transmission of the effects of nerve impulses. Br Med J 1934; 1: 835-841 [PMID: 20778253 DOI: 10.2307/25320967]

43 Rang HP, Dale MM, Ritter JM, Flower RJ. Rang and Dale's pharmacology. 6th ed. Philadelphia: Churchill Livingstone Elsevier, 2007: 397-399

44 Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 1999; 22: 273-280 [PMID: 10354606 DOI: 10.1016/s0166-2236(98)01361-7]

45 Mesulam MM, Mufson EJ, Levey AI, Wainer BH. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 1982; 214: 170-197 [PMID: 6841683 DOI: 10.1002/cne.902140206]

46 Zhang Y, Dyck RH, Hamilton SE, Nathanson NM, Yan J. Disrupted tonotopy of the auditory cortex in mice lacking M1 muscarinic acetylcholine receptor. J Neurosci 2005; 25: 10969-10978 [PMID: 16188266 DOI: 10.1523/jneurosci.3591-05.2005]

47 Hopper S et al. Cholinergic pharmacotherapy for schizophrenia cognitive deficits.
gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA 1997; 94: 13311-13316 [PMID: 9371842 DOI: 10.1073/pnas.94.26.13311]

Schoedel BC, Kubsch C, Stein V, Blesch T. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 1998; 396: 687-690 [PMID: 9872318 DOI: 10.1038/25367]

Gerber DJ, Soktikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S. Hyperexcitability, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci USA 2001; 98: 15312-15317 [PMID: 11752400]

Carrigan KA, Dykstra LA. Behavioral effects of morfine and cocaine in M1 muscarinic acetylcholine receptor-deficient mice. Psychopharmacology (Berlin) 2007; 191: 985-993 [PMID: 17211651 DOI: 10.1007/s00213-006-0671-1]

Raedler TJ, Knable MB, Jones DW, Urbina RA, Egan MF, Weinberger DR. Central muscarinic acetylcholine receptor availability in patients treated with clozapine. Neuropsychopharmacology 2003; 28: 1531-1537 [PMID: 12799613 DOI: 10.1038/jnp.2003.210]

Ellis JR, Ellis KA, Bartholomeusz CF, Harrison BJ, Wesnes KA, Erskine FF, Vitetta L, Nathan PJ. Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J Neuropsychopharmacol 2006; 9: 175-189 [PMID: 15877932 DOI: 10.1017/S1411145705005407]

Green A, Ellis KA, Ellis J, Bartholomeusz CF, Harrison BJ, Wines KA, Erskine FF, Vittela L, Nathan PJ. Muscarinic and nicotinic receptor modulation of object and spatial n-back working memory in humans. Pharmacol Biochem Behav 2005; 81: 575-584 [PMID: 15936663 DOI: 10.1016/j.pbb.2005.04.010]

Mintzer MZ, Griffiths RR. Lorazepam and scopolamine: A single-dose comparison of effects on human memory and attentional processes. Exp Clin Psychopharmacol 2003; 11: 56-72 [PMID: 12622344 DOI: 10.1037/1064-1297.11.1.56]

Ketchum JS, Sidell FR, Crowell EB, Aghajanian GK, Hayes AH. Atropine, scopolamine, and datura: comparative pharmacology and antagonists in man. Psychopharmacologia 1973; 28: 121-145 [PMID: 4694622 DOI: 10.1007/BF00421398]

Riemann D, Kammerer J, Löw H, Schmidt MH. Sleep in adolescents with primary adult depression and schizophrenia: a pilot study. J Child Psychol Psychiatry 1995; 36: 313-326 [PMID: 7759593 DOI: 10.1111/j.1469-7610.1995.tb01827.x]

Tandon R, DeQuardo JR, Godson J, Mann NA, Greten JD. Effect of anticholinergics on positive and negative symptoms in schizophrenia. Psychopharmacol Bull 1992; 28: 297-302 [PMID: 1480733]

Breblin G, Bressan RA, Amador X, Malaspina D, Gorman JM. Mediations and verbal memory impairment in schizophrenia: the role of anticholinergic drugs. Psychol Med 2004; 34: 369-374 [PMID: 14982143 DOI: 10.1017/S0033291703008900]

Bodick NC, Offen W, S-16-4 amine: The first study of the safety and efficacy of an m1 agonist in mild and moderate alzheimer’s disease. Exp Clin Psychopharmacol 1995; 3: 205 [DOI: 10.1016/1074-2489(95)90028-6]

Cutler NR, Sramek JI, Seifert RD, Conrad JI, Wardle TS, Hurley DJ, Thoren LM. A bridging study of xanomeline tartrate in alzheimer’s disease (AD). Biol Psychiatr 1994; 35: 628-628 [DOI: 10.1016/0006-3223(94)90706-4]

Christopoulos A, Changeux JP, Catterall WA, Fabbro F, Bussis DP, Cidlowski JA, Olsen WR, Peters JA, Neubig RR, Pin JP, Sexton PM, Kenakin TP, Ehrlot FJ, Spedding M, Langmead CJ. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharm Res 2014; 66: 918-947 [DOI: 10.1124/pr.114.008862]

Hulme EC, Lu ZL, Bee MS. Scanning mutagenesis studies of the M1 muscarinic acetylcholine receptor. Receptors Channels 2003; 9: 215-228 [PMID: 12893335 DOI: 10.1080/1066820392017050]

Matsui H, Lazzaro S, Birdall SJ. Probing of the location of the allosteric site on m1 muscarinic receptors by site-directed mutagenesis. Mol Pharmacol 1995; 47: 88-98 [PMID: 7693317]
Cholinergic pharmacotherapy for schizophrenia cognitive deficits

Scammell PS, Christopoulos A, Canals M. Mechanistic insights into allosteric structure-function relationships at the M1 muscarinic acetylcholine receptor. *J Biol Chem* 2014; 289: 33701-33711 [PMID: 25236833 DOI: 10.1074/jbc.M114.604967]

Abdul-Ridha A, López L, Kev P, Thø DM, Mistry SN, Sexton PM, Lane JR, Canals M, Christopoulos A. Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor. *J Biol Chem* 2014; 289: 6067-6079 [PMID: 24443568 DOI: 10.1074/jbc.M113.539080]

Conn PJ, Christopoulos A, Lindsay CW. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. *Nat Rev Drug Discov* 2009, 8: 41-54 [PMID: 19116626 DOI: 10.1038/nrd2769]

Dalet FG, Gaualaude TF, Maria Del Carmen CH, Humberto GA, Antonio SU. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes. *Neural Regen Res* 2013, 8: 2290-2302 [PMID: 25200639 DOI: 10.3969/j.issn.1673-5374.2013.24.009]

Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsal NJ. Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies. *Mol Pharmacol* 1998; 53: 573-589 [PMID: 9495826 DOI: 10.1124/mol.53.3.573]

Jakubik J, Bacáková L, Lisá V, el-Fakahany EE, Tucek S. Discovery of an ectopic activation site on the M(1) muscarinic receptor. *Mol Pharmacol* 2002; 61: 1297-1302 [PMID: 12021390 DOI: 10.1124/mol.61.6.1297]

Langmead CJ, Austin NE, Branch CL, Brown JT, Buchanan KA, Davies CH, Forbes IT, Fry VA, Hagan JJ, Herdon HJ, Jones G, Jakubík J. Binding sites. *J Neurosci* 2008; 28: 10422-10433 [PMID: 18842208 DOI: 10.1523/JNEUROSCI.3930-09.2009]

Sams AG, Hentzer M, Mikkelsen GK, Larsen K, Bundgaard C, Plath N, Christoffersen CT, Bang-Andersen B. Discovery of [1-3-[3-(3-oxo-2,3-dihydrobenzo[1,4]oxazin-4-y]propyl]tiranidin-4-yl]-2-phenylacetamide (Lu AE51090): an allosteric muscarinic M1 receptor agonist with unprecedented selectivity and procognitive potential. *J Med Chem* 2010; 53: 636-639 [PMID: 20684563 DOI: 10.1021/jm100697v]

Ridler K, Cunningham V, Huibin M, Martarell L, Pamplos-Maso S, Passchier J, Gunn RN, Searle G, Abi-Dargham A, Lisá V, Jakubík J. An evaluation of the brain distribution of [(11)C]GSK1034702, a muscarinic-1 (M 1) positive allosteric modulator in the living human brain using positron emission tomography. *EJNMMI Res* 2014; 4: 66 [PMID: 26116126 DOI: 10.1007/s13550-014-0066-y]

Marlo JE, Niswender CM, Days EL, Bridges TM, Xiang Y, Rodriguez AL, Shirey JK, Brady AE, Nalywajko T, Luo Q, Austin CA, Williams MB, Kim K, Williams R, Orton D, Brown HA, Lindsay CW, Weaver CD, Conn PJ. Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptor reveals multiple modes of activity. *Mol Pharmacol* 2009; 75: 577-588 [PMID: 19047481 DOI: 10.1124/mol.108.052866]

Ma L, Seager MA, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, Graufelds VK, Xu G, Pearson M, McCamphell A, Gaspar R, Shughrue P, Danziger A, Regan C, Flick R, Pancarella D, Gas and D, Burno M, Kev P, Thø DM, Mistry SN, Sexton PM, Lane JR, Canals M, Christopoulos A. Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor. *J Biol Chem* 2014; 289: 6067-6079 [PMID: 24443568 DOI: 10.1074/jbc.M113.539080]
muscarnic m4, but not m1, receptor expression from subjects with schizophrenia. *Biol Psychiat* 2007; 61: 1161-1170 [DOI: 10.1016/j.biopsych.2006.08.050]

123 **Dean B**, Soulby A, Evin GM, Scarr E. Levels of ([3]H)pirenzepine binding in Brodmann’s area 6 from subjects with schizophrenia is not associated with changes in the transcription factor SP1 or BACE1. *Schizophr Res* 2008; 106: 229-236 [PMID: 18790604 DOI: 10.1016/j.schres.2008.08.003]

P- Reviewer: Kravos M, Soriano-Ursua M, Yang JJ

S- Editor: Ji FF

L- Editor: A

E- Editor: Li D
