Réka Henyecz¹ and György Keglevich¹,*

¹Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary

Abstract: Background: The Hirao reaction discovered ca. 35 years ago is an important P–C coupling protocol between dialkyl phosphites and aryl halides in the presence of Pd(PPh₃)₄ as the catalyst and a base to provide aryl phosphonates. Then, the reaction was extended to other P-reagents, such as secondary phosphate oxides and H-phosphinates and to other aryl and hetero derivatives to afford also phosphinic esters and tertiary phosphate oxides. Instead of the Pd(PPh₃)₄ catalyst, Pd(OAc)₂ and Ni-salts were also applied as catalyst precursors together with a number of mono- and bidentate P-ligands.

Objective: In our review, we undertook to summarize the target reaction with a special stress on the developments attained in the last 6 years, hence this paper is an update of our earlier reviews in a similar topic.

Conclusions: “Greener” syntheses aimed at utilizing phase transfer catalytic and microwave-assisted approaches, even under “P-ligand-free” or even solvent-free conditions are the up-to-date versions of the classical Hirao reaction. The mechanism of the reaction is also in the focus these days.

Keywords: Hirao reaction, P-C coupling, Pd-catalyst, phosphonates, phosphinates, phosphine oxides, green synthesis.

1. THE TRADITIONAL HIRAO REACTION

The Hirao reaction that is, a P-C coupling reaction between vinyl- or aryl halides and dialkyl phosphites in the presence of tetrakis(triphenylphosphine)palladium as the catalyst, applying organic bases in toluene as the medium, or without the use of any solvent (Scheme 1) [3-5].

1.1. Palladium(0)-catalyzed Hirao Reactions

Hirao et al. described the first P-C coupling reaction between vinyl- or aryl halides and dialkyl phosphites in the presence of tetrakis(triphenylphosphine)palladium as the catalyst, applying organic bases in toluene as the medium, or without the use of any solvent (Scheme 1) [3-5].

The generally accepted catalytic cycle of the Hirao reaction [44] is similar to the mechanism of the well-known Pd-catalyzed C-C couplings [45], as it follows the classic three steps (Scheme 2): the oxidative addition of the aryl (or vinyl) halide to the Pd(II) to form an “Ar-PdⅡⅠX” complex (A). The next step is the ligand exchange, when the Y₂P(O)H reagent enters the catalytic cycle and replaces the X⁻ anion in the Pd(II) complex. Finally, the reductive elimination from species B leads to the desired product (2), while the active Pd(0) catalyst is regenerated.

Investigation of the reaction mechanism revealed that, the trivalent tautomeric form (Y₂POH) of the Y₂P(O)H reagent is involved in the change of ligands step [46, 47]. It should also be noted that the presence of PPh₃ and added anions may make the ligand substitution and the whole catalytic cycle more complex [48].

 Arylphosphonates (3), important building blocks of biologically active compounds [51, 55, 56], flame retardants [54] or catalyst ligands [66, 67] may be easily synthesized by the Hirao reaction of dialkyl phosphites with aryl halides or triflates (Scheme 3, Table 1).
Scheme 3.

Several arylphosphonates were prepared in the presence of Pd(OAc)$_2$ and the simplest P-ligand, PPh$_3$ [49-57]. The addition of tetra-n-butylammoniumchloride, -bromide or -acetate as anionic additives could enhance the coupling reactions, when Pd(OAc)$_2$ was used as the catalyst precursor and PPh$_3$ as the ligand [44]. KOAc and NaOAc were also applied as ionic additives in the Hirao reaction [58-62]. In the presence of Pd(OAc)$_2$ or Pd(dba)$_2$ as the Pd precursor, dppf [58-65], dppb [58, 66-70], dppp [58] and BINAP [58] could also be used as ligands. Pd(dppf)$_2$Cl$_2$ was also a suitable catalyst to promote the coupling reaction of dialkyl phosphites [71, 72].

Using H-phosphinates as the reactant, both bromoarenes and less reactive chloroarenes were suitable substrates in the cross-coupling (Scheme 4) [47, 48, 73-75]. The reactions were performed using Pd(OAc)$_2$ as the catalyst precursor and different ligands (PPh$_3$, Xantphos, dppb, dppf, dppe, dppp, BINAP, DBFphos, PS-nixanthops), along with bases (Pr$_3$NEt, pyridine, propylene oxide). The best results were obtained applying Xantphos [47, 48, 73], dppb [74] or dppf [75] as the P-ligand, and N,N-disopropyl-ethylamine as the base. Employing a solvent/co-solvent system was beneficial, as it may support the tautomerization of the P-reagent, and thus the ligand-exchange step of the catalytic cycle. The Hirao reaction of (R)-menthyl(hydroxymethyl)-H-phosphinate (R^1 = menthyl, R^2 = CH$_2$OH) took place with the retention of the configuration at P [73].

Scheme 4.

| Table 1. The synthesis of arylphosphonates using Pd(II) precursors and P-ligands. |
|---|---|---|---|---|---|
| **Pd-precursor** | **P-Ligand** | **Base** | **Solvent** | **Reaction Conditions** | **Ref.** |
| Pd(OAc)$_2$ | PPh$_3$ | Et$_3$N, Cy$_2$MeN, Pr$_2$EtN | EtOH | reflux, 16-68 h | [49-56] |
| | | Cs$_2$CO$_3$ | toluene | 110 °C, 18 h | [57] |
| Pd(OAc)$_2$ | PPh$_3$, dppf, dppe, dppp, BINAP | Et$_3$N, Pr$_2$NEt | THF, MeCN, DMP, DMSO, 1,4-dioxane | 60-110 °C, 1.5-72 h | [44, 58-66] |
| Pd(OAc)$_2$, Pd(dba)$_2$ | dppe | Pr$_2$NEt, Et$_3$N | DMSO, toluene | 25-100 °C, 12-72 h | [66-70] |
| Pd(dppf)Cl$_2$ | Pr$_2$NEt, Et$_3$N | MeCN, toluene | 82-90 °C, 15-24 h | [71,72] |
An important and widely investigated Pd-catalyzed Hirao reaction is the coupling of aromatic species and secondary phosphine oxides, as valuable tertiary phosphines that can be applied as ligands in transition metal complexes can be formed by the reduction of the resulting phosphine oxides. It became clear that the Pd(OAc)2 - bidendate ligand (dppp or dppb) system has a high tolerance for functional groups (Scheme 5) [76-81]. During the preparation of various P-containing ligands, the phosphorylation of 2-bromobenzaldehyde [76], 2-(2-bromophenoxy)tetrahydro-2H-pyran [77] and 2'-iodo-6,6'-dimethoxy-N,N-dimethyl-[1,1'-biphenyl]-2-amine [78] with diarylphosphine oxides took place in moderate to good yields (37-92%). The selective substitution of the iodide group of 3-bromoiodobenzene could be achieved in rather a good yield (65%) [79]. The cross-coupling of sterically hindered dibromo-3-spirobis(indene) [80] and a dinoflate bis carbazole derivative [81] with diphenylphosphine oxide took also place with high selectivity.

BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl) can be considered as the most powerful, and one of the most commonly used bidentate chiral ligands in asymmetric catalysis [82]. In the synthesis of BINAP derivatives (6), the reaction of axial chiral triflates and diaryl or dialkyl phosphine oxides is most often carried out applying Pd(OAc)2 as the Pd precursor and iPr2NEt [83-102, 104-107] or Na2CO3 [103] as the base in DMSO (Scheme 6). Both the (R) and (S) binaphyl structures could be functionalized in different ways. In the case of binaphthyl bistriflates, the selective phosphorylation of only one triflate unit was possible [83-93]. Hence, the bis-phosphonylation could not be realized, and a “bypass” procedure had to be developed for the preparation of

$$\begin{align*}
R = \text{Ph, 3,5-di[iBu]$_3$-4-MeOC$_6$H$_4$, 3,5-di[iBu]$_3$C$_6$H$_3$, 3,5-diMeC$_6$H$_3$, 4-MeC$_6$H$_4$, 3-MeC$_6$H$_4$, 1-C$_{10}$H$_7$, Cy} \\
\text{CHO} \quad \text{Br} \quad \text{MeO} \quad \text{MeO} \quad \text{I} \quad \text{I} \quad \text{Br} \quad \text{NMe$_2$} \quad \text{Ar} \\
[76] \quad [77] \quad [78] \quad [79] \quad [80] \quad [81]
\end{align*}$$

Scheme 5.

$$\begin{align*}
R = \text{Ph, 4-MeOC$_6$H$_4$, 3,5-diFC$_6$H$_4$, 4-FC$_6$H$_4$, Xyl, Me, iPr, Cy} \\
Z : \quad Y^1 = \text{OTf} [83-93, 97-103], \text{COOME} [84], \text{NMe$_2$} [94, 95], \text{NHAc} [96], \text{PPh$_2$} [100-101, 103], \text{P(4-MeOC$_6$H$_3$)$_2$} [102] \\
Y^2 = \text{H} [83-96, 100-102], 4,4'$\text{-di(SiMe$_3$)} [97], 6,6'$\text{-di(C$_6$H$_5$)} [98], 6,6'$\text{-di(C$_6F_3$)} [99], 7,7'$\text{-di(OCH$_2$CH=CH$_2$)} [103] \\
[104] \quad [105] \quad [106] \quad [107]
\end{align*}$$

Scheme 6.
bisphosphines: after the mono-phosphonylation, the resulting phosphine oxide was reduced with a silane and then the second cross-coupling took place [100-103]. Heterocyclic analogs of BINAP as potential catalysts of new enantioselective approaches, such as biaryl isoquinolines (called Quinazolinaps) [104, 105], 1-aryl-3,4-dihydroisoquinolines (DHIQs) [106] and a new class of naphthyl-indole heterobiaryl skeletons [107] were also developed.

Synthesis of the representatives of other, even more complex aromatic tertiary phosphine oxides (7) is shown in Scheme 7 [108-127]. The coupling reaction of sterically hindered substrates means a real challenge and usually requires long reaction times. Despite the difficulties, selective mono- [108, 120-122], double [108, 111, 113, 125-127] and quadruple [125-127] phosphorylations could be achieved.

Beside Pd(OAc)₂, tris(dibenzylideneacetone)dipalladium(0) is also a suitable catalyst for P-C coupling reactions to afford tertiary phosphine oxides. A general method was developed for the reaction of aryl iodides and dialkyl-, alkyaryl- or diarylphosphine oxides in the presence of Pd₂(dba)₃ and Xantphos using triethylamine as the base (Scheme 8) [128].
(2-Bromophenyl)diphenylphosphine oxide (9) could be synthesized in a yield of 65% from 2-bromodiobenzene by applying Pd$_2$(dba)$_3$ as the catalyst, and dppp as the P-ligand in toluene (Scheme 9) [129].

A series of intermediates for P-ligands were synthesized by the reaction of aryl triflates and diaryl phosphine oxides using Pd$_2$(dba)$_3$ (Scheme 10) [130-136]. The selective transformation of the triflate group of 2-bromophenyl trifluoromethanesulfonate [130], 2-bromo-4-methoxyphenyl trifluoromethanesulphonate [131] and 1-bromonaphthalen-2-yl trifluoromethanesulfonates [132-134] could be achieved in the presence of a dppp ligand and Hünig-base in toluene, DMSO.

in toluene. (1-(Naphtho[2,3-b]furan-9-yl)naphthalen-2-yl)dialkylphosphine oxides were obtained by similar cross-coupling reactions employing dppb as the ligand and DMSO as the solvent [135]. A double P-C coupling of 5,5'-diamino-(1,1'-biphenyl)-2,2'-diyl bis(trifluoromethanesulfonate) with diphenylphosphine oxide via N-Boc-protection and acidic cleavage resulted in the corresponding product in a 20% overall yield [136].

Finally, methods are summarized that apply other substrates other than aryl halides or triflates. Fu et al. reported a convenient method for the coupling reaction of aryl tosylates or mesylates and dialkyl phosphites or ethyl phenyl-phenylphosphinate. The best results were obtained using Pd(OAc)$_2$ as the catalyst with CM-Phos as the ligand and DIPEA as the base (Scheme 11) [137].

Chinese researchers described the Pd-catalyzed reactions of dialkyl phosphites and aryl imidazolyl sulfonates (Scheme 12) [138]. The reaction has a high tolerance of functional groups, although it cannot be regarded as an atom-efficient approach.
Arylborationic acids were reacted with diphenylphosphine oxide, ethyl phenyl-\(\text{H}\) phosphinate or diethyl phosphite. The best results were obtained applying the Pd(OAc)\(_2\)-dppb system as the catalyst in combination with ammonium chloride (TBAC) as an additive (Scheme 13) [139]. The role of Ag\(_2\)CO\(_3\) has not been clarified.

Scheme 13.

The desulfitative cross-coupling reaction of sodium benzenesulfinate and dialkyl phosphites was performed in the presence of silver carbonate as the oxidant, and tetrabutyl-phosphinate or diethyl phosphite. The best results were obtained applying the Pd(OAc)\(_2\)-dppb system as the catalyst in combination with ammonium chloride (TBAC) as an additive (Scheme 14) [140].

Scheme 14.

Arylboronic acids were reacted with diphenylphosphine oxide, ethyl phenyl-\(\text{H}\) phosphinate or diethyl phosphite. The best results were obtained applying the Pd(OAc)\(_2\)-dppb system as the catalyst in combination with ammonium chloride (TBAC) as an additive (Scheme 14) [140].

Scheme 14.

The PTC-promoted Hirao reaction employing triethylbenzyl-phosphonium chloride (TEBAC) was developed by Beletskaya et al. (Scheme 17) [146-149]. The reaction of aryl halides, mesylates and tosylates with \(\text{P(O)H}\) reagents was employed (Scheme 17) [146-149]. The reaction of aryl halides, mesylates and tosylates with \(\text{P(O)H}\) reagents was performed in the presence of Ni(II) salts and N-ligands (Scheme 16) [148]. According to the authors, the zinc powder was required for the reduction of Ni(II) to Ni(0).

Scheme 16.

Arylboronic acids were reacted with diphenylphosphine oxide, ethyl phenyl-\(\text{H}\) phosphinate or diethyl phosphite. The best results were obtained applying the Pd(OAc)\(_2\)-dppb system as the catalyst in combination with ammonium chloride (TBAC) as an additive (Scheme 14) [140].

Scheme 14.

The PTC-promoted Hirao reaction employing triethylbenzyl-phosphonium chloride (TEBAC) was developed by Beletskaya et al. (Scheme 17) [146-149]. The reaction of aryl halides, mesylates and tosylates with \(\text{P(O)H}\) reagents was employed (Scheme 17) [146-149]. The reaction of aryl halides, mesylates and tosylates with \(\text{P(O)H}\) reagents was performed in the presence of Ni(II) salts and N-ligands (Scheme 16) [148]. According to the authors, the zinc powder was required for the reduction of Ni(II) to Ni(0).

Scheme 16.
monosaccharides could also be performed under PTC conditions [149].

\[
\begin{align*}
Y^1 \overset{O}{\underset{H}{\rightarrow}} Y^2 \quad + \quad A r - X
\end{align*}
\]

Scheme 18.

The use of the MW technique in organic chemistry has spread. In this way, the yields and selectivity could be improved, the needless excess of reagents could be eliminated, and the catalytic-systems could be simplified [150]. In 1997, a Pd(PPh3)2Cl2-catalyzed P-C coupling reaction performed in a Teflon autoclave placed in a kitchen MW oven was reported [151]. Ten years later, Stawinski et al. developed a general MW-assisted method for the P-C coupling of dialkyl phosphites and substituted aryl, hetaryl and vinyl reagents in the presence of Pd(PPh3)4 as the catalyst, Cs2CO3 as the base, and THF as the solvent using a dedicated MW oven (Scheme 19) [152].

\[
\begin{align*}
&\text{MW} \\
&100-120 \, ^{\circ}C, 20-30 \, \text{min} \\
&Pd \text{ salt} \\
&dmphen \\
&K_2CO_3 \\
&\text{solvent: DMF} \\
&\text{Y} = 1, \text{Br} \quad \text{or} \quad \text{Cl} \\
&R = \text{Me, Et, iPr, Bn} \\
&X = \text{I, Br, Cl} \\
&Y = \text{H, 4-Me, 4-MeO, 3-H2N} \\
\end{align*}
\]

Scheme 20.

Later on, the reaction of a wide range of substrates was carried out under MW irradiation. For example, the coupling of aryl boronic acids or aryltrifluoroborates and dialkyl phosphites was performed employing Pd salts as the catalyst precursor and dmphen as the ligand (Scheme 20) [153].

Water-soluble tertiary phosphine oxides were prepared by the Pd/C catalyzed coupling reaction of halobenzoic acids and diphenyolphosphine oxide in water (Scheme 21) [154].

\[
\begin{align*}
&\text{MW} \\
&180 \, ^{\circ}C, 1h \\
&Pd/C \\
&K_2CO_3 \\
&\text{H2O} \\
&\text{Y} = \text{H, 4-Me, 4-MeO, 3-H2N} \\
&X = 1, \text{Br, Cl} \\
&Y = \text{H, 4-Me, 4-MeO, 3-H2N} \\
&18-87% \\
&r > 78% \\
\end{align*}
\]

Scheme 21.

2. NOVEL DEVELOPMENTS ON THE HIRAO REACTION

Extensions and novel advances on the Hirao reaction attained in the last four years are presented in this chapter.
The retention of the P-atom was proved by single-crystal X-ray analysis.

$Stankević$ et al. prepared the m-anisyl-t-butyl-p-tolylphosphine oxide (14) by the Pd(PPh$_3$)$_2$Cl$_2$-catalyzed reaction of t-butyl-p-tolylphosphine oxide and 3-bromoanisole (Scheme 24) [160].

The palladium-catalyzed Hirao reaction was extended to the phosphorylation of aryl amides (Scheme 25) [162]. Substrates containing acyclic and cyclic N-activating groups were reacted with dialkyl phosphites. Mechanistic studies suggested that the course of the reaction is similar to that of the original Hirao reaction of aryl halides, and the key step of the catalytic cycle is the insertion of the metal into the C-N bond.

A method for the arylation of P-stereogenic secondary phosphine oxides was developed to provide optically active tertiary phosphine oxides (15) (Scheme 26) [163]. The P-C coupling of $ortho$-substituted aryl iodides carried out applying Pd(CF$_3$CO$_2$)$_2$ as the precursor for Pd(0) and a chiral ligand (L^*) furnished the target tertiary phosphine oxides (15) in moderate to good enantioselectivities (ee: 19-83%).
New Developments on the Hirao Reactions

Current Organic Synthesis, 2019, Vol. 16, No. 4

Scheme 27.

Chinese researchers reported a protocol for the P-C coupling of heteroaryl boronic acids and dialkyl phosphites in the presence of PdCl₂ and PPh₃, and in the absence of any base (Scheme 27) [164]. At the same time, Ag₂O was needed as an additive, whose role has not been clarified.

Arylphosphonates (3) were prepared via C-Si bond cleavage by the reaction of arylsilanes and dialkyl phosphites performed in the presence of Pd(PPh₃)Cl₂ as the catalyst (Scheme 28) [165]. Potassium fluoride is necessary to activate the arylsilane before its entering the catalytic cycle. Ag₂CO₃ was assumed as a reoxidant at the end of the catalytic cycle, however, this has not been proved.

Scheme 28.

New magnetically recoverable heterogeneous palladium catalysts were developed to make the Hirao reaction environmentally more capable (Scheme 29) [166-168]. At first, the Pd complex of an "NNN" princer ligand (BIP) supported on nanomagnetic γ-Fe₂O₃@SiO₂ was prepared, which proved to be a good catalyst in the cross-coupling reaction of diethyl phosphite and iodobenzene under solvent-free conditions [166]. The Pd complex of 2-aminotriophenol (Pd-2-ATP-γ-Fe₂O₃) [167] and DABCO (Pd-DABCO-γ-Fe₂O₃) [168] could be used as a catalyst in pure water, or in sodium dodecyl sulfate (SDS) aqueous micellar solution. The heterogeneous catalysts could be reused in five or six consecutive cycles, without any significant loss in their catalytic activity.

Scheme 29.

2.2. Nickel-catalyzed P-C Coupling Reactions

In the last years, the Ni-catalyzed P-C bond formation was also developed. Han and his co-workers elaborated the P-arylation of different >P(O)H compounds with aryl triflates in the presence of Ni(cod), as the Ni(0) precursor and dppf as the P-ligand (Scheme 30) [169].

Scheme 30.

The same research group also used aryl pivalates as C-O bond activated substrates for coupling reactions with >P(O)H reagents (Scheme 31) [170, 171]. Application of the Ni(cod)/dcype catalyst system led to the corresponding P=O derivatives (10) in good yields (50-98%). Beside phenol esters, benzyl and allylic esters could also be phosphorylated.

The combination of Ni- and photoredox catalysis allowed the cross-coupling of “C-O-S” containing aryl- and vinyl compounds (tosylates, sulfonates and sulfamates) with >P(O)H reagents under mild conditions (Scheme 32) [172]. In this case, Ni(cod)₂ applied together with N-ligands, eg. 1,10-phenanthroline or dtbbpy, served as the catalyst.

The use of Ni(cod)₂ as the Ni-source, and 8-hydroxyquinoline as the N-ligand allowed the synthesis of tertiary phosphine oxides...
Scheme 31.

Scheme 32.
New Developments on the Hirao Reactions

Organic Synthesis, 2019, Vol. 16, No. 4 533

Scheme 33.

Scheme 34.

According to a recent study, the Ni-catalyzed P-C coupling reaction of aryl bromides and dialkyl phosphites was performed under electrochemical conditions to provide the corresponding aryl phosphonates (3) in moderate to good yields (15-91%) (Scheme 36) [175].

Scheme 35.

2.3. Copper-catalyzed P-C Couplings

The application of Cu as the catalyst is by far less investigated, thus it is a more challenging field. Cu-catalyzed methods for C-P bond formation were summarized in a recent review [176]. Since then, just a few methods have been described for the coupling of >P(O)H reagents and aryl halides using Cu(I) or Cu(II) precursors and N-ligands [177-182]. A novel method involves the reaction of...
aryl boronic acids and dialkyl phosphites performed in the presence of a Cu(II) complex, (Benz-bpa)Cu(CF₃SO₃)₂ as the catalyst, and KOAc as an additive (Scheme 37) [183].

\[
\begin{align*}
\text{RO}_2 \text{P} \text{O} & \quad \text{RO}_2 \text{P} \text{O} \\
\text{R} = \text{Pr, Me, Et} \\
\text{Ar & B(OH)}_2 & \quad 25 ^\circ \text{C}, 72 \text{ h} \\
\text{Cu cat.} & \quad \text{KOAc} \\
\text{THF} & \quad 3 \\
62-83\% \quad \text{R = iPr, Me, Et} \\
\end{align*}
\]

The enantioselective Cu-catalyzed P-C coupling reactions represent a new trend (Scheme 38) [184]. Optically active tertiary phosphine oxides (20) could be prepared from racemic secondary phospine oxides and diaryldiadonium tetrafluoroborate salts in the presence of Cu(II) triflate as the metal source, (S,S)-PhPyBox as the chiral N-ligand, and K₂HPO₄ as the base in acetonitrile-water mixture, in mostly high enantioselectivities (ee: 50-98%). The role of water has not been mentioned.

2.4. Other Methods

Special catalytic systems have also been developed. Visible light photoredox catalysis was combined with an Au catalyst to promote the reaction of aryldiazonium salts with H-phosphinates and H-phosphonates (Scheme 39) [185]. In this way, the reactions could be carried out at room temperature, without the addition of any base. However, the synthesis of the starting diazonium salts from commercially available anilines means an extra step.

A similar Au(I)-assisted redox catalytic coupling using diethyl phosphite and aryldiazonium salts was also developed (Scheme 40) [186]. In this case, 3-chloropyridine served as the base.

3. HIRAO REACTIONS WITHOUT THE ADDITION OF USUAL P-LIGANDS

Keglevich and his co-workers found that the Hirao reaction of bromoarenes with dialkyl phosphites, H-phosphinates or secondary phosphine oxides may take place without the addition of usual P-ligands, but using the >P(O)H reactant in excess under MW conditions (Scheme 41) [187, 188]. It was found that both electron-donating and electron-withdrawing substituents of the aromatic ring
decrease the reactivity dictating harsher reaction conditions (175-200°C).

Our assumption was that in the Pd(OAc)₂-catalyzed “P-ligand-free” Hirao reactions the trivalent tautomeric form of the excess of the >P(O)H reactant may serve as the P-ligand. To justify this, the reaction of bromobenzene with diethyl phosphite and diphenylphosphine oxide was investigated in detail (Scheme 42) [189]. Experiments showed that the use of only 1 equivalent of diethyl phosphite or diphenylphosphine oxide was not enough, as the yields were only 54% (24a) and 54% (24b), respectively. In the presence of 10% of Pd(OAc)₂, the optimal amount of the >P(O)H reagent was 1.3 equivalents, leading to yields of 74% (24a) and 84% (24b), respectively. Theoretical calculations were in accord with the preparative results, and suggested that the >P(O)H reagents have a triple role in the cross-coupling process: 1 equivalent of it serves as the reactant, 10% of the >P(O)H species ensures the reduction of Pd(II) to Pd(0), while 20% of the reagent provides the P-ligand of the Pd-complexes of type (HO)₃-P-Pd-PY₂(OH).

Later on, Hirao et al. have also studied a “P-ligand-free” P-C coupling reaction. Diethyl (4-methoxy-3-nitrophenyl)phosphonate (26) was synthetized from 4-bromo-1-methoxy-2-nitrobenzene applying only Pd(OAc)₂ as the catalyst, and Na₂CO₃ as the base in xylene as the medium (Scheme 44) [191]. Recently, 2- and 4-phosphonated 13α-estrones (27 and 28) have been prepared by MW-assisted P-C coupling reactions [192]. Although the best results (yields of 66-93%) were obtained in the presence of Pd(PPh₃)₄, Pd(OAc)₂ together with the excess of the >P(O)H reagent could also be used as the catalyst (to afford yields of 58-77%) (Scheme 45). The products proved to be potent estrone-based OATP2B1 inhibitors.

A “ligand-free” MW-promoted desulfitative coupling of arylsulfinate salts with dialkyl phosphites was performed using PdCl₂ as the catalyst under MW irradiation (Scheme 46) [193]. Ag₂CO₃ was assumed to be involved in the oxidation of the arylsulfinate substrate, but this has not been proved.

The Keglevich group also developed a Ni-catalyzed “P-ligand-free” P-C coupling process (Scheme 47) [194]. During the arylation of the >P(O)H compounds, NiCl₂ was applied as the catalyst and triethylamine or potassium carbonate as the base under MW irradiation. The coupling of aryl sulfides, sulfoxides or sulfones with >P(O)H reagents was carried out in the presence of Ni(cod)₂ without the use of conventional ligands (Scheme 48) [195].

Later on, Hirao et al. have also studied a “P-ligand-free” P-C coupling reaction. Diethyl (4-methoxy-3-nitrophenyl)phosphonate (26) was synthetized from 4-bromo-1-methoxy-2-nitrobenzene applying only Pd(OAc)₂ as the catalyst, and Na₂CO₃ as the base in xylene as the medium (Scheme 44) [191].

Recently, 2- and 4-phosphonated 13α-estrones (27 and 28) have been prepared by MW-assisted P-C coupling reactions [192]. Although the best results (yields of 66-93%) were obtained in the presence of Pd(PPh₃)₄, Pd(OAc)₂ together with the excess of the >P(O)H reagent could also be used as the catalyst (to afford yields of 58-77%) (Scheme 45). The products proved to be potent estrone-based OATP2B1 inhibitors.

A “ligand-free” MW-promoted desulfitative coupling of arylsulfinate salts with dialkyl phosphites was performed using PdCl₂ as the catalyst under MW irradiation (Scheme 46) [193]. Ag₂CO₃ was assumed to be involved in the oxidation of the arylsulfinate substrate, but this has not been proved.

The Keglevich group also developed a Ni-catalyzed “P-ligand-free” P-C coupling process (Scheme 47) [194]. During the arylation of the >P(O)H compounds, NiCl₂ was applied as the catalyst and triethylamine or potassium carbonate as the base under MW irradiation.

The coupling of aryl sulfides, sulfoxides or sulfones with >P(O)H reagents was carried out in the presence of Ni(cod)₂ without the use of conventional ligands (Scheme 48) [195].

Later on, Hirao et al. have also studied a “P-ligand-free” P-C coupling reaction. Diethyl (4-methoxy-3-nitrophenyl)phosphonate (26) was synthetized from 4-bromo-1-methoxy-2-nitrobenzene applying only Pd(OAc)₂ as the catalyst, and Na₂CO₃ as the base in xylene as the medium (Scheme 44) [191].

Recently, 2- and 4-phosphonated 13α-estrones (27 and 28) have been prepared by MW-assisted P-C coupling reactions [192]. Although the best results (yields of 66-93%) were obtained in the presence of Pd(PPh₃)₄, Pd(OAc)₂ together with the excess of the >P(O)H reagent could also be used as the catalyst (to afford yields of 58-77%) (Scheme 45). The products proved to be potent estrone-based OATP2B1 inhibitors.

A “ligand-free” MW-promoted desulfitative coupling of arylsulfinate salts with dialkyl phosphites was performed using PdCl₂ as the catalyst under MW irradiation (Scheme 46) [193]. Ag₂CO₃ was assumed to be involved in the oxidation of the arylsulfinate substrate, but this has not been proved.

The Keglevich group also developed a Ni-catalyzed “P-ligand-free” P-C coupling process (Scheme 47) [194]. During the arylation of the >P(O)H compounds, NiCl₂ was applied as the catalyst and triethylamine or potassium carbonate as the base under MW irradiation.

The coupling of aryl sulfides, sulfoxides or sulfones with >P(O)H reagents was carried out in the presence of Ni(cod)₂ without the use of conventional ligands (Scheme 48) [195].

Later on, Hirao et al. have also studied a “P-ligand-free” P-C coupling reaction. Diethyl (4-methoxy-3-nitrophenyl)phosphonate (26) was synthetized from 4-bromo-1-methoxy-2-nitrobenzene applying only Pd(OAc)₂ as the catalyst, and Na₂CO₃ as the base in xylene as the medium (Scheme 44) [191].

Recently, 2- and 4-phosphonated 13α-estrones (27 and 28) have been prepared by MW-assisted P-C coupling reactions [192]. Although the best results (yields of 66-93%) were obtained in the presence of Pd(PPh₃)₄, Pd(OAc)₂ together with the excess of the >P(O)H reagent could also be used as the catalyst (to afford yields of 58-77%) (Scheme 45). The products proved to be potent estrone-based OATP2B1 inhibitors.

A “ligand-free” MW-promoted desulfitative coupling of arylsulfinate salts with dialkyl phosphites was performed using PdCl₂ as the catalyst under MW irradiation (Scheme 46) [193]. Ag₂CO₃ was assumed to be involved in the oxidation of the arylsulfinate substrate, but this has not been proved.

The Keglevich group also developed a Ni-catalyzed “P-ligand-free” P-C coupling process (Scheme 47) [194]. During the arylation of the >P(O)H compounds, NiCl₂ was applied as the catalyst and triethylamine or potassium carbonate as the base under MW irradiation.
Scheme 43.

Scheme 44.

Scheme 45.

Y = EtO, Ph
R = H, Me, Bn
X = I, Br
Pd catalyst: Pd(OAc)$_2$, Pd(PPh$_3$)$_4$
base: Et$_3$N, K$_2$CO$_3$
solvent: MeCN, toluene
reaction of diphenylphosphine oxide and thioanisol could be catalyzed by NiCl₂.

A heterogeneous Ni-catalyst supported by CeO₂ or Al₂O₃ was utilized in the P-C coupling of aryl halides and secondary phosphine oxides without any added ligand (Scheme 49) [196]. However, the catalyst used in the reaction of 1-bromonaphthalene and diphenylphosphine oxide, and separated from the mixture by filtration practically lost its activity in the second load.

Chinese researchers published the Cu-catalyzed “ligand-free” coupling reaction of >P(O)H compounds and aryl bromides or iodides to give the 2-phosphorylated phenolic derivatives (Scheme 50) [197]. The reaction of (-)-menthyl phenylphosphinate and (-)-menthyl benzylphosphinate occurred with the retention of configuration at the P-atom. According to the plausible mechanism, the oxidative addition may take place via a “Cu-phenolate” intermediate, although the mechanism was not proved.

The reaction of vinyl or aryl halides with dialkyl phosphites was studied by applying excess of Cu(I)-iodide and the base (Scheme 51) [198]. The best results (yields of 78-99%) could be obtained in the presence of KH/HMPA system, but the results with triethylamine as the base and THF as the solvent also deserve attention providing product 1 in yields of 24-76%.

A Co-catalyzed and Cu-assisted P-C coupling of aryl/vinyl bromides and dialkyl phosphites or diphenylphosphine oxide was also described in the absence of any added ligand (Scheme 52) [199]. The corresponding products (2 and 3) were obtained in good yields (60-91%). The authors suggested that Co(I) formed from Co(II) by reduction with acac in the first step of the catalytic cycle may be the active form. At the same time, the transmetallation step is supported by Cu(I). It is noteworthy that the >P(O)H reactant was used in excess, so the participation of the >POH form cannot be excluded in the process.

Regarding the Ni-, Cu- or even the co-catalyzed “ligand-free” coupling protocols, it should be emphasized that these reactions may be of a complex nature, therefore further investigations are necessary to understand the mechanism of each system.

Nowadays, metal-free catalysis is of great importance. For this purpose, the P-C coupling of diaryl phosphine oxides with iodo-, or bromobenzoic acids was performed in the absence of any catalyst in water as the solvent under MW conditions (Scheme 53) [200]. Unfortunately, this method is limited only to the reaction of halobenzoic acids, but may be regarded as the “greenest” accomplishment that has been so far elaborated.
Scheme 49.

Scheme 50.

Scheme 51.
New Developments on the Hirao Reactions

Current Organic Synthesis, 2019, Vol. 16, No 4 539

110 °C, 10 h
Co(acac)₂, CuI
Cs₂CO₃

Co(acac)₂, CuI
Cs₂CO₃

Y = OEt, OPri, Ph
Ar = 2,6-di(MeO)C₆H₃, 4-MeOC₆H₄, 4-IC₆H₄, 4-EtO(O)CC₆H₄,
4-Me(O)CC₆H₄, 4-F₃CC₆H₄, 4-NCC₆H₄, 4-O₂NC₆H₄,
2-(CH=CHCH₂)C₆H₄, 2-naptyl, 2-pyridyl, 3-pyridyl

R = 2,5-di(MeO)C₆H₃, 3-MeO-4-BnOC₆H₃, 4-F₃COC₆H₄,
4-²BuC₆H₄, 3,4-diClC₆H₃, 4-FC₆H₄, 4-BrC₆H₄, 2-BtC₆H₄,
2-BrC₆H₄, 4-CIC₆H₄, 4-MeO(O)CC₆H₄, 2-naphthy1,
3-thiophenyl, 2-furyl, heptyl, 1,2-diphenylvinyl

X = I, Br

Scheme 52.

31, 60-91%

Ar = Ph, 4-MeC₆H₄
X = I, Br

Scheme 53.

MW

59-82%

CONCLUSION

These days, the Hirao reaction is an important synthetic tool to provide phosphonates, phosphinates and tertiary phosphate oxides as useful intermediates. Toluene, DMSO, acetonitrile, 1,4-dioxane, THF, DMF, EtOH (or other alcohols) are the typical solvents used in the Hirao reaction. The selection of the solvent should also depend on the catalyst/catalyst precursor. Pd(PPh₃)₄ is, in most cases, applied together with toluene, while with Pd(OAc)₂ as the catalyst precursor, DMSO is the most often used solvent. The best medium for the Ni-catalyzed P-C couplings is 1,4-dioxane, and sometimes acetonitrile. One can see that mainly aprotic solvents are applied, but protic solvents may also emerge. Both organic and ionic bases may be used in the Hirao reaction. Regarding the Pd-catalysts, triethylamine and diisopropylethylamine are the most often used tertiary amines, but the use of pyridine, DBU and N-methylmorpholine was also described. In certain cases, K₂CO₃, Cs₂CO₃ and Na₂CO₃ played the role of the deprotonating agent. In the Ni-catalyzed cases, all bases mentioned were used. The originally applied Pd(PPh₃)₄ catalyst may be replaced by Pd(OAc)₂ used together with monobidentate P-ligands. The best protocol is when the >P(O)H reagent serves not only as the reactant, but, via its tautomeric form (>P-OH), also as the P-ligand. In this “green” approach, the >P(O)H species have to be measured in a suitable excess (in three equivalents to the catalyst precursor), and MW-assistance is needed. The optimum temperature may be in the range of 120-150 °C. Ethanol and acetonitrile may be the best solvents, but in special cases, there is no need for any solvent. Triethylamine seems to be the best base. Other metals, such as Ni and Cu may also be used as catalysts. The environmentally-friendly variations of the P-C coupling reactions offer newer possibilities. Evaluation of the mechanism of the Hirao reaction has had a positive impact on finding the optimum conditions. The reactivity of the Hirao reaction is, of course, influenced by the substituent in the aromatic ring. Both the electron-donating and the electron-withdrawing groups decrease the reactivity. On the other hand, the P-C coupling reactions remained chemoselective also in the presence of different substituents, like halogeno-, ethoxycarbonyl- and acetyl groups.

LIST OF ABBREVIATIONS

acac acetylacetone

BINAP 2,2’-bis(diphenylophosphino)-1,1’-binaphthyl

acac acetylacetone

BINAP 2,2’-bis(diphenylophosphino)-1,1’-binaphthyl
byp 2,2'-bipyridine

cod 1,5-cyclooctadiene

CM-Phos 2-(2-(dicyclohexylphosphino)phenyl)-1-methyl-1H-indole

dba dibenzylideneacetone

DBFphos 4,6-bis(diphenylphosphino) dibenzofuran

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

dcype 1,2-bis(dicyclohexylphosphino)ethane

dcypt 3,4-bis(dicyclohexylphosphino)thiophene

dppb 1,4-bis(diphenylphosphino)butane

dppe 1,2-bis(diphenylphosphino)ethane

dppf 1,1'-bis(diphenylphosphino)ferrocene

dppp 1,3-bis(diphenylphosphino)propane
dbbyp 4,4'-di-tert-butyl-2,2'-dipyridyl

PS-nixantphos polystyrene-supported 4,6-bis(diphenylphosphino)-10H-phenoxazine

(SS)-PhPyBox (SS)-2,6-Bis(4,5-dihydro-4-phenyl-2-oxazolyl)pyridine

Xantphos 4,5-bis(diphenylphosphino)-9,9-dimethylanthene

CONSENT FOR PUBLICATION
Not applicable.

FUNDING
This work was sponsored by the National Research Development and Innovation Fund (K119202). Réka Henyecz was supported through the New National Excellence Program of the Ministry of Human Capacities (ÚNKP-18-3-I-BME-118).

CONFLICT OF INTEREST
The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS
Declared none.

REFERENCES
[1] Jablonkai, E.; Keglevich, G. P-C Bond formation by coupling reactions utilizing >P(O)H species as the reagents. Curr. Org. Chem., 2014, 11, 429-453.
[2] Jablonkai, E.; Keglevich, G. Advances and new variations of the hirao reaction. Org. Prep. Proced. Int., 2014, 46, 281-316.
[3] Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Stereoselective synthesis of vinylphosphonate. Tetrahedron Lett., 1980, 21, 3595-3598.
[4] Hirao, T.; Masunaga, T.; Yamada, N.; Ohshiro, Y.; Agawa, T. Palladium-catalyzed new carbon-phosphorus bond formation. Bull. Chem. Soc. Jpn., 1982, 55, 909-913.
[5] Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. A novel synthesis of dialkyl arenephosphonates. Synthesis, 1981, 1981(1), 56-57.
[6] Bulot, J.; Aboujaoude, E.E.; Collignon, N. Preparation d’aminophosphinyle, nitrophenyle, pyridyle-, et quinolylphosphonates sous photostimulation ou assistance métallique; Acces aux acides aminophosphoniques correspondants. Phosphorus, Sulfur and Silicon, 1984, 51, 197-204.
[7] Kazankova, M.A.; Trotsynskaya, I.G.; Lutsenko, S.V.; Beletskaya, I.P. Nickel- and palladium-catalyzed cross-coupling as a route to 1- and 2-alkoxy- or dialkylaminovinylphosphonates. Tetrahedron Lett., 1999, 40, 569-572.
[8] Machnikiri, P.; Nickel, T.; Stelzer, O.; Landgraaf, C. Consecutive Pd-catalyzed p-c coupling reactions and nucleophilic phosphonation - X-ray structure of Ph,P,C6H4-PO,NMe2 · 5.5 H2O · iPrOH. Eur. J. Inorg. Chem., 1998, 1998, 1029-1034.

[9] Kant, M.; Bischoff, S.; Sieffen, R.; Gründemann, E.; Köckritz, A. Synthesis and characterization of 4- and 4,4,9-phosphorylated 2,29-bis(diphenylphosphanyl)-1,9-binaphthyls. Eur. J. Org. Chem., 2001, 2001, 477-481.
[10] Zhong, P.; Xiong, Z.X.; Huang, X. A facile regio- and stereocontrolled synthesis of (E)-vinylphosphonates VIId cross coupling of (E)-vinyl iodides with dialkyl phosphites. Synthetic Commun., 2000, 30, 273-278.
[11] Kim, Y.-C.; Brown, S.G.; Harden, T.K.; Boyer, J.L.; Dubyak, G.; King, B.F.; Burnstock, G.; Jacobson, K.A. Structure-activity relationships of pyridoxal phosphate derivatives as potent and selective antagonists of P2X2 receptors. J. Med. Chem., 2001, 44, 340-349.
[12] Kobayashi, Y.; Williams, A.; Tokoro, Y. Sharpless asymmetric dihydroxylation of trans-propenylphosphonate by using a modified AD-mix-α and the synthesis of fosfomycin. J. Org. Chem., 2001, 66, 7903-7906.
[13] Muthukumaran, K.; Loewe, R.S.; Ambrose, A.; Tamaru, S.-A.; Li, Q.; Mathur, G.; Bocian, D. F.; Misra, V.; Lindsey, J.S. Porphyrins bearing arylphosphonic acid tethers for attachment onto oxide surfaces. J. Org. Chem., 2006, 71, 1444-1452.
[14] Ziesel, R.F.; Charbonnière, L.J.; Maneri, S.; Camerel, F. Bridging of bipyrine units by phenylphospholine links: Linear and cyclic oligomers and some acid derivatives. J. Org. Chem., 2005, 70, 9835-9840.
[15] Rehofs, I.; Kubíček, V.; Koteck, J.; Herrmann, P.; Lukes, I.; Száková, J.; Elst, L.V.; Muller, R.N.; Peters, J.A. 1H NMR reactivity of aqueous suspensions of titanium dioxide nanoparticles coated with a gadolinium(III) chelate of a DOTA-monoamide with a phenylphosphonate pendant arm. J. Mater. Chem., 2009, 19, 1494-1500.
[16] Ghalib, M.; Niaz, B.; Jones, P.G.; Heinicke, J.W. α2-P Ligands: convenient synthesis of N-methyl-1,3-benzazaphospholes. Tetrahedron Lett., 2012, 53, 5012-5014.
[17] Li, L.; Li, A.; Song, L.; Wang, Z.-H.; Zhou, X.-H.; Yang, T.; Huang, W. Synthesis, structure and properties of a tetranuclear europium(III) complex based on 9,9-dimethylfluorene-2,7-diphosphonic acid. J. Mol. Struc., 2014, 1067, 37-42.
[18] Pemberton, P.; Hope, E.G.; Singh, K.; Stuart, A.M. Synthesis and coordination chemistry of fluorinated phosphonic acids. J. Fluorine Chem., 2015, 198, 615-620.
[19] Maftei, M.; Buono, G. A two step synthesis of 2-oxo-2-vinyl 1,3,2-dioxaphospholanes and -dioxaphosphorinanes. Tetrahedron, 2003, 59, 8821-8825.
[20] Johansson, T.; Stawinski, J. Synthesis of dimelcoside pyridylphosphonates involving palladium(0)-catalysed phosphorus-carbon bond formation as a key step. Chem. Commun., 2001, 2564-2565.
[21] Parrish, J.; Tong, L.; Wang, M.; Chen, X.; Lansdon, E.B.; Cannizzaro, C.; Zheng, X.; Desai, M.C.; Xu, L. Synthesis and biological evaluation of phosphate analogues of nevirapine. Biosorg. Med. Chem. Lett., 2013, 23, 1493-1497.
[22] Maeda, K.; Miyagawa, T.; Furuko, A.; Onouchi, H.; Yashima, E. Dual memory of enantiomeric helices in poly(phenylacetylene)s induced by a single enantiomer through helix inversion and dual storage of the enantiomeric helicity memories. Macromolecules, 2015, 48, 4281-4293.
Gooßen, L.J.; Dezfali, M.K. Practical protocol for the palladium-catalyzed synthesis of arylphosphonates from bromoarenes and diethyl phosphite. *Synlett*, 2005, 445-448.

Chen, X.; Kopylova, D.J.; Mihalic, J.; Jeffries, S.; Min, X.; Heath, J.; Deignan, J.; Lai, S.; Fu, Z.; Guimaraes, C.; Shen, S.; Li, S.; Johnstone, S.; Tibbault, S.; Xu, H.; Cardozo, M.; Shen, W.; Walker, N.; Kayser, F.; Wang, Z. Structure-guided design, synthesis, and evaluation of guanine-derived inhibitors of the elf4E mRNA cap interaction. *J. Med. Chem.*, 2012, 55, 3837-3851.

Bonnaveurte, I.; Charette, A.B. Probing the importance of the hemeilable site of (b6)phosphate monooxidase ligands in the copper-catalyzed addition of diethanolamine to N-phosphoinolines. Discovery of new effective chiral ligands. *J. Org. Chem.*, 2008, 73, 6330-6340.

Contrella, N.D.; Sampson, J.R.; Jordan, R.F. COPolymerization of ethylene and methyl acrylate by cationic palladium catalysts that contain phosphate-diethyl phosphate ancillary ligands. *Organometallics*, 2014, 33, 3546-3555.

Benin, V.; Durganlab, S.; Morgan, A.B. Synthesis and flame retardant testing of new boronated and phosphonated aromatic compounds. *J. Mater. Chem.* 2011, 21, 11362-11371.

Reisinger, B.; Kuzmanovic, N.; Lefller, P.; Merkl, R.; König, B.; Sterner, R. Exploiting protein symmetry to design light-controllable enzyme inhibitors. *Angew. Chem. Int. Ed.*, 2014, 53, 595-598.

Enakieva, Y.Y.; Bessmertnykh, A.; Gorbonua, Y.G.; Stern, C.; Roussein, Y.; Tuivadze, Y. Guillard, R. Synthesis of meso-polyporphophyrin and examples of self-assembly. *Org. Lett.*, 2009, 11, 3842-3845.

Cummings, S.P.; Savenko, J.; Fanwick, P.E.; Kharlamova, A.; Ren, T. Diheteroaryalkyl compounds with phosphonate capping groups. *Organometallics*, 2013, 32, 1129-1132.

Kalek, M.; Jesowska, M.; Stawinski, J. Preparation of arylphosphonates by palladium(II)-catalyzed cross-coupling in the presence of acetate additives: Synthetic and mechanistic studies. *Adv. Synth. Catal.*, 2009, 351, 3207-3216.

Chen, B.; Ding, J.; Wang, L.; Jingga, X.; Wanga, F. A solution-processable phosphonate functionalized deep blue fluorescent emitter for efficient single-layer small molecule organic light-emitting diodes. *Chem. Commun.*, 2012, 48, 8070-8072.

Mulhem, K.R.; Orchard, A.; Watson, D.F.; Deby, M.R. Influence of surface-attachment functionality on the aggregation, persistence, and electron-transfer reactivity of chalcogenodinoline dyes on TiO2. *Langmuir*, 2012, 28, 7071-7082.

Lemieux, R.; Sarfraz, A.; Göi tinger, A.C.; Durksen, E.; Müi Iler, T.J.; Erbe, A. Surface functionalization of oxide-covered zinc and iron with phosphonated phenylthienophenolizbin. *Langmuir*, 2015, 31, 7306-7316.

Lilley, M.; Mambwe, B; Jackson, R.F.W.; Muimo, R. 4-Phosphothiophen-2-yl alanine: A new 5-membered analogue of phosphotyrosine. *Chem. Commun.*, 2013, 52, 12492-12501.

Chauhan, S.S.; Varshney, A.; Verma, B.; Pennington, M.W. Efficient synthesis of protected L-phenylphosphoninol (Ppa) derivatives suitable for solid phase peptide synthesis. *Tetrahedron Lett.*, 2007, 48, 4051-4054.

Defacqz, N.; de Burger, B.; Touillass, R.; Cordi, A.; Marchand-Brynaert, J. Direct phosphorylation of mono- and dihalogenosilanes. *Synthesis*, 1999, 1999(18), 1368-1372.

Xu, Y.; Li, Z.; Xia, J.; Guo, H.; Huang, Y.; Palladium-catalyzed synthesis of unsymmetrical alkyl-aryl-phosphinylamines. *Synthesis*, 1983, 1983, 377-378.

Xu, Y.; Zhang, J. Palladium-catalyzed synthesis of functionalised alkyl aryl-phosphinylamines. *Synthesis*, 1982, 776-781.

Xu, Y.; Li, Z.; Xia, J.; Guo, H.; Huang, Y. Palladium-catalyzed synthesis of alkylarylphosphine oxides. *Synthesis*, 1984, 1984, 781-782.

Zhang, J.; Xu, Y.; Huang, G.; Guo, H. Palladium-catalyzed synthesis of chiral, nonracemic isopropyl arylmethyphosphinates. *Tetrahedron Lett.*, 1988, 29, 1955-1958.

Xu, Y.; Wei, H.; Zhang, J.; Huang, G. An Efficient synthesis of chiral, nonracemic isopropyl arylmethyphosphinates via palladium route. *Tetrahedron Lett.*, 1989, 30, 949-952.

Kalek, M.; Stawinski, J. Pd(O)-catalyzed phosphorus-carbon bond formation. Mechanistic and synthetic studies on the role of the palladium sources and anionic additives. *Organometallics*, 2007, 26, 5840-5847.

Amatore, C.; Jutard, A. Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed heck and cross-coupling reactions. *Acc. Chem. Res.*, 2000, 33, 314-321.

Kalek, M.; Stawinski, J. Palladium-catalyzed C-P bond formation. Mechanistic studies on the ligand substitution and the reductive elimination: An intramolecular catalysis by the Acetate group in Pd²⁺ complexes. *Organometallics*, 2008, 27, 5876-5888.

Deal, E.L.; Pettit, C.; Montchamp, J.-L. Palladium-catalyzed cross-coupling of P-arylphosphate esters with chloroarenes. *J. Org. Chem.*, 2011, 76, 1320-1327.

Berg, O.; Pettit, C.; Deal, E.L.; Montchamp, J.-L. Phosphorus-carbon bond formation: Palladium-catalyzed cross-coupling of H-phosphonates and other P(OH)-containing compounds. *Adv. Synth. Catal.*, 2013, 355, 1361-1375.

Bessmertnykh, A.; Douayh, C.M.; Guillard, R. Direct synthesis of amino-substituted aromatic phosphonates via palladium-catalyzed coupling of aromatic mono- and dibromides with diethyl phosphite. *Chem. Lett.*, 2009, 38, 738-739.
New Developments on the Hirao Reactions: Current Synthesis, Properties, and Applications

1. Synthesis of P-stereogenic Phospha[7]helicenes: Synthesis, Properties, and Columnar Aggregation with One-way Chirality.

2. Highly enantioselective hydroxylation of 1,3-diienes with a soluble palladium catalyst. Tetrahedron, 2002, 11, 325-331.

3. General synthesis of P-stereogenic one-way chirality. Angew. Chem. Int. Ed., 2012, 51, 695-699.

4. Development of 4,4'-substituted-XylBINAP ligands for asymmetric catalysis. Tetrahedron, 2000, 56, 5000-5003.

5. Planar chirality [2.2]paracyclophane-based phosphine-phenols: use in enantioselective [3+2] annulations of annelates and N-tosylimines. Org. Biomol. Chem., 2018, 16, 1770-1778.

6. Highly efficient and practical optical resolution of 2-amino-2'-arylcyclohexanones. Tetrahedron, 2002, 58, 4293-4302.

7. Synthesis of a sulfur-bridged diphosphine ligand and its unique complexation properties toward palladium(II) ion. Tetrahedron, 2004, 60, 9034-9036.

8. Synthesis of chiral 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) and its derivatives. J. Org. Chem., 1994, 59, 6321-6324.

9. Synthesis, properties and applications of bifunctional phosphine ligands. Adv. Synth. Catal., 2004, 346, 743-754.

10. General synthetic route to chiral dibiphosphine ligands. Tetrahedron Lett., 2005, 46, 509-512.

11. Synthesis of [R]-(-)-1,1'-bi-2-naphtol triflate and its complexation properties toward palladium(II) ion. Tetrahedron, 2016, 72, 5172-5177.

12. Asymmetric aza-Baylis-Hillman reaction of alkenes. J. Org. Chem., 1995, 60, 1260-1268.

13. Planar chirality in [1,3]-alkylidene-4,5-dihydroxy-1,3-oxazines. Chirality, 2013, 25, 1770-1778.

14. Asymmetric allylic alkylation using a palladium complex of chiral 2-(phosphinoaryl)pyridine monophosphine ligands. Adv. Synth. Catal., 2008, 350, 1801-1836.

15. Asymmetric alkylolation with aryl chlorides. Qiu, L. Palladium-catalyzed suzuki-miyaura coupling reactions of boronic acid derivatives with aryl chlorides. Adv. Synth. Catal., 2018, 350, 1260-1268.

16. Design and catalytic applications of a triptycene-based monophosphine ligand for palladium-mediated organic transformations. Adv. Synth. Catal., 2017, 359, 1656-1662.

17. Highly efficient synthesis of a class of novel chiral-brided atropisomeric monophosphine ligands with tunable dihedral angles and their applications in asymmetric Suzuki–miyaura coupling reactions. Adv. Synth. Catal., 2017, 359, 1656-1662.

18. Asymmetric allylic alkylation with aryl chlorides. Qiu, L. Palladium-catalyzed suzuki-miyaura coupling reactions of boronic acid derivatives with aryl chlorides. Adv. Synth. Catal., 2018, 350, 1260-1268.

19. Asymmetric allylic alkylation with aryl chlorides. Qiu, L. Palladium-catalyzed suzuki-miyaura coupling reactions of boronic acid derivatives with aryl chlorides. Adv. Synth. Catal., 2018, 350, 1260-1268.

20. Asymmetric allylic alkylation with aryl chlorides. Qiu, L. Palladium-catalyzed suzuki-miyaura coupling reactions of boronic acid derivatives with aryl chlorides. Adv. Synth. Catal., 2018, 350, 1260-1268.

21. Asymmetric allylic alkylation with aryl chlorides. Qiu, L. Palladium-catalyzed suzuki-miyaura coupling reactions of boronic acid derivatives with aryl chlorides. Adv. Synth. Catal., 2018, 350, 1260-1268.

22. Asymmetric allylic alkylation with aryl chlorides. Qiu, L. Palladium-catalyzed suzuki-miyaura coupling reactions of boronic acid derivatives with aryl chlorides. Adv. Synth. Catal., 2018, 350, 1260-1268.

23. Asymmetric allylic alkylation with aryl chlorides. Qiu, L. Palladium-catalyzed suzuki-miyaura coupling reactions of boronic acid derivatives with aryl chlorides. Adv. Synth. Catal., 2018, 350, 1260-1268.

24. Asymmetric allylic alkylation with aryl chlorides. Qiu, L. Palladium-catalyzed suzuki-miyaura coupling reactions of boronic acid derivatives with aryl chlorides. Adv. Synth. Catal., 2018, 350, 1260-1268.

25. Asymmetric allylic alkylation with aryl chlorides. Qiu, L. Palladium-catalyzed suzuki-miyaura coupling reactions of boronic acid derivatives with aryl chlorides. Adv. Synth. Catal., 2018, 350, 1260-1268.

26. Asymmetric allylic alkylation with aryl chlorides. Qiu, L. Palladium-catalyzed suzuki-miyaura coupling reactions of boronic acid derivatives with aryl chlorides. Adv. Synth. Catal., 2018, 350, 1260-1268.

27. Asymmetric allylic alkylation with aryl chlorides. Qiu, L. Palladium-catalyzed suzuki-miyaura coupling reactions of boronic acid derivatives with aryl chlorides. Adv. Synth. Catal., 2018, 350, 1260-1268.
[121] Xie, J.-H.; Duan, H.-F.; Fan, B.-M.; Cheng, X.; Wang, L.-X.; Zhou, Q.-L. Application of SDP ligands for Pd-catalyzed allylic alkylation. Adv. Synth. Catal. 2004, 346, 625-632.

[122] Li, S.; Zhu, S.-F.; Zhang, C.-M.; Song, S.; Zhou, Q.-L. Iridium-catalyzed enantioselective hydrogenation of β-unsaturated carbonyl compounds. J. Am. Chem. Soc. 2008, 130, 8584-8585.

[123] Carmichael, D.; Ricardi, L.; Seebold, N. Planar-to- Axial Chirality Relay in Phosphoranes. J. Org. Chem. 2011, 76, 2936-2941.

[124] Tepley, F.; Stará, I.G.; Starý, I.; Kollárovič, A.; Šaman, D.; Vyskočil, S.; Fiedler, P. Synthesis of 3-hexahelicenol and its transformation to 3-hexahelicenylamines, diphenylphosphine, methyl carboxylate, and dimethylthiocarbamate. J. Org. Chem. 2003, 68, 9603-9611.

[125] Zhang, H.; Hu, R.-B.; Zhang, X.-Y.; Li, S.-X.; Yang, S.-D. Palladium-catalyzed R(0P)(I)R2-directed C(sp3)-H acetoxylation. Chem. Commun., 2014, 50, 4866-4869.

[126] Chen, T.; Han, L.-B. Optically active H-phosphinates and their stereospecific syntheses of P-chirogenic phosphorus compounds. Angew. Chem. Int. Ed. 2015, 54, 2166-2189.

[127] Han, Z.S.; Wu, H.; Xu, Y.; Zhang, Y.; Qu, B.; Li, Z.; Caldwell, D.R.; Beletskaya, I.P.; Karlstedt, N.B.; Nifant’ev, E.E.; Khodarev, D.V.; Kalek, M.; Stawinski, J. Efficient synthesis of mono- and diarylphosphinic acids: a microwave-assisted palladium-catalyzed cross-coupling of aryl halides with phosphine oxides. Org. Lett. 2012, 14, 3345-3348.

[128] Chen, T.; Han, L.-B. Active H-phosphinates and their stereospecific transformations into optically active P-stereogenic organophosphoryl compounds. Synlett, 2016, 25, 1153-1158.

[129] Wang, X.; Cao, J.; Han, B.; Chen, B.Z.; Liu, W.; Li, Z.; Xia, W.; Chen, C.; Li, Y.; Han, L.-B. Enantioselective phosphorylation of amides by C-P coupling in water. Org. Lett. 2015, 17, 12718-12721.

[130] Zhang, Y.; He, H.; Yang, J.; Xiao, J.; Chen, T.; Han, L.-B. Nickel-Catalyzed phosphorylation of aryl halides with Pd/C-catalyzed P-C coupling in water. Org. Lett. 2015, 17, 1349-1351.

[131] Feng, J.; Li, B.; He, Y.; Gu, Z. Enantioselective synthesis of atropoisomeric vinyl arenes by palladium catalysis: A carbene strategy. Angew. Chem. Int. Ed. 2016, 55, 2168-2170.

[132] Li, B.; Zhang, M.; Huanga, X.; Gu, Z. Synthesis of 2,3-dihydro-1H-phosphinol-1-oxides via the t-butyl-mediated rearrangement of vinylboron and phosphine oxide. Org. Chem. Front., 2017, 4, 1854-1857.

[133] Zhou, Z.; Liang, H.; Xia, W.; Chen, H.; Zhang, Y.; He, X.; Yu, S.; Cao, R.; Qiu, L. Synthesis of a class of binaphthyl monophosphine ligands with a soluble phosphine oxide by Pd/C-catalyzed P-C coupling in water. Org. Lett. 2015, 17, 5906-5909.

[134] Luo, Y.; Wu, J. Synthesis of arylophosphonates via palladium-catalyzed coupling reactions of aryl imidazolylsulfonylates with phosphine diesters. Organometallics 2009, 28, 6823-6826.

[135] Fu, T.; Qiao, H.; Peng, Z.; Hu, G.; Wu, X.; Gao, Y.; Zhao, Y. Palladium-catalyzed air-base oxidative coupling of arylboronic acids with H-phosphonate oxides leading to aryl phosphine oxides. Org. Biomol. Chem., 2014, 12, 2895-2902.

[136] Miao, T.; Wang, L. Palladium-catalyzed desulfitative cross-coupling reaction of sodium arylsulfimates with Pd-heterobinuclear catalysts. Adv. Synth. Catal. 2014, 356, 967-971.

[137] Zhang, Y.-L.; Wu, G.-J.; Li, Y.; Gao, L.-X.; Han, F.-S. [Ni(C(2)(dppe))] Catalyzed coupling of aryl halides with dialkyl phosphate, diphenylphosphine oxide, and diphenylphosphine. Chem. Eur. J., 2012, 18, 9622-9625.

[138] Zhang, H.-Y.; Sun, M.; Ma, Y.-N.; Tian, Q.-P.; Yang, S.-D. Nickel-catalyzed C-P cross-coupling of diphenylphosphine oxide with aryl chlorides. Org. Biomol. Chem. 2012, 10, 9672-9673.

[139] Han, G.; Chen, W.; Fu, T.; Peng, Z.; Qiao, H.; Gao, Y.; Zhao, Y. Nickel-catalyzed C-P cross-coupling of arylboronic acids with P(O)H compounds. Org. Lett., 2013, 15, 5562-5563.

[140] Shen, C.; Yang, G.; Zhang, W. Nickel-catalyzed C-P coupling of aryl mesylates and tosylates with H(O)PR2. Org. Biomol. Chem., 2012, 10, 3500-3505.

[141] Zhang, X.; Liu, H.; Hu, X.; Tang, G.; Zhu, J.; Zhao, Y. Ni(II)/Zn catalyzed reductive coupling of aryl halides with diphenylphosphine oxide in water. Org. Lett., 2013, 15, 3478-3481.

[142] Novikova, Z.S.; Demik, N.N.; Agarkov, A.Yu.; Beletskaya, I.P. Palladium-catalyzed arylation of diethyl hydrogen phosphate. Russ. J. Org. Chem., 1995, 31, 129.

[143] Jeziorski, M.; Mlotek, S.; Sienkiewicz, S.; Młodawski, M.; Mączka, S.; Podstawski, S.; Jędzior, M. Nickel-catalyzed Pd-catalyzed P arylation of arylboronic acids with and structurally diverse P-OHPR1R2. Angew. Chem. Int. Ed. 2014, 53, 12714-12717.

[144] Beletskaya, I.P.; Karlstedt, N.B.; Nifant’ev, E.E.; Khodarev, D.V.; Kalek, M.; Stawinski, J. Efficient synthesis of mono- and diarylphosphinic acids: a microwave-assisted palladium-catalyzed cross-coupling of aryl halides with phosphine oxides. J. Organomet. Chem. 2003, 68, 10406-10412.

[145] Andaloussi, M.; Lindl, J.; Sävmarker, J.; Sjöberg, P.J.R.; Larhed, M. Microwave-promoted palladium(I)-catalyzed C-P bond formation using arylboronic acids or aryltrifluoroborates. Chem. Eur. J., 2009, 15, 13069-13074.

[146] Rummel, S.M.; Ranocchiari, M.; van Bokhoven, J.A. Synthesis of water-soluble phosphate oxides by Pd-Catalyzed P-C coupling in water. Org. Lett., 2012, 14, 2188-2190.

[147] Dutartre, M.; Bayardon, J.; Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev., 2016, 45, 5771-5794.

[148] Chen, T.; Han, L.-B. Active H-phosphinates and their stereospecific transformations into optically active P-stereogenic organophosphoryl compounds. Synlett, 2016, 25, 1153-1158.

[149] Charnowski, D.; Rizzini, A.; Bidini, U.; Saber, M.; Vannini, G. Recent advances in asymmetric synthesis of P-stereogenic phosphorus compounds. Top. Curr. Chem., 2015, 360, 161-236.

[150] Beletskaya, I.P.; Karlstedt, N.B.; Nifant’ev, E.E.; Khodarev, D.V.; Kalek, M.; Stawinski, J. Efficient synthesis of mono- and diarylphosphinic acids: a microwave-assisted palladium-catalyzed cross-coupling of aryl halides with phosphine oxides. J. Organomet. Chem. 2003, 68, 10406-10412.
New Developments on the Hirao Reactions

Current Organic Synthesis, 2019, Vol. 16, No. 4

[173] Zhang, J.-S.; Chen, T.; Yang, J.; Han, L.-B. Nickel-catalyzed P-C bond formation via P-H/C-CN cross couplings. *Chem. Commun.*, 2015, 31, 5750-7542.

[174] Ioshiki, R.; Muto, K.; Yamaguchi, J. Decarbonylative C-P bond formation using aromatic esters and organophosphorus compounds. *Org. Lett.*, 2018, 20, 1150-1153.

[175] Sengmany, S.; Ollivier, A.; Gall, E.L.; Léonel, E. A mild electroassisted synthesis of (hetero)arylphosphonates. *Organometallics*, 2018, 16, 4945-4950.

[176] Zhang, H.; Zhang, X.-Y.; Dong, D.-Q.; Wang, Z.-L. Copper-catalyzed cross-coupling reactions for C-P bonds formation. *RSC Adv.*, 2015, 5, 52824-52831.

[177] Gelman, D.; Jiang, L.; Buchwald, S. L. Copper-catalyzed C-P bond construction via direct coupling of secondary phosphines and phosphites with aryl and vinyl halides. *Org. Lett.*, 2003, 5, 2315-2318.

[178] Huang, C.; Tang, X.; Fu, H.; Jiang, Y.; Zhao, Y. Proline/pipelicolic acid-promoted copper-catalyzed P-arylation. *J. Org. Chem.*, 2006, 71, 5020-5022.

[179] Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. A Versatile and efficient ligand for copper-catalyzed formation of C-N, C-O, and P-C bonds: Pyrroldidine-2-phosphonic acid phenyl monoester. *Chem. Eur. J.*, 2006, 12, 3636-3646.

[180] Jiang, D.S.; Jiang, Q.; Fu, H.; Jiang, Y.Y.; Zhao, Y.F. Efficient copper-catalyzed coupling of 2-haloacetanilides with phosphate oxides and phosphites under mild conditions. *Synthesis*, 2008, 21, 3473-3477.

[181] Karlstedt, N.B.; Beletskaya, I.P. Copper-catalyzed cross-coupling of diethyl phosphate with aryl iodides. *Russ. J. Org. Chem.*, 2011, 47, 1011-1014.

[182] Stankevič, M.; Wlodarczyk, A. Efficient copper(I)-catalyzed coupling of secondary phosphine oxides with aryl halides. *Tetrahedron*, 2013, 69, 73-81.

[183] Wan, H.; Zhao, Y.; Wang, Q.; Zhang, Y.; Li, Y. The Cu-catalyzed C-P coupling of phosphate esters with arylboronic acids. *Russ. J. Gen. Chem.*, 2016, 86, 150-153.

[184] Beaud, R.; Phipps, R. J.; Gaunt, M. J. Enantioselective Cu-catalyzed arylation of secondary phosphate oxides with diarylodonium salts toward the synthesis of P-chiral phosphonates. *J. Am. Chem. Soc.*, 2016, 138, 13183-13186.

[185] He, Y.; Wuab, H.; Toste, F.D. A dual catalytic strategy for carbon-phosphorus cross-coupling via gold and photoredox catalysis. *Chem. Sci.*, 2016, 5, 1194-1198.

[186] Peng, H.; Cai, R.; Xu, C.; Chen, H.; Shi, X. Nucleophile promoted gold redox catalysis with diazonium salts: C-H, C-S and C-P bond formation through catalytic Sandmeyer coupling. *Chem. Sci.*, 2016, 7, 6190-6196.

[187] Jablonkai, E.; Keglevich, G. P-ligand-free, microwave-assisted variation of the Hirao reaction under solvent-free conditions; the P-C coupling reaction of >P(O)H species and bromoarenes. *Tetrahedron Lett.*, 2013, 54, 4185-4188.

[188] Keglevich, G.; Jablonkai, E.; Balázs, L.B. A “green” variation of the Hirao reaction: the P-C coupling of diethyl phosphite, alkyl phenyl-Ph-phosphinates and secondary phosphate oxides with bromoarenes using a P-ligand-free Pd(OAc)2 catalyst under microwave and solvent-free conditions. *RSC Adv.*, 2014, 4, 22808-22816.

[189] Keglevich, G.; Henyeecz, R.; Mucsi, Z.; Kiss, N.Z. The palladium acetate-catalyzed microwave-assisted hirao reaction without an added phosphorus ligand as a “green” protocol: A quantum chemical study on the mechanism. *Adv. Synth. Catal.*, 2017, 359, 4322-4331.

[190] Henyeecz, R.; Mucsi, Z.; Keglevich, G. Palladium-catalyzed microwave-assisted Hirao reaction utilizing the excess of the diarylphosphate oxide reagent as the P-ligand; a study on the activity and formation of the “PdP” catalyst. *Pure Appl. Chem.*, 2019, 91, 121-134.

[191] Amaya, T.; Abe, Y.; Inada, Y.; Hirao, T. Synthesis of self-doped conducting polyaniline bearing phosphonic acid. *Tetrahedron Lett.*, 2014, 55, 3976-3978.

[192] Jóójárt, R.; Pécsey, S.; Keglevich, G.; Szécsy, M.; Rigó, R.; Övezy-Laczka, C.; Kecksmeté, G.; Mernyák, E. Pd-Catalyzed microwave-assisted synthesis of phosphorylated 13α-estrones as potential OATP2B1, 17β-HSD1 and/or STS inhibitors. *Beilstein J. Org. Chem.*, 2018, 14, 2838-2845.

[193] Li, J.; Bi, X.; Wang, H.; Xiao, J. Palladium-catalyzed desulfitative C-P coupling of arylsulfinate metal salts and H-phosphonates. *RSC Adv.*, 2014, 4, 19214-19217.

[194] Jablonkai, E.; Balázs, L.B.; Keglevich, G. A P-ligand-free nickel-catalyzed variation of the hirao reaction under microwave conditions. *Curr. Org. Chem.*, 2015, 19, 197-202.

[195] Yang, J.; Xiao, J.; Chen, T.; Yin, S.-F.; Han, L.-B. Efficient nickel-catalyzed phosphinylation of C-S bonds forming C-P bonds. *Chem. Commun.*, 2016, 52, 12233-12236.

[196] Lastawiecka, E.; Flis, A.; Stankevič, M. Greluk, M.; Słowik, G.; Gac, W. P. Arylation of secondary phosphate oxides catalyzed by nickel-supported nanoparticles. *Org. Chem. Front.*, 2018, 5, 2079-2085.

[197] Xiong, B.; Li, M.; Liu, Y.; Zhou, Y.; Zhao, C.; Goto, M.; Yin, S.-F.; Han, L.-B. Stereoselective Synthesis of Phosphoryl-Substituted Phenols. *Adv. Synth. Catal.*, 2014, 356, 781-794.

[198] Ogawa, T.; Usuki, N.; Ogo, N. A new synthesis of δ-electron conjugated phosphonates and phosphonic bis(diepaldiamides) and their SHG activities. *J. Chem. Soc., Perkin Trans. 1*, 1998, 2953-2958.

[199] Ghosh, T.; Maity, P.; Kundu, D.; Ramu, B.C. Cobalt catalyzed, copper assisted C₂₉₋₆₇ cross coupling. *New J. Chem.*, 2016, 40, 9556-9564.

[200] Jablonkai, E.; Keglevich, G. Catalyst-free P-C coupling reactions of halobenzoic acids and secondary phosphate oxides under microwave irradiation in water. *Tetrahedron Lett.*, 2015, 56, 1638-1640.