Calcium Site Specificity

Early Ca\(^{2+}\)-related Tight Junction Events

Francisco Lacaz-Vieira

From the Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900
São Paulo, Brazil

ABSTRACT The molecular mechanisms by which Ca\(^{2+}\) and metal ions interact with the binding sites that modulate the tight junctions (TJs) have not been fully described. Metal ions were used as probes of these sites in the frog urinary bladder. Basolateral Ca\(^{2+}\) withdrawal induces the opening of the TJs, a process that is abruptly terminated when Ca\(^{2+}\) is readmitted, and is followed by a complete recovery of the TJ seal. Mg\(^{2+}\) and Ba\(^{2+}\) were incapable of keeping the TJ sealed or of inducing TJ recovery. In addition, Mg\(^{2+}\) causes a reversible concentration-dependent inhibition of the Ca\(^{2+}\)-induced TJ recovery. The effects of extracellular Ca\(^{2+}\) manipulation on the TJs apparently is not mediated by changes of cytosolic Ca\(^{2+}\) concentration. The transition elements, Mn\(^{2+}\) and Cd\(^{2+}\), act as Ca\(^{2+}\) agonists. In the absence of Ca\(^{2+}\), they prevent TJ opening and almost immediately halt the process of TJ opening caused by Ca\(^{2+}\) withdrawal. In addition, Mn\(^{2+}\) promotes an almost complete recovery of the TJ seal. Cd\(^{2+}\), in spite of stabilizing the TJs in the closed state and halting TJ opening, does not promote TJ recovery, an effect that apparently results from a superimposed toxic effect that is markedly attenuated by the presence of Ca\(^{2+}\). The interruption of TJ opening caused by Ca\(^{2+}\), Cd\(^{2+}\), or Mn\(^{2+}\), and the stability they confer to the closed TJs, might result from the interaction of these ions with E-cadherin. Addition of La\(^{3+}\) (2 mM) to the basolateral Ca\(^{2+}\)-containing solution causes an increase of TJ permeability that fully reverses when La\(^{3+}\) is removed. This effect of La\(^{3+}\), observed in the presence of Ca\(^{2+}\) (1 mM), indicates a high La\(^{3+}\) affinity for the Ca\(^{2+}\)-binding sites. This ability of La\(^{3+}\) to open TJs in the presence of Ca\(^{2+}\) is a relevant aspect that must be considered when using La\(^{3+}\) in the evaluation of TJ permeability of epithelial and endothelial membranes, particularly when used during in vivo perfusion or in the absence of fixatives.

KEY WORDS: tight junction • calcium • cadmium • lanthanum • E-cadherin

INTRODUCTION

Ca\(^{2+}\) is essential for cells to maintain intercellular contacts. When the extracellular Ca\(^{2+}\) is removed, the cell–cell connections generally become loose and multicellular organizations are destroyed. A number of studies emphasize the role of extracellular Ca\(^{2+}\) on the stability of mature tight junctions (TJs)\(^1\) in natural epithelia (Sedar and Forde, 1964; Hays et al., 1965; Galli et al., 1976; Meldolesi et al., 1978; Petelka et al., 1983; Palant et al., 1983) and on the development of new TJs in cell cultures in confluence (Martinez-Palomo et al., 1980; Cereijido et al., 1980, 1981; González-Mariscal et al., 1985). The removal of extracellular Ca\(^{2+}\) causes the opening of previously formed TJs and prevents de novo formation of TJs in confluent cell monolayers. Notwithstanding several studies addressing the role of extracellular Ca\(^{2+}\) in the dynamics of the TJs, major questions are still pending. The relative importance of extracellular (Gorodeski et al., 1997; Contreras et al., 1992; González-Mariscal et al., 1990) versus intracellular (Bhat et al., 1993; Jovov et al., 1994; Stuart et al., 1994) Ca\(^{2+}\) concentration on the control of TJs is not yet clearly characterized. The cell adhesion molecule E-cadherin (uvomorulin) (Gumbiner et al., 1988), which is particularly rich at the zonula adhaerens (Boller et al., 1985), plays a key role as the extracellular Ca\(^{2+}\) binding molecule that modulates the formation and maintenance of the epithelial junctional complex (Gumbiner et al., 1988). Ca\(^{2+}\) influences the conformation of E-cadherin and stabilizes it in its adhesive state (Ringwald et al., 1987). In addition, the interaction of Ca\(^{2+}\) with E-cadherin is transduced across the cell membrane by a cascade of reactions involving phospholipase C, G proteins, protein kinase C, and calmodulin (Balda et al., 1991, 1993). The structural and electrostatic mechanisms used by the Ca\(^{2+}\) binding sites of E-cadherin to provide Ca\(^{2+}\) specificity are not yet fully understood, as compared with the knowledge on the EF-hand-like sites (Snyder et al., 1990), in part because insufficient information is available regarding the ion specificity of the

\(^1\)Abbreviations used in this paper: SCC, short-circuit current; TER, transepithelial electrical resistance; TJ, tight junction.
Ca\(^{2+}\) binding sites. Only recently has the structure of the epithelial cadherin domain responsible for selective cell adhesion been identified. The Ca\(^{2+}\) binding site of the CAD1 domain of E-cadherin was inferred by nuclear magnetic resonance identification of the amino acid residues whose backbone \(^{13}\)CO, \(^{15}\)N, or \(^{1}\)HN chemical shifts differed between Ca\(^{2+}\)-bound and -free forms (Overduin et al., 1995). A negatively charged pocket is formed by three sequences of residues with the side chains of the highly conserved Glu\(^{11}\), Glu\(^{69}\), and Asp\(^{100}\) well positioned to ligate Ca\(^{2+}\) (Overduin et al., 1995).

In addition, the homophilic specificity surface is also sensitive to Ca\(^{2+}\) ligation through His\(^{79}\) and Met\(^{92}\), indicating that the Ca\(^{2+}\)-induced conformational effect on the homophilic specificity surface may reflect a mechanism by which Ca\(^{2+}\) levels regulate the adhesiveness of cadherins (Overduin et al., 1995).

Multiple factors (number, type, and geometry of ligands, electrostatic interactions, cavity size and deformability of the site, dehydration of metal and ligand) are among the variables that must be considered when the metal ion selectivity of protein Ca\(^{2+}\) sites are analyzed (Snyder et al., 1990). The exclusion of Mg\(^{2+}\) from many protein Ca\(^{2+}\) sites, for example, can be explained in part by the fact that Mg\(^{2+}\) prefers a coordination number of six and uses nitrogen as a ligand more frequently (Einspahar and Bugg, 1984; Martin, 1984), while coordination by seven oxygens is observed in protein Ca\(^{2+}\) sites (Snyder et al., 1990; Strynadka and James, 1989).

In a previous study in the frog urinary bladder (Lacaz-Vieira and Kachar, 1996), it was shown that apical Ca\(^{2+}\) may activate the TJ sealing mechanism, an effect that is not impaired by the presence of Ca\(^{2+}\) channel blockers (nifedipine, verapamil, Mn\(^{2+}\), or Cd\(^{2+}\)) in the apical solution, indicating that junction resealing in the frog urinary bladder does not depend on Ca\(^{2+}\) entering the cells through the apical membrane. Most likely, this effect results from Ca\(^{2+}\) entering partially disrupted TJIs, reaching the zonula adhaerens Ca\(^{2+}\) receptors (E-cadherins). It was also shown that protein kinase C plays a significant role in the control of TJ assembly in the frog urinary bladder since the PKC inhibitor (H7) and the activator (diC8) markedly affect TJ recovery after they are disrupted by apical hypertonicity.

The present study addresses the interactions of the metal ions with the binding sites that affect the function of the TJIs in order to characterize their selectivity.

MATERIALS AND METHODS

Urinary bladders of the frog *Rana catesbeiana* were used. Animals were anesthetized by subcutaneous injection of a 2% solution of 3-aminobenzoic acid ethyl ester (methanesulphonate salt) (Sigma Chemical Co., St. Louis, MO) at a dose of 1 ml/100 g body wt. The abdominal cavity was opened, a cannula was passed through the cloaca, and the urinary bladder was inflated with 15–20 ml of air according to the animal size. Plastic rings of 20-mm diameter were glued to the serosal surface of the bladder with ethlycyaanoacrylate adhesive (Super Bonder; Loctite, São Paulo, Brazil). The fragment of tissue framed by the plastic ring was excised and immersed in Ringer solution. Subsequently, it was mounted in a modified Ussing’s chamber (Castro et al., 1993), exposing an area of 0.5 cm\(^2\). Hemichambers with a recessed rim filled with high viscosity silicone grease (High Vacuum Grease; Dow-Corning Corp., Indianapolis, IN) prevented tissue edge damage (Lacaz-Vieira, 1986). Each chamber compartment was perfused with a continuous flow of solution (up to 25 ml/min) driven by gravity from reservoirs through plastic tubings. Unstirred layers on the surfaces of the tissue were minimized by directing the incoming fluid towards the tissue surfaces. Each compartment was drained through a spilway open to the atmosphere so that the pressure inside each compartment was kept fairly constant at the atmospheric level. Rapid solution changes were obtained without interruption of voltage clamping by switching the inlet tubings at their connections with the chamber.

Solutions

Unless otherwise stated, the inner bathing solution was NaCl Ringer’s solution. The Ringer’s compositions were (mM): NaCl Ringer: 115 NaCl, 2.5 KHCO\(_3\), and 1.0 CaCl\(_2\). Na\(_2\)SO\(_4\), Ringer: 57.5 Na\(_2\)SO\(_4\), 2.5 KHCO\(_3\), 1.0 CaSO\(_4\). NaCl HEPES Ringer: 115 NaCl, 2.5 KCl, 2.0 HEPES. All Ringer’s solutions had their pH adjusted to 8.2 after aeration. The apical bathing fluids were simple salt solutions, buffered, prepared with glass-distilled water, having pH = ~6.0 and free Ca\(^{2+}\) concentration in the range of 1.5 × 1–7 and 2.0 × 1–7 M (Castro et al., 1993). In the beginning of the experiments, the apical solution was 75 mM KCl.

Electrical Measurements

A conventional analog voltage clamp (DVC 1000; WPI, New Haven, CT) was used. Saturated calomel half-cells with 3 M KCl-agar bridges were used to measure the electrical potential difference across the bladder. Current was passed through Ag-AgCl 3 M KCl electrodes and 3 M KCl-agar bridges, adequately placed to deliver a uniform current density across the bladder. The clamping current was continuously recorded by a strip-chart recorder. Clamping current and voltage were also digitized through an analog-to-digital converter (Digidata 1200 and Axotape 2.0; Axon Instruments Inc., Foster City, CA) and stored in a computer for further processing. A digital Gaussian Filter (Colquhoun and Sigworth, 1983) was used to remove high frequency noise of the baseline of all records used in the figures. This digital filter forms output values \(\gamma_i\) from input values \(\chi_i\) by performing the arithmetic mean of three consecutive current values, so that

\[
\gamma_i = \left(\frac{\chi_i + \chi_{i+1} + \chi_{i+2}}{3} \right)
\]

Isotopic Flux Measurements

\(^{14}\)C-Sucrose (Amersham International, Little Chalfont, UK) was added to the apical or basolateral solution, and the fluid was recirculated with a peristaltic pump at a rate of 5 ml/min. An equilibration period of at least 20 min, during which the solution in the opposite compartment was continuously renewed, was allowed before the sampling in this compartment. During the sampling period, the flow of solution through the compartment was stopped and the solution was stirred by a plastic propeller driven by an electric motor. At the end of the collection interval, the so-
lution was removed for radioactivity assay. Subsequently, the compartment was refilled and a new sampling period started.

TJ Blockade by the Selective Deposition of BaSO₄

TJ blockade was induced according to a previously described method (Castro et al., 1993). Tissues were bathed on the basolateral side by Na₂SO₄ Ringer’s solution. To induce the blockade by the selective deposition of BaSO₄ in the TJs, the apical bathing fluid was replaced by a solution of BaCl₂ (50 mM) and a positive clamping potential (+50 mV) was applied across the tissue to force migration of Ba²⁺ and SO₄²⁻ against each other and the formation of BaSO₄ precipitate at the TJ level.

Chemicals

All chemicals were obtained from Sigma Chemical Co.

Statistics

The results are presented as mean ± SEM. Comparisons were carried out using Student’s paired t test. When more than two groups were compared, significance was determined by two-way analysis of variance followed by appropriate posttest comparison. The P values cited include Bonferroni’s correction (Neter and Wasserman, 1974).

RESULTS

The experiments were carried out in short-circuited frog urinary bladders bathed on the basolateral side by NaCl-Ringer’s solution (or a different Ringer’s solution according to the protocol), and on the apical side, in most cases, by a simple solution of KCl (75 mM). The absence of Na⁺ in the apical solution aimed at abolishing the short-circuit current as well as the role of transcellular Na⁺ conductance to the overall tissue electrical conductance, so that changes in the transepithelial electrical resistance (TER) reflected changes in the electrical resistance of the tight junctions, as in other tight epithelia (Jovov et al., 1994; Wills and Millinoff, 1990).

Transepithelial Electrical Resistance

TER is shown in Ω cm², calculated from the deflections of the clamping current induced by shifts of the clamping potential of 300 ms duration, ±1 mV amplitude at 15-s intervals, as TER = ΔV/ΔI, where ΔV and ΔI are the changes in the electrical potential difference across the tissue and clamping current, respectively. I, clamping current in μA/cm². Positive (or inward) current corresponds to the transport of positive charges across the tissue, from the apical to the inner bathing solution. V, electrical potential difference across the tissue (millivolts). The potential of the apical solution is referred to that of the inner solution.

The general protocol consisted in analyzing the interactions of metal ions with the binding sites that affect the TJ permeability according to a Ca²⁺-switch assay that consisted of a two-step process: (a) increase of TJ permeability, characterized by a drop in TER, was induced by removing Ca²⁺ from the basolateral solution. (b) TJ recovery, characterized by return of TER to initial values, was achieved by the reintroduction of Ca²⁺ into the basolateral solution. Small, short-term perturbations of the TJs were induced to prevent or minimize tardy regulatory responses that might complicate the results. This is exemplified by the fact that the rate of Ca²⁺-induced TJ recovery depends on the degree of TJ opening, which, in turn, depends on the time the bladders were without Ca²⁺, in agreement with observations in MDCK (Martinez-Palomo et al., 1980) and A6 (Jovov et al., 1994) cell monolayers. To cope with this problem, the drop of TER in response to Ca²⁺ withdrawal was normally terminated by the readmission of Ca²⁺ to the basolateral fluid when TER reached values close to 250 Ω cm². The experiments were carried out, unless specified, with nominally Ca²⁺-free apical solution. The presence of Ca²⁺ in the apical solution is not essential for stability of TJs in A6 cell monolayers (Jovov et al., 1994) or in the frog urinary bladder (Lacaz-Vieira and Kachar, 1996).

Effect of Basolateral Ca²⁺ on TER

Ca²⁺ removal from the basolateral solution (NaCl, Na₂SO₄, or NaCl HEPES Ringer’s solution) induces, after a lag time (generally between 30 s and 3 min), a pronounced drop of TER. Once started, the decline of TER shows a rapid progress. Return to Ca²⁺ promptly stops the decline of TER and triggers a full recovery. In the example of Fig. 1 A, the onset of TER decline has a lag time of 90 s and TER drops to 2% of the initial value in 160 s. Mean values of TER for a group of eight bladders bathed on the apical side by 75 mM KCl and by NaCl Ringer’s solution on the basolateral side are: initial condition, 11,729.5 ± 1,532.5 Ω cm²; 120 s after Ca²⁺ removal from the basolateral medium, 207.3 ± 32.5 Ω cm²; after full recovery of TER in response to the reintroduction of Ca²⁺ into the basolateral medium, 11,567.1 ± 1,667.0 Ω cm². The changes in short-circuit current (SCC) that take place in conjunction with the changes in TER result from the movement of ions (mostly Na⁺ and K⁺) along the paracellular pathway driven by their concentration differences in the bathing solutions.

A stepwise reduction of basolateral Ca²⁺ concentration (by addition of EGTA) does not result in a decrease of TER until [Ca²⁺]₅ achieves values in the range of 70–100 μM. A further decrease in concentration resulted in a pronounced decline of TER. The dependence of steady state values of TER on [Ca²⁺]₅ is sigmoidal and conforms with the Hill equation (Rodwell, 1996): TER[Ca] = TER₀/(1 + [Km/[Ca]]n), with a Km value of 62 ± 28 μM and a Hill coefficient (n) of 8.6 ± 0.9, indicating a steep dependence of TER on [Ca²⁺]₅. TER[Ca] is the value of TER at any given serosal Ca²⁺
Early Tight Junction Events

Concentration; TER is the value of TER at 1 mM serosal Ca\(^{2+}\) concentration; \(K_m\) is the serosal Ca\(^{2+}\) concentration that reduces TER to 50% of the value at normal Ca\(^{2+}\) concentration.

The drop of TER that follows basal Ca\(^{2+}\) withdrawal is caused by a decrease of TJ permeability since it is accompanied by a significant increase of tissue permeability to \(^{14}\)C-sucrose that fully reverses upon reintroduction of Ca\(^{2+}\). The sucrose influx (\(J_{\text{suc}}\)), which reflects the magnitude of the paracellular permeability, increased from (a) 0.65 ± 0.06 pmol cm\(^{-2}\) min\(^{-1}\) in the control condition (75 mM KCl on the apical side and NaCl Ringer’s on the basolateral side) to (b) 3.74 ± 0.09 pmol cm\(^{-2}\) min\(^{-1}\), 5 min after Ca\(^{2+}\) removal from the basolateral solution, and returned to a steady value of (c) 0.68 ± 0.07 pmol cm\(^{-2}\) min\(^{-1}\) 10 min after addition of Ca\(^{2+}\) to the basolateral solution. Statistical comparison: \(a-b\), \(P < 0.01\); \(a-c\), \(P = \text{NS (n = 6)}\).

To circumvent a conceivable objection that sucrose flux measurements, which involve long periods of time, might not provide a clear indication that the initial drop of TER in response to basolateral Ca\(^{2+}\) withdrawal results from an increase of TJ permeability, additional experiments were performed in which open TJs were blocked by the selective deposition of BaSO\(_4\) (Castro et al., 1993). The urinary bladders were bathed on the basolateral side by a sulfate-containing solution (Na\(_2\)SO\(_4\) Ringer’s, see material and methods) to cause precipitation of BaSO\(_4\) in the open TJs when BaCL\(_2\) is added to the apical compartment. As soon as TER decreased in response to Ca\(^{2+}\) withdrawal from the basolateral fluid, the addition of Ba\(^{2+}\) to the apical solution leads to a prompt and marked increase of TER that results from the blockade of the permeabilized TJs by precipitation of BaSO\(_4\) (Fig. 2). In a control group of bladders bathed by NaCl Ringer’s, no effect was observed in response to the addition of Ba\(^{2+}\) to the apical solution, excluding the possibility that the increase of TER caused by apical Ba\(^{2+}\) resulted from the blockade of a transcellular pathway involving K channels (Van Driessche and Zeiske, 1980). The experiments with Ba\(^{2+}\) provide strong evidence that the early drop of TER associated with basolateral Ca\(^{2+}\) withdrawal results from a relaxation of the TJ seal.

Role of Cytosolic Ca\(^{2+}\) Concentration on TER Responses to Changes in Extracellular Ca\(^{2+}\) Concentration

To ascertain the contribution of cytosolic Ca\(^{2+}\) concentration on TER responses to changes in extracellular Ca\(^{2+}\) concentration, two experimental approaches were used.

Figure 1. Representative experiments (of a group of eight tissues) carried out in the same piece of bladder showing the effect of Ca\(^{2+}\) withdrawal from the basolateral solution on TER and the reversibility of the process. The urinary bladder was short-circuited and bathed by 75 mM KCl on the apical side and by NaCl Ringer’s solution on the basolateral side. (A) The basolateral Ca\(^{2+}\) was removed (–Ca\(_{\text{bl}}\)) and reintroduced (+Ca\(_{\text{bl}}\)). (B) The basolateral Ca\(^{2+}\) was equimolarly replaced by Mg\(^{2+}\) ((Ca × Mg)\(_{\text{bl}}\)); subsequently, this change was reversed ((Mg × Ca)\(_{\text{bl}}\)). (C) The basolateral Ca\(^{2+}\) was equimolarly replaced by Ba\(^{2+}\) ((Ca × Ba)\(_{\text{bl}}\)); subsequently, this change was reversed ((Ba × Ca)\(_{\text{bl}}\)). The vertical deflections of SCC, caused by pulses of ±1 mV in the clamping potential, are proportional to the overall tissue electrical conductance (G), where G = 1/TER.
BAPTA-AM. The epithelial cells were loaded with Ca2+ chelator by incubating tissues \((n = 5)\) with the cell-permeant BAPTA-AM ester (10 \text{\mu}M) on both sides for 20 min. No effect was observed on TER. The chelator was then removed together with Ca2+ from the basolateral fluid, leading to a drop of TER that fully recovered upon Ca2+ return to the basolateral fluid. The fact that in the presence of an intracellular Ca2+ chelator, the introduction of Ca2+ into the basolateral fluid triggers TJ recovery is a strong argument in favor of an extracellular effect of Ca2+, most certainly at the level of E-cadherin.

Ionophore A-23187. Two different protocols were tested. In one \((n = 3)\), the experiments were performed with an apical solution containing 75 mM KCl, 1 mM Ca2+, and 3 \text{\mu}M A23187. The presence of the ionophore in the apical solution caused only a small decrease of TER that soon stabilized. A subsequent removal of basolateral Ca2+ induced a reduction of TER similar to that shown in Fig. 1 A. Recovery was obtained by reintroducing Ca2+ into the basolateral fluid. In another group of experiments \((n = 5)\), the apical solution was 75 mM KCl plus the ionophore (3 \text{\mu}M). TJs were opened by removal of basolateral Ca2+, and then the apical solution was replaced by another containing, in addition to the ionophore, 1 mM Ca2+. Upon addition...
of Ca\(^{2+}\) to the apical solution, a transient reduction of TER that lasted 1–2 min was observed, followed by a subsequent decline of TER. Return to Ca\(^{2+}\) in the basolateral solution then triggered a complete recovery of TER. These experiments suggest that Ca\(^{2+}\) entering the cells through the pathways created by the ionophore may transiently trigger TER recovery. However, a complete and stable recovery of the TJ seal was only obtained upon addition of Ca\(^{2+}\) to the basolateral solution.

Divalent Metal Ions

These experiments aimed to appraise the degree of interaction of divalent cations with the basolateral Ca\(^{2+}\) sites that affect the sealing of the TJs. Two different aspects were analyzed: (a) the ability of the metal ion to prevent the opening of the TJs when the metal ion replaced the basolateral Ca\(^{2+}\), and (b) the ability of the metal ion to induce the rescaling of TJs previously opened by the removal of basolateral Ca\(^{2+}\).

Alkaline earth metals as controls: Mg\(^{2+}\) and Ba\(^{2+}\). The equimolar substitution of basolateral Ca\(^{2+}\) by Mg\(^{2+}\) causes a drop in TER similar to that induced by the removal of Ca\(^{2+}\) from the basolateral fluid. Return to Ca\(^{2+}\) leads to a full recovery of TER (Fig. 1 B). A similar behavior is observed in response to the substitution of the basolateral Ca\(^{2+}\) by Ba\(^{2+}\) (Fig. 1 C). These results indicate that Mg\(^{2+}\) and Ba\(^{2+}\) are ineffective in maintaining the TJ seal in the frog urinary bladder. Experiments (not shown) also indicate that TJs previously opened by Ca\(^{2+}\) withdrawal do not close in response to addition of Mg\(^{2+}\) or Ba\(^{2+}\) (1 mM) to the basolateral medium. Higher concentrations up to 10 mM were tested without effect.

Transition elements: Cd\(^{2+}\) and Mn\(^{2+}\). The equimolar substitution of basolateral Ca\(^{2+}\) by Cd\(^{2+}\) (Fig. 3 A) or Mn\(^{2+}\) (Fig. 4) does not lead, as observed for the alkaline earth metals, to a reduction of TER, indicating that these transition elements show a Ca\(^{2+}\) agonistic effect in short term experiments, characterized by their ability to keep the TJs closed in the absence of basolateral Ca\(^{2+}\). A subsequent withdrawal of Cd\(^{2+}\) (Fig. 3 A) or of Mn\(^{2+}\) (Fig. 4) triggers junction opening, indicated by a decline of TER that follows a time course comparable with that observed in response to basolateral Ca\(^{2+}\) removal. TJ opening that follows Cd\(^{2+}\) removal is promptly halted upon reintroduction of Ca\(^{2+}\) (Fig. 3 A) or even Cd\(^{2+}\) into the basolateral solution. Recovery is, however, incomplete even in response to Ca\(^{2+}\), suggesting a residual, apparently toxic effect of Cd\(^{2+}\). This toxic effect of Cd\(^{2+}\) is greatly reduced or even eliminated if Ca\(^{2+}\) is also present, as shown in Fig. 3 B. Tissues exposed for several minutes to basolateral Cd\(^{2+}\) (1 mM) in the presence of a normal basolateral Ca\(^{2+}\) concentration behave, after Cd\(^{2+}\) removal, as control tissues not exposed to Cd\(^{2+}\).

The effect of basolateral Mn\(^{2+}\) (Fig. 4) is different from that of Cd\(^{2+}\) since, in addition to promptly halting the decline of TER, Mn\(^{2+}\) leads to a slower but well characterized recovery of TER, a process that is accelerated and reaches completion if Mn\(^{2+}\) is replaced by Ca\(^{2+}\).

Apical Ca\(^{2+}\) May Reach the Binding Sites that Affect the TJs

The results presented so far show reversible changes of TER due to manipulation of basolateral Ca\(^{2+}\) in the absence of apical Ca\(^{2+}\). Similar results can be obtained in the presence of 1 mM Ca\(^{2+}\) in the apical solution. Higher concentrations of apical Ca\(^{2+}\), however, may curb the increase of TJ permeability that results from basolateral Ca\(^{2+}\) withdrawal. Thus, the presence of 10 mM Ca\(^{2+}\) in the apical solution markedly depresses (Fig. 5 A) or even abolishes (Fig. 5 B) TER decrease in response to basolateral Ca\(^{2+}\) withdrawal. A subsequent removal of apical Ca\(^{2+}\) speeds up (Fig. 5 A) or triggers (Fig. 5 B) a TER decrease that had been blocked by the...
high apical Ca\(^{2+}\) concentration. TJ permeability increase induced by withdrawal of basolateral Ca\(^{2+}\) stops promptly and reverts almost completely in response to addition of 10 mM Ca\(^{2+}\) to the basolateral solution. Ca\(^{2+}\) channel blockers (Nifedipine, 1 and 3 \(\mu\)M; Verapamil, 0.3 mM) added to the apical solution have no influence on the effect of a high apical Ca\(^{2+}\) concentration, confirming previous findings (Lacaz-Vieira and Kachar, 1996) that the effect of apical Ca\(^{2+}\) is not mediated by Ca\(^{2+}\) entering the cells through apical Ca\(^{2+}\) channels. In conclusion, these results support the notion that apical Ca\(^{2+}\), crossing the open TJs, may reach the binding sites affecting TJ permeability. When a sufficient Ca\(^{2+}\) concentration is present in the apical solution, diffusion through normally closed TJs may be sufficient to raise the Ca\(^{2+}\) concentration at the binding sites as to overcome the withdrawal of Ca\(^{2+}\) from the basolateral solution.

Mg\(^{2+}\) Competes with Ca\(^{2+}\) for the Binding Sites

These experiments use the fact just described that open TJs allow access of apical ions to the binding sites that affect the TJs. The presence of Mg\(^{2+}\) in the apical solution causes a concentration-dependent inhibition of TER recovery in response to Ca\(^{2+}\). The effect of apical Mg\(^{2+}\) starts to be noticed at apical concentrations at or above 5 mM. Fig. 6 shows an example in which 20 mM Mg\(^{2+}\) in the apical bathing medium practically abolishes the recovery of TER that occurs in response to the reintroduction of basolateral Ca\(^{2+}\). The subsequent withdrawal of Mg\(^{2+}\) then triggers a drop of TER that starts with an extremely short delay after the Ca\(^{2+}\) removal. In the absence of basolateral Ca\(^{2+}\), the introduction of 10 mM Ca\(^{2+}\) into the apical solution (+Ca\(_{ap}\) = 10) leads to an almost complete recovery of TER. A full recovery of TER is attained when 1 mM Ca\(^{2+}\) is added to the basolateral fluid. The vertical deflections of SCC, caused by pulses of \(\pm 1\) mV in the clamping potential, are proportional to the overall tissue electrical conductance (G), where G = 1/TER.

La\(^{3+}\) Causes TJ Opening in the Presence of Ca\(^{2+}\)

These experiments were carried out in NaCl HEPES Ringer’s solution to prevent precipitation of La\(^{3+}\) in bicarbonate Ringer’s solution due to the formation of poorly soluble lanthanum bicarbonate. Addition of La\(^{3+}\) (2 \(\mu\)M, as La(NO\(_3\))\(_3\)) to the basolateral Ringer’s
solution (in the presence of Ca\(^{2+}\)) causes a drop of TER (Fig. 7A) with lag phases and time courses similar to those observed in response to basolateral Ca\(^{2+}\) withdrawal (Fig. 7B). A subsequent removal of La\(^{3+}\) from the basolateral solution promotes a recovery of TER similar to what is observed when Ca\(^{2+}\) is readmitted to the basolateral solution after being previously removed. Higher concentrations of La\(^{3+}\) (>1 mM) may slow the quick recovery that follows its removal. This effect of basolateral La\(^{3+}\) on TER, observed in the presence of a normal Ca\(^{2+}\) concentration, characterizes a Ca\(^{2+}\) antagonistic effect of La\(^{3+}\).

Addition of La\(^{3+}\) (2 μM as La(NO\(_3\))\(_3\)) to the apical solution (75 mM KCl) causes no effect on TER as it does when added to the basolateral solution. This indicates that the normally closed TJs of the urinary bladder are sufficiently restrictive to hamper the movement of the trivalent La\(^{3+}\) ion, preventing it from reaching the Ca\(^{2+}\) binding sites that, as previously seen, are readily accessible to La\(^{3+}\) from the basolateral aspect of the tissue. After La\(^{3+}\) removal from the apical bathing fluid (Fig. 8), tissues respond to the withdrawal of basolateral Ca\(^{2+}\) as a fresh tissue. Conversely, the addition of La\(^{3+}\) (2 μM) to the apical solution after the permeability of the TJs had been increased in response to basolateral Ca\(^{2+}\) removal has two distinct effects (Fig. 8B): (a) apical La\(^{3+}\) promptly terminates the process of TER decrease, and (b) its presence in the apical compartment blocks TER recovery that takes place in response to basolateral Ca\(^{2+}\) addition. The first effect resembles that of Ca\(^{2+}\), Cd\(^{2+}\), and Mn\(^{2+}\). The second indicates that open TJs permit La\(^{3+}\) to enter from the apical side and reach the Ca\(^{2+}\) binding sites that control TJ function, acting as if La\(^{3+}\) had been added to the basolateral fluid.

Discussion

The present study deals with the interactions of metal ions with the extracellular Ca\(^{2+}\)-binding sites that modulate the TJs in the frog urinary bladder. Focus was addressed to the early events associated with TJ opening and closing.

The dependence of TER, which reflects the degree of permeability of the TJs on basolateral Ca\(^{2+}\) concentration was evaluated to characterize the dependence of the TJ regulatory system of the frog urinary bladder on the external Ca\(^{2+}\) concentration. The steep dependence of TER on [Ca\(^{2+}\)]\(_{bl}\) with a \(K_m\) of 62 ± 28 μM and a Hill coefficient of 8.6 ± 0.9 (n = 5), indicates a high Ca\(^{2+}\) affinity of the extracellular Ca\(^{2+}\) sites and is in agreement with other tissues, such as MDCK (González-Mariscal et al., 1990) and A6 (Jovov et al., 1994) cell monolayers.

The results with the intracellular Ca\(^{2+}\) chelator indicate that a rise of intracellular Ca\(^{2+}\) concentration is not a critical step in the resealing of TJs induced by...
raising the basolateral Ca$^{2+}$ concentration. Nonetheless, it cannot be ruled out that a sudden increase of cytosolic Ca$^{2+}$ concentration may activate, at least transiently, the mechanism of TJ sealing. However, a complete and stable recovery of the TJ seal was only obtained upon addition of Ca$^{2+}$ to the basolateral solution. Our findings are in agreement with observations in monolayers of human cervical cell line CaSki, where the effects of extracellular Ca$^{2+}$ on TJ permeability were found not to be mediated by mobilization of cytosolic Ca$^{2+}$ (Wild et al., 1997). On the other hand, the observations with the Ca$^{2+}$ ionophore recalls the findings in A6 cell monolayers, where an increase of cytosolic Ca$^{2+}$ concentration induced by the ionophore A-23187 caused recovery of the TJ seal (Jovov et al., 1994).

The result of a prolonged extracellular Ca$^{2+}$ withdrawal has been described as causing a progressive disarray of the TJ structure in natural epithelia or in cell-cultured monolayers. In short-term experiments,
However, Ca2+ removal is not accompanied by gross distortions of freeze-fracture images (Martinez-Palomo and Erlij, 1975; Martinez-Palomo et al., 1980; Lacaz-Vieira and Kachar, 1996), indicating that the rapid phase of TER drop after Ca2+ withdrawal might result from subtle alterations of the TJs structure not detectable by conventional methods.

The finding that the alkaline earth metals, Mg2+ and Ba2+, used as controls, were ineffective both in keeping the TJs closed and inducing the rescaling of previously opened TJs is in concordance with findings in MDCK cell monolayers where Mg2+ and Ba2+ were also ineffectual in promoting junction rescaling (Martinez-Palomo et al., 1980; Contreras et al., 1992).

The transition elements, Mn2+ and Cd2+, behave as Ca2+ agonists since, in the absence of basolateral Ca2+, they promote stability of the TJs and halt almost instantly the TJ opening process triggered by basolateral Ca2+ removal. These effects of Mn2+ and Cd2+, which resemble the action of Ca2+, might result from their interaction with E-cadherin molecules that are mostly concentrated in the zonula adhaerens (Boller et al., 1985) and are known to be involved in the assembly of the junctional complex (Gumbiner et al., 1988). In addition, Mn2+ promotes an almost complete recovery of TER, closely resembling the effect of extracellular Ca2+. This effect of Mn2+ is in harmony with the observation in the toad urinary bladder, where Mn2+ and Sr2+ were able to revert the rapid fall of TER that takes place when Ca2+ was withdrawn from the medium (Lipson et al., 1965). In contrast, in the bullfrog gastric mucosa, Sr2+ does not promote recovery of the junctional seal (Forte and Nauss, 1963); in MDCK cell monolayers, only Ca2+ was effective in triggering TJ formation during a Ca2+ switch; Mg2+, Ba2+, Mn2+, and Cd2+ were ineffective (Contreras et al., 1992). These results show that major differences can be found among tissues and, for the sake of consistency, one given tissue must be thoroughly studied.

E-cadherin, in addition to its affinity for Ca2+ (Ringwald et al., 1987), also binds Cd2+, as can be inferred from binding experiments with E-CAD1, a recombinant 145-residue polypeptide that corresponds to one of the extracellular Ca2+-binding regions of E-cadherin (Prozialeck et al., 1996). In contrast to our experiments, where Cd2+ stabilizes the TJs in the closed state and interrupts the TJ opening process that is triggered by basolateral Ca2+ removal, recent studies show that Cd2+ can selectively damage the TJs between LLC-PK1 cells (Prozialeck et al., 1995) and human proximal tubule cells (Hazen Martin et al., 1993) and causes disruption of the TJ-associated microfilaments in rat Sertoli cells (Hew et al., 1993). It is conceivable that this discrepancy might result from the duration of Cd2+ contact with the preparation. In our case, brief tissue exposures to Cd2+ might have prevented the onset of major toxic effect, which might have been the cause of TJ disruption in other structures. Consequently, our short-term experiments apparently permit us to dissociate an agonistic effect of Cd2+ on the TJs from a less specific toxic effect.

How could Cd2+ stabilize the TJs in closed state, halt the TJ opening process but, at the same time, be unable to promote recovery to the TJ seal? A reasonable interpretation would be that Cd2+ acts as a Ca2+ agonist but, in addition, it presents toxic side effects that develop at a slower pace, preventing the recovery of the TJ seal. The possibility cannot be discarded that Cd2+ (as well as Ca2+ and Mn2+), in addition to interacting with E-cadherin, acts by bridging junctional sites at the level of the TJs themselves. This interpretation is supported by experiments in MDCK cell monolayers prefixed with glutaraldehyde, where Ca2+ removal still caused a pronounced drop of TER (Martinez-Palomo et al., 1980). In disharmony, however, is the observation that in junctional complex–enriched fractions from mouse liver, Ca2+ chelation with EGTA does not disrupt the negative-stained images of zonulae occcludentes (Stevenson and Goodenough, 1984).

The fact that Cd2+ does not leave a residual, apparently toxic, effect when its contact with the tissue takes place in the presence of Ca2+ may result from a competitive interaction with Ca2+ for a common binding site, which most probably is E-cadherin. In support of this interpretation are the observations in LLC-PK1 cell monolayers that Cd2+ shows a higher binding affinity at low (0.1 mM) than at high (10 mM) Ca2+ concentrations (Prozialeck and Lamar, 1993), and also the experiments of Cd2+ binding to E-CAD1, a Ca2+ binding polypeptide analog of E-cadherin (Prozialeck et al., 1996).

Previous studies in frog skin (Castro et al., 1993) and urinary bladder (Lacaz-Vieira and Kachar, 1996) have shown that apical Ca2+ may reach the sites that control the TJs when the permeability of the TJs was increased. As Ca2+ channel blockers in the apical solution did not block the effect of apical Ca2+ (Lacaz-Vieira and Kachar, 1996), it can be inferred that apical Ca2+, passing through partially opened TJs, may reach the sites that affect the TJs located at the zonula adhaerens. In the present study, we explored in more detail this subject and showed that at concentrations higher than those of the Ringer’s solution, apical Ca2+ is able to effectively fulfill the role of basolateral Ca2+, maintaining the TJs closed or even causing the resealing of open TJs in the absence of basolateral Ca2+. The fact that to be effective apical Ca2+ concentrations must be higher than that needed in the basolateral solution is reasonable if we take into consideration the diffusion barrier imposed by the TJs before Ca2+ reaches the zonula adhaerens.
The fact of Mg\(^{2+}\) competitively inhibiting the Ca\(^{2+}\)-induced recovery of open TJs means that Mg\(^{2+}\) interacts with the Ca\(^{2+}\) binding sites, despite the fact that this interaction, in the absence of Ca\(^{2+}\), has no effect whatsoever on the stability of the TJs, the halting of the opening process, or recovery of the TJ seal. This competitive inhibition is in agreement with findings in A6 cell monolayers (Jovov et al., 1994).

Another aspect of the interaction of Mg\(^{2+}\) with the TJ regulatory system is the dissociation between the ability of basolateral Ca\(^{2+}\) to stop almost instantly the process of TJ opening, which is preserved, and the ability to induce the recovery of TER, which is abolished by Mg\(^{2+}\). This dualistic behavior may be regarded as an argument in favor of a dual effect of Ca\(^{2+}\). The preserved effect could be due to the formation of ionic bridges between components in adjacent cells or, most likely, Ca\(^{2+}\)-induced changes in E-cadherin adhesiveness (Ringwald et al., 1987). The other, slower, abolished by Mg\(^{2+}\), is the recovery of the TJ seal, presumably resulting from a rearrangement of the TJ molecular organization mediated by cell signaling triggered by the interaction of Ca\(^{2+}\) with E-cadherin.

The fact that 200 \(\mu\)M La\(^{3+}\) causes a reversible TJ opening in the presence of 1 mM Ca\(^{2+}\) characterizes an antagonistic effect for Ca\(^{2+}\) in an apparent competitive interaction. Interaction of La\(^{3+}\) with Ca\(^{2+}\) binding sites has been studied in different structures (Weiss, 1974). La\(^{3+}\) is a modulator of gating activity of ionic channels (Takata et al., 1966; Vogel, 1974; Hille et al., 1975; Armstrong and Cota, 1990; Watkins and Mathie, 1994), a potent Ca\(^{2+}\) channel blocker (Nelson, 1987; Poncet et al., 1992; Clarke et al., 1994), and may also act as a Ca\(^{2+}\) agonist (Powis et al., 1994). These effects may result from the fact that La\(^{3+}\), by virtue of an effective ionic radius (1.10 Å) similar to that of Ca\(^{2+}\) (1.06 Å) (Snyder et al., 1990) and a valence higher than Ca\(^{2+}\), is expected to bind at Ca\(^{2+}\) sites more tightly than does Ca\(^{2+}\). The action of La\(^{3+}\) on the TJs is a complicated matter since different effects have been described. Our present finding that La\(^{3+}\) promotes TJ opening in the presence of Ca\(^{2+}\) contrasts with those in MDCK cells, where La\(^{3+}\) was used as a Ca\(^{2+}\) channel blocker and found not to interfere with junction sealing (Contreras et al., 1992), with neurophysiological experiments (where La\(^{3+}\) was used as a TJ blocker) (Sostman and Simon, 1991; Simon, 1992; Bryant and Moore, 1995; Wang et al., 1993), and with experiments in A6 cell monolayers, where a toxic effect was reported (Jovov et al., 1994). In the frog skin, however, the reversible opening of the TJs by an apical hypertonicity (Ussing, 1965) was made irreversible by the presence of La\(^{3+}\) in the apical solution (Erlij and Martinez-Palomo, 1972), indicating that La\(^{3+}\) interacted with open TJs, preventing their rescaling. Transient effects of La\(^{3+}\) on TER and changes of ion selectivity have been described in rabbit gallbladder and ileum (Machen et al., 1972). Studies of protein Ca\(^{2+}\) sites have indicated that La\(^{3+}\) is often able to effectively replace bound Ca\(^{2+}\) because of the proximity of their effective ionic radius and because many Ca\(^{2+}\) sites bind both divalent and trivalent metal ions with high affinity (Brittain et al., 1976; Hörrocks, 1984). Comparison of the dissociation constants for the binding of spherical metal ions from groups IA, IIA, IIA, and lantanides indicates that both charge and size are important parameters in determining the specificity of the protein binding sites (Snyder et al., 1990).

The ability of La\(^{3+}\) to open TJs in the presence of Ca\(^{2+}\) is a relevant matter to the general use of La\(^{3+}\) in the evaluation of the permeability of TJs in epithelial and endothelial membranes (Arendt, 1991; Unakar et al., 1991; Vu et al., 1992; Shirai and Ikemoto, 1992;)

Table 1

TJs	Uvomorulin
\(\text{Ca}^{2+}, \text{Mn}^{2+}, \text{and Cd}^{2+}\) confer stability to the TJs, but not to Mg\(^{2+}\) or Ba\(^{2+}\).	\(\text{Ca}^{2+}, \text{Mn}^{2+}, \text{and Cd}^{2+}\) confer trypsin resistance to Umt (an 84kD fragment of uvomorulin) and trigger the recognition of Umt by a monoclonal antibody. Mg\(^{2+}\) and Ba\(^{2+}\) are ineffective.
\(\text{Ca}^{2+}\) and Mn\(^{2+}\) are able to trigger the rescaling of TJs previously opened by Ca\(^{2+}\) removal. Cd\(^{2+}\) is ineffective and apparently has a toxic effect upon the epithelial cells. Mg\(^{2+}\) and Ba\(^{2+}\) were ineffective.	\(\text{Ca}^{2+}\) and Mn\(^{2+}\) (but not Cd\(^{2+}\), which is toxic to cells) prevent EC cells or morulae from decompacting in Ca\(^{2+}\)-free medium. Mg\(^{2+}\) and Ba\(^{2+}\) were ineffective.
La\(^{3+}\) did not confer stability to the TJs. In addition, La\(^{3+}\) in the presence of Ca\(^{2+}\) reverts the Ca\(^{2+}\)-dependent stability of the TJs, thus behaving as an inhibitor of the Ca\(^{2+}\) action.	\(\text{La}^{3+}\) did not protect Umt against trypsin digestion. In addition, \(\text{La}^{3+}\) in the presence of Ca\(^{2+}\) reverts the Ca\(^{2+}\)-induced protection, thus behaving as an inhibitor of Ca\(^{2+}\) action.
\(\text{La}^{3+}\) effect is reversible upon La\(^{3+}\) removal.	\(\text{The inhibitory action of La}^{3+}\) upon the Ca\(^{2+}\) effect is reversible upon La\(^{3+}\) removal.
La3⁺ electron micrographs of TJs in different structures in which interpretation are studies (with high resolution electron microscopy technique yielded false positive results (Pelletier, 1994). It is conceivable that in this case some TJs could have been opened by the effect of La3⁺ before the action of fixatives could have taken place. Supporting this interpretation are studies (with high resolution electron micrographs of TJs in different structures in which La3⁺ was used during fixation) that have given no evidence that these junctions were permeable to colloidal lanthanum (Overton, 1968; Brightman and Reese, 1969; Goodenough and Revel, 1970), in contrast to experiments in which La3⁺ was perfused in living tissue (Schatzki, 1969, 1971), where there are evidences of lanthanum passage through the TJs.

To conclude, it is rewarding to compare (Table I) the effects of Ca2⁺ and metal ions upon uvomorulin (E-cadherin) in a study of early embryogenesis (Hyafil et al., 1981), where the authors concluded that uvomorulin undergoes a Ca2⁺ (or Mn2⁺ - or Cd2⁺)-dependent transition from a trypsin-sensitive to a trypsin-resistant conformation that favors recognition of uvomorulin by a monoclonal antibody and triggers cell compaction in early embryogenesis, and the findings of the present study. The close similarity of behavior observed in those two systems in response to similar treatments is a strong indication that the modulation Ca2⁺ and other metal ions exert on the TJs is most importantly mediated through their interaction with E-cadherin molecules.

This project was supported by grants 96/3367-5 from Fundação de Amparo à Pesquisa do Estado de São Paulo, and 521860/94-3 and 303635/85-9 from Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil.

Original version received 23 June 1997 and accepted version received 8 September 1997.

REFERENCES

Adamson, R.H., and C.C. Michel. 1993. Pathways through the intercellular clefs of frog mesenteric capillaries. J. Physiol. (Camb.). 466:303–327.

Arendt, T. 1991. Penetration of lanthanum through the main pancreatic duct epithelium in cats following exposure to infected human bile. Dig. Dis. Sci. 36:75–81.

Armstrong, C.M., and G. Cota. 1990. Modification of sodium channel gating by lanthanum. Some effects that cannot be explained by surface charge theory. J. Gen. Physiol. 96:1129–1140.

Balda, M.S., L. González-Mariscal, R.G. Contreras, M. Macias-Silva, M.E. Torres-Marquez, J.A. García Sáinz, and M. Cereijido. 1991. Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J. Membr. Biol. 122:193–202.

Balda, M.S., L. González-Mariscal, K. Matter, M. Cereijido, and J.M. Anderson. 1993. Assembly of the tight junction: the role of diacylglycerol. J. Cell Biol. 123:293–302.

Bhat, M., D. Toledo Velasquez, L. Wang, C.J. Malanga, J.K. Ma, and Y. Rojanasakul. 1993. Regulation of tight junction permeability by calcium mediators and cell cytoskeleton in rabbit tracheal epithelium. Pharm. Res. 10:991–997.

Boller, K., D. Vestweber, and R. Kemler. 1985. Cell-adhesion molecule uvomorulin is localized in the intermediate junction of adult intestinal epithelial cells. J. Cell Biol. 100:327–332.

Brightman, M.W., and T.S. Reese. 1969. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40:648–677.

Brittain, H.G., F.S. Richardson, and R.B. Martin. 1976. Ter-
Devalia, J.L., R.W. Godfrey, R.J. Sapsford, N.J. Severs, P.K. Jeffery, and R.J. Davies. 1994. No effect of histamine on human bronchial epithelial cell permeability and tight junctional integrity in vitro. Eur. Respir. J. 7:1958–1965.

Einspahr, H., and C.E. Bugg. 1984. Crystal structure studies of calcium complexes and implications for biological systems. Metal Ions Biol. Syst. 17:51–97.

Erlij, D., and A. Martinez-Palomo. 1972. Opening of tight junctions in frog frog by hypertonic urea solutions. J. Membr. Biol. 9:229–240.

Forte, J.G., and A.H. Nauss. 1963. Effect of calcium removal on bullfrog gastric mucosa. Am. J. Physiol. 205:631–637.

Galli, P., B.P. Camilli, and J. Meldolesi. 1976. Extracellular calcium and the organization of tight junctions in pancreatic acinar cells. Exp. Cell. Res. 99:178–183.

González-Marisical, L., B. Chávez de Ramírez, and M. Cereijido. 1985. Tight junction formation in cultured epithelial cells (MDCK). J. Membr. Biol. 86:113–125.

Greenough, D.A., and J.P. Revel. 1970. A fine structural analysis of the intercellular junctions in the mouse liver. J. Cell Biol. 45:272–290.

Gorodeski, G.I., W.W. Jin, and U. Hopfer. 1997. Extracellular Ca2+ directly regulates tight junctional permeability in the human cervical cell line CaSk. Am. J. Physiol. 272:C511–C524.

Gumbiner, B., B.R. Stevenson, and A. Grimaldi. 1988. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of epithelial junctional complex. J. Cell Biol. 107:1575–1587.

Hara, K., M. Yoshizuka, Y. Doi, and S. Fujimoto. 1994. Effect of bis(tributyl tin) oxide on permeability of the blood-brain barrier: a transient increase. J. Membr. Biol. 156:172–176.

Hays, R.M., B. Singer, and S. Malamed. 1965. The effect of calcium withdrawal on the structure and function of the toad bladder. J. Cell. Biol. 25:195–208.

Hazan Martin, D.J., J.H. Todd, M.A. Scos, W. Khan, J.E. Bylander, B.J. Smyth, and D.A. Sens. 1993. Electrical and freeze-fracture analysis of the effects of ionic cadmium on cell membranes of human proximal tubule cells. Environ. Health Perspect. 101:510–516.

Hew, K.W., G.L. Hiiwa, and M.J. Welsh. 1993. Cadmium in vivo causes disruption of tight junction-associated microfilaments in rat Sertoli cells. Biol. Reprod. 49:840–849.

Hille, B., A.M. Woodhull, and B.I. Shapiro. 1975. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions and pH. Philos. Trans. R. Soc. Lond. B Biol. Sci. 270:301–318.

Hochman, J.H., J.A. Fix, and E.L. LeCluyse. 1994. In vitro and in vivo analysis of the mechanism of absorption enhancement by palmitoylcarnitine. J. Pharmacol. Exp. Ther. 269:813–822.

Horrocks, W.D.J. 1984. Lanthanide ion luminescence in coordination chemistry and biochemistry. Prog. Org. Chem. 31:1–104.

Hyafil, F., C. Babinet, and F. Jacob. 1981. Cell–cell interactions in early embryogenesis: a molecular approach to the role of calcium. Cell. 26:447–454.

Josov, B., S.A. Lewis, W.E. Crowe, J.R. Berg, and N.K. Wills. 1994. Role of intracellular Ca2+ in modulation of tight junction resistance in A6 cells. Am. J. Physiol. 266:F775–F784.

Lacaz-Vieira, F. 1986. Sodium flux in the apical membrane of the toad skin: aspects of its regulation and the importance of the ionic strength of the outer solution upon the reversibility of amiloride inhibition. J. Membr. Biol. 92:27–36.

Lacaz-Vieira, F., and B. Kachar. 1996. Tight junction dynamics in the frog urinary bladder. Cell Adhes. Commun. 4:53–68.

Lipson, S., R. Dodelson, and R. Hays. 1965. Multivalent cations and cell adhesion. Clin. Res. 13:237.

Martin, R.B. 1984. Bioorganic chemistry of calcium. Metal Ions Biol. Syst. 17:1–49.

Martinez-Palomo, A., D. Erlij, and H. Bracho. 1971. Localization of permeability barriers in the frog skin epithelium. J. Cell Biol. 50:277–287.

Martinez-Palomo, A., I. Meza, G. Beatty, and M. Cereijido. 1980. Experimental modulation of occluding junctions in a cultured transporting monolayer. J. Cell Biol. 87:730–745.

Pelletier, R.-M. 1994. Blood barriers of the epididymis and vas deferens: regression analysis of variance and experimental designs. Richard D. Irwin, Inc. Homewood, Illinois. pp. 842.

Overduin, M., T.S. Harvey, S. Bagby, K.I. Tong, P. Yau, M. Takechi, and M. Ikura. 1995. Solution structure of the epithelial cadherin domain responsible for selective cell adhesion [see comments]. Science (Wash. DC). 267:380–389.

Overtor, J. 1968. Localized lanthanum staining of the intestinal brush border. J. Cell Biol. 38:447–452.

Palant, C.E., M.E. Duffey, B.K. Mookerjee, S. Ho, and C.J. Bentzel. 1983. Ca2+ regulation of tight junction permeability and structure in Necturus gallbladder. Am. J. Physiol. 245:C203–C212.

Pelletier, R.-M. 1994. Blood barriers of the epididymis and vas deferens act asynchronously with the blood barrier of the testis in the mink (Mustela vison). Microsc. Res. Tech. 27:333–349.

Pietka, D.R., B.N. Taggart, and S.T. Hamamoto. 1983. Effects of extracellular calcium depletion on membrane topography and occluding junctions of mammary epithelial cells in culture. J. Cell Biol. 96:613–624.

Poncet, V., J. Merot, and P. Poujeol. 1992. A calcium-permeable channel in the apical membrane of primary cultures of the rabbit distal bright convoluted tubule. Pflügers Archiv. 422:112–119.

Pows, D.A., C.L. Clark, and K.J. O'Brien. 1994. Lanthanum can be transported by the sodium-calcium exchange pathway and directly triggers catecholamine release from bovine chromaffin cells. Cell Calcium. 16:377–390.

Prozialeck, W.C., D.R. Wellington, T.L. Mosher, P.C. Lamar, and R.A. Ladfaga. 1995. The cadmium-induced disruption of tight junctions in LLC-PK1 cells does not result from apoptosis. Life Sci. 57:PL199–PL204.

Prozialeck, W.C., P.C. Lamar, and M. Ikura. 1996. Binding of cadmium (Cd2+) to E-CAD1, a calcium-binding polypeptide analog of E-cadherin. Life Sci. 58:PL225–330.
Prozialeck, W.C., and P.C. Lamar. 1993. Surface binding and uptake of cadmium (Cd2+) by LLC-PK1 cells on permeable membrane supports. Arch. Toxicol. 67:113–119.

Ringwald, M., R. Schuh, D. Vestweber, H. Eistetter, F. Lottspeek, J. Engel, R. Dözl, F. Jähnig, J. Epplen, S. Mayer, et al. 1987. The structure of cell adhesion molecule uvomorulin. Insights into the molecular mechanism of Ca2+-dependent cell adhesion. EMBO (Eur. Mol. Biol. Organ.) J. 6:3647–3653.

Rodwell, V.W. 1996. Enzymes: kinetics. In Harper’s Biochemistry. R.K. Murray, D.K. Granner, P.A. Mayes, and V.W. Rodwell, editors. 75–90.

Schatzki, P.F. 1969. Bile canaliculus and space of Disse. Electron microscopic relationships as delineated by lanthanum. Lab. Invest. 20:87–93.

Schatzki, P.F. 1971. The passage of radioactive lanthanum from the biliary to the vascular system. An electron microscopic and radioactive tracer study. Z. Zellforsch. Mikrosk. Anat. 119:451–459.

Sedar, A.W., and J.G. Forte. 1964. Effects of calcium depletion on the junctional complex between oxyntic cells of gastric glands. J. Cell Biol. 22:173–188.

Shirai, T., and I. Ikemoto. 1992. Mechanism of alcoholic testicular damage. Nippon Hinyokika Gakkai Zasshi. 83:305–314.

Simon, S.A. 1992. Influence of tight junctions on the interaction of salts with lingual epithelia: responses of chorda tympani and lingual nerves. Mol. Cell. Biochem. 114:43–48.

Snyder, E.E., B.W. Buoscio, and J.J. Falke. 1990. Calcium(II) site specificity: effect of size and charge on metal ion binding to an EF-hand-like site. Biochemistry. 29:3937–3943.

Sostman, A.L., and S.A. Simon. 1991. Trigeminal nerve responses in the rat elicited by chemical stimulation of the tongue. Arch. Oral Biol. 36:95–102.

Stevenson, B.R., and A. Goodenough. 1984. Zonulae occludentes in junctional complex-enriched fractions from mouse liver: preliminary morphological and biochemical characterization. J. Cell Biol. 98:1290–1221.

Strynadka, N.C.J., and M.N.G. James. 1989. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu. Rev. Biochem. 58:951–998.

Stuart, R.O., A. Sun, M. Panichas, S.C. Hebert, B.M. Brenner, and S.K. Nigam. 1994. Critical role for intracellular calcium in tight junction biogenesis. J. Cell Physiol. 159:425–433.

Takata, M., W.F. Pickard, J.Y. Lettvin, and J.W. Moore. 1966. Ionic conductance changes in lobster axon membranes when lanthanum is substituted for calcium. J. Gen. Physiol. 50:461–471.

Tisher, C.C., and W.E. Yarger. 1973. Lanthanum permeability of the tight junction (zonula occludens) in the renal tubule of the rat. Kidney Int. 3:238–250.

Unakar, N.J., M.J. Johnson, and K. Hynes. 1991. Permeability studies in neonatal rat lens epithelium. Lens Eye Toxic. Res. 8:75–99.

Ussing, H.H. 1965. Relationship between osmotic reactions and active sodium transport in the frog skin epithelium. Acta Physiol. Scand. 63:141–155.

Van Driessche, W., and W. Zeiske. 1980. Ba2+-induced conductance fluctuations of spontaneously fluctuating K+ channels in the apical membrane of frog skin (Rana pipiens). J. Membr. Biol. 56:31–42.

Vogel, W. 1974. Calcium and lanthanum effects on the nodal mem- trane. Pflügers Archiv. 350:25–30.

Vu, D.D., B. Tuchweber, P. Raymond, and I.M. Yousef. 1992. Tight junction permeability and liver plasma membrane fluidity in lithocholate-induced cholestasis. Exp. Mol. Pathol. 57:47–61.

Wang, Y., R.P. Erickson, and S.A. Simon. 1993. Selectivity of lingual nerve fibers to chemical stimuli. J. Gen. Physiol. 101:843–866.

Watkins, C.S., and A. Mathie. 1994. Modulation of the gating of the transient outward potassium current of rat isolated cerebellar granule neurons by lanthanum. Pflügers Archiv. 428:209–216.

Weiss, G.B. 1974. Cellular pharmacology of lanthanum. Annu. Rev. Pharmacol. 14:343–354.

Whitembury, G., and F.A. Rawlins. 1971. Evidence of a paracellular pathway for ion flow in the kidney proximal tubule: electron-microscopic demonstration of lanthanum precipitate in the tight junction. Pflügers Archiv. 330:302–309.

Wild, G., K. Madsen, and A.B.R. Thomson. 1997. Intestinal tight junctions and their importance in health and disease: role of dietary lipids. J. Nutr. Biochem. 8:2–12.

Wills, N.K., and L.P. Millinoff. 1990. Amiloride-sensitive Na+ transport across cultured renal (A6) epithelium: evidence for large currents and high NaK selectivity. Pflügers Archiv. 416:481–492.

Zhong, Y., K. Enomoto, H. Isomura, N. Sawada, T. Minase, M. Oyamada, Y. Konishi, and M. Mori. 1994. Localization of the 7H6 antigen at tight junctions correlates with the paracellular barrier function of MDCK cells. Exp. Cell Res. 214:614–620.