Non-motor predictors of 36-month quality of life after subthalamic stimulation in Parkinson disease

Stefanie T. Jost1✉, Veerle Visser-Vandewalle2, Alexandra Rizos3, Philipp A. Loehrer4, Monty Silverdale5, Julian Evans5, Michael Samuel3, Jan Niklas Petry-Schmelzer1, Anna Sauerbier1,6, Alexandra Gronostay1, Michael T. Barbe1, Gereon R. Fink2,7, Keyoumars Ashkan3, Angelo Antonini8, Pablo Martinez-Martin9, K. Ray Chaudhuri1

INTRODUCTION

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established therapy with long-term efficacy improving motor symptoms, quality of life (QoL), and non-motor symptoms (NMS) in patients with Parkinson’s disease (PD).1-5 Previous research also demonstrated beneficial effects of STN-DBS on QoL compared to medical treatment6-8. However, on the individual level, 43–49% of patients experience no clinically relevant improvement of QoL postoperatively at 6-month follow-up.6,9,10 Furthermore, there is Class 1 evidence that in 36% of pairs of patients treated either with best medical treatment alone or with STN-DBS, medical treatment alone results in better QoL outcomes than STN-DBS.5 Identifying preoperative factors that predict QoL outcome could support the decision-making process for DBS eligibility and improve individual treatment results. Amongst other parameters younger age, worse baseline QoL, and specific NMS have been identified as predictors of more considerable QoL improvement at 6-month follow-up. However, it is unclear which demographic and clinical parameters influence the evolution of QoL beyond such a short-term follow-up. Therefore, we investigated predictors of QoL outcome after STN-DBS at 36-month follow-up and, based on previous studies with shorter follow-up periods, hypothesized that QoL outcome depends on demographic and non-motor predictors as well as baseline QoL.

RESULTS

Of 129 patients screened, 73 patients (43 male) were included in the final analysis (see Fig. 1). The mean age at baseline was 62.0 years (SD = 8.3) and disease duration 10.3 years (SD = 4.7). The mean time to follow-up was 3.0 years (SD = 0.31).

Clinical outcomes at baseline, 6-month, and 36-month follow-up

Friedman tests revealed significant differences between the three visits for all outcome scores (see Table 1). In post hoc tests comparing baseline and 36-month follow-up, we observed significant longitudinal changes for the NMSS total score (P = 0.037), SCOPA-motor examination (P = 0.001), and -motor complications (P < 0.001), and significant sustained levodopa equivalent daily dose (LEDD) reduction (P < 0.001). No significant changes at 36-month follow-up were found for the PDQ-8 SI

Published in partnership with the Parkinson’s Foundation

1University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany. 2University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne, Germany. 3Parkinson Foundation International Centre of Excellence, King’s College Hospital, London, UK. 4Department of Neurology, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany. 5Department of Neurology and Neurosurgery, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Greater Manchester, UK. 6Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK. 7Cognitive Neuroscience, Institute of Neurosciences and Medicine (INM-3), Research Centre Jülich, Jülich, Germany. 8Department of Neurosciences (DNS), Padova University, Padova, Italy. 9Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain. ✉A list of authors and their affiliations appears at the end of the paper. ✉✉email: stefanie.jost@uk-koeln.de; haidar.dafsari@uk-koeln.de

npj Parkinson’s Disease (2021) 7:48; https://doi.org/10.1038/s41531-021-00174-x
Table 1. Outcome parameters at preoperative baseline and postoperative 6-month and 36-month follow-up.

	Baseline	6-month follow-up	36-month follow-up	p*	Post hoc tests
PDQ-8 Summary Index	73 32.8 16.8	69 23.6 14.9	73 31.1 20.2	<0.001	a
NMSS-total score	73 57.3 34.9	69 39.1 24.6	73 47.6 31.4	<0.001	a b
SCOPA					
Motor examination	73 11.3 5.5	66 8.1 5.0	64 8.7 4.8	<0.001	a b
Activities of daily living	73 7.2 3.4	69 5.3 2.9	72 6.7 3.6	<0.001	a
Motor complications	73 4.9 3.0	69 2.2 2.5	71 2.3 2.4	<0.001	a b
LEDD	73 114.6 508.2	69 550.1 339.0	72 722.7 469.4	<0.001	a b
MMSE	73 29.0 1.1	69 28.9 3.7	65 28.9 1.4	0.128	

LEDD levodopa equivalent daily dose, MMSE Mini-Mental State Examination, NMSS Non-Motor Symptom Scale, PDQ-8 8-item Parkinson's Disease Questionnaire, SCOPA Unified Parkinson Disease Rating Scale, SD standard deviation.

Post hoc comparisons (Wilcoxon signed rank or t test):

- a = significant difference between baseline vs 6-month follow-up (p < 0.05)
- b = significant difference between baseline vs 36-month follow-up (p < 0.05)

Correlation analyses

Table 2 shows correlations between PDQ-8 SI change score (baseline vs. 36-month follow-up) and demographic variables and preoperative clinical scores. Significant correlations were found between PDQ-8 SI changes and PDQ-8 SIbaseline (moderate strength) and agebaseline (weak). Correlations between improvement in PDQ-8 SI and NMSS items at baseline showed significant associations with the items “difficulty experiencing pleasure” (NMSS-12baseline, r = 0.24, P = 0.041), “concentration” (NMSS-16baseline, r = 0.34, P = 0.003), and “urinary frequency” (NMSS totalbaseline, r = 0.27, P = 0.022). We observed no significant correlation between these NMSS items at baseline. A partial correlation between PDQ-8 SI change score and NMSS-12baseline was still significant after controlling for NMSS-12baseline (r = 0.31, P = 0.007).

Linear regression analysis

Univariate regression analyses were performed using the variables with a P < 0.2 in the correlation analyses as candidate predictors. This additionally included the items “fainting” (NMSS-2baseline, r = −0.17, P = 0.157), “hallucinations” (NMSS-13baseline, r = 0.18, P = 0.131), “forget things or events” (NMSS-17baseline, r = 0.17, P = 0.157), “interest in sex” (NMSS-25baseline, r = 0.21, P = 0.082), and “pain” (NMSS-27baseline, r = 0.22, P = 0.063). Univariate regression analyses with change in PDQ-8 SI at 36-month follow-up as the criterion variable was significant for the following independent variables: PDQ-8 SI at baseline (β = 0.42, P < 0.001), age at baseline (β = −0.29, P = 0.012), and NMSS totalbaseline (β = −0.26, P = 0.025). For the multivariate regression analysis, we excluded the variable NMSS totalbaseline due to high intercorrelation with PDQ-8 SI at baseline (r = 0.65, P < 0.001). In the stepwise multivariate regression analysis, the variables agebaseline, NMSS item 2baseline, NMSS item 12baseline, and NMSS item 16baseline remained significant. The multivariate model accounted for 36% of the variance (R² = 0.40) in PDQ-8 SI at 36-month follow-up.
The odds of QoL improvement were increased by ~5% with every additional 10 points of baseline non-motor burden in the NMSS-total at the optimal trade-off point (C-statistic = 0.78). The model reached 75.0% sensitivity and 73.3% specificity. The cut-off for a clinically relevant change in PDQ-8 SI at 36-month follow-up was 8.4 points (± 2.8). The odds of 36-month QoL improvement by ~5% (odds ratio [OR] = 1.054, CI = 0.895–1.280, P = 0.001) was observed for patients with younger age at baseline decreased the odds of 36-month QoL improvement by ~5% (odds ratio [OR] = 0.949, confidence interval [CI] = 0.895–1.007, P = 0.082). Furthermore, the odds of QoL improvement were increased by ~5% with every additional point of baseline QoL impairment in the PDQ-8 SI baseline (OR = 1.004, CI = 1.002–1.006, P = 0.008) and by ~14% for every additional 10 points of baseline non-motor burden in the NMSS-total score baseline (OR = 1.004, CI = 0.999–1.002, P = 0.004). Moreover, specific NMSS items had a predictive value: one additional point in NMSS-12baseline (“difficulties experiencing pleasure”) increased the odds of QoL improvement by 46% (OR = 1.462, CI = 1.054–2.028, P = 0.023) and in NMSS-16baseline (“concentration”) by 30% (OR = 1.302, CI = 1.064–1.593, P = 0.010).

A logistic regression model using the aforementioned parameters (agebaseline, PDQ-8 SIbaseline, NMSS-totalbaseline, NMSS-12baseline, and NMSS-16baseline) correctly classified 75.3% of patients into groups of long-term QoL “responders/non-responders” (Nagelkerke’s R² = 0.338, χ² = 0.9, P = 0.001, n = 73) as opposed to only 61.6% without predictors. The model reached 75.0% sensitivity and 73.3% specificity at the optimal trade-off point (C-statistic = 0.779, P < 0.001, CI = 0.667–0.892, see Fig. 2).
Soulas et al.12 However, other studies found no association between age and changes in QoL.13 This inconsistency might be explained by the fact that calendar age may not predict QoL. Instead, QoL after STN-DBS may be associated with ‘physiological age’. For example, frailty and co-morbidities may impact QoL post STN-DBS more than calendar age.14 In line with previous research, other sociodemographic parameters, such as sex and disease duration were not significantly correlated with long-term change of QoL.15

Confirming results of earlier studies with shorter follow-up periods, the dosage of dopaminergic medication at preoperative baseline was not associated with QoL outcome.13 In line with previous studies with follow-up periods up to 5 years, motor examination did not predict QoL changes.1,9,16 In line with previous studies with follow-up periods up to 5 years, motor examinations did not predict QoL changes. Daniels et al.17 reported that the cumulative daily OFF time is the strongest predictor for improvement in disease-related QoL after DBS at 6-month follow-up. Further studies including cumulative OFF time with a longer follow-up are needed.

To our knowledge, this is the first report of a significant relationship between more severe preoperative QoL impairment and greater postoperative QoL improvement at 36-month follow-up. This is in line with previous studies, that reported a relationship between these parameters at 6-month and 24-month follow-up.17 Every additional point in the PDQ-8 SI at baseline increased the odds of favorable long-term QoL outcome by 5%. The strength of the association is in line with the results of our previous study at short-term follow-up9 and the Cleveland Clinic cohort results18, emphasizing the essential role of baseline QoL for the prediction of even long-term QoL outcome and also demonstrating the validity of our results. Our results are in line with several previous studies which have demonstrated that higher baseline QoL impairments predict greater postoperative QoL improvement at short-term follow-up.3,6,10. In contrast, a study by Lezcano et al.16 has observed that lower less severe QoL impairments could predict greater QoL improvement at 1- and 5-year follow-up. These differences could be explained by demographic and clinical parameters in the study by Lezcano et al., such as a longer mean disease duration (13.2 years) and higher mean baseline PDQ impairments (41.1 points), than in the present study (10.3 years and 32.8 points).16,16,16. In the multivariate model, anhedonia, age, concentration problems and fainting contributed toward explaining QoL outcome at 36-month follow-up, whereas baseline QoL did not add to the predictive value of this model. This means that, although baseline QoL was a significant predictor of QoL change at 36-month follow-up in the univariate analysis, its contribution in the multivariate model was dominated by the other four variables mentioned earlier.

In the present study, specific preoperative NMS, namely more severe anhedonia and problems with sustaining concentration, were predictors for greater QoL improvement. The predictive potential of depressive symptoms is in line with the results at 6-month follow-up in a previous study of our group9 and 8-month follow-up in the Cleveland Clinic cohort19. The present study results also extend the time frame of a 24-month follow-up study by Schuepbach et al. which reported greater QoL improvement in patients with worse baseline scores in two depression scales (Beck Depression Inventory and Montgomery-Asberg Depression Rating Scale).13 One must acknowledge, that preoperative psychological interviews and strict formal testing resulted in a highly selected cohort with low baseline depression similar to other cohorts.2,17,17. Therefore, the observation that worse baseline depression results in greater QoL improvements is only valid for patients with minimal or subclinical depression. More severe preoperative depression is a known risk factor for postoperative attempted or completed suicide.18

Furthermore, we observed that patients with greater baseline concentration deficits experienced greater QoL improvements at 36-month follow-up. The relationship between baseline concentration and QoL changes remained significant after controlling for anhedonia. Floden et al. and Witt et al. have reported that higher preoperative verbal memory deficits (Rey Auditory Verbal Learning Test single-trial memory and Dementia Rating Scale-2) are predictors of more unsatisfactory postoperative QoL outcome at 6- and 8-month follow-up.10,19 Concentration/attention deficits are often accompanied by global cognition impairment in patients with PD. However, in our cohort, multi-disciplinary team assessments included expert neuropsychological assessments with formal testing of global cognition scores, psychiatric interviews, and neurological examinations to identify risks of adverse outcomes in patients with poor preoperative global cognition as these patients have a higher risk to progress to dementia. Strict indication assessments resulted in normal global cognition at baseline which remained stable at 6- and 36-month follow-up. Therefore, in this highly selected cohort, a higher burden of isolated concentration deficits constituted a predictor of greater QoL improvement. Future studies in larger cohorts including formal testing of concentration are warranted to confirm this finding.

To our knowledge, our study is the first to report an association between the presence of preoperative fainting and worse QoL outcome at 36-month follow-up. This finding is in line with the observation that cardiovascular symptoms, such as fainting/syncopes, worsen at 36-month follow-up and have a marked negative impact on QoL.20

Some limitations of our study should be acknowledged. One important limiting factor is the underrepresentation of patients with severe NMS, such as clinically relevant psychiatric disorders or cognitive impairment, as these patients were not eligible for DBS. Although the cohort size of the present study (n = 73) is limited, it is still one of the largest beyond short-term follow-up. Furthermore, the multicenter design of our study increases external validity by reducing bias caused by single-center studies. We did not systematically assess apathy, which could have improved our prediction model, as patients with negative QoL outcome showed higher preoperative apathy scores in previous research.21 QoL was assessed with the PDQ-8, which may be less sensitive to small QoL changes than the PDQ-39 due to a reduced scale gradation resulting from fewer items.22 Due to the focus on QoL and non-motor aspects of PD, we did not conduct assessments of motor examination in pre- or postoperative medication or stimulation OFF states and we did not assess other motor aspects, such as the cumulative daily OFF time or severity of dyskinesia. Future studies are needed to further explore a possible predictive potential of these parameters. Another limitation is that severe disease progression can result in patients being lost to follow-up which could introduce a systematic bias in studies with longer follow-up periods.23

Also, the variability of the exact location of stimulation in the target area might be relevant for postoperative QoL improvement,24 but was not investigated in the present study as we focused on preoperative predictors of QoL outcome. A recent study by Petry-Schmelzer et al. reported that non-motor outcomes, such as mood/apathy and attention/memory, depend on the location of neurostimulation and are correlated with QoL outcome.24-26 These results and the predictive value of baseline anhedonia and concentration deficits observed in the present study highlight the importance of assessments of a wide range of NMS which may have implications for DBS programming to achieve optimal long-term QoL outcomes.

The observation of greater QoL improvements at 36-month follow-up in patients with younger age at intervention, worse preoperative QoL, worse preoperative anhedonia and concentration problems, and less autonomic dysfunction, such as fainting, highlight the importance of preoperative assessments of a wide range of motor and nonmotor symptoms. Our results, therefore, contribute to the long-term goal of identifying patients who
experience more considerable postoperative QoL improvement and optimizing patient selection for STN-DBS.

METHODS

Study design

In this ongoing, prospective, observational, multicenter international study (Cologne, London, Manchester), we examined patients with PD undergoing STN-DBS as part of the DBS arm of the NILS study at preoperative baseline, 6-month, and 36-month follow-up postoperatively. Patients were screened between 06/2011 and 07/2017. The study was conducted under the Declaration of Helsinki. Study protocols had been approved by the local ethics committees (Cologne, study no.: 12-145; German Clinical Trials Register: DRKS00006735; United Kingdom: NIHR portfolio, number: 10084; National Research Ethics Service South East London REC 3, 10/H0808/141). All patients gave written informed consent before study procedures.

Participants

PD diagnosis was based on the UK Brain Bank criteria and patients were screened for DBS treatment according to the guidelines of the International PD and Movement Disorders Society. A sufficient levodopa responsiveness (>30% improvement in the Unified Parkinson’s Disease Rating Scale–III) was required for each patient. Furthermore, eligibility for STN-DBS was based on multi-disciplinary assessments including movement disorders specialists, stereotactic neurosurgeons, neuropsychologists, psychiatrists, and when necessary, speech therapists and physiotherapists. This led to the exclusion of patients with clinically relevant cognitive impairment and psychiatric diseases.

Clinical assessment

Clinical assessments were carried out under medication ON (MedON) at preoperative baseline and with neurostimulation ON and medication ON (MedON/StmON) at 6-month and 36-month follow-up.

The following scales and questionnaires were assessed:

1. QoL was investigated with the PD Questionnaire-8 (PDQ-8) reported as PDQ-8 Summary Index (PDQ-8 SI) ranging from 0 (no impairment) to 100 (maximum impairment). The PDQ-8 assesses eight aspects of QoL (mobility, activities of daily living, emotional wellbeing, stigma, social support, cognition, communication, bodily discomfort) and has been commonly used in PD and STN-DBS.

2. The clinician-rated NMS Scale (NMSS) contains 30 items over nine domains of NMS: cardiovascular, sleep/fatigue, mood/apathy, perceptual problems/hallucinations, attention/memory, gastrointestinal tract, urinary, sexual function, and miscellaneous (including pain, inability to smell/taste, weight changes, and sweating). Symptoms are surveyed over the last four weeks and therefore reflect ON and OFF states. The NMSS total score ranges from 0 (no impairment) to 450 (maximum impairment).

3. Motor examination, activities of daily living, and motor complications were assessed with the Scales for Outcomes in PD (SCOPA) -motor examination, -activities of daily living, and -motor complications. The SCOPA is an abbreviated version of the Unified PD Rating Scale. It strongly correlates with the corresponding parts of the Unified PD Rating Scale and was used here as its administration time is approximately four times shorter than the MDS-Unified PD Rating Scale. SCOPA subscales range from 0 (no impairment) to 42 (motor examination), 21 (activities of daily living), and 12 (motor complications). Motor examinations were conducted by movement disorders specialists.

4. Global cognition was assessed with the Mini-Mental State Examination (MMSE) which ranges between 0 (maximum impairment) and 30 (no impairment).

5. To record the medical regimen, we calculated the LEDD following Tomlinson et al.

Statistical analysis

Longitudinal outcome changes. Statistical analyses were performed using SPSS Statistics 26. The Kolmogorov-Smirnov test was applied to check the assumption of normality. Longitudinal outcome changes between the three visits were analyzed with Friedman tests or repeated-measures analyses of variance when parametric test criteria were fulfilled. Post hoc, we calculated Wilcoxon signed-rank and t-tests, respectively, to compare outcome changes between pairs of visits. Benjamini-Hochberg correction was applied to account for multiple testing. The presented P-values were adjusted to the significance threshold \(P < 0.05 \) unless stated otherwise.

Correlation analyses. The relationship between changes in QoL scores and preoperative demographic and clinical parameters was explored using Spearman correlations, respectively. Pearson correlations for normally distributed variables. PDQ-8 SI change score (mean Testbaseline – mean Testfollow-up) was correlated with the following variables: agebaseline, sex, disease duration since diagnosis, NMSS total score, PDQ-8 SI change score as criterion variable. Multiple-collinearity was checked using intercorrelations between candidate predictor variables \((r > 0.6)\) and Variance Inflation Factors, which should not exceed 10.

Logistic regression analyses and receiver operating characteristics. Furthermore, the cohort was divided into groups of patients with clinically relevant QoL improvement and patients reporting stable/worsened QoL at 36 months. Each patient was classified as a long-term QoL “responder” or “non-responder” based on a presigned threshold (½ SD of PDQ-8 Sibaseline) to report clinically important differences. We employed exploratory logistic regression models and receiver operating characteristic analyses with dichotomized QoL outcome as criterion variable and demographic and preoperative clinical parameters as predictor variables to evaluate the utility of linear regression models to predict patients’ postoperative long-term QoL changes. Moreover, we analyzed differences of baseline characteristics between “responders”/“non-responders” using Mann–Whitney U tests or t-tests, respectively. To explore the relationship between QoL outcome changes and specific NMS, all analyses were explored for NMSS item scores.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

DATA AVAILABILITY

The data included in this study are available on request to the corresponding author. The data are not publicly available due to their containing information that could compromise the privacy of the participants.

CODE AVAILABILITY

Statistical analyses were performed using SPSS Statistics 26. SPSS codes are available upon reasonable request to the corresponding authors.

Received: 3 September 2020; Accepted: 19 February 2021; Published online: 08 June 2021

REFERENCES

1. Krack, P. et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N. Engl. J. Med. 349, 1925–1934 (2003).
2. Deuschl, G. et al. A randomized, controlled trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 355, 896–908 (2006).
3. Schuepbach, W. M. M. et al. Quality of life predicts outcome of deep brain stimulation in early Parkinson disease. Neurology 92, e1109–e1120 (2019).
4. Dafarli, H. S. et al. Beneficial effects of bilateral subthalamic stimulation on alexithymia in Parkinson’s disease. Eur. J. Neurol. 26, 222–e217 (2019).
5. Irmen, F. et al. Left prefrontal connectivity links subthalamic stimulation with depressive symptoms. Ann. Neurol. 87, 962–975 (2020).
6. Daniels, C. et al. Is improvement in the quality of life after subthalamic nucleus stimulation in Parkinson’s disease predictable? Mov. Disord. 26, 2516–2521 (2011).
7. Williams, A. et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol. 9, 581–591 (2010).
8. Jost, S. T. et al. A prospective, controlled study of non-motor effects of subthalamic stimulation in Parkinson’s disease: results at the 36-month follow-up. J. Neurol. Neurosurg. Psychiatry 91, 687–694 (2020).
9. Dafarsi, H. S. et al. Short-term quality of life after subthalamic stimulation depends on non-motor symptoms in Parkinson’s disease. Brain Stimul. 11, 867–874 (2018).
10. Flenad, D. Cooper, S. E., Griffith, S. D. & Machado, A. G. Predicting quality of life outcomes after subthalamic nucleus deep brain stimulation. Neurology 83, 1627–1633 (2014).
11. Carter, J. V., Pan, J., Rai, S. N. & Galandiuk, S. ROC-ing along: evaluation and interpretation of receiver operating characteristic curves. Surgery 159, 1638–1645 (2016).
12. Soulas, T., Sultan, S., Guruchaga, J. M., Palfi, S. & Fenelon, G. Depression and coping as predictors of change after deep brain stimulation in Parkinson’s disease. World Neurosurg. 75, 525–532 (2011).
13. Siderowf, A. et al. Long-term effects of bilateral subthalamic nucleus stimulation on health-related quality of life in advanced Parkinson’s disease. Mov. Disord. 21, 746–753 (2006).
14. DeLong, M. R. et al. Effect of advancing age on outcomes of deep brain stimulation for Parkinson’s disease. JAMA Neurol. 71, 1290–1295 (2014).
15. Chandran, S. et al. Gender influence on selection and outcome of deep brain stimulation for Parkinson’s disease. Ann. Indian Acad. Neurol. 16, 67–70 (2014).
16. Leczano, E. et al. Long-term impact on quality of life of subthalamic nucleus stimulation in Parkinson’s disease. J. Neurol. 263, 895–905 (2016).
17. Dafarsi, H. S. et al. EuroInf 2: Subthalamic stimulation, apomorphine, and levodopa infusion in Parkinson’s disease. Mov. Disord. 34, 353–365 (2019).
18. Giannini, G. et al. Suicide and suicide attempts after subthalamic nucleus stimulation for Parkinson disease. J. Clin. Epidemiol. 116, 993–1000 (2020).
19. McCarthy, K., Ward, M., Romero Ortuno, R. & Kenny, R. A. Syncope, fear of falling and fall risk assessment in Parkinson’s disease: a mixed-method approach. J. Neurol. Neurosurg. Psychiatry 84, 1273–1281 (2013).
20. Luo, N. et al. Determination of the longitudinal validity and minimally important difference of the 8-item Parkinson’s Disease Questionnaire (PDQ-8). Mov. Disord. 24, 183–187 (2009).
21. Limousin, P. & Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurosci. 15, 234–242 (2019).
22. Petry-Schmelzer, J. N. et al. Non-motor outcomes depend on location of neurostimulation in Parkinson’s disease. Brain 142, 3592–3604 (2019).
23. Limousin, P. et al. Left prefrontal connectivity links subthalamic stimulation with depressive symptoms. Ann. Neurol. 87, 962–975 (2020).
24. Dafarsi, H. S. et al. Non-motor outcomes of subthalamic stimulation in Parkinson’s disease depend on location of active contacts. Brain Stimul. 11, 904–912 (2018).
25. Dafarsi, H. S. et al. Beneficial nonmotor effects of subthalamic and pallidal neurostimulation in Parkinson’s disease. Brain Stimul. 13, 1697–1705 (2020).
26. Jost, S. T. et al. Subthalamic stimulation improves quality of sleep in Parkinson disease: A 36-month controlled study. J. Parkinsons. Dis. 11, 323–335 (2021).
27. Lang, A. E. et al. Deep brain stimulation: preoperative issues. Mov. Disord. 21 (Suppl 14), S171–S196 (2006).
28. Florin, E. et al. Modulation of local field potential power of the subthalamic nucleus during isometric force generation in patients with Parkinson’s disease. Neuroscience 240, 106–116 (2013).
29. Jenkinson, C., Fitzpatrick, R., Peto, V., Greenhall, R. & Hymann, N. The PDQ-8: Development and validation of a short-form Parkinson’s Disease Questionnaire. Psychol. Health 12, 805–814 (1997).
30. Dafarsi, H. S. et al. Subthalamic stimulation improves quality of life of patients aged 61 year or older with short duration of Parkinson’s disease. Neuromodulation 21, 532–540 (2018).
31. Sauerbier, A. et al. Non-motor phenotyping of black and asian minority ethnicity compared to white individuals with Parkinson’s disease living in the United Kingdom. J. Parkinsons. Dis. 11, 299–307 (2021).
32. Dafarsi, H. S. et al. Beneficial effect of 24-month bilateral subthalamic stimulation on quality of sleep in Parkinson’s disease. J. Neurol. 267, 1830–1841 (2020).
33. Storch, A. et al. Nonmotor fluctuations in Parkinson disease: severity and correlation with motor complications. Neurology 80, 800–809 (2013).
34. Chaudhuri, K. R. et al. The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: results from an international pilot study. Mov. Disord. 22, 1901–1911 (2007).
35. Martinez-Martin, P. et al. The SCOPA-Motor Scale for assessment of Parkinson’s disease: a consistent and valid measure. J. Clin. Epidemiol. 58, 674–679 (2005).
36. Verbaan, D. et al. SPES/SCOPA, and MDS-UPDRS: formulas for converting scores of two motor scales in Parkinson’s disease. Parkinsonism Relat. Disord. 17, 632–634 (2011).
37. Tomlinson, C. L. et al. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 25, 2649–2653 (2010).
38. Grau, D. et al. Long-term outcomes of subthalamic nucleus deep brain stimulation in Parkinson’s disease. J. Neural Transm. 126, 309–318 (2019).
39. Myers, R. Classical and Modern Regression with Applications (Duxbury, 1990).
40. Norman, G. R., Sloan, J. A. & Wyrwich, K. W. Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. Med. Care 41, 582–592 (2003).

ACKNOWLEDGEMENTS

This paper is independent research funded by the German Research Foundation (Grant KFO 219).

AUTHOR CONTRIBUTIONS

S.T.J.—data acquisition, data analysis, drafting of the manuscript, tables and figures. V.V.—surgical intervention, critical revision of the manuscript. A.R.—data acquisition, critical revision of the manuscript. P.A.L.—data acquisition, critical revision of the manuscript. M.T.B.—data acquisition, critical revision of the manuscript. J.P.——data acquisition, critical revision of the manuscript. J.E.——data acquisition, critical revision of the manuscript. M.S.——data acquisition, critical revision of the manuscript. J.N.P.——data acquisition, critical revision of the manuscript. A.G.——critical revision of the manuscript. M.T.B.——data acquisition, critical revision of the manuscript. G.R.——data acquisition, critical revision of the manuscript. A.S.——data acquisition, critical revision of the manuscript. A.A.——critical revision of the manuscript. P.M.——study concept and design, critical revision of the manuscript. K.R.——study concept and design, data acquisition, critical revision of the manuscript. L.T.——data acquisition, critical revision of the manuscript. H.S.D.——study concept and design, data acquisition, critical revision of the manuscript.

FUNDING

Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS

S.T.J. reports no financial disclosures. Veerle Visser-Vandewalle is a member of the advisory boards and reports consultancies for Medtronic, Boston Scientific and St. Jude Medical. She received a grant from SAPIENS Steering Brain Stimulation. A.R. has received honorarium from UCB and was supported by a grant from Medtronic. P.A.L. was funded by the SUCCESS-Program of the University of Marburg, the Parkinson’s Foundation, and the Stiftung zur Förderung junger Neurowissenschaftler. M.S. has received honoraria from Bial, Britannia and Medtronic as well as grants from Parkinson’s UK, Michael J Fox Foundation, NHIR, BBSRC, Dystonia society and Innovate UK. Julian Evans reports no financial disclosures. M.S. has received honoraria for educational meetings/travel/accommodation from Medtronic, Abbott, and UCB; grants from Parkinson’s UK and Ipsen, and has acted as a consultant for Medtronic and Abbott. J.N.P.—S. has received travel grants from Boston Scientific. Anna Sauerbier reports no financial disclosures. Alexandra Gronostay reports no financial disclosures. M.T.B. received speaker’s honoraria from Medtronic, Boston Scientific, Abbott (formerly St. Jude), GE Medical, UCB, Apothekerverband Köln e.V. and Bial as well as research funding from the Felgenhauer-Stiftung, Forschungspool Klinische Studien (University of Cologne), Horizon 2020 (Gondola), Medtronic (ODIS), and Boston Scientific and advisory honoraria for the IQWIG. G.R.F. reports no financial disclosures. K.A. has received honoraria for educational meetings, travel and consultancy from Medtronic, St Jude Medical and Boston Scientific. A.A. reports personal consultancy fees from Zambon, AbbVie, Boehringer Ingelheim, GE, Neuroderm, Biogen, Bial, EVER Neuro Pharma, Therevance, Vectura grants from Chiesi Pharmaceuticals, Lundbeck, Horizon 2020 – PD, Pal Grant 825785, Ministry of Education University and Research (MIUR) Grant ARS01_01081, owns Patent WO2015110261-A1, owns shares from PD Neurotechnology Limited. P.M.—M. has received honoraria from Editorial Vigueria and Movement Disorder Society for lecturing in courses; from AbbVie for speaking in
experts’ meetings and from AbbVie and Zambon for participating in the Advisory Board of epidemiological studies. License fee payments for the King’s Parkinson’s Disease Pain Scale, and grants from the International Parkinson and Movement Disorder Society for development and validation of the MDS-Non-Motor Symptoms Scale. K.R.C. has received funding from Parkinson’s UK, NIHR, UCB, and the European Union; he received honoraria from UCB, Abbott, Britannia, US Worldmeds, and Otsuka Pharmaceuticals; and acted as a consultant for AbbVie, UCB, and Britannia. L.T. reports grants, personal fees and non-financial support from SAPIENS Steering Brain Stimulation, Medtronic, Boston Scientific and St. Jude Medical. H.S.D.’s work was funded by the Prof. Klaus Thiemann Foundation and the Felgenhauer Foundation and has received honoraria by Boston Scientific and Medtronic.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41531-021-0174-x.

Correspondence and requests for materials should be addressed to S.T.J. or H.S.D.

Reprints and permission information is available at http://www.nature.com/reprints

EUROPAR AND THE INTERNATIONAL PARKINSON AND MOVEMENT DISORDERS SOCIETY NON-MOTOR PARKINSON’S DISEASE STUDY GROUP

Roongroj Bhidayasiri10, Cristian Falup-Pecuraru11, Beomseok Jeon12, Valentina Leta13, Per Borghammer14, Per Odin15, Anette Schrag16, Alexander Storch17,18,19, Mayela Rodriguez Violante20, Daniel Weintraub21,22, Charles Adler23, Paolo Barone24, David J. Brooks25,26, Richard Brown27, Marc Cantillon28, Camille Carroli29, Miguel Croelho30, Tove Henriksen31, Michele Hu32,33, Peter Jenner34, Milica Kramberger35,36, Padma Kumar37, Mónica Kurtis38, Simon Lewis39, Irene Litvan40, Kelly Lyons41, Davide Martino42, Nicola Pavese50, Eero Pekkonen51, Ron Postuma52, Raymond Rosales53,54,55, Anthony Schapira56, Tanya Simuni57, Fabrizio Stocchi58, Indu Subramanian59, Michele Tagliati60, Michele Tinazzi61, Jon Toledo62,63, Yoshio Tsuboi64 and Richard Walker65

10Chulalongkorn Centre of Excellence for Parkinson’s Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand. 11Faculty of Medicine, Translavia University of Brașov, Brașov, Romania. 12Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea. 13King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK. 14Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark. 15University of Lund, Faculty of Medicine, Lund, Sweden. 16UCL Institute of Neurology, London, UK. 17Division of Neurodegenerative Diseases, Department of Neurology, Dresden University of Technology, Dresden, Germany. 18Department of Neurology, Dresden University of Technology, Dresden, Germany. 19German Center for Neurodegenerative Diseases (DZNE), Research Site Dresden, Dresden, Germany. 20Movement Disorders Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico. 21Department of Psychiatry and Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA. 22Parkinson’s Disease and Mental Illness Research, Education and Clinical Centers, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA. 23The Parkinson’s Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA. 24Center for Neurodegenerative Diseases (CEMAND), Neuroscience Section, University of Salerno, Salerno, Italy. 25Institute of Neurosciences, Newcastle University, Newcastle, UK. 26Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark. 27Department of Medicine, University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK. 28Reviva Pharmaceuticals, Inc, Santa Clara, CA, USA. 29Faculty of Medicine, University of Plymouth, Plymouth, UK. 30FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA. 31Movement Disorder Clinic, University Hospital of Bispebjerg, Copenhagen, NV, Denmark. 32Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, UK. 33Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK. 34Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK. 35Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden. 36Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia. 37Parkinson’s Disease Service for the Older Person, Rankin Park Centre, John Hunter Hospital, HNELHD, Newcastle, NSW, Australia. 38Functional Movement Disorders Unit, Movement Disorders Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain. 39Brain and Mind Centre, University of Sydney, Sydney, Australia. 40University of Health Sciences, Medical College, California, San Diego, CA, USA. 41University of Kansas Medical Center, Kansas City, KS, USA. 42Department of Clinical Neurosciences, University of Calgary & Hotchkiss Brain Institute, Canada, Canada. 43Harvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada. 44Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan. 45Parkinson Disease Research, Education, and Clinical Center, Philadelphia Veteran Affairs Medical Center, Philadelphia, PA, USA. 46Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA. 47Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia. 48Department of Neurosciences Movement Disorders Center, University of California, San Diego, USA. 49University of Kansas Medical Center, Kansas City, KS, USA. 50Clinical Neurosciences, University of Toronto, Toronto, ON, Canada. 51Department of Neurology, NYU School of Medicine, New York, USA. 52Movement Disorders Unit, Sant Pau Hospital and Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain. 53Neurology, National Hospital for Neurology & Neurosurgery, London, UK. 54Magnetic Resonance Centre & Positron Emission Tomography Centre, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK. 55Department of Neurology, University of Helsinki, Finland. 56Department of Neurology, University of Helsinki, Helsinki, Finland. 57Research Institute of McGill University Health Centre, Montréal, Canada. 58Department of Neurology and Psychiatry, University of Santo Tomas Hospital, Manila, Philippines. 59International Institute of Neuroscience, Saint Luke’s Medical Center, Manila, Philippines. 60Center for Neurodiagnostic and Therapeutic Services, Metropolitan Medical Center, Manila, Philippines. 61Department of Clinical Neurosciences, University College London (UCL) Institute of Neurology, Royal Free Campus, Rowland Hill Street, London, UK. 62Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. 63University and Institute for Research and Medical Care, IRCCS San Raffaele, Rome, Italy. 64Department of Neurology, Fukuoka University, Fukuoka, Japan. 65Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, Tyne and Wear, UK.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a notice to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021