Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Letter to the Editor

Tachycardia amongst subjects recovering from severe acute respiratory syndrome (SARS)

Suet-Ting Laua,*, Wai-Cho Yua, Ngai-Shing Moka, Ping-Tim Tsuia, Wing-Lok Tonga, Stella, W.C. Chengb

aDepartment of Medicine and Geriatrics, Princess Margaret Hospital, Lai Chi Kok, Kowloon, Hong Kong Special Administrative Region, China
bOccupational Therapy Department, Princess Margaret Hospital, Hong Kong Special Administrative Region, China

Received 12 April 2004; accepted 19 June 2004

Abstract

SARS is a new infection in humans caused by a novel coronavirus [1] with unknown medium- or long-term complications. Hong Kong reported a total of 1755 cases and 299 deaths. Palpitation in the form of tachycardia at rest and becoming more marked during mild exertion was noted amongst patients recovering from SARS. Possible causes are deconditioning [2], impaired pulmonary function, impaired cardiac function, cardiac arrhythmia, thyroid dysfunction, anaemia, autonomic dysfunction [3] and anxiety state. This prospective cross-sectional cohort study was conducted to assess the extent of tachycardia and identify possible cause for it.

Fifteen consecutive patients with resting heart rate of more than 90 beats per min (BPM) were recruited from the initial 100 patients who underwent lung function testing at about 2 months from onset of illness. All patients had at least 4-fold rise in SARS-coronavirus antibody titre. The resting 12-lead ECGs showed a sinus heart rate ranging from 90 to 109 BPM. Holter monitoring results are listed in Table 1. Overall heart rate faster than 100 BPM was observed during the daytime (9am–9pm) but not at night. No other arrhythmia was detected. Heart rate variability using the time domain analysis showed that the standard deviation of all normal RR interval (SDNN) was normal (\(\text{N} \leq 100 \text{ ms} \) in patients \(\text{b} \leq 60 \text{ years of age} \) and 97 ms in the 62-year-old patient) (Table 1). Signal-average ECG was within normal in all subjects. Echocardiography revealed no abnormality apart from the 62-year-old patient who had mild diastolic dysfunction.

Only one patient had a moderate restrictive pulmonary function defect (Table 1). Chest radiography findings, haemoglobin level, length of hospital stay, time elapsed after discharge, presence of complications, WHO Quality of Life (QOL) score and Monitored Functional Task Evaluation (MFTE) score [4] are shown in Table 2.

The normal CBP, ESR, LFT, LDH, CK, CRP, as well as results of clinical assessment, suggested that ongoing active disease is unlikely. Normal thyroid function tests excluded thyrotoxicosis. Although coronavirus infection had been demonstrated to cause an autoimmune myocard-
ditis in rabbits that may progress to dilated cardiomyopathy [5], normal troponin I, echocardiography and other negative cardiac investigations in our cohort excluded myocarditis and cardiomyopathy. Mild residual CXR changes, minor lung function impairment and normal blood gas makes pulmonary defect unlikely to be a significant cause of sinus tachycardia during normal activity.

This cohort of patients had more severe disease with a high proportion having various complications. The prolonged hospitalization of 18–54 days together with confinement at convalescence could lead to physical deconditioning. The QOL domain score was impaired (score < 75) in 11/15 in physical health, 13/15 in psychological well-being, with a very low score of ≤50 in six patients. MFTE score was less than 20 (range 17.6–19.7) in 10 patients indicating the presence of mild functional difficulties.

Deconditioning and anxiety state causes tachycardia in the daytime but not at night, and is compatible with the

Sex	Age	Min HR	Max HR	Mean HR	HR variability SDNN (ms, N>100ms)	FEV1 % predicted	TLC % predicted	DLCO/VA % predicted	PFT interpretation
M	25	50	141	87	133	97	97	103	Normal
F	30	46	154	77	181	107	102	127	Normal
F	25	47	153	84	167	71	78	120	Restrictive mild
M	40	52	136	82	131	86	101	92	Normal
F	34	61	152	85	104	78	90	128	Restrictive mild
F	28	53	145	91	123	52	78	95	Restrictive moderate
M	33	50	137	87	118	79	85	79	Restrictive mild
M	49	51	142	83	137	120	121	128	Normal
F	26	49	129	77	135	84	114	123	Normal
F	39	51	116	79	103	109	121	97	Normal
M	62	53	114	70	97	98	123	88	Normal
M	36	57	123	83	111	112	91	110	Normal
F	25	55	163	85	147	107	102	NA	Normal
M	26	54	147	83	122	79	82	97	Restrictive very mild
M	47	50	135	82	140	91	103	103	Normal

Age=Age in years; Min HR=Minimum heart rate beats per minute; Max HR=Maximum heart rate beats per minute; SDNN=Standard deviation mean RR interval; FEV1%=Force expiratory volume in the first second; TLC%=Total lung capacity; DLCO/VA%=Diffusing capacity for carbon monoxide corrected for alveolar volume; PFT=Pulmonary function test.

Table 2 Other factors
CXR finding

Mottling RLZ
N
Bilat shadowing
N
Bilat lower zone hazziness
Bilat lower zone hazziness
Bilat middle zone hazziness
Mild hazziness RLZ, LMZ
N
N
Bilat diffuse hazziness
N
N
Bilat lower zone hazziness

Hb=Haemoglobin level; LOS=Length of hospital stay; Discharge to PFT=Discharge to day of pulmonary function test in days; ICU=ICU Care; ITP=Idiopathic thrombocytopenic purpura; UTI=Urinary tract infection; CI=Chest infection; CD=Anxiety depression; SP=Steroid psychosis; Pne=Pneumomediastinum and subcutaneous emphysema; QOL=Quality of life score; MFTE=Monitoring functional task evaluation; *=Score ≤ 50; QOL score—Normal 75; MFTE score—Normal 20.
pattern observed in this cohort. In the absence of significant cardiac, pulmonary, thyroid and haematological dysfunction, we believe that sinus tachycardia is attributable to physical deconditioning and contributed by impaired psychological well-being. Appropriate rehabilitation programs should be instituted to enhance recovery of physical and psychological fitness.

Acknowledgements

We wish to thank the staff of the Medical and Geriatrics Department, the Electrodiagnostic Unit and the Occupational Therapy Department of Princess Margaret Hospital for their assistance with this project.

References

[1] Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003;348:1953–66.
[2] Raven PB, Welch-O’connor RM, Shi XO. Cardiovascular function following reduced aerobic activity. Med Sci Sports Exerc 1998 (July); 30(7):1041–52.
[3] Hasser EM, Moffitt JA. Regulation of sympathetic nervous system function after cardiovascular deconditioning. Ann N Y Acad Sci 2001; 940:454–68.
[4] Fong KNK, Ng BHP, Chow KKY, Chan PLC, Chin AMH, Chen WNK, et al. Reliability and validity of the monitored functional task evaluation (MFTE) for patients with chronic obstructive pulmonary disease (COPD). Hong Kong J Occup Ther 2001;11:10–7.
[5] Small JD, Aurelian L, Squire RA, Strandberg JD, Melby Jr EC, Turner TB, et al. Rabbit cardiomyopathy associated with a virus antigenically related to human coronavirus strain 229E. Am J Pathol 1979;95(3):709–29.