CONTINUOUS MAXIMAL REGULARITY ON SINGULAR MANIFOLDS AND ITS APPLICATIONS

YUANZHEN SHAO*

Department of Mathematics
Purdue University, 150 N. University Street
West Lafayette, IN 47907, USA

(Communicated by Irena Lasiecka)

Abstract. In this article, we set up the continuous maximal regularity theory for a class of linear differential operators on manifolds with singularities. These operators exhibit degenerate or singular behaviors while approaching the singular ends. Particular examples of such operators include differential operators defined on domains, which degenerate fast enough toward the boundary. Applications of the theory established herein are shown to the Yamabe flow, the porous medium equation, the parabolic p-Laplacian equation and the thin film equation. Some comments about the boundary blow-up problem, and waiting time phenomenon for singular or degenerate parabolic equations can also be found in this paper.

1. Introduction. The main objective of this article is to establish the continuous maximal regularity for a family of degenerate or singular elliptic operators on a class of manifolds with singularities, called singular manifolds. These results generalize the work in the previous paper [41]. The notion of singular manifolds used in this paper was first introduced by H. Amann in [3]. Roughly speaking, a manifold (M, g) is singular iff it is conformal to one whose local patches are of comparable sizes, and all transition maps and curvatures have uniformly bounded derivatives, i.e., $(M, g/\rho^2)$ has the aforementioned properties for some $\rho \in C^\infty(M, (0, \infty))$. In [23], it is shown that the class of all such $(M, g/\rho^2)$, called uniformly regular Riemannian manifolds, coincides with the family of complete manifolds with bounded geometry if we restrict ourselves to manifolds without boundary.

In [5], the author built up the L_p-maximal regularity for a family of second-order elliptic operators satisfying a certain ellipticity condition, called uniformly strongly ρ-elliptic. By this, the author means that the principal part $-\text{div}(C(\tilde{a}, \text{grad} u))$ of a differential operator fulfills

$$(C(\tilde{a}, \xi|\xi)|g)_{\rho^2} \sim \rho^2|\xi|^2_{g^*},$$

for any cotangent field ξ. Here \tilde{a} is a symmetric $(1,1)$-tensor field on (M, g), and $C(\cdot, \cdot)$ denotes complete contraction. See Section 3 for the precise definition. If two

2010 Mathematics Subject Classification. 53C44, 58J99, 35K55, 35K65, 35K67, 35R01.

Key words and phrases. Riemannian manifolds with singularities, continuous maximal regularity, degenerate parabolic equations, geometric evolution equations, the Yamabe flow, the porous medium equation, the parabolic p-Laplacian equation, the thin film equation, boundary blow-up problem, waiting time phenomenon.

* Corresponding author: Yuanzhen Shao.
real-valued functions f and g are equivalent in the sense that $f/c \leq g \leq cf$ for some $c \geq 1$, then we write $f \sim g$. These operators, as we can immediately observe from the above relationship, can exhibit degenerate or singular behaviors while approaching the singular ends. In [5], H. Amann also looked at manifolds with boundary. We generalize this concept of uniformly strong ρ-ellipticity to elliptic operators of arbitrary even order acting on tensor bundles. A linear operator

$$A := \sum_{r=0}^{2l} C(a_r, \nabla^r)$$

of order $2l$, where a_r is a $(\sigma + \tau + r, \tau + \sigma)$-tensor field, is said to be uniformly strongly ρ-elliptic if its principal symbol, defined by

$$\hat{\sigma}A^\pi(p, \xi(p)) := C(a_{2l}, (-i\xi)^{\otimes 2l})(p) \in \mathcal{L}(T_pM^{\otimes \sigma} \otimes T_p^*M^{\otimes \tau}),$$

for every pair $(p, \xi) \in M \times \Gamma(M, T^*M)$ with $|\xi(p)|_{g^*(p)} \neq 0$, satisfies that for every (σ, τ)-tensor field η

$$(\hat{\sigma}A^\pi(p, \xi(p))\eta(p)|\eta(p)|_{g^*(p)}^2 \sim \rho^{2l}(p)|\eta(p)|_{g^*(p)}^2|\xi(p)|_{g^*(p)}^{2l}. \quad (1.1)$$

In Section 3.1, we show that this ellipticity condition can actually be replaced by a weaker one, called normal ρ-ellipticity, which means that $\hat{\sigma}A^\pi(p, \xi(p))$ satisfies

$$S := \Sigma_{r/2} \subset \rho(-\hat{\sigma}A^\pi(p, \xi(p))),$$

where $\Sigma_\phi := \{z \in \mathbb{C} : \arg z \leq \phi\} \cup \{0\}$, and for some $C_\tau > 0$

$$(\rho^{2l}(p)|\xi(p)|_{g^*(p)}^{2l} + |\mu|)\|((\mu + \hat{\sigma}A^\pi(p, \xi(p)))^{-1} \|_{\mathcal{L}(T_pM^{\otimes \sigma} \otimes T_p^*M^{\otimes \tau})} \leq C_\tau, \quad \mu \in S.$$

An operator A is said to belong to the class $\mathcal{H}(E_1, E_0)$ for some densely embedded Banach couple $E_1 \overset{d}{\rightarrow} E_0$, if $-A$ generates a strongly continuous analytic semigroup on E_0 with $\text{dom}(-A) = E_1$.

By imposing some mild regularity condition on the coefficients a_r of A, called s-regularity, more precisely,

$$a_r \in bc^s(M, V^{\sigma+r+r}_{r+\sigma}), \quad r = 0, 1, \cdots, 2l.$$

we are able to prove the following result.

Main Theorem. Let $s \in \mathbb{R}_+ \setminus \mathbb{N}$ and $\sigma, \tau \in \mathbb{R}$. Suppose that a $2l$-th order linear differential operator A is uniformly normally ρ-elliptic and s-regular. Then

$$A \in \mathcal{H}(bc^{s+2l, \sigma}(M, V^*_\sigma), bc^{s, \sigma}(M, V^*_\sigma)).$$

Here $u \in bc^{s, \sigma}(M, V^*_\sigma)$ iff $\rho^s u$ is a (σ, τ)-tensor field with little Hölder continuity of order s. The precise definition of weighted little Hölder spaces will be presented in Section 2.2. By means of a well-known result of G. Da Prato, P. Grisvard [17] and S. Angenent [8], this theorem yields the continuous maximal regularity property of A.

We illustrate the power of the main theorem by several examples.

Example 1. We take the manifold $(M, g) = (\mathbb{R}^m, g_m)$, i.e., the m-dimensional Euclidean space equipped with the usual Euclidean metric $(dx^1)^2 + \cdots (dx^m)^2$, and $\rho \equiv 1$. For simplicity, we assume that $\sigma = \tau = 0$. Then the weighted little Hölder space $bc^{s, \sigma}(M, V^*_\sigma)$ becomes the usual unweighted little Hölder space $bc^s(\mathbb{R}^m)$. By
setting $D_j := -i \frac{\partial}{\partial x^j}$ and using the standard multiindex notation, we can write A in the form

$$A = \sum_{|\alpha| \leq 2l} a_\alpha D^\alpha.$$

Then s-regularity means

$$a_\alpha \in bc^s(\mathbb{R}^m), \quad |\alpha| \leq 2l$$

and $\sigma A^\tau(x, \xi) = \sum_{|\alpha| = 2l} a_\alpha(x) \xi^\alpha$ for $\xi \in \mathbb{R}^m \setminus \{0\}$. Uniformly normal ρ-ellipticity means normally ellipticity, see [2], more precisely,

$$S := \Sigma_{\pi/2} \subset \rho(-\sigma A^\tau(x, \xi))$$

and

$$(1 + |\mu|)(|\mu + \sigma A^\tau(x, \xi)|^{-1}) \leq C_\tau, \quad \mu \in S$$

for all $(x, \xi) \in \mathbb{R}^m \times \mathbb{R}^m$ with $|\xi| = 1$ and some $C_\tau > 0$. By a well-known result of G. Da Prato and P. Grisvard [17], which was later generalized by S. Angenent [8], for every $u_0 \in bc^{s+2l}(\mathbb{R}^m)$ and $f \in C(J, bc^s(\mathbb{R}^m))$ for any $J = [0, T]$, the following Cauchy problem

$$\partial_t u + Au = f, \quad u(0) = u_0$$

has a unique solution $u \in C(J, bc^{s+2l}(\mathbb{R}^m)) \cap C^1(J, bc^s(\mathbb{R}^m))$. We would like to refer the reader to Section 3.1 for a similar result with lower initial regularity assumption. This result recovers the continuous maximal regularity result on Euclidean spaces. Coupled with a fixed point argument, it can be used to establish existence and uniqueness of solution to quasilinear or even fully nonlinear parabolic problems. For instance, we look at the following fully nonlinear equation

$$\partial_t u + A(u) = 0, \quad u(0) = u_0.$$

If the Fréchet derivative $\partial A(x)$ is uniformly normally ρ-elliptic and s-regular for all $x \in O \subset bc^{s+2l}(\mathbb{R}^m)$ open, then for each $u_0 \in O$ this equation has a unique solution $u \in C(J, bc^{s+2l}(\mathbb{R}^m)) \cap C^1(J, bc^s(\mathbb{R}^m))$.

Example 2. By taking $\rho = 1_M$, Theorem 1 fully recovers the results obtained in [41] on uniformly regular Riemannian manifolds. As in the previous example, we take $\sigma = \tau = 0$. The weighted little Hölder space $bc^{s,\sigma}(M, V_0^\sigma)$ becomes the unweighted space $bc^s(M)$. To understand this space $bc^s(M)$, we can choose an atlas \mathfrak{A} for the smooth m-dimensional manifold (M, g), called uniformly regular atlas, see Section 1.1 for more details. A function $u \in bc^s(M)$ iff its localization in every chart of \mathfrak{A} is in $bc^s(\mathbb{R}^m)$ in some uniform sense, where $m = \dim(M)$. See [41, Theorem 2.1]. Then the negative Laplace-Beltrami operator with respect to g defined by

$$-\Delta_g = -\text{div}_g \text{grad}_g,$$

where div_g is the divergence operator and grad_g is the gradient, is uniformly normally ρ-elliptic and s-regular for any s. Then Theorem 1 together with G. Da Prato, P. Grisvard and S. Angenent’s result implies that for any $u_0 \in bc^{s+2l}(M)$ and $f \in C(J, bc^s(M))$, (1.2) with $A = -\Delta_g$ has a unique solution. This solution, coupled with an argument as in Section 4.1, can be proved to be smooth jointly in time and space.

Note that the theory established in Example 2 can be considered as a generalization of the work on manifolds with cylindrical ends by R.B. Melrose [31, 32] and his collaborators.
Remark 1. In a very recent paper [7], H. Amann has proved the maximal regularity theory in continuous and L^p framework via a Fourier analytic method. This result applies to non-autonomous parabolic equations and extends the result in [41]. The reader may also refer to this paper for more examples of elliptic operators satisfying the conditions in Theorem 1 on manifolds with bounded geometry. See [7, Examples 1.6, 1.7] for example.

Now we explore some example of manifolds with singular ends.

Example 3. Assume that (S, g_S) is a smooth closed manifold and $I = (0, 1]$. Then the conical manifold (M, g) defined by

$$(M, g) := (I \times S, t^2 + t^2 g_S)$$

with singular function $\rho = t$ is a singular manifold. The corresponding negative Laplace-Beltrami operator $-\Delta_g$ associated with this metric g is $-t^{-2}(t\partial_t)^2 + (\dim S - 1)(t\partial_t) + \Delta_{g_S})$. The degenerate operator

$$-t^2 \Delta_g = -(t\partial_t)^2 - (\dim S - 1)(t\partial_t) - \Delta_{g_S}$$

is uniformly normally ρ-elliptic and s-regular for all s. Similar well-posedness and regularity result as in the previous two examples can be established for (1.2) with $A = -t^2 \Delta_g$.

Similar results also hold on manifolds with higher order singularities, for instance, manifolds with edge or corner ends. See [13, 36] for definitions of these manifolds.

At the same time, we would like to refer the reader to Section 3.2 for an application of Theorem 1 to parabolic equations with boundary degeneration.

The proof of the main theorem follows from the ideas in [41, Section 3]. The cornerstone of this proof is a properly defined retraction and coretraction system between weighted function spaces over manifolds and in Euclidean spaces, see Section 2.3 for the precise definition. This system enables us to apply the well-studied elliptic and parabolic theory in Euclidean spaces and translate it into the manifold framework.

One important feature of this paper is that it is application-oriented. We apply Theorem 1 to several well-known evolution equations. These results are stated in Section 4. As an example in geometric analysis, we show the well-posedness of the Yamabe flow on singular manifolds, in particular, with unbounded curvature. The Yamabe flow arises as an alternative approach to the famous Yamabe problem. It was introduced by R. Hamilton shortly after the Ricci flow, and studied extensively by many authors afterwards. The reader may consult [41, Section 5] for a brief historical account of this problem.

In addition to its application to geometric analysis, we also apply the main theorem to two well-known relatives of the heat equation, namely, the porous medium equation and the parabolic p-Laplacian equation, on a singular manifold (M, g). J.L. Vázquez [44, 45] proved existence and uniqueness of non-negative weak solutions of Dirichlet problems for the porous medium equation. In a landmark article [18], P. Daskalopoulos and R. Hamilton showed existence and uniqueness of smooth solutions for the porous medium equation, and the smoothness of the free boundary, namely, the boundary of the support of the solution, under mild assumptions on the initial data. In the past decade, there has been rising interest in investigating the porous medium equation on Riemannian manifolds. See [14, 19, 28, 33, 35, 47, 48] for example. Except for the recent article [35] by N. Roidos, E. Schrohe, all the other
research in this direction, to the best of my knowledge, is all restricted to the case of complete, or even compact, manifolds. In [35], the authors prove an existence and uniqueness result for porous medium equation with initial datum with a positive lower bound on conical manifolds by considering the bounded imaginary powers for the Laplace-Beltrami on Mellin-Sobolev spaces. The result that we state in Section 4.1 seems to be the first one concerning well-posedness of the porous medium equation with degeneracy on singular manifolds. Following the same strategy, we study the p-Laplacian equation, a nonlinear counterpart of the Laplacian equation, which is probably one of the best known examples of degenerate or singular equations in divergence form. In Section 4.3, we explore the parabolic p-Laplacian equation on a singular manifold (M,g):

$$
\begin{cases}
\partial_t u - \text{div}_g(\|\text{grad}_g u\|_g^{p-2}\text{grad}_g u) = f; \\
u(0) = u_0.
\end{cases}
$$

Here $p > 1$ with $p \neq 2$. This problem has been studied extensively on Euclidean spaces. The two books [21, 22] contain a detailed analysis and a historical account of this problem. There are several generalizations of the elliptic p-Laplacian equation on Riemannian manifolds. But fewer have been achieved for its parabolic version above. See [19] for instance. The study of these nonlinear heat equations also produces intriguing applications for degenerate boundary value problems or boundary blow-up problems. In Section 3.2, it is shown that any smooth domain (Ω, g_m) in \mathbb{R}^m with compact boundary can be realized as a singular manifold, where g_m denotes the Euclidean metric. Then we can prove the local existence and uniqueness of solutions to the following boundary blow-up problem for $1 < p < 2$ in little Hölder spaces.

$$
\begin{cases}
\partial_t u - \text{div}(\|Du\|^{p-2}Du) = 0 & \text{on } \Omega_T; \\
u = \infty & \text{on } \partial\Omega_T; \\
u(0) = u_0 & \text{on } \Omega
\end{cases}
$$

as long as the initial data u_0 belongs to a properly chosen open subset in some Hölder space. Here $\Omega_T := \Omega \times (0, T)$. See Remark 8 for more details.

Another application of the continuous maximal regularity theory established in this paper concerns parabolic equations with higher order degeneracy on domains with compact boundary. The order of the degeneracy is measured by the rate of decay in the ellipticity condition while approaching the boundary. See Theorem 3.3 for a precise description. This result extends the work in [24, 46] to unbounded domains and to higher order elliptic operators. In the last subsection, we prove a local existence and uniqueness theorem for a generalized multidimensional thin film equation

$$
\begin{cases}
\partial_t u + \text{div}(u^n D\Delta u + \alpha_1 u^{n-1} \Delta u Du + \alpha_2 u^{n-2} |Du|^2 Du) = f & \text{on } \Omega_T; \\
u(0) = u_0 & \text{on } \Omega
\end{cases}
$$

if the initial data decays sufficiently fast to the boundary of its support. Here α_1, α_2 are two constants, $n > 0$, and $\Omega \subset \mathbb{R}^m$ is a sufficiently smooth domain. This generalized model was first investigated by J.R. King in [27] in the one dimensional case. Later, a multidimensional counterpart has been studied with periodic boundary condition on cubes in [11]. An interesting waiting-time phenomenon can be observed from our approach. The mathematical investigation of the thin film

\textit{CONTINUOUS MAXIMAL REGULARITY ON SINGULAR MANIFOLDS 307}
equation was initiated by F. Bernis and A. Friedman in [10]. An intriguing feature of free boundary problems associated with degenerate parabolic equations is the waiting-time phenomenon of the supports of the solutions. This phenomenon has been widely observed and studied by many mathematicians. See [16, 20, 25, 26, 42] for example. The waiting-time phenomenon for the case \(\alpha_1, \alpha_2 = 0 \), the original thin film equation, has been explored in several of the papers listed above. Our result extends the results in the above literature for the generalized system (1.4).

It is worthwhile mentioning that sometimes to establish the theory for nonlinear parabolic equations, in some sense, is easier than that for linear equations. This surprising phenomenon can be observed from the heat equation

\[
\partial_t u - \Delta_g u = 0.
\]

Note that \(\Delta_g = C(g^*, \nabla^2) \). In this case, the principal symbol of \(\Delta_g \) can be computed as

\[
C(g^*, \xi^\otimes 2) = |\xi|^2 g^*.
\]

The power of the weight function \(\rho \) is different from (1.1) in this case. This breaks the uniform ellipticity conditions of the local expressions of the corresponding differential operators as we can observe from the discussion in Section 3 below. Linear differential operators with degeneracy other than \(\rho^2 \) have been investigated by many authors, including B.-W. Schulze [36, 37] and his collaborators. But these results depend heavily on the specific geometric structure near the singular ends. In two subsequent papers [39, 40], we treat second order differential operators with a different order of degeneracy from that in (1.1). In the nonlinear case, the nonlinearities sometimes give rise to the right power of \(\rho \) in (1.1), as is shown by the examples in Section 4.

This paper is organized as follows. In the rest of this introductory section, we give the precise definitions of uniformly regular Riemannian manifolds and singular manifolds. Section 2 is the stepstone to the theory of differential operators, where we define the weighted Hölder and little Hölder spaces on singular manifolds and introduce some of their properties, following the work of H. Amann in [3, 4]. In Section 3, we establish continuous maximal regularity for differential operators satisfying the conditions in Theorem 1. In the last section, several applications of continuous maximal regularity theory are presented.

1.1. Assumptions on manifolds: Following H. Amann [3, 4], let \((M, g) \) be a \(C^\infty \)-Riemannian manifold of dimension \(m \) with or without boundary endowed with \(g \) as its Riemannian metric such that its underlying topological space is separable. An atlas \(\mathcal{A} := \{ (O_\kappa, \phi_\kappa) : \kappa \in \mathcal{K} \} \) for \(M \) is said to be normalized if

\[
\phi_\kappa(O_\kappa) = \begin{cases}
Q^m, & O_\kappa \subset \text{int } M, \\
Q^m \cap \mathbb{H}^m, & O_\kappa \cap \partial M \neq \emptyset,
\end{cases}
\]

where \(\mathbb{H}^m \) is the closed half space \(\mathbb{R}^+ \times \mathbb{R}^{m-1} \) and \(Q^m \) is the unit cube at the origin in \(\mathbb{R}^m \). We put \(Q^m_\kappa := \phi_\kappa(O_\kappa) \) and \(\psi_\kappa := \phi_\kappa^{-1} \).

The atlas \(\mathcal{A} \) is said to have finite multiplicity if there exists \(K \in \mathbb{N} \) such that any intersection of more than \(K \) coordinate patches is empty. Put

\[
\mathcal{N}(\kappa) := \{ \tilde{\kappa} \in \mathcal{K} : O_{\tilde{\kappa}} \cap O_\kappa \neq \emptyset \}.
\]

The finite multiplicity of \(\mathcal{A} \) and the separability of \(M \) imply that \(\mathcal{A} \) is countable.

An atlas \(\mathcal{A} \) is said to fulfill the uniformly shrinkable condition, if it is normalized and there exists \(r \in (0, 1) \) such that \(\{ \psi_\kappa(rQ^m_\kappa) : \kappa \in \mathcal{K} \} \) is a cover for \(M \).

Following H. Amann [3, 4], we say that \((M, g) \) is a uniformly regular Riemannian manifold if it admits an atlas \(\mathcal{A} \) such that
In [23], we have shown that the class of uniformly regular Riemannian manifolds co-
k(\mathcal{R}^2), depends only on \(\rho_1, \rho_2\), \(A\ singularity\ structure\ data\ \(S\)\ to be singular of type \(A\ singular\ manifold\ manifolds\).

Similarly, \(C\ singular\ manifolds\) are defined by replacing the smoothness of \(\rho\) by \(\rho \in C^k(M, (0, \infty))\) and altering (S1)-(S3) accordingly.

(R1) \(\mathfrak{A}\) is uniformly shrinkable and has finite multiplicity. If \(M\) is oriented, then \(\mathfrak{A}\) is orientation preserving.

(R2) \(\|\varphi_\kappa \circ \psi_\kappa\|_{k, \infty} \leq c(k), \kappa \in \mathcal{R}, \eta \in \mathfrak{M}(\kappa), \) and \(k \in \mathbb{N}_0\).

(R3) \(\psi_\kappa g \sim g_m\), \(\kappa \in \mathcal{R}\). Here \(g_m\) denotes the Euclidean metric on \(\mathbb{R}^m\) and \(\psi_\kappa g\) denotes the pull-back metric of \(g\) by \(\psi_\kappa\).

(R4) \(\|\psi_\kappa g\|_{k, \infty} \leq c(k), \kappa \in \mathcal{R}\) and \(k \in \mathbb{N}_0\).

Here \(\|u\|_{k, \infty} := \max_{\|x\| \leq k} \|\partial^\alpha u\|_\infty\), and it is understood that a constant \(c(k)\), like in (R2), depends only on \(k\). An atlas \(\mathfrak{A}\) satisfying (R1) and (R2) is called a uniformly regular atlas. (R3) reads as

\[|\xi|^2/c \leq \psi_\kappa g(x)(\xi, \xi) \leq c|\xi|^2,\] for any \(x \in Q^m_\kappa, \xi \in \mathbb{R}^m, \kappa \in \mathcal{R}\) and some \(c \geq 1\).

In [23], we have shown that the class of uniformly regular Riemannian manifolds coincides with the family of complete Riemannian manifolds with bounded geometry, when \(\partial M = \emptyset\).

Assume that \(\rho \in C^\infty(M, (0, \infty))\). Then \((\rho, \mathcal{R})\) is a singularity datum for \(M\) if

(S1) \((M, g/\rho^2)\) is a uniformly regular Riemannian manifold.

(S2) \(\mathfrak{A}\) is a uniformly regular atlas.

(S3) \(\|\psi_\kappa \rho\|_{k, \infty} \leq c(k)\rho_\kappa, \kappa \in \mathcal{R}\) and \(k \in \mathbb{N}_0\), where \(\rho_\kappa := \rho(\psi_\kappa(0))\).

(S4) \(\rho_\kappa/c \leq \rho(p) \leq c\rho_\kappa, p \in O_\kappa\) and \(\kappa \in \mathcal{R}\) for some \(c \geq 1\) independent of \(\kappa\).

Two singularity data \((\rho, \mathcal{R})\) and \((\tilde{\rho}, \tilde{\mathcal{R}})\) are equivalent, if

(E1) \(\rho \sim \tilde{\rho}\).

(E2) \(\text{card}\{\tilde{\kappa} \in \tilde{\mathcal{R}} : O_{\tilde{\kappa}} \cap O_\kappa \neq \emptyset\} \leq c, \kappa \in \mathcal{R}\).

(E3) \(\|\varphi_\kappa \circ \psi_\kappa\|_{k, \infty} \leq c(k), \kappa \in \mathcal{R}, \tilde{\kappa} \in \tilde{\mathcal{R}}\) and \(k \in \mathbb{N}_0\).

We write the equivalence relationship as \((\rho, \mathcal{R}) \sim (\tilde{\rho}, \tilde{\mathcal{R}})\). (S1) and (E1) imply that

\[1/c \leq \rho_\kappa/\tilde{\rho}_{\tilde{\kappa}} \leq c, \kappa \in \mathcal{R}, \tilde{\kappa} \in \tilde{\mathcal{R}}\) and \(O_{\tilde{\kappa}} \cap O_\kappa \neq \emptyset\). \hspace{1cm} (1.5)

A singularity structure, \(\mathcal{S}(M)\), for \(M\) is a maximal family of equivalent singularity data. A singularity function for \(\mathcal{S}(M)\) is a function \(\rho \in C^\infty(M, (0, \infty))\) such that there exists an atlas \(\mathfrak{A}\) with \((\rho, \mathfrak{A}) \in \mathcal{S}(M)\). The set of all singularity functions for \(\mathcal{S}(M)\) is the singular type, \(\mathfrak{T}(M)\), for \(\mathcal{S}(M)\). By a singular manifold we mean a Riemannian manifold \(M\) endowed with a singularity structure \(\mathcal{S}(M)\). Then \(M\) is said to be singular of type \(\mathfrak{T}(M)\). If \(\rho \in \mathfrak{T}(M)\), then it is convenient to set \([\rho] := \mathfrak{T}(M)\) and to say that \((M, g/\rho)\) is a singular manifold. A singular manifold is a uniformly regular Riemannian manifold iff \(\rho \sim 1_M\).

We refer to [5, 6] for examples of uniformly regular Riemannian manifolds and singular manifolds.

A singular manifold \(M\) with a uniformly regular atlas \(\mathfrak{A}\) admits a localization system subordinate to \(\mathfrak{A}\), by which we mean a family \((\pi_\kappa, \zeta_\kappa)_{\kappa \in \mathcal{R}}\) satisfying:

(L1) \(\pi_\kappa \in \mathcal{D}(O_\kappa, [0, 1])\) and \((\pi_\kappa^2)_{\kappa \in \mathcal{R}}\) is a partition of unity subordinate to \(\mathfrak{A}\).

(L2) \(\zeta_\kappa := \varphi_\kappa^* \zeta\) with \(\zeta \in \mathcal{D}(Q^m_\kappa, [0, 1])\) satisfying \(\zeta|_{\text{supp}(\psi_\kappa \pi_\kappa)} \equiv 1, \kappa \in \mathcal{R}\).

(L3) \(\|\psi_\kappa \pi_\kappa\|_{k, \infty} \leq c(k), \kappa \in \mathcal{R}, k \in \mathbb{N}_0\).

The reader may refer to [3, Lemma 3.2] for a proof.

Lastly, for each \(k \in \mathbb{N}\), the concept of \(C^k\)-uniformly regular Riemannian manifold is defined by modifying (R2), (R4) and (L1)-(L3) in an obvious way. Similarly, \(C^k\)-singular manifolds are defined by replacing the smoothness of \(\rho\) by \(\rho \in C^k(M, (0, \infty))\) and altering (S1)-(S3) accordingly.
1.2. Notations. Let \(\mathbb{K} \in \{ \mathbb{R}, \mathbb{C} \} \). \(\mathbb{N}_0 \) is the set of all natural numbers including 0. For any interval \(I \) containing 0, \(\tilde{I} := I \setminus \{0\} \).

For any two Banach spaces \(X,Y \), \(X \approx Y \) means that they are equal in the sense of equivalent norms. The notation \(\mathcal{L}(X,Y) \) stands for the set of all bounded linear isomorphisms from \(X \) to \(Y \).

For any Banach space \(E \), we abbreviate \(\mathfrak{F}(\mathbb{R}^m, E) \) to \(\mathfrak{F}(E) \), where \(\mathfrak{F} \) stands for any function space defined in this article. The precise definitions for these function spaces will be presented in Section 2.

Let \(\| \cdot \|_{\infty} \), \(\| \cdot \|_{s,\infty} \), \(\| \cdot \|_p \) and \(\| \cdot \|_{s,p} \) denote the usual norm of the Banach spaces \(BC(E)(L_{\infty}(E)) \), \(BC^s(E), L_p(E) \) and \(W_p^s(E) \), respectively.

We denote \(\mathbb{K} \)-valued function spaces with domain \(U \in \{ M, \Omega \} \) by \(\mathfrak{F}(U) \) if \(\Omega \subset \mathbb{R}^m \) with \(\Omega \neq \mathbb{R}^m \).

2. Preliminaries. In this section, we define the weighted function spaces on singular manifolds, following the work of H. Amann in [3, 4].

Let \(\mathbb{A} \) be a countable index set. Suppose \(E_\alpha \) is for each \(\alpha \in \mathbb{A} \) a locally convex space. We endow \(\prod_\alpha E_\alpha \) with the product topology, that is, the coarsest topology for which all projections \(pr_\beta : \prod_\alpha E_\alpha \to E_\beta \), \((e_\alpha)_\alpha \mapsto e_\beta \) are continuous. By \(\bigoplus_\alpha E_\alpha \) we mean the vector subspace of \(\prod_\alpha E_\alpha \) consisting of all finitely supported elements, equipped with the inductive limit topology, that is, the finest locally convex topology for which all injections \(E_\beta \to \bigoplus_\alpha E_\alpha \) are continuous.

2.1. Tensor bundles. Suppose \((\mathbb{M}, g; \rho) \) is a singular manifold. Given \(\sigma, \tau \in \mathbb{N}_0 \),

\[
T^{\sigma}_\tau \mathbb{M} := T\mathbb{M}^{\otimes \sigma} \otimes T^*\mathbb{M}^{\otimes \tau}
\]

is the \((\sigma, \tau)\)-tensor bundle of \(\mathbb{M} \), where \(T\mathbb{M} \) and \(T^*\mathbb{M} \) are the tangent and the cotangent bundle of \(\mathbb{M} \), respectively. We write \(T^{\sigma}_\tau \mathbb{C} \) for the \(C^\infty(\mathbb{M}) \)-module of all smooth sections of \(T^{\sigma}_\tau \mathbb{M} \), and \(\Gamma(\mathbb{M}, T^{\sigma}_\tau \mathbb{M}) \) for the set of all sections.

For abbreviation, we set \(\mathfrak{J}^\sigma := \{ 1, 2, \ldots, m \}^\sigma \), and \(\mathfrak{J}^* \) is defined alike. Given local coordinates \(\varphi = \{ x^1, \ldots, x^m \} \), \((i) := (i_1, \ldots, i_\sigma) \in \mathfrak{J}^\sigma \) and \((j) := (j_1, \ldots, j_\tau) \in \mathfrak{J}^* \), we set

\[
\frac{\partial}{\partial x^{(i)}} := \frac{\partial}{\partial x^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_\sigma}}, \quad \partial_{(i)} := \partial_{i_1} \circ \cdots \circ \partial_{i_\sigma}, \quad dx^{(j)} := dx^{j_1} \otimes \cdots \otimes dx^{j_\tau}
\]

with \(\partial_i := \frac{\partial}{\partial x^i} \).

The local representation of \(a \in \Gamma(\mathbb{M}, T^{\sigma}_\tau \mathbb{M}) \) with respect to these coordinates is given by

\[
a = a^{(i)} (j) \frac{\partial}{\partial x^{(i)}} \otimes dx^{(j)}
\]

with coefficients \(a^{(i)} (j) \) defined on \(O_\kappa \).

We denote by \(\nabla = \nabla_g \) the Levi-Civita connection on \(T\mathbb{M} \). It has a unique extension over \(T^{\sigma}_\tau \mathbb{M} \) satisfying, for \(X \in T^1_0 \mathbb{M} \),

(i) \(\nabla_X f = \langle df, X \rangle \), \(f \in C^\infty(\mathbb{M}) \),

(ii) \(\nabla_X (a \otimes b) = \nabla_X a \otimes b + a \otimes \nabla_X b \), \(a \in T^{\sigma_1}_\tau \mathbb{M}, b \in T^{\sigma_2}_\tau \mathbb{M} \),

(iii) \(\nabla_X \langle a, b \rangle = \langle \nabla_X a, b \rangle + \langle a, \nabla_X b \rangle \), \(a \in T^{\tau}_\sigma \mathbb{M}, b \in T^\sigma_\tau \mathbb{M} \),

where \(\langle \cdot, \cdot \rangle : T^{\tau}_\sigma \mathbb{M} \times T^\sigma_\tau \mathbb{M} \to C^\infty(\mathbb{M}) \) is the extension of the fiber-wise defined duality pairing on \(\mathbb{M} \), cf. [3, Section 3]. Then the covariant (Levi-Civita) derivative is the linear map

\[
\nabla : T^{\sigma}_\tau \mathbb{M} \to T^{\alpha}_{\tau+1} \mathbb{M}, \quad a \mapsto \nabla a
\]

defined by

\[
\langle \nabla a, b \otimes X \rangle := \langle \nabla_X a, b \rangle, \quad b \in T^{\sigma}_\tau \mathbb{M}, \quad X \in T^1_0 \mathbb{M}.
\]
For $k \in \mathbb{N}_0$, we define
\[\nabla^k : T^\sigma_M \to T_{\tau+k}^\sigma M, \quad a \mapsto \nabla^k a \]
by letting $\nabla^0 a := a$ and $\nabla^{k+1} a := \nabla \circ \nabla^k a$. We can also extend the Riemannian metric $\langle \cdot, \cdot \rangle_g$ from the tangent bundle to any (σ, τ)-tensor bundle T^σ_M such that \[
\langle \cdot, \cdot \rangle_g := \langle \cdot, \cdot \rangle_g^\tau : T^\sigma_M \times T^\sigma_M \to \mathbb{K} \]
by
\[
(a|b)_g = g(i)(i)g^{(j)(j)}a_{(i)}b_{(j)}
\]
in every coordinate with $(i),(i) \in J^\sigma$, $(j),(j) \in J^\tau$ and
\[
g(i)(i) := g_{i_1}g_{i_2} \cdots g_{i_s}g_{i_s}, \quad g^{(j)(j)} := g^{j_1}g^{j_2} \cdots g^{j_r}g^{j_r}.
\]
In addition,
\[
|\cdot|_g := |\cdot|_{g^\tau} : T^\sigma_M \to C^\infty(M), \quad a \mapsto \sqrt{(a|a)_g}
\]
is called the (vector bundle) norm induced by g.

We assume that V is a \mathbb{K}-valued tensor bundle on M and E is a \mathbb{K}-valued vector space, i.e.,
\[
V = V^\sigma := \{T^\sigma_M, \langle \cdot, \cdot \rangle_g\}, \quad \text{and} \quad E = E^\tau := \{\mathbb{K}^{m^\sigma \times m^\tau}, \langle \cdot, \cdot \rangle\},
\]
for some $\sigma, \tau \in \mathbb{N}_0$. Here $(a|b) := \text{trace}(b^* a)$ with b^* being the conjugate matrix of b. By setting $N = m^\sigma + m^\tau$, we can identify $\mathfrak{F}(M, E)$ with $\mathfrak{F}(M)^N$.

Recall that for any $a \in V^\sigma_{\tau+1}$, then $a^2 \in V^\sigma_{\tau+1}$ is defined by
\[
(a^2)^{(i)}_{(j)} := g^{k\ell}a_{(i;k)}, \quad (i) \in J^\sigma, \quad (j) \in J^\tau, \quad k, l \in J^1.
\]
We have $|a^2|_{g^\tau_{\tau+1}} = |a|_{g^\tau_{\tau+1}}$. Given any $a \in V^\sigma_{\tau+1}$, $a_b \in V^\sigma_{\tau+1} t$ is defined as
\[
(a_b)^{(i)}_{(j;k)} := g^{k\ell}a_{(i;l)}.
\]
Similarly, we have $|a_b|_{g^\tau_{\tau+1}} = |a|_{g^\tau_{\tau+1}}$.

Suppose that $\sigma + \tau \geq 1$. We put for $a \in V^\sigma_\tau$ and $a_\beta \in T^*M$, $\beta^\tau \in TM$
\[
(G^\tau_\sigma a)(\alpha_1, \cdots, \alpha_\tau; \beta^1, \cdots, \beta^\tau) := a((\beta^1)_\beta, \cdots, (\beta^\tau)_\beta; (\alpha_1)_\beta, \cdots, (\alpha_\tau)_\beta).
\]
Then it induces a conjugate linear bijection
\[
G^\tau_\sigma : V^\tau_\sigma \to V^\tau_\sigma, \quad (G^\tau_\sigma)^{-1} = G^\tau_\sigma.
\]
Consequently, for $a, b \in V$
\[
(a|b)_g = \langle a, G^\tau_\sigma b \rangle.
\]
From this, it is easy to show that
\[
|G^\tau_\sigma a|_{g^\tau_{\tau+1}} = |a|_{g^\tau_{\tau+1}}.
\]

Throughout the rest of this paper, unless stated otherwise, we always assume that
\[\bullet (M, g; \rho) \text{ is a singular manifold.} \]
\[\bullet \rho \in \mathfrak{G}(M), \ s \geq 0, \ \text{and} \ \theta \in \mathbb{R}. \]
\[\bullet (\pi_\kappa, \zeta_\kappa)_{\kappa \in \mathfrak{K}} \text{ is a localization system subordinate to } \mathfrak{K}. \]
\[\bullet \sigma, \tau \in \mathbb{N}_0, \ V = V^\sigma := \{T^\sigma_M, \langle \cdot, \cdot \rangle_g\}, \ E = E^\tau := \{\mathbb{K}^{m^\sigma \times m^\tau}, \langle \cdot, \cdot \rangle\}. \]

In [3, Lemma 3.1], it is shown that M satisfies the following properties:
\[(P1) \ |\psi_\kappa^\tau g| \sim \rho_\kappa^2 |g_m| \text{ and } \psi_\kappa^\tau g^* \sim \rho_\kappa^2 |g_m|, \text{ where } g^* \text{ is the induced contravariant metric.} \]
\[(P2) \ \rho_\kappa^2 \|\psi_\kappa^\tau g\|_{k, \infty} + \rho_\kappa^2 \|\psi_\kappa^\tau g^*\|_{k, \infty} \leq c(k), \ k \in \mathbb{N}_0 \text{ and } \kappa \in \mathfrak{K}. \]
(P3) For \(\sigma, \tau \in \mathbb{N}_0 \) given, then
\[
\psi^*_\kappa(|a|_g) \sim \rho^\sigma_{\kappa} \tau |\psi^*_\kappa a|_{g_m}, \quad a \in \mathcal{T}^\tau_{\kappa} \mathcal{M},
\]
and
\[
|\varphi^*_\kappa b|_g \sim \rho^\sigma_{\kappa} \tau |\varphi^*_\kappa (|b|_{g_m})|, \quad b \in \mathcal{T}^\tau_{\kappa} Q^m_{\kappa}.
\]
For \(K \subset \mathcal{M} \), we put \(\mathcal{R}_K := \{ \kappa \in \mathcal{R} : O_\kappa \cap K \neq \emptyset \} \). Then, given \(\kappa \in \mathcal{R} \),
\[
X_\kappa := \begin{cases} \mathbb{R}^m & \text{if } \kappa \in \mathcal{R} \setminus \mathcal{R}_0 \mathcal{M}, \\ \mathbb{H}^m & \text{otherwise}, \end{cases}
\]
endowed with the Euclidean metric \(g_m \).

Given \(a \in \Gamma(M, V) \) with local representation (2.1) we define \(\psi^*_\kappa a \in E \) by means of \(\psi^*_\kappa a = [a^{(i)}_{(j)}] \), where \([a^{(i)}_{(j)}] \) stands for the \((m^\sigma \times m^\tau)\)-matrix with entries \(a^{(i)}_{(j)} \) in the \(((i), (j))\) position, with \((i), (j)\) arranged lexicographically.

2.2. Weighted function spaces.

For the sake of brevity, we set \(L_{1, loc}(X, E) := \prod_\kappa L_{1, loc}(X_\kappa, E) \). Then we introduce two linear maps for \(\kappa \in \mathcal{R} \):
\[
\mathcal{R}^\kappa : L_{1, loc}(M, V) \to L_{1, loc}(X_\kappa, E), \quad u \mapsto \psi^*_\kappa(\pi\kappa u),
\]
and
\[
\mathcal{R}_\kappa : L_{1, loc}(X_\kappa, E) \to L_{1, loc}(M, V), \quad v_\kappa \mapsto \pi\kappa \varphi^*_\kappa v_\kappa.
\]
Here and in the following it is understood that a partially defined and compactly supported tensor field is automatically extended over the whole base manifold by identifying it to be zero outside its original domain. We define
\[
\mathcal{R}^c : L_{1, loc}(M, V) \to L_{1, loc}(\mathbb{R}^m), \quad u \mapsto (\mathcal{R}^\kappa u)_\kappa,
\]
and
\[
\mathcal{R} : L_{1, loc}(\mathbb{R}^m) \to L_{1, loc}(M, V), \quad (v_\kappa)_\kappa \mapsto \sum_\kappa \mathcal{R}_\kappa v_\kappa.
\]

In the rest of this subsection we assume that \(k \in \mathbb{N}_0 \). In the first place, we list some prerequisites for the Hölder and little Hölder spaces on \(X \in \{ \mathbb{R}^m, \mathbb{H}^m \} \) from [4, Section 11]. Given any Banach space \(F \), the Banach space \(BC^k(X, F) \) is defined by
\[
BC^k(X, F) := \{ u \in C^k(X, F) : \|u\|_{k, \infty} < \infty, \| \cdot \|_{k, \infty} \}.
\]
The closed linear subspace \(BUC^k(X, F) \) of \(BC^k(X, F) \) consists of all functions \(u \in BC^k(X, F) \) such that \(\partial^\alpha u \) is uniformly continuous for all \(|\alpha| \leq k \). Moreover,
\[
BC^{\infty}(X, F) := \bigcap_k BC^k(X, F) = \bigcap_k BUC^k(X, F).
\]
It is a Fréchet space when equipped with the natural projective topology.

For \(0 < s < 1 \), \(0 < \delta \leq \infty \) and \(u \in F^X \), the seminorm \([\cdot]_{s, \infty}^\delta \) is defined by
\[
[u]_{s, \infty}^\delta := \sup_{h \in (0, \delta)_m} \frac{\|u(\cdot + h) - u(\cdot)\|_{\infty}}{|h|^s}, \quad [\cdot]_{s, \infty} := [\cdot]_{s, \infty}^\infty.
\]
Let \(k < s < k + 1 \). The Hölder space \(BC^s(X, F) \) is defined as
\[
BC^s(X, F) := \{ u \in BC^k(X, F) : \|u\|_{s, \infty} < \infty, \| \cdot \|_{s, \infty} \},
\]
where \(\|u\|_{s, \infty} := \|u\|_{k, \infty} + \max_{|\alpha| = k} \|\partial^\alpha u\|_{s-k, \infty} \).

The little Hölder space of order \(s \geq 0 \) is defined by
\[
bc^s(X, F) := \text{the closure of } BC^{\infty}(X, F) \text{ in } BC^s(X, F).
\]
By [4, formula (11.13), Corollary 11.2, Theorem 11.3], we have
\[\text{bc}^k(\mathcal{X}, F) = \text{BUC}^k(\mathcal{X}, F), \]
and for \(k < s < k + 1 \)
\[u \in \text{BC}^s(\mathcal{X}, F) \text{ belongs to } \text{bc}^s(\mathcal{X}, F) \iff \lim_{\delta \to 0} [\partial^\alpha u]_s^\delta = 0, \quad |\alpha| = [s]. \]

Now we are ready to introduce the weighted Hölder and little Hölder spaces on singular manifolds. Define
\[\text{BC}^{k,\vartheta}(M, V) := \{ u \in C^k(M, V) : \|u\|_{k,\vartheta} < \infty \}, \| \cdot \|_{k,\vartheta} \]
where \(\|u\|_{k,\vartheta} := \max_{0 \leq i \leq k} \|\rho^{\vartheta + \gamma - \sigma} |\nabla_i u|_g \| \) \. We also set
\[\text{BC}^\infty,\vartheta(M, V) := \bigcap_k \text{BC}^{k,\vartheta}(M, V) \]
endowed with the conventional projective topology. Then
\[\text{bc}^{k,\vartheta}(M, V) := \text{the closure of } \text{BC}^\infty,\vartheta \text{ in } \text{BC}^{k,\vartheta}(M, V). \]

Let \(k < s < k + 1 \). Now the Hölder space \(\text{BC}^s,\vartheta(M, V) \) is defined by
\[\text{BC}^{s,\vartheta}(M, V) := (\text{bc}^{k,\vartheta}(M, V), \text{bc}^{k+1,\vartheta}(M, V))_{s-k,\vartheta}. \quad (2.3) \]

Here \((\cdot, \cdot)_{\vartheta,\infty}\) is the real interpolation method, see \[1, \text{Example 1.2.4.1} \] and \[29, \text{Definition 1.2.2} \]. \(\text{BC}^{s,\vartheta}(M, V) \) equipped with the norm \(\| \cdot \|_{s,\vartheta} \) is a Banach space by interpolation theory, where \(\| \cdot \|_{s,\vartheta} \) is the norm of the interpolation space in definition (2.3). For \(s \geq 0 \), we define the weighted little Hölder spaces by
\[\text{bc}^s,\vartheta(M, V) := \text{the closure of } \text{BC}^\infty,\vartheta(M, V) \text{ in } \text{BC}^{s,\vartheta}(M, V). \quad (2.4) \]

2.3. Basic properties. In the following context, assume that \(E_\kappa \) is a sequence of Banach spaces for \(\kappa \in \mathbb{R} \). Then \(E := \prod_\kappa E_\kappa \). We denote by \(l^0_\infty(E) := l^0_\infty(E; \rho) \) the linear subspace of \(E \) consisting of all \(u = (u_\kappa) \) such that
\[\|u\|_{l^0_\infty(E)} := \sup_\kappa \|\rho^\vartheta u_\kappa\|_{E_\kappa} < \infty. \]

Then \(l^0_\infty(E) \) is a Banach space with norm \(\| \cdot \|_{l^0_\infty(E)} \). For \(\mathfrak{F} \in \{ \text{bc}, \text{BC} \} \), we put \(\mathfrak{F}^\kappa := \prod_\kappa \mathfrak{F}_\kappa \), where \(\mathfrak{F}_\kappa := \mathfrak{F}^\kappa(X_\kappa, E) \). Denote by
\[l^0_{\infty, \text{unif}}(\text{bc}^k) \]
the linear subspace of \(l^0_\infty(\text{BC}^k) \) of all \(u = (u_\kappa) \) such that \(\rho^\vartheta |\partial^\alpha u_\kappa| \) is uniformly continuous on \(X_\kappa \) for \(|\alpha| \leq k \), uniformly with respect to \(\kappa \in \mathbb{R} \). Similarly, for any \(k < s < k + 1 \), we denote by
\[l^0_{\infty, \text{unif}}(\text{bc}^s) \]
the linear subspace of \(l^0_\infty(\text{bc}^s) \) of all \(u = (u_\kappa) \) such that
\[\lim_{\delta \to 0} \max_{|\alpha| = k} \rho^\vartheta |\partial^\alpha u_\kappa|_{s-k,\infty} = 0, \]
uniformly with respect to \(\kappa \in \mathbb{R} \).

In the sequel, we always assume \(\mathfrak{F} \in \{ \text{bc}, \text{BC} \} \), unless stated otherwise. Define
\[L_\vartheta : l^0_\infty(\mathfrak{F}^\kappa) \to l^0_\infty(\mathfrak{F}^\kappa) : (u_\kappa) \mapsto (\rho^\vartheta u_\kappa)_\kappa, \]
where \(b = \text{"unif, unif}" \) for \(\mathfrak{F} = \text{bc} \) and \(b = \infty \) for \(\mathfrak{F} = \text{BC} \). Then we have the following proposition.

Proposition 1. \(L_\vartheta \in \text{Lis}(l^0_\infty(\mathfrak{F}^\kappa), l^0_\infty(\mathfrak{F}^\kappa)) \text{ with } (L_\vartheta)^{-1} = L_{-\vartheta}. \)
systems. We have the following relationship between these two retraction and coretraction
and

12.3, formula (12.7).]

Now the assertion follows straight away from Proposition 1 and [4, Theorems 12.1,

In [4], a different retraction and coretraction system between

Proof. In [4], a different retraction and coretraction system between \(\mathfrak{F}^{s,\vartheta}(M, V) \) and

\(\rho_{b}^{c}R_{\kappa}; \quad \text{and} \quad \mathcal{R}_{\infty}^{\vartheta} := \rho_{\infty}^{\vartheta}R_{\kappa}; \)

and

\[
\mathcal{R}_{\infty}^{\vartheta} : L_{1,loc}(M, V) \to L_{1,loc}(\mathbb{R}^{m}, E), \quad u \mapsto (\mathcal{R}_{\infty}^{\vartheta}; u)_{\kappa}, \\
\mathcal{R}_{\infty}^{\vartheta} : L_{1,loc}(\mathbb{R}^{m}, E) \to L_{1,loc}(M, V), \quad (v_{\kappa})_{\kappa} \mapsto \sum_{\kappa} \mathcal{R}_{\infty}^{\vartheta}v_{\kappa}.
\]

We have the following relationship between these two retraction and coretraction systems:

\[
\mathcal{R}_{\infty}^{\vartheta:c} = L_{\vartheta} \circ \mathcal{R}^{c}, \quad \mathcal{R}_{\infty}^{\vartheta} = \mathcal{R} \circ L_{-\vartheta}.
\]

Now the assertion follows straight away from Proposition 1 and [4, Theorems 12.1,

12.3, formula (12.7)].

In the sequel, \((\cdot, \cdot)^{0}_{\vartheta, \infty}\) and \([\cdot, \cdot]_{\vartheta}\) denote the continuous interpolation method and

the complex interpolation method, respectively. See [1, Example I.2.4.2, I.2.4.4] for

definitions.

Proposition 3. Suppose that \(0 < s_{0} < s_{1} < \infty, 0 < \vartheta < 1 \) and \(\vartheta \in \mathbb{R} \). Then

\[
(\mathfrak{F}^{s_{0},\vartheta}(M, V), \mathfrak{F}^{s_{1},\vartheta}(M, V))_{\vartheta} \cong \mathfrak{F}^{s_{0}+\vartheta}(M, V) \cong [\mathfrak{F}^{s_{0},\vartheta}(M, V), \mathfrak{F}^{s_{1},\vartheta}(M, V)]_{\vartheta}
\]

holds for \(s_{0}, s_{1}, \vartheta \notin \mathbb{N} \). When \(\mathfrak{F} = bc \), \((\cdot, \cdot)_{\vartheta} = (\cdot, \cdot)^{0}_{\vartheta, \infty}\), and when \(\mathfrak{F} = BC \),

\((\cdot, \cdot) = (\cdot, \cdot)_{\vartheta, \infty}\). Here \(\zeta_{0} := (1 - \vartheta)\zeta_{0} + \vartheta\zeta_{1} \) for any \(\zeta_{0}, \zeta_{1} \in \mathbb{R} \).

Proof. See [4, Corollaries 12.2, 12.4].

Proposition 4. Suppose that \(0 < s_{0} < s_{1} < \infty, 0 < \vartheta < 1 \) and \(\vartheta \in \mathbb{R} \). Then

\[
(l_{b}^{0}(\mathfrak{F}^{s_{0}}), l_{b}^{0}(\mathfrak{F}^{s_{1}}))_{\vartheta} \cong l_{b}^{0}(\mathfrak{F}^{s_{0}+\vartheta}) \cong [l_{b}^{0}(\mathfrak{F}^{s_{0}}), l_{b}^{0}(\mathfrak{F}^{s_{1}})]_{\vartheta}
\]

holds for \(s_{0}, s_{1}, \vartheta \notin \mathbb{N} \). When \(\mathfrak{F} = bc \), \(b = \infty, \text{unif} \) and \((\cdot, \cdot)_{\vartheta} = (\cdot, \cdot)^{0}_{\vartheta, \infty}\), and

when \(\mathfrak{F} = BC \), \(b = \infty \) and \((\cdot, \cdot)_{\vartheta} = (\cdot, \cdot)_{\vartheta, \infty}\).

Proof. The assertion with weight \(\vartheta = 0 \) follows from [4, Lemmas 11.10, 11.11] and

[1, Proposition I.2.3.2]. The remaining statement is a consequence of Proposition 1
and [1, Proposition I.2.3.2].

Let \(V_{j} = V_{\mathbb{K}}^{s_{j}} := \{ T_{\mathbb{K}}^{s_{j}}M, \langle \cdot, \cdot \rangle_{g} \} \) with \(j = 1, 2, 3 \) be \(\mathbb{K} \)-valued tensor bundles on

\(M \). Let \(\oplus \) be the Whitney sum. By bundle multiplication from \(V_{1} \times V_{2} \) into \(V_{3} \),

denoted by

\[
m : V_{1} \oplus V_{2} \to V_{3}, \quad (v_{1}, v_{2}) \mapsto m(v_{1}, v_{2}),
\]

we mean a smooth bounded section \(m \) of \(\text{Hom}(V_{1} \oplus V_{2}, V_{3}) \), i.e.,

\[
m \in BC^{\infty}(M, \text{Hom}(V_{1} \oplus V_{2}, V_{3})), \quad (2.5)
\]

such that \(m(v_{1}, v_{2}) := m(v_{1} \oplus v_{2}) \). (2.5) implies that for some \(c > 0 \)

\[
|m(v_{1}, v_{2})|_{g} \leq c|v_{1}|_{g}|v_{2}|_{g}, \quad v_{i} \in \Gamma(M, V_{i}) \text{ with } i = 1, 2.
\]
its point-wise extension from \(\Gamma(M, V_1 \oplus V_2) \) into \(\Gamma(M, V_3) \) is defined by:

\[
m(v_1, v_2)(p) := m(p)(v_1(p), v_2(p))
\]

for \(v_i \in \Gamma(M, V_i) \) and \(p \in M \). We still denote it by \(m \). We can prove the following point-wise multiplier theorems for function spaces over singular manifolds.

Proposition 5. Let \(k \in \mathbb{N}_0 \). Assume that the tensor bundles \(V_j = V_j^{\sigma_j} := \{T_{\gamma j}^\rho M, (\cdot | \cdot)_{\rho j}\} \) with \(j = 1, 2, 3 \) satisfy

\[
\sigma_3 - \tau_3 = \sigma_1 + \sigma_2 - \tau_2 - 2.
\]

Suppose that \(m : V_1 \oplus V_2 \to V_3 \) is a bundle multiplication, and \(\vartheta_3 = \vartheta_1 + \vartheta_2 \). Then

\[
\mathfrak{F}^{s, \vartheta_1}(M, V_1) \times \mathfrak{F}^{s, \vartheta_2}(M, V_2) \to \mathfrak{F}^{s, \vartheta_3}(M, V_3), \quad [(v_1, v_2) \mapsto m(v_1, v_2)]
\]

is a bilinear and continuous map.

Proof. The statement follows from [4, Theorem 13.5]. \(\square \)

Proposition 6.

\[
f_\varrho : [u \mapsto \rho_\varrho^s u] \in \text{Lis}(\mathfrak{F}^{s, \varrho_\varrho + \vartheta}(M, V), \mathfrak{F}^{s, \varrho}(M, V)), \quad (f_\varrho)^{-1} = f_{-\varrho}.
\]

Proof. By (S3) and (S4), we infer that \(\rho := (\zeta \psi^\varrho_\varrho^s u)_\kappa \in \bigcap_k l_\kappa (BC^k) \), where \(\zeta \) is defined in (L2). Then it follows from the point-wise multiplication results in [2, Appendix A2] and [43, Corollary 2.8.2] that for \(u = (u_\kappa)_\kappa \) and any \(s \geq 0 \)

\[
[u \mapsto (\zeta \psi^\varrho_\varrho^s u_\kappa)_\kappa] \in \mathcal{L}(l_\kappa^s (BC^s)).
\]

Given \(u \in BC^{s, \varrho_\varrho}(M, V) \),

\[
\|\rho^s u\|_{s, \infty; \varrho} = \|\mathcal{R} \mathcal{R}^s \rho^s u\|_{s, \infty; \varrho} \leq C\|\mathcal{R}^s \rho^s u\|_{l_\kappa^s (BC^s)}
\]

\[
= C\|\rho L_\varrho \mathcal{R}^s u\|_{l_\kappa^s (BC^s)} \leq C\|\rho\|_{l_\kappa (BC^k)}\|\mathcal{R}^s u\|_{l_\kappa^s + \varrho (BC^s)}
\]

\[
\leq C(\rho, \varrho, k)\|u\|_{s, \infty; \varrho}. \quad \text{(2.6)}
\]

Now the open mapping theorem implies that the asserted result for \(\mathfrak{F} = BC \). Given any \(u \in bc^{s, \varrho_\varrho + \vartheta}(M, V) \), then there exists \((u_n)_n \in BC^{s, \varrho_\varrho + \vartheta}(M, V) \) such that \(u_n \to u \) in \(BC^{s, \varrho_\varrho + \vartheta}(M, V) \). We already have

\[
\|\rho^s u\|_{s, \infty; \varrho} \leq C\|u\|_{s, \infty; \varrho + \vartheta},
\]

and \((\rho^s u_n)_n \in BC^{\infty, \varrho_\varrho + \vartheta}(M, V) \). By the conclusion for \(\mathfrak{F}^s = BC^s \), we infer that as \(n \to \infty \)

\[
\|\rho^s (u - u_n)\|_{s, \infty; \varrho} \leq C\|u - u_n\|_{s, \infty; \varrho + \vartheta} \to 0.
\]

We have established the asserted result for weighted little Hölder spaces in view of the definition (2.4). \(\square \)

Proposition 7. For any \(\sigma, \tau \in \mathbb{N}_0 \) and \(\vartheta \in \mathbb{R} \),

\[
\nabla \in \mathcal{L}(\mathfrak{F}^{s, \vartheta}(M, V_\tau^s), \mathfrak{F}^{s-1, \vartheta}(M, V_{\tau+1}^s)).
\]

Proof. The case \(s \in \mathbb{N} \) is immediate from the definition of the weighted function spaces. The non-integer case follows from [4, Theorem 16.1]. \(\square \)
Let \(\hat{g} = g/\rho^2 \). Then \((M, \hat{g})\) is a uniformly regular Riemannian manifold. We denote the corresponding weighted function fields by \(\hat{V} = \hat{V}_\rho^\sigma \). The definitions of the corresponding weighted function spaces \(\mathfrak{F}^{s, \vartheta}(M, \hat{V}) \) do not depend on the choice of \(\vartheta' \) in this case. We denote the unweighted spaces by \(\mathfrak{F}^{s}(M, \hat{V}) \). The reader may refer to [38] for the precise definitions for these unweighted spaces on uniformly regular Riemannian manifolds.

Proposition 8. For \(\mathfrak{F} \in \{bc, BC, W_p, \hat{W}_p\} \), it holds that
\[
\mathfrak{F}^s(M, \hat{V}) = \mathfrak{F}^{s-1/p}(M, V)
\]

Proof. The assertion follows from Proposition 2 and [38, Propositions 2.1, 2.2]. \(\square\)

3. Continuous maximal regularity.

3.1. Continuous maximal regularity on singular manifolds.

Throughout the rest of this paper, we always assume that \((M, g; \rho)\) is a singular manifold without boundary.

Following [41], letting \(l \in \mathbb{N}_0 \), \(A : C^\infty(M, V) \to \Gamma(M, V) \) is called a linear differential operator of order \(l \) on \(M \) if we can find \(\mathbf{a} = (a_r)_r \in \prod_{r=0}^l \Gamma(M, V_{\tau+r}) \) such that
\[
A = A(\mathbf{a}) := \sum_{r=0}^l C(a_r, \nabla^r). \tag{3.1}
\]

Here complete contraction
\[
C : \Gamma(M, V_{\tau+r}^\sigma \times V_{\tau+r}^\sigma) \to \Gamma(M, V_{\tau+r}^\sigma) : (a, b) \mapsto C(a, b)
\]
is defined as follows. Let \((i_1), (i_2), (i_3) \in \mathbb{J}^\sigma, (j_1), (j_2), (j_3) \in \mathbb{J}^r \) and \((k_1), (k_2) \in \mathbb{J}^\tau \). Then
\[
C(a, b)(p) := C(\alpha_{(j_1 ; j_2 ; j_3)}^{(i_3 ; j_1 ; k_1)}, \frac{\partial}{\partial x^{(i_2)}} \otimes \frac{\partial}{\partial x^{(j_2)}} \otimes \frac{\partial}{\partial x^{(j_3)}} \otimes dx^{(i_1)}, \frac{\partial}{\partial x^{(j_1)}} \otimes dx^{(j_2)} \otimes dx^{(j_3)} \otimes dx^{(i_1)}),(p),
\]
\[
= a_{(j_3 ; j_1 ; k_1)}^{(i_3 ; j_1 ; k_1)} b_{(j_2 ; j_1 ; k_1)}^{(i_1 ; j_1 ; k_1)} \frac{\partial}{\partial x^{(i_1)}} \otimes dx^{(j_3)}(p),
\]
in every local chart and for \(p \in M \). The index \((i_3 ; j_1 ; k_1) \) is defined by
\[
(i_3 ; j_1 ; k_1) = (i_3, j_1, \cdots, i_3, j_1, k_1, \cdots, j_1, k_1, \cdots, k_1, r).
\]
The other indices are defined in a similar way. [4, Lemma 14.2] implies that \(C \) is a bundle multiplication. Making use of [3, formula (3.18)], one can check that for any \(l \)-th order linear differential operator so defined, in every local chart \((\mathcal{O}_\kappa, \varphi_\kappa)\) there exists some linear differential operator
\[
A_\kappa(x, \partial) := \sum_{|\alpha| \leq l} a_\kappa^\alpha(x) \partial^\alpha, \quad \text{with} \quad a_\kappa^\alpha \in \mathcal{L}(E)^{\mathbb{Q}^\kappa}, \tag{3.2}
\]
called the local representation of \(A \) in \((\mathcal{O}_\kappa, \varphi_\kappa)\), such that for any \(u \in C^\infty(M, V) \)
\[
\psi_\kappa^\alpha(Au) = A_\kappa(\psi_\kappa^\alpha u).
\]

Proposition 9. Let \(s \geq 0 \) and \(\vartheta \in \mathbb{R} \). Suppose that \(A = A(\mathbf{a}) \) with \(\mathbf{a} = (a_r)_r \in \prod_{r=0}^l bc^s(M, V_{\tau+r}^\sigma) \). Then
\[
A \in \mathcal{L}(\mathfrak{F}^{s+l, \vartheta}(M, V), \mathfrak{F}^{s, \vartheta}(M, V)).
\]
Proof. The assertion is a direct consequence of Propositions 5 and 7.

Given any angle \(\phi \in [0, \pi] \), set
\[
\Sigma_\phi := \{ z \in \mathbb{C} : |\arg z| \leq \phi \} \cup \{0\}.
\]
A linear operator \(\mathcal{A} := \mathcal{A}(a) \) of order \(l \) is said to be normally \(\rho \)-elliptic if there exists some constant \(C_\rho > 0 \) such that for every pair \((p, \xi) \in M \times \Gamma(M, T^* M) \) with \(|\xi(p)_{|_{T^* p}^l} \neq 0 \) for all \(p \in M \), the principal symbol
\[
\hat{\sigma} \mathcal{A}^\tau(p, \xi(p)) := C(a_i, (-i \xi)^{\otimes l})(p) \in \mathcal{L}(T_p M^{\otimes \sigma} \otimes T_p^* M^{\otimes \tau})
\]
satisfies
\[
S := \Sigma_{\pi/2} \subset \rho(-\hat{\sigma} \mathcal{A}^\tau(p, \xi(p))),
\]
and
\[
\rho(p) |\xi(p)_{|_{T^* p}^l}^l + |\mu| \|(\mu + \hat{\sigma} \mathcal{A}^\tau(p, \xi(p)))^{-1} \|_{\mathcal{L}(T_p M^{\otimes \sigma} \otimes T_p^* M^{\otimes \tau})} \leq C_\rho, \quad \mu \in S.
\]
The constant \(C_\rho \) is called the \(\rho \)-ellipticity constant of \(\mathcal{A} \). To the best of the author’s knowledge, this ellipticity condition is the first one formulated for degenerate or singular elliptic operators acting on tensor fields.

We can also introduce a stronger version of the ellipticity condition for \(\mathcal{A} \). \(\mathcal{A} \) is called uniformly strongly \(\rho \)-elliptic if there exists some constant \(C_\sigma > 0 \) such that for all \((p, \xi, \eta) \in M \times \Gamma(M, T^* M) \times \Gamma(M, T^* M) \) the principal symbol satisfies
\[
\hat{\sigma} \mathcal{A}^\tau(p, \xi(p))|\eta(p)| \geq C_\sigma \rho(p)|\xi(p)_{|_{T^* p}^l}^l|\eta(p)|_{|_{T^* p}^l}^l.
\]
Here \(\hat{\sigma} \mathcal{A}^\tau(p, \xi(p))|\eta(p)| \) is \((\mathcal{A}(a_i, \eta \otimes (-i \xi)^{\otimes l})(p)|\eta(p)|_{|_{T^* p}^l}^l) \). In [5], H. Amann has used the uniformly strong \(\rho \)-ellipticity condition to establish an \(L_\rho \)-maximal regularity theory for second order differential operators acting on scalar functions.

We can readily check that a uniformly strongly \(\rho \)-elliptic operator \(\mathcal{A} \) must be normally \(\rho \)-elliptic. If \(\mathcal{A} \) is of odd order, then by replacing \(\xi \) with \(-\xi\) in (3.3), it is easy to see that \(\rho(\hat{\sigma} \mathcal{A}^\tau(p, \xi(p))) = C \). This is a contradiction. Therefore, every normally \(\rho \)-elliptic operator is of even order.

We call a linear operator \(\mathcal{A} := \mathcal{A}(a) \) \(s \)-regular if
\[
a_r \in \mathcal{B}^s(M, V_{r+s})^l, \quad r = 0, 1, \ldots, l.
\]
This reveals the existence of some constant \(C_n \) such that
\[
|a_r|_{\infty} \leq C_n, \quad r = 0, 1, \ldots, l.
\]
We consider how (3.5) affects the behavior of the localizations \(\mathcal{A}_n \). Given any linear differential operator \(\mathcal{A} \) of order \(2l \), by an analogy of Proposition 2, we infer that
\[
(\psi^*_n a_r)_{n} \in \mathcal{L}_{\infty, \text{unif}}(\mathcal{B}^s(Q_n^m, E^l_{r+s})), \quad r = 0, 1, \ldots, 2l,
\]
or equivalently
\[
(\psi^*_n (a_r)_{n})_{i} \in \mathcal{L}_{\infty, \text{unif}}(\mathcal{B}^s(Q_n^m)), \quad (i) \in \mathbb{J}^s_{r+s}, \quad (j) \in \mathbb{J}^+, \quad r = 0, 1, \ldots, 2l.
\]
By [3, formula (3.18)], the coefficients of \(\mathcal{A}_n \), i.e., \(a_n^\alpha \), are linear combinations of the products of \((a_r)_{n}^{(i)} \) and possibly the derivatives of the Christoffel symbols of the metric \(g \). Thus [3, formula (3.19)] shows that
\[
(a_n^\alpha)_{n} \in \mathcal{L}_{\infty, \text{unif}}(\mathcal{B}^s(Q_n^m, \mathcal{L}(E))), \quad |\alpha| \leq 2l.
\]
Given any Banach space \(X \), a linear differential operator of order \(l \)
\[
\mathcal{A} := \mathcal{A}(x, \partial) := \sum_{|\alpha| \leq l} a_\alpha(x) \partial^\alpha
\]
defined on an open set $U \subset \mathbb{R}^m$ with $a_\alpha : U \to \mathcal{L}(X)$ is said to be normally elliptic if its principal symbol $\sigma A^\tau(x, \xi) := \sum_{|\alpha|=l} a_\alpha(x)(-i\xi)^\alpha$ satisfies

$$S := \Sigma_{\pi/2} \subset \rho(-\sigma A^\tau(x, \xi))$$

and there exists some $C_\epsilon > 0$ such that

$$((x^i + |\mu|)(\mu + \sigma A^\tau(x, \xi))^{-1})\|_{\mathcal{L}(X)} \leq C_\epsilon, \quad \mu \in S ,$$

for all $(x, \xi) \in U \times \mathbb{R}^m$, where $\mathbb{R}^m := \mathbb{R}^m \setminus \{0\}$. The constant C_ϵ is called the ellipticity constant of A. As above, one can check that A must be of even order.

Proposition 10. A linear differential operator $A := A(a)$ of order $2l$ is normally ρ-elliptic iff all its local realizations

$$A_\alpha(x, \partial) = \sum_{|\alpha|\leq 2l} a_\alpha^\epsilon(x)\partial^\alpha$$

are normally elliptic on Q_{ρ}^α with a uniform ellipticity constant C_ϵ in condition (3.8).

Proof. We first assume that $A := A(a)$ is normally ρ-elliptic. In every local chart (O_φ, φ_μ), by definition, we have

$$\sigma A^\tau_\mu(x, \xi) = \sum_{|\alpha|\leq 2l} a_\alpha^\epsilon(x)(-i\xi)^\alpha = \psi^\mu_\alpha C(a_{2l}, (-i\xi^\tau)^{\otimes2l}(p)$$

with $(x, \xi) \in Q_{\rho}^\alpha \times \mathbb{R}^m$ and $p = \psi_\mu(x)$. Here ξ^μ is a 1-form satisfying $\xi^\mu|_{O_\varphi} = \xi_j dx^i$. By [41, formula (3.2)] and (3.3), we conclude $S := \Sigma_{\pi/2} \subset \rho(-\sigma A^\tau_\mu(x, \xi))$. For every $\mu \in S, \eta, \zeta \in E^\tau_{\rho}$ with $\zeta = (\mu + \sigma A^\tau_\mu(x, \xi))\eta$, and $\xi \in \mathbb{R}^m$, one computes

$$\|\| (\xi^\mu)^2 + |\mu|)(\mu + \sigma A^\tau_\mu(x, \xi))^{-1}\eta_{\rho g} = \|\| (\xi^\mu)^2 + |\mu|)|\eta|_{\rho g}$$

(3.9)

(3.10)

(3.11)

(3.12)

In (3.9), we have adopted (S4) and (P3). In (3.10), the constant $M = C \max(C', 1)$ is independent of the choices of κ and x. (3.11) follows from (3.4), and (3.12) is a direct consequence of (P3).

The “if” part follows by a similar argument.

Proposition 11. Let $s \in \mathbb{R}_+ \setminus \mathbb{N}$ and $\vartheta \in \mathbb{R}$. Suppose that $A = A(a)$ is a 2l-th order linear differential operator, which is normally ρ-elliptic and s-regular with bounds C_ϵ and C_a defined in (3.4) and (3.6). Then there exist $\omega = \omega(C_\epsilon, C_a)$, $\phi = \phi(\xi _e, C_a) > \pi/2$ and $E = E(\xi_e, C_a)$ such that $S = \omega + \Sigma_{\phi} \subset \rho(-A)$ and

$$|\mu|^{1-i}(\mu + \sigma A^\tau_\mu(x, \xi))^{-1}||_{\mathcal{L}(\mathfrak{f}^{s+\rho(s,0), s+\rho(M,0)})} \leq E, \quad \mu \in S, \quad i = 0, 1.$$

Proof. To economize notation, we set

$$E_0 := \mathfrak{f}^{s, \vartheta}, \quad E_\theta := \mathfrak{f}^{s+2l-1, \vartheta}, \quad E_1 := \mathfrak{f}^{s+2l, \vartheta},$$

and

$$I^0_b(E_0) := I^0_b(\mathfrak{f}^s), \quad I_0^\vartheta(E_\theta) := I^0_b(\mathfrak{f}^{s+2l-1}), \quad I^\vartheta_b(E_1) := I^0_b(\mathfrak{f}^{s+2l}),$$

where $b = \infty$, unif for $\mathfrak{f} = bc$, and $b = \infty$ for $\mathfrak{f} = BC$.

(i) Define \(h : \mathbb{R}^m \to Q^n : x \mapsto \zeta(x)x \). Here \(\zeta \) is defined in (L2). It is easy to see that \(h \in BC^\infty(\mathbb{R}^m, Q^n) \). Let

\[
\mathcal{A}_\kappa(x, \partial) := \sum_{|\alpha| \leq 2l} \bar{a}_\kappa^\alpha(x)\partial^\alpha := \sum_{|\alpha| \leq 2l} (a^\alpha \circ h)(x)\partial^\alpha.
\]

It is not hard to check with the assistance of (3.7) that the coefficients \((\bar{a}_\kappa^\alpha)_\kappa\) satisfy

\[
(\bar{a}_\kappa^\alpha) \in l_{\infty, \text{unif}}(be^s(\mathcal{L}(E))), \quad |\alpha| \leq 2l,
\]

and by Proposition 10 that \(\mathcal{A}_\kappa \) are all normally elliptic with a uniform ellipticity constant for all \(\kappa \in \mathfrak{R} \). In virtue of [2, Theorems 4.1, 4.2 and Remark 4.6], these two conditions imply the existence of some constants \(\omega_0 = \omega_0(C_\epsilon, C_a) \), \(\phi = \phi(C_\epsilon, C_a) > \pi/2 \) and \(E = E(C_\epsilon, C_a) \) such that

\[
S_0 := \omega_0 + \Sigma_{\phi} \subset \rho(-\mathcal{A}_\kappa), \quad \kappa \in \mathfrak{R}, \quad (3.13)
\]

and

\[
|\mu|^{1-i} \|(\mu + \bar{\mathcal{A}}\kappa)^{-1}\|_{\mathcal{L}(\bar{\mathfrak{F}}(E), \bar{\mathfrak{F}}^{s+2l}(E))} \leq E, \quad \mu \in S_0, \quad i = 0, 1, \quad \kappa \in \mathfrak{R}. \quad (3.14)
\]

Let \(\bar{\mathcal{A}} : l^0(E_1) \to E : |(u_n)_\kappa | \mapsto (\mathcal{A}_\kappa u_\kappa)_\kappa \). First, it is not hard to verify by means of the point-wise multiplication results in [2, Appendix A2] that

\[
\bar{\mathcal{A}} \in \mathcal{L}(l^0(E_1), l^0(E_0)). \quad (3.15)
\]

By Proposition 4 and the well-known interpolation theory, for any \(s < t \in \mathbb{N} \),

\[
l^0_{\infty, \text{unif}}(bc^{s+2l}) \hookrightarrow l\theta_{\infty, \text{unif}}(bc^{t+2l}).
\]

Hence for any \(u \in l^0_{\infty, \text{unif}}(bc^{s+2l}) \), we can choose

\[
(u_n)_\kappa := ((u_n)_\kappa n) \subset l^0_{\infty, \text{unif}}(bc^{t+2l})
\]

converging to \(u \) in \(l^0_{\infty}(bc^{s+2l}) \). Since \(s \) is arbitrary, we see that the estimate (3.15) still holds when \(s \) is replaced by \(t \), i.e.,

\[
\bar{\mathcal{A}}u_n \in l^0_{\infty}(bc^t) \hookrightarrow l^0_{\infty, \text{unif}}(bc^s).
\]

What is more, \(\bar{\mathcal{A}}u_n =: v_n \to \bar{\mathcal{A}}u \) in the \(l^0_{\infty}(BC^s) \)-norm. Since \(l^0_{\infty, \text{unif}}(bc^{s+2l}) \) is a Banach space, it yields \(\bar{\mathcal{A}}u \in l^0_{\infty, \text{unif}}(bc^s) \). Therefore

\[
\bar{\mathcal{A}} \in \mathcal{L}(l^0(E_1), l^0(E_0)). \quad (3.16)
\]

For any \(\mu \in S_0 \), it is easy to see that \(\mu + \bar{\mathcal{A}} : \bar{\mathfrak{F}}^{s+2l} \to l^0_{\infty}(E_0) \) is a bijective map. We write the inverse of \(\mu + \bar{\mathcal{A}} \) as \((\mu + \bar{\mathcal{A}})^{-1}\) and compute for \(u := (u_n)_\kappa \in l^0_{\infty}(E_0) \)

\[
\|(\mu + \bar{\mathcal{A}})^{-1} u\|_{l^0_{\infty}(BC^{s+2l})} = \sup_{\kappa \in \mathfrak{R}} \rho^t_\kappa \|(\mu + \bar{\mathcal{A}})^{-1} u_\kappa\|_{s+2l, \infty}
\]

\[
= \sup_{\kappa \in \mathfrak{R}} \|((\mu + \bar{\mathcal{A}})^{-1} \rho^t_\kappa u_\kappa\|_{s+2l, \infty}
\]

\[
\leq E \sup_{\kappa \in \mathfrak{R}} \|\rho^t_\kappa u_\kappa\|_{\bar{\mathfrak{F}}^t(E)} = E \|\bar{\mathcal{A}} u\|_{l^0_{\infty}(E_0)}.
\]

(3.17)

In the case \(\bar{\mathfrak{F}} = bc \), (3.17) only shows that for each \(u \in l^0_{\infty, \text{unif}}(bc^s) \) and \(\mu \in S \)

\[
(\mu + \bar{\mathcal{A}})^{-1} u \in l^0_{\infty}(BC^{s+2l}).
\]

It remains to prove \((\mu + \bar{\mathcal{A}})^{-1} u \in l^0_{\infty, \text{unif}}(E_1) \). This can be answered by a density argument as in the proof for (3.16).

Hence \(S_0 \subset \rho(-\bar{\mathcal{A}}) \). Similarly, one checks

\[
|\mu|\|(\mu + \bar{\mathcal{A}})^{-1}\|_{\mathcal{L}(l^0_{\infty}(E_0))} \leq E, \quad \mu \in S_0.
\]
(ii) Given any \(u \in E_1(M, V) \) and \(\mu \in S \), one computes
\[
\begin{align*}
[R^\kappa \varepsilon (\mu + A) - (\mu + \bar{A}_\kappa)]u & \quad = \psi^*_\kappa (\mu + A)u - (\mu + \bar{A}_\kappa) \psi^*_\kappa (\pi u) \\
& \quad = \psi^*_\kappa (\mu + \bar{A}_\kappa) \psi^*_\kappa u - (\mu + \bar{A}_\kappa) \psi^*_\kappa (\pi u) \\
& \quad = \bar{A}_\kappa \kappa \psi^*_\kappa u - \bar{A}_\kappa \kappa \psi^*_\kappa (\pi u) \\
& \quad = - \sum_{|\alpha| \leq 2l} \sum_{0 < \beta \leq |\alpha|} \left(\frac{\alpha}{\beta} \right) \bar{a}^{\kappa}\alpha \beta \partial^{\alpha-\beta} (\zeta \psi^*_\kappa u) \partial^\beta (\psi^*_\kappa \pi u) =: B_\kappa u.
\end{align*}
\]
Note that \(\zeta \equiv 1 \) on \(\text{supp}(\psi^*_\kappa \pi \kappa) \) for all \(\kappa \in \mathbb{R} \). Define for any \(u \in C^\infty(M, V) \)
\[
B_\kappa u := (B_\kappa u)_\kappa.
\]
Similar to the computation for (3.16), we can easily check
\[
B_\kappa R \in L(l^\rho_0(E_\theta), l^\rho_0(E_0)).
\]
By Proposition 4, we have
\[
l^\rho_0(E_\theta) = (l^\rho_0(E_0), l^\rho_0(E_1))_\theta,
\]
where either \((\cdot, \cdot)_\theta = (\cdot, \cdot)^0_\theta, \infty \) for \(\mathfrak{F} = bc \), or \((\cdot, \cdot)_\theta = (\cdot, \cdot)_{\theta, \infty} \) for \(\mathfrak{F} = BC \), and \(\theta = 1 - 1/(2l) \).
It follows from interpolation theory and Proposition 1 that for every \(\varepsilon > 0 \) there exists some positive constant \(C(\varepsilon) \) such that for all \(u \in l^\rho_0(E_1) \)
\[
||BRu||_{l^\rho_0(E_0)} \leq \varepsilon ||u||_{l^\rho_0(E_1)} + C(\varepsilon) ||u||_{l^\rho_0(E_0)}
\]
Given any \(u \in l^\rho_0(E_0) \) and \(\mu \in S_0 \),
\[
||B(\mu + \bar{A})^{-1}u||_{l^\rho_0(E_0)} \leq \varepsilon ||(\mu + \bar{A})^{-1}u||_{l^\rho_0(E_1)} + C(\varepsilon) ||(\mu + \bar{A})^{-1}u||_{l^\rho_0(E_0)}
\]
Hence we can find some \(\omega_1 = \omega_1(C_\varepsilon, C_\delta) \geq \omega_0 \) such that for all \(\mu \in S_1 := \omega_1 + \Sigma_\delta \)
\[
||B(\mu + \bar{A})^{-1}||_{L(l^\rho_0(E_0))} \leq 1/2,
\]
which implies that \(S_1 \subset \rho(-\bar{A} - BR) \) and
\[
||(I + B(\mu + \bar{A})^{-1})^{-1}||_{l^\rho_0(E_0)} \leq 2.
\]
Now we compute for any \(u \in l^\rho_0(E_0) \) and \(\mu \in S_1 \)
\[
||\mu||((\mu + \bar{A} + BR)^{-1}u||_{l^\rho_0(E_0)} \leq ||\mu||((\mu + \bar{A})^{-1}(I + BR(\mu + \bar{A})^{-1})^{-1}u||_{l^\rho_0(E_0)}
\]
\[
\leq \varepsilon ||(I + BR(\mu + \bar{A})^{-1})^{-1}u||_{l^\rho_0(E_0)}
\]
\[
\leq 2\varepsilon ||u||_{l^\rho_0(E_0)},
\]
where \(I = \text{id}_{l^\rho_0(E_0)} \), and a similar computation yields
\[
||(\mu + \bar{A} + BR)^{-1}u||_{l^\rho_0(E_1)} \leq 2\varepsilon ||u||_{l^\rho_0(E_0)}.
\]
One readily checks
\[
R^\varepsilon (\mu + A)u = (\mu + \bar{A})R^\varepsilon u + B_\varepsilon R^\varepsilon u = (\mu + \bar{A} + BR)R^\varepsilon u.
\]
For \(\mu \in S_1 \), we immediately have
\[
R(\mu + \bar{A} + BR)^{-1}R^\varepsilon (\mu + A) = R(\mu + \bar{A} + BR)^{-1}(\mu + \bar{A} + BR)R^\varepsilon = \text{id}_{E_1(M, V)}.
\]
Therefore, $\mu + A$ is injective for $\mu \in S_1$.

(iii) Given $u \in C^\infty(E) := C^\infty(\mathbb{R}^n, E)$, we define

$$C_\kappa u := [(\mu + A)\mathcal{R}_\kappa - \mathcal{R}_\kappa(\mu + \bar{A}_\kappa)]u.$$

An easy computation shows that for each $u \in C^\infty(E)$

$$\psi^*\kappa C_\kappa u = \sum_{|\alpha| \leq 2l} \bar{a}^e_\alpha \partial^\alpha (\psi^*\kappa \pi_\kappa u) - \psi^*\kappa \pi_\kappa \left(\sum_{|\alpha| \leq 2l} \bar{a}^e_\alpha \partial^\alpha u \right)$$

$$= \sum_{|\alpha| \leq 2l} \sum_{0 < \beta \leq \alpha} \binom{\alpha}{\beta} \bar{a}^e_\alpha \partial^\beta (\psi^*\kappa u) \partial^{\alpha - \beta} (\psi^*\kappa \pi_\kappa).$$

It is obvious that $C_\kappa \in \mathcal{L}(\mathbb{S}^{s+2l-1}(E), \mathbb{S}^s(M, V))$. Moreover, with $u = (u_\kappa)_\kappa$, it is a simple matter to verify as for (3.16) that

$$[u \mapsto (\psi^*\kappa C_\kappa u_\kappa)_\kappa] \in \mathcal{L}(l^0_0(E_\vartheta), l^0_0(E_0)).$$

Define $\mathcal{C} : l^0_0(E_\vartheta) \to E_1(M, V); \; [u \mapsto \sum_\kappa C_\kappa u_\kappa]$. Then given any $u \in l^0_0(E_1)$

$$(\mu + A)\mathcal{R}u = \mathcal{R}(\mu + \bar{A})u + \mathcal{R}\mathcal{R}^c \mathcal{C}u = \mathcal{R}(\mu + \bar{A} + \mathcal{R}^c)u.$$

It follows in an analogous way to the proof for Proposition 2 that

$$[u \mapsto \sum_\kappa \varphi^*\kappa (\pi_\kappa u_\kappa)] \in \mathcal{L}(l^0_0(E_0), E_0(M, V)).$$

In view of $C u = \sum_\kappa \varphi^*\kappa (\pi_\kappa u_\kappa)$, we obtain

$$\mathcal{C} \in \mathcal{L}(l^0_0(E_\vartheta), E_0(M, V))$$

and thus

$$\mathcal{R}^c \mathcal{C} \in \mathcal{L}(l^0_0(E_\vartheta), l^0_0(E_0)).$$

Now it is not hard to verify via an analogous computation as in (ii) that there exists some $\omega_2 = \omega_2(C_\kappa, C_\kappa) \geq \omega_1$ such that $S_2 := \omega_2 + \Sigma_\vartheta \subset \rho(-\bar{A} + \mathcal{R}^c \mathcal{C})$ and

$$|\mu|^{1-i} ||(\mu + \bar{A} + \mathcal{R}^c \mathcal{C})^{-1}||_{\mathcal{L}(l^0_0(E_0), l^0_0(E_1))} \leq 2\mathcal{E}, \; \mu \in S_2, \; i = 0, 1.$$

Then we have

$$(\mu + A)\mathcal{R}(\mu + \bar{A} + \mathcal{R}^c \mathcal{C})^{-1} \mathcal{R}^c = \mathcal{R}(\mu + \bar{A} + \mathcal{R}^c \mathcal{C})(\mu + \bar{A} + \mathcal{R}^c \mathcal{C})^{-1} \mathcal{R}^c = \text{id}_{E_0(M, V)}.$$

Thus, $\mu + A$ is surjective for $\mu \in S_1$, and $\mathcal{R}(\mu + \bar{A} + \mathcal{R}^c \mathcal{C})^{-1} \mathcal{R}^c$ is a right inverse of $(\mu + A)$. Furthermore,

$$|\mu|^{1-i} ||(\mu + A)^{-1}||_{\mathcal{L}(E_0(M, V), E_1(M, V))} = |\mu|^{1-i} ||(\mathcal{R}(\mu + \bar{A} + \mathcal{R}^c \mathcal{C})^{-1} \mathcal{R}^c)||_{\mathcal{L}(E_0(M, V), E_1(M, V))} \leq C\mathcal{E}, \; \mu \in S_1, \; i = 0, 1.$$

This completes the proof.

Recall that an operator A is said to belong to the class $\mathcal{H}(E_1, E_0)$ for some densely embedded Banach couple $E_1 \overset{d}{\hookrightarrow} E_0$, if $-A$ generates a strongly continuous analytic semigroup on E_0 with $\text{dom}(-A) = E_1$. By the well-known semigroup theory, Proposition 11 immediately implies

Theorem 3.1. Let $s \in \mathbb{R}_+ \setminus \mathbb{N}$ and $\vartheta \in \mathbb{R}$. Suppose A satisfies the conditions in Proposition 11. Then

$$A \in \mathcal{H}(bc^{s+2l, \vartheta}(M, V), bc^{s, \vartheta}(M, V)).$$
For some fixed interval \(I = [0, T], \gamma \in (0, 1) \), and some Banach space \(X \), we define
\[
\text{BUC}_{1-\gamma}(I, X) := \{ u \in C(\hat{I}, X) : [t \mapsto t^{1-\gamma}u]\in C(\hat{I}, X), \lim_{t \to 0^+} t^{1-\gamma}\|u(t)\|_X = 0 \},
\]
\[
\|u\|_{C_{1-\gamma}} := \sup_{t \in \hat{I}} t^{1-\gamma}\|u(t)\|_X,
\]
and
\[
\text{BUC}_{1-\gamma}^1(I, X) := \{ u \in C^1(\hat{I}, X) : u, \dot{u} \in \text{BUC}_{1-\gamma}(I, X) \}.
\]
Recall that in the above definition \(\hat{I} = I \setminus \{0\} \). Moreover, we put
\[
\text{BUC}_0(I, X) := \text{BUC}(I, X) \quad \text{and} \quad \text{BUC}_1^0(I, X) := \text{BUC}_1^1(I, X).
\]
In addition, if \(I = [0, T) \) is a half open interval, then
\[
C_{1-\gamma}(I, X) := \{ v \in C(\hat{I}, X) : v \in \text{BUC}_{1-\gamma}([0, t], X), \ t < T \},
\]
\[
C_{1-\gamma}^1(I, X) := \{ v \in C^1(\hat{I}, X) : v, \dot{v} \in C_{1-\gamma}(I, X) \}.
\]
We equip these two spaces with the natural Fréchet topology induced by the topology of \(\text{BUC}_{1-\gamma}([0, t], X) \) and \(\text{BUC}_{1-\gamma}^1([0, t], X) \), respectively.

Assume that \(E_1 \xrightarrow{d} E_0 \) is a densely embedded Banach couple. Define
\[
E_0(I) := \text{BUC}_{1-\gamma}(I, E_0), \quad E_1(I) := \text{BUC}_{1-\gamma}(I, E_1) \cap \text{BUC}_{1-\gamma}^1(I, E_0).
\] (3.18)
For \(A \in \mathcal{H}(E_1, E_0) \), we say \((E_0(I), E_1(I))\) is a pair of maximal regularity of \(A \), if
\[
\left(\frac{d}{dt} + A, \gamma_0 \right) \in \mathcal{L}(E_1(I), E_0(I) \times E_\gamma),
\]
where \(\gamma_0 \) is the evaluation map at 0, i.e., \(\gamma_0(u) = u(0) \), and \(E_\gamma := (E_0, E_1)^0_{\gamma, \infty} \).
Symbolically, we denote this property by
\[
A \in \mathcal{M}_\gamma(E_1, E_0).
\]

Now following a well-known theorem by G. Da Prato and P. Grisvard [17] and S. Angenent [8] and the proof of [41, Theorem 3.7], we have

Theorem 3.2. Let \(\gamma \in (0, 1] \), \(s \in \mathbb{R}_+ \setminus \mathbb{N} \) and \(\vartheta \in \mathbb{R} \). Suppose that \(A \) satisfies the conditions in Proposition 11. Then
\[
A \in \mathcal{M}_\gamma(\text{be}^{s+2l},(M, V), \text{be}^{s, \vartheta}(M, V)).
\]

Remark 2. In order to prove the statement in Theorem 3.2, it suffices to require \((M, g; \rho)\) to be a \(C^{2l+[s]+1}\)-singular manifold.

3.2. Domains with compact boundary as singular manifolds.

Suppose that \(\Omega \subset \mathbb{R}^m \) is a \(C^k \)-domain with compact boundary for \(k > 2 \). Then \(\Omega \) satisfies a uniform exterior and interior ball condition, i.e., there is some \(r > 0 \) such that for every \(x \in \partial \Omega \) there are balls \(B(x_s, r) \subset \Omega \) and \(B(x_e, r) \subset \mathbb{R}^m \setminus \Omega \) such that
\[
\partial \Omega \cap B(x_s, r) = \partial \Omega \cap B(x_e, r) = x.
\]
For \(a \leq r \), we denote the \(a \)-tubular neighborhood of \(\partial \Omega \) by \(T_a \). Let
\[
d_{\partial \Omega}(x) := \text{dist}(x, \partial \Omega), \quad x \in \Omega,
\]
i.e., the distance function to the boundary. We define \(d : \Omega \to \mathbb{R}^+ \) by
\[
d = d_{\partial \Omega} \text{ if } \Omega \text{ is bounded}, \quad \text{or} \quad \begin{cases}
d = d_{\partial \Omega} & \text{in } \Omega \cap T_a, \\
d \sim 1 & \text{in } \Omega \setminus T_a \end{cases}
\] (3.19)
Then we have the following proposition.
Proposition 12. Let $\beta \geq 1$. Suppose that $\Omega \subset \mathbb{R}^m$ is a C^k-domain with compact boundary and $k > 2$. Then $(\Omega, g_m; d^\beta)$ is a C^{k-1}-singular manifold.

Proof. The case of $k = \infty$ is a direct consequence of [6, Theorem 1.6]. When $k < \infty$, one notices that, to parameterize T_a, we need to use the outward pointing unit normal of $\partial \Omega$, which is C^{k-1}-continuous. By a similar argument to [6, Theorem 1.6], we can then prove the asserted statement.

Given any finite dimensional Banach space X, by defining the singular manifold $(\mathcal{M}, g; \rho)$ by $(\Omega, g_m; d^\beta)$, we denote the weighted little Hölder spaces defined on Ω by $\mathcal{b}^{s, \vartheta}_{\beta}(\Omega, X)$, i.e., $\mathcal{b}^{s, \vartheta}_{\beta}(\Omega, X) = \mathcal{b}^{s, \vartheta}(\mathcal{M}, X)$.

In view of Remark 2, we have the following continuous maximal regularity theorem for elliptic operators with higher order degeneracy on domains.

Theorem 3.3. Let $\gamma \in (0, 1]$, $s \in \mathbb{R} \setminus \mathbb{N}$, $\vartheta \in \mathbb{R}$, $\beta \geq 1$ and $k = 2l + |s| + 2$. Suppose that $\Omega \subset \mathbb{R}^m$ is a C^k-domain and the differential operator $A := \sum_{|\alpha| \leq 2l} a_\alpha \partial^\alpha$ satisfies

(a) for any $\xi \in S^{m-1}$

$$S := \sum_{|\alpha| \leq 2l} \rho(-\sigma A^\pi(x, \xi)),$$

and for some $C_\varepsilon > 0$

$$(d^{2l+1}(x) + |\mu|)(\mu + \sigma A^\pi(x, \xi))^{-1} \|\mathcal{L}(X) \leq C_\varepsilon, \quad \mu \in S;$$

(b) $a_\alpha \in \mathcal{b}^{s-|\alpha|}_{\beta}(\Omega, \mathcal{L}(X))$.

Then

$$A \in \mathcal{M}_{\gamma}(\mathcal{b}^{s-2l, \vartheta}_{\beta}(\Omega, X), \mathcal{b}^{s, \vartheta}_{\beta}(\Omega, X)).$$

The above theorem generalizes the results of [24, 46] to unbounded domains and elliptic operators with higher order degeneracy on domains.

Remark 3. (a) Condition (a) in Theorem 3.3 can be replaced by the following condition. For any $\xi \in S^{m-1}$ and $\eta \in X$,

$$\langle \sigma A^\pi(x, \xi) \eta, \eta \rangle_X \sim d^{2l|\eta|^2}. X.$$

Here $\langle \cdot, \cdot \rangle$ is the inner product in X.

(b) In Theorem 3.3, taking X to be any infinite dimensional Banach space is also admissible.

4. Applications.

4.1. The porous medium equation. We consider the porous medium equation on a singular manifold $(\mathcal{M}, g; \rho)$, which reads as follows.

$$\begin{cases}
\partial_t u - \Delta u^n = f; \\
u(0) = u_0
\end{cases}
$$

for $n > 1$. Let

$$P(u) := -nu^{n-1}\Delta, \quad Q(u) := n(n-1)|\text{grad} u|^2 u^{n-2}.$$
Here $\Delta := \Delta_g$ with Δ_g standing for the Laplacian-Beltrami operator with respect to g. A direct computation shows that equation (4.1) is equivalent to
\[
\begin{cases}
\partial_t u + P(u)u = Q(u) + f; \\
u(0) = u_0.
\end{cases}
\]

Given any $0 < s < 1$, put $\vartheta = -2/(n - 1)$. In the current context, $V = \mathbb{R}$, thus we abbreviate the notation $bc^{s,\vartheta}(M, V)$ to $bc^{s,\vartheta}(M)$ for any $s' \geq 0$. Let
\[
E_0 := bc^{s,\vartheta}(M), \quad E_1 := bc^{2+s,\vartheta}(M), \quad E_{1/2} := (E_0, E_1)^{0}_{1/2, \infty}.
\]
Then by Proposition 3, $E_{1/2} \cong bc^{1+s,\vartheta}(M)$. Let
\[
U_1^{1+s} := \{u \in E_{1/2} : \inf \rho^\vartheta u > 0\},
\]
which is open in $E_{1/2}$.

For any $\beta \in \mathbb{R}$, define $P_\beta : U_1^{1+s} \to L_{1,\text{loc}}(M) : u \mapsto \rho^\vartheta$. One readily checks that [41, Proposition 6.3] still holds true for singular manifolds. Hence by [41, Proposition 6.3] and Proposition 6, we obtain
\[
[u \mapsto u^\beta] = [u \mapsto \rho^{-\beta}P_\beta(\rho^\vartheta u)] \in C^\infty(U_1^{1+s}, bc^{1+s,\beta\vartheta}(M)). \tag{4.2}
\]

In view of (P2), we infer that $\mathcal{R}^{s}g^* \in l^2_\infty(\mathbf{BC}^k(E_0^2))$ for any $k \in \mathbb{N}_0$. Then Proposition 2 yields
\[
g^* \in BC^{\infty,2}(M, V_0^2). \tag{4.3}
\]
One may check via Proposition 5, (4.2) and (4.3) that
\[
u^{n-1}g^* \in bc^{1+s}(M, V_0^2), \quad u \in U_1^{1+s}.
\]

On account of the expression $\Delta_g v = \mathcal{C}(g^*, \nabla^2 v)$, it is then a direct consequence of Proposition 9 and [12, Proposition 1] that
\[
P \in C^\omega(U_1^{1+s}, \mathcal{L}(E_1, E_0)). \tag{4.4}
\]

In the above, $\nabla := \nabla_g$, where ∇_g is Levi-Civita connection of g. Given any $\vartheta' \in \mathbb{R}$, by Proposition 7 and [39, Proposition 2.5], one obtains
\[
\nabla \in \mathcal{L}(\mathbf{BC}^{k+1,\vartheta'}(M, V_\sigma^s), \mathbf{BC}^{k,\vartheta'+2}(M, V_\tau^s)). \tag{4.5}
\]

A density argument as in the proof for Proposition 6 yields
\[
\nabla \in \mathcal{L}(bc^{k+1,\vartheta'}(M, V_\sigma^s), bc^{k,\vartheta'+2}(M, V_\tau^s)).
\]

Interpolation theory and definition (2.3) imply that (4.5) also holds for Hölder spaces of non-integer order. Applying the density argument as in the proof for Proposition 6 once more, we establish the assertion for weighted little Hölder spaces of non-integer order, that is, for any $s' \geq 0$
\[
\nabla \in \mathcal{L}(bc^{s+1,\vartheta'}(M, V_\sigma^s), bc^{s,\vartheta'+2}(M, V_\tau^s)). \tag{4.6}
\]

We have the expression $|\nabla u|^2_g = \mathcal{C}(\nabla u, \nabla u)$. Since complete contraction is a bundle multiplication, we infer from Propositions 5, 7 and (4.6) that
\[
[u \mapsto |\nabla u|^2_g] \in C^\omega(U_1^{1+s}, bc^{s,2\vartheta}(M)). \tag{4.7}
\]
Proposition 5, (4.2) and (4.7) immediately imply
\[
Q \in C^\omega(U_1^{1+s}, E_0). \tag{4.8}
\]

Given any $u \in U_1^{1+s}$, one verifies that the principal symbol of $P(u)$ fulfills
\[
-n\mathcal{C}(u^{n-1}g^*, (-i\xi)^{2\beta}) = n\rho^2(\rho^\vartheta u)^{n-1}|\xi|^2_{\vartheta} \geq n(\inf \rho^\vartheta u)^{n-1}(\rho^\vartheta u)^{\vartheta} \geq n(\inf \rho^\vartheta u)^{n-1} \rho^\vartheta |\xi|^2_{\vartheta},
\]
for any cotangent field ξ. Hence for any $u \in U^{1+s}_0$, $P(u)$ is normally ρ-elliptic. It follows from Theorem 3.2 that

$$P(u) \in \mathcal{M}_r(E_1, E_0), \quad u \in U^{1+s}_0. \quad (4.9)$$

Theorem 4.1. Suppose that $u_0 \in U^{1+s}_0 := \{ u \in \text{bc}^{1+s,\rho}(M) : \inf \rho \partial u > 0 \}$ with $0 < s < 1$, $\partial = -2/(n-1)$, and $f \in \text{bc}^{s,\rho}(M)$. Then equation (4.1) has a unique local positive solution

$$\hat{u} \in C^1_1(J(u_0), \text{bc}^{s,\rho}(M)) \cap C^{1/2}(J(u_0), \text{bc}^{2+s,\rho}(M)) \cap C(J(u_0), U^{1+s}_0)$$

existing on $J(u_0) := [0, T(u_0))$ for some $T(u_0) > 0$. Moreover,

$$\hat{u} \in C^\infty(J(u_0) \times M).$$

Here $J := J \setminus \{0\}$.

Proof. In virtue of (4.4), (4.8) and (4.9), [15, Theorem 4.1] immediately establishes the local existence and uniqueness part. The short term positivity of the solution follows straightaway from the continuity of the solution. To argue for the asserted regularity property of the solution \hat{u}, we look at $v := \rho^\partial \hat{u}$. By multiplying both sides of equation 4.1 with ρ^∂, we have

$$\begin{cases}
\partial_t v - \rho^\partial \Delta \rho^{2-\partial} v^n = \rho^\partial f; \\
v(0) = \rho^\partial u_0.
\end{cases}$$

One checks

$$\rho^\partial \Delta \rho^{2-\partial} v^n = n\rho^2 v^{n-1} \Delta v + n(n-1)\rho^2 |\text{grad} v|^2 v^{n-2} + 2n(2-\partial)\rho^2 |\text{grad} \log \rho| \text{grad} v) v^{n-1} + (2-\partial)|\rho\Delta \rho + (1-\partial)||\text{grad} \rho|^2 |v^n.$$

Let $\hat{g} = g/\rho^2$. Recall that (M, \hat{g}) is a uniformly regular Riemannian manifold. Put $U^{1+s} := \{ v \in \text{bc}^{1+s}(M) : \inf v > 0 \}$. By [5, formula (5.15)],

$$\rho^2 |\text{grad} v|_\hat{g}^2 = |\text{grad} \rho|_{\partial}^2.$$

We have

$$(\text{grad} \log \rho | \text{grad} v)_\partial = (\text{grad} \log \rho | \text{grad} \rho)_\partial.$$
Then by the above discussion, we infer that
\[P \in C^\omega(U_1^{1+s}, L(bc^{2+s}(M), bc^s(M))), \quad Q \in C^\omega(U_1^{1+s}, bc^s(M)). \]
For each \(v \in U_1^{1+s} \), we can check that \(P(v) \) is normally elliptic in the sense of [41, Section 3]. Applying the parameter-dependent diffeomorphism technique in [38], we can establish
\[v \in C^\infty(\hat{J}(u_0) \times M), \]
which in turn implies
\[\hat{u} \in C^\infty(\hat{J}(u_0) \times M). \]

Remark 4. It is clear Theorem 4.1 still holds true for the fast diffusion case of the porous medium equation (the plasma equation).

Before concluding this subsection, we comment on the Cauchy problem for the porous medium equation and its waiting-time phenomenon. Since our conclusion for the porous medium equation, to some extend, can be viewed as a simpler version of the corresponding theory of the thin film equation in Section 4.4, we will only state our results without providing proofs. More details can be found in Section 4.4.

Remark 5. Suppose that \(\text{supp}(u_0) =: \Omega \subset \mathbb{R}^m \) is a \(C^4 \)-domain with compact boundary, and \(u_0 \in U_1^{1+s} := \{ u \in bc_1^{1+s,\vartheta}(\Omega) : \inf d^{\vartheta}u > 0 \} \) with \(0 < s < 1, \vartheta = -2/(n-1) \). We learn from Proposition 12 that \((\Omega, g_0, d)\) is a \(C^3 \)-singular manifold, where \(d \) is defined in (3.19). Then by Theorems 3.3 and 4.1, for every \(f \in bc_1^{s,\vartheta}(\Omega) \), the equation
\[
\begin{aligned}
\partial_t u + \Delta u^n &= f \quad \text{on} \quad \Omega_T; \\
u(0) &= u_0 \quad \text{on} \quad \Omega,
\end{aligned}
\]
with \(\Omega_T := \Omega \times (0, T) \), has a unique solution
\[
\hat{u} \in C_1^{1/2}(J(u_0), bc_1^{s,\vartheta}(\Omega)) \cap C_1^{2+s,\vartheta}(J(u_0), bc_1^{2+s,\vartheta}(\Omega)) \cap C(J(u_0), U_0^{1+s}). \quad (4.10)
\]
Furthermore, by identifying \(\hat{u}, f, u_0 \equiv 0 \) in \(\mathbb{R}^m \setminus \Omega \), \(\hat{u} \) is indeed a strong \(L_1 \)-solution of the Cauchy problem
\[
\begin{aligned}
\partial_t u + \Delta u^n &= f \quad \text{on} \quad \mathbb{R}_T^m; \\
u(0) &= u_0 \quad \text{on} \quad \mathbb{R}^m
\end{aligned}
\]
in the sense of [45, Definition 9.1], except that the interval of existence \([0, \infty)\) in [45, Definition 9.1] is replaced by \(J(u_0) \). This solution is unique by [45, Theorem 9.2]. Another observation from (4.10) is that \(\hat{u} \) enjoys the so-called waiting-time property, that is,
\[
\text{supp}[\hat{u}(t, \cdot)] = \text{supp}[\hat{u}(0, \cdot)], \quad t \in (0, T(u_0)).
\]

4.2. The Yamabe flow. Suppose that \((M, g_0; \rho)\) is a singular manifold without boundary of dimension \(m \) for \(m \geq 3 \). The Yamabe flow reads as
\[
\begin{aligned}
\partial_t g &= -R_g g; \\
g(0) &= g_0, \quad (4.11)
\end{aligned}
\]
where \(R_g \) is the scalar curvature with respect to the metric \(g \). \(g_0 \) is in the conformal class of the background metric \(g_0 \) of \(M \).
We seek solutions to the Yamabe flow \((4.11)\) in the conformal class of the metric \(g_0\). Let \(c(m) := \frac{m - 2}{4(m - 1)}\), and define the conformal Laplacian operator \(L_g\) with respect to the metric \(g\) as:

\[L_g u := \Delta_g u - c(m)R_g u. \]

Let \(g = u^{\frac{4}{m-2}}g_0\) for some \(u > 0\). It is well known that by rescaling the time variable equation \((4.11)\) is equivalent to

\[
\begin{align*}
\partial_t u & \left(\frac{m+2}{m-2}\right) = \frac{m+2}{m-2}L_0 u; \\
u(0) & = u_0,
\end{align*}
\]

where \(L_0 := L_{g_0}\) and \(u_0\) is a positive function. See [30, formula (7)]. It is equivalent to solving the following equation:

\[
\begin{align*}
\partial_t u & = u^{-\frac{4}{m-2}}L_0 u; \\
u(0) & = u_0.
\end{align*}
\]

A well-known formula of scalar curvature in local coordinates yields

\[R_g = \frac{1}{2} g^{ki} g^{lj}(g_{jk,li} + g_{jl,ki} - g_{ki,lj} - g_{kj,il}). \]

(P2) implies that

\[R^c g_0 \in L^2(\mathcal{B}C^k(\mathbb{R})), \]

for any \(k \in \mathbb{N}_0\). By Proposition 2, we infer that

\[R_{g_0} \in BC^{\infty,2}(\mathcal{M}). \]

Put

\[P(u)h := -u^{-\frac{4}{m-2}}\Delta g_0 h, \quad Q(u) := -c(m)u^{\frac{m-6}{2}}R_{g_0}. \]

Given any \(0 < s < 1\), we choose \(0 < \alpha < s, \gamma = (s-\alpha)/2\). Let \(\vartheta = (m-2)/2\) and

\[E_0 := \text{be}^{s,\theta}(\mathcal{M}), \quad E_1 := \text{be}^{2+\alpha,\theta}(\mathcal{M}), \quad E_\gamma := (E_0, E_1)_\gamma^{0}. \]

Then by Proposition 3, \(E_\gamma \equiv \text{be}^{s,\theta}(\mathcal{M})\). Put

\[U_\theta^s := \{ u \in E_\gamma : \inf \rho^\vartheta u > 0 \}\]

In view of \((4.13)\), it follows from an analogous discussion as in \((4.4)\) and \((4.8)\) that

\[P \in C^\omega(U_\theta^s, L(E_1, E_0)), \quad Q \in C^\omega(U_\theta^s, E_0). \]

A similar computation as in \((4.9)\) yields

\[P(u) \in M_\gamma(E_1, E_0), \quad u \in U_\theta^s. \]

Theorem 4.2. Suppose that \(u_0 \in U_\theta^s := \{ u \in \text{be}^{s,\vartheta}(\mathcal{M}) : \inf \rho^\vartheta u > 0 \} \) with \(0 < s < 1\), and \(\vartheta = (m-2)/2\). Then for every fixed \(\alpha \in (0, s)\), equation \((4.12)\) has a unique local positive solution

\[\hat{u} \in C^1_{1-\gamma}(J(u_0), \text{be}^{s,\theta}(\mathcal{M})) \cap C_{1-\gamma}(J(u_0), \text{be}^{2+\alpha,\theta}(\mathcal{M})) \cap C(J(u_0), U_\theta^s) \]

existing on \(J(u_0) := [0, T(u_0))\) for some \(T(u_0) > 0\) with \(\gamma = (s-\alpha)/2\). Moreover,

\[\hat{g} \in \mathcal{C}^{\infty}(\hat{J}(u_0) \times \mathcal{M}, V_\theta^s). \]

In particular, if the metric \(g_0/\rho^2\) is real analytic, then

\[\hat{g} \in \mathcal{C}^{\infty}(\hat{J}(u_0) \times \mathcal{M}, V_\theta^s). \]
Proof. Local existence and uniqueness is a direct consequence of (4.14), (4.15), and [15, Theorem 4.1]. The regularity part follows in a similar way to the proof of Theorem 4.1. □

Remark 6. The scalar curvature of the initial metric \(g^0 = u_0^{\frac{4}{m-2}} g_0 \) is related to that of the background singular metric \(g_0 \) in the following manner:

\[
R_{g^0} = -\frac{4(m-1)}{m-2} u_0^{\frac{m+2}{2}} L_{g_0} u.
\] (4.16)

We may take \(\rho = 1_M \) for computational brevity, i.e., \((M, g_0) \) to be uniformly regular. Then there is some \(C > 1 \) such that

\[
\frac{1}{C} \leq \| u_0^{\frac{m+2}{2}} \|_{\infty} \leq C, \quad \| R_{g_0} \|_{\infty} \leq C.
\]

But at the same time, there are ample examples of \(u_0 \in U^s_\theta \) with unbounded derivatives. In view of formula (4.16), it is not hard to create \(g^0 \) with unbounded scalar curvature. Therefore, the Yamabe flow can admit a unique smooth solution while starting at a metric with unbounded curvature, and these solutions evolve into one with bounded curvature instantaneously.

Remark 7. We would like to mention a recent paper by E. Bahuaud, B. Vertman [9] on the Yamabe flow on conical, see Example 3, or edge manifolds. The authors of that paper proved the local well-posedness of the Yamabe flow in a Hölder framework. In their result, the initial scalar curvature blows up like \(1/t^2 \) while approaching the singular end \(\{0\} \times S \), where \(t \) is the boundary defining function in Example 3. This produces another example of the Yamabe flow starting with metric of unbounded curvature. But in [9], the flow will preserve the type of singularity for the evolving metric. This means that the scalar curvature of the evolving metric in [9] will always blow up like \(1/t^2 \) while approaching the singular end throughout the existence interval. This is in contrast with our result on the instantaneous regularization effect of the Yamabe flow, which has been stated in the previous remark.

The reader may also refer to [40] for a related result on local well-posedness of the Yamabe flow on a class of incomplete manifolds. This result is similar to that in [9] in the sense that the flow remains to have the same type of singularity as the initial metric.

4.3. The evolutionary \(p \)-Laplacian equation. In this subsection, we investigate the well-posedness of the following evolutionary \(p \)-Laplacian equation on a singular manifold \((M, g, \rho) \).

\[
\begin{cases}
\partial_t u - \text{div}(|\text{grad} u|_{g}^{p-2} \text{grad} u) = f; \\
u(0) = u_0.
\end{cases}
\] (4.17)

Here \(p \geq 1 \) with \(p \neq 2 \), and \(\text{grad} = \text{grad}_g, \text{div} = \text{div}_g \). One computes

\[
\text{div}(|\text{grad} u|_{g}^{p-2} \nabla u) = |\text{grad} u|_{g}^{p-2} \Delta u + (p - 2)|\text{grad} u|_{g}^{p-4} \mathcal{C}((\text{grad} u)^{\otimes 2}, \nabla^2 u)
\]

\[
= |\text{grad} u|_{g}^{p-4} \mathcal{C}((\text{grad} u)^2 g^* + (p - 2) (\text{grad} u)^{\otimes 2}, \nabla^2 u).
\]

Let

\[
\tilde{a}(u) := -|\text{grad} u|_{g}^{p-4}(|\text{grad} u|^2 g^* + (p - 2) (\text{grad} u)^{\otimes 2}).
\]

For any \(0 < s < 1 \), we put \(\vartheta = p/(2 - p) \) and

\[
E_0 := bc^s,\vartheta(M), \quad E_1 := bc^{2+s,\vartheta}(M), \quad E_{1/2} := (E_0, E_1)^{0,1/2,\infty}.
\]
Proposition 3 implies $E_{1/2} \supseteq \mathcal{B}_{1+s,\vartheta}(M)$. Let
\[U_{\vartheta}^{1+s} := \{ u \in E_{1/2} : \inf \| \nabla u \|_g > 0 \}. \]
This is an open subset of $E_{1/2}$.

We infer from (4.2) and (4.7) that
\[[u \mapsto | \nabla u |^p] \in C^{0}(U_{\vartheta}^{1+s}, \mathcal{B}_{s,-2}(M)), \]
and from [4, Example 13.4(b)], Proposition 5 and [39, Proposition 2.5] that
\[[u \mapsto | \nabla u |^{p-2}(\nabla u)^{\otimes 2}] \in C^{0}(U_{\vartheta}^{1+s}, \mathcal{B}_{s,0}(M, V_0^2)). \]
In virtue of (4.3) and Proposition 5, we have
\[[u \mapsto \tilde{a}(u)] \in C^{0}(U_{\vartheta}^{1+s}, \mathcal{B}_{s,0}(M, V_0^2)). \]
(4.18)
The principal symbol can be computed as in Section 4.1.
\[C(\tilde{a}(u), (-i\xi)^{\otimes 2})(p) \]
\[= |\nabla u|_{g(p)}^{p-2}|\xi(p)|^2_{g^*(p)} + (p-2)|\nabla u|_{g(p)}^{p-4}|C(\nabla u, \xi)(p)|^2 \]
\[= |\nabla u|_{g(p)}^{p-2}|\xi(p)|^2_{g^*(p)} + (p-2)|\nabla u|_{g(p)}^{p-4}(\nabla u(p)|\xi(p)|^2_{g^*(p)}). \]
For $p > 2$, one checks for any $\xi \in \Gamma(M, T^*M)$
\[C(\tilde{a}(u), (-i\xi)^{\otimes 2})(p) \geq |\nabla u|_{g(p)}^{p-2}|\xi(p)|^2_{g^*(p)} \]
\[\geq (\inf \rho |\nabla u|_{g}^{p-2}\rho^2(p)|\xi(p)|^2_{g^*(p)}), \]
and for $1 < p < 2$
\[C(\tilde{a}(u), (-i\xi)^{\otimes 2})(p) \]
\[\geq |\nabla u|_{g(p)}^{p-2}|\xi(p)|^2_{g^*(p)} + (p-2)|\nabla u|_{g(p)}^{p-2}|\xi(p)|^2_{g^*(p)} \]
\[= (p-1)|\nabla u|_{g(p)}^{p-2}|\xi(p)|^2_{g^*(p)} \]
\[\geq (p-1)(\sup \rho |\nabla u|_{g}^{p-2}\rho^2(p)|\xi(p)|^2_{g^*(p)}), \]
holds for all $u \in U_{\vartheta}^{1+s}$. In the second step, we have used the Cauchy-Schwarz inequality. Therefore, $C(\tilde{a}(u), \nabla^{2})$ is normally ρ-elliptic for every $u \in U_{\vartheta}^{1+s}$.

Theorem 4.3. Suppose that $u_0 \in U_{\vartheta}^{1+s} := \{ u \in \mathcal{B}_{1+s,\vartheta}(M) : \inf \rho |\nabla u|_{g} > 0 \}$ with $0 < s < 1$, $\vartheta = p/(2-p)$, and $f \in \mathcal{B}_{s,\vartheta}(M)$. Then equation (4.17) has a unique local solution
\[\hat{u} \in C_{1/2}(J(u_0), \mathcal{B}_{s,\vartheta}(M)) \cap C_{1/2}(J(u_0), \mathcal{B}_{2+s,\vartheta}(M)) \cap C(J(u_0), U_{\vartheta}^{1+s}) \]
existing on $J(u_0) := [0, T(u_0))$ for some $T(u_0) > 0$. Moreover,
\[\hat{u} \in C^{\infty}(\hat{J}(u_0) \times M). \]

Proof. The assertion follows in a similar way to the proof of Theorem 4.1. \(\square \)

Remark 8. Suppose that we take $(M, g; \vartheta)$ to be $(\Omega, g_m; \vartheta)$ with $\beta \geq 1$ for some C^4-domain $\Omega \subset \mathbb{R}^n$ with compact boundary. Let $\vartheta = p/(2-p)$. If we define
\[U_{\vartheta}^{1+s} := \{ u \in \mathcal{B}_{1+s,\vartheta}(\Omega) : \inf \vartheta^{(s+1)\beta}(Du) > 0, \inf \vartheta^{(s+1)\beta} u > 0 \}, \]
then Theorem 4.3 still holds true, where D is the gradient with respect to the metric g_m. Then there exists a positive continuous function $c(t)$ in $J := J(u_0)$ such that
\[d_{\beta}(x)\hat{u}(t, x) \geq c(t), \quad t \in J. \]
In particular, the above inequality shows that, for $1 < p < 2$, as $x \to \partial \Omega$

$$\hat{u}(t, x) \geq c(t)d_{\hat{\rho}}^\alpha(x) \to \infty, \quad t \in J.$$

This validates the assertion about equation (1.3) in Section 1.

4.4. The thin film equation on domains. Suppose that $\Omega \subset \mathbb{R}^m$ is a C^0-domain with compact boundary. Then by the discussion in Section 3.2, $(\Omega, g_m; d_\beta)$ with $\beta \geq 1$ is a singular manifold, where d is defined in (3.19). We consider the following thin film equation with $n > 0$ and degenerate boundary condition. Physically, the power exponent is determined by the flow condition at the liquid-solid interface, and is usually constrained to $n \in (0, 3]$. Since the other choices of n make no difference in our theory, $n \in [3, \infty)$ is also included herein.

\begin{equation}
\begin{cases}
\partial_t u + \text{div}(u^n D\Delta u + \alpha_1 u^{n-1} \Delta u Du + \alpha_2 u^{n-2} |Du|^2 Du) = f & \text{on } \Omega_T; \\
u(0) = u_0 & \text{on } \Omega.
\end{cases}
\end{equation}

(4.19)

Here α_1, α_2 are two constants, and D denotes the gradient in \mathbb{R}^m. An easy computation shows that

$$\text{div}(u^n D\Delta u + \alpha_1 u^{n-1} \Delta u Du + \alpha_2 u^{n-2} |Du|^2 Du)$$

$$= u^n \Delta^2 u + (n + \alpha_1) u^{n-1}(Du|D\Delta u)_{g_m} + \alpha_1 u^{n-1}(\Delta u)^2$$

$$+ [\alpha_1(n-1) + \alpha_2] u^{n-2} |Du|^2 \Delta u + \alpha_2(n-2) u^{n-3} |Du|^4$$

$$+ 2\alpha_2 u^{n-2} (\nabla^2 u Du|Du)_{g_m}.$$

For any $0 < s < 1$, take $\vartheta = -4/n$

$$E_0 := bc_{\beta}^{2+s, \vartheta}(\Omega), \quad E_1 := bc_{\beta}^{4+s, \vartheta}(\Omega), \quad E_{1/2} = (E_0, E_1)^{0}_{1/2, \infty}.$$

Then $E_{1/2} = bc_{\beta}^{2+s, \vartheta}(\Omega)$. Let $U^{2+s}_{\vartheta} := \{u \in E_{1/2} : \inf d_{\vartheta} u > 0\}$. For any $u \in U^{2+s}_{\vartheta}$ and $v \in E_1$, we define

$$P(u)v := u^n \Delta^2 v + (n + \alpha_1) u^{n-1}(Du|D\Delta v)_{g_m} + \alpha_1 u^{n-1} \Delta u \Delta v$$

$$+ [\alpha_1(n-1) + \alpha_2] u^{n-2} |Du|^2 \Delta v + \alpha_2(n-2) u^{n-4} |Du|^4 v$$

$$+ 2\alpha_2 u^{n-2} (\nabla^2 v Du|Du)_{g_m}.$$

It follows from a similar argument as in Section 4.1 that

$$P \in C^\infty(U^{2+s}_{\vartheta}, \mathcal{L}(E_1, E_0))$$

and for every $u \in U^{2+s}_{\vartheta}$, the principal symbol of $P(u)$ can be computed as

$$\hat{\sigma}P(u)(x, \xi) = u^n(x)(g_m((-i\xi), (-i\xi)))^2$$

$$= d^{4\beta}(x)(d^\vartheta u)^n(x)|\xi|^4 \geq (\inf d^\vartheta u)^n d^{4\beta}(x)|\xi|^4.$$

Thus $P(u)$ is normally ρ-elliptic.

Theorem 4.4. Given any $\beta \geq 1$, suppose that $u_0 \in U^{2+s}_{\vartheta} := \{u \in bc_{\beta}^{2+s, \vartheta}(\Omega) : \inf d_{\vartheta} u > 0\}$ with $0 < s < 1$, $\vartheta = -4/n$. Then for every $f \in bc_{\beta}^{s, \vartheta}(\Omega)$, equation (4.19) has a unique local solution

$$\hat{u} \in C^1_{1/2}(J(u_0), bc_{\beta}^{s, \vartheta}(\Omega)) \cap C_{1/2}(J(u_0), bc_{\beta}^{4+s, \vartheta}(\Omega)) \cap C(J(u_0), U^{2+s}_{\vartheta})$$

existing on $J(u_0) := [0, T(u_0))$ for some $T(u_0) > 0$. Moreover,

$$\hat{u} \in C^{\infty}(\hat{J}(u_0) \times \Omega).$$
Proof. The proof is essentially the same as that for Theorem 4.1 except that we use Theorem 3.3 instead of Theorem 3.2. □

In the case \(\alpha_1 = 0 \), we can admit lower regularity for the initial data.

Corollary 1. Given any \(\beta \geq 1 \), suppose that \(u_0 \in U_\vartheta^{1+s} = \{ u \in b c_{\beta}^{1+s,\vartheta} (\Omega) : \inf \vartheta \delta u > 0 \} \) with \(0 < s < 1 \), \(\vartheta = -1/4 \). Then for every \(f \in b c_{\beta}^{s,\vartheta} (\Omega) \), equation (4.19) has a unique local solution
\[
\dot{u} \in C_{\vartheta/4}^{1/4}(J(u_0), bc_{\beta}^{s,\vartheta}(\Omega)) \cap C(\Omega \times 0, T(u_0))
\]
existing on \(J(u_0) := [0, T(u_0)) \). Moreover,
\[
\dot{u} \in C_{\vartheta}(J(u_0) \times \Omega).
\]

In some literature, a more general form of the thin film equation is considered with \(u^n \) replaced by \(\Psi(u) = u^n + \delta u^3 \) with \(\delta \geq 0 \) and \(n \in (0, 3] \). The term \(\delta u^3 \) is sometimes omitted because it is relatively small compared to \(u^n \) for \(n < 3 \) near the free boundary \(\text{supp}(u(t, \cdot)) \).

Theorem 4.4
\[
\dot{u} + \text{div}(\Psi(u) \Delta u + \alpha_1 u^{n-1} \Delta u D u + \alpha_2 u^{n-2} |Du|^2 D u) = f \quad \text{on} \quad \Omega \times [0, T(e_1));
\]
\[
u(0) = u_0 \quad \text{on} \quad \Omega.
\]

For any \(u \in C_{\vartheta}^{2+s} \), it is easy to check that \(u^3 \in b c_{\beta}^{2+s,3\vartheta} (\Omega) \). Now the computations shown above for equation (4.19) still hold for the new system undoubtedly.

Corollary 2. Suppose that the conditions in Theorem 4.4 are satisfied. Then equation (4.20) has a unique local solution
\[
\dot{u} \in C_{\vartheta/2}^{1/2}(J(u_0), bc_{\beta}^{s,\vartheta}(\Omega)) \cap C(\Omega \times 0, T(u_0)) \times 0. Moreover,
\]
\[
\dot{u} \in C_{\vartheta}(J(u_0) \times \Omega).
\]

Remark 9. We may observe that the solution \(\dot{u} \) obtained in Theorem 4.4 is actually a solution to the following initial value problem with conditions on the free boundary \(\partial \text{supp}(u) \). Indeed, assume that \(\text{supp}(u_0) = \Omega \) and \(\Omega \) is a \(C^\vartheta \)-domain with compact boundary. Let \(\Omega(t) := \text{supp}(u(t, \cdot)) \). If the initial data \(u_0 \) satisfies the conditions in Theorem 4.4, then
\[
\dot{u} + \text{div}(\Psi(u) \Delta u + \alpha_1 u^{n-1} \Delta u D u + \alpha_2 u^{n-2} |Du|^2 D u) = f \quad \text{on} \quad \Omega(t);
\]
\[
u(0) = u_0 \quad \text{on} \quad \partial \Omega(t);\]
\[
u(n \vartheta \frac{\partial \Delta u}{\partial \nu} = 0 \quad \text{on} \quad \partial \Omega(t);
\]
\[
u(0) = u_0 \quad \text{on} \quad \Omega,
\]
has at least one classical solution. The third condition reflects conservation of mass. This is a generalization of the problem studied in [16, 26]. The existence of a solution can be observed from the fact that the solution \(\dot{u} \) to the first and fourth lines satisfies
\[
\dot{u}(t, \cdot) \in b c_{\beta}^{4+s,\vartheta}(\Omega) \cap U_{\vartheta}^{2+s}, \quad t \in J.
\]
Hence, for $t \in \hat{J}$ there are two continuous positive functions $c(t) < C(t)$ such that
\[c(t) \leq d^{(\theta)}(x)\hat{u}(t,x) \leq C(t), \quad x \in \Omega, \tag{4.22} \]
and
\[d^{(\theta-1)/\beta}(x)\hat{u}^n(t,x)|D\Delta \hat{u}(t,x)|_{g_m} \leq C(t), \quad x \in \Omega. \tag{4.23} \]
The second inequality follows from (4.2), (4.6) and the fact that
\[\Delta \in \mathcal{L}(bc^{4+s,\beta}_\beta(\Omega),bc^{2+s,2+\theta}_\beta(\Omega)). \]
The above two inequalities imply that for every $t \in \hat{J}$, as $x \to \partial \Omega$
\[|\hat{u}(t,x)| \leq C(t)d^{-\beta}(x) \to 0, \quad \hat{u}^n(t,x)|D\Delta \hat{u}(t,x)|_{g_m} \leq C(t)d^{(1-\theta)/\beta}(x) \to 0. \]
The fact that $\hat{u}(t,) > 0$ on Ω is a consequence of (4.22). Therefore,
\[\text{supp}[\hat{u}(t,\cdot)] = \Omega(t) = \Omega, \quad t \in J, \tag{4.24} \]
and \hat{u} is indeed a solution to equation (4.21). If we seek solutions in the class
\[C^{1/2}_{1/2}(J(u_0),bc^{s,\beta}_\beta(\Omega)) \cap C_{1/2}(J(u_0),bc^{4+s,\beta}_\beta(\Omega)), \]
then \hat{u} is actually the unique solution. Note that the solution to equation (4.21) is,
in general, not unique unless a third condition is prescribed on the free boundary $\partial[\text{supp}(u)]$. A conventional supplementary condition is to set the contact angle to be zero.

By identifying $\hat{u}, f, u_0 \equiv 0$ on $\mathbb{R}^m \setminus \Omega$, \hat{u} is nothing but a weak solution to the Cauchy problem
\[
\begin{cases}
\partial_t u + \text{div}(u^n D \Delta u + \alpha_1 u^{n-1} D u + \alpha_2 u^{n-2} |D u|^2 D u) = f & \text{on } \mathbb{R}^m; \\
u(0) = u_0 & \text{on } \mathbb{R}^m
\end{cases}
\]
belonging to the class $C_{1/2}(J; W^1_2(\mathbb{R}^m))$ for $\beta \in [1, n/(2n-4)]$ when $n \in (2, 3]$, or for all $\beta \geq 1$ while $n \in (0, 2]$ in the sense that
\[
\int_J \int_{\mathbb{R}^m} \left\{ u \partial_t \phi - \Delta \text{div}(u^n D \phi) + \alpha_1 u^{n-1} \Delta u(D \phi|D u)_{g_m} + \alpha_2 u^{n-2} |D u|^2 (D \phi|D u)_{g_m} \right\} dx \, dt = - \int_J \int_{\mathbb{R}^m} f \phi \, dx \, dt
\]
for all $\phi \in C_0(\hat{J}; W^2_2(\mathbb{R}^m))$. To prove this statement, one first observes that, by the uniform exterior and interior ball condition, for some sufficiently small $a > 0$ there is some a-tubular neighborhood of $\partial \Omega$, denoted by T_a, such that T_a can be parameterized by
\[\Lambda : (-a, a) \times \partial \Omega \to T_a : (r, p) \mapsto p + r\nu_p, \]
where ν_p is the inward pointing unit normal of $\partial \Omega$ at p. By the implicit function theorem, there exists some C^{5^*}-function Θ such that
\[\Lambda^{-1} : T_a \to (-a, a) \times \partial \Omega, \quad \Lambda^{-1}(x) = (d(x), \Theta(x)), \]
where d is defined in (3.19), and $\Theta(x)$ is the closest point on $\partial \Omega$ to x.

To verify that $\hat{u} \in C_{1/2}(J; W^2_2(\mathbb{R}^m))$, it suffices to check the integrability of \hat{u} near $\partial \Omega$. Since $u \in C_{1/2}(J, bc^{4+s,\beta}_\beta(\Omega))$, there exists a positive function $P \in C_{1/2}(J)$ such that
\[d^{(2+\theta)/\beta}(x)|\nabla^2 \hat{u}(t,x)| \leq P(t), \quad x \in \Omega, \quad t \in \hat{J}. \]
Then
\[\int_{T} |\nabla^{2} \hat{u}(t, x)| \, dx \leq P(t) \int_{T \cap \Omega} d^{-(2+\theta)\beta}(x) \, dx \]
\[\leq MP(t) \int_{0}^{a} \int_{\partial \Omega} r^{-(2+\theta)\beta} \, d\mu \, dr, \]
which is finite iff \(n \in (0, 2] \), or \(\beta \in [1, n/(2n - 4)] \) and \(n \in (2, 3] \). The last line follows from the compactness of \(\partial \Omega \) and [34, formula (25)]. The argument for lower order derivatives of \(\hat{u} \) is similar.

What is more, (4.23) states that the support of \(\hat{u} \) has the global small term waiting-time property for all dimensions, that is, there exists some \(T^{*} > 0 \) such that
\[\text{supp}\{u(t, \cdot)\} = \text{supp}\{u(0, \cdot)\}, \quad t \in (0, T^{*}). \quad (4.24) \]
To the best of the author’s knowledge, this is the first known result for the generalized thin film equation (4.19). This result also supplements those in [16, 26, 42] for the case dimension \(m \geq 4 \) with \(n \in (0, 3] \) and to domains without the external cone property with \(n \in [2, 3] \). For any \(y \in \partial \Omega \), \(\Omega \) is said to satisfy the external cone property at \(y \) if for some \(\theta \in (0, \pi/4) \) there is an infinite cone \(C(y, \theta) \) with vertex \(y \) and opening angle \(\theta \) such that \(\text{supp}\{u_{0}\} \cap C(y, \theta) = \emptyset \).

See [26, Theorem 4.1] for more details. A domain \(\Omega \) is said to enjoy the external cone property if it satisfies this property at every \(y \in \partial \Omega \). Note that any \(u_{0} \in U_{\theta}^{2+s} \) fulfills the flatness condition of the initial data in [26, Theorem 4.1].

Acknowledgments. The authors would like to express his sincere gratitude to Prof. Herbert Amann for valuable suggestions on applications of the theory in this paper. I would also like to thank my thesis advisor, Gieri Simonett, for many helpful discussions.

REFERENCES

[1] H. Amann, Linear and Quasilinear Parabolic Problems: Volume I., Abstract linear theory. Monographs in Mathematics, 89. Birkhäuser Boston Inc., Boston, MA, 1995.
[2] H. Amann, Elliptic operators with infinite-dimensional state spaces, J. Evol. Equ., 1 (2001), 143–188.
[3] H. Amann, Function spaces on singular manifolds, Math. Nachr., 286 (2013), 436–475.
[4] H. Amann, Anisotropic function spaces on singular manifolds, arXiv:1204.0606.
[5] H. Amann, Parabolic equations on uniformly regular Riemannian manifolds and degenerate initial boundary value problems, Recent Developments of Mathematical Fluid Mechanics, Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M. (Eds.) Series: Advances in Mathematical Fluid Mechanics, Birkhäuser-Verlag, 2016.
[6] H. Amann, Uniformly Regular and Singular Riemannian Manifolds, Elliptic and parabolic equations, Springer Proc. Math. Stat., 119 (2015), Springer, Cham 1-43.
[7] H. Amann, Cauchy Problems for Parabolic Equations in Sobolev-Slobodeckii and Hölder Spaces on Uniformly Regular Riemannian Manifolds, arXiv:1204.0606
[8] S. B. Angenent, Nonlinear analytic semiflows, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), 91–107.
[9] E. Bahuaud and B. Vertman, Yamabe flow on manifolds with edges, Math. Nachr., 287 (2014), 127–159.
[10] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differential Equations, 83 (1990), 179–206.
[11] M. Boutat, S. Hilout, J.-E. Rakotoson and J.-M. Rakotoson, A generalized thin-film equation in multidimensional space, *Nonlinear Anal.*, 69 (2008), 1268–1286.

[12] F. E. Browder, Analyticity and partial differential equations I, *Amer. J. Math.*, 84 (1962), 666–710.

[13] D. Chang, N. Habal and B.-W. Schulze, Quantisation on a manifold with singular edge, *J. Pseudo-Differ. Oper. Appl.*, 4 (2013), 317–343.

[14] J. Chang and J. Lee, Harnack-type inequalities for the porous medium equation on a manifold with non-negative Ricci curvature, *Internat. J. Math.*, 23, 1250009, 12 pp (2012).

[15] P. Clément and G. Simonett, Maximal regularity in continuous interpolation spaces and quasilinear parabolic equations, *J. Evol. Equ.*, 1 (2001), 39–67.

[16] R. Dal Passo, L. Giacomelli and G. Grün, A waiting time phenomenon for thin film equations, *Ann. Scuola Norm. Sup. Pisa*, 30 (2001), 437–463.

[17] G. Da Prato and P. Grisvard, Equations d'évolution abstraites non linéaires de type parabolique, *Ann. Mat. Pura Appl.*, (4) 120 (1979), 329–396.

[18] P. Daskalopoulos and R. Hamilton, Regularity of the free boundary for the porous medium equation, *J. Amer. Math. Soc.*, 11 (1998), 899–965.

[19] S. A. J. Dekkers, A comparison theorem for solutions of degenerate parabolic equations on manifolds, *Proc. Roy. Soc. Edinburgh Sect.*, A 138 (2008), 755–767.

[20] J. I. Díaz, T. Nagai and S. I. Shmarëv, On the interfaces in a nonlocal quasilinear degenerate equation arising in population dynamics, *Japan J. Indust. Appl. Math.*, 13 (1996), 385–415.

[21] E. Di Benedetto, *Degenerate Parabolic Equations*, Universitext. Springer-Verlag, New York, 1993.

[22] E. DiBenedetto, U. Gianazza and V. Vespri, *Harnack's Inequality for Degenerate and Singular Parabolic Equations*, Springer Monographs in Mathematics. Springer, New York, 2012.

[23] M. Disconzi, Y. Shao and G. Simonett, Some remarks on uniformly regular Riemannian manifolds, *Math. Nachr.*, 289 (2016), 232–242.

[24] S. Fornaro, G. Metafune and D. Pallara, Analytic semigroups generated in L^p by elliptic operators with high order degeneracy at the boundary, *Note Mat.*, 31 (2011), 103–116.

[25] G. Grün, Droplet spreading under weak slippage: the waiting time phenomenon, *Ann. Inst. H. Poincaré Anal. Non Linéaire* 21 (2004), 255–269.

[26] J. R. King, Two generalisations of the thin film equation, *Math. Comput. Modelling*, 34 (2001), 737–756.

[27] A. Kiselev, R. Shterenberg and A. Zlatoš, Relaxation enhancement by time-periodic flows, *Indiana Univ. Math. J.*, 57 (2008), 2137–2152.

[28] A. Lunardi, *Analytic Semigroups and Optimal Regularity in Parabolic Problems*, Birkhäuser Verlag, Basel, 1995.

[29] L. Ma, L. Cheng and A. Zhu, Extending Yamabe flow on complete Riemannian manifolds, *Bull. Sci. Math.*, 136 (2012), 882–891.

[30] R. B. Melrose, Transformation of boundary problems, *Acta Math.*, 147 (1981), 149–236.

[31] R. B. Melrose, *The Atiyah-Patodi-Singer Index Theorem*, Research Notes in Mathematics, 4. A K Peters, Ltd., Wellesley, MA, 1993.

[32] F. Otto and M. Westdickenberg Michael, Eulerian calculus for the contraction in the Wasserstein distance, *SIAM J. Math. Anal.*, 37 (2005), 1227–1255.

[33] J. Prüss and G. Simonett, On the manifold of closed hypersurfaces in \mathbb{R}^n, *Discrete Contin. Dyn. Syst.*, 33 (2013), 5407–5428.

[34] N. Roidos and E. Schrohe, Existence and maximal L^p-regularity of solutions for the porous medium equation on manifolds with conical singularities, *arXiv:1504.05101*.

[35] B.-W. Schulze, *Pseudo-differential Boundary Value Problems, Conical Singularities, and Asymptotics*, Mathematical Topics, 4. Akademie Verlag, Berlin, 1994.

[36] B.-W. Schulze, *Boundary Value Problems and Edge Pseudo-Differential Operators*, Microlocal analysis and spectral theory (Lucca, 1996), 165–226, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997.

[37] Y. Shao, A family of parameter-dependent diffeomorphisms acting on function spaces over a Riemannian manifold and applications to geometric flows, *NoDEA Nonlinear Differential Equations Appl.*, 22 (2015), 45–85.

[38] Y. Shao, Singular parabolic equations of second order on manifolds with singularities, *J. Differential Equations*, 260 (2016), 1747–1800.
[40] Y. Shao, The Yamabe flow on incomplete manifolds, Submitted. arXiv:1506.07018.

[41] Y. Shao and G. Simonett, Continuous maximal regularity on uniformly regular Riemannian manifolds, J. Evol. Equ., 1 (2014), 211–248.

[42] A. E. Shishkov, Waiting time of propagation and the backward motion of interfaces in thin-film flow theory, Discrete Contin. Dyn. Syst., 2007, Dynamical Systems and Differential Equations. Proceedings of the 6th AIMS International Conference, suppl., 938–945.

[43] H. Triebel, Theory of Function Spaces I, Birkhäuser Verlag, Basel, 1983.

[44] J. L. Vázquez, An Introduction to the Mathematical Theory of the Porous Medium Equation, Shape optimization and free boundaries (Montreal, PQ, 1990), 347–389, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 380, Kluwer Acad. Publ., Dordrecht, 1992.

[45] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.

[46] V. Vespri, Analytic semigroups, degenerate elliptic operators and applications to nonlinear Cauchy problems, Ann. Mat. Pura Appl., (4) 155 (1989), 353–388.

[47] X. Xu, Gradient estimates for $u_t = \Delta F(u)$ on manifolds and some Liouville-type theorems, J. Differential Equations, 252 (2012), 1403–1420.

[48] X. Zhu, Hamilton’s gradient estimates and Liouville theorems for porous medium equations on noncompact Riemannian manifolds, J. Math. Anal. Appl., 402 (2013), 201–206.

Received December 2015; revised March 2016.

E-mail address: shao92@purdue.edu