Identification of *IL11RA* and *MELK* amplification in gastric cancer by comprehensive genomic profiling of gastric cancer cell lines

Danielle Queiroz Calcagno, Sylvia SantomiTakeno, Carolina Oliveira Gigek, Mariana Ferreira Leal, Fernanda Wisnieski, Elizabeth Suchi Chen, Taíssa Maíra Thomaz Araújo, Eleonidas Moura Lima, Maria Isabel Melaragno, Samia Demachki, Paulo Pimentel Assumpção, Rommel Rodríguez Burbano, Marília Cardoso Smith

Institutional review board statement: All specimens were taken after informed consent and ethical permission was obtained for participation in the study. The study was reviewed and approved by the HUJBB Institutional Review Board.

Conflict-of-interest statement: The authors declare that there is no conflict of interests regarding the publication of this article.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Danielle Queiroz Calcagno, PhD, Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, 1º Piso da Unacon, Belém, PA 66073-000, Brazil. danicalcagno@gmail.com

Telephone: +55-91-32016776

Received: July 15, 2016
Peer-review started: July 16, 2016
First decision: August 19, 2016
Revised: September 10, 2016
Accepted: October 10, 2016
Article in press: October 10, 2016
Published online: November 21, 2016
Abstract

AIM
To identify common copy number alterations on gastric cancer cell lines.

METHODS
Four gastric cancer cell lines (ACP02, ACP03, AGP01 and PG100) underwent chromosomal comparative genome hybridization and array comparative genome hybridization. We also confirmed the results by fluorescence in situ hybridization analysis using the bacterial artificial chromosome clone and quantitative real time PCR analysis.

RESULTS
The amplification of 9p13.3 was detected in all cell lines by both methodologies. An increase in the copy number of 9p13.3 was also confirmed by fluorescence in situ hybridization analysis. Moreover, the interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK) genes, which are present in the 9p13.3 amplicon, revealed gains of the MELK gene in all the cell lines studied. Additionally, a gain in the copy number of IL11RA and MELK was observed in 19.1% (13/68) and 55.9% (38/68) of primary gastric adenocarcinoma samples, respectively.

CONCLUSION
The characterization of a small gain region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples has revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer.

Key words: IL11RA; Gastric cancer; Genomic profiling; MELK; 9p13.3

INTRODUCTION
Gastric cancer (GC) remains a major public health issues, as it is the fifth most common malignancy and the third leading cause of cancer death in both sexes worldwide[1]. The most common type of GC is adenocarcinoma, which can be further categorized into two main types, intestinal type and diffuse type, which are biologically different with distinct clinical and epidemiological profiles[2]. The difference in the clinicopathological characteristics between the histological types of gastric cancer indicate that gastric tumor development occurs through the progressive accumulation of distinct genetic alterations[2-5]. Thus, the characterization of these genomic abnormalities in gastric cancer may help to clarify the molecular pathogenesis of the disease and may unveil genetic markers of progression and for predicting treatment response or survival.

Genomic instability with frequent DNA copy number variations (CNVs) is one of the key hallmarks of gastric carcinogenesis[6]. Tumor progression seems to depend on the successive acquisition of chromosomal aberrations, leading to gains or losses of parts of the genome. However, there is no clear agreement on the genetic changes underlying gastric carcinogenesis.

In the last decades, chromosomal comparative genome hybridization (cCGH) and array CGH (aCGH) analyses of gastric tumors and gastric cell lines have revealed recurrent DNA CNVs[7-11]. Using cCGH, Burbano et al[3] showed that the copy number gain of 8q24.1, the locus containing the MYC oncogene, is a frequent alteration in GC. Further investigations by our group demonstrated that MYC amplification is a common finding in preneoplastic gastric lesions and tumors[6,8,12-15].

Moreover, Takeno et al[10] stated that diffuse-type GC shows a complex pattern of chromosomal alterations, especially chromosome region losses. Recently, Liang et al[16] suggested that the detection of DNA CNVs from tissue or blood samples may be a useful tool for guiding individualized treatment strategies and for identifying new drug targets in patients with GC.

In the current study, we analyzed the chromosomal abnormalities of four GC cell lines by cCGH and aCGH. The occurrence of the amplification of chromosomal region 9p13 in GC cell lines was validated by fluorescence in situ hybridization (FISH) and confirmed in primary gastric adenocarcinoma samples by quantitative polymerase chain reaction (qPCR). Among the genes within the 9p13 region, we chose two genes for validation in primary GC samples, interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK).

MATERIALS AND METHODS

Gastric cancer cell lines
The ACP02, ACP03 and AGP01 gastric adenocarcinoma...
cell lines, which were previously established and characterized by our research group, were used in the present study\cite{17,18}. Additionally, we used the GC cell line, PG100, obtained from the Rio de Janeiro Cell Bank (Rio de Janeiro, RJ, Brazil), which was previously characterized cytogenetically by our group\cite{19}. All cell lines were cultured according to Calcagno et al\cite{20}.

Primary gastric cancer samples

Quantitative gene copy number measurements were performed on 68 primary gastric adenocarcinoma samples that were obtained from patients who underwent surgery resection in João de Barros Barreto University Hospital (HUJBB), Belém, Pará, Brazil. In Pará, Brazil, the human population is composed of interethnic crosses between three main origin groups, European (mainly represented by Portuguese), Africans, and Amerindians\cite{21}.

All the patients had negative histories of exposure to either chemotherapy or radiotherapy before surgery, and there were no other diagnosed cancers. Signed informed consent, with the approval of the ethics committee of HUJBB, was obtained from all patients prior to the collection of samples.

DNA isolation

DNA from the GC cells lines and gastric tumors were isolated using the QiAmp DNA isolation kit (Qiagen, Hilden, Germany) according to the manufacturer’s recommended protocol. DNA concentration and purity were evaluated by Nanodrop (NanoDrop Technologies, Houston, TX, United States) and agarose gel electrophoresis. All DNA samples used had an A260/280 ratio of 1.8-2.0 and an A260/A230 ratio of > 1.5 and were visualized as a high molecular weight band on an agarose gel.

cCGH

DNA samples from GC cell lines were labeled using the CGH Nick Translation Kit (Abbott Laboratories, IL, United States) with Control DNA (Promega, Madison, United States) according to the manufacturer’s instructions. Hybridization was performed with CGH Metaphase Target Slides (Abbott Laboratories, Illinois, United States), following the manufacturer’s protocols. The slides were analyzed by Corel Photo-Paint - Version 5.00 - Isis Zeiss® software, using an Axioskop Zeiss microscope (Carl Zeiss Inc. Canada, Don Mills, ON, Canada) equipped with an epi-illuminator and fluorochrome-specific optical filters.

The three-color images with red, green, and blue were acquired from 15 metaphases. Chromosome imbalances were detected on the basis of the deviation of the fluorescence ratio profile from the balanced value (FITC:rhodamine = 1). For each chromosome, the final ratio values were prepared from the mean values of at least ten chromosome homologues from separate metaphase spreads. The CGH results were plotted as a series of green to red ratio profiles.

aCGH

To evaluate the complete genome of all the four cell lines studied, high density microarray analysis was performed using the Affymetrix® CytoScan™ HD Array platform (Affymetrix, Santa Clara, CA, United States). First, genomic DNA was digested by the NspI restriction enzyme, and the digested samples were ligated using the NspI adaptor. The fragments were amplified by PCR and run on a 2% agarose gel to verify that the PCR product size distribution was between 150 bp and 2000 bp. After PCR product purification and dilution, we performed the quantification of each sample using a NanodropR 1000 Spectrophotometer (NanoDrop Technologies, Houston, TX, United States). The average purification yield for each sample was ≥ 3.0 μg/μL.

The purified samples were then fragmented using DNase I enzyme, and the products were run on a 4% agarose gel to verify that the majority of fragments had a size distribution between 25 and 125 bp.

Labeling was performed using terminal deoxynucleotidyl transferase enzyme, which adds biotinylated nucleotides at the 3’ end of fragmented samples.

During the hybridization step, each sample was hybridized onto a CytoScan™ HD Array (Affymetrix, Santa Clara, CA, United States) and placed in a GeneChip® Hybridization Oven 640 (Affymetrix, Santa Clara, CA, United States) at 50 °C and 60 rpm for 16 to 18 h. The processes prior to scanning of arrays, washing and staining, were carried out at a Fluidics Station 450 (Affymetrix, Santa Clara, CA, United States). The arrays were scanned using GeneChip® Scanner 3000 7G (Affymetrix, Santa Clara, CA, United States).

The copy number was deduced from the weighted log2 ratio and the aberration type was identified and confirmed using allelic plots.

FISH

FISH was performed on nuclei and metaphase spreads of the cell lines, ACP02, ACP03 and AGP01. Metaphase spreads of lymphocytes from a healthy donor were used as a control. The bacterial artificial chromosome (BAC) clone, RP11-165H19, was obtained from BAC/PAC Resources (http://bacpac.chori.org/). Bacterial cultures and DNA isolation was performed using Qiagen Plasmid Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Alu-PCR products of the BAC were used as probes and were biotinylated using nick translation, as described previously\cite{22}.

qPCR

For the validation of 9p13 amplification, we evaluated the copy number of two genes within this locus,
Table 1 Overview of detected chromosomal aberrations by chromosomal comparative genome hybridization and array comparative genome hybridization on gastric cancer cell lines

Cell line	cCGH	aCGH
ACP03	+8p21-p2ter, +8q24, +9p12-p22, +9q11-1q12.1, +15q11.1-q14, +16p, +16q, +17p11, +17q11.2, +17q23, +22q11.1-q12.3	+1p13.2, +1p13.3, +1q12.1, +1q12.2, +2p11.2, +3p11.2, +4p12, +5p13, +5q12.1, +6p22.1, +7q11.21, +7q11.22, +8p11.1, +8p11.2, +9q11-1q12.1, +15q11.1-q15, +15q23.2-q13.1, +16p12-p13.1, +16p21-p23, +22q11.1-q12.3
AGP01	+1p13.1-21, +1q22-q31.2, +2p11.2-p12, +4p11-p12, +4q12-13.1, +5p11-p12, +5q11-1q12, +6q12.1q6.1, +7q11-1q12, +9q12-p13, +9p13-1q3.1, +10p12-p12.3, +10q11.1-q11, +11p11-1p12, +12p11, +12q12, +13q11-1q22, +14q11-1q33, +15q11-1q4, +16p11-1q12, +16q11-1p12, +17q11.2, +18p11.2-p11.3, +18q11-1q12, +19q12-q31.3, +20p11-1p12, +20q11.1-q11.2	+1p13.2, +1p13.3, +1q12.1, +1q12.2, +2p11.2, +2p12, +3p11.2, +4p14-p13, +5p12, +6p22.1, +6q13, +7q11.21, +7q11.22, +8p11.1, +8p11.2, +9q11-1q12.1, +15q11.1-q15, +15q23.2-q13.1, +16q11-1q12, +17q11.2, +18p11.2-p11.3, +18q11-1q12, +19q12-q31.3, +20p11-1p12, +20q11.1-q11.2
PG100	+1p13.1-21, +1q22-q31.2, +2p11.2-p12, +4p11-p12, +4q12-13.1, +5p11-p12, +5q11-1q12, +6q12.1q6.1, +7q11-1q12, +9q12-p13, +9p13-1q3.1, +10p12-p12.3, +10q11.1-q11, +11p11-1p12, +12p11, +12q12, +13q11-1q22, +14q11-1q33, +15q11-1q4, +16p11-1q12, +16q11-1p12, +17q11.2, +18p11.2-p11.3, +18q11-1q12, +19q12-q31.3, +20p11-1p12, +20q11.1-q11.2	+1p13.2, +1p13.3, +1q12.1, +1q12.2, +2p11.2, +2p12, +3p11.2, +4p14-p13, +5p12, +6p22.1, +6q13, +7q11.21, +7q11.22, +8p11.1, +8p11.2, +9q11-1q12.1, +15q11.1-q15, +15q23.2-q13.1, +16q11-1q12, +17q11.2, +18p11.2-p11.3, +18q11-1q12, +19q12-q31.3, +20p11-1p12, +20q11.1-q11.2

cCGH: Chromosomal comparative genome hybridization; aCGH: Array comparative genome hybridization.

RESULTS

Recurrent regions of alterations

The ACP02, ACP03, AGP01 and PG100 cell lines showed multiple gains and losses by cCGH and aCGH. Most chromosomal aberrations detected in these cell lines by cCGH were confirmed by aCGH (Table 1), although aCGH analysis enabled the identification of many additional chromosomal gains and losses. On the other hand, the gain of 16p21-p23 in ACP03 and the gains of 6p11-p12, 12p11.1 and 18p11.2-p11.3 in AGP01 were detected only by cCGH.

Notably, the gain of chromosome region 9p13 was common in all cell lines and as such, this locus was selected for further investigation.

Statistical analysis

The data on clinical features were compared by the χ^2 test or two-tailed Fisher’s exact test for categorical variables. All statistical analyses were performed with the statistical package SPSS for Windows (V.17.0, SPSS Inc, Chicago, IL, United States). P values of ≤ 0.05 were considered significant.
The presence of the 9p13 amplification in the GC cell lines was confirmed by metaphase FISH using a BAC clone (Figure 1). We observed signal gain in all cell lines, and only ACP02 showed high amplification of this region (Table 2).

Based on gene location and annotated gene function, we selected the \textit{MELK} and \textit{IL11RA} genes for validation in GC cell lines and in 68 primary gastric adenocarcinoma by qPCR. We detected two copies of \textit{IL11RA} and three copies of \textit{MELK} in all GC cell lines.

By analyzing the CNV of these two genes in gastric tumors, we observed that 19.1% (13/68) and 55.9% (38/68) of gastric tumors had \(\geq 3\) copies of \textit{IL11RA} and \textit{MELK}, respectively. No association was found between the clinicopathological characteristics of patients and the number of copies of the studied genes (Table 3).

DISCUSSION

aCGH is a high resolution tool that allows the simultaneous detection of sub-microscopic copy number changes across the genome, thus overcoming the several limitations of cCHG \cite{23}. In this study, most of the copy number changes observed in ACP02, ACP03, AGP01 and PG100 by cCGH were confirmed by aCGH. ACP02, ACP03 and AGP01 are gastric adenocarcinoma cell lines from diffuse and intestinal types and cancerous ascitic fluid and were previously established and characterized by our research group \cite{17,18}, while PG100 is a commercially available primary gastric adenocarcinoma cell line \cite{19}. Furthermore, aCGH analysis enabled the identification of many additional chromosomal gains and losses. On the other hand, the gain of the 16p21-p23 region in ACP03 and the gains of the 6p11-p12, 12p11.1 and 18p11.2-p11.3 regions in AGP01 were only detected by cCGH. This may be due to technical reasons, as cCGH is more sensitive than aCGH for detecting large chromosome regions, as previously discussed by Kamradt \textit{et al} \cite{24}.

When comparing the GC cell lines, only a few differences in cytogenetic composition were found by cCGH and aCGH. The gain on 9p13.3 was found in all cell lines, and the presence of this amplicon in these gastric cell lines was confirmed by metaphase FISH, using a BAC clone for the amplified region. It is noteworthy that high levels of this amplification were only found in ACP02.

Genetic alterations in the short arm of chromosome 9 are commonly observed in different cancer types \cite{25}. In GC, losses of 9p have been frequently described \cite{26-29}. Fan \textit{et al} \cite{29} (2012) observed a homozygous deletion at 9p21, which encompasses the \textit{P16INK4A} tumor suppressor gene, in 11% (8/72) of the gastric tumors studied. To our knowledge, this is

Table 2 Number of copies of 9q13 locus by FISH analysis in gastric cancer cell lines \(n\) (%)

Cell line	0 signal	1 signal	2 signals	3 signals	4 signals	\(\geq 5\) signals
ACP02	12 (6.0)	26 (13.0)	112 (56.0)	25 (12.5)	22 (11.0)	3 (1.5)
ACP03	22 (11.0)	40 (20.0)	99 (49.5)	22 (11.0)	6 (3.0)	1 (0.5)
AGP01	19 (9.5)	45 (22.5)	99 (49.5)	27 (13.5)	10 (5.0)	-
PG100	18 (9.0)	55 (27.5)	87 (43.5)	32 (16.0)	7 (3.5)	1 (0.5)
Control	34 (17.0)	68 (34.0)	97 (48.5)	1 (0.5)	-	-

Table 3 \textit{MELK} and \textit{IL11RA} gene copy number and clinicopathological features of 68 gastric cancer patients

	\textit{MELK}	\textit{IL11RA}	\(P\) value	\textit{MELK}	\textit{IL11RA}	\(P\) value
	2 copies \((n = 38)\) \(\geq\) 3 copies \((n = 30)\)	\(P\) value	2 copies \((n = 55)\) \(\geq\) 3 copies \((n = 13)\)	\(P\) value		
Age (yr) (mean ± SD)						
\(> 50\) (64.5 ± 6.9)	23	25	0.0748	39	9	0.7461
\(\leq 50\) (42.5 ± 5.2)	15	5		16	4	
Gender						
Male	23	21	0.5781	34	9	0.7544
Female	15	9		21	4	
Histopathology						
Intestinal	23	20	0.7886	32	11	0.1110
Diffuse	15	10		23	2	
Depth of tumor invasion						
pT1-pT2	10	11	0.5137	18	3	0.4076
pT3-pT4	28	19		36	10	
Lymph node metastasis						
Absent	10	7	1.0000	11	6	0.1091
Present	28	23		44	7	
Stage						
I - II	25	17	0.6049	33	9	0.7525
III - IV	13	13		22	4	

Validation of the amplified pericentromeric region, 9p13

The presence of the 9p13 amplification in the GC cell lines was confirmed by metaphase FISH using a BAC clone (Figure 1). We observed signal gain in all cell lines, and only ACP02 showed high amplification of this region (Table 2).

Based on gene location and annotated gene function, we selected the \textit{MELK} and \textit{IL11RA} genes for validation in GC cell lines and in 68 primary gastric adenocarcinoma by qPCR. We detected two copies of \textit{IL11RA} and three copies of \textit{MELK} in all GC cell lines. By analyzing the CNV of these two genes in gastric tumors, we observed that 19.1% (13/68) and 55.9% (38/68) of gastric tumors had \(\geq 3\) copies of \textit{IL11RA} and \textit{MELK}, respectively. No association was found between the clinicopathological characteristics of patients and the number of copies of the studied genes (Table 3).
the first study that describes gains at 9p in GC.

Amplifications on 9p have been reported in esophageal cancer\cite{20}, lung sarcomatoid carcinoma\cite{21} and breast cancer\cite{22}. Towle et al\cite{23} found that 16.6% (36/217) of the cell lines carried regions of genomic gain spanning part of chromosome 9p13. Additionally, 1.8% (4/217) harbored high-level DNA amplification of this region, including a ductal breast carcinoma line (B0T-474), a tongue squamous cell carcinoma line (SCC-9), a melanoma line (WM-115), and an osteosarcoma line (MG-63).

Because this region harbors several tumor-related genes, several studies in the literature have correlated gene copy number alterations of 9p13 with cancer\cite{24,25}. Sarhadi et al\cite{26} observed that the gain of chromosome 9p13 encompasses many genes, such as KIAA1161, C9orf24, C9orf25, DNAI1, ENHO, CNTFR, LOC415056, C9orf23, DCTN3, ARID3C, SIGMAR1, GALT, IL11RA, CCL27, CCL19, CCL21 and FAM205A, in different types of cancer.

In this study, we selected the IL11RA and MELK genes to validate this amplification region in GC cell lines and primary gastric adenocarcinoma. The results showed an increase in the copy number of the IL11RA gene in ACP02, ACP03, AGP01 and PG100. Moreover, 19.1% (13/68) and 55.9% (38/68) of gastric tumors showed ≥ 3 copies of IL11RA and MELK, respectively.

Kamradt et al\cite{27} analyzed a small amplicon at 9p13.3 in prostate cancer cell lines and validated IL11RA copy number gain in 75% (15/20) of prostate tumors. In addition, it has been demonstrated that IL11RA is overexpressed in GC, colon cancer, breast cancer, prostate cancer and osteosarcoma\cite{28,29}. IL11RA encodes a specific receptor for IL11, and the IL11/IL11RA signaling pathway is involved in the regulation of several biological activities, such as adipogenesis, osteoclastogenesis, neurogenesis, and megakaryocyte maturation and platelet production\cite{30,31}.

With regard to MELK, the other gene that was selected for validation, this study describes, for the first time, that the copy number gain of the MELK gene occurs in cancer. To our knowledge, only one previous study on astrocytoma samples has investigated MELK amplification, and they did not find any MELK copy number gain\cite{32}.

MELK is a highly conserved serine/threonine kinase that was first found to be expressed in a wide range of early embryonic cellular stages, and as a result, it has been implicated in embryogenesis and cell cycle control\cite{33}. Additionally, several studies have identified MELK overexpression in stem cell populations and several human cancers, including aggressive astrocytoma, breast cancer, prostate cancer, melanoma and GC\cite{34,35}.

Preclinical studies have suggested MELK as a potential therapeutic target for multiple cancers. Since then, novel therapeutics that selectively inhibit MELK have been developed, such as OTSSP167, which is currently in a Phase I trial for patients with solid tumors and who have not responded to treatment\cite{36,37}.

Li et al\cite{38} observed MELK overexpression more frequently in GC lesions than in the corresponding noncancerous mucosa and that higher MELK levels were associated with lymph node involvement, distant metastasis, and poor prognosis in patients with GC. In addition, these authors demonstrated that reducing MELK expression or inhibiting its kinase activity resulted in growth inhibition, G2/M arrest, apoptosis and the suppression of the invasive capability of GC cells in vitro and in vivo. MELK knockdown also led to alterations in the levels of epithelial mesenchymal transition (EMT)-associated proteins. Furthermore, in GC patient-derived xenograft models, targeted treatment with OTSSP167 showed anticancer effects. These results suggest that MELK may be a promising target for GC treatment.

In conclusion, our results from generating genome wide DNA copy number profiles in GC cell lines and validation in primary gastric adenocarcinoma specimens revealed genomic aberrations redundancies, indicating that the cell lines retain the gross genomic architecture of primary tumors. Moreover, the characterization of a small gained region at 9p13.3 in GC cell lines and primary gastric adenocarcinoma samples revealed MELK as a candidate target gene this region that may possibly be linked to the development of GC. Therefore, we hypothesize that the copy number gain of MELK may be a mechanism of gene overexpression...
and may represent an interesting therapeutic target in gastric carcinogenesis.

COMMENTS

Background

Despite alterations in DNA copy number are one of the key hallmarks of carcinogenesis, the chromosomal regions with frequent gain and loss are still poorly defined in gastric cancer. The characterization of a small gain or loss region in gastric cancer cell lines and primary gastric adenocarcinoma samples could reveal a candidate target gene that may possibly be linked to the development of gastric cancer.

Research frontiers

DNA copy number profiles in gastric cancer cell lines and validation in primary gastric adenocarcinoma specimens revealed genomic aberrations redundancies, indicating that the cell lines retain the gross genomic architecture of primary tumors. Moreover, the characterization of a small gained region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer.

Innovations and breakthroughs

Several studies in the literature have correlated gene copy number alterations of 9p13 region. A study described a small amplicon at 9p13.3 in prostate cancer cell lines and validated IL11RA copy number gain in 75% (15/20) of prostate tumors. However, this is the first time that the copy number gain of the MELK gene was described in tumor. Furthermore, in gastric cancer patient-derived xenograft models, targeted treatment with OTSSP167 (a MELK inhibitor) showed anticancer effects. These results suggest that MELK may be a promising target for gastric cancer treatment.

Applications

The authors suggested that the copy number gain of MELK may be a mechanism of gene overexpression and may represent an interesting therapeutic target in gastric carcinogenesis in the future.

Terminology

Copy number variation (CNV) is a type of structural variation characterized by duplication or deletion of sections of the genome, which in turn can result in phenotypic alterations. Array comparative genomic hybridization (aCGH) is a technology developed for a high-resolution evaluation of DNA copy number alterations associated with chromosome abnormalities.

Peer-review

The authors tried to identify common copy number alterations by using chromosomal comparative genome hybridization and array comparative genome hybridization in four gastric cancer cell lines. They concluded MELK as a candidate target gene that is possibly related to the development of gastric cancer.

REFERENCES

1. Globocan 2012. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. International Agency for Research on Cancer; 2013. Lyon, France. 2013. Available from: URL: http://globocan.iarc.fr

2. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 1965; 64: 31-49 [PMID: 14320675]

3. Burbano RR, Assumpção PP, Leal MF, Calcagno DQ, Guimarães AC, Khayat AS, Taken SS, Chen ES, De Arruda Cardoso Smith M. C-MYC locus amplification as metastasis predictor in intestinal-type gastric adenocarcinomas: CGH study in Brazil. Anticancer Res 2006; 26: 2909-2914 [PMID: 1688612]

4. Calcagno DQ, Leal MF, Taken SS, Assumpção PP, Demachki S, Smith Mde A, Burbano RR. Aneuploidy of chromosome 8 and C-MYC amplification in individuals from northern Brazil with gastric adenocarcinoma. Anticancer Res 2005; 25: 4069-4074 [PMID: 16309260]

5. Calcagno DQ, Guimarães AC, Leal MF, Seabra AD, Khayat AS, Pontes TB, Assumpção PP, De Arruda Cardoso Smith M, Burbano RR. MYC insertions in diffuse-type gastric adenocarcinoma. Anticancer Res 2009; 29: 2479-2483 [PMID: 19596917]

6. Panani D. Cytogenetic and molecular aspects of gastric cancer: clinical implications. Cancer Lett 2008; 266: 99-115 [PMID: 18381231 DOI: 10.1016/j.canlet.2008.02.053]

7. Koo SH, Kwok KC, Shin SY, Joon YM, Park JW, Kim SH, Noh SM. Genetic alterations of gastric cancer: comparative genomic hybridization and fluorescence in situ hybridization studies. Cancer Genet Cytogenet 2000; 117: 97-103 [PMID: 10704677 DOI: 10.1016/S0165-4608(99)00152-1]

8. Wu MS, Chang MC, Huang SP, Tseng CC, Sheu JC, Lin YW, Shun CT, Lin MT, Lin JT. Correlation of histologic subtypes and replication error phenotype with comparative genomic hybridization in gastric cancer. Genes Chromosomes Cancer 2001; 30: 80-86 [PMID: 1107179 DOI: 10.1002/1098-2264(2000)9999:9999::AID-GCC1602+3.0.CO;2-R]

9. Kimura Y, Noguchi T, Kawaihara K, Kashima K, Daa T, Yokoyama S. Genetic alterations in 102 primary gastric cancers by comparative genomic hybridization: gain of 20q and loss of 18q are associated with tumor progression. Mod Pathol 2004; 17: 1328-1337 [PMID: 15154013 DOI: 10.1038/modpathol.3800180]

10. Takeno SS, Leal MF, Lisboa LC, Lipay MV, Khayat AS, Assumpção PP, Burbano RR, Smith Mde A. Genomic alterations in diffuse-type gastric cancer as shown by high-resolution comparative genomic hybridization. Cancer Genet Cytogenet 2009; 190: 1-7 [PMID: 19264226 DOI: 10.1016/j.cancergenet.2009.08.007]

11. Seabra AD, Araujo TM, Mello Junior FA, Di Felipe Ávila Alcântara D, De Barros AP, De Assumpção PP, Montenegro RC, Guimarães AC, Demachki S, Burbano RM, Khayat AS. High-density array comparative genomic hybridization detects novel copy number alterations in gastric adenocarcinoma. Anticancer Res 2014; 34: 6405-6415 [PMID: 25368240]

12. Calcagno DQ, Leal MF, Seabra AD, Khayat AS, Chen ES, Demachki S, Assumpção PP, Faria MH, Rabenhorst SH, Ferreira MV, de Arruda Cardoso Smith M, Burbano RR. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma. World J Gastroenterol 2006; 12: 6207-6211 [PMID: 17036397 DOI: 10.3748/WJG.v12.i38.6207]

13. Calcagno DQ, Freitas VM, Leal MF, de Souza CR, Demachki S, Montenegro R, Assumpção PP, Khayat AS, Smith Mde A, dos Santos AK, Burbano RR. MYC, FBXW7 and TP53 copy number variation and expression in gastric cancer. BMC Gastroenterol 2013; 13: 141 [PMID: 24053468 DOI: 10.1186/1471-230X-13-141]

14. de Souza CR, Leal MF, Calcagno DQ, Costa Sozinho EK, Borges Bdo N, Montenegro RC, Dos Santos AK, Dos Santos SE, Ribeiro HF, Assumpção PP, de Arruda Cardoso Smith M, Burbano RR. MYC deregulation in gastric cancer and its clinicopathological implications. PLoS One 2013; 8: e64420 [PMID: 23717612 DOI: 10.1371/journal.pone.0064420]

15. Costa Raiol LC, Figueira Silva EC, Mendes da Fonseca D, Leal MF, Guimarães AC, Calcagno DQ, Khayat AS, Assumpção PP, de Arruda Cardoso Smith M, Burbano RR. Interrelationship between MYC gene numerical aberrations and protein expression in individuals from northern Brazil with early gastric adenocarcinoma. Cancer Genet Cytogenet 2008; 181: 31-35 [PMID: 18262050 DOI: 10.1016/j.cancergenet.2007.10.011]

16. Liang L, Fang YJ, Xu J. Gastric cancer and gene copy number variation: emerging cancer drivers for targeted therapy. Oncogene 2016; 35: 1475-1482 [PMID: 26073079]

17. Leal MF, Martins do Nascimento JL, da Silva CE, Vida Lamañco MF, Calcagno DQ, Khayat AS, Assumpção PP, Cabral IR, de Arruda Cardoso Smith M, Burbano RR. Establishment and
conventional cytogenetic characterization of three gastric cancer cell lines. *Cancer Genet Cytoenet* 2009; 195: 85-91 [PMID: 19837275 DOI: 10.1016/j.cancergenecyt.2009.04.020]

18. **Leal MF**, Calcagno DQ, Borges da Costa JF, Silva TC, Khayat AS, Chen ES, Assumpção PP, de Arruda Cardoso Smith M, Burbano RR, MYC, TP53, and chromosome 17 copy-number alterations in multiple gastric cancer cell lines and in their parental primary tumors. *J Biomed Biotechnol* 2011; 2011: 631268 [PMID: 21528007 DOI: 10.1155/2011/631268]

19. **Ribeiro HF**, Alcântara DF, Matos LA, Sousa JM, Leal MF, Smith MA, Burbano RR, Bahia MO. Cytogenetic characterization and evaluation of c-MYC gene amplification in PG110, a new Brazilian gastric cancer cell line. *Br J Med Biol Res* 2010; 43: 717-721 [PMID: 20658904 DOI: 10.1016/S0002-9440(10)79200-1

20. **Lima EM**, Rissino JD, Harada ML, Assumpção PP, Demachki S, Guimarães AC, Casartelli C, Smith MA, Burbano RR. Conventional cytogenetic characterization of a new cell line, ACP01, established from a primary human gastric tumor. *Braz J Med Biol Res* 2004; 37: 1831-1838 [PMID: 15558189]

21. **Batista dos Santos SE**, Rodrigues JD, Ribeiro-dos-Santos AK, Zago MA. Differential contribution of indigenous men and women to the formation of an urban population in the Amazon region as revealed by mtDNA and Y-DNA. *Am J Phys Anthropol* 1999; 109: 175-180 [PMID: 10378456 DOI: 10.1002/(SICI)1096-8644(199906)109:1<175::AID-AJPA1>3.0.CO;2-9]

22. **Kulikowski LD**, Bellucco FT, Nogueira SI, Christofolini DM, Smith Mde A, de Mello CB, Brunoni MI. Pure duplication 1q41-qter: further delineation of trisomy 1q syndromes. *Am J Med Genet A* 2008; 146A: 2663-2667 [PMID: 18798302 DOI: 10.1002/amj.23521]

23. **Sireteanu A**, Covic M, Gorduza EV. [Array CGH: technical considerations and applications]. *Rev Med Chir Soc Med Nat Iasi* 2012; 116: 545-551 [PMID: 23077951]

24. **Kamradt J**, Jung V, Wahrheit K, Tolosi L, Rahnenfuehrer J, Yoshizaki A, Izumida S, Suehiro T, Miura S, Martin TA, Watkins G, Mansel RE, Jiang WG. Expression of interleukin-11 and its receptor and their prognostic value in human breast cancer. *Ann Surg Oncol* 2006; 13: 802-808 [PMID: 16614887 DOI: 10.1016/j.aso.2006.05.028]

25. **Nakayama T**, Yoshizaki A, Izumida S, Suehio T, Miura S, Uemura T, Yakata Y, Shichijo K, Yamashita S, Sekin I. Expression of interleukin-11 receptor alpha-chain and evidence of STAT3 activation in prostate cancer. *Am J Pathol* 2001; 158: 23-52 [PMID: 11141475 DOI: 10.1016/S0002-9440(10)63940-5]

26. **Kiselling S**, Muller-Newen G, Leeb SN, Hausmann M, Rath HC, Strater J, Spött T, Schloßmann K, Grossmann J, Montero-Julian FA, Scholmerich J, Andus T, Buschauer A, Heinrich PC, Rogler G. Functional expression of the interleukin-11 receptor alpha-chain and evidence of antiangiogenic effects in human colon epithelial cells. *J Biol Chem* 2004; 279: 10304-10315 [PMID: 14701802 DOI: 10.1074/jbc.M402354200]

27. **Zurita AJ**, Troncoso P, Cardó-Vila M, Logothetis CJ, Pasqualini R, Arap W. Combinatorial screenings in patients: the interleukin-11 receptor alpha as a candidate target in the progression of human prostate cancer. *Cancer Res* 2004; 64: 435-439 [PMID: 14744752]

28. **Hanavadi S**, Martin TA, Watkins G, Mансел RE, Jiang WG. Expression of interleukin-11 and its receptor and their prognostic value in human breast cancer. *Ann Surg Oncol* 2006; 13: 802-808 [PMID: 16614887 DOI: 10.1016/j.aso.2006.05.028]

29. **Teramura M**, Kobayashi S, Yoshinaga K, Iwabe K, Mizoguchi H, Kimura J, Venissac N, Pedeutour F. Molecular cytogenetic characterization of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. *Cancer Res* 2000; 60: 4735-4739 [PMID: 10987278]

30. **Italiano A**, Attias R, Aurias A, Pérot G, Burel-Vandenbos F, Otto J, Venissac N, Pedetour F. Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMDJ2C. *Cancer Genet Cytogenet* 2006; 167: 122-130 [PMID: 16737911 DOI: 10.1016/j.cancergenecyt.2006.01.004]

31. **Wu J**, Liu S, Liu G, Dombkowski A, Abrams J, Martin-Trevino R, Wicha MS, Ehter SP, Yang QZ. Identification and functional analysis of 9p24 amplified genes in human breast cancer. *Oncogene* 2012; 31: 333-341 [PMID: 21666724 DOI: 10.1038/onc.2011.227]

32. **Towlle R**, Tsui IJ, Zhu Y, MacLellan S, Poh CF, Garnis C. Recurring DNA copy number gain at chromosome 9p13 plays a role in the activation of multiple candidate oncopgenes in progressing oral premalignant lesions. *Cancer Med* 2014; 3: 1170-1184 [PMID: 25060540 DOI: 10.1002/cam4.307]

33. **Sarhadi VK**, Lahti L, Scheinin I, Ellonen P, Kettunen E, Serra M, Scotlandi K, Picci P, Knuutila S. Copy number alterations and neoplasia-specific mutations in MELK, PDCD1L1G, TNN1, and PAX5 at 9p in different neoplasias. *Genes Chromosomes Cancer* 2014; 53: 579-588 [PMID: 24664538 DOI: 10.1002/gcc.22168]

34. **Campbell CL**, Jiang Z, Savarese DM, Savarese TM. Increased expression of the interleukin-11 receptor and evidence of STAT3 activation in prostate cancer. *Am J Pathol* 2011; 178: 44-54 [PMID: 21712417 DOI: 10.1371/journal.pone.0007697]

35. **Knuttila S**, Aalto Y, Autio K, Björkqvist AM, El-Rifai W, Rodrigues JD, Ribeiro-dos-Santos AK, Zago MA. Differential contribution of indigenous men and women to the formation of an urban population in the Amazon region as revealed by mtDNA and Y-DNA. *Am J Phys Anthropol* 1999; 109: 175-180 [PMID: 10378456 DOI: 10.1002/(SICI)1096-8644(199906)109:1<175::AID-AJPA1>3.0.CO;2-9]

36. **Kang JU**, Kang J, Kwon KC, Park JW, Jeong TE, Noh SM, Koo SH. Genetic alterations in primary gastric carcinomas correlated with clinicopathological variables by array comparative genomic hybridization. *J Korean Med Sci* 2006; 21: 656-665 [PMID: 16698109 DOI: 10.3346/jkms.2006.21.4.656]

37. **Zhu YQ**, Zhu ZG, Liu BY, Chen XH, Yin HR, Wang XH. [Chromosomal alterations analyzed by comparative genomic hybridization in primary gastric carcinoma]. *Zhonghua Wei Chang Erxue Zhi Za Zhi* 2010; 40: 160-164 [PMID: 17380459]

38. **Fan B**, Dachrut S, Corel H, Yuan ST, Chu KM, Law S, Zhang L, Ji J, Leung SY, Chen X. Integration of DNA copy number alterations and transcriptional expression analysis in human gastric cancer. *PLoS One* 2012; 7: e29824 [PMID: 22539939 DOI: 10.1371/journal.pone.0029824]

39. **Yang ZQ**, Imoto I, Fukuda Y, Pimphaokham A, Shimada Y, Imamura M, Sugano S, Nakamura Y, Inawaza J. Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. *Cancer Res* 2000; 60: 4735-4739 [PMID: 10987278]
Calcagno DQ et al. IL11RA and MELK amplification in GC

with malignancy grade in human astrocytomas. Int J Cancer 2008; 122: 807-815 [PMID: 17960622 DOI: 10.1002/ijc.23189]

Ganguly R, Hong CS, Smith LG, Kornblum HI, Nakano I. Maternal embryonic leucine zipper kinase: key kinase for stem cell phenotype in glioma and other cancers. Mol Cancer Ther 2014; 13: 1393-1398 [PMID: 24795222 DOI: 10.1158/1535-7163. MCT-13-0764]

Ryu B, Kim DS, Deluca AM, Alani RM. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One 2007; 2: e594 [PMID: 17611626 DOI: 10.1371/journal.pone.0000594]

Pickard MR, Green AR, Caldas C, Hedge VL, Mourtada-Maarabouni M, Williams GT. Dysregulated expression of Fau and MELK is associated with poor prognosis in breast cancer. Breast Cancer Res 2009; 11: R60 [PMID: 19671159 DOI: 10.1186/bcr2350]

Kuner R, Fäth M, Pressinoiti NC, Brase JC, Puig SB, Metzger J, Gade S, Schäfer G, Bartsch G, Steiner E, Klocker H, Siltmann H. The maternal embryonic leucine zipper kinase (MELK) is upregulated in high-grade prostate cancer. J Mol Med (Berl) 2013; 91: 237-248 [PMID: 22945237 DOI: 10.1007/s00109-012-0949-1]

Du T, Qu Y, Li J, Li H, Su L, Zhou Q, Yan M, Li C, Zhu Z, Liu B. Maternal embryonic leucine zipper kinase enhances gastric cancer progression via the FAK/Paxillin pathway. Mol Cancer 2014; 13:

Gray D, Jubb AM, Hogue D, Dowd P, Kljavin N, Yi S, Bai W, Frantz G, Zhang Z, Koeppen H, de Sauvage FJ, Davis DP. Maternal embryonic leucine zipper kinase/murine protein serine-threonine kinase 38 is a promising therapeutic target for multiple cancers. Cancer Res 2005; 65: 9751-9761 [PMID: 16266996 DOI: 10.1158/0008-5472.CAN-04-4531]

Chung S, Nakamura Y. MELK inhibitor, novel molecular targeted therapeutics for human cancer stem cells. Cell Cycle 2013; 12: 1655-1656 [PMID: 23673321 DOI: 10.4161/cc.24988]

Minata M, Gu C, Joshi K, Nakano-Okuno M, Hong C, Nguyen CH, Kornblum HI, Molla A, Nakano I. Multi-kinase inhibitor C1 triggers mitotic catastrophe of glioma stem cells mainly through MELK kinase inhibition. PLoS One 2014; 9: e92546 [PMID: 24739874 DOI: 10.1371/journal.pone.0092546]

Ganguly R, Mohyeldin A, Thiel J, Kornblum HI, Beullens M, Nakano I. MELK-a conserved kinase: functions, signaling, cancer, and controversy. Clin Transl Med 2015; 4: 11 [PMID: 25852826 DOI: 10.1186/s40169-014-0045-y]

Li S, Li Z, Guo T, Xing XF, Cheng X, Du H, Wen XZ, Ji JF. Maternal embryonic leucine zipper kinase serves as a poor prognosis marker and therapeutic target in gastric cancer. Oncotarget 2016; 7: 6266-6280 [PMID: 26701722 DOI: 10.18632/oncotarget.6673]

P- Reviewer: Kupeli S S- Editor: Qi Y L- Editor: A E- Editor: Wang CH
