MATERIALS SCIENCE

Scattered seeding of CAR T cells in solid tumors augments anticancer efficacy

Hongjun Li1,2,3,4,5†, Zejun Wang3,4,5†, Edikan A. Ogunnaike6,7, Qing Wu1, Guojun Chen3,4,5, Quanyin Hu8, Tianyuan C3,4,5, Zhaowei Chen1,3,4,5, Jinqiang Wang1,3,4,5, Di Wen3,4,5, Hongwei Du10,7,9, Jie Jiang10, Jie Sun10, Xingcai Zhang11, Gianpietro Dotti7,9,∗ and Zhen Gu1,2,3,4,5,12,†

ABSTRACT

Chimeric antigen receptor T cell (CAR T) therapy was a milestone in the treatment of relapsed and refractory B cell malignancies. However, beneficial effects of CAR T cells have not been obtained in solid tumors yet. Herein, we implement a porous microneedle patch that accommodates CAR T cells and allows in situ penetration-mediated seeding of CAR T cells when implanted in the tumor bed or in the post-surgical resection cavity. CAR T cells loaded in the pores of the microneedle tips were readily escorted to the tumor in an evenly scattered manner without losing their activity. Such microneedle-mediated local delivery enhanced infiltration and immunostimulation of CAR T cells as compared to direct intratumoral injection. This tailorable patch offers a transformative platform for scattered seeding of living cells for treating a variety of tumors.

Keywords: drug delivery, CAR T therapy, microneedle patch, solid tumor treatment, cell delivery

INTRODUCTION

Chimeric antigen receptor (CAR) expressing T cells engineered with specific tumor-associated antigen (TAA) targeting ability have shown remarkable potency in B cell malignancies [1–4]. The US Food and Drug Administration (FDA) approved the use of CD19-targeting CAR T cells for treating pediatric acute lymphoblastic leukemia in 2017. In contrast, clinical studies with CAR T cells for solid tumors have not shown remarkable antitumor effects yet [5–8]. Solid tumors are characterized by a unique microenvironment characterized by physical and physiochemical barriers [7,9]. Abnormal vasculature, dense extracellular matrix and interstitial fluid pressure knit physical barriers preventing CAR T cells from infiltrating the tumor bed. Furthermore, immunosuppressive cells and soluble factors within the tumor microenvironment (TME) further hamper proliferation and effector function of CAR T cells [10–12].

Surgery is a fundamental therapeutic strategy for several solid tumors. Post-surgical in situ administration of CAR T cells offers a potential solution for overcoming the physical barriers in solid tumors and preventing tumor recurrence [13–16]. Surgical removal of bulky tumors delays tumor recurrence, relieves physical barriers and exposes residual cancer cells to endogenous effector T cells [17]. However, the local spread of residual micro tumors after surgery poses a severe obstacle to the precise delivery of adoptively transferred CAR T cells [18–20].

Here, we describe a polymeric porous microneedle (PMN) patch that can accommodate CAR T cells and allow scattered seeding of these cells intratumorally or within the surgical tumor resection (Fig. 1A). The bio compatible poly (lactic-co-glycolic acid) (PLGA) microneedle scaffold offers sufficient mechanical force for insertion into the tumor lesion. The CaCO3 microparticles (diameter of ~8 μm) in the microneedle patch are etched with

© The Author(s) 2021. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
hydrochloric acid, leaving pores. During the insertion within the tumor, CAR T cells residing in the pores are protected from scraping. At the same time, microneedles (up to 15 × 15 arrays) provide an insertion area of 144 mm² with even delivery points (225 tips), ensuring ample scattered cell delivery. We hypothesized that PMN-mediated CAR T cell delivery promotes distribution and penetration of
CAR T cells in solid tumors, leading to tumor eradication.

RESULTS

Preparation of porous microneedle patch and CAR T cell loading

The microneedle patch was fabricated by molding and polymerizing the mixture of methacryloyl chloride modified 4-arm-PLGA (Fig. S1) and triethylene glycol diacetate, along with CaCO₃ microparticles (Fig. S2). The 15 × 15 conical microneedle has a base radius of 250 μm with 200 μm spacing and is up to 1500 μm in height (Fig. 1B). Subsequently, the patch was swelled, and CaCO₃ microparticles were etched in hydrogen chloride dioxane solution (Fig. S3 and Movie S1 in the online supplementary file). Scanning electron microscopy (SEM) images revealed a jagged and porous surface formed after etching (Fig. 1C and Fig. S4). SEM images of the cross section of the PMN further demonstrated that the pores were formed by the etching of CaCO₃ particles (Fig. 1D and Fig. S5). In addition, the size of the pores ranging from 5 to 20 μm is sufficient for loading CAR T cells [21]. The PMN exhibited a slightly weaker mechanical strength than the un-etched microneedle, with a failure force of 2.4 N at 500 μm displacement, which can be attributed to the mechanical strength enhancement of the cross-linked structure and to the high molecular PLGA linked structure and to the high molecular PLGA

We hypothesized that the array structure of the PMN could cover an extensive area and thus promote wider distribution of CAR T cells compared to single needle-mediated injection of CAR T cells. Therefore, we developed a 3D Matrigel model (cylinder, radius × height; 3.2 mm × 1.5 mm) containing tumor cells to mimic the solid tumor in vitro (Fig. 2E) [25]. We determined the mapping of CAR T cells with the 3D Matrigel model through dropwise, intra-gel injection, and PMN delivery. After 3 days of incubation, delivery mediated by PMN resulted in homogenous mapping of the CAR T cells, while the CAR T cells administrated by dropwise and intra-gel injection were restricted to a confined space (Fig. 2E, Movies S2–S4). Furthermore, an approximately 2-fold higher level of IFN-γ (Fig. 2F) and IL-2 (Fig. 2G) were secreted by CAR T cells loaded into the PMN compared to CAR T cells directly injected or deposed on the surface of the 3D-gel model, further confirming the better distribution of CAR T cells via PMN administration.

We then evaluated the antitumor effects of CAR T cells delivered with a PMN in vivo. First, we evaluated the CAR T cell release from the PMN after insertion in the tumor. More than 50% of loaded CAR T cells were delivered to the tumor within 15 min (Fig. S10). We then compared the intratumoral distribution of Dil pre-labeled CAR T cells through intratumoral injection and PMN-mediated delivery in the WM115 melanoma tumor model in NOD.Cg-Pkdcs1id Il2rgm1Wjl/SzJ (NSG) mice. Twenty-four hours after treatment, CAR T cells were confined within the applied region when CAR T cells were inoculated intratumorally (IT@CAR T) (Fig. 3A). In contrast, CAR T cells delivered via PMN (PMN@CAR T) showed more prominent tumor infiltration (Fig. 3B). We then tested the proliferation and persistence of CAR T cells in the post-surgery model in WM115 melanoma-bearing mice. After removing 90% of the tumor, firefly luciferase-labeled CAR T cells were
Figure 2. PMN promotes CAR T cell infiltration in a 3D tumor model in vitro. (A) CSPG4+ CAR T cells labeled with CFSE were co-cultured for 3 days with CSPG4-expressing WM115 tumor cells. Representative flow cytometry histograms showing CFSE dilution are presented. (B) Relative mean fluorescence intensity of CFSE in (A), indicating T cell proliferation, n = 6. (C) Number of CAR T cells counted by flow cytometry after incubation with WM115 cells, n = 6. (D) CSPG4+ CAR T cells were co-cultured for 3 days with firefly luciferase labeled WM115 cells. Relative luciferase intensity after 3 days of culture is illustrated, n = 5. (E) Schematic of three approaches (dropwise, single-needle injection and PMN) used to deliver CAR T cells into a 3D tumor model in vitro. The 3D reconstruction illustrates CAR T cells and WM115 cell distribution in the 3D tumor model at day 3 after T cell seeding; scale bar: 300 μm. Measurement of human (F) IFN-γ and (G) IL-2 released by CAR T cells in the 3D tumor model at day 3, n = 5. Data are presented as mean ± s.d., and statistical significance was calculated via one-way ANOVA with a Tukey post-hoc test. P value: ∗P < 0.05, ∗∗∗P < 0.001; n.s. means no significant difference.

Anti-solid tumor activity of CAR T cells with scattered delivery

We further investigated whether PMN delivery of CAR T cells could prevent tumor recurrence after partial surgery. Firefly luciferase-labeled WM115 cells were engrafted subcutaneously in NSG mice, and upon partial tumor resection CAR T cells were delivered directly into the resection cavity, intratumorally or via PMN injection. Untreated mice and mice receiving a PMN containing non-engineered T cells (PMN@NT) served as controls (Fig. 4A). Tumor bioluminescence significantly decreased in mice that received CAR T cell delivery via PMN compared with deposition and intratumoral injection (Fig. 4B–D). Tumor size (Fig. 4E) and weight (Fig. 4F) measurements also showed the superior activity of CAR T cells delivered via PMN. TUNEL assay demonstrated a higher rate of tumor cell death in mice treated with CAR T cells delivered via PMN (Fig. S13). Higher infiltration of CD8+ and CD4+ T cells was also detected using immunofluorescence staining (Fig. 4G). Taken together, these data indicate that CAR T cells delivered via PMN outperformed deposition administration and intratumoral injection methods.

We further validated the applicability of the PMN delivery strategy of CAR T cells in an orthotopic pancreatic tumor model. Firefly luciferase-tagged human pancreatic cancer cells (Panc-1) engrafted in the pancreas of NSG mice, were treated with CAR T cells targeting the pancreatic-cancer-associated antigen B7-H3 [26] (Fig. 5A). B7-H3 CAR T cells were administrated by direct injection into the tumor bed or accommodated by the PMN patch after surgical exposure of the pancreatic tumor. As
Figure 3. PMN promotes wider distribution of CAR T cells in vivo. Distribution of CAR T cells (red) within the WM115 tumor after (A) single needle intratumoral injection and (B) PMN insertion; scale bars: 1 mm. CAR T cells were pre-labeled with Dil. The number on the upper left represents the layer depth. (C) T cell bioluminescence of firefly luciferase-expressing CAR T cells inoculated within the post-surgical tumor bed. CAR T cells were delivered directly into the resection cavity, intratumorally using a single needle injection or intratumorally via PMN-assisted implant. (D) T cell bioluminescence at day 12 after treatment is illustrated, n = 5. (E) Kinetics of T cell bioluminescence in (C). (F) Levels of human IL-2 and IFN-γ detected in the tumor lysates at day 12 after CAR T cells treatment, n = 5. (G) Representative flow cytometric plots and (H) quantification of CAR T cells (CD45+ CD3+) in the peripheral blood at day 12 after CAR T cells administration, n = 5. Data are presented as mean ± s.d., and statistical significance was calculated via one-way ANOVA with a Tukey post-hoc test. P value: *P < 0.05, **P < 0.01, ***P < 0.001.
Figure 4. CAR T cells delivered by PMN show enhanced antitumor effects in the post-surgical resection melanoma model. (A) Schematic of the mouse model in which melanoma engrafted subcutaneously is partially resected and CAR T cells delivered within the resection cavity. (B) Representative tumor bioluminescence of WM115-bearing mice treated with CSPG4+ CAR T cells administered with different modalities. Untreated mice and mice treated with a PMN loaded with control T cells were used as control. (C) Kinetics of tumor bioluminescence and (D) tumor bioluminescence at day 15 post-treatment. (E) Tumor growth curve and (F) tumor weight after treatment, n = 5. (G) Representative immunofluorescence showing CD4+ and CD8+ T cells within the tumor after treatment; scale bars: 100 μm. Data are presented as mean ± s.d., and statistical significance was calculated via one-way ANOVA with a Tukey post-hoc test. *P < 0.05, **P < 0.001.
shown in Fig. 5B and C, the tumors in the mice treated with PMN@NT continue growing, while intra-pancreatic tumor injection and PMN delivery of CAR T cells effectively restrained the tumor growth, but PMN@CAR T cells showed superior effects, which was further confirmed by the ratio of the bioluminescence signals of mice that received treatment with PMN@CAR T/IT@CAR T (Fig. 5D).

Figure 5. CAR T cells delivered by PMN show enhanced antitumor effects in an orthotopic pancreatic tumor model. (A) Schematic of the mouse model in which pancreatic tumor cells were engrafted in the pancreas and CAR T cells delivered intratumorally. (B) Representative tumor bioluminescence of Panc01-bearing mice treated with B7-H3 + CAR T cells administered with intra-tumor injection and PMN-assisted administration. Untreated mice and mice treated with a PMN loaded with control T cells were used as control. (C) Kinetics of tumor bioluminescence of IT@CAR T and PMN@CAR T after treatment, n = 5. (D) The ratio of bioluminescence signal of the mice that received PMN@CAR T and IT@CAR T treatment (PMN@CAR T/IT@CAR T), n = 5. Data are presented as mean ± s.e.m., and statistical significance was calculated via T-Test. *P value: *P < 0.05.
DISCUSSION

As a promising cancer-combating strategy, CAR T cell therapy faces several barriers that impede the clinical progress for solid tumor treatment, such as the dense physical extracellular matrix and immunosuppressive environment. In particular, physical obstacles formed by the extracellular matrix preclude sufficient infiltration of CAR T cells into the solid tumor, and inhibit the approach and recognition of CAR T cells towards tumor cells. Ongoing solutions for solid tumor treatment include employing hydrogel and implantable films to serve as the reservoirs for sustained release of CAR T cells [27–29]. Intratumor administration of CAR T cells is also under investigation in clinical trials combating solid tumors [30,31]. In comparison, PMN patch-assisted delivery enables scattered seeding of CAR T cells in the solid tumor. This microneedle patch-guided invasion of CAR T cells into the tumor matrix disrupts the physical barrier and allows the talent revelation of CAR T cells. Multipoint scattered seeding amplifies the probabilities of cell interactions between CAR T and tumor cells, and promotes CAR T cell activation and infiltration in the solid tumor matrix.

The microneedle patch has been used in the delivery of distinct drugs, including small molecules and protein drugs like galanthamine, insulin and antibodies, in a mini-invasive and transdermal manner [32–35]. To enhance therapeutic efficacy, advanced strategies such as introducing nano/micropores to the needles and integration with drug-loading CaCO3 microparticles have been developed [36–38]. Recently, functional cell delivery with a microneedle patch was reported for cells such as mesenchymal stem cells and dendritic cells [39,40]. These strategies extend the application of microneedles in combating various scenarios, including cancer, tissue reconstruction and medical cosmetology, by delivering live cells. Unlike small molecules and protein drugs, it is difficult for cells to penetrate certain tissues and diffuse inside them due to their large size. Transdermal delivery techniques with microneedle patches could help overcome the relative limitations of cell-based therapies. However, several challenges remain, including cell inactivation during microneedle manufacturing, insufficient cell loading, unsatisfying cell delivery efficiency and limited cell storage methods. In the present study, made from biocompatible PLGA, the PMN patch can be customizable in patch dimension and needle density depending on practical needs. Unlike the reported method that preloaded the cells before the microneedle molding, we accommodate cells in the pores of the microneedle, which could maintain their activity. The storage and large-scale manufacturing for meeting the Good Manufacturing Practice (GMP) could be more accessible than the preloading techniques. On the other hand, the PMN patch needs further optimization regarding porosity and cell loading capacity improvement, as well as balance between the porosity and mechanical force.

Overall, the microneedle patch offers a multipoint, scattered delivery tool of CAR T cell seeding that augments T cell infiltration within the tumor by overcoming poor T cell biodistribution caused by physical barriers in solid tumors. The PMN patch can be applied to the resection cavity to prevent local tumor recurrence and potential metastatic dissemination. This strategy can be extended as a local treatment platform for living cell delivery targeting a variety of diseases.

MATERIALS AND METHODS

Fabrication of the PMN array patch

The 4-arm-PLGA-Acry was dissolved in dioxane with a final concentration of 500 mg/mL, azodiisobutyronitrile (AIBN) was dissolved in Dioxane with a concentration of 100 mg/mL and the linear PLGA was dissolved in Dioxane with a concentration of 200 mg/mL. Then, 300 mg of 4-arm-PLGA-Acry, 150 mg of triethyleneglycoldiacrylate (TEGDA), 10 mg of AIBN, 20 mg of PLGA and 90 mg of CaCO3 microparticles were mixed and added to a polydimethylsiloxane (PDMS) micromold (Blueacre Technology Ltd.) with dioxane pre-filled into the needle. Four hours later, the microneedle was cross-linked overnight at 90°C before the microneedle patch was peeled off. The microneedle patch was placed in HCl/hexanesolution for 2 hours for swelling, and then water was added to initiate the reaction between HCl and CaCO3, accompanied by CO2 bubbles generated. Finally, the PMN patch was treated with plasma to generate a hydrophilic surface. The morphology of the PMN patch was characterized by SEM (ZEISS Supra 40VP).

In vivo antitumor activity

WM115 cells (5 × 10⁶) with luciferase expression were injected into the NSG mice subcutaneously. When it reached 100 mm³, 90% of the tumor was surgically removed. CAR T cells (1 × 10⁶) were administrated via subcutaneous injection, intratumoral injection and PMN injection to the tumor sites. After CAR T cells application, the bioluminescence signals were recorded on day 0, day 3, day 6, day 9, day 12 and day 15 with IVIS (Perkin). The analysis of
signals was performed by Living Image Software. After the treatment the mice were sacrificed, and the tumor weight and images of the tumors were recorded. In the melanoma model, the microneedle patch was maintained for 15 min in the tumor before removal.

Twenty days after Panc01 cells inoculation, the progress of the orthotopic pancreatic tumor was tracked with the IVIS system by detecting the bioluminescence signals. During the microneedle-loaded CAR T cells administration, the pancreas was carefully surgically exposed by an abdominal incision. The CAR T cells-loaded PMN was carefully inserted into the tumor on the pancreas and immobilized with a biological glue (3M Vetbond Tissue Adhesive). The wound on the abdomen was carefully closed in two layers. After CAR T cells application, the bioluminescence signals were recorded on predetermined days with IVIS (Perkin).

Statistical analysis

All results are presented as the mean ± standard deviation (s.d.) or the mean ± standard error of the mean (s.e.m.), as indicated. Tukey post-hoc tests and one-way ANOVA were used for multiple comparisons. Student T-tests were used for two group comparisons. Survival benefit was determined using a log-rank (Mantel-Cox) test. All statistical analyses were carried out with the Prism software package (PRISM 5.0; GraphPad Software, 2007). The threshold for statistical significance was P < 0.05.

ETHICAL APPROVAL

All animal experiments were performed in compliance with an animal study protocol approved by the Institutional Animal Care and Use Committee at University of California, Los Angeles, USA.

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.

ACKNOWLEDGEMENTS

We acknowledge Broad Stem Cell Research Center (BSCRC) Core Facilities and Crump Institute-Preclinical Imaging Technology Center at University of California, Los Angeles (UCLA) for providing the analytical instruments.

FUNDING

This work was supported by grants from the start-up packages of Zhejiang University and UCLA, the National Institutes of Health (R01 CA234343-01A1), and the Jonsson Comprehensive Cancer Center at UCLA.

AUTHOR CONTRIBUTIONS

Z.G., G.D., H.L. and Z.W. were responsible for the conception and experimental strategy of the study. H.L., Z.W., E.A., Q.W., G.C., T.C., Z.C., J.W., D.W., H.D. and J.J. performed the experiments and acquired the data. H.L., Z.W. and Z.G. interpreted the data. H.L., Z.W., J.S., X.Z., G.D. and Z.G. co-wrote the manuscript.

Conflict of interest statement. H.L. and Z.G. have applied for patents related to this study. Z.G. is a scientific cofounder of ZenCapsule Inc., Zcapsule Inc., Zenomics Inc. and Wskin Inc.

REFERENCES

1. Brentjens RJ, Davila ML and Riviere I et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. *Sci Transl Med* 2013; 5: 177ra38.
2. Grupp SA, Kalos M and Barrett D et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. *Engl J Med* 2013; 368: 1509–18.
3. Maude SL, Frey N and Shaw PA et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. *N Engl J Med* 2014; 371: 1507–17.
4. June CH, O’Connor RS and Kawalekar OU et al. CAR T cell immunotherapy for human cancer. *Science* 2018; 359: 1361–5.
5. Lim WA and June CH. The principles of engineering immune cells to treat cancer. *Cell* 2017; 168: 724–40.
6. Rafiq S, Hackett CS and Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. *Nat Rev Clin Oncol* 2020; 17: 147–67.
7. Newick K, O’Brien S and Moon E et al. CAR T cell therapy for solid tumors. *Annu Rev Med* 2017; 68: 139–52.
8. Hong M, Clubb JD and Chen YY. Engineering CAR-T cells for next-generation cancer therapy. *Cancer Cell* 2020; 38: 473–88.
9. Martinez M and Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. *Front Immunol* 2019; 10: 128.
10. Caruana I, Savoldo B and Hoyos V et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. *Nat Med* 2015; 21: 524–9.
11. Chen Q, Hu QY and Dukhovlinova E et al. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. *Adv Mater* 2019; 31: 1900192.
12. Newick K, Moon E and Albelda SM. Chimeric antigen receptor T-cell therapy for solid tumors. *Mol Ther-Oncolytics* 2016; 3: 16006.
13. Brown CE, Alizadeh D and Starr R et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. *N Engl J Med* 2016; 375: 2561–9.
14. Xu JJ, Wang YL and Shi J et al. Combination therapy: a feasibility strategy for CAR-T cell therapy in the treatment of solid tumors. *Oncol Lett* 2018; 16: 2063–70.
15. Dhandhukayazan KN, Gulberg P and Kirkin AF. Adoptive T cell cancer therapy. *Nat Mater* 2018; **17**: 475–7.
16. Adusumilli PS, Zauderer MG and Rusch VW et al. Regional delivery of mesothelin-targeted CAR T cells for pleural cancers: safety and preliminary efficacy in combination with anti-pd-1 agent. *J Clin Oncol* 2019; **37**: 2511.
17. Chen Q, Wang C and Zhang XD et al. In situ sprayed bioresponsive immunotherapeutic-gel for post-surgical cancer treatment. *Nat Nanotechnol* 2019; **14**: 89–97.
18. Tuskin MR, Murakami MA and Manalis SR et al. Targeting minimal residual disease: a path to cure? *Nat Rev Cancer* 2018; **18**: 255–63.
19. Pantel K and Alix-Panabieres C. Tumour microenvironment: informing on minimal residual disease in solid tumours. *Nat Rev Clin Oncol* 2018; **15**: 325–6.
20. Wang H and Mooney DJ. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. *Nat Mater* 2018; **17**: 761–72.
21. Tasnim H, Fricke GM and Byrum JR et al. Quantitative measurement of naive T cell association with dendritic cells, FRCs, and blood vessels in lymph nodes. *Front Immunol* 2018; **9**: 1571.
22. Ilieva KM, Cheung A and Mele S et al. Chondroitin sulfate proteoglycan 4 and its potential as an antibody immunotherapy target across different tumor types. *Front Immunol* 2018; **9**: 1191.
23. Wang YY, Geldres C and Ferrone S et al. Chondroitin sulfate proteoglycan 4 as a target for chimeric antigen receptor-based T-cell immunotherapy of solid tumors. *Expert Opin Ther Targets* 2015; **19**: 1339–50.
24. Quah BJ, Warren HS and Parish CR. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. *Nat Protoc* 2007; **2**: 2049–56.
25. Fischbach C, Chen R and Matsumoto T et al. Engineering tumors with 3D scaffolds. *Nat Methods* 2007; **4**: 855–60.
26. Du H, Hirabayashi K and Ahn S et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells. *Cancer Cell* 2019; **35**: 221–37.
27. Wang K, Chen Y and Ahn S et al. GD2-specific CAR T cells encapsulated in an injectable hydrogel control retinoblastoma and preserve vision. *Nat Cancer* 2020; **1**: 990–7.