Article

Methylation-wide human study identified age and BMI-independent association of differentially methylated regions and leukocyte telomere length

Carolina F Nicoletti 1, Natalia Y Noronha 2, Marcela A S Pinhel 3 and Carla B Nonino 4*

1 Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.; carol_nicolettif@yahoo.com.br
2 Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.; natty.yumi@gmail.com
3 Laboratory of Studies in Biochemistry and Molecular Biology, Department of Molecular Biology, São José do Rio Preto Medical School, Brazil and Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.; marcelapinhel@yahoo.com.br.
4 Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.; carla@fmrp.usp.br
* Correspondence: carla@fmrp.usp.br

Abstract: Background: Telomere length (TL) shortening process is associated with several known environment and individual determinants. DNA methylation is the most studied epigenetic process and may be associated with TL. We investigated the associations between DNA methylation and TL in peripheral blood. Methods: Methylation wide association study was conducted in 47 women (37.1±8.8 years) with different nutritional status. Association between TL and DNA methylation levels were explored by univariate and multiple linear regression models, corrected by age and Body Mass Index. Corrections for multiple comparisons by Benjamini-Hochberg test was also performed. WEBGestalt was used to identify pathways that are responsible for regulating TL. Results: We found negative correlations between TL and BMI (r = -0.641; p = 0.001), abdominal circumference (r = -0.622; p = 0.001) and fat mass (r = -0.656; p = 0.001). 44 CpGs sites were associated with TL, independent of age and BMI. The most of these sites were negatively correlated with TL. For the 7 remained sites, DNA hypomethylation were associated with shorter TL. These CpGs were related to nine different pathways, including thermogenesis, cancer, glutamatergic and serotonergic synapse. Conclusion: There is an epigenetic contribution in TL, independent of nutritional status and age. Genes related to TL are involved in important metabolic pathways.

Keywords: telomere length; DNA methylation; DNA microarray

1. Introduction

Telomeres are DNA nucleoprotein structures located at the end of eukaryotic chromosomes consisting of hundreds to thousands tandem repeats of TTAGGG [1,2], that play an important role in preventing chromosomes from erosion and end-to-end fusion, and thereby maintaining chromosome’s integrity [1]. Telomeres are shortened at each cell division and this mechanism decrease chromosomal stability. Also, telomere erosion believed to be accelerated by oxidative stress and inflammation [3,5], which increases risks for chronic diseases, cancer, cardiovascular disease, and overall mortality [6]. In line of this, there is a significant inter-individual variation in telomere length (TL) shortening rates throughout life [7]. TL shortening process is associated with several known environment and individual inherent determinants, including smoking [8], excessive alcohol consumption [9], diet [10], physical activity [11], obesity [12] and chronic life stress [13].
addition, TL is also influenced by genetic variations. Recent genome-wide association studies (GWAS) have identified several polymorphisms associated with TL [14,15]. Furthermore, recent studies in epigenetic research have demonstrated the contribution of DNA methylation levels in TL [16,19]. DNA methylation, one of the main mechanisms of epigenetic modification, consists in addiction of cytosine residues of cytosine-phosphate-guanine dinucleotides (CpGs), which plays an important role in gene expression control [20,21]. Importantly, both TL and DNA methylation process are involved in aging and disease development and global DNA hypomethylation was previously associated with TL in adults [16,22]. Despite the evidence, the epigenetic basis of TL remains largely unknown. Therefore, we carried out this cross-sectional study to explore the DNA methylation profile in relationship with marker of TL in women. The present study, for the first time, tested the hypothesis that TL would be associated with DNA methylation level, independent of nutritional status and age. First, we performed Human Methylation 450 microarray analysis and measured TL in DNA from women patients. Also, we investigated the associations between methylation at CpG sites and TL in peripheral blood DNA.

2. Results

2.1 Phenotypic Characteristics and Telomere length measurements

Phenotypic characteristics and TL of study participants are described in Table 1. We observed that 48.9% of women had overweight or obesity. Also, we found negative correlations between TL and BMI (r = -0.641; p = 0.001), abdominal circumference (r = -0.622; p = 0.001) and fat mass (r = -0.656; p = 0.001).

Table 1. Phenotypic and TL characteristics of study participants (n=47)

Characteristics	Value
Age (years)	37.1±8.8
Weight (kg)	86.5±26.4
BMI (kg/m²)	39.9±10.7
Abdominal circumference (cm)	100.6±23
Fat free mass (kg)	51.9±10
Fat mass (kg)	33.3±16.7
TL (T/S ratio)	0.93±0.11

BMI: body mass index. TL: telomere length.

2.2 Epigenome wide DNA methylation analysis

After normalization by quality control, the experiment ends up with 410.586 valid probes. After linear regression, 176 CpG sites (located in 154 unique genes) were associated with TL at the conventional pvalue <0.05 and remained associated after adjustment for multiple comparisons (FDR corrected pvalue <0.05) (Supplementary Table).

However, the identified CpGs did not remained associated with TL after adjustment for BMI and age. Thus, we identified 44 sites within 39 different genes that were associated with TL in whole blood DNA, independent of age and BMI (Table 2). The most of these sites were in promoter region (68.1%), island (52.3%) and in chromosome 6 (18.2%).
CpG	Chromosome	MapInfo	Gene symbol	Gene Region	Region
cg05445839	1	27023088	ARID1A	1stExon	Island
cg03421104	1	5793847			
cg18973238	1	64169293			
cg10499166	1	23348815	KDM1A	TSS200	Island
cg07283098	3	13451406	EPHB1	TSS200	Island
cg15693889	3	18560256	PARL	1stExon	Island
cg16009381	5	17304359	BOD1	5'UTR	Island
cg01735621	5	74162051	C6orf130	TSS200	Island
cg00369106	5	31865663	EMT2	TSS200	S_Shore
cg01702338	5	32812571	PSMB8	5'UTR	S_Shore
cg21128533	5	3165406			Island
cg25760338	5	52860082	GSTA4	5'UTR;1stExon	S_Shore
cg24203851	6	11113648	CDK19	TSS200	Island
cg26289430	6	32158233	PBX2	TSS1500	Island
cg22592140	6	13013241	MEST	5'UTR	Island
cg14298577	6	10027203	GNBP2	5'UTR	Island
cg27338386	6	26241120	INPPL1	Body	S_Shore
cg13551243	11	14605274	ZNF7	TSS200	Island
cg16274098	11	92053265	TMEM55A	TSS200	Island
cg23731089	11	14159920	EFC2C	Body	
cg94462535	11	26434378	DYSYL2	TSS1500	Island
cg35573846	12	12615273	TIRAP	TSS1500	Island
cg23766360	12	6195688	VWF	Body	
cg20101876	12	4075110			Island
cg94488335	13	9464112	PPP4R4	Body	
cg25198579	13	67380136	SMAD3	TSS200	Island
cg00370718	13	49913307	DTWD1;C15orf33	1stExon	Island
cg00336440	13	3507875	NAT15	5'UTR	Island
cg00239353	13	315123	IL32	TSS1500	Island
cg08676730	14	53829263	PCTP	TSS200	N_Shore
cg13893634	14	48229117	PPP1R9B	TSS1500	S_Shore
cg14349727	14	51457389	KLK5	TSS1500	Island
cg1704051	14	3713345	HSFA12B	TSS200	Island
cg16875227	15	22095360	RALGAPA2	TSS200	Island
cg14263118	15	57403787	GNAS	3'UTR	Island
cg12518493	15	44527999	U2AF1	5'UTR	Island
cg04454272	15	31795553	DRG1	TSS200	Island

Negative association

Positive association
For all 44 identified CpGs, 84.1% (37 CpGs) were negatively correlated with TL. For these sites, lower DNA methylation levels were associated with bigger TL. On other hand, for remained 7 CpGs sites, DNA hypomethylation were associated with shorter TL (Table 2). Enrichment analysis showed that these CpGs were related to nine different pathways (Table 3), including thermogenesis, pathways in cancer, glutamatergic and serotonergic synapse.

Table 3. Enrichment results for CpGs sites related to telomere length

Gene set	Pathway	Size
hsa04926	Relaxin signaling pathway	130
hsa05225	Hepatocellular carcinoma	168
hsa04714	Thermogenesis	229
hsa05032	Morphine addiction	91
hsa04713	Circadian entrainment	96
hsa05200	Pathways in cancer	526
hsa04724	Glutamatergic synapse	114
hsa04726	Serotonergic synapse	115
hsa04611	Platelet activation	123

3. Discussion

As our mainly result, we identified multiple CpG sites in which DNA methylation levels were associated with leukocyte TL independent of nutritional status and age. For the majority of the identified CpGs sites, lower levels of DNA methylation were associated with bigger TL (negative association). These associated genes were involved in different metabolic pathways, such as thermogenesis, circadian entrainment pathway and cancer pathways. In the same way, Buxton et al. 2014 [16] identified 65 CpG sites at which methylation levels associated with leukocyte TL, of these sites, 78% were positively associated. Also, authors evaluating global DNA methylation evidenced that Alu and/or LINE-1 DNA hypomethylation were associated with shorter TL [25]. We evidenced that, when adjusted for age and BMI and age, the number of CpG sites that remained associated with TL decreased. This is the first evidence of the relation between these CpG sites and TL, however the reason of this association remained unknown. We consider two hypotheses: the loci in which these CpG sites are capable induce changes in telomere length or metabolic pathways, which the genes are associated is capable to affect telomere length. It is already known that epigenetic changes near telomeres could influence its length [16; 26]. Telomeric regions do not contain CpG substrates that are susceptible to methylation by DNA methyltransferases (DNMTs), but subtelomeric region has a high number of CpG sites, which can be methylated [27]. However, the 44 CpGs identified in the present analysis were not in subtelomeric regions, and thus, the present hypothesis cannot be confirmed.
An important pathway related to TL in the present study was the circadian entrainment pathway. Previously results evidenced circadian rhythm as a mechanism underlying telomere and telomerase activity [28]. The authors suggest that this association has essential clinical impacts, which a possible link between circadian desynchrony and telomere dysfunction [28]. Moreover, pathways in cancer appear as the major pathway related to TL in our results. According to some authors, in cancer development context, telomere shortening may have antagonistic outcomes that involve genome instability and prevention of cancer progression [29, 30]. Interestingly, there is an already known association between the both above pathway. The circadian clock seems to have an important role in multiple physiological processes, homeostasis and, for this reason may control several cancer hallmarks [31]. Despite many evidence about the contribution of different metabolic strategies for energy homeostasis on TL (i.e. green tea supplementation; diet; endurance, interval, and resistance training) [12, 32, 33], according to our knowledge, this is the first study showing the direct association between thermogenesis and TL. Here, different explanations may be point out for this association. First, improvement of oxidative stress and inflammation have been associated with better measurements of TL [34, 35]. On other hand, it is already known that phosphate is an essential mineral for body energy generation process and recent association has been made between higher phosphate levels and longer TL [36]. Other pathways evidenced in the present study have being described for the first time. The molecular mechanism that relaxin signaling pathway, platelet activation and glutamatergic/serotonergic synapse pathway is associated to TL need to be further investigate. Like epigenetic clocks, we expect that DNA methylation level may become a useful biomarker for human aging in interventional studies. Considering that epigenetic biomarkers are still in the nascent stage, we will highlight the importance of future prospective study to confirm DNA methylation level as epigenetic biomarkers of TL and possible human disease. Strengths of our study include the wide analysis of DNA methylation by array technology. Limitations include the small sample size and the age range adopted in the inclusion criteria. However, despite the number of included participants, important associations were found.

4. Materials and Methods

Study design and subjects

We performed our methylation wide association study with 47 women (aged between 20 and 60 years old) from an ethnic mixed population, on different nutritional status (according to body mass index – BMI). We did not included patients a history of metabolic diseases such as Cushing syndrome hypo or hyperthyroidism and those in use of antiobesity medications or hormone therapy. Also, men were excluded to avoid the possible biases due to the hormonal influences. For this cross-over study, patients were evaluated only once. Data collection included anthropometrics (weight, height, abdominal circumference, and BMI) and body composition (fat mass and fat free mass) measurements and blood collection for genetic analysis.

DNA extraction

Genomic DNA was extracted from leukocytes using the Master Pure kit (Epicenter, Madison, WI). DNA fragmentation or RNA contamination was analyzed by 1% agarose gel electrophoresis. All samples were stored at -80°C until analyzed.

Measurements of leukocyte telomere length

Analysis for leukocyte telomere length were performed using the method developed by Cawthon et al. [23], with specific modifications [12]. Briefly, Real-time PCR was performed using a 7500 Fast Real Time PCR System (Applied Biosystems). Assay method
was optimized for use of both telomere (T) and single copy gene (S) amplifications on the same 96-well plate, with reference standard DNA samples on each plate. Analyses were performed in triplicate PCR reactions. Amplification primers for telomeres included TelF: 5’-GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT-3′ and TelR: 5’-TCCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA-3′, and for 36B4u: 5’-CCCATTCTATCATCAACCGGTACAA-3’ and 36B4d: 5’-CAGCAAGTGGGAAGGTGTAATCC-3’. The relative quantification of TL was determined using the telomere to single copy gene ratio (T/S) \[2^{−(ΔCt(telomere) − ΔCt(Single copy gene))} = 2^{−ΔΔCt}\], following the parameters of Scheinberg et al, 2010 [24]. For \(2^{−ΔΔCt}\) calculation, each sample was normalized to the average T/S ratio of a reference sample, using the standard curve and validation sample as reference.

Methylation assay

Genomic DNA was bisulfate converted immediately before methylation analysis using EZ-96 DNA Methylation Kit (Zymo Research Corporation, Irvine, CA). Methylation chips manufactured by Illumina (Infinium Human Methylation 450 array, Illumina, San Diego, CA) were used for generating methylation data. Beadchips were scanned with the Illumina HiScanSQ system, and image intensities were extracted with the Genome Studio (2011.1) Methylation Module (v1.8.5). Blood samples from each subject were hybridized to the same physical chip to minimize biases. The methylation level was expressed as a beta (β) value that was calculated as the intensity of the methylated channel divided by the total intensity \[β = \frac{\text{Max (SignalB, 0)}}{\text{Max (SignalA, 0) + Max (SignalB, 0) +100}}\]. A threshold for the significant CpG sites based on Δbeta with a minimum value of 5% (value greater than 0.05 or less than -0.05) and p value < 0.001 was applied.

Statistical analysis

Descriptive statistics consisted of mean and standard deviation (SD) values. Shapiro-Wilk test was used to verify the data normality. t-test for independent samples was used for phenotypic variables and TL comparisons between obese and normal weight women. Association between TL and DNA methylation levels were explored by univariate and multiple linear regression models, in which outcome measurement was TL and confounding variables included age and BMI. Corrections for multiple comparisons by Benjamini-Hochberg test was also performed. The significance level used for the tests was set at p<0.05. All analyses were performed by using SPSS Statistics 21.0 (SPSS Inc.).

Pathway Enrichment Analysis

WEBGestalt (WEB-based GEne SeT AnaLysis Toolkit) was used to identify pathways that are responsible for regulating TL. For this, the list of genes associated with TL was submitted for statistical overrepresentation testing (Fisher’s exact test) in KEGG (Kyoto Encyclopedia of Genes and Genomes). Pathways were considered over-represented where False Discovery Rate (FDR) p < 0.05.

5. **Conclusions**

The results of present study provide novel insights into the epigenetic contribution in telomere length, independent of nutritional status and age. Also, DNA methylation levels of genes involve in important metabolic pathways such as circadian, cancer and thermogenesis are associated with TL.
Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: title, Table S1: title, Video S1: title.

Author Contributions: CFN and CBN contributed to the conception and design of the study. CFN, MASP and NYNW analyzed the data. CFN wrote the first draft of the manuscript. MASP and NYNW aided with manuscript revisions. CBN provided guidance with manuscript improvements and statistical analysis. All authors read and approved the final manuscript.

Funding: This study was supported by São Paulo Research Foundation (FAPESP) (grants #2016/05638-1 and #2015/18669-0).

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Research Ethics Committee of the Clinical Hospital of Ribeirão Preto Medical School, University of São Paulo, SP, Brazil (CAAE: 62181816.3.0000.5440).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Raw data for the primary analyses are available upon request from the corresponding and senior author.

Acknowledgments: None to declare.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Blasco MA. Telomeres and human disease: Ageing, cancer and beyond. Nat Rev Genet 2005, 6, 611–622.
2. Nordfjäll K, Svenson U, Norrbakk KF, Adolfsen R, Roos G. Large-scale parent-child comparison confirms a strong paternal influence on telomere length. Eur J Hum Genet 2010, 18, 385–89.
3. Coluzzi E, Colamartino M, Cozzi R, Leone S, Meneghini C, O’Callaghan N, Sgura A. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One 2014, 9, e110963.
4. von Zglinicki, T. Oxidative stress shortens telomeres. TIBS 2002, 27, 339–344.
5. Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimskiy JD. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci 2004, 117, 2417-2426.
6. D’Mello MJJ, Ross SA, Briel M, Anand SA, Gerstein H, Paré G. Association Between Shortened Leukocyte Telomere Length and Cardiometabolic Outcomes. Circ Cardiovasc Genet 2015, 8, 82-90.
7. Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA. Telomere Length Trajectory and Its Determinants in Persons with Coronary Artery Disease: Longitudinal Findings from the Heart and Soul Study. PLoS One 2010, 5, e8612.
8. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD. Obesity, cigarette smoking, and telomere length in women. Lancet 2005, 366, 662-664.
9. Strandberg TE, Strandberg AY, Saionmaa O, Tiilikäinen KH, Fyhrquist F. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study. Eur J Epidemiol 2012, 27, 815-822.
10. Zhu H, Bhagatwala J, Pollock NK, Parikh S, Gutin B, Stallmann-Jorgensen I, Thomas J, Harshfield GA, Dong Y. High sodium intake is associated with short leukocyte telomere length in overweight and obese adolescents. Int J Obes (Lond) 2015, 39, 1249-1253.
11. Zhu H, Wang X, Gutin B, Davis CL, Keeton D, Thomas J, Stallmann-Jorgensen I, Mooker G, Bundy V, Snieder H, van der Harst P, Dong Y. Leukocyte telomere length in healthy Caucasian and African-American adolescents: relationships with race, sex, adiposity, adipokines, and physical activity. J Pediatr 2011, 158, 215-220.
12. Nonino CB, Pinhanelli VC, Noronha NY, Quinhoneiro DCG, Pinhel MS, De Oliveira BAP, Marchini JS, Nicoletti CF. Green tea supplementation promotes leukocyte telomere length elongation in obese women. *Nutr Hosp* 2018, 35, 570-575.

13. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM. Accelerated telomere shortening in response to life stress. *Proc Natl Acad Sci USA* 2004, 101, 17312-17315.

14. Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, Hottenga JJ, Fischer K, Esko T, Surakka I, Broer L, Nyholt DR, Mateo Leach I, Salo P, Hägg S, Matthews MK, Palmen J, Norata GD, O’Reilly PF, Saleheen D, Amin N, Balmforth AJ, Beekman M, de Boer RA, Bühringer S, Braund PS, Burton PR, de Craen AJ, Denniff M, Dong Y, Douroudis K, Dubinina E, Eriksson JG, Garlaschelli K, Guo D, Hartikainen AL, Henders AK, Hoving-Duistermaat JJ, Karanen L, Karssen LC, Kettunen J, Klopp N, Lagou V, van Leeuwen EM, Madden PA, Mági R, Magnusson PK, Männistö S, McCarthy MI, Medland SE, Mihailov E, Montgomery GW, Oostra BA, Palotie A, Peters A, Pollard H, Pouta A, Prokopenko I, Ripatti S, Salomaa V, Suchiman HE, Valdes AM, Verweij N, Viinuela A, Wang X, Wichmann HE, Widen E, Willemsen G, Wright MJ, Xia K, Xiao X, van Veldhuisen DJ, Catapano AL, Tobin MD, Hall AS, Blakemore AI, van Gilst WH, Zhu H; CARDIoGRAM consortium, Erdmann J, Reilly MP, Kathiresan S, Schunkert H, Talmud PJ, Pedersen NL, Perola M, Ouwehand W, Kaprio J, Martin NG, van Duijn CM, Hovatta I, Gieger C, Metspalu A, Boomsma DI, Jarvelin MR, Slagboom PE, Thompson JR, Spector TD, van der Harst P, Samani NJ. Identification of seven loci affecting mean telomere length and their association with disease. *Nat Genet* 2013, 45, 422-427.

15. Prescott J, Kraft P, Chasman DI, Savage SA, Mirabello L, Berndt SI, Weissfeld JL, Han J, Hayes RB, Chanock SJ, Hunter DJ, De Vivo I. Genome-wide association study of relative telomere length. *PLoS One* 2011, 6, e19635.

16. Buxton JL, Suderman M, Pappas JJ, Borghol N, McArdle W, Blakemore AI, Hertzman C, Power C, Szyf M, Pembrey M. Human leukocyte telomere length is associated with DNA methylation levels in multiple subtelomeric and imprinted loci. *Sci Rep* 2014, 4, 4954.

17. Gao X, Zhang Y, Mons U, Brenner H. Leukocyte telomere length and epigenetic-based mortality risk score: associations with all-cause mortality among older adults. *Epigenetics* 2018, 13, 846-857.

18. Dong Y, Huang Y, Gatin B, Raed A, Dong Y, Zhu H. Associations between Global DNA Methylation and Telomere Length in Healthy Adolescents. *Sci Rep* 2017, 7, 4210.

19. Lu AT, Seeboth A, Tsai PC, Sun D, Quach A, Reiner AP, Kooperberg C, Ferrucci L, Hou L, Baccarelli AA, Li Y, Harris SE, Corley J, Taylor A, Deary IJ, Stewart JD, Whitssel EA, Assimes TL, Chen W, Li S, Mangino M, Bell JT, Wilson JG, Aviv A, Marioni RE, Raj K, Horvath S. DNA methylation-based estimator of telomere length. *Aging (Albany NY)* 2019, 11, 5895-5923.

20. Kadayifci FZ, Zheng S, Pan YX. Molecular Mechanisms Underlying the Link between Diet and DNA Methylation. *Int J Mol Sci* 2018, 19, 4055.

21. Siegfried Z, Simon I. DNA methylation and gene expression. *Wiley Interdiscip Rev Syst Biol Med* 2010, 2, 362-371.

22. Wong JYY, De Vivo I, Lin X, Grashow R, Cavallari J, Christiani DC. The Association Between Global DNA Methylation and Telomere Length in a Longitudinal Study of Boilermakers. *Genet Epidemiol* 2014, 38, 254–264.

23. Cawthon RM. Telomere measurement by quantitative PCR. *Nucleic Acids Res.* 2002, 30, e47.

24. Scheinberg P, Cooper JN, Sloand EM, Wu CO, Calado RT, Young NS. Association of Telomere Length of Peripheral Blood Leukocytes With Hematopoietic Relapse, Malignant Transformation, and Survival in Severe Aplastic Anemia. *JAMA* 2010, 304, 1358–1364.

25. Udomsinprasert W, Kittikumthorn N, Mutirangura A, Chongsrisawat V, Poovorawan Y, Honsaweek S. Global methylation, oxidative stress, and relative telomere length in biliary atresia patients. *Sci Rep* 2016, 6, 26969.
26. Maeda T, Guan JZ, Koyanagi M, Higuchi Y, Makino N. Aging-Associated Alteration of Telomere Length and Subtelomeric Status in Female Patients With Parkinson’s Disease. *J Neurogenet* 2012, 26, 245-251.
27. Steinert S, Shay JW, Wright WE. Modification of Subtelomeric DNA. *Mol Cell Biol* 2004, 24, 4571–4580.
28. Chen WD, Wen MS, Shie SS, Lo YL, Wo HT, Wang CC, Hsieh IC, Lee TH, Wang CY. The circadian rhythm controls telomeres and telomerase activity. *Biochem Biophys Res Commun* 2014, 451, 408-414.
29. Cherfils-Vicini J, Gilson E. Inhibiting TRF1 upstream signaling pathways to target telomeres in cancer cells. *EMBO Mol Med* 2019, 11, e10845.
30. Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. *Nat Rev Mol Cell Biol* 2017, 18, 175–186.
31. Sulli G, Lam MTY, Panda S. Interplay between Circadian Clock and Cancer: New Frontiers for Cancer Treatment. *Trends Cancer* 2019, 5, 475-494.
32. Brandao CFC, Nonino CB, de Carvalho FG, Nicoletti CF, Noronha NY, San Martin R, de Freitas EC, Junqueira-Franco MVM, Marchini JS. The effects of short-term combined exercise training on telomere length in obese women: a prospective, interventional study. *Sports Med Open* 2020, 6, 5.
33. Werner CM, Hecksteden A, Morsch A, Zundler J, Wegmann M, Kratzsch J, Thier J, Hohl M, Bittenbring JT, Neumann F, Böhm M, Meyer T, Laufs U. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. *Eur Heart J* 2019, 40, 34-46.
34. Masi S, Salpea KD, Li K, Parkar M, Nibali L, Donos N, Patel K, Taddei S, Deanfield JE, D’Aiuto F, Humphries SE. Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis. *Free Radic Biol Med* 2011, 50, 730-735.
35. Wolkowitz OM, Mellon SH, Epel ES, Lin J, Dhabhar FS, Su Y, Reus VI, Rosser R, Burke HM, Kupferman E, Compagnone M, Nelson JC, Blackburn EH. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress–preliminary findings. *PLoS One* 2011, 6, e17837.
36. Yang ZY, Kao TW, Peng TC, Chen YY, Yang HF, Wu CJ, Chen WL. Examining the association between serum phosphate levels and leukocyte telomere length. *Sci Rep* 2020, 10, 5438.