PATTERNS OF PRESENTATION OF FUNGAL KERATITIS IN TERTIARY CARE HOSPITAL
Uday Sridhar Mulgund¹, Ravi Shankar M², Satish Kumar C.S³

¹Associate Professor, Department of Ophthalmology, Karnataka Institute of Medical Sciences, Hubli.
²Postgraduate Resident, Department of Ophthalmology, Karnataka Institute of Medical Sciences, Hubli.
³Postgraduate Resident, Department of Ophthalmology, Karnataka Institute of Medical Sciences, Hubli.

ABSTRACT

BACKGROUND
Fungal keratitis is one of the major cause of visual loss in developing countries. A contributing factor for the development of fungal infection is ocular trauma and contamination of corneal lesions by soil and vegetative material. Another factor being widespread use of broad-spectrum antibiotics, steroids and contact lens wear. According to the World Health Organization report, it is estimated that ocular trauma and corneal ulceration result in 1.5 to 2 million new patients of corneal blindness annually. In India, the incidence of corneal ulceration is reported to be 1130 per million population. Corneal infection of fungal aetiology is common in India (19-45%). Corneal infection of fungal aetiology is very common and may represent 30 to 40% of all cases of culture-positive infectious keratitis in South India. More than 70 species of filamentous fungi have been identified as the aetiological agents of fungal keratitis. Of these, Aspergillus and Fusarium are responsible for 70% of cases.

The aim of the study is to study the-
1. Clinical presentation, contributing and precipitating factors for fungal keratitis and prognosis with regard to the available mode of therapy.
2. Investigations regarding the type of fungus and the statistical significance regarding the common type of fungi that involve the cornea.

MATERIALS AND METHODS
All cases of keratitis that presented were investigated with KOH wet mount and fungal culture. Histopathological diagnosis was made with the report of fungal culture. All cases of fungal keratitis were treated with antifungal and clinically studied in the Department of Ophthalmology, KIMS, Hubli, from 1st January, 2016 - December 2016.

RESULTS
In the clinical study of fungal keratitis, out of 62 cases, suppurative keratitis 30(48.38%) cases were fungal keratitis on clinical suspicion and fungal staining.

CONCLUSION
India being an agricultural country, the incidence of fungal keratitis is significantly high. Fungal keratitis has tendency to progress slowly with minimal symptoms, hence the patients are provoked to apply local native medicines and approach the doctor very late. Lack of laboratory identification especially in peripheral hospital adds to the problem. With timely specific treatment, one can combat the disease efficiently and thus prevent the eye going in for blindness.

KEYWORDS
Fungal Keratitis, Keratomycosis, KOH, Antifungal Drugs.

HOW TO CITE THIS ARTICLE: Mulgund US, Shankar MR, Kumar CSS. Patterns of presentation of fungal keratitis in tertiary care hospital. J. Evid. Based Med. Healthc. 2017; 4(83), 4906-4911. DOI: 10.18410/jebmh/2017/978

BACKGROUND
The incidence of suppurative corneal ulcers caused by fungi has increased in the recent years due to injudicious use of antibiotics and steroids. Fungal keratitis is frequently seen in tropical countries, where the incidence ranges between 14%-40% of all ocular mycoses or of all cases of microbial keratitis.¹ The incidence in India is 44% to 47%.² Fungal corneal ulcer is common in India due to the tropical climate and a large agrarian population that is at risk.³ It is more common in rural areas and in immune compromised individuals. Fungal keratitis with a worldwide reported incidence varying from 17% to 36% in various studies.² Fungal keratitis are typically seen after injury with vegetable matter such as thorn or woodenstick and are characterised by a relatively indolent course. Fungal keratitis can be caused by as many as 60 species of fungi.⁴ The time interval from trauma to clinical features varies depending on the organism, the size of inoculum and host resistance.

For laboratory diagnosis of fungal keratitis, demonstration of fungal pathogens on direct microscopy (KOH) and their isolation by culture is essential. Fungal...
keratitis should be suspected in every patient with a corneal lesion and should be ruled out promptly to save sight and before commencing steroids and antibiotics. Use of empiric antifungal therapy is discouraged and a confirmatory diagnosis is recommended before institution of therapy. Such a corneal infection poses a challenge to the ophthalmologist because of its tendency to mimic other types of stromal inflammation.

Aim of the present study is to determine the aetiological agents, predisposing factors and important diagnostic tests in fungal keratitis.

MATERIALS AND METHODS
The clinical study of fungal keratitis was conducted at the Department of Ophthalmology, KIMS, Hubli, from 1st January, 2016 - December 2016.

Inclusion Criteria
All cases with clinical features suggestive of fungal keratitis such as long duration, elevated, plaque like serrated/feathery margins of the ulcer, raised slough, drysurfase (texture), satellite lesions, Weiss ring, endothelial plaque, coloration of the ulcer other than yellow (suggestive of diatomaceous fungi) and thick hypopyon were noted and categorised as patients with fungal keratitis.

Exclusion Criteria
Non-suppurative keratitis including viral keratitis, neurotrophic ulcers, degenerative causes were excluded as were Mooren’s ulcer, interstitial keratitis, sterile neurotrophic ulcers and any ulcer associated with systemic autoimmune conditions.

After selection of patients, standardised proforma was filled for each patient documenting, age, sex, domicile, education, economic status, occupation and predisposing factors including history of trauma, diabetes mellitus and operation (if any). Detailed clinical history was taken and any previous usage of medications recorded.

Clinical Procedure
Visual acuity was recorded in standard manner. All patients were subjected to a detailed slit-lamp biomicroscopic examination. Size of ulcer was roughly recorded with fluorescent stain and Rose Bengal stain under local anaesthesia.

Depth of the lesion, stromal infiltrate, ulcer margin, thinning, floor, satellite lesions, vascularisation, pigmentation, any impacted foreign body and hypopyon were noted. Associated ocular conditions like blepharitis, conjunctivitis, dacryocystitis, spheroidal degenerations, bullous keratopathy, dry eyes, preexisting viral keratitis, lid abnormalities, Bell’s palsy, lagophthalmos, trichiasis, suture infiltrates and adherent leucoma were noted. Usage of contact lenses, topical corticosteroids or any other topical or systemic medications were noted material was collected from conjunctiva, sac area and corneal ulcer scrapings. Materials used by patients (eye drop bottles, lens solutions) and corneal button after therapeutic keratoplasty were collected. The collected material was submitted for Gram staining, Giemsa staining and KOH wet mount preparation. Fungal elements are observed under microscope. Rest of the material was sent for culture. Commonly used medias were blood agar plate (bacteria 35-37 degrees and fungi room temperature), chocolate agar plate (aerobes and facultative anaerobes, 35 degrees), SDA without cycloheximide, SDA with cycloheximide (fungus), thioglycollate broth (anaerobes 35-37 degrees). Remaining scrapings were utilised for histopathology.

By convention to indicate the site of inoculums on a solid medium, harvested material is inoculated in the form of a ‘C’ streak on each medium from separate scrapings. Almost, all fungal isolates grow and become evident in 48-72 hrs. Cultures were examined daily up to one week before declaring a culture negative for fungi.

Anyone of the following criteria if fulfilled suggest a significant growth-
1. If smear results are consistent with culture.
2. The organism is grown on more than one media.
3. Growth of the same fungus in decreasing gradation at multiple sizes of inoculation on the solid medium.

Interpretation of Fungal Results
Smears- 10% KOH wet mount is useful in detecting for hyphal elements, budding cells and fungal morphologies.

Gram stain is useful in identifying bacteria and fungi. Fungal hyphae stain variable as their cell walls do not stain well and often be seen as negative outlines.

Culture- Smear examination gives preliminary evidence, culture isolation gives diagnostic information. Culture report ideally should include the growth appeared and its diagnostic significance. More than 10 colonies on only 1 solid medium or growth in only 1 liquid medium is usually equivocal. All isolates were considered in the light of clinical relevance and lab significance.

Lab criteria for definite infection include growth on 2 or more media, growth on at least one medium of the same organism identified in smears, confluent growth at the inoculation site in at least one solid medium or repeat isolation from same patient. These criteria are more applicable to bacteria and fungi.

Treatment- The standard treatment protocol was followed based on KOH staining categorising causative fungal element as filamentous and non-filamentous. Epithelium was debrided every 24-48 hrs.to increase drug penetration and to reduce fungal load along with debris. One drop of natamycin suspension 5% was used every hour during daytime and every 2 hours at night time used for filamentous fungi. Dosing was tapered according to the clinical response. It was also be used in mycotic keratitis with yeast infection after regular follow up nystatin ointment was supplemented in nonresponsive cases. Oral fluconazole 150mg OD added when ulcer was more than...
6mm in diameter deeper than the anterior one half of the stroma or if anterior chamber exudates were present.

Antifungal treatment was supplemented with broad-spectrum antibiotics, cycloplegic, anti-inflammatory agents, vitamin C and lubricating eye drops. For mycotic keratitis with secondary glaucoma, antiglaucoma medications were prescribed. For corneal ulcer with small perforation, bandage contact lens, cyanoacrylate glue and conjunctival hooing was done. For larger perforations, therapeutic keratoplasty was done.

Follow Up- Patients are followed weekly for one month. Then, every 15 days up to 6 months. Thorough examination was done at each visit. Treatment was decided upon further based on clinical response.

Main outcome measures- Symptomatic improvement, comfort of patient, remission of signs, reduction in size of ulcer and improvement in visual acuity.

OBSERVATIONS AND RESULTS

The clinical study of fungal keratitis conducted in the Department of Ophthalmology at KIMS, Hubli, from 1st January 2016 -December 2016. During this period, the following observation were made.

Thus, the total number of cases included in the present study was 30 (48.38%) patients, male 19 patients and female 11 patients.

Table 1. Incidence of Keratomycosis

Total Number of Patients with Suppurative Keratitis	Clinically-Suspected Fungal Keratitis	Percentage
62	30	48.38%

Table 2. Age Distribution

Age Group	Patients	Percentage
Below 12 yrs.	1	3.33%
13-20 yrs.	2	6.66%
21-40 yrs.	6	20%
41-60 yrs.	18	60%
Above 60 yrs.	3	10%

Table 3. Incidence Based on Occupation

Occupation	Patients	Percentage
Agriculturists	18	60%
Labourers	4	13.33%
Gardeners	3	10%
Housewife	2	6.66%
Student	2	6.66%
Businessmen	1	3.33%

Table 4. Modes of Trauma

Modes	Fungal Corneal Ulcer Number	Percentage
Vegetative matter	15	50%
Stones	4	13.33%
Finger nail	9	30%
Nill	2	6.77%
Total	30	100%

Table 5. Associated Factors

Associated Factors	Fungal Corneal Ulcer Number	Percentage
Diabetes mellitus	3	10%
Chronic dacrocystitis	1	3.33%
Alcoholism	6	20%
Malnutrition	18	60%
Immunocompromised state	2	6.67%

Table 6. Site of the Ulcer

Site	Number of Cases	Percentage
Central	21	70%
Peripheral	1	3.33%
Diffuse	8	26.67%
Total	30	100%

Table 7. Size of Ulcer

Size of Ulcer	Number of Cases	Percentage
<2 mm	2	6.67%
2 to 5 mm	10	33.33%
>5 mm	18	60%
Total	30	100%

Table 8. Depth of Ulcer

Vision at Presentation	No. of Cases	%
6/18-6/60	4	13.33%
CF 1-5 mts.	10	33.33%
HM+ve	8	27.67%
PL+ve	7	23.33%
PL-ve	1	3.33%
Total	30	100%

Table 9. Sensitivity of KOH Wet Mount

Organisms	Culture Positive	Culture Negative
Fusarium	8	61.53%
Aspergillus	4	30.77%
Candida	1	7.70%
Total	13	100%

Table 10. Different Species Identified in Culture Positives

Associated Bacteria	Fungal Corneal Ulcer Number	Percentage
Staphylococci aureus	4	36.36%
Streptococci	5	45.45%
Enterobacter	1	3.33%
Pseudomonas	1	3.33%
Total	11	100%

Table 11. Associated Bacterial Infections

Table 12. Associated Fungal Infections
In the present study of fungal keratitis, out of 30 cases, 4 (13.33%) cases had fairly good vision, i.e. 6/24-6/36, 14 (46.67%) had 6/36 to 6/60, 8 (26.67%) patients had CF 1-5 mts and 2 (6.67%) cases had only HM positive. One case (3.33%) was left with only perception of light and 1 (3.33%) cases were with no perception of light.
mellitus, 2 cases had immune compromised status and 1 case of chronic dacryocystitis.

Reports in earlier studies, done by Gopinathan,10 Agarwal PK and Mohanthy PK have shown similar associated factors with fungal keratitis.

Signs of Fungal Keratitis
The incidence of central fungal keratitis was accounted to 70%. Peripheral fungal keratitis accounted to 26.67%. Diffuse fungal keratitis was seen in 3.33% of cases. Diffuse corneal ulcers had poor prognosis. One case had gone for perforation.

In the present study of fungal keratitis, size of the fungal keratitis varied from 1mm to the total corneal involvement. In 6.67% of cases, the corneal ulcer was smaller than 2mm; in 33.33% of cases, the extent of ulcer varied from 2 to 5mm; in remaining 60% of cases, the corneal involvement was more than 5mm, it varied from more than 5mm to total corneal involvement. The prognosis of ulcers, which have size of more than 5mm was not good due to corneal scarring. In the present study of fungal keratitis, 12 (40%) of cases had superficial stromal involvement and 18 (60%) of cases had deep stromal involvement. 55.33% of cases had hypopyon in the present study. 83.33% of cases had feathery margins, 60% of cases had dry surface, 40% cases had elevated surface, 73.33% cases had satellite lesions. Whitish round lesion with surrounding infiltration was seen in 3.33% cases. In the study of fungal keratitis, 4 (13.33%) cases had visual acuity of 6/18 to 6/60, 10 (33.33%) cases had vision of counting fingers 1-5mts and 8 (26.67%) with perception of hand movements. 7 (23.33%) patients had perception of light and one (3.33%) with no perception. Sensitivity of KOH wet mount preparation in our study is 92.30%. In studies by Jayahar BM and others, Tamil Nadu, KOH sensitivity 97.23%. In studies by GopinanathanU,10 and Panda A.,11 sensitivity of KOH is 91% and 90.20%, respectively.

Sensitivity of KOH wet mount preparation in our study is almost similar to other studies. So, KOH wet mount preparation is liable criterion for the diagnosis of fungal keratitis.

Mode of Therapy - In the present study of fungal keratitis, all 30 patients treated medical treatment, i.e. natamycin 5% sups. hourly with cycloplegics and broad-spectrum antibiotics for 4-6 weeks or till there is complete resolution of clinical picture, vitamin C and lubricating eye drops were also supplemented. 18 (60%) cases of deep stromal fungal corneal ulcer with or without hypopyon were treated with natamycin 5% suspension hourly along with systemic Tab. Fluconazole 200-600mg/day q.i.d. for 2-3 weeks. Timolol eye drops BD and/or Tab. Diamox 250 mg BD was prescribed along with antifungals in patients with secondary glaucoma.

In the present study, treatment of one case out of 30 cases was modified based on culture results and nonresponsiveness to topical natamycin and oral fluconazole. Nystatin eye ointment was used 5 times daily along with cycloplegics and broad-spectrum antibiotic eye drops.

In the present study of fungal keratitis for all 30 cases, treatment started with debridement of ulcer. 2 (6.66%) cases were prescribed bandage contact lens. Therapeutic keratoplasty was done in 1 (3.33%) case and 1 (3.33%) evisceration was done for a patient presented late with fungal keratitis with panophthalmitis without perception of light.

Overall, 70.68% were treated with medical line of treatment and 29.32% with surgical line of treatment.

Response to the Treatment
Corneal ulcer with perforation was seen in 1 (3.33%) patients. 4 (13.33%) patients developed secondary glaucoma. Panophthalmitis was seen in one (3.33%) patient.

In the present study of fungal keratitis, 4 (13.33%) cases had fairly good vision, i.e. 6/24-6/36, 14 (46.67%) cases had 6/36 to 6/60, 8 (26.67%) patients had CF 1-5mts. and 2 (6.67%) cases had only HM positive. Visual prognosis at the end of follow up was poor as corneal scaring was the predominant outcome in most of the cases. One case (3.33%) was left with only perception of light. It was a case with deep stromal fungal corneal ulcer with perforation presented after one month of history of trauma treated with conjunctival hooing along with medical line of treatment, but did not respond and 1 (3.33%) cases with no perception, in that one had undergone therapeutic keratoplasty, which was failed. Another case presented with panophthalmitis, which evisceration was done to avoid dissemination of infection.

CONCLUSION
India being an agricultural country, the incidence of fungal keratitis is significantly high. Fungal keratitis has tendency to progress slowly with minimal symptoms, hence the patients are provoked to apply local native medicines and approach the doctor very late. Lack of laboratory identification especially in peripheral hospital adds to the problem.

This study signifies the importance of keeping in mind fungus as one of the inflict agent in causation of corneal ulcer, especially when predisposing factors like corneal trauma with organic matter, chronic dacryocystitis, diabetes mellitus, etc. are present and also by looking at the clinical features and taking help of rapid diagnostic tests like Gram stain, KOH stain, one can predict the diagnosis and treat early. With timely specific treatment, one can combat the disease efficiently and thus prevent the complications and prevent eye going in for blindness.

REFERENCES
[1] Bharathi MJ, Ramakrishnan R, Vasu S, et al. Epidemiological characteristics and laboratory diagnosis of fungal keratitis. A three-year study. Indian J Ophthalmol2003;51(4):315-321.
[2] Shokohi T, Nowroozpoor-Dailami K, Moaddel-Haghighi T. Fungal keratitis in patients with corneal ulcer in Sari, northern Iran. Arch Iran Med 2006;9(3):222-227.

[3] Nath R, Baruah S, Saikia L, et al. Mycotic corneal ulcers in upper Assam. Indian J Ophthalmol 2011;59(5):367-371.

[4] Sudan R, Sharma YR. Keratomycosis: clinical diagnosis, medical and surgical treatment. JK Science 2003;5(1):1-10.

[5] Sharma S. Diagnosis of fungal keratitis: current options. Expert Opin Med Diagn 2012;6(5):449-455.

[6] Thomas PA. Fungal infections of the cornea. Eye (Lond) 2003;17(8):852-862.

[7] Leck AK, Thomas PA, Hagan M, et al. Aetiology of suppurative corneal ulcers in Ghana and south India, and epidemiology of fungal keratitis. Br J Ophthalmology 2002;86(11):1211-1215.

[8] Sharma S, Gopalkrishnan S, Aasuri MK, et al. Trends in contact lens-associated microbial keratitis in southern India. Ophthalmology 2003;110(1):138-143.

[9] Dutta LC, Dutta D, Mohanthy P, et al. Study of fungus keratitis. IJO 1981;29(4):407-409.

[10] Gopinathan U, Garg P, Fernandes M, et al. The epidemiological features and laboratory results of fungal keratitis: a 10-year review at a referral eye center in south India. Cornea 2002;21(6):555-559.

[11] Panda A, Sharma N, Das G, et al. Mycotic keratitis in children, epidemiological & microbiological evaluation. Cornea 1997;16(3):295-299.