Ischemic Damage Represents the Main Risk Factor for Biliary Stricture After Liver Transplantation: A Follow-Up Study in a Danish Population

BARBARA LATTANZI1, PETER OTT2, ALLAN RASMUSSEN3, KAREN RABEN KUDSK2, MANUELA MERLI1 and GERDA ELISABETH VILLADSEN2

1Department of Clinical Medicine, Umberto 1 Hospital, Rome, Italy; 2Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; 3Department of Surgical Gastroenterology and Liver Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Abstract. Background: Biliary complications (BC) are frequently observed following liver transplantation. The aim of the present retrospective study, conducted at an outpatients' tertiary care hospital, was to determine the incidence of biliary complications and risk factors associated with their development in liver transplantation (LT) patients. Materials and Methods: The medical records were reviewed for all patients who underwent liver transplantation at the Rigshospitalet, Copenhagen, Denmark, from 2000 to 2011 and were referred to the Aarhus University Hospital for follow-up. Patients who died within 3 months of surgery or had incomplete clinical information were excluded. All data for demographic characteristics and possible risk factors for development of biliary stricture were collected. Fifty-one patients were included. Results: The median age at transplantation was 40 (range=7-64) years, and 53% of patients were males. Biliary complications occurred in 18 patients (35%), the majority of whom developed strictures (12 patients, 24%). Univariate and multivariate analyses revealed that cytomegalovirus infection (p=0.008), hepatic artery obstruction (p=0.03) and hepatic artery graft abnormalities (p=0.03) were independent risk factors for the development of biliary strictures. Conclusion: One-third of patients presented biliary complications after liver transplantation, among which biliary strictures were the most common. Cytomegalovirus infection, hepatic artery stenosis and anatomical abnormality of the graft’s hepatic artery are independent risk factors for the development of biliary stricture.

Biliary complications (BCs) remain a major problem after liver transplantation (1, 2) and are associated with a significant burden of disease. An incidence of BC of 10-25% has been reported following liver transplantation (LT) from beating-heart donors, and even higher rates in transplantation from non-beating heart donors (3-5). Biliary stricture (BS) represents the most frequently observed post-LT biliary complication. Typically, BSs occur within the first year of LT (5-7), and the reported incidence of this type of complication reportedly ranges from 10-25% following deceased donor LT to 28-32% following living donor LT (4, 6-12). BSs are conventionally classified as anastomotic (AS) and non-anastomotic (NAS). While the development of AS is generally related to the surgical technique employed (13), the etiology of NAS is less clear. Ischemic damage is often regarded as the main cause of BS (6, 14-17). Cytomegalovirus (CMV) infection has also been reported to be associated with BS development, possibly mediated by the immunological activation induced by this infection (18).

The incidence of BCs after LT in Denmark is unknown. No previous study has identified the risk factors associated with the development of BCs in a Scandinavian population. Therefore, a study was performed on a group of patients who underwent LT in Denmark to identify incidence of BCs, risk factors associated with BS development and the impact of BCs and BS on patient survival.
Materials and Methods

The medical records were reviewed of all patients that underwent LT at Rigshospitalet in Copenhagen and were referred to Aarhus University Hospital for follow-up from 2000 to 2011. This cohort of patients was followed from the date of transplantation until biliary complication diagnosis, death, or study end (August 15, 2012). Patients who died within 3 months of LT or had incomplete clinical information were excluded. Fifty-one patients were included in this study. For transplant recipients, age, gender, body mass index, liver disease etiology, hepatitis virus B and C infection, and presence of hepatocellular carcinoma, diabetes mellitus and arterial hypertension before and after LT were analyzed; for transplant donors, age, gender and mortality due to cerebrovascular accidents were considered. Duration of operation, duration of cold and warm ischemia, type of biliary anastomosis (duct-to-duct anastomosis or hepaticojejunostomy) and presence of anatomical abnormalities of the grafted hepatic artery (HA) were also recorded. Episodes of acute rejection, CMV infection and evidence of HA obstruction (stenosis or thrombosis) were also recorded. After discharge from Rigshospitalet, all patients were followed-up at the outpatient clinic of Aarhus University Hospital.

For patients in whom cholestasis was suspected, the diagnostic approach included an abdominal ultrasound to evaluate the biliary tree and hepatic vasculature followed by a magnetic resonance cholangiopancreatography and angio-computed tomographic scan when required. In the presence of distal BS, an endoscopic retrograde cholangiopancreatography was performed with sphincterotomy and stent placement when indicated. In cases with proximal BS or endoscopic treatment failure, a percutaneous transhepatic cholangiography and stent placement was considered. Stents were changed every 3 months and permanently removed after 1 year. Treatment was defined as successful when cholangiography indicated BS resolution, cholestasis was ameliorated, and symptoms were resolved. BS was diagnosed when stenosis of the bile duct was observed on imaging in the presence of biochemical cholestasis with or without clinical symptoms. BS was diagnosed in the presence of a stenosis at the anastomotic level. Strictures, dilatations or irregularities of the intra- and extra-hepatic bile ducts, excluding the site of anastomosis, were classified as NAS.

Statistical analysis. Categorical variables are reported as the number and percentage of cases, and Pearson Chi-square and Fisher’s exact tests were used for their comparisons. Continuous variables are reported as medians. Student t-test was used for comparing continuous variables with Gaussian distributions, while Mann-Whitney U-tests were adopted for variables with skewed distributions. Differences with p-values of less than 0.05 indicated statistical significance. Initially, univariate logistic regression analyses were performed to identify risk factors for the development of BS. Subsequent multivariate logistic regression analysis was performed including only variables with values of p<0.1 in the univariate analyses. Risk prediction estimates are reported as p-values, odds ratios (OR), and 95% confidence intervals (95% CI). Patient and graft survival rates were analyzed using the Kaplan–Meier method and compared using the log-rank test. Statistical analyses were performed and plots were generated using NCSS 2007 (NCSS, Chicago, IL, USA).

Results

The medical records were reviewed of 51 liver recipients with a median follow-up of 53 months. The clinical and demographic characteristics of patients are reported in Table I. For surgical team policy, none of the patients had a T-tube placed after transplantation. Biliary complications occurred in 18 patients (35.3%). The most common complications were strictures (15 patients, 29%). Of the patients with BS, six (40%) developed AS, five (33%) NAS and four (27%) both stricture types. The median time from LT to BS diagnosis was 7.8 months (range=0.1-84.2 months). In seven

Variable	Value
Median recipient age (range), years	40 (7-64)
Male gender, n (%)	27 (52.9%)
Liver disease etiology, n (%)	
Primary sclerosing cholangitis (PSC)	11 (21.6%)
Fulminant hepatitis	7 (13.7%)
Autoimmune hepatitis	5 (9.8%)
PBC	5 (9.8%)
Viral	3 (5.9%)
Alcoholical	3 (5.9%)
Other	10 (19.6%)
Acute rejection, n (%)	15 (30%)
CMV infection, n (%)	10 (20%)
Pre-LT AX, n (%)	7 (14%)
Post-LT AX, n (%)	13 (25.5%)
Pre-LT DM, n (%)	5 (9.8%)
Post-LT DM, n (%)	10 (19.6%)
Duct-to-duct anastomosis, n (%)	36 (70.6%)
Median follow-up (range), months	52.8 (3.3-147.6)

PSC: Primary sclerosing cholangitis; AX: arterial hypertension; CMV, cytomegalovirus; DM, diabetes mellitus; LT, liver transplantation.

Biliary complication	Frequency, n (%)
All biliary complications	18 (35.3%)
Stricture	15 (29.4%)
AS	6 (11.7%)
NAS	5 (9.8%)
AS and NAS	4 (7.8%)
Biloma	1 (1.9%)
Leakage	3 (5.8%)

AS: Anastomotic stricture; NAS: non-anastomotic stricture.
cases (47%), BS diagnosis was made within 6 months of LT, and in eight cases (53%) within 1 year. The types and presentations of biliary complications are reported in Table II. The Kaplan–Meier plot (log-rank test) showed no difference in patient or graft survival between patients with and without BSs (p-values of 0.9 and 0.9, respectively).

Risk factors for the development of BS. In the univariate analyses, CMV infection, HA obstruction (stenosis or thrombosis) and anatomical abnormalities of the grafted HA were associated with the development of BS. Duration of cold and warm ischemia, duration of operation, episodes of rejection and donor age were not significantly associated with the development of BS (Table III). In the multivariate analysis, CMV infection (OR=6.5; p=0.028), anatomical abnormalities of the grafted HA (OR=8.4; p=0.042) and HA obstruction (OR=7.4; p=0.048) appeared to be independent risk factors for the development of BS (Table IV).

Discussion

Despite continuous progress in the field of LT (19), biliary complications still affect a considerable number of LT patients (3, 4, 20). In our study, we confirmed the presence of a high BC incidence in a Danish population. Overall, 35% of LT

Table III. Univariate analysis of risk factors for the development of biliary stricture (BS).

Variable	With BS (n=15)	Without BS (n=36)	p-Value
Recipient-related			
Recipient age (years)	40 (28-52)	43 (37-50)	0.700
Male gender, n (%)	6 (40%)	21 (51.3%)	0.200
Liver disease etiology, n (%)			
PBC	2 (13.3%)	3 (8.3%)	0.500
PSC	4 (26.7%)	7 (19.4%)	0.500
Alcohol	0	3 (8.3%)	0.300
Fulminant hepatitis	2 (13.3%)	5 (13.9%)	0.900
Autoimmune hepatitis	2 (13.3%)	3 (8.3%)	0.400
Amyloidosis	2 (13.3%)	5 (13.9%)	0.900
Viral	1 (6.8%)	2 (5.6%)	0.800
Other	2 (13.3%)	8 (22.3%)	0.300
Duct-to-duct anastomosis, n (%)	11 (73.3%)	25 (69.4%)	0.200
Episode of acute rejection, n (%)	6 (40%)	11 (30.5%)	0.600
Cytomegalovirus infection, n (%)	6 (40%)	3 (8.3%)	0.008
HAS, n (%)	6 (40%)	4 (11.1%)	0.030
Transplant performed after 2006	9 (60%)	21 (58.3%)	0.900
Duration of hospitalization (days)	30 (21-60)	21 (20-31)	0.100
Donor-related			
Median age (range), years	48.5 (38-55)	47 (36-53)	0.300
Median BMI (range), kg/m2	23.3 (21.7-26.2)	23.8 (22-26)	0.900
Mortality due to CVA, n (%)	11 (73%)	19 (53%)	0.250
Surgical-related			
Abnormalities of graft HA n (%)	4 (26.6%)	2 (5.5%)	0.030
Use of University of Wisconsin solution, n (%)	5 (33%)	11 (31%)	0.600
Median duration of biliary anastomosis packing (range), min	20 (15-35)	20 (15-26)	0.800
Hepaticojejunostomy as anastomosis	4 (27%)	11 (31%)	0.800
Median duration of surgery (range), h	6.50 (5.30-7.12)	6.40 (6.13-7.20)	0.500
Median duration of cold ischemia (range), h	10.50 (8.20-13)	10.46 (8-13)	0.800
Median duration of warm ischemia (range), min	55 (43-59)	52 (40-55)	0.460
Median duration of total ischemia (range), h	11.6 (8.88-14.3)	11.5 (9.38-13.5)	0.900

ALAT: Alanine aminotransferase; BAP: basic phosphatase; Bil Tot: total bilirubin; GGT: gamma-glutamyl transferase; HA(S): hepatic artery (stenosis); PBC: primary biliary cirrhosis; PSC: primary sclerosing cholangitis.

Table IV. Multivariate analysis (logistic regression) of significant risk factors for biliary stricture.

Variable	OR	95% CI	p-Value
HA obstruction	7.4	1.16-47.35	0.048
Graft HA abnormality	8.4	1.02-72.03	0.042
CMV infection	6.5	1.01-44.9	0.028

HA: Hepatic artery; CMV cytomegalovirus; CI: confidence interval; OR: odds ratio.
In conclusion, based on the results of our study, BSs still represent an important complication in LT patients, and the main mechanism involved in their development appears to be ischemic damage. Immunological damage mediated by CMV infection may also be involved in the onset of this complication.

References

1. Calne RY: A new technique for biliary drainage in orthotopic liver transplantation utilizing the gall bladder as a pedicle graft conduit between the donor and recipient common bile ducts. Ann Surg 184: 605-609, 1976.

2. Nemes B, Gámán G and Doros A: Biliary complications after liver transplantation. Expert Rev Gastroenterol Hepatol 9: 447-466, 2015.

3. Wojcicki M, Milkiewicz P and Silva M: Biliary tract complications after liver transplantation: a review. Dig Surg 25: 245-257, 2008.

4. Kobayashi N, Kubota K, Shimamura T, Watanabe S, Kato S, Suzuki K, Uchiyama T, Maeda S, Takeda K, Nakajima A and Endo I: Complications of the treatment of endoscopic biliary strictures developing after liver transplantation. J Hepatobiliary Pancreat Sci 18: 202-210, 2011.

5. Ayoub WS, Esquivel CO and Martin P: Biliary complications following liver transplantation. Dig Dis Sci 55: 1540-1546, 2010.

6. Pirene J, Monhalil D, Aerts R, Deschamps B, Liu Q, Cassiman D, Laleman W, Verslype C, Magdy M, Van Steenbergen W and Nevens F: Biliary strictures after liver transplantation: Risk factors and prevention by donor treatment with epoprostenol. Transplant Proc 41: 3399-3402, 2009.

7. Chang JH, Lee JS, Choi JY, Yoon SK, Kim DG, You YK, Chun HJ, Lee DK, Choi MG and Chung IS: Biliary stricture after adult right-lobe living-donor liver transplantation with duct-to-duct anastomosis: long-term outcome and its related factors after endoscopic treatment. Gut Liver 4: 226-233, 2010.

8. Sawyer RG and Punch JD: Incidence and management of biliary complications after 291 liver transplants following the introduction of transcystic stenting. Transplantation 66: 1201-1207, 1998.
37 Ludwig J, Wiesner RH, Batts KP, Perkins JD and Krom RA: The acute vanishing bile duct syndrome (acute irreversible rejection) after orthotopic liver transplantation. Hepatology 7: 476-483, 1987.
38 O’Grady JG, Alexander GJ, Sutherland S, Donaldson PT, Harvey F, Portmann B, Calne RY and Williams R: Cytomegalovirus infection and donor/recipient HLA antigens: Interdependent co-factors in pathogenesis of vanishing bile-duct syndrome after liver transplantation. Lancet 2: 302-5, 1988.
39 Noack KB, Wiesner RH, Batts K, van Hoek B and Ludwig J: Severe ductopenic rejection with features of vanishing bile duct syndrome: clinical, biochemical, and histologic evidence for spontaneous resolution. Transplant Proc 23: 1448-1451, 1991.
40 Razonable RR and Paya CV: Infections and allograft rejection-intertwined complications of organ transplantation. Swiss Med Wkly 135: 571-573, 2005.
41 Canelo R, Hakim NS and Ringe B: Experience with hystidine tryptophan ketoglutarate versus University Wisconsin preservation solutions in transplantation. Int Surg 88: 145-151, 2003.
42 Cavallari A, Cillo U, Nardo B, Filipponi F, Grineri E, Montali R, Vistoli F, D’Amico F, Faenza A, Mosca F, Vitale A and D’Amico D: A multicenter pilot prospective study comparing Celsior and University of Wisconsin preserving solutions for use in liver transplantation. Liver Transpl 9: 814-821, 2003.
43 Khuroo MS, Al Ashgar H, Khuroo NS, Khan MQ, Khalaf HA, Al-Sebayel M and El Din Hassan MG: Biliary disease after liver transplantation: the experience of the King Faisal Specialist Hospital and Research Center, Riyadh. J Gastroenterol Hepatol 20: 217-228, 2005.
44 Dorobantu B, Brasoveanu V, Matei E, Dima S, Giacomoni A, Slim A, Lauterio A, Forti D, Popescu I and De Carli L: Biliary complications after liver transplantation–523 consecutive cases in two centers. Hepatogastroenterology 57: 932-938, 2010.
45 Sundaram V, Jones DT, Shah NH, de Vera ME, Fontes P, Marsh JW, Humar A and Ahmad J: Posttransplant biliary complications in the pre-and post-model for end-stage liver disease era. Liver Transpl 17: 428-435, 2011.
46 Shin M and Joh JW: Advances in endoscopic management of biliary complications after living donor liver transplantation: Comprehensive review of the literature. World J Gastroenterol 22: 6173-6191, 2016.

Received July 7, 2018
Revised August 3, 2018
Accepted August 6, 2018