Fat chance for POAF? Pericardial adipose tissue and the arrhythmogenic substrate for postoperative atrial fibrillation

Atrial fibrillation (AF) is the most common arrhythmia affecting more than 43 million people globally [1]. In addition, post-operative AF (POAF) is a common complication of cardiac and non-cardiac surgery, associated with prolonged hospitalization and increased risk of future adverse events, including AF recurrence [2]. Despite the substantial progress in the understanding of the mechanisms underlying different forms of AF [3], currently available therapies have limited efficacy and there are many obstacles in the translation of basic science findings to the clinical management of AF [4,5]. Thus, there is a clear unmet need for novel anti-AF therapeutics.

Pericardial adipose tissue is increasingly recognized as a potential contributor to AF pathogenesis [6]. It constitutes a specialized depot of visceral fat comprising paracardial adipose tissue, which includes the total amount of fat on the external surface of the parietal pericardium, and epicardial adipose tissue (EAT), which is located between the myocardium and visceral pericardium. Accumulating epidemiological evidence [7] suggests a significant correlation between the size of pericardial adipose tissue, mainly EAT, and the development of POAF (Table 1). Pericardial fat volume, assessed by computed tomography (CT), strongly predicts the risk of POAF independent of other clinical factors [8]. Similarly, CT-derived left atrial (LA) EAT volume predicts the occurrence of POAF [9], whereas total-EAT was not an independent predictor of POAF risk in another study using similar cardiac fat imaging techniques [10]. Kogo et al. [11] demonstrated that CT scan–derived LA/total-EAT ratio may also predict the development of POAF. In two other studies [12,13], employing transthoracic echocardiography (TTE) to assess total-EAT, a cut-off for total-EAT of 7.20 mm was found to predict POAF. Together, these studies clearly show that both imaging approaches (TTE and CT) can be used to demonstrate the relationship between cardiac fat and POAF, although modality-specific cut-offs values and standardized imaging criteria for cardiac fat assessment are clearly warranted.

The exact underlying heart disease predisposing to POAF could also influence the predictive value of EAT. In one study [12], in which a substratification of patients with and without valvular heart disease (VHD) was performed, showed that the incidence of POAF is much higher in patients with VHD (41%) compared to those without VHD (30%). Interestingly, while total-EAT was independently associated with POAF in the control group without VHD, this association was absent in the VHD group. These data suggest that proper clinical matching of patient groups is essential to unmask the potential link between EAT size and POAF risk.

In the present issue of the journal the potential relationship between EAT size and POAF risk was addressed in 83 patients undergoing cardiac surgery [14], of which more than 50% developed POAF. Advanced age and LA volume index were independent predictors of POAF, consistent with previous findings [2], whereas the amount of LA-EAT was not significantly associated with POAF occurrence. The authors rightfully stressed that the lack of significant association between EAT size and POAF risk in their study does not indicate that the content of EAT of patients with and without POAF did not differ. EAT from POAF patients might still contain adipocytes with increased inflammatory signaling, altered metabolism, along with a stronger fibro-fatty infiltration of the atrial myocardium. Indeed, the activity of the atrial NAGHT, LRR, and PYD Domains-containing Protein 3 (NLRP3) inflammasome is higher in patients prone to POAF [15] and increases with body mass elevation in patients and in obese mice as compared to respective controls [16]. Although the upstream mechanisms of NLRP3 inflammasome triggering in obesity are unknown, saturated fatty acids such as palmitate, which is highly abundant in EAT [17], could serve as upstream triggers. Since the NLRP3 inflammasome has also been shown to be regulated by adipokines [18], mechanistic studies addressing the impact of pericardial fat-secreted adipokines on NLRP3-inflammasome-dependent arrhythmogenesis are clearly warranted.

Novel techniques assessing in vivo the metabolic and inflammatory potential and other properties of EAT are clearly required to delineate the putative role of EAT in cardiac arrhythmogenesis. For instance, volumetric EAT assessment could be combined with the detection of sympathetic activity by metabolobenzylguanidine scintigraphy, or with the assessment of inflammation and/or metabolic activity by fluorodeoxyglucose-positron emission tomography/CT, along with an assessment of classical indices of AF risk. Although such a panel of cofactors might help to better predict (PO)AF risk and the response to anti-arrhythmic approaches, the lack of validated or indexed threshold EAT volumes for a greater AF risk remains a major limitation of contemporary EAT quantification methods. High resolution 3D imaging methods such as the Dixon technique are constantly evolving for improved depiction of the heart and the surrounding fat, with lower intra- and inter-user variability [19]. Importantly, these innovative approaches can quantify not just EAT volume, but also its density, providing complementary information on the changing geometry over time [20]. Ex vivo magnetic resonance imaging for 3D quantification of the different LA components, including fibro-fatty infiltrates, in combination with histology [21], could also provide useful insights about...
Reference	Study group	Technique	Cardiac fat part	Correlation between cardiac fat part in POAF vs Ctl
van der Heijden et al. [14]	POAF (n = 43, age 64 ± 9, 77% men, BMI 27 ± 3.7)	CT	LA-EAT (volume)	- POAF vs Ctl: 0.68 [0.51–1.04] vs 0.67 [0.41–0.97] ml, P = 0.43
Ozbek et al. [10]	POAF (n = 35, age 69 ± 8.3, 66% men, BMI 29 ± 5.8)	CT	Total-EAT (volume)	- POAF vs Ctl: 1.36 ± 47 vs 119 ± 43 cm3, P = 0.046
Guntruk et al. [12]	POAF (n = 45, age 66 ± 5.4, 52% men, BMI 27 ± 1.9)	TTE	Total-EAT (thickness)	- POAF vs Ctl: 7.3 ± 0.6 vs 6.4 ± 0.4 mm, P < 0.01
Wang et al. [13]	VHD-POAF (n = 20, age 62 ± 6.8, 50% men, BMI 22 ± 4.2)	TTE	Total-EAT (thickness)	- VHD-POAF vs VHD-Ctl: 7.6 ± 0.7 vs 7.1 ± 1.1 mm, P = NS
Ozbek et al. [10]	POAF (n = 40, age 63 ± 11, 75% men, BMI 27 ± 3.8)	CT	LA-EAT (volume)	- LA-EAT not independently associated with POAF
Guntruk et al. [12]	POAF (n = 114, age 62 ± 9.1, 80% men, BMI 28 ± 3.9)	TTE	Total-EAT (thickness)	- Cut-off for total-EAT to predict POAF was 7.05 mm (67% sensitivity, 61% specificity)
Wang et al. [13]	VHD-POAF (n = 12, age 60 ± 5.2, 58% men, BMI 22 ± 5.7)	TTE	Total-EAT (thickness)	- VHD-POAF vs non-VHD-Ctl: 7.6 ± 1.0 vs 6.1 ± 0.9 mm, P < 0.05
Wang et al. [13]	VHD-POAF (n = 28, age 56 ± 10, 54% men, BMI 21 ± 2.8)	TTE	Total-EAT (thickness)	- VHD-POAF vs non-VHD-Ctl: 7.6 ± 1.0 vs 6.1 ± 1.1 mm, P = NS
Wang et al. [13]	VHD-POAF (n = 12, age 60 ± 5.2, 58% men, BMI 22 ± 5.7)	TTE	Total-EAT (thickness)	- VHD-POAF vs non-VHD-Ctl: 7.6 ± 1.0 vs 6.1 ± 0.9 mm, P < 0.05
Wang et al. [13]	VHD-POAF (n = 28, age 56 ± 10, 54% men, BMI 21 ± 2.8)	TTE	Total-EAT (thickness)	- VHD-POAF vs non-VHD-Ctl: 7.6 ± 1.0 vs 6.1 ± 1.1 mm, P = NS

Table 1 (continued)

Reference	Study group	Technique	Cardiac fat part	Correlation between cardiac fat part in POAF vs Ctl
Kogo et al. [11]	POAF (n = 21, age 67 ± 8, 76% men, BMI 30 ± 4.8)	CT	LA-EAT (volume)	- POAF vs Ctl: 196 [108–248] vs 157 [100–232] cm3, P = 0.71 (total-EAT), 58 [33–79] vs 38 [22–65] cm3, P = 0.12 (LA-EAT), 0.30 [0.26–0.36] vs 0.23 [0.20–0.30], P = 0.02 (LA/total-EAT ratio)
Opolski et al. [9]	POAF (n = 24, age 67 ± 8, 76% men, BMI 30 ± 4.8)	CT	LA-EAT (volume)	- POAF vs Ctl: 5.6 ± 3.0 vs 4 ± 2.5 ml, P < 0.01
Drossos et al. [8]	POAF (n = 28, age 66 ± 8, 79% men, BMI 29 ± 4.6)	CT	Total-pericardial adipose tissue (volume)	- POAF vs Ctl: 195 ± 80 vs 126 ± 47 ml, P < 0.01

Abbreviations: BMI, body mass index; Ctl, coincidence interval; CT, computed tomography; Ctl, control; LA-EAT, left atrial epicardial adipose tissue; OR, odd ratio; POAF, postoperative atrial fibrillation; total-EAT, total epicardial adipose tissue; TTE, transthoracic echocardiography; VHD, valvular heart disease.

The role of EAT in cardiac pathology. There are also possibilities to monitor coronary inflammation by integrating ex vivo CT angiography for 3D assessment of perivascular adipose tissue with in vivo CT-scan data [22]. Moreover, the authors developed the CT Fat Attenuation Index as an imaging metric to describe lipid content and adipocyte size and to detect and monitor tissue inflammation [22], along with an innovative artificial intelligence tool that incorporates the radiomic and transcriptomic profiles of pericoronary EAT. The value of this combined approach to predict EAT inflammation, fibrosis, and vascularization could be validated in a prospective clinical trial [23].

Finally, maps of fat tissue and computed fat fractions could be integrated with other patient-specific parameters such as LA morphology and dimensions, elasticity and strain, levels of circulating biomarkers and culprit adipokines, along with transcriptome, proteome and secretome data of the individual biopsy material. Innovative machine learning methods may facilitate the comprehensive mapping of changes predictive of AF development and the substrate response to intervention, potentially enabling personalized risk prediction and identification.
of innovative treatment options. Such a holistic approach is already being applied in the Influence of Epicardial adipose tissue in HEART diseases (EPICHEART) study [24], which aims to establish a protocol for the study of EAT-driven coronary atherosclerosis. Similar approaches may help to establish the precise role of cardiac EAT for atrial arrhythmogenesis.

Funding sources
The author’s work is supported by grants from National Institutes of Health (R01HL136389, R01HL131517 and R01HL095998 to D.D.), the German Research Foundation (DFG, Do 769/4-1 to D.D.), and the European Union (large scale integrative project MESTRIA, to D.D.).

Declaration of Competing Interest
M.G. has nothing to disclose. D.D. is member of the Scientific Advisory Boards of Omeicos Therapeutics GmbH and Acesion Pharma.

References
[1] G. Hindricks, T. Potpara, N. Dagres, T. Coats, T. Capewell, et al., 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC, Eur. Heart J. 41 (2021) 373–498.

[2] D. Dobrev, M. Aguilar, J. Heijman, J.-B. Giuguid, S. Nattel, Postoperative atrial fibrillation: mechanisms, manifestations and management, Nat. Rev. Cardiol. 16 (7) (2019) 417–436.

[3] S. Nattel, J. Heijman, L. Zhou, D. Dobrev, Molecular Basis of Atrial Fibrillation Pathophysiology and Therapy: A Translational Perspective, Circ. Res. 127 (1) (2020) 51–72.

[4] S. Nattel, P.T. Sager, J. Häuser, J. Heijman, D. Dobrev, Why translation from basic discoveries to clinical applications is so difficult for atrial fibrillation and possible approaches to improving it, Cardiovasc. Res. 117 (7) (2021) 1616–1631.

[5] J. Heijman, J.-B. Giuguid, D. Dobrev, S. Nattel, Translational Challenges in Atrial Fibrillation, Circ. Res. 122 (5) (2018) 752–773.

[6] W. Zhu, H. Zhang, L. Guo, K. Huang, Relationship between epicardial adipose tissue volume and atrial fibrillation: A systematic review and meta-analysis: Zusammenhang zwischen epikardfalem Fettgewebsvolumen und Vorhofflimmern: Systematische Übersicht und Metaanalyse, Herz 41 (5) (2016) 421–427.

[7] M. Gesta, F. Bander, V. Tannini, L. Capato, M. Cargnelutti, et al., Inflammation, epicardial adipose tissue and subcutaneous human adipose tissue, Metab. Syndr. Relat. Disord. 13 (2) (2015) 132–137.

[8] S. Nattel, J. Heijman, T. Potpara, N. Dagres, E. Arbelo, J.J. Bax, C. Blomstrom-Lundqvist, et al., The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC, Eur. Heart J. 41 (2020) 1055–1083.

[9] M. Hirningsson, M. Brundin, T. Scheufel, C. Edin, F. Viola, C.J. Carballi, Quantification of epicardial fat using 3D cine Dixon MRI, BMC Med. Imaging 20 (2020) 80.

[10] Y. Lu, T. Wang, R. Zhan, X. Wang, X. Ruan, R. Qi, S. Huang, Effects of epicardial adipose tissue volume and density on cardiac structure and function in patients free of coronary artery disease, Jpn. J. Radiol. 38 (7) (2020) 666–675.

[11] B. Bouazizi, A. Rahhal, S. Kusmia, M. Evin, C. Defrance, P. Cluzel, M. Berthet, D. Ruzyllo, C. Kepka, Computed tomography angiography for prediction of atrial fibrillation in patients undergoing coronary artery bypass grafting: proof of concept, J. Cardiol. 65 (2020) 51.

[12] E.E. Gunturk, M. Topuz, F. Serhatlioglu, H. Akkaya, Echocardiographically Measured Epicardial Fat Predicts New-onset Atrial Fibrillation after Cardiac Surgery, Braz. J. Cardiovasc. Surg. 35 (2020) 339–345.

[13] Q. Wang, J. Min, L. Jia, W. Xu, Y. Gao, Z. Diao, P. Zhang, S. Wang, J. Yang, L. Wang, T. Zhang, Z. Wang, Human Epicardial Adipose Tissue Activin A Expression Predicts Occurrence of Postoperative Atrial Fibrillation in Patients Receiving Cardiac Surgery, Heart Lung Circ. 28 (11) (2019) 1697–1705.

[14] C.A.J. van der Heijden, S. Verheule, J.R. Oosthoorn, C. Mihlb, L. Poulin, S.M.J. van Kutijk, S. Heuts, J.G. Maessen, E. Bider, B. Maessen, Postoperative atrial fibrillation and atrial epicardial fat: Is there a link? Int. J. Cardiol. Heart Vasc. (2022) 100976, https://doi.org/10.1016/j.ijcha.2022.100976.

[15] J. Heijman, A.P. Muna, T. Veleva, C.E. Molina, H. Sutanto, M. Tekool, Q. Wang, I. H. Abu-Taha, M. Gorka, S. Künzel, A. El-Armouche, H. Reichenpurner, M. Kamler, V. Nikolaev, U. Raven, N. Li, S. Nattel, X.H.T. Wehrens, D. Dobrev, Atrial Myocyte NLRP3/CaMKII Nexus Forms a Substrate for Postoperative Atrial Fibri-
lation, Circ. Res. 127 (8) (2020) 1036–1055.

[16] L. Scott Jr, A.C. Fender, A. Saljic, L. Li, X. Chen, X. Wang, D. Linz, J. Lang, M. Hohl, D. Twayne, T.T. Pham, R. Diaz-Lankenau, M.G. Chelu, M. Kamler, M.L. Estman, G. E. Taffet, P. Sanders, D. Dobrev, N.a. Li, NLRP3 inflammasome is a key driver of Obesity-Induced arterial arhytmias, Cardiovasc. Res. 117 (7) (2017) 1746–1759.

[17] M. Pezeshkian, M. Noori, H. Najarpour-Jabbari, A. Abolfathi, M. Darabi, M. Darabi, M. Shaaker, G. Shumihomandi, Fatty acid composition of epicardial and subcutaneous human adipose tissue, Metab. Syndr. Relat. Disord. 7 (2) (2009) 125–132.

[18] K. Wani, H. Alathari, A. Alghamdi, S. Sabico, N.M. Al-Daghri, Role of NLRP3 Inflammasome Activation in Obesity-Mediated Metabolic Disorders, Int. J. Environ. Res. Public Health 18 (2) (2021) 511, https://doi.org/10.3390/ijerph18020511.

[19] M. Henningsson, M. Brundin, T. Scheftel, C. Edin, F. Viola, C.J. Carballi, Quantification of epicardial fat using 3D cine Dixon MRI, BMC Med. Imaging 20 (2020) 80.

[20] E.K. Oikonomou, M.C. Williams, C.P. Kotanidis, M.Y. Desai, M. Marwan, A. S. Antopolous, K.E. Thomas, S. Thomas, I. Akoumianakis, L.M. Fan, C. Antoniades, A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography, Eur. Heart J. 40 (43) (2019) 3529–3539.

[21] J. Mancio, A.S. Barros, G. Conceição, C. Santa, P. G. Amarim, C. Bartosch, M. Fragao-Marques, W. Ferreira, M. Carvalho, N. Ferreira, L. Vouga, L.M. Miranda, R. Vitorino, R. Fontes-Carvalho, B. Manadas, I. Falcao-Pires, V.G. Ribeiro, A. Leite-Moraire, N. Bettencourt, Influence of Epicardial adipose tissue in HEART diseases (EPICHEART) study: Protocol for a translational study in coronary atherosclerosis, Rev. Port. Cardiol. 39 (11) (2020) 625–633.

Monika Gawalko
Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany

Dobromir Dobrev
Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany

Corresponding author at: Hufelandstrasse 55, 45122-Essen, Germany.

E-mail address: dobromir.dobrev@uk-essen.de (D. Dobrev).

* Corresponding author at: Hufelandstrasse 55, 45122-Essen, Germany.