Role of modified diet and gut microbiota in metabolic endotoxemia in mice

Iram Liaqat1 · Arjumand Iqbal Durrani2 · Urooj Zafar3 · Saima Rubab4 · Mehwish Faheem1 · Muhammad Mubin5 · Chand Raza1 · Nauman Aftab6

Received: 7 June 2021 / Revised: 9 July 2021 / Accepted: 12 July 2021 / Published online: 24 July 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
This study was aimed at investigating the effect of cultured gut microbiota (GM) from obese humans coupled HFD in inducing metabolic endotoxemia in humanized mice. In total, 30 strains were isolated from 10 stool samples of obese patients. Following morphological and biochemical characterization, 16S rRNA gene sequencing of six abundant isolates identified these Klebsiella aerogenes, Levilactobacillus brevis, Escherichia coli, Staphylococcus aureus, Bacillus cereus and Bacillus subtilis (MZ052089–MZ052094). In vivo trial using above isolates, known as human gut microbiota (HGM), was performed for six months. Sixteen mice were distributed into four groups, i.e., G1 (control) mice fed with chow diet, group 2 (G2) with HFD, group 3 (G3) with HFD + HGM and group 4 (G4) with chow diet + HGM. Body mass index (BMI) and plasma endotoxins were measured pre- and post-experiment. In vivo study revealed that HFD + HGM caused significant increase (3.9 g/cm at 20 weeks) in the body weight and BMI (0.4 g/cm) post-experiment) of G3 mice compared to the other groups. One-way ANOVA showed significantly higher level of endotoxins (2.41, 4.08 and 3.7 mmol/L) in mice groups G2, G3 and G4, respectively, indicating onset of metabolic endotoxemia. Cecal contents of experimental mice groups showed a shift in microbial diversity as observed by all isolates belonging to either Firmicutes or Bacteroidetes phyla, respectively. In conclusion, current study reported that minor alteration in GM composition through HFD feeding and cultured GM transfer has significant impact in development of metabolic endotoxemia, possibly via modified intestinal permeability.

Keywords Gut microbiota · High fat diet · Obesity · Metabolic endotoxemia · Mice

Communicated by Erko Stackebrandt.

Iram Liaqat iramliaq@hotmail.com
Arjumand Iqbal Durrani arjumand@uet.edu.pk
Urooj Zafar urooj@uok.edu.pk
Saima Rubab saima_rubab@hotmail.com
Mehwish Faheem mehwishfaheem@gcu.edu.pk
Muhammad Mubin mmubin@uaf.edu.pk
Chand Raza chandraza@gcu.edu.pk
Nauman Aftab nauman535@yahoo.com

1 Microbiology Lab, Department of Zoology, GC University, Lahore, Pakistan
2 Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
3 Department of Microbiology, University of Karachi, Karachi, Pakistan
4 Department of Pharmacognosy, Lahore Pharmacy College, LMDC Lahore, Lahore, Pakistan
5 Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
6 Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
Introduction

Metabolic endotoxemia is a state of increased level of lipopolysaccharides (LPS) or endotoxins in the blood (Wang and Quinn 2010). During this condition, proinflammatory molecules such as interleukin-1, interleukin-6, tumor necrosis factors (TNF-α) are increasingly expressed. LPS are large, heat-stable endotoxins, present in outer membrane of Gram −ive bacterial cell wall. These create a permeability barrier at the bacterial surface and are mainly responsible to confer innate resistance that Gram-negative bacteria display against various antimicrobials (Boutagy et al. 2016; Dalby et al. 2018).

Human intestine is colonized by copious amount of different bacterial phyla which are associated with food metabolism, energy harvesting and development of innate immunity. Among bacterial phyla as inhabitant of human gut, abundant ones include Firmicutes (64%), Bacteroidetes (23%), Proteobacteria (8%), Fusobacteria, Verrucomicrobia and Actinobacteria (3%). Firmicutes is the most common with 200 genera including Mycoplasma, Bacillus and Clostridium (Arumugam et al. 2014). Gram −ive bacteria make approximately 70% of total microbes and any imbalance is central to development of metabolic diseases, e.g., obesity and type 2 diabetes mellitus (TDM) (Bailey and Holscher 2018), due to continuous low-grade inflammation also known as metabolic endotoxemia.

Regular chow diet is the normally used high-fiber diet, composed of agricultural byproducts (wheat, corn, alfalfa, soybeans and supplemented with minerals, vitamins) and is palatable to mice. On the other hand, HFD contains cornstarch, amino acid supplemented casein, fiber from cellulose, sucrose or lord (Wang et al. 2020). Two ingredients differ between two diets. One is phytoestrogen content from soya, that is high in chow diet only and other is sucrose that is present only in HFD. Phytoestrogen content of chow diet controls anxiety, locomotion, memory, insulin–thyroid levels, lipogenesis and lipolysis, etc. (Hooper et al. 2015). High fiber content of chow diet makes it equivalent to the prebiotic, thus suppresses adiposity and other metabolic syndromes. Previous human intervention studies performed using prebiotics such as oligofructose, inulin, galacto-oligosaccharides, resistant dextrin, insoluble dietary fiber, and whole grains showed significantly decreased LPS levels in blood of obese, overweight and type 2 diabetic subjects (Dehghan et al. 2014; Parnell et al. 2017). Likewise, decreased plasminogen activator inhibitor-1 (PAI-1), and improved glucose metabolism was also noted in aforementioned subjects. In another study, authors concluded that galacto-oligosaccharides reduced LPS levels, and improved obesity by suppressing appetite in mice. It was observed that chronic administration of LPS resulted in hyperphagia by decreasing leptin sensitivity of afferent vagal nerves. Following galacto-oligosaccharide administration, reduced LPS levels and appetite suppression supported association between LPS and appetite (de La Serre et al. 2010).

HFD acts as strong trigger for the systemic inflammation and increased BMI. Recently, it was demonstrated that increase in LPS is related to HFD consumption (Li et al. 2020). Unaware of true mechanism of increased plasma LPS linkage with HFD, causative factor was thought to be the changes in intestinal microbiota, possibly a switch from Gram +ive bacteria to Gram −ive ones. Though still there is no understanding of direct effect of GM on metabolic endotoxemia, but evidently it was thought that microbial dysbiosis makes the gut leaky, induces inflammation thus leads to endotoxemia (Li et al. 2011; Bailey and Holscher 2018).

Increased HFD consumption modifies GM, results in increased amount of systemic level of bacterial products and increases the gut permeability for these bacterial products. A meal intake of excess HFD provokes the excess formation of LPS from the Gram −ive bacteria’s cell wall, increases the excess formation of chylomicron resulting in LPS infiltration into the blood circulation (Ghoshal et al. 2009; Caesar et al. 2012). Bacterial endotoxins translocation and increased intestinal permeability are the two most important contributing factors that play an important role in the progress of metabolic endotoxemia (Fei and Zhao 2013).

Both dietary modulations and gut microbiota are the most significant contributions to human health (Liaqat et al. 2021). Turnbaugh et al. (2006) transferred the human fecal microbiota into germ-free mice to create humanized mice, which were successfully colonized with donor’s microbiota. Switching the humanized mice to HFD for a single day resulted in changed metabolic pathways and microbiome. The authors observed that though colonization establishes the initial microbial community, however diet can significantly alter this primary community. Further, humanized mice showed high adiposity index when fed with HFD. Their study established an animal model to study the effect of genetic and environmental factors on the GM and host metabolism. However, Turnbaugh et al. (2006) used fecal microbiota from normal healthy individuals and there was difference in the gut microbiota and metabolotypes of lean vs obese individuals (Waldrum et al. 2009). Additionally, a variation in gut microbiota has been reported across populations of different ethnicity. For example, Jain et al. (2018) revealed microbial community with dominant Firmicutes, Actinobacteria and underrepresented Bacteroides in Indian and Chinese population, while Brooks et al. (2018) documented 12 microbial genera and families from two US-based 1673 individuals. Majority of these belong to family Christensenellaceae, overlap with closely related taxa and form clusters showing similar metabolic processes.
Hence, with all this background the current study seeks to establish whether a chow diet administered therapeutically to mice inoculated with fecal microbiota from obese individuals, is able to change the gut microbiota to a composition associated with healthy individuals using an in vivo approach (mice). The study also aims to clarify whether a chow diet reduces adiposity and metabolic endotoxemia in such mice possibly by acting as prebiotic.

Materials and methods

In total, clinically diagnosed obese (n = 10) volunteer subjects were selected from the Mayo Hospital Lahore, Pakistan, and general population. All subjects gave fully written informed consent about participation in study which was approved by Institutional Bioethics Committee (IBC) vide letter no. IBC 2431, GC University, Lahore, Pakistan.

Sample collection and inoculum preparation

Fresh stool samples in sterile stool collection vials were collected from obese subjects maintaining a temperature of 5 ± 1 °C during transportation. Fecal inoculum was prepared by mixing sample in saline solution (Possemiers et al. 2004) and streaking on various media including MacConkey agar, nutrient agar, xylose lysine deoxycholate agar (XLD), tryptone soya agar (TSA) and brain heart infusion agar (BHI) at 37 °C for 3 days following Lau et al. (2016).

Morphological, biochemical and genetic characterization of human gut microbiota (HGM)

Using a traditional culture-based method, isolated strains were morphologically characterized on brain heart infusion agar and different biochemical tests such as catalase, citrate utilization, urease, H₂S production, methyl red test, indole, Voges–Proskauer and denitrification were also performed (Gerhardt et al. 1994). This approach general emphasizes on easy to culture microbes from gut, and offer advantage to fastidious microbes grow successfully However, there is limitation that it offers only 10–50% of gut microbes to be cultured (Eckburg et al. 2005). Using universal primers 16S-27-F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 16S-1522-R (5′-AAGGAGGTGATCCAGCCGC-3′), PCR was used to amplify 16S rRNA gene in a thermal cycler under standard conditions. The amplified product sequenced by Axil scientific, Singapore. Sequenced data were examined using BLAST software and a phylogenetic tree was constructed in neighbor joining method using MEGA X 10.2.5 (Liaqat and Sabri 2009; Liaqat et al. 2019).

Animal housing conditions (in vivo study)

All animals were maintained in accordance with the guidelines of the Institutional Animal Care and Use Committee of the Department of Zoology, GC University, Lahore, Pakistan. The study was approved by the Institutional Bioethics Committee via approval number IBC-180920 following guidelines designed by Committee for the Purpose of control and supervision of experiments on animals, Pakistan. Twenty albino mice were taken from the animal house of department of Zoology GC University Lahore and were mated. Ampicilllin (1 g/L) was mixed in drinking water of mother one week before birth. 16 pups were selected and treated with ampicillin (1 g/L) in water till three weeks of age (Ellekilde et al. 2014). Following slight modification of protocol by Ellekilde et al. (2014), mice were kept on the same diet in temperature controlled conditions (22 °C) for another 3 weeks. After that, 6-week-old mice were distributed into four groups, each group comprising 2:2, male–female ratio. Mice were fed with chow diet (G1), HFD (G 2), HFD + HGM (G3) and chow diet + HGM (G4). Body weight was measured weekly. Adiposity in terms of body mass index (BMI) and endotoxins were measured at the start and end of experiment (6 and 24 weeks, respectively) (Wang and Liao 2014).

Preparation and transfer of HGM inoculum

The bacterial inoculum was prepared by taking isolated HGM and making dilution of 1:10 with 50% glycerol. The inoculum was stored at – 80 °C, making small aliquots. At the day of experiment, it was further diluted in ratio of 1:5 and 0.15 ml was given 3 times to each mouse (Ellekilde et al. 2014). The mice from both G3 and G4 were colonized with the HGM via oral route using force feeding method.

Chow diet and high fat diet (HFD) feeding

Mice from groups G1 (control) and G4 were fed with chow diet (energy contents: 20% protein, 70% carbohydrate and 10% fat). Mice from both groups (G2 and G3) were fed with HFD (energy contents: 13% protein, 6% carbohydrate and 81% fats) (Lamont et al. 2016).

Measurement of plasma endotoxins

Plasma endotoxins were measured pre (week 6) and post-experiment (after 24 weeks). Briefly, blood was collected from the tail of mice at week 6, transferred to EDTA tube to prevent clotting and plasma endotoxin concentration was measured. While, post-experiment (after 24 weeks), mice were anesthetized and blood was collected from the left ventricle of heart via cardiac puncture. Afterwards, all
mice were euthanized with carbon dioxide (CO$_2$) inhalation. Plasma endotoxin concentration was measured following method by Wang and Liao (2014).

Determination of bacterial diversity in cecal content of diet + HGM treated mice

Cecal contents were collected from postmortem mice of all four groups separately and stored at -80°C freezer. Slurries were made by homogenizing cecal content in 0.1 M phosphate-buffered saline (pH 7). Using QIAGEN fecal mini kit (Germany), genomic DNA was isolated separately from intestinal contents, quantified, normalized to 1 ng/µl and used as template. Following optimization, 16S rRNA gene fragments were amplified using primers 341F: 5′-CCT ACGGNGGCWGCAAG-3′ and 805R: 5′-GACTACHVGGGTATCTAAATCC-3′. Obtained fragments were purified using Gen elute Kit and sequenced. Using NCBI BLAST website, sequences were blast and strains were identified taxonomically up to species level on the basis of E-value. Phylogenetic tree was constructed and the genetic distance of each strain was determined.

Statistical analysis

Statistical analysis was performed using the statistical software SPSS Version 15.0 (Windows Evaluation Version). T-test (paired samples t-test) and one way ANOVA followed by post hoc Turkey test was used to analyze all data at $P < 0.05$.

Results

Morphological, biochemical and genetic characteristics of fecal bacteria

Total 30 bacteria were isolated from human stool samples. Out of these, 17 morphologically different strains were observed (Table S1). Gram staining revealed that 80% of strains were Gram negative. Biochemical characteristics of obese bacteria were studied and presented in Table 1. 16S rRNA gene sequencing identified six abundant isolates belonging to species, Klebsiella aerogenes, Levilactobacillus brevis, Escherichia coli, Staphylococcus aureus, Bacillus cereus and Bacillus subtilis (Accession numbers: MZ052089–MZ052094). Phylogenetic tree of isolates is shown in Fig. 1.

Body weight and BMI

Body weight of experimental animals measured over a period of 24 weeks revealed that there was non-significant increase (3 g/cm²) in body weight of G3 mice (HFD + HGM) and G4 mice (Chow diet + HGM) compared to control group (G1; chow diet) after 16 weeks irrespective to gender. This increase was continuous and non-significant during other

Bacterial strains	Citrate	H$_2$S Pro	Urease	Cat	Nit. Red	VP	Starch	MR	Indole	Carbohydrate fermentation		
										Glucose	Sucrose	Lactose
OB-1	+	−	−	+	−	+	−	−	+	+	+	−
OB-2	−	−	−	−	−	−	−	+	+	+	+	+
OB-3	−	−	−	+	−	+	−	−	+	+++	+	+
OB-4	+	−	+	+	+	−	+	−	−	+	+	+
OB-5	−	−	−	−	+	+	−	−	+	+++	+	+
OB-6	−	−	−	+	−	−	+	+	−	+++	+	+
OB-7	−	−	−	+	−	−	+	−	+	−	+	+
OB-8	+	−	+	+	+	+	+	−	−	+	+	+
OB-9	−	−	+	−	−	+	−	−	+	+	+	+
OB-10	−	−	−	+	−	+	−	−	+	+	+	+
OB-11	−	−	−	+	−	+	−	−	+	+++	+	+
OB-12	−	−	−	+	−	+	−	−	+	+++	+	+
OB-13	+	−	+	+	+	+	+	−	+	−	+	+
OB-14	−	−	+	−	−	−	+	−	+	+	+	+
OB-15	−	−	−	−	−	−	+	−	+	+	+	+
OB-16	−	−	+	−	−	−	+	−	+	+	+	+
OB-17	+	−	+	+	+	+	+	−	+	+	+	+

OB obese patients, H_2S Pro H_2S production, Cat. catalase, Nit. Red. nitrate reduction, VP Voges–Proskauer, MR methyl red
weeks. No difference was observed in mice treated with chow diet over the whole experimental period (Fig. 2). However, significant difference in BMI (4 g/cm²) ($P < 0.05$) of experimental mice of G3 (HFD + HGM) was observed compared to control group (G1; chow diet) at the end of experiment. G4 mice (chow diet + HGM) also showed significant increase in BMI compared to G1 (chow diet) (Fig. 3).

Endotoxins levels

Levels of endotoxins in treated versus control mice are shown in Fig. 4. It was observed that mice in groups G3 and G4 exhibited significantly elevated concentration of plasma endotoxins compared to control group (G1). Highly significant increase ($P < 0.001$) was observed in G3 (HFD + HGM) as well as G4 mice (Chow diet + HGM), when compared with control group (G1) and G2 (HFD). Overall, levels of endotoxins were observed to follow the trend: G3 (HFD + HGM) > G4 (Chow diet + HGM) > G2 (HFD) > G1 (Chow diet) (Fig. 4).

Diversity of cecal bacteria from diet + HGM treated mice

To determine the effect on gut microbiota, 20 isolates (five isolates per group), belonging to five phyla viz., Firmicutes, Proteobacteria, Actinobacteria, Verrucomicrobia and Bacteroidetes were identified via 16S rRNA gene sequencing. It was observed that mice of groups G1 (Chow diet) showed a more diversified microbiota (Bifidobacterium bifidum, B.
longum, Akkermansia muciniphila, Flavobacterium sp., Prevotella copri) belonging to phyla Actinobacteria, Verrucomicrobia and Bacteroidetes compared to G2 (HFD) where all five isolates (Lactobacillus acidophilus, L. gasseri, L. plantarum, Enterococcus sp., Bacillus sp.) belonged to phylum Firmicutes. Gut microbiota of G3 (HFD + HGM), showed five isolates (Parabacteroides gordonii, Bacteroides vulgatus, B. gallinarum, Bacteroides sp., B. faecis) belonging to phylum Bacteroidetes, whereas in mouse group G4 (Chow diet + HGM), among five isolates, two strains (Ruminococcus bromii, Clostridium sp.) belonged to Firmicutes and three strains (Enterobacter aerogenes, Escherichia coli, Shigella sp.) belonged to Proteobacteria (Fig. 5).

Discussion

In the present study, 11 strains with purified on the basis of variations in color, shape and internal characteristics from obese human fecal samples. Biochemical characterization revealed variation in tests indicating that bacteria belonged to different genera. 16S rRNA gene sequencing identified six isolates showing close similarity with K. aerogenes, L. brevis, E. coli, S. aureus, B. cereus and B. subtilis. Gut microbiota plays important role in metabolic functioning including synthesis of macronutrients, catabolism of dietary toxins and fermentation of indigestible food substance. Our observation of compositional changes in gut microbiota with increased Firmicutes level in the obese patients is consistent with the findings of Cani et al. (2012) and Jakobsson et al. (2014), who observed that decreased Bacteroidetes and increased Firmicutes led to metabolic disorders in humans. Likewise, Caricilli and Saad (2013) conducted a study on obese and control individual and showed increase in phyla Firmicutes and Actinobacteria and decrease in Bacteroidetes. However, this is in contrast to findings by Li et al. (2018), who reported the positive role of Firmicutes/Bacteroidetes ratio in improving gut dysbiosis and controlling metabolic endotoxemia. There are controversial findings on the observed Firmicutes/Bacteroidetes ratio in obese vs lean individuals. This might be due to the fact that experimental approach to identify gut microbial community was different in various studies depending upon culture-dependent or culture-independent sequencing methods. This study used cultured dependent approach and its importance can be judged by the fact that properties of uncultured organisms present in gut can only be inferred from their cultured relatives. Yousi et al. (2019) used culture-dependent method to isolate human gut bacteria from fecal samples. They found that there is a major proportion of Bacteroides and Firmicutes. Lau et al. (2016) used both culture-dependent and culture-independent methods and revealed that most of the bacteria detected by culture-independent method can detected by using culture-dependent method as well. Johnson et al. (2017) also supported the similar notion and emphasized the fact that great extent of uncultured biology remains to be better characterized using culture-dependent approach. Previously, Leser et al. (2002) isolated gut microbiota using culture-independent method and found Bacteroides...
and Firmicutes as major phyla. This suggests that both culture-dependent and culture-independent methods can be adopted for the gut bacteria isolation and culture-dependent is more useful for observing bacterial physiology and other related features.

The current study identified a significant difference in weight gain of mice treated with HFD + HGM compared to control after 16 weeks over experimental period of 24 weeks. Mean energy intake was comparatively higher in mice treated with HFD alone and combined with HGM. It might have led to increased adiposity thus increased weight gain compared to the mice receiving chow diet only and combined with HGM. Chow diet did not show any effect in restoring the microbial composition comparable to healthy humans, making it an ineffective prebiotic (assuming chow diet as a prebiotic). These findings corroborate with study by Bäckhed et al. (2004) who used germ-free and colonized normal and knockout mice fed with a standard, polysaccharide-rich rodent-chow diet. The authors indicated that the host–microbe mutualistic association allows the extracted energy to be stored in adipocytes via pathway that involves microbial regulation of the intestinal epithelial expression of fasting-induced adipocyte protein (Fiaf), a circulating inhibitor of lipoprotein lipase (LPL). Microbiota fermentation of dietary polysaccharides to monosaccharides and short-chain fatty acids in the distal gut and their subsequent absorption stimulate de novo synthesis of triglycerides in the liver. Microbial suppression of Fiaf in the gut epithelium results in reduced levels of this circulating LPL inhibitor, increased LPL activity in adipocytes, and enhanced storage of liver-derived triacylglycerols in fat cells. Diet changes can modify measurably the composition of the human gut microbiota within days. David et al. (2014) reported that the gut microbiota of humans were significantly altered only 2 days after the subjects switched to an animal-derived diet. When the subjects returned to their regular diets after 4 days of the animal-derived diet, their gut microbiota returned to a composition similar to the baseline composition. Dalby et al. (2018), who reported that mice fed with HFD for 8 weeks showed increase adipose tissue index and significant weight gain compared to those who had low-calorie diet. In another study, Turnbaugh et al. (2006) transferred gut microbiota from obese mice to lean mice and observed weight gain in the recipient mice. Likewise, significant increase in BMI index of HFD + HGM treated consistently support the fact that HFD and GM are related factors with strong effect on BMI (Cani and Delzenne 2011).
Continuous use of high fat meal causes an elevated level of plasma endotoxin in individuals, hence inducing various metabolic disorders (Cani et al. 2008). Endotoxins (LPS) are continuously produced in the body in the normal range from gut microbiota but feeding on high fat diet for a long period increased their concentration in the body. In line with previous study, we observed a significant elevation in endotoxin levels of all our experimental mice groups, treated with high energy diet and obese gut microbiota (Boutagy et al. 2016; Bailey and Holscher 2018). This elevation was robust in mice treated with combination of HFD and HGM. Potential explanation for the observed findings could be the fact that increased HFD intake and obese HGM are both triggering factors, responsible for increased intestinal permeability as well as increased release on inflammatory factors leading to metabolic endotoxemia (Yousi et al. 2019). Similarly, Manco et al. (2010) established that modified gut microbiota alters LPS which mainly regulates inflammation and other metabolic disorders.

To assess the effect of HFD and HGM on experimental mice microbiota, we killed mice and used cecal contents to determine the microbial diversity via 16S rRNA gene sequencing. It was observed that high fat feeding alone and combined with obese gut microbiota caused a shift in microbial diversity as observed by isolation of all five strains belonging to Firmicutes phylum in HFD fed group and Bacteroidetes phylum in HFD plus HGM fed group. Comparatively, mice of chow fed groups (alone and combined with HGM) showed a more diversified microbiota, where isolates belonging to phyla Firmicutes, Proteobacteria, Actinobacteria, Verrucomicrobia and Bacteroidetes were screened. Previous studies have shown that microbial flora changes in response to modified diet (chow diet/HFD) may cause metabolic diseases by mediating metabolic endotoxemia (Jakobsson et al. 2014). Li et al. (2018) also demonstrated that improved gut microbiota by increasing Firmicutes:Bacteroidetes ratio had beneficial impact on HFD-induced metabolic endotoxemia.

Conclusion and future perspective

Together, this study concluded that high fat feeding and obese gut microbiota are involved in the development of metabolic endotoxemia, thus providing direct evidence about the role of both factors in development of various metabolic diseases triggered by mediating endotoxemia induced inflammation. It also showed that though chow diet maintains microbial diversity, however, is unable to restore the obese gut health by changing the gut microbiota to a composition associated with healthy individuals. Additionally, it also did not reduce adiposity and metabolic endotoxemia, making it not an effective prebiotic. It is further evident from our findings that consumption of small number of obese gut microbiota and high fat feeding can result in significant changes in gut dysbiosis and metabolic changes in mice. This is similar to observations made by Messer and Chang (2018), who reported that microbes of gut community have close functional relations and even small number of microbes and/or their functions could have serious impacts on total community. Therefore, future studies using probiotics combined with chow diet might suggest whether diet changes are able to restore gut microbiota-induced adiposity and metabolic endotoxemia.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00203-021-02491-4.

Author’s contributions IL conceived the idea, designed experiments and wrote the manuscript. IL performed experiments and collected data. AID, UZ, SR, MF helped in analyzing data and revised the manuscript. MM, CR and NA helped in experimentation. All authors approved the final version of manuscript.

Declaration

Conflict of interests On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

Arunugam M, Raes J, Pelletier E et al (2014) Enterotypes of the human gut microbiome. Nature 506(7489):174

Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

Bailey MA, Holscher HD (2018) Microbiome-mediated effects of the Mediterranean diet on inflammation. Adv Nutr 9(3):193–206

Boutagy NE, McMillan RP, Frisard MI et al (2016) Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie 124:11–20

Brooks AW, Priya S, Blekhman R et al (2018) Gut microbiota diversity across ethnicities in the United States. PLoS Biol 16(12):e2006842

Caesar R, Reigstad CS, Backhed HK et al (2012) Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61(12):1701–1707

Cani PD, Delzenne NM (2011) The gut microbiome as therapeutic target. Pharmacol Ther 130(2):202–212

Cani PD, Bibiloni R, Knauf C et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 57(6):1470–1481

Cani PD, Ostro M, Geurts L, Everard A et al (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3(4):279–288

Caricilli A, Saad M (2013) The role of gut microbiota on insulin resistance. Nutrients 5(3):829–851

Dalby MJ, Aviello G, Ross AW et al (2018) Diet induced obesity is independent of metabolic endotoxemia and TLR4 signalling, but
markedly increases hypothalamic expression of the acute phase protein, SerpinA3N. Sci Rep 8(1):15648
David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563
de La Serre CB, Ellis CL, Lee J et al (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol-Gastr L 299(2):G440–G448
Dehghan P, Gargari BP, Jafar-Abadi MA (2014) Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized controlled clinical trial. Nutrition 30:418–423
Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638
Ellekilde M, Selfjord E, Larsen CS et al (2014) Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Sci Rep 4:9592
Fei N, Zhao L (2013) An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 7(4):880–884
Gerhardt P, Murray RG, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology
Ghoshal S, Witta J, Zhong J et al (2009) Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 50(1):90–97
Hooper L, Abdelhamid A, Bunn D et al (2015) Effects of total fat intake on body weight. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD011834
Jain A, Li XY, Chen WN (2018) Similarities and differences in gut microbiome composition correlate with dietary patterns of Indian and Chinese adults. AMB Express 8(1):104
Jakobsson HE, Abrahamsson TR, Jennalum MC et al (2014) Decreased gut microbiota diversity, delayed Bacteriodetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63(4):559–566
Johnson EL, Heaver SL, Walters WA et al (2017) Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. J Mol Med (berl) 95(1):1–8
Lamont BJ, Waters MF, Andrikopoulos S (2016) A low-carbohydrate high-fat diet increases weight gain and does not improve glucose tolerance, insulin secretion or β-cell mass in NZO mice. Nutr Diabetes 6(2):e194
Lau JT, Whelan FJ, Herath I et al (2016) Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med 8(1):72
Leser TD, Amenuvor JZ, Jensen TK et al (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68(2):673–690
Li T, Gao J, Du M et al (2018) Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice. J Funct Foods 47:56–65
Li J, Pang B, Shao D et al (2020) Artemisia sphaerocephala Krasch polysaccharide mediates lipid metabolism and metabolic endotoxaemia in associated with the modulation of gut microbiota in diet-induced obese mice. Int J Biol Macromol 147:1008–1017
Liaqat I, Sabri AN (2009) Isolation and characterization of biocides resistant bacteria from dental unit water line biofilms. J Basic Microbiol 49(3):275–284
Liaqat I, Liaqat M, Tahir HM et al (2019) Motility effects biofilm formation in Pseudomonas aeruginosa and Enterobacter cloacae. Pak J Pharm Sci 32(3):927–932
Liaqat I, Naseem S, Eijaz S et al (2021) Impact of interplay between obese gut microbiota and diet in developing obesity in synthetic community mice. J Oleo Sci 70(9). https://doi.org/10.1002/jos.ess21148
Manco M, Putignani L, Bottazzo GF (2010) Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev 31(6):817–844
Messer JS, Chang EB (2018) Microbial physiology of the digestive tract and its role in inflammatory bowel diseases. In: Physiology of the gastrointestinal tract. Academic Press, pp 795–810
Parnell JA, Klancic T, Reimer RA et al (2017) Oligofructose decreases serum lipopolysaccharide and plasminogen activator inhibitor-1 in adults with overweight/obesity. Obesity 25:510–513
Possenmier S, Vertéh K, Uytendaele S et al (2004) PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 49(3):495–507
Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027
Waldram A, Holmes E, Wang Y, Nicholson JK et al (2009) Top-down systems biology modeling of host metabolism–microbiome associations in obese rodents. J Proteome Res 8(5):2361–2375
Wang CY, Liao JK (2014) A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol 821:421–433
Wang B, Kong Q, Li X et al (2020) A high-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference. Nutrients 12(10):3197
Wang X, Quinn PJ (2010) Endotoxins: lipopolysaccharides of gram-negative bacteria. In: Endotoxins: structure, function and recognition. Subcellular biochemistry. Springer, Dordrecht, pp 3–25
Yousi F, Kainan C, Junnan Z et al (2019) Evaluation of the effects of four media on human intestinal microbiota culture in vitro. AMB Express 9(1):69

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.