New Forest Code effects over smallholder’s intention to trade non-timber forest products

ALICE DANTAS BRITES*
Department of Soil Science, Luiz de Queiroz College of Agriculture. Av. Pádua Dias, 11, CEP 13418-900, Piracicaba, Brazil.
Tel./fax.: +55-11973546456, *email: alicebrites@usp.br

Abstract. Brites AD. 2020. New Forest Code effects over smallholder’s intention to trade non-timber forest products. Asian J For 21: 41-45. The Brazilian new Forest Code (NFC) allows the sustainable economic use of one of its main mechanisms for native vegetation protection: the Legal Reserves. Smallholders’ intention to trade non-timber forest products (NTFP) from such areas was accessed. Data were collected through 350 in-person surveys in two municipalities from Bahia, Brazil. Outcomes showed that more than half of the respondents do not intend to trade NTFP from their Legal Reserve areas and, the lack of knowledge about the process to obtain government permission for the economic use of these areas, was the main reason gave to justify it. Further, higher household incomes showed a negative correlation with the intention. Incentives from public or private policies and dissemination about the steps needed to obtain permission for Legal Reserve’s sustainable use are needed for engaging smallholders in NTFP trade. With these incentives, it would be possible to increase the NFC potential for adding economic value to the protected native vegetation and for linking conservation with the economic development of rural areas inhabitants. Thus, these outcomes add up to previous findings of the benefits of NTFP trade, and in terms of practice and policy, they can help in the development of environmental policies that incentivize the NTFP trade, contributing to increase landholders’ incomes and to the NFC compliance.

Keywords: Environmental legislation, governance, legal reserve, native vegetation, New Forest Act

INTRODUCTION

Increasing rates of landscape fragmentation worldwide put conservation strategies on the spot of environmental policy discussions (Alencar et al. 2015, Keshhtkar and Voigt, 2016). Public protected areas have an undoubtedly important role in the protection of ecosystem services and biodiversity from the detrimental effects of fragmentation (Stolton et al. 2015). However, they are not enough to avoid fragmentation impacts, demanding complementary options as privately protected areas (Holmes 2013). Patches of native vegetation inside private lands may increase the connectivity among large, and frequently distant from each other, public protected areas, contributing to landscape conservation (Tambosi et al. 2013).

However, conservation policies inside private areas can restrict its use for economic activities, such as agricultural of livestock production, resulting in low acceptance by landholders (Stickler et al. 2013). Thus, strategies that combine conservation with economic development are the best option to promote a win-win scenario and maximize compliance, like the trade of non-timber forest products (NTFP).

The commercial trade of NTFPs, such as fruits and seeds, from native vegetation patches, is acknowledged for its potential for adding value to standing forests (Shanley et al. 2015). The rationale of this strategy rests on the fact that harvesting NTFPs is already a fundamental activity to rural inhabitants worldwide, who use NTFPs for subsistence and as a source of cash income through trading them in natura or processed (Shanley et al. 2015). Moreover, NTFPs harvesting values the maintenance of natural ecosystems whose resources people rely on, and is less harmful to the environment than other activities based on forest conversion, such as agriculture and cattle breeding (Vodouhe et al. 2016).

In Brazil, where more than 50% of the remaining native vegetation occurs inside private farms (Sparovek et al. 2015), the new Forest Code from 2012 (Brasil 2012) is the main law to regulates the use and protection of these areas. Since Brazilian native vegetation remnants sustain essential ecosystem services, such as carbon sequestration and climate regulation (Zarin et al. 2016), besides lodging from 10 to 20% of the world’s biodiversity (Giulietti et al. 2005), the new Forest Code assumes also great importance in global environmental protection.

Two of the main mechanisms for protecting native vegetation from the new Forest Code are the Areas of Permanent Preservation (mostly riparian vegetation) and Legal Reserves. The Legal Reserve is a percentage of the farm that must keep a native vegetation coverage. This percentage varies from 20% to 80%, depending on the biome where the farm is located. To comply with the law, landholders who do not meet these percentages can opt to restore or regenerate native vegetation inside their property, or to compensate it in another land. The Legal Reserve area allows the sustainable management and economic exploitation of natural resources as long as the activity has a management plan approved by government environmental institutions (Brasil 2012).
The new Forest Code also sets different rules for the Legal Reserve of small farms. Smallholders are exempted to the need to restore or regenerate native vegetation to meet the Legal Reserve percentage of the new Forest Code. Thus, the Legal Reserve from small farms should be equal to the amount of native vegetation existing on July 26, 2008. Besides, the smallholders have the right of a simplified process for the approval of management plans for the sustainable use and economic exploitation of their Legal Reserves (Brasil 2012).

Another novelty brought by the new Forest Code is the “Rural Environmental Registry” (Portuguese acronym: CAR). CAR is a nationwide compulsory self-declared digital registry in which rural landholders must map and provide georeferenced data about the property boundaries, Areas of Permanent Preservation and Legal Reserves. By linking the landholder to the land use within a specific property, the registration allows to compile and systematize information and makes it easier to monitor the new Forest Code implementation (Gibbs et al. 2015).

Considering the Legal Reserve mechanism, we can argue that exploiting NTFP from such areas can be a great opportunity for conciliating native vegetation preservation with economic gains. Here the relation between the smallholder Legal Reserve requirements and their intention to trade NTFP from such areas was explored. The main reasons for trading NTFP from Legal Reserves and the main barriers to doing so were also analyzed.

The initial hypothesis was that the acknowledgment of the area destined to Legal Reserve through the CAR registration would increase smallholders’ intention to trade NTFP of these areas. The outcomes of this study can help in the development of environmental policies that incentivize the trade of NTFP contributing to increasing their incomes and to the new Forest Code compliance.

MATERIALS AND METHODS

Data were collected through face-to-face surveys from March to May 2017 across two municipalities (São Desidério and Riachão das Neves) in the west of Bahia State, Brazil. São Desidério has a total area of 15.157 km² and approximately 33,000 inhabitants (IBGE 2019). The municipality is located about 27 km from Barreiras, the main town from Bahia west region. It has a tradition of trading crafts, household utensils, tools, and other objects made from “buriti” straw, a NTFP from a palm tree (Mauritia flexuosa L.f.) (Melo 2006). Its economy is mainly based on agriculture, especially soy and sugarcane production. Riachão das Neves has a total area of 5,840 km² and approximately 22,000 inhabitants. The municipality is located about 54 km from Barreiras. Tourism and agriculture are the main economic activities of the region (IBGE 2019).

An initial sample of 500 farmers that had already done their CAR was randomly selected. The selection was made among farmers that had already done their CAR registration with the support of a local firm (Ambientagro) contracted by the State government to assist smallholders with the CAR process.

According to the Brazilian legislation, smallholders are farmers with properties up to four fiscal modules (Brasil 1993). The fiscal module varies across municipalities and depends on the minimum amount of land required for primary economic activities in the region. In both municipalities surveyed the fiscal module equals to 65 ha, thus farms up to 260 ha are considered as small proprieties.

From the 500 selected farmers, 115 were not located at the farm and 23 refused to participate, giving a total of 362 completed surveys. To keep farmers anonymity and, thus, obtain more straightforward answers, their names or any other type of personal identification were not recorded in the survey sheets. Survey questions were made to gather if the farmer was aware of the total area of native vegetation that must be kept as Legal Reserve (i), aware of the possibilities of using the Legal Reserve area (ii), already trade NTFP from the native vegetation destined to the Legal Reserve area (iii), intended to start trading NTFP from the Legal Reserve Area (iv), and reasons for opting or not for trading NTFP from the Legal Reserve Area (v). In addition, smallholders’ individual or household characteristics such as age, gender, education level, income, agricultural production, were also collected by the survey.

Descriptive statistics were used to: describe the sample (a), show the reported intention to trade NTFP from the Legal Reserve areas (b), and show reported reasons for trading it or not (c). Then an exploratory model was constructed to investigate which factors best explain intention to trade NTFP from Legal Reserve areas.

The dependent variable from the model was the intention to trade that indicates smallholders’ intention to start trading NTFP from their Legal Reserve area and was based on their answers along a 5-point ordinal scale. The explanatory variables were total household income, total farm area and travel time from the farm to the nearest market. Control variables were gender, age, and education of the farm owner.

Due to the categoric nature of the dependent variable (intention to trade) an ordered logit regression model was used. Explanatory variables were included in the regression models in their standardized form to enable direct comparison of effect magnitudes from variables estimated in different scales (Zuur et al. 2009). The variables were standardized by subtracting their mean and dividing by two times their standard deviation. Variables thus have a mean of zero and take ± 0.5 standard deviation values, allowing a direct comparison between regression coefficients (Gelman 2008).

RESULTS AND DISCUSSION

Sample characteristics

On average, farmers’ owners were men above 40 years old and with more than 5 years of formal education (Table 1). Households’ total income ranged from 1,874.00 to 7,496.00 Brazilian Reais. Farms had, on average, a total of 34.3 ha and were located, on average, from a 15 minutes car ride from the nearest market.
Table 1. Descriptive statistics of the variables included in the model

Variables	Definition/values	N	Central tendency	SD
Dependent				
Intention to trade	Ordinal scale from 1= do not intend to 5= intend	362	Me=2.32	1.53
Explanatory				
Income	Household total income in minimum wage (from 1 to 10)	362	Me=4.32	3.87
Farm area	Farm total area in 10 ha	362	Me=3.43	1.02
Travel time	Travel time to the next market (min)	362	Me=15.58	4.67
Control				
Gender	Man=1; Woman=0 of the farm owner	362	Mo=1 (75%)	n.a
Age	Age in years of the farm owner	362	Me=48.73	13.2
Education	Number of years of formal education of the farm owner	362	Me=8.8	5.7

Notes: * Me: mean; b Mo: mode and percentage in parentheses; ^n.a: not applicable

Legal reserve and intention to trade NTFP

Only 3% of respondents were not aware of the farm area that they must set as Legal Reserve and 6% did not know that the Legal Reserve allows the sustainable commercial use of natural resources (N=362). A small percentage of the respondents already trade some type of NTFP existent in their propriety (16%; N=362).

A total of 293 respondents knew their Legal Reserve area but do not trade NTFP from these areas. From these, 67.9% (n=293) showed a negative intention to trade NTFP from their Legal Reserve in the future, i.e. do not intend or probably do not intend to trade. While 21.8% showed a positive intention and 10.2% did not know (Figure 1).

The most cited reason for intending to trade NTFP was to obtain an extra income (58.5%), followed by doing a traditional household activity (28.7%). Only a few smallholders answered that it would represent their main income (5.3%) or that they would do it for nature conservation purposes (7.4%) (Figure 2).

The most cited reason for not intending to trade NTFP was the lack of knowledge about the process to obtain the permission to use the Legal Reserve area (66.1%), followed by the belief that it would not be an economically valuable activity (13.4%). About 9% of the respondents stated that there would not be a market for the NTFP (9.4%) or that do not have enough knowledge about NTFP to explore it (9.1%).

The reported intention to trade NTFP from the Legal Reserve area was negatively correlated to the household total income (Table 2). Thus, smallholders from households with higher incomes are less likely to show a positive answer towards the intention to trade NTFP from their Legal Reserves in the future.

Thus, contradicting the study initial hypothesis, more than half of smallholders who know their Legal Reserve area showed a negative intention towards trading NTFP. The lack of knowledge about how to proceed to obtain the government permission for sustainable use if their Legal Reserve area was the main reason gave by them to justify the disinterest in the activity. Further, higher incomes were associated with the lowest interest in such activity.

Table 2. Outcomes from the ordered logit regression of the association between intention to trade NTFP and explanatory variables

Variable	Intention to trade
Income	-0.793 (1.65)**
Farm area	-0.007 (0.023)
Travel time	-0.352 (0.231)
Gender	0.165 (0.175)
Age	0.004 (0.010)
Education	0.020 (0.034)

Notes: a: Robust standard errors; * p< 0.10; ** p < 0.05; *** p < 0.01

Figure 1. Smallholders intention to trade NTFP from their Legal Reserve areas (n=293)

Figure 2. Reasons gave by smallholders to trade NTFP from their Legal Reserve areas (n=94)
Figure 3. Reasons gave by smallholders to do not trade NTFP from their Legal Reserve areas (n=199)

Although trading NTFP is a strategy recognized by its potential to value standing forests (Shanley et al. 2015), it seems that it does not fit in the study context. One of the main claims of farmers during the process of the new Forest Code revision was that the previous law did not allow the country economic growth since the land use was very restricted (Branclalon et al. 2016). Thus, strategies to increase the protect land capacity of generating income would be expected to be welcomed by landholders. The fact that NTFP income represents, in general, a small number of households’ total gains and is a strategy used mainly by traditional communities or in places of high levels of poverty (Kusters 2006, Rizek and Morsello 2012), could explain the low interest observed. The decrease in interest according to the income increase, also seems to corroborate with this explanation.

In this case, strategies to add value to NTFP could lead to an increase in farmers’ intention to engage in its trade. Policies promoting incentives or financial support for the trade (Tewari, 1998), increasing the NTFP value trading processed products rather than in natura (Prasad et al. 1999) and promoting green market initiatives (Shanley and Laird 2006), could help in this sense. In addition, strategies to familiarize smallholders with the process of obtaining government permission allowing the economic use of the Legal Reserve could also improve their intention to trade NTFP. Promoting on the ground activities to explain these procedures, or hiring firms to help smallholders in this process, in a similar way to what was done for CAR registration, could improve farmers’ willingness to trade NTFP and, consequently, improve their protected vegetation economic value.

Future studies could focus on which one, or which set, of incentives would work better to improve farmers’ intention to trade NTFP from their Legal Reserve area. Once the most promising strategies are accessed public and private policies could be designed to incentive such trade increasing the new Forest Code capacity of adding value to protected vegetation.

In conclusion, the Brazilian new Forest Code allows the sustainable economic use of Legal Reserves, the trade of NTFP from these areas of protected vegetation could represent an opportunity for linking nature conservation and economic gains. However, outcomes from this study showed that smallholders do not intend to do so. Thus, incentives from public and private policies are needed to engage farmers in NTFP trade. Further, to better explain the steps needed to obtain permission to trade and to facilitate the process to do it could also increase the probability of engagement. Once these barriers are overcome, the trade of NTFP can be a strategy to enhance the new Forest Code potential of valuing the native vegetation remnants.

ACKNOWLEDGEMENTS

This research was supported by São Paulo Research Foundation – Fapesp [2017/02755-0].

REFERENCES

Alencar AA, Brando PM, Asner GP, Putz FE. 2015. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol Appl 25 (6): 1493-1505. DOI: 10.1890/14-1528.1
Branclalon PH, Garcia LC, Loyola R, Rodrigues RR, Pillar DD, Lewinsohn TM. 2016. A critical analysis of the Native Vegetation Protection Law of Brazil (2012): updates and ongoing initiatives. Natureza & Conservação 14: 1-15. DOI: 10.1016/j.nacon.2016.03.003
Brasil. 1993. Law Nº 8.629, de 25 de fevereiro de 1993.
Brasil. 2012. Law Nº 12.651, de 25 de maio de 2012.
Gelman A. 2008. Scaling regression inputs by dividing by two standard deviations. Statits Med 27: 2865-2873. DOI: 10.1002/sim.3107
Gibbs HK, Rausch L, Munger J, Schelly I, Morton DC, Noojipady P, Walker NF. 2015. Brazil’s soy moratorium. Sci 347 (6220): 377-378. DOI: 10.1126/science.aab1851
Giulietti AM, Harley RM, De Queiroz LP, Wanderley MDGL, Van Den Berg C. 2005. Biodiversity and conservation of plants in Brazil. Conserv Biology 19 (3): 632-639.
Hoges G. 2013. What role do private protected areas have in conserving global biodiversity? SRI working papers 46: 3-26.
IBGE 2019. Instituto Brasileiro de Geografia e Estatística. https://www.ibge.gov.br/.
Keshikar H, Voigt W. 2016. Potential impacts of climate and landscape fragmentation change on plant distributions: Coupling multi-temporal satellite imagery with GIS-based cellular automata model. Ecol Inform 32: 145-144. DOI: 10.1016/j.ecoinf.2016.02.002
Kusters K, Achdiwan R, Belcher B, Pérez MR. 2006. Balancing development and conservation? An assessment of livelihood and environmental outcomes of nontimber forest product trade in Asia, Africa, and Latin America. Ecol Soc 11 (2): 20. DOI: 10.5751/ES-01796-110220
Melo J. 2006. Artesanato em palha de buriti eleva renda de comunidade baiana. ETUR. http://www.etur.com.br/conteudoCompleto.asp?IDConteudo=9609
Pattanayak SK, Sills EO. 2001. Do tropical forests provide natural insurance? The microeconomics of non-timber forest product collection in the Brazilian Amazon. Land Econ 77 (4): 595. DOI: 10.2307/3146943
Prasad R, Das S, Sinha S. 1999. Value addition options for non-timber forest products at primary collector’s level. Int Forest Rev 1 (1): 17-21
Rizek MB, Morsello C. 2012. Impacts of Trade in Non-timber Forest Products on Cooperation among Caboclo Households of the Brazilian Amazon. Hum Ecol 40 (5): 707-719. DOI: 10.1007/s10745-012-9506-3
Shanley P, Laird S. 2006. Além da madeira: a certificação de produtos florestais não madeireiros. CIFOR, Bogor.
Shanley P, Pierce A, Lair S, Binnsquist C, Guariguata M. 2015. From lifelines to livelihoods: Non-timber forest products into the twenty-
first century. Pancel L, Kohl M (eds). Tropical Forestry Handbook. Springer-Verlag, Berlin.
Sparovek G, Barretto AGDOP, Matsumoto M, Berndes G. 2015. Effects of governance on availability of land for agriculture and conservation in Brazil. Environ Sci Technol 49 (17): 10285-10293. DOI: 10.1021/acs.est.5b01300
Stickler CM, Nepstad DC, Azevedo AA, McGrath DG. 2013. Defending public interests in private lands: compliance, costs and potential environmental consequences of the Brazilian Forest Code in Mato Grosso. Phil Trans R Soc B: Biol Sci 368 (1619): 20120160. DOI: 10.1098/rstb.2012.0160
Stolton Sue, Dudley Nigel, Avcıoğlu Çokçalışkan B, Hunter D, Ivanić KZ, Kanga E, Kettunen M. 2015. Values and benefits of protected areas. Worboys GL, Lockwood M, Kothari A, Feary S, Pulsford L. (eds.). 2015. Protected Area Governance and Management. ANU Press, Canberra.
Tanbosi LR, Martensen AC, Ribeiro MC, Metzger JP. 2014. A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity. Restor Ecol 22 (2): 169-177. DOI: 10.1111/rec.12049
Tewari D. 1998. Income and employment generation opportunities and potential of Non-Timber Forest Products (NTFPs). J Sustain Forest 8 (2): 55-76. DOI: 10.1300/J091v08n02_05
Vodouhe G, Dossou-Yovo H, Chadaré FJ, Gélinas NE, Assogbadjo A, Coulibaly O. 2016. Valuing the potential of non-timber forest products in financial valuation of savannah formation in Sudanian Region. Univers J Agric Res 45 (5): 183-197. DOI: 10.13189/ujar.2016.040504
Zarin DJ, Harris NL, Baccini A, Aksenov D, Hansen MC, Azevedo-Ramos C, Allegritti A. 2016. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Global Change Biol 22 (4): 1336-1347. DOI: 10.1111/gcb.13153
Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. 2009. Mixed-effects models and extensions in ecology with R. Springer Science & Business Media, New York.