Epidemiology of human papillomavirus-related oropharyngeal cancer in a classically low-burden region of southern Europe

M. Mena1,2,21*, J. Frias-Gomez1,2,3,21, M. Taberna1,2,3,4,5, B. Quirós1,2, S. Marquez1,2, O. Clavero1,2, A. Baena6,7, B. Lloveras8, M. Alejo9, X. León10,11, J. García10,11, R. Mesía12, O. Bermejo13, T. Bonfill14, A. Aguila15, M. Guix16, R. Hijano17, M. A. Pavón1,2, M. Torres1,2, S. Tous1,2, R. Clèries18,19 & L. Alemany1,2,20

The incidence of human papillomavirus (HPV)-related oropharyngeal cancer is increasing in some regions. Nevertheless, the epidemiology of this disease has not been extensively investigated in southern Europe. We conducted a retrospective cohort study of patients diagnosed with primary oropharyngeal cancer from 1991 to 2016. Cancer tissues underwent histopathological evaluation, DNA quality control, HPV-DNA detection and p16INK4a immunohistochemistry. Data were collected from medical records. Factors associated with HPV positivity and time trends were evaluated with multivariable Bayesian models. The adjusted prevalence of HPV-related cases in 864 patients with a valid HPV-DNA result was 9.7%, with HPV-DNA/p16INK4a double positivity being considered. HPV-related oropharyngeal cancer was likely to occur in non-smokers and non-drinkers, to be located in the tonsil or diagnosed at advanced stages. Time-trend analysis showed an increasing risk of HPV-related oropharyngeal cancer in the most recent periods (5-year period increase of 30%). This increase was highest and with a clear increasing trend only in the most recent years (2012–2016). The prevalence of HPV-related oropharyngeal cancer started to sharply increase in the most recent years in our setting,
as occurred two decades ago in areas where most oropharyngeal cancer cases are currently HPV-related. Our results provide a comprehensive assessment of the epidemiological landscape of HPV-related oropharyngeal cancer in a region of southern Europe.

The epidemiology of oropharyngeal cancer (OPC) has dramatically changed in the last two decades after the incursion of human papillomavirus (HPV) in the etiological arena of the disease. Currently, 29,000 new HPV-related OPC cases (representing 30% of the total OPC) are estimated to occur every year worldwide, with marked differences between geographical regions. HPV-related OPC is increasing in some regions of the world such as North America and northern Europe, where most OPC cases are currently HPV-related. The increasing trends are thought to be related to a decrease in smoking and increased numbers of sexual partners and oral sex practices. The role of HPV in OPC has important clinical implications given the distinct nature and marked prognostic differences between HPV-related and non-related patients. Nevertheless, the epidemiology of the disease in southern Europe, where current estimates of HPV prevalence are low (9–24%), has not been extensively investigated. In Spain, only two studies on HPV involvement in selected OPC cases were available until our group recently reported the results of a multicenter retrospective cohort of 788 patients with primary OPC consecutively diagnosed between 1991 and 2013. The study identified double positivity for HPV-DNA/p16INK4a as the biomarker with strongest diagnostic accuracy and prognostic value for HPV-related OPC patients and found an HPV prevalence of 7.4% when considering HPV-DNA/p16INK4a double positivity. A recent Italian study also evaluated the role of HPV in patients with newly diagnosed OPC during the period 2000–2018, reporting a prevalence of HPV-driven OPC of 32.3% and a higher prevalence in the most recent years.

In this study, we aimed to provide an updated assessment of the time trends of HPV prevalence estimates in OPC, as well as to evaluate further its epidemiological features compared with other high-burden regions.

Methods

Study design and population. We designed a retrospective cohort study of all new patients diagnosed with primary OPC in four hospitals in Catalonia (Spain) from 1991 to 2013 (Catalan Institute of Oncology-Bellvitge Hospital, Hospital del Mar, Hospital Parc Taulí and Hospital de la Santa Creu i Sant Pau). We also included all patients diagnosed with primary OPC in the latter setting through 2016.

FFPE block processing and histopathological evaluation. All specimens processing was centralized at the Catalan Institute of Oncology (ICO). FFPE blocks were re-embedded whenever necessary. The first and last sections were used for histopathological evaluation after hematoxylin and cosin (H&E) staining. Two in-between sections were used for HPV-DNA testing and genotyping; one additional slide was obtained to assess p16INK4a expression, which was performed at Hospital General de l’Hospitalet (Spain) under the manufacturer’s standards (Roche mtm Laboratories AG IHC, Heidelberg, Germany). A strong and diffuse nuclear and cytoplasmic staining of >70% of the cancer tissue was considered p16INK4a-positive. Since our previous study showed high diagnostic accuracy and prognostic value for double positivity for HPV-DNA/p16INK4a, which is an easier diagnostic algorithm to implement in clinical practice than HPV-mRNA testing, we did not further use HPV-mRNA positivity for the analyses herein presented. A block was classified as adequate for HPV testing if invasive cancer was observed in the two H&E stained sections of the specimen.

Pathology review was based on the WHO pathological criteria for head and neck cancer and was performed blind with respect to the original local diagnosis and HPV-DNA/p16INK4a results, following a pre-established algorithm for diagnostic consensus involving three pathologists, as reported elsewhere.

HPV-DNA detection and genotyping. We used a PCR with the consensus primers SPF10 PCR and a DNA enzyme immunoassay (DEIA) to test for the presence of HPV-DNA. HPV genotyping was performed using a reverse hybridization line probe assay (LiPA25_v1) on all samples testing positive for viral DNA, targeting 25 HPV types with different oncogenic risk (Laboratory Biomedical Products Rijswijk, The Netherlands). DNA quality was evaluated in all HPV-DNA negative samples by testing for the tubulin-β gene. All DEIA and LiPA25_v1 assays were performed at the ICO.

Statistical analyses. OPC samples testing negative for both viral and human DNA were excluded from the analyses. Descriptive, bivariate and unconditional logistic regression analyses were performed to identify independent factors associated with HPV etiological involvement in OPC according to double positivity for HPV-DNA/p16INK4a and p16INK4a-positivity only. Crude and adjusted odds ratios and their 95% credibility intervals
(CI, the Bayesian version of the frequentist confidence intervals but calculated using the posterior distribution of the model’s parameters), were estimated. Moreover, crude and adjusted prevalences were estimated, the latter to account for other covariates that may have an effect on the prevalence estimates. Adjusted prevalences were calculated with R “prediction” function of “prediction”18 package based on the adjusted models. Histological variables were not included in the multivariable analyses as they were considered to be intermediate variables in the carcinogenic process, as previously described17. Bayesian methodology was chosen in all analyses with non-informative prior distribution due to lack of data on the distribution of the parameter18,19 and, moreover, because Bayesian methodology is useful to (1) avoid model fitting problems in parameter estimation due to small counts, and (2) produce robust estimators10.

To more specifically assess time trends in HPV-related OPCs in Spain, a log-binomial regression model was defined for double positivity for HPV-DNA/p16INK4a and prevalence risk ratios (RR) were obtained, with their 95% CI. Patients from 1991 were included in the first 5-year period (1992–1996) in order not to lose sample size. Multivariable models were adjusted for confounders: age, 5-year periods, gender, tobacco/alcohol consumption, subsite and tumour stage.

All analyses were performed using the “bayesglm” function of the “arm” package19 in R. All possible interactions between variables were assessed and stratified by anatomical subsite.

Ethics approval and consent to participate. This study was performed in accordance with the Declaration of Helsinki. The study had formal approval by the ethics committees of the four participating hospitals (i.e. Catalan Institute of Oncology-ICO-Hospital Universitari de Bellvitge, Hospital de la Santa Creu i Sant Pau, Hospital del Mar and Hospital Parc Taulí). Adequate measures to ensure data protection, confidentiality, patients’ privacy and anonymization were taken into account in compliance with European and Spanish current laws and regulations. Informed consent was not available due to the retrospective design of the study and the large proportion of deceased and untraceable patients. Thus, and in accordance to current regulations, informed consent was waived off by the ethics committees for patients diagnosed up to 2013. Informed consent was obtained for patients diagnosed in 2014–2017.

Results

Supplementary Fig. 1 describes the workflow of the OPC targeted cases, samples collected, processed, tested and finally included in the statistical analyses. A total of 76 OPC patients diagnosed in Hospital de la Santa Creu i Sant Pau between 2013 and 2016 were added to the initial retrospective cohort of 788 patients13.

HPV prevalence and factors associated with HPV positivity in OPC. Table 1 shows the demographic and clinical characteristics of the 864 patients included in the analysis, as well as the crude and adjusted prevalences and odds ratios for double positivity for HPV-DNA/p16INK4a. Patients had a mean age at diagnosis of 60 years; they were mostly male (88.9%), heavy smokers (74.4%) and heavy drinkers (49.7%). The most common anatomical subsite was the tonsil (40.5%). Most tumours (63.3%) were squamous cell carcinoma (SCC) of 60 years; they were mostly male (88.9%), heavy smokers (74.4%) and heavy drinkers (49.7%). The most common stage was IVa according to the 7th TNM edition (45.6%). The adjusted prevalence of HPV-related patients was 9.7%.

After adjustment for confounders, HPV-related patients were more likely to be younger than 60 years, non-smokers and non-drinkers, to have tonsillar carcinoma, and to be diagnosed in most recent periods or with stages III–IVa. The equivalent results for p16INK4a positivity alone are presented in supplementary Table 1.

HPV prevalence and factors associated with HPV positivity by anatomical subsite. The associations of HPV-positivity with the demographic and clinical characteristics of OPC patients were also examined, stratified by three major anatomical subsites (tonsil, base of tongue and others, Table 2). None of the associations observed in the multivariable analysis for OPC including all sites were observed for subsites other than the tonsil and base of tongue. Crude and adjusted HPV prevalences stratified by the three major anatomical sites are presented for HPV-DNA/p16INK4a double-positivity and p16INK4a-positivity alone in supplementary Tables 3 and 4, respectively.

Some differences were observed when only p16INK4a-positivity was analysed, for all OPC sites and by subsite (supplementary Tables 1 and 2, respectively). Of note, calendar period and age did not show a clear trend in the multivariable analysis for all OPC sites and for tonsil.

HPV type distribution. Most HPV-DNA positive cases were HPV16 (82.2%), followed by HPV33 (5.9%) and HPV35 (4.0%), (Table 3). When we focused on patients that were double positive for HPV-DNA/p16INK4a, the percentage of HPV16 and HPV35 positive patients increased to 88.5% and 5.1%, respectively, but decreased for other genotypes (Table 3). The same was observed specifically for all anatomical subsites, and the highest proportion of HPV16 was found in sites other than tonsil and base of tongue.
Characteristics	OPC samples (n = 864) No. (%)	HPV-DNA detection AND p16INK4a high expression (n = 78)			
		Crude prevalence No. (%)	Adjusted prevalencec (%)	Crude OR [95% CI]	Adjusted ORc [95% CI]
Age at diagnosis (years)					
≤ 60	456 (52.9)	46 (10.1)	13.1	1.4 [0.8–2.2]	3.0 [1.6–5.7]
> 60	406 (47.1)	31 (7.6)	6.8	Ref	Ref
Mean age at diagnosis (SD)	60.3 (10.7)	58.7 (13.4)			
Age range	28–93	28–93			
Gender					
Male	766 (88.9)	57 (7.4)	9.3	Ref	Ref
Female	96 (11.1)	21 (21.9)	11.1	3.4 [2.0–5.9]	1.3 [0.6–2.8]
Centerd					
H Mar	100 (11.6)	6 (6.0)		Ref	Ref
H ICO-Bellvitge	241 (27.9)	18 (7.5)	1.2	[0.5–2.9]	
H Parc Tauli	84 (9.7)	5 (6.0)	1.0	[0.3–2.9]	
H Sant Pau	439 (50.8)	49 (11.2)	1.9	[0.8–4.2]	
Period of diagnosis					
1991–1996	140 (16.2)	7 (5.0)	7.7	Ref	Ref
1997–2001	97 (11.2)	2 (2.1)	2.7	0.4 [0.1–1.7]	0.2 [0.1–1.1]
2002–2006	221 (25.6)	16 (7.2)	8.6	1.4 [0.6–3.2]	1.2 [0.4–3.1]
2007–2011	257 (29.7)	21 (8.2)	8.4	1.6 [0.7–3.6]	1.1 [0.4–2.9]
2012–2016	149 (17.2)	32 (21.5)	18.3	4.9 [2.2–10.7]	4.3 [1.6–11.4]
Tobacco use					
Non-smoker	90 (11.2)	36 (40.0)	23.4	15.8 [8.2–28.3]	9.4 [4.3–20.7]
< 20 cigarettes/day	116 (14.4)	19 (16.4)	11.1	4.6 [2.5–8.7]	2.7 [1.3–5.7]
≥ 20 cigarettes/day	598 (74.4)	23 (3.8)	5.3	Ref	Ref
Alcohol consumption					
Non-drinker	161 (20.0)	46 (28.6)	14.7	27.0 [11.4–64.2]	10.2 [3.8–27.5]
< 100 g/day	245 (30.4)	27 (11.0)	12.4	8.3 [3.4–20.2]	7.8 [3.0–20.1]
≥ 100 g/day	401 (49.7)	5 (1.2)	2.6	Ref	Ref
Subsite					
Tonsil	350 (40.5)	53 (15.1)	14.1	5.6 [2.8–11.1]	5.2 [2.4–11.5]
BOT	189 (21.9)	16 (8.5)	7.5	2.8 [1.3–6.3]	1.9 [0.8–4.9]
Tonsil & BOT	19 (2.2)	0 (0.0)	2.2	0.4 [0.0–7.6]	0.4 [0.0–8.8]
Othersd	306 (35.4)	9 (2.9)	4.7	Ref	Ref
Stage (7th edition TNM)					
I&II	183 (21.3)	6 (3.3)	4.4	Ref	Ref
III	184 (21.4)	19 (10.3)	12.2	3.1 [1.3–7.3]	4.7 [1.7–12.6]
IVa	393 (45.6)	49 (12.5)	11.6	3.8 [1.7–8.5]	4.3 [1.7–10.6]
IVb	82 (9.5)	4 (4.9)	6.1	1.4 [0.4–4.5]	1.6 [0.4–6.0]
IVc	19 (2.2)	0 (0.0)	2.5	0.3 [0.0–6.8]	0.5 [0.0–13.6]
Histologyd					
SCC Conventional keratinizing	547 (63.3)	20 (3.7)	Ref		
SCC Conventional non-keratinizing	234 (27.1)	28 (12.0)	3.4	[1.9–6.0]	
SCC Basaloid, papillary, exophytic	73 (8.4)	29 (39.7)	16.2	[8.6–30.5]	
SCC Carcinosad	3 (0.3)	0 (0.0)	0.7	[0.0–28.3]	
Non-SCCd	7 (0.8)	1 (14.3)	3.0	[0.4–24.3]	
Total	864	78 (9.0)	9.7		

Table 1. Association of demographic and clinical characteristics of OPC patients and HPV double positivity for HPV-DNA/p16INK4a. OPC Oropharyngeal carcinoma, SD Standard deviation, H Hospital, SCC Squamous cell carcinoma, BOT base of tongue, CI credibility interval. aColumn percentage. bRow percentage. cAdjusted by age at diagnosis, gender, period of diagnosis, subsite, tobacco and alcohol consumption and stage. dNot considered in the multivariable model. eOthers include: Soft palate-C05.1, Uvula-C05.2, Vallecula, Glossoeptiglottic fold, lateral and posterior wall of the oropharynx, overlapping lesion of the oropharynx and oropharynx unspecified-C10, Waldeyer ring-C14.2. fNon SCC include: 4 undifferentiated (1 of them HPV double positive) and three neuroendocrine carcinomas. In bold those estimates showing a clear association with HPV-DNA/p16INK4a positivity (i.e. credibility intervals do not contain 1.0).
Characteristics	HPV-DNA detection AND high p16INK4a expression								
	Tonsil samples (n = 350) Prevalence n/N (%)	Crude OR [95% CI]	Adjusted OR* [95% CI]	BOT samples (n = 189) Prevalence n/N (%)	Crude OR [95% CI]	Adjusted OR* [95% CI]	Others Samplesa (n = 306) Prevalence n/N (%)	Crude OR [95% CI]	Adjusted OR* [95% CI]
Age at diagnosis (years)									
≤60	30/182 (16.5)	1.2 [0.7–2.2]	3.5 [1.5–7.8]	12/100 (12.0)	3.4 [1.1–11.2]	3.9 [0.9–17.4]	4/163 (2.5)	0.7 [0.2–2.5]	0.9 [0.2–3.6]
>60	23/168 (13.7)	Ref	Ref	3/88 (3.4)	Ref	Ref	5/142 (3.5)	Ref	Ref
Gender									
Male	40/302 (13.2)	Ref	Ref	10/168 (6.0)	Ref	Ref	7/279 (2.5)	Ref	Ref
Female	13/47 (27.7)	2.4 [1.2–4.9]	1.2 [0.5–3.0]	6/21 (28.6)	5.6 [1.8–16.9]	1.7 [0.3–8.2]	2/26 (7.7)	2.7 [0.6–12.8]	1.1 [0.2–6.1]
Center									
H Mar	5/49 (10.2)	Ref	Ref	1/22 (4.5)	Ref	Ref	0/27 (0.0)	Ref	Ref
H ICO-Bellvitge	15/108 (13.9)	1.3 [0.5–3.5]	3/70 (4.3)	0.9 [0.2–5.5]	0.5 [0.0–20.1]	0.5 [0.0–29.9]			
H Parc Tauli	5/39 (12.8)	1.2 [0.4–3.9]	0/13 (0.0)	0.3 [0.0–7.9]	0.7 [0.0–29.9]	0.7 [0.0–29.9]			
H Sant Pau	28/154 (18.2)	1.8 [0.7–4.5]	12/84 (14.3)	3.3 [0.6–16.7]	9/201 (4.5)	9.4 [0.4–204.9]			
Period of diagnosis									
1997–2001	2/46 (4.3)	0.4 [0.1–1.6]	0.3 [0.0–1.4]	0/18 (0.0)	0.3 [0.0–6.4]	0.3 [0.1–8.3]	0/31 (0.0)	0.3 [0.0–6.0]	0.3 [0.0–6.7]
2002–2006	10/97 (10.3)	0.8 [0.3–2.4]	0.9 [0.2–3.4]	4/59 (6.8)	1.5 [0.3–7.7]	1.8 [0.3–10.7]	2/57 (3.5)	1.3 [0.2–6.9]	1.6 [0.3–9.6]
2007–2011	15/109 (13.8)	1.1 [0.4–3.2]	0.8 [0.2–2.8]	3/49 (6.1)	1.4 [0.3–7.3]	2.9 [0.4–19.0]	3/92 (3.3)	1.2 [0.3–5.6]	1.0 [0.2–5.0]
2012–2016	22/66 (33.3)	3.4 [1.2–9.6]	4.1 [1.1–15.2]	8/32 (25.0)	6.9 [1.5–31.9]	10.3 [1.6–67.0]	2/50 (4.0)	1.5 [0.3–7.9]	1.4 [0.2–8.2]
Tobacco use									
Non-smoker	24/46 (52.2)	14.7 [6.9–31.4]	13.3 [4.8–36.9]	8/21 (38.1)	15.5 [4.5–52.7]	4.6 [0.9–22.2]	4/22 (18.2)	9.2 [2.1–37.0]	5.7 [0.9–35.8]
<20 cigarettes/day	14/54 (25.9)	4.7 [2.2–10.3]	2.6 [1.1–6.6]	4/18 (22.2)	6.9 [1.7–27.5]	3.7 [0.7–20.1]	1/40 (2.5)	1.2 [0.2–7.8]	1.2 [0.2–8.5]
≥20cigarettes/day	15/235 (6.4)	Ref	Ref	4/135 (3.0)	Ref	Ref	4/214 (1.9)	Ref	Ref
Alcohol consumption									
Non-drinker	31/91 (34.1)	19.7 [6.8–57.2]	10.4 [3.1–35.1]	11/31 (35.5)	26.4 [5.6–124.5]	10.0 [1.6–63.3]	4/37 (10.8)	9.6 [1.8–51.2]	4.6 [0.6–36.7]
<100 g/day	19/95 (20.0)	9.5 [3.2–28.2]	10.4 [3.2–34.4]	4/58 (6.9)	3.5 [0.7–18.1]	2.8 [0.5–16.3]	4/85 (4.7)	4.0 [0.8–20.6]	3.7 [0.7–19.9]
≥100 g/day	3/151 (2.0)	Ref	Ref	1/87 (1.1)	Ref	Ref	1/154 (0.6)	Ref	Ref
Stage (7th edition TNM)									
I&II	6/89 (6.7)	Ref	Ref	0/17 (0.0)	0.2 [0.0–3.5]	0.5 [0.0–12.5]	0/74 (0.0)	0.2 [0.0–3.0]	0.2 [0.0–3.1]
III	13/72 (18.1)	2.7 [1.1–7.0]	5.0 [1.6–15.5]	4/38 (10.5)	Ref	Ref	2/72 (2.8)	Ref	Ref
IVa	31/152 (20.4)	3.2 [1.4–7.4]	3.4 [1.3–9.2]	12/100 (12.0)	1.4 [0.4–4.6]	1.5 [0.3–7.2]	6/130 (4.6)	1.8 [0.4–7.4]	1.8 [0.4–8.1]
IVb	3/27 (11.1)	1.5 [0.4–5.8]	1.2 [0.3–5.5]	0/28 (0.0)	0.1 [0.0–2.3]	0.2 [0.0–5.4]	1/24 (4.2)	1.5 [0.2–11.6]	2.1 [0.2–19.2]
IVC	0/7 (0.0)	0.4 [0.0–8.5]	0.6 [0.0–23.1]	0/6 (0.0)	0.4 [0.0–8.5]	0.3 [0.0–9.1]	0/6 (0.0)	0.6 [0.0–22.9]	0.7 [0.0–39.9]

Table 2. Association of demographic and clinical characteristics of OPC patients and HPV double positivity for HPV-DNA/p16INK4a stratified by the three major anatomical sites (tonsil / base of tongue/others). OPC oropharyngeal carcinoma, H hospital, SCC squamous cell carcinoma, BOT base of tongue, CI credibility interval. aAdjusted by age, gender, period of diagnosis, subsite, tobacco and alcohol consumption and stage. bOthers include: Soft palate-C05.1, Uvula-C05.2, Valleculea, Glossopigilotic fold, laterall and posterior wall of the oropharynx, overlapping lesion of the oropharynx and oropharynx unspecified-C10, Waldeyer ring-C14.2. cNot considered in the multivariable model. dNon SCC include: 4 undifferentiated (1 of them HPV double positive) and three neuroendocrine carcinomas. In bold those estimates showing a clear association with HPV-DNA/p16INK4a positivity (i.e. credibility intervals do not contain 1.0).
Time trends for HPV positivity. In the time-trend analysis, an increasing RR for HPV positivity was observed when period of diagnosis was analysed as a continuous variable (30% for every 5-year period, supplementary Table 5). When period of diagnosis was considered as a categorical variable, we found the increase to be highest (RR = 2.0, 95% CI 1.1–3.9) and with a clear increasing trend only in the last 5-year period (2012–2016, Fig. 1 and supplementary Table 6). Since the most recent patients came mostly from Sant Pau Hospital, a sensitivity analysis including only Sant Pau patients was performed, and equivalent results were obtained when considering period of diagnosis as a continuous variable (RR = 1.2, 95% CI 1.0–1.4). This trend was not observed when period of diagnosis was considered as a categorical variable (RR = 1.8, 95% CI 0.6–5.8), probably due to the lower number of cases. An increasing trend for risk, of 31% and 66% for every 5-year period when period of diagnosis was considered as a continuous variable, was also detected specifically for tonsillar and base of tongue cancers, respectively (supplementary Tables 6 and 7). When period of diagnosis was considered as a categorical

Genotype	HPV-DNA	HPV-DNA/\(p16^{INK4a}\) positivity
OPC all sites	Prevalence N (%)	Prevalence N (%)
HPV16	83 (82.2)	69 (88.5)
HPV18	2 (2.0)	1 (1.3)
HPV31	1 (1.0)	0 (0.0)
HPV33	6 (5.9)	4 (5.1)
HPV35	4 (4.0)	4 (5.1)
HPV51	1 (1.0)	0 (0.0)
HPV58	1 (1.0)	0 (0.0)
HPVX	3 (3.0)	0 (0.0)
Total	101 (100.0)	78 (100.0)

Tonsil		
HPV16	49 (79.0)	45 (84.9)
HPV18	2 (3.2)	1 (1.9)
HPV31	0 (0.0)	0 (0.0)
HPV33	6 (9.7)	4 (7.6)
HPV35	3 (4.8)	3 (5.7)
HPV51	0 (0.0)	0 (0.0)
HPV58	0 (0.0)	0 (0.0)
HPVX	2 (3.2)	0 (0.0)
Total	62 (100.0)	53 (100.0)

Base of tongue		
HPV16	18 (85.7)	15 (93.7)
HPV18	0 (0.0)	0 (0.0)
HPV31	1 (4.8)	0 (0.0)
HPV33	0 (0.0)	0 (0.0)
HPV35	1 (4.8)	1 (6.3)
HPV51	0 (0.0)	0 (0.0)
HPV58	1 (4.8)	0 (0.0)
HPVX	0 (0.0)	0 (0.0)
Total	21 (100.0)	16 (100.0)

Others		
HPV16	16 (88.9)	9 (100.0)
HPV18	0 (0.0)	0 (0.0)
HPV31	0 (0.0)	0 (0.0)
HPV33	0 (0.0)	0 (0.0)
HPV35	0 (0.0)	0 (0.0)
HPV51	1 (5.6)	0 (0.0)
HPV58	0 (0.0)	0 (0.0)
HPVX	1 (5.6)	0 (0.0)
Total	18 (100.0)	9 (100.0)

Table 3. HPV type-specific prevalence by anatomical site according to HPV-DNA and HPV-DNA/\(p16^{INK4a}\) positivity. OPC oropharyngeal cancer, Others include: Soft palate-C05.1, Uvula-C05.2, Vallecula, Glossoepiglottic fold, laterall and posterior wall of the oropharynx, overlapping lesion of the oropharynx and oropharynx unspecified-C10, Waldeyer ring-C14.2.
Figure 1. Time trends of relative risk for HPV positivity in OPC. CI credibility interval; OPC oropharyngeal cancer. Time trends of relative risk for HPV positivity in OPC for each five years period with respect to reference one: 1991–1996. Trends models adjusted by age at diagnosis, gender, period of diagnosis, subsite, stage and tobacco and alcohol consumption. Y axis is represented in logarithmic scale.

Figure 2. Time trends of relative risk for HPV positivity in OPC by anatomical subsite and gender. CI credibility interval, BOT base of tongue. Time trends of relative risk for HPV positivity in OPC for each five years period with respect to reference one: 1991–1996. Trends models adjusted by age at diagnosis, gender, period of diagnosis, subsite, stage and tobacco and alcohol consumption. Y axis is represented in logarithmic scale.
variable, the increase was found only for base of tongue patients in the last 5-year period (Fig. 2). Increasing trends in HPV prevalence seemed to be higher in men than in women (Fig. 2 and supplementary Tables 8 and 9).

Discussion
To our knowledge, this study is the largest and most comprehensive assessment of the epidemiological landscape of HPV-related and non-related OPC in southern Europe. We had previously hypothesized that differences on the epidemiology of HPV-related OPC between regions may reflect distinct trends in temporal, geographical, and sociodemographic shifts in population exposure to both tobacco smoking and oral HPV infection, leading to a rapidly evolving epidemiology of HPV-related OPC.

Observed HPV prevalences were about 10%, as defined by the percentage of cases that were double positive for HPV-DNA/p16INK4a. A recent Italian study also evaluated the role of HPV in patients with newly diagnosed OPC during the period 2000–2018, reporting a prevalence of HPV-driven OPC of 32.3% and a higher prevalence in the most recent years. The lower prevalence observed in our cohort could be explained by the higher number of patients and the inclusion of patients diagnosed at earlier calendar periods than in the Italian study. Moreover, epidemiological differences between the two populations could also exist and account for such differences. As expected, the highest HPV prevalences were observed in tonsillar cancers, with 14% of patients estimated to be HPV-related compared with 8% of base of tongue and 5% of other cancer subtypes. Also, in accordance with the literature, higher HPV prevalences were observed in more advanced stages based on 7th TNM definition (III and IVa) compared with early stages (I and II).

Our results indicate that HPV prevalences in OPC have started to increase sharply in the most recent years in our setting. However, our results reporting HPV prevalence estimates are based on primary OPC tumours from four hospital-based registries and do not necessarily imply an increasing incidence of HPV-associated OPC in our region. Nevertheless, a previous study estimating the incidence trends of OPC in Spain by using data from population-based registries predicted statistically significant increasing trends for OPC over the period 2003–2017. These results, together with our own, support the hypothesis that these increasing trends for OPC are caused by HPV infection. Of note, age-standardized incidence rates for OPC were estimated in 2018 at 1.4 in Spain and 1.3 in southern Europe, respectively.

If this hypothesis is correct, HPV-related OPC has started to increase in our setting about 20 years later than in other countries such as the US. This two-decade gap is in agreement with the calendar period differences between smoking drops in the US and Spain (supplementary Fig. 2).

However, it is still unclear whether tobacco and/or alcohol use can act as co-factors and/or effect modifiers in the risk of developing HPV-related OPC. Therefore, we cannot rule out the possibility that smoking is associated with an increased risk of HPV-positive OPC, as observed in previous studies in the US.

The increased trends in HPV prevalence were not observed for cancers located at sites other than the tonsil and base of tongue and were more marked in the elderly, although the credibility intervals were wider due to the lower number of base of tongue cancers.

After adjustment for confounders, HPV prevalences were found to be higher in younger patients, as observed in other high-burden regions. Of note, most recent publications from the US indicate that a rising proportion of older OPC patients have HPV-positive tumours. HPV prevalences were substantially higher in women than in men, in contrast with what is observed, for instance, in the US. This was already observed for Europe in an international cross-sectional study conducted by our group. However, after adjustment for confounders, those gender differences disappeared. A recent Italian study that did not adjust for confounders also observed higher HPV prevalences in women than in men in the univariate analyses. Our results after adjustment for confounders were supported by the finding of a lower number of ever-smokers among female patients (62/94, 66.0%) than male (650/709, 91.7%) patients. A systematic review on geographical differences in the proportion of HPV prevalence in OPC between men and women revealed that those differences were mainly a consequence of the vast international variation in male smoking habits. Notwithstanding, a population-based study describing time trends of cancer incidence and mortality in Catalonia during the period 1993–2007 detected a rising trend in oral cavity and pharyngeal cancers among women but not among men, presumably explained by a higher and earlier rate of smoking cessation among men than among women. In addition to smoking differences between men and women, HPV transmission appears higher from women to men among heterosexual partners and differences in sexual behaviours between geographical regions have not been analysed at this level of detail. Intriguingly, although this study was not powered to precisely evaluate this issue due to the low number of female patients, increasing trends in HPV prevalence were suggested to be higher in women than in men (Fig. 2 and Supplementary Tables 8 and 9).

The gender and calendar differences in OPC HPV prevalence between high-burden regions and our setting could also be partially explained by differences in sexual behaviour, which is a clear risk factor for oral HPV acquisition and HPV-related OPC. Indeed, sexual behaviour greatly varies across regions with proportions of ever having oral sex in the US being higher than 65% compared with less than 20% in countries in southern Europe such as Spain. Nevertheless, the CLEOPATRE study, which aimed to estimate the prevalence of cervical HPV infection in Spanish women attending cervical cancer screening, found a higher number of sexual partners and earlier ages for sexual debut in younger (18–25 years) versus the oldest women (56–65 years). The CLEOPATRE results could thus also partially account for the recent increasing trends in HPV prevalence observed in the present study if it is assumed that changes in oral sex practices have also taken place.

Different trends in tonsillectomy rates could also have contributed to the observed geographical heterogeneity. A previous study from Denmark reported a decrease in tonsillectomy rates concomitant to a simultaneous increase in the risk of OPC. However, other studies did not find that the observed significant increases in OPC were related to declines in tonsillectomies, reinforcing increased oral HPV exposure as the likely cause.
The differences in the role of HPV in OPC between anatomical subsites observed in our study are consistent with the results of a recent systematic review concluding that HPV prevalence differs markedly between OPC subsites and that its role in sites “other” than tonsil or base of tongue is uncertain and needs further evaluation. A total of 30 out of 108 (27.7%) p16INK4a-positive cases were HPV-DNA negative, representing 3.5% of the total sample, despite definition of p16INK4a positivity as staining above > 70%. This percentage is higher than the 10%-20% observed in most studies irrespective of the method of HPV-specific testing applied, although it is lower than the 47% reported in an Italian study that considered a case to be p16INK4a positive if strong nuclear and cytoplasmic staining was present in > 50% of the tumour cells. Classification and potential characterization of p16INK4a-positive—HPV-negative cases is still controversial although we and others have shown that these cases display similar survival to p16INK4a-negative cases. Moreover, molecular characterization of p16INK4a-positive—HPV-negative OPC cases has shown a similar genetic profile to HPV-negative tumours. In this regard, we have observed epidemiological differences between OPC cases that were double positive for HPV-DNA/p16INK4a and cases that were p16INK4a-positive only, such as the loss of association with age and calendar period. Age discrepancies could be explained by a higher accumulation of mutations with age in the case of p16INK4a—positive—HPV-negative patients. A powered study aiming to perform an in-depth comparison between p16INK4a—positive—HPV-positive cases and p16INK4a—positive—HPV-negative cases is warranted to elucidate these questions.

Our study has several limitations. Selection of patients was not population-based and thus our results cannot be extrapolated to the general population. Moreover, the modest sample size does not allow firm conclusions to be drawn regarding associations with HPV positivity by subsite or gender, for instance. However, according to preliminary estimates of the OPC incidence in Catalonia using data from population-based registries, about one third of OPC cases diagnosed each year in Catalonia are seen at the four hospitals of the study, and our sample represents approximately 16% of all incident OPC cases in the region. The retrospective nature of our cohort may have hampered thorough characterization of patients according to risk factors such as tobacco or alcohol use, since this kind of information could only be partially obtained from medical records. The more recent patients were only available for inclusion in the study for Sant Pau Hospital. However, when we addressed this limitation by performing a sensitivity analysis only considering Sant Pau patients, we obtained equivalent results. In addition, paraffin blocks were not available at diagnosis for a substantial number of patients, notably those with base of tongue carcinoma, a location particularly difficult to biopsy, as well as for patients from older periods. Of note, a fraction of these patients (3% from Bellvitge Hospital) had fine needle aspiration samples. However, these were not included according to our exclusion criteria. Our classification of subsites other than tonsil or base of tongue comprised many different locations, including oropharynx unspecified or overlapping sites that could also include tonsil and base of tongue.

Our findings indicate that HPV prevalence in OPC has started to sharply increase in the most recent years in our setting. These results, together with previous estimates of increasing trends of OPC in Spain, suggest that HPV-related OPC has started to increase as occurred two decades ago in areas where most OPC cases are currently HPV-related. However, there are some differences between the epidemiology of the disease in our setting and other high-burden regions and we do not yet know whether they may change in the near future to approach the epidemiology of HPV-related OPC in high-burden regions.

Importantly, our results strongly suggest that current estimates of HPV prevalence in southern Europe (probably other regions beyond high-burden areas) are outdated and warrant updated studies in selected populations. Continuing surveillance of sexual behaviours, alongside HPV vaccination status, is warranted to predict future HPV-related OPC burden.

Received: 26 February 2020; Accepted: 21 July 2020
Published online: 06 August 2020

References
1. IARC. IARC Monographs on the evaluation of carcinogenic risks to humans. Monograph 89, 223–276 (2007).
2. De Martel, C., Plummer, M., Vignat, J. & Franceschi, S. Worldwide burden of cancer attributable to HPV by site country and HPV type. Int. J. Cancer 141(4), 664–670 (2017).
3. Chaturvedi, A. K. et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 29, 4294–4301 (2011).
4. Nasman, A. et al. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: An epidemic of viral-induced carcinoma? Int. J. Cancer 125, 362–366 (2009).
5. Hannisdal, K., Schjølberg, A., De Angelis, P. M., Boysen, M. & Clausen, O. P. Human papillomavirus (HPV)-positive tonsillar carcinomas are frequent and have a favourable prognosis in males in Norway. Acta Otolaryngol. 130, 293–299 (2010).
6. Garnaes, E. et al. A high and increasing HPV prevalence in tonsillar cancers in Eastern Denmark, 2000–2016: The largest registry-based study to date. Int. J. Cancer 136(9), 2196–2203 (2015).
7. Rietbergen, M. M. et al. Increasing prevalence rates of HPV attributable oropharyngeal squamous cell carcinomas in the Netherlands as assessed by a validated test algorithm. Int. J. Cancer 132, 1565–1571 (2013).
8. Gillison, M. L., Chaturvedi, A. K., Anderson, W. F. & Fakhry, C. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J. Clin. Oncol. 33(29), 3325–3342 (2015).
9. Taberna, M. et al. Human papillomavirus-related oropharyngeal cancer. Annu. Oncol. 00, 1–13 (2017).
10. Castellsague, X. et al. HPV Involvement in head and neck cancers: Comprehensive assessment of biomarkers in 3680 patients. J. Natl. Cancer Inst. 108(6), djv03 (2016).
11. Rodrigo, J. P. et al. Time trends in the prevalence of HPV in oropharyngeal squamous cell carcinomas in northern Spain (1990–2009). Int. J. Cancer 134(2), 487–492 (2014).
12. Cerezo, L. et al. OPC related to human papilloma virus: Incidence and prognosis in Madrid. Clin. Transl. Oncol. 16(3), 301–306 (2014).
had no role in the data collection, analysis or interpretation of the results. de Catalunya (PERIS-2016–2020 SLT002/16/00,404 and SLT006/17/76), Rio Hortega-SEOM (ISCIII-Spanish PI1401918, PI1500500, PI1501205, RD12/0,036/0,056, CIBERESP CB06/02/0,073 CIBERONC CB16/12/0,040), FEDER funds / European Regional Development Fund (ERDF)—a way to build Europe (References: PI1102096, work was supported by grants from the Instituto de Salud Carlos III-ISCIII (Spanish Government) co-funded by veras; Hospital Universitari Parc Taulí: Antón Aguilà, María Rosa Bella, Carmen Blazquez, Teresa Bonfill). This Ángel Pavón, Beatriz Quirós, Silvia de Sanjosé, Miren Taberna, Montserrat Torres, Sara Tous, Griselda Venturas, group: Catalan Institute of Oncology/Hospital Universitari de Bellvitge: Laia Alemany, Xavier Bosch, Vanesa Fakhrly, C., Andersen, K. K., Christensen, J., Agrawal, N. & Eisele, D. W. The impact of tonsillectomy upon the risk of oropharyngeal 14. Del Mistro, A. 16. Leeper, T. J. 17. Alemany, L. 19. Gelman, A., & Su, Y. 21. de Souza, D. L., Pérez, M. M. & Curado, M. P. Predicted incidence of oral cavity, oropharyngeal, laryngeal, and hypopharyngeal cancer in Spain and implications for cancer control. Cancer Epidemiol. 35(6), 510–514 (2011). 22. Ferlay, J. 23. Gillison, M. L. 24. Chaturvedi, A. K., D'Souza, G., Gillison, M. L. & Katki, H. A. Burden of HPV-positive oropharynx cancers among ever and never smokers in the U.S. Population. Oral Oncol 60, 61–7 (2016). 25. Rettig, E. M. et al. Oropharyngeal cancer is no longer a disease of younger patients and the prognostic advantage of human papillomavirus is attenuated among older patients: Analysis of the national cancer database. Oral. Oncol. 83, 147–153 (2018). 26. Windon, M. J. et al. Increasing prevalence of human papillomavirus-positive oropharyngeal cancers among older adults. Cancer 124(14), 2993–2999 (2018). 27. Combes, J. D., Chen, A. A. & Francesci, S. Prevalence of human papillomavirus in cancer in the oropharynx by gender. Cancer Epidemiol. Biomark. Prev. 23(12), 2954–2958 (2014). 28. Clérries, R. et al. Time trends of cancer incidence and mortality in Catalonia during 1993–2007. Clin. Transl. Oncol. 16(1), 18–28 (2014). 29. Giuliano, A. R. et al. EUROGIN 2014 roadmap: Differences in human papillomavirus infection natural history, transmission and human papillomavirus-related cancer incidence by gender and anatomic site of infection. Int. J. Cancer 136(12), 2752–2760 (2015). 30. Heck, J. E. et al. Sexual behaviours and the risk of head and neck cancer: A pooled analysis in the International Head and Neck Cancer Epidemiology (INHANCE) consortium. Int. J. Epidemiol. 39(1), 166–181 (2010). 31. Castellsagué, X. et al. Prevalence and genotype distribution of human papillomavirus infection of the cervix in Spain: The CLEOPACTRE study. J. Med. Virol. 84(6), 947–956 (2012). 32. Fakhry, C., Andersen, K. K., Christensen, J., Agrawal, N. & Eisele, D. W. The impact of tonsillectomy upon the risk of oropharyngeal carcinoma diagnosis in the Danish cancer registry. Cancer Prev. Res. (Phila) 8(7), 583–589 (2015). 33. Chaturvedi, A. et al. Tonsillectomy and incidence of oropharyngeal cancers. Cancer Epidemiol. Biomark. Prev. 25(6), 944–950 (2016). 34. Schache, A. G. et al. HPV-related oropharynx cancer in the United Kingdom: An evolution in the understanding of disease etiology. Cancer Res. 76(22), 6598–6606 (2016). 35. Haeggboml, L., Ramqvist, T., Tommasino, M., Dalianis, T. & Nåsman, A. Time to change perspectives on HPV in oropharyngeal cancer. A systematic review of HPV prevalence per oropharyngeal sub-site the last 3 years. Papillomavirus Res 4, 1–11 (2017). 36. Grehnaj Larsen, C. et al. Correlation between human papillomavirus and p16 overexpression in oropharyngeal tumours: A systematic review. Br. J. Cancer 110(6), 1587–1594 (2014). 37. Perrone, F. et al. Isolating p16 positive HPV negative oropharyngeal cancer: An effort worth making. Am. J. Surg. Pathol. 35(5), 774–777 (2011). 38. Jordan, R. C. et al. Validation of methods for OPC HPV status determination in US cooperative group trials. Am. J. Surg. Pathol. 36(7), 945–954 (2012). 39. Coorides, A. et al. Meta-analysis of survival in patients with HNSCC discriminates risk depending on combined HPV and p16 status. Eur. Arch. Otorhinolaryngol. 273(8), 2157–2169 (2016). 40. Riebelgen, M. M. et al. Molecular characterization of p16-imunopositive but HPV DNA-negative oropharyngeal carcinomas. Int. J. Cancer 134(10), 2366–2372 (2014). 41. Galceran, J., Ameijide, A., Alemany, L., Carulla, M., Marcos, R., Vilardell, L., et al. Incidence and mortality of neoplasias related to Human papillomavirus in Catalonia. In XXXV Scientific Meeting of the Spanish Society of Epidemiology (SEE), Oral Presentation, (2017).

Acknowledgements
We thank CERCIA Program / Generalitat de Catalunya for institutional support and all members of the study group: Catalan Institute of Oncology/Hospital Universitari de Bellvitge: Laia Alemany, Xavier Bosch, Vanesa Camon, Omar Claver, Ana Esteban, Yolanda Florencio, Montserrat Gomà, Alicia Lozano, Manel Maños, Antoniari Mari, Marisa Mena, Ricard Mesia, Julio Nogués, Oriol Bermejo, Ramon Cléries, Jon Frias-Gomez, Miqel Ángel Pavón, Beatriz Quiro, Silvia de SanJosé, Miren Taberna, Montserrat Torres, Sara Tous, Griselda Venturas, Marleny Vergara; Hospital General de l’Hospitalet: Maria Alejo; Hospital de la Santa Creu i Sant Pau: Jacinto Garcia, Xavier Leon, Montserrat Lopez, Miqel Quer; Hospital del Mar: Marta Guix, Rafael Hijano, Belen Lloreras; Hospital Universitari Parc Taubl: Antó Aguià, María Rosa Bella, Carmen Blazquez, Teresa Bonfill). This work was supported by grants from the Instituto de Salud Carlos III-ISCIII (Spanish Government) co-funded by FEDER funds / European Regional Development Fund (ERDF)—a way to build Europe (References: PI1102096, PI1401918, PI1500500, PI1501205, RD12/036/0,056, CIBERESP CB06/02/0,073 CIBERONC CB16/12/0,040), Agència de Gestió d’Ajuds Universitaris i de Recerca (2017SGR1085), Department of Health of the Generalitat de Catalunya (PERIS-2016–2020 SLT002/16/00,404 and SLT006/17/776), Rio Hortega-SEOM (ISCIII-Spanish Society of Medical Oncology) (personal grant to MT) and from Sanofi Pasteur MSD and Merck & Co, Inc., who had no role in the data collection, analysis or interpretation of the results.

References
Author contributions
MM, LA, MT, RC and ST conceptualized the study. MM, LA, MT, RC, ST and JFG designed the study. MM, MT, XL, JG, RM, OB, TB, AA, MG, RH, AB collected the data. BQ, JFG, ST, MM, MT and LA assured the quality control of data and algorithms. OC, MTo, BLL, MA, MAP, MM, BQ, ST, MT and LA analysed and interpreted the data. JFG, SM, ST and RC did the statistical analyses. MM and JFG prepared the manuscript. MM edited the manuscript. All authors reviewed and approved the final version.

Competing interests
RM has received personal fees and non-financial support from Merck, and personal fees from Astra Zeneca and MSD. MT has received scientific advisory board fees, speaker’s fees, travel grants or non-financial support from Merck, Astra Zeneca, Nanobiotics, MSD and Bristol Meyers. Cancer Epidemiology Research Program (LA, MM, JE, SM, ST, BQ, OC, MT, MTo, MP) has received sponsorship for grants from Merck and co, Roche, Reig-jofre, IDT, Seegene, Hologic and GSK. The rest of authors have declared no conflicts of interest.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-70118-7.

Correspondence and requests for materials should be addressed to M.M. or L.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020