Usefulness of Dual Echo Volumetric Isotropic Turbo Spin Echo Acquisition (VISTA) in MR Imaging of the Temporomandibular Joint

Yuko Sugimori1*, Shigeko Tanaka1, Tetsuya Nishimura2, Akira Yamamoto3, Satoko Ohfuji4, Yukari Naito1, Yasutomo Katsumata5, and Yukio Miki3

1Department of Radiology, Wakakusa Daiichi Hospital
1-6 Wakakusa-cho, Higashiosaka, Osaka 579–8056, Japan
2Nishimura Oral and Maxillofacial Surgery Clinic
3Department of Radiology, Osaka City University Graduate School of Medicine
4Department of Public Health, Osaka City University Faculty of Medicine
5Philips Electronics Japan

(Received January 23, 2013; Accepted May 29, 2013; published online October 29, 2013)

Purpose: We investigated the ability to detect the articular disk and joint effusion of the temporomandibular joint (TMJ) of a method of dual echo volumetric isotropic turbo spin echo acquisition (DE-VISTA) additional fusion images (AFI).

Methods: DE-VISTA was performed in the 26 TMJ of 13 volunteers and 26 TMJ of 13 patients. Two-dimensional (2D) dual echo turbo spin echo was performed in the 26 TMJ of 13 volunteers. On a workstation, we added proton density-weighted images (PDWI) and T2 weighted images (T2WI) of the DE-VISTA per voxel to reconstruct DE-VISTA-AFI. Two radiologists reviewed these images visually and quantitatively.

Results: Visual evaluation of the articular disk was equivalent between DE-VISTA-AFI and 2D-PDWI. The sliding thin-slab multiplanar reformation (MPR) method of DE-VISTA-AFI could detect all articular disks. The ratio of contrast (CR) of adipose tissue by the articular disk to that of the articular disk itself was significantly higher in DE-VISTA-AFI than DE-VISTA-PDWI ($P<0.05$) in patients and volunteers with closed or open mouth. In volunteers, the CR between adipose tissue and the disk on DE-VISTA-AFI was marginally significant to that on 2D-PDWI at opened mouth ($P=0.071$) and not significantly different ($P=0.18$) from that at closed mouth. Joint effusion could be identified in DE-VISTA-AFI in all 8 joints that had joint effusion in DE-VISTA-T2WI but in only 3 of those joints in 2D-T2WI. The CR of joint effusion to adipose tissue on DE-VISTA-AFI did not differ significantly from that on DE-VISTA-PDWI. However, using DE-VISTA-T2WI in addition to DE-VISTA-PDWI, we could visually identify joint effusion on DE-VISTA-AFI that could not be identified on DE-VISTA-PDWI alone.

Conclusion: DE-VISTA-AFI can depict the articular disk and a small amount of joint effusion by the required plane of MPR using the sliding thin-slab MPR method.

Keywords: dual echo, MRI, temporomandibular joint, VISTA, 3D fast spin echo

Introduction

The major symptoms of temporomandibular joint disorder (TMD) are pain or tenderness in or around the temporomandibular joint (TMJ), dys-
evaluated.2–4 Another paper reports the 95% accuracy of MR imaging in assessing disk position and form and 93% accuracy in assessing osseous changes.5

Proton density-weighted images (PDWI) are necessary to detect the position and deformity of the articular disk,6–8 and T2-weighted images (T2WI) are necessary to detect the level of joint effusion, which is associated with pain.6,9 A dual echo technique is generally used for 2-dimensional (2D)-PDWI and -T2WI scans.10 Sagittal and coronal sections of the TMJ in both closed- and opened-mouth positions are also required to determine displacement and reduction of the articular disk.11,12 However, 2D dual echo imaging is often technically difficult for planning.

Because 3-dimensional (3D) imaging is very time consuming using a spin echo method, a gradient echo method has been employed. The utility of 3D-T2 turbo field echo (TFE) is reported for detecting lateral displacement of the articular disk using multiplanar reformation (MPR) at the TMJ.13 However, the mastoid air cells adjacent to the TMJ limit detection of the articular disk in those gradient echo sequences. Magnetic susceptibility effects due to structures containing air, such as mastoid air cells and the ethmoid sinus, can cause signal loss near the skull base when gradient echo methods are used.14 Three-dimensional imaging using a spin echo method can overcome this limitation by providing better images without the influence of susceptibility effects. However, conventional 3D-T2 turbo spin echo (TSE) remains time consuming. Recently, use of the volumetric isotropic TSE acquisition (VISTA) sequence at clinical sites has enabled high speed imaging, even for spin echo 3D imaging.15–18

We hypothesized that the dual echo VISTA (DE-VISTA) method could be used to overcome the issues of prolonged scan duration and susceptibility effects at the TMJ. In addition, because DE-VISTA-PDWI and DE-VISTA-T2WI have identical positional information, their data can be precisely added and calculated per voxel. Therefore, we created a DE-VISTA additional fusion image (AFI) with DE-VISTA-PDWI and DE-VISTA-T2WI and investigated its ability to detect the articular disk and joint effusion of the TMJ.

Materials and Methods

Patients

Our institutional review board approved this study. We evaluated a total of 52 joints, 26 each in 13 asymptomatic male volunteers (aged 25 to 48 years, average age 32 years) and 13 consecutive patients with symptoms (2 men, 11 women; aged 14 to 74 years, average age 54 years) who underwent magnetic resonance (MR) imaging at our hospital from July 29, 2010 to February 6, 2012.

Imaging procedures

A 1.5-tesla MR imager (Intera Achieva Nova Dual R2–6, Phillips, Best, The Netherlands) was used with 2-channel sense-encoding (SENSE) flex coils as receivers.

We simultaneously obtained DE-VISTA-PDWI and T2WI transaxial images within a range of 35 mm centering on the TMJ using 3D pilot scan techniques and dual echo sequence at both opened- and closed-mouth positions. Patient examinations at opened mouth were carried out using a bit block prepared by the ordering oral and maxillofacial surgeon.

Parameters for DE-VISTA imaging were: repetition time (TR)/echo time (TE) (first)/TE (second), 800/10/150 ms for 3D dual echo TSE (DE-VISTA); field of vision (FOV), 224×224×35 mm; acquisition matrix, 1×1×1 mm; reconstruction matrix, 0.5×0.5×0.5 mm; refocusing control pulse flip angle, 160°; scan orientation, transverse; phase direction, right to left (RL); SENSE parallel imaging technique; SENSE P reduction factor, 2; turbo factor, 38; driven equilibrium (DRIVE) technique; number of signals averaged (NSA), 2, and scan duration, 6 min 45 s at closed-mouth and 13 min 30 s at opened-mouth position.

We obtained 2D dual echo TSE images only in volunteers, and 7 slices was performed for each right (Rt) and left (Lt) TMJ each oblique sagittal and oblique coronal under the following conditions; slice thickness, 3 mm with a 0.3-mm gap; TR/TE, 1533 ms/19 ms (PDWI), 1533 ms/150 ms (T2WI); acquisition matrix, 0.43×0.6×3.0 mm; reconstruction matrix, 0.29×0.29×3.0 mm; FOV, 150 mm; turbo factor, 10; DRIVE technique; and NSA, 2. The planned examination time for the dual echo sequences was 4 min 32 s each for oblique sagittal and oblique coronal images, and total examination time for closed- and opened-mouth positions was 18 min 8 s.

Image analysis

Using AZE Virtual Place® software (AZE, Tokyo, Japan), we created DE-VISTA-AFI by adding VISTA-PDWI and VISTA-T2WI obtained by the dual echo sequence per voxel. Subsequently, we reconstructed 24 coplanar images, such as oblique sagittal and oblique coronal images of the right and left TMJ at closed- and opened-mouth
position, for each of the 3 methods, DE-VISTA-PDWI, DE-VISTA-T2WI, and DE-VISTA-AFI. These images were obtained in planes perpendicular and parallel to the long axis of the condyle. The MPR images were one mm thick with 0.5-mm interval.

The articular disk

Two radiologists, both with more than 10 years' experience in MR imaging, visually compared DE-VISTA-PDWI, DE-VISTA-AFI, sliding thin-slab MPR of DE-VISTA-AFI, and 2D-PDWI of volunteers to evaluate the anterior and posterior bands of the articular disk. They visually compared DE-VISTA-PDWI, DE-VISTA-AFI, and sliding thin-slab MPR of DE-VISTA-AFI to evaluate the articular disk of patients. In consensus, they graded image quality using a 3-point scale, from 0 to 2: 0 points, articular disk cannot be identified; one point, either the anterior or posterior band of the articular disk can be identified; and 2 points, both the anterior and posterior bands of the articular disk can be identified. Initially, a part of the articular disk was detected by rotation MPR in the center of the TMJ, and the disk was then continuously detected over its length and breadth by sliding and rotation MPR, termed sliding thin-slab MPR of DE-VISTA-AFI. The sliding thin-slab MPR image was one mm in thickness. For interactive viewing, this slab can be moved through the whole stack of transaxial images. The radiologists evaluated the images for the presence of disk displacement status in DE-VISTA-AFI until consensus was reached.

For quantitative analysis, in volunteers with joint effusion on DE-VISTA-T2WI, a single one-mm² ROI was placed on the joint effusion and adipose tissue in DE-VISTA-T2WI, DE-VISTA-PDWI, DE-VISTA-AFI, and 2D-T2WI. Two-dimensional T2WI in volunteers demonstrated joint effusion in only 3 of 8 joints that showed joint effusion in DE-VISTA-T2WI. For the other 5 joints, a single one-mm² ROI was placed on a similar site identified with joint effusion in VISTA-T2WI. CR was measured as: \[CR = \frac{\text{signal of joint effusion}}{\text{signal of adipose tissue}} \]

Statistical analysis

In volunteers, we used one-way analysis of variance (ANOVA) with Tukey-Kramer post hoc test to compare CR (adipose tissue/disk) in DE-VISTA-PDWI, DE-VISTA-AFI, and 2D-PDWI for quantitative analysis of the articular disk and to compare CR (joint effusion/adipose tissue) in DE-VISTA-T2WI, DE-VISTA-AFI, DE-VISTA-PDWI, and 2D-T2WI for quantitative analysis of joint effusion. In patients, where only 2 groups were compared, 2-tailed paired t test was used. In all analyses, \(P < 0.05 \) was considered significant. All statistical analyses were performed with JMP software (version 9.0.2, Institute, Inc, SAS, Cary, NC, USA).

Results

MR imaging was performed successfully in the planned scan time in all patients and volunteers.

The articular disk

Visual evaluation

At closed-mouth position in volunteers, a grade of one point was given to 4 joints on DE-VISTA-PDWI, 3 joints on DE-VISTA-AFI, and 6 joints on 2D-PDWI. Three joints that received a grade of 2 points only on the sliding thin-slab MPR image of DE-VISTA-AFI were otherwise evaluated with one point on other images. In patients, where only 2 groups were compared, 2-tailed paired t test was used. In all analyses, \(P < 0.05 \) was considered significant. All statistical analyses were performed with JMP software (version 9.0.2, Institute, Inc, SAS, Cary, NC, USA).

Joint effusion

Two radiologists visually reviewed and recorded the presence or absence of joint effusion in volunteers in DE-VISTA-T2WI, DE-VISTA-AFI, DE-VISTA-PDWI, and 2D-T2WI. They visually reviewed and recorded the presence or absence of joint effusion in patients in DE-VISTA-T2WI, DE-VISTA-PDWI, and DE-VISTA-AFI.

For quantitative analysis, in volunteers with joint effusion on DE-VISTA-T2WI, a single one-mm² ROI was placed on the joint effusion and adipose tissue in DE-VISTA-T2WI, DE-VISTA-PDWI, DE-VISTA-AFI, and 2D-T2WI. Two-dimensional T2WI in volunteers demonstrated joint effusion in only 3 of 8 joints that showed joint effusion in DE-VISTA-T2WI. For the other 5 joints, a single one-mm² ROI was placed on a similar site identified with joint effusion in VISTA-T2WI. CR was measured as: \[CR = \frac{\text{signal of joint effusion}}{\text{signal of adipose tissue}} \]

Statistical analysis

In volunteers, we used one-way analysis of variance (ANOVA) with Tukey-Kramer post hoc test to compare CR (adipose tissue/disk) in DE-VISTA-PDWI, DE-VISTA-AFI, and 2D-PDWI for quantitative analysis of the articular disk and to compare CR (joint effusion/adipose tissue) in DE-VISTA-T2WI, DE-VISTA-AFI, DE-VISTA-PDWI, and 2D-T2WI for quantitative analysis of joint effusion. In patients, where only 2 groups were compared, 2-tailed paired t test was used. In all analyses, \(P < 0.05 \) was considered significant. All statistical analyses were performed with JMP software (version 9.0.2, Institute, Inc, SAS, Cary, NC, USA).

Results

MR imaging was performed successfully in the planned scan time in all patients and volunteers.
Fig. 1. Temporomandibular joint (TMJ) of a 25-year-old male volunteer at closed-mouth position using sliding thin-slab multiplanar reformation (MPR) method. The articular disk cannot be identified in DE-VISTA-PDWI (dual echo volumetric isotropic turbo spin echo acquisition proton density-weighted images) oblique sagittal image (a), DE-VISTA-AFI (DE-VISTA additional fusion image) oblique sagittal image (b), and 2-dimensional (2D)-PDWI oblique sagittal image (c). It was possible to identify the articular disk using sliding thin-slab MPR of DE-VISTA-AFI. White arrow indicates the disk with rotation MPR in the center of the TMJ, termed sliding thin-slab MPR, of the oblique sagittal (d) and oblique coronal (e) images of DE-VISTA-AFI.

Points in DE-VISTA-PDWI	Points in DE-VISTA-AFI	Points in thin-slab MPR of DE-VISTA-AFI	Points in 2D-PDWI	Number of joints identified at closed-mouth position	Number of joints identified at opened-mouth position
2	2	2	2	19	18
1	2	2	2	1	0
1	1	2	2	0	1
1	1	2	2	3	2
2	2	2	1	3	5

Zero points, the articular disk cannot be identified; one point, either the anterior or posterior band of the articular disk can be identified; 2 points, both the anterior and posterior bands of the articular disk can be identified.

In all joints that could not be identified the articular disk on 2D-PDWI (2-dimensional proton density-weighted images), DE-VISTA-PDWI (dual echo volumetric isotropic turbo spin echo acquisition proton density-weighted images), and DE-VISTA-AFI (DE-VISTA addition fusion images), the anterior and posterior bands of the articular disk could be identified by the sliding thin-slab multiplanar reformation (MPR) of DE-VISTA-AFI.

Table 1. Visual evaluation of the articular disk in volunteers

- be identified because of motion artifact at DE-VISTA-AFI and DE-VISTA-PDWI, but both the anterior and posterior bands of the articular disk of this joint could be identified on 2D-PDWI and sliding thin-slab MPR. The articular disks of all 52 joints (26 joints each for closed- and opened-mouth position) could be detected by sliding thin-slab MPR of DE-VISTA-AFI (Table 1).
- At closed-mouth position in patients, 2 joints on DE-VISTA-PDWI and DE-VISTA-AFI were graded with one point. On sliding thin-slab MPR of DE-VISTA-AFI, all 26 joints received 2 points.
At opened-mouth position in patients, all 26 joints received 2 points on DE-VISTA-PDWI, DE-VISTA-AFI, and sliding thin-slab MPR of DE-VISTA-AFI (Table 2).

Disk displacement status in the total 26 joints of volunteers was evaluated at DE-VISTA-AFI as: 22 joints, normal superior disk position with normal function (84%); 3 joints, disk displacement with reduction (12%); and one joint, disk displacement without reduction with articular disc deformity (4%) (Fig. 2). Although the case showing disk displacement without reduction currently was asymptomatic, history-taking revealed that he had previously been symptomatic; the mandibular condyle of the affected side was smaller than that of the opposite side. Thus, only one slice of 2D-PDWI could show the deformed and displaced articular disk that was detected overall by sliding thin-slab MPR of DE-VISTA-AFI. Disk displacement status in the total 26 joints of patients was evaluated at DE-

Points in DE-VISTA-PDWI	Points in DE-VISTA-AFI	Points in thin-slab MPR of DE-VISTA-AFI	Number of joints identified at closed-mouth position	Number of joints identified at opened-mouth position
2	2	2	24	26
1	1	2	2	0

Zero points, the articular disk cannot be identified; one point, either the anterior or posterior band of the articular disk can be identified; 2 points: both the anterior and posterior bands of the articular disk can be identified. In all joints that could not be identified the articular disk on DE-VISTA-PDWI (dual echo volumetric isotropic turbo spin echo acquisition proton density-weighted images) and DE-VISTA-AFI (DE-VISTA addition fusion images), the anterior and posterior bands of the articular disk could be identified by the sliding thin-slab multiplanar reformation (MPR) of DE-VISTA-AFI.

Fig. 2. Temporomandibular joint (TMJ) of a 40-year-old male volunteer with asymmetric condyles and very small left condyle. DE-VISTA-AFI (dual echo volumetric isotropic turbo spin echo acquisition additional fusion image) oblique sagittal image (a) and 2-dimensional proton density-weighted (2D-PDWI) oblique sagittal image (d) at closed-mouth position show anterior displacement and deformity of the articular disk. DE-VISTA-AFI oblique sagittal image (b) and 2D-PDWI oblique sagittal image (e) at opened-mouth position show no reduction. This articular disk was deformed, and we could not distinguish between the anterior and posterior bands, so it was graded with one point. The oblique coronal image of DE-VISTA-AFI (c) shows that his condyles were asymmetric, and the left condyle was very small. Small white arrow indicates the articular disk.
Fig. 3. Temporomandibular joint (TMJ) of a 61-year-old male patient with anterolateral disk displacement with reduction. DE-VISTA-AFI (dual echo volumetric isotropic turbo spin echo acquisition additional fusion image) oblique sagittal image (a) and oblique coronal image (b) show anterolateral displacement of the disk at closed-mouth position. DE-VISTA-AFI oblique sagittal image (c) and oblique coronal image (d) at opened-mouth position show the normal position of the disk. Joint effusion was observed at the joint space. White arrow indicates the disk. Oblique coronal image was necessary to detect the laterally displaced disk.

VISTA-AFI as: 7 joints, normal superior disk position with normal function (27%); 11 joints, disk displacement with reduction (42%) (Fig. 3); and 8 joints, disk displacement without reduction (31%) (Fig. 4). Figure 4 shows anterolateral disc displacement with oblique sagittal and oblique coronal DE-VISTA-AFI.

Quantitative analysis (Table 3)

In volunteers (13 cases, 26 joints), ANOVA indicated an overall difference between the 3 images in regard to CR between adipose tissue and disk ($P<0.05$). CR between adipose tissue and disk was higher on DE-VISTA-AFI than DE-VISTA-PDWI when compared at closed- and opened-mouth positions ($P=0.036$, closed; $P=0.017$, opened). At both closed and opened mouth, CR between adipose tissue and disk did not differ significantly between VISTA-PDWI and 2D-PDWI (closed mouth, $P=0.74$; opened mouth, $P=0.83$). CR between adipose tissue and disk on DE-VISTA-AFI had statistically marginal significance to CR on 2D-PDWI at opened-mouth position ($P=0.071$). However, CR on DE-VISTA-AFI did not differ significantly from that of 2D-PDWI ($P=0.18$) at closed mouth.

In patients (13 cases 26 joints), CR between adipose tissue and disk was higher on DE-VISTA-AFI than DE-VISTA-PDWI when compared at closed and opened mouth ($P<0.0001$).

Joint effusion

Visual evaluation

Visual evaluation identified joint effusion in 8 joints of volunteers and 12 joints of patients in DE-VISTA-T2WI. Joint effusion in those 20 joints was also identified in DE-VISTA-AFI, but it was difficult to distinguish between adipose tissue and joint effusion in DE-VISTA-PDWI. Joint effusion at the TMJ of volunteers could be identified in DE-VISTA-AFI in all 8 joints that demonstrated joint effusion in DE-VISTA-T2WI but in only 3 of those joints in 2D-T2WI. DE-VISTA-AFI could depict a
Fig. 4. Temporomandibular joint (TMJ) of an 18-year-old female patient with disk displacement without reduction. DE-VISTA-AFI (dual echo volumetric isotropic turbo spin echo acquisition additional fusion image) oblique sagittal image (a) and oblique coronal image (b) show anterior displacement of the disk at closed-mouth position. DE-VISTA-AFI oblique sagittal image (c) and oblique coronal image (d) (e) at opened mouth show no reduction of the disk. Joint effusion was observed at the joint space. White arrow indicates the disk.

Table 3. Comparison of the ratio of contrast (CR) between adipose tissue by the disk and the articular disk itself

	2D-PDWI	DE-VISTA-PDWI	DE-VISTA-AFI
Volunteer			
Closed mouth	mean 2.30 (1.35–4.33)	mean 2.16 (1.41–3.55)	mean 2.52 (1.47–3.72)
	$P=0.071$	$P=0.036$	$P=0.74$
Opened mouth	mean 2.55 (1.07–4.08)	mean 2.16 (1.29–3.17)	mean 2.57 (1.37–3.59)
Patient			
Closed mouth	mean 2.22 (0.96–4.10)	$P<0.0001$	mean 2.66 (1.05–5.20)
Opened mouth	mean 2.00 (1.05–3.11)	$P<0.0001$	mean 2.40 (1.17–4.00)

In volunteers (13 cases, 26 joints), CR was higher on DE-VISTA-AFI (dual echo volumetric isotropic turbo spin echo acquisition additional fusion images) than DE-VISTA-PDWI (DE-VISTA proton density-weighted images) ($P=0.036$, closed mouth; $P=0.017$, opened mouth). CR on DE-VISTA-PDWI did not differ significantly from that on 2-dimensional (2D)-PDWI ($P=0.74$, closed mouth; $P=0.83$, opened mouth). CR on DE-VISTA-AFI was marginally significant compared to that on 2D-PDWI at opened-mouth position ($P=0.071$) but not significantly different at closed mouth ($P=0.18$).

In patients (13 cases, 26 joints), CR was higher on DE-VISTA-AFI than on DE-VISTA-PDWI ($P<0.0001$).

small amount of joint effusion (Fig. 5).

Quantitative analysis (Table 4)
ANOVA indicated an overall difference in CR (joint effusion/adipose tissue) among the 4 images ($P<0.0001$). CR (joint effusion/adipose tissue) in all joint effusion of volunteers was higher on DE-VISTA-AFI than DE-VISTA-PDWI but did not differ significantly on DE-VISTA-AFI and DE-VISTA-PDWI ($P=0.65$). It was significantly higher in DE-VISTA-T2WI than DE-VISTA-AFI ($P=$...
Fig. 5. Temporomandibular joint (TMJ) of a 30-year-old male volunteer. (a) 2-dimensional proton density- (2D-PDWI) and T₂-weighted (T₂WI) images at closed mouth position. (b) DE-VISTA-PDWI (dual echo volumetric isotropic turbo spin echo acquisition proton density-weighted images), T₂WI, and addition fusion image (AFI) at closed-mouth position. (c) 2D-PDWI and T₂WI at opened-mouth position. (d) DE-VISTA-PDWI, T₂WI, and AFI at opened-mouth position. The relationship between the articular disk and synovial fluid was clearer on DE-VISTA-AFI than DE-VISTA-PDWI. The articular disk was clearer on DE-VISTA-AFI than 2D-PDWI at closed and opened mouth. White arrow indicates the disk; white arrowhead indicates joint effusion.

Discussion

Our study indicated that DE-VISTA may be used to quantify detection of the articular disk and effusion of the temporomandibular joint. Compared to conventional 2D-PDWI, which had a slice gap, the 3D images of DE-VISTA-PDWI, DE-VISTA-T₂WI, and DE-VISTA-AFI were continuous. Thus, we could obtain MPR, which had a thinner slice thickness and lacked gaps, and use the sliding thin-slab MPR method to detect the articular disk. Therefore, it was possible to identify the disk by rotating MPR in the center of the TMJ in cases whose conventional MPR did not depict the disk.
Table 4. Comparison of the ratio of contrast (CR) between joint effusion and adipose tissue in 8 joints of volunteers with joint effusion could be identified in DE-VISTA-T2WI (dual echo volumetric isotropic turbo spin echo acquisition T2-weighted images)

Image Type	CR (Joint effusion/adipose tissue)	P
DE-VISTA-PDWI	mean 1.19 (0.89–1.51)	←→ P = 0.65
DE-VISTA-AFI	mean 1.49 (1.17–1.86)	←→ P = 0.0008
DE-VISTA-T2WI	mean 2.60 (1.83–3.35)	←→ P = 0.0024
2D-T2WI	mean 1.59 (0.41–2.88)	←→ P = 0.98

CR between joint effusion and adipose tissue did not differ significantly on DE-VISTA-AFI (DE-VISTA additional fusion images) and DE-VISTA-PDWI (DE-VISTA proton density-weighted images) (P = 0.65). It was significantly higher in DE-VISTA-T2WI than DE-VISTA-AFI (P = 0.0008), DE-VISTA-PDWI (P < 0.0001), and 2D-T2WI (2-dimensional T2-weighted images) (P = 0.0024). CR did not differ significantly between 2D-T2WI and DE-VISTA-PDWI (P = 0.42), between 2D-T2WI and DE-VISTA-AFI (P = 0.98).

Because 2D images were performed with 3-mm slice thickness and 0.3-mm slice gap, the present MPR method performed with thin slices and no gaps was useful in identifying small and deformed articular disks and small amounts of joint effusion.

The most distinguished feature of DE-VISTA is its ability to establish high TSE factors and shorten imaging scan time by exciting the nonselective refocusing pulse, which also shortens echo spacing and reduces motion artifacts.15–18 In our study, the total scan time of DE-VISTA at closed- and opened-mouth positions was 13 min 30 s. Diagnosis of disk dislocation cannot be established solely on the basis of oblique sagittal MR imaging findings. An oblique coronal section was also necessary to diagnose TMD.11,12 The scan time of 2D dual echo images (2D-PDWI and 2D-T2WI) totaled 18 min 8 s. DE-VISTA can be arranged by simple planning and effectively shortens acquisition time.

In visually evaluating knee ligaments and menisci with 3.0T MR imaging, readers performed better with conventional 2D acquisition than 3D-FSE acquisitions.21 Also in our examination, CR between adipose tissue by the articular disk and the articular disk itself at DE-VISTA-PDWI did not exceed that at 2D-PDWI, but the ratio was equivalent between DE-VISTA-AFI and 2D-PDWI. It was higher in DE-VISTA-AFI than DE-VISTA-PDWI in both volunteers and patients. DE-VISTA was TSE method, and the J coupling effect caused high adipose signals.22 Therefore, we considered it easier to identify the articular disk on DE-VISTA-AFI than DE-VISTA-PDWI. The diagnosis of disk displacement status was better in sliding thin-slab MPR of DE-VISTA-AFI than 2D-PDWI. Thus, DE-VISTA-AFI provides sufficient information to diagnose TMD.

Although a TR of 800 ms is short for DE-VISTA-T2WI, it depicted good joint effusion contrast because it contained DRIVE and was sufficient to evaluate the presence of joint effusion. Driven equilibrium consists of applying a resonant 90° radiofrequency (RF) pulse at the precise time when the transverse magnetization is refocused by the last spin echo 180° RF pulse and properly adjusted field gradients. This driven equilibrium pulse transforms the residual transverse magnetization (long T2) into longitudinal magnetization.23 Compared to 2D-T2WI, it was possible to identify a small amount of joint effusion in DE-VISTA-T2WI. In all cases that demonstrated effusion of the TMJ in DE-VISTA-T2WI, it was possible to identify joint effusion in DE-VISTA-AFI. CR between joint effusion and adipose tissue was higher in DE-VISTA-AFI than DE-VISTA-PDWI, but not statistically significantly different. The intensity of joint effusion, which was almost equal to that of adipose tissue on DE-VISTA-PDWI, was enhanced by the addition of DE-VISTA-T2WI on DE-VISTA-AFI. These results show that the evaluation of joint effusion accumulation is easier using DE-VISTA-AFI than DE-VISTA-PDWI alone.

When added together, DE-VISTA-PDWI and T2WI are not rescaled with dual echo, and on the whole, the signal of DE-VISTA-T2WI, which is the second echo, is weak. Noise of additional imaging was unnoticeable.

We considered it easier to identify the articular disk and joint effusion using DE-VISTA-AFI than both DE-VISTA-PDWI and DE-VISTA-T2WI.

Diagnosis using 3D images enables evaluation by reconstruction of arbitrary cross sections by thin slice, even after each inspection is terminated. There is some possibility that diagnosis using such 3D images may become common in the future by dissemination of filmless diagnostic images and advancement of image diagnostic systems. Therefore, this research would be worthwhile.
Our study is limited because of single-institution bias, the relatively small number of volunteers and patients, and the lack of surgical findings—limitations that may be solved by using DE-VISTA for TMD at another hospital. It is also necessary to process additional fusion images at a work station. Time will solve with more experience in their use. Another limitation is that in-plane matrix resolution was less in the DE-VISTA image than 2D-PDWI or T2WI images. The primary purpose of MR imaging for TMD was detection of the articular disk and joint fluid. For those purposes, DE-VISTA had necessary and sufficient conditions. Three-tesla MR imaging may improve this limitation.

Conclusion

The additional fusion image obtained by DE-VISTA can depict both the articular disk by the required plane of MPR using sliding thin-slab MPR as well as a small amount of joint effusion.

References

1. Westesson PL. Reliability and validity of imaging diagnosis of temporomandibular joint disorder. Adv Dent Res 1993; 7:137–151.
2. Tasaki MM, Westesson PL. Temporomandibular joint: diagnosing accuracy with sagittal and coronal MR imaging. Radiology 1993; 186:723–729.
3. Tasaki MM, Westesson PL, Isberg AM, Ren YF, Tallents RH. Classification and prevalence of temporomandibular joint disk displacement in patients and symptom-free volunteers. Am J Orthod Dentofacial Orthop 1996; 109:249–262.
4. DaSilva AF, Shaefcr J, Keith DA. The temporomandibular joint: clinical and surgical aspects. Neuroimaging Clin N Am 2003; 13:573–582.
5. Tasaki MM, Westesson PL, Raubertas RF. Observer variation in interpretation of magnetic resonance images of the temporomandibular joint. Oral Surg Oral Med Oral Pathol 1993; 76:231–234.
6. Sano T, Widmalm SE, Yamamoto M, Sakuma K, Araki K, Matsuda Y, Okano T. Usefulness of proton density and T2-weighted vs. T1-weighted MRI in diagnoses of TMJ disk status. Cranio 2003; 21: 253–258.
7. Orsini MG, Kubok T, Terada S, Matsuka Y, Yamashita A, Clark GT. Diagnostic value of 4 criteria to interpret temporomandibular joint normal disk position on magnetic resonance images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998; 86:489–497.
8. Ahmad M, Hollender L, Anderson Q, et al. Research diagnostic criteria for temporomandibular disorders (RDC/TMD): development of image analysis criteria and examiner reliability for image analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107:844–860.
9. Westesson PL, Brooks SL. Temporomandibular joint: relationship between MR evidence of effusion and the presence of pain and disk displacement. AJR Am J Roentgenol 1992; 159:559–563.
10. Hayakawa Y, Kober C, Otonari-Yamamoto M, Otonari T, Wakah M, Sano T. An approach for three-dimensional visualization using high-resolution MRI of the temporomandibular joint. Dentomaxillofac Radiol 2007; 36:341–347.
11. Pinkert R, Wandelt T, Kittner T. Comparative study of sagittal and coronal MRI of histological disk and temporomandibular joint specimen for examining an identity of anterior disk dislocation and anterior capsular connective tissue. Mund Kiefer Gesichtschir 2000; 4:285–291. [Article in German]
12. [Almashaan OC, Hedešiu M, Băciuț G, Leucuta DC, Băciuț M. Disk and joint morphology variations on coronal and sagittal MRI in temporomandibular joint disorders]. Clin Oral Investig 2012 Aug 7. [Epub ahead of print]
13. Yamada I, Murata Y, Shibuya H, Suzuki S. Internal derangements of the temporomandibular joint: comparison of assessment with three-dimensional gradient echo and spin echo MRI. Neuroradiology 1997; 39:661–667.
14. Schick RM, Wismer GL, Davis KR. Magnetic susceptibility effects secondary to out-of-plane air in fast MR scanning. AJNR Am J Neuroradiol 1988; 9:439–442.
15. Busse RF, Hariharan H, Vu A, Brittain JH. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 2006; 55:1030–1037.
16. Kijowski R, Davis KW, Woods MA, Lindstrom MJ, De Smet AA, Gold GE, Busse RF. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MRI imaging–diagnostic performance compared with that of conventional MR imaging at 3.0T. Radiology 2009; 252:486–495.
17. Busse RF, Brau AC, Vu A, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008; 60:640–649.
18. Yoneyama M, Nakamura M, Tabuchi T, Takemura A, Obara M. Optimization of 3D-variable refocusing flip angle RARE imaging for high-resolution volumetric black-blood angiography. Radiol Phys Technol 2012; 5:270–276.
19. Ertl-Wagner BB, Bruening R, Blume J, Hoffmann RT, Mueller-Schunk S, Snyder B, Reiser MF. Relative value of sliding-thin-slab multiplanar reformations and sliding-thin-slab maximum intensity projections as reformattion techniques in multissection CT angiography of the cervicocranial vessels.
20. Prokop M, Shin HO, Schanz A, Schaefer-Prokop CM. Use of maximum intensity projections in CT angiography: a basic review. Radiographics 1997; 17:433–451.

21. Subhas N, Kao A, Freire M, Polster JM, Obuchowski NA, Winalski CS. MRI of the knee ligaments and menisci: comparison of isotropic-resolution 3D and conventional 2D fast spin-echo sequences at 3T. AJR Am J Radiol 2011; 197:442–450.

22. Henkelman RM, Hardy PA, Bishop JE, Poon CS, Plewes DB. Why fat is bright in RARE and fast spin-echo imaging. J Magn Reson Imaging 1992; 2:533–540.

23. Melhem ER, Itoh R, Folkers PJ. Cervical spine: three-dimensional fast spin-echo MR imaging—improved recovery of longitudinal magnetization with driven equilibrium pulse. Radiology 2001; 218:283–288.