A Kaluza-Klein Inspired Brans-Dicke Gravity with Dark Matter and Dark Energy Model

Chakrit Pongkitivanichkula, Daris Samarta, Nakorn Thongyoia,b, Nutthaphat Lunrasric

aKhon Kaen Particle Physics and Cosmology Theory Group (KKPaCT), Department of Physics, Khon Kaen University
bDepartment of Physics, University of Southampton
cDepartment of Physics, Chulalongkorn University

Abstract

We propose the Kaluza-Klein inspired Brans-Dicke gravity model containing possible existence of dark matter and dark energy. The massive scalar field coupled with gravity in 5 dimensional spacetime can be reduced to 4 dimensional gravity along with the dilaton ϕ, gauge fields A_μ, and the tower of scalar fields η_n. We then use the dynamical system approach to analyze the critical points and their corresponding physical parameters. We found that in the case where only the zero mode of the Kaluza-Klein scalar is decoupled, the system contains both dark matter and dark energy phase depending on the mass parameter with the presence of the gauge field.

Keywords: Kaluza-Klein, Brans-Dicke Theory, Dark Matter, Dark Energy

1. Introduction

On the one hand, the mysterious accelerated expansion of the universe is one of the major problems in modern cosmology at the present. Recent observational data of supernovae type Ia indicates that the universe is expanding with acceleration at a large scale1,2. This is the so-called Dark Energy (DE) problem. According to the observational data, we find that the universe is dominated by the DE which accounts for 70\% of the total energy density3,4. There is no conventional physical mechanism capable of completely...
explaining the accelerated cosmic expansion. The simplest idea of introducing a cosmological constant seems to agree with the observational data of the accelerating universe. However the cosmological constant suffers from a serious problem in the theoretical sense, i.e., the values of the cosmological constant coming from field theory is extremely bigger than the value from the observational data [5, 6]. Several alternative phenomenological suggestions and theoretical hypotheses have been proposed to resolve this issue instead. The most popular approach is to introduce a new form of matter or an exotic matter with negative pressure as a source of the accelerating universe [7, 8]. So far, however, there is no evidence or experiment to prove the existence of the exotic matter, yet.

On the other hand, the nature of Dark Matter (DM) is a part of the unsolved problems in physics [9]. DM was proposed as a hypothetical particle with no electromagnetic interaction but its gravitational interaction is responsible for holding galaxies and forming the large scale structure of the universe [10, 11]. The observational results have been suggesting that DM composes about 27% of the total energy density of the universe. This kind of matter interacts very weakly, if not at all, to all known fundamental forces in the standard model of particle physics (SM). Figuring out what DM is made of is one of current on-going particle physics research [12, 13, 14].

These lead to reconsideration or a modification of GR at the large scale [15, 16, 17, 18, 19, 20]. By retaining prominent features of GR, the modified gravity is aimed to solve several GRs problems not only for DE problem, for instance, non-renormalizability, DM and so on. Notice that there are countless inequivalent ways to modify gravity leading to theories that can be designed to reconcile with current observations. Cosmological observations suggest that GR must be modified at very low and/or very high energies. Experimental searches for beyond-GR physics are a particularly active and well-motivated area of research. The simple extension of the modified gravity is to consider adding an additional degree of freedom in the theories. This extension of modified gravity is equivalent to the scalar-tensor theories which have been extensively studied in the literature see [21, 22] and references therein. The main idea of the scalar-tensor theories is that the gravitational interaction is mediated by scalar and tensor fields. The most popular and well-behaved model of the scalar-tensor theories is the Brans-Dicke (BD) theory. Inspired by Machs principle, the reference frame of the BD theory comes from the distribution of matters in the universe [23]. In GR, geometry is determined by mass distribution. However, it is not unique up to boundary condition. This requires the gravitational constant of the BD theory depending on space-time. This means that the gravitational constant plays the role of a dynamical scalar field ϕ.

2
In addition, the BD theory is proposed to make the results of GR compatible with several experimental and observational data from small to large scales. For example, observations of the solar system and other gravitational systems constrained the parameter of the BD theory, \(\omega \) as \(\omega > 40,000 \) \[21\] where the theory approaches to GR when \(\omega \to \infty \).

The BD theory has been studied in order to solve various problems in gravity and cosmology. The dynamical system method has been utilized as an useful tool for investigating several aspects in cosmology \[25, 26\] and see \[27\] for recent review. In particular, it is used to gain a qualitative understanding of the dynamics of the universe in asymptotic regions, i.e., early and late times of the universe. Having use of the dynamical system analysis, a good candidate of the cosmological models needs to consequently evolve following the series of standard cosmological epochs, i.e., inflation \(\rightarrow \) radiation \(\rightarrow \) dust (matter) \(\rightarrow \) DE phase \[8\]. A huge number of the studies in the BD cosmological models are extensively analyzed using dynamical system in various classes of the potentials with additional matter fields \[28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44\]. Interestingly, the BD gravity with the quadratic potential gives the de-Sitter (dS) attractor critical point in the phase space of this model and provides an explanation of the accelerated expansion of the Universe without introducing any form of the exotic matter fields \[34\]. Nevertheless, choosing the types of the potential term in the BD gravity is somewhat arbitrary and a particular form of the potential does not occur naturally from the BD model. We will show in the latter that using only extra fields the same cosmological consequences can be achieved.

Moreover, a common prediction from the string theory, one of the candidate of quantum gravity theories with the extra-dimension, is an existence of the scalar field (spin-0) a counterpart of the graviton (spin-2) called the dilaton \[45\]. Therefore, at low-energies, string theory suggests that the compatible theory of gravity is the scalar-tensor gravity rather than GR. The dilaton plays a central role in several observed phenomena in high energy physics such as the inflaton field \[46, 47, 48\], DM \[49\], Dark Radiation (DR) \[50, 51\], and cosmological constant \[52, 53\]. Originally, the Kaluza Klein (KK) theory was first introduced to combine gravity (GR) and electromagnetic theory in the single framework by introducing extra dimension see review and monograph \[54, 55, 56, 57\]. The idea of compactification of higher dimension has been a corner stone of the string theory since \[58, 59\].

Inspired by the KK theory, we will show that the BD theory with a particular value of the \(\omega \) parameter is obtainable by the KK dimensional reduction process and the residual fields are perfect candidates for solving DM & DE problems. This work is organized as follow, the simple toy model of the KK
inspired BD gravity is set up in section 2. Next section, we derive all relevant equations of motion. In section 4, we restrict our model in a lower mass case of the KK inspired BD. To demonstrate a possibility of DM & DE existence in our model, the autonomous equations in the light of the dynamical system framework is derived and the stability of the fixed points are analyzed in section 5. The results and discussion are in section 6. We close this work by conclusion section with some implication of this work in the last section.

2. The Model

The KK-inspired BD model will be derived in this section. We start with the 5 dimensional action for KK gravity and a free massive scalar field, $\tilde{\eta}$ propagating in the 5 dimensional spacetime, it reads,

$$S = \int d^4x \sqrt{-\tilde{g}} \left(-\tilde{R} + \varepsilon \tilde{g}^{AB} \partial_A \tilde{\eta}^* \partial_B \tilde{\eta} - \varepsilon M_{(5)}^2 \tilde{\eta}^* \tilde{\eta} \right), \quad (1)$$

where we used Planck mass unit, $\sqrt{16\pi G} = 1$, and the metric convention is mostly minus. The ε is used for dividing cases into a normal scalar field and a phantom field. The mass parameter of the scalar field in 5 dimension spacetime is denoted as $M_{(5)}$. In this work, we have used the capital Roman alphabets representing the 5 dimensional spacetime indices as $A, B, C, \cdots = 0, 1, 2, 3, 5$ while the Greek alphabets stand for physical dimensional spacetime indices via $\mu, \nu, \sigma, \cdots = 0, 1, 2, 3$. The $\tilde{R} = \tilde{R}_{AB} \tilde{g}^{AB}$ is the 5 dimensional Ricci scalar and the 5 dimensional spacetime metric, \tilde{g}_{AB} is given by [55],

$$\tilde{g}_{AB} = \begin{pmatrix} g_{\mu\nu} + \phi^2 A_{\mu} A_{\nu} & \phi^2 A_{\mu} \\ \phi^2 A_{\nu} & \phi^2 \end{pmatrix}, \quad (2)$$

where A^μ is the electromagnetic gauge field and ϕ is the dilaton field. Assuming that the extra dimension is compactified in a circle of radius R_k, there is a periodic shift symmetry in the 5th direction as

$$y \rightarrow y + 2\pi R_k. \quad (3)$$

After performing a dimensional reduction, the gravitational part of the action becomes

$$S_{BD} = -\int d^4x \sqrt{-g} \left(R + \frac{1}{4} \phi^2 F_{\mu\nu} F^{\mu\nu} + \frac{2}{3} \frac{\partial \phi}{\phi^2} \right), \quad (4)$$

The above action is equivalent to the BD gravity with $\omega = -4/3$. We note that the KK gravity with the dimensional reduction in 5 dimension gives a
non-minimal coupling to the 4 dimensional Ricci scalar which is equivalent to
the BD gravity with non-minimal coupling to the EM field. The action for the
free scalar field can also be reduced to 4 dimensional action as follow. Starting
with the Fourier expansion of the complex scalar field,
\[
\tilde{\eta}(x^\mu, y) = \sum_{n=0}^{\infty} e^{iy_n/R_k} \hat{\eta}_n(x^\mu),
\]
then integration over the extra dimension gives
\[
\int_0^{2\pi R_k} dy \partial_M \tilde{\eta}^* \partial^M \tilde{\eta} = 2\pi R_k \sum_{n=0}^{\infty} \left[\partial_\mu \hat{\eta}_n \partial^\mu \hat{\eta}_n^* + \left(\frac{1}{\phi^2} + \kappa^2 A^\nu A^\nu \right) \frac{n^2}{R_k^2} \hat{\eta}_n \hat{\eta}_n^* \right].
\]
We redefine the new field with
\[
\eta_n = \sqrt{2\pi R_k} \hat{\eta}_n.
\]
Using the assumption that the 4 dimensional fields are real, i.e., \(\eta_n^* = \eta_n\), the action becomes canonical scalar field which is the starting point for us to solve the equation of motion:
\[
S_{KK} = \varepsilon \int d^4x \sqrt{-g} \phi \sum_{n=0}^{\infty} \left[\partial_\mu \eta_n \partial^\mu \eta_n - M_{(5)}^2 \eta_n^2 + \left(\frac{1}{\phi^2} + A^\nu A^\nu \right) \frac{n^2}{R_k^2} \eta_n^2 \right].
\]
Before we move forward to calculate the equations of motion in the next sec-
tion. It is worth to remark some discussions about the KK inspired BD gravity
in the present work. One sees that the dilation is generated by the dimensional
reduction from the compactification of the extra (fifth) dimension in the KK
gravity and non-minimally couples to the gravity in 4 dimension. Moreover,
having use the Fourier expansion of the complex scalar field in Eq. (7), this
leads to a certain form of the potential from the KK inspired BD model that
the dilaton is coupled with the scalar fields, \(\eta_n\), from the 5-dimension as shown
in Eq. (8). This is a salient feature of the KK inspired BD gravity with a spe-
cific form of the potential whereas the potential form of the traditional BD
graviy model is arbitrary.

3. Equation of Motions

In this section, we are going to work out the equations of motion in our
model that are useful in the following when the equations of the dynamical
system are derived. We would like to study the the FRW universe with the spatially flat that satisfies the metric

\[
 ds^2 = dt^2 - a^2(t)(dx^2 + dy^2 + dz^2),
\]

so \(g_{tt} = 1\) and \(g_{ij} = -\delta_{ij}a^2(t)\) for \(i, j = 1, 2, 3\). where \(a(t)\) is the scale factor in the co-moving frame.

The non-vanishing components of the Christoffel symbol in Cartesian coordinates are:

\[
 \Gamma^t_{ij} = \dot{a}a \delta_{ij}, \quad \Gamma^i_{tj} = \dot{a}a \delta_{ij}. \quad (10)
\]

After deriving through the Euler Lagrange equation, we obtain the equation of motion for \(\phi\) as:

\[
 \mathcal{R} = \frac{4}{3\sqrt{-g} \phi} \partial^\mu (\sqrt{-g} \partial_\mu \phi) - \frac{3}{4} \phi^2 F_{\mu\nu} F^{\mu\nu} - \frac{2}{3\phi^2} \partial^\mu \phi \partial_\mu \phi \\
 + \varepsilon \sum_{n=0}^{\infty} \left[\partial_\mu \eta_n \partial^\mu \eta_n - M_{(5)}^2 \eta_n^2 + \left(\frac{1}{\phi^2} + A_\nu A^\nu \right) \frac{n^2}{R_k^2} \eta_n^2 \right], \quad (11)
\]

and the equation of motion for the gauge field, \(A_\mu\):

\[
 \phi^3 \nabla^\mu F_{\mu\nu} = -\varepsilon A_\nu \left(\sum_{n=0}^{\infty} \frac{n^2 \eta_n^2}{R_k^2} \right), \quad (12)
\]

and the equation of motion for scalar field, \(\eta_n\)’s:

\[
 \frac{1}{\sqrt{-g}} \partial^\mu (\sqrt{-g} \partial_\mu \eta_n) = \phi \left(\frac{1}{\phi^2} + A_\mu A^\mu \right) \frac{n^2}{R_k^2} \eta_n - \phi M_{(5)}^2 \eta_n. \quad (13)
\]

The energy-momentum tensor is defined as

\[
 T^{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g} \mathcal{L}_{\text{matter}})}{\delta g^{\mu\nu}}, \quad (14)
\]

For simplicity, we identify the matter field Lagrangian as

\[
 \mathcal{L}_{\text{matter}} = -\frac{1}{4} \phi^3 F^2 - 2 \frac{\partial_\mu \phi \partial^\mu \phi}{3 \phi} \\
 + \varepsilon \phi \left[\partial_\mu \eta_n \partial^\mu \eta_n - M_{(5)}^2 \eta_n^2 + \left(\frac{1}{\phi^2} + A_\nu A^\nu \right) \frac{n^2}{R_k^2} \eta_n^2 \right]. \quad (15)
\]
Let’s put this into Eq. (14). We obtain the energy momentum tensor in the following form,

\[T_{\mu\nu} = \phi^3 F_{\mu\alpha} F^{\nu\alpha} - \frac{g_{\mu\nu}}{4} \phi^3 F^2 + \frac{2}{3} \frac{\partial_\mu \phi \partial_\nu \phi}{\phi} - \varepsilon \phi \sum_{n=0}^{\infty} \partial_\mu \eta_n \partial_\nu \eta_n \]

(16)

\[- 2\varepsilon \phi A_\mu A_\nu \sum_{n=0}^{\infty} \frac{n^2 \eta_n^2}{R_n^2} + g_{\mu\nu} \varepsilon \phi \sum_{n=0}^{\infty} \left[\left(\frac{1}{\phi^2} + A_\nu A^\nu \right) \frac{n^2 \eta_n^2}{R_n^2} - M_5^2 \right] \eta_n^2 \].

For the calculation of the field strength tensor, \(F^{\mu\nu} \), we assume homogeneous gauge and scalar fields conditions where

\[\partial_i A^\mu = 0, \quad \text{and} \quad \partial_i \phi = 0 \]

(17)

Therefore, the components can be calculated as follow:

\[F^{ti} = \nabla^t A^i - \nabla^i A^t = \ddot{A} + 2H \dot{A}, \]

(18)

\[F^{ik} = \nabla^i A^k - \nabla^k A^i = 0, \]

(19)

where above we use \(H = \frac{\dot{a}}{a} \).

Having use all relevant calculations, the Einstein field equation of the KK inspired BD gravity takes the form

\[\phi (R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R) + g_{\mu\nu} \nabla_\sigma \nabla^\sigma \phi - \nabla_\mu \nabla_\nu \phi = T_{\mu\nu}. \]

(20)

We can arrive at the Friedmann equation by looking for the \(tt \) component in Einstein equation. The time component of the Einstein tensor is given by

\[G_{tt} = \frac{\dot{a}^2}{a^2}, \]

(21)

and the Friedmann equation becomes

\[\left(\frac{\dot{a}}{a} \right)^2 = -\frac{\phi^2 a^2}{2} \left(\ddot{A} + 2H \dot{A} \right)^2 + \frac{2\dot{\phi}^2}{3\phi^2} - \varepsilon \sum_{n=0}^{\infty} \eta_n^2 \]

\[+ \varepsilon \sum_{n=0}^{\infty} \left[\left(\frac{1}{\phi^2} + A_\nu A^\nu \right) \frac{n^2 \eta_n^2}{R_n^2} - M_5^2 \right] \eta_n^2, \]

(22)

on the above calculation we use the fact that

\[F^{t\sigma} F^{t\sigma} = g_{ij} F^{t\sigma} F^{t\sigma} = -a^2 \left(\ddot{A} + 2H \dot{A} \right)^2, \]

(23)
and
\[F_{\mu\nu}F^{\mu\nu} = F_{ti}F^{ti} + F_{it}F^{it} = -2a^2 \left(\ddot{A} + 2HA \right)^2. \] (24)

In order to calculate the Raychaudhuri’s equation, we use the spatial components of Einstein field equation. The energy momentum tensor in the \(ij \) components is
\[T_{ij} = \phi^3 a^4 \left(\dot{A} + 2HA \right)_i \left(\dot{A} + 2HA \right)_j - \frac{a^2 \delta_{ij}}{2} \phi^3 \left(\ddot{A} + 2H\dot{A} \right)^2 \] (25)
\[- 2\varepsilon \phi A_i A_j \sum_{n=0}^{\infty} \frac{n^2 \eta_n^2}{R_k^2} - a^2 \delta_{ij} \varepsilon \phi \sum_{n=0}^{\infty} \left[\left(\frac{1}{\phi^2} + A_\nu A^\nu \right) \frac{n^2}{R_k^2} \eta_n^2 - M_{(5)}^2 \eta_n^2 \right]. \]

From Einstein equation in Eq. (20), the left-handed side is
\[\phi G_{ij} + \frac{g_{ij}}{\sqrt{-g}} \partial_0 \left(\sqrt{-g} \phi^0 \phi \right) = -\phi \delta_{ij} \left(\dot{a}^2 + 2a\ddot{a} \right) - \delta_{ij} \left(3a\ddot{a} + a^2 \dddot{\phi} \right) \] (26)

Using the relation \(\dot{H} = \frac{\ddot{a}}{a} - \frac{a^2}{\dot{a}^2} \) and taking trace, we find
\[-3\ddot{\phi} = 3\phi H^2 + 6\phi \left(\dot{H} + H^2 \right) + 9H \dot{\phi} \]
\[- \frac{a^2 \phi^3}{2} \left(\ddot{A} + 2H\dot{A} \right)^2 - 2\varepsilon \phi a^2 |\dot{A}|^2 \sum_{n=0}^{\infty} \frac{n^2 \eta_n^2}{R_k^2} \]
\[- 3\varepsilon \phi \sum_{n=0}^{\infty} \left[\left(\frac{1}{\phi^2} + A_\nu A^\nu \right) \frac{n^2}{R_k^2} \eta_n^2 - M_{(5)}^2 \eta_n^2 \right]. \] (27)

In this section, we have derived all related equations of motion in the KK inspired BD gravity and they will be useful to derive the autonomous system in the dynamical system analysis below. Due to the complexity of the system of equations, we will focus our study only the vacuum case. We consider this work as a toy model and leave the inclusion of the barotropic fluid for the future work.

4. Lower Mode Cases

In KK theory, it is known that the eigenvalue of momentum operator in 5th direction of a higher mode \(\eta_n \) is given by \(|n|/R_k \). Therefore, a higher mode which has a momentum larger than our physical scale, i.e. reduced Planck scale, will be neglected. The remaining modes satisfying the condition:
\[n < R_k \] (28)
will play a role in equation of motions. In this project we will study the non-obvious simplest case, \(1 < R_k < 2\). In this case, only zero mode and the first mode involve in the Lagrangian. The set of equations of motion becomes: for the dilaton field, \(\phi\),

\[
\ddot{\phi} + 3H\dot{\phi} = -\frac{9}{2}\phi\left(\dot{H} + 2H^2\right) - \frac{9}{8}\phi^3a^2\vec{A}_c^2 + \frac{\dot{\phi}^2}{2\phi} - \frac{3}{4}\varepsilon\dot{\eta}_0^2 - \frac{3}{4}\varepsilon\dot{\eta}_1^2 + \frac{3}{4}\varepsilon\phi\left(\frac{1}{\phi^2} + a^2\vec{A}^2\right)\frac{\eta_0^2}{R_k^2} + \frac{3}{4}\varepsilon\phi M_{(5)}^2\eta_0^2 + \frac{3}{4}\varepsilon\phi M_{(5)}^2\eta_1^2,
\]

(29)

for the zero mode, \(\eta_0\) and the first excited mode, \(\eta_1\) scalar fields,

\[
\ddot{\eta}_0 + \frac{\dot{\phi}}{\phi}\dot{\eta}_0 + 3H\dot{\eta}_0 + M_{(5)}^2\eta_0 = 0, \quad (30)
\]

\[
\ddot{\eta}_1 + \frac{\dot{\phi}}{\phi}\dot{\eta}_1 + 3H\dot{\eta}_1 + M_{(5)}^2\eta_1 = \left(\frac{1}{\phi^2} - a^2\vec{A}^2\right)\frac{\eta_1}{R_k^2}. \quad (31)
\]

The following gauge fixing is used and this leads to

\[
A_0 = 0, \quad \dot{A}_c + 3H\vec{A}_c + \frac{\varepsilon\vec{A}\eta_1^2}{R_k^2} = 0, \quad (32)
\]

where \(\vec{A}_c \equiv \vec{A} + 2H\vec{A}\). Having use all relevant ingredients and substituting in Eq.(22), the final form of the Friedman equation is written as

\[
\left(\frac{\dot{a}}{a}\right)^2 = -\frac{\phi^2a^2}{2}\vec{A}_c^2 + \frac{2\phi^2}{3\phi^2} + \varepsilon\dot{\eta}_0^2 - \varepsilon\dot{\eta}_1^2 - \varepsilon M_{(5)}^2\eta_0^2 - \varepsilon M_{(5)}^2\eta_1^2 + \varepsilon\left(\frac{1}{\phi^2} - a^2\vec{A}^2\right)\frac{\eta_1}{R_k^2}. \quad (33)
\]

Finally, the Raychaudhuri equation becomes

\[
-3\ddot{\phi} = 3\phi H^2 + 6\phi\left(\dot{H} + H^2\right) + 9H\dot{\phi} - \frac{a^2\phi^3}{2}\vec{A}_c^2 + \varepsilon\phi a^2|\vec{A}|^2\frac{\eta_1^2}{R_k^2} - \frac{3\varepsilon}{\phi}\frac{\eta_1^2}{R_k^2} + 3\phi\varepsilon M_{(5)}^2\eta_0^2 + 3\phi\varepsilon M_{(5)}^2\eta_1^2. \quad (34)
\]

Solving Eqs.(29) and (34) together gives

\[
\dot{H} = \frac{13\varepsilon a^2\vec{A}_c^2\eta_1^2}{30R_k^2} - \frac{31}{60}\frac{a^2\phi^2\vec{A}_c^2}{R_k^2} - \frac{3}{10}\frac{\varepsilon\eta_0^2}{R_k^2} + \frac{7}{10} M_{(5)}^2\varepsilon\eta_1^2 - \frac{\varepsilon\eta_1^2}{10R_k^2\phi^2} - \frac{12H^2}{5} - \frac{3}{10}\frac{\varepsilon\dot{\eta}_0^2}{R_k^2} + \frac{7}{10} M_{(5)}^2\varepsilon\eta_0^2 + \frac{\dot{\phi}^2}{5\phi^2}, \quad (35)
\]
and

\[
\ddot{\phi} = -\frac{6\epsilon a^2 \dot{A}_2^2 \eta_1^2 \phi}{5R_k^2} + \frac{6}{5} a^2 \phi \dot{A}_2^2 + \frac{3}{5} \epsilon \phi \eta_1^2 - \frac{12}{5} M(5)^2 \epsilon \eta_1^2 \phi + \frac{6\epsilon \eta_1^2}{5R_k^2} \phi
\]
\[
-3H \dot{\phi} + \frac{9}{5} H^2 \phi + \frac{3}{5} \epsilon \phi \eta_0^2 - \frac{12}{5} M(5)^2 \epsilon \eta_0^2 \phi - \frac{2\dot{\phi}^2}{5\phi}.
\] (36)

So far, we have derived all equations of motion which will be used in the following sections in order to perform a dynamical system analysis in KK inspired BD model.

5. Dynamical System

In this section, we will demonstrate an existence of DM and DE in KK inspired BD model by using the dynamical system method. The dynamical system is very suitable for qualitatively studying the dynamics of the universe. This might provide some hints of the evolution of the universe with matter fields. Next we develop the dynamical system by defining the set of parameters as follow:

\[
\vec{X}_1 = a \dot{A}, \quad X_2 = \sqrt{\frac{2}{3}} \frac{\phi}{H}, \quad X_3 = \frac{\eta_0}{H}, \quad X_4 = \frac{\eta_1}{H},
\]
\[
X_5 = \frac{1}{\phi}, \quad X_6 = \vec{A}, \quad X_7 = \frac{\eta_1}{H R_k}, \quad X_8 = \frac{\eta_0}{H R_k}.
\] (37)

Then the Friedmann equation can be used as a constrained equation

\[
1 = -\frac{\vec{X}_1^2}{2X_5^2} + X_2^2 - \epsilon X_3^2 - \epsilon X_4^2 + \epsilon \left(X_5^2 - \vec{X}_6^2 \right) X_7^2 - \epsilon M(5)^2 R_k^2 \left(X_7^2 + X_8^2 \right). \] (38)

Moreover, we define new parameters as

\[
\lambda \equiv M(5) R_k \quad \text{and} \quad \mu \equiv \frac{1}{H R_k}.
\] (39)

Then the conformal derivative of new parameters can be derived in terms of newly defined parameters as follow:

\[
\frac{1}{H} \frac{dX_1}{dt} = -\frac{3}{10} \dot{X}_1 X_2 + \frac{3}{10} \epsilon \dot{X}_1 X_3 + \frac{3}{10} \epsilon \dot{X}_1 X_4 + \frac{1}{10} \epsilon \dot{X}_1 X_5 X_7 + \frac{2X_1}{5} - \epsilon \dot{X}_6 X_7
\]
\[
-\frac{13}{30} \epsilon \dot{X}_1 \dot{X}_6^2 X_7^2 - \frac{7}{10} \epsilon \lambda^2 \dot{X}_1 X_7^2 - \frac{7}{10} \epsilon \lambda^2 \dot{X}_1 X_8^2 + \frac{31X_1^3}{60X_5^2},
\] (40)

\[
\frac{1}{H} \frac{dX_2}{dt} = \frac{31X_2^3}{60X_5^2} + \frac{2\sqrt{6}X_1^2}{5X_5^2} + \frac{3}{10} \epsilon X_2 X_3^2 + \frac{3}{10} \epsilon X_2 X_4^2 + \frac{1}{10} \epsilon X_2 X_5 X_7^2
\]
\[\frac{1}{H} \frac{dX_3}{dt} = \frac{31X_3^2X_3}{60X_5^2} - \frac{3}{10}X_2^2X_3 - \sqrt{\frac{3}{2}}X_2X_3 + \frac{3}{10}\varepsilon X_3X_4^2 + \frac{1}{10}\varepsilon X_3X_5^2X_7^2 \\
- \frac{13}{30}\varepsilon X_3X_6^2X_7^2 - \frac{7}{10}\lambda^2\varepsilon X_3X_7^2 - \frac{7}{10}\varepsilon X_3X_8 \\
+ \frac{3}{10}X_3^3 - \frac{3}{5}X_3 - \lambda^2\mu X_8 , \quad (41) \]

\[\frac{1}{H} \frac{dX_4}{dt} = \frac{31X_4^2X_4}{60X_5^2} - \frac{3}{10}X_2^2X_4 - \sqrt{\frac{3}{2}}X_2X_4 + \frac{3}{10}\varepsilon X_3X_4^2 + \frac{1}{10}\varepsilon X_3X_5^2X_7^2 \\
- \frac{13}{30}\varepsilon X_4X_6^2X_7^2 - \frac{7}{10}\lambda^2\varepsilon X_4X_7^2 - \frac{7}{10}\varepsilon X_4X_8^2 + \frac{3}{10}X_4^3 - \frac{3}{5}X_4 \\
+ \mu X_5X_7 - \mu X_6^2X_7 - \lambda^2\mu X_7 , \quad (42) \]

\[\frac{1}{H} \frac{dX_5}{dt} = -\sqrt{\frac{3}{2}}X_2X_5 , \quad (44) \]

\[\frac{1}{H} \frac{dX_6}{dt} = \bar{X}_1 - \bar{X}_6 , \quad (45) \]

\[\frac{1}{H} \frac{dX_7}{dt} = \frac{31X_7^2X_7}{60X_5^2} - \frac{3}{10}X_2^2X_7 + \frac{3}{10}\varepsilon X_3^2X_7 + \mu X_4 + \frac{3}{10}\varepsilon X_4^2X_7 \\
+ \frac{1}{10}\varepsilon X_5^2X_7^2 - \frac{13}{30}\varepsilon X_6^2X_7^2 - \frac{7}{10}\lambda^2\varepsilon X_7X_8^2 \\
- \frac{7}{10}\lambda^2\varepsilon X_7^3 + \frac{12X_7}{5} , \quad (46) \]

\[\frac{1}{H} \frac{dX_8}{dt} = \frac{31X_8^2X_8}{60X_5^2} - \frac{3}{10}X_2^2X_8 + \mu X_3 + \frac{3}{10}\varepsilon X_3^2X_8 + \frac{3}{10}\varepsilon X_4^2X_8 \\
+ \frac{1}{10}\varepsilon X_5^2X_8^2 + \frac{13}{30}\varepsilon X_6^2X_8^2 - \frac{7}{10}\lambda^2\varepsilon X_8X_8 \\
- \frac{7}{10}\lambda^2\varepsilon X_8^3 + \frac{12X_8}{5} , \quad (47) \]

\[\frac{1}{H} \frac{d\mu}{dt} = \frac{12\mu}{5} + \frac{31\mu\bar{X}_2^2}{60X_5^2} - \frac{3}{10}\mu X_2^2 + \frac{3}{10}\varepsilon \mu X_2^2 + \frac{3}{10}\varepsilon \mu X_2^2 \\
+ \frac{1}{10}\varepsilon \mu X_3^2X_7^2 - \frac{13}{30}\varepsilon \mu X_6^2X_7^2 - \frac{7}{10}\lambda^2\varepsilon \mu X_7^2 - \frac{7}{10}\lambda^2\varepsilon \mu X_8^2 . \quad (48) \]
In order to find critical points from the dynamical system, we solve by setting all the derivatives, Eqs. (40) - (47) equal to zero together with the constraint equation (38). In addition, the critical point corresponds to the exact solution for each epoch of the dynamics of the universe.

The stability of a critical point is analyzed by finding the eigenvalues of the matrix:

\[M_{ij} = \frac{d}{dX_i} \left(\frac{1}{H} \frac{dX_j}{dt} \right). \]

(49)

If all eigenvalues are negative, then a critical point is a stable fixed point. Whereas any positive eigenvalue signifies an instability of a critical point.

The energy densities for each type of field are following:

\[\Omega_{\vec{A}} = -\frac{\vec{A}^2}{X_5^2} - \varepsilon \vec{X}_6^2 X_7^2, \quad \Omega_\phi = X_2^2 + \varepsilon X_5^2 X_7^2, \]

\[\Omega_{\eta_0} = -\varepsilon (X_3^2 + \lambda^2 X_8^2), \quad \Omega_{\eta_1} = -\varepsilon (X_4^2 + \lambda^2 X_7^2). \]

(50)

The effective equation of state is given by

\[w_{\text{eff}} = -1 - \frac{2\dot{H}}{3H^2}. \]

(51)

We can represent the equation of state in terms of the dimensionless variables by using in Eq. (35). We also can use the effective equation of state to identify the expansion phases where \(w_{\text{eff}} < -1/3 \) and \(w_{\text{eff}} > -1/3 \) represent the acceleration and deceleration expansion of the universe, respectively. Moreover, the exact solution for each critical point can be obtained by performing the integration of the effective equation of state in Eq. (51). One finds,

\[a(t) = \begin{cases} a_0 (t-t_0)^\gamma, & w_{\text{eff}} \neq -1, \quad \text{and} \quad \gamma = \frac{2}{3(1+w_{\text{eff}})}, \\
 a_0 e^{C(t-t_0)}, & w_{\text{eff}} = -1, \end{cases} \]

(52)

where \(a_0 \) and \(t_0 \) are integration constants of the scale factor and cosmic co-moving time respectively. For \(w_{\text{eff}} = 0 \), the universe undergoes the matter-dominated phase, i.e., \(a(t) \propto t^{2/3} \). For \(w_{\text{eff}} = -1 \) with the positive constant, \(C \), this is a dS critical point which corresponds to the acceleration expansion solution. It is worth noting that the exact solution of the scale factor is easily found for each critical point by substituting the effective equation of state.

6. Result

Since the system involves 8 main parameters, \(X_1 - X_8 \), with 1 auxiliary parameter, \(\mu \), it would be much easier to see the behaviours of the solution
Table 1: The solutions from $M_{(5)} \neq 0$. All critical points in this case are saddle points.

non-vanishing values	non-vanishing density	w
$X_4^2 = \frac{5}{3}$, $X_5^2 = \frac{121}{90\mu^2}$, $X_7^2 = \frac{600\mu^2}{121}$	$\Omega_\phi = -\frac{2}{3}$, $\Omega_{\eta_1} = \frac{5}{3}$	$\frac{7}{9}$
$X_1^2 = F(\mu)$, $X_4^2 = G(\mu)$, $X_5^2 = J(\mu)$	$\Omega_{\phi}(\mu)$, $\Omega_{\eta_1}(\mu)$	$w(\mu)$
$X_6^2 = F(\mu)$, $X_7^2 = Q(\mu)$, $\mu < 0.58$	$\Omega_{\eta_1}(\mu)$ (see Fig 1)	(see Fig 2)

Figure 1: The energy density parameters for \vec{A}, ϕ, η_0 and η_1 from the second solution in Tab 6.1. $\Omega_{\eta_0} = 0$ as the field is decoupled where $\Omega_{\vec{A}}$, Ω_{ϕ}, Ω_{η_1} slightly change as μ increases.

if the analysis is simplified somewhat. In this section we will first assume that there is no universal mass at 5 dimensional field theory $M_{(5)} = 0$. Then, we consider $M_{(5)} \neq 0$ in various corners of the phase space of the dynamical system.

6.1. $M_{(5)} = 0$

If $M_{(5)} = 0$, then X_8 is decoupled from the Friedman equation. It is easier to analyse with the assumption that $X_3 = 0$ and $X_8 = 0$ since $\frac{1}{H} \frac{dX_3}{dt} = 0$ and $\frac{1}{H} \frac{dX_8}{dt} = 0$ are satisfied automatically. After the analysis, we found that in the case where $\varepsilon = 1$, there is no real solution. With $\varepsilon = -1$, the classes of solutions are shown in the table below. Note that all critical points are saddle for all value of μ.

The functions for the second solution in Tab 6.1 are listed below:

$$F(\mu) = \frac{1}{9284411808\mu^6} \left(5c_1^3 + 6c_1^2 \left(4869\mu^2 - 1400\right)\right)$$
$Q(\mu) = -\frac{1}{515800656\mu^4}(c_1^3 + 12c_1^2(363\mu^2 - 140))$

$J(\mu) = \frac{c_1}{708\mu^2}$,

$G(\mu) = \frac{-2F(\mu)J(\mu), Q(\mu) + F(\mu) + 2J(\mu)^2Q(\mu) + 2J(\mu)}{2J(\mu)}$, (56)

where

$a_1 = \frac{2891\sqrt[3]{6a_2 + 559872\mu^4 - 692730\mu^2 + 140608}}{\mu^2}$

$+ \frac{11564\ 2^{2/3}(338 - 945\mu^2)}{\mu^2\sqrt[3]{3a_2 + 279936\mu^4 - 346365\mu^2 + 70304}}$

$+ 944\left(\frac{1204}{\mu^2 - 2511}\right) + \frac{3600(7 - 27\mu^2)^2}{\mu^4}$, (57)

$a_2 = \sqrt{x^2(8707129344x^6 - 9544417920x^4 + 4824717057x^2 - 804980800)}$, (58)

$b_1 = \frac{343(62208\mu^6 + 60353\mu^4 - 68640\mu^2 + 36000)}{10443\sqrt{a_1\mu^6}}$
\[- \frac{49 \sqrt{3a_2 + 279936\mu^4 - 346365\mu^2 + 70304}}{1062\, 2^{2/3}\mu^2} + \frac{49\, 2^{2/3}(945\mu^2 - 338)}{531\mu^2\sqrt{3a_2 + 279936\mu^4 - 346365\mu^2 + 70304}} + \frac{8}{531} \left(\frac{1204}{\mu^2} - 2511 \right) + \frac{200\, (7 - 27\mu^2)^2}{3481\mu^4}, \quad (59)\]

\[c_1 = \sqrt{a_1}\mu^2 + 354\sqrt{b_1}\mu^2 - 1620\mu^2 + 420. \quad (60)\]

6.2. $M_{(5)} \neq 0$

It is evident that the complications of the autonomous system in Eqs. (40-47) in the case of $M_{(5)} \neq 0$ lead to the very complicated solutions of the fixed points which can not generically be represented in terms of λ and μ parameters analytically. To demonstrate DM and DE profiles of the KK inspired BD model in this work, we simply analyze the dynamical system in our model by assuming that there are decoupled fields in various settings. However it is important to note that, according to the constraint equation in Eq. (38) and derivative of X_2 in Eq. (41), we are forbidden to decouple ϕ (assuming $X_2 = 0$ along with $X_5 = 0$) for all cases.

6.2.1. (ϕ, η_0)-system

We first consider the (ϕ, η_0)-system case i.e., $X_3 \neq 0$ and $X_8 \neq 0$ due to the density parameters defined in Eq. (50) and the constraint equation in Eq. (38). In this case, we obtain,

\[\vec{X}_1 = X_4 = \vec{X}_6 = X_7 = 0. \quad (61)\]

Moreover, the constraint equation can be rewritten as

\[1 = X_2^2 - \varepsilon X_3^2 - \varepsilon\lambda^2 X_8^2. \quad (62)\]

This constraint reduces the autonomous system down to 3 dimensional phase space as

\[
\frac{1}{H} \frac{dX_3}{dt} = -\frac{3}{10} \left(1 + \varepsilon X_3^2 + \varepsilon\lambda^2 X_8^2 \right) X_3 - \sqrt{\frac{3}{2}} X_4 \sqrt{1 + \varepsilon X_3^2 + \varepsilon\lambda^2 X_8^2} - \frac{7}{10} \lambda^2 \varepsilon X_3 X_8^2 + \frac{3}{10} \varepsilon X_3^3 - \frac{3X_3}{5} - \lambda^2 \mu X_8, \quad (63)\]

\[
\frac{1}{H} \frac{dX_5}{dt} = -\sqrt{\frac{3}{2}} X_5 \sqrt{1 + \varepsilon X_3^2 + \varepsilon\lambda^2 X_8^2}, \quad (64)\]
\[
\frac{1}{H} \frac{dX_8}{dt} = \mu X_3 + \frac{3}{10} \varepsilon X_3^2 X_8 - \frac{7}{10} \lambda^2 \varepsilon X_8^3 + \frac{12}{5} X_8. \quad (65)
\]

In this case, we found that all real positive fixed points of this autonomous system always come with the \(X_5 = 0\) solution. This means the dilaton field, \(\phi\) diverges \(\phi \to \infty\) which is an unphysical solution. Therefore we do not further analyze the case where \(\eta_0\) is not decoupled, i.e., we will only assume \(X_3 = X_8 = 0\) from now on.

6.2.2. \((\phi, \eta_1)\)-system

In this case, we consider \((\phi, \eta_1)\)-system, \(X_4 \neq 0\) and \(X_7 \neq 0\). This leads to,

\[
\vec{X}_1 = X_3 = \vec{X}_6 = X_8 = 0, \quad (66)
\]

with the following constraint equation,

\[
1 = X_2^2 - \varepsilon X_4^2 + \varepsilon X_5^2 X_7^2 - \varepsilon \lambda^2 X_7^2. \quad (67)
\]

The autonomous system is reduced to three differential equations as

\[
\frac{1}{H} \frac{dX_4}{dt} = -\frac{3}{10} \left(1 + \varepsilon X_4^2 - \varepsilon X_5^2 X_7^2 + \varepsilon \lambda^2 X_7^2\right) X_4 + \frac{3}{10} \varepsilon X_3^2 X_4 \\
+ \frac{1}{10} \varepsilon X_4 X_5^2 X_7 - \sqrt{\frac{3}{2} X_4 \sqrt{1 + \varepsilon X_4^2 - \varepsilon X_5^2 X_7^2 + \varepsilon \lambda^2 X_7^2}} \\
- \frac{7}{10} \lambda^2 \varepsilon X_4 X_7^2 + \frac{3}{10} \varepsilon X_4^3 - \frac{3 X_4^3}{5} + \mu X_4^2 X_7 - \lambda^2 \mu X_7, \quad (68)
\]

\[
\frac{1}{H} \frac{dX_5}{dt} = -\sqrt{\frac{3}{2}} X_5 \sqrt{1 + \varepsilon X_4^2 - \varepsilon X_5^2 X_7^2 + \varepsilon \lambda^2 X_7^2}, \quad (69)
\]

\[
\frac{1}{H} \frac{dX_7}{dt} = -\frac{3}{10} \left(1 + \varepsilon X_4^2 - \varepsilon X_5^2 X_7^2 + \varepsilon \lambda^2 X_7^2\right) X_7 + \mu X_4 + \frac{3}{10} \varepsilon X_4^2 X_7 \\
+ \frac{1}{10} \varepsilon X_5^2 X_7^3 - \frac{7}{10} \lambda^2 \varepsilon X_7^3 + \frac{12 X_7^5}{5}. \quad (70)
\]

The critical points with \(\varepsilon = \mp 1\) in this case are given by

\[
X_4(\mp) = \frac{\Delta^{(\mp)}}{408 \mu} \left(\pm 75 + \sqrt{816 \lambda^2 \mu^2 + 5625}\right), \quad (71)
\]

\[
X_6(\mp) = \frac{1}{34 \mu^2} \sqrt{1360 \lambda^2 \mu^4 - \frac{2}{2} \mu^2 \left(\pm 75 + \sqrt{816 \lambda^2 \mu^2 + 5625}\right)}, \quad (72)
\]

\[
X_7(\mp) = \frac{\Delta_{(\mp)}}{6}, \quad (73)
\]

\[
\Delta_{(\mp)}^2 = \frac{816 \lambda^2 \mu^2 + 5625 \mp 75}{\lambda^2}. \quad (74)
\]
Figure 3: The contour plot for the equation of state in the case where η_1 is not decoupled and $\varepsilon = -1$.

Figure 4: The contour plot for the equation of state in the case where η_1 is not decoupled and $\varepsilon = 1$.
where the superscripts \((\mp)\) are represented for \(\varepsilon = -1\) and \(\varepsilon = +1\), respectively. The effective equations of states for both \(\varepsilon = \mp 1\) in the \(\eta_1 \neq 0\) case are given by

\[
w_{\text{eff}}^{(\mp)} = \frac{1}{102} \left(-27 \pm \sqrt{816\lambda^2\mu^2 + 5625} \right). \tag{75}
\]

The equation of state as a function of \(\mu\) is depicted in Fig. 3 and 4. As a result, we found that \(w_{\text{eff}} \geq 0.47\) for all values of \(\lambda\) and \(\mu\) for \(\varepsilon = -1\). Whereas \(w_{\text{eff}} \leq -1\) for \(\varepsilon = -1\). In addition, the non-vanishing energy density parameters in this case are given by

\[
\Omega_\phi^{(\mp)} = \frac{5}{306} \left(2\sqrt{816\lambda^2\mu^2 + 5625} \mp 105 \right), \tag{76}
\]

\[
\Omega_{\eta_1}^{(\mp)} = \frac{1}{306} \left(\pm 831 - 10\sqrt{816\lambda^2\mu^2 + 5625} \right). \tag{77}
\]

Having used the definition of the stability matrix in Eq. (49), the real parts of the eigenvalues in this case are always coming with the plus and minus signs for positive \(\lambda\) and \(\mu\). This shows that these critical points are saddle points. Therefore, \(\eta_1\) and \(\phi\) are insufficient to exhibit DM/DE behaviour.

6.2.3. \((\phi, \eta_1, \vec{A})\)-system

The final consideration in this section is non-vanishing \(\vec{A}_c\) field. According to the density parameter of the \(\vec{A}_c\) field, we impose,

\[
X_3 = X_4 = X_8 = 0. \tag{78}
\]

Notice that we further simplify the system by assume that the kinetic term of \(\eta_1\) \((X_4)\) vanishes. The constraint equation in this case is written by

\[
1 = -\frac{\vec{X}_1^2}{2X_5^2} + X_2^2 + \varepsilon \left(X_5^2 - \vec{X}_6^2 \right) X_7^2 - \lambda^2 X_7^2. \tag{79}
\]

The autonomous system for this case is composed of four first order differential equations as

\[
\frac{1}{H} \frac{d\vec{X}_1}{dt} = -\frac{3}{10} \vec{X}_1 X_2^2 + \frac{1}{10} \varepsilon \vec{X}_1 X_5^2 X_7^2 + \frac{2 \vec{X}_1}{5} - \varepsilon \vec{X}_6 X_7^2 - \frac{13}{30} \varepsilon \vec{X}_1 \vec{X}_6^2 X_7^2 - \frac{7}{10} \varepsilon \lambda^2 \vec{X}_1 X_7^2 + \frac{31 \vec{X}_1^3}{60X_5^2}, \tag{80}
\]

\[
\frac{1}{H} \frac{dX_2}{dt} = \frac{31X_1^2 X_2}{60X_5^2} + \frac{2 \sqrt{6} \vec{X}_1^2}{5X_5^2} + \frac{1}{10} \varepsilon X_2 X_5^2 X_7^2 - \frac{13}{30} \varepsilon X_2 \vec{X}_6^2 X_7^2.
\]
\[-\frac{7}{10} \lambda^2 \epsilon X_2 X_7^2 - \frac{1}{10} 3X_2^3 - \frac{7}{5} \sqrt{\frac{3}{2}} X_2^2 - \frac{3X_2}{5}
+ \frac{2}{5} \sqrt{6} \epsilon X_2 X_7^2 - \frac{2}{5} \sqrt{6} \epsilon X_6^2 X_7^2 - \frac{4}{5} \sqrt{6} \lambda^2 \epsilon X_7^2 + \frac{3\sqrt{6}}{5}, \quad (81)\]
\[
\frac{1}{H} \frac{dX_5}{dt} = -\sqrt{\frac{3}{2}} X_2, \quad (82)
\frac{1}{H} \frac{d\bar{X}_6}{dt} = X_1 - \bar{X}_6, \quad (83)
\]
where the X_7 variable will be replaced by
\[
X_7^2 = \frac{\bar{X}_1^2 + 2 (1 - X_2^2) X_6^2}{2X_6^2 (\lambda^2 - X_6^2 + \bar{X}_6^2)}. \quad (84)
\]
The critical points with $\epsilon = \mp 1$ are read
\[
C_1 : \quad \bar{X}_1 = 0, \quad X_2 = 0, \quad X_5 = \sqrt{\frac{7}{5}} \lambda, \quad \bar{X}_6 = 0 \quad (85)
\]
\[
C_2 : \quad \bar{X}_1 = \frac{\sqrt{4\sqrt{-39} \lambda^4 + 60 \lambda^2 + 576 - 54 \lambda^2 - 81}}{\sqrt{59}}, \quad X_2 = 0,
X_5 = \frac{\sqrt{53 \lambda^2 + 7\sqrt{-39} \lambda^4 + 60 \lambda^2 + 576 - 186}}{\sqrt{118}},
\bar{X}_6 = \frac{\sqrt{4\sqrt{-39} \lambda^4 + 60 \lambda^2 + 576 - 54 \lambda^2 - 81}}{\sqrt{59}}. \quad (86)
\]
We note that the critical points exist both in the cases of $\epsilon = \mp 1$. The equation of state is given by
\[
w_{\text{eff}} = \frac{1}{45 X_6^2 (X_5^2 - \bar{X}_6^2 - \lambda^2)} \left[X_1^2 \left(-26 \lambda^2 + 17 X_5^2 + 22 \bar{X}_6^2 \right) + 2X_6^2 \left(15 \lambda^2 - 6X_5^2 + 11 \bar{X}_6^2 \right) + 15 X_5^2 - 20 \bar{X}_6^2 - 24 \lambda^2 \right]. \quad (87)
\]
For the C_1 critical point, we obtain
\[
w_{\text{eff}}^{(1)} = -\frac{1}{3} \quad (88)
\]
which sits on the border between accelerating and decelerating universe. The non-vanishing energy density parameters for C_1 are read
\[
\Omega_{\phi}^{(1)} = \frac{7}{2}, \quad \Omega_{\eta}^{(1)} = -\frac{5}{2}. \quad (89)
\]
While for the C_2 critical point, the w_{eff} takes the complicated form by substituting C_2 in Eq. (87). It reads,

$$w_{\text{eff}}^{(2)} = \frac{(9926 - 248\alpha)\lambda^2 - 2614\alpha - 2552\lambda^4 + 62580}{3(\alpha - 43\lambda^2 + 24)(7\alpha + 53\lambda^2 - 186)},$$

$$\alpha = \sqrt{-39\lambda^4 + 60\lambda^2 + 576}.$$ \hfill (90)

To illustrate this, we therefore plot the w_{eff} as a function of λ and it is shown in Fig. 8. At $\lambda = 1.45$, this gives $w_{\text{eff}} = 0$ representing DM phase. We note that at $\lambda = 2.062$ is the crossing point of the equation of state for DE. In addition, we found the non-vanishing energy density parameters for C_2 as

$$\Omega_{\phi}^{(2)} = \frac{4(\xi + 54\lambda^2 - 81)(7\xi - 6\lambda^2 - 186)}{(\xi - 43\lambda^2 + 24)(7\xi + 53\lambda^2 - 186)},$$

$$\Omega_{\eta_1}^{(2)} = \frac{59\lambda^2(\lambda^2 + \xi - 12)}{(2\lambda^2 - 9)(\xi - 43\lambda^2 + 24)},$$

$$\xi = \sqrt{576 + 60\lambda^2 - 39\lambda^2}.$$ \hfill (91) \hfill (92) \hfill (93)

The eigenvalues (real part) of the stability matrix for C_1 are read

$$(-1, -1, -1, -1).$$ \hfill (94)

We find C_1 being stable points. On the one hand, the eigenvalues (real part) of the stability matrix for C_2 with $\lambda = 1.45$ (DM phase i.e., $w_{\text{eff}} = 0$) are given by

$$(7.395, -1.995, -1.995, 1.204),$$ \hfill (95)

which means saddle point. On the other hand, the eigenvalues (real part) for C_2 with $\lambda = 2.16$ (DE phase with the dS solution, $w_{\text{eff}} = -1$) are found as

$$(-0.472, -0.472, -3.292, -0.204),$$ \hfill (96)

which means stable (attractor) point. Therefore, in this (ϕ, η_1, \vec{A})-system, DM phase and DE phase are present depending on the λ values.

7. Conclusion and Outlook

In this work, we have presented the KK inspired BD model in order to solve DM & DE problem. We start from the traditional KK gravitational action
Figure 5: The equation of state for (ϕ, η_1, \vec{A})-system. Notice that depending on the value of λ, the system is able to exhibit DM and DE behaviour. The green and red dashed lines are $w_{\text{eff}} = 0$ and $w_{\text{eff}} = -1/3$, respectively.

with an introduction of the scalar field in the 5 dimensional spacetime. The KK compactification process makes the dilaton coupling to the scalar fields in the bulk spacetime giving a particular form of the potential. We continue to derive the equations of motion for all relevant matters. The dynamical system is utilized to demonstrate the existence of DM & DE in the model. The autonomous system of equations, the effective equation of the state and the exact solution of the scale factor are constructed. Due to its intricacy of the dynamical system, the qualitative analysis has been done separately for $M^{(5)} = 0$ and $M^{(5)} \neq 0 \neq$ cases in order to aid our understanding.

For the $M^{(5)} = 0$, there are two real solutions of the critical points for the canonical scalar fields i.e., $\varepsilon = -1$ whereas the phantom scalar fields, $\varepsilon = 1$ does not provide any real solution. Since the equation of states are all positive, we conclude that there is no solution corresponding to DM & DE. Rich phenomena of cosmological states can be achieved when the mass parameter of the scalar field, M_5 is turned on. We extensively divide the critical points analysis into three sub cases as $(\phi, \eta_0), (\phi, \eta_1), (\phi, \eta_1, \vec{A}_c)$ systems. It is worth mentioning that we do not decouple the dilaton from the system to prevent the divergence of the dilaton which could lead to an unphysical solution. The interesting physics of the critical points is in the $(\phi, \eta_1, \vec{A}_c)$
system. There is a critical point that exhibits both DM ($w_{\text{eff}} = 0$) & DE ($w_{\text{eff}} = -1$) behavior depending on the λ parameter. At the DM phase, on the one hand, the critical point has the scaling solution, $a \propto t^{2/3}$ and it is a saddle point. In DE phase, on the other hand, we found a stable critical point with the dS solution, $a \propto e^{Ct}$ when the λ parameter increasing to a particular value.

The results suggest that $\lambda = M(5)R_k$ is crucial to the KK inspired BD model in the sense that it controls the DM & DE behavior. Nevertheless, the presence of the gauge field is also important to the system as the only case with DM & DE existences has the gauge field couple to the system. This could lead to an interesting physics of dark photon and dark radiation. This work is a promising toy model. To gain a deeper understanding of the problems, the study in a more realistic set up is required for future work and further investigation, e.g., inclusion of the barotropic fluid, extraction of the observables from the model and comparing them to the cosmological data.

Acknowledgements

The work of CP has been supported in part by the Thailand Research Fund under contract No.MRG6280131 and by the National Astronomical Research Institute of Thailand. DS is supported by Thailand Research Fund (TRF) under a contract No.TRG6180014.

References

[1] A. G. Riess, et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009–1038. arXiv:astro-ph/9805201, doi:10.1086/300499.

[2] S. Perlmutter, et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565–586. arXiv:astro-ph/9812133, doi:10.1086/307221.

[3] C. Bennett, et al., First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results, Astrophys. J. Suppl. 148 (2003) 1–27. arXiv:astro-ph/0302207, doi:10.1086/377253.

[4] N. Halverson, et al., DASI first results: A Measurement of the cosmic microwave background angular power spectrum, Astrophys. J. 568 (2002) 38–45. arXiv:astro-ph/0104489, doi:10.1086/338879.
[5] S. M. Carroll, The Cosmological constant, Living Rev. Rel. 4 (2001) 1. arXiv:astro-ph/0004075 doi:10.12942/lrr-2001-1

[6] T. Padmanabhan, Cosmological constant: The Weight of the vacuum, Phys. Rept. 380 (2003) 235–320. arXiv:hep-th/0212290 doi:10.1016/S0370-1573(03)00120-0

[7] P. Peebles, B. Ratra, The Cosmological Constant and Dark Energy, Rev. Mod. Phys. 75 (2003) 559–606. arXiv:astro-ph/0207347 doi:10.1103/RevModPhys.75.559

[8] E. J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15 (2006) 1753–1936. arXiv:hep-th/0603057 doi:10.1142/S021827180600942X

[9] G. Bertone, D. Hooper, History of dark matter, Rev. Mod. Phys. 90 (4) (2018) 045002. arXiv:1605.04909 doi:10.1103/RevModPhys.90.045002

[10] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta 6 (1933) 110–127. doi:10.1007/s10714-008-0707-4

[11] K. Begeman, A. Broeils, R. Sanders, Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics, Mon. Not. Roy. Astron. Soc. 249 (1991) 523.

[12] G. Bertone, D. Hooper, J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279–390. arXiv:hep-ph/0404175 doi:10.1016/j.physrep.2004.08.031

[13] G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195–373. arXiv:hep-ph/9506380 doi:10.1016/0370-1573(95)00058-5

[14] J. L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495–545. arXiv:1003.0904 doi:10.1146/annurev-astro-082708-101659

[15] A. De Felice, S. Tsujikawa, f(R) theories, Living Rev. Rel. 13 (2010) 3. arXiv:1002.4928 doi:10.12942/lrr-2010-3

[16] T. P. Sotiriou, V. Faraoni, f(R) Theories Of Gravity, Rev. Mod. Phys. 82 (2010) 451–497. arXiv:0805.1726 doi:10.1103/RevModPhys.82.451
[17] S. Capozziello, M. De Laurentis, Extended Theories of Gravity, Phys. Rept. 509 (2011) 167–321. arXiv:1108.6266 doi:10.1016/j.physrep.2011.09.003.

[18] T. Clifton, P. G. Ferreira, A. Padilla, C. Skordis, Modified Gravity and Cosmology, Phys. Rept. 513 (2012) 1–189. arXiv:1106.2476 doi:10.1016/j.physrep.2012.01.001.

[19] S. Nojiri, S. D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, eConf C0602061 (2006) 06. arXiv:hep-th/0601213 doi:10.1142/S0219887807001928.

[20] S. Capozziello, Curvature quintessence, Int. J. Mod. Phys. D 11 (2002) 483–492. arXiv:gr-qc/0201033 doi:10.1142/S0218271802002025.

[21] Y. Fujii, K. Maeda, The scalar-tensor theory of gravitation, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2007. doi:10.1017/CBO9780511535093.

[22] V. Faraoni, Cosmology in scalar tensor gravity, Vol. 139, 2004. doi:10.1007/978-1-4020-1989-0.

[23] C. Brans, R. H. Dicke, Mach’s principle and a relativistic theory of gravitation, Phys. Rev. 124 (1961) 925–935. doi:10.1103/PhysRev.124.925.

[24] C. M. Will, Theory and Experiment in Gravitational Physics, Cambridge University Press, 2018.

[25] J. Wainwright, G. Ellis, Dynamical Systems in Cosmology, Cambridge University Press, 1997. doi:10.1017/CBO9780511524660.

[26] A. Coley, Dynamical systems and cosmology, Vol. 291, Kluwer, Dordrecht, Netherlands, 2003. doi:10.1007/978-94-017-0327-7.

[27] S. Bahamonde, C. G. Bhmer, S. Carloni, E. J. Copeland, W. Fang, N. Tamanini, Dynamical systems applied to cosmology: dark energy and modified gravity, Phys. Rept. 775-777 (2018) 1–122. arXiv:1712.03107 doi:10.1016/j.physrep.2018.09.001.

[28] S. J. Kolitch, Qualitative analysis of Brans-Dicke universes with a cosmological constant, Annals Phys. 246 (1996) 121–132. arXiv:gr-qc/9409002 doi:10.1006/aphy.1996.0022.
[29] C. Santos, R. Gregory, Cosmology in Brans-Dicke theory with a scalar potential, Annals Phys. 258 (1997) 111–134. arXiv:gr-qc/9611065 doi:10.1006/aphy.1997.5691.

[30] E. J. Copeland, A. R. Liddle, D. Wands, Exponential potentials and cosmological scaling solutions, Phys. Rev. D 57 (1998) 4686–4690. arXiv:gr-qc/9711068 doi:10.1103/PhysRevD.57.4686.

[31] M. Abdalla, M. Guimaraes, J. Hoff da Silva, Brane Cosmic String Compactification in Brans-Dicke Theory, Phys. Rev. D 75 (2007) 084028. arXiv:hep-th/0703234 doi:10.1103/PhysRevD.75.084028.

[32] J. C. de Souza, A. Saa, Phase space solutions in scalar-tensor cosmological models, Braz. J. Phys. 35 (2005) 1041–1043. arXiv:gr-qc/0510128.

[33] O. Hrycyna, M. Szydłowski, Brans-Dicke theory and the emergence of ΛCDM model, Phys. Rev. D 88 (6) (2013) 064018. arXiv:1304.3300 doi:10.1103/PhysRevD.88.064018.

[34] O. Hrycyna, M. Szydlowski, Dynamical complexity of the Brans-Dicke cosmology, JCAP 12 (2013) 016. arXiv:1310.1961 doi:10.1088/1475-7516/2013/12/016.

[35] O. Hrycyna, M. Szydłowski, M. Kamionka, Dynamics and cosmological constraints on Brans-Dicke cosmology, Phys. Rev. D 90 (12) (2014) 124040. arXiv:1404.7112 doi:10.1103/PhysRevD.90.124040.

[36] R. García-Salcedo, T. González, I. Quiros, Brans-Dicke cosmology does not have the ΛCDM phase as a universal attractor, Phys. Rev. D 92 (12) (2015) 124056. arXiv:1504.08315 doi:10.1103/PhysRevD.92.124056.

[37] G. Papagiannopoulos, J. D. Barrow, S. Basilakos, A. Giacomini, A. Paliathanasis, Dynamical symmetries in Brans-Dicke cosmology, Phys. Rev. D 95 (2) (2017) 024021. arXiv:1611.00667 doi:10.1103/PhysRevD.95.024021.

[38] F. Felegary, F. Darabi, M. Setare, Interacting holographic dark energy model in Brans–Dicke cosmology and coincidence problem, Int. J. Mod. Phys. D 27 (03) (2017) 1850017. arXiv:1612.03406 doi:10.1142/S0218271818500177.

[39] N. Roy, N. Banerjee, Generalized Brans-Dicke Theory: A Dynamical Systems Analysis, Phys. Rev. D 95 (6) (2017) 064048. arXiv:1702.02169 doi:10.1103/PhysRevD.95.064048.
[40] H. Ghaffarnejad, E. Yaraie, Dynamical system approach to scalar-tensor-tortensor cosmology, General Relativity and Gravitation 49 (4) (Mar 2017). doi:10.1007/s10714-017-2213-z. URL http://dx.doi.org/10.1007/s10714-017-2213-z

[41] J. Lu, X. Zhao, S. Yang, J. Li, M. Liu, Dynamical system approach for the modified Brans–Dicke theory, Int. J. Mod. Phys. D 28 (10) (2019) 1950132. doi:10.1142/S0218271819501323.

[42] H. Shabani, A. H. Ziaie, Stability of the einstein static universe in einstein-cartan-brans-dicke gravity, The European Physical Journal C 79 (3) (Mar 2019). doi:10.1140/epjc/s10052-019-6754-z. URL http://dx.doi.org/10.1140/epjc/s10052-019-6754-z

[43] A. Zucca, L. Pogosian, A. Silvestri, Y. Wang, G.-B. Zhao, Generalized Brans-Dicke theories in light of evolving dark energy, Phys. Rev. D 101 (4) (2020) 043518. arXiv:1907.07667, doi:10.1103/PhysRevD.101.043518.

[44] A. Giacomini, G. Leon, A. Paliathanasis, S. Pan, Cosmological Evolution of Two-Scalar fields Cosmology in the Jordan frame, Eur. Phys. J. C 80 (3) (2020) 184. arXiv:2001.02414, doi:10.1140/epjc/s10052-020-7730-3.

[45] A. Zee, A Broken Symmetric Theory of Gravity, Phys. Rev. Lett. 42 (1979) 417. doi:10.1103/PhysRevLett.42.417

[46] M. Gasperini, G. Veneziano, Inflation, deflation, and frame independence in string cosmology, Mod. Phys. Lett. A8 (1993) 3701–3714. arXiv:hep-th/9309023, doi:10.1142/S0217732393003433

[47] T. Damour, A. Vilenkin, String theory and inflation, Phys. Rev. D53 (1996) 2981–2989. arXiv:hep-th/9503149, doi:10.1103/PhysRevD.53.2981.

[48] H. A. Chamblin, H. S. Reall, Dynamic dilatonic domain walls, Nucl. Phys. B562 (1999) 133–157. arXiv:hep-th/9903225, doi:10.1016/S0550-3213(99)00520-9

[49] T. Damour, G. W. Gibbons, C. Gundlach, Dark Matter, Time Varying G, and a Dilaton Field, Phys. Rev. Lett. 64 (1990) 123–126. doi:10.1103/PhysRevLett.64.123
[50] P. Svrcek, E. Witten, Axions In String Theory, JHEP 06 (2006) 051. arXiv:hep-th/0605206 doi:10.1088/1126-6708/2006/06/051

[51] B. S. Acharya, C. Pongkitivanichkul, The Axiverse induced Dark Radiation Problem, JHEP 04 (2016) 009. arXiv:1512.07907 doi:10.1007/JHEP04(2016)009

[52] C. Wetterich, Cosmology and the Fate of Dilatation Symmetry, Nucl. Phys. B302 (1988) 668–696. arXiv:1711.03844 doi:10.1016/0550-3213(88)90193-9

[53] M. Shaposhnikov, D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem, Phys. Lett. B671 (2009) 162–166. arXiv:0809.3406 doi:10.1016/j.physletb.2008.11.041

[54] T. Appelquist, A. Chodos, P. Freund (Eds.), MODERN KALUZA-KLEIN THEORIES, 1987.

[55] J. M. Overduin, P. S. Wesson, Kaluza-Klein gravity, Phys. Rept. 283 (1997) 303–380. arXiv:gr-qc/9805018 doi:10.1016/S0370-1573(96)00046-4

[56] P. S. Wesson, Five-dimensional physics: Classical and quantum consequences of Kaluza-Klein cosmology, 2006.

[57] P. S. Wesson, J. M. Overduin, Principles of Space-time-matter, WSP, 2019. doi:10.1142/10871.

[58] D. Bailin, A. Love, KALUZA-KLEIN THEORIES, Rept. Prog. Phys. 50 (1987) 1087–1170. doi:10.1088/0034-4885/50/9/001

[59] M. Duff, B. Nilsson, C. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130 (1986) 1–142. doi:10.1016/0370-1573(86)90163-8