Contrast enhanced multi-detector CT and MR findings of a well-differentiated pancreatic vipoma

Luigi Camera, Rosa Severino, Antongiulio Faggiano, Stefania Masone, Gelsomina Mansueto, Simone Maurea, Rosa Fonti, Marco Salvatore

Luigi Camera, Rosa Severino, Simone Maurea, Marco Salvatore, Department of Advanced Biomedical Sciences, Diagnostic Imaging Section, University “Federico II”, 80131 Naples, Italy
Luigi Camera, Rosa Fonti, Institute of Biostructures and Bioimaging (C.N.R.), 80131 Naples, Italy
Antongiulio Faggiano, Department of Clinical Medicine and Surgery, Endocrinology Section, University “Federico II”, 80131 Naples, Italy
Stefania Masone, Department of Gastro-enterology, Endocrinology and Surgery, University “Federico II”, 80131 Naples, Italy
Gelsomina Mansueto, Department of Advanced Biomedical Sciences, Pathology Section University “Federico II”, 80131 Naples, Italy
Author contributions: Camera L observed the case, designed the report and revised the manuscript; Severino R drafted the manuscript; Faggiano A was the referring physician; Masone S performed the laparotomy; Mansueto G performed histo-pathological and immuno-histochemical analysis; Maurea S performed the MR study; Fonti R performed the somatostatin receptor scintigraphy; Salvatore M edited the manuscript.
Correspondence to: Luigi Camera, MD, Department of Radiology, University “Federico II”, Via S. Pansini 5, 80131 Naples, Italy. camera@unina.it
Telephone: +39-81-7463560 Fax: +39-81-5457081
Accepted: May 7, 2014 Revised: September 18, 2014
Accepted: September 23, 2014
Published online: October 28, 2014

Abstract
Pancreatic vipoma is an extremely rare tumor accounting for less than 2% of endocrine pancreatic neoplasms with a reported incidence of 0.1-0.6 per million. While cross-sectional imaging findings are usually not specific, exact localization of the tumor by means of either computed tomography (CT) or magnetic resonance (MR) is pivotal for surgical planning. However, cross-sectional imaging findings are usually not specific and further characterization of the tumor may only be achieved by somatostatin-receptor scintigraphy (SRS). We report the case of a 70 years old female with a two years history of watery diarrhoea who was found to have a solid, inhomogeneously enhancing lesion at the level of the pancreatic tail at Gadolinium-enhanced MR (Somatom Trio 3T, Siemens, Germany). The tumor had been prospectively overlooked at a contrast-enhanced multi-detector CT (Aquilion 64, Toshiba, Japan) performed after i.v. bolus injection of only 100 cc of iodinated non ionic contrast media because of a chronic renal failure (3.4 mg/mL) but it was subsequently confirmed by SRS. The patient first underwent a successful symptomatic treatment with somatostatin analogues and was then submitted to a distal pancreasectomy with splenectomy to remove a capsulated whitish tumor which turned out to be a well-differentiated vipoma at histological and immuno-histochemical analysis.

Key words: Pancreatic endocrine tumor; Vasoactive intestinal peptide; Multi-detector computed tomography; Contrast induced nephropathy; Magnetic resonance imaging; Nephrogenic systemic fibrosis; Somatostatin receptor scintigraphy

Core tip: Pancreatic vipoma is an extremely rare tumor accounting for less than 2% of endocrine pancreatic neoplasms. While cross-sectional imaging findings are usually not specific, exact localization of the tumor by means of either computed tomography (CT) or magnetic resonance (MR) is pivotal for surgical planning. We report the case of a 70 years old female with a two years history of watery diarrhoea who was found to have a solid, inhomogeneously enhancing lesion at the level of the pancreatic tail at Gadolinium-enhanced MR. The tumor had been prospectively overlooked at a contrast-enhanced multi-detector CT but it was subsequently confirmed by somatostatin-receptor scintig-
The patient first underwent a successful symptomatic treatment with somatostatin analogues and was then submitted to a distal pancreatectomy with splenectomy.

INTRODUCTION

Pancreatic vipomas are extremely rare tumors accounting for only 2% of all pancreatic endocrine neoplasms (PNENs) with an annual incidence estimated to be 0.1-0.6 per million[8]. They may show a malignant behaviour in up to 70% of cases, mostly with evidence of hepatic metastases at the time of the diagnosis[9].

From a clinical point of view the diagnosis of a pancreatic VIPoma is straightforward in typical cases presenting with the Verner-Morrison triad first described in 1958[10]. The syndrome, also named WDHA (Watery Diarrhoea, Hypokalaemia, Achlorhydria), is caused by the excessive production of the Vasoactive Intestinal Peptide (VIP) which stimulates fluid and electrolyte secretion in the intestinal epithelium through the activation of cyclic adenosine mono-phosphate pathway[11].

As most endocrine pancreatic tumors appear as hypervascular nodular lesions at either contrast-enhanced computed tomography (CT) or magnetic resonance (MR), cross-sectional imaging findings of pancreatic vipomas are usually not specific[12-13]. However, the role of both CT and/or MR is pivotal to localize the lesion and evaluate its size and anatomic relationships in view of a surgical approach which represents the standard of care[8]. In addition to conventional imaging modalities, somatostatin-receptor scintigraphy (SRS) has been advocated as the technique of choice to detect and stage pancreatic vipomas[9].

Herein we report a case of 70 years old female with a two-years history of watery diarrhoea refractory to medical therapy who was found to have a pancreatic vipoma at the level of the pancreatic tail which was first overlooked at a contrast-enhanced multi-detector CT, later shown by contrast-enhanced MR and subsequently confirmed by SRS.

CASE REPORT

A 70 years old woman was admitted to the Gastroenterology Unit of our University with a two years history of chronic diarrhoea (2-5/die evacuations of semi-shaped stools) refractory to medical therapy (Loperamide) with associated hypokalemia (3 mmol/L). The patient was also affected by chronic renal failure (creatinine 3.4 mg/dL) due to a insulin-dependent diabetes mellitus, hypothyroidism in treatment with replacement therapy (Levotiroxine 50 mcg/die) and electrolyte imbalance (serum calcium: 8.5 mg/dL; phosphate: 5.2 mg/dL) presenting with episodic disturbances of consciousness. Other laboratory findings were unremarkable.

Contrast-enhanced CT was performed with a multi-detector row equipment (Aquilion 64, Toshiba, Japan) using a detector configuration of 1 mm × 32 mm, a table feed of 36 mm/s and a gantry rotation time of 0.75 (pitch factor = 0.844), 3 mm slice thickness, 120 kVp and automatic dose modulation (Noise Index = 12.5). Arterial, pancreatic and portal venous phase acquisitions were performed with fix scan delays of 35, 55 and 80 s after an i.v. bolus injection (3 cc/s) of only 100 cc of non ionic iodinated contrast media (Ultravist 370; Bayer, Berlin, Germany) followed by 200 cc of saline solution with a dual-head injector (Stellant Injection System, Medrad Inc., United States) and further hydration with 1.80 L of 0.9% NaCl solution as the patient had a diabetic nephropathy[10].

As both arterial and pancreatic phase imaging failed to show any hyper-vascular pancreatic lesion on prospective analysis (Figure 1), the patient went on to magnetic resonance imaging.

At unenhanced MR (Somatom Trio 3.0 T, Siemens, Germany) a definite oval lesion could be appreciated at the level of the pancreatic tail (Figure 2). The lesion exhibited non specific signal intensities appearing more conspicuous in the Fast Field Echo T1-images (TR: 1500 ms; TE: 2 ms; FA: 20°; 6 mm slice thickness) with an uniform low signal intensity (Figure 2A) than in Half-fourier Acquisition Single-shot Turbo-spin Echo (HASTE) T2-sequences (TR: 2000 ms; TE: 92 s; 6 mm slice thickness) where it showed a mild hyper-intense signal with an associated small cyst on its anterior margin (Figure 2B).

Dynamic gadolinium-enhanced (0.1 mmol/kg, Gadoterate Meglumine, Guerbet, Switzerland) Volume Interpolated Breath-Hold Examination - (VIBE) Fat-suppressed T1 sequences (TR: 3.3 ms TE: 1.3 ms; 3 mm slice thickness, matrix size 256 × 224) were then performed and showed the lesion to enhance inhomogeneously in both the early (Figure 3A) and the delayed phase (Figure 3B).

As contrast-enhanced MR findings were considered consistent with an endocrine pancreatic tail tumor, a somatostatin-receptor scintigraphy was performed (not shown) and showed a mild uptake of the radiotracer at the level of the pancreatic tail with no evidence of either lymph node or hepatic metastases.

The patient underwent 3 mo of symptomatic therapy with somatostatin analogues (Octreotide 0.05 mg × 3/die) resulting in a complete remission of the diarrhea and was then submitted to a distal pancreatectomy with splenectomy by open surgery.

At histopathology, the pancreatic mass appeared as a circumscribed lesion with a solid growth pattern of small rounded, moderately pleo-morphic cells. Immunohistochemical analysis showed intense expression of neuroen-
doctrine markers such as Chromogranine-A (Figure 4A) with less than 2% of cells positive for Ki-67 (Figure 4B). The post-operative course was uneventful and the patient was discharged the week after with a complete recovery of the syndrome and no evidence of residual or recurrent disease at follow-up CT performed yearly for 5 years.

DISCUSSION

PNENs formerly referred to as islet cell tumors are rare neoplasms arising from ductal pluripotent stem cells of the pancreas. Indeed PNENs represent only 3%-4% of all pancreatic neoplasms with a prevalence of approxi-
granules, but this was not the case of our patient. As a result, further characterization with dynamic contrast-enhanced MR was deemed necessary. Despite the estimated glomerular filtration rate was 23 mL/min, gadolinium-enhanced MR was considered a safe procedure using Gadoterate Meglumine, a Gadolinium-based contrast agent containing the macro-cyclic ligand Tetraazacyclododecane-tetraacetic Acid. Indeed, no case of Nephrogenic Systemic Fibrosis has been reported to date following its use.

At contrast-enhanced MR the lesion exhibited a mild and inhomogeneous enhancement in the arterial phase which could be appreciated despite the presence of motion artifacts (Figure 3A) with a rim of peripheral enhancement in the delayed phase (Figure 3B). Although similar enhancement patterns can also be observed in other neoplastic pancreatic lesions such as the acinar cell carcinoma and the solid pseudopapillary tumor, MR findings were finally considered consistent with the diagnosis of a pancreatic vipoma as the patient had the typical symptoms of the Verner-Morison syndrome and most vipomas are indeed localized at the level of the pancreatic tail.

As the tumor was prospectively missed on contrast-enhanced multi-detector CT, the present case underscores the relevance of a multidisciplinary approach in the detection of pancreatic neuro-endocrine tumors and the superior contrast resolution of MR which turns out to be particularly helpful whenever the administration of iodinated contrast media is either contraindicated or sub-optimal.

Contrast-enhanced MR findings were finally considered consistent with the diagnosis of a pancreatic vipoma and an SRS was then performed (not shown). Indeed, SRS has been advocated as the technique of choice to detect and stage pancreatic vipomas. As SRS showed a mild uptake of the radiotracer at the level of the pancreatic tail, a successful treatment with a somatostatin analogue could then be undertaken.

The lesion was then successfully removed at surgery where it appeared as an encapsulated, whitish tumor.
Immunohisto-chemical analysis showed intense and uniform staining with Chromogranin-A (Figure 4A) with less than 2% of cells positive with Ki-67 (Figure 4B) as usually observed in well-differentiated neuro-endocrine tumors, currently classified as well-differentiated vipoma (NET G1) [18].

Histological findings well accounted for the MR appearance of the lesion which was sharply marginated with an almost homogeneous signal intensity on both unenhanced sequences (Figure 2) and a ring enhancement in the delayed phase of dynamic post-Gadolinium sequence likely due to the presence of the capsule (Figure 3B).

We have herein reported contrast-enhanced multi-detector computed tomography and MR imaging findings of a well differentiated pancreatic vipoma successfully treated by surgery with no signs of local recurrence and/or distant metastases at follow-up CT performed yearly for 5 years.

COMMENTS

Case characteristics
A 70 years old female with 2 years history of watery diarrhea irreversible to medical therapy.

Clinical diagnosis
The patient had typical symptoms, bio-chemical and pH-metric alterations of the Verner-Morison syndrome (Watery Diarrhoea, Hypokalaemia, Achlorhydria).

Differential diagnosis
Infective or parasitic intestinal disease were excluded with stool examination, laboratory findings and colonoscopy.

Laboratory diagnosis
Hypokalaemia (3 mmol/L, n.v. 3.5-5.3) and C/P imbalance [serum calcium: 8.5 mg/dL (n.v. 9.9-10.3); phosphate: 5.2 mg/dL (n.v. 3.0-4.5).

Imaging diagnosis
The lesion was prospectively overlooked at a contrast-enhanced multi-detector computed tomography (MDCT) which had to be performed with a sub-optimal quantity and rate of injection of a non ionic iodinated contrast media because of a diabetic nephropathy [Serum creatinine 3.4 mg/mL]. A contrast-enhanced magnetic resonance (MR) was performed despite a glomerular filtration rate (GFR) of 23 mL/min and showed a well marginated oval lesion at the level of the pancreatic tail with non specific signal characteristics on unenhanced sequences and a ring-like enhancement in the delayed phase of post-Gadolinium sequences. Further characterization was obtained by Somatostatin Receptor Scintigraphy.

Pathological diagnosis
The lesion appeared as an encapsulated, whitish tumor. Immunohisto-chemical analysis showed intense and uniform staining with Chromogranin-A with less than 2% of cells positive with Ki-67 as usually observed in well-differentiated neuro-endocrine tumors, currently classified as well-differentiated vipoma.

Treatment
The patient underwent a 3 mo of symptomatic therapy with somatostatin analogues (Octreotide 0.05 mg x 3/die) resulting in a complete remission of the diarrhea and was then submitted to a distal pancreatectomy with spleenectomy by open surgery.

Related reports
A similar case of a functional pancreatic endocrine tumor overlooked at a contrast-enhanced computed tomography (CT) has been reported. In that case it was an insulinoma of the pancreatic tail which appeared iso-attenuating to the contrast-enhanced computed tomography (CT) has been reported. In that case it was an insulinoma of the pancreatic tail which appeared iso-attenuating to the

Term explanation
The Verner-Morison syndrome, also named WDHA (Watery Diarrhoea, Hypokalaemia, Achlorhydria) is caused by the excessive production of the Vasoactive Intestinal Peptide (VIP) which stimulates fluid and electrolyte secretion in the intestinal epithelium through the activation of cyclic adenosine mono-phosphate pathway.

Experiences and lessons
Localization of a functional pancreatic endocrine tumor may be a challenge for a single imaging test and require most often a multi-modality approach. While characterization of such tumors may only be achieved by Somatostatin Receptor Scintigraphy, cross-sectional conventional (CT or MR) imaging modalities are pivotal for surgical planning.

Peer review
The authors reported a case of pancreatic VIPomas that was overlooked on initial CT images and detected on MRI images. References to previous reports of underdiagnosis of such cases on CT images (or MRI) are required.

REFERENCES

1. Halfdanarson TR, Rubin J, Farnell MB, Grant CS, Petersen GM. Pancreatic endocrine neoplasms: epidemiology and prognosis of pancreatic endocrine tumors. Endocr Relat Cancer 2008; 15: 409-427 [PMID: 18508996 DOI: 10.1007/ ERC-07-0221]
2. Verner JV, Morrison AB. Islet cell tumor and a syndrome of intractable watery diarrhea and hypokalaemia. Am J Med 1958; 25: 374-380 [PMID: 13571250]
3. Kane MG, O’Donisio TM, Krejs GJ. Production of secretory diarrhea by intravenous infusion of vasoactive intestinal polypeptide. N Engl J Med 1983; 309: 1482-1485 [PMID: 6316136]
4. Thoeni RF, Mueller-Lisse UC, Chan R, Do NK, Shyn PB. Detection of small, functional islet cell tumors in the pancreas: selection of MR imaging sequences for optimal sensitivity. Radiology 2000; 214: 483-490 [PMID: 10671597]
5. Horton KM, Hruban RH, Yeo C, Fishman EK. Multi-detector row CT of pancreatic islet cell tumors. Radiographics 2006; 26: 453-464 [PMID: 16549609]
6. Semelka RC, Custodio CM, Cem Balci N, Woosley JT. Neuroendocrine tumors of the pancreas: spectrum of appearances on MRI. J Magn Reson Imaging 2000; 11: 141-148 [PMID: 10713946]
7. Lewis RB, Lattin GE, Paal E. Pancreatic endocrine tumors: radiologic-clinopathologic correlation. Radiographics 2010; 30: 1445-1464 [PMID: 21071369 DOI: 10.1148/rg.306105523]
8. Ellison TA, Edil BH. The current management of pancreatic neuroendocrine tumors. Adv Surg 2012; 46: 283-296 [PMID: 22873046]
9. Thomson JW, Martin RS, Fincher ME. Somatostatin receptor scintigraphy: the definitive technique for characterizing vasoactive intestinal peptide-secreting tumors. Clin Nucl Med 2000; 25: 661-664 [PMID: 10983749]
10. Stacul F, van der Molen AJ, Reimer P, Webb JA, Thomsen HS, Morcos SK, Almén T, Aspelin P, Bellin MF, Clement O, Heinz-Peer G. Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 2011; 21: 2527-2541 [PMID: 21866435 DOI: 10.1007/ s00330-011-2225-0]
11. Camera L, Paolotta S, Mollica C, Milone F, Napolitano V, De Luca L, Faggiano A, Colao A, Salvatore M. Screening of pancreaticoduodenal endocrine tumors in patients with MEN 1: multidetector-row computed tomography vs. endoscopic ultrasound. Radiol Med 2011; 116: 595-606 [PMID: 21286942 DOI: 10.1007/s11547-011-0636-2]
12. Anaya A, Mathieu A, Clossen J, Bali MA, Metens T, Mats C. Successful preoperative localization of a small pancreatic insulinoma by diffusion-weighted MRI. JOP 2009; 10: 529-531 [PMID: 19734630]
13. Delanaye P, Cohen EP. Formula-based estimates of the GFR: equations variable and uncertain. Nephron Clin Pract 2008; 110: c48-53; discussion c54 [PMID: 18708272 DOI: 10.1159/000151436]
14. Thomsen HS, Morcos SK, Almén T, Bellin MF, Bertolotto M, Bongartz G, Clement O, Leander P, Heinz-Peer G, Reimer P,
Stacul F, van der Molen A, Webb JA. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. *Eur Radiol* 2013; 23: 307-318 [PMID: 22865271 DOI: 10.1007/s00330-012-2597-9]

15 Hsu MY, Pan KT, Chu SY, Hung CF, Wu RC, Tseng JH. CT and MRI features of acinar cell carcinoma of the pancreas with pathological correlations. *Clin Radiol* 2010; 65: 223-229 [PMID: 20152279 DOI: 10.1016/j.crad.2009.11.010]

16 Yao X, Ji Y, Zeng M, Rao S, Yang B. Solid pseudopapillary tumor of the pancreas: cross-sectional imaging and pathological correlation. *Pancreas* 2010; 39: 486-491 [PMID: 19940797 DOI: 10.1097/MPA.0b013e3181bd6839]

17 Balachandran A, Tamm EP, Bhosale PR, Patnana M, Vikram R, Fleming JB, Katz MH, Charmsangavej C. Pancreatic neuroendocrine neoplasms: diagnosis and management. *Abdom Imaging* 2013; 38: 342-357 [PMID: 22707246 DOI: 10.1007/s00261-012-9923-1]

18 Oberg K, Kvols L, Caplin M, Delle Fave G, de Herder W, Rindi G, Ruszniewski P, Woltering EA, Wiedenmann B. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastrointestinal pancreatic system. *Ann Oncol* 2004; 15: 966-973 [PMID: 15151956]

19 Klöppel G. Classification and pathology of gastroenteropancreatic neuroendocrine neoplasms. *Endocr Relat Cancer* 2011; 18 Suppl 1: S1-16 [PMID: 22005112 DOI: 10.1530/ERC-11-0013]

P- Reviewer: Triantopoulou C S- Editor: Ji FF L- Editor: A E- Editor: Lu Y
