Resveratrol reduces the level of chronic systemic inflammation in stable coronary artery disease

Chekalina NI*, Shlykova OA, Mykytiuk MV, Izmailova OV, Vesnina LE, Kazakov YuM and Kaidashev IP

Higher State Educational Establishment of Ukraine, Ukrainian Medical Stomatological Academy, Poltava, Ukraine

Abstract

This study aimed to investigate the effects of plant polyphenol of resveratrol on chronic systemic inflammation indicators of stable coronary artery disease. 85 patients with coronary heart disease were recruited and prescribed a standard therapy (β-blockers, statins, aspirin). 30 patients received resveratrol at a dose of 100 mg daily and the other serves as the control group. Cytokines and the expression of mRNA gene of inhibitor of kappa B α (IkBα) of nuclear factor of transcription kappa B (NF-kB) were determined. The results show that patients with coronary artery disease exhibited increased levels of interleukin-1β (IL-1β), tumor necrosis factor (TNFα), and IL-10 in the blood. Resveratrol treatment led to a reliable reduction IL-1β and TNFα, the content of IL-10 tended to reduce. In addition, we failed to notice any significant difference in the inhibitor of kappa B α (IkBα) of nuclear factor of transcription kappa B between groups. In conclusion, in patients with coronary artery disease, resveratrol shows anti-inflammatory properties via reducing the content of proinflammatory cytokines in the blood, such as IL-1β and TNFα.

Abbreviations and symbols: CSI: Chronic systemic inflammation; CHD: Coronary heart disease; CK: Cytokines; TNFα: Tumor necrosis factor; IL-1β: Interleukin-1β; IL-10: Interleukin-10; IkBα: Inhibitor of kappa B α; NF-kB: Nuclear factor of transcription kappa B; Real-time PCR: Polymerase chain reaction in real time; ASVD: Atherosclerosis; ET: Vascular endothelium; COX: Cyclooxygenase; LOX: Lipoxygenase; IKKα: IkB-kinase α; eNOS: Endothelial synthetase of nitric oxide; TET: Treadmill exercise test; HF: Heart failure; LVEF: Left ventricular ejection fraction; EQ-5D-3L: Health-related quality of life questionnaire 3 level versions; EQ-5D-VAS: EQ-5D visual analogue scale; SIRT1: Sirtuin 1; NO: Nitric oxide; EMP: Circulating endothelial microparticles; STAT1: Transcription activator transmitting a signal 1; IRF-1: Factor regulating interferon 1

Introduction

Atherosclerosis (ASVD) has been still relevant and unsolved problem of clinical medicine. Coronary heart disease (CHD), which morphological basis is ASVD, heads the list of the top 10 causes of death in the world and is accounted for 12.8%. In Ukraine, CHD is among leading causes of cardiovascular mortality (68.8%) [1]. Chronic systemic inflammation (CSI) is the pathogenetic basis of ASVD. Under the influence of damaging factors, such as free radicals, endo- and exotoxins, high blood pressure, etc., vascular endothelium (ET) is activated with the development of its systemic dysfunction: functioning molecular signaling cascades with increased synthesis of proinflammatory cytokines (CK) and adhesion molecules is enhanced, the transmembrane transport and regulation of vascular tone are disrupted [2]. These data substantiate the relevance of active search for CSI correction agents at ASVD in order to improve treatment.

Recently, researchers attention has been drawn to the polyphenolic compounds of plant origin. Polyphenols possess hydrophilic properties and play the role of free radical scavengers, which lead to their antioxidant effect. They also activate paraoxonase in the blood promoting hydrolysis of hydroperoxides [3]. Anti-inflammatory, anti-adhesive, angiogenic, vasodilative and many other properties of polyphenols have been found out, which are implemented mainly through effects on molecular targets of intracellular cascades [4]. One of the representatives of the plant polyphenol is phytoalexin resveratrol (3,4,5-trihydroxy-trans-stilbene) found in more than 30 kinds of plants and used in medicine as a natural extract and synthetic drug [5]. Resveratrol has a direct antiradical action by means of three hydroxyl groups in its chemical formula, regulates the activity of enzymes of cyclooxygenase (COX) and lipoxygenase (LOX), has anti-inflammatory activity-it inhibits the pathogenic effect of a key factor of activating process of inflammation of NF-kB through inhibition of IkB-kinase α (IKKα), and has endothelio protective effect through activation of endothelial synthetase of nitric oxide (eNOS) as well [6-8].

The aim of our research was to study the effects of resveratrol on the CSI indicators in stable CHD.

Materials and methods

The study involved 85 people of both sexes (36 females and 49 males) aged 48–67, diagnosed with CHD, stable angina pectoris, FC II, HF 0-1, the average risk. The selection of patients was carried out using an objective and instrumental examination: Rose angina questionnaires, SCORe table, bicycle ergometer and Doppler echocardiography. Every patient gave a written informed consent to participate in the research, according to the requirements of the Declaration of Helsinki. The criterion for inclusion into the study was signs of coronary...
heart disease: stable angina pectoris, FC II. Exclusion criteria were
the presence of Stage 2 heart failure (HF), Stage 2 hypertension,
concomitant chronic diseases of bronchopulmonary system, liver and
kidney dysfunction, endocrine or allergic disorders, diseases of the
musculoskeletal system in the acute stage, cancer, thrombophlebitis.
Bicycle ergometer was used with a continuously increasing step-by-step
protocol of dosed physical load with duration of one stage of 2 minutes,
the test was considered to be "positive" in the case of occurrence of
objective evidence of myocardial ischemia during the trial. Every
patient completed a load capacity of 75 W, which corresponded to
FC II. The presence of heart failure (HF) syndrome was established by
clinical data and results of Doppler echocardiography. In the presence of
clinical symptoms (shortness of breath with exertion, palpitations,
fatigue) and decrease in left ventricular ejection fraction (LVEF), the
diagnosis of HF was established. 43% of CHD patients had LVEF values
of 45–50%, corresponding to the degree of heart failure of Stage 1 with
preserved systolic function, and the rest had ejection fraction greater
than 50%. All the patients showed signs of diastolic dysfunction of the
left ventricle with impaired relaxation (Type I). The degree of risk was
being determined by the total assessment using SCORE table and LVEF
values that in all patients of study groups was less than 3% of annual
mortality risk (the average level) [9]. Every patient was prescribed a
standard CHD therapy; along with recommendations for lifestyle (diet
therapy, dosed physical exertion, smoking cessation), beta-blockers (5 mg of bisoprolol once a day in the morning), statins (10 mg of
atorvastatin once a day at bedtime) and 75 mg of aspirin at bedtime
were prescribed. After stabilization of the clinical course of CHD
in a month after the basic treatment patients were divided into the
study group (30 people) and comparison ones (55 people) by random
sampling and examining with clinical and laboratory methods.

For objectification of patients’ condition the Health-Related
Quality of Life Questionnaire 3 level version (EQ-5D-3L) with
the estimation of EQ-5D index and visual analogue scale (EQ-5D-VAS)
data analysis were used [10].

To assess the level of CSI, the level of cytokines (i.e. tumor necrosis
factor (TNFα), interleukin-1β (IL-1β), and IL-10) in the blood was
determined via immunoenzymatic method using the test system
“Vector-Best” (Novosibirsk) based on the solid-phase "sandwich"–
variant of immunoenzymatic analysis with mono- and polyclonal
antibodies [11]. The expression of the gene of inhibitor of kappa B
α (IkBα) in peripheral blood mononuclear cells was determined by
polymerase chain reaction in real time (real-time PCR) using the DT
Light DNA amplifier (“DNA Technology”, Russia) [12]. To obtain
cDNA, a set of reagents for the reaction of reverse transcription
(SYNTOL, Russia) was used. The total RNA was isolated from biological
sample using the reagent set “RIBO-zol-B” (AmpliSens, Russia).
The sequence of primers for determining IkBα gene expression-F:
5’–GGC TGA AGA AGG GGC TCA–3’, R: 5’–CCA TCT GCT
CGT ACT CCT CGG–3’. Amplification mode: 95.0–5 minutes–1 cycle;
62.0–40 seconds, 95.0–15 seconds–40 cycles. As a reference gene the
“housekeeping” gene GAPDH was used. For data analysis a relative Ct
method of calculation by the formula 2 -∆Сt and 2 -∆∆Сt was applied.

After the examination of patients of the research group they were
additionally prescribed resveratrol at a dose of 100 mg once daily per os
on the background of basic therapy; the comparison group continued
taking basic therapy. The results of treatment were evaluated after 2
months by re-examination in the above mentioned amount. During
the examination and treatment of patients any complications, allergic
reactions or hypersensitivity to medicines were not found.

Statistical analysis of the results of the research was carried out
using KyPlot program. The hypothesis of normal distribution was
checked by Shapiro-Wilk test. When comparing these study groups
before and after treatment, paired Student’s t-test was used, for
inappropriate distribution-Wilcoxon signed-rank test and Steel test for
paired observations. When comparing data between groups, unpaired
Student’s t-test and Steel-Dwass test (nonparametric analogue of
Tukey’s range test) were used. Search for relations between variables
was held using Pearson’s correlation or, subject to maldistribution,
Spearman’s and Kendall’s rank correlation. Data of statistical analysis
were presented in the form of X ± σ, where X is an average value, σ
is an average square deviation. Due to improper distribution and
characteristics of discontinuous series the data were given as Me (Q1-
Q3), where Me is a median, Q1 and Q3 are the first and third quartiles.
Data differences were considered to be significant at a level of p<0.05
[13].

Results and discussion

Mean EQ-5D-index before treatment in patients with coronary
artery disease was 0.738 ± 0.061, EQ-5D-VAS–55.63 ± 5.38. After 2
months of treatment patients treated with resveratrol more often
than the comparison group patients noted the appearance of vitality,
efficiency improving, reducing the number and duration of episodes of
pain in the heart. EQ-5D-index (p<0.001) and values by EQ-5D-VAS
scale (p<0.001) decreased. In the comparison group EQ-5D-index also
decreased (<0.001) after treatment, EQ-5D-VAS did not significantly
change (p > 0.05). Data of EQ-5D questionnaire have been shown on
Figure 1.

Patients with coronary artery disease have shown an increased
content of IL-1β (9.76 ± 3.33 pg/mL) (in healthy people–1.6
(confidence interval–0.11 pg/mL)), TNFa (9.11 ± 2.43 pg/mL) (in
healthy people–0.5 (0-6) pg/mL), IL-10 content was 10.97 ± 2.97 pg/
ml (in healthy people–5 (0-31) pg/mL), corresponding with modern
scientific data on changes in the CK level in terms of atherogenesis
[2,14]. IL-1β and TNFa are one of the leading mediators of
inflammatory response, inducing production of proinflammatory
CK, chemokatracts, adhesion molecules, growth factors through
increasing the transcriptional activity of NF-kb.

Figure 1. Dynamics of subjective status of patients according to the questionnaire EQ-
5D-3L [*: Reliable difference between indicators before and after treatment; A: Group
of comparison; B: Group of investigation (resveratrol)].
After 2 months of therapy with resveratrol in patients there was a decrease of the level of CK (IL-1β and TNFα), and the tendency to lower levels of IL-10 (0.05>p<0.1) was noted (Table 1). However, in the comparison group presumable changes in the levels of the CK were not found, despite the statements on anti-inflammatory effect of statins [15]. Perhaps for pleiotropic anti-inflammatory effect larger therapeutic doses of statins are necessary, but with building-up a dose the probability of complications increases, especially in chronic forms of coronary artery disease (according to large-scale studies TNT, IDEAL) [16]. Therefore, the combination of statins with resveratrol can afford to get the necessary pathogenetically valid therapeutic effect on the ability to titrate the dose of statins, focusing exclusively on the blood lipid spectrum and levels of transaminases with guaranteed anti-inflammatory effect from the lowest doses due to the combined potential effect of these drugs.

Recent scientific studies have shown that effectiveness of resveratrol to reduce the level of inflammatory CK is implemented by several mechanisms: by direct antioxidant action as free radical scavenger due to the presence of OH-groups, by activation of catalase, superoxide dismutase, increased levels of glutathione transferase, peroxidase and reductase, decreased activity of COX and LOX, regulation of nitric oxide (NO) synthesis, increased expression level of protein sirtuin 1 (SIRT1) providing density of histone backbone and preventing activation of ІkВα [17,18]. ІkВα subunit has the greatest importance in the structure of the IKK because being activated it destroys ІkВα connection with the dimmer NF-kβ (p50/p65). NF-kβ p65 (Rel A) subunit, which is the gene transcription factor of molecules of inflammatory response, is translocated into the nucleus [19]. Each of these mechanisms can contribute to our results of reducing IL-1β and TNFα under the influence of resveratrol. It has been proven that inactivation of NF-kβ does not affect IL-10 expression processes, which can be an explanation for no reduction of CK in our study [20].

In patients treated with resveratrol, as in the comparison group, the expression of mRNA ІkВα in blood mononuclear cells did not change significantly (p=0.441 and p=0.570 respectively). ІkВα retains NF-kβ, inhibits the expression of CD40 molecule at mRNA and protein level [24,25]. Despite the lack of probable reduction of mRNA ІkВα expression under resveratrol in our study, a positive effect of resveratrol on levels of proinflammatory CK has been found out. In our opinion, inhibition of STAT1 or IRF-1 may also be one of the possible mechanisms of its action [26].

Conclusions

The intake of resveratrol in patients with stable coronary heart disease reveals a positive impact on the level of systemic inflammation during two-month treatment, unlike statins (atorvastatin) as a means of basic therapy. Along with improved clinical course, according to the EQ-5D questionnaire, resveratrol reduces the levels of proinflammatory CK IL-1β and TNFα, but the impact of resveratrol on the ІkВα expression at mRNA level has not been revealed. Mechanisms of anti-inflammatory activity of resveratrol are multimodal and cause CSI correction involving different signaling cascades. Taking into account proven anti-inflammatory effect by endpoints of assessment of the inflammatory response level, resveratrol should be considered as effective pathogenetically reasonable treatment for ASVD and coronary artery disease.

Table 1. Cytokines levels in the blood serum of the subjects of the study.

Group / Mark	Statistical Index	TNFα, pg/ml	IL-1β, pg/ml	IL-10, pg/ml		
	Before therapy	After therapy	Before therapy	After therapy	Before therapy	After therapy
Group of comparison	X 8.53	8.34	9.46	7.16	10.51	8.72
σ	2.24	2.17	2.98	2.98	3.33	3.51
p	0.866	0.127	0.134			
Group of investigation (resveratrol)	X 9.69	7.28	10.05	6.98	11.41	9.39
σ	2.63	2.18	2.67	2.52	2.61	3.06
p	0.013	0.002	0.055			

X: The sample mean; σ: Standard deviation; p: The probability

Table 2. Level of mRNA ІkВα expression in peripheral blood mononuclear cells of the subjects of the study.

Group / Mark	Statistical index	Group of comparison	Group of investigation (resveratrol)	
	Before treatment	After treatment	Before treatment	After treatment
Expression mRNA ІkВα, 2^−ΔСt	X 0.0224	0.0253	0.0246	0.0220
σ	0.0198	0.0155	0.0131	0.0092
p	0.570	0.441		
F^−ΔСt	X 0.120	0.142	0.833	0.873
(min:max)	(-2.64:-2.83)	(-2.0:-1.87)	(-2.0:-1.87)	

X: The sample mean; σ: Standard quadratic deviation, (min:max): Extreme value variation series; p: The probability; *: Significant differences with the data of all groups before and after treatment (p<0.01)
Conflict of interests

Authors have accepted full responsibility for the conduct of the study, had access to the data, and controlled the decision to publish it. All authors have made a significant contribution to the preparation of the manuscript, acquisition and analysis of the study data. The study was funded by the authors. The results do not reflect the interests of any organizations and personalities. Our scientific work has no competing interest.

References

1. Kovalenko VM, Kornatsky VM (2015) Stress i hronobry sistemy krovoobigiv [Stress and cardiovascular diseases]-Kiev: SI “Institute of Cardiology named after Acad. MD Strazhesko.

2. Ridker PM (2016) From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream To Identify Novel Targets for Atheroprotection. Circ Res 118: 145-156. [crossref]

3. Hedrick CC (2015) Lymphocytes in atherosclerosis. Arterioscler Thromb Vasc Biol 35: 253-257. [crossref]

4. Watson AD, Berliner JA, Hamu SV, Da Bu BN, Faull KF, et al. (1995) Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest 96: 2882-2891. [crossref]

5. Manach C, Mazur A, Scalbert A (2005) Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16: 77-84. [crossref]

6. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5: 493-506. [crossref]

7. Imamura G, Bertelli AA, Bertelli A, Otani H, Maulik N, et al. (2002) Pharmacological preconditioning with resveratrol: an insight with INOS knockout mice. Am J Physiol Heart Circ Physiol 282: H1196-H2003. [crossref]

8. Dolinsky VW, Chan AV, Robillard Frayne I, Light PE, Des Rosiers C, et al. (2009) Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. Circulation 119: 1643-1652. [crossref]

9. Task Force Members, Montalescot G, Sechtem U, Achenbach S, Andreotti F, et al. (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34: 2949-3003. [crossref]

10. Amirzhanova VN, Erdes Sh F (2007) Validatsiya russkoy versii obshegog oprosnika EUROQOL - 5D (EQ-5D) [Validation of the Russian version of the general questionnaire of EUROQOL-5D (EQ-5D)]. Scientific and practical rheumatology 3: 69-76.

11. Egorov AM, Osipov AP, Deantiev BB, Gavriloa EM (1991) Teorija i praktika immunofeernentnogo analiza [Theory and practice of the immunofeernental analysis]. Moscow: The higher school, 1991: 288.

12. Nolan T, Hands RE, Busini SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1: 1559-1582. [crossref]

13. Petri A, Sabine K (2010) Nagljadnaja medicinskaja statistika [Transparent medical statistics]. Moscow: GEOTAR-MED 2010: 43-68

14. Ahmad Z, Ng CT, Fong LY, Bakar NA, Hussain NH, et al. (2016) Cryptotanshinone inhibits TNF-α-induced early atherogenic events in vitro. J Physiol Sci 66: 213-220. [crossref]

15. Musial J, Undas A, Gajewski P, Jankowski M, Sydor W, et al. (2001) Anti-inflammatory effects of simvastatin in subjects with hypercholesterolemia. Int J Cardiol 77: 247-253. [crossref]

16. Nissen SE, Tuez EM, Schoenhagen P, Brown BG, Ganz P, et al. (2004) Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. GAMA 9: 1071-1080. [crossref]

17. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, et al. (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15: 675-690. [crossref]

18. Kaidashev IP (2012) Sistema sirtuinov i vozmozhnosti regulirovaniya eyo sostoyaniya v klinicheskoj praktike (obzor literatury) [Sirtuins system and the possibility of adjusting its status in clinical practice (review)]. JAMA 18: 418-429.

19. Kaidashev IP (2013) Aktivaciya yadernogo faktora kB kak molekulyarnaja osnovy patogenesi metabolicheskogo sindroma [Activation of nuclear factor-kB as a molecular basis of the pathogenesis of the metabolic syndrome]. Pathological Physiology and Experimental Therapy 5: 65-72.

20. Monaco C Andreaekos E, Kiriakidis S, Mauri C, Bicknell C, et al. (2004) Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc Natl Acad Sci U S A 101: 5634-5639. [crossref]

21. Chekalina NI, Karazov YuM, Muumontova TV, Vensina LE, Kaidashev IP (2016) Resveratrol more effectively than quercetin reduces endothelium degeneration and level of necrosis factor a in patients with coronary artery disease. Wiadomosci Lekarskie LXIX: 475-479.

22. Meziani F, Tese A, Andriantsitohaina R (2008) Microparticles are vectors of paradoxical information in vascular cells including the endothelium: role in health and diseases. Pharmacol Rep 60: 75-84.

23. Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freysinnet JM, et al. (2009) Endothelial microparticles in diseases. Cell Tissue Res 335: 143-151. [crossref]

24. Wormald S, Hilton DJ (2004) Inhibitors of cytokine signal transduction. J Biol Chem 279: 821-824. [crossref]

25. Knight RA, Scarabelli TM, Stephanou A (2012) STAT transcription in the ischemic heart. JAKSTAT 1: 111-117. [crossref]

26. Singh AK, Vinayak M (2016) Anti-Nociceptive effect of resveratrol during inflammatory hyperalgesia via differential regulation of pro-inflammatory mediators. Phytother Res 30: 1164-1171.

Copyright: ©2016 Chekalina NI. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.