Planar Turán Number of the 6-Cycle

Debarun Ghosh1 Ervin Győri1,2 Ryan R. Martin3
Addisu Paulos1 Chuanqi Xiao1

1Central European University, Budapest
chuanqixm@gmail.com,
ghosh_debarun@phd.ceu.edu,addisu_2004@yahoo.com
2Alfréd Rényi Institute of Mathematics, Budapest
gyori.ervin@renyi.mta.hu
3Iowa State University, Ames, IA, USA
rymartin@iastate.edu

Abstract

Let $\text{ex}_P(n, T, H)$ denote the maximum number of copies of T in an n-vertex planar graph which does not contain H as a subgraph. When $T = K_2$, $\text{ex}_P(n, T, H)$ is the well studied function, the planar Turán number of H, denoted by $\text{ex}_P(n, H)$. The topic of extremal planar graphs was initiated by Dowden (2016). He obtained sharp upper bound for both $\text{ex}_P(n, C_4)$ and $\text{ex}_P(n, C_5)$. Later on, Y. Lan, et al. continued this topic and proved that $\text{ex}_P(n, C_6) \leq \frac{18(n-2)}{7}$. In this paper, we give a sharp upper bound $\text{ex}_P(n, C_6) \leq \frac{5}{2}n - 7$, for all $n \geq 18$, which improves Lan’s result. We also pose a conjecture on $\text{ex}_P(n, C_k)$, for $k \geq 7$.

Keywords Planar Turán number, Extremal planar graph

1 Introduction and Main Results

In this paper, all graphs considered are planar, undirected, finite and contain neither loops nor multiple edges. We use C_k to denote the cycle on k vertices and K_r to denote the complete graph on r vertices.

One of the well-known results in extremal graph theory is the Turán Theorem \cite{5}, which gives the maximum number of edges that a graph on n vertices can have without containing
a K_r as a subgraph. The Erdős-Stone-Simonovits Theorem \cite{2 3} then generalized this result and asymptotically determines $\text{ex}(n, H)$ for all non-bipartite graphs H: $\text{ex}(n, H) = (1 - \frac{1}{\chi(H)-1})\binom{n}{2} + o(n^2)$, where $\chi(H)$ denotes the chromatic number of H. Over the last decade, a considerable amount of research work has been carried out in Turán-type problems, i.e., when host graphs are K_n, k-uniform hypergraphs or k-partite graphs, see \cite{3 6}.

In 2016, Dowden \cite{1} initiated the study of Turán-type problems when host graphs are planar, i.e., how many edges can a planar graph on n vertices have, without containing a given smaller graph? The planar Turán number of a graph H, $\text{ex}_P(n, H)$, is the maximum number of edges in a planar graph on n vertices which does not contain H as a subgraph. Dowden \cite{1} obtained the tight bounds $\text{ex}_P(n, C_4) \leq \frac{15(n-2)}{7}$, for all $n \geq 4$ and $\text{ex}_P(n, C_5) \leq \frac{12n-33}{5}$, for all $n \geq 11$. Later on, Y. Lan, et al. \cite{4} obtained bounds $\text{ex}_P(n, \Theta_4) \leq \frac{12(n-2)}{5}$, for all $n \geq 4$, $\text{ex}_P(n, \Theta_5) \leq \frac{5(n-2)}{2}$, for all $n \geq 5$ and $\text{ex}_P(n, \Theta_6) \leq \frac{18(n-2)}{7}$, for all $n \geq 7$, where Θ_k is obtained from a cycle C_k by adding an additional edge joining any two non-consecutive vertices. They also demonstrated that their bounds for Θ_4 and Θ_5 are tight by showing infinitely many values of n and planar graph on n vertices attaining the stated bounds. As a consequence of the bound for Θ_6 in the same paper, they presented the following corollary.

Corollary 1 (Y. Lan, et al.\cite{4}).

$$\text{ex}_P(n, C_6) \leq \frac{18(n-2)}{7}$$

for all $n \geq 6$, with equality when $n = 9$.

In this paper we present a tight bound for $\text{ex}_P(n, C_6)$. In particular, we prove the following two theorems to give the tight bound.

We denote the vertex and the edge sets of a graph G by $V(G)$ and $E(G)$ respectively. We also denote the number of vertices and edges of G by $v(G)$ and $e(G)$ respectively. The minimum degree of G is denoted $\delta(G)$. The main ingredient of the result is as follows:

Theorem 2. Let G be a 2-connected, C_6-free plane graph on n ($n \geq 6$) vertices with $\delta(G) \geq 3$. Then $e(G) \leq \frac{5}{2}n - 7$.

2
We use Theorem 2, which considers only 2-connected graphs with no degree 2 (or 1) vertices and order at least 6, in order to establish our desired result, which bounds gives the desired bound of $\frac{5}{2}n - 7$ for all C_6-free plane graphs with at least 18 vertices.

Theorem 3. Let G be a C_6-free plane graph on n ($n \geq 18$) vertices. Then

$$e(G) \leq \frac{5}{2}n - 7.$$

Indeed, there are 17-vertex graphs on 17 vertices with 36 edges, but $\frac{5}{2}(17) - 7 = 35.5 < 36$. One such graph can be seen in Figure 1.

![Figure 1: Example of G on 17 vertices such that $e(G) > (5/2)v(G) - 7$.](image)

We show that, for large graphs, Theorem 3 is tight:

Theorem 4. For every $n \equiv 2 \pmod{5}$, there exists a C_6-free plane graph G with $v(G) = \frac{18n+14}{5}$ and $e(G) = 9n$, hence $e(G) = \frac{5}{2}v(G) - 7$.

For a vertex v in G, the neighborhood of v, denoted $N_G(v)$, is the set of all vertices in G which are adjacent to v. We denote the degree of v by $d_G(v) = |N_G(v)|$. We may avoid the subscripts if the underlying graph is clear. The minimum degree of G is denoted by $\delta(G)$, the number of components of G is denoted by $c(G)$. For the sake of simplicity, we may use the term k-cycle to mean a cycle of length k and k-face to mean a face bounded by a k-cycle. A k-path is a path with k edges.

2 Proof of Theorem 4: Extremal Graph Construction

First we show that for a plane graph G_0 with n vertices ($n \equiv 7 \pmod{10}$), each face having length 7 and each vertex in G_0 having degree either 2 or 3, we can construct G, where G is a C_6-free plane graph with $v(G) = \frac{18n+14}{5}$ and $e(G) = 9n$. We then give a construction for such a G_0 as long as $n \equiv 7 \pmod{10}$.

Using Euler’s formula, the fact that every face has length 7 and every degree is 2 or 3, we have \(e(G_0) = \frac{7(n-2)}{5} \) and the number of degree 2 and degree 3 vertices in \(G_0 \) are \(\frac{n+28}{5} \) and \(\frac{4n-28}{5} \), respectively.

Given \(G_0 \), we construct first an intermediate graph \(G' \) by step (1):

1. Add halving vertices to each edge of \(G_0 \) and join the pair of halving vertices with distance 2, see an example in Figure 2. Let \(G' \) denote this new graph, then \(v(G') = v(G_0) + e(G_0) = \frac{12n-14}{5} \) and the number of degree 2 and degree 3 vertices in \(G' \) is equal to the number of degree 2 and degree 3 vertices in \(G_0 \), respectively.

![Figure 2: Adding a halving vertex to each edge of \(G_0 \).](image)

To get \(G \), we apply the following steps (2) and (3) on the degree 2 and 3 vertices in \(G' \), respectively.

2. For each degree 2 vertex \(v \) in \(G_0 \), let \(N(v) = \{v_1, v_2\} \), and so \(v_1v_2 \) forms an induced triangle in \(G' \). Fix \(v_1 \) and \(v_2 \), replace \(v_1v_2 \) with a \(K_5^- \) by adding vertices \(v'_1, v'_2 \) to \(V(G') \) and edges \(v'_1v, v'_1v_1, v'_1v_2, v'_2v_1, v'_2v_2 \) to \(E(G') \). See Figure 3

![Figure 3: Replacing a degree-2 vertex of \(G_0 \) with a \(K_5^- \).](image)
For each degree 3 vertex \(v \) in \(G_0 \), such that \(N(v) = \{v_1, v_2, v_3\} \), the set of vertices \(\{v, v_1, v_2, v_3\} \) then forms an induced \(K_4 \) in \(G' \). Fix \(v_1, v_2 \) and \(v_3 \), replace this \(K_4 \) with a \(K_{n-5} \) by adding a new vertex \(v' \) to \(V(G') \) and edges \(v'v, v'v_1, v'v_2 \) to \(E(G') \). See Figure 4.

Figure 4: Replacing a degree-3 vertex of \(G_0 \) with a \(K_{n-5} \).

For each integer \(k \geq 0 \), and \(n = 10k + 7 \) we present a construction for such a \(G_0 \), call it \(G_k^0 \): Let \(v^t_i \) and \(v^b_i \) (\(1 \leq i \leq k+1 \)) be the top and bottom vertices of the heptagonal grids with 3 layers and \(k \) columns, respectively (see the red vertices in Figure 5) and \(v \) be the extra vertex in \(G_k^0 \) but not in the heptagonal grid. We join \(v^t_1v, vv^b_1 \) and \(v^t_i v^b_i \) (\(2 \leq i \leq k+1 \)). Clearly, \(G_k^0 \) is a \((10k+7)\)-vertex plane graph and each face of \(G_k^0 \) is a 7-face. Obviously \(e(G_k^0) = 14k + 7 \), and the number of degree 2 and 3 vertices are \(2k + 7 = \frac{n+28}{5} \) and \(8k = \frac{4n-28}{5} \) respectively.

After applying steps [1] [2] and [3] on \(G_k^0 \), we get \(G \). It is easy to verify that \(G \) is a \(C_6 \)-free plane graph with

\[
\begin{align*}
v(G) &= v(G_k^0) + e(G_k^0) + 2(2k + 7) + 8k = (10k + 7) + (14k + 7) + 12k + 14 = 36k + 28 \\
e(G) &= 9v(G_k^0) = 90k + 63.
\end{align*}
\]

Thus, \(e(G) = \frac{5}{2}v(G) - 7 \).

Remark 1. In fact, for \(k \geq 1 \) and \(n = 10k + 2 \), there exists a graph \(H_k^0 \) which is obtained from \(G_k^0 \) by deleting vertices (colored green in Figure 5) \(x_1, x_2, x_3, x_4, x_5 \) and adding the edge \(v^t_1y \). Clearly, \(H_k^0 \) is an \(10k + 2 \)-vertex plane graph such that all faces have length 7. Moreover, \(e(H_k^0) = 14k \), the number of degree-2 and degree-3 vertices are \(2k + 6 = \frac{n+28}{5} \) and
Figure 5: The graph G_k^k, $k \geq 1$, in which each face has length 7. The graph H_0^k (see Remark 1) is obtained by deleting x_1, \ldots, x_5 and adding the edge v_1^ty.

$8k - 4 = \frac{4n - 28}{5}$, respectively. After applying steps (1), (2), and (3) to H_0^k, we get a graph H that is a C_6-free plane graph with $e(H) = (5/2)v(H) - 7$.

Thus, for any $k \equiv 2 \pmod{5}$, we have the graphs above such that each face is a 7-gon and we get a C_6-free plane graph on n vertices with $(5/2)n - 7$ edges for $n \equiv 10 \pmod{18}$ if $n \geq 28$.

3 Definitions and Preliminaries

We give some necessary definitions and preliminary results which are needed in the proof of Theorems 2 and 3.

Definition 5. Let G be a plane graph and $e \in E(G)$. If e is not in a 3-face of G, then we call it a trivial triangular-block. Otherwise, we recursively construct a triangular-block in the following way. Start with H as a subgraph of G, such that $E(H) = \{e\}$.

(1) Add the other edges of the 3-face containing e to $E(H)$.

6
(2) Take $e' \in E(H)$ and search for a 3-face containing e'. Add these other edge(s) in this 3-face to $E(H)$.

(3) Repeat step (2) till we cannot find a 3-face for any edge in $E(H)$.

We denote the triangular-block obtained from e as the starting edge, by $B(e)$.

Let G be a plane graph. We have the following three observations:

(i) If H is a non-trivial triangular-block and $e_1, e_2 \in E(H)$, then $B(e_1) = B(e_2) = H$.

(ii) Any two triangular-blocks of G are edge disjoint.

(iii) If B is a triangular-block with the unbounded region being a 3-face, then B is a triangulation graph.

Let \mathcal{B} be the family of triangular-blocks of G. From observation [ii] above, we have

$$e(G) = \sum_{B \in \mathcal{B}} e(B),$$

where $e(G)$ and $e(B)$ are the number of edges of G and B respectively.

Next, we distinguish the types of triangular-blocks that a C_6-free plane graph may contain. The following lemma gives us the bound on the number of vertices of triangular-blocks.

Lemma 6. Every triangular-block of G contains at most 5 vertices.

Proof. We prove it by contradiction. Let B be a triangular-block of G containing at least 6 vertices. We perform the following operations: delete one vertex from the boundary of the unbounded face of B sequentially until the number of vertices of the new triangular block B' is 6. Next, we show that B' is not a triangular-block in G. Suppose that it is. We consider the following two cases to complete the proof.

Case 1. B' contains a separating triangle.

Let $v_1v_2v_3$ be the separating triangle. Without loss of generality, assume that the inner region of the triangle contains two vertices say, v_4 and v_5. The outer region of the triangle
contains one vertex, say \(v_6 \). Since the unbounded face is a 3-face, the inner structure is a triangulation. Without loss of generality, let the inner structure be as shown in Figure 6(a). Now consider the vertex \(v_6 \). If \(v_1, v_2 \in N(v_6) \), then \(v_3v_4v_5v_2v_6v_1v_3 \) is a 6-cycle in \(G \), a contradiction. Similarly for the cases when \(v_1, v_3 \in N(v_6) \) and \(v_2, v_3 \in N(v_6) \).

Case 2. \(B' \) contains no separating triangle.

Consider a triangular face \(v_1v_2v_3v_1 \). Let \(v_4 \) be a vertex in the triangular-block such that \(v_2v_3v_4v_2 \) is a 3-face. Notice that \(v_1v_4 \notin E(B') \), otherwise we get a separating triangle in \(B' \). Let \(v_5 \) be a vertex in \(B' \) such that \(v_2v_4v_5v_2 \) is a 3-face. Notice that \(v_6 \) cannot be adjacent to both vertices in any of the pairs \(\{v_1, v_2\}, \{v_1, v_3\}, \{v_3, v_4\}, \{v_2, v_5\}, \{v_3, v_4\} \), or \(\{v_4, v_5\} \). Otherwise, \(C_6 \subset G \). Also \(v_3v_5 \notin E(B') \), otherwise we have a separating triangle. So, let \(v_1v_5 \in E(B') \) and \(v_1, v_5 \in N(v_6) \) (see Figure 6(b)). In this case \(v_1v_6v_5v_4v_3v_1 \) results in a 6-cycle, a contradiction.

Figure 6: The structure of \(B' \) when it contains a separating triangle or not, respectively.

Now we describe all possible triangular-blocks in \(G \) based on the number of vertices the block contains. For \(k \in \{2, 3, 4, 5\} \), we denote the triangular-blocks on \(k \) vertices as \(B_k \).

Triangular-blocks on 5 vertices.

There are four types of triangular-blocks on 5 vertices (see Figure 7). Notice that \(B_{5,a} \) is a \(K_5^- \).
Triangular-blocks on 4, 3, and 3 vertices.

There are two types of triangular-blocks on 4 vertices. See Figure 8. Observe that $B_{4,a}$ is a K_4. The 3-vertex and 2-vertex triangular-blocks are simply K_3 and K_2 (the trivial triangular-block), respectively.

Definition 7. Let G be a plane graph.

(i) A vertex v in G is called a junction vertex if it is in at least two distinct triangular-blocks of G.

(ii) Let B be a triangular-block in G. An edge of B is called an exterior edge if it is on a boundary of non-triangular face of G. Otherwise, we call it an interior edge. An endvertex of an exterior edge is called an exterior vertex. We denote the set of all exterior and interior edges of B by $\text{Ext}(B)$ and $\text{Int}(B)$ respectively. Let $e \in \text{Ext}(B)$, a non-triangular face of G with e on the boundary is called the exterior face of e.

Notice that an exterior edge of a non-trivial triangular-block has exactly one exterior face. On the other hand, if G is a 2-connected plane graph, then every trivial triangular-block has two exterior faces. For a non-trivial triangular-block B of a plane graph G, we
call a path $P = v_1v_2v_3 \ldots v_k$ an exterior path of B, if v_1 and v_k are junction vertices and v_i, v_{i+1} are exterior edges of B for $i \in \{1, 2, \ldots, k - 1\}$ and v_j is not junction vertex for all $j \in \{2, 3, \ldots, k - 1\}$. The corresponding face in G where P is on the boundary of the face is called the exterior face of P.

Next, we give the definition of the contribution of a vertex and an edge to the number of vertices and faces of C_6-free plane graph G. All graphs discussed from now on are C_6-free plane graph.

Definition 8. Let G be a plane graph, B be a triangular-block in G and $v \in V(B)$. The contribution of v to the vertex number of B is denoted by $n_B(v)$, and is defined as

$$n_B(v) = \frac{1}{\# \text{ triangular-blocks in } G \text{ containing } v}.$$

We define the contribution of B to the number of vertices of G as $n(B) = \sum_{v \in V(B)} n_B(v)$.

Obviously, $v(G) = \sum_{B \in B} n(B)$, where $v(G)$ is the number of vertices in G and B is the family of triangular-blocks of G.

Let B_{K_5} be a triangular-block of G isomorphic to a $B_{5,a}$ with exterior vertices v_1, v_2, v_3, where v_1 and v_3 are junction vertices, see Figure 9 for an example. Let F be a face in G such that $V(F)$ contains all exterior vertices $v_{1,1}, \ldots, v_{1,m}, v_{2,1}, \ldots, v_{2,m}, v_{3,1}, \ldots, v_{3,m}$ of m ($m \geq 1$) copies of B_{K_5}, such that $v_{1,i}, v_{2,i}, v_{3,i}$ are the exterior vertices of the i-th B_{K_5} and $v_{1,i}, v_{3,i}$ ($1 \leq i \leq m$) are junction vertices. Let C_F denote the cycle associated with the face F. We alter $E(C_F)$ in the following way:

$$E(C'_F) := E(C_F) - \{v_{1,1}v_{2,1}v_{3,1}\} - \cdots - \{v_{1,m}v_{2,m}v_{3,m}\} \cup \{v_{1,1}v_{3,1}\} \cup \cdots \cup \{v_{1,m}, v_{3,m}\}.$$

Hence, the length of F as $|E(C_F)| = |E(C_F)| - m$. For example, in Figure 9 $|E(C_F)| = 11$ but $|E(C'_F)| = 9$.

Now we are able to define the **contribution** of an “edge” to the number of faces of C_6-free plane graph G.

Definition 9. Let F be a exterior face of G and $C_F := \{e_1, e_2, \ldots, e_k\}$ be the cycle associated with F. The contribution of an exterior edge e to the face number of the exterior face F, is denoted by $f_F(e)$, and is defined as follows.
Figure 9: An example of a face containing all the exterior vertices of at least one B_{K_5}.

(i) If e_1 and e_2 are adjacent exterior edges of B_{K_5}, then $f_F(e_1) + f_F(e_2) = \frac{1}{|C'_F|}$, and
$f_F(e_i) = \frac{1}{|C'_F|}$, where $i \in \{3, 4, \ldots, k\}$.

(ii) Otherwise, $f_F(e) = \frac{1}{|C_F|}$.

Note that $\sum_{e \in E(F)} f_F(e) = 1$. For a triangular-block B, the total face contribution of B is denoted by f_B and defined as $f_B = (\# \text{ interior faces of } B) + \sum_{e \in \text{Ext}(B)} f_F(e)$, where F is the exterior face of B with respective to e. Obviously, $f(G) = \sum_{B \in \mathcal{B}} f(B)$, where $f(G)$ is the number of faces of G.

4 Proof of Theorem 2

We begin by outlining our proof. Let f, n, and e be the number of faces, vertices, and edges of G respectively. Let \mathcal{B} be the family of all triangular-blocks of G.

The main target of the proof is to show that

$$7f + 2n - 5e \leq 0. \tag{1}$$

Once we show (1), then by using Euler’s Formula, $e = f + n - 2$, we can finish the proof of Theorem 2. To prove (1), we show the existence of a partition $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_m$ of \mathcal{B} such that
\[
7 \sum_{B \in \cal P_i} f(B) + 2 \sum_{B \in \cal P_i} n(B) - 5 \sum_{B \in \cal P_i} e(B) \leq 0, \text{ for all } i \in \{1, 2, 3 \ldots, m\}. \text{ Since } f = \sum_{B \in \cal B} f(B),
\]
\[
n = \sum_{B \in \cal B} n(B) \text{ and } e = \sum_{B \in \cal B} e(B) \text{ we have}
\]
\[
7f + 2n - 5e = 7 \sum_{i} \sum_{B \in \cal P_i} f(B) + 2 \sum_{i} \sum_{B \in \cal P_i} n(B) - 5 \sum_{i} \sum_{B \in \cal P_i} e(B)
\]
\[
= \sum_{i} \left(7 \sum_{B \in \cal P_i} f(B) + 2 \sum_{B \in \cal P_i} n(B) - 5 \sum_{B \in \cal P_i} e(B)\right) \leq 0.
\]

The following proposition will be useful in many lemmas.

Proposition 10. Let \(G \) be a 2-connected, \(C_6 \)-free plane graph on \(n \) (\(n \geq 6 \)) vertices with \(\delta(G) \geq 3 \).

(i) If \(B \) is a nontrivial triangular-block (that is, not \(B_2 \)), then none of the exterior faces can have length 5.

(ii) If \(B \) is in \(\{B_{5,a}, B_{5,b}, B_{5,c}, B_{4,a}\} \), then none of the exterior faces can have length 4.

(iii) If \(B \) is in \(\{B_{5,d}, B_{4,b}\} \) and an exterior face of \(B \) has length 4, then that 4-face must share a 2-path with \(B \) (shown in blue in Figures 13 and 14) and the other edges of the face must be in trivial triangular-blocks.

(iv) No two 4-faces can be adjacent to each other.

Proof.

(i) Observe that any pair of consecutive exterior vertices of a nontrivial triangular-block has a path of length 2 (counted by the number of edges) between them and any pair of nonconsecutive exterior vertices has a path of length 3 between them. So having a face of length 5 incident to this triangular-block would yield a \(C_6 \), a contradiction.

(ii) If \(B \) is in \(\{B_{5,a}, B_{5,b}, B_{5,c}, B_{4,a}\} \), then any pair of consecutive exterior vertices of the listed triangular-blocks has a path of length 3 between them. It remains to consider nonconsecutive vertices for \(\{B_{5,b}, B_{5,c}\} \). For \(B_{5,b} \) each pair of nonconsecutive exterior vertices has a path of length 3 between them. In the case where \(B \) is \(B_{5,c} \), this is true for all pairs without an edge between them. As for the other pairs, if they are in the
same 4-face, then at least one of the degree-2 vertices in B must have degree 2 in G, a contradiction.

\[\text{(iii)}\] In both $B_{5,d}$ and $B_{4,b}$, any pair of consecutive exterior vertices has a path of length 3 between them. For $B_{5,d}$, in Figure 13, we see that there is a path of length 4 between v_2 and v_4 and so the only way a 4-face can be adjacent to B is via a 2-path with endvertices v_1 and v_3. In fact, because there is no vertex of degree 2, the path must be $v_1v_4v_3$. For $B_{4,b}$, in Figure 13, we see that because B cannot have a vertex of degree 2, the 4-face and B cannot share the path $v_2v_1v_4$ or the path $v_2v_3v_4$. Thus the only paths that can share a boundary with a 4-face are $v_1v_4v_3$ and $v_1v_2v_3$.

As to the other blocks that form edges of such a 4-face. In Figure 10, we see that if, say, v_1u is in a nontrivial triangular-block, then there is a vertex w in that block, in which case wv_1xv_4uw forms a 6-cycle, a contradiction.

\[\text{(iv)}\] If two 4-faces share an edge, then there is a 6-cycle formed by deleting that edge. If two 4-faces share a 2-path, then the midpoint of that path is a vertex of degree 2 in G. In both cases, a contradiction.

\begin{proof}
We separate the proof into several cases.
\end{proof}

![Figure 10: Proposition 10(iii)](image)

The blocks defined by blue edges must be trivial.

To show the existence of such a partition we need the following lemmas.

Lemma 11. Let G be a 2-connected, C_6-free plane graph on n ($n \geq 6$) vertices with $\delta(G) \geq 3$. If B is a triangular-block in G such that $B \notin \{B_{5,d}, B_{4,b}\}$, then $7f(B) + 2n(B) - 5e(B) \leq 0$.

Proof. We separate the proof into several cases.
Case 1: \(B \) is \(B_{5,a} \).

Let \(v_1, v_2 \) and \(v_3 \) be the exterior vertices of \(K_5^- \). At least two of them must be junction vertices, otherwise \(G \) contains a cut vertex. We consider 2 possibilities to justify this case.

(a) Let \(B \) be \(B_{5,a} \) with 3 junction vertices (see Figure 11(a)). By Proposition 10, every exterior edge in \(B \) is contained in an exterior face with length at least 7. Thus,
\[
f(B) = (\text{# interior faces of } B) + \sum_{e \in \text{Ext}(B)} f_F(e) \leq 5 + 3/7.
\]
Moreover, every junction vertex is contained in at least 2 triangular-blocks, so we have \(n(B) \leq 2 + 3/2 \). With \(e(B) = 9 \), we obtain
\[
7f(B) + 2n(B) - 5e(B) \leq 0.
\]

(b) Let \(B \) be \(B_{5,a} \) with 2 junction vertices, say \(v_2 \) and \(v_3 \) (see Figure 11(b)). Let \(F \) and \(F_1 \) are exterior faces of the exterior edge \(v_2v_3 \) and exterior path \(v_2v_1v_3 \) of the triangular-block respectively. Notice that \(v_1v_2 \) and \(v_2v_3 \) are the adjacent exterior edges in the same face \(F_1 \), hence \(|C(F_1)| \geq 8 \). By Definition 9 we have \(f_{F_1}(v_1v_2) + f_{F_1}(v_1v_3) \leq 1/7 \). Because there can be no \(C_6 \), one can see that regardless of the configuration of the \(B_{K_5^-} \), it is the case that \(f_F(v_2v_3) \leq 1/7 \). Thus, \(f(B) \leq 5 + 2/7 \). Moreover, since \(v_1 \) and \(v_3 \) are contained in at least 2 triangular-blocks, we have \(n(B) \leq 3 + 2/2 \). With \(e(B) = 9 \), we obtain
\[
7f(B) + 2n(B) - 5e(B) \leq 0.
\]

Figure 11: A \(B_{5,a} \) triangular-block with 3 and 2 junction vertices, respectively.
Case 2: B is in $\{B_{4,a}, B_{5,b}, B_{5,c}\}$.

(a) Let B be a $B_{4,a}$. By Proposition 10, each face incident to this triangular-block has length at least 7. So, $f(B) \leq 3 + 3/7$. Because there is no cut-vertex, this triangular-block must have at least two junction vertices, hence $n(B) \leq 2 + 2/2$. With $e(B) = 6$, we obtain $7f(B) + 2n(B) - 5e(B) \leq 0$.

(b) Let B be a $B_{5,b}$. There are 4 faces inside the triangular-block and each face incident to this triangular-block has length at least 7. So, $f(B) \leq 4 + 4/7$. Because there is no cut-vertex, this triangular-block must have at least two junction vertices, hence $n(B) \leq 3 + 2/2$. With $e(B) = 8$, we obtain $7f(B) + 2n(B) - 5e(B) \leq 0$, as seen in Table 2.

(c) Let B be a $B_{5,c}$. Similarly, $f(B) \leq 3 + 5/7$ and because there are at least two junction vertices, $n(B) \leq 3 + 2/2$. With $e(B) = 7$, we obtain $7f(B) + 2n(B) - 5e(B) \leq -1$.

Case 3: B is B_3.

Let v_1, v_2 and v_3 be the exterior vertices of triangular-block B. Each of these three must be junction vertices since there is no degree 2 vertex in G, which implies that each is contained in at least 2 triangular-blocks. We consider two possibilities:

(a) Let the three exterior vertices be contained in exactly 2 triangular-blocks. By Proposition 10(i), the length of each exterior face is either 4 or at least 7. We want to show that at most one exterior face has length 4.

If not, then let x_1 be a vertex that is in two such faces. Consider the triangular-block incident to B at x_1, call it B'. By Proposition 10, B' is not in $\{B_{5,a}, B_{5,b}, B_{5,c}, B_{4,a}\}$.

If B' is in $\{B_{5,d}, B_{4,b}, B_3\}$, then the triangular-block has vertices ℓ_2, ℓ_3, each adjacent to x_1 and the length-4 faces consist of $\{v_1, \ell_2, m_2, v_2\}$ and $\{v_1, \ell_3, m_3, v_3\}$. Either $\ell_2 \sim \ell_3$ (in which case $\ell_2 m_2 v_2 v_3 m_3 \ell_3 \ell_2$ is a 6-cycle, see Figure 12(a)) or there is a ℓ' distinct from v_1 that is adjacent to both ℓ_2 and ℓ_3 (in which case $\ell' \ell_2 m_2 v_2 v_1 \ell_3 \ell_2$ is a 6-cycle, see Figure 12(b)).
If B' is B_2, then the trivial triangular-block is $\{v_1, \ell\}$, in which case $\{\ell, m_2, v_1, v_3, m_3\}$ is a C_6, see Figure 12(c). Thus, we may conclude that if each of the three exterior vertices are in exactly 2 triangular-blocks, then $f(B) \leq 1 + 2/7 + 1/4$ and $n(B) \leq 3/2$. With $e(B) = 3$, we obtain $7f(B) + 2n(B) - 5e(B) \leq -5/4$.

Figure 12: A B_3 triangular-block, B and the various cases of what must occur if B is incident to two 4-faces.

(b) Let at least one exterior vertex be contained in at least 3 triangular-blocks and the others be contained at least 2 triangular-blocks. In this case, we have $f(B) \leq 1 + 3/4$ and $n(B) \leq 2/2 + 2/3$. With $e(B) = 3$, we obtain $7f(B) + 2n(B) - 5e(B) \leq -1/12$.

Case 4: B is B_2.

Note that the fact that there is no vertex of degree 2 gives that if an endvertex is in exactly two triangular-blocks, then the other one cannot be a B_2. We consider three possibilities:

(a) Let each endvertex be contained in exactly 2 triangular-blocks. Since neither of the triangular-blocks incident to B can be trivial, they cannot be incident to a face of length 5 by Proposition 10(i). Thus, B cannot be incident to a face of length 5. Moreover, the two faces incident to B cannot both be of length 4, again by Proposition 10(iv). Hence, $f(B) \leq 1/4 + 1/7$. Clearly $n(B) \leq 2/2$ and with $e(B) = 1$, we obtain $7f(B) + 2n(B) - 5e(B) \leq -1/4$.

(b) Let one endvertex be contained in exactly 2 triangular-blocks and the other endvertex be contained in at least 3 triangular-blocks. This is similar to case [a] in that neither
face can have length 5 and they cannot both have length 4. The only difference is that $n(B) \leq 1/2 + 1/3$ and so $7f(B) + 2n(B) - 5e(B) \leq -7/12$.

(c) Let each endvertex be contained in at least 3 triangular-blocks. The two faces cannot both be of length 4 by Proposition [10][iv]. Hence, $f(B) \leq 1/4 + 1/5$ and $n(B) \leq 2/3$. With $e(B) = 1$, we obtain $7f(B) + 2n(B) - 5e(B) \leq -31/60$.

\[\square\]

Lemma 12. Let G be a 2-connected, C_6-free plane graph on $n \geq 6$ vertices with $\delta(G) \geq 3$. If B is $B_{5,d}$, then $7f(B) + 2n(B) - 5e(B) \leq 1/2$. Moreover, $7f(B) + 2n(B) - 5e(B) \leq 0$ unless B shares a 2-path with a 4-face.

Proof. Let B be $B_{5,d}$ with vertices v_1, v_2, v_3, v_4, and v_5, as shown in Figure 13(a). By Proposition [10][i], no exterior face of B can have length 5. By Proposition [10][iii], if there is an exterior face of B that has length 4, this 4-face must contain the path $v_1v_4v_3$.

Moreover, since there is no vertex of degree 2, v_2 is a junction vertex. Because G has no cut-vertex, there is at least one other junction vertex. We may consider the following cases:

(a) Let v_4 be a junction vertex. This prevents an exterior face of length 4. Thus, each exterior face has length at least 7. Hence, $f(B) \leq 4 + 4/7$ and $n(B) \leq 3 + 2/2$. With $e(B) = 8$, we obtain $7f(B) + 2n(B) - 5e(B) \leq 0$.

![Figure 13: A $B_{5,d}$ triangular-block and how a 4-face must be incident to it.](image-url)
(b) Let v_4 fail to be a junction vertex and exactly one of v_1, v_3 be a junction vertex. Without loss of generality let it be v_3. In this case, again, each exterior face has length\(^1\) at least 7. Again, $f(B) \leq 4 + 4/7$ and $n(B) \leq 3 + 2/2$. With $e(B) = 8$, we obtain $7f(B) + 2n(B) - 5e(B) \leq 0$.

(c) Let v_4 fail to be a junction vertex and both v_1 and v_3 be junction vertices. Here either the exterior path $v_1v_4v_3$ is part of an exterior face of length at least 4 or each edge must be in a face of length at least 7. If the exterior face is of length at least 7, then $f(B) \leq 4 + 4/7$, otherwise $f(B) \leq 4 + 2/4 + 2/7$. In both cases, $n(B) \leq 2 + 3/2$ and $e(B) = 8$. Hence we obtain $7f(B) + 2n(B) - 5e(B) \leq -1$ in the first instance and $7f(B) + 2n(B) - 5e(B) \leq 1/2$ in the case where B is incident to a 4-face.

\[\square\]

Lemma 13. Let G be a 2-connected, C_6-free plane graph on $n \geq 6$ vertices with $\delta(G) \geq 3$. If B is $B_{4,b}$, then $7f(B) + 2n(B) - 5e(B) \leq 4/3$. Moreover, $7f(B) + 2n(B) - 5e(B) \leq 1/6$ if B shares a 2-path with exactly one 4-face and $7f(B) + 2n(B) - 5e(B) \leq 0$ if B fails to share a 2-path with any 4-face.

![Figure 14: A $B_{4,b}$ triangular-block and how a 4-face must be incident to it.](image)

Proof. Let B be with vertices v_1, v_2, v_3, v_4, as shown in Figure 14(a). By Proposition 10(i), no exterior face of B can have length 5. If there is an exterior face of B that has

\[^1\text{In fact, it can be shown that the length of the exterior face containing the path } v_2v_1v_4v_3 \text{ is at least 9. This yields } f(B) \leq 4 + 1/7 + 3/9 \text{ and } 7f(B) + 2n(B) - 5e(B) \leq -2/3. \text{ However, this precision is unnecessary.}\]
length 4, it is easy to verify that being C_6-free and having no vertex of degree 2 means that the junction vertices must be v_1 and v_3. We may consider the following cases.

(a) Let either v_2 or v_4 be a junction vertex and, without loss of generality, let it be v_2. All the exterior faces have length at least 7 except for the possibility that the path $v_1v_4v_3$ may form two sides of a 4-face. Hence, $f(B) \leq 2 + 2/4 + 2/7$ and $n(B) \leq 1 + 3/2$. With $e(B) = 5$, we obtain $7f(B) + 2n(B) - 5e(B) \leq -1/2$.

(b) Let neither v_2 nor v_4 be a junction vertex. Because there is no cut-vertex, this requires both v_1 and v_3 to be junction vertices. Hence, there are two exterior faces: One that shares the exterior path $v_1v_4v_3$ and the other shares the exterior path $v_1v_2v_3$. Each exterior face has length either 4 or at least 7. We consider several subcases:

(i) If both faces are of length at least 7, then $f(B) \leq 2 + 4/7$, and $n(B) \leq 2 + 2/2$. With $e(B) = 5$, we obtain $7f(B) + 2n(B) - 5e(B) \leq -1$.

(ii) If only one of the exterior faces is of length 4, then $f(B) \leq 2 + 2/7 + 2/4$. Moreover, at least one of v_1, v_3 must be a junction vertex for more than two triangular-blocks, otherwise either $v(G) = 5$ or the vertex incident to two blue edges in Figure 14(b) is a cut-vertex. Hence, $n(B) \leq 2 + 1/3 + 1/2$ and with $e(B) = 5$, we have $7f(B) + 2n(B) - 5e(B) \leq 1/6$.

(iii) Both exterior faces are of length 4. Thus $f(B) \leq 2 + 4/4$. By Proposition 14(iii), the blocks represented by the blue edges in Figure 14(c) are each trivial. Hence $n(B) \leq 2 + 2/3$. With $e(B) = 5$, we get $7f(B) + 2n(B) - 5e(B) \leq 4/3$.

Tables 2 and 3 in Appendix A give a summary of Lemmas 11, 12, and 13.

\noindent**Lemma 14.** Let G be a 2-connected, C_6-free plane graph on n ($n \geq 6$) vertices with $\delta(G) \geq 3$. Then the triangular-blocks of G can be partitioned into sets, \mathcal{P}_1, \mathcal{P}_2, ..., \mathcal{P}_m such that

$$7 \sum_{B \in \mathcal{P}_i} f(B) + 2 \sum_{B \in \mathcal{P}_i} n(B) - 5 \sum_{B \in \mathcal{P}_i} e(B) \leq 0$$

for all $i \in [m]$.

19
Proof. As it can be seen from Tables 2 and 3 in Appendix A there are three possible cases where $7f(B) + 2n(B) - 5e(B)$ assumes a positive value. We deal with each of these blocks as follows.

![Structure of a $B_{5,d}$](image)

Figure 15: Structure of a $B_{5,d}$ if it is incident to a 4-face, as in Lemma 14. The triangular-blocks B' and B'' are trivial.

(1) Let B be a $B_{5,d}$ triangular-block as described in the proof of Lemma 12(c). See Figure 15.

By Proposition 10(iii) the edges v_1u and v_3u are trivial triangular-blocks. Denote these triangular-blocks as B' and B''. Consider B'. One of the exterior faces of B' has length 4 whereas by Proposition 10(iv) the other has length at least 5. It must have length at least 7 because if it had length 5, then the path v_1v_3u would complete it to a 6-cycle. Thus, $f(B') \leq 1/4 + 1/7$. Since the vertex u cannot be of degree 2, then this vertex is shared in at least three triangular-blocks. Thus, $n(B') \leq 1/2 + 1/3$. With $e(B') = 1$, we obtain $7f(B') + 2n(B') - 5e(B') \leq -7/12$ and similarly, $7f(B'') + 2n(B'') - 5e(B'') \leq -7/12$. Define $\mathcal{P}' = \{B, B', B''\}$. Thus, $7 \sum_{B' \in \mathcal{P}'} f(B') + 2 \sum_{B' \in \mathcal{P}'} n(B') - 5 \sum_{B' \in \mathcal{P}'} e(B') \leq 1/2 + 2(-7/12) = -2/3$.

Therefore, for each triangular-block in G as described in Lemma 12(c), it belongs to a set \mathcal{P}' of three triangular-blocks such that $7 \sum_{B' \in \mathcal{P}'} f(B') + 2 \sum_{B' \in \mathcal{P}'} n(B') - 5 \sum_{B' \in \mathcal{P}'} e(B') \leq 0$. Denote such sets as $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_{m_1}$ if they exist.

(2) Let B be a $B_{4,b}$ triangular-block as described in the proof of Lemma 13(b)(ii). See Figure 16(a).

20
Figure 16: Structure of a $B_{4,b}$ triangular-block if it is incident to a 4-face, as in Lemma 14. The triangular-blocks B', B'', B''', and B'''' are all trivial.

By Proposition 10(iii), the edges v_1u_1 and v_3u_1 are trivial triangular-blocks. Denote them as B' and B'', respectively. Consider B'. One of the exterior faces of B' has length 4 and by Proposition 10(iv), the other has length at least 5. Thus, $f(B') \leq 1/4 + 1/5$. Since the vertex u_1 cannot be of degree 2, then this vertex is shared in at least three triangular-blocks. Thus, $n(B') \leq 1/2 + 1/3$. With $e(B') = 1$, we obtain $7f(B') + 2n(B') - 5e(B') \leq -11/60$ and similarly, $7f(B'') + 2n(B'') - 5e(B'') \leq -11/60$. Define $P'' = \{B, B', B''\}$. Thus, $7 \sum_{B^* \in P''} f(B^*) + 2 \sum_{B^* \in P''} n(B^*) - 5 \sum_{B^* \in P''} e(B^*) \leq 1/6 + 2(-11/60) = -1/5$.

Therefore, for each triangular-block in G as described in Lemma 13(b)(ii), it belongs to a set P'' of three triangular-blocks such that $7 \sum_{B^* \in P''} f(B^*) + 2 \sum_{B^* \in P''} n(B^*) - 5 \sum_{B^* \in P''} e(B^*) \leq 0$. Denote such sets as $\mathcal{P}_{m_1 + 1}, \mathcal{P}_{m_1 + 2}, \ldots, \mathcal{P}_{m_2}$ if they exist.

(3) Let B be a $B_{4,b}$ triangular-block as described in the proof of Lemma 13(b)(iii). See Figure 16(b).

By Proposition 10(iii), the edges v_1u_1, v_3u_1, v_1u_2, and v_3u_2 are trivial triangular-blocks. Denote them as B', B'', B''' and B'''' respectively. Consider B'. One of the exterior faces of B' has length 4 whereas the other has length at least 5. Thus, $f(B') \leq 1/4 + 1/5$. Since the vertex u_1 cannot be of degree 2, then this vertex is shared in at least three triangular-blocks. Clearly v_1 is in at least three triangular-blocks. Thus, $n(B') \leq 2/3$. With $e(B') = 1$, we obtain $7f(B') + 2n(B') - 5e(B') \leq -31/60$ and the same inequality
holds for \(B'' \), \(B''' \), and \(B'''' \).

Define \(P''' = \{ B, B', B'', B''', B'''', B'''' \} \). Thus,
\[
7 \sum_{B^* \in P'''} f(B^*) + 2 \sum_{B^* \in P'''} n(B^*) - 5 \sum_{B^* \in P'''} e(B^*) \leq 4/3 + 4(-31/60) = -11/15.
\]

Therefore, for each triangular-block in \(G \) as described in Lemma 13(b)(iii), it belongs to a set \(P' \) of three triangular-blocks such that
\[
7 \sum_{B^* \in P'''} f(B^*) + 2 \sum_{B^* \in P'''} n(B^*) - 5 \sum_{B^* \in P'''} e(B^*) \leq 0.
\]
Denote such sets as \(P_{m_2+1}, P_{m_2+2}, \ldots, P_{m_3} \) if they exist.

Now define \(P_{m_3+1} = B - \bigcup_{i=1}^{m_3} P_i \), where \(B \) is the set of all blocks of \(G \). Clearly, for each block \(B \in P_{m_3+1} \),
\[
7f(B) + 2n(B) - 5e(B) \leq 0.
\]
Thus,
\[
7 \sum_{B \in P_{m_3+1}} f(B) + 2 \sum_{B \in P_{m_3+1}} n(B) - 5 \sum_{B \in P_{m_3+1}} e(B) \leq 0.
\]
Putting \(m := m_3 + 1 \) we got the partition \(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_m \) of \(B \) meeting the condition of the lemma.

This completes the proof of Theorem 2.

5 Proof of Theorem 3

Let \(G \) be a \(C_6 \)-free plane graph. We will show that either \(5v(G) - 2e(G) \geq 14 \) or \(v(G) \leq 17 \).

If we delete a vertex \(x \) from \(G \), then
\[
5v(G - x) - 2e(G - x) = 5(v(G) - 1) - 2(e(G) - \deg(x))
= 5v(G) - 2e(G) - 5 + 2\deg(x)
\geq 5v(G) - 2e(G) - 1.
\]

So, graph \(G \) has an induced subgraph \(G' \) with \(\delta(G) \geq 3 \) with
\[
5v(G) - 2e(G) \geq 5v(G') - 2e(G') + (v(G) - v(G'))
\]

In line with usual graph theoretic terminology, we call a maximal 2-connected subgraph a block. Let \(B' \) denote the set of blocks of \(G' \) with the \(i \)th block having \(n_i \) vertices and \(e_i \) edges. Let \(b \) be the total number of blocks of \(G' \). Specifically, let \(b_2, b_3, b_4, \) and \(b_5 \) denote
the number of blocks of size 2, 3, 4, and 5, respectively. Let \(b_6 \) denote the number of blocks of size at least 6. Then we have \(b = b_6 + b_5 + b_4 + b_3 + b_2 \) and, using Table 1

\[
5v(G') - 2e(G') = 5 \left(\sum_{i=1}^{b} n_i - (b - 1) \right) - 2 \sum_{i=1}^{b} e_i \\
= \sum_{i=1}^{b} (5n_i - 2e_i - 5) + 5 \\
\geq 9b_6 + 2b_5 + 3b_4 + 4b_3 + 3b_2 + 5
\]

Combining (2) and (3), we obtain

\[
5v(G) - 2e(G) \geq 9b_6 + 2b_5 + 3b_4 + 4b_3 + 3b_2 + 5 + (v(G) - v(G'))
\]

If \(b_6 \geq 1 \), then the right-hand side of (4) is at least 14, as desired.

So, let us assume that \(b_6 = 0 \) and \(b = b_5 + b_4 + b_3 + b_2 \). Furthermore,

\[
v(G') = 5b_5 + 4b_4 + 3b_3 + 2b_2 - (b - 1) \\
= 4b_5 + 3b_4 + 2b_3 + b_2 + 1.
\]

So, substituting \(2b_5 \) from (5) into (4), we have

\[
5v(G) - 2e(G) \geq 2b_5 + 3b_4 + 4b_3 + 3b_2 + 5 + (v(G) - v(G')) \\
= \left(\frac{1}{2}v(G') - \frac{3}{2}b_4 - b_3 - \frac{1}{2}b_2 - \frac{1}{2} \right) + 3b_4 + 4b_3 + 3b_2 + 5 + (v(G) - v(G')) \\
= v(G) - \frac{1}{2}v(G') + \frac{3}{2}b_4 + 3b_3 + \frac{5}{2}v_2 + \frac{9}{2} \\
\geq \frac{1}{2}v(G) + \frac{9}{2},
\]

which is strictly larger than 13 if \(v(G) \geq 18 \). Since \(5v(G) - 2e(G) \) is an integer, it is at least 14 and this completes the proof of Theorem 3.

Table 1: Estimates of \(5n - 2e - 5 \) for various block sizes.

\(n \)	\(5n - 2e - 5 \)	Theorem	\(n \)	\(5n - 2e - 5 \)	Figure
\(n \geq 6 \)	\(14 - 5 \geq 9 \)	[2]	\(n = 5 \)	\(5(5) - 2(9) - 5 \geq 2 \)	\(B_{5,a}, \text{Figure 7} \)
\(n = 4 \)	\(5(4) - 2(6) - 5 \geq 3 \)	\(B_{4,a}, \text{Figure 8} \)			
\(n = 3 \)	\(5(3) - 2(3) - 5 \geq 4 \)	\(B_3, \text{Figure 8} \)			
\(n = 2 \)	\(5(2) - 2(2) - 5 \geq 3 \)	\(B_2, \text{Figure 8} \)			
Remark 2. Observe that for \(n \geq 17 \), the only graphs on \(n \) vertices with \(e \) edges such that \(e > (5/2)n − 7 \) have blocks of order 5 or less and by (1), there are at most 4 such triangular blocks. A bit of analysis shows that the maximum number of edges is achieved when the number of blocks of order 5 is as large as possible.

6 Conclusions

We note that the proof of Theorem 2, particularly Lemma 14, can be rephrased in terms of a discharging argument.

We believe that our construction in Theorem 4 can be generalized to prove \(\text{exp}(n, C_\ell) \) for \(\ell \) sufficiently large. That is, for certain values of \(n \), we try to construct \(G_0 \), a plane graph with all faces of length \(\ell + 1 \) with all vertices having degree 3 or degree 2.

If such a \(G_0 \) exists, then the number of degree-2 and degree-3 vertices are \(\frac{(\ell - 5)n + 4(\ell + 1)}{\ell - 1} \) and \(\frac{4(n - \ell - 1)}{\ell - 1} \), respectively. We could then apply steps similar to (1), (2), and (3) in the proof of Theorem 4 in that we add halving vertices and insert a graph \(B_{\ell - 1} \) (see Figure 17) in place of vertices of degree 2 and 3. For the resulting graph \(G \),

\[
\begin{align*}
\text{v}(G) &= \text{v}(G_0) + \text{e}(G_0) + (\ell - 4)\frac{(\ell - 5)n + 4(\ell + 1)}{\ell - 1} + (\ell - 5)\frac{4(n - \ell - 1)}{\ell - 1} \\
&= n + \frac{\ell + 1}{\ell - 1}(n - 2) + \frac{(\ell^2 - 5\ell)n + 2(\ell + 1)}{\ell - 1} \\
&= \frac{\ell^2 - 3\ell}{\ell - 1}n + \frac{2(\ell + 1)}{\ell} \\
\text{e}(G) &= (3\ell - 9)\text{v}(G_0) = (3\ell - 9)n
\end{align*}
\]

Therefore, \(\text{e}(G) = \frac{3(\ell - 1)}{\ell} \text{v}(G) - \frac{6(\ell + 1)}{\ell} \). We conjecture that this is the maximum number of edges in a \(C_\ell \)-free planar graph.

Conjecture 15. Let \(G \) be an \(n \)-vertex \(C_\ell \)-free plane graph \((\ell \geq 7) \), then there exists an integer \(N_0 > 0 \), such that when \(n \geq N_0 \), \(\text{e}(G) \leq \frac{3(\ell - 1)}{\ell}n - \frac{6(\ell + 1)}{\ell} \).
Figure 17: $B_{\ell-1}$ is used in the construction of a C_{ℓ}-free graph.

7 Acknowledgements

Győri’s research was partially supported by the National Research, Development and Innovation Office NKFIH, grants K132696, K116769, and K126853. Martin’s research was partially supported by Simons Foundation Collaboration Grant #353292 and by the J. William Fulbright Educational Exchange Program.

References

[1] C. Dowden, Extremal C_4-free/C_5-free planar graphs, J. Graph Theory 83 (2016), 213–230.

[2] P. Erdős. On the structure of linear graphs. Israel Journal of Mathematics 1 (1963) 156–160.

[3] P. Erdős. On the number of complete subgraphs contained in certain graphs. Publ. Math. Inst. Hung. Acad. Sci. 7 (1962) 459–464.

[4] Y. Lan, Y. Shi, Z. Song. Extremal theta-free planar graphs. Discrete Mathematics 342(12) (2019), Article 111610.

[5] P. Turán. On an extremal problem in Graph Theory. Mat. Fiz. Lapok (in Hungarian). 48 (1941) 436–452.

[6] A. Zykov. On some properties of linear complexes. Mat. Sb. (N.S.) 24(66) (1949) 163–188.
A Tables

The following tables give a summary of the results from Lemmas 11, 12, and 13.

A red edge incident to a vertex of a triangular-block indicates the corresponding vertex is a junction vertex. Moreover, if a vertex has only one red edge, it is to indicate the vertex is shared in at least two triangular-blocks. Whereas if a vertex has two red edges, it means that the vertex is shared in at least three blocks.

A pair of blue edges indicates the boundary of a 4-face.

Case	B	Diagram	$f(B) \leq$	$n(B) \leq$	$e(B) =$	$7f + 2n - 5e \leq$
Lemma 11	$B_{5,a}$![Diagram](#)	$5 + \frac{3}{7}$	$2 + \frac{3}{2}$	9	0
(a)						
Lemma 11	$B_{5,a}$![Diagram](#)	$5 + \frac{2}{7}$	$3 + \frac{2}{2}$	9	0
(b)						
Lemma 11	$B_{5,b}$![Diagram](#)	$4 + \frac{4}{7}$	$3 + \frac{2}{2}$	8	0
(b)						
Lemma 11	$B_{5,c}$![Diagram](#)	$3 + \frac{5}{7}$	$3 + \frac{2}{2}$	7	-1
(c)						
Lemma 12	$B_{5,d}$![Diagram](#)	$4 + \frac{4}{7}$	$3 + \frac{2}{2}$	8	0
(a)						
Lemma 12	$B_{5,d}$![Diagram](#)	$4 + \frac{4}{7}$	$3 + \frac{2}{2}$	8	0
(b)						
Lemma 12	$B_{5,d}$![Diagram](#)	$4 + \frac{2}{4} + \frac{4}{7}$	$2 + \frac{3}{2}$	8	$\frac{1}{2} \star$
(c)						

Table 2: All possible B_5 blocks in G and the estimation of $7f(B) + 2n(B) - 5e(B)$.

26
Case	B	Diagram	$f(B) \leq$	$n(B) \leq$	$e(B) = 7f + 2n - 5e \leq$	
Lemma 11 (a)	$B_{4,a}$![Diagram](image)	$3 + \frac{3}{7}$	$2 + \frac{2}{2}$	6	0
Lemma 13 (a)	$B_{4,b}$![Diagram](image)	$2 + \frac{2}{4} + \frac{2}{7}$	$1 + \frac{3}{2}$	5	$-\frac{1}{2}$
Lemma 13 (b)(i)	$B_{4,b}$![Diagram](image)	$2 + \frac{4}{7}$	$2 + \frac{2}{2}$	5	-1
Lemma 13 (b)(ii)	$B_{4,b}$![Diagram](image)	$2 + \frac{2}{4} + \frac{2}{7}$	$2 + \frac{1}{3} + \frac{1}{2}$	5	$\frac{1}{6} \star$
Lemma 13 (b)(iii)	$B_{4,b}$![Diagram](image)	$2 + \frac{2}{4} + \frac{2}{4}$	$2 + \frac{2}{3}$	5	$\frac{4}{3} \star$
Lemma 13 (3)(a)	B_{3}	![Diagram](image)	$1 + \frac{2}{7} + \frac{1}{4}$	$\frac{3}{2}$	3	$-\frac{5}{4}$
Lemma 13 (3)(b)	B_{3}	![Diagram](image)	$1 + \frac{3}{4}$	$\frac{2}{2} + \frac{1}{3}$	3	$-\frac{1}{12}$
Lemma 13 (4)(a)	B_{2}	![Diagram](image)	$\frac{1}{4} + \frac{1}{7}$	$\frac{2}{2}$	1	$-\frac{1}{4}$
Lemma 13 (4)(b)	B_{2}	![Diagram](image)	$\frac{1}{4} + \frac{1}{7}$	$\frac{1}{2} + \frac{1}{3}$	1	$-\frac{7}{12}$
Lemma 13 (4)(c)	B_{2}	![Diagram](image)	$\frac{1}{4} + \frac{1}{5}$	$\frac{2}{3}$	1	$-\frac{31}{60}$

Table 3: All possible B_{4}, B_{3} and B_{2} blocks in G and the estimate of $7f(B) + 2n(B) - 5e(B)$.