Modelling Complexity in Musical Rhythm

Cheng-Yuan Liou¹, Tai-Hei Wu, and Chia-Ying Lee

Department of Computer Science and Information Engineering
National Taiwan University
Supported by National Science Council

July 6, 2009

Abstract
This paper constructs a tree structure for the music rhythm using the L-system. It models the structure as an automata and derives its complexity. It also solves the complexity for the L-system. This complexity can resolve the similarity between trees. This complexity serves as a measure of psychological complexity for rhythms. It resolves the music complexity of various compositions including the Mozart effect K488.

Keyword: music perception, psychological complexity, rhythm, L-system, automata, temporal associative memory, inverse problem, rewriting rule, bracketed string, tree similarity

Introduction
This paper presents a computational model to interpret the 'Mozart effect' K488. This effect has been discussed extensively and seriously among both psychology and music perception societies using various experimental techniques [Rauscher et al. 1993]. Instead of experiments, this paper constructs a computation model to resolve the effect. This model starts with a tree
structure for quantized rhythm beats based on the theory by Loguet-Higgins [Longuet-Higgins, 1987]. The tree is then modeled as an automata and its complexity is derived by way of the L-system [Prusinkiewicz and Lindenmayer 1990, Prusinkiewicz 1986]. The quantization tree will be briefly introduced in this section. The L-system will be introduced in the next section. The automata rewriting rule associated with the L-system will be included also in the next section. The similarity between trees by way of rewriting rules is defined in Section 3. The tree complexity is derived in Section 4. This complexity serves as a measure for the perception of musical rhythms [Desain and Windsor 2000; Yeston 1976] and resolves the effect.

The key features of music perception and composition are rhythm, melody and harmony. Rhythm is formed through the alternation of long and short notes, or through repetition of strong and weak dynamics [Cooper and Meyer 1960]. Because one metrical unit, such as a measure or a half note, can often be divided into two or three sub-units (illustrated in Figures 1 and 2), this rhythm is endowed with a clear hierarchical structure [Longuet-Higgins, 1987; Lerdahl and Jackendoff 1983]. Note that Longuet Higgins grammar for rhythm is different from his musical parser for handling performances, which is far more sophisticated than time-grid round-off. To represent the hierarchical characteristics of rhythm, we need to seek a system that possesses such a nature. Fortunately, the plant kingdom is rich with branching structures, in which branches are derived from roots. In fact, the structure shown in Figure 1 is that of a binary tree. L-systems (Lindenmayer systems) [Prusinkiewicz and Lindenmayer 1990, Prusinkiewicz 1986] are designed to model plant development, see [McCormack 1993]. Therefore, it is natural to construct the rhythm representation by using an L-system [Prusinkiewicz 1986; Worth and Stepney 2005]. A background of L-Systems applied to art and music is in the website in Reference.

We will show how such a tree structure and its related parts can be constructed. We expect that the L-system can capture the rhythm nature. We now review the music tree by Loguet-Higgins.

Figure 1 shows that in each level of a tree a half note is represented by a different metrical unit. In the highest level, the metrical unit is a half note; in the next level, the unit is a quarter note; in the lowest level, the unit is an eighth note. The total duration in each level is equal to a half note. This structure can be extended to a measure or more, a composition as in Figure 2.

H. C. Longuet-Higgins introduced this kind of tree in the 1970s. The tree has been extensively studied both experimentally and theoretically. Note that there are many other theories [Cooper and Meyer 1960; Yeston 1976; Lerdahl and Jackendoff 1983; Desain and Windsor 2000]. Since we prefer a
computational approach to resolve the effect, we will not use their theories. In order to give computers the musicianship necessary to transcribe a melody into a score, he used tree structures to represent rhythmic groupings. In his theory of music perception, the essential task in perceiving the rhythmic structure of a melody is to identify the time of occurrence of each beat. Therefore, his theory can be applied to Western music with regular beats. In Western music, the most common subdivisions of each beat are into two or three shorter metrical units, and these shorter metrical units can be further subdivided into two or three units. Tracking from the start of a melody, when a beat or a fraction of a beat is interrupted by the onset of a note, it is divided into shorter metrical units. After this process of division, every note will find itself at the beginning of an uninterrupted metrical unit. The metrical units can be considered as the nodes of a tree in which each non-terminal node has two or three descendants. The terminal nodes for a beat are the shortest metrical units that the beat is divided into. Every terminal node in the tree will eventually be attached either to a rest or to a note sounded or tied. It is natural to include and elaborate rests in the tree model as those done in [Longuet-Higgins, 1987].

We will employ the perception factors discussed by Longuet-Higgins, such as tolerance, syncopation, rhythmic ambiguity, regular passages, to construct L-systems for rhythms.
2 Rhythm represented with tree structure

A rhythmic tree as described above is a tree of which each subtree is also a rhythmic tree. Each tree node has two or three children (branches or descendants). Each node in the tree represents the total beat duration that is equal to the sum of all those of its descendants. The root node has a duration length that is equal to the length of the whole note sequence.

Note that when we attempt to split a note sequence into two subsequences with equal duration lengths, we usually obtain two unequal length subsequences. This is because a note connecting the two subsequences has been split into two submetrical units. The preceding portion belongs to the preceding subsequences and the later portion belongs to the later subsequence. We will mark those units to identify their subsequences.

These two subsequences represent two different subtrees of the root node. We further divide each subsequence into sub-subsequences, which are also rhythmic trees, and so on. This dividing process is completed when a tree node contains a single note. This single note may possibly be the one which has been split into two portions. This is in some sense similar to an algorithm for note quantization and is a standard practice in MIDI rendering of music. In practice we will quantize notes using the finest note among dotted notes (e.g., 1/4, 1/8, 1/16, dotted notes, etc.) without losing most of the interesting details. We plot two such trees in Figures 2 and 3. The notes shown in Figure 3 are part of the whole tree of the beginning of Rachmaninoff’s Piano Concerto No.3, Movement 1. The two notes in the rectangle have been split using our rhythmic tree process.

Figure 3: Musical tree of Rachmaninoff’s Piano Concerto No.3, Mov. 1.
2.1 Rhythm represented with L-system

To express the hierarchical characteristics of rhythm, we need a data structure that possesses such a hierarchical nature. Fortunately, the plant kingdom is dominated by branching structures, in which branches are derived from roots. L-systems are designed to model plant development. Therefore, it is practicable to construct a rhythmic representation by using L-systems.

The Lindenmayer system, or L-system for short, was introduced by the biologist Aristid Lindenmayer in 1968 [Lindenmayer 1968]. It was conceived as a mathematical theory of plant development. The central concept of the L-system is rewriting. In general, rewriting is a technique used to define complex objects by successively replacing parts of a simple initial object, using a set of rewriting rules or productions.

The L-system is a new type of string-rewriting mechanism. The essential difference between Chomsky grammars and L-systems lies in the technique used to apply productions. In Chomsky grammars, productions are applied sequentially, whereas in L-systems, they are applied in parallel and simultaneously to replace all the letters in a given word [McCormack 1993].

This difference reflects the biological motivation of L-systems. Productions are intended to capture cell divisions in multi-cellular organisms, where many divisions may occur at the same time. Moreover, there are languages which can be generated by context-free L-systems but not by context-free Chomsky grammars.

Here we introduce the turtle graphical interpretation of L-systems. Suppose that there is a turtle crawling on a plane. The state of the turtle is defined as a triplet \((x, y, \alpha)\), where the Cartesian coordinates \((x, y)\) represent the turtle’s position, and the angle \(\alpha\), called the heading, is interpreted as the direction in which the turtle is facing. Given the step size \(d\) and the angle increment \(\delta\), the turtle can respond to commands represented by the following symbols:

- **F** Move forward a step of length \(d\). The state of the turtle changes to \((x^{\text{new}}, y^{\text{new}}, \alpha)\), where \(x^{\text{new}} = x + d \cos \alpha\) and \(y^{\text{new}} = y + d \sin \alpha\). Draw a line segment between points \((x, y)\) and \((x^{\text{new}}, y^{\text{new}})\).
- **f** Move forward a step of length \(d\) without drawing a line.
- **+** Turn left (counterclockwise) by angle \(\delta\). The next state of the turtle is \((x, y, \alpha + \delta)\). The positive orientation of angles is counterclockwise.
- **-** Turn right (clockwise) by angle \(\delta\). The next state of the turtle is \((x, y, \alpha - \delta)\).
For a string composed by the above symbols, the turtle will crawl according to commands indicated in a given order. The turtle interpretation of this string is the figure drawn by the turtle. To draw branches of a tree, we need two more symbols:

[Push the current state of the turtle onto a pushdown stack. The information saved on the stack contains the turtle’s position and orientation, and possibly other attributes such as the color and width of the lines being drawn.

] Pop a state from the stack and make it the current state of the turtle. No line is drawn although, in general, the position of the turtle changes.

These two symbols enable the turtle to go back to the root after drawing a branch so that it can draw other branches originating from the same root. This kind of L-system is called the bracketed L-system, and we call strings that represent trees bracketed strings.

2.2 Rewriting rules for rhythmic trees

In music, a longer metrical unit can be replaced by the combination of several shorter metrical units, such as a bar filled with several notes. Given a rhythm, the direct way to represent it with an L-system is to construct rewriting rules that replace longer metrical units with shorter ones. Take the dotted half note for example; it can be replaced by 3 quarter notes or by the combination of a quarter note, a dotted quarter note and an eighth note, of a half note and a quarter note, and so on, see Figure 4. In Figure 4 4 rewriting rules are shown that can be used to rewrite a longer metrical unit (a dotted half note) into several shorter metrical units (a quarter note, dotted quarter note, and so on).

Figure 4: Different combinations of a dotted half note.
Thus, we can regard the whole score as the longest metrical unit and construct rewriting rules for it, recursively from the longest unit to the shortest metrical unit. These rewriting rules can represent the rhythm because we can regenerate the whole score by using these rules. We will not elaborate on the rewriting rules for a score [Lee and Liou 2003]. The rewriting rule system is formally equivalent to the bracketed L-system.

Similar to a score, a rhythmic tree can also be represented by means of rewriting rules. After we build a rhythmic tree from a score by using the technique described in Section 2, we may apply rewriting rules to each node in the rhythmic tree. As a half node can be rewritten as 2 quarter nodes, each node can be rewritten as all the subtrees attached to it. The rewriting rules for our tree nodes always generate 2 subtrees because the technique described in section 2 always generates 2 subtrees (children) for each node. Note that similar qualitative results of this work can be obtained with 3 or more subtrees. We will focus on 2 generated subtrees in this work. In Figure 5 we represent a subtree (or a metrical unit) using the rewriting rule $P \rightarrow LR$, where P denotes the subtree we want to represent using a set of rewriting rules, L denotes its left subtree, and R denotes its right subtree. We call L and R the nonterminals. With this schema, we can write the rewriting rule for the tree shown below.

Figure 5: Using rewriting rules to represent a rhythmic tree.

In Figure 5, L_L denotes the left subtree’s left subtree, and R_L denotes the right subtree’s left subtree. R_{R_L} and R_{R_R} are similar. Thus, the rewriting rules for the tree shown in Figure 5 are $P \rightarrow L_LL_RR_{R_L}R_{R_R}R_{R_R}$.

2.3 Bracketed strings for a rhythmic tree

As discussed above, bracketed strings can represent a hierarchical structure, such as an axial tree. Thus, bracketed strings may provide a suitable data structure for representing rhythm. We know that a half note can be divided into two quarter notes, and this fact can be represented by a tree structure,
which has a parent node and two child nodes, as shown in Figure 6 (a). The bracketed string of the half note and its binary branches in Figure 6 (a) are $F[+F][-F]$: the first F is the command for tracing the root; $[+F]$ is the command for tracing the left branch, and $[-F]$ is the command for tracing the right branch. In Figure 6 (b), there is another example for a dotted half note.

Figure 7: Bracketed string for Beethoven’s Piano Sonata No 6, Mov. 3.

Since we focus here only on rhythmic trees, we can simplify the bracketed string representations. First, our rhythmic trees have only 2 subtrees. Second, the ‘F’ notation for a rhythmic tree is trivial. With these two characteristics, we may omit the ‘F’ notation from the bracketed string and use only four symbols, {$[,$, $]$, $-,$, $+$}, to represent rhythmic trees. In our cases, ‘[...]’ denotes a rhythmic (sub)tree where ‘...’ indicates all the bracketed strings of its subtrees. ‘-‘ indicated that the next ‘[...]’ notation for a tree is a left subtree of the current (sub)tree, and ‘+‘ indicates that the next ‘[...]’ notation is a right subtree. In Figure 8, we list the simplified rules for the subtrees shown in Figure 7.

Note that this rhythmic tree has no middle subtree in each node. In our model, we always choose to divide a metrical unit into exactly two shorter metrical subunits. We will assume that all the rhythmic trees we generate
are such binary trees. To simplify the analysis, we also assume that the notes are monophonic. Another example in Figure 9 is a bracketed string for the tree of Rachmaninoff’s Piano Concerto, as shown in Figure 8. Here we list all symbols in the bracketed string.

2.4 Rewriting rules for bracketed strings

Now, we know how to use rewriting rules to represent a tree, and we also know how to represent a tree with a bracketed string. We can also use rewriting rules to generate bracketed strings. In rewriting rules for rhythmic trees, we write $P \rightarrow LR$ for a tree having left and right subtrees. Note that we call L and R the nonterminals. Such a tree will have a bracketed string as follows: $[-F...][+F...]$. It is clear that ‘$-F...$’ represents the left subtree, and that ‘$+F...$’ represents the right subtree. Therefore, we can replace the rewriting rules with

$$
P \rightarrow [-FL][+FR] \\
L \rightarrow \\
R \rightarrow
$$

where ‘...’ is the rewriting rule for the bracketed string of each subtree. In this way, we do not have to write L for a left subtree and R for a right
subtree; the orientation is already described in the bracketed string ‘-F’ and ‘+F’. Thus, we do not have to write words such as ‘R_{RL}’, ‘R_{RR}’, etc. Of course, we may still use such recursive subscript representations for rules for the sake of readability. In Figure 10, we show the rewriting rules for the bracketed string of the tree in Figure 5.

Figure 10: Rewriting rules for the bracketed string of a rhythmic tree.

There are “nulls” in the rules. We use “null” to represent a terminal (or a tree node that doesn’t have any child subtree). For such null-subtree rewriting rules we simply ignore the nulls. The new rewriting rules without trivial nulls are as follows:

\[
\begin{align*}
P & \rightarrow \neg F T_L [+F T_R] \\
T_L & \rightarrow \neg F [+F] \\
T_R & \rightarrow \neg F [+F T_{RR}] \\
T_{RR} & \rightarrow \neg F [+F T_{RRR}]
\end{align*}
\]

Note that there are two identical rules in the above rewriting rules: \(T_L \) and \(T_{RR} \). This redundancy raises a question: Can we combine them to simplify these rules? Doing so will not harm the whole structure if the redundant rules contain only null subtrees. We will show in the following what will happen if the rules do not contain only null subtrees. Assume that we have the following rules:

\[
\begin{align*}
P & \rightarrow \neg F T_L [+F T_R] \\
T_L & \rightarrow \neg F [+F] \\
T_R & \rightarrow \neg F [+F T_{RR}] \\
T_{RR} & \rightarrow \neg F [+F T_{RRR}] \\
T_{RRR} & \rightarrow \neg F [+F]
\end{align*}
\]

These rules can generate exactly one bracketed string and, thus, exactly one rhythmic tree. All these rules form a rule set, which represents a unique
rhythmic tree. It is clear that T_R and T_{RR} are almost the same. The only difference is that one of the subtrees is T_{RRR}, and that the other is T_{RR}. But they have the same structure: they both have a right subtree and do not have a left subtree. We can use this similarity to explore the characteristics of a music work, and from a composer’s works, we can explore his or her characteristics. We will define two terms to express the similarity between two rewriting rules.

3 Homomorphism and isomorphism of rewriting rules

We will now study some characteristics of rewriting rules to extract similar sections of trees. We first define the similarity between two sections as follows:

DEFINE : Homomorphism in rewriting rules.

Rewriting rule R_1 and rewriting rule R_2 are homomorphic if and only if they have the same structure. Their corresponding rhythmic trees both have subtrees in corresponding positions or both not. That is, ignoring all nonterminals, if rule R_1 and rule R_2 generate the same bracketed string, then they are homomorphic by definition.

DEFINE : Isomorphism on level X in rewriting rules.

Rewriting rule R_1 and rewriting rule R_2 are isomorphic on depth X if they are homomorphic and their nonterminals are relatively isomorphic on depth $X - 1$. Isomorphic on level 0 indicates homomorphism.

Figure 11: Rhythmic tree.

Here, we will use an artificial example to clarify these definitions. In Figure 11, we name the tree rooted at A, B, C, and D, respectively, tree A, tree B, tree C, and tree D. Tree A is homomorphic to tree B and tree C, but tree A is not isomorphic to tree D. Tree A is isomorphic to tree C on depth
2, but they are not isomorphic on depth 3. Tree B is isomorphic to tree C on depth 0 and 1, but not on depth 2. D is not isomorphic to any other trees, nor is it homomorphic to any other trees.

By using bracketed strings, we can obtain a much clearer definition of homomorphism. All homomorphic rewriting rules generate the same bracketed strings when all nonterminals are ignored. Using the following rewriting rules, we find that \(P \) and \(T_L \) are homomorphic because if \(T_L \) and \(T_R \) are ignored, they generate exactly the same bracketed string, \([-F][+F]\). We also find that \(P \) and \(T_{RR} \) are homomorphic because if \(T_{RRR} \), \(T_L \) and \(T_R \) are ignored, they generate the same bracketed string, \([-F][+F] \):

\[
\begin{align*}
P & \rightarrow [-FT_L][+FT_R] \\
T_L & \rightarrow [-F][+F] \\
T_R & \rightarrow [-F][+FT_{RR}] \\
T_{RR} & \rightarrow [-F][+FT_{RRR}] \\
T_{RRR} & \rightarrow [-F][+F]
\end{align*}
\]

In fact, in this example, all five rewriting rules are homomorphic to each other. But if we add a sixth rule, \(T_{RRRR} \rightarrow [-F] \), then it will not be homomorphic to any of the other rules.

Once we define the similarity between rules, we can classify all the rules in the set into different subsets based on their similarity. Rules that belong to a class are all isomorphic to each other on depth \(X \). All the rules’ names are replaced with the names of the classes to which the rewriting rules belong. After such name conversion, every new rewriting rule represents more rhythmic trees than it was. These new rewriting rules set can now generate more rhythmic trees, including the original one. Note that the definition may include certain over-generalization cases. We show one case in the last Section.

We know that these rules can generate the original bracketed string, but it can actually do more than that. In fact, it can generate an infinite number of bracketed strings. After performing classification, we obtain not only a new rewriting rule set but also a context free grammar, which can be converted into an automata. In this case, we say that this rhythmic tree can be converted into an automata, which can generate many other rhythmic trees that have similar characteristics. We list the rewriting rules in Table 1 for the previous example shown in Figures 3 and 9. Rule \(\text{Other} \rightarrow \text{null} \) is ignored, there are 22 such rules in the tree we list only one for simplicity. The classification of the rules is listed in Table 2.
Table 1. Rewriting rules for the rhythmic tree in Figure 3.

Classification of rules	Isomorphic Depth #0	Isomorphic Depth #1	Isomorphic Depth #2	Isomorphic Depth #3
Class #1	(21)C₁ → C₂C₂	(3)C₁ → C₁C₁	(1)C₁ → C₁C₁	(1)C₁ → C₂C₃
Class #2	terminal	(4)C₂ → C₄C₅	(1)C₂ → C₇C₅	(1)C₂ → C₈C₄
Class #3	(2)C₃ → C₅C₄	(1)C₃ → C₅C₇	(1)C₃ → C₆C₄	
Class #4	(8)C₄ → C₅C₅	(2)C₄ → C₅C₆	(2)C₄ → C₅C₆	
Class #5	terminal	(4)C₅ → C₇C₈	(4)C₅ → C₇C₁₀	
Class #6	(2)C₆ → C₈C₇	(2)C₆ → C₁₀C₇		
Class #7	(8)C₇ → C₈C₈	(8)C₇ → C₁₀C₁₀		
Class #8	terminal	(1)C₈ → C₇C₅		
Class #9	(1)C₉ → C₅C₇			
Class #10	terminal	(22)C₁₀ → null		

Table 2: Classifying based on the similarity of rewriting rules.

In Table 1, rules such as \(R_{RRR} \rightarrow [-F][+F] \), \(L_{RRR} \rightarrow [-F][+F] \) are assigned to Class 2. There are eight such rules before classification, so we write ‘(8)C₂ → [-F][+F]’. Similar rules such as \(L_R \rightarrow L_{RL}L_{RR} \), \(P \rightarrow LR \), \(R \rightarrow R_LR_R \) are isomorphic on depth 0, and there are 11 such rules. They are
assigned to Class 1. Class 3 and Class 4 are obtained by following a similar classification procedure. Note that this section also presents a new way to convert a context-sensitive grammar to a context-free one.

4 Rhythmic complexity

After we list the rewriting rules for a rhythmic tree and classify all those rules, we attempt to explore the redundancy in the tree (the hidden structure in the beats) that will be the base for building the cognitive map [Barlow 1989]. To accomplish this, we compute the complexity of the tree which those classified rules represent. We know that a classified rewriting rule set is also a context free grammar, so we can define the complexity of a rewriting rule set as follows:

DEFINE : Topological entropy of a context free grammar.

The topological entropy K_0 of a CFG (Context Free Grammar) can be evaluated by means of the following three procedure [Kuich 1970; Badii and Politi 1997]:

1. For each variable V_i with productions (in Greibach form),

 $$V_i \rightarrow t_{i1} U_{i1}, t_{i2} U_{i2}, ..., t_{ik_i} U_{ik_i},$$

 where $\{t_{i1}, t_{i2}, t_{i3}...t_{ik_i}\}$ are terminals and $\{U_{i1}, U_{i2}, ... U_{ik_i}\}$ are non-terminals. The formal algebraic expression for each variable is

 $$V_i = \sum_{j=1}^{k_i} t_{ij} U_{ij}.$$

2. By replacing every terminal t_{ij} with an auxiliary variable z, one obtains the generating function

 $$V_i(z) = \sum_{n=1}^{\infty} N_i(n) z^n,$$

 where $N_i(n)$ is the number of words of length n descending from V_i.

3. Let $N(n)$ be the largest one of $N_i(n)$, $N(n) = \max \{N_i(n)\}$ over all i. The above summation series converges when $z < R = e^{-K_0}$. The topological entropy is given by the radius of convergence R as

 $$K_0 = -\ln R.$$
However, we have found that this definition is slightly inconvenient for our binary tree case. Thus, we rewrite it as follows:

DEFINE : Generating function of a context free grammar.

Assume that there are \(n \) classes of rules and that each class \(C_i \) contains \(n_i \) rules. Let \(V_i \in \{ C_1, C_2, C_3, ..., C_n \} \), \(U_{ij} \in \{ R_{ij}, i = 1^- n, j = 1^- n_i \} \), and \(a_{ijk} \in \{ x : x = 1^- n \} \), where each \(U_{ij} \) has the following form:

\[
\begin{align*}
U_{i1} & \rightarrow V_{a_{i11}} V_{a_{i12}} \\
U_{i2} & \rightarrow V_{a_{i21}} V_{a_{i22}} \\
... & \rightarrow ...
\end{align*}
\]

\(U_{in_i} \rightarrow V_{a_{in_i1}} V_{a_{in_i2}} \)

The generating function of \(V_i \), \(V_i(z) \), has a new form as follows:

\[
V_i(z) = \frac{(\sum_{p=1}^{n_i} n_{ip} z^{V_{a_{ip1}}(z)V_{a_{ip2}}(z)})}{\sum_{q=1}^{n_i} n_{iq}}
\]

If \(V_i \) doesn’t have any non-terminal, we set \(V_i(z) = 1 \). With this function, we can define the complexity of the rhythmic tree below.

DEFINE : Complexity of rhythmic tree \([6]\).

After formulate the generating function \(V_i(z) \), we intend to find the largest value of \(z \), \(z^{\text{max}} \), at which \(V_i(z^{\text{max}}) \) converges. Note that we use \(V_i \) to denote the rule for the root node of the rhythmic tree. After obtaining the largest value, \(z^{\text{max}} \), of \(V_i(z) \), we set \(R = z^{\text{max}} \), the radius of convergence of \(V_i(z) \).

We define the complexity of the rhythmic tree as \(K_0 = -\ln R \).

We use the simple example in Tables 1 and 2 (or Figure 3) to show the computation procedure of the complexity. According to our definition the given values for the class parameters are \(\{ n = 5, n_1 = 4, n_2 = 1, n_3 = 1, n_4 = 1, n_5 = 1, n_{11} = 3, n_{12} = 2, n_{13} = 1, n_{14} = 1, n_{21} = 4, n_{31} = 2, n_{41} = 8, n_{51} = 22, a_{111} = 1, a_{112} = 1, a_{121} = 2, a_{122} = 3, a_{131} = 2, a_{132} = 4, a_{141} = 4, a_{142} = 2, a_{211} = 4, a_{212} = 5, a_{311} = 5, a_{312} = 4, a_{411} = 5, a_{412} = 5, a_{511} = 2, a_{512} = 3 \}\).

Substituting these values in the equation, we have \(V_5(z') = 1 \) and \(V_4(z') = z' \) directly. Then we obtain the formulas for \(V_3(z) \), \(V_2(z) \), and \(V_1(z) \) successively. They are

\[
\begin{align*}
V_3(z') & = \frac{(\sum_{p=1}^{n_3} n_{3p} z^{V_{a_{3p1}}(z)V_{a_{3p2}}(z)})}{\sum_{q=1}^{n_3} n_{3q}} = \frac{z' \times (2 \times V_5(z') \times V_4(z'))}{2} = z'^2 \\
V_2(z') & = \frac{(\sum_{p=1}^{n_2} n_{2p} z^{V_{a_{2p1}}(z)V_{a_{2p2}}(z')}}}{\sum_{q=1}^{n_2} n_{2q}} = \frac{z' \times (4 \times V_3(z') \times V_5(z'))}{4} = z'^2 \\
V_1(z') & = \frac{(\sum_{p=1}^{n_1} n_{1p} z^{V_{a_{1p1}}(z)V_{a_{1p2}}(z')})}{\sum_{q=1}^{n_1} n_{1q}} \\
& = \frac{z' \times (3 \times V_5(z')^2 + 2 \times V_2(z') \times V_5(z') + 1 \times V_2(z') \times V_4(z') + 1 \times V_4(z') \times V_2(z'))}{7} \\
& = \frac{3z' \times V_5(z')^2 + 2 \times (z')^3 + 2 \times (z')^4}{7}
\end{align*}
\]
Rearranging the above equation for \(V_1(z) \), we obtain a quadratic equation for \(V_1(z') \)

\[
\frac{3}{7}(z')V_1(z')^2 - V_1(z') + \frac{2}{7}((z')^5 + (z')^4) = 0
\]

Solving \(V_1(z') \), we obtain the formula

\[
V_1(z') = \frac{1 \pm \sqrt{1 - \frac{24}{49}((z')^5 + (z')^4)(6z')/7}}{6z'}.
\]

The radius of convergence, \(R \), and complexity, \(K_0 = -\ln R \), can be obtained from this formula.

5 Implementation and Examples

In order to compute the complexity of a rhythmic tree, we have to determine \(R \), the radius of convergence of the rhythmic tree’s rewriting rule set. We devise strategy to judge whether the function \(V_1(z') \) is convergent or divergent for a given value of \(z' \). We construct an iteration technique to compute the value of this generating function. To facilitate the computation, we rewrite the generating function as follows:

\[
V^m_i(z') = \sum_{p=1}^{n_i} \sum_{q=1}^{n_{iq}} \frac{V^{m-1}_{i1}V^{m-1}_{i2}(z')}{z'}
\]

Here we use superscript \(m \) in the variable \(V^m_i(z') \) to represent the iteration count. Starting with \(V^0_i(z') \) in each iteration, we calculate a new value, \(V^1_i(z') \). Then we calculate \(V^2_i(z') \), \(V^3_i(z') \), ..., and \(V^m_i(z') \) successively, where \(m \) is some positive integer number. When \(V^{m-1}_i(z') \) is equal to \(V^m_i(z') \) for all rules, this means that \(V^m_i(z') \) cannot be improved anymore, we reach convergence. Therefore, \(z' \), the number we want to judge, is not the radius of convergence for the rules set but is smaller than the radius of convergence. In our simulations, we set \(m = 1000 \). This means that if \(V^m_i(z') \) is not divergent for \(m < 1000 \), then we judge \(z' \) to be convergent.

Once we can judge whether \(V_i(z') \) is convergent or divergent at a number \(z' \), we can test every real number between 0 and 1 to find the number that is right on the border of the convergent region and use this number to calculate the radius of convergence. We may apply some advanced techniques to search for the radius of convergence, such as binary searching between 0 and 1. This is exactly the technique we use in our algorithm.
Now we will present a practical example. We use Beethoven’s Piano Sonatas Nos. 1 to 32 and Mozart’s Piano Sonatas Nos. 1 to 19 as an example, and show their complexity. We list the complexity of each piano sonata by Mozart in Figures 12-13. In these figures, we use two different isomorphic depths, 1 and 3, to compute the complexity. From the figures we can see that the complexity is high for both composers. When we use higher depth isomorphism to classify rules, the complexity will decrease. This is because when we use higher depth isomorphism, redundancy between rules will decrease so the complexity will also decrease. Eventually the complexity will decrease to zero for the highest depth isomorphism. Conversely, lower depth isomorphism brings more rules in a class; redundancy between rules will increase and the number of classes will decrease. If the depth of isomorphism is too low, the rules set will become too simple, thus the complexity will also become lower. We may compute the complexity for different depths to see the differences.

Beethoven and Mozart’s work have similar complexity, but Beethoven’s is slightly higher than Mozart’s. Both their complexity isomorphic on level 2 are the highest. When we use the high level isomorphism to classify rules, the complexity of rules will decrease. Reversely, the low level isomorphism collects many rules in a class; redundancy between rules will increase and the number of classes will decrease. If the level of isomorphism is too low, the rules set will become too simple, thus the complexity will also become lower. We can try different level to see its complexity, and pick up the level with highest complexity.

We tested a well-known music work studied by Rauscher et al. [1993]. Almost all the previous studies on the Mozart Effect have focused on a single piece of music, the Sonata for Two Pianos in D Major (K448). We have computed its complexity and found that it is generally higher than that of other sonatas by Mozart, see Figures 12-13.

6 Discussion

We have constructed the complexity for the L-system. This complexity resembles, in some sense, the redundancy [Pollack 1990; Large et al. 1995; Chalmers 1990]. This complexity can facilitate many other studies such as bio-morphology, DNA analysis, gene analysis and tree similarity.

We closely followed the ideas of Barlow [Barlow 1989] and Feldman [Feldman 2000] to design this model. In his work, Barlow wrote that: “Words are to the elements of our sensations like logical functions to the variables that compose them. We cannot of course suppose that an animal can form
an association with any arbitrary logical function of its sensory messages, but they have capacities that tend in that direction, and it is these capacities that the kind of representative schemes considered here might be able to mimic.” Human perception sometimes bases on external world’s information redundancy. If we can extract any rules or patterns from a certain object as part of our cognition map for that object, it will be easy to memorize or comprehend it. In our model, rhythms resemble the words; trees resemble the logical functions; classes resembles rules and patterns; complexity resembles redundancy.

Man is not inherently musical, the distinguished scientist Newton claimed; natural singing is the sole property of birds. In contrast to our feathered friends, humans perform and understand only what they taught ….. This is why humans listen to music by training. One needs such redundancy to comprehend the music words.

But how can we pinpoint the rules or patterns in a music work, or even in a simple rhythm that may be formless? As an attempt, we have defined homomorphism and isomorphism so as to characterize the similarity between sections of different rhythmic trees. But there still exist questions about the psychological implications of these characteristics, such as the depth of isomorphism. The proposed model can enable us to measure the psychological complexity [Feldman 2000] of rhythms. In our studies, we have found that different depths of isomorphism produce varying degree of complexity. If a rhythm is very simple, its complexity will be 0. The same situation also occurred when we used isomorphism with a very high depth value to compute the complexity of Mozart’s and Beethoven’s piano sonatas. In general, the results confirm our intuition about these musical rhythms.

Note that not all music can be properly approached with binary structures. If the structure of a music piece is ternary, we expect that the computed complexity will be higher than it is in reality.

We define the similarity between tree structures in Section 3. Finding similarity between rules and classifying them in different subsets are in some sense similar to fractal compression, see the website in Reference. This could be an alternate way to configure rhythmic complexity. We are still working on this. We are also working on an extension of the model to incorporate the rhythmic complexity for polyphonic music, superposition of different rhythms, tempo variation, grace notes, supra and irregular subdivisions of the beat (e.g. triplets, quintuplets,...).
References

[1] R. Badii and A. Politi, Complexity: Hierarchical structures and scaling in physics, Cambridge University Press, 1997, page 188.

[2] H.B. Barlow, Unsupervised Learning, Neural Computation, vol. 1, 1989, pp. 295-311.

[3] H.B. Barlow, T.P. Kaushal, and G.J. Mitchison, Finding Minimum Entropy Codes, Neural Computation, vol. 1, 1989, pp. 412-423.

[4] D. Chalmers, Syntactic Transformations on Distributed Representations, Connection Science, vol. 2, 1990, pp. 53-62.

[5] G. Cooper and B. Meyer, The Rhythmic Structure of Music, Chicago Univ. Press, 1960.

[6] P. Desain and L. Windsor (Eds), Rhythm - Perception and Production, Swets & Zeitlinger, 2000.

[7] J. Feldman, Minimization of Boolean complexity in human concept learning, Nature, vol. 407, 2000, pp. 630-632.

[8] W. Kuich, On the entropy of context-free languages, Information and Control, vol. 16, 1970, pp. 173-200.

[9] E.W. Large, C. Palmer and J.B. Pollack, Reduced Memory Representations for Music, Cognitive Science, vol. 19, 1995, pp. 53-96. Reprinted in Musical Networks: parallel distributed perception and performance, edited by Niall Griffith and Peter M. Todd. The MIT Press, 1999, Cambridge, Massachusetts.

[10] A. Lindenmayer, Mathematical models for cellular interactions in development, Part I and II, J. Theor. Biol., vol. 18, 1968, pp. 280-315.

[11] C.-Y. Lee and C.-Y. Liou, Structural analysis of musical rhythm: a comprehensive review, Technical Report NSC 92-2213-E-002-002, Department of Computer Science and Information Engineering, National Taiwan University, 2003.

[12] F. Lerdahl and R. Jackendoff, A Generative Theory of Tonal Music, The MIT, Press, 1983.

[13] H.C. Longuet-Higgins, Mental Processes: Studies in Cognitive Science, The MIT Press, 1987, Cambridge, Massachusetts.
[14] J. McCormack, Interactive Evolution of L-System Grammars for Computer Graphics Modelling, in book Complex Systems: From Biology to Computation, edited by D. G. Green and T. Bossomaier, 1993, pp.118-130.

[15] J.B. Pollack, Recursive Distributed Representations, Artificial Intelligence, vol. 46, 1990, pp. 77-105.

[16] http://citeseer.ist.psu.edu/762822.html
http://www2.psy.uq.edu.au/CogPsych/Noetica/OpenForumIssue8/Pressing.html
Jeff Pressing Cognitive complexity and the structure of musical patterns 1997 the 4th

[17] P. Prusinkiewicz, Score generation with L-system, Proceedings of the International Computer Music Conference, 1986, pp. 455-457.

[18] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty Of Plants, 1990, Springer-Verlag, New York.

[19] F. H. Rauscher, G. L. Shaw and K. N. Ky, Music and spatial task performance, Nature, vol. 365, 1993, 611.

[20] P. Worth and S. Stepney, Growing Music: musical interpretations of L-Systems, EvoMUSART workshop, EuroGP, Lausanne, Switzerland, LNCS 3449, pp. 545-550, Springer, 2005. http://www-users.cs.york.ac.uk/susan/bib/ss/nonstd/eurogp05.htm

[21] M. Yeston, The Stratification of Musical Rhythm, Yale Univ. Press, 1976.

[22] http://www.geocities.com/Athens/Academy/8764/lmuse/lmuse.html
Figure 12: Mozart’s 19 Piano Sonatas, using isomorphic depth 1.

Figure 13: Mozart’s 19 Piano Sonatas, using isomorphic depth 3.
This figure "fig1.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1
This figure "fig2.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1
This figure "fig3.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1
This figure "fig4.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1
This figure "fig5.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1
This figure "fig6.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1
This figure "fig7.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1
This figure "fig8.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1
This figure "fig9.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1
This figure "fig10.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1
This figure "fig11.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1
This figure "fig12.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1
This figure "fig13.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cs/0703124v1