Improving Pedagogical Competences of Prospective Science Teachers to Develop Learning Materials through Jigsaw Cooperative Model

Ramlawati*, Abdul Mun’im, Sitti Rahma Yunus

Science Education Department, Universitas Negeri Makassar, Makassar, 90221, Indonesia

*ramlawati@unm.ac.id

Abstract. The problems faced by prospective science teachers are low competence to develop learning materials based on scientific approach. The research aims to improve the pedagogical competences of prospective science teachers to develop science learning materials that includes Lesson Plan and Student Worksheet. The research method used is the classroom action research which conducted in two cycles. The subjects of this study are the students of the sixth semester who enroll of Microteaching course in the academic year 2016/2017. The subjects are 58 students. Implementation of this research was carried out using Jigsaw cooperative type, where each group member is responsible for presenting the subject matter related to the development of learning materials based on scientific approach. The instruments used were: 1) Instrument of assessment of Lesson Plan and 2) Instrument of assessment of student worksheet. Data analysis technique used was descriptive statistical analysis. The results show that the science teacher competence to develop the learning material has increased from cycle I to cycle II. The results show that 89.63 % of prospective science teachers have a good competence to develop lesson plan and 89.05 % based scientific approach to develop Student Worksheet based on 2013 curriculum. This finding shows that jigsaw is able to increase the ability or the competency to produce learning tools based scientific approach.

1. Introduction
The curriculum applied in Science Education Study Program refers to the achievement of graduate competence of science education graduate. Competence of graduates can not be separated from the competence of teachers as the candidates this profession. There are four aspects that belong to the competence of teachers, namely pedagogical competence, personal competence, professional competence, and social competence. Pedagogical competency is the ability of understanding students, designing and conducting learning process, understanding the evaluation of learning outcomes, and development of students to show their own potential [1].

Teacher competence is defined by Koster & Dengerink that is the combination of knowledge, skills, attitudes, values and personal characteristics, empowering the teacher to act professionally and appropriately in a situation, deploying them in a coherent way [2]. Therefore, as an institution which
produce science teachers, it is necessary to prepare students competence of science teacher candidates in developing learning materials.

Research to measure teacher competence in making learning tools ever done by [3] at SMPN 3 Tirta Pekalongan, Indonesia. This study is based on the findings that the competence of teachers in the school in preparing the lesson plan has not been aligned with the application in class with 65.58%. These results became the foundation for conducting classroom action research to obtain an increase in teacher competence in preparing Lesson Plan. The low competence of teachers in preparing the lesson plans was also found by [4].

Some efforts are made to improve the competence of prospective science teachers in planning, implementing and evaluating the learning, among others through microteaching course. The subject is a course that provides early debriefing to students doing micro teaching practice.

Studying about the competency which is discussed above is a narrative material and requires cooperation to evaluate each individual ability to develop learning tools. One of the learning models considered to enable students and build individual and social knowledge is Jigsaw type cooperative learning model.

Cooperative learning opposites with conventionial learning. This learning give opportunity to students to be actively in their own learning. Cooperative learning activities involve the interaction students of that promote the development of language and concept also content. This strategy is preferred than reading technique. However this strategy is an effective way to achieve the best conclusion by reading [5]. As known that study about produce learning tools need the ability of reading. The prospective teacher must read the basic competency and then develop it.

Furthermore, model jigsaw is an effective approach to developing dependency and cooperation. However, there are some disadvantages of this model that influence the participation of learners in group work negatively. To use this teaching method effectively, some technique need to be considered. When cooperative tasks are assigned to group members not sufficiently challenging to require joint effort, group members can see their respective contributions. In addition, it is important that the main content selected for group work is divided into sub-categories for the same responsibilities of group members [6].

2. Method
This research is classroom action research, by following Kemmis and Taggart's procedures of planning, action, observation, and reflection. Starting from the plan then held the action and observation finally the result is reflected.

As the research subjects are student of Science Education Program for academic year 2016/2017 who took course of practice recognition field I. The number of research subjects are 58 people

Data collected were the data of prospective science teacher competency to develop learning tools, including assessment of lesson plan and worksheet by all members in the Jigsaw group. Finally, the data were analyzed qualitatively using the descriptive statistic.

3. Result and Discussion

3.1 Research result
Competence of prospective science teacher students in developing learning tools, that is, they are competent to develop lesson plan and worksheet. The device assessment process begins with Jigsaw type cooperative learning. Each Jigsaw cooperative group consists of seven members. Each member is responsible for each of their expertise: 1) a scientific approach; 2) discovery learning and inquiry learning model; 3) problem based learning and project-based learning model; 4) Development
of lesson plan; 5) Development of worksheet. After the group of experts met, then they went back to the original group to explain each of the material that is his responsibility.

Further, the task given to original group is produce lesson plan. Each group obtain one basic competency which is gained from the matter from grade VII to IX. Each group was asked to develop learning model, method, and learning strategy adjusted with the characteristic of matter and learner. However, this product are measured as the asessment to gain the score of the competency of prospective science teacher to develop the learning tools as the result of discussion in jigsaw.

This study measures the competence of prospective science teachers to make lesson plan and worksheet. The following data on the competence of science teacher candidate in terms of developing learning materials.

Table 1 Competence of Science Teacher Prospective in Developing Lesson Plan Based on Scientific Approach

No.	Components of the Lesson Plans	Average	Category	Percentage (%)			
		Cycle I	Cycle II	Cycle I	Cycle II	Cycle I	Cycle II
1.	Subject Identity	3.14	3.94	high	high	78.5	98.5
2.	Core Competencies and Basic competencies	3.36	3.76	high	high	84.1	94.0
3.	Formulation of Indicators	2.96	3.57	medium	high	73.9	89.4
4.	Formulation of Learning Objectives	2.41	3.59	medium	high	60.33	89.92
5.	Selection of Teaching Materials	2.57	3.50	medium	high	64.19	87.56
6.	Selection of Learning Resources	2.71	3.61	medium	high	67.75	90.25
7.	Selection of Learning Media	2.68	3.59	medium	high	66.94	89.69
8.	Learning model	2.70	3.47	medium	high	67.62	86.75
9.	Learning methods	2.57	3.30	medium	high	64.33	82.58
10.	Learning Scenarios based on scientific approach	2.63	3.54	medium	high	65.70	88.50
11.	Learning Assessment Plan	2.55	3.55	medium	high	63.75	88.8

| Average | 2.71 | 3.55 | Medium | High | 68.83 | 89.63 |

Table 1 shows that there is an increase of competence of science teacher candidate in developing Lesson plan from cycle I to cycle II that is from 68.83% to 89.63%.

Table 2 presents the pedagogical competencies of prospective science teachers to develop worksheet in cycle I and cycle II. From the table it is known that the quality of worksheets developed by prospective teachers has increased from cycle I to cycle II. These worksheets are developed based on the learning model used in lesson plan.
Table 2 Pedagogical Competencies of Prospective Science Teacher to Develop Worksheet Based on Scientific Approach

NO	Components of the Lesson Plans	Average Category	Percentage				
		CYCLE I	CYCLE II	CYCLE I	CYCLE II	CYCLE I	CYCLE II
1	Student Worksheet Format (LKPD)	3.26	3.65	high	high	81.53	91.14
2	The contents of the learner’s Worksheet based on scientific approach:						
	A. Inquiry	3.15	3.54	high	high	78.85	88.50
	B. Discovery Learning	3.30	3.70	high	high	82.60	92.50
	C. PjBL	1.87	3.09	less	high	46.87	77.17
	D. PBL	3.09	3.67	high	high	77.42	91.67
3	Language	3.46	3.66	high	high	86.50	91.62
4	Benefits / Usage of Learners Worksheet	3.40	3.69	high	high	85.00	92.25

Average 3.09 3.56 high high 77.26 89.05

At Table 2 it appears that the competence of students to develop worksheet based on scientific approach tailored to the model of learning planned in Lesson plan. In general, worksheet developed by students has improved quality from cycle I to cycle II by using various learning models.

3.2 Discussion

Microteaching course was begin with the delivering of matter about make learning tools based on scientific approach. The matters discussed in group were: scientific approach, inquiry learning, problem based learning (PBL), discovery learning, and project based learning (PjBL). Otherwise, the prospective science teacher also discussed about the development of lesson plan, formulating indicator or purpose of learning refers to basic competency and development of worksheet.

The learning proces in the classroom used jigsaw type. The groups in jigsaw were consisted of five original groups and they were choosen according to the academic ability and gender. Each students in group had responsible to make different learning tools adjusted with the type of learning model then they works together in other groups. This groups were called expert group. After they works together in expert group, they then went back to discuss in original group and evaluate the results. After each prospective teacher produce learning tool, they then strated to do peer teaching and other students gave evaluation. All this activities were conducted in cycle I.

At the process of cycle I, it is found some weaknesses. The first, many groups did not apply scientific approach in their teaching although in lesson plan is written. The second, some groups did not use media in their teaching. The third, the students had not used the assesment of affective and only focus on cognitive.

The competency to make a lesson plan in general, the lesson plans component made by the fixed group refer to the lesson plan based scientific approach, but there are still some disadvantages. Some
weaknesses encountered include: 1) the low competence of students in formulating the appropriate indicators of competence; 2) the low ability of students in formulating learning objectives that contain aspects of Audience, Behavior, Condition, and Degree; 3) the type of assessment used only focused on the assessment of cognitive aspects.

The weakness above must be a priority on the next cycle. This is in accordance with the results of the development of the professional teacher competency in preparing Lesson plan and worksheet conducted by [7] that teachers should be able to develop a clear lesson plan that describes what students expect to know, contains behavioral objectives, which are tailored to the learning objectives and character of the students. Student assessment is also seen from skills not only from cognitive or knowledge [8], [9], [10], [11].

The results of the reflection analysis conducted in cycle I become the reference to improve the action in cycle II. The evaluation of the implementation of learning in cycle II, it appears that the lesson plan is in accordance with scientific approach. Finally, the evaluation of competency of teacher candidates in developing learning tools has been in accordance with the expected.

Similar results have also been conducted by [12] who has conducted a professional competence assessment of biology teacher of Senior High School in Makassar in the aspects of mastery of teaching materials, preparation of teaching programs, implementation of teaching programs, and assess the results and teaching and learning process. Overall the average score of professional competence of Biology teachers in Makassar is 80.34 with very high category. The results of implementation of jigsaw type cooperative are giving information about the effectiveness of cooperative model to increase the prospective teacher competence, giving feed back to the lecturer to give debriefing of competence. In addition, the prospective of science teacher should design lesson plan and worksheet adjusted with model of learning and scientific approach which require the activity of students.

4. Conclusion
Based on the results of research and discussion, it can be concluded that there is an increase in student competence results in developing learning tools in cycle I to cycle II on Jigsaw. The increasing of prospective science teacher pedagogical competencies to provide lesson plan and worksheet give advantages to do field recognition practice at school.

References and Notes
[1] Siswantari. 2011. Jurnal Pendidikan dan Kebudayaan, Vol. 17, Nomor 5, p 529-553
[2] Francesca Caena, F. 2011. Literature review Teachers’ core competences: requirements and development. Education and Training 2020 Thematic Working Group ‘Professional Development of Teachers’ European Commission
[3] Khaerani, N., 2016. Peningkatan Kompetensi Guru Dalam Menyusun RPP Melalui Kegiatan IHT (In House Training). Journal of Classroom Action Research. Vol. 17, No. 1.
[4] Ali Arman, 2016. Upaya Peningkatan Kompetensi Guru Dalam Menyusun Rencana Pelaksanaan Pembelajaran Melalui Supervisi Akademik Kepala Sekolah Di Sman 1 Lembah Melintang Kabupaten Pasaman Barat. Journal of Management Education. Vol. I No.1.
[5] Kazemi, M.. MJAL 4:3 Autumn 2012. p.170-184.
[6] Karacop, A. & Hatun, E. 2017. The Effects of Jigsaw Technique Based on Cooperative Learning on Prospective Science Teachers’ Science Process Skill. Journal of Education and Practice. www.iiste.org. Vol.8, No.6, p. 86-97.
[7] Dalal A. A. & Sawsan M. E. World Journal of Education. Vol. 5, No. 6. http://wje.sciedupress.com.

[8] Eurydice. 2006. The information network on education in Europe. Science Teaching in Schools in Europe. Policies and Research.

[9] P. W. Hewson. 1992. Conceptual change in science teaching and teacher education.. National Center for Educational Research, Documentation, and Assessment.

[10] Liliana Mata, 2014. Pedagogical Competencies for Mother Tongue Teacher Education. Educational Science Theory & Practice. 14 (1) 341-352.

[11] Mustafa Ozden. 2008. The effect of Content Knowledge on Pedagogical Content Knowledge: The case of teaching phase of Matter. Educational Science Theory & Practice. 8 (2) 633-645.

[12] Lodang, H., Azis, A. Asmawati, Palennari, M., and Ardiansyah, R. 2013. Analisis Kompetensi Profesional Guru Biologi Sekolah Menengah Atas di Kota Makassar Bionature Journal, Volume 14, Number 1, pp. 25-32.