Effects of inhaled furosemide on dyspnea and pulmonary function in people with COPD: A literature review

Z Atwi

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a highly prevalent disease throughout the world that is preventable and treatable. COPD is estimated to cause the death of 3 million deaths worldwide every year [1]. COPD is characterized by airflow obstruction, frequent respiratory symptoms, and airway/alveolar abnormalities. One of the most common and evident respiratory symptoms of COPD is dyspnea [2]. Dyspnea is any difficult or labored breathing and can be detrimental to the quality of life (QOL) of patients with COPD [2]. Finding ways to try to alleviate the discomfort in breathing is essential for improving patients’ QOL.

The difficulty with quantifying the sensation of dyspnea is that it is experienced differently among patients and may be caused by a multitude of factors, such as muscle fatigue and patient perception. Dyspnea is commonly measured using the subjective comments of the patient (such as the visual analog scale and the numerical rating scale) [3].

A visual analog scale is commonly used to assess dyspnea during exercise testing and requires the subject to quantify their feeling of dyspnea using a scale ranging from “no breathlessness” to “intolerable breathlessness” [4]. The numerical rating scale is similar in its purpose; the scale ranges from 0 = no breathlessness to 10 = worst breathlessness possible. Both scales are validated but neither have been preferentially adopted specifically for dyspnea assessment in COPD patients [5].

However, a more objective method is analyzing the pulmonary function values. In a patient with COPD, pulmonary function values such as forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and peak expiratory flow rate (PEFR) are linked to the severity of their symptoms and confirms the presence of airflow obstruction [6]. It should be noted that according to the Global Initiative for Chronic Obstructive Lung Disease [2], the correlation between pulmonary function values and symptoms is not strong; thus, assessment of the patient’s subjective dyspnea score is essential for assessing the patient’s stage of COPD properly [6].

There is some evidence that shows that inhaled furosemide, a common loop diuretic, may be useful in relieving dyspnea in patients with COPD [7]. The mechanism of action of this potential therapy is not yet fully understood; however, it has been suggested that inhaled furosemide acts with a bronchodilator effect on the airway epithelium [7].

Inhaled furosemide has also been evaluated in studies with relation to asthmatic patients, terminally ill patients, and neonates with lung diseases [8–10]. Nevertheless, even with the current studies on the potential benefits of inhaled furosemide, the clinical evidence is lacking to support its use as a therapy. Further research is essential to investigate whether this therapy can be used to improve feelings of dyspnea in patients and what the mechanism of action is. The research question for this literature review, therefore, was “In people with COPD, does inhaled furosemide lead to decreased perception of dyspnea and improved pulmonary function values?”

METHODS

Identification of studies

This literature review does not have a review protocol or registration number. The review consists of three randomized control trials (RCTs) and a literature review investigating the effect of inhaled furosemide on dyspnea and pulmonary function values in patients with COPD. Studies were excluded if these outcomes were studied in general with no relation...
Effects of inhaled furosemide

TABLE 1
Cochrane risk of bias assessment tool for included randomized control trials

Study	Vahedi et al. [12]	Saba et al. [13]	Masoumi et al. [14]
Random sequence generation	Low risk	Low risk	Low risk
Allocation concealment	Low risk	Low risk	Low risk
Blinding—participants and personnel	Low risk	Unclear risk	Unclear risk
Blinding—outcome assessment	Low risk	Low risk	Low risk
Incomplete outcome data	Low risk	Low risk	Low risk
Selective reporting	Low risk	Low risk	Low risk
Other bias	High risk of baseline imbalance. Baseline FEV₁ was higher in the furosemide group.	Low risk	Low risk

to COPD or if inhaled furosemide was not explicitly studied in relation to dyspnea and pulmonary function.

Outcome measures
The outcome measures were pulmonary function values (FVC, FEV₁, PEFR), and dyspnea perception (using either a visual analog scale or the numerical rating scale). The perception of dyspnea is clinically important when providing and assessing the effectiveness of therapies for people with COPD [2]. Additionally, pulmonary function values are the gold standard in diagnosing COPD and assessing any clinical changes in the patient [2].

Information sources
This literature review searched four electronic databases: PubMed (2010–2020), Cochrane Library (2010–2020), CINAHL (2010–2020), and EMBASE (2010–2020). Publication date limits were set for all databases from 2010 to 2020 to provide recent articles for the most applicable use in today’s healthcare system. Additionally, citation tracking was also performed on all the documents identified. Google Scholar, Google, and the clinical trials registry at http://www.clinicaltrials.gov were searched using the terms “inhaled furosemide” and “chronic obstructive pulmonary disease”. Contact was made with authors of promising abstracts to obtain the full-text version; however, no author responded to share the full text. The last search was conducted on 24 February 2020.

Search strategy and assessment of studies
MeSH terms that were used to get the most comprehensive and concise searches in PubMed were inhalation, administration OR Inhal* OR aerosol OR insufflat* OR vapor* OR Nebul* OR insufflat* AND Furosemide OR Furfuramide OR Furosid OR Fusid OR Lasix OR Furosemide OR Errolon OR Furahal OR Furanal OR furosemide (see Supplementary materials for the full PubMed search strategy).

Search limits were set to further improve the search, such as studies with a publication date in the last 10 years, human studies only, and published in English. Because of their high levels of evidence meta-analysis, systematic reviews, randomized controlled trials, and practice guidelines were primarily searched for in this study to reach a conclusion of what effect inhaled furosemide has on dyspnea and pulmonary function values in COPD patients. The title, abstract, keywords, and the body of the article were analyzed. After the search was conducted and the articles were filtered according to relevance and quality of evidence (using the Cochrane risk of bias assessment tool), the remaining articles were examined. Selected articles were included for full text screening and assessed based on study name, publication date, study design, sample size, participants, intervention, control, outcomes, and any conflict of interest. Additionally, the included studies were looked at to ensure they have a control group that received adequate standard care for COPD patients. The diagnosis of COPD was independently evaluated from spirometric and nonspirometric indices as per the gold standards [2].

This literature review was guided by the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Both the Consolidated Standards of Reporting Trials checklist and the Cochrane Collaboration Assessment of Risk of Bias of Included Studies Guideline were used to evaluate the assessment of bias of the included randomized control trials.

RESULTS
Study selection
As a result of the key terms and the limits used in this search, a total of 83 unduplicated results were discovered (see Figure 1). Twenty-five results were from PubMed, 58 results from Cochrane Library, 13 from EMBASE, and 18 from CINAHL. One result was obtained through citation tracking. Of these, 22 met the screening criteria and were assessed for eligibility. Eighteen full-text articles were excluded because they were descriptive articles (2), they were only abstracts (5), they studied dyspnea not in relation to COPD (9), and one was a book (1). The included articles were all published within the last 10 years and all studied inhaled furosemide use with COPD patients.

Characteristics of studies
Four publications are included in this literature review, with a total of 259 participants in the three RCTs alone. Participants all had a formal diagnosis of COPD. One of the studies (RCT) combined the classification of COPD with asthma, while the remaining RCTs and the literature review looked at COPD as an individual disease category. All the studies looked at the effect of inhaled furosemide on dyspnea and, while all publications examined the effect on pulmonary function values, the use of FEV₁, FVC, and (or) PEFR differed. It was noted there was some heterogeneity across publications regarding how dyspnea perception was measured; however, subjective testing was the conventional technique.

Critical analysis
The RCTs were assessed for risk of bias using the Cochrane Risk of Bias Assessment Tool as outlined in the criteria of the Cochrane Handbook for Systematic Reviews of Interventions [11]. The quality of the included RCTs ranges from having mostly low risk of biases to having an unclear risk of bias (due to inadequate detail) (see Table 1). To evaluate the quality of the literature review, PRISMA was used, which showed it to be a high-quality literature review that assessed the quality of its included studies using a strength of evidence rating system known as the “Grading of Recommendations, Assessment, Development and Evaluations” (GRADE) rating.

Effect of intervention
All studies assessed how inhaled furosemide influenced short-term dyspnea relief and short-term impact on pulmonary function values in people with COPD. Table 2 was used to summarize the included publications and assess what each study concluded.

Most publications found statistically significant improvement in dyspnea perception when inhaled furosemide was the intervention in question. Vahedi et al. [12] found that while dyspnea improved one hour after treatment in both the intervention group (furosemide 40 mg) and the placebo group (saline), the improvement for the intervention group was significantly greater and was statistically significant (p < 0.001, which
Additionally, all publications assessed the temporary nature of inhaled furosemide measured dyspnea as a primary outcome, whereas two measured on pulmonary function values in people with COPD. Two of the studies indicated significant effect of inhaled furosemide on dyspnea and significant effect of inhaled furosemide and FVC with inhaled furosemide.

Three of the publications separately (not all in the same article). Vahedi et al. [12] demonstrated a low risk of bias in all but one aspect of the tool. The risk of other bias was high due to the presence of baseline imbalance; baseline FEV₁ was higher in the inhaled furosemide intervention group. This may affect results because the participants in this group have potentially less severe COPD symptoms or perhaps because they have a better capability to improve because of their better baseline values. However, this limitation was addressed in the RCT, and it was noted that even the inhaled furosemide group participants that had lower baseline FEV₁ had a significant improvement in their dyspnea perception [12]. Additionally, Saba et al. [17] demonstrated low, unclear risk in all categories excluding the selective reporting where high risk was identified because only stable COPD patients were selected with no exacerbations or hospital admissions in the last month. These criteria question the severity of COPD in these patients; therefore, when considering patients experiencing COPD exacerbations, optimal intervention may differ. Additionally, a general limitation of this literature review is that only articles up until 2020 were included.

Quality of the evidence
The quality of the overall evidence from the RCTs was assessed using the Cochrane risk-of-bias assessment tool, which included assessment of random sequence generation (selection bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), and other bias. The assessment of the risk of bias in the included RCTs suggested that there was a range of low risk of bias to unclear risk of bias for each of the studies. For example, Vahedi et al. [12] demonstrated a low risk of bias in all but one aspect of the tool. The risk of other bias was high due to the presence of baseline imbalance; baseline FEV₁ was higher in the inhaled furosemide intervention group. This may affect results because the participants in this group have potentially less severe COPD symptoms or perhaps because they have a better capability to improve because of their better baseline values. However, this limitation was addressed in the RCT, and it was noted that even the inhaled furosemide group participants that had lower baseline FEV₁ had a significant improvement in their dyspnea perception [12]. Additionally, Saba et al. [17] demonstrated low, unclear risk in all categories excluding the selective reporting where high risk was identified because only stable COPD patients were selected with no exacerbations or hospital admissions in the last month. These criteria question the severity of COPD in these patients; therefore, when considering patients experiencing COPD exacerbations, optimal intervention may differ. Additionally, a general limitation of this literature review is that only articles up until 2020 were included.

Potential biases in the review process
There were no identified sources of bias in the review process.

Discussion in relation to other studies or reviews
Two RCTs that were done before 2010 should be considered when discussing this topic due to their impact. Jensen et al. [16] and Ong et al. [17] both examined the efficacy of inhaled furosemide in COPD patients. Ong et al. [17] concluded that inhaled furosemide provides relief for induced dyspnea in people with COPD (and results in bronchodilation). Additionally, it was noted that there was a significant improvement in mean FEV₁ and FVC after intervention with inhaled furosemide (p = 0.038 and p = 0.005, respectively). Furthermore, the percentage of FEV₁ improvement in this RCT was similar to what was noted by Vahedi et al. [12] (5% improvement versus 7% improvement with furosemide, respectively). Likewise, Jensen et al. [16] reported statistically significant alleviation of exercise-induced dyspnea in people with COPD following inhaled furosemide therapy.

However, it should be noted that the participants in both the RCTs included were clinically stable at the time (no recent exacerbation of symptoms). This differs from Masoumi et al. [14] and Vahedi et al. [12] as both RCTs included patients with COPD who presented to the emergency department with an acute exacerbation. The potential difference in significance between the two conditions of COPD patients should be
Effects of inhaled furosemide

TABLE 2
Summary of included articles

Study	Participants	Intervention/Outcomes	Results
Vahedi et al. [12]; 5-month randomized double blinded clinical trial	n = 100 (63 males). Mean age 73.1 ± 8.7 years. All participants had COPD diagnoses, presented to emergency department with COPD exacerbation. Mean baseline FEV1 was 53.8 ± 4.4% of predicted.	Primary outcomes: dyspnea severity (measured with a visual analog scale) and FEV1. Intervention: received 40 mg (in 4 mL) nebulized furosemide or placebo as an adjunct to the conventional treatments.	Dyspnea and FEV1 improved in both intervention and placebo groups, but the improvement was significantly greater in the intervention group (p < 0.001, which is less than 0.5 alpha level).
Saba et al. [13]; randomized double blind controlled trial	n = 69 (55 males). Mean age 64.92 ± 11.71 years.	Participants were divided into two groups. The first group received 5 mg salbutamol in their first episode while the second group received inhaled furosemide (40 mg) in their first episode. The treatments for the two groups were subsequently reversed. Spirometry values (FEV1, FVC, and FEV1/FVC) and dyspnea scores (BORG) were assessed as primary outcomes between episodes and after the second episode in both groups.	The primary outcomes improved in both groups after the first episode however only the BORG scale significantly improved after the first episode (p < 0.001). However, all outcomes improved significantly after the second episode in both groups (p < 0.001). The sequence of drug administration did not cause a significant effect as the two groups did not have significantly different reactions.
Masoumi et al. [14]; randomized, double blind, clinical trial	n = 90 (45 in each intervention group), 30 males total. Mean age in salbutamol group is 41.38 ± 10.798 years and mean age in salbutamol and furosemide group is 37.73 ± 10.116 years. Participants who were admitted to the emergency department with “possible” reactive airway disease (asthma/COPD) and acute exacerbation of symptoms were included.	Participants received 5 mg of nebulized salbutamol and 40 mg of nebulized furosemide in the intervention group and 5 mg of nebulized salbutamol alone in the control group. PEFR was estimated before treatment and at specific intervals after.	The difference between the mean PEFR of the two groups was significant at the end of the trial (p = 0.0001). Post-intervention, severity of dyspnea was noted to be worse in the salbutamol group than furosemide group.
Boyden et al. [15]; literature review	Thirty-nine total publications. Search of Medline/ PubMed, CINAHL, Cochrane, and Google Scholar (1989 – 2013). Inclusion criteria included: examining the use of nebulized medications for the treatment of dyspnea related to COPD, and other pulmonary conditions. Four of the studies in this review specifically looked at inhaled furosemide use with COPD patients. The dose used was between 20 mg – 40 mg depending on the study with one study using up to 160 mg.	A potential benefit was suggested for nebulized furosemide. Included studies indicated significant improvements in FEV1, FVC, and dyspnea relief with inhaled furosemide.	

Note: FVC = forced vital capacity; FEV1 = forced expiratory volume in one second; PEFR = peak expiratory flow rate; COPD = Chronic obstructive pulmonary disease.

considered, because patients who are going through an acute exacerbation may show physiologically different responses.

Additionally, another article that should be considered is a systematic review and Meta-analysis by Ghayouri et al. [18]. This review included and analyzed eight articles that looked at PaCO2, heart rate, oxygen saturation (SpO2), PEFR, and FEV1. It was noted the PEFR and the FEV1 in the patients receiving the inhaled furosemide were closer to the reference values that patients receiving the placebo (49 and 46.87, respectively).

CONCLUSION

Currently, inhaled furosemide is not a standard therapy for dyspnea relief and improvement of pulmonary function values in people with COPD. Evidence-based research is required to help determine the best way to integrate this research into current practice. To date, while the therapy of inhaled furosemide is promising for dyspnea relief and improvement of pulmonary function values in people with COPD, there is still insufficient data to draw definitive conclusions regarding the effectiveness of inhaled furosemide in this case.

DISCLOSURES

Funding
The review author declares that this literature review received no funding.

Competing interests
The author declares no conflict of interest.

Ethical approval
Not required for this article type.

REFERENCES
1. Diaz-Guzman E, Mannino DM. Epidemiology and prevalence of chronic obstructive pulmonary disease. Clin Chest Med 2014;35(1):7–16. doi: 10.1016/j.ccm.2013.10.002.
2. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Pocket guide to COPD diagnosis, management and prevention. GOLD committee Publisher. Available at: https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-POCKET-GUIDE-DRAFT-v1.7-14Nov2018-WMS.pdf [Accessed November 25, 2019].
3. O’Donnell DE, Milne KM, James MD, De Torres JP, Neder JA. Dyspnea in COPD: new mechanistic insights and management implications. Adv Ther 2020;37(1):41–60. doi: 10.1007/s12325-019-01289-9.
4. Ambrosino N, Scano G. Dyspnoea and its measurement. Breathe 2004;1(2):100–7. doi: 10.1183/18106838.0102.100.
5. Wysham NG, Miriovsky BJ, Currow DC, et al. Practical dyspnea assessment: relationship between the 0–10 numerical rating scale and the four-level categorical verbal descriptor scale of dyspnea intensity. J Pain Symptom Manage 2015;50(4):480–7. doi: 10.1016/j.jpainsymman.2015.04.015.
6. Rabe KF. Improving dyspnea in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006;3(3):270–5. doi: 10.1513/pats.200601-002SF.
7. Grogono JC, Butler C, Izadi H, Moosavi SH. Inhaled furosemide for relief of air hunger versus sense of breathing effort: a randomized controlled trial. Respir Res 2018;19(1):181. doi: 10.1186/s12931-018-0886-9.

8. Inokuchi R, Aoki A, Aoki Y, Yahagi N. Effectiveness of inhaled furosemide for acute asthma exacerbation: a meta-analysis. Crit Care (London) 2014;18(6):621. doi: 10.1186/s13054-014-0621-x.

9. Jeba J, George R, Pease N. Nebulised furosemide in the palliation of dyspnoea in cancer: a systematic review. BMJ Support Palliat Care 2014;4(2):132-9. doi: 10.1136/bmjspcare-2013-000492.

10. Buchiboyina A, Jasani B, Deshmukh M, Patole S. Strategies for managing transient tachypnoea of the newborn – A systematic review. J Matern Fetal Neonatal Med 2017;30(13):1524–32. doi:10.1080/14767058.2016.1193143.

11. Higgins JPT, Altman DG, Sterne JAC (editors). Chapter 8: Assessing risk of bias in included studies. In Higgins JPT, Churchill R, Chandler J, Cumpston MS (editors), Cochrane Handbook for Systematic Reviews of Interventions version 5.2.0 (updated June 2017), Cochrane, 2017. Available at: www.training.cochrane.org/handbook [Accessed January 13, 2020].

12. Sheikh Motahar Vahedi H, Mahshidfar B, Rabiei H, et al. The adjuncive effect of nebulized furosemide in COPD exacerbation: a randomized controlled clinical trial. Respir Care 2013;58(11):1873-7. doi: 10.4187/respcare.02160.

13. Saha M, Davoodabadi A, Ghaffari A, Gilasi H, Haghpahanah B. Combination adjunctive nebulized furosemide and salbutamol versus single agent therapy in COPD patients: a randomized controlled trial. Annals of medicine and surgery 2012;25:85–90. doi: 10.1016/j.amsu.2020.07.005.

14. Masoumi K, Foroutan A, Haddadzadeh Shoushtari M, et al. The efficacy of nebulized furosemide and salbutamol compared with salbutamol alone in reactive airway disease: a double blind randomized, clinical trial. Emerg Med Int 2014;2014:638102. doi: 10.1155/2014/638102.

15. Boyden JY, Connor SR, Otolorin L, et al. Nebulized medications for the treatment of dyspnea: a literature review. J Aerosol Med Pulm Drug Deliv 2015;28(1):1–19. doi: 10.1089/jamp.2014.1136.

16. Jensen D, Anjadi K, HarrisMcAllister V, Webb KA, O’Donnell DE. Mechanisms of dyspnea relief and improved exercise endurance after furosemide inhalation in COPD. Thorax 2008;63(7):606–13. doi: 10.1136/thx.2007.085993.

17. Ong KC, Kor AC, Chong WF, Earnest A, Wang YT. Effects of inhaled furosemide on exertional dyspnea in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004;169(9):1028–33. doi: 10.1164/rccm.200308-1171OC.

18. Ghaspouri A, Basati G, Shams M, Tavan H. Efficiency of nebulizing furosemide in the treatment of chronic pulmonary obstructive disease: a systematic review and meta-analysis of clinical trials. Tanaffos 2020;19(4):340–9.