Compressed autograft biceps tendon augmentation of subscapularis repair following shoulder arthroplasty

Patrick J. Denard, MD, Javier Ardebol, MD, Ignacio Pasqualini, MD, Jeffrey L. Horinek, MD, Joshua Dines, MD, John M. Tokish, MD

Oregon Shoulder Institute, Medford, OR, USA
Hospital for Special Surgery, New York, NY, USA
Mayo Clinic, Scottsdale, AZ, USA

Subscapularis integrity is correlated with function following shoulder arthroplasty. Failure of healing, particularly following anatomic total shoulder arthroplasty, is associated with poor outcomes and the need for revision. Graft augmentation has been used to increase healing following rotator cuff repair but has not been commonly advocated for augmenting the subscapularis following shoulder arthroplasty.

The long head biceps tendon is typically tenodesed and discarded during shoulder arthroplasty. Rather than discarding the tendon, the tendon may be compressed and applied to the subscapularis as a biologic scaffold to potentially improve subscapularis healing following shoulder arthroplasty.

© 2022 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder & Elbow Surgeons. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Subscapularis healing following shoulder arthroplasty is crucial for maintaining glenohumeral joint stability and optimizing functional outcomes. Lack of subscapularis healing has been associated with pain, instability, decreased range of motion, and possibly revision surgery. Despite advances in tendon repair techniques, healing rates after total shoulder arthroplasty (TSA) and reverse shoulder arthroplasty (RSA) range from 76% to 93% and 40% to 53%, respectively. Thus, there is continued room for improvement.

Biologic augmentation of arthroscopic rotator cuff repairs, most commonly with humeral dermal allograft or dermal xenograft, has been reported to improve biomechanical strength and tendon healing. Others have proposed using the long head biceps tendon (LHBT) to augment cuff repairs. Recently it has been demonstrated that compressed LHBT retains tenocyte viability, suggesting that this graft source has biologic potential to facilitate healing. This autograft poses several advantages including low cost, reduced risk for adverse reactions, and decreased graft site morbidity. Despite the importance of subscapularis healing, there has been very little discussion of augmenting subscapularis repair following shoulder arthroplasty.

Indications

The only requirement for considering LHBT augmentation of the subscapularis repair is the presence of the proximal attachment of the LHBT. The presence of fraying or synovitis of the LHBT encountered intraoperatively does not necessarily exclude the patient for biological augmentation.

Surgical technique

The steps of the procedure are displayed in Table I and Video 1. The patient is placed in a beach chair position followed by a standard deltopectoral approach. The LHBT is located at the superior aspect of the pectoralis major. The tendon is first tenodesed to the pectoralis major tendon with 2 #2 sutures. The tendon is then cut just above the tenodesis site, the bicipital groove is opened, and the proximal segment of the tendon is resected. A segment of at least 30 mm is harvested, although the typical length available is 50 to 60 mm. The harvested tendon is transferred to the back table and then wrapped in a saline-soaked gauze. The subscapularis is taken down...
The tendon is placed in a pre-graft is discarded as this segment tends to be more cartilaginous. The full technique has previously been described in detail.10,11 This suture tapes (Tendon Compression Bridge; Arthrex, Inc.) (Fig. 2). Using 4 independent #2 sutures placed in a perpendicular to the normal orientation of the biceps tendon inferior. This orientation makes it so that the sutures will pass through preplaced holes in the tray to create mattress configurations at the 4 corners. Finally, given the length of the proximal tendon, it is possible to obtain 2 grafts if desired. These grafts can be stacked in the subsequent augmentation, or placed side by side.

In the setting of a tenotomy approach, a side-to-side repair is performed in the standard fashion. The graft is then held over the tenotomy repair site with the biceps graft aligned from superior to inferior. This orientation makes it so that the sutures will pass perpendicular to the normal orientation of the biceps tendon fibers. The 4 corners of the graft are sutured to the native tendon using 4 independent #2 sutures placed in a figure-of-eight configuration.

Most commonly, we utilize a subscapularis peel or lesser tuberosity osteotomy approach and repair the tendon with 2 mm suture tapes (Tendon Compression Bridge; Arthrex, Inc.) (Fig. 2). The full technique has previously been described in detail.10,11 This repair results in a criss-crossed suture-bridging configuration with the lateral suture limbs secured in 2 half-racking hitches. Typically, the lateral limbs are cut at the completion of the repair, but in this setting, they are preserved. The graft is secured to the medial aspect of the native tendon with 2 sets of #2 sutures at the supero-medial and infero-medial corners as described following tenotomy. Then, the lateral suture tape limbs are used to secure the graft laterally. One of the superior limbs is passed through the graft with a free needle and tied to the other superior limb. This is then repeated inferiorly to complete the augmentation.

Discussion

The compressed biceps autograft augmentation technique provides a technique for potentially improving subscapularis healing following shoulder arthroplasty. The LHBT graft source is low cost, present in most shoulder arthroplasties, and has demonstrated cell viability following compression.

Subscapularis failure following TSA is a recognized cause of decreased function and implant failure.3,13 One study reported subscapularis insufficiency in 78% of failed TSAs.17 While a wide variety of techniques have been reported to attempt to improve the strength of repair, failures continue to occur. In a systematic review, Choate et al reported that subscapularis healing in the setting of TSA was 76% for tenotomy, 84% for peel, and 93% for lesser tuberosity osteotomy.7 Thus, particularly in the setting of a tenotomy or peel approach, there is a need for improvement. Much as the biomechanics of arthroscopic rotator cuff repair have been relatively optimized and attention has turned to biology, there may be a similar opportunity to improve subscapularis healing following TSA by optimizing the biologic environment.

The importance of subscapularis repair and healing following RSA has been a subject of controversy. Some studies have reported minimal to no difference in patient function whether or not the subscapularis was repaired following RSA.5 Other studies have associated increased likelihood of postoperative dislocation with irreparable subscapularis tendons.5,12,15 One reason for this debate may be the variable or underreported subscapularis healing rates in the setting of RSA. In the few studies that have evaluated subscapularis healing following RSA, the rate of healing has varied between 40% and 53%.10 Recently, Collin et al demonstrated that subscapularis healing was associated with improved internal rotation following RSA. They reported a significantly higher Constant IR score in the intact repair group compared to the nonrepair group (6.6 vs. 4.8 points, P = .0058). Thus, the lack of clarity regarding subscapularis repair following RSA may be partially due to the inherently low healing rates. Low healing rates in the setting of RSA can be attributed to distalization of the subscapularis tendon as well as the poor native biologic environment in the case of rotator cuff arthropathy. In the latter case, there may be an opportunity to improve healing and subsequent function with biologic augmentation.

The LHBT is a promising graft source for augmentation of subscapularis repair for several reasons. First, the graft source is low cost, making use of a segment of the tendon that is routinely discarded. Second, there is no donor site morbidity. Third, the graft appears to retain biologic viability even after compression. Colbath et al analyzed the biological and tensile properties of a compressed LHBT graft and demonstrated that 39% of tenocytes were viable.9 Additionally, they observed that the compressed cell produced cytokines that promote tenogenic differentiation in adipose-derived mesenchymal stromal cells. The findings suggest a biologic potential for augmentation of rotator cuff repair.

Further studies are clearly required to investigate this technique. First, a biomechanical investigation would be valuable to determine if the augmentation improves load to failure or minimizes displacement. Most importantly, a clinical study evaluating healing would be valuable. However, as opposed to allografts which require substantially increased cost, there appears to be very little downside to the current technique.

Conclusion

During shoulder arthroplasty, the proximal segment of the long head of the biceps tendon is routinely discarded. Rather than discarding the tendon, we have described a technique for compressing the biceps into a flat graft for autologous biologic augmentation of subscapularis repair following shoulder arthroplasty.
Disclaimers:

Funding: No funding was disclosed by the authors.
Conflicts of interest: Dr. Denard is a consultant for and receives royalties from Arthrex, Inc. Dr. Dines is a consultant for and receives royalties from Arthrex, Inc. Dr. Tokish is a consultant and receives royalties from Arthrex. He has recently served on the Scientific Advisory Board for Depuy Mitek, and is an Associate Editor for the Journal of Shoulder and Elbow Surgery. The other authors, their immediate families, and any research foundation with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

Figure 1 Illustration of the LHBT preparation. (A) A 27 mm long segment of the LHBT is centered in the compression tray (Biceps Compression Tray; Arthrex Inc.). (B) The trays are placed into the device while holding compression between the minimum and maximum values (Modular Glenoid System; Arthrex Inc.). (C) Compressed biceps patch. LHBT, long head of the biceps tendon.

Figure 2 Illustration of repair of the subscapularis peel and overlay of the compressed biceps patch. (A) A tensionable construct is created to repair the subscapularis tendon. (B) The compressed biceps patch is laid over the repair construct. (C) The patch is secured laterally with suture limbs from the subscapularis repair, and medially with independent sutures in the medial tendon. (D) Sutured patch on all four corners.
Supplementary Data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.xrrt.2022.08.002.

References

1. de Boer FA, van Kampen PM, Huijsmans PE. The influence of subscapularis tendon reattachment on range of motion in reversed shoulder arthroplasty: a clinical study. Musculoskelet Surg 2016;100:121-6. https://doi.org/10.1007/s12306-016-0401-8.
2. Bornes TD, Rollins MD, Lapner PL, Bouliane MJ. Subscapularis Management in Total Shoulder Arthroplasty: Current Evidence Comparing Peel, Osteotomy, and Tenotomy. J Shoulder Elbow Arthroplast 2018;2:1-10. https://doi.org/10.1177/2471549218807772.
3. Buckley T, Miller R, Nicandri G, Lewis R, Voloshin I. Analysis of subscapularis integrity and function after lesser tuberosity osteotomy versus subscapularis tenotomy in total shoulder arthroplasty using ultrasound and validated clinical outcome measures. J Shoulder Elbow Surg 2014;23:1309-17. https://doi.org/10.1016/j.jse.2013.12.009.
4. Chalmers PN, Rahman Z, Romeo AA, Nicholson GP. Early dislocation after reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2014;23:737-44. https://doi.org/10.1016/j.jse.2013.08.015.
5. Cheung EV, Sarkissian EJ, Sox-Harris A, Saleh JR, Diaz R, et al. Instability after reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2018;27:1946-52. https://doi.org/10.1016/j.jse.2018.04.015.
6. Cho NS, Yi JW, Rhee YG. Arthroscopic Biceps Augmentation for Avoiding Undue Tension in Repair of Massive Rotator Cuff Tears. Arthroscopy 2009;25:183-91. https://doi.org/10.1016/j.arthro.2008.09.012.
7. Choate WS, Kwapisz A, Monyaya AM, Hawkins RJ, Tokish JM. Outcomes for subscapularis management techniques in shoulder arthroplasty: a systematic review. J Shoulder Elbow Surg 2018;27:363-70. https://doi.org/10.1016/j.jse.2017.08.003.
8. Collobath G, Murray A, Siatkowsi S, Pate T, Krussig M, Pill S, et al. Autograft Long Head Biceps Tendon Can Be Used as a Scaffold for Biologically Augmenting Rotator Cuff Repairs. Arthroscopy 2022;38:38-48. https://doi.org/10.1016/j.arthro.2021.05.064.
9. Collin P, Rol M, Muniandy M, Gain S, Ladermann A, Ode G. Relationship between postoperative integrity of subscapularis tendon and functional outcome in reverse shoulder arthroplasty. J Shoulder Elbow Surg 2022;31:63-71. https://doi.org/10.1016/j.jse.2021.05.024.
10. Denard PJ, Lederman E, Gobeze R, Hanyskiat BT. Stem-Based Repair of the Subscapularis in Total Shoulder Arthroplasty. Am J Orthop (Belle Mead NJ) 2016;45:228-30.
11. Denard PJ, Noyes MP, Ladermann A. A Tensionable Method for Subscapularis Repair after Shoulder Arthroplasty. JSES Open Access 2018;2:205-10. https://doi.org/10.1016/j.jses.2018.08.005.
12. Edwards TB, Williams MD, Labriola JF, Ellikosy HA, Gartsman GM, O’Connor DP. Subscapularis insufficiency and the risk of shoulder dislocation after reverse shoulder arthroplasty. J Shoulder Elbow Surg 2009;18:892-6. https://doi.org/10.1016/j.jse.2008.12.013.
13. Eichinger JK, Galvin JW. Management of complications after total shoulder arthroplasty. Curr Revs Musculosktelet Med 2015;8:83-91. https://doi.org/10.1016/s1271-7810-014-9531-x.
14. Entezari V, Henry T, Zmistowski B, Sheth M, Nicholson T, Namdari S. Clinically significant subscapularis failure after anatomic shoulder arthroplasty: is it worth repairing? J Shoulder Elbow Surg 2020;29:1831-5. https://doi.org/10.1016/j.jse.2020.01.070.
15. Friedman RJ, Flurin PH, Wright TW, Zuckerman JD, Roche CP. Comparison of reverse total shoulder arthroplasty outcomes with and without subscapularis repair. J Shoulder Elbow Surg 2017;26:662-8. https://doi.org/10.1016/j.jse.2016.09.027.
16. Jackson GR, Bedi A, Denard PJ. Graft Augmentation of Repairable Rotator Cuff Tears: An Algorithmic Approach Based on Healing Rates. Arthroscopy 2021;38:2342-7. https://doi.org/10.1016/j.arthro.2021.10.032.
17. Melis B, Bonneville N, Neyton L, Lévine C, Favard L, Walsh G, et al. Glenoid loosening and failure in anatomical total shoulder arthroplasty: is revision with a reverse shoulder arthroplasty a reliable option? J Shoulder Elbow Surg 2012;21:342-9. https://doi.org/10.1016/j.jse.2011.05.021.
18. Milano G, Marchi G, Bertoni G, Vassitti N, Galli S, Scami A, et al. Augmented Repair of Large to Massive Delaminated Rotator Cuff Tears With Autologous Long Head of the Biceps Tendon Graft: The Arthroscopic “Cuff-Plus” Technique. Arthrosc Tech 2020;9:e1683-8. https://doi.org/10.1016/j.eats.2020.07.011.
19. Sano H, Mineta M, Kita A, Itoi E. Tendon patch grafting using the long head of the biceps for irreparable massive rotator cuff tears. J Orthop Sci 2010;15:310-6. https://doi.org/10.1007/s00776-010-1453-5.