FAITHFUL REPRESENTATIONS OF INFINITE-DIMENSIONAL NILPOTENT LIE ALGEBRAS

INGRID BELTITĂ AND DANIEL BELTITĂ

ABSTRACT. For locally convex, nilpotent Lie algebras we construct faithful representations by nilpotent operators on a suitable locally convex space. In the special case of nilpotent Banach-Lie algebras we get norm continuous representations by bounded operators on Banach spaces.

1. INTRODUCTION

The aim of this short note is to provide an affirmative answer to a question raised in the seminal paper by K.-H. Neeb [Ne06, pag. 440, Probl. VII.2 and VIII.6(b)], regarding suitable versions of Birkhoff’s embedding theorem in infinite dimensions. In particular, we prove that every nilpotent Banach-Lie algebra has a bounded faithful representation by nilpotent operators on a suitable Banach space; see Corollary 2.14 below.

In order to put this result in a proper perspective, we recall a few classical facts:

• Every finite-dimensional nilpotent Lie algebra can be realized as a Lie algebra of nilpotent matrices, by Birkhoff’s embedding theorem; see [B37].
• In a more general situation, every finite-dimensional Lie algebra can be faithfully represented by matrices, by Ado’s theorem; see [Ad35].
• The above statement of Ado’s theorem cannot be directly extended to the Banach category, by replacing the finite-dimensional vector spaces by Banach spaces. In fact, it has been long known that there exist Banach-Lie algebras that cannot be faithfully represented by Banach space operators; see [vES73] and also [Ne06, pag. 438, Rem. VIII.7] for a broader discussion.

Besides this old open problem concerning the extension of Ado’s theorem to infinite dimensions, there also exists a current interest in questions regarding the finite-dimensional situation. Thus, one has been interested in finding good estimates for the size of the matrices that have to be used in order to realize a given nilpotent Lie algebra; see [dGr97], [BeEdG09], [BM11], and the references therein.

Among the various methods developed in [BeEdG09], the second one is in some sense related to the setting of the present paper, inasmuch as the dual of the universal enveloping algebra of any Lie algebra is closely related to the space of polynomial functions on that Lie algebra. Our point here is to provide an analytic version of that method which is eventually applicable to some (infinite-dimensional) topological Lie algebras, namely to locally convex, nilpotent Lie algebras (Li69 [Ne06]).

Date: August 28, 2011.

2010 Mathematics Subject Classification. Primary 22E66; Secondary 22E65, 22E25.

Key words and phrases. nilpotent Banach-Lie group, polynomial, faithful representation.
The main result of our paper is Theorem 2.13 and provides faithful representations for algebras of this type by nilpotent operators, and for the corresponding locally convex Lie groups by unipotent operators. In the special case of Banach-Lie algebras, we get in Corollary 2.14 bounded representations.

Let us also mention that a related open problem was raised in [Wo98] on finding faithful representations for quasinilpotent Banach-Lie algebras.

2. MAIN RESULTS

Notation 2.1. We will work in the following setting:

- Unless otherwise stated, \mathfrak{g} is a Hausdorff, locally convex, nilpotent Lie algebra over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ with the nilpotency index denoted by $N + 1$, where $N \in \mathbb{N}$. Thus, if we define $\mathfrak{g}^{(1)} = \mathfrak{g}$ and $\mathfrak{g}^{(j)} := [\mathfrak{g}, \mathfrak{g}^{(j-1)}]$ for $j \geq 1$, then we have $\mathfrak{g}^{(N)} \neq \{0\} = \mathfrak{g}^{(N+1)}$.
- $G = (\mathfrak{g}, \ast)$ is the corresponding simply connected, locally convex, nilpotent Lie group, whose group operation \ast is defined by the Baker-Campbell-Hausdorff formula on \mathfrak{g} (see [Ne06, Ex. IV 1.6.6]). Note that in this case there exists a smooth exponential mapping, which is in fact the identity. Therefore we use the same letters to denote elements from \mathfrak{g} and G, and use the notation G only when it is useful to emphasize the group structure.
- We denote by $C(\mathfrak{g}, \mathbb{K})$ the space of \mathbb{K}-valued continuous functions on \mathfrak{g} endowed with the topology of uniform convergence on the bounded sets, and by
 \[
 \lambda: G \to \text{End}(C(\mathfrak{g}, \mathbb{K})), \quad (\lambda(x)\phi)(y) = \phi((-x) \ast y)
 \]
 the corresponding left-regular representation of G.
 If $\phi \in C(\mathfrak{g}, \mathbb{K})$ and $x, y \in \mathfrak{g}$, then we define
 \[
 (\lambda(x)\phi)(y) := \lim_{t \to 0} \frac{\phi((-tx) \ast y) - \phi(y)}{t}
 \]
 whenever the above limit exists. (Compare [BB11a, Def. 2.1].)
- For every locally convex space \mathcal{Y} over \mathbb{C} and every integer $m \geq 0$ we denote by $\mathcal{P}_m(\mathfrak{g}, \mathcal{Y})$ the linear space of \mathcal{Y}-valued, continuous polynomial functions of degree $\leq m$ on \mathfrak{g} and by $\mathcal{P}^m(\mathfrak{g}, \mathcal{Y})$ its subspace consisting of the homogeneous polynomial functions of degree m (see [BS71]). We endow $\mathcal{P}_m(\mathfrak{g}, \mathcal{Y})$ with the topology of uniform convergence on the bounded sets. We have a topological direct sum decomposition
 \[
 \mathcal{P}_m(\mathfrak{g}, \mathcal{Y}) = \mathcal{P}^0(\mathfrak{g}, \mathcal{Y}) + \mathcal{P}^1(\mathfrak{g}, \mathcal{Y}) + \cdots + \mathcal{P}^m(\mathfrak{g}, \mathcal{Y}),
 \]
 and then it easily follows by [BS71, Th. A, Th. 2] that $\mathcal{P}_m(\mathfrak{g}, \mathcal{Y})$ is a closed subspace of $C(\mathfrak{g}, \mathbb{K})$.

Remark 2.2. Assume here that \mathfrak{g} is a Banach-Lie algebra and let $m \in \mathbb{N}$. The space $\mathcal{P}_m(\mathfrak{g}, \mathbb{K})$ is a Banach space and one norm defining its topology can be described as follows. For $\phi \in \mathcal{P}_m(\mathfrak{g}, \mathbb{K})$ we denote by $\tilde{\phi}: \mathfrak{g} \times \cdots \times \mathfrak{g} \to \mathbb{K}$ the symmetric m-linear bounded functional satisfying $\tilde{\phi}(x) = \phi(x, \ldots, x)$ for every $x \in \mathfrak{g}$. Then we set $\|\phi\|_{\mathcal{P}_m(\mathfrak{g}, \mathbb{K})} := \|\tilde{\phi}\|$. (See [BB11a, Prop.1].) Here we use the norm
 \[
 \|\tilde{\phi}\| = \sup\{|\tilde{\phi}(x_1, \ldots, x_m)| \mid x_1, \ldots, x_m \in \mathfrak{g}, \|x_j\| \leq 1, j = 1, \ldots, m\}.\n \]
The norm $\| \cdot \|_{P^m(\mathfrak{g}, \mathbb{K})}$ is equivalent (see [BS71 Prop. 1]) to the norm $$\phi \mapsto \sup_{\|x\| \leq 1} |\phi(x)|.$$ We have the following formula for the directional derivatives: $$(\forall x, y \in \mathfrak{g}) \quad \phi'(x) = m\tilde{\phi}(x, y, \ldots , y)$$ and this implies that the estimate $$|\phi'(x)| \leq m\|x\| \cdot \|y\|^{m-1}\|\phi\|_{P^m(\mathfrak{g}, \mathbb{K})}$$ for every $x, y \in \mathfrak{g}$. \hfill \Box

Remark 2.3. It is not clear in general that if $\phi \in C(\mathfrak{g}, \mathbb{K})$ then the mapping $G \to C(\mathfrak{g}, \mathbb{K}), x \mapsto \lambda(x)\phi$ is continuous. However, it is easily checked that this is the case if \mathfrak{g} is finite-dimensional or if it is a Banach-Lie algebra and $\phi \in \bigcup_{m \geq 0} \mathcal{P}_m(\mathfrak{g}, \mathbb{K})$.

It then follows by [Ne10 Prop. 5.1] that if \mathcal{V} is a closed subspace of $\mathcal{P}_m(\mathfrak{g}, \mathbb{K})$ for some $m \geq 0$ (hence \mathcal{V} is a Banach space) such that $\lambda(G)\mathcal{V} \subseteq \mathcal{V}$, then the mapping $G \times \mathcal{V} \to \mathcal{V}$, $(x, \phi) \mapsto \lambda(x)\phi$ is continuous. As we will see by Corollary 2.14 below, the representation of G on \mathcal{V} defined by λ is actually norm-continuous. \hfill \Box

Lemma 2.4. If $m \in \mathbb{N}$, $\Phi \subseteq \mathcal{P}_m(\mathfrak{g}, \mathbb{K})$, and we denote $\mathcal{V}_\Phi := \text{span}(\lambda(G)\Phi)$ then \mathcal{V}_Φ is an invariant subspace for the regular representation λ and moreover we have $\mathcal{V}_\Phi \subseteq \mathcal{P}_{mN}(\mathfrak{g}, \mathbb{K})$.

Proof. Since λ is a group representation, it follows at once that \mathcal{V}_Φ is an invariant subspace. Furthermore, let $x \in \mathfrak{g}$ arbitrary and define $L_x : \mathfrak{g} \to \mathfrak{g}$, $L_x(y) = (-x) \ast y$. Since \mathfrak{g} is an $(N + 1)$-step nilpotent Lie algebra, it follows that $L_x \in \mathcal{P}_N(\mathfrak{g}, \mathfrak{g})$, and then for $\phi \in \mathcal{P}_m(\mathfrak{g}, \mathbb{K})$ we get $\lambda(x)\phi = \phi \circ L_x \in \mathcal{P}_{mN}(\mathfrak{g}, \mathbb{K})$ by [BS71 Prop. 2, Cor. 1, page 63]. Thus $\lambda(G)\Phi \subseteq \mathcal{P}_{mN}(\mathfrak{g}, \mathbb{K})$. Since $\mathcal{P}_{mN}(\mathfrak{g}, \mathbb{K})$ is a closed subspace of $C(\mathfrak{g}, \mathbb{K})$, we get $\mathcal{V}_\Phi \subseteq \mathcal{P}_{mN}(\mathfrak{g}, \mathbb{K})$, which concludes the proof. \hfill \Box

Remark 2.5. If $\dim \mathfrak{g} = n < \infty$, then it follows by Lemma 2.3 that every polynomial function on \mathfrak{g} is a finite vector for the regular representation λ, in the sense that it generates a finite-dimensional cyclic subspace. Even more precisely, if $\phi \in \mathcal{P}_m(\mathfrak{g}, \mathbb{K})$ and $\Phi := \{\phi\}$, then $\dim \mathcal{V}_\Phi \leq \dim \mathcal{P}_{mN}(\mathfrak{g}, \mathbb{K}) = \frac{(mN+n)!}{(n+1)(mN-1)!}$. From the point of view of the question we address here, the drawback of this estimate on $\dim \mathcal{V}_\Phi$ is that it depends on the dimension of \mathfrak{g}. Lemmas 2.6, 2.7, 2.10 and 2.11 below are aimed to fix this problem.

The following observation is well known, and the simple proof is included for the sake of completeness. We will need this result below in Lemma 2.7 in order to get a uniform estimate for the dimension of the subalgebra generated by a finite subset of a nilpotent Lie algebra.

Lemma 2.6. Let \mathfrak{m} be an arbitrary Lie algebra over \mathbb{K} and denote by \mathfrak{m}_S the Lie subalgebra generated by some subset $S \subseteq \mathfrak{m}$. Then $\mathfrak{m}_S = \text{span}_\mathbb{K}(S \cup \{(\text{ad}_m v_r) \cdots (\text{ad}_m v_1)w \mid v_1, \ldots , v_r, w \in S, r = 1, 2, \ldots\})$.
Lemma 2.10. Let h. We have $S \subseteq h$ and it is clear that if some subalgebra of m contains S, then it also contains h.

Therefore, the proof will be completed as soon as we have proved that h is a subalgebra of m. Since h is by definition a linear subspace of m, we are left with checking that for every $x \in h$ we have $[x, h] \subseteq h$. To this end let us consider the normalizer of h in m, that is, $N_m(h) := \{x \in m \mid [x, h] \subseteq m\}$. By using the Jacobi identity under the form

$$\forall x, y \in m \quad \text{ad}_m([x,y]) = [\text{ad}_m x, \text{ad}_m y] = (\text{ad}_m x)(\text{ad}_m y) - (\text{ad}_m y)(\text{ad}_m x) \quad (2.3)$$

and the fact that h is a linear subspace, it follows that if $x, y \in N_m(h)$, then $\text{ad}_m([x,y])h \subseteq h$, hence $[x, y] \in N_m(h)$. Therefore $N_m(h)$ is a subalgebra of m. On the other hand, it follows by the definition of h that for every $x \in S$ we have $[x, h] \subseteq h$, hence the subalgebra $N_m(h)$ contains S. Then $N_m(h) \supseteq h$ by the remark at the very beginning of the proof. By the definition of $N_m(h)$ we then get $[h, h] \subseteq h$, hence h is a subalgebra of m, and this completes the proof. \hfill \Box

Lemma 2.7. If $q \geq 1$, then the subalgebra g_{x_1, \ldots, x_q} generated by any elements $x_1, \ldots, x_q \in g$ is finite dimensional and we have an estimate depending only on N and q, namely $\dim_K(g_{x_1, \ldots, x_q}) \leq \sum_{r=0}^{N-1} q^{r+1}$.

Proof. We may assume that we have distinct elements $x_1, \ldots, x_q \in g$, so that we have a subset with q elements $S = \{x_1, \ldots, x_q\} \subseteq g$. By using the fact that $g^{(N+1)} = \{0\}$ we get by Lemma 2.6

$$g_{x_1, \ldots, x_q} = \text{span}_K(S \cup \{(\text{ad}_g v_r) \cdots (\text{ad}_g v_1)w \mid v_1, \ldots, v_r, w \in S, \ 1 \leq r \leq N - 1\}).$$

Thus g_{x_1, \ldots, x_q} is linearly generated by a set containing at most $\sum_{r=0}^{N-1} q^{r+1}$ elements, hence we get the required estimate. \hfill \Box

Remark 2.8. We record the following fact for later use. For any $x_0, x_1, \ldots, x_q \in g$, any $\alpha, \ldots, \alpha_q \in \mathbb{N}$, and any $\psi \in C^\infty(g, \mathbb{K})$, the value $(\lambda(x_1))^{\alpha_1} \cdots (\lambda(x_q))^{\psi} \psi(x_0)$ depends only on the values of ψ on the finite-dimensional subalgebra $g_{x_0, x_1, \ldots, x_q}$ (see Lemma 2.7). This is a direct consequence of the definition (2.1). \hfill \Box

Notation 2.9. We denote by $\mathbb{N}^{(t)}$ the set of all sequences $\alpha = (\alpha_0, \alpha_1, \ldots)$ consisting of nonnegative integers such that there exists $k_\alpha \in \mathbb{N}$ with the property $\alpha_j = 0$ if $j > k_\alpha$. If $\alpha \in \mathbb{N}^{(t)}$, then for any sequence $x_0, x_1, \ldots \in g$ and any $y \in g$ we denote

$$(\text{ad}_g x_0)^{\alpha_0}(\text{ad}_g x_1)^{\alpha_1} \cdots y := (\text{ad}_g x_0)^{\alpha_0}(\text{ad}_g x_1)^{\alpha_1} \cdots (\text{ad}_g x_k)^{\alpha_k} y$$

for any $k > k_\alpha$, where $(\text{ad}_g x)^0 := \text{id}_g$ for every $x \in g$, and $k_\alpha \in \mathbb{N}$ is as above.

Moreover, for every $\alpha = (\alpha_0, \alpha_1, \ldots) \in \mathbb{N}^{(t)}$ we denote $|\alpha| = \sum_{k \geq 0} \alpha_k$. \hfill \Box

Lemma 2.10. Let $\phi \in g^*$ and $x_0 \in g$. For all $\alpha, \beta \in \mathbb{N}^{(t)}$ define

$$p_{\alpha \beta} : g \to \mathbb{K}, \quad p_{\alpha \beta}(y) = \phi((\text{ad}_g x_0)^{\alpha_0}(\text{ad}_g y)^{\beta_0} (\text{ad}_g x_1)^{\alpha_1} (\text{ad}_g y)^{\beta_1} \cdots y).$$

If we denote $V = \text{span}_K\{p_{\alpha \beta} \mid \alpha, \beta \in \mathbb{N}^{(t)}\} \cup \{1\}$, then

1. $\dim_K V \leq 2^{N-1} + 1$;
(2) For all \(\alpha, \beta \in \mathbb{N}^{(N)} \) we have
\[
\hat{\lambda}(x_0)(p_{\alpha\beta}) \in \text{span}_K \{ p_{\gamma\delta} \mid (\gamma, \delta) \in I_{\alpha\beta} \},
\]
where \(I_{\alpha\beta} \) denotes the set of all pairs \((\gamma, \delta) \in \mathbb{N}^{(N)} \times \mathbb{N}^{(N)} \) satisfying either
\[|\gamma| + |\delta| > |\alpha| + |\beta|, \text{ or } |\gamma| + |\delta| = |\alpha| + |\beta| \text{ and } |\gamma| > |\alpha|;\]
(3) \(\hat{\lambda}(x_0)\mathcal{V} \subseteq \mathcal{V} \) and \((\hat{\lambda}(x_0))^{2^{N-1}+1} = 0 \) on \(\mathcal{V} \).

Proof. It suffices to show that for at most \(2^{N-1} \) pairs \((\alpha, \beta) \in \mathbb{N}^{(N)} \times \mathbb{N}^{(N)} \) we have \(p_{\alpha\beta} \neq 0 \). For any such pair we must have \(|\alpha| + |\beta| \leq N - 1 \), since \(\mathfrak{g}^{(N+1)} = \{0\} \). Moreover, if we define \(k := \max\{j \in \mathbb{N} \mid \beta_j \geq 1\} \), then \(\alpha_{k+1} \geq 1 \).

For every \(r \in \{0, \ldots, N - 1\} \), it is then easily seen that the set
\[
\{(\alpha, \beta) \in \mathbb{N}^{(N)} \times \mathbb{N}^{(N)} \mid |\alpha| + |\beta| = r \text{ and } p_{\alpha\beta} \neq 0\}
\]
has at most \(\max\{1, 2^{r-1}\} \) elements, hence there exist at most \(1 + 2 + \cdots + 2^{N-2} = 2^{N-1} - 1 \) pairs \((\alpha, \beta) \in \mathbb{N}^{(N)} \times \mathbb{N}^{(N)} \) with \(p_{\alpha\beta} \neq 0 \).

For every \(y \in \mathfrak{g} \) we define \(R_y : \mathfrak{g} \to \mathfrak{g}, z \mapsto z \cdot y \). Then for every \(\psi \in C^\infty(\mathfrak{g}, K) \) and \(y \in \mathfrak{g} \) we have
\[
(\hat{\lambda}(x_0)\psi)(y) = (\psi \circ R_y)(x_0) = -\psi'_y(R'_y(x_0)).
\]

It then follows by the Baker-Campbell-Hausdorff formula that there exist some universal constants \(c_0, \ldots, c_N \in \mathbb{Q} \) such that
\[
(\forall \psi \in C^\infty(\mathfrak{g}, K))(\forall y \in \mathfrak{g}) \quad (\hat{\lambda}(x_0)\psi)(y) = \sum_{j=0}^{N} c_j \psi'_y((\text{ad}_\mathfrak{g}y)^j x_0). \quad (2.4)
\]

This implies at once the assertion for \(\alpha = \beta = 0 \), that is, for \(p_{\alpha\beta} = \phi \).

Now let \(\alpha, \beta \in \mathbb{N}^{(N)} \) with \(|\alpha| + |\beta| \geq 1 \) and \(p_{\alpha\beta} \neq 0 \). Then we may assume that there exist \(\varepsilon \in \{\pm 1\} \) and \(k \in \mathbb{N} \) such that \(\beta_0, \alpha_1, \beta_1, \ldots, \alpha_k, \beta_k \geq 1 \), \(\alpha_i = \beta_i = 0 \) for \(i \geq k + 1 \), and
\[
(\forall y \in \mathfrak{g}) \quad p_{\alpha\beta}(y) = \varepsilon \phi((\text{ad}_\mathfrak{g}x_0)^{\alpha_0}(\text{ad}_\mathfrak{g}y)^{\beta_0} \cdots (\text{ad}_\mathfrak{g}x_0)^{\alpha_k}(\text{ad}_\mathfrak{g}y)^{\beta_k} x_0)
\]
(since \((\text{ad}_\mathfrak{g}x_0)^q y = -(\text{ad}_\mathfrak{g}x_0)^{q-1} (\text{ad}_\mathfrak{g}y)x_0 \) if \(q \geq 1 \)). Then for all \(y, z \in \mathfrak{g} \) we have
\[
(p_{\alpha\beta})'_y(z) = \sum_{i=0}^{k} \sum_{l=0}^{\beta_i - 1} \varepsilon \phi((\text{ad}_\mathfrak{g}x_0)^{\alpha_0}(\text{ad}_\mathfrak{g}y)^{\beta_0} \cdots (\text{ad}_\mathfrak{g}y)^{\beta_i}(\text{ad}_\mathfrak{g}x_0)^{\alpha_i}(\text{ad}_\mathfrak{g}y)^{\beta_i})^{\alpha_{i+1}}(\text{ad}_\mathfrak{g}x_0)^{\alpha_i}(\text{ad}_\mathfrak{g}y)^{\beta_i} x_0).
\]

Therefore, by using \((2.4) \), we get
\[
(\hat{\lambda}(x_0)(p_{\alpha\beta}))(y) = \sum_{j=0}^{N} \sum_{i=0}^{k} \sum_{l=0}^{\beta_i - 1} c_j \varepsilon \phi((\text{ad}_\mathfrak{g}x_0)^{\alpha_0}(\text{ad}_\mathfrak{g}y)^{\beta_0} \cdots \times \phi((\text{ad}_\mathfrak{g}x_0)^{\alpha_i}(\text{ad}_\mathfrak{g}y)^{\beta_i})^{\alpha_{i+1}}(\text{ad}_\mathfrak{g}x_0)^{\alpha_i}(\text{ad}_\mathfrak{g}y)^{\beta_i} x_0).
\]

On the other hand, by using the Jacobi identity \((2.3) \), we see that for every \(j \in \mathbb{N} \) and \(s \in \{0, \ldots, j\} \) there exists \(a_{js} \in \mathbb{Z} \) such that
\[
\text{ad}_y((\text{ad}_\mathfrak{g}y)^j x_0) = [\text{ad}_\mathfrak{g}y, \ldots, [\text{ad}_\mathfrak{g}y, \text{ad}_\mathfrak{g}x_0] \cdots] = \sum_{s=0}^{j} a_{js} (\text{ad}_\mathfrak{g}y)^s \text{ad}_\mathfrak{g}x_0 (\text{ad}_\mathfrak{g}y)^{j-s}.
\]
Now the assertion follows by the above formula for $\dot{\lambda}(x_0)(p_{\alpha\beta})$.

We have already noted in the above proof of Assertion (1) that
$$\sup\{|\gamma| + |\delta| \mid \gamma, \delta \in N(\mathbb{N}) \text{ and } p_{\gamma\delta} \neq 0\}(\leq N - 1) < \infty$$
hence also
$$\sup\{|\gamma| \mid \gamma \in N(\mathbb{N}) \text{ and there exists } \delta \in N(\mathbb{N}) \text{ with } p_{\gamma\delta} \neq 0\}(\leq N - 1) < \infty.$$

As a direct consequence of Assertion (2), we then see that for every $\alpha, \beta \in N(\mathbb{N})$ we have, besides $\dot{\lambda}(x_0)(p_{\alpha\beta}) \in V$, also $(\dot{\lambda}(x_0))^m(p_{\alpha\beta}) = 0$ for sufficiently large $m \geq 1$.

Then $\dot{\lambda}(x_0)V \subseteq V$ and, since $\dim_k V \leq 2^{N-1} + 1$ by Assertion (1), we also get $(\dot{\lambda}(x_0))^{2^{N-1}+1} = 0$ on V. This completes the proof.

Lemma 2.11. If $x_0 \in g$, then for every $m \geq 0$ and $\phi \in \mathcal{P}_m(g, \mathbb{K})$ we have
$$(\dot{\lambda}(x_0))^{2^{N-1}m+1}\phi = 0.$$

Proof. We have to prove that for every $y \in g$ we have $\left(\dot{\lambda}(x_0)\right)^{2^{N-1}m+1}\phi(y) = 0$.

By using Remark 2.8 we easily see that it suffices to obtain the conclusion under the additional assumption $\dim g < \infty$. Moreover, we may assume that ϕ is a homogeneous polynomial (of degree m). Then for every $\alpha \in N(\mathbb{N})$ with $|\alpha| = m$ there exist $\phi_{\alpha,1}, \ldots, \phi_{\alpha,m} \in g^*$ such that
$$\phi = \sum_{\alpha \in N(\mathbb{N})} \phi_{\alpha,1} \cdots \phi_{\alpha,m}.$$

Now denote $Q := 2^{N-1}m + 1$. Since $\dot{\lambda}(x_0) : C^\infty(g, \mathbb{K}) \to C^\infty(g, \mathbb{K})$ is a derivation, we get
$$\left(\dot{\lambda}(x_0)\right)^Q \phi = \sum_{\alpha \in N(\mathbb{N})} \sum_{q_1, \ldots, q_m \in N(\mathbb{N})} \frac{Q!}{q_1 \cdots q_m} (\dot{\lambda}(x_0))^{q_1} \phi_{\alpha,1} \cdots (\dot{\lambda}(x_0))^{q_m} \phi_{\alpha,m}.$$

If $q_1, \ldots, q_m \in N$ and $q_1 + \cdots + q_m = Q > 2^{N-1}m$, then there exists $i \in \{1, \ldots, m\}$ such that $q_i > 2^{N-1}$, hence $(\dot{\lambda}(x_0))^{q_i} \phi_{\alpha,i} = 0$ by Lemma 2.10. Then $(\dot{\lambda}(x_0))^Q \phi = 0$, and this completes the proof.

Lemma 2.12. If $m \in \mathbb{N}$ and $\phi \in \mathcal{P}_m(g, \mathbb{K})$, then the mapping $g \to \mathcal{P}_{m-1}(g, \mathbb{K})$, $x \mapsto \dot{\lambda}(x)\phi$, is linear and for all $x_1, x_2 \in g$ we have $\dot{\lambda}([x_1, x_2])\phi = \dot{\lambda}(x_1)\dot{\lambda}(x_2)\phi - \dot{\lambda}(x_2)\dot{\lambda}(x_1)\phi$.

Proof. By using Remark 2.8 it suffices to obtain the conclusion under the additional assumption $\dim g < \infty$. In this case we see that $\mathcal{V}_\phi := \text{span}(\lambda(G)\phi)$ is a finite-dimensional invariant subspace for the regular representation λ, by using Remark 2.5. Let $\dot{\lambda}_0 : g \to \text{End}(\mathcal{V}_\phi)$, $x \mapsto (\dot{\lambda}(x)|_{\mathcal{V}_\phi})$, denote the corresponding finite-dimensional representation. Note that $\lambda_0 : G \to \text{End}(\mathcal{V}_\phi)$, $x \mapsto (\lambda(x)|_{\mathcal{V}_\phi})$, is a finite-dimensional representation of the Lie group G, whose derived representation is just $\dot{\lambda}_0 : g \to \text{End}(\mathcal{V}_\phi)$. Therefore, $\dot{\lambda}_0$ is a homomorphism of Lie algebras, and we are done.

In the next statement we use a function space which is invariant to translations, and that appeared in [BB11a] in the case of finite-dimensional nilpotent Lie groups.
Theorem 2.13. If we define
\[F_G = \text{span}(\lambda(G)g^*) \]
then the following assertions hold:

1. The function space \(F_G \) is a closed linear subspace of \(\mathcal{P}_N(g, \mathbb{K}) \) which is invariant under the left regular representation and contains the constant functions.

2. The mapping \(\lambda_G : G \to \text{End}(F_G), \ x \mapsto \lambda(x)|_{F_G} \) is a faithful smooth representation of the Lie group \(G \). Moreover, for every \(x \in G \) we have \((\lambda_G(x) - 1)^{2^{N-1}N+1} = 0\).

3. The mapping \(\lambda_G : g \to \text{End}(F_G), \ x \mapsto \lambda(x)|_{F_G} \) is a faithful representation of the Lie algebra \(g \) and for every \(x \in g \) we have \(\lambda_G(x)^{2^{N-1}N+1} = 0 \).

Proof. For Assertion (1) note that \(g^* \subseteq \mathcal{P}_1(g, \mathbb{K}) \), hence it follows by Lemma 2.14 that \(F_G \subseteq \mathcal{P}_N(g, \mathbb{K}) \) and \(F_G \) is invariant under the representation \(\lambda \). Moreover, if \(z \) denotes the center of \(g \) and we pick \(v \in z \) and \(\xi \in g^* \), then \(\lambda(v)\xi = -\xi(v)1 + \xi \).

We thus see that the constant functions belong to \(F_G \).

We now prove Assertions (2)–(3). Note that \(\dot{\lambda}_G(x) \) is smooth (that is, its representation space consists only of smooth vectors) since every continuous polynomial function on \(g \) has arbitrarily high Gâteaux derivatives (see for instance [BS71, Sect. 3]).

Moreover, Lemma 2.11 shows that for every \(x \in g \) we have \((\dot{\lambda}_G(x))^{2^{N-1}N+1} = 0 \). By considering the Taylor expansion of the function \(\mathbb{K} \to F_G, t \mapsto \lambda_G(tx)\phi \), for arbitrary \(\phi \in F_G \), it then easily follows that
\[\lambda_G(x) = e^{\dot{\lambda}_G(x)} \in \text{End}(F_G). \tag{2.5} \]

We then get \((\lambda_G(x) - 1)^{2^{N-1}N+1} = 0 \).

In order to prove that \(\lambda_G \) is a faithful representation, it suffices to check that if \(x_0 \in G \) and \(\lambda_G(x_0) = 1 \in \text{End}(F_G) \), then \(x_0 = 0 \in g \). In fact, since \(g^* \subseteq F_G \), it follows that for every \(\xi \in g^* \) we have \(\lambda_G(x_0)\xi = \xi \). By evaluating both sides of this equation at \(0 \in g \) we get \(\xi(x_0) = 0 \) for every \(\xi \in g^* \). Since the locally convex space underlying \(g \) is a Hausdorff space, it then follows by the Hahn-Banach theorem that \(x_0 = 0 \in g \).

Finally, since the smooth representation \(\lambda_G \) is faithful and the Lie group \(G \) has a smooth exponential map, it follows that also the derived representation \(\dot{\lambda}_G \) is faithful. In fact, if \(x_0 \in g \) and \(\dot{\lambda}_G(x_0) = 0 \), then by (2.5) we get \(\lambda_G(x_0) = e^{\dot{\lambda}_G(x_0)} = 1 \in \text{End}(F_G) \). Therefore \(x_0 = 0 \in g \). \(\square \)

Corollary 2.14. Each connected, simply connected, \((N+1)\)-step nilpotent Banach-Lie group has a faithful, unipotent, norm continuous representation on a suitable Banach space, with the unipotence index at most \(2^{N-1}N + 1 \). Every \((N+1)\)-step nilpotent Banach-Lie algebra has a faithful bounded representation by nilpotent operators on some Banach space, with the nilpotence index at most \(2^{N-1}N + 1 \).

Proof. Using Theorem 2.13(3) in the special case when \(g \) is a nilpotent Banach-Lie algebra, we are only left with proving that \(\lambda_G \) is a norm continuous representation and \(\dot{\lambda}_G \) is a bounded linear map. It follows by Remark 2.2 that the space of polynomials \(\mathcal{P}_N(g, \mathbb{K}) \) is a Banach space, hence so is its closed subspace \(F_G \). By
using (2.4) and then Remark 2.2 we get for suitable constants C_1, C_2 and C_3

$$\|\dot{\lambda}(x_0)\psi\|_{P^{-1}(g,K)} \leq C_1 \sup_{\|y\| \leq 1} |(\dot{\lambda}(x_0)\psi)(y)|$$

$$\leq C_2 \sup_{\|y\| \leq 1, 0 \leq j \leq N} |\psi\prime_j((\text{ad}_g y)^j x_0)|$$

$$\leq C_2 \sup_{\|y\| \leq 1, 0 \leq j \leq N} \|\psi\|_{P^2(g,K)} \cdot \|((\text{ad}_g y)^j x_0)\| \cdot \|y\|^{m-1}$$

$$\leq C_3 \|\psi\|_{P^2(g,K)} \|x_0\|$$

for every $m = 1, \ldots, N$. By using the direct sum decomposition in (2.2) we easily see that $\dot{\lambda}(x_0)$ is bounded linear operator on F_G and the representation $\dot{\lambda}_G: g \to \text{End}(F_G)$ is norm-continuous. It then integrates to a norm continuous representation of G, which coincides with λ_G since G is connected. □

Remark 2.15. The second part of Corollary 2.14 is implied by the first part by using a more general argument. In fact, it is easily seen that if a homomorphism of locally convex Lie groups with smooth exponential maps is injective, then its derivative is also injective. Moreover, a bounded linear operator on a Banach space is nilpotent of index $\leq q$ if and only if it is the infinitesimal generator of a one-parameter group of unipotent operators with unipotence index $\leq q$. □

References

[Ad35] I. Ado, On the representation of finite continuous groups by means of linear substitutions. (Russian) Izv. Fiz.-Mat. Oksch., Kazan 7 (1934/1935), 3–43.

[BB11a] I. Beltitǎ, D. Beltitǎ, Continuity of magnetic Weyl calculus. J. Funct. Anal. 260 (2011), no. 7, 1944–1968.

[BB11b] I. Beltitǎ, D. Beltitǎ, On differentiability of vectors in Lie group representations. J. Lie Theory 21 (2011), no. 4, 771–785.

[B37] G. Birkhoff, Representability of Lie algebras and Lie groups by matrices. Ann. of Math. (2) 38 (1937), no. 2, 526–532.

[BS71] J. Bochnak, J. Siciak, Polynomials and multilinear mappings in topological vector spaces. Studia Math. 39 (1971), 59–76.

[BEdG09] D. Burde, B. Eick, W. de Graaf, Computing faithful representations for nilpotent Lie algebras. J. Algebra 322 (2009), no. 3, 602–612.

[BM11] D. Burde, W.A. Moens, Faithful Lie algebra modules and quotients of the universal enveloping algebra. J. Algebra 325 (2011), 440–460.

[vES73] W.T. van Est, S. Świerczkowski, The path functor and faithful representability of Banach Lie algebras. J. Austral. Math. Soc. 16 (1973), 54–69.

[dGr97] W.A. de Graaf, Constructing faithful matrix representations of Lie algebras. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kobe, Hl) (electronic), ACM, New York, 1997, pp. 54–59.

[Li69] N. Limić, Nilpotent locally convex Lie algebras and Lie field structures. Comm. Math. Phys. 14 (1969), 89–107.

[Ne06] K.-H. Neeb, Towards a Lie theory of locally convex groups. Japanese J. Math. 1 (2006), no. 2, 291–468.

[Ne10] K.-H. Neeb, On differentiable vectors for representations of infinite dimensional Lie groups. J. Funct. Anal. 259 (2010), no. 11, 2814–2855.

[Wo08] W. Wojtysiński, Quasinilpotent Banach-Lie algebras are Baker-Campbell-Hausdorff. J. Funct. Anal. 153 (1998), no. 2, 405–413.

“Simion Stoilow” Institute of Mathematics of the Romanian Academy, Research Unit 1, P.O. Box 1-764, Bucharest, Romania

E-mail address: Ingrid.Beltita@imar.ro
E-mail address: Daniel.Beltita@imar.ro