Data Article

Dataset of Polycyclic aromatic hydrocarbons and trace elements in PM2.5 and PM10 atmospheric particles from two locations in North-Western Greece

Vasilios Evagelopoulosa,b,*, Nikolaos D. Charisioua, Stamatis Zorasc,1

a Department of Chemical Engineering, University of Western Macedonia, 50100, Kozani, Greece
b Environmental Centre, Region of Western Macedonia, 50200 Ptolemais, Greece
c Department of Environmental Engineering, Faculty of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

\section*{Article history:}
Received 9 March 2022
Revised 18 April 2022
Accepted 2 May 2022
Available online 13 May 2022

Dataset link: Dataset of Polycyclic aromatic hydrocarbons and trace elements in PM2.5 and PM10 atmospheric particles from two locations in North-Western Greece (Original data)

Keywords:
Polycyclic aromatic hydrocarbons
Air quality
Inhalable particulate matter
Thermal power plants

\section*{Abstract}
This work presents information regarding PM10, PM2.5, Polycyclic Aromatic Hydrocarbons (PAHs), and trace elements that were obtained from two sampling stations, located in the region of Western Macedonia (North-Western Greece), over the course of a 12-month period. The first sampling station was located near the village of Pontokomi (Station 1) and the second (Station 2) in the rural area of Petrana (Fig 1). Specifically, for each location, daily particulate samples PM10 (total 58 samples) and PM2.5 (total 64 samples) were collected. Moreover, and again for each location, 50 samples (22 PM10 and 28 PM2.5) were further analyzed for the determination of 15 (PAHs) and 72 samples (36 PM10 and 36 PM2.5) were further analyzed for the determination of a total of 17 trace elements. Thus, a total of approximately 10 samples per month was obtained from each sampling station (122 samples per sampling station over the course of 12 months). The samples were collected using two low volume samplers, LVS 3.1 and PNS16T-3.1 (Comde-Derenda GmbH). Trace elements were trapped using 47 mm glass fiber filters and were re-

\footnotesize{*} Corresponding author.
E-mail address: vevagelopoulos@uowm.gr (V. Evagelopoulos).
\footnotesize{1} Stamatis Zoras has a role as Section Editor of this journal but had no involvement in the peer-review of this article and has no access to information regarding its peer-review.

https://doi.org/10.1016/j.dib.2022.108266
2352-3409/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)}
covered using microwave extraction; for their determination, the graphite furnace atomic absorption spectrometry (GFAAS) technique was utilized. The PAHs were trapped with 47 mm quartz fiber filters and were analyzed using dichloromethane extraction followed by gas chromatography–mass spectrometry.

This region of Western Macedonia has historically been the center of electricity production in Greece. Lignite is mined in open-cast mines and used as feed in a number of thermal power plants. At its peak, which was in the 1990’s, the areas produced close to 70% of electricity in Greece. Since then, electricity production (and related activities) are in decline as, due to Greece’s EU commitments, the region has entered a transition, post-lignite process.

© 2022 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications Table

Subject	Environmental science
Specific subject area	Environmental chemistry, Air pollution, Air monitoring and quality
Type of data	Table Figure
How the data were acquired	Low volume (2.3 m³ h⁻¹) LVS 3.1 and PNS15T-3.1 from Comde-Derenda GmbH, Agilent 7890A Gas Chromatograph and Agilent 5975C Mass Spectrometer, DB5-MS (30 m × 0.25 mm × 0.25 μm) column and an Agilent 7683B Automatic Liquid Sampler. ZEEnit 700 – Analytic Jena GmbH combined with Zeeman graphite furnace atomizer
Data format	Raw Analysed
Description of data collection	The sampling of suspended particulate matter in both stations was carried out at a height of 4m from the ground and according to EN12341 standard gravimetric measurement method for the determination of the PM10 and PM2.5 mass concentration. The dataset was collected from October 2017 to November 2018.
Data source location	City/Town/Region: West Macedonia Country: Greece Latitude and longitude for collected samples/data: 40.406530° and 21.768110°; Station 1, 40.290150° and 21.863800°; Station 2.
Data accessibility	Mendeley Data 10.17632/97yn9np7fx.1 https://data.mendeley.com/datasets/97yn9np7fx/1 [1].

Value of the Data

- Exposure to particulate pollution and especially to fine and ultrafine particles, is one of the greatest environmental risk to human health [1,2].
- Specific, PM-bound PAHs and heavy metals effect human health so this data can provide useful information for future epidemiological studies.
- The data could be used in assessing the degree of risks associated with heavy metals and PAHs exposure.
- The data provided can be a useful addition to the existing literature, as it can be used for the estimation of the sources of heavy metal and trace element pollution.
- The European Union has established ambient air quality standards for certain toxic elements, such as lead, cadmium, arsenic, nickel, and mercury. For these reasons the chemical composition of PM is a subject of great scientific interest, especially in an area with intensive lignite
burning for power generation. The data provides information about adsorbed PAHs to inhalable particles (PM$_{10}$ and PM$_{2.5}$ fractions) in an industrial area where electricity is produced from lignite.

1. Data Description

The dataset has been published online in the Mendeley data repository [1]. The data presented were collected from two locations in Western Macedonia located in North-Western Greece. The first location was near the village Pontokomi (Station 1) and the second in a rural area of Petrana (Station 2), for a period of one year (December 2017 to November 2018). The location of the stations is shown in Fig. 1.

The concentrations of 17 trace elements (Al, Mn, Fe, Ni, Cu, Zn, Sn, Pb, Si, Mg, Cr, As, Na, K, Ca, Sr, Cd) of 72 samples from each location (36 PM$_{10}$ and 36 PM$_{2.5}$) were determined.

Moreover, 50 samples from each location (22 PM$_{10}$ and 28 PM$_{2.5}$) were analyzed for PAHs. The PAHs concentrations determined were: Acenaphthene (Ace), Fluoranthene (Fl),
Naphthalene (Np), Benzo(a)anthracene (B[a]An), Benzo(a)pyrene (B[a]Py), Benzo(b)fluoranthene (B[b]Fl), Benzo(k)fluoranthene (B[k]Fl), Chrysene (Chry), Acenaphthylene (Acy), Anthracene (An), Benzo(ghi)perylen (B[ghi]Pe), Fluorene (F), Phenanthrene (Ph), Dibenzo(a,h)anthracene (D[ah]An), Indeno(1,2,3-cd)pyrene (IpPy), Pyrene (Py) and benzo[e]pyrene (B[e]Py).

The average values for the sampling days concerning temperature (Temp), Relative Humidity (RH), wind speed (WS) and wind direction (WD) are also provided.

The mean values and standard deviation for the two sampling locations concerning the 17 trace elements that were found PM10 and PM2.5-bound are shown in Table 1. These values are in good agreement with previous studies carried out in the area.

Table 2 presents mean concentrations with standard deviation for fifteen particle-bound PAHs that were detected and quantified. These values are in good agreement with previous studies carried out in the area [2].

Table 1
Mean concentrations and Standard Deviation (SD) of trace elements bound in PM10 and PM2.5 particles in different sampling stations (ng m⁻³).

	Station 1		Station 2	
	PM10	PM2.5	PM10	PM2.5
Al	383±348	71±65	95±92	28±37
Mn	9±5	4±2	4±2	2±1
Fe	311±281	61±38	101±63	26±14
Ni	7±6	3±2	4±2	2±1
Cu	22±13	19±13	21±12	9±5
Zn	22±8	16±7	19±7	9±4
Sn	132±91	129±89	96±56	54±36
Pb	12±28	6±5	5±3	3±2
Si	1473±1371	274±241	438±400	109±125
Mg	381±431	59±50	107±84	22±19
Cr	7±3	5±2	4±1	2±1
As	40±24	38±21	24±13	16±8
Na	105±50	97±51	157±73	79±32
K	74±59	24±12	33±19	18±10
Ca	2149±2117	269±230	827±573	130±123
Sr	102±572	5±3	4±2	2±1
Cd	41±26	40±26	30±14	20±12

Table 2
Mean and SD of concentrations (in pg m⁻³) for particulate PAHs in Petrana and Pontokomi bound in PM10 and PM2.5 samples.

PAHs/location	Petrana		Pontokomi	
	PM2.5	PM10	PM2.5	PM10
Ace	95±140	94±72	93±192	74±70
F	46±23	78±33	43±19	57±29
Ph	117±58	255±209	133±101	247±215
An	22±23	49±87	39±63	41±66
Fl	165±143	401±587	180±202	551±780
Py	192±141	404±409	202±158	505±590
Chry	134±198	290±388	105±103	266±324
B[a]An	221±291	487±621	205±192	495±589
B[k]Fl	335±365	562±473	275±275	443±520
B[b]Fl	453±484	667±576	362±387	611±650
B[e]Py	335±235	578±592	363±273	400±386
B[a]Py	251±262	548±500	216±195	363±377
IpPy	201±171	418±324	154±145	251±243
dB[a,h]An	59±120	179±226	51±105	63±92
B[ghi]Pe	364±327	709±468	237±197	339±308
ΣPAH	2931±2454	5715±4349	2558±1942	4617±4562
Table 3
Molecular diagnostic ratios of PAH concentrations of PM$_{2.5}$ and PM$_{10}$ particles.

Ratios/location	Petrana PM$_{2.5}$	Petrana PM$_{10}$	Pontokomi PM$_{2.5}$	Pontokomi PM$_{10}$
BF$_{5}$/[ghi]Pe	5.80	1.67	2.67	2.55
Ipy/(Ipy+[ghi]Pe)	0.36	0.35	0.37	0.36
B[a]An/[B[a]An+Chry]	0.65	0.63	0.66	0.67
Fl/[Fl+Py]	0.45	0.44	0.44	0.48
B[e]Py/[a]Py	1.95	1.92	5.17	1.71
CPAH/ΣPAH	0.92	0.89	0.97	0.99

Diagnostic ratios for PAHs, such as BF$_{5}$/[ghi]Pe (BF$_{5}$: B[bf]Fl + B[k]Fl), Fl/[Fl+Py], Ipy/[B[ghi]Pe+Ipy], B[a]An/[B[a]An+Chry), B[e]Py/[a]Py and CPAH/ΣPAH (CPAH: Fl + Py + B[a]An + Chry + B[e]Py + BF$_{5}$ + B[a]Py + B[ghi]Py + Ipy; ΣPAH: Total PAH concentration) are presented at Table 3. The PAH ratios have been used as confirmation indicators of the source that emits the pollution into the urban atmosphere in many studies [3,7].

2. Experimental Design, Materials and Methods

2.1. Particulate Sampling

Sampling was carried out for a period of one year (December 2017 to November 2018) for 24 h ambient sampling. The daily particulate samples were carried out in two locations in North-Western Greece. They were collected in the industrial area of the open-cast mines near the village of Pontokomi (Station 1) and of the rural area of the village of Petrana (Station 2). The samples were collected using two low volume samplers, LVS 3.1 and PNS16T-3.1 (Comde-Derenda GmbH) with 47 mm glass fiber filters and quartz fiber filters (for metals and PAHs analysis respectively), obtained from Whatman (Whatman International Ltd.). The sampling was carried out according to the EN12341 standard gravimetric measurement method for the determination of the PM10 and PM2.5 mass concentration.

Field blank samples were prepared, stored, extracted and analyzed using the same procedure as that used for the field samples. The precision of the method was calculated using the relative standard deviation (RSD) for the measurement of filter blanks spiked with known amounts of reference standard for metals and PAHs analysis. It was found that the RSD values were very satisfactory as they ranged between 2.1-4.6%. Calibration curves were acceptable when correlation coefficients were greater than 0.99. Quality Control (QC) standards were analyzed before each sample run, after each group of 10 analyses, and at the end of each set of analysis.

2.2. Trace metal Analysis

Analytical determinations of 17 trace elements (Al, Mn, Fe, Ni, Cu, Zn, Sn, Pb, Si, Mg, Cr, As, Na, K, Ca, Sr, Cd) were performed using the microwave extraction procedure (using an extraction solution of 5.55 % HNO$_3$, 16.75 % HCl) followed by quantitative analysis of graphite furnace atomic absorption spectrometry technique, using a ZEEnit 700 – Analytic Jena GmbH combined with Zeeman graphite furnace atomizer [2].

For calculation of the calibration curve, the stock standard solution of the target element (Merck) was used with various concentrations.

The limit of detection (LOD) values was calculated as three (3) times the standard deviation, and the limit of quantitation (LOQ) values was calculated as ten (10) times the standard deviation of results obtained from the analysis of 10 ppb stock standard solutions. The LOD values
(μg L⁻¹) were Al(21.0), Mn(0.4), Fe(8), Ni(1.3), Cu(1.2), Zn(0.6), Sn(20.0), Pb(0.2), Si(5.0), Mg(0.2), Ti(40.0), V(50.0), Cr(0.1), As(20.0), Na(0.3), K(0.6), Ca(0.5), Sr(1.3), Cd(1.3).

2.3. PAHs Analysis

Solution of Acenaphthene-d10, Chrysene-d12, 1,4-Dichlorobenzene-d4, Naphthalene-d8, Pyrene-d12 was added to all samples as an internal standard and was obtained from Chiron (Chiron AS).

PAHs were recovered using dichloromethane extraction. It is noted that the recovery rates for the 17 PAHs ranged from 76% to 105%. Their determination was carried out via gas chromatography–mass spectrometry (GC–MS) using an Agilent 7890A gas chromatograph (GC) and an Agilent 5975C Mass Spectrometer (MS). The GC was equipped with an DB5-MS column (30 m × 0.25 mm × 0.25 μm) and an Agilent 7683B Automatic Liquid Sampler. During measurements of PAHs the MS was operated in the electron impact (EI) mode at 70 eV. For all compound groups, the MS was operated in selected ion monitoring mode (SIM) with two ions monitored for each compound. The setting of the GC/MS instrumental parameters followed closely those reported in refs. [4,5]. To determine PAHs, 1 μL of each sample was injected into the GC inlet in the splitless mode.

The NIST Standard Reference Material 1647c containing 16 PAHs was used to identify the following compounds: Acenaphthene (Ace), Fluoranthene (Fl), Naphthalene (Np), Benzo(a)anthracene (B[a]An), Benzo(a)pyrene (B[a]Py), Benzo(b)fluoranthene (B[b]Fl), Benzo(k)fluoranthene (B[k]Fl), Chrysene (Chry), Acenaphthylene (Acy), Anthracene (An), Benzo(ghi)perylen (B[ghi]Pe), Fluorene (F), Phenanthrene (Ph), Dibenzo(a,h)anthracene (D[ah]An), Indeno(1,2,3-cd)pyrene (IPy), Pyrene (Py), plus benzo[e]pyrene B[e]Py.

It is noted that Nap, Acy were not detected during analysis. This may be due to their high volatility, which means that these compounds can be easily lost during their storage, transportation, or recovery process.

Ethics Statements

The raw data of this study is provided in full compliance with ethical requirements for publication in the Data in Brief journal. This study does not involve any human or animal subjects.

CRediT Author Statement

Vasilios Evagelopoulos: Supervision, Data curation, Visualization, Methodology, Writing - Original draft preparation; Nikolaos Charisiou: Investigation, Writing - Review & Editing; Stamatis Zoras: Conceptualization, Validation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Dataset of Polycyclic aromatic hydrocarbons and trace elements in PM2.5 and PM10 atmospheric particles from two locations in North-Western Greece (Original data) (Mendeley Data).
Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors gratefully acknowledge the Environmental Centre of the Region of Western Macedonia, for making available the raw data.

References

[1] Vasilios Evagelopoulos, Dataset of Polycyclic aromatic hydrocarbons and trace elements in PM2.5 and PM10 atmospheric particles from two locations in North-Western Greece**, Mendeley Data V1 (2022), doi:10.17632/97yn9np7fx/1.
[2] V. Evagelopoulos, E. Papadimitriou, A. Kelessis, S. Zoras, P. Kassomenos, M.J. Petrakakis, Trace elements (heavy metals) in atmospheric particulate matter over a lignite-burning area of western Macedonia, Greece, Fifth International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 2015) and SECOTOX Conference June 14-18, 2015.
[3] V. Evagelopoulos, A. Triantafyllou, T.A. Albanis, S. Garas, A. Asvesta, S. Zoras, C. Diamantopoulos, Polycyclic aromatic hydrocarbons (PAHs) in fine and coarse particles, 11th International Conference on the Environmental Science and Technology (CEST2009), 3 - 5 September, 2009.
[4] E.I. Tolis, D.A. Missia, N.D. Charisiou, J.G. Bartzis, Polycyclic aromatic hydrocarbons and ionic species associated with particulate matter in ambient air in Kozani city, Greece, during cold period, FEB 19 (2010) 2006–2012.
[5] E. Manoli, A. Kouras, O. Karagkiozidou, G. Argyropoulos, D. Voutsas, C. Samara, Polycyclic aromatic hydrocarbons (PAHS) at traffic and urban background sites of northern Greece: source apportionment of ambient PAH levels and PAH-induced lung cancer risk, Environ Sci Pollut Res 23 (2016) 3556–3568, doi:10.1007/s11356-015-5573-5.
[6] Google earth V 7.3.4.8248, (July 16, 2021), North-Western Greece, 40 °17.940' N, 21 °42.065' E, Eye alt 117.30 Km. SIO, NOAA, U.S. Navy, NGA, CEBCO, Image: Landsat/Copernicus (2022) http://www.earth.google.com, [Jan 18, 2022].
[7] J.H. Murillo, M.C. Villalobos, J.F. Rojas Marín, V.H.B. Guerrero, D.Solórzano Arias, Polycyclic aromatic hydrocarbons in PM2.5 and PM10 atmospheric particles in the Metropolitan Area of Costa Rica: Sources, temporal and spatial variations, Atmospheric Pollution Research 8 (2017) 320–327, doi:10.1016/j.apr.2016.10.002.