Phospho-SXXE/D Motif Mediated TNF Receptor 1–TRADD Death Domain Complex Formation for T Cell Activation and Migration

Ying-jie Guan, Zhe Zhang, Chen Yu, Li Ma, Weiling Hu, Li Xu, Jin-Song Gao, Chun-Shiang Chung, Lijuan Wang, Zhong-Fa Yang, Loren D. Fast, Alicia S. Chung, Minsoo Kim, Alfred Ayala, Shougang Zhuang, Shusen Zheng and Y. Eugene Chin

J Immunol 2011; 187:1289-1297; Prepublished online 1 July 2011;
doi: 10.4049/jimmunol.1003399
http://www.jimmunol.org/content/187/3/1289

Supplementary Material
http://www.jimmunol.org/content/suppl/2011/07/05/jimmunol.100339 9.DC1

References
This article cites 33 articles, 13 of which you can access for free at:
http://www.jimmunol.org/content/187/3/1289.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Phospho-SXXE/D Motif Mediated TNF Receptor 1–TRADD Death Domain Complex Formation for T Cell Activation and Migration

Ying-jie Guan,*,†,1 Zhe Zhang,‡,1 Chen Yu,§,1 Li Ma,*,† Weiling Hu,*,† Li Xu,‡
Jin-Song Gao,*,† Chun-Shiang Chung,*,† Lijuan Wang,‡,‖ Zhong-Fa Yang,‡,‖
Loren D. Fast,†,# Alicia S. Chung,*,† Minsoo Kim,*,† Alfred Ayala,*,† Shougang Zhuang,‡,‖
Shusen Zheng,‡ and Y. Eugene Chin*§,†

In TNF-treated cells, TNFR1, TNFR-associated death domain protein (TRADD), Fas-associated death domain protein, and receptor-interacting protein kinase proteins form the signaling complex via modular interaction within their C-terminal death domains. In this paper, we report that the death domain SXXE/D motifs (i.e., S381DHE motif of TNFR1-death domain as well as S215LKD and S296LAE motifs of TRADD-death domain) are phosphorylated, and this is required for stable TNFR1–TRADD complex formation and subsequent activation of NF-κB. Phospho-S215LKD and phospho-S296LAE motifs are also critical to TRADD for recruiting Fas-associated death domain protein and receptor-interacting protein kinase. IkB kinase plays a critical role in TNFR1 phosphorylation of S381, which leads to subsequent T cell migration and accumulation. Consistently, we observed in inflammatory bowel disease specimens that TNFR1 was constitutively phosphorylated on S381 in those inflammatory T cells, which had accumulated in high numbers in the inflamed mucosa. Therefore, SXXE/D motifs found in the cytoplasmic domains of many TNFR family members and their adaptor proteins may serve to function as a specific interaction module for the α-helical death domain signal transduction. The Journal of Immunology, 2011, 187: 1289–1297.

Tumor necrosis factor is a proinflammatory cytokine, which can target its two cognate receptors and initiate the activation of NF-κB, caspase, and the JNK pathways, leading to immune cell gene regulation, apoptosis, and/or their immune cell activation. TNF-bound TNFR1 recruits TNFR-associated death domain protein (TRADD), an adaptor protein that serves as the platform for alternate recruitment of receptor-interacting protein kinase (RIP) and Fas-associated death domain protein (FADD), initiating both NF-κB activation and apoptosis induction (1–3). The C terminals of TNFR1, TRADD, FADD, and RIP all carry a discrete region termed the “death domain,” which is composed of six continuous α-helical bundles and responsible for homotypic interactions among these four proteins. The death domain has ~80 to ~100 aa, similar in size to the Src homology 2 (SH2) domain, both of which can be packed into a similar globular structure. Although the phosphotyrosine within the YXXL/I/V/Q/M sequence can be recognized by the SH2 domain during protein–protein interaction, it has been shown that the hydrophobic residue at the p+3 position is also important for SH2 domain recognition, as revealed by synthesized peptide binding analysis (4).

For SH2 domain-bearing proteins, such as growth factor receptor adaptor proteins or transcription factors like STATs, interactions between them and their substrates are cytokine or growth factor stimulation dependent. In the same way, for death domain proteins, the formation of the death domain complex is TNF stimulation dependent. One possible mechanism controlling this modular interaction is death domain phosphorylation, which depends on its nature/target may change the local conformation to favor its association with various different proteins. TNFR1 tyrosine phosphorylation has been reported, and phosphotyrosine residue within the YXXL/I/V/Q/M sequence has been identified within the death domain of TNFR1 or other death receptors (5, 6). Initial reports suggested that TNFR1 tyrosine phosphorylation had a negative effect on TNF-induced NF-κB activation and growth modulation (6, 7). However, no consensus death domain recognition motif with phosphotyrosine has been established from sequence alignment or binding analysis among these death domain factors. Also, the significance of TNFR1 serine phosphorylation on death domain signaling remains elusive, despite the reports of TNFR1 and FADD serine phosphorylation (7–9).

In this work, we have analyzed TNFR1 and TRADD serine phosphorylation and investigated the role of the SXXE/D motif-dependent TNF signal transduction. Conserved SXXE/D motifs have been identified in the death domains of TNFR1, TRADD, FADD, and RIP. We show in this study that the phospho-SXXE/D

*Department of Surgery, Brown University School of Medicine, Providence, RI 02903; †Rhode Island Hospital, Providence, RI 02903; ‡Department of Surgery, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; †Department of Pathology, Brown University School of Medicine, Providence, RI 02903; #Department of Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310053, China; ‖Shanghai Jiaotong University School of Medicine, Shanghai 200120, China; †Department of Genetics, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; †Department of Pathology, Brown University School of Medicine, Providence, RI 02903; and †Department of Medicine, Brown University School of Medicine, Providence, RI 02903

Y.-j.G., Z.Z., and C.Y. contributed equally to this work.

Received for publication October 18, 2010. Accepted for publication May 18, 2011.

This work was supported by National Institutes of Health Grant RO1CA082549 (to Y.E.C.). Z.Z. was partially supported by a fellowship from the China Scholarship Council. C.Y. was supported by Shanghai Pujiang Program Grant 09PJ1408600.

Address correspondence and reprint requests to Dr. Y. Eugene Chin, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903. E-mail address: y.eugene_chin@brown.edu

The online version of this article contains supplemental material.

Abbreviations used in this article: ANK, ankyrin repeats; FADD, Fas-associated death domain protein; IBD, inflammatory bowel disease; IKK, IkB kinase; MEF, mouse embryonic fibroblast; PI, propidium iodide; RIP, receptor-interacting protein kinase; SH2, Src homology 2; SOCS3, suppressor of cytokine signaling 3; TRADD, TNFR-associated death domain protein; WT, wild-type.

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00
motifs of TNFR1 and TRADD death domains play a critical role in the death domain–death domain protein interaction and death domain signal transduction. TNF can also induce NF-κB activation or other cellular responses in a variety of cell types. We show in this study that TNF-induced and IκB kinase (IKK) β-dependent TNFR1 death domain S381 phosphorylation plays an essential role in TNFR1–TRADD interaction, leading to NF-κB activation, T cell proliferation, apoptosis, and migration. TNF plays a central role in the pathophysiology of inflammatory bowel disease (IBD) as well as rheumatoid arthritis. Anti-TNF therapy has been documented to have clinical efficacy in treating these inflammatory diseases. In this article, we provide evidence that in IBD, accumulating T cells in the inflamed intestinal tissues may do so in response to constitutive TNFR1 S381 phosphorylation in these inflammatory lymphocytes. Taken together, these findings provide insights into the determinants of specificity for death domain complex formation during signal transduction, which leads to inflammatory T cells activation, proliferation, and migration. Inasmuch, we suggest that SXxE/D motifs of death domain receptors or adaptors may provide novel targets for future therapeutic intervention.

Materials and Methods

Cell lines and reagents

Jurkat, Daudi, I9, and SKW6.4 obtained from American Type Culture Collection and thymocytes or splenocytes prepared from mice were grown in RPMI 1640 medium supplemented with 10% FBS at densities between 1 \times 10^5 and \sim 1 \times 10^6 cells/ml. HeLa and 293T cells from American Type Culture Collection were grown in DMEM supplemented with 10% FBS. Y→F substituted human TNFR1 (TNFR1-Y360F, TNFR1-Y401F, and TNFR1-Y360F/Y401F), S381→A substituted TNFR1 (TNFR1-S381A) and E384→A substituted TNFR1 (TNFR1-E384A), S→A substituted human TRADD (TRADD-S215A, TRADD-S296A, and TRADD-S215A/S296A) were constructed by performing site-directed mutagenesis according to our published protocol (10). TNFR1 with S381DHE motif deletion mutation was constructed by designing two primers with two-step PCR amplification. TNFR1 and TRADD mutants were subcloned into pcDNA3.1 vector and pgK5 vector, respectively. TNFR1 was also subcloned with a 6-cMyc tag at its C-terminal end in pcDNA3.1 vector. GST-TNFR1 cDNA construction and protein preparation were described previously (11). Human IKKα and IKKβ were subcloned with Flag-tag in pcDNA3.1 vector. All these mutations were confirmed by DNA sequencing. Transfections were performed with Lipofectamine 2000 by following the standard protocol (Invitrogen).

The polyclonal Ab against phospho-S381-TNFR1 was raised in rabbit against a synthetic phospho-peptide “GLP5DHEIDRLE.” Abs against TNFR1 (sc-7895), RIP (sc-7881), TRADD (sc-7868), Myc (sc-40), IκBα (sc-203), suppressor of cytokine signaling 3 (SOCS3) (sc-154), Rel-A (sc-7151), FADD (sc-271748), actin (sc-130301), GAPDH (sc-166545), protein A/G–agarose beads (sc-2003), and IgG site DNA oligo-beads (sc-372X) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Monoclonal anti-Flag was purchased from Sigma-Aldrich (St. Louis, MO). IKKβ inhibitor PS-1145 was obtained from Millenium. Both human and mouse TNF and human IL-15 were purchased from R&D Systems (Minneapolis, MN); LPS was from Sigma-Aldrich.

T and B cells preparation and migration and immunostaining in situ

Human primary T cells from healthy blood donors were prepared by centrifugation of fresh blood through Histopaque of Sigma-Aldrich and taking the buffy coat. Cells were prepared by adsorbing the monocytes to gelatin-coated plates and culturing nonadherent lymphocytes in RPMI 1640 medium supplemented with 10% FBS and PHA (1 μg/ml) for 3 d, followed by culturing in 20 ng/ml IL-15 for 3–6 d. Flow cytometric analysis demonstrated that these cells were \sim 97% CD3 positive and CD56 negative. B cells were prepared from mouse spleen or human blood of healthy donors according to the published protocol (12). Flow cytometric analysis demonstrated that these enriched B cells were \sim 97% positive for CD19 expression and lacked expression of CD4 and CD8. Real-time monitoring of human primary T cells on cover glass with ICAM-1 and with or without TNF (50–200 ng/ml) treatment was studied by time-lapse video microscopy. Time-lapse movies were taken every 5 s. T cells were maintained at 37°C with a FCS2 live cell imaging chamber (Biotechs) in IL-15 (20 ng/ml) contained glucose medium. Intestinal tissue samples obtained from non-IBD (normal), Crohn’s disease, and ulcerative colitis were immunostained with anti–pS381-TNFR1, anti-CD3, and anti-CD20 according to the published protocol (13).

Coimmunoprecipitation, protein phosphorylation assay, DNA binding, luciferase reporter assay, and apoptosis analysis

First, for coimmunoprecipitation, equal amount of cell lysates prepared in RIPA lysis buffer (50 mM Tris [pH 8.0], 150 mM NaCl, and 0.5% Nonidet P-40) containing protease inhibitor mixture, were incubated with the protein A/G–agarose bead-conjugated Ab overnight at 4°C. The Ab beads were extensively washed and suspended in Laemmli sample buffer (Bio-Rad) in ice for 3–5 min. Subsequently prepared immunoprecipitates or the whole-cell lysates (5–10 μg) were analyzed by loading into 10% SDS-PAGE for electrophoresis, transferred to nitrocellulose membrane, and followed by Western blotting analysis. Second, for TNFR1 or TRADD phosphorylation analysis in 293T cells, TNFR1 was transiently transfected in 293T cells for 24 h, followed by [32P]orthophosphate metabolic labeling for an additional 6 h. Immunoprecipitated TNFR1 proteins were analyzed in 10% SDS-PAGE. Radiolabeled proteins transferred into the nitrocellulose membrane were exposed to x-ray film for autoradiography. TNFR1 expression level was analyzed with anti-TNF blot. For TNF phosphorylation in vitro, immunopurified Flag-IKKα, Flag-IKKβ, or Flag-RIP (500 ng) was incubated in kinase reaction buffer containing 10 μCi γ[32P]ATP, 1 mM ATP, 10 mM MgCl2, 1 mM DTT, 100 mM NaCl, and 50 mM Tris-HCl (pH 7.8) at 30°C for 15 min. The substrate in these in vitro reactions was GST-TNFR1 (1 μg). In a separate experiment, GST-TNFR1 wild-type (WT) or GST-TNFR1-S381A was incubated with purified Flag-IKKβ in kinase reaction buffer without isothepe and TNFR1 phosphorylation was examined by blotting with anti–pS381-TNFR1. Third, for DNA binding analysis, nuclear fractions were incubated with β-site DNA oligo-beads overnight at 4°C. After extensive washes, the DNA beads binding NF-κB were analyzed in Western blot with anti-Rel A. Fourth, for luciferase activity analysis, 293T cells (1 \times 10^5) were transfected with Lipofectamine 2000. A dual-luciferase reporter assay system was applied according to the instructions of the manufacturer (Promega). pRL vector (30 ng) was transfected along with 2xβ-luciferase reporter (300 ng) and 2 μg of empty vector or TNFR1 or TRADD in WT or mutant forms. Firefly luciferase activity was measured in a luminometer and normalized on the basis of Renilla luciferase activity. Fifth, for cell viability analysis, cells were either stained with propidium iodide (PI) (0.5 ml PI staining reagent: 0.1% Nonidet P-40, 0.1% sodium citrate, and 50 mg/ml PI; Sigma-Aldrich) for flow cytometric analysis or stained with trypan blue for exclusion counting (14).

Results

TNF induced T cell morphological change is serine phosphorylation dependent

T cells but not B cells responded to TNF stimulation by a morphological change during cell migration (Fig. 1A). However, this morphological change in T cells was inhibited by treatment of serine kinase inhibitor H7 (Fig. 1A). TNF-induced T cell numbers with morphological changes were reduced by treatment of staurosporine (Sigma-Aldrich), another serine kinase inhibitor, to a lesser extent when compared with H7 (Fig. 1B). These data indicated that T cell morphological change induced by TNF was regulated by serine phosphorylation.

TNFR1 and TRADD death domains are phosphorylated on the SXxE/D motif

Secondary structure-based alignment indicates that TNFR1, TRADD, FADD, and RIP bear YXXL/V motifs and/or SXxE/D motifs in different α-helical segments of their death domains (Fig. 2A). TNFR1 death domain carries two YXXVL motifs (Y360AVV and Y401SML) and one SXxE motif (S381DHE) conserved in all species (5–7). Y401XXL motif of α-helix4 is conserved on all death receptors as well as on RIP whose phosphorylation has been reported to be necessary for recruiting the SH2 domain bearing tyrosine phosphatase SHP-1 (6).
In 293T cells, although WT TNFR1 was shown to recruit the SH2 domain bearing SOCS3, TNFR1 with Y401→F substitution attenuated TNFR1–SOCS3 interaction (data not shown). To determine the importance of these YXXL/V motifs in TNFR1 death domain signaling, we examined TNFR1 and TRADD interaction, in which single or doubly Y→F mutated TNFR1 (i.e., TNFR1-Y360F, TNFR1-Y401F, and TNFR1-Y360F/Y401F) were produced. These mutants showed no apparent defect either in TNFR1–TRADD interaction or in their capacity to induce apoptosis (Supplemental Figs. 1, 2), even though partially inhibiting NF-κB activation (Fig. 2B). By contrast, TNFR1 with S381→A substitution (TNFR1-S381A) inhibited both NF-κB activation and apoptosis induction significantly (Fig. 2B, Supplemental Fig. 3). With E384→A substitution, TNFR1-E384A also affected NF-κB activation (Supplemental Fig. 3), suggesting SXXE/D motif as a whole is important for phospho-SXXE/D motif modulatory signaling. These data suggest a more prominent role of serine phosphorylation than tyrosine phosphorylation in TNFR1 death domain-dependent intracellular signal transduction.
We subsequently examined phosphorylation of the TNFR1 death domain SXXE motif in greater detail. TNFR1–S381A mutant or TNFR1 with “S381DHE” motif deletion mutation (TNFR1–ΔS381XXE) largely abolished TNFR1 phosphorylation in 293T cells, demonstrating that TNFR1 mainly undergoes serine phosphorylation rather than tyrosine phosphorylation (Fig. 2C). To specifically detect TNFR1 phosphorylation on S381, we prepared a polyclonal Ab against phospho-S381 of TRADD. With this Ab, TNF-dependent TNFR1 phosphorylation on S381 was clearly detected in 293T cells (Fig. 2C, lower panel) or in HeLa cells (Fig. 2D). It is worth noting that when overexpressed in 293T cells, TNFR1 became constitutively phosphorylated on S381 (Fig. 2C, lower panel).

TRADD, FADD, and RIP death domains all bear SXXE/D motifs and TRADD death domain bears two SXXE/D motifs (i.e., S215XXD of α-helix1 and S296XXE of α-helix6) (Fig. 2A). The fact that two bands of TRADD were often visible in different cell types (Supplemental Fig. 4) suggests that TRADD was posttranslationally modified. In 293T cells, [32P]orthophosphate labeling analysis confirmed TRADD phosphorylation (Fig. 2E). Although TRADD with S215→A substitution (TRADD–S215A) or S296→A substitution (TRADD–S296A) attenuated 32P-phosphorylation intensity, TRADD with S215→A and S296→A double mutations (TRADD–S215A/S296A), which migrated faster in polyacrylamide gel, nearly swept away TRADD phosphorylation completely (Fig. 2E). Therefore, TRADD is phosphorylated on both SXXE/D motifs within the death domain.

The phospho-SXXE/D motif intermediates the death domain modular interaction

To investigate the role of phospho-SXXE/D motifs in death domain–death domain protein interaction, TRADD was cotransfected with WT TNFR1 (TNFR1–WT) or TNFR1 mutant (i.e., TNFR1–S381A or TNFR1–ΔS381XXE) in 293T cells. TNFR1–TRADD interaction was inhibited by TNFR1 with S381A mutation and worsened by TNFR1 with S381XXE deletion as revealed by coimmunoprecipitation analysis (Fig. 3A). We also examined TNFR1–TRADD complex stability by carrying out a peptide competition experiment, in which the synthesized unphosphorylated or phosphorylated peptide containing S381XXE motif (position 375–395) was incubated with the immunopurified TNFR1–TRADD complex, respectively. At a concentration of 300 nM, the phospho-peptide but not the control peptide disrupted the TNFR1–TRADD complex, indicating that phospho-S381XXE motif of TNFR1 death domain is involved in the formation of a stable TNFR1–TRADD complex (Supplemental Fig. 5).

We next sought to identify the protein kinase responsible for TNFR1 phosphorylation on S381. Communomunoprecipitation analysis revealed that both IKKα and IKKβ could form a complex with TNFR1 in 293T cells with IKKα or IKKβ translocated along with TNFR1 (Supplemental Figs. 6, 7). Bacteria-purified GST–TNFR1 was applied to an in vitro kinase assay in the presence of γ[32P]ATP, revealing a synergistic effect between IKKα and IKKβ on TNFR1 phosphorylation; despite that, IKKβ alone was more efficient than IKKα in TNFR1 phosphorylation induction (Fig. 3B). When purified TNFR1, WT but not S381A form, was incubated with purified Flag–IKKβ, in an in vitro reaction, TNFR1–S381 phosphorylation was clearly detected with the Ab against pS381–TNFR1 (Fig. 3C). This supports the conclusion that IKKβ is able to phosphorylate TNFR1 on S381 in 293T cells (Supplemental Fig. 8). However, in IKKβ−/− mouse embryonic fibroblasts (MEFs), there was a basal level of TNFR1 S381 phosphorylation (Fig. 3D), which was most likely contributed by endogenous IKKα. Importantly, TNFR1–TRADD complex formation was induced by

![FIGURE 3. The phospho-SXXE/D motif intermediates the death domain modular interaction.](http://www.jimmunol.org/...)

A. In 293T cells, TNFR1 of indicated forms were cotransfected with TRADD, followed by communomunoprecipitation analysis. Anti-TNFR1 immunoprecipitates were subjected to Western blot analysis with anti-TRADD or anti-TNFR1. B, Flag-tagged IKKα, IKKβ, and RIP were immunoprecipitated from 293T transfectants and were incubated with GST–TNFR1 purified from bacteria in phosphorylation reaction buffer containing γ[32P]ATP for 15 min at 30°C. Radiolabeled proteins were separated in 10% SDS-PAGE, transferred to the nitrocellulose membrane, and exposed to x-ray film for autoradiography. C. Purified GST–TNFR1 was incubated with purified Flag–IKKβ in reaction buffer, followed by Western blot analysis with anti-pS381–TNFR1 or indicated Abs. D. Whole-cell extracts, prepared from WT or IKKβ−/− MEFs treated with TNF for indicated times, were subjected to Western blot analysis with anti-pS381–TNFR1 or anti-TNFR1. E. Whole-cell extracts were prepared from WT or IKKβ−/− deficient MEFs treated with or without TNF (50 ng/ml) for 15 min. Anti-TNFR1 immunoprecipitates were analyzed with anti-TRADD in a Western blot. F–H. In 293T cells, TRADD of indicated forms were transfected along with TNFR1 (F), FADD (G), or RIP (H), followed by communomunoprecipitation with anti-TNFR1 (F) or anti-TRADD (G, H) and blotted with indicated Abs in Western blot analysis.
TNF treatment of WT MEFs but not in IKKβ−/− MEFs (Fig. 3E), suggesting that IKKβ may play an important role in both TNFR1 and TRADD activation.

Because TNFR1–TRADD complex formation was not completely abolished when TNFR1 was introduced with S381A mutation or S381XXE deletion mutation (Fig. 3A), we suspected that TRADD serine phosphorylation was also involved in TNFR1–TRADD complex formation. TNFR1–TRADD complex formation was largely abolished when both S215A and S296A mutations were introduced (Fig. 3F), suggesting that both pS215XXD and pS296XXE motifs of TRADD were involved in TNFR1–TRADD interaction (2, 15). Moreover, TRADD phosphorylation on S215XXD and S296XXE motifs performed an important role in TRADD–FADD or TRADD–RIP complex formation, because TRADD–S215A/S216A but not TRADD–S215A or TRADD–S296A failed to recruit FADD or RIP in 293T cells (Fig. 3G, 3H). These results strongly indicate that the two phospho-SXXE/D motifs of the TRADD death domain play a central role in this death domain–tetramer complex formation.

NF-κB-dependent gene regulation requires the SXXE/D motif phosphorylation

Given that TNFR1–TRADD complex formation led to IκB degradation and NF-κB nuclear translocation, a potentiating effect of the SXXE/D motif phosphorylation in their death domains was expected to initiate NF-κB activation. In 293T cells, transient transfection of either TNFR1 or TRADD alone could trigger NF-κB transcripational activation, as reflected by the results of NF-κB-dependent luciferase reporter activation assays of Fig. 4A and 4B. Although TNFR1–S381A, TRADD–S215A, and TRADD–S296A mutants reduced NF-κB activation, TNFR1–ΔS381XXE, TNFR1–E384A, and TRADD–S215A/S296A mutants almost completely abrogated NF-κB activation (Fig. 4A, 4B). Along these lines, we found that TRADD-dependent NF-κB activation was further enhanced by cotransfecting TRADD with TNFR1-WT but not with TNFR1 mutants (Fig. 4C). These results strongly support our model that both the phosphorylated serine and the negatively charged p+1 residue of the “SXXE/D motif” in the death domains are important in NF-κB activation.

NF-κB activation in T cells via TNFR1 S381 phosphorylation and TNFR1–TRADD complex formation

It has been reported that both T and B cells respond to TNF for activation during inflammatory processes. However, TNF treatment for 10 or 30 min induced TNFR1 S381 phosphorylation in Jurkat T lymphoma line and mouse thymocytes that were primarily T cell but not in Daudi cells, a B lymphoma line, or mouse splenocytes that contained 40% B cells (Fig. 5A). TNF treatment of Jurkat cells induced the formation of a complex between TNFR1 and TRADD (Supplemental Fig. 9), supporting the conclusion that serine phosphorylated TNFR1 and serine phosphorylated TRADD form modulatory protein–protein interaction upon TNF treatment. TNF treatment induced IκB degradation and NF-κB activation for DNA binding in Jurkat cells and mouse thymocytes but not in Daudi cells, mixed mouse splenocytes, or purified mouse spleen B cells (Fig. 5B). When another pair of human T and B lymphoma lines, H9 and SKW6.4, or purified peripheral T and B cells from normal human blood donors were tested, IκB (IκBα) degradation and NF-κB (Rel A) nuclear translocation were only detected in TNF-treated T cells and not in TNF-treated B cells (Fig. 5C, 5D).

The significantly lower expression level of TNFR1 by B cells has been suggested as an explanation for the failure of B cells to respond to TNF treatment by NF-κB activation (Fig. 5A, 5C). However, TNFR1-associated death domain factors including TRADD, FADD, and RIP are all expressed at comparable levels in both B and T cells, whereas TNFR2 expression level was low overall in both T and B cells (data not shown). The TNFR1-associated inhibitor A20 has been reported to induce RIP polyubiquitination and inhibit TRADD downstream signal transduction in T cells (15, 16). With mass spectrometry for proteomic analysis, no apparent difference was detected for proteins associated with TNFR1 in B cells with or without treatment of A20 or other established inhibitors (data not shown). LPS induced IκB degradation in both thymocytes and splenocytes (Fig. 5E), suggesting that a similar level of IκK activity is present in T and B cells.

We then examined the effect of TNF stimulation on T and B cell viability. TNF treatment for 12–24 h stimulated proliferation in peripheral T cells and Jurkat cells, but not in Daudi cells (Fig. 5F). We also compared different sources of T and B cells for their apoptotic response to TNF treatment. In this regard, we found that TNF-mediated apoptosis could be detected in Jurkat cells or thymocytes, whereas only a spontaneous or background level of apoptosis was observed in Daudi cells or splenocytes (Supplemental Fig. 10). These results indicate that TNF can selectively activate T cells over B cells via NF-κB activation, and this appears to require serine phosphorylation-dependent TNFR1–TRADD complex formation.

FIGURE 4. NF-κB-dependent gene regulation requires the SXXE/D motif phosphorylation. A, EV and different forms of TNFR1 were transiently transfected with 2×B-site luciferase reporter in 293T cells for 24 h, followed by luciferase reporter activity measurement. Data presented are mean ± SD of triplicate determinations. Experiments were repeated three times. One representative anti-TNFR1 Western blot of indicated TNFR1 forms in 293T transfectants was shown in the lower panel. B, EV and different forms of TRADD were transiently transfected with 2×B-site luciferase reporter in 293T cells for 24 h, followed by luciferase reporter activity measurement and data process as described in A. C, EV or TRADD WT was transfected with 2×B-site luciferase reporter alone or with different forms of TNFR1 cotransfection in 293T cells for 24 h, followed by luciferase reporter activity measurement and data process as described in A.
Tumor necrosis factor (TNF) activates NF-κB in T cells via TNFR1-S381 phosphorylation and TNFR1–TRADD complex formation. A, Jurkat cells, Daudi cells, mouse thymocytes, and mouse splenocytes were treated with TNF (50 ng/ml) for different times as indicated. Whole-cell extracts (equal amount) were subjected to Western blot analysis with anti-pS381-TNFR1 or anti-TNFR1. B, Jurkat cells, Daudi cells, mouse thymocytes, mouse splenocytes, and purified mouse spleen B cells were treated with or without TNF for 30 min. Although the cytosolic fractions prepared from these cells were analyzed with anti-IκBα in a Western blot (upper panel), the nuclear fractions were incubated with κB-site-oligo-agarose beads overnight at 4°C. DNA precipitated proteins were subjected to Western blot analysis with anti-RelA (lower panel). C, Whole extracts from H9 and SKW6.4 cells treated with or without TNF (50 ng/ml) for 30 min were analyzed with anti-IκBα or anti-TNFR1 in a Western blot. Human peripheral T and B cells from normal blood donors were treated with TNF for different times as indicated. Whole-cell lysates prepared from these peripheral T or B cells were analyzed with anti-IκBα or anti-TNFR1 in a Western blot. D, Cytosolic and nuclear fractions from above human peripheral T cells treated with or without TNF for 30 min were analyzed for Rel-A nuclear translocation in Western blot. E, Whole-cell extracts of mouse thymocytes or splenocytes treated with or without LPS (10 ng/ml) for 30 min were analyzed with anti-IκBα in a Western blot. F, Equal amount (4 × 10^5) of peripheral T cells, Daudi cells, and Jurkat cells were incubated with or without TNF (10 or 50 ng/ml) for 24 h in a 96-well plate. Cell proliferation was determined by applying CyQUANT cell proliferation assay kit from Invitrogen (Carlsbad, CA), according to the protocol. Cells were lysed by addition of 100 μl CyQUANT GR dye buffer, and the fluorescence intensity was measured with a microplate fluorescence reader FLx800 from Bio-Tek Instruments (Winooski, VT) with excitation at 485 nm and emission detection at 530 nm. The fluorescence intensity is presented as cell proliferation index.

FIGURE 5. TNF activates NF-κB in T cells via TNFR1-S381 phosphorylation and TNFR1–TRADD complex formation. A, Jurkat cells, Daudi cells, mouse thymocytes, and mouse splenocytes were treated with TNF (50 ng/ml) for different times as indicated. Whole-cell extracts (equal amount) were subjected to Western blot analysis with anti-pS381-TNFR1 or anti-TNFR1. B, Jurkat cells, Daudi cells, mouse thymocytes, mouse splenocytes, and purified mouse spleen B cells were treated with or without TNF for 30 min. Although the cytosolic fractions prepared from these cells were analyzed with anti-IκBα in a Western blot (upper panel), the nuclear fractions were incubated with κB-site-oligo-agarose beads overnight at 4°C. DNA precipitated proteins were subjected to Western blot analysis with anti-RelA (lower panel). C, Whole extracts from H9 and SKW6.4 cells treated with or without TNF (50 ng/ml) for 30 min were analyzed with anti-IκBα or anti-TNFR1 in a Western blot. Human peripheral T and B cells from normal blood donors were treated with TNF for different times as indicated. Whole-cell lysates prepared from these peripheral T or B cells were analyzed with anti-IκBα or anti-TNFR1 in a Western blot. D, Cytosolic and nuclear fractions from above human peripheral T cells treated with or without TNF for 30 min were analyzed for Rel-A nuclear translocation in Western blot. E, Whole-cell extracts of mouse thymocytes or splenocytes treated with or without LPS (10 ng/ml) for 30 min were analyzed with anti-IκBα in a Western blot. F, Equal amount (4 × 10^5) of peripheral T cells, Daudi cells, and Jurkat cells were incubated with or without TNF (10 or 50 ng/ml) for 24 h in a 96-well plate. Cell proliferation was determined by applying CyQUANT cell proliferation assay kit from Invitrogen (Carlsbad, CA), according to the protocol. Cells were lysed by addition of 100 μl CyQUANT GR dye buffer, and the fluorescence intensity was measured with a microplate fluorescence reader FLx800 from Bio-Tek Instruments (Winooski, VT) with excitation at 485 nm and emission detection at 530 nm. The fluorescence intensity is presented as cell proliferation index.

TNF induces T cells migration via TNFR1 S381 phosphorylation

Among TNF’s variety of actions are the regulation of cell viability and the induction of cell migration. To investigate the role of TNFR1 in regulating cell migration, fibroblasts obtained from WT, TNFR1−/−, TNFR2−/−, and TNFR1/TNFR2 double−/− mice were assessed for their comparative ability to migrate using a cell chamber migration assay. Interestingly, although TNFR2 has been previously shown to play a more critical role than TNFR1 in cell migration (17), we observed in this study that neither TNFR1−/− alone nor TNFR2−/− alone showed any negative effect on cell migration (Fig. 6A). However, cell migration was severely inhibited when both TNFR1 and TNFR2 were knockout (Fig. 6A), suggesting that TNFR1 and TNFR2 play a collaborative role in regulating cell migration. Furthermore, reconstitution of TNFR1−/− WT but not TNFR1−/−S381A mutant form into TNFR1/TNFR2−/− partially restored cell migration (Fig. 6A), indicating that TNFR1 involvement in cell migration is mediated through S381 phosphorylation. We then performed RT-PCR to examine the expression of genes related to cell migration in these TNFR1−/− or TNFR1/TNFFR2−/− MEFs. Among those genes assessed, IL-6, IL-8, matrix metallopeptidase-9, and cyclin D1 were apparently reduced in their expression in TNFR1−/− MEFs when compared with WT MEFs (Fig. 6B). The introduction of TNFR1−/−S381A mutant in these TNFR1/TNFFR2−/− MEFs showed little or no rescue effect on regulation of the expression of those genes (Fig. 6B). Thus, we believe that TNFR1 phosphorylation on S381 plays a critical role in NF-κB–dependent gene regulation involved in cell migration and that the presence of both TNFR1 and TNFR2 on the cell is still critical for cell migration.

We then compared T cell and B cell migration in response to TNF treatment. In the absence of TNF, T cells prepared from peripheral blood of normal donors, remained still in their ICAM-1–coated chamber without evidence of observable crawling or movement in a directed fashion (Fig. 6C). In the presence of TNF, T cells became polarized and migrated on the ICAM-1–coated surface with an approximate steady state migration velocity of 10 μm/min (Fig. 6D). These migrating T cells exhibited rapid shape change, formation of constriction rings, and concomitant cytoplasmic streaming. The migrating T cells treated with TNF were comparable with those exposed to treatment for integrin activation (18). Under the same condition, peripheral B cells failed to respond to TNF treatment with respect to the development of directed migration or migration related morphological change (Fig. 6C, 6D). Pretreatment of T cells with IKKβ inhibitor PS1145 abolished T cell migration in response to TNF stimulation (Fig. 6E). Above results demonstrated that TNFR1 S381 phosphorylation by IKKβ leads to NF-κB activation and downstream gene expression is required for TNF to induce a T cell migration response.

T cells with constitutive expression of TNFR1-S381 phosphorylation accumulate in the inflamed intestines of IBD patients

InIBD, TNF plays an essential role in recruiting immune cells to inflammatory sites (19). Intestinal tissue samples obtained from patients of Crohn’s disease or ulcerative colitis were compared with normal intestinal tissues for T cell accumulation. In all the intestinal tissue samples analyzed, T cells became most apparently in the inflamed mucosa in both Crohn’s disease and ulcerative colitis specimens (Fig. 7A). These accumulating T cells were
exclusively phospho–S381-TNFR1 positive (Fig. 7A). In contrast, B cells, localized mainly in the intestinal B cell follicles or in the germinal centers, were sparsely visible (Fig. 7B). These results suggest that TNFR1 S381 constitutive phosphorylation is likely involved in activating and/or driving the influx of T cells into the areas of inflammation seen in the bowel (19, 20). Further supporting the requirement of SXXE/D motif phosphorylation during signal transduction via TNFR1–TRADD-centered death domain complex formation.

Discussion

Like tyrosine phosphorylation, serine phosphorylation plays a critical role in regulating signaling for cell survival, apoptosis, or cell migration (21, 22). SXXE/D motifs, found in the cytoplasmic domains of many TNFR family members as well as their adaptor proteins, are involved in serine signal transduction. However, unlike PXSP or PS/SP motifs that are phosphorylated by MAPK/cdc2PK type kinases for β-stranded WW domain (ββ) interaction (23), SXXE/D motifs are phosphorylated by CK-II/IKK type kinases and have been shown to associate with TNFR1 (24). We demonstrated here that IKKβ and, to a lesser extent, IKKα can phosphorylate the “SXXE” motif of TNFR1 death domain.

In the helical death domain (αααααααα) of Fas, the α-helix3 is involved in direct contact with FADD death domain within the α-helix2–α-helix3 region, which bears the SXXE/D motif (25). Besides, S215 of TRADD death domain and positive charge residues of both TRADD and TNFR1 death domains have been previously noted to play a role in the interaction between these two molecules (26, 27). Both SXXE/D motifs of the TRADD death domain were required for upstream TNFR1 and downstream FADD/RIP binding simultaneously, suggesting that TRADD may either form dimer prior to mediating the TNFR1 and FADD/RIP complex formation or sequentially recruit TNFR1, FADD, and RIP. Furthermore, the TNFR1 SXXE motif has also been demonstrated to be important for TNFR1–TRADD complex formation.

FIGURE 6. TNF induces T but not B cell migration. A, Equal amount (5 × 10^5) of mouse embryonic fibroblasts obtained from TNFR1−/−, TNFR2−/−, or TNFR1 and TNFR2 double−/− (TNFR1,2−/−) mice, as well as the TNFR1-WT or TNFR1-S381A reconstituted fibroblasts were seeded in the upper chamber (polycarbonate membranes with 8.0-μm pore size) in DMEM supplied with 5% FBS. Twelve hours later, the cells migrated to the lower chamber were fixed, stained with H&E, and visualized with a light microscope according to our published protocol (13). The above H&E stained cells in the lower chamber were counted from three vision areas with a light microscope. B, In TNFR1−/− MEFs or TNFR1,TNFFR2−/− MEFs with TNFR1-S381A mutant reintroduction, indicated genes were analyzed for their transcriptional regulation by performing RT-PCR. Data are expressed as mean ± SD of three experiments. C, Peripheral T cells and peripheral B cells obtained from healthy blood donors were cultured in the chambers coated with ICAM-1, in the presence or absence of TNF (200 ng/ml) and immediately subjected to time-lapse fluorescence imaging at 37 °C. Cell morphological changes were recorded at different times (min) as indicated. Experiments were repeated on T lymphocyte preparations from three independent donors. D, The migration of the above T and B cells in C was tracked over a 30-min period. Each line represents one cell. E, TNF treatment at indicated time failed to induce cell morphological change in peripheral T cells pretreated with IKKβ inhibitor PS-1145 for 2 h. Representative differential interference contrast microscope images show a randomly selected region at five-fold magnification (C, E).
These observations are reminiscent of those made for the α-helix sandwiched and β-strand–centered SH2 domains of Src (αβββαα) and STAT (αβββαα) that bear phosphorylated tyrosine residues (28, 29). For two STAT protein molecules, positively charged residues of αA and βB of their SH2 domains recognize reciprocal phospho-tyrosine residue located at the extended C terminus of the SH2 domain during dimerization (28). Serine phosphorylation of the SXXE/D motif is important for death domain-mediated modular interaction. S381 phosphorylation of TNFR1 death domain SXXE motif may enhance the protein–protein interaction by juxtaposing another negatively charged group adjacent to D382 and E384 for stabilizing its association with the positive groove in TRADD. Comparing phosphotyrosine with phosphoserine indicates phosphoserine is less bulky in structure. Thus, the negatively charged residue at the p+3 position in the death domain SXXE/D motif presumably plays a more important role in strengthening the modular interaction than the hydrophobic residue of YXXL/I/V/M/Q motif does in interacting with the SH2 domain.

The effect of the phospho-SXXE/D motif may not only be limited to the homologous domain interaction. TNFR2 bears at least three species-conserved SXXE/D motifs within the C terminus. The helical ankyrin repeats (ANK) of ASB3 and the TRAF-C domain of TRAF2 were found to dock on those TNFR2 SXXE motifs that are most likely phosphorylated (10, 30). Phospho-SXXE/D motifs have also been identified in other helical structures such as ANK of 1xBe. Ubiquitin–protein ligases are responsible for phospho-SXXE/D recognition during 1xB degradation and the release of NF-κB. Positively charged residue of R47 within the helical ANK of p16INK4α interacts with a negatively charged residue (i.e., Glu) of the N-terminal SXXE motif of cdk4 (31).

The observation that TNF preferentially activates T cells via SXXE motif phosphorylation within TNFR1 death domain, and this signaling may explain why T cells but not B cells accumulated in areas of inflammation, thus playing a dominant role in inflammatory process. Although TNF may activate other signaling pathways such as JNK in both T and B cells, SXXE and/or SXXD motif-mediated NF-κB activation appears to play a more critical role in cell growth regulation, apoptosis, cell migration, and the accumulation of T cell at sites of inflammation (11, 32). It is tempting to think that TNFR1-S381 may become constitutively phosphorylated in T cells in inflamed intestinal mucosa, presumably because of increased TNF level in the diseased lamina propria as opposed to the adjacent uninflamed bowel. Furthermore, we suggest that constitutive phosphorylation of TNFR1 should promote inflammation by regulating T cells proliferation and migration to the inflamed gut of IBD patients (33). Thus, we feel that the disruption of the modular death domain–death domain interaction in T cells, by targeting phospho-SXXE/D motifs, may represent a potentially novel therapeutic approach for the treatment of inflammatory conditions, like IBD.

Acknowledgments
We thank D.V. Goeddel for human TNFR1 and human TRADD plasmids, V. Dixit for human FADD plasmid, B. Seed for human RIP plasmid, S. Ghosh for 2XκB-luciferase reporter construct, G.S. Hotamisligil for WT, TNFR1−/−, TNFR2−/−, and TNFR1/TNFR2−/− MEFs, and I. Verma for WT, IKKα−/−, and IKKβ−/− MEFs.

Disclosures
The authors have no financial conflicts of interest.

References
1. Stanger, B. Z., P. Leder, T. H. Lee, E. Kim, and B. Seed. 1995. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81: 513–523.
2. Hsu, H. H., B. Shu, M. G. Pan, and D. V. Goeddel. 1996. TRADD-TRA2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84: 299–308.

3. Hsu, H., J. Huang, H. B. Shu, V. Baichwal, and D. V. Goeddel. 1996. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4: 387–396.

4. Domchek, S. M., K. R. Auger, S. Chatterjee, T. R. Burke, Jr., and S. E. Shoelson. 2002. NF-κB activation has tissue-specific effects on immune cell apoptosis. Nat. Med. 8: 61–67.

5. Gambelli, F., P. Di, X. Niu, M. Friedman, T. Hammond, D. W. Riches, and L. A. Ortiz. 2004. Phosphorylation of tumor necrosis factor receptor 1 (p55) protects macrophages from silica-induced apoptosis. J. Biol. Chem. 279: 2020–2029.

6. Kennedy, N. J., and R. C. Budd. 1998. Phosphorylation of FADD/MORT1 and Fas by kinases that associate with the membrane-proximal cytoplasmic domain of Fas. J. Immunol. 160: 4881–4888.

7. Van Linden, A. A., V. Cottin, C. Leu, and D. W. Riches. 2000. Phosphorylation of the membrane proximal region of tumor necrosis factor receptor CD120a (p55) at ERK consensus sites. J. Biol. Chem. 275: 6969–7003.

8. Chung, A. S., Y. J. Guan, Z. L. Yuan, J. E. Albina, and Y. E. Chin. 2005. Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II. Mol. Cell. Biol. 25: 4716–4726.

9. Park, Y. C., V. Burkitt, A. R. Villa, L. Tong, and H. Wu. 1999. Structural basis for the interaction of the death domain of the tumor necrosis factor receptor 1-associated protein TRADD. J. Biol. Chem. 274: 7903–7905.

10. Huang, B., M. Eberstadt, E. T. Olejniczak, R. P. Meadows, and S. W. Fesik. 1996. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384: 638–641.

11. Byeon, I. J., J. Li, K. Ericson, T. L. Selby, A. Tevelev, H. J. Kim, P. O’Maille, N. S. Gonçalves, J. S. Mudgett, G. Dougan, G. Frankel, and T. T. MacDonald. 2000. Impaired immunity to intestinal bacterial infection in stromelysin-1 knockout mice. FEBS Lett. 488: 367–368.

12. Wang, B., S. Kondo, G. M. Shriver, H. Fujisawa, T. W. Mak, and D. N. Sauder. 1996. Tumour necrosis factor receptor II (p75) signalling is required for the migration of Langerhans’ cells. Immunology 88: 284–288.

13. Delhase, M., N. Li, and M. Karin. 2000. Kinase regulation in inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 11: 267–276.

14. Kim, M., C. V. Carman, W. Yang, A. Salas, and T. A. Springer. 2004. The primacy of affinity over clustering in regulation of adhesiveness of the integrin α6β4. J. Cell Biol. 167: 1241–1253.

15. He, K. L., and A. T. Ting. 2002. A20 inhibits tumor necrosis factor (TNF) receptor-1 signaling complex. Immunity 4: 387–396.

16. Darnay, B. G., S. Singh, and B. B. Aggarwal. 1997. The p80 TNF receptor-associated kinase (p80TRAK) associates with residues 354–397 of the p80 cytoplasmic domain: similarity to casein kinase. FEBS Lett. 406: 101–105.

17. Wang, B., S. Kondo, G. M. Shriver, H. Fujisawa, T. W. Mak, and D. N. Sauder. 1996. Tumour necrosis factor receptor II (p75) signalling is required for the migration of Langerhans’ cells. Immunology 88: 284–288.

18. Waywodt, A., D. Ludwig, P. Neustock, A. Kruse, K. Schwarting, G. Jantschek, H. Kirchner, and E. F. Stange. 1992. Inhibition of SH2 domain/phosphoprotein association by a non-hydrolysable phosphonopeptide. Biochemistry 31: 9865–9870.

19. Darnay, B. G., S. Singh, and B. B. Aggarwal. 1997. The p80 TNF receptor-associated kinase (p80TRAK) associates with residues 354–397 of the p80 cytoplasmic domain: similarity to casein kinase. FEBS Lett. 406: 101–105.

20. Devlin, A., Y. Lin, S. Yamaoka, Z. Li, M. Karin, and Liu Zg. 2001. The β and δ subunits of IκB kinase (IKK) mediate TRAF2-dependent IKK recruitment to tumor necrosis factor (TNF) receptor 1 in response to TNF. Mol. Cell. Biol. 21: 3986–3994.

21. Park, A., and V. R. Baichwal. 1996. Systematic mutational analysis of the death domain of the tumor necrosis factor receptor 1-associated protein TRADD. J. Biol. Chem. 271: 9858–9862.

22. Byeon, I. J., J. Li, K. Ericson, T. L. Selby, A. Tevelev, H. J. Kim, P. O’Maille, N. S. Gonçalves, J. S. Mudgett, G. Dougan, G. Frankel, and T. T. MacDonald. 2000. Impaired immunity to intestinal bacterial infection in stromelysin-1 knockout mice. FEBS Lett. 488: 367–368.

23. Lu, P. I., X. Z. Zhou, M. Shen, and K. P. Lu. 1999. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283: 1325–1328.

24. Chung, A. S., Y. J. Guan, Z. L. Yuan, J. E. Albina, and Y. E. Chin. 2005. Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II. Mol. Cell. Biol. 25: 4716–4726.

25. Huang, B., M. Eberstadt, E. T. Olejniczak, R. P. Meadows, and S. W. Fesik. 1996. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384: 638–641.

26. Byeon, I. J., J. Li, K. Ericson, T. L. Selby, A. Tevelev, H. J. Kim, P. O’Maille, and M. D. Tsai. 1998. Tumor suppressor pl1D5K4A: determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol. Cell 1: 421–431.

27. Delhase, M., N. Li, and M. Karin. 2000. Kinase regulation in inflammatory bowel disease. Immunol. Rev. 204: 144–155.