Does Policy Matter in Carsharing Traveling? Evolution Game Model-Based Carsharing and Private Car Study

Wei Luo, Shi Qiu, Pengpeng Jiao, Liya Yao, and Yi Wang

1Beijing Key Laboratory of General Aviation Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2School of Civil Engineering, Central South University, Changsha, Hunan 410012, China
3School of Mechanical and Vehicular Engineering, Beijing Institute of Technology, Beijing 100081, China
4Department of Civil Engineering, Tsinghua University, Beijing 100084, China

Correspondence should be addressed to Liya Yao; yaoliya@bit.edu.cn

As an alternative trip mode to the private car, carsharing mode first emerged in Europe in the 1940s. Although it possesses many merits such as convenience, affordability, and comfort, its development is far slower than the private car in recent years. Identifying the factors affecting the users’ choice between carsharing and private car is becoming very important. This paper proposes an evolution game model to explore the competitive choice process between carsharing and private car under different government policies. First, an evolution game model with incomplete information is developed to analyze the travel choice of carsharing over private car. The influences of government policy are taken into consideration. Then, the evolutionary stable strategy solution of the model is derived from replicator dynamics, and a discussion about the stable condition is presented. Finally, a case study is conducted to validate the proposed model. This study provides a rationale for agencies to improve the current carsharing choice rate between carsharing and private car.

1. Introduction

With the accelerated urbanization process in China in the past few decades, the number of private cars surges, reaching 207 million by 2019 (Figure 1(a)) [1]. Emerging issues such as traffic congestion and parking difficulty are recognized as threats to the development of the cities [2–7]. Carsharing is a mobility option similar to personal vehicle ownership and first emerged in Europe in the 1940s in the form of a local business. Carsharing vehicles are mostly electricity driven and generally distributed throughout urban neighborhoods and city centers. As an alternative trip mode to the private car, carsharing is on the rise in different countries and cities, thanks to the merits such convenience and cheap price [8–10]. According to a statistic from Beijing Municipal Commission of Transport, the number of carsharing bookings (carsharing quantity of orders) has increased to 12,116 in 2016 from 95,188 in 2017, growing by more than 686%, as shown in Figure 1(b) [11]. Carsharing could bring the vehicle to achieve maximal service efficiency and share parking resources [12]. Moreover, as most carsharing vehicles are electrical, it can save energy and reduce emission [13–15]. Despite the social benefit, convenience, and flexibility of carsharing, some travelers prefer private car to carsharing [16], which limits the contribution of carsharing such as providing greater mobility at substantial savings and promoting energy and emission benefits [17, 18]. Therefore, precise and definite influence choosing factors and the mechanism of choice between carsharing and private car are of high importance. As a practical reference to macro-level policy-making, when and what policy measures shall be taken is also worth studying. These findings could promote the development of carsharing policies and increase the environmental and social gains.
The objective of this paper is to develop a model that addresses the competitive choice process between car-sharing and private car under different government policies. This paper is organized as follows: the first section introduces background; Section 2 provides a literature review of the existing early studies for car-sharing travel behavior; Section 3 describes research assumptions, model construction, solution, and analysis of the key influencing factors of the model; Section 4 presents a typical case of Beijing to illustrate the application of the proposed model; and finally, Section 5 concludes this study and suggests future research recommendations.

2. Literature Review

Analyzing carsharing travel behavior has been a challenge to researchers and practitioners. Many studies on carsharing travel behavior have been conducted since the 1940s. According to the data source, existing research on carsharing travel behavior can be categorized into two classes, namely, one class based on questionnaire data and another class based on carsharing service system data.

In the beginning, researchers qualitatively analyzed the social characteristics, the travel characteristics, and the intention characteristics of carsharing travelers through conducting questionnaires. Through analyzing survey data...
from 45 members and 76 nonmembers of the carsharing cooperative, Seik found the profile of members that revealed a mean household size of 4.1, 73% of married status, 49% from middle-income households, and 62% have never owned a car before [19]. Shaheen and Cohen comparatively analyzed carsharing travel worldwide, including similarities and differences, and provided a summary of growth trends and anticipated developments [20]. Zhou analyzed carsharing travel behaviors and personal characteristics of commuters at university in Los Angeles, California, and found that carsharing is more popular among bus commuters, university students, and female employees [21]. Through analyzing the questionnaire data of 443 older adults living in a gated community in California, Shaheen et al. examined an electric vehicle carsharing service as an alternative to private car ownership [22]. Kramer et al. analyzed user-friendliness, everyday usability, and modal integration of carsharing by using online surveys. The study revealed unique user groups whose travel patterns are multimodal and dominated by public transport [23]. Through an online survey, Firnkorn and Müller found the electrification scenario of carsharing influenced the respondents’ car reduction willingness [9]. Kim et al. explored factors affecting the electric vehicle-sharing program participants’ attitudes about car ownership and program participation in Seoul [16]. Through a survey campaign, Ampudia-Renuncio et al. found how the quality attributes of free-floating carsharing depend strongly on car availability and on the limit time and distance tolerated by each user to wait and walk in search of a free car [18].

Along with the development of the computer technology, scholars began to analyze carsharing travel behavior based on system data. Morency et al. classified carsharing users according to their temporal patterns of carsharing use frequency, traveled distance, and week use variability [24]. Based on real transaction data sets, Morency et al. proposed a dynamically ordered probability model to analyze behaviors of carsharing users [25]. Kawajiri et al. used carsharing operator data to reveal the travel purpose and the typical use pattern [26]. Schmöller et al. analyzed carsharing booking data for temporal and spatial aspects. The temporal and spatial facets were combined by applying cluster analysis to identify groups of days with similar spatial booking patterns and showed asymmetries in the spatio-temporal distribution of vehicle supply and demand [27]. Combined with points of interest, Willing et al. analyzed the booking data from a carsharing company in Amsterdam to predict carsharing demand in Berlin [28]. Wielinski et al. investigated the carsharing members’ behaviors over time in a free-floating system, including service usage and activity space [29]. Ampudia-Renuncio et al. designed a Web-based platform to collect operators’ data in Madrid and estimated real carsharing flows, which could clearly show the prevalence of spontaneous and short-distance free-floating car-sharing trips [30].

The literature review indicates that carsharing travel has been highlighted. Some recognized that comparative analysis between carsharing mode and private car mode is important to carsharing development [31–35]. However, comparative studies of carsharing mode and private car mode under the influence of policies were rarely seen, which need to be further studied. In particular, numerous previous studies have indicated that travel choice is profoundly influenced by government policy [36–38].

Meanwhile, in the research field of travel choice behavior, scholars realized that travel mode choice behavior is a strategy adjustment process made by travelers based on bounded rationality, which is not completely rational [39]. Scholars began to pay attention to travel choice behavior under bounded rationality. Among these research approaches, an evolution game model is one of the most widely applied theoretical methods to analyze travel mode choice in metropolitan [40–42]. The evolution game model, a methodology developing based on evolutionary theory and game theory, is conducted on the premise of the bounded rationality, which is a long-term repetitive game within a certain size-specific group [43, 44]. Research subjects in the evolution game model are individuals with thought and calculation [43, 44], which is consistent with travel behavior. Compared with traditional models, bounded rationality theory can better describe travel decision behavior. Especially, evolutionary game theory has been proven to the applicability to traffic choice behavior analysis [45], which has adaptability in assumptions, research object, analysis method, game mode, and expected output. The evolutionary game theory provides an effective way to dynamically describe the competition optimization between carsharing and private car.

Therefore, this paper focuses on the competitive choice process between carsharing and private car under government policy by using an evolution game model, which provides government and private sectors a more precise basis for decision-making. The flow of the overall research framework is shown in Figure 2, which consists of the research steps of this paper.

3. Methodology

3.1. Research Assumptions. Carsharing is an alternative mode of transportation, which shifts private mobility from ownership to service use. Previous studies have shown carsharing could reduce the demands on private cars [46–48], which could reduce the environmental pressure of car use [48]. Therefore, if carsharing could replace more private cars, carsharing could make more contribution to sustainable cities. Normally, the carsharing can be seen as a bridge between private car trips and taxi trips. However, taxis belong to the public transport in a broad sense [49], not private cars. Besides, both private car and carsharing require travelers to have a driving license, while there are no requirements for taxi trips on driving license. Taking these aspects into consideration, this paper focuses on this kind of travelers, who make choice between carsharing and private car. Assume that this kind of travelers is confronted with choosing the carsharing or private car.

Meanwhile, travel choice is profoundly influenced by government policy [36–38]. A government policymaker is the government. Hence, the government is confronted with
whether implement policies to the traveler, which includes positive-incentive and negative-incentive.

In summary, two game players are determined: the traveler and government. Before constructing the evolution game model, some assumptions are made as follows:

Assumption 1. The traveler’s behavior is primarily a choice between carsharing and private car. The government’s behavior is primarily a choice between implement policy and not. For the traveler (T), suppose the possibility of choosing carsharing is x, then the possibility of choosing private car is $1 - x$. For the government (G), suppose the possibility of implementing policies is y, then the possibility of choosing not to implement policies is $1 - y$.

Assumption 2. The two players, the traveler and the government, are bounded rational players with bounded rational behaviors. The two players will adequately calculate and compare all the possible outcomes to protect their own interests and identify the strategy that can best serve these interests.

Assumption 3. When the traveler chooses a travel model, he will receive the corresponding benefit (social norm factors, sense of achievement, and so on) and pay considerable cost. Thus, assume that when the traveler chooses the carsharing and private car, he will gain the benefit, P_1 and P_2, respectively, and pay the cost, C_1 and C_2, respectively. Besides, whether the traveler chooses to travel by private car or carsharing, he would suffer some losses, such as time, comfort, and convenience losses. Because the carsharing development is in the initial stage, the ancillary facilities are incomplete, such as unreasonable station layout and lack of charging stalls. Moreover, the key technology of service platform needs further improvement. Oppositely, private cars have quite mature technologies and supporting services. Thus, if the traveler chooses the carsharing, he will suffer the losses, P_0. P_0 is a relative value, not an absolute value.

Assumption 4. Suppose that the government’s policy of encouraging carsharing (positive-incentive) is a retrograde mechanism, i.e., the incentive intensity decreases year by year. The majority of carsharing vehicles are electric vehicles in China. Meanwhile, the purchase subsidy of electric vehicles is a retrograde mechanism in China. So the government’s policy of encouraging carsharing (positive-incentive) is set as a retrograde mechanism in this paper. Thus, the traveler’s earning from government encourage policies is $f(s)$, which is given by the government. $f(s)$ represents how the economic subsidy from the government encourages policies changes over time t. Besides, $0 < f(s) < f'(s) < 0$. If the traveler chooses to use carsharing right now, he will receive a full reward, S. If the traveler chooses to use carsharing in the future, the rewards will decrease year by year. The stimulate rewards from the government subsidies will approach zero in extreme cases in the future. Oppositely, when the traveler chooses private car, he will accept punishment cost (negative-incentive) D, which is given to the government, too. In addition, when the government chooses to implement policies, it will spend a certain administrative cost. Assume the administrative cost is A.

![Figure 2: Framework of the study.](image-url)
Assumption 5. When the traveler chooses the carsharing, the government will obtain the social benefit, R_1. Oppositely, when the traveler chooses the private car, the government will obtain the social benefit, R_2.

Table 1 summarizes the parameters, variables, and abbreviations mentioned above to describe travel choice processes and evolution game theory.

3.2. Model Construction. Based on research assumptions, the model is constructed by analyzing the different choice processes of the traveler and government.

As shown in Figure 3, when the traveler chooses the carsharing while the government decides to implement policies, the traveler’s total interest is $P_1 - C_1 - P_0 + f(s)S$. When the traveler chooses the carsharing while the government does not implement policies, the traveler’s total interest is $P_1 - C_1 - P_0$. When the traveler chooses the private car while the government chooses to implement policies, the traveler’s total interest is $P_2 - C_2 - D$. When the traveler chooses the private car while the government does not implement policies, the traveler’s total interest is $P_2 - C_2$. As shown in Figure 3(b), when the traveler chooses the carsharing while the government decides to implement policies, the government’s total interest is $R_1 - f(s)S - A$. Oppositely, when the traveler chooses the private car while the government chooses to implement policies, the government’s total interest is $R_2 + D - A$. If the government chooses not to implement policies while the traveler chooses the carsharing, the government’s total interest is R_1. When the traveler chooses the private car, the government’s total interest is R_2.

According to the above analysis, payoff bimatrix of traveler-government is constructed, as shown in Table 2.

3.3. Model Solution. According to evolution game theory [50–52], the expected payoff of the traveler chooses the carsharing is as follows:

$$E_{t1} = yP_1 - C_1 - P_0 + f(s)S + (1 - y)(P_1 - C_1 - P_0),$$

which is reduced to

$$E_{t1} = P_1 - C_1 - P_0 + yf(s)S.$$

The expected payoff of the traveler chooses the private car is as follows:

$$E_{t2} = yP_2 - C_2 - D + (1 - y)(P_1 - C_1 - P_0),$$

which is reduced to

$$E_{t2} = P_2 - C_2 - yD.$$

The average expected payoff is as follows:

$$E_t = xE_{t1} + (1 - x)E_{t2};$$

Besides, the expected payoff of the government chooses to implement policies is as follows:

$$E_{g_1} = x(R_1 - f(t)S - A) + (1 - x)(R_2 + D - A),$$

which is reduced to

$$E_{g_1} = x(R_1 - R_2 - f(t)S - D) + R_2 + D - A.$$

The expected payoff of the government chooses not to implement policies is as follows:

$$E_{g_2} = xR_1 + (1 - x)R_2,$$

which is reduced to

$$E_{g_2} = x(R_1 - R_2) + R_2.$$

The average expected payoff is as follows:

$$E_t = yE_{g_1} + (1 - y)E_{g_2}.$$

Thus, the replicator dynamics equation of the traveler is as follows:

$$\frac{dx}{dt} = x(E_{t1} - E_t),$$

which is reduced to

$$\frac{dx}{dt} = x(1 - x)[P_1 - C_1 - P_0 - (P_2 - C_2) + yf(s)S + D]).$$

The replicator dynamics equation of the government is as follows:

$$\frac{dy}{dt} = y(E_{g_1} - E_t),$$

which is reduced to

$$\frac{dy}{dt} = y(1 - y)[x - f(s)S - D] + D - A].$$

The evolutionary stable strategy (ESS) is akin to the Nash equilibrium in classical game theory, but with mathematically extended criteria [44, 50–52]. According to the replicator dynamics equation stability theorem and ESS, when $F(x) = 0$ and $F'(x) < 0$, x^* becomes ESS. Stability analysis of replicator dynamics equation of the traveler and government is conducted as follows: when

$$F(x) = \frac{dx}{dt} = 0,$$

then

$$x_1^* = 0, x_2^* = 1, y^* = \frac{P_1 - C_1 - P_0 - (P_2 - C_2)}{fS + D},$$

$$= \frac{P_2 - C_2 - (P_1 - C_1 - P_0)}{fS + D},$$

taking the derivative

$$F'(x) = \frac{dx/dt}{dx} = (1 - 2x)[P_1 - C_1 - P_0 - (P_2 - C_2) + yf(s)S + D],$$

(17)
when $F(y) = \frac{dy}{dt} = 0$, then

$$y_1^* = 0, y_2^* = 1, x^* = \frac{D-A}{fsS + D} = 1 - \frac{fsS + A}{fsS + D}.$$
taking the derivative
\[F'(y) = \frac{dx}{dt} = (1 - 2y)[x - f(s)y - D] + D - A. \] (20)

The analysis results of ESS are shown as follows:
As shown in Table 3, when \(y^* = P_2 - C_2 = (P_1 - C_1 - P_0)/fS + D \), the ESS is a certain value between 0 and 1. When \(y^* > P_2 - C_2 = (P_1 - C_1 - P_0)/fS + D \), the ESS is \(x = 1 \). When \(y^* < P_2 - C_2 = (P_1 - C_1 - P_0)/fS + D \), the ESS is \(x = 0 \). The corresponding replicator dynamics phase diagram is drawn, as shown in Figure 4(a). When \(x^* = D - A/fS + D \), the ESS is a certain value between 0 and 1. When \(x^* = D - A/fS + D \), the ESS is \(y = 1 \). When \(x^* = D - A/fS + D \), the ESS is \(y = 0 \). The corresponding replicator dynamics phase diagram is drawn, as shown in Figure 4(b).

Hence, after a learning and evolution of traveler and government in the game system, the traveler chooses carsharing, and this strategy is stable.

Therefore, the determinant and trace of this Jacobi matrix in the system are as follows:

The corresponding \(Det(J) \) and \(Tr(J) \) of the above-mentioned five equilibrium points are shown in Table 4.

3.4. Model Analysis and Discussion. Consider the strategy of traveler and government as a dynamic system: there are five local equilibrium points in the plane \(S = \{(x, y)|0 \leq x, y \leq 1\} \), a dynamical system consisting of replicator dynamics equation. These five local equilibrium points are \(O(0,0), A(1,0), B(1,1), C(0,1), D \) \((D = A/f(S) + D, P_2 - C_2 = (P_1 - C_1 - P_0)/fS + D) \), as shown in Figure 5.

Among them, point \((x^* = D - A/fS + D, y^* = P_2 - C_2 = (P_1 - C_1 - P_0)/fS + D) \) sets up only in case of \((x^* = D - A/fS + D \in [0,1], y^* = P_2 - C_2 = (P_1 - C_1 - P_0)/fS + D \in [0,1]) \). For a group dynamics described by a differential equation system, the stability of its equilibrium point is obtained by the local stability analysis of the Jacobi matrix obtained by the system [53]. The Jacobi matrix combining formulas (17) and (20) is as follows:

\[
J = \begin{pmatrix}
(1 - 2x)[P_1 - C_1 - P_0 - (P_2 - C_2) + y[fS + D]] & -x(1 - x)[fS + D] \\
-y(1 - y)[fS + D] & (1 - 2y)[x - f(s)S + D] + D - A
\end{pmatrix}.
\] (21)

Therefore, the determinant and trace of this Jacobi matrix in the system are as follows:

\[
Det(J) = (1 - 2x)[P_1 - C_1 - P_0 - (P_2 - C_2) + y[fS + D]] \times (1 - 2y)[x - f(s)S + D] + D - A;
\]

\[
Tr(J) = (1 - 2x)[P_1 - C_1 - P_0 - (P_2 - C_2) + y[fS + D]] + (1 - 2y)[x - f(s)S + D] + D - A.
\] (22)

The corresponding \(Det(J) \) and \(Tr(J) \) of the above-mentioned five equilibrium points are shown in Table 4.

If the traveler’s total interest of choosing the carsharing is greater than choosing the private car without the government policies, the traveler’s total interest of choosing the carsharing inevitably is greater than choosing the private car with the government policies. Thus, when \(P_1 - C_1 - P_0 > P_2 - C_2 \), then \(P_1 - C_1 - P_0 + fS > P_2 - C_2 - D \). Similarly, if the traveler’s total interest of choosing the carsharing is less than choosing the private car with the government policies, the traveler’s total interest of choosing the carsharing inevitably is less than choosing the private car without the government policies. Thus, when \(P_1 - C_1 - P_0 + fS < P_2 - C_2 - D \), then \(P_1 - C_1 - P_0 < P_2 - C_2 \). Hence, the local stability analysis of this traveler-government only needs to analyze the results under conditions of \(P_1 - C_1 - P_0 > P_2 - C_2 \) and \(P_1 - C_1 - P_0 + fS < P_2 - C_2 - D \). The results are shown in Table 5.

From the stability analysis of local equilibrium points, some discussions are carried out. When \(P_2 - C_2 = (P_1 - C_1 - P_0)/fS + D > 0 \), that is \(P_1 - C_1 - P_0 > P_2 - C_2 \), it means the traveler’s total interest of choosing the carsharing is greater than choosing the private car without the government policies. At this time, no matter how powerful the government’s policies are, the traveler tends to use carsharing. And this strategy is stable. \(P_1 - C_1 - P_0 > P_2 - C_2 \) is equivalent to \(P_1 - P_0 > P_2 - C_2 \). The inequality shows the traveler gets the benefit from using carsharing, \(P_1 \), minus losses when traveler chooses the carsharing, \(P_0 \), continue minus the traveler gets the benefit from using private car, that is \(P_1 - P_0 - P_2 \), should be greater than the difference between the cost of using carsharing and cost of using private car, \(C_1 - C_2 \). In this case, regardless of whether the government chooses financial incentive to the carsharing traveler or how powerful financial incentive is, or whether the government chooses to punish the private car traveler or how powerful financial punishment, the traveler will choose to use the carsharing. In addition, the traveler’s choice strategy is not dependent on government policy changes. Hence, after a learning and evolution of traveler and government in the game system, the traveler chooses carsharing, and the government chooses not to implement policies. Finally, the evolution game of system tends to be the local stable equilibrium \((1,0)\).
Table 3: Analysis of ESS.

(a) Analysis of ESS (traveler)

Range	\(F(0) \)	\(F(1) \)	\(F'(0) \)	\(F'(1) \)	ESS
\(y^* = P_2 - C_2 - (P_1 - C_1 - P_0)/fsS + D \)	0	0	0	0	[0,1]
\(y^* \neq P_2 - C_2 - (P_1 - C_1 - P_0)/fsS + D \)	0	0	>0	<0	\(X = 1 \)
\(0 < P_2 - C_2 - (P_1 - C_1 - P_0)/fsS + D < 1 \)	0	0	<0	>0	\(X = 0 \)
\(x^* = D - A/fsS + D \)	0	0	0	0	[0,1]
\(D - A/fsS + D > 0 \)	0	0	>0	<0	\(Y = 1 \)
\(x^* \neq D - A/fsS + D \)	0	0	<0	>0	\(Y = 0 \)

(b) Analysis of ESS (government)

Range	\(F(0) \)	\(F(1) \)	\(F'(0) \)	\(F'(1) \)
\(y^* < P_2 - C_2 - (P_1 - C_1 - P_0)/fsS + D \)	0	0	<0	>0
\(y^* > P_2 - C_2 - (P_1 - C_1 - P_0)/fsS + D \)	0	0	>0	<0

\(y^* = P_2 - C_2 - (P_1 - C_1 - P_0)/fsS + D \)

\(x^* = D - A/fsS + D \)

\(D - A/fsS + D > 0 \)
the government’s policy intensity is not enough, currently the evolution game of system tends to the local stable equilibrium point \((0,1)\).

When \(0 < P_2 - C_2 - (P_1 - C_1 - P_0)/fs + D < 1\), that is \(P_1 - C_1 - P_0 + fs > P_2 - C_2 - D\) and \(P_1 - C_1 - P_0 < P_2 - C_2\), the traveler’s total interest of choosing the carsharing is greater than choosing the private car with government policies and the traveler’s total interest of choosing the carsharing is less than choosing the private car without government policies. According to the \(x^*\) value, there are two situations.

① When \(x^* < D - A/fS + D\), the equilibrium point is \((1,0)\). The government would choose to take incentives for the carsharing traveler and take punitive measures for the private car traveler. Moreover, the traveler will choose to use the carsharing. ② When \(x^* > D - A/fS + D\), the equilibrium point is \((0,0)\). The government would choose not to implement policies, and the traveler will choose to use the private car.

Thus, when \(0 < P_2 - C_2 - (P_1 - C_1 - P_0)/fs + D < 1\), both the traveler of choosing carsharing and private car do coexist. The traveler’s behavior is uncertain, and the equilibrium point \((1,1)\) and \((0,0)\) are not stable.

From the analysis of system, it is found that there are some key factors influencing the evolutionary game dynamic system. The traveler will choose the carsharing during the
Table 4: Det (J) and Tr (J) of the Jacobi matrix.

Equilibrium points	Det (J)	Tr (J)
$x = 0, y = 0$	$P_1 - C_1 - P_0 - (P_2 - C_2)$	$D - A$
$x = 1, y = 0$	$-P_1 - C_1 - P_0 - (P_2 - C_2)$	$-A$
$x = 0, y = 1$	$P_1 - C_1 - P_0 - (P_2 - C_2)$	$D + A$
$x = 1, y = 1$	$-P_1 - C_1 - P_0 - (P_2 - C_2)$	$A - D$
$x = D/A + D/2D, y = D/A + D/2D$	$P_2 - C_2 - (P_1 - C_1 - P_0)/(D + A)$	$D + A$
long evolution if and only if \(y > P_2 - P_1 + P_0 + C_1 - C_2 \cdot fsS + D \). Thus, through reducing the value of \(P_2 - P_1 + P_0 + C_1 - C_2 \cdot fsS + D \), the traveler’s strategy of choosing carsharing could be improved. The effects of several parameters on the evolution of the system and possible methods of adjustment are discussed as follows:

When \(P_1 - C_1 - P_0 > P_2 - C_2 \), the traveler will choose carsharing, and this choice behavior does not depend on changes in the government policy strategies. Thus, through increasing value of \(P_1 - C_1 - P_0 \) or decreasing value of \(P_2 - C_2 \), it could prompt the dynamic system to evolve to the equilibrium point \((1, 0)\), which means the choice behavior of the traveler eventually evolves into the strategy of using the carsharing.

When \(0 < P_2 - P_1 + P_0 + C_1 - C_2 \cdot fsS + D < 1 \), that is \(P_1 - C_1 - P_0 + fsS > P_2 - C_2 - D \) and \(P_1 - C_1 > P_1 - C_2 - P_0 \), the traveler’s total interest of choosing the carsharing is greater than choosing the private car with the government policies, and the traveler’s total interest of choosing the carsharing is less than choosing the private car without government policies. Thus, through decreasing value of \(S \) (a full reward) or increasing value of \(D \) (punishment cost), it could prompt the traveler’s total interest of choosing the carsharing, compared with private car. However, the equilibrium point \((1, 1)\) is not a stable equilibrium point. According to Hirte and Tscharaktschiew’s research, financial subsidies for vehicles are likely to lead to diminishing social welfare [54]. Hence, the government’s awarding policy of carsharing could only be a short term. Thus, the government’s policy of encouraging carsharing is a retrograde mechanism. In the next few years, the government would gradually reduce the magnitude of the reward and eventually withdraw the reward mechanism. The market adjustment should play a dominant role in the traveling market, which can maximize the social welfare. Moreover, the improvement of carsharing technology and service quality is the key to win the traveling market.

3.5.5. Sensitivity Analysis of S (Full Reward)

\[
\frac{\partial x^*}{\partial S} = \frac{fs(A - D)}{(fsS + D)^2} \\
\frac{\partial y^*}{\partial S} = \frac{[(P_1 - C_1 - P_0) - (P_2 - C_2)]fs}{(fsS + D)^2}
\]

There are four possibilities:

1. When \(A > D \), and \(P_1 - C_1 - P_0 > P_2 - C_2 \), then \(\frac{\partial x^*}{\partial S} > 0 \), \(\frac{\partial y^*}{\partial S} > 0 \).

 Full reward has an impact on the choice behavior of both the traveler and government. With the increase of full reward, the traveler tends to choose the strategy of carsharing and the government tends to choose the strategy of implementing policies.

2. When \(A > D \), and \(P_1 - C_1 - P_0 < P_2 - C_2 \), then \(\frac{\partial x^*}{\partial S} > 0 \), \(\frac{\partial y^*}{\partial S} < 0 \).

 Full reward has an impact on the choice behavior of both the traveler and government. With the increase of full reward, the traveler tends to choose the strategy of carsharing and the government tends to choose the strategy of not implementing policies.

3. When \(A < D \), and \(P_1 - C_1 - P_0 > P_2 - C_2 \), then \(\frac{\partial x^*}{\partial S} < 0 \), \(\frac{\partial y^*}{\partial S} > 0 \).

 Full reward has an impact on the choice behavior of both the traveler and government. With the increase of full reward, the traveler tends to choose the strategy of carsharing and the government tends to choose the strategy of implementing policies.

3.5. Sensitivity Analysis of Policies

The state of center point, \(D \cdot (x^* = D - A/ fsS + D, y^* = P_2 - C_2 - (P_1 - C_1 - P_0)/ fsS + D) \), in evolutionary game is affected by the parameters. To analyze the impact of policy, it is necessary to study the sensitivity of \(S \) (full reward) and \(D \) (punishment cost).

Table 5: Stability analysis results of local equilibrium points.

Condition	Equilibrium point	Det \(f \)	Tr \(f \)	Results	
\(P_1 - C_1 - P_0 > P_2 - C_2 \)	\((0, 0)\)	+	+	Unstable	Unstable
	\((1, 0)\)	+	+	Stable	Stable
	\((0, 1)\)	-	+	Unstable	Unstable
	\((1, 1)\)	-	-	Unstable	Unstable
	\((x^*, y^*)\)	0	0	Saddle point	Saddle point
\(P_1 - C_1 - P_0 + fsS < P_2 - C_2 - D \)	\((0, 0)\)	-	+	Unstable	Unstable
	\((1, 0)\)	-	+	Unstable	Unstable
	\((0, 1)\)	+	-	Stable	Stable
	\((1, 1)\)	+	+	Unstable	Unstable
	\((x^*, y^*)\)	0	0	Saddle point	Saddle point
of full reward, the traveler tends to choose the strategy of private car and the government tends to choose the strategy of implementing policies.

(4) When $A < D$, and $P_1 - C_1 - P_0 < P_2 - C_2$, then
\[
\frac{\partial x^*}{\partial S} < 0, \quad \frac{\partial y^*}{\partial S} < 0.
\] (27)

Punishment cost has an impact on the choice behavior of the traveler. With the increase of punishment cost, the traveler tends to choose the strategy of carsharing. Besides, the punishment cost has an impact on the choice behavior of the government too, which has two possibilities:

(1) When $P_1 - C_1 - P_0 > P_2 - C_2$, then
\[
\frac{\partial y^*}{\partial D} > 0.
\] (29)

With the increase of punishment cost, the government tends to choose the strategy of implementing policies.

(2) When $P_1 - C_1 - P_0 < P_2 - C_2$, then
\[
\frac{\partial y^*}{\partial D} < 0.
\] (30)

With the increase of punishment cost, the government tends to choose the strategy of not implementing policies.

4. Case Study

4.1. Carsharing Development in Beijing. Beijing is China’s capital, with 21.53 million people and 6.37 million vehicles by 2019. Carsharing started in Beijing in 2013 and had only four or five companies in 2014. The citizens with driving license but no cars have been growing under the capital’s vehicle restriction scheme. As travelers who do not possess private cars show excessive demand on cars, especially under the haze, rainfall, and other inclement weather, carsharing has been developing rapidly in Beijing in the past five years. There are more than 20 carsharing companies in Beijing, including Youche, GreenGo, GoFun, and other platforms. The Beijing municipal government expressed the support for EV (electric vehicle) carsharing. For example, “Action Plan of Electric Vehicles Widespread Use in Beijing (2014–2017)” was proposed to conduct the demonstration application of full reward has an impact on the choice behavior of both the traveler and government. With the increase of full reward, the traveler tends to choose the strategy of private car and the government tends to choose the strategy of not implementing policies.

3.5.2. Sensitivity Analysis of D (Punishment Cost).

\[
\frac{\partial x^*}{\partial D} = \frac{fs + A}{(fsS + D)^2} > 0,
\]
\[
\frac{\partial y^*}{\partial D} = \frac{[P_2 - C_2 - (P_1 - C_1 - P_0)]}{(fsS + D)^2} - \frac{[(P_1 - C_1 - P_0) - (P_2 - C_2)]}{(fsS + D)^2}
\] (28)

EV carsharing involving constructing an EV carsharing network and incorporating EV carsharing into the urban multidimensional traffic system. However, there is no financial measure of carsharing travelers in Beijing. In the case study, through the proposed model, the impacts of policies on relationship between carsharing and private car in Beijing are analyzed.

4.2. Numerical Analysis. Questionnaire survey and numerical analysis have been widely used in the transportation research field [55, 56]. Thus, parameters and variables were investigated through a questionnaire. This study put out 120 investigating questionnaires, and 116 questionnaires were recovered. Excluding the missing or erroneous questionnaires, this study got 112 valid questionnaires. The calculation of each questionnaire question is shown as follows:

\[
Q_i = \frac{Q_{i1} + Q_{i2} + \cdots + Q_{in}}{n},
\] (31)

where Q_i is the value of question i, n is the number of valid questionnaires, and Q_{in} is the value of the answer of respondent n to question i. The survey results are shown in Table 6.

According to above study results, in existing case, $F(x) = dx/dt = -0.84x(x - 1)$, $F(y) = dy/dt = 0$, and $F'(x) = -0.84(2x - 1), F'(y) = 0$. To the traveler, $F(0) = F(1) = 0, F'(0) < 0, F'(1) > 0$. Thus, $X = 0$ is ESS.

To the government, $F(0) = F(1) = F'(0) = F'(1) = 0$. Thus, the ESS is a certain value between 0 and 1. At present, under circumstance of there are no financial measures of carsharing in Beijing, and $P_1 - C_1 - P_0 < P_2 - C_2$, the traveler’s total interest of choosing the carsharing is less than choosing the private car. The game playing system will eventually evolve into that the traveler chooses the private car. To increase the use of carsharing, implementing policies could be considered, social norm factors and sense of achievement when the traveler chooses carsharing should be increased, and losses when the traveler chooses carsharing should be
decreased. Thus, in hypotheses 1 and 2, policies are considered. In hypothesis 2, except policies are considered, P_1 is increased, and P_0 is decreased.

Numerical analysis results of hypotheses 1 and 2 are shown in Figures 6 and 7, respectively. Under hypothesis 1, $P_1 - C_1 - P_0 + f(s)S < P_2 - C_2 - D$, and hence the traveler ultimately chooses the private car. The results indicate that, despite implementing policies, there is not enough strength. Under hypothesis 2, $P_1 - C_1 - P_0 > P_2 - C_2$, and hence the traveler ultimately chooses the carsharing. Besides, the results of hypothesis 2 indicate that when P_1 is increased and P_0 is decreased, leading to $P_1 - C_1 - P_0 > P_2 - C_2$, the traveler ultimately chooses the carsharing. During the long-term evolution process, carsharing infrastructure is developing well, and the carsharing market is gradually leading evolution. Thus, the traveler ultimately chooses the carsharing.

The government policies of a full reward and punishment cost are fixed that cannot show how the policy changes affect users’ mode choice. Thus, to quantitatively analyze the impact of the policy of S and D, the sensitivity analysis on the two parameters (S and D) is conducted.

Table 6: Parameters and variables in Beijing.

Parameters, variables, and abbreviations	Existing value	Hypothesis 1 value	Hypothesis 2 value	Comment
P_1	11	11	16	Social norm factors and sense of achievement
P_2	9	9	9	Social norm factors and sense of achievement
P_0	4	4	2	Loss of comfort and time cost
C_1	23	23	23	Rent expense and cost of arriving at the station
C_2	24.16	24.16	24.16	Depreciation charges, fuel charges, and parking charges
$f(s)$	0	1	1	Hypothesis
S	0	0.6	0.6	Hypothesis
D	0	0.2	0.2	Hypothesis
A	0	0.1	0.1	Hypothesis
R_1	21	21	21	Energy, parking, and so on
R_2	7	7	7	Energy, parking, and so on
The initial values are randomly set as (0.1, 0.9) and (0.2, 0.8).

1. Sensitivity analysis of S (full reward)
 S set as 1, 5, 10, 15, and 20, respectively. Other parameters are the same as hypothesis 2. As shown in Figure 8, with the increase of full reward, to the traveler, the probability of choosing carsharing is increasing, which is consistent with the analysis in Section 3.5.

2. Sensitivity analysis of D (punishment cost)
 D set as 1, 5, 10, 15, and 20, respectively. Other parameters are the same as hypothesis 2. As shown in Figure 9, with the increase of punishment cost, to the traveler, the probability of choosing carsharing is increasing, which is consistent with the analysis in Section 3.5 too.

4.3. Discussion and Recommendation. At present, the case study in Beijing shows the ESS is $X = 0$. That is to say, bounded rational travelers would eventually choose to use the private car. To increase the use of carsharing, implementing policies could be considered, social norm factors and sense of achievement when the traveler chooses carsharing should be increased, and losses when the traveler chooses carsharing should be decreased. Therefore, the following measures can be adopted to improve the interest of using carsharing in Beijing, so that the dynamic system formed by the traveler and the government will converge to the ideal stable equilibrium strategy.

1. Rationalize the S value. Implement different policy of S in different stages. According to the sensitivity analysis of S, when $A > D$, the full reward should be increased. When $A < D$, the full reward should be decreased. It should cancel the fiscal subsidy mechanism to carsharing travelers in the long term. Direct long-time fiscal subsidies may be inefficient, and carsharing travelers may be dependent on subsidies. Improving the benefits of carsharing themselves is the key to improve the competitive advantage of carsharing. (2)
Increase the S value. According to the sensitivity analysis of D, with the increase of punishment cost, the traveler tends to choose the strategy of carsharing. (3) Reduce the P_1 value. Except direct motivating the carsharing traveler, the government could actively guide enterprises to invest in the construction of carsharing infrastructure. Completed carsharing facilities provide convenience for carsharing travelers, which could reduce losses due to the inconvenience of hardware facilities and increase the total interests that the travelers can get from carsharing. Finally, the traveler’s choice is promoted to evolve to carsharing strategy. (4) Increase the P_2 value. By publicity means, the cognition and preference of carsharing will be improved, and people will give greater emphasis to improve air quality. Through publicity means, carsharing could be bonded together by energy conservation, emission reduction, reducing smog, and improving air quality. Through enhance the knowledge and preferences of the travelers to carsharing, carsharing would be further popularized.

5. Conclusions

To study the competitive choice process between carsharing and private car, an evolution game model with incompleteness information is constructed to analyze the travel choice process between carsharing and private car, of which the influences of government policy is taken into consideration. The ESS solution of model is derived from replicator dynamics, and a discussion about stable point and condition is presented. A case in Beijing illustrates the application and potential of the approaches to serve as tools. The results prove that, during the long-term evolution process, the traveler’s total interest of choosing the carsharing is greater than choosing the private car without government policies $(P_1 - C_1 - P_0 + f S S < P_2 - C_2 - D)$, regardless of the government’s strategic choice, bounded rational travelers would eventually choose to use carsharing. Moreover, the travelers’ total interest of choosing the carsharing is less than choosing the private car with government policies $(P_1 - C_1 - P_0 + f S S < P_2 - C_2 - D)$, regardless of the government’s strategic choice, bounded rational travelers would eventually choose to use private car. Furthermore, the travelers’ total interest of choosing the carsharing is greater than choosing the private car with government policies, and the travelers’ total interest of choosing the carsharing is less than choosing the private car without government policies $(P_1 - C_1 - P_0 + f S S > P_2 - C_2 - D$ and $P_1 - C_1 - P_0 < P_2 - C_2$), and there is no ESS. The final state is determined by the learning adjustment speed of the traveler and government. At last, to increase the use of carsharing and replace of private car in Beijing, implementing policies could be considered, social norm factors and sense of achievement of choosing carsharing should be increased, and losses of choosing the carsharing should be decreased.

The findings of this study are conducive for agencies to improve the current carsharing strategy. It should be pointed out that the variability of the cost for travel mode and its effect on the evolution game model have not been considered. In fact, it may not be easy for travelers to accurately predict. Besides, the punishment cost is considered as fixed, which is a limitation in this study. In the future, the impact of fixed punishment and time-varying decline punishment on travel choice will be compared. Additionally, further research may focus on the application and improvement of the proposed model for carsharing and other travel modes.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This research was funded by the project funded by China Postdoctoral Science Foundation (No. 2021M690331), Youth Foundation of Social Science and Humanity, China Ministry of Education (No. 21YJC630094), Beijing Postdoctoral Research Foundation (No. 2020-ZZ-089), Research Capacity Enhancement Program for Young Teachers of Beijing University of Civil Engineering and Architecture (No. X21069), and the Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture (No. UDC2019032924).

References

[1] The people’s public security newspaper, “The private car ownership in China exceeded 200 million for the first time, and the car ownership in 66 cities exceeded 1 million,” 2020, https://www.mps.gov.cn/n2254314/n6409334/c6852472/content.html.
[2] M. Akhtar and S. Moridpour, “A review of traffic congestion prediction using artificial intelligence,” Journal of Advanced Transportation, vol. 2021, Article ID 8878011, 2021.
[3] Y. T. Xiao, Z. Cai, J. L. Li, M. Li, and X. Long, “A collaborative reservation mechanism of multiple parking lots based on dynamic vehicle path planning,” Journal of Advanced Transportation, vol. 2021, Article ID 8876069, 2021.
[4] L. J. Li, Y. Yang, Z. Z. Yuan, and Z. chen, “A spatial-temporal approach for traffic status analysis and prediction based on Bi-LSTM structure,” Modern Physics Letters B, vol. 35, no. 31, Article ID 2150481, 2021.
[5] Y. Yang, Z. Yuan, J. Chen, and M. Guo, “Assessment of oscillating value method based on entropy weight to transportation energy conservation and emission reduction,” Environmental Engineering and Management Journal, vol. 16, no. 10, pp. 2413–2423, 2017.
[6] Z. Z. Yuan, H. Kun, and Y. Yang, “A roadway safety sustainable approach: modeling for real-time traffic crash with limited data and its reliability verification,” Journal of Advanced Transportation, vol. 2022, Article ID 1570521, 2022.
[7] Y. Yang, K. He, Z. Z. Yuan, Y. Yin, and M. Guo, “Identification of dynamic traffic crash risk for cross-area freeways based on statistical and machine learning methods,” Physica A: Statistical Mechanics and Its Applications, Article ID 127083, 2022.
[8] J. Kim, S. Rasouli, and H. Timmermans, “Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: application to intended purchase of electric cars,” Transportation Research Part A: Policy and Practice, vol. 69, pp. 71–85, 2014.

[9] J. Firnkorn and M. Müller, “Free-floating electric carsharing-fleets in smart cities: the dawning of a post-private car era in urban environments?” Environmental Science & Policy, vol. 45, pp. 30–40, 2015.

[10] Y. Y. Chun, M. Matsumoto, K. Tahara, K. Chinen, and H. Endo, “Exploring factors affecting car sharing use intention in the Southeast-Asia Region: a case study in Java, Indonesia,” Sustainability, vol. 11, no. 18, pp. 1–26, 2019.

[11] Transportation Administrative bureau of Beijing Municipal Commission of Transport, Work Report, ISBN 978-92-9257-845-9, 2017.

[12] J. Parker, C. Walker, and R. Johnson, “What can we learn from car sharing experiences in the UK?” Proceedings of the Institution of Civil Engineers - Transport, vol. 164, no. 3, pp. 181–188, 2011.

[13] A. Manjunath and G. Gross, “Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs),” Energy Policy, vol. 102, pp. 423–429, 2017.

[14] N.-F. Galatoulas, K. N. Genikomsakis, and C. S. Ioakimidis, “Analysis of potential demand and costs for the business development of an electric vehicle sharing service,” Sustainable Cities and Society, vol. 42, pp. 148–161, 2018.

[15] Z. Y. Meng, E. Y. Li, and R. Qiu, “Environmental sustainability with free-floating carsharing services: an on-demand refueling recommendation system for Car2go in Seattle,” Technological Forecasting and Social Change, vol. 152, pp. 1–16, 2020.

[16] D. Kim, J. Ko, and Y. Park, “Factors affecting electric vehicle sharing program participants’ attitudes about car ownership and program participation,” Transportation Research Part D: Transport and Environment, vol. 36, pp. 96–106, 2015.

[17] M. Barth, S. A. Shaheen, T. Fukuda, and A. Fukuda, “Car-sharing and station cars in Asia: Overview of Japan and Singapore,” Transportation Research Record, vol. 1986, pp. 106–115, 2006.

[18] M. Ampudia-Renuncio, B. Guirao, and R. Molina-Sánchez, “The impact of free-floating carsharing on sustainable cities: analysis of first experiences in Madrid with the university campus,” Sustainable Cities and Society, vol. 43, pp. 462–475, 2018.

[19] F. Tuan Seik, “Vehicle ownership restraints and car sharing in Singapore,” Habitat International, vol. 24, no. 1, pp. 75–90, 2000.

[20] S. A. Shaheen and A. P. Cohen, “Growth in worldwide carsharing: an international comparison,” Transportation Research Record, vol. 1992, no. 1, pp. 81–89, 2007.

[21] J. Zhou, “An analysis of university employee car-sharers in Los Angeles,” Transportation Research Part D: Transport and Environment, vol. 17, no. 8, pp. 588–591, 2012.

[22] S. A. Shaheen, L. A. Cano, and M. L. Camel, “Electric vehicle carsharing in a senior adult community in San Francisco bay area,” in Proceedings of the 92th Annual Meeting of the Transportation Research Board, Washington, DC, USA, June 2013.

[23] S. Kramer, C. Hoffmann, T. Kuttler, and M. Hendzlik, “Electric car sharing as an integrated part of public transport: customers’ needs and experience,” Evolutionary Paths Towards the Mobility Patterns of the Future, Springer Berlin Heidelberg, Berlin, pp. 101–112, 2014.

[24] C. Morency, M. Trepanier, B. Agard, and B. Martin’s, “Car sharing system: what transaction datasets reveal on users’ behaviors,” in Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference, pp. 284–289, Bellevue, WA, USA, 2007.

[25] C. Morency, K. M. N. Habib, V. Grasset, and M. T. Islam, “Understanding members’ carsharing (activity) persistency by using econometric model,” Journal of Advanced Transportation, vol. 46, no. 1, pp. 26–38, 2012.

[26] Y. Kawajiri, R. Kanamori, T. Yamamoto, and T. Morikawa, “Analysis of carsharing users’ behavior by operation management data,” Journal of Japan Society of Civil Engineers, vol. 70, no. 5, pp. 487–500, 2014.

[27] S. Schmöller, S. Weikl, J. Müller, and K. ogenberger, “Empirical analysis of free-floating carsharing usage: the Munich and Berlin case,” Transportation Research Part C: Emerging Technologies, vol. 56, pp. 34–51, 2015.

[28] C. Willing, K. Klemmer, T. Brandt, and D. Neumann, “Moving in time and space - location intelligence for car-sharing decision support,” Decision Support Systems, vol. 99, pp. 75–85, 2017.

[29] G. Wielinski, M. Trépanier, and C. Morency, “Exploring service usage and activity space evolution in a free-floating carsharing service,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2673, no. 8, pp. 36–49, 2019.

[30] M. Ampudia-Renuncio, B. Guirao, R. Molina-Sánchez, and C. Engel de Álvarez, “Understanding the spatial distribution of free-floating carsharing in cities: analysis of the New Madrid experience through a web-based platform,” Cities, vol. 98, pp. 1–22, 2020.

[31] D. Jorge, G. Molnar, and G. H. de Almeida Correia, “Trip pricing of one-way station-based carsharing networks with zone and time of day price variations,” Transportation Research Part B: Methodological, vol. 81, pp. 461–482, 2015.

[32] K. Huang, G. H. d. A. Correia, and K. An, “Solving the station-based one-way carsharing network planning problem with relocations and non-linear demand,” Transportation Research Part C: Emerging Technologies, vol. 90, pp. 1–17, 2018.

[33] C. Riccardo and D. Marco, “Substitution and complementarity patterns between traditional transport means and car sharing: a person and trip level analysis,” Transportation, vol. 2018, pp. 1–18, 2018.

[34] F. Zhou, Z. Zheng, J. Whitehead, R. K. Perrons, S. Washington, and L. Page, “Examining the impact of car-sharing on private vehicle ownership,” Transportation Research Part A: Policy and Practice, vol. 138, pp. 322–341, 2020.

[35] T. Jain, G. Rose, and M. Johnson, “Changes in private car ownership associated with car sharing: gauging differences by residential location and car share typology,” Transportation, vol. 1, pp. 1–25, 2021.

[36] M. Li and J. Zhao, “Gaining acceptance by informing the people? Public knowledge, attitudes, and acceptance of transportation policies,” Journal of Planning Education and Research, vol. 39, no. 2, pp. 166–183, 2017.

[37] L. A. Guzman, J. Arellana, and V. Alvarez, “Confronting congestion in urban areas: developing Sustainable Mobility Plans for public and private organizations in Bogotá,” Transportation Research Part A: Policy and Practice, vol. 134, pp. 321–335, 2020.

[38] X. Hu, X. Zhu, Y.-C. Chiu, and Q. Tang, “Will communication and incentive affect traveler’s day-to-day departure time decisions? An empirical study of decision making evolution
process,” *International Journal of Sustainable Transportation*, vol. 14, no. 6, pp. 403–412, 2020.

[39] C. Wu, Y. Pei, and J. Gao, “Evolution game model of travel mode choice in metropolitan,” *Discrete Dynamics in Nature and Society*, vol. 2015, pp. 1–11, Article ID 638972, 2015.

[40] H. Gong and W. Jin, “Analysis of urban car owners commute mode choice based on evolutionary game model,” *Journal of Control Science and Engineering*, vol. 2015, pp. 1–5, Article ID 291363, 2015.

[41] W. Zhang, R. C. He, C. X. Ma, and M. Gao, “Research on taxi driver strategy game evolution with carpooling detour,” *Journal of Advanced Transportation*, vol. 2018, Article ID 2385936, 2018.

[42] Q. R. Li, Y. Y. Wang, K. Li, L. Chen, and Z. Wei, “Evolutionary dynamics of the last mile travel choice,” *Physica A*, vol. 536, Article ID 122555, 2019.

[43] J. Maynard Smith, “The theory of games and the evolution of animal conflicts,” *Journal of Theoretical Biology*, vol. 47, no. 1, pp. 209–221, 1974.

[44] J. M. Smith and G. R. Price, “The logic of animal conflict,” *Nature*, vol. 246, no. 5427, pp. 15–18, 1973.

[45] H. Z. Guan and L. Pu, “A drivers’ choice behavior model based on evolutionary game theory,” *Journal of Beijing University of Technology*, vol. 36, no. 9, pp. 1077–1083, 2010.

[46] D. Kim, Y. Park, and J. Ko, “Factors underlying vehicle ownership reduction among carsharing users: a repeated cross-sectional analysis,” *Transportation Research Part D: Transport and Environment*, vol. 76, pp. 123–137, 2019.

[47] W. Luo, L. Sun, M. Shi, L. Yao, and J. Rong, “An investigation into electric vehicle timeshare rental schemes in Beijing, China,” *Proceedings of the Institution of Civil Engineers - Engineering Sustainability*, vol. 173, no. 2, pp. 73–83, 2020.

[48] F. Liao, E. Molin, H. Timmermans, and B. van Wee, “Car-sharing: the impact of system characteristics on its potential to replace private car trips and reduce car ownership,” *Transportation*, vol. 47, no. 2, pp. 935–970, 2020.

[49] M. D. Guillen, H. Ishida, and N. Okamoto, “Is the use of informal public transport modes in developing countries habitual? An empirical study in Davao City, Philippines,” *Transport Policy*, vol. 26, no. 3, pp. 31–42, 2013.

[50] P. D. Taylor, “Evolutionarily stable strategies with two types of player,” *Journal of Applied Probability*, vol. 16, no. 1, pp. 76–83, 1979.

[51] P. D. Taylor and L. B. Jonker, “Evolutionary stable strategies and game dynamics,” *Mathematical Biosciences*, vol. 40, no. 1-2, pp. 145–156, 1978.

[52] M. J. Osborne, *An Introduction to Game Theory*, Oxford University Press, New York, 2004.

[53] D. Friedman, “Evolutionary games in economics,” *Econometrica*, vol. 59, no. 3, pp. 637–666, 1991.

[54] G. Hirte and S. Tscharaktschiew, “The optimal subsidy on electric vehicles in German metropolitan areas: a spatial general equilibrium analysis,” *Energy Economics*, vol. 40, no. 2, pp. 515–528, 2013.

[55] F. Wang, Z. Mao, and D. Wang, “Residential relocation and travel satisfaction change: an empirical study in Beijing, China,” *Transportation Research Part A: Policy and Practice*, vol. 135, pp. 341–353, 2020.

[56] A. Zhang, J. E. Kang, and C. Kwon, “Multi-day scenario analysis for battery electric vehicle feasibility assessment and charging infrastructure planning,” *Transportation Research Part C: Emerging Technologies*, vol. 111, pp. 439–457, 2020.