МАТЕРИАЛЫ
IV Международной трансдисциплинарной научно–практической WEB–конференции
«CONNECT–UNIVERSUM–2018»

ЦИФРОВОЙ
БРЕНД-МЕНЕДЖМЕНТ
ТЕРРИТОРИЙ: ГЛОБАЛЬНЫЙ
И ЛОКАЛЬНЫЙ АСПЕКТЫ

29–30 ноября 2018 года

Национальный исследовательский
Томский государственный университет
Кафедра социальных коммуникаций
REPUTATION MANAGEMENT OF ACADEMIA AS A “TERRITORY OF PROGRESSIVE SCIENCE”. HOW TO PROTECT SCIENTIFIC COMMUNITY AND SOCIETY

Sergei A. Samoilenko, Immediate Past President of the Eurasian Communication Association of North America (ECANA), Faculty Advisor for the Public Relations Student Society of America (PRSSA), Co-Chair of the University Relations Committee at the Public Relations Society of America-NCC, Judge of the National Bateman Public Relations Case Study Contest, George Mason University (USA, Fairfax). E-mail: ssamoyle@gmu.edu

Abstract. Academic communities are extremely fragile in the age of social media. The complex nature of highly-mediated events often impedes university public relations departments from controlling for multiple risks. Many universities appear to have “a glass jaw” when faced with reputation crises. Multiple attacks on academic institutions significantly impact the regional brands of their local communities. Continuous exposure to misinformation and reputational attacks produce cognitive dissonance, uncertainty and psychological discomfort among city and county residents, and the local authorities. At George Mason University, the Climate Change Communication Center is a target for contrarians. Climate change deniers attempt to discredit scholars through character attacks and promote ideas of a global warming conspiracy. Corporate campaigns, known as science bending target science and scientific communities in their ideological or economic attacks on research. Climate change deniers rely on a common set of techniques to dispute the science and climate change scientists including “fake” experts, fallacious arguments and and cherry-picking scientific data. The George Mason University Character Assassination and Reputation Politics (CARP) Research Lab was founded to examine these issues in its academic mission to facilitate scientific research, theory and practice concerning defamation across disciplinary boundaries. This paper discusses how the virtual research lab is helping the university to maintain its regional brand and reputation through research, education, and risk assessment.

Keywords: reputation management; reputational attacks; reputation crisis; scientific community; regional brand; corporate campaign.

In April 2017, thousands of scientists took to the streets in Washington, DC, and more than 600 other cities worldwide in a unanimous March for Science to express their strong opinion regarding mounting pressure on science, scientists and evidence-based policy-making. Lately, there is increasing concern from climate change scientists over the Trump administration’s position on important policies put in place by its predecessors. The Clean Power Plan, an Obama-administration policy aimed at limiting carbon dioxide emissions from power plants, is one such policy. In addition, there are several reports of increasing harassment and character attacks against climate change scientists. The most prominent example is Dr. Michael Mann, a climate scientist from Pennsylvania State University (Milman, 2017).

Science Communication & Modern Media Culture. In 2017, the CARP Research Lab’s at George Mason University published a research report (Icks, Keohane, Samoilenko, Shiraev, 2017) that featured critical input from practitioners in crisis management, journalism, and public relations. The report concludes that the contemporary media environment is conducive to the spread of incivility and misinformation as character-centered competition continues to prevail in political discourse. Internet subcultures and various gated communities take advantage of the current media ecosystem to manipulate news frames, set agendas and propagate ideas (Marwick and Lewis 2017). The media’s dependence on social media analytics, sensationalism, and clickbait makes them even more vulnerable to manipulation and deception.

In the United States, various special interest groups have a long history of science bending (McGarity and Wagner 2012), and targeting scientific communities with ideological or economic attacks on research. These groups support a range of legal and financial tactics to suppress research and discredit scientists. Lewandowsky et al. (2012) use the term “seepage” to describe the infiltr-
tion of non-scientific claims into scientific work and its effect on the scientific community. According to Cook (2015), climate deniers rely on a common set of techniques to dispute the science and climate change scientists, including “fake” experts, fallacious arguments and convenient frames, supporting global conspiracy theories, cherry-picking scientific data, and so on. For example, climate change contrarians support a persistent myth that global warming has stopped in recent decades by focusing only on a short time period. This ignores the long-term trend as well as the many warming indicators telling us that our planet continues to build up heat.

Media Literacy & Science by the Numbers. Our constant daily information avalanche and cognitive overload make it easier than ever before to confuse and misinform the public about scientific research. A 2016 study by Stanford researchers (Domonoske, 2016) found that more than 80 percent of high school students were unable to distinguish between sponsored content and real news stories. While many Americans are confused about basic facts, 23 percent of them have contributed to misinformation by sharing fake news – either knowingly or not (Barthel, Mitchell, & Holcomb 2016). Misinformation can undermine a well-functioning democracy. For instance, public misconceptions of climate change can lead to lowered acceptance of the reality of climate science and lowered support for mitigation policies. This possibility is worsened by decreasing scientific literacy – only 20–25 percent of Americans (Dean, 2005) can read and understand the science section of The New York Times.

A Solution in Five Strategies. There are several ways to address an alarming trend of intentional misinformation and character assassination targeting the scientific community.

Firstly, we should support academic science communication programs helping bridge the gap between science and the public. These programs will help many scientists engage the public with their ideas, work effectively with media and use social media to promote their work. Likewise, they connect competent science communicators with broad experience in journalism or public relations with government agencies, private companies and non-profit organizations. For example, George Mason University offers the concentration in science communication, focusing on public controversies about science, citizen science initiatives, and strategies and tactics to present science-related topics to non-experts.

Secondly, we should further invest in media literacy education to help the public develop critical skills for analyzing the quality of mass media, popular culture and digital media. In other words, we should examine and study how to raise good information consumers by teaching people how to understand, analyze, evaluate and produce media messages. By highlighting the importance of being a responsible, aware and active media consumer, we will raise conscious citizens and participants in domestic and global communities. For example, many Canadian elementary and high school programs teach students several approaches to media literacy, including how to detect fake news (Brunhuber, 2017). Another example is WNYC public radio stations, which provide weekly investigations into how the media shapes our worldview. Their Breaking News Consumer’s Handbook offers some tips for how, in the wake of a big, tragic story, one can sort good information from bad.

Thirdly, we should support and test various fact-checking initiatives and platforms intended to determine the veracity and accuracy of factual statements in political and scientific texts. For example, FactCheck.org, a project of the Annenberg Public Policy Center of the University of Pennsylvania, aims to reduce the level of deception and confusion in U.S. politics and increase public knowledge and understanding of politics. They monitor the factual accuracy of major U.S. political players’ statements in the form of TV ads, debates, speeches, interviews and news releases. Once they find a potentially inaccurate or misleading statement, they then ask the person or organization for evidence corroborating the suspect statement. FactCheck.org’s SciCheck feature focuses exclusively on false and misleading scientific claims that are made by partisans to influence public policy.

Fourthly, we should further study and test approaches that neutralize adverse effects of misinformation and protect the scientific community against future character assassination attempts. Two recent studies suggest the use of preemptive inoculation to address ways in which scientific content can be distorted or reframed. The study by Cook, Lewandowsky, and Ecker (2017)
explored the impact of misinformation about climate change and tested several preemptive interventions designed to reduce the influence of misinformation. They found that inoculating messages that (1) explain the flawed argumentation technique used in the misinformation or that (2) highlight the scientific consensus on climate change were especially effective. The researchers recommend that we should take into account ways in which scientific content can be distorted and include preemptive inoculation messages.

Similarly, Compton (2017) introduced a framework for combining existing scholarship in image repair, inoculation theory and character assassination at the recent CARP 2017 conference. His work considers whether inoculation could expand the scope of conventional image repair efforts as a way to not only repair a damaged image post hoc, but also to preemptively confer resistance to future challenges. His recent study explores how inoculation might be used to protect against character assassination and how inoculation might function as character assassination—both implicitly (i.e., source derogation effects of conventional inoculation treatments) and explicitly (i.e., attacks made on a source’s motives).

Finally, we should further study how deceptive communication and character assassination are deliberately employed by pragmatic actors to attain their goals within the current media ecosystem. Because social media changes news consumption preferences, researchers need to further explore digital consumers’ content preferences. Different forms of visual distortion illustrating deceptive content should be addressed more closely to better understand how they add another spin on frames about public policies, scientific evidence and other complex issues. The new Routledge handbook by the Lab for Character Assassination and Reputation Politics Research will address and several other questions. Divided into five substantive sections, the editors and contributors to this volume have gathered cases and scientific insights to track many common CA characteristics, including the motives, strategies, and methods throughout history.

References

1. Barthel, M., Mitchell, A., & Holcomb, J. (2016). Many Americans believe fake news is sowing confusion. Pew Research Center. Retrieved from http://www.journalism.org/2016/12/15/many-americans-believe-fake-news-is-sowing-confusion/
2. Compton, J. (2017). Image prepare: Image repair, inoculation theory, and anticipated attacks on credibility. The International Journal of the Image, 8(1), 1-9.
3. Cook, J. (2015, July 22). The five telltale techniques of climate change denial. CNN, Retrieved from http://www.cnn.com/2015/07/22/opinions/cook-techniques-climate-change-denial/index.html
4. Cook J., Lewandowsky S., Ecker U.K.H. (2017). Neutralizing misinformation through inoculation: Exposing misleading argumentation techniques reduces their influence. PLoS ONE, 12(5), Retrieved from https://doi.org/10.1371/journal.pone.0175799
5. Dean, C. (2005, August 30). Scientific savvy? In U.S., not much. The New York Times, Retrieved from https://www.nytimes.com/2005/08/30/science/scientific-savvy-in-us-not-much.html
6. Domonoske, C. (2016, November 23). Students have ‘dismaying’ inability to tell fake news from real, study finds. NPR, Retrieved from https://www.npr.org/sections/thetwo-way/2016/11/23/503129818/study-finds-students-have-dismaying-inability-to-tell-fake-news-from-real
7. Icks, M., Keohane, J., Samoilenko S.A., & Shiraev E. (2017). Character assassination in theory and practice. Conference Report. George Mason University. Retrieved from https://bit.ly/2QGyDqY
8. Lewandowsky, S., Oreskes, N., Risbey, J.S., Newell, B.R., & Smithson, M. (2015). Seepage: Climate change denial and its effect on the scientific community. Global Environmental Change, 33, 1-13.
9. Marwick, A., & Lewis, R. (2017). Media manipulation and disinformation online. Data and Society Research Institute. Retrieved from https://datasociety.net/output/media-manipulation-and-disinfo-online/
10. McGarity, T. O., & Wagner, W.E. (2012). Bending science: How special interests corrupt public health research. Harvard, MA: Harvard University Press.
11. Milman, O. (2017, February 22). Climate scientists face harassment, threats and fears of ‘McCarthyist attacks. The Guardian, Retrieved from https://www.theguardian.com/environment/2017/feb/22/climate-change-science-attacks-threats-trump
12. Samoilenko, S.A., Icks, M., Keohane, J., & Shiraev, E. (in print). Routledge handbook of character assassination and reputation management. London: Routledge.