Case Report

Sleeve Gastrectomy in a Patient with Obesity and Ehlers-Danlos Syndrome: A Case Report

Amanda Belluzzi* and M Foletto
Bariatric Unit-Padova University Hospital, Italy

ARTICLE INFO

Article history:
Received: 25 June, 2020
Accepted: 9 July, 2020
Published: 20 July, 2020

Keywords:
Obesity
bariatric surgery
Ehlers-Danlos syndrome
gastroesophageal reflux
sleeve gastrectomy

ABSTRACT

Ehlers-Danlos syndrome (EDS) is an inherited connective tissue disorder with a huge variety of signs and symptoms. Gastrointestinal manifestations may be present in up to 50% of patients. We here report bariatric surgery in a patient with EDS, focusing on management challenges, preoperative assessment and one-year outcome. A 56-year-old woman with hypermobility-type (HM) EDS, BMI 42.5 kg/m² and hypertension underwent laparoscopic sleeve gastrectomy (LSG). She was uneventfully discharged on POD3. One-year after the operation her BMI was 28.3 kg/m² and hypertension receded. Postoperative upper GI series (POD-60) did show neither reflux nor esophageal dysmotility. Bariatric surgery in patients with EDS can be challenging due to the potential risks of wound healing. Proper preoperative assessment and follow up should be strongly recommended.

Background

Ehlers-Danlos syndrome (EDS) is described by the Ehlers-Danlos National Foundation as a “heterogeneous group of inheritable connective tissue disorders characterized by articular hypermobility, skin extensibility and tissue fragility [1]. The incidence of EDS is approximately 1 in 5000 births. Formerly divided EDS into 11 subgroups according to clinical phenotype, the latest classification, published in 1998, recognizes 6 EDS subtypes, based on clinical characteristics, such as joint laxity, vascular manifestations, kyphoscoliosis, arthrochalasia and dermatosparaxis, pattern of inheritance, molecular and biochemical findings [1]. The most common subtype is the hypermobility type (HM, formerly type III) which comprises 90% of all diagnosed EDS patients. The main manifestations of EDS include hyperextensible skin, atrophic scars, easy bruising, joint hypermobility and variable involvement of internal organs.

Gastrointestinal involvement is a well-known complication of EDS. Patients can show either organic issues such as hiatal hernia, visceroptosis, rectoceles and rectal prolapse or functional problems such as altered gut motility. The association between HM-EDS and GI symptoms was first described by Hakim and Grahaem [2]. They found that HM-EDS patients had a significant increase in GI symptoms compared to age and sex-matched controls (37% vs. 11%). The most common GI symptoms were nausea, abdominal pain, constipation and diarrhea. Direct evidence of the association between functional GI disorders and HM-EDS was firstly reported by a group of gastroenterologists [3]. The main upper GI complications are megaoesophagus, esophageal, gastric or small bowel diverticula, hiatal hernia, gastric bleeding and ulcers, perforation or hematoma of the GI tract spontaneously or after surgery [4].

Case Report

A 56-year-old woman with HM-EDS and BMI of 42.5 kg/m² was referred to our Bariatric Unit for morbid obesity. Her only comorbidity was hypertension treated with diuretics and Ca channel blockers. She complained mild epigastric pain with episodic heartburn, without dysphagia. Pre-operatively, she underwent upper GI endoscopy that showed a small sliding hiatal hernia, chronic atrophic antral gastropathy with the absence of Helicobacter pylori, while a barium swallow (Figure 1) did not confirm the presence of hiatal hernia. No esophageal dysmotility but a regular esophageal clearance was evident.
EDS with predominant vascular type, less in the remaining subtypes [9]. In our case, no complication occurred. Considering late complications, spontaneous oesophageal perforation, oesophageal diverticula, megaesophagus, gastric atony, megaduodenum, small bowel dilation, megacolon and delayed gastric emptying are reported [1, 10, 11].

In our case we chose LSG taking into consideration the clinical conditions and past medical history of the patient. This operation is considered less invasive than Roux-en-Y gastric bypass, involving less tissue manipulation, no anastomosis but only a single long staple line. Moreover, the patient had no history of type 2 diabetes, and obstructive sleep apnoea syndrome and matched the selection criteria for bariatric surgery [12].

Despite the potential challenges posed by surgery on EDS patients, 1-year outcome was very satisfactory, as for comorbidity resolution (hypertension) and weight loss. Further research, longer follow-up periods and more cases are needed to confirm the safety and efficacy of LSG on EDS patients with obesity.

Conclusion

Bariatric surgery on patients with EDS can be challenging and stimulating at the same time. A patient with EDS and morbid obesity may increase the engagement and commitment of the multidisciplinary team, well aware of the potential surgical risks but less aware of the management of EDS-related surgical complications. Accordingly, a strict follow-up policy is advisable in order to assess any eventual postoperative issues.

REFERENCES

1. P Beighton, A De Paepe, B Steinmann, P Tsipouras, R J Wenstrup (1998) Ehlers-Danlos Syndromes: revise nosology. Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK). Am J Med Genet 77: 31–37. [Crossref]
2. A J Hakim, R Grahame (2004) Non-musculoskeletal symptoms in joint hypermobility syndrome. Indirect evidence for autonomic disfunction? Rheumatology (Oxford) 43: 1194–1195. [Crossref]
3. N Zarate, A D Farmer, R Grahame, S D Mohammed, C H Knowles et al. (2009) Unexplained gastrointestinal symptoms and joint hypermobility: Is connective tissue the missing link? Neurogastroenterol Motil 22: e78. [Crossref]
4. Sandy Fogel (2013) Surgical failures: is it the surgeon or the patient? The all too often missed diagnosis of Ehlers-Danlos Syndrome. Am Surg 79: 608–613. [Crossref]
5. A D Nelson, M A Mouchli, N Valentin, D Deyle, P Pichurin et al. (2015) Ehler Danlos syndrome and gastrointestinal manifestations: a 20-year experience at Mayo Clinic. Neurogastroenterol Motil 27: 1657–1666. [Crossref]
6. J A Solomon, L Abrams, G R Lichtenstein (1996) GI manifestations of Ehlers Danlos Syndromes. Am J Gastroenterol 91: 2282-2288. [Crossref]
7. Jakob Burcharth, Jacob Rosenberg (2012) Gastrointestinal Surgery and Related Complications in Patients with Ehlers-Danlos Syndrome: A Systematic Review. Dig Surg 29: 349–357 [Crossref]
8. R K Freeman, J Swegle, M J Sise (1996) The surgical complications of Ehlers-Danlos Syndrome. AM Surg 62: 869-873. [Crossref]

9. Saikiran M Kilaru, Kenneth J Mukamal, Judy W Nee, Sveta S Oza, Anthony J Lembo et al. (2019) Safety of Endoscopy in Heritable Connective Tissue Disorders. Am J Gastroenterol 114: 1343-1345. [Crossref]

10. Marie-Louise Kulas Søborg, Julie Leganger, Jacob Rosenberg, Jakob Burchardt (2017) Increased Need for Gastrointestinal Surgery and Increased Risk of Surgery-Related Complications in Patients with Ehlers-Danlos Syndrome: A Systematic Review. Dig Surg 34: 161-170. [Crossref]

11. R L McEntyre, J G Raffensperger (1977) Surgical complications of Ehlers-Danlos syndrome in children. J Pediatr Surg 12: 531-535. [Crossref]

12. National Institute for Health and Care Excellence (2014) Obesity: Identification, Assessment and Management of Overweight and Obesity in Children, Young People and Adults. Clinical Guideline CG 189. London: NICE. [Crossref]