Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments

Miwa Suzuki1 · Yuya Tachibana1,2 · Ken-ichi Kasuya1,2

Received: 20 June 2020 / Revised: 19 July 2020 / Accepted: 21 July 2020 / Published online: 7 September 2020
© The Author(s) 2020. This article is published with open access

Abstract
Approximately 4.8–12.7 million tons of plastic waste has been estimated to be discharged into marine environments annually by wind and river currents. The Ellen MacArthur Foundation warns that the total weight of plastic waste in the oceans will exceed the total weight of fish in 2050 if the environmental runoff of plastic continues at the current rate. Hence, biodegradable plastics are attracting attention as a solution to the problems caused by plastic waste. Among biodegradable plastics, polyhydroxyalkanoates (PHAs) and poly(ε-caprolactone) (PCL) are particularly noteworthy because of their excellent marine biodegradability. In this review, the biosynthesis of PHA and cutin, a natural analog of PCL, and the biodegradation of PHA and PCL in carbon cycles in marine ecosystems are discussed. PHA is biosynthesized and biodegraded by various marine microbes in a wide range of marine environments, including coastal, shallow-water, and deep-sea environments. Marine cutin is biosynthesized by marine plants or obtained from terrestrial environments, and PCL and cutin are biodegraded by cutin hydrolytic enzyme-producing microbes in broad marine environments. Thus, biological carbon cycles for PHA and PCL exist in the marine environment, which would allow materials made of PHA and PCL to be quickly mineralized in marine environments.

Marine environments are likely to be filled with plastics

Plastics are used in various aspects of our lives and are indispensable. In 2018, the global production of plastics reached 359 million ton [1]. Compared to when the industrial production of plastics began in 1950, there are currently ~200 times as many plastic products produced every year [2]. It has also been estimated that 300 million tons of plastic waste is generated annually, of which 79% is disposed of in landfills or discharged into the environment [3, 4]. In addition, 4.8–12.7 million tons of plastic waste, equivalent to 1.7–4.6% of that generated by coastal countries, is estimated to be discharged annually into the marine environment by wind and river currents [5]. Moreover, ~70% of the garbage at 37 ocean sampling points around the world have been found to be made up of plastics [6]. The Ellen MacArthur Foundation warns that the total weight of plastic waste in the oceans will exceed the total weight of fish in 2050 if the environmental runoff of plastic continues at this rate [7]. Large pieces of plastic debris spilled into the marine environment can be inadvertently ingested by or entangled with wildlife, causing their populations to decline and ultimately destroying the ecosystem. In particular, lost and found fishing gear (abandoned, lost, or otherwise discarded fishing gear: ALDFG), which is estimated to account for ~10% of marine plastic debris, continue to drift and entrap organisms in the ocean (ghost fishing), leading to significant economic problems [8]. In addition, persistent organic pollutants (POPs), which exist at low concentrations in the ocean, are concentrated on the surfaces of plastics discharged into the marine environment due to the hydrophobic properties of the plastic surface [9]. Plastic beads or pieces of plastic with a size of <5 mm spilled into the environment are called microplastics. There are concerns that if POPs present on microplastics are ingested by wildlife, they could be concentrated and stored in cells and tissues [10], eventually
entering the human body through the food chain and resulting in adverse health effects [11].

Definition of biodegradable plastics

Biodegradable plastics are attracting attention as one of the solutions to the problems caused by plastic waste. Biodegradable plastics are materials degraded by the actions of microorganisms in the environment that are finally converted into inorganic substances. In general, the conversion rate of a material from an organic to an inorganic substance determines whether the material is a biodegradable plastic.

The degradation of biodegradable plastics proceeds in two stages (Fig. 1). The first stage is the degradation of the main chain of the polymer by microbial hydrolytic enzymes or nonbiological hydrolysis and the consequent formation of molecules of a size that can be taken up by microorganisms. The second stage is the mineralization of the decomposed products during catabolism, i.e., their conversion into carbon dioxide, nitrogen oxide, methane, and water [12]. Most of the international methods for evaluating the biodegradability of plastics are based on the quantification of carbon dioxide production or biochemical oxygen demand during the decomposition process [13].

Enzymatic and environmental degradability of biodegradable plastics

Table 1 [14–19] shows the properties of biodegradable plastics. Biodegradable plastics are obtained by microbial synthesis and chemical synthesis (Fig. 2). Poly(3-hydroxyalkanoate) (PHA) is produced by microorganisms as an energy storage material. In contrast, poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PESu), poly(butylene succinate) (PBSu), poly(butylene succinate-co-adipate) (PBSA), poly(butylene adipate-co-terephthalate) (PBAT), and poly(lactic acid) (PLA) are produced from petroleum or biomass via chemical synthesis. Biodegradable plastics are hydrolyzed by enzymes produced by microorganisms [20]. However, chemically synthesized biodegradable plastics do not have a dedicated degradation enzyme, unlike PHA [21]. Chemically synthesized biodegradable plastics are recognized and hydrolyzed in the environment as substrate analogs by lipases, which use fat as a substrate, and by cutinases, which uses the polyester cutin (present in the cuticular layer of plants), as a substrate [22–29] (Table 2).

Due to its structural similarity to polyalanine, PLA can also be degraded by some types of proteolytic enzymes, such as Proteinase K [30, 31] (Table 2).

Biodegradable plastics have different degradation rates in different environments, depending on their type (Table 3) [32–39].

With the exception of PHA and PCL, the biodegradation rate of such plastics in a marine environment is generally low. This means that many products currently available as biodegradable plastics cannot be readily degraded in marine environments. Therefore, there is a concern that they may damage the marine ecosystem in a manner similar to the damage caused by commodity plastics. In addition to the aliphatic polyesters PHA and PCL, several polymers, such as cellulose [40–42], agarose [43, 44], proteins [45], and poly(vinyl alcohol) (PVA) [46], have been suggested to exhibit relatively high biodegradability in marine environments.

This review focuses on two biodegradable polyesters, PHA and PCL, because they have clear carbon cycles in marine ecosystems and could be used as thermoplastics. The biosynthesis of PHA and cutin as a natural analog of PCL, as well as the biodegradation of PHA and PCL in carbon cycles, are described in a marine ecosystem.

What is PHA?

Some bacteria and archaea produce PHA, a type of aliphatic polyester, as an energy storage material when nutrient sources such as nitrogen and phosphate are suppressed due to the presence of excessive carbon sources in the environment [14]. In PHA-producing bacteria, PHA exists in an amorphous state as native PHA granules [47]. Once these granules are extracted from the cells with solvent, they are partially crystallized and used as a biodegradable thermoplastic. A variety of PHAs with different structures are produced depending on the type of bacterial species and carbon source provided [48]. Based on the number of carbons present in a monomer, PHA can be classified into three groups: short-chain PHA (≤5 carbons), medium-chain PHA (6–14 carbons), and long-chain PHA (more than 15 carbons). Among them, a homopolymer composed of 3-hydroxyalkanoic acid, known as poly(3-hydroxyalkanoic acid), is an example of a PHA.
Table 1 Properties of biodegradable and commodity plastics

Plastic	Synthetic method	Biodegradability	Melting point (°C)	Tensile strength (MPa)	Elongation at break (%)	Reference(s)
P(3HB)	Microbial synthesis	+a	180	43	5	[14]
PCL	Chemical synthesis	+a	56–65	4–785	20–1000	[15]
PBSu	+a	114	19.3	375		[16]
PBSA	+a	45.4–97.2	8.1–17.3	310–450		[16]
PBAT	+a	110–115	32/36	580/820		[17]
PLA	+a	120–170	53–70	10–100		[18]
HDPE^b	–c	120–140	14.5–38	2–130		[19]
LDPE^d	–c	105–116	40–78	90–800		[19]
PP^e	–c	160–176	26–41.1	15–700		[19]

^aBiodegradable or compostable plastics
^bHDPE high density polyethylene
^cNonbiodegradable commodity plastics
^dLDPE low density polyethylene
^ePP polypropylene

Fig. 2 Chemical structures of biodegradable plastics

![Microbially synthetic biodegradable polyesters](image1)

![Chemosynthetically biodegradable polyesters](image2)

Table 2 Relationship between biodegradable plastics and the enzymes that degrade them

Biodegradable plastic(s)	Degrading enzymes	Original substrates	Reference(s)
P(3HB)	P(3HB) depolymerases	P(3HB)	[20, 21]
PCL, PBSu, PBSA, PBAT	Cutinases triacylglycerols	Cutin	[22, 23–29, 157]
PLA	Proteases Proteins		[30, 31]

Table 3 Environmental biodegradability of biodegradable plastics

Plastic	Soil	Freshwater	Seawater	Reference(s)
P(3HB)	+	+	+	[32–34]
PCL	+	+	+	[32, 34–36]
PBSu	+	±	–	[32, 34, 35, 37]
PBSA	+	+	±	[32, 37]
PBAT	±	±	–	[32, 38, 39]
PLA	–	–	–	[32, 35, 39]

+ high biodegradability in various environments, ± low biodegradability, – very little or no biodegradability
| Strain | Phylum | Isolated point | PHA produced | Reference |
|------------------------------|-------------------------|--------------------|--------------------|-----------|
| *Affellia marina* | Proteobacteria | Seawater | P(3HB) | [63] |
| *Alcanivorax borkumensis* | Proteobacteria | Seawater sediment | PHA | [64] |
| *Alteromonas lipolytica* | Proteobacteria | Seawater | P(3HB) | [65] |
| *Alteromonas macleodii* MCCB 278 | Firmicutes | Seawater | PHA | [66] |
| *Bacillus cereus* MCCB 281 | Firmicutes | Seawater | PHBV | [66] |
| *Bacillus licheniformis* MSBN12 | Firmicutes | Marine sponge | *Callyspongia diffusa* | [67] |
| *Bacillus megaterium* | Firmicutes | Sediment | PHA | [68] |
| *Bacillus* sp. strain NQ-11/A2, | Firmicutes | Sediment | P(3HB) | [69] |
| *Bacillus thuringiensis* | Firmicutes | Seashore | P(3HB), PHBV | [70] |
| *Brevibacterium casei* MSI04 | Firmicutes | Marine sponge | *Dendrilla nigra* | [71] |
| *Burkholderia* sp. AIU M5M02 | Firmicutes | Shallow sea mud | P(3HB) | [72] |
| *Colwellia psychryrhythraea* | Proteobacteria | Arctic marine sediments | PHA | [73] |
| *Colwellia* sp. JAMM-0421 | Proteobacteria | Deep sea | P(3HB), PHBV | [74] |
| *Desulfobacterium autotrophicum* | Proteobacteria | Sediment | P(3HB), PHBV | [75] |
| *Desulfobotulus sapovorans* | Proteobacteria | Sediment | P(3HB), PHBV | [75] |
| *Desulfococcus multivorans* | Proteobacteria | Sediment | P(3HB), PHBV | [75] |
| *Desulfonema magnam* | Proteobacteria | Sediment | P(3HB), PHBV | [75] |
| *Desulfosarcina variabilis* | Proteobacteria | Sediment | P(3HB), PHBV | [75] |
| *Dinoroseobacter shibae* DFL 12T | Proteobacteria | *Prorocentrum lima* | PHA | [76, 77] |
| *Dinoroseobacter* sp. JL1447 | Firmicutes | *Phaeodactylum tricornutum Bohlin* | P(3HB) | [77] |
| *Erythrobacter citreus* MCCB 277 | Proteobacteria | Seawater | PHA | [66] |
| *Erythrobacter longus* DSMZ 6997 | Proteobacteria | *Enteromorpha linza* | PHA | [77] |
| *Gordonia bronchialis* MCCB 280 | Actinobacteria | Seawater | PHA | [66] |
| *Halomonas hydrothermalis* | Proteobacteria | Seawater | P(3HB) | [78] |
| *Halomonas meridiana* MCCB 282 | Proteobacteria | Seawater | PHA | [66] |
| *Halomonas profundus* | Proteobacteria | Deep sea shrimp | P(3HB), PHBV | [79] |
| *Halomonas* sp. SF2003 | Proteobacteria | Seawater | PHBV | [80] |
| *Labrenzia alexandrii* DFL 11T | Proteobacteria | *Alexandrium lasitanicum* | PHA | [77] |
| *Marinobacter guineae* | Proteobacteria | Seawater | PHA | [63] |
| *Massilia* sp. UMI-21 | Proteobacteria | Seaweed | PHA | [81] |
| *Methylarcula marina* | Proteobacteria | Coastal seawater | P(3HB) | [82] |
| *Methylarcula terricola* | Proteobacteria | Coastal sediment | P(3HB) | [82] |
| *Methylobacterium* sp. | Proteobacteria | Sediment | PHA | [68] |
| *Moritella* sp. JCM21335 | Proteobacteria | Deep sea | PHBV, PHBV-co-PHA | [74] |
| *Neptunomonas antarctica* | Proteobacteria | Sediment | P(3HB) | [83] |
| *Oceanicola granulosus* | Proteobacteria | Seawater | P(3HB) | [84] |
| *Oceanimonas douodoraffii* | Proteobacteria | Seawater | P(3HB) | [85] |
| *Paracoccus homiensis* | Proteobacteria | Sediment | PHA | [68] |
| *Paracoccus seniiphilus* | Proteobacteria | Sediment | PHA | [68] |
| *Photobacterium leiognathi* 208 | Proteobacteria | Seawater | P(3HB) | [86] |
Acid) [P(3HB)], is the most common PHA produced by many microorganisms. P(3HB) is a thermoplastic biodegradable polymer with a melting point of ~180 °C and thermal and mechanical properties similar to those of isotactic polypropylene (PP). P(3HB) is a hard and brittle material with high crystallinity and low elongation at break (~5%) [49]. Copolymerization with another hydroxyalkanoate (HA) unit as a second component can change the thermal and mechanical properties of P(3HB), as the second component can act as a defective factor in its crystal structure, thus reducing the degree of crystallinity [50–52]. For example, in the case of poly(3-hydroxybutanoic-co-17 mol% 3-hydroxyhexanoic acid) (PHBHHx), in which P(3HB) is copolymerized with 3-hydroxyhexanoic acid (3HHx) as the second component, the melting point of PHBHHx decreases from ~180 to 130 °C, and the crystallinity decreases from 60 + 5% to 29 + 5% compared to the P(3HB) homopolymer. At the same time, the tensile strength decreases from 43 to 20 MPa, and the elongation at break changes from 6 to 850% [51, 53]. Thus, P(3HB) can be changed from a hard and brittle material to a flexible material by copolymerization with a second component.

Table 4 (continued)

Strain	Phylum	Isolated point	PHA produced	Reference
Photobacterium leiognathi 683	Proteobacteria	Fish	PHBV	[86]
Photobacterium phosphoreum 1883	Proteobacteria	Fish	P(3HB)	[86]
Pseudoalteromonas sp. SM9913	Proteobacteria	Deep sea sediment	Poly(3-hydroxydecanoate-co-3-hydroxydecanoate)	[87]
Pseudomonas guezennei	Proteobacteria	Marine microbial mat	PHA mainly composed of 3-hydroxydecanoate (64 mol%) and 3-hydroxyoctanoate (24 mol%)	[88]
Pseudomonas sp. CMG607w	Proteobacteria	Sediment	Blend of scl-PHA and mcl-PHA	[89]
Rhodovulum euryhalinum	Proteobacteria	Seawater	PHA	[90]
Rhodovulum sulfidophilum	Proteobacteria	Mud from intertidal flats	PHA	[91]
Rhodovulum visakhapatnamense	Proteobacteria	Seawater	PHBV	[91]
Roseobacter denitrificans OCH 114	Proteobacteria	Enteromorpha linza	PHA	[77]
Roseobacter litoralis OCh 149	Proteobacteria	Seaweed	PHA	[77]
Roseospira goensis	Proteobacteria	Sediment	PHBV	[91]
Saccharophagus degradans ATCC 43961	Proteobacteria	Salt marsh grass	P(3HB)	[92]
Shewanella basaltis	Proteobacteria	Seawater	PHA	[63]
Shewanella surangensis JAMM-0036	Proteobacteria	Deep sea	Oligo PHA	[74]
Sphingopyxis alaskensis	Proteobacteria	Seawater	P(3HB)	[93]
Spirulina subsalsa	Cyanobacteria	Coast	P(3HB)	[94]
Staphylococcus arlettae	Firmicutes	Sediment	PHA	[68]
Staphylococcus cohnnii	Firmicutes	Sediment	PHA	[68]
Thiohalocapsa marina	Proteobacteria	Seawater	P(3HB)	[91]
Vibrio azureus BTKB33	Proteobacteria	Sediment	P(3HB)	[95]
Vibrio harveyi	Proteobacteria	Seawater	P(3HB), PHBV	[86]
Vibrio harveyi MCCB 284	Proteobacteria	Tunicate Phallusia nigra	P(3HB)	[96]
Vibrio parahaemolyticus	Proteobacteria	Seashore	P(3HB)	[70]
Vibrio proteolyticus	Proteobacteria	Seashore	P(3HB), PHBV	[70]
Vibrio sp. BM-1	Proteobacteria	Marine environments	P(3HB)	[97]
Vibrio sp. KN01	Proteobacteria	Seawater	P(3HB), P(3HB-co-5-hydroxyvalerate-co-3-hydroxypropionate)	[98]
Mechanism of PHA biosynthesis

The synthesis of P(3HB) begins with the conversion of 2 molecules of acetyl-CoA to acetoacetyl-CoA catalyzed by β-ketothiolase (PhaA, EC 2.3.1.9). Next, NADPH-dependent acetoacetyl-CoA reductase (PhaB, EC 1.1.1.36) converts acetoacetyl-CoA into the P(3HB) monomer (R)-3-hydroxybutryl-CoA (3HB-CoA), which is polymerized by PHB polymerase (PhaC, EC 2.3.1.-), resulting in the formation of P(3HB) [54]. In addition, the intermediate produced in the fatty acid biosynthetic pathway, (R)-3-hydroxyacyl ACP ((R)-3HA-ACP), is converted to (R)-3HA-CoA by (R)-3HA-ACP transferase (PhaG, EC 2.4.1.-) to provide a PHA monomer [55, 56]. In Aeromonas caviae, also known as a PHBHHx-synthesizing bacteria and a type of Pseudomonas species, (R)-specific enoyl-CoA hydratase (PhaJ, EC 4.2.1.119) hydrates enoyl-CoA, which is an intermediate in the β-oxidation pathway, to produce 3HA-CoA as a PHA monomer [57]. PHA synthase is classified into four classes (I, II, III, and IV). The class I PHA polymerase (EC 2.3.1.B2) from Cupriavidus necator, which shows specificity for (R)-3HA-CoA, a monomer having 3–5 carbons, consists of a homodimeric protein comprising a single subunit (PhaC) with a molecular weight of ~60 kDa [58]. The class II PHA polymerase (EC 2.3.1.B3) from Pseudomonas spp., which shows specificity for (R)-3HA-CoA with 6–14 carbons, is a homodimeric protein consisting of a single subunit (PhaC) with a molecular weight of ~60 kDa [59]. The class III PHA polymerase (EC 2.3.1.B4) from Allochromatium vinosum is a heterodimeric enzyme composed of a 40 kDa PhaC subunit and a PhaE subunit of ~40 kDa, which shows a specificity for (R)-3HA-CoA with 3–5 carbons. The class IV PHA polymerase present in Bacillus megaterium is a heterodimeric enzyme composed of a PhaC subunit of ~40 kDa and a PhaR subunit of ~20 kDa, which has specificity for (R)-3-hydroxyacyl-CoA with 3–5 carbons. However, other PHA monomeric components (3HHx, 3HO, 4HB, 6HHx) are also available as substrates [60, 61].

PHA-producing bacteria in marine environments

Since the discovery by Lemoigne in 1925 that B. megaterium stores P(3HB), several microbes have been found to synthesize PHA in a variety of environments [62]. As listed in Table 4, various species of PHA-synthesizing microorganisms have also been isolated from a wide range of marine environments—from shallow to deep seawater [63–98].

PHA-synthesizing bacteria belonging to the phyla Proteobacteria, Firmicutes, and Actinobacteria have been isolated from shallow water and surrounding marine sediments below a depth of 200 m. Burkholderia sp. AI5M02, isolated from shallow sea mud, can synthesize P(3HB) using mannitol from seaweed as a carbon source [72]. Sulfate-reducing bacteria (SRBs), such as the Desulfococcus–Desulfosarcina group, Desulfococcus multivorans DSM 2059 strain, Desulfobutulans sapovorans DSM 2055 strain, Desulfosarcina variabilis DSM 2060, Desulfitoalbus magnus DSM 2077, and Desulfo bacterium autotrophicum HRM2 strain, which have contributed to carbon and sulfur cycling in the marine environment, have synthesized P(3HB) and PHBV [75]. Halomonas hydrothermalis isolated from coastal waters synthesizes P(3HB) using crude glycerol, a Jatropha biodiesel byproduct, as a carbon source [78]. Massilia sp. UMI-21 isolated from seaweed synthesizes PHA using starch, maltotriose, and maltose as carbon sources [81]. Pseudomonas guexenii isolated from atoll microbial mats uses glucose as a single carbon source to synthesize a medium-chain 3HA copolymer consisting of 3HB, 3HHx, 3-hydroxyoctanoate (3HO), 3-hydroxydecanoate (3HD), 3-hydroxydecanedioate (3Hde), and 3-hydroxydecanedioate (3Hde) [88]. The Vibrio sp. KN01 strain isolated from seawater was found to synthesize P(3HB) using glucose, fructose, gluconic acid, and soybean oil as carbon sources [98]. Thus, PHA-producing bacteria that inhabit shallow waters can synthesize various forms of PHA from carbon sources such as polysaccharides, sugars, organic acids, fatty acids, and glycerol that are derived from either marine plants or from fats/oils and their degradation products.

An oxygen-evolving photosynthetic cyanobacteria, Spirulina subsalsa, has been isolated from shallow seawater as a PHA producer. This strain biosynthesized 5.9% P(3HB) per dry cell weight from carbon dioxide in a marine medium [94]. In addition, aerobic nonoxygenic photosynthetic bacteria (aerobic anoxygenic phototrophic bacteria: AAPB) are widely distributed in marine environments and are known to be PHA producers. Bacteria classified in the genera Dinoroseobacter, Roseobacter, Labrenzia, and Erythrobacter, which are marine AAPBs isolated from marine microalgae, synthesize PHA in the presence of sugars or organic acids. Among them, PHA production by Dinoroseobacter sp. IL1447 increased with light irradiation [77]. Three species of purple sulfur bacteria (Thiohalocapsa marina, Thiophaeococcus mangrovi, and Marichromatium bhemelicum) and nine species of red nonsulfur bacteria (purple nonsulfur bacteria) (Affelli marina, five species of Rhodovulum and three species of Roseospira) were isolated [91]. Likewise, various PHA producers have been found in marine organisms. Photos bacterium phosphoreum is present in the luminescent organs and intestines of fish [86], and bacteria belonging to the genera Vibrio [99], Bacillus [67], and Brevibacterium
that cohabit with sponges have the ability to synthesize PHA.

PHA-producing bacteria have also been isolated from the deep sea, organisms living in the deep sea, and deep seafloor soils, although the numbers of such bacteria are fewer than those found in the shallow sea. Colwellia sp. JMM-0421 and Moritella sp. strain JCM21335, isolated from deep seawater, synthesize PHA from sugars and fats [74]. Pseudoalteromonas sp. SM9913 isolated from deep sea bottom soil synthesized copolymers of 3HD and 3HDD using either glucose, decanoic acid, or olive oil as a single carbon source [87]. Halomonas profundus AT1214, isolated from deep sea hydrothermal vent shrimp, synthesizes P(3HB) from sugars and organic acids [79].

The diversity of the PHA synthase gene, phaC, in seawater from seven sampling sites at a depth of 24–5373 m was assessed by phaC amplicon analysis. A PhaC amino acid sequence fragment encoded by the gene obtained from the marine amplicon analysis revealed that in marine environments, the known class I PhaC homologs from Chromobacterium, Marinobacter, Rhodospirillum, Acetobacteraceae bacterium, Oceanibaculum, and Oceanicualis were the most dominant, followed by the class I PhaC homolog of betaproteobacteria and class I and class II PhaC homologs of gammaproteobacteria [100].

In addition to reports on microbial PHA synthesis in marine environments, marine metagenomic analysis thus suggests that PHA-synthesizing bacteria inhabit a wide range of marine environments, from shallow waters to deep waters, thereby contributing to the production of PHA in the ocean.

Degradation of PHA in marine environments

PHA is known to be highly biodegradable in various marine environments. Microbes that produce extracellular PHA-degrading enzymes [such as P(3HB) depolymerase (EC 3.1.1.75)] are widespread in the ocean. Enzymatic degradation products of PHA are metabolized and mineralized by marine microorganisms. PHA is also produced in the ocean, as mentioned above, and is also degraded and mineralized in the ocean. Therefore, PHA can be regarded as a polymer in which the carbon cycle is established not only in the terrestrial environment but also in the marine environment. Some studies on the biodegradation of PHA in the ocean are given below.

P(3HB), PHBV, and P(3HB-co-4HB) films were installed in a seawater circulation tank in the waters around Jogashima Island, Kanagawa, Japan; the thickness of the films was observed to decrease by 13–22 μm after 3 weeks, and the thickness of the PHBV films was observed to decrease by 100–140 μm after 17 weeks. After 8 weeks of environmental exposure, the weight of the PHBV film decreased by 65% compared to the initial weight, and the elongation at break and the stress at break were zero [101]. However, the molecular weight of the specimens did not change before or after exposure. A P(3HB) film was installed in Akabane Port, Aichi, Japan, and after one week, several craters had appeared. Two weeks later, the weight of the P(3HB) film was reduced by ~60% from the initial weight [102]. When a P(3HB) film was incubated at 25 °C in seawater collected from the Pacific Ocean in Aichi, Japan, 9% of the initial weight was lost after 10 weeks, but the molecular weight and crystallinity of the specimens did not change before and after incubation. Moreover, after 3 weeks of immersion in seawater, the tensile strength of P(3HB) decreased to ~60% of the initial value [103]. After 6 weeks of PHBV film immersion in Baltic Seawater, it was observed that the film weight decreased by 60% compared to the initial weight, and its surface became rougher [104]. When P(3HB) and PHBV films (73 ± 5 mg, 30 mm in diameter, 0.1 mm thick) and injection-molded products (330 ± 25 mg, 10 mm in diameter) were immersed in the South China Sea the weights of the films decreased by 42% and 46%, respectively, after 160 days compared to the initial weights, and the weights of injection-molded parts decreased by 38% and 13%, respectively [105]. After P(3HB), PHBV, and P(3HB-co-4HB) were added to seawater collected from Tokyo Bay and Oarai Beach, Ibaraki, Japan at 25 °C under aerobic conditions for 28 days, the weight of each film decreased by 23–41%, 100%, and 59–70%, respectively, compared to the initial weights. According to the MITI method, the BOD biodegradability of P(3HB), PHBV and P(3HB-co-4HB) reached 14–27%, 78–84%, and 43–51%, respectively, after incubation for 28 days at 25 °C in seawater [34]. When P(3HB) and PHBV were incubated at 30 °C in artificial seawater with 13 marine microbial inoculum sources in accordance with the active standard, ASTM D6691, all samples showed more than 70% degradation after incubation for 40 days. When P(3HB) and PHBV films were incubated in seawater and submarine soil collected from Woods Hole Harbor at 21 °C for 49 days, their weights reduced by ~90% compared to their initial weights. Moreover, after P(3HB) and PHBV films were incubated in a seawater circulation tank in Woods Hole Harbor (12–22 °C, pH 7.9–8.1) for 90 days, their weights decreased by 33–70% compared to their initial weight [106]. BOD biodegradation testing of P(3HB) and its copolymers of seawater samples suggests that there is a positive correlation between biodegradability and temperatures in the range of 10–27 °C [32]. The degradability of PHBV in seawater with submarine soil collected from Lorient harbor in the Atlantic Ocean, France was 90% after 210 days [107].
PHBV fibers were immersed in deep seawater collected from Rausu, Toyama, and Kume, Japan for 12 months, and their tensile strength was measured every 3 months. On the one hand, the tensile strength of PHBV fibers immersed in seawater collected from Kume was completely lost after 3 months. On the other hand, after 3 months of immersion in seawater collected from Toyama, ~80% of the initial tensile strength of PHBV fibers was retained, and ~30% was retained after 12 months. Holes and cracks were found on the surface of the PHBV fibers after immersion in seawater [36]. Thus, PHA was shown to be biodegradable in a wide range of marine environments, including coastal, shallow-water, and deep-sea environments.

Environmental exposure tests of PHBV at four coastal sites in Puerto Rico suggested that the period when PHBV degradation begins is positively correlated to both viable cell counts and PHBV-degrading microbial counts [108]. However, there was no significant difference in the ratio of P(3HB)-degrading microbial counts to viable cell counts in soil, freshwater, or seawater [soil: 0.003–33% (median 4.4, average 9.3); freshwater: 0.59–25% (median 15, average 13); and seawater: 0.24–43.8% (median 2.5, average 9.7)]. The viable cell counts decreased in the following order: soil [1.3 × 10^5–1.6 × 10^6 c.f.u./g (median 5.3 × 10^5, average 1.1 × 10^5)], freshwater [2.3 × 10^2–3.2 × 10^5 c.f.u./g (median 9.6 × 10^3, average 6.9 × 10^4)], and seawater [1.6 × 10^2–3.1 × 10^5 c.f.u./g (median 7.9 × 10^2, average 5.4 × 10^5)] [109]. The time required for 1 mm thick PHBV films to be fully biodegraded was generally shorter in soil and freshwater environments [anaerobic sludge (6 weeks), estuarine sediment (40 weeks), activated sludge (60 weeks), and soil (75 weeks)] and was longer in marine environments [seawater (350 weeks)] [33]. Considering these data, it is highly likely that both microbial density and the total number of degrading microbes in the environment determine the lag time for the initiation of PHA degradation in the environment and the subsequent rate of degradation. Based on previously reported data regarding PHA degradation in shallow-water marine environments, coastal areas, and estuaries, Dilkes-Hoffma et al. estimated that the average degradation rate of PHA would be 0.04–0.09 mg/day/cm². Employing the estimated degradation rate, they predicted that it would take 1.5–3.5 years for a 800 µm thick PHBV bottle to be fully biodegraded [110].

Recent studies have revealed that the surfaces of plastic materials spilled into natural environments create an ecosystem that is completely different than that of natural environments. The microbiota that form on such a plastic surface has been designated a “plastisphere” by the marine ecologist Zettler et al. [111]. Recently, it has become clear that the plastisphere plays an important role in the degradation of biodegradable plastics in marine environments. When PHBHHx was aerobically incubated at 23°C in seawater collected from Takasago Port, Japan, a plastisphere was found to be formed on the surface, which contained PHA-degrading bacteria [112]. Shotgun metagenomic analysis of microflora formed on PHA, PET, and ceramic surfaces showed that the abundance of the P(3HB) depolymerase protein included in the plastisphere on the PHA surface was more than 20 times higher than those on PET, ceramic surfaces, or seawater [113]. Thus, it is presumed that when PHA is exposed to the marine environment, PHA-degrading microbial species are enriched in the plastispheres, and the enzymes produced by these microbes degrade PHA to compounds with a low molecular mass, followed by mineralization by the surrounding microorganisms.

Taken together, the environmental degradation of PHA is influenced by interrelated factors, such as biological factors (microbiota structure, abundance of degrading microbes, biofilm formation capacity, etc.), environmental factors (location, temperature, nutrients, sunlight and UV light, dissolved oxygen, salinity, pH, etc.), and characteristic features of the polymers (primary structure, shape, crystallinity, thermal properties, etc.).

PHA-degrading bacteria in marine environments

As described in the previous section, the biodegradation of PHA has been demonstrated in a wide range of marine environments. PHA-degrading bacteria have also been isolated from various marine environments in which PHA is degraded (Table 5) [112, 114–125]. Hence, the high biodegradability of PHA in a particular marine environment can be correlated with the ubiquity of its degrading microorganisms.

Three PHA-degrading bacteria, classified in the phylum gammaproteobacteria and isolated from marine environments [Pseudomonas stutzeri YM1006 (coastal seawater, Jogashima, Japan) [123], Shewanella sp. JKCM-AJ-6,1α (coastal seawater, Yaizu Port, Japan) [124], and Marinobacter sp. NK-1 (deep seawater, Sagami Bay, Japan) [120]] have been studied in detail. These strains grew well in 0.5 M NaCl, which is similar to seawater. When P. stutzeri YM1006 was cultured in the presence of P(3HB) and (R)-3HB, it secreted and produced P(3HB) depolymerase in the culture supernatant. Although it grew well in the presence of (S)-3HB, this enzyme was not produced. Shewanella sp. JKCM-AJ-6,1α produced P(3HB) depolymerase in the presence of P(3HB) and (R)-3HB; however, it did not produce this enzyme in the presence of (S)-3HB. Marinobacter sp. NK-1 strains grew well using several organic acids and amino acids, in addition to P(3HB), (R)-3HB, and (S)-3HB. This strain secreted P(3HB)
depolymerase in the presence of P(3HB) and (S)-3HB. *Streptomyces* sp. SNG9 isolated from marine sediment expressed only weak P(3HB) depolymerase activity in the copresence of easy-to-use carbon sources, in addition to P(3HB). These data suggest that P(3HB) and its degradation products are likely candidates that act as inducers of the production of P(3HB) depolymerase, while easy-to-use carbon sources may repress its production [125].

Structure and function of marine P(3HB) depolymerases

Extracellular P(3HB) depolymerases (EC 3.1.1.75) are a group of enzymes that hydrolyze PHA composed of short-chain length hydroxyalkanoic acids (C3-C5): poly(3-hydroxypropionate) [P(3HP)], P(3HB), poly(3-hydroxyvalerate) (P(3HV)), and poly(4-hydroxybutyrate) [P(4HB)]. Although some of the enzymes that have the same EC numbers have hydrolytic activity against amorphous PHA in cells [intracellular P(3HB) depolymerases], they are different from extracellular P(3HB) depolymerases. Here, we describe extracellular P(3HB) depolymerases that hydrolyze crystalline PHA and are associated with the environmental degradation of plastics composed of PHAs.

Since P(3HB), the substrate for extracellular P(3HB) depolymerases, is a solid substance, the enzymatic reaction of P(3HB) depolymerase is a heterogeneous system that occurs at the solid–liquid interface. For efficient enzymatic reactions in such a heterogeneous system, P(3HB) depolymerases consist of a catalytic domain (CD) containing an active site, a substrate binding domain (SBD) for binding enzyme molecules to the surface of P(3HB), and a linker domain (LD) connecting these two functional domains. This multidomain structure (CD+SBD) is also commonly found in insoluble polymer hydrolytic enzymes such as cellulase and chitinase. The CDs of P(3HB) depolymerases contain three catalytic residues (Ser-His-Asp), of which the serine residue is the essential catalytic residue.

Table 5 PHA-degrading bacteria isolated from marine environments

Strain	Phylum	Class	Isolated point	Reference
Marisediminataea aggregata (basionym: *Aestuariibacter aggregatus*) WH169	Proteobacteria	Gammaproteobacteria	Seawater	[114]
Aestuariibacter halophilus S23	Proteobacteria	Gammaproteobacteria	Plastisphere on PHBHx	[112]
Alcanivorax dieselolei B-5	Proteobacteria	Gammaproteobacteria	Seawater	[114]
Alcanivorax sp. 24	Proteobacteria	Gammaproteobacteria	Marine plastic debris	[114]
Alcaligenes faecalis AE122	Proteobacteria	Betaproteobacteria	Seawater	[115]
Pseudoalteromonas haloplanktis (homotypic synonym: *Alteromonas haloplanktis*)	Proteobacteria	Gammaproteobacteria	Seawater	[116]
Alteromonas sp. MH53	Proteobacteria	Gammaproteobacteria	Deep sea sediment	[117]
Bacillus sp.	Firmicutes	Bacilli	Plastisphere on PHBV	[118]
Bacillus sp. strain NRRL B-14911	Firmicutes	Bacilli	Seawater	[119]
Bacillus sp. MH10	Firmicutes	Bacilli	Deep sea sediment	[117]
Comamonas testosteroni YM1004	Proteobacteria	Gammaproteobacteria	Seawater	[162]
Enterobacter sp.	Proteobacteria	Gammaproteobacteria	Plastisphere on PHBV	[118]
Aliiglaciecola lipolytica (homotypic synonym: *Glaciecola lipolytica*) E11	Proteobacteria	Betaproteobacteria	Plastisphere on PHBH	[112]
Gracilibacillus sp.	Firmicutes	Bacilli	Plastisphere on PHBV	[118]
Marinobacter sp. NK-1	Firmicutes	Bacilli	Seawater	[120]
Nocardiopsis aegyptia	Actinobacteria	Actinobacteria	Marine seashore sediments	[121]
Pseudoalteromonas sp. NRRL B-30083	Proteobacteria	Gammaproteobacteria	Seawater	[122]
Pseudoalteromonas gelatinilytica NH153	Proteobacteria	Gammaproteobacteria	Seawater	[114]
Pseudoalteromonas shioyasakensis S35	Proteobacteria	Gammaproteobacteria	Plastisphere on PHBHx	[112]
Pseudomonas stutzeri YM1006	Proteobacteria	Gammaproteobacteria	Seawater	[123]
Psychrobacillus sp. PL87	Firmicutes	Bacilli	Deep sea sediment	[117]
Rheinheimera sp. PL100	Firmicutes	Bacilli	Deep sea sediment	[117]
Shewanella sp. JKCM-AJ-6,1α	Proteobacteria	Gammaproteobacteria	Seawater	[124]
Streptomyces sp. SNG9	Actinobacteria	Actinobacteria	Sediment	[125]
Table 6 Domain structures and properties of marine P(3HB) depolymerases

(a) Domain structures

Strain	Accession number	CD	LD	SBDs	Molecular mass (kDa)	Reference(s)
Alcaligenes faecalis AE122	AAB40611	Type A	Fn(III)	SBDI, SBDII	90 (SDS-PAGE) 65	[115, 126]
Alcanivorax sp. 24	WP_133493510	Type A	Fn(III)	SBDI, SBDII	65 (Predicted)	[114]
Bacillus sp. NRRL B-14911	ZP_01169502	Type A	Unclassified LD1,	SBDI, SBDII	63 (Predicted)	[119]
Marinobacter sp. NK-1	BAC15574	Type A	Cad	SBDI, SBDII	62	[120, 127]
Pseudomonas stutzeri YM1006	BAA32541	Type A	Cad	SBDI, SBDII	58	[123, 128]
Shewanella sp. AJ-6,1α	BAU59415	Type A	Fn(III)	SBDI, SBDII	47	[131]

(b) Properties

Strain	K (mL/µg)\(^a\)	Thermostability (°C)	Optimum temperature (°C)	pH stability	Optimum pH	Sodium demand	Reference(s)
Alcaligenes faecalis AE122	ND\(^b\)	ND\(^b\)	55	ND\(^b\)	9.0	Yes	[115, 126]
Marinobacter sp. NK-1	0.20 ± 0.02\(^c\)	4–37	37	7.5–10.0	8.0	No	[120, 127]
Pseudomonas stutzeri YM1006	0.22 ± 0.02\(^c\)	4–50	37	6–12	7.4	ND\(^b\)	[123, 128]
Shewanella sp. AJ-6,1α	0.18 ± 0.01\(^d\)	4–15	ND\(^b\)	7–10.5	7.5	Yes	[124]

\(^a\)K value indicates the binding constant between an enzyme and the surface of P(3HB)
\(^b\)ND means not determined
\(^c\)Determined by means of the UV method with a P(3HB) film [122]
\(^d\)Determined by means of the optical density method with P(3HB) granules [126]
residue is the active center that cleaves the ester bond. The CD of the enzyme are classified as serine hydrolases belonging to the \(\alpha/\beta \) hydrolase superfamily [23].

Homologs of P(3HB) depolymerase genes have been found in the genomic DNA of various marine bacteria. To date, several P(3HB) depolymerase proteins from marine bacteria have been characterized (Table 6a, b) [114, 115, 119, 120, 123, 124, 126–128].

The CDs of P(3HB) depolymerases are classified into types A and B based on the position of the lipase box (Gly-X-Ser-X-Gly) contained within the CD. Both of these types are in a circular permutation relationship with each other, and both are presumed to have higher order structures that are made up of \(\alpha/\beta \) hydrolase folds [129]. All of the marine P(3HB) depolymerases characterized to date are only of type A, in which the lipase box is located at the center (Fig. 3).

There are three types of LDs in P(3HB) depolymerases: fibronectin type III [Fn(III)], and cadherin (Cad), and threonine (Thr) types. Among them, Fn(III)- and Cad-type sequences were found in the LD of marine P(3HB) depolymerases. As an exception, the P(3HB) depolymerase from Bacillus sp. NRRRL B-14911 consists of two types of LDs, LD1 and LD2, both of which did not show homology with any of the known LDs [119].

P(3HB) depolymerases of terrestrial microbes are composed of one CD, one LD, and one SBD, whereas all marine P(3HB) depolymerases have two SBDs in addition to one CD and one LD. Therefore, the molecular masses of marine P(3HB) depolymerases (60–70 kDa) are larger than those of terrestrial enzymes (40–50 kDa) [21, 128, 130]. Compared with the average substrate binding constant between the P(3HB) surface and the SBD of terrestrial P(3HB) depolymerase \((K = 1.0 \text{ ml/µg}) \) [21], those of marine P(3HB) depolymerases were as small as 0.2 ml/µg. In other words, this feature of the domain structure of marine P(3HB) depolymerases (i.e., having two SBDs) may compensate for its weak binding. Although the P(3HB) depolymerase produced by the marine bacterium Shewanella sp. JKCM-AJ-6, 1\(\alpha \) encodes two SBDs (SBDI and SBDII) at the locus, both were proteolytically cleaved during the secretion and production of the enzyme. The substrate binding constant of this enzyme that lacks two SBDs was the lowest among all the marine P(3HB) depolymerases (0.18 ± 0.01 ml/µg, Table 6b). This low binding constant is presumed to be complemented by a relative increase in hydrophobic interactions caused by a decrease in the dielectric constant due to the action of salt in seawater [131]. Thus, some characteristics of marine P(3HB) depolymerases differ from their terrestrial counterparts.

Marine P(3HB) depolymerases produced by marine species, such as Alcaligenes faecalis AE122, Shewanella sp. JKCM-AJ-6, 1\(\alpha \), Marinobacter sp. NK-1, and P. stutzeri YM1006 were characterized (Table 6b). Except for the enzyme from Shewanella sp. JKCM-AJ-6, 1\(\alpha \), those from the other species showed thermostability in the same temperature range as the sea temperature (−2 to 35 °C) [132]. On the other hand, the P(3HB) depolymerase from Shewanella sp. JKCM-AJ-6, 1\(\alpha \) showed similar thermostability to most of the general enzymes active in marine environments. All marine P(3HB) depolymerases are stable in the marine pH range of 7.8–8.2 [133]. The P(3HB) depolymerase from Shewanella sp. JKCM-AJ-6, 1\(\alpha \) was found to have no enzymatic activity at low salinity; however, the activity of the enzyme was enhanced at a NaCl concentration of 0.5 M, which is similar to that of seawater. By contrast, the addition of 0.5 M NaCl did not alter the activity of P(3HB) depolymerase from Marinobacter sp. NK-1. These results indicate that these P(3HB) depolymerases have an effect on the hydrolytic activity of P(3HB) in the marine environment.

What is PCL?

PCL is a linear aliphatic polyester composed of 6-hydroxyhexanoic acid as its constituent, which can be chemically synthesized by the ring-opening polymerization of \(\varepsilon \)-caprolactone. The glass transition temperature and melting points of PCL are −65 to −60 and 56–65 °C, respectively [15]. PCL is used as an impact-modifying additive for plastics, a ceramic binder, a binder for metal molds, a hot-melt adhesive, a heat-transfer ink, a flow modifier for resin molding, and a refractive index modifier. Although PCL is a chemically produced synthetic polymer, unlike PHA, PCL is known to be biodegradable in a variety of environments because it is recognized by microorganisms as an analog of the natural polymeric compound cutin [24].
The carbon cycle of cutin in the ocean

The cuticular layer on the surface of plants (mosses, gymnosperms, and angiosperms) functions as an extracellular hydrophobic layer to protect these plants from external environmental stresses and desiccation [134]. The cuticular layer contains mainly C16 and C18 hydroxy fatty acid condensed polyesters, known as cutins. Typical cutin monomers are composed of 10,16-dihydroxyhexadecanoic acid, 16-hydroxyhexadecanoic acid, 18-hydroxy-9,10-epoxyoctadecanoic acid, 9,10,18-trihydroxyoctadecanoic acid, and 18-hydroxyoctadec-9-enoic acid; the composition of which depends on the plant species. These monomers are linked to each other and to glycerol by an ester bond, resulting in cutin consisting of a straight chain and branched domain structure (Fig. 4a). Cutin biosynthesis in plants starts with de novo C16 or C18 fatty acid synthesis in the plastid of epidermal cells. Fatty acids are transported to the endoplasmic reticulum, where acyl-CoA is synthesized by the catalytic activity of the long-chain fatty acid CoA ligase (EC 6.2.1.3). ω-Hydroxylase, midchain hydroxylase, and epoxidase belonging to the cytochrome P450 family 77 subfamily A (EC 1.14.-) oxidize the ends and midchain carbons of cutin monomer-CoA, which is then converted into monoacylglycerol after its transfer to glycerol 3-phosphate by acyltransferase (EC 2.3.1.-). Next, monoacylglycerol is transported to the cuticular layer via the ABC transporter. In the cuticular layer, monoacylglycerol is polymerized by GDSL-motif lipase/hydrolase (EC 3.1.1.3-) to form cutin [135, 136].

Cutin also exists in the marine environment. Marine cutin has two main origins. One is associated with the influx of terrestrial environmental plants into the ocean, and the other is derived from marine plants. C16 and C18 hydroxy fatty acids, characteristic of terrestrial higher plants, have been detected in seabed sediments, providing evidence for the influx of cutin from a terrestrial environment to the sea [137–140]. The cutin content of marine sediments was observed to decrease from areas near an estuary to the deep sea to the seafloor below 1000 m, where 99.4% was found to be lost. This suggests that terrestrial cutin entering the ocean is almost completely degraded in the ocean [137]. The leaf surfaces of marine plants, such as *Thalassia testudinum*, *Posidonia australis*, and *Zostera marina* L., also have a cuticular layer, which contains cutin as a constituent in its interior [141–144].

Through this mechanism, a carbon cycle is formed in which cutin is biosynthesized in marine environments or transported from terrestrial environments and subsequently biodegraded in the marine environment.

Marine degradability of PCL

PCL, a biodegradable plastic, exhibits high biodegradability in a variety of environments. It is known to show high biodegradability similar to that exhibited by PHA in marine environments. The reason for this is presumably due to the structural similarity of PCL to cutin, where PCL enters the carbon cycle of cutin and is biodegraded in the ocean.

Exposure of PCL specimens to water collected from Bohai Bay for 52 weeks resulted in numerous depressions on the surface of the specimens and a decrease in their mechanical strength. The weights of the specimens were reduced by 29.8% compared to the initial weight [145]. After the PCL specimens were immersed in water obtained from Akabane Port, Aichi, Japan for 5 weeks, the tensile strength was completely lost, the elongation at break was 0%, the Young’s modulus was reduced to ~50% of the initial value, and the weight was reduced by ~34% of the initial weight [102]. When PCL was incubated in a buffer containing seawater collected from Tokyo Bay and the
Pacific Ocean for 28 days at 25 °C under aerobic conditions, PCL reached a BOD biodegradation of 56–79% [34]. When PCL was incubated in a buffer containing seawater collected from Osaka Bay for 17 days at 27 °C under aerobic conditions, PCL showed a BOD biodegradation of 14.5–40.9% [32]. After 12 months of PCL specimens exposure to deep seawater drawn from Rausu, Toyama, and Kume, many pores and cracks were found on the surface of the specimens, and their tensile strength was completely lost [36].

PCL-degrading bacteria in the marine environment

PCL shows good degradability in various marine environments, and PCL-degrading microorganisms have been found in a wide range of marine environments. Bacteria belonging to the genus *Pseudomonas* isolated from marine environments, such as *P. litoralis*, *P. oceani*, and *P. pelagia*, demonstrated the ability to degrade PCL [146]. A PCL-degrading bacterium closely related to *Pseudomonas pachastrellae* was isolated from a plastic debris surface in a coastal environment. The strain grew well under NaCl concentrations similar to those of seawater (specific growth rate at 0.5 M NaCl: 0.3 h⁻¹), suggesting that this strain is a typical marine bacterium. In the presence of PCL and its degradation product, 6-hydroxyhexanoic acid, PCL-degrading enzymatic activity was expressed in the culture supernatant by this strain in a marine medium [147]. *Streptomyces* sp. SM14 isolated from marine sponges degraded PCL [148]. Marine species of the genus *Alcanivorax*, including *Alcanivorax* sp. 24, *A. xenomutans* JC109, and *A. dieselolei* B-5 formed clear zones on PCL-containing plates [114]. *Shewanella* sp., *Mortiella* sp., *Psychrobacter* sp., and *Pseudomonas* sp. were isolated as PCL-degrading bacteria from deep sea sediments of the Kurile and Japan Trenches. Among them, *Shewanella* sp. CT01 and *Mortiella* spp. CT12 and JT01 are psychrophilic and piezophilic bacteria adapted to deep sea environments [149].

PCL-degrading enzymes: cutinases and lipases

Cutinases (E.C.3.1.1.74) are enzymes that hydrolyze the carboxy ester bonds of cutins, while lipases (E.C. 3.1.1.3) are enzymes that hydrolyze triacylglycerols. Both enzymes belong to the α/β hydrolase superfamily and contain three catalytic residues (Ser-His-Asp) and two amino acid residues that form an oxyanion hole to stabilize the transition state of the substrate. Nucleophilic attack by the hydroxyl group of the catalytic serine on the carbon of the substrate carbonyl group forms an acyl intermediate, and nucleophilic attack of this intermediate by water molecules results in hydrolysis of the ester bond [150–152]. Cutinases and lipases tend to have an affinity for short-chain ester substrates and long-chain ester substrates, respectively. However, it is difficult to classify both of these enzymes on the basis of substrate specificity alone, since there are cutinases that degrade long-chain triacylglycerols and lipases that degrade cutin [153, 154]. It is also known that both enzymes differ in their structure around the active site. There are two types of lipases, one that retains the lid domain covering the active site and the other that does not [150]. However, almost all cutinases do not have a lid domain [152]. Binding of the micelle surface of a fat substrate to the lid domain changes its structure and increases the area of the hydrophobic surface around the active site, thus increasing the interaction between the substrate and active site. This phenomenon is referred to as “interfacial activation” and helps to increase the enzymatic activity at the liquid–liquid interface of oil and water. By contrast, the interfacial activation effect of the lid domain is small at the solid–liquid interface, such as polyester and water, while the lid domain can physically inhibit the hydrolytic activity of an enzyme at the solid–liquid interface [155]. The effect of the presence or absence of the lid domain on the hydrolysis of polystyres was investigated using lipase from *Rhizopus oryzae* and cutinase from *Fusarium solani*, and it was found that easy access to the active site of the enzyme due to the absence of the lid domain enhanced the rate of polyester hydrolysis [156]. The lipases from *Bacillus pumilus* [29] and *Moesiomyces antarcticus* (homotypic synonym: *Candida antarctica* [157, 158]), which have PCL hydrolysis activity, lack a lid domain. These findings suggest that lipases and cutinases that do not retain the lid domain may be involved in the hydrolysis of PCL and other polyester substrates.

Marine PCL hydrolytic enzyme candidates

The α/β-hydrolase (CDS: ABO2449) of *Alcanivorax borkumensis*, which was expressed in *Escherichia coli*, was found to have the ability to hydrolyze a variety of aliphatic polysters, such as PLA, PBSA, and PESu in addition to PCL. The gene for this enzyme is homologous (identity level 42–90%) to genes encoding putative proteins of hydrocarbon-degrading microorganisms, including *Alcanivorax* spp., *Hoyosella subflava* (homotypic synonym: *Amycolicoccus subflavus*), *Marinobacter nanhaiticus*, and *Hydrocarboniphaga effusa*. This enzyme displayed high specificity for a short acyl chain of C2–C4. It was active in the pH range of 7–11 and in the temperature range of 4–70 °C and was also active in the
presence of 3 M NaCl. Considering that the pH of the marine environment is 7.8–8.2 [133] and the water temperature ranges from −2 to 35 °C [132], this enzyme may be involved in PCL hydrolysis in the marine environment [159]. A PCL-degrading enzyme, Esterase SM14est, which is produced by the marine bacterium Streptomyces sp. SM14, possesses a conserved lipase box (Gly-X1-Ser-X2-Gly) and catalytic triad. This enzyme has 9 β-sheet and 7 α-helix structures and belongs to the α/β-hydrolase superfamily [148].

Compared to studies on cutinases or lipases with PCL-degrading activity from terrestrial microorganisms, there are very few studies related to marine microorganisms. Nevertheless, recent marine genomic analysis suggests that PCL-degrading enzymes are generally found in marine environments. For example, 349 homologs of cutinase-like enzyme genes were detected in 31 marine metagenomes and 11 terrestrial metagenomes from 108 marine water samples and 25 terrestrial samples. An enzyme with PET hydrolytic activity, PET 2, which was cloned from a marine metagenomics data set, could degrade PCL [160]. Cutinase-like enzyme (PE-H) produced by the marine bacterium Pseudomonas aestusnigri VGXO, which possesses PCL-hydrolytic activity, exhibited 48–51% homology with polyester hydrolases from the terrestrial species Streptomyces viridis, Thermobifida sp., and Ideonella sakaiensis [161]. These findings indicate that cutinase-like enzymes, which catalyze PCL hydrolysis, are present in the marine environment as well as in the terrestrial environment.

Induction of PCL degradation activity by PCL

The expression of cutinases produced by Fusarium vanet-tenii (homotypic synonym: F. solani f. sp. pisi) and F. verticilloides (heterotypic synonym: F. moniliforme) require the hydrolysates of PCL, which function as inducers. This could be due to structural homology with a trimer of PCL and the cutin constituent, 10,16-dihydroxy C16 acid, in the structure of 9,10,18-trihydroxy C18 acid [24] (Fig. 4b). Although the cutinase of Aspergillus oryzae degrades PBSu, the constituents of PBSu, succinate, and 1,4-butanediol induce the enzyme [25].

A marine bacterium, Pseudomonas sp. TKCM64, isolated from marine debris, not only exhibited PCL-hydrolytic activity but also had PESu hydrolytic activity. In the presence of PCL, its degradation products or cutin monomers, this strain expressed both PCL and PESu degradation activity. However, this strain showed relatively low polyester degradation activity in the presence of succinic acid and ethylene glycol, which are components of PESu. From these data, it can be inferred that chemically synthesized polyesters other than PCL and their constituents do not function as inducers of the said degradative enzymes in this strain [147]. This may provide insight into the low marine degradability of chemically synthesized polyesters other than PCL.

Conclusion

To date, biodegradable plastics that degrade in soil and compost have been developed, but most of them show negligible degradation in the ocean. Among them, the biodegradable polyesters PHA and PCL showed good biodegradability in marine environments where biological carbon cycles exist for both polyesters. This allows the materials made of PHA and PCL to be taken up into these carbon cycles and quickly mineralized. Consequently, such materials showed good biodegradability in marine environments. The marine environment has a low density of microorganisms compared to other environments, which makes it difficult to rapidly degrade biodegradable plastics. However, from the viewpoint of utilizing the biological carbon cycles inherently present in the ocean, it is possible to sufficiently increase the biodegradation rate of biodegradable plastics in the ocean (Figs. 5 and 6). A great deal of information is still needed to understand the biological carbon cycle in the ocean if we aim to develop plastics that are fully biodegrade at a sufficient rate in the ocean. We hope that this review provides a starting point for more research on this subject in the future.
Acknowledgements KK is grateful for financial supports from JST-Mirai Program grant number JP19217252 and JSPS KAKENHI grant number JP19H04311.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Plastics Europe. Plastics—the Facts 2019; 2019. https://www.plasticsunited.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_the_facts_2019_14102019.pdf.
2. Ritchie H, Roser M. Plastic pollution. Our World in Data; 2018. https://ourworldindata.org/plastic-pollution.
3. UNEP. Single-use plastics: a roadmap for sustainability; 2018. https://wedocs.unep.org/bitstream/handle/20.500.11822/25496/singleUsePlastic_sustainability.pdf?sequence=1&isAllowed=y.
4. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3:e1700782. https://doi.org/10.1126/sciadv.1700782.
5. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. Plastic waste inputs from land into the ocean. Science. 2015;347:768–71. https://doi.org/10.1126/science.1260352.
6. Derraik JGB. The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull. 2002;44:842–52.
7. World Economic Forum. Ellen MacArthur Foundation. The new plastics economy: rethinking the future of plastics; 2016. www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf.
8. Stelfox M, Hudgins J, Sweet M. A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs. Mar Pollut Bull. 2016;116:6–17.
9. Rios LM, Moore C, Jones PR. Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar Pollut Bull. 2007;54:1230–7.
10. Rochman CM, Hoh E, Kurobe T, Teh SJ. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep. 2013;3:32632. https://doi.org/10.1038/srep03263.
11. Setala O, Fleming-Lehtinen V, Lehtiniemi M. Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut. 2014;185:77–83.
12. Lucas N, Biename C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE. Polymer biodegradation: mechanisms and estimation techniques. Chemosphere. 2008;73:429–42.
13. Harrison JP, Boardman C, O’Callaghan K, Delort AM, Song J. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. R Soc Open Sci. 2018;5:171792. https://doi.org/10.1098/rsos.171792.
14. Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000;25:1503–55.
15. Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38:3484–504.
16. Tserki V, Matzinos P, Pavlidou E, Panayiotou C. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym Degrad Stabil. 2006;91:367–76.
17. Yamamoto M, Witt U, Skupin G, Beimborn D, Müller J. Biodegradable aliphatic-aromatic polyesters: “Ecoflex®”. Biopolymers Online; 2005.
18. Namposothee KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresearch Technol. 2010;101:8493–501.
19. Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng. 2011;42:856–73.
20. Jendrossek D, Schirmer A, Schlegel HG. Biodegradation polyhydroxyalkanoic acids. Appl Microbiol Biot. 1996;46:451–63.
21. Kasuya K, Ohura T, Masuda K, Doi Y. Substrate and binding specificities of bacterial polyhydroxybutyrate depolymerases. Int J Biol Macromol. 1999;24:329–36.
22. Tokiwa Y, Suzuki T. Hydrolysis of polyesters by lipases. Nature. 1977;270:76–78.
23. Jaeger KE, Steinbuchel A. Jendrossek D. Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(omega-hydroxyalkanoates). Appl Environ Microbiol. 1995;61:3113–8.
24. Murphy CA, Cameron JA, Huang SJ, Vinopal RT. Fusarium polyacaprolactone depolymerase is cutinase. Appl Environ Microbiol. 1996;62:456–60.
25. Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, et al. Purification and characterization of a biodegradable plastic-degrading enzyme from *Aspergillus oryzae*. Appl Microbiol Biotechnol. 2005;67:778–88.

26. Murphy CA, Cameron JA, Huang SJ, Vinopal RT. A second polycaprolactone depolymerase from *Fusarium*, a lipase distinct from cutinase. Appl Microbiol Biotechnol. 1998;50:692–6.

27. Ando Y, Yoshikawa K, Yoshikawa T, Nishioka M, Ishioka R, Yakabe Y. Biodegradability of poly(tetramethylene succinate-co-tetramethylene adipate): I. Enzymatic hydrolysis. Polym Degrad Stabil. 1998;61:129–37.

28. Shinozaki Y, Morita T, Cao X, Yoshida S, Koitabashi M, Watanabe T, et al. Biodegradation of polylactic acid. Eng Med. 2017;1:1700048. https://doi.org/10.1002/gch2.201700048.

29. Muroi F, Tachibana Y, Soulenthalone P, Yamamoto K, Mizuno T, Sakurai T, et al. Characterization of a poly(butylene adipate-co-terephthalate) hydrolase from the aerobic mesophilic bacterium *Bacillus pumilus*. Polym Degrad Stabil. 2017;137:11–22.

30. Tokiwa Y, Calabia BP. Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol. 2006;72:244–51.

31. Williams DF. Enzymic hydrolysis of poly(lactic acid). Enz Eng. 1981;10:5–7.

32. Nakayama A, Yamano N, Kawasaki N. Biodegradation in seawater of aliphatic polyesters. Polym Degrad Stabil. 2019;166:290–9.

33. Luzier WD. Materials derived from biomass biodegradable materials. Proc Natl Acad Sci USA. 1992;89:839–42.

34. Kasuya K, Takagi K, Ishiwatari S, Yoshida Y, Doi Y. Biodegradability of various aliphatic polyesters in natural waters. Polym Degrad Stabil. 1998;59:327–32.

35. Teramoto N, Urata K, Ozawa K, Shibata M. Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stabil. 2004;86:401–9.

36. Sekiguchi T, Saika A, Nomura K, Watanabe T, Fujimoto Y, Enoki M, et al. Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly(e-caprolactone)-degrading bacteria. Polym Degrad Stabil. 2011;96:1397–403.

37. Fujimaki T. Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym Degrad Stabil. 1998;59:209–14.

38. Witt U, Müller RJ, Deckwer WD. New biodegradable polyester-copolymers from commodity chemicals with favorable use properties. J Environ Polym Degrad. 1995;3:215–23.

39. Bagheri AR, Laforsch C, Greiner A, Agarwal S. Fate of so-called biodegradable polymers in seawater and freshwater. Glob Chall. 2017;1:1700048. https://doi.org/10.1002/gch.201700048.

40. Zambrano MC, Pavlak JJ, Daystar J, Ankeny M, Goller CC, Venditti RA. Aerobic biodegradation in freshwater and marine environments of textile microfibers generated in clothes laundering: effects of cellulose and for polyester-based microfibers on the microbiome. Mar Pollut Bull. 2020;151:110826. https://doi.org/10.1016/j.marpolbul.2019.110826.

41. Taylor LE, Henriass B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RA. Complete cellulase system in the marine bacterium *Saccharophagus degradans* strain 2-40t. J Bacteriol. 2001;183:6384–61.

42. Yang JC, Madupu R, Durkin SA, Ekborg NA, Pedamallu CS, Hostetler JB, et al. The complete genome of *Teredinibacter turnerae* T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS ONE. 2009;4:e6085. https://doi.org/10.1371/journal.pone.0006085.

43. Sawant SS, Salunke BK, Taylor LE, Kim BS. Enhanced agarose and xylan degradation for production of polyhydroxyalkanoates by co-culture of marine bacterium, *Saccharophagus degradans* and its contaminant, *Bacillus cereus*. Appl Sci. 2017;7. https://doi.org/10.3390/app7030225.

44. Liu G, Wu SM, Jin WH, Sun CM. Amyε3, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities. Sci Rep. 2016;6:18726. https://doi.org/10.1038/srep18726.

45. Ramesh S, Mathivanan N. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microb Biotechnol. 2009;25:2103–11.

46. Nogi Y, Yoshizumi M, Miyazaki M, *Thalassosira povalittica* sp. nov., a polyvinyl-alcohol-degrading marine bacterium. Int J Syst Evol Microbiol. 2014;64:1149–53.

47. Sedlacek P, Slaninova E, Enev V, Koller M, Nebesarova J, Marova I, et al. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl Microbiol Biol. 2019;103:1905–17.

48. Steinbüchel A, Valentin HE. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett. 1995;128:219–28.

49. Madison LL, Huisman GW. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol Mol Biol Rev 1999;63:21–53.

50. Kunioka M, Tamaki A, Doi Y. Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules. 1989;22:694–7.

51. Doi Y, Kitamura S, Abe H. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules. 1995;28:4822–8.

52. Abe H, Doi Y. Side-chain effect of second monomer units on crystalline morphology, thermal properties, and enzymatic degradability for random copolyesters of (R)-3-hydroxybutyric acid with (R)-3-hydroxyalkanoic acids. Biomacromolecules. 2002;3:133–8.

53. Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y. Physical-properties and biodegradability of microbial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules. 1994;27:878–80.

54. Suryamongkol P, Weselake R, Nairne S, Moloney M, Shah S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv. 2007;25:148–75.

55. Rehm BHA, Kruger N, Steinbüchel A. A new metabolic link between fatty acid *de novo* synthesis and polyhydroxyalkanoic acid synthesis—the phaG gene from *Pseudomonas putida* KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase. J Biol Chem. 1998;273:24044–51.

56. Rehm BHA, Mitsky TA, Steinbüchel A. Role of fatty acid *de novo* biosynthesis in polyhydroxyalkanoic acid (PHA) and rhomnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in *Escherichia coli*. Appl Environ Microbiol. 2001;67:3102–9.

57. Fukui T, Shiomi N, Doi Y. Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by *Aeromonas caviae*. J Bacteriol. 1998;180:667–73.

58. Chek MF, Kim SY, Jin WH, Samian MR, Sudesh K, et al. Structure of polyhydroxyalkanoate (PHA) synthase PhaC from *Chromobacterium violaceum* sp. USM2, producing biodegradable plastics. Sci Rep. 2017;7:5312. https://doi.org/10.1038/s41598-017-05509-4.

59. Mezzolla V, D’Urso OF, Poltronieri P. Role of PhaC type I and type II enzymes during PHA biosynthesis. Polym. 2018;10:910. https://doi.org/10.3390/polym10080910.

60. Rehm BHA. Polyester synthases: natural catalysts for plastics. Biochim J. 2003;376:15–33.
Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in…
92. Gonzalez-Garcia Y, Nungaray J, Cordova J, Gonzalez-Reynoso O, Koller M, Atlic A, et al. Biosynthesis and characterization of poly(hydroxyalkanoates) in the polysaccharide-degrading marine bacterium *Saccharophagus degradans* ATCC 43961. J Ind Microbiol Biotechnol. 2008;35:629–33.

93. Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, et al. Cold adaptation in the marine bacterium, *Sphingopyxis alaskensis*, assessed using quantitative proteomics. Environ Microbiol. 2010;12:2658–76.

94. Shrivastav A, Mishra SK, Mishra S. Polyhydroxyalkanoate (PHA) synthesis by *Spirulina subalata* from Gujarat coast of India. Int J Biol Macromol. 2010;46:255–60.

95. Sasidharan RS, Bhat SG, Chandrasekaran M. Biocompatible polyhydroxybutyrate (PHB) production by marine *Vibrio azareus* BTKB33 under submerged fermentation. Ann Microbiol. 2015;65:455–65.

96. Mohandas SP, Balan L, Lekshmi N, Cubelio SS, Philip R, Bright SI. Production and characterization of polyhydroxybutyrate from *Vibrio harveyi* MCCB 284 utilizing glycerol as carbon source. J Appl Microbiol. 2017;122:698–707.

97. Wei YH, Chen WC, Wu HS, Janarthanan OM. Biodegradable and biocompatible biomaterial, poly(hydroxybutyrate), produced by an indigenous *Vibrio* sp. BM-1 isolated from marine environment. Mar Drugs. 2011;9:615–24.

98. Numata K, Doi Y. Biosynthesis of Polyhydroxyalkanoates by a novel facultatively anaerobic *Vibrio* sp. under marine conditions. Mar Biotechnol. 2012;14:323–31.

99. Stabili L, Cardone F, Alfiano P, Tredici SM, Piraino S, Corriero G, et al. Epidemic Mortality of the sponge *Ircinia variabilis* and identification of a processing, characterization and marine biodegradation study of a marine bacterium, *Alcigenes faecalis* AE122. Appl Environ Microbiol. 1995;61:1727–30.

100. Mergaert J, Wouters A, Anderson C, Swings J. In-situ biodegradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) in natural-waters. Can J Microbiol. 1995;41:154–9.

101. Kito K, Ishimanu K, Teraoka M, Hato K, Niki S. Properties of poly(3-hydroxybutyrate) depolymerase from a marine bacterium, *Sphingopyxis alaskensis* ATCC 43961. J Ind Microbiol Biotechnol. 2008;35:629–33.

102. Kasuya K, Mitomo H, Nakahara M, Akiba A, Kudo T, Doi Y. Differences in environmental degradability between poly(3-hydroxybutyrate) depolymerase from *Vibrio Bacterium* and *Vibrio azurilum* isolate and characterization of its P(3HB) depolymerase. Bioresource Tech. 2002;82:13–9.

103. Foong CP, Lau NS, Deguchi S, Toyofuku T, Taylor TD, Sudesk K, et al. Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater. BMC Microbiol. 2014;14:318. https://doi.org/10.1186/s12866-014-0318-z.

104. Doi Y, Kanesawa Y, Tanahashi N, Kumagai Y. Biodegradation of microbial polymers in the marine environment. Polym Degrad Stabil. 1992;36:173–7.

105. Mei Y, Yu Y, Hua J, Deng X, Sun J, et al. Biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by a marine bacterium, *Alcaligenes faecalis* AE122. Appl Environ Microbiol. 2011;77:1250–5.

106. Zajdelovic V, Chyun A, Quareshy M, Silvano E, Hernandez-Fernandez J, Aguero-Ferretis MM, et al. Beyond oil degradation: enzymatic potential of *Alcanivorax* to degrade natural and synthetic polymers. Environ Microbiol. 2020;22:1356–69.

107. Kita K, Ishimaru K, Teraoka M, Yanase H, Kato N. Properties of poly(3-hydroxybutyrate) depolymerase from a marine bacterium, *Spirulina subsalsa*. Metab Eng. 2008;10:615–20.

108. Imam SH, Gordon SH, Shogren RL, Tosieson TR, Govind NS, Greene RV. Biodegradation of starch-poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) bioplastic in tropical coastal waters. Appl Environ Microbiol. 1999;65:431–7.

109. Suzuki M, Tachibana Y, Kazahaya J, Takizawa R, Muroi F, Shigeta R, et al. Identification of a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) film in seawater. Microbes Environ. 2018;33:19–25.

110. Dilkes-Hoffman LS, Lant PA, Laycock B, Pratt S. The rate of biodegradation of PHA bioplastics in the marine environment: a meta-study. Mar Pollut Bull. 2019;142:15–24.

111. Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “Plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47:7137–46.
isolated from coastal seawater in Japan as *Shewanella* sp. Polym Degrad Stabil. 2016;129:268–74.

125. Mabrouk MM, Sabry SA. Degradation of poly (3-hydroxybutyrate) and its copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by a marine *Streptomyces* sp. SN9. Microbiol Res. 2001;156:323–35.

126. Kita K, Mashiba S, Nagita M, Ishimaru K, Okamoto K, Yanase M, et al. The crystal structure of polyhydroxybutyrate depolymerase from *Marinobacter* sp. NK-1. Int J Biol Macromol. 2003;33:221–6.

128. Ohura T, Kasuya K, Doi Y. Cloning and characterization of the Hisano T, Kasuya K, Tezuka Y, Ishii N, Kobayashi T, Shiraki T. The formation and function of plant cutin and suberin: assembly and origins of specialized cuticles. Plant Physiol. 2013;163:5

131. Sung CC, Tachibana Y, Kasuya K. Characterization of a thermostable poly(3-hydroxybutyrate) depolymerase from the marine bacterium *Penicillium funiculosum* provides insights into the recognition and degradation of biopolymers. J Mol Biol. 2006;356:993–1004.

133. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh YM1609, isolated from freshwater. Appl Environ Microbiol. 1997;63:4844–52.

134. Xue DW, Zhang XQ, Lu XL, Chen G, Chen ZH. Molecular and biochemical characterization of the poly(3-hydroxybutyrate) depolymerase gene of *Penicillium funiculosum* and the formation of seagrass deposits: Implications for Blue Carbon sequestration. Org Geochem. 2019;137:103898. https://doi.org/10.1016/j.orggeochem.2019.07.007.

135. Yeats TH, Rose JKC. The formation and function of plant cutin and suberin: assembly and origins of specialized cuticles. Plant Physiol. 2013;163:5–20.

136. Philippe G, Sørensen I, Jiao C, Sun X, Fei Z, Domoychz DS, et al. Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. Curr Opin Plant Biol. 2020;55:11–20.

137. Broder L, Tesi T, Salvado JA, Semiletov IP, Dudarev OV, et al. Biochemical and molecular characterization of the poly(3-hydroxybutyrate) depolymerase of *Pseudomonas stutzeri* and analysis of the function of substrate-binding domains. Appl Environ Microbiol. 1999;65:189–97.

138. Ohura T, Kasuya K, Doi Y. Cloning and characterization of the poly(3-hydroxybutyrate) depolymerase from *Marinobacter* sp. NK-1. Int J Biol Macromol. 2003;33:221–6.

139. Goni MA, Yunker MB, Macdonald RW, Eglinton TI. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. Mar Chem. 2000;71:23–51.

140. Prahl FG, Ertel JR, Goni MA, Sparrow MA, Eversmeyer B. Terrestrial organic-carbon contributions to sediments on the Washington margin. Geochim Cosmochim Acta. 1994;58:3035–48.

141. Kaal J, Serrano O, Cortizas AM, Baldock JA, Lavery PS. Millennial-scale changes in the molecular composition of *Posidonia australis* seagrass deposits: Implications for Blue Carbon sequestration. Org Geochem. 2019;137:103898. https://doi.org/10.1016/j.orggeochem.2019.07.007.

142. Moran KL, Bjorndal KA. Simulated green turtle grazing affects nutrient composition of the seagrass *Thalassia testudinum*. Mar Biol. 2007;150:1083–92.

143. Olsen JL, Rouze P, Verhelst B, Lin YC, Bayer T, Collen J, et al. The genome of the seagrass *Zostera marina* reveals angiosperm adaptation to the sea. Nature. 2016;530:331–5.

144. Sugiuura H, Kawasaki Y, Suzuki T, Maegawa M. The structural and histochemical analyses and chemical characters of the cuticle and epidermal walls of cotyledon in ungerminated seeds of *Zostera marina* L. Fish Sci. 2009;75:369–77.

145. Lu B, Wang GX, Huang D, Ren ZL, Wang XW, Zhen ZC, et al. Comparison of PCL degradation in different aquatic environments: effects of bacteria and inorganic salts. Polym Degrad Stabil. 2018;150:133–9.

146. Molitor R, Bollinger A, Kubicki S, Loeckache A, Jaeger KE, Thies S. Agar plate-based screening methods for the identification of polyester hydrolysis by *Pseudomonas* species. Microb Biotechnol. 2020;13:274–84.

147. Suzuki M, Tachibana Y, Oba K, Takizawa R, Kasuya K. Microbial degradation of poly(ε-caprolactone) in a coastal environment. Polym Degrad Stabil. 2018;149:1–8.

148. Almeida EL, AFC Rincon, Jackson SA, ADW Dobson. In silico screening and heterologous expression of a polyethylene terephthalate hydrolase (PETase)-like enzyme (SM14est) with polycaprolactone (PCL)-degrading activity, from the marine sponge-derived strain *Streptomyces* sp. SM14. Front Microbiol. 2019;10:2187. https://doi.org/10.3389/fmicb.2019.02187.

149. Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep. Res Dev. 2011;11:33–41.

150. Kovacic F, Babic N, Krauss U, Jaeger K. Classification of lipolytic enzymes from bacteria. In: Handbook of hydrocarbon and lipid microbiology. Cham: Springer; 2019:24. https://doi.org/10.1007/978-3-319-39782-5_39-1.

151. Arpigny JL, Jaeger KE. Bacterial lipolytic enzymes: classification and properties. Biochem J. 1999;343:177–83.

152. Nikolaiivits E, Kanelli M, Dimarogona M, Topakas E. A middle-aged enzyme still in its prime: recent advances in the evolutionary mechanisms of cuticular wax for plant drought resistance, and application. Biotechnol Adv. 2013;31:1754–62.

153. Reis P, Holmberg K, Watzke H, Leser ME, Miller R. Lipases at interfaces: a review. Adv Colloid Interfac. 2009;147:237–50.

154. Chen S, Tong X, Woodard RW, Du GC, Wu J, Chen J. Identification and characterization of bacterial cutinase. J Biol Chem. 2008;283:25854–62.

155. Zostera marina* and histochemical analyses and chemical characters of the cuticle and epidermal walls of cotyledon in ungerminated seeds of *Zostera marina* L. Fish Sci. 2009;75:369–77.

156. Shi K, Jing J, Song L, Su TT, Wang ZY. Enzymatic hydrolysis of polyester: Degradation of poly(ε-caprolactone) by *Candida antarctica* lipase and *Fusarium solani* cutinase. Int J Biol Macromol. 2020;144:183–9.

157. Broder L, Tesi T, Andersen A, Eglington TI, Semiletov IP, Dudarev OV, et al. Historical records of organic matter supply and degradation status in the East Siberian Sea. Org Geochem. 2016;91:16–30.

158. Zoschkeke A, Loeschcke A, Jaeger KE. Classiﬁcation of lipolytic enzymes from bacteria. In: Handbook of hydrocarbon and lipid microbiology. Cham: Springer; 2019:24. https://doi.org/10.1007/978-3-319-39782-5_39-1.

159. Hajighasemi M, Nocek BP, Tchigvintsev A, Brown G, Flick R, Xu XH, et al. Biochemical and structural insights into enzymatic
depolymerization of polylactic acid and other polyesters by microbial carboxylesterases. Biomacromolecules. 2016;17: 2027–39.

160. Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, et al. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl Environ Microbiol. 2018;84:e02773–17. https://doi.org/10.1128/AEM.02773-17.

161. Bollinger A, Thies S, Knieps-Grunhagen E, Gertsen C, Kobus S, Hoppner A, et al. A novel polyester hydrolase from the marine bacterium Pseudomonas aeruginosa - Structural and functional insights. Front Microbiol. 2020;11:114. https://doi.org/10.3389/fmicb.2020.00114.

162. Shinomiya M, Iwata T, Kasuya K, Doi Y. Cloning of the gene for poly(3-hydroxybutyric acid) depolymerase of Comamonas testosteroni and functional analysis of its substrate-binding domain. FEMS Microbiol Lett. 1997;154:89–94.

Miwa Suzuki was born in 1990 in Tochigi, Japan. She received her B.Eng., then M.Sci. and Tech. degrees from the Gunma University in 2016, majoring in chemistry and chemical biology. She obtained a Ph.D. degree from Gunma University in 2018 for her research on biodegradability control of aliphatic polyesters based on their environmental degradability under the supervision of Professor Ken-ichi Kasuya. She then joined the Human Resource Cultivation Center at Gunma University (HRCC) as a postdoctoral fellow, where she conducted research on the development of technology for the control of environmental degradation of biodegradable plastics. She is now engaged in research activities as a technical staff member of Center for Instrumental Analysis of Gunma University. She is currently focusing on elucidating the relationship between microbial flora structure on plastics and the degradation rate of biodegradable plastics.

Yuya Tachibana received his B.S. and M.S. from Osaka Prefecture University and got Ph.D. for his work in supramolecular chemistry (rotaxane chemistry) based on organic synthesis form Prof. Toshikazu Takata at Tokyo Institute of Technology in 2004. He started his carrier as a researcher at Industrial Technology Center of Wakayama Prefecture in 2004 and researched the industrialization of biobased materials and chemical recycling of plastics. In 2009, he moved to Dr. Kunioka’s group at National Institute of Advanced Industrial Science and Technology as a post doctoral fellow and also researched at Michigan State University as a visiting researcher for the contribution to ISO standards (biobased carbon content and biodegradability). In 2011, he moved to Gunma University and now belongs to Faculty of Science and Technology and Gunma University Center for Food Science and Wellness. In 2013, he was also appointed as a PRESTO researcher of Japan Science and Technology for the development of biobased polymer. In addition, he researched at Mons University as a visiting researcher in 2015. His present interest is the development of biobased polymer and biodegradable polymer, the evaluation of biodegradability, and the control of the biodegradability of biodegradable polymer.

Ken-ichi Kasuya was born in 1968 in Hyogo, Japan. He received his B.Sc. Agri. degree in organic chemistry from Tohoku University in 1992. He received his Ph.D. degree from Tokyo Tech in 1997 for his research on the enzymatic degradation mechanism of biodegradable polymers under the supervision of Professors Yoshiharu Doi and Yoshio Inoue. Later, he worked on elucidation of the enzymatic and microbial degradation mechanisms of biodegradable polymers as Special Postdoctoral Researcher at RIKEN, before joined the faculty at Gunma University in 1999 as an Assistant Professor. He was promoted to Professor in 2010 and appointed as Special Assistant to the President of Gunma University in 2017. Since 2018, he has also served as the director of the newly established Gunma University Center for Food Science and Wellness (GUCFW), where he has been working on the development of environmentally friendly food packaging for social implementation of biodegradable plastics and the development of functional foods using local food ingredients. He specializes in the biodegradation mechanisms of biodegradable plastics, comprising polymer science, enzymology and microbiology, among other related fields. He is currently focusing on the research and development of biodegradable plastics in marine environments.