Thymoma: A Retrospective Review of 55 Cases of Thymoma Treated At a Regional Cancer Center

Abstract
We have reviewed the results of 55 consecutive cases of Thymoma treated at Kidwai Memorial Institute of Oncology in terms of surgical approach, removal of tumour with adequate clearance, the related complications, adjuvant treatment and the survival for the different stages of Thymoma.

Keywords
Thymoma; Median sternotomy; Thoracotomy; Thymectomy

Abbreviations
TET: Thymic Epithelial Tumors; SVC: Superior Vena Cava; KMIO: Kidwai Memorial Institute of Oncology

Introduction
Thymoma is the most common neoplasm of the anterior mediastinum, originates within the epithelial cells of the thymus [1]. Thymomas are typically slow-growing tumors that spread by local extension. Metastases are usually confined to the pleura, pericardium, or diaphragm, whereas extra thoracic metastases are uncommon. The most widely used staging system for thymomas is Masaoka and recently by WHO staging, both were included in our studies. Surgery remains the mainstay of treatment regardless of stage for all thymic neoplasms [16]. Blalock described removal of the thymus initially in 1941 [2,3]. The preferred surgical approach is median sternotomy with complete thymectomy [4-10]. Complete thymectomy is favored even in cases of only partial thymic gland involvement because of reports of improved survival and multifocal thymoma. 40% of the cases invade surrounding structures which may limit the ability to achieve R0 margins [2]. In advanced tumors, especially if the lung or pleural space is invaded, the extension of a sternotomy to a hemi clamshell incision or a full clamshell incision can be suitable. The oncologic equivalency of thoracoscopic and robotic assisted approaches has been reported, so long as capsule integrity has been maintained and tumour seeding has been prevented [11-14]. Masaoka stages III and IV, histological types B2, B3, and C, and incomplete resection were independent risk factors for poor prognosis. Complete resection was feasible in all early stage TETs in our patients. The goals of surgery were achieved safely with very few serious complications and no surgical deaths. Completeness of resection is the most commonly cited statistically significant prognostic factor in thymoma. Our experience also proves that both the WHO criteria and the modified Masaoka staging are prognostic factors of TETs. Long-term disease-specific survival can be expected not only after surgery for early stage thymoma but also after surgery for advanced disease and also including histopathology sub types.

Aim
To investigate the role of surgery in the management of thymomas and investigate prognostic indicators after surgery for thymoma.

Discussion
We retrospectively reviewed 55 thymic epithelial tumors diagnosed during the period of 1998 to 2008 at our (KMIO) institute. 55 patients were diagnosed as thymoma, 50 patients were included in our study, 5 patients were determined to have either World Health Organization type C disease or Masaoka stage IV-B disease and were excluded from analysis were examined the histological specimens using the current World Health Organization classification. Patient characteristics, surgical procedures, and postoperative courses were studied. Staging was performed according to the modified Masaoka system based on surgical and pathological findings; all the histological specimens were reexamined using the current WHO criteria for TET classification for the purpose of the study. Preoperative workup included a complete history and physical examination, laboratory tests, chest roentgenogram, computed tomographic scan. Our strategy for clinically suspected TET patients without any clinical evidence of dissemination was surgery oriented (i.e., surgical exploration for histological diagnosis and potential resection). The surgical procedure consisted of a total thymectomy together with excision of invaded tissue when possible, through a median sternotomy or a thoracotomy based on the tumor location. Patients were operated on with every effort to remove the tumor. If complete resection was not feasible, then a partial resection (debulking) was carried out. When even a debulking was difficult, the procedure turned into a mere biopsy. Surgical specimens were further examined by our pathologists to determine the histology as well as the margins of resection. The most common surgical approach was sternotomy, which was utilized in 32 (64%) patients in our series. In addition to total thymectomy, 4 of our patients additionally had partial pleurectomy, wedge resections of lung & lobectomy.

Keywords
Thymoma; Median sternotomy; Thoracotomy; Thymectomy
Results

i. Demographic characteristics of the 50 patients included the following (Table 1).

ii. The majority of patients in our series were female 61% (n = 31)

iii. Overall average age of patients was 51.0 years.

iv. 15(30%) patients were associated with myasthenia gravis.

Conclusion

a. Surgery remains the mainstay of treatment regardless of stage for all thymic neoplasms (16). Blalock described removal of the thymus initially in 1941 [3].

b. The preferred surgical approach is median sternotomy with complete thymectomy [4-7-10].

c. Complete thymectomy is favoured even in cases of only partial thymic gland involvement because of reports of improved survival and multifocal thymoma.

d. 40% of the cases invade surrounding structures which may limit the ability to achieve R0 margins (2).

e. In advanced tumors, especially if the lung or pleural space is invaded, the extension of a sternotomy to a hemi clamshell incision or a full clamshell incision can be suitable.

f. The oncologic equivalency of thoracoscopic and robotic assisted approaches has been reported, so long as capsule integrity has been maintained and tumour seeding has been prevented (11-14).

g. Masaoka stages III and IV, histological types B2, B3, and C, and incomplete resection were independent risk factors for poor prognosis (Table 2). Complete resection was feasible in all early stage TETs in our patients (Table 3). The goals of surgery were achieved safely with very few serious complications and no surgical deaths (Table 4). Completeness of resection is the most commonly cited statistically significant prognostic factor in thymoma. Our experience also proves that both the WHO criteria and the modified Masaoka staging are prognostic factors of TETs. Long-term disease-specific survival can be expected not only after surgery for early stage thymoma but also after surgery for advanced disease and also including histopathological sub types (Table 5 & 6).

Masoka Stage	Number of Patients
Stage 1	22 (44%)
Stage 2	16 (32%)
Stage 3	07 (14%)
Stage 4-A	05 (10%)

Table 2: Results showing Masoka stage.

Completely Resected	Partially Resected	Biopsy
35	11	04

Table 3: Showing Resection rates.

Stage 1	Stage 2	Stage 3	Stage 4
Completely Resected	20	03	01
Partially Resected	02	04	00
Biopsy	-	-	4

Table 4: Morbidity and Mortality.

Post Op Complications	8 Patients
Myasthenic Crisis	4
Respiratory Failure	2
Pneumonia	2

Mortality	2 Patients
Myasthenic Crisis	1
Cardiac Arrest	1

Table 5: Adjuvant Treatment.

Incompletely Resected	15
Patients Underwent Rt	18
Completed Rt	6
Partial Response/ On Follow Up	4
Non Responders	2

*We have not addressed the role of chemotherapy either in the induction or adjuvant setting. Since very few patients were subjected to chemotherapy in our studies
Table 6: After a mean follow-up of 60 months.

Patient Alive	33 (66%)
Patient Died	8 (16%)
Not Able to Contact	9 (18%)

*Five yrs survival was 66%.

References

1. Engels EA (2010) Epidemiology of thymoma and associated malignancies. J Thorac Oncol 5(10 Suppl 4): S260-S265.
2. Venuta F, Rendina EA, Longo F, De Giacomo T, Anile M, et al. (2003) Long-term outcome after multimodality treatment for stage III thymic tumors. Ann Thorac Surg 76(6): 1866-1872.
3. Blalock A, McGehee AH, Ford FR, Joseph Lilienthal L (1941) The treatment of myasthenia gravis by removal of the thymus gland Preliminary Report. JAMA 117(18): 1529-1533.
4. Evoli A, Minisci C, Di Schino C, Marsili F, Punzi C, et al. (2002) Thymoma in patients with MG: characteristics and long-term outcome. Neurology 59(12): 1844-1850.
5. Kim DJ, Yang WI, Choi SS, Kim KD, Chung KY (2005) Prognostic and clinical relevance of the World Health Organization schema for the classification of thymic epithelial tumors: a clinicopathologic study of 108 patients and literature review. Chest 127(3): 755-761.
6. Rea F, Marulli G, Girardi R, Bortolotti L, Favaretto A, et al. (2004) Long-term survival and prognostic factors in thymic epithelial tumours. Eur J Cardiothorac Surg 26(2): 412-418.
7. Haniuda M, Kondo R, Numanami H, Makichi A, Machida E, et al. (2001) Recurrence of thymoma: clinico-pathological features, re-operation, and outcome. J Surg Oncol 78(3): 183-188.
8. Regnard JF, Magdeleinat P, Dromer C, Dulmet E, de Montpreville V, et al. (1996) Prognostic factors and long-term results after thymoma resection: a series of 307 patients. J Thorac Cardiovasc Surg 112(2): 376-384.
9. Wright CD, Choi NC, Wain JC, Mathisen DJ, Lynch TJ, et al. (2000) Induction chemotherapy followed by resection for locally advanced Masaoka Stage III and IVa thymic tumors. Ann Thorac Surg 85(2): 385-389.
10. Zhu G, He S, Fu X, Jiang G, Liu T (2004) Radiotherapy and prognostic factors for thymoma: a retrospective study of 175 patients. Int J Radiat Oncol Biol Phys 60(4): 1113-1119.
11. Pennathur A, Qureshi I, Schuchert MJ, Dhupar R, Ferson PF, et al. (2011) Comparison of surgical techniques for early-stage thymoma: feasibility of minimally invasive thymectomy and comparison with open resection. J Thorac Cardiovasc Surg 141(3): 694-701.
12. Komanapalli CB, Cohen JL, Sukumar MS (2010) Extended transcervical video-assisted thymectomy. Thorac Surg Clin 20(2): 235-243.
13. Limmer KK, Kernstine KH (2011) Minimally invasive and robotic-assisted thymus resection. Thorac Surg Clin 21(1): 69-83.
14. Toker A, Sonett J, Zelinski M, Rea F, Tomulescu V, et al. (2011) Standard terms, definitions, and policies for minimally invasive resection of thymoma. J Thorac Oncol 6(7 Suppl 3): S1739-S1742.