Celecoxib-induced gastrointestinal, liver and brain lesions in rats, counteraction by BPC 157 or L-arginine, aggravation by L-NAME

Domagoj Drmic, Danijela Kolenc, Spomenko Ilic, Lara Bauk, Marko Sever, Anita Zenko Sever, Kresimir Luetic, Jelena Suran, Sven Seiwerth, Predrag Sikiric

Abstract

AIM
To counteract/reveal celecoxib-induced toxicity and NO system involvement.

METHODS
Celecoxib (1 g/kg b.w. ip) was combined with therapy with stable gastric pentadecapeptide BPC 157 (known to inhibit these lesions, 10 µg/kg, 10 ng/kg, or 1 ng/kg ip) and L-arginine (100 mg/kg ip), as well as NOS blockade [N(G)-nitro-L-arginine methyl ester (L-NAME)] (5 mg/kg ip) given alone and/or combined immediately after celecoxib. Gastrointestinal, liver, and brain lesions and liver enzyme serum values in rats were assessed at 24 h and 48 h thereafter.

RESULTS
This high-dose celecoxib administration, as a result of NO system dysfunction, led to gastric, liver, and brain lesions and increased liver enzyme serum values. The L-NAME-induced aggravation of the lesions was notable
for gastric lesions, while in liver and brain lesions the beneficial effect of L-arginine was blunted. L-arginine counteracted gastric, liver and brain lesions. These findings support the NO system mechanism(s), both NO system agonization (L-arginine) and NO system antagonization (L-NAME), that on the whole are behind all of these COX phenomena. An even more complete antagonization was identified with BPC 157 (at both 24 h and 48 h). A beneficial effect was evident on all the increasingly negative effects of celecoxib and L-NAME application and in all the BPC 157 groups (L-arginine + BPC 157; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157). Thus, these findings demonstrated that BPC 157 may equally counteract both COX-2 inhibition (counteracting the noxious effects of celecoxib on all lesions) and additional NOS blockade (equally counteracting the noxious effects of celecoxib + L-NAME).

CONCLUSION
BPC 157 and L-arginine alleviate gastrointestinal, liver and brain lesions, redressing NSAIDs’ post-surgery application and NO system involvement.

Key words: BPC 157; Celecoxib; L-arginine; N(G)-nitro-L-arginine methyl ester; Rats

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In rats treated with the COX-2 inhibitor celecoxib, BPC 157 (given intraperitoneally) counteracted lesion development in the stomach, liver and brain. BPC 157 treatment alongside with N(G)-nitro-L-arginine methyl ester (L-NAME) also attenuated any effect of L-NAME that would otherwise have intensified the deleterious regular course. Consistently, with exacerbation (induced by L-NAME administration) and amelioration (due to L-arginine) of gastric, liver and brain lesions, L-arginine amelioration prevailed (i.e., the gastric, liver and brain lesions were attenuated) when given together with L-NAME (L-NAME + L-arginine), an effect further reversed toward a marked beneficial effect by the addition of BPC 157 (L-NAME + L-arginine + BPC 157).

INTRODUCTION
We suggest that celecoxib, a specific COX-2 blocker, causes gastrointestinal, liver and brain lesions in rats when given in high doses, as has already been shown with non-selective nonsteroidal antiinflammatory drugs (NSAIDs)[5-8]. These results should also be related to the hitherto undetermined interaction with NO system dysfunction as well presenting the role of the NO system in gastrointestinal lesions[2,3], liver damage and hepatic encephalopathy[41]. These findings would correspond to hitherto reported lesions after the use of non-selective NSAIDs[5-8].

To clarify and combat the side effects of celecoxib, we focused on the stable gastric pentadecapeptide BPC 157, which is known to counteract lesions induced by non-selective NSAIDs[5-8] and to interact with the NO system in different models and species[9]. We also explored mechanisms behind the protection induced by the NO synthetase (NOS) substrate L-arginine and the aggravation induced by the NOS blocker N(G)-nitro-L-arginine methyl ester (L-NAME).

It was previously shown that celecoxib improved gastric lesions[10], induced the reduction of proen- plastic lesions in the liver[11] and counteracted brain lesions and convulsions[12-14].

However, research into celecoxib-induced damage showed gastric[15-21] or intestinal lesions[22,23] and aggravation of kainic acid-convulsions[24]. Finally, both celecoxib and indomethacin prevented the gastroprotective effects induced by a nitric oxide donor or an inducer of nitric oxide synthesis[25]. These findings reveal more gastrointestinal lesions, more liver toxicity, and more toxicity to the brain as known risks for non-selective NSAIDs[5-8], which are also associated with adverse drug reactions in humans[26,27].

Therefore, these results would define the possible liver and brain lesions in the post-application period during a course of celecoxib-induced damage. In this scenario, the combined application of both of the NO agents L-NAME and L-arginine, i.e., the application of NOS blockade and an NOS substrate, testing the dual significance of NO, would clarify eventual therapeutic attempts and resolve possible controversies. For example, L-NAME was shown to attenuate indomethacin-induced microvascular injuries and leakage while L-arginine worked in conjunction with indomethacin[8].

A likely beneficial effect for the stable gastric pentadecapeptide BPC 157 on potential celecoxib-induced toxicity might be related to NO system dysfunction, which follows from consistent evidence[1,9]. BPC 157 (as an anti-ulcer peptide that is native and stable in human gastric juice) has been designated to be a novel mediator of cytoprotection[29] that has been implemented in inflammatory bowel disease and is in trial now to treat multiple sclerosis[30]. Recent reviews[1,9] cover that BPC 157 counteracts COX-1/COX-2-induced gastric, intestinal, liver and brain lesions[5-8], aspirin-prolonged bleeding and thrombocytopenia[31] and might prevent and rescue adjuvant arthritis[32]. BPC 157 also interacts with the effects of both L-arginine and L-NAME-induced aggravation in different models and species. Thus, we examined these possible therapies and the mechanisms behind them[9].

Consequently, we focused on the disturbances at
Injury severity was assessed immediately after sacrifice. The sum of the longest lesion’s diameters was assessed as described previously[5-8], and gastric tissues were processed for routine microscopy analysis as described previously[5-8].

Liver assays - Bilirubin and enzyme activity: To determine the serum values of aspartate transaminase (AST), alanine transaminase (ALT) (IU/L) and total bilirubin (µmol/L), blood samples were obtained immediately after sacrifice and were centrifuged for 15 min at 3000 rpm. All tests were measured using an Olympus AU2700 analyzer with original test reagents (Olympus Diagnostica, Lismeehan, Ireland)[5-8].

Liver lesions: Liver tissue was immediately placed in 10% neutral buffered formalin for 24 h and subsequently embedded in paraffin. Hematoxylin-eosin-stained sections were analyzed on three high-power fields. The number of nuclei and area of cytoplasm as well as their diameter were measured using the ISSA program (Vamstec, Zagreb, Croatia), and the number of binucleated cells was also counted. Microvesicular steatosis was scored from 1-3: 1, less than 20% of hepatocytes showing microvesicular steatosis; 2, 20%-60% of hepatocytes showing microvesicular steatosis; and 3, over 60% of hepatocytes showing microvesicular steatosis. Parenchymal necrosis, eosinophilic cytoplasm, pyknotic nuclei and conspicuous nucleoli were scored semiquantitatively as follows: 0, showing no changes; 1, minimum; 2, moderate; and 3, maximum changes[5-8].

Brain lesions: Brains were fixed in 10% formalin for two days. Upon fixation, the brain was grossly inspected and cut into consecutive coronal sections. Brain slabs were dehydrated in graded ethanol and embedded in paraffin. Paraffin blocks were cut into 5-µm slices. Paraffin slices were deparaffinated in xylene, rehydrated in graded ethanol and stained with hematoxylin and eosin. The intensity and distribution of brain lesions (balloonized or red neurons), brain edema and cyanosis were described and evaluated semiquantitatively on two scales as follows where 0 generally indicated no changes: 0-3, edema (1, weakly diffuse and/or perifocal; 2, moderate; and 3, strong and generalized); 0-4, balloonized or red neurons (1, 5%; 2, 5%-30%; 3, 30%-50%; and 4, > 50%)[5-8].

Statistical analyses: Statistical analyses of the quantified data were performed by analysis of variance (ANOVA). Post hoc comparisons were appraised using the conservative Bonferroni/Dunn test. Data are presented as the mean ± SD. Non-parametric statistical analyses were performed for categorical data using the Kruskal-Wallis and post hoc Mann-Whitney U test. Values are expressed as min/med/max. Values of P < 0.05 were considered statistically significant.

RESULTS

Gastric lesions: Celecoxib induced severe gastric lesions (histologically, they appeared as mucosal defects ranging from one...
Liver lesions

 Celecoxib induced marked steatosis, congestion and necrosis at 24 h and at 48 h, along with increased enzyme serum values. The lesions were markedly attenuated by L-arginine at 24 h and at 48 h. Its beneficial effect was preserved at 24 h but decreased to control values at 48 h when combined with L-NAME, though L-NAME by itself could not affect celecoxib-induced liver lesions. A stronger beneficial effect occurred with BPC 157. BPC 157 alone completely alleviated celecoxib-induced liver lesions, both at 24 h and 48 h. In combination with the other agents, BPC 157 consistently demonstrated the same beneficial effect (Table 2, Figure 2).

DISCUSSION

This study argues that the celecoxib-induced stomach, liver and brain lesions resulting from extended COX-2

Medication (g/kg intraperitoneally) immediately after celecoxib	Sum of longest lesions diameters (means ± SD, mm) assessed after celecoxib and mediation application
Control, saline 5 mL	10 ± 2
BPC 157 10 µg	0 ± 0
BPC 157 10 ng	2 ± 0.8
L-NAME 5 mg	13 ± 2
L-arginine 100 mg	7 ± 1.5
L-NAME 5 mg + L-arginine 100 µg	8 ± 2
L-NAME 5 mg + BPC 157 10 µg	2 ± 1
L-NAME 5 mg + BPC 157 10 ng	3.2 ± 0.8
L-arginine 100 mg + BPC 157 10 µg	1 ± 0.5
L-arginine 100 µg + BPC 157 10 ng	2.3 ± 0.4
L-NAME 5 mg + L-arginine 100 µg + BPC 157 10 µg	1 ± 0.5
L-NAME 5 mg + L-arginine 100 mg + BPC 157 10 ng	2.5 ± 0.4

*P < 0.05 vs control.
Table 2 Liver lesions assessment after celecoxib, BPC 157, L-NAME, L-arginine

Medication (#/kg intraperitoneally)	Time after celecoxib intraperitoneally	Microscopic assessment, Score (0-3), Min/Med/Max	Liver lesions assessment	Serum enzymes values (IU/L), means ± SD		
	24 h	Steatosis	Congestion	Necrosis	ALT	AST
Control, saline 5 mL	24 h	2/2/3	2/2/3	2/2/3	352 ± 12	75 ± 8
	48 h	2/3/3	2/2/3	2/2/3	356 ± 18	84 ± 9
BPC 157 10 µg	24 h	1/1/1^a	1/1/2^a	1/1/1^a	138 ± 14^a	41 ± 11^a
	48 h	1/1/1^a	1/1/2^a	1/1/1^a	63 ± 12^a	35 ± 12^a
BPC 157 10 ng	24 h	1/1/1^a	1/1/1^a	1/1/1^a	154 ± 13^a	45 ± 8^a
	48 h	1/1/2^a	1/1/2^a	1/1/1^a	72 ± 19^a	40 ± 7^a
BPC 157 1 ng	24 h	1/1/1^a	1/1/2^a	1/1/1^a	170 ± 15^a	48 ± 10^a
	48 h	1/1/2^a	1/1/2^a	1/1/1^a	80 ± 15^a	43 ± 8^a
L-NAME 5 mg	24 h	2/3/3	2/2/3	2/2/3	375 ± 11	86 ± 12
	48 h	3/3/3	2/3/3	2/3/3	400 ± 12	80 ± 10
L-arginine 100 mg	24 h	1/2/2^a	1/2/2^a	1/2/2^a	315 ± 14^a	68 ± 14^a
	48 h	1/2/2^a	1/2/2^a	1/2/2^a	300 ± 21^a	65 ± 10^a
L-NAME 5 mg + L-arginine 100 mg	24 h	1/2/2^a	1/2/2^a	1/2/2^a	293 ± 17^a	68 ± 9^a
	48 h	2/2/2	2/2/3	2/2/2	270 ± 15^a	73 ± 11^a
L-NAME 5 mg + BPC 157 10 µg	24 h	1/1/1^a	1/1/2^a	1/1/1^a	170 ± 15^a	69 ± 9^a
	48 h	1/1/2^a	1/1/2^a	1/1/1^a	150 ± 12^a	55 ± 13^a
L-NAME 5 mg + BPC 157 10 ng	24 h	1/1/1^a	1/1/2^a	1/1/1^a	210 ± 16^a	70 ± 7^a
	48 h	1/1/2^a	1/1/2^a	1/1/1^a	182 ± 14^a	60 ± 8^a
L-arginine 100 mg + BPC 157 10 µg	24 h	1/1/1^a	1/1/2^a	1/1/1^a	165 ± 25^a	55 ± 8^a
	48 h	1/1/2^a	1/1/2^a	1/1/1^a	160 ± 18^a	45 ± 8^a
L-arginine 100 mg + BPC 157 10 ng	24 h	1/1/1^a	1/1/2^a	1/1/1^a	190 ± 11^a	63 ± 10^a
	48 h	1/1/2^a	1/1/2^a	1/1/1^a	170 ± 13^a	55 ± 9^a
L-NAME 5 mg + L-arginine 100 mg	24 h	1/1/2^a	1/1/2^a	1/1/1^a	167 ± 11^a	57 ± 10^a
+ BPC 157 10 µg	48 h	1/1/2^a	1/1/2^a	1/1/1^a	176 ± 14^a	57 ± 8^a
L-NAME 5 mg + L-arginine 100 mg	24 h	1/1/2^a	1/1/2^a	1/1/1^a	202 ± 9^a	62 ± 7^a
+ BPC 157 10 ng	48 h	1/1/2^a	1/1/2^a	1/1/1^a	190 ± 12^a	65 ± 8^a

^aP < 0.05 vs control.

Figure 2 Presentation of celecoxib-induced liver lesions at 48 h. Controls presented with pronounced microvesicular and macrovesicular steatosis, dilated sinusoids, and piecemeal necrosis (A); BPC 157 rats presenting with minimal microvesicular steatosis and no necrosis (B). HE × 40.

inhibition are a function of NO system dysfunction, which is particularly worsened after a high-dose application. Considering the advanced safety profile of celecoxib^[10], lower celecoxib regimens such as 200 mg/kg and 500 mg/kg given intraperitoneally were without notable effect on gastric, liver or brain lesions (thus, these results are not specifically shown). These lesions could be all influenced by the NOS substrate L-arginine and in particular by the stable pentadecapeptide BPC 157, which is an agent known to counteract non-selective NSAID-induced ulcerogenesis as well as the liver and brain lesions that interact with the NO system^[1,9]. The additional support comes from the similar therapy effects obtained with the correspondingly high dose range of BPC 157 therapy, which was similar to the dosing used in other studies as well^[33,34]. This study argues that the celecoxib-induced stomach, liver and brain lesions presenting after COX-2 inhibition demonstrate a particular NO system dysfunction. These effects could be all influenced by the NOS substrate L-arginine, particularly by the stable pentadecapeptide BPC 157, which is an agent known to counteract non-selective NSAID-induced ulcerogenesis as well as liver and brain lesions and particularly interacts with the NO system^[1,9].
In support of this argument, the evidence for non-selective NSAIDs\cite{5-8} shows that they cause more gastrointestinal lesions, more liver toxicity, and more toxicity in the brain due to the known COX-1/COX-2 relationship\cite{5-8}.

On the other hand, after celecoxib treatment, the deleterious course that characterizes COX-2 inhibition should be more complex. This course includes initial stomach lesions and further progressing lesions that deteriorate over time as well as extensive liver and brain lesions that are already sustainably present at the early 24 h period. Further, these lesions are reciprocally potentiated by L-NAME and opposed by L-arginine in a particular way.

In so doing and in substantiating the particularities for the initial lesions in the stomach at 24 h, it is likely that celecoxib provides COX-2 inhibition; at that time, in the stomach, there is no effect of L-arginine or L-NAME. However, the liver and brain lesions likely appear due to COX-2 inhibition and NOS dysfunction, the latter of which is counteracted by L-arginine.

Next, in addition to this opposing effect of L-arginine, NOS blockade specifically contributes NOS dysfunction to COX-2 inhibition as verified over the 24-48 h period.

Table 3 Brain lesions assessment after celecoxib, BPC 157, L-NAME, L-arginine

Medication (/kg intraperitoneally immediately after celecoxib 1 g/kg intraperitoneally)	Time after celecoxib	Brain lesions assessment		
		Microscopic assessment, Score (0-4), Min/Med/Max	Microscopic assessment, Score (0-3), Min/Med/Max	
Purkinje cells (red neurons)	Cerebral cortex (red neurons)	Edema		
Control, saline 5 mL	24 h	2/2/2	2/2/2	0/0/0
	48 h	2/2/3	2/2/3	0/0/0
BPC 157 10 µg	24 h	0/0/0*	0/1/1*	0/0/0
	48 h	0/1/1*	0/1/1*	0/0/0
BPC 157 10 ng	24 h	0/1/1*	0/1/1*	0/0/0
	48 h	0/1/1*	0/1/1*	0/0/0
BPC 157 1 ng	24 h	0/1/1*	0/1/1*	0/0/0
	48 h	0/1/1*	0/1/1*	0/0/0
L-NAME 5 mg	24 h	2/2/3	2/2/3	0/0/0
	48 h	2/3/3	2/3/3	0/0/0
L-arginine 100 mg	24 h	1/2/2	1/2/2	0/0/0
	48 h	1/2/2	1/2/2	0/0/0
L-NAME 5 mg + L-arginine 100 mg	24 h	2/2/2	2/2/2	0/0/0
	48 h	2/2/2	2/2/2	0/0/0
L-NAME 5 mg + BPC 157 10 µg	24 h	1/1/1*	1/1/1*	0/0/0
	48 h	1/1/2*	1/1/2*	0/0/0
L-NAME 5 mg + BPC 157 10 ng	24 h	1/1/1*	1/1/1*	0/0/0
	48 h	1/1/2*	1/1/2*	0/0/0
L-arginine 100 mg + BPC 157 10 µg	24 h	0/1/1*	0/1/1*	0/0/0
	48 h	1/1/2*	1/1/2*	0/0/0
L-arginine 100 mg + BPC 157 10 ng	24 h	0/1/1*	0/1/1*	0/0/0
	48 h	1/1/2*	1/1/2*	0/0/0
L-NAME 5 mg + L-arginine 100 mg + BPC 157 10 µg	24 h	1/1/1*	1/1/1*	0/0/0
	48 h	1/1/2*	1/1/2*	0/0/0
L-NAME 5 mg + L-arginine 100 mg + BPC 157 10 ng	24 h	1/1/1*	1/1/1*	0/0/0
	48 h	1/1/2*	1/1/2*	0/0/0
L-NAME 5 mg + L-arginine 100 mg + BPC 157 10 µg + l-NAME 5 mg	24 h	1/1/1*	1/1/1*	0/0/0
	48 h	1/1/2*	1/1/2*	0/0/0
L-NAME 5 mg + L-arginine 100 mg + BPC 157 10 ng + l-NAME 5 mg	24 h	1/1/1*	1/1/1*	0/0/0
	48 h	1/1/2*	1/1/2*	0/0/0

*P < 0.05 vs control.

Figure 3 Presentation of celecoxib-induced cerebral cortex lesions at 48 h. Control celecoxib rats presented more damaged (balloonized) red neurons without any inflammation markedly expressed in particular in the cerebral cortex (A), unlike BPC 157 + celecoxib rats (B). HE × 40.
It is in competition with the progressive stomach lesions that the beneficial effect of L-arginine occurs. Similarly, L-NAME aggravation occurs in stomach lesions, while the liver and brain lesions cannot be worsened further. Therefore, maximal NOS dysfunction with COX-2 inhibition is present in the brain more than in the liver. Namely, unlike stomach lesions (where L-arginine nullifies L-NAME aggravation) and liver lesions, in brain lesions, L-arginine could not work to counteract an L-NAME-induced NOS blockade.

Thus, there is threefold confirmation of the NO relationship: L-NAME (NOS blockade) in stomach lesions; L-arginine (NOS substrate) counteracts stomach, liver, brain lesions; and L-arginine and L-NAME could specifically affect each other’s response in the stomach, liver and brain.

Finally, for all these lesions in the stomach, liver and brain, celecoxib- and/or L-NAME-induced lesions were completely inhibited by BPC 157 administration. As mentioned, BPC 157, due to its counteraction of NSAID-induced lesions[1] and interaction with NO agents[1,9], is assumed to be more prone to counteracting both COX-1/COX-2 and NOS inhibition than L-arginine as an NOS substrate. In addition, this result is also true for COX-2/NOS inhibition. Further, BPC 157 induces NO release from the gastric mucosa supernatant, similarly to L-arginine[35], but it also functions under conditions where L-arginine does not work[36]. This mechanism assumes a persistent, beneficial effect versus increasing dysfunction of the nitri ergic pathway (for instance, heavier loss of endothelial cells from the vascular wall could lead to less NO production ability[37]), making COX-2/NOS inhibition worse as the tissue integrity is damaged further. Likely as a result of this relationship, the same effectiveness is observed in all increasingly damaged circumstances following celecoxib and L-NAME application. This process specifically involves all BPC 157 groups when administered with celecoxib alone and/or with NO agents (L-arginine + BPC 157; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157) in the stomach, liver, and brain. BPC 157 may thereby equally counteract both COX-2 inhibition (counteracting the noxious effects of celecoxib on all lesions) and additional NOS blockade (equally counteracting the noxious effects of celecoxib + L-NAME)[1,9]. This outcome occurs equally with either µg- or ng dosing regimens. In addition, BPC 157 affects eNOS gene function as well[38] as that of other genes[38–42].

In the latter cases, in the healing process, BPC-157 regulates the phosphorylation level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) as well as their downstream targets, including c-Fos, c-Jun, and egr-1, key molecules involved in cell growth, migration, and angiogenesis[38–42].

In conclusion, the therapy and syndrome in rats treated with celecoxib described herein (the gastrointestinal tract, liver and brain lesions presented rapidly in rats) overlaps with the definitive follow-up of previous non-selective NSAID studies[5–8]. With respect to the administration of pentadecapeptide BPC 157, these results extend and generalize the observed acute and long-term therapeutic effects[5–8]. Then, over longer periods, there is greater deterioration from celecoxib, the COX-2-inhibitor, and the NO synthetase (NOS)-blocker L-NAME when combined, along with prominent rescue by the stable pentadecapeptide BPC 157 and less prominent attenuation with the NOS substrate L-arginine. These findings should likely reveal an aggravating parallelism between COX-2 and NOS inhibition[43], including the role of the NO system in gastrointestinal[2,3] and liver damage and hepatic encephalopathy[43] as well as celecoxib syndrome in particular NO system pathways.

Conclusively, L-arginine, but more so BPC 157, may provide a particular therapy that may alleviate likely gastrointestinal, liver and brain lesions and redress NSAIDs’ post-surgery application and NO system involvement. However, the particular point remains that a single large overdose challenge differs considerably from the lower regular patient regimens throughout a markedly more prolonged treatment duration.

COMMENTS

Background
Non-selective nonsteroidal antiinflammatory drugs (NSAIDs) induce gastrointestinal, liver and brain toxicity in rats, while celecoxib, a COX-2 inhibitor, is considered less toxic.

Research frontiers
This study argues that the celecoxib-induced stomach, liver and brain lesions resulting from extended COX-2 inhibition are a function of NO system dysfunction, which is particularly worsened after a high-dose application. These lesions could be all influenced by the NO synthetase (NOS) substrate L-arginine and in particular by the stable pentadecapeptide BPC 157, which is an agent known to counteract non-selective NSAID-induced ulcerogenesis as well as the liver and brain lesions that interact with the NO system. The additional support comes from the similar therapy effects obtained with the correspondingly high-dose range of BPC 157 therapy, which was similar to the dosing used in other studies as well.

Innovations and breakthroughs
With respect to the administration of pentadecapeptide BPC 157, these results extend and generalize the observed acute and long-term therapeutic effects. Then, over longer periods, there is greater deterioration from celecoxib, the COX-2-inhibitor, and the NOS-blocker L-NAME when combined, along with prominent rescue by the stable pentadecapeptide BPC 157 and less prominent attenuation with the NOS substrate L-arginine. These findings should likely reveal an aggravating parallelism between COX-2 and NOS inhibition, including the role of the NO system in gastrointestinal and liver damage and hepatic encephalopathy as well as celecoxib syndrome in particular NO system pathways.

Applications
Conclusively, L-arginine, but more so BPC 157, may provide a particular therapy that may alleviate likely gastrointestinal, liver and brain lesions and redress NSAIDs’ post-surgery application and NO system involvement.

Peer-review
The manuscript is well written and reports a potentially interesting data.
REFERENCES

1. Sikiric P, Seiwther S, Rucman R, Turkovic B, Rotkot DS, Breic L, Sever M, Klicek R, Radic B, Drmic D, Ilic S, Kolene D, Aralica G, Safic H, Suran J, Rak D, Dzidic S, Vrecic H, Bebic S. Toxicity by NSAIDs. Counteraction by stable gastric pentadecapeptide BPC 157. Curr Pharm Des 2013; 19: 76-83 [PMID: 22950504 DOI: 10.2174/138161213106010076]

2. Whittle BJ. Nitric oxide-modulating agents for gastrointestinal disorders. Expert Opin Investig Drugs 2005; 14: 1347-1358 [PMID: 16255675 DOI: 10.1517/13543784.11.1347]

3. Evans SM, Whittle BJ. Interactive roles of superoxide and inducible nitric oxide synthase in rat intestinal injury provoked by non-steroidal anti-inflammatory drugs. Eur J Pharmacol 2001; 429: 287-296 [PMID: 11698048 DOI: 10.1016/s0014-2999(01)01337-9]

4. Huang HC, Wang SS, Lee FY, Chan CY, Chang FY, Lin HC, Cha CJ, Chen YC, Lee SD. Simvastatin for rats with thioacetamide-induced liver failure and encephalopathy. J Gastroenterol Hepatol 2008; 23: e236-e242 [PMID: 17573832 DOI: 10.1111/j.1440-1746.2007.04988.x]

5. Ilic S, Drmic D, Franjic S, Kolene D, Coric M, Breic L, Klicek R, Radic B, Sever M, Dzjedj V, Ivica M, Boban Blagac A, Zoricic Z, Amic T, Zoricic I, Dzidic S, Rucman R, Sikiric S. Protective effects of diclofenac, L-NAME, L-Arginine, and Pentadecapeptide BPC 157 and its effects on a NSAID toxicity model: diaclofenac-induced gastrointestinal, liver, and encephalopathy lesions. Life Sci 2011; 88: 533-542 [PMID: 21295044 DOI: 10.1016/j.lfs.2011.01.015]

6. Ilic S, Drmic D, Zarkovic K, Kolenc D, Coric M, Breic L, Klicek R, Radic B, Sever M, Dzjedj V, Ivica M, Boban Blagac A, Zoricic Z, Amic T, Zoricic I, Dzidic S, Rucman R, Sikiric S. Protective effects of diclofenac on intestine lesions in rheumatoid arthritis patients as assessed by endoscopic evaluation. Mod Rheumatol 2011; 21: 322-329 [PMID: 21645505 DOI: 10.1016/j.mrheuma.2011.05.038]

7. Lojo N, Rasic Z, Zenko Sever A, Kolenc D, Vukusic D, Drmic D, Zoricic I, Sever M, Seiwther S, Sikiric P. Effects of Diclofenac, L-NAME, L-Arginine, and Pentadecapeptide BPC 157 in rats. Eur J Pharmacol 2013; 667: 322-329 [PMID: 21645505 DOI: 10.1016/j.ejphar.2011.05.038]

8. Sikiric P, Seiwther S, Rucman R, Turkovic B, Rotkot DS, Breic L, Sever M, Klicek R, Radic B, Drmic D, Ilic S, Kolene D, Aralica G, Stupnisek M, Suran J, Barisic I, Dzidic S, Vrcic H, Sebecic B. Protective effect of rebamipide against celecoxib-induced gastric mucosal cell apoptosis. Biochem Pharmacol 2010; 79: 1623-1630 [PMID: 2052398 DOI: 10.1016/j.bcp.2010.03.010]

9. Pajdo R, Brzozowski T, Szlachcic A, Konturek PC, Ptak-Belowska A, Drzodzowicz D, Targosz A, Konturek SJ, Pawlik WW. Lipoxins, the novel mediators of gastroprotection and gastric adaptation to ulcerogenic action of aspirin. Curr Pharm Des 2011; 17: 1541-1551 [PMID: 21548865 DOI: 10.2174/1381612111306010076]

10. Toller IM, Hitzler I, Sayai A, Mueller A. Prostaglandin E2 prevents Helicobacter-induced gastric preneoplasia and facilitates persistent infection in a mouse model. Gastroenterology 2010; 138: 1455-1467, 1467.e1-1467.e4 [PMID: 20026604 DOI: 10.1016/j.gastro.2009.12.006]

11. Junqueira-Jurin J, Dunqueira AF, Medeiros JV, Barbosa SH, Nogueira AC, Mota JM, Santana AP, Brito GA, Ribeiro RA, Lima-Jurin RC, Souza MH. Role of capsaicin-sensitive primary afferent neurons and non-protein sulphhydril groups on gastroprotective effect of amifostine against ethanol-induced gastric damage in rats. Dig Dis Sci 2011; 56: 314-322 [PMID: 20552398 DOI: 10.1007/s10620-011-1300-8]

12. Sendur P, Ceronawicz P, Sendur R, Cieszkowski J, Warzecha Z, Dembiuski A. [Involvement of endogenous tachykinins in the development of jejunal mucosa injury induced by non-steroidal anti-inflammatory drugs]. Przegl Lek 2013; 70: 48-52 [PMID: 23879003]

13. Zwiklich-Weiclo M, Krzyzies-Macza G, Ptak-Belowska A, Karczewski E, Pajdo R, Sliwowski Z, Urbanczyk K, Drmic D, Zarkovic K, Konturek SJ, Pawlik WW, Brzozowski T. Antibiotic treatment with ampicillin accelerates the healing of colonic damage impaired by aspirin and coxib in the experimental colitis. Importance of intestinal bacteria, colonic microcirculation and proinflammatory cytokines. J Physiol Pharmacol 2011; 62: 357-368 [PMID: 21893697]

14. Baik EJ, Kim EJ, Lee SH, Moon C. Cyclooxygenase-2 selective inhibitors aggravate kaic acid induced seizure and neuronal cell death in the hippocampus. Brain Res 1999; 843: 118-129 [PMID: 10529118]

15. Coppelli G, Guaita E, Spaggiari S, Coruzzi G. Gastric effects of the selective cyclooxygenase-2 inhibitor, celecoxib, in the rat. Dig Liver Dis 2004; 36: 265-270 [PMID: 15113399 DOI: 10.1016/j.dld.2003.12.012]

16. Auriel E, Regev K, Korczyn AD. Nonsteroidal anti-inflammatory drugs exposure 2006-2007 in the central nervous system. Handb Clin Neurol 2011; 119: 577-584 [PMID: 22365321 DOI: 10.1016/B978-0-7020-4086-3.00038-2]

17. Besson F. Non-steroidal anti-inflammatory drugs: What is the actual risk of liver damage? World J Gastroenterol 2010; 16: 5651-5661 [PMID: 21128314 DOI: 10.3748/wjg.v16.i45.5651]

18. Whittle BJ, László F, Evans SM, Moncada S. Induction of nitric oxide synthase and microvascular injury in the rat jejunum.
provoked by indomethacin. Br J Pharmacol 1995; 116: 2286-2290 [PMID: 8564261]

29 Sikiric P, Seiwerth S, Breic L, Sever M, Klicek R, Radic B, Drmic D, Ilic S, Kolenc D. Revised Robert’s cytoprotection and adaptive cytoprotection and stable gastric pentadecapeptide BPC 157. Possible significance and implications for novel mediator. Curr Pharm Des 2010; 16: 1224-1234 [PMID: 20166993 DOI: 10.2174/13816121079045977]

30 Klicek R, Kolenc D, Suran J, Drmic D, Breic L, Aralica G, Sever M, Holjavec J, Radic B, Turudic T, Kokot A, Patrij L, Rucman R, Seiwerth S, Sikiric P. Stable gastric pentadecapeptide BPC 157 heals cysteamine-colitis and colon-colon-anastomosis and counteracts cuprizone brain injuries and motor disability. J Physiol Pharmacol 2013; 64: 597-612 [PMID: 24304574]

31 Stupniska M, Franjac S, Drmic D, Hrelec M, Kolenc D, Radic B, Bojic D, Vcev A, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 reduces bleeding time and thrombocytopenia after amputation in rats treated with heparin, warfarin or aspirin. Thromb Res 2012; 129: 652-659 [PMID: 21840572 DOI: 10.1016/j.thromres.2011.07.035]

32 Sikiric P, Seiwerth S, Grabarevic Z, Rucman R, Petek M, Jagic V, Turkovic B, Rotkovic I, Mise S, Zoricic I, Konjevoda P, Perovic D, Simicevic V, Separovic J, Hanzevacki M, Ljubanovic D, Artukovic B, Bratlic M, Tisljar M, Rekić B, Gjurasin M, Miklic P, Buljat G. Pentadecapeptide BPC 157 positively affects both non-steroidal anti-inflammatory agent-induced gastrointestinal lesions and arduous arthritis in rats. J Physiol Paris 1997; 91: 113-122 [PMID: 9403784 DOI: 10.1016/S0928-4257(97)89474-0]

33 Jelovac N, Sikiric P, Rucman R, Petek M, Marovic A, Perovic D, Seiwerth S, Mise S, Turkovic B, Damjic B, Miskovic B, Buljat G, Prkac I. Pentadecapeptide BPC 157 attenuates disturbances induced by neurotoxins: the effect on catalysis and gastric ulcers in mice and rats. Eur J Pharmacol 1999; 379: 19-31 [PMID: 10499368]

34 Duplanic B, Stambolija V, Holjavec J, Zemba M, Balevonic I, Drmic D, Suran J, Radic B, Filipovic M, Blagaic AB, Breic L, Kolenc D, Grabarevic Z, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 and anaphylactoid reaction in rats and mice after intravenous dextran and white egg administration. Eur J Pharmacol 2014; 727: 75-79 [PMID: 24486708 DOI: 10.1016/j.ejphar.2014.01.046]

35 Sikirić P, Seiwerth S, Grabarevic Z, Rucman R, Petek M, Jagić V, Turković B, Rotkovic I, Mise S, Zorić I, Konjevoda P, Perović D, Jurina L, Separović J, Hanzevacki M, Artuković B, Bratulic M, Tisljar M, Gjurasin M, Mlikić P, Stanić-Rokotov D, Slobodnjak Z, Jelovac N, Marović A. The influence of a novel pentadecapeptide, BPC 157, on N(G)-nitro-L-arginine methylester and L-arginine effects on stomach mucosa integrity and blood pressure. Eur J Pharmacol 1997; 332: 23-33 [PMID: 9298922 DOI: 10.1016/ S0014-2999(97)01033-9]

36 Turkovic B, Sikiric P, Seiwerth S, Mise S, Anie T, Petek M, Rucman R. Stable gastric pentadecapeptide BPC 157 studied for inflammatory bowel disease (PL116, PL14736, Pliva) induces nitric oxide synthesis. Gastroenterology 2004; 126: A287-A287

37 Berra-Romani R, Avelino-Cruz JE, Raqeeb A, Della Corte A, Cinelli M, Montagnani S, Guerra G, Moccia F, Tanzé F. Cα2+-dependent nitric oxide release in the injured endothelium of excised rat aorta: a promising mechanism applying in vascular prosthetic devices in aging patients. BMC Surg 2013; 13 Suppl 2: S40 [PMID: 24266895 DOI: 10.1186/1471-2482-13-S2-S40]

38 Cesarec V, Becjec J, Misic M, Djakovic Z, Olujic D, Drmic D, Breic L, Rokotov DS, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 and the esophagocutaneous fistula healing therapy. Eur J Pharmacol 2013; 701: 203-212 [PMID: 23220707 DOI: 10.1016/j.ejphar.2012.11.055]

39 Chang CH, Tsai WC, Lin MS, Hsu YH, Pang JH. The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration. J Appl Physiol (1985) 2011; 110: 774-780 [PMID: 21030672 DOI: 10.1152/japplphysiol.00945.2010]

40 Chang CH, Tsai WC, Hsu YH, Pang JH. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts. Molecules 2014; 19: 19066-19077 [PMID: 25415472 DOI: 10.3390/molecules191119066]

41 Huang T, Zhang K, Sun L, Xue X, Zhang C, Zhu Z, Mu N, Gu J, Zhang W, Wang Y, Zhang Y, Zhong W. Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro. Drug Des Devel Ther 2015; 9: 2485-2499 [PMID: 25995620 DOI: 10.2147/DDDT.S82030]

42 Tkalec­vi­ć VI, Cuzi­c S, Braja­s K, Mil­d­ner B, Bokuli­c A, Situm K, Perovic D, Giljovaric I, Parnham MJ. Enhancement by PL 14736 of granulation and collagen organization in healing wounds and the potential role of egr-1 expression. Eur J Pharmacol 2007; 570: 212-221 [PMID: 17628536 DOI: 10.1016/j.ejphar.2007.05.072]

43 Tetsuka T, Daphna-Iken D, Miller BW, Guan Z, Baier LD, Morrison AR. Nitric oxide amplifies interleukin 1-induced cyclooxygenase-2 expression in rat mesangial cells. J Clin Invest 1996; 97: 2051-2056 [PMID: 8621794 DOI: 10.1172/JCI118641]
