Finite groups with two Chermak-Delgado measures

Marius Tărnăuceanu

November 19, 2018

Abstract

In this note, we study the finite groups whose Chermak-Delgado measure has exactly two values. They determine an interesting class of p-groups containing cyclic groups of prime order and extraspecial p-groups.

MSC2000: Primary 20D30; Secondary 20D60, 20D99.

Key words: Chermak-Delgado measure, Chermak-Delgado lattice, subgroup lattice, generalized quaternion 2-group, extraspecial p-group, outer abelian p-group, p-group of maximal class.

1 Introduction

Throughout this paper, let G be a finite group and $L(G)$ be the subgroup lattice of G. Denote by

\[m_G(H) = |H||C_G(H)| \]

the Chermak-Delgado measure of a subgroup H of G and let

\[m^*(G) = \max\{m_G(H) \mid H \leq G\} \quad \text{and} \quad \mathcal{CD}(G) = \{H \leq G \mid m_G(H) = m^*(G)\}. \]

Then the set $\mathcal{CD}(G)$ forms a modular, self-dual sublattice of $L(G)$, which is called the Chermak-Delgado lattice of G. It was first introduced by Chermak and Delgado [7], and revisited by Isaacs [9]. In the last years there has been a growing interest in understanding this lattice (see e.g. [3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 18, 20]). We recall several important properties of the Chermak-Delgado measure that will be used in our paper:
if $H \leq G$ then $m_G(H) \leq m_G(C_G(H))$, and if the measures are equal then $C_G(C_G(H)) = H$;

• if $H, K \leq G$ then $m_G(H)m_G(K) \leq m_G(\langle H, K \rangle)m_G(H \cap K)$, and the equality occurs if and only if $\langle H, K \rangle = HK$ and $C_G(H \cap K) = C_G(H)C_G(K)$;

• if $H \in \mathcal{C}D(G)$ then $C_G(H) \in \mathcal{C}D(G)$ and $C_G(C_G(H)) = H$;

• the minimum subgroup $M(G)$ of $\mathcal{C}D(G)$ (called the Chermak-Delgado subgroup of G) is characteristic, abelian, and contains $Z(G)$.

We remark that the Chermak-Delgado measure associated to a finite group G can be seen as a function

$$m_G : L(G) \longrightarrow \mathbb{N}^*, H \mapsto m_G(H), \quad \forall H \in L(G).$$

The starting point for our discussion is given by Corollary 3 of [16], which states that there is no finite non-trivial group G such that $\mathcal{C}D(G) = L(G)$. In other words, m_G has at least two distinct values for every finite non-trivial group G. This leads to the following natural question:

Which are the finite groups G whose Chermak-Delgado measure m_G has exactly two values?

In what follows, let \mathcal{C} be the class of finite groups satisfying the above property. Its study is the main goal of the current note.

We recall several basic definitions:

- a *generalized quaternion 2-group* is a group of order 2^n, $n \geq 3$, defined by the presentation

$$Q_{2^n} = \langle a, b \mid a^{2^{n-1}} = 1, a^{2^{n-2}} = b^2, b^{-1}ab = a^{-1} \rangle;$$

- a finite p-group G is said to be *extraspecial* if $Z(G) = G' = \Phi(G)$ has order p;

- a finite p-group G is said to be *outer abelian* if G is non-abelian, but every proper quotient group of G is abelian;
- a finite p-group G of order p^n is said to be of maximal class if the nilpotence class of G is $n - 1$.

The following results on p-groups will be useful to us. Lemmas 1.1 and 1.2 appear in (4.26) and (4.4) of [14], II, Lemma 1.3 in Corollary 10 of [19], and Lemma 1.4 in Proposition 1.8 of [1].

Lemma 1.1. Any group of order p^4 contains an abelian subgroup of order p^3.

Lemma 1.2. A finite p-group G has a unique subgroup of order p^n if and only if either it is cyclic or $p = 2$ and $G \cong Q_{2^n}$ for some $n \geq 3$.

Lemma 1.3. A finite p-group G is outer abelian if and only if $|G'| = p$ and $Z(G)$ is cyclic, and G is one of the following non-isomorphic groups:

a) $M(n, 1) = \langle a, b \mid a^{p^n} = b^p = 1, a^b = a^{1+p^{n-1}} \rangle$, $n \geq 3$;

b) an extraspecial p-group;

c) $G = E \ast A$, where E is an extraspecial p-group and $A \cong M(n, 1)$, $n \geq 3$;

d) $G = E \ast A$, where E is an extraspecial p-group and $A \cong C_{p^t}$, $t \geq 2$

Lemma 1.4. A finite p-group G is of maximal class if and only if it has a subgroup A of order p^2 such that $C_G(A) = A$.

2 Main results

Our first result indicates an important property of the groups in C.

Theorem 2.1. If a finite group G is contained in C, then $|Z(G)|$ is a prime.

Proof. Assume that $|Z(G)|$ is not a prime.

If $|Z(G)| = 1$, then we have $m_G(1) = m_G(G) = |G|$. Also, G cannot be a p-group. It follows that there are at least two distinct primes p and q dividing $|G|$. Let S_p and S_q be a Sylow p-subgroup and a Sylow q-subgroup of G, of orders p^m and q^n, respectively. Since $1 \neq Z(S_p) \subseteq C_G(S_p)$, we get $p^{m+1} \mid m_G(S_p)$. Similarly, $q^{n+1} \mid m_G(S_q)$. We infer that $m_G(S_p) \neq m_G(1)$ and $m_G(S_q) \neq m_G(1)$, and so $m_G(S_p) = m_G(S_q)$. Then $p^{m+1} \mid q^n|C_G(S_q)|$, i.e. $p^{m+1} \mid |C_G(S_q)|$, a contradiction.
If there are two distinct primes p and q dividing $|Z(G)|$, then $Z(G)$ contains two subgroups of orders p and q, say H and K. It results that the following three Chermak-Delgado measures

$$m_G(H) = p|G|, \quad m_G(K) = q|G| \quad \text{and} \quad m_G(Z(G)) = m_G(G) = |Z(G)||G|$$

are distinct, contradicting our hypothesis.

This completes the proof. □

Using Theorem 2.1, we are able to determine the abelian groups in \mathcal{C}.

Corollary 2.2. The cyclic groups of prime order are the unique abelian groups contained in \mathcal{C}.

By Corollary 2.2 we easily infer that \mathcal{C} is not closed under subgroups, homomorphic images, direct products or extensions. Also, from the first part of the proof of Theorem 2.1 we obtain that:

Corollary 2.3. All groups contained in \mathcal{C} are p-groups.

Since our study can be reduced to p-groups and it is completely finished for abelian groups, in what follows we will suppose that G is a non-abelian p-group of order p^n ($n \geq 3$) belonging to \mathcal{C}. Then:

a) $\text{Im}(m_G) = \{p^n, p^{n+1}\}$, and consequently $m^*(G) = p^{n+1};$

b) $Z(G)$ is the unique minimal normal subgroup of G, and consequently $Z(G) \subseteq G' \subseteq \Phi(G);$

c) $HZ(G) \in \mathcal{CD}(G), \forall H \leq G$ satisfying $Z(G) \not\subseteq H.$

Indeed, for such a subgroup H of G we have $H \cap Z(G) = 1$, and therefore $m_G(H \cap Z(G)) = p^n$. Then the inequality

$$m_G(H)m_G(Z(G)) \leq m_G(HZ(G))m_G(H \cap Z(G))$$

becomes

$$p^{n+1}m_G(H) \leq p^nm_G(HZ(G)),$$

that is

$$p^nm_G(H) \leq m_G(HZ(G)).$$

Clearly, this implies that $m_G(HZ(G)) = p^{n+1}$, i.e. $HZ(G) \in \mathcal{CD}(G).$
There are many examples of finite non-abelian p-groups G such that $\mathcal{CD}(G) = \{Z(G), G\}$ (see e.g. Corollary 2.2 and Proposition 2.3 of [5]). Using Corollary 2.2 and the above item c), we are able to prove that the intersection between this class of groups and \mathcal{C} is empty.

Corollary 2.4. \mathcal{C} does not contain non-abelian p-groups G with $\mathcal{CD}(G) = \{Z(G), G\}$.

Proof. Assume that \mathcal{C} contains a non-abelian p-group G satisfying $\mathcal{CD}(G) = \{Z(G), G\}$.

If G possesses a minimal subgroup $H \neq Z(G)$, then $HZ(G) \in \mathcal{CD}(G)$ by c). On the other hand, we obviously have $HZ(G) \neq Z(G)$, and since $\mathcal{CD}(G) = \{Z(G), G\}$ we get $HZ(G) = G$. Then $|G| = p^2$, implying that G is abelian, a contradiction.

If $Z(G)$ is the unique subgroup of order p in G, then G is a generalized quaternion 2-group by Lemma 1.2, i.e. $p = 2$ and

$$G \cong Q_{2^n} = \langle a, b \mid a^{2^{n-1}} = 1, a^{2^{n-2}} = b^2, b^{-1}ab = a^{-1} \rangle$$ for some $n \geq 3$.

It results that G has a cyclic maximal subgroup $H \cong \langle a \rangle$. So,

$$m_G(H) = 2^{2n-2} \leq 2^{n+1} = m^*(G),$$

which means $n \leq 3$. Since G is non-abelian we get $n = 3$, that is $G \cong Q_8$. Then $\mathcal{CD}(G)$ is a quasi-antichain of width 3, contradicting the hypothesis. \square

Next we will focus on giving examples of non-abelian p-groups in \mathcal{C}.

Theorem 2.5. All extraspecial p-groups are contained in \mathcal{C}.

Proof. Let G be an extraspecial p-group. It is well-known that $\mathcal{CD}(G)$ consists of all subgroups H of G containing $Z(G)$ (see e.g. Example 2.8 of [8] or Theorem 4.3.4 of [17]). Consequently, all these subgroups have the same Chermak-Delgado measure. On the other hand, by Lemma 2.6 of [2] any subgroup H of G with $Z(G) \nsubseteq H$ satisfies $m_G(H) = |G|$. Thus the function m_G has exactly two values, as desired. \square

Using GAP, we are also able to give an example of a non-extraspecial non-abelian p-group in \mathcal{C}, namely SmallGroup(32,8):

$$G = \langle a, b, c \mid a^4 = 1, b^4 = a^2, c^2 = bab^{-1} = a^{-1}, ac = ca, cbc^{-1} = a^{-1}b^3 \rangle.$$
Note that the nilpotence class of G is 3. Also, $CD(G)$ is described in Lemma 4.5.16 and Corollaries 4.5.20 and 4.5.21 of [17].

We observe that all non-abelian groups of order p^3 belong to C because they are extraspecial. The same thing cannot be said about non-abelian groups of order p^4: by Lemma 1.1 such a group G has an abelian subgroup A of order p^3, and so $m^*(G) \geq m_G(A) = p^6 > p^5$, implying that G is not contained in C. This argument can be extended in the following way.

Proposition 2.6. If a non-abelian group of order p^n contains an abelian subgroup of order $\geq p^{\left\lceil \frac{m+n}{2} \right\rceil}$, then it does not belong to C.

Since any group of order 64 contains an abelian subgroup of order 16, by Proposition 2.6 we infer that:

Corollary 2.7. C does not contain non-abelian groups of order 64.

Another application of Proposition 2.6 is the following:

Theorem 2.8. Let G be a finite p-group of nilpotence class 2 contained in C. Then G is extraspecial.

Proof. Since the nilpotence class of G is 2, we have that $G/Z(G)$ is abelian and so $G' \subseteq Z(G)$. By Theorem 1 we get $G' = Z(G)$, which implies that G is an outer abelian p-group. Then G belongs to one of the four classes of groups in Lemma 1.3.

We observe that $M(n, 1)$ has a cyclic subgroup of order p^n, namely $\langle a \rangle$, and $n \geq \left\lceil \frac{m+n}{2} \right\rceil$ for $n \geq 3$. Thus it cannot be contained in C by Proposition 2.6. Also, it is easy to see that a central product $E \ast A$, where E is an extraspecial p-group of order p^{2m+1} and $A \cong M(n, 1), n \geq 3$, always has an abelian subgroup of order p^{m+n}. Since $m + n \geq \left\lceil \frac{2m+n+4}{2} \right\rceil$ for $n \geq 3$, by Proposition 2.6 we infer that $E \ast A$ does not belong to C. Similarly, a central product $E \ast A$, where E is an extraspecial p-group of order p^{2m+1} and $A \cong C_{p^t}$ with $t \geq 2$, always has an abelian subgroup of order p^{m+t}. If $t \geq 3$ then $m + t \geq \left\lceil \frac{2m+t+4}{2} \right\rceil$, implying that $E \ast A$ is not contained in C. If $t = 2$, it suffices to observe that the center of $E \ast A$ is of order p^2, and consequently $E \ast A$ is not contained in C by Theorem 1. These shows that the unique possibility is that G be an extraspecial p-group, as desired. \hfill \Box

Our last result shows that the non-abelian groups of order p^3 are in fact the unique p-groups of maximal class in C.
Theorem 2.9. Let G be a finite p-group of maximal class contained in C. Then G is non-abelian of order p^3.

Proof. Obviously, G is non-abelian. Let $|G| = p^n$. By Lemma 1.4 we know that G possesses a subgroup A of order p^2 such that $C_G(A) = A$. It follows that $m_G(A) = p^4$, and therefore we have either $n = 3$ or $n = 4$. Since the case $n = 4$ is impossible, we get $n = 3$, as desired.

Inspired by the above examples, we end this note by indicating the following open problem.

Open problem. Which are the pairs (p, n), where p is a prime and n is a positive integer, such that C contains groups of order p^n?

Note that all pairs (p, n) with n odd satisfy this property by Corollary 2.2 and Theorem 2.5.

References

[1] Y. Berkovich, Groups of prime power order, vol. 1, de Gruyter, Berlin, 2008.

[2] S. Bouc and N. Mazza, The Dade group of (almost) extraspecial p-groups, J. Pure Appl. Algebra 192 (2004), 21-51.

[3] L. An, J.P. Brennan, H. Qu and E. Wilcox, Chermak-Delgado lattice extension theorems, Comm. Algebra 43 (2015), 2201-2213.

[4] B. Brewster and E. Wilcox, Some groups with computable Chermak-Delgado lattices, Bull. Aus. Math. Soc. 86 (2012), 29-40.

[5] B. Brewster, P. Hauck and E. Wilcox, Groups whose Chermak-Delgado lattice is a chain, J. Group Theory 17 (2014), 253-279.

[6] B. Brewster, P. Hauck and E. Wilcox, Quasi-antichain Chermak-Delgado lattices of finite groups, Archiv der Mathematik 103 (2014), 301-311.

[7] A. Chermak and A. Delgado, A measuring argument for finite groups, Proc. AMS 107 (1989), 907-914.

[8] G. Glauberman, Centrally large subgroups of finite p-groups, J. Algebra 300 (2006), 480-508.
[9] I.M. Isaacs, *Finite group theory*, Amer. Math. Soc., Providence, R.I., 2008.

[10] R. McCulloch, *Chermak-Delgardo simple groups*, Comm. Algebra 45 (2017), 983-991.

[11] R. McCulloch, *Finite groups with a trivial Chermak-Delgardo subgroup*, J. Group Theory 21 (2018), 449-461.

[12] R. McCulloch and M. Târnăuceanu, *Two classes of finite groups whose Chermak-Delgardo lattice is a chain of length zero*, Comm. Algebra 46 (2018), 3092-3096.

[13] R. McCulloch and M. Târnăuceanu, *On the Chermak-Delgardo lattice of a finite group*, submitted.

[14] M. Suzuki, *Group theory*, I, II, Springer Verlag, Berlin, 1982, 1986.

[15] M. Târnăuceanu, *The Chermak-Delgardo lattice of ZM-groups*, Results Math. 72 (2017), 1849-1855.

[16] M. Târnăuceanu, *A note on the Chermak-Delgardo lattice of a finite group*, Comm. Algebra 46 (2018), 201-204.

[17] L.S. Vieira, *On p-adic fields and p-groups*, Ph.D. Thesis, University of Kentucky, 2017.

[18] E. Wilcox, *Exploring the Chermak-Delgardo lattice*, Math. Magazine 89 (2016), 38-44.

[19] Q. Zhang, L. Li and M. Xu, *Finite p-groups all of whose proper quotient groups are abelian of inner-abelian*, Comm. Algebra 38 (2010), 2797-2807.

[20] A. Morresi Zuccari, V. Russo, and C.M. Scoppola, *The Chermak-Delgardo measure in finite p-groups*, J. Algebra 502 (2018), 262-276.

Marius Târnăuceanu
Faculty of Mathematics
“Al.I. Cuza” University
Iași, Romania
e-mail: tarnauc@uaic.ro