An experimental study on corrosion initiative of infused reinforcing bar in concrete

Pa Velci Shridevi1,3, Ashok M2, Daniel Ronald Joseph J2 and Dhanalakshmi A1

1Department of Civil Engineering, P.S.R. Engineering College, Sivakasi, Tamilnadu, India
2Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu, India.
3Email: velcipaulraj@gmail.com

Abstract: Durability of concrete is the essential property for the lifespan of concrete structures. Rusting of steel is the major factor responsible for the loss of durability property. In order to study the corrosion behaviour of three types of reinforcing bars like Thermo-mechanically treated bar(TMT), Corrosion resistant steel (CRS), Epoxy coated rebar(ECR) were experimentally studied. The reinforcing bars having 12 mm diameter were infused in 300×300×75 mm size of concrete slab samples were kept under room temperature and certain samples are spraying with 3% of NaCl solution to attain a simulated marine exposure condition. There are various techniques including Open circuit potential (OCP), Linear polarisation resistance (LPR), Electrochemical impedance spectroscopy (EIS) are used to monitor the corroding performance of samples. On analysing the results of the electrochemical studies, it could be inferred that the efficient rebar to withstand the corrosive nature by improving the life expectancy of the concrete structure.

1. Introduction
Fortified structures have been disintegrated by corrosion which is considered as risky that lead to undesirable occurrences. The two parts of a concrete contains strong compressive capacity and less tensile capacity which is repay by steel having solid rigidity. Rusting might be named generalized and localized corrosion. In Generalized, it forms uniformly in all surface of the rebar called carbonation. For localized, it incorporates with both the chloride penetration results in pits and the pressure consumption leads to break [1]. The rust development in steel breaks the connection between the steel and concrete prompts parting and spalling. The pattern of corrosion develops rapidly which changes the organization and properties of the metal surfaces and the local condition, for example, development of oxides, changes in nearby pH level and so on. The damaged concrete having high permeable breaking point prompts a fast infiltration of chemicals. The calcium hydroxide in concrete contains an alkaline area with a pH scope of 12 to 13 which makes a slender film around the steel known as the passivating layer which keeps from erosion.
Figure 1. Types of corrosion of reinforcement: (a) carbonation, (b) chloride attack and (c) stress corrosion cracking.

Chloride fixation and carbonation causes the loss of passive layer affected by the outside condition and the nature of the concrete. The chloride particles infiltrate to concrete through splits and by scattering that are accessible in the water. When it enters the steel surface, they infiltrate the inactive film and respond with iron to form a solvent iron chloride [2]. Maximum chloride level in concrete at the strengthening steel significance is around 0.71 kg/m³. The most extreme permissible estimation of 0.4% of Cl⁻ per weight of concrete was resolved just as the Cl⁻/OH⁻ proportion of 0.6 [3].

When the concrete is presented to the air, the cycle of carbonation can start by carbon dioxide which gradually infiltrate and shows up the depth of infused steel, the passivating layer around the rebar is separated by the pattern of carbonation and makes the rebar to open to the destructive impacts of air and water. As carbon dioxide enters when the steel fortification consumes, it grows in volume prompts create power on the concrete to form breaks and spalls, causing the pace of disintegrate. As per D.A. Jones [4], it is commonly considered for rebar without surface coatings, erosion causes because of the failure of passive film on the rebar. Within the sight of a detached film, the erosion cycle may start from the metal surface and chloride particles. It is accepted that chloride particles respond at the specific spots where the inactive film is irregular or harmed on the steel surface.

Apparently, corrosion prompts the collapse of structures about 40%. It is prevented using different strategies by corrosion inhibitor, protected by cathode, use of polymer based material as a coated rebar for corrosion resistance. It can be postponed by the usage of inhibitors, which lessens either anodic oxidation or cathodic decrease, or the two responses [5]. To beat the corrosion issues, the successful path is the utilization of covered rebar by coatings which frames a physical boundary from the avoidance of chloride particles that defers the inception of rust. Alblas and Van London [6] states that the impact of chloride sullying on the consumption of covered steel surfaces lesser contrasted with others.

The corrosive nature in fortified structures is incredibly high in the marine condition. A few components including high-temperature, moderately high dampness and high NaCl fixation have an impact in the corrosion of structures in the marine condition [7] and [8]. Additionally, the tedious substituting wet–dry introduction at high-recurrence in flowing zones will prompt a quickened corrosion of the strengthened structures [9]. As per Castro [10], A chance of getting quick data about the material crumbling if there should arise an occurrence of reenacted marine presentation is the utilization of quickened tests. These sort of tests should be possible through various strategies, for example, use of electrical potential estimations, cyclic wetting and drying in 3.5% sodium chloride arrangement which is a choice to do fast studies gave when the rusting kinetics do not change.
A few field and research center investigations completed to assess the corrosion execution. Electrochemical techniques are usually applied to evaluate and screen the rust execution of fortified concrete. The estimation of the corrosion potential decides the seriousness of the rust state of the fortified concrete [11]. Ha-Won Song and VeluSaraswathy [12] recommended that, Electrochemical impedance spectroscopy (EIS), a compelling strategy for depicting the highlights of different electrochemical instruments, can be utilized to figure out what commitments anode measures have made in these systems.

In this paper the corrosion conduct of three distinct sorts of rebar i.e., Thermo-Mechanically Treated Rebar (TMT), Epoxy Coated Rebar (ECR) and Corrosion Resistant Steel Rebar (CRS) which are implanted in concrete leveled out and reproduced situations. For quicken the corrosion execution the samples were showering with 3% of NaCl arrangement and drying at room temperature. The solid samples are then normally observed through the electrochemical investigations starting with the corrosion potential estimations with Open Circuit Potential (OCP), Linear Polarization Resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS).

2. Experimental program

2.1. Materials

2.1.1. Concrete mixture proportions

As indicated by IS 1489 (Part I) – 1991, the Portland Pozzolana concrete of 53 grade and the properties of PPC utilized is introduced in Table 1, Coarse aggregates under Zone II of 12mm and 16mm size by extents of 40 % and 60 % and fine total under 4.75 mm size of Zone I adjusting to IS 383 – 2016 alongside proportion of 1 : 2.02 : 3.5 with water concrete proportion of 0.5 were used to make the samples. The 28 days compressive quality of cement was got as 36.9 MPa. The particle size distribution is introduced in Fig. 2. The concrete mixture proportions used to cast the samples are given in Table 2.

Consistency	Initial setting time	Final setting time
32%	45 mins	8 hours

![Figure 2. Fineness modulus of aggregates.](image-url)
Table 2. Concrete mixture proportions.

Constituents	Units	Quantity
Cement	Kg/m³	340
Coarse aggregate	Kg/m³	1185
Fine aggregate	Kg/m³	687
Water	Kg/m³	180.2
Water cement ratio	-	0.5

2.1.2. Steel rebar
The rebar of TMT, CRS and ECR was adjusted to ASTM A615/A615M-18 [17], ASTM A1035/A1035M – 19 [18], ASTM A775/A775M – 17 [19] having 12mm measurement of Fe500D are utilized. The rebar of 250 mm length was bound to a copper wire to get further investigations. Initial lengths and weights of steel rebar were estimated using a balance with 0.01 g sensitivity.

2.2 Sample Geometry
The slab of 300 x 300 x 75 mm size is cast alongside steel bar infused from the depth of 25mm from the top. Each rebar is ought to be cleaned by pickling using sulphuric acid to eliminate the rust on the rebar. The isometric and top view of sample specimen is given as figure 2.

![Isometric view and Top view of specimen.](image)

2.3 Exposure Conditions
The samples with infused steel bars were exposed to room temperature and also some more samples are kept to a cyclic state of four days of wetting by showering 3% NaCl arrangement followed by three days of drying in the outside. This redundant exchanging wet–dry introduction at high-recurrence will quicken the erosion commencement which is fundamental to screen just as to comprehend the corrosion condition of the concrete structure upkeep.

3. Assumptions of corrosion of rebar in concrete
3.1 Open Circuit Potential (OCP)
The values had been recorded using an electrode called saturated calomel electrode (SCE) along with a multimeter. Then the potential values were compared with the ASTM C 876 [15] guidelines as follows:
Table 3. Potential values.

(mV vs. SCE)	Corrosion condition
Less than -426	Extreme
Less than -276	High
-126 to -275	Moderate
Greater than -125	Low

Figure 4. Open circuit potential apparatus setup.

3.2 Linear Polarization Resistance (LPR)

It is a basic dc process to get a quick estimate of corrosion rate having a sweep normally goes in between ±20 mv at a scan rate of 0.2mv/s for which the curve turns out to be practically straight. The icorr values can be attained by using the formula (1):

\[
I_{corr} = \frac{B}{R_{p}}
\]

Table 4. Corrosion current versus state of the rebar.

Corrosion current (Icorr) μA/cm²	state of the rebar
Less than 0.1	Passive
0.1 to 0.5	Low – moderate
0.5 to 1.0	Moderate – high
Greater than 1.0	High

Figure 5. Electrode alignment for electrochemical study.
3.3 Electrochemical Impedance Spectroscopy (EIS)
EIS is a method for resolving the resistive capacity of steel which take into account for forecast the corrosion rates. An A.C voltage of around 10-20 mV is supplied to the rebar inserted in concrete. The reaction to an A.C input is a perplexing impedance that has both real (resistive) and imaginary (capacitive or inductive) segment \(z \) and \(z'' \) as shown in fig 6. The imagery impedance with the real impedance gives a semicircle with a diameter equivalent to \(R_t \).

![Figure 6. Nyquist Plot for steel in concrete.](Image)

4. Results
4.1 Corrosion Potential Measurements
The variety of the corrosion possibilities with no of days is graphically given in fig 7. At first the potential qualities are not firm, by following barely any weeks it dropped to more electronegative qualities. The likely readings under controlled condition for the TMT, CRS, Epoxy covered rebar is in the scope of - 133.39, - 100.21 and - 344.9 mV/SCE and for alternative condition for the rebar are in the scope of - 199.67 and - 189.8 mV/SCE individually.

![Figure 7. Corrosion potential versus No of Days.](Image)

4.2 Linear Polarization Resistance Study
A Nonlinear reaction began close to - 20 mV polarization for all the samples. Typically the bend shows a straight conduct having polarization scope of 5mV to 20mV. If the resultant \(I_{corr} \) value is less than 0.1μA/cm\(^2\), then the concrete is in passive condition when it reaches more than 1.0 μA/cm\(^2\), then the specimen undergoing high corrosion rate. Nearly the acquired outcome from the estimations, \(I_{corr} \) values portrays that the samples are in detached condition which is shown in table 5. On comparing the normal condition the corrosion rate and current for both the TMT and CRS rebar are lesser than Epoxy covered rebar.
Figure 8. LPR Curve (a) Controlled condition (b) Alternate wet and dry condition.

Table 5. Corrosion current from EIS study.

Rebar	Icorr (mA/cm²)
CONTROL SPECIMEN	
TMT	8.94E-05
CRS	4.85E-04
ECR	2.66E-06
ALTERNATE WET & DRY SPECIMEN	
TMT	4.08E-04
CRS	5.66E-04
4.3 Electrochemical Impedance Spectroscopy study

The arrangement of bends in EIS results turned out to be progressively perplexing coming about because of the heterogeneity of the samples. The distinguished bends were detached and identified with each of the phenomena and a local investigation was performed, which improves the exactness. From this Electro chemical examination the charge transfer resistance (Rct) and double layer capacitance (Cdl) was obtained as given in table 6. From the EIS study, it shows that the estimations of TMT and CRS are lesser when contrasted to the Epoxy covered rebar. Subsequently the coated rebar has less inclinations to corrode quickly than the other kind of rebar. The highest passivation capability of epoxy coated rebar is lower than the other two kinds of rebar.

Table 6.EIS analysis.
Control Specimen
Bar
TMT
CRS
ECR
Alternate Wet & Dry Specimen
Bar
TMT
CRS
Figure 9. AC Impedance curve (a) Controlled condition (b) Alternate wet and dry condition.

5. Conclusion
The sturdiness execution of cement under controlled with alternate wet and dry condition by showering with 3% of NaCl arrangement regarding starting the consumption cycle utilizing electrochemical method was tentatively examined and the conduct of epoxy rebar under wet and dry couldn't assess inside the particular time frame. The quickened corrosion method is a proficient and solid approach to achieve corrosion of steel inside a limited capacity to focus time. Following are the outcomes acquired,

i) The corrosion execution of the rebar doesn't give a consistent rate in electrochemical cycle with fluctuating in rate alongside time. This is depicted by high starting changes in the open circuit potential readings which inevitably balanced out to a steady rate. The OCP drop from latent to dynamic state was most minimal for ECR in examination with the TMT and CRS. The total example of the corrosion potential clarifies the consumption rate which is marginally expanding for certain time.

ii) On comparing the rebar corrosion current worth ECR is less contrasted with other rebar that it will take time to attain corrosion than others. Polarization Resistance can be decided by the Icorr value including Stern – Geary constant [12]. The LPR shows that Rp range for ECR is higher than TMT and CRS.

iii) The EIS strategy was utilized to evaluate the corrosion states of solid samples regarding Icorr in mm/yr and mils/yr. The outcomes in EIS study expresses that Rct and Cdl estimations of ECR is vary from other rebar by increment in Rct qualities and abatement in Cdl values compared with the TMT and CRS rebar.

6. References
[1] Andrade C 2007 Corrosion of steel reinforcement State of the Art in Science and Engineering 28 185
[2] John Fraczek 1987 A review of electrochemical principles as applied to corrosion of steel in a concrete or group environment Corrosion, Concrete and Chlorides - Steel Corrosion in Concrete: Causes and Restraints American Concrete Institute
[3] Dillard JG, JD Glanville, WD Collins, RE Weyers and IL Al-qadi 1993 Concrete bridge protection and rehabilitation Strategic Highway Research Program National research council Washington DC
[4] DA Jones 1995 Principles and prevention of corrosion (Macmillan : New York)
[5] Schiessl P and R Bakker 1988 Measures of protection corrosion of steel in concrete The International Union of Testing and Research Laboratories for Materials and Structures 5 73
[6] BP Alblas and AM Van London 1997 Protective coating (Europe)
[7] Cao M, Liu L, Yu Z, Fan L, Li Y and Wang F 2019 Electrochemical corrosion behaviour of CaO-al alloy under an accelerated simulation marine atmospheric environment J. Mater. Sci. Tech. 35 651–659
[8] Lu S and Ba H 2010 Monitoring the service condition of chloride contaminated cement mortar – Sensors 10 4145 – 58
[9] Mu X, Wei J, Dong J and Ke W 2014 In situ corrosion monitoring of mild steel in a simulated tidal zone without marine fouling attachment J. Mater. Sci. Tech. 18 1043 – 50
[10] Castro P, Weva L and Balancim M 1997 Corrosion of reinforced concrete in a tropical marine environment and in accelerated tests Construction and Building Materials 11 75-81
[11] Khaled KZ, Vaca – cortés E, Jirsa JO, Wheat HG and Carrasquillo RL 1998 Corrosion performance of epoxy-coated reinforcement – beam tests (Texas USA) 3 126-135
[12] Ha – Won Song and Velu Saraswathy 2007 Corrosion monitoring of reinforced concrete structures – a review International J. Electrochem. Sci. 2 1 – 28
[13] Moreno M, Morris W, Alvarez M G and Duﬀo G S 2004 Corrosion of reinforcing steel in simulated concrete pore solutions: Eﬀect of carbonation and chloride content Corr. Sci. 46 2681– 99
[14] Cheng A, Huang R, Wu JK and Chen CH 2005 Eﬀect of rebar coating on corrosion resistance and bond strength of reinforced concrete Construction and Building Materials 19 404–412
[15] ASTM C876-09 2009 Test method for corrosion potentials of uncoated reinforcing steel in concrete http://www.astm.org/standards/c876.htm
[16] Sathiyanarayanan S, Panjali Natarajan, Saravanan K, Srinivasan S and Venkatachari G 2006 Corrosion monitoring of steel in concrete by galvanostatic pulse technique Cement and Concrete Composites 28 630 – 637
[17] ASTM A615/A615M – 18 2018 Standard speciﬁcation for deformed and plain carbon steel bars for concrete reinforcement http://www.astm.org/standard/a615.htm
[18] ASTM A1035/A1035M – 16b Standard speciﬁcation for deformed and plain, low-carbon, chromium, steel bars for concrete reinforcement https://www.astm.org/standards/a1035.htm
[19] ASTM A775/A775M–19 2018 Standard speciﬁcation for epoxy coated reinforcing bars http://www.astm.org/standard/a615.htm
[20] Vedalakshmi R, Rajagopal K and Palaniswamy N 2008 Long term corrosion performance of rebar embedded in blended cement concrete under macro cell corrosion condition Construction and Building Materials 22 186 – 199
[21] H-W Song, Saraswathy V, Muralidharan S, C – H Lee and Thangavel K 2009 Corrosion performance of steel in composite concrete system admixed with chloride and various alkaline nitrates Corrosion Engineering Science and Technology 44 408-415
[22] Shigang Dong, Bing Zhao A, Chang Jian Lin AC, Rong Gui Dua, Rong Gang Hua and Gregory Xiaoge Zhang D 2012 Corrosion behavior of epoxy/zinc duplex coated rebar embedded in concrete in ocean environment Construction and Building Materials 28 72–78
[23] Daoming Shen 2017 Electrochemical impedance spectroscopy study on corrosion inhibitor for reinforced concrete Inter. J. Electrochem. Science 12 4183 – 92
[24] Wei J, Dong JH and Ke W 2013 Corrosion evolution of scaled rebar in concrete under dry and wet cyclic condition in 3.5% NaCl solution Inter. J. of Electrochem. Sci. 8 2536 – 50
[25] Bayezid Baten, Jihan Hasan MD, Baishakhi Bose and Tanvir Manzur 2017 An eﬃcient experimental setup for rapid assessment of rebar corrosion in reinforced concrete structures International Journal of Advances in Mechanical and Civil Engineering 4 83-88