Regulation of transforming growth factor-β signalling by SUMOylation and its role in fibrosis

Xinyi Wang¹, Ting Liu², Yifei Huang¹, Yifeng Dai³ and Hui Lin²

¹First Clinical Medical School, ²Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, and ³Second Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People’s Republic of China

HL, 0000-0003-0343-1757

Fibrosis is an abnormal healing process that only repairs the structure of an organ after injury and does not address damaged functions. The pathogenesis of fibrosis is multifactorial and highly complex; numerous signalling pathways are involved in this process, with the transforming growth factor-β (TGF-β) signalling pathway playing a central role. TGF-β regulates the generation of myofibroblasts and the epithelial–mesenchymal transition by regulating transcription and translation of downstream genes and precisely regulating fibrogenesis. The TGF-β signalling pathway can be modulated by various post-translational modifications, of which SUMOylation has been shown to play a key role. In this review, we focus on the function of SUMOylation in canonical and non-canonical TGF-β signalling and its role in fibrosis, providing promising therapeutic strategies for fibrosis.

1. Introduction

Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that regulates a wide range of biological processes, such as proliferation, differentiation, migration and metabolism [1]. In the canonical pathway, the TGF-β ligand first binds and activates the TGF-β type II receptor (TβRII), which in turn recruits and phosphorylates TGF-β type I receptor (TβRI) [1]. TβRI phosphorylates the C-terminal serine residue of receptor-activated Smads (R-Smads, including Smad2 and Smad3), which form a heteromeric complex with Smad4 (Co-Smad) to enter the nucleus [2]. The complex then associates with other transcription factors to positively or negatively regulate the transcription of target genes [3]. Inhibitory Smads (I-Smads, including Smad6 and 7) block interaction between R-Smads and TβRI by competing with R-Smads following association with activated TβRI [4]. In addition, I-Smads act as inhibitors by recruiting the E3 ubiquitin ligase Smad ubiquitination regulatory factor 2 (Smurf2) to degrade activated TβRI via ubiquitination [5]. The various functions of TGF-β rely on the transcription of downstream genes and cross-talk with other signalling pathways [6]. It is worth noting that post-translational modification (PTM) is involved in TGF-β pathway regulation [7], and the role of SUMOylation in the TGF-β signalling pathway is attracting increasing attention [8]. SUMOylation modulates signal transduction by altering the subcellular localization, protein–DNA binding and ubiquitin-dependent degradation of target substrates [9].

Four small ubiquitin-like modifiers (SUMOs) have been identified: SUMO1, SUMO2, SUMO3 and SUMO4 [10]. SUMO1 is mainly present under physiological conditions, whereas SUMO4 is present under pathological conditions. Levels of SUMO2 and SUMO3 are elevated by stress [11]. In addition, SUMO5 has been identified and shown to be involved in the formation and destruction of promyelocytic leukaemia nuclear bodies (PML-NBs) [12]. SUMOs are activated by E1
imbalance in profibrotic negative self-regulation \cite{28,30}. Suggest that simply inhibiting interaction between ligands and translation of TGF-β bodies that prevent the binding of ligands and receptors, this effect to wide TGF-β through TGF-β mice \cite{29}, few clinical effects on fibrosis have been reported indicated the therapeutic efficacy of these inhibitors in fibrotic Smad3 and Smad4 \cite{28}. Although multiple studies have indicated the therapeutic efficacy of these inhibitors in fibrotic mice \cite{29}, few clinical effects on fibrosis have been reported through TGF-β pathway targeting. Some studies attribute this effect to wide TGF-β expression in normal cells; others suggest that simply inhibiting interaction between ligands and receptors prevents activation of Smad7, leading to imbalance in profibrotic negative self-regulation \cite{28,30}, Moreover, inhibiting SUMOylation prevents systemic sclerosis (SSc) in preclinical models \cite{31}. Therefore, SUMOylation-mediated regulation of TGF-β signalling may provide new antifibrotic strategies.

3. The role of SUMOylation in the canonical transforming growth factor-β pathway

TJRI is the only receptor of TGF-β signalling that has been demonstrated to be SUMOylated. TJRI is SUMOylated at lysines 385 and 389 (Lys-385 and Lys-389), with the latter being the major site \cite{8}. SENP2 reverses this modification, and SENP2 overexpression suppresses the TGF-β-induced epithelial–mesenchymal transition (EMT) \cite{32}. This effect may be attributed to changes in the structure of TJRI \cite{33}. Phosphorylation of R-Smad requires the L3 loop and adjacent α-helix1 in the C-terminal MH2 domain to bind to the L45 loop and glycine and serine (GS) region of TJRIs. Lys-389 is located at the surface of the kinase domain and has the same orientation as the GS region \cite{8}. Therefore, SUMOylation of TJRI is likely to affect Smad3 activation, and this modification enhances interaction between Smad3 and TJRI and promotes Smad3 C-terminal phosphorylation \cite{34}. Under TGF-β stimulation, fibroblasts expressing K389R TJRI show reduced transcription of a Smad3-responsive promoter and reduced Smad7 mRNA expression compared with cells expressing wild-type TJRI. This finding indicates that SUMOylation of TJRI contributes to the response of cells to TGF-β \cite{34}. The study also demonstrated that SUMOylated TJRI blocks the fibroblast proliferations, which may be attributed to enhanced TGF-β signalling inhibiting fibroblast growth factor (FGF)-mediated regulation of fibroblast division and proliferation. Nevertheless, by preventing myofibroblast differentiation, FGF is recognized as protecting against lung fibrosis \cite{35,36}. These studies indicate that SUMOylation regulates fibrogenesis mainly by altering the transcription of EMT- and ECM-related genes rather than by promoting fibroblast proliferation.

Phosphorylated Smad3 binding to the AP-1 site is indispensible for responses of both MMP-1 and TIMP-1 to TGF-β, inhibiting expression of MMP and further inducing ECM deposition \cite{37}. By stimulating the nuclear export of Smad3, SUMOylation reduces the binding of Smad3 to DNA \cite{38}. SUMOylation of the MH2 domain of Smad3, which is mediated by PIASy, has been demonstrated to prevent TGF-β-induced Smad3 phosphorylation \cite{39}. After forming a complex with Smad4, an important mediator that shuttles between the nucleus and the cytoplasm and has also been shown to be SUMOylated, Smad3 enters the nucleus and regulates genes involved in fibrosis \cite{40}. In Smad4, Lys-113 in the MH1 domain and Lys-159 in the linker segment serve as SUMOylation sites \cite{41}. Nonetheless, the role of Smad4 SUMOylation in the regulation of TGF-β transcription remains controversial with different conclusions on the role of SUMOylation in controlling Smad4 activity and stability \cite{42,43}. Some researchers support a negative role of Smad4 SUMOylation in TGF-β signalling because the K113R/K159R mutation reduces the polyubiquitination of Smad4 \cite{43}, though others support a positive role for Smad4 SUMOylation due to increased Smad4 activity \cite{44,45}. These opposing conclusions may be caused by different cell contexts (figure 1).

2. Transforming growth factor-β regulation in fibrogenesis

Fibrosis refers to the pathology in which the structure of a damaged organ is repaired, but the function is not restored. Fibrosis is attributed to excessive deposition of extracellular matrix (ECM) caused by chronic inflammation, which is stimulated by infection, autoimmune reactions and physical or chemical stimulation \cite{19}. Myofibroblast transdifferentiation and matrix accumulation are the two major pathophysiological mechanisms driving fibrosis \cite{20}. In healthy organs, the composition and dynamic structure of the ECM rely on matrix metalloproteinases (MMPs) \cite{21}. Views about the role of TGF-β in regulating ECM and MMP expression differ. Some studies have shown that the TGF-β-Smad1 inhibitor GW788388 increases MMP9 and improves cardiac fibrosis \cite{22}, while others have indicated that TGF-β can stimulate MMP2 and MMP9 activity. TGF-β has been shown to stimulate MMP activity, but this effect only occurs in rats and mice and not in fibrotic human organs \cite{23}. In addition, TGF-β can promote myofibroblast (α-SMA is a marker of mature myofibroblasts) differentiation in fibroblasts, endothelial cells and epithelial cells \cite{24-26}, ultimately leading to ECM deposition. As mentioned above, TGF-β promotes fibrogenesis by regulating fibrotic gene expression and fibroblast differentiation \cite{27}.

TGF-β inhibitors include anti-TGF-β neutralizing antibodies that prevent the binding of ligands and receptors, anti-TGF-β receptor antibodies, inhibitors that block transcription and translation of TGF-β and inhibitors that prevent phosphorylation of mediators downstream of TGF-β, such as Smad3 and Smad4 \cite{28}. Although multiple studies have indicated the therapeutic efficacy of these inhibitors in fibrotic mice \cite{29}, few clinical effects on fibrosis have been reported through TGF-β pathway targeting. Some studies attribute this effect to wide TGF-β expression in normal cells; others suggest that simply inhibiting interaction between ligands and receptors prevents activation of Smad7, leading to imbalance in profibrotic negative self-regulation \cite{28,30},...
4. The role of SUMOylation in the non-canonical transforming growth factor-β pathway

In addition to the Smad signalling pathway, SUMOylation plays a crucial role in non-Smad signalling-mediated fibrogenesis (figure 2). Non-Smad signalling pathway components include mitogen-activated protein (MAP) kinases (ERK, p38 and JNK), phosphatidylinositol-3-kinase (PI3K) and Rho-like GTPases [46].

5. MEK/ERK

Activated TβRI receptors have been reported to phosphorylate tyrosine and serine residues in the ShcA protein and to induce the association of ShcA with Grb2 and Sos [47].
6. PI3K/Akt

In normal fibroblasts, phosphatase and tension homologue (PTEN) is involved in inhibiting PI3K/Akt/mTOR activation. Conversely, inappropriately low PTEN activity enhances interaction between fibroblasts and polymerized collagen, which leads to pathological activation of PI3K/Akt in idiopathic pulmonary fibrosis [69]. Studies have shown that the abnormal activation of the PI3K/Akt signalling pathway is closely associated with the occurrence of fibrosis. Moreover, PI3K/Akt is associated with endoplasmic reticulum stress to induce fibrogenesis, indicating that treatment with PI3K inhibitors may reduce fibroblast proliferation and improve fibrotic organ function [70]. In addition, mTOR activation by Akt may participate in fibrogenesis by enhancing chemotaxis of alveolar macrophages and proliferation of fibroblasts [71,72]. These cells are recruited to damaged tissue and release TGF-β1, which ultimately leads to fibrosis [73]. Consequently, inhibiting PI3K/Akt/mTOR may be a strategy for ameliorating fibrosis [74].

PI3K and Akt have been demonstrated to serve as substrates modified by SUMO proteins. PI3K is composed of a p110 catalytic subunit and p85 regulatory subunit, and TGF-β cell surface receptors activate p85 to catalyse the conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3) [75]. SUMOylation of p85 inhibits its activation and prevents cell migration and transformation [76]. SUMOylation of p110 stabilizes the protein and increases its activation of Akt [77]. Akt activation is promoted by SUMO-E3 ligases PIAS1 and reversed by SENP1, SENP2 and SENP3 [78–80]. Akt is SUMOylated at Lys-276 and Lys-301, which enhances its regulatory function at the G1/S transition during cell cycle progression, cyclin D1 expression and cell proliferation [81,82]. Fibronectin is an adhesion molecule that plays an important role in wound healing and is involved in ECM remodelling in fibrosis, and increasing Akt SUMOylation levels enhances its capacity to regulate fibronectin splicing patterns [83]. Interestingly, Akt SUMOylation promotes phosphorylation of Ubc9 and SUMO1 and regulates global SUMOylation [82]. PTEN acts as an inhibitor of PI3K/Akt through dephosphorylation of PIP3 [84]. SUMO1 binds to Lys-254 and Lys-266 sites in the C2 domain of PTEN, which promotes its nuclear localization [85,86]. PIASxα increases PTEN protein stability by reducing PTEN ubiquitination, which leads to G0/G1 cell cycle arrest and suppresses cell proliferation [87]. In summary, SUMOylation weakens PI3K and enhances PTEN to promote and inhibit PI3K/Akt pathway activity, respectively. In general, SUMOylation of PI3K/Akt signalling pathway components is involved in regulating fibrosis progression, but the specific mechanism remains to be elucidated.

7. JNK

JNK activation mediates fibrosis, which correlates with TGF-β-induced EMT and activated fibroblast production of collagen [88]. TGF-β binds to tumour necrosis factor receptor (TNFR)-associated factor 6 (TRA6) to induce K63-linked ubiquitination of TRAF6, facilitating recruitment of the specific binding partners TAK1-binding proteins (TAB1/2/3) to activate TAK1 [89]. Activated TAK1 phosphorylates MKK [90], and MKK4/7 are potential activators of JNK [91]. JNK phosphorylation plays a crucial role in α-SMA and CollA1 production, suggesting that regulating JNK activation is a strategy to attenuate fibrosis [92]. TAB2 has been found to be modified by SUMO1 at Lys-329 and, with the assistance of PIAS3, inhibits activation of TAK1 [93]. One study has demonstrated that TAB2 modification by SUMO1 at Lys-329 with the assistance of PIAS3 inhibits the activation of TAK1 [93]. This finding confirms that the TGF-β-induced EMT of type I and type III collagen-1 (COL-1) and fibronectin in scar tissues [49]. Furthermore, inhibiting ERK activation improves fibrosis by suppressing the transition of fibroblasts to myofibroblasts induced by TGF-β1 [50,51]. This finding confirms that the RAS–RAF–MEK–RRK signalling cascade promotes fibrogenesis [52]. Grb2 and MEK, important members of the TGF-β signalling pathway, are also modified by SUMO. Conjugation of SUMO to Lys-56 in Grb2 promotes the motility and transformation of the fibroblast cell line NIH/3T3, and this modification induces Grb2–Sos1 complex formation, contributing to activation of the MEK/ERK pathway [53]. The function of Ras SUMOylation is similar to that of Grb2, and both facilitate activation of MEK and ERK in downstream signals [54]. However, SUMOylated Ras has mostly been investigated with regard to anti-cancer activity, and no studies have reported its role in fibrosis [55]. MEK1 and MEK2 SUMOylation occurs at Lys-104 and Lys-108, which contribute to activation of fibrosis progression, but the specific mechanism remains to be elucidated.

PI3K modification induces Grb2–RAS–RAF–MEK–ERK phosphorylation of the latter [56,57]. Elk-1 is a crucial downstream factor for MEK–ERK; the loss of Elk-1 would elevate the level of type I and type III collagens and lead to fibrosis of internal organs owing to the loss of repressed integrin expression [58,59]. PIAS protein acts as a coactivation protein to derepress transcription through facilitating the loss of the repressive histone deacetylase (HDAC-2) from SUMOylated Elk-1 [60]. SENP1 is involved in Elk-1 deSUMOylation process [61]. Elk-1 SUMOylation at Lys-230, Lys-249 and Lys-254 activates its shuttling from the nucleus to the cytoplasm [62]. SUMOylation of Elk-1 recruits HDAC-2 to promoters, which prevents targeted transcription [63], and ERK activation leads to the loss of Elk-1 SUMOylation, which promotes Elk-1 activation [64]. Overall, the modification of Grb2 with SUMO enhances MEK/ERK pathway component transcription while inhibiting MEK and Elk-1 activity. Furthermore, ERK–mitogen-activated protein kinase (MAPK) independently participates in Smad3 phosphorylation [65]. Inhibiting the MEK/ERK pathway attenuates the stimulatory effect of TGF-β1 on Smad3 but has a slight effect on Smad4 activity [66]. ERK promotes Smad3 phosphorylation, possibly via ERK activation [67]. One study showed that Smad3 acts as a negative regulator inhibiting TGF-β activity of EMT [68]. Regardless, it remains to be determined whether SUMO modification inhibits the phosphorylation of Smad3 by ERK and leads to organ fibrosis.
stress conditions [94]. Overall, SUMOylation has a positive effect on the phosphorylation of JNK.

Rather than acting as a positive regulator of the JNK signalling pathway in human embryonic stem cells, PIAS1 antagonizes JNK activity independently of its ligase function [95]. Furthermore, PIAS1 is phosphorylated in response to JNK activation, which disturbs the SUMOylation–deSUMOylation balance. For example, PIAS1 enhances SUMOylation of c-Jun, a major downstream target in the JNK pathway, in a ligase-independent manner [95]. The transcription factor c-Jun is part of the activator protein 1 (AP-1) complex, and attenuating c-Jun activity reduces the expression of AP-1-dependent inflammatory genes in both monocytes and epithelial cells [96]. Studies have shown that the loss of phosphorylation sites in c-Jun aids its binding with SUMO1. Additionally, a SUMO1-deficient c-Jun K229 mutant exhibits higher transactivation potential at AP-1-containing promoters than wild-type c-Jun, which indicates that SUMO1 serves as a negative regulator of c-Jun activity [97]. These results can be partially explained by competition between SUMOylation and phosphorylation [97]. In summary, SUMOylation attenuates TAB2 and c-Jun activation but promotes JNK activation.

8. Rho

RhoA is a Rho GTPase that belongs to the family of Ras-related small GTP-binding proteins [98]. Only GTP-bound Rho is able to activate downstream Rho-associated coiled-coil-containing kinase, leading to ECM deposition and fibrosis following phosphorylation of myosin phosphatase [99]. In addition, activated RhoA signalling mediates scleral myofibroblast differentiation and hepatic stellate cell (HSC) proliferation, migration and activation [100,101]. HEK293T cells co-transformed with SUMO2/3 developed cell protrusions and pseudopodia, suggesting that the activity of RhoA may be inhibited by SUMO modification, as increased RhoA activity inhibits axon regeneration [102,103]. Nevertheless, the role of RhoA SUMOylation in fibrosis remains unclear. Rac is another member of the Rho GTPase family and has previously been shown to antagonize RhoA activity in mouse embryonic fibroblasts (MEFs) [104]. Ablation of the Rac1 gene increases the expression of α-SMA [105], which suggests that Rac is a novel therapeutic target against progressive fibrosis [106]. As Rac1-null MEFs derived from Rac1 conditional knockout mice are defective in cell migration, Rac may conjugate to SUMO1 with the help of PIAS3 to promote cell migration and invasion [107]. SUMOylation is beneficial for the stabilization of a pool of GTP-bound Rac1; thus, SUMOylation promotes Rac activation, and SENP deSUMOylates Rac1 [107]. Overall, the effects of SUMO modification on the RhoA signalling pathway need further investigation.

9. Others

Other transcription-related factors participate in the regulation of TGF-β signal transduction through SUMO modification.

10. Promyelocytic leukaemia protein

PML protein was originally identified as a fusion partner of retinoic acid receptor alpha in patients with acute promyelocytic leukaemia, but it has become an emerging factor in cancer owing to its role in the regulation of apoptosis, protein modification and cellular senescence [108]. Studies have shown that PML is also involved in fibrosis regulation. The B-box domain of cytoplasmic PML interacts with the MH1 domain of Smad2/3 to promote Smad2/3 phosphorylation and the production of TGF-β1 [109], and the overexpression of TGF-β1 increases activation of myofibroblasts and the deposition of ECM [110]. TGF-β1 further promotes generation of PML to form a positive feedback loop. It is worth noting that SUMOylation also participates in the abovementioned regulation. PML SUMOylation is promoted by SUMO-E3 ligase PIAS1 and RanBP2 and reversed by SENP2/5/6 [111,112]. PML is conjugated to SUMO1/2/3 on Lys-65, Lys-165 or Lys-490 [15], and Lys-65 mutation affects SUMOylation at other sites and leads to a low level of PML. Consequently, Lys-65 is considered to be the key site for SUMOylation [113]. SUMOylation at Lys-65 and Lys-160 leads to degradation of PML; SUMOylation at Lys-490 contributes to the formation of stable PML-NBs [111]. Indeed, PML SUMOylation is necessary for PML-NB formation and recruitment of Daxx and ring finger protein 4 (RFN4) to PML-NBs [114]. RFN4, a SUMO-targeted ubiquitin E3 ligase, targets SUMO-modified PML for ubiquitin-mediated degradation [115]. Studies have shown that silencing RFN4 induces liver fibrosis through the accumulation of SUMOylated PML. Furthermore, silencing Ubc9 suppresses protein and mRNA expression of TGF-β1 to inhibit the TGF-β1/Smad pathway as well as the expression of phosphorylated Smad2/3 and α-SMA. These results suggest that PML SUMOylation triggers HSC activation by increasing TGF-β signalling, thereby promoting the production of collagen I and α-SMA [116].

11. SnoN

SnoN (Ski novel protein), a member of the Ski family of proteins, was initially identified as a nuclear proto-oncoprotein based largely on its close homology to v-ski, the transforming protein of avian Sloan–Kettering retrovirus [117]. The complex roles of Ski and SnoN in tumorigenesis and embryonic development have been researched extensively [118,119]. SnoN, a novel negative regulator of TGF-β/Smad pathway, is depleted by SmurF2-mediated polyubiquitination and degradation within the context of fibrosis, ultimately contributing to inhibition of myofibroblast function and phenotypic conversion [120]. It is worth noting that Smad3 downregulates the expression of SnoN by elevating Smurf2 protein levels, indicating interaction between SnoN and TGF-β [121]. SnoN is also regulated by PTM. TAK1 mediates phosphorylation of SnoN and promotes ubiquitination and degradation of SnoN [122]. However, SUMOylation of SnoN at Lys-50 and Lys-383 with the help of PIASs is unrelated to its ubiquitination and does not alter its stability or subcellular localization. SnoN is regulated by SUMOylation, leading to the repression of TGF-β signalling-mediated transcriptional activity in a promoter-specific manner [123]. SnoN degradation via ubiquitination is mediated by Smurf2 [124], an E3 ubiquitin ligase shown to be SUMOylated at Lys-26 and Lys-369, which modulates its stability and induces TβRI degradation to prevent TGF-β-induced EMT [125]. Therefore, SUMO modification may have an indirect regulatory effect on SnoN.
12. Smad nuclear interacting protein

Smad nuclear interacting protein 1 (SNIP1) is an evolutionarily conserved protein composed of 396-amino acid nuclear proteins that contains a bipartite nuclear localization signal and a Forkhead-associated domain [126]. Smad1/2 interacts with the carboxyl terminus of SNIP1, whereas Smad4 interacts with the amino terminus of SNIP1; the interaction of SNIP1 and Smad4 is stronger and more direct [127]. Studies have demonstrated that SNIP1 prevents ligand-dependent transcription by restricting the interaction between the Smad2/3–Smad4 complex and CBP/p300. However, SUMO modification of Lys-5, Lys-30 and Lys-108 of SNIP1 antagonizes its inhibitory effect on TGF-β signalling. Lys-30 is regarded as the major SNIP SUMOylation site, and SUMO modification of SNIP1 is enhanced by the SUMO-E3 ligase PIAS protein and inhibited by the SUMO protease SENP1/2. TGF-β treatment results in reduced production of MMP2 in SNIP1 (K5R/K30R/K108R) mutant-expressing cells compared with wild-type SNIP1 [128]. Smad-mediated MMP2 serves as a key ligase for preventing overproduction of the ECM, and elevated expression of MMP2 improves fibrosis [129]. Therefore, the ability of SNIP1 to block formation of the Smad complex and prevent interaction between p300 and Smads is impaired by SUMOylation, which ultimately enhances TGF-β-induced cell migration and invasion [128].

13. DeSUMOylation as a novel strategy for fibrosis treatment

Considering the significance of protein SUMOylation in TGF-β signalling regulation (table 1), the SUMOylation pathway is a promising therapeutic target for clinical fibrosis drug discovery. Numerous compounds have been designed as SUMO inhibitors. These compounds can be divided into three categories according to their mechanism of action. First, compounds are SENP inhibitors that inhibit maturation and deSUMOylation [130]. Second, compounds are SUMO mimics represented by multivalent poly-SUMO chain inhibitors [131]. Third, compounds are inhibitors of SUMO enzymes. Small-molecule inhibitors targeting SUMO-E1/SUMO-E2 enzymes have been found as natural products or designed through chemical synthesis. However, to date, no small-molecule inhibitor has been designed to effectively inhibit SUMO-E3 enzymes [132]. Ginkgolic acid (GA) is the most widely used and commercially available chemical, which inhibits the SUMOylation modification pathway by blocking formation of the SAE-SUMO intermediate [133]. SUMOylation of Smad4 and PML is repressed by GA [134]. Although studies on the application of GA have mostly focused on tumours, the use of GA to alleviate myocardial infarction-induced cardiac fibrosis is promising [135]. GA suppresses the expression of EMT-related genes through inhibition of SUMO conjugation to inhibit fibrosis [135,136]. This may be explained by the vital role of EMT in the occurrence and progression of cancer and fibrosis. Nonetheless, adverse reactions such as allergic reactions limit the GA content in drugs [137]. GA also inhibits other biological processes, which complicates its use as an inhibitor of SUMOylation [138]. Some scholars propose that extending new clinical applications to old drugs, which have been confirmed as inhibitors targeting SUMO pathway, would be a solution presenting few novel side effects [132]. However, the dose dependence and low selectivity of these drugs is a problem [131]. Thus, finding structure–activity relationships in designing high-selectivity SUMO inhibitors is very important. The effects of SUMOylation on different substrate proteins vary according to the role of modification in canonical and non-canonical TGF-β signalling, which might contribute to the structure of the substrate proteins and their locations in the pathway. Assessment of which molecular mechanisms determine SUMOylation resistance or sensitivity for a substrate should be considered in the search for combination therapies, which would reduce adverse reactions and the possibility that SUMO inhibitors bind to other molecules in addition to targets [131]. Most related drugs found now are global SUMO inhibitors. Using these drugs promotes cell injury after ischaemia, which leads to fibrogenesis [139], suggesting that further exploration of specific SUMO isoforms in different diseases will facilitate the development of highly selective SUMO inhibitors and improve clinical antifibrosis therapy [140]. Specific isoforms associated with the abovementioned proteins are summarized in table 2.

14. Discussion and outlook

Many studies show increased SUMOylation in fibrotic organs, which suggests that SUMOylation serves as an inducer of fibrogenesis [31,141,142]. It is a well-accepted view that TGF-β signalling plays an important role in the process of fibrosis, and many key molecules are substrates for SUMOylation. It is not surprising that the effect of SUMOylation on various proteins differs. Although many studies show that SUMO modification promotes TGF-β-induced fibrosis [143], some proteins, such as Smad4, MEK, TAB2, PTEN, PI3K, c-Jun and SNIP, exhibit inhibitory effects on TGF-β signalling after being SUMOylated.

We attempted herein to explain observations using the MAPK family as an example. The MAPK signalling pathway involves ERK, JNK and p38 protein families. Although p38 is not considered a member of the non-canonical pathway of the TGF-β pathway, recent studies indicate that the p38 pathway is stimulated by TGF-β1 to induce fibrosis. p38 has also been demonstrated to inhibit nuclear translocation through non-covalent SUMO–p38 interactions [144]. Therefore, we propose that, although SUMO modification has a variety of cytolological functions, the change in protein function after SUMOylation may be associated with the position of the protein in the signalling pathway. In the MAPK family, SUMOylation is biased towards inhibiting signalling pathway activation by recruiting transcription inhibitors to downstream targets of ERK, JNK and p38 [63]. SUMOylation of the upstream protein may be biased to inhibit its phosphorylation, which destroys its ability to activate downstream proteins [93]. The role of proteins located in the middle of the signalling pathway does not seem to be altered by SUMOylation, but the abilities of these proteins to regulate other proteins vary. In addition, the wide and complex cross-talk occurring between signalling pathways is another explanation; as mentioned above, ERK is involved in the activity of Smad3 [67].

The pathogenesis of fibrosis is not restricted to fibroblast differentiation and ECM deposition. Autophagy is an evolutionarily conserved cellular catabolic pathway responsible for delivering long-lived proteins and excess or damaged proteins to the lysosomes for degradation [145]. A variety of autophagy mechanisms are found in fibrosis, including microtubule-mediated autophagy, carbonic anhydrase-mediated autophagy and adenosine triphosphate synthase-mediated autophagy [146]. Fibroblasts are able to escape from autophagy through fibrosis-linked protein expression and changes in autophagy capacity. Glucose-6-phosphate dehydrogenase (G6Pase) is a key enzyme in glycolysis and gluconeogenesis, which may be involved in the regulation of fibrosis through the regulation of autophagy [147]. The regulation of fibrosis by G6Pase is mediated by the regulation of the autophagy protein BNIP3, and BNIP3 interacts with ubiquitin ligase complexes [148]. This finding may have important implications for the management of fibrosis.
Table 1. SUMOylated substances in TGF-β signalling pathway.

protein	SUMOylation site	SUMOylation	E3 enzyme	desUMOylation enzyme	effects on biological responses	reference
TβRI	Lys-385, Lys-389	SUMO1	unclear	SENP2	enhance recruitment and phosphorylation of Smad3	[8]
Smad3	MH2	SUMO1	PIASy	unclear	inhibits activation and nuclear export of Smad3	[38]
Smad4	Lys-113, Lys-159	SUMO1/2/3	PIAS1, PIASxx, PIASβ, PIASy	SENP1, SENP2	enhance nuclear recruitment of Smad4; inhibits or promotes activity and stability of Smad4	[43]
Grb2	Lys-56	SUMO1	unclear	unclear	promotes binding of Grb2 and Sos1; induces activation of downstream signalling	[53]
Ras	Lys-42	SUMO3	PIASy	SENP1, SENP2	promotes activation of ERK	[54]
MEK1/MEK2	Lys-104/Lys-108	SUMO1	MEKK1 (MEK1 unique E3 enzyme)	unclear	prevent binding of MEK and ERK to inhibit activation of ERK	[56]
Elk1	Lys-230, Lys-249, Lys-254	SUMO1/2/3	PIASxx (in an E3 activity-independent manner)	SENP1	regulate nuclear shuttling; simulates HDAC and PIAS2 to inhibit ELK-mediated transcription	[56,60–62]
PISK	P85 (including Lys-535, Lys-592, P110(Lys-952))	SUMO1/2	unclear	unclear	inhibit phosphorylation of PISK and its activation and downstream signalling	[76]
Akt	Lys-276, Lys-301	SUMO1	PIAS1	SENP1, SENP2, SENP3	enhance activity of AKT; enhances PTEN SUMOylation; induces phosphorylation of SUMO1 and Ubc9	[78–80,82]
PTEN	Lys-254, Lys-266	SUMO1	PIASxx	SENP1	promote nuclear localization of PTEN; inhibit the PTEN/PISK/AKT pathway.	[85–87]
Tab2	Lys-329	SUMO1	PIAS3	unclear	inhibits activity of Tab2	[93]
JNK	unclear	unsure	PIAS1	unclear	inhibits phosphorylation of JNK and prevents its activity	[95]
RhoA	unclear	SUMO2/3	PIAS3	unclear	inhibits activity of RhoA	[103]
RAC	unclear	SUMO1	PIAS3	unclear	promotes activation of RAC, leading to defects in embryonic fibroblast migration	[107]
PML	Lys-65, Lys-165, Lys-490	SUMO1, SUMO2, SUMO3	PIAS1, RanBP2	SENP2/5/6	promote formation of PML-NBs; enhance P-Smad2/3 and TGF-β1 mRNA expression	[15,111,112]
SnoN	Lys-50, Lys-383	SUMO1	PIAS1, PIASy	unclear	inhibit TGF-β-induced EMT but do not change ubiquitination degradation, stability or subcellular localization	[122,123]
SNIP1	Lys-5, Lys-30, Lys-108	SUMO1	PIAS1, PIAS3, PIASxx and PIASβ	SENP1/2	inhibit the negative effect of SNIP1 on MMP2 to enhance TGF-β transcription	[128]
organelles to the lysosome for degradation and re-use of the resulting macromolecules [145]. This characteristic makes autophagy a key player in cellular homeostasis, and this process is expected to become a new target for the treatment of fibrosis [146,147]. Although the mechanism of autophagy remains unclear, the role of PI3K/Akt/mTOR signalling as the primary autophagy regulatory pathway is widely accepted [145]. mTOR inhibits autophagy by decreasing phosphorylation levels of the autophagy-related protein Unc-51-like kinase [148]. Class III phosphatidylinositol 3-kinase (PtdIns3K) activity can be opposed by PTEN, with subsequent mTOR inhibition [145]. JNK has also been shown to promote the induction of autophagy [149]. In view of the inhibitory effect of SUMOylation on PI3K and the promotional effect of SUMOylation on JNK, autophagy may constitute another target by which SUMOylation regulates fibrosis.

15. Conclusion
In this review, we summarize the role of SUMOylation in Smad and non-Smad TGF-β signalling pathways and propose that SUMOylation is important in TGF-β-mediated biological processes. Most studies to date on the effect of SUMO modification on TGF-β pathway activity have focused on cancer. Considering that EMT is indispensable for fibrogenesis and tumorigenesis and biomarkers such as MMP and α-SMA are commonly employed to determine whether a drug is effective as a fibrosis or cancer treatment, we suggest that SUMOylation may be used in a novel fibrosis treatment through the inhibition of EMT. It is worth mentioning that fibrosis is important in the premalignant environment, especially in liver fibrosis; that is, cancer can be considered a negative outcome of fibrosis to some extent [150]. In view of the common characteristics of the pathologial mechanisms of cancer and fibrosis, anti-tumour drugs that inhibit SUMOylation of TGF-β pathway components may be used when certain organs begin to undergo fibrosis [151]. Ultimately, the goal of reversing fibrosis and preventing cancer may be achieved, which indicates that SUMO inhibitors may achieve two goals at the same time.

Data accessibility. This article has no additional data.

Table 2. Specific SUMO isoforms linked to components of the TGF-β signalling pathway.

SUMO isoforms	type of effects	substrate proteins	effect	references
SUMO1	positive	TβRI	Smad3 activation	[8]
		Smad4	transcriptional response superfamily	[41,42,44]
			nuclear accumulation	stability
Grb2			Ras/MEK/ERK pathway activation	[53]
PTEN			promote nuclear localization	inhibition of the PTEN/PI3K/AKT pathway
			binding to the plasma membrane	
Akt			activation	
JNK			JNK activation	[94]
RAC			promotes activation of RAC	[107]
SnoN	negative	Smad3	DNA-binding activity	
		Smad4	transcriptional activity	
		MEK1/2	ERK activation	[57]
		TAB2	inhibits activity of TAB2	[93]
		RhoA	inhibits activity of RhoA	[103]
		SNIP1	inhibits inhibitory activity of SNIP1	[128]
SUMO2/3	positive	Smad4	TGF-β signalling transcriptional response in mesangial cells	[43,45]
SUMO1/2/3	positive	Ras	ERK activation	[54]
		PML	promotes formation of PML-NBs	[111,112]
		Elk-1	nuclear export	
SUMO1/2	negative	PI3K p85	phosphorylation of PI3K	[76]
	positive	PI3K p110	activation of AKT	
			stability	
References

1. Morikawa M, Derynck R, Miyazono K. 2016 TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol. 8, a021873. (doi:10.1101/cshperspect.a021873)

2. Caja L, Ditturi F, Mancarella S, Caballero-Diaz D. 2018 TGF-β and the tissue microenvironment: relevance in fibrosis and cancer. Int. J. Mol. Sci. 19, 1294.

3. Ghosh AK, Bhattacharyya S, Varga J. 2004 The tumor suppressor p53 abrogates Smad-dependent collagen gene induction in mesenchymal cells. J. Biol. Chem. 279, 47455–47463. (doi:10.1074/jbc.M405477200)

4. Miyazawa K, Miyazono K. 2017 Regulation of TGF-β family signaling by inhibitory Smads. Cold Spring Harb. Perspect. Biol. 9, a022095. (doi:10.1101/cshperspect.a022095)

5. Yan X, Liu Z, Chen Y. 2009 Regulation of TGF-beta family signaling and regulated by sumoylation. Mol. Med. 15, 481–489. (doi:10.1093/jb/mvm097)

6. Tzavlaki K, Moustakas A. 2020 TGF-β signaling. Biomolecules 10, 487. (doi:10.3390/biom10030487)

7. Kang JS, Saunier EF, Akhurst RJ, Derynck R. 2008 TGF-β family signalling by ubiquitination and deubiquitination. J. Biochem. 154, 481–489. (doi:10.1093/jb/mvm097)

8. Zhao X. 2018 SUMO-mediated regulation of nuclear functions and signaling processes. Mol. Cell 71, 409–418. (doi:10.1016/j.molcel.2018.07.027)

9. Ensink JM. 2015 SUMO and the cellular stress response. Cell. Div. 10, 4. (doi:10.1186/s13008-015-0010-1)

10. Li Q, Ma Q, Li C, Gai GV, Chen XM, Hong Q. 2019 Progress of small ubiquitin-related modifiers in kidney diseases. Chin. Med. J. 132, 466–473. (doi:10.1097/CMJ.0000000000001094)

11. Liang YC, Lee CC, Yao YL, Lai CC, Schmitz ML, Yang WM. 2016 SUMO5, a novel poly-SUMO isoform, regulates PML nuclear bodies. Sci. Rep. 6, 26509. (doi:10.1038/srep26509)

12. Tan M, Gong H, Wang J, Tao L, Xu D, Bao E, Liu Z, Qiu J. 2015 SENP2 regulates MMP13 expression in a bladder cancer cell line through SUMOylation of TBL1/TBL1R. Sci. Rep. 5, 13396. (doi:10.1038/srep13396)

13. Hay RT. 2005 SUMO: a history of modification. Mol. Cell 18, 1–12. (doi:10.1016/j.molcel.2005.03.012)

14. McManus FP, Bourdeau V, Avevedo M, Lopes-Paciencia S, Mignacca L, Lamollatte F, Rojas Pino JW, Ferbeyre G, Thibault P. 2018 Quantitative SUMO proteomics reveals the modulation of several PML nuclear body associated proteins and an anti-senescence function of UBC9. Sci. Rep. 8, 7754. (doi:10.1038/s41598-018-21550-z)

15. Iyengar PV. 2017 Regulation of ubiquitination and ubiquitination functions and signaling processes. J. Pathol. 244, 199–210. (doi:10.1002/path.2727)

16. Roseker DC, Bell PD, Hill JA. 2015 Fibrosis—a common pathway to organ injury and failure. N. Engl. J. Med. 372, 1138–1149. (doi:10.1056/NEJMra1300575)

17. Roderfeld M. 2018 Matrix metalloproteinase 1 and 2, and type IV collagenases and the TGF-β pathway. Toxicol. Lett. 292, 76–83. (doi:10.1016/j.toxlet.2019.11.003)

18. Gong L, Yeh ET. 2006 A basis for SUMO-dependent and -independent signaling of activator protein 1 and Smad factors in the common pathway to organ injury and failure. J. Pathol. 209, 637–647. (doi:10.1002/path.281)

19. Koo HY et al. 2020 Andrographolide ameliorates bleomycin-induced pulmonary fibrosis by transforming growth factor-beta 1. Toxicol. Lett. 321, 103–113. (doi:10.1016/j.toxlet.2019.11.003)

20. Luo F, Xu R, Song G, Xue D, He X, Xia Y. 2020 Alleviation of TGF-β1-induced tubular epithelial-mesenchymal transition via the δ-opioid receptor. FEBS J. 288, 1243–1258. (doi:10.1111/feb.15439)

21. Shinde AM, Humeres C, Frangogiannis NG. 2017 The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochem. Biophys. Acta Mol. Basis Dis. 1863, 298–309. (doi:10.1016/j.bbadis.2016.11.006)

22. Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, Zhao YY. 2018 New insights into TGF-β/Smad signaling in tissue fibrosis. Chemico-Biol. Interact. 292, 76–83. (doi:10.1016/j.cbi.2018.07.008)

23. Ikasa Y. 2018 Targeting TGF-β signaling in kidney fibrosis. Int. J. Mol. Sci. 19, 2532. (doi:10.3390/ijms19092532)

24. Rauchman M, Griggs D. 2019 Emerging strategies to disrupt the central TGF-β axis in kidney fibrosis. Transl. Res. 209, 90–104. (doi:10.1016/j.trsl.2019.04.003)

25. Sureshbabu A, Muhsin SA, Choi ME. 2020 TGF-β signaling in the kidney: profibrotic and protective effects. Am. J. Physiol. Renal Physiol. 310, F596–F606. (doi:10.1152/ajprenal.00365.2019)

26. Khodzhibegov A et al. 2012 Inhibition of sumoylation prevents experimental fibrosis. Ann. Rheumatic Dis. 71, 1904–1908. (doi:10.1136/annrheumdis-2012-201746)

27. Tan M, Zhang D, Zhang E, Xu D, Liu Z, Qiu J, Fan Y, Shen B. 2017 SENP2 suppresses epithelial-mesenchymal transition of bladder cancer cells through desumoylation of TGF-β1. Mol. Cancerog. 56, 2332–2341. (doi:10.1002/mc.22687)

28. Miyazawa K, Kamiya Y, Miyazawa K. 2008 SUMO amplies TGF-beta signalling. Nat. Cell. Biol. 10, 635–637. (doi:10.1038/ncll0658-635)

29. Heldin CH, Moustakas A. 2016 Signaling receptors for TGF-β family members. Cold Spring Harb. Perspect. Biol. 8, a022053. (doi:10.1101/cshperspect.a022053)

30. Bordignon P et al. 2017 Dualism of TGF-β and TGF-β signaling in heterogeneous cancer-associated fibroblast activation with ETVI as a critical determinant. Cell Rep. 28, 2358–2372. (doi:10.1016/j.celrep.2019.07.092)

31. Koo HY et al. 2018 Fibroblast growth factor 2 decreases bleomycin-induced pulmonary fibrosis and inhibits fibroblast collagen production and myofibroblast differentiation. J. Pathol. 246, 54–66. (doi:10.1002/path.5106)

32. Hall MC, Young DA, Waters JG, Rowan AD, Chantry A, Edwards DR, Clark IM. 2003 The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1. J. Biol. Chem. 278, 10 313. (doi:10.1074/jbc.M212334200)

33. Imoto S, Ohashiyama N, Ikeda O, Kamitani S, Muramoto R, Sekine Y, Matsuda T. 2008 Sumoylation of Snail3 stimulates its nuclear export during P53-mediated suppression of TGF-beta signaling. Biochem. Biophys. Res. Commun. 370, 359–365. (doi:10.1016/j.bioc.2008.03.116)
39. Imoto S, Sugiyama K, Muramoto R, Sato N, Yamamoto T, Matsuda T. 2003 Regulation of transforming growth factor-beta signaling by protein inhibitor of activated STAT, PIASy through Smad3. J. Biol. Chem. 278, 34 253–34 258. (doi:10.1074/jbc.M304961200)

40. Piette CE, Nicolas FJ, Hill CS. 2000 Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol. Cell. Biol. 20, 9041–9054. (doi:10.1128/MCB.20.23.9041-9054.2000)

41. Lee PS, Chang C, Liu D, Derynck R. 2003 Regulation of TGF- β-induced epithelial-mesenchymal transition and cancer progression. Cancer Sci. 110, 481–488. (doi:10.1111/j.1349-7006.2009.01392.x)

42. Nho RS, Peterson M, Hergert P, Henke CA. 2013 FoxO3a (Forkhead Box O3a) deficiency protects idiopathic pulmonary fibrosis (IPF) fibroblasts from type I polymerized collagen matrix-induced apoptosis via caveolin-1 (cav-1) and Fas. PLoS ONE 8, e61017. (doi:10.1371/journal.pone.0061017)

43. Huu HS, Liu CC, Lin JH, Hsu TW, Hsu JW, Su K, Hung SC. 2017 Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis. Sci. Rep. 7, 14272. (doi:10.1038/s41598-017-14612-5)

44. Yue H, Zhao Y. 2017 Anti-fibrosis effect for Hirsutella sinensis mycelium based on inhibition of mTOR p70S6K phosphorylation. Innate Immunity 23, 615–624. (doi:10.1177/1753459117726361)

45. Hu X, Zhang H, Li X, Li Y, Chen Z. 2020 Activation of mTORC1 in fibroblasts accelerates wound healing and induces fibrosis in mice. Wound Repair Regen. 28, 6–15. (doi:10.1111/wrr.12759)

46. Ueshima E, Fujimori M, Kodama H, Felsen D, Chen J, Durack JC, Solomon SB, Coleman JA, Srimathveeravalli G. 2019 Macrophage-secreted TGF-β1 mediates fibroblast activation and ureteral stricture after ablation injury. Am. J. Physiol. Renal Physiol. 317, F52–F64. (doi:10.1152/ajprenal.00260.2018)

47. Dou F et al. 2019 Aloe-emodin ameliorates renal fibrosis via inhibiting PI3K/Akt/mTOR signaling pathway in vivo and in vitro. Rejuvenation Res. 22, 218–229. (doi:10.1089/rej.2019.2104)

48. Cattley RT, Lee M, Boggs WC, House W. 2020 Transforming growth factor β (TGF-β) receptor signaling regulates kinase networks and phosphatidylinositol metabolism during T-cell activation. J. Biol. Chem. 295, 8236–8251. (doi:10.1074/jbc.RA120.012572)

49. de la Cruz-Herrera CF et al. 2016 Conjugation of SUMO to p85 leads to a novel mechanism of PI3K regulation. Oncogene 35, 2873–2880. (doi:10.1038/onc.2015.356)

50. El Motiam A et al. 2021 SUMOylation modulates the stability and function of PI3K-p110γ. Cell. Mol. Life Sci. 78, 4053–4065. (doi:10.1007/s00018-021-03382-6)

51. Li R, Wei J, Jiang C, Liu D, Deng L, Zhang K, Wang P. 2013 Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer Res. 73, 5742–5753. (doi:10.1158/0008-5472.CAN-13-0538)

52. Chen Y et al. 2021 Inhibition of SENP2-mediated Akt deSUMOylation promotes cardiac regeneration via activating Akt pathway. Clin. Sci. (London, England: 1979) 135, 811–828. (doi:10.1042/CS20201408)

53. Xiao M, Bian Q, Liao Y, Yi J, Sun X, Sun X, Yang J. 2021 SENP3 loss promotes M2 macrophage polarization and breast cancer progression.
91. Sundarrajan M, Boyle DL, Chabaud-Riou M, Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Feligioni M, Brambilla E, Camassa A, Sclip A, Wang X, Jiang J, Lu Y, Shi G, Liu R, Cao Y. 2014 SUMOylation of the PTEN/PI3K/AKT signalling pathway in renal fibrosis. J. Biol. Chem. 289, 13 321–13 329. (doi:10.1074/jbc.275.18.13321)
92. Choi BK, Kim KG, Kim JH, Cho JY, Jeong H, Park Y, Islam R, Cap CK, Park JB. 2020 Regulation of RhoA GTase and novel target proteins for ROCK. Small GTPases 9, 95–102. (doi:10.1080/20414248.2017.1364831)
93. Nakagawa N et al. 2016 Pentraxin-2 suppresses c-Jun/AP-1 signaling to inhibit proliferative fibrotic disease. JCI Insight 1, e87446. (doi:10.1172/jci.insight.e87446)
94. Muller S, Berger M, Lehembr F, Seeler JS, Haupt Y, Dejean A. 2000 c-Jun and p53 activity is modulated by SUMO-1 modification. J. Biol. Chem. 275, 13 321–13 329. (doi:10.1074/jbc.275.18.13321)
95. Leitao BB, Jones MC, Brosens JI. 2011 The SUMO-3-ligase Pias1 couples reactive oxygen species-dependent JNK activation to oxidative cell death. FASEB J. 25, 3416–3425. (doi:10.1096/fj.11-186346)
96. Nakagawa N et al. 2016 Pentraxin-2 suppresses c-Jun/AP-1 signaling to inhibit proliferative fibrotic disease. JCI Insight 1, e87446. (doi:10.1172/jci.insight.e87446)
97. Carnero A, Blanco-Aparicio C, Renner O, Link W, Hammaker D, Firestein GS. 2003 Expression of the TAK1 in the absence of TAB2 and TAB3. J. Biol. Chem. 278, 4123–41248. (doi:10.1074/jbc. M113.508515)
98. Arnaboldi A, Morelli F, Antoniou X, Borsello T. 2011 Rac–GTPase enhances recruitment of latent TGF-β-binding protein-1 to the fibroblast matrix. J. Cell Sci. 134, jcs201293. (doi:10.1242/jcs.201293)
99. Wang J et al. 2012 SUMO modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nat. Commun. 3, 911–923. (doi:10.1038/ncomms1919).
100. Li C, She J, Wang J, Chen M. 2018 Human PTEN controls DNA repair and cell cycle. Front. Pharmacol. 9, 325–326. (doi:10.3389/fphar.2018.00325)
101. Huang C, Gan D, Luo F, Wan S, Chen J, Wang A, Li B, Zhu X. 2019 Interaction mechanisms between the RhoA/ROCK and NOX4/ROS and RhoA/ROCK1 signaling pathways as negative regulators of TGF-beta signaling in HSCs. Cell Biosci. 9, 325–326. (doi:10.1186/s13578-018-0204-8)
102. Hu J, Selzer ME. 2017 RhoA as a target to promote neuronal survival and axon regeneration. Neural Regen. Res. 12, 525–528. (doi:10.4103/1673-5374.205080)
103. Sun Y, Li C, She J, Wang J, Chen M. 2018 Human RhoA is modified by SUMO2/3. Nan fang yi ke da xue xue bao (Journal of Southern Medical University) 38, 75–80.
104. Wu Y, Li F, Deng L, Ou L, Wang W, Li X, Du H. 201802489RR
105. Castillo-Llueva S, Tatham MH, Jones RC, Jaffrey EG, Edmondson RD, Hay RT, Malliri A. 2010 SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat. Cell Biol. 12, 1078–1085. (doi:10.1038/ncb2112)
106. Huo KS, Xiao HY. 2018 PML: regulation and multifaceted function beyond tumor suppression. Cell Biosci. 8, 5. (doi:10.1186/s13588-018-0204-8)
107. Lin HK, Bergmann S, Pandolli PP. 2004 Cytoplasmic PML function in TGF-beta signalling. Nature 431, 205–211. (doi:10.1038/nature02783)
108. Li X et al. 2018 Synthesis and discovery of a drug candidate for treatment of idiopathic pulmonary fibrosis through inhibition of TGF-β1 pathway. Euro. J. Med. Chem. 157, 229–247. (doi:10.1016/j.ejmech.2018.07.074)
109. Zhang HR, Munkjargal A, Kim MJ, Park SY, Jung E, Ryu JH, Yang Y, Lim J-S, Kim Y. 2018 The functional roles of PML nuclear bodies in genome maintenance. Mutat. Res. 809, 99–107. (doi:10.1016/j.mrfmmm.2017.05.002)
110. Hattersley N, Shen L, Jaffrey EG, Hay RT. 2011 The PML protease SENPs is a direct regulator of PML nuclear bodies. Mol. Biol. Cell 22, 78–90. (doi:10.1091/mbc.e10-06-0504)
111. Lin CH, Liu SY, Lee EH. 2016 SUMO modification of Akt regulates global SUMOylation and substrate SUMOylation specificity through Akt phosphorylation of Ubc9 and SUMO1. Oncogene 35, 595–607. (doi:10.1038/onc.2015.115)
112. Hattersley N, Shen L, Jaffrey EG, Hay RT. 2010 Arsenic-induced PML: a regulated response and functional roles of RNF4 into PML nuclear bodies. Mol. Biol. Cell 21, 4227–4239. (doi:10.1090/mrb10-05-0449)
113. Tatham MH, Geoffroy MC, Shen L, Plechanova A, Hattersley N, Jaffrey EG, Falvimo JJ, Hay RT. 2008 RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol. 10, 538–546. (doi:10.1038/ncc1716)
114. Dai J, Hu Y, Niu Q, Song G, Wang H, Li S. 2020 Role of PML SUMOylation in arsenic trioxide-induced fibrosis in HSCs. Life Sci. 251, 117607. (doi:10.1016/j.lfs.2020.117607)
115. Zhu Q, Luo K. 2012 Sно and Rock2 in regulation of embryonic development and tissue morphogenesis. FEBS Lett. 586, 1971–1976. (doi:10.1111/j.1742-4658.2012.06365.x)
116. Luo K. 2004 Ski and Sno: negative regulators of TGF-beta signaling. Curr. Opin. Genet. Dev. 14, 65–70. (doi:10.1016/j.gde.2003.11.003)
117. Pot I, Bonni S. 2008 Sno in TGF-beta signaling and cancer biology. Curr. Mol. Med. 8, 319–328. (doi:10.2174/156652408784533797)
118. Zeglis MR, Hutterow M, Jassal DS, Dixon JM. 2015 Sno1 as a novel negative regulator of TGF-β1/Smad signaling: a target for tailoring organ fibrosis. Am. J. Pathol. 183, 857–868. (doi:10.11128/ajpath.00453.2014)
119. Wang Y et al. 2020 Smad2 and Smad3 play antagonistic roles in high glucose-induced renal tubular fibrosis via the regulation of Sno1. Exp. Mol. Pathol. 113, 104375. (doi:10.1016/j.yexmp.2020.104375)
120. Deheuninck J, Luo K. 2009 Ski and Sno1, potent negative regulators of TGF-beta signaling. Cell Res. 19, 47–57. (doi:10.1038/cr.2008.324)
123. Hsu YH, Sarker KP, Pot I, Chan A, Netherton SJ, Bonni S. 2006 Sumoylated Snail represses transcription in a promoter-specific manner. J. Biol. Chem. 281, 33008–33018. (doi:10.1074/jbc.M604380200)

124. Xu Z, Diao Z, Liu R, Liu W. 2017 Molecular mechanism of smurf2 in regulating the expression of Snail in diabetic nephropathy. Mol. Med. Rep. 15, 2560–2566. (doi:10.3892/mmr.2017.6470)

125. Chandhoke AS, Karve K, Dadakhujaev S, Netherton S, Deng L, Bonni S. 2016 The ubiquitin ligase Smurf2 suppresses TGFB-induced epithelial-mesenchymal transition in a sumoylation-regulated manner. Cell Death Diff. 23, 876–888. (doi:10.1038/cdd.2015.152)

126. Lu YY et al. 2016 Smad nuclear interacting protein 1 acts as a protective regulator of pressure overload-induced pathological cardiac hypertrophy. J. Am. Heart Assoc. 5, e003945.

127. Kim RH et al. 2000 A novel Smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGFB-beta signal transduction. Genes Dev. 14, 1605–1616.

128. Liu S, Long J, Yuan B, Zheng M, Xiao M, Xu J, Lin X, Feng XH. 2016 SUMO modification reverses inhibitory effects of Smad nuclear interacting protein-1 in TGFB-ß responses. J. Biol. Chem. 291, 24418–24430. (doi:10.1074/jbc.M116.755850)

129. Xie H et al. 2020 Raw and vinegary processed curcuma wenyujin regulates hepatic fibrosis via blocking TGFB-ß/Smad signaling pathways and up-regulation of MMP-2/TIMP-1 ratio. J. Ethnopharmacol. 246, 111768.

130. Kumar A, Zhang KY. 2015 Advances in the development of SUMO specific protease (SENP) inhibitors. Comput. Struct. Biotechnol. J. 13, 204–211. (doi:10.1186/s40644-015-0001-0)

131. Li YJ, Perkins AL, Su Y, Ma Y, Colson L, Horne DA, Chen Y. 2012 Gold nanoparticles as a platform for creating a multivalent poly-SUMO chain inhibitor that also augments ionizing radiation. Proc. Natl. Acad. Sci. USA 109, 4092–4097. (doi:10.1073/pnas.1109131109)

132. Yang Y et al. 2018 Small-molecule inhibitors targeting protein SUMOylation as novel anticancer compounds. Mol. Pharmacol. 94, 885–894. (doi:10.1124/mol.117.112300)

133. Fukuda I, Ito A, Haini G, Nishimura S, Kawasaki H, Saitoh H, Kimura K, Sodeoka M, Yoshida M. 2009 Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem. Biol. 16, 133–140. (doi:10.1016/j.chembiol.2009.01.009)

134. Liu K, Wang X, Li D, Xu D, Li D, Lu Z, Zhao D, Chu WF, Wang XF. 2020 Ginkgolic acid, a SUMO-1 inhibitor, inhibits the progression of oral squamous cell carcinoma by alleviating SUMOylation of SMAD4. Mol. Ther. Oncolytics 16, 86–99. (doi:10.1016/j.omto.2019.12.005)

135. Ouj F et al. 2018 Pharmacological inhibition of SUMO-1 with ginkgolic acid alleviates cardiac fibrosis induced by myocardial infarction in mice. Toxicol. Appl. Pharmacol. 345, 1–9. (doi:10.1016/j.taap.2018.03.006)

136. Baek SH et al. 2017 Ginkgolic acid inhibits invasion and migration of TGFB-ß-induced EMT of lung cancer cells through PI3K/Akt/mTOR inactivation. J. Cell. Physiol. 232, 346–354. (doi:10.1002/jcp.25426)

137. Xu Y, Liu C, Dou D, Wang Q. 2017 Evaluation of anaphylactoid constituents in vitro and in vivo. Int. Immunopharmacopharm. 43, 79–84. (doi:10.1016/j.intimp.2016.12.010)

138. Gerstmeier J et al. 2019 Ginkgolic acid is a multi-target inhibitor of key enzymes in pro-inflammatory lipid mediator biosynthesis. Front. Pharmacol. 10, 797. (doi:10.3389/fphar.2019.00797)

139. Yang W, Sheng H, Wang H. 2016 Targeting the SMAD4-Smurf2 core molecular machinery and signaling regulation. Mol. Ther. Oncolytics. 2016.12.010.

140. Gershmeier J et al. 2019 Ginkgolic acid is a multi-target inhibitor of key enzymes in pro-inflammatory lipid mediator biosynthesis. Front. Pharmacol. 10, 797. (doi:10.3389/fphar.2019.00797)

141. Yang Z, Yang Y, Sun S. 2019 Deciphering the SUMO code in the kidney. J. Cell. Mol. Med. 23, 711–719. (doi:10.1111/jcmm.14021)

142. Janka C, Selmi C, Gershwin ME, Will H, Sternsdorf T. 2005 Small ubiquitin-related modifiers: a novel and independent class of autoantigens in primary biliary cirrhosis. Hepatology (Baltimore, Md) 41, 609–616. (doi:10.1002/hep.20619)

143. Lin X et al. 2020 Sumoylation enhances the activity of the TGFB-ß/SMAD and HIF-1 signaling pathways in keloids. Life Sci. 255, 117859. (doi:10.1016/j.lfs.2020.117859)

144. Wang PY, Hsu PI, Wu DC, Chen TC, Jarman AP. 2018 SUMOs mediate the nuclear transfer of p38 and p-p38 during helicobacter pylori infection. Int. J. Mol. Sci. 19, 2482. (doi:10.3390/ijms19092482)

145. Yang Z, Klonowski DJ. 2010 Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124–131. (doi:10.1016/j.cceb.2009.11.014)

146. Zhao H, Wang Y, Qiu T, Liu W, Yao P. 2020 Autophagy, an important therapeutic target for pulmonary fibrosis diseases. Clin. Chim. Acta 502, 139–147. (doi:10.1016/j.cca.2019.12.016)

147. Zhao XC, Livingston MJ, Liang XL, Dong Z. 2019 Cell apoptosis and autophagy in renal fibrosis. Adv. Exp. Med. Biol. 1165, 557–584. (doi:10.1007/978-981-13-8871-2_28)

148. Zhang HW et al. 2018 Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3K- mediated PI3K/AKT/mTOR/p70S6 K/ULK signaling pathway in human breast cancer cells. Sci. Rep. 8, 11255. (doi:10.1038/s41598-018-29308-7)

149. Zhou YY, Li Y, Jiang WD, Zhou LS. 2015 MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci. Rep. 35, 00199.

150. Affo S, Yu LX, Schwabe RF. 2017 The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol. 12, 153–186. (doi:10.1146/annurev-pathol-052016-100322)

151. Li H, Meng X, Zhang D, Xu L, Li S, Li Y. 2019 Ginkgolic acid suppresses the invasion of HepG2 cells via downregulation of HGF/c-Met signaling. Oncol. Rep. 41, 369–376.