Distinction of Indian Commercial Lac Insect Lines of *Kerria* spp. (Homoptera: Coccoidea) Based on Their Morphometrics

Ayashaa Ahmad,1,2 Ranganathan Ramani,3 Kewal K. Sharma,3 Ambrish S. Vidyarthi,4 and Vilayanoor V. Ramamurthy1

1Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India
2Corresponding author, e-mail: a.ayashaa@gmail.com
3Indian Institute of Natural Resins and Gums, Indian Council of Agricultural Research, Ranchi, India
4Department of Biotechnology, Birla Institute of Technology, Mesra, Patna Campus, India

Subject Editor: Takumasa Kondo

J. Insect Sci. 14(263): 2014; DOI: 10.1093/jisesa/ieu125

ABSTRACT. The lac insects belong to the genus *Kerria* (Hemiptera: Coccoidea: Kerriidae) and are commercially exploited worldwide for the production of lac, which comes from their waxy test and has diverse industrial applications. The insects are maintained by the Indian Institute of Natural Resins and Gums as distinctive lines that are cultivated and commercialized in the lac producing areas of India. The lines are all considered to belong to the genus *Kerria* but without validation of their taxonomic characters, and their identity to species has not been ascertained. This study used single-factor analysis of variance and several multivariate analyses, such as principal component analysis, discriminant function analysis, and canonical discriminant analysis to explore the morphometrics of some of the adult female lac insect lines. The results have enabled the identification of some taxonomically significant characters in adult females, which has grouped the 32 lac insect lines studied into 15 species along with validation of the most significant characters. Distinctive grouping patterns for the species of *Kerria* have been brought out using morphometrics.

Key Words: canonical discriminant analysis, discriminant function analysis, lac insect, new species, principal component analysis

Scale insects (Stenorrhyncha: Coccoidea) are phytophagous insects found in all terrestrial zoogeographical regions except Antarctica, with ~7,500 species in ~30 families (Ben-Dov et al. 2014). These are generally divided into two informal groups, the archaeococcoids and the neococcoids, based on the presence or absence of abdominal spiracles in the adult female. The neococcoids form a monophyletic group with 17 families and the Coccidae and the Tachardiidae form sister groups (Cook et al. 2002). The family Tachardiidae (=Kerriidae), which includes lac insects, consists of nine genera and 100 species (Ben-Dov et al. 2014). Lac insects (Hemiptera: Coccoidea: Tachardiidae) are morphologically distinctive scale insects that produce a gum-like or resinous secretion that forms a hard cover over the body (Chamberlin 1923, Varshney 1976). The word “lac” is derived from a Sanskrit word which mean “hundred thousand,” indicating the gregarious habit of this insect (Krishnaswami 1962). These insects belong to the genus *Kerria* and the most commonly cultivated species is *Kerria lacca* (Kerr). The species of *Kerria* are distributed throughout India but occur as isolated patches in a variety of habitats (Varshney 1976, Ramani et al. 2007).

Lac insects yield three commercially important products: resin, dye, and wax, which have major applications in a wide range of industries (Varshney 1976, Ramani et al. 2007). These lac products are preferred over other products due to their unique properties along with their environmental safety (Saha et al. 2011).

The commercially exploited species of lac insect belong to many distinctive genetic lines and these are maintained and cultivated by the Indian Institute of Natural Resins and Gums (INRG). These genetic lines are commercially exploited for lac production in different parts of India. Taxonomy of the lac insect is based on the monograph and its supplement by Chamberlin (1923, 1925) as well as subsequent works by Kapur (1958), Varshney (1976), and Kondo and Gullan (2007). All these commercially cultivated lines have been placed in the genus *Kerria* but without validation of their taxonomic characters and thus each line is commercially cultivated without a proper identification. The diversity and cultivation complexities of these lines require a critical analysis through a study of their morphology and morphometrics.

As there is much variability in their morphology, with significant overlapping of characters, these need to be analyzed and the most important characters clarified. Females are highly degenerative and undergo considerable changes in size and shape during sexual maturition, posing a challenge in their identification and so this intraspecific variation needs to be critically analyzed.

Hence, this study used single-factor analysis of variance (ANOVA) and multivariate analyses such as principal component analysis (PCA), discriminant function analysis (DFA), and canonical discriminant analysis (CDA) to explore the morphometrics of the commercial lac insect lines in India.

Materials and Methods

Collection and Preparation of Specimens. Thirty-two female lac insect lines were studied (Table 1). These included species of *Kerria* from the principal lac growing states, geographical races, some inbred lines, and the infra-subspecific forms kusumi and rangeeni. Kusumi and rangeeni are two distinct forms of lac insects, the latter thriving on *Butea monosperma* (Fabaceae) but not on *Schleichera oleosa* (Sapindaceae), which is a preferred host of kusumi. The samples were obtained from the cultures maintained on potted *Flemingia macrophylla* (Fabaceae), a lac host plant kept under culture conditions at the Lac Insect Field Gene Bank of National Lac Insect Germplasm Center, INRG campus, Ranchi (23° 19’51” N and 85° 22’18” E; elevation of 2,080 ft). These cultures are enclosed in synthetic mesh sleeves to exclude parasitoids and predators and are regularly sprayed with fungicide carbendazim (0.01%). In order to prepare the specimens for morphological studies, mature females were scraped from the twigs and placed in 100% ethyl alcohol for 48 hr to dissolve their resinous covering. The specimens were then cleaned carefully under a stereozoom microscope with a brush to remove any excess wax. These cleaned insects were preserved in 90% ethyl alcohol in a 1.5 ml epipendorf tube for further studies.

These alcohol-preserved specimens were slide mounted following the technique of Jena et al. (2011). Briefly, the specimens were placed in
Table 1. Lines of *Kerria* spp. studied and their species groups with locality and host

Sl. no.	Species groups	Line	Locality of collection	Host
1	*Kerria brancheata* (Varshney) group	LIK0014	Jammu, Jammu & Kashmir	*Ziziphus mauritiana*
		LIK0027	Silli, Jharkhand	*Schleichera oleosa*
		LIK0045	Experimental	*Flemingia macrophylla*
		LIK0064	Varanasi, Uttar Pradesh	*Ficus religiosa*
2	*Kerria chamberlini* (Varshney) group	LIK0015	Ambaji, Banaskantha, Gujarat	*F. religiosa*
		LIK0000	Purulia, West Bengal	*Butea monosperma*
3	*Kerria chinensis* (Mahdihassan) group	LIK0023	Thailand	*Albizia saman*
4	*Kerria dubeyi* (Ahmad & Ramamurthy)	LIK0008	Bangalore, Karnataka	*Ficus bengalensis*
5	*Kerria ebrachiata* (Chamberlin) group	LIK0004	Palamau, Jharkhand	*B. monosperma*
		LIK0005	Bokaro, Jharkhand	*B. monosperma*
6	*Kerria fici* (Green) group	LIK0013	Ludhiana, Punjab	*Z. mauritiana*
7	*Kerria indicola* (Kapur) group	LIK0020	Echoda, Andhra Pradesh	*Peltophorum ferrugineum*
		LIK0029	Korba, Chhattisgarh	*B. monosperma*
		LIK0048	Experimental	*F. religiosa*
8	*Kerria lacca* (Kerr) group	LIK0011	Udaipur, Rajasthan	*F. religiosa*
		LIK0012	Jhalod, Rajasthan	*F. religiosa*
		LIK0017	Ahmednagar, Maharashtra	*Z. mauritana*
9	*Kerria maduraiensis* (Ahmad & Ramamurthy)	LIK0003	Sundergarh, Orissa	*Malvaviscus penduliflorus*
		LIK0001	Korba, Chhattisgarh	*S. oleosa*
10	*Kerria manipurensis* (Ahmad & Ramamurthy)	LIK0039	Selection	*S. oleosa*
		LIK0040	Selection	*S. oleosa*
11	*Kerria penneae* (Ahmad & Ramamurthy)	LIK0007	Bankhedi, Madhya Pradesh	Original host not known
12	*Kerria pusana* (Misra) group	LIK0010	Thrissur, Kerala	*Amherita nobilis*
13	*Kerria sharda* (Mishra & Sushil) group	LIK0007	Sarat, Mayurbajaj, Orissa	*S. oleosa*
14	*Kerria thrissurensis* (Ahmad & Ramamurthy)	LIK0063	Patiala, Punjab	*Z. mauritana*
15	*Kerria varshneyi* (Ahmad & Ramamurthy)	LIK0001	Korba, Chhattisgarh	*Z. mauritana*

![Fig. 1. Hierarchical flow diagram for the classification of 32 lines studied based on the characters of anal tubercle and brachia with distinct character for each species.](image-url)
Table 2. Statistically significant characters ($P \leq 0.01$) for the morphometrics of 30 lines of species of *Kerria*

Sl. no.	Characters	Acronym
1	Length of canellar band	CL
2	Distance of anterior spiracle from crater rim	DCR
3	Length of brachia	BrL
4	Number of ducts in MDC III	MDCIII
5	Number of ducts in MDC II	MDCII
6	Number of dilome on brachia II	DII
7	Number of dilome on brachia I	DI
8	Number of ducts in MDC V	MDCV
9	Number of ducts in MDC I	MDCI
10	Length of pedicle	PL
11	Total length of dorsal spine	TDSL
12	Number of ducts in MDC IV	MDCIV
13	Number of ducts in MDC VI	MDCVI
14	Diameter of brachial plate	BPD
15	Width of crater	CW
16	Width of anterior spiral	ASW
17	Width of supra-anal plate	SPW
18	Length of antennae	AL
19	Length of anal tubercle	ATL
20	Length of supra-anal plate	SPL
21	Number of spiral pores	NSP
22	Perivulvar pore cluster II	PVCII
23	Width of body at middle	BWM
24	Number of antennal segments	NAS

(Continued)

Table 2. (continued)

Sl. no.	Characters	Acronym
25	Width of pre-anal plate	PAW
26	Pedicle width at apex	PeWA
27	Number of antennal setae	NASe
28	Length of pre-anal plate	PAL
29	Perivulvar pore cluster I	PVCI
30	Length of antennal segment III	ALIII
31	Body length	BL
32	Length of spine	SL
33	Pedicle width at base	PeWB
34	Length of posterior spiracle	PSL
35	Length of anterior spiracle	ASL
36	Number of star pores	NSPo
37	Width of body at base	BWB
38	Width of body at apex	BWA
39	Length of oral lobe	OLL
40	Length of antennal segment IV	ALIV
41	Length of anal fringe	FL
42	Length of antennal segment II	ALII
43	Width of clypeolabral shield	WCS
44	Length of clypeolabral shield	LCS
45	Perivulvar pore cluster opening V	PoCV
46	Perivulvar pore cluster opening III	PoCIII
47	Perivulvar pore cluster opening II	PoCII
48	Perivulvar pore cluster opening I	PoCI
49	Length of antennal segment I	ALI
50	Perivulvar pore cluster opening IV	PoCIV

(Continued)

Table 3. Proportion of variation and variable coefficients of the first five PCs for PCA and total sample standardized canonical coefficients of CDA for the 30 lines of *Kerria* spp.

Sl. no.	Characters	Acronym
1	Length of canellar band	CL
2	Distance of anterior spiracle from crater rim	DCR
3	Length of brachia	BrL
4	Number of ducts in MDC III	MDCIII
5	Number of ducts in MDC II	MDCII
6	Number of dilome on brachia II	DII
7	Number of dilome on brachia I	DI
8	Number of ducts in MDC V	MDCV
9	Number of ducts in MDC I	MDCI
10	Length of pedicle	PL
11	Total length of dorsal spine	TDSL
12	Number of ducts in MDC IV	MDCIV
13	Number of ducts in MDC VI	MDCVI
14	Diameter of brachial plate	BPD
15	Width of crater	CW
16	Width of anterior spiral	ASW
17	Width of supra-anal plate	SPW
18	Length of antennae	AL
19	Length of anal tubercle	ATL
20	Length of supra-anal plate	SPL
21	Number of spiral pores	NSP
22	Perivulvar pore cluster II	PVCII
23	Width of body at middle	BWM
24	Number of antennal segments	NAS

(Continued)
10% potassium hydroxide overnight to soften the internal tissue. They were then washed thoroughly in distilled water with 8–10 changes and then placed in 1% glacial acetic acid where a small incision was made on the lateral aspect of the body using a scalpel in order to remove the internal contents. The specimens were then cleaned thoroughly with fine needles and a brush and placed in polychromatic stain for about 20 min. They were then dehydrated through grades of ethyl alcohol of 70%, 90%, and 100% followed by clearing in 30%, 50%, and 80% xylene before preparing a permanent mount in Distrene, Plasticiser, Xylene (DPX). Finally, the slide mounts were dried on a hot plate at 45–60°C. These permanent microslides were made using Leica EZ4 stereozoom microscope.

Table 3. (continued)

ALIV	0.025	−0.026	0.100	0.036	0.057	0.009	0.168
FL	−0.032	0.057	−0.035	−0.085	−0.020	0.136	0.048
ALII	0.052	−0.033	−0.039	0.113	−0.094	0.181	0.031
WCS	0.006	−0.003	0.032	−0.025	−0.022	0.027	−0.034
LCS	−0.011	0.023	0.187	0.000	−0.324	0.002	−0.091
PoCV	0.006	0.003	−0.124	0.028	0.466	−0.024	−0.190
PoCII	0.022	0.056	−0.062	−0.004	−0.049	0.107	−0.021
PoCl	0.043	0.064	−0.066	0.066	−0.037	0.003	0.001
AL	−0.011	−0.014	0.063	0.050	−0.562	0.018	−0.156
PoCIV	0.050	0.030	−0.073	−0.012	0.519	0.077	−0.005

| Proportion of variation | 15.3% | 10.3% | 8.5% | 6.7% | 4.8% |

Fig. 2. Scatter plot of PCs 1 and 2 showing the grouping of 30 lines of Kerria spp. Encircled regions showing the compact clustering for Kerria chinensis (LIK0023), Kerria pusana group (LIK0001, LIK0039, LIK0040, and LIK0065), Kerria pennyae (LIK0003), and Kerria dubeyi (LIK0008) in the first, second, and third quadrants, respectively.

Table 4. Multivariate statistics and F approximations for the 30 lines of Kerria spp.

Statistic	Value	F value	Num DF	Den DF	Pr > F
Wilks’ λ	2.80 × 10$^{-7}$	11.83	1,450	20,841	<0.0001
Pillai’s trace	9.2648	7.97	1,450	24,621	<0.0001
Hotelling–Lawley trace	33.7649	19.07	1,450	14,529	<0.0001
Roy’s greatest root	8.8518	150.3	50	849	<0.0001
Selection and Measurement of Characters. Using the morphological characters of adult female *K. lacca* taken from Chamberlin (1923, 1925), Kapur (1958, 1962), Varshney (1976, 1985), Zhang (1993), Mishra and Sushil (2000), Lit and Gullan (2001), Lit (2002a,b), Kondo and Gullan (2007), a total of 65 characters were identified for morphometric analyses. A standardization experiment using 30 specimens of each line, in all at a time just before these reach maturity, was undertaken to identify the characters which were most stable and consistent. These resulted in the selection of 50 characters, which had been supported by the single-factor ANOVA. These selected characters were measured and their morphology observed at magnifications between $100 \times$ and $1,000 \times$ using a Leica DM1000 phase contrast microscope with a micrometer eyepiece. The measurements are as in the slide-mounted specimens. The measurements of width used in the study are as follows: 1) width at apex—width taken at clypeolabral shield position, i.e., middle of tentorium; 2) width at middle—width taken where it is maximum, generally taken at the middle of the body; and 3) width at base—width taken at the position of base of anal tubercle.

Statistical Analysis. Univariate one-way single-factor ANOVA was performed individually for all the characters to select those that were significant as a prelude to identifying the potential characters (Kalaisekar et al. 2012). These morphometrics were then analyzed using multivariate statistical approaches (Tabachnick and Fidell 2006) as follows: PCA (SAS procedure, PRINCOMP, SAS version 9.1.3, SAS Institute Inc., Cary, NC), without any prior assumption of groupings, assesses the components for total variation among the specimens by calculating linear combinations of variables that explain the maximum of total variation. PCA was also used as a dimension-reducing technique. CDA (SAS procedure, CANDISC) calculates linear combinations of variables that maximize the separation of means of previously defined classes. Contribution of the variables best summarizing

Table 5. Canonical correlation analysis for the 30 lines of *Kerria* spp.

	Canonical correlation	Adjusted canonical correlation	Approximate standard error	Squared canonical correlation
1	0.948	0.003	0.898	
2	0.943	0.004	0.889	
3	0.881	0.007	0.777	
4	0.849	0.009	0.721	
5	0.793	0.012	0.629	
6	0.777	0.013	0.603	
7	0.749	0.015	0.561	
8	0.711	0.017	0.505	
9	0.669	0.018	0.447	
10	0.646	0.019	0.417	
11	0.615	0.021	0.379	
12	0.585	0.022	0.342	
13	0.565	0.023	0.319	
14	0.537	0.024	0.288	
15	0.473	0.026	0.224	
16	0.465	0.026	0.216	
17	0.416	0.028	0.173	
18	0.404	0.028	0.163	
19	0.355	0.029	0.126	
20	0.334	0.030	0.112	
21	0.313	0.030	0.098	
22	0.303	0.030	0.092	
23	0.281	0.031	0.079	
24	0.242	0.031	0.059	
25	0.206	0.032	0.042	
26	0.184	0.032	0.034	
27	0.183	0.032	0.033	
28	0.141	0.033	0.020	
29	0.128	0.033	0.016	

![Fig. 3. Scatter plot of the results of CDA for the 30 lines of *Kerria* spp. showing a similar clustering for lines as in PCA.](image-url)
the differences between classes is revealed by this technique. Since DFA (SAS procedure, DISCRIM) maximizes the variation among groups, it was used to separate groups. DFA also determines the potential misclassification of specimens and assesses the utility of characters used.

These analyses were carried out in two batches: one with each of the 30 lines and in the other with seven species of Kerria, namely Kerria chinensis, Kerria manipurensis, Kerria maduraeensis, Kerria thirssuresensis, Kerria pennuyae, Kerria dubeyi, and Kerria varshneyi (Ahmad et al. 2013a,b), to validate the species described. The sample size for each of the 30 lines was 30 and that for each of the seven species was 10.

Results and Discussion

Morphometrics and Species Distinctions. The 32 lac insect lines fell into two broad categories based on the structure of the anal tubercle, i.e., whether the tubercle is elongated or abbreviated. Both groups were then subdivided based on the shape and status of brachia into five groups: those with an elongated tubercle into three subgroups: 1) brachia elevated and cylindrical, 2) brachia elevated and club shaped, and 3) brachia sessile and club shaped; and those with an abbreviated tubercle into two subgroups: 1) brachia elevated and club shaped and 2) brachia sessile and club shaped, as shown in Fig. 1. Based on the key to the adult females of Kerria, the species groups were differentiated.

Morphometrics and Taxonomic Characters. The evaluation of some taxonomic characters using one-way ANOVA revealed that 50 were statistically significant (P ≤ 0.01) (Table 2). These characters were subjected to PCA analyses. The first five principal components (PCs) with an eigenvalue more than 1.0 accounted for 45.5% of the total variation (Table 3). The first two PCs, i.e., PC1 and PC2, together explained about 25.6% of the total variation, with PC1 explaining 15.3% and PC2 explaining about 10.3%, respectively. These had positive loading for seven original variables, including the number of ducts in each marginal duct cluster (MDC), length of anal tubercle, length of pre-anal plate, distance of anterior spiracle from crater rim, length of brachia, length of pedicel, and total length of dorsal spine. The other PCs, i.e., PC3, PC4, and PC5, explained 8.5%, 6.7%, and 4.8% of the total variation, respectively. As the first two PCs accounted for 25.6% of the variability, those characters with maximum loadings were considered to be the major sources of variation. The plot for the first two PCs, i.e., PC1 and PC2, are shown in Fig. 2, and the clusters emphasize the grouping of the lac insect lines. A compact clustering was observed for the lines LIK0023 (K. chinensis), LIK0010 (K. thirssuresensis), LIK0001, LIK0039, LIK0040, and LIK0065 (K. pusana group), LIK0008 (K. dubeyi), and LIK0003 (K. pennuyae) in the first, second, and third quadrants, respectively, with the rest of the lines mostly overlapping.

CDA was carried out with priori grouping and using the lines as classification variables. The statistics used to test differences between the lines, namely Wilks’ λ, Pillai’s trace, Hotelling-Lawley Trace, and Roy’s greatest root, were found to be significant at P < 0.0001. These statistics clearly show the significant contribution toward the model, with a lower Wilks’ λ (2.8 × 10⁻⁸), holding true for all other statistics (Table 4). The first two canonical correlations (89.8% and 88.9%) were very high, signifying their importance (Table 5). The projection of the lines onto the first two canonical discriminant axes is shown in Fig. 3. The analysis was able to extract differences between the lines LIK0001, LIK0039, LIK0040, and LIK0065 (K. pusana group), LIK0008 (K. dubeyi), and LIK0003 (K. pennuyae) from the rest, with the main contribution being from canellar band length, while the second canonical root was not particularly helpful in discriminating between any lines (Table 3). This clustering obtained from CDA confirmed the grouping brought out by PCA. A cross-validation of group membership was performed identifying the misclassification of specimens and assessing the utility of the selected measurements/observations used. Overall, 78% of the classifications were correctly attributed to species, with relatively few (22%)
misclassifications (Table 6). The results of cross-validation accurately identified 100% of specimens to the lines LIK0003 (K. pennye), LIK0008 (K. dubeyi), LIK0017 (K. lacca group), and LIK0023 (K. chinensis); >90% to the lines LIK0005 (Kerria ebrachiata group), LIK0007 (Kerria sharda), LIK0040 (K. pusana group), LIK0045 (Kerria brancheata group), LIK0047 (K. lacca group), and LIK0065 (K. pusana group); and >80% to the lines LIK0001 (K. pusana group), LIK0012 (K. lacca group), and LIK0063 (K. varshneyi), respectively. Thus, the DFA results helped to identify these 13 species groups based on the merit of each of the morphological characters used in the analyses.

Establishment of Species Classification of New Species Described.

The status of recently described six new species—K. manipurensis (Ahmad & Ramamurthy), K. thriissuresis (Ahmad & Ramamurthy), K. maduraiensis (Ahmad & Ramamurthy), K. pennye (Ahmad & Ramamurthy), K. dubeyi (Ahmad & Ramamurthy), and K. varshneyi (Ahmad & Ramamurthy) (Ahmad et al. 2013a,b)—and K. chinensis (Mahdihassan) were supported by the multivariate analyses (PCA, K. Ramamurthy), maduraiensis (Ahmad & Ramamurthy), K. varshneyi, K. lasiusa, and little overlaps between these species with compact clustering for all except K. chinensis. Fig. 4. Scatter plot of PCs 1 and 2 along the two axes for seven Kerria species with compact clustering for all except Kerria maduraiensis and little overlaps between K. dubeyi and K. pennye and Kerria varshneyi with those of K. maduraiensis and Kerria thriissuresis. Symbols indicate species.
The PCA indicated that the first 10 PCs with eigenvalues more than 1 accounted for 79.9% of the total variation. Contribution of variables to the first three PCs accounted for 51.3% of the total variation (Table 7). PC1 reflected a generalized increase in the values of five characters: distance of anterior spiracle from crater rim, number of dents in each marginal duct cluster, width of anterior spiracle, length of anal tube and pre-anal plate length with a decrease in only one character, and number of dents on brachial plate. The main contributions to PC2 were from five characters: brachial plate diameter, crater width, body width, width of anterior spiracle and width of supa-anal plate and to PC3 were from three characters: total length of dorsal spine, length of spine, and length of anal fringe. The other PCs, namely PC4–PC10, explained 6.7%, 5.6%, 4.6%, 3.8%, 3.1%, 2.6%, and 2.2% of the total variation.

The differences in distribution across the common component were from three characters: total length of dorsal spine, length of spine, and number of dimples on brachial plate. The other PCs, namely PC4–PC10, explained 6.7%, 5.6%, 4.6%, 3.8%, 3.1%, 2.6%, and 2.2% of the total variation respectively, and therefore made little contribution toward explaining the variation. The differences in distribution across the common component of variation for the seven species of Kerria are evident in Fig. 4. The results of PCA show the distinctiveness of the species studied except for a small overlapping between K. dubeyi and K. pennsae and for K. varshneyi and K. maduraiensis. A dispersed clustering was observed for both K. maduraiensis and K. varshneyi.

The CDA showed a highly significant Wilks’ λ value (1.0 × 10⁻⁸), Pillai’s trace, Hotelling–Lawley Trace, and Roy’s greatest root (P < 0.0001) (Table 8). The first two canonical correlations with squared canonical values 99.4% and 98.3% in canonical correlation analysis (Table 9) were high, indicating their importance. Table 10 shows that the mean canonical variables with canonical roots having higher values for their respective variables (species) in canonical root 1 was able to separate the seven species studied, whereas canonical root 2 particularly separated K. chinensis and K. thrissurensis. The character brachial plate diameter contributed maximum (−10.413) to canonical root 1, toward the separation of species (Table 7). The projection of species onto the first two canonical axes is shown in Fig. 5.

A validation analysis through DFA of group participation/composition was performed for the seven species under study and it was observed that 87% of the classification was correctly attributed (Table 11). Also, the result of the validation analysis (DFA) correctly identified 100% of specimens to K. pennsae; 90% to K. dubeyi, K. manipuresnis, K. thrissurensis, and K. chinensis; and 70–80% to K. varshneyi and K. maduraiensis, respectively.

Taxonomic Characters and Their Validation

The results of these analyses revealed that there are 14 characters which are consistent, without significant intraspecific variations, and which helped to separate the lac insect lines into species and groups. Most of these characters were in agreement with the 11 major characters noted by earlier taxonomists (Table 12). In this study, many characters have been added such as body widths (apex, middle, and base), number of star pores near the mouthparts, width of anterior spiracle, length of pre-anal plate (membranous extension below the supra-anal plate), length and width of supra-anal plate, pedicel length, spine length, width of pedicel at base, pedicel width at apex, total length of dorsal spine, perivulvar pore cluster openings, and length of antennal segments. These additional characters were not used by earlier taxonomists but were found to be significant in species delineation in our studies, while other characters

Table 8. Multivariate statistics and F approximations for seven Kerria species

Statistic	Value	F value	Num DF	Den DF	Pr > F
Wilks’ λ	1.0 × 10⁻⁸	9.17	282	110.24	<0.0001
Pillai’s trace	5.6189	6.9	282	132	<0.0001
Hotelling–Lawley trace	263.8778	14.54	282	57.996	<0.0001
Roy’s greatest root	158.1423	74.02	47	22	<0.0001

Table 9. Canonical correlation analysis for seven Kerria species

Canonical correlation	Adjusted canonical correlation	Approximate standard error	Squared canonical correlation
1	0.997	0.001	0.994
2	0.992	0.002	0.983
3	0.974	0.955	0.949
4	0.962	0.936	0.925
5	0.942	0.014	0.887
6	0.938	0.014	0.880

Table 10. Mean canonical variables based on discriminant functions of the morphological characters for seven Kerria species

Species	Canonical root 1	Canonical root 2	Canonical root 3	Canonical root 4	Canonical root 5	Canonical root 6
K. varshneyi	−12.482	−2.908	−4.425	5.109	1.998	2.117
K. dubeyi	−13.940	0.915	5.408	1.991	−1.639	−3.775
K. pennsae	−9.432	−2.876	2.539	−5.887	3.062	1.616
K. chinensis	18.140	−12.964	2.420	1.296	−0.526	2.227
K. manipuresnis	−2.519	2.262	−2.574	−2.138	−5.451	2.362
K. thrissurensis	7.186	2.206	−6.424	−2.033	1.122	−4.113

Fig. 5. Scatter plot for the results of CDA for seven Kerria species showing compact clustering of the species studied as in the PCA, with slightest of overlap between K. varshneyi and K. pennsae.
Table 11. Classification matrix of the DFA for seven Kerria species, where rows = observed classification and columns = predicted classification

Percentage	K. manipurensis	K. maduraiensis	K. thrisssuresis	K. pennae	K. dubeyi	K. chinensis	K. varshneyi
K. manipurensis	90.0	9.0	1.0	0.0	0.0	0.0	0.0
K. maduraiensis	80.0	0.0	8.0	0.0	2.0	0.0	0.0
K. thrisssuresis	90.0	0.0	1.0	9.0	0.0	0.0	0.0
K. pennae	100.0	0.0	0.0	0.0	10.0	0.0	0.0
K. dubeyi	90.0	0.0	1.0	0.0	0.0	9.0	0.0
K. chinensis	90.0	1.0	0.0	0.0	0.0	9.0	0.0
K. varshneyi	70.0	0.0	1.0	0.0	1.0	0.0	7.0
Total	87.1	10.0	12.0	9.0	13.0	10.0	9.0

Table 12. Taxonomic characters versus lac insect species delineations, new characters (*) with statistical significance

Taxonomic characters hitherto used	Taxonomic characters used now	Additional characters evaluated
Body width	Body width at middle	Body width at middle*
Antennae	Length of antennal segments	Length of pre-anal plate*
Number of ducts in marginal duct cluster	Number of ducts in each marginal duct cluster	Width of supra-anal plate*
Length of anal tubercle	Length of anal tubercle	Width of anterior spiracle*
Length of brachia	Length of brachia	Length of antennal segments
Brachial plate width	Brachial plate diameter	Spine length
Crater width	Crater width	Number of star pores near mouthparts
Number of dimples on brachial plate	Number of dimples on brachial plate	Number of openings in perivulver pore clusters
Distance of anterior spiracle from crater rim	Distance of anterior spiracle from crater rim	
Pedicel length	Pedicel length	
	Spine length	
	Width of pedicel at base	
	Pedicel width at apex	
Total length of dorsal spine	Total length of dorsal spine	
Length of anterior spiracle	Width of anterior spiracle	

This study also provides an insight into the validity of the taxonomic characters deployed in the genus Kerria for the species delineation.

Acknowledgments

We would like to acknowledge the financial support by the Indian Council of Agricultural Research, National Agricultural Innovation Project Component 4: Basic and Strategic Research through NAIP sanction no. NAIP/Comp-4/C-3007/2008–2009. Thanks also to anonymous reviewers who helped in improving the manuscript.

References Cited

Ahmad, A., K. K. Sharma, V. V. Ramamurthy, A. S. Vidyarthi, and R. Ramani. 2013a. Three new species of Kerria (Hemiptera: Sternorrhyncha: Coccoidea: Tachardiidae), a redescription of K. yunnanensis Ou & Hong, and a revised key to species of Kerria. Zootaxa 3620: 518–532.

Ahmad, A., V. V. Ramamurthy, K. K. Sharma, A. Mohanasundaram, A. S. Vidyarthi, and R. Ramani. 2013b. Three new species of Kerria (Hemiptera: Coccoidea: Tachardiidae) from India. Zootaxa 3734: 442–452.

Ben-Dov, Y., D. R. Miller, and G.A.P. Gibson. 2014. ScaleNet. http://www.sel.barc.usda.gov/scanet/scalenet.htm (accessed 24 February 2014).

Chamberlin, J. C. 1923. A systematic monograph of the Tachardiinae or lac insects (Coccidae). Bull. Entomol. Res. 14: 147–212.

Chamberlin, J. C. 1925. Supplement to a monograph on the Lacciferidae (Tachardiinae) or lac insects (Hemiptera: Coccidae). Bull. Entomol. Res. 16: 31–41.

Cook, L. G., P. J. Gullan, and H. E. Trueman. 2002. A preliminary phylogeny of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea) based on nuclear small-subunit ribosomal DNA. Mol. Phylogenet. Evol. 25: 43–52.

Jena, A., A. S. Vidyarthi, R. Ramani, K. K. Sharma, and V. V. Ramamurthy. 2011. An illustrated diagnostics of lac insect Kerria lacca (Kerr) as exemplified through advanced staining and microscopy techniques. Indian J. Entomol. 72: 219–226.
Kalaisekar, A., V. V. Ramamurthy, J. V. Patil, A. Dhandapani, and N. S. Azad Thakur. 2012. Multivariate morphometrics of elytral colour polymorphism in seven-spotted ladybird beetle, *Coccinella septempunctata* L. (Coleoptera: Coccinellidae). Curr. Sci. 102: 1418–1425.

Kapur, A. P. 1958. A catalogue of the lac insects (Lacciferidae: Hemiptera). Lac Cess Commission, Rganchi, India.

Kapur, A. P. 1962. The lac insects, pp. 59–89. In B. Mukhopadhayay and M. S. Muthana (eds.), A monograph on lac. Indian Lac Research Institute, Ranchi, India.

Kondo, T., and P. J. Gullan. 2007. Taxonomic review of the lac insect genus *Paratachardina* Balachowsky (Hemiptera: Coccoidea: Kerriidae), with a revised key to genera of Kerriidae and description of two new species. Zootaxa 1617: 1–41.

Krishnaswami, S. 1962. Lac through the ages, pp. 1–13. In B. Mukhopadhayay and M. S. Muthana (eds.), A monograph on lac. Indian Lac Research Institute, Ranchi, India.

Lit, I. L., Jr. 2002a. Morphology of the unique structures of adult female lac insects (Hemiptera: Coccoidea: Kerriidae). Philipp. Agric. Scient. 85: 25–38.

Lit, I. L., Jr. 2002b. Wax and resin-exuding cuticular pores and ducts of adult female lac insects (Hemiptera: Coccoidea: Kerriidae). Philipp. Agric. Scient. 85: 122–136.

Lit, I. L., Jr, and P. J. Gullan. 2001. Comparative morphology of the anal tubercle and associated structures of some lac insects (Hemiptera: Coccoidea: Kerriidae). Entomologica 33: 119–126.

Mishra, Y. D., and S. N. Sushil. 2000. A new trivolentine species of *Kerria* Targioni-Tozzetti (Hemoptera: Tachardiidae) on *Schleicheria oleosa* (Lour.) Oken from eastern India. Orient. Insects 34: 215–220.

Padi, B., and J. den Hollander. 1996. Morphological variation in *Planococcoides njalensis* occurring on cocoa in Ghana. Entomol. Exp. Appl. 79: 317–328.

Ranjan, S. K., C. B. Mallick, D. Saha, A. S. Vidyarthi, and R. Ramani. 2011. Genetic variation among species, races, forms and inbred lines of lac insects belonging to the genus *Kerria* (Homoptera, Tachardiidae). Genet. Mol. Biol. 34: 511–519.

Saha, D., S. K. Ranjan, C. B. Mallick, A. S. Vidyarthi, and R. Ramani. 2011. Genetic diversity in lac resin-secreting insects belonging to *Kerria* spp., as revealed through ISSR markers. Biochem. Syst. Ecol. 39: 112–120.

SAS Institute. 2012. SAS online doc, version 9.1.3. http://support.sas.com/onlinedoc/913/docMainpage.jsp

Tabachnick, B. G., and L. S. Fidell. 2006. Using multivariate statistics, 4th ed. Allyn and Bacon, Boston, MA.

Varshney, R. K. 1976. Taxonomic studies of lac insects of India (Homoptera: Tachardiidae). Orient. Insects Suppl. 5: 1–97.

Varshney, R. K. 1985. A review of Indian coccids (Homoptera: Coccoidea). Orient. Insects 19: 1–101.

Zhang, Z. S. 1993. Four new species of lac insects of the genera *Mettachardia* and *Kerria* from China (Homoptera: Tachardiidae). Orient. Insects 27: 273–286.

Received 4 October 2013; accepted 12 March 2014.