1. Introduction

Over the past twenty years, various commercial technologies have been deployed to remove ammonia (NH$_4^+$-N) from anaerobic digestion (AD) liquors. In recent years many anaerobic digesters have been upgraded to include a pre-treatment, such as the thermal hydrolysis process (THP), to produce more biogas, increasing NH$_4^+$-N concentrations in the liquors are costly to treat. This study provides a comparative techno-economic assessment of sidestream technologies to remove NH$_4^+$-N from conventional AD and THP/AD dewatering liquors: a deammonification continuous stirred tank reactor (PNA), a nitrification/denitrification sequencing batch reactor (SBR) and thermal ammonia stripping process with an ammonia scrubber (STRIP). The SBR and PNA were based on full-scale data, whereas the STRIP was designed using a computational approach to achieve NH$_4^+$-N removals of 90–95%. The PNA presented the lowest whole-life cost (WLC) over 40 years, with £7.7 M, while the STRIP had a WLC of £43.9 M. This study identified that THP dewatering liquors, and thus a higher ammonia load, can lead to a 1.5–3.0 times increase in operational expenditure with the PNA and the SBR. Furthermore, this study highlighted that deammonification is a capable and cost-effective nitrogen removal technology. Processes like the STRIP respond to current pressures faced by the water industry on ammonia recovery together with targets to reduce nitrous oxide emissions. Nevertheless, ammonia stripping-based processes must further be demonstrated in WWTPs and WLC reduced to grant their wide implementation and replace existing technologies.

© 2022 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
where NH₄—N is first converted into nitrite and, in the second step, into nitrate [7]. During denitrification, nitrate or nitrite is converted to nitrogen gas by heterotrophic microorganisms [8]. When comparing the biological technologies above, the benefits of deammonification over nitrification/denitrification include a 60% aeration demand reduction in aeration and no need for additional chemical supplementation (e.g., alkalinity for nitrification and organic carbon for denitrification) [9]. Both deammonification and nitrification/denitrification technologies have been commonly applied to treat sludge dewatering liquors in sidestream configuration at wastewater treatment plants (WWTP) [10,11].

When looking at non-biological options, ammonia stripping is a physiochemical nitrogen removal process that uses the balance of free NH₃, temperature and/or pH to drive out nitrogen ions from high-strength N—NH₄ liquid streams [10,12,13]. To ensure the process efficiency, this process takes place at pH > 10, and alkaline chemical dosing is often required [8,10]. On the other side, thermal-driven NH₄—N stripping does not require chemical dosing as nitrogen ions transfer to the gas phase is secured by temperatures of >90 °C [13,14]. Ammonia stripping with chemical dosing has also been widely applied for ammonia removal from sludge dewatering liquors from conventional AD [10]. However, thermal-driven ammonia stripping has not yet been applied on a full-scale in WWTP, and only a handful of lab-scale and pilot studies are available [13,15]. Previous studies reported that thermal ammonia stripping processes could remove up to 96% of NH₄—N from AD dewatering liquors [16]. It is known that at increasing temperatures from 90 to 102 °C, about 99% of the NH₄—N was stripped out at hydraulic retention times of 3–4 h [17]. The ammonia gas is cleaned via acid adsorption (e.g., sulphuric acid) or via water scrubbing [15,17]. Other studies successfully stripped the NH₄—N from the digestate sludge directly from conventional AD, demonstrating ammonia removal efficiency (ARE) of 50–96% [18]. Unlike deammonification and nitrification/denitrification technologies, thermal ammonia stripping technologies have not yet been applied on a full-scale to treat NH₄—N from THP dewatering liquors. Overall, there are limited peer-reviewed studies on thermal ammonia stripping for the application of sidestream dewatering liquors. The most frequent full-scale implementations describe air stripping technologies (ammonia loads of 45,000–200,000 kg N d⁻¹) that rely on chemical dosing (e.g., sodium hydroxide, lime, etc.) to raise the pH > 10 [10]. Nevertheless, ammonia stripping has another potential advantage, as these do not oxidize ammonia, there is a possibility for its recovery. Nitrogen recovery from wastewater streams is becoming increasingly of interest since the current way to produce nitrogen for fertilisers via the Haber-Bosch process is unsustainable [19]. Thermal-driven ammonia stripping combined with scrubbing produces a range of ammonia salts (e.g., ammonium hydroxide, ammonium sulphate) that can be recovered and used as fertiliser [20,21]. Additionally, thermal-driven ammonia stripping has been described as a suitable nitrogen recovery process from sidestream liquors that do not require the addition of chemicals [20,22].

To access the potential of these technological advances, it is necessary to understand their costs and how they compare to each other. Few peer-reviewed studies describe the cost of sidestream technologies to remove NH₄—N from conventional AD, and there is no information available on THP/AD dewatering liquors treatment with much higher NH₄—N loads. In comparing deammonification technology and nitrification/denitrification technology [23], highlighted that deammonification technologies had lower operational expenditure (OPEX). This was also quantified by Ref. [24], who compared an identifying annual OPEX savings of up 10%. This was much lower than frequently referenced academic papers highlighting 60% savings in aeration and 100% in chemical dosing [9]. Hence there are still many unknowns on the potential NH₄—N removal costs from standard technologies such as nitrification/denitrification compared with PNA and thermal ammonia stripping process with an ammonia scrubber (STRIP), especially under high influent loads. This study aimed at providing and comparing the whole-life costs of different sidestream technologies for NH₄—N removal from two different scenarios: THP/AD dewatering liquors and conventional AD dewatering liquors.

2. Materials and methods

2.1. Dewatering liquor characterisation

The influent dewatering liquors from a WWTP with 200,000 people equivalent is presented in Table 1. Scenario 1 focused on the treatment of THP/AD dewatering liquors (Fig. 1a) and had an NH₄—N of 1700 mg N L⁻¹, a soluble chemical oxygen demand (COD) of 2000 mg L⁻¹, a BOD of 450 mg L⁻¹, a pH of 8.5, and an alkalinity of 3000 mg CaCO₃ L⁻¹ (Table 1). Scenario 2 refers to the treatment of conventional AD dewatering liquors (Fig. 1b). The conventional AD dewatering liquor had an NH₄—N of 750 mg N L⁻¹, soluble COD of 1500 mg L⁻¹, a BOD of 203 mg L⁻¹, a pH of 8.0, and an alkalinity of 2500 mg CaCO₃ L⁻¹ (Table 1). The dewatering liquor temperature for both scenarios was assumed as 26 °C, according to Winter et al. [26].

2.2. Process design

Three different sidestream ammonia removal technologies were designed for Scenario 1 and Scenario 2 (Fig. 2). All evaluated technologies were designed for the same influent characteristics at a dewatering liquor flow rate of 1000 m³ d⁻¹ (Table 1) at a wastewater treatment plant of 250,000 people equivalent similar to Ochs et al. (2020). The design was completed so that all technologies reached the desired effluent of 70 mg N L⁻¹ NH₄—N, 200 mg N L⁻¹ nitrate, and 10 mg N L⁻¹ nitrite, in agreement with full-scale [27].

The deammonification continuous stirred tank reactor (PNA) was designed based on the computational approach from Ref. [8]; the reaction stoichiometry by Ref. [6] and the microbial growth and kinetics from Ref. [28] (Fig. 2a). A design mixed liquids suspended solids (MLSS) of 3000 mg L⁻¹ and dissolved oxygen (DO) concentration of 0.3 mg L⁻¹ was selected. The designed PNA had a tank depth of 6 m. The solids retention time (SRT) for AMX and AOB was assumed to be separated due to the action of an hydrocyclone, as suggested in previous studies [27,28]. The SRT for AMX was 35 days [28]. No additional carbon was added to the PNA, and it was assumed that the nitrogen removal was mainly via the deammonification chain of reactions.

The nitrification/denitrification sequencing batch reactor (SBR) was designed based on the computational approach SRT described in Ref. [8] (Fig. 2c). The SBR a total cycle time was 6 h with 4.5 h and react, 1 h for settling, and 0.5 h decant. The design DO for the SBR was 2.0 mg L⁻¹. The reaction period was separated into aerobic (66%) and anoxic (34%) phases for nitrification and denitrification, respectively. The SBR was dosed with sodium hydroxide to balance pH/CO₂ and support alkalinity needs for nitrification and ethanol as the organic carbon dosing for denitrification. The ethanol carbon dosing requirements were estimated according to Ref. [8] and validated with the method from Ref. [29]. The kinetics for denitrification via ethanol were taken from Ref. [8]. The designed SBR had a tank depth of 6 m.

The thermal ammonia stripping and ammonia scrubber (STRIP) was designed based on [8,30]; and [31] (Fig. 2c). A mass-transfer rate for ammonium from the liquid to the gas of 0.0125 s⁻¹ was
2.3. Cost estimation

The equipment units designed for each technology in Fig. 2 were costed according to the cost curves presented in equation (1) and Table 2 [33]:

\[C_{\text{equipment}} = a + b \times S^n \]

where \(C \) is the cost of the equipment, the intercept with the y-axis of the cost curve, \(b \) is the slope of the curve, \(S \) is the size parameter, and \(n \) is the exponent for the cost type in equation (1) [33].

The capital expenditure (CAPEX) for each technology was calculated based on the factorial method as the sum of all purchased equipment units multiplied by the Lang factor of 4.74 for fluid processing plants [33]. All prices for consumables and other items are presented in Table 3. The operational expenditure (OPEX) was calculated as the sum of energy, chemical, labour, material, heating, and other costs (e.g., disposal, freshwater, etc.). The OPEX was always presented on a per annum basis (pa) if not stated otherwise.

Any costs obtained in currencies other than British Pound (£) were converted with the currency exchange rates in the year the cost was obtained. Historical cost data were updated to the present date using equation (2) using the average inflation from the retail prices index [36].

\[\text{Cost in year } A = \text{Cost in year } B \times (1 + \text{Average inflation})^{\text{Year } A - \text{Year } B} \]

The cost data were obtained on a US Gulf Coast basis (USGC) and were converted with location factors (LF) to a UK basis using equation (3). The effect of currency exchange and time have a strong impact on cost and were updated as described by Ref. [37]. All obtained costs were cross-checked where possible with different resources.

\[\text{Cost in location } A = \text{Cost in USGC} \times LF_A \]

An asset lifespan of 40 years was assumed for each technology, and the whole-life cost (WLC) was estimated based on the method described by Ref. [37].

2.4. Evaluation and analysis

A sensitivity analysis was conducted on the cost of all technologies and scenarios. The parameters included in the sensitivity analysis were population growth, economic fluctuations, higher effluent qualities and environmental assumptions (Table 4). The population growth was reflected in higher sludge production and thus 20% greater influent load dewatering liquor load. The economic fluctuations were changes in cost and consumables, as shown in Table 4, which was based on consumer price indices and economic trends from Refs. [38,39]. The higher effluent qualities category is related to 50% lower ammonia, nitrite and nitrate concentration to further reduce the returned load to the mainstream wastewater treatment process. The environmental assumptions included changes to design that are usually defined based on on-site experiments or depend on the operation of the technology. The impact of these parameters was compared against the base-case sensitivity analysis for the different technologies. The parameters were then grouped based on their impact on CAPEX and OPEX (see Table 5).

3. Results and discussion

3.1. Process design, mass and energy balances

All three technologies designed, and cost were able to reach the desired NH₄-N 70 mg N L⁻¹ discharge consent for both Scenarios 1 and 2 (Table 4). The PNA had a nitrogen loading rate (NLR) of 0.7–1.1 kg N m⁻³ d⁻¹ and displayed ammonia removal efficiencies (ARE) of 90–95% (Table 4) for both Scenarios. Similar deammonification technologies with hydrocyclones operated with NLR of
process design, the PNA required an air
1700 kg N d
for Scenario 1 and 145 m3 min
0.5 kg N m
for Scenario 2. Based on an alkalinity mass balance, it was determined Scenario 1 required 868 kg d
of NaOH to raise the CO2/pH balance (Table 4), while for Scenario 2, no NaOH dosing was required. So-
dium hydroxide is commonly dosed to raise the pH, shift the CO2
balance, and make more alkalinity available.

The SBR was designed for an NLR of 0.6–1.4 kg N m
achieving an ARE of >95% for Scenario 1 and Scenario 2. Conven-
tional nitrification/denitrification operates at NLR of 0.2–0.4 kg N m
with ARE of 95–99% [41]. The SBR had a reactor volume of 1250 m3, and the MLSS was 6150 mg L
for both Scenarios (Table 4). The air flowrate in the SBR was 939 and 401 m3 min
for Scenario 1 and Scenario 2, respectively. Based on an alkalinity balance, it was determined that only Scenario 1 required an alkalinity dosing of 2540 kg d
of NaOH (Table 4). Additionally, carbon addition was also required for denitrification due to the low BOD concentration of 203–405 mg L
in the influent dewatering liquors. The SBR required 4736 and 1688 kg d
of ethanol (external carbon source) for Scenarios 1 and 2, respectively (Table 4). Previous studies reported that nitrifica-
tion/denitrification sidestream technologies require organic carbon supplementation to reach effluent limits of <200 mg N L
[24].

The STRIP was designed for an NLR of 21.7–36.7 kg N m
achieving an ARE of 95%, meeting the design discharge limits. Based on Henry’s law and thermodynamic principles, the optimum temper-
ture for the stripping was 90°C (Table 4) [8]. This meant that STRIP required 3114 kW d
for heating. Furthermore, the stripping column had an air-flowrate of 79–84 m3 min
(Table 4). The STRIP had a volume of 45 m3 for Scenario 1 and 35 m3 for Scenario 2. The stripping column was 69% of the total STRIP volume, and the scrubbing column was 31%. No chemical addition was required for the STRIP.

When comparing the designs of the different technologies, the PNA displayed a 67% lower air requirement than the SBR. Addi-
tionally, the PNA did not require any chemical addition for Scenario 2, but alkalinity dosing was needed for Scenario 1. However, the PNA required 90% fewer chemicals than the SBR. This aligns with previous literature where deammonification technologies had a 60% lower oxygen requirement than nitrification/denitrification [9,42].

3.2. Economic evaluation

The three sidestream technologies designed varied greatly in CAPEX and OPEX. For Scenario 1, a CAPEX of £3,689k, £4,994k, and £3,734k was estimated for PNA, SBR and STRIP, respectively (Fig. 3). For Scenario 2, the CAPEX values were lower at £2,565k, £3,637k, and £3,255k for PNA, SBR and STRIP respectively. The most expensive equipment for the PNA and SBR was the biological re-
taction tanks, whereas the most expensive equipment for the STRIP was the packaging material (Fig. 4). Another high cost, representing 20–50% of the CAPEX, was the air blowers. Additional process units included the hydrocyclone, chemical dosing or other required process units related to 10–15% of the CAPEX. Previous studies also reported that one of the main CAPEX of biological nitrogen removal technologies was the tanks with 35–60% [37,44].

The OPEX for Scenario 1 was £294k pa, £1039k pa, and £2920 pa for PNA, SBR and STRIP, respectively (Fig. 4). Whereas the OPEX for Scenario 2 was £119k, £339k, and £2640k for respective three technologies. The OPEX can be broadly split into five major groups: energy, chemicals, labour, materials and other (e.g., waste disposal, freshwater, etc.). The main contributor for OPEX for SBR, PNA and
respectively (Fig. 4). The PNA required 37% less energy as well as £39.7 M (Fig. 5). The WLC of the SBR was half of the STRP for Scenario 1 (€20.1 M) and only £9.0 M for Scenario 2. The PNA obtained the lowest WLC, displaying £7.7 M and £4.2 M for Scenarios 1 and 2, respectively (Fig. 5).

3.3. Sensitivity analysis

The sensitivity analysis revealed that ammonia load had the highest impact on the variation in both CAPEX (9%) and OPEX (15%) for PNA, SBR, and STRIP. The OPEX of the SBR was most impacted by population growth and higher effluent quality, with 21% and 7%, respectively. Large price variations of the packaging material in the STRIP impacted the CAPEX by 7%. The price of the packing material for stripping columns may vary between £1000 m\(^{-3}\) to £8300 m\(^{-3}\) [32,33]. The highest impact on OPEX for STRIP was, in equal proportion, the waste disposal cost for the disposal of ammonium hydroxide and the energy cost (Fig. 3). The higher load with the THP/AD dewatering liquors, in Scenario 1, had the highest impact on the SBR where the whole-life cost doubled compared to Scenario 2. The STRIP had the lowest cost fluctuation between Scenario 1 of £43,939k and Scenario 2 of £39,655k. Past literature widely discussed the benefits of THP/AD dewatering liquors, but no costs have been associated to date with the additional ammonia concentrations. This study showed that the higher ammonia load in THP/AD dewatering liquors led to a 2-fold increase in the whole-life cost.
 nitrogen recovery technologies reported a nitrogen recovery of 49 kg N pa. Past studies focused on ammonia recovery with other technologies: deammonification (PNA), nitrification/denitrification sequencing batch reactor (SBR) for Scenarios 1 and 2. The error bars indicate the standard deviation from the sensitivity analysis on the major design assumptions.

3.4. Ammonia recovery and climate change mitigation

The investment cost based on nitrogen removed was for the PNA £6.3–10.4 kg⁻¹ N, £8.4–14.7 kg⁻¹ N, and for the STRIP £6.0–12.4 kg⁻¹ N for Scenarios 1 and 2, respectively. Another study reported that the investment costs £1.6 kg⁻¹ N for both deammonification technology and nitrification/denitrification [23]. Whereas [24] reported £23.4 kg⁻¹ N investment was required for a deammonification reactor. The operational cost normalised by nitrogen removed were for the PNA £0.2–0.5 kg⁻¹ N, for the SBR £0.6–1.8 kg⁻¹ N and the STRIP £4.4–4.8 kg⁻¹ N for Scenarios 2 and 1, respectively. This was lower than reported by other studies reporting £1.4–5.1 kg⁻¹ N for deammonification and £1.6–5.3 kg⁻¹ N for nitrification/denitrification [23,24]. Based on the cost data, the deammonification technologies were best suited for application for both scenarios.

However, two key characteristics should also be considered when selecting a new sidestream nitrogen removal technology. The first is climate change mitigation by reducing nitrous oxide emissions, and the second is the goals of the water industry to contribute to the circular economy goals and promote nitrogen recovery. Over recent years an increasing number of researchers and utilities have recognised the need for nitrogen recovery and deliver a water industry circular economy [45,46]. The STRIP recovered around 1350 kg d⁻¹ of low-strength ammonium hydroxide solution with a concentration of 1% weight weight⁻¹. The potential recovered product of ammonium hydroxide has various applications, including household cleaners, food production, and avoiding nitrogen abstraction from the atmosphere via the Haber-Bosch process. The ammonium hydroxide concentration can be further increased via fractionating or even further processed to the ammonia salts, such as ammonia sulphate, by combining it with sulphuric acid to produce [21]. Previous studies on thermal ammonia stripping were conducted on a pilot-scale and aimed to recover the potential of ammonia sulphate but did not quantify the final products [17,18]. In general, much of the past research focused on ammonia stripping as a recovery process evolved around the process parameters [21,22] and only a few studies focused on nitrogen recovery via fertiliser [21]. The STRIP could overall recover 49 kg N pa. Past studies focused on ammonia recovery with other nitrogen recovery technologies reported a nitrogen recovery of 90–120 kg N pa [37,47]. However, it is understood that much of the recovery potential of the products depends on market demand, supply chain, product purity, and quantity [22,48]. Another important consideration for nitrogen recovery evolves around the recovered product policies and does not proactively promote the circular economy [20,22].

It is well understood that biological process emits a range of greenhouse gases from the oxidation of organic matter and nitrous oxide from nitrogen removal [19]. Ammonia removal with PNA and SBR impacts the environment due to nitrous oxide emissions, whereas no nitrous oxide is emitted with STRIP. Different process parameters have been associated with higher nitrous oxide emissions of deammonification and nitrification/denitrification technologies, including the operation at low oxygen concentration, nitrite accumulation and low C/N ratios of the wastewater [49]. Chemical addition in the SBR could further lead to elevated carbon dioxide emissions from the bacterial reactions [8]. In a comparison between deammonification technologies and conventional nitrification/denitrification, it was found that the first emitted less nitrous oxide [50,51]. However, past studies also highlighted that the nitrous oxide emissions of deammonification can exceed the nitrification/denitrification when leaving the partial nitritation step.

Fig. 3. Capital expenditure (CAPEX) and operational expenditure (OPEX) for three technologies: deammonification (PNA), nitrification/denitrification sequencing batch reactor (SBR) for Scenarios 1 and 2. The error bars indicate the standard deviation from the sensitivity analysis on the major design assumptions.

Fig. 4. a–b. Breakdown of capital expenditures (CAPEX) for Scenario 1 (a) and Scenario 2 (b) for the three-tested technologies. The CAPEX for Scenario 1 was PNA: £3,689k, SBR: £4,994k, and STRIP: £3,734k. The CAPEX for Scenario 2 was PNA: £2,565k, SBR: £3,637k, and STRIP: £3,255k. c–d. Breakdown of operational expenditure (OPEX) for Scenario 1 (c) and Scenario 2 (d) for the three tested technologies. The OPEX for Scenario 1 was PNA: £2,640k pa, SBR: £2,640k pa, and STRIP: £2,640k pa. The OPEX for Scenario 2 was PNA: £119k pa, SBR: £130k pa, and STRIP: £2,466k pa.
material costs and energy prices had the biggest impact on STRIP.
- For both scenarios, PNA also demonstrated the lowest cost for eliminating nitrogen with \(\text{r}_0 = 0.2 - 0.5 \text{ kg}^{-1} \text{ N} \).
- STRIP has the potential for nitrogen recovery of 49 kg N pa.
- Technology selection should include multivariable characteristics, including greenhouse gas emissions, recovery potential, treatment capability, and whole-life cost.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors are grateful for the funding provided by Thames Water Utilities Ltd. and the Engineering and Physical Sciences Research Council (EPSRC) through their funding of the STREAM Industrial Doctoral Centre (IDC EP/L015412/1). This study’s data can be accessed through the Cranfield University repository at https://doi.org/10.17862/cranfield.id.21257802.

References

[1] A. Yousefifar, et al., Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: a review, Water Res. 123 (2017) 607–622, https://doi.org/10.1016/j.watres.2017.06.069.
[2] W.P.F. Barber, Thermal hydrolysis for sewage treatment: a critical review, Water Res. 104 (2016) 53–71, https://doi.org/10.1016/j.watres.2016.07.065.
[3] H. Ødegaard, A road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (including MBBR), Front. Environ. Sci. 10 (4) (2016), https://doi.org/10.1007/s11783-016-0635-0.
[4] G. Bowden, R. Tischihashi, H.D. Stensel, Technologies for sidestream nitrogen removal, WERF (2016), https://doi.org/10.2166/97818780407890.
[5] M. Strous, et al., Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations, Water Res. 31 (8) (1997) 1955–1962, https://doi.org/10.1016/S0043-1357(97)00055-9.
[6] T. Lotti, et al., Physiological and kinetic characterization of a suspended cell anammox culture, Water Res. 60 (2014) 1–14, https://doi.org/10.1016/j.watres.2014.04.017.
[7] B.B. Ward, Nitrification, Encycl. Ecol. 2 (March) (2018) 351–358, https://doi.org/10.1007/978-0-12-805948-9_90687-7.
[8] G. Tchobanoglous, et al., in: B.F. Abu-Orf M, G. Bowden, W. Pfang, G. Tchobanoglous, D.H. Stensel, R. Tischihashi (Eds.), Wastewater Engineering: Treatment and Resource Recovery, fifth ed., McGraw-Hill, New York, 2014, Available at: https://books.google.com.cu/books?id=6KVRMVEAeAAC.
[9] M.C.M. van Loosdrecht, M.S. Jetten, Microbiological conversions nitrogen removal, Water Sci. Technol. 38 (1) (1998) 1–7.
[10] N. Jardin, et al., Treatment of sludge return liquors: experiences from the operation of full-scale plants, in: 6th Proceedings of the Water Environment Federation, 2006, pp. 5237–5255, https://doi.org/10.2175/193864706783763200.
[11] S. Lackner, et al., Full-scale partial nitrification/anammox experiences – an application survey, Water Res. 55 (2014) 292–303, https://doi.org/10.1016/j.watres.2014.02.032, Elsevier Ltd.
[12] D. Katehis, V. Dyiymandougou, J. Fillou, Stripping and recovery of ammonia from centrate of anaerobically digested biosolids at elevated temperatures, Water Environ. Res. 70 (2) (1998) 231–240, https://doi.org/10.2175/106143098x127080.
[13] A.T. Ukwuani, W. Tao, Developing a vacuum thermal stripping – acid absorption process for ammonia recovery from anaerobic digester effluent, Water Res. 106 (2016) 108–115, https://doi.org/10.1016/j.watres.2016.09.054, Elsevier Ltd.
[14] Organics Limited, Thermally-driven ammonia strippers: ammonia stripping with waste heat, DATA SHEET ODSP09. Coventry. Available at: https://www.organics.co.uk/en/products/d/leachate-systems, 2009.
[15] S.W. Anwar, W. Tao, Cost benefit assessment of a novel thermal stripping – acid absorption process for ammonia recovery from anaerobiologically digested dairy manure, Water Pract. Technol. 11 (2) (2016) 355–364, https://doi.org/10.2175/106143096x127080.
[16] D.T. Mai, C. Kunacheva, D.C. Stuckey, A review of posttreatment technologies for anaerobic effluents for discharge and recycling of wastewater, Crit. Rev. Environ. Sci. Technol. 48 (2) (2018) 167–209, https://doi.org/10.1080/10643389.2018.1443667, Taylor & Francis.

4. Conclusions

In this study, three different sidestream ammonia removal technologies (i.e., PNA, SBR, and STRIP) were designed and compared for WLC in two scenarios, conventional AD and THP/AD dewatering liquors.

- **PNA** demonstrated the overall lowest CAPEX, OPEX, with a whole-life cost of 87.7 M.
- The treatment of THP dewatering liquors leads to an increase in whole-life cost between 1 and 3 times the cost compared to AD dewatering liquors.
- Ammonia load and the energy price caused the biggest impact on the cost of biological technologies (PNA and SBR). Packing
W. Tao, J.T. Ukwuani, Coupling thermal stripping and acid absorption for ammonia recovery from dairy manure: ammonia volatilization kinetics and effects of temperature, pH and dissolved solids content, Chem. Eng. J. 290 (2015) 188–196, https://doi.org/10.1016/j.cej.2015.05.119, Elsevier B.V.

W. Tao, J.T. Ukwuani, F. Agyeaman, Recovery of ammonia in anaerobic digestate using vacuum thermal stripping - acid absorption process: scale-up considerations, Water Sci. Technol. 78 (4) (2018) 878–885, https://doi.org/10.2166/wst.2018.360.

X. Zhan, Z. Hu, G. Wu, Greenhouse Gas Emission and Mitigation in Municipal Wastewater Treatment Plants, IWA Publishing, 2018, https://doi.org/10.2166/wst.2017.043.

H. Cruz, et al., Mainstream ammonium recovery to advance sustainable urban wastewater management, Environ. Sci. Technol. 53 (19) (2019), https://doi.org/10.1021/acs.est.9b00063.

I. Sigurnjak, et al., Production and performance of bio-based mineral fertilizers from agricultural waste using ammonia stripping-jabbing technology, Waste Manag. 89 (2019) 265–274, https://doi.org/10.1016/j.wasman.2019.05.043, The Authors.

J.P. van der Hoek, R. Dufour, O. Reinstra, Nitrogen recovery from wastewater: possibilities, competition with other resources, and adaptation pathways, Sustainability 10 (12) (2018), https://doi.org/10.3390/su10124609.

C. Fux, H. Siegrist, Nitrogen removal from sludge digestor liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations, Water Sci. Technol. 50 (10) (2004) 19–26.

H. Bauer, et al., Comparison of sidestream treatment technologies: post aerobic digestion and Anammox, Water Sci. Technol. 73 (11) (2016) 2789–2803, https://doi.org/10.2166/wst.2016.075.

F. Simon, et al., Environmental Science and Ecotechnology Predicting the potential of sludge dewatering liquors to recover nutrients as struvite bio-minerals, Environ. Sci. Ecotechnol. 3 (2020), 100052, https://doi.org/10.1016/j.sise.2020.100052, Elsevier Ltd.

P. Winter, et al., Impact of sludge liquors on the hydraulic, nutrient and solids load of wastewater treatment, in: IWA Specialist Conference on Sludge Management 17, IWA Publishing, 2017, pp. 1–17.

P. Ochs, B.D. Martin, E. Germain, T. Stephenson, M. van Loosdrecht, A. Soares, Ammonia Removal from Thermal Hydrolysis Dewatering Liquors via Three Different Deammonification Technologies, Science of The Total Environment, 2020a, https://doi.org/10.1016/j.scitotenv.2020.142684.

G.T. Daigger, H.X. Littleton, Simultaneous biological nutrient removal: a state-of-the-art review, Proc. Water Environ. Federat. 2013 (13) (2014) 3389–3416, https://doi.org/10.2175/193864713x138685340.

W.R.L. van der Star, et al., Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam, Water Res. 41 (18) (2007) 4149–4163, https://doi.org/10.1016/j.watres.2007.03.044.

P. Ochs, B.D. Martin, E. Germain, T. Stephenson, M. van Loosdrecht, A. Soares, Recovery of ammonia in anaerobic digestate using ammonia (stripping-)scrubbing technology, Water Pollut. Control Federat. 45 (2) (1973) 249–261. www.ipst.org/stable/25037738.

EPA, Wet Scrubbers for Acid Gas, 1995.

R. Eden, Stripping Ammonia in Anaerobic Digesters, The Chemical Engineer, 2019, pp. 45–49.

R.K. Sinnott, Costing and project evaluation, in: C. Richardson (Ed.), Coulson and Richardson's Chemical Engineering, sixth ed., Elsevier, Oxford, 2005, pp. 209–244.

G. Towler, R. Sinnott, Chemical Engineering Design. Principles, practice and economics of plant and process design, Chem. Eng. (2013).

BEIS, Industrial energy price indices, Available at: https://www.gov.uk/government/statistical-data-sets/industrial-energy-price-indices, 2020. (Accessed 26 June 2020).

Glassdoor, Average operator salaries in United Kingdom. www.glassdoor.co.uk, 2020. (Accessed 26 June 2020). https://www.glassdoor.co.uk/Salaries/uk-technician-salary-SRCH_IL.0,2_IN2_KO3,13.htm.

Office for National Statistics, Retail prices index 1947 to 2019, Available at: https://www.ons.gov.uk/economy/inflationandpricesindices/timeseries/cdko/mm23, 2020. (Accessed 26 June 2020).

X. Huang, et al., 1, in: Economic Evaluation of Ion-Exchange Processes for Nutrient Removal and Recovery from Municipal Wastewater vol. 3, Springer, US, 2020, https://doi.org/10.1007/978-3-030-0054-x. npj Clean Water.

FRED, Federal reserve economic data, Available at: https://fred.stlouisfed.org/, 2020. (Accessed 20 June 2020): .

Statista, Statista database, Available at: https://www.statista.com/, 2020. (Accessed 22 June 2020).

B. Wett, et al., Development of Enhanced Deammonification Selector, Proceedings of the Water Environment Federation, 2010, pp. 5917–5928, https://doi.org/10.2175/193864710798194139, 2010.

G.T. Daigger, H.X. Littleton, Simultaneous biological nutrient removal: a state-of-the-art review, Proc. Water Environ. Federat. 2013 (13) (2014) 3389–3416, https://doi.org/10.2175/193864713x138685340.

W.R.L. van der Star, et al., Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam, Water Res. 41 (18) (2007) 4149–4163, https://doi.org/10.1016/j.watres.2007.03.044.

P. Ochs, B.D. Martin, E. Germain, T. Stephenson, M. van Loosdrecht, A. Soares, Ammonia Removal from Thermal Hydrolysis Dewatering Liquors via Three Different Deammonification Technologies, Science of The Total Environment, 2020a, https://doi.org/10.1016/j.scitotenv.2020.142684.

G.T. Daigger, et al., Implementation of a full-scale anammox-based facility to treat an anaerobic digestion sidestream at the alexandria sanitation authority water resource facility, Water Pract. Technol. 6 (2) (2011), https://doi.org/10.2166/wpt.2011.033.

J.H. Van Der Graaf, What to do after nutrient removal? Water Sci. Technol. 44 (1) (2001) 129–135.

P. Regmi, et al., The future of WRRF modelling - outlook and challenges, Water Sci. Technol. 79 (1) (2019) 9–14, https://doi.org/10.2166/wst.2018.498.

K.J. Lam, L. Zlatanović, J.P. van der Hoek, Life cycle assessment of nutrient recycling from wastewater: a critical review, Water Res. 173 (2020), https://doi.org/10.1016/j.watres.2020.115519.

Y. Ye, et al., A critical review on ammonium recovery from wastewater for sustainable wastewater management, Bioresour. Technol. Elsevier 268 (July) (2018) 749–758, https://doi.org/10.1016/j.biortech.2018.07.111.

T.M. Massara, et al., A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water, Sci. Total Environ. 596–597 (2017) 106–123, https://doi.org/10.1016/j.scitotenv.2017.03.191, Elsevier B.V.

N. Weissenbacher, et al., Gaseous nitrogen and carbon emissions from a full-scale deammonification plant, Water Environ. Res. 82 (2) (2010) 169–175, https://doi.org/10.2175/193864710X136585340.

L. Kanders, et al., Full-scale comparison of N2O emissions from SBR N/DN operation versus one-stage deammonification MBBR treating reject water - and optimization with pH set-point, Water Sci. Technol. 79 (8) (2019) 1616–1625, https://doi.org/10.2166/wst.2019.161.

D. Wei, et al., Comparison of nitrous oxide emissions in partial nitrifying and full nitrifying granular sludge reactors treating ammonium-rich wastewater, Bioresour. Technol. 171 (2014) 487–490, https://doi.org/10.1016/j.biortech.2014.08.071, Elsevier Ltd.

C. Leix, et al., Performance and N2O formation of the deammonification process by suspended sludge and biofilm systems-a pilot-scale study, Water (Switzerland) 8 (12) (2016), https://doi.org/10.3390/w8120578.