Interpretations of the NuTeV $\sin^2 \theta_W$

S Davidson

Dept. of Physics, University of Durham, DH1 3LE, United Kingdom

Abstract

We summarize theoretical explanations of the three σ discrepancy between $\sin^2 \theta_W$ measured by NuTeV and predicted by the Standard Model global fit. Possible new physics explanations (e.g. an unmixed Z') are not compelling. The discrepancy would be reduced by a positive momentum asymmetry s^- in the strange sea; present experimental estimates of s^- are unreliable or incomplete. Upgrading the NuTeV analysis to NLO would alleviate concerns that the discrepancy is a QCD effect.

1 Introduction

The NuTeV collaboration studied ν_μ Deep Inelastic Scattering (νDIS), and measured $\sin^2 \theta_W$ on-shell, or m_W^2/m_Z^2, to be $\sin^2 \theta_W = 0.2276 \pm 0.0013$(stat) ± 0.0006(syst) ± 0.0006(theo) [1]. This is $\sim 3\sigma$ from the world average $\sin^2 \theta_W = 0.2226 \pm 0.0004$. Is this the long-awaited harbinger of New Physics? Neutrino DIS is a notoriously difficult environment in which to do precision physics—is the discrepancy an overlooked Standard Model (SM) effect?

Various explanations for this discrepancy have been put forward [2, 3, 4, 5]. In ref. [3], we considered electroweak corrections, QCD effects, new physics in loops and new physics at tree level.

2 New Physics?

It is difficult to saturate the NuTeV discrepancy with new physics in loops: an $O(1\%)$ effect is needed at NuTeV where $Q^2 \sim 20 \text{ GeV}^2$, but the new physics must not disrupt the part-per-mil agreement between the SM and precision tests. We found in [3] that oblique corrections, motivated versions of the MSSM and modified Z couplings 1 cannot separately explain the whole NuTeV-LEP discrepancy. It has been observed in [11] that oblique corrections induced by new physics, and modified Z couplings, can fit all the data 2.

1Some authors [4, 11] have reconsidered models where neutrinos mix with heavy singlets, thereby reducing their couplings with the Z and W bosons by a factor $1 - \epsilon$ and $1 - \epsilon/2$ respectively. However, $\epsilon > 0$ reduces the NuTeV anomaly at the price of worsening the global fit [3]. (Our equations differ from those of [4] because we place ϵ in different electroweak parameters.)

2Bernstein, in these proceedings, has a different interpretation of [3] or [11].
New tree-level physics offers more promising explanations. A \(\sim 1\% \) decrease with respect to the SM of the coefficient of the operator \((\bar{\nu}\gamma^\nu_\mu)(\bar{q}_L\gamma_\alpha q_L)\) is required, and could be provided by a new \(Z' \) boson, or by SU(2) triplet leptoquarks with judiciously chosen unequal masses. A new \(Z' \) must have negligible mixing with the \(Z \) to satisfy the oblique parameter and precision bounds on the \(Z \) coupling: [6]. However, a \(Z' \) coupled to e.g. \(B - 3L_\mu \) would provide the required four fermion operator at tree level. (It would also induce the operator \((\bar{\nu}\gamma^\nu_\mu)(\bar{q}_R\gamma_\alpha q_R)\); this is acceptable because the coefficient \(^3\) of this operator is measured less accurately by NuTeV.) The \(Z' \) could have \(m_{Z'} > 600 \text{ GeV} \) for \(g' \sim 1 \), or if the coupling is small \(g' \sim 10^{-3} \), it could have \(2 \text{ GeV} < m_{Z'} < 10 \text{ GeV} \) consistently with all experimental constraints. A \(Z' \) with \(m \sim 3 \text{ GeV} \) could fit the current \(g - 2 \) discrepancy [7].

3 Back to the Standard Model

The NuTeV experiment measures the ratio of “short” (= muonless) to “long” (with a \(\mu \)) events for incident \(\nu_\mu \) and \(\bar{\nu}_\mu \) beams. From this they extract the ratios \(R^\nu \) and \(R^\rho \), where \(R^\nu = \sigma(\nu N \to \nu X)/\sigma(\nu N \to \mu X) \). \(R^\nu \) is more sensitive than \(R^\rho \) to \(\sin^2 \theta_W \), so \(\sin^2 \theta_W \) is determined mainly from \(R^\nu \), after an effective “charm mass” is extracted from \(R^\rho \). NuTeV uses leading order (LO) parton distribution functions (pdfs), which are fit to their data, they assume isospin symmetry \((u^0(x) = d^0(x))\), and that \(q(x) = \bar{q}(x) \) for second generation quarks.

A theoretically cleaner ratio, where we studied the effects of isospin violation and \(s \neq \bar{s} \) is the Paschos-Wolfenstein ratio (related to \(R^\nu \) and \(R^\rho \)):

\[
R_{PW} = \frac{\sigma(\nu N \to \nu X) - \sigma(\bar{\nu} N \to \bar{\nu} X)}{\sigma(\nu N \to \mu X) - \sigma(\bar{\nu} N \to \bar{\mu} X)}
\]

\[
= \frac{1}{2} - \sin^2 \theta_W + [(1.3 + O(\alpha_s))(u^- - d^- - s^-)] ,
\]

where the 1.3 is a simplification (see [3]). The square brackets contain the corrections that arise if isospin is violated, or if there is a momentum asymmetry in the strange sea: \(s^- \neq 0 \), where \(s^- = \int dx x(s(x) - \bar{s}(x)) \).

Most pdf fits assume \(s^- = 0 \). This was not imposed in ref. [10] (BPZ), who performed a NLO fit to all the cross section data available (this did not include CCFR and NuTeV). They found that \(s^- \simeq .002 \) was a significantly better fit (\(\Delta x^2 = 25 \) for 2 additional d.o.f.) than \(s^- = 0 \). Naively substituting this into eqn. 1, one finds that \(\sin^2 \theta_W|_{\text{NuTeV}} - \sin^2 \theta_W|_{\text{LEP}} \) decreases to less than two \(\sigma \). Realistically, the effect of \(s^- \) on \(\sin^2 \theta_W \) will be reduced by experimental cuts and sensitivities. NuTeV has published a LO \(s \neq \bar{s} \) fit to their dimuon data [9], and found \(s^- \) negative. It is unclear whether the NuTeV dimuon data is consistent with the CDHSW cross-section data, which in conjunction with BCDMS, drives \(s^- \) positive in the BPZ fit; a refit to all the data would be required to determine this. However, the NuTeV analysis [9] had various peculiar features, as outlined in the (post-publication) note added to [3]. After the appearance of [3], NuTeV pointed out [8] that according to

\(^3\)This coefficient has the wrong sign in the plots of [3]; the \(Z' \) has vector couplings so makes a negative contribution to both \(g^2_L \) and \(g^2_R \). We thank Birgit Eberle for bringing this to our attention.
their analysis [9], the asymmetry had the wrong sign to reduce the \(\sin^2 \theta_W \) discrepancy: \(s^- \sim -0.0027 \pm 0.0013 \). They have recently redone their \(s \neq \bar{s} \) analysis at NLO[12], and find a positive asymmetry \(s^- \sim 0.0003 \). These determinations are affected by a theoretical uncertainty which is not included in the quoted error. A more detailed discussion of the NuTeV \(s^- \) extraction can be found in the “note added” to [3].

\(R_{PW} \) is theoretically attractive because the parton distributions cancel out of the ratio at LO, and the NLO corrections are small. However, the \(R^\nu, R^{\bar{\nu}} \) ratios measured by NuTeV have some dependence on the pdfs, which is exacerbated by asymmetries between charged-current and neutral-current, or between \(\nu \) and \(\bar{\nu} \) events. Such asymmetries could be induced by experimental cuts and by different \(\nu, \bar{\nu} \) spectra. It is therefore difficult to estimate the size of the NLO corrections to the \(\sin^2 \theta_W \) determination from NuTeV, particularly since NuTeV fit their LO pdfs to their data, which could absorb some of the NLO effects. A NLO analysis of the NuTeV experiment would be a welcome solution to these concerns.

References

[1] G. P. Zeller et al. [NuTeV Collaboration], Phys. Rev. Lett. 88 (2002) 091802; hep-ex/0110059.

K. McFarland, seminar available at the internet address www.pas.rochester.edu/~ksmcf/NuTeV/seminar-only-finaloct26.pdf

[2] E. Ma, D.P. Roy, [hep-ph/0111385]; E. Ma and D. P. Roy, [hep-ph/0206150].

[3] S. Davidson, S. Forte, P. Gambino, N. Rius and A. Strumia, JHEP 0202 (2002) 037 [hep-ph/0112302].

[4] K. S. Babu and J. C. Pati, [hep-ph/0203029].

[5] S. Kovalenko, I. Schmidt and J. J. Yang, arXiv:hep-ph/0207158.

G. A. Miller and A. W. Thomas, arXiv:hep-ex/0204007.

[6] R. S. Chivukula and E. H. Simmons, Phys. Rev. D 66 (2002) 015006 ; hep-ph/0205064. J. Erler, P. Langacker and T. j. Li, Phys. Rev. D 66 (2002) 015002 ; hep-ph/0205001

[7] G. W. Bennett [Muon g-2 Collaboration], [hep-ex/0208001].

[8] G. P. Zeller et al. [NuTeV Collaboration], experiment, [hep-ex/0203004].

[9] The NuTeV collaboration, M. Goncharov et al. Phys. Rev. D64,(2001) 112006.

[10] V. Barone, C. Pascaud, F. Zomer, Eur. Phys. J. C12 (2000) 243.

[11] T. Takeuchi, hep-ph/0209109; W. Loinaz, N. Okamura, T. Takeuchi and L. C. Wijewardhana, hep-ph/0210193.
[12] NuTeV Collaboration talk at ICHEP 2002, Amsterdam.