Human papillomavirus 16 is an aetiological factor of scrotal cancer

Núria Guimera⁎,1, Laia Alemany2,3, Gordana Halec4,5, Michael Pawlita4, Gerard Vincent Wain6, José Santos Salas Vailén7, Jerome E Azike8,9, David Jenkins1, Silvia de Sanjose2,3, Wim Quint1 and F Xavier Bosch1

1Research and Development, DDL Diagnostic Laboratory, Rijswijk, The Netherlands; 2Infections and Cancer Unit, IDIBELL, Institut Català d’Oncologia–Catalan Institute of Oncology, L’Hospitalet de Llobregat (Barcelona), Barcelona, Spain; 3Department of Epidemiology, CIBER en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; 4Division of Genome Modifications and Carcinogenesis, Infections and Cancer Program, German Cancer Research Center, Heidelberg, Germany; 5Department of OB/Gyn, UCLA AIDS Institute, Los Angeles, CA, USA; 6Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia; 7Department of Pathology, Hospital de León, León, Spain; 8Department of Surgery, College of Medicine, Imo State University Teaching Hospital, Orlu Campus, Orlu, Nigeria and 9Department of Surgery, Imo State University Teaching Hospital, Orlu, Nigeria

Background: Squamous cell scrotal carcinoma (SCSC) is an infrequent skin cancer associated historically with occupational carcinogens. Human papillomavirus (HPV) DNA has been associated with SCSC but there is no definitive proof of its oncogenic role.

Methods: Human papillomavirus-DNA and –E6*I mRNA were analysed in six invasive histologically typed SCSC. LCM-PCR was used to localise HPV DNA to tumour cells. P16INK4a and p53 expression were studied by immunohistochemistry.

Results: In three warty or basaloid SCSC HPV16-DNA and E6*I-mRNA were detected. LCM-PCR confirmed HPV16 was in p16INK4a-positive malignant cells. However, of three usual-type SCSC, all were HPV-negative and two expressed p53 protein but not p16INK4a.

Conclusions: Human papillomavirus 16 was present in tumour cells and oncogenically active in basaloid and warty SCSC, whereas usual SCSC was HPV-negative and showed immunostaining, suggesting p53 mutation. The dual pathways of oncogenesis and relation between histological type of SCSC and HPV are similar to that in penile cancers.

Squamous cell scrotal cancer (SCSC) is a rare malignancy and was the first cancer associated with occupational carcinogens including soot, lubricating and cutting oils (Melicow, 1975; Sorahan et al, 1989). Since the 1970s, occupational-related SCSC incidence has decreased in the United Kingdom as working conditions have improved (Sorahan et al, 1989). More recent reports, however, indicate a steady incidence in the Netherlands and increasing incidence in the USA (Wright et al, 2008; Verhoeven et al, 2010). Other factors may be involved.

Human papillomaviruses (HPV) play an important aetiological role in many anogenital and oropharyngeal carcinomas (http://www.hpvcentre.net) and have been occasionally linked to skin tumours outside the genital region (Riddel et al, 2011). Human papillomavirus-DNA has been found in tissue sections containing SCSC, precancers and normal scrotum, but biological evidence is missing that directly demonstrates type-specific HPV-DNA in tumour cells, producing oncogenic RNA transcripts (Guran and Pak, 1999; Nielson et al, 2009; Matoso et al, 2014, 2016). We tested 6 cases for 72 mucosal and cutaneous HPV-genotypes. If HPV-DNA was detected, laser-capture microdissection-PCR (LCM-PCR) was performed to assign or not an individual HPV type specifically to cancer cells as we have done for cervical (pre)-cancer and other HPV-related cancers (Quint et al, 2012; Guimera et al, 2013; María José Fernández-Nestosa et al, 2017). Viral transcriptional activity was confirmed by detection of viral E6*I oncogene mRNA. Immunohistochemical (IHC) expression of...
p16INK4a was also studied as in previous studies, and is a sensitive but not specific marker of oncogenic HPV-E7 gene activity. IHC expression of p53 was analysed as an indicator that p53 mutations may play a causal role in the development of HPV-negative scrotal cancers.

MATERIALS AND METHODS

Case selection. Formalin-fixed paraffin-embedded (FFPE) tissue blocks of six cases of invasive SCSC were collected from Spain (n = 2), Australia (n = 2) and Nigeria (n = 2) (Table 1). Local and Catalan Institute of Oncology ethics committees approved all protocols and an international steering committee oversaw study progress.

Histology and immunohistochemistry. Cases were sectioned using a sandwich technique (de Sanjose et al, 2010; Guimera et al, 2013). At least four pathologists evaluated the haematoxylin-eosin (H&E) slides, reaching a consensus diagnosis of the histological type of SCSC: Warty, basaloid or usual. This classification was based on the criteria defined for penile carcinomas by the WHO (Moch et al, 2016). P16INK4a staining was performed on one FFPE-section (4 μm) (Guimera et al, 2013) and was considered positive if more than 50% of tumour cells showed expression. P53 staining was performed (Halec et al, 2014) and a tumour was considered driven by p53 mutation if > 75% of the tumour cells showed p53 expression.

Laser capture microdissection (LCM). Human papillomavirus detected in whole tissue section was localized to tumour cells by LCM-PCR (Quint et al, 2012). A polyethylene-naphthalate (PEN)-membrane slide, stained only with Hematoxylin was used to optimise sensitivity.

DNA isolation and HPV-DNA genotyping. The DNA was isolated using proteinase K solution and HPV-DNA was tested by four assays, HPV histological localization by LCM, HPV16 E6*I mRNA detection, p16INK4a and p53 overexpression. Initially, the presence of 72 HPVs was analysed for L1, E1 or E6 ORFs assays. HPV-positive cases and 62 years for HPV-negative cases (range: 46–71 years).

RESULTS

All six cases were primary SCSC (Table 1). One primary basaloid SCSC showed metastases at presentation. No cases were immuno-compromised. One warty and two basaloid SCSC (case 3, 5 and 6) contained HPV16 DNA as a single infection by both L1 and E6 ORFs assays. E6*I mRNA assay confirmed the presence of HPV16 E6*I transcripts and immunohistochemistry showed diffuse staining for p16INK4a, while p53 was negative. Moreover, LCM-PCR localised HPV16 DNA only in the invasive tumour (Table 1 and Figure 1). From one case with HPV-positive basaloid carcinoma (case 6), HPV16 was confirmed in metastases in three inguinal lymph nodes.

In the three usual-type SCSC specimens (case 1, 2 and 4), no HPV DNA or RNA was detected although quality controls confirmed the presence of human DNA and RNA. In HPV-DNA-negative cases 1 and 4, p53 was expressed in > 75% of cancer cells and p16INK4a was completely negative (Table 1 and Figure 2). In case 2, p53 was expressed in around 25% of cancer cells and p16INK4a was expressed only patchily (Table 1 and Figure 2). The median age at diagnosis was 59 years (range: 42–66 years) for HPV-positive cases and 62 years for HPV-negative cases (range: 46–71 years).

Table 1. Invasive scrotal cancers by country, year of age at diagnosis, histological category, HPV DNA detection and genotyping by 4 assays, HPV histological localization by LCM, HPV16 E6*I mRNA detection, p16INK4a and p53 overexpression

Country of origin	Spain	Spain	Australia	Australia	Nigeria	Nigeria		
Year of diagnosis	2003	2008	2002	2007	2007	2015		
Age at diagnosis	71	62	59	46	42	66		
Histological diagnosis	Usual SCC	Usual SCC	Warty SCC	Usual SCC	Basaloid SCC	Basaloid SCC		
HPV DNA and RNA analysis	HPV negative							
	HPV negative							
	HPV negative							
	HPV negative							
	HPV negative							
	HPV negative							
	HPV negative							
	HPV negative							
	HPV negative							
	HPV negative							
Laser capture microdissection	n.a.	n.a.	SCC	n.a.	SCC	SCC		
Localization of HPV								
Immunohistochemistry analysis in primary cancer cells	p16INK4a overexpression	<5%	25%	>75%	<5%	>75%	>75%	>75%
p53 overexpression	>75%	>25%	<25%	>75%	>25%	<25%	<25%	
Abbreviations: – = negative, SCC = well differentiated squamous cell carcinoma; n.a. = not applicable.								
*Poor slide quality made difficult the analyses.								
DISCUSSION

Treatments for skin diseases (for example, arsenic and light therapies-UVA/UVB radiation) and HPV have been identified as possible carcinogens to explain the continuing occurrence of SCSC (Stern, 1990; Andrews et al., 1991; Guran and Pak, 1999; Matoso et al., 2016). Previous studies have found HPV-DNA in tissue specimens of SCSC. The current study demonstrates that HPV16 is present specifically in tumour cells of warty and basaloid type SCSC, where it is expressing the HPV-E6 oncogene. In addition, these HPV-positive SCSC show strong expression of p16INK4a. The specific localisation of HPV16 to SCSC tumour cells required the use of LCM-PCR, which excluded potential contamination from adjacent tissue as has been described in studies of cervical cancer and precancer and of penile cancer (Quint et al., 2012; Guimera et al., 2013; María José Fernández-Nestosa et al., 2017). The very sensitive and specific methodology for HPV-DNA detection (Kleter et al., 1998, 1999; Quint et al., 2012), employed in this study together with more specific data on viral transcriptional activity than p16INK4a staining provides new definitive evidence confirming the oncogenic role of HPV16 in some histological types of SCSC (Orihuela et al., 1995; Guran and Pak, 1999; Matoso et al., 2014, 2016).

In two out of three HPV-negative cases of usual type SCSC, p53 was expressed in >75% of the cancer cells indicating the presence of a mutation in this tumour suppressor gene, but p16INK4a was not expressed strongly.

This study clearly demonstrates the two separate aetiological pathways for SCSC suggested previously (Matoso et al., 2014): Human Papillomavirus and non-HPV related, associated with separate histological tumour types. The same pattern has been described by our group using LCM-PCR in penile neoplasia (Maria José Fernández-Nestosa et al., 2017) and is also seen in vulvar carcinomas, where the HPV prevalence is 33% and 29%, respectively (de Sanjose et al., 2013; Alemany et al., 2016). The association between histology and HPV in SCSC appears the same as that described in penile carcinoma and precancer where neoplasia related to HPV shows a warty/basaloid histology and differentiated PeIN and usual squamous cancer is associated with a HPV-unrelated pathway. In SCSC, HPV16 is the predominant genotype as in all non-cervical sites such as penile, vulval, vaginal, anal or oropharyngeal tumours (de Sanjose et al., 2013; Alemany et al., 2014, 2016; Castellsague et al., 2016). Human papillomavirus16 is also predominant in other cutaneous in situ or invasive SCC outside the genital area such as in periumgual and/or subungal skin from immunocompetent patients (Riddel et al., 2011). Scrotal cancer like external vulvar cancer arises in an epithelium that is morphologically genital skin. The embryologic differentiation of scrotal cells resembles that of the vulvar labia majora in women, and may have...
the same stem-like cells vulnerable to HPV16 infection (Moore et al., 2013).

Although limited by the small number of cases, this study provides biological evidence of an aetiological relationship between HPV16 and SCSC. Larger epidemiological studies are needed to determine if other HPV types apart from HPV16 are involved, the relative role of HPV compared to other environmental and genetic factors and the possible changing role of HPV in scrotal carcinogenesis. Such studies could also determine the potential impact on scrotal cancer of HPV vaccines. Studies of the mechanism and transformation of the scrotal cells by HPV would also contribute to understanding why these events are rare compare to other genital sites, particularly the cervix.

ACKNOWLEDGEMENTS

Partial support has been obtained from the Stichting Pathologie Ontwikkeling en Onderzoek (SPOO) foundation (the Netherlands). We acknowledge Susana M. Chuva de Sousa Lopes for the fruitful discussion about genital embryologic development.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Alemany L, Cubilla A, Halec G, Kasamatsu E, Quiros B, Masferrer E, Tous S, Lloveras B, Hernandez-Suarez G, Lonsdale R, Tinoco L, Alejo M, Alvarado-Cabrero I, Laco J, Guimera N, Poblet E, Lombardi LE, Bergeron C, Clavero O, Shin HR, Ferrera A, Felix A, Germar J, Mandys V, Clavel C, Tzardi M, Pons LE, Wain V, Cruz E, Molina C, Mota JD, Jach R, Velasco J, Carrilho C, Lopez-Revilla R, Goodman MT, Quint WG, Castellsague X, Bravo I, Pavlita M, Munoz N, Bosch FX, de Sanjose S. Group HVs (2016) Role of human papillomavirus in penile carcinomas worldwide. *Eur Urol* 69(5): 953–961.

Alemany L, Saunier M, Tinoco L, Quiros B, Alvarado-Cabrero I, Alejo M, Joura EA, Maldonado P, Klaustermeier J, Salmeron J, Bergeron C, Petry KU, Guimera N, Clavero O, Murillo R, Clavel C, Wain V, Geraets DT, Jach R, Cross P, Carrilho C, Molina C, Shin HR, Mandys V, Nowakowski AM, Vidal A, Lombardi L, Kitchener H, Sica AR, Magana-Leon C, Pavlita M, Quint W, Bravo IG, Munoz N, de Sanjose S, Bosch FX (2014) Large contribution of human papillomavirus in vaginal neoplastic lesions: a worldwide study in 597 samples. *Eur J Cancer* 50(16): 2846–2854.

Andrews PE, Farrow GM, Oesterling JE (1991) Squamous cell carcinoma of the scrotum: long-term followup of 14 patients. *J Urol* 146(5): 1299–1304. Castellsague X, Alemany L, Quer M, Halec G, Quiros B, Tous S, Clavero O, Alos L, Bieger T, Szafarowski T, Alejo M, Holzinger D, Cadena E, Claros E, Hall G, Laco J, Poljak M, Benevolo M, Kasamatsu E, Mehanna H, Ndiaye C, Guimera N, Lloveras B, Leon X, Ruiz-Cabezas JC, Alvarado-Cabrero I, Kang CS, Oh JK, Garcia-Rojo M, Iljazovic E, Ajayi OF, Duarte F, Nessa A, Tinoco L, Duran-Padilla MA, Pirog EC.
HPV16 in scrotal cancer

Gurañ S, Pak I (1999) Cumulation of TP53 mutations and p16INK4A/p15INK4B homozygous deletions in human papilloma virus type 16 positive cutaneous and invasive carcinoma of the penis using Laser Capture Microdissection (LCM)-PCR. A study of 191 lesions in 43 patients. Am J Surg Pathol (in press).

Matoso A, Fabre V, Quddus MR, Lepe M, Lombardo KA, Manna P, Epstein JI (2016) Prevalence and distribution of 15 high-risk human papillomavirus types in squamous cell carcinoma of the scrotum. Hum Pathol 53: 130–136.

Matoso A, Ross HM, Chen S, Allbritton J, Epstein JI (2014) Squamous neoplasia of the scrotum: a case of 29 cases. Am J Surg Pathol 38(7): 973–981.

Melicov MM (1975) Percivall Pott (1713–1788): 200th anniversary of first report of occupation-induced cancer scrotum in chimney sweepers (1775). Urology 6(6): 745–749.

Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs-part a: renal, penile, and testicular tumours. Eur Urol 70(1): 93–105.

Moore KL, Persaud TVN, Torchia MG (2013) The Developing Human: Clinically Oriented Embryology. 9th edn. (Saunders/Elsevier: Philadelphia, PA, USA.

Nielson CM, Harris RB, Flores R, Abrahamsen M, Papenfuss MR, Dunne EF, Markowitz LE, Giuliano AR (2009) Multiple-type human papillomavirus infection in male anogenital sites: prevalence and associated factors. Cancer Epidemiol Biomarkers Prev 18(4): 1077–1083.

Orihuela E, Tyring SK, Pow-Sang M, Dozier S, Cirelli R, Arany I, Rady P, Sanchez R (1995) Development of human papillomavirus type 16 associated squamous cell carcinoma of the scrotum in a patient with Darier’s disease treated with systemic isotretinoin. J Urol 153(6): 1940–1943.

Quint W, Jenkins D, Molijn A, Sterk P, van de Sandt M, Doorbar J, Jenkins D, Quint W, Cobbold HP (2012) One virus, one role. J Clin Microbiol 50(5): 1683–1690.

Rikels R, Rashid R, Thomas V (2011) Ungual and periungual human papillomavirus-associated squamous cell carcinoma: a review. J Am Acad Dermatol 64(6): 1147–1153.

Sorahan T, Cooke MA, Wilson S (1989) Incidence of cancer of the scrotum, 1971–84. Br J Ind Med 46(6): 430–431.

Stern RS (1990) Genital tumors among men with psoriasis exposed to psoralens and ultraviolet A radiation (PUVA) and ultraviolet B radiation. The Phototherapy Follow-up Study. N Engl J Med 322(16): 1093–1097.

van Aelwijk D, Kleter B, Vent M, Delroisse JM, de Koning M, van Doorn LJ, Quint W, Colau B (2012) One virus, one lesion–individual components of CIN lesions contain a specific HPV type. J Pathol 227(1): 62–71.

Utole M, Rada R, Thomas V (2011) Scrotal cancer: incidence, survival and second primary tumours in the Netherlands since 1989. Br J Cancer 105(3): 1462–1466.

Wright JL, Morgan TM, Lin DW (2008) Primary scrotal cancer: disease characteristics and increasing incidence. Urology 72(5): 1139–1143.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License.

Viarheichy H, Morales H, Costes V, Felix A, Gernar MJ, Mena M, Ruanz A, Jain A, Mehrotra R, Goodmann MT, Lombardi LE, Ferrera A, Malami S, Albanezi EI, Dabed P, Molina C, Lopez-Revilla R, Mandys V, Gonzalez ME, Velasco J, Bravo IG, Quint W, Pavilta M, Munoz N, Sanjose S, Xavier Bosch F. Head ICOIHi, Neck Cancer Study G (2016) HPV involvement in head and neck cancers: comprehensive assessment of biomarkers in 3680 patients. J Natl Cancer Inst 108(6): djv403.

Sanjose S, Ordi J, Andujar M, Castellsague X, Sanchez GI, Nowakowski AM, Lerma E, Garland SM, Sasagawa T, Ferrera A, Hammouda D, Mariani L, Seoud M, Grce M, Usubutun A, Jain A, Mehrotra R, Goodman MT, Lombardi LE, Nanos N, Velazquez EF, Jenkins D, Quint W, Cubilla AL (2017) Human Papillomavirus (HPV) genotypes in condylomas, intraepithelial neoplasia and invasive carcinoma of the penis using Laser Capture Microdissection (LCM)-PCR. A study of 191 lesions in 43 patients. Am J Surg Pathol (in press).

Geraets D, Alemany L, Geraets DT, Klaustermeier JE, Guimera N, Clavero O, Sanchez DF, Canete S, Mols J, Van Hoof C, Hardt K, Arany I, Rady P, Sanchez R (1995) Development of human papillomavirus type 16 associated squamous cell carcinoma of the scrotum in a patient with Darier’s disease treated with systemic isotretinoin. J Urol 153(6): 1940–1943.

Quint W, Jenkins D, Molijn A, Sterk P, van de Sandt M, Doorbar J, Mols J, Van Hoof C, Hardt K, Struif Y, Colau B (2012) One virus, one lesion–individual components of CIN lesions contain a specific HPV type. J Pathol 227(1): 62–71.

Rikels R, Rashid R, Thomas V (2011) Ungual and periungual human papillomavirus-associated squamous cell carcinoma: a review. J Am Acad Dermatol 64(6): 1147–1153.

Sorahan T, Cooke MA, Wilson S (1989) Incidence of cancer of the scrotum, 1971–84. Br J Ind Med 46(6): 430–431.

Stern RS (1990) Genital tumors among men with psoriasis exposed to psoralens and ultraviolet A radiation (PUVA) and ultraviolet B radiation. The Photochemotherapy Follow-up Study. N Engl J Med 322(16): 1093–1097.

van Aelwijk D, Kleter B, Vent M, Delroisse JM, de Koning M, van Doorn LJ, Quint W, Colau B (2013) A human papilloma virus testing algorithm comprising a combination of the L1 broad-spectrum SPF10 PCR assay and a novel E6 high-risk multiplex type-specific genotyping PCR assay. J Clin Microbiol 51(4): 1171–1178.

Verhoeven RH, Louwman WJ, Coldewijn EL, Demeyere TB, Coebergh JW (2010) Scrotal cancer: incidence, survival and second primary tumours in the Netherlands since 1989. Br J Cancer 103(9): 1462–1466.

Wright JL, Morgan TM, Lin DW (2008) Primary scrotal cancer: disease characteristics and increasing incidence. Urology 72(5): 1139–1143.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License.

BRITISH JOURNAL OF CANCER