Population structure and plumage polymorphism: The intraspecific evolutionary relationships of a polymorphic raptor, Buteo jamaicensis harlani

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Hull, Joshua M., David P. Mindell, Sandra L. Talbot, Emily H. Kay, Hopi E. Hoekstra, and Holly B. Ernest. 2010. Population structure and plumage polymorphism: The intraspecific evolutionary relationships of a polymorphic raptor, Buteo jamaicensis harlani. BMC Evolutionary Biology 10: 224.
Published Version	doi:10.1186/1471-2148-10-224
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:11211553
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Population structure and plumage polymorphism: The intraspecific evolutionary relationships of a polymorphic raptor, *Buteo jamaicensis harlani*

Joshua M Hull1,2*, David P Mindell3, Sandra L Talbot4, Emily H Kay5, Hopi E Hoekstra5, Holly B Ernest1,6

Abstract

Background: Phenotypic and molecular genetic data often provide conflicting patterns of intraspecific relationships confounding phylogenetic inference, particularly among birds where a variety of environmental factors may influence plumage characters. Among diurnal raptors, the taxonomic relationship of *Buteo jamaicensis harlani* to other *B. jamaicensis* subspecies has been long debated because of the polytypic nature of the plumage characteristics used in subspecies or species designations.

Results: To address the evolutionary relationships within this group, we used data from 17 nuclear microsatellite loci, 430 base pairs of the mitochondrial control region, and 829 base pairs of the melanocortin 1 receptor (*Mc1r*) to investigate molecular genetic differentiation among three *B. jamaicensis* subspecies (*B. j. borealis*, *B. j. calurus*, *B. j. harlani*). Bayesian clustering analyses of nuclear microsatellite loci showed no significant differences between *B. j. harlani* and *B. j. borealis*. Differences observed between *B. j. harlani* and *B. j. borealis* in mitochondrial and microsatellite data were equivalent to those found between morphologically similar subspecies, *B. j. borealis* and *B. j. calurus*, and estimates of migration rates among all three subspecies were high. No consistent differences were observed in *Mc1r* data between *B. j. harlani* and other *B. jamaicensis* subspecies or between light and dark color morphs within *B. j. calurus*, suggesting that *Mc1r* does not play a significant role in *B. jamaicensis* melanism.

Conclusions: These data suggest recent interbreeding and gene flow between *B. j. harlani* and the other *B. jamaicensis* subspecies examined, providing no support for the historical designation of *B. j. harlani* as a distinct species.

Background

The criteria necessary to recognize and define distinct species have been frequently debated [1-3]. One of the primary difficulties in species designation is that the process of speciation requires an extended period of time during which various attributes of species-level distinction are attained [2]. Depending on the length of time since divergence, only some fraction of phenotypic and molecular characters may have become fixed between incipient species. Therefore, different characters and associated species concepts may provide conflicting inference in the determination of species status [e.g., [4,5]]. For example, the relative influence of genetic drift versus natural selection, relative sizes of populations sampled, and age of barriers to reproduction (if any) of the species involved will affect the degree to which characters become diagnostic, thus influencing phylogenetic inference. One manifestation of this phenomenon occurs during the comparison of phenotypic and molecular genetic data where conflicting patterns of divergence are detected [see [4,6]]. Attempts to accurately define evolutionary relationships are further confounded if expression of the phenotypic trait examined is influenced by environmental factors apart from any genomic control and therefore does not faithfully reflect evolutionary relationships.

Understanding the relationship between phenotypic and molecular genetic data sets may be particularly informative in studies of avian taxonomy where plumage characteristics have been historically used to designate subspecies as well as species [7]. Many species

* Correspondence: jmhull@ucdavis.edu

1Wildlife and Ecology Unit, Veterinary Genetics Laboratory, University of California, One Shields Avenue, Davis, CA 95616, USA

© 2010 Hull et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
and subspecies designations based upon phenotype alone have not been supported by molecular genetic phylogenies [e.g.,[8,9]]. In fact, among avian researchers, the value of designating subspecies rank is subject to ongoing debate often as vigorous as the debate over species concepts [6,10]. Inconsistencies at both hierarchical levels are associated with the difficulty in understanding the underlying genetic and/or environmental basis of phenotypic characters, and consequently, interpreting phenotypic patterns alone may mislead evolutionary inference [6,10]. Phenotypic characters associated with melanin-based plumage may be particularly susceptible to misinterpretation in an evolutionary context due to environmental and temporal influences. Expression of melanin-based characters can vary with body condition [11,12], oxidative stress induced by environmental factors [13], and temporally within individuals [14].

Among diurnal raptors, phenotypic differences have fueled a long-standing controversy concerning intraspecific relationships (i.e., subspecies designations) within the North American raptor Buteo jamaicensis (red-tailed hawks). This controversy has been motivated primarily by the presence of substantial variation in plumage characteristics of B. j. harlani, of which almost all individuals display melanistic plumage. By contrast, the majority of B. j. calurus are not melanistic, and melanistic plumage has not been documented in either B. j. alascensis or B. j. borealis [15,16]. Other melanin-based plumage characters, such as tail pattern and coloration and throat coloration, show extreme variation within B. j. harlani but overlap to some degree with plumage characters observed in other B. jamaicensis subspecies [17]. The phenotypic variation within B. j. harlani has been cited as evidence to consider it as either a distinct species, B. harlani [18], or as a subspecies within B. jamaicensis [19-21]. Whether observed plumage differences within B. jamaicensis reflect long-standing evolutionarily distinct lineages or are a consequence of environmental, temporal, or physiological factors, particularly within the range of B. j. harlani, remains undetermined.

Previous research has examined the phylogeographic relationships of B. j. calurus and B. j. borealis across nine breeding populations and ten migration sites [22]. This earlier analysis of microsatellite data in B. jamaicensis indicated low levels of genetic differentiation among breeding sites within recognized subspecies. Fine-scale population substructure was identified between central California and Intermountain West populations of B. j. calurus (F_{ST} = 0.011 - 0.018) [22]; no other significant within-subspecies differentiation was identified. Significant differentiation was also identified between B. j. borealis and B. j. calurus, supporting historical subspecies designations (F_{ST} = 0.036 - 0.039) [22,23].

Building upon this previous work, we used molecular genetic data from the mitochondrial and nuclear genomes to investigate the taxonomic relationship of B. j. harlani to two common and widespread subspecies geographically adjacent to B. j. harlani; B. j. borealis and B. j. calurus. Specifically, we investigated whether B. j. harlani is distinct at the species level by comparing our results with the levels of differentiation previously documented among subspecies of B. jamaicensis. If B. j. harlani represents a distinct species, it should at a minimum conform to criteria proposed for assessing status as a subspecies, or an “evolutionary significant unit,” [24-26]. These include reciprocal monophyly at mitochondrial DNA (mtDNA) and significant partitions at nuclear loci, relative to the other named subspecies. The results of our analyses help to resolve a long-standing taxonomic challenge and provide insight into the role of plumage variation in species designations.

Methods

Sample collection

We collected whole blood and feathers during the breeding season (May through June) from young in nests and adults on breeding territories of three putative B. jamaicensis subspecies; 178 B. j. calurus, 69 B. j. borealis, and 24 B. j. harlani (Table 1). Additionally, we collected samples from 21 melanistic individuals, presumably B. j. calurus, during autumn migration. We drew approximately 0.2 mL of blood from the medial metatarsal vein

| Table 1 Sampling locations and the number of individuals for B. j. calurus, B. j. borealis, B. j. harlani, and B. jamaicensis spp (melanistic) |
|-------------------------------|-----------------|-------|
| Subspecies | Location | N |
| B. j. calurus | central California | 68 |
| | Idaho | 35 |
| | Nevada/Utah | 39 |
| | southern California | 36 |
| B. j. borealis | Alberta | 2 |
| | Colorado | 11 |
| | Kentucky | 9 |
| | Michigan | 5 |
| | north Texas | 9 |
| | Wisconsin | 33 |
| B. j. harlani | Anchorage, Alaska | 6 |
| | Fairbanks, Alaska | 3 |
| | Kuskokwim, Alaska | 10 |
| | Palmer, Alaska | 4 |
| | Kluane, Yukon Territory | 1 |
| B. jamaicensis spp. (melanistic) | central California | 21 |
and plucked two feathers from the breast. We received approval for our methodology from the U.C. Davis Institutional Animal Care and Use Committee (protocol number 12260). We stored blood samples in 1.5 mL of Longmire’s lysis buffer (100 mM Tris pH 8.0, 100 mM EDTA, 10 mM NaCl, 0.5% SDS) at ambient temperature in the field and at -80°C once delivered to the laboratory and we stored feathers in envelopes in cool and dry conditions. We extracted genomic DNA from 25 μL of blood/buffer solution or a single feather calamus using Qiagen DNeasy kits (Qiagen Inc.); we stored DNA at -80°C following extraction.

Microsatellite data collection and analysis

We genotyped each individual at 17 microsatellite loci (BswA110w, BswA204w, BswA302w, BswA303w, BswA312w, BswA317w, BswB111aw, BswB220w, BswB221w, BswD122w, BswD127w, BswD210w, BswD220w, BswD234w, BswD310w, BswD313w, BswD327w) in six multiplex reactions following previously developed methods [27]. We separated PCR products using a 3730 DNA Analyzer (Applied Biosystems Inc.) and scored products using STRAND version 2.3.89 [28].

Because of the limited genetic differentiation previously documented among breeding populations within *B. j. calurus* and *B. j. borealis* [23] and the focus of our study on the taxonomic status of *B. j. harlani* in relation to other subspecies, we treated subspecies as our unit of analysis for the majority of the population genetic analyses. We tested for deviations from Hardy-Weinberg equilibrium in all loci using GENEPOP version 3.4 [29] and we tested each pair of loci in each putative subspecies (*B. j. calurus*, *B. j. borealis* and *B. j. harlani*) for genotypic disequilibrium in GENEPOP. After we assessed significance of pairwise tests using a sequential Bonferroni correction for multiple comparisons [30], we assessed node support using 10,000 bootstrap replicates. In order to further test for a distinction between subspecies and investigate the possibility of cryptic population differentiation beyond subspecies groupings, we implemented a Bayesian clustering analysis in STRUCTURE version 2.1 [38]. The unit of analysis was the individual and the algorithm implemented in Structure probabilistically grouped individuals together into the most likely number of populations without regard to presumed subspecies. This approach allowed us to determine the most likely number of population groups (K) without a priori information about subspecies or region of origin. We used the population admixture model with a flat prior and assumed allele frequencies were correlated. We allowed the program to run with a 500,000 iteration burn-in and a run length of 1,000,000 iterations and used this parameter set to explore K = 1 through K = 5 and averaged log Pr(X|K) estimates across 10 runs for each value of K. We determined the most likely number of populations by selecting the set of K values where the log Pr(X|K) estimation was maximized and then selecting the minimum value for K that did not sacrifice explanatory power [39,40]. We grouped individuals into clusters based upon the highest proportion of ancestry to each inferred cluster.

Mitochondrial data collection

We sequenced a 430 base pair segment of domain I of the mitochondrial control region using primers 16065F [41] and H15454 [42]. We prepared PCR products for sequencing with 0.5 μL exonuclease I and 1 μL shrimp alkaline phosphatase per 25 μL PCR and delivered PCR products to the UC Davis Sequencing Facility using primers 14965F and H15441 [43]. We aligned sequences by eye using SEQUENCER version 4.7 (Gene Codes Corporation).

Phylogeographic analyses of mtDNA sequence

We conducted phylogenetic analyses of control region sequences in PAUP* version 4.0b8 [44], using maximum parsimony (MP), maximum likelihood (ML) and distance (minimum evolution, ME). We used MODELT-EST version 3.06 [45] to determine the minimum parameter nucleotide substitution model that best fit the mtDNA sequence data under the Akaike Information Criterion [46]. In each analysis, we conducted heuristic tree searches, with 20 and 100 random additions of taxa for maximum likelihood and parsimony analyses, respectively, each followed by tree bisection-reconnection topological rearrangements. We applied midpoint rooting, employing the close-neighbor interchange algorithm.
for finding the tree, beginning with an initial neighbor-joining tree. We assessed the robustness of nodes using tree reconstructions of bootstrap-resampled data sets for 1,000 replicates under distance and parsimony criteria, and 200 replicates for ML criteria.

We calculated the number of variable sites, number of haplotypes, haplotype diversity, and nucleotide diversity in DNAsp [47]. Due to the low levels of divergence within subspecies previously documented [22], we calculated pairwise estimates of variance in haplotype frequency (Φ_{ST}) between each presumed subspecies using haplotype frequencies in ARLEQUIN version 3.11 and we assessed significance using 10,000 permutations. We used a sequential Bonferroni correction for multiple tests to determine significance of Φ_{ST} values [30].

Estimation of polarity in gene flow

To provide a coarse estimate of gene exchange among subspecies, we calculated the number of migrants per generation (N_{m}) for nuclear microsatellite and number of female migrants per generation (N_{mf}) for mtDNA among populations using MIGRATE version 2.0.6 [48-50]. To test for asymmetry in gene flow, we estimated full models, θ ($4N_{m} \mu$ or $N_{mf} \mu$, composite measure of effective population size and mutation rate), and all pairwise migration parameters individually from the data and compared them to a restricted island model for which θ was averaged and pairwise migration parameters were symmetrical between populations.

We ran MIGRATE using maximum likelihood search parameters; ten short chains (1,000 used trees out of 20,000 sampled), five long chains (10,000 used trees out of 200,000 sampled), and five adaptively heated chains (start temperatures: 1, 1.5, 3, 6, and 12; swapping interval = 1). We ran full models three times to ensure the convergence of parameter estimates; we ran restricted models once. We evaluated the alternative model for goodness-of-fit given the data using a log-likelihood ratio test. The resulting statistic from the log-likelihood ratio test is equivalent to a χ^2 distribution with the degrees of freedom equal to the difference in the number of parameters estimated in the two models [50].

Melanocortin 1 receptor sequencing

To determine if differences in the coding region of melanocortin 1 receptor (Mc1r) gene are associated with subspecies or color variation in B. jamaicensis, we sequenced Mc1r from 23 individuals (17 B. j. calurus; 6 B. j. harlani) using primers MSHR9 and MSHR72 [51]. We amplified an 829 bp fragment from the 945 bp avian Mc1r coding region, excluding 56 bases from the 5‘ end and 54 bases from the 3‘ end of exon 1. We used the following polymerase chain reaction (PCR) conditions for a 15 µl total reaction: 1.5 µl 10× reaction buffer, 0.3 µl of dNTPs (10 µM), 0.5 µl each primer (10 µM), 0.1 µl Taq polymerase, and 20 ng DNA. We used the following PCR cycling parameters; 94°C for 3:00, (94°C for 0:30, 61°C for 0:45, 72°C for 1:00) × 40 cycles, 72°C for 10:00, 15°C forever. We performed cycle sequencing for both strands with Big Dye v. 2 using the amplification primers and two additional internal primers (intF 5’-AGCAACCTGGCAGAGACT-3‘ and intR 5’-TGTAGAGCACCAGCATGAGG-3‘; 4 µM) following standard sequencing protocols. We sequenced all PCR products on an ABI PRISM® 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA) and edited the sequences in the program Sequencher version 4.7 (Gene Codes Corporation). We identified all heterozygous sites by visual inspection of chromatogram peaks and confirmed each site using sequences from both strands.

Results

Microsatellite data

None of the 17 microsatellite loci significantly differed from Hardy-Weinberg equilibrium expectations and we detected no evidence of linkage disequilibrium. We found no evidence of null alleles. Observed heterozygosity, average number of alleles, private alleles, and allelic richness for each sampling site are summarized in Table 2.

Strong bootstrap support (99.8%) in the UPGMA tree (Figure 1) indicated a distinction between all B. j. calurus samples and the combined sample of B. j. borealis and B. j. harlani. No other nodes were supported by bootstrap analysis. Neighbor joining tree topology (not shown) was identical to that observed in the UPGMA tree. This result is consistent with previous UPGMA clustering that supported a distinction between B. j. borealis and B. j. calurus for all breeding and migration sites [22].

Pairwise θ_{ST} values for 17 microsatellite loci among subspecies are summarized in Table 3. We observed significant differentiation between B. j. calurus and both B. j. borealis and B. j. harlani. However, we did not detect significant differences in variance in allele frequency between B. j. borealis and B. j. harlani. A sample of 21 melanistic individuals trapped in migration in central California, presumably B. j. calurus, was significantly different than both B. j. harlani and B. j. borealis individuals, but genetically indistinct from B. j. calurus individuals.

Bayesian clustering analysis of breeding individuals without regard to subspecies or region of origin revealed a maximum log Pr(X|K) for K = 2 reflecting two distinct population clusters. One cluster corresponded to a group composed of B. j. calurus individuals while the second group was comprised of both B. j. borealis and B. j. harlani. As an additional test for the existence of
Figure 1 Unrooted UPGMA clustering tree based on microsatellite allele frequency differences. Only breeding sites with greater than 20 individuals were included; we assessed support using 10,000 bootstrapped data sets. Nodes with greater than 50% bootstrap support are indicated. The results shown here are consistent with previous research that found support in UPGMA clustering for a distinction between B. j. calurus and B. j. borealis breeding and migration sites [22].

Table 2 Genetic diversity indices for microsatellite and mitochondrial sequence data

	N_μsat	H_0 ± sd	A_a ± sd	A_p	A_r	N_int	H_N	H_B	π	Hd
B. j. calurus	178	0.68 ± 0.01	14.2 ± 10.3	34	6.9	122	14	8	0.0019	0.57 ± 0.003
central California	68	0.68 ± 0.01	11.4 ± 7.6	9	6.3	29	6	2	0.0012	0.43 ± 0.11
Idaho	35	0.66 ± 0.02	10.1 ± 6.3	5	6.5	34	6	2	0.0012	0.37 ± 0.10
Nevada/Utah	39	0.71 ± 0.02	11.2 ± 7.2	9	6.8	29	8	1	0.0016	0.57 ± 0.11
southern California	36	0.65 ± 0.02	9.6 ± 5.1	3	6.5	30	4	0	0.0009	0.35 ± 0.10
B. j. borealis	69	0.73 ± 0.01	12.1 ± 7.9	11	7.1	52	13	8	0.0019	0.520 ± 0.007
Alberta	2	0.79 ± 0.07	2.9 ± 1.1	0	—	—	—	—	—	—
Colorado	11	0.73 ± 0.03	7.1 ± 3.4	1	6.6	6	1	0	0.0022	0.70 ± 0.22
Kentucky	9	0.72 ± 0.04	6.2 ± 2.5	0	—	10	5	1	0.0008	0.33 ± 0.22
Michigan	5	0.76 ± 0.05	5.1 ± 2.0	1	—	5	3	1	0.0023	0.70 ± 0.22
north Texas	9	0.73 ± 0.04	6.7 ± 3.4	1	—	5	2	1	0.0008	0.33 ± 0.22
Wisconsin	33	0.73 ± 0.02	9.8 ± 5.3	5	6.6	26	8	5	0.0022	0.47 ± 0.12
B. j. harlani	24	0.69 ± 0.03	9.0 ± 5.3	5	6.9	24	5	0	0.016	0.59 ± 0.05
B. jamaicensis spp. melanistic migrants	21	0.68 ± 0.03	9.0 ± 5.2	1	6.9	—	—	—	—	—

Key: N_μsat = the number of samples for which microsatellite data was collected, H_0 = observed heterozygosity, A_a = average number of alleles per locus, A_p = number of private alleles, A_r = allelic richness averaged across 17 loci, N_int = the number of samples for which sequence data was collected, H_N = the number of haplotypes, H_B = the number of private haplotypes, π = nucleotide diversity, Hd = haplotype diversity.
a distinct B. j. harlani cluster we also examined population clustering for K = 3. We continued to find a distinct B. j. borealis/harlani cluster while the B. j. calurus cluster was further subdivided into a central California cluster and an intermountain desert cluster, consistent with the findings of Hull et al. 2008 [22]. Finally, we performed a separate run including only B. j. borealis and B. j. harlani samples to test whether any fine-scale structure could be identified. For this subset of the data, the maximum log Pr (X|K) occurred at K = 1, but was very similar to the value at K = 2. For K = 2, no pattern of cluster ancestry was apparent between B. j. borealis and B. j. harlani; a Yates corrected χ² test also showed no difference in the proportion of ancestry (χ²1 = 1.52, P = 0.22).

Mitochondrial data

We collected control region sequence data for 198 individuals from presumptive populations of B. j. borealis (n = 52), B. j. calurus (n = 122), and B. j. harlani (n = 24) and observed 29 haplotypes (GenBank accession numbers HM454161 - HM454189). Of these haplotypes, eight were unique to B. j. borealis and five unique to B. j. calurus; we did not identify any unique haplotypes in B. j. harlani. Haplotype and nucleotide diversity were generally lower in B. j. calurus than in either B. j. borealis or B. j. harlani which were relatively similar to each other (Table 2). Distribution and frequency of control region haplotypes among sampling sites is shown in Figure 2. Pairwise ΦST comparisons among subspecies

Table 3 Microsatellite pairwise ΦST comparisons between B. jamaicensis subspecies

	B. jamaicensis spp. (melanistic)	B. j. calurus	B. j. borealis	B. j. harlani
B. jamaicensis spp.				
(melanistic)				
B. j. calurus	0.004			
B. j. borealis	0.023*	0.012*		
B. j. harlani	0.023*	0.020*	0.004	

Key: *s indicate significant differences following Bonferroni correction. Melanistic individuals were sampled during autumn migration within the range of B. j. calurus; however the sample may include individuals that originated outside the range of B. j. calurus.

Figure 2 Map of North American B. jamaicensis sampling locations. We collected all samples from breeding sites during the breeding season from either young in nests or territorial adults. We collected samples from sites 1-4 within the breeding range of B. j. calurus; samples from sites 5-9 within the breeding range of B. j. borealis; samples from site 10 within the breeding range of B. j. harlani; and we collected the pooled samples from site 11 from migrants of unknown breeding origin, all samples from site 11 appeared phenotypically similar to typical or melanistic B. j. calurus. Sampling areas are shown with associated frequencies of mitochondrial control region haplotypes.
revealed significant differentiation among all pairs of subspecies (Table 4).

Analysis of mtDNA sequence data suggested that the best model fit to the data under the hierarchical likelihood ratio criterion was the HKY + I(0.90) + G model [52]. Under the Akaike Information Criterion (AIC) criterion the best fit model was the K81uf + I(0.90) + G(Γ = 0.85) model with an invariant site parameter (TrN+I). The log likelihood score for the HKY + I(0.90) + G(Γ = 0.85) model (-lnL = 769.17) was similar to that for the K81uf + I(0.90) + G(Γ = 0.85) model (-ln L 768.02, AIC = 1550.05). For the HKY + I model, we estimated the transition to transversion ratio at 14.42.

All gene tree reconstruction methods showed results similar to the among-haplotype relationships shown in the ME tree (Figure 3): haplotypes did not form monophyletic clades with respect to subspecies, and node support was weak. Both ME and ML analyses gave marginal bootstrap support in few cases with no support greater than 59% (data for ME analysis only given in Figure 3).

We observed asymmetrical gene flow among all subspecies and across both marker types. The full model (all parameters allowed to vary independently) had significantly higher likelihoods than the restricted island model (equal inter-group migration rate and equal subspecies to be considered a full species.

Table 4 Mitochondrial pairwise ΨST comparisons between *B. jamaicensis* subspecies

	B. j. calurus	B. j. borealis	B. j. harlani
B. j. calurus		0.032*	0.0203*
B. j. borealis	0.032*		0.059*
B. j. harlani	0.0203*	0.059*	

Key: *s indicates significant differences following Bonferroni correction.

Mc1r results

We sequenced 829 base pairs corresponding to 276 out of 314 amino acids in the avian Mc1r, excluding 19 amino acids in the N-terminus domain and 17 amino acids in the C-terminus domain (GenBank accession numbers HM454190 - HM454192). We found that six internal nucleotides were absent relative to the *Gallus gallus* Mc1r. We found three synonymous substitutions within conserved transmembrane regions I and III, but no non-synonymous substitutions in the 829 bp of *Mc1r* sequenced from the 23 *B. jamaicensis* individuals sampled (Table 5). None of the three synonymous substitutions were consistently associated with rufous, dark, light, partial albino, or *B. j. harlani* color morphs. These data suggest that the *Mc1r* locus in *B. jamaicensis* is not responsible for breast color variation or the variable melanin-based plumage patterns observed in *B. j. harlani*.

Discussion

Differentiation and genetic diversity

Our results build upon previous phylogeographic work and show limited genetic differentiation among the *B. jamaicensis* subspecies examined. The data suggest that all three *B. jamaicensis* subspecies are quite similar genetically, and that *B. j. harlani* shows closer evolutionary affinities to *B. j. borealis* than to *B. j. calurus*. The close relationship and limited differentiation between *B. j. harlani* and *B. j. borealis* is supported by lack of significant θST and significant albeit shallow ΦST estimates (0.004 and 0.059 respectively), high levels of estimated of gene flow based on both marker classes, UPGMA microsatellite groupings, Bayesian support in the microsatellite data for a single *B. j. harlani/borealis* population cluster, and absence of unique *B. j. harlani* mitochondrial haplotypes. These results indicate both historical and contemporary gene exchange between *B. j. borealis* and *B. j. harlani*. Conversely, θST and ΦST estimates between *B. j. calurus* and the other two subspecies were significant for both marker types. Significant divergence has been observed among other North American raptor populations and subspecies. Eastern and western subspecies of *B. lineatus* (red-shouldered hawk) displayed significant divergence in microsatellite and mitochondrial data sets, and eastern and western populations of *Accipiter striatus* (sharp-shinned hawk).
Figure 3 Neighbor joining distance mid-point rooted minimum evolution tree of *B. jamaicensis* haplotypes. Branch length indicates degree of genetic differentiation. Bootstrap values providing > 50% support for nodes are indicated. Gray circles indicate haplotypes sampled from breeding sites of *B. j. calurus*, white triangles indicate haplotypes sampled from breeding sites of *B. j. borealis*, black squares indicate haplotypes sampled from breeding sites of *B. j. harlani*, and asterisks indicate haplotypes that were sampled from migrant hawks in California with plumage consistent with *B. j. calurus*. We applied midpoint rooting, employing the close-neighbor interchange algorithm for finding the tree, beginning with an initial neighbor-joining tree.
were found to be significantly diverged in the absence of any described subspecies [54,55]. Both studies employed the same set of microsatellite and/or mitochondrial markers as used here.

Estimates of rates of gene flow among subspecies based upon mitochondrial and microsatellite data indicate a high level of gene flow among all three B. jamaicensis subspecies examined. Both mitochondrial and microsatellite data sets indicate that over time a higher level of gene flow has occurred from B. j. borealis and B. j. harlani to B. j. calurus than from B. j. calurus to the other subspecies. Estimates of gene flow between B. j. borealis and B. j. harlani appear symmetrical when considering the microsatellite data; however, the mitochondrial estimates indicate greater gene flow from B. j. borealis to B. j. harlani. This pattern suggests that while rates of male migration between B. j. borealis and B. j. harlani may be equivalent, female B. j. borealis migration rates exceed those of B. j. harlani, a result consistent with a northern Midwest source for Yukon and Alaskan populations of B. jamaicensis.

The three recognized subspecies of B. jamaicensis examined here also displayed similar intra-subspecific levels of genetic diversity. Our sample of B. j. harlani showed equivalent levels of observed heterozygosity, allelic richness, nucleotide diversity and haplotype diversity to B. j. calurus and B. j. borealis. We did not find any unique B. j. harlani mitochondrial haplotypes and only identified five private microsatellite alleles; the absence of unique haplotypes and presence of few unique microsatellite alleles is also suggestive of contemporaneous gene exchange among populations representing the sampled subspecies.

Our analysis of melanistic individuals sampled in California during autumn migration indicated that they were genetically indistinguishable from B. j. calurus. Additionally, our analysis of sequence data from the melanocortin 1 receptor (Mc1r) showed no differences between melanistic and non-melanistic individuals, or between B. j. harlani and any B. j. borealis or calurus. This suggests that the Mc1r gene does not play the same role in B. jamaicensis melanism as in some other avian species [51,56].

Evolutionary interpretation of genetic data

The genetic data described here do not support the historical designation of B. j. harlani as a distinct species [18,57]. The lack of significant differentiation between B. j. harlani and B. j. borealis in the microsatellite data suggests that gene exchange between the two subspecies occurs at a relatively high level, and the lack of reciprocal monophyly among haplotypes is inconsistent with
differences expected at the species level. Furthermore, the absence of field evidence demonstrating assortative mating among B. j. harlani individuals relative to B. j. calurus or B. j. borealis and the apparent interbreeding with neighboring subspecies [19,58,59] also supports recognition of B. j. harlani as a member of B. jamaicensis, and not a distinct species. In fact, under some criteria, the pattern observed between B. j. borealis and B. j. harlani is inconsistent with differentiation expected among subspecies or "evolutionary significant units" [24-26]. Given the observed levels of differentiation based on traditional and Bayesian analyses of population structure and results of the MIGRATE analyses, it is possible that B. j. harlani represents a post-Pleistocene northern extension of B. j. borealis populations; however additional study is required to test this hypothesis.

The failure to detect microsatellite differentiation between B. j. harlani and B. j. borealis is not associated with lack of sensitivity in the genetic tools employed. In other studies, Bayesian analyses were able to identify fine-scale population structure between western North American populations of both B. j. calurus and B. swainsoni (Swainson’s hawk) employing the same set of microsatellite markers used here [22,43]. The population divergences recovered in these examples corresponded to θ_{ST} values of ~0.01 in both cases. In the case of B. j. calurus, within-subspecies genetic structure in western populations included fine-scale substructure between central California and the Intermountain West populations and was associated with significant morphological (overall size) differentiation. The morphological differentiation observed between these populations of a well described subspecies (B. j. calurus) indicates that variation in morphology alone may not accurately reflect speciation events. Given these previous findings using the same marker set, the data set used here is sensitive enough to detect species-level differentiation between B. j. harlani and other B. jamaicensis subspecies if it were present.

Relevance of phenotype

In addition to a high incidence of melanism, B. j. harlani are highly variable in plumage particularly in tail pattern, extent of white below chin, spotting on back, and extent of melanism throughout body feathers [15,16,60]. The extent of variation makes description of definitive B. j. harlani characters difficult and no diagnostic set of B. j. harlani plumage characters has yet been accepted [60]. Whether the variable plumage characteristics within B. j. harlani also occur within other subspecies is also debated. A breeding individual observed in central California displayed many of the typical B. j. harlani plumage characters and many juvenile hawks observed during autumn migration in California have plumage characteristics that have been suggested as belonging to B. j. harlani [AC Hull, pers. comm.; WC Clark pers. comm.], yet these migrant juveniles were found to be genetically similar to the breeding populations of B. j. calurus from central California and the Great Basin [22], not B. j. borealis or harlani. To provide a more thorough understanding of how plumage variation in B. jamaicensis is correlated with nominate subspecies, additional field research is necessary to more completely categorize the range of plumage variation throughout B. jamaicensis and describe the geographic bounds of observed variation. Additional surveys and sampling of individuals from the Yukon, British Columbia, and prairie region would be particularly helpful in resolving the relationship between phenotype, environment, and population structure.

The mechanisms influencing plumage patterns in B. j. harlani require further investigation. Potential mechanisms include: 1) a B. j. harlani-specific gene or gene-complex, or 2) particular environmental, temporal,

Table 5 Mc1r polymorphism for breast color morphs in B. j. calurus and B. j. harlani subspecies.

Phenotype	Subspecies	Specimen no.	73	292	346
Rufous	calurus	10094			
Rufous	calurus	13424			
Rufous	calurus	13642			
Rufous	calurus	13651			
Rufous	calurus	13662			
Rufous	calurus	13737			
Rufous	calurus	13775			
Rufous	calurus	13826			
Dark	calurus	11071			
Light	calurus	10101	G/A		
Light	calurus	11056			
Light	calurus	13670			
Light	calurus	13671			
Light	calurus	13672	C/T		
Light	calurus	13673	C/T		
Light	calurus	13674	G/A		
Partial albino	calurus	6161			
Harlan’s	harlani	10983			
Harlan’s	harlani	13654	C/T		
Harlan’s	harlani	14133	C/T		
Harlan’s	harlani	14134			
Harlan’s	harlani	14138			
Harlan’s	harlani	14139			

Key: The nucleotide position and base for the consensus sequence is listed across the top. Amino acids from the hawk consensus sequence are listed below. No amino acid replacements were observed.
or physiological conditions within the B. j. harlani range interacting with the standard B. jamaicensis genotype without involvement of a unique B. j. harlani genotype. In light of recent research that has begun to reveal the role of environmental conditions, including temperature and oxidative stress, on melanin-based plumage [11-13,61], a controlled study of B. j. harlani plumage characters would be a fruitful avenue of future research.

More broadly, the underlying factors responsible for the base melanistic plumage in B. j. harlani, and more generally, melanism in B. jamaicensis require additional study. Our data suggest that the McIr locus does not play a similar role as in other avian species previously examined [51,56,62]. The gene or genes responsible for melanism in B. jamaicensis remain to be identified.

Conclusions

These genetic data indicate low levels of differentiation among three recognized subspecies of B. jamaicensis examined, particularly between B. j. borealis and B. j. harlani. In light of previous population genetic structure investigations of species within the genus Buteo, our findings are inconsistent with the historical designation of B. j. harlani as a separate species. Rather, the mtDNA data are consistent with contemporary subspecies nomenclature and data from both marker classes suggest that gene flow is occurring at a relatively high level among these subspecies. Additional research is necessary to fully describe the geographical variation in plumage observed in B. jamaicensis and to determine the underlying mechanisms responsible for the variation seen in B. j. harlani.

Acknowledgements

We thank William Clark, Angus Hull, Ted Swem, Clayton White, and the Golden Gate Raptor Observatory for assisting in sample collection. Support was provided by the UC Davis Veterinary Genetics Laboratory, USGS Alaska Science Center, and a National Science Foundation Graduate Research Fellowship to Emily Kay. Joshua Israel, Jessica Petersen, Molly Stephens, John Martin and Travis Booms provided valuable comments on earlier versions of this manuscript. Two anonymous reviewers contributed important suggestions and guidance. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author details

1Wildlife and Ecology Unit, Veterinary Genetics Laboratory, University of California, One Shields Avenue, Davis, CA 95616, USA. 2Genomic Variation Laboratory, Department of Animal Science, University of California, Davis, CA 95616, USA. 3California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA. 4Alaska Science Center, US Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA. 5Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. 6Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.

Authors' contributions

JH, ST, DM, HH, and HE designed the study. JH and ST obtained the genetic samples. JH, ST, and EK did the molecular work and obtained the sequence data. JH and ST did the phylogenetic analyses. JH, ST, and EK wrote a first draft. The final version was completed by JH, DM, ST, EK, HH, and HE. All authors read and approved the final manuscript.

Received: 26 February 2010 Accepted: 22 July 2010 Published: 22 July 2010

References

1. Sites JH, Marshall JC: Operational criteria for delimiting species. Annu Rev Ecol Evol Syst 2004, 35:199-227.
2. de Queiroz K: Different species problems and their resolution. BioEssays 2005, 27:1263-1269.
3. Hey J: The failure of modern species concepts. Trends Ecol Evol 2006, 21:447-450.
4. Omland KE, Orr CL, Boarman WJ, Marshuff JM, Fleischer RC: Cryptic genetic variation and parapathy in ravens. Proc R Soc Lond B Biol Sci 2000, 267:2475-2482.
5. Hull JM, Savage WK, Bollmer JL, Kimball RT, Parker PG, Whiteman NK, Ernest HB: On the origin of the Galapagos hawk: an examination of phenotypic differentiation and mitochondrial parapathy. Biol J Linn Soc 2008, 95:779-789.
6. Zink RM: The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proc R Soc Lond B Biol Sci 2004, 271:556.
7. American Ornithologists’ Union: Forty-second supplement to the American Ornithologists’ Union Check-list of North American Birds. Auk 2000, 117:847-858.
8. Zink RM, Barrowcliffe GJ, Atwood JL, Blackwell-Rago RC: Genetics, taxonomy, and conservation of the threatened California Gnatcatcher. Conserv Biol 2000, 1:1394-1405.
9. Johnson JA, Burnham KK, Burnham WA, Mindell DP: Genetic structure identified among continental and island populations of gourmacus. Mol Ecol 2007, 16:3145-3160.
10. Philimore AB, Orens IPF: Are subspecies useful in evolutionary and conservation biology? Proc R Soc Lond B Biol Sci 2006, 1590:1049-1053.
11. Griffith SC, Parker TH, Olson VA: Melanin versus carotenoid-based sexual signals: is the difference really so black and red? Anim Behav 2006, 71:749-763.
12. McGraw KJ: An update on the honesty of melanin-based color signals in birds. Pigment Cell and Melanoma Res 2008, 21:133-138.
13. Galvan I, Alonso-Alvarez C: The expression of melanin-based plumage is separately modulated by exogenous oxidative stress and a melanocortin. Proc R Soc Lond B Biol Sci 2009, 1670:909-909.
14. Verpura P, Fargallo JA, Martinez-Padilla J, Lermus JA: Inter-annual variation and information content of melanin-based coloration in female Eurasian krestels. Biol J Linn Soc 2009, 97:781-790.
15. Preston CR, Beane HD: Red-tailed Hawk (Buteo jamaicensis). The Birds of North America Philadelphia: The Academy of Natural Sciences, Washington, DC. The American Ornithologists’ Union.Poole A, Gill F 1993, 52.
16. Clark WS, Wheeler BK: A Field Guide to Hawks of North America, Revised Boston: Houghton Mifflin 2001.
17. Clark WS: Extreme variation in the tails of adult Harlan’s Hawks. Birding.
18. Peters JL: Check-list of birds of the world Cambridge: Harvard University Press 1931, 1.
19. Ridgway R: Harlan’s Hawk a race of the Red-tail, and not a distinct species. Auk 1890, 7:205.
20. Mindell DP: Harlan’s Hawk (Buteo jamaicensis harlani): a valid subspecies. Auk 1983, 100:161-169.
21. Mindell DP: Plumage variation and winter range of Harlan’s Hawk (Buteo jamaicensis harlani). Amer Birds 1985, 39:127-133.
22. Hull JM, Hull AC, Sacks BN, Smith JP, Emerit HB: Landscape characteristics influence morphological and genetic differentiation in a widespread raptor. Mol Ecol 2008, 17:810-824.
23. Pearlstone EV: Variation in mitochondrial DNA of four species of migratory raptors. J Raptor Res 2004, 38:250-255.
24. Ball RM, Avise JC: Mitochondrial-DNA phylogeographic differentiation among avian populations and the evolutionary significance of subspecies. Auk 1992, 109:626-636.
25. Moritz C: Defining evolutionarily significant units for conservation. Trends Ecol Evol 1994, 9:373-375.
26. Avise JC, Walker D: Pleistocene phylogeographic effects on avian populations and the speciation process. *Proc R Soc Lond B Biol Sci* 1998, 265:457-463.

27. Hull JM, Tufts D, Taplin JR, May B, Ernest HB: Development of 19 microsatellite loci for Swainson’s hawks (*Buteo swainsoni*) and other buteos. *Mol Ecol Notes* 2007, 7:346-349.

28. Toonen RJ, Hughes S: Increased Throughput for Fragment Analysis on an ABI Prism® 377 Automated Sequencer Using a Membrane Comb and STRand Software, Biotechniques 2001, 31:1302-1324.

29. Raymond M, Rousset F: GENEPop Version 1.2: population genetics software for exact tests and ecumenicism. *J Hered* 1995, 86:246-249.

30. Rice WR: Analyzing tables of statistical tests. *Evolution* 1989, 43:223-225.

31. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P: MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. *Mol Ecol Notes* 2004, 4:535-538.

32. Gaubitz JC: CONVERT: a user friendly program to reformat diploid genotypic data for commonly used population genetic software packages. *Mol Ecol Notes* 2004, 4:390-391.

33. Park SDE: Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection. PhD Thesis University of Dublin 2001.

34. Goudet J: FSTAT (version 1.2): a computer program to calculate F-statistics. *J Hered* 1995, 86:485-486.

35. Excoffier L, Laval G, Schneider S: Arlequin ver. 3.0: An integrated software package for population genetics data analysis. *Evol Bioinformatics Online* 2005, 1:47-50.

36. Nei M: *Molecular Evolutionary Genetics*. New York: Columbia University Press 1987.

37. Felsenstein J: Phylogeny Inference Package, Version 3.2 University of Washington 1989.

38. Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. *Genetics* 2000, 155:945-959.

39. Pritchard JK, Wen W: Documentation for Structure Software Version 2. http://pritch.bsd.uchicago.edu/.

40. Waples RS, Gaggiotti O: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. *Mol Ecol* 2006, 15:1419-1439.

41. Kimball RT, Braun EL, Van Zant JW, Wills DPM, Shipley P: The molecular phylogeny of the pheasants and partridges suggests that these lineages are not monophyletic. *Mol Phylogenet Evol* 1999, 11:38-54.

42. Bolger RL, Kimball RT, Whitten NK, Sarsaola JH, Parker PG: Phylogeography of the Galapagos hawk (*Buteo galapagoensis*): a recent arrival to the Galapagos Islands. *Mol Phylogenet Evol* 2006, 39:237-247.

43. Hull JM, Anderson R, Bradbury M, Estep J, Ernest HB: Population structure and genetic diversity of migrating sharp-shinned hawks (*Buteo lineatus*): implications for conservation. *Conserv Genet* 2008, 9:305-316.

44. Swoford DL, PAUP*: Phylogenetic analysis using parsimony (and other methods). Version 4 Sunderland: Sinauer 2000.

45. Pooada D, Crandall KA: Modeltest: testing the model of DNA substitution. *Bioinformatics* 1998, 14:817-818.

46. Akaike H: A new look at the statistical model identification. *IEEE Transactions on Automatic Control* 1974, 19:716-723.

47. Roazs J, Sánchez-De JC, Barrio I, Messeguer X, Roazs R: DNA polymorphism analyses by the coalescent and other methods. *Bioinformatics* 2003, 19:2496-2497.

48. Beerli P, Felsenstein J: Maximum likelihood estimation of migration rates and population numbers of two populations using a coalescent approach. *Genetics* 1999, 152:765-773.

49. Beerli P: MIGRATE: documentation and program, part of LAMARC. Version 2.0, Revised 23 December 2004,http://popgen.sc.fsu.edu/Migrate/Migrate.html.

50. Beerli P, Felsenstein J: Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. *Proc Natl Acad Sci USA* 2001, 98:4563-4568.

51. Mundy NJ, Badcock NS, Hart T, Scribner K, Jansen K, Nadeau NJ: Conserved genetic basis of a quantitative plumage trait involved in mate choice. *Science* 2004, 303:1870-1873.

52. Hasegawa M, Kishino KT: Dating the human-ape splitting by a molecular clock of mitochondrial DNA. *J Mol Evol* 1985, 22:160-174.

53. Kimora M: Estimation of evolutionary rate of base substitutions through comparative studies of nucleotide sequences. *J Mol Evol* 1981, 16:111-120.

54. Hull JM, Strobel BN, Roal CW, Hull AC, Dykstra CR, Irish AM, Fish AM, Ernest HB: Comparative phylogeography and population genetics within *Buteo lineatus* reveals evidence of distinct evolutionary lineages, *Mol Phylogenet Evol* 2008, 49:188-196.

55. Hull JM, Garman DJ: Effects of Holocene climate change on the historical demography of migrating sharp-shinned hawks (*Accipiter striatus velox*) in North America. *Mol Ecol* 2005, 14:159-170.

56. Theron E, Hawkins K, Birthingham E, Ricklefs RE, Mundy NI: The molecular basis of an avian plumage polymorphism in the wild: a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, *Cerroco flavoce*. *Curr Biol* 2001, 11:550-557.

57. Audubon JJ: *Ornithological Biography* Edinburgh: Adam and Charles Black 1831.

58. Cite this article as: Hull et al. *Population structure and plumage polymorphism: The intraspecific evolutionary relationships of a polymorphic raptor, Buteo jamaicensis harlani*. BMC Evolutionary Biology 2010 10:224.