miR-381 modulates human bone mesenchymal stromal cells (BMSCs) osteogenesis via suppressing Wnt signaling pathway during atrophic nonunion development

Haitao Long, Yong Zhu, Zhangyuan Lin, Jun Wan, Liang Cheng, Min Zeng, Yun Tang and Ruibo Zhao

Abstract
The osteogenic differentiation of human bone mesenchymal stromal cells (BMSCs) has been considered as a central issue in fracture healing. Wnt signaling could promote BMSC osteogenic differentiation through inhibiting PPARγ. During atrophic nonunion, Wnt signaling-related factors, WNT5A and FZD3 proteins, were significantly reduced, along with downregulation of Runx2, ALP, and Collagen I and upregulation of PPARγ. Here, we performed a microarray analysis to identify differentially expressed miRNAs in atrophic nonunion tissues that were associated with Wnt signaling through targeting related factors. Of upregulated miRNAs, miR-381 overexpression could significantly inhibit the osteogenic differentiation in primary human BMSCs while increase in PPARγ protein level. Through binding to the 3′UTR of WNT5A and FZD3, miR-381 modulated the osteogenic differentiation via regulating β-catenin nucleus translocation. Moreover, PPARγ, an essential transcription factor inhibiting osteogenic differentiation, could bind to the promoter region of miR-381 to activate its expression. Taken together, PPARγ-induced miR-381 upregulation inhibits the osteogenic differentiation in human BMSCs through miR-381 downstream targets, WNT5A and FZD3, and β-catenin nucleus translocation in Wnt signaling. The in vivo study also proved that inhibition of miR-381 promoted the fracture healing. Our finding may provide a novel direction for atrophic nonunion treatment.

Introduction
Atrophic nonunion is a permanent failure of healing following bone fracture injuries and commonly exists about 6 months after fracture1. Atrophic nonunion may be owing to many factors, including inadequate immobilization and inadequate blood supply2; yet, the underlying physiopathology is still unclear.

The major role of osteogenesis in nonunion and fracture healing has been reported. During fracture healing, bone mesenchymal stromal cells (BMSCs) can differentiate toward adipocytes or osteoblasts under different stimulations3-4, and promote bone callus tissue formation5-6. A reduction of human BMSC pool and an inhibited BMSC proliferation have been regarded as potential contributors to nonunion during bone healing7-8. During BMSC osteogenic differentiation, the expression of timely expressed genes, including Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and Collagen I, and the mineralization of extracellular matrix could be observed9-10. In spite of the essential role of BMSCs in osteogenic differentiation, the differentiation potential and function of the human BMSCs in atrophic nonunion patients is still poorly understood.
Osteogenesis differentiation of BMSCs is a complex process opposite to BMSC adipogenic differentiation. During osteogenesis differentiation, a number of adipogenic factors precisely regulate the expression of concerted genes. Of them, the crucial role of peroxisome proliferator-activated receptor γ (PPARγ) promoting adipogenic differentiation and inhibiting osteogenesis differentiation via controlling many downstream adipogenic and osteogenic genes has been well studied. Moreover, inducers of osteogenic differentiation, such as Wnt, may reduce the transactivation of PPARγ. Thus, the activation of the Wnt signaling pathway can promote the osteogenic differentiation of BMSCs.

As a series of small noncoding RNAs, microRNAs (miRNAs) can inhibit the expression of downstream target genes at the posttranscriptional level by imperfect binding to their 3'UTRs. Since miRNAs can regulate multi downstream targets, they may serve as key regulators of both normal and disease processes, including cell proliferation, apoptosis, migration, as well as osteoblastic differentiation of various cell types. In BMSCs, miR-204/211 targets Runx2 to stimulate adipocyte differentiation and inhibit osteoblastic differentiation. In human adipose tissue-derived MSCs (hADSCs), representative noncanonical Wnt family member, and FZD3, a Wnt signaling receptor, are activated in the osteogenic differentiation of BMSCs.

Based on these previous studies, microarray analysis was performed to identify differentially expressed miRNAs in atrophic nonunion and standard healing fracture tissues. Possible downstream targets of these miRNAs were applied to KEGG signaling pathway annotation. The miRNA with the most possible downstream targets in the Wnt pathway was selected and examined for its detailed function and molecular mechanism. Taken together, we demonstrated a miRNA-regulated Wnt signaling which might affect BMSC osteogenic potential, providing a novel direction for atrophic nonunion therapy.

Materials and methods

Subjects and clinical characteristics

Ten atrophic nonunion and ten standard healing patients were enrolled in the study with the approval of the Xiangya Hospital Central South University; written informed consent was obtained from all subjects. Standard healing patients were taken as control. Atrophic nonunion in the present study was defined as a fracture healing failure demonstrating no radiographic improvement for three consecutive months. Exclusion criteria reported in the previous study were adopted. This work received approval from the institutional ethics committee and conformed to the tenets of the Declaration of Helsinki.

Isolation, culture, and transfection of human BMSCs

Human BMSCs were isolated from healthy volunteers and expanded following the methods previously reported. The BMSCs prior to passage four were used in the following experiments. An osteogenic medium consists of α-MEM supplemented with 10% FBS, 50 μg/ml L-ascorbic acid, 10 mM glycerophosphate, and 100 nM dexamethasone and antibiotics (Sigma; St. Louis, MO, USA) is used for osteogenic differentiation induction. The maintaining medium consists of DMEM (Gibico, Invitrogen) with 10% FBS and 100 μg/ml penicillin/streptomycin (Invitrogen) at 37 °C and 5% CO2.

The expression of miRNA was achieved by transfecting BMSCs with miR-381-3p mimics or miR-381-3p inhibitor (Invitrogen) in six-well plates at a density of 4 × 10^5/well with the help of Lipofectamine RNAiMAX (Invitrogen).

miRNA array analysis

To screen for miRNA differentially expressed in atrophic nonunion and standard healing fracture tissues, microarray analysis was performed using mirVana miRNA Bioarray V9.2 (Ambion). Using the flash PAGE system (Ambion), miRNA was purified from 22 μg total RNA extracted from atrophic nonunion (D, n = 3) or standard healing fracture tissues (S, n = 3). Samples were analyzed according to methods reported previously. The array data were normalized by global normalization using the Microarray Data Analysis Tool (Filgen, Inc.).

Quantitative real-time PCR (qRT-PCR)

Total cellular or tissue RNA was extracted using TRizol reagent (Invitrogen) and treated with DNase I (Invitrogen, USA) following the protocols. The synthesis of cDNA from 1 μg total RNA was performed using a reverse transcription kit (Takara). Quantitative real-time PCR (qRT-PCR) with SYBR Green was performed using a Bio-Rad real-time PCR system following the manufacturer’s protocol. The mRNA levels of specific genes were calculated relative to the GAPDH levels, and the miRNA expression was calculated relative to the RNU6B levels using the 2^ΔΔCt method.

Immunoblotting

RIPA Lysis Buffer was used to collect the total cellular protein following the protocol (Beyotime, China). The protein levels of PPARγ, WNT5A, FZD3, ALP, Runx2, Collagen I, and β-catenin were examined using β-actin (cytoplasm) or Histone H3 (nucleus) as the internal control. Proteins were subjected to SDS-PAGE on a 12%
polyacrylamide gel and transferred onto a PVDF membrane (Millipore, MA). After blocking with 5% nonfat milk in TBS containing 0.05% Tween-20, the membrane was incubated overnight at 4°C with the primary antibodies purchased from Abcam or Santa Cruz Biotechnology and incubated with HRP-conjugated secondary antibody (1:5000). Visualization was performed via chemiluminescence using an ECL kit (Amersham, Germany).

Haematoxylin & eosin (H&E) staining

Atrophic nonunion and standard healing fracture tissues were fixed in 4% buffered paraformaldehyde for 48 h and then decalcified with buffered Ethylene Diamine Tetraacetic Acid (EDTA) (20% EDTA, pH 7.4). The tissues were then embedded in paraffin, sectioned, and stained with H&E. Sections were examined using a light microscope (Leica DM2500, Wetzlar, Germany). Images were taken using a true-color computer-assisted image analyzing system with a digital camera (Leica DFC420, Leica, Wetzlar, Germany) and analyzed using Qwin Plus (Leica Microsystems Imaging Solutions Ltd, Cambridge, United Kingdom).

ALP activity and mineralization assessment

BMSCs differentiation and function were measured by the intensity of ALP staining and alizarin red staining. Cells were fixed with a solution containing 60% acetone and 40% citrate for 30 s and rinsed with water for 45 s and incubated in the dark with fresh staining solution for 30 min, composed of Fast Blue RR Salt and Naphthol AS-MX phosphate. For mineralization assessment by alizarin red staining, cells were fixed in 0.4% formaldehyde (Klinipath, Olen, Belgium) for 15 min, rinsed with PBS and twice with deionized water, and stained with alizarin red solution (Sigma-Aldrich, Bornem, Belgium) for 10 min to visualize calcium crystals present in the matrix.

Immunohistochemistry

Immunohistochemical (IHC) profile of the tumor was assessed by subjecting one section each from a block to WNT5A, FZD3, or PPARγ immunostaining. IHC was performed on 3-μm thick sections from 10% formalin-fixed, paraffin-embedded specimens, according to the streptavidin-biotin immunoperoxidase technique (DakoCytomation). Multiple slides were evaluated, and the ideal section was used for IHC staining.

Luciferase reporter assay

For miR-381 binding to WNT5A or FZD3, the fragment of WNT5A or FZD3 was cloned into the downstream region of the renilla psiCHECK2 vector (Promega, Madison, WI, USA) to construct wild-type luciferase reporter vectors named wt-WNT5A or wt-FZD3. To generate the WNT5A or FZD3 mutant reporter, the seed region of the WNT5A or FZD3 was mutated to remove the complementarity to miR-381, named mut-WNT5A or mut-FZD3. HEK293 cells (ATCC, USA) were co-transfected with the above-described vectors and miR-381 mimics or miR-381 inhibitor, respectively, and examined for luciferase activity using the Dual-Luciferase Reporter Assay System (Promega) 48 h after transfection. Renilla luciferase activity was normalized to the firefly luciferase activity for each transfected well.

For PPARγ binding to miR-381 promoter, cells were transfected with miR-381 and pGL3 luciferase reporter constructs harboring the miR-381 target sequence. The luciferase activity in the cell lysates was measured 24 h later using a Dual-Luciferase Assay System (Promega, WI, USA).

Chromatin immunoprecipitation (ChIP)

Chromatin immunoprecipitation (ChIP) assays were performed to validate the binding between PPARγ and miR-381 promoter region following the methods previously described using anti-PPARγ (ab45036, Abcam). A positive control antibody (RNA polymerase II) and a negative control (NC) nonimmune IgG were used to demonstrate the efficacy of the kit reagents (Epigentek Group Inc., NY, USA, P-2025-48). The fold enrichment (FE) was calculated as the ratio of the amplification efficiency of the ChIP sample to that of the nonimmune IgG using the following formula: FE% = 2 (IgG CT-Sample CT) × 100%.

Rat femoral fracture model

The male adult SD rats (400–450 g) were obtained from SLACC experimental animal center (Changsha, China). All animals studies were approved by the ethics committee of Xiangya Hospital of Central South University. Rats femoral fractures model was established according to the previous study with small modification. Briefly, a transverse osteotomy in the mid-diaphysis of the femur was created with a diamond-cutting disk. The fractured fracture bones were then repositioned and stabilized by implanting a stainless-steel machined cylindrical pin (2 mm in diameter and 25 mm in length). After fracture, the miR-381 antagonist or NC antagonist (5 nmol/100 μl, GenePharma, China) was locally injected around the fracture site on day 4, 7, and 11. The rats were sacrificed at day 14. The fracture calluses were collected for qRT-PCR analysis.

Bone fracture radiographs were taken at day 7 and 14 with an X-ray instrument (GE Healthcare, USA). Radiographic images were scored as follows: (1) no apparent hard callus; (2) slight intramembranous ossification; (3)
hard callus without bridging of the fracture gap, fracture line is apparent; (4) hard callus with bridging of the fracture gap, fracture gap is noticeable; (5) unclear boundary between the newly formed hard callus and existing cortical bone; and (6) remodeling.

Statistical analysis

Data from at least three independent repeated experiments were expressed as MEAN ± SD. GraphPad was used to analyze differences between samples, either by the two-sample Student's t test or by one-way ANOVA for differences between groups. \(P < 0.05 \) was considered significant.

Results

Downregulation of osteogenesis-related proteins and Wnt signaling pathway in atrophic nonunion tissues

During osteogenic differentiation of BMSCs, the expression of Runx2, ALP, and Collagen I, as well as the mineralization of the extracellular matrix have been considered as marker events. Wnt signaling activation promotes this differentiation. Herein, the pathological changes of atrophic nonunion tissues were first examined using HE and Alcian blue staining and IHC evaluation of WNT5A, FZD3, and PPAR \(\gamma \) contents. As shown in Fig. 1a, the nonunion region consists of different types of tissues: fibrosis occurred mainly in fracture fragments and surrounding tissue, the formation of new blood vessels can be observed, as well as a small amount of woven bone nearby. In some specimens there were dispersed lamellar bone fragments surrounded by osteoclasts and lacked osteoblasts. The contents of WNT5A and FZD3 were reduced, while PPAR \(\gamma \) expression was increased in nonunion tissues (Fig. 1a). Moreover, immunoblotting revealed that the protein levels of WNT5A, FZD3, Runx2, ALP, and Collagen I were significantly reduced while PPAR \(\gamma \) levels increased in nonunion tissues (Fig. 1a–h), suggesting that the osteogenic differentiation in nonunion tissues may be inhibited. The ALP activity was also significantly suppressed in nonunion tissues, further confirming the above speculation.

miR-381 expression in atrophic nonunion and standard healing fracture

Based on the essential role of miRNA in the pathogenesis of nonunion, we first utilized microarray analysis to screen for differentially expressed miRNAs in atrophic nonunion and standard healing fracture tissues. As shown in Fig. 2a, 557 miRNAs (log2[fold change] \(\geq 0.8 \), \(P < 0.05 \)) were differentially expressed, of them 124 miRNAs were upregulated in atrophic nonunion tissues with a fold-change \(> 1 \). DIANA-microT-CDS online tool was used to predict possible downstream targets of these 124 miRNAs, which were further applied to KEGG signaling annotation; since WNT5A and FZD3 proteins were reduced in atrophic nonunion tissues, 94 miRNAs related to Wnt signaling were identified (Fig. 2b). Top seven miRNAs with the most predicted targets in Wnt signaling were examined for expression levels using real-time PCR. The expression of miR-520d, miR-27b, miR-381, miR-4694, and miR-1323 was significantly upregulated in atrophic nonunion tissues, and miR-381 was the most upregulated (Fig. 2c). Figure 2d showed possible targets of miR-381 in Wnt signaling. As shown in Fig. 2c, miR-381 was finally selected for further experiments.

miR-381 modulates osteogenic differentiation in primary human BMSCs

We have found that miR-381 expression is significantly upregulated in atrophic nonunion; next, we evaluated its function in osteogenesis-related proteins. Seven days after being induced osteogenic differentiation, primary human BMSCs were transfected with miR-381 inhibitor or mimics to achieve miR-381 inhibition or overexpression, as confirmed by real-time PCR (Fig. 3a). Next, the protein levels of PPAR \(\gamma \), Runx2, ALP, and Collagen I in the infected cells were determined using immunoblotting. Results showed that miR-381 inhibition significantly induced PPAR \(\gamma \) protein while increased Runx2, ALP, and Collagen I proteins; on the contrary, miR-381 overexpression exerted an opposing effect on the above proteins (Fig. 3b–f). In the meantime, ALP activity was significantly upregulated by miR-381 inhibition (Fig. 3g). Moreover, as shown by Alizarin red staining and ALP staining assays, the proportion of mineralization was increased by miR-381 inhibition, while decreased by miR-381 overexpression (Fig. 3h). These data suggested that miR-381 overexpression may inhibit the osteogenic differentiation in human BMSCs.

miR-381 is a suppressor of Wnt signaling pathway by downregulating WNT5A and FZD3 in BMSCs

After confirming miR-381 promoting osteogenic differentiation in primary human BMSCs, we further evaluated the effect of miR-381 on the Wnt signaling pathway during osteogenic differentiation. Seven days after osteoblastic differentiation induction, primary human BMSCs were transfected with miR-381 inhibitor or mimics and then examined for the protein levels of WNT5A and FZD3 using immunoblotting. The protein levels of WNT5A and FZD3 were significantly reduced by miR-381 overexpression while increased by miR-381 inhibition (Fig. 4a–c).

Regarding the mechanism of miR-381 modulating WNT5A and FZD3 proteins, luciferase reporter assays were performed. Two wild-type reporter vectors, wt-WNT5A 3′
Fig. 1 miRNA expression in atrophic nonunion and standard healing fracture. a Microarray analysis was used to screen for differentially expressed miRNAs in atrophic nonunion (D) and standard healing fracture tissues (S). b A total of 557 miRNAs that obtained a log₂[fold-change] of ≥0.8 and P < 0.05 were identified by Cluster analysis; of them, 124 upregulated miRNAs obtained a fold-change of >1; DIANA-microT-CDS online tool was used to screen for possible downstream targets of the 124 miRNAs; predicted downstream targets were applied to KEGG signaling analysis; 94 miRNAs related to Wnt signaling and the top seven relevant miRNAs were subjected to real-time PCR for expression measurement. c The expression of the above seven miRNAs were examined in atrophic nonunion and standard healing fracture tissues using real-time PCR. d Wnt signaling-related factors that were related to miR-381-3p. e Schematic diagram showing the process of miRNA screening and selection. The data are presented as mean ± SD of three independent experiments. *P < 0.05, **P < 0.01
UTR and wt-FZD3 3'UTR, and two mutant-type vectors, mut-WNT5A 3'UTR and mut-FZD3 3'UTR containing the mutation in any of the predicted miR-381 binding sites, were constructed (Fig. 4d–f). Primary human BMSCs were then co-transfected with the above-described vectors and miR-381 mimics or miR-381

Fig. 2 Alterations of osteogenesis-related proteins and WNT5A/FZD3 in atrophic nonunion compared with standard healing fracture.

a Histopathology examined using HE and Alcian blue staining; WNT5A, FZD3, and PPARγ expression in atrophic nonunion and standard healing fracture examined using IHC. b–h The protein levels of WNT5A, FZD3, PPARγ, Runx2, ALP, and Collagen I in atrophic nonunion (d) and standard healing fracture tissues (S) were determined using immunoblotting. i ALP activity in atrophic nonunion and standard healing fracture was determined. The data are presented as mean ± SD of three independent experiments. n = 6, *P < 0.05, **P < 0.01
inhibitor; the luciferase activity was determined. The luciferase activity of wt-WNT5A 3′UTR and wt-FZD3 3′UTR could be significantly suppressed by miR-381 overexpression, while amplified by miR-381 inhibition; after mutation in any of the predicted miR-381 binding sites, the alterations of the luciferase activity were abolished (Fig. 4e–h). The data suggest that miR-381 may bind to the 3′UTR of WNT5A and FZD3, respectively, thereby inhibiting their expression and further affecting BMSC osteogenic differentiation.
miR-381/WNT5A/FZD3 axis modulates osteogenic differentiation

After confirming that miR-381 could regulate WNT5A and FZD3, we further evaluated the dynamic effect of miR-381/WNT5A/FZD3 axis on osteogenic differentiation. Seven days after osteogenic differentiation induction, primary human BMSCs were co-transfected with miR-381 inhibitor and si-WNT5A or si-FZD3, and then...
Fig. 5 (See legend on next page.)
determined the protein levels of the Wnt signaling pathway and osteogenesis-related factors using immunoblotting. Results showed that miR-381 inhibition dramatically increased the protein levels of WNT5A, FZD3, Runx2, Collagen I, and ALP, while significantly reduced PPARγ protein (Fig. 5a–g). On the contrary, WNT5A or FZD3 both exerted opposing effects on the above proteins (Fig. 5a–g). In the meantime, ALP activity was also promoted by miR-381 inhibition, while suppressed by WNT5A or FZD3 knockdown (Fig. 5h). The above-described effect of miR-381 inhibition could be partially reversed by WNT5A or FZD3 knockdown (Fig. 5i). The data suggest that miR-381 affects osteogenic differentiation through regulating β-catenin nuclear translocation.

miR-381/WNT5A/FZD3 modulates osteogenic differentiation through regulating β-catenin nuclear translocation

Since β-catenin nuclear translocation is considered as the central issue of Wnt signaling activation and function35; next, whether β-catenin nuclear translocation was involved in miR-381/WNT5A/FZD3 axis modulating osteogenic differentiation in human BMSCs was validated. Seven days after osteogenic differentiation induction, human BMSCs were cotransfected with miR-381 inhibitor and si-WNT5A or si-FZD3, and then determined the protein levels of cytoplasm β-catenin and nucleus β-catenin. miR-381 inhibition dramatically increased the protein levels of β-catenin in nucleus while reduced that in cytoplasm; WNT5A or FZD3 knockdown exerted an opposing effect on cytoplasm and nucleus levels of β-catenin protein. Moreover, the effect of miR-381 inhibition was partially restored by WNT5A or FZD3 knockdown (Fig. 6a–d).

Next, human BMSCs were treated with PBS or Wnt signaling inhibitor, ICG-001, seven days after osteogenic differentiation induction and then measured for the protein levels of PPARγ, Runx2, Collagen I and ALP, ALP activity, and the formation of mineralization. After Wnt signaling inhibition, PPARγ protein was remarkably increased while Runx2, Collagen I, and ALP proteins were significantly reduced (Fig. 6e–i). Consistently, ALP activity was suppressed by ICG-001 treatment (Fig. 6j). Moreover, the proportion of mineralization was obviously reduced by ICG-001 treatment (Fig. 6k). The above findings indicate that miR-381/WNT5A/FZD3 axis modulates the osteogenic differentiation in human BMSCs through regulating β-catenin nucleus entry.

PPARγ binds to the promoter region of miR-381 to promote its expression

We have mentioned that PPARγ is a crucial transcription factor promoting adipogenic differentiation while inhibiting osteogenic differentiation36. Since miR-381 overexpression promotes osteogenic differentiation in human BMSCs; here, we validated whether PPARγ could promote miR-381 expression through binding to the promoter region of miR-381. PPARγ expression was achieved in human BMSCs by transfection of PPARγ overexpressing or si-PPARγ vector, as confirmed using immunoblotting (Fig. 7a, b). Next, wild-type and mutant-type miR-381 reporter vectors were constructed. Mutant-type miR-381 vectors contained a mutation in any or both of the predicted PPARγ binding sites (Fig. 7c). The reporter vectors were co-transfected into BMSCs with PPARγ overexpressing vector and examined for promoter activity. As shown in Fig. 7d, when co-transfecting with PPARγ, the promoter activity was significantly increased compared to NC group; however, after mutating any of the predicted PPARγ binding sites in miR-381 promoter region, this promotive effect was partially attenuated and remarkably attenuated when mutating both two predicted PPARγ binding sites (Fig. 7d). As a further confirmation of the above findings, PPARγ binding DNA was examined using ChIP assays in PPARγ or NC transfected human BMSCs. The level of PPARγ binding DNA was considerably greater than that of IgG (***P < 0.01, Fig. 7e) and NC group (**P < 0.01, Fig. 7e), much greater in site 1 (Fig. 7e). Furthermore, miR-381 expression was positively regulated by PPARγ (Fig. 7f), indicating that PPARγ can bind to the promoter region of miR-381 to induce its expression.

miR-381 inhibition promoted osteogenesis in vivo

To further confirm the function of miR-381 in vivo, we established a rat femur fracture model and miR-381
Fig. 6 miR-381/WNT5A/FZD3 modulates osteogenic differentiation through regulating β-catenin nuclear translocation. a–d Seven days after being induced osteoblastic differentiation, primary human BMSCs were co-transfected with miR-381 inhibitor and si-WNT5A or si-FZD3 and then examined for the protein levels of β-catenin in cytoplasm and in nucleus, compared to β-actin or Histone H3. e–i The indicated cells were treated with Wnt signaling inhibitor, ICG-001, or PBS and examined for the protein levels of PPARγ, Runx2, ALP, and Collagen I. j ALP activity in the indicated cells was determined. The data are presented as mean ± SD of three independent experiments. $n = 3$, *$P < 0.05$, **$P < 0.01$, compared to control group. ##$P < 0.05$, compared to miR-381 inhibitor group. k The proportion of mineralization in the indicated cells was shown by Alizarin red staining and ALP staining assays.
antagomir was used for local injection around fracture sites. We first measured the expression of miR-381 in fractured callus at day 14. The qRT-PCR results showed that miR-381 was successful knockdown (Fig. 8a). X-ray images showed that hard callus with a fracture gap was observed in both NC antagomir and miR-381 antagomir groups at day 14. Compared to the NC antagomir group, the callus volume was larger and the fracture gap was diminishing in the miR-381 antagomir group (Fig. 7b). Similarly, the bone forming radiographic score was higher in the miR-381 antagomir group than the NC antagomir group (Fig. 8c). The mRNA levels of Runx2, ALP, and Collagen I were also upregulated by miR-381 antagomir at day 14 (Fig. 8d). These data confirmed the anti-osteogenic function of miR-381 in vivo.

Discussion

In the present study, we demonstrated a miR-381/WNT5A/FZD3 axis that can modulate BMSC osteogenesis during atrophic nonunion development. Among dysregulated miRNAs in atrophic nonunion tissues, miR-381 expression was significantly upregulated and significantly correlated with Wnt signaling. Wnt signaling was inhibited in BMSC osteogenesis accompanied with upregulation of PPARγ protein. miR-381 overexpression inhibited osteogenic differentiation through targeting WNT5A and FZD3, two essential factors in Wnt signaling, thereby inhibiting β-catenin nucleus translocation. Moreover, PPARγ bound to the promoter region of miR-381 to activate its expression, thereby modulating the osteogenic differentiation in human BMSCs.
Atrophic nonunion, one of the two main forms of radiographic nonunion, for which there is no evidence of callus formation after 6 months of fracture. Atrophic nonunion is due to the failure of normal cell responses necessary for bone remodeling. The pool of human BMSCs in nonunions was reduced and their proliferation inhibited. However, human BMSCs from nonunions have the potential to proliferate, differentiate into osteoblastic cells and mineralize in vitro; thus to expand the potential of human BMSCs to osteogenesis differentiate might contribute to fracture healing. According to the previous studies, Wnt signaling activation plays a critical role in osteogenesis differentiation of many cell types. The osteogenic differentiation of human BMSCs could be promoted by enhancement of the mRNA expression of Runx2, β-catenin, WNT5A, and FZD3, all of which are Wnt signaling pathway-related regulators. Here, we observed that the contents and protein levels of WNT5A, FZD3, Runx2, ALP, and Collagen I were all significantly reduced, while PPARγ protein was increased in atrophic nonunion tissues, indicating that Wnt signaling was indeed inhibited during osteogenesis differentiation in atrophic nonunion.

As a family of post-transcriptional regulators of gene expression, miRNAs have been reported to control bone formation and bone remodeling in osteoblasts. Dysregulation of miRNA-mediated mechanisms has been considered as a key issue during osteoporosis pathology. According to the bioinformatic analysis made by DIANA-miRPath, several miRNA expressions changed during osteogenic differentiation, which has suggested that exosomal miRNA serves as a regulator of osteoblast differentiation. Based on the essential role of Wnt in osteogenic differentiation, herein, we performed microarray analysis on atrophic nonunion and standard healing fracture tissues to screen for differentially expressed miRNAs; further, DIANA-microT-CDS online tool was used to screen for candidate miRNAs that might target WNT5A and FZD3 thereby affecting fracture healing in patients with atrophic nonunion. Among all the candidate miRNAs, miR-381 expression was significantly upregulated in atrophic nonunion tissues and significantly correlated with Wnt signaling, suggesting the potential of miR-381 in atrophic nonunion and BMSC osteogenesis differentiation. Consistent with its high expression in atrophic nonunion tissues, miR-381 overexpression significantly reduced the protein levels of osteogenesis markers, Runx2, ALP, and Collagen I, while increased the protein levels of PPARγ, a transcription factor promoting adipogenesis and inhibiting osteogenesis. The proportion of mineralization was also reduced by miR-381 overexpression, suggesting the negative effect of miR-381 on BMSC osteogenic differentiation. Moreover, the in vivo fracture healing results further confirmed the negative effect of miR-381 on osteogenesis.
PPARγ is well known for its function as a major transcription factor that promoting adipocyte differentiation and inhibiting osteoblast differentiation. In a number of different tissues, the activation of the canonical WNT/β-catenin pathway can induce inactivation of PPARγ, whereas PPARγ activation inhibits the canonical WNT/β-catenin signaling. During BMSC differentiation toward adipocytes, Wnt inhibits the function of PPARγ transactivation. Here, we revealed that miR-381 could inhibit the expression of WNT5A and FZD3 through binding to the 3′UTR. More importantly, miR-381 inhibition promoted osteogenic differentiation through increasing the nucleus translocation of β-catenin, while the effect of miR-381 inhibition on PPARγ protein and osteogenic differentiation in human BMSCs could be partially attenuated by WNT5A or FZD3 knockdown, all indicating that miR-381 may promote osteogenic differentiation in human BMSCs through inhibiting Wnt signaling, thereby counteract Wnt-mediated repression of PPARγ.

As above mentioned, PPARγ is a crucial transcription factor inhibiting osteogenic differentiation. Application of PPARγ activators or PPARγ overexpression in hADSCs at passage 20 could increase the promoter activity of Oct4, thus recovering the expression of Oct4 and maintaining the differentiation potential of hADSCs. Since miR-381 overexpression significantly suppressed the osteogenic differentiation in human BMSCs, herein, we also examined the effect of PPARγ on miR-381 expression. Consistent with the previous study, PPARγ overexpression significantly enhanced the promoter activity of miR-381, therefore upregulating miR-381 expression, suggesting that PPARγ may bind to the promoter region of miR-381 to activate its expression, thus inhibiting miR-381 downstream Wnt signaling and the osteogenic differentiation in human BMSCs.

Taken together, we revealed a miR-381/WNT5A/FZD3 axis that could modulate osteogenic differentiation, thereby affecting the fracture healing of patients with atrophic nonunion. We provided a novel direction for atrophic nonunion treatment.

Conflict of interest

The authors declare that they have no conflict of interest.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Frolke, J. P. & Patka, P. Definition and classification of fracture non-unions. Injury 38 (Suppl 2), S19–S22 (2007).
2. Gantoni, M. S. & Simpson, A. H. Inhibition of fracture healing. J. Bone Joint Surg. Br. 89, 1553–1560 (2007).
3. Bianco, P., Riminucci, M., Grontos, S. & Robey, P. G. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19, 180–192 (2001).
4. Kassem, M. Mesenchymal stem cells: biological characteristics and potential clinical applications. Cibing Stem Cells 6, 366–392 (2009).
5. Chen, S. et al. MicroRNA-125b suppresses the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Mol. Med. Rep. 9, 1820–1826 (2014).
6. Prokop, D. J., Gregory, C. A. & Spence, J. L. One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc. Natl Acad. Sci. USA 100 (Suppl 1), 11917–11923 (2003).
7. Li, W. et al. Regulatory controls for osteoblast growth and differentiation: role of Runx2/Cbfa1 factors. Crit. Rev. Eukaryot. Gene Expr. 14, 1–41 (2004).
8. Cheng, S. L., Wang, J. J., Zhou, J., Zhang, S. F. & Avioli, L. V. Differentiation of human bone marrow stromal stem cells into in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 134, 277–285 (1994).
9. Zhao, R. et al. miR-204-5p modulates BMSC osteogenesis via suppressing GSK-3β/beta-catenin signaling pathway. Biochem. Biophys. Res. Commun. 477, 749–754 (2016).
10. Yang, H. et al. miR-139-5p Represses BMSC osteogenesis via targeting wnt-3a/beta-catenin signaling pathway. DNA Cell Biol. 36, 715–724 (2017).
11. Fisher, S. R. Transcriptional control of adipocyte formation. Cell Metab. 4, 263–273 (2006).
12. Yuan, Z. et al. PPARγamma and Wnt Signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr. Stem Cell Res. Ther. 11, 216–225 (2016).
13. Wang, Z. et al. IL-17A inhibits osteogenic differentiation of bone marrow stromal cells via wnt signaling pathway. Med. Sci. Monit. 23, 4095–4101 (2017).
14. Qian, C. et al. Bone morphogenetic protein 2 promotes osteogenesis of bone marrow stromal cells in type 2 diabetic rats via the Wnt signaling pathway. Int. J. Biochem. Cell Biol. 80, 143–153 (2016).
15. Zhang, W. et al. Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/beta-catenin signaling pathway. Sci. Rep. 6, 27622 (2016).
16. Su, X. et al. MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis. 6, e1851 (2015).
17. Liu, S. et al. Effect of miR-26a-5p on the Wnt/Ca2+ pathway and osteogenic differentiation of mouse adipose-derived mesenchymal stem cells. Calcif Tissue Int 99, 174–186 (2016).
18. He, X. et al. TLR4 activation promotes bone marrow MSC proliferation and osteogenic differentiation via Wnt5a and Wnt5a signaling. PLoS ONE 11, e0149876 (2016).
19. Weliner, S. et al. Secreted microvesicular mir-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell 15, 744–754 (2016).
20. Chakraborty, N. et al. Pro-osteogenic topographical cues promote early activation of osteoprogenitor differentiation via enhanced TGFbeta, Wnt, and Notch signaling. Clin. Oral Implants Res. 25, 475–486 (2014).
21. Brennecke, J., Hjortner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).
22. Xu, P., Vemovo, S. Y., Guo, M. & Hay, B. A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 700–705 (2003).
23. Hu, R. et al. Targeting miRNAs in osteoblast differentiation and bone formation. Expert Opin. Ther. Targets 14, 1109–1120 (2010).
24. Huang, J., Zhao, L., Xing, L. & Chen, D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28, 357–364 (2010).
25. Luzi, E. et al. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J. Bone Miner. Res. 23, 287–295 (2008).

26. Kim, Y. J., Bae, S. W., Yu, S. S., Bae, Y. C. & Jung, J. S. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J. Bone Miner. Res. 24, 816–825 (2009).

27. Matheu, M. et al. Decreased pool of mesenchymal stem cells is associated with altered chemokines serum levels in atrophic nonunion fractures. Bone 53, 391–398 (2013).

28. Mauney, J. R. et al. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 26, 3173–3185 (2005).

29. Ishida, H. et al. Alterations in microRNA expression profile in HCV-infected hepatoma cells: involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway. Biochem. Biophys. Res. Commun. 412, 92–97 (2011).

30. Tang, Q. et al. miR-223/IRI/SP1/JUN/miR-223 feedback loop modulates the chemoresistance of osteosarcoma to cisplatin. Biochem. Biophys. Res. Commun. 497, 827–834 (2018).

31. Koichi, M. et al. Inhibition of miR-92a enhances fracture healing via promoting angiogenesis in a model of stabilized fracture in young mice. J. Bone Miner. Res. 29, 316–326 (2014).

32. Hamidouche, Z., Fromigue, O., Renge, J., Haupl, T. & Marie, P. J. Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation. BMC Cell Biol. 11, 44 (2010).

33. Franceschi, R. T. The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit. Rev. Oral Biol. Med. 10, 40–57 (1999).

34. Waki, T. et al. Profiling microRNA expression in fracture nonunions: potential role of microRNAs in nonunion formation studied in a rat model. Bone Joint J. 97-B, 1144–1151 (2015).

35. MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

36. Zhuang, H. et al. Molecular mechanisms of PPAR-gamma governing MSC osteogenic and adipogenic differentiation. Curr. Stem Cell Res. Ther. 11, 255–264 (2016).

37. de Seny, D. et al. Biomarkers of inflammation and innate immunity in atrophic nonunion fracture. J. Transl. Med. 14, 258 (2016).

38. Hernigou, P. & Beaudeau, F. Bone marrow in patients with pseudarthrosis. A study of progenitor cells by in vitro cloning. Rev. Chir. Orthop. Reparatrice Appar. Mot. 83, 33–40 (1997).

39. Zhang, J. F. et al. Flavonoids of Herba Epimedii regulate osteogenesis of human mesenchymal stem cells through BMP and Wnt/beta-catenin signaling pathway. Mol. Cell Endocrinol. 314, 70–74 (2011).

40. Yu, Y. et al. Osteogenesis potential of different stroma microenvironment. Biomaterials 167, 24–37 (2018).

41. Zhang, X., Guo, J., Zhou, Y. & Wu, G. The role of bone morphogenetic proteins and their signaling in the osteogenesis of adipose-derived stem cells. Tissue Eng. Part B Rev. 20, 84–92 (2014).

42. Wijnen, A. J. et al. MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr. Osteoporos. Rep. 11, 174–182 (2013).

43. Xu, J. F. et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells. PLoS ONE 14, e0214647 (2019).

44. Lecarpentier, Y., Poels, J., Duthoit, G. & Hebert, J. L. Circadian rhythms: Wnt/beta-catenin pathway and alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front. Physiol. 5, 429 (2014).

45. Diao, Y., Park, E. Y., Hwang, O. K., Cha, J. Y. & Jun, H. S. Differentiation potential and proliferation of bone marrow stromal cells derived from human adipose tissue. J. Bone Miner. Res. 264 (2016).