SIGNS OF SELF-DUAL DEPTH-ZERO SUPERCUSPIDAL REPRESENTATIONS

MANISH MISHRA

Abstract. Let G be a quasi-split tamely ramified connected reductive group defined over a p-adic field F. We show that if -1 is in the F-points of the absolute Weyl group of G, then self-dual supercuspidal representations of $G(F)$ exist. Now assume further that G is unramified and that the center of G is connected. Let π be a generic self-dual depth-zero regular supercuspidal representation of $G(F)$. We show that the Frobenius–Schur indicator of π is given by the sign by which a certain distinguished element of the center of $G(F)$ of order two acts on π.

1. Introduction

Let G be a group and let (τ, V) be an irreducible representation of G. If τ is self-dual, i.e., it is isomorphic to its contragradient $\hat{\tau}$, then there exists a non-degenerate G-invariant bilinear form $B : V \times V \to \mathbb{C}$ which is unique up to scalars. It is thus either symmetric or skew symmetric. The sign or the Frobenius–Schur indicator $\text{sgn}(\tau)$ of τ is defined to be $+1$ (resp. -1) according as B is symmetric (resp. skew-symmetric). When G is a finite group,

$$\text{sgn}(\tau) = \frac{1}{|G|} \sum_{g \in G} \omega_\tau(g^2),$$

where ω_τ denotes the character of τ. The expression on the right hand side of the above equality is zero when τ is not self-dual.

Now let G be a connected reductive group defined over a local or finite field F and let π be a smooth irreducible representation of $G(F)$. When π is self-dual and also generic, i.e., it admits a Whittaker model, D. Prasad introduced the idea of studying the sign by the action of certain order two element of the center $Z(F)$ of $G(F)$ [8, 9]. See [4, Conjecture 8.3] for a possible connection of this element with the Deligne-Langlands local root number.

Now let G be unramified, F be p-adic and let π be an irreducible regular depth-zero supercuspidal representation. Regular depth-zero supercuspidal representations are the ones which arise from certain Deligne-Lusztig cuspidal representations of finite reductive groups. These representations were studied by DeBacker
Assuming further that G has connected center and that π is self-dual generic, we show in Theorem 4 that the sign of π is given by the central character ω_π evaluated at a certain order two element ϵ of the center of $G(F)$. The main idea in the proof of Theorem 4 is to reduce the problem to a question about finite reductive groups and use Prasad’s result in that setting. In Prasad’s result, we first observe that the central element ϵ has an explicit description in terms of the root data. The assumption of the genericity of π is used to ensure - by a result of DeBacker and Reeder - that the finite reductive group in the inducing data of π has the same root system as G. We finally use Kaletha’s description of regular depth-zero representations to relate $\omega_\pi(\epsilon)$ to the analogous element of the finite reductive group.

When G is quasi split and tamely ramified over F, we give in Theorem 5 a sufficient condition for self-dual supercuspidal representations of $G(F)$ to exist. We show that if -1 is in the F-points of the absolute Weyl group of G, then self-dual supercuspidal representations do exist. The proof uses Kaletha’s description of regular supercuspidal representations [7] and Hakim-Murnaghan’s result about dual Yu-datum [5].

2. Notations

Let G be a reductive group over a local or finite field F. The central character of a representation π of $G(F)$ will be denoted by ω_π. The contragradient of π will be denoted by $\hat{\pi}$. If π is irreducible self-dual, then its Frobenius–Schur indicator will be denoted by $\text{sgn}(\pi)$. When F is non-archimedean local, we write $B(G, F)$ (resp. $B_{\text{red}}(G, F)$) to denote the Bruhat-Tits building (resp. reduced Bruhat-Tits building) of $G(F)$. We follow the standard notations (as in [7, Sec. 2] for instance) for parahoric subgroups of $G(F)$ and their Moy-Prasad filtrations.

3. Finite reductive group

Let G be a connected reductive group defined over a finite field \mathbb{F}_q. We assume that center Z of G is connected. Let $B = TU$ be an \mathbb{F}_q-Borel subgroup of G, where U is the unipotent radical of B and T is an \mathbb{F}_q-maximal torus of G contained in B. We denote the adjoint torus by T_{ad}. The character lattice of T (resp. T_{ad}) will be denoted by $X^*(T)$ (resp. $X^*(T_{\text{ad}})$).

Theorem 1 (Prasad). There exists an element s_0 in $T(\mathbb{F}_q)$ such that it operates by -1 on all the simple root spaces of U. Further, $t_0 := s_0^2$ belongs to $Z(\mathbb{F}_q)$ and t_0 acts on an irreducible, generic, self-dual representation by 1 iff the representation is orthogonal.
From the short exact sequence

\[1 \rightarrow Z \rightarrow T \rightarrow T_{\text{ad}} \rightarrow 1, \]

we get the long exact sequence

\[1 \rightarrow \mathbb{Z}(F_q) \rightarrow T(F_q) \rightarrow T_{\text{ad}}(F_q) \rightarrow H^1(\Gamma, Z) \rightarrow \cdots. \]

Since Z is connected, $H^1(\Gamma, Z)$ is trivial by Lang’s theorem. Therefore,

\[1 \rightarrow \mathbb{Z}(F_q) \rightarrow T(F_q) \rightarrow T_{\text{ad}}(F_q) \rightarrow 1 \]

is exact. Let $\bar{\rho}$ denote half the sum of positive co-roots. Let s' be the element of $T_{\text{ad}}(F_q) = \text{Hom}(X^*(T_{\text{ad}}), \mathbb{G}_m)(F_q)$ given by

\[\chi \in X^*(T_{\text{ad}}) \mapsto (-1)^{(\chi, \bar{\rho})} \in \mathbb{G}_m. \]

Let s denote any pull back of s' in $T(F_q)$. Then s operates by -1 on all simple root spaces of \mathfrak{u}. The element $t := s^2 \in Z(F_q)$ has the description

\[\chi \in X^*(T) \mapsto (-1)^{(\chi, 2\bar{\rho})} \in \mathbb{G}_m. \]

We can thus rewrite the above Theorem as

Theorem 1’. Let π be an irreducible generic representation of $G(F_q)$. Then $\text{sgn}(\pi) = \omega_{\pi}(t)$.

Remark 2. The assumption in Theorem 1 that Z is connected cannot be entirely dropped, as shown in the counter example in [3 Sec. 9].

4. Regular depth-zero representations

Let G be an unramified connected reductive group defined over a p-adic field F. Assume that the center Z of G is connected. Let \mathfrak{f} denote the residue field of F.

4.1. Construction of regular depth-zero supercuspidal. For the definition of regular depth-zero supercuspidal representations and the details of the construction in this section, see [7] Sec. 3.2.3. Let S be an elliptic maximal torus of G and let $\theta : S(F) \rightarrow \mathbb{C}^\times$ be a depth-zero character. Let $S(F)_0$ be the Iwahori subgroup of $S(F)$. Assume that θ is regular, i.e., the stabilizer of $\theta |_{S(F)_0}$ in $N(S(F), G(F))/S(F)$ is trivial, where $N(S(F), G(F))$ denotes the normalizer of $S(F)$ in $G(F)$. The restriction of $\theta |_{S(F)_0}$ factors through a character $\tilde{\theta}$ of $S(F)_{0;0+}$. Let $x \in \mathcal{B}^{\text{red}}(G, F)$ be the vertex associated to S. The group $G(F)_{0;0+}$ is the \mathfrak{f}-points of a connected reductive \mathfrak{f}-group \mathcal{G}_x and $S(F)_{0;0+}$ is the \mathfrak{f}-points of an elliptic maximal \mathfrak{f}-torus S' of \mathcal{G}_x. Let $\kappa(S, \tilde{\theta})$ denote the irreducible cuspidal Deligne-Lusztig representation of $\mathcal{G}_x(\mathfrak{f})$ associated to the pair $(S', \tilde{\theta})$. Denote again by $\kappa(S, \theta)$ its inflation to $G(F)_{x,0}$. This representation extends to a representation $\tilde{\kappa}(S, \theta)$ of $Z(F)G(F)_{x,0} = G(F)_x$.

\[\text{This representation extends to a representation} \]
Therefore the root system \(\Phi(\be) \) is irreducible (and hence supercuspidal) and every regular depth-zero supercuspidal representation is of this form.

4.2. Sign. Choose a system of positive roots \(\Phi^+(G, S) \) for the set of roots \(\Phi(G, S) \). Let \(\bar{t} \) denote half the sum of positive roots and let \(t \) denote the element \(2\bar{t}(-1) \in \text{Z}(F) \) (see [4, Sec. 8.5]).

\[\text{Theorem 4.} \quad \text{Let } \pi \text{ be a generic regular depth-zero self-dual supercuspidal representation of } G(F). \text{ Then } \text{sgn}(\pi) = \omega_x(t). \]

\[\text{Proof.} \quad \text{By Lemma 3 the representation } \pi \text{ arises out of a pair } (S, \theta) \text{ as in Section 4.1. Let } x \in B^{\text{red}}(G, F) \text{ be the vertex associated to } S. \text{ The normalizer in } G(F) \text{ of } G(F)_{x,0} \text{ is } G(F)_x [10, Lemma 3.3]. \text{ Therefore } G(F)_x \text{ is self normalizer. Since } \hat{\pi} = c\text{-Ind}_{G(F)_x}^{G(F)} \hat{\kappa} \text{ if and only if } \exists g \in G(F) \text{ such that } (G(F)_x, \hat{\kappa}) \text{ is conjugate by an element } g \in G(F) \text{ to the pair } (G(F)_x, \hat{\kappa}) \text{ (by [3] Theorem 6.7 for instance without any hypothesis). But then } g \in G(F)_x \text{ since } G(F) \text{ is self normalizer. Therefore, } \pi(S, \theta) \text{ is self-dual if and only if } \kappa(S, \theta) \text{ is so. Thus, } \text{sgn}(\pi) = \text{sgn}(\kappa). \text{ Since } \pi(S, \theta) \text{ is generic, the vertex } x \text{ associated to } S \text{ is hyperspecial [3, Theorem 1.1] (also [2, Lemma 6.1.2]). Therefore the root system } \Phi(G, S) \text{ can be identified with } \Phi(G_x, S'). \text{ Let } \Phi^+(G_x, S') \text{ be the positive roots of } \Phi(G_x, S') \text{ under the identification. Let } \bar{t} \text{ be half the sum of positive roots of } \Phi(G_x, S') \text{ and } t = 2\bar{t}(-1) \in Z_F. \text{ Since } x \text{ is hyperspecial, } Z \text{ is connected implies } Z_x \text{ is connected. Also, } \kappa(S, \theta) \text{ is generic [2, Lemma 6.1.2]. We therefore have by Theorem 3 that } \text{sgn}(\kappa) = \omega_t(\tilde{\theta}). \text{ But } \omega_t(\tilde{\theta}) = \tilde{\theta}(t) = \theta(t). \text{ The Theorem now follows because } \omega_x = \theta |_{Z(F)} \text{ by [7] Fact 3.38}. \]

5. Existence of self-dual representations

Let \(G \) be a quasi-split tamely ramified connected reductive group over a \(p \)-adic field \(F \). Let \(\Omega(S, G) \) be the absolute weyl group. In [6, Sec. 3.2.1], a vertex \(x \in B^{\text{red}}(G, F) \) is called superspecial if it is special in \(B^{\text{red}}(G, E) \), where \(E \) is any finite Galois extension of \(F \) splitting \(G \).

\[\text{Theorem 5.} \quad \text{If } -1 \in \Omega(S, G)(F), \text{ then self-dual supercuspidal representations of } G(F) \text{ exist.} \]

\[\text{Proof.} \quad \text{Let } (S, \theta) \text{ be a tame regular elliptic pair [7, Def. 3.23] such that } S \text{ is relatively unramified [7, Sec. 3.2.1] and the point } x \in B^{\text{red}}(G, F) \text{ associated to } S \text{ is superspecial. Let } \pi(S, \theta) \text{ be the associated regular supercuspidal representation. By [3, Theorem 4.25], } \pi(S, \theta) \equiv \pi(S, \theta^{-1}). \text{ By [7, Lemma 3.37], } \pi(S, \theta) \equiv \pi(S, \theta^{-1}) \text{ if and only if } (S, \theta) \text{ is } G(F)\text{-conjugate to } (S, \theta^{-1}). \text{ By [7, Lemma 3.11] } \Omega(S, G)(F) \cong N(S, G)(F)/S(F), \text{ where } N(S, G) \text{ denotes the normalizer of } S \text{ in } G. \text{ Thus if } -1 \in \Omega(S, G)(F), \text{ then it follows that } (S, \theta) \text{ is } G(F)\text{-conjugate to } (S, \theta^{-1}). \]
Remark 6. If the root system of G is of type B_n, C_n, E_7, E_8, G_2 or D_n (n-even), then the longest Weyl group element of G is -1.

Remark 7. When $G = \text{GL}_n$, Adler [1] showed that the necessary and sufficient condition for self-dual regular supercuspidal representations of $G(F)$ to exist is that either n or the residue characteristic of F be even.

6. Acknowledgment

The author is very thankful to Sandeep Varma, Dipendra Prasad and Steven Spallone for many helpful conversations.

References

[1] J. D. Adler. Self-contragredient supercuspidal representations of GL_n. Proc. Amer. Math. Soc., 125(8):2471–2479, 1997.
[2] S. DeBacker and M. Reeder. Depth-zero supercuspidal L-packets and their stability. Ann. of Math. (2), 169(3):795–901, 2009.
[3] S. DeBacker and M. Reeder. On some generic very cuspidal representations. Compos. Math., 146(4):1029–1055, 2010.
[4] B. H. Gross and M. Reeder. Arithmetic invariants of discrete Langlands parameters. Duke Math. J., 154(3):431–508, 2010.
[5] J. Hakim and F. Murnaghan. Distinguished tame supercuspidal representations. Int. Math. Res. Pap. IMRP, (2):Art. ID rpm005, 166, 2008.
[6] T. Kaletha. Genericity and contragredience in the local Langlands correspondence. Algebra Number Theory, 7(10):2447–2474, 2013.
[7] T. Kaletha. Regular supercuspidal representations. ArXiv e-prints, February 2016.
[8] D. Prasad. On the self-dual representations of finite groups of Lie type. J. Algebra, 210(1):298–310, 1998.
[9] D. Prasad. On the self-dual representations of a p-adic group. Internat. Math. Res. Notices, (8):443–452, 1999.
[10] J.-K. Yu. Construction of tame supercuspidal representations. J. Amer. Math. Soc., 14(3):579–622 (electronic), 2001.

E-mail address: manish@iiserpune.ac.in

Department of Mathematics, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008 INDIA