INTRODUCTION

Indole derivatives have been found to possess a wide range of biological activities. Many indole derivatives were reported as antimicrobial agents in several studies, among them, ethyl-3-indolylacrylate, and 5-bromo-3-(2-cyanovinyl) indole and 3-(2-nitrovinyl)indole were found to be active against a wide variety of pathogenic microorganisms [1]. Literature study revealed that halo indole was also found highly active [2], some other indole derivatives such as 3-acyl-4,7-dihydroxy indoles possess antibacterial properties against Escherichia coli and Strepotococcus pyogenes [3]. 1-merpholin-3-carboxy5-hydroxy-2-methylinolide was reported to be highly active against Escherichia coli and Bacillus cirriformalis [4] and 1-(4-phenyl), and 1-naphthyl-4H-1, 2, 4-triazole-5-thion-3-y1) indole exhibited strong antibacterial and antifungal activities [5].

Based on the above reports, we explored the synthesis of new indole propanamide derivatives 5(a–e) to be potent antibacterial and antifungal agents when tested against precarious pathogenic microorganisms such as Pseudomonas aureginosa, Escherichia coli, Vibrio cholerae, Staphylococcus aureus and antifungal activity against Candida albicans, Aspergillus niger, Penicillin chryosogenum and Cladosporium oxysporum strains. The results revealed that compounds 5b, 5c, 5d and 5e showed good antimicrobial property and obeyed the in silico pharmacokinetic parameters.

Conclusion: The encouraging results exhibited by the compounds (E)-N-(2-(1H-indol-3-ylamino) vinyl)-3-(1-methyl-1H-indol-3-yl)-3-phenylpropanamide derivatives, 5(a–e) can be explored as possible hits in antimicrobial therapy. The molecules obey the Lipinski rule of five when tested in vitro antimicrobial study by cup plate method and in silico ADMET properties using AGD/I-Lab 2.0.

Keywords: Antimicrobial, ADMET, Phenylpropanamide, Meldrum’s adduct, Indole and Nitro methane
pyridine and was refluxed 4-6 h at 80 °C. The progress of the reaction was monitored by using pre-coated silica gel plates (Merck). After completion, the product obtained was treated with copper sulphate solution and extracted using ethyl acetate. The crude product isolated was purified by column chromatography using silica gel (60-120 mesh) eluting with a mixture of petrol ether:ethyl acetate (v/v) to get the pure (E)-N-(2-(1H-indol-3-yl)-3-aminophenyl)-3-(1-methyl-1H-indol-3-yl)-3-phenylpropanamide (5a). Similarly, other derivatives (b–e) were prepared by adopting the same procedure mentioned above.

Spectral data

(E)-N-(2-(1H-indol-3-yl))-vinyl-3-(1-methyl-1H-indol-3-yl)-3-phenylpropanamide (5a)

1H-NMR (400 MHz, DMSO-d6): δ = 2.97 (d, J = 6.6, 13.40 Hz, 1H), 3.06 (d, d = 7.56, 13.44 Hz, 1H), 3.67 (s, 3H), 3.76 (q, J = 6.96 Hz, 1H), 4.81 (d, J = 1.12 Hz, 1H), 6.98-6.99 (m, 2H), 7.11 (t, J = 8.24 Hz, 5H), 7.19 (t, J = 7.04 Hz, 2H), 7.26 (t, J = 8.08 Hz, 1H), 7.33 (d, J = 7.24 Hz, 2H), 7.49 (d, J = 10.64 Hz, 1H), 7.69 (d, J = 30.80 Hz, 1H), 8.57 (s, 1H), 8.65 (s, 1H), 10.05 (s, 1H); 13C NMR (100 MHz, DMSO-d6): δ = 32.75, 39.09, 41.67, 47.20, 110.09, 116.72, 116.78, 117.20, 140.70, 140.71, 171.00 ppm; IR (KBr: ν max/cm−1): 3,351(N-H), 3,291(C-H), 2,989(C-H), 2,931(C-C), 1,647(C=O), 1,556(C=C), 1,297(C-N); MS: m/z = 435.23.

Antimicrobial screening

Antibacterial study

The antibacterial activity of the title compounds was evaluated by cup-plate method using four different bacterial strains viz. Staphylococcus aureus, Vibrio cholerae, Pseudomonas auriginosa, and Escherichia coli (Bacterial species were obtained from Microbiology Department, Kuvempu University, Jnana Sahyadri, Shankarghatta, Shimoga) using nutrient agar (NA) medium A. The test solutions were prepared in DMSO and diluted using double distilled water to get concentrations of 1000, 500 and 250 μg/ml. The test microorganisms maintained in slant tubes as solid culture. At first, the solid slants were inoculated into the original stock culture and finally the liquid media was inoculated from the solid slants. The microbes were allowed to incubate for 24 h at 37 °C. 20 ml of liquid agar media was taken in McCartney bottle and sterilized in autoclave at 121 °C for 15 min at 15 psi.

The sterilized media was then poured into sterilized petri plates aseptically in a horizontal laminar air flow chamber. The layers of media were uniformly distributed and were allowed to solidify in the aspic chamber, followed by inoculating the bacterial strains separately in the petri plates. The spore suspension was adjusted with sterile saline to a concentration of approximately 1.0×10^5 CFU/ml. In order to determine the antibacterial activity, the inoculated petri plates were divided into three quarters and to each quarter a well was made in the media with the help of a sterilized cork borer (9 mm). The three different concentrations of test sample solutions were prepared using DMSO and diluted with distilled water at the strength of 1000, 500 and 250 μg/ml. The test microorganisms were maintained in slant tubes as solid culture and in test tube (containing 2.5 ml of media). First the solid slants were inoculated from the original stock culture and finally the liquid media were inoculated from the solid slants. The microbes were allowed to incubate for 24 h at a temperature of 28 °C. 20 ml of liquid agar media was taken in McCartney bottle and sterilized in autoclave at 121 °C for 15 min at 15 psi.

The sterilized media was poured into petri plates in aseptic condition. The layers of media were made uniform; the media was allowed to solidify followed by inoculating the fungal strains separately in the petri plates. The spore suspension was adjusted with sterile saline to a concentration of approximately 1.0×10^5 in a final volume of 20 μl per well. Antifungal activity was determined by cup-plate method. For this purpose the inoculated petri plates were divided into three quarters and to each quarter a well was made in the media with the help of a sterilized cork borer (9 mm). The known concentrations of the standard drug amoxicillin and the test compounds were added to the respective labelled wells. Thus, applied plates were then kept in refrigerator for 10 min. followed by incubation for 24 h at 37 °C [15-17].

Antifungal study

The antifungal activity of the synthesized compounds evaluated by cup-plate method using potato dextrose agar medium B (glucose 4%, peptone 1%, agar 2% and distilled water 1000 ml) with a pH 5.4. Four different fungal strains used in this process were Candida albicans, Aspergillus niger, Penicillium chrysogenum and Cladosporium oxysporum (Fungal species were obtained from Microbiology Department, Kuvempu University, Jnana Sahyadri, Shankarghatta, Shimoga). Three different concentrations of test sample solutions were prepared using DMSO and diluted with distilled water at the strength of 1000, 500 and 250 μg/ml. The test microorganisms were maintained in slant tubes as solid culture and in test tube (containing 2.5 ml of media). First the solid slants were inoculated from the original stock culture and finally the liquid media were inoculated from the solid slants. The microbes were allowed to incubate for 24 h at a temperature of 28 °C. 20 ml of liquid agar media was taken in McCartney bottle and sterilized in autoclave at 121 °C for 15 min at 15 psi.

The sterilized media was poured into petri plates aseptically in a horizontal laminar air flow chamber. The layers of media were uniformly distributed and were allowed to solidify in the aspic chamber, followed by inoculating the bacterial strains separately in the petri plates. The spore suspension was adjusted with sterile saline to a concentration of approximately 1.0×10^5 CFU/ml. In order to determine the antibacterial activity, the inoculated petri plates were divided into three quarters and to each quarter a well was made in the media with the help of a sterilized cork borer (9 mm). The three different concentrations of test sample solutions were prepared using DMSO and diluted with distilled water at the strength of 1000, 500 and 250 μg/ml. The test microorganisms were maintained in slant tubes as solid culture and in test tube (containing 2.5 ml of media). First the solid slants were inoculated from the original stock culture and finally the liquid media were inoculated from the solid slants. The microbes were allowed to incubate for 24 h at a temperature of 28 °C. 20 ml of liquid agar media was taken in McCartney bottle and sterilized in autoclave at 121 °C for 15 min at 15 psi.

The sterilized media was poured into petri plates aseptically in a horizontal laminar air flow chamber. The layers of media were uniformly distributed and were allowed to solidify in the aspic chamber, followed by inoculating the bacterial strains separately in the petri plates. The spore suspension was adjusted with sterile saline to a concentration of approximately 1.0×10^5 CFU/ml. In order to determine the antibacterial activity, the inoculated petri plates were divided into three quarters and to each quarter a well was made in the media with the help of a sterilized cork borer (9 mm). The three different concentrations of test sample solutions were prepared using DMSO and diluted with distilled water at the strength of 1000, 500 and 250 μg/ml. The test microorganisms were maintained in slant tubes as solid culture and in test tube (containing 2.5 ml of media). First the solid slants were inoculated from the original stock culture and finally the liquid media were inoculated from the solid slants. The microbes were allowed to incubate for 24 h at a temperature of 28 °C. 20 ml of liquid agar media was taken in McCartney bottle and sterilized in autoclave at 121 °C for 15 min at 15 psi.

The sterilized media was poured into petri plates aseptically in a horizontal laminar air flow chamber. The layers of media were uniformly distributed and were allowed to solidify in the aspic chamber, followed by inoculating the bacterial strains separately in the petri plates. The spore suspension was adjusted with sterile saline to a concentration of approximately 1.0×10^5 CFU/ml. In order to determine the antibacterial activity, the inoculated petri plates were divided into three quarters and to each quarter a well was made in the media with the help of a sterilized cork borer (9 mm). The three different concentrations of test sample solutions were prepared using DMSO and diluted with distilled water at the strength of 1000, 500 and 250 μg/ml. The test microorganisms were maintained in slant tubes as solid culture and in test tube (containing 2.5 ml of media). First the solid slants were inoculated from the original stock culture and finally the liquid media were inoculated from the solid slants. The microbes were allowed to incubate for 24 h at a temperature of 28 °C. 20 ml of liquid agar media was taken in McCartney bottle and sterilized in autoclave at 121 °C for 15 min at 15 psi.

The sterilized media was poured into petri plates aseptically in a horizontal laminar air flow chamber. The layers of media were uniformly distributed and were allowed to solidify in the aspic chamber, followed by inoculating the bacterial strains separately in the petri plates. The spore suspension was adjusted with sterile saline to a concentration of approximately 1.0×10^5 CFU/ml. In order to determine the antibacterial activity, the inoculated petri plates were divided into three quarters and to each quarter a well was made in the media with the help of a sterilized cork borer (9 mm). The three different concentrations of test sample solutions were prepared using DMSO and diluted with distilled water at the strength of 1000, 500 and 250 μg/ml. The test microorganisms were maintained in slant tubes as solid culture and in test tube (containing 2.5 ml of media). First the solid slants were inoculated from the original stock culture and finally the liquid media were inoculated from the solid slants. The microbes were allowed to incubate for 24 h at a temperature of 28 °C. 20 ml of liquid agar media was taken in McCartney bottle and sterilized in autoclave at 121 °C for 15 min at 15 psi.
In silico ADME-toxicity prediction

The synthesized molecules were subjected for in silico ADMET parameters to predict the physicochemical properties and optimize using QSAR parameters. The QSAR properties of the compounds significantly help to understand pharmacokinetics behavior and to predict possible biological activity such as absorption, distribution, metabolism, excretion and toxicity (ADMET). The ADMET QSAR [18] help to evaluate biologically active molecules and eliminate the biologically poor molecules containing undesirable functional group based on Lipinski rule and further statistical calculation of the molecules help to understand biological behavior of the synthesized molecules. The ADMET study was carried out by ACD/I-Lab-2.

RESULTS AND DISCUSSION

In this work series of (E)-N-(2-(1H-indol-3-yl-amino) vinyl)-3-(1-methyl-1H-indol-3-yl)-3-phenylpropanamide derivatives 5(a-e) were synthesized, allowed for in vitro antimicrobial screening against precarious pathogenic microorganisms viz, Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, Staphylococcus aureus and antifungal activity against Candida albicans, Aspergillus niger, Penicillium chrysogenum and Cladosporium oxysporum strains. There are several therapeutic options now exist to cure infectious diseases, but due to their poor response rate, adverse effects and the development of resistant mutants highlights the need for new alternative drugs, which are most specificity in their mechanism of action while used as therapeutic agents.

In this regard, indole derivatives have exhibited antimicrobial activity [1]. Hence serendipity way of identification of new leads that can play an important role to discover new drug molecules. Among the series of synthesized compounds 5c, 5d and 5e were potent against both bacterial as well as fungal strains. These results were correlated with ADMET parameters, gives reliable efficacy in all physiological properties; it is due to the presence of electron withdrawing (chlorine, bromine, nitro) and donating groups (amine) on arylring.

The incorporation of halogen substituent into lead analogues to improve the lipophilic nature, the lipophilicity of the derivatives it is due to the presence of chlorine, bromine, nitro and amine functionalities. The chlorine, bromine and nitro groups are electron withdrawing; the amine functionalities are involved intra molecular hydrogen bonding, this increases the non-polar property of the lead analogues; it helps to easy penetration of the drug into the lipid membranes. The chemical reactivity of halogen atoms depends on their position of attachment to the lead and nature of the halogen. Compound 5a was synthesized without substitution and is necessary to compare the substitution effect on the aryl ring. The replacement of a hydrogen atom in an active molecule by a substitute (halogen, nitro and amino) can modify the potency, duration of action and the nature of the pharmacological effect [24].

The substituents can affect various parameters of a drug molecule, such as partition coefficient, electronic density, ionic environment, bioavailability, pharmaco kinetics and ability to establish direct interactions between the substituent and the receptor or the enzyme; the compounds rich in electron density are exerted mesomeric effect, which are able to soluble in lipids, the lipid solubility is directly proportional to their effectiveness and their by pharmacological effect, it might be involved in the inhibition of cell wall synthesis.

Antimicrobial activity

The compounds 5(a-e) were tested for in vitro antimicrobial activity against Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, Staphylococcus aureus using amoxicillin as a standard and for their antifungal activity against Candida albicans, Aspergillus niger, Penicillium chrysogenum and Cladosporium oxysporum using fluconazole as standard.

The compounds were dissolved in DMSO at three different concentrations 1000, 500 and 250 μg/ml. The inhibition values of the compounds were determined by the twofold serial dilution technique using nutrient agar medium A and Potato dextrose agar for bacteria and fungi, respectively. Table 1 and table 2 represent the results of the in vitro activity determined by the cup plate method [15]. The antimicrobial result reveals that the compound 5a, 5b showed moderate activity at 1000 μg/ml against Pseudomonas aeruginosa Staphylococcus aureus and Escherichia coli, 5c, 5d and 5e are potent at (250 and 1000 μg/ml) against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli respectively, when compared to standard amoxicillin. The compounds 5a, 5b, 5d and 5e showed moderate activity against Cladosporium oxysporum, Penicillium chrysogenum and Candida albicans, 5c reveals good activity at 250μg/ml as compared to the rest of the test samples with fluconazole. In general, the compound 5c exhibit potent antimicrobial activity.

N-substituted indole with halogen functions of the aryl ring at 3-position enhances the antimicrobial activity. Some simple indole derivatives with mixed antifungal and antibacterial activities were converted by Whitehead and Whitesitt (1974) to antibacterial compounds by introducing an appropriate diarylmethyl substituent. These investigators also increased the antifungal activity of 5-bromoindole 2 to 25 times by adding the diphenylmethyl group to the 3-position. The compound 5-bromoindole inhibited six of the fungal species and was considered as an effective antibacterial agent of the simple indole. Inspired by these studies, insertion of a halogen-substituted aromatic ring 3-position of indole especially with bromine exhibited good activity.

Table 1: The antibacterial potential of (E)-N-(2-(1H-indol-3-yl-amino) vinyl)-3-(1-methyl-1H-indol-3-yl)-3-phenylpropanamide and its derivatives 5(a-e)

Compound	Conc. of test sample (μg/ml)	Zone of inhibition in mm (mean±SD) n=3			
	PA	SA	VC	EC	
5a	1000	18±0.20	15±0.10	00	16±0.20
	500	16±0.20	14±0.10	00	15±0.10
	250	15±0.10	14±0.10	00	15±0.20
5b	1000	18±0.20	17±0.10	17±0.20	22±0.10
	500	14±0.10	16±0.10	13±0.10	18±0.10
	250	12±0.10	16±0.20	12±0.10	18±0.10
5c	1000	24±0.10	22±0.20	22±0.20	22±0.20
	500	21±0.20	20±0.10	18±0.20	18±0.20
	250	20±0.20	20±0.20	14±0.20	16±0.10
5d	1000	22±0.30	22±0.10	21±0.20	20±0.20
	500	19±0.20	17±0.20	19±0.10	16±0.20
	250	15±0.20	13±0.20	13±0.10	12±0.10
5e	1000	22±0.20	20±0.10	21±0.10	20±0.30
	500	19±0.30	17±0.30	19±0.30	16±0.20
	250	15±0.10	10±0.20	13±0.20	12±0.20
Standard	Amoxicillin	1±mg/ml	2±0.20	2±0.10	3±0.20

PA: Pseudomonas aeruginosa, SA: Staphylococcus aureus, VC: Vibrio cholerae, EC: Escherichia coli, Standard: Amoxicillin, Bore Size: 9 mm, SD: Standard deviation.
Table 2: The antifungal potential of (E)-N-(2-(1H-indol-3-ylamino) vinyl)-3-(1-methyl-1H-indol-3-yl)-3-phenylpropamidine and its derivatives 5(a-e)

Compound	Conc. of test sample (μg/ml)	Zone of inhibition in mm (mean±SD) n=3
		CO
1000		16±0.20
5a	500	0±0.30
1000	18±0.40	12±0.30
5b	500	10±0.30
250	0±0.30	0±0.20
1000	22±0.20	26±0.20
5c	1000	18±0.30
5d	10±0.30	0±0.40
5e	10±0.20	0±0.20
Standard	28±0.30	32±0.20
		24±0.20
		20±0.40

In silico ADME-toxicity prediction

The QSAR properties of the compounds significantly help to understand pharmacokinetics behavior to predict possible biological activity such as absorption, distribution, metabolism, excretion and toxicity (ADMET). The ADMET QSAR [18] help to evaluate biological active molecules and eliminate the biologically poor molecules containing undesirable functional groups based on Lipinski rule.

The *in silico* results revealed that molecules have moderate effect on reliability index and LD50 dose [19] on different routes of drug administration is found to be safe enough. The compounds were found to be good with P log BB, log HIA, P Caco, GI, log PG1 poor P log S and active molecules and eliminate the biologically poor molecules underlining pharmacokinetics behavior to predict possible biological activity.

The QSAR properties of the compounds significantly help to predict the toxicity of lead molecules with intra peritoneal, oral, intravenous and subcutaneous toxic effects of blood, cardiovascular system, gastrointestinal, kidney, liver and lungs to calculate sensitivity, specificity and area under the curves (AUC) that predicts the linearity of compounds [23].

The absorption, distribution, metabolism and excretion, parameters influence the drug levels and kinetics of drug exposure to the tissues and perform the pharmacological activity of the compounds as a drug. According to *in silico* ADME analysis, the resulting compounds showed good blood/brain barrier partition coefficient power with PlogBB value and good cell permeability value of nearly 1 with P Caco, good intestinal absorption properties with log HIA value 1 of the compound 5e, good glycoprotein substrates and glycoprotein inhibitors (0.8-1.0), the compounds showed moderate aqueous soluble property with better LD50 and drug reliability index. The pharmacokinetincs parameters help to further explore the molecules on to other parameters of drug discovery and minimise the time in the drug development process.

Table 3: ADME and pharmacological parameters prediction for the ligands (E)-N-(2-(1H-indol-3-ylamino) vinyl)-3-(1-methyl-1H-indol-3-yl)-3-phenylpropamidine derivatives 5(a-e) using ADMET SAR toolbox

Ligand	PlogBBa	log ea	P Cacoa	logpgl (substrate)a	logPGl (non-inhibitor)b	PlogSb	logpappc
5a	0.9785	0.9970	0.5334	0.5051	0.5911	-3.5659	0.9480
5b	0.9782	0.9975	0.5000	0.5050	0.6641	-4.2428	0.8702
5c	0.9541	0.9953	0.5465	0.5105	0.7480	-3.7250	0.8485
5d	0.9836	0.9945	0.5292	0.5402	0.6834	-3.6698	0.8555
5e	0.9773	0.9963	0.5204	0.5062	0.5507	-4.1127	0.8307
Indomethacin	0.9381	0.9509	0.5857	0.6360	0.9313	-4.6825	0.6287
Camptothecin	0.6345	0.8140	0.5555	0.6039	0.7852	-3.0369	1.1839
Tetracycline	0.9841	0.8006	0.7439	0.7910	0.8025	-3.0575	0.7655
Tretinoin	0.9311	0.9925	0.7603	0.6144	0.8912	-3.0895	1.7734
Levostatin	0.9287	0.9452	0.5484	0.7861	0.7046	-5.9475	0.8127
Metronidazole	0.9297	0.9805	0.5365	0.5141	0.8954	-1.3229	0.8033

*a Predicted blood/brain barrier partition coefficient (1-high penetration, 2-medium penetration and 3-Low penetration), b Predicted Caco-2 cell permeability in nm/s (acceptable range: 0 poor, 1 is great), .c Predicted P-glycoprotein substrate in nm/s (acceptable range: 0 is poor, 1 is great), d Predicted P-glycoprotein inhibitor in nm/s (acceptable range: 0 to 1), e Predicted aqueous solubility, Concern value is 0-2 highly soluble, f Predicted probability of Caco-2 cell permeability in cm/s (Concern value is 1 to 1)."

Table 4: LD50 and probability of health effects of (E)-N-(2-(1H-indol-3-yl-amino) vinyl)-3-(1-methyl-1H-indol-3-yl)-3-phenylpropamidine derivatives 5(a-e) using ACD/1-Lab 2.0

ADME-TOX	Intraperitoneal a	Oral a	Intra venous a	Subcutaneous a	Blood Effect b	Cardiovascular system effect b	Gastro intestinal effect b	Kidney effect b	Liver effect b	Lung effect b
5a	180(0.32)	780(0.35)	20(0.29)	250(0.43)	0.95	0.95	0.65	0.75	0.03	0.97
5b	210(0.32)	920(0.43)	20(0.31)	210(0.42)	0.96	0.99	0.66	0.66	0.82	0.94
5c	250(0.33)	850(0.42)	19(0.35)	250(0.4)	0.96	0.99	0.98	0.92	0.93	0.98
5d	150(0.3)	920(0.37)	16(0.36)	200(0.36)	0.93	0.95	0.91	0.81	0.95	0.99
5e	190(0.32)	840(0.36)	21(0.32)	190(0.16)	0.94	0.96	0.94	0.85	0.94	0.97

*a Estimated LD50 mouse value in mg/kg after intra peritoneal, oral, intravenous and subcutaneous administration, b Estimated probability of blood, gastrointestinal system, kidney, liver and lung effect at therapeutic dose range of compounds, The drugs with moderate effect on reliability index (>0.5), The drugs with border line effect on reliability index (>0.3-<0.5)."
Scheme: Synthesis of \((E)-N-(2-(1H\text{-indol-3-yl-amino})\text{ vinyl})-3-(1-methyl-1H\text{-indol-3-yl})-3\text{-phenylpropanamide derivatives} 5(a-e)\)

Table 5: Physical properties of synthesis of \((E)-N-(2-(1H\text{-indol-3-yl-amino})\text{ vinyl})-3-(1-methyl-1H\text{-indol-3-yl})-3\text{-phenylpropanamide derivatives} 5(a-e)\)

Entry	Products	M. P (°C)	Yield(%)
5a	![image](image1.png)	103-105	84
5b	![image](image2.png)	117-119	89
5c	![image](image3.png)	220-223	73
5d	![image](image4.png)	126-128	78
5e	![image](image5.png)	119-121	69

CONCLUSION

The results revealed that compounds 5b, 5c, 5d and 5e showed good antimicrobial potential and were obeying the *in silico* pharmacokinetic parameters. In case of compound 5e less activity was observed against fungus than 5c. The encouraging results exhibited by the title compounds 5(a-e), can be explored as lead molecules in antimicrobial therapy.

ACKNOWLEDGEMENT

The author Manjunatha K. S. thanks the OBC Cell and authorities of Kuvempu University for providing student fellowship. The author thanks to the department of microbiology, Kuvempu University, Shankarghatta for providing microbial strains. The author also thankful to IISc Bangalore for providing spectral data.

CONFLICT OF INTERESTS

No conflicts of interest

REFERENCES

1. Mehta DS, Sikotra KH, Shah VH. Synthesis and biological screening of some novel indole derivatives. Indian J Chem 2005; 44B:2590-7.
Choline chloride/Urea ionic liquid catalyzed a convenient one-component condensation of N-aryl-3-(indol-3-yl)propanamides and 1-(phenylmethyl)indole-6-carboxamides as potent, selective, orally active antagonists of the peptidoleukotrienes. J Med Chem 1993;36:394-409.

Duflos M, Nourrsson MR, Brelet J, Courant J, LeBaut B, Brimaud D, Andrés M, Alarcon AM, et al. Synthesis of 2-arylated indole Nk1 receptor antagonists: optimization of indole containing derivatives of 1,3,4-triazole and their open-chain counterparts. Arzneim-Forsch/Drug Res 1997;47:307-10.

Tsotinis A, Varvareou A, Calogeronopoulou T, Stavrou-Papastaioudi T, Tillgada A. Synthesis and antimicrobial evaluation of indole containing derivatives of 1,3,4-triazole and their open-chain counterparts. Annalen-Forsch/Drug Res 1997;47:307-10.

How to cite this article

• KS Manjunaatha, ND Satyanarayan, S Harishkumar. Antimicrobial and in silico admet screening of novel (e)-n-(2-(1H-indol-3-yl)-amino) vinyl)3-(1-methyl-1H-indol-3-yl)-3-phenylpropionamide derivatives. Int J Pharm Pharm Sci 2016;8(10):251-256.