A Protocol for mtGenome Analysis on Large Sample Numbers

Igor G. Hamoy1,2,‡, André M. Ribeiro-dos-Santos1,‡, Luiz Alvarez3, Silvanira Barbosa1, Artur Silva1, Sidney Santos1,4, Leonor Gusmão1,3 and André Ribeiro-dos-Santos1,4,*

1Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil. 2Universidade Federal Rural da Amazônia, Campus de Capanema, PA, Brazil. 3Institute of Molecular Pathology and Immunology of the University of Porto, Universidade do Porto, Porto, Portugal. 4Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil. ‡Authors with equal contribution. *Corresponding author.

ABSTRACT: The mitochondrial genome is widely studied in a variety of fields, such as population, forensic, and human and medical genetics. Most studies have been limited to a small portion of the sequence that, although highly diverse, does not describe the total variability. The arrival of modern high-throughput sequencing technologies has made it possible to investigate larger sequences in a shorter amount of time as well as in a more affordable fashion. This work aims to describe a protocol for sequencing and analyzing the complete mitochondrial genome with the Ion PGM™ platform. To evaluate the protocol, the mitochondrial genome was sequenced to approximately 210 Mbp, with high-quality sequences distributed between 12 samples that had an average coverage of 1023× per sample. Several variant callers were compared to improve the protocol outcome. The results suggest that it is possible to run up to 120 samples per run without any loss of any significant quality. Therefore, this protocol is an efficient and accurate tool for full mitochondrial genome analysis.

KEYWORDS: next-generation sequencing, mitochondrial DNA, analysis protocol, polymorphism, population genetics

INTRODUCTION

In the past 25 years, human populations have been targeted in several studies by anthropologists, linguists, geneticists, and others who aim to understand the evolutionary factors involved in the formation of sociobiological populations. Classical genetics and polymorphism studies helped to reconstruct part of the history of world populations.1-6

Mitochondrial DNA (mtDNA) offers several advantages for evolutionary and population genetics compared with nuclear DNA,7,8 such as (i) high number of copies per cell (up to 1000 copies in nervous system-specialized cells, an important feature for rescuing ancestral DNA from degraded samples), (ii) small genome size (16,659 bp), (iii) maternal haploid heritage (passing from mother to progeny without any recombination), and (iv) high mutation rate that allows the tracking of changes over short periods of time, such as the process of human settlement.1-7,9 However, most works have been limited to investigating the hypervariable regions (HVS), which do not represent all the variability of mtDNA. Currently, to address this problem, researchers have employed, among other strategies, full mitochondrial genome sequencing with modern high-throughput sequencing technology.10-13

Sanger sequencing still presents several advantages, such as high quality and large extension of the generated sequences. However, Sanger sequencing has high costs and demands a large amount of time for full genome sequencing.
(even for small genomes such as the mitochondrial). New benchtop sequencing platforms, such as MiSeq (Illumina, San Diego, CA, USA) and Ion Personal Genome Machine™ (Ion PGM™ – Life Technologies, Foster City, CA, USA), have allowed access to sequencing data in a small operating time. These technologies have added a separate chapter in the study of population genetics. However, they are not widely employed, particularly the new technologies, such as Ion PGM™ (Life Technologies).

Considering cost, quality, throughput, and operating time, the new benchtop sequencing technologies are good alternatives to full mitochondrial genome sequencing for forensic, medical, and population studies. Therefore, this work proposes a standard protocol for sequencing and analyzing the complete mitochondrial genome with Ion PGM™ (Life Technologies).

This new protocol includes a mtDNA library preparation and a bioinformatics analysis workflow. Unlike the manufacturer’s protocol, this protocol performs all the analyses on an external Linux workstation to avoid consuming sequencer time and enables the use of other third party software for analysis. This study aimed to address, among others, the following goals: (i) provide a standard mitochondrial preparation and analysis protocol with Ion PGM™ (Life Technologies), (ii) evaluate the efficiency of the variant discovery tools, and (iii) estimate the best software to obtain high-quality results.

Material and Methods

Sample preparation. This study was composed of 12 DNA samples obtained by oral swab and peripheral blood from anonymous, unrelated Portuguese individuals. All of the samples were collected according to the ethical principles of the Declaration of Helsinki with written informed consent. The total DNA from the oral swab samples was extracted using Chelex® 50 resin (Bio-Rad, Hercules, CA, USA) and from peripheral blood using the PureLink™ Genomic DNA Kit (Invitrogen, Foster City, CA, USA). The samples were later quantified with a Qubit 2.0 Fluorometer (Invitrogen) and were diluted to 10 ng/µL.

mtDNA amplification. mtDNA was amplified with the primers developed by Torroni et al. and Ramos et al. (Table 1). A total of 12 overlapping amplicons with length between 1270 and 1870 bp were produced to cover the complete mitochondrial genome for each sample. The PCR product was visualized in a 2% agarose electrophoresis gel (Fig. 1), purified using the Agencourt AMPure XP Reagent (Beckman Coulter, Pasadena, CA, USA), and quantified with a Qubit 2.0 Fluorometer (Invitrogen) to confirm the presence of DNA, which were amplified using a Ion Plus Fragment Library Kit (Life Technologies) and purified again to produce the mtDNA libraries for each sample.

The libraries were gathered into a pool of the same concentrations to perform emulsion PCR and enrichment following the Ion Xpress™ Template Kit v2.0 (Life Technologies) protocol. The result was deposited into an Ion 316 Chip Kit (Life Technologies) following the Ion PGM™ 200 Sequencing Kit (Life Technologies) protocol and inserted into an Ion Personal Genome Machine™ System (Life Technologies) for sequencing. The detailed protocol of all procedures is described in the Supplementary Protocol.

Bioinformatic analysis workflow. The reads discriminated by barcode (1–12, corresponding to the samples) were transferred to a Linux workstation (24 GB of RAM and CPU 3.0 GHz with eight cores) for analysis. The reads were converted into FASTQ format using sff_extract (http://bioinf.comav.upv.es/sff_extract/). Read quality was evaluated using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and low-quality reads were filtered and trimmed using fastx_tools (http://hannonlab.cshl.edu/fastx_toolkit/).

The reads were aligned to the revised Cambridge Reference Sequence (rCRS) with the following strategies. The first employed the licensed platform CLC Genomics Workbench 4.9 (CLC Bio, Cambridge, MA, USA) and the second used the open source software Torrent Mapping Alignment Program (TMAP) v.0.3.7 (https://github.com/ontorrent/TMAP) employed in Torrent Suite (Life Technologies). The CLC Genomics Workbench (CLC Bio) has a friendly graphical user interface and a complete analysis platform, among many other features. Conversely, TMAP only has a command line interface but offers compatibility with many common bioinformatics tools.

Both strategies produced Binary Sequence Alignment Map (BAM) format alignments that were processed, indexed, sorted, and analyzed by the tools included in the SAMtools 0.1.17 and GATK 2.7 packages.

Variant calling. Three strategies were employed for variant calling: the first used the CLC Genomics Workbench 4.9 (CLC Bio) on the CLC alignments, the second used SAMtools on the TMAP alignments, and the third used the GATK variant analysis workflow on the TMAP alignments. The complete bioinformatic workflow is described in detail in the Supplementary Bioinformatics Protocol.

The Single Nucleotide Polymorphism (SNP)s were classified as transitions and transversions, and as synonymous and non-synonymous according to the MITOMAP database.
Table 1. Primers applied to complete mitochondrial genome amplification.

FRAGMENT	FRAGMENT LENGTH (BP)	NAME	SEQUENCE (5'-3')
MTT1	1822	FW	1489forb
		RV	151revb
			TAGCCATGCACTA TCCACAGA
			GGATGAGCGAGAA TCAAAAGAC
MTT2	1758	FW	16488fora
		RV	1677reva
			CTGTACCAGACTCTGGTTCCCT
			GTTTAGCTCAGCGG GTCAGAAGT
MTT3A	1397	FW	1404fora
		RV	2801revb
			ACTTAAGGTCGAAAGTGGGATT
			TAATGCAGGTGGTATGTTTA
MTT3B	1301	FW	2646forb
		RV	3947revb
			GTTAGTTAGGGCTGAGACTA
MTT4A	1837	FW	3734forb
		RV	5571revb
			AAGTACCCTCCATCCTACCTTA
			AAGTATTGCAACTTACTGAGG
MTT4B	1271	FW	5468forb
		RV	6739revb
			CAGCCTACTCCTACCTACCTC
			GATATCATAGCTCAGACCATACC
MTT5A	1489	FW	6511forb
		RV	8000revb
			CTGGCTGCGACTCATAT ACTA
			CAACGTCAGGAGTCGAGG
MTT5B	1507	FW	7713forb
		RV	9220revb
			TCTTAACACTCAACAAAC
			GATTGTTGAGTATATGTTG
MTT6	1738	FW	8910fora
		RV	10648revb
			CTACCACAAGGCAACCTCACA
			GGCACAATATTGGCTACAGAGG
MTT7	1866	FW	10360forb
		RV	12226revb
			GTCTGGCTATGAGTGACTACA
			CAGTCTCTTGAGACTTCTGG
MTT8	1853	FW	11977forb
		RV	13830revb
			TCCCTCTACATATTTACCACAAAC
			AAGTCTTAGGAAAGTGACAGC
MTT9	1872	FW	13477fora
		RV	15348revb
			GCAAGAAATACCTTCTCACAG
			GTGCAAGAATAGGAGGTGAGT

The pN/pS ratio was calculated from these results according to the equation \(\frac{pN}{pS} = \frac{NSY/N}{SYN/S} \), where NSY is the number of non-synonymous mutations observed, N is the number of non-synonymous mutation sites, SYN is the number of synonymous mutations observed, and S is the number of synonymous mutation sites.

To validate our results, two individuals’ HVS regions were sequenced by Sanger sequencing and compared to our results. To estimate the protocol potential sample size and minimum coverage, the reads of both individuals were randomly sampled at several rates (2.5, 5, 10, 25, and 50% of the reads) with 100 repetitions each and were compared to the Sanger results. Furthermore, the variants of each repetition were compared among their sampling to infer variant calling coherence.

Statistical analysis. Statistical analyses and data plotting were performed in R v3.0 (http://www.r-project.org/) statistical package with the aid of ggplot2 v0.9.8 package.

Results and Discussion
A single Ion 316 Chip Kit (Life Technologies) run produced 1,341,502 reads and approximately 210 Mbp of sequence distributed across 12 samples (Table 2). All of the barcode reads were correctly identified, with less than a 1% loss, and were uniformly distributed among the samples, corresponding to
8% (approximately 100,000 reads), which is more than that has been reported in previous works10,11 (Table 2). The reads demonstrated an overall good quality (QV \geq 20) until their 250th base, confirming the protocol quality (Fig. 2).

Both alignment strategies yielded similar total mapped reads and coverage. Although less user friendly than CLC, TMAP is recommended because it is faster, license free, and easily compatible with other bioinformatics software. TMAP aligned 98.45% of the reads with average coverage of 1023× for all samples. Schönberg et al.10 who studied 149 individual mitochondrial genome sequences, obtained an average coverage of only 97.69×, and Gunnarsdóttir et al.11 who studied 109 individuals, obtained an average coverage of only 54.6×, confirming the quality of our approach. To visualize our results, the mean coverages of consecutive 100-bp windows of the mitochondrial genome are plotted in Figure 3. On average, no window displayed coverage below 500×, although a single sample presented low coverage, likely because of either an unknown deletion or machine error.

To infer the best variant calling strategy and sample size, the results were compared to HVS Sanger sequencing (Table 3). The CLC variant caller is based only on coverage and quality, and is fast and efficient for high-coverage data (\geq 20×).21,22 Conversely, GATK and SAMtools compute the Bayesian genotype likelihood to infer the most probable genotype. This strategy has produced consistent results and consider several samples during genotype imputation that correct low-coverage data (\leq 10×).21,22 Overall, all three strategies presented more than 99% correct rates (rate of correctly called bases by the size of HVS region) (Fig. 4) above the 10% sampling rate, suggesting that, theoretically, up to 120 samples could be sequenced in a single run with a mean coverage of 95.24×, which is similar to previous works.10,11 Unfortunately, commercial barcode libraries have, at most, 96 different tags. Conversely, medical studies are interested in mitochondrial heteroplasmy, and as suggested by Holland et al.23 and Wong.12 Next-Generation Sequencing (NGS) may allow the detection of low heteroplasmy levels but demands high-coverage values. Therefore, the number of samples must be adjusted according to the study goals.

Table 2. Number of reads and mapped reads per sample.

SAMPLE	READS	%**	MAPPED READS	%***
1	93919	6.90%	92514	98.50%
2	107553	7.93%	105924	98.49%
3	122484	8.98%	120948	98.75%
4	117671	8.65%	116229	98.77%
5	127574	9.41%	125987	98.76%
6	112323	8.23%	110579	98.45%
7	109611	8.05%	108008	98.54%
8	98925	7.24%	97173	98.23%
9	88552	6.50%	87384	98.68%
10	125664	9.22%	123710	98.45%
11	145192	10.58%	142533	98.17%
12	107743	7.93%	106295	98.66%
None*	5339	0.39%	4218	79.00%
Total	1362550	100.0%	1341502	98.46%

Note: *“None” correspond to all reads that were mislabeled to any sample.** This column is relative to the total of reads obtained. *** This column is relative to each sample reads total.
Variant calling sampling sensibility was evaluated by measuring the rate of genotype concordance between repetitions of each sampling. All the strategies and samplings were consistent with a 99% concordance rate (Fig. 5) above a 10% sampling rate.

A total of 324 polymorphic sites were observed among all samples, of which 249 were transitions, 15 were transversions, 30 were insertions, and 30 were deletions (Table 4), similar to findings by Gunnarsdóttir et al.\(^\text{11}\) and Schönberg et al.\(^\text{10}\) However, Schönberg et al identified 855 variant sites, likely because of the different number of individuals and populations investigated (147 individuals from five populations from West Asia). The relative numbers of mutations per classification were similar among all the works (0.93 ± 0.02). Regarding the ratio of transitions to transversions, coding regions presented higher values (17.0) than the control or hypervariable regions (15.5), as previously described.\(^\text{10,11,24}\) The tRNA regions contained 12 variants, an elevated number considering Gunnarsdóttir et al.\(^\text{11}\) detected only 14 among their samples, but in accordance with the number observed by Schönberg et al.\(^\text{10}\) (39). These variants in tRNA regions are potential targets for future studies.

Among the 13 protein-coding regions, 119 synonymous mutation sites and 45 non-synonymous mutation sites were observed (Table 4). The pN/pS ratio was similar to previous works\(^\text{10,11}\) (P=0.19 and 0.66, respectively). Likewise, the pN/pS ratio varies significantly among the regions (P = 0.002). All the rates were lower than one, but it is important to highlight that the genes ATP6 (0.484), CYB (0.592), and ND3 (0.957) yielded values farthest from the average (0.226). Compared with the distribution of the pN/pS values from the present work, Gunnarsdóttir et al.\(^\text{11}\) and Schönberg et al.\(^\text{10}\) observed the widest divergence at ND3, CYB, and ATP8 genes, whereas higher values were observed at ATP6 gene (Fig. 6), suggesting a lighter selective pressure as described previously.\(^\text{10,11}\)

To achieve similar results with Sanger sequencing, it would be necessary to perform 12 sequencing reactions per sample, totaling 144 reactions (considering that each amplicon can be sequenced by a single reaction). Each reaction costs approximately $20 and takes approximately 40 minutes to complete; therefore, a similar experiment would cost approximately $2880 and take four days to complete. High-throughput platforms, such as HiSeq (Illumina) and SOLiD (Life Technologies), have a low cost (approximately $0.10/Mbp), but library preparation is complex and the run takes approximately one week or more to complete; each run costs approximately $10,000.\(^\text{25-28}\) Conversely, benchtop platforms, such as MiSeq (Illumina), are good alternatives that cost only $1/Mb, with a running time of 27 hours and an average output of 1.5 GB/run. The Ion PGM\(^\text{TM}\) platform has an average cost of $2/Mb and an output of 200 Mbp/run (Ion 316 Chip Kit), but it compensates for this higher cost and limited yield with a running time of only three hours and a small instrument cost (compared with other next-generation platforms). Therefore,
200 Mbp of high-quality nucleotide sequences (QV ≥ 20) and had made possible the alignment of the full mitochondrial genome of 12 samples using more than 98% of the reads, with an average coverage of 1023×, which is far greater than that of previous works employing similar technologies.10,11 The present work also proposes a sample size increase of up to 96 (achievable by the barcode libraries), an important feature for population genetic studies. Conversely, the protocol may also be employed for heteroplasmy detection, which is important for forensic and medical studies.12,23 The protocol accuracy was further confirmed by polymorphism analyses. The HVS comparison to Sanger sequencing yielded an accuracy rate of 96% for the best caller (GATK), a value that may even be

![Figure 4](https://example.com) **Figure 4.** Correct and miscall rate by read sampling rate. This graph presents the correct and miscall rate by sampling rate and variant calling strategy (CLC, SAMtools, and GATK) compared to the Sanger HVS sequencing. The correct rate is the rate of correctly called bases by the size of HVS region, and the miscall rate is the rate of miscalled bases by the size of HVS region.

![Figure 5](https://example.com) **Figure 5.** Concordance and discordance rate by read sampling. This graph presents the genotype concordance and discordance rate by sampling rate and variant calling strategy (CLC, SAMtools, and GATK). The concordance rate is the rate of concordant bases between all sampling repetitions divided by the mtDNA length, and the discordance rate is the rate of discordant bases between all sampling repetitions divided by the mtDNA length.

Conclusions

The results have demonstrated the accuracy and sensibility of our protocol. The sequencing in this protocol produced over the Ion PGMTM yields a good cost-per-run and running time alternative.

Regarding the other protocols for mtDNA genome sequencing employed in the literature,10,11,13 ours is highlighted by its potential to analyze rare and degraded samples. These types of samples, common for forensic and ancient DNA, yield little DNA, and most of the sequences are broken into small fragments. Unlike other protocols10,11,13 that employ few amplicons, our protocol uses 12 amplicons to facilitate the rescue of the complete mtDNA genome of even degraded samples.

Table 4. Variant call strategy correct rate by sampling rate.

SAMPLING RATE	NUMBER SAMPLES	COVERAGE	VARIANT CALL CORRECT RATE (%)		
			SMT	CLC	GATK
2.5%	480	23.67 ± 14.3	99.5 ± 0.05	98.1 ± 0.03	99.4 ± 0.0
5%	240	48.87 ± 29.1	99.6 ± 0.03	99.0 ± 0.01	99.5 ± 0.0
10%	120	95.24 ± 56.6	99.6 ± 0.03	99.5 ± 0.0	99.6 ± 0.0
25%	48	239.04 ± 139.9	99.7 ± 0.02	99.7 ± 0.0	99.6 ± 0.0
50%	24	476.48 ± 263.5	99.7 ± 0.02	99.7 ± 0.0	99.8 ± 0.0
100%	12	953.78 ± 553.8	99.6 ± 0.05	99.7 ± 0.0	99.8 ± 0.0

Abbreviation: SMT, SAMTools.
Prepare and apply the complete description of all the molecular assays performed to this protocol in the supplementary Material. The authors approved the final manuscript. AS, SS, LG, and ARS performed critical revisions of the manuscript. AMRS, IGH, LA, LG, and ARS jointly developed the structure and arguments for the draft of the manuscript. AMRS, IGH, LA, LG, and ARS conceived and designed the experiments. Antônio Trindade Amador and Pablo Diego Carmo Pinto for helping to develop the experiment. The authors would like to thank the researchers Marco Antônio Trindade Amador and Pablo Diego Carmo Pinto for helping to develop the experiment.

Acknowledgments

The authors would like to thank the researchers Marco Antônio Trindade Amador and Pablo Diego Carmo Pinto for helping to develop the experiment.

Author Contributions

LG and ARS conceived and designed the experiments. AMRS analyzed the data. AMRS and IGH wrote the first draft of the manuscript. AMRS, IGH, LA, LG, and ARS contributed to the writing of the manuscript. IGH, LA, and SB jointly developed the structure and arguments for the paper. AS, SS, LG, and ARS performed critical revisions and approved the final version. All the authors reviewed and approved the final manuscript.

Supplementary Material

Supplementary Protocol.pdf. This protocol includes the complete description of all the molecular assays performed to prepare and apply the mtDNA library on Ion PGM™, including the mitochondrial genome amplification and the Ion DNA library preparation.

Supplementary Bioinformatics Workflow.pdf. This workflow includes the complete description of all the bioinformatic steps applied to perform all the analyses described in the paper, including the command line instructions for each step.

REFERENCES

1. Kong QP, Bandelt HJ, Sun C. Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet. 2006;15(13):2076–86.
2. Fagundes NJR, Kanitz R, Bonatto SL. A reevaluation of the Native American mtDNA genome diversity and its bearing on the models of early colonization of Beringia. PLoS One. 2008;3(9):e3157.
3. Dos Santos SEB, Rodrigues JD, Ribeiro-dos-Santos AK, Zago MA. Differential contribution of indigenous men and women to the formation of an urban population in the Amazon region as revealed by mtDNA and Y-DNA. Am J Phys Anthropol. 1999;109(2):175–80.
4. Santos SE, Ribeiro-dos-Santos AK, Meyer D, Zago MA. Multiple founder haplotypes of mitochondrial DNA in Amerindians revealed by RFLP and sequencing. Ann Hum Genet. 1996;60(4):305–19.
5. Smith DG, Malhi RS, Eshleman J, Lorensa JK, Kaestle FA. Distribution of mtDNA haplogroup X among Native North Americans. Am J Phys Anthropol. 1999;110(3):271–84.
6. Tanaka M, Cabrera VM, Gonzalez AM, et al. Mitochondrial genome variation in eastern Asia and the peopling of Japan. Genome Res. 2004;14(10A):1832–30.
7. Giles RE, Blanc H, Cane HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA. 1980;77(11):6755–9.
8. Arbogast BS. Phylogeography: the history and formation of species. Integ Comp Biol. 2001;41(1):134–5.
9. Ramos A, Santos C, Alvarez L, Nogués R, Aloja MP. Human mitochondrial DNA complete amplification and sequencing: a new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification. Electrophoresis. 2009;30(9):1587–93.
10. Schönberg A, Theunert C, Li M, Stoneking M, Nasidze I. High-throughput sequencing of complete human mtDNA genomes from the Caucasus and West Asia: high diversity and demographic inferences. Eur J Hum Genet. 2011;19(9):988–94.
11. Gunsaudottir ED, Li M, Bauchet M, Finstermeier K, Stoneking M. High-throughput sequencing of complete human mtDNA genomes from the Philippines. Genome Res. 2011;21(1):1–11.
12. Wong J-L. Next generation molecular diagnosis of mitochondrial disorders. Mitochondrion. 2013;13(4):379–87.
13. Parson W, Strobl C, Huher G, et al. Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine Mitochondrial DNA. Forensic Sci Int Genet. 2013;7(5):543–9.
14. Rothberg JM, Hirz W, Rezick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.
15. Torsiorni A, Rengo C, Guida V, et al. Do the four clades of the mtDNA haplogroup X among Native North Americans. Hum Mol Genet. 2001;9(9):1348–56.
16. Andrews RM, Kubacka I, Chinney P, Lighthowers RN, Turnhull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet. 1999;23(2):147.
17. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(15):2078–9.
18. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
19. Ruiz-Pesini E, Lott MT, Prooccio V, et al. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 2007;35(Database issue):D823–8.
20. Wilkinson L. ggreplo2: elegant graphics for data analysis by Wickham, H. Bioinformatics. 2011;27(2):299–313.
21. Brockman W, Alvarez P, Young S, et al. Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Res. 2008;18(3):765–70.
22. Nielsen R, Paul JS, Albrechtsen A, Song YS. Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet. 2011;12(6):443–51.
23. Holland MM, McQuillan MR, O’Hanlon KA. Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy. Great Med J. 2011;2(3):299–313.
24. Pereira L, Freitas F, Fernandes V, et al. The diversity present in 5140 human mitochondrial genomes. Am J Hum Genet. 2009;84(5):628–40.
25. Li X, Buckton AJ, Wilkinson SL, et al. Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers. *PLoS One*. 2013;8(7):e67744.

26. Koshimizu E, Miyatake S, Okamoto N, et al. Performance comparison of bench-top next generation sequencers using microdroplet PCR-based enrichment for targeted sequencing in patients with autism spectrum disorder. *PLoS One*. 2013;8(9):e74167.

27. Frey KG, Herrera-Galeano JE, Redden CL, et al. Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood. *BMC Genomics*. 2014;15(1):96.

28. Metzker ML. Sequencing technologies—the next generation. *Nat Rev Genet*. 2010;11(1):31–46.