Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disease. The eye is frequently involved in SLE. The disease may cause ocular involvement by several mechanisms including immune complex deposition in the basement membrane of endothelial cells of the small blood vessels. Ocular complications have been reported in up to one-third of patients with SLE. Ocular manifestations of SLE may be due to the disease or may be due to the complications of systemic or topical therapy. Unlike other autoimmune diseases, which may have a predilection for either anterior or posterior segment of the eye, SLE may affect any structure of the eye and adnexa. The ocular findings in SLE are important because they may be the initial manifestation of the disease.

Orbital and external eye disease

Orbital involvement is a rare manifestation of SLE. Clinical presentation may be in the form of proptosis, enophthalmos, orbital pain, blurred vision, chemosis, and restriction of extraocular motility. Orbital vasculitis secondary to SLE may be misdiagnosed as

© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of Saudi Ophthalmological Society, King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.sjopt.2016.02.001
bacterial orbital cellulitis. CT scan of the orbit or diagnostic ultrasound may reveal enlargement of the extraocular muscles in these cases. Treatment of orbital disease is with systemic immunosuppressant drugs. Discoid lupus erythematosus (DLE) is a chronic cutaneous lupus erythematosus without internal organ involvement. SLE and DLE can present with a discoid lupus-type rash over the eyelids. These discrete raised scaly lesions may be confused with chronic blepharitis. Treatment of these lesions is usually with systemic anti-inflammatory drugs. 1 Eyelid involvement was 218 S.S. Shoughy, K.F. Tabbara

Table 1. Ocular involvement in systemic lupus erythematosus.

Structure	Clinical findings
Orbital and external eye disease	Discoid lupus-type rash over the eyelids
	Panniculitis
	Orbital masses
	Periorbital edema
	Orbital myositis
	Orbital vasculitis, acute orbital ischemia and infarction
Conjunctival involvement	Conjunctivitis
Corneal involvement	Dry eye syndrome
	Recurrent corneal erosions
	Peripheral corneal infiltrates
	Peripheral ulcerative keratitis
Sclera and Episclera	Scleritis
	Episkleritis
Uveal involvement	Anterior uveitis
Retinal involvement	Lupus retinopathy (cotton wool spots, intraretinal hemorrhages, and vascular tortuosity)
	Retinal hard exudates
	Retinal vasculitis
	Retinal artery and/or vein occlusion
	Arteriolar narrowing and arteriovenous crossing changes
	Macular pigmentary mottling
	Retinal scarring
	Macular infarction
Choroidal involvement	Central serous chorioretinopathy
Neuro-ophthalmic findings	Optic nerve involvement
	Optic neuritis
	Ischemic optic neuropathy
	Papilledema
	Central nervous system vasculitis
	Internuclear ophthalmoplegia
	Nystagmus
	Cranial nerve palsies
	Homonymous hemianopia

Ocular surface disease

Both the major and accessory lacrimal gland may be involved in patients with SLE. 13 Mononuclear cellular infiltrate of the lacrimal glands may lead to decrease in lacrimal fluid. Keratoconjunctivitis sicca is a common ocular feature of SLE. Keratoconjunctivitis sicca leads to upregulation of inflammatory cytokines causing chronic conjunctivitis. 13 It tends to be mild but in rare cases it may lead to conjunctival scarring and shrinkage. 14 The prevalence of keratoconjunctivitis sicca among patients with SLE is approximately 25%. 15 The symptoms range from mild irritation, foreign body sensation and redness to severe pain due to corneal ulcer and filamentary keratitis. Significant visual impairment may occur due to corneal epithelial defects, corneal ulceration, vascularization and scarring. Treatment of dry eyes associated with SLE is usually through frequent instillation of lubricating eye drops. Severe cases may require temporary or permanent punctual occlusion. Some cases may benefit from topical tacrolimus as it decreases the inflammatory cellular infiltrate of the lacrimal glands. 16

Lupus panniculitis is a rare skin condition, which predominantly affects the deep dermis and subcutaneous fat in young to middle-aged women. It may occur independently or in association with DLE or SLE. Clinically, these lesions appear as nodules or hardened subcutaneous plaques which are often adherent to the overlying skin. After healing, they may undergo atrophy and residual scarring. These nodules and plaques are usually located on the forehead, cheeks, extremities, and buttocks. They have occasionally been reported to affect the orbit. 11 The main treatment option for orbital and external eye disease is systemic hydroxychloroquine therapy. In cases of failure of antimalarials, immunosuppressive medications can be considered. 12 Several agents have been reported to be successfully used for DLE including azathioprine, dapsone, methotrexate, cyclophosphamide, thalidomide, retinoids, and interferon alpha-2. Corticosteroids are mainly used in patients with orbital inflammatory syndrome to control the severe inflammation or associated with hydroxychloroquine therapy at the beginning of the treatment. 12

Scleritis may occur in SLE, and may be the presenting feature of the disease. 13 The incidence of SLE in patients with scleritis is about 1%. 21 Scleritis in patients with SLE may present as anterior diffuse scleritis or anterior nodular scleritis. Necrotizing scleritis in patients with SLE is rare but may lead to significant scleral thinning. 22,23 Posterior scleritis is also rarely seen in patients with SLE. 23 Episkleritis may be also seen in SLE with milder symptoms and redness due to injection of the superficial blood vessels. 24,25 Episkleritis is usually self-limiting disease which does not require treatment. Topical non-steroidal or steroid eye drops may be required in severe cases. On the other hand,
Scleritis may indicate activity of the underlying systemic disease which necessitates systemic therapy.

Nongranulomatous anterior uveitis is rare but may occur in patients with SLE. Adjacent scleral inflammation may also lead to mild uveitis. The prevalence of SLE in patients with uveitis varies from 0.1% to 4.8%. Anterior uveitis in patients with SLE is usually mild but may rarely lead to diminution of vision and hypopyon formation. The inflammation of the anterior segment usually improves with the use of systemic immunosuppressive therapy.

Retinal and choroidal involvement

Retinal disease in patients with SLE ranges from mild asymptomatic lupus retinopathy to severe blinding disease and occurs in about 10% of SLE patients. The most frequent retinal findings include cotton wool spots, retinal hemorrhages, and vascular tortuosity. Other reported posterior segment changes include retinal hard exudates, retinal vasculitis, retinal artery and/or vein occlusion, arteriolar narrowing, arteriovenous crossing changes, macular pigmentary mottling, retinal scarring, and macular infarction.

Lupus choroidopathy and central serous chorioretinopathy have been reported. The posterior segment findings particularly the retinal signs often reflect the severity of systemic inflammation, and may indicate inadequate control of the systemic disease. There are several treatment options for lupus retinopathy including systemic steroids, anticoagulants and laser retinal photocoagulation in cases of ischemic retinopathy.

Neuro-ophthalmic findings

Optic nerve involvement in patients with SLE may be in the form of optic neuritis, ischemic optic neuropathy and papilledema, and it occurs in around 1% of SLE patients. Improvement of optic neuropathy may occur following early treatment with corticosteroids or pulsed cyclophosphamide therapy. In addition to optic nerve involvement, central nervous system vasculitis affecting the brainstem in patients with SLE may lead to cranial nerve involvement and diplopia. Ocular motility disorders may occur in up to 29% of patients with SLE. Internuclear ophthalmoplegia and nystagmus may also occur. Postchiasmal vasculitis of the visual pathway may lead to infarcts that may lead to homonymous hemianopia.

Ocular complications of systemic therapy

The aim of treatment of patients with SLE is to suppress the immune activity in order to induce and maintain remission of the disease and prevent relapses. Treatment options for SLE include nonsteroidal antiinflammatory drugs, corticosteroids, antimalarials, immunomodulatory, and biologic agents. Chronic treatment with hydroxychloroquine may induce systemic and ocular adverse events. Systemic adverse reactions affect the gastrointestinal, nervous and skeletal muscular systems and skin. Ocular adverse reactions include photophobia, cornea verticillata, poliosis, cataract, extracocular muscle palsy, anterior uveitis, toxic maculopathy and optic neuritis.

The most concerning side effect is retinal toxicity. Melanin bearing cells in the posterior segment including the retinal pigment epithelium may act as sink for the accumulation of hydroxychloroquine which appears to bind to melanophores. The accumulation of hydroxychloroquine may lead to the toxicity of the photoreceptors. The incidence of toxic retinopathy varies from 0% to 4%. Patients at high risk for the development of hydroxychloroquine maculopathy are those with daily dose more than 6.5 mg/kg ideal body, duration of use of more than 5 years, cumulative use of 1000 g

Table 2. Ocular complications of systemic therapy.

Structure	Clinical Findings
Chronic treatment with hydroxychloroquine	Poliosis, Cataract, Extraocular muscle palsy, Anterior uveitis, Toxic maculopathy, Optic neuritis, Cornea verticillata
Systemic steroids	Elevation of intraocular pressure, Cataract

Table 3. Protocol for Assessment of Hydroxychloroquine (Plaquenil®) Toxicity.

Date of examination:	Right eye	Left eye
Date of initiation of therapy:		
Total cumulative dose:		
Diagnosis:		

Investigations:

1. Visual acuity (corrected)
2. Funduscopy
3. Visual fields 10-2 (Fovea, OU)
4. Multifocal electroretinogram (ERG)
5. OCT (Macula)
6. Fundus photograph
7. Fundus autofluorescence

Risk factors:

1. Duration > 5 years Yes No
2. Daily dose > 6.5 mg/kg/day of ideal weight Yes No
3. Renal or Hepatic disease Yes No
4. Age > 60 years Yes No
5. Pre-existing macular disease Yes No
(total), kidney or liver disorders, pre-existing retinal disease or maculopathy and elderly people. In the early stages of retinal toxicity, most patients are asymptomatic. Patients may later complain of difficult reading, impaired color vision, and the central or paracentral scotoma. A protocol for the follow-up and assessment of hydroxychloroquine toxicity is shown in Table 3.

The fundus may appear completely normal even after development of the central scotoma. The earliest signs of toxicity are stippling of the retinal pigment epithelium at the macula, irregular pigmentary changes and loss of the foveal light reflex. The progression of retinal toxicity may lead to the development of bull’s eye maculopathy in which an irregular central zone of pigmentation becomes surrounded by an annular zone of depigmentation of the retinal pigment epithelium. Recommendations for the screening of hydroxychloroquine maculopathy include subjective and objective tests. The objective tests include visual acuity testing for distance and near reading, slit lamp examination (for corneal involvement), fundus examination, automated central perimetry (10-2) and fundus photography. The objective tests include optical coherence tomography of the macula, fundus autofluorescence and multifocal ERG. All patients using chloroquine and its derivatives must be followed up and documented since the beginning of therapy for early detection of adverse effects. Systemic steroids which may be used for treatment of SLE, may lead to elevation of intraocular pressure, cataract and secondary infections of the eye.

Conclusion

The eye manifestations in SLE are variable. The eye findings may be the presenting sign of the systemic disease. In addition, these findings may serve as an indicator of active systemic disease. Careful assessment by the ophthalmologist is mandatory to prevent sight-threatening complications. Early recognition of drug induced toxicity may reduce ocular morbidity associated with this disease. SLE is a multisystem disease which requires the collaboration between the rheumatologist and the ophthalmologist to provide adequate treatment and prevent complications.

Conflict of interest

Financial/proprietary interests: The authors do not have any financial and proprietary interests in this study.

Acknowledgments

Support: This study was supported in part by a Special Fund from The Eye Center and The Eye Foundation for Research in Ophthalmology, Riyadh, Saudi Arabia.

References

1. Sivaraj RR, Durrani OM, Denniston AK, Murray PI, Gordon C. Ocular manifestations of systemic lupus erythematosus. Rheumatology 2007;46:1757–62.
2. Read RW. Clinical min-review systemic erythematosus and the eye. Ocul Immunol Inflamm 2004;12:87–99.
3. Davies JB, Rao PK. Ocular manifestations of systemic lupus erythematosus. Curr Opin Ophthalmol 2008;19:512.
4. Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for classification of systemic lupus erythematosus. Arthritis Rheum 1982;25:1271–7.
5. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997;40(9):1725.
6. Palewala NV, Walia HS, Yeh S. Ocular manifestations of systemic lupus erythematosus: a review of the literature. Autoimmune Dis 2012;2012:290898.
7. Siebert S, Sririvasan U. Proptosis can be the presenting feature of systemic lupus erythematosus. Ann Rheum Dis 2004;63(8):908–9.
8. Serop S, Vianna RN, Claeyzs M, De Laeey J. Orbital myositis secondary to systemic lupus erythematosus. Acta Ophthalmol (Copenh) 1994;72(4):520–3.
9. Stavrou P, Murray PI, Batta K, Gordon C. Acute ocular ischaemia and orbital inflammation associated with systemic lupus erythematosus. Brit J Ophthalmol 2002;86(4):474–5.
10. Arrico L, Abbouda A, Bianchi S, Malagola R. Acute monolateral proptosis and orbital myositis in a patient with discoid lupus erythematosus: a case report. J Med Case Rep 2014;8:375.
11. Vattoth S, Curé JK. CT imaging of head and neck lupus panniculitis. AJNR Am J Neuroradiol 2007;28(7):1311–3.
12. Arrico L, Abbouda A, Abica I, Malagola R. Ocular complications in cutaneous lupus erythematosus: a systematic review with a meta-analysis of reported cases. J Ophthalmol 2015;2015:254260.
13. Tabbara 1 KF, Vera-Cristol LO. Sjoergen syndrome. Curr Opin Ophthalmol 2000;11(6):449–54.
14. Baker MG, Cresce ND, Ameri M, Martin AA, Patterson JW, Kimpel DL. Systemic lupus erythematosus presenting as Stevens-Johnson syndrome/toxic epidermal necrolysis. J Clin Rheumatol 2014;20(3):167–71.
15. Jensen JL, Bergem GM, Gilboe IM, et al. Oral and ocular sicca symptoms and findings are prevalent in systemic lupus erythematosus. J Oral Pathol Med 1999;28(7):317–22.
16. Moscovic BK, Holzhuhu R, Chiacchio BB, Santz RM, Shimazaki J, Hida SY. Clinical treatment of dry eye using 0.03 mg tacrolimus eye drops. Cornea 2012;31(8):945–9.
17. Messmer EM, Foster CS. Vasculitic peripheral ulcerative keratitis. Surv Ophthalmol 1999;43(5):379–96.
18. Halmay O, Ludwig K. Bilateral band-shaped deep keratitis and iridocyclitis in systemic lupus erythematosus. Brit J Ophthalmol 1994;48:558–62.
19. Ruusuvuora P, Setala K. Keratoenodethelitis fuxag hereditaria. A clinical and specular microscopic study of a family with dominanted inflammatory corneal disease. Acta Ophthalmol 1987;65(2):159–69.
20. Nemet AY, Vinker S, Bahar I, Kaiserman I. The association of keratoconus with immune disorders. Cornea 2010;29(11):1261–4.
21. Watson PG, Hayreh SS. Scleritis and episceritis. Brit J Ophthalmol 1976;60:163.
22. Sainz de la Maza M, Jabbur NS, Foster CS. Severity of scleritis and episceritis. Ophthalmology 1994;101:389.
23. Wong RW, Chan A, Johnson RN, McDonald HR, Kumar A, Gariano R. Posterior scleritis in patients with systemic lupus erythematosus. Retin Cases Brief Rep 2010;4(4):326–31.
24. Harvey AM, Shulman LE, Tumulty PA, et al. Systemic lupus erythematosus: review of the literature and clinical analysis of 138 cases. Medicine 1954;33:291.
25. Gallagher K, Viswanathan A, Okhravi N. Association of systemic lupus erythematosus with uveitis. JAMA Ophthalmol 2014;132(4):386–8.
26. Silpaarcha S, Lee JJ, Foster CS. Ocular manifestations in systemic lupus erythematosus. Brit J Ophthalmol 2016;100:135–41.
27. Ushiyama O, Ushiyama K, Kojorada S, et al. Retinal disease in patients with systemic lupus erythematosus. Annals Rheum Diseases 2000;59(9):705–8.
28. Coppejo J, Lessel S. Retinopathy in systemic lupus erythematosus. Arch Ophthalmol 1977;95:794–7.
29. Jabs DA, Fine SL, Hochberg MC, et al. Severe retinal vaso-occlusive disease in systemic lupus erythematosus. Arch Ophthalmol 1986;104:528–63.
30. Hall S, Buettner H, Luthra HS. Ocular retinal vascular disease in systemic lupus erythematosus. J Rheumatol 1984;11:846–50.
32. Lanham JG, Barrie T, Kohner EM, Hughes GRV. SLE retinopathy: evaluation by fluorescein angiography. *Ann Rheum Dis* 1982;41:473–8.

33. Shein J, Shukla D, Reddy S, Yannuzzi LA, Cunningham Jr ET. Macular infarction as a presenting sign of systemic lupus erythematosus. *Retin Cases Brief Rep* 2008;2(1):55–60, Winter.

34. Cunningham Jr ET, Alfred PR, Irvine AR. Central serous chorioretinopathy in patients with systemic lupus erythematosus. *Ophthalmology* 1996;103:2081–90.

35. Nguyen QD, Uy HS, Akpek EK, et al. Choroidopathy of systemic lupus erythematosus. *Lupus* 2000;9(4):288–98.

36. Arevalo JF, Lowder CY, Muci-Mendoza R. Ocular manifestations of systemic lupus erythematosus. *Curr Opin Ophthalmol* 2002;13:404–10.

37. Feinglass EJ, Arnett FC, Dorsch CA, et al. Neuropsychiatric manifestations of systemic lupus erythematosus: diagnosis, clinical spectrum, and relations to other features of the disease. *Medicine* 1976;55(4):323–9.

38. Keane J. Eye movement abnormalities in systemic lupus erythematosus. *Arch Neurol* 1995;52:1145–9.

39. Klippel JH, Zwaifler NJ. Neuropsychiatric abnormalities in systemic lupus erythematosus. *Clin Rheum Dis* 1975;1:621.

40. Lacava AC. Ocular complications of chloroquine and derivatives therapy. *Arq Bras Ofthalmol* 2010;73(4):384–9.

41. Geamănu Panca˘ A, Popa-Cherecheanu A, Marinescu B, et al. Retinal toxicity associated with chronic exposure to hydroxychloroquine and its ocular screening. *Rev J Med Life* 2014;7(3):322–6, 15.

42. Marmor MF, Kellner U, Lai TY, et al. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. *Ophthalmology* 2011;118(2):415–22.