Association between Human Health and Indoor Air Pollution in Saudi Arabia: Indoor Environmental Quality Survey

Mohd Saleem¹, Mohd Adnan Kausar²*, Fahmida Khatoon², Sadaf Anwar², Syed Monowar Alam Shahid², Tariq Ginawi², Ashfaque Hossain³, Abdullah Aziz Saleh Alhammad Al Anizy⁴, Mohammed Alydha A. Alswaidan⁴, Abdulrahman Saleh Aseeri⁴, Mahammad Hamed Bin Saloom Alturjmi⁴, Dkhel F. Abdulkarim⁵ and Mohammed Kuddus²

¹Department of Pathology, College of Medicine, University of Hail, Hail, KSA.
²Department of Biochemistry, College of Medicine, University of Hail, Hail, KSA.
³Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, UAE.
⁴College of Medicine, University of Hail, Hail, KSA.
⁵Abdalla Almosnaid Health Training Center, Riyadh, KSA.

Authors' contributions

This work was carried out in collaboration among all authors. Authors MS and MAK designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors FK, SA, SMAS, TG, AH, AASAA, MAAA, ASA, MHBSA and DFA collected data and managed the analyses of the study. Author MK contributed in literature search, questionnaire preparation and finalized the manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2020/v32i3430965

Received 26 September 2020
Accepted 01 December 2020
Published 10 December 2020

ABSTRACT

In many aspects of life quality, bio-contaminants and indoor air quality have had catastrophic consequences, including a negative impact on human health with an increased prevalence of
1. INTRODUCTION

Indoor air quality is one of the most significant factors affecting people’s health and well-being who inhale 10m³ of the air every day and spend between 80-95% of their lives indoors [1]. The air inhaled by the human is abundantly populated with microorganisms which form so-called bio-contaminants. Possible sources of biological contamination of indoor air include people, organic dust, various materials stored in the houses, and the air inflowing from the ventilation and air conditioning systems [2,3]. Biological contaminants are a form of air pollutants, present particularly in the indoor air that humans breathe [4,5].

Bio-contaminants can cause a wide range of adverse effects [6]. These include respiratory allergic reactions, asthma, and infectious diseases ranging from Influenza to Legionnaires disease, which damages lungs, intestines, kidneys, the central nervous system, and may even cause death to significant numbers of people [7,8,9]. Various diseases, including COVID-19, can also be spread to humans through bio-contaminants [10,11].

Almost one billion people, mostly women, and children are exposed to indoor air pollution levels that exceed the World Health Organization guidelines [12]. On a global scale, this amounts to three million deaths a year from indoor air. While ambient air quality has been a matter of debate and concern in the developing world, very little attention has been paid to indoor air quality in Kingdom of Saudi Arabia (KSA). It should be noted that the country faces other pressing health issues that compete for both resources and manpower.

Various diseases may be associated with indoor bio-contaminants [13,14]. However, only limited data are available on diseases associated with indoor bio-contaminants in KSA [15]. More specifically, there is no specific data available on season dependent bio-contaminant and their impact on human health. For the first time, the present proposal aims to evaluate the spectrum and concentration of bacteria, fungi, and mold in the indoor environment compared to the outdoor environment during different seasons in KSA and find out the health effect of people living in this environment. The data will help to control indoor bio-contaminant and will help to clean the environment. It will also help in the safety assessment of indoor residence/occupants of people of KSA.

Recently, the Kingdom of Saudi Arabia (KSA) has experienced tremendous population growth, as a result, the number of houses, masjids, schools, hospitals, hotels, offices, etc. has also increased significantly. However, limited data are available on the indoor pollution of these places. Therefore, the online questionnaire was distributed among Saudi Arabia residents to determine the indoor environment quality (IEQ) in their house. The research aimed to examine the associations between house IEQ and reporting of allergic respiratory reactions, asthma, and infectious diseases. We aimed to evaluate the quality of indoor air environment and find out the association between human health and indoor air pollution and also to assess the physical health status of a group of Saudi and non-Saudi populations during this pandemic. Also, we aimed to assess the most common health condition or symptoms associated with ventilation. A questionnaire was distributed online to test indoor air quality, ventilation status, common signs and symptoms of any allergy or mental status and their relationship to certain variables. A total of 362 respondents were included. Before living in the current home, flu or Influenza and chapped lips were more prevalent than allergies and chapped lips signs while living in the current home. (12.2% , 10.8% vs. 18.5% , 13.55% before and after respectively) Multiple colds were the second most common symptom (10.2%). Hoarse voice and headaches were the least common symptoms experienced; each constituted 4.4%. During the COVID-19 Pandemic, most respondents wore a facemask, approximately 76.5%; and almost one-third of respondents had bright natural light inside the current home (43.1%). The presence of natural light within the current home was significantly associated with symptoms experienced during living in the current house (p<0.05). Natural sunlight exposure could decrease allergic symptoms and minor health problems associated with poor ventilation and air quality indoors. In current living homes, the majority of respondents never used air purifiers (72.9 percent). In order to get attention from people to enhance the quality and ventilation mechanism of indoor air, special care and awareness of the effects of the use of air purifiers on human health is needed.

Keywords: Indoor air pollution; human health; Influenza & Respiratory allergies.
different symptoms (respiratory, lower respiratory, and general). Survey results can positively influence indoor environmental quality for occupants of existing as well as future buildings.

2. MATERIALS AND METHODS

Based on the protocol used by the World Health Organization (WHO) to identify health risks associated with housing, we conducted an online cross-sectional survey among currently living peoples of Hail, Saudi Arabia. A detailed questionnaire consisting of information on demographic and other variables was designed. Total 362 questionnaires were mailed in English and Arabic, both languages, to participants before taking consent from each participant.

There are several other IEQ elements and parameters that could have been included in this study. However, wherever reliable supporting data and affordable measuring instruments are available, this study has included such elements and parameters such as natural ventilation and natural light in an indoor environment.

There are several guidelines for protecting public health from risks due to several factors commonly present in indoor air; however, these are not generally acknowledged guidelines. Therefore, the authors have decided to use and adapt the WHO guidelines for the protection of public health [16].

2.1 Statistical Analysis

The results are presented in frequencies and percentages. The Chi-square test was used for comparisons. The p-value<0.05 was considered significant. All the analysis was carried out on SPSS 23.0 version (Chicago, Inc., USA) [17].

3. RESULTS

More than half of the respondents were between 18-29 years of age (55.2%) and were females (59.1%). Most of the respondents were graduates (55%) and (57.2%) were retired. About one-third of the respondents were married (35.1%). More than half of the respondents were currently living in Hail (59.9%). Only 10.5% of respondents were cigarette and shisha (Hookah) smokers (Table 1).

About one-third of respondents were living in the current house for 0-5 years (33.7%), followed by 5-10 years (29.8%), 10-20 years (26.2%), 20-40 years (8.8%), and >40 years (1.4%). More than half (57.7%) of respondents spent >12 hours at the current house, followed by 12 hours (27.9%) and 6 hours (14.4%) (Table 2).

Fig. 1 shows respondents' distribution according to those who suffered from respiratory diseases/conditions before and currently living at the house. Allergies were the most common
disease/condition (18.5%), and chapped lips were the second most common disease/condition (13.5%) during current living home. Pharyngitis was the least common disease/condition (1.7%) during the current living home. However, Influenza (flu) was the most common disease/condition (12.2%) before living at the current home, and Chapped lips were the second most common (10.8%). Pneumonia was the least common disease/condition (2.8%) before living at the current home.

Table 3 shows the distribution of respondents according to symptoms living at the current house. The sore throat was the most common symptom experienced living at the current house (11.3%), and Multiple colds were the second most common symptom (10.2%). Hoarse voice and Headaches were the least common symptom experienced; each constituted 4.4%. More than half of respondents (65.5%) had duration of symptoms were seasonal, and in the spring season, 55.4% had symptoms. Cleaning agents were the leading cause of experiencing symptoms, constituting 24.5%. The duration of the presence of symptoms was in all of life among 50.6% of respondents. Symptoms go away by the morning was opined by 63.9% of respondents, and symptoms go away when on vacation was opined by 57.4% of respondents. The majority of respondents have some symptoms while living at their current house.

Table 1. Basic profile of respondents

Demographic profile	No. (n=362)	Percentage (%)
Age in years		
Less than 18	48	13.3
18 – 29	200	55.2
30 –40	79	21.8
41 – 50	29	8.0
51 – 60	6	1.7
Gender		
Male	148	40.9
Female	214	59.1
Education		
High school	133	36.7
Intermediate	7	1.9
Graduate	199	55.0
Post graduate+	23	6.4
Occupation		
Employed	114	31.5
Housewife	18	5.0
Unemployed	16	4.4
Student	207	57.2
Retired	5	1.4
Others	2	0.6
Marital status		
Married	127	35.1
Single	235	64.9
Have children		
Yes	108	29.8
No	254	70.2
Currently living in Hail		
Yes	217	59.9
No	145	40.1
Cigarette smoking		
Yes	39	10.8
No	323	89.2
Smoke shisha (Hookah)		
Yes	38	10.5
No	324	89.5
Table 2. Distribution of respondents according to living information at current house

Living information at current house	Number (n=362)	%
Duration of living		
0 - 5 Years	122	33.7
5-10 Years	108	29.8
10-20 Years	95	26.2
20-40 Years	32	8.8
More than 40 Years	5	1.4
Approximately time spending at house		
6 hours	52	14.4
12 Hours	101	27.9
More than 12 hours	209	57.7
Rating the indoor air quality		
Average	115	31.8
Good	227	62.7
Poor	20	5.5

The majority of respondents never used humidifiers (72.4%) and air-purifier (72.9%) at current living homes. About one-fifth of respondents occasionally used humidifier (18.5%) and air-purifier (18.2%) at current living home. Only 6.4% of respondents regularly used humidifiers, and 7.5% periodically used purifiers at current living homes (Table 6).

4. DISCUSSION

According to the World Health Organization [16], 4.2 million deaths worldwide were due to ambient air pollution in 2016. This caused non-communicable diseases, including lung cancer, chronic obstructive pulmonary disease, heart disease, and stroke. The present study aimed at correlating indoor environmental quality and different symptoms as well as the personal experiences of residents of houses. This study's limitations exist in the fact that few scientific research data are available in Saudi Arabia. The present study explored the impact of indoor environmental quality (IEQ) with different types of symptoms, including allergic rhinitis, allergies, chapped lips, influenza(flu), sinusitis, asthma, laryngitis, pharyngitis, pneumonia and unusual thirst etc. This study examined associations between indoor environmental quality (IEQ) problems in homes and symptom reported by respondents, and whether associations became stronger when participants related symptoms to the home environment. We found associations between the overall score of IEQ problems and increased reporting of respiratory and general symptoms in respondents. Some associations were also observed between IEQ indicators and lower respiratory as well as skin symptoms, but not eye symptoms.
Table 3. Distribution of respondents according to symptoms living at current house

Symptoms experienced	No. (n=362)	%
Wheezing (except cold)	21	5.8
Sinus infection	26	7.2
Multiple colds (more than four)	37	10.2
Sore throat	41	11.3
Shortness of breath	39	10.8
Hoarse voice	16	4.4
Migraines	27	7.5
Headaches (at least 2/month)	16	4.4
Burning or irritated eyes	17	4.7
Sneezing attacks	22	6.1
None	113	31.2

Duration of symptoms	n=249	
Seasonal	163	65.5
Round the years	37	14.9
Both	49	19.6

Seasons	n=249	
Fall	46	18.5
Spring	138	55.4
Summer	61	24.5
Winter	53	21.3

Causes	n=249	
Air-conditioning	26	10.4
Cold day	43	17.3
Alcohol	49	19.7
Chemical Fumes	51	20.5
Dry weather	13	5.2
Windy day	59	23.7
Mold or mildew	27	10.8
Cleaning agents	61	24.5
Wet weather	27	10.8
Hot day	46	18.5
House dust	55	22.1

Time of the day symptoms become worse	n=249	
Morning	92	36.9
Afternoon	89	35.7
Evening	96	38.6
Night	91	36.5

Duration of presence of symptoms	n=249	
Months	56	22.5
Years	67	26.9
All of life	126	50.6

Symptoms go away by the morning	n=249	
Yes	159	63.9
No	90	36.1

Symptoms go away when on vacation	n=249	
Yes	143	57.4
No	106	42.6

Have any health problems or allergies that might account for the above symptoms	n=249	
Yes	185	74.3
No	64	25.7

#Multiple response
Table 4. Distribution of respondents according to medications which they are currently taking on a daily or weekly basis while living at current house

Medications that are currently taking on a daily or weekly basis living at current house	No. (n=362)	%
Antidepressants	31	8.6
Decongestants	25	6.9
Pain relievers	81	22.4
None	225	62.2

Table 5. Distribution of respondents according to current housing condition and its association with any symptom experienced

Current housing condition	No. (n=362)	Symptom	p-value*				
		Present	Absent				
	No.	%	No.	%	No.	%	
Natural light inside current home							
Dim light	62	17.1	50	80.6	12	19.4	0.04*
Just light	125	34.5	79	63.2	46	36.8	
Bright light	156	43.1	110	70.5	46	29.5	
Too bright	13	3.6	8	61.5	5	38.5	
Too dim	6	1.7	2	33.3	4	66.7	
There been any renovation/demolition related activities occurred in or near current living home within past weeks							
Yes	95	26.2	65	68.4	30	31.6	0.92
No	267	73.8	184	68.9	83	31.1	
There been any evidence of water leaks or visible sign of moisture in current living home							
Yes	65	18.0	50	76.9	15	23.1	0.11
No	297	82.0	199	67.0	98	33.0	
Home situated near any of these							
Farm	21	5.8	17	81.0	4	19.0	0.008*
Industrial area	13	3.6	9	69.2	4	30.8	
Vacant land	79	21.8	66	83.5	13	16.5	
Water source	13	3.6	7	53.8	6	46.2	
Not applicable	236	65.2	150	63.6	86	36.4	
Any other exposure such as an additional job/hobbies, e.g. gardening/farming, etc							
Yes	39	10.8	26	66.7	13	33.3	0.76
No	323	89.2	223	69.0	100	31.0	

*Chi-square test, *Significant

More than 75% of respondents were 18-40 years old and about 59.1 % were female. Most of the respondents did not have any symptoms before or after living in their current home. The most prevalent symptoms were Allergies (18.5%), chapped lips (13.5%), Influenza (flu) (9.4%), and sinusitis 7.2% among respondents living in current houses.

We further tested whether associations between IEQ and symptoms were reported in relation to current house and before living in the current houses. The present study found that the associations between IEQ and symptoms related to the current house environment were somewhat stronger in magnitude compared to associations with symptoms reported before living in the current houses. To the best of our knowledge, these associations have not been tested previously.

Another study conducted in Delhi’s industrial area shows that 30% of the population has respiratory or pulmonary system symptoms due to a large amount of time (80%) spend indoors [18].
Fig. 2. Distribution of respondents according to symptoms experienced which may be related to work environment or living at current house (Multiple response)

Table 6. Distribution of respondents according to use of humidifier at current living home

Use of humidifier at current living home	Use of humidifier	Use of air purifier		
	No. (n=362)	%	No. (n=362)	%
Never use	262	72.4	264	72.9
Use occasionally	67	18.5	66	18.2
Use regularly in all-season	23	6.4	27	7.5
Use regularly in summers	6	1.7	1	0.3
Use regularly in winters	4	1.1	3	0.8

Fig. 3. Distribution of respondents according to Covid-19 parameters
In this impact assessment evaluating household air pollution's adverse health effects, we report several important observations. Household air pollution is associated with an increased risk of adverse health effects, with the strongest association observed for allergies and chapped lips [19]. As more than half of the respondents had a seasonal period of symptoms and had symptoms in the spring season. A similar report was also published by Li and co-workers [20].

Respondents reported various symptoms such as multiple colds (more than four), sore throat, shortness of breath etc. Similar finding were also reported by various researchers (Singleton et al. 2017); [21].

5. CONCLUSION

More than one-third of respondents had little natural light inside the current home. Allergies were the most common disease/condition. The sore throat was the most common symptom of living in the current house, and the second most common symptom was multiple colds. Natural light within the current home and home near industrial area was significantly associated with symptoms experienced during living in the current house (p<0.05).

CONSENT

As per international standard or university standard, Participants’ written consent has been collected and preserved by the author(s).

ETHICAL APPROVAL

The study was approved by the institutional ethical committee (number 55456/5/41 dated August 19, 2020).

ACKNOWLEDGEMENT

This research has been funded by Scientific Research Deanship, University of Hail, Saudi Arabia through the project number RG-191228.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Farmer DK, Vance ME. Indoor air: Sources, chemistry and health effects. Environ Sci Process Impacts. 2019;21(8):1227-1228.
2. Awbi HB. Ventilation of buildings. Spon Press: London, UK; 2003.
3. Järvi K, Hyvärinen A, Täubel M, Karvonen AM, Turunen M, Jalkanen K, Patovirta R, Syrjänen T, Pirinen J, Salonen H, Nevalainen A, Pekkanen J. Microbial growth in building material samples and occupants’ health in severely moisture-damaged homes. Indoor Air. 2018;28(2):287-297.
4. Kausar MA, Vijayan VK, Bansal SK, Menon BK, Vermani M, Agarwal MK. Mosquitoes as sources of inhalant allergens: Clinico-immunologic and biochemical studies. J Allergy Clin Immunol. 2007;120:1219-21.
5. Vermani M, Vijayan VK, Kausar MA, Agarwal MK. Quantification of airborne Aspergillus allergens: Redefining the approach. J. Asthma. 2010; 47:754-61.
6. Kim KH, Jahan SA, Kabir E. A review on human health perspective of air pollution with respect to allergies and asthma. Environ Int. 2013;59(3):41–52
7. Ahmed NJ, Khan FM. Frequency of outpatient inhalers prescriptions in Riyadh. Journal of Pharmaceutical Research International. 2019;31(6):1-5.
8. Bonlokke JH, Holst GJ, Sigsgaard T, et al. Modeled effects of an improved building insulation scenario in Europe on air pollution, health and societal costs. Pollution Atmospherique. 2015;225:1–16.
9. Fu QL, Du Y, Xu G, Zhang H, Cheng L, Wang YJ, et al. Prevalence and occupational and environmental risk factors of self-reported asthma: evidence from a cross-sectional survey in seven Chinese cities. Int J Environ Res Public Health. 2016;13(11):1084–163.
10. Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F. Scarlata S, Agrò FE. COVID-19 diagnosis and management: A comprehensive review. J Intern Med. 2020;288(2):192-206.
11. Khamal R, Isa ZM, Sutan R, Noraini NMR, Ghazi HF. Indoor particulate matters, microbial count assessments, and
wheezing symptoms among toddlers in urban day care centers in the district of Seremban, Malaysia. Ann Glob Health. 2019;85(1):15. DOI: 10.5334/aogh.2425 PMID: 30741516; PMCID: PMC6997519.

12. Maharana SP, Paul B, Garg S, Dasgupta A, Bandyopadhyay L. Exposure to indoor air pollution and its perceived impact on health of women and their children: A household survey in a slum of Kolkata, India. Indian J Public Health. 2018;62:182-7.

13. Vermani M, Vijayan VK, Menon B, Kausar MA and Agarwal MK. Physico-chemical and clinico-immunologic studies on the allergenic significance of Aspergillus tamarii, a common airborne fungus. Immunobiology. 2011;216(3):393-401.

14. Kausar MA. A review on Respiratory allergy caused by insects. Bioinformation. 2018;14(9):540-553.

15. Kausar MA, Arif JM, Alanazi SMM, Alshmmyy AMA, Alzapi YAA, Alanazy FKB, Shahid SMA, Hossain A. Assessment of microbial load in indoor environment of University and hospitals of Hail, KSA. Biochem. Cell. Arch. 2016; 16(1):177-183.

16. WHO. WHO Guidelines for indoor air quality: Selected pollutants. Geneva: World Health Organization; 2010. PMID: 23741784.

17. Poupard O, Blondeau P, Iordache V, Allard A. Statistical analysis of parameters influencing the relationship between outdoor and indoor air quality in schools. Atmos. Environ. 2005;39:2071–2080.

18. Nagar JK, Kumar R, Shrivastava JP, Kaushik G. Indoor air pollution around industrial areas and its effect: A case study in delhi City. In: Hussain C. (eds) Handbook of Environmental Materials Management. Springer, Cham; 2019. Available:https://doi.org/10.1007/978-3-319-73645-7_158

19. Chen R, Zhao A, Chen H, et al. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers. J Am Coll Cardiol. 2015; 65(21):2279–87.

20. Li S, Xu J, Jiang Z, Luo Y, Yang Y, Yu J. Correlation between indoor air pollution and adult respiratory health in Zunyi city in Southwest China: Situation in two different seasons. Li et al. BMC Public Health. 2019;19:723.

21. Kumar R, Nagar JK, Kumar H, Kushwah AS, Meena M, Kumar P, Raj N, Singhal MK, Gaur SN. Association of indoor and outdoor air pollutant level with respiratory problems among children in an industrial area of Delhi, India. Arch Environ Occup Health. 2007;62(2):75-80. DOI: 10.3200/AEOH.62.2.75-80 PMID: 18316264.

© 2020 Saleem et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.