Doctor-patient communication during the Corona crisis – web-based interactions and structured feedback from standardized patients at the University of Basel and the LMU Munich

Abstract

Background: Due to the pandemic-related restrictions in classroom teaching at the medical faculties of the LMU Munich and the University of Basel, teaching methods with standardized patients (SPs), were shifted to a digital, web-based format at short notice as of April 2020.

We report on our experiences with the WebEncounter program, which was used for the first time in German-speaking countries. The program enables one-to-one encounters between SPs and students. Students receive an invitational email with brief instructions and background information on the case. SPs use case-specific criteria that are compliant with the learning objectives for digital evaluation during the encounter. A feedback session takes place immediately following the encounter. The SPs address the didactically relevant sections and can illustrate them with the corresponding video sequences. Finally, the students receive the links to the video recordings of the encounter and the feedback unit by email.

Project description: The aim of this pilot study was to analyze the practicability of the program and its acceptance by students and SPs. In addition, we examined whether the operationalization of the learning objectives in the form of assessment items has an impact on the content and thematic development of courses in the area of doctor-patient communication.

Methods: To implement the program, patient cases previously tested in communication seminars in Munich and Basel were rewritten and case-specific evaluation criteria were developed. SPs were trained to use the program, to present their patient figure online and to give feedback. The experience of those involved (faculty, SPs and SP trainers, students) in implementing the program was documented at various levels. The frequency and causes of technical problems were described. Student results on the patient cases and on the feedback items were collected quantitatively and, where possible, supplemented by free-text statements.

Results: Data from 218/220 students in Basel and 120/127 students in Munich were collected and evaluated. Students were very satisfied with the patient cases, the encounter with the SPs and their feedback: 3.81±0.42. SPs experienced the training as an increase in their competence and the structured feedback as particularly positive. The training effort per SP was between 2.5 and 4 hours. The results show predominantly normally-distributed, case-specific sum scores of the evaluation criteria. The analysis of the individual assessment items refers to learning objectives that students find difficult to achieve (e.g. explicitly structuring the conversation).

Problems in the technical implementation (<10 percent of the encounters) were due mainly to the use of insufficient hardware or internet connection problems. The need to define case-specific evaluation criteria triggered a discussion in the group of study directors about learning objectives and their operationalization.
Summary: Web-based encounters can be built into the ongoing communication curriculum with reasonable effort. Training the SPs and heeding the technical requirements are of central importance. Practicing the virtual consultation was evaluated very positively by the students – in particular, the immediate feedback in the protected dialogue was appreciated by all involved.

Keywords: standardized patient, medical interviewing, virtual consultation, digital teaching, WebEncounter

Introduction

In the course of the “Corona crisis”, face-to-face encounters with students in university classroom settings, particularly with standardized patients (SPs), were prohibited. We take this opportunity to report on our experiences with a program, not previously used in the German-speaking countries, which despite such bans enables the use of SPs via a web-based platform: WebEncounter [https://enhancedlearn.azurewebsites.net/]. WebEncounter was developed at Drexel Medical School in Philadelphia, USA, and enables face-to-face encounters between students and SPs via the internet. Several publications from the English-speaking countries demonstrate the benefits of this and similar learning and teaching aids in the training of students and in the further training of residents and nurses [1], [2], [3], [4], [5], [6]. The program belongs to the group of teaching aids, which are usually used as part of blended learning, combining direct interactions among students in small groups or with real patients and internet-based computer-aided learning.

The use of SPs and their benefits in medical teaching is well-documented [7], [8], [9], [10] and common at most German-speaking universities [11]. One particular feature of using SPs, especially in the area of training communication and social skills, is the possibility of immediate “patient” feedback after a learning unit [12], [13]. The effectiveness of feedback depends on how closely it relates to the behavior the student just demonstrated and whether it refers to a standard of desirable behavior that is familiar to the student. The first point relates to the implementation of the feedback and the second to its content. With the aim of a close temporal succession of behavior and feedback, a procedure was developed under the term “Rapid Cycle Deliberate Practice” that uses the advantages of structured, timely and concrete feedback on the learning success (e.g. [14], [15]). In order for the feedback recipient to know what he or she should do differently next time, it must be clear what the desired behavior is; the student – and the teacher – must be familiar with such a standard. Monica de Ridder et al. [16], emphasize this when they write: “Feedback is specific information about the comparison between a trainee’s observed performance and a standard, given with the intent to improve the trainees’ performance.” Determining desirable behaviors as specifically as possible is not trivial [17]. First, the faculty is required to define and teach learning objectives in the communication curriculum so clearly that students (can) know what is expected of them. These learning objectives must then be applied to the specific case, i.e. formulated in such a way that they are represented in the conversation with the SP and that they can be assessed, if they occur. The persons who are to give the feedback must be trained according to these guidelines.

When implementing these requirements, particularly in the face-to-face encounter between students and SPs, a further factor plays a decisive role. If the feedback does not come from a third party (e.g. an expert or other student present), but is provided by the SP, then it is the SP’s responsibility to not only act like a credible patient, but also to simultaneously detect whether and when the given learning goals are achieved in the conversation. This double burden often means that the feedback does not refer to the concrete behavior of the student in a certain phase of the conversation, but more likely summarizes an overall impression.

The platform we are using for the first time in the German-speaking countries addresses these difficulties and counteracts them:

- The buttons for assigning the evaluation criteria on the screen are arranged in a way that they are easy for the SP to use during the encounter without losing contact with their role.
- It records the conversation and the time stamps that refer to moments in which learning objectives were more or less well achieved.
- It includes a feedback unit immediately following the encounter, in which SPs can import the video segments that they have marked with time stamps as didactically valuable (“teachable moments” [18], [19]).

Project description

The aim of this pilot project is to evaluate the practicability of the new online platform and to obtain an impression of its acceptance by students and SPs. In addition, it seems interesting to get to know the particular challenges involved in implementing such a program and to find out whether the results can be fed back into the learning and teaching process by way of a feedback loop. A classic implementation study in the strict sense (e.g. [20]) could not be carried out due to the urgency of finding ad hoc alternatives to classroom teaching. At the two institutions involved, the following tasks had to be completed within 4 or 6 weeks: training of persons as administrators (for data management; appointments for SP
training and student and SP encounters), training of SPs, formulation of instructions for all involved; revision of the role scripts for patient cases and redefinition of the assessment criteria to facilitate structured feedback. Participation in the online encounter with SPs replaced the obligatory encounters with SPs in traditional classes planned in the curriculum. One online consultation hour in WebEncounter was agreed upon for each student. The analysis and the evaluation of the pilot test was based on the project directors' observations, the anonymized technical and content-related feedback from students and SPs retrieved from WebEncounter, as well as the students' performance.

Methods

Study participants

The investigation was conducted at both locations between April and June 2020. Data from students in the 3rd year of study at the LMU in Munich (N=122; 73 f, 59 m) and from the 2nd year of study in Basel (N=220; 154 f, 66 m) were considered. Students at both locations were randomly assigned to the individual case situations.

Data collection, data anonymization, consent to study participation

Medical students in Basel are informed at the beginning of their studies that video recordings are a part of training and need to be treated just as confidentially as patient information. In Bavaria, article 10, paragraph 3, clause 2, clause 1 BayHSchG allows the collection of evaluation data for the purpose of quality control in teaching. In addition, at the beginning of the summer semester while booking their courses for the summer semester 2020, the students were informed about the collection and use of data and video recordings. Students signed and gave their consent before booking the class.

At the University of Basel, research and publications that serve to improve teaching are permitted. In this particular case, the local ethics committee (EKNZ) decided that the study was not subject to the human research act art 2 and therefore no formal approval/assessment was necessary. The video files are saved under a randomly generated name (example: nejzh3aGQuqK_1br4yt7qyr.mp4), to ensure that the real name of the video file including the user information cannot be read out. The feedback from the students evaluated as part of the evaluation and the scoring-related evaluations are anonymized by WebEncounter for the respective query period or for each “patient” case as descriptive statistical statements summarized without personal data.

Development of the case descriptions

At both universities, the teams of actors and trainers selected those patient vignettes deemed most suitable for an online consultation from existing patient vignettes. The criteria were predominantly verbal references to the underlying diagnoses or processing styles of the patients, clear assignment of the case histories to specific learning goals and playability within 8 to 15 minutes.

In Basel, the following two cases were selected: suspicion of flour dust allergy and suspicion of sexually transmitted disease, including exclusion of HIV. Three cases were used in Munich: critical adherence to therapy for Hashimoto's thyroiditis, notification of an HIV infection and diagnosis of colon carcinoma. A short case description (door instruction) was developed for each case. In traditional classes with SPs this is usually distributed in advance as brief information or attached to the door to the consultation room and informs the students about who they are going to meet and what their tasks are. In addition, the students received technical instructions as well as medical background information on the case scenario in advance, in order to prepare themselves.

Standardized patients

Twelve SPs took part in the course at each location (University of Basel: 8f/4m; age range 21 to 51 years; LMU Munich: 10f/2m; age range 25 to 65 years). 9/12 SPs in Basel and 6/12 SPs in Munich had previously worked with the cases used in WebEncounter in face-to-face lessons, the other SPs were trained in the content of the cases.

In the training of the SPs, special features of case presentation via camera and with a limited field of view were discussed. Due to the limited field of view in the representation of the patient, non-verbal messages to the student which are expressed, for example, in changes in tension of the entire body had to be transferred to other non-verbal channels (e.g. tension of the upper body, covering face with both hands, etc.), facial expressions or verbal utterances (see figure 1). During the conversation, the SP sees the student and herself in the upper right corner, as well as the assessment criteria. The use of the assessment items was especially practiced in order to be able to give structured feedback. SPs already trained by the study leaders or the SP trainers took on the role of more or less talented students and then discussed their assessments with the SPs. If they had the impression that the feedback correctly reflected the different degrees of achievement of the learning objectives and that the SPs were also able to express themselves constructively to the “students”, the SPs were licensed for their respective case.

During their initial training and while working with the students, the SPs were continuously supported in the event of problems in handling the program. A debriefing was offered after a day of teaching. The average training
effort per SP was 2.5 hours in Basel and 4 hours in Munich, and was conducted in an one-on-one setting and in small groups via ZOOM or directly via WebEncounter. During the teaching units, a backup was guaranteed by the SP trainers, the teaching staff (WL in Basel, AB and BO in Munich) and the program developer in Brazil. In addition to the case-specific information, instructions for login into WebEncounter were sent out for each location. The SPs also received written explanations for evaluating the listed scoring items with text examples. The module secretariat was responsible for coordinating the appointments. At the University of Basel, the two interlocutors were invited directly via the WebEncounter platform and at the LMU Munich – due to the initially high frequency of exchange – the invitations to the actors and students were sent by the module secretariat.

Implementation

The students received an invitation email from the program 2 to 5 days before their appointment with a link to the platform and background information as well as brief information on their case. The day before their appointment, they were reminded of the appointment either via WebEncounter or by the administrators.

At the agreed time, students could use the link to join “their” SP who greeted them, explained the process, checked the technology, made sure that the students had read the case information and then had the consultation. Afterwards, feedback was offered in which the SPs gave specific feedback based on the assessment criteria, which they could back up with the corresponding video sequences. This option was rarely used by the students and the SPs. The discussions and the feedback units each lasted 12-15 minutes in Basel and 8 minutes in Munich. At the end, the students rated the case and the SP, and received a link to the recording of their consultation and their own feedback session. They were asked to make a note of any technical problems encountered during the session.

Description of the results

We report on the type and frequency of technical problems, the distribution of the total scores by the students per case, the distribution of the values in the individual scoring items and the mean values of the assessment of cases and SPs by the students. If possible, the sum scores are supplemented with examples from the students’ and SPs’ comments.

Results

Observations from the implementation

Results were obtained from 218 out of 220 participating students in Basel. In the two missing cases, it was not possible to record a meaningful video. In about 5% of the consultations (19/338) students experienced technical problems. The SPs reported a total of 9 events with technical problems (approx. 2.5%). In these cases, either a new appointment was made or the recording was repeated immediately, e.g. after students had switched from a poor WiFi connection to a local hotspot via their cell phone. When checking the entries and the login data, the impression was confirmed that problems were mainly due to poor connection quality. This was partly due to the fact that some students and SPs had ignored the instruction to connect to the program via a wired network access (LAN), or had dialed in with insufficient peripheral devices. In Basel, 12 SPs took part with between 15 and 23 consultations with students each and representing one case only.

Results are available from 120 of the 122 participating students in Munich. In the 2 missing cases, the recording of the consultation failed. From the student perspective, there were technical problems in 8 consultations, the SPs reported a total of 4 incidents with technical problems. In these cases, either a new appointment was made or the recording was repeated immediately. When checking the entries and the connection data, it was found that
the problems in Munich were due mainly to the connection quality and the failure to follow the instructions. As in Basel, connection and operation problems could be explained by the fact that instructions for using a LAN connection were not followed or that unsuitable peripheral devices were used. In Munich, 12 SPs took part in classes with WebEncounter. The individual SPs completed between 3 and 20 WebEncounter consultations (median 7) with students, with between 3 and a maximum of 6 WebEncounter consultations being carried out in the individual appointments. The vast majority (9/12) of the SPs only represented one case; three SPs represented two cases.

The SPs’ feedback at the beginning of the training made it clear that they had to get used to the new “expert role”, i.e. to using the evaluation criteria; questions were clarified in the evening feedback sessions with the program managers and SP trainers. In the end, the feedback from the SPs on the use of the feedback criteria and on their own role and function was markedly positive. They particularly praised the intimacy of the one-on-one encounter, which made it easier for them to give personal feedback. In Basel in particular, it was emphasized that the students were much more open than in previous years, they actively requested detailed feedback and thanked them for it explicitly. The change in the role at the beginning of the encounter, from the “organizer”, who asks the student whether they had read the information, to ‘the patient’, was never considered to be a problem.

Sum scores of the individual cases

The individual evaluation items are assigned a score of 1 (not fulfilled), 3 (partially fulfilled) and 5 (fully fulfilled). The sum of all items results in the sum score (overall evaluation of the consultation as a percentage of points achieved) the distribution of which is shown in figure 2 and figure 3, separated by cases. In most cases, there is an almost normal distribution of the range of variation with some significantly poorer students in the case of communicating a sexually transmitted disease (STD). The somewhat right-skewed distribution in the Munich scores of the case on communicating bad news (colon carcinoma) is also striking. As this study is a first attempt to use this program in German-speaking countries, all videos of the encounters in which students achieved below 30 percent of the possible score were viewed in order to rule out technical problems or unhelpful behavior on the part of the SPs. Neither could be verified. The responses from the SPs were correct and, in the perception of those responsible, corresponded to the behavior of the students. In the spirit of “closing the loop”, students in Basel – as has been the case in the last six years – whose score was two SDs below the class average, were invited to a refresher course in which the obvi-
ously problematic items were discussed in depth again and illustrated with examples. In Munich, students have the opportunity to implement the findings of the feedback in a further encounter with simulated patients in the following semester.

Sum scores of the individual items

With regard to the individual items, it became clear that the students had difficulties with very specific items. This concerns, on the one hand, the items in which the explicit addressing of the conversation structure is depicted (clarifying the agenda for the conversation, explicit change from the patient-centered to the doctor-centered communication phase, announced summaries) and on the other hand, items concerning the systematic narrowing down of symptoms (see figure 4).

Student feedback on the SPs and the cases

As figure 5 shows, both the cases and the SPs were rated very positively by the students. There was no negative feedback. However, of 120 students in Munich and 218 students in Basel, only around 35% completed the voluntary questionnaire at the end of the WebEncounter encounter.

The qualitative feedback from the students confirms the positive overall impression. Students especially emphasized the constructive feedback (see figure 6).

Discussion

With regard to the technical implementation, the results available so far are predominantly positive. Especially “in times of Corona”, in which the internet has often been at the limit of its capacity, <10 percent technical problems,
The feedback from students on this form of learning is very encouraging. The SPs report that they also had the impression that students had benefited from the intimacy in the one-on-one setting. In doing so, they refer to their experiences in recent years, in which discussions with SPs occurred in a small group setting of five students in Basel. One of the students held the conversation and the others were supposed to try to identify “teachable moments”. SPs had criticized this teaching format because students in the second year course in Basel were often not ready or able to give each other concrete and constructive feedback, let alone discuss the SP’s feedback. In the discussion rounds with experts, in three to four groups of five after the SP encounters, the main criticism students expressed was that the exposure in the group during role-play with SPs and the feedback from the experts in the presence of the others was uncomfortable and embarrassing. Since the online consultation with WebEncounter was not tested against a face-to-face event at which students could speak to an SP on their own, it remains unclear whether the positive feedback regarding the intimacy of the situation was due to the relocation to the internet or the change from (small) group lessons to the one-on-one setting. In principle, the different teaching formats should not be played off against one another, but rather used according to their particular strengths and weaknesses and to meet the needs of the students in establishing and maintaining an empathic relationship. Since the online consultation with WebEncounter was not tested against a face-to-face event at which students could speak to an SP on their own, it remains unclear whether the positive feedback regarding the intimacy of the situation was due to the relocation to the internet or the change from (small) group lessons to the one-on-one setting. In principle, the different teaching formats should not be played off against one another, but rather used according to their particular strengths and weaknesses and to meet the needs of the students in establishing and maintaining an empathic relationship. Since the online consultation with WebEncounter was not tested against a face-to-face event at which students could speak to an SP on their own, it remains unclear whether the positive feedback regarding the intimacy of the situation was due to the relocation to the internet or the change from (small) group lessons to the one-on-one setting. In principle, the different teaching formats should not be played off against one another, but rather used according to their particular strengths and weaknesses and to meet the needs of the students in establishing and maintaining an empathic relationship. Since the online consultation with WebEncounter was not tested against a face-to-face event at which students could speak to an SP on their own, it remains unclear whether the positive feedback regarding the intimacy of the situation was due to the relocation to the internet or the change from (small) group lessons to the one-on-one setting. In principle, the different teaching formats should not be played off against one another, but rather used according to their particular strengths and weaknesses and to meet the needs of the students in establishing and maintaining an empathic relationship. Since the online consultation with WebEncounter was not tested against a face-to-face event at which students could speak to an SP on their own, it remains unclear whether the positive feedback regarding the intimacy of the situation was due to the relocation to the internet or the change from (small) group lessons to the one-on-one setting. In principle, the different teaching formats should not be played off against one another, but rather used according to their particular strengths and weaknesses and to meet the needs of the students in establishing and maintaining an empathic relationship. Since the online consultation with WebEncounter was not tested against a face-to-face event at which students could speak to an SP on their own, it remains unclear whether the positive feedback regarding the intimacy of the situation was due to the relocation to the internet or the change from (small) group lessons to the one-on-one setting. In principle, the different teaching formats should not be played off against one another, but rather used according to their particular strengths and weaknesses and to meet the needs of the students in establishing and maintaining an empathic relationship. Since the online consultation with WebEncounter was not tested against a face-to-face event at which students could speak to an SP on their own, it remains unclear whether the positive feedback regarding the intimacy of the situation was due to the relocation to the internet or the change from (small) group lessons to the one-on-one setting. In principle, the different teaching formats should not be played off against one another, but rather used according to their particular strengths and weaknesses and to meet the needs of the students in establishing and maintaining an empathic relationship.

Whether the definition of assessment criteria does not lead to the loss of the range of possible feedbacks is a further critical question. Under the best possible conditions, this will certainly be the case if, for example, the SPs are excellently trained in identifying behaviors that correspond particularly to the learning goals or in recognizing the personal strengths and weaknesses of the students in establishing and maintaining an empathic relationship. At the request of the SPs in Munich, we therefore included an open feedback criterion (“key moment”) that they could use, if necessary, if they noticed particularly conspicuous behavior. However, this feedback item was rarely used, which indicates that the existing criteria were sufficient. A fundamental caveat concerns the validity of feedback from the personal perception of experts or SPs: the literature shows that those not directly affected – including SPs or experts – do not perceive the

Figure 6: Selection of student comments

Table: Comments on the SPs
- Acting very realistic, good and detailed feedback
- Very authentic representation of the case.
- One could empathize with the situation.
- Very good acting and very useful feedback

Table: Comments on the cases
- Case very interesting and also problematic
- The case was good for learning how to deal with emotions and with an unfamiliar situation.
- Well-structured, clear case, which was a very good exercise due to the uncomfortable problem for the patient.
peculiarities of the relationship between patients and professionals in the same way as those actually affected themselves [24]. This has just been substantiated again in a recent study on the perception of empathy [25], which showed that patient perceptions predict a reduction in fear and satisfaction through conversation with a high degree of accuracy, while expert judgments have no predictive quality and, moreover, are not related to patient perceptions.

In summary, previous experience with WebEncounter shows that this program is perceived by students and SPs as an enrichment to previous forms of teaching. In Basel, it will be used in the second year course in the next academic years. In Munich, WebEncounter is to be used as a supplement to face-to-face teaching in the 2020/2021 winter semester. Other possible uses are planned in courses on taking a medical history, when delivering bad news, when dealing with problematic explanatory concepts and in OSCE exams.

In order to be able to further examine and analyze the benefits of this type of teaching and the possible uses of WebEncounter, comparisons of online one-on-one encounters and typical small group formats with the help of experts should follow.

Dedication

We dedicate this article to our program developer and colleague Christof Daetwyler, MD, who passed away unexpectedly last December. He was a wonderful example of student- and user-centered communication. His readiness to respond to our wishes and his patience in dealing with members of the working groups in Munich and Basel, who are not always tech-savvy, impressed us all.

Acknowledgements

Special thanks are due to the actresses and actors who were our standardized patients and the trainers, who quickly adapted to the new situation with great enthusiasm. Furthermore, we wish to express our gratitude for Claudia Steiner and Kuno Steiner for the English translation and the list of references.

Funding

• Basel: The project was supported with CHF 4,000 as part of the “promotion of innovative teaching”.
• Munich: The additionally required license costs and some technical devices were financed through the special Corona budget of the central university administration.

Competing interests

The authors declare that they have no competing interests.

References

1. Burg L, Daetwyler C, Filgo G, Castanhel F, Grosseman S. What Skills Really Improve After a Flipped Educational Intervention to Train Medical Students and Residents to Break Bad News? J Educ Learn. 2019;8:35. DOI: 10.5539/jel.v8n3p35
2. Daetwyler CJ, Cohen DG, Gracely E, Novack DH. eLearning to enhance physician patient communication: A pilot test of “doc.com” and “WebEncounter” in teaching bad news delivery. Med Teach. 2010;32(9):e381-e390. DOI: 10.3109/0142159X.2010.495759
3. Kurono S, Hanya M, Kamei H, Hasegawa Y. Evaluation of a web-based curriculum resource “DocCom” by pharmacy students' self-assessment. Pharm Educ. 2015;15:99-104.
4. Lanken PN, Novack DH, Daetwyler C, Gallop R, Landis JR, Lapin J, Subramaniam GA, Schindler BA. Efficacy of an internet-based learning module and small-group debriefing on trainees' attitudes and communication skills toward patients with substance use disorders: results of a cluster randomized controlled trial. Acad Med. 2015;90(3):345-354. DOI: 10.1097/ACM.0000000000000506
5. Spagnoletti CL, Bui T, Fischer GS, Gonzaga AM, Rubio DM, Arnold RM. Implementation and evaluation of a web-based communication skills learning tool for training internal medicine interns in patient-doctor communication. J Comm Healthcare. 2009;2(2):159-172. DOI: 10.1179/jch.2009.2.2.159
6. Tarpada SP, Morris MT, Burton DA. E-learning in orthopedic surgery training: A systematic review. J Orthop. 2016;13(4):425-430. DOI: 10.1016/j.jor.2016.09.004
7. Bokken L, Rethans JJ, Jobsis Q, Duvivier R, Scherpber A, van der Vleuten C. Instructiveness of real patients and simulated patients in undergraduate medical education: a randomized experiment. Acad Med. 2010;85(1):148-154. DOI: 10.1097/ACM.0b013e31818148130
8. Bokken L, Rethans JJ, van Heurn L, Duvivier R, Scherpber A, van der Vleuten C. Students' views on the use of real patients and simulated patients in undergraduate medical education. Acad Med. 2009;84(7):958-963. DOI: 10.1097/ACM.0b013e3181a841a3
9. Carvalho IP, Pais VG, Silva FR, Martins R, Figueiredo-Braga M, Podeira R, Almeida SS, Correia L, Ribeiro-Silva R, Castro-Vale I, Teles A, Mota-Cardoso R. Teaching communication skills in clinical settings: comparing two applications of a comprehensive program with standardized and real patients. BMC Med Educ. 2014;14:92. DOI: 10.1186/1472-6920-14-92
10. Nestel D, Bearman M, Brooks P, Campher D, Freeman K, Greenhill J, Jolly B, Rogers L, Rudd C, Sprick C, Sutton B, Harlim J, Watson M. A national training program for simulation educators and technicians: evaluation strategy and outcomes. BMC Med Educ. 2016;16:25. DOI: 10.1186/s12909-016-0548-x
11. Härtl A, Bachmann C, Blum K, Höfer S, Peters T, Preusche I, Raski B, Rüttmann S, Wagner-Menghin M, Wünsch A, Kiessling C, GMA-Ausschuss Kommunikative und Soziale Kompetenzen. Desire and reality–teaching and assessing communicative competencies in undergraduate medical education in German-speaking Europe—a survey. GMS Z Med Ausbild. 2015;32(5):Doc56. DOI: 10.3205/zma000998
12. Schlegel CW, Woermann U, Rethans JJ, van der Vleuten C. Validity evidence and reliability of a simulated patient feedback instrument. BMC Med Educ. 2012;12:6. DOI: 10.1186/1472-6920-12-6

13. Selman LE, Brighton LJ, Hawkins A, McDonald C, O’Brien S, Robinson V, Khan SA, Georg R, Ramsenthaler C, Higginson U, Koffman J. The Effect of Communication Skills Training for Generalist Palliative Care Providers on Patient-Reported Outcomes and Clinician Behaviors: A Systematic Review and Meta-analysis. J Pain Symptom Manage. 2017;54(3):404-416 e5. DOI: 10.1016/j.jpainsymman.2017.04.007

14. Hunt EA, Duval-Arnould JM, Nelson-McMillan KL, Bradshaw JH, Diener-West M, Perretta JS, Shilkofski NA. Pediatric resident resuscitation skills improve after "rapid cycle deliberate practice" training. Resuscitation. 2014;85(7):945-951. DOI: 10.1016/j.resuscitation.2014.02.025

15. Taras J, Everett T. Rapid Cycle Deliberate Practice in Medical Education - a Systematic Review. Cureus. 2017;9(4)e1180. DOI: 10.7759/cureus.1180

16. van de Ridder JM, Stokking KM, McGaghie WC, ten Cate OT. What is feedback in clinical education? Med Educ. 2008;42(2):189-197. DOI: 10.1111/j.1365-2923.2007.02973.x

17. Larson EL, Patel SJ, Evans D, Saiman L. Feedback as a strategy to change behaviour: the devil is in the details. J Eval Clin Pract. 2013;19(2):230-234. DOI: 10.1111/j.1365-2753.2011.01801.x

18. Buyck D, Lang F. Teaching medical communication skills: a call for greater uniformity. Fam Med. 2002;34(5):337-343.

19. Lawson PI, Flocke SA. Teachable moments for health behavior change: a concept analysis. Pat Educ Couns. 2009;76(1):25-30. DOI: 10.1016/j.pec.2008.11.002

20. Kotter JP. Leading Change. 2nd ed. Boston: Harvard Business Review Press; 2012.

21. Cook DA. The research we still are not doing: an agenda for the study of computer-based learning. Acad Med. 2005;80(6):541-548. DOI: 10.1097/00001888-200506000-00005

22. Boxer H, Snyder S. Five communication strategies to promote self-management of chronic illness. Fam Pract Manag. 2009;16(5):12-16.

23. Schillinger D, Piette J, Grumbach K, Wang F, Wilson C, Daher C, Leong-Grotz K, Castro C, Bindman AB. Closing the loop: physician communication with diabetic patients who have low health literacy. Arch Intern Med. 2003;163(1):83-90. DOI: 10.1001/archinte.163.1.83

24. Salmon P, Young B. The validity of education and guidance for clinical communication in cancer care: evidence-based practice will depend on practice-based evidence. Patient Educ Couns. 2013;90(2):193-199. DOI: 10.1016/j.pec.2012.04.010

25. Hoffstädt H, Stouthard J, Meijers M, Westendorp J, Henselmans I, Spreeuwenberg P, de Jong P, van Dulmen S, van Vliet LM. Patients’ and Clinicians’ Perceptions of Clinician-Expressed Empathy in Advanced Cancer Consultations and Associations with Patient Outcomes. Palliative Med Report. 2020;1(1):76-83. DOI: 10.1089/pmr.2020.0052

Corresponding author:
Wolf Langewitz
University Hospital Basel, Medical Communication and Psychosomatic Medicine, Klingelbergstr. 23, CH-4056 Basel, Switzerland
Wolf.Langewitz@usb.ch

Please cite as
Langewitz W, Pleines Dantas Seixas U, Hunziker S, Becker C, Fischer MR, Benz A, Otto B. Doctor-patient communication during the Corona crisis – web-based interactions and structured feedback from standardized patients at the University of Basel and the LMU Munich. GMS J Med Educ. 2021;38(4):Doc81. DOI: 10.5205/zma001477, URN: urn:nbn:de:0183-zma0014777

This article is freely available from
https://www.egms.de/en/journals/zma/2021-38/zma001477.shtml

Received: 2020-08-14
Revised: 2020-11-01
Accepted: 2021-02-25
Published: 2021-04-15

Copyright ©2021 Langewitz et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Arzt-Patient-Kommunikation in der Corona Krise – Web-basierte Gespräche und standardisiertes Feedback von Schauspielpatient*innen an der Universität Basel und der LMU München

Zusammenfassung

Hintergrund: Aufgrund der Pandemie-bedingten Einschränkungen im Präsenzunterricht wurden an den Medizinischen Fakultäten der LMU München und an der Universität Basel kurzfristig ab April 2020 Lehrformen mit Schauspielpatienten (SPs) auf ein digitales, webbasiertes Format umgestellt. Wir berichten über unsere Erfahrungen mit dem erstmals im deutschsprachigen Raum eingesetzten Programm WebEncounter. Das Programm ermöglicht 1:1 Kontakte zwischen SPs und Studierenden, die mit der Einladungsmail Kurz-Instruktionen zum Fall und Hintergrundinformationen erhalten. SPs benutzen Lernziel-konforme und Fall-spezifische Kriterien, die sie während des Gesprächs digital bewerten. Unmittelbar nach dem Gespräch findet eine Feedback-Runde statt, in der SPs didaktisch relevante Abschnitte aufgreifen und mit den entsprechenden Video-Sequenzen unterlegen können. Abschliessend erhalten Studierende die Links zu den Video-Aufzeichnungen des Gesprächs und der Feedback-Einheit per Mail.

Projektbeschreibung: Ziel dieses Pilotversuchs war es, die Praktikabilität des Programms und seiner Akzeptanz bei Studierenden und SPs zu analysieren. Darüber hinaus sollte untersucht werden, ob die in dem Programm vorgeschriebene Operationalisierung der Lernziele in Form von Beurteilungs-Items Auswirkungen auf die inhaltliche und thematische Entwicklung von Lehrangeboten im Bereich der Arzt-Patient-Kommunikation hat.

Methodik: Zur Implementierung des Programms wurden in München und Basel bereits in Kommunikationsseminaren erprobte Patientenfälle umgeschrieben und Fall-spezifische Bewertungskriterien entwickelt. SPs wurden auf den Umgang mit dem Programm, die Online-Darstellung ihrer Patientenfigur und das Feedback-Geben geschult. Erfahrungen bei der Implementierung des Programms wurden auf den verschiedenen Ebenen der Beteiligten (Fakultät, SPs und SP-Trainer, Studierende) erfasst. Häufigkeit und Ursachen technischer Probleme wurden beschrieben. Ergebnisse der Studierenden auf Ebene der Patientenfälle und auf Ebene der Feedback-Items wurden quantitativ erfasst und wo möglich durch Frei-Text-Aussagen ergänzt.

Ergebnisse: Daten von 218/220 Studierenden in Basel und 120/127 Studierenden in München wurden erhoben und ausgewertet. Studierende waren mit den Patienten-Fällen, dem Kontakt mit den SPs und mit ihrem Feedback sehr zufrieden: 3,81±0,42. SPs haben die Schulungen als Zuwachs in ihrer Kompetenz und das strukturierte Feedback als besonders positiv erlebt. Der Schulungsaufwand pro SP betrug zwischen 2,5 und 4 Stunden. Die Ergebnisse zeigen überwiegend normal-verteilte, Fall-spezifische Summen-Scores in den Bewertungskriterien. Die Analyse der einzelnen Bewertungs-Items verweist auf Lernziele, deren Erreichen Studierenden schwerfällt (z.B. explizites Strukturieren des Gespräches). Probleme in der technischen Umsetzung (<10 Prozent der Gespräche) waren überwiegend auf den Einsatz von ungenügender Hardware oder auf Verbindungsprobleme im Internet zurückzuführen. Die Notwendigkeit, Fall-spezifische Bewertungskriterien zu definieren, hat in der
Einleitung

Im Zuge der „Corona-Krise“ wurden 1:1 Begegnungen mit Lernenden in universitären Präsenzveranstaltungen und insbesondere im Kontakt mit SchauspielschülerInnen (SPs) verboten. Wir nehmen dies zum Anlass, über unsere Erfahrungen mit einem in deutschen Sprachraum bisher nicht genutzten Programmsystem zu berichten, das den Einsatz von SPs trotz derartiger Verbote über eine webbasierte Plattform ermöglicht: WebEncounter (Homepage auf: https://enhancedlearn.azurewebsites.net/). WebEncounter wurde an der Drexel Medical School in Philadelphia, USA, entwickelt und ermöglicht 1:1 Kontakte von Studierenden mit SPs über das Internet. Aus dem englischen Sprachraum liegen Publikationen vor, die den Nutzen dieses und ähnlicher Lern- und Lehrmittel in der Ausbildung von Studierenden, in der Weiterbildung von Assistenta ten und bei Pflegenden belegen [1], [2], [3], [4], [5], [6]. Das Programm gehört in die Gruppe der Lehrmittel, die meist in Kombination mit Kontakten der Lernenden untereinander in Kleingruppen oder mit realen Patienten im Rahmen des blended-learning eingesetzt werden. Blended-learning kombiniert Elemente des klassischen und computergestützten Lernens. Grundsätzlich ist der Einsatz von SPs und ihr Nutzen in der ärztlichen Lehre gut dokumentiert [7], [8], [9], [10] und an den meisten deutschsprachigen Universitäten üblich [11].

Eine besondere Qualität im Einsatz von SPs, gerade im Bereich der Schulung von Kommunikations- und sozialen Fertigkeiten, ist die Möglichkeit eines unmittelbaren „Patienten“-Feedbacks nach einer Lerneinheit [12], [13]. Die Wirksamkeit von Feedback hängt offenkundig damit zusammen, wie eng es mit dem gerade gezeigten Lernerfolg verknüpft ist und ob es sich auf einen Standard des wünschenswerten Verhaltens bezieht, der den Lernenden vertraut ist. Der erste Punkt bezieht sich auf die Durchführung des Feedbacks und der zweite auf seinen Inhalt. Mit dem Ziel einer zeitlich dichten Abfolge von Verhalten und Feedback wurde unter dem Begriff der „Rapid Cycle Deliberate Practice“ ein Verfahren entwickelt, das die Vorteile eines strukturierten, zeitlich nahen und inhaltlich konkreten Feedbacks auf den Lernerfolg nutzt [z.B. [14], [15]. Damit der Empfänger eines Feedbacks weiß, was er oder sie beim nächsten Mal anders machen soll, muss allerdings klar sein, wie das gewünschte Verhalten aussieht – ein solcher Standard muss dem Lernenden – und dem Lehrenden – bekannt sein. Diesen Aspekt betonen Monica de Ridder et al. [16], wenn sie schreiben: “Feedback is specific information about the comparison between a trainees’ observed performance and a standard, given with the intent to improve the trainees’ performance.” Die möglichst konkrete Festlegung wünschenswerter Verhaltensweisen ist nicht trivial [17]. Zunächst einmal ist die Fakultät aufgefordert, im Kommunikationscurriculum Lernziele so klar zu definieren und zu unterrichten, dass Studierende wissen (können), was von ihnen in einer Lernsituation erwartet wird. Diese Lernziele müssen dann auf den konkreten Fall angewendet werden, d.h. so formuliert sein, dass sie im Gespräch mit einem SP abgebildet werden und dass sie, wenn sie vor- kommen, beurteilbar sind. Mit diesen Vorgaben müssen die Personen geschult werden, die das Feedback geben sollen.

Bei der Umsetzung dieser Vorgaben spielt insbesondere in der 1:1 Begegnung zwischen Lernenden und SPs ein weiterer Faktor eine entscheidende Rolle: Wenn das Feedback nicht von einer dritten beobachtenden Person (z.B. einer anwesenden Expertin oder anderen Studierenden) kommt, sondern vom SP geleistet werden soll, obliegt es dem SP, nicht nur eine Patienten-Figur lebendig darzustellen, sondern gleichzeitig auch noch zu registrieren, ob und wann im Gespräch vorgegebene Lernziele erreicht werden. Diese Doppelbelastung führt häufig dazu, dass das Feedback nicht auf das konkrete Verhalten des Studierenden in einer bestimmten Gesprächsphase zurückgeführt wird, sondern eher summarisch einen Gesamteindruck wiedergibt. Die von uns erstmals im deutschen Sprachraum eingesetzte Plattform adressiert diese Schwierigkeiten und begleitet ihnen, indem sie

- die Schaltflächen zur Vergabe der Bewertungskriterien so auf dem Bildschirm anordnet, dass sie für den SP während des Gesprächs einfach zu bedienen sind, ohne den Kontakt mit der Rolle zu verlieren
- das Gespräch und die Zeitmarken, die auf Momente im Gespräch verweisen, in denen Lernziele mehr oder weniger gut erreicht wurden, aufzeichnet,
• eine unmittelbar auf das Gespräch folgende Feedback-einheit einschließt, bei der SPs die Video-Segmente einspielen können, die sie durch das Setzen einer Zeitmarke als didaktisch wertvoll („Teachable Moments“ [18], [19]) gekennzeichnet haben.

Projektbeschreibung

Ziel dieses Pilotprojektes ist es, die Praktikabilität der neuen online-Plattform zu evaluieren und einen Eindruck ihrer Akzeptanz bei Studierenden und SPs zu gewinnen. Zudem scheint es interessant, die besonderen Herausforderungen bei der Implementierung eines solchen Programmes kennenzulernen und festzustellen, ob die Ergebnisse in den Lern- und Lehrprozess im Sinne einer Feedback-schleife zurückgeführt werden können.

Eine klassische Implementierungsforschung im engeren Sinne (z.B. [20]) konnte auf Grund der Dringlichkeit, ad hoc Alternativen zum Präsenz-Unterricht zu finden, nicht durchgeführt werden. An den beiden beteiligten Institutionen mussten innerhalb von 4 bzw. 6 Wochen folgende Aufgaben abgearbeitet werden: Ausbildung von Personen als Administratoren (für Daten-Management; Terminver- einbarung für das Training von SPs und die Gespräche zwischen Studierenden und SPs), Training von SPs, Formulierung von Instruktionen für alle Beteiligten; Überarbeitung der Rollen-Skripte für Patientenfälle und Neude- finition der Beurteilungs-Kriterien zur Erleichterung des strukturierten Feedbacks.

Die Teilnahme an der Online-Begegnung mit SPs ersetze die im Lehrplan vorgesehenen obligatorischen Begegnun- gen mit SPs im Präsenz-Unterricht. Pro Studierendem wurde eine Online-Sprechstunde in WebEncounter verein- bart.

Als Grundlage der Analyse und zur Evaluation des Pilotversuchs wurden neben Beobachtungen der Projektleiter die in WebEncounter abgefragten anonymisierten techni- schen und inhaltlichen Rückmeldungen der Studierenden und SPs sowie die Leistungen der Studierenden herange- zogen.

Methodik

Studienteilnehmer

Die Untersuchung wurde an beiden Standorten zwischen April und Juni 2020 durchgeführt. Die Daten der Studie- renden aus dem 3. Studienjahr der LMU in München (N=122; 73 w, 59 m) und aus dem 2. Studienjahr in Basel (N=220; 154 w, 66 m) wurden berücksichtigt. Studierende an beiden Standorten randomisiert auf die einzelnen Fallsituationen verteilt.

Erhebung, Anonymisierung der Daten, Einwilligung zur Teilnahme

Die Studierenden in Basel werden bereits zu Beginn des Studiums darüber aufgeklärt, dass Videoaufnahmen Teil der Ausbildung und genauso vertraulich zu behandeln sind wie Informationen zu Patientinnen und Patienten. Dieses zum Studienbeginn eingeholte Einverständnis gilt in Basel für das gesamte Studium. In Bayern ermöglicht die Rechtsgrundlage des Art. 10 Abs. 3 Satz 2 Halbsatz 1 BayHSchG die Erhebung von Evaluationsdaten zum Zweck der Qualitätssicherung der Lehre. Zudem wurden die Studierenden zu Beginn des Sommersemesters bei der Buchung aller ihrer Lehrveranstaltungen des Sommersemester 2020 über die Erhebung, Nutzung von Daten und Videoaufzeichnungen aufgeklärt. Vor Buchung der Veranstaltung haben die Studierenden eine entsprechende Einwilligung unterzeichnet und übermittelt.

Auch an der Universität Basel sind Forschungen und Publikationen, die der Verbesserung der Lehre dienen, erlaubt, im speziellen Fall entschied die lokale Ethikkom- mission (EKNZ), dass die Studie nicht dem Human-Fors- schungs-Gesetz Art 2 unterlag und somit keine formale Genehmigung/Beurteilung nötig war. Die Videodateien werden unter einem zufallsgenerierten Name abgespeich- ert (Beispiel: neizh3aGquduK_1br4y7qyr.mp4), um sich- erzustellen, dass der Klar-Name der Videodatei incl. der Benutzerangaben nicht ausgelesen werden kann. Die im Rahmen der Evaluation ausgewerteten Rückmel- dungen der Studierenden und die Scoring-bezogenen Auswertungen werden von WebEncounter anonymisiert für den jeweiligen Abfragezeitraum bzw. pro „Patienten“- Fall in Form beschreibender statistischer Aussagen ohne personenbezogene Daten zusammengefasst.

Entwicklung der Fallbeschreibungen

An beiden Universitäten wurden zusammen mit den Schauspieler-Trainerteams aus vorhandenen Patienten- Vignetten diejenigen ausgewählt, die sich am ehesten für eine Online-Sprechstunde eignen. Kriterien waren: überwiegend verbale Hinweise auf zugrundeliegende Diagnosen oder Verarbeitungsstile der PatientInnen, eindeutige Zuordnung der Fallgeschichte zu konkreten Lernzielen und Spielbarkeit innerhalb von 8 bis 15 Minu- ten. In Basel wurden folgende zwei Fälle ausgewählt: Verdacht auf Mehlaub-Allergie und Verdacht auf sexuell übertra- gene Erkrankung, incl. Ausschluss von HIV. In München wurden drei Fälle gespielt: kritische Therapietreue bei Hashimoto-Thyreoiditis, Mitteilen einer HIV-Infektion sowie Überbringen der Diagnose eines Kolon-Karzinom. Für jeden Fall wurde eine kurze Fallbeschreibung entwik- kelt, die im Präsenzunterricht mit SPs normalerweise als Kurzinformation vorab verteilt oder an der Tür zum Besprechungszimmer angebracht wird und die Studierenden darum informiert, wen sie gleich treffen werden und welche Aufgabe sie haben. Zusätzlich erhielten die Studierenden bereits im Vorfeld technische Anleitungen so-

GMS Journal for Medical Education 2021, Vol. 38(4), ISSN 2366-5017 12/19
wie medizinische Hintergrund-Informationen zum Fallszenario, um sich einzuarbeiten.

Schauspielpatienten und -patientinnen

An beiden Standorten nahmen jeweils 12 SPs an der Lehrveranstaltung teil (Universität Basel: 8w/4m; Altersspanne 21 bis 51 Jahre; LMU München: 10w/2m; Altersspanne 25 bis 65 Jahre). 9/12 SPs in Basel und 6/12 SPs in München hatten mit den in WebEncounter verwendeten Fällen vorher im Präsenzunterricht gearbeitet, die anderen SPs wurden inhaltlich neu auf die Fälle geschult. Im Training der SPs wurden Besonderheiten der Falldarstellung über die Kamera und mit einem eingeschränkten Bildausschnitt thematisiert. Auf Grund des eingeschränkten Bildausschnitts in der Darstellung des Patienten mussten non-verbalen Botschaften an den Lernenden, die sich z.B. in Veränderungen der Anspannung des ganzen Körpers äußern, auf andere non-verbalen Kanäle (z.B. Anspannung des Oberkörpers, die Hände ans Gesicht legen), mimische Ausdrucksmöglichkeiten oder verbale Äußerungen umgeleitet werden (siehe Abbildung 1). Während des Gesprächs sieht der SP den Studierenden und sich selbst am oberen rechten Rand, dazu die Beurteilungskriterien.

Speziell geübt wurde der Einsatz der Beurteilungs-Items, um ein strukturiertes Feedback geben zu können. Bereits von den Studienleitern ausgebildete SPs, bzw. die SP-Trainer übernahmen die Rolle mehr oder weniger begabter Studierender und besprachen im Anschluss mit den SPs ihre Beurteilungen. Wenn sie den Eindruck hatten, dass das Feedback den unterschiedlichen Grad der Erreichung der Lernziele korrekt wiedergab und zudem die SPs in der Lage waren, sich konstruktiv gegenüber den „Studierenden“ zu äußern, wurden die SPs für ihren jeweiligen Fall lizensiert.

Während ihrer initialen Schulung und während der konkreten Arbeit mit Studierenden wurden die SPs bei Problemen in der Handhabung des Programmes fortlaufend unterstützt. Im Anschluss an einen Unterrichtstag wurde ein Debriefing angeboten. Der durchschnittliche Schuluングsaufwand betrug pro SP in Basel 2,5, in München 4 Stunden, die im 1:1 Setting und in Kleingruppen über ZOOM oder direkt über WebEncounter absolviert wurden. Während der Unterrichtseinheiten war ein Backup durch die SP-Trainer, die Lehrverantwortlichen (WL in Basel, AB und BO in München) und den Programm-Entwickler in Brasilien gewährleistet.

Zusätzlich zu den Fall-spezifischen Informationen wurden für jeden Standort Anleitungen zur Anmeldung in WebEncounter verschickt. Die SPs erhielten außerdem schriftliche Erklärungen zur Bewertung der aufgeführten Scoring-Items mit Textbeispielen.

Die Koordination der Termine übernahm jeweils das Modul-Sekretariat. An der Universität Basel wurden die beiden Gesprächspartner direkt über die Plattform WebEncounter eingeladen und an der LMU München wurden – aufgrund der anfänglich hohen Tauschfrequenz – die Einladungen an die Schauspieler und die Studierenden vom Modul-Sekretariat versandt.

Durchführung

Die Studierenden erhielten 2 bis 5 Tage vor ihrem Gesprächstermin vom Programm aus ein Einladungs­email mit einem Link zur Plattform und Hintergrundinformationen sowie Kurz-Informationen zu ihrem Fall. Am Vortag ihres Termins wurden sie entweder über WebEncounter oder von den Administratoren an den Termin erinnert. Zur verabredeten Zeit gelangten Studierende an den Link zu „ihrer“ SP, die sie begrüßte, den Ablauf erklärte, die Technik überprüfte, sich vergewisserte, dass Studierende die Fallinformation gelesen hatten und dann mit ihnen das Gespräch führte. Danach wurde ein Feedback angeboten, in dem die SPs anhand der Beurteilungskriterien ein konkretes Feedback geben, das sie mit den entsprechenden Video-Sequenzen unterlegen konnten. Diese Möglichkeit wurde von den Studierenden und den SPs eher selten genutzt, genaue Zahlen liegen uns nicht vor. Die Gespräche und die Feedback-Einheiten dauerten jeweils 12-15 Minuten in Basel und 8 Minuten in München. Am Ende bewerteten die Studierenden den Fall
und den/die SP, sie erhielten einen Link zur Aufzeichnung ihres Gespräches und der eigenen Feedback-Sitzung. Sie wurden gebeten, etwaige technische Probleme während der Sitzung zu protokollieren.

Beschreibung der Ergebnisse

Wir berichten über Art und Häufigkeit technischer Probleme, die Verteilung der Gesamt-Scores der Studierenden pro Fall, über die Verteilung der Werte in den einzelnen Scoring-Items und über die Mittelwerte der Bewertung von Fällen und SPs durch die Studierenden. Die Summen-Scores werden, wenn möglich, durch Beispiele aus den Kommentaren von Studierenden und SPs inhaltlich ergänzt.

Ergebnisse

Beobachtungen aus der Implementierung

In Basel liegen bei 218 von 220 teilnehmenden Studierenden Ergebnisse vor. Bei den beiden fehlenden Fällen gelang es nicht, ein aussagefähiges Video aufzuzeichnen. Bei etwa 5% der Gespräche (19/338) gab es aus Sicht der Lernenden technische Probleme, die SPs berichteten über insgesamt 9 Ereignisse mit technischen Problemen (ca. 2,5%). In diesen Fällen wurde entweder ein neuer Termin verabredet oder die Aufnahme direkt wiederholt, z.B. nachdem Studierende von einer schlechten WLAN-Verbindung auf einen lokalen Hotspot über ihr Handy/Netzel gewechselt hatten. Bei der Kontrolle der Eingaben und der Login-Daten bestätigte sich der Eindruck, dass Probleme überwiegend auf eine schlechte Verbindungsqualität zurückzuführen waren. Diese war z.T. auch darauf zurückzuführen, dass manche SPs die Anweisung sich über einen kabelgebundenen Netzwerkzugang (LAN) mit dem Programm zu verbinden, ignoriert hatten, bzw. sich mit ungenügenden Peripheriegeräten eingelöst hatten. In Basel nahmen 12 SPs teil, die zwischen 15 und 23 Kontakte mit Studierenden absolviert haben und jeweils einen Fall repräsentierten.

In München liegen von 122 teilnehmenden Studierenden Ergebnisse vor. In den 2 fehlenden Fällen schlug die Aufzeichnung des Gespräches fehl. Bei 8 Gesprächen gab es aus Sicht der Lernenden technische Probleme, die SPs berichteten über insgesamt 4 Ereignisse mit technischen Problemen. In diesen Fällen wurde entweder ein neuer Termin vereinbart oder die Aufnahme direkt wiederholt. Bei der Kontrolle der Eingaben und der Verbindungs-Daten zeigte sich, dass auch in München die Probleme überwiegend auf die Verbindungssicherheit und die Nichtbefulldung der Anleitungen zurückzuführen waren. Wie in Basel konnten die Verbindungs- und Bedienungsprobleme bei den SPs dadurch erklärt werden, dass entweder die Anweisung zur Nutzung einer LAN-Verbindung nicht befolgt oder aber wenig geeignete Peripheriegeräte verwendet wurden. In München nahmen 12 SPs am Unterricht mit WebEncounter teil. Die einzelnen SPs absolvierten zwischen 3 und 20 WebEncounter-Kontakte (Median 7) mit Studierenden, wobei in den einzelnen Terminen zwischen 3 und maximal 6 WebEncounter-Kontakte durchgeführt wurden. Der überwiegende Anteil (9/12) der SPs spielte nur eine Rolle; drei SPs spielten zwei Rollen.

Aus den Rückmeldungen der SPs in der Startphase der Schulung wurde klar, dass sie sich an die neue „Expertenrolle“, d.h. an den Gebrauch der Bewertungs-Kriterien gewöhnen mussten; etwaige Fragen wurden in den abendlichen Feedback-Sitzungen mit den Programmverantwortlichen und SP-Trainern geklärt. Im Endeffekt waren die Rückmeldungen der SPs zum Einsatz der Feedback-Kriterien und zu ihrer eigenen Rolle und Funktion ausgesprochen positiv. Sie lobten insbesondere die Intimität der 1:1 Begegnung, die ihnen ein persönliches Feedback erleichtert hätte. Gerade in Basel wurde hervorgehoben, dass die Studierenden deutlich offener gewesen seien als in früheren Jahren, sie hätten aktiv detaillierte Feedback eingefordert und sich dafür speziell bedankt. Der Wechsel in der Rolle zu Beginn der Gespräche, dem „Organisator“, der Studierende fragt, ob sie die Informationen gelesen haben, zum „Patienten“, wurde in keinem Fall als Problem gesehen.

Summen-Scores der einzelnen Fälle

Die einzelnen Bewertungs-Items sind mit einer Punktezahl von 1 (nicht erfüllt), 3 (teilerfüllt) und 5 (voll erfüllt) hinterlegt. Aus der Summe über alle Items ergibt sich der Summen-Score, (Gesamtbewertung des Gespräches in Prozent erreichter Punkte) dessen Verteilung, getrennt nach Fällen, in Abbildung 2 und Abbildung 3 aufgeführt ist.

Dabei zeigt sich meist eine annähernd normal-verteilte Variationsbreite mit einigen deutlich schlechter abschneidenden Studierenden im Fall Vermitteln einer sexuell übertragenen Erkrankung (STD). Auffallend ist auch die eher rechts-schiefe Verteilung in den Scores des Münchner Falles zum Mitteilen schlechter Nachrichten (Kolon-Karzinom). Da es sich bei dieser Studie um einen ersten Versuch handelt, dieses Programm im deutschsprachigen Raum einzusetzen, wurden alle Videos der Begegnungen, in denen Studierende unter 30 Prozent des möglichen Scores erreichten, angeschaut, um technische Probleme oder wenig hilfreiches Verhalten der SPs auszuschliessen. Beides liess sich nicht verifizieren, die Rückmeldungen der SPs waren korrekt und entsprachen in der Wahrnehmung der Verantwortlichen dem Verhalten der Studierenden. Im Sinne eines „Schliessens des Schleife“ wurden Studierende in Basel – wie in den letzten sechs Jahren auch schon –, deren Score um zwei SD unter dem Jahrgangschnitt lag, zu einem Refresher-Kurs eingeladen, bei dem die offenkundig methodischen Items noch einmal vertiefte diskutiert und mit Beispielen unterlegt wurden. In München haben die Studierenden im Folgesemester die Möglichkeit, die Erkenntnisse des Feedbacks in einem weiteren Gespräch mit Simulationspatienten umzusetzen.
Bezüglich der einzelnen Items wird deutlich, dass die Studierenden bei ganz spezifischen Items Schwierigkeiten hatten. Dies betrifft zum einen die Items, in denen das explizite Ansprechen der Gesprächsstruktur abgebildet wird (Klären der Agenda für das Gespräch, expliziter Wechsel von der Patienten-zentrierten auf die Arzt-zentrierte Gesprächsphase, angekündigte Zusammenfassungen) und Items, die das systematische Eingrenzen der Symptome betreffen (siehe Abbildung 4).

Rückmeldungen der Studierenden zu den SPs und den Fällen

Wie Abbildung 5 zeigt, wurden sowohl die Fälle als auch die SPs von den Studierenden ausgesprochen positiv beurteilt. Es gab keine negative Rückmeldung. Allerdings haben von 120 Studierenden in München und 218 Studierenden in Basel nur ca. 35% den freiwilligen Fragebogen am Ende der WebEncounter-Begegnung ausgefüllt. Die qualitativen Rückmeldungen der Studierenden bestätigten den positiven Gesamteindruck, vor allem das konstruktive Feedback wird von den Studierenden hervorgehoben (siehe Abbildung 6).

Diskussion

Die bisher vorliegenden Ergebnisse zeigen bezüglich der technischen Realisierung ein überwiegend positives Bild: Gerade in „Corona-Zeiten“, in denen das Internet oft an der Grenze seiner Kapazität gearbeitet hat, sind <10 Prozent technischer, d.h. meistens Verbindungs-Probleme ein gutes Ergebnis. Bei der Interpretation der links-schiefen Ergebnisse können wir im Fall v.a. sexuell übertragbare Krankheit auf die Rückmeldungen der Studierenden zurückgreifen, die sie im freiwilligen Refresher-Kurs im Rahmen eines Zoom-Meetings (100 von 220 Studierenden nahmen teil) gegeben haben. Sie fanden es ausgesprochen schwierig, mit einem älteren Mann über Sexualität zu sprechen. Für uns war dieser Aspekt didaktisch und inhaltlich wichtig, weil er Anlass gibt, mit den Studierenden darüber ins Gespräch zu kommen, dass die besondere Situation einer Ärztin oder eines Arztes andere „Zugriffsrechte“ auf das Leben eines Menschen erlaubt oder sogar erfordert als die Situation in einem privaten Kontakt. Bzgl. der rechtsschiefen Verteilung der Summen-Scores im „Kolon-Karzinom-Fall“ nehmen wir an, dass das der online-Sprechstunde vorge schaltete E-Learning, in dem Aspekte und Konzepte des Überbringens Schlechter Nachrichten thematisiert und
Die Rückmeldungen der Studierenden zu dieser Lernform sind ausgesprochen erfreulich. Die SPs berichten, dass sie zudem den Eindruck hatten, dass Studierende von der Intimität im 1:1 Setting profitiert hätten. Dabei beziehen sie sich auf die Erfahrungen in den letzten Jahren, in denen in Basel Gespräche mit SPs im Kleingruppen-Setting von fünf Studierenden durchgeführt wurden, von denen jeweils einer das Gespräch führte und die anderen versuchen sollten, „teachable moments“ zu identifizieren. SPs hatten dieses Lehrformal kritisiert, weil Studierende im zweiten Jahreskurs in Basel oft nicht bereit oder in der Lage waren, einander konkret und konstruktiv Feedback zu geben, geschweige denn, das Feedback des SP zu diskutieren. Von Studierendenseite wurde in den Gesprächsrunden mit Experten, bei denen jeweils drei bis vier Fünfer-Gruppen nach den SP-Begegnungen anwesend aufgefrischt wurden, Einfluss auf die Ergebnisse gehabt haben könnte.

Abbildung 4: Beispiel für die Bewertung der einzelnen Scoring-Items

Abbildung 5: Bewertung der Fälle und SP’s durch die Studierenden

Abbildung 6: Auswahl von Kommentaren der Studierenden

Kommentare zu den SP’s
- sehr realitätsnah gespielt, gutes und ausführliches Feedback
- sehr authentische Darstellung des Falls. Man konnte sich gut in die Situation einfühlen
- sehr gut gespielt sehr nützliches Feedback

Kommentare zu den Fällen
- Fall sehr interessant und auch problematisch
- Der Fall war gut, um den Umgang mit Emotionen zu lernen und mit einer ungewohnten Situation umgehen zu können.
- Gut strukturiert, klarer Fall, der durch die für den Patienten unangenehme Problematik eine sehr gute Übung darstellte.
waren, als wesentliche Kritik geäußert, dass die Exposition in der Gruppe beim Rollenspiel mit SPs und das Feedback der Experten in Gegenwart der anderen unangenehm und peinlich sei. Da die online-Sprechstunde mit WebEncounter nicht gegen eine Präsenz-Veranstaltung getestet wurde, bei der Studierende alleine mit einem SP sprechen konnten, bleibt unklar, ob die positiven Rückmeldungen in Bezug auf die Intimität der Situation auf die Verlagerung ins Internet oder auf den Wechsel von (Klein-)Gruppen-Unterricht auf das 1:1 Setting zurückzuführen sind. Grundsätzlich sollten die verschiedenen Lehrformate nicht gegeneinander ausgespielt werden, sondern gemäß ihren besonderen Stärken und Schwächen den Bedürfnissen der Studierenden bei der Erreichung unterschiedlicher Lernziele eingesetzt werden [21]. Auffallend war für uns als Lehr-Verantwortliche, dass die Besonderheiten von WebEncounter Inkonistenzen bzgl. der konkreten Lernziele im Bereich der ärztlichen Gesprächsführung innerhalb der Fakultät deutlich gemacht haben. Dies liegt daran, dass sich Feedback-Items nur dann zuverlässig und für SPs handhabbar formulieren lassen, wenn alle Beteiligten darin übereinstimmen, dass z.B. „explicite Struktur“ wesentliches Element einer professionellen Gestaltung eines Gesprächs ist und darin, wie explicite Struktur Patienten-zentriert angesprochen bzw. im Gespräch realisiert werden kann. Wenn sich die inhaltlich verantwortliche Gruppierung innerhalb einer Fakultät ggeeignet hat über die konkreten Lernziele, lässt sich aus den Bewertungen der SPs eindeutig schliessen, bei welchen Lernzielen weiterer Schulungsbedarf besteht. Diese Eingrenzung kritischer Items ermöglicht das „Schliessen der Schleife“ (Closing the loop) [22], [23], wenn – wie in Basel üblich – ein Refresher-Kurs angeboten wird, in dem auf diese kritischen Items vertieft einge gangen wird. In diesem Jahr nahmen 100 von 220 Studierenden in Basel an diesem freiwilligen Lehrangebot als virtuelle Vorlesung teil.

Innerhalb unserer Gruppe und in Diskussionen mit SP-Trainern und SPs wurde im Vorfeld kritisch eingewandt, dass dieses Programm den klassischen SP-Präsenz-Programmen den Boden entziehen könnte. Diese Befürchtung ist allerdings u.E. nicht stichhaltig. Die Einführung web-basierter Unterrichtseinheiten bedeutet ja nicht weniger SP-Beteiligung, sondern eine Aufwertung der Arbeit von SPs, deren Kompetenzbereich um die Fähigkeit, konkretes und konstruktives Feedback zu geben, erweitert wird – und dies ohne Experten im Hintergrund. Ein naheliegender Kritikpunkt betrifft den möglichen Verlust an Tiefe einer Begegnung in der Realität, wenn sie in den virtuellen Raum verlagert wird. Hier gilt es zu bedenken, dass an den meisten Universitäten SP-basierte Unterrichtseinheiten in Gegenwart anderer Studierender und eines/r Experten/in stattfinden. Das Potential der atmosphärischen Verachtung einer Gesprächssituation durch die Intimität der unmittelbaren Begegnung könnte durch die Öffentlichkeit dieses Kontaktes im Kleingruppen-Unterricht gefährdet sein. Selbst wenn ohne Zweifel bestimmte Elemente der 1:1 Begegnung in der Realität bei Web-basierten Kontakten fehlen, bleibt offen, ob dieses Manko nicht durch die eindeutig dyadische Natur der Begegnung aufgewogen wird. Ein weiterer kritischer Aspekt ist die Frage, ob die Festlegung von Beurteilungs-Kriterien nicht dazu führt, dass die Variationsbreite möglichen Feedbacks verloren geht. Unter bestmöglichen Bedingungen trifft das sicher zu, wenn z.B. die SPs hervorragend geschult sind in der Identifikation von Verhaltensweisen, die den Lernzielen in besonderem Masse entsprechen oder im Erkennen der persönlichen Stärken und Schwächen der Studierenden im Herstellen und Halten einer empathischen Beziehung. Wir haben daher auf Wunsch der SPs in München ein offenes Feedback-Kriterium („Schlüsselmoment“) eingefügt, das sie bei Bedarf einsetzen konnten, falls sie ein besonders auffallendes Verhalten bemerkten. Dieses Feedback-Item wurde allerdings nur selten eingesetzt, was dafür spricht, dass die vorhandenen Kriterien ausreichent. Ein grundsätzliches Caveat betrifft die Gültigkeit eines Feedbacks aus der persönlichen Wahrnehmung von Experten oder SPs: die Literatur zeigt, dass nicht unmittelbar Betroffene – also eben auch SPs oder Experten – die Besonderheiten der Beziehung zwischen PatientInnen und Fachpersonen nicht so wahrnehmen wie tatsächlich Betroffene selber [24]. Dies ist gerade wieder an einer aktuellen Arbeit zur Wahrnehmung von Empathie nachgewiesen worden [25], in der sich zeigte, dass Patienten-Wahrnehmungen eine Reduktion von Angst und Zufriedenheit durch das Gespräch mit hoher Treffsicherheit vorhersagen, während Experten-Urteile keine prädiktive Qualität besitzen und darüber hinaus mit den Patienten-Wahrnehmungen nicht zusammehängen.

Zusammenfassend zeigen die bisherigen Erfahrungen mit WebEncounter, dass dieses Programm von Studierenden und SPs als Bereicherung bisheriger Unterrichtsformen wahrgenommen wird. In Basel wird es in den nächsten Studienjahren im 2. Jahreskurs eingesetzt werden. In München soll WebEncounter als Ergänzung des Präsenzunterrichtes bereits im Wintersemester 2020/2021 eingesetzt werden. Andere Einsatzmöglichkeiten in Anamnese- und Praxiskursen, beim Überbringen schlichter Nachrichten, beim Umgang mit problematischen Erklärungskonzepten und in OSCE-Prüfung sind geplant. Um den Nutzen dieser Unterrichtsform und die Einsatzmöglichkeiten von WebEncounter weiter untersuchen und analysieren zu können, sollten zeitnah Vergleiche von online 1:1 Begegnungen und typischen Kleingruppenformaten unter Beziehung von Expertinnen folgen.

Widmung

Wir widmen diesen Beitrag dem Programm-Entwickler und Kollegen Christof Daetwyler, MD, der im Dezember letzten Jahres völlig überraschend verstorben ist. Er war ein wunderbares Beispiel für Lerner- und Anwenderzentrierte Kommunikation. Seine Bereitschaft, auf unsere Wünsche einzugehen und seine Geduld im Umgang mit...
nicht immer Technik-affinen Mitgliedern der Arbeitsgruppen in München und Basel haben uns beeindruckt.

Danksagung
Besonderer Dank gebührt den Schauspielpatient*innen und -trainer*innen, die sich in kurzer Zeit mit viel Elan auf die neue Situation eingestellt haben.
Wir danken Claudia Steiner und Kuno Steiner (Basel) für die englische Übersetzung und das Literaturverzeichnis.

Förderung
• Basel: Das Projekt wurde im Rahmen der Förderung innovativer Lehre mit einem Betrag von CHF 4.000 unterstützt.
• München: Die zusätzlich benötigten Lizenzkosten sowie einige technische Geräte wurde über das Corona-Sonderbudget der Zentralen Universitätsverwaltung finanziert.

Interessenkonflikt
Die Autor*innen erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Literatur
1. Burg L, Daetwyler C, Filho G, Castanhel F, Grosseman S. What Skills Really Improve After a Flipped Educational Intervention to Train Medical Students and Residents to Break Bad News? J Educ Learn. 2019;8:35. DOI: 10.5539/jel.v8n3p35
2. Daetwyler CJ, Cohen DG, Gracey E, Novack DH. eLearning to enhance physician patient communication: A pilot test of "doc.com" and "WebEncounter" in teaching bad news delivery. Med Teach. 2010;32(9):e381-e390. DOI: 10.3109/0142159X.2010.495759
3. Kurono S, Hanyaa M, Karnei H, Hasegawa Y. Evaluation of a web-based curriculum resource "DocCom" by pharmacy students' self-assessment. Pharm Educ. 2015;15:99-104.
4. Lanken PN, Novack DH, Daetwyler C, Gallop R, Landis JR, Lapin J, Subramaniam GS, Schindler BA. Efficacy of an internet-based learning module and small-group debriefing on trainees' attitudes and communication skills toward patients with substance use disorders: results of a cluster randomized controlled trial. Acad Med. 2015;90(3):345-354. DOI: 10.1097/ACM.0000000000000506
5. Spagnolotti CL, Bui T, Fischer GS, Gonzaga AM, Rubio DM, Arnold RM. Implementation and evaluation of a web-based communication skills learning tool for training internal medicine interns in patient-doctor communication. J Comm Healthcare. 2009;2(2):159-172. DOI: 10.1179/chc.2009.2.2.159
6. Tarpad SP, Morris MT, Burton DA. E-learning in orthopedic surgery training: A systematic review. J Orthop. 2016;13(4):425-430. DOI: 10.1016/j.jor.2016.09.004
7. Bokken L, Rethans JJ, Jobsis Q, Duivivier R, Scherpbié A, van der Vleuten C. Instructiveness of real patients and simulated patients in undergraduate medical education: a randomized experiment. Acad Med. 2010;85(1):148-154. DOI: 10.1097/ACM.0b013e3181c48f30
8. Bokken L, Rethans JJ, van Heurn L, Duivivier R, Scherpbié A, van der Vleuten C. Students' views on the use of real patients and simulated patients in undergraduate medical education. Acad Med. 2009;84(7):958-963. DOI: 10.1097/ACM.0b013e3181841a43
9. Carvalho IP, Pais VG, Silva FR, Martins R, Figueiredo-Braga M, Pedrosa R, Almeida SS, Correia L, Ribeiro-Silva R, Castro-Vale I, Teles A, Mota-Cardoso R. Teaching communication skills in clinical settings: comparing two applications of a comprehensive program with standardized and real patients. BMC Med Educ. 2014;14:92. DOI: 10.1186/1472-6920-14-92
10. Nestel D, Bearman M, Brooks P, Campher D, Freeman K, Greenhill J, Jolly B, Rogers L, Rudd C, Sprick C, Sutton B, Harlim J, Watson M. A national training program for simulation educators and technicians: evaluation strategy and outcomes. BMC Med Educ. 2016;16:25. DOI: 10.1186/s12990-016-0548-x
11. Härä T, Bachmann C, Blum K, Höfer S, Peters T, Preusche I, Raski B, Rüttermann S, Wagner-Menghin M, Wünsch A, Kiessling C, GMA-Ausschuss Kommunikative und Soziale Kompetenzen. Desire and reality-teaching and assessing communicative competencies in undergraduate medical education in German-speaking Europe--a survey. GMS Z Med Ausbild. 2015;32(5):Doc56. DOI: 10.3205/zma000998
12. Schlegel C, Woermann U, Rethans JJ, van der Vleuten C. Validity evidence and reliability of a simulated patient feedback instrument. BMC Med Educ. 2012;12:6. DOI: 10.1186/1472-6920-12-6
13. Selman LE, Brighton LI, Hawkins A, McDonald C, O’Brien S, Robinson V, Khan SA, Georg R, Ramsenthaler C, Higginson JJ, Koffman J. The Effect of Communication Skills Training for Generalist Palliative Care Providers on Patient-Reported Outcomes and Clinician Behaviors: A Systematic Review and Meta-analysis. J Pain Symptom Manage. 2017;54(3):404-416 e5. DOI: 10.1016/j.jpainsymman.2017.04.007
14. Hunt EA, Duval-Arnould JM, Nelson-McMillan KL, Bradshaw JH, Diener-West M, Perretta JS, Shilkofski NA. Pediatric resident resuscitation skills improve after "rapid cycle deliberate practice" training. Resuscitation. 2014;85(7):945-951. DOI: 10.1016/j.resuscitation.2014.02.025
15. Tarsa J, Everett T. Rapid Cycle Deliberate Practice in Medical Education - a Systematic Review. Cureus. 2017;9(4):e1180. DOI: 10.7759/cureus.1180
16. van den Ridder JM, Stokking KM, McGaghy WC, ten Cate OT. What is feedback in clinical education? Med Educ. 2008;42(2):189-197. DOI: 10.1111/j.1365-2923.2007.02973.x
17. Larson EL, Patel SJ, Evans D, Saiman L. Feedback as a strategy to change behaviour: the devil is in the details. J Eval Clin Pract. 2013;19(2):230-234. DOI: 10.1111/j.1365-2923.2011.01801.x
18. Buyck D, Lang F. Teaching medical communication skills: a call for greater uniformity. Fam Med. 2002;34(5):337-343.
19. Lawrence PJ, Flocke SA. Teachable moments for health behavior change: a concept analysis. Patient Educ Couns. 2009;76(1):25-30. DOI: 10.1016/j.pec.2008.11.002
20. Kotter JP. Leading Change. 2nd ed. Boston: Harvard Business Review Press; 2012.
21. Cook DA. The research we still are not doing: an agenda for the study of computer-based learning. Acad Med. 2005;80(6):541-548. DOI: 10.1097/00001888-200506000-00005
22. Boxer H, Snyder S. Five communication strategies to promote self-management of chronic illness. Fam Pract Manag. 2009;16(5):12-16.

23. Schillinger D, Piette J, Grumbach K, Wang F, Wilson C, Daher C, Leong-Grotz K, Castro C, Bindman AB. Closing the loop: physician communication with diabetic patients who have low health literacy. Arch Intern Med. 2003;163(1):83-90. DOI: 10.1001/archinte.163.1.83

24. Salmon P, Young B. The validity of education and guidance for clinical communication in cancer care: evidence-based practice will depend on practice-based evidence. Patient Educ Couns. 2013;90(2):193-199. DOI: 10.1016/j.pec.2012.04.010

25. Hoffstädt H, Stouthard J, Meijers M, Westendorp J, Henselmans I, Spreeuwenberg P, de Jong P, van Dulmen S, van Vliet LM. Patients' and Clinicians' Perceptions of Clinician-Expressed Empathy in Advanced Cancer Consultations and Associations with Patient Outcomes. Palliative Med Report. 2020;1(1):76-83. DOI: 10.1089/pmr.2020.0052

Bitte zitieren als
Langewitz W, Pleines Dantas Seixas U, Hunziker S, Becker C, Fischer MR, Benz A, Otto B. Doctor-patient communication during the Corona crisis – web-based interactions and structured feedback from standardized patients at the University of Basel and the LMU Munich. GMS J Med Educ. 2021;38(4):Doc81. DOI: 10.3205/zma001477, URN: urn:nbn:de:0183-zma0014777

Artikel online frei zugänglich unter
https://www.egms.de/en/journals/zma/2021-38/zma001477.shtml

Eingereicht: 14.08.2020
Überarbeitet: 01.11.2020
Angenommen: 25.01.2021
Veröffentlicht: 15.04.2021

Copyright
©2021 Langewitz et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.

Korrespondenzadresse:
Wolf Langewitz
Universitätsklinikum Basel, Psychosomatik - Kommunikation, Klingelbergstr. 43, CH-4056 Basel, Schweiz
Wolf.Langewitz@usb.ch