On Analytic Perturbations of a Family of Feigenbaum-like Equations

Denis Gaidashev

Department of Mathematics, University of Uppsala, Uppsala, Sweden.

Abstract

We prove existence of solutions \((\phi, \lambda)\) of a family of of Feigenbaum-like equations

\[
\phi(x) = \frac{1 + \epsilon}{\lambda} \phi(\phi(\lambda x)) - \epsilon x + \tau(x),
\]

where \(\epsilon\) is a small real number and \(\tau\) is analytic and small on some complex neighborhood of \((-1, 1)\) and real-valued on \(\mathbb{R}\). The family \((0.1)\) appears in the context of period-doubling renormalization for area-preserving maps (cf. \[6\]).

Our proof is a development of ideas of H. Epstein (cf \[1\], \[2\], \[3\]) adopted to deal with some significant complications that arise from the presence of terms \(\epsilon x + \tau(x)\) in the equation \((0.1)\).

The method relies on a construction of novel \(a\)-\(priori\) bounds for unimodal functions which turn out to be very tight. We also obtain good bounds on the scaling parameter \(\lambda\).

A byproduct of the method is a new proof of the existence of a Feigenbaum-Coullet-Tresser function.

1. Introduction

Since its original discovery \[4\], \[5\], \[10\], the Feigenbaum-Coullet-Tresser equation

\[
\phi(x) = \frac{1}{\lambda} \phi(\phi(\lambda x)),
\]

whose solution in the “universal” map possessing all periodic orbits of periods \(2^k\), has attracted an extraordinary amount of interest. The study of this equation resulted in some spectacular breakthroughs in one-dimensional complex and real renormalization theory, which finally culminated in the proof of universality for unimodal maps in \[8\].
In this paper we will consider the family of equations (0.1), where $\epsilon \leq 1$ and τ is small. This “fixed point” problem for the operator
\[
R_{\epsilon,\tau} : \phi \mapsto \frac{1 + \epsilon}{\lambda} \phi \circ \phi \circ \lambda - \epsilon \text{id} + \tau
\] (1.3)
surfaces in the period doubling renormalization for two-dimensional maps. Specifically, we have previously argued in [6] that the area-preserving renormalization fixed point F^* — that is the area-preserving map that satisfies $F^* = \Lambda_s^{-1} \circ F^* \circ F^* \circ \Lambda_s$, where Λ_s is some coordinate change — is almost one-dimensional in the sense that it is very close to the area-preserving Hénon-like map
\[
H(x, y) = (\phi(x) - y, x - \phi(\phi(x) - y)),
\] (1.4)
where ϕ is a solution of (0.1) for $\epsilon = 1$ and $\tau = 0$. An approach to an analytic proof of existence of F^* based on its proximity to the map (1.4) has been also suggested in [6]. Proofs of existence of solutions of (0.1) in this, interesting, case are, however, extremely technical. In this paper we concentrate on a simpler case of small ϵ and small τ.

The problem (0.1) will be reformulated and solved as a fixed point problem for an operator on some compact set of functions whose elements satisfy some a-priori bounds. A number of technical conditions in the proof will be verified on a computer.

The original computer-free proof of existence of the solution to the Feigenbaum-Coullet-Tresser equation (1.2) due to H. Epstein (cf [1], [2], [3]) was given for ϕ’s that can be factorized as $\phi(x) = U(x^2)$, where U is a diffeomorphism. The presence of extra terms in the equation (0.1) means that the solutions for $\epsilon \neq 0$ or $\tau \neq 0$ generally are not even functions anymore. We will, therefore, demonstrate existence of solutions on the “large” Epstein class $\phi(x) = U(x)^2$. Convergence of a-priori bounds for successive renormalizations of functions in the large Epstein class to some universal bounds (“beau” bounds) is a well-known seminal result of D. Sullivan [9]. We will, however, avoid a demonstration of such convergence (in our case, under the action of the operator (1.3)), by showing that there is a rather small compact and convex subset A of function in the large Epstein class, invariant under the action of $R_{\epsilon,\tau}$.

The a-priori bounds that we construct are new in the sense that they depend on the values
of the derivative of the function at two points in the real slice of its domain as parameters; by
doing this we were able to make the bounds very tight and significantly reduce the set \(\mathcal{A} \) which
is guaranteed to contain the solution of (0.1).

Another novelty of the proof is in the way we deal with complications that arise from the
presence of terms \(\varepsilon x \) and \(\tau(x) \) in the equation (0.1). The effect of these terms is a possible loss
of univalence of \(U^{-1} \). This in turn implies that one can not rely on a-priori bounds exclusively
anymore, but rather one needs to make a set of assumptions on the derivative of \(U^{-1} \), and show
that these assumptions are, in a sense, reproduced.

As a bonus, the proof also demonstrates a certain property of stability of the space of
solutions of (0.1): for all sufficiently small \(\varepsilon \) and \(\tau \) solutions lie in one and the same functional
space.

2. Notation. Herglotz functions

We will proceed with some definitions.

The upper and the lower half planes will be denoted as
\[
\mathbb{C}_\pm \equiv \{ z \in \mathbb{C} : \pm \Im(z) > 0 \}.
\]

Let \(J = (-l, r) \subset \mathbb{R} \). Define \(\mathcal{D}_+(J, \theta) \) to be an open subset of \(\mathbb{C}_+ \) bounded by a circular arc
intersecting \(\mathbb{R} \) at the endpoints of \(J \) at an angle \(\theta \), and let \(\mathcal{D}_-(J, \theta) = \mathcal{D}_+(J, \theta)^* \) where * stands
for the complex conjugation. A Poincaré neighborhood is defined as
\[
\mathcal{D}(J, \theta) = \mathcal{D}_+(J, \theta) \cup \mathcal{D}_-(J, \theta) \cup J.
\]

Given an interval \(J \subset \mathbb{R} \), denote
\[
\mathbb{C}(J) \equiv \mathbb{C}_+ \cup \mathbb{C}_- \cup J, \quad \mathbb{C}_1 \equiv \mathbb{C}((-1, 1)).
\]

Given an interval \(J \subset \mathbb{R} \) and complex number \(d \), \(\Im(d) > 0 \), denote
\[
\mathbb{C}(J, d) \equiv \mathbb{C}(J) \setminus \{ z \in \mathbb{C} : \Re(z) = \Re(d), \Im(z) \geq \Im(d) \quad \text{or} \quad \Im(z) \leq -\Im(d) \}.
\]

\(\mathbb{C}(J, d) \) is a complex plane with four slits.
We will denote \(\mathcal{F}(\mathcal{D}) \) the Frechet space of functions holomorphic on a domain \(\mathcal{D} \) equipped with the topology of uniform convergence on compacts. A subset of functions in \(\mathcal{F} \) assuming their values in a set \(\mathcal{E} \), will be denoted by \(\mathcal{O}(\mathcal{D}, \mathcal{E}) \).

Suppose that \(\mathcal{D} \) is real symmetric, and let \(\mathcal{c} = \{c_1, c_2, c_3, c_4\} \) be a quadruple of real numbers, such that \(\{c_1, c_2\} \in \mathcal{D} \) and \(\{c_3, c_4\} \in \mathcal{E} \). We will further define

\[
\mathcal{A}(\mathcal{D}, \mathcal{E}; \mathcal{c}) \equiv \left\{ u \in \mathcal{O}(\mathcal{D}, \mathcal{E}) : u(z) = u(z^*)^*, \ u(\mathcal{D} \cap \mathbb{C}_+) \subset \overline{\mathcal{E} \cap \mathbb{C}_+}, \ u(c_1) = c_3, u(c_2) = c_4 \right\}.
\]

It is a classical result that the set \(\mathcal{A}(\mathcal{D}, \mathcal{E}; \mathcal{c}) \) is compact in \(\mathcal{F}(\mathcal{D}) \) (cf \[2\]). Finally,

\[
\mathcal{A}_1(\mathcal{c}) \equiv \mathcal{A}(\mathbb{C}_1, \mathbb{C}_1; \mathcal{c}), \quad \mathcal{A}_{J,I,d}(\mathcal{c}) \equiv \mathcal{A}(\mathbb{C}(J,d), \mathbb{C}(I); \mathcal{c}), \quad \mathcal{A}_{J,I,d,p}(\mathcal{c}) \equiv \mathcal{A}(\mathbb{C}(J,d), \mathbb{C}(I,p); \mathcal{c}).
\]

Clearly, \(\mathcal{A}(\mathcal{D}, \mathcal{E}, \mathcal{c}) \) is isomorphic to some \(\mathcal{A}_1(\mathcal{c}) \) through a unique conformal isomorphism \(\Phi \) that is normalized so that \(\Phi(-1) = -1, \ \Phi(1) = 1 \) and \(\Phi(u) = b \). Here \(a \) and \(b \) are some constants that will be chosen conveniently later, and \(c_i = \Phi(c_i), \ i = 1, \ldots, 4 \). Functions in \(\mathcal{A}_1(\mathcal{c}) \), commonly referred to as Herglotz functions, admit the following integral representation:

\[
f(z) - c_3 = a(z - c_1) + \int \! d\nu(t) \left(\frac{1}{t - z} - \frac{1}{t - c_1} \right), \quad (2.5)
\]

where \(\nu \) is a measure supported in \(\mathbb{R} \setminus (-1,1) \). This integral representation can be used to obtain the following \textit{a-priori} bounds on \(\mathcal{A}_1(\mathcal{c}) \)

\[
\frac{c_4 - c_3}{c_2 - c_1, 1 + x} \leq \frac{f(x) - c_3}{x - c_1} \leq \frac{c_4 - c_3}{c_2 - c_1, 1 - x}, \quad x \in (-1, c_2), \quad (2.6)
\]

\[
\frac{c_4 - c_3}{c_2 - c_1, 1 + x} \geq \frac{f(x) - c_3}{x - c_1} \geq \frac{c_4 - c_3}{c_2 - c_1, 1 - x}, \quad x \in (c_2, 1), \quad (2.7)
\]

\[
\frac{1}{(x - c_1)(1 + x)} \leq \frac{f'(x)}{f(x)} \leq \frac{1 - c_1}{(x - c_1)(1 - x)}, \quad x \in (-1, 1), \quad (2.8)
\]

\[
-\frac{2f'(x)}{1 + x} \leq f''(x) \leq \frac{2f'(x)}{1 - x}, \quad x \in (-1, 1). \quad (2.9)
\]

If \(\Phi|_{\mathbb{R}} \) is a monotone function, then one can transfer the bounds (2.6)–(2.9) to \(\mathcal{A}(\mathcal{D}, \mathcal{E}, \mathcal{c}) \).

Finally, we will mention the following version of Schwarz Lemma which will play an important role in our proofs below (cf \[2, 9, 7\]):

Lemma 1. Let \(u : \mathbb{C}_J \mapsto \mathbb{C}_{J'} \) be a holomorphic map such that \(u(J) \subset J' \). Then for any \(\theta \in (0, \pi), \ u(\mathcal{D}_{\pm}(J, \theta)) \subset \mathcal{D}_{\pm}(J', \theta) \).
3. Summary of main results

We will now summarize the main findings of the paper in a somewhat abridged form.

Theorem 1. Set

\[
I_1 = (-1.23, 0.23), \quad \theta_1 = \frac{4}{5} \pi, \tag{3.10}
\]
\[
I_2 = (-1.63975634, 1.63975634), \quad \theta_2 = 0.83026 \pi, \tag{3.11}
\]
\[
I_3 = (1.6760020, 1.6760020), \quad \theta_3 = 0.830825 \pi, \tag{3.12}
\]

and \(D = D_1(I_1, \theta_1), \, E = D_2(I_2, \theta_2) \cap D_3(I_3, \theta_3). \)

There are numbers \(\delta > 0, \varepsilon > 0, \nu > 0 \) and \(\rho \), such that for any \(0 \leq \epsilon \leq \nu \), and any \(\tau \) holomorphic on \(E \), real-valued on \(\mathbb{R} \), and satisfying \(\sup_{z \in E} |\tau(z)| < \delta, \sup_{z \in E} |\tau'(z)| < \varepsilon, \, \tau(0) = 0 \), there exists a function \(\phi_{\epsilon, \tau} \), holomorphic on some complex neighborhood \(\mathcal{O} \) of \(L = (-1, 1) \), and satisfying \(\phi_{\epsilon, \tau}(0) = 1 \), and a number \(\lambda \), such that the following holds:

i) \(\phi_{\epsilon, \tau} \) and \(\lambda \) solve the equation \((0.11)\) on \(\mathcal{O} \);

ii) \(\phi_{\epsilon, \tau} \) has a unique quadratic critical point on \(\mathcal{O} \) at \(0 \):

\[\phi_{\epsilon, \tau}(z) = O(z^2) \]

iii) the two inverse branches \(\eta \) and \(\zeta \) of \(\phi_{\epsilon, \tau} \) can be factorized as

\[
\eta(z) = u(T(-\sqrt{L(z)})), \quad \zeta(z) = u(T(\sqrt{L(z)})), \tag{3.13}
\]

where \(T \) and \(L \) are affine, and \(u \) belongs to a convex subset of \(\mathcal{A}(\mathcal{D}, \mathcal{E}; c) \), \(c = (-1/2, 0, 0, 1) \).

Unsurprisingly, in the particular case of \(\epsilon = 0, \tau = 0 \), one can demonstrate that the factorized inverse of the Feigenbaum function \(\phi^* \equiv \phi_{0,0} \) admits quite better analytic properties. This is emphasized in our second result — yet another proof of the existence of solutions of the Feigenbaum-Coullet-Tresser equation — which we state now in a simplified form:

Theorem 2. Set \(d = 0.5 + 0.352i, \, p = 0.69i \) and

\[
J = (-1.05, 0.05), \quad I = (-1.1593855, 1.1593855). \tag{3.14}
\]

There exists a function \(\phi^* \) analytic on some complex neighborhood \(\mathcal{E} \) of \((-1, 1)\) and satisfying \(\phi^*(0) = 1 \), and a number \(\lambda \), with the following properties:

i) \(\phi^* \) and \(\lambda \) solve on \(\mathcal{E} \) the equation \((1.2)\).

ii) \(\phi^* \) has a unique quadratic critical point on \(\mathcal{E} \) at \(0 \):

\[\phi^*(z) = O(z^2) \]

iii) the two inverse branches \(\psi \) and \(\zeta \) of \(\phi^* \) can be factorized as

\[
\psi(z) = u(T(-\sqrt{1-z})), \quad \zeta(z) = u(T(\sqrt{1-z})), \tag{3.14}
\]

where \(T \) is some explicit affine map, and \(u \) belongs to a convex subset of \(\mathcal{A}(J, I, d, p; c) \), \(c = (-1/2, 0, 0, 1) \).
iv) \(-0.40791 < \lambda < -0.38132\).

We emphasize that the proof supplies quite tight bounds on the scaling parameter \(\lambda\).

4. Inverse branches. An operator on a compact space

In this section we will derive equations for the inverse branches of the solution of (0.1).

We will look for this solution within a class of functions which are unimodal on some interval
\(I \equiv [a, d] \supseteq [0, 1]\), that is they have a unique critical point on \(I\), and that this critical point \(c\) is quadratic in the sense that \(\phi_{\epsilon, \tau}(x) = O((x - c)^2)\), and we will derive equations that the two inverse branches of such \(\phi_{\epsilon, \tau}\) should satisfy. Write

\[
\phi_{\epsilon, \tau}(x) = b - g(x - c), \quad b \equiv \phi_{\epsilon, \tau}(c),
\]

then (0.1) can be written as

\[
g = F \circ g \circ \xi + \epsilon \operatorname{id} - \tau \circ (\operatorname{id} + c),
\]

(4.15)

where

\[
F(x) = b + c - \frac{1 + \epsilon}{\lambda}(b - g(b - c - x)), \quad \xi(x) = \lambda x + c(\lambda - 1).
\]

We will now write a set of equations for the two inverse branches, \(h\) and \(f\), of \(g\):

\[
h : (0, g(d - c)) \mapsto (0, d - c), \quad f : (0, g(a - c)) \mapsto (a - c, 0).
\]

The inverse of (4.15) on \((0, d - c)\) is the following set of equations for the inverse branches:

\[
f \circ F^{-1} \circ (\operatorname{id} - \epsilon h + \tau \circ (h + c)) = \xi \circ h, \quad \text{on} \quad (E, g(d - c)), \quad (4.16)
\]

\[
h \circ F^{-1} \circ (\operatorname{id} - \epsilon h + \tau \circ (h + c)) = \xi \circ h, \quad \text{on} \quad (0, E), \quad (4.17)
\]

where \(E \equiv g(c/\lambda - c)\). The inverse of (4.15) on \((a - c, 0)\) reads:

\[
h \circ F^{-1} \circ (\operatorname{id} - \epsilon f + \tau \circ (f + c)) = \xi \circ f, \quad \text{on} \quad (0, g(a - c)). \quad (4.18)
\]

It is easy to check that, for example, functions \(\phi_{\epsilon, 0}\) for any nonzero \(\epsilon\) can not be even. We will, therefore, consider the “large” Epstein class \(\phi(x) = U(x)^2\), and we will write

\[
h = v \circ - \circ s, \quad f = v \circ s, \quad (4.19)
\]
Figure 1: Function g (in a)), function F (in b)) and inverse branches h and f (in c)) for the solution ϕ of the equation $\phi(x) = 2\lambda^{-1}\phi(\lambda x) - x$.

where v is a diffeomorphism on $K \equiv (-\sqrt{g(d-c)}, \sqrt{g(a-c)})$, $s(x) \equiv \sqrt{x}$ (the principle square root) and $-(x) \equiv -x$. A similar factorization has been used in [9] and [7] to obtain a-priori bounds for a quadratic polynomial. With this factorization equations (4.16)–(4.18) become

$$\xi \circ v = v \circ V, \quad V(x) = \begin{cases} -\sqrt{F^{-1}(x^2 - \epsilon v(x) + \tau(v(x) + c))}, & x \in [e, \sqrt{g(a-c)}), \\ \sqrt{F^{-1}(x^2 - \epsilon v(x) + \tau(v(x) + c))}, & x \in (-\sqrt{g(d-c)}, e). \end{cases} \quad (4.20)$$

We will now formally introduce an operator which will be later shown to be defined on $\mathcal{A}(\mathcal{D}, \mathcal{E}, c)$ for some choice of \mathcal{D}, \mathcal{E} and $c = (-1/2, 0, 0, 1)$. The operator is defined through the following sequence of steps.

i) Given $u \in \mathcal{A}(\mathcal{D}, \mathcal{E}, c)$, and a function τ, holomorphic on $\mathcal{E} \ni 0$, real-valued on \mathbb{R} and satisfying $\tau(0) = 0$, find b, λ and e from the following set of equations:

$$-2\epsilon = \alpha(b, \lambda, \epsilon) u'(T_{b,\lambda,\epsilon}(e))(\epsilon - \tau'(u(T_{b,\lambda,\epsilon}(e))))), \quad (4.21)$$

$$\lambda = u \left(T_{b,\lambda,\epsilon} \left(s_b \left(u \left(T_{b,\lambda,\epsilon} \left(-s_b \left(\frac{e\lambda}{1+\epsilon} + \frac{\lambda^2}{(1+\epsilon)^2} - \frac{\lambda}{1+\epsilon} \tau(1) \right) \right) \right) \right) \right), \quad (4.22)$$

$$b = u \left(T_{b,\lambda,\epsilon} \left(s_b \left(\frac{\lambda}{1+\epsilon} \left(b - \frac{e^2}{1+\epsilon} + \epsilon u(T_{b,\lambda,\epsilon}(e)) - \tau(u(T_{b,\lambda,\epsilon}(e))) \right) \right) \right) \right). \quad (4.23)$$

where $\alpha, T_{b,\lambda,\epsilon}$ and additional functions β and γ are given by

$$\alpha(b, \lambda, \epsilon) = \frac{1}{2\beta(b, \lambda, \epsilon) - 2\gamma(b)}, \quad \beta(b, \lambda, \epsilon) = \sqrt{b - \frac{\lambda}{1+\epsilon}}, \quad \gamma(b) = \sqrt{b - 1},$$

\footnote{For notational purposes, we will use the symbol $s_b(x)$ for the function $\sqrt{b-x}$ through out the paper whenever convenient.}
Figure 2: An example of combinatorics in equalities (4.16) - (4.18) for a point in $(0, E)$ (equality (4.17)): function $\xi \circ h$ is given in red, $id - h$ – in cyan, F – in magenta, h – in blue; the image of the point under the right hand side of the equality is shown in a), under the left hand side – in b).

$$T_{b, \lambda, \epsilon}(x) = -\alpha(b, \lambda, \epsilon)(x + \beta(b, \lambda, \epsilon)).$$

The affine transformation $T_{1, \lambda, 0}$ will be also denoted by T_{λ}.

ii) Define for all $x \in T_{b, \lambda, \epsilon}^{-1}(D \cap \mathbb{R})$

$$V_{\epsilon, u, \tau}(x) = \operatorname{sign}(e - x)s_b\left(u\left(T_{b, \lambda, \epsilon}\left(-\left\lfloor w(T_{b, \lambda, \epsilon}(x))\right\rfloor^{\frac{1}{2}}\right)\right), \quad (4.24)$$

where

$$w(z) = b - \frac{\lambda}{1 + \epsilon}\left(b - T_{b, \lambda, \epsilon}^{-1}(x)^2 + \epsilon u(x) - \tau(u(x))\right). \quad (4.25)$$

We will demonstrate that there is a choice of D and E such that $V_{\epsilon, u, \tau}$ extends to a holomorphic function on $T_{b, \lambda, \epsilon}^{-1}(D)$.

iii) Set

$$\mathcal{T}_{\epsilon, \tau}[u](T_{b, \lambda, \epsilon}(z)) \equiv \lambda^{-1}u(T_{b, \lambda, \epsilon}(V_{\epsilon, u, \tau}(z))). \quad (4.26)$$

The operator $\mathcal{T}_{0, 0}$ will be denoted by \mathcal{T}.

Remark 2.

1) Notice, that $\gamma = -\sqrt{b - 1} \in (e, 0)$ is the fixed point of $V_{\epsilon, u, \tau}$.

2) The normalization conditions $(4.21) - (4.23)$ ensure that $V_{\epsilon, u, \tau}$ is differentiable at e, and that

$$\mathcal{T}_{\epsilon, \tau}[u](-1/2) = 1, \quad \mathcal{T}_{\epsilon, \tau}[u](0) = 1. \quad (4.27)$$

3) The function u is related to functions v, ψ, h and f appearing in the beginning of this Section through the following equations:

$$v(x) = u(-\alpha(x + \beta)) - c.$$
\[h(x) \equiv = \psi(b - x) - c = u(\alpha(\sqrt{x} - \beta)) - c, \quad x \in \left(0, [T_{b,\lambda,c}^{-1}(r)]^2\right), \]
\[f(x) \equiv u(\alpha(-\sqrt{x} - \beta)) - c, \quad x \in \left(0, [T_{b,\lambda,c}^{-1}(l)]^2\right). \]

We will show that for small \(\epsilon\) and \(\tau\), there is a choice of \(D\) and \(E\) such that \(T_{\epsilon,\tau}[u]\) is a continuous operator on \(A(D, E, c)\). By compactness of the set \(A(D, E, c)\) there is a function \(u^*_{\epsilon,\tau} \in A(D, E, c)\) such that \(T_{\epsilon,\tau}[u^*_{\epsilon,\tau}] = u^*_{\epsilon,\tau}\), which is equivalent to the set of equations (4.16) – (4.18). In particular, \(u^*_{\epsilon,\tau}\) is the “factorized inverse” (in the sense of Remark 2 3)) of a solution of the equation (0.1).

Remark 3. Before we proceed with the proofs, we would like to emphasize two crucial difficulties that have forced us to modify the standard techniques that are commonly used to control inverse branches of unimodal maps (cf. [1], [2], [9], [7]).

1) The terms \(\epsilon x\) and \(\tau(x)\) in the equation (0.1) are responsible for the appearance of the terms \(\epsilon u(T_{b,\lambda,\epsilon}(x))\) and \(\tau(u(T_{b,\lambda,\epsilon}(x)))\) in (4.24)–(4.25). The effect of these terms is that one loses the benefit of estimating \(u\), every time it enters the expression for \(V_{\epsilon,\lambda,\tau}\), only on a compact subset of its domain where one can use a-priori bounds. These terms do not appear in the Feigenbaum case \((\epsilon = \tau = 0)\) where this difficulty is absent. In the case of nonzero \(\epsilon\) and \(\tau\) one can not but make assumptions on the range of \(u\), and show that these assumptions are reproduced.

2) Another effect of terms \(\epsilon u(T_{b,\lambda,\epsilon}(x))\) and \(\tau(u(T_{b,\lambda,\epsilon}(x)))\) in (4.24) is that the derivative \(T_{\epsilon,\tau}[u]'(z) = -\lambda^{-1} u'(T_{b,\lambda,\epsilon}(V_{\epsilon,u,\tau}(T_{b,\lambda,\epsilon}^{-1}(z))))\alpha V_{\epsilon,u,\tau}(T_{b,\lambda,\epsilon}^{-1}(z))'\) can become zero since

\[V_{\epsilon,u,\tau}(T_{b,\lambda,\epsilon}^{-1}(z))' = \ldots \times \frac{1}{V_{\epsilon,u,\tau}(T_{b,\lambda,\epsilon}^{-1}(z))} \left(2 \frac{T_{b,\lambda,\epsilon}^{-1}(z) + \epsilon u'(z) - \tau'(u(z))u'(z)}{\alpha} \right) \]

can be zero.

Notice, that \(V_{\epsilon,u,\tau}(T_{b,\lambda,\epsilon}^{-1}(z))'\) is not zero at \(T_{b,\lambda,\epsilon}^{-1}(e)\) (where the expression in parenthesis is equal to zero, cf (4.21)): an application of the L’Hopital’s rule shows that the derivative is finite at this point. However, it may be zero at other points on the real line where \(2\alpha^{-1} T_{b,\lambda,\epsilon}^{-1}(z) + \epsilon u'(z) - \tau'(u(z))u'(z)\) is zero. This would totally destroy the argument since a function \(\tilde{u} \equiv T_{\epsilon,\tau}[u]\) whose derivative is zero somewhere in the real slice of its domain generally is not in...
\(\mathcal{A}(\mathcal{D}, \mathcal{E}, c) \), in particular \(\tilde{u}(\mathcal{D} \cap \mathbb{C}_\pm) \notin \mathcal{E} \cap \mathbb{C}_\pm \).

We will deal with this problem by assuming an upper bound on the derivative \(u' \) in the “problematic” subinterval of the real slice of \(\mathcal{D} \) so that \(2\alpha^{-1}T_{b,\lambda,\epsilon}^{-1}(z) + \epsilon u'(z) - \tau'(u(z))u'(z) \) is guaranteed to be nonzero, and we will demonstrate that this bound is reproduced.

5. Yet another proof of existence of the Feigenbaum-Coullet-Tresser function

We will start by treating a simpler case of the Feigenbaum-Coullet-Tresser equation (1.2). The existence of solutions of the Feigenbaum-Coullet-Tresser equation is a well-established fact, and constitutes one of the most important results in one-dimensional renormalization theory. We will include this new proof here because it illustrates some of the ideas used in a similar proof for equation (0.1) in the general case of nonzero \(\epsilon \) and \(\tau \) which could be otherwise obscured by technical details.

As it must be clear by now, our proof follows the basic idea of H. Epstein of constructing an operator on a compact space of functions that admit \(a \)-priori bounds (cf [1], [2]), but, at the same time, differs from it in that it is applicable to functions that are not necessarily in the “little” Epstein class \(\phi(x) = U(x^2) \).

The case of the equation (1.2) is rather special. Suppose that \(u \in \mathcal{A}_{J,I,d,p}(c) \) for some \(J, I, d \) and \(p \), and \(c = (-1/2, 0, 0, 1) \). The set of normalization conditions (4.21)–(4.23) degenerates into simpler ones:

\[
e = 0, \quad b = u \left(T_{b,\lambda,0} \left[-\sqrt{b - \lambda} \right] \right) = u \left(T_{b,\lambda,0} \left[-\sqrt{b(1 - \lambda)} \right] \right),
\]

the last equation is clearly satisfied by \(b = 1 \), since \(u \left(T_{1,\lambda,0} \left[\sqrt{1 - \lambda} \right] \right) = u(0) = 1 \). Then, the second normalization condition (4.22) becomes:

\[
\lambda = u \left(T_{\lambda} \left(s_1 \left(u \left(T_{\lambda} \left[-\sqrt{1 - \lambda^2} \right] \right) \right) \right) \right), \quad \text{where} \quad T_{\lambda} \equiv T_{1,\lambda,0}.
\]

In the rest of this Section we will fix the following constants

\[
l = 1.05, \quad r = 0.05, \quad m = 1.1593855, \quad p = 0.69i, \quad d = 0.5 + 0.3524i,
\]

and we will set \(J = (-l, r), \ I = (-m, m) \). Furthermore, we will consider a smaller set of
functions within $A_{I,I,d,p}(c)$, specifically, functions that extend to $\mathbb{C}(J, \tilde{d}(t, s))$ with some $\tilde{d}(t, s) \geq d$, where

$$s \equiv u'(0), \quad \text{and} \quad t \equiv u'(-1/2).$$

The set of such functions within $A_{I,I,d,p}(c)$ is clearly convex. We will refer to this set as $A_{I,I,d,p}(c)$. The specific form of the continuous function $\tilde{d}(t, s)$ will be described later.

The proof of the Proposition 3 below is mildly computer assisted, and uses “improved” Herglotz bounds on $A_1(c)$ transferred to $A_{I,I,d,p}(c)$ with the help of the conformal isomorphisms

$$\Phi_1(z, t, s) = A_1 \frac{z - \Re(\tilde{d}(t, s))}{\sqrt{(z - \Re(\tilde{d}(t, s)))^2 + \Im(\tilde{d}(t, s))^2}} + B_1, \quad \Phi_2(z) = A_2 \frac{z - \Re(p)}{\sqrt{(z - \Re(p))^2 + \Im(p)^2}} + B_2,$$

where A_i and B_i are found from the normalization conditions $\Phi_1(-l) = -1$, $\Phi_1(r) = 1$, $\Phi_2(0) = 0$, $\Phi_2(1) = 1$. Φ_1 maps a plane with four slits $\mathbb{C}(J, d)$ to a double slit plane \mathbb{C}_1 conformally, while Φ_2 is a conformal map of $\mathbb{C}(I, p)$ to $\mathbb{C}(I')$ for some interval I'.

The improvement of the Herglotz bounds (see Appendix A) uses the fact that $u'(0)$ and $u'(-1/2)$ can not be arbitrarily large, and that u assumes its values in $\mathbb{C}(I, p)$ (in particular, is bounded on J). We would like to point out that the derivatives $s = u'(0)$ and $t = u'(-1/2)$ play an important role as parameters in these new bounds. In particular, only a rather small region of the (t, s)-plane is admissible for u such that $u(J) \subset I$. We will use that $\Phi_1|_{\mathbb{R}}, i = 1, 2$, are monotone, and will transfer the improved Herglotz bounds f and \tilde{f} (cf (7.61)) from $A_1(c)$ to $A_{I,I,d,p}(c)$:

$$\mathcal{U}(x; t, s) \equiv \Theta_2(f(\Phi_1(x, t, s); t, s)), \quad u(x; t, s) \equiv \Theta_2(f(\Phi_1(x, t, s); t, s)), \quad (5.29)$$

where $\Theta_2 = \Phi_2^{-1}$. The next result is central to our proof.

Proposition 3. Suppose $u \in A_{I,I,d,p}(c)$. Then, there exists a bounded convex open set $S \subset \mathbb{R}^2$, and two continuous functions $\mathcal{L}_-(t, s)$ and $\mathcal{L}_+(t, s)$ such that the following holds whenever $(t, s) \equiv (u'(-\frac{1}{2}), u'(0)) \in S$.

i) There is a unique λ, $\mathcal{L}_-(t, s) \leq \lambda \leq \mathcal{L}_+(t, s)$, that solves (5.28). Furthermore, the map $u \mapsto \lambda$ is continuous.

ii) The function $V_u \equiv V_{u,n,0}$ defined in (4.24) extends to a conformal map on $\mathbb{C}(T_{\lambda}^{-1}(J), T_{\lambda}^{-1}(\tilde{d}))$ that maps $\mathbb{C}(T_{\lambda}^{-1}(J), T_{\lambda}^{-1}(\tilde{d})) \cap \mathbb{C}_\pm$ into $\mathbb{C}(T_{\lambda}^{-1}(J), T_{\lambda}^{-1}(\tilde{d})) \cap \mathbb{C}_\mp$.

11
iii) Derivatives \((T[u]'(0), T[u]'(-1/2))\) are also in \(S\).

Proof.
n)

To demonstrate the claim of this part we consider the following function

\[
\mathcal{L}(\lambda) \equiv \lambda T[u](0) = u \left(T_{\lambda} \left(s_1 \left(u \left(T_{\lambda} \left(-s_1 \left(\lambda^2 \right) \right) \right) \right) \right) \right),
\]

and demonstrate that the function \(\lambda - \mathcal{L}(\lambda)\) has exactly one zero in some interval \((\mathcal{L}_-(t, s), \mathcal{L}_+(t, s))\) for all \((t, s) \in S\). To this end we construct functions \(\mathcal{L}_\pm(t, s)\) so that the following holds

\[
\begin{align*}
\mathcal{L}_+(t, s) - \mathcal{L}_- (t, s) & \geq 0, \\
\mathcal{L}_-(t, s) - \mathcal{L}_+ (t, s) & \leq 0, \\
1 - \mathcal{L}'(\lambda) & > 0 \quad \text{for all} \quad \mathcal{L}_-(t, s) \leq \lambda \leq \mathcal{L}_+(t, s).
\end{align*}
\]

The last inequality implies that if \(\lambda\) is a zero of \(1 - \mathcal{L}'(\lambda)\) then it is unique.

To demonstrate the inequalities we first choose a grid \(\{(t_i, s_k)\}\) of points on \(S\), and construct a set of numbers \(\mathcal{L}^{i,k}_\pm\) that satisfy \((5.31)\) and \((5.32)\) at \((t_i, s_k)\) numerically through a bisection procedure. We next define \(\mathcal{L}_\pm(t, s)\) over all of \(S\) through a spline interpolation over points \(\mathcal{L}^{i,k}_\pm\). Finally, we verify that these functions \(\mathcal{L}_\pm(t, s)\) do satisfy \((5.31)\) and \((5.32)\) on all of \(S\) using interval arithmetics.

ii) Denote \(D(t, s) = T_{\lambda}^{-1}(-\bar{d}(t, s)), L = T_{\lambda}^{-1}(r), R = T_{\lambda}^{-1}(-l), K = T_{\lambda}^{-1}(J)\) and let \(H(t, s)\) be...
the interval \((0, D(t, s))\) on the imaginary axis.

First, we verify that \(V_u\) is well-defined on \(K\). For this, it is enough to check that

\[
1 - \lambda(1 - L^2) = 1 - \lambda(1 - R^2) > 0, \quad T_\lambda (-s_1 (\lambda(1 - R^2))) \subset J,
\]

\[
0 < 1 - u \left(T_\lambda (-s_1 (\lambda(1 - L^2))) \right) = 1 - u \left(T_\lambda (-s_1 (\lambda(1 - R^2))) \right) < 1,
\]

where the last inequality implies that \(V_u(K) \subseteq K\). These inequalities are verified on the computer for all \(L \leq C\) (see Fig. 3), and after that — to Section 4.

We check that \(\text{signum}(\Im(z))\sqrt{z}\) are mapped further by \(s\) for all \(L \leq C\) and holomorphic in \(C\) (see bounds (5.29)).

Next, we shall extend \(V_u\) first to \(\mathbb{C}(K, D(t, s)) \cap \mathbb{C}_+\) as \(V_u = s \circ h \circ g\) where

\[
g(z) = T_\lambda \left(-\sqrt{1 - \lambda(1 - z^2)} \right), \quad h(z) = 1 - u(z), \quad s(z) = -\text{signum}(\Im(z))\sqrt{z}
\]

(see Fig. 3), and after that — to \(\mathbb{C}(K, D(t, s)) \cap \mathbb{C}_-\) as \(V_u(z) \equiv V_u^*(z^*)\) where \(z^*\) signifies a complex conjugate of \(z\). Functions \(h\) and \(g\) are not to be confused with those appearing in Section 4.

To this end, we first verify that \(g\) maps \(\mathbb{C}(K, D(t, s)) \cap \mathbb{C}_+\) into the domain of \(h\). For this we check that

\[
0 < 1 - \lambda(1 - D(t, s)^2) < r \quad \text{and} \quad g(H(t, s)) \subseteq J,
\]

for all \(L \leq C\), \((t, s) \in S\) and \(l, r, d(t, s)\) and \(p\) as in the condition.

Next, notice that \(h \circ g\) maps quadrants \(\mathbb{C}_+ \cap \{z : \Re(z) \geq 0\}\) separately into \(\mathbb{C}_\pm\), which are mapped further by \(s\) into \(\mathbb{C}_- \cap \{z : \Re z \leq 0\}\). At the same time \(h(g(H(t, s))) \subset \mathbb{R}_-\), and therefore \(h(g(H(t, s)))\) is not in the domain of analyticity of \(\sqrt{\cdot}\). Therefore such \(V_u\) is not defined on \(H(t, s)\), but it is easily checked that it is continuous across the interval \(H(t, s)\); to be precise

\[
\lim_{\epsilon \to 0} s(h(g(z - \epsilon))) = \lim_{\epsilon \to 0} s(h(g(z + \epsilon))), \quad z \in H(t, s),
\]

and holomorphic in \(\mathbb{C}_+ \cap \{z : \Re(z) \geq 0\}\). Therefore, by Morera’s theorem, it is holomorphic in all of \(\mathbb{C}(K, D(t, s)) \cap \mathbb{C}_+\).

To finish the verification of \(V_u ((\mathbb{C}(K, D(t, s)) \cap \mathbb{C}_+) \subset \mathbb{C}(K, D(t, s)) \cap \mathbb{C}_-\) we have checked on the computer that

\[
\lim_{\epsilon \to 0} |s(h(g(D(t, s) - \epsilon)))| \leq \lim_{\epsilon \to 0} |s(1 - u(g(D(t, s) \pm \epsilon); t, s))| \leq |D(t, s)| \quad (5.34)
\]
for all λ as in (5.30) and $(t, s) \in S$.

Finally,

$$V_u'(z) = -\lambda u' \left(T_\lambda(-s_1(\lambda(1 - z^2))) \right) \frac{\alpha z}{2V(z)s_1(\lambda(1 - z^2))}$$

and the only candidate for a zero of this derivative is $z = 0$. However, $V_u(0) = 0$, and an easy application of L'Hôpital's rule demonstrates that $V'(0) = -\alpha \sqrt{u'(0)}|\lambda| \neq 0$. Therefore, V_u is conformal.

iii) The proof of existence and invariance under T of the set S is practically identical to that of Lemma 5.

\[\square \]

Existence of the fixed point of the the operator T follows from the next

Proposition 4. T is a continuous operator on $A_{J, I, \bar{d}, p}(\epsilon)$.

Proof. Denote, as before, $s = u'(0)$ and $t = u'(-1/2)$, and let P be the interval $(0, p)$ on the imaginary axis. To demonstrate that $T[u](J) \subset I$ whenever $u(J) \subset I$, and that $T[u](T_\lambda(H(t, s))) \subset P$ whenever $u(T_\lambda(H(t, s))) \subset P$, it is enough to show that the functions

$$U_1(\lambda, t, s) \equiv m - \frac{1}{\lambda} \Im \left(T_\lambda \left(s_1 \left(\Im(T_\lambda(-s_1(\lambda^2))) \right) \right) ; t, s \right), \quad (5.35)$$

$$U_2(\lambda, t, s) \equiv \frac{1}{\lambda} u \left(T_\lambda \left(s_1 \left(u(T_\lambda(-s_1(\lambda^2))) \right) \right) ; t, s \right) + m, \quad (5.36)$$

$$Q(t, s) \equiv \Im(p) - \Im \left(T[u](\bar{d}(t, s)) \right), \quad (5.37)$$

are positive for all $(t, s) \in S$ and all λ as in (5.30). The positivity of functions U_i is verified on the computer.

To show that $Q(t, s) > 0$, we use Lemma 1 We first make some convenient choice of a Poincaré neighborhood $D_\epsilon((-x', x'), \theta') \subset C(J, \bar{d})$ such that

$$s(h(g(D(t, s))) \in D_\epsilon((-x', x'), \theta')).$$

Then Lemma 1 guarantees that

$$\lambda^{-1} u(T_\lambda(s(h(g(D(t, s))))) \subset \lambda^{-1} D_\epsilon \left((u(-x', t, s), \Im(x', t, s), \theta') \right) \equiv \mathcal{W}(\lambda; t, s).$$

At this point we verify on the computer that the intersection of the set $\mathcal{W}(\lambda; t, s)$ with the
imaginary axis is contained in the interval \((0, p)\) for all \(L_-(t, s) \leq \lambda \leq L_+(t, s)\) and \((t, s) \in S\) — that is we verify the inequality \((5.37).\) This, together, with Proposition 3 implies the claim.

\[\square \]

By the Tikhonov-Schauder theorem the operator \(T\) has a fixed point in \(A_{I, I, \bar{d}, p}(c)\). This completes the proof of Theorem 2.

6. General case \(\epsilon, \tau \neq 0\).

In what follows, we will make the following choices:

\[\mathcal{D} = \mathcal{D}(I_1, \theta_1), \quad \mathcal{E} = \mathcal{D}(I_2, \theta_2) \cap \mathcal{D}(I_3, \theta_3), \]

where \(I_1 \equiv (-l_k, r_k)\), and \(\theta_k\) are as in \((5.10)-(3.12)\), and we will consider the corresponding space \(A(\mathcal{D}, \mathcal{E}, c)\). The point of considering an intersection of two Poincaré neighbourhoods as the target set, rather than a single one, say \(\mathcal{D}(I_2, \theta_2)\), is that in our numerical experiments all choices of \(\mathcal{D}(I_1, \theta_1)\) and \(\mathcal{D}(I_2, \theta_2)\), such that the set \(S\) of realizable \((t, s)\) is non-empty (and conveniently small) would lead to the target set \(\mathcal{D}(I_2, \theta_2)\) being too large for \(T_{\epsilon, \tau}[u]\) to belong to the same space \(A(\mathcal{D}(I_1, \theta_1), \mathcal{D}(I_2, \theta_2), c)\). “Clipping” the target set by considering an appropriate intersection of two Poincaré neighbourhoods has enabled us to demonstrate the invariance of the space \(A(\mathcal{D}, \mathcal{E}, c)\) under \(T_{\epsilon, \tau}\).

The double slit plane \(\mathbb{C}_1\) is isomorphic to Poincaré neighbourhoods \(\mathcal{D}(I_k, \theta_k)\) via conformal isomorphisms

\[\Theta_k \equiv q_k \circ \sigma_k \circ m_k \circ \zeta, \]

where

\[\zeta(z) \equiv \frac{\sqrt{1+z} - \sqrt{1-z}}{\sqrt{1+z} + \sqrt{1-z}}, \quad m_k(z) \equiv \frac{z + a_k}{1 - a_k z}, \]

\[\sigma_k(z) \equiv \frac{(1 + z)^{\kappa_k} - (1 - z)^{\kappa_k}}{(1 + z)^{\kappa_k} + (1 - z)^{\kappa_k}}, \quad q_k(z) \equiv \frac{l_k + r_k}{2} z + \frac{r_k - l_k}{2}, \]

where \(-l_k\) and \(r_k\) are the left and the right end points of intervals \(I_k\), and \(\kappa_k \equiv 2 - 2\theta_k / \pi\).

\[^2\text{In fact, the function } \bar{d}(t, s)\text{ has been found, first, numerically, so that the inequality would be satisfied. This has been done over a grid of points in } S\text{ as a simultaneous bisection procedure for } \mathcal{L}_-\text{ and } \bar{d}\text{ which finds some solutions of inequalities } (5.31), (5.32) \text{ and } (5.37). \text{ Functions } \mathcal{L}_-\text{ and } \bar{d}\text{ are next defined as some linear extrapolation over the grid, and the inequalities are checked again using the interval arithmetics.} \]
With a little bit of work, one can check that the transformation \(\zeta \) maps \(\mathbb{C}_1 \) onto the unit disk, \(m_k \) is the normalizing Moebius transformation, \(\sigma_k \) maps the unit disk onto \(\mathcal{D}((-1,1), \theta_k) \), and, finally, \(q_k \) maps \(\mathcal{D}((-1,1), \theta_k) \) onto \(\mathcal{D}(I_k, \theta_k) \). Constants \(a_k \) in the normalizing Moebius transformations \(m_k \) are defined through the conditions \(\Theta_1(0) = -1/2, \Theta_2(0) = \Theta_3(0) = 0 \).

A function \(u \) in \(\mathcal{A}(\mathcal{D}, \mathcal{E}, c) \) can be now factorized as

\[
u = \Theta_2 \circ f_2 \circ \Phi_1 = \Theta_3 \circ f_3 \circ \Phi_1,
\]

where

\[
f_k \in \mathcal{A}_1(c^k), \quad c^k = (\Phi_1(c_1), \Phi_1(c_2), \Phi_k(c_3), \Phi_k(c_4)), \quad k = 2, 3.
\]

Therefore, according to Schwarz Lemma [1] if \(f_k \in \mathcal{A}_1(c^k) \) and an interval \(J \) are such that \(f_k(J) \subset J'_k \) then

\[
u(\Theta_1(\mathcal{D}(J, \theta))) \subset \Theta_2(\mathcal{D}(J'_2, \theta)) \cap \Theta_3(\mathcal{D}(J'_3, \theta)).
\]

Furthermore, one can use the fact that \(\Theta_k|_{\mathbb{R}} \) are monotone functions to transfer the improved Herglotz bounds (7.61) from \(\mathcal{A}_1(c^k) \) to \(\mathcal{A}(\mathcal{D}, \mathcal{E}, c) \):

\[
\mathfrak{u}(x; t, s) \equiv \min \left\{ \Theta_2 \left(\mathfrak{f}_2 \left(\Phi_1(x); t, s \right) \right), \Theta_3 \left(\mathfrak{f}_3 \left(\Phi_1(x); t, s \right) \right) \right\}, \quad (6.39)
\]

\[
\mathfrak{u}(x; t, s) \equiv \max \left\{ \Theta_2 \left(f_2 \left(\Phi_1(x); t, s \right) \right), \Theta_3 \left(f_3 \left(\Phi_1(x); t, s \right) \right) \right\}. \quad (6.40)
\]

We have implemented bounds (6.39)–(6.40) on the computer, and used them in our proofs.

As in the previous section, we will consider a subset of \(\mathcal{A}(\mathcal{D}, \mathcal{E}, c) \) by allowing the real slices of the target sets \(\mathcal{D}(I_2, \theta_2) \) and \(\mathcal{D}(I_3, \theta_3) \) to be functions of \(u' \left(-\frac{1}{2} \right), u'(0) \):

\[
I_2(t) = \left(0.16(t - t^*)(0.5 - l_1) - m_2, 0.16(t - t^*)(r_1 + 0.5) + m_2 \right),
\]

\[
I_3(t) = \left(3.5(t - t^*)(0.5 - l_1) - m_3, 3.5(t - t^*)(r_1 + 0.5) + m_3 \right),
\]

where \(m_2 = 1.63825, m_3 = 1.6430509, \) and \(t^* = 1.9142899327, s^* = 2.2366548836 \) are approximate values of the derivatives \(u' \left(-\frac{1}{2} \right) \) and \(u'(0) \) for the fixed point of the operator \(\mathcal{T} \) computed numerically.

The subset \(\{ u \in \mathcal{A}(\mathcal{D}, \mathcal{E}, c) : u(\mathcal{D}) \subset \mathcal{D}(I_2(t), \theta_2) \cap \mathcal{D}(I_3(t), \theta_3) \} \) is convex: if \(u_1 \) and \(u_2 \) are any two such functions and \((t_1, s_1) = (u'_1(-1/2), u'_1(0))\) and \((t_2, s_2) = (u'_2(-1/2), u'_2(0))\)
are their derivatives, then any function \(pu_1 + (1-p)u_2\), \(p \in (0,1)\), is also in the same subset. Indeed, if \(z_1 \in \mathcal{D}(I_k(t), \theta_k)\), \(k = 2, 3\), and \(z_2 \in \mathcal{D}(I_k(t), \theta_k)\), \(k = 2, 3\), then elementary geometric considerations demonstrate that \(pz_1 + (1-p)z_2 \in \mathcal{D}(I_k(pt_1 + (1-p)t_2), \theta_k)\) (the fact that \(|I_k(t)|\) is constant and independent of \(t\) is important here).

We shall now proceed to describe a set \(\tilde{S}\) of realizable derivatives \((u'(-\frac{1}{2}), u'(0))\):

Lemma 5. Suppose that \(u \in \mathcal{A} (\mathcal{D}, \mathcal{E}, c)\), and, furthermore,

\[u(\mathcal{D}) \subset \mathcal{D}(I_2(t, s), \theta_2) \cap \mathcal{D}(I_3(t, s), \theta_3). \]

Then there are four curves \((t, Z_2(t)), (t, Z_3(t)), (t, C_2(t))\) and \(t = t^*-0.0004\) in the \((t, s)\)-plane that bound a convex open set \(\tilde{S}\), such that

\[\left(T[u]' \left(-\frac{1}{2}\right), T[u]'(0) \right) \subset \tilde{S}, \quad \text{whenever} \quad \left(u' \left(-\frac{1}{2}\right), u'(0) \right) \in \tilde{S}. \]

Proof. See the Appendix B for the proof.

The following Proposition shows that the space \(u \in \mathcal{A} (\mathcal{D}, \mathcal{E}, c)\) is invariant under \(T_{\epsilon, \tau}\).

Proposition 6. There exist \(\delta > 0\), \(\epsilon > 0\), \(\nu > 0\), and \(C > 0\) and \(\sigma > 0\), satisfying \(C > \sigma \nu^2\), such that whenever

1) \(u \in \mathcal{A} (\mathcal{D}, \mathcal{E}, c)\), \(u(\mathcal{D}) \subset \mathcal{D}(I_2(t, s), \theta_2) \cap \mathcal{D}(I_3(t, s), \theta_3)\);

2) \(\tau\) is a holomorphic function on \(\mathcal{E}\), real-valued on \(\mathbb{R}\), satisfying

\[\tau(0) = 0, \quad \sup_{z \in \mathcal{E}} |\tau(z)| \leq \delta, \quad \sup_{z \in \mathcal{E}} |\tau'(z)| \leq \epsilon; \]

3) for all \(x \in (0, r_1)\)

\[u'(x) \leq \omega + \rho x, \quad \text{where} \quad \omega = 13, \quad \rho = 20; \quad (6.41) \]

4) \(\epsilon\), the parameter in the operator \(T_{\epsilon, \tau}\), is less than \(\nu\);

there are two piecewise linear function \(\mathcal{L}_-(t, s)\) and \(\mathcal{L}_+(t, s)\) \(^3\), and two constant \(B_- \equiv 1 + \sigma \epsilon^4\) and \(B_+ \equiv 1 + C \epsilon^2\), such that the following holds

i) there is a triple \((e, b, \lambda)\) that solves equations \((4.21)-(4.22)\), and satisfies

\[-\gamma(b) \geq e \geq -\beta(b, \lambda, \epsilon), \]

\[\mathcal{L}_+(t, s) \geq \lambda \geq \mathcal{L}_-(t, s), \]

\[B_+ \geq b \geq B_-; \]

where \(t = u'(-1/2), \ s = u'(0)\). Furthermore, the map \(u \mapsto (e, b, \lambda)\) is continuous, while the solution \(e\) of \((4.21)\) is unique;

\(^3\)In our programs (see [11]), we have implemented a construction of the bounds \(\mathcal{L}_\pm(t, s)\) through a bisection procedure that verifies the inequalities \((6.42)\) and \((6.43)\) for any point \((t, s) \in \tilde{S}\).
ii) $T_{\varepsilon,\tau}[u]$ also admits the bound (6.41);

iii) the function $V_{\varepsilon,u,\tau}$ extends to a holomorphic function on $T_{b,\lambda}^{-1}(D)$ that maps $T_{b,\lambda}^{-1}(D) \cup \mathbb{C}_{\pm}$ compactly into $T_{b,\lambda}^{-1}(D) \cup \mathbb{C}_{\mp}$;

iv) $T_{\varepsilon,\tau}[u] \in \mathcal{A}(\mathcal{D}, \mathcal{E}, \epsilon)$, $u(\mathcal{D}) \subset \mathcal{D}(I_2(t,s), \theta_2) \cap \mathcal{D}(I_3(t,s), \theta_3)$.

We do not prove uniqueness of the solution (b,λ), although this seems possible (with significantly more effort). We conclude that

$$
\eta(z) = u_{\infty}(T_{b_{\infty},\lambda_{\infty}}(-\sqrt{b_{\infty} - z})), \quad \zeta(z) = u_{\infty}(T_{b_{\infty},\lambda_{\infty}}(\sqrt{b_{\infty} - z})),
$$

are the factorized inverses of a solution $\phi_{\varepsilon,\tau}$ of (0.1) on some complex neighborhood of

$$
u_{\infty}(I_1) \supset \left(\max_{(t,s) \in \mathcal{S}} \mathbb{M}(-l_1; t, s), \min_{(t,s) \in \mathcal{S}} u(r_1; t, s) \right) \supset (-1, 1).
$$

6.1. Proof of part i) of Proposition 4

To demonstrate (6.42) we introduce a function

$$\mathcal{E}(x; \lambda, b, \epsilon, \tau) \equiv -\epsilon u'(T_{b,\lambda,\epsilon}(x)) \frac{\alpha(b, \lambda, \epsilon)}{2} (\epsilon - \tau' (u(T_{b,\lambda,\epsilon}(x)))).$$

Notice, that

$$
\mathcal{E}(-\gamma(b); \lambda, b, \epsilon, 0) \equiv -\epsilon u'(T_{b,\lambda,\epsilon}(-\gamma(b))) \frac{\alpha(b, \lambda, \epsilon)}{2} = -\epsilon t \frac{\alpha(b, \lambda, \epsilon)}{2},
$$

$$\mathcal{E}(-\beta(b, \lambda, \epsilon); \lambda, b, \epsilon, 0) \equiv -\epsilon u'(T_{b,\lambda,\epsilon}(-\beta(b, \lambda, \epsilon))) \frac{\alpha(b, \lambda, \epsilon)}{2} = -\epsilon s \frac{\alpha(b, \lambda, \epsilon)}{2}.
$$

Since

$$
(-\beta(b, \lambda, \epsilon), -\gamma(b)) \supset \left(-\sqrt{B_1 - 1}, -\sqrt{B_3 - \lambda} \right) = \left(-\sqrt{1 + \sigma \epsilon^4 + |\lambda|, -C_2^2 \epsilon} \right),
$$

for sufficiently small ϵ and for

$$
C < \left(t \frac{\alpha(b, \lambda, \epsilon)}{2} \right)^2,
$$

the following holds

$$
-\epsilon t \frac{\alpha(b, \lambda, \epsilon)}{2} < -C_2^2 \epsilon, \quad \text{and} \quad -\sqrt{1 + \sigma \epsilon^4 + |\lambda|} < -\epsilon s \frac{\alpha(b, \lambda, \epsilon)}{2},
$$

and the interval

$$
(\mathcal{E}(-\beta(b, \lambda, \epsilon); \lambda, b, \epsilon, 0), \mathcal{E}(-\gamma(b); \lambda, b, \epsilon, 0)) \in (-\beta(b, \lambda, \epsilon), -\gamma(b)).
$$
Since \mathbf{E} is clearly continuous in τ' at $\tau' = 0$, there is a $\varepsilon > 0$ such that the same containment (6.46) holds for all τ that satisfy $\sup_{z \in \mathbf{E}} |\tau'(z)| \leq \varepsilon$.

To show (6.43)–(6.44) we consider two functions

$$
\mathcal{L}_{u,\tau}(\lambda, b; \varepsilon) \equiv u \left(T_{b,\lambda,\varepsilon} \left(-s_b \left(\frac{\lambda}{1 + \varepsilon} (b - e^2 + \varepsilon u(T_{b,\lambda,\varepsilon}(e)) + \tau(u(T_{b,\lambda,\varepsilon}(e)))) \right) \right) \right),
$$

and demonstrate that the map $(\lambda, b) \mapsto (\mathcal{L}_{u,\tau}(\lambda, b; \varepsilon), \mathfrak{B}_{u,\tau}(\lambda, b; \varepsilon, \varepsilon))$ maps the parallelogram (6.43)–(6.44) in the (λ, b)-plane into itself for all $(t, s) \in \mathcal{S}$, all e as in (6.42) and all $u \in \mathcal{A}(\mathcal{D}, \mathcal{E}, c)$. To this end, we first show that $\mathcal{L}_+(t, s) - \mathcal{L}_{u,0}(\mathcal{L}_+(t, s), 1; 0) > 0$, and $\mathcal{L}_-(t, s) - \mathcal{L}_{u,0}(\mathcal{L}_-(t, s), 1; 0) < 0$. For this, it is enough to verify that in the particular case of $\varepsilon = \delta = 0$ and $b = 1$

$$
\mathcal{L}_+ - \mathcal{L}_- \left(T_{b,\lambda,\varepsilon} \left(-s_b \left(\frac{\lambda}{1 + \varepsilon} (b - e^2 + \varepsilon u(T_{b,\lambda,\varepsilon}(e)) + \tau(u(T_{b,\lambda,\varepsilon}(e)))) \right) ; t, s \right) \right) > 0, \quad (6.47)
$$

$$
\mathcal{L}_- - \mathcal{L}_+ \left(T_{b,\lambda,\varepsilon} \left(-s_b \left(\frac{\lambda}{1 + \varepsilon} (b - e^2 + \varepsilon u(T_{b,\lambda,\varepsilon}(e)) + \tau(u(T_{b,\lambda,\varepsilon}(e)))) \right) ; t, s \right) \right) < 0 \quad (6.48)
$$

for all $(t, s) \in \mathcal{S}$ (we have omitted the arguments of functions \mathcal{L}_\pm above to make the notation less cumbersome). Since the left hand sides of the strict inequalities (6.47) and (6.48) are clearly continuous in ε, δ and b, the same is true for sufficiently small ε, δ and $\mathcal{B}_- \leq b \leq \mathcal{B}_+$.

Inequalities (6.47) and (6.48) have been verified on a computer.

Next, we check that $\mathcal{B}_+ > \mathfrak{B}_{u,\tau}(\lambda, \mathcal{B}_+; e, \varepsilon)$ and $\mathcal{B}_- < \mathfrak{B}_{u,\tau}(\lambda, \mathcal{B}_-; e, \varepsilon)$. To verify $\mathcal{B}_- < \mathfrak{B}_{u,\tau}(\lambda, \mathcal{B}_-; e, \varepsilon)$ we notice that

$$
\mathfrak{B}_{u,\tau}(\lambda, \mathcal{B}_-; e, \varepsilon) = u \left(T_{\mathcal{B}_-\lambda,\varepsilon} \left(-s_{\mathcal{B}_-} \left(\frac{\lambda}{1 + \varepsilon} (\mathcal{B}_- - e^2 + \varepsilon u(T_{\mathcal{B}_-\lambda,\varepsilon}(e)) \right) \right) \right) \right)
$$

$$
\geq u \left(T_{1+\sigma\varepsilon^4,\lambda,\varepsilon} \left(-\frac{1 + \sigma\varepsilon^4 - \frac{\lambda}{1 + \varepsilon} - \left(-\varepsilon^2 \frac{\alpha}{2} \right)^2}{1 + \sigma\varepsilon^4 - \frac{\lambda}{1 + \varepsilon} - \left(-\varepsilon^2 \frac{\alpha}{2} \right)^2} \right) \right)
$$

$$
\equiv u(G(\lambda, s; e; \varepsilon))
$$

$$
= 1 + u'(G(\lambda, s; e; 0)) \partial_s G(\lambda, s; e; 0) \varepsilon + \frac{1}{2} \left[u''(G(\lambda, s; e; 0)) (\partial_s^2 G(\lambda, s; e; 0) + \partial_s G(\lambda, s; e; 0))^2 \right] \varepsilon^2 + O(\varepsilon^3)
$$

19
This, together with the fact that \(\lambda \) is positive for all \(\mathcal{L}_-(t, s) \leq \lambda \leq \mathcal{L}_+(t, s) \) and \((t, s) \in \tilde{S} \). Therefore

\[
\mathcal{B}_{u,0}(\lambda, \mathcal{B}_-; e, \epsilon) \geq 1 + \frac{1}{2} t \left| \lambda \right| \frac{t^2 - (s - t)^2}{32(\lambda - 1)^2} e + O(\epsilon^3). \tag{6.49}
\]

For sufficiently small \(\epsilon \) the right-hand side of (6.49) is strictly larger than \(\mathcal{B}_- = 1 + \sigma \epsilon^4 \). This, together with the fact that \(\mathcal{B}_{u,\tau}(\lambda, \mathcal{B}_-; e, \epsilon) \) is continuous in \(\tau \) implies that the inequality \(\mathcal{B}_- < \mathcal{B}_{u,\tau}(\lambda, \mathcal{B}_-; e, \epsilon) \) holds for all sufficiently small \(\tau \) and \(\epsilon \).

To verify \(\mathcal{B}_+ > \mathcal{B}_{u,\tau}(\lambda, \mathcal{B}_+; e, \epsilon) \) we proceed in a similar way

\[
\mathcal{B}_{u,\tau}(\lambda, \mathcal{B}_+; e, \epsilon) = u \left(\frac{1}{2} \left[t \partial_t^2 G(\lambda, s, e; 0) + u'' \left(\frac{1}{2} \left(\partial_t G(\lambda, s, e; 0) \right)^2 \right) \right] e + O(\epsilon^3). \right.
\]

Again, for \(\tau = 0 \),

\[
\partial_t G(\lambda, s, e; 0) = -\lambda \frac{4C^2 \sqrt{1 - \lambda - t}^2 + 2t(s - t)}{32(1 - \lambda)^2},
\]

which is positive for all \(\mathcal{L}_-(t, s) \leq \lambda \leq \mathcal{L}_+(t, s) \) and \((t, s) \in \tilde{S} \) (where \(s > t \)), therefore

\[
\mathcal{B}_{u,\tau}(\lambda, \mathcal{B}_+; e, \epsilon) \leq 1 + \frac{1}{2} t \left| \lambda \right| \frac{4C^2 \sqrt{1 - \lambda - t}^2 + 2t(s - t)}{32(1 - \lambda)^2} e^2 + O(\epsilon^3) < 1 + Ce^2, \tag{6.50}
\]

\[20\]
if

\[
\frac{1}{2t} |\lambda| \left(\frac{4C^2 \sqrt{1 - \lambda - t}}{2} + 2t(s-t) \right) < C.
\]

(6.51)

Notice, that

\[
C - \frac{1}{2t} |\lambda| \left(\frac{4C^2 \sqrt{1 - \lambda - t}}{2} + 2t(s-t) \right) |_{C=0} = -\lambda \frac{t(2ts - t^2)}{64(1 - \lambda)^2} > 0.
\]

Therefore, conditions (6.45) and (6.51) are satisfied for all \(\mathcal{L}_-(t,s) \leq \lambda \leq \mathcal{L}_+(t,s)\) and \((t,s) \in \tilde{S}\) by any sufficiently small \(C\).

The solution \(b\) is contained in the interval \((\mathcal{B}_{u,\tau}(\lambda, \mathcal{B}_-; e, \epsilon), \mathcal{B}_{u,\tau}(\lambda, \mathcal{B}_+; e, \epsilon))\) which for sufficiently small \(\epsilon\) is a subset of

\[
(\hat{B}_-, \hat{B}_+) \equiv \left(1 + \frac{1}{2} t |\lambda| \frac{t^2 - (s-t)^2}{32(\lambda - 1)^2} \epsilon^2, 1 + \frac{1}{2t} |\lambda| \frac{t - 4C^2 \sqrt{1 - \lambda}}{32(1 - \lambda)^2} + 2t(s-t) \epsilon^2 \right).
\]

Notice, that for \(C = 0\)

\[
\hat{B}_+ - \hat{B}_- = -\lambda \frac{t (2ts + s^2 - 3t^2)}{64(1 - \lambda)^2}
\]

which is positive for all \((t,s) \in \tilde{S}\) where \(s > t\). Therefore the interval \((\hat{B}_-, \hat{B}_+)\) is non-empty for all sufficiently small \(C\).

\[\square\]

6.2. Proof of part ii) of Proposition 6

Differentiate \(T_{\epsilon,\tau}[u]\) with respect to \(x\):

\[
T_{\epsilon,\tau}[u]'(x) = \frac{\alpha^2}{1 + \epsilon} u' \left(T_{b,\lambda,\epsilon}(V_{\epsilon,\tau}(T_{b,\lambda,\epsilon}^{-1}(x))) \right) \frac{u' \left(T_{b,\lambda,\epsilon} \left(-\sqrt{w(x)} \right) \right)}{4V_{\epsilon,\tau}(T_{b,\lambda,\epsilon}^{-1}(x))} \frac{w'(x)}{\sqrt{w(x)}}.
\]

(6.52)

where \(w\) is the function defined in (4.25). On the real line

\[
\mathcal{W} \leq w \leq \mathcal{W}\] and \(\mathcal{V} \leq V_{\epsilon,\tau} \circ T_{b,\lambda,\epsilon}^{-1} \leq \mathcal{V},
\]

where

\[
\mathcal{W}(x; t, s) = b - \lambda \frac{1}{1 + \epsilon} \left(b - T_{b,\lambda,\epsilon}^{-1}(x)^2 + \epsilon \mathcal{U}(x; t, s) + \delta \right),
\]

\[
\mathcal{V}(x; t, s) = b + \lambda \frac{1}{1 + \epsilon} \left(b + T_{b,\lambda,\epsilon}^{-1}(x)^2 + \epsilon \mathcal{U}(x; t, s) + \delta \right),
\]

21
\[w(x; t, s) = b - \frac{\lambda}{1 + \epsilon} \left(b - T_{b,\lambda,\epsilon}^{-1}(x)^2 + \epsilon u(x; t, s) - \delta \right), \]
\[\mathfrak{V}(x; ts) = s_b \left(u \left(T_{b,\lambda,\epsilon} \left(-\sqrt{w(x; t, s)} \right) \right) \right), \]
\[v(x; ts) = s_b \left(u \left(T_{b,\lambda,\epsilon} \left(-\sqrt{\mathfrak{V}(x; t, s)} \right) \right) \right) \]

are upper and lower bounds on the corresponding functions. Notice that

\[u'(x) \leq \Theta'_2(\mathfrak{F}_2(\Phi_1(x); t, s)) \mathcal{D}f(\Phi_1(x); t, s) \Phi'_1(x) \equiv \mathcal{D}u(x; t, s) \]

where

\[\mathcal{D}f(x; t, s) \equiv \eta(x - c_1)\mathfrak{F}_2(x, t, s) \frac{(1 - c_1)}{(x - c_1)(1 - x)} + \eta(c_1 - x)\mathfrak{F}_2(x, t, s) \frac{(1 + c_1)}{(x - c_1)(1 + x)} \]

is an upper bound on derivatives on \(\mathcal{A}_1(c) \) that follows from (2.8) (\(\eta \) is the Heaviside function). Therefore,

\[T_{\epsilon, \tau}[u'](x) \leq \frac{\alpha^2}{1 + \epsilon} \mathcal{D}u \left(T_{b,\lambda,\epsilon}(v(x; t, s)) \right) \mathcal{D}u \left(T_{b,\lambda,\epsilon} \left(-\sqrt{\mathfrak{V}(x; t, s)} \right) \right) \frac{1}{4v(x; t, s)} \cdot \frac{-2\alpha^{-1}T_{b,\lambda,\epsilon}^{-1}(x) - \epsilon(\omega + \rho x)}{\sqrt{\mathfrak{V}(x; ts)}}. \]

We finally verify on the computer that the right hand side of the above inequality is less than \(\omega + \rho x \) for all \(x \in (0, r_1) \) and sufficiently small \(\epsilon \) and \(\varepsilon \).

\[\square \]

6.3. Proof of part iii) and iv) of Proposition 6

Suppose that \(\theta \mapsto \partial \mathcal{D}(\theta) \) and \(\theta \mapsto \partial \mathcal{E}(\theta) \) are some convenient parametrization of the boundaries, such that \(\partial \mathcal{D} \cap \mathbb{C}_+ \) is parametrized by \(\theta \in (0, \pi) \), while \(\partial \mathcal{D} \cap \mathbb{C}_- \) is parametrized by \(\theta \in (-\pi, 0) \), and similarly for \(\mathcal{E} \). Let, again, \(w \) be the function defined in (4.25). Denote \(H \) the preimage of the ray \((w(T_{b,\lambda,\epsilon}(e)), +\infty) \) in \(T_{b,\lambda,\epsilon}^{-1}(\mathcal{D}) \).

First, we would like to find a bound on \(W(\theta) \equiv T_{b,\lambda,\epsilon} \left(-\sqrt{w(\partial \mathcal{D}(\theta))} \right) \) for \(0 \leq \theta \leq \pi \). For every fixed \(\theta \), \(W(\theta) \) is contained in the set \(\mathcal{W}(\theta) \) bounded by the curves

\[W_\mathcal{E}(\theta, p) = T_{b,\lambda,\epsilon} \left(-s_b \left(\frac{\lambda}{1 + \epsilon} \left(b - T_{b,\lambda,\epsilon}^{-1}(\partial \mathcal{D}(\theta))^2 + \epsilon \partial \mathcal{E}(p) - \tau(\partial \mathcal{E}(p)) \right) \right) \right), \quad 0 \leq p \leq \pi \]
\[W_\mathfrak{V}(\theta, p) = T_{b,\lambda,\epsilon} \left(-s_b \left(\frac{\lambda}{1 + \epsilon} \left(b - T_{b,\lambda,\epsilon}^{-1}(\partial \mathcal{D}(\theta))^2 + \epsilon(p\partial \mathcal{E}(0) + (1 - p)\partial \mathcal{E}(\pi)) + \tau(p\partial \mathcal{E}(0) + (1 - p)\partial \mathcal{E}(\pi)) \right) \right) \right), \quad 0 \leq p \leq 1. \]
As before, we consider the case $\varepsilon = \tau = 0$, by continuity of all involved functions, the claim will also hold for sufficiently small ε and τ. Recall, that $u = \Theta_2 \circ f_2 \circ \Phi_1 = \Theta_3 \circ f_3 \circ \Phi_1$. We first cover the set $\Phi_1(W(\theta))$, $0 \leq \theta \leq \pi$ by a collection of Poincaré half-neighbourhoods

$$\mathcal{P} = \left(\cup_n D_+ (J_n^+, \theta_n^+) \right) \cup \left(\cup_m D_- (J_m^-, \theta_m^-) \right)$$

for some appropriately chosen $J_n^+ = (l_n^+, r_n^-)$, $J_m^- = (l_m^-, r_m^-)$ and θ_n^-, θ_m^+ (cf. [4]), then according to Lemma [4] the sets $f_k(\Phi_1(W(\theta)))$, $k = 2, 3$, $0 \leq \theta \leq \pi$, are contained in

$$\mathcal{U}_k(t,s) = \left(\cup_n D_+ (\tilde{J}_n^+, \theta_n^+) \right) \cup \left(\cup_m D_- (\tilde{J}_m^-, \theta_m^-) \right), \quad k = 2, 3$$

where $\tilde{J}_n^+ = (f_k(l_n^+; t, s), s_k(r_n^+; t, s))$, $k = 2, 3$. Set $\mathcal{V}(t,s) \equiv \Theta_2(\mathcal{U}_2(t,s)) \cap \Theta_3(\mathcal{U}_3(t,s))$.

The choice of neighborhoods $D_\pm (J_n^+, \theta_n^+)$ is implemented on a computer via an automatized procedure: the neighborhoods are constructed so that every point z of the curve $\Phi_1(W(\theta))$ lies in the intersection of two such neighborhoods $D_\pm (J_n^+, \theta_n^+)$ and $D_\pm (J_{n'}^+, \theta_{n'}^+)$, then $f_k(z)$ lies in the intersection of $D_\pm (\tilde{J}_n^+, \theta_n^+)$ and $D_\pm (\tilde{J}_{n'}^+, \theta_{n'}^+)$.

We next construct the set

$$\mathcal{M}(b, \lambda; t, s) = -\text{sign} \left(\Im \left(b - \mathcal{V}(t,s) \right) \right) \sqrt{b - \mathcal{V}(t,s)},$$

which is a bound on $V_{\varepsilon,\mu,\tau}(T_{b,\lambda}^{-1}(\mathcal{D}))$, and verify that it is contained in $T_{b,\lambda,\varepsilon}^{-1}(\mathcal{D})$. Similarly to
V_u (cf Prop. 3, part ii)), $V_{e,u} \tau$ is continuous across H and holomorphic in $T_{b,\lambda,\epsilon}^{-1}(D) \setminus H$; by Morera’s theorem it is holomorphic in $T_{b,\lambda,\epsilon}^{-1}(D)$.

Next, construct

$$N(b, \lambda; t, s) = \Phi_1(T_{b,\lambda,\epsilon}(-M(b, \lambda); t, s))$$

and cover it with another pair of collections of Poincaré half-neighbourhoods

$$\mathcal{H} = \left(\bigcup_n D_+(I^n_f, \phi^+_n) \right) \cup \left(\bigcup_m D_-(I^m_f, \phi^-_m) \right).$$

Set

$$\tilde{\mathcal{H}}_k(t, s) = \left(\bigcup_n D_+(\tilde{I}^+_n, \phi^+_n) \right) \cup \left(\bigcup_m D_-(\tilde{I}^-_m, \phi^-_m) \right), \quad k = 2, 3,$$

where $\tilde{I}^+_i = (f_k(t^+_i; t, s), \tilde{F}_k(t^+_i; t, s))$, $k = 2, 3$. Finally, the set

$$X(b, \lambda; t, s) = \lambda^{-1} \Theta_2(\tilde{\mathcal{H}}_2(t, s)) \cap \lambda^{-1} \Theta_3(\tilde{\mathcal{H}}_3(t, s)),$$

which is a bound on $T_{e,\tau}[u](D)$, is verified to be contained in E. This shows that $T_{e,\tau}[u]$ is in $A(D, E, \epsilon)$ whenever $u \in A(D, E, \epsilon)$.

□

7. Appendix A: New a-priori bounds on \mathbb{R}

In this subsection we will use a-priori bounds on $A_1(c)$ to produce quite better bounds on a subset of functions bounded on $(-1, 1)$ by a constant.

As before, we denote $(t, s) = (u'(1/2), u'(0))$ for a function $u \in A(D, E, \epsilon)$, $\epsilon = (-1/2, 0, 0, 1)$. Recall that $u = \Theta_k \circ f_k \circ \Phi_1$, $k = 2, 3$, where $f_k \in A_1(c^k)$, $c^k = (\Phi_1(c_1), \Phi_1(c_2), \Phi_k(c_3), \Phi_k(c_4))$ (note, we will be using the superscript k on functions and numbers, whenever convenient, to avoid double subscripts, these by no means signify raising to a power). Therefore, the following are the derivatives of f_k at points c_1 and c_2:

$$T_k(t) = \frac{t}{\Theta'_k(c_3)^{-1/2}}, \quad S_k(s) = \frac{s}{\Theta'_k(c_4)^{-1/2}}.$$

Now, recall that $f'(x)$ is convex, and therefore, using (2.9),

$$\min_{x \in [c_1, c_2]} f''_k(x) \geq -2 \frac{(c_2 - x)T_k(t) + (x - c_1)S_k(s)}{(c_2 - c_1)(1 + c_1)} \equiv m_k(x, t, s), \quad (7.53)$$

24
\[
\max_{x \in [c_1, c_2]} f''_k(x) \leq \frac{(c_2 - x)T_k(t) + (x - c_1)S_k(s)}{(c_2 - c_1)(1 - c_2)} \equiv M_k(x, t, s). \tag{7.54}
\]

Now, fix \(t \) and \(s \), and consider the function \(y_k(x) = T_k(t) + \int_{c_1}^{x} m_k(z, t, s)\, dz \). Suppose, that the line \(w_k(x) = S_k(s) + n_k(t, s)(x - c_2) \) intersects \((x, y_k(x))\) at point \(x_k(t, s) \), and \(n_k(t, s) \) is such that the following holds:

\[
c^k_4 - c^k_3 = \int_{c_1}^{c_2} \eta_k(z) \, dz, \quad \eta_k(x) = \begin{cases} y_k(x), & c_1 \leq x \leq x_k(t, s) \\ w_k(x), & x_k(t, s) \leq x \leq c_2. \end{cases}
\]

First, notice, that any curve \((x, f'_k(x))\) on \((c_1, c_2)\) with end points \((c_1, t)\) and \((c_2, s)\) can not intersect \((x, y_k(x))\), and has to intersect \((x, w_k(x))\) somewhere on \((x_k(t, s), c_2)\) once \(f'_k(x) \) is convex, for if it does not then \(\int_{c_1}^{c_2} f'_k(z) \, dz \neq 1 \). It is also clear that

\[
f_k(x) \geq c^k_3 + \int_{c_1}^{x} y_k(z) \, dz \equiv f^k_2(x; t, s), \quad x \in [c_1, c_2]. \tag{7.55}
\]

One can repeat a similar argument for \(Y_k(x) = S_k(s) + \int_{c_1}^{x} M_k(z, t, s)\, dz \) and \(W_k(x) = T_k(t) + N_k(t, s)(x - c_1) \) that intersect at \(X_k(t, s) \) to get

\[
f_k(x) \leq c^k_4 - \int_{x}^{c_2} \Psi_k(z) \, dz \equiv F^k_2(x; t, s), \quad x \in [c_1, c_2], \quad \Psi_k(x) = \begin{cases} Y_k(x), & X_k(t, s) \leq x \leq c_2 \\ W_k(x), & c_1 \leq x \leq X_k(t, s). \end{cases}
\]

To obtain an upper bound on \((-1, c_2)\) and a lower bound on \((c_2, 1)\), we recall that the positivity of the Schwarzian derivative for functions in \(\mathcal{A}_1(c^k) \) together with the positivity of all \(f^{(n)}_k \) for odd \(n \) implies that for all \(x \in (-1, 1) \)

\[
f''''_k(x) \geq \frac{3f''_k(x)^2}{2f'_k(x)}, \tag{7.56}
\]

and consequently,

\[
f''_k(x) \leq f''_k(c_1) + \frac{3}{2} \int_{c_1}^{x} \frac{f''_k(y)^2}{f'_k(y)}\, dy,
\]

for all \(x \in (-1, c_1) \), the equality being realized by the the solution

\[
f'_k(x) = \frac{4f'_k(c_1)^3}{(-f''_k(c_1)(x - c_1) + 2f'_k(c_1))^2}
\]

of equation \((7.56)\). Therefore,

\[
f_k(x) \leq \int_{c_1}^{x} \frac{4T_k(t)^3}{(-f''_k(c_1)(x - c_1) + 2T_k(t))^2}.
\]
for all \(x \in (-1, c_1) \), the maximum of the right hand side being realized by the maximum admissible \(f''_k(c_1) \) which can be obtained from the condition

\[
\frac{4T_k(t)^3}{(-f''_k(c_1)(c_2 - c_1) + 2T_k(t))^2} = S_k(s). \tag{7.57}
\]

We denote \(Z_k(t, s) \) the solution \(f''_k(c_1) \) of this equation, then

\[
f_k(x) \leq c_3^k + \frac{4T_k(t)^3}{Z_k(t, s)} \left(\frac{1}{2T_k(t) + Z_k(t, s)(c_1 - x)} - \frac{1}{2T_k(t)} \right) \equiv F_1^k(x; t, s), \quad x \in (-1, c_1).
\]

In a similar way

\[
f_k(x) \geq c_4^k + \frac{4S_k(t)^3}{X_k(t, s)} \left(\frac{1}{2S_k(t) + X_k(t, s)(c_2 - y)} - \frac{1}{2S_k(t)} \right) = f_3^k(x; t, s), \quad x \in (c_2, 1),
\]

here \(X_k(t, s) \) solves

\[
\frac{4S_k(t)^3}{(-X_k(t, s)(c_1 - c_2) + 2S_k(t))^2} = T_k(s). \tag{7.58}
\]

Finally, suppose that \(m_k \leq f_k(x) \leq M_k \) on the real slice of its domain (this is certainly true if \(f_k \in A_1(c^k) \)). Consider the line \((x, S_k(s) + \mathcal{K}_k(x - c_2))\) where \(\mathcal{K}_k \) is such that

\[
\int_{c_2}^{1} S_k(s) + \mathcal{K}_k(x - c_2) \, dx = M_k - c_4^k,
\]

that is

\[
\mathcal{K}_k = 2 \frac{M_k - c_4^k}{(1 - c_2)^2} - \frac{S_k(s)}{1 - c_2}.
\]

Since \(f'_k(x) \) is convex, the curve \((x, f'_k(x))\) intersects the line \((x, S_k(s) + \mathcal{K}_k(x - c_2))\) strictly once on \((c_2, 1)\). Convexity of \(f'_k(x) \) implies that

\[
\int_{c_2}^{x} f'_k(y) \, dy < \int_{c_2}^{x} S_k(s) + \mathcal{K}_k(y - c_2) \, dy, \quad x \in (c_2, 1),
\]

that is

\[
f_k(x) \leq c_3^k + S_k(s)(x - c_2) + (M_k - c_4^k - S_k(s)(1 - c_2)) \frac{(x - c_2)^2}{(1 - c_2)^2} \equiv F^k_3(x; t, s), \quad x \in (c_2, 1). \tag{7.59}
\]

A similar argument on \((-1, c_1)\) demonstrates that

\[
f_k(x) \geq c_3^k - T_k(t)(c_1 - x) + (T_k(t)(1 + c_1) + m_k - c_4^k) \frac{(x - c_1)^2}{(1 + c_1)^2} = f_1^k(x; t, s), \quad x \in (-1, c_1). \tag{7.60}
\]
Finally, \(f_k(x; t, s) \leq f_k(x) \leq \Phi_k(x; t, s) \) on \((-1, 1)\), where
\[
\Phi_k(x; t, s) = \begin{cases}
 f_k^1(x; t, s), & x \in (-1, c_1) \\
 f_k^2(x; t, s), & x \in (c_1, c_2) \\
 f_k^3(x; t, s), & x \in (c_2, 1)
\end{cases}
\]
and
\[
\Phi_k(x; t, s) = \begin{cases}
 F_k^1(x; t, s), & x \in (-1, c_1) \\
 F_k^2(x; t, s), & x \in (c_1, c_2) \\
 F_k^3(x; t, s), & x \in (c_2, 1)
\end{cases}
\]

Bounds \((7.61) \) transferred to the space \(\mathcal{A}(\mathcal{D}, \mathcal{E}; c) \) will be denoted \(u \) and \(\Phi \):
\[
u(x; t, s) \equiv \max \left(\Theta_2(f_2(\Phi_1(x); t, s)), \Theta_3(f_3(\Phi_1(x); t, s)) \right),
\]
\[
\Phi(x; t, s) \equiv \min \left(\Theta_2(\Phi_2(\Phi_1(x); t, s)), \Theta_3(\Phi_3(\Phi_1(x); t, s)) \right).
\]

8. Appendix B: Set of realizable \((u'(-1/2), u'(0))\)

In this subsection we will describe the set \(\mathcal{S} \) of realizable \(t = u'(-1/2) \) and \(s = u'(0) \) whenever \(u \in \mathcal{A}(\mathcal{D}, \mathcal{E}, c) \), and its subset \(\tilde{\mathcal{S}} \subset \mathcal{S} \) invariant under \(T_{c,x} \).

Write \(u = \Theta_k \circ f_k \circ \Phi_1, k = 2, 3 \), \(f_k \in \mathcal{A}_1(c) \) as before. Since \(f_k(x) \leq F_k^1(x; t, s) \) on \((-1, c_1)\) (see Subsection 7) we have \(-1 \leq F_k^1(-1; t, s)\). The relevant (positive) solution \(s = s(t) \) of this equation will be denoted by \(\mathcal{Z}_k(t) \). Similarly, \(f_k^3(1; t, s)dx \leq 1 \). The relevant solution \(s = s(t) \) will be denoted by \(\mathcal{C}_k(t) \). We have obtained symbolic (and not just numeric) expressions for \(\mathcal{Z}_k(t) \) and \(\mathcal{C}_k(t) \) using the Maple software package. The set bounded by these curves is the set \(\mathcal{S} \) of admissible values \((t, s)\).

We can further restrict the set of admissible \((t, s)\) if we notice that
\[
T[u]'(-1/2) = \frac{-\alpha(1, \lambda, 0)ts}{2\lambda^2(1, \lambda, 0)} = \frac{ts}{4\lambda^2(1, \lambda, 0)^2} = \frac{ts}{4\lambda^2(1, \lambda, 0)^2} = \Xi(\lambda, t, s).
\]
Denote \tilde{S} the subset of S to the left of the line $t = t^* - 0.0004$. We have verified numerically that for all $(t, s) \in \tilde{S}$, all $L_-(t, s) \leq \lambda \leq L_+(t, s)$, $b = 1, \epsilon = 0$,

$$\exists(\lambda, t, s) > t^* - 0.0004.$$ (8.64)

We have shown in Prop. 6, part iv), that if the derivatives (t, s) for a function $u \in A(D, E, c)$ are in \tilde{S}, then $T_{\epsilon, \tau}[u] \in A(D, E, c)$, that is $(T_{\epsilon, \tau}[u]'(-1/2), T_{\epsilon, \tau}[u]'(0)) \in S$. This, together with the strict inequality (8.64), implies that the subset \tilde{S} is invariant under the map $(t, s) \mapsto (T_{\epsilon, \tau}[u]'(-1/2), T_{\epsilon, \tau}[u]'(0))$ for nonzero ϵ and τ. This subset is depicted in Fig. 5.

9. Acknowledgements

The author would like to cordially thank Michael Benedicks (KTH, Stockholm) and Hans Koch (University of Texas, Austin, Texas) for many useful discussions on the subject.

References

[1] H. Epstein, New proofs of the existence of the Feigenbaum functions, Commun. Math. Phys. 106 (1986), 395–426.

[2] H. Epstein, Fixed points of composition operators, Nonlinear evolution and chaotic phenomena (Noto, 1987), 71–100, NATO Adv. Sci. Inst. Ser. B Phys., 176, Plenum, New York, 1988

[3] H. Epstein, Fixed points of composition operators II, Nonlinearity 2 (1989), 305–310.

[4] M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys. 19 (1978) 25–52.

[5] M. J. Feigenbaum, Universal metric properties of non-linear transformations, J. Stat. Phys. 21 (1979) 669–706.

[6] D. Gaidashev, H. Koch, Period-doubling in area-preserving maps: an associated one-dimensional problem, preprint, available at www.math.kth.se/˜gaidash.

[7] M. Lyubich, M. Yampolsky, Dynamics of quadratic polynomials: complex bounds for real maps, Ann. Ins. Fourier 47 4 (1997), 1219-1255.

[8] M. Lyubich, Feigenbaum-Couillet-Tresser universality and Milnor’s hairness conjecture, Annals of Mathematics 149 (1999), 319–420.

[9] D. Sullivan, Bounds, quadratic differentials and renormalization conjectures, in: Mathematics into the Twenty-first Century, AMS Centennial Publications, Vol. II, Amer. Math. Soc., Providence, R.I. (1992), 417-466.

[10] C. Tresser and P. Coullet, Itérations d’endomorphismes et groupe de renormalisation, C. R. Acad. Sci. Paris 287A (1978), 577–580.

[11] http://www.math.kth.edu/gaidash/Programs/feigenbaum_pert.tar.bz2
Abstract

Key words:

1.
