Improvement in Voltage Gain of Interleaved High Step-Down Converter

Kuo-Ing Hwu 1,*, Jenn-Jong Shieh 2,3 and Hsiang-Hao Tu 3

1 Department of Electrical Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd. Taipei 10608, Taiwan
2 Department of Electrical Engineering, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
3 Delta Electronics Inc., Neihu, Taipei 11491, Taiwan; Patrick.tu@deltaww.com
* Correspondence: eaglehwu@ntut.edu.tw (K.-I.H.); jjshieh@fcu.edu.tw (J.-J.S.);
Tel.: +886-2-27712171 (ext. 2159) (K.-I.H.); Tel.: +886-4-24517250 (ext. 3815) (J.-J.S.)

Received: 7 February 2020; Accepted: 22 February 2020; Published: 25 February 2020

Abstract: An interleaved high step-down converter is presented herein, which utilized a diode-capacitor module so as to make the step-down voltage gain under the same duty cycle as well as the voltage stresses on switches and diodes relatively low as compared with the existing circuits. Also, under the same voltage gain, the proposed circuit had a relatively large duty cycle, making the elapsed time per cycle for the connection between the input and the output enlarged, and hence the controller was not interrupted by noises. This converter can be used in low-output-power high-output-current applications. In this study, the basic operating principles of the proposed converter were firstly described and analyzed, and finally, its effectiveness was demonstrated by experiment.

Keywords: interleaved high step-down converter; energy-transferring capacitor; field-programmable gate array (FPGA); voltage gain

1. Introduction

With the fast development of technology, the high step-down converter is widely used in the relatively low output voltage of the power supply feeding batteries and light emitting diode (LED) lamps, among others. If an extremely small duty cycle in the traditional buck converter is needed, it is difficult to control this converter and the accompanying power loss would be increased.

For the step-down converter to be considered, the studies [1–5] present two-stage converters. Such converters can effectively improve the step-down converter ratio. However, these converters need a relatively large number of components, gate driving circuits, and other additional factors. In addition, the efficiency of the two-stage converter is the product of individual efficiencies, thereby making the overall efficiency relatively low.

For the multiple phases to be considered, the converter needs interleaved control. In general, this converter has two or more identical circuits that are paralleled and are then connected to the output load. Each phase has an angle difference angle of \(\pm \frac{360^\circ}{N} \) between the two adjacent phases, if \(N \) phases are used. By doing so, the current stresses on components are reduced, the overall efficiency is improved, and the output current ripple is reduced, thus rendering the low output capacitance needed, as well as the output capacitor lifespan enlarged. Recently, many multiphase interleaved high step-down converters have been presented [6–20]. The papers [6–8] present two-phase interleaved step-down converters based on coupling inductors so as to attain high step-down voltage gains. The papers [8–12] and [15–20] present the converters with energy-transferring capacitors so as to achieve high step-down voltage gains and current balance as well as to reduce switch/diode voltage stresses. The paper [13] presents a two-phase interleaved high step-down
converter, which is based on the energy-transferring capacitor so as to improve a high step-down voltage gain as well as to reduce switch voltage stresses. Nevertheless, the currents in two phases are not identical. The paper [14] presents a four-phase interleaved synchronously rectified (SR) buck converter to improve the step-down voltage gain. As for the papers [18–20], the output voltages were floating due to the switches connected in series with the ground. By doing so, the galvanic isolation between the input and the output is required.

On the basis of the aforementioned papers, the proposed converter was derived from the converter shown in [13], so as to improve the step-down conversion ratio in [13]. As compared with the circuit shown in [13], the proposed circuit had a relatively large duty cycle under the same voltage gain, thereby causing the elapsed time per cycle for the connection between the input and the output to be enlarged, and hence the controller to not be interrupted by noises.

2. Basic Operating Principles

Figure 1 displays the proposed high step-down converter, which is constructed by five switches Q_1, Q_2, Q_3, Q_4, and Q_5; three diodes D_1, D_2, and D_3; three energy-transferring capacitors C_1, C_2, and C_3; two inductors L_1 and L_2; and one output capacitor C_o. Regarding the load, it was built up by one output resistor R_o. It is noted that the diode-capacitor module was composed of D_1, D_2, D_3, C_1, C_2, and C_3, making the voltage gain of the proposed converter lower than that of the converter shown in [13].

Some symbols and definitions are to be given prior to dealing with this section, and are listed below:

1. The input voltage is signified by V_i, and the output is denoted by V_o.
2. The values of the capacitors C_1, C_2, and C_3 are large enough such that the voltages across them can be regarded as some constant values.
3. The currents in Q_1, Q_2, Q_3, Q_4, and Q_5 are expressed by i_{o1}, i_{o2}, i_{o3}, i_{o4}, and i_{o5}, respectively; the currents in C_1, C_2, and C_3 are represented by i_{c1}, i_{c2}, and i_{c3}, respectively; the currents in L_1 and L_2 are indicated by i_{l1} and i_{l2}, respectively; the current i_o is the sum of i_{o1} and i_{o2}; the currents in D_1, D_2, and D_3 are signified by i_{d1}, i_{d2}, and i_{d3}, respectively; the current R_o is expressed by i_o.
4. The voltages on L_1 and L_2 are denoted by v_{l1} and v_{l2}, respectively; the voltages on C_1, C_2, and C_3 are expressed by v_{c1}, v_{c2}, and v_{c3}, respectively; the voltage across C_o is represented by v_o.
5. The switching period and frequency are indicated by T_s and f_s, respectively.
6. The gate driving signals for Q_1, Q_2, Q_3, Q_4, and Q_5 are denoted by v_{g1}, v_{g2}, v_{g3}, v_{g4}, and v_{g5}, respectively. Furthermore, v_{g1} is in phase with v_{g5} but is complimentary to v_{g4}, whereas v_{g2} is complimentary to v_{g4} and is shifted by 180° from v_{g1}. In addition, the duty cycle of v_{g1} is D_1, the duty cycle of v_{g2} is D_2, and $D_1 + D_2 = D$.
7. Because the proposed circuit operates in the continuous conduction mode (CCM), there are four operating states over one switching period as shown in Figure 2.
2.1. Basic Operating Principles

2.1.1. State 1: \([t_0 \leq t \leq t_1]\)

As displayed in Figure 3, the switches \(Q_1, Q_3,\) and \(Q_5\) are turned on but the switches \(Q_2\) and \(Q_4\) are turned off, whereas the diode \(D_1\) is turned off but the diodes \(D_2\) and \(D_3\) are turned on. During this state, the input voltage \(V_i\) minus \(V_o\) is across the energy-transferring capacitor \(C_1\) and the inductor \(L_2\), thereby making \(C_1\) charged and \(L_2\) magnetized. At the same time, the energy-transferring capacitors \(C_2\) and \(C_3\) are discharged, and the inductor \(L_1\) is demagnetized due to the voltage across \(L_1\) being \(-V_o\), thus rendering the current \(i_{L1}\) flow through the switch \(Q_5\).

\[v_{gs1} (=v_{gs3})\]
\[T_s\]
\[i_{C1}\]
\[i_{C2} (=i_{C3})\]
\[i_{D1}\]
\[i_{L1}\]
\[i_{L2}\]
\[i_o\]

\(0\)
\(0\)
\(0\)
\(0\)
\(t_0\)
\(t_1\)
\(t_2\)
\(t_3\)
\(t_0 + T_s\)

Figure 2. Illustrated key waveforms relevant to the proposed converter with \(D_a = D_b = D\).
2.1.2. States 2 and 4: \([t_1 \leq t \leq t_2, t_3 \leq t \leq t_4 \leq T_3]\)

As displayed in Figure 4, the switches \(Q_s\) and \(Q_o\) are turned on but the switches \(Q_i\), \(Q_2\), and \(Q_L\) are turned off. During this state, the diodes \(D_1\), \(D_2\), and \(D_3\) are turned off. At the same time, the inductors \(L_1\) and \(L_2\) are demagnetized due to the voltages across \(L_1\) and \(L_2\) being \(-V_o\), thereby rendering the currents \(i_{ds}^{1}\) and \(i_{ds}^{2}\) flow through the switches \(Q_i\) and \(Q_s\), respectively.

2.1.3. State 3: \([t_2 \leq t \leq t_3]\)

As displayed in Figure 5, the switches \(Q_2\) and \(Q_s\) are turned on but the switches \(Q_i\), \(Q_o\), and \(Q_k\) are turned off, whereas the diode \(D_1\) is turned on but the diodes \(D_2\) and \(D_3\) are tuned off. During this state, the energy stored in the energy-transferring capacitor \(C_1\) releases energy to the energy-transferring-capacitors \(C_i\) and \(C_o\), the inductor \(L_1\) and the load, thereby making \(C_i\) and \(C_o\) charged and \(L_2\) magnetized. At the same time, the inductor \(L_3\) is still demagnetized, thus making the current \(i_{ds}^{2}\) flow through the switch \(Q_s\). It is noted that the diode-capacitor module is composed of \(D_i\), \(D_2\), \(D_3\), \(C_i\), \(C_o\), and \(C_s\).

Figure 3. Current flow of state 1.

Figure 4. Current flow of states 2 and 4.

Figure 5. Current flow of state 3.
2.2. Voltage Gain

By applying the voltage-second balance to the inductors \(L_1 \) and \(L_2 \), the following expressions can be obtained with \(D_a = D_b = D \) as

\[
\begin{align*}
(V_{C_1} - V_{C_2} - V_{C_3} - V_o)D &= V_o(1 - D) \\
(V_o - V_{C_1} - V_{C_2} - V_o)D &= V_o(1 - D) \\
(V_{C_2} - V_o)D &= V_o(1 - D) \\
(V_{C_3} - V_o)D &= V_o(1 - D)
\end{align*}
\]

(1)

(2)

(3)

(4)

By substituting (3) and (4) into (1), the following expression can be found as

\[
V_{C_1}D = 3V_o
\]

(5)

Finally, by substituting (5) into (2), the voltage gain can be obtained as

\[
\frac{V_o}{V_o} = \frac{D}{4}
\]

(6)

2.3. Boundary Conditions of \(L_1 \) and \(L_2 \)

The condition of the boundary conduction mode (BCM) of the inductor \(L_1 \) can be described as follows:

\[
2I_{L_1} = \Delta i_{L_1}
\]

(7)

where \(I_{L_1} \) and \(\Delta i_{L_1} \) are the DC and AC values of the current \(i_{L_1} \), respectively.

The condition of the BCM of the inductor \(L_2 \) can be described as follows:

\[
2I_{L_2} = \Delta i_{L_2}
\]

(8)

where \(I_{L_2} \) and \(\Delta i_{L_2} \) are the DC and AC values of the current \(i_{L_2} \), respectively.

First of all, let two inductors be the same and three capacitors \(C_1, C_2, \) and \(C_3 \) be identical. Accordingly, on the basis of the capacitor ampere-second balance of \(C_1 \) and from states 1 and 3, the following expression can be obtained:

\[
\frac{1}{3} \cdot I_{L_2} \cdot D_b \cdot T_s = I_{L_1} \cdot D_a \cdot T_s
\]

(9)

Since \(D_a = D_b = D \), from (9), the relationship between \(I_{L_1} \) and \(I_{L_2} \) can be obtained as

\[
I_{L_1} = \frac{1}{3} I_{L_2}
\]

(10)

According to Kirchhoff’s current law, the following expression of DC value of \(i_{L_0} \), called \(I_{L_0} \), can be obtained as:

\[
I_{L_0} = I_{L_1} + I_{L_2} = I_o
\]

(11)

By substituting (10) into (11), the currents \(I_{L_1} \) and \(I_{L_2} \) can be represented as:

\[
\begin{cases}
I_{L_1} = \frac{1}{4} I_o \\
I_{L_2} = \frac{3}{4} I_o
\end{cases}
\]

(12)

Also,

\[
I_o = \frac{V_o}{R_o}
\]

(13)

Therefore, by substituting (13) into (12), the following equations can be obtained as:

\[
\begin{cases}
I_{L_1} = \frac{V_o}{4R_o} \\
I_{L_2} = \frac{3V_o}{4R_o}
\end{cases}
\]

(14)
2.3.1. BCM Curve of \(L_1 \)

The ripple of the current flowing through the inductor \(L_1 \), called \(\Delta i_{L_1} \), can be expressed by:

\[
\Delta i_{L_1} = \frac{v_{L_1} \Delta t}{L_1} = \frac{V_o (1 - D) T}{L_1}
\]
(15)

Therefore, as \(2I_{L_1} \geq \Delta i_{L_1} \), the inductor \(L_1 \) will operate in the CCM, namely,

\[
2I_{L_1} \geq \Delta i_{L_1}
\]
\[
\Rightarrow 2 \times \frac{V_o}{4R_o} \geq \frac{V_o (1 - D) T}{L_1}
\]
\[
\Rightarrow \frac{L_1}{R_o T} \geq 2(1 - D)
\]
\[
\Rightarrow K_1 \geq K_{crit1}(D)
\]
(16)

where \(K_1 = \frac{L_1}{R_o T} \) and \(K_{crit1}(D) = 2(1 - D) \).

From (16), if \(K_1 \geq K_{crit1}(D) \), the inductor \(L_1 \) works in the CCM; otherwise, the inductor \(L_1 \) works in the DCM. Therefore, the boundary curve between the two modes can be drawn as shown in Figure 6.

![Figure 6. Boundary curve between the two operating modes for the inductor \(L_1 \).](image)

2.3.2. BCM Curve of \(L_2 \)

The ripple of the current flowing through the inductor \(L_2 \), called \(\Delta i_{L_2} \), can be indicated by

\[
\Delta i_{L_2} = \frac{v_{L_2} \Delta t}{L_2} = \frac{V_o (1 - D) T}{L_2}
\]
(17)

Therefore, as \(2I_{L_2} \geq \Delta i_{L_2} \), the current \(L_2 \) will operate in the CCM, namely,

\[
2I_{L_2} \geq \Delta i_{L_2}
\]
\[
\Rightarrow 2 \times \frac{3V_o}{4R_o} \geq \frac{V_o (1 - D) T}{L_2}
\]
\[
\Rightarrow \frac{L_2}{R_o T} \geq \frac{2}{3}(1 - D)
\]
\[
\Rightarrow K_2 \geq K_{crit2}(D)
\]
(18)

where \(K_2 = \frac{L_2}{R_o T} \) and \(K_{crit2}(D) = \frac{2}{3}(1 - D) \).
From (18), if \(K_2 \geq K_{\text{crit}}(D) \), the inductor \(L_2 \) works in the CCM; otherwise, the inductor \(L_2 \) works in the DCM. Therefore, the boundary curve between the two modes can be plotted as shown in Figure 7.

Figure 7. Boundary curve between the two operating modes for the inductor \(L_2 \).

2.4. Circuit Comparison

In this subsection, the proposed converter is compared with the existing circuits shown in [13,17,19,20] in terms of voltage gain, number of components, voltage stresses on switches and diodes, and floating output. The results are tabulated in Table 1.

The proposed circuit has the same voltage gain as the circuits shown in [17,19], it has a lower voltage gain than the circuits shown in [13,20], it has a smaller component count than the circuits in [17,19], and it has a greater component count than the circuits in [13,20]. Furthermore, the proposed circuit and the circuit shown in [17] have no floating output. In addition, the average values of voltage stresses on switches and diodes for the circuits in [20], [13], [17], and [19], were 3/8\(V_{\text{in}} \), 5/8\(V_{\text{in}} \), 7/15\(V_{\text{in}} \), and 11/32\(V_{\text{in}} \), respectively. From this, it can be seen that the proposed has a smaller average value than the former two and a larger average value than the last two. In addition, for the proposed converter to be considered, the voltage across \(L_1 \) is \(V_{\text{in}} - V_{C_1} - V_o \) during the magnetizing period, whereas the voltage across \(L_2 \) is \(V_{C_1} - V_{C_2} - V_{C_3} \) during the magnetizing period. For the converter shown in [20] to be considered, the voltages across \(L_1 \) and \(L_2 \) are both 0.5\(V_{\text{in}} - V_o \) during the magnetizing period. Because the values of \(V_{\text{in}} - V_{C_1} - V_o \) and \(V_{C_1} - V_{C_2} - V_{C_3} \) are both smaller than 0.5\(V_{\text{in}} - V_o \), the former has a lower voltage gain than the latter.
Table 1. Circuit comparison.

Circuit	Voltage Gain	Component Number	Switch Voltage Stress	Diode Voltage Stress	Floating Output
Proposed	$\frac{D}{4}$	14	$V_{d1} = V_{d4} = V_{d5} = \frac{V_o}{4}$	$V_{d1} = V_{d2} = V_{d3} = \frac{V_o}{4}$	No
			$V_{d2} = V_{d5} = \frac{3}{4} V_o$		
			$V_{d1} = V_o$; $V_{d4} = \frac{V_o}{2}$		
[20]	$\frac{D}{2}$	9	$V_{d2} = V_{d5} = \frac{V_o}{2}$	No	Yes
			$V_{d1} = \frac{V_o}{3}$		
[13]	$\frac{D}{3}$	10	$V_{d2} = V_{d5} = \frac{2}{3} V_o$	No	Yes
			$V_{d4} = V_{d5} = \frac{V_o}{3}$		
[17]	$\frac{D}{4}$	16	$V_{d1} = \frac{V_o}{4}$	No	
			$V_{d2} = V_{d5} = \frac{V_o}{2}$		
[19]	$\frac{D}{4}$	17	$V_{d1} = V_{d3} = V_{d4} = \frac{V_o}{2}$	Yes	
			$V_{d1} = \frac{V_o}{4}$		

3. Design Considerations

Table 2 shows the system specifications. On the basis of this table, the associated components are designed.

Table 2. System specifications

System Parameters	Specifications
Operating mode	CCM
Rated input voltage (V_{in})	60 V
Rated output voltage (V_o)	1.8 V
Rated output current (I_{out})/power (P_{out})	20 A/36 W
Minimum output current (I_{min})/power (P_{min})	2 A/3.6 W
Switching frequency (f_s)/period (T_s)	100 kHz/10 µs

3.1. Design of Inductors L_1 and L_2

According to Table 1 and (6), the corresponding duty cycle D can be obtained:

$$D = \frac{4V_o}{V_{in}} = \frac{4 \times 1.8}{60} = 0.12$$

From (16), if the inductor L_1 works in the CCM, then the value of the inductor L_1 should be satisfied with the following inequality:

$$L_1 \geq (1 - D) \times 2 \times R_{r, \text{max}} \times T_s$$

$$\Rightarrow L_1 \geq (1 - D) \times \frac{2V_o}{I_{r, \text{min}}} \times T_s$$

(20)
where $R_{\text{on},\text{min}}$ is the load resistance at the minimum load. By substituting the system specifications shown in Table 1 and (19) into (20), the value range of the inductor L_1 can be expressed as

$$L_1 \geq (1 - 0.12) \times \frac{2 \times 1.8 \times 10 \mu}{2}$$

$$\Rightarrow L_1 \geq 15.84 \mu \text{H}$$

From (18), if the inductor L_2 works in the CCM, then the value of the inductor L_2 should be satisfied with the following inequality:

$$L_2 \geq \frac{(1 - D) \times 2 \times R_{\text{on},\text{min}} \times T_s}{3}$$

$$\Rightarrow L_2 \geq \frac{(1 - D) \times 2 \times V \times T_s}{3 \times I_{\text{on},\text{min}}}$$

By substituting the system specifications shown in Table 1 and (19) into (22), the value range of the inductor L_2 can be expressed as

$$L_2 \geq \frac{(1 - 0.12) \times 2 \times 1.8 \times 10 \mu}{3 \times 2}$$

$$\Rightarrow L_2 \geq 5.28 \mu \text{H}$$

Finally, the values of L_1 and L_2 are identical and equal to $20 \mu \text{H}$ in order to meet the requirement of $I_{L2} = 3I_{L1}$.

3.2. Design of Energy-Transferring Capacitors C_1 to C_3

As shown in state 1, the current waveform of the energy-transferring capacitor C_1 is the same as that of the inductor L_1, and hence the corresponding constant values can be expressed by

$$I_{C1,\text{DaTs}} = I_{L1,\text{DaTs}} = I_{L1}$$

From (1) to (4) and Table 1, the voltage across C_1, V_{C1}, can be signified by

$$V_{C1} = \frac{3 \times V_a}{D} = \frac{3 \times 1.8}{0.12} = 45 \text{V}$$

In addition, by assuming that the voltage ripple of C_1 is 0.1% of V_{C1} and by substituting the results from (12), (19), and (25) into (26), the value of C_1 can be obtained as

$$C_1 \geq \frac{I_{C1,\text{DaTs}} \times D_a T_s}{0.1\% \times V_{C1}}$$

$$= \frac{I_{L1} \times DT_s}{0.001 \times V_{C1}}$$

$$= \frac{5 \times 0.12 \times 10 \mu}{0.001 \times 45} = 133.3 \mu \text{F}$$

As shown in state 3, the current waveforms of the energy-transferring capacitors C_2 and C_3 are the same as that of the inductor L_1, and hence the corresponding constant value can be represented by:

$$I_{C2,\text{DaTs}} = I_{C3,\text{DaTs}} = I_{L1,\text{DaTs}} = I_{L1}$$

From (1) to (4) and Table 1, the voltages across C_2 and C_3, V_{C2} and V_{C3}, can be obtained as

$$V_{C2} = V_{C3} = \frac{V}{D} = \frac{1.8}{0.12} = 15 \text{V}$$

In addition, by assuming that the voltage ripples of C_2 and C_3 are both 0.1% of V_{C2} and by substituting the results from (12), (19), and (28) into (29), the values of C_2 and C_3 can be obtained as
Finally, in order to meet the assumption for (11), the values of C_1, C_2, and C_3 are all set at 470 μF.

3.3. Design of Output Capacitor C_o

The current flowing through the output capacitor C_o is the sum of the currents i_{L_1} and i_{L_2}, namely,

$$\Delta i_{c_o}(t) = \Delta i_{L_1}(t) + \Delta i_{L_2}(t)$$

$$\Rightarrow \Delta i_{c_o}(D_{1}T_s) = \Delta i_{L_1}(D_{1}T_s) + \Delta i_{L_2}(D_{2}T_s)$$

$$\Rightarrow \Delta i_{c_o}(D_{2}T_s) = \left(\frac{V_{in} - V_{c_1} - V_{c_2}}{L_1} + \frac{D}{f_s} \times \frac{-V_{oc}}{L_2} + \frac{D}{f_s} \right)$$

Because $L_1 = L_2 = L_2$ (30) can be rearranged as

$$\Delta i_{c_o} = \frac{(1 - 2D) \times V_{oc}}{L \times f_s}$$

(31)

After this, by assuming that the output voltage ripple of C_o is 0.1% of V_o, and by substituting the results from Table 1, (19), and (31) into (32), the value of C_o can be obtained to be

$$C_o \geq \frac{\Delta i_{c_o,DaSh} \times D_{2}T_s}{0.1\% \times V_o} = \frac{(1 - 2D) \times V_{oc} \times DT_s}{8 \times 0.001 \times V_o \times L \times f_s}$$

$$= \frac{(1 - 2 \times 0.12) \times 0.12 \times 10 \mu F}{8 \times 0.001 \times 20 \mu F \times 100k} = 57 \mu F$$

Eventually, the value of C_o was chosen as 68 μF. In addition, Table 3 lists the component specifications of the proposed converter.

Components	Specifications
MOSFET	Q_1, Q_4, Q_5, FDP047AN
Diode	D_1, D_2, D_3, STPS30L45CT
Energy-transferring Capacitor	C_1, 47 470 µF/100 V Rubycon Electrolytic Capacitor
Capacitor	C_2, C_3, 470 µF/35 V Rubycon Electrolytic Capacitor
Inductor	C_o, 68 µF/6.3 V Rubycon Electrolytic Capacitor
Gate driver	Core CH330125, $L_1 = L_2 = 20 \mu H$, TLP250

4. System Control Strategy

Figure 8 shows the system configuration of the proposed interleaved high step-down converter, which is composed of the main power circuit and the feedback control circuit. As for the feedback control circuit, the output signal is extracted from the voltage divider. Afterwards, such an analog signal is sent to the analog-to-digital converter (ADC) and then is transferred to the digital signal. This digital signal is sent to the field programmable gate array (FPGA) so as to obtain the corresponding gate control signals. Finally, these control signals are used to drive the corresponding switches after individual gate drivers so as to keep the output voltage constant at some value.
5. Experimental Results

5.1. Measured Waveforms

Figure 9 shows the gate driving signals for the switches Q1, Q2, Q3, Q4 and Q5, called Vq1, Vq2, Vq3, Vq4, and Vq5, respectively. Figure 10 displays the voltages across Q1, Q2, Q3, and Q4, called Vds1, Vds2, Vds3, and Vds4. Figure 11 shows the voltages across Q1 and Q2, called Vds1 and Vds2. Figure 12 displays the voltages across the energy-transferring capacitors C1, C2, and C3, called Vc1, Vc2, and Vc3, respectively. Figure 13 shows the voltages on the diodes D1, D2, and D3, called Vin, Vd2, and Vd3, respectively. Figure 14 displays the currents i1, i2, and i3.

From Figure 9, it can be seen that the gate driving signal sequence met the requirements. From Figures 10 and 11, it can be seen that the voltage stresses on Q1, Q3, and Q5, without voltage spikes considered, were all about 15 V, corresponding to Vds1–Vc1, whereas the voltage stresses on Q2 and Q4, without voltage spike considered, were about 45 V, corresponding to Vc1. As for voltage spikes on switches during the turn-off period, they came from the resonance between line parasitic inductances and switch body capacitances. From Figure 12, it can be seen that the voltages across C1, C2, and C3 were kept at the values of 45.5 V, 15.5 V, and 15 V, respectively, which were slightly larger than the calculated values shown in Equations (25) and (28) at 45 V, 15 V, and 15 V, respectively. From Figure 13, it can be seen that the voltages across D1, D2, and D3 were three-level and the voltage stresses on these diodes were all about 15 V, corresponding to Vc2. From Figure 14, it can be seen that the current i3 was the sum of the currents i1 and i2, whereas the DC values of i1 and i2 were about 5 A and 15 A, respectively, satisfying Equation (12).
Figure 9. Experimental waveforms at rated load: (1) v_{gs1}, (2) v_{gs2}, (3) v_{gs4}, (4) v_{gs5}.

Figure 10. Experimental waveforms at rated load: (1) v_{ds1}, (2) v_{ds2}, (3) v_{ds4}, (4) v_{ds5}.

Figure 11. Experimental waveforms at rated load: (1) v_{ds1}, (2) v_{ds3}.
5.2. Efficiency Measurement

The means of measuring the efficiency is given herein, and the accompanying result follows. As displayed in Figure 15, the input current was attained by measuring the voltage across the current sensing resistor according to the digital meter named Fluke 8050 A. Afterwards, the input voltage
was also obtained by the digital meter. Hence, the input power can be obtained. Concerning the output power, the output current was read from the digital load and the output voltage was also attained by the digital meter. Hence, the output power can be obtained. Eventually, the resulting efficiency can be known. Accordingly, Figure 16 displays the curve of efficiency versus load current. From Figure 16, it can be known that the efficiency all over the load range was above 81.4% and the maximum efficiency was 85.1%.

![Figure 15. Efficiency measurement block diagram.](image)

![Figure 16. Plot of efficiency versus load current.](image)

5.3. Power Loss Breakdown Analysis

In the following section, the power loss breakdown analysis, not based on circuit modeling [21–31] but based on component datasheets, is shown under the condition that the converter operated at a rated load of 36 W.

5.3.1. Power Losses in Switches

The power loss in each switch, called P_{loss}, can be calculated on the basis of Equation (33).

$$
P_{\text{loss}} = P_{\text{on,cond}} + P_{\text{turn-on}} + P_{\text{turn-off}} = \frac{i_{\text{rms}}^2}{2} \cdot R_{\text{on}} + \frac{V_{\text{th}} \cdot I_{\text{th, max}} \cdot t_{\text{r}} \cdot f}{6} + \frac{V_{\text{th}} \cdot I_{\text{th, max}} \cdot t_{\text{f}} \cdot f}{6}$$

(33)

where $P_{\text{on,cond}}$ indicates the turn-on conduction loss, $P_{\text{turn-on}}$ signifies the switching loss during the turn-on period, $P_{\text{turn-off}}$ represents the switching loss during the turn-off period, R_{on} indicates the turn-on resistance, t_{r} signifies the turn-on rising time, and t_{f} represents the turn-off falling time. According to the FDP047AN datasheet, it can be known that the values of R_{on}, t_{r}, and t_{f} are 4 mΩ, 88 ns, and 45 ns, respectively.
Therefore,
\[P_{Q1,\text{loss}} = 2.5^2 \cdot 4 \cdot 10^{-3} + \left(\frac{15 \cdot 5.132 \cdot 133 \cdot 10^{-9} \cdot 100k}{6} \right) = 0.195W \] (34)
\[P_{Q2,\text{loss}} = 1.95^2 \cdot 4 \cdot 10^{-3} + \left(\frac{45 \cdot 5.396 \cdot 133 \cdot 10^{-9} \cdot 100k}{6} \right) = 0.55W \] (35)
\[P_{Q3,\text{loss}} = 3.548^2 \cdot 4 \cdot 10^{-3} + \left(\frac{45 \cdot 10.264 \cdot 133 \cdot 10^{-9} \cdot 100k}{6} \right) = 1.07W \] (36)
\[P_{Q4,\text{loss}} = 14.43^2 \cdot 4 \cdot 10^{-3} + \left(\frac{15 \cdot 20.792 \cdot 133 \cdot 10^{-9} \cdot 100k}{6} \right) = 1.52W \] (37)
\[P_{Q5,\text{loss}} = 7.139^2 \cdot 4 \cdot 10^{-3} + \left(\frac{15 \cdot 15.66 \cdot 133 \cdot 10^{-9} \cdot 100k}{6} \right) = 0.724W \] (38)

Additionally, the total switch power loss, called \(P_{Q,\text{loss,total}} \), can be obtained from (34) to (38) as
\[P_{Q,\text{loss,total}} = P_{Q1,\text{loss}} + P_{Q2,\text{loss}} + P_{Q3,\text{loss}} + P_{Q4,\text{loss}} + P_{Q5,\text{loss}}
= 0.195 + 0.55 + 1.07 + 1.52 + 0.724 = 4.059W \] (39)

5.3.2. Power Losses in Diodes

The power loss in each diode, called \(P_{D,\text{loss}} \), can be calculated on the basis of (40).
\[P_{D,\text{loss}} = V_F \cdot I_{D,\text{avg}} \] (40)
where \(V_F \) signifies the forward bias voltage, and \(I_{D,\text{avg}} \) represents the forward current.
\[P_{D1,\text{loss}} = 0.095 \cdot 0.68 = 0.0646W \] (41)
\[P_{D2,\text{loss}} = 0.096 \cdot 0.505 = 0.0485W \] (42)
\[P_{D3,\text{loss}} = 0.097 \cdot 0.505 = 0.0489W \] (43)

In addition, the total diode power loss, called \(P_{D,\text{loss,total}} \), can be obtained from (41) to (43) as
\[P_{D,\text{loss,total}} = P_{D1,\text{loss}} + P_{D2,\text{loss}} + P_{D3,\text{loss}}
= 0.0646 + 0.0485 + 0.0489 = 0.162W \] (44)

5.3.3. Power Losses in Inductors

The power loss in each inductor, called \(P_{L,\text{loss}} \), can be calculated on the basis of (45).
\[P_{L,\text{loss}} = i_{L,\text{loss}}^2 \cdot R_{DC} \] (45)
where \(R_{DC} \) signifies the copper resistance.
\[P_{L1,\text{loss}} = 5^2 \cdot 14.7 \cdot 10^{-3} = 0.3675 W \] (46)
\[P_{L2,\text{loss}} = 15^2 \cdot 10.5 \cdot 10^{-3} = 2.3625 W \] (47)

Additionally, the total inductor power loss, called \(P_{L,\text{loss,total}} \), can be obtained from (46) and (47) as
\[P_{L,\text{loss,total}} = P_{L1,\text{loss}} + P_{L2,\text{loss}}
= 0.3675 + 2.3625 = 2.73 W \] (48)

5.3.4. Estimated Efficiency

From Equations (39), (44), and (48), the power losses of components are drawn in Figure 17. In addition, the estimated efficiency was 83.8%, which is higher than the measured efficiency of 81.4%.
6. Conclusions

An interleaved high step-down converter is presented herein. Compared with the related existing circuits [13,20] shown in Table 1, the proposed circuit had a relatively low step-down voltage gain under the same duty cycle, and had relatively low voltage stresses on the switches and diodes, thereby causing the switches with low turn-on resistances and the diodes with low forward bias voltages to be chosen. The main reason was that a diode-capacitor module utilized in the proposed converter can make inductors magnetized with relatively low voltages. Moreover, under the same voltage gain, the proposed circuit had a larger duty cycle than the circuits shown in [13,20], thereby rendering the elapsed time per cycle for the connection between the input and the output enlarged, and hence the controller not interrupted by noises.

Author Contributions: Conceptualization, K.-I.H.; methodology, K.-I.H.; software, J.-J.S.; validation, J.-J.S. and H.-H.T.; formal analysis, J.-J.S.; investigation, H.-H.T.; resources, K.-I.H.; data curation, H.-H.T.; writing—original draft preparation, K.-I.H.; writing—review and editing, K.-I.H.; visualization, H.-H.T.; supervision, K.-I.H.; project administration, K.-I.H.; funding acquisition, K.-I.H."

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ren, Y.; Xu, M.; Yao, K.; Lee, F.C. Two-stage 48V power pod exploration for 64-bit microprocessor. In Proceedings of the Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, Miami Beach, FL, USA, 9–13 February 2003; Volume 1, pp. 426–431.
2. Ren, Y.; Xu, M.; Yao, K.; Meng, Y.; Lee, F.C. Two-stage approach for 12-V VR. IEEE Trans. Power Electron. 2004, 19, 1498–1506.
3. Mao, H.; Abu-Qahouq, J.A.; Luo, S.; Batarseh, I. Zero-voltage-switching (ZVS) two-stage approaches with output current sharing for 48V input dc-dc converter. In Proceedings of the Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 22–26 February 2004; Volume 2, pp. 1078–1082.
4. Ren, Y.; Xu, M.; Meng, Y.; Lee, F.C. 12V VR efficiency improvement based on two-stage approach and a novel gate driver. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Recife, Brazil, 16 June 2005; pp. 2635–2641.
5. Fei, C.; Ahmed, M.H.; Lee, F.C.; Li, Q. Two-stage 48V-12V/6V-1.8V voltage regulator module with dynamic bus voltage control for light load efficiency improvement. IEEE Trans. Power Electron. 2017, 32, 5628–5636.
6. Xu, P.; Lee, F.C. Multiphase coupled-buck converter-novel high efficient 12 V voltage regulator module. IEEE Trans. Power Electron. 2003, 18, 74–84.
7. Marvi, F.; Adib, E.; Farzanehfard, H. Interleaved zero voltage switching coupled inductor buck converter for low voltage-high current applications. In Proceedings of the 4th Annual International Power Electronics, Drive Systems and Technologies Conference, Tehran, Iran, 13–14 February 2013; pp. 236–241.

8. Hwu, K.I.; Jiang, W.Z.; Wu, P.Y. An expandable two-phase interleaved ultrahigh step-down converter with automatic current balance. *IEEE Trans. Power Electron.* 2017, 32, 9223–9237.

9. Matsumoto, K.; Nishijima, K.; Sato, T.; Nabeshima, T. A two-phase high step down coupled-inductor converter for next generation low voltage CPU. In Proceedings of the 8th International Conference on Power Electronics-ECC Asia, Jeju, South Korea, 30 May–3 June 2011; pp. 2813–2818.

10. Oraw, B.; Ayyanar, R. Small signal modeling and control design for new extended duty ratio, interleaved multiphase synchronous buck converter. In Proceedings of the INTELEC 06-Twenty-Eighth International Telecommunications Energy Conference, Providence, RI, USA, 10–14 September 2006; pp. 1–8.

11. Esteki, M.; Poorali, B.; Adib, E.; Farzanehfard, H. Interleaved buck converter with continuous input current, extremely low output current ripple, low switching losses, and improved step-down conversion ratio. *IEEE Trans. Ind. Electron.* 2015, 62, 4769–4776.

12. Esteki, M.; Poorali, B.; Adib, E.; Farzanehfard, H. High step-down interleaved buck converter with low voltage stress. *IET Power Electron.* 2015, 8, 2352–2360.

13. Kirshenboim, O.; Peretz, M.M. High efficiency non-isolated converter with very high-step down conversion ratio. *IEEE Trans. Power Electron.* 2017, 32, 3683–3690.

14. Nagaraja, H.N.; Patra, A.; Kastha, D. Design and analysis of four-phase synchronous buck converter for VRM applications. In Proceedings of the IEEE INDICON 2004. First India Annual Conference, Kharagpur, India, 20–22 December 2004; pp. 575–580.

15. Lee, I.-O.; Cho, S.-Y.; Moon, G.-W. Interleaved buck converter having low switching losses and improved step-down conversion ratio. *IEEE Trans. Power Electron.* 2012, 27, 3664–3675.

16. Suja, A.; Sivakumar, S.; Ramkumar, P.S. Modified interleaved buck converter implementation for higher step-down conversion ratio. In Proceedings of the 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbator, India, 19–20 March 2015; pp. 1–4.

17. Hwu, K.I.; Jiang, W.Z.; Wu, P.Y. An expandable four-phase interleaved high step-down converter with low switch voltage stress and automatic uniform current sharing. *IEEE Trans. Ind. Electron.* 2016, 63, 6064–6072.

18. Pan, C.-T.; Chuang, C.-F.; Chu, C.-C. A novel transformerless interleaved high step-down conversion ratio dc-dc converter with low switch voltage stress. *IEEE Trans. Ind. Electron.* 2014, 61, 5290–5299.

19. Chuang, C.-F.; Pan, C.-T.; Cheng, H.-C. A novel transformer-less interleaved four-phase step-down dc converter with low switch voltage stress and automatic uniform current-sharing characteristics. *IEEE Trans. Power Electron.* 2016, 31, 406–417.

20. Liao, S.-H.; Teng, J.-H.; Chen, S.-W. Bidirectional dc-dc converter with high step-down and step-up voltage gain. In Proceedings of the 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), Auckland, New Zealand, 5–8 December 2016; pp. 1–6.

21. Ayachit, A.; Reatti, A.; Kazimierczuk, M.K. Magnetising inductance of multiple-output flyback dc-dc converter for discontinuous-conduction mode. *IET Power Electron.* 2016, 10, 451–461.

22. Ayachit, A.; Reatti, A.; Kazimierczuk, M.K. Magnetising inductance of multiple-output flyback dc-dc converter for discontinuous-conduction mode. *IET Power Electron.* 2017, 10, 451–461.

23. Davoudi, A.; Jatskevich, J.; Chapman, P.L. Averaged modelling of switched-inductor cells considering conduction losses in discontinuous mode. *IEEE Electron. Power Appl.* 2007, 1, 402–406.

24. Kazimierczuk, M.K. *Pulse-width Modulated dc-dc Power Converters*, 2nd Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015.

25. Iftikhar, M.U.; Lefranc, P.; Sadarnac, D.; Karimi, C. Theoretical and experimental investigation of averaged modeling of non-ideal PWM DCDC converters operating in DCM. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 2257-2263.

26. Nashed, M.; Fayed, A.A. A current-mode hysteretic buck converter with spur-free control for variable switching noise mitigation. *IEEE Trans. Power Electron.* 2018, 33, 650–664.

27. Davoudi, A.; Jatskevich, J.; Rybel, T.D. Numerical state-space average-value modeling of PWM DC-DC converters operating in DCM and CCM. *IEEE Trans. Power Electron.* 2006, 21, 1003–1012.

28. Amir, S.; Zee, R.V.D.; Nauta, B. An improved modeling and analysis technique for peak current-mode control-based boost converters. *IEEE Trans. Power Electron.* 2015, 30, 5309–5317.
29. Davoudi, A.; Jatskevich, J.; Chapman, P.L. Numerical dynamic characterization of peak current-mode-controlled DC-DC converters. *IEEE Trans. Circuits Syst. II* 2009, 56, 906–910.

30. Suntio, T. Average and small-signal modeling of self-oscillating flyback converter with applied switching delay. *IEEE Trans. Power Electron.* 2006, 21, 479–486.

31. Cheng, H.; Chen, C.J.; Wang, S.S. Small-signal model of flyback converter in continuous-conduction mode with peak-current control at variable switching frequency. *IEEE Trans. Power Electron.* 2018, 33, 4145–4156.