Structure-based view on $[PSI^{+}]$ prion properties

Stanislav A Bondarev1, Galina A Zhouravleva1, Mikhail V Belousov4, and Andrey V Kajava2,3,4,*

1Department of Genetics and Biotechnology; St. Petersburg State University; St. Petersburg, Russia;
2Centre de Recherches de Biochimie Macromoléculaire; CNRS; Université Montpellier; Montpellier, Cedex 5, France;
3University ITMO; St. Petersburg, Russia;
4Institut de Biologie Computationnelle; Montpellier, Cedex 5, France

ABSTRACT. Yeast $[PSI^{+}]$ prion is one of the most suitable and well characterized system for the investigation of the prion phenomenon. However, until recently, the lack of data on the 3D arrangement of Sup35p prion fibrils hindered progress in this area. The recent arrival in this field of new experimental techniques led to the parallel and in-register superpleated β-structure as a consensus model for Sup35p fibrils. Here, we analyzed the effect of amino acid substitutions of the Sup35 protein through the prism of this structural model. Application of a newly developed computational approach, called ArchCandy, gives us a better understanding of the effect caused by mutations on the fibril forming potential of Sup35 protein. This bioinformatics tool can be used for the design of new mutations with desired modification of prion properties. Thus, we provide examples of how today, having progress toward elucidation of the structural arrangement of Sup35p fibrils, researchers can advance more efficiently to a better understanding of prion $[PSI^{+}]$ stability and propagation.

KEYWORDS. amyloid, prion, protein misfolding, protein structure, Saccharomyces cerevisiae, superpleated β-structure, $[PSI^{+}]$

ABBREVIATIONS. Asu mutations, antisuppressor mutations; EM, electron microscopy; NMR, nuclear magnetic resonance; PNM, $[PSI^{+}]$ no more; STEM, scanning transmission electron microscopy

*Correspondence to: Andrey V Kajava; Email: Andrey.Kajava@crbm.cnrs.fr
Received March 10, 2015; Revised April 17, 2015; Accepted April 17, 2015.
Extra View to: Bondarev SA, Shchepachev VV, Kajava AV, Zhouravleva GA. Effect of charged residues in the N-domain of Sup35 protein on prion $[PSI^{+}]$ stability and propagation. J Biol Chem 2013; 288 (40):28503–28513; PMID:23965990; http://dx.doi.org/10.1074/jbc.M113.471805
Ahmed AB, Znassi N, Château MT, Kajava AV. A structure-based approach to predict predisposition to amyloidosis. Alzheimers Dement 2014; pii:S1552–5260(14)02466-2; PMID:25150734; http://dx.doi.org/10.1016/j.jalz.2014.06.007
Color versions of one or more figures in this article can be found online at www.tandfonline.com/kprn.
1. STRUCTURAL ARRANGEMENT OF Sup35p FIBRILS

The [PSI⁺] prion is a self-propagating amyloid of the release factor, Sup35p, of *Saccharomyces cerevisiae*. Sup35p aggregated into amyloid fibrils poorly performs its native function that leads to a decrease of translation termination efficiency and consequently to a nonsense suppression phenotype of [PSI⁺] yeast cells (for a review see ref. 1). Several [PSI⁺] variants of the same Sup35 protein with different strength of phenotype, mitotic stability, size of aggregates and morphology of the fibrils are described.2–4 The structure of the Sup35p fibrils affects the properties of [PSI⁺] variants.4,5

The Sup35p consists of 3 distinct domains ([Fig. 1A](#)). The amino-terminal domain (N-domain) is nonessential for viability or translation termination6,7 but critical for prion propagation.8 This region is uniformly rich in Gln and Asn residues and contains tandem repeats.9 The carboxy-terminal domain (C-domain), with a globular structure10, is required and sufficient for translation termination and cell viability.6,7 The middle domain (M-domain) that connects the N- and C-domains also has some influence on [PSI⁺] propagation.11 The N-domain alone or together with the M-domain, and also the full-length Sup35p, assemble into self-propagating amyloid fibrils.12,13 Thus, the understanding of the [PSI⁺] prion properties primarily requires a better appreciation of the fibril structures formed by the N-domain.

In recent years, there have been major advances in the study of the structural arrangement of the Sup35p prion fibrils. By negative staining, cryo-EM and scanning transmission EM (STEM), fibrils of full-length Sup35p show a 8-nm-wide backbone surrounded by a 65nm-wide cloud of globular C-domains connected to the fibril by the extended M-region.14 In accordance with X-ray and electron diffraction studies the fibrils have cross-β structure.5,15,16 Scanning transmission electron microscopy mass measurements for Sup35p N-fibrils, NM-fibrils and full-length Sup35p fibrils showed that filaments have one subunit per 0.47 nm.14 A number of solid-state NMR measurements of Sup35p fibrils revealed that they contain β-strands in a parallel, in-register arrangement regardless of which appendage is attached to the prion domain.17–20

It is still unclear which part(s) of the Sup35p N-domain is critical for fibril formation. Mutational analysis of the Sup35 protein (substitutions with proline, insertions of glycine, or deletions of large fragments) has shown that only the first half of the N-domain (up to ~60 residues) may be required for the [PSI⁺] phenotype and fibril-formation.3,21–26 Solid state NMR studies detected the structured core within the first 30 residues.19 The other solid-state NMR data suggest that almost the entire N-domain and even a part of the M-domain have an in-register parallel β-structure.17,20 The other studies suggested that in addition to this region, a downstream region (amino acids 110–128) can also be implicated in amyloid formation.25 The discrepancy between the experimental data in the determination of the core region of the Sup35p fibrils may be linked to the polymorphism of the fibril structures. Sup35p can adopt different fibril structures depending on [PSI⁺] variants or “strains”.4,5,27

Two types of structural models of the ARN-region fibrils have been proposed based on experimental data: a β-helical model16,28 and a superpleated β-structural model.29 The disagreement of the β-helical model with in-register parallel β-strand arrangement detected by solid state NMR17–20 makes this model unlikely. Current data favor the superpleated β-structure model (for a review see ref. 30). In this structure, each polypeptide chain has a serpentine fold, and successive serpentines are stacked in register, one on top of the other ([Fig. 1B](#)). This arrangement generates an array of elongated parallel β-sheets, each composed of identical strands and aligned with the fibril axis. The β-strands form a so-called cross-β structure that runs perpendicular to the filament axis. At the same time there is no clear evidence about the exact positions of the β-strand and turns regions. This uncertainty can reflect the limits of the experimental approaches, but also may be linked to the structural polymorphism of Sup35p fibrils. Different forms of Sup35p fibrils can involve different regions of
N-domain in the serpentines having different shapes (Fig. 1C). Importantly, in principle, a highly amyloidogenic sequence of the N-domain could have serpentines covering the first 100 residues. However, due to the slight twist of the axially stacked monomers in the amyloid fibrils, the real serpentines may contain from one to multiple β-arcades. These smaller serpentines can be formed in different regions within the N-domain depending on prion variant (Fig. 1C). In addition, the serpentines may vary in their positions of β-strands and turns.

Despite the progress in understanding of structural arrangement of fibrils, the relationship between the fibril structure and properties of [PSI+] still remains elusive. In the next section we will address this question, by analyzing through the prism of the fibril structure the effects of substitutions in the N-domain on
aggregation of Sup35p and \([PSI^+]\) propagation. We will also provide an extended view on the results of our recent works\(^3\)^\(^1\),\(^2\), which demonstrated the utility of structural information for the design of the mutational analysis experiments.

2. EFFECT OF Sup35p MUTATIONS ON \([PSI^+]\)

Deletion of either N-, M- or C-domain of Sup35p allowed to determine the roles of each of these domains, in the normal and prion states.\(^5\),\(^8\),\(^11\),\(^23\),\(^24\) To establish subtle effects, a series of studies analyzing the effects of \(SUP35\) point mutations has been undertaken. For example, the random mutagenesis screens of \(SUP35\) were performed in 2 independent studies aimed to find amino acid substitutions eliminating prion phenotype.\(^3\),\(^22\) A number of such point mutations have been obtained, which inhibited the nonsense-suppressor efficiency of \([PSI^+]\). For this reason they were named Asu (from antisuppression). Some of these mutations also prevent \([PSI^+]\) propagation and were named PNM (from \([PSI^+]\) no more" (for a review see ref.\(^33\)). Although the screens covered the whole \(SUP35\) gene, all substitutions were located within the first 59 residues of Sup35p, with the highest occurrence in the first 25 residue region (Fig. 2).\(^3\),\(^22\) These results suggested that the N-terminal 60 residue region is critical for prion maintenance. Almost all of these spontaneous mutations led to substitutions of neutral to charged amino acid residues. The effect of the mutations has a straightforward explanation in the model of the parallel and in-register superpleated \(\beta\)-structure\(^29\) where electrostatic repulsion of the juxtaposed charged residues of the same sign destabilize the prion fibrils and, therefore, can lead to the loss of \([PSI^+]\). It is worth noting that the \(\beta\)-helical model\(^16\),\(^28\) does not provide an explanation for these experimental results because, in the \(\beta\)-helix, the introduced charged residues are located far from each other and cannot destabilize the fibrils by means of electrostatic repulsion.

The agreement between the published mutations and the superpleated \(\beta\)-structural arrangement encouraged us to design new mutations that would provide further insight into the structure and properties of the \([PSI^+]\) prion. We constructed 5 mutant alleles, each carrying a pair of positively charged lysine residues in equivalent positions of repeats R1 to R5, to uniformly cover the repeat-containing part of the N-domain.\(^5\) The corresponding mutations were located within predicted \(\beta\)-strand regions at positions occupied by uncharged residues QQ or QN and expected to destabilize the in-register \(\beta\)-structure due to electrostatic repulsion. We demonstrated that the most N-terminal substitutions Y46K/Q47K and Q61K/Q62K led the prion loss, whereas the other alleles were able to maintain the \([PSI^+]\) prion with 100% efficiency. This suggests that the C-terminal boundary of the superpleated \(\beta\)-structure for the \([PSI^+]\) variant studied in our work lies between residues 63 and 69. Effect of other types of point mutations also supported a \(\sim 60\) residue long fibril-forming region. For example, substitutions of glycine 58 to proline led to efficient prion destabilization.\(^21\),\(^34\) On the contrary, insertions of hydrophobic residues (isoleucine and valine) within the first 25 residues of Sup35p N-domain led to increase the frequency of de novo \([PSI^+]\) prion induction. Even basal expression of some of these mutant alleles promoted prion formation. On the other hand, deletions of tyrosine residues in this region reduced efficiency of \([PSI^+]\) appearance and made the prion mitotically unstable.\(^35\) A subsequent study confirmed that aromatic and hydrophobic residues promote prion formation.\(^36\) In another work it was also shown that insertions of valines or isoleucines in the polyglutamine sequence that was fused to the Sup35p MC-domain instead of the N-domain, increase protein aggregation compared with the polyglutamine.\(^37\) These results are in accordance with the parallel and in-register superpleated \(\beta\)-structure, where the hydrophobic residues are placed one over the other along the fibril and should form energetically favorable contacts that can stabilize the fibril structure.
Interpretation of the consequences of the sup35 point mutations is hampered by the fact that their effect depends on prion variant. The variant specificity explains differences in lengths of Sup35p regions containing substitutions in the spontaneous mutation screens: the first 34 or 58 amino acid residues – in these studies different yeast strains with distinct prion variants were used. Variant-specific effects were also described for PNM mutations. The structural polymorphism of prion variants may also explain the disagreement between the solid state NMR data on the location of the fibril-forming regions and the data from hydrogen/deuterium exchange experiments that determined protection of the corresponding β-strands. The observed differences can be easily explained by the polymorphism of the superpleated β-structures. The new prion variants can also be formed by the sup35 mutant alleles that carry mutations outside of the fibril-forming region. For example, the mutant allele Q80K/Q81K led to formation of a new strong prion variant of [PSI+] that is characterized by an increased proportion of the prion fibrils and reduced amount of soluble Sup35p in the cell, in

FIGURE 2. The effects of majority of substitutions in Sup35p affecting [PSI+] propagation are variant specific. Sequence of N-domain of Sup35p (in black regular font) is shown several times and separate substitutions corresponding to different prion variants. Location of the sequence repeats according to is shown on top. Numbers and dashed lines mark corresponding positions in the protein. The substitutions affecting [PSI+] prion are shown by bold letters in corresponding positions. Prion variants affected by substitution are marked on the right. Red letters denote PNM mutations, blue – antisuppressor mutations and/or reduced protein aggregation (part of them may be PNM, but exact data are available only for 74D-694 yeast strain), green italic – substitutions changing [PSI+] properties. Double substitutions are underlined. The data used are from Refs. 3, 21, 22, 25, 26, 31, and 34.
3. ARCHCANDY AS A COMPUTATIONAL TOOL TO PREDICT EFFECTS OF MUTATIONS

The core structural element of a majority of naturally-occurring and disease-related amyloid fibrils is a \(\beta\)-arcade representing a parallel and in register stacks of \(\beta\)-strand-loop-\(\beta\)-strand motifs called \(\beta\)-arches.\(^{40–42}\) Based on an assumption that protein sequences that are able to form \(\beta\)-arcades are amyloidogenic, a computational program “ArchCandy” to predict amyloidogenic regions in proteins has been developed.\(^{32}\) ArchCandy allows us to establish the relationship between the effect of mutations on the fibril forming potential of Sup35p in a more quantitative way, in comparison to the previous rather qualitative considerations (see section 2).

The superpleated \(\beta\)-structure consists of \(\beta\)-arcades (Fig. 1B). The Sup35p fibrils may...
have one or several successive β-arcades depending on prion variants (Fig. 1C). Figure 3 summarizes the ArchCandy predictions of the effects of known Sup35p mutations. In agreement with the experimental data, ArchCandy assigns the highest amyloidogenic potential of the full length Sup35p to N-domain. All PNM and Asu mutations of Sup35p revealed by the spontaneous mutation screens decrease the amyloidogenic potential predicted by ArchCandy (Fig. 3 B–C). In the N-domain, the amyloidogenic potential is maximal within the first 40 residues, followed by the other high-score region between 41 to 64 positions (Fig. 3A). In agreement with this prediction, most of the substitutions in Sup35p affecting [PSI^+] are located within the first 40 residues. At the same time, the mutations in regions 41–64 are also important for prion propagation of some prion variants (Fig. 2). We also predicted effects of sup35KK mutant alleles published in our recent work. In agreement with the experimental data, ArchCandy assigns a lower amyloidogenicity score to alleles leading to prion loss (Y46K/Q47K and Q61K/Q62K) (Fig. 3D) and predicts almost no effect on the fibril-forming potential for the other downstream sup35KK alleles. Among these alleles, Q80K/Q81K leads to the strongest [PSI^+] phenotype. To explain this data, we proposed that Q80K/Q81K substitution makes the prion-forming region shorter and this increases the strength of [PSI^+] prion. This correlation between the fibril-forming region length and strength of prion phenotype was already described elsewhere. ArchCandy predicts that Q80K/Q81K substitution eliminates any traces of amyloidogenicity after position 64 (Fig. 3D).

The observed destabilization of [PSI^+] prion in the proline-containing mutant alleles can be explained by the decrease of the amyloidogenic potential predicted by ArchCandy (Fig. 3E). ArchCandy was also able to predict (with a few exceptions) the increase of prion formation, related to the insertions of hydrophobic residues, within the first 25 residues of N-domain and [PSI^+] prion destabilization after deletion of tyrosines. At the same time, ArchCandy failed to predict strong destabilization effect of some sup35 mutant alleles with glycine insertions (Fig. 3E), pointing on the necessity of some improvement for the ArchCandy algorithm.

4. CONCLUSIONS

Yeast [PSI^+] prion formed by aggregated Sup35 protein is one of the most suitable and well characterized system for the investigation of the prion phenomenon. Numerous studies of [PSI^+] prion have greatly advanced the field, owing to their experimental tractability, which is additionally enhanced by the powerful genetics of yeast, the relatively short generation times of fungi, and, in several cases, simple metabolic assays for the presence of the prion. However, until recently, the lack of information about the 3D arrangement of Sup35p fibrils, along with the molecular mechanisms of prion formation and infectivity hindered progress in this area. The recent arrival in this field of new experimental techniques has provided breakthroughs in the understanding of the 3D arrangement of amyloid fibrils. As a result, the parallel and in-register superpleated β-structure has emerged as a consensus model for Sup35p fibrils. Today, the effect of the majority of published sup35 mutations can be explained within the frame of this structural model. Hence, the agreement between the effect of the published mutations and the superpleated β-structural arrangement encouraged us to design a set of new mutant alleles, which should provide us with a better insight into the location and size of the prion-forming domain.

A recently developed computational approach, ArchCandy, allows us to evaluate the probability of proteins to form fibrils, with the superpleated β-structure. Application of this bioinformatics tool to the set of the known sup35 mutant alleles showed a good correlation between the ArchCandy prediction and the experimentally observed effects on Sup35p fibrillogenesis and prion properties. This opens an avenue to the interpretation of the experimental results, design of new mutations, and eventually a more complete understanding of the relationship between the effect of mutations
on the fibril forming potential of Sup35p, in a more objective and automated manner. The high correlation between the ArchCandy prediction of the protein amyloidogenicity and the ability to form prions provides additional support of the notion that the propensity to aggregate underlies prionogenesis. At the same time, we are aware that amyloidogenicity is not sufficient for the explanation of the prion phenomenon. The real situation may be more complicated with chaperons and several other cellular cofactors involved in prion propagation and maintenance. Further investigations of these molecular mechanisms need to be carried out prior to the development of new bioinformatics algorithms that study these aspects.

Despite progress, the prion phenomenon still has a number of unresolved questions, such as, a link between the fibril structures and the strength of the prion infectivity; interplay between different prion strains and co-aggregation of Sup35p and its mutant alleles. Many of these questions require a deep insight into the detailed 3D structure of each prion strain. One function of ArchCandy allows us to generate such 3D structural models, which can be used to advance in these complicated problems, in the context of limited capacities of the experimental structural approaches. For example, the ArchCandy prediction of possible β-arcades of the prion domains may provide further insight into the origin of new prion variants, supporting either the “cloud” hypothesis of intrinsically heterogeneous prion isolates or the hypothesis of a “deformed templating” pathways.

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

No potential conflicts of interest were disclosed.

ACKNOWLEDGMENTS

The authors thank Daniel Roche for critical reading of the manuscript and suggestions.

FUNDING

The authors acknowledge Saint-Petersburg State University for following research grants: 1.37.291.2015, 0.37.696.2013 (SB, MB, GZ), 1.50.1041.2014 (MB), 1.50.2218.2013 (GZ), 1.42.1274.2014 (SB). This work was also supported by RFBR (13-04-00645 (SB, MB, GZ), 14-04-32213(SB)) and by the grant of the President of The Russian Federation (MK-4854.2015.4 (SB)).

REFERENCES

1. Liebman SW, Chernoff YO. Prions in yeast. Genetics 2012; 191:1041–72; PMID:22879407; http://dx.doi.org/10.1534/genetics.111.137760
2. Derkatch IL, Chernoff YO, Kushnirou VV, Inge-Vechtomov SG, Liebman SW. Genesis and variability of ; PSI prion factor in Saccharomyces cerevisiae. Genetics 1996; 144:1375–86; PMID:8978027
3. King CY. Supporting the structural basis of prion strains: induction and identification of PSI prion variants. J Mol Biol 2001; 307:1247–60; PMID:11292339; http://dx.doi.org/10.1006/jmbi.2001.4542
4. Tanaka M, Chien P, Naber N, Cooke R, Weissman JS. Conformational variations in an infectious protein determine prion strain differences. Nature 2004; 428:323–8; PMID:15029196; http://dx.doi.org/10.1038/nature02392
5. King C, Diaz-Avalos R. Protein-only transmission of three yeast prion strains. Nature 2004; 428:319–23; PMID:15029195; http://dx.doi.org/10.1038/nature02391
6. Ter-Avanesyan MD, Kushnirou VV, Dangkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 1993; 7:683–92; PMID:8469113; http://dx.doi.org/10.1111/j.1365-2958.1993.tb01159.x
7. Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 1995; 14:4065–72; PMID:7664746
8. Ter-Avanesyan MD, Dangkesamanskaya AR, Kushnirou VV, Smirnov VN. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-mendelian determinant [psi+] in yeast Saccharomyces cerevisiae. Genetics 1994; 137:671–6; PMID:8088512
9. Kushnirov VV, Ter-Avanesyan MD, Telckov MV, Surguchov AP, Smirnov VN, Inge-Vechtomov SG. Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene 1988; 66:45–54; PMID:3047009; http://dx.doi.org/10.1016/0378-1119(88)90223-5

10. Kong C, Ito K, Walsh MA, Wada M, Liu Y, Kumar S, Barford D, Nakamura Y, Song H. Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe. Mol Cell 2004; 14:233–45; PMID:15099522; http://dx.doi.org/10.1016/S1097-2765(04)00206-0

11. Liu J-J, Sondheimer N, Lindquist S. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion. Proc Natl Acad Sci USA 2002; 99:16446–53; PMID:12461168; http://dx.doi.org/10.1073/pnas.252652099

12. Glover JR, Sondheimer N, Lindquist S. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 1997; 89:811–9; PMID:9182769; http://dx.doi.org/10.1016/S0092-8674(00)80264-0

13. King CY, Tittmann P, Gross H, Gebert R, Aebi M, Wüthrich K. Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc Natl Acad Sci USA 1997; 94:6618–22; PMID:9192614; http://dx.doi.org/10.1073/pnas.94.13.6618

14. Baxa U, Keller PW, Cheng N, Wall JS, Steven AC. In Sup35p filaments (the [PSI+] prion), the globular C-terminal domains are widely offset from the amyloid fibril backbone. Mol Microbiol 2011; 79:523–32; PMID:21219467; http://dx.doi.org/10.1111/j.1365-2958.2010.07466.x

15. Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 2000; 289:1317–21; PMID:10958771; http://dx.doi.org/10.1126/science.289.5483.1317

16. Kishimoto A, Hasegawa K, Suzuki H, Taguchi H, Namba K, Yoshida M. beta-Helix is a likely core structure of yeast prion Sup35 amyloid fibers. Biochem Biophys Res Commun 2004; 315:739–45; PMID:14975763; http://dx.doi.org/10.1016/j.bbrc.2004.01.117

17. Shewmaker F, Wickner RB, Tycko R. Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc Natl Acad Sci USA 2006; 103:19754–9; PMID:17170131; http://dx.doi.org/10.1073/pnas.0609638103

18. Shewmaker F, Kryndushkin D, Chen B, Tycko R, Wickner RB. Two prion variants of Sup35p have in-register parallel beta-sheet structures, independent of hydration. Biochemistry 2009; 48:5074–82; PMID:19408895; http://dx.doi.org/10.1021/bi900345q

19. Luckgei N, Schütz AK, Boussel L, Habenstein B, Sourigues Y, Gardiennet C, Meier BH, Melki R, Böckmann A. The conformation of the prion domain of Sup35p in isolation and in the full-length protein. Angew Chem Int Ed Engl 2013; 52:12741–4; PMID:24123863; http://dx.doi.org/10.1002/anie.201304699

20. Gorkovskiy A, Thurber KR, Tycko R, Wickner RB. Locating folds of the in-register parallel beta-sheet of the Sup35p prion domain infectious amyloid. Proc Natl Acad Sci USA 2014; 111: E4615–E4622; PMID:25313080; http://dx.doi.org/10.1073/pnas.1417974111

21. Doel SM, McCready SJ, Nierras CR, Cox BS. The dominant PNM2 mutation which eliminates the PSI factor of Saccharomyces cerevisiae is the result of missense mutation in the SUP35 gene. Genetics 1994; 137:659–70; PMID:8088511

22. DePace AH, Santoso A, Hillner P, Weissman JS. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 1998; 93:1241–52; PMID:9657156; http://dx.doi.org/10.1016/S0092-8674(00)81467-1

23. Osherovich LZ, Cox BS, Tuite MF, Weissman JS. Dissection and design of yeast prions. PLoS Biol 2004; 2:E86; PMID:15045026; http://dx.doi.org/10.1371/journal.pbio.0020086

24. Shkundina IS, Kushnirov VV, Tuite MF, Ter-Avanesyan MD. The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants. Genetics 2006; 172:827–35; PMID:16272413; http://dx.doi.org/10.1534/genetics.105.048660

25. Toyama BH, Kelly MJS, Gross JD, Weissman JS. The structural basis of yeast prion strain variants. Nature 2007; 449:233–7; PMID:17767153; http://dx.doi.org/10.1038/nature06108

26. Chang H-Y, Lin J-Y, Lee H-C, Wang H-L, King C-Y. Strain-specific sequences required for yeast [PSI+] prion propagation. Proc Natl Acad Sci USA 2008; 105:13345–50; PMID:18757753; http://dx.doi.org/10.1073/pnas.0802215105

27. Frederick KK, Debelouchina GT, Kayatekin C, Dorminy T, Jacavone AC, Griffin RG, Lindquist S. Distinct prion strains are defined by amyloid core structure and chaperone binding site dynamics. Chem Biol 2014; 21:295–305; PMID:24485763; http://dx.doi.org/10.1016/j.chembiol.2013.12.013

28. Krishnan R, Lindquist SL. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 2005; 435:765–72; PMID:15944694; http://dx.doi.org/10.1038/nature03679
29. Kajava AV, Baxa U, Wickner RB, Steven AC. A model for Ure2p prion filaments and other amyloids: the parallel superpleated beta-structure. Proc Natl Acad Sci USA 2004; 101:7885–90; PMID:15143215; http://dx.doi.org/10.1073/pnas.0402427101

30. Baxa U, Cassese T, Kajava AV, Steven AC. Structure, function, and amyloidogenesis of fungal prions: filament polymorphism and prion variants. Adv Protein Chem 2006; 73:125–80; PMID:17190613; http://dx.doi.org/10.1016/S0065-3233(06)73005-4

31. Bondarev SA, Shchepachev VV, Kajava AV, Zhouravleva GA. Effect of charged residues in the N-domain of Sup35 protein on prion [PSI+{sup}] stability and propagation. J Biol Chem 2013; 288:28503–13; PMID:23965990; http://dx.doi.org/10.1074/jbc.M113.471805

32. Ahmed AB, Znassi N, Chateau M-T, Kajava AV. A structure-based approach to predict predisposition to amyloidosis. Alzheimers Dement 2014; doi:10.1016/j.jalz.2014.06.007

33. Cox BS, Tuite MF, McLauchlin C. The psi factor of yeast: a problem in inheritance. Yeast 1988; 4:159–78; PMID:3059716; http://dx.doi.org/10.1002/yea.320040302

34. Marchante R, Rowe M, Zenthon J, Howard MJ, Tuite MF. Structural definition is important for the propagation of the yeast [PSI+] prion. Mol Cell 2013; 50:675–85; PMID:23746351; http://dx.doi.org/10.1016/j.molcel.2013.05.010

35. Gonzalez Nelson AC, Paul KR, Petri M, Flores N, Cascarina SM, Ross ED. Increasing prion propensity by hydrophobic insertion. PLoS One 2014; 9:e89286; PMID:24586661; http://dx.doi.org/10.1371/journal.pone.0089286

36. MacLea KS, Paul KR, Ben-Musa Z, Waechter A, Shattuck JE, Grucha M, Ross ED. Distinct amino acid compositional requirements for formation and maintenance of the [PSI+] prion in yeast. Mol Cell Biol 2015; 35:899–911; PMID:25547291; http://dx.doi.org/10.1128/MCB.01020-14

37. Alexandrov AI, Polyanskaya AB, Serpionov GV, Ter-Avanesyan MD, Kushnirov VV. The effects of amino acid composition of glutamine-rich domains on amyloid formation and fragmentation. PLoS One 2012; 7:e46458; PMID:23071575; http://dx.doi.org/10.1371/journal.pone.0046458

38. Derkatch IL, Bradley ME, Zhou P, Liebman SW. The PNM2 mutation in the prion protein domain of SUP35 has distinct effects on different variants of the [PSI+] prion in yeast. Curr Genet 1999; 35:59–67; PMID:10079323; http://dx.doi.org/10.1007/s002940050433

39. Verges KJ, Smith MH, Toyama BH, Weissman JS. Strain conformation, primary structure and the propagation of the yeast prion [PSI+]. Nat Struct Mol Biol 2011; 18:493–9; PMID:21423194; http://dx.doi.org/10.1038/nsmb.2030

40. Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R. 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc Natl Acad Sci USA 2005; 102:17342–7; PMID:16293696; http://dx.doi.org/10.1073/pnas.0506723102

41. Petkova AT, Yau W-M, Tycko R. Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 2006; 45:498–512; PMID:16401079; http://dx.doi.org/10.1021/bi051952q

42. Kajava AV, Baxa U, Steven AC. Beta arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils. FASEB J 2010; 24:1311–9; PMID:20032312; http://dx.doi.org/10.1096/fj.09-145979

43. Bondarev SA, Shirokolobova ED, Trubitsina NP, Zhouravleva GA. Modification of [PSI+] prion properties by combining amino acid changes in N-terminal domain of Sup35 protein. Mol Biol (Mosk) 2014; 48:270–7; http://dx.doi.org/10.1134/S0026893314020034

44. Li J, Browning S, Mahal SP, Oelschlegel AM, Weissmann C. Darwinian evolution of prions in cell culture. Science 2010; 327: 869–72; PMID:20044542; http://dx.doi.org/10.1126/science.1183218

45. Makarava N, Baskakov IV. The Evolution of Transmissible Prions: The Role of Deformed Templating. PLoS Pathog 2013; 9:1–3; http://dx.doi.org/10.1371/journal.ppat.1003759