LIMIT POINTS FOR BROWDER SPECTRUM OF OPERATOR MATRICES

A. TAJMOUATI, M. KARMOUNI AND S. ALAOUI CHRIFI

ABSTRACT. Let $A \in \mathcal{B}(X)$ and $B \in \mathcal{B}(Y)$, where X and Y are Banach spaces, and let M_C be an operator acting on $X \oplus Y$ given by $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. We investigate the limit point set of the Browder spectrum of M_C. It is shown that

$$\text{acc}_b(M_C) \cup W_{\text{acc}_b} = \text{acc}_b(A) \cup \text{acc}_b(B)$$

where W_{acc_b} is a subset of $\text{acc}_b(B) \cap \text{acc}_b(A)$ and a union of certain holes in $\text{acc}_b(M_C)$. Furthermore, several sufficient conditions for $\text{acc}_b(M_C) = \text{acc}_b(A) \cup \text{acc}_b(B)$ hold for every $C \in \mathcal{B}(Y, X)$ are given.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, X and Y denote infinite dimensional complex Banach spaces, and $\mathcal{B}(X, Y)$ denotes the complex algebra of all bounded linear operators from X to Y. When $Y = X$ we simply write $\mathcal{B}(X)$ instead of $\mathcal{B}(X, X)$. For $T \in \mathcal{B}(X, Y)$ we use $R(T)$ and $N(T)$ to denote the range and the null space of T, respectively. Write $\alpha(T) = \dim N(T)$ and $\beta(T) = \text{codim} R(T)$. Sets of upper semi-Fredholm operators, lower semi-Fredholm operators, left semi-Fredholm operators and right semi-Fredholm operators are defined respectively as $\Phi_+(X) = \{ T \in \mathcal{B}(X) : \alpha(T) < \infty \text{ and } R(T) \text{ is closed} \}$, $\Phi_-(X) = \{ T \in \mathcal{B}(X) : \beta(T) < \infty \}$, $\Phi_l(X) = \{ T \in \mathcal{B}(X) : \alpha(T) < \infty \text{ and } R(T) \text{ is closed and complemented subspace of } X \}$ and $\Phi_r(X) = \{ T \in \mathcal{B}(X) : \beta(T) < \infty \text{ and } N(T) \text{ is a complemented subspace of } X \}$. Sets of semi-Fredholm and Fredholm operators are defined as $\Phi_{\pm}(X) = \Phi_+(X) \cup \Phi_-(X)$ and $\Phi(X) = \Phi_+(X) \cap \Phi_-(X)$.

The ascent of T is defined as $\text{asc}(T) = \inf\{ n \in \mathbb{N} : N(T^n) = N(T^{n+1}) \}$ and the descent of T is defined as $\text{des}(T) = \inf\{ n \in \mathbb{N} : R(T^n) = R(T^{n+1}) \}$. Where $\inf \emptyset = \infty$. Sets of upper semi-Browder operators, lower semi-Browder operators, left semi-Browder operators and right semi-Browder operators are defined respectively $B_+(X) = \{ T \in \Phi_+(X) : \text{asc}(T) < \infty \}$, $B_-(X) = \{ T \in \Phi_-(X) : \text{dec}(T) < \infty \}$, $B_l(X) = \{ T \in \Phi_l(X) : \text{asc}(T) < \infty \}$ and $B_r(X) = \{ T \in \Phi_r(X) : \text{dec}(T) < \infty \}$. Sets of semi-Browder and Browder operators are defined as $B_{\pm}(X) = B_+(X) \cup B_-(X)$ and $B(X) = B_+(X) \cap B_-(X)$. For $T \in \mathcal{B}(X)$, the essential spectrum, the upper semi-Browder spectrum, the lower semi-Browder spectrum, the semi-Browder spectrum, the semi-Browder spectrum, the left semi-Browder spectrum, the right
there exists a non-zero complex polynomial P such that

There exists a non-zero complex polynomial P such that $P(T) = 0$. Denote by $\lambda = \Phi(X)$ the concept of Drazin invertible to generalized Drazin invertible, in fact operators are exactly Fredholm Drazin invertible operators. Koliha [7] generalized reader to ([3], [7], [13] and [14]). It is common knowledge that the spectrum generalized Drazin spectrum. For more details about those inverses we refer the reader to ([9], [17], [18] and [19]).

Evidently, $\sigma_{gD}(T) = \sigma_{b_+}(T^*)$ and $\sigma_{b_+}(T) = \sigma_{gD}(T^*)$, where $T^* \in \mathcal{B}(X^*)$ the adjoint operator of T on the dual space X^* and $\sigma_{b}(T) = \sigma_{gD}(T) \cup \sigma_{b_+}(T)$ consequently $\sigma_{b}(T) = \sigma_{gD}(T^*)$.

Recall that an operator $T \in \mathcal{B}(X)$ is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (abbreviated SVEP) if for every open neighborhood $U \subseteq \mathbb{C}$ of $\lambda_0 \in \mathbb{C}$, the only analytic function $f : U \to X$ which satisfies the equation $(T - \lambda I)f(\lambda) = 0$ for all $\lambda \in U$ is the function $f = 0$. Denote by $S(T)$ the open set of $\lambda \in \mathbb{C}$ where T fails to have the SVEP at λ. An operator T is said to have the SVEP if T has the SVEP at every $\lambda \in \mathbb{C}$, in this case $S(T) = \emptyset$. According to [1] Theorem 3.52] we have

$$\sigma_{b}(T) = \sigma_{gD}(T^*) \cup S(T^*) = \sigma_{b_+}(T) \cup S(T).$$

For a compact subset K of \mathbb{C}, let $\text{acc} K$, $\text{int} K$, $\text{iso} K$, K^c, ∂K, \overline{K} and $\eta(K)$ be the set of all accumulation points, the interior set, the set of isolated points, the complement, the boundary, the closure and the polynomially convex hull of K respectively.

An operator T is called Drazin invertible if there exists $S \in \mathcal{B}(X)$ such that

$$TS = ST, \quad STS = S \quad \text{and} \quad TST - T \quad \text{is nilpotent,}$$

it is well known that S exists if and only if $p = \text{asc}(T) = \text{des}(T)$. The set $\sigma_D(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{is not Drazin invertible} \}$ is the Drazin spectrum. Although Browder operators are exactly Fredholm Drazin invertible operators. Koliha [7] generalized the concept of Drazin invertible to generalized Drazin invertible, in fact $T \in \mathcal{B}(X)$ is generalized Drazin invertible if there exists $S \in \mathcal{B}(X)$ such that

$$TS = ST, \quad STS = S \quad \text{and} \quad TST - T \quad \text{is quasi-nilpotent,}$$

(i.e. $\sigma(TST - T) = \{0\}$). The former author realized that T is generalized Drazin invertible if and only if $0 \notin \text{acc}(T)$. The set $\sigma_{gD}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{is not generalized Drazin invertible} \} = \text{acc} \sigma(T) = \text{acc} \sigma_D(T)$ is the generalized Drazin spectrum. For more details about those inverses we refer the reader to ([3], [7], [13] and [14]). It is common knowledge that the spectrum $\sigma_+ = \sigma_{b+} \cup \sigma_{b_{rb}} \cup \sigma_{b_+} \cup \sigma_{b_{rb}}$ or σ_{rb} is a compact subset of the complex plan \mathbb{C}, and $\sigma_D(T)$ or $\sigma_{gD}(T)$ are closed subsets of \mathbb{C} possibly empty.

We can easily show that

$$\text{acc} \sigma_{b}(T) = \text{acc} \sigma_+(T) \cup \text{acc} \sigma_D(T) = \text{acc} \sigma_+(T) \cup \sigma_{gD}(T).$$

The set $\text{acc} \sigma_{b}(T)$ may be empty, for example when T is polynomially Riesz (i.e. there exists a non-zero complex polynomial P such that $P(T)$ is a Riesz operator).
Then $P(\sigma_b(T)) = \sigma_b(P(T)) = \{0\}$, as a result $\sigma_b(T) = P^{-1}\{0\}$ is a finite set which has no accumulation point.

If $A \in \mathcal{B}(X)$, $B \in \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$ then $M_C \in \mathcal{B}(X \oplus Y)$ represents a bounded linear operator on Banach space $X \oplus Y$ given by:

$$M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$$

it called upper triangular operator matrix. It is well know that in the case of infinite dimensional, the inclusion $\sigma(M_C) \subset \sigma(A) \cup \sigma(B)$, may be strict. This attracts the attention of many mathematicians to study the defect $(\sigma_*(A) \cup \sigma_*(B)) \setminus \sigma_*(M_C)$ where σ_* runs over different type of spectra.

In [15] S.Zhang et al, gave a description of the set $\bigcap_{C \in \mathcal{B}(X,Y)} \sigma_b(M_C)$. They showed the following theorem which we are going to need in the sequel.

Theorem 1.1. [15] For given $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ the following holds:

$$\bigcap_{C \in \mathcal{B}(Y,X)} \sigma_b(M_C) = \sigma_b(A) \cup \sigma_b(B) \cup W_0(A, B)$$

Where $W_0(A, B) = \{ \lambda \in \mathbb{C} : N(A - \lambda) \times N(B - \lambda) \text{ is not isomorphic to } X/R(A - \lambda) \times Y/R(B - \lambda) \}$.

In [16], authors investigate the filling-in-holes problem of 2×2 upper triangular operator matrices for Browder spectrum, they showed the following theorem.

Theorem 1.2. [16] Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then

$$\sigma_b(M_C) \cup W_b = \sigma_b(A) \cup \sigma_b(B)$$

where W_b is the union of certain holes in $\sigma_b(M_C)$, which happen to be subsets of $\sigma_b(A) \cap \sigma_b(B)$.

The next lemma has been demonstrated in [13]:

Lemma 1.1. [13] For given $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ if M_C is Drazin invertible for some $C \in \mathcal{B}(Y, X)$ then:

(i) $\text{des}(B) < \infty$ and $\text{asc}(A) < \infty$.

(ii) $\text{des}(A^*) < \infty$ and $\text{asc}(B^*) < \infty$.

The purpose of this paper is to study the relationship between $\text{acc}\sigma_b(M_C)$ and $\text{acc}\sigma_b(A) \cup \text{acc}\sigma_b(B)$. We investigate the local spectral theory to prove the equality

$$\text{acc}\sigma_b(M_C) \cup [S(A^*) \cap S(B)] = \text{acc}\sigma_b(A) \cup \text{acc}\sigma_b(B).$$

Also, we show that the passage from $\text{acc}\sigma_b(A) \cup \text{acc}\sigma_b(B)$ to $\text{acc}\sigma_b(M_C)$ can be described as follows:

$$\text{acc}\sigma_b(M_C) \cup W_{\text{acc}\sigma_b} = \text{acc}\sigma_b(M_0) = \text{acc}\sigma_b(A) \cup \text{acc}\sigma_b(B)$$

where $W_{\text{acc}\sigma_b}$ is the union of certain holes in $\text{acc}\sigma_b(M_C)$, which happen to be subsets of $\text{acc}\sigma_b(A) \cap \text{acc}\sigma_b(B)$. Finally we give sufficient conditions on A and B to ensure the equality $\text{acc}\sigma_b(M_C) = \text{acc}\sigma_b(A) \cup \text{acc}\sigma_b(B)$.
2. Main results and proofs

In order to state precisely the relationship between $accσ_b(\lambda I_C)$ and $accσ_b(A) \cup accσ_b(B)$, we began this section by the following two lemmas which will be widely used in the sequel.

Lemma 2.1. Let $(A, B) \in B(X) \times B(Y)$ and $C \in B(Y, X)$. Then

$$accσ_b(\lambda I_C) \subseteq accσ_b(M_0) = accσ_b(A) \cup accσ_b(B)$$

Proof. We have $σ_b(M_0) = σ_b(A) \cup σ_b(B)$, it is clear that $accσ_b(M_0) = accσ_b(A) \cup accσ_b(B)$. Now without lose generality let $0 \notin accσ_b(A) \cup accσ_b(B)$ then, there exists $ε > 0$ such that $A - λI$ and $B - λI$ are Browder for every $λ$, $0 < |λ| < ε$, according to [4, Lemma 2.4], $M_ε - λI$ is Browder for every $λ$, $0 < |λ| < ε$. Thus $0 \notin accσ_b(M_0)$. □

The inclusion, $accσ_b(\lambda I_C) \subseteq accσ_b(A) \cup accσ_b(B)$, may be strict as we can see in the following example.

Example 1. Let $A, B, C \in B(l^2)$ defined by:

$$Ae_n = e_{n+1}.$$

$$B = A^*.$$

$$C = e_0 \otimes e_0.$$

where $\{e_n\}_{n \in \mathbb{N}}$ is the orthonormal basis of l^2. We have $σ_b(A) = \{λ \in \mathbb{C}; |λ| \leq 1\}$, then $accσ_b(A) = \{λ \in \mathbb{C}; |λ| \leq 1\}$. Since M_C is unitary, then $accσ_b(M_C) \subseteq \{λ \in \mathbb{C}; |λ| = 1\}$. So $0 \notin accσ_b(M_C)$, but $0 \in accσ_b(A) \cup accσ_b(B)$. Notes that $A^* = B$ has not the SVEP.

Definition 2.1. Let $T \in B(X)$. We said that T has the property (aB) at $λ \in \mathbb{C}$ if $λ \notin accσ_b(T)$.

Lemma 2.2. If two of M_C, A and B have the property (aB) at 0, then the third have also the property (aB) at 0.

Proof. (1) If A and B have the property (aB) at 0, by lemma 2.1 M_C has the property (aB) at 0.

(2) If M_C and A have the property (aB) at 0, that is $0 \notin accσ_b(M_C)$ and $0 \notin accσ_b(A)$, then there exists $ε > 0$ such that $M_C - λI$ and $A - λI$ are Browder operators for every $λ$, $0 < |λ| < ε$. Thus according to [6, Corollary 5] and [8, Lemma 2.3] we have $B - λI$ is Browder for every $λ$, $0 < |λ| < ε$, i.e $0 \notin accσ_b(B)$.

(3) If B and M_C have the property (aB) at 0, then A has the property (aB) at 0, the proof is similar to (ii). □

Now we are in position to prove our first main result.

Theorem 2.1. For $A \in B(X)$, $B \in B(Y)$ and $C \in B(Y, X)$ we have

$$accσ_b(M_C) \cup [S(A^*) \cap S(B)] = accσ_b(A) \cup accσ_b(B).$$
Lemma 2.3. Let M and N be two bounded subsets of complex plane \mathbb{C}. Then the following statements hold:

(i) $\text{acc} M \cup \text{acc} N = \text{acc}(M \cup N)$;
(ii) $\text{iso}(M \cup N) \subseteq \text{iso}M \cup \text{iso}N$;
(iii) If M is closed, then $\partial(\text{acc} M) \cup \text{iso}M = \partial M$;
(iv) If M is closed, then $\text{iso}(\partial M) = \text{iso}M$.

Proof. It follows from lemma [23] that $\text{acc} \sigma_b(M_C) \subseteq \text{acc} \sigma_b(A) \cup \text{acc} \sigma_b(B)$. Also, it is known that $S(A^*) \cap S(B) \subseteq \text{acc} \sigma_b(A) \cup \text{acc} \sigma_b(B)$. Hence $\text{acc} \sigma_b(M_C) \cup |S(A^*) \cap S(B)| \subseteq \text{acc} \sigma_b(A) \cup \text{acc} \sigma_b(B)$. For the contrary inclusion, it is sufficient to prove that $(\text{acc} \sigma_b(A) \cup \text{acc} \sigma_b(B)) \setminus \text{acc} \sigma_b(M_C) \subseteq S(A^*) \cap S(B)$.

Let $\lambda \in (\text{acc} \sigma_b(A) \cup \text{acc} \sigma_b(B)) \setminus \text{acc} \sigma_b(M_C)$ we can assume without lose of generality that $\lambda = 0$. Then $0 \notin \text{acc} \sigma_b(M_C)$, hence there exists $\varepsilon > 0$ such that $M_C - \mu I$ is Browder for every $0 < |\mu| < \varepsilon$, so $A - \mu I \in \Phi_+(X)$, $B - \mu I \in \Phi_-(Y)$ for every $0 < |\mu| < \varepsilon$. Moreover it follows from lemma [11] that $\text{des}(B - \mu I) < \infty$ and $\text{asc}(A - \mu I) < \infty$ for every $0 < |\mu| < \varepsilon$, so $0 \notin \text{acc}_{b_+}(A) \cup \text{acc}_{b_-}(B)$. For the sake of contradiction assume that $0 \notin S(A^*) \cap S(B)$.

Case 1 $0 \notin S(A^*)$: If $0 \in \sigma_b(A^*)$ we have $\sigma_b(A^*) = \sigma_{b_-}(A^*) \cup S(A^*)$, then $0 \in \sigma_{b_-}(A^*)$. Since $0 \notin \text{acc} \sigma_{b_-}(A) = \text{acc} \sigma_{b_-}(A^*)$, it follows that 0 is an isolated point of $\sigma_{b_-}(A^*)$. On the other hand $\overline{S(A^*)} \subseteq \sigma_b(A^*) = \sigma_{b_-}(A^*) \cup S(A^*)$, thus $\partial S(A^*) \subseteq \sigma_{b_-}(A^*)$. As $\sigma_b(A^*) = \sigma_{b_-}(A^*) \cup S(A^*)$ and $0 \notin \text{iso} \sigma_{b_-}(A^*)$ then 0 is an isolated point of $\sigma_b(A) = \sigma_b(A^*)$. Hence $0 \notin \text{acc} \sigma_b(A)$, according to Lemma [2,2] $0 \notin \text{acc} \sigma_b(B)$ but this is impossible. Now if $0 \notin \sigma_b(A^*)$ then $0 \notin \text{acc} \sigma_b(A^*) = \text{acc} \sigma_b(A)$. Hence $0 \notin \text{acc} \sigma_b(B)$, and this is contradiction.

Case 2 $0 \notin S(B)$: If $0 \in \sigma_b(B)$ we have $0 \notin \text{acc} \sigma_b(B)$. Indeed $\sigma_b(B) = \sigma_{b_-}(B) \cup S(B)$ then $0 \in \sigma_{b_-}(B)$ but $0 \notin \text{acc} \sigma_{b_-}(B)$ thus $0 \notin \text{iso} \sigma_{b_-}(B)$ it follows that $0 \in \text{iso} \sigma_b(B)$ i.e $0 \notin \text{acc} \sigma_b(B)$. Since $0 \notin \text{acc} \sigma_b(M_C)$ then $0 \notin \text{acc} \sigma_b(A)$, contradiction. Now if $0 \notin \sigma_b(B)$ then $0 \notin \text{acc} \sigma_b(B)$ since $0 \notin \text{acc} \sigma_b(M_C)$ thus $0 \notin \text{acc} \sigma_b(A)$, contradiction. As a result

$$\text{acc} \sigma_b(M_C) \cup |S(A^*) \cap S(B)| = \text{acc} \sigma_b(A) \cup \text{acc} \sigma_b(B).$$

From theorem [23], we obtain immediately the following corollary.

Corollary 2.1. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ in $S(A^*) \cap S(B) = \emptyset$, then for every $C \in \mathcal{B}(Y, X)$ we have

$$\text{acc} \sigma_b(M_C) = \text{acc} \sigma_b(A) \cup \text{acc} \sigma_b(B).$$

In particular if A^* or B have he SVEP, then the last equality hold.

Example 2. Let U be the simple unilateral shift on $l^2([\mathbb{N}])$, set $S = U \oplus U^*$ the operator defined on $l^2([\mathbb{N}]) \oplus l^2([\mathbb{N}])$. It follows that $\sigma_b(S) = \sigma(S) = \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}$. Consider the operators A, B defined by $A = S + I$ and $B = S - I$, we have

$$S(A) = \{\lambda \in \mathbb{C} : 0 \leq |\lambda - 1| < 1\}$$

$$S(B) = \{\lambda \in \mathbb{C} : 0 \leq |\lambda + 1| < 1\}$$

So, $S(A^*) \cap S(B) = \emptyset$. Consequently $\text{acc} \sigma_b(M_C) = \text{acc} \sigma_b(A) \cup \text{acc} \sigma_b(B)$.

The following lemma summarizes some well-known facts which will be used frequently.

Lemma 2.3. Let M and N be two bounded subsets of complex plane \mathbb{C}. Then the following statements hold:

(i) $\text{acc} M \cup \text{acc} N = \text{acc}(M \cup N)$;
(ii) $\text{iso}(M \cup N) \subseteq \text{iso}M \cup \text{iso}N$;
(iii) If M is closed, then $\partial(\text{acc} M) \cup \text{iso}M = \partial M$;
(iv) If M is closed, then $\text{iso}(\partial M) = \text{iso}M$.
The following two lemmas are the key of our second main result.

Lemma 2.4. Let E, F be two compact subsets of C, such that $E \subseteq F$ and $\partial F \subseteq E$, then

$$\partial \text{acc} F \subseteq \text{acc} E.$$

Proof. For any $\lambda \in \partial (\text{acc} F)$ then either $\lambda \in \text{acc}(\partial \text{acc} F)$ or $\lambda \in \text{iso}(\partial \text{acc} F)$.

Case 1: If $\lambda \in \text{acc}(\partial \text{acc} F)$, then there exist $\lambda_n \in \partial \text{acc} F$, $n = 1, 2, \ldots$ such that $\lim_{n \to \infty} \lambda_n = \lambda$, since

$$\partial \text{acc} F \subseteq \partial F \subseteq E$$

it follows that $\lambda_n \in E$, $n = 1, 2, \ldots$; thus we have $\lambda \in \text{acc} E$.

Case 2: If $\lambda \in \text{iso}(\partial \text{acc} F)$, then we get $\lambda \in \text{iso}(\text{acc} F)$ from Lemma 2.3, that is $\text{iso}(\partial \text{acc} F) = \text{iso}(\text{acc} F)$.

Thus there exists $\varepsilon > 0$ such that $\tau \notin \text{acc} F$ for every τ, $0 < |\lambda - \tau| < \varepsilon$, but $\lambda \in \text{acc} E$ then there exist $\mu_n \in \partial F$, $n = 1, 2, \ldots$ such that $\lim_{n \to \infty} \mu_n = \lambda$ and $\mu_n \neq \lambda$ for every $n = 1, 2, \ldots$ i.e there exists $N \in \mathbb{N}^*$ such that $0 < |\mu_n - \lambda| < \varepsilon$ for every $n \geq N$.

Now let $\lambda_n = \mu_{N+n+1}$, then $\lambda_n \in \text{iso} F$, $n = 1, 2, \ldots$ and $\lim_{n \to \infty} \lambda_n = \lambda$. It follows from Lemma 2.3 that

$$\text{iso} F \subseteq \partial F \subseteq E$$

so $\lambda_n \in \text{iso} F \subseteq E$ for every $n = 1, 2, \ldots$ and $\lim_{n \to \infty} \lambda_n = \lambda$, therefore $\lambda \in \text{acc} E$.

Then for both cases $\partial \text{acc} F \subseteq \text{acc} E$ is true. □

Lemma 2.5. Let E, F be two compact subsets of C such that $E \subseteq F$ and $\eta(E) = \eta(F)$ then $\eta(\text{acc} E) = \eta(\text{acc} F)$.

Proof. Since $E \subseteq F$ then $\text{acc} E \subseteq \text{acc} F$, we need to show that $\partial(\text{acc} F) \subseteq \partial(\text{acc} E)$ from the maximum module theorem. But since $\text{int}(\text{acc} E) \subseteq \text{int}(\text{acc} F)$ it suffices to show that $\partial(\text{acc} E) \subseteq (\text{acc} F)$ which is always verified by lemma 2.3. □

The following theorem says that the passage from $\text{acc}_b(A) \cup \text{acc}_b(B)$ to $\text{acc}_b(M_C)$ is the punching of some set in $\text{acc}_b(A) \cap \text{acc}_b(B)$.

Theorem 2.2. Let $A \in \mathcal{B}(X)$, $B \in \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then

$$\text{acc}_b(M_C) \cup W_{\text{acc}_b} = \text{acc}_b(A) \cup \text{acc}_b(B)$$

where W_{acc_b} is the union of certain holes in $\text{acc}_b(M_C)$, which happen to be subsets of $\text{acc}_b(A) \cap \text{acc}_b(B)$.

Proof. We first claim that, for every $C \in \mathcal{B}(Y, X)$ we have

$$\left(\text{acc}_b(A) \cup \text{acc}_b(B)\right) \setminus \left(\text{acc}_b(A) \cap \text{acc}_b(B)\right) \subseteq \text{acc}_b(M_C).$$

(1) to see this suppose that $\lambda \in (\text{acc}_b(A) \cup \text{acc}_b(B)) \setminus (\text{acc}_b(A) \cap \text{acc}_b(B))$ then either $\lambda \in \text{acc}_b(A) \setminus \text{acc}_b(B)$ or $\lambda \in \text{acc}_b(B) \setminus \text{acc}_b(A)$.

(1) If $\lambda \in \text{acc}_b(A) \setminus \text{acc}_b(B)$ it follows that A has not the property (aB) at λ and B has the property (aB) at λ, thus $\lambda \in \text{acc}_b(M_C)$, for it were not so, then $\lambda \notin \text{acc}_b(M_C)$ and hence according to lemma 2.2 $\lambda \notin \text{acc}_b(A)$ which is impossible.

(2) If $\lambda \in \text{acc}_b(B) \setminus \text{acc}_b(A)$, similarly as in (1) we can show that $\lambda \in \text{acc}_b(M_C)$.

6 A. TAJMOUATI, M. KARMOUNI AND S. ALAOUI CHRIFI
Moreover, from the proof of Theorem 1.2 we have
\[\partial(\sigma_{b}(A) \cap \sigma_{b}(B)) \subseteq \sigma_{b}(M_{C}). \]
Applying lemma 2.4 and lemma 2.6 we have
\[\eta(\text{acc}\sigma(M_{C})) = \eta(\text{acc}\sigma_{b}(A) \cup \text{acc}\sigma_{b}(B)). \]
Therefore 2 says that the passage from \(\text{acc}\sigma(M_{C}) \) to \(\text{acc}\sigma_{b}(A) \cup \text{acc}\sigma_{b}(B) \) is the filling in certain of the holes in \(\text{acc}\sigma(M_{C}) \). But \((\text{acc}\sigma_{b}(A) \cup \text{acc}\sigma_{b}(B)) \setminus \text{acc}\sigma_{b}(M_{C}) \) is contained in \(\text{acc}\sigma_{b}(A) \cap \text{acc}\sigma_{b}(B) \) by 1 it follows that the filling in certain of the holes in \(\text{acc}\sigma_{b}(M_{C}) \) should occur in \(\text{acc}\sigma_{b}(A) \cap \text{acc}\sigma_{b}(B) \).

\[\square \]

Corollary 2.2. Let \((A, B) \in B(X) \times B(Y)\). If \(\text{acc}\sigma_{b}(A) \cap \text{acc}\sigma_{b}(B) \) has no interior points, then for every \(C \in B(Y, X) \) we have
\[\text{acc}\sigma_{b}(M_{C}) = \text{acc}\sigma_{b}(A) \cup \text{acc}\sigma_{b}(B). \]

From theorem 1.2 and theorem 2.2 we have the following.

Theorem 2.3. Let \((A, B) \in B(X) \times B(Y)\) and \(C \in B(Y, X) \). Then the following assertions are equivalent

1. \(\sigma_{b}(M_{C}) = \sigma_{b}(A) \cup \sigma_{b}(B) \),
2. \(\text{acc}\sigma_{b}(M_{C}) = \text{acc}\sigma_{b}(A) \cup \text{acc}\sigma_{b}(B) \).

Proof. First we show that
\[W_{b} \subseteq W_{\text{acc}\sigma_{b}}. \]
Indeed, if \(\lambda \in W_{b} \) then according to Theorem 1.2 we have \(\lambda \in (\sigma_{b}(A) \cup \sigma_{b}(B)) \setminus \sigma_{b}(M_{C}) \), then \(\lambda \notin \sigma_{b}(M_{C}) \) consequently \(\lambda \notin \text{acc}\sigma_{b}(M_{C}) \), it is enough to show that \(\lambda \in \text{acc}(\sigma_{b}(A) \cup \sigma_{b}(B)) \), if it was not then \(\lambda \notin \text{acc}(\sigma_{b}(A) \cup \sigma_{b}(B)) \) but \(\lambda \in \sigma_{b}(A) \cup \sigma_{b}(B) \) thus
\[\lambda \in \text{iso}(\sigma_{b}(A) \cup \sigma_{b}(B)) \subseteq \text{iso}(\sigma_{b}(A)) \cup \text{iso}(\sigma_{b}(B)) \] (Lemma 2.3)
\[\subseteq \partial\sigma_{b}(A) \cup \partial\sigma_{b}(B) \] (Lemma 2.3)
\[\subseteq \sigma_{rb}(A) \cup \sigma_{rb}(B) \] (Theorem 1.1)
\[\subseteq \sigma_{b}(M_{C}) \]

Hence \(\lambda \in \sigma_{b}(M_{C}) \), contradiction. Therefore
\[\lambda \in (\text{acc}\sigma_{b}(A) \cup \text{acc}\sigma_{b}(B)) \setminus \text{acc}\sigma_{b}(M_{C}) \]
by theorem 2.2 we have \(\lambda \in W_{\text{acc}\sigma_{b}} \), so \(W_{b} \subseteq W_{\text{acc}\sigma_{b}} \), according to this inclusion the following implication is hold
\[\text{acc}\sigma_{b}(M_{C}) = \text{acc}\sigma_{b}(A) \cup \text{acc}\sigma_{b}(B) \Rightarrow \sigma_{b}(M_{C}) = \sigma_{b}(A) \cup \sigma_{b}(B) \]
Conversely, if \(\sigma_{b}(M_{C}) = \sigma_{b}(A) \cup \sigma_{b}(B) \) then
\[\text{acc}(\sigma_{b}(M_{C})) = \text{acc}(\sigma_{b}(A) \cup \sigma_{b}(B)) \]
\[= \text{acc}(\sigma_{b}(A)) \cup \text{acc}(\sigma_{b}(B)). \]

\[\square \]

The following example shows that the inclusion used in the proof of theorem 2.3 may be strict in general.
Example 3. Define $U, V \in \mathcal{B}(l^2)$ by

$$Ue_n = e_{n+1}$$
$$V_{e_n+1} = e_n$$

where $\{e_n\}_{n \in \mathbb{N}}$ is the orthonormal basis of l^2. Let us introduce an operator $P : l^2 \to l^2$ as:

$$P(x_1, x_2, x_3, ...) = (x_1, 0, 0, ...), \quad (x_1, x_2, x_3, ...) \in l^2.$$

consider the operator $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} : l^2 \oplus l^2 \oplus l^2 \to l^2 \oplus l^2 \oplus l^2$, where $A = U$, $B = \begin{pmatrix} V & 0 \\ 0 & 0 \end{pmatrix} : l^2 \oplus l^2 \to l^2 \oplus l^2$ and $C = (P, 0) : l^2 \oplus l^2 \to l^2$.

We have $\sigma_{\rho}(M_C) = \{ \lambda \in \mathbb{C} : |\lambda| = 1 \} \cup \{ 0 \}$, $\sigma_{\rho}(A) = \sigma_{\rho}(B) = \{ \lambda \in \mathbb{C} : |\lambda| \leq 1 \};$ then $\text{acc}_{\rho}(M_C) = \{ \lambda \in \mathbb{C} : |\lambda| = 1 \}, \text{acc}_{\rho}(A) = \text{acc}_{\rho}(B) = \{ \lambda \in \mathbb{C} : |\lambda| \leq 1 \}$. Consequently

$$W_{\sigma_{\rho}} = \{ \lambda \in \mathbb{C} : 0 < |\lambda| < 1 \}, \quad W_{\text{acc}_{\rho}} = \{ \lambda \in \mathbb{C} : |\lambda| < 1 \}.$$

Thus $W_{\sigma_{\rho}} \neq W_{\text{acc}_{\rho}}$.

Nevertheless, we have the following theorem.

Theorem 2.4. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. If $\text{iso}\partial W_{\sigma_{\rho}} = \emptyset$ then

$$W_{\sigma_{\rho}} = W_{\text{acc}_{\rho}}.$$

Proof. According to Lemma 2.3, and since $\text{iso}\partial W_{\sigma_{\rho}} = \emptyset$, we obtain

$$\text{iso}_{\rho}(M_C) = \text{iso}_{\rho}(A) \cup \text{iso}_{\rho}(B) \subseteq \text{iso}_{\rho}(A) \cup \text{iso}_{\rho}(B).$$

Let $\lambda \in \text{iso}_{\rho}(M_C)$, then either $\lambda \in \text{iso}_{\rho}(A)$ or $\lambda \in \text{iso}_{\rho}(B)$. If $\lambda \in \text{iso}_{\rho}(A)$, then A has the property $(A\rho)$ at λ and $\lambda I - A$ is not Browder, by Lemma 2.2, B has also the property $(A\rho)$ at λ. Thus $\lambda \in \text{iso}_{\rho}(B)$ or $\lambda \in \rho_{\theta}(A)$. In contrast, if $\lambda \in \text{iso}_{\rho}(B)$ we obtain similarly that $\lambda \in \text{iso}_{\rho}(B)$ or $\lambda \in \rho_{\theta}(A)$.

In addition, due to theorem 1.1 and Lemma 2.3, we have

$$\text{iso}_{\rho}(A) \cap \text{iso}_{\rho}(B) \cup (\text{iso}_{\rho}(A) \cap \rho_{\theta}(B)) \cup (\rho_{\theta}(A) \cap \text{iso}_{\rho}(B)) \subseteq \text{iso}_{\rho}(A) \cup \text{iso}_{\rho}(B) \subseteq \partial \sigma_{\rho}(A) \cup \partial \sigma_{\rho}(B)$$

$$\subseteq \sigma_{\rho}(A) \cup \sigma_{\rho}(B) \subseteq \sigma_{\rho}(M_C),$$

and from Lemma 2.2 we have

$$\text{iso}_{\rho}(A) \cap \text{iso}_{\rho}(B) \cup (\text{iso}_{\rho}(A) \cap \rho_{\theta}(B)) \cup (\rho_{\theta}(A) \cap \text{iso}_{\rho}(B)) \subseteq \text{acc}_{\rho}(M_C).$$

it follows that

$$(\text{iso}_{\rho}(A) \cap \text{iso}_{\rho}(B)) \cup (\text{iso}_{\rho}(A) \cap \rho_{\theta}(B)) \cup (\rho_{\theta}(A) \cap \text{iso}_{\rho}(B)) \subseteq \text{iso}_{\rho}(M_C).$$

Consequently, $(\text{iso}_{\rho}(A) \cap \text{iso}_{\rho}(B)) \cup (\text{iso}_{\rho}(A) \cap \rho_{\theta}(B)) \cup (\rho_{\theta}(A) \cap \text{iso}_{\rho}(B)) = \text{iso}_{\rho}(M_C).$ but $\text{iso}_{\rho}(M_C) \cap (\text{acc}_{\rho}(A) \cup \text{acc}_{\rho}(B)) = \emptyset$.

From Lemma 2.2 it follows that

$$(\text{iso}_{\rho}(A) \cup \text{iso}_{\rho}(B)) \setminus \text{iso}_{\rho}(M_C) = (\text{iso}_{\rho}(A) \setminus \text{iso}_{\rho}(M_C)) \cup (\text{iso}_{\rho}(B) \setminus \text{iso}_{\rho}(M_C)) \subseteq \text{acc}_{\rho}(B) \cup \text{acc}_{\rho}(A).$$
These imply that
\[\sigma_b(A) \cup \sigma_b(B) = (\text{acc}\sigma_b(A) \cup \text{acc}\sigma_b(B)) \cup (\text{iso}\sigma_b(A) \cup \text{iso}\sigma_b(B)) \]
\[= \text{acc}\sigma_b(A) \cup \text{acc}\sigma_b(B) \cup \text{iso}\sigma_b(M_C) \cup (\text{iso}\sigma_b(A) \cup \text{iso}\sigma_b(B)) \setminus \text{iso}\sigma_b(M_C) \]
\[\subseteq (\text{acc}\sigma_b(A) \cup \text{acc}\sigma_b(B)) \cup \text{iso}\sigma_b(M_C) \]
\[\subseteq \text{acc}\sigma_b(M_C) \cup W_{\text{acc}\sigma_b} \cup \text{iso}\sigma_b(M_C). \]

However
\[\sigma_b(M_C) \cap W_{\text{acc}\sigma_b} = (\text{acc}\sigma_b(M_C) \cup \text{iso}\sigma_b(M_C)) \cap W_{\text{acc}\sigma_b} \]
\[= (\text{acc}\sigma_b(M_C) \cap W_{\text{acc}\sigma_b}) \cup (\text{iso}\sigma_b(M_C) \cap W_{\text{acc}\sigma_b}) \]
\[= \emptyset. \]

On the other hand, \(\sigma_b(A) \cup \sigma_b(B) = \sigma_b(M_C) \cup W_{\sigma_b} = (\text{acc}\sigma_b(M_C) \cup \text{iso}\sigma_b(M_C)) \cup W_{\sigma_b} \) and \(\sigma_b(M_C) \cap W_{\sigma_b} = \emptyset \), this highlight that \(W_{\sigma_b} = W_{\text{acc}\sigma_b}. \)

\[\square\]

REFERENCES

[1] Aiena P. Fredholm and Local Spectral Theory, with Application to Multiphers, Kluwer Academic, 2004.
[2] Benhida C., Zerouali E. H., Zguitti H. Spectra of upper triangular operator matrices, Proc. Am. Math. Soc. Vol 133, No.10, (2005), 3013-3020.
[3] X.H. Cao, M.Z. Guo, B. Meng. Drazin spectrum and Weyl’s theorem for operator matrices, J. Math. Anal. Appl, Vol. 64 (2016) 502-511.
[4] C. Pearcy. Topics in Operator Theory, CBMS Reg. Conf. Ser. Math, Amer. Math. Soc, vol 36, 1978.
[5] D. K. Li, X. Y. Zhang. Perturbation of spectra of \(2 \times 2 \) operator matrices, Proc. Amer. Math. Soc. Vol 128 (1994), 761-766.
[6] Han J.K, Lee H.Y, Lee W.Y. Invertible completions of \(2 \times 2 \) upper triangular operator matrices, Proc. Am. Math. Soc. Vol 128, No.1 (2000), 119-123.
[7] J. Koliba. A generalized Drazin inverse, Glasgow Math.J. Vol 38 (1996), 367-381.
[8] X.H. Cao, M.Z. Guo, B. Meng. Drazin spectrum and Weyl’s theorem for operator matrices, J. Math. Anal. Appl, Vol. 64 (2016) 502-511.
[9] W.Y. Lee. Weyl spectra of operator, Proc. Am. Math. Soc. Vol 129 (2001), 131-138.
[10] Aiena P. Fredholm and Local Spectral Theory, with Application to Multiphers, Kluwer Academic, 2004.
M. Karmouni
Cadi Ayyad University, Multidisciplinary Faculty, Safi, Morocco.
E-mail address: med89karmouni@gmail.com