Effect of Physiotherapeutic Interventions on Biomarkers of Neuropathic Pain: A Systematic Review of Preclinical Literature

Luis Matesanz-García,* † Annina B. Schmid, ‡ Julio Eduardo Cáceres-Pajuelo,§ Ferran Cuenca-Martínez, ¶ Alberto Arribas-Romano, * ‖ Yeray González-Zamorano, * ′ Carlos Goicoechea-García,** and Josué Fernández-Carnero†† †‡ †¹

*Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain
†Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
‡Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
§Kapalua Fisioterapia S.L., Madrid, Spain
¶Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
*Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
¶Department of Physiotherapy, University of Valencia, Valencia, Spain
*Grupo de Investigación de Neurorehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
††Departament Basic Health Sciences Rey Juan Carlos University, Madrid, Spain
‡‡Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
†¹Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, Madrid, Spain
†La Paz Hospital Institute for Health Research, IdiPAZ, Madrid, Spain

Abstract: The purpose of this systematic review was to evaluate the effects of physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain (PNP). The search was performed in Pubmed, Web of Science, EMBASE, Cochrane, Cinhal, Psycinfo, Scopus, Medline, and Science Direct. Studies evaluating any type of physiotherapy intervention for PNP (systemic or traumatic) were included. Eighty-one articles were included in this review. The most common PNP model was chronic constriction injury, and the most frequently studied biomarkers were related to neuro-immune processes. Exercise therapy and Electro-acupuncture were the 2 most frequently studied physiotherapy interventions while acupuncture and joint mobilization were less frequently examined. Most physiotherapeutic interventions modulated the expression of biomarkers related to neuropathic pain. Whereas the results seem promising; they have to be considered with caution due to the high risk of bias of included studies and high heterogeneity of the type and anatomical localization of biomarkers reported. The review protocol is registered on PROSPERO (CRD42019142878).
Introduction

Neuropathic pain (NP) is defined as pain caused by a lesion or a disease of the somatosensory system and is estimated to affect between 6.9 and 10% of the general population. Peripheral neuropathic pain is becoming more prevalent due to an aging world population, the rising impact of diabetes mellitus as well as higher survival rates of cancer and the implications of chemotherapeutic interventions. Management of NP remains challenging, as many patients do not experience adequate pain relief. Treatment of neuropathic pain usually focuses on symptom management. Nonsurgical interventions are recommended as first-line treatments for patients with neuropathic pain. Among the nonsurgical interventions, the Neuropathic Pain Special Interest Group of the International Association for the Study of Pain recommends pharmacology as first-line treatment. However, efficacy is limited with often unacceptable side effects.

Over the past decade, the role of Physiotherapy and physical activity has gained increasing interest in the treatment of neuropathic pain. Several studies have been published on the efficacy of physiotherapy on peripheral neuropathic pain resulting from systemic or focal nerve damage. In addition several guidelines propose active exercise as a treatment option for neuropathic pain. Although some studies suggest that physiotherapy provides significant improvements in pain, quality of life and disability in patients with peripheral neuropathies and neuropathic pain, other studies did not report similar findings and the mixed quality of studies prevents firm conclusions. Whereas human studies evaluating physiotherapy for neuropathic pain focus on improving pain, function and quality of life, the mechanisms by which physiotherapy interventions work remains poorly understood. A better understanding of the mechanisms of action of physiotherapy would help the selection of the most promising disease modulating physiotherapy interventions for future clinical trials.

The body of literature exploring the mechanisms of action of physiotherapeutic interventions using preclinical models has grown substantially over the past years. The main objective of this systematic review is therefore to summarize this literature by assessing the effect of physiotherapeutic interventions on biomarkers of neuropathic pain in pre-clinical models.

Methods

This systematic review was conducted following the guidelines of the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE), the Cochrane Handbook for Systematic Review of Intervention, the original guide “Preferred Reporting Items for Systematic Reviews, PRISMA” and the most recent update from 2021. The protocol has been prospectively registered in the International Prospective Register of Systematic Reviews (PROSPERO, CRD42019142878).

Literature Search

A systematic search was developed following the step-by-step guide suggested by Leenaars et al. The following databases were searched from inception to 13th January 2020 and updated in February 2022: MEDLINE EMBASE, CINAHL, SCOPUS, Web of Science, PubMed, Cochrane library and PsycINFO. The search strategy is described in Appendix 1.

Selection Criteria

Types of Studies

Original animal studies reporting the effect of physiotherapeutic interventions compared to a control group on peripheral neuropathic pain were included. Case studies, cross-over studies, and studies without a separate control group were excluded. Letters, reports, or abstracts from congresses were not included. Only articles with access to the full-text in English and Spanish language were included.

Animal Models

In-vivo animal models of neuropathic pain induced by both systemic (eg, diabetic or chemotherapy induced neuropathy) and focal nerve injury (eg, nerve ligation, crushing or transection) were included. We excluded studies where due to the model or validation tests (eg, sensory thresholds), we could not ascertain that the animals had developed neuropathic pain. We also excluded studies with animals with co-morbidities (eg, pre-ischemic physiologic conditions such as ischemic injury) and studies that evaluated the prevention rather than the treatment of already existing neuropathic pain.

Interventions

We included any physiotherapy intervention (eg, exercise, acupuncture, electro-acupuncture, joint mobilization, neural mobilization, physical agents),
independent of timings and dosage. Studies evaluating invasive treatments (eg, radiofrequency or spinal stimulation) or pharmacological treatments were excluded.

Comparator

The control population was defined as a cohort of animals in which the same neuropathic pain model was induced, but who did either receive no treatment or a sham intervention (eg, electroacupuncture without electrical stimulation). Studies comparing physiotherapy interventions to other substantive control interventions, such as pharmacology were excluded.

Outcome Measures

Studies were included if they reported on the effect of the physiotherapy interventions on biomarkers related to neuropathic pain. Studies were not included if they only reported behavioral outcomes. Examples of neuropathic pain biomarkers could include:

1. Immune system: Immune cell markers (eg, CD68, CD3), markers of immune competent cells (eg, OX-42, GFAP), cytokines/chemokines
2. Neurotrophins (eg, NGF)
3. Opioid system: Neuropeptides (eg, δ-endorphine) and receptors (eg, MOR)
4. Neurotransmitters (eg, substance P)
5. Ion channels (eg, TRPV1, TRPV8)

Study Selection

Before carrying out the article selection procedure, a search for duplicates was carried out with Mendeley. In a first phase, 2 independent reviewers (L.M and A.A.) assessed the eligibility of the studies based on information from title, abstract, and keywords. During the second phase, the full text was independently reviewed by both reviewers for eligibility. A third reviewer (C.G.) acted as a mediator when there were differences of opinion between the 2 reviewers, with the 3 reviewers reaching consensus.25

Data Extraction and Management

Data of included studies were extracted by 2 independent reviewers (L.M and A.A.). This involved registered bibliographic data, such as first author and year of publication, animal characteristics (species, age, weight, and gender), neuropathic pain model, treatment groups and intervention characteristics (physiotherapeutic intervention, timing of intervention, number of treatment sessions, duration, dose and location). We also extracted the type of biomarkers including in which tissue they were measured. We attempted to extract means, standard deviations, and P values for all biomarkers. If available, we recorded behavioral test outcomes to confirm the presence of neuropathic pain. Finally, both authors reached consensus on each item of extracted data. In case of disagreement between the authors, a third author (C.G.) made the final decision.

Methodological Quality Assessment

Risk of Bias Assessment

The risk of bias of each study was assessed using SYRCLE’s risk of bias tool26 scored by 2 independent reviewers (Y.G and E.C.). The tool provides 10 items. These categories are related to selection bias, performance bias, detection bias, attrition bias, information bias, and other biases. Half of these items match those in the tool developed by Cochrane. If there was any disagreement or discrepancy, it was resolved by a third reviewer (J.F.C.). As the tool does not include a specific cut-off, we considered studies to have low risk of bias if they were rated as high bias on less than half of the scoring criteria (<5 out of 10).

Reporting Quality

To evaluate the reporting quality of the studies we used the “Animals in research: reporting in vivo experiments” (ARRIVE) guidelines.27 The scale has 20 items. Each item refers to a specific section of an article (eg, title, abstract), and other items refer to specific elements of preclinical research (eg, allocation of the animals, housing and husbandry). The score was assessed by 2 independent reviewers (Y.G and E.C.). Any discrepancies were resolved by consensus with a third reviewer (F.C.M). Each ARRIVE item was graduated into 3 descriptive levels: complete (green) when all sub-items in the topic have been described; partial (yellow) when one or more of the sub-items have been described; and incomplete (red) when none of the sub-items have been described. As the tool does not include a cut-off, we considered articles to have good reporting quality if they reported at least 60% of items completely.

Qualitative Analysis

For the description of the results, the studies were grouped by type of intervention (eg, exercise, electroacupuncture) as well as type and location of reported biomarkers.

Due to the heterogeneity of reported biomarkers, anatomical measurement sites and measurement methods (eg, gene expression, immunohistochemistry, protein level), and the missing summary statistics in many studies, a meta-analysis could not be carried out. Instead, we report these findings with heat maps for each intervention and at each location (eg, spinal cord, dorsal root ganglia): color coding was assigned according to the frequency of studies reporting any change on individual biomarker expression (eg, increase, decrease or no change) after the intervention.
Results

Selection of the Studies

The database search retrieved a total of 5,038 articles. After reviewing the titles and abstracts, 179 studies were assessed for eligibility. Of those, 94 were excluded because they did not satisfy the eligibility criteria. This resulted in the inclusion of 85 full-text articles. The flow diagram is shown in Fig 1. The country that produced the most eligible studies is China (38.8%), followed by Brazil (20%) and Taiwan (16.4%). Italy, the United States and Japan contributed with 4.7% each, while Spain, South Korea and Turkey produced 3.5% of included studies. After the selection process, all articles were written in English. No articles in Spanish were found.

Risk of Bias Analysis

Only 2 of the 85 papers had a low risk of bias, obtaining a 5 per 10 score on the SYRCLE tool. The remaining articles had a high risk of bias (Table 1).

Figure 1. Study flow chart.
Reporting Quality According to ARRIVE

Fifty-eight (71.6%) out of 85 articles were rated as 60% or more “complete” according to the ARRIVE guidelines. Twenty-one (80.8%) of the 26 articles exploring the effect of exercise are of good quality. Thirty-three percent (1 out of 3) of the acupuncture and joint mobilization articles have low quality. Of the reports on electroacupuncture, 24.14% (7 of the 29) have low methodological quality. All articles on neural mobilization showed good methodological quality (5 out of 5). Of studies including physical agents, 57.9% (11 out of 19) were of good quality (Supplementary Table 1).

Characteristics of the Studies

Characteristics of the included articles, such as details of animal species, neuropathic pain models and treatment groups and interventions are shown in supplementary Table 2.

Most studies reported on electroacupuncture (34.1%) and exercise (30.5%) followed by physical agents (23.5%), neural mobilization (6.2%), and acupuncture and joint mobilization (2.5%).

The most widely used model of neuropathic pain was traumatic nerve injury (78.9%), with chronic constriction injury being the most studied model (55.8%) followed by sciatic nerve cut (13%). Other models reported were diabetic neuropathy, complex regional pain and chemotherapy induced neuropathy. 82.72% of the articles confirmed the presence of NeuP with behavioral tests before treatment started.

Rats were the most prevalent species studied (85.2%) followed by mice (14.8%). Only 1 report with rabbits was included. Whereas 92.5% of studies included only male animals, 7.4% of studies studied female animals. None of the studies included both sexes.

Biomarkers Type and Site Examined

The main biomarkers reported are related to the immune system (67.9%) followed by neurotrophins (27.2%), neurotransmitters (16%) and opioid pathways (7.4%). The anatomical sites where the biomarkers were measured included spinal cord (53.0% of studies), followed by the peripheral nerve and dorsal root ganglia (both 30.9%), the brain (13.6%) and blood (4.9%) (Table 2).

Qualitative Analysis

Supplementary Table 1 contain heat maps reflecting the frequency of studies showing specific directions of effects (up vs downregulation vs no change) of each physiotherapy intervention on biomarkers of neuropathic pain.

Exercise

Two types of exercises were investigated in the studies, swimming, and treadmill running.
Table 2. Characteristics and Findings of the Included Studies in Relation to Biomarkers

Reference	Groups	Anatomical Level	Biomarkers	Main Results	P value
Chang, 2013	NC	POD 7	NF-200-stained axons (Quantification of axonal regeneration)	Increased by acupuncture	P < .05
	NC + acupuncture	Sciatic nerve DRG	% number of labelled neurons (Quantification of Hoochst-stained nuclei Cx2)	No difference	?
Wang, 2009	CCI + acupuncture	POD 15 blood	IL-1B	Decrease CCI+acupuncture	P < .01
Tang, 2020	Control serum	POD? Peripheral nerves DRG	IL-1b	Decrease by EA	P < .05
	Diabetic neuropathy	POD 2x4	IL-6	Decrease by EA	P < .05
	Diabetic neuropathy + acupuncture	POD 14 Spinal cord	P2 x 4	Decrease by EA	P < .001
Cha, 2010	NT NT + EA	POD 7 Spinal cord	Neuronal nitric oxide synthase-positive neurons	Decrease by EA in Rexed area I–II but no difference in Rexed area III–V and X	P < .05
Cha, 2012	NT NT + EA	POD 2 Peripheral nerves DRG	IL-1b	Decrease by EA	P < .05
	Diabetic neuropathy	POD 14 21 and 28 DRG	GDNF (WB)	Increase by EA at day 14	P < .05
Dong, 2005(a)	CCI CCI + EA	POD 14, 21 and 28 DRG	GDNF (IR)	Increase by EA at day 21, 28	P < .01
		Spinal cord	GDNF (PCR)	Increase by EA at day 21	P < .05
			GFWR-1 (WB)	Increase by EA at day 28	P < .01
			GFWR-1 (PCR)	Increase by EA at days 14 and 21	P < .001
			GDNF (PCR)	Increase by EA at day 28	P < .01
			No difference in Rexed area II but	Decrease by EA at day 14, 21 and 28	P < .001
Dong, 2005(b)	CCI CCI + EA	POD 14, 21 and 28 DRG	SOM (IR)	Increase by EA at days 14 and 21	P < .05
		Spinal cord	SOM (PCR)	Increase by EA at day 14	P < .01
			No difference in Rexed area II but	Decrease by EA at day 14, 21 and 28	P < .001
Liang, 2016	CCI	POD 14 21 and 28 DRG	p-p38 MAPK	Decreased by EA	P < .01
	CCI + sham EA	Laminae II of ipsilateral Spinal cord dorsal horn (SCDH)	Decreased by EA	P < .05	
			OX-42	Decreased by EA	P < .01
Liu, 2019	CCI	POD 8	TNF-a	Decreased by EA	P < .01
	CCI + EA	Spinal cord	IL-1B	Decreased by EA	P < .001
			IL-6	Decreased by EA	P < .001
Shao, 2015	CCI	POD 7 Spinal cord Brain (anterior cingulate cortex)	p-ERK GFAP	Decrease (smA = MA)	P < .01
Shao, 2015	CCI + sham EA		p-ERK OX42	Decrease (smA = MA)	P < .01
Sun, 2004	CCI + PES CCI + needling	POD 48 L5 spinal superficial laminae Hl	NMDA (NR1)	Decrease PES group	P < .001
Tu, 2015	CCI	POD 14 ipsilateral L4-6	NT-3	Increase EA	P < .001
	CCI + EA	DRGs L4-L5 lumbar spinal cords, dorsal horn	Decrease EA	P < .001	
			IL-1F	Decrease EA	P = .001
			GFAP	Decrease EA	P = .003
			OX-42	Decrease EA	P = .003
Tu, 2018	CCI	POD 14 Spinal Cord L4-L6	BDNF	Decrease EA	P < .001
Wang, 2014	CCI	POD 14 L4-L6 Dorsal Root	TrkB	Decrease EA	P < .001
	CCI + controlateral EA	Ganglia ipsilateral contralateral (P2 x 3)	ATP	Decrease EA	P < .001
Wang, 2016	CCI + sham EA CCI + EA	POD 14 L4-L5 spinal cord (dorsal horn)	IL-8	Decrease EA	P < .05
			GFAP	decrease EA	P < .05
			TNF-a	EA no difference	P < .05
			IL-6	decrease EA	P < .05
			BDNF	decrease EA	P < .05
			NGF	decrease EA	P < .05

(continued on next page)
Table 2. Continued

Reference	Groups	Anatomical Level	Biomarkers	Main Results	P Value	
Wang, 2018	CCI	POD 21 Spinal Cord L4-L6	NT3	decrease EA	< .05	
	CCI + EA		NT4	decrease EA	< .05	
			a7nAChR, IL-1B	Increase EA	< .01	
			Decrease EA	< .001		
Xia, 2019	CCI	POD 21 L4-L6	HMGB1	Decrease EA	< .01	
	CCI + EA		TLR4	Decrease EA	< .001	
			CD1	Suppressed EA	< .01	
			MyD88	Suppressed EA	< .05	
			NF-kB	Inhibited EA	< .05	
Xu, 2016	CCI	POD 14 L4-L5 Spinal cord ipsilateral	P2 × 7R IL-1B, IL-18	Decrease EA	< .0001	
	CCI + EA		Decrease EA	< .026		
			Decrease EA	< .023		
Xue, 2015	CCI	POD ? Spinal cord	BDNF	Increase CCI + EA	< .05	
	CCI + EA		P2 × 4	No significant difference		
Bobinsky, 2011	CCI + 3 EA	POD ? Blood	IL-1B	Decrease 12 EA	< .05	
			IL-2	No significant difference		
			IL-12	No significant difference CCI		
			INF-y	12 EA reduce to normal	< .05	
			IL-4 IL-10	No significant upregulated	< .05	
		Hypothalamus	beta-endorphin	EA 12 EA upregulated	< .05	
			TGF-B beta-endorphin	All EA upregulated	< .05	
			EA	All EA upregulated	< .05	
			EA	EA decrease	LEA P = .045	
			EA	EA decrease	HEA P = .047	
			EA	EA decrease	Lea versus Hea P = .05 to LEA	
Reference	Groups	Anatomical Level	Biomarkers	Main Results	P Value	
------------	--------	-----------------	------------	--------------	---------	
Huang, 2017	CCI	PODs 14 and 28	Sciatic nerve	Tnf-a, Il-6	Decreased by exercise	P < .05
				Il-10	Increased by exercise	P < .05
				Tnf-a (western blot)	Increased by exercise	P < .05
				Tnf-a (western blot)	Decreased by exercise	P < .05
Hung, 2014	CCI + TU0	PODs 14 or 28	Spinal cord (L4−L5)	Tnf-a, Il-6	Decreased by exercise	P < .05
	CCI + TU			Il-10	Increased by exercise	P < .05
	CCI + TE			Il-10	Decreased by exercise	P < .05
	CCI + TU0 + TE			Il-10	Increased by exercise	P < .05
	CCI + TU + TE			Il-10	Decreased by exercise	P < .05

(continued on next page)
Reference	Groups	Anatomical Level	Biomarkers	Main Results	P value
Kami, 2016a	CCI + sedentary	Lumbar spinal cord (L4-5), superficial dorsal horns	GABA, GAD65/67	Increased by running	< .01
Kami, 2016b	CCypo-sedentary	Lumbar spinal cord (L4-5), superficial dorsal horns	HDAC1 + nuclei, HDAC1+GFAP+ astrocytes, HDAC1+CD11b+ microglia, H3K9ac+CD11b+ microglia, CD11b+	Decreased by running	< .01
Korb 2010	NT + trained	SC, lumbosacral ventral horn, SC, lumbosacral dorsal horn, superficial laminae	Serotonin (5-HT) immunoreactivity (lumbosacral ventral horn), Serotonin immunoreactivity (superficial laminae of lumbosacral SC), Serotonin immunoreactivity (magnus raphe nucleus), Serotonin immunoreactivity (dorsal raphe nucleus), Citrate synthase enzyme activity (soleus muscle)	Increased by training	< .05
López-Alvarez, 2016	CCI + ITR1	L3-L5 dorsal root ganglia	NGF (W)	8 days: Decreased by ITR1	< .001
López-Alvarez, 2018	SNTR + ITR	Spinal Cord DH lamiae I-II. Brain. (periaqueductal grey matter (PAG) the locus coeruleus (LC) the dorsal raphe (DRN) the raphe magnus nucleus (RM))		ipsilateral horn: Increased by ITR	< .001
Martins, 2017	NC + eccentric exercise 6 m/min	63 sciatic nerve tissues	IL-1β	Muscle: Decreased by Exercise	< .03

(continued on next page)
Table 2. Continued

Reference	Groups	Anatomical Level	Biomarkers	Main Results	P value
Sumizono, 2018	CCI	POO 21 and 35 Dorsal HORN laminae I-III	BDNF	Nerve: No difference	P < .01
	CCI + high-frequency exercise		MOR	Muscle: No difference	P < .05
	CCI + low-frequency exercise		GFAP Bim-1	Decrease all exercise 5 w	P < .05
			B-endorphin met-enkephalin	Decrease all exercise 5 w	P < .05
				Increase all exercise 3 w 5 w	P < .05
Tian, 2018	NT	midbrain PAG	IL-4	Nerve: Increased by exercise	
	NT + swimming		IL-1Ra	Muscle: No difference	
				Increase all exercise 3 w 5 w	
		SC L4–L6	IGF-1	Nerve: No difference	P < .05
				No difference	
				No difference	
				No difference	
				No difference	
				No difference	
				No difference	
Tsai, 2017	CCI	POD 26 sciatic nerve	IL-10 IL-1 IL-6 TNF-a	Increase 8% treadmill	P < .05
	CCI + 0%-incline treadmill			Decrease 8% treadmill	P < .01
	CCI + 8%-incline treadmill			Decrease 8% treadmill	P < .05
Wang, 2016	NC	POO 31 Tibia	Substance P	Decrease by exercise and exercise + EA	P < .05
	NC + Ex NC + EX + EA			Decrease exercise + EA versus exercise	P < .05
Martins, 2011	NC + Anesthesia NC + AjM	POO 35 Spinal cord	GFAP	Decrease by AjM	P < .01
			CD11b/c	Decrease by AjM (compared to anesthesia)	P < .05
				Decrease by AjM (compared to anesthesia)	P < .05
				Decrease by AjM	P < .05
Song, 2016	CCI	POD 28 Dorsal Root Ganglia neurons L4-L5	c-FOS IL-10 IL-1IL-18, IL-10, Tonfa DRG IL-18 (DRG and SC) TNF-a (DRG and SC) IL-10 (SC)	Decrease de-CCD + SMT	P < .01
	de-CCI + ASMT	Blood Spinal cord L3-L6		Suppressed de-CCD + SMT	P < .01
				SM increase	P < .05
				SM increase	P < .05
da Silva, 2015	CCI	POD 24 Sciatic nerve	NGF MPZ	Increase by NM	P < .01
Giardini, 2017	CCI + NM	Thalamus	GFAP	No difference	P > .05
	CCI + NM		OX-42	No difference	P > .05
		Midbrain	GFAP	No difference	P > .05
			OX-42	No difference	P > .05
		VPL and PAG	GFAP	No difference	P > .05
			OX42		
			BDNF	No difference	P > .05
Santos, 2012	CCI	POD 24 Dorsal root ganglia	NGF	Decrease NM	P < .05
	CCI + NM	Spinal cord	GFAP		
Santos, 2018	CCI	POD 24 Dorsal root ganglia	Substance P expression of TRPV1 protein expression	Decrease NM	P < .001
	CCI + NM	L4-L6	MOR protein expression	Decrease NM	P < .001
			DOR protein expression	Decrease NM	P < .001
			KOR b-actin	Not observe immunoreactivity of these receptors	
				not observe immunoreactivity of these receptors	
				No differences were observed	

(continued on next page)
Reference	Groups	Anatomical Level	Biomarkers	Main Results	P Value
Zhu, 2017	diabetes + neural mobilization	POD 31 Sciatic nerve left (no treatment) Dorsal root ganglion	IL-1B TNF-a IL-1B TNF-a	No significant different MN decrease versus contralateral side MN decrease versus contralateral side	P = .023 P = .004
Chen, 2015	CCI + TU-0 CCI + TU-0.25 CCI + TU-0.5 CCI + TU-1	POD 28 sciatic nerve	TNU-a IL-6 NK-1R substance	TU-1 decrease TU-1 decrease All TU decrease All TU decrease	P < .01 P < .05 P < .05 P < .05
Cidral, 2013	NC + LEDT	POD 13 Spinal cord Sciatic nerve	TNF-a IL-1beta IL-1beta	Decrease by LEDT No difference Decrease by LEDT No difference	P < .05
Cioato, 2016	CCI + sham IDCS CCI + IDCS	POD 24 and 29 Cortex Spinal cord Brainstem	TNF-a IL-1beta IL-10	Increase by IDCS at day 29 but not at 24 No difference No difference No difference	P < .05 P < .05 P < .05
Filho, 2016	CCI + Sham IDCS CCI + IDCS	POD 24 or 29 Serum Spinal cord Cortex Brainstem	BDNF BDNF BDNF	Decrease by IDCS at day 29 but not at 24 No difference No difference No difference	P < .05 P < .05 P < .05
Giuliani, 2004	CCI + laser	POD? Laminae I and II of the dorsal horn of spinal cord (L3-L5)	Enkephalin mRNA	No difference	
Hsieh, 2012	CCI + sham	POD 14 Sciatic nerve	H&E study (nuclei percentage) ED1 immunoreactivity TNF-a IL-1beta Cytokine HIF-1a-positive cells (immunoreactivity) HIF-1a (protein levels, immunoblotting) VEGF positive cells (immunoreactivity) NGF positive cells (immunoreactivity) S100 positive cells (immunoreactivity) VEGF (protein levels, immunoblotting) NGF (protein levels, immunoblotting)	Decreased by laser Increased by laser	P < .05 P < .05 P < .05 P < .0001 P < .006 P < .002 P < .002
Hsieh, 2017	Oxaliplatin + TUS Oxaliplatin + sham TUS	POD 24 L2−L6 DRG. Superficial laminae (dorsal horn) in lumbar spinal cord (at segments L2−L6)	TRPM8 TRPV1 SP-like immunoreactivity	Decreased by TUS No difference	P < .05 P > .05
Lin, 2015	CCI + HFS CCI + sham PEMF	POD 7 affected sciatic nerve	TNF-a	No difference	
Liu, 2017	CCI + PEMF	POD 14 Sciatic nerve Dorsal root ganglion Spinal cord	HCN1 mRNA HCN2 mRNA	Decreased by TENS Decreased by TENS Decreased by TENS	P < .05
Matsuo, 2014.	CCI + TENS 1 w CCI + TENS 2 w	POD 8 spinal cord dorsal horn	Iba1 immunoreactivity BrdU-positive/Iba1-positive GFAP immunoreactivity		(continued on next page)
Reference	Groups	Anatomical Level	Biomarkers	Main Results	P value
---	---	---	---	---	---
Mert, 2015a	sham PMF (SPMF)	POD 28-35 sciatic nerve tissues	p-p38 in microglia, PKC-γ, p-CREB, MAP kinases (p-p38, p-ERK1/2, p-p65), proinflammatory cytokines (IL-1, TNF-α, IL-6), opioid receptors (μOR and OR)	Decreased by TENS, Decreased by TENS, Decreased by TENS, Decreased by TENS, Increased by TENS	P < .05
	PMF-AD				
	PMF-AW				
Mert, 2017	CCI + PMF	POD: 35 sciatic nerve tissues	IL-1b, IL-6, IL-10	Decreased by PMF, Increased by PMF, Decreased by PMF, Increased by PMF	P < .05
	CCI + PMF				
Somers, 2003	CCI + TENS	POD 12 Spinal cord	Aspartate, Glutamate, GABA, Aspartate, Glutamate, GABA	Decrease by TENS, Increase by TENS, Decrease by TENS, Increase by TENS	P < .05
Somers, 2009	CCI + high frequency TENS	POD 7 Dorsal Horn	Aspartate	Increase randomly	P < .001
	contralateral				
	CCI + low-frequency TENS				
	CCI + randomly TENS				
Su, 2018	NC + High-frequency immediately(HFL)	POD 4 wk after treatments	S-100, Neurofilament (NF), TNF-α, Synaptophysin, Synaptophysin	Increased by HFI and HFL versus NC and LFI, Increased by HFI and HFL versus NC and LFI	P < .01
	NC + High-frequency 7 days	The distal end of the nerve			P < .01
	after(HFL)	Synaptophysin			P < .01
	NC + Low-frequency immediately(LFI)	Dorsal root ganglion	Synaptophysin	Increased by HFI versus NC and HFL	P < .01
	NC + Low-frequency 7 days	Somatosensory cortex and hippocampus		Increased by HFI versus NC and HFL	P < .01
	after (HFL)			Increased by HFI versus NC and HFL	P < .01
Yang, 2018	CCI + sham-rTMS group	POD 13 L4-L6 Dorsal Root Ganglia ipsilateral Dorsal horn L4-V	nNOS/β-actin	CCI + 20 Hz decrease, CCI + 20 Hz decrease	P < .01
	CCI + 1 Hz group				P < .01
	CCI + 20 Hz group				
Yueh-Ling, 2012	CCI and treated with laser CCI	POD sciatic nerve	IL-1B, TNF-α, HIF-1a, VEGF, NFG	Decrease after laser, Decrease after laser, Decrease after laser, Increase in laser	P < .001
	and treated with sham irradiation				
Wang, 2020	Sham Injury + EA Injury	Spinal cord	IRF8, CD11b, CK3CR, CK3R	Decreased, Decreased, Decreased	P < .001
Li, 2019	CIPN	POD 14 L4−6 DRGs	TRPV1 (normalized fluorescence intensity [%]), TRPV1 (Western blotting), TRPV1 (% of TRPV1 + Neuron [among neurons])	Decreased by EA versus sham EA, Decreased by EA versus sham EA, Decreased by EA versus sham EA, Decreased by EA versus sham EA	P < .01
	CIPN + EA				P < .01
	CIPN + sham EA				
Hsieh, 2017	Oxaliplatin + TUS	POD 24 L2−L6 DRG.	TRPMB, TRPV1, SP-like immunoreactivity	Decreased by TUS, No difference	P < .05
	Oxaliplatin + shamTUS				
Zhao, 2020	Control group	Spinal cord Serum	GFAP, GFAP, TNF-α, IL-1β	Decreased, Decreased, Decreased	P < .05
	PTX + EA group				P < .01
	PTX + sham EA group				P < .01

(continued on next page)
Reference	Groups	Anatomical Level	Biomarkers	Main Results	P value
Belmonte, 2018	CPIP CPIP + Exercise continuous CPIP + Exercise interval protocol	POD 11 Spinal cord	TNF-alfa IL-1b, IL-6, IL-10 ERK1/2 AKT1/2/3	Decrease by exercise continuous protocol and exercise interval protocol	P < .05
				No difference	P > .05
				Decrease by exercise continuous protocol and exercise interval protocol	P < .05
				Increase by exercise continuous protocol and exercise interval protocol	P < .05
Manni, 2011.	12 STZ group 12 STZ group + EA	POD 28 skin DRG	NGF skin NGF Spinal Cord substance P (SP) skin substance P (SP) spinal cord NGF receptor TrkA skin pTyr496-TrkA transient receptor potential vanilloid 1 (TRPV1) skin spinal TrkA pTyr496-TrkA in the spinal cord TRPV1 in spinal cord GABA−GAD-67	No difference	P < .05
Nori, 2013.	DN DN + EA	POD:28 DRG	NGF Protein. NGF mRNA production. NGF Receptor: TrkA mRNA TrkA protein pTyr496-TrkA mRNA-p75NTR p75NTR protein ERK1-2 Akt JNKp38 phospho-lkB phosphorylation of the lkB-α TRPV-1 phosphophorylated p38	Decreased by EA	P < .05
Shi, 2013	Diabetes diabetes + EA	POD 30 Dorsal root ganglia L4-L5	CBS (cystathionine b synthase) p65 b-actin NF-κB	Decrease	P < .05
Y-W. Chen, 2013	Sedentary + DN Exercise + DN	POD 14, 28 or 56 Spinal cord Peripheral nerves	Hsp72 TNF-alfa IL-6 Hsp72 TNF-alfa IL-6	Increase by exercise at days 14 and 28	P < .0051
Y-W. Chen, 2015	Sedentary + DN Exercise + DN	POD 14 and 28 Sciatic nerve	IL-10 IL-6 TNF-α MDA	Decrease by exercise at days 14 and 28	P < .01
Na, 2018.	DN DN + EX	POD 35 DRG	IL-1b IL-6 TNF-α IL1R IL6 TRF1	Decrease by exercise	P < .05
Thakur, 2016	1 diabetes 2 diabetic + exercise STZ-induced diabetic L-PMF-treated diabetic H-PMF-treated diabetic	POD 42 Spinal cord dorsal horn	IL-18 macrophage (CD11b, CD68) CGRP	Decrease exercise	P < .05
Mert, 2015b		POD: 35 Spinal cord sciatic nerve tissues	TNF-alpha	Decrease exercise Preservation exercise	P < .001

(continued on next page)
Swimming was one of the two activities studied by 4 out of 26 studies (15.4%). The dose for swimming exercise ranged from 40 to 60 minutes and was performed on 5 days per week. Swimming reduced the concentration of proinflammatory cytokines in the injured nerve tissue, as well as the concentration of neurotrophins in spinal cord, dorsal root ganglia, and peripheral nerve tissue in the medium term. Only 1 article found no post-treatment differences in BDNF concentrations. One paper found an increase of GAP-43 in the peripheral nerve.

Treadmill aerobic training was the most used by the studies (23 out of 26 studies, 88.5%), both in isolation and using it against other therapies. The dose of treadmill running ranged from 60 minutes to exhaustion and was performed between 3 and 5 days per week over a period of 3 to 8 weeks. Treadmill running was able to reduce proinflammatory cytokines and increase anti-inflammatory cytokines mainly in peripheral nerves, with changes in DRG and spinal cord also reported. Only one article found increased proinflammatory cytokines in nerve and dorsal horn of the spinal cord. Only 1 study found no difference in the sub-group “other inflammatory markers” of the immune system. The concentration of neurotrophins was lowered after treadmill exercise. One study reported increased expression of at least one of these biomarkers when treadmill running was combined with electrical stimulation. Treadmill running was also effective in reducing the activation of glial cells in DRG and spinal cord. Only 1 article did not find changes in the spinal cord after intervention. In that experiment, the animals ran until exhaustion, while in the others it was of a fixed duration. Studies reported a direct relationship between increased expression of inhibitory neurotransmitters, such as serotonin in the brain and spinal cord and exposure to treadmill running. Only 1 study found a decrease in neurotrophin expression in the peripheral nerve. In contrast, the effect on excitatory neurotransmitters was only evaluated in 2 articles, with mixed results, however different neurotransmitters were measured (GABA and Substance P). Two articles reported a decline in the expression of inflammatory markers in the dorsal horn.

Neural Mobilization

Five articles studied neural mobilization. The most frequently reported dose was 20 oscillations per minute for 2 minutes and 25 seconds of rest, for 10 minutes for a total of 10 sessions. Only 1 showed no difference in posttreatment biomarkers of neuropathic pain. Whereas Giardini et al. evaluated changes in the thalamus, midbrain and PAG, the other studies examined biomarkers in SCDH, DRG, and sciatic nerve. Neural mobilization consistently reduced the concentration of neurotrophic factors and the expression of substance P, TRPV1, and MOR in the spinal cord. One article reported an increased concentration of NGF in the sciatic nerve. Whereas most studies used the chronic constriction model, one used a diabetic neuropathy model and reported a decrease in intraneural proinflammatory cytokines on the treated side.

Joint Mobilization

Two studies evaluated the effect of joint mobilization on biomarkers of neuropathic pain. The dose for joint mobilization ranged from 1 series of 10 repetitions to 3
minutes series with 30 seconds’ rest. The frequency ranged from every 2 days to 5 consecutive days for a total of 12 to 15 days. Joint mobilization consistently reduced activation of the immune system (glial cells mainly) in the SCDH.\(^7\) Their effect on cytokine expression revealed controversial results; while the concentration of cytokines in the DRG remained the same after treatment, only anti-inflammatory cytokines increased their expression in the spinal cord.\(^5\) One of the 2 studies used rhythmic mobilization techniques\(^5\) and the other high-speed manipulations.\(^5\) The place of application was different as well as the dose, so the results must be interpreted with caution.

Physical Agents

Nineteen studies investigated a range of physical agents including laser, therapeutic ultrasound, and transcranial direct current stimulation. The dose for ultrasound most frequently reported was 1 MHz 0.5 to 1 w/cm\(^2\) during 5 minutes. Therapeutic ultrasound reduced the expression of substance P in both studies\(^59,60\). Further, a reduction of cytokines (tumor necrosis factor [TNF] and interleukin-6 [IL-6])\(^59\) and TRPV1 expression\(^60\) was apparent at sciatic nerve and dorsal root ganglia respectively.

Of the 5 articles including laser therapy, only 1 measured the changes generated on enkephalines\(^61\) with no changes after treatment. Three papers report a decrease of cytokine concentration.\(^62,63\) All laser treatments increased the concentration of NGF in the sciatic nerve regardless of the time of intervention or parameters applied.\(^64,65\) Cidral et al\(^66\) found a decrease in the concentration of TNF but not IL-1\(\beta\) in the SC and the sciatic nerve while Hsieh et al\(^67\) reported a decrease of several cytokines measured in the sciatic nerve. This difference could be due to the different intensities applied in the studies. Cidral et al\(^62\) used 80 mW/cm\(^2\) and 2.5 J/cm\(^2\) versus 30 mW/cm\(^2\) and 9 J/cm\(^2\) used by Hsieh et al\(^65\) in both studies.

Two studies investigated tDCS. tDCS increased TNF-a concentrations in the brain and spinal cord, whereas IL-1\(\beta\) and IL-10 only changed significantly in the spinal cord, with a decreasing concentration of both cytokines.\(^66\) tDCS also reduced the activation of glial cells in spinal cord dorsal horn\(^67\) and decreased BDNF concentrations both in the central nervous system and in blood serum.\(^68\)

Three studies reported on the effect of TENS therapy. TENS could not reduce proinflammatory cytokines (TNF-a) in the sciatic nerve,\(^69\) in fact 1 study reported an increase in that biomarker.\(^70\) However, TENS did reduce the concentration of proinflammatory cytokines in the spinal cord.\(^71\) The glial activity in the spinal cord was reduced after the application of TENS, and the expression of opioid receptors increased in the same location.\(^71\) Contradictory results were reported regarding the presence of excitatory neurotransmitters in the spinal cord.\(^72\)

The pulse electromagnetic field was consistent in modulating the cytokine concentrations, in both the spinal cord and the peripheral nerve tissue that caused the injury.\(^73,74\)

Electro-Acupuncture

Electroacupuncture reduced the concentrations of proinflammatory cytokines. The doses reported ranged from 1 to 2 mA, fluctuating between 2 and 100 Hz, 1.05 to 2.85 milli seconds for 30 minutes. Most of the changes seem to occur in the dorsal horn\(^75-80\) although changes in the nerve,\(^81,82\) blood,\(^83\) and DRG\(^84\) were also reported. In contrast, four articles did not find changes in cytokine concentrations following electroacupuncture.\(^81,83,85,76\)

The effect of electroacupuncture reported on neurotrophins has been mixed. Articles reported decreased concentrations of nerve growth factors (NGF and BDNF) in dorsal root ganglia and spinal cord dorsal horn\(^86,87,76,88\) while others obtained significant increases in the same anatomical sites for NGF\(^84\), BDNF,\(^89\) and GDNF.\(^90\) These differences may be due to the starting times and duration of treatment. It seems that most of the articles that reported a decreased concentration\(^86,87,76,88\) had a treatment duration greater or equal to 2 weeks. In contrast those that increased pain markers expression only treated the animals for 1 week.\(^90,93\)

Acupuncture

The three acupuncture articles included were very heterogeneous. Wang et al\(^91\) and Tang et al\(^92\) found a significant decrease in the concentrations of cytokines. Tang et al does not report the first day of intervention. While Wang et al performed the treatment 1 day after surgery and for a period of 14 days,\(^91\) Chang et al started the intervention 24 days after surgery, during a period of 5 days.\(^93\) The location of biomarker measurement were different; Wang et al measured cytokines in the blood meanwhile Tang et al measured in the sciatic nerve, Chang et al measured Cdc2 and P-vim in the sciatic nerve and DRG with no difference after treatment.\(^93\) Tang performed the treatment for 20 minutes in contrast to the others two articles, that did the same 30-minute daily dose was applied, but the duration of treatment varied between 1 and 2 weeks.

Discussion

This systematic review summarizes the results of 85 studies that report the influence of different types of physiotherapy modalities on biomarkers of peripheral neuropathic pain in pre-clinical models. The 2 most studied interventions were electro-acupuncture and exercise, with neural mobilization, joint mobilization and physical agents being less commonly studied. The most frequently measured biomarker group was related to the neuro-immune system, specifically cytokines. The dorsal horn is the anatomical site where biomarkers were measured most frequently. Most studies, despite their heterogeneous nature, report significant post-intervention changes of the biomarkers of neuropathic pain. Our findings indicate that physiotherapy interventions downregulate the expression of pronociceptive
(eg. immune system or neurotrophins) markers and upregulate the expression of markers that dampen neuropathic pain (eg. opioid system). However, risk of bias was high in 97.5% of studies.

Our findings about the most common model is similar to previous reviews about preclinical models of NP were traumatic injury (78.9%) is the most common.94 Although neuropathic pain induced by chemotherapy85 or diabetic painful neuropathy are growing problems,96 the models of neuropathic pain induced by chemotherapy and diabetic neuropathy have not been used very often in preclinical physiotherapy studies (2.5% and 11.1%, respectively).

Effects of Physiotherapy

Exercise was one of the main interventions studied, specifically swimming and running (treadmill). It is well established that aerobic exercise induces analgesic effects in preclinical models.97 Our results demonstrate that aerobic exercise has promising effects on biomarker modulation in neuropathic pain. There seems to be a consistent effect of aerobic exercise on the modulation of markers of neuro-inflammation in the peripheral and central nervous system. Other biomarkers, such as neurotrophins and neurotransmitters are also modulated by exercise. Of note, studies which did not demonstrate an effect on biomarkers used exercise duration of less than 40 minutes,29,31 perhaps insufficient time to generate changes. In contrast, studies showing an effect on biomarkers included sessions with a duration between 60 and 90 minutes.3,30 For treadmill running, only 1 article did not find changes after intervention.46 In this experiment the animals ran until exhaustion,46 while in the others it was of a fixed duration.39,45,46,42,47 It could thus be speculated that reaching exhaustion may counteract the positive effects of physical activity in regulating glial cell activity.

Neural Mobilizations have shown efficacy in human trials of patients with referred leg or arm pain of neural origin,90 however their exact mechanisms of action remain speculative. In line with findings in animal models,54,56 neural mobilizations improve mechanical hyperalgesia in patients after neural mobilization intervention.99 Our findings indicate that neural mobilizations may exert their beneficial effect through modulating neuroinflammation, opioid system, and neurotrophins. The ability of neural mobilization to disperse fluids has been reported with cadaveric models.100 In patients, there is also some indication that neuroinflammation may be a target. Schmid et al reported a reduction of intraneural edema after 1 week of neural mobilization in patients with carpal tunnel syndrome.101

Although Joint mobilization techniques are often used, they seem to have only short term analgesic effects in humans.102,103 In addition they are not usually used for neuropathic pain, but for nociceptive pain.104,105 Both preclinical studies included in our systematic review reported a decrease of mechanical hyperalgesia after the interventions.27,55 Similarly, Krouwel et al reported an increase on the pain pressure thresholds in humans after a lumbar joint mobilization.106,103 Interestingly, our data indicate that joint mobilization may exert their beneficial effects through modulation of glial cells and cytokines. However, only two articles were included, both using different techniques which make it difficult to draw firm conclusions.

Physical agents are often used clinically as analgesic treatments. However, their clinical benefit remains contradictory. For instance, a Cochrane review about the use of TENS in adults with neuropathic pain could not draw firm conclusions whether TENS is effective for pain control due to the very low quality of the evidence.107 Another review from Akyuz et al conclude that physical modalities such as ultrasound or laser are not effective for the treatment of neuropathic pain when applied alone.108 Our data suggest that physical agents mainly seems to modulate neuropathic pain through regulation of neuroinflammation, such as a downregulation of TNF and IL-1β which are associated with the maintenance of neuropathic pain after peripheral injury.109 Nevertheless, physical agents could also modulate other biomarkers, for instance neurotrophins or neurotransmitters.

Electroacupuncture has shown some evidence in reducing pain in patients with osteoarthritis mediated by β-endorphins.110 Human evidence for the effect of electroacupuncture on neuropathic pain remains controversial. Penza et al did not find pain improvements following electroacupuncture treatment in patients with neuropathic pain111 whereas Galantino et al reported some improvement in patients with human immunodeficiency virus-related peripheral neuropathy.112 In both reports the number of patients included was small, so these results remain preliminary. Our findings indicate that electroacupuncture may exert beneficial effects through modulating neuroinflammation, regulating neurotrophins and neurotransmitters as well as decreasing ATP and ion channels, such as TRPV1.113-115, 85,76,116,84, 117, 79,118 Another possible mechanism is that this type of electrical stimulation may be activating the endogenous opioid system by the release of enkephalins and b-endorphins.119

As we only identified three articles about acupuncture, it is difficult to hypothesize about its mechanisms of action. Preliminary data suggest that similar to electro-acupuncture this technique might modulate the activation of the neuro-immune system93,92,91 but further research is needed. In line with our preclinical findings, a Cochrane review about the use of acupuncture in humans with any type of neuropathic pain reports limited evidence.120 Another review about acupuncture and its effect on pain could also not establish a clear relationship between the technique and the analgesics effects in humans.121

Implications for Humans

The importance of specific biomarkers to maintain neuropathic pain is not only clear in preclinical models,122 but also in humans.123 Our findings suggest that Physiotherapy can modulate biomarkers related to neuropathic pain in preclinical models. Although the most studied biomarkers related to the immune system and
neurotrophins, this review identified other targets, such as neurotransmitters or the opioid system. In recent years, several publications have reported the possible relationship between the presence of neuropathic pain and some of the reported biomarkers of humans. For instance, neuroinflammation is thought to play a crucial role in the generation and maintenance of neuropathic pain in preclinical models. Similarly, there is a growing body of evidence confirming the importance of neuroinflammation in neuropathic pain in humans. Inflammation in the pathophysiology of neuropathic pain. This is apparent both in patients with focal nerve injuries, alteration has been reported in patients with different tor127 and also in humans, high levels of NGF have been associated with pain. For Instance, NGF acts as a pathogenic pain mediator and the spinal cord correlate with neuropathic pain behaviour. The dysfunction of the opioid system has been described in preclinical and in humans with NP. And other indirect measure from the opioid system is the conditioned pain modulation which is mediated by the endogenous opioid system. This type of alteration has been reported in patients with different types of NP, such as complex regional pain syndrome or carpal tunnel syndrome. These 2 systems look like a promising target which required further investigation in human trials.

In addition to the neuroimmune system, other systems may influence the presence of NP. For example, neurotrophins have been implicated with neuropathic pain. For instance, NGF acts as a pathogenic pain mediator and also in humans, high levels of NGF have been associated with pain. BDNF shows similar hyperalgesic effects and its presence in the dorsal root ganglia and the spinal cord correlate with neuropathic pain behaviour. The dysfunction of the opioid system has been described in preclinical and in humans with NP. And other indirect measure from the opioid system is the conditioned pain modulation which is mediated by the endogenous opioid system. This type of alteration has been reported in patients with different types of NP, such as complex regional pain syndrome or carpal tunnel syndrome. These 2 systems look like a promising target which required further investigation in human trials.

So far, pharmacological management has been the first line of treatment for NP in humans. Tricyclic antidepressants (eg, amitriptyline), and serotonin-noradrenaline reuptake inhibitors (eg, duloxetine) or anticonvulsants (eg, pregabalin) have been use as first line option. Also opioids, like tramadol have been use to target the opioid system. Even Combination therapy have been used in these kind of patients, for instance the use mixed of morphine and gabapentin provided better pain relief together but that gain was also modest. Despite of this evidence, some trials have report controversial results in addition of the concerns about side effects reported of long term used advises on looking for new, safer treatment options.

Future targets to investigate are the endogenous cannabinoinds, such as CB2 receptor which recently have been shown to increase hypersensitivity in models of neuropathic pain and we have not found this to have been evaluated in physiotherapy studies.

Whereas the results of this study seem to suggest promising effects of biomarker modulation of physiotherapy interventions for peripheral neuropathic pain, these findings cannot be directly translated to understand the mechanism of these therapies in humans. Nevertheless, these findings can provide guidance on the type and design of future physiotherapy interventions in clinical trials.

One of the most recommended treatment option for the treatment of neuropathic pain, a part of pharmacology, is exercise. In humans is well establish that the hypoalgesic effects are correlated with the intensity or the prescribed dose. Only three articles analyzed in this review reported the intensity of the intervention. The 3 reports used low intensity prescription and they reported changes in biomarkers concentrations in both, locally and remotely. This is intriguing since, in humans, has been reported central activation mechanisms only with high intensity. Future research taking the intensity into account should be done.

Limitations

We have identified some limitations in our review. As we have not extracted the data from behavioral assessments, we cannot classify the interventions and the posterior analysis by the potential neuropathic pain mechanisms. Only studies written in English were included after the selection process. The heterogeneity of the measurement methods as well as the large number of different biomarkers analyzed challenges the interpretation. Of note, 92.5% of studies only included male rats. It is well established that pain behavior and underlying mechanisms differ according to sex, thus limiting the generalizability of our findings. Importantly, risk of bias was high and reporting according to the ARRIVE guidelines was poor in the majority of studies. The inconsistent reporting of summary statistics prevented a meta-analysis. Poor reporting and methodological quality have been identified as major challenges in preclinical research including in the pain field. With the recent publication of the ARRIVE guidelines, it is hoped that the quality of preclinical studies and their reporting will improve, thus facilitating future systematic reviews.

Conclusion

Our results suggest that exercises, electro-acupuncture, neural mobilization, and physical agents modulate biomarkers of neuropathic pain in preclinical models. Only few studies were available for joint mobilization and acupuncture, thus preventing firm conclusions. Physiotherapy interventions seem to regulate the expression of a range of biomarkers particularly associated with the neuro-immune system, opioid system, neurotransmitters, neurotrophins, and receptors. The high risk of bias and poor reporting quality however prevents firm conclusions. Nevertheless, our findings may be used to inform the design of future human studies. Future preclinical studies need to follow higher standards of methodological quality and reporting to advance this promising field.

Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jpain.2022.06.007.
References

1. Treede RD, Jensen TS, Campbell NJ, Cruccu G, Dostrovsky JO, Grifﬁn JW, Hansson P, Hughes R, Nurmiikkko T, Serra J: Neuropathic pain: redeﬁning and a grading system for clinical and research purposes. Neurology 70:1630-1635, 2008

2. Van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N: Neuropathic pain in the general population: A systematic review of epidemiological studies. Pain 155:2014, 1907

3. Smith BH, Hébert HL, Veluchamy A: Neuropathic pain in the community: prevalence, impact, and risk factors. Pain 161:S127-S137, 2020

4. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN: Neuropathic pain. Nat Rev Dis Primers 3:1-20, 2017

5. Connor ABO, Dworkin RH: Treatment of neuropathic pain: An overview of recent guidelines 122:S22–32, 2009.

6. O'Connor Alec B: Neuropathic pain quality of life impact, costs and const effectiveness of Therapy. Pharmacoeconomics 27:95-1111, 2009

7. O'Connor AB: Neuropathic pain. Pharmacoeconomics 27:95-1112, 2012

8. O'Connor AB, Dworkin RH: Treatment of neuropathic pain: An overview of recent guidelines. Am J Med 122:S22-532, 2009

9. Cobianchi S, Casals-Diaz L, Jaramillo J, Narvaro X: Differential effects of activity dependent treatments on axonal regeneration and neuropathic pain after peripheral nerve injury. Exp Neurol 240:157-167, 2013

10. Haanpää M, Attal N, Backonja M, Baron R, Bennett M, Bouhassira D, Cruccu G, Hansson P, Haythornthwaite JA, Iannetti GD, Jensen TS, Kauppila T, Nurmikko TJ, Rice ASC, Rowbotham M, Serra J, Sommer C, Smith BH, Treede RD: NeuPSIG guidelines on neuropathic pain assessment. Pain Int Assoc Study Pain 152:14-27, 2011

11. Jeremy Howick, Chalmers Iain, Glasziou Paul, Greenhalg Trsh, Heneghan Carl, Liberti Alessandro, Ivan Moschetti BP, HT: The 2011 Oxford CEBM Levels of Evidence (introductory Document). Oxford Center for Evidence-Based Medicine, 2011

12. Finnerup NB, Sindrup SH, Jensen TS: The evidence for pharmacological treatment of neuropathic pain. Pain Int Assoc Study Pain 150:573-581, 2010

13. Finnerup NB, Haroutounian S, Baron R, Dworkin RH, Gilron I, Haanpää M, Jensen TS, Kamerman PR, Mcnicol E, Moore A, Raja SN, Andersen NT, Sena ES, Smith BH, Rice ASC: Neuropathic pain clinical trials: factors associated with decreases in estimated drug efﬁcacy. Pain 159:2339-2346, 2018

14. Pericce Du Sert N, Rice ASC: Improving the translation of analgesic drugs to the clinic: Animal models of neuropathic pain. Br J Pharmacol 171:2951-2963, 2014

15. Jesson T, Runge N, Schmid AB: Physiotherapy for people with painful peripheral neuropathies: A narrative review of its efficacy and safety. Pain Rep 5:1-e834, 2020

16. Kanzawa-Lee GA, Larson JL, Resnicow K, Smith EML: Exercise effects on chemotherapy-induced peripheral neuropathy: A comprehensive integrative review. Cancer Nurs 43:172-185, 2020

17. Fernandez M, Hartvigsen J, Ferreira ML, Rafshauge KM, Machado AF, Lemes IR, Maher CG, Ferreira PH: Advice to stay active or structured exercise in the management of sciatica: A systematic review and meta-analysis. Spine (Phila Pa 1976) 40:1457-1466, 2015

18. National Institute for Health and Care Excellence: Low back pain and sciatica in over 16s: assessment and management (NG59). Nice 1-18, 2016

19. Zhang YH, Hu HY, Xiong YC, Peng C, Hu L, Kong YZ, Wang YL, Guo JB, Bi S, Li TS, Ao LJ, Wang CH, Bai YL, Fang L, Ma C, Liao LR, Liu H, Zhu Y, Zhang ZJ, Liu CL, Fang GE, Wang XQ: Exercise for neuropathic pain: A systematic review and expert consensus. Front Med 8:756940, 2021

20. Cleland JA, Childs JD, Palmer JA, Eberhart S: Slump stretching in the management of non-radicular low back pain: A pilot clinical trial. Man Ther 11:279-286, 2006

21. Fernández-De-Las Peñas C, Ortega-Santiano R, De La Llave-Rincón AI, Martínez-Perez A, Fahandezh-Saddi Diaz H, Martinez-Martin J, Pareja JA, Cuadrado-Pérez ML: Manual physical therapy versus surgery for carpal tunnel syndrome: A randomized parallel-group trial. J Pain 16:1087-1094, 2015

22. Higgins JPT: GST a cargo del CCI: Manual Cochrane de revisiones sistemáticas de intervenciones. Man Cochrane 510, 2011

23. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM MD: Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epimediol 1-22, 2021

24. Leenaars M, Hooijmans CR, van Veggel N, ter Riet G, Leeflang M, Hooft L, van der Wilt GJ, Tillemann A, Ritskes-Hoitinga M: A step-by-step guide to systematically identify all relevant animal studies. Lab Anim; 46:24-31, 2012

25. Furlan AD, Pennick V, Bombardier C, van Tulder M: 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine (Phila Pa 1976) 34:1929-1941, 2009

26. Hooijmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW: SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:1-9, 2014

27. Kilkenney C, Browne WJ, Cuthill IC, Emerson M, Altman DG: Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLOS Biol Public Libr Sci e1000412, 2010

28. Chen Y-W, Li Y-T, Chen YC, Li Z-Y, Hung C-H: Exercise training attenuates neuropathic pain and cytokine expression after chronic constriction injury of rat sciatic nerve. Anesth Analg 114:1330-1337, 2012

29. Almeida C, DeMaman A, Kusuda R, Cadetti F, Ravanelli MI, Queiroz AL, Sousa TA, Zanon S, Silveira LR, Lucas G: Exercise therapy normalizes BDNF upregulation and glial
hyperactivity in a mouse model of neuropathic pain. Pain 156:504-513, 2015

30. TIAN J, YU T, XU Y, PU S, LV Y, ZHANG XIN, DU D: Swimming training reduces neurona pain by regulating neurotrophins. Med Sci Sports Exercise 50:54-61, 2018

31. Coradini JG, Kunz RI, Kakkhata CMM, Errero TK, Bonfleur ML, de Fatima Chasko Ribeiro L, Brancalhão RMC, Bertolini GRF: Swimming does not alter nociception threshold in obese rats submitted to median nerve compression. Neurol Res 37:1118-1124, 2015

32. Chen Y-W, Chiu C-C, Hsieh P-L, Hung C-H, Wang J-J: Treadmill training combined with insulin suppresses diabetic nerve pain and cytokines in rat sciatic nerve. Anesth Analg 121:239-246, 2015

33. Chen Y-W, Hsieh P-L, Chen Y-C, Hung C-H, Cheng J-T: Physical exercise induces excess hsp72 expression and delays the development of hyperalgesia and allodynia in painful diabetic neuropathy rats. Anesth Analg 116:482-490, 2013

34. Huang PC, Tsai KL, Chen YW, Lin HT, Hung CH: Exercise combined with ultrasound attenuates neuropathic pain in rats associated with downregulation of IL-6 and TNFα, but with upregulation of IL-10. Anesth Analg 124:2038-2044, 2017

35. Tsai K-L, Huang P-C, Wang L-K, Hung C-H, Chen Y-W: Incline treadmill exercise suppresses pain hypersensitivity associated with the modulation of pro-inflammatory cytokines and anti-inflammatory cytokine in rats with peripheral nerve injury. Neurosci Lett 643:27-31, 2017

36. Belmonte LACO, Martins TC, Salm DC, Emer AA, de Oliveira BH, Mathias K, Goldim MP, Horewicz VV, Piovezan PA, Bobinski F, Petronilho F, Martins DF: Effects of different parameters of continuous training and high-intensity interval training in the chronic phase of a mouse model of complex regional pain syndrome type I. J Pain 19:1445-1460, 2018

37. Bobinski F, Ferreira TAA, Córdova MM, Dombrowski PA, da Cunha C, Santo CC, Poli A, Pires RGW, Martins-Silva C, Sluka KA, Santos ARS: Role of brainstem serotonin in analgesia produced by low-intensity exercise on neuropathic pain after sciatic nerve injury in mice. Pain 156:2595-2606, 2015

38. Bobinski F, Martins DF, Bratti T, Mazzardo-Martins L, Winkelmann-Duarte EC, Guglielmo LGA, Santos ARS: Neuroprotective and neuroregenerative effects of low-intensity aerobic exercise on sciatic nerve crush injury in mice. Neuroscience 194:337-348, 2011

39. Bobinski F, Teixeira JM, Sluka KA, Santos ARS: Interleukin-4 mediates the analgesia produced by low-intensity exercise in mice with neuropathic pain. Pain 159:437-450, 2018

40. Gong X, Chen Y, Fu B, Jiang J, Zhang M: Infant nerve injury induces delayed microglial polarization to the M1 phenotype, and exercise reduces delayed neuropathic pain by modulating microglial activity. Neuroscience 349:76-86, 2017

41. Thakur V, Gonzalez M, Pennington K, Nargis S, Chattopadhyay M: Effect of exercise on neurogenic inflammation in spinal cord of Type 1 diabetic rats. Brain Res 1642:87-94, 2016

42. Kami K, Taguchi S, Tajima F, Senba E: Histone acetylation in microglia contributes to exercise-induced hypoalgesia in neuropathic pain model mice. Pain 17:588-599, 2016

43. Lopez-Alvarez VM, Modol L, Navarro X, Cobianchi S: Early increasing-intensity treadmill exercise reduces neuropathic pain by preventing nociceptor collateral sprouting and disruption of chloride cotransporters homeostasis after peripheral nerve injury. Pain 156:1812-1825, 2015

44. Sumizono M, Sakakima H, Otsuka S, Terashi T, Nakanishi K, Ueda K, Takada S, Kikuchi K: The effect of exercise frequency on neuropathic pain and pain-related cellular reactions in the spinal cord and midbrain in a rat sciatic nerve injury model. J Pain Res 11:281-291, 2018

45. Ching-Hsia H, Po-Ching H, Jann-Inn T, Jhi-Jwong W, Yu-Wen C: Therapeutic ultrasound and treadmill training suppress peripheral nerve injury-induced pain in rats. Phys Ther Depart Phys Ther 96:1545-1553, 2016

46. Cobianchi S, Marinelli S, Florenzano F, Pavone F, Luvisetto S: Short- but not long-lasting treadmill running reduces allodynia and improves functional recovery after peripheral nerve injury. Neuroscience 168:273-287, 2010

47. Cobianchi S, Marinelli S, Florenzano F, Pavone F, Luvisetto S, Cobianchi S, Marinelli S, Florenzano F, Pavone F, Luvisetto S: Short- but not long-lasting treadmill running reduces allodynia and improves functional recovery after peripheral nerve injury. Neuroscience 168:273-287, 2010

48. Korb A, Bonetti L V, Da Silva SA, Marcuzzo S, Ilha J, Bertagnoli M, Partata WA, Faccioni-Heuser MC: Effect of treadmill exercise on serotonin immunoreactivity in medulary raphe nuclei and spinal cord following sciatic nerve transection in rats. Neurochem Res 35:380-389, 2010

49. Lopez-Alvarez VM, Puigdomenech M, Navarro X, Cobianchi S: Monoaminergic descending pathways contribute to modulation of neuropathic pain by increasing-intensity treadmill exercise after peripheral nerve injury. Exp Neurol 299:42-55, 2018

50. Kami K, Tajima F, Senba E: Activation of cyclic AMP response element-binding protein in dopaminergic neurons in the ventral tegmental area via voluntary wheel running contributes to exercise-induced hypoalgesia in a mouse model of neuropathic pain. Pain Res 31:238-251, 2016

51. Wang Y, Tang Q, Zhu L, Huang R, Huang L, Koleini M, Zou D: Effects of treatment of treadmill combined with electro-acupuncture on tibia bone mass and substance P expression of rabbits with sciatic nerve injury. PLOS One 11, 2016

52. Giardini AC, Santos FM, Dos Da, Silva JT, De Oliveira ME, Martins DO, Chacur M: Neural mobilization therapy decreases glial cells and brain-derived neurotrophic factor expression in the central nervous system in rats with neuropathic pain induced by CCI in rats. Pain Res Manag, 2017

53. Santos FM, Silva JT, Giardini AC, Rocha PA, Achermann AP, Alves AS, Brito LR, Chacur M: Neural mobilization reverses behavioral and cellular changes that characterize neuropathic pain in rats. Mol Pain 8, 2012. 1744-8069-8-57

54. Santos FM, Silva JT, Rocha IRC, Martins DO, Chacur M: Non-pharmacological treatment affects neuropeptide
expression in neuropathic pain model. Brain Res Elsevier B. V 1687:60-65, 2018

55. da Silva JT, Santos FM dos, Giardini AC, Martins D de O, de Oliveira ME, Ciena AP, Gutierrez VP, Watanabe IS, Britto LRG de, Chacur M: Neural mobilization promotes nerve regeneration by nerve growth factor and myelin protein zero increased after sciatic nerve injury. Growth Factors 33:8-13, 2015

56. Zhu GC, Tsai KL, Chen YW, Hung CH: Neural mobilization attenuates mechanical allodynia and decreases proinflammatory cytokine concentrations in rats with painful diabetic neuropathy. Phys Ther, 2018

57. Martins DF, Mazzardo-Martins L, Gadotti VM, Nascimento FP, Lima DAN, Speckhann B, Favretto GA, Bobinski F, Carginn-Ferreira E, Bressan E, Dutra RC, Calixto JB, Santos ARS. Ankle joint mobilization reduces axonotmesis-induced neuropathic pain and glial activation in the spinal cord and enhances nerve regeneration in rats. Pain 152:2653-2661, 2011

58. Song XJ, Huang ZJ, Song WB, Song XS, Fuhr AF, Rosner AL, Ndtan H, Rupert RL: Attenuation effect of spinal manipulation on neuropathic and postoperative pain through activating endogenous anti-inflammatory cytokine interleukin 10 in rat spinal cord. J Manipulative Physiol Ther 39:42-53, 2016

59. Chen YW, Tzeng JI, Huang PC, Hung CH, Shao DZ, Wang JJ: Therapeutic ultrasound suppresses neuropathic pain and upregulation of substance p and neurokinin-1 receptor in rats after peripheral nerve injury. Ultrasound Med Biol 41:143-150, 2015

60. Hsieh YL, Chen HY, Yang CH, Yang CC: Analgesic effects of transcutaneous ultrasound nerve stimulation in a rat model of oxaliplatin-induced mechanical hyperalgesia and cold allodynia. Ultrasound Med Biol 43:1466-1475, 2017

61. Giuliani A, Fernandez M, Farinelli M, Baratto L, Capra R, Rovetta G, Monteforte P, Giardino L, Calzino A: Very low level laser therapy attenuates edema and pain in experimental models. Int J Tissue React 26:29-37, 2004

62. Cidral-Filho FJ, Martins DF, More AOO, Mazzardo-Martins L, Silva MD, Cargnin-Ferreira E, Santos ARS: Light-emitting diode therapy induces analgesia and decreases spinal cord and sciatic nerve tumour necrosis factor-alpha levels after sciatic nerve crush in mice. Eur J Pain England; 17:1193-1204, 2013

63. Hsieh Y-L, Chou L-W, Chang P-L, Yang C-C, Kao M-J, Hong C-Z: Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1alpha (HIF-1alpha). J Comp Neurol 520:2903-2916, 2012

64. da Silva OR, Cury DP, Yamashita LB, Esteca M v, Watanabe I-S, Bergmann YF, Toniole EF, Dale CS: Photobiomodulation induces antinociception, recovers structural aspects and regulates mitochondrial homeostasis in peripheral nerve of diabetic mice. J Biophotonics 11:e201800110, 2018

65. Held M, Karl F, Vickova E, Rajdova A, Escolano-Lozano F, Stetter C, Bharti R, Forstner KU, Leinders M, Dusek L, Birkle F, Bednarik J, Sommer C, Uçeyler N: Sensory profiles and immune-related expression patterns of patients with and without neuropathic pain after peripheral nerve lesion. Pain 160:2316-2327, 2019

66. Cioato SG, Medeiros LF, Marques Filho PR, Vercelino R, De Souza A, Scarabelot VL, De Oliveira C, Adachi LNS, Fregni F, Caumo W, Torres ILS: Long-lasting effect of transcranial direct current stimulation in the reversal of hyperalgesia and cytokine alterations induced by the neuropathic pain model. Brain Stimul 9:209-217, 2016

67. Yang L, Wang S-H, Hu Y, Sui Y-F, Peng T, Guo T-C: Effects of repetitive transcranial magnetic stimulation on astrocytes proliferation and nNOS expression in neuropathic pain rats. Curr Med Sci China; 38:482-490, 2018

68. Filho PRM, Vercelino R, Cioato SG, Medeiros LF, de Oliveira C, Scarabelot VL, Souza A, Rozisky JR, Quevedo A da S, Adachi LNS, Sanches PRS, Fregni F, Caumo W, Torres ILS: Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: Long-lasting effect. Prog Neuro-Psychopharmacol Biol Psychiatry 64:44-51, 2016

69. Lin H-T, Chiu C-C, Wang J-J, Hung C-H, Chen Y-W: High frequency transcutaneous electrical nerve stimulation with diphenidol administration results in an additive antiallodynic effect in rats following chronic constriction injury. Neurosci Lett 589:62-66, 2015

70. Su H-L, Chang C-Y, Lu Z-H, Cheng F-C, Chen C-J, Sheu M-L, Sheehan J, Pan H-C: Late administration of high-frequency electrical stimulation increases nerve regeneration without aggravating neuropathic pain in a nerve crush injury. BMC Neurosci Pan 19, 2018

71. Matsuho H, Uchida K, Nakajima H, Guerrero AR, Watanabe S, Takeura N, Sugita D, Shimada S, Nakatsuka T, Baba H: Early transcutaneous electrical nerve stimulation reduces hyperalgesia and decreases activation of spinal glial cells in mice with neuropathic pain. Pain Int Assoc Study Pain; 155:1888-1901, 2014

72. Somers DL, Clemente FR: Contralateral high or a combination of high- and low-frequency transcutaneous electrical nerve stimulation reduces mechanical allodynia and alters dorsal horn neurotransmitter content in neuropathic rats. J Pain 10:221-229, 2009

73. Mert T, Altun I, Celik A, Surer T, Gunay I: Modulation of cytokine levels in ameliorative effects of pulsed magnetic field on an experimental model of Chronic Constriction Injury. Int J Radiat Biol England; 91:596-602, 2015

74. Mert T, Gisi G, Celik A, Baran F, Uremis MM, Gunay I: Frequency-dependent effects of sequenced pulsed magnetic field on experimental diabetic neuropathy. Int J Radiat Biol England; 91:833-842, 2015

75. Liu H, Ma Y, Liu J, Guo Z, Yan W, Wen S, Zhao Q, Guo X, Zhang X, Sheng Q: Therapeutic effect of electroacupuncture on rats with neuropathic pain. Int J Clin Exp Med 12:8531-8539, 2019

76. Wang J, Gao Y, Chen S, Duanmu C, Zhang J, Feng X, Yan Y, Liu J, Litscher G: The effect of repeated electroacupuncture analgesia on neurotrophic and cytokine factors in neuropathic pain rats. Evid-Based Complement Altern Med 2016, 2016

77. Wang Y, Jiang Q, Xia Y yang, Huang Z hua, Huang C: Involvement of a7nACHr in electroacupuncture relieving
neuropathic pain in the spinal cord of rat with spared nerve injury. Brain Res Bul 137:257-264, 2018

78. Wang Y, Xue M, Xia YY, Jiang Q, Huang ZH, Huang C: Electroacupuncture treatment suppresses transcription factor IRF8 in spinal cord of rats with spared nerve injury. Pain Res Manag 2020, 2020

79. Xu J, Chen X-M, Zheng B-J, Wang X-R: Electroacupuncture relieves nerve injury-induced pain hypersensitivity via the inhibition of spinal P2×7 receptor-positive microglia. Anesthesiology United States; 122:882-892, 2016

80. Zhao YX, Yao MJ, Liu Q, Xin JJ, Gao JH, Yu XC: Electroacupuncture treatment attenuates paclitaxel-induced neuropathic pain in rats via inhibiting spinal glia and the TLR4/ NF-κB pathway. J Pain Res 13:239-250, 2020

81. Cha MH, Nam TS, Kwak Y, Lee H, Lee BH: Changes in cytokine expression after electroacupuncture in neuropathic rats. Evid-based Complement Altern Med 2012.

82. Wang X, Li Q, Han X, Gong M, Yu Z, Xu B: Electroacupuncture alleviates diabetic peripheral neuropathy by regulating glycolipid-related GLO/AGEs/RAGE axis. Front Endocrinol 12:1-13, 2021

83. Gao Y-H, Wang J-Y, Qiao L-N, Chen S-P, Tan L-H, Liu J-L: NK cells mediate the cumulative analgesic effect of electroacupuncture in a rat model of neuropathic pain. BMC Complement Altern Med 2015, 2015

84. Wang Z, Li Q, Han X, Gong M, Yu Z, Xu B: Electroacupuncture alleviates diabetic peripheral neuropathy by regulating glycolipid-related GLO/AGES/RAGE axis. Frontiers in Endocrinology 12:1-13, 2021

85. Liang Y, Qiu Y, Du J, Liu J, Fang J, Zhu J, Fang J: Inhibition of spinal microglia and astrocytes contributes to the anti-allodynic effect of electroacupuncture in neuropathic pain induced by spinal nerve ligation. Acupunct Med 34:40-47, 2016

86. Manni L, Florenzano F, Aloe L: Electroacupuncture counteracts the development of thermal hyperalgesia and the alteration of nerve growth factor and sensory neuroglia of early diabetic rats is corrected by electroacupuncture. Evid-Based Complement Altern Med 2013

87. Ren SL, Rocco ML, Florenzano F, Ciotti MT, Aloe L, Manni L: Increased nerve growth factor signaling in sensory neurons of early diabetic rats is corrected by electroacupuncture. Evid-Based Complement Altern Med 2013

88. Wen-Zhan T, Si-SL L, Xia J, Xin-Ru Q, Guan-Hu Y, Peng-Peng G, Bin L, Song-HE J: Effect of electro-acupuncture on the BDNF-TrkB pathway in the spinal cord of SCI rats. Int J Mol Med 41:3307-3315, 2018

89. Chun-Chun X, Lei X, Xia J, Jian-Feng C, Zhen G, Kai-Qiang W: Analgesic mechanism of electroacupuncture in a rat L5 spinal nerve ligation model. Exp Therap Med 9:987-991, 2015

90. Dong Z-Q, Ma F, Xie H, Wang Y-Q, Wu G-C: Changes of expression of glial cell line-derived neurotrophic factor and its receptor in dorsal root ganglia and spinal dorsal horn during electroacupuncture treatment in neuropathic pain rats. Neurosci Lett Ireland; 376:143-148, 2005

91. Wang Y, Yuan H, Xu D, WY W: Balance acupuncture: an experimental study on the effectiveness of treating radicular pain in a lumbar disc herniation rat model. Deutsche Zeitschrift fur Akupunktur 52:24-32, 2009

92. Tang HY, Wang FJ, Ma JL, Wang H, Shen GM, Jiang AJ: Acupuncture attenuates the development of diabetic peripheral neuropathy by regulating P2×4 expression and inflammation in rat spinal microglia. J Physiol Sci BioMed Cent; 70, 2020

93. Wang H, Chen X, Zheng B, Wang X: Electroacupuncture treatment suppresses transcription factor IRF8 in spinal cord of rats with spared nerve injury. Brain Res Bull 2020, 2020

94. Song SJ, Min J, Suh SY, Jung SH, Hahn HJ, Im SA, Lee JY: Incidence of taxane-induced peripheral neuropathy receiving treatment and prescription patterns in patients with breast cancer. Supportive Care Cancer 25:2241-2248, 2017

95. Song SJ, Min J, Suh SY, Jung SH, Hahn HJ, Im SA, Lee JY: Incidence of taxane-induced peripheral neuropathy receiving treatment and prescription patterns in patients with breast cancer. Supportive Care Cancer 25:2241-2248, 2017

96. Abbott CA, Malik RA, Van Ross ERE, Kulkarni J, Boulton AJM: Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 34:2220-2224, 2011

97. Guo JB, Chen BL, Wang Y, Zhu Y, Song G, Yang Z, Zheng YL, Wang XQ, Chen PJ: Meta-analysis of the effect of exercise on neuropathic pain induced by peripheral nerve injury in rat models. Front Neurol 10:1-12, 2019

98. Basson A, Olivier B, Ellis R, Coppieters M, Stewart A, Mudzi W: The effectiveness of neural mobilization for neuromusculoskeletal conditions: A systematic review and meta-analysis. J Orthop Sports Phys Ther 47:593-615, 2017

99. Bialosky JE, Bishop MD, Price DD, Robinson ME, Vincent KR, George SZ: A randomized sham-controlled trial of a neurodynamic technique in the treatment of carpal tunnel syndrome. J Orthop Sports Phys Ther 39:709-723, 2009

100. Boudier-Revet M, Gilbert KK, Allégue DR, Moussady M, Brismée JM, Sizer PS, Feipel V, Dugailly PM, Sobczak S: Effect of neurodynamic mobilization on fluid dispersion in median nerve at the level of the carpal tunnel: A cadaveric study. Musculoskeletal Sci Pract 31:45-51, 2017

101. Schmid AB, Elliott JM, Strudwick MW, Little M, Coppieters MW: Effect of splinting and exercise on intraneural edema of the median nerve in carpal tunnel syndrome-an MRI study to reveal therapeutic mechanisms. J Orthop Res 30:1343-1350, 2012

102. Bialosky JE, Bishop MD, Robinson ME, Jr CZ, George SZ: Spinal manipulative therapy has an immediate effect on thermal pain sensitivity in people with low back pain: A randomized controlled trial. Phys Ther 89:1292-1303, 2009

103. Schmid A, Brunner F, Wright A, Bachmann LM: Paradigm shift in manual therapy? Evidence for a central nervous system component in the response to passive cervical joint mobilisation. Man Ther 13:387-396, 2008

104. Bialosky JE, Bishop MD, Price DD, Robinson ME, George SZ: The mechanisms of manual therapy in the treatment of musculoskeletal pain: A comprehensive model. Man Ther 14:531-538, 2009
105. Moss P, Sluka K, Wright A: The initial effects of knee joint mobilization on osteoarthritic hyperalgesia. Man Ther 12:109-118, 2007

106. Krouweil Q, Hebron C, Willett E: An investigation into the potential hypalgesic effects of different amplitudes of PA mobilisations on the lumbar spine as measured by pressure pain thresholds (PPT). Man Ther 15:7-12, 2010

107. Gibson W, Wand BM, O’Connell NE: Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults. Cochrane Database Syst Rev 2017, 2017

108. Akyuz G, Kenis O: Physical therapy modalities and rehabilitation techniques in the management of neuropathic pain. Am J Phys Med Rehabil 93:253-259, 2014

109. Scholz J, Woolf CJ: The neuropathic pain triad: Neurons, immune cells and glia. Nat Neurosci 10:1361-1368, 2007

110. Ansin S, Saleem S, Bhatti AM, Iles RK, Aslam M: Clinical and endocrinological changes after electro-acupuncture treatment in patients with osteoarthritis of the knee. Pain 147:60-66, 2009

111. Penza P, Bricchi M, Scola A, Campanella A, Lauría G: Electroacupuncture is not effective in chronic painful neuropathies. Pain Medicine 12:1819-1823, 2011

112. Galantino MLA, Eke-Okoro ST, Findley TW, Condoluci D: Use of noninvasive electroacupuncture for the treatment of HIV-related peripheral neuropathy: A pilot study. J Altern Complement Med 5:135-142, 1999

113. Chen X-M, Xu J, Song J-G, Zheng B-J, Wang X-R: Electroacupuncture inhibits excessive interferon-γ evoked up-regulation of P2×4 receptor in spinal microglia in a CCI rat model for neuropathic pain. Br J Anaesth 114:150-157, 2015

114. Li Y, Yin C, Li X, Liu B, Wang J, Zheng X, Shao X, Liang Y, Du J, Fang J, Liu B: Electroacupuncture alleviates paclitaxel-induced peripheral neuropathic pain in rats via suppressing TLR4 signaling and TRPV1 upregulation in sensory neurons. Int J Mol Sci 20, 2019

115. Liang Y, Du J-Y, Qiu Y-J, Fang J-F, Liu J, Fang Q-J: Electroacupuncture attenuates spinal nerve ligation-induced microglial activation mediated by p38 mitogen-activated protein kinase. Chin J Integr Med 22:704-713, 2016

116. Wang W-S, Tu W-Z, Cheng R-D, He R, Ruan L-H, Zhang L, Gong Y-S, Fan X-F, Hu J, Cheng B, Lai Y-P, Zou E-M, Jiang S-H: Electroacupuncture and A-317491 depress the transmission of pain on primary afferent mediated by the P2×3 receptor in rats with chronic neuropathic pain states. J Neurosci Res Us 92:1703-1713, 2014

117. Xia Y, Xue M, Wang Y, Huang Z, Huang C: Electroacupuncture alleviates spared nerve injury-induced neuropathic pain and modulates HMGB1/NF-kappa B signaling pathway in the spinal cord. Pain Res 12:2851-2863, 2019

118. Zhang M, Dai Q, Liang D, Li D, Chen S, Chen S, Han K, Huang L, Wang J: Involvement of adenosine A1 receptor in electroacupuncture-mediated inhibition of astrocyte activation during neuropathic pain. Arq Neuropsiquiatr Brazil 76:736-742, 2018

119. Han J-S: Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci 26:17-21, 2003

120. Ju ZY, Wang K, Cui HS, Yao Y, Liu SM, Zhou J, Chen TY, Xia J: Acupuncture for neuropathic pain in adults. Cochrane Database Syst Rev 2017, 2017

121. Madsen MV, Gøtzsche PC, Hróbjartsson A: Acupuncture treatment for pain: Systematic review of randomised clinical trials with acupuncture, placebo acupuncture, and no acupuncture groups. BMJ (Online) 338:330-333, 2009

122. Clark AK, Old EA, Mallocchio M: Neuropathic pain and cytokines: Current perspectives. J Pain Res 6:803-814, 2013

123. Sommer C, Leinders M, Ucseyler N: Inflammation in the pathophysiology of neuropathic pain. Pain 159:595-602, 2018

124. Austin PJ, Moalem-Taylor G: The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol 229:26-50, 2010

125. Hubertus Köller MD, Bernd C, Kiesereder MD, Sebastian Jander MD, Hans-Peter Hartung MD: Chronic inflammatory demyelinating polyneuropathy. Adv Exp Med Biol 1190:333-343, 2019

126. Ziegler D, Strom A, Bönhof GJ, Kannenberg JM, Heier M, Rathmann W, Peters A, Meisinger C, Roden M, Thorand B, Herder C: Deficits in systemic biomarkers of neuroinflammation and growth factors promoting nerve regeneration in patients with type 2 diabetes and polyneuropathy. BMJ Open Diabetes Res Care 7:1-9, 2019

127. Herzberg U, Eliav E, Dorsey JM, Gracey RH, Kopin IJ: NGF involvement in pain induced by chronic constriction injury of the rat sciatic nerve. Neuroreport 8:1613-1618, 1997

128. Svensson P, Cairns BE, Wang K, Arendt-Nielsen L: Injection of nerve growth factor into human masseter muscle evokes long-lasting mechanical alldynia and hyperalgesia. Pain 104:241-247, 2003

129. Siniscalco D, Giordano C, Rossi F, Maione S, de Novellis V: Role of neurotrophins in neuropathic pain. Curr Neuropharmacol 9:523-529, 2011

130. Porreca F, Tang QB, Bian D, Riedl M, Eide R, Lai J: Spinal opioid mu receptor expression in lumbar spinal cord of rats following nerve injury. Brain Res 795:197-203, 1998

131. DosSantos MF, Martikainen IK, Nascimento TD, Love TM, Deboer MD, Maslowski EC, Monteiro AA, Vincent MB, Zubieta JK, DaSilva AF: Reduced basal ganglia μ-opioid receptor availability in trigeminal neuropathic pain: A pilot study. Mol Pain 8:3-8, 2012

132. Vigotsky AD, Bruhn RS: The role of descending modulation in manual therapy and its analgesic implications: A narrative review. Pain Res Treat 2015, 2015. 292805

133. Seifert F, Kiefer G, Decol R, Schmelz M, Maihöfer C: Differential endogenous pain modulation in complex-regional pain syndrome. Brain 132:788-800, 2009

134. Soon B, Vicenzino B, Schmid AB, Coppieters MW: Facilitatory and inhibitory pain mechanisms are altered in patients with carpal tunnel syndrome. PLOS One, 2017

135. Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL: Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med 352:1324-1334, 2005
136. Baron R, Freynhagen R, Tölle TR, Cloutier C, Leon T, Murphy TK, Phillips K: The efficacy and safety of pregabalin in the treatment of neuropathic pain associated with chronic lumbosacral radiculopathy. Pain 150:420-427, 2010

137. Hui ACF, Wong SM, Leung HW, Man BL, Yu E, Wong LKS: Gabapentin for the treatment of carpal tunnel syndrome: A randomized controlled trial. Eur J Neurol 18:726-730, 2011

138. Jensen TS, Madsen CS, Finnerup NB: Pharmacology and treatment of neuropathic pains. Curr Opin Neurol 22:467-474, 2009

139. Naugle KM, Naugle KE, Fillingim RB, Samuels B, Riley JL: Intensity thresholds for aerobic exercise-induced hypoalgesia. Med Sci Sports Exerc 46:817-825, 2014

140. Polaski AM, Phelps AL, Kostek MC, Szucs KA, Kolber BJ: Exercise-induced hypoalgesia: A meta-analysis of exercise dosing for the treatment of chronic pain. PLoS One 14:1-29, 2019

141. Vaegter HB, Bjerregaard LK, Redin MM, Rasmussen SH, Graven-Nielsen T: Hypoalgesia after bicycling at lactate threshold is reliable between sessions. Eur J Appl Physiol 119:91-102, 2019

142. Rosen S, Ham B, Mogil JS: Sex differences in neuroimmunity and pain. J Neurosci Res 95:500-508, 2017

143. Macleod MR, Fisher M, O’Collins V, Sena ES, Dirnagl U, Bath PMW, Buchan A, van der Worp HB, Traystman R, Minematsu K, Donnan GA, Howells DW: Good laboratory practice: preventing introduction of bias at the bench. Stroke 40:50-52, 2009

144. Vollert J, Schenker E, Macleod M, Bespalov A, Wuerbel H, Michel M, Dirnagl U, Potschka H, Waldron A-M, Wever K, Steckler T, van de Casteele T, Altevogt B, Sil A, Rice ASC: Systematic review of guidelines for internal validity in the design, conduct and analysis of preclinical biomedical experiments involving laboratory animals. BMJ Open Sci 4: e100046, 2020