The relationship between individual phenotype and the division of labour in naked mole-rats: it’s complicated

James D Gilbert Corresp., 1, Stephen J Rossiter 1, Chris G Faulkes Corresp. 1

1 School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom

Corresponding Authors: James D Gilbert, Chris G Faulkes
Email address: j.gilbert@qmul.ac.uk, c.g.faulkes@qmul.ac.uk

Background. The naked mole-rat (Heterocephalus glaber) is among the most social mammals on the planet, living in eusocial groups of up to 300 individuals that contain a single reproductive female and up to three reproductive males. A critical aspect of their complex social system is the division of labour that allows non-breeders to form an effective workforce. Age- or weight-based polyethisms are widely cited as explanations for how labour is divided, but evidence in support of these hypotheses has been equivocal.

Methods. To assess the extent to which individual working behaviour is determined by sex, age, weight and social rank, we studied the behaviours of 103 animals from eight captive colonies. We performed focal sampling and ran mixed-effects models to assess which factors explained variation in working behaviour during six ten-minute observation periods per individual.

Results. Contrary to widely-held beliefs, we found that working behaviour did not decrease linearly with weight, although polynomial regressions indicated younger and medium-sized individuals worked most frequently, while high-ranking individuals worked for the shortest periods of time. Working behaviour and its relationship with individual characteristics also varied between colonies.

Conclusions. While age- or size-based polyethisms may have some influence on working behaviour, we argue that other characteristics of the individual and colony are also important. In particular, the interactions of individual, social and environmental factors must be considered in order to understand the emergence and effectiveness of the division of labour that is so critical to many social organisms.
Revised Manuscript:

The relationship between individual phenotype and the division of labour in naked mole-rats: it’s complicated

James D. Gilbert*, Stephen J. Rossiter & Christopher G. Faulkes*

School of Biological and Chemical Sciences
Queen Mary University of London
Mile End Road
London E1 4NS

* corresponding authors – email: j.gilbert@qmul.ac.uk, c.g.faulkes@qmul.ac.uk
ABSTRACT

Background. The naked mole-rat (*Heterocephalus glaber*) is among the most social mammals on the planet, living in eusocial groups of up to 300 individuals that contain a single reproductive female and up to three reproductive males. A critical aspect of their complex social system is the division of labour that allows non-breeders to form an effective workforce. Age- or weight-based polyethisms are widely cited as explanations for how labour is divided, but evidence in support of these hypotheses has been equivocal.

Methods. To assess the extent to which individual working behaviour is determined by sex, age, weight and social rank, we studied the behaviours of 103 animals from eight captive colonies. We performed focal sampling and ran mixed-effects models to assess which factors explained variation in working behaviour during six ten-minute observation periods per individual.

Results. Contrary to widely-held beliefs, we found that working behaviour did not decrease linearly with weight, although polynomial regressions indicated younger and medium-sized individuals worked most frequently, while high-ranking individuals worked for the shortest periods of time. Working behaviour and its relationship with individual characteristics also varied between colonies.

Conclusions. While age- or size-based polyethisms may have some influence on working behaviour, we argue that other characteristics of the individual and colony are also important. In particular, the interactions of individual, social and environmental factors must be considered in order to understand the emergence and effectiveness of the division of labour that is so critical to many social organisms.
The evolution of cooperation is a major driver of sociality and can provide the opportunity for labour to be divided so that individual contributions vary by task or by total effort (Maynard Smith & Szathmáry, 1999). The benefits of an effective division of labour have been studied in depth in social insects, in which a combination of behavioural flexibility and physical adaptations meet colony needs (e.g. Wilson 1987; Gordon 1989; Jeanson and Weidenmüller 2014). In contrast, where tasks are divided in social mammal groups, the underlying causes of this division are poorly understood.

Naked mole-rats are widely considered to be eusocial mammals, characterised by an extreme reproductive skew in which 99% of individuals may never reach reproductive maturity (Jarvis et al., 1994). Breeders specialise in reproduction and, apart from offspring care, contribute little or nothing to general colony work (Jarvis, 1981). Non-breeders are responsible for the critical functions of foraging and nest maintenance, and evidence from the Damaraland mole-rat suggests the presence of additional non-breeders can increase the reproductive output of the colony (Houslay et al., 2020). In regions with low or unpredictable rainfall, the geophytes mole-rats feed on can be distributed unevenly, while the cost of digging through hard soil is high. Across the African mole-rat family, sociality is thought to mitigate the energetic cost and risks associated with foraging and dispersing in this habitat (Faulkes & Bennett 2013), although whether cooperative foraging was a cause or consequence of eusociality is unclear (Burda et al 2000). How work is distributed among non-breeders to maximise their output has not been fully explained. Researchers have proposed a number of ways in which tasks could be distributed effectively, often referring to an age- or weight-based polyethism, whereby individuals carry out different types of work according to their age or weight (Jarvis, 1981, 1991; Faulkes et al., 1991; Lacey & Sherman, 1991).

When Jarvis (1981) first described eusociality in naked mole-rats, she noted that non-breeders were responsible for all the collective work within a colony but did not contribute evenly. Specifically, she observed weight-based polyethisms in which heavier individuals worked less often, seemingly mirroring observations of social insect societies. This observation has grown into the widely-held belief that small individuals exhibit the most working behaviour, typically
encompassing foraging, tunnel maintenance and care of young, while large individuals appear less active, and mainly serve as colony defence.

Since this early work, subsequent support for a ‘caste-like’ system in naked mole-rats has been mixed. For example, Faulkes et al. (1991) examined relationships among weight, sex and various working behaviours, and found evidence for small-workers and large-soldiers. Similarly, Lacey and Sherman (1991) reported that smaller non-breeder do work more, but, due to “considerable scatter” (pp. 322) in behaviours, they concluded that no distinct worker castes are present. Jarvis, O’Riain, and McDaid (1991) also reported mixed results with respect to the relationship between weight and working behaviour. Yet despite these equivocal findings, the concept that naked mole-rat show size-based division of behaviour has become widely adopted as a rule-of-thumb (e.g. Clarke and Faulkes 1997; Jarvis 1981; Jarvis, O’Riain, and McDaid 1991; Lacey and Sherman 1991; Judd and Sherman 1996; Hathaway et al., 2016; Mongillo et al., 2014; Jarvis et al., 1994; Lacey and Sherman 1997). A similar issue exists in social insects, where early reports of polymorphic ant workers with specialised roles has become a widely-held belief that working behaviour is closely linked to body size in general (Gordon, 2016). In reality, in naked mole-rats, while there has been some support for the relationship between body size and aggression towards conspecifics (O’Riain & Jarvis, 1997; Mooney et al., 2015), empirical evidence for smaller non-breeders exhibiting more active working behaviour has come from a single study since 1991 (Jacobs & Jarvis, 1996).

After almost two decades without further research, a recent analysis has raised further questions regarding earlier findings. Mooney et al. (2015) showed that digging behaviour was not associated with body mass or age, although aggression towards foreign mole-rats was positively correlated with body fat. In light of these results, we performed a large-scale study of the determinants of working behaviour in naked mole-rats. By observing individuals across eight captive colonies, we examined the effects of weight and age on working behaviour. Additionally, we tested for the effect of rank, a characteristic that could influence how much an individual contributes to collective activity but which has not been thoroughly tested (but see Clarke and Faulkes 2001).
We selected individuals from eight colonies of captive-bred naked mole-rats at Queen Mary University of London and the study was carried out in accordance with institutional guidelines. They were all captive born descendants of animals that were originally captured in Kenya during the 1980s. Our youngest subjects were four months old during observations as naked mole-rats do not exhibit the full behavioural repertoire until around three months (Jarvis, 1981, 1991). Details of the individuals and colonies used in the study are given in Table 1 (Results, below).

Each colony was housed separately in a single room, in a network of acrylic tunnels and boxes. The temperature of the room was maintained between 26 – 32°C. Ambient light and noise were constantly recorded and changed unpredictably as people moved around the room and surrounding area. The animals were fed *ad libitum* every day. The diet generally consists of carrot, sweet potato and butternut squash, although occasionally other fruits and vegetables are provided.

We observed all individuals in colonies that contained fewer than 20 in total, and randomly selected 20 individuals from each of the remaining colonies. The observation sequences of colonies and individuals within colonies was also randomly generated. If a colony’s breeding female was not selected randomly, she was added to the colony’s observation list manually (colonies 11A, 11C and FK100) as a means of comparison in our focal studies. Each individual was observed three times in the morning and three times in the afternoon to avoid confounding variation from daily behaviour patterns. Animals were weighed in each of the three weeks they were observed, and means were calculated and used in the analyses. Animals were identifiable through RFID microchips and were marked twice a week with black marker pens so we could distinguish between them during observations.

Females were classified as breeders if they had a perforated vagina during the observation period, they were seen mating, or became pregnant, and classified all other females as non-breeders. External genitalia are generally monomorphic in non-breeding naked mole-rats (Jarvis 1991; Peroulakis, Goldman, & Forger 2002). However, the dark-red vaginal membrane can become prominent in some individuals, which is thought to reflect a partial release from reproductive suppression and may be a sign of incipient reproductive activation (Jarvis 1991).
We recorded which females had prominent vaginal membranes. Males seen mating were recorded as breeders and the rest were classified as non-breeders (Jarvis 1991). While we recorded ano-genital nuzzling when possible, we did not classify animals as breeders if they were observed in these interactions as some ano-genital nuzzling involves non-breeders (Jarvis 1991). Historical records of breeding status based on this classification were also used.

On entering the animal room, we allowed the colony to settle down from any increased behavioural activity for a period of up to 10 minutes and we minimised movement and noise while observing to avoid disturbing the animals. Behaviours were recorded between 08.00 and 18.00. Individuals were observed sequentially in their burrow system for ten minutes each, with each individual observed six times for a total of 60 minutes per individual. All observations were recorded in BORIS (Behavioral Observation Research Interactive Software) version 7.9.7 (Friard & Gamba, 2016).

The broad behavioural categories we recorded were as described in the ethogram of naked mole-rat behaviour: transport of food and nest material, digging and offspring tending (Lacey et al., 1991). As it was not possible to distinguish between digging and transporting behaviours, these were classified together as working behaviour. Offspring were only present in one colony during observations and the few instances of tending offspring were not included in the analyses. We recorded reproductive behaviour (Lacey et al., 1991) on an ad hoc basis in order to support hormone analysis in determining reproductive status and to attempt to identify paternity. Reproductive behaviours include copulating, ano-genital nuzzling, pregnancies and births.

We tested for an effect of dominance rank on working behaviour and aggression by establishing the dominance hierarchy within each colony using passing behaviour, which is a reliable indicator of dominance hierarchies in naked mole-rats (Clarke & Faulkes, 1997). We recorded which individuals passed over the top of other individuals during face-to-face encounters in tunnels. Interactions not thought to indicate rank include tail-to-face encounters, passing in chambers or corners of tunnels, when one individual digs throughout the encounter, and when individuals do not pass directly over the top of one another.

We used the Elo Rating system to calculate individual dominance ranks within colonies (R package EloRating, Neumann & Kulik, 2020). The Elo Rating method has several advantages over matrix-based methods such as its ability to calculate ranks within small groups and account...
for the loss of individuals during observations. After calculating each individual rank, we scaled
each rank to account for variation in group size by dividing by the number of individuals
observed in the respective colony. Lower rank values (those towards zero) represent more
dominant animals. We calculated the steepness of each colony’s dominance hierarchy using the
steepness function from the EloRating package, which is based on David’s Scores (de Vries,
Stevens & Vervaecke, 2006).

10-minute observation periods that contained no working behaviour were assigned a value of
zero. To investigate which factors predicted whether an individual showed any working
behaviour, we conducted logistic mixed-effect models, using the R package lme4 (Bates et al.,
2020, p. 4). For individuals that showed working behaviour in a given session, we determined
the factors that predicted variation in the duration of working behaviour using linear mixed-
effect models, also in lme4. For a discussion of “two-part” models, see (Duan et al., 1983; Min &
Agresti, 2002). We checked the residuals of the logistic models for uniformity, dispersion, zero-
inflation and the presence of outliers using the DHARMA R package (Hartig, 2020). For the
linear models, we confirmed the residuals were normally distributed and had similar variances.

In both our logistic and linear models, we first constructed null models in which we included
individual and colony fitted as random effects, with individual nested within-colony. The
response variable was working behaviour per observation session. For each null model, we then
constructed a set of separate models, each containing one of the individual characteristics as a
fixed effect: sex, age, weight and rank. Due to the correlations between age, weight and rank
(older individuals tend to be bigger and of higher rank, Schieffelin and Sherman 1995; Clarke
and Faulkes 1997; O’Riain and Jarvis 1998;) we did not create models that contained more than
one fixed effect. As relationships between work and age, weight and rank could be non-linear,
we also created polynomial linear regressions that included the individual characteristic-squared
and -cubed. We compared the performance of the models as described below and report the best
performing for each characteristic.

Akaike Information Criterion (AIC) values estimate how well a model approximates the
unknown reality relative to other models; smaller AIC values indicate better models (Burnham &
Anderson, 2002). Second-order AICs (AICcs) were generated using the aictab function from the
AICcmodavg package (Mazerolle & Linden, 2019) for each model and compared to see whether
the inclusion of an individual characteristic reduced the AICc. The relative likelihood of a model given the data is calculated by $exp(-\frac{1}{2}\Delta AICc)$, where $\Delta AICc$ is the difference in AICc between two models (Burnham, Anderson & Huyvaert, 2011). The ratios of model likelihoods can be used to calculate an evidence ratio, which indicates the extent to which the data support one model over another (Burnham, Anderson & Huyvaert, 2011). We report the AICc values, $\Delta AICcs$ and likelihoods relative to the null model for each alternative model. Along with AIC values as indicators of relative model performance, we report Nakagawa’s R^2 for each model to estimate how much variation in our working behaviour data is explained by the independent variables (Nakagawa & Schielzeth, 2013; Nakagawa, Johnson & Schielzeth, 2017), calculated using the performance R package (Lüdecke et al., 2019).

All statistical analyses were carried out in R Studio Version 3.6.0 (R Core Team, 2014) and figures were made using the ggplot2 package (Wickham, 2016).
RESULTS

We focally sampled a total of 133 Individuals. After excluding breeders, females with red vaginal membranes and individuals with missing sex, age, weight or rank data, a total of 103 individuals were used in the analyses. Each individual was observed six times, giving a total of 618 observation periods. Working behaviour was observed in 274 (44%) observation periods and no working behaviour was observed in 344 periods (56%). The average duration of working behaviour observed per ten-minute observation was 166.6 seconds, accounting for 19.4% of the total observation time. This is comparable to the 23.8% of time spent working by humans during a 40-hour week. Working behaviour per individual is broken down by sex, age, weight and rank in Figure 1, Figure 2, Table 1 and Table 2, below.

Table 1. Summary Statistics

Table 2. Working behaviour by Sex
To assess which characteristics predicted whether worker behaviour was observed or not, we compared each of our logistic regression models with a single fixed effect to the null model and assessed model fit. ΔAICcs showed that sex, weight and rank did improve model fit (ΔAICcs, versus null model: Sex = +1.48, Weight = +0.79, Rank = -0.06; model outputs in Tables 3, SI5). Effect sizes and standard errors support the inference that these characteristics do not explain variation in whether an individual was observed working. In contrast, adding age was associated with a reduction in AICc value of 7.24 and the likelihood of this model was approximately 37 times higher than that of the null model. The model coefficient suggests individuals were less likely to be observed working as age increased and this result was significant at alpha=0.05.

While including weight did not improve the performance of the model (SI5), including weight-cubed reduced the AICc by 3.89 in a model that had a likelihood 7 times higher than the null model. Nakagawa’s R^2 estimates suggest all models had limited explanatory power (conditional R^2 between 0.202 and 0.230), including those that performed better according to AICc, and more variation was explained by the colony and individual random effects than by any of the fixed effects (Table 3).

Table 3. Results of logistic mixed-effects models predicting whether working behaviour was observed or not.

To assess which characteristics predicted the duration of work observed, we compared each of our linear models with a single fixed effect to the null model and assessed model fit. Linear models excluded observation periods during which no working behaviour was recorded. ΔAICc values suggest adding sex, age, weight or rank as predictors did not improve the null model, which included only colony as a random effect (ΔAICcs, versus null model: Sex = +2.04, Age = +2.00, Weight = +1.28, Rank = +0.56; model outputs in Tables 4, SI5). Effect sizes and standard errors support the inference that these characteristics do not predict variation in the amount of time individuals were observed working. While including rank did not improve the performance of the model (SI5), including rank-squared reduced the AICc by 7.21 in a model that had a
likelihood 37 times higher than the null model. Figure 2C suggests higher ranking individuals may work for shorter periods, although this effect appears to plateau and may even reverse among mid- and low-ranking animals. Nakagawa’s R² estimates suggest all models had limited explanatory power (conditional R² between 0.169 and 0.182), including those that performed better according to AICc, and more variation was explained by the colony and individual random effects than by any of the fixed effects (Table 4).

Table 4. Results of generalised linear mixed-effects models predicting the duration of observed working behaviour.

In summary, age did predict whether an individual worked or not, but was not associated with the duration over which an individual worked. None of the other variables (sex, weight and rank) predicted either whether an individual was recorded working or not, or the duration of working behaviour. Weight-cubed also predicted whether an individual was observed working, while rank-squared predicted the duration of working behaviour. None of the models had high explanatory power and the majority of the variation in working behaviour was unexplained.

Plots of the duration of working behaviour and the relationships between working behaviour and individual characteristics within-colonies demonstrate the between-colony variation in our data (Figure 3, Figure 4, Figure 5). Each colony’s dominance hierarchy was assessed for how steep it was and assigned a value between 0 and 1, with 1 being the steepest. All steepness estimates were below 0.2.

Figure 3. The mean duration of working behaviour per observation period for each colony.

Figure 4A-C. Presence of working behaviour by age, weight and rank of the individual being observed for each colony.

Figure 5A-C. Duration of working behaviour by age (A), weight (B) and rank (C) of the individual being observed for each colony.
Previous studies indicate that some naked mole-rats spend more time working than others (Jarvis, 1981; Lacey & Sherman, 1991) and that differences between individuals may be stable for long periods of time (Mooney et al., 2015). Our analyses of 618 observation periods, encompassing 103 non-breeders from eight colonies, indicated that the probability of being observed working was explained by age and weight-cubed but not by sex, weight or rank. Initially, work frequency seems to increase with age and weight, until intermediate weights and around the age of two, after which the frequency of work plateaus and may even decrease (Figure 1). The assignment of different roles to different age or weight classes distributes work across a colony without the need for costly cognitive evaluations of colony needs and worker availability based on patchy information (Robinson, 1992). Indeed, the presence of overlapping generations of offspring is considered a key criterion for eusociality (Crespi & Yanega, 1995) and different age and weight cohorts will almost always be present within eusocial groups. Despite the effect of age on probability of working, when we excluded periods in which no working behaviour was recorded, we found that only rank-squared predicted the amount of time spent working during the observation period. Figure 2C suggests low- and mid-ranking individuals worked for longer periods. Work duration was shorter among high-ranking, more dominant individuals.

In the absence of clear linear predictors, we suggest that age- or size-based polyethisms may depend on other conditions, such that colony members alter their working behaviour in response to the complex interaction of individual- and group-level pressures. Indeed, Mooney et al. (2015) found that individuals changed their behaviours to compensate for the removal of their colony mates, indicating a level of flexibility in response to the needs of the group. Moreover, a relationship between age and behaviour was only evident when frequent-workers were removed, for which younger individuals compensated by increasing their work rate (Mooney et al., 2015). On the other hand, in the eusocial Damaraland mole-rat (*Fukomys damarensis*), age does seem to play a key role in cooperative behaviour (Zöttl et al., 2016; Thorley et al., 2018). Both studies of Damaraland mole-rats found helping behaviours increased until the age of one, after which point there was either a plateau (Zöttl et al., 2016) or reduction (Thorley et al., 2018) in helping behaviour. The similarity of helping behaviour in Damaraland and naked mole-rats is interesting,
and implies convergent evolution of these patterns given that sociality is thought to have evolved separately in the two species (Faulkes & Bennett 2013).

Taken together, our findings imply that older individuals perform fewer bouts of working, although these bouts do not differ in duration compared to those of other individuals. In mammals, older individuals tend to be less active (Ingram 2000, Marck et al., 2017) and our results may reflect this general mammalian trend. There is also evidence activity decreases after the of age three in the Ansell’s mole-rat (Schielke, Begall & Burda, 2012). The relatively small number of working bouts seen in older mole-rats might also relate to them having other roles, which were not recorded here. For example, while we did not analyse aggressive or defensive behaviours, it is possible that older individuals, who also tend to be larger (O’Riain & Jarvis, 1998), spend more time defending the colony (Mooney et al., 2015). Older individuals may also invest less in working behaviour in order to maintain energy reserves for future challenges for dominance within the colony, particularly given that these animals are more likely to succeed in the event that a breeder dies or is removed (Reeve, 1992; Clarke & Faulkes, 1997, 1998).

We found no evidence that work decreases linearly with body size, but work frequency increases with size until intermediate body weights are reached. After this, work frequency plateaus and may decrease. However, we are cautious in our interpretation of this result due to the relatively sparse data from animals of small and large body weight, and the tendency of polynomial models to overfit data (Lever, Krzywinski & Altman, 2016).

Across the African mole-rats, the link between age and size on working behaviour is still far from clear. For example, in naked mole-rats, Mooney et al. (2015) also reported no relationship between body size and working behaviour, although larger individuals were more aggressive towards conspecifics (O’Riain & Jarvis, 1997). On the other hand, body size does seem to be a good predictor of space-use in the Ansell’s mole-rat (Skiba et al., 2016). In contrast, a reported association between size and working behaviour in the social Micklem’s mole-rat (Fukomys micklemi) was attributed to an underlying age-based polyethism (Van Daele et al., 2019), while a similar association in the Damaraland mole-rat may relate to growth rates (Zöttl et al., 2016). An early report on Damaraland mole-rats found that heavier individuals worked more (Gaylard, Harrison & Bennett, 1998). In this respect, it is interesting to note that naked mole-rats exhibit unusual growth patterns; growth rates vary between litters and individuals can gain size rapidly.
in response to social changes, even after extended periods of constant size (O’Riain & Jarvis, 1998). This decoupling of size and age may further complicate the relationship with behaviour.

We found no linear effect of social rank on working behaviour, but did find an effect of rank-squared. Naked mole-rat groups have strict dominance hierarchies (Clarke & Faulkes, 1997) and periods with high rates of aggression and fighting during which individuals are often killed (Clarke & Faulkes, 1997, 2001; Medger et al., 2019). High-ranking naked mole-rats are more likely to become breeders if the previous breeders are removed (Clarke and Faulkes, 1997, 1998), and may reduce energy spent on working behaviour in order to prepare for future dominance challenges. Alternatively, high-ranking individuals tend to be older and heavier (Clarke and Faulkes, 1997, 1998) and may contribute less to general working behaviour but more to colony defence, as has been reported elsewhere (O’Riain & Jarvis, 1997; Mooney et al., 2015). More data are need before we can be certain about the distribution of work among heavier, older and higher-ranking individuals. In our study, we recorded an average of four interactions per individual, whereas the Elo-Rating method for assigning rank performs better when there are around ten interactions per individual (Sánchez-Tójar, Schroeder & Farine, 2018). Thus, given the large confidence intervals around estimates of rank, we would like further evidence to confirm the impact of rank, which might be more evident over longer observational periods.

Our observations reveal considerable variation in the total amount of working and the relationships between work and individual characteristics within each colony (Figures 3, 4, 5). With data from eight colonies, we did not have the power to test colony-level hypotheses, however, individual behaviours may be affected by a number of colony-level factors, such as food availability (Reeve, 1992), worker availability (Mooney et al., 2015) or the age-structure of the colony (Gaylard, Harrison & Bennett, 1998, Skliba et al., 2016). Many published results from naked mole-rat behaviours have come from studies of one or a few colonies and were thus unable to account for colony-level variation. In this study, more variation in working behaviour was explained by individual and colony variables than by any individual characteristics. Our findings indicate that future research should increase the number of colonies used and statistically control for colony-level effects wherever possible.
This study looked at the factors that could predict whether an individual works and the variation in the amount of time individuals spend working. Labour could also be divided by task. Task specialisation has been observed in some social insect species (Charbonneau & Dornhaus, 2015) and, although it could be an important benefit to sociality in mammals, it has rarely been recorded (Stander, 1992; Gazda et al., 2005; Hurtado, Fénéron & Gouat, 2013; Gazda, 2016). Mooney et al. (2015) found that the amount of time spent on different tasks was stable in naked mole-rats, although Thorley et al. (2018) found no evidence for task specialisation in the eusocial Damaraland mole-rat. We could not test worker specialisation due to the lack of pup tending observed. Although some authors have shown that repeated exposure to a task increases efficiency in insects (Langridge, Sendova-Franks & Franks, 2008), this is not always the case (Dornhaus, 2008; Santoro, Hartley & Lester, 2019). Future research could use experimental tasks to explore the presence of specialisation in naked mole-rats and determine whether it increases individual or colony efficiency. Assessing worker, pup tending and defence behaviours like Mooney et al. (2015) would be the best way to establish whether task specialisation exists, as has been suggested in studies of other mole-rats (Van Daele et al., 2019).

CONCLUSION

Gordon (2016) suggested that the term ‘division of labour’, implying internally-driven choices, is too rigid, and instead terms relating to individual behaviours should emphasise the influences of external conditions and social interactions. Further, we agree that workers should not be classified according to discrete ‘castes’ in mole-rats unless clear supporting evidence is reported (Skliba et al., 2016). Polytethisms based on individual characteristics could be the start of an effective division of labour but the relationship appears to be complicated and variable. The outstanding questions are the extent to which polytethisms can be fine-tuned and the mechanisms that facilitate these changes. To date, the causes of within-individual variation are still largely unstudied in social mammals and insects (Jeanson, 2019). Given our results, combined with those of Mooney et al. (2015) and the mixed findings of earlier studies (Faulkes et al., 1991; Jarvis, 1991; Lacey & Sherman, 1991), future research should focus on the interaction between internal, social and environmental influences on working behaviour, rather than attributing such...
strong influence to internal factors. As Gordon (2016) argues, interchangeability and the absence of fixed specialisation are exactly what make collective behaviour flexible and adaptive.
REFERENCES

Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Scheipl F, Grothendieck G, Green P, Fox J. 2020. *lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4*. DOI: 10.1007/s002650050669

Burda H, Honeycutt RL, Begall S, Locker-Grütjen O, Scharff A. 2000. Are naked and common mole-rats eusocial and if so, why?. *Behavioral Ecology and Sociobiology* 47:293-303. DOI: 10.1007/s002650050669

Burnham KP, Anderson DR. 2002. *Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach*. New York: Springer-Verlag. DOI: 10.1007/b97636.

Burnham KP, Anderson DR, Huyvaert KP. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. *Behavioral Ecology and Sociobiology* 65:23–35. DOI: 10.1007/s00265-010-1029-6.

Charbonneau D, Dornhaus A. 2015. Workers ‘specialized’ on inactivity: Behavioral consistency of inactive workers and their role in task allocation. *Behavioral Ecology and Sociobiology* 69:1459–1472. DOI: 10.1007/s00265-015-1958-1.

Clarke FM, Faulkes CG. 1997. Dominance and queen succession in captive colonies of the eusocial naked mole-rat, *Heterocephalus glaber*. *Proceedings of the Royal Society B: Biological Sciences* 264:993–1000. DOI: 10.1098/rspb.1997.0137.

Clarke FM, Faulkes CG. 1998. Hormonal and behavioural correlates of male dominance and reproductive status in captive colonies of the naked mole-rat, *Heterocephalus glaber*. *Proceedings of the Royal Society B: Biological Sciences* 265:1391–1399. DOI: 10.1098/rspb.1998.0447.
Clarke FM, Faulkes CG. 2001. Intracolony aggression in the eusocial naked mole-rat, *Heterocephalus glaber*. *Animal Behaviour* 61:311–324. DOI: 10.1006/anbe.2000.1573.

Crespi BJ, Yanega D. 1995. The definition of eusociality. *Behavioral Ecology* 6:109–115.

Dornhaus A. 2008. Specialization Does Not Predict Individual Efficiency in an Ant. *PLOS Biology* 6:e285. DOI: 10.1371/journal.pbio.0060285.

Duan N, Manning WG, Morris CN, Newhouse JP. 1983. A Comparison of Alternative Models for the Demand for Medical Care. *Journal of Business & Economic Statistics* 1:115–126. DOI: 10.2307/1391852.

Faulkes CG, Abbott DH, Liddell CE, George LM, Jarvis JUM. 1991. Hormonal and behavioral aspects of reproductive suppression in female naked mole-rats. In: Sherman PW, Jarvis JUM, Alexander RD eds. *The Biology of the Naked Mole-Rat*. NJ: Princeton University Press, 426–445.

Faulkes CG, Bennett NC. 2013. Plasticity and constraints on social evolution in African mole-rats: ultimate and proximate factors. *Philosophical Transactions of the Royal Society B: Biological Sciences*. 368: 20120347. DOI: 10.1098/rstb.2012.0347

Friard O, Gamba M. 2016. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. *Methods in Ecology and Evolution* 7:1325–1330. DOI: 10.1111/2041-210X.12584.

Gaylard A, Harrison Y, Bennett NC. 1998. Temporal changes in the social structure of a captive colony of the Damaraland mole-rat, *Cryptomys damarensis*: the relationship of sex and age to dominance and burrow-maintenance activity. *Journal of Zoology* 244:313-321. DOI: 10.1111/j.1469-7998.1998.tb00035.x.
Gazda SK. 2016. Driver-barrier feeding behavior in bottlenose dolphins (*Tursiops truncatus*): New insights from a longitudinal study. *Marine Mammal Science* 32:1152–1160. DOI: 10.1111/mms.12314.

Gazda SK, Connor RC, Edgar RK, Cox F. 2005. A division of labour with role specialization in group–hunting bottlenose dolphins (*Tursiops truncatus*) off Cedar Key, Florida. *Proceedings of the Royal Society B: Biological Sciences* 272:135–140. DOI: 10.1098/rspb.2004.2937.

Gordon DM. 1989. Dynamics of task switching in harvester ants. *Animal Behaviour* 38:194–204. DOI: 10.1016/S0003-3472(89)80082-X.

Gordon DM. 2016. From division of labor to the collective behavior of social insects. *Behavioral Ecology and Sociobiology* 70:1101–1108. DOI: 10.1007/s00265-015-2045-3.

Hartig F. 2020. *DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models*.

Hathaway GA, Faykoo-Martinez M, Peragine DE, Mooney SJ, Holmes MM. 2016. Subcaste differences in neural activation suggest a prosocial role for oxytocin in eusocial naked mole-rats. *Hormones and Behavior* 79:1–7. DOI: 10.1016/j.yhbeh.2015.12.001.

Houslay TM, Vullioud P, Zöttl M, Clutton-Brock TH. 2020. Benefits of cooperation in captive Damaraland mole-rats. *Behavioral Ecology* 31:711-718. DOI: 10.1093/beheco/araa015

Hurtado MJ, Fénéron R, Gouat P. 2013. Specialization in building tasks in the mound-building mouse, *Mus spicilegus*. *Animal Behaviour* 85:1153–1160. DOI: 10.1016/j.anbehav.2013.03.020.
Ingram DK. 2000. Age-related decline in physical activity: generalization to nonhumans. *Medicine and science in sports and exercise* 32: 1623-1629. DOI: 10.1097/00005768-200009000-00016.

Jacobs DS, Jarvis JUM. 1996. No Evidence for the Work-Conflict Hypothesis in the Eusocial Naked Mole-Rat (*Heterocephalus glaber*). *Behavioral Ecology and Sociobiology* 39:401–409.

Jarvis JUM. 1981. Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. *Science* 212:571–573. DOI: 10.1126/science.7209555.

Jarvis JUM. 1991. Reproduction of Naked Mole-Rats. In: *The Biology of the Naked Mole-Rat*. Princeton, New Jersey: Princeton University Press, 384.

Jarvis JUM, O’Riain MJ, Bennett NC, Sherman PW. 1994. Mammalian eusociality: a family affair. *Trends in Ecology and Evolution* 9:47–51. DOI: 10.1016/0169-5347(94)90267-4.

Jarvis JUM, O’Riain MJ, McDaid E. 1991. Growth and factors affecting body size in naked mole-rats. In: Sherman PW, J. U. M. Jarvis, Alexander RD eds. *The biology of the naked mole-rat*. Princeton University Press, 358–383.

Jeanson R. 2019. Within-individual behavioural variability and division of labour in social insects. *Journal of Experimental Biology* 222. DOI: 10.1242/jeb.190868.

Jeanson R, Weidenmüller A. 2014. Interindividual variability in social insects – proximate causes and ultimate consequences. *Biological Reviews* 89:671–687. DOI: 10.1111/brv.12074.

Judd TM, Sherman PW. 1996. Naked mole-rats recruit colony mates to food sources. *Animal Behaviour* 52:957–969. DOI: 10.1006/anbe.1996.0244.
Lacey EA, Alexander RD, Braude SH, Sherman PW, Jarvis JUM. 1991. An Ethogram for the Naked Mole-Rat: Nonvocal Behaviors. In: The Biology of the Naked Mole-Rat. Princeton University Press, 209–242.

Lacey EA, Sherman PW. 1991. Social organization of naked mole-rat colonies: evidence for a division of labor. In: The biology of the naked mole-rat. Princeton, NJ: Princeton University Press, 384–425.

Lacey EA, Sherman PW. 1997. Cooperative Breeding in Naked Mole-Rats: Implications for Vertebrate and Invertebrate Sociality. In: Solomon NG, French JA eds. Cooperative Breeding in Mammals. Cambridge: Cambridge University Press, 267–301. DOI: 10.1017/CBO9780511574634.011.

Langridge EA, Sendova-Franks AB, Franks NR. 2008. How experienced individuals contribute to an improvement in collective performance in ants. Behavioral Ecology and Sociobiology 62:447–456. DOI: 10.1007/s00265-007-0472-5.

Lever J, Krzywinski M, Altman N. 2016. Points of significance: model selection and overfitting. Nature Methods 13: 703-704. DOI: 10.1038/nmeth.3968.

Lüdecke D, Makowski D, Waggoner, P, Patil I. 2019. performance: assessment of regression models performance.

Marck A, Berthelot G, Foulonneau V, Marc A, Antero-Jacquemin J, Noirez P, Bronikowski AM, Morgan TJ, Garland Jr T, Carter PA, Hersen P. 2017. Age-related changes in locomotor performance reveal a similar pattern for Caenorhabditis elegans, Mus domesticus, Canis familiaris, Equus caballus, and Homo sapiens. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 72: 455-463. DOI: 10.1093/gerona/glw136.
Maynard Smith J, Szathmáry Eörs. 1999. *The origins of life: From the birth of life to the origins of language*. New York: Oxford University Press.

Mazerolle MJ, Linden D. 2019. *AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c)*.

Medger K, Bennett NC, Ganswindt SB, Ganswindt A, Hart DW. 2019. Changes in prolactin, cortisol and testosterone concentrations during queen succession in a colony of naked mole-rats (*Heterocephalus glaber*): a case study. *The Science of Nature* 106:26. DOI: 10.1007/s00114-019-1621-1.

Min Y, Agresti A. 2002. Modeling Nonnegative Data with Clumping at Zero: A Survey. *Journal of the Iranian Statistical Society* 1:7–33.

Mongillo DL, Kosyachkova EA, Nguyen TM, Holmes MM. 2014. Differential effects of chronic fluoxetine on the behavior of dominant and subordinate naked mole-rats. *Behavioural Brain Research* 258:119–126. DOI: 10.1016/j.bbr.2013.10.023.

Mooney SJ, Filice DCS, Douglas NR, Holmes MM. 2015. Task specialization and task switching in eusocial mammals. *Animal Behaviour* 109:227–233. DOI: 10.1016/j.anbehav.2015.08.019.

Nakagawa S, Johnson PCD, Schielzeth H. The coefficient of determination R^2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. 2017. *Journal of the Royal Society Interface* 14: 20170213. DOI: 10.1098/rsif.2017.0213.

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R^2 from generalized linear mixed-effects models. *Methods in ecology and evolution* 4: 133-142. DOI: 10.1111/j.2041-210x.2012.00261.x.
Neumann C, Kulik L. 2020. EloRating: Animal Dominance Hierarchies by Elo Rating.

O’Riain MJ, Jarvis JUM. 1997. Colony member recognition and xenophobia in the naked mole-rat. Animal Behaviour 53:487–498. DOI: 10.1006/anbe.1996.0299.

O’Riain MJ, Jarvis JUM. 1998. The dynamics of growth in naked mole-rats: the effects of litter order and changes in social structure. Journal of Zoology 246:49–60. DOI: 10.1111/j.1469-7998.1998.tb00131.x.

Peroulakis ME, Goldman B, Forger NG. 2002. Perineal muscles and motoneurons are sexually monomorphic in the naked mole-rat (Heterocephalus glaber). Journal of neurobiology 51:33-42. DOI: 10.1002/neu.10039.

R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

Reeve HK. 1992. Queen activation of lazy workers in colonies of the eusocial naked mole-rat. Nature 358:147–149. DOI: 10.1038/358147a0.

Robinson GE. 1992. Regulation of Division of Labor in Insect Societies. Annual Review of Entomology 37:637–665. DOI: 10.1146/annurev.en.37.010192.003225.

Sánchez-Tójar A, Schroeder J, Farine DR. 2018. A practical guide for inferring reliable dominance hierarchies and estimating their uncertainty. Journal of Animal Ecology 87:594–608. DOI: 10.1111/1365-2656.12776.

Santoro D, Hartley S, Lester PJ. 2019. Behaviourally specialized foragers are less efficient and live shorter lives than generalists in wasp colonies. Scientific Reports 9:1–10. DOI: 10.1038/s41598-019-41791-0.

Schieffelin JS, Sherman PW. Tugging contests reveal feeding hierarchies in naked mole-rat colonies. Animal behaviour 49: 537-541. DOI: 10.1006/anbe.1995.0073.
Schielke CK, Begall S, Burda H. 2012. Reproductive state does not influence activity budgets of eusocial Ansell's mole-rats, *Fukomys anselli* (Rodentia, Bathyergidae): A study of locomotor activity by means of RFID. *Mammalian Biology* 77: 1-5. DOI: 10.1016/j.mambio.2011.09.004.

Šklíba J, Lövy M, Burda H, Šumbera R. 2016. Variability of space-use patterns in a free living eusocial rodent, Ansell’s mole-rat indicates age-based rather than caste polyethism. *Scientific reports* 6: 1-9. DOI: 10.1038/srep37497.

Stander PE. 1992. Cooperative hunting in lions: the role of the individual. *Behavioral Ecology and Sociobiology* 29. DOI: 10.1007/BF00170175.

Thorley J, Mendonça R, Vullioud P, Torrents-Ticó M, Zöttl M, Gaynor D, Clutton-Brock T. 2018. No task specialization among helpers in Damaraland mole-rats. *Animal Behaviour* 143:9–24. DOI: 10.1016/j.anbehav.2018.07.004.

Van Daele PAAG, Desmet N, Šumbera R, Adriaens D. 2019. Work behaviour and biting performance in the cooperative breeding Micklem’s mole-rat *Fukomys micklemi* (Bathyergidae, Rodentia). *Mammalian Biology* 95:69–76. DOI: 10.1016/j.mambio.2019.02.002.

de Vries H, Stevens JMG, Vervaecke H. 2006. Measuring and testing the steepness of dominance hierarchies. *Animal Behaviour* 71:585–592. DOI: 10.1016/j.anbehav.2005.05.015.

Wickham H. 2016. *ggplot2: Elegant Graphics for Data Analysis*.

Wilson EO. 1987. Causes of Ecological Success: The Case of the Ants. *Journal of Animal Ecology* 56:1–9. DOI: 10.2307/4795.
Zöttl M, Vullioud P, Mendonça R, Torrents Ticó M, Gaynor D, Mitchell A, Clutton-Brock T. 2016. Differences in cooperative behavior among Damaraland mole rats are consequences of an age-related polyethism. *Proceedings of the National Academy of Sciences* 113:10382–10387. DOI: 10.1073/pnas.1607885113.
Figure 1 (on next page)

Presence of working behaviour by age (A), weight (B) and rank (C) of the individual being observed.

The plots are fitted with locally weighted (loess) regression lines that display localised trends in the data. These are different from the models described below which include colony and individual as random effects. The size of the points reflects the number of data points at each location (geom_count, ggplot2). Rank is scaled to account for group size and the most dominant individuals have ranks closer to zero. Age and weight-cubed were associated with the probability that an individual was observed working; younger and mid-sized individuals worked most frequently.
Figure 2 (on next page)

Duration of working behaviour by age (A), weight (B) and rank (C) of the individual being observed.

The plots are fitted with locally weighted (loess) regression lines that display localised trends in the data. These are different from the models described below which include colony and individual as random effects. Rank is scaled to account for group size and the most dominant individuals have ranks closer to zero. Rank-squared was associated with the duration an individual was observed working; more dominant animals worked for shorter periods of time.
Figure 3

Figure 3. Duration of working behaviour per observation period for each colony.

Medians are indicated by thick black horizontal lines, the upper and lower quartiles are represented by the upper and lower edges of the boxes, and the whiskers extend to 1.5 the interquartile ranges. Data points outside the whiskers are plotted as points.
Figure 3. Duration of working behaviour per observation period for each colony.

Medians are indicated by thick black horizontal lines, the upper and lower quartiles are represented by the upper and lower edges of the boxes, and the whiskers extend to 1.5 the interquartile ranges. Data points outside the whiskers are plotted as points.
Figure 4 (on next page)

Presence of working behaviour by age (A), weight (B) and rank (C) of the individual being observed for each colony.

The lines are generalised linear regressions with a binary response variable (whether work was observed during the observation period) using ggplot2’s `stat_smooth` function (Wickham 2016). The size of the points reflects the number of data points at each location (geom_count, ggplot2).
Figure 5 (on next page)

Figure 5A-C. Duration of working behaviour by age (A), weight (B) and rank (C) of the individual being observed for each colony.

The lines are general linear regressions with duration of working behaviour as the response variable using ggplot2’s stat_smooth function (Wickham 2016).
Table 1. Summary statistics of animals used in the study
Table 1. Summary statistics of animals used in the study.

Colony	Total Number of Individuals (at start of observation period)	Number of Individuals Observed	Number of Females Observed	Proportion Female	Mean (min, max) Age (months)	Mean (min, max) Weight (grams)	Mean (SD) Working Behaviour Recorded (seconds per observation)
11A	28	15	6	0.40	30.7 (9, 77)	27.5 (16.7, 41.9)	47 (110.5)
11B	24	16	7	0.43	46.6 (18, 86)	33.2 (23.5, 56.9)	125.5 (197.5)
11C	16	10	8	0.80	33.1 (8, 63)	27.8 (17.1, 50.4)	73.7 (153.9)
17A	23	16	10	0.63	7.9 (4, 18)	23.2 (12.8, 38.5)	128.1 (180.7)
800	10	8	7	0.88	100.5 (36, 184)	30.5 (18.8, 38.6)	103.1 (173.1)
CF05A	10	7	2	0.29	26.1 (22, 41)	33.6 (29.9, 45.6)	178.3 (180.9)
CF27	26	18	13	0.72	65 (19, 154)	28.6 (18.6, 44.2)	203.6 (192.3)
FK100	43	13	5	0.38	38.1 (15, 93)	25.5 (17, 48.4)	59.7 (145.4)
Total	180	103	58	0.56	41.9 (4, 184)	28.3 (12.8, 56.9)	116.6 (177.5)
Table 2. The average duration of working behaviour and percentage of time observed working per 600-second observation period for females, males and both sexes combined.
Table 2. The average duration of working behaviour and percentage of time observed working per 600-second observation period for females, males and both sexes combined.

Sex	Average time observed in working behaviour (SD)	Percentage of time observed working
Female	124.8 (179.2)	20.8
Male	106.1 (174.9)	17.7
Combined	116.6 (177.5)	19.4
Table 3 (on next page)

Results of logistic mixed-effects models predicting whether working behaviour was observed or not.

The format of the models was: Presence or absence of working behaviour ~ Colony|Individual + Fixed Effect Where Presence of working behaviour is whether working behaviour was observed during the ten-minute observation period, Colony and Individual are random effects with Individual nested within Colony, and Fixed Effect was omitted in the null model and one of sex, age (months), weight (grams) and rank (0-1, scaled) was included in the corresponding models. The scripts used to run the models are available in Supplementary File 3. Relative likelihoods are calculated as $\exp(-\frac{1}{2}\Delta AICc)$. Nakagawa’s R^2 estimates the variance explained by the fixed effects (marginal variance) and both fixed and random effects (conditional variance) (Nakagawa & Schielzeth, 2013).
Variable	Null	Sex (Base = F)	Age	Weight	Rank					
	Co-ef	S.E.								
Intercept	-0.28	-0.28	-0.21	0.31	0.10	0.34	-0.28	0.30	0.02	0.36
Sex	-0.16	0.21								
Age			-0.009	0.003						
Weight			-2.62	2.67						
Weight²			-4.58	2.49						
Weight³			5.73	2.38						
Rank			-0.50	0.34						
Model AICc	790.66	792.14	783.42	786.77	790.60					
AICc versus null model			+1.48	-7.24	-3.89	-0.06				
Relative likelihood versus null model			0.48	37.34	6.99	1.03				
Nakagawa’s R²:										
Conditional	0.202	0.202	0.230	0.210	0.202					
Marginal	0.000	0.002	0.030	0.024	0.005					
Results of generalised linear mixed-effects models predicting the duration of observed working behaviour.

The format of the models was: \(\text{Duration of working behaviour} \sim \text{Colony}\mid\text{Individual} + \text{Fixed Effect} \) Where \(\text{Duration of working behaviour} \) is the duration of working behaviour observed during the ten-minute observation period, \(\text{Colony} \) and \(\text{Individual} \) are random effects with \(\text{Individual} \) nested within \(\text{Colony} \), and \(\text{Fixed Effect} \) was omitted in the null model and one of sex, age (months), weight (grams) and rank (0-1, scaled) was included in the corresponding models. The scripts used to run the models are available in Supplementary File 3. Relative likelihoods are calculated with \(\exp(-\frac{1}{2}\Delta AICc) \). Nakagawa’s \(R^2 \) estimates the variance explained by the fixed effects (marginal variance) and both fixed and random effects (conditional variance) (Nakagawa & Schielzeth, 2013).
Variable	Null Co-ef	Null S.E.	Sex (Base = F) Co-ef	Sex (Base = F) S.E.	Age Co-ef	Age S.E.	Weight Co-ef	Weight S.E.	Rank Co-ef	Rank S.E.
Intercept	259.86	13.68	261.86	17.48	263.18	18.80	306.22	51.44	259.07	14.37
Sex			-4.74	26.28						
Age			-0.09	0.31						
Weight			-1.66	1.73						
Rank					282.05	200.03	-649.10	200.68		
Rank^2										
Model AICc	3622.44	3624.48	3624.44	3623.71	3615.23					
AICc versus Null model	-	+2.04	+2.00	+1.28	-7.21					
Relative likelihood versus null model		0.36	0.37	0.53	36.78					
Nakagawa’s R^2:										
Conditional	0.169	0.169	0.171	0.175	0.182					
Marginal	0.000	0.000	0.000	0.005	0.056					