ALEXANDER POLYNOMIALS AND SIGNATURES OF SOME HIGH-DIMENSIONAL KNOTS

EVA BAYER-FLUCKIGER

Abstract. We give necessary and sufficient conditions for an integer to be the signature of a $4q - 1$-knot in S^{4q+1} with a given square-free Alexander polynomial.

0. Introduction

What are the possibilities for the signatures of knots with a given Alexander polynomial? This question is answered in [B 21] for "classical" knots, i.e. knots $K^1 \subset S^3$, with some restrictions on the Alexander polynomial, and the same results hold for knots $K^m \subset S^{m+2}$ if $m \equiv 1 \pmod{4}$. In the present paper, we consider high-dimensional knots $K^m \subset S^{m+2}$ with $m \equiv -1 \pmod{4}$. In the introduction, we describe the results for $m > 3$; the case $m = 3$ is somewhat different (see Section 9).

Let $m \geq 7$ be an integer with $m \equiv -1 \pmod{4}$. An m-knot $K^m \subset S^{m+2}$ is by definition a smooth, oriented submanifold of S^{m+2}, homeomorphic to S^m; in the following, a knot will mean an m-knot as above. We refer to the book of Michel and Weber [MW 17] for a survey of high-dimensional knot theory.

Let K^m be a knot. The Alexander polynomial $\Delta = \Delta_K \in \mathbb{Z}[X]$ is a polynomial of even degree; set $2n = \deg(\Delta)$. It satisfies the following three properties (see for instance [Le 69], Proposition 1):

1. $\Delta(X) = X^{2n}\Delta(X^{-1})$,
2. $\Delta(1) = (-1)^n$,
3. $\Delta(-1)$ is a square.

Conversely, if $\Delta \in \mathbb{Z}[X]$ is a degree $2n$ polynomial satisfying conditions (1)-(3), then there exists a knot with Alexander polynomial Δ (cf. Levine [Le 69], Proposition 2 and Lemma 3; note that Lemma 3 is based on a result of Kervaire, [K 65], Théorème II.3).

Let F^{m+1} be a Seifert hypersurface of K^m (see for instance [MW 17], Definition 6.16), and let $L = H_n(F^{m+1}, \mathbb{Z})/\text{tors}$, where Tors is the \mathbb{Z}-torsion subgroup of $H_n(F^{m+1}, \mathbb{Z})$. Let $S: L \times L \rightarrow \mathbb{Z}$ be the intersection form; since $m \equiv -1 \pmod{4}$, the form S is symmetric. The signature of K^m is by definition the signature of the symmetric form S; it is an invariant of the knot. The form S is even and unimodular, therefore its signature is $\equiv 0 \pmod{8}$.

Date: February 8, 2022.
Levine’s construction (see [Le 69], Proposition 2 and Lemma 3) shows the existence of a knot with Alexander polynomial Δ and signature 0. It is natural to ask: what other signatures occur?

Let us denote by $\rho(\Delta)$ the number of roots z of Δ such that $|z| = 1$. If a knot has Alexander polynomial Δ and signature s, then $|s| \leq \rho(\Delta)$. This shows that the conditions $s \equiv 0 \pmod{8}$ and $|s| \leq \rho(\Delta)$ are necessary for the existence of a knot with Alexander polynomial Δ and signature s; however, these conditions are not sufficient, as shown by the following example, taken from [GM 02], Proposition 5.2:

Example 1. Let $\Delta(X) = (X^6 - 3X^5 - X^4 + 5X^3 - X^2 - 3X + 1)(X^4 - X^2 + 1)$; we have $\rho(\Delta) = 8$, hence $s = -8, 0$ and 8 satisfy the above necessary conditions. However, there does not exist any knot with Alexander polynomial Δ and signature -8 or 8.

Let $\Delta \in \mathbb{Z}[X]$ be a polynomial satisfying conditions (1)-(3), and suppose that Δ is square-free. We associate to Δ a finite abelian group G_Δ that controls the signatures of the knots with Alexander polynomial Δ (see §4 - §7). In particular, we have (cf. Corollary 7.4):

Theorem 1. Assume that $G_\Delta = 0$, and let s be an integer with $s \equiv 0 \pmod{8}$ and $|s| \leq \rho(\Delta)$. Then there exists a knot with Alexander polynomial Δ and signature s.

The vanishing of the group G_Δ has other geometric consequences: we show the existence of indecomposable knots with Alexander polynomial Δ (see §8).

1. **Seifert forms and Seifert pairs**

Seifert forms are well-known objects of knot theory; the aim of this section is to recall this notion, and to show that it is equivalent to the one of *Seifert pairs*; this notion was introduced, under a different name, by Kervaire in [K 71] in the context of knot cobordism; see also Stoltzfus ([St 77]) and [B 82], §5.

Definition 1.1. A *Seifert form* is by definition a pair (L, A), where L is a free \mathbb{Z}-module of finite rank and $A : L \times L \to \mathbb{Z}$ is a \mathbb{Z}-bilinear form such that the symmetric form $L \times L \to \mathbb{Z}$ sending (x, y) to $A(x, y) + A(y, x)$ is unimodular (i.e. has determinant ± 1); the *signature* of (L, A) is by definition the signature of this symmetric form.

The *Alexander polynomial* of (L, A), denoted by Δ_A, is by definition the determinant of the form $L \times L \to \mathbb{Z}[X]$ given by

$$(x, y) \mapsto A(x, y)X + A(y, x).$$

Definition 1.2. A *Seifert pair* is by definition a triple (L, S, a), where L is a free \mathbb{Z}-module of finite rank, $S : L \times L \to \mathbb{Z}$ is an even (i.e. $S(x, x)$ is an even integer for all $x \in L$), unimodular, symmetric \mathbb{Z}-bilinear form, and $a : L \to L$ is an injective \mathbb{Z}-linear map such that

$$S(ax, y) = S(x, (1 - a)y)$$

for all $x, y \in L$.
Let \((L, S, a)\) be a Seifert pair. Since \(S\) is even and unimodular, the rank of \(L\) is an even integer; let \(n \in \mathbb{Z}\) be such that \(\text{rank}(L) = 2n\). Let \(A : L \times L \to \mathbb{Z}\) be defined by

\[A(x, y) = S(ax, y); \]

note that \((L, A)\) is a Seifert form, and we have

Proposition 1.3. Sending \((L, S, a)\) to \((L, A)\) as above induces a bijection between isomorphism classes of Seifert pairs and of Seifert forms. Let \(P_a\) be the characteristic polynomial of \(a\). We have

\[P_a(X) = (-1)^n X^{2n} \Delta_A(1 - X^{-1}). \]

Note that \(\Delta_A(X) = X^{2n} \Delta_A(X^{-1})\), and that \(P_a(X) = P_a(1 - X)\).

Definition 1.4. A lattice is a pair \((L, S)\), where \(L\) is a free \(\mathbb{Z}\)-module of finite rank, and \(S : L \times L \to \mathbb{Z}\) is a symmetric bilinear form with \(\det(S) \neq 0\). We say that \((L, S)\) is unimodular if \(\det(S) = \pm 1\), and even if \(S(x, x)\) is an even integer for all \(x \in L\).

Note that a Seifert pair consists of an even, unimodular lattice \((L, S)\) and an injective endomorphism \(a : L \to L\) such that \(S(ax, y) = S(x, (1 - a)y)\) for all \(x, y \in L\).

2. Involutions of \(K[X]\), symmetric polynomials and bilinear forms compatible with a module

Let \(K\) be a field, let \(R\) be a commutative \(K\)-algebra, and let \(\sigma : R \to R\) be an involution; we say that \(\lambda \in R\) is \(\sigma\)-symmetric (or symmetric, if the choice of \(\sigma\) is clear from the context) if \(\sigma(\lambda) = \lambda\).

Example 2.1. (1) Let \(\sigma : K[X, X^{-1}] \to K[X, X^{-1}]\) be the involution sending \(X\) to \(X^{-1}\). If \(\Delta\) is the Alexander polynomial of a Seifert form of rank \(2n\), then \(X^{-n} \Delta(X)\) is symmetric.

(2) Let \(\sigma : K[X] \to K[X]\) be the involution sending \(X\) to \(1 - X\); the symmetric polynomials are the \(f \in K[X]\) such that \(f(1 - X) = f(X)\). The characteristic polynomial of a Seifert pair is symmetric.

Let \(M\) be an \(R\)-module that is a finite dimensional \(K\)-vector space. Recall from [B21], §1, that a non-degenerate symmetric bilinear form \(b : M \times M \to K\) is called an \((R, \sigma)\)-bilinear form if

\[b(\lambda x, y) = b(x, \sigma(\lambda)y) \]

for all \(x, y \in V\) and for all \(\lambda \in R\).

Example 2.2. Let \((L, S, a)\) be a Seifert pair and set \(V = L \otimes_{\mathbb{Z}} \mathbb{Q}\); we denote by \(S : V \times V \to \mathbb{Q}\) and \(a : V \to V\) the symmetric bilinear form and the \(\mathbb{Q}\)-linear map induced by \(S\) and \(a\). Let \(\sigma : \mathbb{Q}[X] \to \mathbb{Q}[X]\) be the involution sending \(X\) to \(1 - X\). We endow \(V\) with a structure of \(\mathbb{Q}[X]\)-module by setting \(X.x = a(x)\) for all \(x \in V\); note that \(S : V \times V \to \mathbb{Q}\) is a \((\mathbb{Q}[X], \sigma)\) bilinear form.
Let V be a finite dimensional K-vector space, and let $q : V \times V \to K$ be a non-degenerate symmetric bilinear form. Following [B 21], §1, we say that M and (V,q) are compatible if there exists a K-linear isomorphism $\phi : M \to V$ such that the bilinear form $b_\phi : M \times M \to K$, defined by $b_\phi(x,y) = q(\phi(x), \phi(y))$, is an R-bilinear form.

Example 2.3. Let $\sigma : K[X] \to K[X]$ be the involution sending X to $1 - X$, and let $P \in K[X]$ be a monic, σ-symmetric polynomial. Assume P is a product of distinct monic, symmetric, irreducible factors; let us denote by I the set of these polynomials. Set $\sigma^2(P) = P$.

The set of these polynomials. Set

$$\text{Example 2.3.} \quad \text{Let } \sigma : K[X] \to K[X] \text{ be the involution sending } X \text{ to } 1 - X, \quad \text{and let } P \in K[X] \text{ be a monic, } \sigma\text{-symmetric polynomial. Assume } P \text{ is a product of distinct monic, symmetric, irreducible factors; let us denote by } I \text{ the set of these polynomials. Set } \sigma^2(P) = P. \quad \text{Set}$$

$\sigma^2(P)$

3. **Milnor signatures**

We recall the notion of Milnor signatures, introduced by Milnor in [M 68], in the context of Seifert pairs. Let (L,S,a) be a Seifert pair, and let $P \in \mathbb{Z}[X]$ be the characteristic polynomial of a. Assume that the polynomial P is square-free, i.e. has no repeated factors; we also suppose that if $f \in \mathbb{Z}[X]$ is a monic, irreducible factor of P, then $f(X) = f(1 - X)$.

Let $V = L \otimes_{\mathbb{Z}} \mathbb{R}$. Let $f \in \mathbb{R}[X]$ be a monic, irreducible factor of degree 2 of $P \in \mathbb{R}[X]$; note that this implies that $f(X) = f(1 - X)$.

Definition 3.1. The signature of (L,S,a) at f is by definition the signature of the restriction of S to $\text{Ker}(f(a))$.

Notation 3.2. Let $\text{Irr}_R(P)$ be the set of monic, irreducible factors $f \in \mathbb{R}[X]$ of degree 2 of P. Let $s \in \mathbb{Z}$. We denote by $\text{Mil}(P)$ the set of maps

$$\text{Irr}_R(P) \to \{-2, 2\},$$

and by $\text{Mil}_s(P)$ the set of $\tau \in \text{Mil}(P)$ such that

$$\sum_{f \in \text{Irr}_R(P)} \tau(f) = s.$$

Let $n \geq 1$ be an integer, and let $\Delta \in \mathbb{Z}[X]$ be a polynomial of degree $2n$ such that $\Delta(X) = X^{2n}\Delta(X^{-1})$, $\Delta(1) = (-1)^n$ and that $\Delta(-1)$ is a square of an integer. Suppose that $P(X) = (-1)^n X^{2n}\Delta(1 - X^{-1})$. We define $\text{Mil}_s(\Delta)$ as in [B 21], §26; note that there are obvious bijections between $\text{Irr}_R(P)$ and $\text{Irr}_R(\Delta)$, $\text{Mil}_s(P)$ and $\text{Mil}_s(\Delta)$, and that we recover the usual notion of Milnor signature.

If P and Δ are as above, set $\rho(P) = \rho(\Delta)$; alternatively, $\rho(P)$ can be defined as the number of roots z of P with $z + \overline{z} = 1$, where \overline{z} denotes the complex conjugate of z. Note that $\rho(\Delta) = |\text{Irr}_R(\Delta)|$ and $\rho(P) = |\text{Irr}_R(P)|$.

4. The obstruction group

Let \(P \in \mathbb{Z}[X] \) be a monic polynomial such that \(P(1 - X) = P(X) \). Assume that \(P \) is a product of distinct irreducible monic polynomials \(f \in \mathbb{Z}[X] \) such that \(f(1 - X) = f(X) \). We associate to \(P \) an elementary abelian 2-group \(G_P \) that will be useful in the following sections; this construction is similar to the one of [B 21], §21.

Let \(I \) be the set of irreducible factors of \(P \). If \(f, g \in I \), let \(\Pi_{f,g} \) be the set of prime numbers \(p \) such that \(f \mod p \) and \(g \mod p \) have a common factor \(h \in \mathbb{F}_p[X] \) such that \(h(1 - X) = h(X) \). Let \(C(I) \) be the set of maps \(I \to \mathbb{Z}/2\mathbb{Z} \), and let \(C_0(I) \) be the set of \(c \in C_0(I) \) such that \(c(f) = c(g) \) if \(f, g \notin \emptyset \). Note that \(C_0(I) \) is a group with respect to the addition of maps, and let \(G_P \) be the quotient of the group \(C_0(I) \) by the subgroup of the constant maps.

Example 4.1. Let \(f_1(X) = X^4 - 2X^3 + 5X^2 - 4X + 1 \) and \(f_2(X) = X^4 - 2X^3 + 11X^2 - 10X + 3 \);
set \(P = f_1f_2 \). We have \(\Pi_{f_1,f_2} = \{2\} \), hence \(G_P = 0 \).

If \(P(X) = (-1)^nX^{2n}\Delta(1 - X^{-1}) \) for some polynomial \(\Delta \in \mathbb{Z}[X] \), set \(G_\Delta = G_P \). If moreover \(\Delta(0) = \pm 1 \), then the group \(G_\Delta \) is equal to the obstruction group \(III_{\Delta(0)\Delta} \) of [B 21], §21 and §25. In particular, 25.8 - 25.11, 31.4 and 31.5 of [B 21] provide examples of obstruction groups in our context as well. This is also the case for the following example, given in the introduction:

Example 4.2. Let \(g_1(X) = X^6 - 3X^5 - X^4 + 5X^3 - X^2 - 3X + 1 \) and \(g_2(X) = X^4 - X^2 + 1 \); set \(\Delta = g_1g_2 \), as in Example 1. Set \(f_1(X) = -X^6g_1(1 - X^{-1}) \), and \(f_2(X) = X^4g_2(1 - X^{-1}) \), and let \(P = f_1f_2 \). The polynomials \(f_1 \) and \(f_2 \) are relatively prime over \(\mathbb{Z} \), hence \(\Pi_{f_1,f_2} = \emptyset \); therefore \(G_P \simeq \mathbb{Z}/2\mathbb{Z} \).

5. Seifert pairs with a given characteristic polynomial and signature

Let \(n \geq 1 \) be an integer, and let \(\Delta \in \mathbb{Z}[X] \) be a polynomial of degree \(2n \) such that \(\Delta(X) = X^{2n}\Delta(X^{-1}) \), \(\Delta(1) = (-1)^n \) and that \(\Delta(-1) \) is a square of an integer. Set \(P(X) = (-1)^nX^{2n}\Delta(1 - X^{-1}) \). Assume that \(P \) is a product of distinct irreducible monic polynomials \(f \in \mathbb{Z}[X] \) such that \(f(1 - X) = f(X) \), and let \(I \) be the set of irreducible, monic factors of \(P \).

Let \(G_P \) be the group introduced in §11 and set \(G_\Delta = G_P \).

Let \(s \) be an integer such that \(s \equiv 0 \pmod{8} \), and that \(|s| \leq \rho(P) \). Let \(\tau \in \text{Mil}_s(P) \). The aim of this section is to give a necessary and sufficient condition for the existence of a Seifert pair with characteristic polynomial \(P \) and Milnor signature \(\tau \).

Let \(V \) be a \(\mathbb{Q} \)-vector space of dimension \(2n \), and let \(S: V \times V \to \mathbb{Q} \) be a non-degenerate quadratic form of signature \(s \) containing an even, unimodular lattice; such a form exists and is unique up to isomorphism (see for instance [B 21], Lemma 25.5).
Let $M = \bigoplus_{f \in I} \mathbb{Q}[X]/(f)$, considered as a $\mathbb{Q}[X]$-module. Let $\sigma : \mathbb{Q}[X] \to \mathbb{Q}[X]$ be the \mathbb{Q}-linear involution such that $\sigma(X) = 1 - X$. The Milnor signature $\tau \in \text{Mil}_s(P)$ determines an $(\mathbb{R}[X], \sigma)$-quadratic form (cf. [B 21], Example 24.1). The local conditions of [B 21], §24 are satisfied. Indeed, the $\mathbb{R}[X]$-module $M \otimes \mathbb{R}$ is compatible with (V, S) by [B 15], Proposition 8.1. Using a result of Levine (see [Le 69], Proposition 2) and the bijection between Seifert forms and Seifert pairs (see §1), we see that there exists a Seifert pair of characteristic polynomial P. This implies that for all prime numbers p, the $\mathbb{Q}_p[X]$-module $M \otimes \mathbb{Q}_p$ and the quadratic form $(V, S) \otimes \mathbb{Q}_p$ are compatible.

As in [B 21], §24, we define a homomorphism $\epsilon_{\tau} : G_P \to \mathbb{Z}/2\mathbb{Z}$.

Theorem 5.1. There exists a Seifert pair with characteristic polynomial P and Milnor signature τ if and only if $\epsilon_{\tau} = 0$.

Proof. By [B 21], Theorem 24.2, the global conditions are satisfied if and only if $\epsilon_{\tau} = 0$. Using [B 21], Proposition 6.2 this is equivalent with the existence of a Seifert pair having characteristic polynomial P and Milnor signature τ.

Corollary 5.2. Assume that $G_P = 0$. Then for all $\tau \in \text{Mil}_s(P)$ there exists a Seifert pair with characteristic polynomial P and Milnor signature τ.

6. **Seifert forms with a given Alexander polynomial and signature**

We keep the notation of the previous section. Using Proposition 1.3, Theorem 5.1 and Corollary 5.2 can be reformulated as follows:

Theorem 6.1. There exists a Seifert form with Alexander polynomial Δ and Milnor signature τ if and only if $\epsilon_{\tau} = 0$.

Corollary 6.2. Assume that $G_{\Delta} = 0$. Then for all $\tau \in \text{Mil}_s(\Delta)$ there exists a Seifert form with Alexander polynomial Δ and Milnor signature τ.

7. **Knots with a given Alexander polynomial and signature**

We keep the notation of the previous two sections. Let $m \geq 7$ be an integer with $m \equiv -1 \pmod{4}$. We refer to [MW 17], 6.5 for the definition of the Seifert form associated to an m-knot. The results of this section rely on a result of Kervaire:

Theorem 7.1. Let (L, A) be a Seifert form. Then there exists an m-knot with associated Seifert form isomorphic to (L, A).

Proof. This is proved by Kervaire in [K 65], Theorem II.3, and formulated more explicitly by Levine in [Le 69], Lemma 3 and [Le 70], Theorem 2. A different proof is given by Michel and Weber in [MW 17], Theorem 7.3 (see also the remark at the end of [MW 17], §7.1).

Combining Theorem 6.1 and Corollary 6.2 with Theorem 7.1, we have the following applications:

Theorem 7.2. There exists an m-knot with Alexander polynomial Δ and Milnor signature τ if and only if $\epsilon_{\tau} = 0$.
Corollary 7.3. Assume that $G_\Delta = 0$. Then for all $\tau \in \text{Mil}_s(\Delta)$ there exists an m-knot with Alexander polynomial Δ and Milnor signature τ.

Recall that s is an integer such that $s \equiv 0 \pmod{8}$, and that $|s| \leq \rho(\Delta)$.

Corollary 7.4. Assume that $G_\Delta = 0$. Then there exists an m-knot with Alexander polynomial Δ and signature s.

8. Indecomposable knots with decomposable Alexander polynomial

As an application of Corollary 7.4, we give some examples of indecomposable knots with decomposable Alexander polynomials. Let $m \geq 7$ be an integer with $m \equiv -1 \pmod{4}$.

Example 8.1. Let $\Delta = \Delta_1 \Delta_2$, where $\Delta_1(X) = X^4 - X^2 + 1$ and $\Delta_2(X) = 3X^4 - 2X^3 - X^2 - 2X + 3$; we have $\rho(\Delta) = 8$. The corresponding polynomial $P(X) = (-1)^4 X^8 \Delta(1 - X^{-1})$ is the one of example 4.1; it is equal to $f_1 f_2$, where $f_1(X) = X^4 - 2X^3 + 5X^2 - 4X + 1$, and $f_1(X) = X^4 - 2X^3 + 11X^2 - 10X + 3$.

We have $\Pi_{f_1, f_2} = \{2\}$, hence $G_\Delta = G_P = 0$. Corollary 9.3 implies that there exists an m-knot with Alexander polynomial Δ and signature 8; but such a knot is indecomposable, since an m-knot with Alexander polynomial Δ_i has signature 0 for $i = 1, 2$.

Example 8.2. Let $a \geq 0$ be an integer, and set $\Delta_a(X) = X^6 - aX^5 - X^4 + (2a - 1)X^3 - X^2 - aX + 1$.

The polynomial Δ_a is irreducible, and $\rho(\Delta_a) = 4$ (see [GM 02], §7.3, Example 1 on page 284). This implies that all m-knots with Alexander polynomial Δ_a have signature 0.

Let $b \geq 0$ be an integer with $b \neq a$. We have $\rho(\Delta_a \Delta_b) = 8$, and if moreover $G_{\Delta_a \Delta_b} = 0$, then there exist m-knots with Alexander polynomial $\Delta_a \Delta_b$ and signature 8; these knots are indecomposable. We can take for instance $a = 0$ and $b = 2$; then $\Pi_{\Delta_a, \Delta_b} = \{2\}$, hence $G_{\Delta_a \Delta_b} = 0$.

9. 3-knots in the 5-sphere

The signature of a 3-dimensional knot $K^3 \subset S^5$ is divisible by 16 (see for instance [KW 78], §3, page 95). The aim of this section is to show that with this additional restriction, the results of §7 extend to 3-knots.

Let $n \geq 1$ be an integer, and let $\Delta \in \mathbb{Z}[X]$ be a polynomial of degree $2n$ such that $\Delta(X) = X^{2n} \Delta(X^{-1})$, $\Delta(1) = (-1)^n$ and that $\Delta(-1)$ is a square of an integer. Set $P(X) = (-1)^n X^{2n} \Delta(1 - X^{-1})$. Assume that P is a product of
distinct irreducible monic polynomials $f \in \mathbb{Z}[X]$ such that $f(1 - X) = f(X)$.

Let $G_\Delta = G_P$ be the group introduced in \S 4.

Let s be an integer such that $s \equiv 0 \pmod{16}$, and that $|s| \leq \rho(P)$. Let $\tau \in \text{Mil}_s(P)$.

Theorem 9.1. There exists a 3-knot with Alexander polynomial Δ and Milnor signature τ if and only if $\epsilon_\tau = 0$.

Proof. This follows from Theorem 6.1 and from a result of Levine (see [Le 70], Theorem 2): if A is a Seifert form of signature divisible by 16, then there exists a 3-knot in the 5-sphere with Seifert form S-equivalent to A. Since S-equivalent Seifert forms have the same Alexander polynomial and Milnor signature, this completes the proof of the theorem.

Corollary 9.2. Assume that $G_\Delta = 0$. Then for all $\tau \in \text{Mil}_s(\Delta)$ there exists a 3-knot with Alexander polynomial Δ and Milnor signature τ.

Corollary 9.3. Assume that $G_\Delta = 0$. Then there exists a 3-knot with Alexander polynomial Δ and signature s.

10. **Unimodular Seifert forms**

We conclude by some remarks on a special case, which was already treated in detail in [B 21]. Let $A : L \times L \to \mathbb{Z}$ be a unimodular Seifert form, i.e. $\det(A) = \pm 1$, and let $S : L \times L \to \mathbb{Z}$, defined by $S(x, y) = A(x, y) + A(y, x)$, be the associated even, unimodular lattice.

Let $t : L \to L$ be defined by $A(tx, y) = -A(y, x)$ for all $x, y \in L$; note that t is an isometry of A, and hence of S, and that the characteristic polynomial of t is $\det(A)\Delta_A$.

Proposition 10.1. Sending (L, A) to (L, S, t) induces a bijection between isomorphism classes of unimodular Seifert forms and isomorphism classes of even, unimodular lattices with an isometry.

Hence the existence of a unimodular Seifert form with a given Alexander polynomial and Milnor signature is equivalent to the existence of an even, unimodular lattice having an isometry of a given characteristic polynomial and Milnor signature. This question is treated in [B 21], §25, 27 and 31; we recover the results of §6 in this special case.

References

[B 82] E. Bayer-Fluckiger, *Unimodular hermitian and skew-hermitian forms*, J. Algebra 74 (1982), 341-373.

[B 15] E. Bayer-Fluckiger, *Isometries of quadratic spaces*, J. Eur. Math. Soc. 17 (2015), 1629-1656.

[B 21] E. Bayer-Fluckiger, *Isometries of lattices and Hasse principles*, J. Eur. Math. Soc. (to appear), arXiv:2001.07094.

[BT 20] E. Bayer-Fluckiger, L. Taelman, *Automorphisms of even unimodular lattices and equivariant Witt groups*, J. Eur. Math. Soc. 22 (2020), 3467-3490.
ALEXANDER POLYNOMIALS AND SIGNATURES OF SOME HIGH-DIMENSIONAL KNOTS

[GM 02] B. Gross, C. McMullen, Automorphisms of even, unimodular lattices and unramified Salem numbers, J. Algebra 257 (2002), 265–290.

[K 65] M. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271.

[K 71] M. Kervaire, Knot cobordism in codimension two, Manifolds-Amsterdam 1970 (Proc. Nuffic Summer School 1979), Lecture Notes in Mathematics 197, Springer, Berlin (1971), 83-105.

[KW 78] M. Kervaire, C. Weber, A survey of multidimensional knots in Knot theory, Proc. Sem. Plans-sur-Bex, 1977), Lecture Notes in Math. 685, Springer, Berlin (1978), 61-134.

[Le 69] J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244.

[Le 70] J. Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185-198.

[MW 17] F. Michel, C. Weber, Higher dimensional knots according to Michel Kervaire, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich (2017).

[M 68] J. Milnor, Infinite cyclic coverings, Topology of Manifolds (J. Hocking, ed.), Prindle, Weber and Schmidt, Boston (1968), 115–133.

[St 77] N. Stoltzfus, Unraveling the integral knot concordance group, Mem. Amer. Math. Soc. 12 (1977), no. 192, 91 pp.

Eva Bayer–Fluckiger
EPFL-FSB-MATH
Station 8
1015 Lausanne, Switzerland
eva.bayer@epfl.ch