Solutions of two fractional q-integro-differential equations under sum and integral boundary value conditions on a time scale

Jehad Alzabut1, Behnam Mohammadaliee2 and Mohammad Esmael Samei2*

Abstract
In this manuscript, by using the Caputo and Riemann–Liouville type fractional q-derivatives, we consider two fractional q-integro-differential equations of the forms

$$\frac{c}{q}D^\alpha_q [x](t) + w_1 (t, x(t), \phi(x(t))) = 0$$

and

$$\frac{c}{q}D^\alpha_q [x](t) = w_2 (t, x(t), \int_0^t x(r) \, dr, \frac{c}{q}D^\alpha_q [x](t))$$

for $t \in [0, t_0]$ under sum and integral boundary value conditions on a time scale $T_{t_0} = \{ t : t = t_0 q^n \} \cup \{ 0 \}$ for $n \in \mathbb{N}$ where $t_0 \in \mathbb{R}$ and $q \in (0, 1)$. By employing the Banach contraction principle, sufficient conditions are established to ensure the existence of solutions for the addressed equations. Examples involving algorithms and illustrated graphs are presented to demonstrate the validity of our theoretical findings.

MSC: Primary 34A08; 34B16; secondary 39A13

Keywords: Sum boundary value conditions; Caputo q-derivative; Riemann–Liouville q-derivative; Integral boundary value conditions

1 Introduction
It has been recognized that fractional calculus provides a meaningful generalization for the classical integration and differentiation to any order. On the other hand, quantum calculus is equivalent to traditional infinitesimal calculus without the notion of limits. It defines q-calculus where q stands for quantum. Despite the old history of these two theories, the investigation of their properties remains untouched until recent time. Fractional q-calculus, initially proposed by Jackson [1–3], was regarded as the fractional analogue of q-calculus. Soon afterwards, it was further promoted by Al-Salam in [4] and then continued by Agarwal in [5] where many outstanding theoretical results were given. Its emergence and development extended the application of interdisciplinarity and aroused widespread attention of scholars; see [6–28] and the references therein. The existence of
solutions for q-fractional boundary value problems has been under consideration by many researchers; see for instance [29–40].

In [41], Ntouyas et al. studied the boundary value problem of first-order fractional differential equations given by

$$
\begin{align*}
^{c}D_{q}^α[f_1](x) & = w_1(x,f_1(x),f_2(x)), \\
^{c}D_{q}^β[f_2](x) & = w_2(x,f_1(x),f_2(x)),
\end{align*}
$$

with Riemann–Liouville integral boundary conditions of different order $f_1(0) = c_1 I^{α-1}[f_1](a_1)$ and $f_2(0) = c_2 I^{β-2}[f_2](a_2)$ for $0 < a_1, a_2 < 1$, $β_i ∈ (0, 1]$, $α, c_i ∈ IR$ where $i = 1, 2$. In 2015, Zhang et al. through the spectral analysis and fixed point index theorem obtained the existence of positive solutions of the singular nonlinear fractional differential equation $-D_{q}^α u(t) = w(t,u(t),D_{q}^β u(t))$ for $0 < t < 1$, with integral boundary value conditions $D_{q}^α u(0) = 0$ and $D_{q}^β u(t) = \int_{0}^{t} D_{q}^{α-1} q r D_{q}^β u(r) dN(r)$, where $α ∈ (1, 2]$, $β ∈ (0, 1]$, $w(t,u,v)$ may be singular at both $t = 0, 1$ and $u = v = 0$, $\int_{0}^{1} u(r) dN(r)$ denotes the Riemann–Stieltjes integral with a signed measure, in which $N : [0, 1] → IR$ is a function of bounded variation [42]. In 2016, Ahmad et al. investigated the existence of solutions for a q-anti-periodic boundary value problem of fractional q-difference inclusions given by

$$
^{c}D_{q}^α[k](t) ∈ F(t,k(t),D_{q}[k](t),D_{q}^2[k](t))
$$

for $t ∈ [0, 1]$, $q ∈ (0, 1)$, $2 < α ≤ 3$, $0 < β ≤ 3$, and $k(0) + k(1) = 0$, $D_{q}^α k(0) + D_{q}^β k(1) = 0$, $D_{q}^α k(0) + D_{q}^β k(1) = 0$, where $^{c}D_{q}^α$ denotes Caputo fractional q-derivative of order $α$ and $F : [0, 1] × IR × IR → P(IR)$ is a multivalued map with $P(IR)$ a class of all subsets of IR [15]. In 2019, Ren and Zhai discussed the existence of unique solution and multiple positive solutions for the fractional q-differential equation $D_{q}^α x(t) + w(t,x(t)) = 0$ for each $t ∈ [0, 1]$ with nonlocal boundary conditions $x(0) = D_{q}^{α-2} x(0) = 0$ and $D_{q}^{α-1} x(1) = μ[x] + \int_{0}^{α} φ(r) D_{q}^α x(r) dN(r)$, where $D_{q}^α$ is the standard Riemann–Liouville fractional q-derivative of order $α$, $2 < α ≤ 3$, such that $α - 1 - β > 0$, $q ∈ (0, 1)$, $φ ∈ L^1[0, 1]$ is nonnegative, $μ[x]$ is a linear functional given by $μ[x] = \int_{0}^{1} x(t) dN(t)$ involving the Stieltjes integral with respect to the function $N : [0, 1] → IR$ such that $N(t)$ is right-continuous on $[0, 1]$, left-continuous at $t = 1$ and, particularly, N is a nondecreasing function with $N(0) = 0$ and dN is positive Stieltjes measure [40]. The authors in [43] investigated a multi-term nonlinear fractional q-integro-differential equation

$$
^{c}D_{q}^{α}[x](t) = w(t,x(t),\varphi_1 x(t),\varphi_2 x(t),^{c}D_{q}^α[x](t),^{c}D_{q}^{β_1}[x](t),^{c}D_{q}^{β_2}[x](t),…,^{c}D_{q}^{β_n}[x](t))
$$

under some boundary conditions. The existence of solutions for the multi-term nonlinear fractional q-integro-differential $^{c}D_{q}^{α}[u](t)$ equations in two modes and inclusions of order $α ∈ (n - 1, n]$ with non-separated boundary and initial boundary conditions where natural number n is more than or equal to five was considered in [20]. Recently, some researchers discussed the existence of solutions for some singular fractional differential equations; see the papers [44–47].

Benefiting from the main ideas of the above said papers, we investigate the following two nonlinear fractional q-integro-differential equations in the spaces $A = C(\overline{J} × IR^2, IR)$
and \(B = \{ x : x, ^qC_D_t^\beta x \in C^2(\mathbb{T}, \mathbb{R}), \mathbb{T} = [0, l] \} \) with the norms defined by \(\| x \| = \sup_{t \in \mathbb{T}} |x(t)| \)
and
\[
\| x \|_* = \sup_{t \in \mathbb{T}} |x(t)| + \sup_{t \in \mathbb{T}} |^qC_D_t^\beta x(t)|,
\]
respectively.

(P1) First we investigate the nonlinear fractional \(q \)-integro-differential equation
\[
^qC_D_t^\alpha x(t) + w_1(t, x(t), \psi(x(t))) = 0
\]
for \(t \in \mathbb{T} \) under sum and integral boundary value conditions
\[
x'(a) = -\eta \int_0^1 x(r) \, dr, \quad x'(1) + x(0) = \sum_{i=1}^m c_i x'(b),
\]
where \(m \geq 1, 1 \leq \alpha < 2, 0 \leq a < b \leq 1, \eta \geq 0, c_i \geq 0 \) for each \(i = 1, 2, \ldots, m \) such that
\(2E > -1 \), here \(E = \sum_{i=1}^m c_i, \psi(x(t)) = \int_0^t g(r)x(r) \, dr \) and \(w_1 : \mathbb{T} \times A^2 \rightarrow A \) is a continuous function.

(P2) Second we consider the nonlinear fractional \(q \)-integro-differential equation
\[
^qC_D_t^\alpha x(t) = w_2(t, x(t), \int_0^t x(r) \, dr, ^qC_D_t^\zeta x(t))
\]
for \(t \in \mathbb{T} \) under the sum boundary conditions
\[
x(0) = 0, \quad x'(1) = \sum_{i=1}^m c_i x''(b),
\]
where \(1 \leq \alpha < 2, 0 \leq \zeta < 1, 0 < b < 1, m \geq 1, c_i \geq 0 \) for all \(i = 1, \ldots, m \) and
\(w_2 : \mathbb{T} \times B^3 \rightarrow B \) is a continuous function.

This paper is organized as follows: In Sect. 2, we state some useful definitions and lemmas on the fundamental concepts of \(q \)-fractional calculus and fixed point theory. In Sect. 3, some main theorems on the solutions of fractional \(q \)-integro-differential equations (1)–(2) and (3)–(4) are stated. Section 4 contains some illustrative examples to show the validity and applicability of our results. The paper concludes with some interesting observations.

2 Essential preliminaries

This section is devoted to some notations and essential preliminaries that are acting as necessary prerequisites for the results of the subsequent sections. Throughout this article, we apply the time scales calculus notation [9]. In fact, we consider the fractional \(q \)-calculus on the specific time scale \(\mathbb{T} = \mathbb{R} \) where \(\mathbb{T}_{t_0} = \{0\} \cup \{ t : t = t_0 q^n \} \) for nonnegative integer \(n \), \(t_0 \in \mathbb{R} \) and \(q \in (0,1) \). Let \(a \in \mathbb{R} \). Define \([a]_q = \frac{1-q^a}{1-q} \) [2]. The power function \((x - y)^n_q \) with \(n \in \mathbb{N}_0 \) is defined by
\[
(x - y)^n_q = \prod_{k=0}^{n-1} (x - y q^k)
\]
Algorithm 1 The proposed method for calculated \((a - b)^{(\alpha)}_q\)

```plaintext
1 function p = powerfunction(a, b, n, q)
2 %Power Gamma (a-b)^-(n)
3 p=1;
4 if n==0
5 p=1
6 else
7 for k=1:n-1
8 %a=a*(a-b*q^-k)/(a-b*q^-k+alpha+k);
9 end;
10 p=a*alpha * s;
11 end;
12 end
```

Algorithm 2 The proposed method for calculated \(\Gamma_q(x)\)

```plaintext
1 function g = qGamma(q, x, n)
2 %q-Gamma Function
3 p=1;
4 for k=0:n
5 p=p*(1-q^-k)/(1-q^-k+1);
6 end;
7 gamma = p/(1-q^-n); 7 end
```

Algorithm 3 The proposed method for calculated \((D_qf)(x)\)

```plaintext
1 function g = Dq(q, x, n, fun)
2 if x==0
3 g=limit ((fun(x)-fun(q*x))/(1-q*x),x,0);
4 else
5 g=(fun(x)-fun(q*x))/(1-q*x);
6 end;
7 end
```

for \(n \geq 1\) and \((x - y)^{(0)}_q = 1\), where \(x\) and \(y\) are real numbers and \(N_0 := \{0\} \cup \mathbb{N}\) [6]. Also, for \(\alpha \in \mathbb{R}\) and \(a \neq 0\), we have

\[(x - y)^{(\alpha)}_q = x^\alpha \prod_{k=0}^{\infty} \frac{x - y q^k}{x - y q^{\alpha + k}}.\]

If \(y = 0\), then it is clear that \(x^{(\alpha)} = x^\alpha\) [8] (Algorithm 1). The \(q\)-gamma function is given by \(\Gamma_q(z) = (1 - q)^{(z-1)}/(1 - q)^{z-1}\), where \(z \in \mathbb{R} \setminus \{0, -1, -2, \ldots\}\) [2]. Note that \(\Gamma_q(z + 1) = [z]_q \Gamma_q(z)\). Algorithm 2 shows a pseudo-code description of the technique for estimating \(q\)-gamma function of order \(n\). The \(q\)-derivative of function \(f\) is defined by \(D_q[f](x) = f'(x) - f'(qx)\) and \(D_q[f](0) = \lim_{x \to 0} D_q[f](x)\), which is shown in Algorithm 3 [6, 7]. Furthermore, the higher order \(q\)-derivative of a function \(f\) is defined by \(D_q^n[f](x) = D_q[D_q^{n-1}[f]](x)\) for \(n \geq 1\), where \(D_q^0[f](x) = f(x)\) [6, 7]. Tables 1, 2, and 3 show the values \(\Gamma_q(z)\) for some \(z\) and \(q \in (0, 1)\). The \(q\)-integral of a function \(f\) is defined on \([0, b]\) by

\[I_qf(x) = \int_0^x f(s) d_q s = x(1 - q) \sum_{k=0}^{\infty} q^k f(q^k x).\]
Table 1 Some numerical results for calculation of $\Gamma_q(x)$ with $q = \frac{1}{3}$ that is constant, $x = 4.5, 8.4, 12.7$, and $n = 1, 2, \ldots, 15$ of Algorithm 2

n	$x = 4.5$	$x = 8.4$	$x = 12.7$
1	2.472950	11.909360	68.080769
2	2.383247	11.468397	65.592666
3	2.354446	11.326853	64.749894
4	2.344963	11.280255	64.483434
5	2.341815	11.264786	64.394980
6	2.340767	11.259636	64.365536
7	2.340418	11.257921	64.355725
8	2.340301	11.257349	64.352456

Table 2 Some numerical results for calculation of $\Gamma_q(x)$ with $q = \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, x = 5$, and $n = 1, 2, \ldots, 35$ of Algorithm 2

n	$q = \frac{1}{3}$	$q = \frac{1}{2}$	$q = \frac{2}{3}$
1	3.016535	6.291859	18.937427
2	2.906140	5.548726	14.154784
3	2.870699	5.222330	11.819974
4	2.859031	5.069033	10.537540
5	2.855157	4.994707	9.782069
6	2.853868	4.958107	9.317265
7	2.853438	4.939945	9.023265
8	2.853295	4.930899	8.833940
9	2.853247	4.926384	8.710584
10	2.853232	4.921299	8.629588
11	2.853226	4.923002	8.576133
12	2.853232	4.922438	8.540736
13	2.853232	4.921517	8.517243
14	2.853226	4.920206	8.501627
15	2.853224	4.921945	8.491337
16	2.853224	4.921910	8.484320
17	2.853224	4.921893	8.479713

for $0 \leq x \leq b$, provided the series absolutely converges [6, 7]. If $x \in [0, T]$, then

$$\int_{x}^{T} f(r) \, d_q r = I_q[f](T) - I_q[f](x) = (1 - q) \sum_{k=0}^{\infty} q^k \left(T^f(Tq^k) - xf(xq^k) \right),$$

whenever the series exists. The operator I^α_q is given by $I^\alpha_q[h](x) = h(x)$ and

$$I^\alpha_q[h](x) = I_q[I_{q^\alpha}[h]](x) = I_q[I_{q^\alpha-[1]}[h]](x)$$

for $n \geq 1$ and $h \in C([0, T])$ [6, 7]. It has been proved that $D_q[I_q[h]](x) = h(x)$ and $I_q[D_q[h]](x) = h(x) - h(0)$ whenever h is continuous at $x = 0$ [6, 7]. The fractional Riemann–Liouville type q-integral of the function h on $J = (0,1)$ is defined by $\mathcal{I}^\alpha_q[h](t) = h(t)$ and

$$\mathcal{I}^\alpha_q[h](t) = \frac{1}{\Gamma_q(\alpha)} \int_{0}^{t} (t -qs)^{\alpha-1} h(s) \, d_q s$$

$$= t^\alpha (1 - q)^\alpha \sum_{k=0}^{\infty} q^k \prod_{i=1}^{k-1} (1 - q^{\alpha+i}) h(tq^k)$$

(5)
for \(t \in J \) [11, 18]. One can use Algorithm 5 for calculating \(T_{q}^{\alpha}[h](t) \) according to Eq. (5).

Also, the Caputo fractional \(q \)-derivative of a function \(h \) is defined by

\[
\begin{align*}
^{C} D_{q}^{\alpha}[h](t) &= T_{q}^{[\alpha]-\alpha}\left[D_{q}^{\alpha}[h]\right](t) \\
&= \frac{1}{T_{q}^{\left[\alpha\right]}(-\alpha)} \int_{0}^{t} (t - qs)^{\left[\alpha\right]-1} D_{q}^{\alpha}[h](s) \, d_{q}s,
\end{align*}
\]

where \(t \in J \) and \(\alpha > 0 \) [18]. It has been proved that \(T_{q}^{\beta}[T_{q}^{\alpha}[h]](x) = T_{q}^{\alpha+\beta}[h](x) \) and \(D_{q}^{\alpha}[T_{q}^{\alpha}[h]](x) = h(x) \), where \(\alpha, \beta \geq 0 \) [18]. Algorithm 5 shows pseudo-code \(T_{q}^{\alpha}[h](x) \).

We use \(\|y\| = \max_{t \in J} |y(t)| \) as the norm of \(A = B = C^{1}(J) \). Clearly, \((A, \|\cdot\|) \) and \((B, \|\cdot\|)\) are Banach spaces. Also, the product space \((A \times B, \|(y,z)\|)\) is a Banach space where \(\|(y,z)\| = \|y\| + \|z\| \). An operator \(O : A \to A \) is called completely continuous if restricted to any bounded set in \(A \) is compact.

Lemma 1 (Leray–Schauder alternative [48, p.4]) Let \(O : \mathcal{V} \to \mathcal{V} \) be completely continuous and \(\Omega(O) = \{x \in \mathcal{V} | x = \lambda O(x)\} \), where \(\lambda \in (0, 1) \). Then either the set \(\Omega(O) \) is unbounded or \(O \) has at least one fixed point.

3 Main results

The main results are presented in this section. To facilitate exposition, we will provide our analysis in two separate folds.

3.1 The nonlinear sum and integral boundary value problem (1)–(2)

First, we provide our key lemma.

Lemma 2 The function \(x_{0} \in A \) is a solution for problem (1) under the sum and integral boundary value conditions (2) if and only if \(x_{0} \) is a solution for the fractional \(q \)-integral
equation

\[x_0(t) = \int_0^1 G_q(t,r) w_1(r,x_0(r),\psi(x_0(r))) \, dq r, \]

where

\[
G_q(t,r) = \begin{cases}
\frac{(t - qr)^{(\alpha-1)}}{\Gamma_q(\alpha)} + \frac{\eta(\frac{1}{2} - t) + 1}{\eta(\Xi - \frac{1}{2}) + 1} (1 - qr)^{(\alpha-2)} \frac{\eta(\Xi(1 - r) + 1)(1 - qr)^{(\alpha)}}{\eta(\Xi - \frac{1}{2}) + 1} \Gamma_q(\alpha + 1) & \text{whenever } r \leq a \text{ and } 0 \leq r \leq t \leq 1, \\
\frac{(t - qr)^{(\alpha-1)}}{\Gamma_q(\alpha)} + \frac{\eta(\frac{1}{2} - t) + 1}{\eta(\Xi - \frac{1}{2}) + 1} (1 - qr)^{(\alpha-2)} \frac{\eta(\Xi - 1 + t)(1 - r)^{(\alpha)}}{\eta(\Xi - \frac{1}{2}) + 1} \Gamma_q(\alpha + 1) & \text{whenever } r \leq b \text{ and } 0 \leq a \leq r \leq t \leq 1, \\
\frac{(t - qr)^{(\alpha-1)}}{\Gamma_q(\alpha)} + \frac{\eta(\frac{1}{2} - t) + 1}{\eta(\Xi - \frac{1}{2}) + 1} (1 - qr)^{(\alpha-2)} \frac{\eta(\Xi - 1 + t)(1 - qr)^{(\alpha)}}{\eta(\Xi - \frac{1}{2}) + 1} \Gamma_q(\alpha + 1) & \text{whenever } 0 \leq a \leq b \leq r \leq t \leq 1, \\
\frac{\eta(\frac{1}{2} - t) + 1}{\eta(\Xi - \frac{1}{2}) + 1} (1 - qr)^{(\alpha-2)} \frac{\eta(\Xi - 1 + t)(1 - qr)^{(\alpha)}}{\eta(\Xi - \frac{1}{2}) + 1} \Gamma_q(\alpha + 1) & \text{whenever } 0 \leq a \leq b \leq r \leq t \leq 1, \\
\end{cases}
\]
whenever \(0 \leq t \leq r \leq a \leq b \leq 1 \),

\[
G_q(t, r) = \frac{[\eta(\frac{1}{2} - t) + 1](1 - qr)^{(\alpha - 2)}}{[\eta(\Xi - \frac{1}{2}) + 1]} I_q^\alpha(\alpha - 1) \\
+ \frac{[\eta(\Xi(t - 1) + \frac{1}{2}) - \Xi] (b - qr)^{(\alpha - 2)}}{[\eta(\Xi - \frac{1}{2}) + 1]} I_q^\alpha(\alpha - 1) \\
+ \frac{[\eta(\Xi - 1 + t)](1 - qr)^{(\alpha)}}{[\eta(\Xi - \frac{1}{2}) + 1]} I_q^\alpha(\alpha + 1)
\]

whenever \(a \leq r \) and \(0 \leq t \leq r \leq b \leq 1 \), and

\[
G_q(t, r) = \frac{[\eta(\frac{1}{2} - t) + 1](1 - qr)^{(\alpha - 2)}}{[\eta(\Xi - \frac{1}{2}) + 1]} + \frac{[\eta(\Xi - 1 + t)](1 - qr)^{(\alpha)}}{[\eta(\Xi - \frac{1}{2}) + 1]} I_q^\alpha(\alpha + 1)
\]

whenever \(b \leq r \) and \(0 \leq t \leq r \leq 1 \).

Proof Let \(x_0 \) be a solution for Eq. (1)-(2). Take \(v_0(t) = w_1(t, x_0(t), \psi(x_0(t))) \). Choose \(d_0, d_1 \in \mathbb{R} \) such that

\[
x_0(t) = -\int_0^t \frac{(t - qr)^{(\alpha - 1)}}{I_q^\alpha(\alpha)} v_0(r) \, dr + d_0 + d_1 t. \tag{7}
\]

Thus, we obtain \(x'_0(t) = -T_q^{\alpha - 1}[v_0](t) + d_1 \). At present, by using the boundary conditions (2), we conclude that \(d_1 = T_q^{\alpha - 1}[v_0](a) - \eta \int_0^1 x_0(r) \, dr \) and

\[
d_0 = T_q^{\alpha - 1}[v_0](1) - \Xi T_q^{\alpha - 1}[v_0](b) + (\Xi - 1) T_q^{\alpha - 1}[v_0](a) \\
+ \eta(1 - \Xi) \int_0^1 x_0(r) \, dr.
\]

Hence, by substituting \(d_0 \) in Eq. (7), we get

\[
x_0(t) = -T_q^{\alpha}[v_0](t) + T_q^{\alpha - 1}[v_0](1) - \Xi T_q^{\alpha - 1}[v_0](b) \\
+ (\Xi - 1) T_q^{\alpha - 1}[v_0](a) + \eta(1 - \Xi) \int_0^1 x_0(r) \, dr \\
+ T_q^{\alpha - 1}[v_0](a) - \eta t \int_0^1 x_0(r) \, dr. \tag{8}
\]

Put \(\delta = \int_0^1 x_0(r) \, dr \). By computing the value of \(\delta \) and substituting it in (8), we get

\[
x_0(t) = -T_q^{\alpha}[v_0](t) + \frac{\eta(\frac{1}{2} - t) + 1}{\eta(\Xi - \frac{1}{2}) + 1} T_q^{\alpha - 1}[v_0](1) \\
+ \frac{\eta(\Xi(t - 1) + \frac{1}{2}) - \Xi}{\eta(\Xi - \frac{1}{2}) + 1} T_q^{\alpha - 1}[v_0](b) \\
+ \frac{\eta(\Xi - 1 + t)}{\eta(\Xi - \frac{1}{2}) + 1} T_q^{\alpha + 1}[v_0](1)
\]
Thus, x_0 is a solution for the fractional q-integral equation (7). It is obvious that x_0 is a solution for the fractional q-integro-differential equation (1) whenever x_0 is a solution for the fractional q-integral equation. This completes the proof. □

Theorem 3 Let $g \in C([\bar{J},\mathbb{R})$ be a bounded function with upper bound $L > 0$. Assume that for each $t \in \bar{J}$ there exist positive continuous functions $m_1(t)$ and $m_2(t)$ such that

$$\|w_1(t,x(t),\varphi(x(t))) - w_1(t,y(t),\varphi(y(t)))\| \leq m_1(t)\|x-y\| + Lm_2(t)\|x-y\|$$

for $x, y \in A$. Also, put

$$M_0 = \max\left\{ \sup_{t \in \bar{J}} |I_{q}^\alpha[w_1](t)|, \sup_{t \in \bar{J}} |I_{q}^{\alpha+1}[m_2](t)| \right\},$$

$$M_1 = \max\left\{ \sup_{t \in \bar{J}} |I_{q}^{\alpha-1}[m_1](1)|, \sup_{t \in \bar{J}} |I_{q}^{\alpha+1}[m_2](1)| \right\},$$

and

$$M(s) = \max\left\{ \sup_{t \in \bar{J}} |I_{q}^{\alpha-1}[m_1](s)|, \sup_{t \in \bar{J}} |I_{q}^{\alpha+1}[m_2](s)| \right\}$$

for $s = 1, s = a, s = b$, and

$$\Delta = M_0 + \frac{\eta S}{\eta(S - \frac{1}{2}) + 1} M_1 + \frac{\frac{1}{2} \eta + 1}{\eta(S - \frac{1}{2}) + 1} M(1) + \frac{\eta S}{\eta(S - \frac{1}{2}) + 1} M(a) + \frac{\frac{1}{2} \eta S - S}{\eta(S - \frac{1}{2}) + 1} M(b).$$

If $\Delta < 1$, then the nonlinear fractional q-integro-differential equation (1)–(2) has a unique solution.

Proof We define the operator $\Theta : C(\bar{J}) \to C(\bar{J})$ by

$$(\Theta y)(t) = -I_{q}^\alpha[w_1](t,x(t),\varphi(x(t))) + \frac{\eta(S - 2)}{\eta(S - \frac{1}{2}) + 1} I_{q}^{\alpha-1}[w_1](1,x(1),\varphi(x(1))) + \frac{\eta(S-t+1)}{\eta(S - \frac{1}{2}) + 1} I_{q}^{\alpha-1}[w_1](b,x(b),\varphi(x(b))) + \frac{\eta(S-1+t)}{\eta(S - \frac{1}{2}) + 1} I_{q}^{\alpha+1}[w_1](1,x(1),\varphi(x(1)))$$
+ \eta \eta (\mathcal{S} - 2 + (\mathcal{S} - 1 + t)T_{q}^{-1}[w_{1}](a,x(a),\varphi(x(a)))].

Take \ell = \sup_{t \in I} |w_{1}(t,0,0)| and choose \rho > 0 such that

\rho \geq \frac{\ell}{1 - \phi} \left[\frac{1}{\Gamma_{q}(\alpha + 1)} + \frac{1}{\eta (\mathcal{S} - \frac{1}{2}) + 1} T_{q}(\alpha) + \frac{\frac{1}{2} \eta - \mathcal{S}}{\eta (\mathcal{S} - \frac{1}{2}) + 1} T_{q}(\alpha) \right. \\
\left. + \frac{\eta \mathcal{S}}{\eta (\mathcal{S} - \frac{1}{2}) + 1} T_{q}(\alpha + 2) + \frac{\eta \mathcal{S} + \mathcal{S} \eta^{(\alpha - 1)}}{\eta (\mathcal{S} - \frac{1}{2}) + 1} T_{q}(\alpha) \right] \left. \frac{1}{\phi} \right] .

Put \rho_{T} = \{ x \in A : \| x \| \leq \rho_{T} \}. Let x \in \rho_{T}. Then we have

\| (\Theta x)(t) \| \leq T_{q}^{\|} \left(\| w_{1}(t,x(t),\varphi(x(t))) - w_{1}(t,0,0) \| + \| w_{1}(t,0,0) \| \right) \\
+ \frac{\frac{1}{2} \eta + 1}{\eta (\mathcal{S} - \frac{1}{2}) + 1} \\
\times \left[T_{q}^{-1} \left(\| w_{1}(t,x(t),\varphi(x(t))) - w_{1}(t,0,0) \| + \| w_{1}(t,0,0) \| \right) \\ + \frac{\frac{1}{2} \eta - \mathcal{S}}{\eta (\mathcal{S} - \frac{1}{2}) + 1} \\
\times T_{q}^{-1} \left(\| w_{1}(1,x(1),\varphi(x(1))) - w_{1}(1,0,0) \| + \| w_{1}(1,0,0) \| \right) \\ + \frac{\eta \mathcal{S}}{\eta (\mathcal{S} - \frac{1}{2}) + 1} T_{q}(\alpha + 2) \right] \\
\times T_{q}^{-1} \left(\| w_{1}(a,x(a),\varphi(x(a))) - w_{1}(a,0,0) \| + \| w_{1}(a,0,0) \| \right) \\
\leq \left[M_{0} + \frac{\eta \mathcal{S}}{\eta (\mathcal{S} - \frac{1}{2}) + 1} M_{1} + \frac{\frac{1}{2} \eta + 1}{\eta (\mathcal{S} - \frac{1}{2}) + 1} M(1) \right. \\
+ \frac{\eta \mathcal{S} + \mathcal{S} \eta^{(\alpha - 1)}}{\eta (\mathcal{S} - \frac{1}{2}) + 1} M(\alpha) + \frac{\frac{1}{2} \eta - \mathcal{S}}{\eta (\mathcal{S} - \frac{1}{2}) + 1} M(b) \right] \rho_{T} \\
\times \left[\frac{1}{\Gamma_{q}(\alpha + 1)} + \frac{\frac{1}{2} \eta + 1}{\eta (\mathcal{S} - \frac{1}{2}) + 1} T_{q}(\alpha) + \frac{\frac{1}{2} \eta - \mathcal{S}}{\eta (\mathcal{S} - \frac{1}{2}) + 1} T_{q}(\alpha) \right. \\
\left. + \frac{\eta \mathcal{S}}{\eta (\mathcal{S} - \frac{1}{2}) + 1} T_{q}(\alpha + 2) + \frac{\eta \mathcal{S} + \mathcal{S} \eta^{(\alpha - 1)}}{\eta (\mathcal{S} - \frac{1}{2}) + 1} T_{q}(\alpha) \right] \ell \\
= \Delta \rho_{T} + \left[\frac{1}{\Gamma_{q}(\alpha + 1)} + \frac{\frac{1}{2} \eta + 1}{\eta (\mathcal{S} - \frac{1}{2}) + 1} T_{q}(\alpha) \right. \\
\left. + \frac{\frac{1}{2} \eta - \mathcal{S}}{\eta (\mathcal{S} - \frac{1}{2}) + 1} T_{q}(\alpha + 2) \right] \ell \leq \rho_{T}.
Hence, $\Theta(B_r) \subset B_0$. On the other hand, one can write
\[
\|(\Theta x)(t) - (\Theta y)(t)\| \\
\leq I_{\alpha}^\eta (m_1(t)\|x - y\| + m_2(t)\|\psi(x) - \psi(y)\|) \\
+ \frac{1}{2} \frac{\eta + 1}{\eta(\frac{\eta}{2} - \frac{1}{2}) + 1} I_{\alpha}^\eta (m_1(1)\|x - y\| + m_2(1)\|\psi(x) - \psi(y)\|) \\
+ \frac{1}{2} \frac{\eta - \eta}{\eta(\frac{\eta}{2} - \frac{1}{2}) + 1} I_{\alpha}^\eta (m_1(b)\|x - y\| + m_2(b)\|\psi(x) - \psi(y)\|) \\
+ \frac{\eta}{\eta(\frac{\eta}{2} - \frac{1}{2}) + 1} I_{\alpha}^\eta (m_1(1)\|x - y\| + m_2(1)\|\psi(x) - \psi(y)\|) \\
+ \frac{\eta}{\eta(\frac{\eta}{2} - \frac{1}{2}) + 1} I_{\alpha}^\eta (m_1(0)\|x - y\| + m_2(0)\|\psi(x) - \psi(y)\|) \\
\leq \left[M_0 + \frac{\eta}{\eta(\frac{\eta}{2} - \frac{1}{2}) + 1} M_1 + \frac{1}{2} \frac{\eta + 1}{\eta(\frac{\eta}{2} - \frac{1}{2}) + 1} M(1) \\
+ \frac{\eta}{\eta(\frac{\eta}{2} - \frac{1}{2}) + 1} M(a) + \frac{1}{2} \frac{\eta - \eta}{\eta(\frac{\eta}{2} - \frac{1}{2}) + 1} M(b) \right] \|x - y\| \\
= \Delta \|x - y\|.
\]

Since $\Delta < 1$, Θ is a contraction. Thus, by using the Banach contraction principle, Θ has a unique fixed point x_0 in A. At present, by using Lemma 2, one can get that $\Theta^*\Theta x_0 \in A$ and x_0 is the unique solution for the fractional q-integro-differential equation (1)–(2). \square

3.2 The nonlinear boundary value problem (3)–(4)

Lemma 4 Let $w : \mathcal{J} \times \mathcal{B} \rightarrow \mathcal{B}$ be a continuous function. An element $x_0 \in \mathcal{B}$ is a solution for the fractional q-integro-differential equation (3) under the sum boundary conditions (4) if and only if x_0 is a solution for the fractional integral equation
\[
y(t) = I_{\alpha}^\eta [v](t) - tI_{\alpha}^{\eta-1}[v](1) + t\frac{\eta}{\eta + 1} I_{\alpha}^{\eta-2}[v](b).
\]

Proof Put
\[
v_0(t) = w_2 \left(t, x_0(t), \int_0^t x_0(r) \, dr, \Theta \Theta^*[x_0](t) \right).
\]

Let x_0 be a solution for the fractional q-integro-differential equation (3). Choose $d_0, d_1 \in \mathbb{R}$ such that $x_0(t) = \int_0^t [v_0](r) \, dr + d_0 + d_1 t$ for all $t \in \mathcal{J}$. Hence, $x_0'(t) = \int_0^t [v_0]'(r) \, dr + d_1$ and $x_0''(t) = \int_0^t [v_0]'(r) \, dr + d_1$. By using the sum boundary conditions (4), we get $d_0 = 0$ and $d_1 = \int_0^1 [v_0] + \int_0^b [v_0] = 0$. By substituting d_0 and d_1, we obtain
\[
x_0(t) = I_{\alpha}^\eta [v_0](t) + tI_{\alpha}^{\eta-1}[v_0](1) + t\frac{\eta}{\eta + 1} I_{\alpha}^{\eta-2}[v_0](b).
\]

Thus, x_0 is a solution for the fractional q-integral equation. It is obvious that x_0 is a solution for the fractional q-integro-differential equation (3) whenever x_0 is a solution for the fractional q-integral equation. This completes the proof. \square
Theorem 5 Suppose that \(w_2 : \mathcal{J} \times \mathcal{B}^3 \rightarrow \mathcal{B}\) is a continuous map and there exist positive continuous functions \(m_1, m_2, \) and \(m_3\) such that

\[
\left| w_2\left(t, x(t), \int_0^t x(r) \, dr, \mathcal{D}_q^\zeta [x](t)\right) - w_2\left(t, y(t), \int_0^t y(r) \, dr, \mathcal{D}_q^\zeta [y](t)\right) \right|
\leq m_1(t)|x - y| + m_2(t) \left| \int_0^t x(r) \, dr - \int_0^t y(r) \, dr \right|
+ m_3(t) |\mathcal{D}_q^\zeta [x](t) - \mathcal{D}_q^\zeta [y](t)|
\]

for all \(x, y \in \mathcal{B}\) and \(t \in \mathcal{J}\). Let

\[
M_0 = \max \left\{ \sup_{t \in \mathcal{J}} |I_q^2 [m_1](t)|, \sup_{t \in \mathcal{J}} |I_q^2 [m_2](t)|, \sup_{t \in \mathcal{J}} |I_q^2 [m_3](t)| \right\},
\]

\[
M(1) = \max \left\{ \sup_{t \in \mathcal{J}} |I_q^{2-1} [m_1](1)|, \sup_{t \in \mathcal{J}} |I_q^{2-1} [m_2](1)|, \sup_{t \in \mathcal{J}} |I_q^{2-1} [m_3](1)| \right\},
\]

\[
M(b) = \max \left\{ \sup_{t \in \mathcal{J}} |I_q^{2-2} [m_1](b)|, \sup_{t \in \mathcal{J}} |I_q^{2-2} [m_2](b)|, \sup_{t \in \mathcal{J}} |I_q^{2-2} [m_3](b)| \right\},
\]

and

\[
M(t) = \max \left\{ \sup_{t \in \mathcal{J}} |I_q^{2-\zeta} [m_1](t)|, \sup_{t \in \mathcal{J}} |I_q^{2-\zeta} [m_2](t)|, \sup_{t \in \mathcal{J}} |I_q^{2-\zeta} [m_3](t)| \right\}.
\]

Put

\[
\Delta = M_0 + M(t) + \frac{\Gamma_q(2 - \zeta) + 1}{\Gamma_q(2 - \zeta)} M(1) + \frac{(1 + \Gamma_q(2 - \zeta)) \Xi}{\Gamma_q(2 - \zeta)} M(b).
\]

If \(\Delta < 1\), then the nonlinear fractional \(q\)-integro-differential equation (3)–(4) has a unique solution.

Proof Define the operator \(\Theta : \mathcal{B} \rightarrow \mathcal{B}\) by

\[
(\Theta x)(t) = I_q^2 [v](t) - t I_q^{2-1} [v](1) + t \Xi I_q^{2-2} [v](b),
\]

where

\[
v(t) = w_2\left(t, x(t), \int_0^t x(r) \, dr, \mathcal{D}_q^\zeta [x](t)\right).
\]

Choose \(r > 0\) such that

\[
r \geq \frac{\ell}{\Gamma_q(\alpha - \zeta + 1) + 1 + \alpha} \left[\frac{1}{\Gamma_q(\alpha + 1)} + \frac{1}{\Gamma_q(2 - \zeta) \Gamma_q(\alpha)} \right]
\]

\[
+ \frac{1}{\Gamma_q(2 - \zeta) \Gamma_q(\alpha - 1)} + 1 \left\{ \frac{\Gamma_q(2 - \zeta) + 1}{\Gamma_q(2 - \zeta) \Gamma_q(\alpha - 1)} \Xi \right\},
\]

where \(\ell = \sup_{t \in \mathcal{J}} |w_2(t, 0, 0, 0)|\). We show that \(\Theta B_r \subset B_r\), where

\[
B_r = \left\{ x \in \mathcal{B} : \|x\| \leq r_0 \right\}.
\]
Let $x \in B_{r_0}$. Then

$$
|\Theta x(t)| \leq \Delta r_0 + \ell \left[\frac{1}{\Gamma_q(\alpha - \zeta + 1)} + \frac{1}{\Gamma_q(2 - \zeta)} + \frac{\xi}{\Gamma_q(2 - \zeta)\Gamma_q^\alpha(\alpha - 1)} \right] \leq r_0
$$

On the other hand, we have

$$
|\,^{\alpha}D^\xi_x [\Theta x](t)\,| \leq \frac{\ell}{\Gamma_q(\alpha - \zeta + 1)} + \frac{1}{\Gamma_q(2 - \zeta)} + \frac{\xi}{\Gamma_q(2 - \zeta)\Gamma_q^\alpha(\alpha - 1)} |x(t)|
$$

Hence,

$$
|\Theta x(t)| \leq \Delta r_0 + \ell \left[\frac{1}{\Gamma_q(\alpha - \zeta + 1)} + \frac{1}{\Gamma_q(2 - \zeta)\Gamma_q^\alpha(\alpha - 1)} + \frac{\xi}{\Gamma_q(2 - \zeta)\Gamma_q^\alpha(\alpha - 1)} \right] \leq r_0
$$
and so $\Theta(B_{r_0}) \subseteq B_{r_0}$. Let $u, v \in X$ and $t \in J$. Then we have

$$
|\Theta(x)(t) - \Theta(y)(t)| \leq T_q^\alpha \left(\sum_{i=1}^{3} m_i(t) |x(t) - y(t)| \right) + T_q^{\alpha-1} \left(\sum_{i=1}^{3} m_i(1) |x(1) - y(1)| \right) + \Xi T_q^{\alpha-2} \left(\sum_{i=1}^{3} m_i(b) |x(b) - y(b)| \right) \leq (M_0 + M(1) + \Xi M(b)) |x - y|.
$$

On the other hand,

$$
\left| \mathcal{D}^\zeta [\Theta x](t) - \mathcal{D}^\zeta [\Theta y](t) \right| \leq \left[M(t) + \frac{1}{\Gamma_q(2 - \zeta)} T_q^{\alpha-1} M(1) + \frac{\Xi}{\Gamma_q(2 - \zeta)} M(b) \right] |x - y|.
$$

Hence,

$$
\| (\Theta x)(t) - (\Theta y)(t) \| \leq \left[M(t) + M_0 + \frac{\Gamma_q(2 - \zeta) + 1}{\Gamma_q(2 - \zeta)} M(1) + \frac{\Xi [1 + \Gamma_q(2 - \zeta)]}{\Gamma_q(2 - \zeta)} M(b) \right] \| x - y \| = \Delta \| x - y \|.
$$

Since $\Delta < 1$, Θ is a contraction and so, by using the Banach contraction principle, Θ has a unique fixed point. By using Lemma 4, it is clear that the unique fixed point of Θ is the unique solution for the nonlinear fractional integro-differential problem (3)–(4). □

4 Examples, numerical results, and algorithms

Herein, we give an example to show the validity of the main results. In this way, we give a computational technique for checking problems (1)–(2) and (3)–(4). We need to present a simplified analysis that is able to execute the values of the q-gamma function. For this purpose, we provided a pseudo-code description of the method for calculation of the q-gamma function of order n in Algorithms 2, 3, 4, and 5; for more details, follow these addresses https://en.wikipedia.org/wiki/Q-gamma_function and https://www.dm.uniba.it/members/garrappa/software. Tables 1, 2, and 3 show the values $\Gamma_q(z)$ for some z and $q \in (0, 1)$.

For problems for which the analytical solution is not known, we will use, as reference solution, the numerical approximation obtained with a tiny step h by the implicit trapezoidal PI rule, which, as we will see, usually shows an excellent accuracy [49]. All the experiments are carried out in MATLAB Ver. 8.5.0.197613 (R2015a) on a computer equipped with a CPU AMD Athlon(tm) II X2 245 at 2.90 GHz running under the operating system Windows 7.
Algorithm 4 The proposed method for calculated $\int_a^bf(r)dr$

```plaintext
function g = lg1(q, x, n, fun)
p=1;
for k=0:n
 p=p* q^k*fun(x*q^k);
end;
g=x* (1-q) + p;
end
```

Algorithm 5 The proposed method for calculated $\int_0^x|x|$

```plaintext
function g = lg2alpha(q, alpha, x, n, fun)
p=0;
for k=0:n
 s1=1;
 for i=0:k-1
 s1=s1* (1-q^i{alpha+1})
 end
 s2=1;
 for i=0:k-1
 s2=s2* (1-q^i{alpha+1})
 end
 p=p + q^k*s1+eval{subs(fun, t+q^k)}/s2;
 end;
g=round((t^alpha) + ((1-q^alpha)* p, 6))
end
```

Example 1 Consider the fractional q-integro-differential equation similar to problem (1) as follows:

$$cD_{\frac{3}{4}}^x[x](t) + \frac{|x(t)|}{7(t^2 + \frac{1}{4})^2(2 + |x(t)|)} + \frac{t}{1600} \int_0^t e^{(-\frac{1}{2})}x(r) \, dr = 0, \quad (15)$$

under sum and integral boundary value conditions $x'(\frac{1}{4}) = -\frac{1}{6} \int_0^1 x(r) \, dr$ and

$$x'(1) + x(0) = \sum_{i=1}^5 c_i x'\left(\frac{3}{4}\right).$$

Note that $x'(\frac{3}{4}) = \frac{3}{7}x(t)^{\frac{3}{4}}$. Clearly, $\alpha = \frac{3}{2}$, $a = \frac{1}{4}$, $\eta = \frac{1}{6}$, $m = 5$, $b = \frac{3}{4}$. Let $c_1 = \frac{1}{8}$, $c_2 = \frac{1}{2}$, $c_3 = \frac{3}{7}$, $c_4 = \frac{1}{7}$, and $c_5 = \frac{1}{6}$. Note that $E = \sum_{i=1}^5 c_i = \frac{239}{280}$ and so $2E > -1$. We define the maps $w_1 : \mathcal{J} \times \mathcal{A}^2 \rightarrow \mathcal{A}$ and $g : \mathcal{J} \rightarrow [0, \infty)$ by

$$w_1(t,x(t),\phi x(t)) = \frac{|x(t)|}{7(t^2 + \frac{1}{4})^2(2 + |x(t)|)} + \frac{t}{1600} \int_0^t e^{(-\frac{1}{2})}x(r) \, dr$$

and $g(t) = \frac{1}{40}$ for all $t \in \mathcal{J}$, respectively. It is obvious that $g(t) \leq 0.025 = L$ for $t \in \mathcal{J}$. Now, we obtain

$$\|w_1(t,x(t),\phi x(t)) - w_1(t,y(t),\phi y(t))\|$$

$$= \left\| \frac{|x(t)|}{7(t^2 + \frac{1}{4})^2(2 + |x(t)|)} + \frac{t}{1600} \int_0^t e^{(-\frac{1}{2})}x(r) \, dr - \left[\frac{|y(t)|}{7(t^2 + \frac{1}{4})^2(2 + |y(t)|)} + \frac{t}{1600} \int_0^t e^{(-\frac{1}{2})}y(r) \, dr \right]\right\|$$
Table 4 Some numerical results of $T_q^{0}[m_1](t)$ in Example 1 for $t \in J$ and $q = \frac{1}{3}, \frac{1}{7}, \frac{5}{7}$

n	$T_q^{0}[m_1](t)$	$T_q^{m+1}[m_1](t)$	$T_q^{m-1}[m_1](t)$
	$\sup_{s=1}$	$s=a$	$s=b$
$q=\frac{1}{7}$			
1	0.0516	0.0516	0.0454
2	0.0527	0.0527	0.0465
3	0.0529	0.0529	0.0466
4	0.0529	0.0529	0.0466
$q=\frac{5}{7}$			
1	0.0347	0.0347	0.0196
2	0.0446	0.0446	0.0265
3	0.0499	0.0499	0.0305
4	0.0526	0.0526	0.0325
5	0.0539	0.0539	0.0336
6	0.0546	0.0546	0.0341
7	0.0555	0.0555	0.0344
8	0.0552	0.0552	0.0345
9	0.0552	0.0552	0.0346
$q=\frac{6}{7}$			
1	0.0667	0.0667	0.0013
2	0.0111	0.0111	0.0025
3	0.0154	0.0154	0.0014
...			
37	0.0551	0.0551	0.0257
38	0.0551	0.0551	0.0257
39	0.0552	0.0552	0.0257
40	0.0552	0.0552	0.0257
41	0.0552	0.0552	0.0258
42	0.0552	0.0552	0.0258
43	0.0553	0.0553	0.0258

Thus

$$\left\| w_1(t, x(t), \varphi(x(t))) - w_1(t, y(t), \varphi(y(t))) \right\| \leq \frac{1}{7(t^2 + \frac{7}{4})^2} \left\| x - y \right\| + \frac{t}{1600} \left\| x - y \right\|.$$

for all $t \in J, x, y \in A$. We define the positive continuous maps $m_1(t) = \frac{1}{7(t^2 + \frac{7}{4})^2}$ and $m_2(t) = \frac{1}{4t^2}$. At present, by using Eqs. (9)–(10) and applying Algorithm 5, we calculate $\sup_{t \in J} T_q^{0}[m_1](t)$, $\sup_{t \in J} L T_q^{0}[m_2](t)$, $\sup_{t \in J} T_q^{m+1}[m_1](t)$, $\sup_{t \in J} L T_q^{m+1}[m_2](t)$, $\sup_{t \in J} T_q^{m-1}[m_1](t)$, and $\sup_{t \in J} L T_q^{m-1}[m_2](t)$ for $t \in (0, 1)$ and $q = \frac{1}{3}, \frac{1}{7}, \frac{5}{7}$. Tables 4 and 5 show these results. Also, Figures 1, 2 and 3 illustrate the numerical results of the tables. Therefore

$$\sup_{t \in J} T_q^{0}[m_1](t) = \sup_{t \in J} T_q^{0} \left(\frac{1}{7(t + \frac{7}{4})^2} \right) = 0.0529, 0.0552, 0.0553,$$

$$\sup_{t \in J} T_q^{m+1}[m_1](t) = \sup_{t \in J} T_q^{m+1} \left(\frac{1}{7(1 + \frac{7}{4})^2} \right) = 0.0466, 0.0346, 0.0258,$$
Figure 1 2D graph of $I^q_{\alpha}[m_1](t)$ and $I^q_{\alpha}[m_2](t)$ for $t \in J$ with $q = \frac{1}{6}, \frac{1}{2}, \frac{6}{7}$ in Example 1

Table 5 Some numerical results of $I^q_{\alpha}[m_2](t)$ in Example 1 for $t \in J$ and $q = \frac{1}{6}, \frac{1}{2}, \frac{6}{7}$

n	$I^q_{\alpha}[m_2](t)$	$I^{q+1}_{\alpha}[m_1](t)$	$I^{q-1}_{\alpha}[m_1](t)$			
	$t = 0$	$t = 1$	sup $I^q_{\alpha}[m_1](s)$	sup $I^{q+1}_{\alpha}[m_1](s)$	sup $I^{q-1}_{\alpha}[m_1](s)$	
$q = \frac{1}{6}$	1 0 0.0005 0.0005	0.0005 0.0006 0.0001 0.0004	1 0 0.0003 0.0003	0.0002 0.0005 0.0001 0.0003	1 0 0.0003 0.0003	0.0002 0.0005 0.0001 0.0003
	2 0 0.0005 0.0005	0.0005 0.0006 0.0001 0.0004	2 0 0.0003 0.0003	0.0002 0.0005 0.0001 0.0003	2 0 0.0003 0.0003	0.0002 0.0005 0.0001 0.0003
	3 0 0.0005 0.0005	0.0005 0.0006 0.0001 0.0004	3 0 0.0003 0.0003	0.0002 0.0005 0.0001 0.0003	3 0 0.0003 0.0003	0.0002 0.0005 0.0001 0.0003
$q = \frac{1}{2}$	1 0 0.0001 0.0001	0 0.0003 0 0.0002	1 0 0.0001 0.0001	0 0.0004 0 0.0002	1 0 0.0001 0.0001	0 0.0004 0 0.0002
	2 0 0.0001 0.0001	0 0.0004 0 0.0002	2 0 0.0001 0.0001	0 0.0004 0 0.0002	2 0 0.0001 0.0001	0 0.0004 0 0.0002
	3 0 0.0001 0.0001	0 0.0004 0 0.0002	3 0 0.0001 0.0001	0 0.0004 0 0.0002	3 0 0.0001 0.0001	0 0.0004 0 0.0002
	4 0 0.0002 0.0002	0 0.0004 0 0.0002	4 0 0.0002 0.0002	0 0.0004 0 0.0002	4 0 0.0002 0.0002	0 0.0004 0 0.0002
	5 0 0.0002 0.0002	0 0.0004 0 0.0002	5 0 0.0002 0.0002	0 0.0004 0 0.0002	5 0 0.0002 0.0002	0 0.0004 0 0.0002
	6 0 0.0002 0.0002	0.0001 0.0005 0.0001 0.0003	6 0 0.0002 0.0002	0.0001 0.0005 0.0001 0.0003	6 0 0.0002 0.0002	0.0001 0.0005 0.0001 0.0003
	7 0 0.0002 0.0002	0.0001 0.0005 0.0001 0.0003	7 0 0.0002 0.0002	0.0001 0.0005 0.0001 0.0003	7 0 0.0002 0.0002	0.0001 0.0005 0.0001 0.0003
	8 0 0.0002 0.0002	0.0001 0.0005 0.0001 0.0003	8 0 0.0002 0.0002	0.0001 0.0005 0.0001 0.0003	8 0 0.0002 0.0002	0.0001 0.0005 0.0001 0.0003

\[\sup_{t \in J} I^{q-1}_{\alpha}[m_1](1) = \sup_{t \in J} I^{q-1}_{\alpha} \left(\frac{1}{7(1 + \frac{1}{3})^2} \right) = 0.0566, 0.0652, 0.0706, \]

\[\sup_{t \in J} I^{q-1}_{\alpha}[m_1](a) = \sup_{t \in J} I^{q-1}_{\alpha} \left(\frac{1}{7(\frac{1}{16} + \frac{1}{4})^2} \right) = 0.0409, 0.0432, 0.0447, \]

\[\sup_{t \in J} I^{q-1}_{\alpha}[m_1](b) = \sup_{t \in J} I^{q-1}_{\alpha} \left(\frac{1}{7(\frac{9}{16} + \frac{1}{4})^2} \right) = 0.0570, 0.0633, 0.0674 \]

for $q = \frac{1}{6}, \frac{1}{2}, \frac{6}{7}$, respectively, and

\[\sup_{t \in J} L I^q_{\alpha}[m_2](t) = \sup_{t \in J} L I^q_{\alpha} \left(\frac{t}{40} \right) = 0.0005, 0.0003, 0.0002, \]
Figure 2 2D graph of $I_{q}^{\alpha+1}[m_{1}](1)$ and $L I_{q}^{\alpha+1}[m_{2}](1)$ for $t \in J$ with $q = \frac{1}{8}, \frac{1}{2}, \frac{6}{7}$ in Example 1.

\[
\begin{align*}
\sup_{t \in J} L I_{q}^{\alpha+1}[m_{2}](1) &= \sup_{t \in J} L I_{q}^{\frac{3}{4}+1}\left(\frac{1}{40}\right) = 0.0005, 0.0002, 0.0001, \\
\sup_{t \in J} L I_{q}^{\alpha-1}[m_{2}](1) &= \sup_{t \in J} L I_{q}^{\frac{3}{2}-1}\left(\frac{1}{160}\right) = 0.0006, 0.0005, 0.0005, \\
\sup_{t \in J} L I_{q}^{\alpha-1}[m_{2}](a) &= \sup_{t \in J} L I_{q}^{\frac{3}{4}-1}\left(\frac{1}{160}\right) = 0.0001, 0.0001, 0.0001, \\
\sup_{t \in J} L I_{q}^{\alpha-1}[m_{2}](b) &= \sup_{t \in J} L I_{q}^{\frac{3}{4}-1}\left(\frac{3}{160}\right) = 0.0004, 0.0003, 0.0003
\end{align*}
\]

for $q = \frac{1}{8}, \frac{1}{2}, \frac{6}{7}$, respectively. Hence, from Eqs. (9)–(10) and the above results in Tables 4 and 5, we obtain $M_{0} = \max\{0.0529, 0.0005\} = 0.0529$, $M_{1} = \max\{0.0466, 0.0005\} = 0.0466$, $M(1) = \max\{0.0566, 0.0006\} = 0.0566$,

\[
M(a) = M\left(\frac{1}{4}\right) = \max\{0.0409, 0.0001\} = 0.0409,
\]

\[
M(b) = M\left(\frac{3}{4}\right) = \max\{0.0570, 0.0004\} = 0.0570
\]

whenever $q = \frac{1}{8}$. $M_{0} = \max\{0.0552, 0.0003\} = 0.0552$, $M_{1} = \max\{0.0436, 0.0002\} = 0.0436$, $M(1) = \max\{0.0652, 0.0005\} = 0.0652$,

\[
M(a) = M\left(\frac{1}{4}\right) = \max\{0.0432, 0.0001\} = 0.0432,
\]

\[
M(b) = M\left(\frac{3}{4}\right) = \max\{0.0633, 0.0003\} = 0.0633,
\]
Figure 3 2D graph of $T^{q^{-1}}[m_1](s)$ and $L T^{q^{-1}}[m_2](s)$ for $t \in \mathcal{T}$ and $s = a, b$ with $q = \frac{1}{8}$, $\frac{1}{2}$, $\frac{3}{7}$ in Example 1 whenever $q = \frac{1}{8}$, $M_0 = \max\{0.0553, 0.0002\} = 0.0553$, $M_1 = \max\{0.0258, 0.0001\} = 0.0258$, $M(1) = \max\{0.0706, 0.0005\} = 0.0706$, $M(a) = M\left(\frac{1}{4}\right) = \max\{0.0447, 0.0001\} = 0.0447,$
Table 6 Some numerical results for calculation of $M_0, M_1, M(1), M(a), M(b)$ and $\Delta < 1$ in Example 1 for $q = \frac{1}{3}, \frac{2}{7}, \frac{6}{7}$.

n	M_0	M_1	$M(1)$	$M(a)$	$M(b)$	Δ
1	0.0516	0.0454	0.0556	0.0404	0.0561	0.0994
2	0.0527	0.0465	0.0564	0.0408	0.0569	0.1013
3	0.0529	0.0466	0.0565	0.0409	0.0570	0.1015
4	0.0529	0.0466	0.0566	0.0409	0.0570	0.1016
5	0.0529	0.0466	0.0566	0.0409	0.0570	0.1016
$q = \frac{1}{7}$						
1	0.0347	0.0196	0.0515	0.0362	0.0514	0.0757
2	0.0446	0.0265	0.0586	0.0399	0.0576	0.0915
3	0.0499	0.0305	0.0620	0.0416	0.0605	0.0997
4	0.0526	0.0325	0.0636	0.0424	0.0620	0.1039
5	0.0539	0.0336	0.0644	0.0428	0.0627	0.1060
6	0.0546	0.0341	0.0649	0.0430	0.0630	0.1071
7	0.0550	0.0344	0.0651	0.0431	0.0632	0.1076
8	0.0552	0.0345	0.0652	0.0432	0.0633	0.1078
9	0.0552	0.0346	0.0652	0.0432	0.0633	0.1080
10	0.0553	0.0346	0.0652	0.0432	0.0634	0.1080
11	0.0553	0.0346	0.0652	0.0432	0.0634	0.1081
12	0.0553	0.0346	0.0653	0.0432	0.0634	0.1081
$q = \frac{1}{3}$						
1	0.0067	0.0013	0.0293	0.0216	0.0298	0.0288
2	0.0110	0.0025	0.0363	0.0261	0.0366	0.0384
3	0.0154	0.0040	0.0418	0.0294	0.0418	0.0470
...
37	0.0551	0.0257	0.0705	0.0446	0.0673	0.1100
38	0.0551	0.0257	0.0705	0.0447	0.0673	0.1101
39	0.0552	0.0257	0.0705	0.0447	0.0673	0.1101
40	0.0552	0.0257	0.0705	0.0447	0.0674	0.1102
41	0.0552	0.0258	0.0705	0.0447	0.0674	0.1102
42	0.0552	0.0258	0.0705	0.0447	0.0674	0.1102
43	0.0553	0.0258	0.0706	0.0447	0.0674	0.1103
44	0.0553	0.0258	0.0706	0.0447	0.0674	0.1103

$M(b) = M\left(\frac{3}{\frac{1}{4}}\right) = \max\{0.0674, 0.0003\} = 0.0674,$

whenever $q = \frac{1}{7}$. Also, by using Eq. (11), we can calculate values of Δ. Table 6 shows these results. Thus, by using Eq. (11) we have

$$
\Delta = M_0 + \frac{\eta \Xi}{\eta(\Xi - \frac{1}{2}) + 1} M_1 + \frac{\frac{1}{2} \eta + 1}{\eta(\Xi - \frac{1}{2}) + 1} M(1) \\
+ \frac{\eta \Xi(\Xi - 2) + \Xi}{\eta(\Xi - \frac{1}{2}) + 1} M(a) + \frac{\frac{1}{2} \eta \Xi - \Xi}{\eta(\Xi - \frac{1}{2}) + 1} M(b)
$$

$$
= 0.0529 + \frac{\frac{1}{6} \times 239}{\frac{280}{2} - \frac{1}{2} + 1} \times 0.0466 + \frac{\frac{1}{2} \times \frac{1}{6} + 1}{\frac{2}{6}(\frac{280}{2} - \frac{1}{2}) + 1} \times 0.0566
+ \frac{\frac{1}{6} \times 239}{\frac{280}{2} - \frac{1}{2} + 1} \times 0.0409 + \frac{\frac{1}{2} \times \frac{1}{6} + 1}{\frac{2}{6}(\frac{280}{2} - \frac{1}{2}) + 1} \times 0.0570
= 0.1016 < 1
$$

whenever $q = \frac{1}{7}$.
\[\Delta = M_0 + \frac{\eta \Xi}{\eta(\Xi - \frac{1}{2}) + 1} M_1 + \frac{\frac{1}{2} \eta + 1}{\eta(\Xi - \frac{1}{2}) + 1} M(1) \]

\[+ \frac{\eta \Xi(\Xi - 2) + \Xi}{\eta(\Xi - \frac{1}{2}) + 1} M(a) + \frac{\frac{1}{2} \eta \Xi - \Xi}{\eta(\Xi - \frac{1}{2}) + 1} M(b) \]

\[= 0.0553 + \frac{\frac{1}{6} \times \frac{239}{280}}{\frac{1}{2} \times \frac{239}{280} - \frac{1}{2} + 1} \times 0.0346 + \frac{\frac{1}{6} \times \frac{239}{280} - \frac{1}{2} + 1}{\frac{1}{6} \times \frac{239}{280} - \frac{1}{2} + 1} \times 0.0653 \]

\[+ \frac{\frac{1}{6} \times \frac{239}{280} - \Xi + \Xi}{\frac{1}{6} \times \frac{239}{280} - \Xi + \Xi} \times 0.0432 + \frac{\frac{1}{6} \times \frac{1}{6} \times \frac{239}{280} - \frac{239}{280}}{\frac{1}{6} \times \frac{239}{280} - \Xi + \Xi} \times 0.0634 \]

\[= 0.1081 < 1 \]

whenever \(q = \frac{1}{2} \), and

\[\Delta = M_0 + \frac{\eta \Xi}{\eta(\Xi - \frac{1}{2}) + 1} M_1 + \frac{\frac{1}{2} \eta + 1}{\eta(\Xi - \frac{1}{2}) + 1} M(1) \]

\[+ \frac{\eta \Xi(\Xi - 2) + \Xi}{\eta(\Xi - \frac{1}{2}) + 1} M(a) + \frac{\frac{1}{2} \eta \Xi - \Xi}{\eta(\Xi - \frac{1}{2}) + 1} M(b) \]

\[= 0.0553 + \frac{\frac{1}{6} \times \frac{239}{280}}{\frac{1}{2} \times \frac{239}{280} - \frac{1}{2} + 1} \times 0.0258 + \frac{\frac{1}{6} \times \frac{239}{280} - \frac{1}{2} + 1}{\frac{1}{6} \times \frac{239}{280} - \frac{1}{2} + 1} \times 0.0706 \]

\[+ \frac{\frac{1}{6} \times \frac{239}{280} - \Xi + \Xi}{\frac{1}{6} \times \frac{239}{280} - \Xi + \Xi} \times 0.0474 + \frac{\frac{1}{6} \times \frac{1}{6} \times \frac{239}{280} - \frac{239}{280}}{\frac{1}{6} \times \frac{239}{280} - \Xi + \Xi} \times 0.0674 \]

\[= 0.1103 < 1 \]

whenever \(q = \frac{6}{7} \). Figures 4, 5, and 6 show these results (Algorithm 6). Now, by using Theorem 3, the fractional \(q \)-integro-differential equation under sum and integral boundary value conditions (15) has a unique solution.
Example 2 Consider the fractional q-integro-differential equation similar to problem (3) as follows:

$$
\begin{align*}
\frac{d^q}{dt^q}x(t) &= \frac{|t|}{35(1 + |t|)} + \frac{2}{35(4 + \sqrt{t})} |x(t)| + \frac{3t}{70} \int_0^t \frac{x(r)}{\sqrt{r} + 1} \, dr \\
&\quad + \frac{3t}{35(t^3 + 2)} \frac{d^{q-1}}{dt^{q-1}}x(t),
\end{align*}
$$

(16)

under the sum boundary value conditions $x'(0) = 0$ and $x'(1) = \sum_{i=1}^6 c_i x^{(i)}(\frac{1}{8})$. Clearly, $\alpha = \frac{9}{7}$,

$\zeta = \frac{1}{8}$, $b = \frac{7}{8}$, and $m = 6$. Let $c_1 = \frac{7}{12}$, $c_2 = \frac{9}{8}$, $c_3 = \frac{9}{5}$, $c_4 = \frac{2}{5}$, $c_5 = \frac{5}{8}$, $c_6 = \frac{11}{10}$, and so $\mathcal{S} =$
Algorithm 6 The MATLAB lines for calculation of all parameters in Example 1

```matlab
format long
t0=1; T=1; s=1; a=1/4; b=3/4;
X1=2*exp(7); eta=1/6;
m1=sym(1/7+1/2+7/4);
m2=sym(1/40);
L=0.025;
[q, xq, yq]=size(q);
column=1;
for j=1:q
    for n=1:80
        A1(n, column)=n;
        A2(n, column)=n;
        A1(n, column+1)=q1*a(n, j, alpha, t0, n, m1);
        A1(n, column+2)=q1*a(n, j, alpha, T, n, m1);
        A1(n, column+3)=A1(n, column+1);
        if A1(n, column+2)>A1(n, column+1)
            A1(n, column+3)=A1(n, column+2);
        end;
        A2(n, column+1)=l*q1*a(n, j, alpha, t0, n, m2);
        A2(n, column+2)=l*q1*a(n, j, alpha, T, n, m2);
        A2(n, column+3)=A2(n, column+1);
        if A2(n, column+2)>A2(n, column+1)
            A2(n, column+3)=A2(n, column+2);
        end;
        A1(n, column+4)=q1*a(n, j, alpha+1, T, n, m1);
        A2(n, column+4)=l*q1*a(n, j, alpha+1, T, n, m2);
        s=T;
        A1(n, column+5)=q1*a(n, j, alpha+1, s, n, m1);
        A2(n, column+5)=l*q1*a(n, j, alpha+1, s, n, m2);
        s=0;
        A1(n, column+6)=q1*a(n, j, alpha+1, s, n, m1);
        A2(n, column+6)=l*q1*a(n, j, alpha+1, s, n, m2);
        s=0;
        A1(n, column+7)=q1*a(n, j, alpha+1, s, n, m1);
        A2(n, column+7)=l*q1*a(n, j, alpha+1, s, n, m2);
    end;
column=column+8;
column=1;
Acolumn=1;
for j=1:q
    for n=1:80
        M(n, column)=n;
        M(n, column+1)=A1(n, Acolumn+3);
        if A2(n, Acolumn+3)>A1(n, Acolumn+3)
            M(n, column+1)=A2(n, Acolumn+3);
        end;
        M(n, column+2)=A1(n, Acolumn+4);
        if A2(n, Acolumn+4)>A1(n, Acolumn+4)
            M(n, column+2)=A2(n, Acolumn+4);
        end;
        M(n, column+3)=A1(n, Acolumn+5);
        if A2(n, Acolumn+5)>A1(n, Acolumn+5)
            M(n, column+3)=A2(n, Acolumn+5);
        end;
        M(n, column+4)=A1(n, Acolumn+6);
        if A2(n, Acolumn+6)>A1(n, Acolumn+6)
            M(n, column+4)=A2(n, Acolumn+6);
        end;
        M(n, column+5)=A1(n, Acolumn+7);
        if A2(n, Acolumn+7)>A1(n, Acolumn+7)
            M(n, column+5)=A2(n, Acolumn+7);
        end;
        column = column + 6;
        Acolumn = Acolumn + 8;
    end;
column=1;
Mcolumn=1;
for j=1:q
    for n=1:80
        Delta(n, column)=n;
        Delta(n, column+1) = M(n, Mcolumn+1) + ... 
                      eta*X1*M(n, Mcolumn+2) / (eta*X1 -1/2 -1) + (eta/2 + ... 
                      1)*M(n, Mcolumn+3) / (eta*X1 -1/2 +1) + (eta + X1*X1 ...
Algorithm 6 (Continued)

\[
\sum_{i=1}^{5} c_i = \frac{792}{80} = 6.1083. \text{ We define the map } w_2 : \mathcal{J} \times \mathcal{B}^2 \rightarrow \mathcal{B} \text{ by }
\]

\[
w_2(t,x(t),y(t),z(t)) = \left| \frac{|t|}{35(1 + |t|)} + \frac{2}{35(4 + \sqrt{t})} x(t) \right|
\]

\[+ \frac{3t}{70} \int_0^t \frac{y(r)}{\sqrt{r + 1}} dr + \frac{3t}{35(t^3 + 2)} c \mathcal{D}^{1}_{\|} [z](t)\]

for all \( t \in \mathcal{J} \). Now, we get

\[
\left| w_2 \left( t, x(t), \int_0^t x(r) dr, c \mathcal{D}^{1}_{\|} [x](t) \right) - w_2 \left( t, y(t), \int_0^t y(r) dr, c \mathcal{D}^{1}_{\|} [y](t) \right) \right|
\]

\[
= \left| \frac{|t|}{35(1 + |t|)} + \frac{2}{35(4 + \sqrt{t})} x(t) + \frac{3t}{70} \int_0^t \frac{y(r)}{\sqrt{r + 1}} dr 
\]

\[+ \frac{3t}{35(t^3 + 2)} c \mathcal{D}^{1}_{\|} [x](t) - \left[ \frac{|t|}{35(1 + |t|)} + \frac{2}{35(4 + \sqrt{t})} y(t) 
\]

\[+ \frac{3t}{70} \int_0^t \frac{y(r)}{\sqrt{r + 1}} dr + \frac{3t}{35(t^3 + 2)} c \mathcal{D}^{1}_{\|} [y](t) \right] \right|
\]

\[
\leq \frac{2}{35(4 + \sqrt{t})} \| x - y \| + \frac{3t}{70} \| x - y \| + \frac{3t}{35(t^3 + 2)} \| x - y \|
\]

Thus

\[
\left| w_2 \left( t, x(t), \int_0^t x(r) dr, c \mathcal{D}^{1}_{\|} [x](t) \right) - w_2 \left( t, y(t), \int_0^t y(r) dr, c \mathcal{D}^{1}_{\|} [y](t) \right) \right|
\]

\[
\leq \left[ \frac{2}{35(4 + \sqrt{t})} + \frac{3t}{70} + \frac{3t}{35(t^3 + 2)} \right] \| x - y \|
\]

for all \( t \in \mathcal{J}, x, y \in \mathcal{B} \). We define the positive continuous maps

\[
m_1(t) = \frac{2}{35(4 + \sqrt{t})}, \quad m_2(t) = \frac{3t}{70}, \quad m_3(t) = \frac{3t}{35(t^3 + 2)}. \]

At present, by using Eqs. (12)–(13) and applying Algorithm 5, we calculate \( \sup_{t \in \mathcal{J}} T^\alpha_{\|} [m_i](t) \), \( \sup_{t \in \mathcal{J}} T^{\alpha-1}_{\|} [m_i](1) \), \( \sup_{t \in \mathcal{J}} T^{\alpha-2}_{\|} [m_i](b) \), \( \sup_{t \in \mathcal{J}} T^{\alpha-3}_{\|} [m_i](1) \) for \( i = 1, 2, 3 \). Tables 7, 8, and 9 show these results. Therefore

\[
\sup_{t \in \mathcal{J}} T^\alpha_{\|} [m_1](t) = \sup_{t \in \mathcal{J}} T^\alpha_{\|} \left( \frac{2}{35(4 + \sqrt{t})} \right) = 0.0106, 0.0089, 0.0077,
\]

\[
\sup_{t \in \mathcal{J}} T^{\alpha-1}_{\|} [m_1](1) = \sup_{t \in \mathcal{J}} T^{\alpha-1}_{\|} \left( \frac{2}{175} \right) = 0.0118, 0.0125, 0.0128,
\]

for all \( t \in \mathcal{J} \). Therefore
Table 7 Some numerical results of $I_{q}^{m_{1}}(t)$, $I_{q}^{m_{1}−1}(1)$, $I_{q}^{m_{1}−2}(b)$, and $I_{q}^{m_{1}−\varepsilon}(t)$ in Example 2 for $t \in J$ and $q = \frac{1}{8}, \frac{1}{2}, \frac{6}{7}$

| $n$ | $\sup_{t \in J} I_{q}^{m_{1}}(t)$ | $\sup_{t \in J} I_{q}^{m_{1}−1}(1)$ | $\sup_{t \in J} I_{q}^{m_{1}−2}(b)$ | $\sup_{t \in J} I_{q}^{m_{1}−\varepsilon}(t)$ |
|-----|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 1   | $0.00104$                       | $0.00116$                       | $0.00116$                       | $0.00106$                       |
| 2   | $0.00106$                       | $0.00118$                       | $0.00115$                       | $0.00108$                       |
| 3   | $0.00106$                       | $0.00118$                       | $0.00115$                       | $0.00108$                       |
| 4   | $0.00106$                       | $0.00118$                       | $0.00115$                       | $0.00108$                       |
| $q = \frac{1}{2}$ |                               |                                |                                |                                |
| 1   | $0.00058$                       | $0.00095$                       | $0.00119$                       | $0.0062$                       |
| 2   | $0.00073$                       | $0.011$                         | $0.00113$                       | $0.0077$                       |
| 3   | $0.00081$                       | $0.0118$                       | $0.0011$                       | $0.0086$                       |
| 4   | $0.00085$                       | $0.0121$                       | $0.00109$                       | $0.009$                        |
| 5   | $0.00087$                       | $0.0123$                       | $0.00108$                       | $0.0092$                       |
| 6   | $0.00088$                       | $0.0124$                       | $0.00108$                       | $0.0093$                       |
| 7   | $0.00089$                       | $0.0125$                       | $0.00108$                       | $0.0094$                       |
| 8   | $0.00089$                       | $0.0125$                       | $0.00107$                       | $0.0094$                       |
| 9   | $0.00089$                       | $0.0125$                       | $0.00107$                       | $0.0094$                       |
| 10  | $0.00089$                       | $0.0125$                       | $0.00107$                       | $0.0094$                       |
| 11  | $0.00089$                       | $0.0125$                       | $0.00107$                       | $0.0095$                       |
| $q = \frac{6}{7}$ |                               |                                |                                |                                |
| 1   | $0.00099$                       | $0.0041$                       | $0.0147$                       | $0.001$                        |
| 2   | $0.00144$                       | $0.0055$                       | $0.0134$                       | $0.0017$                       |
| 3   | $0.0002$                        | $0.0066$                       | $0.0126$                       | $0.0024$                       |
| ... |                                |                                |                                |                                |
| 11  | $0.00074$                       | $0.0126$                       | $0.0105$                       | $0.0081$                       |
| 12  | $0.00075$                       | $0.0126$                       | $0.0104$                       | $0.0082$                       |
| 13  | $0.00075$                       | $0.0127$                       | $0.0104$                       | $0.0082$                       |
| 14  | $0.00076$                       | $0.0127$                       | $0.0104$                       | $0.0083$                       |
| 15  | $0.00076$                       | $0.0127$                       | $0.0104$                       | $0.0083$                       |
| 16  | $0.00076$                       | $0.0127$                       | $0.0104$                       | $0.0083$                       |
| 17  | $0.00077$                       | $0.0128$                       | $0.0104$                       | $0.0084$                       |
| 18  | $0.00077$                       | $0.0128$                       | $0.0104$                       | $0.0084$                       |
| 19  | $0.00077$                       | $0.0128$                       | $0.0104$                       | $0.0084$                       |
| 20  | $0.00077$                       | $0.0128$                       | $0.0104$                       | $0.0084$                       |
| 21  | $0.00077$                       | $0.0128$                       | $0.0104$                       | $0.0085$                       |
| 22  | $0.00078$                       | $0.0129$                       | $0.0104$                       | $0.0085$                       |

$$\begin{align*}
\sup_{t \in J} I_{q}^{m_{1}−2}(b) &= \sup_{t \in J} I_{q}^{m_{1}−2} \left( \frac{2}{35(4 + \sqrt{7})} \right) = 0.0115, 0.0107, 0.0104, \\
\sup_{t \in J} I_{q}^{m_{1}−\varepsilon}(t) &= \sup_{t \in J} I_{q}^{m_{1}−\frac{\varepsilon}{2}} \left( \frac{2}{35(4 + \sqrt{7})} \right) = 0.0108, 0.0095, 0.0085
\end{align*}$$

for $q = \frac{1}{8}, \frac{1}{2}, \frac{6}{7}$, respectively,

$$\begin{align*}
\sup_{t \in J} I_{q}^{m_{2}}(t) &= \sup_{t \in J} I_{q}^{m_{2}} \left( \frac{3t}{70} \right) = 0.0343, 0.0184, 0.0109, \\
\sup_{t \in J} I_{q}^{m_{1}−1}(1) &= \sup_{t \in J} I_{q}^{m_{1}−1} \left( \frac{3}{70} \right) = 0.0391, 0.0315, 0.0269, \\
\sup_{t \in J} I_{q}^{m_{2}−2}(b) &= \sup_{t \in J} I_{q}^{m_{2}−2} \left( \frac{1}{30} \right) = 0.0357, 0.0367, 0.0374, \\
\sup_{t \in J} I_{q}^{m_{2}−\varepsilon}(t) &= \sup_{t \in J} I_{q}^{m_{2}−\frac{\varepsilon}{2}} \left( \frac{3t}{70} \right) = 0.0349, 0.0198, 0.0123
\end{align*}$$
Table 8 Some numerical results of $I^q \alpha_m(t)$, $I^{q-1} \alpha_m(1)$, $I^{q-2} \alpha_m(b)$, and $I^{q-\zeta} \alpha_m(t)$ in Example 2 for $t \in J$ and $q = \frac{1}{8}, \frac{1}{2}, 6$, respectively.

| $n$ | $\sup_{t \in J} I^q \alpha_m(t)$ | $\sup_{t \in J} I^{q-1} \alpha_m(1)$ | $\sup_{t \in J} I^{q-2} \alpha_m(b)$ | $\sup_{t \in J} I^{q-\zeta} \alpha_m(t)$ |
|-----|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| $q = \frac{1}{8}$ | 0.0343 | 0.0391 | 0.0357 | 0.0349 |
| 1 | 0.0343 | 0.0391 | 0.0357 | 0.0349 |
| 2 | 0.0343 | 0.0391 | 0.0357 | 0.0349 |
| 3 | 0.0343 | 0.0391 | 0.0357 | 0.0349 |
| $q = \frac{1}{2}$ | 0.0167 | 0.0299 | 0.0373 | 0.018 |
| 1 | 0.0179 | 0.0311 | 0.0368 | 0.0193 |
| 2 | 0.0183 | 0.0314 | 0.0368 | 0.0197 |
| 3 | 0.0184 | 0.0315 | 0.0367 | 0.0198 |
| $q = 6$ | 0.0029 | 0.0144 | 0.0434 | 0.0036 |
| 1 | 0.0045 | 0.018 | 0.0407 | 0.0054 |
| 2 | 0.0058 | 0.0206 | 0.0394 | 0.0069 |
| $q = \frac{6}{7}$ | 0.0107 | 0.0267 | 0.0375 | 0.0122 |
| 1 | 0.0108 | 0.0268 | 0.0374 | 0.0122 |
| 2 | 0.0108 | 0.0268 | 0.0374 | 0.0123 |
| 3 | 0.0109 | 0.0269 | 0.0374 | 0.0123 |
| 4 | 0.0109 | 0.0269 | 0.0374 | 0.0124 |
| 5 | 0.0109 | 0.0269 | 0.0374 | 0.0124 |

For $q = \frac{1}{8}, \frac{1}{2}, 6$, respectively, and

$$\sup_{t \in J} I^q \alpha_m(t) = \sup_{t \in J} I^q \alpha_m(1) = \sup_{t \in J} I^q \alpha_m(b) = \sup_{t \in J} I^q \alpha_m(t)$$

we obtain $M_0 = 0.0343$, $M(1) = 0.0391$, $M(b) = 0.0357$, $M(t) = 0.0349$ whenever $q = \frac{1}{8}$, $M_0 = 0.0184$, $M(1) = 0.0315$, $M(b) = 0.0367$, $M(t) = 0.0198$ whenever $q = \frac{1}{2}$, $M_0 = 0.0110$, $M(1) = 0.0270$, $M(b) = 0.0374$, $M(t) = 0.0125$ whenever $q = 6$. Also, by using Eq. (14), we can calculate values of $\Delta$. Table 10 shows these results. Thus, by using Eq. (14), we have

$$\Delta = M_0 + M(t) + \frac{\Gamma_q(2 - \zeta)}{\Gamma_q(2 - \zeta)} + \frac{\Gamma_q(2 - \frac{1}{q}) + 1}{\Gamma_q(2 - \frac{1}{q})} \times 0.0391$$

$$= 0.0343 + 0.0349 + \frac{\Gamma_q(2 - \frac{1}{8}) + 1}{\Gamma_q(2 - \frac{1}{8})} \times 0.0391$$

$$+ \frac{(1 + \Gamma_q(2 - \frac{1}{8})) \times 6.1083}{\Gamma_q(2 - \frac{1}{8})} \times 0.0357 = 0.5859 < 1$$
Table 9 Some numerical results of $I_{q}^{α}[m_3](t)$, $I_{q}^{α−1}[m_3](1)$, $I_{q}^{α−2}[m_3](b)$, and $I_{q}^{α−ζ}[m_3](t)$ in Example 2 for $t \in J$ and $q = \frac{1}{8}, \frac{1}{2}, \frac{6}{7}$

| $n$ | $\text{sup } I_{q}^{α}[m_3](t)$ | $\text{sup } I_{q}^{α−1}[m_3](1)$ | $\text{sup } I_{q}^{α−2}[m_3](b)$ | $\text{sup } I_{q}^{α−ζ}[m_3](t)$ |
|-----|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| 1   | 0.0231                        | 0.0262                        | 0.0288                        | 0.0234                        |
| 2   | 0.0231                        | 0.0262                        | 0.0288                        | 0.0234                        |
| q = $\frac{1}{8}$ |                               |                               |                               |                               |
| 1   | 0.0123                        | 0.0213                        | 0.0297                        | 0.0133                        |
| 2   | 0.0136                        | 0.0226                        | 0.0293                        | 0.0146                        |
| 3   | 0.0139                        | 0.0229                        | 0.0292                        | 0.0149                        |
| 4   | 0.0140                        | 0.0223                        | 0.0292                        | 0.0149                        |
| 5   | 0.0140                        | 0.0223                        | 0.0292                        | 0.0150                        |
| 6   | 0.0140                        | 0.0223                        | 0.0292                        | 0.0150                        |
| q = $\frac{1}{2}$ |                               |                               |                               |                               |
| 1   | 0.0021                        | 0.0101                        | 0.0346                        | 0.0026                        |
| 2   | 0.0034                        | 0.0131                        | 0.0322                        | 0.0041                        |
| 3   | 0.0046                        | 0.0154                        | 0.0313                        | 0.0054                        |
| 4   | 0.0057                        | 0.0173                        | 0.0303                        | 0.0066                        |
| q = $\frac{6}{7}$ |                               |                               |                               |                               |
| 1   | 0.0093                        | 0.0213                        | 0.0290                        | 0.0105                        |
| 2   | 0.0094                        | 0.0213                        | 0.0290                        | 0.0106                        |
| 3   | 0.0094                        | 0.0214                        | 0.0290                        | 0.0106                        |
| 4   | 0.0095                        | 0.0214                        | 0.0290                        | 0.0107                        |
| 5   | 0.0095                        | 0.0215                        | 0.0290                        | 0.0107                        |
| 6   | 0.0095                        | 0.0215                        | 0.0290                        | 0.0108                        |
| 7   | 0.0095                        | 0.0215                        | 0.0290                        | 0.0108                        |
| 8   | 0.0095                        | 0.0215                        | 0.0290                        | 0.0108                        |
| 9   | 0.0096                        | 0.0215                        | 0.0290                        | 0.0108                        |
| 10  | 0.0096                        | 0.0215                        | 0.0290                        | 0.0108                        |

Figure 7 2D graphs of $M_0, M(1), M(b), M(t)$ on $t \in J$ for $q = \frac{1}{2}$ in Example 2

whenever $q = \frac{1}{8}$,

\[
\Delta = M_0 + M(t) + \frac{\Gamma_q(2 - \zeta) + 1}{\Gamma_q(2 - \zeta)} M(1) \\
+ \frac{(1 + \Gamma_q(2 - \zeta)) \times 6.1083}{\Gamma_q(2 - \zeta)} M(b)
\]
Table 10 Some numerical results for calculation of $M_0$, $M(1)$, $M(b)$, and $\Delta < 1$ in Example 2 for $q = \frac{1}{5}, \frac{2}{7}, \frac{6}{7}$

| $n$ | $M_0$ | $M(1)$ | $M(b)$ | $M(t)$ | $\Delta$ |
|-----|-------|--------|--------|--------|---------|
| $q = \frac{1}{5}$ | | | | | |
| 1 | 0.0343 | 0.0391 | 0.0357 | 0.0349 | 0.5855 |
| 2 | 0.0343 | 0.0391 | 0.0357 | 0.0349 | 0.5859 |
| 3 | 0.0343 | 0.0391 | 0.0357 | 0.0349 | 0.5859 |
| 4 | 0.0343 | 0.0391 | 0.0357 | 0.0349 | 0.5859 |
| $q = \frac{2}{7}$ | | | | | |
| 1 | 0.0167 | 0.0299 | 0.0373 | 0.018 | 0.5275 |
| 2 | 0.0179 | 0.0311 | 0.0368 | 0.0193 | 0.5426 |
| 3 | 0.0183 | 0.0314 | 0.0368 | 0.0197 | 0.5504 |
| 4 | 0.0184 | 0.0315 | 0.0367 | 0.0198 | 0.5542 |
| 5 | 0.0184 | 0.0315 | 0.0367 | 0.0198 | 0.5561 |
| 6 | 0.0184 | 0.0315 | 0.0367 | 0.0198 | 0.5571 |
| 7 | 0.0184 | 0.0315 | 0.0367 | 0.0198 | 0.5576 |
| 8 | 0.0184 | 0.0315 | 0.0367 | 0.0198 | 0.5578 |
| 9 | 0.0184 | 0.0315 | 0.0367 | 0.0198 | 0.5579 |
| 10 | 0.0184 | 0.0315 | 0.0367 | 0.0198 | 0.5580 |
| 11 | 0.0184 | 0.0315 | 0.0367 | 0.0198 | 0.5580 |
| 12 | 0.0184 | 0.0315 | 0.0367 | 0.0198 | 0.5580 |
| $q = \frac{6}{7}$ | | | | | |
| 1 | 0.0029 | 0.0144 | 0.0373 | 0.0036 | 0.4067 |
| 2 | 0.0045 | 0.018 | 0.0407 | 0.0054 | 0.4166 |
| 3 | 0.0058 | 0.0206 | 0.0394 | 0.0069 | 0.4317 |
| ... | ... | ... | ... | ... | ... |
| 13 | 0.0107 | 0.0267 | 0.0375 | 0.0122 | 0.5218 |
| 14 | 0.0108 | 0.0268 | 0.0372 | 0.0122 | 0.5253 |
| 15 | 0.0108 | 0.0268 | 0.0374 | 0.0123 | 0.5283 |
| 16 | 0.0109 | 0.0269 | 0.0374 | 0.0123 | 0.5308 |
| 17 | 0.0109 | 0.0269 | 0.0374 | 0.0124 | 0.533 |
| 18 | 0.0109 | 0.0269 | 0.0374 | 0.0124 | 0.5348 |
| 19 | 0.0109 | 0.0269 | 0.0374 | 0.0124 | 0.5364 |
| 20 | 0.011 | 0.0269 | 0.0374 | 0.0124 | 0.5378 |
| 21 | 0.011 | 0.0269 | 0.0374 | 0.0124 | 0.5389 |
| 22 | 0.011 | 0.027 | 0.0374 | 0.0125 | 0.5399 |
| 23 | 0.011 | 0.027 | 0.0374 | 0.0125 | 0.5408 |
| 24 | 0.011 | 0.027 | 0.0374 | 0.0125 | 0.5415 |
| ... | ... | ... | ... | ... | ... |
| 53 | 0.011 | 0.027 | 0.0374 | 0.0125 | 0.5457 |
| 54 | 0.011 | 0.027 | 0.0374 | 0.0125 | 0.5458 |
| 55 | 0.011 | 0.027 | 0.0374 | 0.0125 | 0.5458 |

\[
= 0.0184 + 0.0198 + \frac{\Gamma_q(2 - \frac{1}{5}) + 1}{\Gamma_q(2 - \frac{1}{5})} \times 0.0315 \\
+ \frac{(1 + \Gamma_q(2 - \frac{1}{5})) \times 6.1083}{\Gamma_q(2 - \frac{1}{5})} \times 0.0367 = 0.5580 < 1
\]

whenever $q = \frac{1}{5}$, and

\[
\Delta = M_0 + M(t) + \frac{\Gamma_q(2 - \zeta) + 1}{\Gamma_q(2 - \zeta)}M(1) + \frac{(1 + \Gamma_q(2 - \zeta)) \times M(b)}{\Gamma_q(2 - \zeta)}
\]

\[
= 0.0110 + 0.0125 + \frac{\Gamma_q(2 - \frac{1}{5}) + 1}{\Gamma_q(2 - \frac{1}{5})} \times 0.0270
\]
whenever $q = \frac{6}{7}$. Figures 7, 8, and 9 show these results (Algorithm 7). Now, by using Theorem 5, the fractional $q$-integro-differential equation under sum boundary value conditions (16) has a unique solution.

5 Conclusion
The $q$-integro-differential boundary equations and their applications represent a matter of high interest in the area of fractional $q$-calculus and its applications in various areas.
Algorithm 7 The MATLAB lines for calculation of all parameters in Example 2

```matlab
function [A1, A2, A3] = calculate_parameters(q, alpha, beta, t, n, m)

% MATLAB code for calculating parameters

% Initialize parameters

% Define parameters

% Calculate parameters

% Output parameters

end
```
Algorithm 7 (Continued)

Line	Description
77	`if A3(n,Acolumn+3)>M1`
78	`M1=A3(n,Acolumn+3);`
79	`end;`
80	`M(n,column+1)=M1;`
81	`M2=A1(n,Acolumn+4);`
82	`if A2(n,Acolumn+6)>M2`
83	`M2=A2(n,Acolumn+4);`
84	`end;`
85	`if A3(n,Acolumn+6)>M2`
86	`M2=A3(n,Acolumn+4);`
87	`end;`
88	`M(n,column+2)=M2;`
89	`M3=A1(n,Acolumn+5);`
90	`if A2(n,Acolumn+5)>M3`
91	`M3=A2(n,Acolumn+5);`
92	`end;`
93	`if A3(n,Acolumn+5)>M3`
94	`M3=A3(n,Acolumn+5);`
95	`end;`
96	`M(n,column+3)=M3;`
97	`M4=A1(n,Acolumn+8);`
98	`if A2(n,Acolumn+8)>M4`
99	`M4=A2(n,Acolumn+8);`
100	`end;`
101	`if A3(n,Acolumn+8)>M4`
102	`M4=A3(n,Acolumn+8);`
103	`end;`
104	`M(n,column+4)=M4;`
105	`column=column+5;`
106	`Acolumn=Acolumn+3;`
107	`end;`
108	`column=1;`
109	`Mcolumn=1;`
110	`for j=1:yq`
111	`for n=1:80`
112	`Delta(n,column)=n;`
113	`G=qGamma(q(1), 2-zeta, n);`
114	`Delta(n,column+1)=M(n, Mcolumn+1) + M(n, Mcolumn+4) + ...`
115	`(G+1) * M(n, Mcolumn+2) / (1+G) * Xi * M(n, Mcolumn+3) / G;`
116	`end;`
117	`column=column+2;`
118	`Mcolumn=Mcolumn+5;`
119	`end;`

of science and technology. q-integro-differential boundary value problems occur in the mathematical modeling of a variety of physical operations. The end of this article is to investigate a complicated case by utilizing an appropriate basic theory. In this manner, we prove the existence of a solution for two new q-integro-differential equations under sum and integral boundary conditions (1)–(2) and (3)–(4) on a time scale and show the perfect numerical effects for the problem which confirmed our results.

Acknowledgements
Not applicable.

Funding
Not applicable.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.

Authors’ contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Author details
1Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia. 2Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 March 2020 Accepted: 10 June 2020 Published online: 19 June 2020

References
1. Jackson, F.H.: On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 46(2), 253–281 (1909). https://doi.org/10.1017/S008045680002751
2. Jackson, F.H.: q-difference equations. Am. J. Math. 32, 305–314 (1910). https://doi.org/10.2307/2370183
3. Jackson, F.H.: On q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910). https://doi.org/10.1017/S008045680002751
4. Al-Salam, W.A.: q-analogues of Cauchy’s formula. Proc. Am. Math. Soc. 17, 182–184 (1952)
5. Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66, 365–370 (1969). https://doi.org/10.1017/S0305004100045060
6. Adams, C.R.: The general theory of a class of linear partial q-difference equations. Trans. Am. Math. Soc. 26, 283–312 (1924)
7. Adams, C.R.: Note on the integro-q-difference equations. Trans. Am. Math. Soc. 31(4), 861–867 (1929)
8. Atici, F., Eloe, P.W.: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14(3), 341–352 (2007). https://doi.org/10.2991/jnmp.2007.14.3.4
9. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)
10. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
11. Annaby, M.H., Mansour, Z.S.: q-Fractional Calculus and Equations. Springer, Cambridge (2012). https://doi.org/10.1007/978-3-642-30898-7
12. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Switzerland (1993)
13. Abdeljawad, T., Alzabut, J., Baleanu, D.: A generalized q-fractional Gronwall inequality and its applications to non-linear delay q-fractional difference systems. J. Inequal. Appl. 2016, 240 (2016). https://doi.org/10.1186/s13660-016-1181-2
14. Abdeljawad, T., Alzabut, J.: The q-fractional analogue for Gronwall-type inequality. J. Funct. Spaces Appl. 2013, 7 (2013). https://doi.org/10.1155/2013/943839
15. Ahmad, B., Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 59(107), 119–134 (2016). https://doi.org/10.1017/0003-4916(100)00068-X
16. Ahmad, B., Ntouyas, S.K., Pumaras, I.K.: Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2012, 140 (2012). https://doi.org/10.1186/1687-1847-2012-140
17. Balkani, N., Rezapour, S., Haghi, R.H.: Approximate solutions for a fractional q-integro-difference equation. J. Math. Ext. 13(3), 201–214 (2019)
18. Ferreira, R.A.C.: Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 70 (2010)
19. Kalvandi, V., Samei, M.E.: New stability results for a sum-type fractional q-integro-differential equation. J. Adv. Math. Stud. 12(2), 201–209 (2019)
20. Samei, M.E., Ranjbar, G.K., Hedayati, V.: Existence of solutions for equations and inclusions of multi-term fractional q-integro-differential with non-separated and initial boundary conditions. J. Inequal. Appl. 2019, 273 (2019). https://doi.org/10.1186/s13660-019-2224-2
21. Samei, M.E., Khalilzadeh Ranjbar, G.: Some theorems on existence of solutions for fractional hybrid q-difference inclusion. J. Adv. Math. Stud. 12(1), 63–76 (2019)
22. Kak, V., Cheung, P.: Quantum Calculus. Universitext. Springer, New York (2002)
23. Samei, M.E., Khalilzadeh Ranjbar, G., Hedayati, V.: Existence of solutions for a class of Caputo fractional q-difference inclusion on multifunctions by computational results. Kragujev. J. Math. 45(4), 543–570 (2021)
24. Zhao, Y., Chen, H., Zhang, Q.: Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions. Adv. Differ. Equ. 2013, 48 (2013). https://doi.org/10.1186/1687-1847-2013-48
25. Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Switzerland (2015). https://doi.org/10.1007/978-3-319-25562-0
26. Abdeljawad, T., Baleanu, D.: Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 16(12), 4682–4688 (2011). https://doi.org/10.1016/j.cnsns.2011.01.026
27. Jarad, F., Abdeljawad, T., Baleanu, D.: Stability of q-fractional non-autonomous systems. Nonlinear Anal, Real World Appl. 14(1), 780–784 (2013). https://doi.org/10.1016/j.nonrwa.2012.08.001
28. Samei, M.E., Hedayati, V., Ranjbar, G.K.: The existence of solution for k-dimensional system of Langevin Hadamard-type fractional differential inclusions with 2k different fractional orders. Mediterr. J. Math. 17, 37 (2020). https://doi.org/10.1007/s00009-019-1471-2
29. Baleanu, D., Ghafoornezhad, K., Rezapour, S., Shabibi, M.: On the existence of solutions of a three steps crisis integro-differential equation. Adv. Differ. Equ. 2018, 135 (2018).

30. Baleanu, D., Mohammadi, H., Rezapour, S.: The existence of solutions for a nonlinear mixed problem of singular fractional differential equations. Adv. Differ. Equ. 2013, 359 (2013). https://doi.org/10.1186/1687-1847-2013-359

31. Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017(1), 145 (2017). https://doi.org/10.1186/s13661-017-0867-9

32. Hedayati, V., Samei, M.E.: Positive solutions of fractional differential equation with two pieces in chain interval and simultaneous Dirichlet boundary conditions. Bound. Value Probl. 2019, 141 (2019). https://doi.org/10.1186/s13661-019-1251-8

33. Rezapour, S., Hedayati, V.: On a Caputo fractional differential inclusion with integral boundary condition for convex-compact and nonconvex-compact valued multifunctions. Kragujev. J. Math. 41(1), 143–158 (2017).

34. Guo, C., Guo, J., Kang, S., Li, H.: Existence and uniqueness of positive solution for nonlinear fractional q-difference equation with integral boundary conditions. J. Appl. Anal. Comput. 10(1), 153–164 (2020). https://doi.org/10.11948/20190055

35. Samei, M.E., Hedayati, V., Rezapour, S.: Existence results for a fraction hybrid differential inclusion with Caputo–Hadamard type fractional derivative. Adv. Differ. Equ. 2019, 163 (2019).

36. Shabibi, M., Postolache, M., Rezapour, S., Vaezpour, S.M.: Investigation of a multisigning pointwise defined fractional integro-differential equation. J. Math. Anal. 7(5), 61–77 (2016)

37. Kang, S., Chen, H., Li, L., Cui, Y., Ma, S.: Existence of three positive solutions for a class of Riemann–Liouville fractional q-difference equation. J. Appl. Anal. Comput. 9(2), 590–600 (2019). https://doi.org/10.11448/2156-907X.20180118

38. Shabibi, M., Postolache, M., Rezapour, S.: A positive solutions for a singular sum fractional differential system. Int. J. Anal. Appl. 13, 108–118 (2016)

39. Stanek, S.: The existence of positive solutions of singular fractional boundary value problems. Comput. Math. Appl. 62, 1379–1388 (2011)

40. Ren, J., Zhai, C.: Nonlocal q-fractional boundary value problem with Stieltjes integral conditions. Nonlinear Anal., Model. Control 24(4), 582–602 (2019). https://doi.org/10.15388/NA.2019.4.6

41. Ntouyas, S.K., Obaid, M.: A coupled system of fractional differential equations with nonlocal integral boundary conditions. Adv. Differ. Equ. 2012, 130 (2012)

42. Zhang, X., Liu, L., Wu, Y., Wuwatanapapheaphe, B.: The spectral analysis for a singular fractional differential equation with a signed measure. Appl. Math. Comput. 257, 252–263 (2015). https://doi.org/10.1016/j.amc.2014.12.068

43. Ntouyas, S.K., Samei, M.E.: Existence and uniqueness of solutions for multi-term fractional q-integro-differential equations via quantum calculus. Adv. Differ. Equ. 2019, 475 (2019). https://doi.org/10.1186/s13662-019-2414-8

44. Liu, Y., Wong, P.: Global existence of solutions for a system of singular fractional differential equations with impulse effects. J. Appl. Math. Inform. 33(3–4), 327–342 (2015). https://doi.org/10.14317/jami.2015.327

45. Shabibi, M., Rezapour, S., Vaezpour, S.M.: A singular fractional integro-differential equation. Sci. Bull. "Politeh." Univ. Buchar., Ser. A, Appl. Math. Phys. 79(1), 109–118 (2017)

46. Shabibi, M., Rezapour, S.: A singular fractional differential equation with Riemann–Liouville integral boundary condition. J. Adv. Math. Stud. 8(1), 80–88 (2015)

47. Liang, S., Samei, M.E.: New approach to solutions of a class of singular fractional q-differential problem via quantum calculus. Adv. Differ. Equ. 2020, 14 (2020). https://doi.org/10.1186/s13662-019-2489-2

48. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21593-8

49. Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6(16), 1–23 (2018). https://doi.org/10.3390/math6020016