Choreography solutions of the n-body problem on S^2

Juan Manuel Sánchez-Cerritos1 and Shiqing Zhang1

1Department of Mathematics
Sichuan University, Chengdu, People’s Republic of China
sanchezj01@gmail.com, zhangshiqing@msn.com

Abstract

We try to prove the existence of choreography solutions for the n—body problem on S^2. For the three-body problem, we show the existence of the 8-shape orbit on S^2.

Key words: celestial mechanics, curved n-body problem, periodic solutions, choreographies.

1991 Mathematics Subject Classification Primary 70F10, Secondary 70H12

1 Introduction

The curved n—body problem is a generalization of the Newtonian gravitational problem. It has been studied for several authors, for example in [3, 4, 5, 6, 8, 9, 10, 11, 16, 22]. Particularly the interesting history of this problem can be found on [3, 4]. Here we consider the positive curvature case, i.e. particles moving on the unit sphere, S^2.

The motion of the n particles with masses $m_i > 0$ and positions $q_i \in S^2$, $i = 1, \ldots, n$, is described by the following system

$$m_i \ddot{q}_i = \frac{\partial U}{\partial q_i} - m_i (\dot{q}_i \cdot \dot{q}_i)q_i, \quad i = 1, \ldots, n,$$

(1)

where U is the force function which generalizes the Newtonian one, and it is given by

$$U = \sum_{i<j} m_i m_j \cot(d(q_i, q_j)).$$

(2)

On classical n-body problems, Chenciner and Montgomery proved the existence of the eight-shape choreography for the three body problem in 2000 [1], which was described numerically by Moore in 1993 [14] and Simó in 2000 [18]. In the recent years Montenelli and Gushterov computed numerically the analogue solutions in the positive curved space [13].

The goal of this work is, based on the work of Zhang and co-authors [19, 20, 21], to prove the existence of periodic solutions for the n—body problem on S^2.

Motivated by Simó [18] for planar N—body problems, in this paper we seek for periodic solutions of (1) moving on the same orbit, i.e., setting the period as $T = 1$, we look for solutions such that
\[q_i(t) = Q(t + k_i), \quad i = 1, \ldots, n, \]

(3)

with \(0 = k_1 < \cdots < k_n < 1 \), and for some periodic function \(Q : [0,1] \to S^2 \).

Since our problem is on the curved space, the solution is much more complicated than Euclidean space.

We define the following set

\[D = \{ q = (q_1, \ldots, q_n) \in (S^2)^n \mid q_i \text{ is absolutely continuous and } q_i(t) \neq q_j(t), \]

for \(1 \leq i \neq j \leq n \}. \]

(4)

The Lagrangian action associated to system (1) on \(D \) is

\[f(q) = \int_0^1 \left(\frac{1}{2} \sum_{i=1}^n m_i |\ddot{q}_i(t)|^2 + U(q(t)) \right) dt. \]

(5)

We are interested in showing the existence of new choreography solutions of (1). In other words, we will not only show that the Lagrangian action functional reaches its minimum in \(D \), but in a subset where the \(n \) particles follow the same orbit.

There are some works where circular choreography solutions have been found, see for instance [8, 10]. In order to find new families of choreographies we will introduce the following sets

\[E_1 = \{ q = (q_1, \ldots, q_n) \in D \mid q_1(t) = q_n(t + 1/n), \quad q_i(t) = q_{i-1}(t + 1/n), \]

\[i = 2, \ldots, n \}, \]

\[E_2 = \{ q = (q_1, \ldots, q_n) \in D \mid q_1(t + 1/2) = diag\{1, -1, 1\}q_1(t) \}, \]

\[E_3 = \{ q = (q_1, \ldots, q_n) \in D \mid q_1(-t) = diag\{-1, -1, 1\}q_1(t) \}. \]

It is not difficult to see that \(q_1(0) = (0, 0, 1) = q_1(1/2) \) for \(q \in E_2 \cap E_3 \). Hence circular orbits mentioned above do not belong to \(E_2 \cap E_3 \). The set of choreographies are orbits on

\[H = \{ q = (q_1, \ldots, q_n) \in D \mid q_1 \in E_1 \cap E_2 \cap E_3 \}. \]

Let \(B = diag\{1, -1, 1\} \) and \(C = diag\{-1, -1, 1\} \). We now define the following actions \(\Phi_1, \Phi_2 \) and \(\Phi_3 \) on \(D \)

\[\Phi_1(q(t)) = (q_n(t + 1/n), q_1(t + 1/n), \ldots, q_{n-1}(t + 1/n)), \]

\[\Phi_2(q(t)) = (Bq_1(t + 1/2), Bq_2(t + 1/2), Bq_3(t + 1/2)), \]

\[\Phi_3(q(t)) = (Cq_1(-t), Cq_2(-t), Cq_3(-t)). \]

Then the fixed point of \(\Phi_i \) is \(E_i, \) \(i = 1, 2, 3. \)

We refer to Palais’ principle of symmetric criticality [15], in order to conclude that the critical points of \(f \) restricted to \(H \) are critical points of \(f \) on \(D \) as well.

We state our main theorem as follows

Theorem 1. Consider the \(n \)-body problem on \(S^2 \). The Lagrange action functional (5) reaches its minimum on \(H \). This minimum is a periodic non-collision solution of the equations of motion (1).
We first show that any critical point of \((6)\) on \(D\) satisfies \((1)\).

Proposition 2. A critical point of the Lagrange action functional on \(D\) is a solution of the equations of motion.

Proof. Let \(q_0 = (q_{01}, \ldots, q_{0n})\) be a critical point of the Lagrange action functional on \(D\).

For a given \(q\), a displacement \(\delta f\) is given by (the Gateaux derivative)

\[
\delta f = \frac{d}{d\varepsilon} \int_0^1 \left(\frac{1}{2} \sum_{i=1}^n m_i |\dot{q}_i| \right) d\varepsilon \bigg|_{\varepsilon=0},
\]

restricted to any \(p = (p_1, \ldots, p_n)\) such that \(|q_i(t) + \varepsilon p_i(t)|^2 = 1\), for every \(\varepsilon \to 0\), and \(i = 1, \ldots, n\). Let \(g_i\) be the function defined as \(g_i(q_i) = |q_i(t)|^2 - 1\) (the constraint \(g_i(q_i) = 0\) maintains the particle \(q_i\) on the sphere \(S^2\)). At a given time, for displacements of the constraint equation, the following should be held

\[
\delta g_i = \frac{d}{d\varepsilon} \left(|q_i(t) + \varepsilon p_i(t)|^2 - 1 \right) \bigg|_{\varepsilon=0} = 0, \quad i = 1, \ldots, n.
\]

Integrating both sides with respect to time we have

\[
\delta h_i = \int_0^1 \frac{d}{d\varepsilon} \left(|q_i(t) + \varepsilon p_i(t)|^2 - 1 \right) \bigg|_{\varepsilon=0} dt = 0, \quad i = 1, \ldots, n.
\]

From Hamilton principle we have

\[
0 = \delta f + \sum_{i=1}^n \lambda_i \delta h_i
\]

\[
= \frac{d}{d\varepsilon} \int_0^1 \left(\frac{1}{2} \sum_{i=1}^n m_i |\dot{q}_i|^2 + U(q(t) + \varepsilon p(t)) + \sum_{i=1}^n \lambda_i g_i \bigg|_{q_i=q_0} \right) dt \bigg|_{\varepsilon=0}
\]

where each \(\lambda_i\) is the Lagrange multiplier corresponding to the body \(i\), it will be computed later in the proof.

Then we have

\[
0 = \frac{d}{d\varepsilon} \int_0^1 \left(\frac{1}{2} \sum_{i=1}^n m_i |\dot{q}_i|^2 + \frac{1}{2} \sum_{i=1}^n \sum_{j=1, j \neq i}^n m_j m_j \text{cot}(d(q_i + \varepsilon p_i, q_j + \varepsilon p_j))
+ \lambda_i (|q_i(t) + \varepsilon p_i(t)|^2 - 1) \bigg|_{q_i=q_0} \bigg|_{\varepsilon=0} dt \right)
\]

\[
= \sum_{i=1}^n \left[\int_0^1 \frac{d}{d\varepsilon} \left(\frac{1}{2} m_i |\dot{q}_i|^2 + \frac{m_i m_j}{\sqrt{(q_i + \varepsilon p_i) \cdot (q_i + \varepsilon p_i)} \sqrt{(q_j + \varepsilon p_j) \cdot (q_j + \varepsilon p_j)}} \right) \right.
\]

\[
= \frac{1}{2} \sum_{j=1, j \neq i}^n \frac{(q_i + \varepsilon p_i) \cdot (q_j + \varepsilon p_j)}{\sqrt{(q_i + \varepsilon p_i) \cdot (q_i + \varepsilon p_i)} \sqrt{(q_j + \varepsilon p_j) \cdot (q_j + \varepsilon p_j)}} \left(1 - \left(\frac{(q_i + \varepsilon p_i) \cdot (q_i + \varepsilon p_j)}{\sqrt{(q_i + \varepsilon p_i) \cdot (q_i + \varepsilon p_i)} \sqrt{(q_j + \varepsilon p_j) \cdot (q_j + \varepsilon p_j)}} \right)^2 \right)^{1/2}
\]

\[
+ \lambda_i (|q_i(t) + \varepsilon p_i(t)|^2 - 1) \bigg|_{q_i=q_0} \bigg|_{\varepsilon=0} dt \right].
\]
After considering $\varepsilon \to 0$, and $q_i \cdot q_i = 1$ we have

$$0 = \sum_{i=1}^{n} \left[\int_{0}^{1} \left(m_i \dddot{q}_i \cdot \dot{p}_i + \frac{1}{2} \sum_{j=1, j \neq i}^{n} m_i m_j \frac{[q_i \cdot p_j + q_j \cdot p_i] - (q_i \cdot q_j)[q_j \cdot p_j + q_i \cdot p_i]}{(1 - (q_i \cdot q_j)^2)^{3/2}} \right. \\
+ 2\lambda_i (q_i \cdot p_i) \bigg|_{q_i=q_{0i}} \right) dt \right]$$

$$= \sum_{i=1}^{n} \left[\int_{0}^{1} \left(m_i \dddot{q}_i \cdot \dot{p}_i + \sum_{j=1, j \neq i}^{n} m_i m_j \frac{[q_j \cdot p_i] - (q_i \cdot q_j)[q_i \cdot p_i]}{(1 - (q_i \cdot q_j)^2)^{3/2}} + 2\lambda_i (q_i \cdot p_i) \bigg|_{q_i=q_{0i}} \right) dt \right]$$

$$= \sum_{i=1}^{n} \left[\int_{0}^{1} \left(m_i \dddot{q}_i \cdot \dot{p}_i + \sum_{j=1, j \neq i}^{n} m_i m_j \left(\frac{q_j - (q_i \cdot q_j)q_i}{(1 - (q_i \cdot q_j)^2)^{3/2}} \right) \cdot p_i + 2\lambda_i (q_i \cdot p_i) \bigg|_{q_i=q_{0i}} \right) dt \right].$$

Integrating the first term and considering that the variations vanish at the the end points

$$0 = \sum_{i=1}^{n} \left[m_i \dddot{q}_i \cdot p_i \bigg|_{0}^{1} + \int_{0}^{1} \left(-m_i \dddot{q}_i \cdot p_i + \sum_{j=1, j \neq i}^{n} m_i m_j \left(\frac{q_j - (q_i \cdot q_j)q_i}{(1 - (q_i \cdot q_j)^2)^{3/2}} \right) \cdot p_i \right. \\
+ 2\lambda_i (q_i \cdot p_i) \bigg|_{q_i=q_{0i}} \right) dt \right]$$

$$= \sum_{i=1}^{n} \left[\int_{0}^{1} \left(-m_i \dddot{q}_i \cdot p_i + \sum_{j=1, j \neq i}^{n} m_i m_j \left(\frac{q_j - (q_i \cdot q_j)q_i}{(1 - (q_i \cdot q_j)^2)^{3/2}} \right) \cdot p_i \right. \\
+ 2\lambda_i (q_i \cdot p_i) \bigg|_{q_i=q_{0i}} \right) dt \right]$$

$$= \sum_{i=1}^{n} \left[\int_{0}^{1} \left(-m_i \dddot{q}_i + \sum_{j=1, j \neq i}^{n} m_i m_j \left(\frac{q_j - (q_i \cdot q_j)q_i}{(1 - (q_i \cdot q_j)^2)^{3/2}} \right) + \lambda_i q_i \right) \cdot p_i \bigg|_{q_i=q_{0i}} dt \right]$$

$$= \sum_{i=1}^{n} \left[\int_{0}^{1} \left(-m_i \dddot{q}_i + \frac{\partial U}{\partial q_i} + 2\lambda_i q_i \right) \cdot p_i \bigg|_{q_i=q_{0i}} dt \right].$$

Since this must hold for any $p = (p_1, \ldots, p_n)$ in the interval $(0, 1)$, it follows that the critical point should satisfy

$$-m_i \dddot{q}_i + \frac{\partial U}{\partial q_i} - 2\lambda_i q_i \bigg|_{q_i=q_{0i}} = 0, \quad i = 1, \ldots, n,$$

(7)

where the multiplier λ_i can be computed multiplying the last expression by q_i

$$-m_i \dddot{q}_i \cdot q_i + \frac{\partial U}{\partial q_i} \cdot q_i - 2\lambda_i q_i \cdot q_i \bigg|_{q_i=q_{0i}} = 0, \quad i = 1, \ldots, n.$$

Using the fact that the potential is a homogeneous function of degree zero, and that the expression $\dddot{q}_i \cdot q_i = -\dddot{q}_i \cdot \dddot{q}_i$ holds we have
\[\lambda_i = \frac{m_i \dot{q}_i \cdot \dot{q}_i}{2}. \]

Substituting this expression into (7), we have

\[-m_i \ddot{q}_i + \frac{\partial U}{\partial q_i} - m_i (\dot{q}_i \cdot \dot{q}_i) q_i \Bigg|_{q_i = q_0_i} = 0, \quad i = 1, \ldots, n. \]

Hence, any critical point \(q_0 \) of the Lagrangian action satisfies the equation of motion.

\[\square \]

2 Proof of Theorem 1

Now we prove that the action functional reaches its minimum on \(D \). The proof of the theorem will be a consequence of the following result,

Proposition 3. [17] A weakly lower semicontinuous from below functional \(F(u) \), in a reflexive Banach space \(U \) is bounded from below on any bounded weakly closed set \(M \subset \text{Dom}F \) and attains its minimum on \(M \) at a point of \(M \).

Our task now is to prove that the functional (5) is weakly lower semicontinuous from below and that \(D \cup \partial D \) is weakly closed.

Proposition 4. \(f(q) \) is weakly lower semicontinuous from below on \(D \cup \partial D \)

Proof. Recall that \(f \) is called weakly lower semicontinuous from below if for any \(q^n \in D \cup \partial D \) such that \(q^n \to q \) weakly, the following inequality holds

\[\liminf_{n \to \infty} f(q^n) \geq f(q). \]

If \(q \in D \), then there exists \(N \) such that for \(n > N \), \(q^n \in D \). The functions \(q^n_i \) are continuous and converges to \(q_i \) uniformly.

This implies that \(U(q^n_i) \to U(q_i) \) for \(t \in [0, 1] \).

By Fatou’s lemma we have

\[\liminf_{n \to \infty} f(q^n) \geq \int_0^1 \frac{1}{2} \sum_1^3 |\dot{q}_i(t)|^2 + \int_0^1 \liminf_{n \to \infty} \left(\sum_{i<j} \cot d(q^n_i, q^n_j) \right) dt = f(q). \]

Now let us suppose that \(q^n_i \in \partial D \) and \(q^n_i \to q_i \) weakly.

There exist \(t_0 \in [0, 1] \) such that \(q^n_{i_0}(t_0) = q^n_{j_0}(t_0) \) for \(i_0 \neq j_0 \). Consider the set \(C = \{ t \in [0, 1] \mid \text{there exist } i_0 \neq j_0 \text{ with } q_{i_0}(t) = q_{j_0}(t) \} \).

Consider the Lebesgue measure, \(\mu(C) \), of \(C \). Firstly, let us suppose that \(\mu(C) = 0 \).

Since \(q^n \) converges to \(q \) uniformly, then the following holds almost everywhere,

\[\cot d(q^n_i(t), q^n_j(t)) \to \cot d(q_i(t), q_n(t)). \]

This implies, by Fatou’s lemma

\[\int_0^1 \cot(d(q_i(t_0), q_n(t_0))) = \int_0^1 \liminf_n \cot(d(q^n_i(t_0), q^n_j(t_0))) \]

\[\leq \liminf_n \int_0^1 \cot(d(q^n_i(t_0), q^n_j(t_0))). \]
Hence \(f(q) \leq \lim \inf_n f(q^n) \). Secondly, if \(\mu(C) > 0 \), then

\[
\int_0^1 \cot(d(q_i(t), q_j(t))) = +\infty.
\]

Additionally we have,

\[
\cot(d(q^n_i(t), q^n_j(t))) \to \cot(d(q_i(t), q_j(t))),
\]

uniformly. This implies that

\[
\int_0^1 \cot(d(q^n_i(t), q^n_j(t))) \to +\infty.
\]

It follows that

\[
f(q) \leq \lim \inf_n f(q^n).
\]

\[\square\]

Proposition 5. \(D \cup \partial D \) is a weakly closed subset of \((W^{1,2}(\mathbb{R}/\mathbb{Z}, S^2))^3 := \{(q_1, q_2, q_3) \in (S^2)^3 | q_i \in L^2, \dot{q}_i \in L^2, q_i(t+1) = q_i(t), i = 1, 2, 3\}\)

Proof. Since \(q^n \to q \) weakly, then \(q^n \to q \) uniformly, then \(q \in D \cup \partial D \). Hence \(D \cup \partial D \) is a weakly closed subset of \((W^{1,2}(\mathbb{R}/\mathbb{Z}, S^2))^3\).

\[\square\]

3 Choreography solution for the three-problem on \(S^2 \)

In order to show a choreography solution for the three-body problem on \(S^2 \), we will firstly estimate the lower bound of the Lagrangian action for a binary collision generalized solution. We will consider masses equal to 1.

Proposition 6. Consider three bodies on \(S^2 \). Let \(q \in T^*(S^2)^3 \) be a periodic binary collision generalized solution, then the Lagrangian action satisfies \(f(q) \geq \frac{3}{2}(12\pi)^{2/3} - 3 \).

The following lemma will be useful to proof Proposition 6.

Lemma 7. Consider \(q_i \) and \(q_j \) on \(S^2 \) satisfying equations of motion \eqref{eq:eom}, then

\[
\frac{1}{r_{ij}} - 1 < \cot(d(q_i, q_j)) < \frac{1}{r_{ij}},
\]

where \(r_{ij} \) is the Euclidean distance between \(q_i \) and \(q_j \).

Proof. For this proof we will consider the origin of the system at the north pole of the unit sphere, i.e., at \(R = (0,0,1) \). The equations of motion takes the form

\[
\ddot{q}_i = \sum_{i=1, j \neq i}^n \frac{q_j - \left(1 - \frac{r^{2}_{ij}}{2}\right) q_i + \frac{r^{2}_{ij} R}{2}}{r^{2}_{ij} \left(1 - \frac{r^{2}_{ij}}{3}\right)} - (\dot{q}_i \cdot \dot{q}_i) (q_i + R).
\]

\(\square\)
The potential energy in S^2 is given by

$$U = \sum_{i<j} \cot(d(q_i, q_j)) = \sum_{i<j} \frac{1 - \frac{r_{ij}^2}{4}}{r_{ij} \left(1 - \frac{r_{ij}^2}{4} \right)^{1/2}},$$

(10)

for more details about the equations of motion and potential energy written in this coordinates, please see [4].

Consider $n = 2$, then

$$\cot(d(q_i, q_j)) = \frac{1 - \frac{r_{ij}^2}{2}}{r_{ij} \left(1 - \frac{r_{ij}^2}{4} \right)^{1/2}} > \frac{1 - \frac{r_{ij}^2}{2}}{r_{ij} \left(1 - \frac{r_{ij}^2}{4} \right)^{1/2}} = \left(\frac{1 - \frac{r_{ij}^2}{2}}{r_{ij} \left(1 - \frac{r_{ij}^2}{4} \right)^{1/2}} \right) > \frac{1}{r_{ij}} - 1. \quad (11)$$

On the other hand, we have

$$\cot(d(q_i, q_j)) = \frac{1 - \frac{r_{ij}^2}{2}}{r_{ij} \left(1 - \frac{r_{ij}^2}{4} \right)^{1/2}} < \frac{1 - \frac{r_{ij}^2}{4}}{r_{ij} \left(1 - \frac{r_{ij}^2}{4} \right)^{1/2}} = \left(\frac{1 - \frac{r_{ij}^2}{4}}{r_{ij} \left(1 - \frac{r_{ij}^2}{4} \right)^{1/2}} \right) < \frac{1}{r_{ij}}. \quad (12)$$

Hence we conclude the proof of the lemma.

Proof. Consider three point particles $q_1, q_2, q_3 \in S^2$ with masses $m_1 = m_2 = m_3 = 1$ satisfying the equations of motion (11), and suppose that the particles q_1 and q_2 collide, without loss of generality, at the north pole.

The Lagrangian action is given by

$$f(q) = \int_0^1 \left(\frac{1}{2} \sum_{i=1}^3 |\dot{q}_i|^2 + \sum_{1 \leq i < j \leq 3} \cot(d(q_i, q_j)) \right) dt,$$

where the constrains $|q_i|^2 = 1$ and $q_i \cdot \dot{q}_i = 0$, $i = 1, 2, 3$, hold.

Notice that (19) (20)

$$\sum_{1 \leq i < j \leq 3} |\dot{q}_i - \dot{q}_j|^2 + \left| \sum_{i=1}^3 \dot{q}_i \right|^2 = \sum_{i=1}^3 |\dot{q}_i|^2.$$

We have
\[
\begin{align*}
 f(q) &= \int_0^1 \left(\frac{3}{2} |\dot{q}_k|^2 + \sum_{1 \leq i < j \leq 3} \cot(d(q_i, q_j)) \right) dt \\
 &\geq \int_0^1 \left(\sum_{1 \leq i < j \leq 3} \frac{1}{6} |\dot{q}_i - \dot{q}_j|^2 + \sum_{1 \leq i < j \leq 3} \cot(d(q_i, q_j)) \right) dt \\
 &\geq \int_0^1 \left(\sum_{1 \leq i < j \leq 3} \frac{1}{6} |\dot{q}_i - \dot{q}_j|^2 + \sum_{1 \leq i < j \leq 3} \frac{1}{r_{ij}} - 3 \right) dt \quad \text{(by Lemma 7)} \\
 &= \frac{1}{3} \int_0^1 \left(\sum_{1 \leq i < j \leq 3} \frac{1}{2} |\dot{q}_i - \dot{q}_j|^2 + \sum_{1 \leq i < j \leq 3} \frac{3}{r_{ij}} \right) dt \\
 &\geq \frac{1}{3} \int_0^1 \left(\sum_{1 \leq i < j \leq 3} \frac{1}{2} |\dot{q}_i - \dot{q}_j|^2 + \sum_{1 \leq i < j \leq 3} \frac{3}{r_{ij}} \right) dt - 3.
\end{align*}
\]

If \(q_1(t_0) = q_2(t_0) \), then \(q_1(t_0 + 1/2) = q_2(t_0 + 1/2) \). Then using some estimates of \cite{19, 20} we have

\[
 \frac{1}{3} \int_0^1 \left(\frac{1}{2} |\dot{q}_1 - \dot{q}_2|^2 + \frac{3}{r_{12}} \right) dt = \frac{2}{3} \int_0^{1/2} \left(\frac{1}{2} |\dot{q}_1 - \dot{q}_2|^2 + \frac{3}{r_{12}} \right) dt \\
 = \frac{(12\pi)^{2/3}}{2}.
\]

Since \(q_1(t) = q_3(t + 1/3) = q_2(t + 2/3) \), then

\[
 f(q) \geq \frac{3(12\pi)^{2/3}}{2} - 3. \tag{14}
\]

Proposition 8. \(f^{-1}((0, \frac{3}{2}(12\pi)^{2/3} - 3)) \neq \emptyset \)

Proof. Consider the test loop

\[
 q_1(t) = (x(t), y(t), z(t)), \quad q_2(t) = q_1(t + 1/3), \quad q_3 = q_1(t + 2/3), \tag{15}
\]

where

\[
 \begin{align*}
 x(t) &= 0.15 \sin(4\pi t), \\
 y(t) &= 0.2275 \sin(2\pi t), \\
 z(t) &= \sqrt{1 - x^2(t) - y^2(t)}.
 \end{align*}
\]

In \cite{19} the authors show that if \(\sin(2\pi t) = \sin(2\pi (t + \frac{i-1}{3})) \), then \(\sin(4\pi t) \neq \sin(4\pi (t + \frac{i-1}{3})) \), for \(t \in (0, 1), \ i = 2, 3 \). Hence \(q_i(t) \neq q_j(t), \ i \neq j \).

With the expressions \cite{15}, we have \(f(q) \approx 13.76572 < \frac{3}{2}(12\pi)^{2/3} - 3 \approx 13.8647 \).

Acknowledgements

The first author has been partially supported by *The 2017’s Plan of Foreign Cultural and Educational Experts Recruitment for the Universities Under the Direct Supervision of Ministry of Education of China* (Grant WQ2017SCDX045).
References

[1] Chenciner, A. and Montgomery, R. A remarkable periodic solution of the three-body problem in the case of equal masses. Annals of Mathematics, 152(3), (2000), 881-901.
[2] Diacu, F. On the singularities of the curved n-body problem, Trans. Am. Math. Soc., 363(4), (2011), 2249-2264.
[3] Diacu, F. Relative Equilibria of the Curved N-Body Problem, Atlantis Press, Series Volume 1, 2012.
[4] Diacu, F. The Classical N-Body Problem in the Context of Curved Space, Canadian Journal of Mathematics, 69, (2017), 790-806.
[5] Diacu, F., Martínez, R., Pérez-Chavela, E. and Simó, C. On the stability of tetrahedral relative equilibria in the positively curved 4-body problem, Physica D, 256-257, (2013), 21-35.
[6] Diacu, F. and Pérez-Chavela, E. Homographic solutions of the curved 3-body problem, Journal of Differential Equations, 250, (2011), 340-366.
[7] Diacu, F., Pérez-Chavela, E. and Reyes Victoria, J. Guadalupe. An Intrinsic Approach in the Curved n-Body Problem: The Negative Curvature Case. J. Differential Equations, 252, (2012), 4529-4562.
[8] Diacu, F., Pérez-Chavela, E. and Santoprete, M., The n-Body Problem in Spaces of Constant Curvature. Part I: Relative Equilibria, J. Nonlinear Sci. 22, (2012), 247-266.
[9] Diacu, F. Pérez-Chavela. E. and Santoprete, M., The n-Body Problem in Spaces of Constant Curvature. Part II: Singularities, J. Nonlinear Sci. 22, (2012), 267-275.
[10] Diacu, F., Sánchez-Cerritos. J. M. and Zhu, S., Stability of Fixed Points and Associated Relative Equilibria of the 3-body Problem on S^1 and S^2, Journal of Dynamics and Differential Equations, 30(1), (2018), 209-225.
[11] García-Naranjo, L. C., Marrero, J. C., Pérez-Chavela, E. and Rodríguez-Olmos, M. Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2. Journal of Differential Equations, 260(7), (2016), 6375-6404.
[12] Gordon, W. A minimizing property of Keplerian orbits. American Journal of Mathematics, 99(5), (1977), 961-971.
[13] Montanelli, H. and Gushterov, N. I. Computing Planar and Spherical Choreographies. SIAM Journal on Applied Dynamical Systems 15(1), (2016), 235256.
[14] Moore, C. Braids in Classical Dynamics, Physical Review Letters, 70(24), (1993), 3675-369.
[15] Palais, R. The Principle of Symmetric Criticality, Communications in Mathematical Physics. 69(1), (1979), 19-30.
[16] Pérez-Chavela, E. and Sánchez-Cerritos J. M. Euler-type relative equilibria in spaces of constant curvature and their stability, Canadian Journal of Mathematics, 70, (2017), 426-450.
[17] Ramm, A.G. *Random Fields Estimation*. World Scientific, 2005.

[18] Simó, C. *New Families of Solutions in N-Body Problems*. In: Casacuberta C., Miro-Roig R.M., Verdera J., Xambó-Descamps S. (eds) European Congress of Mathematics. Progress in Mathematics. Birkhäuser, Basel, **201**, (2001), 101-115.

[19] Zhang, S. and Zhou, Q. *Variational Methods for the Choreography Solution to the Three-Body Problem*. Science in China (Series A). **45**(5), (2002), 594-597.

[20] Zhang, S. and Zhou, Q. *Nonplanar and Noncollision Periodic Solutions for the N-Body Problems*. Discrete and Continuous Dynamical Systems, **10**(3), (2004), 679-685.

[21] Zhang, S. Zhou, Q. and Liu, Y. *New Periodic Solutions for 3-Body Problems*. Celestial Mechanics and Dynamical Astronomy, **88**(4), (2004), 365-378.

[22] Zhu, S. *Eulerian Relative Equilibria of the curved three body problem in S^2*. Proceedings of the American Mathematical Society, **142**, (2014), 2837-2848.