Intracellular nucleosomes constrain a DNA linking number difference of \(-1.26\) that reconciles the \(Lk\) paradox

Joana Segura\(^1\), Ricky S. Joshi\(^1\), Ofelia Díaz-Ingelmo\(^1\), Antonio Valdés\(^1\), Silvia Dyson\(^1\), Belén Martínez-García\(^1\) & Joaquim Roca\(^1\)

The interplay between chromatin structure and DNA topology is a fundamental, yet elusive, regulator of genome activities. A paradigmatic case is the “linking number paradox” of nucleosomal DNA, which refers to the incongruence between the near two left-handed superhelical turns of DNA around the histone octamer and the DNA linking number difference (\(\Delta Lk\)) stabilized by individual nucleosomes, which has been experimentally estimated to be about \(-1.0\). Here, we analyze the DNA topology of a library of mononucleosomes inserted into small circular minichromosomes to determine the average \(\Delta Lk\) restrained by individual nucleosomes in vivo. Our results indicate that most nucleosomes stabilize about \(-1.26\) units of \(\Delta Lk\). This value balances the twist (\(\Delta Tw \approx +0.2\)) and writhe (\(\Delta Wr \approx -1.5\)) deformations of nucleosomal DNA in terms of the equation \(\Delta Lk = \Delta Tw + \Delta Wr\). Our finding reconciles the existing discrepancy between theoretical and observed measurement of the \(\Delta Lk\) constrained by nucleosomes.
Cellular DNA is packaged into chromatin via a hierarchical series of folding steps. The basic packaging unit, the nucleosome, contains about 147 base pairs (bp) of core DNA, making near two left-handed superhelical turns around a histone octamer. However, nucleosomes are not uniform and static entities. They can present positional instability, conformational fluctuations, histone variants, and histone modifications, all of which play a major role in the regulation of chromatin architecture and genome transactions. However, some fundamental aspects of nucleosomes, such as their interplay with DNA topology, remain elusive. In this respect, a paradigmatic case is the so-called “linking number paradox” of nucleosomal DNA1–10, which has been the subject of debate for decades11,12.

The linking number (Lk) of DNA is the number of times the single strands of the duplex intertwine around each other12,13. The Lk paradox refers to the discrepancy between the theoretical and the experimental measurement of the DNA linking number difference (ΔLk) stabilized by nucleosomes. According to the general equation \(\Delta Lk = \Delta Tw + \Delta Wr \), it was expected that a nucleosome should stabilize a ΔLk value close to −2, considering that DNA describes near two left-handed superhelical turns (\(\Delta Tw = -2 \)) and assuming no significant changes in the double helical DNA twist (\(\Delta Tw = 0 \)). However, numerous studies have persistently concluded that the ΔLk constrained by individual nucleosomes is ≈ −1.0. In those experiments, circular DNA molecules with and without nucleosomes were relaxed with a topoisomerase, and ΔLk was calculated. Most of these experiments used the simian virus 40 (SV40) minichromosome as a chromatin model. SV40 was found to have a ΔLk of about −2k15,16, which was comparable to the number of nucleosomes (24 to 27) typically observed by electron microscopy.\(^{17,18} \) This ΔLk value, which applied to the histone H1-containing native minichromosome, also held true for the H1-free SV40 minichromosome reconstituted in vitro from naked DNA and the four core histones.\(^{19} \) Another study performed with the yeast circular minichromosome TRP1-ARS1 harboring seven nucleosomes also concluded a ΔLk value of −1 per nucleosome.\(^{20} \) Finally, in vitro experiments of chromatin reconstitution using tandem repeats of nucleosome positioning sequences and core histones indicated ΔLk values of −1.01 ± 0.08\(^{21} \) and −1.04 ± 0.08\(^{22} \) per nucleosome.

The first hypothesis put forward to explain the Lk paradox was that core DNA was notably overtwisted (\(\Delta Tw \approx +0.7 \))23,24, which meant that the helical periodicity (h) of DNA was smaller in the nucleosome than in free DNA in the solution (h = 10.5 bp/turn)\(^{24} \). The plausible overwinding of nucleosomal DNA was then calculated by \(\Delta Tw = \Delta \Theta + \Delta S Tw \), in which the winding number (\(\Theta \)) depends on the helical repeat of DNA at the nucleosome surface (hs), and the surface twist (STw) is a correction function that accounts for the curved path of DNA in the nucleosome.\(^{25} \) Multiple measurements of hs based on DNAase I footprinting, hydroyxyl radical cleavage,\(^{26,27} \) and DNA base-pair periodicity,\(^{28,29} \) indicated that the mean value of hs is about 10.2 bp/turn, which implied that \(\Delta \Theta \approx +0.4 \). The nucleosomal STw was calculated from a derivation for a straight solenoidal helix to be −0.15\(^{34,35} \). These figures indicated that the overall ΔTw of the core DNA is about +0.2, a value that was later corroborated by its direct measurement on the nucleosome structure at atomic resolution.\(^{1} \) The structural data showed also that the core DNA describes about 1.65 left-handed superhelical turns with a pitch angle of about 4 degrees, which produce a ΔWr value of about −1.5\(^{11,13} \). The Tw and Wr deformations of the core DNA were therefore not sufficient to explain the Lk paradox.

A second hypothesis to explain the paradox pointed to the topology of DNA outside the core region. The zig-zag architecture observed in some nucleosomal fibers led to the proposal that if linker DNA segments were repeatedly crossed with a similar geometry, the overall writhe (ΔWr) of the nucleosomal fiber would increase and produce the apparent ΔLk ≈ −1 per nucleosome\(^{37} \). However, recent modeling and experimental measurements with regular arrays of positioned nucleosomes demonstrated that their ΔLk varies markedly with nucleosome spacing, such that the apparent ΔLk value per nucleosome can range from −0.8 to −1.4 depending on the DNA linker length.\(^{38} \) Another proposal involving the topology of DNA outside the core region was based on the study of single nucleosomes reconstituted on small DNA circles\(^{39} \) and on the torsional resilience of nucleosomal fibers in vitro.\(^{40} \) These studies suggested that nucleosomes fluctuate between three conformations: one in which incoming and outgoing linker segments form a negative crossing, one with uncrossed linkers, and one in which the linker segments cross positively. As a result, the average ΔWr of nucleosomal DNA would be reduced, as would its ΔLk. However, since these fluctuations depend on external constraints and forces, their plausible relevance to explain the Lk paradox is uncertain. Here we revisit the Lk paradox of nucleosomal DNA by measuring the ΔLk constrained by individual nucleosomes in intracellular chromatin. As a chromatin model, we use small circular minichromosomes of budding yeast, whose nucleosomes are structurally identical to that of higher eukaryotes\(^{41} \) and are mainly depleted of linker histones.\(^{42} \)

Results

The ΔLk constrained by circular minichromosomes in vivo. For the purpose of the present study, we constructed YCp1.3, a circular minichromosome of S. cerevisiae comprising only 1341 bp. In order to ensure stable replication and segregation, YCp1.3 contained the genomic TRP1-ARS1 segment and the point centromere CEN2 of yeast (Fig. 1a). The TRP1-ARS1 segment has four nucleosomes (I to IV) occupying the genomic region, followed by the sites (S) of the ARS1 element.\(^{13,44} \) CEN2 was then allocated between nucleosomes V and I, upstream of the TRP1 promoter (see Supplementary Fig. 1 for detailed configuration and the bp sequence of YCp1.3). We confirmed the chromatin organization of YCp1.3 via micrococcal nuclease digestion of the minichromosome solubilized from yeast cells. As expected, the DNA sites most sensitive to nuclease digestion occurred in the ARS1 region, followed by the sites corresponding to the linker DNA regions of the point centromere and the five nucleosomes (Fig. 1b).

Next, we determined the ΔLk constrained by the chromatin structure of YCp1.3. This value is the difference between the distribution of Lk values of the minichromosome in vivo (Lk(CHR)) and that of the relaxed DNA in vitro (Lk(0)). To this end, we fixed the Lk values of the minichromosome in vivo by quenching a culture of yeast cells with a freezing ethanol–toluene solution. We showed in previous studies that this quick fixation step irreversibly inactivates cellular topoisomerases, thereby precluding plausible alterations of Lk(CHR) during cell disruption and DNA extraction.\(^{45} \) Since Lk(0) depends on temperature,\(^{46} \) we relaxed the naked YCp1.3 DNA circle with a type-1B
topoisomerase at the same temperature (26 °C) used to generate the Lk of the YCp1.3 minichromosome in vivo (Fig. 1c).

We analyzed the DNA samples using one- or two-dimensional (1D and 2D) agarose gel electrophoresis47, in which we adjusted the concentrations of chloroquine in order to resolve in the same gel all the Lk topoisomers of YCp1.3 in vivo and that of its DNA relaxed in vitro. As seen in the 2D gel in Fig. 1d, the minichromosome (lane 1) and the relaxed DNA (lane 2) presented discrete distributions of Lk topoisomers (spots). Such Lk distributions occur because the energy difference between the Lk topoisomers is less than the thermal energy. The possible Lk topoisomers follow a Boltzmann distribution, whose means are Lk⁰ for the relaxed DNA and Lk⁄CHR for the minichromosome DNA. We subtracted these values and found that YCp1.3 had a ΔLk of −5.81 (Fig. 1e, see Supplementary Fig. 2 for detailed calculation of ΔLk). The gel-blot (left) compares the Lk distribution of the YCp1.3 minichromosome extracted from fixed cells (lane 1) and that of the YCp1.3 minichromosome solubilized from non-fixed cells (lane 2). Intensity scans of lanes 1 and 2 are shown. The ethidium-stained gel (right) shows DNA relaxation activity in the solubilized chromatin. Supercoiled (S), relaxed (R) and nicked (N) forms of a reporter plasmid are indicated. The gel-blot compares the Lk distribution of the YCp1.3 minichromosome in yeast cells cultured in rich medium (lane 1) and synthetic dropout medium (lane 2); and in yeast Δtop1 (lane 3) and Δtop1 top2-4 (lane 4) mutants. Intensity scans of lanes 1–4 are shown when YCp1.3 was hosted in yeast cells with reduced topoisomerase activity (Δtop1 and Δtop1 top2-ts) (Fig. 1g). All these observations indicated that the ΔLk value of −5.81 was fully constrained by the chromatin structure of YCp1.3. As yeast point centromeres restrain +0.6 units of ΔLk⁴⁵, the five nucleosomes of YCp1.3 had to stabilize −6.4 units, an average ΔLk of −1.28 per nucleosome.

Insertion of a mononucleosome library into minichromosomes.

The average ΔLk of −1.28 per nucleosome in YCp1.3 assumes that all the minichromosomes are evenly occupied by nucleosomes I to V. However, native yeast nucleosomes are occasionally found to be partially unfolded and invading neighboring nucleosome territories or completely missing⁴⁸. Therefore, the absolute ΔLk per nucleosome could be larger than 1.28 if some nucleosomes were missing or unfolded. Conversely, this value could be smaller if the number of assembled nucleosomes were increased, although this possibility is less likely in light of the micrococcal nuclease data and the limited space available in YCp1.3 (Fig. 1a, b). However, we could not discard that chromatin elements other than nucleosomes could also contribute to the ΔLk value of YCp1.3. For instance, regulatory factors bound to the TRP1 promoter and the ARS1 region may alter the topology of the interacting DNA. Therefore, the average ΔLk value of −1.28 per nucleosome estimated above could not be accurate.

To obtain a more reliable ΔLk value, we conceived inserting an additional nucleosome into YCp1.3. The difference of ΔLk values

Fig. 1 Structure and DNA linking number difference in the yeast YCp1.3 minichromosome. **a** Scheme of YCp1.3 (1341 bp) indicating the position of the five nucleosomes (I to V) that occupy the genomic TRP1-ARS1 segment of S. cerevisiae. **b** Micrococcal nuclease digestion pattern of YCp1.3. Nuclease-sensitive sites (arrow heads) are indicated and aligned to functional and structural elements of YCp1.3. **c** Experimental setting to obtain the Lk distribution of the YCp1.3 minichromosome in vivo (Lk⁰CHR) and the Lk distribution of its DNA relaxed in vitro (Lk⁰). **d** Two-dimensional (2D) electrophoresis of the DNA of the YCp1.3 minichromosome extracted from cells fixed at 26 °C (lane 1) and following relaxation of the naked DNA with topoisomerase I at 26 °C (lane 2). A marker of Lk topoisomers of YCp1.3, in which Lk values increase clockwise, is included (lane M). DNA electrophoresis, blotting and probing were done as described in the methods. The 2D scheme (right) depicts the relative position of Lk topoisomers visible in lane 1 (orange dots) and lane 2 (green dots). Most intense Lk topoisomers (a, b, c, d) and nicked (N) molecules are indicated. **e** Intensity plot of Lk topoisomers visible in the 2D gel-blot. Colors and letters correspond to those in the 2D scheme. The x-axis indicates ΔLk relative to Lk⁰. The ΔLk of the minichromosome (mean ± s.d., n = 4) is the difference between Lk⁰ and Lk⁄CHR. See Supplementary Fig. 2 for detailed calculation of ΔLk. **f** The gel-blot (left) compares the Lk distribution of the YCp1.3 minichromosome extracted from fixed cells (lane 1) and that of the YCp1.3 minichromosome solubilized from non-fixed cells (lane 2). Intensity scans of lanes 1 and 2 are shown. The ethidium-stained gel (right) shows DNA relaxation activity in the solubilized chromatin. Supercoiled (S), relaxed (R) and nicked (N) forms of a reporter plasmid are indicated. **g** The gel-blot compares the Lk distribution of the YCp1.3 minichromosome in yeast cells cultured in rich medium (lane 1) and synthetic dropout medium (lane 2); and in yeast Δtop1 (lane 3) and Δtop1 top2-4 (lane 4) mutants. Intensity scans of lanes 1–4 are shown.
overlaps with the nucleosome-free region, to obtain ladders of nucleosomal DNA fragments. We purified S. cerevisiae nucleosome library as follows. We digested the whole chromatin with increasing amounts of micrococcal nuclease to obtain ladders of nucleosomal DNA fragments inserted in YCp1.3. We then be calculated by repeating this experiment with many different nucleosomes. To this end, we constructed a mononucleosomal DNA fragments (length \(\approx 150 \) bp), added adapters, and inserted them into the YCp1.3 circle (Fig.2a). In order not to interfere with the functional elements of YCp1.3, we allocated the nucleosome library insertions between nucleosome V and CEN2 (Fig. 2b, see Supplementary Fig. 3 for a detailed configuration of the insertion site). Upon transformation of YCp1.3 constructs carrying the mononucleosome library into yeast cells, we collected 1200 colonies. Micrococcal nuclease digests of the minichromosomes pooled from all the colonies revealed a pattern of DNA cut sites that was nearly identical to that observed in native YCp1.3. However, a new protected DNA segment of about 150 bp appeared between nucleosome V and CEN2, consistent with the expected assembly of an additional nucleosome particle (Fig.2c).

Parallel sequencing of the full library indicated that nearly all the colonies contained a distinct mononucleosomal DNA fragment inserted between nucleosome V and CEN2 of the YCp1.3 minichromosome. We mapped 1193 different sequences to the reference genome. Their average length was 156 ± 8 bp (mean ± s.d.) (Fig. 2d). We identified them as previously referenced nucleosomes by intersecting their coordinates with a catalog of nucleosome positions in yeast (Jiang and Pugh, 2009) (Supplementary Data 1). To determine whether our collection of nucleosomes was representative, we examined their chromosomal distribution (Fig. 2e), inter- or intra-genic position relative to transcription start sites (TSS) (Fig. 2f), and positional stability (Fig. 2g). The relative abundance of these nucleosomes in our class was comparable to that of the reference catalog. Therefore, the nucleosome library inserted in the YCp1.3 minichromosome was representative for the purpose of the intended analysis of nucleosomal DNA topology.

The average \(\Delta Lk \) value restrained by individual nucleosomes. As with YCp1.3, we determined the \(\Delta Lk \) of minichromosomes carrying the nucleosome library by comparing their \(Lk \) distribution in vivo (\(Lk^{CHR} \)) with that of their relaxed DNA in vitro (\(Lk^0 \)). Analysis of individual colonies of the library revealed that the minichromosomes had \(\Delta Lk \) values in the range of \(-7.0\) to \(-7.1\) (Fig. 3a). Therefore, relative to the \(\Delta Lk \) of \(-5.81\) stabilized by YCp1.3, the inserted nucleosomes produced \(\Delta Lk \) of \(-1.2\) to \(-1.3\) units. These values were consistent with the average \(\Delta Lk \) of \(-1.28\) per nucleosome calculated for YCp1.3 (Fig. 1e). Moreover, the five clones analyzed in Fig. 3a represented nucleosomes of distinct allocation relative to TSS (\(-1\), \(+1\), \(>1\)) and different positional stability (fuzzy or stable). Therefore, these nucleosomes stabilized comparable \(\Delta Lk \) values irrespective of the nucleosome category. The above analysis of individual colonies also showed
that although different minichromosomes had nearly the same ΔLk, the positions of their Lk topoisomers in the gel did not have the same phasing with respect to Lk^0 (Fig. 3a). This misalignment of the Lk topoisomers occurred because the nucleosomal DNA fragments inserted had different lengths (mean 156 bp, s.d. ± 8 bp), and Lk phasing occurs only when the length differences are multiples of the helical repeat of DNA ($h \approx 10.5$ bp)24. However, the length differences producing Lk misalignment were small compared to the size of the minichromosomes (about 1.57 Kb). Therefore, we were able to analyze the bulk of Lk distributions of the minichromosomes carrying the nucleosome library in a single electrophoresis run, rather than analyzing them individually. To this end, we pooled the colonies of the library to obtain all the Lk distributions of the minichromosomes in one DNA sample and all the Lk distributions of relaxed DNA in another.

As expected, 1D and 2D gel electrophoresis of the pooled samples did not reveal single bands of Lk topoisomers but smearable signals as a result of the overlapping of numerous Lk distributions (Fig. 3b). These overlapped signals presented small protrusions (Fig. 3c, green and orange), which could suggest that the pooled Lk distributions were bimodal. This outcome would occur if near one half the nucleosomes of the library constrained $\Delta Lk \approx -1.0$ and the other half $\Delta Lk \approx -1.5$. However, this scenario is not consistent with the data of individual nucleosomes, all which constrained ΔLk values between -1.2 and -1.3 (Fig. 3a). Actually, these protuberances were expected for another reason. They appeared because the different lengths of the DNA inserts were not equally represented (Fig. 2d) and thus so was the analog dispersion of the pooled and individual Lk topoisomers. Accordingly, some protrusions appeared also in the pool of relaxed DNAs. The fact that the pooled Lk distributions presented a dispersion similar to that of individual Lk distributions further substantiated that the pooled samples were essentially monomodal. In the case of the relaxed DNA (Fig. 3c, green), the similar dispersion of the pooled and individual Lk distributions corroborated that the gel position of Lk^0 was virtually the same for all the DNA molecules of the library regardless of small differences in length. In the case of the minichromosomes (Fig. 3c, orange), the analogous dispersion of the pooled and individual Lk
distributions implied that most minichromosomes had nearly the same \(Lk^{\text{CHR}} \) value. Consequently, most nucleosomes of the library produced the same \(\Delta Lk \) with respect to the \(\Delta Lk \) of the YCp1.3 minichromosome. From the means (\(Lk^{\text{CHR}} \) and \(Lk^0 \) of the pooled \(Lk \) distributions), we found that the minichromosomes containing the nucleosome library had a \(\Delta Lk \) of \(-7.07\) (see Supplementary Fig. 4 for detailed calculation). This \(\Delta Lk \) value, which represented a \(\Delta \Delta Lk \) of \(-1.26\) relative to the \(\Delta Lk \) of YCp1.3, was consistent in four replicate experiments (s.d. \(\pm 0.02 \)) and in agreement with that of individual minichromosomes (Fig. 3a). Therefore, we concluded that \(-1.26\) is the average value of the \(\Delta Lk \) stabilized by individual nucleosomes. Note that, if the inserted library of nucleosomes had restrained \(\Delta \Delta Lk \) values of about \(-1.0\), the minichromosomes would have presented an average \(\Delta Lk \) of \(-6.81\), implying a noticeable displacement of the \(Lk^{\text{CHR}} \) position in the intensity plot (Fig. 3c).

Discussion

Here we show experimental evidence that provides a solution to the long-standing \(Lk \) paradox of nucleosomal DNA. Our results indicate that most native nucleosomes constrain a \(\Delta Lk \) close to \(-1.26\). This value differs markedly from the generally assumed \(\Delta \Delta Lk \) value of \(-1.0\), which was established in earlier studies. We believe that this discrepancy is due to the distinct chromatin models and limited accuracy of the procedures that were used previously to estimate the \(\Delta Lk \) constrained by nucleosome particles.

One source of inaccuracy was in determining the exact number of nucleosomes assembled in circular DNA molecules. Previous studies using SV40 as a chromatin model relied on electron microscopy for counting nucleosomes or nucleosome-like particles. The numbers obtained by different laboratories varied from 20 to \(2n^{17-19,50} \). Recent mapping of nucleosome positions in the SV40 genome has revealed that this variability is not only experimental. Intracellular SV40 minichromosomes and SV40 virions present variable nucleosome number and epigenetic modifications that alter the nucleosome organization depending on the infection stage\(^{51} \). This variability in nucleosome number could therefore have produced imprecise \(\Delta Lk \) values, especially when nucleosome counting and DNA topology analyses were done with uncorrelated samples and by different laboratories\(^{15,16} \).

Not surprisingly, the SV40 model supported a broad range of \(\Delta \Delta Lk \) values, including \(-1.25\) per nucleosome\(^{16} \). The uncertainty in the exact number of nucleosomes present in circular DNA molecules also affected studies using chromatin reconstitution in vitro, which also relied on electron microscopy for counting nucleosomes\(^{21,22} \). Moreover, in these studies, chromatin reconstitution in tandem repeats of nucleosome positioning sequences could have markedly deviated the \(\Delta Lk \) values per nucleosome (from \(-0.8\) to \(-1.4\)) depending on the periodic length assigned to DNA linker segments\(^{38} \).

The other source of imprecision in earlier studies was in the calculation of \(\Delta Lk \) from the DNA bands observed in agarose gels. In most studies using SV40 and reconstituted chromatin, the gel position of \(Lk^0 \) was often approximated to that of the slowest \(Lk \) topoisomer\(^{15,19,21,22,50} \), instead of being allocated to the mean \(Lk \) of the relaxed \(Lk \) distribution\(^{16} \). Likewise, in earlier measurements using circular minichromosomes of yeast, the gel position of \(Lk^0 \) was taken as that of nicked DNA circles. This was the case of the TRPIARS1 minichromosome (1.45 kb), which contains seven nucleosomes and was assigned a \(\Delta Lk \) of \(-7.20 \). Finally, in most previous studies, it was unclear whether the processing of chromatin samples (to determine \(Lk^{\text{CHR}} \)) and the relaxation of naked DNA circles (to determine \(Lk^0 \)) were quenched at the same temperature. Since the helical repeat of DNA lessens as the temperature diminishes\(^{46} \), quenching the topology of DNA at \(4°C \) produces \(Lk \) values up to 1 unit/kb higher than at \(37°C \)^{35}.

Our experimental approach minimized the uncertainty in nucleosome counting and \(\Delta Lk \) calculation. The small minichromosomes used presented well-defined nucleosome positions, which were bounded by specific chromatin elements (TRP1 promoter, ARS1, CEN2). The small size also circumvented significant effects of high order folding of the chromatin on the \(\Delta Lk \) values. Our experimental results corroborated the \(\Delta Lk \) value stabilized by individual nucleosomes in two ways. First, by averaging the \(\Delta Lk \) of the minichromosomes by their number of nucleosomes, we obtained a \(\Delta Lk \) of \(-1.28\) per nucleosome. However, this measurement did not take into account plausible variability in nucleosome occupancy and effects of structural elements other than nucleosomes. We reduced these ambiguities by determining the \(Lk \) gain (\(\Delta \Delta Lk \)) produced upon the insertion of the nucleosome library. We obtained thereby the more reliable \(\Delta Lk \) value of \(-1.26\) per nucleosome. We found also that there is very little dispersion in the \(\Delta Lk \) constrained by the nucleosome library, which indicated that the majority of nucleosomes stabilize a similar DNA topology. Our results could be hardly explained if native nucleosomes were each stabilizing a \(\Delta Lk \) of \(-1.0\). This value could stand if the minichromosomes had assembled a number of nucleosomes higher than expected, which seems unlikely in light of the micrococcal nuclease data and the space available. A \(\Delta Lk \) of \(-1.0\) per nucleosome could also stand if the minichromosomes were spatially compacted by adopting a strong negative writhe (i.e., \(\Delta Wr = -1.0 \)). Such folding would imply that DNA linker lengths and the subsequent rotational orientations between adjacent nucleosomes are alike in all minichromosomes. However, the inserted nucleosome library comprised segments of various lengths and the resulting minichromosomes still constrained very similar \(\Delta Lk \) values.

The \(\Delta Lk \) value of \(-1.26\) leads to a reevaluation of the \(Lk \) paradox of nucleosomal DNA in terms of the general equation \(\Delta Lk = \Delta Tw + \Delta Wr \)^{14}.

Considering that the core DNA is globally overtwisted by about \(+0.2\) turns (\(\Delta Tw = +0.2\))\(^{12,35} \), the stabilization of \(-1.26\) units of \(\Delta Lk \) implies that the writhe acquired (\(\Delta Wr \)) by DNA upon nucleosome formation should be about \(-1.46\). The \(Wr \) of DNA in mononucleosomes has been computed to be around \(-1.5\)^{11,36}.

Here we calculated this value for different degrees of superhelical turning of core DNA by \(Wr = n(1-\sin \theta) \)^{14,52}.

where \(n \) is the number of helical turns and \(\theta \) is the pitch angle of the turns (supplementary Fig 5). Nucleosomal \(Wr \) is about \(-1.53\) when the core DNA completes 1.65 left-handed superhelical turns around the histone octamer. This conformation corresponds to that of the crystallized nucleosome structure\(^1 \) and also to that of chromatosomes\(^{53} \), in which the entry and exit DNA linker segments cross in an angle of about \(60° \) that is fixed by histone H1. This \(Wr \) value is likely to reflect the upper limit of the absolute DNA writhe of nucleosomes in solution. However, yeast has very low level of linker histone\(^{54} \), though nuclease digestions support the existence of proto-chromatosome structures\(^{55} \). Moreover, extensive experimental evidence has demonstrated that the conformational dynamics of nucleosomes in physiological conditions frequently leads to partial unwrapping or breathing motions of the core DNA\(^{56-59} \). These motions substantially reduce the absolute \(Wr \) of the nucleosomal DNA and thereby its average value.

For instance, just by reducing the wrapping of DNA to 1.5 left-handed superhelical turns, mononucleosomal \(Wr \) drops to \(-1.38\) (supplementary Fig 5).

Therefore, an average \(\Delta Wr \) of about \(-1.46\) per nucleosome is a realistic topological mark, which along the \(\Delta Tw \) of about \(+0.2\) and the \(\Delta Lk \) of \(-1.26\), provides a plausible explanation for the linking number paradox of nucleosomal DNA.
Our experimental findings contribute to a better understanding of how DNA supercoiling energy is confined by nucleosomes, and of how nucleosomes buffer the DNA supercoiling generated during gene transcription. Our experimental approach also leads to a new genome-wide categorization of nucleosomes on the basis of their DNA topology, thus opening a new dimension toward deciphering the mechanisms that orchestrate chromatin structure and functions.

Methods

Construction of minichromosomes and the nucleosome library

To construct YCp1.3 (1341 bp), a 977 bp genomic segment of *S. cerevisiae* containing TRP1-ARS1 (coordinates 461739 to 462736) and a 243 bp genomic segment containing CEN2 (coordinates 238194 to 238437) were amplified by PCR. Both segments were ligated and inserted into a plasmid vector via endonuclease restriction sites engineered by PCR. Subsequent digestion with endonuclease NotI released a 1341-bp fragment containing the TRP1-ARS1-CEN2 sequence. This fragment was circularized with T4 DNA ligase and monomeric circles were gel-purified to obtain the YCp1.3 circle. See Figure S1 for a description of the oligonucleotides used for PCR and the complete bp sequence of YCp1.3.

The YCp1.3 circle was used to transform the *S. cerevisiae* strain FY251 (Mata his3Δ (ura3-52) leu2-D1 trp1-7200 leu2-D1 trp1-Δ 63 ura3Δ 52) and its topoisomerase-mutant derivatives JCW27 and JCW28. The YCp1.3 constructs containing the library of mononucleosomal DNA fragments were solubilized and eluted from a Sephacryl S-300 column as described above. Eluted monochromosomes were adjusted to 2 mM CaCl2 and pre-incubated at 25 °C for 5 min. Micrococcal nuclease was added (2–100 units/ml), and incubations proceeded at 25 °C for 5 min. The digests were quenched with one volume of 20 mM EDTA, 0.5% SDS, and 100 mg/ml proteinase K, followed by incubation at 60 °C for 30 min. The DNAs were extracted with phenol and chloroform, and the DNA was precipitated with ethanol and resuspended in 30 μl of TE.

DNA sequencing and analysis

DNA extracted from monochromosomes containing the mononucleosome library was sequenced (Illumina HiSeq 2000, 50 base paired-end reads), and resulting FASTQ data files were subject to QC using Cutadapt (1.12). Sequences were then mapped to the *S. cerevisiae* genome (SacCer3) using bowtie (v1.2.1). Once nucleosome coordinates had been established, subsequent analyses were performed by integrating published data sets (Ioshikhes et al 2006; Jiang and Pugh, 2009) and by using bedtools (v2.27) and Galaxy.

DNA relaxation with topoisomerase I

DNA purified from monochromosomes prepared with pre-incubation was carried out at 2.5 V/cm for 4 h in TBE buffer (89 mM Tris-borate and 2 mM NaOH) containing 0.5 mM chloroquine and 0.25% SDS. DNA was subject to QC using GenomicChlorophase (GE Healthcare). Chemiluminescent signals of increasing exposure periods were recorded on X-ray films and non-saturated signals of individual Lk topoisomer distributions were subject to interpolation with the means in the marker frame. The relaxation of DNA was determined by subtracting their means (see details in Supplementary Fig. 4).

Electrophoresis of Lk topoisomers

DNA from YCp1.3 (1341 bp) and from monochromosomes containing the mononucleosome library (about 1.57 kb) were loaded onto 1.4% (w/v) agarose gels. One-dimensional electrophoresis was carried out at 2.5 V/cm for 18 h in TBE buffer (89 mM Tris-borate and 2 mM EDTA) containing 0.55 μg/ml chloroquine. DNA was subject to QC using GenomicChlorophase (GE Healthcare). Chemiluminescent signals of increasing exposure periods were recorded on X-ray films and non-saturated signals of individual Lk topoisomer distributions were subject to interpolation with the means in the marker frame. The relaxation of DNA was determined by subtracting their means (see details in Supplementary Fig. 4).

Lk distribution analysis and calculation of ΔLk

In the case of individual monochromosomes, the most intense topoisomer of the Lk distribution of relaxed DNA was initially assigned the value ΔLk = 0. An Integer ΔLk value (positive or negative) was subsequently assigned to each topoisomer of the Lk distributions of monochromosomes and relaxed DNA according to the Lk markers included in the 2D gels. The mean value of each Lk distribution (ΔLk and ΔLkCHP) was calculated, and the ΔLk between the Lk distributions was obtained by subtracting their means (see details in Supplementary Fig. 4). In all figures, the Lk results were illustrated by plotting the intensity of Lk topoisomer distributions of monochromosomes and relaxed DNA along a scale of ΔLk units (x-axis), in which the value ΔLk = 0 was re-adjusted to the mean of the Lk distribution of the relaxed DNA (ΔLk).

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

NATURE COMMUNICATIONS | **DOI: 10.1038/s41467-018-06547-w** | www.nature.com/naturecommunications

NATURE COMMUNICATIONS | **DOI: 10.1038/s41467-018-06547-w** | www.nature.com/naturecommunications
Acknowledgements
This work was supported by grants from Plan Estatal de Investigación Científica y Técnica of Spain to J.R. (BFU2015-67007-P and MDM-2014-0435-02). J.R. is a Professor at the Spanish National Research Council (CSIC).

Author contributions
J.R. conceived the project. J.R. and J.S. designed experiments. J.S., O.D., B.M., A.V. and S.D. performed experiments. J.R., J.S. and R.S.J. analyzed data. J.R. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-06547-w.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.