Impact of $n = 1$ field on the non-axisymmetric magnetic perturbations associated with the edge localized mode crashes in the ASDEX Upgrade tokamak

Nengchao Wang (王能超)\textsuperscript{1,2,a,1}, Yunfeng Liang (梁云峰)\textsuperscript{1,2,3,a,}, Valentin Igochine4,, Wolfgang Suttrop1, Li Li (李莉)2,3,, Marc Maraschek4,, Matthias Bernert1, Peter Denner2, Michael Faitisch4,, Sina Fietz1, Yu Gao (高宇)2, Louis Giannone4,, Andrew Kirk6, Hendrik Meyer6,, Felician Mink4,, Paolo Piovesan7,, The ASDEX Upgrade Team4, and The EUROfusion MST1 Teamb.

1International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
2Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik, 52425 Jülich, Germany
3Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei 230031, People’s Republic of China
4Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany
5College of Science, Donghua University, Shanghai 201620, People’s Republic of China
6CCFE, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom of Great Britain and Northern Ireland
7Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova, Italy

E-mail: wangnc@hust.edu.cn and y.liang@fz-juelich.de

Received 20 November 2018, revised 26 February 2019
Accepted for publication 13 March 2019
Published 27 March 2019

Abstract

In the ASDEX Upgrade tokamak, the growth of non-axisymmetric magnetic perturbation (NAMP) associated with the ELM crash events has been observed, and both the poloidal and toroidal phases of NAMPs, measured by a set of Mirnov coils, were highly random. By applying an $n = 1$ magnetic perturbation (MP) field, the phases of NAMPs were locked to the phase of the total $n = 1$ resonant MP (RMP) field, which takes the plasma response to the MP field into account. This observation can be explained by the resonant electromagnetic $\mathbf{J} \times \mathbf{B}$ torque applied by the RMP field on a magnetic island formed due to the magnetic reconnection, which is predicted to occur during the ELM crashes by several numerical modelling results.

aAuthor to whom any correspondence should be addressed.
bSee the author list of [48].
Introduction

The edge-localized mode (ELM) [1] is characterized by a periodic fast collapse of the edge pressure associated with explosive losses of heat and particles in high confinement mode (H-mode) fusion plasmas. The ELM could significantly shorten the lifetime of the plasma facing components, thus it is of great importance to understand the ELM dynamic process and to control the peak heat flux on divertor plates for a fusion reactor like ITER [2]. The dynamics of ELM crashes, especially its three-dimensional (3D) features, have been studied extensively [3–6], however, it has not been fully understood yet [7].

Magnetic reconnection [8], which is followed by the formation of magnetic islands at the rational flux surfaces, plays a vital role for understanding the collapse events in magnetized plasmas, such as sawtooth crashes [9], minor disruptions [10] in tokamaks and solar flares [11] in the solar atmosphere. The fast energy loss during the ELM crash is also proposed to be due to magnetic reconnection [12]. Several nonlinear numerical magnetohydrodynamic modelling codes, such as JOREK [13, 14], BOUT++ [15] and NIMROD [16], have shown the formation of magnetic islands and stochastic regions at the edge plasma during the ELM crashes. However, to date, no direct experimental evidence of magnetic reconnection has been observed during the ELM crashes.

In a toroidally symmetric tokamak plasma, the occurrence of magnetic reconnection can be identified by the formation of magnetic islands. In past tokamak experiments with lower performance plasmas, the magnetic island structure was directly described by the radial distribution of the non-axisymmetric magnetic perturbations (NAMPs) [17] measured by magnetic probes around the rational surface. However, such measurement is difficult to apply to high temperature H-mode plasmas, where the NAMPs are normally measured by a set of magnetic probe array outside the plasma. Therefore, the time evolution of radial plasma profiles [18, 19] has been used as an assistant to the judgment of a rotating magnetic island. Recently, the external resonant magnetic perturbation (RMP) field has been widely applied to study and control the magnetic island. RMP can either induce magnetic island via forced magnetic reconnection [20, 21], or lock the phase of the magnetic island [22–25], so-called the phase locking effect, via the resonant electromagnetic \(J \times B \) torque [25]. The phase locking effect of the interaction between RMP and magnetic island has been applied to control the phase [26] and the rotation frequency [27] of the magnetic island, and also been considered as a typical feature for identification of magnetic islands in the tokamak plasma, such as the locked mode [22–25].

In this letter, we report the observations from the ASDEX Upgrade tokamak experiments on the NAMPs with low toroidal mode number growing associated with the ELM crash events, which are similar to those observed in TCV [28]. Both the poloidal and toroidal phases of NAMPs, measured by a set of Mirnov coils, were highly random. To identify the sources which produce the NAMPs, the external \(n = 1 \) magnetic perturbation (MP) field was applied to probe the responses of NAMPs, while maintaining the ELM frequency hardly affected. It is found that both the toroidal and poloidal phases of NAMPs are locked to the phase of the total \(n = 1 \) RMP field. This observation can be explained by the resonant electromagnetic \(J \times B \) torque, applied by the RMP field on a magnetic island due to the magnetic reconnection, which is predicted to occur during the ELM crashes by several numerical modelling results.

Experimental setup and results

On the ASDEX Upgrade tokamak, a set of in-vessel MP coils has been applied to produce a MP field with various toroidal configurations as shown in figure 1 [29, 30]. In this experiment, the target type-I ELMy H-mode plasmas, perturbed by an \(n = 1 \) MP field in \#31021 [31] and unperturbed in \#31030, were operated with an edge safety factor, \(q_s \), of 4.3 (plasma current of 1 MA and toroidal field of 2.58 T). The pedestal top parameters are: electron density \(n_{e,ped} \sim 5 \times 10^{19} \text{ m}^{-3} \), electron temperature \(T_{e,ped} = 0.8–1.1 \text{ keV} \), corresponding to a moderate pedestal electron collisionality, \(\nu e_{ped} \), of around 0.4. The \(n = 1 \) MP field was rigidly rotated at 5 Hz for the perturbed plasma and its toroidal phase, \(\Phi_{MP} \), is represented by the \(n = 1 \) phase of the currents in the upper MP coils, \(\Phi_U \), e.g. it was 304° for the case shown in figure 1(a).

Two poloidal and one mid-plane toroidal Mirnov coil arrays are used to identify both the amplitude and the phase of the NAMPs during ELM crashes. Here, these two poloidal Mirnov arrays are toroidally separated by 180° and each of them consists of 30 poloidally distributed Mirnov coils as shown in figure 1, while the toroidal array consists of four Mirnov coils unevenly distributed at the low field side with toroidal angles of \(\varphi = 90°, 135°, 270° \) and 315°, respectively. The poloidal field, \(B_p \), is obtained by integrating the differential signals (\(dB_p/dt \)) from each Mirnov coil. The change of \(B_p \) during the ELM crashes has two components: (i) the \(n = 0 \) part which could be induced by an inward or outward \(n = 0 \) equilibrium shift, and (ii) the non-axisymmetric part which is mainly due to plasma instabilities. Hence, the \(n = odd \) component of NAMPs, \(b_{\text{odd,ELM}} \), is determined by taking half the difference between two \(B_p \) signals which were measured at the locations with the same poloidal angle, but toroidally separated by 180°. The superscript 'ELM' indicates that it is the ELM associated component, which is zero before the ELM
onset. Note that this analysis procedure eliminates all the quasi-static equilibrium magnetic field and also the 5 Hz MP field. Due to a finite number of toroidally distributed Mirnov coils, the $n=\text{even}$ component of NAMPs, $b_{\text{odd,ELM}}$, cannot be identified directly, and it will not be discussed in this letter. Using all of the Mirnov probes indicated in figure 1, both the poloidal (20 signals at $\varphi=90^\circ$) and the toroidal (2 signals at $\theta \approx 0^\circ$) distributions of $b_{\text{odd,ELM}}$ could be obtained.

Figure 2 shows a comparison of the NAMPs, indicated by $b_{\text{odd,ELM}}$, in the unperturbed and perturbed plasmas by the $n=1$ MP field. The tile currents measured in the outer divertor, I_{Div}, are plotted in black lines as an indicator of the ELM crashes. The circles and crosses mark the peaks and dips of NAMPs respectively.

Figure 1. (a) The toroidal arrangement of the MP coils (Bu and Bl coils) and the Mirnov probes. The propagation directions of the $n=\text{odd}$ component of ELM associated NAMPs, $b_{\text{odd,ELM}}$, are also indicated. (b) The poloidal cross section of ASDEX Upgrade, showing the MP coils, the separatrix of the plasma in discharge 31021, two toroidal symmetric chords of the absolute extreme ultraviolet (AXUV) diodes and the poloidal Mirnov arrays (20 probes used in this experiment are filled). The poloidal distribution of $b_{\text{odd,ELM}}$ during two ELMs at 2.1305 s and 2.2382 s, as marked by the arrows in figure 3, are indicated by the red squares and blue diamonds in (b) respectively, with the distances between the marker and the corresponding Mirnov coil proportional to the measured $b_{\text{odd,ELM}}$. The toroidal and poloidal direction are defined in (b), with the plasma current (I_{p}) in $+\varphi$ direction and the toroidal field (B_T) in $-\varphi$ direction.

Figure 2. Comparison of the poloidal distribution of $b_{\text{odd,ELM}}$ for the (a) unperturbed and (b) perturbed plasmas b the $n=1$ MP field. The tile currents measured in the outer divertor, I_{Div}, are plotted in black lines as an indicator of the ELM crashes. The circles and crosses mark the peaks and dips of NAMPs respectively.
tracing the peak/dip trajectory, it is found that the ELM associated mode structure propagated poloidally in the electron diamagnetic drift direction in the laboratory frame during each individual ELM, and then stayed at a constant location before it decayed away. In addition, the phase of NAMPs was changed roughly by 180° when Φ_{MP} increased by around 180°. A direct comparison of NAMPs observed during applications of the $n = 1$ MP field with two opposite phases was also shown in figure 1(b). This indicates that the poloidal phase of NAMPs was strongly impacted by the $n = 1$ MP field.

The amplitude and toroidal phase of NAMPs can be calculated by fitting the two $b_{\theta}^{odd,ELM}$ signals from the toroidal array against their toroidal locations using a sine function and a known toroidal mode number. It has been observed previously that low n modes, dominated by $n = 1$ or 2 components, grow non-linearly before and during the ELM crashes in AUG [33] and TCV [28]. Considering that the $n = 1$ MP field affected the poloidal phase of $b_{\theta}^{odd,ELM}$ as described above, the assumption that the measured $b_{\theta}^{odd,ELM}$ consists mainly of the $n = 1$ component has been adopted. Figure 4 displays the calculated amplitudes and toroidal phases of the $n = 1$ component of NAMPs ($b_{\theta}^{1,ELM}$) and $\varphi_{n=1,ELM}$.

Figure 5 shows the evolution of NAMPs with stepping up of the neutral beam injection (NBI) power, while the electron cyclotron resonance heating power is around 1.4 MW. With the rise of β_N, $b_{\theta}^{n=1,ELM}$ is also observed to increase, while $\varphi_{n=1,ELM}$ shows a clear shift towards the $co-I_p$ direction with the rotation of the $n = 1$ MP field. Especially, the $\varphi_{n=1,ELM}$ measured at the peak of $b_{\theta}^{1,ELM}$ during each ELM ($\varphi_{peak}^{1,ELM}$), figure 5(b)) was linear to Φ_{MP}. As a comparison, the $\varphi_{peak}^{n=1,ELM}$ in the unperturbed plasma is highly random, similar as the corresponding poloidal phase. The poloidal distribution of $b_{\theta}^{odd,ELM}$ was also modulated by the 5 Hz rotating $n = 1$ MP field (figure 5(c)). The poloidal phase at the peak of $b_{\theta}^{odd,ELM}$, φ_{peak}, was shifted towards the $-\theta$ direction, which corresponds to the ion diamagnetic drift direction and is the same as the rotation direction of the $n = 1$ MP field (figure 1(a)). These observations reflect that both the toroidal and poloidal phases of NAMPs can be locked to the externally applied $n = 1$ MP field.
The toroidal velocity of the ELM associated mode structure is observed to be around a few km s$^{-1}$ in the counter-I_p direction in the LFS mid-plane, e.g. $\nu_{n=1,\text{ELM}}^{\text{tor}} \approx -10.3$ km s$^{-1}$ for the NAMP at $\Phi_{MP}=113^\circ$ shown in figure 4. In the NBI driven fast rotating plasma, this mode structure could be only localized at the plasma edge. This reflects the formation of 3D perturbed currents at the edge of the plasma during the ELM crashes events, and their phases could be locked to the externally applied MP fields. Meanwhile, the toroidal asymmetry of the edge AXUV radiation, I_{AXUV}, has been measured during the ELM crashes by two toroidal symmetric chords of the AXUV diodes [34]. This toroidal asymmetry, which might be due to the existence of the NAMP, can be impacted by the $n=1$ MP field, as shown by the four examples in figure 3.

The phase locking of NAMPs to $n=1$ field can reflect the essential nature of NAMPs. The NTV torque [35] generated by the MP field can brake the plasma rotation, but it will not lead to the phase locking. The MP field also can not lock asymmetric structures such as SOL filaments [36]. The resonant electromagnetic $J \times B$ torque [25] applied by a RMP on a magnetic island has been widely shown to cause the phase locking between a RMP field and the 3D perturbed currents. This can be the reason why the phases of NAMPs were significantly impacted by the $n=1$ MP field. At first glance, the applied $n=1$ MP field in #31021 is vacuum non-resonant, as indicated by the misalignment between the pitch of coil currents and the pitch of $q = 4$ field lines in figure 1(a). However, due to the amplification of marginally-stable edge $n = 1$ kink mode in this high beta plasma [31] and the coupling effect [37], the total $n=1$ RMP field at the rational surface was larger [31]. Besides, its phase was varied at 5 Hz, hence the NAMPs were phase locked to the total $n = 1$ RMP field.

To clarify the effect of plasma response on the total RMP field, a detailed poloidal spectrum scan of the $n=1$ MP field has been performed with $q_{95} = 5.3$ and the total RMP field has been modelled by the MARS-F code [38] taking the plasma response into account, as shown in figure 6. A continuously scan of the differential phase between the upper and lower MP coils, $\delta \Phi_{UL} = \Phi_U - \Phi_L$, was carried out in discharge #32116, while fixed $\delta \Phi_{UL}$ were maintained from #32117 to #32119. Φ_U and Φ_L were varied simultaneously at 1 Hz in opposite toroidal directions in #32116. As a result, the amplitude of the RMP field (and the spectrum of MP) in a vacuum assumption was modulated at 2 Hz (figure 6(a)), while the phase of the RMP field was flipped between two constants at 1 Hz (figure 6(b)). The $\varphi_{\text{peak}}^{n=1,\text{ELM}}$ were measured to flip between -130° and -70° when Φ_U was around 0° and 180° (figure 6(c)). The phase flip appeared at the phases of Φ_U (or $\delta \Phi_{UL}$) with a 40° (or 80°) difference between the vacuum RMP and NAMPs. This difference is significantly reduced when taking the plasma response into account in the MARS-F modelling, as marked by the red vertical line in figure 6. Due to the

Figure 5. The evolution of (a) the NBI power, β_N, $b_n^{\theta=1,\text{ELM}}$, (b) the $\varphi_{n=1,\text{ELM}}$, $\varphi_{\text{peak}}^{n=1,\text{ELM}}$ (magenta dots corresponding to 78 ELMs), Φ_{MP}-191°, and (c) the poloidal distribution of $b_{\theta}^{n=1,\text{ELM}}$. The color scale indicates (b) $b_n^{\theta=1,\text{ELM}}$ and (c) $b_{\theta}^{n=1,\text{ELM}}$. The solid line in (b) indicates that $\varphi_{\text{peak}}^{n=1,\text{ELM}} = \Phi_{MP}-191^\circ$, while the dashed lines mark the one standard deviation region ($\sigma = 47^\circ$).
Discussion and conclusions

The phase locking of NAMPs to the total RMP field can be explained as a result of the resonant electromagnetic $J \times B$ torque applied by the RMP field on the magnetic island, which is measured as the NAMP. On JET, a rotating ELM postcursors mode, so called palm tree mode [40], has been observed after ELM crashes. The palm tree mode has an $n = 1$ tearing mode structure, which is consistent with our observations. On ASDEX Upgrade, the acceleration of beam ions during ELM crashes has been observed [41]. This result could be explained in terms of a fast-ion interaction and the parallel electric field emerging during the ELM, when magnetic reconnection is believed to take place. The acceleration of electrons during ELMs was also reported on MAST [42] and ASDEX Upgrade [43].

This work is also consistent with the recent JOREK modelling based on ASDEX Upgrade equilibrium, which shows that magnetic reconnection is responsible for the fast T_e collapse during ELM crash [14]. The $n = 1$ NAMPs observed in this work might be related to the important $n = 1$ component predicted by the JOREK modelling [14]. The NAMPs with $n > 1$, if exist, have not been studied in this letter due to the limitation of the diagnostic arrangement. In [14], ELM mode structures with $n = 2–5$ are observed experimentally at a few kilohertz during the ELM crash, via ELM synchronization of temporal Fourier analysis. They are different from the non-periodic NAMPs, which are more similar to the solitary magnetic perturbations observed previously in AUG [33] and TCV [28]. Further study on the NAMPs with $n > 1$, perhaps combined with the method used in [14], is necessary to provide a more comprehensive understanding on the ELM crashes. The phase locking of NAMPs were shown for more than 300 ELMs in this letter with a range of plasma parameters of $\beta_n = 1.8–2.8$ and $q_{95} = 4.3, 5.3$. The investigation of NAMPs behavior in a wider parameter range is also important for the future study. It is also worth noting that the magnetic island should have the same toroidal and poloidal mode numbers as the RMP field, so that the phase locking can occur.

This observation of resonant interaction between ELM and MP fields can provide the magnetic reconnection as a possible new mechanism for understanding the physics of ELM control by RMP [44, 45]. In fact, a similar differential phase shift of the total RMPs calculated in between a vacuum assumption and taking into account the plasma responses has also been observed in the experiments of ELM mitigation [39, 46] and suppression [47] using the MP field.

In conclusion, the growth of NAMPs associated with the ELM crash event has been observed on the ASDEX Upgrade tokamak. By applying an $n = 1$ MP field, the phases of NAMPs were locked to the phase of the total $n = 1$ RMP field, which takes the plasma response to the MP field into account. This experimental observation may also be important for understanding the physics of the ELM control by RMP.

Acknowledgments

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No. 633053 and from the RCUK Energy Programme (grant number EP/I501045). The views and opinions expressed herein do not necessarily reflect those of the European Commission. The authors are grateful to Dr Q. Yu and Dr H.R. Koslofski for helpful discussions. N.W. is thankful for the support from the China Scholarship Council. This work is also supported by the National Natural Science Foundation of China (grant No. 51828101), K.C. Wong Education Foundation and the Initiative Postdocs Supporting Program of China (grant No. BX201700090).

ORCID iDs

Nengchao Wang https://orcid.org/0000-0001-6797-2398
Valentin Igochine https://orcid.org/0000-0003-2045-2998
Marc Maraschek https://orcid.org/0000-0002-3246-7559
Michael Faitsch https://orcid.org/0000-0002-9809-7490
Felician Mink https://orcid.org/0000-0003-2995-2075

References

[1] Zohm H. 1996 Edge localized modes (ELMs) Plasma Phys. Control. Fusion 38 105
[2] Loarte A. et al 2003 Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER Plasma Phys. Control. Fusion 45 1549
[3] Eich T. et al 2003 Nonaxisymmetric energy deposition pattern on ASDEX Upgrade divertor target plates during type-I edge-localized modes Phys. Rev. Lett. 91 195003
[4] Wingen A. et al 2010 Numerical modeling of edge-localized-mode filaments on divertor plates based on thermoelastic currents Phys. Rev. Lett. 104 175001

[5] Yun G.S. et al 2011 Two-dimensional visualization of growth and burst of the edge-localized filaments in KSTAR H-mode plasmas Phys. Rev. Lett. 107 045004

[6] Kirk A. et al 2006 Evolution of filament structures during edge-localized modes in the MAST tokamak Phys. Rev. Lett. 96 185001

[7] Leonard A.W. 2014 Edge-localized-modes in tokamaks Phys. Plasmas 21 090501

[8] Yamada M. et al 2010 Magnetic reconnection Rev. Mod. Phys. 82 603

[9] Park H.K. et al 2006 Comparison study of 2D images of temperature fluctuations during sawtooth oscillation with theoretical models Phys. Rev. Lett. 96 195004

[10] Liang Y. et al 2007 Observations of secondary structures after collapse events occurring at the q = 2 magnetic surface in the TEXTOR tokamak Nucl. Fusion 47 L21

[11] Curtain J.W. et al 2013 Energy release in the solar corona from spatially resolved magnetic braids Nature 493 501

[12] Kirk A. et al 2014 Recent progress in understanding the processes underlying the triggering of and energy loss associated with type I ELMs Nucl. Fusion 54 114012

[13] Orain F. et al 2015 Resistive reduced MHD modeling of multi-edge-localized-mode cycles in tokamak X-point plasmas Phys. Rev. Lett. 114 035001

[14] Mink A.F. et al 2018 Nonlinear coupling induced toroidal structure of edge localized modes Nucl. Fusion 58 026011

[15] Xu X.Q. et al 2010 Nonlinear simulations of peeling-balloonong modes with anomalous electron viscosity and their role in edge localized mode crashes Phys. Rev. Lett. 105 175005

[16] Ebrahimi F. 2017 Nonlinear reconnecting edge localized modes in current-carrying plasmas Phys. Plasmas 24 056119

[17] Robinson D.C. and McGuire K. 1979 Magnetic islands and disruptions in the TOSCA tokamak Nucl. Fusion 19 115

[18] Fitzpatrick R. 1995 Helical temperature perturbations associated with tearing modes in tokamak plasmas Phys. Plasmas 2 825

[19] Igochine V. et al 2014 Conversion of the dominantly ideal perturbations into a tearing mode after a sawtooth crash Phys. Plasmas 21 110702

[20] Kikuchi Y. et al 2006 Forced magnetic reconnection and field penetration of an externally applied rotating helical magnetic field in the TEXTOR tokamak Phys. Rev. Lett. 97 085003

[21] Denner P. et al 2014 Local measurements of screening currents driven by applied RMPs on TEXTOR Nucl. Fusion 54 064003

[22] Hender T.C. et al 1992 Effect of resonant magnetic perturbations on COMPASS-C tokamak discharges Nucl. Fusion 32 2091

[23] Hu Q. et al 2013 Understanding the effect of resonant magnetic perturbations on tearing mode dynamics Phys. Plasmas 20 092502

[24] Fietz S. et al 2015 Influence of externally applied magnetic perturbations on neo-classical tearing modes at ASDEX Upgrade Nucl. Fusion 55 013018

[25] Fitzpatrick R. 1993 Interaction of tearing modes with external structures in cylindrical geometry (plasma) Nucl. Fusion 33 1049

[26] Volpe F.A. et al 2015 Avoiding tokamak disruptions by applying static magnetic fields that align locked modes with stabilizing wave-driven currents Phys. Rev. Lett. 115 175002

[27] Hu Q. et al 2014 Influence of rotating resonant magnetic perturbations on particle confinement Nucl. Fusion 54 122006

[28] Wenninger R.P. et al 2013 Non-linear magnetic perturbations during edge-localized modes in TCV dominated by low n mode components Nucl. Fusion 53 113004

[29] Suttrop W. et al 2011 First observation of edge localized modes mitigation with resonant and nonresonant magnetic perturbations in ASDEX Upgrade Phys. Rev. Lett. 106 225004

[30] Suttrop W. et al 2013 Mitigation of edge localized modes with magnetic perturbations in ASDEX Upgrade Fusion Eng. Des. 88 446

[31] Piovesan P. et al 2017 Impact of ideal MHD stability limits on high-beta hybrid operation Plasma Phys. Control. Fusion 59 014027

[32] Wolfrum E. et al 2008 Pedestal studies at ASDEX upgrade Fusion Energy 2008 (Proc. 22nd Int. Conf., Geneva, 13–18 October 2008) (Vienna: IAEA) CD-ROM file EX/P3-7 and http://www-naweb.iaea.org/nnpc/physics/FEC/FEC2008/html/index.htm

[33] Wenninger R.P. et al 2012 Solitary magnetic perturbations at the ELM onset Nucl. Fusion 52 114025

[34] Bernert M. et al 2014 Application of AXUV diode detectors at ASDEX Upgrade Rev. Sci. Instrum. 85 033503

[35] Shaing K.C., Ida K. and Sabbagh S.A. 2015 Neoclassical plasma viscosity and transport processes in non-axisymmetric tori Nucl. Fusion 55 125001

[36] Thornton A.J. et al 2014 The effect of resonant magnetic perturbations on the divertor heat and particle fluxes in MAST Nucl. Fusion 54 064011

[37] Ryan D.A. et al 2015 Toroidal modelling of resonant magnetic perturbations response in ASDEX-Upgade: coupling between field pitch aligned response and kink amplification Plasma Phys. Control. Fusion 57 095008

[38] Liu Y.Q. and Bondeson A. 2000 Feedback stabilization of nonaxisymmetric resistive wall modes in tokamaks. I. Electromagnetic model Phys. Plasmas 7 3681

[39] Li L. et al 2016 Modelling plasma response to RMP fields in ASDEX Upgrade with varying edge safety factor and triangularity Nucl. Fusion 56 126007

[40] Koslowski H.R. et al 2005 Observation of the palm tree mode, a new MHD mode excited by type-I ELMs on JET Nucl. Fusion 45 201

[41] Galdon-Quiróga J. et al 2018 Beam-ion acceleration during edge localized modes in the ASDEX Upgrade tokamak Phys. Rev. Lett. 121 025002

[42] Freethy S.J. et al 2015 Electron kinetics inferred from observations of microwave bursts during edge localized modes in the mega-amp spherical tokamak Phys. Rev. Lett. 114 125004

[43] Willensdorfer M. et al 2018 Dynamics of ideal modes and subsequent ELM crashes in 3D tokamak geometry from external magnetic perturbations Plasma Phys. Control. Fusion 61 014019

[44] Evans T.E. et al 2004 Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary Phys. Rev. Lett. 92 235003

[45] Liang Y. et al 2007 Active control of type-I edge-localized modes with n = 1 perturbation fields in the JET tokamak Phys. Rev. Lett. 98 265004

[46] Kirk A. et al 2015 Effect of resonant magnetic perturbations on low collisionality discharges in MAST and a comparison with ASDEX Upgrade Nucl. Fusion 55 043011

[47] Paz-Soldan C. et al 2015 Observation of a multimode plasma response and its relationship to density pumpout and edge-localized mode suppression Phys. Rev. Lett. 114 105001

[48] Meyer H. et al 2017 Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution Nucl. Fusion 57 102014