1. Introduction. In many situations one would like to estimate functions under the condition that they are monotone. Apart from giving algorithms for computing such estimates and from deriving their (usually asymptotic) distribution theory, it is also important to construct confidence intervals. These intervals can be uniform (in which case they are usually called confidence bands) as well as pointwise.

In this paper we consider two methods to obtain pointwise confidence intervals for distribution functions and monotone densities, based on nonparametric estimators. One approach, that of a (nonparametric) likelihood ratio (LR) test, based on the maximum likelihood estimator (MLE) in the model, is related to the one taken in [1] and [2]. The other approach, using a smoothed maximum likelihood estimator (SMLE) is based on an estimator introduced in [5] and further analyzed in [8]. Our methods can also be applied to monotone nonparametric least squares estimates of monotone regression functions. The examples and simulations we discuss suggest that the distinction between the uniform bounds and the pointwise bounds might be less dramatic than one would perhaps be inclined to assume. An explanation for this phenomenon is that the pointwise intervals only miss the fluctuations of maxima over intervals which only give an additional convergence factors of order $\sqrt{\log n}$ for the models considered.

There are some important differences between the approaches, based on the MLE and SMLE, respectively. How appropriate it is to use the MLE will largely depend on whether one expects (or allows) that the underlying monotone function will have jumps. Secondly, the bias of the MLE does not play a role in the construction of the confidence intervals based on the MLE. But if one constructs confidence intervals, using the SMLE with an optimal bandwidth, the bias will not be negligible in the limiting distribution. There is an extensive literature on how to deal with the bias in nonparametric function estimation, some approaches use undersmoothing, other approaches oversmoothing. A recent paper, discussing this literature and giving a solution for confidence bands, is [10]. We will use undersmoothing, as suggested in [9].
The method of constructing confidence intervals, based on the likelihood ratio test for the MLE, and the method using the SMLE are both asymptotically pivotal. For the method, based on the likelihood ratio test for the MLE, this arises from the universality properties of likelihood ratio tests. For the intervals, based on the SMLE, this is based on using bootstrap intervals for a “studentized” statistic, together with the undersmoothing. We now first describe two models that will be studied thoroughly in this paper.

Example 1.1. (Monotone density functions) The classical example of a monotone estimate of a monotone function is the so-called Grenander estimator. Let \(X_1, \ldots, X_n \) be a sample of random variables, generated by a decreasing density \(f_0 \) on \([0, \infty)\). The MLE \(\hat{f}_n \) of \(f_0 \) is the Grenander estimator, which is by definition the left derivative of the least concave majorant of the empirical distribution function \(F_n \), as proved in [3]. This is also the first example in [1], where there is the (implicit) conjecture that pointwise confidence intervals, based on the Grenander estimate, will have similar properties as the confidence intervals for the current status model (see the next example), based on a likelihood ratio test for the MLE. The difficulty in proving this result for the monotone density model resides in the boundary condition that the density integrates to 1, a condition which does not play a role in constructing LR tests for the current status model. We shall prove that the conjecture in [1] is correct and that one can use the same critical values as in the current status model in the construction of the confidence intervals. We also compare the confidence intervals, obtained in this way, with confidence intervals, based on the SMLE, using bootstrap methods and asymptotic normality of the SMLE.

Example 1.2. (The current status model) Consider a sample \(X_1, X_2, \ldots, X_n \), drawn from a distribution with distribution function \(F_0 \). Instead of observing the \(X_i \)'s, one only observes for each \(i \) whether or not \(X_i \leq T_i \) for some random \(T_i \) (independently of the other \(T_j \)'s and all \(X_j \)'s). More formally, instead of observing \(X_i \)'s, one observes

\[
(T_i, \Delta_i) = (T_i, 1[X_i \leq T_i]).
\]

One could say that the \(i \)-th observation represents the current status of item \(i \) at time \(T_i \).

The problem is to estimate the unknown distribution function \(F \) based on the data given in (1.1). Denote the ordered realized \(T_i \)'s by \(t_1 < t_2 < \ldots < t_n \) and the associated realized values of the \(\Delta_i \)'s by \(\delta_1, \ldots, \delta_n \). For this problem the log likelihood function in \(F \) (conditional on the \(T_i \)'s) is given by

\[
\ell(F) = \sum_{i=1}^{n} \{\delta_i \log F(t_i) + (1 - \delta_i) \log(1 - F(t_i))\}.
\]

The MLE maximizes \(\ell \) over the class of all distribution functions. Since distribution functions are by definition nondecreasing, the problem belongs to the class of problems we want to study. As can be seen from the structure of (1.2), the value of \(\ell \) only depends on the values that \(F \) takes at the observed time points \(t_i \); the values of \(F \) in between are not relevant as long as \(F \) is nondecreasing. Hence one can choose to consider only distribution functions that are constant between successive observed time points \(t_i \). Lemma 2.1 below shows that this estimator can be characterized in terms of a greatest convex minorant of a certain diagram of points.

The main result of [1] is that confidence intervals, based on an LR test for the MLE, can be constructed, and that this is a pivotal way of constructing confidence intervals, since the limit distribution does not depend on the parameters (under certain conditions). We will give a new proof, which is in line with our proof for the monotone density model.
There are numerous other models where our approach can be adopted. Examples include the model where one has a monotone hazard rate and right censored observations (see Sections 2.6 and 11.6 in [8]), the competing risk model with current status observations (see [6]) and monotone regression.

The methods based on the LR tests for the MLEs in the context of Example 1.1 and 1.2 follow the same line of argument, where, in both cases, an essential role is played by the penalization parameter $\hat{\mu}_n$, which is of order $O_p(n^{-2/3})$. Our methods rely on cumulative sum (cusum) diagrams which could be called ‘Lagrange-modified’ cusum diagrams, since they incorporate the Lagrange multipliers for the penalties. Asymptotic distribution theory is derived from the asymptotic properties of the Lagrange multipliers, used to construct these cusum diagrams. Once this has been done, the theory for the confidence intervals follows.

2. Confidence intervals for the current status model. The following lemma characterizes the unrestricted MLE in the current status model. This is Example 1.2 in Section 1, and we use the notation, introduced there.

Lemma 2.1 (Lemma 2.7 in [8]). Consider the cumulative sum diagram consisting of the points $P_0 = (0, 0)$ and

$$P_i = \left(i, \sum_{j=1}^i \delta_j \right), \quad 1 \leq i \leq n,$$

recalling that the δ_i’s correspond to the t_i’s, which are sorted. Then the unrestricted MLE \hat{F}_n is given at the point t_i by the left derivative of the greatest convex minorant of this diagram of points, evaluated at the point i. This maximizer is unique.

Remark 2.1. The left derivative of the convex minorant at P_i determines the value of \hat{F}_n at t_i and hence (by right continuity of the step function) on $[t_i, t_{i+1})$, a region to the right of t_i.

The characterization via Lemma 2.1 is well-known and a proof can be found in [8].

For the confidence intervals, based on likelihood ratio tests for the MLE, we also have to compute the MLE under the restriction that its value is equal to a prescribed value a at a point t_0. There are different ways to do this. It is suggested in [1] to compute the restricted MLE in two steps. The restricted MLE $\hat{F}_n^{(0)}$ is computed for values at points t to the left of t_0 under the restriction that $\hat{F}_n^{(0)}(t) \leq a$ and for values at points t to the right of t_0 under the restriction that $\hat{F}_n^{(0)}(t) \geq a$. To this end two cusum diagrams of type (2.1) are formed. If $t_m \leq t_0 \leq t_{m+1}$, a diagram of type (2.1) is formed, with n replaced by m, for the values to the left of t_0. Next the minimum of a and the left derivative of the greatest convex minorant of this diagram of points is taken as the solution to the left of t_0. For the points on the right side of t_0 they consider the cusum diagram

$$P_i = \left(i, \sum_{j=1}^i (1 - \delta_{n-j+1}) \right), \quad 1 \leq i \leq n - m,$$

and the maximum of a and 1 minus the left derivatives of the greatest convex minorant of this diagram of points, with the obvious renumbering, is taken as the solution $\hat{F}_n^{(0)}(t_i)$ to the right of t_0. Note that in this approach there is not necessarily a point t_i where $\hat{F}_n^{(0)}(t_i) = a$ is actually achieved; we only have inequalities.
In view of our general approach, where we also will prove the result for monotone densities, we will follow a different path, where we make the connection with the penalization methods, studied in, e.g., [4] and earlier in [18]. We have the following result.

Lemma 2.2. Let, for $0 < a < 1$, $\hat{F} = (\hat{F}_1, \ldots, \hat{F}_n)$ be the vector of slopes of the greatest convex minorant of the cusum diagram with points $(0, 0)$ and

$$
(2.3) \quad \left(i, \sum_{j=1}^{i} \{ \delta_j + n\hat{\mu} (1-a) 1_{\{j=i_0\}} \} \right), \quad i = 1, \ldots, n,
$$

where $\hat{\mu}$ is the solution (in μ) of the equation

$$
(2.4) \quad \max_{k \leq i_0} \min_{i \geq i_0} \frac{\sum_{j=k}^{i} \delta_j + n\mu (1-a)}{i-k+1} = a,
$$

where $1 < i_0 < n$, and where $\delta_i = 0$ for some $i \geq i_0$ and $\delta_i = 1$ for some $i \leq i_0$. Then \hat{F} maximizes $\sum_{i=1}^{n} \{ \delta_i \log F_i + (1 - \delta_i) \log (1 - F_i) \}$, under the side condition $F_{i_0} = a$.

Remark 2.2. The condition $\delta_i = 0$ for some $i > i_0$ is to avoid trivialities for the case that $\delta_i = 1$ for $i \geq i_0$, in which case the only reasonable value of F_i is equal to 1 for $i \geq i_0$. A similar remark holds for the situation where $\delta_i = 0$ for some $i \leq i_0$, in which case we would put F_i equal to 0 for $i \leq i_0$. For the confidence intervals we concentrate on interior points of the support of the distribution F_0.

Proof. We can reduce the proof to the situation where $\delta_n = 0$. For if $\delta_j = 1$ for $j \geq i$, we put $F_j = 1$ for $j \geq i$. For similar reasons we can assume $\delta_1 = 1$. A similar reduction of the maximization problem was used in Proposition 1.3, p. 46 of [7].

We now consider the cone $C = \{(F_1, \ldots, F_n) : 0 \leq F_1 \leq \cdots \leq F_n \}$ on which we have to maximize the function

$$
(2.5) \quad \phi_{\mu}(F_1, \ldots, F_n) = \sum_{i=1}^{n} \{ \delta_i \log F_i + (1 - \delta_i) \log (1 - F_i) \} + n\mu (F_{i_0} - a),
$$

where $\mu \in \mathbb{R}$ is a suitable Lagrange multiplier.

The generators of the cone are of the form:

$$
\begin{align*}
g_1 &= (0, 0, \ldots, 0, 0, 1), \quad g_2 = (0, 0, \ldots, 0, 1, 1), \ldots, g_n = (1, 1, \ldots, 1, 1, 1),
\end{align*}
$$

so we find the conditions:

$$
(2.6) \quad \langle \nabla \phi_{\hat{\mu}}(\hat{F}), g_j \rangle = \sum_{j=1}^{n} \left\{ \frac{\delta_j - \hat{F}_j}{\hat{F}_j (1 - \hat{F}_j)} + \hat{\mu} 1_{\{j=i_0\}} \right\} \leq 0, \quad i = 1, \ldots, n,
$$

where $\nabla \phi_{\hat{\mu}}(\hat{F})$ is the nabla vector $(\frac{\partial}{\partial F_1} \phi_{\hat{\mu}}, \ldots, \frac{\partial}{\partial F_n} \phi_{\hat{\mu}})$ at \hat{F} and $\hat{\mu}$ of the function (2.5). This can be written:

$$
\sum_{j=i}^{n} \left\{ \frac{\delta_j - \hat{F}_j + n\hat{\mu} 1_{\{j=i_0\}} a (1-a)}{\hat{F}_j (1 - \hat{F}_j)} \right\} \leq 0, \quad j = 1, \ldots, n.
$$
We also have the condition
\begin{equation}
\langle \nabla \phi_\mu(\hat{F}), \hat{F} \rangle = \sum_{j=1}^{n} \frac{\delta_j - \hat{F}_j}{1 - \hat{F}_j} + n\hat{\mu}a = 0.
\end{equation}

Multiplying this relation on blocks of constancy of \(\hat{F}\) by \(1 - \hat{F}_j\), we find:
\begin{equation}
\sum_{j=1}^{n} (\delta_j - \hat{F}_j) + n\hat{\mu}a(1 - a) = 0.
\end{equation}

The conditions (2.6) and (2.7) or (2.8) are necessary and sufficient conditions for the MLE, restricted to be equal to \(a\) at \(t_{i_0}\) (the so-called Fenchel duality conditions for maximizing a concave function on a cone).

It now follows that \(\hat{F}\) is given by the left derivatives of the greatest convex minorant of the cusum diagram (2.3), where \(\hat{\mu}\) is the solution of the equation (2.4). For the left derivative of the greatest convex minorant of the cusum diagram at \(i_0\) is given by the left side of (2.4), by a well-known maxmin characterization, see, e.g., [13], and if (2.4) holds, we also have (2.8), since the greatest convex minorant will be equal to the second coordinate \(\sum_{j=1}^{n} \{\delta_j + \hat{\mu}a(1 - a)1_{(j=i_0)}\}\) of the cusum diagram at \(n\).

Remark 2.3. Cusum diagrams, incorporating the penalty, are shown in Figure 1. We have \(\hat{\mu} > 0\) if \(\hat{F}_n(t_{i_0}) > \hat{F}_n(t_{i_0})\), and the cusum diagram for the unrestricted solution of the maximization problem is moved upward at \(i_0\), and if \(\hat{F}_n(t_{i_0}) < \hat{F}_n(t_{i_0})\), it is the other way around. The penalties give a local deviation of the restricted MLE \(\hat{F}_n\) from the unrestricted MLE, but outside a local neighborhood of the point of restriction, \(\hat{F}_n\) and \(\hat{F}_n\) will coincide again, where \(\hat{F}_n\) picks up the same points of jump as \(\hat{F}_n\).

Note, however, that we cannot say \(\hat{F}_n(t) = a\) for the values \(t\) where \(\hat{F}_n(t) \neq \hat{F}_n(t)\). A typical picture is shown in Figure 2, where, on the region where \(\hat{F}_n\) and \(\hat{F}_n\) are different, the points of jump of \(\hat{F}_n\) and \(\hat{F}_n\) are at different locations. There is also not a “contained in” relation in either direction for the sets of points of jump.

The proof of Theorem 2.1 below will use the following lemma, which is of a similar nature as results in [4].

Lemma 2.3. Under the conditions of Theorem 2.1 we have, if \(a = F_0(t_{i_0})\) and \(t_{i_0} \to t_0\), as \(n \to \infty\):
\[\hat{\mu}_n = O_p \left(n^{-2/3} \right) .\]

Proof. Consider the function
\[\phi : \mu \mapsto \max_{k \leq i_0} \min_{i \geq i_0} \frac{\sum_{j=k}^{i} \delta_j + n\mu a(1 - a)}{i - k + 1}, \quad a = F_0(t_{i_0}).\]

By the greatest convex minorant characterization of the unrestricted MLE \(\hat{F}_n\), we have
\[\phi(0) = \max_{k \leq i_0} \min_{i \geq i_0} \frac{\sum_{j=k}^{i} \delta_j}{i - k + 1} = \hat{F}_n(t_{i_0}).\]
Fig 1: Pieces of two ‘Lagrange modified’ cusum diagrams for the current status model, for sample size 1000 from the truncated exponential distribution on $[0, 2]$; the observation distribution is uniform on $[0, 2]$ and $i_0 = 500$. Here (a) gives the local cusum diagram where $\hat{F}_n^{(0)}(t_{i_0}) = \hat{F}_n(t_{i_0}) + 0.05$ and (b) gives the cusum diagram for $\hat{F}_n^{(0)}(t_{i_0}) = \hat{F}_n(t_{i_0}) - 0.05$.

Let $k_1 \leq i_0$ and $i_1 \geq i_0$ be the indices, satisfying

$$\hat{F}_n(t_{i_0}) = \frac{\sum_{j=k_1}^{i_1} \delta_j}{i_1 - k_1 + 1} = \max_{k \leq i_0} \min_{i \geq i_0} \frac{\sum_{j=k}^{i} \delta_j}{i - k + 1}.$$

Suppose $a > \hat{F}_n(t_{i_0})$ and let, for $\mu > 0$, $i_\mu \geq i_0$ be the index such that

$$\frac{\sum_{j=k_1}^{i_\mu} \delta_j + n\mu a(1-a)}{i_\mu - k_1 + 1} = \min_{i \geq i_0} \frac{\sum_{j=k_1}^{i} \delta_j + n\mu a(1-a)}{i - k + 1}.$$

Then, since the function

$$\mu \mapsto \min_{i \geq i_0} \frac{\sum_{j=k_1}^{i} \delta_j + n\mu a(1-a)}{i - k + 1}$$

is continuous and increasing in μ and tends to ∞, as $\mu \to \infty$, there exists a $\mu > 0$ such that

$$\frac{\sum_{j=k_1}^{i_\mu} \delta_j + n\mu a(1-a)}{i_\mu - k_1 + 1} = \min_{i \geq i_0} \frac{\sum_{j=k_1}^{i} \delta_j + n\mu a(1-a)}{i - k + 1} = a.$$

Using $a = F_0(t_{i_0})$, this means that

$$\mu F_0(t_{i_0})(1 - F_0(t_{i_0})) = \int_{t \in [\tau_-, t_{i_\mu}]} \{F_0(t_{i_0}) - \delta\} d\mathbb{P}_n(t, \delta).$$

where τ_- is the last jump point of \hat{F}_n before t_{i_0}. By a well-known fact on the jump points of the MLE in the current status model (see, e.g., Lemma 5.4 and its proof on p. 95 of [7]), we have:
Fig 2: The unrestricted MLE and restricted MLE for a sample of size 1000, where \(F_0 \) (dotted) is the truncated exponential on \([0,2]\) and the observation distribution is uniform on \([0,2]\). Moreover, \(\hat{F}_n^{(0)}(t_{500}) = \hat{F}_n(t_{500}) + 0.1 \). The deviation of the restricted MLE from the unrestricted MLE is dashed. The jumps of the restricted and unrestricted MLE do not coincide on the interval of deviation, and neither there is a “contained in” relation in either direction for the sets of jump points.

\[t_{i_0} - \tau_+ = O_p(n^{-1/3}). \]

By the same type of argument, we can choose for each \(\varepsilon > 0 \) an \(M > 0 \) such that

\[\mathbb{P} \left\{ \int_{u \in [\tau_-, t]} \left\{ F_0(t_{i_0}) - \delta \right\} d\mathbb{P}_n(u, \delta) < 0 \right\} > 1 - \varepsilon, \]

if \(t > t_{i_0} + Mn^{-1/3} \). But, since we must have

\[\int_{t \in [\tau_-, t]} \left\{ F_0(t_{i_0}) - \delta \right\} d\mathbb{P}_n(t, \delta) > 0, \]

by the positivity of \(\mu \) and relation (2.9), it now follows that \(t_{i_0} - t_{i_0} = O_p(n^{-1/3}) \) and therefore

\[\mu F_0(t_{i_0})(1 - F_0(t_{i_0})) = \int_{t \in [\tau_-, t_{i_0}]} \left\{ F_0(t_{i_0}) - \delta \right\} d\mathbb{P}_n(t, \delta) = O_p \left(n^{-2/3} \right). \]

Hence \(\mu = O_p \left(n^{-2/3} \right) \) and

\[\phi(\mu) = \max_{k \leq i_0} \min_{i \geq i_0} \sum_{j=k}^{i} \delta_j + n\mu a(1 - a) \geq \min_{i \geq i_0} \sum_{j=k}^{i} \delta_j + n\mu a(1 - a) \geq \min_{i \geq i_0} \sum_{j=k_1}^{i} \delta_j + n\mu a(1 - a) = a. \]

By the monotonicity and continuity of the function \(\phi \) we can now conclude

\[0 \leq \hat{\mu}_n \leq \mu = O_p \left(n^{-2/3} \right). \]
The case \(a < \hat{F}_n(t_0) \) can be treated in a similar way.

The preceding lemmas enable us to prove the following result, which corresponds to Theorem 2.5 in [1]. The proof is given in Section 5. We deduce the result from the properties of the Lagrange multiplier, which parallels our approach in the next section, where we treat confidence intervals for monotone densities. A proof, using Kullback-Leibler distances (and not using the Lagrange approach), is given in [1].

Theorem 2.1. Let \(F_0 \) and \(G \) be distribution with continuous densities \(f_0 \) and \(g \) in a neighborhood of the point \(t_0 \) such that \(0 < F_0(t_0) < 1 \) and \(f_0(t_0) \) and \(g(t_0) \) are strictly positive. Let \(\hat{F}_n \) be the unrestricted MLE and let \(\tilde{F}_n^{(0)} \) be the MLE under the restriction that \(\tilde{F}_n^{(0)}(t_0) = F_0(t_0) \). Moreover, let the log likelihood ratio statistic \(2 \log l_n \) be defined by

\[
2 \log l_n = 2 \sum_{i=1}^{n} \left\{ \Delta_i \log \left(\frac{\hat{F}_n(T_i)}{\tilde{F}_n^{(0)}(T_i)} \right) + (1 - \Delta_i) \log \left(\frac{1 - \hat{F}_n(T_i)}{1 - \tilde{F}_n^{(0)}(T_i)} \right) \right\}.
\]

Then

\[
2 \log l_n \overset{D}{\to} \mathbb{D},
\]

where \(\mathbb{D} \) is the universal limit distribution as given in [1].

Construction of SMLE based confidence intervals for the distribution function. Let \(F_0 \) be defined on an interval \([a, b]\) with \(a < b \) satisfying \(F_0(a) = 0 \) and \(F_0(b) = 1 \). Then we can estimate \(F_0 \) by the SMLE, using a boundary correction:

\[
(2.10) \quad \tilde{F}_{nh}(t) = \int \left\{ I_K \left(\frac{t - x}{h} \right) + I_K \left(\frac{t + x - 2a}{h} \right) - I_K \left(\frac{2b - t - x}{h} \right) \right\} d\hat{F}_n(x),
\]

where \(\hat{F}_n \) is the MLE, \(I_K(x) = \int_{-\infty}^{x} K(u) \, du \), and \(K \) is the usual symmetric kernel, like the triweight kernel. If \(t \in [a + h, b - h] \) the SMLE is just given by:

\[
\tilde{F}_{nh}(t) = \int I_K \left(\frac{t - x}{h} \right) d\hat{F}_n(x),
\]

the other two terms in (2.10) are only there for correction at the left and right boundary. For simplicity we take \(a = 0 \) in the following (the usual case), and the interval, containing the support of \(F_0 \) will now be denoted by \([0, b]\).

For the construction of the \(1 - \alpha \) confidence interval we take a number of bootstrap samples \((T_1^*, \Delta_1^*), \ldots, (T_n^*, \Delta_n^*)\) with replacement from \((T_1, \Delta_1), \ldots, (T_n, \Delta_n)\). For each such sample we compute the SMLE \(\tilde{F}_{nh}^* \), using the same bandwidth \(h \) as used for the SMLE \(\tilde{F}_{nh} \) in the original sample, and the same type of boundary correction. Next we compute at the points \(t \):

\[
Z_{n,h}^*(t) = \frac{\tilde{F}_{nh}^*(t) - \tilde{F}_{nh}(t)}{\sqrt{n^{-2} \sum_{i=1}^{n} \{ K_h(t - T_i^*) - K_h(t + T_i^*) - K_h(2b - t - T_i^*) \}^2 (\Delta_i - \tilde{F}_{nh}^*(T_i^*))^2}},
\]

where \(\tilde{F}_{nh}^* \) is the ordinary MLE (not the SMLE!) of the bootstrap sample \((T_1^*, \Delta_1^*), \ldots, (T_n^*, \Delta_n^*)\).
Let $U^*_t(t)$ be the tth percentile of the B bootstrap values $Z^*_{nh}(t)$. Then, disregarding the bias for the moment, the following bootstrap $1 - \alpha$ interval is suggested:

$$
\left[\hat{F}_{nh}(t) - U^*_{1 - \alpha/2}(t)S_{nh}(t), \hat{F}_{nh}(t) - U^*_{\alpha/2}(t)S_{nh}(t) \right],
$$

where

$$
S_{nh}(t)^2 = n^{-2} \sum_{i=1}^{n} \{ K_h(t - T_i) - K_h(t + T_i) - K_h(2b - t - T_i) \}^2 \left(\Delta_i - \hat{\Phi}_n(T_i) \right)^2.
$$

The bootstrap confidence interval is inspired by the fact that the SMLE is asymptotically equivalent to the toy estimator

$$
\hat{F}_{nh}(t) = \int \{ \mathbb{I}_h(t-u) + \mathbb{I}_h(t+u) - \mathbb{I}_h(2b - t - u) \} dF_0(u)
$$

$$
+ \frac{1}{n} \sum_{i=1}^{n} \frac{\{ K_h(t - T_i) - K_h(t + T_i) - K_h(2b - t - T_i) \} \{ \Delta_i - \hat{F}_0(T_i) \}}{g(T_i)},
$$

the variance of which can be estimated by

$$
S_n(t)^2 = \frac{1}{n^2} \sum_{i=1}^{n} \frac{\{ K_h(t - T_i) - K_h(t + T_i) - K_h(2b - t - T_i) \}^2 \{ \Delta_i - \hat{F}_0(T_i) \}^2}{g(T_i)^2},
$$

and also by Theorem 4.2, p. 365 in [5], which tells us that, if $h \sim cn^{-1/5}$, under the conditions of that theorem, for each $t \in (0, b)$,

$$
n^{2/5} \left\{ \hat{F}_{nh}(t) - F_0(t) \right\} \xrightarrow{D} N \left(\mu, \sigma^2 \right), \quad n \to \infty,
$$

where

$$
\mu = \frac{1}{2} e^2 f' \int u^2 K(u) \, du
$$

and

$$
\sigma^2 = \frac{F_0(t)\{1 - F_0(t)\}}{cg(t)} \int K(u)^2 \, du.
$$

We now first study the behavior of intervals of type (2.12) for a situation where the bias plays no role (the uniform distribution) and compare the behavior of the intervals with the confidence intervals, based on LR tests for the MLE.

Simulation for uniform distributions.

We generated 1000 samples $(T_1, \Delta_1), \ldots, (T_n, \Delta_n)$ by generating T_1, \ldots, T_n, $n = 1000$, from the uniform distribution on $[0, 2]$ and generated, independently, a sample X_1, \ldots, X_n, also from the uniform distribution on $[0, 2]$. If $X_i \leq T_i$ we get a value $\Delta_i = 1$, otherwise $\Delta_i = 0$. For each such sample $(T_1, \Delta_1), \ldots, (T_n, \Delta_n)$ we generated 1000 bootstrap samples, and computed the 25th and 975th percentile of the values (2.11) at the points $t_j = 0.02, 0.04, \ldots, 1.98$. On the basis of these percentiles we constructed the confidence intervals (2.12) for all of the (99) t_j’s and checked whether $F_0(t_j)$ belonged to it. The percentages of simulation runs that $F_0(t_j)$ did not belong to the interval are shown in Figure 3. We likewise computed the confidence interval, based on the LR test for the MLE for each t_j, and also counted the percentages of times that $F_0(t_j)$ did not belong to the interval. The corresponding confidence intervals for one sample are shown in Figure 4.
Fig 3: Uniform samples. Proportion of times that $F_0(t_i)$, $t_i = 0.01, 0.02, \ldots$ is not in the 95% CI’s in 1000 samples $(T_1, \Delta_1) \ldots, (T_n, \Delta_n)$ using the SMLE and 1000 bootstrap samples from the sample $(T_1, \Delta_1) \ldots, (T_n, \Delta_n)$. In (a), the SMLE is used with CI’s given in (2.12). In (b) CI’s are based on the LR test. The samples are uniformly distributed.

Fig 4: Uniform samples: 95% confidence intervals for $F_0(t_i)$, $t_i = 0.01, 0.02, \ldots$ for one sample $(T_1, \Delta_1) \ldots, (T_n, \Delta_n)$. For (a) the SMLE and 1000 bootstrap samples are used; F_0 is dashed and the SMLE solid. For (b) the LR test is used; F_0 is dashed and the MLE solid.

Simulation for truncated exponential distributions. To investigate the role of the bias, we also generated 1000 samples $(T_1, \Delta_1) \ldots, (T_n, \Delta_n)$ by generating T_1, \ldots, T_n, $n = 1000$, from the uniform distribution on $[0, 2]$ and, independently, samples X_1, \ldots, X_n, from the truncated exponential
distribution on $[0,2]$, with density

$$f_0(x) = \frac{e^{-x}}{1 - e^{-2}}, \; x \in [0,2].$$

If $X_i \leq T_i$ we get $\Delta_i = 1$, otherwise $\Delta_i = 0$. For each such sample $(T_1, \Delta_1), \ldots, (T_n, \Delta_n)$ we generated $B = 1000$ bootstrap samples, and computed the confidence intervals in the same way as for the uniform samples, discussed above, where the interval is of the form (2.12) and bias is neglected. This is compared in Figure 5 with the results for confidence intervals of the form

$$\tilde{F}_{nh}(t) - \beta(t) - U_{1-\alpha/2}(t) S_n(t), \tilde{F}_{nh}(t) - \beta(t) - U_{\alpha/2}(t) S_n(t),$$

where $U_{\alpha/2}, U_{1-\alpha/2}$ and $S_n(t)$ are as in (2.12), and where $\beta(t)$ is the actual asymptotic bias, which is, for $t \in [h, 2-h]$, given by

$$\frac{1}{2} f_0'(t) h^2 \int u^2 K(u) du = -\frac{h^2 e^{-t} \int u^2 K(u) du}{2\{1 - e^{-2}\}}.$$

For $t \notin [h, 2-h]$ this expression is of the form

$$\frac{h^2 e^{-t} \left\{ \int u^2 K(u) du - 2 \int_0^1 (u-v)^2 K(u) du \right\}}{2\{1 - e^{-2}\}},$$

where $v = t/h$, if $t \in [0,h)$ and $v = (2-t)/h$ if $t \in (2-h,2]$.

It is seen in Figure 5 that if we use the bandwidth $2n^{-1/5}$ and do not use bias correction for the SMLE, the 95% coverage is off at the left end (where the bias is largest), but that the intervals are ‘on target’ if we add the asymptotic bias to the intervals, as in (2.13). However, we cannot use the method of Figure 5b in practice, since the actual bias will usually not be available. We are faced here with a familiar problem in nonparametric confidence intervals, and we can take several approaches. Two possible solutions are estimation of the bias and undersmoothing.

In the present case it turns out to be very difficult to estimate the bias term sufficiently accurately. Moreover, [9] argues that undersmoothing has several advantages; one of these is that estimation of the bias term is no longer necessary. For the present model, we changed the bandwidth of the SMLE from $2n^{-1/5}$ to $2n^{-1/4}$ (with $n = 1000$) and computed the confidence intervals again by the bootstrap procedure, given above. This gave a remarkable improvement of the coverage at the left end, as is shown in Figure 6. Nevertheless, the undersmoothing has the tendency to make the confidence interval slightly liberal (anti-conservative), as can be seen from Figure 6a, so one might prefer to take for example the 20th and 980th percentile if one wants to have a coverage $\geq 95%$.

The effect of this method is shown in Figure 6b and the coverage of this method is compared to the coverage of the method, using the LR test, as in [2], in Figure 7. Undersmoothing, together with the method of Figure 6b, will generally of course still produce narrower confidence intervals than the method, based on the LR test (which is based on cube root n asymptotics), under the appropriate smoothness conditions, as can be seen in Figure 8.

Another way of bias correction is to use a higher order kernel, for example a 4th order kernel, but still use a bandwidth of order $n^{-1/5}$. Since a 4th order kernel has necessarily negative parts, and since the estimate of F_0 will be close to zero or 1 at the boundary of the interval, this gives difficulties at the end of the interval. We therefore stick to the method described above.
Fig 5: Truncated exponential samples for F_0. Proportion of times that $F_0(t_i)$, $t_i = 0.01, 0.02, \ldots$ is not in the 95% CI's in 1000 samples $(T_1, \Delta_1), \ldots, (T_n, \Delta_n)$. In (a) the confidence intervals (2.12) are used, in (b) the bias corrected confidence intervals (2.13).

Fig 6: Truncated exponentials for F_0. Proportion of times that $F_0(t_i)$, $t_i = 0.01, 0.02, \ldots$ is not in the CI's in 1000 samples $(T_1, \Delta_1), \ldots, (T_n, \Delta_n)$. In (a) the SMLE and (2.12) are used for $\alpha = 0.025$ with undersmoothing. In (b), (2.12) is used with $\alpha = 0.02$ instead of $\alpha = 0.025$ and the same undersmoothing as in (a).

3. Confidence intervals for the monotone density case. In this section we construct confidence intervals for a decreasing density, in the setting of Example 1.1. We start by considering the confidence intervals based on the LR tests. To this end, we first give a characterization of the restricted MLE. In view of Example 3.1 below, we allow ties in the observations, and denote the number of observations at the ordered points t_i by w_i. The number of strictly different observation
NONPARAMETRIC ISOTONIC CONFIDENCE INTERVALS

Fig 7: Truncated exponentials for F_0. Proportion of times that $F_0(t_i), t_i = 0.01, 0.02, \ldots$ is not in the CI’s in 1000 samples $(T_1, \Delta_1), \ldots, (T_n, \Delta_n)$. Figure (a) uses the SMLE with the method of Figure 6b. In (b) the LR test for the MLE is used.

Fig 8: Truncated exponentials for F_0: 95% confidence intervals for $F_0(t_i), t_i = 0.01, 0.02, \ldots$ for one sample $(T_1, \Delta_1), \ldots, (T_n, \Delta_n)$. In (a) the SMLE is used with undersmoothing and the method of Figure 6b. Dashed: real F_0, solid: SMLE. In (b) the LR test for the MLE is used. Dashed: real F_0, solid: MLE.

times is denoted by m, and the total number of observations is again denoted by n.

Lemma 3.1. Let $\hat{f} = (\hat{f}_1, \ldots, \hat{f}_m)$ be the vector of slopes of the least concave majorant of the
cusum diagram with points $(0,0)$ and

\[
(1 + \hat{\mu}a) t_j, \sum_{i=1}^{j} \left\{ \frac{w_i}{n} + \hat{\mu} a 1_{i=i_0} \right\}, \quad j = 1, \ldots, m,
\]

where $\hat{\mu}$ is the solution of the equation (in μ)

\[
\min_{1 \leq i \leq i_0} \max_{i_0 \leq j \leq n} \frac{\sum_{k=i}^{j} w_k/n + \mu a}{(t_j - t_{i-1})} = a\{1 + \mu a\}.
\]

Then \hat{f} maximizes $\sum_{i=1}^{m} w_i \log f_i$, under the condition that f is nonincreasing and the side conditions $\sum_{i=1}^{m} f_i (t_i - t_{i-1}) = 1$ and $f_{i_0} = a$.

Proof. Introducing the Lagrange multipliers λ and μ, we get the maximization problem of maximizing

\[
\phi_{\lambda, \mu}(f_1, \ldots, f_m) = \frac{1}{n} \sum_{i=1}^{m} w_i \log f_i - \lambda \left\{ \sum_{i=1}^{m} f_i (t_i - t_{i-1}) - 1 \right\} + \mu (f_{i_0} - a),
\]

over the convex cone $C_n = \{(f_1, \ldots, f_m) : f_1 \geq f_2 \geq \ldots f_m \geq 0\}$, where we look for $(\hat{\lambda}, \hat{\mu}) \in \mathbb{R}_+ \times \mathbb{R}$ such that the maximizer $\hat{f} = (\hat{f}_1, \ldots, \hat{f}_n)$ satisfies

\[
\sum_{i=1}^{m} \hat{f}_i (t_i - t_{i-1}) = 1 \quad \text{and} \quad \hat{f}_{i_0} = a.
\]

The solution has to satisfy

\[
\langle \nabla \phi_{\hat{\lambda}, \hat{\mu}}(\hat{f}), \hat{f} \rangle = \frac{1}{n} \sum_{i=1}^{m} w_i - \hat{\lambda} \sum_{i=1}^{m} (t_i - t_{i-1}) \hat{f}_i + \hat{\mu} \hat{f}_{i_0}
\]

\[
= 1 - \hat{\lambda} \sum_{i=1}^{m} (t_i - t_{i-1}) \hat{f}_i + \hat{\mu} \hat{f}_{i_0} = 1 - \hat{\lambda} a = 0.
\]

and hence

\[
(3.4) \quad \hat{\mu} = \frac{\hat{\lambda} - 1}{a}.
\]

The generators of the cone are of the form

\[
g_1 = (1, 0, 0, \ldots, 0, 0), \ g_2 = (1, 1, 0, \ldots, 0, 0), \ldots, \ g_m = (1, 1, 1, \ldots, 1, 1),
\]

so we find the conditions:

\[
\langle \nabla \phi_{\hat{\lambda}, \hat{\mu}}(\hat{f}), g_j \rangle = \sum_{i=1}^{j} \left\{ \frac{w_i}{n \hat{f}_i} - \hat{\lambda} (t_i - t_{i-1}) \right\} + \hat{\mu} 1_{i=i_0}
\]

\[
= \sum_{i=1}^{j} \left\{ \frac{w_i}{n \hat{f}_i} - \hat{\lambda} (t_i - t_{i-1}) + \hat{\mu} 1_{i=i_0} \right\} \leq 0, \quad j = 1, \ldots, m.
\]
Using \(\hat{f}_m > 0 \), these conditions are equivalent to:

\[
\sum_{i=1}^{j} \left\{ \frac{w_i}{n} - \hat{\lambda}(t_i - t_{i-1}) \hat{f}_i + \hat{\mu}1_{\{i=i_0\}}a \right\} \leq 0, \quad j = 1, \ldots, m,
\]

which we obtain by multiplying the \(i \)th component of the inner product with \(\hat{f}_i \). This yields (3.1), using (3.4).

We now consider the equation:

\[
(3.5) \quad g(\lambda, \mu, a) = a
\]

where

\[
g(\lambda, \mu, a) = \min_{1 \leq i \leq i_0} \max_{i_0 \leq j \leq m} \frac{\sum_{k=i}^{j} w_k/n + \mu a}{\lambda(t_j - t_{i-1})} = \frac{1}{\lambda} \min_{1 \leq i \leq i_0} \max_{i_0 \leq j \leq m} \frac{\sum_{k=i}^{j} w_k/n + \mu a}{(t_j - t_{i-1})}.
\]

Note that \(g(\lambda, \mu, a) \) is the slope of the least concave majorant of the cusum diagram with points \((0, 0)\) and

\[
(\lambda t_j, \sum_{i=1}^{j} \left\{ \frac{w_i}{n} + \mu a1_{\{i=i_0\}} \right\}), \quad j = 1, \ldots, m.
\]

So \(g(\lambda, \mu, a) \) should be equal to the value of the restricted MLE at \(t_0 \) and hence should be equal to \(a \).

On the other hand, using the identity \(\lambda = 1 + a\mu \), (3.5) turns into

\[
\mu = \frac{1}{a^2} \min_{1 \leq i \leq i_0} \max_{i_0 \leq j \leq m} \frac{\sum_{k=i}^{j} w_k/n + \mu a}{(t_j - t_{i-1})} - \frac{1}{a}.
\]

Multiplying by \(a^2 \) yields (3.2).

The cusum diagram for the restricted MLE is shown in Figure 9 for a sample of size \(n = 1000 \) from a truncated exponential distribution on \([0, 2]\), where we subtract the linear trend for clearer visibility of the difference between the least concave majorant and the values of the cusum diagram. We took \(i_0 = 700 \), which gave \(t_{i_0} = 0.909047 \) and a value \(\hat{f}_n(t_{i_0}) = 0.519022 \) for the unrestricted MLE at \(t_{i_0} \). The restricted MLE was specified to have the value \(0.519022 + 0.1 = 0.619022 \) at \(t_{i_0} \). The computation of the restricted MLE gave \(\hat{\mu} = 0.064020 \) and \(t_{i_0} \) was transformed into the point \(0.945073 \) on the axis of the cumulative weights by multiplying by \(1 + a\hat{\mu} \).

The lifting of the cusum diagram at \((1 + a\hat{\mu})t_{i_0} \) is clearly visible in part (a) of Figure 9. Part (b) of this figure shows that the unrestricted MLE is globally changed over the whole interval instead of the only local change of the MLE in the current status model. Nevertheless, the (universal) limit distribution of the log likelihood ratio statistic is the same as in the current status model, as we show below.

Remark 3.1. Note that it is clear from the geometric construction that the penalty in the cusum diagram will only locally lead to different points of jump of the restricted MLE on an interval \(D_n \) with respect to the unrestricted MLE. Outside \(D_n \) the points of jump will be the same. This correspondence also follows from the minmax characterization of the MLEs. The correspondence of the points of jump outside \(D_n \) is also clearly visible in part (b) of Figure 9, where the restricted and unrestricted MLE are plotted in the same scale.
Fig 9: Cusum diagram and MLEs for a sample of size \(n = 1000 \) from a truncated exponential distribution on \([0, 2]\). (a): cusum diagram with added penalty for the restricted MLE, where we subtract the line connecting \((0, 0)\) and \((\hat{\lambda}_{m}, 1 + a\mu)\) to get a clearer picture. The penalty is added at the location \(0.945073\) on the \(x\)-axis. (b): the restricted MLE (dashed) and the unrestricted MLE (solid).

The proof of Theorem 3.1 below will use the following lemma, which is similar to Lemma 2.3.

Lemma 3.2. Under the conditions of Theorem 3.1 we have, if \(a = f_{0}(t_{i_{0}}) \) and \(t_{i_{0}} \to t_{0} \), as \(n \to \infty \):

\[
\hat{\mu}_{n} = O_p \left(n^{-2/3} \right).
\]

Proof. Consider the function

\[
\phi : \mu \mapsto \min \max_{k \leq i_{0}} \sum_{i_{0} \geq i_{0}}^{i_{1}} w_{j}/n + \mu a (1 + \mu a)(t_{i} - t_{k-1}), \quad a = f_{0}(t_{i_{0}}).
\]

By the least concave majorant characterization of the unrestricted MLE \(\hat{f}_{n} \), we have

\[
\phi(0) = \min \max_{k \leq i_{0}} \sum_{i_{0} \geq i_{0}}^{i_{1}} w_{j}/n + \mu a (1 + \mu a)(t_{i} - t_{k-1}) = \hat{f}_{n}(t_{i_{0}}).
\]

Let \(k_{1} \leq i_{0} \) and \(i_{1} \geq i_{0} \) be the indices, satisfying

\[
\hat{f}_{n}(t_{i_{0}}) = \frac{\sum_{i_{1} \geq i_{1}}^{i_{1}} w_{j}}{n(t_{i_{1}} - t_{k_{1}-1})} = \min \max_{k \leq i_{0}} \sum_{i_{0} \geq i_{0}}^{i_{1}} w_{j}/n + \mu a (1 + \mu a)(t_{i} - t_{k-1}).
\]

Suppose \(a > \hat{f}_{n}(t_{i_{0}}) \) and let, for \(\mu > 0 \), \(k_{\mu} \leq i_{0} \) be the index such that

\[
\frac{\sum_{j=k_{\mu}}^{i_{1}} w_{j}/n + \mu a}{t_{i_{1}} - t_{k_{\mu}-1}} = \min \max_{k \leq i_{0}} \frac{\sum_{i_{0} \geq i_{0}}^{i_{1}} w_{j}/n + \mu a}{t_{i_{1}} - t_{k-1}}.
\]
Then, if \(a(t_{i_1} - t_{k-1}) \neq 1 \), there exists a \(\mu > 0 \) such that
\[
\frac{\sum_{j=k}^{i_1} w_j + n\mu a}{n(t_{i_1} - t_{k-1})} = \min_{k \leq i_0} \frac{\sum_{j=k}^{i_1} w_j + n\mu a}{n(t_{i_1} - t_{k-1})} = a(1 + \mu),
\]
and this \(\mu \) is given by:
\[
\mu = \frac{a(t_{i_1} - t_{k-1}) - \sum_{j=k}^{i_1} w_j/n}{a\{1 - a(t_{i_1} - t_{k-1})\}}.
\]
Using \(a = f_0(t_{i_0}) \), this means that
\[
\mu f_0(t_{i_0}) = \frac{\int_{t \in (t_{k-1}, \tau_+]} f_0(t_{i_0}) dt - \int_{t \in (t_{k-1}, \tau_+]} d\mathbb{F}_n(t)}{1 - \int_{t \in (t_{k-1}, \tau_+]} f_0(t_{i_0}) dt},
\]
where \(\tau_+ \) is the first jump point of \(\hat{f}_n \) after \(t_{i_0} \). As in the proof of Lemma 2.3, we have: \(\tau_+ - t_{i_0} = O_p(n^{-1/3}) \). By the same type of argument, we can choose for each \(\varepsilon > 0 \) an \(M > 0 \) such that
\[
\mathbb{P}\left\{ \frac{\int_{u \in (t, \tau_+]} f_0(t_{i_0}) du - \int_{u \in (t, \tau_+]} d\mathbb{F}_n(u)}{1 - \int_{u \in (t, \tau_+]} f_0(t_{i_0}) du} < 0 \right\} > 1 - \varepsilon,
\]
if \(t < t_{i_0} - Mn^{-1/3} \). But since we must have
\[
\int_{t \in (t_{k-1}, \tau_+]} f_0(t_{i_0}) dt - \int_{t \in (t_{k-1}, \tau_+]} d\mathbb{F}_n(t) > 0,
\]
by the positivity of \(\mu \) and relation (3.6), it now follows that \(t_{i_0} - t_{k-1} = O_p(n^{-1/3}) \) and therefore
\[
\mu f_0(t_{i_0}) = \frac{\int_{t \in (t_{k-1}, \tau_+]} f_0(t_{i_0}) dt - \int_{t \in (t_{k-1}, \tau_+]} d\mathbb{F}_n(t)}{1 - \int_{t \in (t_{k-1}, \tau_+]} f_0(t_{i_0}) dt} = O_p\left(n^{-2/3}\right).
\]
Hence \(\mu = O_p\left(n^{-2/3}\right) \) and
\[
\phi(\mu) = \min_{k \leq i_0} \max_{i \geq i_0} \frac{\sum_{j=k}^{i_1} w_j/n + a\mu}{t_i - t_{k-1}} \geq \min_{k \leq i_0} \frac{\sum_{j=k}^{i_1} w_j/n + a\mu}{t_i - t_{k-1}} = a(1 + a\mu).
\]
As in the proof of Lemma 2.3 we can now conclude
\[
0 \leq \hat{\mu}_n \leq \mu = O_p\left(n^{-2/3}\right).
\]
The case \(a < \hat{f}_n(t_{i_0}) \) can be treated in a similar way.

We can now prove the following result. The proof is given in Section 6.

Theorem 3.1. Let \(f_0 \) be a decreasing density, which is continuous and has a continuous strictly negative derivative \(f'_0 \) in a neighborhood of \(t_0 \). Let \(\hat{f}_n \) be the unrestricted MLE and let \(\hat{f}^{(0)}_n \) be the MLE under the restriction that \(\hat{f}^{(0)}_n(t_0) = f_0(t_0) \). Moreover, let the log likelihood ratio statistic \(2 \log l_n \) be defined by
\[
2 \log l_n = 2 \sum_{i=1}^{n} \log \frac{\hat{f}_n(T_i)}{\hat{f}^{(0)}_n(T_i)}.
\]
Then
\[
2 \log l_n \xrightarrow{D} \mathbb{D},
\]
where \(\mathbb{D} \) is the universal limit distribution as given in [1].
Fig 10: The left panel shows the empirical distribution function and its least concave majorant for the values between 10 and 20 months of the 618 current durations \(\leq 36 \) months. The resulting Grenander estimate (the MLE) of the observation density on the interval \([0, 36]\) is shown in the right panel, together with its smoothed version (dashed, the SMLE).

Remark 3.2. The condition that \(f_0 \) has a continuous strictly negative derivative \(f_0' \) in a neighborhood of \(t_0 \) corresponds to “condition A” in [1] for the current status model, which is the condition that the derivative \(f_0 \) of \(F_0 \) is strictly positive at \(t_0 \) and continuous in a neighborhood of \(t_0 \). A condition of this type is necessary for getting Brownian motion with parabolic drift in the limit distribution of the MLEs. This fails if we take \(f_0 \) uniform, in which case we get a different type of asymptotics.

Example 3.1. Suppose we have a sample \(Z_1, \ldots, Z_n \) from the length biased distribution, associated with an unknown distribution function \(F \) of interest. This means that the distribution function of \(Z_i \) is given by

\[
\bar{F}(z) = P(Z_i \leq z) = \frac{1}{m_F} \int_0^z x \, dF(x)
\]

where \(m_F = \int_0^\infty x \, dF(x) \) is assumed to be nonzero and finite. However, instead of observing the values of \(Z_i \) directly, we only observe the data \(X_1, \ldots, X_n \) where \(X_i \) is a uniform random fraction of \(Z_i \). More specifically, we observe

\[
X_i = U_i Z_i,
\]

where \(U_1, \ldots, U_n \) is a random sample from the uniform distribution on \([0, 1]\), independent of the \(Z_i \)’s. Now the density of \(X_i \) can be seen to be

\[
g(x) = \frac{1}{m_F} (1 - F(x)), \quad x \geq 0.
\]

This means that the survival function \(1 - F(x) \) is given by \(g(x)/g(0) \).

Hence, by monotonicity of the initial distribution function \(F \) and the fact that \(0 < m_F < \infty \), it follows that \(g \) is bounded and decreasing on \([0, \infty)\). Moreover, if no additional assumptions are
imposed on F, any density of this type can be represented by (3.8). The density g can be estimated by the Grenander estimator of a decreasing density. See [17] and [16] for applications of this model.

In [15] a data set of current durations of pregnancy in France is studied. The aim is to estimate the distribution of the time it takes for a woman to become pregnant after having having started unprotected sexual intercourse. For 867 women the current duration of unprotected intercourse, measured in months, was recorded and this is the basis of part of the research, reported in [15].

Given that the woman in the study is currently trying to become pregnant, the actual recorded data (current duration) can be viewed as uniform random fraction of the true, total duration. In that sense, the model as given in (3.8) is not unreasonable. The left panel of Figure 10 shows a part of the empirical distribution function of 618 recorded current durations, kindly provided to us by Niels Keiding, where the data are truncated at 36 months and are of a similar nature as the data in [15]. Based on the least concave majorant, the right panel of Figure 10 is computed, showing the resulting MLE of the decreasing density of the observations together with its smoothed version, the smoothed maximum likelihood estimator (SMLE), defined by

\[(3.9) \quad \tilde{g}_{nh}(t) = -\int IK((t - x)/h) \, dg_n(x), \quad IK(x) = \int_x^\infty K(u) \, du, \]

where g_n is the Grenander estimator (the MLE) and K is a symmetric kernel, for which we took the triweight kernel

\[K(u) = \frac{35}{32} (1 - u^2)^3 1_{[-1,1]}(u), \quad u \in \mathbb{R}. \]

The bandwidth h was defined by

\[h = 36n^{-1/3} \approx 9.95645, \]

where $n = 618$. Near the boundary points 0 and 36 the same boundary correction as in section 2 was used. For $t \in [h, b - h]$, where $b = 36$, the SMLE is asymptotically equivalent to the ordinary density estimator

\[(3.10) \quad \int K_h(t-x) \, d\bar{F}_n(x), \quad K_h(u) = h^{-1} K(u/h), \]

which, however, will in general not be monotone, so not belong to the allowed class.

The 95% confidence intervals for the density (3.8), based on the SMLE and the LR test for the MLE, respectively, are shown in Figure 11. The survival function for the time until pregnancy or end of the period of unprotected intercourse is given by $g(x)/g(0)$, where g is the density of the observation. The 95% confidence intervals for the survival function at the 99 equidistant points 0.36, 0.72, ..., 35.64, are constructed from 1000 bootstrap samples T_1^*, \ldots, T_n^*, also of size n, drawn from the original sample, and in these samples we computed

\[(3.11) \quad \tilde{g}_{nh}^*(t)/\bar{g}_{nh}(0) - \tilde{g}_{nh}(t)/\bar{g}_{nh}(0), \]

where \tilde{g}_{nh} and \tilde{g}_{nh}^* are the SMLEs in the original sample and the bootstrap sample, respectively. The chosen bandwidth was $36n^{-1/4} \approx 7.2203$, so (according to the method of undersmoothing, see section 2), smaller than the bandwidth in Figure 10, which uses a rate for which the squared bias and variance are approximately in equilibrium. The 95% asymptotic confidence intervals are given by:

\[[\tilde{g}_{nh}(t)/\bar{g}_{nh}(0) - U_{0.975}, \tilde{g}_{nh}(t)/\bar{g}_{nh}(0) - U_{0.025}], \]
Fig 11: 95% confidence intervals, based on the SMLE (part (a)) and MLE (part (b)), respectively, for the data in [15] at the points 0.36, 0.72, ..., 35.64. The chosen bandwidth for the SMLE was $36n^{-1/4} \approx 7.2203$. The time is measured in months.

Fig 12: Estimates of the survival function, based on the MLE (step function) and SMLE (smooth function), where the MLE is restricted to have the same value at zero as the (consistent) SMLE.

where $U^*_{0.025}$ and $U^*_{0.975}$ are the 2.5% and 97.5% percentiles of the bootstrap values (3.11). The result is shown in Figure 13a and should be compared with the confidence intervals in part A of Figure 2, p. 1495 of [15], based on a parametric (generalized gamma) model.

We have here the easiest, but also somewhat unusual, situation that the isotonic estimator is
Fig 13: 95% confidence intervals, based on the SMLE (part (a)) and MLE (part (b)), respectively, for the survival functions in [15] at the points 0.36, 0.72, ..., 35.64. The chosen bandwidth for the SMLE was $36n^{-1/4} \approx 7.2203$ and the MLE was restricted to have the same value as the (consistent) SMLE at zero.

The MLE is asymptotically equivalent to an ordinary non-isotonic estimator. The more usual situation is that we only can find a so-called “toy estimator”, which is asymptotically equivalent to the MLE or SMLE, but still contains parameters that have to be estimated. This is the case in the current status model; more details on this matter are given in Chapter 11 of [8].

In [15] and [11] also parametric models are considered for analyzing these data. We compute the MLE as the slope of the smallest concave majorant of the data ≤ 36 months, where the x-values are only the strictly different values, and where we use the number of values at a tie as the increase of the second coordinate of the cusum diagram. In this way we get 618 values ≤ 36, but only 248 strictly different ones. It is clear that the SMLE has a somewhat intermediate position w.r.t. the parametric models and the fully nonparametric MLE, considered in [15] and [11].

In the preceding example, the fully nonparametric MLE is inconsistent at zero and can therefore not be used as an estimate of $g(0)$ and therefore also not as an estimate of the survival function $g(x)/g(0)$, unless we also use penalization at zero. This is in contrast with the SMLE, which is consistent at zero. This difficulty with the inconsistency of the MLE at zero for the present model is discussed in [11]. We solve this difficulty by adding a penalty at zero, as in [18], and maximize the function

$$
(3.12) \quad \phi_{\alpha,\lambda,\mu}(f_1, \ldots, f_m) = \frac{1}{n} \sum_{i=1}^{m} w_i \log f_i - \lambda \left\{ \sum_{i=1}^{m} f_i (t_i - t_{i-1}) - 1 \right\} + \mu (f_{i_0} - a) - \alpha (f_1 - b),
$$

where b is the value of a consistent estimator at zero (for example, the value of the SMLE); we switch to the notation $f = (f_1, \ldots, f_m)$ again (instead of using g) to be in line with the presentation
in the preceding section. The solution has to satisfy
\[
\left\langle \nabla \phi_{\hat{\alpha}, \hat{\lambda}, \hat{\mu}}(\hat{f}), \hat{f} \right\rangle = \frac{1}{n} \sum_{i=1}^{m} w_i - \hat{\lambda} \sum_{i=1}^{m} (t_i - t_{i-1}) \hat{f}_i + \hat{\mu} \hat{f}_{i_0} - \hat{\alpha} \hat{f}_1 = 1 - \hat{\lambda} \sum_{i=1}^{m} (t_i - t_{i-1}) \hat{f}_i + \hat{\mu} \hat{f}_{i_0} - \hat{\alpha} \hat{f}_1 = 1 - \hat{\lambda} + \hat{\mu} a - \hat{\alpha} b = 0,
\]
and hence
\[
\hat{\mu} = \frac{\hat{\lambda} - 1 + \hat{\alpha} b}{a}.
\]

Analogously to Lemma 3.1, we now get the following lemma.

Lemma 3.3. Let \(\hat{f} = (\hat{f}_1, \ldots, \hat{f}_m) \) be the vector of slopes of the least concave majorant of the cusum diagram with points \((0,0)\) and
\[
(3.14) \quad \left(\hat{\alpha} + \hat{\lambda} t_j, \sum_{i=1}^{j} \left\{ \frac{w_i}{n} + (\hat{\lambda} - 1 + \hat{\alpha} b) \{i = i_0\} \right\} \right), \quad j = 1, \ldots, m,
\]
where \((\hat{\alpha}, \hat{\lambda})\) is the solution of the equations (in \((\alpha, \lambda)\))
\[
(3.15) \quad \min_{1 \leq i \leq i_0} \max_{i_0 < j \leq m} \frac{\sum_{k=1}^{i} w_k/n + \lambda - 1 + \alpha b}{\lambda (t_j - t_{i-1}) + 1_{\{i=1\}} \alpha} = a, \quad \max_{i \geq 1} \frac{\sum_{j=1}^{i} w_j/n}{\alpha + \lambda t_i} = b.
\]

Then \(\hat{f} \) maximizes \(\sum_{i=1}^{m} w_i \log f_i \), under the condition that \(f \) is nonincreasing and the boundary conditions
\[
\sum_{i=1}^{m} f_i (t_i - t_{i-1}) = 1, \quad f_1 = b \quad \text{and} \quad f_{i_0} = a.
\]

We now restrict the MLE of the density to have a value at zero, given by a consistent estimator at zero. There are several possible choices; we took the value of the SMLE at zero for illustrative purposes. The resulting estimate of the survival function, based on the MLE restricted at zero to have the same value as the SMLE, is shown in Figure 12. It is also possible to take histogram-type estimates at zero if one wants to impose more lenient conditions. Next we can compute the 95% confidence intervals again by the likelihood ratio method, where one restricts the MLE to have a value at zero, prescribed by the consistent estimate. Using Lemma 3.3 we can then compute the LR tests again for the values of \(f_{i_0} \). The result is shown in part (b) of Figure 13, where we used the same asymptotic critical values as before.

4. **Computational aspects and concluding remarks.** There are several ways of computing the restricted MLE’s. One way of computing the restricted MLE for the current status model was given in [1], see the discussion following Remark 2.1 in Section 2. We computed the restricted MLE by first solving the equation (2.4),(3.2) and (3.15), respectively, for the Lagrange multiplier \(\hat{\mu} \) or \(\hat{\alpha} \) and \(\hat{\lambda} \), and next by computing in one step the left derivative of the greatest convex minorant, resp. the smallest concave majorant, of the cusum diagrams which were constructed using the Lagrange multipliers. So the iterative part of the algorithm is in determining the solution \(\hat{\mu} \) or \(\hat{\alpha} \) and \(\hat{\lambda} \); for the monotone density case it is not clear that a completely non-iterative method for computing
the restricted MLE exists (as in the current status model, if one adapts the definition in terms of inequalities in [1]). For solving the non-linear equations for $\hat{\mu}$ or $\hat{\alpha}$ and λ in Lemma 3.3 we wrote C programs, which seemed to work fine.

In practice we would recommend to use the methods based on the MLE or SMLE in conjunction; the intervals based on the LR test for the MLE seem pretty much on target, except perhaps for values close to the boundary, and use less assumptions. On the other hand, the intervals, based on the SMLE are narrower and based on asymptotically normal limit distributions, which enables the use of bootstrap methods in constructing the confidence intervals. Direct bootstrap methods have been shown to fail for the MLE, see [12] and [14].

5. Appendix A.

Proof of Theorem 2.1. Let D_n be the smallest interval $[a_n, b_n]$ such that \hat{F}_n and $\hat{F}_n^{(0)}$ coincide on D_n^0 and such that the boundary points of D_n are points of jump of \hat{F}_n and $\hat{F}_n^{(0)}$; we assume \hat{F}_n and $\hat{F}_n^{(0)}$ to be right-continuous. Then, since $\hat{\mu}_n = O_p(n^{-2/3})$, we have $t_0 - a_n = O_p(n^{-1/3})$ and $b_n - t_0 = O_p(n^{-1/3})$ and hence

\[
\hat{F}_n(t) - F_0(t_0) = O_p\left(n^{-1/3}\right) \quad \text{and} \quad \hat{F}_n^{(0)}(t) - F_0(t_0) = O_p\left(n^{-1/3}\right),
\]

uniformly for $t \in D_n$. We have:

\[
2n \int_{t \in D_n} \left\{ \delta \log \frac{\hat{F}_n(T_i)}{\hat{F}_n^{(0)}(T_i)} + (1 - \delta) \log \frac{1 - \hat{F}_n(T_i)}{1 - \hat{F}_n^{(0)}(T_i)} \right\} d\mathbb{P}_n(t, \delta)
= -2n \int_{t \in D_n} \left\{ \delta \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{\hat{F}_n(t)} - (1 - \delta) \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{1 - \hat{F}_n(t)} \right\} d\mathbb{P}_n(t, \delta)
+ n \int_{t \in D_n} \left\{ \delta \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{\hat{F}_n(t)^2} + (1 - \delta) \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{1 - \hat{F}_n(t)} \right\} d\mathbb{P}_n(t, \delta) + o_p(1).
\]

Let the probability measure $P_{\hat{F}_n}$ be defined by

\[
\int \psi(t, \delta) dP_{\hat{F}_n}(t, \delta) = \int \psi(t, 1) \hat{F}_n(t) dG_n(t) + \int \psi(t, 0) \{1 - \hat{F}_n(t)\} dG_n(t),
\]

for bounded Borel measurable functions on $\psi : \mathbb{R}_+ \times \{0, 1\} \to \mathbb{R}$. We similarly define $P_{\hat{F}_n^{(0)}}$ by:

\[
\int \psi(t, \delta) dP_{\hat{F}_n^{(0)}}(t, \delta) = \int \psi(t, 1) \hat{F}_n^{(0)}(t) dG_n(t) + \int \psi(t, 0) \{1 - \hat{F}_n^{(0)}(t)\} dG_n(t).
\]

Then

\[
2n \int_{t \in D_n} \left\{ \delta \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{\hat{F}_n(t)} - (1 - \delta) \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{1 - \hat{F}_n(t)} \right\} dP_{\hat{F}_n}(t, \delta) = 0,
\]

and hence:

\[
-2n \int_{t \in D_n} \left\{ \delta \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{\hat{F}_n(t)} - (1 - \delta) \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{1 - \hat{F}_n(t)} \right\} d\mathbb{P}_n(t, \delta)
= -2n \int_{t \in D_n} \left\{ \delta \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{\hat{F}_n(t)} - (1 - \delta) \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{1 - \hat{F}_n(t)} \right\} d(\mathbb{P}_n - P_{\hat{F}_n})(t, \delta)
= -2n \int_{t \in D_n} \left\{ \delta \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{\hat{F}_0(t_0)} - (1 - \delta) \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{1 - \hat{F}_0(t_0)} \right\} d(\mathbb{P}_n - P_{\hat{F}_n})(t, \delta) + o_p(1),
\]
using \(\sup_{t \in D_n} |\hat{F}_n(t) - \hat{F}_n^{(0)}(t)| = O_p(n^{-1/3}) \), \(\sup_{t \in D_n} |\hat{F}_n(t) - F_0(t_0)| = O_p(n^{-1/3}) \) and the fact that the process \(n^{2/3} (\mathbb{P}_n - P_{\hat{F}_n}) \) is tight, applied on bounded functions of bounded variation on \(D_n \times \{0, 1\} \).

We can write:

\[
-2n \int_{t \in D_n} \left\{ \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{F_0(t_0)} - \left(1 - \delta\right) \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{1 - F_0(t_0)} \right\} d(\mathbb{P}_n - P_{\hat{F}_n})(t, \delta)
\]

\[
= -2n \int_{t \in D_n} \left\{ \frac{\hat{F}_n(t) - F_0(t_0)}{F_0(t_0)} - \left(1 - \delta\right) \frac{\hat{F}_n(t) - F_0(t_0)}{1 - F_0(t_0)} \right\} d(\mathbb{P}_n - P_{\hat{F}_n})(t, \delta)
\]

\[
+ 2n \int_{t \in D_n} \left\{ \frac{\hat{F}_n^{(0)}(t) - F_0(t_0)}{F_0(t_0)} - \left(1 - \delta\right) \frac{\hat{F}_n^{(0)}(t) - F_0(t_0)}{1 - F_0(t_0)} \right\} d(\mathbb{P}_n - P_{\hat{F}_n})(t, \delta)
\]

\[
= 2n \int_{t \in D_n} \left\{ \frac{\hat{F}_n^{(0)}(t) - F_0(t_0)}{F_0(t_0)} - \left(1 - \delta\right) \frac{\hat{F}_n^{(0)}(t) - F_0(t_0)}{1 - F_0(t_0)} \right\} d(P_{\hat{F}_n^{(0)}} - P_{\hat{F}_n})(t, \delta) + o_p(1).
\]

The last equality follows from the characterization of \(\hat{F}_n \), which implies that the first term of the next to last expression is zero, and the characterization of \(\hat{F}_n^{(0)} \), which implies:

\[
\int_{t \in D_n} \left\{ \frac{\hat{F}_n^{(0)}(t) - F_0(t_0)}{F_0(t_0)} - \left(1 - \delta\right) \frac{\hat{F}_n^{(0)}(t) - F_0(t_0)}{1 - F_0(t_0)} \right\} d\mathbb{P}_n(t, \delta)
\]

\[
= -\frac{1}{F_0(t_0)\{1 - F_0(t_0)\}} \int_{t \in D_n} \left\{ \delta - \hat{F}_n^{(0)}(t) \right\} \{ \hat{F}_n^{(0)}(t) - F_0(t_0) \} d\mathbb{P}_n(t, \delta)
\]

\[
= -\frac{1}{F_0(t_0)\{1 - F_0(t_0)\}} \int_{t \in D_n} \left\{ \delta - \hat{F}_n^{(0)}(t) \right\} \{ \hat{F}_n^{(0)}(t) - a \} d\mathbb{P}_n(t, \delta)
\]

\[
= -\frac{1}{F_0(t_0)\{1 - F_0(t_0)\}} \int_{t \in D_n} \left\{ \delta + \hat{\mu}_n a(1-a)I_{\{t \geq t_0\}} - \hat{F}_n^{(0)}(t) \right\} \{ \hat{F}_n^{(0)}(t) - a \} d\mathbb{P}_n(t, \delta) = 0.
\]

Note that the next to last equality holds because \(\hat{F}_n^{(0)}(t) - a = 0 \) at \(t = t_0 \), at which point there is the added jump of \(\hat{\mu}_n a(1-a) \) in the cusum diagram. The expression on the last line is zero, because the increase of the second coordinate of the cusum diagram is equal to the increase of the integral w.r.t. \(n \) \(d\mathbb{P}_n \) for \(t \in D_n \), and since the equality to zero of the integral continues to hold if we multiply by a function which is constant on the same intervals as \(\hat{F}_n^{(0)} \). We also have:

\[
\frac{1}{F_0(t_0)\{1 - F_0(t_0)\}} \int_{t \in D_n} \left\{ \delta - \hat{F}_n^{(0)}(t) \right\} \{ \hat{F}_n^{(0)}(t) - F_0(t_0) \} d\mathbb{P}_n\hat{F}_n^{(0)}(t, \delta) = 0.
\]

So we can conclude:

\[
-2n \int_{t \in D_n} \left\{ \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{F(t)} - \left(1 - \delta\right) \frac{\hat{F}_n(t) - \hat{F}_n^{(0)}(t)}{1 - F(t)} \right\} d\mathbb{P}_n(t, \delta)
\]

\[
= 2n \int_{t \in D_n} \left\{ \frac{\hat{F}_n^{(0)}(t) - F_0(t_0)}{F_0(t_0)} - \left(1 - \delta\right) \frac{\hat{F}_n^{(0)}(t) - F_0(t_0)}{1 - F_0(t_0)} \right\} d(P_{\hat{F}_n^{(0)}} - P_{\hat{F}_n})(t, \delta) + o_p(1)
\]

\[
= 2n \int_{t \in D_n} \frac{\hat{F}_n^{(0)}(t) - F_0(t_0)}{F_0(t_0)\{1 - F_0(t_0)\}} d\mathbb{P}_n(t, \delta) + o_p(1).
\]
Combining this with (5.1), we find:

\[
2n \int_{t \in D_n} \left\{ \delta \log \frac{\hat{F}_n(T_i)}{F_n^{(0)}(T_i)} + (1 - \delta) \log \frac{1 - \hat{F}_n(T_i)}{1 - F_n^{(0)}(T_i)} \right\} d\mathbb{P}_n(t, \delta)
\]

\[
= n \int_{t \in D_n} \frac{\{\hat{F}_n(t) - F_0(t_0)\}^2 - \{\hat{F}_n^{(0)}(t) - \hat{F}_0(t_0)\}^2}{F_0(t_0)\{1 - F_0(t_0)\}} dt + o_p(1)
\]

\[
= n^{2/3} \int_{t_0 + n^{1/3}(b_n - a_n)}^{t_0 + n^{-1/3}(b_n - a_n)} \frac{\{\hat{F}_n(t_0 + n^{-1/3}t) - F_0(t_0)\}^2 - \{\hat{F}_n(t_0 + n^{-1/3}t) - F_0(t_0)\}^2}{F_0(t_0)\{1 - F_0(t_0)\}} dt + o_p(1).
\]

The result now follows, using the joint convergence of the processes

\[
\frac{n^{1/3}\{\hat{F}_n(t_0 + n^{-1/3}t) - F_0(t_0)\}}{\sqrt{F_0(t_0)\{1 - F_0(t_0)\}}} \quad \text{and} \quad \frac{n^{1/3}\{\hat{F}_n^{(0)}(t_0 + n^{-1/3}t) - F_0(t_0)\}}{\sqrt{F_0(t_0)\{1 - F_0(t_0)\}}}
\]

on bounded intervals to the slope of the least convex minorant of Brownian motion plus the function \(t^2 \) at zero without restriction and with the restriction that the slope is zero, respectively.

\[\square \]

6. Appendix B.

Proof of Theorem 3.1. We extend the values \(\hat{f}_n \) and \(\hat{f}_n^{(0)} \) of the solution \(\hat{f}_n \) and \(\hat{f}_n^{(0)} \) as vectors to right-continuous functions \(\hat{f}_n \) and \(\hat{f}_n^{(0)} \) on \([0, \infty)\). Note that the fact that the vector solutions are left-continuous slopes of the least concave majorants of the respective cumen diagrams does not force us to make their extensions to function on \(\mathbb{R}_+ \) also left-continuous.

Let \(D_n \) be the smallest interval \([a_n, b_n]\) such that \(\hat{f}_n \) and \(\hat{f}_n^{(0)} \) have the same points of jump on \(D_n^c \) and such that the boundary points of \(D_n \) are points of jump of \(\hat{f}_n \) and \(\hat{f}_n^{(0)} \) (see Remark 3.1). Since \(\hat{\mu}_n = O_p(n^{-2/3}) \), we get:

\[
2n \int_{D_n} \log \frac{\hat{f}_n(t)}{\hat{f}_n^{(0)}(t)} d\mathbb{P}_n(t) = 2n \log \{1 + a\hat{\mu}_n\} \int_{D_n} d\mathbb{P}_n(t) = 2n a\hat{\mu}_n \int_{D_n} d\mathbb{P}_n(t) + O_p\left(n^{-1/3}\right).
\]

The function \(\hat{f}_n^{(0)} \) must satisfy

\[
\int \hat{f}_n^{(0)}(x) \, dx = 1.
\]

So

\[
\int_{D_n} \hat{f}_n^{(0)}(t) \, dt + \int_{D_n^c} \hat{f}_n^{(0)}(t) \, dt = 1,
\]

and hence, using \(\hat{\mu}_n = O_p(n^{-2/3}) \),

\[
2n \int_{D_n} \hat{f}_n^{(0)}(t) \, dt = 2n \left\{ 1 - \int_{D_n} \hat{f}_n^{(0)}(t) \, dt \right\} = 2n \left\{ 1 - \{1 + \hat{\mu}_n a\}^{-1} \int_{D_n} d\mathbb{P}_n(t) \right\}
\]

\[
= 2n \left\{ \int_{D_n} d\mathbb{P}_n(t) + \hat{\mu}_n a \int_{D_n} d\mathbb{P}_n(t) \right\} + O_p\left(n^{-1/3}\right).
\]
So we obtain
\[
2n \int_D \log \frac{\hat{f}_n(t)}{f_n^{(0)}(t)} d\mathbb{F}_n(t)
= 2n \int_D \log \frac{\hat{f}_n(t)}{f_n^{(0)}(t)} d\mathbb{F}_n(t) + 2n \int_D \log \frac{\hat{f}_n(t)}{f_n^{(0)}(t)} d\mathbb{F}_n(t)
= 2n \int_D \log \frac{\hat{f}_n(t)}{f_n^{(0)}(t)} d\mathbb{F}_n(t) + 2n \int_D \log \frac{\hat{f}_n(t)}{f_n^{(0)}(t)} d\mathbb{F}_n(t) + O_p\left(n^{-1/3}\right)
= 2n \int_D \log \frac{\hat{f}_n(t)}{f_n^{(0)}(t)} d\mathbb{F}_n(t) - 2n \int_D d(\mathbb{F}_n - \hat{F}_n^{(0)})(t) + O_p\left(n^{-1/3}\right)
\]

Expanding in \(\hat{f}_n\), we find:
\[
2n \int_D \log \frac{\hat{f}_n(t)}{f_n^{(0)}(t)} d\mathbb{F}_n(t) - 2n \int_D (\hat{f}_n(t) - \hat{f}_n^{(0)}(t)) dt
= -2n \int_D \frac{\hat{f}_n(t) - \hat{f}_n^{(0)}(t)}{f_n(t)} d\mathbb{F}_n(t) + n \int_D \frac{\left(\hat{f}_n(t) - \hat{f}_n^{(0)}(t)\right)^2}{f_n(t)^2} d\mathbb{F}_n(t)
- 2n \int_D (\hat{f}_n(t) - \hat{f}_n^{(0)}(t)) dt + o_p(1)
= -2n \int_D \frac{\hat{f}_n(t) - \hat{f}_n^{(0)}(t)}{f_n(t)} d(\mathbb{F}_n - \hat{F}_n)(t) + n \int_D \frac{\left(\hat{f}_n(t) - \hat{f}_n^{(0)}(t)\right)^2}{f_n(t)^2} d\mathbb{F}_n(t) + o_p(1)
= -2n \int_D \frac{\hat{f}_n(t) - \hat{f}_n^{(0)}(t)}{f_0(t_i)} d(\mathbb{F}_n - \hat{F}_n)(t) + n \int_D \frac{\left(\hat{f}_n(t) - \hat{f}_n^{(0)}(t)\right)^2}{f_0(t_i)^2} d\mathbb{F}_n(t) + o_p(1).
\]

We now get:
\[
\int_D \left\{\hat{f}_n(t) - \hat{f}_n^{(0)}(t)\right\} d(\mathbb{F}_n - \hat{F}_n)(t)
= \int_D \left\{\hat{f}_n^{(0)}(t) - f_0(t_i)\right\} d(\mathbb{F}_n - \hat{F}_n)(t) - \int_D \left\{\hat{f}_n(t) - f_0(t_i)\right\} d(\mathbb{F}_n - \hat{F}_n)(t)
= \int_D \left\{\hat{f}_n^{(0)}(t) - f_0(t_i)\right\} d(\mathbb{F}_n - \hat{F}_n)(t)
= \int_D \left\{\hat{f}_n^{(0)}(t) - f_0(t_0)\right\} d(\mathbb{F}_n - \hat{F}_n^{(0)})(t) - \int_D \left\{\hat{f}_n^{(0)}(t) - f_0(t_i)\right\} d(\hat{F}_n^{(0)} - \hat{F}_n)(t)
= -\int_D \left\{\hat{f}_n^{(0)}(t) - f_0(t_i)\right\} \{\hat{f}_n^{(0)}(t) - \hat{f}_n(t)\} dt.
\]

In the last equality we use the fact that \(\hat{f}_n^{(0)}(t_i_0) - a = \hat{f}_n^{(0)}(t_i_0) - f_0(t_i_0) = 0\), which implies that the first term in the next to last expression is zero, using that the increments w.r.t. \(d\mathbb{F}_n\) and \(d\hat{F}_n^{(0)}\) are equal on an interval between jumps of \(\hat{f}_n^{(0)}\), if the interval does not contain \(t_i_0\). So, gathering
terms, we obtain:

\[
2n \int \log \frac{\hat{f}_n(t)}{f_n^{(0)}(t)} \, d\mathbb{F}_n(t) \\
= n \int_{D_n} \frac{\{\hat{f}_n(t) - f_n^{(0)}(t)\}^2}{f_0(t_i o)^2} \, d\mathbb{F}_n(t) - \frac{2n}{f_0(t_i o)} \int_{D_n} \{\hat{f}_n^{(0)}(t) - f_0(t_i o)\} \{\hat{f}_n^{(0)}(t) - \hat{f}_n(t)\} \, dt + o_p(1)
\]

\[
= n \int_{D_n} \frac{\{\hat{f}_n(t) - f_0(t_i o)\}^2 - \{\hat{f}_n^{(0)}(t) - f_0(t_i o)\}^2}{f_0(t_i o)^2} \, dt + n \int_{D_n} \frac{\hat{f}_n(t) - \hat{f}_n^{(0)}(t)}{f_0(t_i o)} \, d(\mathbb{F}_n - F_0)(t) + o_p(1)
\]

\[
= n \int_{D_n} \frac{\{\hat{f}_n(t) - f_0(t_i o)\}^2 - \{\hat{f}_n^{(0)}(t) - f_0(t_i o)\}^2}{f_0(t_i o)} \, dt + o_p(1).
\]

The expression on the last line converges under the null hypothesis in distribution to the limit distribution of the likelihood ratio test for the current status model, as described in Theorem 2.5, p. 1710 of [1].

□

References.

[1] M. Banerjee and J.A. Wellner, Likelihood ratio tests for monotone functions, Ann. Statist. 29 (2001), 1699–1731. MR1891743 (2003c:62072)
[2] ______, Confidence intervals for current status data, Scand. J. Statist. 32 (2005), 405–424. MR2204627
[3] U. Grenander, On the theory of mortality measurement. II, Skand. Aktuarietidsskr. 39 (1956), 125–153 (1957). MR0093415 (19,1243c)
[4] P. Groeneboom and G. Jongbloed, Smooth and non-smooth estimates of a monotone hazard, From Probability to Statistics and Back: High-Dimensional Models and Processes–A Festschrift in Honor of Jon A. Wellner, Institute of Mathematical Statistics, 2013, pp. 174–196.
[5] P. Groeneboom, G. Jongbloed, and B.I. Witte, Maximum smoothed likelihood estimation and smoothed maximum likelihood estimation in the current status model, Ann. Statist. 38 (2010), 352–387.
[6] P. Groeneboom, M.H. Maathuis, and J.A. Wellner, Current status data with competing risks: consistency and rates of convergence of the MLE, Ann. Statist. 36 (2008), 1031–1063. MR2418648 (2009h:62039)
[7] P. Groeneboom and J.A. Wellner, Information bounds and nonparametric maximum likelihood estimation, DMV Seminar, vol. 19, Birkhäuser Verlag, Basel, 1992. MR1180321 (94k:62056)
[8] Piet Groeneboom and Geurt Jongbloed, Nonparametric estimation under shape constraints, Cambridge Univ. Press, Cambridge, 2014.
[9] P. Hall, Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density, Ann. Statist. 20 (1992), 675–694. MR1165587 (93e:62131)
[10] P. Hall and J.L. Horowitz, A simple bootstrap method for constructing nonparametric confidence bands for functions, Ann. Statist. 41 (2013), 1892–1921. MR3127852
[11] N. Keiding, O.K. Højbjerg Hansen, D.N. Sørensen, and R. Slama, The current duration approach to estimating time to pregnancy, Scand. J. Stat. 39 (2012), 185–204. MR2927018
[12] M.R. Kosorok, Bootstrapping the Grenander estimator, Beyond parametrics in interdisciplinary research: Festschrift in honor of Professor Pranab K. Sen, Inst. Math. Stat. Collect., vol. 1, Inst. Math. Statist., Beachwood, OH, 2008, pp. 282–292.
[13] T. Robertson, F.T. Wright, and R.L. Dykstra, Order restricted statistical inference. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Ltd., Chichester, 1988. MR961262 (90b:62001)
[14] B. Sen, M. Banerjee, and M.B. Woodroofe, Inconsistency of bootstrap: the Grenander estimator, Ann. Statist. 38 (2010), 1953–1977. MR2676880 (2011f:62046)
[15] R. Slama, O.K. Højbjerg Hansen, B. Ducot, A. Bohet, D. Sørensen, L. Allemand, M.J. Eikemans, L. Rosetta, J.C. Thalabard, N. Keiding, et al., Estimation of the frequency of involuntary infertility on a nation-wide basis, Human reproduction 27 (2012), 1489–1498.
[16] Y. Vardi, Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation, Biometrika 66 (1979), 751–761. MR1041420 (91i:62057)
[17] G.S. Watson, Estimating functionals of particle size distributions, Biometrika 58 (1971), 483–490. MR0312639 (47 #1195)
[18] M.B. Woodroofe and J. Sun, *A penalized maximum likelihood estimate of $f(0^+)$ when f is nonincreasing*, Statist. Sinica 3 (1993), 501–515. MR1243398 (94i:62044)