Subleading contributions to the decay width of the T_{cc}^+ tetraquark

Mao-Jun Yan1,2 and Manuel Pavon Valderrama1

1School of Physics, Beihang University, Beijing 100191, China
2CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

(Dated: January 11, 2022)

Recently the LHCb collaboration has announced the discovery of the T_{cc}^+ tetraquark. Being merely a few hundred keV below the D^+D^0 threshold, the T_{cc}^+ is expected to have a molecular component, for which there is a good separation of scales that can be exploited to make reasonably accurate theoretical predictions about this tetraquark. Independently of its nature, the most important decay channels will be $D^+D^0\pi^0$, $D^0D^0\pi^+$ and $D^+D^0\gamma$. Its closeness to threshold suggests that the mass and particularly the width of the T_{cc}^+ tetraquark depend on the resonance profile. While the standard Breit-Wigner parametrization generates a T_{cc}^+ that is too broad for current theoretical calculations to reproduce, a three-body unitarized Breit-Wigner shape reveals instead a decay width ($\Gamma_{\text{pole}} = 48 \pm 2^{+9}_{-10}\text{keV}$) consistent with theoretical expectations. Here we consider subleading order contributions to the decay amplitude, which though having at most a moderate impact in the width still indicate potentially significant differences with the experimental width that can be exploited to disentangle the nature of the T_{cc}^+. Concrete calculations yield $\Gamma_{\text{LO}} = 49 \pm 16\text{keV}$ and $\Gamma_{\text{NLO}} = 58^{+7}_{-6}\text{keV}$, though we expect further corrections to the NLO decay widths from asymptotic normalization effects. We find that a detailed comparison of the NLO total and partial decay widths with experiment suggests the existence of a small (but distinguishable from zero) non-molecular component of the T_{cc}^+.

1. INTRODUCTION

The LHCb collaboration has recently observed 1 a tetraquark in the $D^0D^0\pi^+$ mass spectrum. The Breit-Wigner parameters of this tetraquark, the T_{cc}^+, are

$$\delta m_{BW} = -273 \pm 61 \pm 5^{+14}_{-11}\text{keV},$$
$$\Gamma_{BW} = 410 \pm 165 \pm 43^{+18}_{-38}\text{keV},$$

where the mass difference is with respect to the D^+D^0 threshold. Alternatively, if the data are analyzed with a resonance profile more suitable to the closeness of the T_{cc}^+ to the D^+D^0 threshold 2, the parameters of the T_{cc}^+ pole turn out to be

$$\delta m_{\text{pole}} = -360 \pm 40^{+14}_{-13}\text{keV},$$
$$\Gamma_{\text{pole}} = 48 \pm 2^{+9}_{-12}\text{keV}.$$

Of course the question is what is the nature of this state, where the two contending explanations are a compact tetraquark or a loosely bound $D^+D^0\bar{D}^0D^+$ system.

Actually, there is a long list of predictions of a $cc\bar{u}\bar{d}$ state with $J = 1^+$ and $I = 0$, beginning with the pioneering realization by Zouzou et al. 3 that this tetraquark could be below the D^*D threshold, followed by a large series of works till nowadays 4 12. The predictions of $J = 1^+$, $I = 0$ D^*D and D^*D^* bound states (for which heavy quark-spin symmetry predicts identical potentials 4) are in contrast somewhat more recent, with Manohar and Wise 15 and Törmqvist 17 considering it unlikely (from pions alone), but then Ericson and Karl 18 realizing that this conclusion might change if other meson exchanges are considered. An observation later confirmed in 20 for D^*D^*, in 10 for D^*D (corresponding to the T_{cc}^+), in 21 for D^*D and $D^*\bar{D}$, in 22 23 for D^*D, etc. (plus the attention this hypothesis has received 22 28 after the observation of the T_{cc}^+). Here it is worth noticing that there might be up to three states with the quantum numbers of the T_{cc}^+ (with the molecular ones usually close to threshold).

In view of the aforementioned theoretical landscape, there are reasons to believe the two hypotheses: the molecular and tetraquark explanations are not mutually exclusive and the T_{cc}^+ could be a superposition of both. The molecular component of the T_{cc}^+ has the theoretical advantage of being a shallow bound state, presumably with a good separation of scales between its long-range and short-range components. This in turn allows us to use the existent theoretical toolbox for shallow bound states 29 30, from which in principle it would be possible to make predictions accurate enough as to analyze its structure.

In this regard, the decay width of the T_{cc}^+ is particularly important (and indeed it has already received due attention 21 32): if the experimental measurements and theoretical predictions are on par with each other in terms of accuracy, we will be able to determine whether the T_{cc}^+

1 mpavon@buaa.edu.cn

2 The situation is completely analogous to the $Z_b(10650)$ and $Z_b(10610)$, or to the $X(3872)$ and its hypothetical $J^{PC} = 2^{++}$ $X(4012)$ partner 14. However, for the D^*D^* a similar caveat apply as for the $X(4012)$ 19: the actual location of the compact $cc\bar{u}\bar{d}$ / $c\bar{c}$ states might make the higher mass partner disappear.
is purely molecular or compact, or what is the degree of admixture between these two explanations. Given small enough uncertainties, a calculated decay width that is too small or too large in comparison with the experiment might point out to (or even determine) the existence of physics beyond the naïve molecular explanation, like a tetraquark component or unobserved states. However, this might prove difficult: the wave function of a tetraquark close to the \(D^*D \) threshold might be indistinguishable from that of two separate \(D^* \) and \(D \) mesons, as noted in [5], which already considered the possibility of a tetraquark lying between the \(D^*D \) and \(DD\pi \) thresholds (see also the discussion in [34]).

2. DECAY CHANNELS:

The \(T_{cc}^+ \) decay width is expected to be saturated by its strong and electromagnetic decays, which are in principle limited to three possibilities: \(T_{cc}^+ \rightarrow D^+D^0\pi^0 \), \(T_{cc}^+ \rightarrow D^0D^0\pi^+ \) and \(T_{cc}^+ \rightarrow D^+D^0\gamma \).

However this is not necessarily the whole story: if the predicted \(ccc\bar{c}d \) tetraquark happens to be a different state than the \(T_{cc}^+ \) but with a lower mass, which we might call \(T_{cc}^\ast \) for concreteness, we will have to add up to two new decay channels: \(T_{cc}^\ast \rightarrow T_{cc}^\ast \gamma \) (M1 magnetic and E2 quadrupole transitions) and \(T_{cc}^\ast \rightarrow T_{cc}^\ast \pi^0 \), of which the second requires isospin breaking (e.g. stemming from the isospin breaking in the mass of the \(D^*+D^0 \) and \(D^++D^0 \) channels) and a compact \(T_{cc}^\ast \) located close or below the \(D^*D \) threshold. This last condition is more difficult to meet as there are less predictions of a \(ccc\bar{c}d \) state close or below the \(DD \) threshold [33, 38] (as to allow some phase space for \(T_{cc}^\ast \rightarrow T_{cc}^\ast \) than between the \(D^*D \) and \(DD \) thresholds [3, 39, 43]. A different variation over this idea — the possibility of a \(DD \) bound state, \(T_{cc}^\ast \), and its potential effect on the \(T_{cc}^+ \) decay width — has been recently explored in Ref. [44].

The most straightforward calculation of the \(T_{cc}^+ \) decay width into pions involves sandwiching the \(D^* \rightarrow D\pi \) one-body decay operators between the initial and final wave functions [31, 33], in which case the total decay width of a molecular \(T_{cc}^+ \) falls short of the Breit-Wigner width [4], but agrees well with the width from the improved resonance profile introduced in [2] (which is in turn consistent with the well known fact that the Breit-Wigner parametrization will lead to distortions for two-body states close to threshold [45, 46]). Here we include a series of subleading order effects, including two-body decay operators and rescattering effects in the final \(DD \) pair, which refine the aforementioned theoretical estimations and might allow to eventually disentangle the molecular and non-molecular components of the \(T_{cc}^+ \) decay width.

3. POWER COUNTING:

Effective field theories (EFTs) are expansions in terms of the ratio \(Q/M \), with \(Q \) and \(M \) characteristic soft and hard scales of the system at hand. If the \(T_{cc}^+ \) is molecular, its natural momentum scale \(Q \) is given by the wave number of its \(D^*D^0D^0 \) components, i.e. 23–26 and 57–59 MeV, respectively, depending on whether we use \(\delta m_{\pi} \) or \(\delta m_{\text{pole}} \), see Eqs. (1) and (3). The ratio of these two scales with respect to the pion mass is about 0.18 and 0.42, from which it would be perfectly possible to consider the pion mass as a heavy scale \(M \sim m_{\pi} \) in a first approximation. If we consider the strong decay products of the \(T_{cc}^+ \), the maximum momentum and energy of the final pion are about 40 and 6 MeV, which are again small in comparison with the pion mass. The situation is less clear with the momentum of the final \(DD \) pair, which can reach 100 MeV: however, one pion exchange does not happen in this system, with the longest range piece of the \(DD \) potential being the two-pion exchange football diagram, with a range of \(2m_{\pi} \). From this, the ratio of scales for the final \(DD \) system is 0.37. At this point it is worth noticing that a pion exchanged between a \(D^*D \) and a \(DD^* \) initial and final state is almost on mass shell and will in principle follow naive dimensional analysis (NDA) as its power counting (also referred to as Weinberg’s counting [47, 48], which was originally formulated for the two-nucleon system but can be applied to other non-relativistic two-hadron systems as well). This conclusion changes though once we consider the relatively large momentum scale at which pions become non-perturbative in the two-charmed meson system [49]. In summary, an effective field theory description in which the pion mass is considered a hard scale is expected to have a convergence parameter in the range \(Q/M \sim 0.2–0.4 \).

With this, if we consider the strong decays of the \(T_{cc}^+ \) and the diagrams in Fig. [1] their counting will be

(a) the one-body decay diagram is order \(Q^{-2} \) and, being the lowest order one, it is leading order (LO),

(b) in the Weinberg counting the seagull diagram is \(Q^0 \), but in the decay of the \(T_{cc}^+ \) the Weinberg-Tomozawa term is proportional to \(m_{\pi} \) which we count as a hard scale. Thus this diagram is promoted to \(Q^{-1} \) and is next-to-leading order (NLO),

(c) the contact-range two-body operator is naively \(Q^1 \), but if the \(T_{cc}^+ \) is a bound state and applying the arguments of Ref. [50] for the counting of two-body operators, it will be promoted to \(Q^0 \) and will be next-to-next-to-leading order (N^2LO).

Indeed, following the logic in Ref. [50], if we apply renormalization group invariance to the contact-
range two-body operator, we obtain
\[
\frac{d}{dR_c} (\langle \Psi(DD) | \hat{O}_{DD}^{2B} | \Psi(T_{cc}^+) \rangle) \propto \frac{d}{dR_c} \left[\bar{c}_1 \cdot \vec{q} \frac{C_{2B}(R_c)}{R_c} \right] = 0, \tag{5}
\]
where \(|\Psi(T_{cc}^+)\rangle \) and \(|\Psi(DD)\rangle \) are the initial and final two-meson wave functions, \(R_c \) is a cutoff radius, \(C_{2B} \) the contact-range coupling, \(\bar{c}_1 \) the polarization of the \(T_{cc}^+ \) tetraquark and \(\vec{q} \) the momentum of the pion. The \(R_c^{-1} \) factor in front of \(C_{2B}(R_c) \) comes from the tetraquark wave function, which scales as \(\langle r | \Psi(T_{cc}^+) \rangle \propto 1/r \) at short distances. This factor also implies that in the infrared limit \((R_c^{-1} \sim Q) \), the \(C_{2B} \) coupling is proportional to \(1/Q \) and thus enhanced by one order with respect to NDA.

It is worth noticing that the appearance of the contact-range two-body operator sets the limit of predictability of the EFT: at \(N^2LO \) this contact can be calibrated to reproduce the \(T_{cc}^+ \) decay width into pions, which means that the decay width becomes the input of the theory (instead of its output, which is what we want). For comparison purposes, this counting has a few similarities with X-EFT \([51]\) and a very significant difference in what regards the counting of pion exchanges (which we count at least as \(N^3LO \), as will be explained later, see the discussion below Eq. [32]). We find it also interesting to comment on Ref. [44], which proposes an EFT description of the \(T_{cc}^+ \) decays when there is a bound state in the final \(DD \) state: if this were to be the case, the final \(DD \) wave function will behave in exactly the same way as the initial \(T_{cc}^+ \) one, i.e. \(\langle r | \Psi(DD) \rangle \propto 1/r \), which will result in a \(1/Q^2 \) enhancement of the contact-range two-body operator, which will then enter at NLO. In this case, EFT will only be able to predict the \(T_{cc}^+ \) decay at LO (instead of NLO as we propose here).

Even if the NLO limitation and the potentially slow convergence parameter look disappointing, they are indeed more than enough for the current situation: the relative uncertainty in the experimental decay width is 0.43 for the standard Breit-Wigner parametrization and 0.25 for the unitarized Breit-Wigner. This naively indicates that either a LO or NLO calculation will be enough to match it, but at which order this exactly happens is not completely obvious a priori: EFT arguments allow for the existence of numerical factors of \(O(1) \), which might subvert the original power counting expectations. If we ignore these numerical factors and consider the expansion parameter to lie between 0.18 – 0.42, we find that the uncertainty in the LO and NLO decay widths will be
\[
\frac{\Delta \Gamma^{LO}}{\Gamma^{LO}} \sim 0.18 - 0.42 \quad \text{and} \quad \frac{\Delta \Gamma^{NLO}}{\Gamma^{NLO}} \sim 0.03 - 0.18, \tag{6}
\]
which indicates that a NLO calculation is necessary to be fully competitive with experiment, particularly if we want to match the accuracy of [2]. As we will see, calculations of the decay width will turn out to be compatible with the average estimations of the EFT convergence. Thus it happens that all the pieces fit together to put the current limit at NLO, as it is simply not possible to achieve a better accuracy at \(N^3LO \) where the decay width is no longer a prediction.

FIG. 1. Lowest-order operators involved in the \(T_{cc} \to DD\pi \) decay: the one-body decay operator is of order \(Q^{-2} \), while the seagull and contact two-body currents are naively of order \(Q^0 \) and \(Q^1 \) but get promoted to \(Q^{-1} \) and \(Q^0 \), respectively.

4. DECAY AMPLITUDES

For the decay of the \(T_{cc}^+ \) into \(DD\pi \) we will consider a decay amplitude in the form
\[
\langle DD(\vec{p}')\pi^\pm|H|DD^*(\vec{p})\rangle = A^c(\vec{p}', \vec{p}, \vec{q}), \tag{7}
\]
where \(c \) is the isospin index of the outgoing pion, \(\vec{q} \) its momentum and \(\vec{p} \) (\(\vec{p}' \)) the center-of-mass relative momentum of the incoming (outgoing) \(D^*D \) (\(DD \)) system. This amplitude will be sandwiched between the initial and final state wave functions
\[
\langle A^c \rangle = \langle DD(\vec{k})|A^c|T_{cc}^+ \rangle, \tag{8}
\]
then inserted into Fermi’s golden rule to obtain the decay width
\[
\Gamma(T_{cc}^+ \to DD\pi) = 2\pi \int \frac{d^3\vec{k}}{(2\pi)^3} \frac{d^3\vec{q}}{(2\pi)^3} \times \delta(\omega + \frac{k^2}{2\mu_{DD}} + \frac{q^2}{2m_{DD}} - \Delta) |\langle A^c \rangle|^2, \tag{9}
\]
where \(\vec{k} \) is the center-of-mass momentum of the \(DD \) pair, \(\vec{q} \) refers to the momentum of the outgoing pion and \(\omega = \sqrt{m_{\pi}^2 + q^2} \) to its energy (with \(m_{\pi} \) the pion mass), \(\mu_{DD} \) and \(m_{DD} \) are the reduced and total mass of the
final DD pair and $|\langle A^c \rangle|^2$ represents the sum over final states and average over initial states. The amplitude A^c is represented by the diagrams in Fig. [1] the evaluation of which yields

$$A^c = \frac{g_1}{\sqrt{2}f_\pi} \left[\frac{\mu_\pi}{f_\pi} \left(\vec{\epsilon}_1 \cdot (\vec{p}' - \vec{p} + \frac{\vec{q}}{2}) i(\bar{\tau}_1 \times \bar{\tau}_2) e^{i \bar{\tau}_1 \cdot \bar{\tau}_2} \right) \right],$$

where \vec{p}, \vec{p}' are the relative momenta of the incoming and outgoing D^*D and DD systems, \vec{q} and c the momentum and the isospin index (in the Cartesian basis) for the outgoing pion, τ_i^c is the isospin operator (a Pauli matrix) for the pion as applied to vertex $i = 1, 2$, $f_\pi \simeq 130$ MeV the pion weak decay constant, g_1 the axial coupling for the charmed mesons, m_π the pion mass and $\mu_\pi^2 = m_\pi^2 - (m(D^*) - m(D))^2$ the effective pion mass for the in-flight pion, which can be on-shell and which we simplify to $\mu_\pi = 0$ from now on.\footnote{Actually, $\mu_\pi^2 \leq 0$, which means that we can interpret the two-body operator as the rescattering of the outgoing pion with the second charmed meson (indeed, this is how this operator is interpreted in X-EFT\footnote{Notice that in the sign convention we are using $k \cot \delta(k) \rightarrow -1/a_0$ for $k \rightarrow 0$, and a bound (virtual) state entails a positive (negative) scattering length.}). By taking the $\mu_\pi = 0$ limit we are effectively considering that this rescattering happens at zero energy, which is a good approximation taking into account that the maximum momentum of the pion is about $35 - 40$ MeV.} Besides, in the Weinberg-Tomozawa vertex we have made the simplification that the energy of the incoming and outgoing pion is $\omega_\pi = \sqrt{m_\pi^2 + \vec{q}^2}$ has a negligibly small effect). For the initial center-of-mass momentum coordinates we have also ignored the mass difference between the D and D^* mesons.

We now evaluate the decay operator between the initial and final states. If we assume wave functions of the type

$$\langle \vec{x}|DD(\vec{k}) \rangle = e^{i\vec{K} \cdot \vec{x}} |DD \rangle \quad \text{and} \quad \langle \vec{x}|T_{cc} \rangle = \psi(\vec{x}) |D^*D \rangle,$$

the matrix element of the decay amplitude can be explicitly evaluated as follows

$$\langle A^c \rangle = \frac{g_1}{\sqrt{2}f_\pi} \left[\frac{\mu_\pi}{f_\pi} \left(\vec{\epsilon}_1 \cdot (\vec{p}' - \vec{p} + \vec{q}/2) \right) \right] \left[(\bar{\tau}_1 \times \bar{\tau}_2) e^{i \bar{\tau}_1 \cdot \bar{\tau}_2} \right],$$

where the one- and two-body integrals take the form

$$I_{1B}(\vec{k}, \vec{q}) = \int d^3 \vec{x} \psi(\vec{x}) e^{-i(\vec{K} - \frac{\vec{q}}{2}) \cdot \vec{x}},$$

$$I_{2B}(\vec{k}, \vec{q}) = \int d^3 \vec{x} \psi(\vec{x}) \nabla_x \left[\frac{1}{4\pi |\vec{x}|} \right] e^{-i(\vec{K} + \frac{\vec{q}}{2}) \cdot \vec{x}}.$$

These expressions can be further simplified by assuming the T_{cc} to be an S-wave bound state

$$\langle \vec{p}'|T_{cc} \rangle = \frac{1}{\sqrt{4\pi}} \frac{u(r)}{r} |D^*D \rangle,$$

and by expanding the decay amplitude in partial waves

$$\langle A(\vec{k}, \vec{q}) \rangle = \vec{\epsilon}_1 \cdot \vec{q} A_{SP}(k, q) + \vec{\epsilon}_1 \cdot \vec{k} A_{PS}(k, q) + (D\text{-waves and higher}),$$

where we will ignore contributions in which the final DD pair has orbital angular momentum $L \geq 2$. After a few manipulations we arrive at

$$\langle A^c \rangle = \frac{g_1}{\sqrt{2}f_\pi} \left[\frac{\mu_\pi}{f_\pi} \left(\vec{\epsilon}_1 \cdot (\vec{p}' - \vec{p} + \vec{q}/2) \right) \right] \left[(\bar{\tau}_1 \times \bar{\tau}_2) e^{i \bar{\tau}_1 \cdot \bar{\tau}_2} \right],$$

where the integrals I_{00}, I_{01} and I_{11} are given by

$$I_{00}(k, q) = \sqrt{4\pi} \int_0^{\infty} dr \, r \, u(r) \, j_0(kr) \, j_0(qr/2),$$

$$I_{01}(k, q) = \frac{1}{\sqrt{4\pi}} \int_0^{\infty} dr \, u(r) \, j_0(kr) \, j_1(qr/2),$$

$$I_{10}(k, q) = \frac{1}{\sqrt{4\pi}} \int_0^{\infty} dr \, u(r) \, j_1(kr) \, j_0(qr/2),$$

with $j_0(x)$ the spherical Bessel functions. We notice that in the theory we are using the reduced wave function takes the form $u(r) = A_S e^{-\gamma r}$, for which the I_{00}, I_{01} and I_{10} integrals can be evaluated analytically.

The scattering of the DD in the final state can be taken into account by changing the $j_0(kr)$ (which comes from assuming the final DD state is a plane wave) in the integral I_{00} to

$$j_0(kr) \rightarrow \cos \delta(k) j_0(kr) - \sin \delta(k) y_0(kr),$$

where $\delta(k)$ is the S-wave DD phase shift and y_n the spherical Neumann functions. If we assume that scattering in the final state is weak (as dictated by our counting), we can simply approximate

$$\cos \delta \approx 1 \quad \text{and} \quad \sin \delta \approx -a_0 k,$$

with a_0 the DD scattering length.\footnote{Thus, the only change we have to do is the substitution $I_{00}(k, q) \rightarrow I_{00}(k, q) + (a_0 k) Y_{00}(k, q),$ with Y_{00} defined as

$$Y_{00}(k, q) = \sqrt{4\pi} \int_0^{\infty} dr \, u(r) \, j_0(kr) \, j_0(qr/2).$$}
We notice that the combination of the \(DD \) rescattering with the seagull diagram, which is \(N^2\text{LO} \), is logarithmically divergent and requires the inclusion of a contact-range two-body operator. This represents a non-trivial check of our initial power counting estimation for this operator.

For the decay of the \(T_{cc}^{+} \) into \(DD\gamma \) we use basically the same formalism, though in this case there is no two-body operator: the lowest order one enters at \(N^3\text{LO} \). The decay amplitude takes the form

\[
(DD(\vec{p}'))\gamma|H|D^*D(\vec{p})) = A_{M1}(\vec{p}', \vec{p}, \vec{q}),
\]

with \(A_{M1} \) given by

\[
A_{M1} = \mu(D^*) \vec{\alpha} \cdot (\vec{\epsilon}_1 \times \vec{q}) (2\pi)^3 \delta^{(3)}(\vec{p}' - \vec{p} + \frac{\vec{q}}{2}),
\]

where \(\vec{\alpha} \) is the polarization vector of the photon and \(\mu(D^*) \) the magnetic moment of the relevant \(D^* \to D\gamma \) transition, which if written in the isospin basis reads

\[
\mu(D^*) = \mu_+ \left(\frac{1 + \tau_1}{2} \right) + \mu_0 \left(\frac{1 - \tau_1}{2} \right),
\]

with \(\mu_+ \) and \(\mu_0 \) the magnetic moments for \(D^+ \to D^+\gamma \) and \(D^{*0} \to D^0\gamma \), though for this decay one might as well simply use the particle basis. The calculation of the decay width uses Eq. (23) but with the substitution \(\omega \to q \) for adapting it to the photon case. The matrix elements of \(A_{M1} \) are obtained as before, leading to

\[
\langle A_{M1} \rangle = \langle \mu(D^*) \rangle \vec{\alpha} \cdot (\vec{\epsilon}_1 \times \vec{q}) I_{00}(k, q),
\]

which is completely analogous to Eq. (17). The inclusion of rescattering effects in the final \(DD \) state is done again with Eq. (28).

5. MOLECULAR \(T_{cc}^{+} \) WAVE FUNCTION

If isospin symmetry were to be conserved in the masses, the wave function of the \(T_{cc}^{+} \) would be written as

\[
\langle \vec{x} | T_{cc}^{(1)} \rangle = \psi(\vec{x}) |D^*D(I)\rangle,
\]

depending on whether its isospin is \(I = 0 \) or 1 (where molecular models show a clear preference for \(I = 0 \)). However, the \(T_{cc}^{+} \) is located merely a few hundred of keV below the \(D^{*+}D^0 \), which is small in comparison with the mass difference between the \(D^{*+}D^0 \) and \(D^{*0}D^+ \) thresholds (about 1.4 MeV). For this reason we instead consider the \(T_{cc}^{+} \) wave function to be a linear combination of a low and a high mass channel contributions:

\[
\langle \vec{x} | T_{cc} \rangle = \psi_L(\vec{x}) \langle L \rangle + \psi_H(\vec{x}) \langle H \rangle,
\]

with \(\langle L \rangle \) and \(\langle H \rangle \) given by

\[
\langle L \rangle = |D^{*+}D^0\rangle \quad \text{and} \quad \langle H \rangle = |D^{*0}D^+\rangle.
\]

For determining the wave function, we first consider the EFT expansion of the \(D^*D \) interaction

\[
V_{\text{EFT}}(\vec{q}) = C_I + D_I q^2 + E_I \left(\epsilon^*_I \cdot \vec{q} \epsilon^*_I \cdot \vec{q} - \frac{1}{3} q^2 \right) + V_{\text{OPE}}(\vec{q}),
\]

where \(\vec{q} \) is the exchanged momentum between the mesons, \(I = 0,1 \) indicates isospin, \(C_I \) and \(D_I \) represent momentum-independent and momentum-dependent S-wave interactions, \(E_I \) is an S-to-D-wave contact interaction and \(V_{\text{OPE}} \) is the one pion exchange (OPE) potential. We will count \(C_0 \) as LO, \(C_1 \) and \(D_0 \) as NLO and \(E_0 \) as \(N^3\text{LO} \). As for the OPE potential it is nominally NLO, but the actual momentum scale at which central and tensor pion exchanges become non-perturbative in the \(D^*/DD^* \) systems has been estimated to be \(\Lambda_C > 1 \text{GeV} \) and \(\Lambda_T = 290 \text{MeV} \) in [49], but this corresponds to \(g_1 = 0.6 \). If we use the updated value of the axial coupling \(g_1 = 0.56 \), the tensor scale will become \(\Lambda_T = 330 \text{MeV} \). The size of the tensor corrections is thus expected to be \(\gamma_L/\Lambda_T \sim 0.08 \), which is in between \(N^{3,7}\text{LO} \) and \(N^{2,9}\text{LO} \) for our estimation of the expansion parameter \((0.2)^{1,7} \) and \((0.4)^{2,9} \) are approximately 0.08).

Yet, we warn that this estimation will require further attention: owing to the effective mass of the pion being relatively small (\(\mu_\pi \to 0 \)), the S-to-D wave tensor force effectively becomes a \(1/r^3 \) potential, which has a really long range and might generate a D-wave component of the wave function that is larger than expected.

As far as pions remain subleading, we have a contact theory with a wave function of the type

\[
\psi_L(\vec{x}) = \frac{A_S}{\sqrt{4\pi}} \phi_L \frac{e^{-\gamma_L r}}{r}, \quad \psi_H(\vec{x}) = \frac{A_S}{\sqrt{4\pi}} \phi_H \frac{e^{-\gamma_H r}}{r},
\]

with \(A_S \) the asymptotic normalization of the wave function, \(\phi_L \) and \(\phi_H \) (such that \(|\phi_L|^2 + |\phi_H|^2 = 1 \)) the amplitudes of the \(L \) and \(H \) channels and \(\gamma_L = 26.4 \text{MeV} \) and \(\gamma_H = 58.5 \text{MeV} \) the wave numbers for the central value of \(\delta m_{\text{pole}} \). It will prove useful to also define \(\phi_L \) and \(\phi_H \) in terms of the isospin angle \(\theta_I \):

\[
\phi_L = \cos \theta_I \quad \text{and} \quad \phi_H = \sin \theta_I.
\]

At LO, if we assume that the \(T_{cc}^{+} \) is predominantly an \(I = 0 \) state (at least at short distances), we will only have an isoscalar contact-range interaction which basically fixes \(\phi_{L, H}^{(0)} = -\phi_{H, L}^{(0)} = 1/\sqrt{2} \) (modulo corrections from the difference in the reduced masses of the \(L \) and \(H \) channels). The LO asymptotic normalization will be determined by the normalization of the wave function, i.e.

\[
|A_S|^{(0)}^2 \int_0^\infty dr \left(|\phi_L^{(0)}|^2 u_L^2(r) + |\phi_H^{(0)}|^2 u_H^2(r) \right) = 1.
\]
with \(u_L(r) = e^{-\gamma_L r} \) and \(u_H(r) = e^{-\gamma_H r} \), from which

\[
\frac{1}{A_{S}^{LO}} = \frac{\phi_{L}^{LO}}{2\gamma_L} + \frac{\phi_{H}^{LO}}{2\gamma_H}.
\]

(37)

At NLO we will have corrections from (i) the potential in the \(I = 1 \) channel, i.e. \(C_1 \), which actually does not change the form of the wave function at all (ii) the momentum-dependent contact-range interaction in the \(I = 0 \) channel, i.e. \(D_0 \), which breaks the relation between \(A_S \) and the normalization of the wave function. Basically this implies the correction:

\[
A_{S}^{NLO} = A_{S}^{LO} + \delta A_S,
\]

(38)

Now two strategies are possible here: (i) to determine \(\delta A_S \) from the isoscalar effective range or (ii) to determine them from external information. The first strategy is the more usual one in pionless EFT, though besides expanding in terms of range corrections, it is also possible to expand in terms of the wave function renormalization [34].

The second strategy is equivalent (up to higher order corrections) to the first one and might be easier to pull off simply because \(A_S \) (and also \(\theta_I \)) can be determined from potential models. In fact, provided that the interaction binding the \(T_{cc}^+ \) is attractive at most distance scales, we will have \(A_S > A_{S}^{LO} \) (the only way in which to obtain \(A_S < A_{S}^{LO} \) is with an attractive short-range potential surrounded by a repulsive barrier), which works in the direction of increasing the decay widths.

Finally, for completeness and as a non-trivial cross-check of isospin symmetry, we will explicitly consider changes of the isospin angle at NLO

\[
\theta_I^{NLO} = \theta_I^{LO} + \delta \theta_I.
\]

(39)

From the expansion of the potential in Eq. (32) we expect \(\theta_I^{LO} \approx \theta_I^{NLO} \approx -45^\circ \), modulo negligible corrections from the difference in the reduced masses of the \(L \) and \(H \) channel and the relative effect of the range corrections (the \(D_0 \) coupling) in these two channels. Yet, considering a non-trivial \(\delta \theta_I \) might reveal the existence of isospin breaking contact terms at short distances (though here short distances actually includes two-pion exchange diagrams that might generate a larger than expected \(\delta \theta_I \)). We will see that the NLO calculation yields a \(\theta_I^{NLO} \) compatible with \(-45^\circ \) when compared with the relevant experimental data.

6. NON-MOLECULAR COMPONENT OF THE \(T_{cc}^+ \)

Predictions for the \(T_{cc}^+ \) tetraquark fall into two categories depending on whether they are based on its quark or charmed meson degrees of freedom. We might loosely refer to them as compact and molecular. This is not necessarily a clear-cut distinction though, as four-quark explanations can perfectly generate a non-compact, two-charmed meson component of the wave function if the mass of the tetraquark happens to be close to the \(D^* D \) threshold [3]. For the sake of simplicity we might consider that the \(T_{cc}^+ \) wave function can be subdivided into a non-compact and compact component:

\[
|T_{cc}^+\rangle = \cos \theta_C |D^* D\rangle + \sin \theta_C |ccq\bar{q}\rangle,
\]

(40)

with the non-compact piece corresponding to the \(D^* D \) molecular explanation we have referred to previously, while the compact piece represents the non-molecular components. \(\theta_C \) represents the mixing angle between these two pieces of the wave function, where \(\theta_C = 0 \) corresponds to the usual molecular interpretation of the \(T_{cc}^+ \).

The interesting point is how a compact component will enter the description of the decay widths. The contribution of a wave function component to the decay amplitude depends on the momentum scales involved. For the molecular component we have

\[
\langle T_{cc}(D^* D)|A_c^{1B}|DD\pi\rangle = \frac{g_1}{\sqrt{2f_\pi}} \hat{c}_1 \cdot \hat{q} \int d^2 \bar{x} \langle \psi|\bar{\pi}|\bar{\psi}\rangle e^{-i\bar{k} \cdot \bar{q}/2} \bar{x} = \frac{g_1}{\sqrt{2f_\pi}} \hat{c}_1 \cdot \hat{q} \langle \psi|\bar{k} - \bar{q}/2\rangle,
\]

(41)

where \(\langle \psi|\bar{x} \rangle \) and \(\langle \psi|\bar{p} \rangle \) are the \(r \)- and \(p \)-space molecular wave functions. By taking into account that in a contact-range theory \(\langle \psi|\bar{p} \rangle = \sqrt{8\pi\gamma}/(p^2 + \gamma^2) \), we expect that this matrix element scales as

\[
\langle T_{cc}(D^* D)|A_c^{1B}|DD\pi\rangle \propto \frac{g_1}{\sqrt{2f_\pi}} \hat{c}_1 \cdot \hat{q} \frac{\sqrt{2\pi}}{Q^{3/2}},
\]

(42)

with \(Q \sim \gamma_L, \gamma_H, \gamma_k \) or \(q \) the characteristic low-energy momentum scale for a molecular \(T_{cc}^+ \). From this, the natural expectation for the scaling of the decay amplitude of a compact component would be

\[
\langle T_{cc}(ccq\bar{q})|A_c|DD\pi\rangle \propto \frac{g_1'}{\sqrt{2f_\pi}} \hat{c}_1 \cdot \hat{q} \frac{\sqrt{2\pi}}{M_C^{3/2}},
\]

(43)

with \(M_C \) the characteristic momentum scale for a compact tetraquark, which we expect to be of the order of the natural hadronic scale \(M_C \sim (0.5 - 1.0) \text{ GeV} \) (and \(g_1' \) the coupling of the compact component to \(DD\pi \), which we have assumed to be of roughly the same size as \(g_1 \)). This scaling argument also applies to the \(DD\gamma \) decays.

From the previous the decay amplitude of a compact component of the \(T_{cc} \) wave function is expected to be suppressed by a factor of \((Q/M_C)^{3/2} \) with respect to the LO contribution. Were \(M_C \) to be of the order of the hard scale in the EFT we are using here, i.e. \(M \sim (1 - 2)m_\pi \), the contribution from a compact component to the decay would enter at \(N^{3/2}\text{LO} \). It turns out that \(M_C > M \), which means that this contribution enters at a considerably higher order. Thus, at lower orders in the EFT
expansion, the effect of a compact tetraquark component is simply to reduce the total decay width:

$$\Gamma(T_{cc}^+) = \cos^2 \theta_C \Gamma(T_{cc}^+(D^* D)) \, . \tag{44}$$

That is, if a molecular prediction overshoots the experimental decay width by a noticeable amount, this might indicate the existence of a non-molecular component for the T_{cc}^+ tetraquark.

It is however worth noticing that the explicit separation of the T_{cc}^+ wave function into molecular and non-molecular components generates a parameter redundancy problem, as the observable effects of the compact mixing angle θ_C can be reabsorbed into the EFT’s subleading range corrections, i.e. into A_S. Indeed, at NLO the decay amplitude is proportional to these two factors

$$\Gamma(T_{cc}^+) \propto \cos^2 \theta_C A_S^2 \, , \tag{45}$$

which means that compactness can be recast into a negative contribution to the effective range (as this reduces A_S^2, see Appendix A). Thus, the angle θ_C should be considered as a model-dependent quantity, at least in the absence of a model-independent disentanglement of the dynamics between the molecular and non-molecular degrees of freedom. Unfortunately, though the inclusion of a compact T_{cc}^+ field is straightforward, this still does not resolve the parameter redundancy problem (which probably involves invoking phenomenological models).

7. COUPLINGS

The width of a molecular T_{cc} depends on the axial coupling g_1 and the magnetic moments $\mu_+ \mu_0$ for the D^* to D transitions, which can be extracted from the decay widths of the charmed mesons. We begin with g_1, for which we use the decays of D^{*+} into $D \pi$

$$\Gamma(D^{*+} \rightarrow D^0 \pi^+) = g_1^2 \frac{q_\pi^3}{6 \pi f_\pi^2} \frac{m_{D^0}}{m_{D^+}} \, , \tag{46}$$

$$\Gamma(D^{*+} \rightarrow D^+ \pi^0) = g_1^2 \frac{q_\pi^3}{12 \pi f_\pi^2} \frac{m_{D^0}}{m_{D^{*+}}} \, . \tag{47}$$

where $f_\pi = 130 \text{ MeV}$ and q_π the momentum of the emitted pion. From the D^{*+} decay width and branching ratios provided in the Review of Particle Physics (RPP) \cite{pdg}, i.e. $\Gamma(D^{*+}) = 83.4 \pm 1.8 \text{ keV}$, $\Gamma(D^0 \pi^+)/\Gamma = (67.7 \pm 0.5)\%$ and $\Gamma(D^+ \pi^0)/\Gamma = (30.7 \pm 0.5)\%$, we obtain $g_1 = 0.56 \pm 0.01$.

For the magnetic moments μ_+ and μ_0 we use the D^{*} decays into $D \gamma$

$$\Gamma(D^* \rightarrow D \gamma) = \frac{|\mu|^2}{3 \pi} \frac{m_D}{m_{D^*}} q_\gamma^3 \, , \tag{48}$$

with q_γ the momentum of the outgoing photon. For μ_+ we use again the D^{*+} decay width and its branching ratio into $D^{*+} \gamma$ (i.e. $1.6 \pm 0.4\%$), yielding $\mu_+ = 0.46 \pm 0.06 \mu_{n.m.}$ where the sign is chosen as to coincide with that of the magnetic moment of the \bar{d} antiquark within the D^{*+} and with $\mu_{n.m.} = |e|/2m_N$ the nuclear magneton. The determination of μ_0 is more indirect as the D^{*0} decay width is not experimentally known (beyond an upper bound). However its branching ratios into $D^{*0}\pi^0$ and $D^{*0}\gamma$ are well determined \cite{exp_results} and the partial decay width into $D^{*0}\pi^0$ can be calculated from g_1 (resulting in $\Gamma(D^{*0} \rightarrow D^0 \pi^0) = 35.9 \pm 1.3 \text{ keV}$), which all together yields $\Gamma(D^{*0} \rightarrow D^{*0}\gamma) = 19.6 \pm 1.0 \text{ keV}$. From this we obtain $\mu_0 = -0.17 \pm 0.05 \mu_{n.m.}$.

8. PARTIAL DECAY WIDTHS

With the previous ingredients we are ready to calculate the $T_{cc} \rightarrow DD\pi$ and $T_{cc} \rightarrow DD\gamma$ decay widths. For this we have to sandwich the decay operator between the initial and final states, which though laborious (we have to take into account isospin breaking in the L and H channels) it is nonetheless straightforward. We will use the δm_{pole} solution, from which the binding energy of the L (H) components of a molecular T_{cc}^+ is $B_L = 0.36 \pm 0.04 \text{ MeV}$ ($B_H = 1.77 \pm 0.04 \text{ MeV}$). In addition, we will assume a purely molecular T_{cc}^+ (i.e. $\theta_C = 0$) unless stated otherwise.

We begin with the tree level amplitudes. For the $T_{cc}^+ \rightarrow D^0 D^0 \pi^+$ decay, the final state contains two identical bosons and requires symmetrization, which is done by adding the $A(\vec{k}, \vec{q})$ and $A(-\vec{k}, \vec{q})$ amplitudes and then changing the phase space factor for the final $D^0 D^0$ pair from $d^2 k / d^2 k + 2$ to avoid counting the final $D^0 D^0$ states twice. We obtain

$$\Gamma^{\text{LO}(1B)}(T_{cc}^+ \rightarrow D^0 D^0 \pi^+) = 29.6^{+1.1}_{-1.0} \pm 1.8 \text{ keV} \, , \tag{49}$$

$$\Gamma^{\text{LO}(1B)}(T_{cc}^+ \rightarrow D^+ D^0 \pi^0) = 13.7^{+0.5}_{-0.5} \pm 0.5 \text{ keV} \, , \tag{50}$$

$$\Gamma^{\text{LO}(1B)}(T_{cc}^+ \rightarrow D^+ D^0 \gamma) = 5.8 \pm 0.4 \pm 0.2 \text{ keV} \, , \tag{51}$$

which basically agrees with \cite{exp_results} and where we have taken $\phi_L = -\phi_H = 1/\sqrt{2}$ and $A_S = 8.5 \text{ MeV}^{-1/2}$ (obtained from the normalization of the wave function). The first uncertainty corresponds to varying g_1 for the strong decays and $\mu_+ \mu_0$ for the electromagnetic one, while the second comes from the binding energy. We notice that the previous amplitudes only takes into account a final $D^0 D^0$ state in S-wave or a final $D^+ D^0$ state in S- or P-wave: adding the contributions from higher $L = 2, 4, 6, \ldots$ ($L = 2, 3, 4, \ldots$) partial waves of the $D^0 D^0$ ($D^+ D^0$) final state will change the partial decay widths to 29.9, 14.1 and 6.4 keV, respectively, i.e. a small 1.3 keV increase in the total decay width. With the exception of the electromagnetic decay, the decay widths increase if the binding energy is reduced (e.g. if we use δm_{BW} instead of δm_{pole} we would obtain 33.7, 14.9 and 5.5 keV for the partial decay widths). The combined LO decay width is

$$\Gamma^{\text{LO}}(T_{cc}^+) = 49.1^{+1.6}_{-1.5} + 0.4 + 2.2 \text{ keV} \, , \tag{52}$$

$$= 49.1^{+2.7}_{-2.6} \text{ keV} \, , \tag{53}$$
where the uncertainties refer only to the input parameters \((g_1, \mu_+ / \mu_0 \text{ and } \delta m)\), not to the EFT convergence rate (which we have not discussed yet). It is interesting to notice that this width is in line with most of the other LO calculations available: 47 keV in \([31]\) (which uses \(\delta m_{BW}\) instead of \(\delta m_{pole}\)), 53 keV in \([32]\) (which calculates the decay width in the isospin limit), 43 keV (80 keV) for \(\delta m_{pole} (\delta m_{BW})\) in \([33]\) (which directly convolutes the width of the charmed mesons to obtain the \(T_{cc}\) width) and 52 keV in \([14]\) (which also uses \(\delta m_{BW}\)). A cursory comparison of the previous predictions suggest a LO error of the order of 10 keV, a figure compatible with the EFT uncertainties we will later obtain in Eqs. \((53)\) and \((54)\).

Next we consider the rescattering of the \(DD\) pair in the final state, which requires the scattering length of this system as input. The only phenomenological calculation of this quantity we are aware of is Ref. \([21]\), which estimates \(a_0(DD) = -0.4^{+0.1}_{-0.2} \text{ fm}\) (and also predicts \(\delta m = -3^{+4}_{-15} \text{ MeV}\) for the \(T_{cc}\) in the isospin symmetric limit, from which we may assume that the actual \(DD\) scattering length will also fall within the error bars \([46]\). If we use the LO values of \(A_s, \phi_L\) and \(\phi_H\) (which we will from now on, unless stated otherwise), we obtain

\[
\Gamma^{(1B+DD)}(T_{cc}^+ \to D^0 D^0 \pi^+) = 33.3^{+1.2+1.9+2.0}_{-1.7-0.9} \text{ keV} ,
\]

\[
\Gamma^{(1B+DD)}(T_{cc}^+ \to D^+ D^0 \pi^0) = 15.9^{+0.6+0.5+1.2}_{-0.5-0.6} \text{ keV} ,
\]

\[
\Gamma^{(1B+DD)}(T_{cc}^+ \to D^0 D^0 \pi^+) = 7.5 \pm 0.6 \pm 0.2^{+0.9}_{-0.4} \text{ keV} ,
\]

where the source of the first two errors is as in the LO calculation and the third error comes from the propagation of the uncertainty in \(a_0\). We stress that in the counting used here the \(DD\) interaction is perturbative. Previously, a non-perturbative final state interaction has been considered for instance in case of the \(X(3872)\) as a \(D^* D\) system and its decays into \(DD\pi\) \([52, 53]\). For the \(T_{cc}\), Ref. \([14]\) has recently considered the case in which the final \(DD\) interaction is able to form a bound state.

Then we consider the inclusion of the seagull diagram (but without including the \(DD\) rescattering or the changes in asymptotic normalization), which only affects the \(DD\pi\) decays, arriving at

\[
\Gamma^{(1B+2B)}(T_{cc}^+ \to D^0 D^0 \pi^+) = 30.2^{+1.1+1.8}_{-1.0-1.6} \text{ keV} ,
\]

\[
\Gamma^{(1B+2B)}(T_{cc}^+ \to D^0 D^0 \pi^0) = 14.1^{+0.6+0.7}_{-0.4-0.3} \text{ keV} ,
\]

which implies that the two-body corrections are actually smaller than the rescattering of the final \(DD\) mesons and where the uncertainties are the same as in the LO calculation \((g_1 \text{ and } \delta m_{pole})\). Here a comparison with the \(D^* D\) system — the \(X(3872)\) — is in order: Ref. \([52]\), which previously considered the rescattering and two-body corrections for the \(X(3872)\) decays, also arrived to the conclusion that rescattering effects are much larger than the seagull diagram, where the later contribution happens to be fairly small.

Finally, including these two subleading order corrections together (but using the LO values of the wave function parameters), we obtain an \(\textit{abridged}\) NLO result for the decay widths:

\[
\Gamma^{\text{NLO}(*)}(T_{cc}^+ \to D^0 D^0 \pi^+) = 34.0 \pm 1.2^{+1.8+1.9}_{-1.7-1.0} \text{ keV} ,
\]

\[
\Gamma^{\text{NLO}(*)}(T_{cc}^+ \to D^+ D^0 \pi^0) = 16.4^{+0.6+0.5+1.2}_{-0.5-0.5} \text{ keV} ,
\]

\[
\Gamma^{\text{NLO}(*)}(T_{cc}^+ \to D^0 D^0 \pi^+) = 7.5 \pm 0.6 \pm 0.2^{+0.9}_{-0.4} \text{ keV} ,
\]

where the uncertainties are as in the previous \(DD\) rescattering partial widths \((g_1 \text{ or } \mu_+ \text{ and } \mu_0, \delta m_{pole} \text{ and } a_0)\). The combined decay width will then be

\[
\frac{\Gamma^{\text{NLO}(*)}(T_{cc}^+) - \Gamma^{\text{LO}}}{\Gamma^{\text{LO}}} \approx 0.18 ,
\]

in line with the naive estimations in Eq. \((40)\) of a convergence rate within \(0.2 - 0.4\). However, this does not take into account the possible corrections to the asymptotic normalization and isospin angle, which might worsen the convergence of the EFT. For exploring what to expect from the corrections to the asymptotic normalization, we might look at the two nucleon system. There the LO wave function in a pionless theory would yield \(A_s^{LO} = \sqrt{2} \sigma = 0.6806 \text{ fm}^{-1/2}\), which is to be compared with \(A_s = 0.8846(9) \text{ fm}^{-1/2}\) \([53]\), yielding \(A_s^{LO}/(A_s^{LO})^2 = 1.69\). Were this ratio to hold for the \(T_{cc}\) case, we would have a 70% increase in the NLO decay width if we were to expand directly in terms of \(A_s\). This is probably not the case, though: the \(A_s^{LO}/(A_s^{LO})^2\) ratio scales as \(1/(1 - \gamma r_e)\) with \(\gamma\) the binding momentum and \(r_e\) the effective range (with this simple approximation resulting in 1.68 for the deuteron). The \(T_{cc}^+\) is less bound than the deuteron though and naively we expect range corrections in the \(T_{cc}\) to be of the same order of magnitude as those of the \(X(3872)\), which are considerably smaller than in the

4 We mention though that calculations of the two-bottom-meson potential in the lattice indicate that the \(I = 1\ BB\) configuration is attractive overall \([50]\) (which in our sign convention will generate \(a_0 < 0\) if the attraction is not strong enough as to generate a bound state), particularly at short distances. Chiral EFT also predicts an attractive two-pion exchange potential for \(I = 1\ BB\) \([57]\). Finally, from heavy flavor symmetry we expect the \(DD\) and \(BB\) potentials to be similar.
If we notice that non-tensor OPE almost cancels in the D^*D and $D^*\bar{D}$ systems, the scale of range corrections is probably set by the tensor scale $A_T = 330$ MeV (check the previous discussion below Eq. (52)), while in the deuteron the range will be given by the pion mass, indicating that the expected range of the D^*D potential is about 0.42 times that of the two-nucleon case. From this we could expect $A_S(A_{LO}^2) \approx 1.1$, which will suggest a convergence parameter of

$$\left| \frac{\Gamma_{NLO} - \Gamma_{LO}}{\Gamma_{LO}} \right| \approx 0.3.$$ \hspace{1cm} (63)

If this estimation were to hold, the full uncertainties in the LO and NLO calculation would be

$$\Gamma_{LO}(T_{cc}^+) = 49 \pm 3 \pm 16 \text{ keV},$$ \hspace{1cm} (64)

$$\Gamma_{NLO}(T_{cc}^+) = 58 +5^{+7} \pm 5 \text{ keV},$$ \hspace{1cm} (65)

where the first and second errors refer to the input parameters and the intrinsic EFT uncertainty, respectively. But again, there might be factors which we have not properly considered and which might alter the current conclusions, which should be taken as temporary. As a crosscheck, we notice that most LO calculations available lie within the (43–53) keV window and are thus compatible with our LO result within EFT uncertainties.

Of course, the previous NLO partial decay widths are incomplete: the full NLO calculation requires a modification in the asymptotic normalization A_S and the isospin angle θ_C, and in principle it is also possible to consider the mixing angle between a non-compact and compact T_{cc}^+ component, θ_C. Luckily these contributions can be factored out easily, leading to the following expressions

$$\Gamma_{NLO}(T_{cc}^+ \rightarrow D^0 D^0 \pi^+) = \cos^2 \theta_C A_S^2 \times \left(\phi_L^2 \left[0.825(94) - 0.248(17) a_0 + 0.0188(7) a_0^2 \right] + \phi_L \phi_H \left[-0.0064(47) + 0.000947(35) a_0 \right] \right),$$ \hspace{1cm} (66)

$$\Gamma_{NLO}(T_{cc}^+ \rightarrow D^+ D^0 \pi^0) = \cos^2 \theta_C A_S^2 \times \left(\phi_L^2 \left[0.187(22) - 0.0552(39) a_0 + 0.00412(15) a_0^2 \right] + \phi_L \phi_H \left[-0.164(13) + 0.0729(48) a_0 - 0.00719(27) a_0^2 \right] + \phi_H^2 \left[0.0386(23) - 0.00230(11) a_0 + 0.00347(14) a_0^2 \right] \right),$$ \hspace{1cm} (67)

$$\Gamma_{NLO}(T_{cc}^+ \rightarrow D^+ D^0 \gamma) = \cos^2 \theta_C A_S^2 \times \left(\phi_L^2 \left[0.0119(30) - 0.0057(14) a_0 + 0.00078(19) a_0^2 \right] + \phi_L \phi_H \left[-0.0624(82) + 0.0381(49) a_0 - 0.000573(73) a_0^2 \right] + \phi_H^2 \left[0.0851(45) - 0.0638(34) a_0 + 0.0122(6) a_0^2 \right] \right),$$ \hspace{1cm} (68)

which return the partial decay widths in keV and require as input A_S in units of MeV$^{-1/2}$ and a_0 in units of fm.

The uncertainties are shown in parentheses and correspond to g_1, μ_+, μ_0 and $\delta m_{1\text{pole}}$ summed in quadrature and symmetrized (as these errors are almost symmetrical). The term proportional to ϕ_H^2 in $\Gamma(T_{cc}^+ \rightarrow D^0 D^0 \pi^0)$ is actually negligible (a small contribution coming from the seagull diagram) and we have not written it down. The same could be argued of a few of the terms we have kept, but in these cases the difference is at most of two orders of magnitude, potentially up to about a 1% difference for $|a_0| = 1$ fm. Here it is worth reminding that these formulas are only expected to be valid for $m_\pi a_0 < 1$, i.e. $a_0 < 1.4$ fm (otherwise a different power counting in which the interaction of the final DD pair is non perturbative should be used). The actual accuracy of these formulas is limited by the EFT convergence, where for our estimation of 0.3 for the expansion parameter we should expect the previous expressions to have a 9% uncertainty.

9. COMPARISON WITH EXPERIMENT

The theoretical decay widths can be compared with the experimental analysis to obtain information about the T_{cc}^+. If we begin with the LO calculation, we quickly realize that the EFT calculation overshoots the experimental decay width as extracted from the unitarized Breit-Wigner profile

$$\frac{\Gamma_{pole}}{\Gamma_{LO}} = 0.98^{+0.04}_{-0.22} \pm 0.06_{-0.23},$$ \hspace{1cm} (69)

where the first uncertainty comes from Γ_{pole} while the second and third are derived from the input parameters and the convergence rate of Γ_{LO}, respectively. The previous figure is compatible with 1. If we allow for a non-trivial θ_C, this ratio could be related to the molecular content of the T_{cc}^+

$$\frac{\Gamma_{pole}}{\Gamma_{LO}} = \cos^2 \theta_C^L, \hspace{1cm} (70)$$

yielding

$$|\theta_C^L| = (8.6^{+7.9}_{-8.6})^\circ, \hspace{1cm} (71)$$

which is compatible with the absence of a compact component, i.e. $\theta_C = 0$, within errors.

Other interesting experimental information in [2] is the signal yields of the T_{cc}^+ to the $D^+ D^0$ and $D^0 \bar{D}^0$ channels:

$$N_{S}^+ \equiv N_{S}(D^+ D^0) = 171 \pm 26, \hspace{1cm} (72)$$

$$N_{S}^0 \equiv N_{S}(D^0 \bar{D}^0) = 263 \pm 23. \hspace{1cm} (73)$$

As the number of events grow, the ratio of these two numbers is expected to approach the ratio of the decays to the $D^+ D^0$ and $D^0 \bar{D}^0$ channels

$$\frac{\Gamma(T_{cc}^+ \rightarrow D^0 D^0 \pi^0 / \gamma)}{\Gamma(T_{cc}^+ \rightarrow D^0 D^0 \pi^+)} = \frac{N_{S}^+}{N_{S}^0} \left(1 + \mathcal{O} \left(\frac{1}{\sqrt{N_{S}}} \right) \right),$$ \hspace{1cm} (74)
with \(N_S = N_S^+ + N_S^0 \). Actually the error from the finite number of signals can be easily estimated by assuming a binomial distribution for \(N_S^+ \) and \(N_S^0 \) and finding the expected 68% band for the \(N_S^+ / N_S^0 \) ratio. Putting the pieces together, we arrive at

\[
\frac{\Gamma^+}{\Gamma^0} = 0.65 \pm 0.10^{+0.6+0.7 \pm 0.5-0.6} = 0.65^{+0.14}_{-0.13}, \tag{75}
\]

where the first two uncertainties come from \(N_S^+ \) and \(N_S^0 \), the last one from the finite size of \(N_S^+ + N_S^0 \) and then we add them in quadrature. The LO ratio is

\[
\frac{\Gamma^+}{\Gamma^0} = 0.66^{+0.03}_{-0.03} \pm 0.20, \tag{76}
\]

which is compatible with the experimental yields.

At NLO the \(\Gamma^+ / \Gamma^0 \) ratio depends on the isospin angle, where we find that reproducing the experimental ratio requires:

\[
\theta_{l}^{NLO} = (-42.4^{+8.1+1.7}_{-6.1-1.6} \pm 3.8)^\circ, \tag{77}
\]

where the first uncertainty is experimental, the second are the couplings / \(a_0 \) / \(\delta m_{\text{pole}} \) and the third the NLO uncertainty. This in turn implies that

\[
\frac{\Gamma_{\text{pole}}}{\Gamma_{NLO}} = \cos^2 \theta_C \frac{A_S^2}{A_{S(C)}^2} = 0.81^{+0.03}_{-0.01} + 0.04 - 0.06 \pm 0.07, \tag{78}
\]

where the errors as before and and \(A_{S(C)} \) refers to the normalization for a contact-range theory with the isospin angle \(\theta^{NLO}_{l} \), i.e. Eq. (67) but using \(\theta^{NLO}_{l} \) instead of \(\theta^{LO}_{l} = -45^\circ \). If we assume that \(A_S = A_{S(LO)} \), this ratio comes exclusively from the probability of the compact component, we will obtain

\[
|\theta_C^{NLO}| = (25.7^{+13.0}_{-2.3} + 4.2 - 2.3 \pm 2.3)^\circ, \tag{79}
\]

with the errors as before and which would imply a \(\theta_C \) distinguishable from zero at NLO. However, this is contingent to two factors: what would be \(A_S \) for the molecular component (if considered as a separate degree of freedom from the compact one) and the fact that \(\theta_C \) is not model independent in the sense that its effects can be recast into a negative effective range instead (i.e. the compact component can be reabsorbed as energy dependence in the molecular one). In the first case, assuming \(A_S^2 / A_{S(C)}^2 = 1.1(1.2) \) will entail a compact mixing angle of \(30.7(34.6)^\circ \), larger than the one we have calculated. In the second case, we set \(\theta_C = 0 \) and recast the effects of \(\theta_C \neq 0 \) into a negative effective range by means of the formula (check Appendix \[A\])

\[
\frac{A_S^2}{A_{S(C)}^2} = 1 - \frac{1}{2} r_{e0} \left(\frac{G_{dd}^2}{2} \right) A_{S(C)}^2, \tag{80}
\]

where \(r_{e0} \) is the \(I = 0 \) effective range, leading to

\[
r_{e0}^{NLO} = -1.3^{+0.3}_{-0.3} - 0.3 \pm 0.1 \text{ fm}, \tag{81}
\]

which is, as expected, negative and within the confidence limits (CL) of Ref. [2] (i.e. \(0 \geq r_{eL} \geq -11.9(-16.9) \text{ fm} \) within 90(95)% CL, where \(r_{eL} \) refers to the effective range in the L channel; if we assume no interaction in the isovector channel, we will have \(r_{eL} = -2r_{e0} - 1/\sqrt{\gamma_H^2 - \gamma_L^2} \), or \(r_{eL} = -6.4 \text{ fm for } r_{e0} = -1.3 \text{ fm} \).

Alternatively, had we simply assumed \(\theta_l = -45^\circ \), the \(\Gamma^+ / \Gamma^0 \) ratio would have been

\[
\frac{\Gamma_{NLO}^{+}}{\Gamma_{NLO}^{0}} \bigg|_{\theta_l = -45^\circ} = 0.70 \pm 0.03 \pm 0.06, \tag{82}
\]

which is still compatible with the experimental yields. Meanwhile, the non-molecular ratio would have been

\[
\frac{\Gamma_{\text{pole}}}{\Gamma_{NLO}} \bigg|_{\theta_l = -45^\circ} = \cos^2 \theta_C \frac{A_S^2}{A_{S(LO)}^2} = 0.83^{+0.03}_{-0.01} + 0.05 - 0.07, \tag{83}
\]

which also happens to be different from 1, again. Assuming \(A_S = A_{S(LO)} \), this ratio would in turn imply a compact mixing angle of

\[
|\theta_C^{NLO}| \bigg|_{\theta_l = -45^\circ} = (24.1^{+13.5}_{-2.3} + 4.2 - 2.3 \pm 2.3)^\circ, \tag{84}
\]

or, alternatively, assuming that the ratio comes exclusively from range corrections, would imply an isoscalar effective range of

\[
r_{e0}^{NLO} \bigg|_{\theta_l = -45^\circ} = -1.1^{+0.3}_{-0.2} - 0.5 \pm 0.1 \text{ fm}, \tag{85}
\]

which is negative. As can be appreciated, all the numbers obtained for \(\theta_l = -45^\circ \) are indistinguishable within errors to the ones we obtain from fixing \(\theta_l \) to the \(\Gamma^+ / \Gamma^0 \) ratio derived from the experimental yields.

10. SUMMARY

The \(T_{cc}^+ \) represents not only a fascinating discovery but also a wonderful opportunity for the study of hadron spectroscopy and decays.

While we do not know for sure its nature yet — the mass of the \(T_{cc}^+ \) is in principle compatible with previous predictions of \(I = 0, J = 1 \) ccūd compact tetraquarks and \(D^*D \) shallow bound states, its closeness to the \(D^*D \) threshold indicates that at least part of its wave function will be \(D^*D \). This last component is amenable to relatively straightforward theoretical treatments, including the calculation of its expected width, which would be a crucial piece of information if we want to eventually know the structure of the \(T_{cc}^+ \).

The physical scales involved in the molecular components of the \(T_{cc}^+ \) indicate a moderate convergence rate for the calculation of its decay width and a NLO calculation is required to achieve an accuracy comparable with the 25 to 40% relative uncertainty in the experimental result (depending on the resonance profile used). Our preliminary calculation shows that the inclusion of a seagull
pion decay operator and the rescattering of the final DD pair increase the total decay width of the T^+_c state from 50 keV in LO to 58 keV in our abridged NLO calculation (i.e. a NLO calculation with a LO wave function). This is still preliminary: there are corrections coming from the asymptotic normalization A_S of a molecular T^+_c state, the particular isospin mixing θ_I between its D^+D^0 and $D^{*0}D^+$ components and the final physical pion rescattering with the charged mesons at non-zero energy (not to mention that the DD system might interact more strongly than we expect). A_S and θ_I could be easily estimated from phenomenological models and fed into the NLO calculation, where we expect a moderate increase from the 58 keV figure we obtain.

If we compare the NLO results with the total decay width extracted from the unitarized Breit-Wigner profile ($\Gamma_{\text{pole}} = 48^{+12}_{-13}$ keV), the previously discussed factors (particularly A_S) point towards an excess decay width for a purely molecular explanation of the T^+_c at NLO. This excess can be interpreted as the existence of a compact component, where the ratio of Γ_{pole} and Γ_{NLO} suggest that the non-molecular probability of the T^+_c wave function is about 20%. This conclusion should be taken as temporary though, as future experimental refinements regarding the T^+_c mass and decay widths might alter the present picture. In addition, the interplay of the compact and molecular components of the T^+_c could also be improved. Nonetheless, we find it worth mentioning that the picture that emerges from the current EFT description together with the experimental analysis of Ref. [2], which underlined the importance of including both mesonic and quark degrees of freedom for the binding and description of a tetraquark below the D^*D threshold.

ACKNOWLEDGMENTS

We would like to thank Eulogio Oset and Feng-Kun Guo for valuable comments on this manuscript and Mikhail Mikasenko for discussions. M.P.V. thanks the IJCLab of Orsay, where part of this work was done, for its hospitality. This work is partly supported by the National Natural Science Foundation of China under Grants No. 11735003 and No. 11975041, the Fundamental Research Funds for the Central Universities and the Thousand Talents Plan for Young Professionals.

Appendix A: Range corrections to the asymptotic normalization

Here we calculate the range corrections to A_S for the T^+_c. Instead of the usual method of extracting A_S from the residue of the scattering amplitude, we will consider how the effective normalization of the wave function changes when range corrections are included. We will begin with a single channel system and assume that range corrections are generated by an energy-dependent contact interaction of the type

$$V^{(R)}_c = D k^2 \delta^{(3)}(r^c),$$

where D is a coupling, k refers to the center-of-mass momentum of the two-body system, with $k^2 = 2\mu E_{\text{cm}}$ and E_{cm} the center-of-mass energy. We regularize this potential with a delta-shell regulator of the type

$$V^{(R)}_c = \frac{D(R_c)}{4\pi R_c^2} k^2 \delta(r - R_c),$$

where D is a coupling and R_c a cutoff. Fixing $D(R_c)$ to the effective range r_e in two-body scattering gives

$$D(R_c) = \frac{2\pi r_e}{\mu} R_c^2 + O(R_c^4).$$

Energy-dependent potentials change the asymptotic normalization A_S in a way that is compatible with the following modified normalization condition [6]

$$1 = \int_0^\infty dr u^2(r) \left[1 - 2\mu \frac{d^2}{dk^2} V(r) \right],$$

with $u(r)$ the reduced wave function of a two-body bound state. For a contact-range theory we have $u(r) = A_S e^{-\gamma r}$ and after a few manipulations we arrive at

$$\frac{A^2_{S(C)}}{A_S^2} = 1 - \frac{r_e}{2} A^2_{S(C)},$$

for $r_e \to 0$, where $A_{S(C)} = \sqrt{2\gamma}$ and A_S are the asymptotic normalizations in the absence and presence of range corrections. For a single channel problem this is equivalent to the well-known result [5]

$$A_S = \sqrt{\frac{A^2_{S(C)}}{1 - \gamma r_e}} = \frac{\sqrt{2\gamma}}{1 - \gamma r_e}. \tag{6}$$

The advantage of the energy-dependent potential is that we can extend the previous result to the two-channel isospin-breaking case directly. In the $\{|L\rangle, |H\rangle\}$ basis, the isospin effects can be included by considering that the potential (or for simplicity the coupling D) is a matrix in said basis

$$D \to \left(\begin{array}{ccc} \frac{1}{2} D_0 + \frac{1}{2} D_1 & -\frac{1}{2} D_0 + \frac{1}{2} D_1 \\ -\frac{1}{2} D_0 + \frac{1}{2} D_1 & \frac{1}{2} D_0 + \frac{1}{2} D_1 \end{array} \right),$$

(A7)

where D_I is the coupling generating the $I = 0, 1$ effective range. If we extend the modified normalization condition of Eq. (A1) to the two-channel case with the $u_L(r) = A_S \cos \theta_I e^{-\gamma r}$ and $u_H(r) = A_S \sin \theta_I e^{-\gamma r}$ wave functions, we arrive at

$$\frac{A^2_{S(C)}}{A_S^2} =$$

$$1 - \frac{r_e}{2} \left(\frac{1 - \sin 2\theta_I}{2} + \frac{r_e}{2} \frac{1 + \sin 2\theta_I}{2} \right) A^2_{S(C)}.$$

(A8)
where r_{el} refers to the effective range in the isospin channel $I = 0, 1$ and $A_{S(C)}$ is given by Eq. [37]. For a molecular T_{cc}^+ that happens to be a pure $I = 0, 1$ state at short distances (i.e. $\theta_I = \mp 45^\circ$), the range corrections will simplify to

$$A_{S(C)}^2 = 1 - \frac{r_{el}}{2} A_{S(C)}^2,$$

(A9)

i.e. identical to the single channel case. Finally, it is interesting to connect the previous result with the following often-used definition of compositeness (check, e.g. Ref. [62]),

$$X_{\text{comp}} = - \sum_A |g_A|^2 \frac{dG_{0A}(E)}{dE} \bigg|_{E=E_B},$$

(A10)

where A refers to the different two-body channels, g_A^2 refers to the residue of the T-matrix at the bound state pole in the diagonal channels ($g_A^2 = \lim_{E \to E_B} (E - E_B) T_{AA}(E)$, with E the center-of-mass energy, E_B the binding energy and T_{AA} the T-matrix in the diagonal channel AA, where the T-matrix is defined via $T_{AB} = V_{AB} + \sum_{cc} V_{AC} G_{0C}(E) T_{CB}$) and $G_{0A} = 1/(E - H_{0A})$ is the resolvent operator for channel A (with H_{0A} the free Hamiltonian for that channel). From the previous definition, we obtain

$$X_{\text{comp}} = \frac{A_{S(C)}^2}{A_{S(C)}},$$

(A11)

for the T_{cc}^+, which for a negative effective range gives $X_{\text{comp}} < 1$. For a positive effective range, the previous result will probably have to be modified in the line of what is proposed in Ref. [63] for single channel scattering. Be it as it may, our calculations already suggest a negative effective range.
