INTRODUCTION: ψ-STATISTICS OF A TRANSFORMATION
HOEFFDING’S AND M-C DECOMPOSITIONS
FCLT

FUNCTIONAL LIMIT THEOREMS FOR VON MISES STATISTICS OF A MEASURE PRESERVING TRANSFORMATION

Mikhail Gordin

V.A. Steklov Institute of Mathematics
Saint Petersburg

Limit theorems
for dependent data
and applications

Paris, June 21 – 23, 2010
Outline

1. INTRODUCTION: V-STATISTICS OF A TRANSFORMATION
2. HOEFFDING’S AND M-C DECOMPOSITIONS
3. FCLT
INTRODUCTION: V-STATISTICS OF A MEASURE PRESERVING TRANSFORMATION

(after a joint work with Herold Dehling and Manfred Denker)
V-statistics

Let T be a measure preserving transformation of a probability space (Ω, \mathcal{F}, P). Choose a point $\omega \in \Omega$ and consider its n–orbit

$$\omega, T\omega, \ldots, T^{n-1}\omega.$$

From statistician’s point of view this is a sample of size n. Let us consider, for a certain measurable symmetric function $h : \Omega^d \to \mathbb{R}$, the expression

$$\sum_{1 \leq i_1 < n, \ldots, 1 \leq i_d \leq n} h(T^{i_1}\omega, \ldots, T^{i_d}\omega).$$ (1)

Such a functional will be called a V–statistic (or von Mises statistic) of degree d with the kernel h.

Mikhail Gordin

FUNCTIONAL LIMIT THEOREMS
Let $X = (X_n)_{n \in \mathbb{Z}}$ be a strictly stationary real-valued sequence. Every such X admits a representation of the form

$$X_n = f \circ T^n, \; n \in \mathbb{Z},$$

where T is a measure preserving invertible transformation of a certain probability space and f is a measurable function. Let $H : \mathbb{R}^d \rightarrow \mathbb{R}$ be a Borel measurable function. If we set

$$h(\omega_1, \ldots, \omega_d) = H(f(\omega_1), \ldots, f(\omega_d)),$$

we arrive from (1) at the standard expressions for a V-statistic:

$$\sum_{1 \leq i_1 < n, \ldots, 1 \leq i_d \leq n} H(X_{i_1}, \ldots, X_{i_d}). \quad (2)$$
Dynamics can be used as follows to generate the function

$$\omega \mapsto h(T_1^{i_1}\omega, \ldots, T_d^{i_d}\omega).$$

First, we consider an action of d commuting copies T_1, \ldots, T_d of T on some set $Y \subset \Omega^d$ to produce terms of the form

$$h(T_1^{i_1}\omega_1, \ldots, T_d^{i_d}\omega_d).$$

Second, we restrict the constructed function to the principal diagonal $D = \{(\omega, \ldots, \omega) : \omega \in \Omega\} \subset \Omega^d$ and obtain the desired term. The requirements which Y must satisfy are:

i) $T_k Y \subset Y, k = 1, \ldots, d$;
ii) $D \subset Y$.

We choose as Y the entire space Ω^d with the product measure P^d and the componentwise action of copies of T.

Mikhail Gordin
Let \(h : \Omega^d \to \mathbb{R} \) be (an equivalence class) of a certain measurable function on \(\Omega^d \). Consider the set

\[
\bigcup_{(n_1, \ldots, n_d) \in \mathbb{Z}^d} \left\{ (T_1^{n_1}\omega, \ldots, T_d^{n_d}\omega), \omega \in \Omega \right\}
\]

doing measure zero. For \(d = 2 \) this is the graph of the orbital equivalence relation of \(T \).

What is the correct restriction of \(h \) to subsets of this set?

In general, no idea.

However, the restriction problem is easily solvable for kernels \(h \) which are products of functions in one variable, or can be nicely approximated by sums of such functions.

We will use such an approximation.
Seminal papers
Hoeffding (1948): U-statistics for i.i.d. variables; Hoeffding’s decomposition
von Mises (1949): V-statistics for i.i.d. variables

Books (i.i.d. variables):
Borovskikh and Korolyuk (1989)
Giné and de la Peña (1999)
Dependent stationary case:
Kanagawa and Yoshihara (1994): a. s. invariance principle for completely degenerate (canonical) U-statistics of degree two
Aaronson, Burton, Dehling, Gilat, Hill and Weiss (1996): strong law of large numbers
Two papers by Borovkova, Burton and Dehling (2001): a version of the FCLT (along with other results)
Borisov, Volod’ko (2008): the CLT for power series’ in a weakly dependent sequence

Mixing conditions, in particular, absolute regularity are assumed; the coupling method, the method of moments e.t.c. are employed
Let for every $1 \leq p \leq \infty$ denote the projective (or maximal) tensor product

$$L_p(\Omega_1, \mathcal{F}_1, P_1) \hat{\otimes} \cdots \hat{\otimes} L_p(\Omega_d, \mathcal{F}_d, P_d).$$

Since the projective norm is stronger than the norm of $L_p(\mathcal{P}^d)$, $\hat{L}_p(\mathcal{P}^d)$ can be embedded into $L_p(\mathcal{P}^d)$.

Example. For $p = 2$ and $d = 2$ the space $\hat{L}_2(\mathcal{P}^2)$ can be identified with the space of (the kernels of) the trace class operators mapping $L_2(\mathcal{P})^*$ to $L_2(\mathcal{P})$.

The space $\hat{L}_p(\mathcal{P}^d)$ is preserved by the operators $(U^n, U^{*n})_{n \in \mathbb{Z}_+^d}$. We will use the denotation $(U^n, U^{*n})_{n \in \mathbb{Z}_+^d}$ for the restrictions of (U^n, U^{*n}) to $\hat{L}_p(\mathcal{P}^d)$ as well.
Proposition

Let \(p_1, \ldots, p_d, r \in [1, \infty] \) satisfy \(\sum_{i=1}^{d} 1/p_i = 1/r \).

Then the map sending every function

\[
(\omega_1, \ldots, \omega_d) \mapsto f_1(\omega_1) \cdots f_l(\omega_d)
\]

with \(f_1 \in L_{p_1}, \ldots, f_d \in L_{p_d} \) to the function

\[
\omega \mapsto f_1(\omega) \cdots f_d(\omega)
\]

extends in a unique way to a linear operator of norm 1

\[
D_d : L_{p_1} \hat{\otimes} \cdots \hat{\otimes} L_{p_d} \rightarrow L_r.
\]
Remark

Let \((A_n)_{n \geq 1}\) be a refining sequence of finite measurable partitions \(A_n = \{A_{1,n}, \ldots, A_{m_n,n}\}\) such that \(\mathcal{F}\) is the smallest \(\sigma\)-field containing all \(A_n, n \geq 1\). Then the operator \(D_d\) can be represented as a strong limit of the sequence of operators \((D_{d,n})_{n \geq 1}\), where

\[
D_{d,n}f = \sum_{i=1}^{m_n} \frac{I_{A_{i,n}}}{P(A_{i,n})^d} \int_{A_{i,n}^d} f(\omega_1, \ldots, \omega_d) P(d\omega_1) \cdots P(d\omega_d).
\]
Let T_1, \ldots, T_d be copies of the transformation T which act on Ω^d via

$$T_i(\omega_1, \ldots, \omega_i, \ldots, \omega_d) = (\omega_1, \ldots, T_i\omega_i, \ldots, \omega_d), \ i = 1, \ldots, d.$$

Let \mathbb{Z}_+^d be the additive semigroup of d–tuples of nonnegative integers. The transformations T_1, \ldots, T_d pairwise commute and give rise to the measure preserving action $n = (n_1, \ldots, n_d) \mapsto T^n = T_1^{n_1} \cdots T_d^{n_d}$, of \mathbb{Z}_+^d on $(\Omega, \mathcal{F}, P)^d$. Set $U_k f = f \circ T_k$ for $f \in L_p$. Let U_k^* be the adjoint of U_k and I denote the identity operator. Clearly, U_1, \ldots, U_d pairwise commute, and so are U_1^*, \ldots, U_d^*.

Mikhail Gordin

FUNCTIONAL LIMIT THEOREMS
From now on by a V-statistics of a measure preserving transformation T acting on a probability space (Ω, \mathcal{F}, P) we mean the function of the form

$$\frac{1}{N^d} \sum_{1 \leq n_k \leq N, k=1,\ldots,d} D_d(h \circ T^{(n_1,\ldots,n_d)}).$$

(3)

The function h is called the kernel of the corresponding V-statistics.
Let T_1, \ldots, T_d be copies (acting on the cartesian product) of a transformation T. Remind that $\hat{L}_{p,\pi}(P^d) = L_{p}^\otimes d$.

Theorem

Let $d \geq 2$, $p \geq d$ and $r = p/d$. Let T be an ergodic P-preserving transformation of the space (Ω, \mathcal{F}, P). Assume also that $f \in \hat{L}_{p,\pi}(P^d)$. Then, as $N \to \infty$, the sequence

$$
\frac{1}{N^d} \sum_{1 \leq n_k \leq N, k=1,\ldots,d} D_d\left(f \circ T^{(n_1,\ldots,n_d)} \right) \quad (4)
$$

converges with probability 1 and in $L_r(P)$ to the limit

$$
\int_{\Omega^d} f(\omega_1, \ldots, \omega_d) P(d\omega_1) \cdots P(d\omega_d).
$$
If $p = d$, the above Theorem applies and asserts the convergence with probability 1 and in L_1.
HOEFFDING’S AND MARTINGALE-COBOUNDARY DECOMPOSITIONS
Let \((\Omega, \mathcal{F}, P)\) be a probability space and

\[
\Omega^d = \prod_{i=1}^{d} \Omega_i, \quad \mathcal{F}^d = \prod_{i=1}^{d} \mathcal{F}_i, \quad P^d = \prod_{i=1}^{d} P_i,
\]

where \(\Omega_1, \ldots, \Omega_d, \mathcal{F}_1, \ldots, \mathcal{F}_d, P_1, \ldots, P_d\) are copies of \(\Omega, \mathcal{F}\) and \(P\), respectively. Denoting by \(\pi_i\) the projection from \(\Omega^d\) onto \(\Omega_i\) \((i = 1, \ldots, d)\), we set for every \(S \in S_d\)

\[
\mathcal{F}^S = \bigvee_{i \in S} \pi_i^{-1}(\mathcal{F}_i), \quad E^S = E^{\mathcal{F}^S}, \quad \hat{E}^i = E^{\{1, \ldots, d\}\setminus\{i\}}.
\]

In other terms, \(\hat{E}^i\) integrates out the \(i\)–th variable. The identity \(I\) in \(L_p(P^d)\) decomposes as

\[
I = \prod_{i=1}^{d} (\hat{E}^i + (I - \hat{E}^i)) = \sum_{k=0}^{d} \sum_{S \in S_d^k} \prod_{i \notin S} \hat{E}^i \prod_{i \in S} (I - \hat{E}^i)
\]
For every $S \in S_d^k$ the function

$$\prod_{i \notin S} \hat{E}^i \prod_{i \in S} (I - \hat{E}^i)f$$

can be thought of as a function f_S of k variables $
\omega_m, m \in S$, with the property

$$\int_{\Omega} f_S(\cdots, \omega_i, \cdots) P(d\omega_i) = 0$$

for every $i \in S$. Functions of k variables with this property are called **completely degenerate** or **canonical**. Observe, that for f symmetric we obtain a symmetric function of k variables.
The second order (compared to the SLLN) asymptotics for V-statistics can be studied by means of a T-invariant filtration and martingale approximation. We consider a (non-invertible) transformation T and its canonical decreasing filtration $(T^{-n}\mathcal{F})_{n \geq 0}$. This is equivalent, up to time reversal, to considering invertible transformations, decreasing filtrations and adapted random sequences. For simplicity we assume that the transformation T is exact. This means that $\bigcap_{k=0}^{\infty} T^{-k}\mathcal{F} = \mathcal{N}$, where \mathcal{N} is the trivial sub $\sigma-$field of \mathcal{F}.

Mikhail Gordin

FUNCTIONAL LIMIT THEOREMS
For every $k = 1, \ldots, d$, $n \geq 0$ we have

$$U_k^n U_k^* = I \text{ and } U_k^n U_k^* = E^{T_k^{-n} \mathcal{F} \times d}.$$

Observe that for every $1 \leq i, j \leq d$, $i \neq j$, we have

$$U_i U_j^* = U_j^* U_i.$$

Transformations T_1, \ldots, T_d are completely commuting which means that they commute and enjoy the above property. The complete commutativity implies that the conditional expectations

$$(E^{T_k^{-n} \mathcal{F} \times d})_{n \geq 0, k = 1, \ldots, d}$$

commute.
For every $n = (n_1, \ldots, n_d) \in \mathbb{Z}_+^d$ we set

$$\mathcal{F}^n = T^{-n} \mathcal{F} \times d, \ E^n = E^{\mathcal{F}^n}.$$

Let $\overline{\mathbb{Z}_+^d} = \{0, 1, \ldots, \infty\}^d$ be a completion of \mathbb{Z}_+^d endowed with the natural partial order \leq which extends that of \mathbb{Z}_+^d. Let us extend by continuity the families $(\mathcal{F}^n)_{\mathbb{Z}_+^d}$ and $(E^n)_{\mathbb{Z}_+^d}$ to $\overline{\mathbb{Z}_+^d}$. Thus, $(\mathcal{F}^n)_{n \in \overline{\mathbb{Z}_+^d}}$ is a decreasing filtration parameterized by the partially ordered set $\overline{\mathbb{Z}_+^d}$. Let $(l, m) \mapsto l \lor m$ be the operation of taking the coordinatewise maximum in $\overline{\mathbb{Z}_+^d}$. We have $E^l E^m = E^m E^l = E^{l \lor m}$ for all $l, m \in \overline{\mathbb{Z}_+^d}$, that is the σ-fields \mathcal{F}^l and \mathcal{F}^m are conditionally independent given $\mathcal{F}^{l \lor m}$.

Mikhail Gordin

FUNCTIONAL LIMIT THEOREMS
Definition

Let \((X_n, \mathcal{F}^n)_{n \in \mathbb{Z}^d_+}\) be a family of random variables defined on \((\Omega, \mathcal{F}, P)\) and sub-\(\sigma\)-fields of \(\mathcal{F}\). \((X_n, \mathcal{F}^n)_{n \in \mathbb{Z}^d_+}\) is said to be a family of reversed martingale differences if

1. the map \(\mathbb{Z}^d_+ \ni n \mapsto \mathcal{F}^n\) is decreasing (\(\mathbb{Z}^d_+\) is taken with its natural partial order, the \(\sigma\)-fields are ordered by inclusion);
2. for every \(n \in \mathbb{Z}^d_+\) the random variable \(X_n\) is measurable with respect to \(\mathcal{F}^n\);
3. \(E^{\mathcal{F}^m} X_n = 0\) whenever \(m \not\leq n\).

Variants of this definition can be found in the literature.
Let S_d denote the set of all subsets of $\{1, \ldots, d\}$.

Proposition

Let for some $1 \leq p \leq \infty$ and $f, g \in L_p$

$$f = \left(\prod_{k=1}^{d} (I - U_k^*) \right) g.$$

Then f can be represented in the form

$$f = \sum_{S \in S_d} \left(\prod_{k \in S} (U_k - I) \prod_{l \notin S} (I - U_l U_l^*) \right) h_S,$$

where for every $S \in S_d$ the function $h_S \in L_p$ is defined by

$$h_S = \left(\prod_{m \in S} U_m^* \right) g.$$
Let for some function f the potential series

$$\sum_{n \in \mathbb{Z}^d_+} U^nf, \quad (7)$$

converges in the L_p-norm (or in \hat{L}_p norm), where summation is performed over coordinate rectangles with growing edges. Then its sum presents a solution of the Poisson equation.
For a kernel h of degree d the following properties are equivalent:

$$E^{(n_1,\ldots,n_d)}h \xrightarrow{\max(n_1,\ldots,n_d)\to\infty} 0,$$

$$U^*(n_1,\ldots,n_d)h \xrightarrow{\max(n_1,\ldots,n_d)\to\infty} 0,$$

and

$$E^{(n_1,\ldots,n_d)}h = 0$$

whenever at least one of n_k equals ∞. The latter property is means the canonicity of h.

Canonical kernels of degree d with convergent potential series form a dense subspace (among all canonical kernels of degree d).
Let $\Omega = \{ z \in \mathbb{C} : |z| = 1 \}$, P be the probability Haar measure on Ω, $Tz = z^2$, $z \in \Omega$, $d = 2$. Clearly,

$$(Uf)(x) = f(x^2), \quad (U^*f)(x) = 1/2 \sum_{\{u:u^2=x\}} f(u).$$

If $f \in L_2(P)$ and $\int_{\Omega} f(x)P(dx) = 0$ then the series $\sum_{k \geq 0} U^*k f$ converges in L_2 under very mild conditions. The condition $\sum_{k \geq 0} w^{(2)}(f, 2^{-k}) < \infty$ is sufficient. Here $w^{(2)}(f, \delta)$ is the continuity modulus of f in $L_2(P)$.

Mikhail Gordin

FUNCTIONAL LIMIT THEOREMS
Let now $f_2 \in L_2(\mu^2)$ be of the form

$$f_2(x_1, x_2) = g(x_1 x_2^{-1})$$

with

$$g(x) = \sum_{k \in \mathbb{Z}} g_k x^k \in L^2(\mu).$$

Assume that $f_2 \in \hat{L}_2^{sym}$ and is canonic. This implies

$$g_0 = 0, g_{-k} = g_k, \text{ and } \sum_{k \in \mathbb{Z}} |g_k| < \infty.$$
Let A_2 be the Banach space of double absolutely converging Fourier series

$$a : (x_1, x_2) \mapsto \sum_{(k_1, k_2) \in \mathbb{Z}^2} a_{k_1, k_2} x_1^{k_1} x_2^{k_2}$$

furnished with the norm $| \cdot |_{A_2} : a \mapsto \sum_{(k_1, k_2) \in \mathbb{Z}^2} |a_{k_1, k_2}|$. The projective tensor norm of the space $\hat{L}_{2, \pi} \cong l_2 \hat{\otimes}_\pi l_2$ does not exceed the norm of $A_2 \cong l_1 \hat{\otimes}_\pi l_1$. Hence, the series

$$\sum_{(i_1, i_2) \in \mathbb{Z}^2_+} U^*(i_1, i_2) f_2$$

converges in $\hat{L}_{2, \pi}(\mu^2)$ if it converges in A_2.
Every $U^*(i,j)$ is a contraction in A_2. Furthermore,
\[|U^*(k,0) f_2|_{A_2} = |U^*(0,k) f_2|_{A_2} = |U^k g|_{A_1}, \]
where A_1 is the space of one-dimensional absolutely convergent trigonometric series $a : x \mapsto \sum_{k \in \mathbb{Z}} a_k x^k$ with the norm $|a|_{A_1} = \sum_{k \in \mathbb{Z}} |a_k|$. Thus we have
\[
\sum_{(k_1,k_2) \in \mathbb{Z}^2_+} |U^*(k_1,k_2) f_2|_{A_2} \leq \sum_{0 \leq k_1 \leq k_2 < \infty} |U^*(k_1,k_2) f_2|_{A_2} + \sum_{0 \leq k_2 \leq k_1 < \infty} |U^*(k_1,k_2) f_2|_{A_2} \\
= \sum_{k \in \mathbb{Z}_+} (k + 1) (|U^*(k,0) f_2|_{A_2} + |U^*(0,k) f_2|_{A_2}) \leq 2 \sum_{k=0}^{\infty} (k + 1) |U^k g|_{A_1},
\]
(9)
Therefore, a sufficient condition for series (8) to converge in $\hat{L}_{2,\pi}(\mu^2)$ is

$$\sum_{n\in\mathbb{Z}} \sum_{k\geq 0} (k + 1)|g_{2^k n}| < \infty,$$

which holds, for example, whenever for some $C > 0$ and $\delta > 0$

$$|g_m| \leq \frac{C}{|m|(\log |m|)^{1+\delta}}, \quad m \in \mathbb{Z} \setminus \{0\}.$$
FCLT
Proposition

Let \(h \in \hat{L}_2(P^2) \) be a canonical kernel of degree 2. Assume that the limit

\[
\lim_{n_1, n_2 \to \infty} \sum_{0 \leq i_1 \leq n_1 - 1, 0 \leq i_2 \leq n_2 - 1} U^*(i_1, i_2) h
\]

exists in \(\hat{L}_2(P^2) \). Then \(h \) admits a unique representation in the form

\[
h = g + (U^{(1,0)} - I)g_1 + (U^{(0,1)} - I)g_2 + (U^{(1,0)} - I)(U^{(0,1)} - I)g_{1,2},
\]

where \(g \in \hat{L}^2(P^2), \ g_1, g_2, g_{1,2} \in \hat{L}^2(P^2) \) and

\[
E(g \mid T^{-(1,0)} \mathcal{F}^2) = 0, \ E(g \mid T^{-(0,1)} \mathcal{F}^2) = 0, \ E(g_1 \mid T^{-(1,0)} \mathcal{F}^2) = 0, \ E(g_2 \mid T^{-(0,1)} \mathcal{F}^2) = 0.
\]

Moreover, if \(h \) is a symmetric function, so is \(g \).
Assume $d = 2$. Holds for every $d \geq 1$.

Theorem

Let $f \in \hat{L}_2(P^2)$ be a symmetric kernel with Hoeffding's decomposition

$$f(x_1, x_2) = f_0 + f_1(x_1) + f_1(x_2) + f_2(x_1, x_2),$$

where

$$\int_X f_1(z)p(dz) = 0,$$

$f_2 \in L_p^p(\mu^2)$ and

$$\int_X f_2(z_1, x_2)\mu(dz_1) = 0.$$

Assume that the series \(\sum_{k=0}^{\infty} U^k f_1 = g_1 \) converges in \(L_2 \) and the limit

\[
\lim_{N_1,N_2 \to \infty} \sum_{(n_1,n_2)=0} U^{(n_1,n_2)} f_2
\]

exists in \(\hat{L}_2(P^2) \). Then the distributions of random variables

\[
t \mapsto N^{-3/2} \sum_{n_1,n_2=0}^{[Nt]} (f(T^{n_1}; T^{n_2} \hat{\cdot}) - f_0), \ t \in [0, 1]
\]

weakly converge to the distribution of \(2\sigma^2_f w(\cdot) \), where \(w \) is the standard Brownian motion and

\[
\sigma^2_f = |g|^2 - |U^* g|^2.
\]
Lemma

There exists an absolute constant C such that

$$
|\max_{0 \leq n_1 \leq N_1 - 1, 0 \leq n_2 \leq N_2} D_2 \sum_{(n_1, n_2) = 0} U^{(n_1, n_2)} f_2|_1 \leq C |f_2|_{2, \pi} \sqrt{N_1 N_2}
$$

(11)
H. Dehling, M. Dehling, M. Gordin. *Some limit theorems for von Mises statistics of a measure preserving transformation*. Paper in preparation.

M. Gordin. Martingale-coboundary representation for a class of random fields. *Journal of Mathematical Sciences, New York*, 163, 4, 363 – 374: 2009.