The ordered and orientationally disordered crystalline phases of

the flexible C$_4$F$_8$ molecule

Z. Gamba

Dept. of Physics, CNEA, Av. Libertador 8250, (1429) Buenos Aires, Argentina. E-mail: gamba@cnea.gov.ar

and

B. M. Powell

National Research Council of Canada, Steacie Institute for Molecular Sciences, Neutron Program for Materials Research, Chalk River Labs., Chalk River, Ontario, K0J 1J0 Canada. E-mail: qrtrbell@webhart.net

There is ample experimental evidence for the existence of several crystalline phases of C$_4$F$_8$, although they still have been not clearly identified. In this paper we report a series of molecular dynamics (MD) simulations using a partially flexible molecular model, which takes into account the mixing of the low frequency intramolecular modes and lattice modes. The calculations are carried out at constant pressure and constant temperature and the algorithm employed allows for volume and symmetry changes of the MD sample as a function of thermodynamic variables. Although several stable crystalline phases are found, their number is still less than determined by experiments.

Introduction:

Per-fluorinated organic compounds are chemically very inert and therefore their study is of interest in environmental, medical[1] and materials sciences[2]. Perfluorocyclobutane C$_4$F$_8$, is a flexible molecule and there is experimental evidence, at ambient pressure, for the existence of several crystalline phase transitions[3][4][5]. C$_4$F$_8$ crystals melt at 233K and an orientationally
disordered phase has been found between 217K and the melting point. This plastic phase has been measured by X-rays and neutron powder diffraction methods and the obtained data has been interpreted as an orientationally disordered crystal. The molecular centers of mass follow a cubic bcc array, with two molecules per unit cell at (0,0,0) and (1/2,1/2,1/2), the space group is \(\text{Im} \bar{3}m \). NMR\! and heat capacity\! measurements determined the existence of four solid-solid phase transitions at ambient pressure and at 141, 174, 215 and 217K. Furthermore, in ref.[5] a small hysteresis in the heat capacity loop was found at about 97K. The low temperature phases have not been determined, but the scarce experimental data suggested that the phase transitions are related to the onset of dynamical disorder in the molecules’ orientation and in the intramolecular degrees of freedom\!.

The only calculation on the condensed phases of this compound is a constant volume MD simulation of the high temperature plastic phase, using a rigid model molecule\! that was helpful to analyze the measured powder diffraction patterns.

Here we study the phase diagram of \(\text{C}_4\text{F}_8 \) crystals, as given by a simple and flexible model. The study is performed via a series of constant pressure and constant temperature (NPT) molecular dynamics (MD) simulations, at several temperatures and zero pressure. Our calculations reproduce the scarce experimental data of the plastic phase and predict structural and dynamical properties of the low temperature phases.

Intra- and intermolecular potentials:

\(\text{C}_4\text{F}_8 \) is a cyclic flexible molecule. The energy associated with its intramolecular modes is similar to the energy of lattice modes in crystalline phases, except for the high energy of the stretching modes of the molecular bonds, which are considered of constant length in solid phases\!. In our MD calculations, the only intramolecular degrees of freedom taken into account are those associated with vibrational modes at low frequencies. These modes can mix with the lattice modes and may be relevant to the onset of structural phase transitions.

In our simulations, the initial molecular geometry corresponds to the one determined in the gas phase\! and used in the analysis of the high temperature disordered phase\!. It
has to be taken into account that the experimental geometry was determined with a large
deviation, due to thermal motion. From these measurements it cannot be stated whether
the molecular symmetry is D_{4h} (a planar four C ring) or D_{2d} (a puckered C ring).

No experimental data on intramolecular forces is available for C_4F_8. The vibrational
spectra of intramolecular modes have been measured in the gas, liquid and solid phases and
in solid matrices (refs. quoted in ref. [3]), but no unequivocal identification of the modes
and molecular geometry was possible. Nevertheless, a clear indication of a low barrier to
torsional ring motion was found.

Here we propose a simple model molecule, which includes a low torsional barrier for the
CCCC ring torsion, τ, and a rocking angle, β, for the CF$_2$ group (that moves mainly rigidly
in a plane perpendicular to the corresponding CCC plane). By comparison to the very
well known data for the molecule $C_4H_8[3]$, we propose the following intramolecular potential
model and parameters:

a) The potential for the torsional coordinate τ (or CCCC angle) is a double well, of the
form

$$V(\tau) = a - b \cos^2(\tau) + c \cos^4(\tau),$$

with minimums at $\cos(\tau_0) = \pm \sqrt{\frac{b}{2c}} = \pm \cos(12.28^\circ)$ and a barrier height $\Delta V = a = \frac{b^2}{4c} = k_B 225 K$.
The value for ΔV is arbitrary, there is no experimental data on it, but it was taken low
enough ($225 K$ is near the melting point) to show its possible influence on any of the solid-
solid phase transitions.

b) The potential wells for the CCC and FCC angles are harmonic, with force constants
$f_{CCC} = f_{FCC} = k_B 900 K = 7.48 kJ/mol/rad^2$. These bending angles intervene in the rocking
motion of the CF2 group. The values of f_{CCC} and f_{FCC} are also arbitrary, they imply
intramolecular frequencies that are high enough to avoid mixing with the lattice modes and
at the same time explain the measured molecular geometry as a function of temperature.

The sensitivity of our results to the arbitrary values of barrier height and bending force
constants are discussed in the section Results (b).
The interatomic angles and distances held constant during the simulations are:
\(d_{CC} = 1.566 \text{Å} \), \(d_{CF} = 1.333 \text{Å} \), angle FCF=109.9°. The initial values for the other quantities are: angle CCC=89.34°, angles FCC=110° and 117.5° and torsional angle (CCCC angle) \(\tau = 12.28° \). The rocking angle, \(\beta \), of the CF2 group is measured as the angle between the bisects of the CCC and FCF angles.

The intermolecular interactions are taken into account with the atom-atom Lennard-Jones (LJ) potential model of ref. [3], which does not include a set of distributed point charges within the molecule. The LJ parameters are: \(\sigma_C = 3.350 \text{Å} \), \(\sigma_F = 2.825 \text{Å} \), \(\varepsilon_C = 0.426 \text{kJ/mol} \), \(\varepsilon_F = 0.439 \text{kJ/mol} \). The standard combination rules are applied for cross interactions: the potential parameters for the interaction between atoms a and b are calculated as \(\sigma_{ab} = (\sigma_a + \sigma_b)/2 \) and \(\varepsilon_{ab} = \sqrt{\varepsilon_a \varepsilon_b} \). With these parameters, the constant volume simulations of ref. [3], performed on a statistically orientationally disordered array of rigid puckered molecules, reproduced the measured X-ray and neutron powder diffraction patterns. The cut-off radius for the atom-atom interactions is 12Å. Correction terms to the configurational energy and pressure, due to this finite cut-off, are taken into account in the usual way: with the integrated contribution of a uniform distribution of atoms.

Calculations:

The phase diagram and dynamical properties of \(\text{C}_4\text{F}_8 \), at zero pressure, are studied in the NPT ensemble, by a series of classical constant pressure - constant temperature MD simulations. The implemented MD algorithm allows volume and shape fluctuations of the MD sample in order to balance the applied isotropic external pressure with the internal stresses. This is performed by considering an extended system, which includes as extra variables the MD box parameters. The temperature control of the sample follows the approach of Nosé, which also includes an external variable. The equations of motion for molecular systems with internal degrees of freedom are described in ref. [9]. The equations are integrated via the Verlet algorithm for the atomic displacements and the SHAKE algorithm for the applied geometrical constraints. The final MD algorithm is identical to that
used in a study of black Newton films. A further test of the program was performed by carrying out several calculations at low temperatures and obtaining the same results as with the program for rigid molecules MDPOLY, used in ref. [3].

The first series of MD runs consisted of two MD boxes, with an initial array of 4x4x4 and 6x6x6 cubic bcc unit cells (128 and 432 molecules respectively), using the experimental lattice parameters and disordered molecular orientations, as in ref.[3]. These samples were first equilibrated, at P=0kbar and T=224K, for 30000 time steps (of 0.01ps) with a constant volume algorithm. The chosen thermodynamic parameters are within the small range in which the plastic phase is found. Afterwards, NPT runs were performed at 220K and the temperature was lowered in steps of 25K. At each point of the phase diagram the samples were equilibrated for 20000 to 30000 time steps (of 0.01ps) and analyzed in the following 10ps. Near the phase transitions the equilibration times had to be increased by a factor of 5-6. Both samples will be called "cubic samples", but this refers only to their initial high temperature structures.

Since these calculations did not show up the expected number of phase transitions, a search for the structure of lowest configurational energy, as given by this model potential, was performed. The final structure is monoclinic and is described in the following section. Increasing the temperature of the new sample (hereafter it will be called "monoclinic sample", refering to its initial low temperature ordered structure), a second series of runs was performed. This procedure is expected to minimize the hysteresis of the possible phase transitions.

Another sample, initially in trigonal symmetry was studied upon heating and is described also in the following section. This possible structure was suggested by additional measurements, not reported in ref. [3].

Results:

a) Crystalline phases:

Here we include the results of our calculations in the NPT ensemble of three samples that
gave uniform structures at some point of the phase diagram. When lowering the temperature of the "cubic" sample, or during the search of the low configurational energy structures, many samples showed twinning or conserved some degree of orientational disorder and were disregarded. Lengthy calculations were needed to obtain the included results. A similar problem was found experimentally when trying to identify the low temperature phases.

At 220K the calculated "cubic" sample of 432 molecules, remained in a cubic bcc symmetry, space group Im$\bar{3}$m, with very large fluctuations in the lattice parameters. The averaged thermodynamic parameters are $T=220(4)$K, $P=0.0(2)$kbar and the lattice parameters are $a=6.9(7)\text{Å}$ and $\text{angles}=90.0(7)\text{deg.}$, which compare well with the experimental value of 7.02Å at 224K. The calculated pair distribution function and structure factor, not included here, showed a bcc array for the centers of mass. The measurement of reorientational times and histograms of Euler’s angles for the molecules orientations determined that the phase is plastic. The molecules are dynamically disordered, with the molecular planes preferentially oriented parallel to the cubic crystallographic faces, on a time average. The disorder is dynamic, with decay times of $\sim 3\text{ps}$, as obtained from the orientational time self-correlation functions.

The experimental heat of sublimation is $\Delta H_{\text{sub}}=28.7\text{kJ/mol}$ at 233K. We estimate $\Delta H_{\text{sub}}=30.3\text{kJ/mol}$ at 220K, by adding the entropic contribution of our calculated vibrational density of states to the configurational energy.

At 220K, the "cubic" sample of 128 molecules distorts to a monoclinic symmetry, instead of remaining cubic. The 6x6x6 unit cells sample shows this distortion for $T\leq 200$K. These results show that the proposed model molecule reproduces the plastic phase in large samples, which have lower thermal fluctuations of the lattice parameters. Nevertheless, we believe that our high temperature plastic sample is only marginally the "most stable" structure, large equilibration runs were necessary, first at constant volume and then at constant pressure, before being able to obtain the included results.

No further transitions were found for these "cubic" samples and this was the reason to perform a search for the crystalline structure with lowest configurational energy. Fig.
1 shows this structure, which according to our calculations is the most stable one. Not surprisingly, it is similar to the low temperature structure of \(\text{C}_4\text{Cl}_8 \), a monoclinic unit cell with \(Z=2 \) and space group \(\text{D}^2_{2h} \) (\(\text{P}2_1/m \)). The lattice parameters, at \(T=50\text{K} \), are \(a=6.67(2)\text{Å} \), \(b= 4.89(2)\text{Å} \), \(c= 8.42(2)\text{Å} \) and \(\beta= 78(1)\text{deg} \). The two molecules are located at \((0,0,0)\) and \((1/2,1/2,1/2)\) and are related by an inversion center at \((1/4,1/4,1/4)\).

A "monoclinic" sample of 4x6x4 of the monoclinic unit cells (192 molecules) was studied upon heating. This sample shows a structural phase transition when the temperature is increased 175 to 185K. The high temperature phase is trigonal and plastic, as calculated from the pair correlation function for the molecular centers of mass and reorientational times.

Finally, a "trigonal" sample of 128 molecules was studied upon heating. This possible symmetry was suggested by preliminary measurements, not included in ref [3]. The sample initially consisted of 4x4x4 trigonal unit cells, with two molecules per unit cell, and the molecular planes oriented perpendicular to the main diagonal. The lattice parameters of this initial cell were \(a=b=c=7.2\text{Å} \) and angles \(\alpha=\beta=\gamma=97\text{deg} \). At 50(1)K the calculated stable structure is triclinic, although the molecular planes remain parallel. The resulting cell parameters were \(a=5.64(3)\text{Å} \), \(b=7.07(3)\text{Å} \), \(c=6.72(3)\text{Å} \) with angles \(\alpha=95.4(3)\text{deg} \), \(\beta=98.3(3)\text{deg} \) and \(\gamma=97.1(3)\text{deg} \). For \(T\geq200\text{K} \) this sample shows dynamic orientational disorder.

Fig. 2 shows the configurational energies, the volume per molecule and estimated free energies of all MD samples as a function of temperature. The free energy was estimated, at each point of the phase diagram, taking into account the contribution of our calculated vibrational density of states to the entropy. At low temperatures the most stable sample is the "monoclinic" one, at high temperatures all samples have similar values of configurational and free energies. The "cubic" sample is slightly more stable, but the differences of energy are within the calculated errors.

b) Molecular geometry and dynamics:
Time averages performed over all molecules show that the average FCC angle is about 114° at all temperatures, with deviations of 16° at 50K to 23° at 225K. These values were obtained from time averaged histograms of the corresponding angular distributions.

Fig. 3a shows the dependence of the average value of the torsional angle $<\tau>$ on temperature. The average is over all molecules and over the trajectory in phase space followed by the system after equilibration. At 50K τ is centered at about 7°, with a very large deviation of 4° in the ”monoclinic” sample, and 6° in the ”cubic” sample. At higher temperatures $<\tau>$ decreases to 0 and its deviation is even larger. On a time average the molecules appear nearly planar in all samples with $T \geq 100K$. This change in the dynamics of the molecules can, possibly, explain the small hysteresis measured around 97K. Fig. 4 shows the correlation between the torsional and rocking angles, determined at the lowest temperature in the ”cubic ” sample. For C$_4$H$_8$ a relationship of the form

$$\beta = 0.21\tau - 3.8 \times 10^{-5}\tau^3.$$

was proposed. Fig. 4 shows that, at low temperatures, our measured correlation could be fitted with a similar function, but our calculations also show that this correlation is rapidly lost at increased temperatures, at 100K the distribution is almost flat.

To study the dynamics of the torsional angle τ, several time correlation functions can be measured. We analyze the self-correlation function

$$C(t) = \frac{1}{N} \sum_{i=1}^{N} A_i(t).A_i(0)$$

where N is the total number of molecules and A is a vector defined as A=0 when the CCCC ring is planar, and A=±1 when τ=$\pm \tau_0$, the minimum of the potential double well. In our samples at 50K $C(t)$ decays to a final equilibrium value of 0.82, at 100K to 0.40 and at 225K the function decays exponentially to zero, with a characteristic time of \sim1ps.

Clearly that the behavior of $<\tau>$ and $(<\tau^2>-<\tau>^2)$, as a function of temperature, depends on the arbitrary value of the barrier height of the torsional double well potential. Since there are no structural changes around 100K in the three crystalline samples studied
here, the change in molecular dynamics is attributed to the heat capacity hysteresis measured at 97K. If this interpretation is valid, the chosen barrier height value is very near the correct one. The behavior of the rocking angle, as a function of temperature, depends on the f_{CCC} and f_{FCC} values. Their influence on our calculations is indirect. They determine, together with the torsional barrier height, the effective molecular volume as a function of temperature. This fact can be verified with the calculation of the phase diagram given by a rigid model molecule, using the same intermolecular potential parameters. The result is that the order-disorder phase transition, for a monoclinic sample studied upon heating, is found at $T=350\text{K}$ instead of 185K.

Conclusions:

The proposed model and potential parameters give good account of the measured properties of the high temperature plastic phase of C_4F_8, including the packing energy and orientational preference for the molecular planes to be parallel to the cubic faces. Characteristic molecular reorientational times and torsional correlation decay times are predicted for this phase.

Our calculations also predict a low temperature monoclinic phase, with orientationally ordered molecules, which is very similar to the room temperature structure of C_4Cl_8. A possible triclinic structure, stable at intermediate temperatures, is suggested.

Our calculations describe the extent of the intramolecular coordinates disorder. The experimentally observed uncertainty in measuring the molecular geometry is explained by large thermal fluctuations of the torsion and rocking angles. The adequate theoretical model, at temperatures higher than 100K, is of diffusion between equivalent potential wells with characteristic depths of $\sim k_B T$. The expected correlation between the rocking (β) and torsional (τ) angles is clearly found only at very low temperatures. At $T \geq 100\text{K}$ the correlation is lost, both angles have an average value of $\sim 0^\circ$ with very broad distributions. Above this temperature the molecules look almost planar, as is found experimentally.

The possible contribution of the intramolecular degrees of freedom, which are dominated
by the rocking and torsional angles, to the observed phase transitions, was analysed. The small hysteresis measured around 100 K could be related to the soft double well potential of the torsional angle.

We could not establish a clear correspondence between our calculations and all the observed solid-solid structural phase transitions. Nevertheless, several stable structures were found, which can be helpful in analysing the neutron and X-rays diffraction patterns.

Our predicted structures and molecular dynamics need further experimental verifications. Moreover, the model molecule studied here is rather simple. A more sophisticated intramolecular potential will probably be required to reproduce the complex phase diagram of C₄F₈.

Acknowledgement: Z. G. thanks CONICET for the grant PIP 0859/98.

References:

1. W. Wyat Gibbs, Scientific American, News and Analysis of Feb. 1999, p.23.
2. A. R. Ravishankara, S. Solomon, A. A. Turnipseed and R. F. Warren, Science **259**, 194 (1993).
3. L. S. Bartell and B. M. Powell, Mol. Phys. **67**, 861 (1989).
4. E. Szczesniak and J. R. Brookeman, Mol. Phys. **48**, 1221 (1983).
5. G. T. Furukawa, R. E. McCoskey and M. L. Reilley, J. Res. Natn. Bur. Stand. **52**, 11 (1954).
6. H. P. Lemaire and R. L. Livingston, J. Chem. Phys. **18**, 569 (1950).
7. L. S. Bartell and A. Jin, J. Chem. Phys. **78**, 7159 (1983).
8. T. Egawa, T. Fukuyama, S. Yamamoto, F. Takabayashi, H. Kambara, T. Ueda and K. Kuchitsu, J. Chem. Phys. **86**, 6018 (1987).
9. M. Ferrario and J. Ryckaert, Mol. Phys. **54**, 587 (1985).
10. S. Nosé and M. L. Klein, Mol. Phys. 50, 1055 (1983)

11. J. P. Ryckaert and G. Ciccotti, J. Chem. Phys. 78, 7368 (1983).

12. S. Nosé, Progress of Teor. Phys. Suppl. 103, 1 (1991).

13. Z. Gamba, J. Hautman, J. C. Shelley and M. L. Klein, Langmuir 8, 3155 (1992).

14. N. F. Mott and H. Jones, ”The properties of metals and alloys”, Dover N. Y., p. 38 (1958).

15. L. S. Batell and Y. Z. Barshad, J. Phys. Chem. 91, 2893 (1987).

16. T. B. Owen and J. L. Hoard, Acta Cryst. 4, 172 (1951).

17. M. Born and K. Huang, ”Dynamical theory of crystal lattices”, Oxford Clarendon Press, 1954, p.39.

18. R. Champion, P. D. Godfrey and F. Bettens, J. Mol. Spectr. 155, 18 (1992).
Figures:

Fig. 1: The low temperature monoclinic unit cell, D_{2h}^{2} (P2_{1}/m), Z=2, is similar to the low temperature structure of C_{4}Cl_{8}^{14}.

Fig. 2: a) Configurational energies, b) volume per molecule and c) estimated free energies of three MD samples as a function of temperature: "monoclinic " (solid line), "cubic " (dashed line) and "trigonal " (dotted line).

Fig. 3: Time averaged (a) torsional angle , b) rocking angle and c) calculated dispersion of both angles as a function of temperature. Solid line: "monoclinic" sample, dashed line: "cubic " and dotted line: "trigonal ".

Fig. 4: Correlation between the torsional, τ, and rocking, β, angles, determined at the lowest temperature in the "cubic " sample.
