Clinical and Economic Impact of Third-Generation Cephalosporin-Resistant Infection or Colonization Caused by *Escherichia coli* and *Klebsiella pneumoniae*: A Multicenter Study in China

Xuemei Zhen ¹,², Cecilia Stålsby Lundborg ³, Xueshan Sun ², Xiaoqian Hu ²,⁴ and Hengjin Dong ²,⁵,*

¹ Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, (National Health Commission (NHC) Key Laboratory of Health Economics and Policy Research, Shandong University), Jinan 250012, China; zhenxuemei@sdu.edu.cn

² Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; sunxueshan@zju.edu.cn (X.S.); huxiaoqian@qdu.edu.cn (X.H.)

³ Department of Global Public Health, Karolinska Institutet, 17177 Stockholm, Sweden; Cecilia.Stalsby.Lundborg@ki.se

⁴ College of Politics and Public Administration, Qingdao University, Qingdao 266061, China

⁵ The Fourth Affiliated Hospital Zhejiang University School of Medicine, No. N1, Shancheng Avenue, Yiwu 322000, China

* Correspondence: donghj@zju.edu.cn; Tel.: +86-57188-2060-98; Fax: +86-5718-8206-098

Received: 3 November 2020; Accepted: 9 December 2020; Published: 11 December 2020

Abstract: Quantifying economic and clinical outcomes for interventions could help to reduce third-generation cephalosporin resistance and *Escherichia coli* or *Klebsiella pneumoniae*. We aimed to compare the differences in clinical and economic burden between third-generation cephalosporin-resistant *E. coli* (3GCREC) and third-generation cephalosporin-susceptible *E. coli* (3GCSEC) cases, and between third-generation cephalosporin-resistant *K. pneumoniae* (3GCRKP) and third-generation cephalosporin-susceptible *K. pneumoniae* (3GCSKP) cases. A retrospective and multicenter study was conducted. We collected data from electronic medical records for patients who had clinical samples positive for *E. coli* or *K. pneumoniae* isolates during 2013 and 2015. Propensity score matching (PSM) was conducted to minimize the impact of potential confounding variables, including age, sex, insurance, number of diagnoses, Charlson comorbidity index, admission to intensive care unit, surgery, and comorbidities. We also repeated the PSM including length of stay (LOS) before culture. The main indicators included economic costs, LOS and hospital mortality. The proportions of 3GCREC and 3GCRKP in the sampled hospitals were 44.3% and 32.5%, respectively. In the two PSM methods, 1804 pairs and 1521 pairs were generated, and 1815 pairs and 1617 pairs were obtained, respectively. Compared with susceptible cases, those with 3GCREC and 3GCRKP were associated with significantly increased total hospital cost and excess LOS. Inpatients with 3GCRKP were significantly associated with higher hospital mortality compared with 3GCSKP cases, however, there was no significant difference between 3GCREC and 3GCSEC cases. Cost reduction and outcome improvement could be achieved through a preventative approach in terms of both antimicrobial stewardship and preventing the transmission of organisms.

Keywords: *Escherichia coli*; *Klebsiella pneumoniae*; third-generation cephalosporin; 3GCREC; 3GCRKP; economic cost; length of stay; hospital mortality
1. Introduction

Escherichia coli and Klebsiella pneumoniae, both species of the family Enterobacteriaceae, are the most prevalent gram-negative bacteria causing intra-abdominal infection, urinary tract infection, and bloodstream infection \[1,2\], and can be resistant to the widely used antibiotics, such as third-generation cephalosporins, namely third-generation cephalosporin-resistant E. coli (3GCREC) and third-generation cephalosporin-resistant K. pneumoniae (3GCRKP) \[3,4\]. The World Health Organization (WHO) classified 3GCREC and 3GCRKP as critical-priority bacteria \[5\]. Alvarez-Uria et al. (2018) pointed out that global resistant prevalence was 64.5% for 3GCREC and 66.9% for 3GCRKP by 2030 \[6\]. The China Antimicrobial Resistance Surveillance System reported that the average proportion of 3GCREC and 3GCRKP in 2019 was 51.9% and 31.9%, respectively \[7\], which was higher than the levels in United Kingdom (11.0% and 13.0%) and in Sweden (8.3% and 5.5%) \[8\].

Third-generation cephalosporin resistance in E. coli or K. pneumoniae is a global concern \[9,10\]. Infections caused by 3GCREC and 3GCRKP were associated with higher mortality, longer length of stay (LOS), and more economic costs compared with susceptible cases \[11-13\]. de Kraker et al. (2011) showed that 15,183 episodes of 3GCREC were associated with 2712 excess deaths, 120,065 extra LOS, and €18.1 million increased costs in 31 European countries \[13\]. It was concluded that patients with third-generation cephalosporin-resistant Enterobacteriaceae contributed to 16.1% of hospital mortality, 4.9 days of LOS, and €320 of infection cost in one study by Stewardson et al. (2016) \[14\]. In addition, colonization of E. coli and K. pneumoniae, as the reservoir for infection with these organisms, was also a risk factor for higher mortality, longer LOS, and increased hospital costs \[15,16\].

Quantifying clinical and economic outcomes would facilitate strategies towards the containment of third-generation cephalosporin resistance and E. coli or K. pneumoniae. Resistance to third-generation cephalosporins by E. coli or K. pneumoniae, which represented the major mechanism of antimicrobial resistance, had been reported as independently associated with a poor outcome and increased use of healthcare resources \[12,17\]. However, no significant difference in hospital mortality between 3GCREC and third-generation cephalosporin-susceptible E. coli (3GCSEC) was reported \[13,18\]. In China, there was only one study exploring longer LOS and higher hospital costs attributable to extended spectrum beta-lactamase (ESBL)-positive intra-abdominal infection caused by E. coli or K. pneumoniae \[19\]. The clinical and economic outcomes of 3GCREC and 3GCRKP remained largely uninvestigated in China. In this study, we aimed to compare the clinical and economic difference between 3GCREC and 3GCSEC, and between 3GCRKP and third-generation cephalosporin-susceptible K. pneumoniae (3GCSSK), in China.

2. Materials and Methods

2.1. Study Site

We conducted this study in four tertiary hospitals in China; three in Zhejiang Province (Site 1, Site 3, and Site 4) are a general provincial hospital, general county hospital, and combined traditional Chinese and Western medicine provincial hospital, respectively, and one in Shandong Province (Site 2) is a general provincial hospital. There are 3200, 3500, 1727, 2100 of hospital beds and 170,000, 160,000, 80,000, 50,000 inpatients per year in these four hospitals, respectively.

2.2. Study Design and Patients

A retrospective and multicenter study was conducted. We collected data from electronic medical records (EMR) for patients who had clinical samples positive for E. coli or K. pneumoniae isolates, that were detected in any specimens (e.g., blood, stool, cervical, and urethral sources) between 2013 and 2015 \[20\]. Patients were defined as 3GCREC/3GCRKP cases if patients infected or colonized by E. coli or K. pneumoniae were resistant or intermediate to any third-generation cephalosporin or as 3GCSEC/3GCSSK cases if they were susceptible to all third-generation cephalosporins according to the Clinical and Laboratory Standards Institute (CLSI) definitions \[15,21\]. We only included the first
episode for each patient to avoid duplication. The study was approved by the institutional review board of Zhejiang University School of Public Health, who waived the need for informed consent. All inpatients data were anonymized prior to analysis.

2.3. Data Collection

We collected patient characteristics from EMR. The data for each patient included demographics (age, sex, and insurance), comorbidities (disease diagnosis, and Charlson comorbidity index (CCI), hospital events (admitting service, surgical services, and date of hospital and intensive care unit (ICU) admission or discharge), microbiological data, clinical outcomes (discharged alive or death during hospitalization), and economic costs.

2.4. Propensity Score Matching

To minimize the impact of potential confounding variables, we performed propensity score matching (PSM) with 1:1 nearest-neighbor matching. PSM, widely used to control for confounding in observational studies, is a powerful statistical matching technique for reducing a set of confounding variables to a single propensity score in order to effectively control for all observed confounding bias [22]. There were two step-by-step rounds of PSM. First, we employed a logistic regression model with third-generation cephalosporin-resistant or-susceptible as dependent variables, and with age, sex, insurance, number of diagnoses, CCI, admission to ICU, surgery, and comorbidities as independent variables. Second, because LOS is the major contributor to additional economic cost, we repeated the PSM including LOS before culture as a potential confounding variable. The generated pairs matched with potential confounding variables were subjected to further analyses of economic costs, LOS and hospital mortality.

2.5. Indicators and Statistical Analyses

The main indicators included economic costs, LOS and hospital mortality. The economic costs comprised total hospital cost, medication cost (antibiotic cost), diagnostic cost, treatment cost, material cost, and other costs, and they covered out-of-pocket payment by patients themselves and payments by health insurers. All economic costs were presented in 2015 United States (US) dollars values according to purchasing power parities and the consumer price index of China [23,24].

The Wilcoxon rank-sum test and χ^2 test were conducted to compare the main indicators between 3GCREC and 3GCSEC and between 3GCRKP and 3GCSKP for the quantitative and qualitative variables, respectively. Statistical analyses were performed using STATA. All p-values were two-tailed, and those less than 0.05 were considered statistically significant.

3. Results

The proportions of 3GCREC and 3GCRKP in the sampled hospitals were 44.3% and 32.5%, respectively. A total of 2056 inpatients infected or colonized with 3GCREC and 2588 with 3GCSEC, 1679 with 3GCRKP and 3485 with 3GCSKP were included during the study period. There were significant differences in sex, admission to ICU, surgery, and some comorbidities between the 3GCREC and 3GCSEC groups, and in age, number of diagnoses, admission to ICU, surgery, and some comorbidities between the 3GCRKP and 3GCSKP groups before PSM. Therefore, we conducted PSM to minimize the influencing of variables in two steps. First, excluding LOS before culture as a potential confounding variable, we obtained 1815 pairs and 1617 pairs, respectively. In addition, 1804 pairs and 1521 pairs were generated, respectively, after PSM for potential confounding variables including LOS before culture. There were no differences in patients’ characteristics between the two groups after PSM (Table 1).
Table 1. Characteristics of patients with 3GCREC and 3GCSEC and with 3GCRKP and 3GCSKP before PSM and after PSM.

Baseline Characteristics	Before PSM	After PSM for Potential Confounding Variables Excluding LOS Before Culture	After PSM for Potential Confounding Variables Including LOS Before Culture	
	3GCS EC	3GCS REC	3GCS KP	3GCR KP
	p Value	p Value	p Value	p Value
Number of inpatients, n	2588	2056	3485	1679
Age in years, median (range)	73 (0–100)	72 (0–100)	72 (0–100)	72 (0–100)
Sex male, n (%)	1174	600	<0.000	0.233
Surgery, n (%)	<0.000	0.917	0.917	0.917
Myocardial infarction, n (%)	0.000	0.741	0.43	0.914
Congestive heart failure, n (%)	0.000	0.017	0.017	0.65
Peripheral vascular disease, n (%)	0.000	0.83	0.83	0.847
Cerebrovascular diseases, n (%)	0.000	0.017	0.017	0.316
Dementia, n (%)	0.000	0.879	0.879	0.302
Chronic pulmonary disease, n (%)	0.000	0.741	0.741	0.323
Connective tissue disease, n (%)	0.000	0.064	0.064	0.358
Mild liver disease, n (%)	0.000	0.179	0.179	0.057
Peptic ulcer disease, n (%)	0.000	0.42	0.42	0.266

Excluding LOS Before Culture

	3GCR EC	3GCR KP	3GCS KP	3GCS KP
	p Value	p Value	p Value	p Value
Number of diagnoses, median (range)	5 (1–29)	6 (1–37)	0.95	0.722
Charlson comorbidity index, median (range)	6 (1–29)	6 (1–37)	0.95	0.722
Admission to ICU, n (%)	175	<0.000	0.000	0.938
Surgery, n (%)	770	<0.000	0.000	0.938
Myocardial infarction, n (%)	63	0.017	0.017	0.65
Congestive heart failure, n (%)	439	0.017	0.017	0.65
Peripheral vascular disease, n (%)	19	0.017	0.017	0.65
Cerebrovascular diseases, n (%)	1077	0.017	0.017	0.65
Dementia, n (%)	96	0.017	0.017	0.65
Chronic pulmonary disease, n (%)	442	<0.000	0.000	0.65
Connective tissue disease, n (%)	84	0.064	0.064	0.65
Mild liver disease, n (%)	86	0.017	0.017	0.65
Peptic ulcer disease, n (%)	2.40	0.42	0.42	0.266

Including LOS Before Culture

	3GCS EC	3GCS KP	3GCR KP	3GCR KP
	p Value	p Value	p Value	p Value
Number of diagnoses, median (range)	5 (1–29)	6 (1–37)	0.95	0.722
Charlson comorbidity index, median (range)	6 (1–29)	6 (1–37)	0.95	0.722
Admission to ICU, n (%)	175	<0.000	0.000	0.938
Surgery, n (%)	770	<0.000	0.000	0.938
Myocardial infarction, n (%)	63	0.017	0.017	0.65
Congestive heart failure, n (%)	439	0.017	0.017	0.65
Peripheral vascular disease, n (%)	19	0.017	0.017	0.65
Cerebrovascular diseases, n (%)	1077	0.017	0.017	0.65
Dementia, n (%)	96	0.017	0.017	0.65
Chronic pulmonary disease, n (%)	442	<0.000	0.000	0.65
Connective tissue disease, n (%)	84	0.064	0.064	0.65
Mild liver disease, n (%)	86	0.017	0.017	0.65
Peptic ulcer disease, n (%)	2.40	0.42	0.42	0.266
Table 1. Cont.

Baseline Characteristics	3GCS EC	3GCREC	p Value	3GCS KP	3GCR KP	p Value	3GCS EC	3GCREC	p Value	3GCS KP	3GCR KP	p Value	3GCS EC	3GCREC	p Value	3GCS KP	3GCR KP	p Value																				
Diabetes mellitus, n (%)	894	3G	0.884	706	3G	0.631	952	3G	0.631	448	3G	0.631	628	3G	0.944	630	3G	0.185	401	3G	0.185	434	3G	0.185	633	3G	0.78	625	3G	0.78	411	3G	0.78	409	3G	0.78	0.935	0.935
Diabetes mellitus with chronic complications, n (%)	132	3G	0.007	167	3G	0.404	115	3G	0.404	63	3G	0.404	119	3G	0.066	93	3G	0.852	61	3G	0.852	59	3G	0.852	97	3G	0.094	121	3G	0.094	57	3G	0.094	0.847	0.847			
Moderate to severe chronic kidney disease, n (%)	232	3G	0.832	188	3G	0.012	235	3G	0.012	189	3G	0.012	171	3G	0.775	166	3G	0.529	165	3G	0.529	176	3G	0.529	166	3G	0.529	167	3G	0.529	153	3G	0.529	0.477	0.477			
Hemiplegia, n (%)	33	3G	0.521	22	3G	0.026	24	3G	0.026	22	3G	0.026	18	3G	0.629	21	3G	0.544	20	3G	0.544	24	3G	0.544	20	3G	0.544	18	3G	0.544	20	3G	0.544	0.744	0.744			
Solid tumor without metastases, n (%)	316	3G	0.119	207	3G	0.019	224	3G	0.019	126	3G	0.019	198	3G	0.751	204	3G	0.793	128	3G	0.793	124	3G	0.793	206	3G	0.793	121	3G	0.793	126	3G	0.793	0.474	0.474			
Leukemia, n (%)	40	3G	0.191	21	3G	0.084	51	3G	0.084	40	3G	0.084	22	3G	0.878	21	3G	0.574	38	3G	0.574	43	3G	0.574	38	3G	0.574	38	3G	0.574	35	3G	0.574	39	3G	0.574	0.638	0.638
Malignant lymphoma, n (%)	34	3G	0.013	12	3G	0.025	33	3G	0.025	28	3G	0.025	8	3G	0.37	12	3G	0.78	25	3G	0.78	25	3G	0.78	25	3G	0.78	32	3G	0.841	24	3G	0.841	0.41	0.41			
Severe liver disease, n (%)	52	3G	0.37	33	3G	0.457	43	3G	0.457	26	3G	0.457	29	3G	0.698	32	3G	0.89	26	3G	0.89	27	3G	0.89	26	3G	0.89	27	3G	0.89	26	3G	0.89	0.41	0.41			
Metastatic tumor, n (%)	129	3G	0.48	112	3G	0.000	206	3G	0.000	59	3G	0.000	99	3G	0.409	88	3G	0.323	59	3G	0.323	70	3G	0.323	59	3G	0.323	70	3G	0.323	59	3G	0.323	35	3G	0.323	0.653	0.653

3GCREC: third-generation cephalosporin-resistant *Escherichia coli*; 3GSEC: third-generation cephalosporin-susceptible *E. coli*; 3GCRKP: third-generation cephalosporin-resistant *Klebsiella pneumoniae*; PSM: propensity score matching; LOS: length of stay; ICU: intensive care unit.
After PSM for potential confounding variables excluding LOS before culture, inpatients with third-generation cephalosporin resistance were significantly associated with higher economic costs and LOS than susceptible cases. The median differences (95% certainty interval (CI)) in total hospital cost, antibiotic cost, medication cost, diagnostic cost, treatment cost, and material cost were $1366 ($1179–$1453), $152 ($146–$168), $627 ($577–$715), $81 ($57–$79), $363 ($324–$393), and $134 ($129–$143), respectively, for inpatients with 3GCREC (Table 2), and were $7671 ($7419–$7932), $881 ($809–$982), $4461 ($4168–$4658), $620 ($566–$708), $1612 ($1501–$1756), and $583 ($535–$641), respectively, for inpatients with 3GCRKP (Table 3). The median LOS of inpatients with 3GCREC and 3GCRKP were longer than those with 3GCSEC and 3GCSKP, with a difference of 4 days and 11 days, respectively (Table 4). In addition, there was no significant difference in hospital mortality between the 3GCREC and 3GCSEC groups (\(p = 0.281 \)), however, a significant difference with 3.09% (2.78–3.39%) of hospital mortality was found between the 3GCRKP and 3GCSKP groups (\(p < 0.000 \)) (Table 5).

After PSM for potential confounding variables including LOS before culture, the differences in economic costs, LOS and hospital mortality for inpatients with 3GCREC and 3GCRKP were lower than the results after PSM for variables excluding LOS before culture. The differences in total hospital cost, antibiotic cost, medication cost, diagnostic cost, treatment cost, and material cost between the 3GCREC and 3GCSEC groups and between the 3GCRKP and 3GCSKP groups were statistically significant, with median differences of $1140 ($942–$1227), $127 ($127–$147), $515 ($456–$592), $67 ($61–$85), $271 ($245–$296), and $107 ($101–$114), respectively, for inpatients with 3GCREC (Table 2), and with median differences of $4763 ($4340–$5024), $729 ($655–$814), $2998 ($2695–$3310), $445 ($380–$460), $952 ($989–$1015), and $340 ($299–$383), respectively, for inpatients with 3GCRKP (Table 3). The LOS of inpatients with 3GCREC or 3GCRKP was significantly longer than that of inpatients with 3GCSEC or 3GCSKP, with a median difference of 2.5 days and 7 days, respectively (Table 4). In addition, no significant difference in hospital mortality between the 3GCREC and 3GCSEC groups was found (\(p = 0.508 \)), but significant difference existed between the 3GCRKP and 3GCSKP groups (\(p = 0.001 \)) (Table 5).
Table 2. Economic costs of patients with 3GCREC and 3GCSEC for potential confounding variables.

Confounding Variables	Hospital Cost ($)	3GCREC	3GCSEC	Difference	p Value
	Median 95% CI	Median 95% CI	Median 95% CI	Median 95% CI	
Excluding LOS before culture					
Total hospital cost	3867 3558 4185	5233 4737 5638	366 1179 1453	<0.000	
Antibiotic cost	126 99 143	278 246 311	152 146 168	<0.000	
Medication cost	1418 1286 1563	2045 1863 2279	627 577 715	<0.000	
Diagnostic cost	873 844 914	955 801 992	81 57 79	<0.000	
Treatment cost	778 719 858	1142 1043 1250	363 324 393	<0.000	
Material cost	187 160 225	321 289 368	134 129 143	<0.000	
Other costs	8 8 9	8 8 10	0 1 1	<0.000	
Including LOS before culture					
Total hospital cost	4057 3791 4435	5197 4733 5662	1140 942 1227	<0.000	
Antibiotic cost	132 108 150	260 235 297	127 127 147	<0.000	
Medication cost	1522 1385 1669	2037 1840 2281	515 456 592	<0.000	
Diagnostic cost	886 848 916	953 909 1022	67 61 85	<0.000	
Treatment cost	841 773 934	1111 1018 1207	271 245 296	<0.000	
Material cost	199 172 238	306 273 352	107 101 114	<0.000	
Other costs	8 7 9	8 8 10	1 1 1	<0.000	

3GCREC: third-generation cephalosporin-resistant *Escherichia coli*; 3GCSEC: third-generation cephalosporin-susceptible *E. coli*; LOS: length of stay; CI: certainty interval.

Table 3. Economic costs of patients with 3GCRKP and 3GCSKP for potential confounding variables.

Potential Confounding Variables	Hospital Cost ($)	3GCSKP	3GCRKP	Difference	p Value
	Median 95% CI	Median 95% CI	Median 95% CI	Median 95% CI	
Excluding LOS before culture					
Total hospital cost	8084 7380 9029	15,754 14,799 16,961	7671 7419 7932	<0.000	
Medication cost	490 430 538	1372 1239 1521	881 809 982	<0.000	
Diagnostic cost	3461 3122 3781	7923 7290 8439	4461 4168 4658	<0.000	
Treatment cost	1397 1332 1472	2017 1898 2180	620 566 708	<0.000	
Material cost	1637 1491 1768	3249 2992 3524	1612 1501 1756	<0.000	
Other costs	472 419 536	1055 954 1177	583 535 641	<0.000	
	14 12 16	17 15 20	3 3 4	<0.000	
Including LOS before culture					
Total hospital cost	9699 9089 10,537	14,463 13,428 15,561	4763 4340 5025	<0.000	
Antibiotic cost	526 467 590	1255 1122 1404	729 655 814	<0.000	
Medication cost	4166 3811 4571	7164 6506 7881	2998 2695 3310	<0.000	
Diagnostic cost	1452 1380 1554	1896 1761 2014	445 380 460	<0.000	
Treatment cost	2043 1831 2240	2995 2852 3255	952 989 1015	<0.000	
Material cost	623 566 689	963 866 1071	340 299 383	<0.000	
Other costs	16 14 18	16 14 19	0 1 1	0 0.4680	

3GCRKP: third-generation cephalosporin-resistant *Klebsiella pneumoniae*; 3GCSKP: third-generation cephalosporin-susceptible *K. pneumoniae*; LOS: length of stay; CI: certainty interval.
Table 4. Length of stay of patients with 3GCREC and 3GCSEC and with 3GCRKP and 3GCSKP for potential confounding variables.

Potential Confounding Variables	LOS (Days)	Third-Generation Cephalosporins-Susceptible	Third-Generation Cephalosporins-Resistant	Difference	p Value			
		Median	95% CI	Median	95% CI	Median	95% CI	
Excluding LOS before culture	3GCREC vs. 3GCSEC	16	16-17	20	19-21	4	3-4	<0.000
	3GCRKP vs. 3GCSKP	20	19-21	31	30-32	11	11-11	<0.000
Including LOS before culture	3GCREC vs. 3GCSEC	17	16-17	19.5	18-21	2.5	2-4	<0.000
	3GCRKP vs. 3GCSKP	23	22-24	30	29-31	7	7-7	<0.000

3GCREC: third-generation cephalosporin-resistant *Escherichia coli*; 3GCSEC: third-generation cephalosporin-susceptible *E. coli*; 3GCRKP: third-generation cephalosporin-resistant *Klebsiella pneumoniae*; 3GCSKP: third-generation cephalosporin-susceptible *K. pneumoniae*; LOS: length of stay; CI: certainty interval.

Table 5. Hospital mortality of patients with 3GCREC and 3GCSEC and with 3GCRKP and 3GCSKP for potential confounding variables.

Potential Confounding Variables	Mortality Rate (%)	Third-Generation Cephalosporins-Susceptible	Third-Generation Cephalosporins-Resistant	Difference	p Value			
		Rate	95% CI	Rate	95% CI	Rate	95% CI	
Excluding LOS before culture	3GCREC vs. 3GCSEC	2.15	1.58-2.93	2.7	2.05-3.55	0.55	0.47-0.62	0.281
	3GCRKP vs. 3GCSKP	3.65	2.84-4.68	6.74	5.62-8.07	3.09	2.78-3.39	<0.000
Including LOS before culture	3GCREC vs. 3GCSEC	2.36	1.58-2.94	2.49	1.87-3.32	0.33	0.29-0.38	0.508
	3GCRKP vs. 3GCSKP	3.81	2.86-4.89	6.51	5.35-7.9	2.7	2.39-3.01	0.001

3GCREC: third-generation cephalosporin-resistant *Escherichia coli*; 3GCSEC: third-generation cephalosporin-susceptible *E. coli*; 3GCRKP: third-generation cephalosporin-resistant *Klebsiella pneumoniae*; 3GCSKP: third-generation cephalosporin-susceptible *K. pneumoniae*; LOS: length of stay; CI: certainty interval.
4. Discussion

Previous studies mainly focused on antibiotic utilization and resistance mechanisms and the clinical and economic outcomes of 3GCREC and 3GCRKP in China remained largely uninvestigated. To the best of our knowledge, this is the first study to quantify the clinical and economic outcome of 3GCREC and 3GCRKP in mainland China using the PSM method with large sample size and multiple hospital settings. We focused on *E. coli* or *K. pneumoniae*, avoiding non-specific effects from a combination of bacteria [14,25]. In this study, we found that compared with third-generation cephalosporin-susceptible cases, those with 3GCREC and 3GCRKP were associated with significantly increased total hospital cost and excess LOS. In addition, inpatients with 3GCRKP were significantly associated with higher hospital mortality compared with 3GCSPK cases, however, there was no significant difference between the 3GCREC and 3GCSEC groups.

Conducting economic and clinical evaluation for interventions could help to reduce the transmission of 3GCREC or 3GCRKP in hospital settings [26]. It was demonstrated that third-generation cephalosporin resistance increased the economic costs and prolonged the LOS among inpatients with *E. coli* and *K. pneumoniae* [11–15,18,19,25,27–32]. For example, Hu et al. (2010) showed that ESBL-positive intra-abdominal infection led to attributable hospital costs and excess hospital stay in China [19]. MacVane et al. (2018) reported that urinary tract infection caused by ESBL-producing *E. coli* or *K. pneumoniae* was associated with significant hospital cost and hospital stay in the United States [31]. Meanwhile, one study explored the possibility that colonization with ESBL producing *E. coli* was associated with longer LOS and higher hospital costs as well [16].

In addition, inpatients with 3GCRKP were significantly associated with higher hospital mortality compared with those with 3GCSPK, which was consistent with other studies [2,32]. However, there was no significant difference in hospital mortality between 3GCREC and 3GCSEC in our study, which was different compared to other studies conducted in European countries [13,18]. Meanwhile, some studies also found there was no difference in hospital mortality between ESBL-producing *E. coli* cases and non-ESBL-producing cases [16,33]. Different conclusions might be associated with different study design, sample size, geography, resistant pattern, etc. Therefore, this finding needs to be further explored in the future. In addition, the manners in which the use of beta-lactams might affect prevalence of third-generation cephalosporin resistance remained to be fully elucidated [27].

LOS could increase daily bed cost, and might contribute to more treatment service and diagnostic service, therefore, LOS was the major contributor to economic costs [34]. In this study, we applied the PSM method using two step-by-step rounds [29,30,35]. Although the inclusion of LOS before culture as an independent variable in PSM could attenuate the effect of 3GCREC or 3GCRKP on economic costs, LOS and hospital mortality, the conclusion was unchanged when LOS before culture was excluded between the two groups.

This study is not without limitations. First, due to the retrospective nature of our study, it was difficult to distinguish infection or colonization. It was necessary to explore the burden of 3GCREC and 3GCRKP, either infection or colonization, because colonization was an important reservoir for organisms of infection. Prospective studies among patients with infections need to be conducted in the future. Second, PSM was used to balance potential confounding factors, however, some unmeasured variables might still be there. Third, as we had data from between 2013 and 2015 only, we were able to analyze only data corresponding to this study period. Although the study period did not influence the conclusions, future studies with updated data are warranted.

5. Conclusions

Third-generation cephalosporin resistance increased economic costs and prolonged LOS among inpatients with *E. coli* and *K. pneumoniae*. In addition, inpatients with 3GCRKP were significantly associated with higher hospital mortality compared with 3GCSPK cases, however, there was no significant difference in hospital mortality between the 3GCREC and 3GCSEC groups. Given the clinical and economic burden associated with 3GCREC and 3GCRKP that we have demonstrated,
efforts to control the development and spread of third-generation cephalosporin resistance and *E. coli* and *K. pneumoniae* should be a priority. Cost reduction and outcome improvement could be achieved through a preventative approach in terms of both antimicrobial stewardship and preventing the transmission of organisms. In addition, proper assessment before the empirical use of third-generation cephalosporins is recommended to mitigate costs.

Author Contributions: Conceptualization, X.Z. and H.D.; methodology, X.Z., X.S. and H.D.; software, X.Z., X.S. and X.H.; validation, X.Z., X.S. and X.H.; formal analysis, X.Z., X.S. and X.H.; investigation, X.Z. and X.S.; resources, H.D.; data curation, X.Z., X.S. and X.H.; writing—original draft preparation, X.Z.; writing—review and editing, X.Z., C.S.L., X.S., X.H. and H.D.; visualization, X.Z. and H.D.; supervision, C.S.L. and H.D.; project administration, X.Z., C.S.L. and H.D.; funding acquisition, X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was jointly supported by the Pfizer Investment Co. Ltd. (Burden of multi-drug resistant infections in China and associated risk factors), the Fundamental Research Funds of Shandong University, and the Joint Research Funds for Shandong University and Karolinska Institutet.

Acknowledgments: We want to thank the Center for Health Policy Studies, School of Medicine, Zhejiang University for the assistance in primary data collection. The authors declare that they have no competing interests.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

3GCREC: third-generation cephalosporin-resistant *Escherichia coli*; 3GCRKP: third-generation cephalosporin-resistant *Klebsiella pneumoniae*; WHO: World Health Organization; LOS: length of stay; 3GCSEC: third-generation cephalosporin-susceptible *E. coli*; ESBL: extended spectrum beta-lactamase; 3GCSKP: third-generation cephalosporin-susceptible *K. pneumoniae*; EMR: electronic medical record; CLSI: Clinical and Laboratory Standards Institute; CCI: Charlson comorbidity index; ICU: intensive care unit; PSM: propensity score matching; CI: certainty interval.

References

1. Olalekan, A.; Onwugamba, F.; Iwalokun, B.; Mellmann, A.; Becker, K.; Schaumburg, F. High proportion of carbapenemase-producing *Escherichia coli* and *Klebsiella pneumoniae* among extended-spectrum beta-lactamase-producers in Nigerian hospitals. *J. Glob. Antimicrob. Resist.* 2020, 21, 8–12. [CrossRef]
2. Kang, C.I.; Kim, S.H.; Park, W.B.; Lee, K.D.; Kim, H.B.; Kim, E.C.; Oh, M.D.; Choe, K.W. Bloodstream infections due to extended-spectrum beta-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae*: Risk factors for mortality and treatment outcome, with special emphasis on antimicrobial therapy. *Antimicrob. Agents Chemother.* 2004, 48, 4574–4581. [CrossRef] [PubMed]
3. Pitout, J.D.D.; Laupland, K.B. Extended-spectrum beta-lactamase-producing enterobacteriaceae: An emerging public-health concern. *Lancet Infect. Dis.* 2008, 8, 159–166. [CrossRef]
4. Lee, S.; Han, S.W.; Kim, K.W.; Song, D.Y.; Kwon, K.T. Third-generation cephalosporin resistance of community-onset *Escherichia coli* and *Klebsiella pneumoniae* bacteremia in a secondary hospital. *Korean J. Intern. Med.* 2014, 29, 49–56. [CrossRef] [PubMed]
5. World Health Organization. Global Priority List of Antibiotic Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Available online: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed on 6 February 2019).
6. Alvarez-Uria, G.; Gandra, S.; Mandal, S.; Saxminarayan, R. Global forecast of antimicrobial resistance in invasive isolates of *Escherichia coli* and *Klebsiella pneumoniae*. *Int. J. Infect. Dis.* 2018, 68, 50–53. [CrossRef] [PubMed]
7. China Antimicrobial Resistance Surveillance System. Annual Report of the China Antimicrobial Resistance Surveillance. 2018. Available online: http://carss.cn/Report/Details?ald=648 (accessed on 1 July 2020).
8. European Centre for Disease Prevention and Control. Surveillance Atlas of Infectious Diseases. 2019. Available online: http://atlas.ecdc.europa.eu/public/index.aspx (accessed on 20 May 2020).
9. Ranjan, D.N.; Albataineh, M.T.; Alhourani, N.; Khoudeir, A.M.; Ghanim, M.; Wasim, M.; Mahmoud, I. Community-acquired urinary tract infections due to extended-spectrum beta-lactamase-producing organisms in United Arab Emirates. *Travel Med. Infect. Dis.* 2018, 22, 46–50. [CrossRef]
27. Cosgrove, S.E.; Kaye, K.S.; Eliopoulos, G.M.; Carmeli, Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. *Arch. Intern. Med.* **2002**, *162*, 185–190. [CrossRef] [PubMed]

28. Giske, C.G.; Monnet, D.L.; Cars, O.; Carmeli, Y. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. *Antimicrob. Agents Chemother.* **2008**, *52*, 813–821. [CrossRef] [PubMed]

29. Huang, W.; Qiao, F.; Zhang, Y.; Huang, J.; Deng, Y.; Li, J.; Zong, Z. In-hospital medical costs of infections caused by carbapenem-resistant Klebsiella pneumoniae. *Clin. Infect. Dis.* **2018**, *67*, S225–S230. [CrossRef] [PubMed]

30. Klein, E.Y.; Jiang, W.; Mojica, N.; Tseng, K.K.; McNeill, R.; Cosgrove, S.E.; Perl, T.M. National costs associated with methicillin-susceptible and methicillin-resistant *Staphylococcus aureus* hospitalizations in the United States, 2010–2014. *Clin. Infect. Dis.* **2019**, *68*, 22–28. [CrossRef] [PubMed]

31. MacVane, S.H.; Tuttle, L.O.; Nicolau, D.P. Impact of extended-spectrum beta-lactamase-producing organisms on clinical and economic outcomes in patients with urinary tract infection. *J. Hosp. Med.* **2014**, *9*, 232–238. [CrossRef] [PubMed]

32. Song, K.H.; Jeon, J.H.; Park, W.B.; Park, S.W.; Kim, H.B.; Oh, M.D.; Lee, H.S.; Kim, N.J.; Choe, K.W. Clinical outcomes of spontaneous bacterial peritonitis due to extended-spectrum beta-lactamase-producing *Escherichia coli* and *Klebsiella* species: A retrospective matched case-control study. *BMC Infect. Dis.* **2009**, *9*, 41. [CrossRef]

33. Ortega, M.; Marco, F.; Soriano, A.; Almela, M.; Martinez, J.A.; Munoz, A.; Mensa, J. Analysis of 4758 *Escherichia coli* bacteraemia episodes: Predictive factors for isolation of an antibiotic-resistant strain and their impact on the outcome. *J. Antimicrob. Chemother.* **2009**, *63*, 568–574. [CrossRef]

34. Matsui, K.; Goldman, L.; Johnson, P.A.; Kuntz, K.M.; Cook, E.F.; Lee, T.H. Comorbidity as a correlate of length of stay for hospitalized patients with acute chest pain. *J. Gen. Intern. Med.* **1996**, *11*, 262–268. [CrossRef]

35. Hemmige, V.; David, M.Z. Effects of including variables such as length of stay in a propensity score analysis with costs as outcome. *Clin. Infect. Dis.* **2019**, *69*, 2039–2040. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).