Data Article

Data on the engineering properties of aluminum dross as a filler in asphalt

Ayobami Busaria,b,*, Jacques Snymana,b, Williams Kupolatia,b, Julius Ndambukia,b, Emmanuel Sadikua,b, Roland Lotoa,b, Anthony Sagaya,b

a Department of Mechanical Engineering, Covenant University, Ota, Ogun State, Nigeria
b Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology, Pretoria, South Africa

\textbf{A R T I C L E I N F O}

Article history:
Received 13 May 2020
Revised 12 June 2020
Accepted 22 June 2020
Available online 27 June 2020

Keyword:
Bitumen
Aluminium dross
Pavement
Asphalt

\textbf{A B S T R A C T}

Pavement is the backbone of an effective and efficient transportation system. Data on the use of aluminium dross as filler material in the modification of asphalt for a sustainable pavement was espoused. Aluminium dross which is a solid waste from steel production industry was utilized. Data on the engineering and stability properties of the material in enhancing the strength of the asphalt mix design was espoused. This was achieved by adding the solid waste at 0\%, 2.5\%, 5\%, 7.5\%, 10\% and 12.5\% of aluminium dross to the asphalt concrete sample. Marshall Test was used to determine the stability of aluminium dross in flexible pavement and this was used for the selection of asphalt binder content with a suitable density which satisfies minimum stability and range of flow values using AASHTO specification. The data obtained will be of help to researchers, engineers, road construction workers and environmentalist on the use of this solid waste in the construction of sustainable long-lasting roads for national growth and solid waste reduction.

© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

* Corresponding author at: Department of Mechanical Engineering, Covenant University, Ota, Ogun State, Nigeria; Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology, Pretoria, South Africa.

E-mail address: ayodebamiakinbode@gmail.com (A. Busari).

https://doi.org/10.1016/j.dib.2020.105934
2352-3409/© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Value of data

- The data obtained here will contribute to the re-use of aluminium dross waste from steel production industry.
- The data will be of help to researchers, engineers, road construction workers and environmentalist on the use of this solid waste in road construction.
- The data could be used by highway engineers and road construction workers in the effective design of this modified asphalt.
- The data will aid policymakers on the proper use of this in pavement technology in the construction of sustainable roads.

There is a great information potential in the application of this waste in the road construction industry. This will help to reduce the negative effect of the improper disposal of the waste \[1,2\] and its re-use in transportation which is an integral component of national growth \[3-5\].

1. Data

Aluminium dross (Plate 1) is in abundance, and proper utilization of this waste product will be economical \[5-11\]. The research of \[5-7\] revealed common filler materials other than aluminium dross that has been used in the past and are still being used up till date in concrete and asphalt. Based on the findings of \[2\], it was discovered that aluminium industries create almost five million tons of this waste every year. Aluminium dross has several re-uses as avowed by \[2\]. This data set assessed the use of the waste in asphalt modification as a filler material.

Ductilometer was used in assessing the ductility of the bitumen before the addition of aluminium dross. Additionally, ball and ring test and penetration test was also carried out on the modified asphalt. This is because the wearing course expands under sunlight and retracts at night. Asphalt compacting machine is used to compact the Marshall Specimen manually for sample preparation. After selecting particle sizes of aggregates with the sieve analysis machine, the optimum bitumen content mix was added thoroughly, and the heated sample was placed inside the mould and the sample was thereafter placed under the compacting machine and the marshall stability equipment.
Table 1
Data on the Analyte Concentration.

ELEMENT	CONCENTRATION (Wt%)
Na₂O	0.000
MgO	0.931
Al₂O₃	77.172
SiO₂	13.482
P₂O₅	0.000
SO₂	0.700
Cl	0.276
K₂O	0.161
CaO	1.129
ClO₂	1.439
Cr₂O₃	0.071
Mn₂O₃	0.202
Fe₂O₃	4.186
ZnO	0.237
SrO	0.015

Table 1 shows the data on the chemical composition of the solid waste after pulverization. Table 2 and 3 contain data on the sieve analysis of the aluminium dross and the aggregates respectively. Fig. 1 showed the data on the Ductility of the samples assessed. Table 4 contains values on the Marshall and Volumetric Properties of Bitumen Content Mix. Fig. 2, Fig. 3 shows Marshall Stability Vs Bitumen Content and Marshall Stability versus Bitumen Content. Fig. 4 shows the results of Bulk density versus Bitumen Content. Table 5 shows the Optimum Bitumen Content. Table 6 shows the data on Comparison of Marshall and Volumetric Properties of Bitumen.

The Bitumen Content samples were prepared at Optimum Bitumen Content with Aluminium dross as a filler it was used at 2.5%, 5%, 7.5% and 10% by weight of aggregates. The volumetric and Marshall properties of these samples were determined and compared.

2. Experimental design and methods

2.1. Materials

Aluminium dross was obtained from an open dumped site in Ado-Odo Ota local government in Ogun State, Nigeria. This material was collected in an airtight container. Bitumen of
Table 2
Data on the sieve analysis of the aggregates.

Wt of aggregate Retained	% of the total wt retained	Cumulative% of total wt retained	% passing	
I	II	AV		
19.0mm	69	80	75	92.515
13.2mm	74	68	71	92.915
12.5mm	11	22	17	98.304
9.5mm	64	54	59	94.112
6.3mm	127	128	128	87.226
4.75mm	74	70	72	87.815
2.36mm	180	180	180	82.036
1.00mm	170	180	175	82.535
0.60mm	108	90	99	90.12
0.30mm	69	75	72	92.815
0.15mm	39	37	38	96.208
0.075mm	12	12	12	98.803
Receiver	3	4	4	99.601

Table 3
Determination of particle size distribution of coarse aggregate.

LS Sieve sizes	Weight of Aggregate retained (g)	% of total weight retained	Cumulative% of total weight retained	Cumulative% Passing		
I	2	Average (g)				
19.0mm	31	23	27	2.7	2.7	97.3
13.2mm	252	307	279.5	27.95	30.65	69.35
12.5mm	21	11	16	1.6	32.25	67.75
9.5mm	116	98	107	10.7	42.95	57.05
6.3mm	156	146	151	15.1	58.05	41.95
4.75mm	144	138	141	14.1	72.15	27.85
2.36mm	98	97	97.5	9.75	81.9	18.1
1.00mm	40	40	40	4.0	85.9	14.1
0.60mm	28	27	27.5	2.75	88.65	11.35
0.30mm	74	74	74	7.4	96.05	3.95
0.15mm	34	33	33.5	3.35	99.4	0.6
0.075mm	5	3	4	0.4	99.8	0.2
Receiver	2	2	2	0.2	100.0	0.00

Table 4
Data on the Marshall and Volumetric Properties of Bitumen Content Mix.

Bitumen Content (%)	Marshall Stability (KN)	Flow (mm)	Density (g/cm³)	Vv (%)	VFB (%)	VMA (%)
2.5	14.07	3.15	2.35	4.52	67.02	13.70
5.0	14.97	3.24	2.35	4.05	69.40	13.20
7.5	13.96	4.18	2.33	3.87	70.20	12.97
10.0	13.70	4.16	2.12	3.56	70.55	12.45
12.5	13.22	4.06	2.04	3.44	70.89	12.13

Table 5
Optimum Bitumen Content.

Bitumen Content (%)	Max Stability	Max Density	4.5% Air Voids	Optimum Bitumen Content (OBC)
	5.5	5.5	5	5

Fig. 1. Data on the Ductility of the samples assessed.

Table 6
Comparison of Marshall and Volumetric Properties of Bitumen.

Aluminium Dross	Marshall stability (KN)	Flow(mm)	Density (g/cc)	Vv (%)	VFB (%)
0	14.07	2.74	1.245	3.6	62.11
2.5	14.55	2.61	1.150	3.8	63.41
5	14.86	2.82	1.130	4.01	68.40
7.5	14.97	2.45	1.160	3.85	67.22
10.0	14.84	2.36	1.236	3.68	60.42

Penetration Grade 60/70 was purchased in Lagos, Nigeria. The Penetration test was carried out to re-affirm the penetration grade. Fine aggregates (river sand) and coarse aggregate were purchased in a quarry in Ogun State.

2.2. Sample preparation

The aluminium dross was obtained in the raw form and sealed in an airtight bag and air-dried for forty-eight hours (48) before pulverization. Fine aggregate is soil particles that pass through a 4.25 mm sieve and coarse aggregates of size 4.75 mm were used.

2.3. Test and methods

Wavelength-dispersion X-ray fluorescence spectrometer and atomic absorption spectrometer was used to determine the chemical composition of the waste. Mechanical sieve shaker was used to assess the grain size analysis of both aluminium dross and the aggregates used. This test procedure was used in designing and evaluating bituminous Paving mixes using ASTM standard procedures.

Tests were carried out on the bitumen to determine the rheology. The viscosity test was done according to [12], and the penetration test was also done conferring to the specification of [13].
Fig. 2. Marshall Stability Vs Bitumen Content.
Fig. 3. Bulk density Vs Bitumen Content.

Fig. 4. Percentage Air Void Vs Bitumen Content.

The bitumen was modified with aluminium dross at 0, 2.5, 5, 7.5 and 10% of the bitumen waste. The rheology was then repeated at the percentage additions. Marshall stability was done on the asphalt mixture with the naturally occurring bitumen and the polymer modified bitumen according to [14].

Declaration of Competing Interest

Authors declare no conflict of interest

Acknowledgements

The author acknowledges Tshwane University of Technology, Pretoria, South Africa for the sponsorship.
Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.105934.

References

[1] V.M. Kevorkijan, The quality of aluminum dross particles and cost-effective reinforcement for structural aluminum-based composites, Compos. Sci. Technol. 59 (11) (1999) 1745–1751 1999.

[2] A. Busari, F. Joseph, S. Ajayi, T. Alayande, J. Nwachukwu, D. Agbama, Index properties of aluminum dross modified pavement geo-material, J. Phys. 1378 (2(18)) (2019).

[3] A. Busari, E. Adeyanju, T. Loto, D. Ademola, Recycled Aggregate in Pavement Construction: review of Literature, J. Phys. 1378 (2(18)) (2019) 234–251.

[4] A. Busari, J. Akinmusuru, B. Dahunsi, Strength and durability properties of concrete using metakaolin as a sustainable material: Review of literature, Int. J. Civil Eng. Technol. 10 (2019) 1893–1902.

[5] Ayobami Adebola Busari and Ojo Oladiipupo. Survey Data on The Effect of Demography and Socio-Economic Parameters on Non-Motorized trip. Data Brief. Vol 21(2018), pp. 2658–2663.

[6] G. Mailar, N.S. Raghavendra, B.M. Sreedhara, D.S. Manu, P. Hiremath, K. Jayakesh, Investigation of concrete produced using recycled aluminium dross for hot weather concreting conditions, Resource-Efficient Technol. 2 (2) (2016) 68–80.

[7] F. Puertas, M.T. Blanco-Varela, T. Vazquez, Behaviour of cement mortars containing an industrial waste from aluminium refining stability in Ca(OH)₂ solutions, Cement Concrete Res. 29 (1999) (1999) 1673–1680.

[8] O. Manfredi, W. With, I. Bohlinger, Characterizing the physical and chemical properties of aluminum dross", J. Miner. Metals Mater. Soc. 9 (1997) 48–51.

[9] M.S. Reddy, D. Neeraja, Mechanical and durability aspects of concrete incorporating secondary aluminium slag, Resource-Efficient Technol. 2 (4) (2016) 225–232, doi:10.1016/j.reffit.2016.10.012.

[10] G. Mailar, N.S. Raghavendra, B.M. Sreedhara, D.S. Manu, P. Hiremath, K. Jayakesh, Investigation of concrete produced using recycled aluminium dross for hot weather concreting conditions, Resource-Efficient Technol. 2 (2) (2016) 68–80.

[11] H.N. Yoshimura, A.P. Abreu, A.L. Molisani, A.C. de Camargo, J.C.S. Portela, N.E. Narita, “Evaluation of Aluminum Dross Waste as Raw Material for Refractory’s, Ceram. Int. 34 (3) (2008) 581–591 2008.

[12] ASTM DS5/DSM–13. Standard Test Method for Penetration of Bituminous Materials. ASTM International, West Conshohocken, PA, USA.

[13] ASTM D6927, Standard Test Method For Marshall Stability and Flow of Bituminous Mixtures, Annual Book of ASTM Standards, West Conshohocken, 2006.

[14] ASTM D6927, Standard Test Method For Marshall Stability and Flow of Bituminous Mixtures, Annual Book of ASTM Standards, West Conshohocken, 2006.