Dall’Ava, Luca

Approximations of the balanced triple product p-adic L-function. (English) Zbl 07650798
J. Number Theory 246, 189-226 (2023)

Let O be a valuation ring finite flat over \mathbb{Z}_p. Let I be a normal domain finite flat over the Iwasawa algebra $\Lambda = O[[\Gamma]]$ of the topological group $\Gamma = 1 + p\mathbb{Z}_p$, and let X^+_{Γ} be the set of arithmetic points of I. Let f_i $(i = 1, 2, 3)$ be a primitive cuspidal family of the tame conductors. Let ρ_f Gal$(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\text{Frac} I)$ be the big Galois representation associated to ρ_f, and let V_f denote the natural realization of ρ_f inside the étale cohomology groups of modular curves. Let $R = \mathbb{I}(\mathbb{O}(\mathbb{O} I$, and

$$X^+_R = \left\{ Q = (Q_1, Q_2, Q_3) \in (X^+_{\Gamma})^3 \mid k_{Q_1} + k_{Q_2} + k_{Q_3} \equiv 0 \pmod{2} \right\}.$$

Put

$$X^f_r = \left\{ Q = (Q_1, Q_2, Q_3) \in X^+_R \mid k_{Q_1} + k_{Q_2} + k_{Q_3} \leq 2k_{Q_i} \right\},$$

and

$$X^{bal}_r = \left\{ Q = (Q_1, Q_2, Q_3) \in X^+_R \mid k_{Q_1} + k_{Q_2} + k_{Q_3} > 2k_{Q_i} \right\}.$$

Let $\mathbb{V} = V_1 \otimes V_2 \otimes V_3$, and for $Q = (Q_1, Q_2, Q_3) \in X^+_R$ put $V_{Q_i} = V_{1, Q_1} \otimes V_{2, Q_2} \otimes V_{3, Q_3}$. Let X be a \mathbb{R}-adic p-ramified Galois character such that $X(\epsilon) = (-1)^n$ with ϵ the complex conjugate and let $V_\epsilon = V \otimes X^{-1}$. Let V_{Q_1} be its specialization for $Q \in X^+_R$, and let $L(V_{Q_1}, s)$ be the complete L-function attached to V_{Q_1}. The p-adic L-function $L_{p}^{bal}[f]$ interpolates $L(V_{Q_1}, s)$ for $Q \in X^{bal}_R$. In the paper under review, the author provides an algorithm for approximating the value of $L_{p}^{bal}[f]$ at $(2, 1, 1)$. Actually, the p-adic L-function is constructed as the limit of certain theta-elements described explicitly in Proposition 4.9 and the author provides an algorithm for computing their values when evaluated at a triple of arithmetic points of the form $(2, (2, \epsilon), (2, \epsilon))$, for ϵ a primitive p-adic character of conductor p^n. This allows to approximate the value $L_{p}^{bal}[f](2, 1, 1)$ as the limit over the increasing conductor p^n of such theta-elements evaluated at $(2, (2, \epsilon), (2, \epsilon))$.

Reviewer: Sami Omar (Sukhair)

MSC:
11F67 Special values of automorphic L-series, periods of automorphic forms, cohomology, modular symbols
11R52 Quaternion and other division algebras: arithmetic, zeta functions
11Y16 Number-theoretic algorithms; complexity

Keywords:
triple product p-adic L-function; quaternionic modular forms; finite-length geodesics; Bruhat-Tits tree

Full Text: DOI arXiv

References:
[1] Böckle, Gebhard; Butsuen, Ralf, On computing quaternion quotient graphs for function fields, J. Théor. Nombres Bordeaux, 24, 1, 73-99 (2012), MR 2914902 - Zbl 1285.11079
[2] Bertolini, Massimo; Darmon, Henri, Hida families and rational points on elliptic curves, Invent. Math., 168, 2, 371-431 (2007), MR 2289868 - Zbl 1129.11025
[3] Bertolini, Massimo; Darmon, Henri; Prasanna, Kartik, p-adic Rankin L-series and rational points on CM elliptic curves, Pac. J. Math., 260, 2, 261-303 (2012), MR 3007396 - Zbl 1285.11079
[4] Bertolini, Massimo; Darmon, Henri; Prasanna, Kartik, Generalized Heegner cycles and p-adic Rankin L-series, Duke Math. J., 162, 6, 1033-1148 (2013), with an appendix by Brian Conrad. MR 3053566 - Zbl 1302.11043
[5] Bertolini, Massimo; Darmon, Henri; Rotger, Victor; Seveso, Marco Adamo; Venerucci, Rodolfo, Heegner points, Stark-Heegner points, and diagonal classes, Astérisque, 434 (2022), xviii + 291. MR 4453998 - Zbl 07650798
Wiebe, Jordan, Constructing non-maximal orders in quaternion algebras (2018)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.