Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma

Li Che, Maria G. Pilo, Antonio Cigliano, Gavina Latte, Maria M. Simile, Silvia Ribback, Frank Dombrowski, Matthias Event, Xin Chen, and Diego F. Calvisi

ABSTRACT
Hepatocellular carcinoma (HCC), the most frequent primary tumor of the liver, is an aggressive cancer type with limited treatment options. Cumulating evidence underlines a crucial role of aberrant lipid biosynthesis (a process known as de novo lipogenesis) along carcinogenesis. Previous studies showed that suppression of fatty acid synthase (FASN), the major enzyme responsible for de novo lipogenesis, is highly detrimental for the in vitro growth of HCC cell lines. To assess whether de novo lipogenesis is required for liver carcinogenesis, we have generated various mouse models of liver cancer by stably overexpressing candidate oncogenes in the mouse liver via hydrodynamic gene delivery. We found that overexpression of FASN in the mouse liver is unable to malignantly transform hepatocytes. However, genetic deletion of FASN totally suppresses hepatocarcinogenesis driven by AKT and AKT/c-Met protooncogenes in mice. On the other hand, liver tumor development is completely unaffected by FASN depletion in mice co-expressing β-catenin and c-Met. Our data indicate that tumors might be either addicted to or independent from de novo lipogenesis for their growth depending on the oncogenes involved. Additional investigation is required to unravel the molecular mechanisms whereby some oncogenes render cancer cells resistant to inhibition of de novo lipogenesis.

Hepatocellular carcinoma: A deadly disease with a rising incidence worldwide

The global incidence of primary liver cancer has progressively increased during the recent decades. Among primary liver malignancies, hepatocellular carcinoma (HCC) is the most prevalent: it affects approximately one million individuals annually in the world, with the incidence roughly equal to the mortality rate. The occurrence of HCC is highest in men, and the discrepancy in the geographical distribution of HCC reflects the differences in exposure to hepatitis viruses and distinct environmental pathogens. The incidence is highest in East Asia and Sub-Saharan Africa, representing about 85% of the total number of cases worldwide, while in most industrialized countries HCC occurrence is low, except for Southern Europe. Multiple risk factors have been linked to the development of HCC, with chronic viral hepatitis (B and C) infection, alcohol abuse, non-alcoholic steatohepatitis (NASH), presence of diabetes and/or metabolic syndrome, and exposure to aflatoxins being the most frequent; nonetheless, HCC can also occur in people without any known risk factor. The clear majority of HCC patients are diagnosed with an advanced disease, often precluding potentially effective therapies such as liver transplantation or curative partial liver resection. Targeted therapies against HCC are very limited. Sorafenib, a multi-kinase inhibitor, is the only drug available for the treatment of unresectable HCC. Its approval was based on the results from a clinical trial showing an increased survival of 2–3 months in Sorafenib-treated patients. Many other drugs, including tyrosine kinase inhibitors (TKIs) and Rapalogs, have also been tested in clinical trials, but none of them proved to be more effective than Sorafenib in HCC. Thus, there is an obvious unmet medical need for new drug targets for the treatment of liver cancer.

Our understanding of the HCC pathogenesis has significantly improved during the past decade, especially due to the development of genome-wide analysis methods. Using these techniques, several critical signaling pathways that promote HCC development and/or progression have been identified, including Wnt/β-catenin, Jak/Stat, Ras/MAPK, PI3K/AKT/mTOR, c-Met, and EGFR cascades. These pathways can represent potential targets for HCC therapeutics.

De novo lipogenesis in cancer

Metabolic rewiring is now recognized as one of the hallmarks of cancer. This metabolic reprogramming goes far beyond the well-known Warburg effect and it can be observed in multiple networks of central carbon metabolism. One of the metabolic

ARTICLE HISTORY
Received 9 December 2016
Revised 7 January 2017
Accepted 10 January 2017

KEYWORDS
β-catenin; AKT; c-Met; de novo lipogenesis; FASN; targeted therapies

CONTACT
Xin Chen
x.in.chen@ucsf.edu
UCSF, 513 Parnassus Avenue, San Francisco, CA 94143, USA;
Department of Clinical and Experimental Medicine, via P. Manzella 4, Sassari, 07100, Italy.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/kccy.
*These authors contributed equally to this work.
© 2017 Taylor & Francis
networks that is deregulated along carcinogenesis is the fatty acid synthesis pathway. Specifically, increased de novo lipogenesis is frequently observed in tumor cells.20–22 De novo lipogenesis is the synthesis of endogenous fatty acids from acetyl-CoA.23 It is a highly-coordinated process, which involved several lipogenic enzymes (Fig. 1). In brief, upon glucose entry into the cell, pyruvate is generated through the glycolytic process in the cytosol. In the mitochondria, pyruvate is then converted into citrate through the tricarboxylic acid (TCA) cycle. Citrate exits mitochondria, and is converted to acetyl-CoA by ATP citrate lyase (ACLY). Next, acetyl-CoA carboxylase (ACC) converts acetyl-CoA into malonyl-CoA via irreversible carboxylation. Finally, fatty acid synthase (FASN), the key metabolic enzyme responsible for the terminal catalytic step in fatty acids biosynthesis, induces the condensation of acetyl-CoA and malonyl-CoA to produce palmitic acid, the 16-carbon saturated fatty acid. Palmitic acid is then elongated by the elongation of very long chain fatty acids protein 6 (Elovl6) elongase and forms stearic acid. Thereafter, stearoyl-CoA desaturase 1 (SCD1) is responsible for desaturation of palmitic and stearic acid on Δ9 position, resulting in the formation of the palmitoleate and oleate monounsaturated fatty acids (MUSFAs). The fatty acids can be further desaturated by Fatty acid desaturase (FADS) to form polyunsaturated fatty acids (PUFSAs). Eventually, all free fatty acids (FAs) will be used as substrates for the synthesis of triglycerides (TG), cholesterol esters (CE) and phospholipids (PL).

In most adult tissues, energy-providing lipids come almost exclusively from circulating (dietary) lipids, apart from the liver, adipose tissue, and lactating breast, where the rate of de novo lipogenesis is relatively high. Lipids deriving from de novo biosynthesis provide also energy supply for fetal tissues.24 Importantly, mounting evidence implies a pivotal role of proteins involved in de novo lipogenesis in the development and progression of various human neoplasms, including tumors from breast, colorectal, prostate, bladder, ovary, gastrointestinal tract, lung, oral cavity, and head and neck.21,22 In cancer, deregulated lipid synthesis is necessary to provide a constant source of lipids and lipid precursors to promote membrane production and lipid-based post-translational modification of proteins needed for signal transduction in a context of elevated proliferation.21,22 At the molecular level, the uncontrolled de novo lipid biosynthesis is underscored by the increased activity and expression of several lipogenic enzymes in neoplastic cells, including ACLY, ACC, FASN, and SCD1. For instance, ACLY increased expression and activity have been reported in cancer cells, where small RNA interference (siRNA)-directed and pharmacological inhibition of ACLY strongly reduced the proliferation and survival of cancer cells.25 Similarly, knockdown of ACAC, FASN, and SCD1 by siRNA or inhibition of ACC or FASN with small molecular inhibitors were found to impair tumor cell proliferation and induces apoptosis in various in vitro and in vivo cancer models.22,26,27 Altogether, this body of information supports a pivotal role of lipogenic proteins and de novo lipid synthesis in cancer initiation and progression.

Increased de novo lipogenesis in cancer cells is regulated by multiple mechanisms.25 Among them, the activated phosphoinositide 3-kinase (PI3K)/v-Akt murine thymoma viral oncogene homolog (AKT)/mammalian target of rapamycin (mTOR) cascade has been identified as a major pathway promoting lipogenesis.28 (Fig. 2). In tumor cells, PI3K is activated by the activation of receptor tyrosine kinases, such as EGFR or c-Met, loss of the tumor suppressor gene Pten or activating mutations of PIK3CA, leading to the activation of AKT. AKT in turn activates the mTOR complexes (mTORC), which include mTORC1 and mTORC2.29 mTORC2 functions as feedback mechanism and is required for the activation of AKT. mTORC1 instead phosphorylates 4E-BP1, releasing its inhibitory effect on eIF4E and promoting protein synthesis. mTORC1 also phosphorylates p70S6K, leading to the phosphorylation of RPS6 and increased expression and process of

![Figure 1. De novo lipogenesis in the cell. Abbreviations: MUSFA, monounsaturated fatty acids; PUSFA, polyunsaturated fatty acids; FADS, fatty acid desaturase; CE, cholesterol esters; TG, triglyceride; PL, phospholipid; TCA, tricarboxylic acid; ACC, acetyl-CoA carboxylase; ELOVL, elongation of very long chain fatty acids protein; FASN, fatty acid synthase; SCD1, stearoyl-CoA desaturase 1; ACLY, adenosine triphosphate citrate lyase; TCA, tricarboxylic acid. Details are reported in the main text.](image1)

![Figure 2. Regulation of de novo lipogenesis via the AKT/mTOR cascade. Abbreviations: RTKs, receptor tyrosine kinases; Pten, phosphatase and tensin homolog; mTOR, mammalian target of rapamycin; mTORC, mTOR complex; SREBP-1, sterol regulatory element-binding protein-1. Details are reported in the main text.](image2)
sterol regulatory element binding protein1/2 (SREBP1/2). SREBPs, a family of basic-helix-loop-helix-leucine zipper transcription factors are the major regulators of lipogenesis. Thus, increased lipogenesis is a major metabolic readout of increased AKT/mTOR signaling in tumor cells.

Increased lipogenesis in HCC

Consistent with other tumor types, increased expression of lipogenic pathway genes, including FASN, has been reported in human HCC. In accordance with previous data, we have found a progressive upregulation of FASN mRNA from human normal livers to HCC in our sample collection (Fig. 3A). Of note, our preliminary data show that levels of FASN are higher in surrounding non-tumorous livers of HCC associated with the presence of NASH and alcoholic steatohepatitis (ASH) than in surrounding livers of HCC associated with HBV and HCV chronic infection (Fig. 3B). However, this etiology-related difference in FASN expression is not detectable in the tumor counterpart (Fig. 3C). These findings suggest that FASN might play a more or less pronounced role depending of the etiology associated with HCC development, at least in the early phases of hepatocarcinogenesis. However, a more comprehensive study is necessary to address this important issue. In addition, it has been shown that FASN increased expression directly correlates with clinical aggressiveness and poor prognosis in liver cancer. Furthermore, FASN expression correlates with increased activated AKT and loss of PTEN expression in human HCC. In mice, overexpression of an activated form of AKT or liver-specific deletion of PTEN leads to increased FASN expression and its mediated lipogenesis, resulting in hepatic steatosis. In human HCC cells, it has been found that AKT/mTOR/ERK cascades promotes lipogenesis via multiple mechanisms, including increased mRNA expression of FASN and other lipogenic pathway genes, decreased FASN degradation, and augmented stability of SREBP1/2. Altogether, these lines of evidence indicate that the AKT/mTOR pathway is the major regulator of lipogenesis along hepatocarcinogenesis.

Functionally, FASN suppression has been demonstrated to be detrimental to HCC growth in vitro. Specifically, silencing of FASN using siRNA or inhibition of FASN activity via the small molecule C75 led to decreased HCC cell proliferation and increased apoptosis. Mechanistically, it has been suggested that FASN may regulate the AKT and p38MAPK cascades. However, overexpression of FASN in the liver, either alone or in combination with other putative oncogenes, such as activated N-Ras or c-Met, does not trigger tumor formation in mice. Consistently, liver-specific SREBP1c and SAPBP1a transgenic mice showed an increased lipid biosynthesis paralleled by the upregulation of FASN, ACC and SCD1, leading to hepatic steatosis, but no liver tumor development. Together, the results suggest that FASN and its mediated de novo lipogenesis are not oncogenic per se.

FASN is required for AKT and AKT/c-Met driven hepatocarcinogenesis in mice

While virtually all studies investigating whether FASN expression is required for liver tumor development have been performed in vitro, we sought to determine the requirement of FASN and its mediated de novo lipogenesis in hepatocarcinogenesis using genetic approaches. For this purpose, we applied conditional FASN KO mice and various oncogene driven HCC mouse models, including AKT, AKT/c-Met and c-Met/β-catenin models.

Previous studies from our laboratory showed that hydrodynamic transfection of an activated form of myr-AKT (myr-AKT) induces increased lipogenesis and, eventually, HCC formation over long-term. To investigate whether FASN expression is required for myr-AKT driven liver tumor development, we hydrodynamically transfected myr-AKT and Cre recombinase (AKT/Cre mice) into FASNKO mice. Strikingly, while AKT overexpression in control mice led to malignant liver tumor formation by 22–28 weeks post-injection, in accordance with
previous findings, none of the AKT/Cre mice exhibited either liver enlargement or increased liver weight. Histologically, most of the liver parenchyma of AKT control mice was occupied by multiple hepatocellular tumors, whereas none of AKT/Cre mice displayed preneoplastic and neoplastic lesions. Similar results were obtained when we overexpressed myr-AKT in liver-specific FASN KO mice (AlbCre;FASN^{fl/fl} mice). At the molecular level, we found that ablation of FASN in AKT/Cre mice resulted in decreased protein expression of Rictor (rapamycin-insensitive companion of mTOR), the main component of the mammalian target of rapamycin complex 2 (mTORC2), leading to the downregulation of phosphorylated/activated AKT. The critical role of Rictor/mTORC2 in mediating activated AKT driven hepatocarcinogenesis was further validated using conditional Rictor^{fl/fl} mice. Specifically, ablation of Rictor in hepatocytes prevented myr-AKT driven hepatocarcinogenesis in mice, recapitulating the phenotypes observed in conditional FASN KO mice. Altogether, these data indicate that FASN expression is indispensable for AKT-induced hepatocarcinogenesis, presumably due to its positive regulation over Rictor expression and mTORC2 activity.

Mounting evidence indicates that activation of the c-Met cascade is a key oncogenic event along human hepatocarcinogenesis. c-Met encodes the receptor tyrosine kinase for hepatocyte growth factor (HGF). Our recent study has shown that co-expression of AKT and c-Met (AKT/c-Met) triggers rapid liver tumor development in mice, with all AKT/c-Met mice being required to be killed by 6 to 8 weeks' post-injection. Importantly, we found that FASN is highly expressed in AKT/c-Met HCC cells. To establish whether c-Met confers resistance to FASN depletion along AKT hepatocarcinogenesis, we determined the effect of disrupting de novo lipogenesis in AKT/c-Met mice. Therefore, we hydrodynamically transfected AKT, c-Met, and Cre plasmids into FASN^{fl/fl} mice, thus allowing the simultaneous expression of AKT and c-Met oncogenes while deleting FASN in the same subset of mouse hepatocytes (AKT/c-Met/Cre). As a control, AKT, c-Met, and pT3-EF1α (empty vector) were co-injected into FASN^{fl/fl} mice (AKT/c-Met/pT3). Of note, all AKT/c-Met/pT3 mice developed liver tumors by 8 weeks' post injection, whereas no macroscopic or histopathological alterations were detected in the livers of AKT/c-Met/Cre mice up to 15 weeks post hydrodynamic injection. Similar results were obtained when expressed AKT/c-Met into liver-specific FASN KO mice (AlbCre;FASN^{fl/fl} mice). In summary, the present results indicate that c-Met confers aggressiveness and reduces tumor latency along AKT-driven hepatocarcinogenesis. Nonetheless, AKT/c-Met tumors remain fully dependent on FASN activity to develop.

FASN is dispensable for c-met/β-catenin induced liver cancer development

Previous studies indicate that not all HCC tumor samples show elevated FASN expression. Recently, we established another murine HCC model by hydrodynamically overexpressing c-Met and activated β-catenin in the mouse liver (c-Met/β-catenin). Genomic studies have recently shown that this new murine model recapitulates a subset of human HCC. Of note, we found that in contrast to that described in HCC induced by AKT or AKT/c-Met protooncogenes, the expression of FASN and other lipogenic pathway genes, such as ACC, is not elevated in c-Met/β-catenin tumor tissues (Fig. 4). Thus, we sought to determine whether FASN expression is required for c-Met/β-catenin driven hepatocarcinogenesis. For this purpose, 2 distinct approaches were applied. In the first approach, we hydrodynamically transfected c-Met and β-catenin together

Figure 4. Expression of FASN and ACC is not elevated in c-Met/β-catenin mouse tumor tissues (right panel), when compared with HCCs induced by AKT/c-Met overexpression (middle panel). Scale bar: 200 μm. Abbreviations: WT, wild-type; FASN, fatty acid synthase; ACC, acetyl-CoA carboxylase; HE, hematoxylin and eosin staining.
hydrodynamically injected with Cre into FASN^fl/fl mice (c-Met/β-catenin/Cre, n = 4). This method allows the deletion of FASN while simultaneously expressing c-Met and β-catenin in the same FASN^{fl/fl} hepatocytes. As a control, c-Met and β-catenin were injected in the same mice together with the empty vector (c-Met/β-catenin/pT3, n = 4). (B) Survival curve of c-Met/β-catenin/Cre mice (n = 4) and c-Met/β-catenin/pT3 injected FASN^{fl/fl} mice (n = 4), P = 0.16. (C) Histologically, well to moderately differentiated HCC were found in both cohorts of mice and immunostaining demonstrated the low protein expression of FASN in c-Met/β-catenin/Cre HCC cells. Scale bar: 200 μm for H&E and FASN, 100 μm for Ki-67. Abbreviations: FASN, fatty acid synthase; H&E, hematoxylin and eosin staining.

Figure 5. FASN expression is not upregulated along c-Met/β-catenin driven hepatocarcinogenesis. (A) Study design: activated forms of c-Met and β-catenin were hydrodynamically injected together with Cre into FASN^{fl/fl} mice (c-Met/β-catenin/Cre, n = 4). This method allows the deletion of FASN while simultaneously expressing c-Met and β-catenin in the same FASN^{fl/fl} hepatocytes. As a control, c-Met and β-catenin were injected in the same mice together with the empty vector (c-Met/β-catenin/pT3, n = 4), AKT, AKT/c-Met, and c-Met/β-catenin driven hepatocarcinogenesis. In c-Met/β-catenin/pT3 injected FASN^{fl/fl} mice, FASN expression is not upregulated in c-Met/β-catenin/Cre HCC cell lines, silencing FASN or LPL or culturing the cells in low-density lipoprotein-depleted medium led to significantly decreased cell proliferation. In particular, when FASN and LPL were concomitantly silenced, the growth inhibition was significantly more pronounced than silencing of FASN or LPL alone. These data strongly suggest that both de novo lipogenesis and exogenous fatty acid uptake may contribute to hepatocarcinogenesis. In c-Met/β-catenin HCC samples, we found that, indeed, LPL expression is elevated. Conditional LPL Knockout mice have been generated. However, they have not been used to study the requirement of LPL and its mediated exogenous fatty acid uptakes along tumorigenesis to date. Clearly, it would be of high importance to investigate whether LPL is required for c-Met/β-catenin driven hepatocarcinogenesis using conditional LPL knockout mice.

In summary, our genetic studies suggest the oncogene-dependent requirement of FASN and its mediated lipogenesis during hepatocarcinogenesis.
Targeting FASN and its mediated de novo lipogenesis for the treatment of HCC

Because increased de novo lipid biosynthesis is a frequent metabolic event in tumorigenesis, many efforts have been made to develop strategies targeting lipogenesis for cancer treatment.\(^{21}\) As a major enzyme in lipogenesis, FASN has been the main target for developing small molecule inhibitors.\(^{46,47}\) Virtually all these small molecules inhibit \(\beta\)-ketoacyl-reductase, which is critical for FASN’s enzymatic activity. A complete list of FASN inhibitors can be found in a recent review.\(^{21}\) Among them, C75 is an early developed FASN inhibitor and has been widely used as a pharmacological agent to evaluate FASN inhibitor for cancer treatment. For instance, it has been shown that C75 has anti-tumor activity in xenograft models of breast,\(^{48}\) lung,\(^{49}\) prostate\(^{50}\) and renal\(^{51}\) cancers, and it prevents breast cancer formation in HER2 transgenic mice.\(^{52}\) TVB-2640 is the most recent orally available FASN inhibitor. It is currently in phase I clinical trial for the treatment of solid tumors (https://clinicaltrials.gov/ct2/show/NCT02223247).

In addition to FASN, other genes in the de novo lipogenic pathway have been pursued as drug targets as well. Among them, several molecules against ACC have been developed.\(^{54}\) In a recent study, it was shown that ND-646, an allosteric ACC1/2 inhibitor, suppresses tumor growth in both xenograft and genetic engineered mouse models of non-small cell lung cancer, either alone or in combination with standard-of-care drug carboplatin,\(^{53}\) supporting the further testing of ACC inhibitors for cancer treatment.

In HCC, currently, there are no studies assessing whether pharmacological inhibition of FASN and/or ACC can lead to tumor regression in preclinical models. Based on our studies, we would predict that FASN and/or ACC inhibitors are likely to have therapeutic potential against at least a subset of human HCCs. Importantly, valid biomarkers, such as immunostaining of FASN protein and ACC protein in HCC tumor samples, may be required to identify patients who may be most likely to benefit from anti-FASN/ACC based therapy. Because Sorafenib is still the standard target therapy for advanced stage HCC, future studies are also required to evaluate whether anti-FASN/ACC drugs can be used in combination with Sorafenib for the treatment of HCC.

Finally, it is important to consider the possible mechanisms of resistance to lipogenic pathway inhibitors. Most likely,

Table 1. Summary of the immunohistochemical patterns of FASN, ACC, and Ki-67 detected in wild-type livers (Wild-type), livers injected with empty vector (Empty vector) as well as in hepatocellular lesions (both preneoplastic and neoplastic) developed in AKT, AKT/c-Met, and c-Met/\(\beta\)-catenin mice.

Protein name	Wild-type	Empty Vector	AKT	AKT/c-Met	c-Met/\(\beta\)-catenin
FASN	+	+	+++	+++	+
ACC	+	+	+++	+++	+
Ki-67	+/-	+/-	++	+++	+

The intensity of immunostaining was defined semi-quantitatively with a scale from “−” to “+++” (−, negative; +, weak; ++, moderate; ++++, strong).
based on our findings, HCC cells might compensate the loss of de novo lipogenesis by inducing exogenous fatty acid uptake. Thus, small molecules which target fatty acid transporters or LPL may be highly beneficial in combination with anti-FASN/ACC inhibitors for HCC treatment. Of note, some bile acids, such as ursodeoxycholic acid (UDCA), have been found to be efficient inhibitors of liver fatty acid transporter.54 It would be of great interest to further test whether UDCA can be combined with FASN/ACC inhibitors for HCC treatment in preclinical models.

In summary, our and other studies have demonstrated the importance of FASN and its mediated de novo lipogenic metabolic cascade in hepatocarcinogenesis. It is of high importance to note that HCCs induced by different oncogenes are either addicted to or independent from de novo lipogenesis to grow. Future studies are required to evaluate the therapeutic potential of anti-lipogenic drugs for the treatment of HCCs, especially in those patients whose HCC shows elevated activation of the AKT/mTOR/lipogenesis cascade.

Materials and methods

Constructs

The plasmids used in the study, including pT3-EF1α-ΔN90-β-catenin, pT3-EF1α-c-Met, and pCMV-SB have been described previously.55 All plasmids were purified using the EndoToxin-free Maxi Prep Kit before injecting into mice.

Hydrodynamic injection and mouse monitoring

FASNfl/fl mice as well as AlbCre;FASNfl/fl line in C57BL/6 background were described previously.56 Hydrodynamic transfection was performed as described.57 In brief, the plasmids encoding the gene(s) of interest along with sleeping beauty transposase (SB) in a ratio of 25:1 were diluted in 2 ml saline (0.9% NaCl), filtered through 0.22 μm filter, and injected into the lateral tail vein of the mice in 5 to 7 seconds. Mice were monitored and killed when they become moribund. Mice were housed, fed, and monitored in accordance with protocols approved by the Committee for Animal Research at the University of California, San Francisco.

Quantitative reverse transcription real-time polymerase chain reaction (qRT-PCR)

Validated Gene Expression Assays for human FASN (ID: Hs01005622_m1) and β-Actin (ID: 4333762T) were purchased from Applied Biosystems (Foster City, CA). PCR reactions were performed with 100 ng of cDNA on the whole sample collection and cell lines, using an ABI Prism 7000 Sequence Detection System and TaqMan Universal PCR Master Mix (Applied Biosystems). Cycling conditions were: 10 min of denaturation at 95°C and 40 cycles at 95°C for 15 s and at 60°C for 1 min. Quantitative values were calculated by using the PE Biosystems 7300 System and TaqMan Universal PCR Master Mix (Applied Biosystems). Statistical differences among various groups were assessed using the Tukey-Kramer test. All graphs represent mean ± SEM.

Immunohistochemical staining

Liver specimens were fixed in 4% paraformaldehyde and embedded in paraffin. For immunohistochemistry, deparaffinized sections were incubated in 3% H2O2 dissolved in 1X phosphate-buffered saline (PBS) for 30 minutes to quench the endogenous peroxidase. For antigen retrieval, slides were microwaved in 10 mM citrate buffer (pH 6.0) for 12 minutes. Subsequently, slides were incubated with primary antibodies overnight at 4°C. The following primary antibodies were used: anti-FASN (Cell Signaling Technology, #3180; 1:150), anti-ACC (Cell Signaling Technology, #3676; 1:100), and anti-Ki-67 (Thermo Fisher Scientific, #MA5–14520; 1:150). The immunoreactivity was visualized with the Vectastain Elite ABC kit (Vector Laboratories, Burlingame, CA), using Vector NovaRED (Vector Laboratories) as the chromogen. Slides were counterstained with Mayer’s hematoxylin. The intensity of immunostaining was defined semi-quantitatively with a scale from “-” to “+++” (−, negative; +, weak; ++, moderate; ++++, strong). The immunohistochemical expression patterns of FASN and Ki-67 in the various mouse models are summarized in Table 1.

Statistical analysis

Data analysis was performed with Prism 6 (GraphPad, San Diego, CA). Kaplan-Meier analysis was used to compare the survival rate of 2 cohorts. Statistical differences among various groups were assessed using the Tukey-Kramer’s test. All graphs represent mean ± SEM.

Abbreviations

ACLY adenosine triphosphate citrate lyase
AKT v-akt murine thymoma viral oncogene homolog
ELOVL elongation of very long chain fatty acids protein
FASN fatty acid synthase
HCC hepatocellular carcinoma
mTOR mammalian target of rapamycin
mTORC mTOR complex
Raptor regulatory-associated protein of mTOR
Rictor rapamycin-insensitive companion of mTOR
FA fatty acid
PTEN phosphatase and tensin homolog
RPS6 ribosomal protein S6
SREBP sterol regulatory element binding protein
HGF hepatocyte growth factor
SCD stearoyl-CoA desaturase
UDCA ursodeoxycholic acid
ACC Acetyl-CoA carboxylase
LPL lipoprotein lipase
VLDL low-density lipoproteins
siRNA small RNA interference
TKIs kinase inhibitors
MAPK mitogen-activated protein kinase
PI3K phosphoinositide-3-kinase
MUSFA monounsaturated fatty acids
PUSFA polyunsaturated fatty acids
FADS Fatty acid desaturase
References

[1] Pascual S, Herrera I, Irurzun J. New advances in hepatocellular carcinoma. World J Hepatol 2016; 8:421-38; PMID: 27028578; http://dx.doi.org/10.4040/wjhe.v8.i8.421

[2] El-Serag HB. Hepatocellular carcinoma. N Engl J Med 2011; 365:1118-27; PMID: 21992124; http://dx.doi.org/10.1056/NEJMra1001683

[3] Tsukuma H, Hiyama T, Tanaka S, Nakao M, Yabuchi T, Kitamura T, Nakarnish K, Fujimoto I, Inoue A, Yamazaki H, et al. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med 1993; 328:1797-801; PMID: 7684822; http://dx.doi.org/10.1056/NEJM199306243288015

[4] Knudsen ES, Gopal P, Singal AG. The changing landscape of hepatocellular carcinoma: etiology, genetics, and therapy. American J Pathol 2014; 184:574-83; http://dx.doi.org/10.1016/j.ajpath.2014.02.008

[5] Choo SP, Tan WL, Goh BK, Tai WM, Zhu AX. Comparison of hepatocellular carcinoma and consequences for treatment. Oncologist 2010; 4 (1 Suppl):14-22; http://dx.doi.org/10.1634/theoncologist.2010-S4-14

[6] Llovet JM, Bruix J, Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008; 48:1312-27; PMID: 18821591; http://dx.doi.org/10.1002/hep.22506

[7] Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic Landscape and Biomarkers of Hepatocellular Carcinoma. Gastroenterology 2015; 149;1226-39 e4; PMID: 26095257; http://dx.doi.org/10.1053/j.gastro.2015.05.061

[8] Garcia-Valdecasas JC, Font R, Zucman-Rossi J, Berraondo P, Chao E, et al. The molecular etiology of hepatocellular carcinoma. J Hepatol 2013; 58:1056-66; PMID: 23570823; http://dx.doi.org/10.1016/j.jhep.2013.04.024

[9] O'Leary BP, Llovet JM. A cure for hepatocellular carcinoma? J Hepatol 2014; 60:1183-90; http://dx.doi.org/10.1016/j.jhep.2013.09.006

[10] El-Serag HB. Hepatocellular carcinoma. N Engl J Med 2011; 364:1443-52; PMID: 21305510; http://dx.doi.org/10.1056/NEJMra1111260

[11] Villanueva A, Llovet JM. Targeted therapies for hepatocellular carcinoma. Gastroenterology 2011; 140:1410-26; PMID: 21406195; http://dx.doi.org/10.1053/j.gastro.2011.03.006

[12] Kalyan A, Nimeiri H, Kulik L. Systemic therapy of hepatocellular carcinoma: current and promising. Clin Liver Dis 2015; 19:421-32; PMID: 25921671; http://dx.doi.org/10.1016/j.cld.2015.01.009

[13] Delire B, Starkel P. The Ras/MAK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur J Clin Invest 2015; 45:609-23; PMID: 25832714; http://dx.doi.org/10.1111/eci.12441

[14] Matter MS, Decaens T, Andersen JB, Thorgeirsson SS. Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. J Hepatol 2014; 60:855-65; PMID: 24308993; http://dx.doi.org/10.1053/j.jhep.2013.11.031

[15] Giordano S, Columbia A. Met as a therapeutic target in HCC: facts and hopes. J Hepatol 2014; 60:442-52; PMID: 24045150; http://dx.doi.org/10.1016/j.jhep.2013.09.009

[16] Berasain C, Avila MA. The EGFR signalling system in the liver: from hepatoprotection to hepatocarcinogenesis. J Gastroenterol 2014; 49:9-23; PMID: 24318021; http://dx.doi.org/10.1007/s00535-013-0907-x

[17] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646-74; PMID: 21376230; http://dx.doi.org/10.1016/j.cell.2011.02.013

[18] Currie E, Schulze A, Zechner R, Walthier TC, Fares E, Jr. Cellular fatty acid metabolism and cancer. Cell Metab 2014; 19:153-61; PMID: 24379148; http://dx.doi.org/10.1016/j.cmet.2013.05.017

[19] Rohrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer 2016; 16:732-49; PMID: 27658529; http://dx.doi.org/10.1038/nrc.2016.89

[20] Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007; 7:763-77; PMID: 17882277; http://dx.doi.org/10.1038/nrc2222

[21] Ameer F, Scandluzi L, Hasnain S, Kallbacher H, Zaidi N. De novo lipogenesis in health and disease. Metabolism 2014; 63:895-902; PMID: 24814684; http://dx.doi.org/10.1016/j.metabol.2014.04.003

[22] Herrera E, Amusquivar E. Lipid metabolism in the fetus and the newborn. Diabetes Metab Res Rev 2000; 16:202-10; PMID: 10867720; http://dx.doi.org/10.1002/1520-7560(200005/06)16:3%3c202::AID-DMRR116%3e3.0.CO;2-C

[23] Peck B, Schulze A. Lipid desaturation - the next step in targeting lipogenesis in cancer? The FEBS J 2016; 283:2767-78; PMID: 27598297; http://dx.doi.org/10.2174/13894501141224125117

[24] Wang C, Ma J, Zhang N, Yang Q, Jin Y, Wang Y. The acetyl-CoA carboxylase enzyme: a target for cancer therapy? Expert Rev Anticancer Ther 2015; 15:667-76; http://dx.doi.org/10.1586/14737140.2015.1038246

[25] Lamming DW, Sabatini DM. A Central role for mTOR in lipid homeostasis. Cell Metab 2013; 18:465-9; PMID: 23973323; http://dx.doi.org/10.1016/j.cmet.2013.08.002

[26] Schiopu R, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149:274-93; PMID: 22500797; http://dx.doi.org/10.1016/j.cell.2012.03.017

[27] Peck B, Schulze A. Lipid desaturation - the next step in targeting lipogenesis in cancer? European J Cancer 2015; 52:326-76; PMID: 26881388; http://dx.doi.org/10.1111/ejcs.13681

[28] Wang C, Ma J, Zhang N, Yang Q, Jin Y, Wang Y. The acetyl-CoA carboxylase enzyme: a target for cancer therapy? Expert Rev Anticancer Ther 2015; 15:667-76; http://dx.doi.org/10.1586/14737140.2015.1038246

[29] Camargo D, Sabatini DM. Amino acid restriction: a new strategy for cancer therapy? Nat Rev Cancer 2013; 13:303-13; PMID: 23903789; http://dx.doi.org/10.1038/nrc3562

[30] Peck B, Schulze A. Lipid desaturation - the next step in targeting lipogenesis in cancer? The FEBS J 2016; 283:2677-78; PMID: 26881388; http://dx.doi.org/10.1111/ejcs.13681
Lithium acetate and C75 in adenocarcinoma lung cancer. BMC Cancer 2012; 12:280; http://dx.doi.org/10.1186/1471-2407-12-280

Chen HW, Chang YF, Chuang HY, Tai WT, Hwang JJ. Targeted therapy with fatty acid synthase inhibitors in a human prostate carcinoma LNCaP/tk-luc-bearing animal model. Prostate Cancer Prostatic Dis 2012; 15:260-4; PMID: 22565411; http://dx.doi.org/10.1038/pcan.2012.15

Horiguchi A, Asano T, Asano T, Ito K, Sumimoto M, Hayakawa M. Pharmacological inhibitor of fatty acid synthase suppresses growth and invasiveness of renal cancer cells. J Urol 2008; 180:729-36; PMID: 18555493; http://dx.doi.org/10.1016/j.juro.2008.03.186

Alli PM, Pinn ML, Jaffee EM, McFadden JM, Kuhajda FP. Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene 2005; 24:39-46; PMID: 15489885; http://dx.doi.org/10.1038/sj.oto.1701874

Svensson RU, Parker SJ, Eichner LJ, Kolar MI, Wallace M, Brun SN, Lombardo PS, Van Nostrand JL, Hutchins A, Vera L, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthase synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med 2016; 22:1108-19; PMID: 27643638; http://dx.doi.org/10.1038/nm.4181

Nie B, Park HM, Kazantzis M, Lin M, Henkin A, Ng S, Song C, Chen Y, Tran H, Lai R, et al. Specific bile acids inhibit hepatic fatty acid uptake in mice. Hepatology 2012; 56:1300-10; PMID: 22531947; http://dx.doi.org/10.1002/hep.25797

Tward AD, Jones KD, Yant S, Cheung ST, Fan ST, Chen X, Kay MA, Wang R, Bishop JM. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci U S A 2007; 104:14771-6; PMID: 17785413; http://dx.doi.org/10.1073/pnas.0706578104

Li L, Che L, Tharp KM, Park HM, Pilo MG, Cao D, Cigliano A, Latte G, Xu Z, Ribback S, et al. Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans. Hepatology 2016; 63:1900-13; PMID: 26910791; http://dx.doi.org/10.1002/hep.28508

Chen X, Calvisi DF. Hydrodynamic transfection for generation of novel mouse models for liver cancer research. Am J Pathol 2014; 184:912-23; PMID: 24480331; http://dx.doi.org/10.1016/j.amjpathol.2013.12.002