Increased Circulating Cytokines Have a Role in COVID-19 Severity and Death With a More Pronounced Effect in Males: A Systematic Review and Meta-Analysis

Huating Hu1†, Hudan Pan1,2†, Runze Li1,2, Kancheng He3, Han Zhang4 and Liang Liu1*

1State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China, 2Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macao, China, 3Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China, 4Institute of Traditional Chinese Medicine Research, Tianjin University of Traditional Chinese Medicine, Zhuhai, China

Background: Coronavirus disease 2019 (COVID-2019), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide epidemic and claimed millions of lives. Accumulating evidence suggests that cytokines storms are closely associated to COVID-19 severity and death. Here, we aimed to explore the key factors related to COVID-19 severity and death, especially in terms of the male patients and those in western countries.

Methods: To clarify whether inflammatory cytokines have role in COVID-19 severity and death, we systematically searched PubMed, Embase, Cochrane library and Web of Science to identify related studies with the keywords “COVID-19” and “cytokines”. The data were measured as the mean with 95% confidence interval (CI) by Review Manager 5.3 software. The risk of bias was assessed for each study using appropriate checklists.

Results: We preliminarily screened 13,468 studies from the databases. A total of 77 articles with 13,468 patients were ultimately included in our study. The serum levels of cytokines such as interleukin-6 (IL-6), IL-10, interleukin-2 receptor (IL-2R), tumor necrosis factor (TNF)-α, IL-1β, IL-4, IL-8 and IL-17 were higher in the severity or death group. Notably, we also found that the circulating levels of IL-6, IL-10, IL-2R and TNF-α were significantly different between males and females. The serum levels of IL-6, IL-10, IL-2R and TNF-α were much higher in males than in females, which implies that the increased mortality and severity in males was partly due to the higher level of these cytokines. Moreover, we found that in the severe and non-survivor groups, European patients had elevated levels of IL-6 compared with Asian patients.

Conclusion: These large-scale data demonstrated that the circulating levels of IL-6, IL-10, IL-2R, IL-1β, IL-4, IL-8 and IL-17 are potential risk factors for severity and high mortality in COVID-19. Simultaneously, the upregulation of these cytokines may be driving factors for the sex and region predisposition.

Keywords: COVID-19, cytokines, sex bias, mortality, meta-analysis
INTRODUCTION

Coronavirus disease 2019 (COVID-2019), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised major public health concerns since 2019. Though many patients with COVID-19 present no symptoms or only mild symptoms (including fever, cough, and fatigue), some suffer severe symptoms and may progress to pneumonia, acute respiratory distress syndrome (ARDS), multi organ dysfunction and even death. The severity of COVID-19 is known to be closely correlated to cytokines storms, when the immune system is unable to counteract the virus, cytokine storms in patients may lead to macrophage hyperactivity and further systemic abnormal reactions (Lang et al., 2020; Liang et al., 2020; Makaronidis et al., 2020). However, the characteristics of the cytokine storms in COVID-19 patients have not been fully illustrated.

In death cases, patients with COVID-19 shows a higher risk of mortality in males sex (Griffith et al., 2020). According to the largest sex-disaggregated data from 47 countries, men with COVID-19 have higher morbidity than women with COVID-19 (63.8% men; 36.2% women). In addition, the overall mortality of COVID-19 is more than 2.3 times higher in men than in women (Control and Response, 2020). The discrepancy in COVID-19 outcomes between male and female patients may be attributed to several biological and social factors, especially cytokine storms (Griffith et al., 2020). Moreover, as the Covid-19-related literatures grows increasingly, the racial and ethnic disparities showed that the death and severity rate of Asians are lower than the other population (Tirupathi et al., 2020a; Mackey et al., 2021a).

To this end, we conducted a systematic review and meta-analysis to identify the key factors associated to COVID-19 severity and death, especially in terms of the sex and race bias detected in severe COVID-19 patients.

METHODS

Search Strategy

We screened databases (Web of Science, Embase, the Cochrane Library, and PubMed) from December 2019 to June 2021. We also registered on the INPLASY (International Platform of Registered Systematic Review and Meta analysis Protocols platform). The number for our study is INPLASY2021120050.

To search for more articles, we also screened related reference lists from relevant studies. The search terms included (“2019 novel coronavirus disease”) OR (“COVID19”) OR (“COVID-19 pandemic”) OR (“SARS-CoV-2 infection”) OR (“COVID-19 virus disease”) OR (“2019 novel coronavirus infection”) OR (“2019-nCoV infection”) OR (“coronavirus disease 2019”) OR (“coronavirus disease-19”) OR (“2019-nCoV disease”) OR (“COVID-19 virus infection”) OR (“cytokines”).

Inclusion and Exclusion Criteria

All the included studies met the following criteria: 1) the types of studies considered for inclusion were prospective or retrospective cohort studies comparing mild groups and severe groups; 2) the circulating levels of cytokines were analyzed before treatment. The exclusion criteria were reviews, studies of interventions other than cytokines, in vitro studies and in vivo animal experiments. To further reduce the accidental error of our study, each analysis of cytokines should contain more than two studies. Only English studies were screened in our study. After screening and collecting the literature, two authors removed duplicate publications by Endnote and independently evaluated each study based on their title and abstract. The symptom criteria are listed as follows.

For the mild group, patients had respiratory symptoms (fever, cough, fatigue, anorexia, headache), without evidence of viral pneumonia or hypoxia.

For the severe group, patients had one or more of the following conditions: respiratory distress, respiratory rate ≥30 times/minute, oxygen saturation (SpO2) ≤93% at rest, arterial partial pressure of oxygen (PaO2)/Fraction of inspiration O2 (FiO2) in arterial blood ≤300 mmHg, >50% lung imaging progress in the short term within 24–48 h, respiratory failure and mechanical ventilation required, shock, combined with other organ failure, and transfer to the intensive care unit (8).

Data Extraction and Quality Assessment

Two authors (Hu & Pan) collected data from the included studies, including the first author, study country, inclusion time, age, sex, sample sizes, mild group/severe group, survivors/non-survivors, study design, and outcomes. Another two authors assessed the quality of the studies using the Newcastle-Ottawa Scale (NOS) and scored points for each included study independently.

Statistical Analysis

Review Manager 5.3 was used to perform all statistical analyses. The mean and standard deviation (SD) were used as measurements across articles. We calculated the sample mean and SD by the sample size and interquartile range (IQR) (Wan et al., 2014; Luo et al., 2018). The circulating levels of cytokines between different groups were collected from the selected articles and analyzed using a random-effects model when I^2>50%. The standard Cochran’s Q test and I^2 statistics were also used to identify heterogeneity from the included articles. Significant heterogeneity was determined when I^2 value > 50% and p-value < 0.05.

RESULTS

Large Scale Data From Clinical Reports

A total of 13,468 studies were screened out by the database search. After removing 826 duplicates, we excluded 8452 articles by reading the titles and abstracts of the studies. Then, we read the remaining literature and excluded studies that were not matched to the inclusion and exclusion criteria. There were 77 articles with 13,986 patients ultimately included in this study (Han et al., 2020; Yang et al., 2020; Rutkowska et al., 2021) (Figure 1). The baseline features of all included studies are presented in Table 1.
Studies were published between December 2019 and June 2021. Among the 77 studies, 57 studies were performed in China, eight in Spain, three in Germany, three in Italy, two in Poland, and one each in Austria, the USA, France and Algeria. Seventy-three studies were published in normal journals, and four were published in preprint journals. 14 cytokines were reported in these 77 studies, including IL-1β, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-8, IL10, IL-15, IL-17, TNF-α, IFN-γ, MCP-1, and CXCL-10. Review Manager 5.3 was used to calculate and compare the sample mean and SD by the sample size and interquartile range. After removing the cytokines that having no statistical difference in either severe or death group, the cytokines that only contain two articles were also removed. Totally eight cytokines were included in our meta-analysis, containing IL-1β, IL-2R, IL-4, IL-6, IL-8, IL-10, IL-17, and TNF-α. Furthermore, we also screened the cytokines associated with gender or regions of COVID-19 patients. IL-2R, IL-6, IL-10 and TNF-α, which were correlated with gender or regions of COVID-19 patients, were finally presented in this study. All the included studies detected the serum levels of IL-6, while 13 studies focused on IL-2R, 31 studies analyzed IL-10 and 29 studies were related to the serum levels of TNF-α. Five studies analyzed IL-1β, 12 studies analyzed IL-4, 11 studies analyzed IL-8 and IL-17 was studies by four studies. Moreover, five studies analyzed the correlation between genders and cytokines. Fifty-seven and twenty-four studies analyzed the serum levels of cytokines in severity and mortality groups. All 77 studies had NOS quality scores greater than 6, indicating that all these studies have high levels of quality, as shown in Table 2.

Proinflammatory Cytokines as the Driving Factor for Severity and High Mortality in COVID-19 Patients

To determine whether the circulating levels of inflammatory cytokines are risk factors for severity and mortality of COVID-19 patients, we classified the patients into mild and severe groups. There were 57 studies and 7,807 patients included in...
Author	Study region	Inclusion time	Mean age (years)	gender	Sample sizes	Mild group/ Severe groups or survival/non-survival groups	Study design	Outcomes	Journal types
Ai-Ping Yang et al. (2020)	China	N/A	46.4	60% male	93	69/24	retrospective cohort	IL-6, IL-10, TNF-α, IL-β, IL-4, IL-8, IL-17	Normal
Bo Xu Xu et al. (2020a)	China	26 Dec 2019 to 1 Mar 2020	62	55% male	187	159/28	retrospective observational study	IL-6, IL-10, TNF-α, IL-β	Normal
Changcheng Zheng et al. (2020a)	China	15 Feb 2020	60	43.6 male	55	34/21	retrospective observational study	IL-6	Normal
Changsong Wang et al. (2020a)	China	N/A	62.9	50% male	45	33/12	retrospective cohort	IL-6, IL-10, IL-4	Normal
Chaomin Wu et al. (2020a)	China	25 Dec 2019, to 26 Jan 2020	51	43.7% male	201	117/84	retrospective cohort	IL-6	Normal
Chuan Qin et al. (2020a)	China	Jan 10 to 12 Feb 2020	58	52% male	452	166/286	retrospective cohort	IL-6, IL-2R, IL-10, TNF-α, IL-8	Normal
Egon Burian et al. (2020)	Germany	Mar and April 2020	61.54	35% male	65	37/28	retrospective cohort	IL-6	Normal
Fangfang Liu et al. (2020a)	China	Jan 20 to 23 Feb 2020	48	55.38% male	65	42/23	retrospective cohort	IL-6	Normal
Fei Zhou et al. (2020a)	China	29 Dec 2019 to 31 Jan 2020	56	62% male	191	137/54	retrospective cohort	IL-6	Normal
Fengqin Zhang et al. (2020a)	China	Feb to March 2020	N/A	N/A	34	27/7	retrospective observational study	IL-6, IL-10, TNF-α, IL-8	Normal
Guang Chen et al. (2020a)	China	Jan 2–7, 2020	56	81% male	21	10/11	retrospective observational study	IL-6, IL-2R, IL-10, TNF-α, IL-8	Normal
Hailun Wang et al. (2020a)	China	Jan 2 to 5 Feb 2020	49	43.6% male	83	33/50	retrospective cohort	IL-6	Normal
Han Huang et al. (2020a)	China	Jan 2020 and February 2020	N/A	50% male	102	42/60	retrospective cohort	IL-6, IL-10, TNF-α, IL-4	Normal
Hong Huang et al. (2020a)	China	Feb and March 2020	36	46% male	31	27/4	retrospective cohort	IL-6, IL-10, TNF-α, IL-2R	Normal
Hua Fan et al. (2020a)	China	30 Dec 2019 to 16 Feb 2020	58.36	67% male	73	47/26	retrospective observational study	IL-6	Normal
Huizheng Zhang et al. (2020a)	China	N/A	N/A	51.2% male	43	29/14	retrospective observational study	IL-6, IL-10, TNF-α, IL-17	Preprint
Jia Ma et al. (2020a)	China	1 Jan 2020 to 30 Mar 2020	62	54.5% male	37	17/20	retrospective observational study	IL-6	Normal
Lang Wang et al. (2020a)	China	Jan 1 to 6 Feb 2020	71	49% male	339	274/65	retrospective observational study	IL-6	Normal
Lai Liu et al. (2020a)	China	N/A	45	62.7% male	51	44/7	retrospective case series observational study	IL-6	Preprint
Lucas Quartuccio Quartuccio et al. (2020)	Italy	N/A	66.5	79% male	24	18/6	retrospective case series cohort	IL-6	Normal
Maria efgenberger et al. (2020a)	Austria	26th February to 21st April 2020	60.69	62.5% male	96	81/15	retrospective case series cohort	IL-6	Normal
Maria J. Pérez-Sáez et al. (2020a)	Spain	18th March 2020	59.3	67.5% male	80	54/26	retrospective case series cohort	IL-6	Normal
Mario Fernández-Ruiz et al. (2020a)	Spain	16th March to 27th March 2020	46.8	65.9% male	88	39/49	retrospective cohort	IL-6	Normal
Marta Crespo et al. (2020a)	Spain	Mar to April 2020	71	75% male	16	8/8	Prospective cohort study	IL-6	Normal
Miao Luo et al. (2020a)	China	Jan and March 2020	61	51.2% male	1018	817/201	retrospective case series	IL-2R, IL-6, IL-10, TNF-α, IL-8	Normal
Michael Dreher et al. (2020a)	Germany	Feb and March 2020	65	66% male	50	26/24	retrospective case series	IL-6	Normal

(Continued on following page)
Author	Study region	Inclusion time	Mean age (years)	gender	Sample sizes	Mild group/Severe groups or survival/non-survival groups	Study design	Outcomes	Journal types	
Ming Ni Ni et al. (2020)	China	1 to 21 February 2020	60	50%	male 27	male 14/female 13	retrospective case series	IL-6, IL-10, TNF-α	Normal	
Paola Tonioni Tonioni et al. (2020)	Italy	Mar 9th and 20 Mar 2020	62	88%	male 100	male 77/23	retrospective case series	IL-6	Normal	
Pingzheng Mo Mo et al. (2020)	China	Jan 1st to 5 Feb 2020	54	55.5	male 155	male 70/85	retrospective case series	IL-6	Normal	
Qin Lu Qin et al. (2020b)	China	26 January 2020 and 5 February 2020	55.2	57.9	male 233	male 135/98	retrospective cohort	IL-6, IL-2R, IL-10, TNF-α	Normal	
Qiu Rong Ruan Ruan et al. (2020)	China	N/A	N/A	N/A	N/A 150	N/A 82/68	retrospective observational study	IL-6	Normal	
Ruirui Wang Wang et al. (2020c)	China	Jan 20 to 9 Feb 2020	38.7	57%	male 125	male 100/25	IL-6	Normal		
Shaohua Li Li et al. (2020a)	China	20 Jan 2020, to 20 Mar 2020	48.5	58%	male 69	male 43/26	IL-6, TNF-α, IL-1β	IL-8	Normal	
Susu He He et al. (2020)	China	Jan 17 to 12 Feb 2020	44.5	53%	male 93	male 60/33	IL-6, IL-10	Normal		
Susin Wan Wan et al. (2020)	China	26 January to 4 February 2020	43.1	53.6%	male 123	male 102/21	IL-6, IL-10, TNF-α, IL-4, IL-17	Normal		
Takahisa Mikami Mikami et al. (2020)	United States	Mar and April 2020	59	54.5%	male 2820	male 2014/806	retrospective observational study	IL-6, TNF-α, IL-8	Normal	
Tao Chen Chen et al. (2020c)	China	13 January to 12 February 2020	62	62%	male 274	male 161/113	retrospective case series	IL-6	IL-2R, IL-10	Normal
TAO Liu Liu et al. (2020c)	China	December 2019 to July 2020	53.9	42.2%	male 77	male 11/66	IL-6, IL-10	Normal		
Tielong Chen Chen et al. (2020c)	China	1 Jan 2020, to 10 Feb 2020	54	53.2%	male 55	male 36/19	IL-6	Normal		
Tobias Herold Herold et al. (2020c)	Germany	Feb 29 to 27 Mar 2020	61	70%	male 89	male 57/32	IL-6	Normal		
Wenjun Tu Tu et al. (2020)	China	3 Jan to 24 February 2020	70	76%	male 174	male 149/25	IL-6	Normal		
Xiaohong Yuan Yuan et al. (2020)	China	Feb 15 to 30 Mar 2020	67	47.9%	male 117	male 61/56	IL-6, IL-10, IL-4	Normal		
Xia Xu Xu et al. (2020b)	China	3 Feb 2020, to 20 Mar 2020	57	40.91%	male 88	male 47/41	IL-6, IL-2R, TNF-α	IL-8	Normal	
Xiong Bei Xiong et al. (2023)	China	21 Mar 2020	66	61.4%	male 57	male 19/38	IL-6	Normal		
Yang Lu Liu et al. (2020c)	China	22 Jan 2020, to 15 Feb 2020	45	64.4%	male 76	male 46/30	IL-6, IL-2R, IL-10, IL-1β, IL-8	Normal		
Yang Xu Xu et al. (2020c)	China	N/A	57	50.7%	male 69	male 44/25	IL-6	Preprint		
Yang Xu Xu et al. (2020b)	China	N/A	N/A	N/A	N/A 10	N/A 8/2	IL-6	Preprint		
Yang Zhao Zhao et al. (2020)	China	Jan 13 and 4 Mar 2020	58	47.3%	male 539	male 414/125	retrospective observational study	IL-6	Normal	
Yaying Xie Xie et al. (2020)	China	Feb and March 2020	66	43.5%	male 62	male 38/24	retrospective case series	IL-6	Normal	
Yanli Wang Wang et al. (2020c)	China	25 Jan 2020 and 8 Mar 2020	52	65%	male 43	male 35/6	retrospective observational study	IL-6	IL-10, IL-4	Normal
Yaqing Zhou Zhou et al. (2020c)	China	28 Jan 2020 to 2 Mar 2020	66	65.9%	male 21	male 8/13	IL-6	Normal		
Yi Li Li et al. (2020b)	China	28 January 2020, to 12 March 2020	6	56.8%	male 125	male 48/77	retrospective case series	IL-6, IL-10, TNF-α, IL-4	Normal	
Ying Chi Chi et al. (2020)	China	N/A	45.21	58%	male 66	male 58/8	retrospective case series	IL-6, IL-2R, IL-10, TNF-α, IL-1β, IL-4, IL-8, IL-17	Normal	
this meta-analysis. Compared to patients in the mild group, circulating levels of IL-6 was found to be significantly increased in patients in the severe group (19.76 [16.59, 22.93], \(p < 0.00001 \), Supplementary Figure S1). The serum level of IL-6 in the non-surviving group was also significantly elevated compared with that in the surviving group (52.33 [44.16, 60.50], \(p < 0.00001 \), Supplementary Figure S2). In addition to IL-6, the serum levels of IL-2R, IL-10, IL-1β, IL-4, IL-8, IL-17 and TNF-α were also elevated in both severe and non-surviving COVID-19 patients (Supplementary Figures S3–S6). Suggesting that the upregulation of these cytokines were correlated with the prognosis of COVID-19 patients.

Table 1 (Continued) Basic characteristics of 77 studies included in Meta-analysis.

Author	Study region	Inclusion time	Mean age (years)	gender	Sample sizes	Mild group/Severe groups or survival/non-survival groups	Study design	Outcomes	Journal types
Yingjie Wu Wu et al. (2020c)	China	29 December 2019 to 20 February 2020	61	63.3% male	71	IL-6, IL-10, TNF-α, IL-4	retrospective case series	Normal	
Ying Sun Sun et al. (2020)	China	N/A	47	58.7% male	63	IL-6	retrospective case series	IL-6	Normal
Yi Zheng Zheng et al. (2020)	China	Jan, 22 and Mar. 5, 2020	66	67.6% male	34	IL-6	retrospective case series	IL-6, IL-10	Normal
Yong Gao Gao et al. (2020d)	China	23 Jan 2020 to 2 Feb 2020	44	60.6% male	43	IL-6	retrospective case series	IL-6	Normal
Zhe Zhu Zhu et al. (2020)	China	Jan 23 to Feb 20, 2020	50.9	36.43% male	127	IL-6, IL-10, TNF-α, IL-4	retrospective cohort	IL-6, IL-10, TNF-α, IL-4	Normal
Zhuhua Lv Lv et al. (2020)	China	4 Feb 2020 to Feb 28, 2020	62	49.4% male	354	IL-6, IL-10, TNF-α, IL-4	retrospective cohort	IL-6, IL-10, TNF-α, IL-4	Normal
Zhilin Zeng Zeng et al. (2020)	China	28 Jan 2020, to 12 Feb 2020	62	51.1% male	317	IL-6, IL-10, TNF-α, IL-4	retrospective cohort	IL-6, IL-10, TNF-α, IL-4	Normal
Zhongxiang Wang Wang et al. (2020a)	China	Dec 2019 to February 2020	42	46% male	59	IL-6, IL-10, TNF-α, IL-4	retrospective cohort	IL-6, IL-10, TNF-α, IL-4	Normal
Sophie Hue Hue et al. (2020)	France	Mar 2020	60	91% male	38	IL-6, IL-10	retrospective cohort	IL-6, IL-10	Normal
Elżbieta Kalicka Kalicka et al. (2021)	Poland	Dec 2020	62	52% male	82	IL-6, TNF-α	Prospective cohort	IL-6, TNF-α	Normal
Diarmgrad Li Li et al. (2020c)	China	Mar 2020	56	62.5% male	65	IL-6	retrospective cohort	IL-6	Normal
Francisco Javier Gil-Etayo Gil-Etayo et al. (2021)	Spain	Sep 2020	55	67% male	34	IL-4	Prospective cohort	IL-6, IL-10	Normal
Feng Gao Gao et al. (2021)	China	Feb 2020	49	42.5% male	121	IL-6, IL-10	retrospective cohort	IL-6, IL-10	Normal
Wei Zhu Zhu et al. (2021)	China	Mar 2020	65	45% male	1106	IL-6	retrospective cohort	IL-6, IL-10, TNF-α, IL-4	Normal
Zhirui Meng (Meng et al. 2020)	China	Apr 2020	48	63% male	98	IL-6, IL-10, TNF-α, IL-4	retrospective cohort	IL-6, IL-10, TNF-α, IL-4	Normal
Chenzhe Li Li et al. (2020c)	China	Apr 2020	63	49.6% male	989	IL-6, IL-10, TNF-α, IL-4	retrospective cohort	IL-6, IL-10, TNF-α, IL-4	Normal
Vahid Balaei Balaei et al. (2021)	Iran	Apr 2020	59	70.18% male	57	IL-6, IL-10, TNF-α, IL-4	retrospective cohort	IL-6, IL-10, TNF-α, IL-4	Normal
Ricó Laguna-Goya Laguna-Goya et al. (2003)	Spain	Apr 2020	52	63.3% male	501	IL-6	retrospective cohort	IL-6	Normal
José J. Guirao Guirao et al. (2020)	Spain	Apr 2020	65	52% male	50	IL-6	retrospective cohort	IL-6	Normal
Jose Maria Galvan-Roman Galván-Román et al. (2021)	Spain	Mar 2020	63	66% male	146	IL-6	retrospective cohort	IL-6	Normal
Li-Da Chen Chen et al. (2020c)	China	Mar 2020	52	50% male	94	IL-6, IL-10, TNF-α, IL-4	retrospective cohort	IL-6, IL-10, TNF-α, IL-4	Normal
Lucia Guillén Guillén et al. (2020)	Spain	Apr 2020	62	73% male	64	IL-6, IL-10, TNF-α, IL-4	retrospective cohort	IL-6, IL-10, TNF-α, IL-4	Normal
Enrico Maria Treccarichi Treccarichi et al. (2020)	Italy	May 2020	80	57.1% male	48	IL-6	retrospective cohort	IL-6	Normal
Elżbieta Rutkowska Rutkowska et al. (2021)	Poland	Jan 2021	56	56% male	38	IL-6	retrospective cohort	IL-6	Normal
First author	Study design	Selection	Comparability	Assessment of outcome	Total quality scores				
--------------	--------------	-----------	---------------	-----------------------	----------------------				
Ai-Ping Yang	Cohort	***	**	**	7				
Bo Xu	Cohort	***	**	**	8				
Changcheng Zheng	Cohort	**	**	**	7				
Changsong Wang	Cohort	***	**	**	8				
Chaoxun Wu	Cohort	***	**	**	7				
Chuan Qin	Cohort	****	**	**	9				
Egon Burian	Cohort	***	**	**	7				
Fangfang Liu	Cohort	***	**	**	7				
Fei Zhou	Cohort	**	**	**	7				
Fengqin Zhang	Cohort	***	**	**	8				
Guan Chen	Cohort	***	**	**	7				
Haijun Wang	Cohort	***	**	**	7				
Han Huang	Cohort	***	**	**	8				
Hong Huang	Cohort	****	**	**	9				
Hua Fang	Cohort	***	**	**	7				
Huizheng Zhang	Cohort	***	**	**	8				
Jia Ma	Cohort	***	**	**	7				
Lang Wang	Cohort	****	**	**	9				
Lei Liu	Cohort	****	**	**	9				
Lucas Quartuccio	Cohort	***	**	**	7				
Maria effenberger	Cohort	***	**	**	8				
Maria J. Pérez-Sáez	Cohort	**	**	**	7				
Marco Fernández-Ruiz	Cohort	****	**	**	9				
Marta Crespo	Cohort	****	**	**	7				
Miao Luo	Cohort	***	**	**	8				
Michael Dreher	Cohort	***	**	**	8				
Ming Ni	Cohort	***	**	**	8				
Paola Tonyati	Cohort	***	**	**	7				
Pingzheng Mo	Cohort	****	**	**	7				
Qin Lu	Cohort	****	**	**	9				
Qiurong Ruan	Cohort	****	**	**	7				
Ruirui Wang	Cohort	**	**	**	7				
Shaohua Li	Cohort	**	**	**	7				
Sophie Hue	Cohort	***	**	**	8				
Susu He	Cohort	****	**	**	7				
Suxin Wan	Cohort	***	**	**	8				
Takahisa Mikami	Cohort	****	**	**	8				
Tao Chen	Cohort	***	**	**	8				
TAO Liu	Cohort	***	**	**	8				
Tielong Chen	Cohort	****	**	**	7				
Tobias Herold	Cohort	****	**	**	9				
Wenjun Tu	Cohort	***	**	**	8				
Xia Xu	Cohort	****	**	**	8				
Xiaohong Yuan	Cohort	***	**	**	8				
Xiong Bei	Cohort	***	**	**	8				
Yang Liu	Cohort	**	**	**	7				
Yang Xu	Cohort	**	**	**	7				
Yang Xu 2	Cohort	****	**	**	9				
Yang Zhao	Cohort	***	**	**	8				
Yangjing Xie	Cohort	***	**	**	8				
Yanli Wang	Cohort	***	**	**	8				
Yaqing Zhou	Cohort	***	**	**	8				
Yi Li	Cohort	***	**	**	8				
Yi Zheng	Cohort	***	**	**	7				
Ying Chi	Cohort	***	**	**	8				
Ying Sun	Cohort	***	**	**	8				
Yirting Wu	Cohort	****	**	**	9				
Yong Gao	Cohort	***	**	**	8				
Zhe Zhu	Cohort	**	**	**	6				
Zhilua Lv	Cohort	****	**	**	9				
Zhilin Zeng	Cohort	***	**	**	8				
Zhongliang Wang	Cohort	***	**	**	8				
Elzbieta Kalkowska	Cohort	***	**	**	9				
Dianming Li	Cohort	***	**	**	8				

(Continued on following page)
Table 2 (Continued) Methodological quality of the 77 studies based on the NOS for studies.

First author	Study design	Selection	Comparability	Assessment of outcome	Total quality scores
Francisco Javier Gil-Etayo	Cohort	***	**	***	8
Feng Gao	Cohort	***	**	***	8
Wei Zhu	Cohort	**	**	***	7
Ziru Meng	Cohort	***	**	***	8
Chenze Li	Cohort	****	**	***	9
Brahim Belaid	Cohort	****	**	**	8
Rocio Laguna-Goya	Cohort	****	**	***	9
Jose J. Gurao	Cohort	***	**	***	8
Jose Mana Galvan-Roman	Cohort	****	**	***	9
Li-Da Chen	Cohort	****	**	*	7
Lucía Guillén	Cohort	***	**	***	8
Enrico Maria TrecaRichi	Cohort	***	**	***	8
Elzbieta Rubiowska	Cohort	***	**	***	8

Altering of the Distinctive Cytokines Are Related to Sex Bias in COVID-19 Patients

In this meta-analysis, four cytokines were found to be correlated with severity of male COVID-19 patients. Five studies reporting circulating interleukin-6 (IL-6) levels in male ($n = 488$) and female ($n = 509$) COVID-19 patients were included. In addition, interleukin-2 receptor (IL-2R), interleukin-10 (IL-10) and tumor necrosis factor α (TNF-α) were also different between male and female patients. Compared to female patients, the expression levels of circulating IL-6 (11.76 [7.56, 15.96], $p = 0.000001$), IL-2R (85.75 [3.91, 167.59], $p = 0.04$), IL-10 (1.54 [0.99, 2.08], $p = 0.000001$) and TNF-α (1.39 [0.81, 1.97], $p = 0.000001$) were found to be significantly elevated in male patients (Figure 2).

Additionally, we conducted a sensitivity analysis to confirm the robustness of the model, and a significant sex gap was detected in circulating levels of IL-6, IL-2R, IL-10 and TNF-α.

The Levels of IL-6 Related to Severity and High Mortality in COVID-19 Patients From Different Continents

We further analyzed the correlation between cytokines and continents. We classified the articles into Asia, Europe, Africa and North America groups, and there were 840 European patients, 6,910 Asian patients and 57 African patients in the selected studies. To better interpret the differences between countries, we compared the ages, sex distributions and the severe rate of the included patients in the two territories. Results showed that ages and the proportions of severe or dead patients were comparable, while the male patients in the severe COVID-19 patients in Europe was significantly higher than that in Asia (Supplementary Tables 1, 2). The results of our meta-analysis showed that Asian, European, and African patients with severe COVID-19 had elevated circulating IL-6 levels and the circulating IL-6 levels of European and African was higher than the Asian patients (Figure 3).

Notably, we found that there were 997 Asian, 223 European, 19 African and 1007 North American in the analysis of mortality. Among them, all the death patients with COVID-19 had higher IL-6 levels than the survive patients. Moreover, Asian death patients still have the lowest circulating IL-6 levels than the other continents’ patients (Figure 4). Unlike IL-6, the serum level of IL-10 had the potential to predict the risk of mortality in Asian patients, but it showed no correlation with mortality in European patients (Supplementary Figure S7).

DISCUSSION

The SARS-CoV-2 S protein engages with the host ACE2 receptor and is subsequently cleaved at S1/S2 and S2’ sites by TMPRSS2 protease, which leads to activation of the S2 domain and drives fusion of the viral and host membranes. The secretion of interferon is the first step to start the antiviral program. Alveolar cells are an important part of the epithelial endothelial barrier. After respiratory epithelial cells were first infected by virus, virus infection activates pattern recognition receptors in these cells, triggering the production and release of type I and type III interferons (IFNs) and other proinflammatory mediators (such as cytokines, chemokines and antimicrobial peptides), so as to start the host’s innate and acquired immune response, which further activated the secondary cytokines (such as IL-10, IFN-y, MCP-1, IL-4, and IL-17) and lead to cytokines storm (Vabret et al., 2020). In the mild patients, immune cells have the ability of eliminating viruses completely and inhibit the them from invading alveoli, which lead to low cytokines in serum (Figure 5). In this study, we identified that the serum levels of IL-6, IL-2R, IL-10, TNF-α, IL-1β, IL-4, IL-8 and IL-17 were significantly elevated in the severe or death cases and probably play crucial roles in the progression of COVID-19. Male sex was identified as a hazard for more severe disease and
higher mortality in COVID-19 (Takahashi et al., 2020; Zeng et al., 2020). The recognition of how sex influences COVID-19 outcomes have important significance for clinical management and remission tactics. In this large-scale worldwide meta-analysis, the related cytokines affecting the development of severe disease in male patients were identified and the serum of IL-6, as well as IL-10, IL-2R and TNF-α, in males was obviously higher than that in females.

IL-6, the core factor of “cytokine storm”, plays a pivotal role in the severity and high mortality of COVID-19. It enhances the production of TNF-α and IL-8 by stimulating the differentiation of T follicular helper cells, inhibits antiviral helper T cell 1 (Th1) cell commitment and improves the differentiation of helper T cell 2 (Th2) cells by regulating the circulating of IL-4 and interferon γ (IFN-γ) (Ahmadpoor and Rostaing, 2020; Wu and Yang, 2020). Moreover, elevated levels of IL-6 lead to acute lung injury.
and suppress the functions of T lymphocytes, macrophages and dendritic cells, which impair the immune system (Zhang et al., 2004). Tocilizumab, an IL-6 antagonist, revealed good capacity in inhibiting inflammation and cytokine storms in COVID-19 and various clinical studies have verified the beneficial effect of IL-6 and its receptor antagonists in COVID-19.

FIGURE 3 | The serum levels of IL-6 in the different continent of mild and severe.

Study or Subgroup	Severe	Mild	Mean Difference (IV, Random: 95% CI)		
Europe					
Egen Burian	103.9	43.6	25.1		
Elzbieta Kalki	92.0524	44.0685	30.072 18.43695 51.1%	61.98 [45.66, 78.30]	
Elzbieta Rutkowska	14.179	9.662	5.571 3.24722 23.2%	6.40 [4.22, 14.57]	
Jose A Garcia	24.168	16.52	8.202 5.87 42.0%	3.95 [1.52, 6.36]	
Jose Mar Av Galvan-Ran	51.3926	19.66 6.4932 20.01 22.9%	34.37 [28.39, 40.34]		
Lucia Guillen	118.5949	56.4794	62.124	37.24 [28.42, 46.84]	
Maria Esteban	94.0786	125.6285	31.4276	47.5518 81.02%	62.66 [1.75, 127.07]
Maria Fernandez-Ruiz	430.44	46.08	24.06 39.81 1.0%	119.30 [43.46, 242.06]	
Michael Dohren	171.6444	229.3247	49.01 47.06 22.1%	147.34 [93.83, 240.86]	
Paola Tomati	81.0305	104.3028	23.301 65.7491 76.97%	39.91 [5.13, 64.96]	
Tobias Herold	185.6342	122.3274	65.0697	155.6677 57.1%	104.97 [14.20, 224.14]

Total (95% CI) 268 572 9.6% 49.33 [30.69, 67.98]

Heterogeneity: Tau² = 494.10; Ch² = 89.13; df = 10 (P < 0.00001); I² = 89%

Test for overall effect: Z = 5.19 (P < 0.00001)

1.2 Asia

Hu et al. Circulating cytokines in Covid-19 patients

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 802228

10
treating severe and critical COVID-19 patients (Xu et al., 2020d; Potere et al., 2021). Besides IL-6, TNF-α inhibitor can also reduce lung exudation and inflammatory reactions, it has been used in the treatment of patients with covid-19 patients (Tirupathi et al., 2020b; Mackey et al., 2021b). However, blocking IL-6 and TNF-α inhibitor may not be used to all patients due to its potential adverse events and expensive price (Wang et al., 2020f; Keewan et al., 2021). The identification of which COVID-19 patients are suitable for treatment with IL-6 antagonists and TNF-α inhibitor are meaningful in the clinic. In our study, the cytokines IL-6, IL-10, and TNF-α were significantly upregulated in severe COVID-19 patients, especially in male patients, indicating that IL-6 antagonists and TNF-α inhibitors are more appropriate used in male patients to reduce both severity and mortality rate of COVID-19.

An increasing number of studies have pointed out that there are ethnicity-related differences in cytokines in systemic lupus erythematosus, chronic rhinosinusitis and other autoimmunity diseases (Niewold et al., 2012; Wang et al., 2016; Slight-Webb et al., 2020). We also focused on ethnicity-related differences in cytokines in COVID-19 patients and the results showed that there were lower circulating levels of IL-6 in Asian patients than in European and African patients, suggesting that IL-6 antagonists are recommended to use earlier in western countries.

This study had some limitations. Firstly, the articles that described the differential serum levels of cytokines in males and females were all from China. More clinical experiments should focus on the sex bias of cytokines in COVID-19. Secondly, our meta-analysis mainly investigated studies written in English, which might lead to language bias.

![Image](https://example.com/image.png)
CONCLUSION

These large-scale data revealed that the serum levels of IL-6, IL-10, IL-12R, TNF-α, IL-1β, IL-4, IL-8, and IL-17 are potential risk factors for severity and high mortality in COVID-19. The IL-6 antagonist and TNF-α inhibitor are likely to be a proper therapeutic strategy to reduce mortality in males with COVID-19 and in Western countries.

AUTHOR CONTRIBUTIONS

HH wrote the manuscript, HP conceived and designed the study, HH and HP reviewed and revised the manuscript. HH and KH searched the database and extracted the data, HH and RL carried out the Meta-analysis and made figures, HP and HZ revised and sorted out the data, LL designed and performed the final review of the manuscript, all authors contributed to the article and approved the submitted version.

FUNDING

This work was financially supported by the National Key Research and Development Project of China (2020YFA0708003).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2022.802228/full#supplementary-material

REFERENCES

Ahmadpoor, P., and Rostaing, L. (2020). Why the Immune System Fails to Mount an Adaptive Immune Response to a COVID-19 Infection. Transpl. Int. 33 (7), 824–825. doi:10.1111/tri.13611

Belaid, B., Lamara Mahammad, L., Mhihi, B., Rahali, S., Djidjeli, A., Larab, Z., et al. (2021). T Cell Counts and IL-6 Concentration in Blood of North African COVID-19 Patients Are Two Independent Prognostic Factors for Severe Disease and Death. J. Leukoc. Biol.

Burian, E., Jungmann, F., Kaisiss, G. A., Lohöfer, F. K., Spinner, C. D., Lahmer, T., et al. (2020). Intensive Care Risk Estimation in COVID-19 Pneumonia Based
Crespo, M., Pérez-Sáez, M. J., Redondo-Pachón, D., Llinàs-Mallol, L., Montero, M. D., Dreher, M., Kersten, A., Bickenbach, J., Balfanz, P., Hartmann, B., Cornelissen, C., C. C. D., and P. E. W. G. N. E. (2020). The Epidemiological Effenberger, M., Grander, C., Grabherr, F., Griesmacher, A., Ploner, T., Hartig, F., Fan, H., Zhang, L., Huang, B., Zhu, M., Zhou, Y., Zhang, H., et al. (2020). Cardiac Fernández-Ruiz, M., López-Medrano, F., Pérez-Jacoiste Asín, M., Maestro de la Galván-Román, J., Rodríguez-García, S., Roy-Vallejo, E., Marcos-Jiménez, A., Chen, T., Wu, D., Chen, H., Yan, W., Yang, D., Chen, G., et al. (2020). Clinical Chen, T., Dai, Z., Mo, P., Li, X., Ma, Z., Song, S., et al. (2020). Clinical Gao, F., Zheng, K. I., Yan, H. D., Sun, Q. F., Pan, K. H., Wang, T. Y., et al. (2021). Gastroenterology and the Italian Association for the Study of the Liver Injuries in Patients with Coronavirus Disease 2019: Not to Be Ignored. Hu et al. Circulating cytokines in Covid-19 patients
Wang, Y., Zhu, F., Wang, C., Wu, J., Liu, J., Chen, X., et al. (2020). Children Hospitalized with Severe COVID-19 in Wuhan. Pediatr. Infect. Dis. J. 39 (7), e91–e94. doi:10.1097/INF.0000000000002739

Wang, Z., Yang, B., Li, Q., Wen, L., and Zhang, R. (2020). Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. Clin. Infect. Dis. 71 (15), 769–777. doi:10.1093/cid/ciaa272

Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., et al. (2020). Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 180 (7), 934–943. doi:10.1001/jamainternalmed.2020.0994

Wu, D., and Yang, X. O. (2020). TH17 Responses in Cytokine Storm of COVID-19: An Emerging Target of JAK2 Inhibitor Fedratinib. J. Microbiol. Immunol. Infect. 53 (3), 368–370. doi:10.1016/j.jmii.2020.03.005

Wu, Y., Huang, X., Sun, J., Xie, T., Lei, Y., Muhammad, J., et al. (2020). Clinical Characteristics and Immune Injury Mechanisms in 71 Patients with COVID-19. mSphere 5 (4), doi:10.1128/mSphere.00362-20

Xie, Y., You, Q., Wu, C., Cao, S., Qu, G., Yan, X., et al. (2020). Impact of Cardiovascular Disease on Clinical Characteristics and Outcomes of Coronavirus Disease 2019 (COVID-19). Circ. J. 84 (8), 1277–1283. doi:10.1253/circj.CJ-20-0348

Xiong, B., Liu, T., Luo, P., Wei, Y., Zhou, Y., Liu, M., et al. (2020). Prominent Hypercoagulability Associated with Inflammatory State Among Cancer Patients with SARS-CoV-2 Infection. Front. Oncol. 10, 1345. doi:10.3389/fonc.2020.01345

Xu, B., Fan, C. Y., Wang, A. L., Zou, Y. L., Yu, Y. H., He, C., et al. (2020). Suppressed T Cell-Mediated Immunity in Patients with COVID-19: A Clinical Retrospective Study in Wuhan, China. J. Infect. 81 (1), e51–e60. doi:10.1016/j.jinf.2020.04.012

Xu, X., Han, M., Li, T., Sun, W., Wang, D., Fu, B., et al. (2020). Effective Treatment of Severe COVID-19 Patients with Tocilizumab. Proc. Natl. Acad. Sci. U S A. 117 (20), 10970–10975. doi:10.1073/pnas.2005615117

Xu, X., Yu, M. Q., Chen, Q., Wang, L. Z., Yan, R. D., Zhang, M. Y., et al. (2020). Analysis of Inflammatory Parameters and Disease Severity for 88 Hospitalized COVID-19 Patients in Wuhan, China. Int. J. Med. Sci. 17 (13), 2052–2062. doi:10.7150/ijms.47935

Xu, Y. (2020). Dynamic Profile of Severe or Critical COVID-19 Cases. medRxiv, 2020.03.18.20038513.

Xu, Y., Li, Y.-r., Zeng, Q., Lu, Z.-b., Li, Y.-z., Wu, W., et al. (2020). Clinical Characteristics of SARS-CoV-2 Pneumonia Compared to Controls in Chinese Han Population. medRxiv 2020. 03.08.20031658.

Yang, A. P., Li, H. M., Tao, W. Q., Yang, X. J., Wang, M., Yang, W. J., et al. (2020). Infection with SARS-CoV-2 Causes Abnormal Laboratory Results of Multiple Organs in Patients. Aging (Albany NY) 12 (11), 10059–10069. doi:10.18632/aging.103255

Yuan, X., Huang, W., Ye, R., Chen, C., Huang, R., Wu, F., et al. (2020). Changes of Hematological and Immunological Parameters in COVID-19 Patients. Int. J. Hematol. 112 (4), 553–559. doi:10.1111/ijh.15054-020-03255-0

Zhang, F., Xiong, Y., Wei, Y., Hu, Y., Wang, F., Li, G., et al. (2020). Obesity Predisposes to the Risk of Higher Mortality in Young COVID-19 Patients. J. Med. Virol. 92 (11), 2536–2542. doi:10.1002/jmv.26039

Zhang, H., Wang, X., Fu, Z., Luo, M., Zhang, Z., Zhang, K., et al. (2020). Potential Factors for Prediction of Disease Severity of COVID-19 Patients. medRxiv, 03.20.20039818.

Zhang, Y., Li, J., Zhan, Y., Wu, L., Yu, X., Zhang, W., et al. (2004). Analysis of Serum Cytokines in Patients with Severe Acute Respiratory Syndrome. Infect. Immun. 72 (8), 4410–4415. doi:10.1128/IAI.72.8.4410-4415.2004

Zhai, Y., Nie, H. X., Hu, K., Wu, X. J., Zhang, Y. T., Wang, M. M., et al. (2020). Abnormal Immunity of Non-survivors with COVID-19: Predictors for Mortality. Infect. Infect. Dis. 9 (1), 108. doi:10.1111/s41029-020-00723-1

Zheng, C., Wang, J., Guo, H., Lu, Z., Ma, Y., Zhu, Y., et al. (2020). Risk-adapted Treatment Strategy for COVID-19 Patients. Int. J. Infect. Dis. 94, 74–77. official publication of the International Society for Infectious Diseases. doi:10.1016/j.ijid.2020.03.047

Zheng, Y., Sun, L. J., Xu, M., Pan, J., Zhang, Y. T., Fang, X. L., et al. (2020). Clinical Characteristics of 34 COVID-19 Patients Admitted to Intensive Care Unit in Hangzhou, China. J. Zhejiang Univ. Sci. B 21 (5), 378–387. doi:10.1016/j.jzus.B2000174

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al. (2020). Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: a Retrospective Cohort Study. Lancet 395 (10229), 1054–1062. doi:10.1016/S0140-6736(20)30566-3

Zhou, Y., Han, T., Chen, J., Hou, C., Hua, L., He, S., et al. (2020). Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin. Transl Sci. 13 (6), 1077–1086. doi:10.1111/cts.12805

Zhu, W., Zhang, H., Li, Y., Ding, Z., Liu, Z., Ruan, Y., et al. (2021). Optimizing Management to Reduce the Mortality of COVID-19: Experience from a Designated Hospital for Severely and Critically Ill Patients in China. Front. Med. (Lausanne) 8, 582764. doi:10.3389/fmed.2021.582764

Zhu, Z., Cai, T., Fan, L., Lou, K., Hua, X., Huang, Z., et al. (2020). Clinical Value of Inflammation-Labile Parameters to Assess the Severity of Coronavirus Disease 2019. Int. J. Infect. Dis. 95, 332–339. official publication of the International Society for Infectious Diseases. doi:10.1016/j.ijid.2020.04.041

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.