Integral Field Spectroscopy of Massive Young Stellar Objects in the N113 HII Region in the Large Magellanic Cloud

J.L. Ward1, J.M. Oliveira1, J.Th. van Loon1 and M. Sewilo2,3

1School of Physical and Geographical Sciences, Lennard-Jones Laboratories, Keele University, Keele, ST5 5BG, UK

2Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA

3The John Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 6400N. Charles Street, Baltimore, MD 21218, USA

Accepted 2015 October 19. Received 2015 September 11; in original form 2015 May 8

ABSTRACT

The Spitzer SAGE survey has allowed the identification and analysis of significant samples of Young Stellar Object (YSO) candidates in the Large Magellanic Cloud (LMC). However the angular resolution of Spitzer is relatively poor meaning that at the distance of the LMC, it is likely that many of the Spitzer YSO candidates in fact contain multiple components. We present high resolution K-band integral field spectroscopic observations of the three most prominent massive YSO candidates in the N113 HII region using VLT/SINFONI. We have identified six K-band continuum sources within the three Spitzer sources and we have mapped the morphology and velocity fields of extended line emission around these sources. Brγ, Hei and H2 emission is found at the position of all six K-band sources; we discuss whether the emission is associated with the continuum sources or whether it is ambient emission. H2 emission appears to be mostly ambient emission and no evidence of CO emission arising in the discs of YSOs has been found. We have mapped the centroid velocities of extended Brγ emission and Hei emission and found evidence of two expanding compact HII regions. One source shows compact and strong H2 emission suggestive of a molecular outflow.

The diversity of spectroscopic properties observed is interpreted in the context of a range of evolutionary stages associated with massive star formation.

Key words: stars: formation – Magellanic Clouds – stars: protostars – circumstellar matter – infrared: stars.

1 INTRODUCTION

The Large Magellanic Cloud (LMC) presents a unique opportunity to study star formation. At a distance of ~ 50 kpc (Laney, Joner & Pietrzyński 2012) and a favourable inclination, it allows the simultaneous study of star formation on the scale of an entire galaxy and the scale of individual stars with little distance ambiguity. At the same time the LMC provides a ‘stepping stone’ towards understanding star formation in lower metallicity environments with a metallicity of $Z_{\text{LMC}} \approx 0.4 Z_{\odot}$ (Dufour, Shields & Tabol 1982, Bernard et al. 2008).

The Spitzer Space Telescope (Spitzer; Werner et al. 2004) and the Herschel Space Observatory (Herschel; Pilbratt et al. 2010) have allowed the identification and characterisation of the stellar populations in the LMC through the Spitzer SAGE (“Surveying the Agents of Galaxy Evolution”; Meixner et al. 2006) and the Herschel HERITAGE (“Herschel Inventory of the Agents of Galaxy Evolution”; Meixner et al. 2010, 2013) surveys. These surveys covered the whole of the LMC at 3.6, 4.5, 5.8, 8.0, 24, 70, 160 μm (SAGE) and at 100, 160, 250, 350, 500 μm (HERITAGE). Over 2000 Young Stellar Object (YSO) candidates have been selected using Spitzer photometry by Whitney et al. (2008), Gruendl & Chu (2009) and Carlson et al. (2012), with spectroscopic analyses carried out in Shimonishi et al. (2008), Meixner et al. (2010, 2013), and Woods et al. (2011). The spatial resolution of Spitzer observations ranges from 1″7 at 3.6 μm to 40″ at 160 μm whilst those of Herschel range from 8″6 (100 μm) to 40″5 (500 μm). These resolutions are insufficient to distinguish between YSOs with separations less than ~ 0.5 pc of each other at the distance of the LMC.
The effect of this poor spatial resolution in Spitzer imagery is that many Spitzer sources classified as YSOs will in fact be multiple objects which may exhibit a wide range of characteristics. The physical properties of the sources based on the Spitzer data may apply to groups of objects rather than individual sources.

LHA 120-N113 (hereafter N113, Henize 1956) is an active star forming region within the LMC which contains a number of Spitzer and Herschel YSO candidate sources (see Fig. 1). We present K-band observations of three of the brightest Spitzer massive YSOs in N113 obtained with SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared; Eisenhauer et al. 2003) at the European Southern Observatory (ESO) Very Large Telescope (VLT), with spectral and spatial resolutions of 4000 and 0.1″ respectively. Sewilo et al. (2010) discussed two Herschel sources in N113 (YSO-1 and YSO-2, shown in Fig. 1) and two other YSOs (YSO-3 and YSO-4) in other regions of the LMC. To avoid confusion, we will retain the source numbers for YSO-1 and YSO-2 from Sewilo et al. (2010) but add the prefix N113- (N113-YSO01 and N113-YSO02) and add two additional YSOs in N113 (N113-YSO03 and N113-YSO04).

In order to compare the massive YSO population of N113 with that of the Milky Way we require a suitable Galactic data set. The Red MSX² Source Survey (RMS Survey; Lumsden et al. 2013) provides the most comprehensive catalogue of Galactic massive YSOs and Ultra-compact HII regions to date. H- and K-band infrared spectroscopy has been carried out for a large number of these objects by Cooper et al. (2013, henceforth C13). This Galactic sample will be used as a comparison for our LMC YSO observations.

Whilst Spitzer and Herschel observations provide a valuable insight into star formation in the Magellanic

\footnote{MOSAIC Hα image of N113 from “Magellanic Cloud Emission Line Survey 2” (PI: You-Hua Chu, http://adsabs.harvard.edu/abs/2011noao.prop..537C).}

\footnote{Midcourse Space Experiment (Egan et al. 2003).}
Clouds, shorter wavelength studies in the near-infrared using large ground based telescopes allow us to resolve individual hot cores and compact H II regions at the distance of the LMC. These new observations provide the highest resolution imaging of these objects to date and the first K-band spectroscopy of massive YSOs in this region. Parameters determined from previous observations are presented in Section 2. Section 3 describes the observations and data reduction process, Section 4 presents the main results and finally, the significance and implications of the results are discussed in Section 5, along with efforts to place the observed targets into an evolutionary context.

2 PREVIOUS OBSERVATIONS

All three target regions (N113-YSO01, N113-YSO03 and N113-YSO04) are associated with bright knots in Hα emission and have been previously studied using Spitzer photometry (Gruendl & Chu 2009, Carlson et al. 2012), Spitzer IRS spectroscopy (Seale et al. 2009), Herschel photometry (Sewilo et al. 2010) and Herschel spectroscopy (Oliveira et al., in prep.), confirming the YSO classification. Additionally, the region contains a number of water masers including the most intense in the Magellanic Clouds (Lazendic et al. 2002, Oliveira et al. 2006, Imai et al. 2013) and an OH maser (Brooks & Whiteoak 1997). None of the targets in this paper appear in the YSO catalogue of Whitney et al. (2008) because they do not satisfy the strict point source criterion of the original SAGE point source catalogue of Meixner et al. (2006); since the sources are absent from the SAGE catalogue they are not part of the YSO selection. This is most likely due to their slightly irregular morphologies and the issue is discussed in detail in Chen et al. (2004).

The following spectroscopic properties are common to all three targets: H₂ emission, PAH emission and fine structure emission (from Spitzer-IRS spectra, Seale et al. 2009), and [CII] emission, [OI] emission, and CO emission (from Herschel PACS and SPIRE spectroscopy, Oliveira et al. in prep.), whilst evidence of ices has not been observed in any of the targets. HCN and HCO⁺ are also detected towards all three sources, indicating high densities (HCN and HCO⁺) and photo-dissociation of molecular clouds (HCO⁺), both of which are associated with massive star formation (Seale et al. 2012).

Additional properties, including results of Spectral Energy Distribution (SED) fitting using the models of Robitaille et al. (2006), are summarised in Table 1. The SED fits for N113-YSO01, N113-YSO03 and N113-YSO04 are performed excluding the Herschel photometry and setting the Spitzer 70 μm data as upper limits because the spatial regions from which these data are extracted are too large to be directly useful when analysing individual YSOs. Physical parameters are estimated by averaging parameters of all models that fit a source’s SED with normalised χ² per data point (χ²/pt) in a range between (χ²/pt) for the best-fitting model and (χ²/pt) + 3 (see e.g. Sewilo et al. 2013 for further details). The luminosity and mass of N113-YSO01 are consistent within the quoted uncertainties with those presented in Sewilo et al. (2010), fitted using all available photometry for λ < 50 μm. Using the calibration from Martins, Schaerer & Hillier (2005) the estimated luminosities would correspond to O4–O9 stars on the main-sequence; however such estimates cannot be taken at face value since at least two sources are actually resolved into multiple components in the K-band in this work. Whilst all three of the targets of this paper appear similar based on Spitzer and Herschel data, the K-band observations presented in this work reveal a wide range of sources with different spectral properties.

3 OBSERVATIONS AND DATA REDUCTION

K-band integral field spectroscopic observations were carried out for 3 targets in N113 using SINFONI at the VLT. SINFONI is an AO-assisted integral field spectrograph allowing for observations in the K-band with an angular resolution of 0.′1, a field of view (FOV) of 2′8 and a spectral resolving power, R = λ/δλ = 4000. These observations took place in October 2013. Each object was observed with four 300 second integrations along with sky offset position observations in an ABBA pattern with jittering. Telluric B-type standard stars were also observed at regular intervals throughout each night in order to provide standard star spectra for telluric correction and flux calibration. Calibration frames were observed during the daytime and linearity lamp frames were obtained from the ESO archive.

The data were reduced using the standard SINFONI pipeline recipes with ESO’s Gasgano data file organiser. Telluric and flux calibration were performed simultaneously for each cube using an IDL script written specifically for this task. For each pixel in the data cube, the target spectrum is divided by the telluric standard star spectrum removing the telluric absorption features. The target spectrum was then multiplied by a blackbody with a temperature based on the spectral type of the standard used. The blackbody spectra used in this calibration were generated using PyRAF³. This process was looped to apply the same procedure to each spaxel in the cube.

SINFONI is a Cassegrain focus mounted instrument and as such it does suffer from a systematic time-dependent wavelength shift during each night due to flexure. This is always small (less than 3 resolution elements) so it only presents an issue when determining accurate centroid velocity measurements. In order to account for this effect, a second wavelength calibration was performed on the final data cubes using the OH emission lines in the sky data cubes produced in the SINFONI data reduction pipeline.

Although sky line subtraction does form part of the standard SINFONI data reduction pipeline, due to the relatively long exposure times in this study (8 × 300 s exposures plus overheads), the variation in sky line intensities leads to sky line residuals remaining in the final data cubes. The positions of these residuals are shown in Fig. A2. Whilst aesthetically displeasing, the impact of these residuals on the spectral analysis is actually very small as none are coincident with any emission lines of interest and the continuum measurements are calculated from models fitted to the continuum.

³ PyRAF is a product of the Space Telescope Science Institute, which is operated by AURA for NASA.
Table 1. Properties of Spitzer YSOs analysed in this paper. YSO02 has been included for completeness using the values from Sewilo et al. (2010). The value for envelope mass is not included in Sewilo et al. (2010). The S09 group refers to the YSO classifications by Seale et al. (2009; S09) where P type sources show prominent PAH emission, PE sources show strong PAH and fine-structure emission. All three of the targets observed in this work have been classed as definite YSOs by Gruendl & Cha (2009) and by Carlson et al. (2012). The bolometric luminosities and masses for N113-YSO01, N113-YSO03 and N113-YSO04 are from new SED fits using existing photometry (see text for full details).

Target	Spitzer Source	S09 group	log(Lbol/L⊙)	Central Mass (M⊙)	Envelope Mass (M⊙)	Associated Maser emission
N113-YSO02			4.51±0.29	13±2		
N113-YSO01	Y051317.69−69225.0	PE	5.18±0.18	32.3±0.3	1.8±6.2 ×10²	H₂O
N113-YSO03	Y051325.09−69224.5	P	5.27±0.28	35.3±12.8	1.6±2.2 ×10²	H₂O, OH
N113-YSO04	Y051321.43−69224.5	PE	5.24±0.51	34.3±13.9	1.2±0.6 ×10²	H₂O

Figure 2. SINFONI K-band Continuum emission maps. Left to right: N113-YSO03, N113-YSO04, N113-YSO01. Marked regions show the identified continuum sources and the regions from which spectra were extracted.

4 RESULTS

4.1 Continuum emission and photometry

For each spaxel in the final flux calibrated cubes, the continuum was fitted using a 3rd order polynomial and summed for the spectral range spanning 2.028–2.290 μm to produce continuum flux maps without any contribution from line emission. The resulting images are shown in Fig. 2. Multiple continuum sources have been identified using these images; N113-YSO01 contains a single continuum source while N113-YSO03 and N113-YSO04 are resolved into three and two continuum sources, respectively. The positions of each continuum source are given in Table 2 and marked in Fig. 2 and the red circles show the regions from which 1D spectra were extracted from the cubes using the sinfo_extcube2spctrum recipe from the SINFONI data reduction pipeline (see Fig. A1 for extracted spectra). The K-band continuum magnitude for each object, integrated over the same wavelength interval, is given in Table 3.

4.2 Extinction

In order to impose constraints on the physical properties of the observed YSOs, we must apply extinction corrections to our measurements. Additionally extinction towards an object can provide an assessment of how embedded the source of the emission is. We employed two methods of estimating the extinction towards each source. The first using JHK's photometry from the IRSF (Kato et al. 2007) and the same technique employed in C13:

\[A_v = \frac{m_1 - m_2 + x_{int}}{0.5157(\lambda_1^{-1.75} - \lambda_2^{-1.75})} \]

where \(m_1 \) and \(m_2 \) are the shorter wavelength and longer wavelength magnitudes respectively, and \(x_{int} \) is the intrinsic colour, assuming intrinsic colours of a B0 type star of 0.12 mag and 0.05 mag for \(J-H \) and \(H-K \), respectively.

The second method utilises the H₂ line fluxes measured from the spectra themselves to estimate extinction. The 1-0(Q3) / 1-0(S1) flux ratio is used due to its insensitivity to temperature and relatively large wavelength baseline. Fol-

Table 2. J2000 positions of each of the K-band continuum sources resolved for the first time in this paper.

Object	RA (h:m:s)	Dec (°:′:″)
N113-YSO01	05:13:17.666	−69:22:24.86
N113-YSO03A	05:13:24.915	−69:22:43.55
N113-YSO03B	05:13:24.944	−69:22:44.85
N113-YSO03C	05:13:25.057	−69:22:44.90
N113-YSO04A	05:13:21.617	−69:22:42.24
N113-YSO04B	05:13:21.740	−69:22:40.99
lowing [Davis et al. (2011)] A_V is calculated as:

$$A_V = -114 \log(0.704[I_{S1}/I_{Q3}])$$ \hspace{1cm} (2)

All the resulting extinction estimates are shown in Table 3. We find that the extinction estimates using the IRSF colours are inconsistent between $J-H$ and $H-K$ colours for the same source and for nearby objects in the same FOV. Additionally the technique using IRSF photometry has yielded negative values, likely caused by source confusion and unreliable photometry in the relatively low resolution IRSF data or by the assumption of spectral type. Wherever extinction corrections are applied, we use the values calculated using the H$_2$ lines as this technique makes no assumptions of intrinsic spectral type and it is available for all six sources. Using the Galactic mean R_V dependent extinction law:

$$[A(\lambda)/A_V] = a(x) + b(x)/R_V,$$ \hspace{1cm} (3)

where $a(x) = 0.574x^{1.61}$ and $b(x) = -0.527x^{1.61}$ for the K-band ([cardelli, clayton & mathis 1989]), we calculated extinction corrections for all measured emission lines. The R_V value adopted is the same as that of the Milky Way extinction curve ($R_V = 3.1$). Although the average value in the LMC has been found to be $R_V = 3.41 \pm 0.06$ (Gordon et al. 2003) in the K-band the effect of a small variation in R_V is negligible when compared to the effect of the line measurement uncertainties.

4.3 Emission features

Emission line mapping was achieved by fitting Gaussian profiles to the spectral axis in the final data cubes to calculate a line flux for each spaxel using our IDL script written for this task. The resulting images are shown in Fig. 3. Spectra were extracted from the regions shown in Fig. 2 of the flux calibrated data cubes using the sincupcube2spectrum recipe from the SINFONI data reduction pipeline. Emission lines in the extracted 1D spectra for each continuum source were measured by Gaussian fitting within the Starlink software package SPLAT. The measured emission line fluxes (without extinction correction) are given in Table B1. The flux values obtained from the spectra were converted to line luminosities using a distance of 49.4±0.5 kpc (Lanev, Joner & Pietrzynski 2012).

4.3.1 H\textsc{I} emission

The strongest detected H\textsc{i} emission line in this sample, Br$_\gamma$, is most commonly associated with accretion in star formation studies. For intermediate mass YSOs the relation from [Calvet et al. (2004)] can be used to estimate the accretion luminosity from Br$_\gamma$ luminosity:

$$\log(L_{acc}) = -0.7 + 0.9(\log(L_{Br\gamma}) + 4)$$ \hspace{1cm} (4)

Whilst this relation holds true for Herbig A stars, the higher mass Herbig B type stars have been observed to exhibit a Br$_\gamma$ emission excess ([Donehew & Brittain 2011; Mendigutía et al. 2011]), most likely due to an additional emission component originating from the strong winds driven by stellar UV photons emitted from hot stars. It is likely therefore that a similar effect is present in the more massive YSOs during the later phases of their evolution. For the purposes of comparing our sample with a Galactic sample however, the above relation can be applied to gain an equivalent accretion luminosity assuming that both samples cover the same range of evolutionary states and YSO masses. Additionally we must consider the impact that metallicity may have on this relation. Whilst it is the case that the momentum and mass loss rates of stellar winds are strongly affected by metallicity ([Puls, Springmann & Lennon 2004; Vink, de Koter & Lamers 1999; 2001; Kudritzki 2002; Krticka 2006]), it is the number of photons produced which are able to ionise hydrogen that is significant when measuring Br$_\gamma$ emission. [Kudritzki (2002)] predicts that the number of photons capable of ionising hydrogen is barely affected by a change in metallicity. This suggests that the above relationship between Br$_\gamma$ and accretion luminosity should hold for studies in lower metallicity environments.

Whilst bolometric luminosities have been obtained for each target using existing Spitzer data (see Table 1), two out of three target fields contain multiple continuum sources and the third exhibits emission that appears to originate from outside the FOV. Without higher resolution mid-infrared studies it will not be possible to accurately determine bolometric luminosities for each of the sources. We therefore compare the equivalent accretion luminosity with K-band magnitude in Fig. 4 rather than bolometric luminosity. A distance of 49.4±0.5 kpc ([Lanev, Joner & Pietrzynski 2012]) was assumed to the LMC and distances to Galactic sources were obtained from the RMS survey database. From Fig. 4 we can ascertain that the Br$_\gamma$ luminosities observed towards all six sources fall within the range observed in the Galactic sources. The sources for which we believe that the emission is associated with that source exhibit a higher Br$_\gamma$ / K-band continuum emission ratio than the remaining sources. The accretion rates of the YSOs in this study are consistent with those of Galactic YSOs but appear to be high, possibly indicative of higher accretion rates.

The spatial extent of the Br$_\gamma$ emission is mapped in the top row of Fig. 3. Where the Br$_\gamma$ emission is significantly spatially extended beyond the continuum source, it is likely that the contribution of non-accretion emission is significant. This appears to be the case in N113-YSO03 A and N113-YSO04 B. The Br$_\gamma$ emission is compact in N113-YSO03 B whilst in the remaining three continuum sources (N113-YSO01, N113-YSO03 C and N113-YSO04 A) the Br$_\gamma$ emission appears to be ambient or produced from other sources in the FOV. The dominant source of Br$_\gamma$ emission in N113-YSO01 peaks outside of the FOV.

In addition to mapping the Br$_\gamma$ emission flux around these sources, we have also mapped the centroid velocities relative to the centroid at the westernmost continuum source in each field [N113-YSO01, N113-YSO03 A, N113-YSO04 A], shown in Fig. 5. Spaxels where the uncertainty in relative velocity exceeds the imposed limits (5 km s$^{-1}$ in YSO03 and 10 km s$^{-1}$ in YSO01 and YSO04) have been masked. Figure C1 shows emission line velocity maps obtained from the sky cube for N113-YSO03, showing that there are no significant systematic velocity gradients. The two sources which exhibit extended Br$_\gamma$ emission (N113-YSO03 A and N113-YSO04 B) exhibit clear velocity gradients (\pm10 km s$^{-1}$ and

4 http://rms.leeds.ac.uk/cgi-bin/public/RMS_DATABASE.cgi
Table 3. Measured K-band magnitudes and extinction estimates (calculated using both methods discussed in Section 4.2) for all observed continuum sources. The average for each SINFONI FOV is given in the last column. For N113-YSO04 only one IRSF source is detected and it is unclear which of the sources in this work this corresponds to.

Target	K-band mag	A_V $(J-H)$	A_V $(H-Ks)$	A_V $(H_2$ 1-0 S(1)/Q(3))	FOV average
N113-YSO01	16.27 ± 0.01	10.7 ± 1.2	16.1 ± 1.1	24.1 ± 17.3	24.1 ± 17.3
N113-YSO03 A	14.60 ± 0.03	−6.1 ± 2.4	−1.6 ± 3.3	13.5 ± 8.5	15.0 ± 0.8
N113-YSO03 B	15.45 ± 0.03	1.8 ± 1.3	11.8 ± 1.0	15.7 ± 5.4	15.0 ± 0.8
N113-YSO03 C	15.20 ± 0.01	8.9 ± 1.4	15.8 ± 3.9	15.0 ± 0.8	15.0 ± 0.8
N113-YSO04 A	17.67 ± 0.03	11.6 ± 1.6	37.8 ± 8.9	32.4 ± 5.5	32.4 ± 5.5
N113-YSO04 B	16.53 ± 0.06	11.6 ± 1.6	26.9 ± 6.5	32.4 ± 5.5	32.4 ± 5.5

Figure 3. Emission line maps with contours overlaid. Red contours - line emission $[0.2, 0.4, 0.6, 0.8]\times$peak, green contours - continuum emission $[0.25, 0.5, 0.75]\times$peak. Left to right - N113-YSO03, N113-YSO04, N113-YSO01. Top to bottom - Brγ, Hei, H$_2$ 1-0(S1).

±5km s$^{-1}$ respectively) centred on the continuum source, suggesting the expansion of excited gas around these objects. The off-source Brγ emission in the N113-YSO01 FOV appears to be slightly blueshifted with respect to the central continuum source.

The Pfund series is detected towards three of the six sources resolved in this work; N113-YSO03 A, N113-YSO03 B and N113-YSO04 B. Unfortunately the K-band Pfund series lies in an area of poor atmospheric transmission so it is not easy to obtain accurate measurements of their flux. The positions of the detected Pfund series emission lines are shown in Fig. A3 and the measured line fluxes are listed in Table B1. Using the Pfund series emission and the Brγ emission it is possible to obtain temperatures from the ra-
Figure 4. Equivalent accretion luminosity against absolute K-band magnitudes. A distance to the LMC of 49.4±0.5 kpc is assumed. Extinction correction has been applied using A_V values described in Section 4.2 for the N113 data and A_V values from C13 for the Galactic data. Slit losses have not been taken into account for the Galactic data. The range of possible values allowed by the uncertainty in extinction for each N113 source is shown as a red extinction track. For clarity the N113-YSO prefixes have been omitted. Source emission (filled squares) and ambient emission (open squares) are discussed in the main text.

4.3.2 He\textsc{i} emission

The primary production mechanism for the He\textsc{i} emission line is the ionisation and subsequent recombination of helium which becomes significant at the ionisation boundary and potentially in the collision with surrounding medium (Porter, Drew & Lumsden 1998). Whilst the He\textsc{i} / Brγ ratio is sensitive to the temperature of the emitting regions, its heavy dependence on density means that it cannot be used as a robust diagnostic of temperature (Shields 1993).

We detect the 2.0587 μm He\textsc{i} emission line at the position of all six of the continuum sources and it is detected as extended emission around two sources (N113-YSO03 A and N113-YSO04 B; see Fig. 3, middle row). The two sources which exhibit the extended He\textsc{i} emission are the strongest He\textsc{i} emitters and those with the first and third highest Brγ fluxes, respectively. The He\textsc{i} doublet at 2.113 μm was detected but not resolved towards three sources (N113-YSO03 A, N113-YSO04 A and N113-YSO04 B) indicating a collisional excitation component in regions of high density (Lumsden, Puxley & Hoare 2001). The flux of the 2.113μm doublet is typically significantly lower than the 2.058 μm line (Table B1) and the S/N for the doublet in our sample prevents further analysis. No He\textsc{ii} emission has been detected towards any of the sources in this work.

Spatially, the He\textsc{i} emission tends to trace the same structures as the Brγ emission, although with weaker and slightly more compact emission. This is to be expected in sources where the central source is hot enough to excite a large volume of surrounding gas as in a compact H\textsc{ii} region. In N113-YSO03 C and N113-YSO04 A, the detected He\textsc{i} emission appears to be ambient to the region, possibly originating from N113-YSO03 A and N113-YSO04 B, respectively. The He\textsc{i} emission in N113-YSO01 traces the morphology of the Brγ emission, also appearing to originate outside of the FOV.

Figure 6 plots the He\textsc{i} 2.0587 μm emission line luminosity against the Brγ luminosity for all N113 continuum sources and those from C13 for which both line measurements are available. It appears that the same trend and range of values is observed in N113 as in the Milky Way. The off source emission in N113-YSO01 (indicated by “1 ext”) appears to have a comparable He\textsc{i}/Brγ ratio to N113-
Figure 5. Left: Brγ, He i and H2 2.1218μm centroid velocity maps for N113-YSO03. Right: Brγ centroid velocity map for N113-YSO01 (top) and Brγ and He i velocity maps for N113-YSO04 (middle and bottom). Black contours represent the uncertainties; the outer (left) and inner (right) contour values are indicated in each image. The continuum contour levels are [0.25, 0.5, 0.75]×peak (grey).
YSO03 A and N113-YSO04 B, suggesting that it presents a relatively energetic environment.

As well as tracing the same morphological structures, where extended He i emission is present it exhibits the same velocity fields as the Brγ emission, as demonstrated in Fig. 5 for N113-YSO03 and N113-YSO04. This is further evidence that the extended Brγ emission and extended He i emission originate from the same strong radiation field.

4.3.3 H2 emission

The H2 lines detected in our spectra are identified in Fig. A1. Although the H2 emission has been spatially mapped (see Fig. 3), the signal-to-noise per spaxel in N113-YSO01 and N113-YSO04 for the H2 lines is poor and very little morphological information can be obtained. Additionally it appears likely that the H2 emission in N113-YSO01 and N113-YSO04 is consistent with uniform ambient H2 emission, unrelated to the discrete YSOs. In N113-YSO03 the H2 emission is relatively compact and peaks at the position of source C. The H2 emission measured in source B may have a significant component originating from source C. Whilst N113-YSO03 A does not show significant H2 emission in Fig. 3, on inspection of the extracted spectrum it does exhibit relatively weak H2 emission which is likely to be ambient, as is the case for N113-YSO01 and N113-YSO04. In summary only N113-YSO03 C is a significant source of H2 emission.

The H2 2.1218 μm emission luminosity is plotted against the Brγ luminosity for each of the continuum sources in Fig. 7. Little correlation can be seen on this diagram, suggesting that the emitting regions of the lines are unrelated. N113-YSO03 C clearly falls above the H2 = Brγ line whereas Brγ > H2 for all of the other sources, indicating that N113-YSO03 C is dominated by H2 emission whilst the remaining sources are dominated by atomic Brγ emission, consistent with the view that the H2 emission in N113-YSO01, N113-YSO04 and possibly N113-YSO03 A is mostly ambient.

The ratios of K-band H2 line fluxes can be used to determine whether the source of the emission is photodissociation or shock excited. The extinction corrected flux ratios for all of the observed H2 lines with respect to the 1-0(S1) line are shown in Table 4, with the expected ratios based on models of photoexcited emission and interstellar shocks in molecular clouds at various temperatures given in the lower part of Table 4. Whilst it is likely that all targets have contributions from both shocked and a Photo-Dissociation Region (PDR), we can use these values to determine which excitation mechanism of H2 emission is dominant. In the radiative excitation scenario, the ratios with respect to the 2.1218 μm 1-0(S1) line should fall in the range 0.5 to 0.6 and 0.4 to 0.7 for the 2-1(S1) and 1-0(S0) lines (at 2.2477 μm and 2.2235 μm), respectively (Black & van Dishoeck 1987). Adopting T = 2000 K, shock-excitation should give values of 0.08 and 0.21, respectively for the same emission line ratios (Shull & Hollenbach 1978). Together, these two line ratios form a powerful diagnostic tool as the 2-1(S1) line ratio has a significant shock temperature dependence whereas the 1-0(S0) ratio exhibits a large gap between predicted PDRs and shocks and, crucially, an inverse dependence on shock temperature.

In Fig. 8 we compare our observed 1-0(S0) and 2-1(S1) ratios relative to the 1-0(S1) line to those expected from photoexcitation, and shocked emission at 2000 K and 4000 K. We find that in the upper panel three sources appear highly likely to be shock emission dominated (N113-YSO03 C, N113-YSO04 A, N113-YSO04 B) and two sources could be PDR emission dominated (N113-YSO03 A, N113-YSO03 B) but the uncertainties are large and therefore they could also fall within the shocked regime. For the final source (N113-YSO01), the uncertainty in the 1-0(S0) flux is such that no conclusions can be drawn on the origin of the emission. In the lower panel of Fig. 8, all of the sources appear to fall within the shocked emission zone, with two of the sources (N113-YSO01, N113-YSO03 A) within 1σ of PDR.
10 J.L. Ward, J. M. Oliveira, J.Th. van Loon, M. Sewilo

![Figure 7](image)

Figure 7. H$_2$ 2.1218µm emission against Brγ emission for all observed continuum sources.

Table 4. Extinction corrected H$_2$ emission line ratios with respect to the 1-0S(1) emission line for all objects. Also included are the expected H$_2$ line ratios for photodissociation (Black & van Dishoeck 1987) and shocked emission (Shull & Hollenbach 1978).

Object	1-0S(0)	1-0S(2)	1-0S(3)	2-1S(1)	2-1S(2)	2-1S(3)
N113-YSO01	0.31±0.35	0.68±0.57	0.39±0.27	0.18±0.12		
N113-YSO03 A	0.41±0.34	0.36±0.28	0.44±0.35	0.30±0.25	0.15±0.12	0.34±0.27
N113-YSO03 B	0.37±0.18	0.30±0.13	0.24±0.10	0.17±0.08	0.06±0.03	0.21±0.09
N113-YSO03 C	0.28±0.11	0.34±0.12	0.45±0.16	0.15±0.06	0.06±0.02	0.17±0.06
N113-YSO04 A	0.26±0.02	0.46±0.04	0.20±0.02	0.15±0.02	0.23±0.02	
N113-YSO04 B	0.26±0.04	0.53±0.09	0.34±0.06	0.19±0.03	0.40±0.06	

Source	1-0S(0)	1-0S(2)	1-0S(3)	2-1S(1)	2-1S(2)	2-1S(3)
Photoexcitation	0.4–0.7	0.4–0.6	0.5–0.6	0.2–0.4	0.2–0.3	
1000 K shock	0.27	0.27	0.51	0.005	0.001	0.003
2000 K shock	0.21	0.37	1.02	0.083	0.031	0.084
3000 K shock	0.19	0.42	1.29	0.21	0.086	0.27
4000 K shock	0.19	0.44	1.45	0.33	0.14	0.47

emission. From this we can draw the conclusion that for N113-YSO03C (the only source for which H$_2$ emission is not ambient) the emission is shock-dominated. The H$_2$ emission from sources A and B in N113-YSO03 appears to have contribution from both shock excitation and photodissociation whilst towards both sources in N113-YSO04 the emission appears to be shock dominated. Due to low S/N no conclusion can be drawn for the source of the H$_2$ emission in N113-YSO01.

N113-YSO03 was the only source for which we were able to make H$_2$ centroid velocity measurements (Fig. 5) and over the relatively small spatial range where this was possible, there appears to be a small velocity gradient towards the red in the emission West of source C.

5 DISCUSSION

5.1 N113-YSO01

The N113-YSO01 FOV contains a single VLT K-band continuum source to a resolution of 0.62. Spitzer resolution at the shortest wavelengths is ∼2" so whilst the bolometric luminosity (1.51±0.25 ×105 L$_\odot$) for this source is likely to be more robust, the emission lines from the spatially unresolved studies will likely be contaminated by the off source emission seen in Fig. 3. Both the Brγ emission and the Hei emission peak approximately 1.3 (∼0.31 pc) away from the continuum source. It appears that all of the measured line emission towards this object is ambient and if line emission from the source is present it is too weak to be detected in this work. In the top panel of Fig. 1, two large Hα bubbles can be seen in close proximity to N113-YSO01. Thus it is possible that the line emission detected towards N113-YSO01 is associated with these larger scale structures.
Figure 8. Top: H$_2$ 1-0(S0) 2.2235 µm emission against H$_2$ 1-0(S1) 2.1218 µm emission for all observed continuum sources. Bottom: H$_2$ 2-1(S1) 2.2477 µm emission against H$_2$ 1-0(S1) 2.1218 µm emission for all observed continuum sources. Lines shown are for photodissociation emission and shocked emission at 2000 K and 4000 K as indicated in the legend.

Figure 1 shows the positions of three maser sources that are close to N113-YSO01, however spectroscopically N113-YSO01 does not exhibit any indicators of strong outflows which could stimulate the maser emission. Additionally the distances (0.52 pc – 1.01 pc) between these masers and the N113-YSO01 infrared source suggests that the masers may be in fact associated with other, weaker K-band sources just visible in Fig. 1. The maser sources also do not appear to coincide with the prominent Spitzer source.

Massive YSOs without any significant K-band emission lines are not common in the Galactic data set but they have been observed (e.g. G103.8744+01.8558, C13). Longer wavelength data available for those Galactic sources makes the YSO identification credible. It is possible that such sources represent the youngest hot core objects or they are sim-
ply weakly emitting YSOs. However, the possibility that the source observed in the N113-YSO01 FOV is not in fact a YSO cannot be excluded by this work. At this stage we are unable to constrain the origin of the line emission in the K-band and Spitzer-IRS spectra.

5.2 N113-YSO03

The line morphologies observed in the N113-YSO03 FOV suggest that the three continuum sources represent three different stages of star formation, likely reflecting a range of masses. N113-YSO03 A is the brightest of all the observed sources in the K-band with strong, extended and expanding Brγ emission and He i emission, implying that it is a relatively evolved compact H ii region. It also has the strongest He i emission, likely caused by the strong winds associated with an emerging massive star.

N113-YSO03 B also exhibits strong Brγ emission but it is compact and the He i emission is much weaker, suggesting a considerably lower contribution to the Brγ emission from an H ii region and thus a cooler and likely earlier stage (younger or less massive) object than N113-YSO03 A, possibly dominated by accretion emission.

N113-YSO03 C exhibits very weak or absent Brγ and He i emission, and very strong H₂ emission. In addition, the H₂ line ratios are consistent with emission that is very heavily dominated by shocked emission with temperatures in the range 2000–3000 K. It is therefore likely that N113-YSO03 C is the least evolved of the three sources, representing an early stage YSO with strong bipolar outflows. This is also consistent with the much redder continuum slope for its spectrum. The highest intensity water maser source in the Magellanic Clouds was identified at a distance of 0.36±0.07 pc (1.5±0.3″) of source N113-YSO03 C (Lazendic et al. 2002; Oliveira et al. 2006; Carlson et al. 2012). Of the three sources resolved in this FOV, N113-YSO03 A is the most massive, having evolved to the point of shaping its environment in the form of a compact H ii region, while N113-YSO03 C is the least evolved and thus the least massive.

5.3 N113-YSO04

N113-YSO04 exhibits two continuum sources, one compact and one extended and more diffuse. It is likely that most if not all of the H₂ emission detected in the FOV is ambient emission.

As in N113-YSO01, all of the emission in N113-YSO04 A appears to be either ambient emission (H₂ emission) or contaminating emission (Brγ and He i) from N113-YSO04 B. Therefore the possibility that N113-YSO04 A is not a YSO cannot be excluded based on currently available data. N113-YSO04 A exhibits a considerably redder continuum than N113-YSO04 B (see Fig. A1) and a significantly higher A_V, indicating a more embedded object.

The extended source (N113-YSO04 B) shows strong Brγ and He i emission which is slightly offset from the continuum source. The underlying cause for the offset in the extended line emission is unclear but it is likely to be a result of the geometry of the central source and its projection onto the sky. It also exhibits a similar expanding velocity profile for the Brγ and He i emission as N113-YSO03 A, implying that strong winds are present around both of these sources and that N113-YSO04 B is in a similar evolutionary state to N113-YSO03 A. The detection of the He i 2.113 μm doublet towards both sources is also consistent with an energetic, high density region such as a compact H ii region.

An H₂O maser has been previously identified to the North East of this region (See Fig. 1. [Imai et al. 2013]) however it has a relatively large separation of 9.6±0.5 (2.3±0.1 pc) which would indicate that this maser is not likely to be associated with either of the N113-YSO04 sources.

6 SUMMARY AND CONCLUSIONS

Using the SINFONI integral field spectrograph at the VLT, we have observed a sample of three Spitzer selected YSOs in the bright dusty lane in N113. The three targets look very similar at longer wavelengths: all are classified as P- or PE-type sources (Spitzer/IRS spectrum rich in PAH emission and fine structure emission; Seale et al. 2009). When the sources are observed at higher resolution in the K-band, a wide variety of morphological and spectral features is revealed. Our results are summarised below:

- Of the three Spitzer sources, six distinct K-band continuum sources have been resolved. N113-YSO01 contains only a single continuum source, N113-YSO03 contains three and N113-YSO04 contains two.
- Two sources (N113-YSO03 A, N113-YSO04 B) exhibit strong, extended wind features and are therefore likely to be compact H ii regions, i.e. massive objects in the final stages of star formation. The presence of the 2.113 μm He i emission suggests that these are indeed compact H ii regions since in the C13 Galactic sample this doublet is only found towards H ii regions.
- N113-YSO03 C is dominated by H₂ emission, which is likely to occur in the collimated outflows driven by the youngest hot core phase objects.
- N113-YSO03 B appears to be a fairly typical, massive YSO: a point source with strong Brγ emission and weaker He i emission.
- The remaining sources, N113-YSO01 and N113-YSO04 A, are compact and do not appear to have any emission lines associated with the continuum source (all observed line emission appears to be ambient). For N113-YSO04 A this emission is likely to be sourced from the extended source N113-YSO04 B whereas in N113-YSO01 the source of the line emission appears to be outside the FOV. Without additional data it is unclear where either of these sources would fall in an evolutionary context: these objects could be featureless YSOs but the possibility of a non-YSO classification cannot be excluded.
- Levels of extinction have been found to be typically lower than those within our Galaxy. The average extinction, A_V, and standard deviation of our sample is 22.3±9.3 mag compared with the values of C13 of 45.7±17.6 mag. The average extinction towards massive YSOs in N113 is approximately half that of the Milky Way, consistent with the lower dust-to-gas ratio observed in the LMC (Bernard et al. 2008) and an LMC metallicity of approximately half solar metallicity.
SINFONI Spectroscopy of Massive YSOs in N113

• A number of interstellar H$_2$O masers and a single OH maser have previously been detected in the region; however many of these in fact fall at a significant distance from the continuum sources (＞0.5 pc) and are therefore unlikely to be excited by the sources resolved here. The one exception is N113-YSO03 C which is likely to be the excitation source of the water maser to the South East and also possibly the OH maser.

• Emission line fluxes are similar to those found in the Milky Way but the detection rates of the He I 2.058 μm emission line are higher in this sample than in C13. However this is only a small sample and it may include a higher proportion of later stage YSOs and compact H II regions compared to C13.

• The equivalent accretion luminosities calculated are consistent with the Galactic distribution but appear to be high for their K-band magnitudes. The approach used here however does neglect any effects of metallicity K-band continuum emission.

• The CO bandhead, often associated with accretion discs in YSOs, is not detected in any of our sources. Even though the disc geometry can have a significant impact on the detection of CO [Kraus et al. 2000; Barbosa et al. 2003] and the sample is small, the lack of CO bandhead emission could be due to CO destruction in the harder radiation fields associated with lower metallicity environments.

• Finally we have mapped the velocity fields of extended gas structures around two of the continuum sources (N113-YSO03 A and N113-YSO04 B). These measurements imply stellar feedback in the form of stellar winds from newly formed massive stars at the centre of compact H II regions, driving expansion.

Through high resolution characterisation of three similar Spitzer sources, we have revealed a wide range of morphological and spectral properties. Two out of the three Spitzer sources in this study contain multiple YSOs and it is likely that this is not an uncommon occurrence in the Magellanic Clouds. Crucially, we have shown that whilst Spitzer and Herschel observations provide valuable insights into the star formation process in the Magellanic Clouds, higher spatial resolution is required in order to develop a full understanding of the YSOs in question, especially when comparing them to Galactic samples.

ACKNOWLEDGMENTS

The authors thank the anonymous referee for his/her useful comments. JLW acknowledges financial support from the Science and Technology Facilities Council of the UK (STFC) via the PhD studentship programme. We would like to thank the staff at ESO’s Paranal observatory for their support during the observations. This paper made use of information from the Red MSX Source survey database at http://rms.leeds.ac.uk/cgi-bin/public/RMS_DATABASE.cgi which was constructed with support from STFC. This research has made use of the SIMBAD data base, operated at CDS, Strasbourg, France.

REFERENCES

Barbosa C. L., Damineli A., Blum R. D., Conti P. S., 2003, AJ, 126, 2411
Bernard J.-P. et al., 2008, AJ, 136, 919
Black J. H., van Dishoeck E. F., 1987, ApJ, 322, 412
Brooks K. J., Whiteoak J. B., 1997, MNRAS, 291, 395
Calvet N., Muzerolle J., Briceño C., Hernández J., Hartmann L., Saucedo J. L., Gordon K. D., 2004, AJ, 128, 1294
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Carlson L. R., Sewilo M., Meixner M., Romita K. A., Lawton B., 2012, A&A, 542, A66
Chen C.-H. R., Chu Y.-H., Gruendel R. A., Gordon K. D., Heitsch F., 2009, ApJ, 695, 511
Cooper H. D. B. et al., 2013, MNRAS, 430, 1125
Davis C. J. et al., 2011, A&A, 528, A3
Donehew B., Brittain S., 2011, AJ, 141, 46
Dufour R. J., Shields G. A., Talbot, Jr. R. J., 1982, ApJ, 252, 461
Egan M. P. et al., 2003, Air Force Research Laboratory Technical Report No. AFFRL-VS-TR-2003-1589
Eisenhauer F. et al., 2003, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4841, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, Iye M., Moorwood A. F. M., eds., p. 1548
Gordon K. D., Clayton G. C., Misselt K. A., Landolt A. U., Wolff M. J., 2003, ApJ, 594, 279
Gruendel R. A., Chu Y.-H., 2009, ApJS, 184, 172
Henize K. G., 1956, ApJS, 2, 315
Imai H., Katayama Y., Ellingsen S. P., Hagiwara Y., 2013, MNRAS, 432, L16
Kato D. et al., 2007, PASJ, 59, 615
Kraus M., Krügel E., Thum C., Geballe T. R., 2000, A&A, 362, 158
Krtička J., 2006, MNRAS, 367, 1282
Kudritzki R. P., 2002, ApJ, 577, 389
Laney C. D., Joner M. D., Pietrzyński G., 2012, MNRAS, 419, 1637
Lazendic J. S., Whiteoak J. B., Klaiber I., Harbison P. D., Kuiper T. B. H., 2002, MNRAS, 331, 969
Lumsden S. L., Hoare M. G., Urquhart J. S., Oudmaijer R. D., Davies B., Mottram J. C., Cooper H. D. B., Moore T. J. T., 2013, ApJS, 208, 11
Lumsden S. L., Puxley P. J., Hoare M. G., 2001, MNRAS, 328, 419
Martin F., Schauer D., Hillier D. J., 2005, A&A, 436, 1049
Meixner M. et al., 2010, A&A, 518, L71
Meixner M. et al., 2006, AJ, 132, 2268
Meixner M. et al., 2013, AJ, 146, 62
Mendigutía I., Calvet N., Montesinos B., Mora A., Muzerolle J., Eiroa C., Oudmaijer R. D., Merín B., 2011, A&A, 535, A99
Oliveira J. M. et al., 2009, ApJ, 707, 1269
Oliveira J. M., van Loon J. T., Stanimirović S., Zijlstra A. A., 2006, MNRAS, 372, 1509
Pilbratt G. L. et al., 2010, A&A, 518, L1
Porter J. M., Drew J. E., Lumsden S. L., 1998, A&A, 332, 999
Puls J., Springmann U., Lennon M., 2000, A&A, 141, 23
APPENDIX A: EXTRACTED SPECTRA

Figure A1 shows the 1D spectra extracted from the regions shown in Fig. 2 for all of the sources discussed in this paper. The emission line identifications are marked on the spectra of N113-YSO03 C and N113-YSO01 with dotted lines showing the positions of the measured lines in all spectra. The positions of all significant sky emission line residuals are marked on the spectrum of N113-YSO03 C in Fig. A2. Figure A3 shows the positions of the Pfund series emission in the spectrum of N113-YSO03 A.
Figure A1. Spectra of all N113 continuum sources extracted from the regions shown in Fig. 2. The spectrum of N113-YSO03 C (shown first) is marked with the positions of all of the measured spectral lines.
Figure A1 cont. The spectrum of N113-YSO01 shows line identifications.
Figure A2. Spectrum of N113-YSO03 C showing the positions of all of the sky line residuals.

Figure A3. Spectrum of N113-YSO03 A showing the positions of the Pfund series emission lines.
APPENDIX B: EMISSION LINE FLUXES

Here we present the complete set of measured emission line fluxes obtained and analysed in Section 4.3. These fluxes have not been correct for extinction and have been obtained by fitting Gaussian profiles to 1D spectra extracted from the regions shown in Fig. 2.
Table B1: Emission line fluxes towards all newly resolved sources. No extinction correction has been applied. Where p appears in place of a flux this denotes that the line is present but the flux cannot be measured.

Object	He (2.058 \(\mu\)m)	Br\(\gamma\)	H\(_2\) 1-0(S0)	H\(_2\) 1-0(S1)	H\(_2\) 1-0(S2)	H\(_2\) 1-0(S3)
	\(10^{-19}\)Wm\(^{-2}\)	\(10^{-19}\)Wm\(^{-2}\)	\(10^{-19}\)Wm\(^{-2}\)	\(10^{-19}\)Wm\(^{-2}\)	\(10^{-19}\)Wm\(^{-2}\)	\(10^{-19}\)Wm\(^{-2}\)
N113-YSO01	1.92±0.25	2.00±0.13	0.27±0.26	0.73±0.18	0.41±0.30	
N113-YSO03 A	37.4±2.2	53.8±2.4	1.67±0.30	3.66±0.50	1.19±0.20	1.30±0.41
N113-YSO03 B	6.56±0.35	33.8±1.4	3.02±0.49	7.18±0.49	1.92±0.34	1.37±0.34
N113-YSO03 C	1.53±0.20	7.70±0.38	3.64±0.30	11.7±6.1	3.47±3.36	4.09±0.50
N113-YSO04 A	2.22±0.15	2.66±0.19	0.20±0.03	0.56±0.08	0.19±0.05	
N113-YSO04 B	17.1±1.0	21.1±1.4	0.56±0.12	1.74±0.17	0.75±0.24	

Object	H\(_2\) 2-1(S1)	H\(_2\) 2-1(S2)	H\(_2\) 2-1(S3)	1-0Q(1)	1-0Q(2)	1-0Q(3)
	\(10^{-19}\)Wm\(^{-2}\)	\(10^{-20}\)Wm\(^{-2}\)	\(10^{-19}\)Wm\(^{-2}\)	\(10^{-19}\)Wm\(^{-2}\)	\(10^{-19}\)Wm\(^{-2}\)	\(10^{-19}\)Wm\(^{-2}\)
N113-YSO01	0.36±0.08	1.36±0.63	0.94±0.18	1.09±0.10	0.83±0.13	
N113-YSO03 A	1.25±0.18	5.53±1.29	1.18±0.22	7.47±0.87	3.14±0.57	3.39±0.27
N113-YSO03 B	1.38±0.14	4.65±0.97	1.42±0.16	12.2±1.0	5.34±0.44	6.93±0.54
N113-YSO03 C	2.04±0.21	6.67±0.85	1.85±0.14	16.5±1.4	6.33±0.56	11.3±0.6
N113-YSO04 A	0.16±0.02	0.93±0.27	0.11±0.03	1.47±0.19	0.69±0.15	0.85±0.07
N113-YSO04 B	0.78±0.11	3.46±1.00	0.62±0.09	3.72±0.45	2.07±0.19	2.11±0.16

Object	He (2.113 \(\mu\)m)	Pf 20-5	Pf 21-5	Pf 22-5	Pf 23-5	Pf 25-5
	\(10^{-20}\)Wm\(^{-2}\)	\(10^{-20}\)Wm\(^{-2}\)	\(10^{-20}\)Wm\(^{-2}\)	\(10^{-20}\)Wm\(^{-2}\)	\(10^{-20}\)Wm\(^{-2}\)	\(10^{-20}\)Wm\(^{-2}\)
N113-YSO01	9.1±1.6	22.1±8.5	p	9.4±2.0	9.3±1.7	10.1±1.3
N113-YSO03 A	13.9±4.3		4.8±1.2	6.7±1.0		
N113-YSO03 B	2.4±0.5					
N113-YSO04 A	5.8±1.1	8.1±2.4	5.3±1.3	5.2±1.9	3.6±0.9	
APPENDIX C: SKY LINE VELOCITY MAPS

Here we present emission line centroid velocity maps for sky line emission as measured from the sky offset for N113-YSO03. The emission lines measured were chosen because they are relatively strong and cover a relatively large wavelength baseline encompassing all of the emission lines for which we have measured velocity profiles in Section 4.3. Within uncertainties there are no systematic velocity shifts across the detector.

Figure C1. Relative velocity (left) and error maps (right) for sky emission lines in the N113-YSO03 sky cube. Top: 2.0567 µm; middle: 2.1511 µm; bottom: 2.1806 µm.