Computational development of a phase-sensitive membrane raft probe

Max Winslow and David Robinson*

*david.robinson@ntu.ac.uk

Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, United Kingdom.
Molecular dynamics simulations – equilibration procedure

Equilibration was performed over six steps as described in section 2.2 of the main text. Restraints were applied with the following force constants (in kcal mol\(^{-1}\) Å\(^{-2}\)) to help keep water molecules from the hydrophobic core.

Selection	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
Carbon atoms (DPH derivative)	10.0	5.0	2.5	1.0	0.5	0.1
Water	2.5	2.5	1.0	0.5	0.1	0.0
Lipid tails	2.5	2.5	1.0	0.5	0.1	0.0
Lipid heads	2.5	2.5	1.0	0.5	0.1	0.0
Ions	10.0	0.0	0.0	0.0	0.0	0.0
Figure S1. Atom numbering scheme used to identify dihedral angles for 1,6-diphenylhexatriene and derivatives.

Dihedral angle / °	C9-C10-C11-C12	C1-C6-C7-C8	C6-C7-C8-C9
S_0	0.4	37.0	1.4
S_1	0.8	16.1	6.7
MECI	3.3	2.4	42.0
AIBM (S$_1$)	3.6 ± 2.6	17 ± 6	6.8 ± 4.4
QM/MM (S$_1$)	31.6 ± 12.3	33.5 ± 10.6	18.1 ± 8.4

Table S1. Selected geometrical parameters for 1,3-dimethyl-1,6-diphenyl-1,3,5-hexatriene.

Dihedral angle / °	C8-C9-C10-C11	C1-C6-C7-C8	C6-C7-C8-C9
S_0	0.3	33.0	0.7
S_1	1.2	16.7	0.5
MECI	11.0	48.2	44.0
AIBM (S$_1$)	5.5 ± 3.9	15.5 ± 5.7	5.2 ± 4.1
QM/MM (S$_1$)	22.9 ± 10.8	34.1 ± 21.8	22.4 ± 9.5

Table S2. Selected geometrical parameters for 1,4-dimethyl-1,6-diphenyl-1,3,5-hexatriene.
Table S3. Selected geometrical parameters for 1,5-dimethyl-1,6-diphenyl-1,3,5-hexatriene.

	C7-C8-C9-C10	C1-C6-C7-C8	C11-C12-C13-C14	C10-C11-C12-C13
S_0	1.3	31.4	39.6	1.9
S_1	1.9	17.1	15.2	6.2
MECI	1.8	28.8	48.0	36.6
AIMD (S_1)	4.4 ± 3.1	15.5 ± 6	13.6 ± 7.7	5.8 ± 3.9
QM/MM (S_1)	28.7 ± 10.8	46.1 ± 12.1	40.6 ± 13.4	6.8 ± 4.7

Table S4. Selected geometrical parameters for 2,3-dimethyl-1,6-diphenyl-1,3,5-hexatriene.

	C8-C9-C10-C11	C6-C7-C8-C9	C1-C6-C7-C8
S_0	1.4	2.6	40.5
S_1	3.8	12.6	18.9
MECI	3.8	37.0	39.8
AIMD (S_1)	7.3 ± 4.8	7.8 ± 5.7	19.2 ± 10.2
QM/MM (S_1)	11.9 ± 9.4	12.2 ± 8.7	52.3 ± 16.6

Table S5. Selected geometrical parameters for 2,4-dimethyl-1,6-diphenyl-1,3,5-hexatriene.

	C11-C12-C13-C14	C1-C6-C7-C8	C6-C7-C8-C9
S_0	6.4	33.5	0.7
S_1	0.9	12.3	5.8
MECI	13.0	4.9	45.1
AIMD (S_1)	4 ± 3.3	15.2 ± 4.8	6 ± 3.4
QM/MM (S_1)	28.2 ± 11	61.3 ± 13.8	8.6 ± 5.4
SUPPORTING INFORMATION

Dihedral angle / °	C11-C12-C13-C14	C1-C6-C7-C8	C6-C7-C8-C9	C10-C11-C12-C13
\(S_0 \)	35.5	38.3	2.3	2.3
\(S_1 \)	12.9	14.9	7.7	7.7
MECI	31.4	46.3	36.2	4.5
AIMD (\(S_1 \))	14.4 ± 8.4	15 ± 8.5	9.6 ± 7.1	10.1 ± 6.8
QM/MM (\(S_1 \))	30.9 ± 17.5	14.2 ± 8.5	12.5 ± 7.6	9.4 ± 6.5

Table S6. Selected geometrical parameters for 2,5-dimethyl-1,6-diphenyl-1,3,5-hexatriene.

Dihedral angle / °	C10-C11-C12-C13	C6-C7-C8-C9	C7-C8-C9-C10
\(S_0 \)	0.2	0.2	0.1
\(S_1 \)	0.2	0.2	0.6
MECI	4.6	85.9	61.5
AIMD (\(S_1 \))	4.4 ± 3.7	5 ± 3.6	6.9 ± 4.8
QM/MM (\(S_1 \))	13.6 ± 9.9	7.7 ± 5.9	23.9 ± 17.1

Table S7. Selected geometrical parameters for 3,4-dimethyl-1,6-diphenyl-1,3,5-hexatriene.

Dihedral angle / °	C14-C13-C12-C11	C1-C6-C7-C8	C8-C9-C10-C11
\(S_0 \)	0.0	31.3	0.1
\(S_1 \)	0.2	14.2	0.1
MECI	18.9	29.7	34.5
AIMD (\(S_1 \))	9.7 ± 6.9	12.3 ± 8.1	4.5 ± 3.4
QM/MM (\(S_1 \))	36.2 ± 26.9	26 ± 8.2	8.3 ± 5.7

Table S8. Selected geometrical parameters for 1-methyl-1,6-diphenyl-1,3,5-hexatriene.
Table S9. Selected geometrical parameters for 2-methyl-1,6-diphenyl-1,3,5-hexatriene.

	C1-C6-C7-C8	C6-C7-C8-C9
S_0	38.2	2.1
S_1	14.5	6.5
MECI	47.4	36.9
AIMD (S_1)	30.0 ± 19.5	48.3 ± 27.0
QM/MM (S_1)	19.6 ± 10.2	8.8 ± 6.3

Table S10. Selected geometrical parameters for 3-methyl-1,6-diphenyl-1,3,5-hexatriene.

	C10-C11-C12-C13	C8-C9-C10-C11
S_0	0.0	0.0
S_1	0.1	1.0
MECI	8.7	38.0
AIMD (S_1)	4.9 ± 3.7	4.5 ± 3.2
QM/MM (S_1)	6.9 ± 5.1	27.9 ± 10.6

Figure S2. Potential energy scan of the S_0 state of 2Me as a function of the C1-C6-C7-C8 dihedral angle (see Figure S1 for atom numbering) using BHHLYP/6-31G(d,p).
Figure S3. Potential energy scan of the S_1 state of 2Me as a function of the C1-C6-C7-C8 dihedral angle (see Figure S1 for atom numbering) using BHHLYP/6-31G(d,p).

Figure S4. Calculated emission energy of 2Me as a function of the C1-C6-C7-C8 dihedral angle (see Figure S1 for atom numbering) using BHHLYP/6-31G(d,p).
Figure S5. Oscillator strength (f) of 2Me as a function of the C1-C6-C7-C8 dihedral angle (see Figure S1 for atom numbering) taken from the S_1 potential energy scan for the $S_1 \leftarrow S_0$ transition (which approximates emission) using BHHLYP/6-31G(d,p).

Figure S6. Simulated emission spectra for 2Me as the C1-C6-C7-C8 dihedral angle increases from ~10° to ~90°. The gaussian function was fitted using a broadening factor of 0.5 eV in the following equation: $f(x) = ae^{-\frac{(x-b)^2}{2c^2}}$, where a is the oscillator strength (Figure S5), b is the emission energy (Figure S4) and c is the broadening factor.
Figure S7. Calculated electron density profile from the non-raft MD simulation.

Figure S8. Calculated electron density profile from the raft MD simulation.
Figure S9. Calculated electron density profile of 2Me from the non-raft MD simulation.

Figure S10. Calculated electron density profile of 2Me from the raft MD simulation.
SUPPORTING INFORMATION

Full Cartesian coordinates for the MECI geometries found.

1,3Me			
C	6.432646039	-0.8366438909	0.0295419657
C	6.704921272	0.2174245525	0.8974106558
C	5.705623403	1.110245918	1.2442793744
C	4.434328413	0.9518709845	0.7275319669
C	4.150370856	-0.109210897	-0.1361280843
C	5.177945832	-0.9978571582	-0.4874815953
H	4.986040495	-1.820717882	-1.153042665
H	7.227411646	-1.5253405449	-0.2349950131
H	3.619485216	1.6158550574	0.9505513037
H	7.698632278	0.339429198	1.3000108616
H	5.917700459	1.921677208	1.912632636
C	2.770900918	-0.2761256548	-0.5875564699
C	1.773631578	0.6601983399	-0.2583053629
C	0.4529041506	0.1823317802	0.1414666886
C	-0.696137025	0.459748245	-0.5176211406
C	-2.0361931918	0.1536953437	-0.0984817596
C	-3.1437765048	0.5087406819	-0.7653829634
C	2.4952382153	1.464070950	1.4655742939
C	0.4784072236	-0.5710931971	1.4488454206
H	-0.6184163996	1.0121537089	-1.441096858
C	-2.155644340	-0.4013239338	0.818833563
C	-4.520986281	0.2091939535	-0.3821134623
C	-5.301879391	1.0989504151	-1.6648766129
C	-4.8560486606	0.7310632445	0.5978761204
C	-5.5710799844	0.8810792167	-1.012440166
C	-6.8902540426	0.6471624231	-0.6568709721
C	-7.2014366795	-0.2734270066	0.3210395187
C	-6.1728260539	-0.9627923218	0.9468056952
C	-4.0786689462	-1.2974230635	1.0826801471
C	-6.3985333526	-1.6934199501	1.707293456
C	-7.6770571964	1.1878098909	-1.1675926334
C	-8.2273480421	-0.4574205797	0.5944127546
H	-5.3421220493	1.604109109	-1.7797744312
H	3.1422451334	-1.5003083187	2.3385741071
H	1.4570242047	-1.465179447	-1.7689086116
H	2.6915343321	-2.367266934	-0.88363971
H	0.9472270796	0.0319488451	2.2049042998
H	-1.0518883454	-1.493807739	1.353995171
H	-0.5042728736	-0.8382830385	1.8139214521
H	1.6467581265	0.8547452699	-1.364509112

1,4Me			
C	6.4198453879	-0.3308020437	-0.6536849666
C	6.2770557597	0.7792323769	-1.4670946336
C	4.9933452021	1.2248444308	-1.7479643912
C	3.8904173486	0.5753533236	-1.235048609
C	4.0118283545	-0.5619352146	-0.4127755745
C	5.3175703437	-0.9836431649	-0.1289502226
H	5.4805298796	-1.8401487558	0.5038325951
H	7.4065133506	-0.6952652057	-0.4128705282
H	2.9032198567	0.9288125038	-1.4905798666
H	7.1378466363	1.2840594816	-1.8718964519
H	4.8474482000	2.0911199113	-2.3753450426
C	2.8044607033	-1.2410305543	0.0301991213
SUPPORTING INFORMATION

Element	X-Coordinate	Y-Coordinate	Z-Coordinate
C	1.7730900058	-0.5227821754	0.6228336658
C	0.3926173886	-0.7106753557	0.3072175027
C	-0.6574973258	-0.0387674827	0.8527854659
C	-1.9483352328	-0.2080280776	0.2203556208
C	-3.0508771958	0.4861830193	0.5407629719
C	3.0383375102	-1.8944227759	1.4946748860
H	1.9656146724	0.2024182248	1.4292423591
C	-0.5529614882	0.889163801	2.0262421995
H	-1.9781108265	-0.9120635876	-0.5888322147
C	-4.3512872095	0.4231277776	-0.1119308292
H	-2.9959787431	1.1878799000	1.3581347913
C	-4.5977777842	-0.3308235327	-1.2631070639
C	-5.3979495649	1.1735607509	0.4253632129
C	-6.652315409	1.169153714	-0.157011962
H	-2.815846722	0.4143385750	-1.2951944613
C	-5.9427866211	-0.3340121016	-1.8456280221
H	-3.8071961173	-0.9072310199	-1.7128025470
C	-6.0220133978	-0.9157265791	-2.7361139263
H	-7.4464347437	1.7561378131	0.2739344721
C	-7.855306458	0.4106995094	-1.7552703258
H	-5.2199132098	1.7651733715	1.3095010661
C	3.5724668847	-1.2690936261	2.2148485218
H	3.6569006814	-2.7321504950	1.1844085011
C	2.1692965471	-2.3383141333	1.9697151461
H	-0.7698378286	1.903604933	1.7244196917
H	0.4239232342	0.873563931	2.4853499741
H	-1.2844662122	0.6132329010	2.7805655185

1,5Me			
C	6.6490150210	-0.0871401792	0.0718863424
C	6.6991433206	1.1398223837	-0.5682934795
C	5.5231057313	1.7341122718	-0.9990177513
C	4.3089345930	1.1096214349	-0.7850607948
C	4.2390179099	-0.1234633768	-0.1317587109
C	5.4343799909	-0.7156966655	0.2797712098
C	5.4210033925	-1.6674316322	0.7821760011
C	7.5566127997	-0.5591382960	0.4102117950
C	3.408902094	1.5674753467	-1.1578896454
C	7.6462971796	1.6242839895	-0.7384139474
C	5.5513577236	2.6808293359	-1.512681643
C	2.9438305084	-0.7952348393	0.0982828606
C	1.8209106771	-0.0605890690	0.2561925523
C	0.4927249583	-0.5621262159	0.4346569416
C	-0.5840762277	0.2467588843	0.5509163939
C	-1.9511620331	-0.1957721999	0.6705495151
C	-2.9396009298	0.7706727262	0.9197047431
C	0.3502184329	-1.6289135743	0.4635474554
C	-0.4728419724	1.3167054816	0.5478562727
C	-4.2654494516	0.6311084768	0.2968397218
C	-4.4034688199	0.3522986955	-1.0711616160
C	-5.4507625439	0.8529739807	1.0121434781
C	-6.8670693211	0.8005511011	0.4001720056
C	-6.8028903186	0.5254059300	-0.9550269288
C	-5.6451818406	0.3082186032	-1.6807467045
C	-3.5193669447	0.1961172834	-1.6696765899
C	-5.7030249272	0.0973194780	-2.7379257051
C	-7.5728399925	0.9785855816	0.9903816134
H -7.7686925008 0.4888250360 -1.430814453
H -5.3871825125 1.0878554786 2.0630642749
C 2.9650944428 -2.2951605131 0.1537250904
H -3.1116918209 0.1675001111 1.8749379772
H 1.9095767004 1.0134927794 0.2579159845
C -2.2101452813 -1.6837315068 0.615751063
H -3.5267568915 -2.6984187550 -0.6839858668
H -1.9762370370 -2.7318940326 0.1388592292
H -3.4562463919 -2.6367851561 1.0624181567
H -2.3609430077 -2.855357613 0.7698651497
H -1.6197637430 -2.2362879705 1.3427782050

2, 3Me

C 6.6490150210 -0.0871401792 0.0718863424
C 6.6991433206 1.1398223837 -0.5682934795
C 5.5231057313 1.7341122718 -0.9990177513
C 4.3089345930 1.1096214349 -0.7850607948
C 4.2390179099 -0.1234633768 -0.1315787109
C 5.4343799909 -0.7156966555 0.2797712098
C 5.4210033925 -1.6674316322 0.7821760011
C 7.5566127979 -0.5591382960 0.4102117950
C 3.4089092094 1.5674534677 -1.157896454
C 7.6462971796 1.6242893895 -0.7384139474
C 5.5513577236 2.6808293359 -1.5126281643
C 2.9438305084 -0.7952348393 0.0982828606
C 1.8209106771 -0.0605890690 0.2561925523
C 0.4927249583 -0.562162159 0.4346569416
C -0.5840762277 0.2467588843 0.5509163939
C -1.951620331 -0.1957721999 0.6705495151
C -2.9396009298 0.7706727262 0.9197047311
C 0.3502184329 -1.6289135743 0.4635474554
C -0.4728419724 1.3167054816 0.5478562775
C -4.2654494516 0.6311084768 0.2968397218
C -4.4034688199 0.3522968955 -1.0711616160
C -5.4507625439 0.8529739807 1.0121434781
C -6.8670693211 0.8005511011 0.4001720506
C -6.8028903186 0.5254059300 -0.9550269288
C -5.6451818406 0.3082186032 -1.6807467045
C -3.5193669447 0.1961172834 -1.6696765899
C -5.7030249272 0.0973194780 -2.7379257051
C -7.5728399925 0.9785855816 0.9903816134
C -7.7686925008 0.4888250360 -1.430814453
C -5.3871825125 1.0878554786 2.0630642749
C 2.9650944428 -2.2951605131 0.1537250904
C -3.1116918209 0.1675001111 1.8749379772
C 1.9095767004 1.0134927794 0.2579159845
C -2.2101452813 -1.6837315068 0.615751063
C 3.5267568915 -2.6984187550 -0.6839858668
C 1.9762370370 -2.7318940326 0.1388592292
C 3.4562463919 -2.6367851561 1.0624181567
C -1.9355038984 -2.0521298951 -0.3708164220
C -3.2609430077 -1.8855357613 0.7698651497
C -1.6197637430 -2.2362879705 1.3427782050

SUPPORTING INFORMATION

40
SUPPORTING INFORMATION

2,4Me

Atom	x	y	z
C	5.9802848737	0.4643223746	1.4016003194
C	5.7025032782	1.8237982389	1.445624854
C	4.4624077913	2.3102794000	1.052033854
C	3.4901411508	1.4374779537	0.6118978975
C	3.7607390745	0.0670838338	0.5562418715
C	5.0099724800	-0.4120321135	0.9627511972
H	5.2072377458	-1.4715914877	0.9227360328
H	6.9449435650	0.0990857976	1.7111303819
H	2.5109371824	1.7602875117	0.3059485320
H	6.4577340721	2.5093483482	1.7940901023
H	4.2620584005	3.3676285827	1.0942388295
C	2.7769306890	-0.8530646638	0.0373231572
C	1.4760751226	-0.5491262519	-0.3139485619
C	0.8462458318	-1.005501447	-1.5290668231
C	-0.4678690308	-0.9569297179	-1.8388008352
C	-1.3980364409	-0.2595766612	-0.9780143414
C	-2.7347088583	-0.3428351404	-1.0198922806
C	1.5046295583	-1.4051696445	-2.2940920933
C	-0.9797097952	-1.5834673089	-3.1023299462
C	-3.6772343522	0.4239074745	-0.2079782273
C	-3.3086037042	1.5447729777	0.5425412008
C	-5.0178021719	0.0342382500	-0.1713052634
C	-5.9475135425	0.7180709684	0.5917774738
C	-5.5615552111	1.8179539056	1.3397508957
C	-4.2358018186	2.2263906710	1.307363590
C	-2.897502448	1.8934117743	0.5133460785
C	-3.9250772318	3.0889772777	1.8752311947
C	-6.9749923964	0.3908892291	0.6015882502
C	-6.2828867647	2.3547043636	1.9339533835
C	-5.3280606763	-0.8234085394	-0.7476456688
C	3.1542071587	-1.8921488742	0.0528123637
C	-3.190283314	-1.0543500517	-1.6931186974
C	0.9992124105	-1.3858708726	0.9979763974
C	-0.9269584592	0.4129151205	-0.2735923210
C	1.2430962495	-2.4522460288	1.0058624744
C	-0.0745824016	-1.2736346378	0.8994152385
C	1.2956203520	-0.9434192939	1.9423864680
C	-1.5713776409	-0.8783707976	-3.6846852195
C	-1.6243431499	-2.440147754	-2.9014424615
C	-0.1603527046	-1.9369623310	-3.7216801502

2,5Me

Atom	x	y	z
C	5.9802848737	0.4643223746	1.4016003194
C	5.7025032782	1.8237982389	1.445624854
C	4.4624077913	2.3102794000	1.052033854
C	3.4901411508	1.4374779537	0.6118978975
C	3.7607390745	0.0670838338	0.5562418715
C	5.0099724800	-0.4120321135	0.9627511972
H	5.2072377458	-1.4715914877	0.9227360328
H	6.9449435650	0.0990857976	1.7111303819
H	2.5109371824	1.7602875117	0.3059485320
H	6.4577340721	2.5093483482	1.7940901023
H	4.2620584005	3.3676285827	1.0942388295
C	2.7769306890	-0.8530646638	0.0373231572
C	1.4760751226	-0.5491262519	-0.3139485619
C	0.8462458318	-1.005501447	-1.5290668231
C	-0.4678690308	-0.9569297179	-1.8388008352
	x	y	z
-------	----------	----------	----------
C	-1.3980364409	-0.2595766612	-0.9780143414
C	-2.7347088583	-0.3428351404	-1.012399462
H	1.5046295583	-1.4051696445	-2.2940920933
C	-0.9797097952	-1.5834673089	-3.1023299462
C	-3.6772343522	0.4239074745	-0.2079782273
C	-3.3086037042	1.5447729779	0.5425421008
C	-5.0178021719	0.0342382500	-0.1713052634
C	-5.9475135425	0.7180709684	0.5917774738
C	-5.5615552111	1.8179539056	1.3397508957
H	-2.2897502448	1.8934117743	0.5133460785
C	-3.9250772318	3.0889772777	1.8752311947
C	-6.949923964	0.3908892291	0.6015882502
C	-6.282867647	2.3547043636	1.9339533835
H	-5.3280606763	-0.8234085394	-0.7476456688
C	0.9992124105	-1.3858708726	0.9979763974
H	-0.9269584592	0.4129151205	-0.2735923210
C	5.8994866609	-1.5078888211	0.2410770161
C	6.1740341032	-0.7807565896	1.3934812508
C	5.3652173578	0.2934935261	1.7429288479
C	4.2865156271	0.6378366652	0.9550855783
C	3.9917040952	-0.086285017	-0.2133252313
C	4.8230891244	-1.1690123978	-0.5511306640
C	4.6102216242	-1.7332977665	-1.4456042597
C	6.5276028265	-2.3398795698	-0.0328358990
C	3.6558212444	1.4738530195	1.2062887102
H	7.0136824439	-1.0493027425	2.0133952707
C	5.5833273101	0.8634609970	2.6315204937
C	2.9174620294	0.2996517497	-1.0718440788
C	1.8711597003	1.2592162497	-0.7740944784
C	0.8692631651	0.3816850288	-0.2893175328
C	-0.4029234684	0.3066664374	-1.0024585059
C	-1.5904333793	0.2570915265	-0.284031457
C	-2.858604594	0.3140579806	-0.8206939545
C	0.9971616018	-0.3785891317	0.9987725987
C	-0.4215962475	0.4577615780	-2.4946099145
C	-1.746620243	-0.0816867508	1.2779764454
C	-5.3065385386	0.2928261591	-0.8016166788
C	-6.5250308305	0.1761995971	-0.1637121569
C	-6.5769464115	-0.0693121993	1.1992418286
C	-5.395834424	-0.1972494430	1.9127822311
C	-3.2728637213	-0.1934566772	1.8554421472
C	-5.4239284035	-0.3914664662	2.9728031365
H	-7.4367201578	0.2763220110	-0.7301320163
H	-7.5262136970	-0.1617815428	1.700530697
H	-5.2748788405	0.4846488557	-1.8621626520
H	2.8883876321	-0.2244242426	-2.0237610725
37

Atom	X	Y	Z
H	-2.9606003317	0.4756502830	-1.8814497324
H	1.5863717985	1.9352517792	-1.5654939622
H	-1.5077495168	0.1525092510	0.7843453806
H	2.0181767250	-0.4371823604	1.3469781497
H	0.5854445073	-1.3806774906	0.9169126293
H	0.4336589319	0.1422768564	1.7736049669
H	0.5542881998	0.2592744787	-2.9217222430
H	-0.7139776384	1.4617995248	-2.8068368735
H	-1.1322242160	-0.2325704512	-2.9413986028

1Me

Atom	X	Y	Z
H	-4.9407358240	0.2665997742	2.4764487537
C	-5.1738396175	0.2059831313	1.4273837989
C	-6.4142965912	-0.2698544522	1.0433087913
H	-7.1282241180	-0.5648333755	1.7943966700
C	-6.7378967486	-0.3645104575	-0.3000900505
H	-7.7057692822	-0.7313923531	-0.598609131
C	-5.8144594031	0.0244534522	-1.258092733
H	-6.0664409190	-0.0249133785	-2.3039513450
C	-4.5659421049	0.4841196430	-0.8767130128
C	-3.8720487204	0.8052916544	-1.6300644858
H	-4.2211963782	0.5720369093	0.4739640602
C	-2.8823066370	1.0290166777	0.8841334038
H	6.1133946050	-1.7807493254	1.2971923440
C	5.9387250836	-0.9820829174	0.5932674913
C	4.6627144777	-0.4708668700	0.4511818117
H	3.8822220264	-0.8694097149	1.0607405772
C	4.3892340346	0.5640806085	-0.4504501009
C	5.4700398157	1.0813450433	-1.1705885852
H	5.2930469506	1.8864196135	-1.8666521093
C	6.7488927209	0.5743556459	-1.0245790732
H	7.5564911550	0.9935211335	-1.6038961597
C	6.9938915494	0.4682118173	-0.1461038906
H	7.9880303926	-0.8682235648	-0.0239613957
C	-1.8257665832	0.8062258120	0.0643835439
C	-0.4606643204	1.1099910207	0.3381614494
C	0.5446312184	0.9369237716	-0.6075985080
C	1.9008441259	0.5298215475	-0.3220170901
C	3.0563551374	1.1209448289	-0.6559495812
C	-2.7764508928	1.6895412421	2.2253496723
H	-1.9718077641	0.2991875340	-0.8716931013
H	-0.2793268632	1.5884301303	1.3085218509
H	0.5816698759	2.0879159647	-0.5136285959
H	1.9515577454	-0.4524094607	0.1323956965
H	3.0242324133	2.0650308512	-1.1807296601
H	-1.8323462430	2.1941611007	2.3725253426
H	-2.8811541720	0.9526837360	3.0194057282
H	-3.5791268843	2.4100446999	2.3512546843

37

Atom	X	Y	Z
H	8.7645276421	1.6188889431	-3.938533266
C	8.1022183559	1.2110832698	-3.1908438340
C	6.7391934303	1.3453810742	-3.3567181574
H	6.3554215475	1.8392195200	-4.2355545419
C	5.8305655543	0.8295702289	-2.4219344938
SUPPORTING INFORMATION

Atom	X	Y	Z
C	4.3771077561	0.8687966297	-2.6466819188
C	6.3802791153	0.1846643447	-1.1479616593
C	7.4785822468	0.3456774802	-2.0851288383
H	7.7224186663	-0.2424690009	-0.5624741352
C	8.1268648805	-0.4705098075	-0.2785451698
C	8.6275382106	0.0557914582	-2.0851288383
H	8.1268648805	-0.4705098075	-0.2785451698
C	-1.5623556766	-2.0851288383	-0.9131894368
C	-2.4959773212	-1.5402959811	-0.124562376
C	-3.6794013551	-2.0413631551	0.1464719798
C	-4.9137980166	-3.0925353447	-0.4071658644
C	-4.5428638551	-1.7306513010	1.1311894368
H	-5.4548344088	-2.2503040487	1.341556470
C	-2.2049118913	-0.5901181368	1.843209609
C	-2.1453917874	-0.3919588372	0.5864077225
C	3.5157871439	1.2204979314	-1.5951947148
C	2.2494470713	0.5355713175	-1.5072453178
C	1.2528613121	0.8250743891	-0.6419872377
C	0.0509444777	0.0563288108	-0.5439036858
C	-0.9074378983	0.3356258904	0.3568084082
C	4.2513967397	1.9662923581	-2.9440546143
C	3.7822136934	2.3272718645	-0.6016039174
C	2.1517727877	-0.2805545318	-2.2011924378
C	1.3497067120	1.6607603372	0.0353117635
C	-0.0460665876	-0.7809991998	-1.2162246746
C	-0.7538306300	1.910114068	1.0000317362
H	4.7409683343	2.7854698838	-0.8009196651
C	3.8096287432	1.9020281362	0.399540959
C	3.0033320584	3.0861145251	-0.6079337730

Atom	X	Y	Z
C	-6.4725048994	1.935905685	-2.9986289370
C	-6.7100997118	0.9036049591	-2.6890541259
C	-8.0026930495	0.4582407027	-2.8190321278
C	-8.7694312299	1.0943331494	-3.2278173129
C	-8.3061587478	-0.8320739855	-2.4206081619
C	-9.3119695664	-1.2047094889	-2.5207242242
C	-7.535821565	-1.6485309319	-1.8888481541
C	-7.5538001591	-2.6503262122	-1.5732370995
C	-6.2532905322	-1.1799856874	-1.7622381862
C	-5.2658539368	-1.8192439946	-1.3471118040
C	-5.7023092983	0.1196937123	-2.1648944425
C	-4.3559045392	0.6564530539	-2.0757138062
C	4.4064728454	-0.8507805972	-4.9195856489
C	4.3241414087	-0.7219287372	-3.8514822107
C	3.0830832158	-0.4914740707	-3.2896752252
C	2.2210887081	-0.4329117229	-3.9339484641
C	1.6401167765	-0.0847949172	-1.2632449342
C	4.0084030271	-0.3664343455	-1.1305522421
C	4.0036642585	-0.2345162726	-0.0627968106
C	5.3320353823	-0.5925612868	-1.6928397352
C	6.2032161904	-0.6292808179	-1.0576901769
C	5.4615761319	-0.7771728353	-3.0593199977
C	6.4283981147	-0.9556333359	-3.4999914248
Element	X	Y	Z
---------	-----------	-----------	-----------
C	-3.2552928628	-0.0059158282	-1.6842681494
C	-1.9128427431	0.5282729082	-1.7019059704
C	-0.8819748890	-0.2756868050	-1.1976515381
C	0.4361947721	-0.3138009646	-1.8055536474
H	-4.2617181356	1.6856759025	-2.3862965115
C	-1.6911126740	0.2357043861	-0.2321409024
H	-3.2938816720	-1.0288185358	-1.3584742424
C	-1.7148887259	1.9336790488	-2.2031754677
H	-0.7691661822	0.5597809055	-0.4244866272
H	0.4101104504	-0.6935847382	-2.8206379276
H	-2.4457890006	2.6477161450	-1.8349008195
H	-1.8131412356	1.8949639712	-3.2888917822
H	-0.7142579886	2.2737580229	-1.9763049461
Force-fields used for the probe molecules. In each case, the force-fields were initially generated by CGenFF and modified according to the main text. These topologies and parameters should follow the CGenFF topologies and parameters when used in a simulation.

1,3Me

RESI	AIE	0.000
GROUP	! CHARGE	
ATOM	C1	CG2R61 -0.115
ATOM	C2	CG2R61 -0.115
ATOM	C3	CG2R61 -0.115
ATOM	C4	CG2R61 -0.115
ATOM	C5	CG2R61 -0.004
ATOM	C6	CG2R61 -0.115
ATOM	H1	HGR61 0.115
ATOM	H2	HGR61 0.115
ATOM	H3	HGR61 0.115
ATOM	H4	HGR61 0.115
ATOM	H5	HGR61 0.115
ATOM	C7	CG2DC1 0.002
ATOM	C8	CG2DC1 -0.140
ATOM	C9	CG2DC2 -0.006
ATOM	C10	CG2DC2 -0.164
ATOM	C11	CG2DC1 -0.131
ATOM	C12	CG2DC1 -0.150
ATOM	C13	CG331 -0.270
ATOM	C14	CG331 -0.270
ATOM	C15	CG2R61 -0.007
ATOM	C16	CG2R61 -0.115
ATOM	C17	CG2R61 -0.115
ATOM	C18	CG2R61 -0.115
ATOM	C19	CG2R61 -0.115
ATOM	C20	CG2R61 -0.115
ATOM	H6	HGA4 0.150
ATOM	H7	HGA4 0.150
ATOM	H8	HGA4 0.150
ATOM	C16	CG2R61 -0.115
ATOM	C17	CG2R61 -0.115
ATOM	C18	CG2R61 -0.115
ATOM	C19	CG2R61 -0.115
ATOM	H9	HGR61 0.115
ATOM	C10	HGR61 0.115
ATOM	C11	HGR61 0.115
ATOM	C12	HGR61 0.115
ATOM	H13	HGR61 0.115
ATOM	H14	HGA3 0.090
ATOM	H15	HGA3 0.090
ATOM	H16	HGA3 0.090
ATOM	H17	HGA3 0.090
ATOM	H18	HGA3 0.090
ATOM	H19	HGA3 0.090
ATOM	H20	HGA4 0.150

BOND H14 C13
BOND H15 C13
BOND H18 C14
BOND H3 C4
BOND H5 C3
BOND C4 C3
BOND C5 C5
BOND C13 C7
BOND C13 H16
BOND C3 C2
BOND C7 C5
BOND C7 C8
BOND C5 C6
BOND H7 C11
BOND C14 C9
BOND C14 H19
BOND C14 H17
BOND H10 C20
BOND H12 C19
BOND C9 C8
BOND C9 C10
BOND C20 C19
BOND C20 C16
BOND C19 C18
BOND C8 H20
BOND H9 C16
BOND C16 C15
BOND C11 C10
BOND C11 C12
BOND C18 H11
BOND C18 C17
BOND C10 H6
BOND C15 C17
BOND C15 C12
BOND C17 H13
BOND C12 H8
BOND C2 H4
BOND C2 C1
BOND C6 C1
BOND C6 H1
BOND C1 H2

END

BONDS

ANGLES
CG2DC1 CG2DC1 CG2R61 29.00 122.00
CG2R61 CG2DC1 CG331 48.00 113.00

DIHEDRALS
CG2DC1 CG2DC1 CG2R61 CG2R61 0.7500 2 180.00
CG2DC1 CG2DC1 CG2R61 CG2R61 0.1900 4 0.00
CG2DC2 CG2DC1 CG2DC1 CG2R61 0.103516 1 180
CG2DC2 CG2DC1 CG2DC1 CG2R61 8.776453 2 180
CG2R61 CG2DC1 CG2DC1 HGA4 6.016354 2 180
CG331 CG2DC1 CG2R61 CG2R61 1.268181 2 180
CG2R61 CG2DC1 CG331 HGA3 0.074396 3 180

1,4Me
RESI AIE 0.000
GROUP ! CHARGE
ATOM C1 CG2R61 -0.115
ATOM C2 CG2R61 -0.115
ATOM C3 CG2R61 -0.115
ATOM C4 CG2R61 -0.115
ATOM C5 CG2R61 -0.004
ATOM C6 CG2R61 -0.115
ATOM H1 HGR61 0.115
ATOM H2 HGR61 0.115
ATOM H3 HGR61 0.115
ATOM H4 HGR61 0.115
SUPPORTING INFORMATION

Bond	Accession	Accession	Accession	Accession
C2	H4	C2	C1	
C2	H9	C14	H18	
C12	H9	C14	H19	
C14	C17	C18	H12	
C18	H14	C6	C1	
C6	H1	C1	H2	

END

BONDS

ANGLES

Bond	Bond	Bond	Bond	Value	Value
CG2DC1	CG2DC1	CG2R61	29.00	122.00	
CG2R61	CG2DC1	CG331	48.00	113.00	

DIHEDRALS

Bond	Bond	Bond	Bond	Value	Value	
CG2DC1	CG2DC1	CG2R61	CG2R61	0.7500	2	180.00
CG2DC1	CG2DC1	CG2R61	CG2R61	0.1900	4	0.00
CG2R61	CG2DC1	CG331	HGA3	0.3000	3	180.00
CG2DC2	CG2DC1	CG2DC1	CG2R61	0.074976	1	180
CG2DC2	CG2DC1	CG2DC1	CG2R61	9.105853	2	180
CG2R61	CG2DC1	CG2DC1	HGA4	5.917803	2	180
CG331	CG2DC1	CG2R61	CG2R61	1.361484	2	180
CG2R61	CG2DC1	CG331	HGA3	0.121966	3	180

1,5Me

RESI AIE

Bond	Accession	Accession	Accession	Accession
C1	CG2R61	-0.115		
C2	CG2R61	-0.115		
C3	CG2R61	-0.115		
C4	CG2R61	-0.115		
C5	CG2R61	-0.004		
C6	CG2R61	-0.115		
H1	HGR61	0.115		
H2	HGR61	0.115		
H3	HGR61	0.115		
H4	HGR61	0.115		
H5	HGR61	0.115		
C7	CG2DC1	-0.001		
C8	CG2DC1	-0.143		
C9	CG2DC2	-0.149		
C10	CG2DC2	-0.154		
C11	CG2DC1	0.010		
C12	CG2DC1	-0.157		
H6	HGA4	0.150		
H7	HGA4	0.150		
C13	CG2R61	-0.002		
C14	CG2R61	-0.115		
C15	CG2R61	-0.115		
C16	CG2R61	-0.115		
C17	CG2R61	-0.115		
C18	CG2R61	-0.115		
H8	HGR61	0.115		
H9	HGR61	0.115		
H10	HGR61	0.115		
SUPPORTING INFORMATION

CG2R61 CG2DC1 CG331 48.00 113.00

DIHEDRALS
CG2DC1 CG2DC1 CG2R61 CG2R61 0.7500 2 180.00
CG2DC1 CG2DC1 CG2R61 CG2R61 0.1900 4 0.00
CG2DC2 CG2DC1 CG2DC1 CG2R61 0.857374 1 180
CG2DC2 CG2DC1 CG2DC1 CG2R61 5.836502 2 180
CG2R61 CG2DC1 CG2DC1 CG331 0.589424 1 180
CG2R61 CG2DC1 CG2DC1 CG331 7.206005 2 180
CG2R61 CG2DC1 CG2DC1 HGA4 5.077691 2 180
CG331 CG2DC1 CG2R61 CG2R61 1.513733 2 180
CG2R61 CG2DC1 CG331 HGA3 0.214945 3 180

2,3Me
RESI AIE 0.000
GROUP ! CHARGE
ATOM C1 CG2R61 -0.115
ATOM C2 CG2R61 -0.115
ATOM C3 CG2R61 -0.115
ATOM C4 CG2R61 -0.115
ATOM C5 CG2R61 -0.002
ATOM C6 CG2R61 -0.115
ATOM H1 HGR61 0.115
ATOM H2 HGR61 0.115
ATOM H3 HGR61 0.115
ATOM H4 HGR61 0.115
ATOM H5 HGR61 0.115
ATOM C7 CG2DC1 -0.154
ATOM C8 CG2DC1 -0.013
ATOM C9 CG2DC2 -0.008
ATOM C10 CG2DC2 -0.161
ATOM C11 CG2DC1 -0.131
ATOM C12 CG2DC1 -0.150
ATOM C13 CG331 -0.270
ATOM C14 CG331 -0.270
ATOM H6 HGA4 0.150
ATOM H7 HGA4 0.150
ATOM C15 CG2R61 -0.007
ATOM C16 CG2R61 -0.115
ATOM C17 CG2R61 -0.115
ATOM C18 CG2R61 -0.115
ATOM C19 CG2R61 -0.115
ATOM C20 CG2R61 -0.115
ATOM H8 HGR61 0.115
ATOM H9 HGR61 0.115
ATOM H10 HGR61 0.115
ATOM H11 HGR61 0.115
ATOM H12 HGR61 0.115
ATOM H13 HGA4 0.150
ATOM H14 HGA4 0.150
ATOM H15 HGA3 0.090
ATOM H16 HGA3 0.090
ATOM H17 HGA3 0.090
ATOM H18 HGA3 0.090
ATOM H19 HGA3 0.090
ATOM H20 HGA3 0.090

BOND H3 C4
BOND H5 C3
BOND H19 C14
BOND C3 C4
BOND C3 C2
BOND C4 C5
BOND H9 C20
BOND H8 C16
BOND C20 C16
BOND C20 C19
BOND H17 C13
BOND C16 C15
BOND H13 C7
BOND C14 H20
BOND C14 C9
BOND C14 H18
BOND H11 C19
BOND H4 C2
BOND C2 C1
BOND H7 C11
BOND C5 C7
BOND C5 C6
BOND C19 C18
BOND C7 C8
BOND C15 C12
BOND C15 C17
BOND C11 C12
BOND C11 C10
BOND C9 C10
BOND C9 C8
BOND C12 H14
BOND C10 H6
BOND C8 C13
BOND C18 C17
BOND C18 H10
BOND C17 H12
BOND C13 H15
BOND C13 H16
BOND C6 C1
BOND C6 H1
BOND C1 H2

END

BONDS

ANGLES
CG2DC1 CG2DC1 CG2R61 29.00 122.00

DIHEDRALS
CG2DC1 CG2DC1 CG2R61 CG2R61 0.7500 2 180.00
CG2DC1 CG2DC1 CG2R61 CG2R61 0.1900 4 0.00
CG2DC2 CG2DC1 CG2DC1 CG2R61 0.096978 1 180
CG2DC2 CG2DC1 CG2DC1 CG2R61 11.415094 2 180
CG2R61 CG2DC1 CG2DC1 CG331 0.193584 1 180
CG2R61 CG2DC1 CG2DC1 CG331 5.531836 2 180
CG2R61 CG2DC1 CG2DC1 HGA4 6.61659 2 180
CG331 CG2DC1 CG2DC2 CG331 0.693951 1 180
CG331 CG2DC1 CG2DC2 CG331 1.317678 2 180

2,4Me
RESI AIE 0.000
GROUP ! CHARGE
ATOM C1 CG2R61 -0.115
ATOM C2 CG2R61 -0.115
ATOM C3 CG2R61 -0.115
ATOM C4 CG2R61 -0.115
ATOM C5 CG2R61 -0.002
ATOM C6 CG2R61 -0.115
ATOM H1 HGR61 0.115
ATOM H2 HGR61 0.115
ATOM H3 HGR61 0.115
ATOM H4 HGR61 0.115
ATOM H5 HGR61 0.115
ATOM C7 CG2DC1 -0.157
ATOM C8 CG2DC1 0.015
ATOM C9 CG2DC2 -0.161
ATOM C10 CG2DC2 -0.008
ATOM C11 CG2DC1 -0.133
ATOM C12 CG2DC1 -0.147
ATOM H6 HGA4 0.150
ATOM C13 CG331 -0.270
ATOM C14 CG2R61 -0.007
ATOM C15 CG2R61 -0.115
ATOM C16 CG2R61 -0.115
ATOM C17 CG2R61 -0.115
ATOM C18 CG2R61 -0.115
ATOM C19 CG2R61 -0.115
ATOM H7 HGR61 0.115
ATOM H8 HGR61 0.115
ATOM H9 HGR61 0.115
ATOM H10 HGR61 0.115
ATOM H11 HGR61 0.115
ATOM H12 HGA4 0.150
ATOM H13 HGA4 0.150
ATOM C20 CG331 -0.270
ATOM H14 HGA4 0.150
ATOM H15 HGA3 0.090
ATOM H16 HGA3 0.090
ATOM H17 HGA3 0.090
ATOM H18 HGA3 0.090
ATOM H19 HGA3 0.090
ATOM H20 HGA3 0.090

BOND H3 C4
BOND H5 C3
BOND H20 C13
BOND C4 C3
BOND C4 C5
BOND C3 C2
BOND H12 C7
BOND C7 C5
BOND C7 C8
BOND H18 C13
BOND C5 C6
BOND C2 H4
BOND C2 C1
BOND H10 C18
BOND H8 C19
BOND C18 C19
BOND C18 C17
BOND C19 C15
BOND H9 C17
BOND C17 C16
BOND C15 H7
BOND C15 C14
BOND H17 C20
BOND C16 C14
BOND C16 H11
BOND C14 C12
BOND H14 C11
BOND C12 C11
BOND C12 H13
BOND C11 C10
BOND C13 C10
BOND C13 H19
BOND H6 C9
BOND C10 C9
BOND C9 C8
BOND C8 C20
BOND C6 C1
BOND C6 H1
BOND C1 H2
BOND C20 H15
BOND C20 H16

END

BONDS

ANGLES
CG2DC1 CG2DC1 CG2R61 29.00 122.00

DIHEDRALS
CG2DC1 CG2DC1 CG2R61 CG2R61 0.7500 2 180.00
CG2DC1 CG2DC1 CG2R61 CG2R61 0.1900 4 0.00
CG2DC2 CG2DC1 CG2DC1 CG2R61 0.094644 1 180
CG2DC2 CG2DC1 CG2DC1 CG2R61 9.162901 2 180
CG2R61 CG2DC1 CG2DC1 CG331 1.244941 1 180
CG2R61 CG2DC1 CG2DC1 HGA4 10.107544 2 180
CG2R61 CG2DC1 CG2DC1 HGA4 6.709147 2 180

2,5Me
RESI AIE 0.000
GROUP ! CHARGE
ATOM C1 CG2R61 -0.115
ATOM C2 CG2R61 -0.115
ATOM C3 CG2R61 -0.115
ATOM C4 CG2R61 -0.115
ATOM C5 CG2R61 -0.002
ATOM C6 CG2R61 -0.115
ATOM H1 HGR61 0.115
ATOM H2 HGR61 0.115
ATOM H3 HGR61 0.115
ATOM H4 HGR61 0.115
ATOM H5 HGR61 0.115
ATOM C7 CG2DC1 -0.157
ATOM C8 CG2DC1 0.010
ATOM C9 CG2DC2 -0.151
ATOM C10 CG2DC2 -0.151
ATOM C11 CG2DC1 0.010
ATOM C12 CG2DC1 -0.157
ATOM H6 HGA4 0.150
ATOM H7 HGA4 0.150
ATOM C13 CG2R61 -0.002
ATOM C14 CG2R61 -0.115
ATOM C15 CG2R61 -0.115
ATOM C16 CG2R61 -0.115
ATOM C17 CG2R61 -0.115
ATOM C18 CG2R61 -0.115
ATOM H8 HGR61 0.115
ATOM H9 HGR61 0.115
ATOM H10 HGR61 0.115
ATOM H11 HGR61 0.115
ATOM H12 HGR61 0.115
ATOM H13 HGA4 0.150
ATOM H14 HGA4 0.150
ATOM C19 CG331 -0.270
ATOM C20 CG331 -0.270
ATOM H15 HGA3 0.090
ATOM H16 HGA3 0.090
ATOM H17 HGA3 0.090
ATOM H18 HGA3 0.090
ATOM H19 HGA3 0.090
ATOM H20 HGA3 0.090

BOND H9 C18
BOND H5 C3
BOND H8 C14
BOND H3 C4
BOND C18 C14
BOND C18 C17
BOND C3 C4
BOND C3 C2
BOND C14 C13
BOND C4 C5
BOND H19 C20
BOND H17 C19
BOND H11 C17
BOND H4 C2
BOND C17 C16
BOND C2 C1
BOND C5 C7
BOND C5 C6
BOND C13 C12
BOND C13 C15
BOND C7 H13
BOND C7 C8
BOND C12 H14
BOND C12 C11
BOND H6 C9
BOND C11 C10
BOND C11 C20
BOND C8 C9
BOND C8 C19
BOND C9 C10
BOND H7 C10
BOND C20 H20
BOND C20 H18
BOND C19 H15
BOND C19 H16
BOND C1 C6
BOND C1 H2
BOND C16 C15
SUPPORTING INFORMATION

BOND C16 H10
BOND C6 H1
BOND C15 H12

END

BONDS

ANGLES
CG2DC1 CG2DC1 CG2R61 29.00 122.00

DIHEDRALS
CG2DC1 CG2DC1 CG2R61 CG2R61 0.7500 2 180.00
CG2DC1 CG2DC1 CG2R61 CG2R61 0.1900 4 0.00
CG2DC2 CG2DC1 CG2DC1 CG2R61 0.04648 1 180
CG2DC2 CG2DC1 CG2DC1 CG2R61 12.977052 2 180
CG2R61 CG2DC1 CG2DC1 CG331 0.7836 1 180
CG2R61 CG2DC1 CG2DC1 CG331 7.926638 2 180

3,4Me
RESI AIE 0.000
GROUP ! CHARGE
ATOM C1 CG2R61 -0.115
ATOM C2 CG2R61 -0.115
ATOM C3 CG2R61 -0.115
ATOM C4 CG2R61 -0.115
ATOM C5 CG2R61 -0.007
ATOM C6 CG2R61 -0.115
ATOM H1 HGR61 0.115
ATOM H2 HGR61 0.115
ATOM H3 HGR61 0.115
ATOM H4 HGR61 0.115
ATOM H5 HGR61 0.115
ATOM C7 CG2DC1 -0.147
ATOM C8 CG2DC1 -0.128
ATOM C9 CG2DC2 -0.017
ATOM C10 CG2DC2 -0.017
ATOM C11 CG2DC1 -0.128
ATOM C12 CG2DC1 -0.147
ATOM C13 CG331 -0.271
ATOM C14 CG331 -0.271
ATOM C15 CG2R61 -0.007
ATOM C16 CG2R61 -0.115
ATOM C17 CG2R61 -0.115
ATOM C18 CG2R61 -0.115
ATOM C19 CG2R61 -0.115
ATOM C20 CG2R61 -0.115
ATOM H6 HGR61 0.115
ATOM H7 HGR61 0.115
ATOM H8 HGR61 0.115
ATOM H9 HGR61 0.115
ATOM H10 HGR61 0.115
ATOM H11 HGA4 0.150
ATOM H12 HGA4 0.150
ATOM H13 HGA4 0.150
ATOM H14 HGA4 0.150
ATOM H15 HGA3 0.090
ATOM H16 HGA3 0.090
ATOM H17 HGA3 0.090
ATOM H18 HGA3 0.090
ATOM H19 HGA3 0.090
ATOM H20 HGA3 0.090

BOND H16 C13
BOND H20 C14
BOND H3 C4
BOND H8 C18
BOND H5 C3
BOND H17 C13
BOND C13 C9
BOND C13 H15
BOND H11 C7
BOND C4 C3
BOND C4 C5
BOND H10 C17
BOND C18 C17
BOND C18 C19
BOND C3 C2
BOND H14 C11
BOND H9 C19
BOND C7 C5
BOND C7 C8
BOND C17 C15
BOND C5 C6
BOND C19 C20
BOND C9 C8
BOND C9 C10
BOND C8 H13
BOND C11 C10
BOND C11 C12
BOND C2 H4
BOND C2 C1
BOND C15 C12
BOND C15 C16
BOND C10 C14
BOND C6 C1
BOND C6 H1
BOND C20 C16
BOND C20 H7
BOND C12 H12
BOND C1 H2
BOND C16 H6
BOND C14 H18
BOND C14 H19

END

BONDS

ANGLES
CG2DC1 CG2DC1 CG2R61 29.00 122.00

DIHEDRALS
CG2DC1 CG2DC1 CG2R61 CG2R61 0.7500 2 180.00
CG2DC1 CG2DC1 CG2R61 CG2R61 0.1900 4 0.00
CG331 CG2DC2 CG2DC2 CG331 10.0000 2 180.00
CG2DC2 CG2DC1 CG2DC1 CG2R61 0.08265 1 180
CG2DC2 CG2DC1 CG2DC1 CG2R61 9.758027 2 180
CG2R61 CG2DC1 CG2DC1 HGA4 6.169531 2 180
1Me
RESI AIE 0.000
GROUP ! CHARGE
ATOM H1 HGR61 0.115
ATOM C1 CG2R61 -0.115
ATOM C2 CG2R61 -0.115
ATOM H2 HGR61 0.115
ATOM C3 CG2R61 -0.115
ATOM H3 HGR61 0.115
ATOM C4 CG2R61 -0.115
ATOM H4 HGR61 0.115
ATOM C5 CG2R61 -0.115
ATOM H5 HGR61 0.115
ATOM C6 CG2R61 -0.004
ATOM C7 CG2DC1 -0.001
ATOM H6 HGR61 0.115
ATOM C8 CG2R61 -0.115
ATOM C9 CG2R61 -0.115
ATOM H7 HGR61 0.115
ATOM C10 CG2R61 -0.007
ATOM C11 CG2R61 -0.115
ATOM H8 HGR61 0.115
ATOM C12 CG2R61 -0.115
ATOM H9 HGR61 0.115
ATOM C13 CG2R61 -0.115
ATOM H10 CG2R61 0.115
ATOM C14 CG2DC1 -0.143
ATOM C15 CG2DC2 -0.152
ATOM C16 CG2DC2 -0.157
ATOM C17 CG2DC1 -0.136
ATOM C18 CG2DC1 -0.150
ATOM C19 CG331 -0.270
ATOM H11 HGA4 0.150
ATOM H12 HGA4 0.150
ATOM H13 HGA4 0.150
ATOM H14 HGA4 0.150
ATOM H15 HGA4 0.150
ATOM H16 HGA3 0.090
ATOM H17 HGA3 0.090
ATOM H18 HGA3 0.090

BOND H18 C19
BOND H5 C5
BOND H4 C4
BOND H16 C19
BOND C5 C4
BOND C5 C6
BOND H6 C8
BOND C4 C3
BOND H7 C9
BOND C19 C7
BOND C19 H17
BOND H12 C15
BOND C8 C9
BOND C8 C13
BOND C9 C10
BOND H14 C17
BOND C7 C6
BOND C7 C14
BOND C15 C14
BOND C15 C16
BOND C6 C1
BOND C14 H11
BOND C17 C16
BOND C17 C18
BOND C16 H13
BOND H10 C13
BOND C13 C12
BOND C10 C18
BOND C10 C11
BOND C3 H3
BOND C3 C2
BOND C18 H15
BOND C12 C11
BOND C12 H9
BOND C11 H8
BOND C1 C2
BOND C1 H1
BOND C2 H2

END

BONDS

ANGLES
CG2DC1 CG2DC1 CG2R61 29.00 122.00
CG2R61 CG2DC1 CG331 48.00 113.00

DIHEDRALS
CG2DC1 CG2DC1 CG2R61 CG2R61 0.7500 2 180.00
CG2DC1 CG2DC1 CG2R61 CG2R61 0.1900 4 0.00
CG2DC2 CG2DC1 CG2DC1 CG2R61 0.161071 1 180
CG2DC2 CG2DC1 CG2DC1 CG2R61 8.51945 2 180
CG2R61 CG2DC1 CG2DC1 HGA4 4.73837 2 180
CG331 CG2DC1 CG2R61 CG2R61 1.590478 2 180
CG2R61 CG2DC1 CG331 HGA3 0.461611 3 60

2Me
RESI AIE 0.000
GROUP ! CHARGE
ATOM H1 HGR61 0.115
ATOM C1 CG2R61 -0.115
ATOM C2 CG2R61 -0.115
ATOM H2 HGR61 0.115
ATOM C3 CG2R61 -0.002
ATOM C4 CG2DC1 -0.157
ATOM C5 CG2R61 -0.115
ATOM H3 HGR61 0.115
ATOM C6 CG2R61 -0.115
ATOM H4 HGR61 0.115
ATOM C7 CG2R61 -0.115
ATOM H5 HGR61 0.115
ATOM H6 HGR61 0.115
ATOM C8 CG2R61 -0.115
ATOM C9 CG2R61 -0.115
ATOM H7 HGR61 0.115
ATOM C10 CG2R61 -0.115
ATOM H8 HGR61 0.115
ATOM C11 CG2R61 -0.115
ATOM H9 HGR61 0.115
ATOM C12 CG2R61 -0.115
ATOM H10 HGR61 0.115
ATOM C13 CG2R61 -0.007
ATOM C14 CG2DC1 0.010
ATOM C15 CG2DC2 0.154
ATOM C16 CG2DC2 0.154
ATOM C17 CG2DC1 -0.136
ATOM C18 CG2DC1 -0.150
ATOM H11 HGA4 0.150
ATOM C19 CG331 -0.270
ATOM H12 HGA4 0.150
ATOM H13 HGA4 0.150
ATOM H14 HGA4 0.150
ATOM H15 HGA4 0.150
ATOM H16 HGA3 0.090
ATOM H17 HGA3 0.090
ATOM H18 HGA3 0.090

BOND H17 C19
BOND H1 C1
BOND H2 C2
BOND H18 C19
BOND C1 C2
BOND C1 C7
BOND C2 C3
BOND H10 C12
BOND C19 C14
BOND C19 H16
BOND H9 C11
BOND H13 C16
BOND C12 C11
BOND C12 C13
BOND H15 C18
BOND C11 C10
BOND C16 C15
BOND C16 C17
BOND C14 C15
BOND C14 C4
BOND C18 C17
BOND C18 C13
BOND C15 H12
BOND C17 H14
BOND C13 C8
BOND H5 C7
BOND C7 C6
BOND C4 C3
BOND C4 H11
BOND C3 C5
BOND C10 H8
BOND C10 C9
BOND C8 C9
BOND C8 H6
BOND C9 H7
BOND C6 C5
BOND C6 H4
BOND C5 H3

END
SUPPORTING INFORMATION

BONDS

ANGLES

CG2DC1 CG2DC1 CG2R61 29.00 122.00

DIHEDRALS

CG2DC1 CG2DC1 CG2R61 CG2R61 0.7500 2 180.00
CG2DC1 CG2DC1 CG2R61 CG2R61 0.1900 4 0.00
CG2DC2 CG2DC1 CG2R61 CG2R61 1.318489 1 180
CG2DC2 CG2DC1 CG2DC1 CG2R61 3.914232 2 180
CG2R61 CG2DC1 CG2DC1 CG331 0.126094 1 180
CG2R61 CG2DC1 CG2DC1 CG331 5.227654 2 180
CG2R61 CG2DC1 CG2DC1 HGA4 5.810909 2 180

3Me

RESI AIE 0.000
GROUP ! CHARGE
ATOM H1 HGR61 0.115
ATOM C1 CG2R61 -0.115
ATOM C2 CG2R61 -0.115
ATOM H2 HGR61 0.115
ATOM C3 CG2R61 -0.007
ATOM C4 CG2DC1 -0.150
ATOM C5 CG2R61 -0.115
ATOM H3 HGR61 0.115
ATOM C6 CG2R61 -0.115
ATOM H4 HGR61 0.115
ATOM C7 CG2R61 -0.115
ATOM H5 HGR61 0.115
ATOM C8 CG2DC1 -0.131
ATOM C9 CG2DC2 -0.164
ATOM C10 CG2DC2 -0.011
ATOM C11 CG2DC1 -0.133
ATOM C12 CG2DC1 -0.147
ATOM C13 CG2R61 -0.007
ATOM C14 CG2R61 -0.115
ATOM C15 CG2R61 -0.115
ATOM C16 CG2R61 -0.115
ATOM C17 CG2R61 -0.115
ATOM C18 CG2R61 -0.115
ATOM H6 HGA4 0.150
ATOM H7 HGA4 0.150
ATOM H8 HGA4 0.150
ATOM C19 CG331 -0.270
ATOM H9 HGA4 0.150
ATOM H10 HGA4 0.150
ATOM H11 HGR61 0.115
ATOM H12 HGR61 0.115
ATOM H13 HGR61 0.115
ATOM H14 HGR61 0.115
ATOM H15 HGR61 0.115
ATOM H16 HGA3 0.090
ATOM H17 HGA3 0.090
ATOM H18 HGA3 0.090

BOND H18 C19
BOND H12 C15
BOND H13 C16
BOND H4 C6
BOND H3 C5
BOND C15 C16
BOND C15 C13
BOND C16 C17
BOND C6 C5
BOND C6 C7
BOND C5 C3
BOND H5 C7
BOND C13 C12
BOND C13 C14
BOND C7 C1
BOND C12 H10
BOND C12 C11
BOND C17 H14
BOND C17 C18
BOND H16 C19
BOND H7 C8
BOND C3 C4
BOND C3 C2
BOND C11 C10
BOND C11 H9
BOND C10 C19
BOND C10 C9
BOND C8 C9
BOND C8 C4
BOND C19 H17
BOND H8 C9
BOND C4 H6
BOND C1 C2
BOND C1 H1
BOND C2 H2
BOND C14 C18
BOND C14 H11
BOND C18 H15

END

BONDS

ANGLES
CG2DC1 CG2DC1 CG2R61 29.00 122.00

DIHEDRALS
CG2DC1 CG2DC1 CG2R61 CG2R61 0.7500 2 180.00
CG2DC1 CG2DC1 CG2R61 CG2R61 0.1900 4 0.00
CG2DC2 CG2DC1 CG2DC1 CG2R61 0.088111 1 180
CG2DC2 CG2DC1 CG2DC1 CG2R61 8.721226 2 180
CG2R61 CG2DC1 CG2DC1 HGA4 5.688978 2 180