Supplementary Material

Essential factors involved in the precise targeting and insertion of telomere-specific non-LTR retrotransposon, SART 1Bm

Authors:

Narisu Nichuguti* and Haruhiko Fujiwara*¹

Affiliations:

*Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.

¹Corresponding author: Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Bldg., Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8562, Japan.

Tel: +81-4-7136-3659; Fax: +81-4-7136-3660;

Email: haruh@edu.k.u-tokyo.ac.jp
Supplementary Figure S1 Full-length gels regarding data shown in Fig. 1b
Supplementary Table 1. Primers used in this study

Name	Sequence (5’ to 3’)
SART1Bm target plasmid construction	
E-TTAGG1-S-E-s	AATTCGATTTTAGGAATCACTAGTG
E-TTAGG1-S-E-a	AATTCGACTAGTGATTTCTAAACCTAAATCG
E-TTAGG2-S-E-s	AATTCGATTTTAGGAATCACTAGTG
E-TTAGG3-S-E-s	AATTCGATTTTAGGAATCACTAGTG
E-TTAGG3-S-E-a	AATTCGATTTTAGGAATCACTAGTG
E-TTAGG5-S-E-s	AATTCGATTTTAGGAATCACTAGTG
E-TTAGG6-S-E-a	AATTCGATTTTAGGAATCACTAGTG
E-TTAGG8-S-E-s	AATTCGATTTTAGGAATCACTAGTG
E-TTAGG8-S-E-a	AATTCGATTTTAGGAATCACTAGTG
E-TTAGG13-S-E-s	AATTCGATTTTAGGAATCACTAGTG
(TTAGG)6	TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTACAGGTG
(CCTAA)6	CCTAACCTA
(TTTAGGG)3	TTTAGGGTTAGGGTTAGGG
(CCCTAAA)3	CCCTAAACCCTAAACCCTAAA

EGFP/3’UTR series plasmid

BamHI-EGFP-S96

| BamHI-EGFP-S96 | AAGGATCCATGGTGAGCAAGGGCGAGG |

EcoRI-EGFP-A813

| EcoRI-EGFP-A813 | AAGAATTCCTTACATCATAGGATTCATG |

SART1-S6221-EcoRI-Takahashi

| SART1-S6221-EcoRI-Takahashi | TTTTTGAATTCGGACCGTCGGGCGTC |

TTT-XbaI-PolyA(0)+SART1 3’UTR

| TTT-XbaI-PolyA(0)+SART1 3’UTR | TTTctagaGGTATCGATGGGGAATCCC |

TTT-XbaI-PolyA(5)+SART1 3’UTR

| TTT-XbaI-PolyA(5)+SART1 3’UTR | TTTctagaTTTTTTGTATCGATGGGGAATCCC |

TTT-XbaI-PolyA(10)+SART1 3’UTR

| TTT-XbaI-PolyA(10)+SART1 3’UTR | TTTctagaTTTTTTTTTTGTATCGATGGGGAATCCC |

TTT-XbaI-PolyA(18)+SART1 3’UTR

| TTT-XbaI-PolyA(18)+SART1 3’UTR | TTTctagaTTTTTTTTTTTTTTTTGTATCGATGGGGAATCCC |

TTT-XbaI-PolyC(18)+SART1 3’UTR

| TTT-XbaI-PolyC(18)+SART1 3’UTR | TTTctagaGGGGGGGGGGGGGGGGGTATCGATGGGGAATCCC |

TTT-XbaI-PolyA(0)AGG+SART1 3’UTR

| TTT-XbaI-PolyA(0)AGG+SART1 3’UTR | TTTctagaCCTGATCGATGGGGAATCCC |

Ex vivo retrotransposition assay

S16131

| S16131 | AGAAAGAGAGTGCGACCCAAACTCAGTT |

A878T

| A878T | GCGTGCAGAATTCACTAGGTTT |

Amp-F1

| Amp-F1 | GAACGTTTTTCCAATGATGAGCATACTTT |

Amp-R1

| Amp-R1 | CCAATGCTTAATCATGAGGATAC |

Trans-in vivo retrotransposition assay

pEGFP1-S688

| pEGFP1-S688 | GCAACCAACTACCTGAGGAC |

CCTAA6

| CCTAA6 | CCTAACCCTAACCCTAA CCTAACCCTAA |
Supplementary Table 2. Artifactual baculovirus sequences detected in *ex vivo* assay.

Type	Query Length (bp)	Sbjct (bp)	Identities	Synthetic baculovirus AcMNPV-WIV-Syn1, complete sequence (ID: KY792989.1)	Baculovirus p10 and p74 genes’ junction region	Reverse Primer: AE/TF GCC/CAG/ACT/TTG/ATT/GTT	Forward primer: S16131
1	398 (8-398)	36785 to 37175	391/391(100%)	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGTTTNTTTTGGACGGTTTGCCCGCTCAATTG	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGTNTTTTGGACGGTTTGCCCGCTCAATTG	GCC/CAG/ACT/TTG/ATT/GTT	S16131
2	455 (1-392)	36774 to 37163	36785 to 37175	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	GCC/CAG/ACT/TTG/ATT/GTT	S16131
3	378 (1-375)	36800 to 37174	36785 to 37174	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	GCC/CAG/ACT/TTG/ATT/GTT	S16131
4	439 (1-364)	36774 to 37163	36785 to 37174	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	GCC/CAG/ACT/TTG/ATT/GTT	S16131
5	441 (59-441)	36785 to 37167	36785 to 37175	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	GCC/CAG/ACT/TTG/ATT/GTT	S16131
6	367 (6-333)	36785 to 37174	36800 to 37174	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	GCC/CAG/ACT/TTG/ATT/GTT	S16131
7	442 (1-384)	36785 to 37167	36785 to 37175	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	GCC/CAG/ACT/TTG/ATT/GTT	S16131
8	456 (1-330)	36785 to 37175	36800 to 37174	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	GCC/CAG/ACT/TTG/ATT/GTT	S16131
9	426 (1-332)	36785 to 37175	36800 to 37174	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	GCC/CAG/ACT/TTG/ATT/GTT	S16131
10	391 (39-391)	36785 to 37175	36785 to 37175	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	GCC/CAG/ACT/TTG/ATT/GTT	S16131
11	405 (1-332)	36785 to 37175	36800 to 37174	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	GCC/CAG/ACT/TTG/ATT/GTT	S16131
12	412 (1-391)	36785 to 37175	36800 to 37174	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	AGAAAGAGAGTGCGACCCAAACTCAGTTAAACGGGCTGGAAGAATCATTCCAGCTTTTGGACGGTTTGCCCGCTCAATTG	GCC/CAG/ACT/TTG/ATT/GTT	S16131
Supplementary Table 3. Nucleotide sequence of the 3′ junction of ex vivo retrotransposed SART1Bm and point mutated (TTAGG) tracts

Lane	Target plasmid	SART1Bm 3′ UTR/(A)n	Telomeric repeats	Vector sequence	Clones
2	(CTAGG)_{42}	---CATCGATACC(A)_{30}	AGG(CTAGG)_{22}	AATCACTAGT---	1
		---CATCGATACC(A)_{34}	AGG(CTAGG)_{9}	AATCACTAGT---	1
		---CATCGATACC(A)_{29}	AGG(CTAGG)_{29}	AATCACTAGT---	1
		---CATCGATACC(A)_{37}	AGG(CTAGG)_{32}	AATCACTAGT---	1
		---CATCGATACC(A)_{29}	AGG(CTAGG)_{32}	AATCACTAGT---	1
3	(TCAGG)_{23}	---CATCGATACC(A)_{36}	AGG(TCAGG)_{19}	AATCACTAGT---	1
		---CATCGATACC(A)_{10}	AGG(TCAGG)_{11}	AATCACTAGT---	1
		---CATCGATACC(A)_{23}	AGG(TCAGG)_{3}	AATCACTAGT---	1
		---CATCGATACC(A)_{25}	AGG(TCAGG)_{9}	AATCACTAGT---	1
4	(TTCGG)_{35}				0
5	(TTAGG)_{30}	---CATCGATACC(A)_{47}	ACG(TTAGC)_{9}	AATCACTAGT---	1
		---CATCGATACC(A)_{18}	ACG(TTAGC)_{19}	AATCACTAGT---	1
		---CATCGATACC(A)_{15}	ACG(TTAGC)_{14}	AATCACTAGT---	1
6	(TTAGG)_{30}	---CATCGATACC(A)_{20}	ACG(TTAGC)_{12}	AATCACTAGT---	1
		---CATCGATACC(A)_{36}	ACG(TTAGC)_{12}	AATCACTAGT---	1
		---CATCGATACC(A)_{31}	ACG(TTAGC)_{3}	AATCACTAGT---	1
Supplementary Table 4. Nucleotide sequence of the 3′ junction of *ex vivo* retrotransposed SART1Bm and telomeric repeats of other species

Lane	Target plasmid	SART1Bm 3′ UTR/(A)$_m$	Telomeric repeats	Vector sequence	Clones
2	(TTAGG)$_{34}$	---CATCGATACC(A)$_{29}$	AGGG(TTAGGG)$_{31}$	AATCACTAGT---	1
		---CATCGATACC(A)$_{18}$	AGGG(TTAGGG)$_{17}$	AATCACTAGT---	1
3	(TTAGG)$_{33}$	---CATCGATACC(A)$_{14}$	AGGC(TTAGGC)$_{12}$	AATCACTAGT---	1
4	(TTAGG)$_{21}$	---CATCGATACC(A)$_{29}$	AGGG(TTTAGGG)$_{3}$	AATCACTAGT---	1
		---CATCGATACC(A)$_{13}$	AGGG(TTTAGGG)$_{2}$	AATCACTAGT---	1
		---CATCGATACC(A)$_{27}$	AGGG(TTTAGGG)$_{11}$	AATCACTAGT---	1
Supplementary Table 5. Nucleotide sequence of 3' junction clones obtained from the EGFP/ SART1 3' UTR/(A)ₙ construct.

Reporter	EGFP/EcoRI	SART1Bm 3' UTR/(A)ₙ	Telomeric repeats	6
b-TACAAGTAgaattc	GGACCGT---GATACC(A)₁₈	AGG(TTAGG)₁₂	1	
b-TACAAGTAgaattc	GGACCGT---GATACC(A)₂₉	AGG(TTAGG)₃₂	1	
b-TACAAGTAgaattc	GGACCGT---GATACC(A)₁₈	AGG(TTAGG)₅₇	1	
b-TACAAGTAgaattc	GGACCGT---GATACC(A)₇	AGG(TTAGG)₄	1	
b-TACAAGTAgaattc	GGACCGT---GATACC(A)₁₂	AGG(TTAGG)₂₇	1	
b-TACAAGTAgaattc	GGACCGT---GATACC(A)₁₄	AGG(TTAGG)₁₂	1	
Supplementary Table 6. Nucleotide sequence of 3′ junction clones obtained from the A-0 and A-5 donor constructs

Reporter	EGFP/EcoRI	SART1Bm 3′ UTR	Telomeric repeats	Clone
A-0				
---TACAAGTAAgaattc	GGACCGT---TGAGG\(^{394}\)	AGG (TTAGG)\(5\)	1	
---TACAAGTAAgaattc	GGACCGT---TGAGG\(^{394}\)	AGG (TTAGG)\(6\)	1	
---TACAAGTAAgaattc	GGACCGT---TGAGG\(^{394}\)	AGG (TTAGG)\(12\)	1	
---TACAAGTAAgaattc	GGACCGT---TGAGG\(^{394}\)	AGG (TTAGG)\(38\)	1	
---TACAAGTAAgaattc	GGACCGT---TGAGG\(^{394}\)	AGG (TTAGG)\(41\)	1	
---TACAAGTAAgaattc	GGACCGT---TT\(^{398}\)	AGG(TTAGG)\(8\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{16}\)	AGG(TTAGG)\(8\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{18}\)	AGG(TTAGG)\(9\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{17}\)	AGG(TTAGG)\(10\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{13}\)	AGG(TTAGG)\(10\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{27}\)	AGG(TTAGG)\(15\)	1	
A-5				
---TACAAGTAAgaattc	GGACCGT---TGAGG\(^{394}\)	AGG (TTAGG)\(6\)	1	
---TACAAGTAAgaattc	GGACCGT---TGAGG\(^{394}\)	AGG (TTAGG)\(9\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{17}\)	AGG(TTAGG)\(1\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{24}\)	AGG(TTAGG)\(6\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{20}\)	AGG(TTAGG)\(6\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{15}\)	AGG(TTAGG)\(8\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{20}\)	AGG(TTAGG)\(9\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{24}\)	AGG(TTAGG)\(11\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{29}\)	AGG(TTAGG)\(12\)	1	
---TACAAGTAAgaattc	GGACCGT---GATACC(A)\(_{24}\)	AGG(TTAGG)\(16\)	1	

*Nucleotide positions are indicated with the junction of cleavage target site AGG and 3′UTR end, defined as 0. The telomeric repeat-like sequences AGG in the end of inserted copies are underlined and indicated at upstream -394.
Supplementary Table 7. Nucleotide sequence of 3’ junction clones obtained from the A-10 and A-18 donor constructs

Reporter	EGFP/EcoRI	SART1Bm 3’ UTR	Telomeric repeats	Clone
A-10	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{26}	AGG(TTAGG)\textsubscript{1}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{28}	AGG(TTAGG)\textsubscript{1}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{20}	AGG(TTAGG)\textsubscript{3}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{28}	AGG(TTAGG)\textsubscript{5}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{10}	AGG(TTAGG)\textsubscript{12}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{29}	AGG(TTAGG)\textsubscript{21}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{29}	AGG(TTAGG)\textsubscript{25}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{20}	AGG(TTAGG)\textsubscript{30}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{11}	AGG(TTAGG)\textsubscript{55}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{29}	AGG(TTAGG)\textsubscript{65}	1
A-18	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{16}	AGG(TTAGG)\textsubscript{7}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{17}	AGG(TTAGG)\textsubscript{8}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{17}	AGG(TTAGG)\textsubscript{8}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{29}	AGG(TTAGG)\textsubscript{9}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{14}	AGG(TTAGG)\textsubscript{12}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{9}	AGG(TTAGG)\textsubscript{22}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{12}	AGG(TTAGG)\textsubscript{22}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{21}	AGG(TTAGG)\textsubscript{27}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{29}	AGG(TTAGG)\textsubscript{32}	1
	---TACAAGTAgaattc	GGACCGT---GATAcc(A)\textsubscript{18}	AGG(TTAGG)\textsubscript{57}	1
Supplementary Table 8. Nucleotide sequence of 3' junction clones obtained from the A-AGG and C-18 donor constructs

Reporter	EGFP/EcoRI	SART1Bm 3' UTR	Telomeric repeats	Clone
AGG	---TACAAGTAgaattc	GGACCGT---TGAGG<sup>394¹	AGG (TTAGG)₃	1
	---TACAAGTAgaattc	GGACCGT---TGAGG<sup>394¹	AGG (TTAGG)₉	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₁₅	AGG (TTAGG)₅	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₁₇	AGG (TTAGG)₆	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₁₆	AGG (TTAGG)₃	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₂₄	AGG (TTAGG)₁₂	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₂₃	AGG (TTAGG)₁₂	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₁₆	AGG (TTAGG)₅₄	1
C-18	---TACAAGTAgaattc	GGACCGT---ATAGG<sup>230¹	AGG (TTAGG)₈	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₁₄	AGG (TTAGG)₄	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₂₂	AGG (TTAGG)₈	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₂₉	AGG (TTAGG)₆	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₁₆	AGG (TTAGG)₆	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₈	AGG (TTAGG)₁₈	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₁₉	AGG (TTAGG)₂₃	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₁₂	AGG (TTAGG)₂₆	1
	---TACAAGTAgaattc	GGACCGT---GATAcc (A)₄₀	AGG (TTAGG)₄₀	1

* Nucleotide positions are indicated with the junction of cleavage target site AGG and 3' UTR end, defined as 0. The telomeric repeat-like sequences AGG in the end of inserted copies are underlined and indicated at upstream -394 and -233.