Mitochondrial function is controlled by melatonin and its metabolites in vitro in human melanoma cells

Bernadetta Bilska1* | Fiona Schedel2* | Anna Piotrowska3 | Joanna Stefan4,5 ID | Michal Zmijewski3 | Elżbieta Pyza1 | Russel J. Reiter6 | Kerstin Steinbrink2 | Andrzej T. Slominski5,7 | Meri K. Tulić8 | Konrad Kleszczyński2 ID

1Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
2Department of Dermatology, University of Münster, Münster, Germany
3Department of Histology, Medical University of Gdańsk, Gdańsk, Poland
4Department of Oncology, Nicolaus Copernicus University Medical College, Bydgoszcz, Poland
5Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
6Department of Cellular and Structural Biology, UT Health, San Antonio, TX, USA
7Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
8Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France

Abstract
Melanoma is a leading cause of cancer deaths worldwide. Although immunotherapy has revolutionized the treatment for some patients, resistance towards therapy and unwanted side effects remain a problem for numerous individuals. Broad anti-cancer activities of melatonin are recognized; however, additional investigations still need to be elucidated. Herein, using various human melanoma cell models, we explore in vitro the new insights into the regulation of melanoma by melatonin and its metabolites which possess, on the other side, high safety profiles and biological meaningful. In this study, using melanotic (MNT-1) and amelanotic (A375, G361, Sk-Mel-28) melanoma cell lines, the comparative oncostatic responses, the impact on melanin content (for melanotic MNT-1 melanoma cells) as well as the mitochondrial function controlled by melatonin, its precursor (serotonin), a kynuric (N1-acetyl-N2-formyl-5-methoxykynuramine, AFMK) and indolic pathway (6-hydroxymelatonin, 6(OH) MEL and 5-methoxytryptamine, 5-MT) metabolites were assessed. Namely, significant disturbances were observed in bioenergetics as follows: (i) uncoupling of oxidative phosphorylation (OXPHOS), (ii) attenuation of glycolysis, (iii) dissipation of mitochondrial transmembrane potential (mtΔΨ) accompanied by (iv) massive generation of reactive oxygen species (ROS), and (v) decrease of glucose uptake. Collectively, these results together with previously published reports provide a new biological potential and make an imperative to consider using melatonin or its metabolites for complementary future treatments of melanoma-affected patients; however, these associations should be additionally investigated in clinical setting.

KEYWORDS
extracellular acidification rate, glucose uptake, melanoma cells, metabolites of melatonin, mitochondrial function, oxygen consumption rate, transmission electron microscopy

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. Journal of Pineal Research published by John Wiley & Sons Ltd.
Melatonin (N-acetyl-5-methoxytryptamine) is a mediator secreted by the pineal gland. In animals and humans, it is not only an endogenous synchronizer of seasonal biorhythms and sleep-wake cycle but it also regulates immune and endocrine functions. It has anti-cancer activities and possesses strong anti-oxidative, anti-inflammatory or anti-apoptotic properties against the nervous system and peripheral organs, in immune and endocrine functions. It has anti-cancer activities7 and possesses strong anti-oxidative, anti-inflammatory or anti-apoptotic properties against environmental insults.

Melatonin is synthesized via multistage process from tryptophan and its subsequent conversion into N-acetylsertotonin (NAS) from serotonin resulting melatonin formation. It is also produced in the nervous system and peripheral organs, including rodent23,24 and human skin.25,26 Melatonin is metabolized to 6-hydroxymelatonin (6(OH)MEL) and 5-methoxytryptamine (5-MT) via the indolic pathway or to N-acetyl-N-formyl-5-methoxykynuramine (AFMK) and N-acetyl-5-methoxykynuramine (AMK) via the kynuric pathway. Melatonin has been reported as an amphiphilic substance which easily crosses intracellular membranes reaching other organelles including mitochondria. It dynamically interacts with lipid bilayers, and it stabilizes the mitochondrial inner membrane attenuating oxidative damage under stress conditions.4,8-10,12,13,15,18,30-33 Thus, melatonin has been described as an effective modulator of mitochondrial integrity and physiology.

To date, high number of investigations focused on the impact of melatonin in regulation of body homeostasis. Epidemiological studies have reported a clear association between disturbed circadian rhythms among night-shift workers, including nurses or security guards with increased incidences of breast and prostate cancers, respectively. Furthermore, melatonin plays the key regulatory role in skin functions. Despite the maintenance of the epidermal homeostasis, there is lack of knowledge in terms of biological impact of melatonin’s metabolites on melanoma cells. Herein, we deliberately focussed on the mitochondrial function and melanin content in human melanoma cells in vitro which have not been tested so far in presence of melatonin, serotonin (precursor of melatonin) and its selected metabolites (AFMK, 6(OH)MEL or 5-MT).

Nowadays, melanoma is one of the deadliest cancers in the world with an increasing incidence. It represents the most rapidly rising malignancy in the Caucasian population. It is derived from genetically altered melanocytes following complex interactions between genetic, constitutive and environmental factors. In cutaneous melanoma, BRAF mutations are more common on intermittently sun-exposed skin. Thus, the BRAFV600E (50% of melanomas harbour BRAF mutations) leads to constitutive activation of downstream kinases of the mitogen-activated protein kinase (MAPK) signalling cascade in melanomas.

For now, obtained results within this study together with our recent reports enhance the biological importance of these compounds, provide the new insights into biology of melanoma and pave the path to consider melatonin, its metabolites or serotonin for future treatment of melanoma patients in combination with currently available targeted therapies.
up to 72 hours. Ethanol itself at the concentration of 0.2% (control cells) was not toxic for the cells. All cell lines in the logarithmic growth phase were used in all experiments, while 80-90% monolayers of confluent cells were harvested with a mixture of 0.05% trypsin-EDTA solution.

2.3 | Cell viability assay

Cells seeded in 96-well plates at the density of 0.15×10^5 cells/well were incubated with tested substances until desired time end point. Proliferation/growth rate was developed using the MTT assay along the previously described procedure. MTT (5 mg/mL in 1 x PBS) was prepared in culture medium (the final dilution, 1:10), 100 μL of assay reagent was added to each well, and cells were subsequently incubated for 3 hours in a humidified atmosphere of 5% CO$_2$ at 37°C. The resultant formazan crystals were dissolved using 100 μL isopropanol/0.04N HCl, absorbance was measured at $\lambda = 595$ nm using the BioTek ELx808™ microplate reader (BioTek Instruments, Inc, Winooski, VT, USA), and results were normalized to the control cells.

2.4 | Melanin content

MNT-1 melanotic melanoma cells were seeded in 6-well plates (Sarstedt, Nümbrecht, Germany) at the density of 0.3×10^6 cells/well, incubated with melatonin, its selected metabolites or serotonin in dose-dependent manner for 72 hours and assessed for melanin content. Cells were harvested, washed with 1 x PBS, centrifuged at 1,000 x g for 10 minutes at 4°C and incubated for 2 hours at 80°C in presence of 500 μL 1N NaOH. The absorbance was measured at $\lambda = 405$ nm using the BioTek ELx808™ microplate reader, and results were presented as the percentage of the control sample.

2.5 | Analysis of mitochondrial function

Melanoma cells were plated at the density of 0.25×10^5 cells/well and cultured on Seahorse XF-24 plates for 24 hours in a humidified atmosphere of 5% CO$_2$ at 37°C. Next day, cells were treated with tested compounds for 24 hours, all at the final concentration of 10^{-3} M versus control sample. Oxygen consumption rate (OCR or mitochondrial respiration) and extracellular acidification rate (ECAR or glycolytic function) in live cells in real time were measured using the Seahorse XF96 Extracellular Flux Analyzer (Seahorse Bioscience, North Billerica, MA, USA) along the appropriately adapted procedure described previously. Briefly, the initial 32 minutes reading established the baseline. Three subsequent injections followed, comprising oligomycin (complex V inhibitor), carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, a proton gradient uncoupler that collapses proton electrochemical gradients and allows the respiratory chain to operate maximally) and rotenone/antimycin A, inhibitors for complex I complex III, respectively. Subsequent time points were recorded with approximately 30 minutes between each injection. For the ECAR assay, glucose, oligomycin and 2-deoxyglucose (2-DG) (a glucose analog, which inhibits glycolysis through competitive binding to glucose hexokinase, the first enzyme in the glycolytic pathway) were accordingly injected. Results for OCR and ECAR were automatically generated from Wave software data that has been exported to Excel and compared to the control sample.

2.6 | Evaluation of glucose consumption and oxidative stress

Glucose uptake and generation of reactive oxygen species (ROS) were analysed using colorimetric assays supplied by BioVision, Inc (Milpitas, CA, USA) where cells were seeded on 96-well plates (0.15×10^5 cells/well), incubated with 10^{-3} M of melatonin, serotonin or metabolites for 24 hours and proceeded accordingly along the manufacturer’s instruction. Briefly, cells for glucose uptake were lysed with the extraction buffer for 40 minutes at 85°C, treated with the neutralization buffer and developed with the assay buffer. Assessment of generation reactive oxygen species was performed by H$_2$O$_2$ assay where reaction mix (Assay buffer, OxiRed™ Probe solution, HRP solution) was added to the cells, mixed thoroughly and incubated for 10 minutes at room temperature (RT). Differences were measured at $\lambda = 412$ nm and at $\lambda = 570$ nm for glucose uptake and ROS generation, respectively, using the BioTek ELx808™ microplate reader. Results were normalized to the control cells.

2.7 | Assessment of the mitochondrial membrane potential (mtΔΨ)

The detection of alterations within the inner electrochemical mtΔΨ in living cells was performed as described previously, using the cationic, lipophilic JC-1 dye (Thermo Fisher Scientific, Inc, Waltham, MA, USA). Briefly, cells were seeded in 6-well plates and allowed to attach overnight in a humidified atmosphere of 5% CO$_2$ at 37°C. The next day, cells were incubated with melatonin, its metabolites or serotonin at the dose of 10^{-5} or 10^{-3} M for 24 hours and then labelled for 15 minutes at 37°C with JC-1 (the final concentration: 1 μM in DMSO). Cells were centrifuged at 1,000 x g for 10 minutes at RT and resuspended in 500 μL 1 x PBS. The samples were kept on ice until analysis using
the FACSCalibur flow cytometer (Beckton Dickinson, San Jose, CA, USA). The mean of JC-1 fluorescence intensity was obtained from 10,000 cells using the excitation/emission settings at λex/em = 514 nm/529 nm. Results were analysed using the CellQuest Pro analysis software and expressed as a fluorescence ratio. Cells were additionally visualized by labelling using the JC-1 dye (Thermo Fisher Scientific, Inc, Waltham, MA, USA). Cells were seeded in an 8-well chamber slide (3.5 × 10^4 cells/well) and allowed to attach overnight in a humidified atmosphere of 5% CO_2 at 37°C. Next day, cells were stained for 15 minutes at 37°C with 1 µM JC-1 and incubated with melatonin, its metabolites or serotonin for 24 hours during which live imaging using the Olympus IX83 inverted Cell Vivo microscope (Waltham, MA, USA) was performed. During the whole experiment, cells were maintained under physiological conditions at 37°C and controlled humidity of 5% CO_2. Results were depicted as transition from JC-1 formed red-fluorescent “J- aggregates” to green-fluorescent JC-1 monomer.

2.8 | Transmission electron microscopy (TEM) assessment

Cells seeded in 6-well plates in supplemented MEM were treated with 10^{-3} M of melatonin, its metabolites or serotonin for 24 hours. Next, cells were harvested and centrifuged (700 r.p.m. for 5 minutes), washed with 1 × PBS, and fixation was performed for 24 hours at 4°C using 2.5% glutaraldehyde in 0.1 M cacodylate buffer. After that, cells were washed with 0.1 M cacodylate buffer, postfixed in 1% OsO_4 for 2 hours at RT and washed once more using distilled water. Cells were embedded in Poly/Bed®812 (Polysciences, Inc, Warrington, PA, USA) after dehydration in graded ethanol (50%-100%) and propylene oxide. Sections (65 nm thick) were stained with uranyl acetate/lead citrate prior to visualization using the Jeol JEM 2100 HT transmission electron microscope and assessed qualitatively in terms of the stages of melanosomes and shape of mitochondria.

2.9 | Statistical analysis

All the experiments were conducted at least (n = 4) and the results were expressed as the mean ± standard deviation (SD). Statistically significant differences between results were determined by the univariate analysis of variance (ANOVA) or the Student’s t test and appropriate post hoc analysis using GraphPad Prism 7.05 software (La Jolla, CA, USA). All the analyses are presented as percentage of the control sample, that is 0.2% EtOH, and a P-value of less than 0.05 was considered as statistically significant.

3 | RESULTS

3.1 | Melatonin, its metabolites and serotonin affect cell proliferation and melanin content in melanoma cells

We compared melanotic (MNT-1) and amelanotic (A375, G361, Sk-Mel-28) melanoma cell lines whether melatonin, its precursor (serotonin) and its selected metabolites (both, from kynuric pathway (AFMK) and indolic pathway 6(OH)MEL, 5-MT) affected their viability. After 72 hours incubation, we observed significant drop of cell growth within the higher concentrations of all tested substances ranging from 10^{-5} M to 10^{-3} M and they appear to reveal similar pattern of regulation within all investigated melanoma cell models (Figure 1A–J). Namely, 10^{-3} M melatonin triggered collapse of proliferation ratio by 15% (G361, MNT-1), 19% (A375) and 23% (Sk-Mel-28) (Figure 1A and B). Comparatively, serotonin induced drop of viability by 13% (A375, G361, Sk-Mel-28) and 18% (MNT-1) (Figure 1C and D) while metabolites of melatonin-arrested melanoma growth ranging from 16% to 21% for AFMK, from 14% to 16% for 6(OH)MEL and from 15% to 33% for 5-MT (Figure 1E–J). Furthermore, a similar pattern of response was observed in terms of synthesis of melanin (Figure 2A–E). We noticed significantly (P < 0.001) lower melanin content versus control ranging from 14% to 21% for the dose of 10^{-5} M and from 15% to 54% for 10^{-3} M. The lowest concentration (10^{-9} M) led to proportionally smaller effect compared to intact cells ranging from 23% for serotonin, 16% for 5-MT to 12% for melatonin. Visualization of melanosomes in MNT-1 cells by transmission electron microscopy (TEM) and their qualitative assessment demonstrated that all the compounds at the dose of 10^{-3} M notably reduced the number of matured melanosomes (stage III-IV; yellow chevrons) with predominant accumulation of premelanosomes (stage I-II; white chevrons) (Figure 3A–F), and these responses are in line with one of our latest publications where melatonin significantly reduced melanogenesis.39

3.2 | Melatonin, its precursor and its metabolites target mitochondrial function in melanoma cells

Numerous reports have shown that melatonin is present in cytosol, intracellular membranes as well as mitochondrial and nuclear compartments.68,69 This may suggest that melatonin-arrested cancer cell growth rate may be associated to their regulation/energy metabolism which is dependent either on mitochondria or the fact that cytosolic glycolysis for ATP synthesis is mostly used by cancer cells. Thus, two metabolic
pathways, OXPHOS or glycolysis, may be utilized as source of energy in metastatic melanomas depending on the actual environmental conditions. Herein, we assessed the impact of melatonin and its metabolites on mitochondrial respiration (OXPHOS)/glycolysis equilibrium quantified by real-time oxygen consumption rate (OCR) (Figure 4A–E) and extracellular acidification rate (ECAR or glycolytic function) (Figure 5A–D) in human MNT-1 melanoma cells. Firstly, assessment of OCR showed significant differences between control cells and mitochondrial parameters (Figure 4A–E and insert with respiration slopes). For instance, melatonin, its metabolites and serotonin significantly decreased basal respiration ranging

Figure 1 (continues)
from 11% to 15% (Figure 4A), enhanced twofold proton leak (Figure 4B), affected maximal respiration (Figure 4C), and as a result, spare respiratory capacity of melanoma cells was significantly attenuated (Figure 4D). These disturbances were in line with elevated oxidative stress. Thus, selected melanoma cells upon incubation with melatonin and its metabolites revealed significant elevation of reactive oxygen species (H$_2$O$_2$) versus intact cells ranging from 25% to 50% (Figure 4F and G). Besides, alterations within OXPHOS are accompanied by glycolysis disturbances in melanoma cells where similar
A pattern of regulation was noticed. Respiration slopes (Figure 5; insert) showed distinct ECAR differences between cells incubated with subjected substances and melanoma cells alone. Subsequent evaluation presented altered glycolysis itself (from 10% to 17% compared to the control cells) (Figure 5A). As a consequence, glycolytic capacity and glycolytic reserve were also affected (Figure 5B and C). These disturbances are in line with decreased glucose uptake in melanoma cell models reaching its drop ranging between 25%-35% for A375 and 23%-36% for G361 (Figure 5E) or between 24%-39% for MNT-1 and 28%-44% for Sk-Mel-28 (Figure 5F). Furthermore, comparative assessment of mitochondrial transmembrane potential (mtΔΨ) using selectively bound fluorescent dye (Figure 6A–C) was also performed. Live imaging of the changes within the inner mitochondrial membrane up to 24 hours showed a progressive dissipation of mtΔΨ in presence of melatonin and its metabolites. All compounds at 10⁻³ M caused significant increase of the green-fluorescent JC-1 monomer referred to decreased mtΔΨ. Thus, the ratio of red-to-green JC-1 fluorescence was dependent only on the membrane potential and not on other factors that may influence single-component fluorescence signals, such as size, shape and density of mitochondria. The results described above are in agreement with the visualization of mitochondria by transmission electron microscopy (see Figure 3A–F) where differences in morphology of mitochondria were observed as well.

4 | DISCUSSION

Mitochondria exert numerous functional responsibilities that make these organelles essential for cell survival. Among the intact cells, mitochondria are mainly responsible for ATP production occurring along the inner mitochondrial membrane. Glycolysis, taking place in the cytosol, generates pyruvate, which is subsequently transported into the mitochondrial matrix. Contrary to normal cells, mitochondria in cancer cells, including melanomas, exhibit markedly different metabolism. Thus, functionally altered mitochondria can jeopardize cellular homeostasis. For instance, “the mitochondrial diseases” such as Parkinsonism, cardiomyopathy, diabetes mellitus or cancer are all related to disturbed mitochondrial physiology. In addition, many other pathological conditions show dysfunctional mitochondria such as Alzheimer’s disease, intoxication with heavy metal, ischaemia/reperfusion injury, or exposure to ionizing and ultraviolet radiation. Herein, we assessed the impact of melatonin, AFMK, 6(OH)MEL, 5-MT and serotonin on mitochondrial functions in...
FIGURE 2 Melatonin and its metabolites decrease melanin content in human melanotic MNT-1 melanoma cells. Evaluation of melanin content after 72 h incubation with 10^{-9} M, 10^{-7} M, 10^{-5} M, 10^{-4} and 10^{-3} M melatonin (A), serotonin (B), AFMK (C), 6(OH)MEL (D) or 5-MT (E) as described in Materials and Methods. Data are presented as the mean ± SD (n = 6) and the results expressed as a percentage of the control cells (0.2% EtOH). Statistically significant differences versus control were indicated as *P < .05, **P < .01, ***P < .001 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Melatonin and its metabolites affect mitochondrial and melanosomal development in melanotic MNT-1 melanoma cells. Transmission electron microscopy images were obtained as described in Materials and Methods. This study reveals differences in the number and the shape of mitochondria as well as changes in particular stages of melanosomes 24 h after the treatment with melatonin (B), serotonin (C), AFMK (D), 6(OH)MEL (E) or 5-MT (F) at the dose of 10^{-3} M compared to the control cells (0.2% EtOH) (A). Mito: mitochondria; Nu: nucleus; Nucl: nucleolus; white chevrons: melanosome stage I–II; yellow chevrons: melanosome stage III–IV [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 4 (continues)
various melanoma cell lines, one of the most complex, aggressive and heterogeneous cancers. Resistance to currently used anti-melanoma drugs and high safety profile of melatonin and its metabolites on the other side make an imperative to consider these substances into either novel therapies or complementary treatments of melanoma-affected patients. To date, it was shown that these compounds affect homeostasis of melanoma cell lines.10,39,75 Namely, they decrease proliferation rate what was previously shown in amelanotic rodent melanomas,41,76 and in human cutaneous cells.27,77 These inhibitory activities are in line with distinct number of studies showing reduction of cancer cell proliferation in lymphoid, prostate, carcinoma, and neuroblastoma.78-80 Differences in cancer cell sensitivity to melatonin or its metabolites may be connected to melanoma physiological imprinting of particular cell line. We used millimolar concentrations of compounds that in colon cancer cells decreased S-phase population and triggered apoptosis while the same concentration reduced the G2/M phase cells what was proved earlier in osteosarcoma or leukaemia cells.51 These differences are attributed to the general metabolic and differentiation states of cancer cells. Thus, the equilibrium between oxidative and glycolytic metabolism is regulated by hypoxia-inducible factor 1 (HIF-1), a transcription factor mediating the responses to changes in tissue oxygenation. Among the others, Slominski et al57 confirmed upregulation of the HIF-1 gene in the glycolytic pathway and increase of HIF-1 protein level during melanogenesis. Furthermore, it was shown that initiation of melanin synthesis is correlated with the expression of multiple genes involved in the regulation of melanocyte/melanoma behaviour, including the metabolic switch to glycolysis coordinated by HIF-1. These observations are in line with Park et al,82 Seagroves et al83 and Semenza84 who noticed significant decrease of melanogenesis at higher doses of melatonin. Since melatonin inhibits HIF-1α protein at such ranges, this indicates on the correlation between melatonin, HIF-1 and melanogenesis.

Contrary to listed above reports, we selected highly pigmented human melanotic MNT-1 melanoma cells in order to study the link between growth rate and melanin content what is in agreement with the previous publications in terms of pigmentation studies.59-61 In fact, melanoma cells originate from melanocytes which produce melanin in the skin under physiological conditions. Unlike normal melanocytes, melanoma cells do not excrete pigment to keratinocytes, leading to melanin accumulation and resultant heavy pigmentation of the cells. Melanin synthesis is deregulated in melanotic melanoma cells and this affects their behaviour but also of the surrounding environment with mutagenic immunosuppressive effects.56,57,85 As a result, this inhibits the host responses

\textbf{FIGURE 4} Melatonin and its metabolites alter oxidative phosphorylation in human melanoma cells. Seahorse mitochondrial respiration presents baseline, oligomycin-inhibited, FCCP-activated and rotenone/antimycin A-inhibited oxygen consumption rate (OCR) (insert). MNT-1 cells were treated for 24 h with 10^{-3} M of melatonin, its metabolites or serotonin and mitochondrial function was assessed (A–E). Comparatively, the appearance of H_2O_2 referred to generation of oxidative stress in amelanotic (A375, G361, Sk-Mel-28) and melanotic MNT-1 melanoma was investigated (F, G) as described in Materials and Methods. Data are presented as mean + SD (n = 6) and the results expressed as a percentage of the control cells (0.2% EtOH). Statistically significant differences \textit{versus} control were indicated as *$P<.05$, **$P<.01$, ***$P<.001$ for OCR assessment (A–E) and as #*$P<.05$, †$P<.01$, ‡$P<.001$ for oxidative stress (F, G).
and triggers the tumour progression. In our study, melatonin and its metabolites significantly reduced melanin content and this is consistent with the previous data. For instance, Kim et al. have shown that in humans, melatonin and some metabolites possess moderate inhibition of tyrosinase as well as affected proliferation of cultured epidermal melanocytes. In addition, it has been suggested that the cutaneous circadian clock regulates melanogenesis and melanocyte activities in human epidermis and hair follicles (HFs) with melatonin playing a role in this process. In this study, we operated
with the concentrations ranging from 10^{-9} M to 10^{-3} M while the mammalian plasma melatonin concentrations range of 10-200 pg/mL which corresponds to 5×10^{-8} M to 10^{-6} M. On the other hand, Slominski & Pruski41 reported that at higher doses, melatonin possesses competitive inhibitory capacities more than acting via melatonin receptors. Melatonin at physiological doses ranging from 0.1 to 10 nM affects proliferation rate with no clear actions in terms of melanogenesis. Contrary, higher concentrations exceeding > 0.10 µM arrested melanogenesis without substantial impact on proliferation. Thus, different responses of melatonin on proliferation rate and melanin content may indicate that this substance regulates both processes through independent mechanisms. Besides, one of the most sensitive organelles for oxidative stress is mitochondria playing the key role of melanoma survival/death response, and which are the main target for melatonin. Thus, glucose regulation metabolism in cancer cells is essentially dependent on mitochondria. Herein, the assessment of the OXPHOS/glycolysis equilibrium showed on one hand reduction of oxidative phosphorylation with increased proton leak accompanied by enhanced oxidative stress while glycolytic capacity or glucose uptake were distinctly arrested on the other hand. These changes are in line with latest reports of Mi & Kuang86 or Puente-Moncada et al87 where glucose uptake significantly decreased by melatonin in HepG2 hepatic carcinoma or in tumour xenograft mouse model, respectively. Considering earlier reports, melatonin has been described as an effective anti-apoptotic, anti-inflammatory and anti-oxidative molecule in human keratinocytes or melanocytes under stress conditions.8,9,11-13,31 Herein, we noticed elevation of oxidative stress in melanoma cells which seems to be contradictory with reports mentioned above. It is postulated that the imbalance between cellular oxidative and anti-oxidant enzymes as well as overproduction of ROS in cancer cells have important treatments role.88 For instance, it was reported previously that melatonin therapy also generates ROS resulting in tumour cells.89 As a consequence, increased ROS due to melatonin leads to activation of apoptosis pathways such as caspase-3 in cancer cells.90 Furthermore, melatonin combined with endoplasmic reticulum stress affected antioxidant enzymes in melanoma cells.91 These observations are confirmatory of earlier mentioned statement that differences in cancer cell responses to melatonin and its endogenous metabolites may be related to their particular physiology compared to healthy cutaneous cells. This indicates that melatonin could be an appropriate candidate for melanoma treatment in combination with currently used therapies, however, further investigations should be carefully performed.
It should be also mentioned that melatonin is metabolized by cytochromes P450 (CYP450) in the liver, the key enzymes for endogenous drugs metabolism.\(^9\) It was shown previously that melatonin is metabolized to 6(OH)MEL and N-acetylserotonin (NAS) by CYP1A1, and most of them are converted to sulphate derivatives in human liver.\(^9\) CYP1B1 is engaged in melatonin metabolism to NAS in mitochondria of the tumour cells. Since melatonin crosses the cell membrane and penetrates many cell compartments, its facilitated diffusion in transmembrane transportation was recently reported.\(^9,12,27,31,32,37,39\) For instance, it is known that oligopeptide transporter 1/2 (PEPT1/2) renders its oncostatic activity in tumour cells and it was described to facilitate melatonin transportation into mitochondria. As a matter of fact, its accumulation in these organelles triggered apoptosis of human cancer cell lines.\(^94\) Glycolysis and OXPHOS are two energy-producing metabolic pathways in melanoma cells and most of cancer cells exert the ability to switch between these two mechanisms allowing to adapt to environmental changes.\(^70,95\) Thus, we showed within this study that melatonin as well its metabolites, what is brand new in case of AFMK, 6(OH)MEL, 5-MT and serotonin, suppress proliferation ratio, decrease melanogenesis and reduce OXPHOS/glycolysis equilibrium or glucose homeostasis.

In conclusion, enclosed data within this study together with the previous reports prompt us to postulate that incorporation of these substances into routine medical therapies, including surgery, chemotherapy, radiotherapy and modern targeted therapy may reduce side effects and enhance survival rate of melanoma-affected patients. Thus, melatonin, its precursor (serotonin) and its metabolites affect melanoma proliferation, melanin content and their mitochondrial functions (Figure 7). These results suggest to consider their use either alone or in combination with currently used anti-melanoma agents in patients for whom immunotherapy fails. Nevertheless, it is important to test these associations on melanoma patients in clinical setting.
FIGURE 6 Melatonin and its metabolites decrease mitochondrial transmembrane potential (mtΔΨ) in human melanoma cells. MNT-1 cells were treated with melatonin, serotonin, AFMK, 6(OH) MEL or 5-MT and evaluated with regard to changes within mitochondrial function by fluorescence labelling using the JC-1 dye (A–C) as described in Materials and Methods and assessed by live imaging for 24 h (B). Comparative flow cytometry analysis was performed (C) subsequently quantified and results presented as mean ± SD (n = 4). The values are expressed as a percentage of the control cells (0.2% EtOH). Statistically significant differences versus control were indicated as *P < .05, **P < .01, ***P < .001. Bar = 50 μm
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTION
KK designed the concept of the studies, conducted the progress of analysis, together with BB and FS analysed all the results, and wrote the first draft of the manuscript. BB completed electron microscopy quantification and together with EP described these data. MKT carried out mitochondrial assessment and together with KK evaluated obtained results. AP and MZ carried out fluorescence imaging and described the results. JS together with KK evaluated glucose uptake and H2O2 assays. KK, BB and FS interpreted collectively pooled data, subsequently together with AP, JS, EP, MZ, RJR, KS, ATS and MKT drafted and approved the final version of the manuscript.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Joanna Stefan https://orcid.org/0000-0002-2205-9893
Russel J. Reiter https://orcid.org/0000-0001-6763-4225
Andrzej T. Slominski https://orcid.org/0000-0001-8963-3995
Konrad Kleszczynski https://orcid.org/0000-0002-1311-263X

REFERENCES
1. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin – a pleiotropic, orchestrating regulator molecule. *Prog Neurobiol*. 2011;93:350-384.
2. Lanoix D, Lacasse AA, Reiter RJ, Vaillancourt C. Melatonin: the smart killer: the human trophoblast as a model. *Mol Cell Endocrinol*. 2012;348:1-11.
3. Lerner AB, Case JD, Takahashi Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. *J Biol Chem*. 1960;235:1992-1997.
4. Reiter RJ, Tan DX, Fuentes-Broto L. Melatonin: a multitasking molecule. *Prog Brain Res*. 2010;181:127-151.
5. Reiter RJ, Tan DX, Manchester LC, et al. Melatonin in edible plants (phytomelatonin): identification, concentrations, bioavailability and proposed functions. *World Rev Nutr Diet.* 2007;97:211-230.

6. Slominski A, Tobin DJ, Zmijewski MA, Wortsman J, Paus R. Melatonin in the skin: synthesis, metabolism and functions. *Trends Endocrinol Metab.* 2008;19:17-24.

7. Reiter RJ, Rosales-Corral SA, Tan DX, et al. Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. *Int J Mol Sci.* 2017;18:843.

8. Fischer TW, Kleszczyński K, Hardkop LH, Kruse N, Zillikens D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2'-deoxyguanosine) in *ex vivo* human skin. *J Pineal Res.* 2013;54:303-312.

9. Janjetovic Z, Jarrett SG, Lee EF, Duprey C, Reiter RJ, Slominski AT. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NFR2-mediated pathways. *Sci Rep.* 2017;7:1274.

10. Kleszczyński K, Bilńska B, Stegmann A, et al. Melatonin and its metabolites ameliorate UVR-induced mitochondrial oxidative stress in human MNT-1 melanoma cells. *Int J Mol Sci.* 2018;19(12):3786.

11. Kleszczyński K, Zwickor S, Tukaj S, et al. Melatonin compensates silencing of heat shock protein 70 and suppresses ultraviolet radiation-induced inflammation in human skin *ex vivo* and cultured keratinocytes. *J Pineal Res.* 2015;58:117-126.

12. Janjetovic Z, Nahmis ZP, Hanna S, et al. Melatonin and its metabolites ameliorate ultraviolet B-induced damage in human epidermal keratinocytes. *J Pineal Res.* 2014;57:90-102.

13. Skobowiát C, Brożyna AA, Janjetovic Z, et al. Melatonin and its derivatives counteract the ultraviolet B radiation-induced damage in human and porcine skin *ex vivo*. *J Pineal Res.* 2018;65:e12501.

14. Slominski AT, Kleszczyński K, Semak I, et al. Local melatoninergic system as the protector of skin integrity. *Int J Mol Sci.* 2014b;15:17705-17732.

15. Slominski AT, Zmijewski MA, Semak I, et al. Melatonin, mitochondria, and the skin. *Cell Mol Life Sci.* 2017;74:3913-3925.

16. Luchetti F, Canonico B, Betti M, et al. Melatonin signaling and cell protection function. *FASEB J.* 2010;24:3603-3624.

17. Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. *Endocr Rev.* 1991;12:151-180.

18. Slominski A, Wortsman J, Tobin DJ. The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. *FASEB J.* 2005b;19:176-194.

19. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? *J Pineal Res.* 2007;42:28-42.

20. Roseboom PH, Namboodiri MA, Zimonjic DB, et al. Natural melatonin ‘knockdown’ in C57BL/6J mice: rare mechanism truncates serotonin N-acetyltransferase. *Mol Brain Res.* 1998;63:189-197.

21. Konturek SJ, Konturek PC, Brzozowska I, et al. Localization and biological activities of melatonin in intact and diseased gastrointestinal tract (GIT). *J Physiol Pharmacol.* 2007;58:381-405.

22. Zmijewski MA, Sweatman TW, Slominski AT. The melatonin-producing system is fully functional in retinal pigment epithelium (ARPE-19). *Mol Cell Endocrinol.* 2009;307:211-216.

23. Slominski A, Baker J, Rosano TG, et al. Metabolism of serotonin to N-acetylsertotonin, melatonin, and 5-methoxytryptamine in hamster skin culture. *J Biol Chem.* 1996;271:12281-12286.

24. Slominski A, Pisaschick A, Semak I, Sweatman T, Szczesniewski A, Wortsman J. Serotoninergic system in hamster skin. *J Invest Dermatol.* 2002a;119:934-942.

25. Slominski A, Fischer TW, Zmijewski MA, et al. On the role of melatonin in skin physiology and pathology. *Endocrine.* 2005a;27:137-148.

26. Slominski A, Pisaschick A, Semak I, et al. Serotoninergic and melatoninergic systems are fully expressed in human skin. *FASEB J.* 2002b;16:896-898.

27. Kim TK, Lin Z, Tidwell WJ, Li W, Slominski AT. Melatonin and its metabolites accumulate in the human epidermis *in vivo* and inhibit proliferation and tyrosinase activity in epidermal melanocytes *in vitro.* *Mol Cell Endocrinol.* 2015;404:1-8.

28. Semak I, Korik E, Antonova M, Wortsman J, Slominski A. Metabolism of melatonin by cytochrome P450s in rat liver mitochondria and microsomes. *J Pineal Res.* 2008;45:515-523.

29. Venegas C, García JA, Escames G, et al. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. *J Pineal Res.* 2012;52:217-227.

30. García JJ, López-Pingarrón L, Almeida-Souza P, et al. Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. *J Pineal Res.* 2014;56:225-237.

31. Kleszczyński K, Tukaj S, Kruse N, Zillikens D, Fischer TW. Melatonin prevents ultraviolet radiation-induced alterations in plasma membrane potential and intracellular pH in human keratinocytes. *J Pineal Res.* 2013;54:89-99.

32. Slominski AT, Hardeland R, Zmijewski MA, Slominski RM, Reiter RJ, Paus R. Melatonin: A cutaneous perspective on its production, metabolism, and functions. *J Invest Dermatol.* 2018;138:490-499.

33. Slominski A, Pisaschick A, Zbytek B, Tobin DJ, Kauser S, Wortsman J. Functional activity of serotoninergic and melatoninergic systems expressed in the skin. *J Cell Physiol.* 2003;196:144-153.

34. Slominski A, Wortsman J. Neuroendocrinology of the skin. *Endocr Rev.* 2000;21:457-487.

35. Slominski AT, Zmijewski MA, Skobowiát C, Zbytek B, Slominski RM, Steketee JD. Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. *Adv Anat Embryol Cell Biol.* 2012;212:1-115.

36. Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. *Br J Pharmacol.* 2018;175:3190-3199.

37. Kim TK, Kleszczyński K, Janjetovic Z, et al. Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. *FASEB J.* 2013;27:2742-2755.

38. Brożyna AA, van Middlesworth L, Slominski AT. Inhibition of melanogenesis as a radiation sensitizer for melanoma therapy. *Int J Cancer.* 2008;123:1448-1456.

39. Kleszczyński K, Kim TK, Bilńska B, et al. Melatonin exerts oncostatic capacity and decreases melanogenesis in human MNT-1 melanoma cells. *J Pineal Res.* 2019;67:e12610.

40. Slominski AT, Kim TK, Kleszczyński K, et al. Characterization of serotonin and N-acetylserotonin systems in the human epidermis and skin cells. *J Pineal Res.* 2020;68:e12626.

41. Slominski A, Pruski D. Melatonin inhibits proliferation and melanogenesis in rodent melanoma cells. *Exp Cell Res.* 1993;206:189-194.
42. Valverde P, Benedito E, Solano F, Oaknin S, Lozano JA, García-Borrón JC. Melatonin antagonizes alpha-melanocyte-stimulating hormone enhancement of melanogenesis in mouse melanoma cells by blocking the hormone-induced accumulation of the c locus tyrosinase. *Eur J Biochem.* 1995;232:257-263.

43. Brunsen A, Jansen L, Eisemann N, et al. A population-based registry study on relative survival from melanoma in Germany stratified by tumor thickness for each histologic subtype. *J Am Acad Dermatol.* 2019;80:938-946.

44. Garbe C, Ueim U, Eigentler TK, et al. Time trends in incidence and mortality of cutaneous melanoma in Germany. *J Eur Acad Dermatol Venereol.* 2019;33:1272-1280.

45. Caccavale S, Calabrese G, Mattiello E, et al. Cutaneous melanoma arising in congenital melanocytic nevus: A retrospective observational study. *Dermatology.* 2020;14:1-6.

46. Koni M, Pinnarò V, Brizzi MF. The Wnt signalling pathway: A key regulator in melanocytic differentiation. *Clin Dermatol.* 2019;37:447-467.

47. Li M, Knapp SK, Iden S. Mechanisms of melanocyte polarity and differentiation: What can we learn from other neuroectoderm-derived lineages? *Curr Opin Cell Biol.* 2020;67:99-108.

48. Wang SJ, Khullar K, Kim S, et al. Effect of cyclo-oxygenase inhibitor use during checkpoint blockade immunotherapy in patients with metastatic melanoma and non-small cell lung cancer. *J Immunother Cancer.* 2020;8:e000889.

49. Davis EJ, Johnson DB, Sosman JA, Chandra S. Melanoma: what do all the mutations mean? *Cancer.* 2019;12:59-69.

50. Luebker SA, Koepsell SA. Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. *Front Oncol.* 2019;9:268.

51. Trojaniello C, Festino L, Vanella V, Ascieto PA. Encorafenib in combination with binimetinib for unresectable or metastatic melanoma with BRAF mutations. *Expert Rev Clin Pharmacol.* 2019;12:259-266.

52. Cheng L, Lopez-Beltran A, Massari F, MacLennan GT, Montironi R. Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. *Mod Pathol.* 2018;31:24-38.

53. Davis EJ, Johnson DB, Sosman JA, Chandra S. Melanoma: what do all the mutations mean? *Cancer.* 2018;124:3490-3499.

54. Reiter RJ, Sharma R, Ma Q. Switching diseased cells from cytosolic aerobic glycolysis to mitochondrial oxidative phosphorylation: a metabolic rhythm regulated by melatonin? *J Pineal Res.* 2020a;70:e12677.

55. Reiter RJ, Sharma R, Ma Q, Rorsales-Corral S, de Almeida Chuffa LG. Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. *Cell Mol Life Sci.* 2020b;77:2527-2542.

56. Slominski AT, Hardeland R, Reiter RJ. When the circadian clock meets the melamin pigmentary system. *J Invest Dermatol.* 2015a;135:943-945.

57. Slominski A, Kim TK, Brożyna AA, et al. The role of melanogenesis in regulation of melanoma behavior: Melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways. *Arch Biochem Biophys.* 2014a;563:79-93.

58. Slominski RM, Zmięwski MA, Slominski AT. The role of melanin pigment in melanoma. *Exp Dermatol.* 2015b;24:258-259.

59. Chen KG, Leapman RD, Zhang G, et al. Influence of melanosome dynamics on melanoma drug sensitivity. *J Natl Cancer Inst.* 2009;101:1259-1271.

60. Chen KG, Valencia JC, Lai B, et al. Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. *Proc Natl Acad Sci USA.* 2006;103:9903-9907.

61. Hah YS, Cho HY, Lim TY, et al. Induction of melanogenesis by rapamycin in human MNT-1 melanoma cells. *Ann Dermatol.* 2012;24:151-157.

62. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay; assessment of chemosensitivity testing. *Cancer Res.* 1987;47:936-942.

63. Chen D, Borsoumian HB, Fischer G, et al. Combination treatment with radiotherapy and a novel oxidative phosphorylation inhibitor overcomes PD-1 resistance and enhances antitumor immunity. *J Immunother Cancer.* 2020;8(1):e000289.

64. Klotz L, Eschborn M, Lindner M, et al. Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects. *Sci Transl Med.* 2019;11(490):eaao5563.

65. Logan S, Pharaoh GA, Marlin MC, et al. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes. *Mol Metab.* 2018;9:141-155.

66. Mattrka MC, Watanabe M, Muraleedharan R, et al. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis. *PLoS One.* 2017;12:e0177952.

67. Pietrowska A, Wierzbicka J, Ślebioda T, et al. Vitamin D derivatives enhance cytotoxic effects of H2O2 or cisplatin on human keratinocytes. *Stereoids.* 2016;110:49-61.

68. Costa EJ, Shida CS, Biaggi MH, Ito AS, Lamy-Freund MT. How melatonin interacts with lipid bilayers: a study by fluorescence and ESR spectroscopies. *FEBS Lett.* 1997;416:103-106.

69. Menendez-Pelaæz A, Reiter RJ. Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. *J Pineal Res.* 1993;15:59-69.

70. Scott DA, Richardson AD, Filipp FV, et al. Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. *J Biol Chem.* 2011;286:42626-42634.

71. Thomson TM, Balcels C, Cascante M. Metabolic plasticity and epithelial-mesenchymal transition. *J Clin Med.* 2019;8:7.

72. Doktór B, Damulewicz M, Pyza P. Effects of MUL1 and PARKIN on the circadian clock, brain and behaviour in Drosophila Parkinson’s disease models. *BMC Neurosci.* 2019;20:24.

73. Ma Z, Xin Z, Di W, et al. Melatonin and mitochondrial function during ischemia/reperfusion injury. *Cell Mol Life Sci.* 2017;74:3989-3998.

74. Okatani Y, Wakatsuki A, Reiter RJ. Melatonin protects hepatic mitochondrial respiratory chain activity in senescence-accelerated mice. *J Pineal Res.* 2002;32:143-148.

75. Cabrera J, Negrín G, Estévez F, Loro J, Reiter RJ, Quintana J. Melatonin decreases cell proliferation and induces melanogenesis in human melanoma SK-MEL-1 cells. *J Pineal Res.* 2010;49:45-54.

76. Castrucci AM, Almeida AL, Al-Obeidi FA, et al. Comparative biological activities of alpha-MSH antagonists in vertebrate pigment cells. *Gen Comp Endocrinol.* 1997;105:410-416.

77. Ying SW, Niles LP, Crocker C. Human malignant melanoma cells express high-affinity receptors for melatonin: antiproliferative effects of melatonin and 6-chloromelatonin. *Eur J Pharmacol.* 1993;246:89-96.

78. Cucina A, Proietti S, D’Anselmi F, et al. Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. *J Pineal Res.* 2009;46:172-180.
79. Hong Y, Won J, Lee Y, et al. Melatonin treatment induces interplay of apoptosis, autophagy, and senescence in human colorectal cancer cells. *J Pineal Res*. 2014;56:264-274.

80. Rubio S, Estévez F, Cabrera J, Reiter RJ, Loro J, Quintana J. Inhibition of proliferation and induction of apoptosis by melatonin in human myeloid HL-60 cells. *J Pineal Res*. 2007;42:131-138.

81. Liu L, Xu Y, Reiter RJ. Melatonin inhibits the proliferation of human osteosarcoma cell line MG-63. *Bone*. 2013;55:432-438.

82. Park JW, Hwang MS, Suh SI, Baek WK. Melatonin down-regulates HIF-1 alpha expression through inhibition of protein translation in prostate cancer cells. *J Pineal Res*. 2009;46:415-421.

83. Seagroves TN, Ryan HE, Lu H, et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. *Mol Cell Biol*. 2001;21:3436-3444.

84. Semenza GL. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. *Biochim Biophys Acta*. 2011;1813:1263-1268.

85. Slominski A, Paus R, Mihm MC. Inhibition of melanogenesis as an adjuvant strategy in the treatment of melanotic melanomas: Selective review and hypothesis. *Anticancer Res*. 1998;18:3709-3715.

86. Mi L, Kuang H. Melatonin regulates cisplatin resistance and glucose metabolism through hippo signaling in hepatocellular carcinoma cells. *Cancer Manag Res*. 2020;12:1863-1874.

87. Puente-Moncada N, Turos-Cabal M, Sánchez-Sánchez AM, et al. Role of glucose metabolism in the differential anti-leukemic effect of melatonin on wild-type and FLT3-ITD mutant cells. *Oncol Rep*. 2020;44:293-302.

88. Pourhanifeh MH, Mahdavinia M, Reiter RJ, Asemi Z. Potential use of melatonin in skin cancer treatment: a review of current biological evidence. *J Cell Physiol*. 2019;234:12142-12148.

89. Ozben T. Antioxidant supplementation on cancer risk and during cancer therapy: an update. *Curr Top Med Chem*. 2015;15:170-178.

90. Pariente R, Pariente JA, Rodriguez AB, Espino J. Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation. *J Pineal Res*. 2016;60:55-64.

91. Kim HS, Kim TJ, Yoo YM. Melatonin combined with endoplasmic reticulum stress induces cell death via the PI3K/Akt/mTOR pathway in B16F10 melanoma cells. *PLoS One*. 2014;9:e92627.

92. Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. *Philos Trans R Soc Lond B Biol Sci*. 2013;368:20120431.

93. Jiang W, Tian X, Wang Y, et al. The natural anthraquinones from Rheum palmatum induced the metabolic disorder of melatonin by inhibiting human CYP and SULT enzymes. *Toxicol Lett*. 2016;262:27-38.

94. Guengerich FP. Cytochrome p450 and chemical toxicology. *Chem Res Toxicol*. 2007;21:70-83.

95. Kroemer G, Pouyssegur J. Tumor cell metabolism: Cancer's Achilles' heel. *Cancer Cell*. 2008;13:472-482.

How to cite this article: Bilska B, Schedel F, Piotrowska A, et al. Mitochondrial function is controlled by melatonin and its metabolites in vitro in human melanoma cells. *J Pineal Res*. 2021;70:e12728. https://doi.org/10.1111/jpi.12728