DECOMPOSITIONS INVOLVING ANICK’S SPACES

BRAYTON GRAY

The goal of this work is to continue the investigation of the Anick fibration and the associated spaces. Recall that this is a p-local fibration sequence:

$$\Omega^2 S^{2n+1} \to S^{2n} \to T \to \Omega S^{2n+1}$$

where π_n is a compression of the p^nth power map on $\Omega^2 S^{2n+1}$. This fibration was first described for $p \geq 5$ as the culmination of a 270 page book [A]. In [AG], the authors described an H space structure for the fibration sequence. Its relationship to EHP spectra was discussed [G3] as well as first steps to developing a universal property.

Much work has been done since then to find a simpler construction, and this was obtained for $p \geq 3$ in [GT]. This new construction also reproduces the results of [AG]. It is in the context of these new methods that this work is developed and we assume a familiarity with [GT].

One of the main features of the construction is a certain fibration sequence:

$$\Omega G \xrightarrow{h} T \xrightarrow{i} R \xrightarrow{\rho} G$$

where h has a right homotopy inverse $g : T \to \Omega G$ and the adjoint of g:

$$\tilde{g} : \Sigma T \to G$$

also has a right homotopy inverse $f : G \to \Sigma T$. Together these maps define an H space structure on T and a co-H space structure on G, and both G and T are atomic. Furthermore $R \in W^\infty$, the class of spaces that are the one point union of mod p^r Moore spaces for $r \leq s$.

For some applications it would be helpful to have a better understanding of the map ρ. In order to accomplish this, we reconstruct a space D from [A]. D is closely related to G. Although the formal properties of D are not as simple as G (it is not a co-H space) other properties are simpler (for example Theorem A part (b) below). Define

$$C = \bigvee_{i=1}^{\infty} P^{2np^i+1} (p^r i - 1).$$

Theorem A. There is a cofibration sequence:

$$C \to G \to D.$$
and a fibration sequence:

\[F \to D \to S^{2n+1} \]

such that

(a) \(H^j(D) = \begin{cases}
Z/p^r & \text{if } j = 2n \\
Z/p & \text{if } j = 2np^s \quad s > 0 \\
0 & \text{otherwise}
\end{cases} \)

(b) \(H^j(F) = \begin{cases}
Z(p) & \text{if } j = 2ni \\
0 & \text{otherwise}
\end{cases} \)

(c) There is a diagram of fibration sequences:

\[
\begin{array}{ccc}
T & \longrightarrow & T \\
\downarrow & & \downarrow \\
R & \longrightarrow & W \\
\rho & & \downarrow \\
G & \longrightarrow & D
\end{array}
\]

where \(i \) and \(i' \) are null homotopic.

(d) \(H^j(W) = \begin{cases}
Z(p)/ip^{r-1} & \text{if } j = 2ni = 2np^s \\
Z(p)/ip^r & \text{if } j = 2ni, \text{otherwise} \\
0 & \text{otherwise}
\end{cases} \)

(e) Furthermore there is a homotopy commutative diagram of fibration sequences:

\[
\begin{array}{ccc}
S^{2n-1} & \longrightarrow & T \\
\downarrow & & \downarrow \\
W & \longrightarrow & W \\
\downarrow & & \downarrow \\
F & \longrightarrow & D \\
\downarrow & & \downarrow \\
& \longrightarrow & S^{2n+1}
\end{array}
\]

with \(\Omega F \simeq S^{2n-1} \times \Omega W \).

Theorem B. If \(n > 1 \), \(R \simeq (C \rtimes T) \vee W \) and the composition:

\[C \rtimes T \to R \overset{\rho}{\to} G \]

is homotopic to the composition:

\[C \rtimes T \overset{1 \ltimes G}{\longrightarrow} C \rtimes \Omega G \overset{\omega}{\longrightarrow} C \vee G \overset{c \vee 1}{\longrightarrow} G \]

*Note that \(Z(p)/m \) is isomorphic to \(Z/p\nu(m) \) where \(\nu(m) \) is the number of powers of \(p \) in \(m \).
where ω is the Whitehead product map which lies in the fibration sequence:

$$C \times \Omega G \xrightarrow{\omega} C \vee G \xrightarrow{\pi_2} G$$

Furthermore, $\Omega G \simeq \Omega G \times \Omega(C \times \Omega D)$.

In addition, some partial results are obtained for $\rho|W$, but much is still unknown.

This paper is organized as follows. In section 1 we revisit some constructions in [GT] and sharpen some of the results. In section 2 we embark on a multifaceted induction, constructing the space W via a sequence of approximations and prove Theorem A. Section 3 is devoted to proving Theorem B.

1.

In the course of the constructions in [GT], G was constructed inductively as the union of spaces G_k where

$$G_k = G_{k-1} \cup CP^{2np^k} (p^{r+k})$$

G_k was constructed as a retract of ΣT^{2np^k}, the suspension of the $2np^k$ skeleton of T. We need to make a refinement of this construction. In the proof of 4.3(d) a map

$$e: P^{2np^k} (p^{r+k-1}) \vee P^{2np^k+1} (p^{r+k-1}) \to \Sigma T^{2np^k}$$

was constructed with the sole property that it induced an epimorphism in mod p homology in dimensions $2np^k$ and $2np^k + 1$. The components of e were given as compositions:

$$P^{2np^k} (p^{r+k-1}) \to \Sigma \left(T^{2np_k-1} \times T^{2np_k-1} \times \cdots \times T^{2np_k-1} \right) \xrightarrow{\Sigma \tilde{\mu}} \Sigma T^{2np^k}$$

$$P^{2np^k+1} (p^{r+k-1}) \to \Sigma \left(T^{2np_k-1} \times \cdots \times T^{2np_k-1} \right) \xrightarrow{\Sigma \tilde{\mu}'} \Sigma T^{2np^k}$$

where the middle space in each case is the suspension of a product of p factors and lies in \mathcal{W}^{r+k-1} and the maps $\tilde{\mu}$ and $\tilde{\mu}'$ are obtained from the action given in 4.3(n) for the case $k = 1$.

Proposition 1.1. There is a choice of a map e which is a mod p homology epimorphism in dimensions $2np^k$ and $2np^k + 1$ and such that the diagram:

$$
\begin{array}{ccc}
P^{2np^k} (p^{r+k-1}) \vee P^{2np^k+1} (p^{r+k-1}) & \xrightarrow{e} & \Sigma T^{2np^k} \\
\downarrow & & \downarrow \\
\Sigma(T \wedge T) & \xrightarrow{H(\mu)} & \Sigma T
\end{array}
$$

homotopy commutes where $H(\mu)$ is the Hopf construction on the multiplication $\mu: T \times T \to T$.

Proof. Since $\tilde{\mu}$ and $\tilde{\mu}'$ are obtained by iteration of the restriction of μ_{k-1} in 4.3(n):

$$T^{2np^{k-1}} \times T^{2nmp^{k-1}} \to T^{2n(m+1)p^{k-1}}$$

for $1 \leq m < p$, it follows that e factors through

$$\Sigma(\mu): \Sigma \left(T^{2np^{k-1}} \times T^{2n(p-1)p^{k-1}} \right) \to \Sigma T^{2np^k}.$$

Now the standard splitting

$$\Sigma T^{2np^{k-1}} \lor \Sigma T^{2n(p-1)p^{k-1}} \lor \Sigma \left(T^{2np^{k-1}} \land T^{2n(p-1)p^{k-1}} \right)$$

$$\to \Sigma \left(T^{2np^{k-1}} \times T^{2n(p-1)p^{k-1}} \right)$$

is induced by the inclusions of the axes and the Hopf construction on the identity map of the product. Let e_1, e_2, e_3 be the idempotent self maps of $\Sigma \left(T^{2np^{k-1}} \times T^{2n(p-1)p^{k-1}} \right)$ corresponding to these three retracts. Then in homology we have

$$1 = (e_1)_* + (e_2)_* + (e_3)_*.$$

However, in dimensions $2np^k$ and $2np^k + 1$, $(e_1)_* = (e_2)_* = 0$. Consequently the composition:

$$P^{2np^k} (p^{r+k-1}) \lor P^{2np^k+1} (p^{r+k-1}) \to \Sigma \left(T^{2np^{k-1}} \times T^{2n(p-1)p^{k-1}} \right)$$

$$\xrightarrow{e_3} \Sigma \left(T^{2np^{k-1}} \times T^{2n(p-1)p^{k-1}} \right)$$

$$\to \Sigma T^{2np^k}$$

is also an epimorphism in mod p homology in dimensions $2np^k$ and $2np^k + 1$. However e_3 is the composition:

$$\Sigma \left(T^{2np^{k-1}} \times T^{2n(p-1)p^{k-1}} \right) \to \Sigma \left(T^{2np^{k-1}} \land T^{2n(p-1)p^{k-1}} \right)$$

$$\xrightarrow{H} \Sigma \left(T^{2np^{k-1}} \times T^{2n(p-1)p^{k-1}} \right)$$

where H is the Hopf construction on the identity. Thus $\Sigma\tilde{\mu} \circ H$ is the Hopf construction on $\tilde{\mu}$:

$$\Sigma \left(T^{2np^{k-1}} \land T^{2n(p-1)p^{k-1}} \right) \xrightarrow{H} \Sigma \left(T^{2np^{k-1}} \times T^{2n(p-1)p^{k-1}} \right) \xrightarrow{\Sigma\tilde{\mu}} \Sigma T^{2np^k}$$
We now apply these considerations to the induced fibration determined by \bar{g}:

\[
\begin{array}{c}
T \longrightarrow T \\
\downarrow \downarrow \downarrow \\
Q \longrightarrow R \\
\downarrow \downarrow \downarrow \\
\Sigma T \longrightarrow G
\end{array}
\]

The structure of the fibration π': $Q \to \Sigma T$ is completely determined by the action map:

\[
\Omega \Sigma T \times T \to T
\]

which is given by the composition

\[
\Omega \Sigma T \times T \xrightarrow{\Omega \bar{g} \times 1} \Omega G \times T \to T.
\]

This is the action described in the proof of 4.3(n), so $Q \simeq \Sigma T \wedge T$ and $\pi' \sim H(\mu)$. We conclude

Proposition 1.2. There is a lifting \tilde{e} of $\bar{g}e$ to R

\[
P^{2np^k}(p^{r+k-1}) \vee P^{2np^{k+1}}(p^{r+k-1}) \longrightarrow \Sigma T \wedge T \longrightarrow R
\]

\[
\Sigma T \xrightarrow{\bar{g}} G
\]

We will designate the components of $\bar{g}e$ as

\[
a_k : P^{2np^k}(p^{n+k-1}) \to G_k
\]

\[
c_k : P^{2np^{k+1}}(p^{r+k-1}) \to G_k
\]

and their lifts to R_k as \tilde{a}_k and \tilde{c}_k respectively.

Proposition 1.3. There is a homotopy commutative diagram of cofibrations sequences:

\[
P^{2np^k}(p^{r+k}) \xrightarrow{\beta_k} P^{2np^k}(p^{r+k}) \xrightarrow{d} P^{2np^k}(p^{r+k-1}) \vee P^{2np^{k+1}}(p^{r+k-1})
\]

\[
P^{2np^k}(p^{r+k}) \xrightarrow{a_k \vee c_k} G_{k-1} \longrightarrow G_k
\]

Proof. The homotopy fiber of the projection $G_k \to P^{2np^{k+1}}(p^{r+k})$ is the relative James construction $(G_{k-1}, P^{2np^k}(p^{r+k}))_\infty$ (see [GI]) which is $G_{k-1} +$ cells of dimension $\geq 2np^k + 2n - 1$. Thus the map β_k exists.
The next term is the James construction \((P^{2np^k+1}(p^{r+k}))_{\infty}\). The upper cofibration sequence is completely determined by the fact that the composition

\[
P^{2np^k}(p^{r+k}) \vee P^{2np^k+1}(p^{r+k-1}) \xrightarrow{a_k \vee c_k} G_k \to P^{2np^k+1}(p^{r+k})
\]

is an epimorphism in homology.

Proposition 1.4. There is a unique lifting \(\tilde{\beta}_k\) of \(\beta_k\) to \(R_{k-1}\):

\[
\begin{array}{ccc}
R_{k-1} & \to & R_k \\
\downarrow & & \downarrow \\
G_{k-1} & \to & G_k
\end{array}
\]

\(\beta_k\)

\(\tilde{\beta}_k\)

\(P^{2np^k}(p^{r+k})\)

Proof. The existance follows since \(R_{k-1}\) is a pullback:

\[
\begin{array}{ccc}
R_{k-1} & \to & R_k \\
\downarrow & & \downarrow \\
G_{k-1} & \to & G_k
\end{array}
\]

and \((\tilde{a}_k \vee \tilde{c}_k)d\): \(P^{2np^k}(p^{r+k}) \to R_k\) is a lifting of the composition

\[
P^{2np^k}(p^{r+k}) \xrightarrow{\beta_k} G_{k-1} \to G_k
\]

by 1.3. To prove uniqueness, suppose we have two liftings \(\tilde{\beta}_k\) and \(\tilde{\beta}'_k\). Their difference consequently factors through \(T\). But any map

\[
P^{2np^k}(p^{r+k}) \to T
\]

is necessarily trivial in mod \(p\) cohomology, for \(H^{2np^k-1}(T; \mathbb{Z}/p)\) is decomposable and the mod \(p^{r+k}\) Bockstein is nontrivial in \(H^{2np^k-1}(T; \mathbb{Z}/p)\). It follows that the difference \(\tilde{\beta}_k - \tilde{\beta}'_k\) factors through \(T^{2np^k-2}\) and hence though \(\Omega G_{k-1}\) by [GT, 4.3(b)]. Consequently the difference is trivial in \(R_{k-1}\).

The following result is a special case of [GT, 2.3]
Theorem 1.5. Suppose all spaces are localized at a prime \(p > 2 \), and in the diagram:

\[
\begin{array}{ccc}
F & \longrightarrow & F \\
\downarrow & & \downarrow \\
S^{m-1} & \longrightarrow & E_0 \\
\uparrow p & & \downarrow \\
S^{m-1} & \longrightarrow & B \\
& & \downarrow \\
& & B \cup e^m
\end{array}
\]

the middle column is a pullback and the bottom row is a cofibration. Then

\[
[E, BW_n] \rightarrow [E_0, BW_n]
\]

is onto.

2.

In this section we will construct the fibration

\[
T \rightarrow W_k \rightarrow D_k
\]

and prove Theorem A. The spaces \(D_k \) were first considered in [A] and their relationship to \(G_k \) was discussed in [AG]. We will construct them directly from the ideas of [GT]. We begin with

\[
C_k = \bigvee_{i=1}^{k} p^{2np^i+1} (p^{r+i-1})
\]

and define \(c: C_k \rightarrow G_k \) by \(c | P^{2np^i+1}(p^{r+i-1}) = c_i \). Now define \(D_k \) as the cofiber:

\[
C_k \xrightarrow{c} G_k \rightarrow D_k.
\]

Since \(c_i: P^{2np^i+1}(p^{r+i-1}) \rightarrow G_i \rightarrow G_k \) is an integral homology monomorphism, we immediately have

Proposition 2.1. \(H_i(D_k) = \begin{cases}
Z/p^r & \text{if } i = 2n \\
Z/p & \text{if } i = 2np^j, 1 \leq j \leq k \\
0 & \text{otherwise.}
\end{cases} \)

By construction, the map \(c \) lifts to a map

\[
C_k \xrightarrow{\tilde{c}} R_k \rightarrow E_k
\]
where E_k is described in [GT, 4.3(h)] and we have

\[
\begin{array}{cccccc}
\hat{c} & E_k & \rightarrow & J_k & \rightarrow & F_k \\
\downarrow & \downarrow \xi_k & & \downarrow & \downarrow & \\
C_k & G_k & \rightarrow & D_k & \rightarrow & D_k \\
\downarrow & \downarrow & & \downarrow & \downarrow & \\
S^{2n+1} \{p^r\} & S^{2n+1} \{p^r\} & \rightarrow & S^{2n+1}
\end{array}
\]

where the diagram of vertical fibrations defines the spaces J_k and F_k. We are about to embark on a multipart induction and wish to make one observation first. Consider the Serre spectral sequence for the homology of the fibration:

\[
\Omega S^{2n+1} \rightarrow F_k \rightarrow D_k
\]

where

\[
E^2_{p,q} = H_p(D_k; H_q(\Omega S^{2n+1}))
\]

This is only nonzero when both p and q are divisible by $2n$. Hence $E^2_{p,q} \cong E^\infty_{p,q}$ and $H_i(F_k) = 0$ unless i is divisible by $2n$. In particular

\[
(**) \quad H_{2np^k}(F_k) \rightarrow H_{2np^k}(D_k)
\]

is an epimorphism.

Theorem 2.2. Let $k \geq 0$. Then

(a) $H_r(F_k) = \begin{cases}
Z(p) & \text{if } r = 2ni \\
0 & \text{otherwise}
\end{cases}$

and the homomorphism $H_{2ni}(F_{k-1}) \rightarrow H_{2ni}(F_k)$ has degree p if $i \geq p^k$ and degree 1 if $i < p^k$.

(b) There is a map $\theta_i: P^{2ni}(p^r) \rightarrow J_k$ for each $i \geq p^k$ such that the composition:

\[
P^{2ni}(p^r) \xrightarrow{\theta_i} J_k \rightarrow F_k
\]

induces an isomorphism in $H^{2ni}(\; Z/p)$.

(c) There is a map $\tilde{\gamma}_k: J_k \rightarrow BW_n$ such that the composition:

\[
\Omega^2 S^{2n+1} \rightarrow J_k \xrightarrow{\tilde{\gamma}_k} BW_n
\]

is homotopic to the map $\nu: \Omega^2 S^{2n+1} \rightarrow BW_n$ (see [G2]).
(d) Let W_k be the homotopy fiber of $\tilde{\gamma}_k$. Then we have a homotopy commutative diagram of vertical fibration sequences:

\[
\begin{array}{cccc}
T & \longrightarrow & T & \longrightarrow & \Omega S^{2n+1} \\
\downarrow & & \downarrow & & \downarrow \\
R_k & \longrightarrow & W_k & \longrightarrow & F_k \\
\downarrow & & \downarrow & & \downarrow \\
G_k & \longrightarrow & D_k & \longrightarrow & D_k
\end{array}
\]

and two diagrams of fibration sequences:

\[
\begin{array}{cccc}
S^{2n-1} & \longrightarrow & \Omega^2 S^{2n+1} & \longrightarrow & BW_n \\
\downarrow & & \downarrow & & \downarrow \\
W_k & \longrightarrow & J_k & \longrightarrow & BW_n \\
\downarrow & & \downarrow & & \downarrow \\
F_k & \longrightarrow & F_k & \longrightarrow & S^{2n+1}
\end{array}
\]

\[
\begin{array}{cccc}
S^{2n-1} & \longrightarrow & \Omega S^{2n+1} & \longrightarrow & T & \longrightarrow & \Omega S^{2n+1} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
W_k & \longrightarrow & J_k & \longrightarrow & BW_n & \longrightarrow & W_k \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
F_k & \longrightarrow & F_k & \longrightarrow & D_k & \longrightarrow & S^{2n+1}
\end{array}
\]

(e) $\Omega F_k \simeq S^{2n-1} \times \Omega W_k$

(f) the homomorphism $H^r(F_k) \to H^r(W_k)$ is an epimorphism and

\[
H^m(W_k) = \begin{cases}
\mathbb{Z}_{(p)}/ip^{r-1} & \text{if } m = 2ni = 2np^s \ 0 < s \leq k \\
\mathbb{Z}_{(p)}/ip^r & \text{if } m = 2ni > 2n \text{ otherwise} \\
0 & \text{otherwise}
\end{cases}
\]

(g) The image of the homomorphism:

\[H^{2np^k+1}(W_k) \to H^{2np^{k+1}}(T)\]

has order p.

(h) The map α_{k+1} lifts to a map $\tilde{\alpha}_{k+1}: P^{2np^{k+1}}(p^{r+k+1}) \to R_k$ such that the composition:

\[P^{2np^{k+1}}(p^{r+k+1}) \xrightarrow{\tilde{\alpha}_{k+1}} R_k \to W_k\]

is nonzero in integral cohomology.

Proof. We prove these results inductively on k using earlier results for a given value of k and all results for lower values of k. In case $k = 0$, (a) is well known (see [CMN]).

Proof of (b). In case $k = 0$, this is [GT, 3.1]. Suppose $k > 0$. Since the homomorphism

\[H_{2np^k}(F_k) \to H_{2np^k}(D_k)\]

is onto by (**) and $H_{2np^k}(F_k)$ is free on one generator, the homorphism:

$$H_{2np^k}(F_k; \mathbb{Z}/p) \to H_{2np^k}(D_k; \mathbb{Z}/p)$$

is an isomorphism. Now consider the diagram:

$$E_k \to J_k \to F_k$$

Since the lower composition also induces an isomorphism in $H_{2np^k} (\; ; \mathbb{Z}/p)$, we conclude that the upper composition does as well. Let θ_{p^k} be the composition:

$$P_{2np^k} (p^r) \to P_{2np^k} (p^{r+k-1}) \to E_k \to J_k.$$

This satisfies (b) in case $i = p^k$. We now construct θ_{m+1} for $m \geq p^k$ by induction. Having constructed θ_m, consider the diagram of vertical fibration sequences:

$$P^{2(m+1)n} (p^r) \to P^{2mn} (p^r) \times_{\Omega P^{2n+1} (p^r)} J_k \to F_k$$

$$\downarrow \quad \xi_k \quad \downarrow$$

$$P^{2n+1} (p^r) \vee P^{2mn} (p^r) \overset{\epsilon \vee \xi_k \theta_m}{\to} D_k \quad \cong \quad D_k$$

$$\downarrow \quad \downarrow$$

$$P^{2n+1} (p^r) \quad \to \quad S^{2n+1} (p^r) \to S^{2n+1}$$

We will compare the mod p cohomology spectral sequences for the first and last fibration, and in particular, the differential:

$$d_{2n+1}: E_{0,2(m+1)n}^{2n+1} \to E_{2n+1,2mn}^{2n+1}.$$

In the righthand spectral sequence, the differential is an isomorphism as both groups are \mathbb{Z}/p and the dimension of D_k is less than $2(m+1)n$. The map of fibrations induces the following homomorphism on $E_{2n+1,2mn}^{2n+1}$ (where the coefficients are \mathbb{Z}/p):

$$H^{2mn} (F_k) \otimes H^{2n+1} (S^{2n+1}) \to$$

$$H^{2mn} (P^{2mn} (p^r) \times_{\Omega P^{2n+1} (p^r)} H^{2n+1} (P^{2n+1} (p^r)).$$

Since the composition $\pi_k \theta_m$ induces an isomorphism in $H^{2mn} (\; ; \mathbb{Z}/p)$, this homomorphism is an isomorphism as well. It follows that the homomorphism induced on $E_{0,2(m+1)n}$ is nonzero and hence an isomorphism. Thus $\pi_k \theta_{m+1}$ induces an isomorphism in $H^{2(m+1)n} (\; ; \mathbb{Z}/p)$.
Proof of (c). In case \(k = 0 \), this is \([\text{GT}, 3.5]\). Suppose that \(k > 0 \).

Write \(F_k(m) \) for the \(2mn \) skeleton of \(F_k \) and \(J_k(m) \) for the total space of the induced fibration over \(F_k(m) \):

\[
\begin{array}{ccc}
\Omega^2 S^{2n+1} & \longrightarrow & \Omega^2 S^{2n+1} \\
^i_k \downarrow & & \downarrow \\
J_k(m) & \longrightarrow & J_k \\
\downarrow & & \downarrow \\
F_k(m) & \longrightarrow & F_k \\
\end{array}
\]

We will construct a compatible sequence of maps:

\(\tilde{\gamma}_k(m) : J_k(m) \to BW_n \)

with \(\tilde{\gamma}_k(m)i_k \sim \nu : \Omega^2 S^{2n+1} \to BW_n \) for a fixed \(k \) and \(m \geq 1 \). Since \(D_k = D_{k-1} \cup CP^{2np^k} \), the pair \((F_k, F_{k-1}) \) is \(2np^k - 1 \) connected. Consequently if \(m < p^k \), \(F_{k-1}(m) = F_k(m) \) and \(J_{k-1}(m) = J_k(m) \). We begin the induction on \(m \) by defining \(\tilde{\gamma}_k(m) = \tilde{\gamma}_{k-1}(m) \) when \(m < p^k \). Now \(F_k(m) = F_k(m-1) \cup \gamma_m e^{2mn} \). We wish to apply Theorem 1.5 to the diagram:

\[
\begin{array}{ccc}
\Omega^2 S^{2n+1} & \longrightarrow & \Omega^2 S^{2n+1} \\
\downarrow & & \downarrow \\
J_k(m-1) & \longrightarrow & J_k(m) \\
\downarrow & & \downarrow \\
F_k(m-1) & \longrightarrow & F_k(m) \\
\end{array}
\]

It suffices to show that there is a lifting \(\gamma'_m \) of \(\gamma_m \) which is divisible by \(p \).

\[
\begin{array}{ccc}
J_k(m-1) & \newline \gamma'_m \\
\downarrow & \newline \gamma_m \\
S^{2mn-1} & \longrightarrow & F_k(m-1) \\
\end{array}
\]

In fact, we will construct a lifting \(\gamma'_m \) of \(\gamma_m \) which is divisible by \(p^r \).

The composition:

\[
S^{2mn-1} \to P^{2mn}(p^r) \xrightarrow{\theta_m} J_k(m) \xrightarrow{\pi_k} F_k(m)
\]
factors through $F_k(m - 1)$ for dimensional reasons:

$$
\begin{align*}
S^{2mn-1} & \longrightarrow P^{2mn}(p^r) \\
x' & \downarrow \pi_k \theta_m \\
F_k(m - 1) & \longrightarrow F_k(m)
\end{align*}
$$

with $p^r x' \sim \gamma_m$, since $\pi_k \theta_m$ induces an isomorphism in $H^{2mn}(\mathbb{Z}/\rho)$. (For complete details, apply [GT, 3.2] with $M = S^{2mn-2}$, $X = F_k(m - 1)$, $f = \gamma_m$, $x = \pi_k \theta_m$, and $s = r$). Since $J_k(m - 1)$ is a pullback, x' factors through $J_k(m - 1)$:

$$
\begin{align*}
S^{2mn-1} & \longrightarrow P^{2mn}(p^r) \\
\gamma_m & \downarrow \theta_m \\
J_k(m - 1) & \longrightarrow J_k(m) \\
\pi_k & \downarrow \pi_k \\
F_k(m - 1) & \longrightarrow F_k(m)
\end{align*}
$$

and $\pi_{k-1} \gamma'_m = x'$ so $p^r \pi_{k-1} \gamma'_m \sim \gamma_m$. Thus we have constructed $\tilde{\gamma}_k: J_k \to BW_n$ for each $k \geq 1$. $\tilde{\gamma}_k|_{J_{k-1}}$ may not be homotopic to $\tilde{\gamma}_{k-1}$, but they are homotopic on $J_{k-1}(m)$ for $m < p^k$. Thus we may define

$$
\tilde{\gamma}_\infty: J_\infty \to BW_n
$$

by taking the direct limit of the $\tilde{\gamma}_k$ and then redefine $\tilde{\gamma}_k$ as the restriction of $\tilde{\gamma}_\infty$.

Proof of (d). The map $\nu_k: E_k \to BW_n$ defined in [GT, 4.3(h)] was an arbitrary map such that the composition:

$$
\begin{align*}
\Omega^2 S^{2n+1} & \to \Omega S^{2n+1} \{p^r\} \to E_0 \to E_k \xrightarrow{\nu_k} BW_n
\end{align*}
$$

is homotopic to ν. Since $J_0 = E_0$, $\tilde{\gamma}_0 = \nu_0$ and $\tilde{\gamma}_k$ is an arbitrary extension of $\tilde{\gamma}_{k-1}$, we can redefine ν_k as the composition

$$
E_k \to J_k \xrightarrow{\tilde{\gamma}_k} BW_n
$$

from which it follows that we have a commutative diagram of fibration sequences

$$
\begin{align*}
R_k & \longrightarrow E_k \xrightarrow{\nu_k} BW_n \\
\downarrow & \downarrow \| \\
W_k & \longrightarrow J_k \xrightarrow{\tilde{\gamma}_k} BW_n
\end{align*}
$$
where W_k is the fiber of $\tilde{\gamma}_k$. Consequently the square:

$$
\begin{array}{ccc}
R_k & \longrightarrow & W_k \\
\downarrow & & \downarrow \\
G_k & \longrightarrow & D_k
\end{array}
$$

is the composition of two pullback squares:

$$
\begin{array}{ccc}
R_k & \longrightarrow & E_k & \longrightarrow & G_k \\
\downarrow & & \downarrow & & \downarrow \\
W_k & \longrightarrow & J_k & \longrightarrow & D_k
\end{array}
$$

so it is a pullback square and first diagram in (d) is a diagram of vertical fibration sequences. The second diagram follows from the definition of W_k and the third is a combination of the first two.

Proof of (e). Extending the third diagram of (d) to the left yields a diagram:

$$
\begin{array}{ccc}
\Omega^2 S^{2n+1} & \longrightarrow & S^{2n-1} \\
\downarrow & & \downarrow \\
* & \longrightarrow & W_k \\
\downarrow & & \downarrow \\
\Omega^2 S^{2n+1} & \longrightarrow & F_k
\end{array}
$$

Both horizontal maps have degree p^r in the lowest dimension, so W_k is $4n - 2$ connected and the map $S^{2n-1} \to W_k$ is null homotopic. From this it follows that

$$\Omega F_k \simeq S^{2n-1} \times \Omega W_k$$

Proof of (f). Let $\phi: \Omega S^{2n+1} \to F_k$ be the connecting map in the fibration that defines F_k. Let $u_i \in H^{2ni}(\Omega S^{2n+1})$ be the generator dual to the i^{th} power of a generator in $H_{2n}(\Omega S^{2n+1})$. Then

$$u_i u_j = \binom{i+j}{i} u_{i+j}.$$

Choose generators $e_i \in H^{2ni}(F_k)$ so that

$$\phi^* (e_i) = \begin{cases}
p^{r+d} u_i & \text{if } p^d \leq i < p^{d+1}, \ d \leq k \\
p^{r+k} u_i & \text{if } i \geq p^k. \end{cases}$$
Since ϕ^* is a monomorphism, it is easy to check that

$$e_1 e_{i-1} = \begin{cases} ipr^{-1} e_i & \text{if } i = p^s \quad 0 < s \leq k \\ ipr^s e_i & \text{otherwise.} \end{cases}$$

It now follows from the integral cohomology spectral sequence for the fibration:

$$S^{2n-1} \to W_k \to F_k$$

that

$$d_{2n} (e_{i-1} \otimes u) = \begin{cases} ipr^{-1} e_i & \text{if } i = p^s \quad 0 < s \leq k \\ ipr^s e_i & \text{otherwise.} \end{cases}$$

From this one can read off the cohomology groups of W_k since $H^j(F_k) = Z_{(p)}$ or 0 according as to whether j is a multiple of $2n$.

Proof of (g). From (d) we have a homotopy commutative square:

$$
\begin{array}{ccc}
T & \longrightarrow & \Omega S^{2n+1} \\
\downarrow & & \downarrow \phi \\
W_k & \longrightarrow & F_k
\end{array}
$$

Applying cohomology we get:

$$
\begin{array}{ccc}
H^{2np^{k+1}}(T) & \longrightarrow & H^{2np^{k+1}}(\Omega S^{2n+1}) \\
\downarrow & & \downarrow \\
H^{2np^{k+1}}(W_k) & \longleftarrow & H^{2np^{k+1}}(F_k)
\end{array}
$$

which evaluates as:

$$
\begin{array}{ccc}
Z/p^{r+k+1} & \longrightarrow & Z_{(p)} \\
\uparrow & & \uparrow \ p^{r+k} \\
Z/p^{r+k+1} & \longleftarrow & Z_{(p)}
\end{array}
$$

where the two horizontal arrows are epimorphisms. It follows that the homorphism $H^{2np^{k+1}}(W_k) \to H^{2np^{k+1}}(T)$ has image of order p.

Proof of (h). Recall from the proof of [GT] 4.3(c) that the composition:

$$p^{2np^{k+1}} \left(p^{r+k+1} \right) \to T/T^{2np^{k+1} - 2} \to R_k \to G_k$$

is homotopic to α_{k+1}. Write $\tilde{\alpha}_{k+1}$ for the composition of the first two maps, so we get a homotopy commutative diagram:

\[
\begin{array}{cccccc}
T^{2np^{k+1}} & \longrightarrow & P^{2np^{k+1}} (p^{r+k+1}) & \longrightarrow & R_k & \\
\downarrow & & \downarrow & & \downarrow & \\
T^{2np^{k+1}}/T^{2np^{k+1}-2} & \longrightarrow & T/T^{2np^{k+1}-2} & \longrightarrow & W_k & \\
\end{array}
\]

By (g), the composition on the left and bottom is nonzero in integral cohomology, so the composition on the top and right is nonzero in integral cohomology also.

Proof of (a) in the case $k+1$. We consider the diagram

\[
\begin{array}{cccccccc}
P^{2np^{k+1}} (p^{r+k+1}) & \longrightarrow & R_k & \longrightarrow & W_k & \longrightarrow & F_k & \longrightarrow & F_{k+1} \\
\alpha_{k+1} \downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
G_k & \longrightarrow & D_k & \longrightarrow & D_k & \longrightarrow & D_{k+1} & \\
\end{array}
\]

where the map Γ exists since the lower composite factors as

\[
P^{2np^{k+1}} (p^{r+k+1}) \xrightarrow{\alpha_{k+1}} G_k \rightarrow G_{k+1} \rightarrow D_{k+1}
\]

We now show that the homorphism:

\[
H^{2np^{k+1}} (F_{k+1}) \rightarrow H^{2np^{k+1}} (F_k)
\]

is not an epimorphism. If it were, the entire composition:

\[
H^{2np^{k+1}} (F_{k+1}) \rightarrow H^{2np^{k+1}} (P^{2np^{k+1}} (p^{r+k+1}))
\]

would be nonzero by (f) and (h). But δ_{k+1} factors as

\[
\Omega S^{2n+1} \xrightarrow{\delta_{k+1}} F_k \rightarrow F_{k+1}
\]

so the image of $\delta_{k+1}^* : H^{2np^{k+1}} (F_{k+1}) \rightarrow H^{2np^{k+1}} (\Omega S^{2n+1})$ is divisible by p^{r+k} by (a). This implies that

\[
\Gamma^* : H^{2np^{k+1}} (\Omega S^{2n+1}) \rightarrow H^{2np^{k+1}} (P^{2np^{k+1}} (p^{r+k+1}))
\]

is an epimorphism. This contradicts Hopf invariant one as follows. The composition:

\[
P^{2np^{k+1}} (p^{r+k+1}) \rightarrow \Omega S^{2n+1} \xrightarrow{H_{p^{k}}} \Omega S^{2np^{k+1}}
\]
would also be nonzero in cohomology so the Whitehead element

$$\omega_{np^k} \in \pi_{2np^{k+1} - 3}(S^{2np^k - 1})$$

would be divisible by p^{r+k+1}. We have thus shown that

$$H^{2np^{k+1}}(F_{k+1}) \rightarrow H^{2np^{k+1}}(F_k)$$

is not onto. From the Serre spectral sequence for the cohomology of the fibration

$$\Omega S^{2n+1} \rightarrow F_{k+1} \rightarrow D_{k+1}$$

we obtain the following exact sequence:

$$0 \leftarrow H^{2np^{k+1}+1}(F_{k+1}) \leftarrow \mathbb{Z}/p \leftarrow H^{2np^{k+1}}(F_{k+1}) \leftarrow H^{2np^{k+1}}(F_k) \leftarrow 0$$

where $H^*(F_k)$ is obtained from the restriction of the fibration to D_k.

It follows that

$$H^{2np^{k+1}+1}(F_{k+1}) = 0$$

$$H^{2np^{k+1}}(F_{k+1}) \simeq \mathbb{Z}/p$$

and

$$H^{2np^{k+1}}(F_{k+1}) \rightarrow H^{2np^{k+1}}(F_k)$$

has degree p, and $(\delta_{k+1})^*$ has degree p^{r+k+1} in dimension $2np^{k+1}$. We now switch to integral homology and use the principal action

$$\Omega S^{2n+1} \times \Omega S^{2n+1} \longrightarrow \Omega S^{2n+1}$$

$$\downarrow$$

$$\Omega S^{2n+1} \times F_{k+1} \longrightarrow F_{k+1}$$

to study $H_{2ni}(F_{k+1})$ when $i > p^{k+1}$. Observe that the new generator e_i comes from the term

$$E^{2np^{k+1}, 2ni-2np^{k+1}}_{\infty}$$

and consequently $e_i = u_{i-p^{k+1}} \cdot e_{p^{k+1}}$, so

$$p^{r+k+1}e_i = u_{i-p^{k+1}} \cdot (p^{r+k+1}e_{p^{k+1}})$$

$$= u_{i-p^{k+1}} \cdot u_{p^{k+1}}$$

$$= u_i$$

so $(\delta_{k+1})^*$ has degree p^{k+1} in H_{2ni} for $i \geq p^{k+1}$. This completes the proof of 2.2.

Theorem A follows by taking limits. The cofibration $C \xrightarrow{\sim} G \rightarrow D$ is the limit of $C_k \rightarrow G_k \rightarrow D_k$ and the fibrations

$$T \rightarrow W \rightarrow D$$

$$F \rightarrow D \rightarrow S^{2n+1}$$
are the respective limits of
\[T \to W_k \to D_k \]
and \[F_k \to D_k \to S^{2n+1}. \]

3.

In this section we will prove Theorem B. To this end, consider the limiting diagram of the fibrations in 2.2(d) over \(k \):

\[
\begin{array}{ccc}
T & \longrightarrow & T \\
\downarrow & & \downarrow \\
R & \longrightarrow & W \\
\downarrow & & \downarrow \\
G & \longrightarrow & D
\end{array}
\]

Since \(D \) is the mapping cone of the map \(c: C \to D \), the induced fibration over \(C \) is trivial and we have a map:
\[C \times T \to R. \]

Since the inclusion of \(T \) into \(R \) is null homotopic, this extends to a map
\[C \times T \to R. \]

According to [AG, Lemma A6] we get a cofibration sequence:
\[C \times T \to R \to W \]

Theorem 3.1. If \(n > 1 \) there is a split short exact sequence
\[0 \to \tilde{H}_*(C \times T) \to \tilde{H}_*(R) \to \tilde{H}_*(W) \to 0. \]

Proof. We first check that the connecting homomorphism:
\[H_j(W) \to H_{j-1}(C \times T) \]
is trivial. By 2.2(f), \(H_j(W) \neq 0 \) only when \(j = 2ni - 1 \). However,
\[C \times T \simeq \bigvee_{i=1}^{\infty} P^{2np^i+1} (p^{r+i-1}) \times T \]
so \(H_{j-1}(C \times T) \) is only nonzero when \(j - 1 = 2n\ell \) or \(2n\ell - 1 \). So if \(n > 1 \), one or the other of these groups is trivial. To see that the sequence splits, note that by 2.2(f)
\[H_{2nk-1}(W) = \begin{cases}
\mathbb{Z}_{(p)}/kp^{r-1} & \text{if } k = p^s \\
\mathbb{Z}_{(p)}/kp^r & \text{otherwise.}
\end{cases} \]
It suffices to show that
\[kp^r \tilde{H}_{2nk-1}(R) = 0 \]
\[kp^{-1} H_{2nk-1}(R) = 0 \text{ if } k = p^s \]

Now according to [G4, Theorem C], \(R \) is a retract of \(\Sigma T \wedge T \), so it suffices to prove

Lemma 3.2. \(kp^r \tilde{H}_{2nk-1}(\Sigma T \wedge T) = 0 \) and if \(k = p^s \)
\[kp^{-1} \tilde{H}_{2nk-1}(\Sigma T \wedge T) = 0. \]

Proof. \(\Sigma T \wedge T \) is a wedge of Moore spaces by [GT, 4.3(m)] and the dimensions and orders can be read off from the homology groups. Let \(\nu(x) \) be the number of powers of \(p \) in \(x \). Then
\[\Sigma T \wedge T = \bigvee_{j \geq 1} \bigvee_{i \geq 1} P^{2ni} (p^r + \nu(i)) \wedge P^{2nj} (p^r + \nu(j)). \]

This is a wedge of Moore spaces of dimension \(2nk \) and \(2nk + 1 \). An element of \(H_{2nk-1}(\Sigma T \wedge T) \) of order \(p^m \) must lie in
\[\Sigma P^{2ni} (p^r + \nu(i)) \wedge P^{2nj} (p^r + \nu(j)) \]
where \(k = i + j, m \leq r + \nu(i) \) and \(m \leq r + \nu(j) \). Consequently \(p^{m-r} \) must divide both \(i \) and \(j \). Since \(k = i + j \), \(p^{m-r} \) divides \(k \) and the element has order dividing \(kp^r \). But if \(k = p^s \) we must have \(\nu(i) < s \) and \(\nu(j) < s \) so \(p^{m-r} \) divides \(p^{s-1} \); i.e., \(p^m \) divides \(kp^{-1} \).

Since \(R \) is a wedge of Moore spaces and the homomorphism
\[\tilde{H}_*(R) \rightarrow \tilde{H}_*(W) \]
has a right inverse, we can use [AG, Lemma A3] to construct a right homotopy inverse for the map \(R \rightarrow W \). We obtain

Proposition 3.3. If \(n > 1 \), \(R \simeq (C \times T) \vee W \).

Proposition 3.4. Suppose \(n > 1 \). Then there is a homotopy fibration sequence:
\[C \times \Omega D \rightarrow G \rightarrow D \]
and \(\Omega G \simeq \Omega D \times \Omega(C \times \Omega D) \).

Proof. Since the map \(R \rightarrow W \) has a right homotopy inverse, so does
\[\Omega G \simeq T \times \Omega R \rightarrow T \times \Omega W \simeq \Omega D. \]

We use this together with [AG, Corollary A7] to prove that the fiber of the map \(G \rightarrow D \) is \(C \times \Omega D \).
Proposition 3.5. The composition

\[C \times T \to R \to G \]

factors as

\[C \times T \xrightarrow{1 \times g} C \times \Omega G \xrightarrow{\omega} C \vee G \xrightarrow{\omega^{\vee 1}} G \]

where \(\omega \) is the “Whitehead product map” which is the fiber of the projection \(C \vee G \xrightarrow{\pi_2} G \).

Proof. \(C \times T \simeq C \times T \cup * \times C^*(T) \) where \(C^*(T) \) is the reduced cone on \(T \). The composition:

\[C \times T \cup * \times C^*(T) \simeq C \times T \to R \to G \]

is given by:

\[C \times T \xrightarrow{\pi_1} C \xrightarrow{c} G \]

\[* \times C^*T \to \Sigma T \xrightarrow{\tilde{\omega}} G \]

On the other hand, the inclusion of the fiber of the projection \(C \vee G \xrightarrow{\pi_2} G \) is given by

\[C \times \Omega G \cup * \times PG \simeq C \times \Omega G \to C \vee G \]

\[C \times \Omega G \xrightarrow{\pi_1} C \to C \vee G \]

\[* \times PG \xrightarrow{e \nu} G \to C \vee G \]

where \(PG = \{ \omega : I \to G \mid \omega(0) = * \} \) and \(e \nu(\omega) = \omega(1) \).

Theorem B follows from 3.3, 3.4, and 3.5.

It would be desirable to have a better understanding of the restriction:

\[W \to R \xrightarrow{\rho} G \]

What is clear is that the composition

\[P^{2np^k} \left(p^{r+k-1} \right) \xrightarrow{a_k} W \to D \]

is nonzero in mod \(p \) homology, so \(a_k \) induces an isomorphism in integral cohomology in dimension \(snp^k \). It seems difficult to identify the map

\[P^{4np^k} \left(p^{r+k} \right) \to W \]

as it is the first class of that order.
REFERENCES

[A] D. Anick, *Differential algebras in topology*, Research Notes in Mathematics, 3, A K Peters, Ltd., Wellesley, MA, 1993, xxvi+274 pp.

[AG] D. Anick and B. Gray, *Small H-spaces related to Moore spaces*, Topology 34 (1995), no. 4, 859–881.

[CMN] F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, *Torsion in homotopy groups*, Ann. of Math. (2) 109 (1979), no. 1, 121–168.

[G1] B. Gray, *On the homotopy groups of mapping cones*, Proc. London Math. Soc. (3) 26 (1978), 497–520.

[G2] ______, *On the iterated suspension*, Topology 27 (1988), 301–310.

[G3] ______, *EHP spectra and periodicity. I. Geometric constructions*, Trans. AMS 340 (1993), 595–616.

[G4] ______, *On decompositions in homotopy theory*, Trans. Amer. Math. Soc. 358 (2006), 3305–3328.

[GT] B. Gray and S. Theriault, *An elementary construction of Anick’s fibration*, submitted.

[T] S. D. Theriault, *The 3-primary classifying space of the fiber of the double suspension*, Proc. AMS 136 (2008), no. 4, 1489–1499.

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL, 60607-7045

E-mail address: brayton@uic.edu