Morphology and multigene phylogeny reveal a new order and a new species of wood-inhabiting basidiomycete fungi (Agaricomycetes)

Kai-Yue Luo1,2,3 and Chang-Lin Zhao1,2,3,4*

1Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China; 2Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China; 3College of Biodiversity Conservation, Southwest Forestry University, Kunming, China; 4Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China

Dead wood-associated fungi play an important role in wood degradation and the recycling of organic matter in the forest ecological system. Xenasmataceae is a cosmopolitan group of wood-rotting fungi that grows on tropical, subtropical, temperate, and boreal vegetation. In this study, a new fungal order, Xenasmatales, is introduced based on both morphology and multigene phylogeny to accommodate Xenasmataceae. According to the internal transcribed spacer and nuclear large subunit (ITS + nLSU) and nLSU-only analyses of 13 orders, Xenasmatales formed a single lineage and then grouped with orders Atheliales, Boletales, and Hymenochaetales. The ITS dataset revealed that the new taxon Xenasmatella nigroidea clustered into Xenasmatella and was closely grouped with Xenasmatella vaga. In the present study, Xenasmatella nigroidea collected from Southern China is proposed as a new taxon, based on a combination of morphology and phylogeny. Additionally, a key to the Xenasmatella worldwide is provided.

KEYWORDS
biodiversity, fungal systematics, ITS, LSU, new taxa, wood-decaying fungi, Xenasmatales, Xenasmatella nigroidea

Introduction

Among eukaryotic microorganisms, wood-decaying fungi interact positively with dead wood, playing a fundamental ecological role as decomposers of plants in the fungal tree of life (James et al., 2020). Wood-associated fungi are cosmopolitan and rich in diversity since they grow on tropical, subtropical, temperate, and boreal vegetation (Gilbertson and Ryvarden, 1987; Núñez and Ryvarden, 2001; Bernicchia and Gorjón, 2010; Dai, 2012; Ryvarden and Melo, 2014; Dai et al., 2015, 2021; Wu et al., 2020).

Xenasmataceae Oberw., a typical wood-associated fungal group mainly distributed in the tropics was discovered by Oberwinkler (1966), and typified by Xenasma Donk. Three genera, namely, Xenasma, Xenasmatella Oberw., and Xenosperma Oberw., have
been accommodated in this family, however, higher-level classification of the order has not been designated. The tenth edition of the Dictionary of the Fungi showed that Xenasmataceae belongs to Polyporales Gäum., and consists of three genera (Kirk et al., 2008). MycoBank indicates that Xenasmataceae has a higher classification within Polyporales, although the Index Fungorum shows that Xenasmataceae belongs to the order Russulales.

High phylogenetic diversity among corticioid homobasidiomycetes suggests a close relationship among Radulomyces M.P. Christ., Xenasmata, and Coronicium J. Eriks. and Ryvarden. Xenasma pseudotsugae (Burt) J. Eriks. nested into the euagarics clade, in which it grouped with Coronicium and Radulomyces. The three taxa of Radulomyces grouped together with Phlebiella pseudosugae (Burt) K.H. Larss. and Hjortstam and Coronicium alboglabrum (Bourd and Galzin) Jülich, and were composed of a rather confusing group with no obvious morphological features or ecological specialization to tie these three genera together (Larsson et al., 2004). The classification of corticioid fungi with 50 putative families from published preliminary analyses and phylogenies of sequence data showed that three species of Xenasmata assigned a single lineage with strong support within the unplaced Phlebiella family, in which this clade was unclaimed to any orders (Larsson, 2007). A higher-level phylogenetic classification of the Kingdom Fungi revealed that the Phlebiella clade and Jaapia clade do not show affinities within any orders (Hibbett et al., 2007). An outline of all genera of Basidiomycota with combined SSU, ITS, LSU, tef1, rp1, and rp2 datasets showed that Xenasmata was assigned to Xenasmataceae within the order Russulales (He et al., 2019). Therefore, there is debate on the classification at the order level for the Xenasmataceae.

Recently, Xenasmata has been studied deeply on the basis of morphology and phylogeny. Phlebiella P. Karst. was deemed to have not been legitimately published previously, and the name Xenasmata was accepted (Duhem, 2010; Larsson et al., 2020; Maekawa, 2021). Molecular systematics involving Xenasmata was carried out recently. On the basis of morphological and molecular identification, Zong et al. (2021) studied the sequences of 27 fungal specimens representing 24 species between the Xenasmata clade and related orders; and the Xenasmata clade formed a single lineage and three new species, namely, X. rhizomorpha C.L. Zhao, X. tenuis C.L. Zhao, and X. xinpingensis C.L. Zhao. Both the MycoBank database (http://www.MycoBank.org) and Index Fungorum (http://www.indexfungorum.org, accessed on June 20, 2022) have recorded 41 specific and infraspecific names in Xenasmata. To date, the number of Xenasmata species accepted worldwide has reached 25 (Oberwinkler, 1966; Stalpers, 1996; Hjortstam and Ryvarden, 2005; Bernicchia and Gorjón, 2010; Duhem, 2010; Larsson et al., 2020; Maekawa, 2021), of which, nine species have been found in China (Dai et al., 2004; Dai, 2011; Huang et al., 2019; Zong and Zhao, 2021; Zong et al., 2021).

In the present study, we verified the taxonomy and phylogeny of Xenasmataceae. In addition, we analyzed the species diversity of Xenasmataceae and constructed a phylogeny to the order level of this family on the basis of large subunit nuclear ribosomal RNA gene (nLSU) sequences, the internal transcribed spacer (ITS) regions, and ITS-nLSU analyses. Based on both morphology and phylogeny, we propose a new funga order, Xenasmatales and a new species, Xenasmata nigroidea. A key to the 25 accepted species of Xenasmata worldwide is also provided.

The accepted species list

Xenasma Donk (1957).

1. *Xenasma Aculeatum* C.E. Gómez (1972).
2. *Xenasma Amyloporum* Parmasto (1968).
3. *Xenasma Longicytistidatum* Boidin and Gilles (2000).
4. *Xenasma Parviporum* Pouzar (1982).
5. *Xenasma Praeteritum* (H.S. Jacks.) Donk (1957).
6. *Xenasma Pruinosum* (Pat.) Donk (1957).
7. *Xenasma Pulverulentum* (H.S. Jacks.) Donk (1957).
8. *Xenasma Rinciola* (P. Karst.) Donk (1957).
9. *Xenasma Subclematidis* S.S. Rattan (1977).
10. *Xenasma Tulasielloideum* (Höhn. and Litsch.) Donk (1957).
11. *Xenasma Vassilieviae* Parmasto (1965).

Xenasmata Oberwinkler (1966).

1. *Xenasmata Ailaoshanensis* C.L. Zhao ex C.L. Zhao and T.K. Zong (2021).
2. *Xenasmata Aplinicolia* (Bourd and Galzin) K.H. Larss. and Ryvarden (2020).
3. *Xenasmata Ardosiaca* (Bourd and Galzin) Stalpers (1996).
4. *Xenasmata Athelioidea* (N. Maek.) N. Maek. (2021).
5. *Xenasmata Bicorns* (Boidin and Gilles) Piatek (2005).
6. *Xenasmata Borealis* (K.H. Larss. and Hjortstam) Duhem (2010).
7. *Xenasmata Caricis-Pendulac* (P. Roberts) Duhem (2010).
8. *Xenasmata Christianseni* (Parmasto) Stalpers (1996).
9. *Xenasmata Cinnamomea* (Burds. and Nakasone) Stalpers (1996).
10. *Xenasmata Fibrillosa* (Hallenb.) Stalpers (1996).
11. *Xenasmata Globigera* (Hjortstam and Ryvarden) Duhem (2010).
12. *Xenasmata Gossypina* (C.L. Zhao) G. Gruhn and Trichies (2021).
13. *Xenasmata Inopinata* (H.S. Jacks.) Hjortstam and Ryvarden (1979).
14. *Xenasmata Inesperata* (H.S. Jacks.) Jülich (1979).
15. *Xenasmata Nasti* Boidin and Gilles ex Stalpers (1996).
| Species Name | Specimen No. | GenBank Accession No. | References |
|-------------------------------|--------------|-----------------------|---------------------------------|
| Albatrellus confinis | PV 10193 | – | AF506393 Larsson et al., 2004 |
| Alectorobryce botryosus | CBS 336.66 | MH858812 | MH870451 Vu et al., 2019 |
| Amaurodon viridis | TAA 149664 | AY463374 | AY586625 Larsson et al., 2004 |
| Amphipnema hyssoides | EL 1198 | – | AY586626 Larsson et al., 2004 |
| Amylostereum areolatum | NH 8041 | – | AF506405 Larsson and Larsson, 2003 |
| Aphanobasidium pseudotugatae| NH 10396 | – | AY586696 Larsson et al., 2004 |
| Auriscalpium vulgar | EL 3395 | – | AY506375 Larsson and Larsson, 2003 |
| Atheleopsis subconspicua | EL 1298 | AY463382 | AY586633 Larsson et al., 2004 |
| Boudarzewia dickinsii | KHL 8490 | AY463383 | AY586634 Larsson et al., 2004 |
| Candelabrochae septocystita | AS 95 | – | EU118609 Larsson, 2007 |
| Chaetoderma luna | NH 8482 | EU118615 | – Larsson, 2007 |
| C. luna | CBS 305.65 | – | MH870216 Vu et al., 2019 |
| Chondrostereum purpureum | EL 5997 | – | AY586644 Larsson et al., 2004 |
| Clavulicium detectabile | KHL 11147 | – | AY586688 Larsson et al., 2004 |
| Clavulina cristata | EL 9597 | AY463398 | AY586648 Larsson et al., 2004 |
| Colomnocyctis abietina | KHL 12474 | EU118619 | – Larsson, 2007 |
| Cronwicum alboglascum | NH 4208 | – | AY586650 Larsson et al., 2004 |
| Cystoestereum miry | KHL 12496 | EU118623 | – Larsson, 2007 |
| Dacryopinax spathularia | CBS 195.48 | MI856306 | MI867857 Vu et al., 2019 |
| Dacryopinax spathularia | MI856306 | – | MI867857 Vu et al., 2019 |
| Erythricium laetum | NH 14530 | AY463407 | AY586655 Larsson et al., 2004 |
| Exidia resea | SL Lindberg 180317 | – | MT664783 Unpublished |
| Exidiopsis calaepx | KHL 11075 | – | AY586654 Larsson et al., 2004 |
| Gloeocystidellum porosum | FCUG 1933 | – | AF310094 Larsson and Hallenberg, 2001 |
| Haplotrichia conspersus | KHL 11063 | AY463409 | AY586657 Larsson et al., 2004 |
| Hydnocystella himantia | KUC 20131001-35 | – | KJ663832 Unpublished |
| Hydnomarulius pinastri | 412 | – | AF352044 Jarosch and Besl, 2001 |
| Hydnocystella himantia | 420526MF0827 | – | MG712372 Unpublished |
| Hygrophoras aurantiaca | EL 4299 | – | AY586659 Larsson et al., 2004 |
| Hymenochaete cinnamomos | EL 699 | AY463416 | AY586664 Larsson et al., 2004 |
| Hypodermella corrugata | KHL 3663 | – | EU118630 Larsson, 2007 |
| Hyphodontia aspera | KHL 8530 | AY463427 | AY586675 Larsson et al., 2004 |
| Innotetis radiatus | TW 704 | – | AF311018 Wagner and Fischer, 2001 |
| Junghuhnia nitida | CBS 45950 | – | MI868226 Vu et al., 2019 |
| Kavinia alboviridis | EL 1698 | – | AY463434 Larsson et al., 2004 |
| Kavinia himantia | LL 98 | AY463435 | AY586682 Larsson et al., 2004 |
| Lactarius volvus | KHL 8267 | – | AF506414 Larsson and Larsson, 2003 |
| Lactarius fasciformis | CBS 18249 | – | MI868023 Vu et al., 2019 |
| Lentaria dendroidea | Sj 98012 | EU118640 | EU118641 Larsson, 2007 |
| Lignosus hainanensis | Dui 10670 | NR154112 | GUS80886 Cui et al., 2011 |
| Merulicium fusciporum | Hjm s.n. | EU118647 | – Larsson, 2007 |
| Mycocybea bispora | EL 1399 | – | AY586692 Larsson et al., 2004 |
| Peniophora pini | Hjm 18143 | – | EU118651 Larsson, 2007 |

(Continued)
Species Name	Specimen No.	GenBank Accession No.	References	
Phanerochaete sordida	KHL 12054	–	EU118653	Larson, 2007
Phellinus chrysoloma	TN 4008	–	AF311026	Wagner and Fischer, 2001
Phlebia nitidula	Nystroem 020830	–	EU118655	Larson, 2007
Podoscypha multizonata	CBS 66384	–	MIH873501	Vu et al., 2019
Polyporus tubiformis	WD 1839	AB587634	AB586101	Sotome et al., 2011
Porphomyces mucidus	KHL 11082	AF347091	–	Unpublished
P. mucidus	Dai 10726	–	KT157839	Wu et al., 2015
Pseudomerulius aureus	BN 99	–	AY586701	Larson et al., 2004
Punctularia strigosozonata	LR 40885	AY463456	AY586702	Larson et al., 2004
Rickenella fibula	AD 86033	–	AY586710	Larson et al., 2004
Russula violacea	SJ 93009	AF506465	AF506465	Larson and Larsson, 2003
Scopularioides hydnoides	WEI 17569	–	MZ637283	Chen et al., 2021
Sistotrema albolaxatum	TAA 167982	AY463467	AY586713	Larson et al., 2004
Sistotremastrum niveocremum	MAFungi 12915	–	JX310442	Telleria et al., 2013
Sistotremastrum succixum	KHL 11149	–	EU118667	Larson, 2007
Sphaerobasidium minutum	KHL 11714	–	DQ873553	Larson et al., 2006
Stereum hirsutum	NH 7960	AF506479	–	Larson et al., 2003
Tomentellopsis echinospora	KHL 8459	AY463472	AY586718	Larson et al., 2004
Trametes suaveolens	CBS 279.28	MIH855012	MIH866480	Vu et al., 2019
Trechispora farinacea	KHL 8793	AF347089	–	Larson et al., 2004
Trechispora farinacea	MAFungi 79474	–	JX392856	Telleria et al., 2013
Tubularicrinis subulatus	KHL 11079	AY463478	AY586722	Larson et al., 2004
Veluticeps abietina	HHB 13663	–	KJ141191	Unpublished
Veluticeps berkeleyi	HHB 8594	–	HM536801	Garcia-Sandoval et al., 2010
Vuilleminia comedens	EL 199	AY463482	AY586725	Larson et al., 2004
Wrighttoporia lenta	KN 150311	–	AF506489	Larson and Larsson, 2003
Xerocomus chrysenteron	EL 3999	AF347103	–	Larson et al., 2004
Xenasma praeteritum	ACD 0185	OM009268	Unpublished	
Xenasma pruinicornum	OTU 1299	MT594801	Unpublished	
X. riniolae	NLB 1571	MT571671	Unpublished	
X. riniolae	NLB 1449	MT57020	Unpublished	
Xenasmatella ailaoshanensis	CLZhao 3895	MN487103	–	Huang et al., 2019
X. ailaoshanensis	CLZhao 4839	MN487106	–	Huang et al., 2019
Xenasmatella ardisiaca	CBS 126045	MH864060	MH875515	Vu et al., 2019
Xenasmatella borealis	UC 2022974	KP814210	–	Rosenthal et al., 2017
X. borealis	UC 2023132	KP814274	–	Rosenthal et al., 2017
Xenasmatella christianseni	TASM YGG 26	MT526341	–	Gaffarov et al., 2020
X. christiansensi	TASM YGG 36	MT526342	–	Gaffarov et al., 2020
Xenasmatella gossypina	CLZhao 4149	MW545958	–	Zong and Zhao, 2021
X. gossypina	CLZhao 8233	MW545957	–	Zong and Zhao, 2021
Xenasmatella nigroidea	CLZhao 18300	OK045679	OK045677	Present study
X. nigroidea	CLZhao 18333 *	OK045680	OK045678	Present study
Xenasmatella rhizomorpha	CLZhao 9156	MT832954	–	Zong et al., 2021
X. rhizomorpha	CLZhao 9847	MT832953	–	Zong et al., 2021
Xenasmatella tenuis	CLZhao 4528	MT832960	–	Zong et al., 2021
TABLE 1 (Continued)

Species Name	Specimen No.	ITS GenBank Accession No.	nLSU GenBank Accession No.	References
X. tenuis	CLZhao 11258	MT832959	–	Zong et al., 2021
Xenasmatella vaga	KHL 11065	EU118660	EU118661	Larsson, 2007
X. vaga	BHI-F 160a	MF161185	–	Haelewaters et al., 2018
Xenasmatella wuliangshanensis	CLZhao 4880	MW545962	–	Zong and Zhao, 2021
X. wuliangshanensis	CLZhao 4308	MW545963	–	Zong and Zhao, 2021
Xenasmatella xinpingensis	CLZhao 2216	MT832961	–	Zong et al., 2021
X. xinpingensis	CLZhao 2467	MT832962	–	Zong et al., 2021

*Indicates type materials.

![Colored ranges graph](image)

Figure 1: A maximum parsimony strict consensus tree illustrating the phylogeny of the new order Xenasmatales and related order in the class Agaricomycetes based on ITS+nLSU sequences. The orders represented by each color are indicated in the upper left of the phylogenetic tree. Branches are labeled with a maximum likelihood bootstrap value ≥ 70%, and a parsimony bootstrap value ≥ 50, respectively.

16. Xenasmatella Odontioidea Ryvarden and Liberta (1978).
17. Xenasmatella Palmicola (Hjortstam and Ryvarden) Duhem (2010).
18. Xenasmatella Rhizomorpha C.L. Zhao (2021).
19. Xenasmatella Romellii Hjortstam (1983).
20. Xenasmatella Sanguinescens Svrcék (1973).
21. Xenasmata Subflavidogrisea (Litsch.) Oberw. ex Jülich (1979).
22. Xenasmata Tenuis C.L. Zhao (2021).
23. Xenasmata Vaga (Fr.) Stalpers (1996).
24. Xenasmata Wuliangshanensis (C.L. Zhao) G. Gruhn and Trichies (2021).
25. Xenasmata Xinpingensis C.L. Zhao (2021).

Xenosperma Oberw. (1966).
1. Xenosperma Hexagonosporum Boidin and Gilles (1989).
2. Xenosperma Ludibundum (D.P. Rogers and Liberta) Oberw. ex Jülich (1979).
3. Xenosperma Murrillii Gilb. and M. Blackw. (1987).
4. Xenosperma Pravum Boidin and Gilles (1989).

Materials and methods
Sample collection and herbarium specimen preparation

Fresh fruit bodies of fungi growing on the stumps of angiosperms were collected from Honghe, Yunnan Province, P.R. China. The samples were photographed in situ, and macroscopic details were recorded. Field photographs were taken by a Jianeng 80D camera. All photographs were focus stacked and merged using Helicon Focus software. Once the macroscopic details were recorded, the specimens were transported to a field station where they were dried on an electronic food dryer at 45°C. Once dried, the specimens were

FIGURE 2
A maximum parsimony strict consensus tree illustrating the phylogeny of the new order Xenasmatales and related order in the class Agaricomycetes based on nLSU sequences. The orders represented by each color are indicated in the upper left of the phylogenetic tree. Branches are labeled with a maximum likelihood bootstrap value ≥ 70%, a parsimony bootstrap value ≥ 50%, and Bayesian posterior probabilities ≥ 0.95, respectively.
labeled and sealed in envelopes and plastic bags. The dried specimens were deposited in the herbarium of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, P.R. China.

Morphology

The macromorphological descriptions were based on field notes and photos captured in the field and laboratory. The color, texture, taste, and odor of fruit bodies were mostly based on the authors’ field trip investigations. Rayner (1970) and Petersen (1996) were used for the color terms. All materials were examined under a Nikon 80i microscope. Drawings were made with the aid of a drawing tube. The measurements and drawings were made from slide preparations stained with cotton blue (0.1 mg aniline blue dissolved in 60 g pure lactic acid), melzer’s reagent (1.5 g potassium iodide, 0.5 g crystalline iodine, 22 g chloral hydrate, and aq. dest. 20 ml), and 5% potassium hydroxide. Spores were measured from the sections of the tubes; and when presenting spore size data, 5% of the measurements excluded from each end of the range are shown in parentheses (Wu et al., 2022). The following abbreviations were used: KOH = 5% potassium hydroxide water solution, CB = cotton clue, CB– = acyanophilous, IKI = Melzer’s reagent, IKI– = both inamyloid and indextrinoid, L = means spore length (arithmetic average for all spores), W = means spore width (arithmetic average for all spores), Q = variation in the L/W ratios between the specimens studied, and n = a/b (number of spores (a) measured from given number (b) of specimens).

Molecular phylogeny

The CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd., Beijing, P.R. China) was used to obtain genomic DNA from the dried specimens following the manufacturer’s instructions (Zhao and Wu, 2017). The nuclear ribosomal ITS region was amplified with the primers ITS5 and ITS4 (White et al., 1990). The nuclear nLSU region was amplified with the primer pairs LR0R and LR7 (http://lutzonilab.org/nuclear-ribosomal-dna/, accessed on September 12, 2021). The PCR procedure used for ITS was as follows: initial denaturation at 95°C for 3 min, followed by 35 cycles at 94°C for 40 s, 58°C for 45 s, and 72°C for 1 min, and a final extension of 72°C for 10 min. The PCR procedure used for nLSU was as follows: initial denaturation at 94°C for 1 min, followed by 35 cycles at 94°C for 30 s, 48°C for 1 min, and 72°C for 1.5 min, and a final extension of 72°C for 10 min. The PCR products were purified and sequenced at Kunming Tsingke Biological Technology Limited Company (Yunnan Province, P.R. China). All the newly generated sequences were deposited in the National Center...
for Biotechnology Information (NCBI) GenBank (https://www.ncbi.nlm.nih.gov/genbank/, accessed on September 12, 2021) (Table 1).

The sequences and alignment were adjusted manually using AliView version 1.27 (Larsson, 2014). The datasets were aligned with Mesquite version 3.51. The ITS+nLSU dataset and the nLSU-only sequence dataset were used to position a new order, Xenasmatales, and the ITS-only dataset was used to position a new species among the Xenasmata-related taxa. Sequences of Dacrymyces stillatus and Dacryopinax spathularia retrieved from GenBank were used as the outgroup for the ITS+nLSU sequences (Figure 1) (He et al., 2019); sequences of Exidia reicisa and Exidiopsis calcea retrieved from GenBank were used as the outgroup for the nLSU sequences (Figure 2) (Larsson, 2007); and the sequence of Trametes suaveolens was used as the outgroup for the ITS-only sequences (Figure 3) (Zong and Zhao, 2021).

The three combined datasets were analyzed using maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI), according to Zhao and Wu (2017), and the tree was constructed using PAUP* version 4.0b10 (Swofford, 2002). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5,000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was assessed using the bootstrap (BT) analysis with 1,000 replicates (Felsenstein, 1985). Descriptive tree statistics—tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI)—were calculated for each maximum parsimonious tree generated. In addition, multiple sequence alignment was analyzed using ML in RAxML-HPC2 through the Cipres Science Gateway (Miller et al., 2012). Branch support (BS) for ML analysis was determined by 1,000 bootstrap replicates.

MrModeltest 2.3 (Nylander, 2004) was used to determine the best-fit evolution model for each dataset of BI, which was performed using MrBayes 3.2.7a with a GTR+I+G model of DNA substitution and a gamma distribution rate variation across sites (Ronquist et al., 2012). A total of 4 Markov chains were run for 2 runs from random starting trees for 1 million generations for the ITS+nLSU dataset (Figure 1), 1.4 million generations for the nLSU-only sequences (Figure 2), and 0.5 million generations for the ITS-only sequences (Figure 3), with trees and parameters sampled every 1,000 generations. The first one-fourth of all generations was discarded as a burn-in. The majority rule consensus tree of all remaining trees was calculated. Branches were considered significantly supported if
they received a maximum likelihood bootstrap value (BS) ≥ 70%, a maximum parsimony bootstrap value (BT) ≥ 70%, or Bayesian posterior probabilities (BPP) ≥ 0.95.

Results

Phylogenetic analyses

The ITS + nLSU dataset (Figure 1) included sequences from 45 fungal specimens representing 45 species. The dataset had an aligned length of 3,095 characters, of which 1,910 characters are parsimony informative, and 832 are parsimony uninformative. Maximum parsimony analysis yielded 45 equally parsimonious trees (TL = 3,984, CI = 0.4666, HI = 0.5334, RI = 0.3909, and RC = 0.1824). The best model was GTR + I + G [iset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1)]. Bayesian and ML analyses showed a topology similar to that of MP analysis with split frequencies equal to 0.009126 (BI), and the effective sample size (ESS) across the two runs is double that of the average ESS (avg ESS) = 250.5.

The ITS + nLSU rDNA gene regions (Figure 1) were based on 13 orders, namely, Agaricales Underw., Atheliales Jülich, Boletales E.J. Gilbert, Cantharellales Gäum., Corticales K.H. Larss., Gloeophyllales Thorn, Gomphales Jülich, Hymenochaetales Oberw., Polyporales, Russulales, Thelephorales Corner ex Oberw., Trechisporales, and Xenasmatales, while Xenasmatella was separated from the other orders.

The nLSU-alone dataset (Figure 2) included sequences from 58 fungal specimens representing 58 species. The dataset had an aligned length of 1,343 characters, of which 726 characters are parsimony informative, and 441 are parsimony uninformative. Maximum parsimony analysis yielded 3 equally parsimonious trees (TL = 2,864, CI = 0.3209, HI = 0.6791, RI = 0.4476, and RC = 0.1436). The best model for the ITS dataset estimated and applied in the Bayesian analysis was GTR + I + G [iset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1)]. The Bayesian and ML analyses

Table 2: Morphological characteristics of the relevant orders used in this study.

Order Name	Morphological characteristics	References
Agaricales	Hymenophore type gilled, poroid, ridged, veined, spinose, papillate, and smooth, spore deposit color white, pink, brown, purple-brown and black.	Fries, 1821–1832, 1828, 1857–1863, 1874
Atheliales	Generally corticioid and athelid, producing effused, crust like fruiting bodies that are loosely attached to the substrate and with non-differentiated margins.	Eriksson et al., 1978, 1981, 1994
Boletales	Includes conspicuous stipitate-pileate forms that mainly have tubular and sometimes lamellate hymenophores or intermediates that show transitions between the two types of hymenophores. Also includes gastromycetes (puffball-like forms), resupinate or crust-like fungi that produce smooth, meruloid (wrinkled to warded), or hydnoid (toothed) hymenophores, and a single poly pore-like species, Bondarcevomyces taxi	Gilbert, 1931; Beal and Bresinsky, 1997; Jarosch, 2001; Larsson et al., 2004
Corticales	Basidiomata resupinata, effuso-reflexa vel discoidea; hymenophora laevia; systema hypharum monomiticum; dendrohyphidia raro absentia; basidia saepe e probasidiis oriuntur. Cystidia presentia vel absentia. Sporae hyalinae, tenuitunicatae, alvae vel aggregatae roseae.	Hibbett et al., 2007
Gloeophyllales	Basidiomata annua vel perennia, resupinata, effuso-reflexa, dimidiata vel pileata; hymenophora laevia, meruloidia, odontiodae vel poroidae. Systema hypharum monomiticum, dimiticum vel triniticum. Hyphae generativa e fibulatae vel elfibulatae. Leptocystidia ex trama in hymenium projecta, hyalina vel brunnea, tenuitunicata vel crassitunicata. Basidiospora laeves, hyalinae, tenuitunicatae, ellipsoidae vel cylindraceae vel allantoideae, imamylodeae. Lignum decompositum bruneum vel album.	Hibbett et al., 2007
Gomphales	Basidiomata can be coralloid, unipileate or merismatoid (having a pileus divided into many smaller pilei), the pileus, if present, can be fan- to funnel-shaped.	Gonzalez-Avila et al., 2017
Hymenochaetales	Hymenial structure (corticoid, hydnid or porid) and basidioceps (resupinate, pileate or stipitate); the main characters are the xanthochroic reaction, the lack of clamps, the frequent occurrence of setae.	Tobias and Michael, 2002
Thelephorales	Basidiospora tuberose spinosaeque plus minusve colorateae.	Oberwinkler, 1975
Trechisporales	Basidiomata resupinata, stipitata vel clavariae. Hymenophora laevia, grandinioidea, hydnoida vel poroidae. Systema hypharum monomiticum vel dimiticum. Hyphae fibulatae, septa hypharum interdum inflata (ampullata). Cystidia praesentia vel absentia. Basidia 4-6 sterigmatu formantia. Sporae laeves vel ornatae. Species lignicolae vel terricolae.	Hibbett et al., 2007
Xenasmatales	Basidiomata resupinate. Hyphal system monomitic, generative hyphae with clamp connections. Basidia pleural. Basidiospores colorless.	Present study
resulted in a topology similar to that of MP analysis with split frequencies equal to 0.009830 (BI), and the effective sample size (ESS) across the two runs is double that of the average ESS (avg ESS) = 402.

The nLSU regions (Figure 2) were based on 13 orders, namely, Agaricales, Atheliales, Boletales, Cantharellales, Corticii, Gloeophyllales, Gomphales, Hymenochaetales, Polyporales, Russulales, Thelephorales, Trechisporales, and Xenasmatales, while Xenasmata was separated from the other orders.

The ITS-alone dataset (Figure 3) included sequences from 26 fungal specimens representing 15 species belonging to Xenasma and Xenasmata. The dataset had an aligned length of 598 characters, of which 267 characters are constant, 74 are variable and parsimony-uninformative, and 257 are parsimony-informative. Maximum parsimony analysis yielded 1 equally parsimonious tree (TL = 629, CI = 0.7329, HI = 0.2671, RI = 0.8301, and RC = 0.6084). The best model for the ITS dataset estimated and applied in the Bayesian analysis was GTR + I + G [lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet(1,1,1,1)]. The Bayesian and ML analyses resulted in a topology similar to MP analysis with split frequencies equal to 0.007632 (BI), and the effective sample size (ESS) across the two runs is double that of the average ESS (avg ESS) = 300.5.

In the ITS sequence analysis (Figure 3), a previously undescribed species was grouped into Xenasmataella with a sister group to X. vaga (Fr.) Stalpers.

Taxonomy

Xenasmatales K.Y. Luo and C.L. Zhao, **ord. nov.**

MycoBank no.: MB 842882

Type family: Xenasmataceae Oberw.

Basidiomata resupinate. Hyphal systems are monomitic, generative hyphae with clamp connections. Basidia pleural. Basidiospores are colorless.

Xenasmataceae Oberw., Sydowia 19(1–6): 25 (1966).

MycoBank no.: MB 81527

Type genus: **Xenasma** Donk

Basidiomata resupinate, ceraceous to gelatinous. Hyphal systems are monomitic, generative hyphae with clamp connections. Basidia pleural usually with 4 sterigmata and a basal clamp connection. Basidiospores are colorless.

TABLE 3 Morphological characteristic comparison of *Xenasmataella nigroidea* and other species.

Species name	Basidiomata	Hymenial surface	Basidia	Basidiospores	References
Xenasmataella nigroidea	Thin, very hard to	Smooth, hypsaceous to reticulate under the lens	12–18 × 4.5–6 µm	Ellipsoid, 3.5–4.5 × 2.5–3.5 µm; asperulate with blunt spines up to 0.2 µm long	Present study
X. christiansenii	Fragile	Smooth, pruinose to farinaceous or more or less reticulate	6–7 × 4–4.5 µm	Ellipsoid, 6–7 × 4–4.5 µm; asperulate with blunt spines up to 1 µm long	Bernicchia and Gorjón, 2010
X. fibrillosa	Thin, fragile	Porulose to reticulate or formed by radially arranged, white to pale yellowish white	12–15 × 4–5 µm	Ellipsoid, 4.5–5.5 × 3–3.5 µm	Bernicchia and Gorjón, 2010
X. gaspesica	Small spots and becoming a closed coating, firmly attached	Resh smooth and somewhat gelatinous, light gray, dry waxy, white gray	7–11 × 4–4.5 µm	Ellipsoid, 8–10 × 2–2.5 µm	Grosse-Brauckmann and Kummer, 2004
X. gossypina	Cotton to flocculent	Cream to buff	14–23.5 × 4–7 µm	Subglobose to globose, 3.3–4.4 × 2.8–4.5 µm	Zong and Zhao, 2021
X. odontioidea	Colliculosa	Ceraceo-membranacea	17.5–20 × 4.5–5 µm	Ovale-ellipsoid, 2.5–3.5 µm	Ryvarden and Liberta, 1978
X. rhizomorpha	Presence of the rhizomorph	Clay-buff to cinnamon	10.5–17.5 × 3.5–6.5 µm	Ellipsoid, 3.1–4.9 × 2.3–3.3 µm	Zong et al., 2021
X. subflavidogrisea	Thin	White to grayish	10–12 × 4–5 µm	Ellipsoid, 3.5–4.5 × 2–2.5 µm	Bernicchia and Gorjón, 2010
X. vaga	Detachable	Grandinoid	15–20 × 5–6 µm	Ellipsoid, 5–5.5 × 4–4.5 µm	Bernicchia and Gorjón, 2010
Xenasma Donk, *Fungus*, Wageningen 27: 25 (1957).
MycoBank no.: MB 18755
Type species: *Xenasma rimicola* (P. Karst.) Donk.

Basidiomata resupinate, adnate, are ceraceous to gelatinous when fresh, membranaceous when dry, and have a hymenophore smooth. Hyphal system are monomitic, generative hyphae with clamp connections. Cystidia and cystidioles are present. Basidia are cylindrical to subclavate, pleural, usually with 4 sterigmata and a basal clamp connection. Basidiospores are globose to cylindrical, colorless, thin-walled, warted to striate, non-amyloid, and weakly dextrinoid.

Xenosperma Oberw., *Sydowia* 19(1–6): 45 (1966).
MycoBank no.: MB 18759
Type species: *Xenosperma ludibundum* (D.P. Rogers and Liberta) Oberw.

Basidiomata resupinate, closely adnate to the substratum, are gelatinous when fresh and pruinose when dry. Hyphal

FIGURE 6
The geographic distribution of Xenasmataceae species (holotype) worldwide.
systems are monomitic, generative hyphae with clamp connections. Cystidia are absent. Basidia pleural, usually with 2–4 sterigmata and a basal clamp connection. Basidiospores are angular, colorless, thin-walled, tetrahedral, with some protuberances, IKI–, and CB–.

Xenasmatella Oberw., Sydowia 19(1–6): 28 (1966).

MycoBank no.: MB 18756

Type species: **Xenasmatella subflavidogrisea** (Litsch.) Oberw. ex Jülich.

Species name	Geographic distribution	Hostsubstratum	References
Xenasma aculeatum	Argentina	On fructifications of *Hypoxylon*	Gómez, 1972
X. amylosporum	Primorye	On rotten trunk of *Picea jezoensis*	Parmasto, 1968
X. longicyrtidatum	Reunion	On *Rubus alcefolius*	Boidin and Gilles, 2000
X. parvisporum	Czech Republic	On fallen branch of *Quercus petraea*	Pouzar, 1982
X. praeterritum	Ontario	On wood	Donk, 1957
X. pruinum	Tunisia	On oak tree, bared and rotten	Donk, 1957
X. pulverulentum	Austria	On rotten wood	Donk, 1957
X. rimicola	Finland	On cracks in bark	Donk, 1957
X. subclamatisidis	Jammu-Kashmir	On log	Rattan, 1977
X. tulasnelloideum	America	On very rotten wood	Hohnel and Litschauer, 1988
X. vasileevae	Khabarovsk	On fallen trunk of *Taxus cuspidata*	Parmasto, 1965
Xenasmatella ailaoshanensis	Yunnan	On trunk of *Angiospermae*	Huang et al., 2019
X. athnicola	Allier	Sur boss humides, aune, saule blane	Bourdot and Galzin, 1928
X. ardisiaca	France	On decayed wood	Bourdot and Galzin, 1928
X. athelioidea	Japan	On rotten trunk of *Quercus*	Maekawa, 2021
X. bicorvis	Gabon	Among shrubs on shore	Boidin and Gilles, 2004
X. borealis	Norway	On rotten *Pinus sylvestris*	Hjortstam and Larsson, 1987
X. carici-pendulae	Great Britain	On dead attached leaf of *Carex pendula*	Roberts, 2007
X. christiansensi	Kamchatka	On fallen branch of *Larix kurilensis var. glabra*	Parmasto, 1965
X. cinnaeomea	Florida	On *Magnolia*	Burdall and Nakasone, 1981
X. fibrillosa	Iran	On decayed wood	Hallenberg, 1978
X. globigera	Venezuela	On hardwood	Hjortstam and Ryvarden, 2005
X. gossypina	Yunnan	On trunk of *Angiospermae*	Zong and Zhao, 2021
X. inopinata	Ontario	On *Typha canadensis*	Jackson, 1950
X. inopinata	Ontario	On bark	Jackson, 1950
X. inunis	Reunion	Under *Nastus borbonicus*	Stalpers, 1996
X. odontioidea	Canary	On decayed wood	Ryvarden and Liberta, 1978
X. palmicola	Venezuela	On palm	Hjortstam and Ryvarden, 2007
X. rhizomorpha	Yunnan	On trunk of *Angiospermae*	Zong et al., 2021
X. romellii	Sweden	On deciduous wood	Hjortstam, 1983
X. sanguinescens	Czech Republic	On decayed wood	Srzvek, 1973
X. subflavidogrisea	Sweden	On rotten wood of *Pinus sylvestris*	Jülich, 1979
X. tenus	Yunnan	On trunk of *Angiospermae*	Zong et al., 2021
X. vagi	Italy	On *Robinia pseudocacica*	Stalpers, 1996
X. wulianghanensis	Yunnan	On trunk of *Angiospermae*	Zong and Zhao, 2021
X. xinginsensis	Yunnan	On trunk of *Angiospermae*	Zong et al., 2021
Xenosperma hexagonosporum	France	On wood of *Platanus acerifolia*	Boidin and Gilles, 1989
X. ludidii	Massachusetts	On bark of *Quercus* and decayed wood of *Chamaecyparis thyoides*	Jülich, 1979
X. murrillii	Florida	On branch of *Juniperus virginiana*	Gilbertson and Blackwell, 1987
X. pravum	Reunion	On dead branch	Boidin and Gilles, 1989
Basidiomata resupinate with a gelatinous. Hyphal system with clamped generative hyphae. Cystidia are absent. Basidia pleural, usually with 4 sterigmata and a basal clamp connection. Basidiospores are hyaline, thin-walled, warted, IKI–, and CB–.

Xenasmatella nigroidea K.Y. Luo and C.L. Zhao, sp. nov.
MycoBank no.: MB 842470, Figures 4, 5.

Holotype—China. Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 23°42′ N, 103°32′ E, altitude 1,500 m asl., on angiosperm stump, leg. C.L. Zhao, August 3, 2019, CLZhao 18333 (SWFC).

Etymology—*nigroidea* (Lat.): refers to the black hymenial surface.

Basidiomata: Basidiomata are annuals, resupinate, thin, very hard to separate from substrate, odorless or tasteless when fresh, grayish when fresh, gray to black and brittle when dry, up to 7.5 cm long, 3.5 cm wide, 70–150 µm thick. Hymenial surface smooth and byssaceous to reticulate under the lens. Sterile margin indistinct, black, up to 1 mm wide.

Hyphal system: monomitic, generative hyphae with clamp connections, thick-walled, unbranched, 2.5–4 µm in diameter, IKI–, CB–, and tissues unchanged in KOH.

Hymenium: cystidia and cystidioles are absent; basidia are pleural, clavate, with 4 sterigmata and a basal clamp connection, 12.0–18.0 × 4.5–6 µm; basidioles are shaped similar to basidia but slightly smaller.

Basidiospores: ellipsoid, colorless, thin-walled, warted throughout, asperulate with blunt spines up to 0.2 µm long, with one oil drop inside, IKI–, CB–, 3.5–4.5 × 2.5–3.5 µm, L = 4.07 µm, W = 2.87 µm, Q = 1.38–1.45 (n = 60/2).

Type of rot: White rot.

Additional specimen examined: CHINA, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 23°42′ N, 103°31′ E, altitude 1,500 m asl., on the angiosperm stump, leg. C.L. Zhao, August 3, 2019, CLZhao 18300 (SWFC).

Discussion

There have been debates among mycologists regarding the order level taxonomic status of the Xenasmataceae. Corticioid homobasidiomycetes have a high phylogenetic diversity. Thus, an accurate place for the taxa of Xenasmataceae has not been decided. However, it was only assigned to euagarics clade (Larsson et al., 2004). Later, the Phlebiella family was proposed by Larsson (2007) on the basis of corticioid fungi; however, this group was not placed under any order. Recently, Xenasmataceae was placed under Russulales by He et al. (2019). Zong et al. (2021) studied the specimens and sequences from China and treated this group as *Xenasmatella* as the phylogenetic datasets showed that this clade does not belong worldwide.

TABLE 5	Key to 25 accepted species of *Xenasmatella* worldwide.
1. Gloeocystidia present	X. inopinata
1. Cystidia absent	2
2. Basidia with 2, 3 sterigmata	X. bicornis
3. Basidia with 4 sterigmata	3
3. Basidia sterigmata > 5 µm in length	X. naesi
4. Basidiospores > 5 µm in length	4
4. Basidiospores < 5 µm in length	5
5. Basidiospores > 4 µm in width	6
5. Basidiospores < 4 µm in width	9
6. Basidiospores globose	X. ardosiaea
6. Basidiospores ellipsoid	7
7. Basidia < 6 µm in width	X. vaga
7. Basidia > 6 µm in width	8
8. Growth on dead angiosperm	X. caricos-pendulac
8. Growth on the trunk of gymnosperm	X. christiansenii
9. Basidiospores < 2 µm in width	X. atheliosidea
9. Basidiospores > 2 µm in width	10
10. Hymenial margin with fimbriae	X. romelli
10. Hymenial margin without fimbriae	11
11. Hymenial surface arachnoid or byssoid	X. borealis
11. Hymenial surface smooth	X. inopinata
12. Basidiospores subglobose to globose	13
12. Basidiospores ellipsoid to subcylindrical	17
13. Basidiospores thick-walled	X. globigera
13. Basidiospores thin-walled	14
14. Hymenial surface clay-pink to saffron	X. wuiangshanhanensis
14. Hymenial surface white to grayish or cream to buff	15
15. Generative hyphae thick-walled, unbranched	X. xipengensis
15. Generative hyphae thin-walled, branched	16
16. Hymenial surface gossypine to byssaceous	X. gossypina
16. Hymenial surface pruinose to farinaceous	X. ailaoshanensis
17. Generative hyphae thick-walled	18
17. Generative hyphae thin-walled	19
18. Hymenial surface gray to black	X. nigroidea
18. Hymenial surface clay-buff to cinnamon	X. rhizomorpha
19. Growth on palm	X. palmicola
19. Growth on other plant	20
20. Growth on the bark of magnolia	X. cinnamomea
20. Growth on other wood	21
21. Basidiospores slightly thick-walled	X. alnicola
21. Basidiospores thin-walled	22
22. Basidia barrel-shaped	X. tenuis
22. Basidia cylindrical	23
23. Basidiomata ochrous	X. odontioidea
23. Basidiomata white to gray	24
24. Basidiospores > 3 µm in width	X. fibrillosa
24. Basidiospores < 3 µm in width	X. subflavidogrisea
to any order. In the present study (Figure 1), the ITS+nLSU analyses of 13 orders, namely, Agaricales, Atheliales, Boletales, Cantharellales, Corticales, Gloeophyllales, Gomphales, Hymenochaetales, Polyporales, Russulales, Thelephorales, Trechisporales, and Xenasmataceae showed that the taxa of Xenasmataceae form a single lineage with the sequences of Hymenochaetales and Atheliales; and this is similar to the results of Larsson (2007). In the present study (Figure 2), the nLSU analysis showed that the taxa of Xenasmataceae form a single lineage with the sequences of Hymenochaetales and Boletales; and this is similar to the results of Larsson (2007). In the present study (Table 2), we have enumerated morphological differences among the related orders. Therefore, a new fungal order, Xenasmatales, is proposed on the basis of morphological and molecular identification.

Phlebiella was not deemed to be a legitimately published genus (Duhem, 2010), and transferring to Xenasmatella was proposed. Later, Larsson et al. (2020) studied corticioid fungi (Basidiomycota and Agaricomycetes) and agreed with Duhem (2010), who suggested accepting the genus Xenasmatella. Recently, several mycologists have suggested the replacement of the invalid genus Phlebiella with Xenasmatella on the basis of morphology and molecular analyses (Maekawa, 2021; Zong et al., 2021).

On the basis of ITS dataset, a previous study showed that nine species of Xenasmatella have been reported, of which 6 new species were found in China, namely, X. ailaoshanensis C.L. Zhao ex C.L. Zhao and T.K. Zong, X. gossypina, X. rhizomorpha, X. tenuis, X. wuiliangshanensis, and X. xinpingensis. According to our sequence data, Xenasmatella nigroidea was nested into Xenasmatella with strong statistical support (Figure 3), and formed a sister group with X. vaga. However, X. nigroidea is morphologically distinguished from X. vaga by larger basidiospores (5.5–4.5 μm). In addition, it turns dark red or purplish with KOH (Bernicchia and Gorjón, 2010).

Morphological comparisons of Xenasmatella nigroidea and other species are included in Table 3. Xenasmatella nigroidea is similar to X. christianseni (Parmasto) Stalpers, X. fibrillosa (Hallenb.) Stalpers, X. gossypina, and X. rhizomorpha C.L. Zhao by having gossypine, byssaceous to reticulate hymenial surface, however, X. christianseni is distinguished from X. nigroidea by its larger basidiospores (6.7 × 4.45 μm) and asperulate with blunt spines (up to 1 μm long; Bernicchia and Gorjón, 2010). Xenasmatella fibrillosa differs from X. nigroidea due to the presence of a white to pale yellowish white hymenial surface and longer basidiospores (4.5–5.5 μm; Bernicchia and Gorjón, 2010). Xenasmatella gossypina can be distinguished from X. nigroidea because it has cotton to flocculent basidiomata with a cream to buff hymenial surface and subglobose to globose basidiospores (Zong and Zhao, 2021). Xenasmatella rhizomorpha is separated from X. nigroidea by the clay-buff to cinnamon hymenial surface and the presence of the rhizomorphs (Zong et al., 2021).

Xenasmatella nigroidea is similar to X. gasepica (Liberta) Hjortstam, X. odontioidea Ryvarden & Liberta, X. subflavidogrisea (Litsch.) Oberw. ex Jülich, and X. vaga (Fr.) Stalpers due to the presence of the ellipsoid or narrowly ellipsoid basidiospores. However, X. gasepica differs from X. nigroidea because it has smaller basidia (7–11 × 4–4.5 μm) and larger basidiospores (8–10 × 2–2.5 μm; Grosse-Brauckmann and Kummer, 2004). Xenasmatella odontioidea can be distinguished from X. nigroidea by its colliculosa hymenial surface and shorter basidiospores (2.5–3.5 μm; Ryvarden and Liberta, 1978). Xenasmatella subflavidogrisea is separated from X. nigroidea due to the presence of a white to grayish hymenial surface, turning dark reddish brown in KOH and narrower basidiospores (2–2.5 μm; Bernicchia and Gorjón, 2010). Xenasmatella vaga differs from X. nigroidea due to its grandinioid hymenial surface and larger basidiospores (5–5.5 × 4–4.5 μm; Bernicchia and Gorjón, 2010).

Based on the geographical distribution in America, Asia, and Europe, and ecological habits, white-rot causing Xenasmataceae have been reported in angiosperms and gymnosperms (Figure 6 and Table 4) (Stalpers, 1996; Dai et al., 2004; Hjortstam and Ryvarden, 2005; Bernicchia and Gorjón, 2010; Duhem, 2010; Dai, 2011; Huang et al., 2019; Larsson et al., 2020; Maekawa, 2021; Zong and Zhao, 2021; Zong et al., 2021). Key to 25 accepted species of Xenasmatella worldwide in Table 5. Many wood-decaying fungi have been recently reported worldwide (Zhu et al., 2019; Angelini et al., 2020; Gafforov et al., 2020; Zhao and Zhao, 2021). According to the results of our study on Xenasmatella, all these fungi can be classified into a new taxon (Figure 3). In addition, this study contributes to the knowledge of the fungal diversity in Asia.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

Author contributions

C-LZ: conceptualization, resources, supervision, project administration, and funding acquisition. C-LZ and K-YL: methodology, software, validation, formal analysis, investigation, writing—original draft preparation,
writing—review and editing, and visualization. Both authors have read and agreed to the published version of the manuscript.

Funding

The research was supported by the National Natural Science Foundation of China (Project No. 32170004, U2102220) to C-LZ, the Yunnan Fundamental Research Project (Grant No. 202001AS070043) to C-LZ, the High-level Talents Program of Yunnan Province (YNQR-QNRC-2018-111) to C-LZ, and the Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration, and Ecological Services (202105AG070002) to K-YL.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Angelini, C., Vizzini, A., Justo, A., Buzzi, A., and Kaya, E. (2020). First report of a neotropical agaric (lepiota spiculata, agaricales, basidiomycota) containing lethal α-amantin at taxonomically relevant levels. Front. Microbiol. 11, 1833. doi: 10.3389/fmicb.2020.01833

Bernichia, A., and Gorgoné, S. P. (2010). Fungi Europaei 12: Corticiaceae s.l. Alasia: Edizioni Candusso.

Besl, H., and Breinsky, A. (1997). Chemosystematics of suillaceae and gomphidiaceae (suborder Suillineae). Plant Syst. Evol. 206, 223–242. doi: 10.1007/BF00987949

Boidin, J., and Gilles, G. (1989). Les Corticis pleurobasidii (Basidiomycotina) en France. Cryptogamic Bot. 1, 70–79.

Boidin, J., and Gilles, G. (2000). Basidiomycètes Aphyllophorales de l’île de La Réunion. XXI - Suite. Mycotauxion 75, 357–387.

Boidin, J., and Gilles, G. (2004). Homobasidiomycètes Aphyllophorales non porés à basides dominantes à 2 (3) stérigmates. Bull. Trimest. Soc. Mycol. Fr. 119, 1–17.

Bourdot, H., and Galzin, A. (1928). Hyménomycètes de France - Hétérobasidiés. Homobasidii gymnocarpes / par MM. labbé H. Bourdot et A. Galzin. Paris: Bibliothèque nationale de France, département Sciences et techniques, 786.

Burdass, H. H., and Nakasone, K. K. (1981). New or little known lignicolous aphyllophorales (Basidiomycota) from southeastern United States. Mycologia 73, 454–476. doi: 10.1080/00275514.1981.12021368

Chen, C. C., Chen, C. Y., and Wu, S. H. (2021). Species diversity, taxonomy and multi-gene phylogeny of phlebioid clade (Phanerochaetaceae, Hymenochaetaceae, Irpiciaceae, Meruliaceae) of polyporales. Fungal Divers. 111, 1–106. doi: 10.1007/s13225-021-00490-w

Cui, B. K., Du, P., and Dai, Y. C. (2011). Three new species of Inonotus (Basidiomycota, Hymenochaetaceae) from China. Mycol. Prog. 10, 107–114. doi: 10.1007/s11557-010-0681-6

Dai, Y. C. (2011). A revised checklist of corticoid and hydnoid fungi in China for 2010. Mycologia 52, 69–79. doi: 10.1007/S10166-010-0068-1

Dai, Y. C. (2012). Polypore diversity in China with an annotated checklist of Chinese polysphorae. Mycologia 53, 49–80. doi: 10.1080/00275514.2012.671343

Dai, Y. C., Cui, B. K., Xi, J., He, S. H., Hyde, K. D., Yuan, H. S., et al. (2015). Dynamics of the worldwide number of fungi with emphasis on fungal diversity in China. Mycol. Prog. 14, 62. doi: 10.1007/s11557-015-1085-5

Dai, Y. C., Wei, Y. L., and Zhang, X. Q. (2004). An annotated checklist of non-pore basaloid bosses in China. Ann. Bot. Fennici 41, 233–247.

Dai, Y. C., Yang, Z. L., Cui, B. K., Wu, G., Yuan, H. S., Zhou, L. W., et al. (2021). Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema 40, 770–805.

Donk, M. A. (1957). Notes on resupinate Hymenomycetes IV. Fungus 27, 1–29.

Duham, B. (2010). Deux corticis nouveaux méditerranéens à spores allantoides. Cryptogam. Mycol. 31, 143–152.

Eriksson, J., Hjortstam, K., and Ryvarden, L. (1978). Corticiaceae of North Europe Volume 5: Mycocaulacia-Phanerochaetae. Oslo: Fungiflora.

Eriksson, J., Hjortstam, K., and Ryvarden, L. (1981). Corticiaceae of North Europe Volume 6: Phlebra-Sarcollecta. Oslo: Fungiflora.

Eriksson, J., Hjortstam, K., and Ryvarden, L. (1984). Corticiaceae of North Europe Volume 7: Schizopora-Suillaportae. Oslo: Fungiflora.

Felsenstein, J. (1985). Confidence intervals on phylogenies: an approach using bootstrap. Evolution 39, 783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x

Fries, E. (1821–1832). Systema Mycologicum, Sistens Fungorum Ordines, Generaet Species Hucusque Cognitas. Gryphiswaldae: Ernestus Mauritii.

Fries, E. (1828). Elenchus Fungorum. Vols. I and II. Germany: Greifswald.

Fries, E. (1857–1863). Monographia Hymenomycetum Suicae. Vols. I and II. Leffler, C. A. Uppsala: Nabu Press.

Fries, E. (1874). Hymenomycetes Europaici. Berling, Uppsala: Typis descripsip Ed. p. 755.

Gafforov, Y., Ordynets, A., Langen, E., Yasheva, M., de Mello Gugliotta, A., Schigel, D., et al. (2020). Species diversity with comprehensive annotations of wood-inhabiting poroid and corticioid fungi in Uzbekistan. Front. Microbiol. 11, 593821. doi: 10.3389/fmicb.2020.593821

García-Sandoval, R., Wang, Z., Binder, M., and Hibbett, D. S. (2010). Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot. Mycologia 103, 510–524. doi: 10.3852/10-209

Gilbert, J. E. (1931). Les Bolets, in les livres du Mycologue. Paris: Le Village du Livre p. 254.

Gilbertson, R. L., and Blackwell, M. (1987). Notes on wood-rotting fungi on junipers in the Gulf Coast region. II. Mycotaxon 28, 369–402.

Gilbertson, R. L., and Ryvarden, L. (1987). North American Polypores 1-2. Fungiflora; Oslo: Lubrecht and Cramer Ltd. p. 1–433.

Gómez, C. E. (1972). Xenasna y géneros afines de los alrededores de Buenos Aires (Aphyllophorales). Bol Soc Argent Bot 14, 269–281.

Gonzalez-Avila, A., Contreras-Medina, R., Espinosa, D., and Luna-Vega, I. (2017). Track analysis of the order Gomphales (Fungi: Basidiomycota) in Mexico. Psychotria 316, 22–38. doi: 10.1646/psychotria.316.1.2

Grosse-Brauckmann, H., and Kummer, V. (2004). Fünf bemerkenswerte Funde corticoider Pilze aus Deutschland. Feddes Repert. 115, 90–101. doi: 10.1002/fedr.200311029

Haelewaters, D., Dirks, A. C., Kappler, L. A., Mitchell, J. K., Quisida, L., Vandegrift, R., et al. (2018). A preliminary checklist of fungi at the Boston Harbor Islands. Northeast. Nat. 25, 45–76. doi: 10.1656/045.025.s904

Hallenberg, N. (1978). Wood-Fungi (Corticiaceae, Coniophoraceae, Lachnocladiaceae, Thelephoraceae) in N. Iran. J. Iran. J. Plant Pathol. 14, 38–87.
Zhao, C. L., and Wu, Z. Q. (2017). Ceriporiopsis kunmingensis sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Mycol. Prog. 16, 93–100. doi: 10.1007/s11557-016-1259-8

Zhao, W., and Zhao, C. L. (2021). The phylogenetic relationship revealed three new wood-inhabiting fungal species from genus Trechispora. Front. Microbiol. 12, 650195. doi: 10.3389/fmicb.2021.650195

Zhu, L., Song, J., Zhou, J. L., Si, J., and Cui, B. K. (2019). Species diversity, phylogeny, divergence time and biogeography of the genus Sanghuangporus (Basidiomycota). Front. Microbiol. 10, 812. doi: 10.3389/fmicb.2019.00812

Zong, T. K., Wu, J. R., and Zhao, C. L. (2021). Three new Xenasmatta (Polyporales, Basidiomycota) species from China. Phytotaxa 489, 111–120. doi: 10.11646/phytotaxa.489.2.1

Zong, T. K., and Zhao, C. L. (2021). Morphological and molecular identification of two new species of Phlebiella (Polyporales, Basidiomycota) from southern China. Nova Hedwig. 112, 501–514. doi: 10.1127/nova_hedwigia/2021/0628