Supplemental Material for “Dilation of subglacial sediment governs incipient surge motion in glaciers with deformable beds”

Brent M. Minchew1 and Colin R. Meyer2

1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
2Thayer School of Engineering, Dartmouth College, Hanover, NH, USA

Corresponding author: B. M. Minchew, minchew@mit.edu

\section*{Notation}

\begin{tabular}{lll}
\textbf{Variables} & \textbf{Descriptions} & \textbf{Units} \\
\hline
\(a\) & direct (velocity) effect on coefficient of internal friction & - \\
\(b\) & evolution effect on coefficient of internal friction & - \\
\(A\) & rate factor in constitutive relation for ice & \(\text{Pa}^{-n} \text{s}^{-1}\) \\
\(d_c\) & characteristic slip displacement & \(m\) \\
\(\mu\) & coefficient of internal friction of till & - \\
\(\mu_n\) & nominal coefficient of internal friction & - \\
\(g\) & gravitational acceleration & \(\text{m s}^{-2}\) \\
\(h\) & ice thickness & \(m\) \\
\(h_s\) & thickness of deformable till layer & \(m\) \\
\(\ell\) & glacier length & \(m\) \\
\(m_{wi}\) & water mass per unit volume of till & \(\text{kg m}^{-3}\) \\
\(M\) & glacier surface mass balance & \(\text{m s}^{-1}\) \\
\(N\) & effective pressure at the glacier bed \((N = p_i - p_w)\) & \(\text{Pa}\) \\
\(n\) & stress exponent in constitutive relation for ice & - \\
\(p_i\) & ice overburden pressure \((p_i = \rho_i gh)\) & \(\text{Pa}\) \\
\(p_w\) & pore water pressure in deformable till layer & \(\text{Pa}\) \\
\(p_{w,\infty}\) & pore water pressure in non-deforming substrate & \(\text{Pa}\) \\
\(p_{w,v}\) & water pressure in subglacial hydrological system & \(\text{Pa}\) \\
\(q_{wi}\) & water flux in deformable till layer & \(\text{kg m}^{-2} \text{s}^{-1}\) \\
\(t_h\) & hydraulic diffusion timescale of deformable till layer & \(s\) \\
\(\bar{u}\) & depth-averaged speed of glacier & \(\text{m s}^{-1}\) \\
\(u_b\) & basal slip rate & \(\text{m s}^{-1}\) \\
\(u_{bn}\) & nominal basal slip rate & \(\text{m s}^{-1}\) \\
\(u_s\) & surface speed of glacier & \(\text{m s}^{-1}\) \\
\(u_{sw}\) & balance surface speed & \(\text{m s}^{-1}\) \\
\(w\) & glacier half-width & \(m\) \\
\(\alpha\) & ice surface slope & - \\
\(\beta\) & till compressibility & \(\text{Pa}^{-1}\) \\
\(\gamma_h\) & till permeability & \(\text{m}^2\) \\
\(\epsilon_e\) & elastic compressibility coefficient & - \\
\(\epsilon_p\) & plastic dilatancy coefficient & - \\
\end{tabular}
Symbol	Description	Unit
$\dot{\varepsilon}_{ij}$	strain rate tensor	s^{-1}
$\dot{\varepsilon}_e$	effective strain rate ($\dot{\varepsilon}_e = \sqrt{\dot{\varepsilon}_{ij}\dot{\varepsilon}_{ij}/2}$)	s^{-1}
ζ	ratio of depth-averaged velocity to surface velocity	$-$
κ_h	hydraulic diffusivity of till	$m^2 s^{-1}$
θ	state of deformable till	s
η_w	dynamic viscosity of water	$Pa \cdot s$
ρ_i	mass density of ice	$kg m^{-3}$
ρ_w	mass density of water	$kg m^{-3}$
τ_{ij}	deviatoric stress tensor	Pa
τ_b	basal drag	Pa
τ_d	gravitational driving stress	Pa
τ_{ds}	balance driving stress	Pa
τ_e	effective deviatoric stress ($\tau_e = \sqrt{\tau_{ij}\tau_{ij}/2}$)	Pa
τ_t	till shear strength	Pa
ϕ	till porosity	$-$
ϕ_p	plastic component of till porosity	$-$
ψ	hydraulic transmittance	$-$