Targeting Adenosine in Cancer Immunotherapy to Enhance T-Cell Function

Selena Vigano†, Dimitios Alatzoglou†, Melita Irving†*, Christine Ménétrier-Caux², Christophe Caux², Pedro Romero³ and George Coukos¹

¹Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland, ²Department of Immunology Virology and Inflammation, INSERM 1052, CNRS 5286, Léon Bérard Cancer Center, Cancer Research Center of Lyon, University of Lyon, University Claude Bernard Lyon 1, Lyon, France, ³Department of Oncology, University of Lausanne, Lausanne, Switzerland

T cells play a critical role in cancer control, but a range of potent immunosuppressive mechanisms can be upregulated in the tumor microenvironment (TME) to abrogate their activity. While various immunotherapies (IMTs) aiming at re-invigorating the T-cell-mediated anti-tumor response, such as immune checkpoint blockade (ICB), and the adoptive cell transfer (ACT) of natural or gene-engineered ex vivo expanded tumor-specific T cells, have led to unprecedented clinical responses, only a small proportion of cancer patients benefit from these treatments. Important research efforts are thus underway to identify biomarkers of response, as well as to develop personalized combinatorial approaches that can target other inhibitory mechanisms at play in the TME.

In recent years, adenosinergic signaling has emerged as a powerful immuno-metabolic checkpoint in tumors. Like several other barriers in the TME, such as the PD-1/PDL-1 axis, CTLA-4, and indoleamine 2,3-dioxygenase (IDO-1), adenosine plays important physiologic roles, but has been co-opted by tumors to promote their growth and impair immunity. Several agents counteracting the adenosine axis have been developed, and pre-clinical studies have demonstrated important anti-tumor activity, alone and in combination with other IMTs including ICB and ACT. Here we review the regulation of adenosine levels and mechanisms by which it promotes tumor growth and broadly suppresses protective immunity, with extra focus on the attenuation of T cell function. Finally, we present an overview of promising pre-clinical and clinical approaches being explored for blocking the adenosine axis for enhanced control of solid tumors.

Keywords: adenosine, cAMP, CD73, CD39, cancer immunotherapy, T cells, tumor microenvironment

INTRODUCTION

IMT has led to unprecedented clinical success for some advanced cancer patients and has been accepted as a new pillar of cancer therapy (1). Thus, the identification of biomarkers predicting response to IMT, as well as the development of combinatorial strategies for increasing its effectiveness in more patients, and against a broader range of tumor-types, have become important areas of research (2). The nucleoside adenosine, involved in the regulation of multiple diverse physiological processes either as an intracellular metabolite of nucleic acid synthesis and energy-charge regulation or as an intercellular messenger in neurological, cardiovascular and...
immunological systems, has recently emerged as a major immuno-metabolomic checkpoint in tumors (3). Conditions of stress, such as hypoxia, lead to the accumulation of extracellular adenosine, predominantly derived from enzymatic ATP catabolism, which can act directly on tumor cells expressing adenosine receptors to promote their growth, survival and dissemination. In addition, adenosine, which under physiological conditions serves as an immuno-regulatory molecule to protect normal tissues from uncontrolled inflammation, can impair anti-tumor immunity, both through the attenuation of protective immune cells including T cells, NK cells, and dendritic cells (DCs), and by enhancing the suppressive capacity of T regulatory cells (Tregs), and myeloid-derived suppressor cells (MDSCs), amongst others. Here we review the targeting of the adenosine pathway to promote immune function and tumor control, with focus on T-cell activity, important experimental findings and an overview of clinical testing.

REGULATION OF ADENOSINE LEVELS IN HEALTHY vs. MALIGNANT TISSUE

Extracellular adenosine, a nucleoside and derivative of ATP, is involved in the regulation of diverse physiological processes including vasodilation (4), kidney-exerted water reabsorption (5), pain perception (6), and fine-tuning of the sleep–wake cycle (7). Even though levels of extracellular adenosine within healthy tissues are negligible (8–11), upon injury this nucleoside sharply accumulates at the interstitium where it potently restricts immune responses (12) and directly promotes wound healing (13). Under homeostatic conditions in healthy tissues, the cytosolic concentration of ATP ranges from 1 to 10 mM (14), while its extracellular levels are negligible (15). This sharp gradient can be rapidly disrupted however upon breaches of the plasma membrane induced by necrosis, apoptosis or mechanical stress, as well as by regulated ATP efflux. The latter, induced by a variety of stimuli including hypoxia, ischemia and inflammation, has been shown to extensively occur via exocytosis, transmembrane transfer through ATP-binding cassette (ABC) transporters, as well as by diffusion through a variety of anion channels or non-selective plasma membrane pores formed by connexins, pannexin-1 or the ATP receptor P2X7R (16–18). For instance, stimulated T cells release ATP through pannexin-1 hemi-channels and via exocytosis (19, 20).

Once in the extracellular space, ATP undergoes rapid stepwise dephosphorylation by ecto-nucleotidases (21, 22) including the E-NTPDase CD39, which converts ATP or ADP to ADP or AMP, respectively, and the 5’-nucleotidase CD73, which dephosphorylates AMP to adenosine (18, 23) (Figure 1). Additional enzymes whose ecto-activity contributes toward extracellular adenosine levels are other E-NTPDases, members of the eco-phosphodiesterase/pyrophosphatase (E-NPP) family, nicotinamide adenine dinucleotide (NAD+) glycohydrolases, the prostatic acid phosphatase (PAP), and the alkaline phosphatase (ALP) (21) (Figure 1). Briefly, the co-enzyme NAD+, another key cellular component whose extracellular concentration significantly rises in injured tissue (24, 25), is converted to adenosine diphosphate ribose (ADPR) by the NAD+ glycohydrolase CD38 (26), while ADPR as well as ATP are metabolized to AMP by the E-NPP CD203a (27). Moreover, PAP, which is predominantly, but non-exclusively, expressed in prostate tissue (28), is capable of converting extracellular AMP to adenosine (29), whereas ALP catalyzes the hydrolysis of ATP, ADP and AMP to adenosine (30). Finally, adenosine can also be produced intracellularly either by S-adenosylhomocysteine hydrolase (SAHH)-exerted hydrolysis of S-Adenosylhomocysteine (SAH), a metabolite of the transmethylation pathway, or due to soluble CD73-mediated catabolism of AMP, a nucleoside participating in multiple cellular processes and whose concentration rises within cells of low energy charge (30) (Figure 1). Intracellularly-generated adenosine can be secreted in a diffusion limited-manner through bidirectional equilibrative nucleoside transporters (ENTs) (31). However, although there is evidence suggesting that hypoxia can boost intracellular adenosine production (32, 33), the contribution of this pathway toward injury-caused interstitial adenosine buildup is considered minor due to concurrent hypoxia-induced downregulation of the aforementioned transporters (34, 35). Given its diverse effects, adenosine presence at the extracellular space is subject to tight spatiotemporal control (12, 13, 36). For instance, extracellular accumulation of adenosine is counteracted by its inward transfer through ENTs or concentrative, sodium gradient-dependent, symporters (31) as well as by the function of intra/extracellular adenosine deaminase (ADA) and of cytosolic adenosine kinase (ADK), which respectively convert adenosine to inosine or AMP (37) (Figure 1).

In contrast to homeostatic conditions, ATP levels are highly elevated in the TME as a result of necrosis, apoptosis, hypoxia, and persistent inflammation (17, 18), and intra-tumoral adenosine levels can reach micromolar concentrations (9, 10, 38). ATP catabolism in tumors is primarily mediated by CD39 and CD73 (39–41), and high expression of these ecto-nucleotidases is strongly associated with poor clinical outcome for patients suffering a variety of cancer-types (3, 42, 43). In particular, CD39 and/or CD73 (over)expression has been detected on the surface of tumor cells (39, 44–51), cancer-associated fibroblasts (CAFs) (52–54), mesenchymal stem cells and stromal cells (55–57), endothelial cells (ECs) (45, 46, 51), myeloid derived suppressor cells (MDSCs) (58–60), tumor associated macrophages (TAMs) (53, 61), Tregs (46, 62–64), Th17 cells (65) and of antigen experienced/exhausted conventional CD4+ and CD8+ T cells (64, 66–68). In addition, CD39/CD73-bearing exosomes (69, 70), released by tumor cells (71), Tregs (72), and MDSCs (57, 73) further contribute to adenosine generation. Currently, hypoxia as well as incessant inflammation are considered to be the main drivers of intra-tumoral CD39 and CD73 overexpression. Namely, hypoxia-induced (74, 75) HIF1α (76–79) and Sp1 (80) activity promotes expression of these ecto-nucleotidases. Along the same lines, signaling pathways initiated by inflammation-associated molecules, such as IL-2 (81), IL-6 (66, 82), IL-1β (83), TNFα (84–85), type I IFNs (86, 87), IL-27 (66, 88), TGFβ (82, 89, 90) as well as by inducers of the Wnt (91, 92) or cAMP (83, 93–95) signaling pathways also boost CD39 (66, 81, 82, 88, 89, 95) and CD73 (81–87, 89–94) levels.
Although CD39 and CD73-mediated catabolism of extracellular ATP is considered to account for the bulk of intra-tumoral adenosine generation, expression levels of ectoenzymes participating in alternative adenosine production pathways also rise in the advent of cancer. For instance, CD38 is frequently upregulated within neoplastic tissues (26, 96, 97) and sporadic evidence suggests that CD203a levels also increase on TME components (98, 99). Along the same lines, the serum concentration of PAP increases during prostate cancer progression (100) while others suggest it gets upregulated on cancerous tissue as well (28). Finally, several studies have demonstrated elevated levels of ALP on cancer cells (101, 102) as well as a correlation of serum ALP levels and disease stage (103–105). Critically, the relative contribution of these alternative adenosine-producing pathways toward intra-tumoral buildup of this nucleoside remains to be determined. Finally, along with aberrant production, defective uptake resulting from the down-modulation of equilibrative (106, 107) as well as concentrative (108–110) nucleoside transporters, also driven by hypoxia (34, 35, 111), further contributes to adenosine accumulation in the TME.

ADENOSINE RECEPTOR SIGNALING

Four adenosine receptors (ARs), all coupled to G-proteins, have been identified; A1R, A2AR, A2BR, and A3R (112, 113). While A1, A2A, and A3 are described as high affinity adenosine receptors (EC$_{50}$ in the range of 0.1–0.7 µM), A2BR is considered as low affinity because it is activated only in the presence of high concentrations of adenosine (EC$_{50}$ of 15–25 µM), such as may be found in the TME or under other pathological conditions. Upon adenosine binding, these GPCRs induce the replacement of GDP bound by the heterotrimeric G proteins, a class of GTP hydrolases, with GTP thus resulting in the dissociation of the latter into Gα monomers and G$\beta\gamma$ dimers, now free to modulate downstream effectors before their GTP hydrolysis-induced re-association (114).
Of the four classes of Gq proteins characterized to date, namely Gq4, Gq5, Gq11, Gq12/13, only Gq11 and Gq13 directly influence the activity of adenylyl cyclases (AC), enzymes that catalyze the cyclization of intracellular ATP into cyclic adenosine monophosphate (cAMP) (114). In terms of function, triggering of the Gq11-coupled A2AR and A2BR promotes AC activity (115). In contrast, stimulation of the Goq15-paired A1R and A3R inhibits cAMP generation (115). Although modulation of intracellular cAMP content constitutes a crucial aspect of extracellular adenosine-exerted regulation, stimulation of its receptors induces a variety of cAMP-independent biochemical effects, such as A1R/Goq, A2BR/Goq, A3R/Goq-induced stimulation of phospholipase C (PLC) activity and A1R/Goq, A2AR, A2BR/Goq-induced A3R-mediated ERK activation (115). Finally, elevation of extracellular adenosine levels induces receptor-independent boosting of AMP-activated protein kinase (AMPK) via intracellular transfer of this nucleoside followed by its conversion to AMP (116, 117).

ADENOSINE-INDUCED INTRACELLULAR
cAMP ACCUMULATION IMPAIRS T
CELL-MEDIATED ANTITUMOR
RESPONSES

It is now understood that T cells play a major role in tumor control (118–120). As will be discussed however, elevated levels of adenosine in the TME can potently impair T-cell function by inducing accumulation of intracellular cAMP.

Levels of Adenosine Receptors on the T Cell Surface

Murine (121–127) and human (128–132) T cells express all four ARs, and levels of A2AR (122, 124–127, 129), A2BR (126, 127, 130), and A3R (127, 131) increase upon T cell activation. However, the biology of T cells is primarily affected by the predominantly expressed A2AR (122, 123, 128, 132). Of note, similarly to CD39 and CD73, A2AR, and A2BR are upregulated due to hypoxia-induced HIF1α (133) transcriptional activity. Moreover, mRNA levels of both A2AR and A2BR are upregulated in T cells specifically upon provision of anergic stimulus (134). Validating these findings, adoptively transferred tumor-specific T cells isolated from tumors contained twice the A2AR mRNA levels than counterpart T cells isolated from spleens of tumor-bearing mice (135). Since triggering of the different ARs initiates diverse and even antagonistic signaling pathways, the net cellular effects of adenosine are determined by the relative surface expression of its receptors. It is clear, however, that treatment of human (136, 137) or murine (38, 126, 138, 139) T cells with adenosine or adenosine analogs induces A2AR (38, 126, 137–139) as well as A2BR- (38, 136) mediated intracellular cAMP build-up.

The Mechanics of cAMP-Mediated
T Cell Suppression

The secondary messenger of adenosine cAMP, also a derivative of ATP, is involved in a diverse range of cellular functions including metabolism, transcription, and growth, while oscillations of its levels within distinct cell populations are paramount for the regulation of multiple bodily functions, such as endocrine, cardiovascular, neuronal, and immune processes (140). The intracellular concentration of cAMP is determined by the antagonistic activities of ACs, and of cAMP-specific phosphodiesterases (PDEs), proteins that hydrolyze cAMP to 5′-AMP. Although cAMP can diffuse within the cytosol, the co-localization of the highly-targeted AC and PDE activities in particular subcellular regions results in the formation of distinct cAMP microdomains within which co-localized cAMP effectors are activated by in-situ generated cAMP before its swift degradation (141, 142). The formation of such microdomains is mediated by AKAPs, scaffold proteins shown to bind ACs, PDEs as well as effectors of the cAMP-signaling pathway (143, 144). Of the 10 currently identified AC isoforms, T cells express AC3, AC6, AC7 and AC9 (145, 146) with most cAMP production catalyzed by AC7 (146). As previously described, A2AR and A2BR are coupled to Goq, which stimulates the activity of ACs. Of the 11 PDE families characterized to date, isoforms belonging to the relatively strong-affinity (147) cAMP-binding families of PDE1 (145, 148), PDE3 (145, 149), PDE4 (145, 149), PDE7 (145, 149–151), PDE8 (145, 151, 152), and PDE11 (145) have been observed within T cells, with most cAMP hydrolysis carried out by PDE3 and PDE4 isoforms (148, 149, 153). Of note, cAMP levels in T cells can also be augmented by additional factors in the TME including prostaglandin E2 (PGE2) (154), norepinephrine (155), histamine (156), the neuropeptides VIP and PACAP (157, 158), and low pH (159). Additional phenomena contributing toward cAMP build-up within effector T cells include TCR triggering (160, 161) as well as direct cAMP transfer by tumor cells (162) or Tregs (163) via gap junctions.

Accumulation of cAMP within the T cell cytosol induces the activity of protein kinase A (PKA) and of exchange protein directly activated by cAMP (EPAC). PKA, the dominant effector of the cAMP signaling pathway (164) is an heterotetramer comprising two catalytic (C) subunits, maintained in an inactive state by tethering to two regulatory (R) subunits (165). Binding of cAMP to the R-subunits induces a conformational change resulting in the release of the C-subunits (166). As a result, liberated PKA C-subunits within T cells phosphorylate a wide variety of substrates affecting multiple signaling pathways (167). It is well established that sustained PKA activity disrupts signaling induced by triggering of the TCR, of the co-stimulatory receptor CD28 (168, 169) as well as by the IL-2 receptor (IL-2R) (170). Negative regulators of these signaling pathways, whose activity is bolstered by PKA, include Csk (171), SHP-1 (172), SHIP1 (173), HPK1 (174), and PP2A (175). Conversely, PLCγ1 (176, 177), Raf-1 (178, 179), JAK3 (170), RhoA (180, 181), VASP (182) as well as the transcription factors NFAT (183, 184) and NFKB (185, 186) constitute mediators or endpoint effectors of the aforementioned axes whose activity is dampened by PKA.

PKA activity also significantly affects cytoplasmic potassium concentration within T cells by inhibiting the activity of Kv1.3 (187) and KCa3.1 (188, 189), channels which are responsible for the bulk of potassium efflux by T cells (190). In a negative-feedback fashion, PKA induces reduction of the cytosolic cAMP concentration by directly phosphorylating ACs in an inhibitory fashion (191) as well as isoforms of PDE3 (192), respectively.
PDE4 (193, 194), PDE8A (195) in a stimulatory manner. At the transcriptional level, PKA augments the activity of CREB cAMP responsive element binding (CREB), cAMP responsive element modulator (CREM) and activating transcription factor-1 (ATF-1) (196), which induce or counteract the transcription of multiple inflammation-relevant genes such as IL-2 (197–199), IFNγ (200–202), IL-4 and IL-13 (203, 204), IL-17 (205–208), and FoxP3 (209, 210). Specifically, PKA promotes the transcriptional activity of CREB by phosphorylating it thus increasing its affinity for its co-activators CBP and p300 (211), and by promoting the nuclear localization of CRTC (212), another family of CREB co-activators. Finally, PKA directly phosphorylates and activates ATF-1 (213) as well as distinct CREM isoforms (214) in a way similar to CREB.

The guanine nucleotide exchange factor EPAC1 is another effector of cAMP in T cells (215, 216). cAMP binds to the cAMP-responsive N-terminal region of EPAC1 and induces an open conformation rendering its catalytic core accessible to its effectors (217, 218). The most heavily characterized EPAC1 effector in T cells is the energy-associated GTPase Rap1 (219, 220) which in its GTP-bound form is targeted to the plasma membrane (221) where it inhibits TCR-induced MEK-ERK activation by sequestering Raf-1 (220, 222).

Overview of the Inhibitory Effects of cAMP on T-Cell Biology

A variety of molecules, including cAMP analogs, direct AC activators (e.g., forskolin and cholina toxin) and PDE inhibitors have been used to elucidate the diverse effects of intracellular cAMP accumulation on T-cell biology. In the presence of such molecules (223–228) as well as by A2AR triggering (125, 126, 229) the capacity of previously unstimulated T cells, CD4⁺ or unfraccionated, to differentiate post-activation toward cells that produce Th1 (125, 126, 223–225, 229) or Th2 (226–229)-signature cytokines is drastically diminished. This occurs in a PKA-dependent fashion (230, 231) through multi-level disruption of TCR- or CD28-induced signaling (122, 232). Intriguingly, A2AR agonist-induced impairment of IFNγ production remains evident even when A2AR agonist-pretreated T cells are re-stimulated in the absence of this agent (139). Furthermore, agents that directly activate the cAMP pathway (233–235), as well as adenosine (122, 138, 232, 236, 237), have been shown to restrict stimulation-induced AKT activation (122, 232, 233, 238) and to induce stabilization of β-catenin, which restricts maturation toward terminally differentiated effector cells (239). Moreover, such agents can prevent FasL upregulation, thus averting FasL-mediated activation-induced cell death (AICD) (127, 138, 235, 237). Finally, such molecules abolish mitogenic-stimulus-induced T cell proliferation, in a PKA-dependent manner (240), by downmodulating the transmission of TCR/CD28- and IL-2 (241)-initiated signaling, as well as IL-2 production (126, 229, 231) and IL-2Ra expression (242).

Forskolin, cAMP analogs, PDE inhibitors (152, 243–245) and adenosine (188, 246–248) also diminish T cell adherence (152, 243, 246, 248) by down-modulating the expression levels of ICAM-1 (249, 250) as well as of the integrins α4 (251, 252) and β2 (251, 253), components of VLA-4 and LFA-1, respectively. Such agents also impair T-cell migration (188, 244, 245, 247) by inducing KCa3.1 inhibition (188, 189). In addition, cAMP-mediated signaling (230, 254, 255) or the presence of A2AR agonists (139, 168, 230, 231) diminishes T cell cytotoxicity, in a PKA-dependent manner (168, 230, 231), probably as a result of impaired TCR signaling, motility/adhesion, granule exocytosis (138), as well as due to decreased expression of FasL, Granzyme B (GzB), and perforin (127).

Lastly, chola toxin (256), PDE inhibitors (257–259), forskolin (157) and A2AR agonists (126, 260) not only skew T cells toward the Treg lineage via induction of FoxP3 expression (126, 256–258, 260), but also enhance the capacity of Treg cells to suppress responder T cells (258–260), at least in part by upregulating CTLA-4 levels (157, 260). Thus, cAMP can potentially diminish the differentiation and effector activities of CD4⁺ and CD8⁺ T cells, while promoting the differentiation toward Tregs, as well as their suppressive capacity.

THE PLEIOTROPIC EFFECTS OF ADENOSINE IN THE TUMOR MICROENVIRONMENT

Along with T cells, many other cell types in the TME including other protective or suppressive immune infiltrates, tumor-associated fibroblasts, endothelial cells and cancer cells also express functional ARs (3, 261–266). Here we briefly describe the effects of adenosine-induced signaling on them (Figure 2).

Dendritic Cells

The biology of DCs, specialized antigen presenting cells (APCs) and critical messengers between the innate and adaptive immune system, can be severely impaired by adenosinergic signaling. For example, it has been reported that adenosine binding to A2BR (267) halts the differentiation of monocytes to DCs (267, 268). In addition, adenosine averts inflammatory stimulus-induced DC activation (269), whereas A2AR (270) and A2BR triggering (267, 271, 272) diminishes the capacity of DCs to prime Th1 immune responses (267, 270, 271) but rather prompts DCs to skew naïve T cell differentiation toward Th2 (267, 271) and Th17 (272) lineages. Adenosine-treated DCs exhibit decreased expression or secretion of TNFα and IL-12 (268–271, 273) and enhanced production of IL-5 (270), IL-10 (267, 268, 270, 273), IL-6 (267, 272) and TGFβ (267). Moreover, such DCs are less motile due to chemokine receptor downregulation (274), and have a tolerogenic effect on the TME due to overexpression of TGFβ (267), IL-10, IDO-1 (267), arginase-2 (267, 275), as well as A2AR-mediated upregulation of PD-L2 (276). Finally, adenosine compels DCs to secrete the proangiogenic factors VEGF (267, 275) in an A2BR-dependent manner as well as IL-8 (267).

Macrophages

Stimulation of adenosine receptors hinders the differentiation of monocytes to macrophages, probably through cAMP accumulation (277). Moreover, by engaging A1R (278), A2AR (278–282), A3R (281, 283) or setting off Gαi₂-paired ARs (284), adenosine reduces the pro-inflammatory activity of macrophages by dampening their ability to produce IL-12 (279), TNFα (278–280, 282, 283), macrophage inflammatory protein-1α (284).
FIGURE 2 | Overview of the pleiotropic effects of adenosine in the TME. Adenosine enables tumor cells to escape immune-surveillance by limiting the functionality of multiple potentially protective immune infiltrates including T cells, DCs, NK cells, macrophages and neutrophils, while enhancing the activity of immunosuppressive cell-types, such as MDSCs and Tregs. In addition, adenosine not only assists tumor cells in co-opting adjacent fibroblasts for support, but also induces the formation of new blood vessels. Adenosine also affects the capacity of some tumor cell-types to survive, proliferate, migrate and invade neighboring tissues (HPC, bone marrow-derived hematopoietic progenitor cells).

(MIP1α) (281), nitric oxide (278, 285) and superoxide (284). In addition, by triggering A2AR (282, 286, 287), A2BR (288, 289) or unidentified ARs, adenosine promotes an M2 polarization of macrophages by inducing upregulation of arginase-1 (288, 290), IL-10 (279, 286, 289) and VEGF production (282, 287).

NK Cells
A2AR stimulation by adenosine not only restricts the NK maturation (291), but also their capacity for stimulus-induced CD69 upregulation (292, 293), proliferation (291, 294) as well as IFNγ (292, 293) and TNFα (294, 295) production. Furthermore, largely via A2AR triggering, adenosine diminishes target cell killing by NK cells (292, 294, 296–298).

Neutrophils
Adenosine exerts a variety of inhibitory effects on neutrophils. For example, triggering of A2AR (299–303), A3R (304), non-specified A2Rs (304–307) or ARs dampens their ability to adhere (299, 305, 308, 309), transmigrate (310), secrete TNFα and MIP1α (300, 306), degranulate (301, 302, 304, 311), perform Fc receptor-mediated phagocytosis (307) and produce superoxide (299, 301–303). Interestingly, others claim that A2AR and A2BR signaling has been shown to suppress VEGF production (310). Finally, A2AR stimulation prompts neutrophils to secrete higher levels of PGE2 (312).
MDSCs
A2BR-mediated signaling boosts differentiation of bone marrow hematopoietic progenitors toward a tolerogenic myeloid-derived cell subset, the MDSCs (313). Moreover, A2AR activation promotes IL-10 production by MDSCs (314) and treatment with an adenosine analog results in increased expression of CD73 (313). Finally, it has also been shown that A2BR stimulation on MDSCs augments VEGF production (315).

Stromal Cells
Adenosine, along with critically contributing to the establishment of a tolerogenic TME, also enables tumors to subvert fibroblasts into supporting them and to induce formation of new blood vessels, processes essential to their growth and dissemination. CAFs, for example, are stromal cells that support tumors by secreting the pro-metastatic and angiogenic (316) chemokine CXCL12 (317), as well as the mitogenic (318) fibroblast growth factor 2 (FGF2) (319). Triggering of A2BR on the surface of CAFs boosts expression of both CXCL12 and FGF2 (320) whereas A2AR-induced signaling stimulates their proliferation (54). As previously mentioned, adenosine can stimulate VEGF secretion by multiple cell types found within the TME, which in turn promotes angiogenesis by supporting the survival, migration and proliferation of endothelial cells (321, 322). It has also been shown that A2AR (323) and A2BR (66) stimulation diminishes production of the angiogenic factor thrombospondin-1 by endothelial cells. Furthermore, adenosine not only augments the rate of intra-tumoral nutrient delivery by inducing vasodilatation (324), but also hinders leukocyte extravasation (325) through downregulation of adhesion molecules, such as E-selectin (326, 327) VCAM-1 (326, 327) and ICAM-1 (327, 328) on the surface of endothelial cells, as well as by limiting vascular permeability (325, 327, 329–331) through A2BR activation (329–331). Finally, signaling initiated by triggering of A2AR (332, 333), A2BR (334–336) or non-specified ARs prompts endothelial cells to overexpress CD73 (334) as well as the proangiogenic factors VEGF (332, 333, 335, 336), IL-8 (335) and basic fibroblast growth factor (bFGF) (335, 336).

Tumor Cells
Adenosine binding to ARs on the surface of cancer cells has a profound impact on their biology. For example, the triggering of A1R (337, 338), A2AR (54, 339, 340), and A3R (339, 341–343) induces a variety of cellular responses that augment cancer cell survival such as Akt and ERK1/2 stimulation, as well as Bad inactivation (342). Additional responses to AR signaling contributing to bolstered cancer cell survival include upregulation of Bcl2 (343), downregulation of p53 (338) and Bax (343) as well as aversion of caspase-9 (343) and caspase-3 (54, 343, 344) activation. Paradoxically, extracellular adenosine has also been demonstrated to cause cancer cell death either by setting off A1R (345, 346), A2AR (341, 347), A2BR (348, 349), and A3R (339, 350–354) or via induction of AMPK activation upon its cellular uptake and subsequent conversion to AMP (345).

Moreover, A1R (337, 355), A2AR (341, 356), A2BR (344, 357–359), and A3R (343, 360) stimulation augments cancer cell proliferation through activation of PLC (356), protein kinase C-delta (PKC-δ) (356), AKT (356, 357), ERK1/2 (356–360), JNK (356, 358), and p38 (358). Furthermore, triggering of the ARs leads to upregulation of cyclins A (343), B (358), D (343, 358), E (337, 343, 358), estrogen receptor-α (355) as well as downregulation of the cell-cycle inhibitors p27 (337) and p21 (343, 358). Surprisingly, though, activation of A2BR (349) and A3R (341, 350, 353, 361–363) has also been reported to result in a potent cytostatic effect.

Motility (358, 359, 364–369) and invasiveness (358, 359, 367, 370) are additional features of cancer cells that are boosted upon engagement of A1R (364, 365), A2AR (366), A2BR (358, 359, 367, 368), and A3R (369, 370). In terms of mechanisms, signaling initiated by these receptors promotes filopodia formation (367) as well as expression of matrix metalloproteases (MMPs) (358, 359, 370) and FXYD5 (359), a cell membrane glycoprotein known to drive metastasis by reducing cell adhesion (371). In contrast, others claim that A3R triggering hinders the motility and invasiveness of cancer cells (372, 373). Finally, A2AR (374), A2BR (369, 375), and A3R (369, 375–377) stimulation on the surface of cancer cells promotes angiogenesis by boosting secretion of the pro-angiogenic factors VEGF (369, 375, 377), IL-8 (369, 375), angiopoietin 2 (376), and erythropoietin (374).

The contrasting consequences of triggering particular ARs, on the survival, proliferation or migration and invasiveness of tumor cells most probably occur due to the heterogeneity between cells and/or experimental settings employed to assess them. For instance, two different cancer cell lines of distinct tissue origin could have profoundly diverse AR expression profiles as well as different ability to transmit/terminate signaling initiated by these receptors. Moreover, they might have different capacity to produce adenosine, which once released into the medium can trigger ARs in an autocrine fashion. Finally, different concentrations used between experiments, as well as limited specificity of the AR agonists/antagonists, probably constitute additional factors contributing to the observed discrepancies.

TARGETING ADENOSINERGIC SIGNALING IN CANCER IMMUNOTHERAPY

Adenosine confers potent immunosuppressive as well as direct tumor-promoting effects in the TME. Thus, approaches to both blocking its generation and hindering binding to its receptors have become important areas of research (Figure 3). Indeed, extensive pre-clinical experimentation has firmly established that targeting the adenosinergic signaling on its own (Table 1) or in combination with emerging IMTs or established cancer treatments (Table 2) shows important promise and soundly supports the clinical evaluation (Table 3) of these concepts. Here we present an overview of such pre-clinical and clinical studies.

Blockade of Adenosine Generation
As previously described, CD73 is a nucleotidase that converts AMP, generated from CD39- or CD38/CD203-mediated
catabolism of ATP or NAD respectively, to adenosine. Its central role in adenosine generation is underscored by the fact that CD73-deficient mice display drastically decreased interstitial levels of adenosine, not only at steady state, but also upon induction of trauma or hypoxia (409, 410). CD73 knock-out mice exhibit hindered tumor growth and metastatic spreading (378–380, 387) and mice inoculated with tumor cells lacking CD73 survive longer than mice inoculated with tumor cells expressing this ecto-enzyme (378, 388). Indeed, administration of anti-CD73 monoclonal antibodies (mAb) (368, 378–386) or of a CD73-specific pharmacologic inhibitor (378, 379, 381, 383, 384, 387–389) impairs tumor growth (368, 378–382, 385, 387, 389) and metastasis (368, 379, 380, 384, 386) while increasing survival (378, 382, 384, 388). Of note, CD73 can also act as an adhesion/signaling molecule to promote metastasis in a catalytic-activity independent manner (386, 411, 412). Mechanistically, the aforementioned treatments have been shown to promote intra-tumoral accumulation of CD8+ T cells (381, 382, 385, 389), B cells (381) as well as of Th1- and Th17-associated cytokines (381) while decreasing the levels of intra-tumoral VEGF (383) and the presence of Tregs (389). Of note, even though metastasis can be modestly inhibited by anti-CD73 therapy in an immune-system independent fashion (368, 386), most of the antitumor effect of CD73 blockade is due to alleviation of A2AR-mediated immunosuppression (368).

No doubt encouraged by these pre-clinical studies, four anti-CD73 mAbs are currently being evaluated as monotherapies in small scale trials targeting a variety of solid tumors. In July 2015, MedImmune launched a first in-human trial (NCT02503774) evaluating the human anti-CD73 mAb Oleclumab, which allosterically prevents CD73 from assuming its catalytically active conformation (413). In June 2016, Bristol-Myers Squibb (BMS) launched a Phase I/IIa trial (NCT02754141) to assess the efficacy of BMS-986179, a human IgG2-IgG1 hybrid mAb that not only inhibits CD73-exerted AMP hydrolysis but also induces CD73 internalization (414). In April 2018, Corvus Pharmaceuticals...
Evaluation of adenosine-axis blockade in murine models of solid malignancies.

Target	Treatment	Tumor model	Outcome of adenosine axis blockade depends on presence/unhindered function of	Impact on the TME
CD73	mAbs:	Breast:	Primary tumor expansion rate ↓ (368, 378–382, 385, 387, 389)	↑ CD8⁺ T cells (381, 385, 389)
			Host CD73 (387)	↑ tumor-specific CD8⁺ T cells (382)
			A2AR on hematopoietic cells (368)	↓ CD73 on CD4⁺/CD8⁺ T cells (382, 384)
			T cells, NK cells or B cells (368)	↑ B cells (381)
			T cells (381)	↓ Tregs (389)
			CD8 T cells (381)	↓ MDCs (384)
			IFN-γ (382)	↓ CD73 on MDCs (384)
			IL-17A (381)	↑ IFN-γ, TNF-α, IL-17A (381)
			Partially retained in mice depleted of B cells (381)	↓ K67⁺ cells (381)
			Retained in perforin KO mice (382)	↓ Bcl-2⁺ cells (381)
	Pharmacologic inhibitor:	Ovarian:	Metastasis formation ↓ (368, 378, 380, 384, 386)	↓ Microvessel density (383)
			ID8 (378, 388)	↓ VEGF (383)
		Prostate:	Retained against tumor cells with significantly reduced CD73 (386)	
			Host CD73 (383)	
			MDSCs (384)	
			Retained in mice depleted of T cells or NK cells (380)	
			Retained in SCID mice lacking T cells, NK cells and functional B cells (386)	
			Host FCRV (384)	
			FcR binding capacity (384)	
			Independent of the capacity to suppress CD73 catalytic activity (384, 386)	
	Pharmacologic inhibitor:	Survival ↑ (378, 382, 384, 388)		
		Ovarian:	ID8 (378, 388)	
		Prostate:	Retained against tumor cells with significantly reduced CD73 (386)	
			Host CD73 (383)	
			MDSCs (384)	
			Retained in mice depleted of T cells or NK cells (380)	
			Retained in SCID mice lacking T cells, NK cells and functional B cells (386)	
			Host FCRV (384)	
			FcR binding capacity (384)	
			Independent of the capacity to suppress CD73 catalytic activity (384, 386)	
CD39	mAb:	Melanoma:	Primary tumor expansion rate ↓ (391)	↑ CD8⁺ T cells (381, 385, 389)
	9-BB (390)	B16-F10 (391)	Host CD39 (391)	↑ tumor-specific CD8⁺ T cells (382)
	Pharmacologic inhibitor:	Colon:	Survival ↑ (390)	↓ CD73 on MDCs (384)
	POM-1 (391)	MCA38 (391)	Retained in NOG mice lacking T cells, B cells, NK cells and functional macrophages (390)	
CD38	mAb:	Sarcoma: IGN-SRC-004 (394)	Retained in NOG mice lacking T cells, B cells, NK cells and functional macrophages (390)	
	NIMR-5 (96)	B16-F10 (391)	Retained in NOG mice lacking T cells, B cells, NK cells and functional macrophages (390)	
	Pharmacologic inhibitor:	Lung:	Retained in NOG mice lacking T cells, B cells, NK cells and functional macrophages (390)	
	Rhein (96)	344SQ (96)	Retained in NOG mice lacking T cells, B cells, NK cells and functional macrophages (390)	
		LLC-JSP (96)	Retained in NOG mice lacking T cells, B cells, NK cells and functional macrophages (390)	
		531LN3 (96)	Retained in NOG mice lacking T cells, B cells, NK cells and functional macrophages (390)	
Intratumoral hypoxia (60% O₂)	Respiratory hyperoxia	Breast:	Primary tumor expansion rate ↓ (9)	↑ CD8⁺ T cells (96)
	(9, 293)	4T1 (293)	Metastasis formation ↓ (293)	↑ CD8⁺/CD62L⁺CD8⁺ T cells (96)
		Melanoma:	CD4 > CD8 > NK cells (293)	↓ PD-1⁺ TIM3⁺ CD8⁺ T cells (96)
		B16 (9)	Host A2AR (293)	↓ Tregs (96)
		B16-F10 (293)	Independent of 60%O2-induced ROS production (293)	↓ MDCs (96)
		CL8-1 (6)	Survival ↑ (9, 293)	
		Fibrosarcoma: MCA205 (9, 293)	Survival ↑ (9, 293)	

(Continued)
TABLE 1 | Continued

Target	Treatment	Tumor model	Outcome of adenosine axis blockade depends on presence/unhindered function of	Impact on the TME
A2AR	> Antagonists:			
	• ZM241385 (38, 54)			
	• ZM241365 (389)			
	• SCH98261 (54, 292, 384, 392-394)			
	• FSPTP (395)			
	• CPI-444 (396)			
	• PBF-509 (397)			
	> Breast:			
	• 4T1.2 (292)			
	> Melanoma:			
	• B16-F10 (292, 384, 392, 394, 395, 397)			
	• CL8-1 (38)			
	• BRAPV60E-PTEN-deficient mice (393)			
	• LWT1 (393)			
	> Colon:			
	• CT26 (396)			
	• MC38 (396)			
	> NSCLC: PC9a (54)			
	> Bladder: MB49 (395)			
	> HNSCC: Tgfbr1/Pten double KO (392)			
	> Breast:			
	• 4T1.2 (292, 359, 368, 399)			
	• E0771 (359)			
	> Melanoma:			
	• B16-F10 (292, 315, 395, 398)			
	• LWT1 (359)			
	> Bladder: MB49 (399)			
	> Primary tumor expansion rate ↓ (315, 395, 399)			
	> Mature T cells (399)			
	> Host A2BR (399)			
	> Retained in A2AR−/− mice (399)			
	> Retained in mice depleted of MDSCs but lost upon adoptive transfer of MDSCs (398)			
	> Tumor CD73 (292)			
	> Retained in NC mice lacking T cells, B cells and NK cells (292)			
	> Retained in mice depleted of T cells, NK cells (292)			
	> D11c+ DCs or macrophages (359)			
	> Metastasis formation ↓ (292, 359, 368)			
	> Tumor CD73 (292)			
	> Retained in NC mice lacking T cells, B cells and NK cells (292)			
	> Retained in mice depleted of T cells, NK cells (292)			
	> Survival ↑ (359)			
	> Tumor A2BR (359)			
	> Retained in mice depleted of T cells or NK cells (359)			

Antagonists:
|• PSB1115 (292, 315, 359, 398)
|• ATL-801 (399)

A2BR | > Breast:
| | • 4T1.2 (292, 359, 368, 399)
| | • E0771 (359)
| | > Melanoma:
| | • B16-F10 (292, 315, 395, 398)
| | • LWT1 (359)
| | > Bladder: MB49 (399)
| | > Primary tumor expansion rate ↓ (315, 395, 399)
| | > Mature T cells (399)
| | > Host A2BR (399)
| | > Host CXCR3 (399)
| | > Retained in A2AR−/− mice (399)
| | > Retained in mice depleted of MDSCs but lost upon adoptive transfer of MDSCs (398)
| | > Tumor CD73 (292)
| | > Retained in NC mice lacking T cells, B cells and NK cells (292)
| | > Retained in mice depleted of T cells, NK cells (292)
| | > Survival ↑ (359)
| | > Tumor A2BR (359)
| | > Retained in mice depleted of T cells or NK cells (359)

Impact on the TME
|↓ CD8+, CD4+ T cells (395)
|↑ CD8+ T cells (389, 392, 393)
|↓ CD69 on CD8+ T cells (393)
|↓ A2AR+ CD8+ T cells (392)
|↑ IFN-γ+ CD8+ T cells (392)
|↑ T-bet, 41-BB in/on CD44+ CD8+ T cells (396)
|↑ IFN-γ, TNF-α production by CD8+ T cells (392)
|↑ stimulation-induced IFN-γ/TNF-α production by CD8+ T cells (396)
|↑ NK cells (393, 395)
|↑ GzB+ NK cells (392)
|↓ Tregs (389, 392, 393)
|↓ PD-1, LAG3, FOXP3 on Tregs (396)
|↓ A2AR+ Tregs (392)
|↓ FOXP3 (392)

Patient-derived tumor cell lines, NSCLC, Non-Small-Cell LungCancer. HNSCC, Head and neck squamous cellcarcinoma.
X > Y: X contributes more than Y to the anti-tumor effect of adenosine axis modulation.

initiated clinical evaluation (NCT03454451) of their humanized anti-CD73 mAb, CPI-006, which directly competes with AMP for the CD73 active site (415). Finally, in July 2018, Novartis listed a Phase I/II trial (NCT03549000) evaluating the efficacy of SRF373/NZV930, a human mAb that impedes CD73 activity via a currently undisclosed mechanism, and was pre-clinically developed by Surface Oncology before being exclusively licensed to Novartis for further clinical development.

CD39 also contributes to the generation of extracellular adenosine from ATP as evidenced by the fact that deficiency of this enzyme results in significantly decreased adenosine content in tissues, not only at steady state, but also upon ischemia induction (80). Similar to studies with CD73-deficient mice, tumor growth and metastasis are reduced in CD39-null mice (391, 416). In addition, intraperitoneal delivery of a CD39 inhibitor in immunocompetent mice reduces tumor growth rates (391). Administration of an anti-CD39 mAb increased the survival of immuno-deficient mice inoculated with patient-derived tumors (390), indicating that CD39 can also promote tumor growth or metastasis...
in an immune system independent manner. In terms of mechanisms, several studies have demonstrated that in vitro inhibition of CD39 activity by pharmacologic inhibitors (45, 47, 62) or blocking mAbs (45, 417, 418) results in enhanced functionality of T cells (45, 47, 62, 418) and NK cells (45, 47, 418), as well as decreased Treg-mediated suppression of T cell proliferation (47, 417). Even though restriction of CD39 activity in vitro conclusively alleviates adenosine-induced immunosuppression, a surprisingly small number of studies demonstrate effectiveness of this approach within tumor-bearing mice. Finally, while humanized mAbs targeting CD39, such as IPH52 (Innate Pharma) have been developed, clinical studies exploring CD39 blockade/inhibition have not been launched.

As previously mentioned, the concerted activity of CD38 and CD203α, can functionally replace CD39 toward the generation of extracellular adenosine. Further substantiating the soundness of CD38-blockade as a cancer treatment, immunocompetent CD38-null mice display reduced tumor growth (419) whereas tumors devoid of this ectonucleotidase grow slower both in immuno-competent (96) as well as in immuno-deficient mice (97). Indeed, administration of CD38 mAbs retards tumor growth (96, 420). Interestingly, tumors derived from anti-CD38 mAb-treated mice encompass more CD8+ T cells and less Tregs and MDSCs (96). Moreover, increased fraction of CD8+ T cells infiltrating these tumors display an effector memory phenotype while less of these cells are double positive for the exhaustion markers PD-1 and TIM3 (96). Three anti-CD38 mAbs, Daratumumab (Janssen Biotech), Isatuximab (Sanofi), and MOR202 (Morphosys) are being clinically evaluated. Daratumumab was FDA-approved in 2015 for treating multiple myeloma patients, while to date the most advanced testing of Isatuximab and MOR202 as monotherapies are respectively the Phase II trials NCT01084252, NCT02960555, and NCT02812706, as well as the Phase I/IIa trial NCT01421186. Of note, in addition to modulating the enzymatic activity of CD38, these mAbs also have the capacity to induce cytotoxicity through diverse mechanisms, such as induction of complement activation, Ab-dependent cellular cytotoxicity (ADCC) or phagocytosis, and programmed cell death (420). Albeit extensive clinical experience of utilizing the aforementioned mAbs against CD38-overexpressing hematologic malignancies, the recently launched trial NCT03473730 constitutes the first application of a CD38-specific mAb in patients with solid tumor malignancies.

Another approach for limiting the intratumoral interstitial adenosine is the oxygenation of the TME (293). As mentioned, hypoxia promotes build-up of extracellular adenosine at least by inducing upregulation of CD39 and CD73 as well as downregulation of adenosine transporters. Indeed, in pre-clinical models, respiratory hyperoxia (60% oxygen) lowers intra-tumoral adenosine levels (9), tumor growth rates (9), metastasis formation (293) and increases survival of tumor-bearing mice (9, 293). Mechanistically, this treatment boosts MHC-I levels on the tumor-cell surface (9), the presence of CD8+, CD69+, or CD44+ cells within the TME (293) and reduces the presence of Tregs (293) as well as the latter's capacity to express CD39, CD73, CTLA-4, or FoxP3 (293). Moreover, increased oxygenation of tumors not only averts angiogenesis through reduction of VEGF concentration (9), but also dampens expression of molecules associated with immune dysfunction, such as TGF-β, CD39, CD73, A2AR, A2BR and COX-2 (9, 293), the rate-limiting enzyme of PGE2 biosynthesis, while increasing the mRNA levels of pro-inflammatory agents, such as IL-2, and IL-12a (293).

Blockade of Adenosine Receptor Binding

Along with blocking adenosine production with small molecules or mAbs, another approach to inhibit adenosine-induced signaling is to directly block binding to its receptors A2AR and A2BR. Underscoring the potent protumoral effect of A2AR triggering, mice devoid of this receptor present reduced rates of tumor growth and metastasis, and in some instances tumors undergo complete rejection (38, 292, 400, 402). In addition, administration of pharmacologic A2AR antagonists recapitulates the anti-tumor effects of A2AR-deletion since it results to reduced primary tumor expansion (38, 54, 389, 392, 393, 396) and metastasis formation (292, 384, 393, 394, 397) ultimately leading to prolonged survival (384, 396). Mechanistically, tumors derived from A2AR-antagonist-treated mice are more heavily infiltrated by CD8+ T cells (389, 392, 393) as well as NK cells (389, 392, 393) and encompass fewer Tregs (389, 392, 393). In addition, in vivo A2AR antagonism leads to increased expression of CD69 (393), T-bet (396), and 4-1BB (396) as well as production of IFNγ and TNFα (392, 396) by intra-tumoral CD8+ T cells. Furthermore, this intervention increases the fraction of intra-tumoral NK cells producing GzB (292) and reduces the expression of PD-1, LA63, FoxP3 and A2AR by tumor-infiltrating Tregs (392, 396). Interestingly, the A2AR antagonists ZM241385 and SCH58261 exhibit the capacity to curb primary tumor growth even in a T cell-independent manner (54). Notably, A2A antagonism in vivo increases activation induced cell death (AICD) of intra-tumoral T cells (395), a finding corroborating observations that cAMP-accumulation in the T cell cytosol averts terminal effector differentiation and AICD (421, 422). Three A2AR antagonists are currently being evaluated as single agents in Phase I/II trials to treat cancer patients bearing solid tumors. In particular, Corvus Pharmaceuticals, AstraZeneca, and Novartis have undertaken the clinical development of CPI-444 (NCT02655822), AZD4635 (NCT02740985), and NIR178 (NCT02403193, NCT03078679), respectively.

As for A2AR, genetic deletion of A2BR reduces tumor growth rate (399, 423) while A2BR−/− tumor cells display reduced metastatic potential (359, 367). Notably, administration of A2BR antagonists in tumor-bearing mice reduces tumor growth (315, 398, 399) and metastasis (292, 359, 368) eventually prolonging their survival (359). Mechanistically, antagonism of A2BR in vivo augments the intra-tumoral presence of CD8+ T cells (315, 398), NK cells (315, 398) as well as the mRNA levels of IFNγ and CXCL10 (399) and the concentration of TNFα, IFNγ, and GzB (398) in the TME. This intervention further results in decreased accumulation of MDSCs (315, 398) and IL-10 (398), as well as reduced levels of VEGF and angiogenesis (315). Based on encouraging preclinical results, Palobiofarma recently launched a dose escalation Phase I study (NCT03274479) administering
Evaluation of concomitant adenosine-axis blockade in murine models of solid malignancies.

Combinatorial schemes	Treatments	Tumor model	Outcome of concomitant adenosine-axis blockade depends on presence/unhindered function of	Impact on the TME
CD73 inhibition & A2AR antagonism	anti-CD73mAb: TY23 (384)	Breast: 4T1.2 (384)	Metastasis formation ↓ (384)	
	A2AR pharmacologic antagonist: SCH58261 (384)	Melanoma: B16-F10 (384)	Survival ↑ (384)	NK cells > CD8+ T cells (384)
	PD-1 & CD73 inhibition	Colon: LWT1 (384)	IFN-γ (384)	Retained in perforin KO mice (384)
	anti-PD-1mAb: RMP1-14 (382, 385)	Metastasis formation ↓ (382)	Primary tumor expansion rate ↓ (382, 385)	Tumor-specific CD8+ T cells (382, 385)
	anti-CD73mAb: Oleclumab (385)			↑ IFN-γ mRNA (382)
	TY23 (382)	Prostate: RM-1 (382)		
PD-1 & CD38 inhibition	PD-1 & CD38 inhibition	Lung: 344SQ (96)	Primary tumor expansion rate ↓ (96)	CD8+ T cells (96)
	anti-anti-CD38mAb: NIMR-5 (96)	LLC-JSP (96)	Metastasis formation ↓ (96)	CD44+/CD62Lhi CD8+ T cells (96)
	CD38 pharmacologic inhibitor: Rhein (96)			PD-1+/TIM3+ CD8+ T cells (96)
PD-1 & A2AR antagonism	PD-1 & A2AR antagonism	Breast: AT3 (401)	Primary tumor expansion rate ↓ (96, 396, 400, 401)	CD44hiCD62Llo CD8+ T cells (96)
	anti-CD73mAb: TY23 (382)	4T1.2 (394, 401)		CD44hiCD62Lhi CD8+ T cells (96)
		Melanoma: B16-F10 (394)		PD-1+/TIM3+ CD8+ T cells (96)
		Colon: MC38 (396, 401)		↑ CD8+ T cells (96)
		CT26 (396)		↑ IFN-γ (401)
		Lung: 344SQ (96)		Retained in perforin KO mice (401)
		LLC-JSP (96)		
		Prostate: RM-1 (400)		
CTLA-4 & CD73 inhibition	CTLA-4 & CD73 inhibition	Melanoma: B16-F10 (389)	Metastasis formation ↓ (394, 401)	Tumor CD73 (394)
	anti-CTLA-4mAb: 9H10 (389)	Colon: MC38 (382)	Survival ↑ (394, 396, 401)	NK cells > CD8+ T cells (394)
	UC10-4F10 (382)	Prostate: RM-1 (382)		CD8+ T cells > NK cells (394)
	CD73 pharmacologic inhibitor: APCR (389)			
	anti-CD73mAb: TY23 (382)			

(Continued)
Table 2 (Continued)

Combinatorial schemes	Treatments	Tumor model	Outcome of concomitant adenosine axis blockade depends on presence/unhindered function of	Impact on the TME
CTLA-4 ICB & A2AR antagonism	> anti-CTLA-4mAb: 9H10 (389)	> Melanoma: B16F10 (389)	> Primary tumor expansion rate ↓ (389)	↑ CD8⁺ T cells (389) ↑ IFN-γ, GzB (389)
	> A2AR antagonist: ZM241365 (389)			
CTLA-4 ICB & A2BR antagonism	> anti-CTLA-4mAb: UC10-4F10 (359)	> Breast: 4T1.2 (359)	> Metastasis formation ↓ (359)	
	> A2BR antagonist: PSB1115 (359)	> Melanoma: B16-F10 (359)	> Survival ↑ (359)	
ACT & CD73 inhibition	> T cells: 2C (SIY-specific) (378)	> Melanoma: B16-SIY (378)	> Primary tumor expansion rate ↓ (378)	↑ Adoptively transferred T cells (378)
		Reactive to ID8 (378)		
		OT-I (OVA-specific) (378)		
		CD73 pharmacologic inhibitor: A2AR antagonists: ZM241385 (378)		
		APCP (378)		
	> anti-CD73mAb: TI2/23 (378)			
ACT & A2AR antagonism	> T cells: anti-HER2 CAR⁺ (135)	> Breast: E0771-HER2 (135)	> Primary tumor expansion rate ↓ (135, 398)	↑ Adoptively transferred T cells (135) ↑ IFN-γ⁺ adoptively transferred T cells (135) ↑ Stimulation-induced IFN-γ⁺, TNF-α production by adoptively transferred CD8⁺ T cells (398) ↑ Stimulation-induced IFN-γ production by adoptively transferred CD8⁺ or CD4⁺ T cells (402) ↑ Tbet, 41BB in/on endogenous CD44⁺ CD8⁺ cells (398) ↑ Stimulation-induced IL-2, IFN-γ, TNF-α production by endogenous CD8⁺CD44⁺ T cells (398)
		OT-I (OVA-specific) (388)		
		MCA205 (402)		
		24JK-HER2 (135)		
		Sarcoma CMS4 (38)		
ACT & intratumoral hypoxia aversion	> Respiratory hyperoxia (60%O₂)	> Melanoma: B16-F10 (293)	> Primary tumor expansion rate ↓ (293)	↑ Adoptively transferred T cells (293) ↑ IFN-γ⁺ endogenous/adoptively transferred CD8⁺ T cells (293)
		Host A2AR (293)		
		Metastasis formation ↓ (293)		
Radiotherapy & CD73 inhibition	> Radiotherapy: Single local dose of 20Gy (403, 404)	> Breast: TSA (403, 404)	> Primary tumor expansion rate ↓ (403, 404)	↑ CD103⁺ DCs (403) ↑ CD8⁺ DCs (403) ↑ CD40 on CD8⁺ DCs (404) ↑ CD8⁺ T cells (404) ↑ CD69 on CD8⁺ T cells (404) ↑ CD8⁺ T cell/Treg ratio (403) ↑ Tregs (404)
		Unspecified (403)		
		TY23 (404)		
Chemotherapy & CD73 inhibition	> Chemotherapy: Doxorubicin (405) Paclitaxel (405)	> Breast: 4T1.2 (405) AT3 (405)	> Primary tumor expansion rate ↓ (405)	↑ Tumor-specific CD8⁺ T cells (405) ↑ IFN-γ (405)
		anti-CD73mAb: TY23/405		

(Continued)
TABLE 2 | Continued

Combinatorial schemes	Treatments	Tumor model	Outcome of concomitant adenosine axis blockade depends on presence/unhindered function of	Impact on the TME
Chemotherapy & CD39 inhibition	> Chemotherapy: oxaliplatin (406)	> Colon: CT26 (406)	> Primary tumor expansion rate ↓ (406)	↑ Extracellular ATP (406)
	> CD39 pharmacologic inhibitor: ARL67156 (406)	> Fibrosarcoma: MCA205 (406)	• T cells (406)	↑ DCs (406)
	> CD93 pharmacologic inhibitor:	> Knockdown of tumor Atg6 (406)	• IFN-γ+ CD4+ , CD8+ T cells (406)	↑ IL-17A+ γδ T cells (406)
Chemotherapy & A2R antagonism	> Chemotherapy: doxorubicin (359, 405, 407) = dacarbazine (398) = oxaliplatin (398, 407)	> Breast: AT1.2 (405) = AT3 (359, 405, 407)	> Primary tumor expansion rate ↓ (398, 405, 407)	↑ CD8+ T cells (398)
	> A2R antagonists: SCH58261(A2AR) (406) = PSB1115 (A2BR) (359, 398) = AB928 (A2AR/A2BR) (407)	> Melanoma: B16-F10 (398)	• Tumor CD73 (405)	↑ CD8+ T cells (407)
Targeted therapy & CD73 inhibition	> anti-ErbB2 mAb 7.16.4 (408) = anti-CD73 mAb TY23 (408)	> Breast: H2N100 (408) = TUBO (408) = ErbB2-overexpressing mice (408)	> Primary tumor expansion rate ↓ (408)	↑ CD4+ FOXP3+ T cells (408)
	> BRAF inhibitor: PLX4720(C93)	> Metastasis formation ↓ (408)	• Tumor CD73 (408)	↓ MDSCs (408)
Targeted therapy & A2AR antagonism	> MEK inhibitor: Trametinib (393)	> Melanoma: BRAF(V600E)-PTEN-deficient mice (393) = BRAF(V600E) LWT1 (393)	> Primary tumor expansion rate ↓ (393)	Metastasis formation ↓ (393)

PBF-1129, a selective A2BR inhibitor, in patients with advanced Non-Small Cell Lung Cancer (NSCLC).

Combinatorial Treatment Approaches

Since multiple ecto-enzymes with redundant functions contribute toward extracellular adenosine production and both A2AR and A2BR triggering mediate the majority of adenosine’s pro-tumoral effects, monotherapies may not be sufficient to block the adenosine-signaling axis. In addition, there is strong rationale for combination with IMTs, such as ICB of PD-1/PDL-1 or CTLA-4, as well as ACT, radiotherapy and chemotherapy, to further unleash the cytotoxic capacity of T cells, which, as will be discussed, can become highly sensitized to adenosine-mediated immunosuppression.

Combinations of Adenosine-Axis Blockade Agents

Concurrent mAb-mediated (418) or pharmacologic (47) inhibition of CD39 and CD73 failed to potentiate CD73-blockade-induced suppression of adenosine production by Tregs and ovarian cancer cell lines. These findings are corroborated by the observation that skin biopsies derived from CD39−/−CD73−/− mice have identical capacity to produce adenosine upon injury induction with counterpart biopsies derived from CD73−/− mice (424).

Alone the same lines, others addressed whether simultaneous blockade of CD73 and of A2AR would result in higher anti-tumor efficacy. Of note, CD73−/−A2AR−/− mice present superior tumor control as compared to single knockout mice (384). Moreover, tumors in A2AR-null mice express twice as much CD73 at their core when compared to tumors formed in wild-type mice (384). Indeed, dual therapy with an anti-CD73 mAb and an A2AR agonist confers superior tumor protection as compared to either one as a monotherapy (384). However, this additive effect is lost when CD73 is targeted with a pharmacologic inhibitor, thus underscoring the capacity of CD73 to promote tumor progression in a catalytic activity-independent manner (384). In light of these studies, Evotec and Exscientia have partnered to develop A2AR/CD73 bi-specific inhibitory molecules (425), whereas
NCT03454451, NCT03549000 as well as the Phase Ib/II clinical trial NCT03381274 sponsored by MedImmune all include solid tumor-bearing patient cohorts scheduled to be treated with combinations of an anti-CD73 mAb along with a pharmacologic A2AR antagonist.

Adenosine-Axis and PD-1 Blockade

Briefly, PD-1 is an immunosuppressive receptor that upon binding to its ligands, PD-L1 and PD-L2, dampens T-cell activity thereby enabling tumors to evade immune-destruction. Blockade of the PD-1-PDL-1/2 signaling axis results in durable complete responses in the fraction of treated patients (1), and many pre-clinical and clinical studies have explored concomitant inhibition of adenosine production, or antagonism of A2AR and A2BR, to improve response rates.

It has been demonstrated that CD73+ tumor cells are resistant to PD-1 ICB (401) and that simultaneous mAb-mediated blockade of CD73 and PD-1 synergistically enhances tumor control and survival in mice (382, 385). Mechanistically, the dual therapy augments intra-tumoral CD8+ tumor-specific T cells (382, 385) and IFNγ mRNA levels (382) as compared to single-agent treatments. Several clinical trials assessing anti-CD73 mAb treatment along with anti-PD-1 mAb (NCT03454451, NCT03549000) or anti-PD-L1 mAb (NCT02503774, NCT03733666, NCT03267589, NCT03334617) of advanced solid tumors are recruiting or underway. Intratumoral upregulation of CD38 and subsequent adenosine production was recently identified as a mechanism of acquired resistance to PD-1/PD-L1 blockade and mAb-mediated or pharmacologic inhibition of CD38 was shown to significantly improve the anti-tumor efficacy of an anti-PDL-1 mAb (96). In terms of mechanisms, tumors from mice receiving the combinatorial therapy displayed higher accumulation of CD8+ T cells, effector memory CD8+ T cells, ICOS+ CD4+ T cells and lower levels of MDSCs and Tregs as compared to tumors from single-agent treated mice (96).

The potential for synergy between the co-administration of A2R antagonists with anti-PD-1 mAb is underscored by the observations that PD-1 blockade enhances A2AR expression on tumor-infiltrating CD8+ T cells (401), as well as that PD-1 blockade is more efficacious, in terms of increasing the survival of tumor-bearing mice, when these mice lack the A2AR (400). Vice versa, A2AR triggering on the surface of CD8+ T cells derived from tumor tissue (382), tumor draining lymph nodes or spleen (396) promotes PD-1 expression suggesting that simultaneous PD-1 blockade would boost the anti-tumor efficacy of A2A antagonism. Indeed, several groups demonstrated that concurrent provision of PD-1 checkpoint inhibitors along with A2AR antagonists is more effective than single-agent treatments at reducing tumor growth rate (96, 396, 400, 401) and metastasis formation (394, 401), as well as at improving survival (394, 396, 401). Moreover, the combination enables increased production of IFNγ and GzB by CD8+ tumor infiltrating T cells (401) while augmenting the intra-tumoral presence of NK cells (394). Five clinical trials for the treatment of solid-tumor patient cohorts with A2AR antagonists along with anti-PD-1 Ab (NCT02403193, NCT03207867) or anti-PD-L1 Ab (NCT02655822, NCT03337698, NCT02740985) are ongoing. Finally, dual therapy comprising A2BR antagonism and PD-1 blockade is superior to either monotherapy at decreasing metastasis and improving survival of tumor-bearing mice (359). However, no clinical trials have been launched to date to explore this combination in human cancer patients.

Adenosine-Axis and CLTA-4 Blockade

The blockade of CTLA-4, an immune checkpoint receptor predominantly expressed by T cells and which competes with the co-stimulatory receptor CD28 for binding to CD80/CD86 on the surface of antigen presenting cells (APCs), has also generated durable clinical responses in advanced cancer patients (1). Tumor-bearing mice receiving CTLA-4 blockade and pharmacologic (389) or Ab-mediated (382) inhibition of CD73 display superior tumor control (382, 389) and overall survival (382) than counterparts receiving single agent treatments. Mechanistically, these dual therapies are more effective than corresponding monotherapies at increasing the intra-tumoral presence of tumor-specific CD8+ T cells (382), CD4+FoxP3neg T cells (389) as well as the levels of IFNγ (389) and of mRNA coding for IFNγ and T-bet (382). Likewise, concomitant provision of CTLA-4 ICB and antagonists of either A2AR (389) or A2BR (359) leads to decreased tumor growth (389) and metastasis formation (359), as well as to higher survival of tumor-bearing mice (359) when compared to single treatments. In terms of mechanisms, combining CTLA-4 ICB with an A2AR antagonist augments intratumoral CD8+ T cell presence as well as IFNγ and GzmB levels (389).

Adenosine-Axis Blockade and Adoptive T Cell Therapy

There are two main approaches to ACT. Either autologous tumor-reactive T cells are expanded from tumor biopsies prior to patient re-infusion [i.e., tumor infiltrating lymphocyte (TIL) therapy], or peripheral blood T cells are gene-engineered to express a tumor-specific T cell receptor (TCR), or a so-called chimeric antigen receptor (CAR; a fusion protein that links scFv-mediated tumor antigen-binding with intracellular endo-domains associated with T cell activation). Cancer patients are typically lymphodepleted prior to ACT, and following infusion they receive high doses of IL-2, both of which support T cell engraftment (426). TIL therapy has achieved robust and durable responses in advanced melanoma patients, while CAR therapy targeting CD19 has yielded unprecedented clinical responses against a variety of advanced, treatment-refractory B cell malignancies (118, 427, 428).

Synergy has been demonstrated between strategies limiting adenosine production blockade and ACT within tumor-bearing mice. Indeed, ACT confers increased control of tumors lacking CD73 expression (388) and dual therapy of ACT and pharmacologic or mAb-mediated inhibition of CD73 was more robust than single treatments at augmenting tumor control and overall survival (378). Mechanistically, pharmacologic inhibition of CD73 potentiated the anti-tumor
Molecular target	Clinical Trial identifier	Agents	Phase	Design overview*	Solid tumor indications	Sponsor	Launched on
CD73	NCT02503774	Oleclumab	I	Single agent	Advanced solid malignancies	MedImmune	2015
				In combination with durvalumab (anti-PD-L1)			
	NCT03736473	Oleclumab	I	Single agent	Advanced solid malignancies	AstraZeneca	2018
					Muscle-invasive Bladder Cancer	Dana-Farber Cancer Institute	2018
	NCT03773666	Oleclumab	I	In combination with durvalumab (anti-PD-L1)	Relapsed ovarian cancer	Nordic Society for Gynecologic Oncology	2018
	NCT03267589	Oleclumab	II	In combination with durvalumab (anti-PD-L1)	PD-1/PD-L1 inhibition-resistant NSCLC	AstraZeneca	2018
	NCT03334617	Oleclumab	II	In combination with durvalumab (anti-PD-L1)	Metastatic Triple Negative Breast Cancer	AstraZeneca	2018
	NCT03742102	Oleclumab	Ib/Ii	In combination with durvalumab (anti-PD-L1) and paclitaxel (chemotherapy)	Metastatic pancreatic cancer	MedImmune	2018
	NCT03811556	Oleclumab	Ib/Ii	In combination with gemcitabine (chemotherapy) and nab-paclitaxel (chemotherapy)	Metastatic pancreatic cancer	MedImmune	2018
				In combination with gemcitabine and nab-paclitaxel and durvalumab (anti-PD-L1)			
				In combination with mFOLFOX (chemotherapy regimen comprising oxaliplatin, leucovorin, 5-FU)			
	NCT03381274	Oleclumab	Ib/Ii	In combination with osimertinib (EGFRT790M inhibitor)	Advanced NSCLC	MedImmune	2018
				In combination with AZD4635 (A2A Antagonist)			
	NCT02754141	BMS-986179	I/Iia	Single agent	Advanced solid malignancies	Bristol-Myers Squibb	2016
				In combination with nivolumab (anti-PD-1)			
				In combination with rHuPH20 (drug delivery enzyme)			
	NCT03454451	CPI-006	I/Ib	Single agent	Advanced solid malignancies	Corvus Pharmaceuticals	2018
				In combination with CPI-444 (A2A Antagonist)			
				In combination with pembrolizumab (anti-PD-1)			
	NCT03549000	NZV930	I/Ib	Single agent	Advanced solid malignancies	Novartis	2018
				In combination with spartalizumab (anti-PD-1)			
				In combination with NIR178 (A2A Antagonist)			
				In combination with NIR178 and spartalizumab			
CD38	NCT03473730	Daratumumab	I	Single agent	Metastatic Renal Cell Carcinoma or Muscle Invasive Bladder Cancer	M.D. Anderson Cancer Center	2017
	A2A	NIR178	I/Ib	Single agent	Advanced NSCLC	Palobiofarma	2015
	[-1pt]	NIR178	I/Ib	Single agent	Advanced solid malignancies	Novartis	2017
				In combination with spartalizumab (anti-PD-1)			

(Continued)
efficacy of ACT at least by boosting the homing of the adoptively transferred tumor-specific T cells at the tumor sites (378). Likewise, respiratory hyperoxia in mice increased the ability of adoptively transferred T cells to curb primary tumor expansion and metastasis formation by augmenting their capacity to accumulate in the TME and produce IFNγ (293).

Similarly, A2AR deficiency (402) or siRNA-mediated suppression of A2AR and A2BR expression (38) on the surface of adoptively transferred T cells leads to enhanced prevention of metastatic spreading (38, 402) and improved survival of tumor-bearing mice (38). Several groups have validated these observations by demonstrating that ACT and concomitant administration of A2AR antagonists is superior to single treatments in terms of decreasing tumor growth (135, 396), hindering metastasis formation (38, 402) and ultimately improving survival (135, 388, 396, 402). Interestingly, others claim that A2AR antagonism improves the efficacy of adoptively transferred CAR+ T cells only if PD1 ICB is co-administered (135). In terms of mechanisms, concomitant A2AR antagonism not only increases intra-tumoral presence of adoptively transferred T cells (396) but also elevates their activation status. In particular, when A2AR antagonists were co-administered, tumor-derived, adoptively transferred or endogenous CD44+ CD8+ T cells, exhibit heightened expression levels of T-bet, 4-1BB, and CD69 (396) while demonstrating increased capacity to produce IFNγ and TNFα (135, 396, 402).

Adenosine-Axis Blockade Combined With Radiotherapy, Chemotherapy or Targeted Therapies

It is well documented that radiotherapy (RT) as well as several chemotherapeutic (CT) drugs have the capacity to induce ATP release (406, 429–433). Since such regimens also elevate the expression levels of CD39 (405, 407, 434) and CD73 (405, 407, 435–437), it is possible that the concentration of interstitial adenosine in the TME rises sharply upon application of these treatments. Therefore, several investigators have explored whether concomitant provision of agents targeting the adenosine axis increase the anti-tumor efficacy of RT or of various CT agents.

Indeed, mAb-mediated inhibition of CD73 increased the anti-tumor efficacy of RT (403, 404) and this synergistic effect was even more apparent upon concurrent CTLA-4-blockade (404). Mechanistically, CD73 inhibition increases the presence of CD8+ T cells as well as of CD8α+ or CD103+ DCs within irradiated tumors while decreasing Tregs (403, 404). Moreover, concomitant CD73 blockade was shown to increase the activation status of CD8+ T cells and CD8α+ DCs within irradiated tumors as evidenced by the elevated expression levels of CD69 and CD40, respectively (404). Likewise, concurrent mAb-mediated inhibition of CD73 (405) or pharmacologic blockade of CD39 activity (406) boosted the tumor control (405, 406) and survival (405) of mice treated with the CT drugs Doxorubicin (405), Paclitaxel (405), and Mitoxantrone (406). Of note, such dual therapies were shown to not only augment intra-tumoral presence of DCs (406) and tumor-specific CD8+ T cells (405) but also the fraction of intra-tumoral CD4+ or CD8+ T cells producing IFNγ (406) as well as the levels of IFNγ in the TME (405, 406). In light of such observations, the clinical trials NCT03611556 and NCT03742102 are set to decipher the potency of CT regimens when provided in combination with the CD73-blocking Ab Oleclumab, supplemented or not by PD-1 blockade.

Along the same lines, others explored if direct antagonism of A2AR and A2BR would augment the antitumor effects of CT agents. Indeed, tumor-bearing mice treated with Doxorubicin (359, 405, 407), Dacarbazine (398), or Oxaliplatin (398, 407) in combination with A2AR (405), A2BR (359, 398), or dual A2AR/A2BR antagonists (407) displayed superior tumor control (398, 405, 407) or survived longer (359). Of note, tumors derived from mice treated with the combination of Dacarbazine and PSL-1115, an A2BR antagonist, were more heavily infiltrated by CD8+ T cells as well as NKT cells and contained higher levels of GzB than tumors derived from counterpart mice subjected to Dacarbazine monotherapy (398). Likewise, concomitant

Molecular target	Clinical Trial identifier	Agents	Phase	Design overview*	Solid tumor indications	Sponsor	Launched on
NCT03742349	NIR178	Ib	In combination with spartalizumab (anti-PD-1) and LAG525 (anti-LAG3)	Triple-negative Breast Cancer	Novartis	2018	
NCT02655822	CPI-444	I/ib	Single agent	In combination with atezolizumab (anti-PD-L1)	Advanced solid malignancies	Corvus Pharmaceuticals	2016
NCT03337698	CPI-444	Ib/II	Single agent	In combination with atezolizumab (anti-PD-L1)	Metastatic NSCLC	Hoffmann-La Roche	2017
NCT02740985	AZD4635	I	Single agent	In combination with durvalumab (anti-PD-L1)	Advanced solid malignancies	AstraZeneca	2016
A2B	NCT0274479	PSF-1129	I	Single agent	Advanced NSCLC	Palobiofarma	2018

NSCLC, non-small-cell lung cancer.
* Mentioned are schemes comprising at least one adenosine-axis modulator.
administration of AB928, a dual A2AR and A2BR antagonist, along with Doxorubicin or Oxaliplatin increased the intra-tumoral detection of tumor-specific CD8+ T cells (407).

Finally, others have sought to decipher whether adenosine axis blockade enhances the anti-tumor efficacy of particular targeted therapies. For instance, it has been recently demonstrated that high expression levels of CD73 in tumors derived from breast cancer patients are associated with resistance to Trastuzumab, an anti-HER2/ErbB2 mAb, and that artificial CD73 overexpression promotes resistance to Trastuzumab-like therapy in immunocompetent murine models of breast cancer (408). Subsequently, the authors moved on to show that when such mice receive dual therapy comprising anti-CD73 and anti-ERB2 mAbs they exhibit inferior tumor expansion rate as well as reduced metastatic spreading and survive longer than counterpart mice treated with either single agent treatments (408). In terms of mechanisms, the combinatorial therapy significantly increases the intra-tumoral presence of CD8+ and CD4+FoxP3reg T cells while decreasing MDSCs (408). In addition, melanoma patients harboring BRAF-mutant tumors exhibit a trend for elevated expression of CD73 whereas co-administration of an A2AR antagonist in mice bearing BRAF-mutant tumors increased the therapeutic benefit achieved either by BRAF inhibition or by the combination of BRAF and MEK inhibitors (393). Finally, CD73 and A2AR are overexpressed in NSCLCs harboring EGFR mutations (438) and even though preclinical studies demonstrating increased efficacy of concomitant inhibition of EGFR and A2AR are not currently publicly available, the clinical trial NCT03381274 includes a cohort of patients with advanced NSCLC that will receive both an EGFR inhibitor and an A2AR antagonist.

SUMMARY AND FUTURE PERSPECTIVES

Adenosine is critically involved in a range of physiologic processes including wound healing, and its levels are tightly regulated under homeostatic conditions. In solid tumors, however, adenosine concentration is significantly elevated, predominantly due to stress-induced ATP release coupled with the overexpression of nucleotidases, such as CD39 and CD73 that contribute to its catabolism. Primarily by engaging A2AR and A2BR, also overexpressed in the TME as a result of hypoxia and inflammation, adenosine diminishes the activity of protective immune infiltrates, such as T cells, NK cells and DCs, while boosting the inhibitory capacity of immunosuppressive subsets, including Tregs and MDSCs. For instance, A2AR and A2BR-induced cAMP accumulation within T cells blunts their differentiation, proliferation, cytokine production and target cell killing, predominantly through PKA activation. Along with establishing an anti-inflammatory and tolerogenic TME, adenosine also promotes blood vessel formation and assists tumors in subverting adjacent fibroblasts to further support tumor growth and metastasis.

Administration of small molecules or mAbs with the aim to block adenosine-signaling, either by limiting its production or its binding to ARs, has yielded important tumor control in various pre-clinical tumor models. Moreover, simultaneous blockade of adenosine production and receptor binding, achieved by an anti-CD73 mAb co-administered with an A2AR antagonist, for example, have demonstrated it synergy. Given the potent suppression of T cells by adenosine, it comes as no surprise that increases in tumor control and survival conferred by ICB (anti-PD-1 and anti-CTLA-4 mAbs) or ACT, is significantly enhanced by concomitant administration of agents countering the adenosine axis. Synergy of such adenosine axis modulators has further been shown with RT, as well as CTs, schemes known to promote immunogenic cell death (i.e., ATP is released), as well as with some targeted therapies.

While blockade of adenosine production and A2AR/A2BR antagonism are being tested in the clinic as monotherapies, increasing numbers of clinical trials combining adenosine-signaling blockade with IMTs or classic treatment approaches (i.e., RT, CT and targeted therapies) are recruiting and/or underway. Given the important responses achieved by a proportion of patients to immunotherapeutic-regimens, and the tremendous levels of immunosuppression mediated by adenosine, the development of existing or new agents targeting this axis, along with further testing of combinatorial strategies, is warranted. Indeed, targeting the adenosine axis holds great promise in the improved treatment of cancer patients.

AUTHOR CONTRIBUTIONS

GC, MI, DA, and SV conceived the manuscript. DA, SV, and MI drafted the manuscript. GC, PR, CM-C, and CC reviewed the manuscript and provided feedback, and MI revised the manuscript. MI, DA, and SV made the figures, and DA assembled the tables.

FUNDING

This project was supported by the Ludwig Institute for Cancer Research, the ISREC Foundation, an ERC Advanced Grant to GC (1400206AdG-322875), the Biltema Foundation, and a Kummer fellowship to DA.

REFERENCES

1. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. (2018) 8:1–14. doi: 10.3389/fonc.2018.00086
2. Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell. (2017) 31:311–25. doi: 10.1016/j.ccell.2017.02.008
3. Vijayan D, Young A, Teng MWL, Smyth MI. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer. (2017) 17:709–24. doi: 10.1038/nrc.2017.86
4. Layland J, Carrick D, Lee M, Oldroyd K, Berry C. Adenosine: physiology, pharmacology, and clinical applications. JACC Cardiovasc Interv. (2014) 7:581–91. doi: 10.1016/j.jcin.2014.02.009
5. Oyarzún C, Garrido W, Alarcón S, Yáñez A, Sobrevia L, Quezada C, et al. Adenosine contribution to normal renal physiology and chronic
kidney disease. *Mol Aspects Med.* (2017) 55:75–89. doi: 10.1016/j.mam.2017.01.004

6. Żyka MJ. Pain-relieving prospects for adenosine receptors and ectonucleotidases. *Trends Mol Med.* (2011) 17:188–96. doi: 10.1016/j.molmed.2011.12.006

7. Kreutzmann JC, Havkes R, Abel T, Meerlo P. Sleep deprivation and hippocampal vulnerability: changes in neuronal plasticity, neurogenesis and cognitive function. *Neuroscience.* (2015) 309:173–90. doi: 10.1016/j.neuroscience.2015.04.053

8. Lonroth P, Jansson PA, Fredholm BB, Smith U. Microdialysis of intercellular adenosine concentration in subcutaneous tissue in humans. *Am J Physiol.* (1989) 256:E250–5. doi: 10.1152/ajpendo.1989.256.E250

9. Hatfield SM, Kjaergaard J, Lukashev D, Belikoff B, Schreiber TH, Sethumadhavan S, et al. Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. *J Mol Med.* (2014) 92:1283–92. doi: 10.1007/s00109-014-1189-3

10. Blay J, White TD, Hoskin DW. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. *Cancer Res.* (1997) 57:2626–5.

11. Pedata F, Corsi C, Melani A, Bordoni F, Latini S. Adenosine extracellular brain concentrations and role of A2A receptors in ischemia. *Ann N Y Acad Sci.* (2001) 939:74–84. doi: 10.1111/j.1749-6632.2001.tb03614.x

12. Celic C, Linden J. Purinergic regulation of the immune system. *Nat Rev Immunol.* (2016) 16:177–92. doi: 10.1038/nri.2016.4

13. Feoktistov I, Biagioni I, Cronstein BN. Adenosine receptors in wound healing, fibrosis and angiogenesis. *Handb Exp Pharmacol.* (2009) 193:383–97. doi: 10.1007/978-3-540-89615-9_13

14. Milo R, Jorgensen P, B email K, Schreiber T, Sethumadhavan S, et al. Extracellular adenosine-mediated tumor protection. *Cancer Res.* (2001) 103:13132–7. doi: 10.1073/pnas.0605251103

15. Zylka MJ. Pain-relieving prospects for adenosine receptors and ectonucleotidases. *Purinergic Signal.* (2009) 5:273–5. doi: 10.1007/s11302-009-9157-x

16. Sabirov RZ, Okada Y. ATP release via anion channels. *Purinergic Signal.* (2011) 60:1405–18. doi: 10.1007/s00262-011-0477-9

17. Di Virgilio F, Sarti AC, Falzoni S, de Marchi E, Adinolfi E. Extracellular ATP and P2X purinergic signalling in the microenvironment. *Nat Rev Cancer.* (2018) 18:601–10. doi: 10.1038/s41568-018-0037-0

18. Allard B, Beavis PA, Darcy PK, Stagg J. Immunosuppressive activities of adenosine in cancer. *Curr Opin Pharmacol.* (2016) 29:77–16. doi: 10.1016/j.cooph.2016.04.001

19. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, et al. A2A adenosine receptor protects tumors from antitumor T cells. *Proc Natl Acad Sci USA.* (2006) 103:13132–7. doi: 10.1073/pnas.0605251103

20. Stagg J, Smyth MJ. Extracellular adenosine triphosphate and adenosine in cancer. *Oncoogene.* (2010) 29:5346–58. doi: 10.1038/onc.2010.292

21. Zhao H, Bo C, Kang Y, Li H. What else can CD39 tell us? *Front Immunol.* (2017) 8:727. doi: 10.3389/fimmu.2017.00727

22. Sorrentino R, Pinto A, Morello S. The adenosinergic system in cancer and diseases of aging. *Trends Pharmacol Sci.* (2018) 39:424–37. doi: 10.1016/j.tips.2018.02.001
49. Stella J, Bavaresco L, Braganhol E, Rockenbach L, Farias PF, Wink MR, et al. Differential ectonucleotidase expression in human bladder cancer cell lines. *Urol Oncol Semin Orig Investig*. (2010) 28:260–7. doi: 10.1016/j.urolonc.2009.01.035

50. Monteiro I, Vigano S, Faouzi M, Treilleux I, Michelin O, Ménétrière-Caux C, et al. CD73 expression and clinical significance in human metastatic melanoma. *Oncotarget*. (2018) 9:26659–69. doi: 10.18632/oncotarget.25426

51. Allard B, Turcotte M, Stagg J. CD73-generated adenosine: orchestrating the tumor-stroma interplay to promote cancer growth. *J Biomed Biotechnol*. (2012) 2012:485156. doi: 10.1155/2012/485156

52. Yu M, Guo G, Huang I, Mellor A, Yan C. CD73 expression in cancer-associated fibroblasts exacerbates immune suppression and promotes tumor progression via augmenting adenosine accumulation in the tumor microenvironment. *J Immunol*. (2017) 198:76.29.

53. Montalbán Del Barrio I, Penski C, Rodriguez C, Vigano S, Machon C, Jan dus C, et al. Human ectonucleotidase-expressing CD25highTh17 cells accumulate effector T cells devoid of immune checkpoints. *J Immunother Cancer*. (2016) 4:49. doi: 10.1186/s40425-016-0154-9

54. Mediavilla-Varela M, Luddy K, Noyes D, Khalil FK, Neuger AM, Soliman H, et al. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. *Cancer Biol Ther*. (2013) 14:860–8. doi: 10.4161/cbt.25643

55. de Lourdes Mora-García M, García-Rocha R, Morales-Ramírez O, Montesinos JJ, Weiss-Steider B, Hernández-Montes J, et al. Mesenchymal stromal cells derived from cervical cancer produce high amounts of adenosine to suppress cytotoxic T lymphocyte functions. *J Transl Med*. (2016) 14:302. doi: 10.1186/s12976-016-1057-8

56. Hernanda PY, Pedroza-Gonzalez A, van der Laan LJ, Broeker ME, Hoogduijn MJ, Ijzermans JN, et al. Tumor promotion through the mesenchymal stem cell compartment in human hepatocellular carcinoma. *Carcinogenesis*. (2013) 34:2330–40. doi: 10.1093/carcin/bgt210

57. Kerkelä E, Laitinen A, Räbinä J, Valkonen S, Takatalo M, Larjo A, et al. Differential ectonucleotidase expression in human bladder cancer. *Toxicol Appl Pharmacol*. (2017) 314:72–8. doi: 10.1016/j.taap.2017.03.005

58. Li L, Wang L, Li J, Fan Z, Yang L, Zhang Z, et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. *Cancer Res*. (2018) 78:1779–81. doi: 10.1158/0008-5472.CAN-17-2460

59. Li L, Wang L, Li J, Fan Z, Yang L, Zhang Z, et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. *Cancer Res*. (2018) 78:1779–81. doi: 10.1158/0008-5472.CAN-17-2460

60. Li L, Wang L, Li J, Fan Z, Yang L, Zhang Z, et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. *Cancer Res*. (2018) 78:1779–81. doi: 10.1158/0008-5472.CAN-17-2460

61. Li L, Wang L, Li J, Fan Z, Yang L, Zhang Z, et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. *Cancer Res*. (2018) 78:1779–81. doi: 10.1158/0008-5472.CAN-17-2460

62. Li L, Wang L, Li J, Fan Z, Yang L, Zhang Z, et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. *Cancer Res*. (2018) 78:1779–81. doi: 10.1158/0008-5472.CAN-17-2460

63. Sim GC, Martin-Orozco N, Jin L, Yang Y, Wu S, Washington E, et al. IL-2 activity in patients with head and neck cancer. *Clin Cancer Res*. (2017) 23:4843–54. doi: 10.1158/1078-0432.CCR-16-2819

64. Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. *J Immunol*. (2011) 187:876–83. doi: 10.4049/jimmunol.1003884

65. Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R, et al. CD73 expression on extracellular vesicles derived from CD44+ CD25+ Foxp3+ T cells contributes to their regulatory function. *Eur J Immunol*. (2013) 43:2430–40. doi: 10.1002/eji.201249209

66. Yang Y, Bucan V, Baecher H, von der Ohe J, Otte A, Hass R. Acquisition of new tumor cell properties by MSC-derived exosomes. *Int J Oncol*. (2015) 47:244–52. doi: 10.3892/ijo.2015.3001

67. Dengler VL, Gilbrith MD, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. *Cancer Res*. (2014) 74:15–15. doi: 10.1158/0008-5472.CAN-13-83820

68. Kozirume S, Miyagi Y. Diverse mechanisms of Sp1-dependent transcriptional regulation potentially involved in the adaptive response of cancer cells to oxygen-deficient conditions. *Cancers*. (2015) 8:2. doi: 10.3390/cancers8010002

69. Tak E, Jung DH, Kim SH, Park GC, Jun DY, Lee J, et al. Protective role of hypoxia-inducible factor-1-dependent CD39 and CD73 in fulminant acute liver failure. *Toxicol Appl Pharmacol*. (2017) 314:72–81. doi: 10.1016/j.taap.2016.11.016

70. Sarkar K, Cai Z, Gupta R, Parajuli N, Fox-Talbot K, Darshan MS, et al. Hypoxia-inducible factor 1 transcriptional activity in endothelial cells is required for acute phase cardioprotection induced by ischemic preconditioning. *Proc Natl Acad Sci USA*. (2012) 109:10504–9. doi: 10.1073/pnas.1208314109

71. Poth JM, Brodsky K, Ehrentraut H, Grenz A, Eltzschig HK. Transcriptional control of adenosine signaling by hypoxia-inducible transcription factors during ischemic or inflammatory disease. *J Mol Med*. (2013) 91:183–93. doi: 10.1007/s00109-012-9988-7

72. Eltzschig HK, Köhler D, Eckle T, Kong T, Robson SC, Colgan SP. Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. *Blood*. (2009) 113:224–32. doi: 10.1182/blood-2008-06-165746

73. Zhang R, Wang Z, Wu L, Zhang M, Li W, Ding J, et al. Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. *PLoS ONE*. (2013) 8:e57114. doi: 10.1371/journal.pone.0057114

74. Sim GC, Martin-Orozco N, Jin L, Yang Y, Wu S, Washington E, et al. IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients. *J Clin Invest*. (2014) 124:99–110. doi: 10.1172/JCI64626

75. Gourdin N, Bossennec M, Rodriguez C, Vigano S, Machon C, Jandus C, et al. Autocrine adenosine regulates tumor functional CD73(+)/CD4(+)-effector T cells devoid of immune checkpoints. *Cancer Res*. (2018) 78:3604–18. doi: 10.1158/0008-5472.CAN-17-2405

76. Sim GC, Martin-Orozco N, Jin L, Yang Y, Wu S, Washington E, et al. IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients. *J Clin Invest*. (2014) 124:99–110. doi: 10.1172/JCI64626

77. Gourdin N, Bossennec M, Rodriguez C, Vigano S, Machon C, Jandus C, et al. Autocrine adenosine regulates tumor functional CD73(+)/CD4(+)-effector T cells devoid of immune checkpoints. *Cancer Res*. (2018) 78:3604–18. doi: 10.1158/0008-5472.CAN-17-2405

78. Thibaudin M, Chaix M, Boidot R, Végran F, Derangère V, Limagne E, et al. Human ectonucleotidase-expressing CD25highTh17 cells accumulate in breast cancer tumors and exert immunosuppressive functions.
Vigano et al. Immunosuppression by Adenosine in Tumors

84. Reinhardt J, Landsberg J, Schmid-Burgk JL, Ramis BB, Bald T, Glode N, et al. MAPK signaling and inflammation link melanoma phenotype switching to induction of CD73 during immunotherapy. Cancer Res. (2017) 77:4697–709. doi: 10.1158/0008-5472.CAN-17-0395

85. Pagliara SM, Laudanna C, Pancione M, Sabatino L, Votino C, Remo A, et al. Ensemble of gene signatures identifies novel biomarkers in colorectal cancer activated through PPARy and TNF signaling. PLoS ONE. (2013) 8:1–12. doi: 10.1371/journal.pone.0072638

86. Niemela J, Henttinen T, Yegutkin GG, Aisras L, Kujari AM, Rajala P, et al. Generation of anti-inflammatory adenosine by leukocytes is regulated by IFN-γ induced adenosine production on the endothelium: a mechanism mediated by CD73 (ecto-5′-nucleotidase) up-regulation. J Immunol. (2004) 172:1646–53. doi: 10.4049/jimmunol.172.3.1646

87. Bellingan G, Maksimow M, Howell DC, Stotz M, Beale R, Beatty M, et al. The effect of intravenous interferon-β-1a (FP-1201) on lung CD73 expression and on acute respiratory distress syndrome mortality: an open-label study. Lancet Respir Med. (2014) 2:98–107. doi: 10.1016/s2213-2600(13)70259-5

88. Mascarenhido ID, Yeste A, Vieira SM, Burans EJ, Patel B, Sloma I, et al. IL-27 (14:1054–63. doi: 10.1080/ni.2695

89. Salimu J, Webber J, Gurney M, Al-Taei S, Clayton A, Tabi Z. Differential expression of human nucleoside transporters in normal and tumor tissue. Biochem Biophys Res Commun. (2001) 280:951–9. doi: 10.1006/bbrc.2000.4205

90. Pastor-Anglada M, Pérez-Torras S. Emerging roles of nucleoside transporters. Front Pharmacol. (2018) 9:606. doi: 10.3389/fphar.2018.00606

91. de Lera Ruíz M, Lim Y, Zheng J. Adenosine A2A receptor as a drug discovery target. J Med Chem. (2017) 50:5623–50. doi: 10.1021/acs.jmedchem.7b00454

92. Fredholm BB, IJzerman AP, Jacobson KA, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. (2001) 53:527–52. doi: 10.1124/pr.1.003285

93. de Lera Ruíz M, Lim Y, Zheng J. Adenosine A2A receptor as a drug discovery target. J Med Chem. (2017) 50:5623–50. doi: 10.1021/acs.jmedchem.7b00454

94. Degli Esposti S, Amoroso G, Setola G, De Fabritiis G. Mechanisms regulating T-cell infiltration and activity in solid tumors. J Exp Ther Oncol. (2010) 8:203–10.

95. Hofmann MC, Millan JL. Developmental expression of alkaline phosphatase genes; reexpression in germ cell tumours and in vitro immortalized germ cells. Eur Urol. (1993) 23:38–44. discussion 45. doi: 10.1159/000475456

96. Singh AK, Pandey A, Tewari M, Kumar R, Sharma A, Singh KA, et al. Advanced stage of breast cancer host alkaline phosphatase activity: risk factor for females in India. J Biotech. (2013) 3:517–20. doi: 10.1007/s13205-011-0113-1

97. Chen L, Diao L, Yang Y, Yi X, Rodriguez BL, Li Y, et al. Expression of the immunoregulatory molecule CD39. J Immunol. (2011) 216:3008–18. doi: 10.1186/1472-6804-16-234

98. Hofmann MC, Millan JL. Developmental expression of alkaline phosphatase genes; reexpression in germ cell tumours and in vitro immortalized germ cells. Eur Urol. (1993) 23:38–44. discussion 45. doi: 10.1159/000475456

99. Hofmann MC, Millan JL. Developmental expression of alkaline phosphatase genes; reexpression in germ cell tumours and in vitro immortalized germ cells. Eur Urol. (1993) 23:38–44. discussion 45. doi: 10.1159/000475456

100. Hofmann MC, Millan JL. Developmental expression of alkaline phosphatase genes; reexpression in germ cell tumours and in vitro immortalized germ cells. Eur Urol. (1993) 23:38–44. discussion 45. doi: 10.1159/000475456

101. Hofmann MC, Millan JL. Developmental expression of alkaline phosphatase genes; reexpression in germ cell tumours and in vitro immortalized germ cells. Eur Urol. (1993) 23:38–44. discussion 45. doi: 10.1159/000475456

102. Hofmann MC, Millan JL. Developmental expression of alkaline phosphatase genes; reexpression in germ cell tumours and in vitro immortalized germ cells. Eur Urol. (1993) 23:38–44. discussion 45. doi: 10.1159/000475456
122. Celic C, Sag D, Day VJ, Linden J. Extracellular adenosine regulates naïve T cell development and peripheral maintenance. *J Exp. Med.* (2013) 210:2693–706. doi: 10.1084/jem.20130249

123. Lukashev DE, Smith PT, Caldwell CC, Ohta A, Apasov SG, Sitkovsky MV. Analysis of A2a receptor-deficient mice reveals no significant compensatory increase in the expression of A2b, A1, and A3 adenosine receptors in lymphoid organs. *Biochem Pharmacol.* (2003) 65:2081–90. doi: 10.1016/S0006-2952(03)00158-8

124. Deglio S, Dwyer KM, Gao W, Friedman D, Ushева A, Erat A, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. *J Exp. Med.* (2007) 204:1257–65. doi: 10.1084/jem.20062512

125. Lappas CM, Rieger JM, Linden J, A2a adenosine receptor induction inhibits IFN-γ production in murine CD4+ T cells. *J Immunol.* (2005) 174:1073–80. doi: 10.4049/jimmunol.174.2.1073

126. Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J, et al. Adenosine receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. *Blood.* (2008) 111:251–9. doi: 10.1182/blood-2007-03-081646

127. Hoskin DW, Butler JJ, Drapeau D, Haeryfar SM, Blay J. Adenosine acts and signaling is blocked by A2B receptors. *J Biol Chem.* (1997) 272:25881–9. doi: 10.1074/jbc.272.41.25881

128. Longhi MS, Moss A, Bai A, Wu Y, Huang H, Cheifetz A, et al. Memory of extracellular adenosine A2A purinergic receptor-adenosine receptor genes and its functional significance. *J Exp Med.* (2009) 207:91–102. doi: 10.1084/jem.20081504

129. Boeynaems JM, et al. Extracellular adenine nucleotides inhibit the activation of A2B adenosine receptors in human lymphocytes: their role in T cell activation. *J Immunol.* (2009) 182:1945–58. doi: 10.4049/jimmunol.182.4.1945

130. Keravis T, Lugnier C. Cyclic nucleotide phosphodiesterase. (PDE) isozymes as targets of the intracellular signaling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. *Br J Pharmacol.* (2012) 165:1288–305. doi: 10.1111/bph.12079

131. Li L, Yee C, Beavo JA. CD3- and CD28-dependent induction of PDE7 required for T cell activation. *Science.* (1998) 283:848–9. doi: 10.1126/science.283.5403.848

132. Vang AG, Ben-Sasson SZ, Dong H, Kream B, DeNinno MP, Claffey MM, et al. Distinct metabolism of cyclic adenosine monophosphate in various diseases and perspectives for future therapeutic developments. *J Mol Endocrinol.* (2005) 29:105–13. doi: 10.1677/jme.0.02219

133. Viswanathan S, Spada J, Schmid F, Marzocchi E, Resnati M. Cyclic nucleotide phosphodiesterases 1 and 4 in interleukin-13 production by activated human T cells. *Biochem Pharmacol.* (2001) 62:495–507. doi: 10.1016/S0006-2952(01)00888-8

134. Yan K, Gao LN, Cui YL, Zhang Y, Zhou X. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery. *Mol Med Rep.* (2016) 13:3715–23. doi: 10.3892/mmr.2016.5005

135. Cazaux CA, Sterin-Borda L, Gorelik G, Cremaschi GA. Down-regulation of β-adrenergic receptors induced by mitogen activation of intracellular signaling events in lymphocytes. *J Immunol.* (1995) 25:616–24. doi: 10.1111/j.1365-2219.1995.tb01109.x

136. Bartik MM, Brooks WH, Roszman TL. Modulation of T cell proliferation by stimulation of the β-adrenergic receptor: lack of correlation between inhibition of T cell proliferation and cAMP accumulation. *Cell Immunol.* (1993) 148:408–21. doi: 10.1006/cimm.1993.1122

137. Anderson P, Gonzalez-Rey E. Vasoactive intestinal peptide induces cell cycle arrest and regulatory functions in human T cells at multiple levels. *Mol Cell Biol.* (2010) 30:2537–51. doi: 10.1128/MCB.01282-09

138. Delgado M, Gamez D. Vasoactive intestinal peptide and pituitary adenyl cyclase-activating polypeptide inhibit expression of Fas ligand in activated T lymphocytes by regulating c-Myc, NF-B, NF-AT, and early growth factors 2/3. *J Immunol.* (2006) 171:1068–40. doi: 10.4049/jimmunol.166.2.1028
159. Radu CG, Nijagal A, McLaughlin J, Wang L, Witte ON. Differential proton sensitivity of 8-g protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc Natl Acad Sci USA. (2005) 102:1632–7. doi: 10.1073/pnas.0409415102

160. Abrahamsson H, Bailie GS, Nagi J, Vang T, Nika K, Ruppelt A, et al. TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J Immunol. (2004) 173:4847–58. doi: 10.4049/jimmunol.173.8.4847

161. Bjerre E, Solheim SA, Abrahamsson H, Bailie GS, Brown KM, Berge T, et al. Cross talk between phosphatidylinositol 3-kinase and cyclic AMP (cAMP)-protein kinase A signaling pathways at the level of a protein kinase B/- Arrestin/cAMP Phosphodiesterase 4 complex. Mol Cell Biol. (2010) 30:1660–72. doi: 10.1128/MCB.00696-09

162. Ye J, Ma C, Hsueh EC, Dou J, Mo W, Liu S, et al. TLR8 signaling enhances tumor immunity by preventing tumor-induced T cell senescence. EMBO Mol. Med. (2014) 6:1294–311. doi: 10.15252/emmm.201403918

163. Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med. (2007) 204:1303–10. doi: 10.1084/jem.20062129

164. Wehli V, Tasken K. Molecular mechanisms for cAMP-mediated immunoregulation in T cells—role of anchored protein kinase A signaling units. Front Immunol. (2016) 7:222. doi: 10.3389/fimmu.2016.00222

165. Skalhegg BS, Tasken K. Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front Biosci. (2000) 5:6678–93. doi: 10.2741/A543

166. Johnson DA, Akamine P, Radzio-Andzelm E, Madhusudan M, Taylor SS. Dynamics of cAMP-dependent protein kinase. Chem Rev. (2001) 101:2243–70. doi: 10.1021/cr000226k

167. Gianpantelle N, Stokes MP, Silva JC, Scholtan A, Heck AJR. Interrogating cAMP-dependent kinase signaling in Jurkat T cells via a protein kinase A targeted immune-precession phosphoproteomics approach. Mol Cell Proteomics. (2013) 12:3350–9. doi: 10.1074/mcp.O113.028456

168. Newick K, O’Brien S, Sun J, Kapoor V, Maceyko S, Lo A, et al. Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase A localization. Cancer Immunol Res. (2016) 4:541–51. doi: 10.1158/2326-6066.CIR-15-0263

169. Oberprieler NG, Tasken K. High-resolution mapping of prostaglandin E2-dependent signaling networks identifies a constitutively active PKA signaling node in CD8+ CD45RO+ T cells. Methods. (2010) 116:2–4. doi: 10.1082/blood-2010-01-266650

170. Rodriguez G, Ross JA, Nagy ZS, Kirken RA. Forskolin-inducible cAMP pathway negatively regulates T-cell proliferation by uncoupling the interleukin-2 receptor complex. J Biol Chem. (2013) 288:7137–46. doi: 10.1074/jbc.M112.408765

171. Vang T, Taskeng KM, Sundvold V, Saxena M, Levy FO, Skålhegg BS, et al. Activation of the COOH-terminal Src kinase. (Csk) by cAMP-dependent protein kinase inhibiting signaling through the T cell receptor. J Exp Med. (2001) 193:497–507. doi: 10.1084/jem.193.4.497

172. Cerny O, Kamanova J, Masin J, Bibova I, Skopkova K, Sebo P, Bordelatius pertussis adenylate cyclase toxin blocks induction of bactericidal nitric oxide in macrophages through cAMP-dependent activation of the SHP-1 phosphatase. J Immunol. (2015) 194:4901–13. doi: 10.4049/jimmunol.1402941

173. Zhang J, Ravichandran KS, Garrison JC. A key role for the phosphorylation of Ser410by the cyclic AMP-dependent protein kinase in regulating the activity of the Src homology 2 domain-containing inositol 5-phosphatase (SHIP1). J Biol Chem. (2010) 285:34839–49. doi: 10.1074/jbc.M110.128827

174. Sawadskisol S, Pyarajan A, Alzabin S, Matejovic G, Burakoff SJ. Prostaglandin E2 activates PKH1 kinase activity via a PKA-dependent pathway. J Biol Chem. (2007) 282:24693–9. doi: 10.1074/jbc.M707425200

175. Ahn JH, Mclavoy T, Rakhlin SV, Nishi A, Greengard P, Nairn AC. Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc Natl Acad Sci USA. (2007) 104:2979–84. doi: 10.1073/pnas.0611532104

176. Park DJ, Min HK, Rhee SG. Inhibition of CD3-linked phospholipase C by phosphor ester and by cAMP is associated with decreased phosphotyrosine and increased phosphoserine contents of PLC-γ1. J Biol Chem. (1992) 267:1496–501.
196. Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. *Annu Rev Biochem.* (1999) 68:821–61. doi: 10.1146/annurev.biochem.68.1.821

197. Solomou EE, Juang YT, Tsokos GC. Protein kinase C-θ participates in the activation of cyclic AMP-responsive element-binding protein and its subsequent binding to the –180 site of the IL-2 promoter in normal human T lymphocytes. *J Immunol.* (2001) 166:5665–74. doi: 10.4049/jimmunol.166.9.5665

198. Hedrich CM, Rauen T, Tsokos GC. cAMP-responsive element modulator (CREM) protein signaling mediates epigenetic remodeling of the human interleukin-2 gene: Implications in systemic lupus erythematosus. *J Biol Chem.* (2011) 286:34329–36. doi: 10.1074/jbc.M111.299339

199. Butscher W, Powers C, Vinson C, Gardner K. Coordinate trans activation of the cAMP response element modulator (CREM) protein signaling mediates epigenetic remodeling of the human interleukin-2 gene: Implications in systemic lupus erythematosus. *J Biol Chem.* (2011) 286:31964–72. doi: 10.1074/jbc.Z1.3.1964

200. Samten B, Townsend JC, Weis SE, Bhoumik A, Klucar P, Shams H, et al. CREB, ATF, and AP-1 transcription factors regulate IFN-γ secretion by human T cells in response to mycobacterial antigen. *J Immunol.* (2008) 181:2056–64. doi: 10.4049/jimmunol.181.3.2056

201. De Araujo-Souza PS, Hanschke SCH, Viola JPB. Epigenetic control of the CD28 response element of the interleukin-2 promoter by c-rel and ATF-1/CREB2. *FASEB J.* (1997) 11:552–60. doi: 10.1096/fj.97-273.1.552

202. Chen X, Ji Z, Tsalkova T, Mei F, Epac and PAK: a tale of two intracellular cAMP receptors. *Acta Biochim Biophys Sin.* (2008) 40:651–62. doi: 10.1140/epjb/e2008-00043-x

203. Strempel JM, Vercelli D. Functional dissection identifies a protein kinase A-mediated phosphorylation. *J Exp Med.* (2007) 204:1543–9. doi: 10.1083/jem.200701010

204. Verjans E, Ohl K, Reiss LK, van Wijk F, Toncheva AA, Wiener A, et al. The CREB/CRTC co-activators: sensors for hormonal and metabolic signals. *J Biol Chem.* (2010) 285:768–78. doi: 10.1111/j.1749-6632.1996.tb17555.x

205. Rauen T, Juang YT, Tenbrock K, Tsokos GC. cAMP-responsive element modulator (CREM) induces interleukin-17A expression and mediates epigenetic T-cell differentiation. *Nat Commun.* (2015) 6:83538–51. doi: 10.18632/oncotarget.6041

206. Bousquet A, Berezovskaya A, Barber DL, Nadler LM. Maintenance of human T cell anergy: blocking of IL-2 gene transcription independently of PAKs-CREM/ICER: a potential role for Epac. *Cell Mol Life Sci.* (2013) 456:663–73. doi: 10.1007/BF02130064

207. Aandahl EM, Moretto WJ, Haslett PA, Vang T, Bryn T, Tasken K, et al. The CREB/CRTC2 pathway modulates autoimmune disease through Th17 differentiation. *Nat Commun.* (2015) 6:1–9. doi: 10.1038/ncomms8216

208. Wang X, Ni L, Chang D, Lu H, Jiang Y, Kim BS, et al. Cyclic AMP-responsive element-binding protein (CREB) is critical in autoimmunity by promoting Th17 but inhibiting Treg cell differentiation. *Elife.* (2017) 6:156–74. doi: 10.1016/j.edl.2017.10.010

209. Borger P, Kauffman HF, Postma DS, Vellenga E. Interleukin-4 gene amplification of cAMP-PKA signaling and immunosuppression. *FASEB J.* (2008) 22:3491–9. doi: 10.1096/fj.08-107458

210. Tsai H-C, Wu R. Cholera toxin directly enhances IL-17A production from human CD4+ T cells. *J Immunol.* (2013) 191:6095–102. doi: 10.4049/jimmunol.1300179

211. Tang H, Sun L, Xin Z, Ganea D. Down-regulation of cytokine expression in murine lymphocytes by PACAP and VIP. *Ann N Y Acad Sci.* (1996) 805:768–78. doi: 10.1111/j.1749-6632.1996.tb15555.x

212. Borgers P, Kauffman HF, Postma DS, Vellenga E. Interleukin-4 gene expression in activated human T lymphocytes is regulated by the cyclic adenosine monophosphate-dependent signaling pathway. *Blood.* (1996) 81:891–8.

213. Erlich S, Verdoo P, Kooijman R. Modulation of cytokine production by cyclic adenosine monophosphate analogs in human leukocytes. *J Interferon Cytokine Res.* (2010) 30:883–91. doi: 10.1080/jir.2009.0021

214. Csóka B, Himer L, Selmeczy Z, Vizi ES, Pacher P, Ledent C, et al. Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. *FASEB J.* (2008) 22:3491–9. doi: 10.1096/fj.08-107458

215. Su Y, Huang X, Raskovalova T, Zacharia L, Lokshin A, Jackson PK, et al. Inhibition of cytokine production and cytotoxic activity of human melanoma specific CD8+ and CD4+ T lymphocytes by adenosine-protein kinase A type I signaling. *Cancer Res.* (2007) 67:5949–56. doi: 10.1158/0008-5472.CAN-06-4249
232. Limnemann C, Schildberg FA, Schurich A, Diehl H, Hegenbarth SI, Endl E, et al. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling. *Immunology.* (2009) 128:278–37. doi: 10.1111/j.1365-2664.2009.03075.x

233. Grader-Beck T, van Puijenbroek A, Nadler LM, Boussiotis VA. cAMP inhibits both Ras and Ralp activation in primary human T lymphocytes, but only Ras inhibition correlates with blockade of cell cycle progression. *Blood.* (2003) 101:998–1006. doi: 10.1182/blood-2002-06-1665

234. Hino S, Tanji C, Nakayama KL, Kikuchi E. Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase stabilizes β-catenin through inhibition of its ubiquitination. *Mol Cell Biol.* (2005) 25:9063–72. doi: 10.1128/MCB.25.20.9063-9072.2005

235. Bopp T, Dehzad N, Reuter S, Klein M, Ullrich N, Stassen M, et al. Inhibition of cAMP degradation improves regulatory T cell-mediated suppression. *J Immunol.* (2009) 182:4017–24. doi: 10.4049/jimmunol.0803310

236. Emmons T, Wetzel S. The role of estrogen in atrazine-mediated inhibition of CD4+ T-cell function and induction of CD4+ CD25+ Foxp3+ regulatory T cells (IRC4P.479). *J Immunol.* (2014) 192:60.6.

237. Sullivan GW, Lee DD, Ross WG, DiVietro JA, Lappas CM, Lawrence MB, et al. Activation of A2A adenosine receptors inhibits expression of α4/β1 integrin (very late antigen-4) on stimulated human neutrophils. *J Leukoc Biol.* (2004) 75:127–34. doi: 10.1189/jlb.0603300

238. Bopp T, Dehzad N, Reuter S, Klein M, Ullrich N, Stassen M, et al. Inhibition of cAMP degradation improves regulatory T cell-mediated suppression. *J Immunol.* (2009) 182:4017–24. doi: 10.4049/jimmunol.0803310

239. Gupta R, Stowers RJ, Hwang W, Hwang P, et al. Impact of adenosine receptors on immunopathogenesis and treatment of cancer. *Nat Rev Rheumatol.* (2017) 14:595–609. doi: 10.1038/nrrheum.2017.6

240. Tanaka H, Conrad DM, Butler JJ, Zhao C, Blay J, Hoskin DW. Adenosine receptor agonists inhibit chemotaxis of human T lymphocytes by cAMP-dependent protein kinase. *Cytokine.* (2007) 38:196–200. doi: 10.1016/j.cyto.2007.03.003

241. Oppenheimer-Marks N, Kavathias S, Puckert T, et al. Distinctive immunoregulatory effects of adenosine on T cells of older humans. *J Immunol.* (2012) 189:1044–51. doi: 10.4049/jimmunol.1102764

242. Thiel M, Chambers JD, Chouker A, Fischer S, Zorelides C, Bardenheuer HJ, et al. Effect of adenosine on the expression of beta(2) integrins and L-selectin of human polymorphonuclear leukocytes in vitro. *J Leukoc Biol.* (1996) 59:671–82. doi: 10.1002/jlb.59.5.671

243. Oppenheimer-Marks N, Kavanaugh AF, Lipsky PE. Inhibition of the adhesion of anti-CD3-activated T cells from melanoma patients by Arthrobacter adenosine. *J Immunol.* (1993) 150:661–9. doi: 10.4049/jimmunol.150.2.661

244. Oppenheimer-Marks N, Kavanaugh AF, Lipsky PE. Inhibition of the adhesion of anti-CD3-activated T cells from melanoma patients by Arthrobacter adenosine. *J Immunol.* (1993) 150:661–9. doi: 10.4049/jimmunol.150.2.661

245. Arhonditis GS, Tzourio N, Sakellarides T, et al. Reversal of immune evasion by adenosine A2A receptor activation of human DCs. *Blood.* (2008) 112:1822–31. doi: 10.1182/blood-2008-02-136325

246. Challer J, Bruniquel D, Sewell AK, Laugel B. Adenosine and cAMP signalling skew human dendritic cell differentiation towards a tolerogenic phenotype.
with defective CD8\(^+\) T-cell priming capacity. *Immunology.* (2013) 138:402–10. doi: 10.1111/imm.12053

269. Desrosiers MD, Cembrola KM, Fakir MJ, Stephens LA, Jama FM, Shameli A, et al. Adenosine deamination sustains dendritic cell activation in inflammation. *J Immunol.* (2007) 179:1884–92. doi: 10.4049/jimmunol.179.3.1884

270. Panther E, Corinti S, İzdoz M, Herouy Y, Napp M, la Sala A, et al. Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. *Blood.* (2003) 101:3985–90. doi: 10.1182/blood-2002-07-2113

271. Yang M, Ma C, Liu S, Shao Q, Gao W, Song B, et al. HIF-dependent induction of adenosine receptor A2B skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. *Immunol. Cell Biol.* (2010) 88:165–71. doi: 10.1038/icb.2009.77

272. Wilson JM, Kurtz CC, Black SG, Ross WG, Alam MS, Linden J, et al. The A2B adenosine receptor promotes Th17 differentiation via stimulation of dendritic cell IL-6. *J Immunol.* (2011) 186:6746–52. doi: 10.4049/jimmunol.1100117

273. Wilson JM, Ross WG, Agbai ON, Frazier R, Figler RA, Rieger J, et al. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells. *J Immunol.* (2009) 182:4616–23. doi: 10.4049/jimmunol.0801279

274. Hofer S, Ivarsson L, Stoitzner P, Auffinger M, Rainer C, Romani N, et al. Adenosine slows migration of dendritic cells but does not affect other aspects of dendritic cell maturation. *J Invest Dermatol.* (2003) 121:320–7. doi: 10.1046/j.1523-1747.2003.123659.x

275. Ben AA, Lefort A, Hua X, Libert F, Communi D, Ledent C, et al. Modulation of murine dendritic cell function by adenosine nucleotides and adenosine: involvement of the A2B receptor. *Eur J Immunol.* (2008) 38:1610–20. doi: 10.1002/eji.200737781

276. Li L, Huang L, Ye H, Song SP, Bajwa A, Lee SJ, et al. Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. *J Clin Invest.* (2012) 122:3931–42. doi: 10.1172/JCI63170

277. Najar HM, Ruhl S, Bru-Capdeville AC, Peters JH. Adenosine and its derivatives control human monocyte differentiation into highly accessory cells versus macrophages. *Leukoc Biol.* (1990) 47:429–39. doi: 10.1016/0748.5.429

278. Haskó G, Szabó C, Németh ZH, Kvetan V, Pastores SM, Vizi ES. Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. *J Immunol.* (1996) 157:4634–40.

279. Haskó G, Kuhel DG, Chen JF, Schwarzwald MA, Deitch EA, Mabley JG, et al. Adenosine inhibits IL-12 and TNF-a production via adenosine A2a receptor-dependent and independent mechanisms. *FASEB J.* (2000) 14:2065–74. doi: 10.1096/fj.99-0508com

280. Haschmi A, Wagner O, Marculescu R, Wegiel B, Robson SC, et al. Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. *J Immunol.* (2005) 175:8260–70. doi: 10.4049/jimmunol.175.12.8260

281. Hatfield SM, Kjaergaard J, Lukashev BD, Schreiber TH, Belikoff B, Abbott R, et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. *Sci Transl Med.* (2015) 7:277ra30. doi: 10.1126/scitranslmed.aad1260

282. Miller JS, Cervenka T, Lund J, Ozaikai JJ, Moss J. Purine metabolites suppress proliferation of human NK cells through a lineage-specific purine receptor. *J Immunol.* (1999) 162:7376–82.

283. Lokshin A, Raskovalova T, Huang X, Zacharia LC, Jackson EK, Gorelik E. Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells. *Cancer Res.* (2006) 66:7758–65. doi: 10.1158/0008-5472.CAN-06-1622

284. Prieto T, Platsoucas CD, Nelson JA. Adenosine receptors and modulation of natural killer cell activity by purine nucleosides. *Cancer Res.* (1990) 50: 4328–31.

285. Williams BA, Manzer A, Blay J, Hoskin DW. Adenosine acts through a novel extracellular receptor to inhibit granule exocytosis by natural killer cells. *Biochem Biophys Res Commun.* (1997) 231:264–9. doi: 10.1016/bbrc.977607

286. Raskovalova T, Huang X, Sitkovsky M, Zacharia LC, Jackson EK, Gorelik E. Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. *J Immunol.* (2005) 175:4383–91. doi: 10.4049/jimmunol.175.7.4383

287. Yago T, Tsukamoto H, Liu Z, Wang Y, Thompson LF, McEvoy RP. Multi-inhibitory effects of A2A adenosine receptor signaling on neutrophil adhesion under flow. *J Immunol.* (2015) 195:3880–9. doi: 10.4049/jimmunol.1500775

288. McColl SR, St-Onge M, Dussault A-A, Lallamme C, Bouchard L, Boulanger M, et al. Immunomodulatory impact of the A2A adenosine receptor on the profile of chemokines produced by neutrophils. *FASEB J.* (2006) 20:187–9. doi: 10.1096/fj.05-4804fi

289. Visser SS, Theron AJ, Ramafi G, Ker JA, Anderson R. Apparent involvement of the A2A subtype adenosine receptor in the anti-inflammatory interactions of CGS. (2000) 21680:cytocopenlyadenosine, and IB-MECA with human neutrophils. *Blood Chem Biochem.* (2010) 60:993–9. doi: 10.1182/blood-2007-01-063870

290. Ramanathan M, Pinhal-Enfield G, Hao I, Leibovich SJ. Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. *Mol Biol Cell.* (2007) 18:14–23. doi: 10.1091/mbc.e06-07-0596

291. Csóka B, Selmezy C, Kasócs B, Németh ZH, Pacher P, Murray PJ, et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. *FASEB J.* (2002) 16:376–86. doi: 10.1096/fj.01-0343fje

292. Németh ZH, Lutz CS, Csóka B, Deitch EA, Leibovich SJ, Gause WC, et al. Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. *J Immunol.* (2005) 175:8260–70. doi: 10.4049/jimmunol.175.12.8260

293. Boons GJ, et al. An angiogenic switch in macrophages involving CCR2. *FASEB J.* (2007) 21:1308–16. doi: 10.1096/fj.06-801279

294. Cavaagh C, Williams KM. Extracellular adenosine produced by eoto-5’-nucleotidase. (CD73) regulates macrophage pro-inflammatory responses, nitric oxide production, and favors Salmonella persistence. *Nitric Oxide.* (2018) 72:7–15. doi: 10.1016/j.niox.2017.11.001
306. Thiel M, Chouker A. Acting via A2 receptors, adenosine inhibits the
309. Kilian JG, Nakhla S, Sieveking DP, Celermajer DS. Adenosine prevents
312. Zalavary S, Stendahl O, Bengtsson T. The role of cyclic AMP, calcium
315. Firestein GS, Bullough DA, Erion MD, Jimenez R, Ramirez-Welhoose M,
27
318. Sorrentino C, Miele L, Porta A, Pinto A, Morello S. Activation of the
321. Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of
324. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, et al. Consensus guidelines for the use and interpretation of angiogenesis assays. (2018) 21:425–532. doi: 10.1007/s10445-018-9613-x
327. Grünewald JK, Ridley AJ. CD73 represses pro-inflammatory
328. Walker G, Langheinrich AC, Dennhauser E, Bohle RM, Dreyer T, Kreuzer J, et al. 3-deazaadenosine prevents adhesion molecule expression and atherosclerotic lesion formation in the aortas of C57BL/6j mice. Arterioscler Thromb Vasc Biol. (1999) 19:2673–9. doi: 10.1161/01.ATV.19.11.2673
331. Narravula S, Lennon PF, Mueller BU, Colgan SP. Regulation of endothelial
332. Dastjerdi MN, Valiani A, Mardani M, Ra MZ. Adenosine A1 receptor
333. Grigranachtova K, Monika Ruzickaova, et al. RNA interference targeting of A1 receptor-overexpressing breast carcinoma cells
334. Mirza A, Basso A, Black S, Malkowski M, Kwee L, Pachter JA, et al. Differential expression of adenosine receptors in human endothelial cells. Circ Res. (2002) 90:531–8. doi: 10.1161/01.RES.0000021203.21416.14
335. Grant MB, Tarunrozzer RW, Caballero S, Oezcek M, Davis MJ, Speroie PE, et al. Adenosine receptor activation induces vascular endothelial growth factor in human retinal endothelial cells. Circ Res. (1999) 85:699–706. doi: 10.1161/01.RES.85.8.699
336. Mirza A, Basso A, Black S, Malkowski M, Kwee L, Pachter JA, et al. RNA interference targeting of A1 receptor-overexpressing breast carcinoma cells leads to diminished rates of cell proliferation and induction of apoptosis. Cancer Biol Ther. (2005) 4:1355–60. doi: 10.4161/cbt.4.12.21906
337. Desai A, Victor-Vega C, Gadangi S, Montesinos MC, Chu CC, Cronstein BN. Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1. Mol Pharmacol. (2005) 67:1064–13. doi: 10.1124/mol.104.007807
338. Tabrizchi R, Bedi S. Pharmacology of adenosine receptors in the vasculature. Pharmacol Ther. (2001) 91:133–47. doi: 10.1016/S0163-7258(01)00152-8
339. Gentilini T, Jalkanen S, Yegutkin GG. Adherent leucocytes prevent adenosine formation and impair endothelial barrier function by ecto-5′-nucleotidase/CD73-dependent mechanism. J Biol Chem. (2003) 278:4888–95. doi: 10.1074/jbc.M300792200
340. Bouma MG, van den Wijlgen FA, Buurmans WA. Adenosine inhibits cytokine release and expression of adhesion molecules by activated human endothelial cells. Am J Physiol. (1996) 270:C522–9. doi: 10.1152/ajpcell.1996.270.2.C522
341. Grunewald JK, Ridley AJ. CD73 represses pro-inflammatory responses in human endothelial cells. J Inflamm. (2010) 7:10. doi: 10.1186/1476-9255-7-10
342. Walker G, Langheinrich AC, Dennhauser E, Bohle RM, Dreyer T, Kreuzer J, et al. 3-deazaadenosine prevents adhesion molecule expression and atherosclerotic lesion formation in the aortas of C57BL/6j mice. Arterioscler Thromb Vasc Biol. (1999) 19:2673–9. doi: 10.1161/01.ATV.19.11.2673
343. Eckle T, Fagile M, Grenz A, Laucher S, Thompson LF, Eltzschig HK. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood. (2008) 111:2024–35. doi: 10.1182/blood-2007-11-107044
344. Comferd KM, Lawerence DW, Synnestvedt K, Levi BR, Colgan SP. Role of vasodilator-stimulated phosphoprotein in PKA-induced changes in endothelial junctional permeability. FASEB J. (2002) 16:583–5. doi: 10.1096/fj.01-0739he
345. Srinivas SP, Sarpathy M, Gallagher P, Lariviere E, Van Driessche W. Adenosine induces dephosphorylation of myosin II regulatory light chain in cultured bovine corneal endothelial cells. Exp Eye Res. (2004) 79:543–51. doi: 10.1016/j.exer.2004.06.027
346. Acuño J, Herlitz K, Troncoso F, Ayuaco C, Bertoglia P, Escudero C. Adenosine A2A receptor regulates expression of vascular endothelial growth factor in feto-placental endothelium from normal and late-onset pre-eclamptic pregnancies. Parturition Signal. (2017) 13:51–60. doi: 10.1007/s11302-016-9538-z
347. Khoa ND, Montesinos MC, Williams AJ, Kelly M, Cronstein BN. Th1 cytokines regulate adenosine receptors and their downstream signaling elements in human microvascular endothelial cells. J Immunol. (2003) 171:3991–8. doi: 10.4049/jimmunol.171.8.3991
348. Narravula S, Lennon PF, Mueller BU, Colgan SP. Regulation of endothelial CD73 by adenosine: paracrine pathway for enhanced endothelial barrier function. J Immunol. (2000) 165:5262–8. doi: 10.4049/jimmunol.165.5.5262
349. Feoktistov I, Goldstein AE, Ryzhov S, Zeng D, Belardinelli L, Vosyno-Yasenetskaya T, et al. Differential expression of adenosine receptors in human endothelial cells. Circ Res. (2002) 90:531–8. doi: 10.1161/01.RES.0000021203.21416.14
350. Grant MB, Tarunuezzer RW, Caballero S, Oezcek M, Davis MJ, Speroie PE, et al. Adenosine receptor activation induces vascular endothelial growth factor in human retinal endothelial cells. Circ Res. (1999) 85:699–706. doi: 10.1161/01.RES.85.8.699
351. Mirza A, Basso A, Black S, Malkowski M, Kwee L, Pachter JA, et al. RNA interference targeting of A1 receptor-overexpressing breast carcinoma cells leads to diminished rates of cell proliferation and induction of apoptosis. Cancer Biol Ther. (2005) 4:1355–60. doi: 10.4161/cbt.4.12.21906
352. Dastjerdi MN, Valiani A, Mardani M, Ra MZ. Adenosine A1 receptor modifies P35 expression and apoptosis in breast cancer cell line MCF-7. Bratil Lek Listy. (2016) 117:242–6. doi: 10.4164/BLL_2016_046
353. Sakowicz-Burkiewicz M, Kitowska A, Greden M, Maciejewska I, Sztowicz A, Pawelczyz T. Differential effect of adenosine receptors on growth of human
colon cancer HCT 116 and HT-29 cell lines. Arch Biochem Biophys. (2013) 533:47–54. doi: 10.1016/j.abb.2013.02.007

340. Kuzumaki N, Suzuki A, Narita M, Hosoya T, Nagasawa A, Imai S, et al. Multiple analyses of G-protein coupled receptor. (GPCR) expression in the development of gefitinib-resistance in transforming non-small-cell lung cancer. PLoS ONE. (2012) 7:1–11. doi: 10.1371/journal.pone.0044308

341. Merighi S, Mirandola P, Milani D, Varani K, Gessi S, Klotz KN, et al. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J Invest Dermatol. (2002) 119:923–33. doi: 10.1046/j.1523-1747.2002.00111.x

342. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, et al. Hypoxia inhibits paclitaxel-induced apoptosis through adenosine-mediated phosphorylation of bad in glioblastoma cells. Mol Pharmacol. (2007) 72:162–72. doi: 10.1124/mol.106.031849

343. Kim H, Kang JW, Lee S, Choi WJ, Jeong LS, Yang Y, et al. A3 adenosine receptor antagonist, truncated Thio-Cl-IB-MECA, induces apoptosis in T24 human bladder cancer cells. Anticancer Res. (2010) 30:2823–30.

344. Wei Q, Costanzi S, Balasubramanian R, Gao Z-G, Jacobson KA. A2B adenosine receptor blockade inhibits growth of prostate cancer cells. Purinergic Signal. (2013) 9:271–80. doi: 10.1007/s11302-012-9350-3

345. Otsuki T, Kanno T, Fujita Y, Tabata C, Fukuoka K, Nakano T, et al. A3 receptors are overexpressed in pleura from patients with mesothelioma and reduce cell growth via Akt/nuclear factor-κB pathway. J Gastroenterol. (2016) 51:136–48. doi: 10.1002/jge.1776

346. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, et al. A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells. J Biol Chem. (2005) 280:19516–26. doi: 10.1074/jbc.M413772200

347. Ohana G, Bar-Yehuda S, Arich A, Madi L, Dreznick Z, Rahat-Wolfson L, et al. Inhibition of primary human colon carcinoma growth and liver metastasis by the A3 adenosine receptor agonist CF101. Br J Cancer. (2003) 89:1552–8. doi: 10.1038/sj.bjc.6601315

348. Fishman P, Bar-Yehuda S, Ohana G, Pathak S, Wasserman L, Barer F, et al. Adenosine acts as an inhibitor of lymphoma cell growth: a major role for the A3 adenosine receptor. Eur J Cancer. (2000) 36:1452–8. doi: 10.1054/ejca.2000.10130-1

349. Woodhouse EC, Amanatullah DE, Schetz JA, Liotta LA, Stracke ML, Clair T. Adenosine receptor mediates motility in human melanoma cells. Biochem Biophys Res Commun. (1998) 246:888–94. doi: 10.1006/bbrc.1998.8714

350. Zhou Y, Tong L, Chu D, Feng F, Tang J, Tang Y, et al. The adenosine A1 receptor antagonist inhibits tumor progression via the ERK/JNK pathway in renal cell cancer. Cell Physiol Biochem. (2017) 43:733–42. doi: 10.1159/000481557

351. Zhou JZ, Riquelme MA, Gao X, Ellies LG, Sun LZ, Jiang JX. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene. (2015) 34:1831–42. doi: 10.1038/onc.2014.113

352. Desmet CJ, Gallenne T, Prieur A, Reyel F, Visser NL, Wittner BS, et al. Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc Natl Acad Sci USA. (2013) 110:5319–44. doi: 10.1073/pnas.1222085110

353. Vaccaro CH, D’Souza K, MaLaughlin N, Arora J, Suyemoto K, Denoyer D, et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci USA. (2010) 107:1547–52. doi: 10.1073/pnas.0908811010

354. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Simionc C, et al. Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol Pharmacol. (2007) 72:395–406. doi: 10.1124/mol.106.032920

355. Gessi S, Sacchetto V, Fogli E, Merighi S, Varani K, Baraldi PG, et al. Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A3 adenosine receptors. Biochem Pharmacol. (2010) 79:1483–95. doi: 10.1016/j.bcp.2010.01.009

356. Ramaz P, Purwin T, Pestell R, Tozeren A. FXYDS is a marker for poor prognosis and a potential driver for metastasis in ovarian carcinomas. Cancer Inform. (2015) 14:CIN.530565. doi: 10.4137/CIN.S530565

357. Jiao S, Mukherjee D, Watabe K, Ramkumar V. Adenosine A3 receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia. (2009) 11:1132-INS. doi: 10.1593/neo.09744

358. Ledderose C, Hefti MM, Chen Y, Bae Y, Seier T, Li L, et al. The adenosine A2B receptor stimulation induces vascular endothelial growth factor production. Am J Physiol Renal Physiol. (2001) 280:F826–32. doi: 10.1152/ajprenal.00833.2001

359. Merighi S, Simionc C, Gessi S, Varani K, Mirandola P, Tabrizi MA, et al. A2B and A3 adenosine receptors modulate vascular endothelial...
growth factor and interleukin-8 expression in human melanoma cells treated with etoposide and doxorubicin. *Neoplasia.* (2009) 11:1064–73. doi: 10.1593/neo.09768
376. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, et al. A2A adenosine receptors modulate hypoxia-inducible factor-1alpha expression in human A375 melanoma cells. *Neoplasia.* (2005) 7:894–903. doi: 10.1593/neo.05534
377. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, et al. Adenosine modulates vascular endothelial growth factor expression via hypoxia-inducible factor-1 in human glioblastoma cells. *Biochem Pharmacol.* (2006) 72:19–31. doi: 10.1016/j.bcp.2003.02.020
378. Wang L, Fan J, Thompson LF, Zhang Y, Shin T, Curiel TJ, et al. CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. *J Clin Invest.* (2011) 121:2371–82. doi: 10.1172/JCI43559
379. Stagg J, Divisekera U, Duret H, Sparwasser T, Teng MW, Darcy PK, et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. *Cancer Res.* (2011) 71:2892–900. doi: 10.1158/0008-5472.CAN-10-2426
380. Stagg J, Beavis PA, Divisekera U, Liu MC, Möller A, Darcy PK, et al. CD73-deficient mice are resistant to carcinogenesis. *Cancer Res.* (2012) 72:2190–6. doi: 10.1158/0008-5472.CAN-12-0420
381. Forte G, Sorrentino R, Montinaro A, Luciano A, Adcock IM, Maiolino P, et al. Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma. *Immunol. (2012) 189:2226–33. doi: 10.1002/imm.200744
382. Allard B, Pommey S, Smyth MJ, Stagg J. Targeting CD73 enhances the antitumor activity of anti-CD-1 and anti-CTLA-4 mAbs. *Clin Cancer Res.* (2013) 19:5626–35. doi: 10.1158/1078-0432.CCR-13-0545
383. Allard B, Turcotte M, Spring K, Pommey S, Royal I, Stagg J. Anti-CD73 therapy impairs tumor angiogenesis. *Int J Cancer.* (2014) 134:1466–73. doi: 10.1002/ijc.28456
384. Young A, Ngio S, Barkauskas DS, Sult E, Hay C, Blake SJ, et al. Inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. *Cancer Cell.* (2016) 30:391–403. doi: 10.1016/j.ccell.2016.06.025
385. Hay CM, Sult E, Huang Q, Mulgrew K, Fuhrmann SR, McGlinchey KA, et al. Targeting CD73 in the tumor microenvironment with MED19447. *Oncoimmunology.* (2016) 5:e1208875. doi: 10.1080/21624020.2016.1208875
386. Terp MG, Olesen KA, Aarnes KG, Lund RR, Lagerholm BC, Ditzel HJ, et al. Anti-human CD73 monoclonal antibody inhibits metastasis formation in human breast cancer by inducing clustering and internalization of CD73 expressed on the surface of cancer cells. *J Immunol.* (2013) 191:4165–73. doi: 10.4049/jimm.1301274
387. Yeung TK, Martíll-Tachibana E, Karikoski M, Niemela J, Laurila JP, Elima K, et al. Altered purinergic signaling in CD73-deficient mice inhibits tumor progression. *Eur J Immunol.* (2011) 41:1231–41. doi: 10.1002/eji.201042192
388. Jin D, Fan J, Wang L, Thompson LF, Liu A, Daniel BI, et al. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. *Cancer Res.* (2010) 70:2245–55. doi: 10.1158/0008-5472.CAN-09-3109
389. Iannone R, Miele L, Maiolino P, Pinto A, Morello S. Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. *Am J Transl Res.* (2014) 6:506–9. doi: 10.7810/ajtr.2014.0778
390. Hayes GM, Cairns B, Levashova Z, Chinn L, Perez M, Theunissen JW, et al. Anti-human CD73 monoclonal antibody inhibits metastasis formation in triple negative breast cancer. *Proc Natl Acad Sci USA.* (2013) 110:11091–6. doi: 10.1073/pnas.1222511110
391. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegrati P, et al. Autophagy-dependent antitumor immune responses induced by chemotherapeutic agents in mice. *Science.* (2011) 334:1573–7. doi: 10.1126/science.1208347
392. Schindler U, Seitz L, Ashok D, Piovesan D, Tan J, DiRenzo D, et al. A2B2, a dual antagonist of the A2aR and A2bR adenosine receptors, leads to greater immune activation and reduced tumor growth when combined with chemotherapy. *Eur J Cancer.* (2018) 92:514–5. doi: 10.1016/j.ejca.2018.01.037
393. Turcotte M, Allard D, Mittal D, Barece Y, Buisseter L, José V, et al. CD73 promotes resistance to HER2/Erbb2 antibody therapy. *Cancer Res.* (2017) 77:5652–63. doi: 10.1158/0008-5472.CAN-17-0707
394. Vanlier JA, Thompson LF, Blackburn MR. Ecto-5′-nucleotidase (CD73)-mediated adenosine production is tissue protective in a model of bleomycin-induced lung injury. *J Immunol.* (2006) 177:4449–58. doi: 10.4049/jimm.176.4449
395. Oziyamakan B, Ding Z, Buchheiser A, Koszalka P, Braun N, Godecke A, et al. Adenosine produced via the CD73/ecto-5′-nucleotidase pathway has no impact on erythropoietin production but is associated with...
reduced kidney weight. *Pfuiers Arch Eur J Physiol.* (2006) 452:324–31. doi: 10.1007/s00424-006-0045-x

411. Zhi X, Chen S, Zhou P, Shao Z, Wang L, Ou Z, et al. RNA interference of ecto-5′-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. *Clin Exp Metastasis.* (2007) 24:439–48. doi: 10.1007/s10585-007-9081-y

412. Sadej R, Skladanowski AC. Dual, enzymatic and non-enzymatic, function of ecto-5′-nucleotidase. (eN, CD73) in migration and invasion of A375 melanoma cells. *Acta Biochim Pol.* (2012) 59:647–52. doi: 10.18388/abp.2012_2105

413. Geoghegan JC, Diedrich G, Lu X, Rosenthal K, Sachsenmeier K F, Wu et al. Inhibition of CD73 AMP hydrolysis by a therapeutic antibody with a dual, non-competitive mechanism of action. *MAbs.* (2016) 8:454–67. doi: 10.1080/19420662.2016.1135182

414. Barnhart BC, Sega E, Yamniuk A, Hatcher S, Lei M, Ghermazien et al. 1476: A therapeutic antibody that inhibits CD73 activity by dual mechanisms. *Cancer Res.* (2016) 76:1476. doi: 10.1158/1538-7445.AM2016-1476

415. Piccione EC, Mikesell G, Daine-Matsuoka B, Walter K, Miller R, McCaffery et al. 5577: A novel CD73-blocking antibody reduces production of immunosuppressive adenosine and restores T cell function. *Cancer Res.* (2017) 77:5577. doi: 10.1158/1538-7445.AM2017-5577

416. Jackson SW, Hoshi T, Wu Y, Sun X, Enjyoji K, Cszimadia E, et al. Disordered purinergic signaling inhibits pathological angiogenesis in cd39/Entpd1−/− null mice. *Am J Pathol.* (2017) 181:395–404. doi: 10.2353/ajpath.2017.070190

417. Nikolova M, Carriere M, Jenabian MA, Limou S, Younas M, Kök A, et al. CD39/adenosine pathway is involved in AIDS progression. *PLoS Pathog.* (2011) 7:e1002110. doi: 10.1371/journal.ppat.1002110

418. Häusler SF, Del Barrio IM, Diessner J, Stein RG, Strohschein J, Hönig A, et al. Inhibition of CD73 AMP hydrolysis by a therapeutic antibody reduces CD73 activity by dual mechanisms. *Cancer Res.* (2016) 76:1476. doi: 10.1158/1538-7445.AM2016-1476

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Vigano, Alatzoglou, Irving, Ménétrier-Caux, Caux, Romero and Coukos. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.