3D Reconstruction

COMPSCI 527 — Computer Vision
Outline

1. The Epipolar Geometry of a Pair of Cameras
2. The Essential Matrix
3. The Eight-Point Algorithm: t, R
4. Triangulation: P_m
5. Bundle Adjustment
The Epipolar Geometry of a Pair of Cameras

The epipolar plane
projection ray
projection ray
epipolar plane
epipolar line of camera a
epipolar line of camera b
epipole e_a
depipole e_b
center of projection
camera a
camera b

P
projection ray

The Epipolar Constraint

- The point \(p_a \) in image \(a \) that corresponds to point \(p_b \) in image \(b \) is on the epipolar line of \(p_b \)
 ... and *vice versa*
- This is the only general constraint between two images of the same scene; 3D reconstruction depends on it
- Epipolar lines come in corresponding pairs
- Two *pencils* of lines supported by the two epipoles
Another Way to State the Epipolar Constraint

The two projection rays and the baseline are *coplanar* for corresponding points.
The Epipolar Constraint and 3D Reconstruction

• Relative position and orientation of the two cameras are unknown
• Given corresponding points \(a^p a, b^p b \) (found, say, by tracking) we can write one algebraic constraint on \(a^R b \) and \(a^t b \)
• With enough pairs of corresponding points, we can write a system of equations in \(a^R b \) and \(a^t b \) and solve it
• We can then solve for the coordinates of the 3D points whose images we have
• Solving the system is 3D reconstruction
The Essential Matrix

• How to write the epipolar constraint algebraically?
• The constraint is nonlinear in aR_b, at_b
• Introduce a new 3×3 essential matrix E that combines rotation and translation to make motion estimation a linear problem in E
• Computation sequence:
 • Find E by solving a homogeneous linear system
 • Find rotation and translation from E
 • Find structure (3D points in the world) by intersecting projection rays
Coordinates

• (Known) image points as world points:
 \[a\mathbf{p}_a = \begin{bmatrix} a^x_a \\ a^y_a \\ f \end{bmatrix} \quad \text{and} \quad b\mathbf{p}_b = \begin{bmatrix} b^x_b \\ b^y_b \\ f \end{bmatrix} \]

• Each camera measures a point \textit{in its own reference system}

• (Unknown) transformation: \[b\mathbf{p} = aR_b(a\mathbf{p} - a\mathbf{t}_b) \]

• Inverse: \[aR^T_b b\mathbf{p}_b + a\mathbf{t}_b \]
Writing all Quantities in System a

- Pose of camera b in a is specified by aR_b, at_b, both in a
- Image point ap_a is in a
- Image point bp_b is in b, need to transform to ap_b
- Invert $^bp_b = ^aR_b(^ap_b - ^at_b)$ to obtain $^ap_b = ^aR_b^Tb^bp_b + ^at_b$
- Too many super/subscripts to keep track of. Define $a = ^ap_a$, $b = ^bp_b$, $R = ^aR_b$, $t = ^at_b$, $e = ^ae_b$
- $ab \overset{\text{def}}{=} ^ap_b = R^Tb + t$
Aside: Epipole and Translation

- The epipole of b in a is the same as t up to norm
- Define: $e = a e_b$
- $e \propto t$
The Epipolar Constraint, Algebraically

\[\mathbf{a} \mathbf{b} = R^T \mathbf{b} + \mathbf{t} \]

- The two projection rays and the baseline are coplanar.
- The triple product of \(\mathbf{a} \mathbf{b}, \mathbf{t}, \) and \(\mathbf{a} \) is zero: \(\mathbf{a} \mathbf{b}^T (\mathbf{t} \times \mathbf{a}) = 0 \)

\[(R^T \mathbf{b} + \mathbf{t})^T (\mathbf{t} \times \mathbf{a}) = 0, \text{ but } \mathbf{t}^T (\mathbf{t} \times \mathbf{a}) = 0 \text{ so that} \]

\[(R^T \mathbf{b})^T (\mathbf{t} \times \mathbf{a}) = 0 \]
The Essential Matrix

\[(R^Tb)^T(t \times a) = 0\]
\[b^TR(t \times a) = 0\]
\[b^TR[t]_\times a = 0\]

where \(t = (t_x, t_y, t_z)^T\) and \([t]_\times = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}\)

\[b^T E a = 0 \quad \text{where} \quad E = R \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}\]

- This equation is the \textit{epipolar constraint}, written in algebra
- Holds for any corresponding \(a, b\) in the two images (as world vectors in their reference systems)
- \(E\) is the \textit{essential matrix}
- The epipolar constraint is linear in \(E\) but not in \(R\) and \(t\)
The Epipolar Line in Image a

- Think of b as fixed
- What points x in image a satisfy the epipolar constraint? $b^T E x = 0$
- Let $\lambda^T = b^T E$, a row vector
- $\lambda^T x = 0$, a line!
- a satisfies this *homogeneous* equation (epipolar constraint)
- So does t: $\lambda^T t = b^T Et = b^T R [t] \times t = 0$

 ... and therefore e
- So the line is the epipolar line of b
Two Key Problems

• How to find E given many pairs of corresponding points
 • Easy because $b^T E a = 0$ is linear and homogeneous in E
 • Let us postpone the details
• How to break up E into R and t
 • A bit trickier because $E = R [t]_\times$ is nonlinear in R and t
 • Let us do this first
The Structure of $E = R \ [t] \times$: Rank and Null Space

- E has rank 2 and $\text{null}(E) = \text{span}(t) = \text{span}(e)$
- Geometry:
 - The epipole e is in the epipolar line $b^T Ex = 0$ for every b
 - Therefore, $b^T Ee = 0$ for all b
 - Therefore $Ee = 0$, so $e \in \text{null}(E)$
- Algebra:
 - $[t] \times t = t \times t = 0$
 - $t \times v \neq 0$ if v is not parallel to t
 - Therefore, the rank of $[t] \times$ is 2 for $t \neq 0$
 - Since R is full rank, the solutions of $[t] \times x = 0$ and $Ex = 0$ (i.e., $R[t] \times x = 0$) are the same
 - Therefore, $\text{rank}(E) = 2$ for nonzero t and $\text{null}(E) = \text{span}(t)$
 - Either way, $\text{null}(E) = \text{span}(e) = \text{span}(t) = \text{baseline}$
The Structure of E: Singular Values

- E has two equal singular values and one zero singular value

Proof

- Let \mathbf{v} be perpendicular to \mathbf{t}.
 Then $\| [\mathbf{t}] \times \mathbf{v} \| = \| \mathbf{t} \| \| \mathbf{v} \|$
 (geometric definition of cross product)
- Let $\| \mathbf{v} \| = 1$. Then $\| [\mathbf{t}] \times \mathbf{v} \| = \| \mathbf{t} \|$
- $\mathbf{v} \perp \mathbf{t}$ means that $\mathbf{v} \in \text{row space}([\mathbf{t}] \times)$
 because $\text{null}(E) = \text{span}(\mathbf{t})$
- Therefore, all unit-norm vectors $\mathbf{v} \in \text{row space}([\mathbf{t}] \times)$ are mapped to a circle
- Therefore $[\mathbf{t}] \times$ has two equal singular values
- Third is zero because $\mathbf{t} \in \text{null}([\mathbf{t}] \times)$
- Ditto for E, since $E = R[\mathbf{t}] \times$ and R is orthogonal
- Therefore $\mathbf{v}_3 \propto \mathbf{e} \propto \mathbf{t}$ and $\sigma_1 = \sigma_2 = \sigma$

- If we have E, we can find camera translation \mathbf{t} by SVD!
A Fundamental Ambiguity

• The equation $b^T E a = 0$ is homogeneous in E
• Therefore, we cannot tell the magnitude of E, or of t in $E = R \, [t]_x$
• Absolute scale cannot be determined from images alone
• This ambiguity is general, has nothing to do with the specifics of the formulation
• Cameras fundamentally measure angles, not distances
• This ambiguity is often exploited in movie special effects
• W.l.o.g., let $\|t\| = 1$
• Measure everything in units of inter-camera distance
How to Find E?

- Given pairs $(\mathbf{a}_1, \mathbf{b}_1), \ldots (\mathbf{a}_n, \mathbf{b}_n)$
- Write one epipolar constraint equation per pair
- Linear and homogeneous in E

\[
\mathbf{b}^T E \mathbf{a} = 0
\]
The Eight-Point Algorithm

- H. C. Longuet-Higgins, *Nature*, 293:133–135, 1981
- Needs *at least* 8 corresponding point pairs
- Preferably many more
- Overview:
 - Given pairs \((a_1, b_1), \ldots, (a_n, b_n)\) (tracking)
 - Write one epipolar constraint equation \(b_m^T E a_m = 0\) per pair
 - Solve linear system \(b_1^T E a_1 = 0, \ldots, b_n^T E a_n = 0\) for \(E\)
 - Solve \(E = R [t]_\times\) for \(t, R\)
 - Compute the 3D structure (points \(P_m\)) from \(a_m, b_m, t, R\)
- The last step is called *triangulation*
Rewriting the Epipolar Constraint

\[\mathbf{b}^T E \mathbf{a} = 0 \]

\[
\begin{bmatrix}
 b_1 & b_2 & b_3 \\
\end{bmatrix}
\begin{bmatrix}
 e_{11} & e_{12} & e_{13} \\
 e_{21} & e_{22} & e_{23} \\
 e_{31} & e_{32} & e_{33} \\
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
\end{bmatrix} = 0
\]

\[e_{11} a_1 b_1 + e_{12} a_2 b_1 + e_{13} a_3 b_1 +
 e_{21} a_1 b_2 + e_{22} a_2 b_2 + e_{23} a_3 b_2 +
 e_{31} a_1 b_3 + e_{32} a_2 b_3 + e_{33} a_3 b_3 = 0 \]

\[
\begin{bmatrix}
 a_1 b_1 & a_2 b_1 & a_3 b_1 & a_1 b_2 & a_2 b_2 & a_3 b_2 & a_1 b_3 & a_2 b_3 & a_3 b_3 \\
\end{bmatrix}
\begin{bmatrix}
 e_{11} \\
 e_{12} \\
 e_{13} \\
 e_{21} \\
 e_{22} \\
 e_{23} \\
 e_{31} \\
 e_{32} \\
 e_{33} \\
\end{bmatrix} = 0
\]

\[\mathbf{c}^T \eta = 0 \]

- With \(n \) point pairs, \(\mathbf{c}_m^T \eta = 0 \) for \(m = 1, \ldots, n \)
Solving for E

$c_m^T \eta = 0$ for $m = 1, \ldots, n$

$C \eta = 0$ where C is $n \times 9$

- Because of the scale ambiguity, we cannot tell the norm of η
- Set $\| \eta \| = 1$
- Homogeneous, least squares problem on the unit sphere
- We know how to solve that!

- Repackage η into 3×3 matrix E
Solving for t

- We have E now
 \[E = R \ [t] \times \]
- We saw that $\text{null}(E) = \text{span}(t)$
- So we know how to find t with $\|t\| = 1$, \textit{up to a sign}
- $\pm t$ (and also $\pm [t] \times$)
Solving for R

- We have both E and $T = \pm [t]_\times$
 \[E = R [t]_\times \]
- Linear system in R, but with the constraints $R^T R = I$ and $\det(R) = 1$
- Linear, constrained LSE optimization problem: The Procrustes problem, $\arg \min_{R^T R = I} \| E - RT \|_F$
- Appendix in the notes gives a solution based on the SVD
- Since T has rank 2, it turns out that the there are two solutions, R_1 and R_2 for each choice of sign in $T = \pm [t]_\times$
Eight-Point Algorithm So Far

- Given \(n \geq 8 \) image point pairs \((a_m, b_m)\) for \(m = 1, \ldots, n\)
- Solve \(n \times 9 \) linear homogeneous system \(b_m^T E a_m = 0 \) for \(E \)
- Compute \(\pm t \) as the third right singular vector of \(\pm E \)
- Solve \(\pm E = R \pm [t]_x \) for \(R \) by Procrustes (linear problem with orthogonality constraint) to obtain \(R_1, R_2 \)
- We obtain two translations \(\pm t \) and two rotations \(R_1, R_2 \)
- Four combinations: \((t, R_1), (−t, R_1), (−t, R_2), (t, R_2)\)
- Which is the right one?
- Let us first *triangulate*: Reconstruct the world points given one solution \((t, R)\)
- Only one of the four sets of world points will make sense
Triangulation

- For simplicity, divide $a' = \begin{bmatrix} a'_1 \\ a'_2 \\ f \end{bmatrix}$ by f so that now $a = \begin{bmatrix} a_1 \\ a_2 \\ 1 \end{bmatrix}$

- Let $\alpha \overset{\text{def}}{=} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ (coordinates in canonical image reference system)

- Ditto for b, β

- Projection equations in each camera reference frame: A is P in frame a

 - $\alpha = \frac{1}{A_3} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ and $\beta = \frac{1}{B_3} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$

- Rewrite as $\alpha A_3 = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ and $\beta B_3 = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$

 - Plug $B = R(A - t)$ into second set of equations

- All equations are linear. Four equations, 3 unknowns

- Solve in the LSE sense, get a modicum of noise rejection
The Fourfold Ambiguity

\((t, R_1), (-t, R_1), (-t, R_2), (t, R_2)\)

- Only one solution places all world points in front of both cameras
- Try all four solutions, and reconstruct world points by triangulation
- Pick the one solution that makes sense
Summary of Eight-Point Algorithm

- Given \(n \geq 8 \) image point pairs \((a_m, b_m)\) for \(m = 1, \ldots, n\)
- Solve \(n \times 9 \) linear homogeneous system \(b_m^T E a_m = 0 \) for \(E \)
- Compute \(\pm t \) as the third right singular vector of \(\pm E \)
- Solve \(\pm E = R \pm [t]_\times \) for \(R \) by Procrustes (linear problem with orthogonality constraint) to obtain \(R_1, R_2 \)
- Triangulate scene points \(P_m \) from \(a_m, b_m, t, R \) and for all four combinations of \(t \) and \(R \)
 (\(n \) separate problems, one per point pair)
- Choose the one combination of \(t, R \) that places world points in front of both cameras
- Keep the corresponding triangulated scene points \(P_m \)
- Everything is found up to a single, global scale factor
Bundle Adjustment

Let π be the perspective projection function. We are after

$$\arg \min_{t, R, A_1, \ldots, A_n} \frac{1}{2n} \sum_{m=1}^{n} \left[\| a_m - \pi(A_m) \|^2 + \| b_m - \pi(R(A_m - t)) \|^2 \right]$$

reprojection error

$$\arg \min_{t, R, A_1, \ldots, A_n} \rho(t, R, A_1, \ldots, A_n)$$

Eight-point algorithm solves this single optimization problem in multiple steps

This greedy approach leads to a suboptimal solution

Use solution t, R, P_1, \ldots, P_n from 8-point algorithm to initialize a gradient-descent search for an optimal solution to the full problem

This fine-tuning step is called bundle adjustment