COVID-19 and acute kidney injury presentation; stages and prognosis

Amirali Soheili, Sina Khanir, Sadra Montazeri, Arash Shayegh, Misaagh Haji Miragha, Melika Sadat Jameie, Laya Jalilian Khave, Ghazal Sanadgol, Dorsa Shirini, Saba Ilkhan, Yasaman Sadat Keshmiri, Shahrazd Nematollahi, Maryam Karami, Elahe Taziki

1Students Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3Medical Student, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5PHD Candidate in Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
6Department of Nephrology, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Introduction: Coronavirus disease 2019 (COVID-19) can present with acute kidney injury (AKI). Although the rate of AKI among these patients is not high, their outcome could be much worse than the other patients. Serum creatinine rise along with other laboratory findings may help as a clinical predictor of COVID-19 disease prognosis.

Objectives: We aimed to evaluate the incidence and possible predictors of AKI occurrence and its outcome during the COVID-19 pandemic.

Patients and Methods: In a retrospective observational study of 946 hospital-admitted patients with confirmed COVID-19 between March 20, 2020 and May 9, 2020, we described AKI incidence and its stages along with their association with demographic data, comorbidities, habitual and past-medical history, and laboratory findings using STATA version 14.

Results: The mean age of participants was 55.6 (±18.7) years of which 60.4% were male. The most and least frequent underlying diseases were hypertension and chronic liver disease, 20.1% and 1.5%, respectively. Among patients with AKI, 45.9% had a higher age mean and female sex was more prevalent. In addition, hypertension, ischemic heart disease, diabetes, and chronic renal disease were more common in patients with AKI compared to patients without AKI. Moreover, AKI patients had lower oxygen saturation and mean levels of lymphocytes and higher mean levels of LDH and CRP in comparison with no AKI group on admission. Overall, 80% of the patients were discharged (i.e. alive), of which 63.7% were non-severe patients and 19.4% of the patients expired during hospitalization.

Conclusion: Comorbidities were more prevalent among AKI groups. Female and older patients were more prone to AKI during COVID-19 progression. The level of CK-MB was also higher in AKI group, suggesting probable cardiac injury. Lymphopenia and leukocytosis may be poor-prognostic factors for both AKI and COVID-19.

Introduction

In December 2019, abundant cases of pneumonia with unidentified origin presented with acute respiratory distress syndrome (ARDS) in Hubei Province of China. It did not take long for the cause to be discovered and labeled as “severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)” that resulted in a rapidly progressive pandemic. Soon, “coronavirus disease 2019 (COVID-19)” became a global challenge (1.2) with 105,137,224 confirmed cases and more than 2,284,340 deaths by February first (3).

COVID-19 manifests by various signs and symptoms including fever, cough, fatigue, and hyposmia (4), albeit, ARDS and diffuse alveolar destruction are the major complications (5). The virus could also enter the bloodstream and cause multi-organ failure, particularly kidney damage (6).

Along with chronic kidney disease (CKD) as an underlying disease and poor prognostic factor (7), acute kidney injury (AKI) is also a serious complication of COVID-19.
Although it is an uncommon manifestation reported in only 0.5-7% of all cases and 2.9%-23% of ICU patients (8), it carries a high mortality rate (91.7%) and can cause severe forms of the disease (9,10), like previous epidemics of SARS and MERS (6).

Plasma creatinine level was elevated in 4.3% of severe cases and 18.6% of patients by Guan et al (4) and Li et al (10), respectively.

Furthermore, in a study by Cheng et al (11) elevated blood urea nitrogen (BUN) (13.1%), proteinuria (43.9%), and hematuria (26.7%) were reported among patients emphasizing the vital role of understanding how the kidney is involved during this illness. SARS-CoV-2 has already been detected in urine samples and kidney tissues of several patients (12,13) suggesting the direct viral tropism of the kidney. Binding agents of virus, including Angiotensin converting enzyme and dipeptidyl peptidase-4 are highly expressed on renal tubular cells (14,15) which is in accordance with the potential direct cytopathic effects theory for SARS-CoV-2 (8) and the potential drug mechanisms under investigation for the disease (16).

The second postulated mechanism could be the cytokine storm syndrome leading to hypo-perfusion and then pre-renal AKI (6,14,15). Therefore, it is of importance to pay more attention to the kidney and its related diagnostic parameters, especially during the early stages of the disease course to prevent AKI or rationally schedule renal replacement therapy (RRT).

Objectives
In this study, we aimed to study patients presenting with AKI and discuss their clinical manifestations, laboratory findings, including kidney biomarkers, and final outcome with a focus on their electrolyte imbalances. Moreover, it is noteworthy to find factors anticipating a negative prognosis.

Patients and Methods
Study design and population
In this single-center, retrospective study, we enrolled 946 patients with COVID-19 admitted to the Emergency Department of Shohadaye Tajrish hospital from March 20, 2020, to May 9, 2020. Shohadaye Tajrish hospital of Shahid Beheshti University of Medical Sciences is located in Tehran City, Iran. This tertiary teaching hospital is one of the major designated COVID-19 treatment hospital in Tehran. All cases aged more than 14 and were screened due to the presence of clinical presentations attributable to COVID-19 including cough, fever, fatigue, myalgia, hyposmia, pharyngodynia and other upper respiratory tracts infection’s symptoms. Based on the WHO’s interim guidelines (3), a confirmed COVID-19 patient is defined as an individual with a positive reverse transcription-polymerase chain reaction (RT-PCR) result or a patient with common COVID-19 symptoms and a CT-scan compatible to COVID-19 pattern confirmed by experts.

Based on the disease severity, patients were classified into two groups (17);

Patients presenting with ARDS criteria including dyspnea, respiratory frequency ≥30/minute, blood oxygen saturation ≤92%, PaO2/FiO2 ratio 50% of the lung field during 1-2 days were classified as severe cases. The critically ill cases admitted to respiratory care unit (RCU) due to respiratory failure, sepsis or multiple organs dysfunction were also in this group. As the study population were all inpatients, mild cases (outpatients) were not included in this study and other patients were classified as moderate cases if not severe based on the definition mentioned above.

Laboratory confirmation
For all patients, the throat swabs were used to collect samples and then were put into 150-μL viral preservation solution. After total RNA extraction, SARS-CoV-2 nucleic acid was detected using RT-PCR method. The result was positive if at least one of the following gene sites were amplified: (a) Open reading frame (ORF) 1ab gene, (b) Nucleocapsid protein (NP) gene. The threshold of the RT-PCR cycle was recorded.

Data collection
An expert medical team collected and revised demographic, clinical, laboratory and imaging data from hospital medical records. The missing data were clarified through a phone call or via attending clinician’s consultation. The demographic data included age, gender, comorbidities, body mass index (BMI). A thorough medical history had been taken from each patient consisting of clinical symptoms, past-medical and habitual history and final outcome. The recorded laboratory tests included complete blood count (CBC), blood biochemistry, creatine kinase, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), lactate dehydrogenase (LDH), liver enzymes, arterial blood gas, and BUN. In addition, vital signs including O2-SAT at admission, systolic and diastolic blood pressure, and respiratory rate were recorded to assess disease severity. All recorded data were transferred to the data-analyzing center and were entered into a computerized database for further statistical analysis.

Definition
AKI was defined based on the 2012 Kidney Disease: Improving Global Outcomes (KDIGO) definition (18): A rise in serum creatinine (SCr) more than 0.3 mg/dL in 48 hours, or more than 50% rise in SCr, or less than 0.5 mL/kg/h urine volume for more than 6 hours were defined as stage 1. Stage 2 includes patients with a more than 100% rise in SCr two folds times above the baseline. Patients with more than 200% rise in SCr three folds times above the baseline or SCr more than 4 mg/dL were in stage 3.
of AKI. Additionally, any patients requiring RRT were in stage 3.

If the baseline SCr was not available, it was calculated based on the Modification of Diet in Renal Disease (MDRD) equation for a normal GFR of 75 mL/min per 1.73 m² (19).

Ethical issues
The research was in accordance with the Declaration of Helsinki. The Ethics Committee of Shahid Beheshti University of Medical Sciences has approved this study (IR.SBMU.MSP.REC.1396.900). Written informed consent was also obtained from all patients.

Statistical analysis
Descriptive statistics were presented using mean (SD) or frequency (percentage). Bivariate comparisons were made using independent-samples t test for continuous variables and chi-square test for categorized variables. Post hoc comparisons were applied whenever necessary. All the analyses were performed using STATA statistical software version 14. Probability level of less than 5% was considered statistically significant.

Results
Overall, data on kidney function tests were available for 946 patients with COVID-19 in two referral hospitals in Tehran city. The Mean age of the patients was 55.6 (±18.7) years and more than half of them (n = 572, 60.4%) were male. The most and least frequent underlying diseases reported from the patients were hypertension (HTN) (n = 191, 20.1%) and chronic liver disease (n = 15, 1.5%), respectively. In terms of hospitalization outcomes, 80% of the patients were discharged (i.e. alive), amongst them the highest proportion belonged to non-severe patients (n = 603, 63.7%). 19.4% (n = 184) of the patients expired during hospitalization (Table 1).

The proportion of patients with AKI was estimated as 45.9% (n = 434), which were categorized into first (n = 419, 44.3%), second (n = 7, 0.7%), and third stages (n = 8, 0.8%).

Compared to patients free of AKI, those with AKI had significantly higher mean age (62 versus 50.2 years, \(P < 0.001 \)), and higher proportion of females (44.9% versus 34.9%, \(P = 0.002 \)). Patients with AKI reported significantly higher proportions of HTN (26.9%), ischemic heart disease (25.1%), diabetes (19.5%), and chronic renal diseases (9.9%) compared to their non-AKI counterparts (\(P \) value for all comparisons < 0.001).

Compared to the second and third stages of AKI, patients in the first stage had significantly higher proportion of HTN (n = 111, 25.5%), ischemic heart disease (n = 105, 24.1%), diabetes (n = 81, 18.6%) and chronic renal disease (n = 40, 9.2%) (\(P \) for all comparisons < 0.001). While the prevalence of substance abuse did not show any significant difference between AKI and no AKI patients, its prevalence was significantly higher among patients in the first stage of AKI (n = 11, 2.5%, \(P < 0.001 \)).

Compared to non-AKI patients, lower mean level of O2 saturation was recorded in AKI patients (88.7 versus 91.1 in non-AKI patients, \(P < 0.001 \)). Mean level of O2 saturation was also significantly higher in first stage AKI patients (\(P < 0.001 \)). First stage AKI patients also showed significantly higher mean heart rate compared to the other stages (\(P < 0.001 \)). Regarding disease outcome, more than half of the expired patients had AKI symptoms (69.9%, \(P < 0.001 \)), amongst whom 62% had first stage of AKI.

More specifically, AKI symptoms were diagnosed from 57% of alive patients with severe COVID-19, which was significantly higher than severe patients without AKI (42.3%, \(P < 0.001 \); Table 2).

Patients with AKI also showed a higher mean value for LDH (671 versus 587, \(P = 0.006 \)), CKMB (41.30 versus 24.5, \(P = 0.001 \), and BUN (30.41 versus 14.91, \(P < 0.001 \).
Table 2. Comorbidities, clinical findings, medications, outcome and laboratory findings of patients

Variable	No AKI (n=512, 54.1%)	AKI (n=434, 45.9%)	Stages of AKI	P value (no AKI vs. all AKI)	P value (trend)
Comorbid condition					
Asthma	13 (2.54%)	6 (1.38%)	6 (1.38%)	0	0.206
COPD and other respiratory	28 (5.47%)	35 (8.06%)	32 (7.37%)	1 (0.23%)	0.11
diseases	74 (14.45%)	117 (26.96%)	111 (25.57%)	2 (0.46%)	<0.001
HTN	62 (12.11%)	109 (25.12%)	105 (24.19%)	3 (0.69%)	<0.001
IHD	60 (11.72%)	85 (19.59%)	81 (18.66%)	2 (0.46%)	0.001
Diabetes	7 (1.37%)	8 (1.84%)	8 (1.84%)	0	0.559
Chronic renal disease	17 (3.22%)	43 (9.91%)	40 (9.21%)	1 (0.23%)	<0.001
Cancer	18 (3.52%)	24 (5.33%)	24 (5.33%)	0	0.134
Obesity (BMI ≥ 30 kg/m²)	23 (11.17%)	39 (22.29%)	37 (21.14%)	1 (0.57%)	0.003
Signs and symptoms					
Fever	219 (42.77%)	192 (44.24%)	182 (41.93%)	4 (0.92%)	0.650
Chills	175 (34.18%)	123 (28.34%)	115 (26.49%)	3 (0.69%)	0.054
Myalgia	157 (30.66%)	110 (25.35%)	106 (24.42%)	2 (0.46%)	0.070
Rhinorrhea	24 (4.69%)	19 (4.38%)	19 (4.38%)	0	0.820
Cough	211 (41.21%)	170 (39.17%)	160 (36.86%)	4 (0.92%)	0.524
Respiratory distress	208 (40.63%)	202 (46.54%)	189 (43.54%)	7 (1.61%)	0.067
Sore throat	62 (12.11%)	37 (8.53%)	35 (8.06%)	0	0.073
Pleuritic chest pain	66 (12.89%)	44 (10.14%)	43 (9.90%)	1 (0.23%)	0.188
Nausea and vomiting	106 (20.70%)	74 (17.05%)	70 (16.12%)	1 (0.23%)	0.154
Abdominal pain	49 (9.57%)	46 (10.60%)	46 (10.60%)	0	0.600
Diarrhea	72 (14.06%)	41 (9.54%)	41 (9.54%)	0	0.029
Headache	114 (22.27%)	64 (14.75%)	61 (14.05%)	2 (0.46%)	0.003
Consciousness alterations	40 (7.81%)	87 (20.05%)	82 (18.89%)	3 (0.69%)	<0.001
Loss of appetite	52 (10.16%)	36 (8.29%)	35 (8.06%)	0	0.326
Habitual history					0.616
Current smoker	41 (8.01%)	21 (4.84%)	20 (4.6%)	1 (0.23%)	0.050
Past smoker	26 (5.08%)	17 (3.92%)	15 (3.45%)	1 (0.23%)	0.393
Substance abuse	13 (2.54%)	13 (3%)	11 (2.53%)	2 (0.46%)	0.669
Vital signs (admission)					<0.001
BP	119 ± 17	119 ± 21	119 ± 21	121 ± 14	140 ± 31
HR	88.65743 ± 14.74	89.5711 ± 17.18	89.5628 ± 17.01	84.42857 ± 16.53	94.5 ± 26.20
RR	18.89212 ± 5.85	19.33498 ± 4.94	19.11224 ± 4.41	23.57143 ± 9.25	27.57143 ± 13.86
O2Sat	91.14145 ± 6.63	88.77966 ± 9.07	88.85176 ± 9.12	87.28571 ± 7.22	86.5 ± 8.15
Medications					<0.001
ACEI	11 (2.15)	15 (3.46)	14 (3.22)	1 (0.23)	0.220
ARBs	57 (11.13)	46 (10.60)	42 (9.67)	3 (0.69)	1 (0.23)
Hydroxyzchloroquine	210 (41.02)	182 (41.94)	176 (40.55)	3 (0.69)	3 (0.69)
Naproxen	40 (7.81)	37 (8.53)	33 (7.60)	3 (0.69)	1 (0.23)

Journal of Preventive Epidemiology 4 Volume 6, Issue 1, 2021
Table 2: Continued

Variable	No AKI (n=512, 54.1%)	AKI (n=434, 45.9%)	Stages of AKI	P value (no AKI vs. all AKI)	P value (trend)		
	Mean (SD)/Number (%)		1 (n=419, 44.3%)	2 (n=77, 0.7%)	3 (n=8, 0.8%)		
Vancomycin							
Length of hospitalization (days)	4.89 (8.89)	5.02 (7.71)	4.79 (7.70)	8.33 (7.55)	11.16 (5.56)	0.427	0.216
Patient outcome							
Expired							
	49 (30.1%)	114 (69.9%)	102 (62.6%)	6 (3.6%)	6 (3.6%)	<0.001	<0.001
Discharged	463 (59.1%)	320 (40.8%)	317 (40.5%)	1 (0.1%)	2 (0.2%)	<0.001	<0.001
Alive severe	140 (27.34)	191 (44.01)	177 (40.78%)	7 (1.61%)	7 (1.61%)	<0.001	0.714
Alive non-severe	372 (72.66)	243 (55.99)	242 (57.76%)	0 (0%)	1 (12.50%)	<0.001	<0.001
Intubated	19 (3.71)	57 (13.13)	46 (10.59%)	5 (1.15%)	<0.001	<0.001	<0.001

Laboratory Findings:

Troponin levels (ng/mL)	No AKI (n=512, 54.1%)	AKI (n=434, 45.9%)	P value (trend)
Normal	155 (49.21)	160 (50.79)	0.118
Borderline	155 (96.87)	2 (1.25)	0.018
High	78 (41.94)	108 (58.06)	0.193
CPK (n=595) (IU/L)	183.38 (n=292)	706.15 (n=303)	0.02
LDH (n=473) (IU/L)	587.68 (n=252)	671.77 (n=221)	0.006
CK-MB (n=557) (IU/L)	24.51 (n=266)	41.30 (n=291)	0.014
BUN (mg/dL)	14.91 (n=508)	30.41 (n=431)	0.001
WBC Count (per microliter of blood)	7.72 (n=502)	8.41 (n=431)	0.052
Neutrophil (%)	72.29 (n=482)	75.77 (n=409)	0.018
Lymphocyte (%)	23.00 (n=486)	20.18 (n=413)	0.001
RBC Count (n=933) (per microliter of blood)	4.75 (n=502)	4.30 (n=430)	0.018
Hemoglobin (g/dL)	14.35 (n=501)	12.87 (n=430)	0.057
Hematocrit (%)	37.81 (n=502)	38.81 (n=431)	0.013
Platelets (%)	190.26 (n=501)	190.15 (n=431)	0.50
ESR (mm/h)	31.06 (n=414)	37.54 (n=339)	0.001
CRP (mg/dL)	35.21 (n=435)	42.09 (n=372)	0.004
D-dimer (ng/mL)	3016.5 (n=22)	2792.6 (n=10)	0.02
Ferritin (mg/dL)	364.29 (n=19)	572.53 (n=21)	0.018
AST (IU/L)	49.53 (n=291)	66.48 (n=252)	0.018
ALP (IU/L)	42.01 (n=290)	54.30 (n=251)	0.064
P value (no AKI vs. all AKI)	42.1 (n=291)	42.7 (n=251)	0.001
pH (n=794)	7.32 (n=413) (SD=0.02)	7.34 (n=381) (SD=0.04)	0.016
pCO2 (n=796)	45.27 (n=414)	45.44 (n=382)	0.43
HCO3 (mEq/L)	25.02 (n=411) (0.22)	23.34 (n=381) (0.61)	0.004

ng: nanogram; mL: milliliter; IU: international unit; L: liter; mg: milligram; dL: deciliter; g: gram; mm: millimeter; h: hour; mEq: milliequivalent; COPD: chronic obstructive pulmonary disease; HTN: hypertension; IHD: ischemic heart disease; BMI: body mass index; BP: blood pressure; HR: heart rate; RR: respiratory rate; O2Sat: oxygen saturation; ACEI: angiotensin-converting enzyme inhibitors; ARBs: angiotensin receptor blockers; CPK: creatine phosphokinase; LDH: lactate dehydrogenase; CK-MB: creatine kinase-MB; BUN: blood urea nitrogen; WBC: white blood cell; RBC: red blood cell; ESR: estimated sedimentation rate; CRP: C-reactive protein; AST: aspartate aminotransferase; ALT: alanine aminotransferase; ALKP: alkaline phosphatase; CO2: carbon dioxide; HCO3: bicarbonate; p-log: pH: hydrogen; std: standard deviation
An increasing trend for mean value of LDH, CKMB, and a decreasing trend for BUN was observed according to AKI stages (P for trend <0.0001 for all three trends).

AKI patients also showed significantly higher mean value of neutrophils (75.7 versus 72.2, $P<0.001$) and lower mean value of lymphocytes (20.18 versus 23, $P<0.001$). In addition, regarding acute phase reactants, patients with AKI had significantly higher levels of ESR (37.54 versus 31.06, $P<0.001$) and CRP (42.09 versus 35.23, $P=0.004$) compared with patients without AKI (Table 2).

Discussion

Herein, we evaluated baseline clinical characteristics of 946 confirmed COVID-19 admitted patients with their disease severity and clinical progression throughout the admission. Overall mean age was 18.73 with male dominance of 60.47%. Among comorbidities, HTN, followed by ischemic heart disease (IHD) and diabetes were the most commons; this was consistent with other major studies (20,21). This finding is probably due to the main shared feature between these diseases; the chronicity and related immune disturbance. In our study we retrospectively evaluated BMI in 381 of a total of 946 patients which more than 45% of our patients were categorized as overweight this may be either due to demographic features of admitted patients or due to more susceptibility to COVID-19 in this group of people but it has been shown that overweight patients have 1.84-fold odds of developing severe COVID-19 compared with normal-weight patients (22). Among different studies various incidence rates of AKI are reported through the globe and in our study group the incidence of AKI was 671.77 and 587.6, $P=0.002$); the first one is commonly due to increased baseline inflammation with aging which also may be a contributing factor resulting in AKI (25). Although the consensus view suggests that male sex is among risk factors contributing to COVID-19 AKI (24) and on the other hand the Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guideline for AKI classifies female gender susceptible to higher risk for AKI (26), surprisingly we found that the COVID-19 AKI was significantly higher in female gender which may be due to heterogeneity of the patient population. A unique study design that was carried out was the categorization of AKI stages and relation of baseline comorbidities to them which was seen in only a few studies (27,28). We found that HTN, IHD, diabetes, and CKD were significantly higher in the first stage of AKI compared with the second and third stages which was consistent with the study conducted by Hirsch et al except for the comorbidity of CKD which they did not include it because of data insufficiency (27). These relations may be of value in further patient management and treatment plans with regards to kidney function reservation in response to disease severity namely as the AKI stage. The potential underlying pathophysiology in COVID-19 induced AKI is that it is not only attributable to the hypoxic and hypertensive state caused by lung and heart injury but also to the direct invasion of the kidney by virus via the angiotensin converting enzyme 2 (ACE2) protein which is highly found in renal tubules and this explains that why AKI patients in our study had lower mean levels of O2 saturation compared with non-AKI group (88.7 versus 91.1, $P<0.001$) (29, 30). Moreover, it is shown that using ACE inhibitor drugs may alter the outcome of diabetic patients with COVID-19 which necessitates close observation of this group that in our study were among the most common comorbidities in AKI patients of COVID-19 (31). With regards to laboratory data, we found that higher concentrations of serum potassium (i.e. hyperkalemia) were significantly related to higher proportions of AKI symptoms observed in patients. Furthermore, AKI patients showed a higher mean value for LDH (671 versus 87, $P=0.006$), CKMB (41.30 versus 24.5, $P=0.001$), and BUN (30.41 versus 14.91, $P<0.001$) compared to the non-AKI group. Finally, AKI patients also showed significantly higher mean value of neutrophils (75.7 versus 72.2, $P<0.001$) and a lower mean value of lymphocytes (20.18 versus 23, $P<0.001$). Concerning these biochemical abnormalities presented in patients, it was shown that high serum LDH (specifically levels higher than 500 U/L which the mean LDH level in our AKI group and non-AKI group was 671.77 and 387.6, respectively), high neutrophil levels and lymphopenia (defined as lymphocyte count lower than 1.0 × 10^10/L) were associated with severe illness itself or progression to it (32-35). Moreover, another study emphasized on the importance of LDH, lymphocyte and neutrophil counts in combination and the total white blood cell count to be predictive of progression into later stages of AKI (36). The CK-MB, an enzyme frequently elevated during cardiac injury but also rises due to toxins, drug exposure, renal insufficiency, and some cases of cerebral infarction (37), is shown to be elevated in severe COVID-19 patients requiring ICU admission (38). The basis of cardiac injury in COVID-19 patients is thought to be caused by the same ACE2 receptor (which is expressed in renal tubules and discussed earlier) in cardiac muscle cells (39) and thus postulating the idea that maybe increased cardiac injury is concomitantly associated with equally increased kidney injury and the CK-MB levels may not solely serve as the cardiac damage indicator but also as the kidney damage indicator as well. Regarding patients outcome, AKI was diagnosed in 57% of alive patients with severe COVID-19 which was consistent with a previous study (40). Likewise, it was shown that patients deceased from COVID-19 had approximately 20 times higher possibility of having...
AKI (41), emphasizing the importance of kidney care in patients with the disease for their further prognosis.

Conclusion

With increasing knowledge regarding the COVID-19 pandemic, different studies have been conducted due to its multi-system involvement. In the current study, 946 patients with COVID-19 were assessed with a primary focus on the kidney and related underlying comorbidities which showed that the comorbidities were more prevalent among AKI patients, since female and older patients were more susceptible to AKI during the COVID-19 pandemic. Besides, the level of CK-MB is higher in the AKI group, suggesting probable cardiac injury which prompts conducting further studies. Lymphopenia and leukocytosis may be poor-prognostic factors for both AKI and COVID-19.

Limitations of the study

This study has some limitations. As staff was involved in the patients’ care, there is no long-time follow-up for the patients after discharge. Furthermore, electrolyte imbalance could be a confronting factor that might have been considered in future studies.

Authors’ contribution

ET and LJK were the principal investigators of the study. ASO, SK and GS were included in preparing the concept. MSJ and ASH designed the study protocol. DS, SI, MJ, MK and YSK were involved in data collection and further follow-up. SN and LJK were involved in data analysis and statistical methods. ASO, SK, and SM prepared the manuscript and tables. DS, GS, and LJK have evaluated the intellectual contents and revised the manuscript in details. All authors participated in preparing the final draft of the manuscript, revised the manuscript. All authors have read and approved the final manuscript and admitted the accuracy of the article.

Conflicts of interest

The authors declare that they have no competing interests.

Ethical considerations

Ethical issues (including plagiarism, data fabrication, double publication) have been completely observed by the authors.

Funding/Support

The authors declare that they have no funding or support for this work.

References

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727-733. doi: 10.1056/NEJMoA2001017.
2. Li Q, Guan X, Wu F, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382:1199-207. doi: 10.1056/NEJMoA2001316.
3. WHO. Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). Geneva: WHO; 2020.
4. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-20. doi: 10.1056/NEJMoa2002322.
5. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506. doi: 10.1016/S0140-6736(20)30183-5.
6. Naicker S, Yang C-W, Hwang S-J, Liu B-C, Chen J-H, Jha V, et al. The Novel Coronavirus 2019 Epidemic and kidneys. Kidney Int. 2020;97:824-828. doi: 10.1016/j.kint.2020.03.001.
7. Henry BM, Lippi G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19). Int Urol Nephrol. 2020;52:1193-1194. doi: 10.1007/s11255-020-02451-9.
8. Pan XW, Xu D, Zhang H, Zhou W, Wang LH, Cui XG. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med. 2020;46:1114-1116. doi: 10.1007/s00134-020-06026-1.
9. Chu KH, Tsang WK, Tang CS, Lam MF, Lam FM, To KF, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005;67:698-705. doi: 10.1111/j.1523-1755.2005.67130.x.
10. Li Z, Wu M, Guo J. Caution on kidney dysfunctions of 2019-nCoV patients. medRxiv 2020. doi: 10.1002/00013212.
11. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97:829-838. doi: 10.1016/j.kint.2020.03.005.
12. Peiris JSM, Chu C-M, Cheng VC-C, Chan K, Hung I, Poon LL, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767-72. doi: 10.1016/S0140-6736(03)13412-5.
13. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203:622-30. doi: 10.1002/path.1560.
14. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450-4. doi: 10.1038/nature02145.
15. Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450-4. doi: 10.1038/nature02145.
16. Cheraghi Z, Moradi M, Ziai SA. Potential pharmacologic treatments for COVID-19 patients: A review study. Authorea. 2020. doi: 10.22541/au.158879190.06083691.
17. Organization WH. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020. World Health Organization; 2020.
18. Khwaja A: KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin Pract. 2012;120:e179-e184. doi:10.1159/000339789.
19. Pickering JW, Endre ZH. Back-calculating baseline creatinine with MDRD misclassifies acute kidney injury in the intensive care unit. Clin J Am Soc Nephrol. 2010;5:1165-73. doi:10.2215/CJN.08531109.
20. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-5. doi: 10.1016/j.ijid.2020.03.017.
21. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients...
Soheili A et al

Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323:2052-9. doi: 10.1001/jama.2020.6775.

22. Cai Q, Chen F, Wang T, Luo F, Liu X, Wu Q, et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care. 2020;43:1392-8. doi: 10.2337/dc20-0576.

23. Patel D, Truong T, Shah N, Colbert GB, Thomas B, Velez JCQ, et al. COVID-19 Extrapolated illness - The Impact of COVID-19 on Nephrology care. Dis Mon. 2020;66:101057. doi: 10.1016/j.disamonth.2020.101057.

24. Nadim MK, Forni LG, Mehta RL, Connor MJ, Jr., Liu KD, Ostermann M, et al. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol. 2020;16:747-64. doi: 10.1038/s41581-020-00356-5.

25. Akbar AN, Gilroy DW. Aging immunity may exacerbate COVID-19. Science. 2020;369:256-7. doi: 10.1126/science.abb0762.

26. Kellum JA, Lameire N; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17:204. doi: 10.1186/cc11454.

27. Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98:209-218. doi: 10.1016/j.kint.2020.05.006.

28. Chan L, Chaudhary K, Saha A, Chauhan K, Vaid A, Zhao S, et al. AKI in Hospitalized Patients with COVID-19. J Am Soc Nephrol. 2020;32:151-160. doi: 10.1681/ASN.2020050615.

29. Alishah Hashemkhani E, Heydarian A, Saberi Poshteh S, Hasanpour-Dehkordi A. Acute kidney injury in COVID-19: a review on current knowledge. J Nephropathol. 2020;9:e31. doi: 10.34172/jnp.2020.31.

30. Batte D, Soler MJ, Sparks MA, Hiremath S, South AM, Welling PA, et al. Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J Am Soc Nephrol. 2020;31:1380-3. doi: 10.1681/ASN.2020040419.

31. Aghassi-khaki F, Abbasi MA, Ranjbar M, Makiani MJ, Tameshkel FFS, Niya MHK, et al. Angiotensin Converting Enzyme Inhibitors, A Risk Factor of Poor Outcome in Diabetic Patients with COVID-19 Infection. Iran J Kidney Dis. 2020;14:482-7.

32. Setiati S, Harimurti K, Safitri ED, Kanakusuma RW, Saldi SRF, Azfar MK, et al. Risk factors and laboratory test results associated with severe illness and mortality in COVID-19 patients: A systematic review. Acta Med Indones. 2020;52:227-45.

33. Dong X, Liu B, Li J, Zhang J, Zhao Y, Xu K. Blood biochemical characteristics of patients with coronavirus disease 2019 (COVID-19): a systemic review and meta-analysis. Clin Chem Lab Med. 2020;58:1172-81. doi: 10.1515/cclm-2020-0338.

34. Alnor A, Sandberg MB, Gilis C, Vinholt PJ. Laboratory Tests and Outcome for Patients with Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. J Appl Lab Med. 2020;5:1038-49. doi: 10.1093/jalm/jfaa098.

35. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58:1021-8. doi: 10.1515/cclm-2020-0369.

36. Fisher M, Neugarten J, Bellin E, Yunes M, Stahl L, Johns TS, et al. AKI in Hospitalized Patients with and without COVID-19: A Comparison Study. J Am Soc Nephrol. 2020;31(9):2145-57. doi: 10.1681/ASN.2020040509.

37. Manea MM, Comsa M, Minca A, Dragos D, Popa C. Brain-heart axis--Review Article. J Med Life. 2015;8:266-71.

38. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061-9. doi: 10.1001/jama.2020.1585.

39. Kwenandar F, Japar KV, Damay V, Hariyanto TI, Tanaka M, Lugito NPH, et al. Coronavirus disease 2019 and cardiovascular system: A narrative review. Int J Cardiol Heart Vasc. 2020;29:100557. doi: 10.1016/j.ijcha.2020.100557.

40. Wang F, Ran L, Qian C, Hua J, Luo Z, Ding M, et al. Epidemiology and Outcomes of Acute Kidney Injury in COVID-19 Patients with Acute Respiratory Distress Syndrome: A Multicenter Retrospective Study. Blood Purif. 2020;1-7. doi: 10.1159/000512371.

41. Vakhshehri M, Emami SA, Heidarpour M, Shafie D, Mortazavi M. Corona Virus Disease 2019 (COVID-19) and Its Effect on Renal System, A Systematic Review and Meta-analysis. Iran J Kidney Dis. 2020;14:419-438.