On Graphs with Minimal Eternal Vertex Cover Number

Veena Prabhakaran
Department of Computer Science and Engineering,
Indian Institute Of Technology, Palakkad

Co-authors: Jasine Babu, L. Sunil Chandran, Mathew Francis, Deepak Rajendraprasad, J. Nandini Warrier

February 19, 2019
Outline

1 Introduction

2 Characterization for \(evc(G) = mvc(G) \) for some graph classes

3 Algorithms using the characterization

4 Conclusion and Open problems
Eternal Vertex Cover (EVC) problem

- Introduced by Klostermeyer et al.1 in 2009
- Attacker-defender game in which k guards are placed on distinct vertices of G
- In each round, attacker chooses an edge to attack
- As a response to the attack, defender has to move guards such that
 - At least one guard must move across the attacked edge.
 - Others can either remain in the current position or move to an adjacent vertex.
 - At most one guard exists on any vertex.
- If an attack cannot be defended, the attacker wins.
- The defender wins if he can defend any sequence of infinite attacks.
- Eternal vertex cover number (evc) of a graph G: The minimum number k such that the defender has a winning strategy with k guards on G.
- For any graph G, $mvc(G) \leq evc(G)$
- Given a graph G and an integer k, checking if $evc(G) \leq k$ is NP-hard2

1William F. Klostermeyer and C. M. Mynhardt. Australas. J. Combin, 2009
2Fedor V. Fomin, Serge Gaspers, Petr A. Golovach, Dieter Kratsch, and Saket Saurabh, Inf. Process. Lett., 2010
Eternal Vertex Cover Number (evc)-Some Examples

- \(\text{mvc}(P_4) = 2 \) and \(\text{evc}(P_4) = 3 \)
Eternal Vertex Cover Number (evc)-Some Examples

- $\text{mvc}(P_4) = 2$ and $\text{evc}(P_4) = 3$

Configuration 1:

![Configuration Diagram]

Veena Prabhakaran
IIT Palakkad
February 19, 2019
Eternal Vertex Cover Number (evc)-Some Examples

- mvc(P_4) = 2 and evc(P_4) = 3

Configuration 1:

![Diagram showing two configurations of vertices v1, v2, v3, v4, and v5, with one configuration marked with an X.]
Eternal Vertex Cover Number (evc)-Some Examples

- \(\text{mvc}(P_4) = 2 \) and \(\text{evc}(P_4) = 3 \)

Configuration 1:

Configuration 2:
mvc\((P_4) = 2 \) and evc\((P_4) = 3 \)

Configuration 1:

\[
\begin{array}{cccc}
 & v_1 & v_2 & v_3 & v_4 \\
\hline
v_1 & \blackbullet & \circ & \blackbullet & \circ \\
v_2 & \blackbullet & \circ & \blackbullet & \circ \\
v_3 & \blackbullet & \circ & \blackbullet & \circ \\
v_4 & \blackbullet & \circ & \blackbullet & \circ \\
\end{array}
\]

Configuration 2:

\[
\begin{array}{cccc}
 & v_1 & v_2 & v_3 & v_4 \\
\hline
v_1 & \circ & \blackbullet & \blackbullet & \circ \\
v_2 & \blackbullet & \circ & \blackbullet & \circ \\
v_3 & \blackbullet & \circ & \blackbullet & \circ \\
v_4 & \blackbullet & \circ & \blackbullet & \circ \\
\end{array}
\]

\[
\text{evc}(C_n) = \text{mvc}(C_n) = \lceil \frac{n}{2} \rceil
\]
Eternal Vertex Cover Number (evc)-Some Examples

- $\text{mvc}(P_4) = 2$ and $\text{evc}(P_4) = 3$

Configuration 1:

Configuration 2:
Eternal Vertex Cover Number (evc)-Some Examples

- mvc(P_4) = 2 and evc(P_4) = 3

Configuration 1:

Configuration 2:
Eternal Vertex Cover Number (evc) - Some Examples

- \(mvc(P_4) = 2 \) and \(evc(P_4) = 3 \)

Configuration 1:

\[
\begin{array}{cccc}
 v_1 & v_2 & v_3 & v_4 \\
 \bullet & \circ & \bullet & \circ \\
 v_1 & v_2 & v_3 & v_4 \\
 \bullet & \bullet & \bullet & \circ \\
\end{array}
\]

Configuration 2:

\[
\begin{array}{cccc}
 v_1 & v_2 & v_3 & v_4 \\
 \bullet & \bullet & \bullet & \circ \\
 v_1 & v_2 & v_3 & v_4 \\
 \bullet & \bullet & \bullet & \circ \\
 v_1 & v_2 & v_3 & v_4 \\
 \bullet & \bullet & \bullet & \circ \\
\end{array}
\]

- \(evc(C_n) = mvc(C_n) = \left\lceil \frac{n}{2} \right\rceil \)
Eternal Vertex Cover Number (evc)-Some Examples

- \(\text{mvc}(P_4) = 2 \) and \(\text{evc}(P_4) = 3 \)

Configuration 1:

- \(\text{evc}(C_n) = \text{mvc}(C_n) = \left\lceil \frac{n}{2} \right\rceil \)
Eternal Vertex Cover Number (evc)-Some Examples

- \(\text{mvc}(P_4) = 2 \) and \(\text{evc}(P_4) = 3 \)

Configuration 1:

- \(\text{evc}(C_n) = \text{mvc}(C_n) = \left\lceil \frac{n}{2} \right\rceil \)
Eternal Vertex Cover Number (evc)-Some Examples

- $\text{mvc}(P_4) = 2$ and $\text{evc}(P_4) = 3$

Configuration 1:

Configuration 2:

- $\text{evc}(C_n) = \text{mvc}(C_n) = \lceil \frac{n}{2} \rceil$
Eternal Vertex Cover Number (evc)-Some Examples

- $\text{mvc}(P_4) = 2$ and $\text{evc}(P_4) = 3$

Configuration 1:

Configuration 2:

- $\text{evc}(C_n) = \text{mvc}(C_n) = \left\lceil \frac{n}{2} \right\rceil$
Contribution

- It is known\(^3\) that for any graph \(G\), \(\text{mvc}(G) \leq \text{evc}(G) \leq 2 \text{mvc}(G)\).
- Klostermeyer et al. gave a characterization of graphs with \(\text{evc}(G) = 2 \text{mvc}(G)\).
- Characterization of graphs with \(\text{evc}(G) = \text{mvc}(G)\) remains open.
- We achieve such a characterization for a subclass of graphs.
- This subclass include chordal graphs and internally triangulated planar graphs.

\(^3\)William F. Klostermeyer and C. M. Mynhardt. Australas. J. Combin, 2009
Contribution

- It is known that for any graph G, $\text{mvc}(G) \leq \text{evc}(G) \leq 2 \text{mvc}(G)$.
- Klostermeyer et al. gave a characterization of graphs with $\text{evc}(G) = 2 \text{mvc}(G)$.
- Characterization of graphs with $\text{evc}(G) = \text{mvc}(G)$ remains open.
- We achieve such a characterization for a subclass of graphs.
- This subclass include chordal graphs and internally triangulated planar graphs.

Overview of the Approach

- A simple necessary condition for $\text{evc}(G) = \text{mvc}(G)$ is proposed here.
- For many graph classes including chordal and internally triangulated planar graphs, the necessary condition is also shown to be sufficient.
- The characterization leads to the computation of $\text{evc}(G)$ in polynomial time for some graph classes like biconnected chordal graphs.
- For some graphs including chordal graphs, if $\text{mvc}(G) = \text{evc}(G)$, we have a polynomial time strategy for guard movements.

\(^3\)William F. Klostermeyer and C. M. Mynhardt. Australas. J. Combin, 2009.
Characterization for evc(G) = mvc(G) for some graph classes

 Necessary condition for any graph

If evc(G) = mvc(G), then for every vertex $v \in V(G)$, \exists a min VC of G containing v.

Proof:

- Suppose there are mvc guards and \exists a vertex v that does not belong to any min VC of G.
- When an edge incident to v is attacked, v has to be occupied in the next configuration.
- Since there is no min VC containing v, attack cannot be handled.
Characterization for $\text{evc}(G) = \text{mvc}(G)$ for some graph classes

Necessary condition for any graph

If $\text{evc}(G) = \text{mvc}(G)$, then for every vertex $v \in V(G)$, \exists a min VC of G containing v.

Proof:

- Suppose there are mvc guards and \exists a vertex v that does not belong to any min VC of G.
- When an edge incident to v is attacked, v has to be occupied in the next configuration.
- Since there is no min VC containing v, attack cannot be handled.

Sufficiency condition for some graph classes

- The necessary condition is also sufficient for graphs in which all min VCs are connected
- Biconnected chordal and biconnected internally triangulated graphs are some examples of such graphs.
- The characterization can be generalized for handling more graph classes.
How are connected vertex covers helpful?

- The *connected vertex cover number*, $\text{cvc}(G)$, is the minimum cardinality of a connected vertex cover of G.

Lemma (Klostermeyer et al.)

*Let G be a nontrivial, connected graph and D be a vertex cover of G such that $G[D]$ is connected. Then, $\text{evc}(G) \leq \text{cvc}(G) + 1 \leq |D|+1$.***

Figure: Handling attack using connected VC

\[4\] William F. Klostermeyer and C. M. Mynhardt. Australas. J. Combin, 2009.
Characterization for $\text{evc}(G) = \text{mvc}(G)$ for graphs with all min VCs connected

Theorem

Let $G(V, E)$ be a connected graph with $|V| \geq 2$ such that every min VC of G is connected. Then $\text{evc}(G) = \text{mvc}(G)$ if and only if for every vertex $v \in V$, there exists a min VC of G containing v.

Proof:

\implies Trivial from necessary condition

\impliedby **Claim 1:** For any min VC S_i of G, an attack on any edge uv with $u \in S_i$ and $v \not\in S_i$ can be defended by moving to a min VC S_j such that $v \in S_j$ and $|S_i \triangle S_j|$ is minimum.

- X and Y are independent sets
- $H = G[X \cup Y]$ is a bipartite graph
- Since $|S_i| = |S_j|$, $|X| = |Y|$
Claim 1.1: $H = G[X \cup Y]$ has a perfect matching. (Recall: $H = G[X \cup Y]$ is a bipartite graph),

Proof strategy:
- Consider $Y' \subseteq Y$
- $X' = N_H(Y')$
- Suppose $|X'| < |Y'|$.
- Let $S' = Z \cup (Y \setminus Y') \cup X'$
- $|S'| < \text{mve}(G)$. $\Rightarrow \Leftarrow$

$$\forall Y' \subseteq Y, |N_H(Y')| \geq |Y'|$$ and by Hall’s theorem H has a perfect matching.
Proof of Claim 1...

Claim 1.2: \(\forall w \in X, \) the bipartite graph \(H \setminus \{w, v\} \) has a perfect matching.
(Recall: \(S_j \) is a min VC such that \(v \in S_j \) and \(|S_i \triangle S_j| \) is minimum)

\[
\begin{align*}
X &= S_i \setminus S_j \\
Y &= S_j \setminus S_i \\
Z &= S_i \cap S_j \\
W &\subseteq (Y \setminus \{v\}) \\
|X'| &= |N_H(Y')| \\
&\text{By Claim 1.1, } |X'| \geq |Y'|. \\
&\text{Suppose } |X'| = |Y'|. \\
&\text{Let } S' = Z \cup (Y \setminus Y') \cup X' \\
&\text{Therefore, } |X'| > |Y'| \\
\end{align*}
\]

\(\forall Y' \subseteq (Y \setminus \{v\}), |N_H(Y') \setminus \{w\}| \geq |Y'| \) and by Hall’s theorem, \(H \setminus \{w, v\} \) has a perfect matching.
Handling attack on uv by moving to S_j

Claim 1: For any min VC S_i of G, an attack on any edge uv with $u \in S_i$ and $v \notin S_i$ can be defended by moving to a min VC S_j such that $v \in S_j$ and $|S_i \Delta S_j|$ is minimum.

1. $u \in X$: (Using perfect matching M in $H \setminus \{u, v\}$)

 ![Diagram of $u \in X$, S_i to S_j]

2. $u \notin X$: (Using perfect matching M in $H \setminus \{w, v\}$)

 Connectivity of S_i is crucial here
 - w: nearest vertex of u in X
 - P: shortest path from u to w in S_i
Deciding \(\text{evc}(G) \) when all min \(VC \)'s are connected

Theorem

Let \(G(V, E) \) be a graph for which every min VC is connected. If for every vertex \(v \in V \), there exists a min VC \(S_v \) of \(G \) such that \(v \in S_v \), then \(\text{evc}(G) = \text{mvc}(G) \). Otherwise, \(\text{evc}(G) = \text{mvc}(G) + 1 \).

- The second case follows from \(\text{evc}(G) \leq \text{cvc}(G) + 1 \)
Deciding \(\text{evc}(G) \) when all \(\text{min VC}s \) are connected

Theorem

Let \(G(V, E) \) be a graph for which every \(\text{min VC} \) is connected. If for every vertex \(v \in V \), there exists a \(\text{min VC} \) \(S_v \) of \(G \) such that \(v \in S_v \), then \(\text{evc}(G) = mvc(G) \). Otherwise, \(\text{evc}(G) = mvc(G) + 1 \).

- The second case follows from \(\text{evc}(G) \leq \text{cvc}(G) + 1 \)

Consequence:

- If all \(\text{min VC}s \) of \(G \) are connected, then deciding \(\text{evc}(G) \leq k \) is in \(\text{NP} \).
- For biconnected chordal graphs and biconnected internally triangulated graphs, all \(\text{min VC}s \) are connected and hence deciding \(\text{evc}(G) \leq k \) is in \(\text{NP} \).
- If all \(\text{min VC}s \) of \(G \) are connected and the necessary condition can be checked in polynomial time, then \(\text{evc}(G) \) can be computed in polynomial time.
- For biconnected chordal graphs, \(\text{evc}(G) \) can be computed in polynomial time.
Generalization of the characterization

Necessary condition

Let \(G(V, E) \) be any connected graph. Let \(X \subseteq V \) be the set of cut vertices of \(G \). If \(\text{evc}(G) = \text{mvc}(G) \), then for every vertex \(v \in V \setminus X \), there exists a min VC \(S_v \) of \(G \) such that \((X \cup \{v\}) \subseteq S_v \).

proof idea:
- All vertices of \(X \) have to be occupied in all configurations.
- When an edge incident to \(v \) is attacked, \((X \cup \{v\}) \) has to be occupied.

Sufficiency condition for some class of graphs

Let \(G(V, E) \) be a connected graph with \(|V| \geq 2 \) and \(X \subseteq V \) be the set of cut vertices of \(G \). Suppose every min VC \(S \) of \(G \) with \(X \subseteq S \) is connected. If for every vertex \(v \in V \setminus X \), there exists a min VC \(S_v \) of \(G \) such that \((X \cup \{v\}) \subseteq S_v \), then \(\text{evc}(G) = \text{mvc}(G) \).
A class of graphs \mathcal{H} is called hereditary, if deletion of vertices from any graph G in \mathcal{H} would always yield another graph in \mathcal{H}.

Chordal graphs form a hereditary graph class.

Theorem

If \mathcal{H} is a hereditary graph class such that:

- for every graph G in \mathcal{H}, $\text{mvc}(G)$ can be computed in polynomial time and
- for every biconnected graph H in \mathcal{H}, all vertex covers of H are connected.

Then,

1. for any graph G in \mathcal{H}, in polynomial time we can decide whether $\text{evc}(G) = \text{mvc}(G)$
2. for any graph G in \mathcal{H} with $\text{evc}(G) = \text{mvc}(G)$, there is a polynomial time strategy for guard movements using $\text{evc}(G)$ guards.
3. for any biconnected graph G in \mathcal{H}, in polynomial time we can compute $\text{evc}(G)$. Moreover, there is a polynomial time strategy for guard movements using $\text{evc}(G)$ guards.
For any chordal graph G, we can decide in polynomial-time whether $\text{evc}(G) = \text{mvc}(G)$. Also, if $\text{mvc}(G) = \text{evc}(G)$, there is a polynomial-time strategy for guard movements using $\text{evc}(G)$ guards.

If G is a biconnected chordal graph, then we can determine $\text{evc}(G)$ in polynomial-time. Moreover, there is a polynomial-time strategy for guard movements using $\text{evc}(G)$ guards.
In certain graph classes, we gave a condition for characterizing graphs with $\text{evc}(G) = \text{mvc}(G)$.

The characterization does not hold for biconnected bipartite planar graphs.

Obtaining a characterization for bipartite graphs is an interesting open problem.

Identify other graph classes for which this characterization holds.
Thank You!