Diagnostic Accuracy of Deep Learning and Radiomics in Lung Cancer Staging: A Systematic Review and Meta-Analysis

Xiushan Zheng, Bo He, Yunhai Hu, Min Ren, Zhiyuan Chen, Zhiguang Zhang, Jun Ma, Lanwei Ouyang, Hongmei Chu, Huan Gao, Wenjing He, Tianhu Liu, Gang Li

1 Department of Thoracic Surgery, The 3rd Affiliated Hospital of Chengdu Medical College, Pidu District People’s Hospital, Chengdu, China, 2 School of Electronic Engineering, Chengdu University of Technology, Chengdu, China, 3 Department of Cardiology, The 3rd Affiliated Hospital of Chengdu Medical College, Pidu District People’s Hospital, Chengdu, China

Background: Artificial intelligence has far surpassed previous related technologies in image recognition and is increasingly used in medical image analysis. We aimed to explore the diagnostic accuracy of the models based on deep learning or radiomics for lung cancer staging.

Methods: Studies were systematically reviewed using literature searches from PubMed, EMBASE, Web of Science, and Wanfang Database, according to PRISMA guidelines. Studies about the diagnostic accuracy of radiomics and deep learning, including the identifications of lung cancer, tumor types, malignant lung nodules and lymph node metastase, were included. After identifying the articles, the methodological quality was assessed using the QUADAS-2 checklist. We extracted the characteristic of each study; the sensitivity, specificity, and AUROC for lung cancer diagnosis were summarized for subgroup analysis.

Results: The systematic review identified 19 eligible studies, of which 14 used radiomics models and 5 used deep learning models. The pooled AUROC of 7 studies to determine whether patients had lung cancer was 0.83 (95% CI 0.78–0.88). The pooled AUROC of 9 studies to determine whether patients had NSCLC was 0.78 (95% CI 0.73–0.83). The pooled AUROC of the 6 studies that determined patients had malignant lung nodules was 0.79 (95% CI 0.77–0.82). The pooled AUROC of the other 6 studies that determined whether patients had lymph node metastases was 0.74 (95% CI 0.66–0.82).

Conclusion: The models based on deep learning or radiomics have the potential to improve diagnostic accuracy for lung cancer staging.

Systematic Review Registration: https://inplasy.com/inplasy-2022-3-0167/, identifier: INPLASY2022230167.

Keywords: lung cancer, deep learning, radiomics, diagnostic accuracy, lymph node metastasis, meta-analysis
INTRODUCTION

Lung cancer is one of the most common malignancies globally and the leading cause of cancer-related death in the world. Its morbidity and cancer-related mortality rank first among malignant tumors. There are \sim2.2 million new cases and about 1.5 million deaths worldwide (1).

Radiomics and deep learning, as an innovative means to characterize lung lesions, can be applied to generate descriptive data, build predictive model, and correlate quantitative image features with phenotypes or gene-protein signatures, thus aiding in cancer detection, diagnosis, staging, treatment response prediction, and prognosis assessment and playing an increasingly important role in clinical decision-making, especially the management of malignant tumors (2).

Lung cancer staging is usually done by radiologists evaluating CT images of patients with lung cancer. The accuracy of diagnosis is affected by various factors, such as device performance, standardized imaging protocols, the experience of the reporting radiologist, and patient-specific factors. While radiomics involves using advanced computational algorithms to extract large numbers of researcher-defined features from images for defining related lung lesions, studies suggesting that deep learning algorithms can identify a more nuanced approach that eschews traditional radiology and statistical methods for cancer staging were extensively reported (3–6). Deep learning, as a new research direction in the field of machine learning (ML), is applied to learn the inherent laws and representation levels of sample data for feature recognition and model building (7). In the last decade, radiomics models and deep learning have made meaningful contributions to medical imaging diagnosis and related individual medicine (8).

This study aimed to perform a systematic review and meta-analysis of published data on lung cancer diagnosis and the diagnostic accuracy of deep learning algorithms and radiomics models for lung cancer staging.

METHODS

Search Strategy

This study followed the Preferred Reporting Item of the Guidelines for Systematic Reviews and Meta-Analysis (PRISMA), and selection criteria, data extraction, and data analysis were determined before study initiation. Any eligible studies in the PubMed, EMBASE, Web of Science, and Wanfang Database will be searched by Cancer, Radiomics, Deep Learning, Lung Cancer, and more. The search method is shown in Table 1. Search terms such as “radiomics,” “deep learning,” “lymph node metastasis,” “non-small cell lung cancer,” “malignant lung nodules,” and “diagnostic accuracy.” Use the Boolean operator AND to combine the results of different queries. We also manually searched the reference lists of included studies to identify any relevant articles. Both English and Chinese articles are considered eligible.

Study Selection

We selected publications for review if they met several of the following inclusion criteria: (1) patients with pathologically diagnosed lung cancer were included in the study; (2) radiomics or deep learning algorithms applied to lung cancer staging were evaluated. Exclusion criteria included: (1) informal publication types (e.g., reviews, letters to the editor, editorials, conference abstracts); (2) only focus on research on image segmentation or image feature extraction methods; (3) animal studies. After the removal of duplicates, titles and abstracts were identified by two independent reviewers using the Covidence systematic review software. Any disagreements will be resolved by consensus by arbitration by a third author.

Data Extraction

We reviewed data from selected primary studies using standardized forms, and two reviewers independently extracted data from each eligible study. Data extraction for each study included first author, country, year of publication, type of AI model, number of patients, patient characteristics (mean/median age, gender), type of malignancy, benign and malignant pulmonary nodules, lymph node metastasis. In addition, we extracted the area under the receiver operating characteristic curve (AUROC), along with sensitivity, specificity, accuracy, etc., for data processing and forest map production. The primary endpoint of this systematic review was AUROC.

Quality Assessment

Two independent reviewers will initially assess the risk of bias. A third reviewer will then review each study using the Quality Assessment of Studies for Diagnostic Accuracy (QUADAS-2) guidelines. The QUADAS-2 tool can assign a risk of bias rating of “low,” “high,” or “uncertain” based on the answer to “yes,” “no,” or “uncertain” to the relevant flag questions included in each section. For example, if the answer to all the landmark questions in a range is “yes,” then it can be rated as low risk of bias; if all the informational questions are answered “no,” then the risk of bias is rated as “high” (9). We summarized the risk of bias in individual studies in a narrative summary during the systematic review phase.

Statistical Analysis

The accuracy measures for this diagnostic meta-analysis included pooled sensitivity, pooled specificity, and their 95% confidence intervals (95% CI). Missing data is calculated...
using the formula in Table 2. At the same time, AUROC was calculated; an AUROC value close to 1.0 indicates that the test can discriminate almost perfectly, while an AUROC value close to 0.5 means poor discrimination (10, 11). The discordance index (I^2) was used (12). Heterogeneity was assessed as low, medium, and high, with upper limits for I^2 of 25, 50, and 75%, respectively. A forest plot was drawn to show the AUROC estimates relative to the summary pooled estimates for each study. In addition, we will draw a funnel plot to assess publication bias more intuitively. All statistical analyses were performed using STATA V16.0 software.

RESULTS

Study Selection

Our search identified 74 studies, with 56 screened after removing duplicates. Of these, 27 did not meet the inclusion criteria based on title and abstract. The remaining 29 full manuscripts were individually assessed, and, finally, 22 studies were eligible and included in our systematic review. Of these, 19 papers were available for meta-analysis, and five articles were excluded because of their insufficient data information. We outline the study selection process for review using the PRISMA flowchart (Figure 1).

Study Characteristics

Of the 19 included studies, 14 had sufficient data for a meta-analysis of AUROC (Figure 2). Regarding study design, 17 studies were retrospective, and two were prospective. Sixteen studies were single-center, and the other three were multicenter. Most of the patients are male, and the median age of 63 years (24–93 years) [Table 3 (13–31)]. The malignancy type in twelve studies was NSCLC, and the malignancy type in the remaining studies was lung cancer. Seven studies used the diagnostic output per patient, and eight studies used the lymph node diagnostic output per node for metastases. While seven studies used post-operative pathology reports as reference standards, 11 used radiology reports.

Quality Assessment

According to the QUADAS-2 tool, the summary of this study’s assessment is shown in Figure 3. The risk of bias in patient selection was low in 12 (74%) studies and high in 5 (26%) studies. The risk of bias for the index test was high in 2 studies (10%) and low in 17 studies (90%). The risk of bias for the reference standard test was low in 16 studies (85%), high in 2 studies (10%), and unclear in 1 study (5%). Process and timing made the risk of bias unclear for all 19 studies. Table 4 shown individual evaluation of the risk of bias and applicability. Overall suitability issues are low. To assess the publication bias of the studies, a funnel plot was constructed (Figure 4). The shape of the funnel plot revealed asymmetry in the included studies, showing study heterogeneity.

Diagnostic Accuracy

Of the 19 studies eligible for quantitative analysis, 14 used radiomics and 5 used deep learning. For each outcome, on a per-patient basis, pooled estimates including specificity,

Table 1 | Search strategy.

Sources	Search in	MeSH terms	Limits	Search results
Web of science	Search manager	(“deep learning” OR “convolutional neural network” OR “machine learning” OR “radiomics” OR “radiomic”) AND (“CT” OR “MRI”) AND (“Lymph node” OR “lymph node metastasis” OR “Benign and malignant pulmonary nodules”) AND (“lung cancer” OR “non-small cell lung cancer” OR “NSCLC”)	None	11
PubMed, (MEDLINE) N/A	(“deep learning” OR “convolutional neural network” OR “machine learning” OR “radiomics” OR “radiomic”) AND (“CT” OR “MRI”) AND (“Lymph node” OR “lymph node metastasis” OR “benign and malignant pulmonary nodules”) AND (“lung cancer” OR “non-small cell lung cancer” OR “NSCLC”)	None	30	
EMBASE Quick search	(“deep learning” OR “machine learning” OR “radiomics” OR “radiomic”) AND (“ct” OR “mri”) AND (“lymph node” OR “lymph node metastasis” OR “benign and malignant pulmonary nodules”) AND (“lung cancer” OR “non-small cell lung cancer” OR “NSCLC”)	None	56	
Wanfang database N/A	(“deep learning” OR “machine learning” OR “radiomics” OR “radiomic”) AND (“CT” OR “MRI”) AND (“Lymph node” OR “lymph node metastasis”) AND (“lung cancer” OR “NSCLC”)	None	5	

Table 2 | Formulas.

Measure	Formula
Sensitivity	$\frac{TP}{TP + FN}$
Specificity	$\frac{TN}{TN + FP}$
Accuracy	$\frac{TP + TN}{TP + TN + FP + FN}$
PPV	$\frac{TP}{TP + FP}$
NPV	$\frac{TN}{TN + FN}$
SE	$\left(\frac{SE}{TP + FN} \cdot \frac{TN + FP}{TP + TN + FP + FN}\right)^{0.5}$

Where:

- P, condition positive; N, condition negative; FN, false negative; FP, false positive; TN, true negative; TP, true positive; PPV, positive predictive value; NPV, negative predictive value; Upper limit, upper limit of confidence interval; Lower limit, lower limit of confidence interval; SE, standard error.

...
sensitivity, and AUROC were generated with 95% confidence intervals. The categorized data extraction for each study report is shown in Table 5. The type of lung cancer, malignant lung nodules, lymph node metastases, and deep learning or radiomics models discussed in each study were considered.

The data from radiomics models showed high heterogeneity, except for AUROC and the sensitivity of each node. After removing the literature with insufficient data, the pooled AUROC of the 7 studies determining whether a patient had lung cancer was 0.83 (95% CI 0.78–0.88; Figure 2A), and the pooled sensitivity and specificity were 0.838 and 0.653, respectively, indicating high heterogeneity ($I^2 = 65.3\%, p = 0.008$). For the 9 NSCLC studies that currently represent ~85% of lung cancer, the pooled AUROC of radiomics was 0.78 (95% CI 0.73–0.83; Figure 2B), and the pooled sensitivity and specificity were 0.782 and 0.715, respectively, with higher heterogeneity ($I^2 = 66.1\%, p = 0.003$). Among the six studies predicting benign or malignant pulmonary nodules, the pooled AUROC of radiomics was 0.79 (95% CI 0.77–0.82; Figure 2C), and the pooled sensitivity and specificity were 0.787 and 0.774, respectively, with heterogeneity relatively low ($I^2 = 9.7\%, p = 0.354$). Among the 6 studies that predicted the accuracy of LNM in lung cancer patients, the pooled AUROC
of radiomics was 0.74 (95% CI 0.66–0.82; Figure 2D), and the pooled sensitivity and specificity were 0.661 and 0.598, respectively, with heterogeneity relatively high ($I^2 = 88.7\%$, $p = 0.000$).

DISCUSSION

During the diagnosis and treatment of lung cancer, many imaging data, such as CT, MRI, and PET, are generated. Doctors usually subjectively evaluate these data based on experience and make treatment plans (32). However, the features that doctors can observe from the image data with the naked eye are limited, and the potential of the image data is often not fully realized. Over the years, many researchers have tried to use complex mathematical and statistical algorithms to extract quantitative information that is hard to observe, even predicting cancer progression (33–35).

With the development of artificial intelligence technology, radiomics has emerged as the times require, using machine learning algorithms to mine high-throughput features from medical images and conduct modeling analysis. Increasing evidence shows that radiomics can be used for quantitative characterization of tumors for tasks such as disease diagnosis, treatment planning, and prognosis, which constitutes an important research direction for artificial intelligence technology in medical applications (36, 37). Radiomics is an emerging and rapidly developing field that integrates knowledge from radiology, oncology, and computer science and is an interdisciplinary subject that emphasizes the integration of medicine and engineering (38). With the rise of deep learning technology in recent
years, the need for high precision and high stability in lung cancer staging has become more and more urgent (39).

To our knowledge, this is the first meta-analysis to summarize the diagnostic accuracy of deep learning and radiomics involving in lung cancer staging. We provided summarized data in this field and compared the identification effectiveness of lung cancer, tumor types, malignant lung nodules and lymph node metastases. In this article, the included studies mainly used radiomics ($n = 14$) rather than deep learning methods ($n = 5$). Of the five deep learning models, two were developed using transfer learning and three were developed using convolutional neural networks (CNN). Part of the reason there are relatively few deep learning models is that deep learning techniques are relatively new and prone to bias. The difference in the number of studies of the two AI models will lead to a significant deviation in the data ratio, affecting the ability comparison of the two models. Furthermore, most studies

References	Country	Year	Study design	Patients (% female patients)	Sample size for diagnostic accuracy	Mean or median age (SD; range), years	Imaging modality	Type of malignancy	AI model (Per-patient/per-node diagnostic output)	Reference standard	Classification criteria
Coroller et al. (13)	USA	2016	Retrospective single-center	85 (65%)	–	60.3	CT	NSCLC	Radiomics (per-patient)	Radiology	B D
Parmar et al. (14)	USA	2018	Retrospective single-center	1,194	–	68.3 (32–93)	CT	NSCLC	Deep learning (per-patient)	Pathology	A B C
Sun et al. (15)	China	2019	Retrospective single-center	385 (68%)	201	53.1 (±12.2)	CT	Lung Cancer	Radiomics (per-patient)	Radiology	A C
Ling et al. (16)	China	2019	Retrospective multi-center	229 (31.5%)	74	64 (59–81)	CT	Lung Cancer	Radiomics (per-patient)	Radiology	A
Coudray et al. (17)	USA	2018	Retrospective single-center	1,176	459	61 (51.3–72.8)	CT	NSCLC	Deep learning (per-patient)	Radiology	B C
Xu et al. (18)	China	2019	Retrospective single-center	179 (52.8%)	–	63 (32–93)	CT	NSCLC	Deep learning (per-patient)	Pathology	B D
Baldwin et al. (19)	UK	2020	Retrospective single-center	1,337	328	–	CT	Lung Cancer	Deep learning (per-patient)	–	A
Schoeers et al. (20)	Germany	2019	Retrospective single-center	82 (38%)	50	61.5 (±5.0)	MRI	Lung Cancer	Radiomics (per-patient)	Pathology	A C
Wang et al. (21)	China	2019	Retrospective single-center	249 (39.8%)	–	61.4 (±8.96)	CT	Lung Cancer	Deep learning (per-patient)	Radiology	D
Leleu et al. (22)	France	2020	Retrospective single-center	215 (39%)	72	58.6 (±10.3)	CT	Lung Cancer	Radiomics (per-patient)	Pathology	A
Ann et al. (23)	USA	2019	Prospective multi-center	262	48	–	CT	NSCLC	Radiomics (per-patient)	Pathology	A B C
Cong et al. (24)	China	2020	Retrospective single-center	411 (50.4%)	141	59.62 (24–84)	CT	NSCLC	Radiomics (per-patient)	Radiology	B C D
Botta et al. (25)	Italy	2020	Retrospective single-center	270 (38%)	–	67.4 (61.0–72.6)	CT	NSCLC	Radiomics (per-patient)	Radiology	A B D
Wei et al. (26)	USA	2020	Retrospective multi-center	146 (39.7%)	–	65.72 (±12.88)	PET/CT	NSCLC	Radiomics (per-node)	Radiology	A B C
Khorrami et al. (27)	USA	2019	Retrospective single-center	112	–	–	CT	NSCLC	Radiomics (per-patient)	Pathology	B D
Kirienko et al. (28)	Italy	2021	Retrospective single-center	149 (37.6%)	73	70 (41–84)	PET/CT	Lung Cancer	Radiomics (per-node)	Radiology	B C
Rossi et al. (29)	Italy	2020	Retrospective single-center	109	–	–	CT	NSCLC	Radiomics (per-patient)	Radiology	A B
Chai et al. (30)	China	2021	Retrospective single-center	198 (54%)	402	58.1 (±8.5)	CT	NSCLC	Radiomics (per-node)	Pathology	A B D
Wang et al. (31)	China	2019	Retrospective single-center	717	386	–	CT	NSCLC	Radiomics (per-node)	Radiology	B D

A, Determine whether the patient has lung cancer; B, Determine whether the patient has non-small cell lung cancer; C, Determine whether the patient has malignant lung nodule; D, Determine whether the patient has lymph node metastasis.
FIGURE 3 | Summary of QUADAS-2 assessments of included studies.

TABLE 4 | Quality assessment.

Source	Risk of bias	Applicability concerns								
	Patient selection	Index test	Reference standard	Flow and timing	Patient selection	Index test	Reference standard			
Chetan et al. (1)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Unclear
Parmar et al. (2)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Yes
Sun et al. (3)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Yes
Ling et al. (4)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Yes
Coudray et al. (5)	Yes	No	Yes	Yes	No	Yes	Unclear	Yes	Yes	Unclear
Xu et al. (6)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Yes
Baldwin et al. (7)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Yes
Schroers et al. (8)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Yes
Wang et al. (9)	Yes	No	Yes	No	No	Yes	Unclear	Yes	Yes	Unclear
Leleu et al. (10)	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	Yes
Ann et al. (11)	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	Yes
Cong et al. (12)	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	Yes
Botta et al. (13)	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	Yes
Botta et al. (13)	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	Yes
Wei et al. (14)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Yes
Khorrami et al. (15)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Yes
Kirienko et al. (16)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Yes
Rossi et al. (17)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Yes
Chai et al. (18)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Yes
Wang et al. (19)	Yes	Yes	Yes	Yes	No	Yes	Unclear	Yes	Yes	Yes

are retrospective in design, there are few prospective deep learning studies in lung cancer medical imaging staging, and most studies lack data and code availability. At the same time, most studies are single-center and use internal validation or resampling methods (cross-validation). However, internal validation tends to overestimate AUROC due to the lack of
generality of the models, limiting the integration of AI models into clinical settings (40). Therefore, predictive models validated externally by using images from different hospitals are needed to create reliable estimates of the performance levels of other sites (41).

This systematic review performed a statistical assessment of pooled data collected from 19 studies. However, our findings must take into account some limitations. First, while comprehensive, our search may have missed some studies that could have been included. Second, we calculated estimates of diagnostic performance using limited data as several studies reported incomplete data. Third, there may be geographic bias because the included studies were from geographically different quantitative distributions. Finally, the type of scanner used for diagnosis, the imaging protocol, and the criteria for lung cancer staging may affect the accuracy of the results. In the future, the clinical benefit of diagnostic lung cancer staging models must be rigorously evaluated against current diagnostic criteria, as not all models are applicable in clinical practice (42, 43). Under the current hot spot of artificial intelligence development, more and more deep learning studies have shown that deep learning big data extracted from patients’ medical images can have good clinical application value in tumor staging of patients. Therefore, we can combine deep learning features to establish a radiomics combined with deep learning diagnostic model, so that the accuracy of lung cancer staging diagnosis of patients can be improved.

CONCLUSION

The models based on deep learning or radiomics have the potential to improve diagnostic accuracy in the pathological staging of lung cancer with the purpose of providing individualized preoperative non-invasive auxiliary prediction means for clinicians and realizing valuable prediction for patients to obtain better treatment strategy. Future studies are welcomed to use standardized radiomics features, more robust tools of feature selection and model development to further improve the diagnostic accuracy of artificial intelligence in lung cancer staging.

References	Sensitivity, %	Specificity, %	Accuracy, %	AUROC	95%CI	Standard error
Coroller et al. (13)	–	–	–	0.630	0.583–0.713	0.0331
Parmar et al. (14)	82.4	73.1	83.5	0.710	0.60–0.82	0.0561
Sun et al. (15)	–	–	–	0.770	0.69–0.86	0.0434
Ling et al. (16)	–	–	–	0.864	0.782–0.904	0.0311
Coudray et al. (17)	89.0	93.0	83.3	0.869	0.753–0.961	0.0531
Xu et al. (18)	–	–	63.5	0.670	–	–
Baldwin et al. (19)	99.57	28.03	40.01	0.896	0.876–0.915	0.0010
Schroers et al. (20)	86.95	93.25	88.89	–	–	–
Wang et al. (21)	64.04	58.97	61.47	0.640	0.61–0.67	0.0153
Leleu et al. (22)	–	–	72.6	–	–	–
Ann et al. (23)	79.9	75.2	65.8	0.761	0.59–0.71	0.0306
Cong et al. (24)	72.97	63.33	55.22	0.790	0.77–0.81	0.0102
Botta et al. (25)	–	–	–	0.840	0.63–0.98	0.0893
Wei et al. (26)	54.16	55.56	63.64	0.860	0.79–0.94	0.0383
Khorrami et al. (27)	61.34	57.16	63.81	0.880	0.79–0.97	0.0459
Kiriniko et al. (28)	85.7	88.2	93.3	–	–	–
Rossi et al. (29)	100.0	66.7	85.7	0.850	–	–
Chai et al. (30)	–	–	95.3	–	–	–
Wang et al. (31)	–	–	72.4	0.712	0.678–0.770	0.0235
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

XZ and WH conceptualized the study. BH, YH, and MR collected the data. XZ, BH, and WH drafted the initial manuscript. ZC, ZZ, JM, LO, HC, and HG reviewed the included articles. YH and WH conducted the analyses. XZ, TL, and GL reviewed and revised the manuscript. All authors read and approved the final manuscript.

FUNDING

This work was supported by the Chengdu Science and Technology Program, Grant no. 2021007 and Sichuan Science and technology plan, Grant no. 2018JY0356.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. (2018) 68:394–424. doi: 10.3322/caac.21492
2. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HWL. Artificial intelligence in radiology. Nat Rev Cancer. (2018) 18:500–10. doi: 10.1038/s41568-018-0016-5
3. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. (2012) 48:441–6. doi: 10.1016/j.ejca.2011.11.036
4. Kumar V, Gu Y, Busi S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: the process and the challenges. Magn Reson Imaging. (2012) 30:1234–48. doi:10.1016/j.mri.2012.06.010
5. Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, et al. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology. (2016) 281:947–57. doi:10.1148/radiol.2016152234
6. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol. (2016) 34:2157–64. doi:10.1200/JCO.2015.65.9128
7. Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. (2019) 29:102–27. doi:10.1016/j.zemedi.2018.11.002
8. Benjamen S, Dhunnoo P, Mesko B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. (2020) 3:118. doi:10.1038/s41746-020-00324-0
9. Bouwmeester W, Zuithoff NP, Mallet S, Geerlings MI, Vergouwe Y, Steyerberg EW, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS Med. (2012) 9:1–12. doi:10.1371/journal.pmed.1001221
10. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. (1959) 22:719–48.
11. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. (1986) 7:177–88. doi:10.1016/0197-2456(86)90046-2
12. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. (2003) 327:557–60. doi:10.1136/bmj.327.7414.557
13. Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee SW, et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol. (2016) 119:480–6 doi:10.1016/j.radonc.2016.04.004
14. Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, et al. Deep learning for lung cancer prognosis: a retrospective multi-cohort radiomics study. PLoS Med. (2018) 15:e1002711. doi:10.1371/journal.pmed.1002711
15. Sun Y, Li C, Jin L, Gao P, Zhao W, Ma W, et al. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction. Eur Radiol. (2020) 30:3650–9. doi:10.1007/s00330-020-06776-y
16. E L, Lu L, Li L, Yang H, Schwartz LH, Zhao B. Radiomics for classifying histological subtypes of lung cancer based on multiphase contrast-enhanced computed tomography. J Comput Assist Tomogr. (2019) 43:300–6. doi:10.1097/RCT.0000000000000836
17. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. (2018) 24:1559–67. doi:10.1038/s41591-018-0177-5
18. Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res. (2019) 25:3266–75. doi:10.1158/1078-0432.CCR-18-2495
19. Baldwin DR, Gustafson J, Pickup L, Artega C, Novotny P, Declerck J, et al. External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax. (2020) 75:306–12. doi:10.1136/thoraxjnl-2019-214104
20. Meier-Schroers M, Homsi R, Schild HH, Thomas D. Lung cancer screening with MRI: characterization of nodules with different non-enhanced MRI sequences. Acta Radiol. (2019) 60:168–76. doi:10.1177/0284185118778870
21. Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J. (2019) 53:1800986. doi:10.1183/13993003.00986-2018
22. Leleu O, Basille D, Auquier M, Clarot C, Hoguet E, Pétigny V, et al. Lung cancer screening by low-dose CT scan: baseline results of a french prospective study. Clin Lung Cancer. (2020) 21:145–52. doi:10.1016/j.clincancer.2019.10.014
23. Trebeschi S, Drago SG, Birkbak NJ, Kurilova I, Cālins AM, Delli Pizzi A, et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann Oncol. (2019) 30:998–1004. doi:10.1093/annonc/mdz108
24. Cong M, Yao H, Liu H, Huang L, Shi G. Development and evaluation of a venous computed tomography radiomics model to predict lymph node metastasis from non-small cell lung cancer. Medicine. (2020) 99:e20074. doi:10.1097/MD.00000000000020074
25. Botta F, Raimondi S, Rinaldi L, Bellerba F, Corso F, Bagnardi V, et al. Association of a CT-based clinical and radiomics score of non-small cell lung cancer (NSCLC) with lymph node status and overall survival. Cancers. (2020) 12:1432. doi:10.3390/cancers12061432
26. Mu W, Tunali I, Gray JE, Qi J, Schabath MB, Gillies RJ. Radiomics of 18F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur J Nucl Med Mol Imaging. (2020) 47:1168–82. doi:10.1007/s00259-019-04625-9
27. Khorrami M, Prasanna P, Gupta A, Patil P, Vela PD, Thawani R, et al. Changes in CT radiomic features associated with lymphocyte distribution predict overall survival and response to immunotherapy in non-small cell lung cancer. Cancer Immunol Res. (2020) 8:108–19. doi:10.1158/2326-6066.CIR-19-0476
28. Kirienko M, Sollini M, Corbetta M, Voulaz E, Gozzi N, Interlenghi M, et al. Radiomics and gene expression profile to characterise the disease and predict outcome in patients with lung cancer. Eur J Nucl Med Mol Imaging. (2021) 48:4704–55. doi:10.1007/s00259-021-05371-7
29. Rossi G, Barabino E, Fedeli A, Facchina G, Coco S, Russo A, et al. Radiomic detection of EGFR mutations in NSCLC. Cancer Res. (2021) 97:624–31. doi:10.1158/0008-5472.CAN-20-0999
30. Yating C, Shu L, Xingyu J, Fan W, Ye L. Combined model of radiomics features and clinical labels of peritumoral tissue to predict lymph node
Zheng et al. AI in Lung Cancer Staging

metastasis in T1 non-small cell lung cancer. Chin J Clin Med Imaging. (2021) 32:470–5. doi: 10.12117/jccmi.2021.07.004

31. Chao W, Xia L, Di D, Liya Z, Zaiyi L, Changhong L, et al. Prediction of lymph node metastasis in non-small cell lung cancer based on radiomics. Chin J Autom. (2019) 45:1087–93. doi: 10.16383/j.aas.c160794

32. Wen PY, Macdonald DR, Beardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. (2010) 28:1963–72. doi: 10.1200/JCO.2009.26.3541

33. Chaunzwla TL, Christiani DC, Lanuti M, Shafer A, Aerts H. Using deep-learningradiomics to predict lung cancer histology. J Clin Oncol. (2018) 36:8545. doi: 10.1200/JCO.2018.36.15_suppl.8545

34. Chalkidou A, O’Doherty MJ, Marsden PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS ONE. (2015) 10:e0124165. doi: 10.1371/journal.pone.0124165

35. Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B. Radiomics and artificialintelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J. (2019) 17:995–1008. doi: 10.1016/j.csbj.2019.07.001

36. Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER, et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med. (2009) 62:1609–18. doi: 10.1002/mrm.212147

37. Qian Z, Li Y, Wang Y, Li L, Li R, Wang K, et al. Differentiation of glioblastoma from solitarybrain metastases using radiomic machine-learning classifiers. Cancer Lett. (2019) 451:128–35. doi: 10.1016/j.canlet.2019.02.054

38. Lambin P, Lejiernaar RTH, Deist TM, Peertings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge betweenmedical imaging and personalized medicine. Nat Rev Clinicaloncol. (2017) 14:749. doi: 10.1038/nrclinonc.2017.141

39. Cai H, Cui C, Tian H, Zhang M, Li L. A novel approach to segment and classify regional lymph nodes on computed tomography images. Comput Math Methods Med. (2012) 2012:1–9. doi: 10.1155/2012/145926

40. Perone CS, Cohen-Adad J. Promises and limitations of deep learning for medical image segmentation. J Med Artif Intel. (2019) 2:1. doi: 10.21037/jmai.2019.01.01

41. Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol. (2019) 20:405–10. doi: 10.3348/kjr.2019.0025

42. Steyerberg EW, Moons KG, van der Windt DA, Hayden JA, Perel P, et al. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med. (2013) 10:e1001381. doi: 10.1371/journal.pmed.1001381

43. Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al. A comparison of deep learning performance against healthcare professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digital Health. (2019) 1:e271–97. doi: 10.1016/S2589-7500(19)30123-2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Zheng, He, Hu, Ren, Chen, Zhang, Ma, Ouyang, Chu, Gao, He, Liu and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.