MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction
— Supplementary Material —

Lingwei Dang¹, Yongwei Nie¹*, Chengjiang Long², Qing Zhang³ and Guiqing Li¹

¹School of Computer Science and Engineering, South China University of Technology, China
²JD Finance America Corporation, USA
³School of Computer Science and Engineering, Sun Yat-sen University, China

Abstract

In this supplementary material, we provide more information that cannot be included in the paper due to the space limit.

1. Loss Function

We use ℓ_2 loss to optimize MSR-GCN. Let the j^{th} joint position in the t^{th} frame at s^{th} scale be $\hat{p}_{j,t}^s$, and the corresponding ground-truth be $p_{j,t}^s$, then the loss function for N training pose sequences each having J^s joints and T frames is written as

$$L^s = \frac{1}{N \times J^s \times T} \sum_{n=1}^{N} \sum_{j=1}^{J^s} \sum_{t=1}^{T} ||\hat{p}_{j,t}^s - p_{j,t}^s||_2^2.$$ (1)

The above loss is calculated at all S scales and added up to optimize the proposed model, that is,

$$P^* = \arg \min_P \sum_{s=1}^{S} \lambda^s L^s,$$ (2)

where P indicates network parameters, and λ denotes hyper parameters and we set them as 1 for all scales.

2. Model Structure

The detailed MSR-GCN model structure is shown in Table 1. As mentioned in the paper, our proposed approach is composed of three kinds of GCNs, called “Start GCNs”, “Descending (D0-D3)/Ascending (A0-A3) GCNs”, and “End GCNs (E0-E3)”.

*Corresponding author: nieyongwei@scut.edu.cn

Module	Layers	Output Size	Operations
Start GCN	GCL 66 × 64	GCL(66 × 66), W(35 × 64)	res-GCNs with 2-layer GCLs A(66 × 66), W(64 × 64)
	GCL 66 × 64	GCL(66 × 66), W(64 × 64)	res-GCNs with 2-layer GCLs A(66 × 66), W(64 × 64)
D0	GCNs 66 × 36	3 × res-GCN each has 2-layer GCLs A(66 × 36), W(128 × 128)	
Down sampling 0	Linear 1 36 × 64	linear transformation, W(66 × 36)	
	Linear 2 36 × 128	linear transformation, W(64 × 128)	
D1	GCNs 36 × 128	3 × res-GCN each has 2-layer GCLs A(36 × 128), W(128 × 128)	
Down sampling 1	Linear 1 21 × 128	linear transformation, W(256 × 128)	
	Linear 2 21 × 256	linear transformation, W(256 × 256)	
D2	GCNs 21 × 256	3 × res-GCN each has 2-layer GCLs A(21 × 256), W(256 × 256)	
Down sampling 2	Linear 1 12 × 256	linear transformation, W(256 × 128)	
	Linear 2 12 × 512	linear transformation, W(256 × 512)	
D3	GCNs 12 × 512	3 × res-GCN each has 2-layer GCLs A(12 × 512), W(512 × 512)	
Upsampling 2	Linear 1 21 × 512	linear transformation, W(12 × 256)	
	Linear 2 21 × 256	linear transformation, W(12 × 256)	
A2	GCNs 21 × 256	3 × res-GCN each has 2-layer GCLs A(21 × 256), W(256 × 256)	
Upsampling 1	Linear 1 12 × 256	linear transformation, W(256 × 128)	
	Linear 2 12 × 128	linear transformation, W(256 × 128)	
A1	GCNs 12 × 128	3 × res-GCN each has 2-layer GCLs A(12 × 128), W(128 × 128)	
Upsampling 0	Linear 1 66 × 128	linear transformation, W(66 × 66)	
	Linear 2 66 × 64	linear transformation, W(66 × 64)	
A0	GCNs 66 × 64	3 × res-GCN each has 2-layer GCLs A(66 × 66), W(64 × 64)	
E0	GCN 66 × 64	GCL(66 × 66), W(35 × 64)	res-GCNs with 2-layer GCLs A(66 × 66), W(64 × 64)
E1	GCN 36 × 128	GCL(36 × 128), W(128 × 128)	res-GCNs with 2-layer GCLs A(36 × 128), W(128 × 128)
E2	GCN 21 × 256	GCL(21 × 256), W(256 × 256)	res-GCNs with 2-layer GCLs A(21 × 256), W(256 × 256)
E3	GCN 12 × 512	GCL(12 × 512), W(512 × 512)	res-GCNs with 2-layer GCLs A(12 × 512), W(512 × 512)
GCL	12 × 35	GCL, A(12 × 35), W(35 × 35)	

The most basic building block is the Graph Convolution Layer (GCL), which consists of a graph convolution layer, a batch normalization layer, a tanh activation layer, and a...
dropout layer (with rate 0.1). A graph convolution layer has an adjacency matrix A and parameters W.

Each GCN is composed of 2 GCLs. The size of A and W of these GCLs are shown in the table. We use linear layers for downsampling and upsampling. The sizes of the parameters in these linear layers are also shown in the table. In the third column of the table, we give the output size of the corresponding layer. Please refer to the source code at https://github.com/Droliven/MSRGCN for more information.

3. Different Multi-Scale Grouping Manners

The default grouping manner for CMU can be found in Figure 1 in which there are 25 joints at the finest level and 12, 7, 4 joints in the subsequent coarser levels. We also trained MSR-GCN on CMU with other grouping manners, including three random grouping manners under the 25-12-7-4 manner, and the “manually specified 25-10-5-3” manner as shown in Figure 2. The performance of MSR-GCN under different grouping manners can be found in the paper.

4. More Results

Comparison with Traj-GCN using error bar. We have trained our method and Traj-GCN [33] five times with random seeds in order to compare their performance more thoroughly. As shown in Table 2, the average prediction errors of our method are 58.37±0.43 and 37.52±0.48 on the datasets of Human3.6M and CMU. In comparison, [33] reports higher predictor errors and larger variances than our method, which are 59.93±0.91 on the Human3.6M and 40.56±0.51 on the CMU dataset respectively.

Comparison with Traj-GCN at different forecast times. We also compared MSR-GCN and Traj-GCN at different forecast times. As verified in Table 3, our method performs better than Traj-GCN in handling challenging long-term motion prediction.

Comparison using the evaluation method of [33]. In [33], the performance is evaluated on randomly selected 8 samples per action. The average prediction errors using the same evaluation method as [33] are shown in Table 4. As can be seen, MSR-GCN also outperforms Traj-GCN.

Time (ms)	80	160	320	400	500	1000
Human3.6M	0.56	0.51	0.64	0.58	0.46	0.09
CMU	1.22	2.19	3.98	2.84	2.40	3.23

Time (ms)	80	160	320	400	500	1000
Human3.6M	0.56	0.51	0.64	0.58	0.46	0.09
CMU	1.22	2.19	3.98	2.84	2.40	3.23

Traj-GCN [33]	Human3.6M	CMU	Ours	
short-term	long-term	short-term	long-term	
---------------	-----------	-----	------	
Human3.6M	37.35	59.02	29.13	45.06
CMU	36.36	57.84	24.81	40.81

Traj-GCN [33]	Human3.6M	CMU	Ours	
short-term	long-term	short-term	long-term	
---------------	-----------	-----	------	
Human3.6M	37.35	59.02	29.13	45.06
CMU	36.36	57.84	24.81	40.81