Numerical simulation of inorganic Cs$_2$AgBiBr$_6$ as a lead-free perovskite using device simulation SCAPS-1D

Aminreza Mohandes1 · Mahmood Moradi1 · Hamid Nadgaran1

Received: 22 October 2020 / Accepted: 10 May 2021 / Published online: 15 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Double perovskite, Cs$_2$AgBiBr$_6$, is introduced as a lead-free perovskite solar cell. Device modeling of Cs$_2$AgBiBr$_6$ (DP) was accomplished to obtain the optimum parameters using the Solar Cell Capacitance Simulator (SCAPS). Two devices with two different hole transport layers (HTLs) were investigated, including P$_3$HT and Cu$_2$O. For both devices with different HTLs, an optimal thickness of 1200 nm and defect densities of 1.0×10^{14} cm$^{-3}$ for DP layer were attained. For both HTLs, conduction band offset, CBO, is -0.21 eV and valence band offset, VBO, is $+0.16$ eV. For shallow acceptor doping concentration of P$_3$HT and Cu$_2$O, the values of 5.0×10^{19} and 5.0×10^{17} cm$^{-3}$ were obtained, respectively. As far as the shallow donor density of electron transport layers (ETLs) is concerned, for both cases, the optimum value of 5.0×10^{19} cm$^{-3}$ were achieved. For capture cross section, $\sigma_{n,p}$, in absorber layer for both HTLs, the optimal value at $\sigma_{n,p}$ of 10^{-20} cm2 for $N_{t,DP}$ (defect density of DP) is 10^{16} cm$^{-3}$, at $\sigma_{n,p}$ of 10^{-19} cm2 for $N_{t,DP}$ is 10^{15} cm$^{-3}$, at $\sigma_{n,p}$ of 10^{-18} cm2 for $N_{t,DP}$ is 10^{14} cm$^{-3}$, at $\sigma_{n,p}$ of 10^{-17} cm2 for $N_{t,DP}$ is 10^{13} cm$^{-3}$, and at $\sigma_{n,p}$ of 10^{-16} cm2 for $N_{t,DP}$ is 10^{12} cm$^{-3}$. For P$_3$HT device, the interface defect density of P$_3$HT/Cs$_2$AgBiBr$_6$ is occurred at 1.0×10^{14} cm$^{-2}$, and for Cs$_2$AgBiBr$_6$/SnO$_2$ is happened at 1.0×10^{10} cm$^{-2}$. For Cu$_2$O device, the interface defect density of Cu$_2$O/Cs$_2$AgBiBr$_6$ is befallen at 1.0×10^{13} cm$^{-2}$, and for Cs$_2$AgBiBr$_6$/SnO$_2$ is happened at 1.0×10^{10} cm$^{-2}$. As for radiative recombination, for P$_3$HT device, the optimal value is happened at 2.3×10^{-13} cm3/s, however, for Cu$_2$O device is occurred at 2.3×10^{-12} cm3/s. Finally, for P$_3$HT device, a maximum power conversion efficiency, PCE, of 11.69% (open-circuit voltage, V_{oc} of 2.02 V, short-circuit current density, J_{sc}, of 6.39 mA/cm2, and fill-factor, FF, of 0.90 (90%)) were achieved, and for Cu$_2$O device, a PCE of 11.32% (V_{oc} of 1.97 V, J_{sc} of 6.39 mA/cm2, and FF of 0.895 (89.5%)) were attained. This is the highest efficiency for Cs$_2$AgBiBr$_6$ double perovskite solar cell which was achieved till now. Finally, our results are providing towards fabricating a lead-free and inorganic solar cell.

Keywords Cs$_2$AgBiBr$_6$ · Double perovskite solar cell · Lead-free perovskite · Conduction band offset (CBO) · Valence band offset (VBO) · SCAPS

Mahmood Moradi
mmoradi@shirazu.ac.ir

1 Department of Physics, College of Science, Shiraz University, 71946-84795 Shiraz, Iran
1 Introduction

Perovskite solar cells (PSCs) have gained more than 25% efficiency within a very short period (Usiobo et al. 2020). Although PSCs have some advantages such as indicating high charge carrier mobilities, high absorption coefficients, direct and tunable band gaps, long carrier diffusion lengths, and high performance (Zhang and Zhu 2020; Gu et al. 2020; Li and Zhang 2020), they endure from instability issue, mostly owing to perovskite material deterioration upon moisture and light exposure (He et al. 2020; Singh et al. 2020; Lee and Park 2020; Yang et al. 2020a, b). Moreover, the stability of the PSCs are researching (Bouich et al. 2021a, b; Mohseni et al. 2021). Despite some advantages, the presence of lead and the toxicity in these kind of cells is a major blockage to its commercialization (Xu et al. 2020). In order to overcome the existing shortcoming related to the presence of lead in the perovskite solar cell, the main competitor is to replace tin (Xu 2021; Poli et al. 2021; Liu et al. 2020a, b; Jiang et al. 2020; Li et al. 2020) and germanium (Soto-Montero et al. 2020; Liu et al. 2020a, b) belonging to the same lead group, therefore we expect the exhibition of similar properties. For lead-free perovskite solar cells, since tin has the same diameter as lead, the scientists are encouraged to replace tin with lead to form ASnX₃ (Ogomi et al. 2014; Zuo et al. 2014; Noel et al. 2014; Liao et al. 2016; Xi et al. 2017). However, Sn²⁺ ion is unstable in these materials and easily oxidize to Sn⁴⁺ which results in degradation of photovoltaic performance.

The other way to develop the perovskite family for photovoltaic application is to replace Pb²⁺ ion with one monovalent B⁺ and one trivalent B³⁺ ion, forming A₂B⁺B³⁺X₆, double perovskite (DP) structure called elpasolite (Zhao et al. 2017). More than 300 diverse elpasolites have been synthesized till now (Giustino and Snaith 2016). Nevertheless, so far only three of them, including Cs₂AgBiBr₆ (Slavney et al. 2016), Cs₂AgBiCl₆ (McClure et al. 2016) and (CH₃NH₃)₂AgBiBr₆ (Wei et al. 2017) have been produced. The bandgap engineering of Cs₂AgBiBr₆ has been done by inducing defects and alloying of triple metals (Slavney et al. 2017; Du et al. 2017). Among the double perovskite family, Cs₂AgBiBr₆ is a suitable absorbing layer in solar cell devices, because it has high crystallinity, encouraging photovoltaic properties including long carrier recombination lifetime, good stability against air and moisture, low carrier effective masses and both thermal stability and fabricated in the ambient as compared to the perovskite structure, and long carrier diffusion length of around 700 nm (Yang et al. 2020a, b; Longo et al. 2020; Burwig et al. 2020; Ghasemi et al. 2020; Zhang et al. 2020).

While the double perovskite solar cell is more stable as compared to perovskite cell, it has much lower inherent efficiency than that of perovskite cell (Wu et al. 2018). For instance, for the device of ITO/SnO₂/Cs₂AgBiBr₆/P₃HT/Au, the efficiency was attained to be 1.44% experimentally (Wu et al. 2018).

Although P₃HT (poly(3-hexylthiophene-2,5-diyl)) is a good candidate material for the realization of PSC industrialization, P₃HT endures from some inherent drawbacks, such as elevated levels of occupied molecular orbital energy (HOMO) and narrow visible light absorption range (< 650 nm), leads to low efficiency and low Vₘₚ (Kim et al. 2020; Chow and Someya 2020). Lately, it has been reported that Cu₂O (cuprous oxide) has emanated as a strong option for the HTL owing to its very high mobility, optimal direct bandgap and significantly inorganic, consequently it has low degradability characteristic (Mkhàlid and Shawky 2021; Islam et al. 2020a, b). Besides, 1.0 gr of P₃HT is around 547 EURO depending on purity degrees, while 1.0 gr Cu₂O is around 11.76 EURO depending on purity degrees (www.sigmaaldrich.com/germany.html). As far as price is concerned, it rises to the
attention that Cu$_2$O is the best example between two HTLs, in consequence of the lower cost.

Islam et al. 2020a, b used wxAMPS software to find the efficiency of Cs$_2$AgBiBr$_6$ double perovskite and as they mentioned in the conclusion of their report, they obtained the efficiency of 8.11 certainly. However, for the other double perovskite such as Cs$_2$TiBr$_6$, the efficiency in the experiment was attained to be 2.15% (Chen et al. 2018). After performing optimization, the efficiency is reached to 11.49%, which means that efficiency is improved theoretically by 434.41% (Ahmed et al. 2021).

In this work, the Cs$_2$AgBiBr$_6$ double perovskite is offered as a lead-free perovskite as an active layer in solar cell. Two devices with two different HTLs including P$_3$HT and Cu$_2$O are comprehensively surveyed in the simulation using SCAPS software and optimizing widely most of the parameters to get the highest efficiency.

2 Methodology

The Solar Cell Capacitance Simulator (SCAPS) is implemented in this research. The ver. 3.3.07 of this package established by University of Gent is used in our calculations (Burgelman et al. 2000). The SCAPS software is one dimensional simulation program that computes energy bands, concentrations, J-V characteristics, ac characteristics (C (Capacitance) and G (Conductance) as functions of V and f) and spectral response (QE) using the three basic semiconductor equations comprise of the continuity equations for hole and electron and Poisson’s equation, as shown in Eqs. (1)–(3) under the steady-state conditions, $\frac{dn}{dt} = \frac{dp}{dt} = 0$.

$$\frac{dn}{dt} = G_n - \frac{n_p - n_{p0}}{\tau_n} + n_p \mu_n \frac{d\xi}{dx} + \mu_n \frac{dn_p}{dx} + D_n \frac{d^2n_p}{dx^2}$$ \hspace{1cm} (1)

$$\frac{dp}{dt} = G_p - \frac{p_n - p_{n0}}{\tau_p} + p_n \mu_p \frac{d\xi}{dx} + \mu_p \frac{dp_n}{dx} + D_p \frac{d^2p_n}{dx^2}$$ \hspace{1cm} (2)

$$\frac{d}{dx} \left(-e(x) \frac{d\psi}{dx} \right) = q[p(x) - n(x) + N_D^+(x) - N_A^-(x) + p_t(x) - n_t(x)]$$ \hspace{1cm} (3)

where G_n, G_p indicates the generation rate of electrons and holes, μ_n and μ_p are electron and hole mobilities, ξ is the electric field, D is diffusion coefficient, τ is the life time of electrons and holes, ε is permittivity, ψ is electrostatic potential, q is electron charge, $p_t(x)$ and $n_t(x)$ are the concentrations of trapped holes and electrons, N_D and N_A are shallow donor and acceptor concentrations.

3 Device structure and simulation parameters

Figure 1 shows the schematic diagram of multilayer used in the double perovskite solar cell. The device contains of indium tin oxide (ITO)/electron transport layer (SnO$_2$)/ absorber layer (Cs$_2$AgBiBr$_6$)/hole transport layer (P$_3$HT)/Au (Wu et al. 2018). We used the following arrangement to perform the simulation.
In Table 1, the simulation parameters of all layers such as thickness, band gap energy \(E_g \), electron affinity \(\chi \), relative permittivity \(\varepsilon_r \), effective density of states of conduction band \(N_C \), effective density of states of valence band \(N_V \), mobility of electron \(\mu_n \), mobility of hole \(\mu_p \), shallow donor density \(N_D \), shallow acceptor density \(N_A \) and defect density \(N_t \) are presented.

Some other parameters and settings are given in the following. The thermal velocity of electron and hole is \(1.0 \times 10^7 \) cm/s. The \(N_{ts} \) suggests the defect density at the interface. The \(N_{ts} \) quantities at SnO\(_2\)/Cs\(_2\)AgBiBr\(_6\) and Cs\(_2\)AgBiBr\(_6\)/P\(_3\)HT interfaces are fixed to \(2.3 \times 10^{10} \) cm\(^{-2} \) to achieve the recombination velocities of 0.74 cm/s at both interfaces. The defect energy level is selected at the center of band gap and defect type is neutral. The energetic distribution is Gaussian and its characteristic energy is 0.1 eV. \(R_s \) is the series resistance with the unit of \(\Omega \) cm\(^2\). The \(N_t \) of the Cs\(_2\)AgBiBr\(_6\), shown in Table 1, is fixed to \(3.678 \times 10^{16} \) cm\(^{-3} \), as stated by the following formula:

Parameters	ITO	SnO\(_2\)	Cs\(_2\)AgBiBr\(_6\)	P\(_3\)HT	Cu\(_2\)O
Thickness (nm)	200	50	150	100	100
\(N_D \) (cm\(^{-3}\))	1.0 \times 10\(^{20}\)	2.0 \times 10\(^{19}\)	1.0 \times 10\(^{19}\)	0.0	0.0
\(N_A \) (cm\(^{-3}\))	0.0	0.0	1.0 \times 10\(^{19}\)	2.0 \times 10\(^{18}\)	2.0 \times 10\(^{18}\)
\(\varepsilon_r \) (cm\(^{-3}\))	8.9	9.0	5.8	3.0	7.1
\(\chi \) (ev)	4.8	4.09	4.19	3.20	3.20
\(E_g \) (ev)	3.65	4.04	2.05	2.0	2.17
\(\mu_n \) (cm\(^2\)V\(^{-1}\)s\(^{-1}\))	10.0	240	11.81	1.0 \times 10\(^{-4}\)	200
\(\mu_p \) (cm\(^2\)V\(^{-1}\)s\(^{-1}\))	10.0	25.0	0.49	1.0 \times 10\(^{-4}\)	80
\(N_c \) (cm\(^{-3}\))	5.2 \times 10\(^{18}\)	2.2 \times 10\(^{18}\)	1.0 \times 10\(^{16}\)	2.5 \times 10\(^{18}\)	2.0 \times 10\(^{17}\)
\(N_v \) (cm\(^{-3}\))	1.0 \times 10\(^{18}\)	1.8 \times 10\(^{19}\)	1.0 \times 10\(^{16}\)	1.8 \times 10\(^{19}\)	1.0 \times 10\(^{19}\)
\(N_t \) (cm\(^{-3}\))	1.0 \times 10\(^{15}\)	1.0 \times 10\(^{15}\)	3.678 \times 10\(^{16}\)	1.0 \times 10\(^{14}\)	1.0 \times 10\(^{14}\)
Radiative Recombination	2.3 \times 10\(^{-9}\)				
where ε_0 is the vacuum permittivity and ε is the dielectric permittivity of Cs$_2$AgBiBr$_6$ film. L is the thickness of the Cs$_2$AgBiBr$_6$ film and q is the elementary charge. The V_{TFL} (the trap-filled limit voltage) of the Cs$_2$AgBiBr$_6$ is 1.29 V, according to the Supporting Information of reference (Wu et al. 2018). For this compound, the carrier lifetime is 843.6 ns, L_n of 5.1 μm and L_p of 1 μm (Wu et al. 2018). Moreover, the optical reflection of front contact, see Fig. 1, is assumed to be 40%. The obtained capture cross section of electron and hole is 3.22×10^{-18} cm2, according to the following formula:

$$N_t = \frac{2\varepsilon_0\varepsilon V_{TFL}}{qL^2} \quad (4)$$

where $\sigma_{n,p}$ is capture cross section of electron and hole, N_t is defect density of Cs$_2$AgBiBr$_6$ layer, V_{th} is thermal velocity of electron and hole and $\tau_{n,p}$ is the carrier lifetime of electron and hole. Right and left contact work function are 4.8 eV (ITO) and 5.1 eV (Au), respectively. Pre-factor A_a for Cs$_2$AgBiBr$_6$ is set to 2.62×10^4 cm$^{-1}$ eV$^{-1/2}$ to acquire absorption coefficient, α, as computed by $\alpha = A_a(\hbar \nu - E_g)^{1/2}$, where $\hbar \nu$ is the photon energy. All simulations are accompanied under AM 1.5G illumination and temperature 300 Kelvin.

The material parameters for the simulation are carefully selected from reported works (Wu et al. 2018; Ganvir 2016; Xu et al. 2019; Zhao et al. 2019; Minemoto et al. 2019; Islam et al. 2020a, b; Coulibaly et al. 2019; Minbashi et al. 2018), as summarized in Table 1.

4 Results and discussion

Figure 2a presents the current density–voltage (J–V) curves computed for ITO/SnO$_2$/Cs$_2$AgBiBr$_6$/P$_3$HT/Au cell by using the factors given in Tables 1 and 2 and comparing with the experiment (Wu et al. 2018). As Fig. 2b shows, the computed external quantum

![Fig. 2](image-url)
efficiency, EQE, is commenced from zero at 330 nm and achieved quickly to the apex of 23.60% at 340 nm and then decreased to zero at 610 nm. The simulation and experimental results are compared in Table 3.

In the next step, we are employing the other HTL such as Cu2O. According to the data given in Tables 1 and 2, the current density–voltage curve and external quantum efficiency with Cu2O layer are plotted in Fig. 3a, b, respectively. For ITO/SnO2/Cs2AgBiBr6/Cu2O/Au cell, the performance parameters are Voc of 1.17 V, Jsc of 3.42 mA/cm², FF of 0.78 and PCE of 3.13%. As shown in Fig. 3b, the computed external quantum efficiency is started at 330 nm and reached swiftly to the apex of 44.12% at 340 nm and then decreased to zero at 610 nm.

Table 2 Defect density at interfaces

Interface defect density	ETL/absorber	absorber/HTL
Defect type	Neutral	Neutral
Capture cross section electron (cm²)	3.22 × 10⁻¹⁸	3.22 × 10⁻¹⁸
Capture cross section hole (cm²)	3.22 × 10⁻¹⁸	3.22 × 10⁻¹⁸
Energy distribution	single	Single
Reference for defect energy level Eᵣ	Above the highest Eᵥ	Above the highest Eᵥ
Energy with respect to reference (eV)	1.30	1.30
Total density (cm⁻²)	2.3 × 10¹⁰	2.3 × 10¹⁰

Table 3 Comparison of our simulation and experimental results of current density–voltage curves, for ITO/SnO2/Cs2AgBiBr6/P3HT/Au cell (Wu et al. 2018)

Cs₂AgBiBr₆	Voc (V)	Jsc (mA/cm²)	FF	PCE (%)	Rs (Ωcm²)
Simulation	1.09	1.73	0.76	1.44	9.25
Experiment	1.04	1.78	0.78	1.44	

Fig. 3 a The current density–voltage curve, and b the computed external quantum efficiency, for ITO/SnO₂/Cs₂AgBiBr₆/Cu₂O/Au cell

© Springer
The performance parameters for two different HTLs are shown in Table 4, before optimizing parameters.

To get the required efficiency, we used the obtained optimal value of each quantity. Nevertheless, in this research, the improvements made in the efficiency have been explicated in the following sub-sections for ITO/SnO₂/Cs₂AgBiBr₆/P₃HT/Au cell.

4.1 Effect of the double perovskite (absorber layer) thicknesses

The effect of absorber layer thickness on the parameters of the double perovskite solar cell was calculated. The thickness of the double perovskite layer was altered from 100 to 2500 nm, the attained parameters as a function of thickness are revealed in Fig. 4.

Figure 4a exhibits the current density–voltage curves for different thicknesses of absorber layer changing from 100 to 2500 nm. As a consequence of increasing the thickness of the absorbing layer, photons with longer wavelengths were also absorbed. This effect is associated with the enhancement of the collection of photogenerated carriers. According to Eq. (6), \(V_{oc} \) is function of both \(J_{sc} \) and the saturation current density of the device, \(J_0 \), which is also influenced by the thickness of the absorber layer:

\[
V_{oc} = \frac{kT}{q} \ln \left(\frac{J_{sc}}{J_0} + 1 \right)
\]

Figure 4b represents the performance parameters of \(V_{oc} \), \(J_{sc} \), FF and efficiency of the device as a function of thicknesses of absorber layer altering from 100 to 2500 nm. According to Fig. 4b, the efficiency was started from 1.05% at 100 nm and then amended to the amount of 3.65% at 1200 nm and decreased to 2.92% at 2500 nm, see Supporting Information of Dang et al. (2020), Longo et al. (2020), Keshavarz et al. (2020) and Zhang et al. (2020). The FF, \(J_{sc} \), and \(V_{oc} \) are also presented in Fig. 4b. Figure 4c exhibits the external quantum efficiency of Cs₂AgBiBr₆ device for different thicknesses altering in the same range. Therefore, the optimized parameter for this section is 1200 nm. The \(V_{oc} \) of 1.08 V, \(J_{sc} \) of 6.33 mA/cm², FF of 0.53 and efficiency of 3.65% are attained.

4.2 Effect of defect densities, \(N_p \), of Cs₂AgBiBr₆

For supplementary enhancement in performance, defect density is another serious parameter which should be disputed. Defect density in Cs₂AgBiBr₆ are mostly point defects including Vacancy, Interstitial, and Antisite. We do not specifically report each of these defects (Islam et al. 2020a, b). The performance of double perovskite solar cell is noticeably reformed by the morphology and quality of absorber layer film. As the quality of film is not ideal, the defect density improved and the recombination rate of the carriers enlarged in the absorbing layer, thus it disturbs the performance of the solar cell (Zhu et al. 2020; Li et al. 2019; Tan et al. 2020).

Table 4	Performance parameters attained for two different HTLs using SCAPS simulation				
HTL	\(V_{oc} \) (V)	\(J_{sc} \) (mA/cm²)	FF	PCE (%)	\(R_s \) (Ωcm²)
P₃HT	1.09	1.73	0.76	1.44	9.25
Cu₂O	1.17	3.42	0.78	3.13	9.25
Figure 5a demonstrates the current density–voltage curves for numerous defect density (N_t) of Cs$_2$AgBiBr$_6$, changing from 10^{12} to 10^{17} cm$^{-3}$. Figure 5b indicates the performance parameters of V_{oc}, J_{sc}, FF and efficiency against defect density (N_t) of device varying from 10^{12} to 10^{17} cm$^{-3}$. As shown in Fig. 5b, the efficiency of device was initiated from 4.06% at 10^{12}, 10^{13} and 10^{14} cm$^{-3}$ and reduced to 4.04% at 10^{15} cm$^{-3}$, 3.93% at 10^{16} cm$^{-3}$, and 3.27% at 10^{17} cm$^{-3}$. The FF, J_{sc} and V_{oc} are also plotted in Fig. 5b. As Fig. 5b suggests, the optimized value of these parameters can be acquired at defect density of 10^{14} cm$^{-3}$. It is appeared that the high crystallinity of the double perovskite result in the minimum of defect density thereby dwindling charge recombination and thus higher efficiency are gained (Zhu et al. 2020; Li et al. 2019; Tan et al. 2020). The V_{oc} of 1.09 V, J_{sc} of 6.35 mA/cm2, the FF of 0.58 and efficiency of 4.06% are gained.
4.3 Effect of the valence band offset at the HTL side

The serious factor between Cs$_2$AgBiBr$_6$ and P$_3$HT layers is band offset which controls the carrier recombination at the interface and it measures V_{oc}. By changing the band gaps of P$_3$HT (1.5–3.2 eV), the band offset can be attuned, according to Table 1 and the following formula:

$$VBO = (\chi_{HTL} + E_{g,HTL}) - (\chi_{DP} + E_{g,DP})$$ (7)

where χ_{DP} and χ_{HTL} are the affinity, $E_{g,DP}$ and $E_{g,HTL}$ are the band gap of Cs$_2$AgBiBr$_6$ and P$_3$HT, respectively. VBO is enhanced from -1.54 to $+0.16$ eV. Figure 6a exhibits the...
current density–voltage curves for various band gaps of P3HT changing from 1.5 to 3.2 eV. Figure 6b displays the energy band diagrams for the band gaps of P3HT varying from 1.5 to 3.2 eV. As indicated by Fig. 6, the optimal value for VBO is happened at +0.16 eV (the band gap of P3HT is 3.2 eV). Since VBO is positive, the spike is established. Meanwhile, the formed spike is lower than 0.2 eV, the hole can move to P3HT (Minemoto and Murata 2015). The V_{oc} of 1.87 V, J_{sc} of 6.38 mA/cm2, FF of 0.83 and efficiency of 10.0% are obtained.

4.4 Effect of the conduction band offset at the ETL side

The earnest factor between SnO$_2$ and Cs$_2$AgBiBr$_6$ layers is band offset which controls the carrier recombination at the interface and it evaluates V_{oc}. By altering the affinity of SnO$_2$ in the range of 4.0 to 4.5 eV, the band offset can be adjusted. According to Table 1 and the following formula:

$$CBO = \chi_{DP} - \chi_{ETL}$$

where χ_{DP} and χ_{ETL} are the affinity of Cs$_2$AgBiBr$_6$ and SnO$_2$, respectively. The obtained CBO is changed from +0.19 to −0.31 eV. Figure 7a exhibits the current density–voltage curves for the CBO of Cs$_2$AgBiBr$_6$/SnO$_2$ changing from +0.19 to −0.31 eV, also Fig. 7b displays the energy band diagrams. As indicated by these figures, the optimal value for CBO is occurred at −0.21 eV (affinity of SnO$_2$ is 4.4 eV). The CBO is negative which means that the cliff is formed, the electron can simply drift to SnO$_2$ (Minemoto and Murata 2015). The V_{oc} of 1.87 V, J_{sc} of 6.39 mA/cm2, FF of 0.88 and efficiency of 10.57% are achieved.

4.5 Effect of doping concentration (N_A) of P$_3$HT

Figure 8a displays the current density–voltage curves for various doping concentration of P$_3$HT changing from 5×10^{12} to 5×10^{21} cm$^{-3}$. According to this figure, the larger

Fig. 7 a The current density–voltage curves for CBO of Cs$_2$AgBiBr$_6$/SnO$_2$ changing from +0.19 to −0.31 eV. b The energy band diagrams for CBO of Cs$_2$AgBiBr$_6$/SnO$_2$ changing from +0.19 to −0.31 eV
concentrations caused higher efficiency due to better charge transport and charge extraction at the P3HT/absorber interface. Figure 8b denotes the effect of N_A on the performance parameters. It determines that PCE is low at low level of N_A which is owing to high series resistance in line with the former studies (Daraie and Fattah 2020; Jamal et al. 2020; Wang et al. 2020). Thus, according to Fig. 8b, PCE is maximized at $N_A = 5 \times 10^{19}$ cm$^{-3}$ and larger values. The V_{oc} of 1.87 V, J_{sc} of 6.39 mA/cm2, FF of 0.88, and efficiency of 10.59% are found.

4.6 Effect of doping concentration (N_D) of SnO$_2$

Figure 9a displays the current density–voltage curves with varying doping concentration of SnO$_2$ changing from 5×10^{12} to 5×10^{21} cm$^{-3}$. According to this figure, the greater concentrations produce the better charge transport and charge extraction at the SnO$_2$/absorber interface. Figure 9b shows the effect of N_D on the performance parameters. Again it defines that PCE is low at low level of N_D which is owing to high series resistance in agreement with aforementioned studies (Daraie and Fattah 2020; Jamal et al. 2020; Wang et al. 2020). Thus, according to Fig. 9b, PCE is maximized at 10.59% for $N_D = 5 \times 10^{19}$ cm$^{-3}$, 10.55% for $N_D = 5 \times 10^{20}$ cm$^{-3}$, and 10.48% for $N_D = 5 \times 10^{21}$ cm$^{-3}$. As shown in Fig. 9b, the efficiency of 10.59%, V_{oc} of 1.87 V, J_{sc} of 6.39 mA/cm2 and FF of 0.88 are obtained.

4.7 Effect of capture cross section in the absorber layer

Figure 10 demonstrates the current density–voltage curves for $N_{t,DP}$ (defect density of absorber layer) and different capture cross section ($\sigma_{n,p}$) varying from 10^{-20} to 10^{-12} cm2 (Shikoh et al. 2020; Bruzzi et al. 2020; Nithya and Sudheer 2020). After optimizing, we achieved the optimum values of $\sigma_{n,p}$ and $N_{t,DP}$ (Jamal et al. 2019; Rai et al. 2020; Teimouri et al. 2020).
Finally, here we report the highest PCE. It should be noted that we only draw the PCE curve. We avoid to draw V_{oc}, J_{sc}, and FF curves. The highest PCE is achieved at optimum values of N_t, DP of 10^{12} cm$^{-2}$ for N_t, DP of 10^{13} cm$^{-3}$, at N_t, DP of 10^{12} cm$^{-2}$ for N_t, DP of 10^{13} cm$^{-3}$, and at N_t, DP of 10^{12} cm$^{-3}$. According to Fig. 11, the highest efficiency of 10.60%, V_{oc} of 1.87 V, J_{sc} of 6.39 mA/cm2, and FF of 0.88 are obtained.

4.8 Effect of interface defect density of $P_3HT/Cs_2AgBiBr_6$ and $Cs_2AgBiBr_6/SnO_2$

The serious factor of $Cs_2AgBiBr_6$ and P_3HT or $Cs_2AgBiBr_6$ and SnO_2 interfaces is band offset which controls the carrier recombination at the interface and it affects V_{oc}. The V_{oc}, J_{sc}, and FF curves are not shown in Fig. 12, we only draw the PCE curve. According to Fig. 12, PCE is plotted against interface defect density of $P_3HT/Cs_2AgBiBr_6$ and $Cs_2AgBiBr_6/SnO_2$. As shown in Fig. 12a, the PCE is depicted against interface defect density of $P_3HT/Cs_2AgBiBr_6$ changing from 10^{12} to 10^{18} cm$^{-2}$. Figure 12b represents PCE against interface defect density of $Cs_2AgBiBr_6/SnO_2$ changing from 10^7 to 10^{14} cm$^{-2}$. As shown in Fig. 12a, PCE is initiated from 10.60% at interface defect density of 10^{12}, 10^{13}, and 10^{14} cm$^{-2}$, decreased to 10.59% at 10^{15} cm$^{-2}$, 10.58% at 10^{16} cm$^{-2}$, 10.54% at 10^{17} cm$^{-2}$, and 10.51% at 10^{18} cm$^{-2}$. As far as this figure is concerned, the optimum value of 10^{14} cm$^{-2}$ is obtained, with PCE of 10.60%, V_{oc} of 1.87 V, J_{sc} of 6.39 mA/cm2, and FF of 0.88. According to Fig. 12b, PCE is started from 10.61% at 10^7, 10^8, and 10^9 cm$^{-2}$, reduced to 10.60% at 10^{10} cm$^{-2}$, 10.55% at 10^{11} cm$^{-2}$, 10.24% at 10^{12} cm$^{-2}$, 9.41% at 10^{13} cm$^{-2}$, and 8.40% at 10^{14} cm$^{-2}$. As shown in this figure, the optimum value is occurred at 10^9 cm$^{-2}$, with PCE of 10.61%, V_{oc} of 1.88 V, J_{sc} of 6.39 mA/cm2, and FF of 0.88.

4.9 Effect of radiative recombination of $Cs_2AgBiBr_6$

In $Cs_2AgBiBr_6$, the Shockley-Reed-Hall (SRH) and radiative recombination are the most prominent recombinations (Islam et al. 2020a, b). However, there is Auger recombination in $Cs_2AgBiBr_6$ when the double perovskite material is highly doped (Jani et al.
Fig. 10 The current density–voltage curves for a $\sigma_{n,p} = 10^{-20}$ cm2, b $\sigma_{n,p} = 10^{-19}$ cm2, c $\sigma_{n,p} = 10^{-18}$ cm2, d $\sigma_{n,p} = 10^{-17}$ cm2, e $\sigma_{n,p} = 10^{-16}$ cm2, f $\sigma_{n,p} = 10^{-15}$ cm2, g $\sigma_{n,p} = 10^{-14}$ cm2, h $\sigma_{n,p} = 10^{-13}$ cm2, and i $\sigma_{n,p} = 10^{-12}$ cm2.
Figure 13a represents the current density–voltage curves and Fig. 13b shows the PCE against radiative recombination changing from 2.3×10^{-8} to 2.3×10^{-14} cm3/s. According to Fig. 13b, the amount of radiative recombination is maximized at 2.3×10^{-13} cm3/s, with efficiency of 11.69%, V_{oc} of 2.03 V, J_{sc} of 6.39 mA/cm2, and FF of 0.90. The V_{oc}, J_{sc} and FF curves are not shown. In addition to current density–voltage, we only draw the PCE curve.

As Fig. 14a shows, after performing all these optimizations for device of ITO/SnO$_2$/Cs$_2$AgBiBr$_6$/P$_3$HT/Au, the performance parameters of V_{oc} of 2.03 V, J_{sc} of 6.39 mA/cm2, FF of 0.90, and PCE of 11.69% are attained. For this device, the external quantum efficiency is depicted in Fig. 14b. As shown in this figure, the external quantum efficiency is commenced at the wavelength of 330 nm and improved rapidly to 58.87% at 340 nm and then reduced to zero at 610 nm.

In this step, we examined the other HTL, named Cu$_2$O. Figure 15a exhibits the current density-voltage curve and Fig. 15b illustrates the external quantum efficiency, for ITO/SnO$_2$/Cs$_2$AgBiBr$_6$/Cu$_2$O/Au cell. After optimizing the mentioned parameters, the performance parameters are obtained as V_{oc} of 1.97 V, J_{sc} of 6.39 mA/cm2, FF of 0.895 (89.5%) and efficiency of 11.32%. As specified by Fig. 15b, the external quantum efficiency is commenced at the wavelength of 330 nm and improved rapidly to 58.87% at 340 nm and then reduced to zero at 610 nm.
Fig. 11 The PCE of solar cell against defect density of double perovskite for a $\sigma_{n,p} = 10^{-20}$ cm2, b $\sigma_{n,p} = 10^{-19}$ cm2, c $\sigma_{n,p} = 10^{-18}$ cm2, d $\sigma_{n,p} = 10^{-17}$ cm2, e $\sigma_{n,p} = 10^{-16}$ cm2, f $\sigma_{n,p} = 10^{-15}$ cm2, g $\sigma_{n,p} = 10^{-14}$ cm2, h $\sigma_{n,p} = 10^{-13}$ cm2, and i $\sigma_{n,p} = 10^{-12}$ cm2
Fig. 11 (continued)

Fig. 12
(a) PCE against interface defect density of P3HT/Cs2AgBiBr6 changing from 10^{12} to 10^{18} cm$^{-2}$.
(b) PCE against interface defect density of Cs2AgBiBr6/SnO2 varying from 10^7 to 10^{14} cm$^{-2}$.
efficiency is started at the wavelength of 300 nm and enlarged rapidly to the apex of 59.34% at 340 nm and then decreased to zero at 610 nm.

Double perovskites are a new class of material with good inherent stability. After performing all optimization, for both P3HT and Cu2O, the PCE of 11.69% and 11.32% are achieved, respectively. It is required to mention that, the PCE of 7.92% were reported in the simulation studies of Cs2AgBiBr6, employing different ETL and HTL layers (Savory et al. 2016).

As shown in Fig. 4, if the thickness of Cs2AgBiBr6 is chosen 600 nm (Islam et al. 2020a, b), after doing the same procedure as mentioned in this manuscript, PCE of 8.47%, V_{oc} of 1.97 V, J_{sc} of 4.73 mA/cm², and FF of 0.908 were obtained, which means that the efficiency of device is increased theoretically by 488.19% compared to the experiment. And for the other double perovskite, Cs2TiBr6, the thickness of this double perovskite is obtained as 800 nm (Jani et al. 2020). We are performing the same procedure in this thickness, PCE of 9.95%, V_{oc} of 2.01 V, J_{sc} of 5.47 mA/cm², and FF of 0.90
were attained, which means that PCE is enhanced theoretically by 590.97% against the experiment.

5 Conclusion

In conclusion, due to the existing of lead in the structure of perovskite solar cell as well as the inherent low efficiency of the double perovskite solar cell, the current study aims to overcome the mentioned shortcomings by comparing two HTLs using SCAPS software. Two devices with two different HTLs were examined, P_3HT and Cu_2O. For both devices, an optimal thickness of 1200 nm and defect density of 1.0 \times 10^{14} \text{ cm}^{-3} for Cs_2AgBiBr_6 layer were attained. For both devices, the highest efficiency is obtained as CBO of \(-0.21\) eV and VBO of \(+0.16\) eV. For shallow acceptor doping concentration of HTLs (P_3HT and Cu_2O), the values of \(5 \times 10^{19}\) and \(5 \times 10^{17} \text{ cm}^{-3}\) were obtained, respectively. As far as the shallow donor density of ETLs is concerned, for both cases, we achieved the optimal value of \(5 \times 10^{19} \text{ cm}^{-3}\). The optimal values of capture cross section \((\sigma_{np})\) in absorber layer for both HTLs are achieved to be \(\sigma_{np} = 10^{-20}\) cm\(^2\) for \(N_{t,DP} = 10^{16} \text{ cm}^{-3}\), \(\sigma_{np} = 10^{-19}\) cm\(^2\) for \(N_{t,DP} = 10^{15} \text{ cm}^{-3}\), \(\sigma_{np} = 10^{-18}\) cm\(^2\) for \(N_{t,DP} = 10^{14} \text{ cm}^{-3}\), \(\sigma_{np} = 10^{-17}\) cm\(^2\) for \(N_{t,DP} = 10^{13} \text{ cm}^{-3}\), and \(\sigma_{np} = 10^{-16}\) cm\(^2\) for \(N_{t,DP} = 10^{12} \text{ cm}^{-3}\). For P_3HT device, the optimum value of the interface defect density of P_3HT/Cs_2AgBiBr_6 is occurred at \(1.0 \times 10^{14} \text{ cm}^{-2}\), and for Cs_2AgBiBr_6/SnO_2 is happened at \(1.0 \times 10^{9} \text{ cm}^{-2}\). For Cu_2O device, the optimal value of the interface defect density of Cu_2O/Cs_2AgBiBr_6 is befallen at \(1.0 \times 10^{15} \text{ cm}^{-2}\), and for Cs_2AgBiBr_6/SnO_2 is taken place at \(1.0 \times 10^{10} \text{ cm}^{-2}\). About radiative recombination, for P_3HT device, the optimal value is happened at \(2.3 \times 10^{-13} \text{ cm}^{3}/\text{s}\), however, for Cu_2O device is occurred at \(2.3 \times 10^{-12} \text{ cm}^{3}/\text{s}\). Finally, for P_3HT device, PCE of 11.69\% (\(V_{oc}\) of 2.02 V, \(J_{sc}\) of 6.39 mA/cm\(^2\), and FF of 0.90 (90\%)) were accomplished, and for Cu_2O device, a PCE of 11.32\% (\(V_{oc}\) of 1.97 V, \(J_{sc}\) of 6.39 mA/cm\(^2\), and FF of 0.895 (89.5\%)) were attained. To sum up, the PCE for P_3HT device has been enhanced theoretically by 711.80\%, and for Cu_2O device has been enlarged by 686.11\% compared with the 1.44\% efficiency.
reported in the experiment. The future research could be undertaken in these kind of double perovskite materials, due to having vigorous stability against decomposition and demonstrates flexible tunability band gaps of optoelectronic properties in the range of infrared to ultraviolet. Overall, the elicited results suggest that Cs$_2$AgBiBr$_6$ and some other double perovskites can play a momentous role as an absorbing layer towards the highly efficient lead-free and inorganic PSC technology, in designing eco-friendly PSC for future technologies.

Acknowledgements

The authors would desire to acknowledge Professor Marc Burgelman from the Department of Electronics and Information Systems, University of Gent for the development of the SCAPS software and permitting its use.

References

Ahmed, S., Jannat, F., Khan, M.A.K., Alim, M.A.: Numerical development of eco-friendly Cs$_2$TiBr$_6$ based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik 225, 165765–165781 (2021). https://doi.org/10.1016/j.ijleo.2020.165765

Bouich, A., Mari, B., Atourki, L., Ullah, S., Touhami, M.E.: Shedding light on the effect of diethyl ether antisolvent on the growth of (CH$_3$NH$_3$)$_2$PbI$_4$ thin films. JOM 73(2), 551–557 (2021a). https://doi.org/10.1007/s11837-020-04518-5

Bouich, A., Ullah, S., Mari, B., Atourki, L., Touhami, M.E.: One-step synthesis of FA$_{1-x}$GA$_x$PbI$_4$ perovskites thin film with enhanced stability of alpha (α) phase. Mater. Chem. Phys. 258, 123973–123980 (2021b). https://doi.org/10.1016/j.matchemphys.2020.123973

Bruzzi, M., Falsini, N., Calisi, N., Vinattieri, A.: Electrically active defects in polycrystalline and single crystal metal halide perovskite. Energies 13(7), 1643–1656 (2020). https://doi.org/10.3390/en13071643

Burgelman, M., Nollet, P., Degraeve, S.: Modeling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

Burwig, T., Guc, M., Izquierdo-Roca, V., Pistor, P.: Synthesis and crystal structure evolution of co-evaporated Cs$_2$AgBiBr$_6$ thin films upon thermal treatment. J. Phys. Chem. C 124(17), 9249–9255 (2020). https://doi.org/10.1021/acs.jpcc.0c02480

Chen, M., Ju, M.-G., Carl, A.D., Zong, Y., Grimm, R.L., Gu, J., Zeng, X.C., Zhou, Y., Padture, N.P.: Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2(3), 558–570 (2018). https://doi.org/10.1016/j.joule.2018.01.009

Chow, P.C.Y., Someya, T.: Organic photodetectors for next-generation wearable electronics. Adv. Mater. 32(15), 1902045–1902070 (2020). https://doi.org/10.1002/adma.201902045

Coulibaly, A.B., Oyedele, S.O., Kre, N.R., Aka, B.: Comparative study of lead-free perovskite solar cells using different Hole Transporter Materials. MNSMS 9(4), 97–107 (2019). https://doi.org/10.4236/mnns.2019.94006

Dang, Y., Tong, G., Song, W., Lui, Z., Qiu, L., Ono, L.K., Qi, Y.: Interface engineering strategies towards Cs$_2$AgBiBr$_6$ single-crystalline photodetectors with good Ohmic contact behaviors. J. Mater. Chem. C 8(1), 276–284 (2020). https://doi.org/10.1039/c9tc04780h

Daraie, A., Fattah, A.: Performance improvement of perovskite heterojunction solar cell using graphene. Opt. Mater. 109, 110254–110261 (2020). https://doi.org/10.1016/j.optmat.2020.110254

Du, K.-Z., Meng, W., Wang, X., Yan, Y., Mitzi, D.B.: Bandgap engineering of lead-free double perovskite Cs$_2$AgBiBr$_6$ through Trivalent Metal Alloying. Angew. Chem. Int. Ed. 56(28), 8158–8162 (2017). https://doi.org/10.1002/anie.201703970

Ganvir, R.: Modelling of the nanowire CdS-CdTe device for enhanced quantum efficiency in window-absorber type solar cells. Theses and Dissertation-Electrical and Computer Engineering, University of Kentucky (2016). https://doi.org/10.13023/ETD.2016.036

Ghasemi, M., Zhang, L., Yun, J.-H., Hao, M., He, D., Chen, P., Bai, Y., Lin, T., Xiao, M., Du, A., Lyu, M., Wang, L.: Dual-ion-diffusion induced degradation in lead-free Cs$_2$AgBiBr$_6$ double perovskite solar cells. Adv. Funct. Mater. 30(42), 2002342–2002351 (2020). https://doi.org/10.1002/adfm.202002342

Giustino, F., Snaith, H.J.: Toward lead-free perovskite solar cells. ACS Energy Lett. 1(6), 1233–1240 (2016). https://doi.org/10.1021/acsenergylett.6b00499
Gu, S., Lin, R., Han, Q., Gao, Y., Tan, H., Zhu, J.: Tin and mixed lead–tin halide perovskite solar cells: progress and their application in tandem solar cells. Adv. Mater. 32(27), 1907392–1907407 (2020). https://doi.org/10.1002/adma.201907392

He, T., Jiang, Y., Xing, X., Yuan, M.: Structured perovskite light absorbers for efficient and stable photovoltaics. Adv. Mater. 32(26), 1903937–1903953 (2020). https://doi.org/10.1002/adma.201903937

Islam, T., Jani, R., Al Amin, S.M., Shorowordi, K.M., Nishat, S.S., Kabir, A., Taufiqur, M.F.N., Chowdhury, S., Banerjee, S., Ahmed, S.: Simulation studies to quantify the impacts of point defects: an investigation of Cs3AgBiBr6 perovskite solar devices utilizing ZnO and Cu2O as the charge transport layers. Comput. Mater. Sci. 184, 109865–109873 (2020b). https://doi.org/10.1016/j.commatsci.2020.109865

Islam, M.T., Juni, M.R., Al Amin, S.M., Sami, M.S.U., Shorowordi, K.M., Hussain, M.I., Devgun, M., Chowdhury, S., Banerje, S., Ahmed, S.: Numerical simulation studies of a fully inorganic Cs3AgBiBr6 perovskite solar device. Opt. Mater. 105, 109957–109966 (2020a). https://doi.org/10.1016/j.optmat.2020.109957

Jamal, M.S., Shahmahdi, S.A., Wadi, M.A.A., Chelvanathan, P., Asim, N., Misran, H., Hussain, M.I., Amin, N., Sopian, K., Akhtaruzzaman, M.: Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik 182, 1204–1210 (2019). https://doi.org/10.1016/j.ijjile.2018.12.163

Jamal, S., Khan, A.D., Khan, A.D.: High performance perovskite solar cell based on efficient materials for electron and hole transport layers. Optik 218, 164787–164797 (2020). https://doi.org/10.1016/j.ijjile.2020.164787

Jani, M.R., Islam, M.T., Al Amin, S.M., Sami, M.S.U., Shorowordi, K.M., Hussain, M.I., Chowdhury, S., Nishat, S.S., Ahmed, S.: Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: a numerical study. Superlattices Microstruct. 146, 106652–106664 (2020). https://doi.org/10.1016/j.jpms.2020.106652

Jiang, X., Wang, F., Wei, Q., Li, H., Shang, Y., Zhou, W., Wang, C., Cheng, P., Chen, Q., Chen, L., Ning, Z.: Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 11(1), 1–7 (2020). https://doi.org/10.1038/s41467-20-15078-2

Keshavarz, M., Debroye, E., Ottesen, M., Martin, C., Zhang, H., Fron, E., Küchler, R., Steele, J.A., Bremholm, M., Van de Vondel, J., Wang, H.I., Bonn, M., Roeffaers, M.B.J., Wiedmann, S., Hofkens, J.: Tuning the structural and optoelectronic properties of Cs2AgBiBr6 double-perovskite single crystals through Alkali-Metal Substitution. Adv. Mater. 32(40), 2001878–2001887 (2020). https://doi.org/10.1002/adma.202001878

Kim, M., Ryu, S.U., Park, S.A., Choi, K., Kim, T., Chung, D., Park, T.: Organic field-effect transistors: donor–acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv. Funct. Mater. 30(20), 207013–2070154 (2020). https://doi.org/10.1002/adfm.201904545

Lee, J-W., Park, N.G.: Chemical approaches for stabilizing perovskite solar cells. Adv. Energy Mater. 10(1), 1903249–1903269 (2020). https://doi.org/10.1002/aenm.201903249

Li, H., Zhang, W.: Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120(18), 9835–9950 (2020). https://doi.org/10.1021/acs.chemrev.9b00780

Li, P., Gao, W., Ran, C., Dong, H., Hou, X., Wu, Z.: Post-treatment engineering of vacuum-deposited Cs5NaBi6 double perovskite film for enhanced photovoltaic performance. Phys. Status Solidi (a) 216(23), 1900567–1900574 (2019). https://doi.org/10.1002/pssa.201900567

Li, C., Song, Z., Chen, C., Xiao, C., Subedi, B., Harvey, S.P., Shrestha, N., Subedi, K.K., Chen, L., Liu, D., Li, Y., Kim, Y.-W., Jiang, C.-S., Heben, M.J., Zhao, D., Ellingson, R.J., Podraza, N.J., Al-Jasim, M., Yan, Y.: Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat. Energy 5(10), 768–776 (2020). https://doi.org/10.1038/s41560-020-00692-7

Liao, W., Zhao, D., Yu, Y., Grice, C.R., Wang, C., Cimaroli, A.J., Schulz, P., Meng, W., Zhu, K., Xiong, R.-G., Yan, Y.: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28(42), 9333–9340 (2016). https://doi.org/10.1002/adma.201602992

Liu, X., Wang, Y., Wu, T., He, X., Meng, X., Barbadou, J., Chen, H., Segawa, H., Yang, X., Han, L.: Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun. 11, 2678–2684 (2020b). https://doi.org/10.1038/s41467-020-16561-6

Liu, M., Pasanen, H., Ali-Löytty, H., Hiltunen, A., Lahtonen, K., Quails, S., Smått, J.-H., Valden, M., Tkachenko, N.V., Vivo, P.: B-site co-alloying with germanium improves the efficiency and stability of all-inorganic tin-based perovskite nanocrystal solar cells. Angew. Chem. 132(49), 22301–22309 (2020a). https://doi.org/10.1002/ange.202008724
Numerical simulation of inorganic Cs$_2$AgBiBr$_6$ as a lead-free…

Longo, G., Mahesh, S., Buizza, L.R.V., Wright, A.D., Ramadan, A.J., Abdí-Jalebi, M., Nayar, P.K., Herz, L.M., Snaith, H.J.: Understanding the performance-limiting factors of Cs$_2$AgBiBr$_6$ double-perovskite solar cells. ACS Energy Lett. 5(7), 2200–2207 (2020). https://doi.org/10.1021/acsenergylett.0c01020

McClure, E.T., Ball, M.R., Windl, W., Woodward, P.M.: Cs$_2$AgBi$_6$X$_6$ (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28(5), 1348–1354 (2016). https://doi.org/10.1021/acs.chemmater.5b04231

Minbashi, M., Gobadi, A., Ehsani, M.H., Dizaji, H.R., Memarian, N.: Simulation of high efficiency SnS-based solar cells with SCAPS. Sol. Energy 176, 520–525 (2018). https://doi.org/10.1016/j.solener.2018.10.058

Minemoto, T., Murata, M.: Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cells 133, 8–14 (2015). https://doi.org/10.1016/j.solmat.2014.10.036

Minemoto, T., Kawano, Y., Nishimura, T., Chantana, J.: Numerical reproduction of a perovskite solar cell by device simulation considering band gap grading. Opt. Mater. 92, 60–66 (2019). https://doi.org/10.1016/j.optmat.2019.03.048

Mikhail, I.A., Shawky, A.: Cu-supported Cu$_2$O nanoparticles: optimized photodeposition enhances the visible light photodestruction of atrazine. J. Alloys Compd. 853, 157040–157048 (2021). https://doi.org/10.1016/j.jallcom.2020.157040

Mohseni, H.R., Dehghanipour, M., Dehghan, N., Sabet, M., Behjat, A.: Enhancement of the photovoltaic performance and the stability of perovskite solar cells via the modification of transport layers with reduced graphene oxide/polyaniline composite. Sol. Energy 213, 59–66 (2021). https://doi.org/10.1016/j.solener.2020.11.017

Nithya, K.S., Sudheer, K.S.: Device modelling of non-fullerene organic solar cell with inorganic CuI hole transport layer using SCAPS 1-D. Optik 217, 164790–164800 (2020). https://doi.org/10.1016/j.ijleo.2020.164790

Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarrera, S., Haghighirad, A.-A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Heriz, L.M., Snaith, H.J.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014). https://doi.org/10.1039/c4ee01076k

Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S.S., Ma, T., Hayase, S.: CH$_3$NH$_3$Sn$_x$Pb$_{1−x}$I$_3$ perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5(6), 1004–1014 (2014). https://doi.org/10.1021/jz5022117

Polli, I., Kim, G.-W., Wong, E.L., Treglia, A., Folpini, G., Petrozza, A.: High external photoluminescence quantum yield in tin halide perovskite thin films. ACS Energy Lett. 6(2), 609–611 (2021). https://doi.org/10.1021/acsenergylett.0c02612

Rai, S., Pandey, B.K., Dwivedi, D.K.: Modeling of highly efficient and low cost CH$_3$NH$_3$Pb(I$_{1−x}$Cl$_x$)$_3$ based perovskite solar cell by numerical simulation. Opt. Mater. 100, 109631–109638 (2020). https://doi.org/10.1016/j.optmat.2019.109631

Savory, C.N., Walsh, A., Scanlon, D.O.: Can Pb-free halide double perovskites support high-efficiency solar cells? ACS Energy Lett. 1(5), 949–955 (2016). https://doi.org/10.1021/acsenergylett.6b00471

Shi, Z., Guo, J., Chen, Y., Li, Q., Zhang, H., Xia, Y., Huang, W.: Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. 29(16), 1605005–1605032 (2017). https://doi.org/10.1002/adma.201605005

Shikoh, A.S., Paek, S., Polyakov, A.Y., Smirnov, N.B., Shchemerov, I.V., Saranin, D.S., Didenko, S.I., Ahmad, Z., Touati, F., Nazeeruddin, M.K.: Assessing mobile ions contributions to admittance spectra and current–voltage characteristics of 3D and 2D/3D perovskite solar cells. Sol. Energy Mater. Sol. Cells 215, 110670–110677 (2020). https://doi.org/10.1016/j.solmat.2020.110670

Singh, A.N., Kajal, S., Kim, J., Jana, A., Kim, J.Y., Kim, K.S.: Interface engineering driven stabilization of halide perovskites against moisture, heat, and light for optoelectronic applications. Adv. Energy Mater. 10(30), 2000768–2000807 (2020). https://doi.org/10.1002/aenm.202000768

Slavney, A.H., Hu, T., Lindenberg, A.M., Karunadasa, H.I.: Bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138(7), 2138–2141 (2016). https://doi.org/10.1021/jacs.5b13294

Slavney, A.H., Leppert, L., Bartesaghi, D., Gold-Parker, A., Toney, M.F., Savenije, T.J., Neaton, J.B., Karunadasa, H.I.: Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption. J. Am. Chem. Soc. 139(14), 5015–5018 (2017). https://doi.org/10.1021/jacs.7b01629

Soto-Montero, T., Flores-Díaz, N., Molina, D., Soto-Navarro, A., Lizano-Villalobos, A., Camacho, C., Hagfeldt, A., Pineda, L.W.: Dopant-free hole-transport materials with germanium compounds bearing pseudohalide and chalcogenide moieties for perovskite solar cells. Inorg. Chem. 59(20), 15154–15166 (2020). https://doi.org/10.1021/acs.inorgchem.0c02120

Tan, X., Liu, X., Liu, Z., Sun, B., Li, J., Xi, S., Shi, T., Tang, Z., Liao, G.: Enhancing the optical, morphological and electronic properties of the solution-processed CsPbBr$_2$ films by Li doping for efficient carbon-based perovskite solar cells. Appl. Surf. Sci. 499, 143990–144020 (2020). https://doi.org/10.1016/j.apsusc.2019.143990
Teimouri, R., Heydari, H., Ghaziani, M.P., Madani, M., Abdy, H., Kolahdouz, M., Asl-Soleimani, E.: Synthesizing Li doped TiO2 electron transport layers for highly efficient planar perovskite solar cell. Superlattices Microstruct. 145, 106627–106637 (2020). https://doi.org/10.1016/j.spmi.2020.106627

Usiobo, O.J., Kanda, H., Gratia, P., Zimmermann, I., Wirtz, T., Nazeeruddin, M.K., Audinot, J.-N.: Nanoscale mass-spectrometry imaging of grain boundaries in perovskite semiconductors. J. Phys. Chem. C 124(42), 23230–23236 (2020). https://doi.org/10.1021/acs.jpcc.0c07464

Wang, B., Yang, J., Lu, L., Xiao, W., Wu, H., Xiong, S., Tang, J., Duan, C., Bao, Q.: Interface engineering of air-stable n-doping fullerene-modified TiO2 electron transport layer for highly efficient and stable perovskite solar cells. Adv. Mater. Interfaces 7(6), 1901964–1901969 (2020). https://doi.org/10.1002/admi.201901964

Wei, F., Deng, Z., Sun, S., Zhang, F., Evans, D.M., Kieslich, G., Tominaka, S., Carpenter, M.A., Zhang, J., Bristowe, P.D., Cheetham, A.K.: The synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6. Chem. Mater. 29(3), 1089–1094 (2017). https://doi.org/10.1021/acs.chemmater.6b03944

Wu, C., Zhang, Q., Liu, Y., Luo, W., Guo, X., Huang, Z., Ting, H., Sun, W., Zhong, X., Wei, S., Wang, S., Chen, Z., Xiao, L.: The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 5(3), 1700759–1700766 (2018). https://doi.org/10.1002/advs.201700759

Xi, J., Wu, Z., Jiao, B., Dong, H., Ran, C., Piao, C., Lei, T., Song, T.-B., Ke, W., Yokoyama, T., Hou, X., Kanatzidis, M.G.: Multichannel interdiffusion driven FASN1 film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells. Adv. Mater. 29(23), 1606964–1606970 (2017). https://doi.org/10.1002/adma.201606964

Xu, K.: Development of tin-based perovskite materials for solar cell applications: a minireview. Instrum. Sci. Technol. 49(1), 91–105 (2021). https://doi.org/10.1080/10739149.2020.1785891

Xu, Z., Teo, S.H., Gao, L., Guo, Z., Kamata, Y., Hayase, S., Ma, T.: La-doped SnO2 as ETL for efficient planar-structure hybrid perovskite solar cells. Org. Electron. 73, 62–68 (2019). https://doi.org/10.1016/j.orgel.2019.03.053

Xu, J., Saklatvala, R., Mittal, S., Deshmukh, S., Procopio, A.: Recent progress of potentiating immune checkpoint blockade with external stimuli—an industry perspective. Adv. Sci. 7(8), 1903394–1903411 (2020). https://doi.org/10.1002/advs.201903394

Yang, Z., Dou, J., Kou, S., Dang, J., Ji, Y., Yang, G., Wu, W.-Q., Kuang, D.-B., Wang, M.: Multifunctional phosphorus-containing lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells. Adv. Funct. Mater. 30(15), 1910710–1910718 (2020b). https://doi.org/10.1002/adfm.201910710

Yang, X., Chen, Y., Liu, P., Xiang, H., Wang, W., Ran, R., Zhou, W., Shao, Z.: Simultaneous power conversion efficiency and stability enhancement of Cs2AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer. Adv. Funct. Mater. 30(23), 2001557–2001564 (2020a). https://doi.org/10.1002/adfm.202001557

Zhang, F., Zhu, K.: Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10(13), 1902579-1902604 (2020). https://doi.org/10.1002/aenm.201902579

Zhang, H., Dun, G., Feng, Q., Zhao, R., Liang, R., Gao, Z., Hirtz, T., Chen, M., Geng, X., Liu, M., Huang, Y., Zheng, X., Qin, K., Tan, X., Wang, X., Xie, D., Yang, Y., Tian, H., Zhou, Y., Padture, N., Wang, X., Hong, J., Ren, T.-L.: Encapsulated X-ray detector enabled by all-inorganic lead-free perovskite film with high sensitivity and low detection limit. IEEE Trans. Electron Devices 67(8), 3191–3198 (2020). https://doi.org/10.1109/ted.2020.2998763

Zhao, X.-G., Yang, J.-H., Fu, Y., Yang, D., Xu, Q., Yu, L., Wei, S.-H., Zhang, L.: Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139(7), 2630–2638 (2017). https://doi.org/10.1021/jacs.6b09645

Zhao, P., Lin, Z., Wang, J., Yue, M., Su, J., Zhang, J., Chang, J., Hao, Y.: Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer. ACS Appl. Energy Mater. 2(6), 4504–4512 (2019). https://doi.org/10.1021/acsaeem.9b00755

Zhu, L., Liu, D., Wang, J., Wang, N.: Large organic cations in quasi-2D perovskites for high-performance light-emitting diodes. J. Phys. Chem. Lett. 11(20), 8502–8510 (2020). https://doi.org/10.1021/acs.jpclett.0c02476

Zuo, F., Williams, S.T., Liang, P.-W., Chueh, C.-C., Liao, C.-Y., Jen, A.K.-Y.: Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater. 26(37), 6454–6460 (2014). https://doi.org/10.1002/adma.201401641

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.