A simple method to minimize limb-length discrepancy after hip arthroplasty

Kenta Matsuda, Shigeru Nakamura and Takashi Matsushita

Background Limb-length discrepancy is not uncommon after total hip arthroplasty. To minimize such discrepancies, we introduced a simple method to select an appropriate modular head during surgery.

Patients and methods We used this method in 45 hips, and compared the outcome with that of a historical control group of 47 hips. Both groups received cementless femoral components with modular heads of 4 different neck lengths. In the study group, we calculated the ideal distance between the center of the modular head and lesser trochanter on a preoperative AP radiograph. During surgery, we measured the actual distance between the center of trial heads and the lesser trochanter with a ruler, and selected the head in which the measured distance was closest to this distance. In the control group, we had selected a modular head based on preoperative planning.

Results The study group had a smaller mean postoperative limb-length discrepancy (2 (SD 2) mm) than the controls (7 (SD 4) mm).

Interpretation This simple technique reduces limb-length discrepancy after cementless total hip arthroplasty.

To minimize limb-length discrepancy after THA, preoperative planning using templates and radiographs is commonly used. However, in cementless THA, it is difficult to predict the position in which a femoral component can be fixed rigidly by press-fit. In modular femoral components, surgeons can adjust limb-length during surgery by selecting a modular head having appropriate neck length among several modular heads. However, a standard method for appropriate modular head selection has not been established. We introduced a simple method to select a modular head by measuring the distance between the center of a modular head and the proximal end of the lesser trochanter during surgery. We evaluated the limb-length discrepancy after cementless THA using this method.

Patients and methods
We performed 139 primary THAs without cement between February 2002 and December 2004. We excluded 43 hips in 38 patients who had hip deformities with lower limb shortening requiring future arthroplasty on the contra-lateral side, and 4 severely dysplastic hips in which a simultaneous shortening osteotomy of the femur was performed. This left 92 hips for the study. We introduced our measuring method in August 2003, and used it for all 45 hips operated thereafter. The 47 hips operated before formed the control group. One surgeon (SN) operated all hips (Table).

In both groups, all acetabular components were Trilogy (Zimmer, Warsaw, IN). In the control group, the femoral components were Anatomic (Zimmer) in 38 hips and Versys (Zimmer) in 9 hips. In the study group, they were Anatomic in 1 hip and Versys in 44 hips. Both Anatomic and Versys femoral components have a common modular head system with 4 variations of neck length (0, 3.5, 7.0, and 10.5 mm).

Limb-length discrepancy was assessed using anteroposterior radiographs of the pelvis with a magnification marker before and after surgery, as
described by Ranawat et al. (2001) (Figure 1). The
details of preoperative planning in the control and
the study group are shown in Figures 2 and 3.

The surgical approach and implant fixation tech-
niques were generally the same in both groups.
The patients were placed in the lateral position.
A straight skin incision was made slightly oblique
from posterior-superior to anterior-inferior. The
fascia was exposed and incised in line with the
skin incision. The gluteus maximus muscle fibers
were split. The capsule and rotators were incised
together at the attachment to the femur. The
femoral head was dislocated posteriorly and the femo-
ral neck cut with a reciprocating bone saw. The
acetabulum was reamed to 1 or 2 mm less than
the size of the planned acetabular component. The
spherical acetabular component was impacted by
free-hand technique. Screws were used for addi-
tional fixation and an acetabular liner was inserted.
After the femoral canal was prepared with rasps,
the femoral component was inserted into the femur
until press-fit fixation was achieved.

A modular head was selected for each group as
follows. In the control group, we first inserted the
trial modular head having the pre-planned neck
length. We then checked the position of the head,
comparing to the tip of the greater trochanter by
eye measurement, and changed the modular head
only if the position of the head differed appre-

Figure 1. Measurement of limb-length discrepancy before
and after surgery on an anteroposterior radiograph of the
pelvis. A horizontal reference line (H) was drawn through
the inferior aspect of the teardrops (inter-teardrop line).
The perpendicular distance between H and the prominent
point of the lesser trochanter (P) was measured on both
sides. The measured value was defined as A for the con-
tralateral side, and as B for the operative side. The value
C was calculated by subtracting B from A: i.e. C = A – B.
The value C was defined as the amount of leg lengthening
required. It was positive when the indicated side for sur-
gery was shorter than the contralateral side. The absolute
value of C was defined as limb-length discrepancy before
and after surgery.

Figure 2. Planning in the control group. An acetabular com-
ponent and its center (AC) were drawn using a template
on the indicated hip in an anteroposterior radiograph. The
inclination angle of the acetabular component was set at
45°. Next, the femoral components and 4 points indicat-
ing the centers of 4 modular heads (0, 3.5, 7.0, 10.5 mm)
were drawn on the femur of the same radiograph. We drew
a new horizontal line, H', C mm above the center of the
acetabular component. In the few cases in which C had
a negative value, this line was C mm below the center of
the cup. The line was parallel to the inter-teardrop line (H).
After comparing the four centers of the modular heads, the
one which came closest to this line was selected as the
planned modular head for the appropriate neck length.

Figure 3. Planning in the study group. For the study group,
we measured the distance (D) between the center of the
acetabular component (AC) and the superior edge of the
lesser trochanter (S). We calculated the planned neck
length (E) by adding C (the amount of leg lengthening
required) to the distance D. No modular head was selected
before surgery.
ciably from the preoperative plan. In the study group, we inserted a trial modular head with a 7-mm neck length at first, and then measured the distance between the center of the trial head and the superior edge of the lesser trochanter with a ruler. Based on this distance, we then selected the modular head in which the distance came nearest to the planned neck length. For both groups, after the final modular head was inserted, the hip joint was reduced and the posterior capsule and short rotators were re-attached together to the posterior femur through two drill holes. A wound drainage system was inserted and the wound was closed.

We measured the positions of components in the planning and final radiographs (Figure 4), and calculated the difference of each value. The difference in the position of the femoral or acetabular components was compared between the two groups. The mean differences in vertical femoral component position were 5 (range 0–16, SD 3.5) mm for the Anatomic stem and 5 (range 0–15, SD 3.4) mm for the Versys stem, and was no significant difference between the two types of femoral components (p = 0.7). There was no significant difference in blood loss, but the LT group had significantly less oper-

Statistics

We used Mann-Whitney U-test to compare continuous variables, and Fisher’s exact test to compare categorical data between groups. Statistical significance was set at p < 0.05.

Results

There were no statistically significant differences in age, sex distribution, and diagnosis characteristics between the study group and the control group. In addition, there were no significant differences in limb-length discrepancy before surgery between the two groups. On the other hand, the study group had significantly less postoperative limb-length discrepancy than the control group (Table 1). The limb-length discrepancy after surgery was less than 5 mm for 40/45 hips in the study group and in 14/47 hips in the control group (p < 0.001).

There were no significant differences in the difference of the position of the femoral or acetabular components between the two groups (Table). The mean differences in vertical femoral component position were 5 (range 0–16, SD 3.5) mm for the Anatomic stem and 5 (range 0–15, SD 3.4) mm for the Versys stem, and was no significant difference between the two types of femoral components (p = 0.7). There was no significant difference in blood loss, but the LT group had significantly less opera-
tion time than the controls (Table 1). During the 3-month follow-up, there was no symptomatic pulmonary embolism or infection in either group.

Discussion

In previous reports in which no intraoperative measurements were performed, the mean limb-length discrepancy after THA was more than 5 mm (Turula et al. 1986, Mizuta et al. 2002). Mean limb-length discrepancy after surgery using intraoperative measurements with pin insertion has ranged from 2.6 mm to 9 mm (Jasty et al. 1996, Ranawat et al. 2001). Several methods of intraoperative measurement without pin insertion have been reported. Eggli et al. (1998) planned surgical procedures on digitized preoperative radiographs and measured the distance between the center of rotation and two landmarks (greater trochanter and neck resection level) during surgery. The mean postoperative leg-length discrepancy reported was 2 mm. However, their planning procedure appears to have been complicated. Woolson et al. (1999) determined the amount of femoral bone needing resection to equalize leg-length in preoperative planning, and chose the modular femoral head before surgery. In their results, the mean leg-length discrepancy was 2.9 mm before surgery and 1 mm after surgery. These authors stated that their technique is ideal for the routine patient who has a minimal preoperative leg-length discrepancy and normal bone anatomy. In their study, a cemented femoral component was used in three-quarters of the cases. Recently, Gonzalez et al. (2005) have reported outcomes after cemented and hybrid THA using intraoperative measurements between the proximal edge of the lesser trochanter and the center of rotation of the femoral head. The postoperative leg-length discrepancy was within 5 mm in 90/103 (87%) of hips. Although the measurement method was similar to ours, cemented femoral components were used for all cases in their study. There has been no report concerning outcome of cementless THA using this type of measurement method.

Our method has some advantages for cementless THA. In the preoperative planning, the position of the femoral component has no influence on the planning of neck length. It is simple and easy to measure the distance between the center of the modular head and the lesser trochanter during surgery. As an anatomical landmark the lesser trochanter seems to be better than the greater trochanter because direct measurement using a simple ruler can be made.

Theoretically, the calculation methods for the planned neck length need some modification as follows. The perpendicular distance (D’) between AC and S should be measured instead of the angled distance D between AC and S (Figure 3). The sum of C and D’ gives the planned perpendicular neck length, and this sum should be adjusted again to the real planned neck length with respect to the angle between the perpendicular line and the line passing through the center of the modular head and the proximal edge of the lesser trochanter. The differences between the values calculated according to these complicated methods and the ones calculated according to our simple methods were less than 2 mm in all of the first 10 hips of the study group. Thus, we decided to use the simple calculation methods for all the hips that followed in the study group. In practice, our simple method is sufficient for most cases except highly dislocated hips in which the complicated calculations shown above are necessary. The line passing through the center of the acetabular component and the proximal edge of the lesser trochanter on anteroposterior radiographs may become excessively slanted or almost horizontal in these hips.

We used two types of femoral components. However, they have an identical modular head system, and there were no significant differences in the position of the femoral component between the two types. Our study was not a randomized trial, but we used a historical control. We believe that the reduction in operating time in the study group was due to increasing experience. However, there were no improvements in the positioning of the femoral or acetabular components. Thus, we believe that the improvements in limb-length discrepancy after surgery can be attributed to our new measuring method.

Our method has some limitations. We could not evaluate the position of the acetabular component during surgery. Theoretically, errors arising from the position of the acetabular component cannot be avoided with this study method. The mean difference in the vertical position of the acetabular
component between the planning and the final position was 2 mm in the study group. Although the difference of position was less in the acetabular component than in the femoral component, further modification is required.

Contributions of authors

KM performed the radiographic measurements and statistical analysis. SN operated all cases and performed intraoperative measurements. TM supervised the study design.

No competing interests declared.

Egglı S, Pisan M, Muller M E. The value of preoperative planning for total hip arthroplasty. J Bone Joint Surg (Br) 1998; 80 (3): 382-90.

Gonzalez Della Valle A, Slullitel G, Piccaluga F, Salvati E A. The precision and usefulness of preoperative planning for cemented and hybrid primary total hip arthroplasty. J Arthroplasty 2005; 20 (1): 51-8.

Jasty M, Webster W, Harris W. Management of limb length inequality during total hip replacement Clin Orthop 1996; (333): 165-71.

Mizuta I, Fujiwara H, Inoue H. A radiographic study of hip-joint alignment after prosthetic hip arthroplasty. Acta Med Okayama 2002; 56 (3): 159-66.

Ranawat C S, Rao R R, Rodriguez J A, Bhende H S. Correction of limb-length inequality during total hip arthroplasty. J Arthroplasty 2001; 16 (6): 715-20.

Turula K B, Friberg O, Lindholm T S, Tallroth K, Vankka E. Leg length inequality after total hip arthroplasty. Clin Orthop 1986; (202): 163-8.

Woolson S T, Hartford J M, Sawyer A. Results of a method of leg-length equalization for patients undergoing primary total hip replacement. J Arthroplasty 1999; 14 (2): 159-64.