APPELL-CARLITZ NUMBERS

SU HU

Department of Mathematics, South China University of Technology,
Guangzhou 510640, China.
E-Mail mahusu@scut.edu.cn

MIN-SOO KIM*

Department of Mathematics Education, Kyungnam University, Changwon,
Gyeongnam 51767, Republic of Korea.
E-Mail mskim@kyungnam.ac.kr

Abstract. In this paper, we introduce the concept of the (higher order) Appell-Carlitz numbers which unifies the definitions of several special numbers in positive characteristic, such as the Bernoulli-Carlitz numbers and the Cauchy-Carlitz numbers. Their generating function is named Hurwitz series in the function field arithmetic ([11, p. 352, Definition 9.1.4]). By using Hasse-Teichmüller derivatives, we also obtain several properties of the (higher order) Appell-Carlitz numbers, including a recurrence formula, two closed forms expressions, and a determinant expression.

The recurrence formula implies Carlitz’s recurrence formula for Bernoulli-Carlitz numbers. Two closed from expressions implies the corresponding results for Bernoulli-Carlitz and Cauchy-Carlitz numbers. The determinant expression implies the corresponding results for Bernoulli-Carlitz and Cauchy-Carlitz numbers, which are analogues of the classical determinant expressions of Bernoulli and Cauchy numbers stated in an article by Glaisher in 1875.

Mathematics Subject Classification (2020): 11R58, 11R60, 11B68.

Key words: Appell-Carlitz numbers, explicit expressions, determinants, recurrence relations.

1. Introduction. The Bernoulli numbers $B_n \in \mathbb{Q}$ ($n = 0, 1, 2, \ldots$) are defined by the generating function

$$
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.
$$

The Bernoulli numbers may also be defined by the recursive formula

$$
B_0 = 1, \quad B_n = -\sum_{j=0}^{n-1} \frac{n!}{j!(n+1-j)!} B_j \quad \text{for } n \geq 1,
$$

*Corresponding author.
which can be obtained by comparing the coefficients in the expansion of \(t = (e^t - 1) \sum_{n=0}^{\infty} \frac{B_n}{n!} t^n \). The Bernoulli numbers have many applications in modern number theory, such as the Eisenstein series in modular forms (see [1]), and the arithmetic of algebraic number fields, especially Kummer’s notion of regularity and the class number of \(p \)th cyclotomic fields (see [25, p. 62, Theorem 5.16]).

It is well-known that there exist close analogues between the rational number field \(\mathbb{Q} \) and the rational function fields \(\mathbb{F}_r(T) \) over a finite field \(\mathbb{F}_r \) (see [10]). In 1935, Carlitz [4] gave an analogue of Bernoulli numbers for rational function field \(\mathbb{F}_r(T) \), denoted by \(BC_n \), which is now known as the Bernoulli-Carlitz numbers. In subsequent works, he also found many interesting properties of them, including the analogue of the well-known von Staudt–Clausen theorem (see [5, 6] and [20]).

The definition of Bernoulli-Carlitz numbers is as follows. Let \([i] = T^{r^i} - T, D_i = [i][i-1]^r \cdots [1]^{r^{i-1}} \) with \(D_0 = 1 \). The Carlitz exponential is defined by

\[
e_C(z) = \sum_{j=0}^{\infty} \frac{z^{r^j}}{D_j}.
\]

For a nonnegative integer \(i \) with \(r \)-ary expansion \(i = \sum_{j=0}^{m} c_j r^j \) (\(0 \leq c_j < r \)), the Carlitz factorial \(\Pi(i) \) is defined by

\[
\Pi(i) = \prod_{j=0}^{m} D_j^{c_j}.
\]

In analogue with (1.1), the Bernoulli-Carlitz numbers \(BC_n \in \mathbb{F}_r(T) \) (\(n = 0, 1, 2, \ldots \)) are defined by the generating function

\[
\frac{z}{e_C(z)} = \sum_{n=0}^{\infty} \frac{BC_n}{\Pi(n)} z^n.
\]

By comparing the coefficients in the expansion of \(z = e_C(z) \sum_{n=0}^{\infty} \frac{BC_n}{\Pi(n)} z^n \), Carlitz found the following recursive formula of the Bernoulli-Carlitz numbers \(BC_n \) which are analogues of (1.2)

\[
BC_0 = 1, \quad BC_n = - \sum_{j=1}^{[\log_r(n+1)]} \frac{\Pi(n)}{\Pi(r^j)\Pi(n+1-r^j)} BC_{n+1-r^j} \quad \text{for } n \geq 1,
\]

where \([\cdot]\) is the greatest integer function. As in the classical case, the Bernoulli-Carlitz numbers have many deep connections with the arithmetic of function fields, especially the class groups of cyclotomic function fields (see [11, Section 9.2], [24, Section 5.2] or [13, 14]).

For \(\ell \in \mathbb{N} \), in 1924, Nörlund [21] defined the higher order Bernoulli numbers \(B_n^{(\ell)} \in \mathbb{Q} \) (\(n = 0, 1, 2, \ldots \)) by the generating function

\[
\left(\frac{t}{e^t - 1} \right)^\ell = \sum_{n=0}^{\infty} \frac{B_n^{(\ell)} t^n}{n!}.
\]
and in 2005, Jeong, Kim and Son [18] defined the higher order Bernoulli-Carlitz numbers $BC_n^{(\ell)} \in \mathbb{F}_r(T)$ ($n = 0, 1, 2, \ldots$) by the generating function

$$
(1.6) \quad \left(\frac{z}{e^{C}(z)} \right)^\ell = \sum_{n=0}^{\infty} \frac{BC_n^{(\ell)}}{\Pi(n)} z^n.
$$

Letting $l = 1$ in (1.5) and (1.6), we recover the Bernoulli numbers B_n and the Bernoulli-Carlitz numbers BC_n, respectively.

The classical Cauchy numbers $c_n \in \mathbb{Q}$ ($n = 0, 1, 2, \ldots$) are defined by the generating function

$$
(1.7) \quad \frac{t}{\log(1 + t)} = \sum_{n=0}^{\infty} \frac{c_n t^n}{n!}
$$

(see [9]).

Let $L_i = [i][i - 1] \cdots [1]$ ($i \geq 1$) with $L_0 = 1$, let

$$
(1.8) \quad \log_C(z) = \sum_{i=0}^{\infty} (-1)^i \frac{z^{r_i}}{L_i}
$$

be the Carlitz logarithm. In 2016, Kaneko and Komatsu [19] defined the Cauchy-Carlitz numbers CC_n ($n = 0, 1, 2, \ldots$) by the generating function

$$
(1.9) \quad \frac{z}{\log_C(z)} = \sum_{n=0}^{\infty} \frac{CC_n}{\Pi(n)} z^n
$$

(see [19, p. 240, (12)]), and for $\ell \in \mathbb{N}$, they also defined the higher order Cauchy-Carlitz numbers $CC_n^{(\ell)}$ ($n = 0, 1, 2, \ldots$) by

$$
(1.10) \quad \left(\frac{z}{\log_C(z)} \right)^\ell = \sum_{n=0}^{\infty} \frac{CC_n^{(\ell)}}{\Pi(n)} z^n
$$

(see [19, p. 249, (28)]).

Recently, in order to unify the definitions of several special numbers in the classical setting such as the (higher order) Bernoulli numbers and the (higher order) Cauchy numbers, Hu and Komatsu [17] introduced the concept of the related numbers of higher order Appell polynomials. Their definition is as follows.

Let C be the field of complex numbers, let $S(t) = \sum_{n=0}^{\infty} a_n \frac{t^n}{n!}$ be any formal power series in $C[[t]]$ and $a_0 \neq 0$, the Appell polynomials $A_n(z)$ are defined by the generating function

$$
(1.11) \quad S(t) e^{zt} = \sum_{n=0}^{\infty} A_n(z) \frac{t^n}{n!}
$$

(see [2]). Since $a_0 \neq 0$, there exists the formal power series (for some $d_n \in \mathbb{C}$)

$$
(1.12) \quad f(t) = \frac{1}{S(t)} = \sum_{n=0}^{\infty} d_n \frac{t^n}{n!}
$$
in $\mathbb{C}[[t]]$, and (1.11) becomes

\begin{equation}
\frac{e^{zt}}{f(t)} = \sum_{n=0}^{\infty} A_n(z) \frac{t^n}{n!}.
\end{equation}

For $\ell \in \mathbb{N}$, we can also define the higher order Appell polynomials by the generating function

\begin{equation}
\frac{e^{zt}}{(f(t))^{\ell}} = \sum_{n=0}^{\infty} A_n^{(\ell)}(z) \frac{t^n}{n!}
\end{equation}

(see [3, Théorème 1.1]). As in the classical case, $a_n^{(\ell)} = A_n^{(\ell)}(0)$ is defined to be the related numbers of higher order Appell polynomials, that is,

\begin{equation}
\frac{1}{(f(t))^{\ell}} = \sum_{n=0}^{\infty} a_n^{(\ell)} \frac{t^n}{n!}
\end{equation}

and $a_n = a_n^{(1)}$ the related numbers of Appell polynomials (see [17, p. 3, (6)]).

In (1.15), let $f(t) = \frac{e^t - 1}{t}$ and $\frac{\log(1+t)}{t}$, we obtain the (higher order) Bernoulli numbers and the (higher order) Cauchy numbers, respectively.

To unify the definitions of several special numbers in positive characteristic, such as the Bernoulli-Carlitz numbers and the Cauchy-Carlitz numbers, we here define the Appell-Carlitz numbers to be a sequence $\{AC_n\}_{n=0}^{\infty}$ in $k = \mathbb{F}_r(T)$ with a normalization $AC_0 = 1$. Let $S(z) \in k((z))$ be the generating function of $\{AC_n\}_{n=0}^{\infty}$, that is,

\begin{equation}
S(z) = \sum_{n=0}^{\infty} \frac{AC_n}{\Pi(n)} z^n.
\end{equation}

If $S(z) = \left(\frac{e^z}{e^{C(z)}}\right)^{\ell}$ and $S(z) = \left(\frac{e^z}{\log C(z)}\right)^{\ell}$, then we obtain the higher order Bernoulli-Carlitz numbers and the higher order Cauchy-Carlitz numbers, respectively. It needs to mention that in Goss’s book [11, p. 352, Definition 9.1.4], the above generating function $S(z)$ is named as the Hurwitz series.

For $\ell \in \mathbb{N}$, we may also define the higher order Appell-Carlitz numbers $AC_n^{(\ell)}(z) (n = 0, 1, 2, \ldots)$ as the generating function

\begin{equation}
(S(z))^{\ell} = \sum_{n=0}^{\infty} \frac{AC_n^{(\ell)}}{\Pi(n)} z^n.
\end{equation}

Denote by $f(z) = \frac{1}{S(z)}$, we have

\begin{equation}
\frac{1}{(f(z))^{\ell}} = \sum_{n=0}^{\infty} \frac{AC_n^{(\ell)}}{\Pi(n)} z^n,
\end{equation}

which is an analogue of (1.15) in $\mathbb{F}_r(T)$. It should be noted that the definitions of the Appell-Carlitz numbers and their higher order counterparts depend on the series $S(z)$.
2. Main results and their corollaries. “In mathematics, a closed form is a mathematical expression that can be evaluated in a finite number of operations. It may contain constants, variables, four arithmetic operations, and elementary functions, but usually no limit.” (See [22, p. 91]). During the recent years, there are many results concerning closed form expressions for special numbers and polynomials in characteristic 0 case, such as Bernoulli, Euler, Cauchy, Apostol–Bernoulli, hypergeometric Bernoulli numbers and polynomials, see [7, 8, 16, 17, 22] and the references therein.

In this paper, we shall address our attention to the characteristic p case and obtain several properties of the (higher order) Appell-Carlitz numbers, including a recurrence formula, two closed form expressions, a determinant expression. The recurrence formula (Theorem 2.1) implies Carlitz’s recurrence formula for Bernoulli-Carlitz numbers (see (1.4) above). Two closed from expressions (Theorems 2.4 and 2.9) implies the corresponding results for Bernoulli-Carlitz and Cauchy-Carlitz numbers (see Corollaries 2.5, 2.6, 2.7 and 2.8 below). The determinant expression (Theorem 2.10) implies the corresponding results for Bernoulli-Carlitz and Cauchy-Carlitz numbers (see Corollaries 2.12 and 2.14 below).

Suppose that $f(z) = \frac{1}{S(z)}$ has the following power series expansion

\begin{equation}
 f(z) = \sum_{n=0}^{\infty} \lambda_n z^n.
\end{equation}

Then we have the following recurrence formula for the higher order Appell-Carlitz numbers.

Theorem 2.1. (Recurrence formula for higher order Appell-Carlitz numbers)

\[
 AC_{m}^{(\ell)} = -\Pi(m) \sum_{i=0}^{m-1} \frac{AC_{i}^{(\ell)}}{\Pi(i)} D_{\ell}(m - i)
\]

with $AC_{0}^{(\ell)} = 1$, where

\[
 D_{\ell}(e) = \sum_{i_{1}+\ldots+i_{\ell}=e} \lambda_{i_{1}} \cdot \ldots \cdot \lambda_{i_{\ell}}.
\]

Letting $\ell = 1$ in the above result, we get a recurrence formula for Appell-Carlitz numbers.

Corollary 2.2. (Recurrence formula for Appell-Carlitz numbers)

\[
 AC_{m} = -\Pi(m) \sum_{i=0}^{m-1} \frac{AC_{i}}{\Pi(i)} \lambda_{m-i}.
\]

Remark 2.3. In the case of Bernoulli-Carlitz numbers, we have

\[
 f(z) = \frac{e_{C}(z)}{z/2} = \sum_{j=0}^{\infty} \frac{z^{r_{j}} - 1}{D_{j}}.
\]
Define

\[\delta^*_e = \begin{cases} \frac{1}{D_n} & \text{if } e = r^n - 1 \text{ for some } n \\ 0 & \text{if } e \neq r^n - 1 \text{ for any } n \end{cases} \]

then comparing with (2.1), we have

\[\lambda_j = \delta^*_j \]

for \(j = 0, 1, 2, \ldots \). By Corollary 2.2 and (2.4), we obtain Carlitz’s recurrence formula for Bernoulli-Carlitz numbers (see (1.4) above)

\[BC_m = -\Pi(m) \sum_{i=0}^{m-1} \frac{BC_i}{\Pi(i)} \delta^*_m \]

\[= -\Pi(m) \sum_{i=0}^{m-1} \frac{BC_{m-i}}{\Pi(m-i)} \delta^*_i \]

\[= -\Pi(m) \sum_{j=0}^{[\log_e(m+1)]} \frac{BC_{m+1-r^j}}{\Pi(m+1-r^j)} r^{j-1} \]

\[= -\sum_{j=1}^{[\log_e(m+1)]} \frac{\Pi(m)}{\Pi(r^j)\Pi(m+1-r^j)} BC_{m+1-r^j}, \]

since \(D_j = \Pi(r^j) \), for \(m \geq 1 \).

We also have a closed form expression for the higher order Appell-Carlitz numbers.

Theorem 2.4. (Closed form expression for higher order Appell-Carlitz numbers) For \(m \geq 1 \), we have

\[AC_m^{(\ell)} = \Pi(m) \sum_{k=1}^{m} (-1)^k \sum_{\substack{e_1 + \cdots + e_k = m \\
\ell(e_1) \cdots \ell(e_k) \geq 1}} D_\ell(e_1) \cdots D_\ell(e_k), \]

where \(D_\ell(e) \) are given in (2.2).

Letting \(\ell = 1 \) in the above result, we have a closed form expression for Appell-Carlitz numbers.

Corollary 2.5. (Closed form expression for Appell-Carlitz numbers) For \(m \geq 1 \), we have

\[AC_m = \Pi(m) \sum_{k=1}^{m} (-1)^k \sum_{\substack{e_1 + \cdots + e_k = m \\
\ell(e_1) \cdots \ell(e_k) \geq 1}} \lambda_{e_1} \cdots \lambda_{e_k}. \]
Then by (2.4), we have

\[BC_m = \Pi(m) \sum_{k=1}^{m} (-1)^k \sum_{e_1 + \cdots + e_k = m, e_1, \ldots, e_k \geq 1} \delta_{e_1}^* \cdots \delta_{e_k}^* \]

\[= \Pi(m) \sum_{k=1}^{m} (-1)^k \sum_{r^{i_1} + \cdots + r^{i_k} = m+k, r^{i_1}, \ldots, r^{i_k} > 1} \frac{1}{D_{i_1}} \cdots \frac{1}{D_{i_k}}. \]

Since \(D_i = \Pi(r^i) \), we have the following closed form expression for Bernoulli-Carlitz numbers by Jeong, Kim and Son (see [18, p. 63, Theorem 4.2]).

Corollary 2.6. (Closed form expression for Bernoulli-Carlitz numbers) For \(m \geq 1 \), we have

\[BC_m = \Pi(m) \sum_{k=1}^{m} (-1)^k \sum_{r^{i_1} + \cdots + r^{i_k} = m+k, r^{i_1}, \ldots, r^{i_k} > 1} \frac{1}{\Pi(r^{i_1})} \cdots \frac{1}{\Pi(r^{i_k})}. \]

More generally, from Theorem 2.4 and (2.4), we may also recover the following closed form expression for higher order Bernoulli-Carlitz numbers (see [18, p. 65, Proposition 4.5]). We would like to refer Thakur’s book [24, p. 145, the second last paragraph] on a discussion of this formula.

Corollary 2.7. (Closed form expression for higher order Bernoulli-Carlitz numbers) For \(m \geq 1 \), we have

\[BC_m^{(\ell)} = \Pi(m) \sum_{j=1}^{m} (-1)^j \sum_{i_1, \ldots, i_j \geq 1, i_1 + \cdots + i_j = m} M^{(\ell)}(i_1) \cdots M^{(\ell)}(i_j), \]

where for each \(i \),

\[M^{(\ell)}(i) := \sum_{e_1, \ldots, e_\ell \geq 0, r^{e_1} + \cdots + r^{e_\ell} = i} \frac{1}{\Pi(r^{e_1}) \Pi(r^{e_2}) \cdots \Pi(r^{e_\ell})}. \]

In the case of Kaneko and Komatsu’s Bernoulli-Carlitz numbers, we have

\[f(z) = \frac{\log C(z)}{z} = \sum_{j=0}^{\infty} (-1)^j \frac{z^{r^j-1}}{L_j}. \]

Define

\[\delta_{e^*}^* = \begin{cases} (-1)^n \frac{1}{L_n} & \text{if } e = r^n - 1 \text{ for some } n \\ 0 & \text{if } e \neq r^n - 1 \text{ for any } n, \end{cases} \]
then comparing with (2.1), we have

\[(2.7) \quad \lambda_j = \delta_j^{**} \]

for \(j = 0, 1, 2, \ldots \).

From Theorem 2.4 and (2.4), we also recover the following closed form expression for Kaneko and Komatsu’s higher order Cauchy-Carlitz numbers (see [19, p. 249, Proposition 6]).

Corollary 2.8. (Closed form expression for higher order Cauchy-Carlitz numbers) For \(m \geq 1\), we have

\[CC_m^{(\ell)} = \Pi(m) \sum_{j=1}^{m} (-1)^j \sum_{\substack{i_1, \ldots, i_j \geq 1 \atop i_1 + \cdots + i_j = m}} M^{(\ell)}(i_1) \cdots M^{(\ell)}(i_j), \]

where for each \(i\),

\[M^{(\ell)}(i) := \sum_{\substack{j_1, \ldots, j_\ell \geq 0 \atop r^1 + \cdots + r^\ell = i}} (-1)^{j_1 + \cdots + j_\ell} \frac{(1)^{j_1 + \cdots + j_\ell}}{L_{j_1} \cdots L_{j_\ell}}.\]

Generalizing Jeong, Kim and Son’s result for Bernoulli-Carlitz numbers [18, p. 63, Theorem 4.1], we get another closed form expression for Appell-Carlitz numbers.

Theorem 2.9. (Another closed form expression for Appell-Carlitz numbers) For \(m \geq 1\), we have

\[AC_m = \Pi(m) \sum_{j=1}^{m} (-1)^j \sum_{\substack{i_1, \ldots, i_m \geq 0 \atop i_1 + \cdots + i_m = j \atop i_1 + 2i_2 + \cdots + m_{i_m} = m}} \left(\begin{array}{c} j \\ i_1, \ldots, i_m \end{array}\right) \lambda_1^{i_1} \lambda_2^{i_2} \cdots \lambda_m^{i_m}.\]

We have a determinant expression of the higher order Appell-Carlitz numbers.

Theorem 2.10. (Determinant expression of higher order Appell-Carlitz numbers) For \(m \geq 1\), we have

\[AC_m^{(\ell)} = (-1)^m \Pi(m) \begin{vmatrix} D_{\ell}(1) & 1 \\ D_{\ell}(2) & D_{\ell}(1) \\ \vdots & \vdots & \ddots & 1 \\ D_{\ell}(n-1) & D_{\ell}(n-2) & \cdots & D_{\ell}(1) \\ D_{\ell}(n) & D_{\ell}(n-1) & \cdots & D_{\ell}(2) & D_{\ell}(1) \end{vmatrix},\]

where \(D_{\ell}(e)\) are given in (2.2).

Letting \(\ell = 1\) in the above result, we have the following determinant expression for the related numbers of Appell-Carlitz numbers.
Corollary 2.11. (Determinant expression of Appell-Carlitz numbers) For \(m \geq 1 \), we have

\[
AC_m = (-1)^m \Pi(m) = \begin{vmatrix}
\lambda_1 & 1 & & & \\
\lambda_2 & \lambda_1 & & & \\
& \vdots & \ddots & \ddots & \\
\lambda_{m-1} & \lambda_{m-2} & \cdots & \lambda_1 & 1 \\
\lambda_m & \lambda_{m-1} & \cdots & \lambda_2 & \lambda_1 \\
\end{vmatrix}
\]

Then by (2.4), we obtain a determinant expression of Bernoulli-Carlitz numbers.

Corollary 2.12. (Determinant expression of Bernoulli-Carlitz numbers) For \(m \geq 1 \), we have

\[
BC_m = (-1)^m \Pi(m) = \begin{vmatrix}
\delta_1^* & 1 & & & \\
\delta_2^* & \delta_1^* & & & \\
& \vdots & \ddots & \ddots & \\
\delta_{m-1}^* & \delta_{m-2}^* & \cdots & \delta_1^* & 1 \\
\delta_m^* & \delta_{m-1}^* & \cdots & \delta_2^* & \delta_1^* \\
\end{vmatrix},
\]

where

\[
\delta_e^* = \begin{cases}
\frac{1}{\Pi_n} & \text{if } e = r^n - 1 \text{ for some } n \\
0 & \text{if } e \neq r^n - 1 \text{ for any } n.
\end{cases}
\]

Remark 2.13. Since \(D_n \) equals to \(\Pi(r^n) \), the Carlitz factorial, the above result is an analogue of the following classical determinant expression of Bernoulli numbers \(B_m \) by Glaisher in 1875 (see [9, p. 53]):

\[
B_m = (-1)^m m! = \begin{vmatrix}
\frac{1}{2!} & \frac{1}{2!} & & & \\
\frac{1}{3!} & \frac{1}{2!} & & & \\
& \vdots & \ddots & \ddots & \\
\frac{1}{(m-1)!} & \frac{1}{2!} & \cdots & \frac{1}{2!} & 1 \\
\frac{1}{m!} & \frac{1}{m!} & \cdots & \frac{1}{3!} & \frac{1}{2!} \\
\frac{1}{(m+1)!} & \frac{1}{m!} & \cdots & \frac{1}{3!} & \frac{1}{2!} \\
\end{vmatrix}
\]

Similarly, by (2.7), we obtain the following determinant expression of Cauchy-Carlitz numbers.

Corollary 2.14. (Determinant expression of Cauchy-Carlitz numbers) For \(m \geq 1 \), we have

\[
CC_m = (-1)^m \Pi(m) = \begin{vmatrix}
\delta_1^{**} & 1 & & & \\
\delta_2^{**} & \delta_1^{**} & & & \\
& \vdots & \ddots & \ddots & \\
\delta_{m-1}^{**} & \delta_{m-2}^{**} & \cdots & \delta_1^{**} & 1 \\
\delta_m^{**} & \delta_{m-1}^{**} & \cdots & \delta_2^{**} & \delta_1^{**} \\
\end{vmatrix},
\]
where
\[
\delta^{*\ast}_{e} = \begin{cases}
(-1)^n \frac{1}{L_n} & \text{if } e = r^n - 1 \text{ for some } n \\
0 & \text{if } e \neq r^n - 1 \text{ for any } n,
\end{cases}
\]

Remark 2.15. Since the classical Cauchy numbers are defined by the generating function

\begin{equation}
\frac{t}{\log(1 + t)} = \sum_{n=0}^{\infty} c_n \frac{t^n}{n!}
\end{equation}

(see [9]), by applying the power series expansion of

\begin{equation}
f(t) = \frac{\log(1 + t)}{t} = \sum_{n=0}^{\infty} (-1)^n \frac{t^n}{n + 1}
\end{equation}

to [17, Theorem 3], we get the following determinant expression of Cauchy numbers

\begin{equation}
c_m = (-1)^m m!
\end{equation}

This is equivalent to Glaisher’s following determinant expression in 1875 (see [9, p. 50]):

\begin{equation}
c_m = m!
\end{equation}

if considering the generating function

\begin{equation}
\frac{-t}{\log(1 - t)} = \sum_{n=0}^{\infty} (-1)^n c_n \frac{t^n}{n!}
\end{equation}

and applying the power series expansion

\[f(t) = \frac{\log(1 - t)}{-t} = \sum_{n=0}^{\infty} \frac{t^n}{n + 1} \]

to [17, Theorem 3]. By comparing the power series expansion of the Carlitz logarithm

\[\log_C(z) = \sum_{i=0}^{\infty} (-1)^i \frac{z^{r_i}}{L_i} \]
and the power series expansion of the classical logarithm
\[
\log(1 + t) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} t^n}{n},
\]
we have seen the analogue between (2.10) and (2.13).

3. Hasse-Teichmüller derivatives ([17, Section 2] and [18, Section 2]).
Since \(n! = 0 \) in a field of characteristic \(p \) if \(n \geq p \), and \(\frac{d}{dt}(t^n) = 0 \) if \(p \) divides \(n \), the classical differential calculus faces essential difficulties in positive characteristics.

In 1936, Hasse [15] introduced the concept of hyperdifferentials to overcome these, now known as the Hasse-Teichmüller derivatives. In this section, we shall recall the definition and basic properties of these derivatives which serves as the main tool for our proof.

Let \(F \) be a field of any characteristic, \(F[[z]] \) the ring of formal power series in one variable \(z \), and \(F((z)) \) the field of Laurent series in \(z \). Let \(m \) be a nonnegative integer. The Hasse-Teichmüller derivative \(H^{(m)} \) of order \(m \) is defined by

\[
H^{(m)} \left(\sum_{n=R}^{\infty} c_n z^n \right) = \sum_{n=R}^{\infty} c_n \binom{n}{m} z^{n-m}
\]

for \(\sum_{n=R}^{\infty} c_n z^n \in F((z)) \), where \(R \) is an integer and \(c_n \in F \) for any \(n \geq R \). Note that \(\binom{n}{m} = 0 \) if \(n < m \).

The Hasse-Teichmüller derivatives satisfy the product rule [23], the quotient rule [12] and the chain rule [15]. One of the product rules can be described as follows.

Lemma 3.1. ([23, 18]) For \(f_i \in F[[z]] \) (\(i = 1, \ldots, k \)) with \(k \geq 2 \) and for \(m \geq 1 \), we have
\[
H^{(m)}(f_1 \cdots f_k) = \sum_{i_1 + \cdots + i_k = m \atop i_1, \ldots, i_k \geq 0} H^{(i_1)}(f_1) \cdots H^{(i_k)}(f_k).
\]

The quotient rules can be described as follows.

Lemma 3.2. ([12, 18]) For \(f \in F[[z]] \setminus \{0\} \) and \(m \geq 1 \), we have
\[
H^{(m)} \left(\frac{1}{f} \right) = \sum_{k=1}^{m} \frac{(-1)^k}{f^{k+1}} \sum_{i_1 + \cdots + i_k = m \atop i_1, \ldots, i_k \geq 1} H^{(i_1)}(f) \cdots H^{(i_k)}(f)
\]

\[
= \sum_{k=1}^{m} \frac{(m+1)}{k+1} \frac{(-1)^k}{f^{k+1}} \sum_{i_1 + \cdots + i_k = m \atop i_1, \ldots, i_k \geq 0} H^{(i_1)}(f) \cdots H^{(i_k)}(f).
\]
Lemma 3.3. ([23, 18]) For $f \in F[[z]]$ and for $m \geq 1$, $j \geq 2$, we have

$$H^{(m)}(f^j) = \sum_{k=1}^{j} f^{j-k} \sum_{i_1, \ldots, i_m \geq 0 \atop i_1+\cdots+i_m = k} \frac{j(j-1)\cdots(j-k+1)}{i_1! \cdots i_m!} \times (H^{(1)}(f))^{i_1} \cdots (H^{(m)}(f))^{i_m}.$$

4. Proofs of the main results. In this section, we shall proof our main results which have been introduced in Section 2.

Lemma 4.1. For $m \geq 1$, we have

$$\sum_{i_{\ell+1}=0}^{m} \frac{AC_{i_{\ell+1}}^{(\ell)}}{\Pi(i_{\ell+1})} \sum_{i_1+\cdots+i_{\ell} = m-i_{\ell+1}} \lambda_{i_1} \cdots \lambda_{i_{\ell}} = 0.$$

Proof. Put $f(z) = \frac{1}{S(z)}$. From (1.17) and (2.1), we have

$$(4.1) \quad 1 = (f(z))^\ell (S(z))^\ell = \left(\sum_{n=0}^{\infty} \lambda_n z^n\right)^\ell \left(\sum_{n=0}^{\infty} \frac{AC_n^{(\ell)}}{\Pi(n)} z^n\right).$$

Applying the Hasse-Teichmüller derivative $H^{(m)}$ of order m to (4.1), we have

$$(4.2) \quad H^{(m)} \left[(f(z))^\ell (S(z))^\ell \right]_{z=0} = H^{(m)}(1)_{z=0} = 0.$$

Note that for $j = 1, 2, \ldots, \ell$, by the definition of the Hasse-Teichmüller derivative (3.1), we have

$$H^{(i_j)}(f(z))_{z=0} = H^{(i_j)} \left(\sum_{n=0}^{\infty} \lambda_n z^n \right)_{z=0}$$

$$= \sum_{n=i_j}^{\infty} \lambda_n \binom{n}{i_j} z^{n-i_j}$$

$$= \lambda_{i_j}$$

and

$$H^{(i_{\ell+1})} \left[(S(z))^\ell \right]_{z=0} = H^{(i_{\ell+1})} \left(\sum_{n=0}^{\infty} \frac{AC_n^{(\ell)}}{\Pi(n)} z^n \right)_{z=0}$$

$$= \sum_{n=i_{\ell+1}}^{\infty} \frac{AC_n^{(\ell)}}{\Pi(n)} \binom{n}{i_{\ell+1}} z^{n-i_{\ell+1}}$$

$$= \frac{AC_{i_{\ell+1}}^{(\ell)}}{\Pi(i_{\ell+1})}.$$
Then by Lemma 3.1, we have

\[H^{(m)} \left[(f(z))^\ell (S(z))^\ell \right] \bigg|_{z=0} = \sum_{i_1 + \cdots + i_{\ell+1} = m} H^{(i_1)} (f(z)) \bigg|_{z=0} \cdots H^{(i_\ell)} (f(z)) \bigg|_{z=0} H^{(i_{\ell+1})} \left[(S(z))^\ell \right] \bigg|_{z=0} \]

(4.3)

\[= \sum_{i_1 + \cdots + i_{\ell+1} = m} \lambda_{i_1} \cdots \lambda_{i_\ell} \frac{AC^{(\ell)}_{i_{\ell+1}}}{\Pi(i_{\ell+1})}. \]

Comparing with (4.2), we get

(4.4) \[\sum_{i_1 + \cdots + i_{\ell+1} = m} \lambda_{i_1} \cdots \lambda_{i_\ell} \frac{AC^{(\ell)}_{i_{\ell+1}}}{\Pi(i_{\ell+1})} = 0, \]

which is the desired formula. \(\Box \)

Proof of Theorem 2.1. From Lemma 4.1, we have

\[AC^{(\ell)}_m = -\Pi(m) \sum_{i=0}^{m-1} \frac{AC^{(\ell)}_i}{\Pi(i)} D_\ell(m-i) \]

with \(AC^{(\ell)}_0 = 1 \), where

(4.5) \[D_\ell(e) = \sum_{i_1 + \cdots + i_{\ell+1} = e} \lambda_{i_1} \cdots \lambda_{i_\ell}, \]

which is Theorem 2.1. \(\Box \)

Proof of Theorem 2.4. Denote by

(4.6) \[h(z) = (f(z))^\ell, \]

where

\[f(z) = \sum_{n=0}^{\infty} \lambda_n z^n. \]

Since by (3.1), the definition of the Hasse–Teichmüller derivative, we have

\[H^{(i)}(f(z)) \bigg|_{z=0} = \sum_{n=1}^{\infty} \lambda_n \binom{n}{i} z^{n-i} \bigg|_{z=0} \]

\[= \lambda_i. \]
Then applying the product rule of the Hasse-Teichmuller derivative in Lemma 3.1, we get
\[
H(e)(h(z))|_{z=0} = \sum_{\substack{i_1+\ldots+i_\ell=e \\text{ such that } i_1, \ldots, i_\ell \geq 0}} H^{(i_1)}(f(z))|_{z=0} \cdots H^{(i_\ell)}(f(z))|_{z=0}
\]
(4.7)
\[
= \sum_{\substack{i_1+\ldots+i_\ell=e \\text{ such that } i_1, \ldots, i_\ell \geq 0}} \lambda_{i_1} \cdots \lambda_{i_\ell}
\]
:= \mathcal{D}_\ell(e).

Since by (4.6) and (1.18)
\[
\frac{1}{h(z)} = \frac{1}{(f(z))^\ell} = \sum_{n=0}^{\infty} \frac{AC_n(\ell)}{\Pi(n)} z^n,
\]
we have
(4.8)
\[
H^{(m)} \left(\frac{1}{h(z)} \right) \bigg|_{z=0} = H^{(m)} \left(\sum_{n=0}^{\infty} \frac{AC_n(\ell)}{\Pi(n)} z^n \right) \bigg|_{z=0} = \frac{AC_m(\ell)}{\Pi(m)}.
\]
And from (3.2), the quotient rule of the Hasse-Teichmuller derivative, and (4.7), we get
(4.9)
\[
H^{(m)} \left(\frac{1}{h(z)} \right) \bigg|_{z=0} = \sum_{k=1}^{m} \frac{(-1)^k}{h^{k+1}} \sum_{\substack{e_1+\ldots+e_k=m \\text{ such that } e_1, \ldots, e_k \geq 1}} H^{(e_1)}(h(z))|_{z=0} \cdots H^{(e_k)}(h(z))|_{z=0}
\]
\[
= \sum_{k=1}^{m} (-1)^k \sum_{\substack{e_1+\ldots+e_k=m \\text{ such that } e_1, \ldots, e_k \geq 1}} \mathcal{D}_\ell(e_1) \cdots \mathcal{D}_\ell(e_k).
\]
Comparing (4.8) and (4.9) we get the desired formula. \(\square\)

Proof of Theorem 2.9. From the geometric series expansion, we have
(4.10)
\[
S(z) = \frac{1}{1 + (f(z) - 1)} = \sum_{j=0}^{\infty} (-1)^j (f(z) - 1)^j.
\]
And by (1.16) and the definition of the Hasse-Teichmuller derivative (3.1), we get
\[
H^{(m)}(S(z))|_{z=0} = H^{(m)} \left(\sum_{n=0}^{\infty} \frac{AC_n}{\Pi(n)} z^n \right) \bigg|_{z=0} = \frac{AC_m}{\Pi(m)}.
\]
Then applying the Hasse-Teichmuller derivative \(H^{(m)}\) of order \(m \geq 1\) to both sides of (4.10), we get
(4.11)
\[
\frac{AC_m}{\Pi(m)} = \sum_{j=1}^{\infty} (-1)^j H^{(m)}(g^j)|_{z=0},
\]
where

$$g := f(z) - 1 = \sum_{i=1}^{\infty} \lambda_i z^i. $$

Lemma 3.3 yields

$$H^{(m)}(g^j)|_{z=0} = \sum_{k=1}^{j} g^{j-k} \sum_{i_1, \ldots, i_m \geq 0 \atop i_1 + \cdots + i_m = k \atop i_1 + 2i_2 + \cdots + mi_m = m} \frac{j(j-1) \cdots (j-k+1)}{i_1! \cdots i_m!}$$

$$\times (H^{(1)}(g))^{i_1} \cdots (H^{(m)}(g))^{i_m} \bigg|_{z=0}. $$

By (4.12), we have $g(0) = 0$ and $g^{j-k}|_{z=0} = 0$ if $j \neq k$, thus the right hand side of the above equality equals to

$$\sum_{i_1, \ldots, i_m \geq 0 \atop i_1 + \cdots + i_m = j \atop i_1 + 2i_2 + \cdots + mi_m = m} \frac{j!}{i_1! \cdots i_m!} \lambda_1^{i_1} \lambda_2^{i_2} \cdots \lambda_m^{i_m}. $$

Substituting to (4.11) and also noticing that for $j > m$, the summation index of the above sum becomes empty thus the sum equals to 0, we get the desired formula. □

Proof of Theorem 2.10. At this stage, we show that the proof of [17, Theorem 2] which based on the inductive method can also be applied to our situation.

Denote by $A_m^{(\ell)} = \frac{(-1)^m AC_m^{(\ell)}}{\Pi(m)}$. Then, we shall prove that for any $m \geq 1$

$$A_m^{(\ell)} = \begin{vmatrix} D_\ell(1) & 1 \\ D_\ell(2) & D_\ell(1) \\ \vdots & \vdots & \ddots & 1 \\ D_\ell(n-1) & D_\ell(n-2) & \cdots & D_\ell(1) & 1 \\ D_\ell(n) & D_\ell(n-1) & \cdots & D_\ell(2) & D_\ell(1) \end{vmatrix}. $$

When $m = 1$, (4.13) is valid, because by Corollary 2.5 we have

$$AC_1 = (-1)\Pi(1)D_\ell(1). $$

Assume that (4.13) is valid up to $m - 1$. Notice that by Corollary 2.2, we have

$$A_m^{(\ell)} = \sum_{i=1}^{m} (-1)^{i-1} A_{m-i}^{(\ell)} D_\ell(i). $$
Thus, by expanding the first row of the right-hand side (4.13), it is equal to

\[
D_\ell(1) D_{m-1}^{(\ell)} - D_\ell(2) D_{m-2}^{(\ell)} \\
= D_\ell(1) A_{m-1}^{(\ell)} - D_\ell(2) A_{m-2}^{(\ell)} \\
+ (-1)^{m-2} \sum_{i=1}^{m} (-1)^{i-1} D_\ell(i) A_{m-i}^{(\ell)} = A_m^{(\ell)}.
\]

Note that \(A_1^{(\ell)} = D_\ell(1) \) and \(A_0^{(\ell)} = 1 \). \(\square \)

Acknowledgement. The authors are enormously grateful to the anonymous referee for his/her very careful reading of this paper, and for his/her many valuable and detailed suggestions. Su Hu is supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010170). Min-Soo Kim is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1F1A1062499).

References

1. T.M. Apostol, Modular functions and Dirichlet series in number theory, Second edition. Graduate Texts in Mathematics, Vol. 41, Springer-Verlag, New York, 1990.

2. P. Appell, Sur une classe de polynômes, Ann. Sci. Ecole Norm. Sup. (2) 9 (1880), 119–144.

3. F. Bencherif, B. Benzaghou, and S. Zerroukhat, Une identité pour des polynômes d’Appell, C.R. Math. Acad. Sci. Paris 355 (2017), 1201–1204.

4. L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), 137–168.

5. L. Carlitz, An analogue of the von Staudt-Clausen theorem, Duke Math. J. 3(3) (1937), 503–517.

6. L. Carlitz, An analogue of the Staudt-Clausen theorem, Duke Math. J. 7 (1940) 62–67.
7. K. Chakraborty and T. Komatsu, Generalized hypergeometric Bernoulli numbers, *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM* **115** (2021), Paper No. 101.

8. M.C. Dagali, Closed formulas and determinantal expressions for higher-order Bernoulli and Euler polynomials in terms of Stirling numbers, *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM* **115** (2021), Paper No. 32.

9. J.W.L. Glaisher, Expressions for Laplace’s coefficients, Bernoullian and Eulerian numbers etc. as determinants, *Messenger* (2) **6** (1875), 49–63.

10. D. Goss, *Analogies between global fields*, Number theory (Montreal, Que., 1985), pp. 83–114, CMS Conf. Proc., Vol. 7, Amer. Math. Soc., Providence, RI, 1987.

11. D. Goss, *Basic Structures of Function Field Arithmetic*, Springer-Verlag, Berlin/Heidelberg/New York, 1998.

12. R. Gottfert and H. Niederreiter, *Hasse-Teichmüller derivatives and products of linear recurring sequences*, Finite Fields: Theory, Applications, and Algorithms (Las Vegas, NV, 1993), Contemporary Mathematics, Vol. 168, pp. 117–125, American Mathematical Society, Providence, RI, 1994.

13. E.-U. Gekeler, Some new identities for Bernoulli-Carlitz numbers, *J. Number Theory* **33**(2) (1989), 209–219.

14. E.-U. Gekeler, On regularity of small primes in function fields, *J. Number Theory* **34**(1) (1990), 114–127.

15. H. Hasse, Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit Vollkommenem Konstantenkörper bei beliebiger Charakteristik, *J. Reine Angew. Math.* **175** (1936), 50–54.

16. S. Hu and M.-S. Kim, Two closed forms for the Apostol-Bernoulli polynomials, *Ramanujan J.* **46** (2018), 103–117.

17. S. Hu and T. Komatsu, Explicit expressions for the related numbers of higher order Appell polynomials, *Quaest. Math.* **43**(8) (2020), 1019–1029.

18. S. Jeong, M.-S. Kim, and J.-W. Son, On explicit formulae for Bernoulli numbers and their counterparts in positive characteristic, *J. Number Theory* **113** (2005), 53–68.

19. H. Kaneko and T. Komatsu, Cauchy-Carlitz numbers, *J. Number Theory* **163** (2016), 238–254.

20. A. Lara Rodríguez, On von Staudt for Bernoulli-Carlitz Numbers, *J. Number Theory* **132** (2012), 495–501.

21. M.E. Nörlund, *Differenzenrechnung*, Springer-Verlag, Berlin, 1924.

22. F. Qi and R.J. Chapman, Two closed forms for the Bernoulli polynomials, *J. Number Theory* **159** (2016), 89–100.

23. O. Teichmüller, Differentialrechnung bei Charakteristik p, *J. Reine Angew. Math.* **175** (1936), 89–99.

24. D.S. Thakur, *Function field arithmetic*, World Scientific Publishing Co., Inc., River Edge, NJ, 2004.

25. L.C. Washington, *Introduction to cyclotomic fields*, Second edition, Graduate Texts in Mathematics, Vol. 83, Springer-Verlag, New York, 1997.

Received 23 May, 2021 and in revised form 29 August, 2021.