A new jet algorithm based on the k-means clustering for the reconstruction of heavy states from jets

S. Chekanov1

HEP division, Argonne National Laboratory, 9700 S.Cass Avenue, Argonne, IL 60439 USA
E-mail: chekanov@mail.desy.de

Abstract

A jet algorithm based on the k-means clustering procedure is proposed which can be used for the invariant-mass reconstruction of heavy states decaying to hadronic jets. The proposed algorithm was tested by reconstructing $e^+e^- \rightarrow t\bar{t} \rightarrow 6$ jets and $e^+e^- \rightarrow W^+W^- \rightarrow 4$ jets processes at $\sqrt{s} = 500$ GeV using a Monte Carlo simulation. It was shown that the algorithm has a reconstruction efficiency similar to traditional jet-finding algorithms, and leads to 25\% and 40\% improvement of the top-quark and W mass resolution, respectively, compared to the k_T (Durham) algorithm. In addition, it is expected that the peak positions measured with the new algorithm have smaller systematical uncertainty.

1Also affiliated with DESY, Notkestrasse 85, 22607, Hamburg, Germany
1 Introduction

Jet finding algorithms are indispensable tools for the reconstruction of heavy states (Z, W bosons, top quarks, Higgs bosons) decaying to hadronic jets. A number of jet algorithms has been proposed in the past (see recent reviews [1,2]) which can be used for the calculation of the invariant-mass distributions for hadronically decaying heavy states.

It has already been pointed out [1] that there is no algorithm which is optimal for all possible jet-related studies. Usually, different jet algorithms have different emphasis. Some jet finders are preferable for precise comparisons with QCD theory, since the jet cross sections reconstructed with such algorithms have small fixed-order perturbative corrections, as well as small hadronisation corrections. However, such jet algorithms may not be the most optimal for other tasks.

The traditional jet finders have one significant drawback: miss-assignment of hadrons into jets is a common problem for the reconstruction of heavy states decaying into jets. Incorrectly assigned particles lead to a broadening of the width of the invariant-mass peaks, as well as to a reduction of signal-over-background ratios. To deal with this problem, one can impose expected kinematic criteria on the reconstructed jets. However, the construction of the traditional algorithms prevents to include such criteria in an efficient way: the iterative procedure which combines particles into jets is usually based on a single distance measure between particles. Therefore, it is difficult to take into account a priori known information on decay kinematics during the jet clustering procedure.

To solve the miss-assignment problem, one may think about an iterative procedure which would keep redistributing hadrons between jets until known kinematic criteria are met. In this case, the main question is how the particles should be redistributed (particles in jets with the strongest overlaps?) and what “particle-redistribution algorithm” should be used for this, keeping in mind that the speed for such procedure should be reasonably fast.

Below we will discuss an algorithm which attempts to solve the problem of particle miss-assignments. In fact, we propose a jet clustering procedure with some additional elements of intelligence: it minimises not only a distance measure between hadrons, but also any physics-related quantity reflecting how close the final event kinematics is from the expected one. To illustrate its properties, we will consider $e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}W^+W^- \rightarrow 6$ jets and $e^+e^- \rightarrow W^+W^- \rightarrow 4$ jets decays at $\sqrt{s} = 500$ GeV. We have chosen such processes due to their simplicity, since the event signatures are characterised by the production of exactly six (four) hadronic jets. The all-hadronic top decay is also considered to be the most promising for top studies at the International Linear Collider (ILC), since this channel has the largest branching ratio ($\simeq 44\%$ of all $t\bar{t}$ decays).
We will remind that the k-means clustering is among the oldest (and simplest) unsupervised learning algorithms that solve clustering problems. It has been adapted to classify the data in many problem domains. Below we will remind of the k-means procedure.

Let us assume that we have N particles and we know that all these particles should be grouped to a fixed number N_{cl} of clusters. The main idea is to define the locations for the initial N_{cl} centroids, or center points, in a certain phase space. These centroids should be placed as much as possible far away from each other. The next step is to associate each point belonging to a given data set to the nearest centroid. In the simplest approach, one could use a minimum-distance classifier to assign all particles to such centroids. Once this assignment is done, then the positions of new centroids should be recalculated. This procedure is repeated in a loop. As a result of such iteration, the centroids change their location step by step until they do not move any more. For the final cluster configuration, each data point will be associated to the closest centroid.

The grouping is usually done by minimising the sum of squares of the distances between data points and the corresponding cluster centroid, although other choices are also possible. For this simplest choice of the metrics, the algorithm minimises the quantity:

$$S = \sum_{k=1}^{N_{cl}} \sum_{n \in L_k} |x_n - C_k|^2,$$

where x_n is a vector representing the n^{th} data point and C_k is the geometric location of the cluster center in the subset L_k (i.e. the data points associated with the kth cluster centroid). It can be proved that the k-means procedure always terminates for this metrics. However, the k-means algorithm does not necessarily find the most optimal configuration, and it has a significant sensitivity to the initial, randomly selected, centroid locations. Thus the algorithm should be run multiple times to reduce this instability effect.

The last feature could help to construct an “intelligent” algorithm which minimises not only a distance measure between particles and the centroids (i.e. jet centers), but also any physics-related optimisation criteria. To be more specific, let us consider an example which is relevant for high-energy physics: $e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}W^+W^- \rightarrow 6$ jets process. In accordance with the topology of such events, we should expect that all hadrons should be clustered into six jets. Thus, six centroids (i.e. jet seeds) randomly located in a phase space should be specified for the initial k-means clustering loop. The clustering can be performed by minimizing the distances from the centroids to hadrons in the azimuthal angle (ϕ) and rapidity (y) phase space. After the end of the initial iterative procedure, the cluster topology can be characterised by the sum S of the distances from the centers of the jets to hadrons, as given by Eq. (1). The procedure should be repeated K times using
different starting locations for the centroids. This gives K solutions with the final values of the metrics $S_1, \ldots S_K$. The number K should be large enough to make sure that there are several configurations with the same S_i. This leads to a confidence that all possible configurations were explored and that an absolute minimum can be found. If there are several final configurations with the smallest S_i (which are exactly the same), then one could say that a hadron assignment with the strongest particle collimation inside jets is found. It can be characterised by S_{min}.

Note that the final configuration is the most optimal from the point of view of closeness of hadrons to the central jet positions. Certainly, it may not be the most optimal from the physics point of view since some hadrons (located mostly at the edge of the jets) could still be assigned to wrong jets. To minimise this problem, one can use kinematic requirements already during the k–means clustering iterations. In order to take into account known event kinematics, one could multiply S_i by a weight factor which can reflect a likeliness of a certain cluster configuration from the point of view of the expected physics output. The weight factor can be proportional to $\sim 1 - P_i$, where P_i is the probability of how close a particular cluster configuration is to the expected one. For example, for the fully-hadronic $t\bar{t}$ production, S_i should be reduced if there are at least two dijets in an event with the invariant masses close to the W-boson mass.

The traditional jet finders only minimise a certain distance measure between particles. For such jet algorithms, once the particle assignment is done, the event could either be taken (if, for example, there are two jets with the masses close to the W for the all-hadronic top decays) or rejected (in the opposite case). Thus, the event-kinematic requirements are completely external and independent of the jet finding procedure. In contrast, such requirements are an essential part of the proposed jet clustering. This means that the new algorithm keeps analysing the same event by trying different final configurations until certain kinematics conditions are satisfied. Events can only be rejected if it is not possible to find such an assignment of hadrons which meets the criterion of the closeness of hadrons to jet centers and at the same time satisfies expected physics requirements.

For a single event, the k-means minimisation procedure leads to different locations of the jet centers, as well as to different assignment of particles into the jets. Typically, the particle assignments with different initial seeds are not drastically different one from the other. Therefore, one could view the overall picture as a redistribution of hadrons (mainly located in the regions of strongest jet overlaps) between the jets with fixed centers for all k-means configurations which differ one from the other by different initial conditions.

If the produced jets are very well collimated, then one should expect a small difference between the proposed k-means clustering and the standard jet finding algorithms: in this case all k-means cluster configurations with different initial centroids should give identical results (i.e. all S_i will be the same). In contrast, the constrained k–means algorithm could outperform the standard algorithms for events with broad and overlapping jets.
3 Top-quark production

3.1 Durham jet finder versus unconstrained k-means clustering algorithm

To illustrate the method outlined above, we will apply it to the all-hadronic top decays in e^+e^- annihilation at the centre-of-mass energy of $\sqrt{s} = 500$ GeV. The PYTHIA 6.3 model [4] was used to generate one million of fully inclusive e^+e^- events, including the $t\bar{t}$ production. This sample contains 14740 events with fully-hadronic top decays. The default PYTHIA parameters were used for the simulation. The initial-state photon radiation was included. The mass and the Breit-Wigner width of the top quarks were set to the defaults values, 175 GeV and 1.39 GeV, respectively. The particles with the lifetime more than 3 cm were considered to be stable. Neutrinos were removed from the consideration. We require all reconstructed jets to have the energies above 10 GeV. In order to remove events with a large fraction of neutrinos, we apply the momentum and the energy imbalance cuts similar to those used in [5]:

$$\left| \frac{E_{\text{vis}}}{\sqrt{s}} - 1 \right| < 0.07, \quad \frac{\left| \sum \vec{p}_{||i} \right|}{\sum \left| \vec{p}_i \right|^2} < 0.04, \quad \frac{\left| \sum \vec{p}_{T\bar{i}} \right|}{\sum \left| \vec{p}_i \right|} < 0.04,$$

where E_{vis} is the visible energy, $\vec{p}_{||i}$ ($\vec{p}_{T\bar{i}}$) is the longitudinal (transverse) component of momentum of a final-state particle and the sum runs over all final-state particles.

We do not use a detector simulation for the generated events since such study is outside of the scope of this paper. Here we address the issue of the reconstruction of the invariant masses which are smeared with respect to the true masses by the parton shower and hadronisation effects. Also, for simplicity, no $b-$tagging requirement was assumed.

First, the reconstruction was done using the traditional method: jets where found using the exclusive mode of the k_\perp (Durham) algorithm [6], requiring exactly six jets for each event. Our choice for the Durham algorithm was motivated by the fact that this jet finder is one of the best algorithms for the reconstruction of jet invariant masses in e^+e^-, as it was illustrated using the W-mass reconstruction example [1]. We use a C++ version of this jet algorithm [7]. The event is taken if there is at least one jet-pair with the invariant mass M_{jj} in the range $M_W \pm 10$ GeV, where M_W is the nominal mass of the W boson. Next, the dijets which passed this cut were combined with the rest of the jets, and then all three-jet combinations were plotted. Figure 1(left) shows the corresponding trijet invariant masses, M_{jjj}. The fit was performed using the Breit-Wigner function together with a second-order polynomial for the background description. The reconstructed Breit-Wigner width ($\simeq 10$ GeV) is similar to that when an alternative approach for the top reconstruction was used [5]. The method discussed in Ref. [5] does not use the assumption on the W mass.
Now let us consider the k-means algorithm. As a first step, the final-state hadrons were pre-clustered with the Durham algorithm using \(y_{\text{cut}} \approx 10^{-5} \). This procedure reduces the number of data points by a factor 3–6. The average number of the final subjets for the \(tt \) production was around 20. As it will be discussed below, this step was necessary to reduce the computational time. The k means algorithm was run on the subjets. Each \(e^+e^- \) event was analysed \(K = 300 \) times, every time using different (random) locations for the initial centroids. This number was found to be sufficiently large to explore all possible jet configurations.

The subjet clustering was performed in the rapidity and the azimuthal angle. For the k−means clustering, it is commonly accepted to normalize each variable by its standard deviation. Therefore, both variables were normalized such that their available range was approximately between 0 and 1. Without such transformation, the number of the reconstructed states to be discussed below is 5–8% lower than in case when the transformation is used.

After the k-means clustering, each \(e^+e^- \) event is characterised by the set \(S_i, i = 1, \ldots K \), where \(S_i \) denotes the sum of all distances from the centers of the k-means jets to hadrons. Only jet configurations with the same smallest \(S_i \) were accepted. Typically, there are 10–20 final configurations which are characterised by the same \(S_{\text{min}} \). The result of the \(M_{jjj} \) reconstruction is shown in Fig. 1(right). The \(M_{jjj} \) masses were plotted only for configurations characterised by the minimum \(S_{\text{min}} \). It can be seen that the k-means algorithm leads to a better mass resolution (width) than the Durham jet finder. In addition, the reconstructed peak position is closer to the generated top mass (175 GeV). An obvious drawback of the standard k-means algorithm is a smaller reconstruction efficiency (i.e. a smaller number of the reconstructed events) than for the Durham algorithm, since the k-means algorithm in its present form has a tendency to produce low-energy jets (\(< 10 \text{ GeV}\)). Below we will discuss how to improve the k-means procedure.

3.2 Constrained k-means algorithm

Let us again consider the k-means algorithm, but this time we will constrain it by some requirement: each \(S_i \) will be multiplied by an additional weight factor. This factor is constructed from several contributions:

1. The first factor reflects the closeness of two dijet invariant masses, \(M_{jj}^{(1)} \) and \(M_{jj}^{(2)} \), to the nominal \(W \) mass, \(M_W \):

\[
W_1 = W_a W_b, \quad W_a = | M_{jj}^{(1)} - M_{jj}^{(2)} | / \sqrt{M_{jj}}, \quad W_b = | \sqrt{M_{jj}} - M_W |,
\]

where \(\sqrt{M_{jj}} = (M_{jj}^{(1)} + M_{jj}^{(2)})/2 \) represents the average invariant mass of two dijets. The factor \(W_a \) gets small when there are two dijets with similar invariant masses, while \(W_b \) is reduced when the average mass of the two dijets is close to the nominal \(W \) mass;
2. If there are two dijets with the masses in the range $M_W \pm 10 \text{GeV}$, these dijets have to be combined with the rest of the jets. This should lead to several trijets which can be characterised by the invariant masses M_{jjj}. For the top production, it is expected that there are at least two trijets with similar invariant masses, $M_{jjj}^{(1)}$ and $M_{jjj}^{(2)}$. Therefore, one can introduce another factor:

$$W_2 = \frac{|M_{jjj}^{(1)} - M_{jjj}^{(2)}|}{\overline{M}_{jjj}},$$

where $\overline{M}_{jjj} = (M_{jjj}^{(1)} + M_{jjj}^{(2)})/2$ represents the average invariant mass of two trijets.

Each k-means cluster configuration can be characterised by the factor $D_i = S_i W_{1,i} W_{2,i}$ (the new index i in $W_{1,i}$ and $W_{2,i}$ denotes a cluster configuration obtained using a certain initial position of the centroids). Only configurations with the smallest D_i were accepted. Since the clustering procedure minimizes D_i rather than S_i, the resulting particle assignment is the most optimal not only from the point of view of how well hadrons are collimated in jets, but also how well such cluster configuration reflects the expected $t\bar{t}$ decay property.

The result of the constrained k-means algorithm is shown in Fig. 2(left). While the mass resolution and the systematic off-set of the peak position are rather similar to the unconstrained version of the algorithm, the efficiency of the constrained algorithm is significantly higher. Fig. 2(right) shows the invariant masses for the background events (which do not contain the top events). The latter invariant mass does not show any structure near 175 GeV, indicating that the algorithm does not produce a spurious peak near 175 GeV.

Although we do not think that the computational speed is an important issue at the stage when no a detector simulation is involved, a few words about the performance speed of the proposed algorithm is still necessary. The (constrained) k-means jet algorithm is a factor two slower than the Durham jet finder. However, the k-means algorithm requires an additional pre-clustering stage for which the computational speed is rather similar to that for the reconstruction of six jets by the Durham jet algorithm\(^1\). Thus, the k-means procedure is roughly three times slower than the Durham algorithm. Without the pre-clustering stage, the k-means algorithm is a factor 20–30 slower than the Durham algorithm for the reconstruction of six jets.

4 W^+W^- production

As a second example, let us consider $e^+e^- \rightarrow W^+W^- \rightarrow 4$ jets at $\sqrt{s} = 500 \text{GeV}$. 10k events were generated with PYTHIA using the same parameters and the selection as before. The W mass was set to 80.45 GeV and its width to 2.07 GeV. We

\(^1\)All the discussed jet algorithms were implemented in C/C++.
reconstructed exactly four jets and then plot the invariant masses of all six jet pairs. The k-means algorithm was constrained by the simple criteria: $D_i = S_i W_{1,i}$, where $W_1 = |M^{(1)}_{ij} - M^{(2)}_{ij}|/\sqrt{N_{jj}}$ for each k-means clustering.

The results of the calculations are shown in Fig. 3. As before, the performance of the k-means algorithm is superior over the Durham jet finder, especially for the reconstructed width. One may note that the Breit-Wigner peak shown in Fig. 3(right) is also narrower than that for the invariant masses reconstructed with other traditional jet-finding algorithms [1]. In addition, the systematical shift of the peak position reconstructed with the k-means procedure is smaller than for the Durham algorithm. However, the number of the reconstructed W candidates is somewhat smaller than for the Durham algorithm.

5 Conclusion

A new jet clustering algorithm for the reconstruction of the invariant masses of heavy states decaying to hadronic jets was proposed\(^2\). It is based on the k-means clustering procedure constrained by additional kinematic requirements.

In this paper we did not try to cover many issues related to the use of this algorithm. For example, we did not study the question of how to apply this algorithm when no fixed number of jets are expected, how to use this algorithm in theoretical calculations, is this algorithm reliable in treating fixed-order perturbative QCD corrections and non-perturbative effects and, finally, will a realistic event reconstruction with all detector effects included benefit from the use of this algorithm. All such issues have to be addressed in future.

Note that the constrained k-means clustering has nothing to do with the constrained fits used in the invariant-mass reconstruction: The constrained fit attempts to find the most optimal configuration when the error matrix on the measured quantities are specified. The present approach does not require such input and it does not address the issue of the experimental precision on the reconstructed jet energies and their positions. Obviously, the constrained fit could also be used to improve the reconstruction of heavy states from jet invariant masses.

For the proposed jet clustering, a priori specified physics requirements on event kinematics can become an essential part of the minimisation procedure. In contrast, the standard algorithms usually minimise a single distance measure. The proposed algorithm has good reconstruction efficiency and leads to a significantly better resolution for the invariant-mass reconstruction than the traditional Durham jet finder. It is also expected that the peak positions measured with the new algorithm have small systematical uncertainty. Finally, the proposed k-means approach can be used without any physics constrain (which only increases the reconstructed

\(^2\)The C/C++ code of the constrained k-means algorithm is available as a module “kmeansjets.rmc” of the RunMC package [8].
efficiency), especially when the main issue is a good resolution on the invariant-mass reconstruction.

Acknowledgements

I thank V. Morgunov who pointed out the importance of the particle miss-assignment problem for the top production at ILC. I also thank E. Lohrmann for the discussion of the paper.
References

[1] S. Moretti, L. Lonnblad, T. Sjostrand, JHEP 08 (1998) 001.

[2] S. Chekanov, Proceedings of the 14th Topical Conference on Hadron Collider Physics, (28 Sep - 4 Oct 2002) Karlsruhe, Germany. (2002). Also in preprint hep-ph/0211298.

[3] J. B. MacQueen, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, p. 281. (1967).

[4] T. Sjöstrand, Comp. Phys. Comm. 39 (1986) 347;
 T. Sjöstrand, L. Lönnblad, S. Mrenna, P. Skands, Preprint hep-ph/0308153, 2003.

[5] S. Chekanov, V. Morgunov, Phys. Rev. D 67 (2003) 074011.

[6] S. Catani, et al., Phys. Lett. B 269 (1991) 432.

[7] J.M. Butterworth, J.P. Couchman, B.E. Cox, B.M. Waugh, Comput. Phys. Commun. 153 (2003) 85. Available on http://hepforge.cedar.ac.uk/ktjet/.

[8] S. Chekanov, Comp. Phys. Comm. 173 (2005) 115. Available on http://hepforge.cedar.ac.uk/runmc/.
Figure 1: The distribution of the trijet invariant masses for the reconstruction of all-hadronic top decays. Fully inclusive e^+e^- events were generated with PYTHIA for $\sqrt{s} = 500$ GeV. The reconstruction was done using the k_T algorithm (left) and the k-means algorithm (right). The fit was performed using the Breit-Wigner function together with a second-order polynomial to describe the background.
Figure 2: The dijet invariant masses for the all-hadronic top-decay channel. Fully inclusive e^+e^- events were generated with PYTHIA for $\sqrt{s} = 500$ GeV. The reconstruction was done using the constrained k-means algorithm (left). The fit was performed using the Breit-Wigner function together with a second-order polynomial to describe the background. The invariant masses reconstructed with the same algorithm using events without $t\bar{t}$ production does not have a spurious peak near the nominal top mass (right plot).
Figure 3: The dijet reconstructed invariant masses for the all-hadronic W-decay channel $e^+e^- \rightarrow W^+W^- \rightarrow 4$ jets. The events containing fully hadronic W^+W^- decays were generated with PYTHIA for $\sqrt{s} = 500$ GeV. The reconstruction was done using the Durham algorithm (left) and the constrained k-means algorithm (right). The fit was performed using the Breit-Wigner function together with a second-order polynomial to describe the background.