Yes-associated protein at the intersection of liver cell fate determination

Yong-Feng Bai, Si-Wei Wang, Zheng-Cai Xu, Jin Zhu, Feng Zhang

ORCID number: Yong-Feng Bai (0000-0001-9675-1332); Si-Wei Wang (0000-0001-8813-6647); Zhengcai Xu (0000-0001-8874-9902); Jin Zhu (0000-0003-9359-5854); Feng Zhang (0000-0002-6751-0377).

Author contributions: Bai YF, Zhu J and Zhang F provided the original idea for the manuscript; Bai YF, Wang SW, Xu ZC, Zhu J and Zhang F wrote the paper.

Supported by: National Natural Science Foundation of China, No. 81502304; Science and Technology Projects of Quzhou, No. 2018K20; Suitable Technology Promotion Center New Technology and Product Research and Development Projects, No. 2019329288.

Conflict-of-interest statement: The authors declare no competing financial interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Abstract

A recent publication highlights the importance of high yes-associated protein (YAP) expressing cells in liver regeneration following partial hepatectomy. Although the names of the cell populations described in these articles [hybrid periportal hepatocytes (HybHP) or epithelial-mesenchymal transition (EMT)-reprogrammed hepatocytes] are not identical, they all express high levels of YAP. We hypothesize that the HybHP and EMT-reprogrammed hepatocytes might be a similar cell population. Hippo signaling is the primary pathway that regulates YAP activity. According to the contribution of these two types of cells to liver regeneration and the high YAP expression, Hippo-YAP signaling activation may be a common regulatory pathway experienced by cells undergoing dedifferentiation and reactivating proliferative activity during liver regeneration. Although no evidence has shown that HybHP cells contribute to hepatocellular carcinoma in mouse models, we can not rule out the possibility that these highly regenerative cells can further develop into tumor cells when they acquire mutations caused by viral infection or other risk factors like alcohol. The detailed mechanistic insight of the regulation of YAP expression and activity in HybHP (or other types of cells contributing to liver regeneration) is unknown. We hypothesize that liver regeneration under various conditions will eventually lead to divergent consequences, likely due to the duration of YAP activation regulated by Hippo-large tumor suppressor 1 and 2 pathway in a context- and cell type-dependent manner.

Key words: Hybrid periportal hepatocytes; Yes-associated protein; SOX9; Epithelial-mesenchymal transition; Hepatocellular carcinoma

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.
TO THE EDITOR

The recent publication in Hepatology by Jiang et al described that nuclear pregnane X receptor (PXR) activates hybrid periportal hepatocyte (HybHP) cell proliferation through YAP and played a key role in liver regeneration following partial heptectomy[1]. The authors found that HybHPs comprise a SOX9-positive, YAP-high cell population and that YAP is a key protein that regulates HybHP cell proliferation. Inhibition of YAP abolished PXR-induced liver enlargement in mice. HybHP was first characterized in 2015 as a pre-existing group of periportal hepatocytes in healthy livers[2]. These cells have low Sox9 (a progenitor cell marker) expression and hepatic gene features. Another study published several months ago examined the role of epithelial-mesenchymal transition (EMT) in liver regeneration[3]. They found that some hepatocytes overexpressed YAP during the repair process after liver damage and underwent an EMT-like process. YAP interacted with Smad2 in the TGF-β pathway to promote cell proliferation. Although the names of the cell populations described in these articles (HybHP or EMT-reprogrammed hepatocytes) are different, they both express high levels of YAP. Even though whether such EMT-reprogrammed cells express SOX9 is unknown, EMT is an important pathway to generate progenitor cells. We hypothesize that the HybHP and EMT-reprogrammed hepatocytes described in these studies are a similar cell population. According to the contribution of these two cell types to liver regeneration and the high YAP expression, Hippo-YAP pathway activation may be a common regulatory pathway experienced by cells undergoing dedifferentiation and reactivating proliferative activity during liver regeneration, regardless of whether these highly proliferative cells are derived from hepatocytes or HybHP cells. YAP may be an effective target for promoting liver regeneration in liver failure patients. Although no evidence showed that HybHP cells contribute to hepatocellular carcinoma (HCC) in three different mouse models[4], we cannot rule out the possibility that these highly regenerative cells can further develop into tumor cells or cancer stem cells when they gain mutations caused by viral infection or other risk factors like alcohol. YAP is activated in 50% of human HCCs, and its activation level correlates with decreased survival after resection. Endogenous YAP activation perturbs hepatocyte differentiation and maintains this state in advanced tumors, and YAP silencing restores hepatocyte differentiation and leads to tumor regression[5]. It is interesting to question whether YAP is activated during controlled liver regeneration and excessive cell proliferation is prevented by inactivating YAP. However, under pathological conditions, the control of YAP activity is disrupted, resulting in continuous YAP activation and the generation of HCC.

Hippo signaling is the primary signaling pathway that regulates YAP activity, and MST1/2 phosphorylation of large tumor suppressor 1 and 2 (LATS1/2) can inhibit YAP entry into the nucleus. However, LATS1/2 phosphorylation by MST1/2 is context- and cell type-dependent. Loss of MST1/2 in mouse embryonic fibroblasts does not significantly affect LATS1/2 phosphorylation or activation[6]. Therefore, we hypothesize that liver regeneration under various conditions will eventually lead to divergent consequences, probably due to the duration of YAP activation regulated by Hippo-LATS1/2 pathway in a context- and cell type-dependent manner. A deeper understanding of this aspect may uncover the key to target YAP to promote liver regeneration in pathological conditions and to control its tumorigenicity at the same time.
REFERENCES

1. Jiang Y, Feng D, Ma X, Fan S, Gao Y, Fu K, Wang Y, Sun J, Yao X, Liu C, Zhang H, Xu L, Liu A, Gonzalez FJ, Yang Y, Gao B, Huang M, Bi H. Pregnane X Receptor Regulates Liver Size and Liver Cell Fate by Yes-Associated Protein Activation in Mice. *Hepatology* 2019; 69: 343-358 [PMID: 30048004 DOI: 10.1002/hep.30131]

2. Font-Burgada J, Shalapour S, Ramaswamy S, Hsueh B, Rossell D, Umemura A, Taniguchi K, Nakagawa H, Valasek MA, Ye L, Kopp JL, Sander M, Carter H, Deisseroth K, Verma IM, Karin M. Hybrid Periportal Hepatocytes Regenerate the Injured Liver without Giving Rise to Cancer. *Cell* 2015; 162: 766-779 [PMID: 26276631 DOI: 10.1016/j.cell.2015.07.026]

3. Oh SH, Swiderska-Syn M, Jewell ML, Premont RT, Diehl AM. Liver regeneration requires Yap1-TGFβ-dependent epithelial-mesenchymal transition in hepatocytes. *J Hepatol* 2018; 69: 359-367 [PMID: 29758331 DOI: 10.1016/j.jhep.2018.05.008]

4. Fitamant J, Kottakis F, Benhamouche S, Tian HS, Chuvin N, Parachoniak CA, Nagle JM, Perera RM, Lapouge M, Deshpande V, Zhu AX, Lai A, Min B, Hoshida Y, Avruch J, Sia D, Camprecios G, McClatchey AI, Llovet JM, Morrissey D, Raj L, Bardeesy N. YAP Inhibition Restores Hepatocyte Differentiation in Advanced HCC, Leading to Tumor Regression. *Cell Rep* 2015 [PMID: 25772357 DOI: 10.1016/j.celrep.2015.02.027]

5. Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond. *Trends Cell Biol* 2015; 25: 499-513 [PMID: 26045258 DOI: 10.1016/j.tcb.2015.05.002]
