The benefits of applying project management methodology on project delay: A study in construction projects in Iraq

Hayder K Aljamee 1 and Saja M Naeem 2
1 Department of Business Support and Development, Basra Oil Company, Ministry of Oil, Basra, Iraq
2 Environment and Pollution Department, Southern Technical University, Basra, Iraq

Abstract. The purpose of the research is to look after establishing an appropriate solution for the problems in Iraqi construction projects which have been affected in the last years. It aims to evaluate the problems and then fix and/or at least mitigate them properly. It takes a construction project in the petroleum industry as a case study so that it can identify the realistic causes of project problems. In regard to research methodology, this research remarks on the root causes of project delay in the previous studies in Iraq, Oman and Qatar that is realised as a secondary data. Also, primary data is conducted to collect up to date information by using questionnaire. It exposes the main problems in Iraqi construction projects which are project delay, change in design, plan, scope and specifications and project cost overrun. The root cause of project delay is to accept the lowest bidding prices from the contractors and financial difficulty from the contractors. To improve the project management implementation that may require applying one of the project management methodologies in Iraqi construction projects. This research recommends applying PMBoK because it could deal with the project schedule which is the important thing recently and with cost, quality, communication and stakeholder.

1. Introduction
To lead any project successfully, three terms must be considered which are quality, cost and time. The three aspects realised as an Iran triangle in accordance with the project management consideration [1]. The parameter is to evaluate the project success factors against the actual the project outcomes in order to expose the deviation within the project performance assert that the construction project can be realized as successful, once it is finished on budget and time with the required quality [3]. The related parameter relies on the desire of project stakeholders thinking and requirements [2]. This research takes a construction project in the petroleum industry to specify and evaluate the realistic causes of project problems and as a case study. The petroleum industry is one of the most significant industry in Iraq. [4] claim that Iraqi Annual Federal Budget depends on petroleum revenue by 93% and 92% in 2013 and 2014 respectively. The percentage has increased to be 95% in 2015 as reported by Faucon, Kent and Said [5]. To fix the problems in Iraqi construction projects that needs at first to identify the root causes of the problems. So Badiru and Osisanya [6] state that “Projects in the oil and gas industry are characterized by huge investments, massive interfaces, and complex engineering endeavours”; then, applying an appropriate project management processes are required because of the complexity and size of the petroleum industry projects. In certain case, the lack of management and investment are the most problems in Iraqi projects as a general. Likewise, the market need for petroleum is predicted to increase up to fifty percent in 2030 that based on the petroleum demand since 2005 [6].
The cap of previous researches is captured because no improvement has been conducted yet in Iraqi construction projects and it is new idea to find a new mitigation. The idea has come out since International Oil Company(s) (IOC) invest the Iraqi petroleum fields. [7] states that IOCs have been invested the petroleum fields in Iraq since 2009 in order to increase the petroleum exportation to be ready for the execution stage in 2017 but, the plan has not been succeeded to be on time due to the limitation of infrastructure in Iraqi petroleum facilities. Furthermore, Table 1 demonstrates the proportion shares of IOCs with National Oil Company (NOC) in Iraq. In certain case, 85 percent of oil reverse are placed in the south of Iraq.

The Field Name	Original Partners
Rumalia	BP 38%, CNPC 37%
Zubair	Eni 33%, OXY 23%, KOGAS 19%
West Qurna I	Exxon 60%, Shell 15%
West Qurna II	Lukoil 85%, Statoil 15%
Majnoon	Shell 60%, Petronas 40%
Halfaya	CNPC 50%, Petronas 25%, Total 25%
Gharraf	Petronas 60%, JAPEX 40%

The deficient infrastructure in Iraqi petroleum fields minimise the opportunity of increasing the petroleum exportation. The plan of increasing the petroleum exportation would be considered as a project that is based on the illustration of A Guide to the Project Management Body of Knowledge. It says that project is “a temporary endeavour undertaken to create a unique product or service” [9]. This paper will look after the project problems in regard to project schedule and then find a solution.

The research objectives are as follows:
- What are the causes of delays in construction projects in Iraq?
- What is the project management methodology?
- Which is an appropriate project management methodology for construction projects?
- Does the project manager using project management methodology in Iraq?

2. Literature Review

It is usual to observe that the construction projects face slippage in schedule and cost. In contrary the project success is to finish the project on time, cost, with specifications [10]. The correlation between project success and management performance “Is hard to model involving complex constructs often with insufficient accuracy and detail leading to findings that are fragmented and incomplete” [11]. The definition of time-schedule is that “Are often used interchangeably, this is how long it will take for the contractor to complete a task” [12]. The delay is an act or event that extends the time to complete or perform an act under the contract [13]. The project success factors are to achieve the project [14]:
- On time;
- On cost;
- With desired execution and specification;
- With satisfying the stakeholders of the projects like the end-users;
- With approving the change of project scope by the end-users and the project manager;
- “Without disturbing the main workflow of organization”; and
- “Without changing the corporate culture”.

Table 1. The percentage shares between IOC and NOC in Iraq [8].
Understanding the reason behind the project slippage in the schedule (project delay) that might require to identifying the root causes of project delay. To do so, it should look at the previous researches. [15] claim that 70% of construction projects in Saudi Arabia are finished with slippage in the schedule. Khaleel and Hadi [16] conduct a study in Iraq on the project delay. They conclude the top five root causes of delay in Iraqi construction projects: (1) financial difficulty with the contractors, (2) shortage of skilled manpower, (3) change in economic conditions, (4) consultant slack of judgment and experience, (5) unavailability of equipment. Alnuaimi and Mohsin [17] conduct a research in Omani construction projects. They highlight the most frequent root causes of project delay as follows (1) lack of experience in project construction; (2) shortage in materials; (3) change in design; (4) poor planning construction work; and (5) poor site management. Finally Mohamed, Hassan and Farrell [18] report the causes of project delay in Qatar: (1) long response from utility agencies; (2) major change in design during construction; (3) ineffective planning and scheduling; (4) ineffective control of progress; and (5) changes in the scope of the project are the most serious root causes of project delay.

3. The justification of applying Project Management Methodology

These root causes of delay above would have a high impact on the construction projects unless applying project management methodology (PMM) within the project lifecycle. The PMM may look after to prevent and/or at least mitigate problems in project lifecycle. They could assist to decrease the risk of project slippage in the schedule essentially. PMM is “An application of knowledge, skills, tools and techniques to meet or exceed the project requirements” [19]. It is “A set of processes, methods and tools for achieving a specific goal in project management” [20].

This section aims to justify the success of using PMM within project lifecycle through demonstrating the benefits of applying PMM. [19] conclude the benefits are (1) the project objectives can be agreed; (2) PMM can be handled and distributed of project reports easily; (3) easy to review the project, according to its objectives; (4) the transparency in project management practices; (5) success in project risk management; (6) handling the problems and the complexities of the project; (7) easy to measure completion percentage and to improve control and command of the project; (8) regulating the inventories of stakeholders in various phases of the project; (9) measurement of accomplishment against plans; (10) improved estimating probability for future planning; and (11) giving an indication when objectives are not going to be met.

There are various PMMs that could be useful to be applied in construction projects. It is intended to illustrate the description, advantages and disadvantages of 20 PMMs (see Appendix A). Subsequently, based on that three PMM are justified and could be applied in the construction projects which are PMBoK, PRINCE2 and Scrum. Then, the concept is to choose just one PMM to be applied in accordance with the most appropriate PMM to the construction projects in Iraqi petroleum industry. Although they are demonstrated in depth in Appendix A, herein are more justification for just the three ones as follows:

3.1. PMBoK (Project Management Body of Knowledge)

The main aim of PMBoK is to provide a guide for the project managers to implement projects successfully (Project Management Institute 2013). [6] say that the benefits of using PMBoK in Brutus Project, that has executed by Shell Company, are (1) providing a better communication between project teams; (2) providing a work breakdown structure; (3) providing a new system of financial software; (4) the implementation approach has given the project team new perception and vision to implement the project objectives and reinforced the fundamental principles of project management; (5) improving expectations of the customers; (6) improving the organisation financially; help to identify the project risk; (7) help to estimate the project time; and (8) help to estimate the project cost.

3.2. Scrum

Scrum is useful to be used to enhance the end user’s satisfaction [21]. It enhances continual planning which has a higher priority than plan and also the planning, that is not being stopped till obtaining the customer satisfaction, works to reduce the risk of the project [21]. [22] suggest that “Scrum has great
potential in the design and planning departments of construction firms.” Scrum and agile software development look after to present better communication, increase productivity and minimize risk [9].

3.3. PRINCE2 (PRoject In Controlled Environment)
PRINCE2 is “Method of project management structured based on experience gained in thousands of projects and contributions of numerous sponsors, managers, project teams, academics, trainers and consultants. It becomes a practical reference, possible to apply to any type of project, scale, organization, geography or culture. it has become widely recognized as one of the methods of project management more accepted” [23]. The last version of PRINCE2 is intended to have more flexibility; to ensure meeting the customers’ expectations and providing the easiest way to make the change in the product [24]. The main approach of PRINCE2 is to focus on the business case, organizational structure and guide the project team [3]. It could provide a good management practice by adopting six aspects which are cost, quality, scope, benefit, timescale and risk [25].

4. The disadvantages of Project Management Methodology
[26] exposes the disadvantages of applying PMMs as follows:
- They are required many documentations for instance using policies and checklists; and
- more constraints.

5. The Project Management Methodology Choice
It is optional for an organisation or project manager to pick up an appropriate PMM or what is fit with their business and culture. However, this paper is suggested to choose PMBoK, according to the Cons and Pros in Appendix-A and the above benefits. Importantly PMBoK focuses on ten knowledge area (see Figure 1) [27], [28] and [29]:
Figure 1. The ten knowledge areas of PMBoK [29]

The most interesting knowledge area for this paper is project time management (PTM). If it has been used properly, PMT would be fixed the delay in the Iraqi construction projects.

6. Methodology
This paper is examined the root causes of project delay in three countries which are Iraq, Oman and Qatar because they have numerous similarities for instance culture and project environments. The identification of root causes in the three countries is considered secondary data. Thus, this gives a good insight to evaluate the root causes of project delay in the Iraqi construction projects by conducting primary data.

The primary data are conducted by using a questionnaire (Survey) with the excellence department managers, project managers and engineers. The questionnaire consists of four questions; the outcomes of first and second questions that have been discussed in the previous paper which was titled “The causes of project delay in Iraqi petroleum industry: A case study in Basra Oil Company”. However, the other two questions are new that will be revealed in detail. The questions of the questionnaire are as follows:
1. What are the main problems in construction projects in Iraqi?
2. What are the root causes of delays in Iraqi construction projects?
3. Do you know what a Project Management Methodology is?
4. Which Project Management Methodology you have heard or used?

The data are collected from 33 respondents who work as an engineer as client, contractor and consultant. Partial of these data were discussed widely in previous research to the same authors of this paper. As mentioned, the related data are placed in the main body of this paper. The data are analysed by using Statistical Package for Social Science computer software version 25 (SPSS 25) as a tool to analyse the questionnaires sufficiently. SPSS 25 assist to display the ranking of the evaluated questions that are asked to the respondents. The analysed data have relied on the Mean of each response. [30] states that the mean is a point that is located in between of distribution responses. The data were collected by using the Bristol Online Survey (BOS).

7. Results and Data Collection
This section will look after to answer four questions. These four questions are asked to be evaluated by the respondents in the questionnaire. The most significant problems in construction projects in Iraq are project delay (project time over run) and followed by Change in Design, Plan, Scope and Specifications. The answer is prioritised in order from 1 to 7 for the first question (see Table 2).

Ranking	The Main Problems	Mean
1.	Project time overrun	3.85
2.	Change in design, plan, scope and specifications	3.48
3.	Projects cost overrun	3.45
4.	Poor communications between the client/owner, contractor and consultant	3.42
5.	Conflict between the contract, the scope of work, drawings and specifications	3.39
6.	Poor Project management	3.22
7.	Quality defects	2.94

The respondents of questionnaire evaluate 20 root causes of project delay. The ranking of 20 root causes of project delay as demonstrated in Table 3 below. Table 3 expresses the priority of the root causes of project delay from 1 to 20. The most serious ones are from 1 to 5.

Table 2. The main problems in Iraqi construction projects

Ranking	The Root Causes of Project Delay	Mean
1.	Accept the lowest bidding prices from the contractors	4.3
2.	Financial difficulty from the contractors	3.94
3.	Using traditional paperwork more than software programmes	3.94
4.	Official and unofficial Holidays	3.91
5.	Poor project management	3.79
6.	Delay in Importing materials	3.64
7.	Inadequate number of staffs working with contractors	3.61
8.	Mistakes in estimating project duration	3.58
---	---	
9.	Delay in decision-making from the client	3.48
10.	Inadequate the number of Contractors, sub-contractors and vendors that have a good experience	3.48
11.	Change time-schedule	3.44
12.	Change in design, specifications and scope of work	3.24
13.	Inadequate number of staffs working with client	3.19
14.	Shortage in materials	3.06
15.	Change the project management strategy and methodology by the clients	3.03
16.	Poor communication between project parties	2.97
17.	Complexity in Design	2.91
18.	Mistakes in designs, specifications and drawings	2.88
19.	Delay in Payment by the client	2.82
20.	Weather conditions	2.61

The third question is demonstrated that 57.6% of the respondents have idea of what a PMM is. While, 42.4% of the respondents have no idea about PMM (see Figure 2).

![Figure 2. The percentage of the respondents who know project management methodology](image)

The answer of four question shows that the respondents, who know of what PMM is, are asked this question. They pick up PMBoK (42.9%), PRINCE2 (14.3%), Waterfall (7.1%) and Six-Sigma (see Figure 3).
8. Discussion
This section strives to discuss the research objectives in results and data collection against the information in the literature review. In order to produce a vital research with valuable information that really help to revoke the delay in the construction project in Iraq.

8.1. What are the main problems in construction projects in Iraqi?
The highest risk in construction projects in Iraq is project delay (project time overrun) as stated in the data collection and results. Change in design, plan, scope and specifications and project cost overrun are evaluated to be problems in Iraqi construction projects. In term of project delay, Assaf and Al-Hejji 2006 agree that 70% of projects in Saudi Arabia have been delayed as indicated in literature review section. So, the concept of this paper is to focus on the significant problem that is realised as a severe problem in construction projects in Iraq.

8.2. What are the root causes of delay in Iraqi construction projects?
Twenty root causes of project delay are piloted to the respondents in order to be evaluated based on the respondents’ experience and knowledge. They acknowledge that by answering the questions logically. The most significant root causes of project delay is to accept the lowest bidding prices from the contractors. It is not revealed by literature review section however the author has used a brainstorm to highlight the current root causes in Iraqi construction projects therefore, it is considered a new issue. The most significant causes of project delay partially differentiate with the previous studies which are review in the literature review section. Table 4 shows the status of 20 root causes of project delay in Iraqi construction projects.
Table 4. The status of root causes of project delay

No.	The Root Causes of Project Delay	Status
1.	Accept the lowest bidding prices from the contractors	New issue
2.	Financial difficulty from the contractors	New issue
3.	Using traditional paperwork more than software programmes	New issue
4.	Official and unofficial Holidays	New issue
5.	Poor project management planning	New issue
6.	Delay in Importing materials	New issue
7.	Inadequate number of staffs working with contractors	New issue
8.	Mistakes in estimating project duration	New issue
9.	Delay in decision-making from the client	New issue
10	Inadequate the number of Contractors, sub-contractors and venders that have a good experience	New issue
11	Change time-schedule	New issue
12	Change in design, specifications and scope of work	New issue
13	Inadequate number of staffs working with client	New issue
14	Shortage in materials	New issue
15	Change the project management strategy and methodology by the clients	New issue
16	Poor communication between project parties	New issue
17	Complexity in Design	New issue
18	Mistakes in designs, specifications and drawings	New issue
19	Delay in Payment by the client	New issue
20	Weather conditions	New issue

8.3 Do you know what a Project Management Methodology is? Which Project Management Methodology you have heard or used?

One the first hand, according to data collection and analysed data, 57% of total respondents (19 out of 33) have heard about PMM. However, these people have never used PMM in the construction projects in real life. It might not be reasonable for the respondents to evaluate the PMM because no idea has been notified about PMM. This is considered a research limitation.

On the other hand, the section of justification for applying the PMM shows the ability of these PMM in order to solve project problems and the benefits of PMMs. Some of these benefits are

1. Providing better communication between project teams;
2. Providing a work breakdown structure;
3. Providing a new system of financial software;
4. The implementation approach has given the project team new perception and vision to implement the project objectives and reinforced the fundamental principles of project management;
5. Improving the expectations of the customers;
6. Improving the organisation financially; help to identify the project risk;
7. Help to estimate the project time; and
(8) help to estimate the project cost.

However, the disadvantages of PMM are
1. They are required many documentations for instance using policies and checklists; and
2. more constraints.

Therefore, if making a comparison between the benefits of PMMs versus the disadvantages, the logic absolutely could stand beside the benefits of PMM. The reason being is that it is wise to conduct when the project manager uses the documentations. Consequently, the project will be completed with no or less slippage in the schedule, cost and quality. In term of constraint, it may be a reason for why the constraints make the project performance in accordance with a plan and appropriate steps.

9. Conclusions

In summary, the concept of research has come out with the delay on building the infrastructure of fields in the Iraqi petroleum industry. This paper has taken Iraqi petroleum industry due to its significant impact on the Annual Federal Budget. Iraqi Annual Federal Budget relies on the petroleum revenue by 95% in 2015.

The first question in the questionnaire was that what are the main problems in construction projects in Iraqi. The respondents have evaluated seven project problems. The highest problems in the Iraqi construction projects is project delay and then followed by change in design, plan, scope and specifications and cost overrun.

The second question is what the root causes of delay in Iraqi construction projects are. The top five root causes of delay in construction projects in Iraq are:
1. Accept the lowest bidding prices from the contractors;
2. Financial difficulty from the contractors;
3. Using traditional paperwork more than software programmes;
4. Official and unofficial Holidays; and
5. Poor project management planning.

While, the third question is that do you know what a Project Management Methodology is. The answer to this question is that 57% of respondents who know the PMM. While the last question is that which PMM you have heard or used. They answered that the respondents just heard about PMBoK, PRINCE2, Waterfall and Six-Sigma however they have never used any PMM in real project.

To handle the root causes of delay in the construction projects in Iraq that would need to apply one of the PMMs as mentioned in Appendix-A which has been justified to select three PMMs only (PMBoK, Scrum and PRINCE2). The final choice is made on PMBoK because it could deal with a project schedule, cost, quality, stakeholder, communication, risk, scope and human resource. This paper has taken a great chance in order to correlate between project slippage in schedule and the PMM. The brief advantages of PMBoK are:
1. providing better communication between project teams;
2. providing a work breakdown structure;
3. providing a new system of financial software;
4. the implementation approach has given the project team new perception and vision to implement the project objectives and reinforced the fundamental principles of project management; and
5. improving the expectations of the customers.

Furthermore, PMBoK and/or PRINCE2 could establish a roadmap for the project(s). This would assist the project manager to go through multi-steps and processes in the roadmap to achieve the project goal successfully with no or less project slippage in the schedule, cost and quality.

Acknowledgments

I sincerely express my deep sense of gratitude to the employees of Basra Oil Company for their extraordinary cooperation. I would like to thank Dr Mushtaq T. Al-Asadi for his invaluable guidance and supervision. This paper is a result of his painstaking and generous attitude.
Appendix A. The Descriptions, Advantages and disadvantages of 20 project management methodologies

S/No	PM Methodology	Description	Advantages	Disadvantages
1.	Agile	“An iterative and incremental-evolutionary approach to software development which is performed in a highly collaborative manner by self-organizing teams within an effective governance framework with ‘just enough’ ceremony that produces high-quality solutions in a cost effective and timely manner which meets the changing needs of its stakeholders” [31].	1) Have a flexibility to be used; 2) Focus on engaging the project stakeholders; 3) An Agile approach provides a unique opportunity for clients to be involved throughout the project; and 4) Look after to satisfy the project stakeholders [31] and [32].	1) It could have the massive hands-on project approach; 2) It has no control on defining the project cost and time; and 3) It can’t provide a potential for the new users or customers who need to track the project documentations [31] and [32].
2.	Waterfall	A development method that is linear and sequential. Waterfall development has distinct goals for each phase of development. Imagine a waterfall on the cliff of a steep mountain [33].	1) The end outcome and goal could be determined early; 2) Provides well communication and transferring; and 3) Provides clear understanding structure [31] and [33].	1) It can’t deal with the project deviation and variation; 2) It becomes complicated when the change is raised in the project; and 3) Takes time in order to test the project even after its completion [31] and [33].
3.	PRINCE2	“This methodology is also known as ‘PRojects IN Controlled Environment that is the planning, delegating, monitoring and control of all aspects of the project and the motivation of those involved to achieve the project objective within the expected performance targets” [24]. It is currently used in various organisations as part of analyzing project risks management [35].	1) It is suitable for any business and project; 2) Provides a good control on project; and 3) Meets the project end users [24] and [34].	1) Takes time to adjust the project once the change is raised; 2) It is not deal with time schedule; and 3) It is not suitable to the small activities [24] and [34].
4.	Critical Chain Project Management (CCPM)	“The critical path method is an essential tool for project planning, control, and scheduling”. It is named path because sequence of tasks. It is the longest path in project time-schedule must be finished on time, otherwise the entire project will be slippage in schedule [35] and [36].	1) Provides a well allocation works to the project team; 2) Makes and provides clear dependencies between the project tasks; and 3) Good organizer for complex and large project [35].	1) It is complicated for small projects; and 2) Thousands of tasks and dependencies links together in complex and large project. They should be divided into small tasks [35].
5.	Critical Path Method (CPM)	The critical path method is an essential tool for project planning, control, and scheduling. It is named path because sequence of tasks. It is the longest path in project time-schedule must be finished on time, otherwise the entire project will be slippage in schedule [35] and [36].	1) Provides a well allocation works to the project team; 2) Makes and provides clear dependencies between the project tasks; and 3) Good organizer for complex and large project [35].	1) It becomes bigger and incomprehensible in term of chart when the project is big than comprehensive. 2) It can’t provide comprehensive information about project recourses. 3) When it is printed out on paper, it is no possible to carry it in site once the project size is big. Likewise, it is hard to be tracked on computer [35] and [36].
6.	Event Chain Methodology (ECM)	“A practical schedule network analysis technique as well as a method of modeling and visualizing of uncertainties. Event chain methodology comes from the notion that regardless of how well project schedules are developed, some events may occur that will alter it. Identifying and managing these events or event chains (when one event causes another event) is the focus of event chain methodology” [37] and [38].	1) It enables managers to examine the relationship between tasks and risks. This creates more realistic projects; and 2) a stochastic modeling technique for schedule risk analysis [37] and [38].	1) Project managers sometimes might not remember to identify the external events such as external risks; and 2) Defining distributions is not a trivial process [37] and [38].
7.	Extreme Programming (XP)	“Extreme programming (XP) is a software development method originally created by Kent Beck and defined in his book Extreme Programming Explained, published in 1999. XP focuses on programming techniques, communication and teamwork. The methodology contains a body of practices, many of which have been incorporated into what is today considered agile software development practices” [39].	1) It has simplicity; 2) It is well used for communication and feedback; and 3) Suitable for small projects with significant motivated workers [32], [39] and [40].	1) When people focus too much on the processes, other might not find these processes structured and focused; 2) Rather than on design XP focuses on the task-code; and 3) Lack of defect in documentation causes bugs in the future that might be always happened [32], [39] and [40].
8. Kanban

“Kanban is a lean approach developed in the automotive industry as a mechanism to pull materials and parts throughout the value stream on a just-in-time basis. In Japanese, the word Kanban means ‘card’ or ‘sign’ and is the name given to the inventory control card used in a pull system.” Kanban system is just one of the tools and techniques used in lean manufacturing besides other techniques like Quality Circle, 5S Housekeeping, and continuous improvement and many others” [41] and [42].

1) It is used as a strategic operational decision to be used in the production lines;
2) It assists to improve the productivity of company and reduce waste in production too;
3) It is an event-driven rather than time-boxed [41] and [42].

1) Sometime its team makes the board over-complicate; and
2) Lack of time-scheduling because there is no timeframe [41] and [42].

9. Adaptive Project Framework (APF)

“The adaptive framework is embedded in strategic management documents to scale suitable agile methodologies on a long-term basis” [43].

1) It is a good approach when the project scope and goal are defined;
2) It is flexible and too easy to the users; and
3) If the resources have been stated clearly, it could be considered straightforward to know the roles and responsibilities of project team [43] and [44].

1) It might cause slippage in project schedule and cost Due to its flexibility;
2) Higher participations and expectations; and
3) Poor control on project [43] and [44].

10. Lean

“It is a set of tools that assist in the identification and elimination of waste that might improve quality as well as production time and cost” and “Lean means manufacturing no waste. Waste, that means “muda” in Japanese language, has seven types: waste from overproduction, waste of waiting time, transportation waste, inventory waste, processing waste, waste of motion, and waste from product defects” [43].

1) Increase in quality; and
2) Easier to control and monitor [43].
3) It depends on decision-making quickly; and
2) The project is reliant completely on team [43].

11. PRiSM

It is a practical and experimental process-oriented supporting, environment, methodical and execution of software process models [45].

1) Displaying a serious execution about eco-ideals and reap the benefits of reduced energy, waste management and distribution costs
2) One source of data entry.
3) Efficient transfer of data between companies and organizational sections and units [45].

1) It can’t work independence. The level of the organisation requires to be on board with sustainable principles.
2) High price to be purchased and implemented.
3) needs customization [45].

12. Rational Unified Process (RUP)

“It is a process framework developed by Rational Software. RUP is an iterative development methodology based upon six industry-proven best practices” [46].

1) “It is considered a risk mitigation;
2) RUP has been refined by using thousands of projects with thousands of Rational customers and partners”; and
3) It can be customized with any project [45] and [46].

1) Like Waterfall, RUP is also process-heavy, and can rely too heavily on stakeholder feedback. Even as an iterative process, it can be too slow for certain types of projects.
2) The development time required is less due to reuse of components [45] and [46].
3) The development time required is less due to reuse of components.

13. Scrum

It’s “Approach is used in the top companies in the field of software development and has a significant success rate. Analysis of the field consider that SCRUM can be appropriate also for other types of software development companies, in order to benefit from using object-oriented tools and techniques” [47].

1) It works within fast-moving development projects;
2) Scrum meetings provide clear visibility for the project team; and
3) It is an agile methodology that provides from the end-users well feedback [47].

1) Scope-creep is a huge issue in Scrum projects - they can easily blow out of control if not reigned in.
2) Project quality is difficult to be implemented, unless the they go through aggressive testing process; and
3) Using the Scrum framework in large project teams is a challenge [47].

14. Six Sigma

“It is an effective application of statistical techniques, delivered in an innovative manner that has achieved acceptance, use and results by the management and

1) It suggests improvements before defects even notice.
2) Six Sigma demonstrates and identify the whole processes behind the production of a component or
3) Six Sigma can be extremely rigid, which some teams find limit their creativity. Being a data-driven quality-assurance system; and
| | | |
|---|---|---|
| | | |
| 15. | PMBoK | “It is the best representative of this approach [10]. PMBoK formally defines a total of 44 project processes that describe activities throughout a project’s life cycle. These 44 project processes are organized into two axes: into five process groups and into nine knowledge areas. Its process is described in terms of inputs (documents, plans, design, other data, etc.), outputs (documents, products) and tools and techniques (mechanisms that are applied to inputs for producing outputs) and without being too specific, it provides guidance to someone that wishes to apply the processes” [49]. |
| | | |
| | | |
| 16. | Traditional | “It is gaining very wide public attention recently, and it is considered as “the” project management approach for today’s projects, compared to what is called traditional project management [50]. |
| | | |
| | | |
| 17. | Feature Driven Development (FDD) | It “Is a process that provides businesses with feature-rich systems that should help them control their ever-evolving nature” [51]. |
| | | |
| | | |
| 18. | Dynamic Systems Development Model (DSDM) | “It provides a methodology and framework of controls and best practice for the rapid application of high-quality business system solution” [52]. |
| | | |
| | | |
| 19. | Information Technology Infrastructure Library (ITIL) | “Is derived from the definition of Technology Management. Information Technology Management is concerned with exploring and understanding Information Technology as a corporate resource that determines both the strategic and operational capabilities of the firm in designing and developing products and services for maximum customer satisfaction, corporate productivity, profitability and competitiveness” [54]. |
| | | |
| | | |
| 20. | Joint Application Development (JAD) | “Is a generic term which describes a variety of proprietary and custom-developed methods for conducting workshops in which users and technical developers work together on information system project planning, requirements definition, user interface design, or other activities” [57]. |
| | | |
References List

[1] Atkinson R 1999 Project Management: Cost, Time and Quality, Two Best Guesses and a Phenomenon, its Time to Accept Other Success Criteria'. International Journal of Project Management 17 (6), 337-342

[2] Murat G Yasemin N and Mustafa O 2013 Quantification of Delay Factors Using the Relative Importance Index Method for Construction Projects in Turkey Journal of Management in Engineering, Vol. 29, April, pp. 133-139, ASCE.

[3] Moshesh J and Olatunbosun O 2018 Developing and Testing a Magazine Website: The Chartist Journal of Computer Engineering & Information Technology 6 (6), 1-25

[4] Hammoud M Russo-Converso J and Hanna G 2014 Foreign Direct Investment in Post Conflict Countries: The Case of Iraq’s Oil and Electricity Sectors International Journal of Energy Economics and Policy 4 (2), 137-148

[5] Faucon B Kent S and Said S 2014 Oil-Price Slump Strains Budgets of some OPEC Members Dow Jones Institutional News [online]. available from <https://search.proquest.com/docview/2073101824?accountid=10286>

[6] Badiru A B and Osisanya S O 2016 Project Management for the Oil and Gas Industry: A World System Approach. 1st edn. Boca Raton: CRC Press

[7] Hadi H 2017 Regulating the Oil and Gas Sector in Iraq. [online] thesis or dissertation

[8] Bank D 2013 Oil & Gas for Beginners Germany: Deutsche Bank

[9] Pries K and Quigley J 2011 Scrum project management Boca Raton, FL: CRC Press.

[10] Turner J R 2014 Handbook of Project-Based Management [online] 4th edn. New York: McGraw-Hill Education

[11] Mir F A and Pinnington A H 2014 Exploring the Value of Project Management: Linking Project Management Performance and Project Success International Journal of Project Management 32 (2), 202-217

[12] Sylvester D C Rani N S A and Shaikh J M 2011 Comparison between Oil and Gas Companies and Contractors Against Cost, Time, Quality and Scope for Project Success in Miri, Sarawak, Malaysia African Journal of Business Management 5 (11), 4337-4354

[13] Mohamad M R B 2010 The factors and effect of delay in government Construction project, Case study in kuantan: University Malaysia Pahang.

[14] Kerzner H 2017 Project Management: A Systems Approach to Planning, Scheduling, and Controlling. 10th edn. New Jersey: John Wiley & Sons

[15] Assaf S A and Al-Hejji S 2006 Causes of Delay in Large Construction Projects International Journal of Project Management 24 (4), 349-357

[16] Khaleel T A and Hadi I Z 2017 Controlling of Time-Overrun in Construction Projects in Iraq. Engineering and Technology Journal 35 (2 Part (A) Engineering), 111-117

[17] Alnuaimi A S and Mohsin M (eds.) 2013 International Conference on Innovations in Engineering and Technology. 'Causes of Delay in Completion of Construction Projects in Oman'. Bangkok (Thailand)

[18] Hassan Emam Peter Farrell and Mohamed Abdelaal (eds.) 2015 Raidén, A B and Abouagy-Nimo, E (Eds) Procs 31st Annual ARCOM Conference. 'Causes of Delay on Large Infrastructure Projects in Qatar'. Lincoln, UK,: Association of Researchers in Construction Management

[19] Mohammad I A Al-Zwainy F M S and Raheem S H 2016 Development of Integrated Strategy for Managing Construction Sector in Iraq Project Management Maturity Models'. Engineering and Technology Journal 34 (6 Part (A) Engineering), 1131-1141

[20] Golubović T Golubović S Stojilković E Glišović S and Živković N 2018 Applying Project Management Principles in the Design of the Technological Line of the Food Industry The European Society of Safety Engineers [online]

[21] Azahna A Argoud A Camargo Junior J and Antoniolli P 2017 Agile project management with Scrum. International Journal of Managing Projects in Business, 10(1), pp.121-142.
[22] Streule T Miserini N Bartlomé O Klippel M and de Soto B 2016 Implementation of Scrum in the Construction Industry. Procedia Engineering, 164, pp.269-276.

[23] Matos S and Lopes E 2013 Prince2 or PMBOK – A Question of Choice [online]. available from <http://www.sciencedirect.com/science/article/pii/S2212017313002417>

[24] AXELOS 2017 Managing Successful Projects with PRINCE2. London: Stationery Office Limited

[25] Bishop W A 2018 A Project Management Framework for Small-and Medium-Sized Entities: Accounting Software Implementation'. Journal of Economic and Financial Sciences 11 (1), 1-11

[26] Messemaeker J 2010 Adoption of Structured Project Management Methodologies: A Project Manager's Gain?. [online] thesis or dissertation

[27] A Guide to the Project Management Body of Knowledge (PMBOK). Newtown Square, PA: Project Management Inst., 2000.

[28] Project Management Institute 2013 Guide to the Project Management Body of Knowledge. 5th edn. Newtown Square: Project Management Inst

[29] Project M I 2017 A Guide to the Project Management Body of Knowledge (PMBOK Guide) [online] Sixth edition edn.Newtown Square, Pennsylvania: Newtown Square, Pennsylvania: Project Management Institute, Inc

[30] Saris W E and Gallhofer I N 2014 Design, Evaluation, and Analysis of Questionnaires for Survey Research. Hoboken, N.J.: John Wiley & Sons

[31] Moniruzzaman A B M and Hossain D S A 2013 Comparative study on agile software development methodologies. arXiv preprint arXiv:1307.3356.

[32] Abdulwahhab L Abdalla A A Galadanci B S Algudah M and Murtala M 2015 April. Agile Methods for Software Engineering Students Project: A Proposed Hybrid Methodology. In The Third International Conference on Digital Enterprise and Information Systems (DEIS2015) (Vol. 63).

[33] Stoica M Mircea M and Ghilic-Micu B 2013 Software Development: Agile vs. Traditional. Informatica Economica, 17(4).

[34] Vaničková R 2017 Application of PRINCE2 project management methodology. Studia Commercialia Bratislavaensia, 10(38), pp.227-238.

[35] Hu C and Liu D 2018 Improved Critical Path Method with Trapezoidal Fuzzy Activity Durations. Journal of Construction Engineering and Management, 144(9), p.04018090.

[36] Hu C and Liu D 2018 Improved Critical Path Method with Trapezoidal Fuzzy Activity Durations. Journal of Construction Engineering and Management, 144(9), p.04018090.

[37] Trumper M and Virine L 2011 Event Chain Methodology in Project Management. 3 Editorial. CEPIS UPGRADE: A Proud Farewell—Nello Scarabottolo, President of CEPIS ATI, Novática and CEPIS UPGRADE—Didac López-Viñas, President of ATI, 13, p.22.

[38] Virine L 2013 April. Integrated Qualitative and Quantitative Risk Analysis of Project Portfolios. In Enterprise Risk Management Symposium.

[39] Lagerberg L and Skude T 2013 The impact of agile principles and practices on large-scale software development projects: A multiple-case study of two software development projects at Ericsson.

[40] Pollice G 2001 Using the rational unified process for small projects: Expanding upon extreme programming. Rational Software White Paper.

[41] Rahman N A A Sharif S M and Esa M M 2013 Lean manufacturing case study with Kanban system implementation. Procedia Economics and Finance, 7, pp.174-180.

[42] Arbulu R Ballard G and Harper N 2003 Kanban in construction. Proceedings of IGLC-11, Virginia Tech, Blacksburgh, Virginia, USA, pp.16-17.
[43] Qureshi M R J and Kashif M 2017 Adaptive Framework to Manage Multiple Teams Using Agile Methodologies. International Journal of Modern Education and Computer Science, 9(1), p.52.

[44] Pathak K and Saha A 2013 Review of agile software development methodologies. International Journal of Advanced Research in Computer Science and Software Engineering, 3(2).

[45] Madhavji N H Gruhn V Deiters W and Schafer W 1990 March Prism= methodology+ process-oriented environment. In [1990] Proceedings. 12th International Conference on Software Engineering (pp. 277-288). IEEE.

[46] Pollice G 2001 Using the rational unified process for small projects: Expanding upon extreme programming. Rational Software White Paper.

[47] Ionel N 2008 Critical analysis of the Scrum project management methodology.

[48] Klefsjö B Wiklund H and Edgeman R L 2001 Six Sigma seen as a methodology for total quality management. Measuring business excellence, 5(1), pp.31-35.

[49] Fitsilis P 2008 Comparing PMBOK and Agile Project Management software development processes. In Advances in Computer and Information Sciences and Engineering (pp. 378-383). Springer, Dordrecht.

[50] Špundak M 2014 Mixed agile/traditional project management methodology–reality or illusion?. Procedia-Social and Behavioral Sciences, 119, pp.939-948.

[51] Pang J and Blair L 2004 Refining Feature Driven Development-A methodology for early aspects. Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design, 86.

[52] Stapleton J 1997 DSDM dynamic systems development method: the method in practice. Cambridge University Press.

[53] Mead N R Viswanathan V and Padmanabhan D 2008 July Incorporating security requirements engineering into the dynamic systems development method. In 2008 32nd Annual IEEE International Computer Software and Applications Conference (pp. 949-954). IEEE.

[54] Dabade T D 2012 Information technology infrastructure library (ITIL). In Proceedings of the 4th National Conference (pp. 25-26).

[55] McPhee D 2010 Information Technology Infrastructure Library (ITIL®). In Encyclopedia of Information Assurance–4 Volume Set (Print) (pp. 1578-1587). Auerbach Publications.

[56] Esteves R and Alves P 2013 Implementation of an information technology infrastructure library process–The resistance to change. Procedia Technology, 9, pp.505-510.

[57] Davidson E J 1999 Joint application design (JAD) in practice. Journal of Systems and Software, 45(3), pp.215-223.

[58] Carmel E George J F and Nunamaker Jr J F 1992 December Supporting joint application development (JAD) with electronic meeting systems: a field study. In ICIS (pp. 223-232).