A 100 KS/s 8–10-Bit Resolution-Reconfigurable SAR ADC for Biosensor Applications †

Yunfeng Hu 1,*, Lexing Hu 1, Bin Tang 1, Bin Li 2, Zhaohui Wu 2 and Xiaojia Liu 1

1 University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China
2 School of Microelectronics, South China University of Technology, Guangzhou 510640, China
* Correspondence: huyf@zsc.edu.cn
† This paper is an extended version of our paper published in the 2019 32nd IEEE International System-on-Chip Conference (SOCC) was held in Singapore, 3–6 September 2019.

Abstract: A DAC switching scheme that combines energy efficiency and resolution reconfigurability is proposed. Compared with the conventional switching scheme, the proposed scheme achieves 93.8%, 96.1%, and 97.3% switching energy saving in 8-bit, 9-bit, and 10-bit modes, respectively. Based on the proposed switching scheme, an 8–10-bit resolution-reconfigurable SAR ADC for biosensor applications is designed. The ADC consists of resolution-reconfigurable binary-weighted capacitive DAC, a two-stage full dynamic comparator, sampling switch, and the resolution-control SAR logic. Simulated in 180 nm CMOS process and 100 kS/s sampling rate, the ADC achieves the 46.80/53.89/60.14 dB signal-to-noise and distortion ratio (SNDR), the 55.22/62.51/73.09 dB spurious-free dynamic range (SFDR) and the 0.81/0.91/1.01 µW power consumption in 8/9/10-bit mode, respectively.

Keywords: SAR ADC; resolution-reconfigurable; switching scheme

1. Introduction

In recent years, successive-approximation register (SAR) analogue-to-digital converters (ADCs) have been preferred for biosensor applications [1–5]. SAR ADC is based on a successive approximation algorithm, which is suitable for designing resolution-reconfigurable SAR ADCs [6–8]. Resolution-reconfigurable ADCs can choose the appropriate resolution according to the characteristics of the biomedical signal, thus reducing energy consumption. Recently, several energy-efficient DAC switching schemes have been developed to improve the power efficiency of DAC capacitor arrays [9–11]. Compared to a conventional switching scheme [12], capacitor splitting [9], set and down [10], and Vcm-based [11] reduce the switching energy by 37.4%, 81.3%, and 87.5%, respectively. However, their switching energy doubles as the number of bits increases by one. Taking the Vcm-based switching scheme as an example, the average switching energy of 8-bit, 9-bit and 10-bit is 42.2 CVref, 84.8 CVref and 170.2 CVref, respectively.

In this paper, a DAC switching scheme that combines energy efficiency and resolution reconfigurability is proposed. The average switching energy of the proposed switching scheme for 8-bit, 9-bit, and 10-bit SAR ADCs is 21.2 CVref, 26.5 CVref, and 37.1 CVref, which amounts to a reduction of 93.8%, 96.1% and 97.3% in the switching energy compared with a conventional switching scheme [9]. Based on the proposed switching scheme, a 100 KS/s 8–10-bit resolution-reconfigurable SAR ADC for biosensor applications is designed and simulated. In order to reduce the on-resistance of the sampling switch and reduce the sampling error, the sampling switch adopts a bootstrap switch circuit [13]. A two-stage full dynamic comparator is used to achieve low power consumption [14]. To improve the performance of SAR logic, a dynamic logic unit is used [15]. Based on the SAR logic, we design a resolution control circuit for bit control. When the SAR ADC is operating in 8-bit or 9-bit resolutions, in order to save power, two or one dynamic logic units need to be...
skipped, respectively. The frequency range of various biomedical signals are shown in Table 1. The 100KS/s sampling rate can meet these biomedical signal sensing applications.

Biomedical Signals	Frequency Range
Electroencephalogram (EEG)	1–150 Hz
Electromyogram (EMG)	25–1 kHz
Electrocardiogram (ECG)	0.5–250 Hz
Local Field Potential (LFP)	0.5–200 Hz
Action Potential (AP)	100–7 kHz

This paper is organized as follows: Section 2 describes the ADC architecture and presents the techniques used to achieve resolution reconfigurability and low power; the simulated results and the comparison with the state of the art are provided in Section 3. The conclusion is drawn in Section 4.

2. Proposed SAR ADC Architecture

Figure 1 shows the architecture of the proposed 8–10-bit resolution-reconfigurable SAR ADC. It comprises a resolution-reconfigurable binary-weighted capacitive DAC, a two-stage full dynamic comparator, sampling switch, and the resolution-control SAR logic.

2.1. Proposed DAC Switching Scheme

The proposed DAC switching scheme is similar to a V_{cm}-based switching scheme [11]. However, the proposed DAC has replaced the dummy capacitor with the C-2C capacitors, which add one bit of accuracy, and adds some switches (S1 and S2) to adjust the resolution. As shown in Table 2, resolutions of ADC are adjusted by S1 and S2. In the 8-bit mode, S1 and S2 are always open. For the 9-bit mode, S1 will be closed in the 3rd comparison, with S2 remaining open. For the 10-bit mode, S1 will be closed in the 3rd comparison and S2 will be closed in the 4th comparison. A special reference switching method, which is shown in Tables 3 and 4, is used for the references (R_{P2}, R_{N2}, R_{P3}, and R_{N3}) associated with switches S1 and S2. Table 3 shows the references of R_{P2} and R_{N2} for each phase in 9-bit and 10-bit modes. The references of R_{P3} and R_{N2} are determined by the results of the 1st comparison (D_1) and the 2nd comparison (D_2). Table 4 shows the references of R_{P3} and R_{N3} for each phase in 10-bit mode. R_{P3} and R_{N3} are determined by the results of the first comparison (D_1) and the 3rd comparison (D_3).
Table 2. Resolutions of ADC are adjusted by S1 and S2.

Resolution	Sampling	1st	2nd	3rd	4th
8-bit mode	S1:close	S1:open	S1:open	S1:open	S1:open
9-bit mode	S1:close	S1:open	S1:open	S1:open	S1:close
10-bit mode	S1:close	S1:open	S1:open	S1:open	S1:close

Table 3. R_D and R_N for each phase of 9-bit and 10-bit mode.

Phase	D_1D_2	Sampling	1st	2nd	3rd
00	00	$R_D = V_{cm}$	$R_D = V_{cm}$	$R_D = V_{cm}$	$R_D = V_{cm}$
01	01	$R_D = V_{cm}$	$R_D = V_{cm}$	$R_D = V_{cm}$	$R_D = V_{cm}$
10	10	$R_D = V_{cm}$	$R_D = V_{cm}$	$R_D = V_{cm}$	$R_D = V_{cm}$
11	11	$R_D = V_{cm}$	$R_D = V_{cm}$	$R_D = V_{cm}$	$R_D = V_{cm}$

Table 4. R_P and R_N for each phase of 10-bit mode.

Phase	D_1D_3	Sampling	1st	2nd	3rd	4th
00	00	$R_P = V_{cm}$				
01	01	$R_P = V_{cm}$				
10	10	$R_P = V_{cm}$				
11	11	$R_P = V_{cm}$				

To explain the operation of the SAR ADC, the proposed switching scheme in the three modes is used as follows.

2.1.1. Proposed 8-Bit Mode Switching Scheme

The steps of the conversion process of 8-bit mode are illustrated in Figure 2.

Initially, in the sampling phase, all switches are closed, and the reference voltage of all capacitors is set to V_{cm}. The input voltage is sampled onto the top plates of the capacitors.

In the 1st comparison, all switches are opened, and the output voltage of the capacitor array is found to be

$$\begin{align*}
V_P(1) &= V_{ip} \\
V_N(1) &= V_{in}
\end{align*}$$
(1)
The comparator compares the sampling signals \(V_{ip} \) and \(V_{in} \) and obtains \(D_1 \).

In the 2nd comparison, if \(D_1 = 1 \), the reference voltage of \(R_{P1} \) is changed from \(V_{cm} \) to \(gnd \), and \(R_{N1} \) is changed from \(V_{cm} \) to \(V_{ref} \). If \(D_1 = 0 \), the reference voltage of \(R_{P1} \) is changed from \(V_{cm} \) to \(V_{ref} \), and \(R_{N1} \) is changed from \(V_{cm} \) to \(gnd \). The output voltage is found to be

\[
\begin{align*}
V_{P}(2) &= V_{ip} + [1 - 2D_1] \cdot \frac{V_{ref}}{4} \\
V_{N}(2) &= V_{in} + [2D_1 - 1] \cdot \frac{V_{ref}}{4}
\end{align*}
\]

(2)

The comparator compares \(V_{P}(2) \) with \(V_{N}(2) \) and obtains \(D_2 \).

In the 3rd comparison, if \(D_2 = 1 \), the reference voltage of \(R_{P4} \) is changed from \(V_{cm} \) to \(gnd \), and \(R_{N4} \) is changed from \(V_{cm} \) to \(V_{ref} \). If \(D_2 = 0 \), the reference voltage of \(R_{P4} \) is changed from \(V_{cm} \) to \(V_{ref} \), and \(R_{N4} \) is changed from \(V_{cm} \) to \(gnd \). The output voltage is found to be

\[
\begin{align*}
V_{P}(3) &= V_{ip} + [1 - 2D_1] \cdot \frac{V_{ref}}{4} + [1 - 2D_2] \cdot \frac{V_{ref}}{4} \\
V_{N}(3) &= V_{in} + [2D_1 - 1] \cdot \frac{V_{ref}}{4} + [2D_2 - 1] \cdot \frac{V_{ref}}{4}
\end{align*}
\]

(3)

The comparator compares \(V_{P}(3) \) with \(V_{N}(3) \) and obtains \(D_3 \).

From the 3rd comparison to the 8th comparison, the DAC performs \(V_{cm} \)-based switching scheme [11].
2.1.2. Proposed 9-Bit Mode Switching Scheme

The steps of the conversion process of 9-bit mode are illustrated in Figure 3.
From the sampling phase to the 2nd comparison, a conversion process of 9-bit mode is the same as that of 8-bit mode.

In the 3rd comparison, S1 is closed. If \(D_1D_2 \) is 11, the reference voltage of \(R_p \) is changed from \(V_{cm} \) to \(\text{gnd} \), and \(R_{N2} \) is changed from \(V_{cm} \) to \(V_{ref} \). If \(D_1D_2 \) is 00, the reference voltage of \(R_p \) is changed from \(V_{cm} \) to \(V_{ref} \), and \(R_{N2} \) remains unchanged. The output voltage is shown in equation 3. The comparator compares \(V_p(3) \) with \(V_n(3) \) and obtains \(D_3 \).

In the 4th comparison, if \(D_3 \) is 1, the reference voltage of \(R_p \) is changed from \(V_{cm} \) to \(\text{gnd} \), and \(R_{N4} \) is changed from \(V_{cm} \) to \(V_{ref} \). If \(D_3 \) is 0, the reference voltage of \(R_p \) is changed from \(V_{cm} \) to \(V_{ref} \), and \(R_{N4} \) remains unchanged. The output voltage is shown in equation 3. The comparator compares \(V_p(3) \) with \(V_n(3) \) and obtains \(D_3 \).

Benefiting from the resolution-reconfigurable technology, the proposed switching scheme has lower switching energy in middle output codes for the 9-bit and 10-bit modes. As shown in Table 5, the switching energy at each output code for different switching schemes is calculated and shown in Figure 6 and Table 5. Figure 6 shows comparisons, it is more energy-efficient than a \(V_{cm} \)-based switching scheme [11]. Because the large capacitor does not participate in the first and second comparisons, it is more energy-efficient than a \(V_{cm} \)-based switching scheme.

The comparator compares \(V_p(4) \) with \(V_n(4) \) and obtains \(D_4 \).

From the 4th comparison to the 9th comparison, the DAC performs a \(V_{cm} \)-based switching scheme [11].

2.1.3. Proposed 10-Bit Mode Switching Scheme

The steps of the conversion process of 10-bit are illustrated in Figures 4 and 5.

From the sampling phase to the 3rd comparison, the conversion process of 10-bit mode is the same as that of 9-bit mode.

In the 4th comparison, S2 is closed. If \(D_1D_3 \) is 11, the reference voltage of \(R_p \) is changed from \(V_{cm} \) to \(\text{gnd} \), and \(R_{N3} \) is changed from \(V_{cm} \) to \(V_{ref} \). If \(D_1D_3 \) is 00, the reference voltage of \(R_p \) is changed from \(V_{cm} \) to \(V_{ref} \), and \(R_{N3} \) remains unchanged. The output voltage is found to be

\[
\begin{align*}
V_p(4) &= V_{ip} + \frac{1 - 2D_1}{N} \cdot \frac{V_{ref}}{4} + \frac{1 - 2D_2}{N} \cdot \frac{V_{ref}}{16} + \frac{1 - 2D_3}{N} \cdot \frac{V_{ref}}{64} \\
V_n(4) &= V_{in} + \frac{2D_1 - 1}{N} \cdot \frac{V_{ref}}{4} + \frac{2D_2 - 1}{N} \cdot \frac{V_{ref}}{16} + \frac{2D_3 - 1}{N} \cdot \frac{V_{ref}}{64}
\end{align*}
\]

The comparator compares \(V_p(4) \) with \(V_n(4) \) and obtains \(D_4 \).

In the 5th comparison, if \(D_4 \) is 1, the reference voltage of \(R_p \) is changed from \(V_{cm} \) to \(\text{gnd} \), and \(R_{N4} \) is changed from \(V_{cm} \) to \(V_{ref} \). If \(D_4 \) is 0, the reference voltage of \(R_p \) is changed from \(V_{cm} \) to \(V_{ref} \), and \(R_{N4} \) remains unchanged. The output voltage is found to be

\[
\begin{align*}
V_p(5) &= V_{ip} + \sum_{j=1}^{4} \frac{1 - 2D_1}{2^j} \cdot \frac{V_{ref}}{2^j} \\
V_n(5) &= V_{in} + \sum_{j=1}^{4} \frac{2D_1 - 1}{2^j} \cdot \frac{V_{ref}}{2^j}
\end{align*}
\]

The comparator compares \(V_p(5) \) with \(V_n(5) \) and obtains \(D_5 \).

From the 5th comparison to the 10th comparison, the DAC performs a \(V_{cm} \)-based switching scheme [11]. Because the large capacitor does not participate in the first and second comparisons, it is more energy-efficient than a \(V_{cm} \)-based switching scheme.

Based on the switching energy calculation method in [9], the switching energy of different switching schemes is calculated and shown in Figure 6 and Table 5. Figure 6 shows switching energy at each output code for different switching schemes. Benefiting from the resolution-reconfigurable technology, the proposed switching scheme has lower switching energy in middle output codes for the 9-bit and 10-bit modes. As shown in Table 5 for the proposed switching scheme, the more bits, the more energy is saved; the scheme saves 96.1% and 97.3% of switching energy in 9-bit and 10-bit modes, respectively. Figure 7 presents the 500-run Monte Carlo simulation results of the proposed DAC switching scheme with unit capacitor mismatch of \(C_u/C_u = 2\% \). The RMS DNL and the RMS INL of the
The 1st to 4th comparison diagram of the proposed 10-bit mode switching scheme.

Figure 4. The 1st to 4th comparison diagram of the proposed 10-bit mode switching scheme.

The proposed DAC switching scheme are 0.214/0.280/0.488 LSB and 0.218/0.278/0.462 LSB, corresponding to the 8/9/10-bit mode, respectively.
Figure 5. The 5th comparison diagram of the proposed 10-bit mode switching scheme.
Figure 6. Cont.
Figure 6. Switching energy against output codes: (a) 8-bit; (b) 9-bit; (c) 10-bit. The black [12], red [9], blue [10], green [11] and magenta curves in the three figures are switching energy.

Table 5. Comparison of several switching schemes for SAR ADC.

Switching Scheme	Average Switching Energy (CV^2_{ref})	Energy Saving
	8-Bit 9-Bit 10-Bit 8-Bit 9-Bit 10-Bit	
Conventional [12]	339.3 680.7 1363.3 Reference Reference Reference	
Split capacitor [9]	212.3 425.7 852.3 37.4% 37.4% 37.4%	
Set-and-down [10]	63.5 127.5 255.5 81.3% 81.3% 81.3%	
V_{cm}-based [11]	42.2 84.8 170.2 87.5% 87.5% 87.5%	
Proposed	21.2 26.5 37.1 93.8% 96.1% 97.3%	

2.2. Sampling Switch

In order to reduce the on-resistance of the sampling switch and reduce the sampling error, the sampling switch adopts a bootstrap switch circuit [13]. The voltage bootstrap sampling circuit is shown in Figure 8. When the “Sample” voltage is low, the transistors MS1 and MS3 are turned on, MS2 and MS4 are turned off, the voltage of node A is charged to V_{DD}, and the “Sample_high” voltage is low. When the “Sample” voltage becomes high, the transistor MS1 is turned off, MS2 is turned on, MS3 is turned off, and MS4 is turned on; the voltage of node A is boosted to $2V_{DD}$ by the capacitor C_B, and the “Sample_high” voltage starts to increase. The “Sample_high” voltage boost expression is as follows:

$$V_{sample_high} = 2V_{DD}\frac{C_B}{C_B + C_L}$$ (7)
Figure 6. Switching energy against output codes: (a) 8-bit; (b) 9-bit; (c) 10-bit. The black, red, blue, green and magenta curves in the three figures are switching energy from Ref. [12], [9], [10], [11] and this paper.

Figure 7. DNL and INL versus output code of the proposed switching scheme: (a) 8-bit mode; (b) 9-bit mode; (c) 10-bit mode.

Figure 7. DNL and INL versus output code of the proposed switching scheme: (a) 8-bit mode; (b) 9-bit mode; (c) 10-bit mode.
Figure 8. Voltage bootstrap sampling circuit.

\[C_L \] is the parasitic capacitance. If \(C_B \) is much larger than \(C_L \), the “Sample_high” voltage is raised to about twice \(V_{DD} \).

Figure 9 illustrates the voltage bootstrap of the sampling switch. The FFT of the sampling switch is shown in Figure 10. The spurious-free dynamic range (SFDR) and the signal-to-noise-plus-distortion ratio (SNDR) of the sampling switch are 75.30 and 74.65 dB, respectively.

Figure 9. Transient simulation of sampling switch.

2.3. Comparator

To decrease the power consumption of the comparator, a two-stage full dynamic comparator [14] is used. Figure 11 shows the schematic diagram of the comparator. The first stage is the dynamic preamplifier stage, and \(V_P \) and \(V_N \) are the output signals of the capacitor array DAC, connected to the differential input of the comparator. \(AN \) and \(AP \) are differential outputs of the dynamic preamplifier stage. The second stage is the dynamic latch stage, which is responsible for the two-stage amplification and the result latch, and \(OUTP \) and \(OUTN \) are the comparison results.
When CLK is low (CLKN is high), M0 is off, M3 and M4 are on, AN and AP are charged to high (M5 makes AP and AN charge balance), M6 and M9 are on, OUTP and OUTN are pulled up to high. When CLK is high (CLKN is low), M3, M4 and M5 are turned off, M0 is turned on, AN and AP are discharged through M1 and M2, respectively, and the speed of discharge depends on the voltage of \(V_P \) and \(V_N \) (if \(V_P > V_N \), then \(AP > AN \); if \(V_P < V_N \), then \(AP < AN \)). At this time, M6 and M9 of the dynamic latch stage are turned off, SP and SN are charged by M10 and M11, and the charging speed depends on the voltage of AP and AN (if \(AP > AN \), then \(SP > SN \); if \(AP < AN \), then \(SP < SN \)). If \(SP \) or \(SN \) rises to the threshold voltage, M7 or M8 will be turned on, positive feedback will start to work, and one of \(SP \) and \(SN \) quickly rises to high and the other pulls low to complete the latching of the comparison result. Since the dynamic comparator does not form a power-to-ground path when operating, the comparator has only dynamic power. The transient simulation of the comparator is shown in Figure 12. Figure 13 shows the Monte Carlo simulations that are performed to observe the effect of mismatches and process variations on offset.
Voltage. Offset voltage has a mean value of \(-18.053\ \mu V\) with the standard deviation (SD) of 1.21052 mV.

![Figure 12. Transient simulation of comparator.](image1)

![Figure 13. Monte Carlo simulation of the offset voltage for 1000 points.](image2)

2.4. SAR Control Logic

To improve the performance of SAR logic, a dynamic logic unit is used [15]. As shown in Figure 14, the SAR logic is composed of dynamic logic units, one by one. The dynamic logic unit has both a shift function and a function of storing comparison results, which saves many transistors compared to conventional shift registers. The 10-bit SAR logic has 10 dynamic logic units. When the SAR ADC is operating in 8-bit or 9-bit resolutions, in order to save power, two or one dynamic logic units need to be skipped, respectively. As shown in Figure 15, a resolution control circuit is added to SAR logic. The resolution of
SAR logic is controlled by MO1 and MO2. Different resolutions will form different circuit paths. The resolution settings are shown in Table 6.

Figure 14. SAR based on dynamic logic.

Table 6. The resolution settings of SAR logic.

MO1	MO2	Bit Mode
1	0	8-bit mode
0	1	9-bit mode
0	0	10-bit mode

Figure 15a shows the 8-bit mode work diagram of SAR control logic. When MO1 = 1 and MO2 = 0, the circuit is set to 8-bit operating mode, the transmission gate TG1 is turned on, the AND gates AND1 and AND2 are turned off, and the transmission gates TG2 and TG3 are turned off. Then, the output Q_1 of the first dynamic logic unit is directly connected to the input D_4 of the fourth dynamic logic unit; the second and third dynamic logic units are skipped.

Figure 15b shows the 9-bit mode work diagram of SAR control logic. When MO1 = 0 and MO2 = 1, the circuit is set to 9-bit operating mode, AND1 and TG2 are turned on, and AND2, TG1, and TG3 are turned off. Then, the output Q_2 of the second dynamic logic unit is directly connected to the input D_4 of the fourth dynamic logic unit; the third dynamic logic unit is skipped.

Figure 15c shows the 10-bit mode work diagram of SAR control logic. When MO1 = 0 and MO2 = 0, the circuit is set to 10-bit operating mode, AND1, AND2 and TG3 are turned on, and TG1 and TG2 are turned off. In this case, no dynamic logic cells are skipped.
Figure 15. SAR control logic with bit control circuit: (a) 8-bit mode; (b) 9-bit mode; (c) 10-bit mode.
3. Results

The proposed ADC was designed and post-simulated using 180 nm CMOS technology. Figure 16 shows the layout of the ADC with a total area of 360 µm × 325 µm. Figure 17 shows the FFT spectrum of the proposed ADC in 8-bit, 9-bit, and 10-bit modes with the 1.8 V full swing inputs at 46.243 kHz and the sampling rate at 100 kS/s; the ADC achieves the 46.80/53.89/60.14 dB signal-to-noise and distortion ratio (SNDR) and 55.22/62.51/73.09 dB spurious-free dynamic range (SFDR), respectively. Figure 18 shows the SNDR and SFDR of the proposed SAR ADC with respect to the input frequency. Figure 19 shows the SNDR and SFDR of the proposed SAR ADC with respect to the sampling frequency. The proposed ADC consumes 0.81/0.91/1.01 µW corresponding to the 8/9/10-bit mode, respectively. Figure 20 shows the power breakdown of the ADC.

![Figure 16. Layout of the ADC.](image-url)

![Figure 17. Cont.](image-url)
Figure 17. FFT of ADC: (a) 8-bit mode; (b) 9-bit mode; (c) 10-bit mode.
Figure 18. Cont.
Figure 18. SNDR/SFDR with various input frequencies: (a) 8-bit mode; (b) 9-bit mode; (c) 10-bit mode.

Figure 19. Cont.
Figure 19. SNDR/SFDR with various sampling frequencies: (a) 8-bit mode; (b) 9-bit mode; (c) 10-bit mode.

Figure 20. Cont.
Table 7 compares the proposed ADC with other ADCs [16–19]. As shown in Table 7, the performance of the proposed ADC is still competitive when it is implemented in a 0.18 μm 1.8 V CMOS process. The Figure-of-Merit (FoM) was calculated from the following equation:

\[
FoM = \frac{\text{Power}}{2^{\text{ENOB}} \times f_{\text{sampling}}}
\]

Table 7. Performance comparison.

Article Title	[16]	[17]	[18] *	[19]	This Work *
Technology (nm)	180	180	180	65	180
Supply Voltage (V)	0.9	1.0	1.8	1.2	1.8
Resolution (bit)	9	10	10	10	9
Sampling Rate (KS/s)	100	100	25	25	100
Power (μW)	1.33	1.72	2.83	0.84	0.81
ENOB (bit)	8.02	9.48	9.77	9.59	7.48
FoM (fJ/conv.-step)	51.3	24.1	129	43.60	45.37

* Simulated results.

4. Conclusions

In this paper, a reconfigurable 8–10-bit SAR ADC with an energy-efficient DAC switching scheme for biosensor applications is presented. Several techniques are used to enable the reconfiguration. Simulated with a 180 nm CMOS process and 100 kS/s sampling rate,
the ADC achieves the 46.80/53.89/60.14 dB SNDR, the 55.22/62.51/73.09 dB SFDR, and
the 0.81/0.91/1.01 µW power consumption in 8/9/10-bit mode, respectively.

Author Contributions: Conceptualization, Y.H.; methodology, Y.H.; software, Y.H. and B.T.; validation,
Y.H., L.H. and B.T.; formal analysis, Y.H.; investigation, Y.H.; resources, Y.H., B.L. and Z.W.;
data curation, Y.H. and L.H.; writing—original draft preparation, Y.H.; writing—review and editing,
B.L., L.H. and X.L.; visualization, Y.H., B.T. and L.H.; supervision, Y.H. and B.L.; project administration,
Y.H.; funding acquisition, Y.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant (no. 62174058), the Key Field Project of Colleges and Universities in Guangdong Province
(no. 2021ZDZX1081, 2022ZDZX1044), the Key Project of Social Welfare and Basic Research Project in
Zhongshan City (no. 2021B2020), the Construction Project of Professional Quality Engineering in
2020 (no. YLZY202001), and the Construction Project of Professional Quality Engineering in 2021
(no. JD202101).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, S.; Hung, C. A 0.3V 10b 3MS/s SAR ADC with Comparator Calibration and Kickback Noise Reduction for Biomedical
Applications. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 558–569. [CrossRef] [PubMed]
2. Tong, X.; Song, M.; Chen, Y.; Dong, S. A 10-Bit 120 kS/s SAR ADC without Reset Energy for Biomedical Electronics. Circuits Syst.
Signal Process. 2019, 38, 5411–5425. [CrossRef]
3. Mao, W.; Li, Y.; Heng, C.; Lian, Y. A Low Power 12-bit 1-kS/s SAR ADC for Biomedical Signal Processing. IEEE Trans.
Circuits Syst. I Regul. Pap. 2019, 66, 477–488. [CrossRef]
4. Sadollahi, M.; Hamashita, K.; Sobue, K.; Temes, G.C. An 11-bit 250-nW 10-kS/s SAR ADC with Doubled Input Range for
Biomedical Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 61–73. [CrossRef]
5. Chen, Y.; Zhuang, Y.; Tang, H. A highly energy-efficient, area-efficient switching scheme for SAR ADC in biomedical applications.
Analog Integr. Circuits Signal Process. 2019, 101, 133–143. [CrossRef]
6. Zhu, Z.; Qiu, Z.; Liu, M.; Ding, R. A 6-to-10-Bit 0.5 V-to-0.9 V Reconfigurable 2 MS/s Power Scalable SAR ADC in 0.18 µm CMOS.
IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 689–696. [CrossRef]
7. Mao, W.; Li, Y.; Heng, C.; Lian, Y. A Low Power 12-bit 1-kS/s SAR ADC for Biomedical Signal Processing. IEEE Trans.
Circuits Syst. Signal Process. 2019, 38, 5411–5425. [CrossRef]
8. O’Driscoll, S.; Shenoy, K.V.; Meng, T.H. Adaptive Resolution ADC Array for an Implantable Neural Sensor. IEEE Trans. Biomed.
Circuits Syst. 2011, 5, 120–130. [CrossRef] [PubMed]
9. Ginsburg, B.P.; Chandrasekaran, A.P. A Resolution-Reconfigurable 5-to-10-Bit 0.4-1 V Power Scalable SAR ADC for Sensor Applications.
IEEE J. Solid-State Circuits 2013, 48, 1453–1464. [CrossRef]
10. Liu, C.C.; Chang, S.J.; Huang, G.Y.; Lin, Y.Z. A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure. IEEE
J. Solid-State Circuits 2010, 45, 731–740. [CrossRef]
11. Yan, Z.; Chi-Hang, C.; Chio, U.F.; Sai-Weng, S.; Seng-Pan, U.; Martins, R.P.; Maloberti, F. A 10-bit 100-MS/s Reference-Free SAR
ADC in 90 nm CMOS. IEEE J. Solid-State Circuits 2010, 45, 1111–1121. [CrossRef]
12. Johns, D.; Martin, K. Analog Integrated Circuit Design; John Wiley & Sons, Inc.: New York, NY, USA, 1997.
13. Rabuske, T.; Fernandes, J. A SAR ADC with a MOSCAP-DAC. IEEE J. Solid-State Circuits 2016, 51, 1410–1422. [CrossRef]
14. Harpe, P.; Cantatore, E.; van Roermund, A. A 10b/12b 40 kS/s SAR ADC with Data-Driven Noise Reduction Achieving up to
10.1b ENOB at 2.2 fJ/Conversion-Step. IEEE J. Solid-State Circuits 2013, 48, 3011–3018. [CrossRef]
15. Zhu, Z.; Xiao, Y.; Wang, W.; Wang, Q.; Yang, Y. A 0.6 V 100 kS/s 8-10 b resolution configurable SAR ADC in 0.18 µm CMOS.
Analogue Integr. Circuits Signal Process. 2013, 75, 335–342. [CrossRef]
16. Tang, H.; Sun, Z.C.; Chew, K.W.R.; Siek, L. A 1.33 µW 8.02-ENOB 100 kS/s Successive Approximation ADC with Supply
Reduction Technique for Implantable Retinal Prosthesis. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 844–856. [CrossRef] [PubMed]
17. Yuan, C.; Ng, K.A.; Xu, Y.P.; Yen, S.C.; Thakor, N.V. A 1-V 9.8-ENOB 100-kS/s single-ended SAR ADC with symmetrical DAC
switching technique for neural signal acquisition. In Proceedings of the 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC),
Xiamen, China, 9–11 November 2015. [CrossRef]
18. Wang, J.; Hua, Y.; Zhu, Z. A 10-bit reconfigurable ADC with SAR/SS mode for neural recording. Analog Integr. Circuits Signal
Process. 2019, 101, 297–305. [CrossRef]
19. Ro, D.; Min, C.; Kang, M.; Chang, I.J.; Lee, H.-M. A Radiation-Hardened SAR ADC with Delay-Based Dual Feedback Flip-Flops
for Sensor Readout Systems. Sensors 2019, 20, 171. [CrossRef]