Massive Star Formation in the Galactic Center

By Don F. Figer
Rochester Institute of Technology, Rochester, NY, USA

The Galactic center is a hotbed of star formation activity, containing the most massive star formation site and three of the most massive young star clusters in the Galaxy. Given such a rich environment, it contains more stars with initial masses above 100 M_\odot than anywhere else in the Galaxy. This review concerns the young stellar population in the Galactic center, as it relates to massive star formation in the region. The sample includes stars in the three massive stellar clusters, the population of younger stars in the present sites of star formation, the stars surrounding the central black hole, and the bulk of the stars in the field population. The fossil record in the Galactic center suggests that the recently formed massive stars there are present-day examples of similar populations that must have been formed through star formation episodes stretching back to the time period when the Galaxy was forming.

1. Introduction

The Galactic center (GC) is an exceptional region for testing massive star formation and evolution models. It contains 10% of the present star formation activity in the Galaxy, yet fills only a tiny fraction of a percent of the volume in the Galactic disk. The initial conditions for star formation in the GC are unique in the Galaxy. The molecular clouds in the region are extraordinarily dense, under high thermal pressure, and are subject to a strong gravitational tidal field. Morris (1993) argue that these conditions may favor the preferential formation of high mass stars. Being the closest galactic nucleus, the GC gives us an opportunity to observe processes that potentially have wide applicability in other galaxies, both in their centers and in the interaction regions of merging galaxies. Finally, the GC may be the richest site of certain exotic processes and objects in the Galaxy, i.e. runaway stellar mergers leading to intermediate mass black holes and stellar rejuvenation through atmospheric stripping, to name a few.

This review is primarily concerned with massive star formation in the region. For thorough reviews on a variety of topics concerning the Galactic center, see Genzel & Townes (1987), Genzel et al. (1994), Morris & Serabyn (1996), and Eckart et al. (2005).

2. The Galactic center environment and star formation

The star formation efficiency in the GC appears to be high. Plotting the surface star formation rate ($\Sigma_{SFR} \sim 5 M_\odot$ yr$^{-1}$ pc$^{-2}$) versus surface gas density ($\Sigma_{H_2} \sim 400 M_\odot$ pc$^{-2}$) in a “Schmidt plot” suggests an efficiency of nearly 100%, comparable to that of the most intense infrared circumnuclear starbursts in other galaxies and a factor of twenty higher than in typical galaxies (see Figure 7 in Kennicutt 1998). It is also higher than that elsewhere in the Galaxy; commensurately, stars in the GC emit about 5-10% of the Galaxy’s ionizing radiation and infrared luminosity.

† For the purposes of this review, the GC refers to a cylindrical volume with radius of ≈ 500 pc and thickness of ≈ 60 pc that is centered on the Galactic nucleus and is coincident with a region of increased dust and gas density, often referred to as the “Central Molecular Zone” (Serabyn & Morris 1996).
Morris & Serabyn (1996) review the content and conditions of the interstellar medium in the “Central Molecular Zone” (CMZ), noting that the molecular clouds in the region are extraordinarily dense \((n > 10^4 \text{ cm}^{-3}) \) and warm \((T \sim 70 \text{ K}) \) with respect to those found in the disk of the Galaxy. Stark et al. (1989) argue that the density and internal velocities of clouds in the GC are a direct result of the strong tidal fields in the region, i.e. only the dense survive. Serabyn & Morris (1996) argue that the inexorable inflow of molecular material from further out in the Galaxy powers continuous and robust star formation activity in the region.

It is still unclear how magnetic field strength affects star formation. If it does matter, then the GC might be expected to reveal such effects. The strength of the magnetic field in the GC has been estimated through far infrared polarized light from aligned dust grains (Hildebrand et al. 1993; Chuss et al. 2003) and Zeeman splitting of the OH molecule (Plante, Lo, & Crutcher 1995). In both cases, the field is inferred to be of milliGuass strength. However, Uchida & Guesten (1995) argue strongly that these strengths are localized to bundles that delineate the extraordinary non-thermal filaments in the region (Yusef-Zadeh & Morris 1987), and are not representative of the field strength that is pervasive in the region. If this is correct, then the fields inside GC molecular clouds may not be so strong versus those inside disk clouds \((B \sim 3 \mu \text{G}) \).

Metals in molecular clouds can provide cooling that aids protostellar collapse, but they also create opacity to the UV flux, winds, and bipolar outflows that emanate from newly formed stars. Observations of metallicity in the Galactic center span a range of solar, observed in stars (Ramírez et al. 2000; Carr, Sellgren, & Balachandran 2000; Najarro et al. 2004), to twice solar, observed in the gas phase (Shields & Ferland 1994), to four times solar, observed through x-ray emission near the very center (Maeda et al. 2002). The errors from the stellar measurements are the smallest and suggest that stars in the GC are formed from material with roughly solar abundances.

3. Present-day star formation in the GC

Present-day star formation in the GC is somewhat subdued compared to the episodes that produced the massive clusters we now see. A dozen or so ultra-compact HII regions are distributed throughout the central 50 pc, each containing one or a few O-stars still embedded in their natal environs. Yusef-Zadeh & Morris (1987) identify most of these sources in radio continuum observations (see Figure 1). Zhao et al. (1992) and Goss et al. (1983) infer Lyman-continuum fluxes that are comparable to that expected from a single O7V star in each of the H1-H5 and A-D UCHII regions. Cotera et al. (1999) find that several of the recently formed stars in these regions have broken out of their dust shroud, revealing spectra of young massive stars; see also Figer et al. (1994) and Munoz et al. (2006) for additional examples.

A bit further from the GC, the Sgr B2 molecular cloud harbors a massive star cluster in the making and is home to the most intense present-day star formation site in the Galaxy (Gaume et al. 1995; de Pree et al. 1995; McGrath, Goss, & De Pree 2004; Takagi, Murakami, & Koyama 2002; de Vicente et al. 2000; Liu & Snyder 1999; Garay & Lizano 1999; de Pree et al. 1998). Within the next few Myr, this activity should produce a star cluster that is comparable in mass to the Arches cluster (see Figure 2). Sato et al. (2000) note evidence in support of a cloud-cloud collision as the origin for the intense star formation in Sgr B2; these include velocity gradients, magnetic field morphology, shock-enhanced molecular emission, shock-induced molecular evaporation from dust grains, and distinctly different densities of certain molecular species throughout the cloud.
4. Continuous star formation in the GC

There is ample evidence for persistent star formation in the GC in the form of upper-tip asymptotic giant branch stars distributed throughout the region (Lebofsky & Rieke 1987; Narayan, Gould, & Depoy 1996; Frogel, Tiede, & Kuchinski 1999; Sjouwerman et al. 1999). Figure 3 shows a plot for some of these stars, based on spectroscopic data, overlaid with intermediate age model isochrones (Blum et al. 2003). Note that the giants and supergiants in this plot require ages that span a few Myr to a few Gyr.

One comes to similar conclusions by analyzing photometry of the field population in the GC. Figer et al. (2004) use observed luminosity functions to determine that the star formation rate has been roughly constant for the lifetime of the Galaxy in the GC, similar to the suggestion in Serabyn & Morris (1996) based on the sharp increase in unresolved infrared light towards the center and a mass-budget argument. Figure 4 shows model and observed luminosity functions (right) for various star formation scenarios (left) over the lifetime of the Galaxy, assuming a Salpeter IMF (Salpeter 1955) for masses above $10 M_\odot$.

Figure 1. Radio emission from the GC region at 6 cm, adapted in Figure 1 by Cotera et al. (1999) from Yusef-Zadeh & Morris (1987). The star symbols represent the three massive clusters. Hot stars in the Quintuplet and Arches clusters ionize gas on the surfaces of nearby molecular clouds to produce the radio emission in the “Sickle” and “G0.10+0.02/E1/E2 Filaments,” respectively. The radio emission near the Galactic center is due to a combination of thermal and non-thermal emission. The “H1-8” and “A-D” regions are ultra-compact HII regions surrounding recently formed stars.
and a flat slope below this mass. The observations were obtained with HST/NICMOS and have been corrected for incompleteness. The “burst” models (panels 1, 2, 4, and 5) produce unrealistic ratios of bright to faint stars in the luminosity functions, especially for the red clump near a dereddened K-band magnitude of 12. The continuous star formation model (panel 3) best fits the data.

5. Properties of the Three Massive Clusters

The majority of recent star formation activity in the GC over the past 10 Myr produced three massive clusters: the Central cluster, the Arches cluster, and the Quintuplet cluster. The following sections describe the stellar content in the clusters and the resultant implications for star formation in the region. They closely follow recent reviews (Figer et al. 1999a; Figer 2003, 2004), with updates, as summarized in Table 1.

The three clusters are similar in many respects, as they are all young and contain $\gtrsim 10^4 M_\odot$ in stars. They have very high central stellar mass densities, up to nearly $10^6 M_\odot$ pc$^{-3}$, exceeding central densities in most globular clusters. They have luminosities of 10^7–$8 L_\odot$, and are responsible for heating nearby molecular clouds. They also generate 10^{50}–51 ionizing photons per second, enough to account for nearby giant HII regions. The primary difference between the clusters is likely to be age, where the Quintuplet and Central clusters are about twice the age of the Arches cluster. In addition, the Central cluster is unique for its population of evolved massive stars that have broad and strong helium emission lines (Krabbe et al. 1991 and references therein). While the Quintuplet cluster has a few similar stars (Geballe et al. 1994; Figer et al. 1999a), the Central cluster has far more as a fraction of its total young stellar population (Paumard et al. 2006).

Table 2 summarizes the massive stellar content of the clusters.
Figure 3. Estimates of absolute magnitude versus temperature for stars in the GC from Blum et al. (2003). The lines correspond to model isochrones having ages of 10 Myr, 100 Myr, 1 Gyr, 5 Gyr, and 12 Gyr. The supergiants (above the horizontal line) are descendant from stars having $M \approx 15-25 M_\odot$, whereas fainter stars are descendant from lower mass main sequence stars having a few to $15 M_\odot$. The presence of these stars in the GC demonstrates intermediate age star formation of massive stars.

Table 1. Properties of massive clusters in the Galactic Center

Cluster	Log(M1)	Log(M2)	Radius	Log(ρ_1)	Log(ρ_2)	Age	Log(L)	Log(Q)
Quintuplet	3.0	3.8	1.0	2.4	3.2	3–6	7.5	50.9
Arches	4.1	4.1	0.19	5.6	5.6	2–3	8.0	51.0
Center	3.0	4.0	0.23	4.6	5.6	3–7	7.3	50.5

“M1” is the total cluster mass in observed stars. “M2” is the total cluster mass in all stars extrapolated down to a lower-mass cutoff of $1 M_\odot$, assuming a Salpeter IMF slope and an upper mass cutoff of 120 M_\odot (unless otherwise noted). “Radius” gives the average projected separation from the centroid position. “M1” is divided by the volume. “M2” is divided by the volume. In either case, this is probably closer to the central density than the average density because the mass is for the whole cluster while the radius is the average projected radius. “Age” is the assumed age for the cluster. “Luminosity” gives the total measured luminosity for observed stars. “Q” is the estimated Lyman continuum flux emitted by the cluster.

† Mass estimates have been made based upon the number of stars having $M_{\text{initial}} > 20 M_\odot$ given in Figer et al. (1999) and the mass function slope in Stolte et al. (2003). The age, luminosity and ionizing flux are from Figer et al. (2002).

‡ Krabbe et al. (1993). The mass, “M2” has been estimated by assuming that a total $10^{3.5}$ stars have been formed. The age spans a range covering an initial starburst, followed by an exponential decay in the star formation rate.

5.1. Central cluster

The Central cluster contains many massive stars that have recently formed in the past 10 Myr (Becklin et al. 1978; Rieke, Telesco, & Harper 1978; Lebofsky, Rieke, & Tokunaga 1982; Forrest et al. 1987; Allen, Hyland, & Hillier 1990; Krabbe et al. 1991; Najarro et al. 1994; Krabbe et al. 1995; Najarro 1995; Libonate et al. 1995; Blum, Depoy, & Sellgren 2003).
Figure 4. A figure adapted from Figer et al. (2004) showing various star formation scenarios (left), and resultant model luminosity functions (right, thick) compared to observed luminosity functions (right, thin) in the GC. The models assume a Salpeter IMF slope, an elevated lower-mass turnover of $10^{8} M_{\odot}$, and are additionally constrained to produce $2(10^{8}) M_{\odot}$ in stars within the region. The observations have been corrected for incompleteness. The third panels from the top, i.e. continuous star formation, best fit the data. The observed turn-down at the faint end appears to be real and is only well fit only by assuming a very high lower mass turnover.

| Table 2. Massive Stars in the Galactic Center Clusters |
|---------------------------------|---|---|---|---|---|---|
| Age (Myr) | O | LBV | WN | WC | RSG | References |
| Quintuplet | 4 | 100 | 2 | 6 | 11 | Figer et al. (1999a); Geballe, Najarro, & Figer (2000); Homeier et al. (2003) |
| Arches | 2 | 160 | 0 | ≥ 6 | 0 | 0 | Figer et al. (2002) |
| Center | 4–7 | 100 | ≥ 1 | ≥ 18 | ≥ 12 | 3 | Paumard et al. (2006) |
| Total | 360 | ≥ 3 | ≥ 29 | ≥ 23 | 4 | |

In all, there are now known to be at least 80 massive stars in the Central cluster (Eisenhauer et al. 2005; Paumard et al. 2006), including ≈ 50 OB stars on the main sequence and 30 more evolved massive stars (see Figure 5). These young stars appear to be confined to two disks (Genzel et al. 2003; Genzel et al. 2009; Genzel et al. 2010; Genzel et al. 2011). There is also a tight collection of a dozen or so B stars (the “s” stars) in the central arcsecond, highlighted in the small box in the figure. The formation of so many massive stars in the central parsec remains as much a mystery now as it was at the time of the first infrared observations of the region. Most recently, this topic has largely been supplanted by the even more improbable notion that star formation can occur within a few thousand AU of the supermassive black hole,
Figure 5. K-band image of the Central cluster obtained with NAOS/CONICA from Schödel et al. (2006). The 100 or so brightest stars in the image are evolved descendants from main sequence O-stars. The central box highlights the “s” stars that are presumably young and massive ($M_{\text{initial}} \approx 20 M_{\odot}$).

an idea that will be addressed in Section 7. See Alexander (2005) for a thorough review of the “s” stars and Paumard et al. (2006) for a review of the young population in the Central cluster.

5.2. Arches cluster

The Arches cluster is unique in the Galaxy for its combination of extraordinarily high mass, $M \approx 10^4 M_{\odot}$, and relatively young age, $\tau = 2$ Myr (Figer et al. 2002). Being so young and massive, it contains the richest collection of O-stars and WNL stars in any cluster in the Galaxy (Cotera et al. 1996; Serabyn, Shupe, & Figer 1998; Figer et al. 1999b; Blum et al. 2001; Figer et al. 2002). It is ideally suited for testing theories that predict the shape of the IMF up to the highest stellar masses formed (see Section 6).

The cluster is prominent in a broad range of observations. Figure 6 shows an HST/NICMOS image of the cluster – the majority of the bright stars in the image have masses greater than $20 M_{\odot}$. The most massive dozen or so members of the cluster have strong emission lines at infrared wavelengths (Harris et al. 1994; Nagata et al. 1995; Cotera 1995; Figer 1995; Cotera et al. 1996; Figer et al. 1999b; Blum et al. 2001; Figer et al. 2002). These lines are produced in strong stellar winds that are also detected at radio wavelengths (Lang, Goss, & Rodríguez 2001; Yusef-Zadeh et al. 2003; Lang et al. 2003; Figer et al. 2002), and x-ray wavelengths (Yusef-Zadeh et al. 2002; Rockefeller et al. 2005; Wang, Dong, & Lang 2006).

5.3. Quintuplet cluster

The Quintuplet cluster was originally noted for its five very bright stars, the Quintuplet Proper Members (QPMs) (Glass, Moneti, & Moorwood 1990; Okuda et al. 1990;
Figure 6. F205W image of the Arches cluster obtained by Figer et al. (2002) using HST/NICMOS. The brightest dozen or so stars in the cluster have $M_{\text{initial}} \gtrsim 100 \, M_\odot$, and there are ≈ 160 O-stars in the cluster. The diameter is ≈ 1 lyr, making the cluster the densest in the Galaxy with $\rho > 10^5 \, M_\odot \, pc^{-3}$.

Nagata et al. (1990). Subsequently, a number of groups identified over 30 stars evolved from massive main sequence stars (Geballe et al. 1994; Figer, McLean, & Morris 1995; Timmermann et al. 1996; Figer et al. 1999a). Given the spectral types of the massive stars identified in the cluster, it appears that the Quintuplet cluster is ≈ 4 Myr old and had an initial mass of $>10^4 \, M_\odot$ (Figer et al. 1999a). An accounting of the ionizing flux produced by the massive stars in the cluster conclusively demonstrates that the cluster heats and ionizes the nearby “Sickle” HII region (see Figure 1). The Quintuplet is most similar to Westerlund 1 in mass, age, and spectral content (Clark et al. 2005; Negueruela & Clark 2005; Skinner et al. 2006; Groh et al. 2006; Crowther et al. 2006).

Of particular interest in the cluster, the QPMs are very bright at infrared wavelengths, $m_K \approx 6$ to 9, and have color temperatures between ≈ 600 to 1,000 K. They are luminous, $L \approx 10^5 \, L_\odot$, yet spectroscopically featureless, making their spectral classification ambiguous. Figer, Morris, & McLean (1996), Figer et al. (1999a), and Moneti et al. (2001) argue that these objects are not protostars, OH/IR stars, or protostellar OB stars. Instead, they claim that these stars are dust-enshrouded WCL stars (DWCLs), similar to other dusty Galactic WC stars (Williams, van der Hucht, & The 1987), i.e. WR 104 (Tuthill, Monnier, & Dauch 1999) and WR 98A (Monnier, Tuthill, & Dauch 1999). Chiar et al. (2003) tentatively identify a weak spectroscopic feature at 6.2 μm that they attribute to carbon, further supporting the hypothesis that these stars are indeed DWCLs. The stars have also been detected at x-ray wavelengths (Law & Yusef-Zadeh 2004), and at radio wavelengths (Lang et al. 1999, 2005).

Recently, Tuthill et al. (2006) convincingly show that the QPMs are indeed dusty WC stars. Figure 8 shows data that reveal the pinwheel nature of their infrared emission, char-
Figure 7. Paschen-α image of the region surrounding the Pistol star from Figer et al. (1999c). North is to the upper right, and east is to the upper left. The Pistol star ejected $\approx 10 \, M_\odot$ of material approximately 6,000 yr ago to form what now appears to be a circumstellar nebula that is ionized by two WC stars to the north of the nebula. Moneti et al. (2001) use ISO data to show that the nebula is filled with dust that is heated by the Pistol star.

characteristic of binary systems containing WCL plus an OB star (Tuthill, Monnier, & Danchi 1999; Monnier, Tuthill, & Danchi 1999). This identification raises intriguing questions concerning massive star formation and evolution. With their identifications, it becomes clear that every WC star in the Quintuplet is dusty, and presumably binary. There are two possible explanations for this result. Either the binary fraction for massive stars is extremely high (Mason et al. 1998; Nelan et al. 2004), or only binary massive stars evolve through the WCL phase (van der Hucht 2001).

The Quintuplet cluster also contains two Luminous Blue Variables, the Pistol star (Harris et al. 1994; Figer et al. 1998, 1999c), and FMM362 (Figer et al. 1999a; Geballe, Najarro, & Figer 2000). Both stars are extraordinarily luminous ($L > 10^6 \, L_\odot$), yet relatively cool ($T \approx 10^4 \, K$), placing them in the “forbidden zone” of the Hertzsprung-Russell Diagram, above the Humphreys-Davidson limit (Humphreys & Davidson 1994). The Pistol star is particularly intriguing, in that it is surrounded by one of the most massive ($10 \, M_\odot$) circumstellar ejecta in the Galaxy (see Figure 7; Figer et al. 1999c; Smith 2006). Both stars are spectroscopically (Figer et al. 1999a) and photometrically variable (Glass et al. 2001). They present difficulties for stellar evolution and formation models. Their inferred initial masses are $> 100 \, M_\odot$, yet such stars should have already gone supernova in a cluster that is so old, as evidenced by the existence of WC stars (Figer et al. 1999a) and the red supergiant, q7 (Moneti, Glass, & Moorwood 1994; Ramírez et al. 2000; Figer & Kim 2002) and Freitag, Rasio, & Baumgardt (2006) argue that stellar mergers might explain the youthful appearance of these stars. Alternatively, these stars might be binary, although no evidence has been found to support this assertion. Note that in a similar case, LBV1806−20 is also surrounded by a relatively evolved cluster (Eikenberry et al. 2004; Figer et al. 2005), yet it does appear to be binary (Figer, Najarro, & Kudritzki 2004).
Figure 8. [Tuthill et al. (2006)] find that the Quintuplet Proper Members are dusty Wolf-Rayet stars in binary systems with OB companions. The insets in this illustration show high-resolution infrared imaging data for two Quintuplet stars, overlaid on the HST/NICMOS image from Figer et al. (1999a). All of the Quintuplet WC stars are dusty, suggesting that they are binary.

6. The initial mass function in the Galactic center

The IMF in the Galactic center has primarily been estimated through observations of the Arches cluster ([Figer et al. 1999b; Stolte et al. 2003]), although there have been several attempts to extract such information through observations of the Central cluster ([Genzel et al. 2003; Nayakshin & Sunyaev 2005; Paumard et al. 2006]) and the background population in the region ([Figer et al. 2004]). These studies suggest an IMF slope that is flatter than the Salpeter value.

6.1. The slope

[Figer et al. 1999b] and [Stolte et al. 2003] estimate a relatively flat IMF slope in the Arches cluster (see Figure 9). [Portegies Zwart et al. 2002] interpret the data to indicate an initial slope that is consistent with the Salpeter value, and a present-day slope that has been flattened due to dynamical evolution. Performing a similar analysis, [Kim et al. 2000] arrive at the opposite conclusion – that the IMF truly was relatively flat. The primary difficulty in relating the present-day mass function to the initial mass function is the fact that n-body interactions operate on relatively short timescales to segregate the highest stellar masses toward the center of the cluster and to eject the lowest stellar masses out of the cluster. Most analysis is needed to resolve this issue.

6.2. Upper mass cutoff

The Arches cluster is the only cluster in the Galaxy that can be used to directly probe an upper mass cutoff. It is massive enough to expect stars at least as massive as 400 M_\odot, young enough for its most massive members to still be visible, old enough to have broken out of its natal molecular cloud, close enough, and at a well-established distance, for us to discern its individual stars ([Figer 2005]). There appears to be an absence of stars with initial masses greater than 130 M_\odot in the cluster, where the typical mass function...
Figure 9. Figer (2005) find an apparent upper-mass cutoff to the IMF in the Arches cluster. Magnitudes are transformed into initial mass by assuming the Geneva models for $\tau = 2$ Myr, solar metallicity, and the canonical mass-loss rates. Error bars indicate uncertainty from Poisson statistics. Two power-law mass functions are drawn through the average of the upper four mass bins, one having a slope of -0.90, as measured from the data, and another having the Salpeter slope of -1.35. Both suggest a dramatic deficit of stars with $M_{\text{initial}} > 130 M_\odot$, i.e. 33 or 18 are missing, respectively. These slopes would further suggest a single star with very large initial mass (M_{MAX}). The analysis suggests that the probability of there not being an upper-mass cutoff is $\approx 10^{-8}$.

There is additional support for such a cutoff in other environments (Weidner & Kroupa 2004; Oey & Clarke 2005; Koen 2006; Weidner & Kroupa 2006).

6.3. Lower mass rollover

Morris (1993) argue for an elevated lower mass rollover in the GC based on the environmental conditions therein, and only recently have observations been deep enough to address this claim. Stolte et al. (2004) claim observational evidence for an elevated cutoff around $6 M_\odot$ in the Arches cluster; however, in that case, confusion and incompleteness are serious problems. In addition, even if the apparent turn-down is a real indication of the initial cluster population, the lack of low mass stars might result from their ejection through n-body interactions (Kim et al. 2000; Portegies Zwart et al. 2002). Field observations should not suffer from such an effect, as the field should be the repository for low mass stars ejected from massive clusters in the GC. Figure 4 reveals a turn-down in the observed luminosity function of the field in the GC at a dereddened K-band magnitude greater than 16. This appears to not be a feature of incompleteness, as the data are greater than 50% complete at these magnitudes (Figer et al. 1999b). A more convincing argument, based on this type of data, will await even deeper observations (Kim et al. 2006).

7. The “s” stars

Figure 5 shows a dense collection of about a dozen stars within 1 arcsecond (0.04 pc) of Sgr A* (Genzel et al. 1997; Ghez et al. 1998, 2000; Eckart et al. 2002; Schödel et al. 2002).
This cluster stands out for its high stellar density, even compared to the already dense field population in the GC. Schödel et al. (2003) and Ghez et al. (2003) (and references therein) have tracked the proper motions of the “s” stars, finding that they are consistent with closed orbits surrounding a massive, and dark, object having $M \approx 2 - 4 \times 10^6 M_\odot$, consistent with previous claims based on other methods (Lynden-Bell & Rees 1971; Lacy et al. 1980; Serabyn & Lacy 1982; Genzel & Townes 1987; Sellgren et al. 1987; Rieke & Rieke, 1988; McGinn et al. 1989; Lacy, Achtermann, & Serabyn 1991; Lindqvist, Habing, & Winnberg 1992; Haller et al. 1996). The orbital parameters for these stars are well determined, as seen in Figure 10 (left), and they require the existence of a supermassive black hole in the Galactic center. While these stars are useful as gravitational test particles, they are also interesting in their own right, as they have inferred luminosities and temperatures that are similar to those of young and massive stars (Genzel et al. 1997; Eckart et al. 1999; Figer et al. 2000; Ghez et al. 2003; Eisenhauer et al. 2003, 2005; Paumard et al. 2006).

Oddly, the increased density of the young stars in the central arcsecond is not matched by the density distribution of old stars. Indeed, there is a curious absence of late-type stars in the central few arcseconds, as evidenced by a lack of stars with strong CO absorption in their K-band spectra (Lacy, Townes, & Hollenbach 1982; Phinney 1989; Sellgren et al. 1990; Haller et al. 1996; Genzel et al. 1996, 2003). This dearth of old stars represents a true “hole” in three dimensional space, and not just a projection effect. Even the late-type stars that are projected onto the central parsec generally have relatively low velocities, suggesting dynamical evidence that the region nearest to the black hole lacks old stars (Figer et al. 2003).

The existence of such massive and young stars in the central arcseconds is puzzling, although it is perhaps only an extension of the original problem in understanding the origins of the young stars identified in the central parsec over 20 years ago. Table 3 gives a list of recent papers regarding the origin of the “s” stars. While there are over 30 papers listed in this table, they can be reduced to a few basic ideas. One class of ideas considers the “s” stars as truly young. In this case, the “origin” of the “s” stars is often reduced to the case of massive star formation in the Galactic center region and transportation of the products to the central arcsecond. The other class regards the “s” stars as old stars that only appear to be young, i.e. via atmospheric stripping, merging, or heating. Both classes require new mechanisms that would be unique to the GC, and they both have considerable weaknesses. For example, Figer et al. (2000) argue that stripped red giants would not be as bright as the “s” stars (see Dray, King, & Davies 2006, for detailed confirmation). See Alexander (2005) for a more thorough discussion of the strengths and weaknesses of these ideas.

If the “s” stars are truly young, then that would require massive clumps to form OB stars ($M_{\text{initial}} \gtrsim 20 M_\odot$). In addition, the clumps would have to form from very high density material in order for them to be stable against tidal disruption. Assuming that the stars formed far away from the supermassive black hole as possible, while still permitting dynamical friction to transport them into the central arcsecond during their lifetimes, then the required densities must be $> 10^{11} \text{ cm}^{-3}$ (Figer et al. 2000).

The average molecular cloud density in the GC is about five orders of magnitude less, so highly compressive events might be required to achieve the necessary densities. Alternatively, the required densities can be reduced if the stars are gravitationally bound to significant mass, i.e. a surrounding stellar cluster. Indeed, Gerhard (2001), Portegies Zwart, McMillan, & Gerhard (2003), and Kim & Morris (2003) showed that particularly massive clusters could form tens of parsecs outside of the center and be deliv-
Table 3. Chronologically sorted list of references that explore hypotheses on the origin of the “s” stars. Some of the references primarily concern the other young stars in the central parsec and are included in the table because they propose ideas that may relate to the origins of the “s” stars. Contributions to this table have been made by Tal Alexander (priv. communication).

Reference	Description
Lacy, Townes, & Hollenbach (1982)	tidal disruption of red giants
Morris (1993)	compact objects surrounded by material from red giant envelopes (“Thorne-Zytkow objects”)
Davies et al. (1998)	red giant envelope stripping through n-body interactions
Alexander (1999)	red giant envelope stripping through dwarf-giant interactions
Bailey & Davies (1999)	colliding red giants
Morris, Ghez, & Becklin (1999)	duty cycle of formation from infalling CND clouds and evaporation of gas reservoir by accretion and star-formation light
Gerhard (2001)	decaying massive cluster
Alexander & Morris (2003)	tidal heating of stellar envelopes to form “Squeezars”
Genzel et al. (2003)	stellar rejuvenation through red giant mergers
Gould & Quillen (2003)	“exchange reaction” between massive-star binary and massive black hole
Hansen & Milosavljević (2003)	stars captured by inspiraling intermediate mass black hole
Levin & Beloborodov (2003)	formation in nearby gas disk
McMillan & Portegies Zwart (2003); Kim, Figer, & Morris (2004)	inward migration of young cluster with IMBH
Portegies Zwart, McMillan, & Gerhard (2003); Kim & Morris (2004)	inward migration of young cluster
Alexander & Livio (2004)	orbital capture of young stars by MBH-SBH binaries
Milosavljević & Loeb (2004)	formation in molecular disk
Davies & King (2005)	tidal stripping of red giant (AGB) stars (but see critique in Goodman & Paczynski 2005)
Gürkan & Rasio (2005)	decaying cluster with formation of an IMBH
Haas & Youdin (2005)	formation in disk and orbital relaxation (but see critique in Goodman & Paczynski 2005)
Levin, Wu, & Thommes (2005)	dynamical interactions with sinking IMBH
Navakshin & Sunyaev (2005)	in-situ formation within central parsec
Navakshin & Quadra (2005)	formation in a fragmenting star disk
Subr & Karas (2005)	formation in disk and accelerated orbital relaxation
Berukoff & Hansen (2006)	cluster inspiral and n-body interactions
Hopman & Alexander (2006)	resonant relaxation of orbits
Freitag, Amaro-Seoane, & Kalogera (2006)	mass segregation through interactions with compact remnants
Levin (2006)	star formation in fragmenting disk
Perets, Hopman, & Alexander (2006)	exchange reactions between massive star binaries induced by efficient relaxation by massive perturbers
Dray, King, & Davies (2006)	tidal stripping of red giant (AGB) stars (but see critique in Figer et al. 2001)

...ered into the central parsec in just a few million years. The efficiency of this method is improved with the presence of an intermediate black hole in the cluster (McMillan & Portegies Zwart 2003; Kim, Figer, & Morris 2004). It is key in any of these cluster transport models that the host system have extremely high densities of \(>10^6 \, M_\odot \, \text{pc}^{-3} \), comparable to the...
highest estimated central density of the Arches cluster after core collapse (Kim & Morris 2003). Detailed n-body simulations suggest that while these ideas may be relevant for the origins of the young stars in the central parsec, it is unlikely that they could explain the existence of the “s” stars in the central arcsecond.

8. Comparisons to other massive star populations in Galaxy

There are relatively few clusters in the Galaxy with as many massive stars as in the GC clusters. NGC3603 has about a factor of two less mass than each of the GC clusters (Moffat et al. 2002); whereas, W1 has at least a factor of two greater mass (Clark et al. 2005; Negueruela & Clark 2003; Skinner et al. 2006; Groh et al. 2006). The next nearest similarly massive cluster is R136 in the LMC (Massey & Hunter 1998). All of these clusters, and the GC clusters, appear to have IMF slopes that are consistent with the Salpeter value (or slightly flatter) and are young enough to still possess a significant massive star population. It is remarkable to note that these massive clusters appear quite similar in stellar content, whether in the Galactic disk, the GC, or even the lower metallicity environment of the LMC. Evidently, the star formation processes, and natal environments, that gave birth to these clusters must be similar enough to produce clusters that are virtually indistinguishable.

There are probably more massive clusters yet to be found in the Galaxy. The limited sample of known massive clusters is a direct result of extinction, as most star formation sites in the Galaxy are obscured by dust at optical wavelengths. While infrared observations have been available for over 30 years, they have not provided the necessary spatial resolution, nor survey coverage, needed to probe the Galactic disk for massive clusters. Recently, a number of groups have begun identifying candidate massive star clusters using near-infrared surveys with arcsecond resolution (Bica et al. 2003, Dutra et al. 2003, Mercer et al. 2005). Indeed, these surveys have already yielded a cluster with approximate initial mass of 20,000 to 40,000 M_{\odot} (Figer et al. 2006), and one would expect more to be discovered from them.

The present-day sites of massive star formation in the Galaxy have been known for some time through radio and far-infrared observations, as their hottest members ionize and heat nearby gas in molecular clouds. As one of many examples, consider W49

Figure 10. (left) Figure 2 in Ghez et al. (2005) and (middle) Figure 6 in Schödel et al. (2003), stretched to the same scale. Both figures fit similar model orbits through separate proper motion data sets for the “s” stars. (right) Paumard et al. (2006) find that one of the “s” stars, S2, has a K-band spectrum that is similar to those of OB stars in the central parsec (see also Ghez et al. 2003).
which is the next most massive star formation site in the Galaxy compared to Sgr B2 (Homeier & Alves 2005), and wherein the star formation appears to be progressing in stages over timescales that far exceed the individual collapse times for massive star progenitors. This suggests a stimulus that triggers the star formation, perhaps provided by a “daisy chain” effect in which newly formed stars trigger collapse in nearby parts of the cloud. Similar suggestions are proposed in the 30 Dor region surrounding R136 (Walborn, Maíz-Apellániz, & Barbuy 2002). While there is no evidence for an age-dispersed population in Sgr B2, Sato et al. (2000) suggest that the cloud was triggered to form stars through a cloud-cloud interaction.

9. Conclusions

Massive star formation in the GC has produced an extraordinary sample of stars populating the initial mass function up to a cutoff of approximately 150 M_\odot. The ranges of inferred masses and observed spectral types are as expected from stellar evolution models, and the extraordinary distribution of stars in the region is a direct consequence of the large amount of mass that has fed star formation in the GC. The origin of the massive stars in the central parsec, and especially the central arcsecond, remains unresolved.

I thank the following individuals for discussions related to this work: Mark Morris, Bob Blum, Reinhard Genzel, Paco Najarro, Sungsoo Kim, and Peter Tuthill. Tal Alexander made substantial contributions to Table 3. The material in this paper is based upon work supported by NASA under award No. NNG05-GC37G, through the Long Term Space Astrophysics program.

Full resolution versions of the above images are available at http://www.cis.rit.edu/~dffpci/private/papers/stsci06/
REFERENCES

ALEXANDER, T. 1999 The Distribution of Stars near the Supermassive Black Hole in the Galactic Center. *Astrophysical Journal* **527**, 835

ALEXANDER, T. 2005, Stellar processes near the massive black hole in the Galactic center. *Physics Reports* **419**, 65

ALEXANDER, T., & LIVIO, M. 2004 Orbital Capture of Stars by a Massive Black Hole via Exchanges with Compact Remnants. *Astrophysical Journal Letters* **606**, L21

ALEXANDER, T., & MORRIS, M. 2003 Squeezars: Tidally Powered Stars Orbiting a Massive Black Hole. *Astrophysical Journal Letters* **590**, L25

ALLEN, D. A., HYLAND, A. R., & HILLIER, D. J. 1990 The source of luminosity at the Galactic Centre. *Monthly Notices of the Royal Astronomical Society* **244**, 706

BAILEY, V. C., & DAVIES, M. B. 1999 Red giant collisions in the Galactic Centre. *Monthly Notices of the Royal Astronomical Society* **308**, 257

BECKLIN, E. E., MATTHEWS, K., NEUGEBAUER, G., & WILLNER, S. P. 1978 Infrared observations of the galactic center. I - Nature of the compact sources. *Astrophysical Journal* **199**, 121

BELOBORODOV, A. M., LEVIN, Y., EISENHAUER, F., GENZEL, R., PAUMARD, T., GILLESSEN, S., & OTT, T. 2006 Clockwise Stellar Disk and the Dark Mass in the Galactic Center. ArXiv Astrophysics e-prints [arXiv:astro-ph/0601273]

BERUKOFF, S. J., & HANSEN, B. M. S. 2006 Cluster Core Dynamics at the Galactic Center. ArXiv Astrophysics e-prints [arXiv:astro-ph/0607080]

BICA, E., DUTRA, C. M., SOARES, J., & BARBUY, B. 2003 New infrared star clusters in the Northern and Equatorial Milky Way with 2MASS. *Astronomy & Astrophysics* **404**, 223

BLUM, R. D. 1995 The Stellar Population at the Galactic Center and the Mass Distribution in the Inner Galaxy. Ph.D. Thesis

BLUM, R. D., DEPOY, D. L., & SELLGREN, K. 1995a A comparison of near-infrared spectra of the galactic center compact He I emission-line sources and early-type mass-losing stars. *Astrophysical Journal* **441**, 603

BLUM, R. D., RAMIREZ, S. V., SELLGREN, K., & OLSEN, K. 2003 Really Cool Stars and the Star Formation History at the Galactic Center. *Astrophysical Journal* **597**, 323

BLUM, R. D., SCHAERER, D., PASQUALI, A., HEYDARI-MALAYERI, M., CONTI, P. S., & SCHMUTZ, W. 2001 2 Micron Narrowband Adaptive Optics Imaging in the Arches Cluster. *Astronomical Journal* **122**, 1875

BLUM, R. D., SELLGREN, K., & DEPOY, D. L. 1995b Discovery of a possible Wolf-Rayet star at the galactic center. *Astrophysical Journal Letters* **440**, L17

BLUM, R. D., SELLGREN, K., & DEPOY, D. L. 1996a Really Cool Stars at the Galactic Center. *Astronomical Journal* **112**, 1988

BLUM, R. D., SELLGREN, K., & DEPOY, D. L. 1996b JHKL Photometry and the K-Band Luminosity Function at the Galactic Center. *Astrophysical Journal* **470**, 864

CARR, J. S., SELLGREN, K., & BALACHANDRAN, S. C. 2000 The First Stellar Abundance Measurements in the Galactic Center: The M Supergiant IRS 7. *Astrophysical Journal* **530**, 307

CHIAR, J. E., ADAMSON, A. J., WHITTET, D. C. B., & PENDLETON, Y. J. 2003 Spectroscopy of Hydrocarbon Grains toward the Galactic Center and Quintuplet Cluster. Astronomische Nachrichten Supplement **324**, 109

CHUSS, D. T., DAVIDSON, J. A., DOTSON, J. L., DOWELL, C. D., HILDEBRAND, R. H., NOVAK, G., & VAILLANCOURT, J. E. 2003 Magnetic Fields in Cool Clouds within the Central 50 Parsecs of the Galaxy. *Astrophysical Journal* **599**, 1116

CLARK, J. S., NEGUERUELA, I., CROWTHER, P. A., & GOODWIN, S. P. 2005 On the massive stellar population of the super star cluster Westerlund 1. *Astronomy & Astrophysics* **434**, 949

COTERA, A. S. 1995 Stellar Ionization of the Thermal Emission Regions in the Galactic Center. Ph.D. Thesis

COTERA, A. S., ERICKSON, E. F., COLGAN, S. W. J., SIMPSON, J. P., ALLEN, D. A., & BURTON, M. G. 1996 The Discovery of Hot Stars near the Galactic Center Thermal Radio Filaments. *Astrophysical Journal* **461**, 750

COTERA, A. S., SIMPSON, J. P., ERICKSON, E. F., COLGAN, S. W. J., BURTON, M. G.,
Crowther, P. A., Hadfield, L. J., Clark, J. S., Negueruela, I., & Vacca, W. D. 2006 A census of the Wolf-Rayet content in Westerlund 1 from near-infrared imaging and spectroscopy. ArXiv Astrophysics e-prints, arXiv:astro-ph/0608356

Davies, M. B., Blackwell, R., Bailey, V. C., & Sigurdsson, S. 1998 The destructive effects of binary encounters on red giants in the Galactic Centre. Monthly Notices of the Royal Astronomical Society 301, 745

Davies, M. B., & King, A. 2005 The Stars of the Galactic Center. Astrophysical Journal Letters 624, L25

de Pree, C. G., Gaume, R. A., Goss, W. M., & Claussen, M. J. 1995 The Sagittarius B2 Star-forming Region. II. High-Resolution H66 alpha Observations of Sagittarius B2 North. Astrophysical Journal 451, 284

de Pree, C. G., Gaume, R. A., Goss, W. M., & Claussen, M. J. 1996 The Sagittarius B2 Star-forming Region. III. High-Resolution H52 alpha and H66 alpha Observations of Sagittarius B2 Main. Astrophysical Journal 464, 788

de Vicente, P., Martín-Pintado, J., Neri, R., & Colom, P. 2000 A ridge of recent massive star formation between Sgr B2M and Sgr B2N. Astronomy & Astrophysics 361, 1058

Dray, L. M., King, A. R., & Davies, M. B. 2006 Young stars in the Galactic Centre: a potential intermediate-mass star origin. ArXiv Astrophysics e-prints, arXiv:astro-ph/0607470

Dutra, C. M., Bica, E., Soares, J., & Barbuy, B. 2003 New infrared star clusters in the southern Milky Way with 2MASS. Astronomy & Astrophysics 400, 533

Eckart, A., Genzel, R., Ott, T., & Schödel, R. 2002 Stellar orbits near Sagittarius A*. Monthly Notices of the Royal Astronomical Society 331, 917

Eckart, A., Ott, T., & Genzel, R. 1999, The Sgr A* stellar cluster: New NIR imaging and spectroscopy. Astronomy & Astrophysics 352, L22

Eckart, A., Schödel, R., & Straubmeier, C. 2005 The black hole at the center of the Milky Way. Andreas Eckart, Rainer Schödel, Christian Straubmeier. London: Imperial College Press, ISBN 1-86094-567-8, 2005, XXII+284

Eisenhauer, F., et al. 2003 A Geometric Determination of the Distance to the Galactic Center. Astrophysical Journal Letters 597, L121

Eisenhauer, F., et al. 2004 Infrared Observations of the Candidate LBV 1806-20 and Nearby Cluster Stars1. Astrophysical Journal 616, 506

Eisenhauer, F., et al. 2005 SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month. Astrophysical Journal 628, 246

Eisenhauer, F., Schödel, R., Genzel, R., Ott, T., Tecza, M., Abuter, R., Eckart, A., & Alexander, T. 2003 A Geometric Determination of the Distance to the Galactic Center. Astrophysical Journal Letters 597, L121

Figer, D. F. 1995 A Search for Emission-Line Stars Near the Galactic Center. Ph.D. Thesis. Figer, D. F. 2003, Massive stars and the creation of our Galactic Center. IAU Symposium, 212, 487

Figer, D. F. 2004, Young Massive Clusters in the Galactic Center. ASP Conf. Ser. 322: The Formation and Evolution of Massive Young Star Clusters, 322, 49.

Figer, D. F. 2005 An upper limit to the masses of stars. Nature 434, 192

Figer, D. F., et al. 2000, 2 Micron Spectroscopy within 0.3“ of Sagittarius A*. Astrophysical Journal Letters 533, L49

Figer, D. F. et al. 2002 Massive Stars in the Arches Cluster. Astrophysical Journal 581, 258

Figer, D. F., et al. 2003 High-Precision Stellar Radial Velocities in the Galactic Center. Astrophysical Journal 599, 1139

Figer, D. F., Becklin, E. E., McLean, I. S., & Morris, M. 1994 Discovery of Luminous NIR Sources Associated With Ionized Gas Near the Galactic Center. ASSL Vol. 190: Astronomy with Arrays, The Next Generation, 545

Figer, D. F., & Kim, S. S. 2002 Stellar Collisions and Mergers in the Galactic Center. ASP Conf. Ser. 263: Stellar Collisions, Mergers and their Consequences, 263, 287

Figer, D. F., Kim, S. S., Morris, M., Serabyn, E., Rich, R. M., & McLean, I. S. 1999b HST/NICMOS Observations of Massive Stellar Clusters Near the Galactic Center. Astrophysical Journal 525, 750.

Figer, D. F., MacKenty, J. W., Robberto, M., Smith, K., Najarro, F., Kudritzki,
D. F. Figer et al.: Massive Star Formation in the Galactic Center

R. P., & Herrero, A. 2006 Discovery of an Extraordinarily Massive Cluster of Red Supergiants. *Astrophysical Journal* **643**, 1166

Figer, D. F., McLean, I. S., & Morris, M. 1995 Two New Wolf-Rayet Stars and a Luminous Blue Variable Star in the Quintuplet (AFGL 2004) near the Galactic Center. *Astrophysical Journal Letters* **447**, L29

Figer, D. F., McLean, I. S., & Morris, M. 1999a Massive Stars in the Quintuplet Cluster. *Astrophysical Journal* **514**, 202

Figer, D. F., Morris, M., Geballe, T. R., Rich, R. M., Serabyn, E., McLean, I. S., Puette, R. C., & Yahil, A. 1999c High-Resolution Infrared Imaging and Spectroscopy of the Pistol Nebula: Evidence for Ejection. *Astrophysical Journal* **525**, 759

Figer, D. F., Morris, M., & McLean, I. S. 1996 Hot Stars in the Quintuplet. ASP Conf. Ser. **102**: The Galactic Center **102**, 263

Figer, D. F., Najarro, F., Geballe, T. R., Blum, R. D., & Kudritzki, R. P. 2005 Massive Stars in the SGR 1806-20 Cluster. *Astrophysical Journal Letters* **622**, L49

Figer, D. F., Najarro, F., & Kudritzki, R. P. 2004 The Double-lined Spectrum of LBV 1806-20. *Astrophysical Journal Letters* **610**, L109

Figer, D. F., Najarro, F., Morris, M., McLean, I. S., Geballe, T. R., Ghez, A. M., & Langer, N. 1998 The Pistol star. *Astrophysical Journal* **506**, 384

Figer, D. F., Rich, R. M., Kim, S. S., Morris, M., & Serabyn, E. 2004 An Extended Star Formation History for the Galactic Center from Hubble Space Telescope NICMOS Observations. *Astrophysical Journal* **601**, 319

Freitag, M., Amaro-Seoane, P., & Kalogera, V. 2006 Stellar remnants in galactic nuclei: mass segregation. ArXiv Astrophysics e-prints [arXiv:astro-ph/0603280]

Freitag, M., Rasio, F. A., & Baumgardt, H. 2006 Runaway collisions in young star clusters - I. Methods and tests. *Monthly Notices of the Royal Astronomical Society* **368**, 121

Garay, G., & Lizano, S. 1999 Massive Stars: Their Environment and Formation. *Publications of the Astronomical Society of the Pacific* **111**, 1049

Gerhard, O. 2001 The Galactic Center HE I Stars: Remains of a Dissolved Young Cluster?. *Astrophysical Journal Letters* **546**, L39

Ghez, A. M., et al. 2003 The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy's Central Black Hole: A Paradox of Youth. *Astrophysical Journal Letters* **586**, L127

Ghez, A. M., Klein, B. L., Morris, M., & Becklin, E. E. 1998 High Proper-Motion Stars
in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy. *Astrophysical Journal* **509**, 678

Ghez, A. M., Morris, M., Becklin, E. E., Tanner, A., & Kremenek, T. 2000 The accelerations of stars orbiting the Milky Way's central black hole. *Nature* **407**, 349

Ghez, A. M., Salim, S., Hornstein, S. D., Tanner, A., Lu, J. R., Morris, M., Becklin, E. E., & Duchêne, G. 2005 Stellar Orbits around the Galactic Center Black Hole. *Astrophysical Journal* **620**, 744

Glass, I. S., Matsumoto, S., Carter, B. S., & Sekiguchi, K. 2001 Large-amplitude variables near the Galactic Centre. *Monthly Notices of the Royal Astronomical Society* **321**, 77

Glass, I. S., Moneti, A., & Moorwood, A. F. M. 1990 Infrared images and photometry of the cluster near G 0.15 - 0.05. *Monthly Notices of the Royal Astronomical Society* **242**, 55P

Goodman, J., & Paczynski, B. 2005 On the nature of the S stars in the Galactic Center. *ArXiv Astrophysics e-prints*, arXiv:astro-ph/0504079

Goss, W. M., Schwarz, U. J., van Gorkom, J. H., & Ekers, R. D. 1985 The SGR A East H II complex at L = -0.02, B = -0.07 deg. *Monthly Notices of the Royal Astronomical Society* **215**, 69P

Gould, A., & Quillen, A. C. 2003 Sagittarius A* Companion S0-2: A Probe of Very High Mass Star Formation. *Astrophysical Journal* **592**, 935

Groh, J. H., Damineli, A., Teodoro, M., & Barbosa, C. L. 2006 Detection of additional Wolf-Rayet stars in the starburst cluster Westerlund 1 with SOAR. *ArXiv Astrophysics e-prints*, arXiv:astro-ph/0606498

G¨urkan, M. A., & Rasio, F. A. 2005 The Disruption of Stellar Clusters Containing Massive Black Holes near the Galactic Center. *Astrophysical Journal* **628**, 236

Haislip, G., & Youdin, A. N. 2005 A Disk Origin for S-Stars in the Galactic Center? *American Astronomical Society Meeting Abstracts* **207**, #181.14

Haller, J. W., & Melia, F. 1996 Inferring Spherical Mass Distributions Using the Projected Mass Estimator. *Astrophysical Journal* **464**, 774

Haller, J. W., Rieke, M. J., Rieke, G. H., Tamblyn, P., Close, L., & Melia, F. 1996 Stellar Kinematics and the Black Hole in the Galactic Center. *Astrophysical Journal* **456**, 194

Hansen, B. M. S., & Milosavljevi ´c, M. 2003 The Need for a Second Black Hole at the Galactic Center. *Astrophysical Journal Letters* **593**, L77

Harris, A. I., Krenz, T., Genzel, R., Krabbe, A., Lutz, D., Politis, A., Townes, C. H., & Geballe, T. R. 1994 Spectroscopy of the Galactic Center Arches Region: Evidence for Massive Star Formation. NATO ASIC Proc. 445: The Nuclei of Normal Galaxies: Lessons from the Galactic Center , 223

Hildebrand, R. H., Davidson, J. A., Dotson, J., Figer, D. F., Novak, G., Platt, S. R., & Tao, L. 1993 Polarization of the Thermal Emission from the Dust Ring at the Center of the Galaxy. *Astrophysical Journal* **417**, 565

Homeier, N. L., & Alves, J. 2005 Massive star formation in the W49 giant molecular cloud: Implications for the formation of massive star clusters. *Astronomy & Astrophysics* **430**, 481

Homeier, N. L., Blum, R. D., Pasquali, A., Conti, P. S., & Damineli, A. 2003 Results from a near infrared search for emission-line stars in the Inner Galaxy: Spectra of new Wolf-Rayet stars. *Astronomy & Astrophysics* **408**, 153

Hopman, C., & Alexander, T. 2006 Resonant Relaxation near the Massive Black Hole in the Galactic Center. *ArXiv Astrophysics e-prints*, arXiv:astro-ph/0605457

Humphreys, R. M., & Davidson, K. 1994 The luminous blue variables: Astrophysical geysers. *Publications of the Astronomical Society of the Pacific* **106**, 1025

Kennicutt, R. C., Jr. 1998 Star Formation in Galaxies Along the Hubble Sequence. *Annual Review of Astronomy and Astrophysics* **36**, 189

Kim, S. S., Figer, D. F., Lee, H. M., & Morris, M. 2000 N-Body Simulations of Compact Young Clusters near the Galactic Center. *Astrophysical Journal* **545**, 301

Kim, S. S., Figer, D. F., & Morris, M. 2004 Dynamical Friction on Galactic Center Star Clusters with an Intermediate-Mass Black Hole. *Astrophysical Journal Letters* **607**, L123
Kim, S. S., Figer, D. F., Kudritzki, R. P., & Najarro, F. N. 2006 Keck/LGS Observations of the Arches Cluster. *Astrophysical Journal* submitted

Kim, S. S., & Morris, M. 2003 Dynamical Friction on Star Clusters near the Galactic Center. *Astrophysical Journal* 597, 312

Koen, C. 2006 On the upper limit on stellar masses in the Large Magellanic Cloud cluster R136. *Monthly Notices of the Royal Astronomical Society* 365, 590

Krabbe, A., et al. 1995 The Nuclear Cluster of the Milky Way: Star Formation and Velocity Dispersion in the Central 0.5 parsec. *Astrophysical Journal Letters* 447, L95

Krabbe, A., Genzel, R., Drapatz, S., & Rotaciuc, V. 1991 A cluster of He I emission-line stars in the Galactic center. *Astrophysical Journal Letters* 382, L19

Lacy, J. H., Achtermann, J. M., & Serabyn, E. 1991 Galactic center gasdynamics - A one-armed spiral in a Keplerian disk. *Astrophysical Journal Letters* 380, L71

Lacy, J. H., Townes, C. H., Geballe, T. R., & Hollenbach, D. J. 1980 Observations of the motion and distribution of the ionized gas in the central parsec of the Galaxy. II. *Astrophysical Journal* 241, 132

Lacy, J. H., Townes, C. H., & Hollenbach, D. J. 1982 The nature of the central parsec of the Galaxy. *Astrophysical Journal* 262, 120

Lang, C. C., Figer, D. F., Goss, W. M., & Morris, M. 1999 Radio Detections of Stellar Winds from the Pistol star and Other Stars in the Galactic Center Quintuplet Cluster. *Astronomical Journal* 118, 2327

Lang, C. C., Goss, W. M., & Rodríguez, L. F. 2001 Very Large Array Detection of the Ionized Stellar Winds Arising from Massive Stars in the Galactic Center Arches Cluster. *Astrophysical Journal Letters* 551, L143

Lang, C. C., Goss, W. M., & Wood, D. O. S. 1997 VLA H92 alpha and H115 beta Recombination Line Observations of the Galactic Center H II Regions: The Sickle (G0.18-0.04) and the Pistol (G0.15-0.05). *Astrophysical Journal* 474, 275

Lang, C. C., Johnson, K. E., Goss, W. M., & Rodríguez, L. F. 2005 Stellar Winds and Embedded Star Formation in the Galactic Center Quintuplet and Arches Clusters: Multi-frequency Radio Observations. *Astronomical Journal* 130, 2185

Law, C., & Yusef-Zadeh, F. 2004 X-Ray Observations of Stellar Clusters Near the Galactic Center. *Astrophysical Journal* 611, 858

Lebofsky, M. J., & Rieke, G. H. 1987 The Stellar Population. AIP Conf. Proc. 155: The Galactic Center 155, 79

Lebofsky, M. J., Rieke, G. H., & Tokunaga, A. T. 1982 M supergiants and star formation at the galactic center. *Astrophysical Journal* 263, 736

Levin, Y. 2006 Starbursts near supermassive black holes: young stars in the Galactic Center, and gravitational waves in LISA band. ArXiv Astrophysics e-prints [arXiv:astro-ph/0603583]

Levin, Y., & Beloborodov, A. M. 2003 Stellar Disk in the Galactic Center: A Remnant of a Dense Accretion Disk? *Astrophysical Journal Letters* 590, L33

Levin, Y., Wu, A., & Thommes, E. 2005 Intermediate-Mass Black Hole(s) and Stellar Orbits in the Galactic Center. *Astrophysical Journal* 635, 341

Libonate, S., Pipher, J. L., Forrest, W. J., & Ashby, M. L. N. 1995 Near-infrared spectra of compact stellar wind sources at the Galactic center. *Astrophysical Journal* 439, 202

Lindqvist, M., Habing, H., J., & Winnberg, A. 1992 OH/IR stars close to the Galactic Centre. II - Their spatial and kinematic properties and the mass distribution within 5-100 pc from the galactic centre. *Astronomy & Astrophysics* 259, 118

Liu, S.-Y., & Snyder, L. E. 1999 Subarcsecond Resolution Observations of Sagittarius B2 at 85 GHZ. *Astrophysical Journal* 523, 683

Lynnden-Bell, D., & Rees, M. J. 1971 On quasars, dust and the galactic centre. *Monthly Notices of the Royal Astronomical Society* 152, 461

Maeda, Y., et al. 2002 A Chandra Study of Sagittarius A East: A Supernova Remnant Regulating the Activity of Our Galactic Center?. *Astrophysical Journal* 570, 671

Mason, B. D., Gies, D. R., Hartkopf, W. I., Bagnuolo, W. G., Jr., ten Brummelaar, T., & McAlister, H. A. 1998 ICCD speckle observations of binary stars. XIX - an astrometric/spectroscopic survey of O stars. *Astronomical Journal* 115, 821

Massey, P., & Hunter, D. A. 1998 Star Formation in R136: A Cluster of O3 Stars Revealed by Hubble Space Telescope Spectroscopy. *Astrophysical Journal* 493, 180
D. F. Figer et al.: Massive Star Formation in the Galactic Center

McGinn, M. T., Sellgren, K., Becklin, E. E., & Hall, D. N. B. 1989 Stellar kinematics in the Galactic center. *Astrophysical Journal* **338**, 824

McGrath, E. J., Goss, W. M., & De Pree, C. G. 2004 H₂O Masers in W49 North and Sagittarius B2. *Astrophysical Journal Supplements* **155**, 577

McMillan, S. L. W., & Portegies Zwart, S. F. 2003 The Fate of Star Clusters near the Galactic Center. I. Analytic Considerations. *Astrophysical Journal* **596**, 314

Mercer, E. P., et al. 2005 New Star Clusters Discovered in the GLIMPSE Survey. *Astrophysical Journal* **635**, 560

Milosavljević, M., & Loeb, A. 2004 The Link between Warm Molecular Disks in Maser Nuclei and Star Formation near the Black Hole at the Galactic Center. *Astrophysical Journal Letters* **604**, L45

Moffat, A. F. J., et al. 2002 Galactic Starburst NGC 3603 from X-Rays to Radio. *Astrophysical Journal* **573**, 191

Moneti, A., Glass, I. S., & Moorwood, A. F. M. 1994 Spectroscopy and Further Imaging of IRAS Sources Near the Galactic Centre. *Monthly Notices of the Royal Astronomical Society* **268**, 194

Moneti, A., Stolovy, S., Blommaert, J. A. D. L., Figer, D. F., & Najarro, F. 2001 Mid-infrared imaging and spectroscopy of the enigmatic cocoon stars in the Quintuplet Cluster. *Astronomy & Astrophysics* **366**, 106

Monnier, J. D., Tuthill, P. G., & Danchi, W. C. 1999 Pinwheel Nebula around WR 98A. *Astrophysical Journal Letters* **525**, L97

Morris, M. 1993 Massive star formation near the Galactic center and the fate of the stellar remnants. *Astrophysical Journal* **408**, 496

Morris, M., Ghez, A. M., & Becklin, E. E. 1999 The galactic center black hole: clues for the evolution of black holes in galactic nuclei. *Advances in Space Research* **23**, 959

Morris, M., & Serabyn, E. 1996 The Galactic Center Environment. *Annual Review of Astronomy and Astrophysics* **34**, 645

Muno, M. P., Bower, G. C., Burgasser, A. J., Bagannoff, F. K., Morris, M. R., & Brandt, W. N. 2006 Isolated, Massive Supergiants near the Galactic Center. *Astrophysical Journal* **638**, 183

Nagata, T., Woodward, C. E., Shure, M., & Kobayashi, N. 1995 Object 17: Another cluster of emission-line stars near the galactic center. *Astronomical Journal* **109**, 1676

Nagata, T., Woodward, C. E., Shure, M., Pipher, J. L., & Okuda, H. 1990 AFGL 2004 - an infrared quintuplet near the Galactic center. *Astrophysical Journal* **351**, 83

Najarro, F. 1995 Quantitative Optical and Infrared Spectroscopy of Extreme Luminous Blue Supergiants. Ph.D. Thesis.

Najarro, F., Figer, D. F., Hillier, D. J., & Kudritzki, R. P. 2004 Metallicity in the Galactic Center: The Arches Cluster. *Astrophysical Journal Letters* **611**, L105

Najarro, F., Hillier, D. J., Kudritzki, R. P., Krabbe, A., Genzel, R., Lutz, D., Drapatz, S., & Geballe, T. R. 1994 The nature of the brightest galactic center HeI emission line star. *Astronomy & Astrophysics* **285**, 573

Najarro, F., Krabbe, A., Genzel, R., Lutz, D., Kudritzki, R. P., & Hillier, D. J. 1997 Quantitative spectroscopy of the HeI cluster in the Galactic center.. *Astronomy & Astrophysics* **325**, 700

Nayakshin, S., & Cuadra, J. 2005 A self-gravitating accretion disk in Sgr A* a few million years ago: Is Sgr A* a failed quasar?. *Astronomy & Astrophysics* **437**, 437

Narayanan, V. K., Gould, A., & Depoy, D. L. 1996 Luminosity Function of the Perigalactocentric Region. *Astrophysical Journal* **472**, 183

Nayakshin, S., & Sunyaev, R. 2005 The ‘missing’ young stellar objects in the central parsec of the Galaxy: evidence for star formation in a massive accretion disc and a top-heavy initial mass function. *Monthly Notices of the Royal Astronomical Society* **364**, L23

Negueruela, I., & Clark, J. S. 2005 Further Wolf-Rayet stars in the starburst cluster Westerlund 1. *Astronomy & Astrophysics* **436**, 541

Nelan, E. P., Walborn, N. R., Wallace, D. J., Moffat, A. F. J., Makidon, R. B., Gies, D. R., & Panagia, N. 2004 Resolving OB Systems in the Carina Nebula with the Hubble Space Telescope Fine Guidance Sensor. *Astronomical Journal* **128**, 323
Oey, M. S., & Clarke, C. J. 2005 Statistical Confirmation of a Stellar Upper Mass Limit. Astrophysical Journal Letters 620, L43

Okuda, H., et al. 1990 An infrared quintuplet near the Galactic center. Astrophysical Journal 351, 89

Paumard, T., et al. 2006. The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics, and Formation. Astrophysical Journal 643, 1011

Perets, H. B., Hopman, C., & Alexander, T. 2006 Massive perturber-driven interactions of stars with a massive black hole. ArXiv Astrophysics e-prints, arXiv:astro-ph/0606443

Phinney, E. S. 1989 Manifestations of a Massive Black Hole in the Galactic Center. IAU Symp. 136: The Center of the Galaxy 136, 543

Plofker, R. L., Lo, K. Y., & Crutcher, R. M. 1995 The magnetic fields in the galactic center: Detection of HI Zeeman splitting. Astrophysical Journal Letters 445, L113

Portegies Zwart, S. F., Makino, J., McMillan, S. L. W., & Hut, P. 2002 The Lives and Deaths of Star Clusters near the Galactic Center. Astrophysical Journal 565, 265

Portegies Zwart, S. F., McMillan, S. L. W., & Gerhard, O. 2003 The Origin of IRS 16: Dynamically Driven In-Spiral of a Dense Star Cluster to the Galactic Center? Astrophysical Journal 593, 352

Ramírez, S. V., Sellgren, K., Carr, J. S., Balachandran, S. C., Blum, R., Terndrup, D. M., & Steed, A. 2000 Stellar Iron Abundances at the Galactic Center. Astrophysical Journal 537, 205

Rieke, G. H., & Rieke, M. J. 1988 Stellar velocities and the mass distribution in the galactic center. Astrophysical Journal Letters 330, L33

Rieke, G. H., Telesco, C. M., & Hunter, D. A. 1978 The infrared emission of the Galactic center. Astrophysical Journal 220, 556

Rockefeller, G., Fryer, C. L., Mella, F., & Wang, Q. D. 2005 Diffuse X-Rays from the Arches and Quintuplet Clusters. Astrophysical Journal 623, 171

Salpeter, E. E. 1955 The Luminosity Function and Stellar Evolution. Astrophysical Journal 121, 161

Sato, F., Hasegawa, T., Whiteoak, J. B., & Miyawaki, R. 2000 Cloud Collision-induced Star Formation in Sagittarius B2. I. Large-Scale Kinematics. Astrophysical Journal 535, 857

Schödel, R., et al. 2002 A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature 419, 694

Schödel, R., Ott, T., Genzel, R., Eckart, A., Mouawad, N., & Alexander, T. 2003 Stellar Dynamics in the Central Arcsecond of Our Galaxy. Astrophysical Journal 596, 1015

Schödel, R., et al. 2006 Astronomy & Astrophysics, in preparation

Sellgren, K., Hall, D. N. B., Kleinmann, S. G., & Scoville, N. Z. 1987 Radial velocities of late-type stars in the galactic center. Astrophysical Journal 317, 881

Sellgren, K., McGinn, M. T., Becklin, E. E., & Hall, D. N. 1990 Velocity dispersion and the stellar population in the central 1.2 parsecs of the Galaxy. Astrophysical Journal 359, 112

Serabyn, E., & Lacy, J. H. 1985 Forbidden NE II observations of the galactic center - Evidence for a massive black hole. Astrophysical Journal 293, 445

Serabyn, E., & Morris, M. 1996 Sustained star formation in the central stellar cluster of the Milky Way. Nature 382, 602

Serabyn, E., Shu, D., & Figer, D. F. 1998 An extraordinary cluster of massive stars near the centre of the Milky Way. Nature 394, 448

Shields, J. C., & Ferland, G. J. 1994 Nebular properties and the ionizing radiation field in the galactic center. Astrophysical Journal 430, 236

Sjoouwerma, L. O., Habing, H. J., Lindqvist, M., van Langevelde, H. J., & Winnberg, A. 1999 OH/IR Stars as Signposts for Ancient Starburst Activity in the Galactic Center. ASP Conf. Ser. 186: The Central Parsecs of the Galaxy 186, 379

Skinner, S. I., Simmons, A. E., Zhekov, S. A., Teodoro, M., Damineli, A., & Palla, F. 2006 A Rich Population of X-Ray-emitting Wolf-Rayet Stars in the Galactic Starburst Cluster Westerlund 1. Astrophysical Journal Letters 639, L35

Smith, N. 2006 Eruptive Mass Loss in Very Massive Stars and Population III Stars. ArXiv Astrophysics e-prints, arXiv:astro-ph/0607457
D. F. Figer et al.: Massive Star Formation in the Galactic Center

Stark, A. A., Bally, J., Wilson, R. W., & Pound, M. W. 1989 Molecular Line Observations of the Galactic Center Region. IAU Symp. 136: The Center of the Galaxy 136, 129

Stolte, A. 2003, PhD Thesis, University of Heidelberg

Stolte, A., Brandner, W., Grebel, E. K., Figer, D. F., Eisenhauer, F., Lenzen, R., & Harayama, Y. 2003 NAOS-CONICA performance in a crowded field - the Arches cluster. The Messenger 111, 9

Stolte, A., Brandner, W., Grebel, E. K., Lenzen, R., & Lagrange, A.-M. 2005 The Arches Cluster: Evidence for a Truncated Mass Function? Astrophysical Journal Letters 628, L113

Stolte, A., Grebel, E. K., Brandner, W., & Figer, D. F. 2002 The mass function of the Arches cluster from Gemini adaptive optics data, Astronomy & Astrophysics 394, 459

Subr, L. & Karas 2005 On highly eccentric stellar trajectories interacting with a self-gravitating disc in Sgr A*. Astronomy & Astrophysics 433, 405

Takagi, S.-i., Murakami, H., & Koyama, K. 2002 X-Ray Sources and Star Formation Activity in the Sagittarius B2 Cloud Observed with Chandra. Astrophysical Journal 573, 275

Tamblyn, P., Rieke, G. H., Hanson, M. M., Close, L. M., McCarthy, D. W., Jr., & Rieke, M. J. 1996 The Peculiar Population of Hot Stars at the Galactic Center. Astrophysical Journal 456, 206

Tanner, A., et al. 2006 High Spectral Resolution Observations of the Massive Stars in the Galactic Center. Astrophysical Journal 641, 891

Timmermann, R., Genzel, R., Poglitsch, A., Lutz, D., Madden, S. C., Nikola, T., Geis, N., & Townes, C. H. 1996 Far-Infrared Observations of the Radio Arc (Thermal Arches) in the Galactic Center. Astrophysical Journal 466, 242

Tuthill, P. G., Monnier, J. D., & Danchi, W. C. 1999 A dusty pinwheel nebula around the massive star WR 104. Nature 398, 487

Tuthill, P., Monnier, J., Tanner, A., Figer, D., & Ghez, A. 2006 “Pinwheels” discovered in the Quintuplet cluster. Science 313, 935.

Uchida, K. I., & Guesten, R. 1995 The large-scale magnetic field in the Galactic Center.., Astronomy & Astrophysics 298, 473

van der Hucht, K. A. 2001 The VIIth catalogue of galactic Wolf-Rayet stars. New Astronomy Review 45, 135

Walborn, N. R., Maiz-Apellániz, J., & Barbá, R. H. 2002 Further Insights into the Structure of 30 Doradus from the Hubble Space Telescope Instruments. Astronomical Journal 124, 1601

Wang, Q. D., Dong, H., & Lang, C. 2006 The Interplay between Star Formation and the Nuclear Environment of our Galaxy: Deep X-ray Observations of the Galactic Center Arches and Quintuplet Clusters. ArXiv Astrophysics e-prints [arXiv:astro-ph/0606292]

Weidner, C., & Kroupa, P. 2004 Evidence for a fundamental stellar upper mass limit from clustered star formation. Monthly Notices of the Royal Astronomical Society 348, 187

Weidner, C., & Kroupa, P. 2006 The maximum stellar mass, star-cluster formation and composite stellar populations. Monthly Notices of the Royal Astronomical Society 365, 1333

Williams, P. M., van der Hucht, K. A., & The, P. S. 1987 Variable dust emission from Wolf-Rayet stars. Quarterly Journal of the Royal Astronomical Society 28, 248

Yusef-Zadeh, F., Law, C., Wardle, M., Wang, Q. D., Fruscione, A., Lang, C. C., & Cotera, A. 2002 Detection of X-Ray Emission from the Arches Cluster near the Galactic Center. Astrophysical Journal 570, 665

Yusef-Zadeh, F., & Morris, M. 1987 Structural details of the Sagittarius A complex - Evidence for a large-scale poloidal magnetic field in the Galactic center region. Astrophysical Journal 320, 545

Yusef-Zadeh, F., Nord, M., Wardle, M., Law, C., Lang, C., & Lazio, T. J. W. 2003 Nonthermal Emission from the Arches Cluster (G0.121+0.017) and the Origin of gamma-ray Emission from 3EG J1746-2851. Astrophysical Journal Letters 590, L103

Zhao, J.-H., Desai, K., Goss, W. M., & Yusef-Zadeh, F. 1993 VLA Radio Recombination Line Observations of Ionized Gas in the -30 Kilometers per Second Molecular Cloud (G0.04+0.03) near the Galactic Center. I. The Discrete Radio Sources. Astrophysical Journal 418, 235