Production of strange particles in charged jets in Pb–Pb and p–Pb collisions measured with ALICE

Vít Kučera (for the ALICE Collaboration)a,b

a Nuclear Physics Institute of the CAS, v. v. i., Na Truhlářce 39/64, 180 86 PRAHA 8, Czech Republic
b IPHC, 23 rue du Loess - BP 28, F-67037 STRASBOURG CEDEX 2, France

Abstract

Measurements of spectra of identified particles produced in jets represent an important tool for understanding the interplay of various hadronisation mechanisms which contribute to particle production in the hot and dense medium created in ultra-relativistic heavy-ion collisions. In this contribution, we present the measurements of the p_T spectra of Λ baryons and K^0_S mesons produced in charged jets in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV and in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The results are obtained with the ALICE detector at the LHC, exploiting the excellent particle identification capabilities of this experiment. Baryon-to-meson ratios of the spectra of strange particles associated with jets are studied in central collisions and are compared with the inclusive ratios.

Keywords:
ALICE, heavy ions, jets, fragmentation, strange particles, baryon-to-meson ratio, baryon anomaly

1. Introduction

An enhancement of the baryon-to-meson ratio has been observed for inclusive production of light-flavour particles at intermediate transverse momenta ($2 \text{ GeV}/c < p_T < 6 \text{ GeV}/c$) in heavy-ion collisions when compared to the ratio measured in proton–proton (pp) collisions. The effect was first observed at the Relativistic Heavy Ion Collider [1][2][3] and later at the Large Hadron Collider (LHC) as well [4].

One of considered explanations is modification of jet fragmentation in medium. Jet fragmentation denotes the process of hadron production from a parton with large momentum produced in a hard scattering. The energetic parton undergoes parton showering followed by hadronisation which gives origin to a collimated spray of hadrons called a jet. The process might be sensitive to interactions of fragmenting partons with the strongly-interacting matter created in ultra-relativistic heavy-ion collisions. Such interaction might modify properties of the resulting jet, including p_T spectra of the hadrons which constitute the jet.

Some attempts to explain the enhancement of the baryon-to-meson ratio propose contribution from various scenarios based on hadronisation by parton recombination which assumes that in a dense medium, where phase space is filled with partons, hadrons are produced by the clustering of multiple partons together [6][7][8][9][10]. That would result in a harder p_T spectrum of baryons with respect to a spectrum of mesons.

The goal of the presented analysis is to study the origin of the enhancement by separating hadrons pro-
duced in association with hard processes and hadrons produced in the bulk. The results of this analysis aim to disentangle contributions of processes in bulk and potential contribution of modified jet fragmentation in medium.

2. Analysis

The analysis is performed on data recorded with the ALICE detector at the LHC during the runs with Pb–Pb and p–Pb collisions at the centre-of-mass energies of √sNN = 2.76 TeV and 5.02 TeV, respectively. Tracking of charged particles in the central barrel is provided by the Inner Tracking System and the Time Projection Chamber, both placed in a magnetic field of 0.5 T. The centrality of collisions is estimated from the multiplicity of charged particles measured in the V0 detectors at forward pseudorapidities [11].

The analysis of neutral strange particles in charged jets consists of two main parts: reconstruction of charged jets and reconstruction of neutral strange particles.

The jet reconstruction is performed using primary charged particles with pT greater than 150 MeV/c within the pseudorapidity acceptance of |ηtrack| < 0.9. Charged particles are clustered into jets by the anti-kt jet algorithm (implemented in the FastJet package [12]) using resolution parameter R = 0.2 for Pb–Pb collisions and R = 0.2, 0.3, 0.4 for p–Pb collisions.

The jet algorithm cannot distinguish jet fragments from particles produced in the underlying event. The mean density of background contributing to the reconstructed jet momenta is estimated in each event from clusters reconstructed with the kt algorithm [13]. The corresponding momentum is then subtracted for each reconstructed jet. In order to increase the probability of selecting a hard scattering in Pb–Pb collisions, thresholds are imposed on jet pT (p_{T, ch}, p_{T} of the leading constituent of the jet (p_{T} > 5 GeV/c) and jet area (A_{jet,ch} > 0.6πR^2). Spectra of strange particles in charged jets are studied for two thresholds of jet momentum: p_{T,ch} > 10 GeV/c and p_{T,ch} > 20 GeV/c.

Neutral strange particles (V^0) are reconstructed using the topology of their most probable weak decays into charged particles, namely K_0^0 → π^+ + π^−, Λ → p + π^− and Λ → p + π^+. Combinatorial background from fake V^0 candidates is strongly suppressed by cuts applied on parameters of the decay and the signal yields are extracted from the resulting invariant-mass distribution. Spectra of Λ baryons are analysed separately from those of Λ baryons and combined into the baryon-to-meson ratio as (Λ + Λ)/2K_S.

If a V^0 candidate fulfills the selection criteria, the angular distance between its momentum vector and the axis of each selected jet in the event is calculated. A jet is considered for matching with V^0 candidates only if its cone is fully contained within the acceptance of V^0 particles: |η_{jet,ch}| < |p_{T,V}^0|^{max} − R. The V^0 candidate is considered to be inside the jet cone if its distance to the jet axis is less than the resolution parameter of the jet finder:

\[\sqrt{(δφ_{V^0} - δψ_{jet,ch})^2 + (δη_{V^0} - δη_{jet,ch})^2} < R. \] (1)

V^0 particles collected within jet cones originate not only from jet fragmentation but also from the underlying event. Spectra of particles coming from the underlying event are estimated by several methods where V^0 candidates are associated with regions where only contribution from the underlying event is expected.

An efficiency correction is applied to raw V^0 spectra using the inclusive simulated particles. Then, spectra of particles in the underlying event are subtracted from spectra of particles in jet cones. The resulting spectra still contain a contamination from decays of jet constituents. The corresponding fraction is subtracted by applying a correction for feed-down from decays of Ξ^0 and Σ^- baryons (Σ^0, Σ^-) into Λ baryons. Since the spectra of Ξ^- baryons in jets have not been measured yet, the feed-down fraction of inclusive Λ baryons is used as the default option. To estimate the related systematic uncertainty, we use spectra of hyperons in jets in simulated pp collisions at √s = 2.76 TeV or 5.02 TeV generated by PYTHIA 8, tune 4C [14, 15].

3. Results

Figure 1 shows the ratio of the pT spectra of Λ and Λ baryons to that of K_0^0 mesons measured in charged jets in high-multiplicity p–Pb collisions for two p_{T,ch} thresholds. The ratio is compared with the measured inclusive ratio and with ratios obtained from simulations performed with PYTHIA 8. The measured baryon-to-meson ratio in jets in p–Pb collisions is below the inclusive ratio i) measured in p–Pb collisions, ii) measured in pp collisions [15] (not shown) and iii) obtained with PYTHIA simulations. Moreover, the measured ratio exhibits a surprising similarity with ratios of particles in jets simulated in PYTHIA and does not evince any significant dependence on R or p_{T,ch}. The results indicate no visible modification of strangeness.
production in charged jets in p–Pb compared to pp and the enhancement of the baryon-to-meson ratio thus seems to be due to effects of the underlying event.

Figure 2 shows the p_T dependence of the $Λ/K^0_S$ ratio measured in charged jets in central Pb–Pb collisions, compared with the inclusive ratio measured in centrality range 0–5%. The ratio measured for particles in jets $p_T^{\text{jet,ch}}$ threshold. The ratio in jets and the inclusive ratio meet at higher p_T where production by jet fragmentation starts to be the dominant hadronisation process.

4. Summary

We described techniques used in the analysis of the $Λ/K^0_S$ ratio in charged jets. We presented the first measurement of the spectra of $Λ$ baryons and K^0_S mesons in jets in Pb–Pb and p–Pb collisions at the LHC, performed by ALICE.

In both collision systems, the production of strange particles associated with jet fragmentation differs significantly from inclusive production and does not seem to depend on the minimum jet momentum. The measured $Λ/K^0_S$ ratios indicate that the enhancement does not originate from modified jet fragmentation for the given sample of jets.

Acknowledgement

The work has been supported by the grants LG13031 and 7AMB14FR066 of the Ministry of Education of the Czech Republic.

References

[1] B. I. Abelev, et al., Identified Baryon and Meson Distributions at Large Transverse Momenta from Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. Lett. 97 (2006) 152301. arXiv:nucl-ex/0606003 doi:10.1103/PhysRevLett.97.152301

[2] M. Lamont, Identified particles at large transverse momentum in the STAR experiment from Au+Au collisions @ $\sqrt{s_{NN}} = 200$ GeV, J. Phys. G 30 (2004) S963–S968. arXiv:nucl-ex/0403059 doi:10.1088/0954-3899/30/8/039

[3] J. Adams, et al., Measurements of identified particles at intermediate transverse momentum in the STAR experiment from Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV arXiv:nucl-ex/0601042

[4] B. Abelev, et al., $Λ$ and K^0 Production in Pb–Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. Lett. 111 (2013) 222301. arXiv:1307.5530 doi:10.1103/PhysRevLett.111.222301

[5] B. Abelev, et al., Multiplicity dependence of pion, kaon, proton and lambda production in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Lett. B 728 (2014) 25–38. arXiv:1307.6796 doi:10.1016/j.physletb.2013.11.020

[6] C. Shen, U. Heinz, H. Song, Radial and elliptic flow in Pb + Pb collisions at energies available at the CERN Large Hadron Collider from viscous hydrodynamics, Phys. Rev. C 84 (2011) 044903. arXiv:1105.3226 doi:10.1103/PhysRevC.84.044903

[7] R. J. Fries, V. Greco, P. Sorensen, Coalescence Models for Hadron Formation from Quark–Glueon Plasma, Ann. Rev. Nucl. Part. Sci. 58 (2008) 177–205. arXiv:0807.4939 doi:10.1146/annurev.nucl.58.110707.171134
[8] K. Werner, Lambda-to-Kaon Ratio Enhancement in Heavy Ion Collisions at Several TeV, Phys. Rev. Lett. 109 (2012) 102301. arXiv:1204.1394 doi:10.1103/PhysRevLett.109.102301

[9] R. C. Hwa, C. B. Yang, Recombination of shower partons at high p_T in heavy-ion collisions, Phys. Rev. C 70 (2004) 024905. arXiv:nucl-th/0401001 doi:10.1103/PhysRevC.70.024905

[10] R. C. Hwa, L. Zhu, Spectra of identified hadrons in Pb–Pb collisions at 2.76 TeV at the CERN Large Hadron Collider, Phys. Rev. C 84 (2011) 064914. arXiv:1109.6390 doi:10.1103/PhysRevC.84.064914

[11] F. Carminati, et al., ALICE: Physics Performance Report, Volume I, J. Phys. G 30 (2004) 1517–1763. doi:10.1088/0954-3899/30/11/001

[12] M. Cacciari, G. P. Salam, G. Soyez, Fastjet user manual, Eur. Phys. J. C 72 (2012) 1896. arXiv:1111.6097 doi:10.1140/epjc/s10052-012-1896-2

[13] B. Abelev, et al., Measurement of Event Background Fluctuations for Charged Particle Jet Reconstruction in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, JHEP 1203 (2012) 053. arXiv:1201.2423 doi:10.1007/JHEP03(2012)053

[14] T. Sjostrand, S. Mrenna, P. Z. Skands, PYTHIA 6.4 physics and manual, JHEP 0605 (2006) 026. arXiv:hep-ph/0603175 doi:10.1088/1126-6708/2006/05/026

[15] T. Sjostrand, S. Mrenna, P. Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852–867. arXiv:0710.3820 doi:10.1016/j.cpc.2008.01.036

[16] K. Aamodt, et al., Strange particle production in proton–proton collisions at $\sqrt{s} = 0.9$ TeV with ALICE at the LHC, Eur. Phys. J. C71 (2011) 1594. arXiv:1012.3257 doi:10.1140/epjc/s10052-011-1594-5