An anisotropic regularity condition for the 3D incompressible Navier-Stokes equations for the entire exponent range

I. Kukavica, W. S. Ożański

Abstract

We show that a suitable weak solution to the incompressible Navier-Stokes equations on $\mathbb{R}^3 \times (-1,1)$ is regular on $\mathbb{R}^3 \times (0,1]$ if $\partial_3 u$ belongs to $M^{2p/(2p-3),\alpha}((-1,0);L^p(\mathbb{R}^3))$ for any $\alpha > 1$ and $p \in (3/2,\infty)$, which is a logarithmic-type variation of a Morrey space in time. For each $\alpha > 1$ this space is, up to a logarithm, critical with respect to the scaling of the equations, and contains all spaces $L^q((-1,0);L^p(\mathbb{R}^3))$ that are subcritical, that is for which $2/q + 3/p < 2$.

1 Introduction

We address conditional regularity of suitable Leray-Hopf weak solutions to the incompressible Navier-Stokes equations (NSE),

$$u_t - \Delta u + u \cdot \nabla u + \nabla \pi = 0,$$

$$\text{div} \ u = 0,$$

in $\mathbb{R}^3 \times (0,T)$. Our main result is the following.

Theorem 1. Suppose that (u, π) is a suitable Leray-Hopf weak solution to the Navier-Stokes equations on $\mathbb{R}^3 \times (-1,1)$ such that for some $\alpha > 1$ and $p \in (3/2,\infty)$ we have

$$\|\partial_3 u\|_{L^{2p/(2p-3),\alpha}((-1,0);L^p(\mathbb{R}^3))} \leq C_{p,\alpha} \left(\frac{-1}{\log |I|} \right)^{\alpha}$$

for every $I \subset (-1,0)$ with $|I| < \frac{1}{2}$. Then u is regular on $\mathbb{R}^3 \times (-1,0]$.

Here we write $L^p \equiv L^p(\mathbb{R}^3)$, for brevity.

In order to put this result in a context, we note that the study of conditional regularity of the NSE goes back to Serrin, Ladyzhenskaya, and Prodi ([S, L, P]), who proved that if $u \in L^q_t L^p_x$ holds with $2/q + 3/p \leq 1$, where $p \in (3,\infty)$ then the solution is regular. On the other hand, Beirão da Veiga showed in [B] that the regularity holds if $\nabla u \in L^q_t L^p_x$ with $2/q + 3/p \leq 2$ and $p \in (3/2,\infty)$.

In [NP1], Neustupa and Penel proved that boundedness of only one component of the velocity (say u_3) implies regularity, with the approach based on the evolution equation for ω_3 (cf. also [NP2]). Afterwards, there have been many results ([CC, H, NNP, P, PP1, SK], which approached the Serrin’s scale invariant condition in terms of one velocity component, until a recent breakthrough paper [CW], which achieved the range of exponents with strict inequality $2/q + 3/p < 1$. A

I. Kukavica: Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA, email: kukavica@usc.edu

W. S. Ożański: Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA, email: ozanski@usc.edu

I. Kukavica was supported in part by the NSF grant DMS-1907992. W. S. Ożański was supported in part by the Simons Foundation.
subsequent paper [WWZ] has improved it up to the equality, but with the Lorenz spaces replacing Lebesgue spaces for integrability in time.

As for regularity conditions in terms of $\partial_3 u$, Penel and Pokorný proved in [PPT] regularity under the condition that $\partial_3 u$ belongs to $L^q_t L^p_x$ where $2/q + 3/p \leq 3/2$ and $2 \leq p \leq \infty$. The result in [KZ] then provided a scale invariant regularity criterion $2/q + 3/p \leq 2$, with a restricted exponent range $9/4 \leq p \leq 3$. The method in [KZ] was based on testing the equations for (u_1, u_2) with $-\Delta_2 u_{1,2}$, and an identity for $\sum_{i,j=1}^{2} \int u_i \partial_i u_j$ in which every term contains $\partial_3 u$. The partial regularity methods [CKN, V, O, W1] allowed localization of this condition in [KRZ]. There have been several improvements on the criteria since then; cf. [BG, CZ, PP1, Sk1, Sk2] for a partial list of references. In particular, in [Sk2], Skaláč extended the range for $\partial_3 u$ to $3/2 < p \leq 3$ using sharp anisotropic inequalities, and, very recently, this range has been extended to $3/2 < p \leq 6$ in [CFZ].

In this context Theorem 1 provides the first conditional regularity criterion in terms of $\partial_3 u$ covering the full range of Lebesgue exponents $3/2 < p < \infty$ as well as all Lebesgue spaces $L^q_t L^p_x$ with sharp inequality $2/q + 2/p < 2$. To be more precise, letting (2) be the definition of a Morrey-type space $M^{2p, \alpha}_{2p-3}((-1,0); L^p)$, we immediately see that such Morrey space contains $L^q((-1,0); L^p)$ for every $q > \frac{2p}{2p-3}$ (that is such that $2/q + 3/p < 2$), since Hölder’s inequality implies

$$\|\partial_3 u\|_{L^q_t L^p_x(I; L^p)} \leq \left\| \partial_3 u \right\|_{L^q(I; L^p; L^p)} \leq C_{p,q,\alpha} \left(-\frac{1}{\log |I|} \right)^\alpha$$

for any $I \subset (-1,0)$, $|I| \leq \frac{1}{2}$. Furthermore, $M^{2p, \alpha}_{2p-3}((-1,0); L^p)$ is, up to a logarithm, critical with respect to the scaling of the equations; namely letting $u_\lambda := \lambda u(\lambda x, \lambda^2 t)$ we have

$$\|\partial_3 u_\lambda\|_{L^q_t L^p_x(I; L^p)} = \|\partial_3 u\|_{L^q_{2p-3}^{2p-3} (\lambda I; L^p)} \leq C_{p,\alpha} \left(-\frac{1}{\log |I|} \right)^\alpha \leq C_{p,\alpha} \left(-\frac{1}{\log |I|} \right)^\alpha \lambda^\alpha (\left(-\frac{1}{\log \lambda} \right)^\alpha)$$

as $\lambda \to 0^+$, for every $I \subset (-1,0)$ such that $|I| \leq \frac{1}{2}$.

The question whether the Morrey space $M^{2p, \alpha}_{2p-3}((-1,0); L^p)$ can be replaced by a critical Lebesgue-type space, $L^{2p, \alpha}_{2p-3}((-1,0); L^p)$, without any restriction on the range of p as in Theorem 1 remains an open problem.

Our approach in proving Theorem 1 is inspired by the treatment of a related regularity condition in terms of one component of u that was recently proved by Wang et al in [WWZ], which in turn drew from a recent result of Chae and Wolf [CW], which introduced a new approach based on partial regularity and testing the local energy equality with a one-dimensional backward heat kernel.

2 Proof of Theorem 1

Before proceeding to the proof of our main result, we recall that (u, π) with

$$E := \|u\|_{L^\infty(-1,0); L^2}^2 + \|\nabla u\|_{L^2(\mathbb{R}^2 \times (-1,1))}^2 < \infty \quad (3)$$

is a suitable weak solution in $\mathbb{R}^3 \times (-1,1)$ if it satisfies the equation (1) in the distributional sense, if $\pi = (-\Delta)^{-1}(\partial_i u_j \partial_j u_i)$, the strong energy inequality

$$\int |u(t)|^2 + 2 \int \int |\nabla u|^2 \leq \int |u(s)|^2$$

holds for almost all $s \in (-1,1)$ and all $t \in (s,1)$, as well as the local energy inequality

$$\int |u|^2 \phi(t) + 2 \int |\nabla u|^2 \phi \leq \int |u|^2 (\partial_t \phi + \Delta \phi) + (\|u\|^2 + 2\pi)(u \cdot \nabla)$$
holds for all \(t \in (-1, 1) \) and \(\phi \in C_0^\infty(\mathbb{R}^3 \times (-1, 1); [0, 1]) \). We note that, due to the global integrability assumptions on \(u \), the local energy inequality can be extended to include the test functions \(\phi \in C^\infty(\mathbb{R}^3 \times (-1, 1); [0, 1]) \) that have compact support only in time and that have bounded derivatives. For \(n \in \mathbb{N}_0 \) we set \(r_n := 2^{-n} \) and
\[
U_n := \mathbb{R}^2 \times (-r_n, r_n), \quad Q_n := U_n \times (-r_n^2, 0).
\]
We also set
\[
E_n \equiv E(r_n) := \sup_{t \in (-r_n^2, 0)} \int_{U_n} |u(t)|^2 dx + \int_0^0 \int_{-r_n^2} |\nabla u|^2 dx ds
\]
and
\[
\Phi_n(x_3, t) := (4\pi(r_n^2 - t))^{-\frac{1}{2}} e^{-\frac{x_3^2}{4(r_n^2 - t)}}, \quad x_3 \in \mathbb{R}, \ t < 0.
\]
Note that
\[
r_k^{-1} \lesssim \Phi_n \lesssim r_k^{-1} \quad \text{on } Q_k, \quad k = 0, 1, \ldots, n.
\] (4)
Fix \(p \in (3/2, \infty) \) and set
\[
B_k := \||\partial_3 u||_{L_t^{\frac{2p}{p-1}} L^p(Q_k)}.
\]
Note that
\[
\sum_{k \geq 0} B_k \lesssim_{p, a} \sum_{k \geq 0} \left(\frac{-1}{\log |r_k^2|} \right)^\alpha \lesssim_\alpha \sum_{k \geq 0} k^{-\alpha} \lesssim_\alpha 1,
\] (5)
by the assumption \([2]\). We also set \(B := \||\partial_3 u||_{L_t^{\frac{2p}{p-1}}((-1,0); L^p)} \).

In order to prove the main result, Theorem 1, we need the following localization property.

Proposition 2. Let \((u, \pi) \) be a suitable weak solution to the NSE on \(\mathbb{R}^3 \times (-1, 1) \) satisfying \([2]\). Then
\[
\frac{1}{r_n} E_n \lesssim E(1 + B) + \sum_{j,k=0}^{n-1} (r_k^{-1} E_k + \delta_j r_j^{-1} E_j + \delta_j r_j B_k)
\]
for all \(n \geq 0 \), where
\[
a_{jk} := \chi_{k \geq j} r_k^{-\frac{2}{3}} r_j^{-\frac{2}{3}} B_j + \delta_{jk} r_k^{-\frac{2}{3}} B + \delta_{jk} B_k
\]
for some \(a > 1 \).

Here \(\chi_{k \geq j} = 1 \) for \(k \geq j \) and 0 otherwise, and \(\delta_{kj} \) denotes the Kronecker delta.

Proof of Proposition 2. Let \(\eta(x_3, t) \) be such that \(\text{supp } \eta \subset (\frac{1}{3}, \frac{1}{3}) \times (-1, 0) \) and \(\eta = 1 \) on \((-\frac{1}{3}, \frac{1}{3}) \times (-\frac{1}{16}, 0) \). The local energy inequality applied with \(\Phi_n \eta \), where \(n \in \mathbb{N} \) is fixed, gives
\[
\int_{U_0} |u(t)|^2 \Phi_n(t) \eta(t) dx + 2 \int_{-1}^t \int_{U_0} |\nabla u|^2 \Phi_n \eta
\leq \int_{-1}^t \int_{U_0} |u|^2 (\partial_t + \Delta)(\Phi_n \eta) + \int_{-1}^t \int_{U_0} (|u|^2 + 2\pi) u \cdot \nabla(\Phi_n \eta)
\] (6)
for almost every \(t \in (-1, 0) \). We show below that the right-hand side can be bounded from above by a constant multiple of \(E_0 + \sum_{k=0}^n r_k^{-1} E_k(r_k^2 B_0 + B_k) \), uniformly in \(t \). This and the bound \(\Phi_n \eta \lesssim r_n^{-1} \) on \(Q_n \) then give the claim.
For the first term on the right-hand side of (5), we have
\[\int_{Q_0} |u|^2 |(\partial_k + \Delta)(\Phi_n \eta)| = \int_{Q_0} |u|^2 |2\partial_3 \Phi_n \partial_3 \eta + \Phi_n \partial_3 \eta| \lesssim \int_{Q_0} |u|^2 \lesssim E_0, \]
where we used that \(\Phi_n \) satisfies the one-dimensional heat equation in \(Q_0 \) in the first step, and the bounds \(|\nabla \Phi_n|, |\Phi_n| \lesssim 1 \) on \(\text{supp} \, \partial_3 \eta \cap Q_0 \) in the second step.

For the velocity component of the second term on the right-hand side of (6), we have
\[-\sum_{k=0}^{n-1} \int_{Q_k \setminus Q_{k+1}} |\partial_3 u| |u|^2 \Phi_n \eta + \int_{Q_n} |\partial_3 u| |u|^2 \Phi_n \eta \lesssim \sum_{k=0}^{n-1} r_k^{-1} \int_{Q_k} |\partial_3 u| |u|^2 + r_n^{-1} \int_{Q_n} |\partial_3 u| |u|^2 \]
where we have estimated the last term, \(k = n \), using the term with \(k = n - 1 \), in the last step.

As for the term in (6) involving the pressure \(\pi = (-\Delta)^{-1}(\partial_3 u_3 \partial_3 u_i) \), for each \(k \in \mathbb{N}_0 \) we choose \(\chi_k(x_3, t) \in C^\infty([0, 1]) \) such that \(\chi_k = 1 \) on \((-r_k, r_k) \times (0, 1] \) and set
\[\phi_j := \begin{cases}
\chi_j - \chi_{j+1}, & j = 0, \ldots, n - 1, \\
\chi_n, & j = n.
\end{cases} \]

Then we may write
\[\frac{1}{2} \partial_3 \pi = (-\Delta)^{-1} \partial_i \partial_i (u_3 \partial_3 u_i) = (-\Delta)^{-1} \partial_i \partial_i (u_3 \partial_3 u_i \chi_0) + (-\Delta)^{-1} \partial_i \partial_i (u_3 \partial_3 u_i (1 - \chi_0)) \]
\[= \sum_{j=0}^{n} (-\Delta)^{-1} \partial_i \partial_i (u_3 \partial_3 u_i \phi_j) + (-\Delta)^{-1} \partial_i \partial_i (u_3 \partial_3 u_i (1 - \chi_0)) =: \sum_{j=0}^{n} p_j + q, \]
and thus the pressure term may be decomposed as
\[-\frac{1}{2} \int_{-1}^{t} \int_{U_{0}} \pi u \cdot \nabla (\Phi_n \eta) = \frac{1}{2} \int_{-1}^{t} \int_{U_{0}} \partial_3 \pi u_3 \Phi_n \eta + \frac{1}{2} \int_{-1}^{t} \int_{U_{0}} \pi \partial_3 u_3 \Phi_n \eta. \]

Using the notation in (11), we rewrite the first term as
\[\frac{1}{2} \int_{-1}^{t} \int_{U_{0}} \partial_3 \pi u_3 \Phi_n \eta = \sum_{j=0}^{n} \int_{-1}^{t} \int_{U_{0}} p_j u_3 \Phi_n \eta + \int_{-1}^{t} \int_{U_{0}} q u_3 \Phi_n \eta \]
\[= \sum_{k=0}^{n} \sum_{j=\max(0, k-3)}^{n} \int_{Q_k} p_j u_3 \Phi_n \phi_k \eta + \sum_{j=0}^{n} \sum_{k=j+4}^{n-4} \int_{Q_k} p_j u_3 \Phi_n \phi_k \eta + \int_{-1}^{t} \int_{U_{0}} q u_3 \Phi_n \eta \]
\[=: I_1 + I_2 + I_3. \]

For \(I_1 \), we note that \(\sum_{j=k-3}^{n} p_j = (-\Delta)^{-1} \partial_i \partial_i (u_3 \partial_3 u_i \chi_{k-3}) \) for \(k \geq 3 \), which gives
\[|I_1| \lesssim \sum_{k=0}^{n} r_k^{-1} \int_{Q_k} \left| \sum_{j=\max(0, k-3)}^{n} p_j u_3 \right| \lesssim \sum_{k=0}^{n} r_k^{-1} \left| \int_{Q_k} u \otimes \partial_3 u \right|_{L^4 L^{2p'}(Q_k)} \lesssim \sum_{k=0}^{n} r_k^{-1} \left| \int_{Q_k} u \right|_{L^4 L^{2p'}(Q_k)} \lesssim \sum_{k=0}^{n} r_k^{-1} \left| E_k B_k \right| \lesssim \sum_{k=0}^{n} r_k^{-1} \left| E_k B_k \right|. \]
as required. For I_2, we note that p_j is harmonic with respect to the spatial variables in Q_{j+2}, and thus using the anisotropic interior estimates for harmonic functions (cf. [CW, Lemma A.2]) we obtain
\[\|p_j\|_{L^m((\mathbb{R}^2 \times (-r_k, r_k)))} \lesssim r_k^{\frac{4}{p} - \frac{2}{q}} \|p_j\|_{L'(\mathbb{R}^2 \times (-r_{j+2}, r_{j+2}))} \tag{9} \]
for all $l \in [1, m]$. We fix any $a > \max\{2p/3, 4/3\}$ and then fix any $l \in (\max\{1, 2p/(p+2)\}, \min\{6p/(p+6), 6a/(3a+4)\})$, which is nonempty due to our choice of a, to obtain
\[|I_2| \lesssim \sum_{j=0}^{n-4} \sum_{k=j+4}^{n} r_k^{-1} \int_{Q_k} |p_j u| \]
\[\lesssim \sum_{j=0}^{n-4} \sum_{k=j+4}^{n} r_k^{-1} \|p_j\|_{L^p_{a/L} L_{2}^2(Q_k)} \|u\|_{L^p_{a/L} L_{2}^2(Q_k)} \]
\[\lesssim \sum_{j=0}^{n-4} \sum_{k=j+4}^{n} r_k^{-\frac{1}{2}} r_j^{-\frac{1}{2}} r_j^{1-\frac{2}{p}} \|u\|_{L_{2}^{2a/3p-2p} L_{2}^{2a} (Q_k)} \|\partial_3 u\|_{L_{2}^{2a/3p-2p} L_{2}^{2a} (Q_k)} \|u\|_{L_{\infty}^{2} L_{2}^{2} (Q_k)} r_k^{\frac{2}{a}} \]
where we used the harmonic estimate (9) (note that $l \leq 2$, as required by (3)) and the fact that $l < p$ in the third inequality. Note also that our choice of l gives that $lp/(p-1) \in (2, 6)$, which will allow us to estimate the term with the $L_x^{lp/(p-l)}$ norm using the energy E. We obtain
\[|I_2| \lesssim \sum_{j=0}^{n-4} \sum_{k=j+4}^{n} r_k^{-\frac{1}{2}} r_j^{-\frac{1}{2}} r_j^{1-\frac{2}{p}} \|u\|_{L_{2}^{2a/3p-2p} L_{2}^{2a} (Q_k)} \|\partial_3 u\|_{L_{2}^{2a/3p-2p} L_{2}^{2a} (Q_k)} \|u\|_{L_{\infty}^{2} L_{2}^{2} (Q_k)} r_k^{\frac{2}{a}} \]
\[\lesssim \sum_{j=0}^{n-4} \sum_{k=j+4}^{n} \left(r_j^{-1} E_j \right)^{\frac{1}{2}} \left(r_k^{-1} E_k \right)^{\frac{1}{2}} \|\partial_3 u\|_{L_{2}^{2a/3p-2p} L_{2}^{2a} (Q_k)} \|u\|_{L_{\infty}^{2} L_{2}^{2} (Q_k)} r_k^{\frac{2}{a}} r_j^{\frac{2}{a}} \]
\[\lesssim \sum_{j=0}^{n-4} \sum_{k=j+4}^{n} \left(r_j^{-1} E_j \right)^{\frac{1}{2}} \left(r_k^{-1} E_k \right)^{\frac{1}{2}} \|\partial_3 u\|_{L_{2}^{2a/3p-2p} L_{2}^{2a} (Q_k)} \|u\|_{L_{\infty}^{2} L_{2}^{2} (Q_k)} r_k^{\frac{2}{a}} r_j^{\frac{2}{a}} B_j, \]
as required, where we used Hölder’s inequality in time in the first inequality (hence the upper bound $l < 6a/(3a+4)$ in our choice of l) in order to be able to bound all norms of u by $E_j^{1/2}$ or $E_j^{1/2}$ in the second inequality (where we also moved r_k’s and r_j’s around), and we have estimated the case of $k = n$ in terms of the case $k = n - 1$ as well as used (2) in the last inequality.

The estimate on I_3 is analogous, but does not require summation in j. Indeed, recalling (7) we see that q is harmonic in $(\text{supp } \eta) \cap (U_0 \times (-1, l))$, and so we perform the same estimate as in the first four inequalities in the estimate on $|I_2|$ above, but with Q_j replaced by $\mathbb{R}^3 \times (-1, 0)$ and without the summation in j. We obtain
\[|I_3| \lesssim \|u\|_{L_{\frac{4p}{mp-4p+mp}((-1,0);L_{\frac{4p}{mp}})} \|\partial_3 u\|_{L_{\frac{2p}{mp-4p+mp}((-1,0);L_{p})}} \sum_{k=0}^{\frac{n}{2}} r_k^{-\frac{1}{2} + \frac{2}{a}} E_k^{\frac{1}{2}} \]
\[\lesssim E^{\frac{1}{2}} B \left(\sum_{k=0}^{n-1} r_k^{-1} E_k^{\frac{1}{2}} \right)^{\frac{1}{2}} \lesssim BE + B \sum_{k=0}^{n-1} r_k^{-1} E_k^{\frac{1}{2}} \]
as required.

It remains to estimate the second term in (8). For this we apply the splitting (7) to π (rather than to $\partial_3 \pi$) to obtain
\[\pi = \sum_{j=0}^{n} (-\Delta)^{-1} \partial_i \partial_i (u_i u_j \phi_j) + (-\Delta)^{-1} \partial_i \partial_i (u_i u_i (1 - \chi_0)) =: \sum_{j=0}^{n} \tilde{p}_j + \tilde{q}, \]
which allows us to estimate
\[
\int_{-1}^t \int_{U_0} \pi \partial_3 u_3 \Phi \eta
\lesssim \sum_{k=0}^n r_k^{-1} \int_{Q_k} |(-\Delta)^{-1} \partial_t \partial_m (u_i u_m \chi_{\max\{0,k-3\}})| |\partial_3 u|
\]
\[+ \sum_{j=0}^{n-4} \sum_{k=j+4}^n r_k^{-1} \int_{Q_k} |\tilde{p}_j \partial_3 u| + \sum_{k=0}^n r_k^{-1} \int_{Q_k} |\tilde{q} \partial_3 u|\]
\[\lesssim \sum_{k=0}^n r_k^{-1} \|u\|_{L^\frac{q}{2} Q_k}^2 B_k
\]
\[+ \sum_{j=0}^{n-4} \sum_{k=j+4}^n r_k^{-1} \|\tilde{p}_j\|_{L^\frac{2}{q'} Q_{k+2}} \|\partial_3 u\|_{L^2 Q_k} + \sum_{k=0}^n r_k^{-1} \|\tilde{q}\|_{L^\frac{2}{q'} Q_k} \|\partial_3 u\|_{L^2 Q_k},\]
where \(a \in (1,p').\) Note such choice of \(a\) implies that \(a < 2p/(2p - 3).\) Therefore, choosing any \(l \in (1,3a/(a + 2))\) we obtain
\[
\int_{-1}^t \int_{U_0} \pi \partial_3 u_3 \Phi \eta
\lesssim \sum_{k=0}^n r_k^{-1} \|u\|_{L^\frac{q}{2} Q_k}^2 B_k
\]
\[+ \sum_{j=0}^{n-4} \sum_{k=j+4}^n r_k^{-1} \|\tilde{p}_j\|_{L^\frac{2}{q'} Q_{k+2}} r_k \|\tilde{q}\|_{L^\frac{2}{q'} Q_k} + \sum_{k=0}^n r_k^{-1} \|\tilde{q}\|_{L^\frac{2}{q'} Q_k} \|\partial_3 u\|_{L^2 Q_k},\]
\[\lesssim \sum_{k=0}^n r_k^{-1} E_k B_k + \sum_{j=0}^{n-4} \sum_{k=j+4}^n r_k^{-1} \|u\|_{L^2(\rho k)^\frac{2}{q'}} \|\tilde{p}_j\|_{L^\frac{2}{q'} Q_{k+2}} r_k \|\tilde{q}\|_{L^\frac{2}{q'} Q_k} + \sum_{k=0}^n r_k^{-1} \|\tilde{q}\|_{L^\frac{2}{q'} Q_k} \|\partial_3 u\|_{L^2 Q_k},\]
\[\lesssim \sum_{k=0}^n r_k^{-1} E_k B_k + E B,
\]
as required, where, in the first inequality, we used the harmonic estimate \(\square\) (note that \(l < p'\), as required, thanks to our choice of \(a\) and \(l\)), as well as Hölder’s inequality \(\|f\|_{L^a(-r_k^2,0)} \lesssim \|f\|_{L^{\frac{q}{2}}(-r_k^2,0)} \|u\|_{L^\frac{q}{2} Q_k}\); in the second inequality we used the fact that \(p' \in (1,3)\), which allowed us to estimate \(\|u\|_{L^\frac{q}{2} Q_k}\); by \(E_k\), as well as the fact that \(l < p'\) to sum the last series, and the fact that \(B_j\)'s are nonincreasing, i.e., \(B_k \leq B_j \leq B\). In the last inequality, we used Hölder’s inequality \(\|f\|_{L^2(\rho k)^\frac{2}{q'}} \lesssim \|f\|_{L^{\frac{q}{2}}(r_k^2,0)}\); for \(2a' < 4l'/3\) by the choice of \(l\).

Corollary 3. Under the assumptions of Proposition \(\square\) we have \(r^{-1} E(r) \lesssim E(1 + B) e^{C \sum_{k,j \geq 0} a_{jk}} < \infty\) for all \(r \in (0,1)\).

Proof. Recall that if \(b_n, x_n \geq 0\) and \(C > 0\) are such that \(x_0 \leq C\) and \(x_n \leq C + \sum_{k=0}^{n-1} b_k x_k\) for all \(n \geq 1\), then
\[x_n \leq C e^{\sum_{k=0}^{n-1} b_k}\]
for all \(n \geq 1\), by the discrete Gronwall inequality (see Lemma A.1 in [WWZ] for a proof). Letting \(x_n := r_n^{-1} E_n\) and \(b_n := \sum_{k \geq 0} (a_{kn} + a_{nk})\) and using Young’s inequality \(ab \leq (a^2 + b^2)/2\), Proposition \(\square\) gives
\[x_n \lesssim E(1 + B) + \sum_{k,j=0}^{n-1} x_k a_{jk} \lesssim E(1 + B) + \sum_{k=0}^{n-1} x_k b_k\]
for each \(n \geq 1\). Since \(\square\) implies that \(\sum_{k \geq 0} b_k < \infty\), we obtain the claim for \(r = r_n\), where \(n \geq 0\). The claim for other \(r\) follows by approximating with a neighboring \(r_n\). \(\square\)
We note in passing that in the proof above we have in fact used a discrete Gronwall inequality of the form $x_n \leq Ce^{\sum_{i,j \geq 0} a_{ij}}$ whenever $(x_n)_{n \geq 0}$ is a nonnegative sequence such that $x_0 \leq C$ and $x_n \leq C + \sum_{i,j=0}^{n-1} a_{ij} x_i^{1/2} x_j^{1/2}$ for $n > 0$, and the coefficients $a_{ij} \geq 0$ are such that $\sum_{i,j} a_{ij} < \infty$.

We can now prove our main result.

Proof of Theorem 1. By the above corollary, $r^{-1}E(r) \leq C_{E,B}$ for all $r \in (0,1)$. Since

$$\|\partial_3 u\|_{L^{2n/(n-2)}((-r^2,0);L^p(B_r))} \to 0 \quad \text{as} \quad r \to 0,$$

the next lemma gives that $(0,0)$ is a regular point of u, in the sense that u is essentially bounded in $(-p^2,0) \times B(0,p)$ for some p. Regularity at any other point in \mathbb{R}^3 at $t = 0$ follows analogously, by translating and rescaling U_n, Q_n, A_n, and E_n. We now show that this implies that u is regular on $(-1,0]$. Indeed, note that, due to the existence of intervals of regularity of any Leray-Hopf weak solution (see Theorem 6.41 in [OP], for example) we can assume, by rescaling, that $(0,0)$ is a suitable weak solution in \mathbb{R}^3 at $t = 0$ shows that $\|u(t)\|_{L^\infty(B_R)}$ remains bounded as $t \to 0^-$ for each $R > 0$.

Due to the partial regularity theory of Caffarelli-Kohn-Nirenberg, there exists $\epsilon > 0$ such that if $\int_{B_1(x)} (|u|^3 + |p|^{3/2}) \leq \epsilon$ then $|u| \leq C(\epsilon)$ on $(-1/4,0) \times B_{1/2}(x)$, where $C(\epsilon) > 0$ is independent of x (see Theorem 2.2 in [O], for example). Let $(B_1(x_n))_{n \geq 1}$ be a cover of \mathbb{R}^3 such that $x_n \in \mathbb{Z}^3/4$ for each $n \geq 1$. Since (3) together with interpolation and the Calderón-Zygmund inequality imply that $|u|^3 + |p|^{3/2} \in L^1((-1,0) \times \mathbb{R}^3)$, we see that $\int_{B_1(x_n)} (|u|^3 + |p|^{3/2}) > \epsilon$ for only finitely many n's. Thus there exists $R > 0$ such that $|u| \leq C(\epsilon)$ on $(-1/2,0) \times \{|x| > R\}$. Hence $\|u(t)\|_{L^\infty(\mathbb{R}^3)}$ remains bounded as $t \to 0^-$, and so regularity of u persist beyond $t = 0$, due to the classical Leray estimates (see Corollary 6.25 in [OP], for example). This concludes the proof of Theorem 1 once we establish the next lemma.

Let us introduce some notation. Given a suitable weak solution (u, π) we denote by

$$Q_r := B_r \times (-r^2,0)$$

the finite cylinder of radius r and set

$$P(\pi, r) := \frac{1}{r^2} \int_{Q_r} |\pi|^{3/2}, \quad C(u, r) := \frac{1}{r^2} \int_{Q_r} |u|^3, \quad A(u, r) := \frac{1}{r} \sup_{t \in (-r^2,0]} \int_{B_r} |u(t)|^2 \, dx, \quad E(u, r) := \frac{1}{r} \int_{Q_r} |\nabla u|^2.$$

We may now state the lemma that we used above.

Lemma 4 (Conditional local regularity). *Given $M > 0$ there exists $\epsilon(M) > 0$ with the following property: If (u, π) is a suitable weak solution in Q_1 such that

$$\sup_{r \in (0,1)} \frac{1}{r^2} \left(\sup_{t \in (-r^2,0]} \int_{B_r} |u(t)|^2 \, dx + \int_{Q_r} |\nabla u|^2 \right) \leq M < \infty$$

then $(0,0)$ is a regular point provided

$$r_0^{2-\frac{2}{a} - \frac{2}{b}} \|\partial_3 u\|_{L^a((-r_0^2,0);L^b(B_{r_0}))} \leq \epsilon(M)$$

for some $r_0 \in (0, C_0(u, \pi))$ and $a, b \geq 1$.**
Proof of Lemma 4. Note that, by interpolation (cf. \cite{O} Lemma 2.1, for example), the first assumption gives
\[C(u, r) \lesssim M \]
for every \(r \in (0, 1) \). We shall show the claim with
\[C_0(u, \pi) := \min \left\{ \frac{1}{2} \left(C(u, 1) + P(\pi, 1) \right)^{-2} \right\} . \]

Suppose that the claim does not hold. Then there exists a sequence \((u^k, \pi^k)\) and \(r_k \in (0, C_0(u^k, \pi^k)) \) such that
\[C(u^k, r) \lesssim M \quad \text{and} \quad \int_{\Omega} |\nabla u^k|^2 = \frac{1}{k} \]
while \((0, 0)\) is a singular point of \(u^k \) for every \(k \). Using \cite{WZI} Lemma A.2, we obtain
\[A(u^k, r) + E(u^k, r) + P(\pi^k, r) \leq C(M), \]
for all \(r \in (0, r_k) \). In order to relax the restriction on the range of \(r \) we apply the rescaling
\[v^k(x, t) := r_k u^k(r_k x, r_k^2 t), \quad q^k(x, t) := r_k^2 \pi^k(r_k x, r_k^2 t) \]
to obtain
\[A(v^k, r) + E(v^k, r) + P(q^k, r) + C(v^k, r) + k\|\partial_3 v^k\|_{L^p_t L^q_x(\Omega)} \leq C(M) \]
for all \(r \in (0, 1) \). This estimate on \((v^k, q^k)\) together with the Aubin-Lions Lemma (cf. \cite{RRS} Theorem 4.12, for example) is sufficient to extract a subsequence, which we relabel, such that
\[v^k \to v \text{ in } L^3(\Omega_{1/2}), \quad q^k \to q \text{ in } L^\frac{3}{2}(\Omega_{1/2}), \quad \text{and} \quad \partial_3 v^k \to 0 \text{ in } L^3_t L^\frac{6}{5}_x(\Omega_1), \]
where \((v, q)\) is a suitable weak solution to the Navier-Stokes equations on \(\Omega_{1/2} \) such that \(\partial_3 v = 0 \). It follows that \(v \) and \(\nabla v \) are bounded functions in \(\Omega_{1/4} \) due to the localized regularity condition on \(\partial_3 v \) of \cite{KRZ}. Since also \(\int_{\Omega_{1/2}} |q|^{3/2} < \infty \), we get, using the elliptic regularity on the equation \(-\Delta q = \partial_i v_j \partial_j v_i \in L^\infty(\Omega_{1/4})\) at almost every time \(t \in (-1/4, 0) \), that \(\|q\|_{W^{2-p}(B_{1/4})} \lesssim \|\nabla v\|^2_{L^p_t(\Omega_{1/4})} \)
and \(\|q\|_{L^3(\Omega_{1/4})} \) for every \(p \in (1, \infty) \) and almost every \(t \in (-1/4, 0) \) \cite{GT} Theorem 9.11. Using this statement with \(p \) sufficiently large, we obtain \(q \in L^{3/2}_t L^\infty_x(\Omega_{1/8}) \). This immediately implies \(r^{-3} \int_{\Omega_r} |q|^{3/2} < \infty \) for \(r \in (0, 1/8) \), and consequently for every \(r \in (0, 1/16) \) we have
\[\epsilon \leq \liminf_{k \to \infty} \frac{1}{r^2} \int_{\Omega_r} \left(|v^k|^3 + |q^k|^2 \right) = \frac{1}{r^2} \int_{\Omega_r} \left(|v|^3 + |q|^2 \right) \leq C_{v,q} (r^3 + r) \leq C_{v,q} r, \]
where \(\epsilon > 0 \) is given by the Caffarelli-Kohn-Nirenberg condition (cf. \cite{O} Theorem 2.2) and \(C \) depends on \(M \) and the uniform bound of \(v \) and \(\nabla v \) on \(\Omega_{1/4} \). The above inequality leads to a contradiction when we send \(r \to 0 \), concluding the proof. \(\square \)

References

[B] H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in \(\mathbb{R}^n \), Chinese Ann. Math. Ser. B 16 (1995), no. 4, 407–412, A Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995), no. 6, 797.

[BG] L.C. Berselli and G.P. Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3585–3595.
D. Chae and H.-J. Choe, *Regularity of solutions to the Navier-Stokes equation*, Electron. J. Differential Equations (1999), No. 05, 7 pp. (electronic).

H. Chen, D. Fang, and T. Zhang, *Remark on the regularity criteria for Navier-Stokes equations in terms of one directional derivative of the velocity*, arXiv:2007.10888v1.

L. Caffarelli, R. Kohn, and L. Nirenberg, *Partial regularity of suitable weak solutions of the Navier-Stokes equations*, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831.

D. Chae and J. Wolf, *On the Serrin-type condition on one velocity component for the Navier-Stokes equations*, arXiv:1911.02699.

J.-Y. Chemin and P. Zhang, *On the critical one component regularity for 3-D Navier-Stokes systems*, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 1, 131–167.

D. Gilbarg and N.S. Trudinger, *Elliptic partial differential equations of second order*, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition.

C. He, *Regularity for solutions to the Navier-Stokes equations with one velocity component regular*, Electron. J. Differential Equations (2002), No. 29, 13 pp. (electronic).

I. Kukavica, W. Rusin, and M. Ziane, *Localized anisotropic regularity conditions for the Navier-Stokes equations*, J. Nonlinear Sci. 27 (2017), no. 6, 1725–1742.

I. Kukavica and M. Ziane, *Navier-Stokes equations with regularity in one direction*, J. Math. Phys. 48 (2007), no. 6, 065203, 10.

O.A. Ladyženskaja, *Uniqueness and smoothness of generalized solutions of Navier-Stokes equations*, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5 (1967), 169–185.

J. Neustupa and P. Penel, *Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component*, Applied Nonlinear Analysis, Kluwer/Plenum, New York, 1999, pp. 391–402.

J. Neustupa and P. Penel, *Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes equations*, Mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2001, pp. 237–265.

J. Neustupa, A. Novotný, and P. Penel, *An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity*, Topics in mathematical fluid mechanics, Quad. Mat., vol. 10, Dept. Math., Seconda Univ. Napoli, Caserta, 2002, pp. 163–183.

M. Pokorný, *On the result of He concerning the smoothness of solutions to the Navier-Stokes equations*, Electron. J. Differential Equations (2003), No. 11, 8.

P. Penel and M. Pokorný, *Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity*, Appl. Math. 49 (2004), no. 5, 483–493.

P. Penel and M. Pokorný, *On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations*, J. Math. Fluid Mech. 13 (2011), no. 3, 341–353.

W.S. Ożański, *The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness*, Lecture Notes in Mathematical Fluid Mechanics, Birkhäuser/Springer, Cham, 2019.

W.S. Ożański and B.C. Pooley, *Leray’s fundamental work on the Navier-Stokes equations: A modern review of “Sur le mouvement d’un liquide visqueux emplissant l’espace,”* in “Partial differential equations in fluid mechanics” (Vol. 452, pp. 113–203), London Mathematical Society Lecture Note series, Cambridge University Press, 2018.

G. Prodi, *Un teorema di unicità per le equazioni di Navier-Stokes*, Ann. Mat. Pura Appl. (4) 48 (1959), 173–182.
[RRS] J.C. Robinson, J.L. Rodrigo, and Witold Sadowski, *The three-dimensional Navier-Stokes equations*, Cambridge Studies in Advanced Mathematics, vol. 157, Cambridge University Press, Cambridge, 2016, Classical theory.

[S] J. Serrin, *On the interior regularity of weak solutions of the Navier-Stokes equations*, Arch. Rational Mech. Anal. 9 (1962), 187–195.

[Sk1] Z. Skalák, *On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component*, Nonlinear Anal. 104 (2014), 84–89.

[Sk2] Z. Skalák, *The end-point regularity criterion for the Navier-Stokes equations in terms of $\partial_3 u$*, Nonlinear Anal. Real World Appl. 55 (2020), 103120, 10.

[SK] Z. Skalák and P. Kučera, *A note on coupling of velocity components in the Navier-Stokes equations*, ZAMM Z. Angew. Math. Mech. 84 (2004), no. 2, 124–127.

[V] A.F. Vasseur, *A new proof of partial regularity of solutions to Navier-Stokes equations*, NoDEA Nonlinear Differential Equations Appl. 14 (2007), no. 5-6, 753–785.

[W1] J. Wolf, *A direct proof of the Caffarelli-Kohn-Nirenberg theorem*, Parabolic and Navier-Stokes equations. Part 2, Banach Center Publ., vol. 81, Polish Acad. Sci. Inst. Math., Warsaw, 2008, pp. 533–552.

[WWZ] W. Wang, D. Wu, and Z. Zhang, *Scaling invariant Serrin criterion via one velocity component for the Navier-Stokes equations*, arXiv:2005.11906

[WZ1] W. Wang and Z. Zhang, *On the interior regularity criteria and the number of singular points to the Navier-Stokes equations*, J. Anal. Math. 123 (2014), 139–170.

[WZ2] W. Wang and Z. Zhang, *Blow-up of critical norms for the 3-D Navier-Stokes equations*, Sci. China Math. 60 (2017), no. 4, 637–650.