A SPECIALITY THEOREM FOR CURVES IN \mathbb{P}^5 CONTAINED IN NOETHER-LEFSCHETZ GENERAL FOURFOLDS

VINCENZO DI GENNARO AND DAVIDE FRANCO

Abstract. Let $C \subset \mathbb{P}^r$ be an integral projective curve. We define the speciality index $e(C)$ of C as the maximal integer t such that $h^0(C, \omega_C(-t)) > 0$, where ω_C denotes the dualizing sheaf of C. In the present paper we consider $C \subset \mathbb{P}^5$ an integral degree d curve and we denote by s the minimal degree for which there exists a hypersurface of degree s containing C. We assume that C is contained in two smooth hypersurfaces F and G, with $\text{deg}(F) = n > k = \text{deg}(G)$. We assume additionally that F is Noether-Lefschetz general, i.e. that the 2-th Néron-Severi group of F is generated by the linear section class. Our main result is that in this case the speciality index is bounded as $e(C) \leq d s n k + s + n + k - 6$. Moreover equality holds if and only if C is a complete intersection of $T := F \cap G$ with hypersurfaces of degrees s and $d s n k$.

Keywords: Complex projective curve; speciality index; arithmetic genus; linkage; Castelnuovo - Halphen Theory.

MSC2010: Primary 14N15, 14H99, 14M10; Secondary 14M06, 14N30.

1. Introduction

Let $C \subset \mathbb{P}^r$ be an integral projective curve. We define the speciality index $e(C)$ of C as the maximal integer t such that $h^0(C, \omega_C(-t)) > 0$, where ω_C denotes the dualizing sheaf of C. The speciality index of a space curve is a fundamental invariant which turned out to be crucial in many issues of projective geometry. For instance, in the papers [7], [8] and [9], such an invariant has been proved to be very useful in the study of projective manifolds of codimension 2.

In [13] Gruson and Peskine prove the following theorem concerning the speciality index of an integral space curve (see also [14]):

Theorem 1.1 (Speciality Theorem). Let $C \subset \mathbb{P}^3$ be an integral degree d curve not contained in any surface of degree $< s$. Then we have:

$$e(C) \leq \frac{d}{s} + s - 4.$$

Moreover equality holds if and only if C is a complete intersection of surfaces of degrees s and $\frac{d}{s}$.

In our previous work [2], we prove an extension of this theorem to curves in \mathbb{P}^5:

Theorem 1.2. [2, Theorem B] Let $C \subset \mathbb{P}^5$ be an integral degree d curve not contained in any surface of degree $< s$, in any threefold of degree $< t$, and in any
fourfold of degree \(< u \). Assume \(d \gg s \gg t \gg u \geq 1 \). Then we have:

\[
e(C) \leq \frac{d}{s} + \frac{s}{t} + \frac{t}{u} + u - 6.
\]

Moreover equality holds if and only if \(C \) is a complete intersection of hypersurfaces of degrees \(u, \frac{1}{u}, \frac{1}{t} \) and \(\frac{1}{s} \).

Unfortunately, it seems hard to find a generalization of Gruson-Peskine Speciality Theorem without the assumptions \(d \gg s \gg t \gg u \geq 1 \) and to prove a sharp version of the Speciality Theorem for curves in \(\mathbb{P}^5 \).

In this paper we adopt a somewhat different strategy and prove a sharp version of the Speciality Theorem for curves in \(\mathbb{P}^5 \) under the assumption that the curve is contained in a smooth hypersurface with a nice behaviour from the point of view of Noether-Lefschetz theory (compare with Definition 2.2). More precisely, what we are going to do is to assume that \(C \) is contained in a smooth hypersurface having the 2-th Néron-Severi group generated by the linear section class. The main results of this paper are collected in the following Theorem.

Theorem 1.3. Let \(C \subset \mathbb{P}^5 \) be an integral degree \(d \) curve. Assume that \(C \) is contained in two smooth hypersurfaces \(F \) and \(G \), with \(\text{deg}(F) = n > k = \text{deg}(G) \). Assume additionally that \(F \) is Noether-Lefschetz general, i.e. that the 2-th Néron-Severi group of \(F \) is generated by the linear section class.

1. If \(C \) is not contained in any hypersurface of degree \(< s \), then we have:

\[
e(C) \leq \frac{d}{s}n + s + n + k - 6.
\]

2. If \(C \) is contained in a hypersurface of degree \(s < k \), then the inequality above still holds true. Moreover, equality holds if and only if \(C \) is a complete intersection of \(T := F \cap G \) with hypersurfaces of degrees \(s \) and \(\frac{d}{s}n + k \).

Theorem 1.3 turned out to be a consequence of much more general results stated in Theorem 3.2 and Theorem 4.1. They show that a sort of Speciality Theorem holds true for Cohen-Macaulay subschemes \(X \subset T \) of codimension 2 in any arithmetically Cohen-Macaulay and factorial variety \(T \).

2. Notations and preliminary results

In order to prove Theorem 1.3, in this section we gather some known properties and results, mainly borrowed from our previous works [3], [4] and [6].

Notations 2.1. Let \(X \subset \mathbb{P}^n \) be a smooth complete intersection of dimension \(2i \geq 2 \). Denote by \(NS_i(X; \mathbb{Z}) \) be the \(i \)-th Néron-Severi group of \(X \), i.e. the image of the cycle map:

\[
NS_i(X; \mathbb{Z}) := \text{Im}(A_i(X) \to H_{2i}(X; \mathbb{Z}) \cong H^{2i}(X; \mathbb{Z})).
\]
Definition 2.2. Let $X \subset \mathbb{P}^n$ be a smooth complete intersection of dimension $2i \geq 2$. By the Lefschetz hyperplane section theorem we know that the homology group $H_{2i}(X; \mathbb{Z}) \cong H^{2i}(X; \mathbb{Z})$ is free. We will say that X is Noether-Lefschetz general if the rank of $NS_i(X; \mathbb{Z})$ is one. In this case, the Lefschetz hyperplane section theorem also implies that $NS_i(X; \mathbb{Z})$ is generated by the linear section class H^i.

In [3], it can be found a proof for the following result:

Theorem 2.3. [3, Theorem 1.1] Let F and G be smooth hypersurfaces in \mathbb{P}^{2m+1}, with $\deg(F) = n > k = \deg(G)$, and set $X = F \cap G$. If F is Noether-Lefschetz general then $\text{rk} NS_{m}(X) = 1$, and $NS_{m}(X)$ is generated by the linear section class.

Notations 2.4. (1) Let $Q \subset \mathbb{P}^n$ be an irreducible, reduced, non-degenerate projective variety of dimension $m + 1$, with isolated singularities. Let Q_t be a general hyperplane section of Q. Let $U \subset \mathbb{P}^n$ be the open subset parametrizing smooth hyperplane sections of Q. The fundamental group $\pi_1(U)$ acts via monodromy on both $H^m(Q_t; \mathbb{Z})$ and $H^m(Q_t; \mathbb{Q})$. We denote by

$$H^m(Q_t; \mathbb{Q}) = \mathbb{I} \perp \mathbb{V}$$

the orthogonal decomposition given by the monodromy action on the cohomology of Q_t, where \mathbb{I} denotes the invariant subspace.

(2) Denote by

$$i_k^*: H^m(Q_t; \mathbb{Q}) \to H^{2n-k}(Q_t; \mathbb{Z})$$

the map obtained composing the Gysin map $H_{k+2}(Q; \mathbb{Z}) \to H_k(Q_t; \mathbb{Z})$ with Poincaré duality $H_k(Q_t; \mathbb{Z}) \cong H^{2n-k}(Q_t; \mathbb{Z})$.

In [4], it can be found a proof for the following results:

Theorem 2.5. [4, Theorem 3.1] With notations as in 2.4, the vector subspace $\mathbb{V} \subset H^m(Q_t; \mathbb{Q})$ is generated, via monodromy, by standard vanishing cycles.

Corollary 2.6. [4, Corollary 3.7] The vector subspace $\mathbb{V} \subset H^m(Q_t; \mathbb{Q})$ is irreducible via monodromy action.

The results 2.5 and 2.6 concern rational cohomology. In the paper [6] they are used to prove similar results concerning integral cohomology:

Theorem 2.7. [6, Theorem 2.1] With notations as in 2.4 the following properties hold true.

1. For any integer $m < k \leq 2m$ the map i_k^* is an isomorphism, the map i_m^* is injective with torsion-free cokernel, and $H_{m+2}(Q; \mathbb{Z}) \cong \mathbb{I}$ via i_m^*.
2. For any even integer $m < k = 2i \leq 2m$ the map $i_k^* \otimes \mathbb{Z} \mathbb{Q}$ induces an isomorphism $NS_{i+1}(Q; \mathbb{Q}) \cong NS_i(Q_t; \mathbb{Q})$.

If $k = 2i = m$ and the orthogonal complement \mathbb{V} of $I \otimes_{\mathbb{Z}} \mathbb{Q}$ in $H^n(Q; \mathbb{Q})$ is not of pure Hodge type $(m/2, m/2)$, then $NS_i(Q; \mathbb{Z}) \subseteq I$, and the map $i_n \otimes_{\mathbb{Z}} \mathbb{Q}$ induces an isomorphism $NS_{i+1}(Q; \mathbb{Q}) \cong NS_i(Q; \mathbb{Q})$.

One of the main ingredients of the proof of Theorem 1.3 is the following Proposition.

Proposition 2.8. Let $F \subset \mathbb{P}^5$ be a Noether-Lefschetz general hypersurface and let $G \subset \mathbb{P}^5$ be a smooth hypersurface with $k := \deg G < d := \deg F$. Define $T := F \cap G$. Then we have:

1. the threefold T is factorial with isolated singularities;
2. if $\deg T \geq 4$ then the general hyperplane section $S := H \cap T$ is a Noether-Lefschetz general surface.

Proof. (1) The threefold T has at worst finitely many singularities by [10, Proposition 4.2.6]. Furthermore, T is factorial by Theorem 2.3.

(2) Combining Theorem 2.5, Corollary 2.6 and Theorem 2.7, the proof runs similarly as the classical one (compare with the proof of [5, Theorem 3.2]). Indeed, denote by $U \subset \mathbb{P}^5$ the affine open subset parametrizing smooth hyperplane sections of T. The fundamental group $\pi_1(U)$ acts via monodromy on both $H^2(S; \mathbb{Z})$ and $H^2(S; \mathbb{Q})$.

As in 2.4, consider the orthogonal decomposition $H^2(S; \mathbb{Q}) = \mathbb{I} \perp V$, where \mathbb{I} is the $\pi_1(U)$-invariant cohomology (compare also with [5, Notations 3.1 (ii)]). By Theorem 2.5 and Corollary 2.6 we know that the vanishing cohomology V is a $\pi_1(U)$-irreducible module generated by the standard vanishing cycles. On the other hand, Theorem 2.7 implies that the $\pi_1(U)$-invariant part of $H^2(S; \mathbb{Z}) \cong H_2(S; \mathbb{Z})$ is the image of the Gysin map:

$$I \cap H_2(S; \mathbb{Z}) = \text{Im}(H_4(T; \mathbb{Z}) \xrightarrow{n} H_2(S; \mathbb{Z}))$$

(here $u \in H^2(T, T - S; \mathbb{Z})$ denotes the orientation class [12, §19.2]). By point (1) T is factorial, hence the subspace \mathbb{I} is generated by the hyperplane class. But then V is not of pure Hodge type because $\deg T \geq 4$. By irreducibility, the image of $NS_1(S; \mathbb{Z})$ in V vanishes. This implies that the Néron-Severi group $NS_1(S; \mathbb{Z})$ is $\pi_1(U)$-invariant and [11] says that S is Noether-Lefschetz general. □

3. **Proof of Theorem 1.3 (2)**

Definition 3.1. Let X be a Cohen-Macaulay projective scheme. We define the speciality index e_X of X as the maximal integer t such that $h^0(X, \omega_X(-t)) > 0$, where ω_X denotes the dualizing sheaf of X.

The proof of Theorem 1.3 (2) rests on the following much more general result:

Theorem 3.2 (Speciality theorem for aCM varieties). Let $T \subset \mathbb{P}^n$ be an arithmetically Cohen-Macaulay (aCM for short), factorial and subcanonical variety with $\dim T = m \geq 3$ and $\omega_T \cong O_T(t)$.
Let $G \subset T$ be an integral divisor. Since T is factorial and aCM, we have $G = \tilde{G} \cap T$ with $\tilde{G} \subset \mathbb{P}^n$ a projective hypersurface of some degree g. Let $X \subset G$ be a Cohen-Macaulay scheme of codimension two in T. Then

$$e_X \leq \frac{\deg(X)}{\deg(T)} + g + t$$

and the equality holds iff X is a complete intersection $X = T \cap \tilde{G} \cap H$, with $\deg(H) = \deg(X)$.

Proof. Consider a general hypersurface P of degree $p \gg 0$ containing X. Denote by Y the scheme $T \cap \tilde{G} \cap P$ which we are going to consider as a complete intersection in T. Following Peskine-Szpiro [17], we consider the scheme R residual of X with respect to Y (compare also with [11, §2]).

The Noether Linkage Sequence [11, Proposition 2.3] inside T looks like

$$0 \to I_Y \to I_R \to \omega_X \otimes \omega_Y^{-1} \to 0,$$

and can be written as

$$0 \to I_Y \to I_R \to \omega_X(-t - g - p) \to 0$$

(all the ideal sheaves are meant to be defined in T). Recall that

$$h^0(\omega_X(-e)) \neq 0$$

($e := e_X$). Since T is aCM and Y is a complete intersection in T of type (g, p), the short exact sequence

$$0 \to \mathcal{O}_T(-g - p) \to \mathcal{O}_T(-g) \oplus \mathcal{O}_T(-p) \to I_Y \to 0$$

implies

$$\cdots \to H^1(\mathcal{O}_T(l-g) \oplus \mathcal{O}_T(l-p)) \to H^1(I_Y(l)) \to H^2(\mathcal{O}_T(l-g-p)) \to \cdots \forall l$$

hence

$$h^1(I_Y(t + g + p - e)) = 0.$$

Combining (2), (4) and (5), we see that there exists a hypersurface S of degree $s = t + g + p - e$ containing R and not containing Y. But G is integral and $Y' = G \cap S$ is a complete intersection, in T, containing R. Set $Y' = R \cup R'$ the corresponding, possibly algebraic, linkage. But then

$$\deg(R') + \deg(R) = \deg(T)gs, \quad \deg(X) + \deg(R) = \deg(T)gp$$

and by a simple computation, we find

$$\deg(R') = \deg(X) - \deg(T)g(e - t - g) \geq 0$$

and the first statement follows.

Suppose now the equality holds. Then we have

$$\deg(X) = \deg(T)g(e - t - g) = \deg(T)g(p - s).$$

and the scheme R' is empty. Furthermore, we have that $R = Y' = G \cap S$ is a complete intersection with $\omega_R \simeq \mathcal{O}_R(t + g + s)$.

A SPECIALITY THEOREM FOR CURVES IN \mathbb{P}^5
Coming back to the Noether Linkage Sequence (2)

\[0 \to \mathcal{I}_Y \to \mathcal{I}_X \to \omega_R \otimes \omega_Y^{-1} \to 0 \]

we find

\[(6) \quad 0 \to \mathcal{I}_Y \to \mathcal{I}_X \to \mathcal{O}_R(s-p) \to 0. \]

Similarly as above, the short exact sequence

\[0 \to \mathcal{O}_T(-g-s) \to \mathcal{O}_T(-g) \oplus \mathcal{O}_T(-s) \to \mathcal{I}_R \to 0 \]

implies

\[\cdots \to H^1(\mathcal{O}_T(l-g) \oplus \mathcal{O}_T(l-s)) \to H^1(\mathcal{I}_Y(l)) \to H^2(\mathcal{O}_T(l-g-s)) \to \cdots \quad \forall l \]

and

\[h^1(\mathcal{I}_R(p-s)) = 0. \]

Hence there is a hypersurface \(H \) of degree \(h = p-s \) containing \(X \) and not containing \(Y \). Finally, since \(G \) is integral and \(\text{deg}(X) = \text{deg}(T)g(p-s) \) we conclude that \(X = G \cap H \). \(\square \)

Proof of Theorem 1.3 (2). It suffices to apply Theorem 3.2 to the complete intersection \(T := F \cap G \), which is aCM with \(\dim T = 3 \) and \(\omega_T \simeq \mathcal{O}_T(n + k - 6) \), and factorial in view of Proposition 2.8. \(\square \)

4. Proof of Theorem 1.3 (1)

The proof of Theorem 1.3 (1) rests on the following much more general result:

Theorem 4.1. Let \(T \subset \mathbb{P}^n \) be an aCM, factorial variety with \(\dim T = m \geq 3 \) and \(\omega_T \simeq \mathcal{O}_T(t) \). Assume moreover that \(T \) is smooth in codimension 2 and that the very general surface section of \(T \) is factorial. Let \(X \subset T \) be a C.M. subscheme of codimension 2 which is generically complete intersection. If \(h^0(\mathcal{I}_X,T(h-1)) = 0 \) and \(h > 0 \) then

\[e_X \leq \frac{\deg(X)}{\deg(T)h} + h + t. \]

The main idea in the proof of 4.1 which goes back to the work of Hartshorne, is to construct a rank two reflexive sheaf on \(T \) having a section vanishing in \(X \) (see e.g. [16] and [1]).

In order to prove Theorem 4.1 we need some preliminary results. We recall the following result of R. Hartshorne:

Lemma 4.2. [16, Proposition 1.3] Let \(T \) be a normal scheme and let \(\mathcal{F} \) be a coherent sheaf defined on \(T \). Then \(\mathcal{F} \) is reflexive iff

1. \(\mathcal{F} \) is torsion-free;
2. \(\forall x \in T, \dim \mathcal{O}_x \geq 2 \implies \text{depth} \mathcal{F}_x \geq 2. \)

For the sake of completeness, we give a short proof of the following (maybe well known) result.
Lemma 4.3. Let \(T \subset \mathbb{P}^n \) be an aCM scheme such that \(m := \dim T \geq 3 \) and \(\omega_T \simeq \mathcal{O}_T(t) \). Let \(X \subset T \) be a Cohen-Macaulay subscheme of codimension 2. Then we have:

\[
\text{Ext}^1_T(\mathcal{I}_X,T(c),\mathcal{O}_T) \simeq H^0(X,\omega_X(-c-t)), \quad \forall c \in \mathbb{Z}.
\]

Proof. By applying the functor \(\text{Hom}_T(\cdot,\mathcal{O}_T) \) to the short exact sequence

\[
0 \to \mathcal{I}_X,T(c) \to \mathcal{O}_T(c) \to \mathcal{O}_X(c) \to 0
\]

we find

\[
\text{Ext}^1_T(\mathcal{O}_T(c),\mathcal{O}_T) \to \text{Ext}^1_T(\mathcal{I}_X,T(c),\mathcal{O}_T) \to \\
\text{Ext}^2_T(\mathcal{O}_X(c),\mathcal{O}_T) \to \text{Ext}^2_T(\mathcal{O}_T(c),\mathcal{O}_T).
\]

By Serre Duality, \(\omega_T \simeq \mathcal{O}_T(t) \) implies

\[
\text{Ext}^i_T(\mathcal{O}_T(c),\mathcal{O}_T) \simeq H^{m-i}(\mathcal{O}_T(-c-t)) = 0, \quad i = 1, 2
\]

where the last equality follows from the hypothesis that \(T \) is aCM of dimension \(\geq 3 \). Again by Serre Duality we have:

\[
\text{Ext}^1_T(\mathcal{I}_X,T(c),\mathcal{O}_T) \simeq \text{Ext}^2_T(\mathcal{O}_X(c),\omega_T(-t)) \simeq \\
H^{m-2}(T,\mathcal{O}_X(c+t)) \simeq H^{m-2}(X,\omega_X(c+t)) \simeq H^0(X,\omega_X(-c-t)).
\]

\(\square \)

Proposition 4.4. Let \(T \subset \mathbb{P}^n \) be an aCM variety such that \(m := \dim T \geq 3 \) and \(\omega_T \simeq \mathcal{O}_T(t) \). We assume additionally that \(T \) is smooth in codimension 2. For any pair \((X,\xi)\) with:

- \(X \subset T \) a Cohen-Macaulay, generically complete intersection subscheme of codimension two in \(T \),
- \(\xi \in H^0(\omega_X(-t-c)) \) generating almost everywhere,

there exists a rank two reflexive sheaf \(F \) on \(T \), with \(c_1(F) = cH \), \(c_2(F) = [X] \) (the fundamental cycle of \(X \)) and such that

\[
0 \to \mathcal{O}_T \to F \to \mathcal{I}_{X,T}(c) \to 0.
\]

Proof. The assertion concerning the Chern classes follows trivially from the rest of the statement so it suffices to prove the existence of a sequence like (7), with \(F \) reflexive.

The existence of a sequence like (7) follows directly from Lemma 4.3. Since \(T \) is Cohen-Macaulay and smooth in codimension 2, it is also normal by Serre’s criterion. Then we may apply Lemma 4.2 in order to prove the reflexivity of \(F \). Further, since \(T \) is Cohen-Macaulay, both \(\mathcal{O}_T \) and \(\mathcal{I}_{X,T}(c) \) are torsion-free hence we only need to prove the second condition of Lemma 4.2. Fix a point \(x \) of codimension \(\geq 3 \) and denote by \(K \) the residue field at \(x \). Applying the functor \(\text{Hom}_{\mathcal{O}_x} (K, \cdot) \) to the sequence

\[
0 \to \mathcal{I}_{x,T} \to \mathcal{O}_{x,T} \to \mathcal{O}_{x,x} \to 0
\]
and recalling that both T and X are Cohen-Macaulay we have:

\[(8) \quad \text{Ext}^i_{\mathcal{O}_x}(\mathcal{K}, \mathcal{I}_{x,T}) = 0, \quad i \leq 2.\]

Applying the functor $\text{Hom}_{\mathcal{O}_x}(\mathcal{K}, \cdot)$ to the sequence

\[0 \to \mathcal{O}_{x,T} \to \mathcal{F}_x \to \mathcal{I}_{x,T}(c) \to 0\]

we see that the vanishing (8) implies:

\[\forall x \in X, \quad \text{dim} \mathcal{O}_x \geq 3 \implies \text{depth} \mathcal{F}_x \geq 2.\]

In order to conclude we need to prove:

\[\forall x \in X, \quad \text{dim} \mathcal{O}_x = 2 \implies \text{depth} \mathcal{F}_x \geq 2.\]

What we are going to do is to prove that \mathcal{F}_x is a free module of rank two over \mathcal{O}_x, for any $x \in X$ such that $\text{dim} \mathcal{O}_x = 2$. In order to do this, we prove that \mathcal{F}_x has homological dimension 0 ([19, IV]). Since T is smooth in codimension 2, $\forall x \in X$ of codimension 2 the local ring \mathcal{O}_x is regular of dimension 2. So it suffices to prove that

\[(9) \quad \text{Ext}^1_T(\mathcal{F}, \mathcal{O}_T)x = \text{Ext}^1_T(\mathcal{F}, \mathcal{O}_T)_x = 0.\]

From the sequence (6) we see that $\text{depth}(\mathcal{F}_x) \leq \text{depth}(\mathcal{I}_{x,T}) = 1$, the first inequality coming from ([19, IV p. 28]) and the last equality coming from the fact that $\mathcal{I}_{x,T}$ is complete intersection at x. So, in order to prove (9) we are left to show that $\text{Ext}^1_T(\mathcal{F}, \mathcal{O}_T)_x = 0$. Applying $\text{Hom}_T(\cdot, \mathcal{O}_T(c))$ to the sequence (7) we get:

\[(10) \quad 0 \to \mathcal{O}_T \to \mathcal{F}^*(c) \to \mathcal{O}_T \overset{\xi}{\to} \omega_X(-t) \to \text{Ext}^1_T(\mathcal{F}, \mathcal{O}_T(c)) \to 0\]

where we have taken into account the isomorphism $\text{Ext}^1_T(\mathcal{I}_{X,T}, \mathcal{O}_T) \simeq \omega_X(-t)$, which again follows from the fact that both T and X are Cohen-Macaulay and $\omega_T \simeq \mathcal{O}_T(t)$. Since T is smooth in codimension 2, $\forall x \in X$ of codimension 2 the local ring \mathcal{O}_x is regular of dimension 2. Furthermore, since ξ generates almost everywhere and X is generically complete intersection, the fourth map of the sequence (10) is an isomorphism at x hence $\text{Ext}^1_T(\mathcal{F}, \mathcal{O}_T(c))_x \simeq 0$ and \mathcal{F}_x is a free module of rank two over \mathcal{O}_x.

\[\square\]

Lemma 4.5. Let $C \subset \mathbb{P}^n$ be a smooth variety and E a rank two vector bundle on C having a section vanishing in the right dimension. If $c_1(E) < 0$ then $h^0(E) = 1$ and $h^0(E(-m)) = 0$, $\forall m > 0$.

Proposition 4.6. Let $T \subset \mathbb{P}^n$ be an aCM, factorial variety such that $m := \text{dim} T \geq 3$ and $\omega_T \simeq \mathcal{O}_T(t)$. We assume additionally that T is smooth in codimension 2 and that the general hyperplane section of T is factorial. Let \mathcal{F} be a normalized (i.e. with $-1 \leq c_1(\mathcal{F}) \leq 0$) reflexive sheaf on T. If $d(c_1(\mathcal{F}) \cdot c_1(\mathcal{F})) > 4d(c_2(\mathcal{F}))$ then there exists $\alpha \leq 0$ such that $h^0(\mathcal{F}(\alpha)) \neq 0$. Furthermore, if $c_1(\mathcal{F}) = 0$ then $\alpha < 0$ hence we have $c_1(\mathcal{F}(\alpha)) < 0$.

Proof. Let us denote by S the general (smooth) surface section of T. Since $\mathcal{F} |_S$ is a normalized rank 2 vector bundle on S, Bogomolov’s theorem implies there exists $\alpha \leq 0$ such that $h^0(S, \mathcal{F}(\alpha) |_S) \neq 0$. Moreover, we can assume $\alpha < 0$ as soon
as $c_1(\mathcal{F}|_S) = 0$. Bogomolov’s theorem implies that a section of $\mathcal{F}|_S(\alpha)$ can be chosen in such a way that it vanishes in the right dimension. In any case we have $c_1(\mathcal{F}|_S(\alpha)) < 0$, so Lemma 4.3 above implies $h^0(S, \mathcal{F}(\alpha)|_S) = 1$.

Fix $C \subset S$ a general curve section of \mathcal{T}. We can assume that C does not meet the zero locus of the general section of $\mathcal{F}|_S(\alpha)$ so Lemma 4.3 implies:

$$h^0(C, \mathcal{F}(\alpha)|_C) = 1 \quad \text{and} \quad h^0(C, \mathcal{F}(\beta)|_C) = 0 \ \forall \beta < \alpha.$$

Set

$$\mathcal{P} \simeq \mathbb{P}^{n-2} = \{ \pi \in \mathbb{G}(n - m + 2, \mathbb{P}^n) : C \subset \pi \} \subset \mathbb{G}(n - m + 2, \mathbb{P}^n),$$

denote by $\tilde{T} \subset T \times \mathcal{P}$ the incidence variety:

$$\tilde{T} = \{ (x, \pi) \in T \times \mathcal{P} : x \in \pi \cap T \}$$

and by $\phi : \tilde{T} \to T$, $\psi : \tilde{T} \to \mathcal{P}$ the natural maps.

Claim 1. $h^0(\psi^{-1}(p), \mathcal{F}(\alpha)|_{\psi^{-1}(p)}) = 1$, $\forall p \in \mathcal{P}$. As we have just said $h^0(\psi^{-1}(p), \mathcal{F}(\alpha)|_{\psi^{-1}(p)}) = 1$ for a very general $p \in \mathcal{P}$ so, by semicontinuity, $h^0(\psi^{-1}(p), \mathcal{F}(\alpha)|_{\psi^{-1}(p)}) \geq 1$, $\forall p \in \mathcal{P}$. In order to prove the Claim it is then sufficient to prove that $h^0(\psi^{-1}(p), \mathcal{F}(\alpha)|_{\psi^{-1}(p)}) < 2$, $\forall p \in \mathcal{P}$. Set $S' = \psi^{-1}(p)$ and assume by contradiction $h^0(S', \mathcal{F}(\alpha)|_{S'}) \geq 2$. From the short exact sequence

$$0 \to \mathcal{F}|_{S'}(\alpha - 1) \to \mathcal{F}|_{S'}(\alpha) \to \mathcal{F}|_C(\alpha) \to 0$$

and taking into account (11) we get $h^0(S', \mathcal{F}(\alpha - 1)|_{S'}) \neq 0$. Set $\overline{\alpha} := \min \{ \beta \in \mathbb{N} : h^0(S', \mathcal{F}(\beta)|_{S'}) \neq 0 \} \leq \alpha - 1$. From the short exact sequence

$$0 \to \mathcal{F}|_{S'}(\overline{\alpha} - 1) \to \mathcal{F}|_{S'}(\overline{\alpha}) \to \mathcal{F}|_C(\overline{\alpha}) \to 0$$

and by the definition of $\overline{\alpha}$ we find $h^0(C, \mathcal{F}|_C(\overline{\alpha})) \neq 0$ which contradicts (11) since $\overline{\alpha} < \alpha$. The claim is so proved.

By Grauert’s theorem [15, Corollary 12.9], $\psi_* \phi^* \mathcal{F}(\alpha)$ is an invertible sheaf on \mathcal{P}. On the other hand, since $\phi^{-1}C = C \times \mathcal{P}$, we have

$$\psi_* \phi^* \mathcal{F}(\alpha)|_{\phi^{-1}C} \simeq H^0(C, \mathcal{F}(\alpha)|_C) \otimes \mathcal{O}_\mathcal{P} \simeq \mathcal{O}_\mathcal{P}.$$

Finally, the natural restriction $H^0(\psi^{-1}(p), \mathcal{F}(\alpha)|_{\psi^{-1}(p)}) \to H^0(C, \mathcal{F}(\alpha)|_C)$ is an isomorphism $\forall p \in \mathcal{P}$, so the natural map $\psi_* \phi^* \mathcal{F}(\alpha)) \to \psi_* (\phi^* (\mathcal{F}(\alpha))|_{\psi^{-1}(C)}) \simeq \mathcal{O}_\mathcal{P}$ is an isomorphism of invertible sheaves on \mathcal{P}. Then we have

$$H^0(\tilde{T}, \phi^* \mathcal{F}(\alpha)) = H^0(\mathcal{P}, \psi_* (\phi^* (\mathcal{F}(\alpha))) = H^0(\mathcal{P}, \mathcal{O}_\mathcal{P}) = \mathbb{C}.$$

We conclude by means of the projection formula, because $\phi_* \mathcal{O}_{\tilde{T}} \simeq \mathcal{O}_\mathcal{P}$. \hfill \qed

Remark 4.7. (1) By Lemma 4.3 the coefficient α arising in Proposition 4.6 is the least twist of \mathcal{F} admitting a section.

(2) The proof of Proposition 4.6 shows that the zero locus of the section of $\mathcal{F}(\alpha)$ has the right dimension, because it does not meet the general curve C.

Proof of Theorem 4.1. In this proof we closely follow [18].

By Proposition 4.1 there exists a normalized reflexive sheaf \mathcal{F} (on T) such that

$$0 \to \mathcal{O}_T \to \mathcal{F}(k) \to \mathcal{I}_X(e-t) \to 0$$

$c_1(\mathcal{F}) = cH$, $c_2(\mathcal{F}) = [X] - (ck + k^2)H^2$ and $c + 2k = e - t)$. Set

- let α and β be the smallest degrees of two independent generators of $H^0\mathcal{F}$ (compare with [18, p. 103]),
- $s = \min\{r : h^0(\mathcal{I}_{X,T}(r)) \neq 0\}$.

We distinguish two cases depending on whether the discriminant of \mathcal{F} is ≤ 0 or > 0.

$d(c_1(\mathcal{F}) - c_1(\mathcal{F})) = 4d(c_2(\mathcal{F}))$. This case is the simplest one because the expression $d(X) - d(T)h(e' - h - t)$ is the degree of the second Chern class of $\mathcal{F}(k - h)$. Since the discriminant is ≤ 0, the second Chern class is always positive and we are done.

$d(c_1(\mathcal{F}) + c_1(\mathcal{F})) > 4d(c_2(\mathcal{F}))$. In this case Proposition 4.6 implies $\alpha \leq 0 (< 0$ if $c = 0)$. Furthermore, Remark 4.7 (2) says that the corresponding section vanishes in the right dimension. Then $d(c_2(\mathcal{F}(\alpha)) = d(c_2(\mathcal{F}(-\alpha - c)) \geq 0$ and the degree of the second Chern class is positive for any twist $\leq \alpha$ or $\geq -\alpha - c$. If $k = \alpha$ then $s = \beta + \alpha + c$ and the expression $d(X) - d(T)h(e' - h - t)$ is the degree of $c_2(\mathcal{F}(k - h)) = c_2(\mathcal{F}(h - \alpha - c))$ which is strictly positive since $h > 0$. So the inequality is proved and the equality cannot be attained. If $k \geq \beta$ then $s = \alpha + k + c$ and the expression $d(X) - d(T)h(e' - h - t)$ is the degree of $c_2(\mathcal{F}(k - h)) = c_2(\mathcal{F}(\alpha - (s - h)))$. So the inequality is proved and the equality can be attained only if $s = h$ and the degree of $c_2(\mathcal{F}(\alpha))$ vanishes.

Proof of Theorem 1.3 (1). It suffices to apply Theorem 4.1 to the complete intersection $T := F \cap G$, which is aCM with $dimT = 3$ and $\omega_T \simeq \mathcal{O}_T(n + k - 6)$. The hypotheses that T is factorial and smooth in codimension 2 and that the very general surface section of T is factorial follow from Proposition 2.8.

References

[1] Beorchia, V. - Franco, D.: *On the moduli space of* ℓ *Hooft bundles*. Ann. Univ. Ferrara Sez. VII 47, 253-268, (2001)
[2] Di Gennaro, V. - Franco, D.: *A speciality for curves in* \mathbb{P}^5. Geom. Dedicata 120, 89-99, (2007)
[3] Di Gennaro, V. - Franco, D.: *Factoriality and Néron-Severi groups*. Commun. Contemp. Math. 10, No 5, 745-764, (2008)
[4] Di Gennaro, V. - Franco, D.: *Monodromy of a family of hypersurfaces*. Ann. Sci. Éc. Norm. Supér., 4e série, 42, No 3, , 517-529, (2009)
[5] Di Gennaro, V. - Franco, D.: *Noether-Lefschetz Theory and Néron-Severi group*. Int. J. Math. 23, No 1, Article ID 1250004, 12 p. (2012)
[6] Di Gennaro, V. - Franco, D.: *Noether-Lefschetz theory with base locus*. Rend. Circ. Mat. Palermo (2) 63, No 3, 257-276, (2014)
[7] Ellia Ph. - Franco, D. - Gruson L.: *On subcanonical surfaces of* \mathbb{P}^5 and \mathbb{P}^6. J. Algebraic Geom. 11, No 3, 513-533 (2002)
[8] Ellia Ph. - Franco, D. - Gruson L.: *On subcanonical surfaces of* \mathbb{P}^4. Math. Z. 251, No 2, 257-265 (2005)
[9] Ellia Ph., Franco, D., Gruson, L.: *Smooth divisors of projective hypersurfaces.* Comment. Math. Helv. **83**, No 2, 371-385 (2008)

[10] Flenner, H., O’Carroll L., Vogel W.: *Joins and intersections.* Springer-Verlag, 1999.

[11] Franco, D., Kleiman S. L., Lacstu, A.T.: *Gherardelli Linkage and Complete Intersections.* Mich. Math. J. **48**, Spec. Vol., 271-279, (2000)

[12] Fulton, W.: *Intersection theory.* Ergebnisse der Mathematik und ihrer Grenzgebiete; 3.Folge, Bd. 2, Springer-Verlag 1984.

[13] Gruson, L., Peskine, Ch.: *Genre des courbes dans l’espace projectif.* Algebraic Geometry: Proceedings, Norway, 1977, Lecture Notes in Math., Springer-Verlag, New York 687, 31-59 (1978).

[14] Gruson, L., Peskine, Ch.: *Théorème de spécialité.* Astérisque, 71-72, 219-229 (1980)

[15] Hartshorne, R., *Algebraic Geometry.* Graduate Texts in Mathematics, **52**, Springer Verlag (1977)

[16] Hartshorne, R., *Stable reflexive sheaves.* Math. Ann. **254**, 121-176 (1980)

[17] Peskine, Ch., Spiro, L.: * Liaison des variétés algébriques.* Invent. Math. **26**, No 1, 271-302 (1974)

[18] Roggero, M., Valabrega, P.: *The speciality Lemma, rank 2 bundles and Gherardelli-type theorems for surfaces in \(\mathbb{P}^4 \).* Compositio Math. **139**, 101-111 (2003)

[19] Serre, J. P.: *Algèbre Locale - Multiplicités.* Springer LNM **11**, (1965)

Università di Roma “Tor Vergata”, Dipartimento di Matematica, Via della Ricerca Scientifica, 00133 Roma, Italy.

E-mail address: digennar@axp.mat.uniroma2.it

Università di Napoli “Federico II”, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, P.le Tecchio 80, 80125 Napoli, Italy.

E-mail address: davide.franco@unina.it