AMENABILITY OF GROUPS IS CHARACTERIZED BY MYHILL’S THEOREM

LAURENT BARTHOLDI

with an appendix by DAWID KIELAK

Abstract. We prove a converse to Myhill’s “Garden-of-Eden” theorem and obtain in this manner a characterization of amenability in terms of cellular automata: A group G is amenable if and only if every cellular automaton with carrier G that has gardens of Eden also has mutually erasable patterns.

This answers a question by Schupp, and solves a conjecture by Ceccherini-Silberstein, Mackey and Scarabotti.

An appendix by Dawid Kielak proves that group rings without zero divisors are Ore domains precisely when the group is amenable, answering a conjecture attributed to Guba.

1. Introduction

Cellular automata were introduced in the late 1940’s by von Neumann as models of computation and of biological organisms [14]. We follow an algebraic treatment, as in [3]: let G be a group. A cellular automaton carried by G is a G-equivariant continuous map $\Theta: A^G \to A^G$ for some finite set A. Elements of A^G are called configurations, and the action of G on A^G is given by $g \cdot \phi = \phi(-\cdot g)$ for all $\phi \in A^G, g \in G$.

One should think of A as the stateset (e.g. “asleep” or “awake”) of a microscopic animal; then A^G is the stateset of a homogeneous swarm of animals indexed by G, and Θ is an evolution rule for the swarm: it is identical for each animal by G-equivariance, and is only based on local interaction by continuity of Θ. For example, fixing $f, \ell, r \in G$ the “front”, “left” and “right” neighbours, define Θ by “sleep if the guy in front of you sleeps, unless both your neighbours are awake”, or in formulæ, set for all $\phi \in A^G, g \in G$

$$\Theta(\phi)(g) = \begin{cases} \text{asleep} & \text{if } \phi(fg) = \text{asleep} \text{ and } \{\phi(\ell g), \phi(rg)\} \ni \text{asleep}, \\ \phi(g) & \text{else.} \end{cases}$$

Generally speaking, the memory set of a cellular automaton is the minimal $S \subseteq G$ such that $\Theta(\phi)(g)$ depends only on the restriction of ϕ to Sg, and is finite.

Two properties of cellular automata received particular attention. Let us call pattern the restriction of a configuration to a finite subset $Y \subseteq G$. On the one hand, there can exist patterns that never appear in the image of Θ. These are called Gardens of Eden (GOE), the biblical metaphor expressing the notion of paradise the universe may start in but never return to.
On the other hand, Θ can be non-injective in a strong sense: there can exist patterns $\phi'_1 \neq \phi'_2 \in A^Y$ such that, however one extends ϕ'_1 to a configuration ϕ_1, if one extends ϕ'_2 similarly (i.e. in such a way that ϕ_1 and ϕ_2 have the same restriction to $G \setminus Y$) then $\Theta(\phi_1) = \Theta(\phi_2)$. These patterns ϕ'_1, ϕ'_2 are called Mutually Erasable Patterns (MEP). Equivalently there are two configurations ϕ_1, ϕ_2 which differ on a non-empty finite set and satisfy $\Theta(\phi_1) = \Theta(\phi_2)$. The absence of MEP is sometimes called pre-injectivity [5, §8.G].

Amenability of groups was also introduced by von Neumann, in the late 1920's in [13]; there exist numerous formulations (see e.g. [17]), but we content ourselves with the following criterion due to Følner (see [4]) which we treat as a definition: a discrete group G is amenable if for every $\epsilon > 0$ and every finite $S \subset G$ there exists a finite $F \subset G$ with $\#(SF) < (1 + \epsilon)\#F$. In words, there exist finite subsets of G that are arbitrarily close to invariant under translation.

Cellular automata were initially considered on $G = \mathbb{Z}^n$. Celebrated theorems by Moore and Myhill [11, 12] prove that, in this context, a cellular automaton admits GOE if and only if it admits MEP; necessity is due to Myhill, and sufficiency to Moore. This result was generalized by Machi and Mignosi [8] to groups of subexponential growth, and by Ceccherini-Silberstein, Machi and Scarabotti [2] to amenable groups.

Our main result is a converse to Myhill's theorem:

Theorem 1.1. Let G be a non-amenable group. Then there exists a cellular automaton carried by G that admits Gardens of Eden but no mutually erasable patterns.

There is a natural measure, the Bernoulli measure, on the configuration space A^G: for every pattern $\phi \in A^Y$ it assigns measure $1/\#A^Y$ to the clopen set $\{ \psi \in A^G : \psi|_Y = \phi \}$. Note that the G-action on A^G preserves this measure. Hedlund proved in [7, Theorem 5.4], for $G = \mathbb{Z}$, that a cellular automaton preserves Bernoulli measure if and only if it has no GOE. This result was generalized by Meyerovitch to amenable groups [10, Proposition 5.1].

Combining these with Theorem 1.1 and with the aforementioned results by Ceccherini-Silberstein et al. and the main result of [1], we deduce:

Corollary 1.2. Let G be a group; then the following are equivalent:

1. the group G is amenable;
2. all cellular automata on G that admit MEP also admit GOE;
3. all cellular automata on G that admit GOE also admit MEP;
4. all cellular automata on G that do not preserve Bernoulli measure admit GOE.

1.1. Origins. Schupp had already asked in [15, Question 1] in which precise class of groups the theorems by Moore and Myhill hold. Ceccherini-Silberstein et al. conjecture in [2, Conjecture 6.2] that Corollary 1.2(1–3) are equivalent.

The implication (3\Rightarrow1) is the content of Theorem [14]. In case G contains a non-abelian free subgroup, it was already shown by Muller in his University of Illinois 1976 class notes, see [8, page 55]; let us review the construction, in the special case $G = \langle x, y, z|x^2, y^2, z^2$. Fix a finite field \mathbb{K}, and set $A := \mathbb{K}^2$. View A^G as $\mathbb{K}^G \times \mathbb{K}^G$, on which 2×2 matrices with coefficients in the group ring $\mathbb{K}G$ act from the left.
Define $\Theta: A^G \to \mathbb{C}$ by

$$\Theta(\phi) = \begin{pmatrix} x & y + z \\ 0 & 0 \end{pmatrix} \phi.$$

It obviously has gardens of Eden — any pattern with non-trivial second coordinate — and to show that it has no mutually erasable patterns it suffices, since Θ is linear, to show that Θ is injective on finitely-supported configurations; this is easily achieved by considering, in the support of a configuration ϕ, a position $g \in G$ such that xg and yg don’t belong to the support of ϕ.

Acknowledgments. I am very grateful to Tullio Ceccherini-Silberstein and to Alexei Kanel-Belov for entertaining conversations and encouragement, and to Dawid Kielak for having contributed an appendix to the text.

2. Proof of Theorem

We begin with a combinatorial

Lemma 2.1. Let n be an integer. Then there exists a set Y and a family of subsets X_1, \ldots, X_n of Y such that, for all $I \subseteq \{1, \ldots, n\}$ and all $i \in I$, we have

$$\#\left(X_i \setminus \bigcup_{j \in I \setminus \{i\}} X_j \right) \geq \frac{\#Y}{(1 + \log n)\#I}.$$

Proof. We denote by \mathfrak{S}_n the symmetric group on n letters. Define

$$Y := \{(i, \sigma) \sim (j, \sigma) \mid i \text{ and } j \text{ belong to the same cycle of } \sigma\};$$

in other words, Y is the set of cycles of elements of \mathfrak{S}_n. Let X_i be the natural image of \mathfrak{S}_n in the quotient Y.

First, there are $(i - 1)!$ cycles of length i in \mathfrak{S}_i, given by all cyclic orderings of $\{1, \ldots, i\}$; so there are $\binom{n}{i}(i - 1)!$ cycles of length i in \mathfrak{S}_n, and they can be completed in $(n - i)!$ ways to a permutation of \mathfrak{S}_n; so

$$\#Y = \sum_{i=1}^{n} \binom{n}{i} (i - 1)! (n - i)! = \sum_{i=1}^{n} \frac{n!}{i!} \leq (1 + \log n)n!$$

since $1 + 1/2 + \cdots + 1/n \leq 1 + \log n$ for all n.

Next, consider $I \subseteq \{1, \ldots, n\}$ and $i \in I$, and set $X_{i,I} := X_i \setminus \bigcup_{j \in I \setminus \{i\}} X_j$. Then $X_{i,I} = \{(i, \sigma) : (i, \sigma) \sim (j, \sigma) \text{ for all } j \in I \setminus \{i\}\}$. Summing over all possibilities for the length-$(j + 1)$ cycle (i, t_1, \ldots, t_j) of σ intersecting I in $\{i\}$, we get

$$\#X_{i,I} = \sum_{j=0}^{n-\#I} \binom{n-\#I}{j} j!(n - j - 1)!$$

$$= \sum_{k=n-j=\#I}^{n} (n-\#I)!(\#I-1)! \binom{k-1}{k-\#I}$$

$$= (n-\#I)!(\#I-1)! \binom{n}{n-\#I} = \frac{n!}{\#I}.$$
Combining (2.1) and (2.2), we get
\[
\#X_{i,t} = \frac{n!}{\#T} = \frac{(1 + \log n)n!}{(1 + \log n)\#T} \geq \frac{\#Y}{(1 + \log n)\#T}. \quad \square
\]

Let \(G \) be a non-amenable group. To prove Theorem 1.1, we construct a cellular automaton carried by \(G \), with GOE but without MEP. Since \(G \) is non-amenable, there exists \(\epsilon > 0 \) and \(S_0 \subset G \) finite with \(\#(S_0 F) \geq (1 + \epsilon)\#F \) for all finite \(F \subset G \). We then have \(\#(S_0^k F) \geq (1 + \epsilon)^k\#F \) for all \(k \in \mathbb{N} \). Let \(k \) be large enough so that \((1 + \epsilon)^k > 1 + k \log \#S_0 \), and set \(S := S_0^k \) and \(n := \#S \). This set \(S \) will be the memory set of our automaton. We then have
\[
\#(S F) \geq (1 + \epsilon)^k\#F \geq (1 + k \log \#S_0)\#F \geq (1 + \log n)\#F \text{ for all finite } F \subset G.
\]

Apply Lemma 2.2 to this \(n \), and identify \(\{1, \ldots, n\} \) with \(S \) to obtain a set \(Y \) and subsets \(X_s \) for all \(s \in S \). We have
\[
\#(X_s \setminus \bigcup_{t \in T \setminus \{s\}} X_t) \geq \frac{\#Y}{(1 + \log n)\#T} \text{ for all } s \in T \subset S.
\]

Furthermore, since \(n \geq 2 \) these inequalities are sharp; so we may replace \(Y \) and \(X_s \) respectively by \(Y \times \{1, \ldots, k\} \) and \(X_s \times \{1, \ldots, k\} \) for some \(k \) large enough so that \(\#(X_s \setminus \bigcup_{t \in T \setminus \{s\}} X_t) \geq (\#Y + 1) / (1 + \log n)\#T \) holds; and then we replace \(Y \) by \(Y \cup \{\} \). If for \(T \subset S \) and \(s \in T \) we define
\[
X_{s,T} := X_s \setminus \bigcup_{t \in T \setminus \{s\}} X_t, \text{ then } \#X_{s,T} \geq \frac{\#Y}{(1 + \log n)\#T} \text{ for all } s \in T \subset S;
\]
and furthermore we have obtained \(\bigcup_{s \in S} X_s \subsetneq Y \).

Let \(\mathbb{K} \) be a large enough finite field (in a sense to be precised soon), and set \(A := \mathbb{K}Y \). For each \(s \in S \), choose a linear map \(\alpha_s : A \to \mathbb{K}X_s \subset A \), and for \(T \supset s \) denote by \(\alpha_{s,T} : A \to \mathbb{K}X_{s,T} \) the composition of \(\alpha_s \) with the coordinate projection \(\pi_{s,T} : A \to \mathbb{K}X_{s,T} \), in such a manner that, whenever \(\{T_s : s \in S\} \) is a family of subsets of \(S \) with \(\sum_{s \in S} \#X_{s,T_s} \geq \#Y \), we have
\[
(2.4) \quad \bigcap_{s \in S} \ker(\alpha_{s,T_s}) = 0.
\]

This is always possible if \(\mathbb{K} \) is large enough: indeed write each \(\alpha_s \) as a \(\#Y \times \#Y \) matrix and each \(\alpha_{s,T} \) as a submatrix. The condition is then that various vertical concatenations of submatrices have full rank, and the complement of these conditions is a proper algebraic subvariety of \(\mathbb{R}^{Y \times Y \times S} \) defined over \(\mathbb{Z} \), which is not full as soon as \(\mathbb{K} \) is large enough.

Define now a cellular automaton with stateset \(A \) and carrier \(G \) by
\[
\Theta(\phi)(g) = \sum_{s \in S} \alpha_s(\phi(sg)).
\]

Clearly \(\Theta \) admits gardens of Eden: for every \(\phi \in A^G \), we have \(\Theta(\phi)(1) \in \mathbb{K}(\bigcup_{s \in S} X_s) \subsetneq A \).
To show that \(\Theta \) admits mutually erasable patterns, it is enough to show, for \(\phi \in A^G \) non-trivial and finitely supported, that \(\Theta(\phi) \neq 0 \). Let thus \(F \neq \emptyset \) denote the support of \(\phi \). Define \(\rho : SF \to (0,1] \) by \(\rho(g) := 1/\# \{ s \in S : g \in sF \} \). Now

\[
\sum_{f \in F} \left(\sum_{s \in S} \rho(sf) \right) = \sum_{g \in SF} \sum_{s \in S} \rho(g) = \sum_{g \in SF} 1 = \#(SF),
\]

so there exists \(f \in F \) with \(\sum_{s \in S} \rho(sf) \geq \#(SF)/\#F \geq 1 + \log n \) by (2.3). For every \(s \in S \), set \(T_s := \{ t \in S : sf \in tF \} \), so \(\#T_s = 1/\rho(sf) \). We obtain

\[
\sum_{s \in S} \#X_{s,T_s} \geq \sum_{s \in S} \frac{\#Y}{(1 + \log n)\#T_s} \quad \text{by Lemma 2.1}
\]

\[
= \sum_{s \in S} \frac{\#Y\rho(sf)}{1 + \log n} \geq \#Y,
\]

so by (2.4) the map \(A \ni a \mapsto (\alpha_{s,T_s}(a))_{s \in S} \) is injective. Set \(\psi := \Theta(\phi) \). Since by assumption \(\phi(f) \neq 0 \), we get \((\pi_{s,T_s}(\psi(sf)))_{s \in S} \neq 0 \), so \(\psi \neq 0 \) and we have proven that \(\Theta \) admits no mutually erasable patterns. The proof is complete.

Appendix A. A characterization of amenability via Ore domains, by Dawid Kielak

Let \(A \) be an associative ring without zero divisors, and let us write \(A^* = A \setminus \{0\} \). Recall that \(A \) is called an \emph{Ore domain} if it satisfies Ore’s condition: for every \(a \in A \), \(s \in A^* \) there exist \(b \in A \), \(t \in A^* \) with \(at = bs \). It then follows that \(A(A^*)^{-1} \), namely the set of expressions of the form \(as^{-1} \) with \(a \in A \), \(s \in A^* \) up to the obvious equivalence relation \(as^{-1} = at(st)^{-1} \), is a skew field called \(A \)'s \emph{classical field of fractions}.

A folklore conjecture, sometimes attributed to Victor Guba [6], asserts that group rings satisfy the Ore condition precisely when the group is amenable. We prove it in the following form:

Theorem A.1. Let \(G \) be a group, and let \(\mathbb{K} \) be a field such that \(\mathbb{K}G \) has no zero divisors. Then \(G \) is amenable if and only if \(\mathbb{K}G \) is an Ore domain.

Proof. (\(\Rightarrow \)) is due to Tamari [10]; we repeat it for convenience. Assume that \(G \) is amenable, and let \(a, s \in \mathbb{K}G \) be given. Let \(S \subseteq G \) be a finite set containing the supports of \(a \) and \(s \). By Følner’s criterion, there exists \(F \subseteq G \) finite such that \(\#(SF) < 2\#F \). Consider \(b, t \in \mathbb{K}F \) as variables; then the equation system \(as = bt \) is linear, has \(2\#F \) unknowns, and at most \(\#(SF) \) equations, so has a non-trivial solution.

(\(\Leftarrow \)) Assume that \(G \) is non-amenable. The construction in the proof of Theorem 1.1 yields a finite extension \(L \) of \(\mathbb{K} \) and an \(n \times n \) matrix \(M \) over \(LG \) such that multiplication by \(M \) is an injective map \((LG)^n \to \cup \) and \(M \)'s last row consists entirely of zeros. Forgetting that last row and restricting scalars, namely writing \(L = \mathbb{K}^d \) qua \(\mathbb{K} \)-vector space, we obtain an exact sequence of free \(\mathbb{K}G \)-modules

\[
0 \to (\mathbb{K}G)^{dn} \to (\mathbb{K}G)^{d(n-1)}.
\]

Suppose now that \(\mathbb{K}G \) is an Ore domain, with classical field of fractions \(\mathbb{F} \). Crucially, \(\mathbb{F} \) is a flat \(\mathbb{K}G \) module, that is the functor \(- \otimes_{\mathbb{K}G} \mathbb{F} \) preserves exactness.
of sequences (see e.g. [9] Proposition 2.1.16). Also, \(F \) is a skew field, and upon tensoring \((\mathbb{A}_1)\) with \(F \) we obtain an exact sequence
\[
0 \longrightarrow F^dn \longrightarrow F^d(n-1)
\]
which is impossible for reasons of dimension. \(\square \)

References

[1] Laurent Bartholdi, Gardens of Eden and amenability on cellular automata, J. Eur. Math. Soc. (JEMS) \textbf{12} (2010), no. 1, 241–248, DOI 10.4171/JEMS/196, available at \texttt{arXiv:math/0709.4280} MR2578610 (2011e:05282)

[2] Tullio G. Ceccherini-Silberstein, Antonio Machi, and Fabio Scarabotti, Amenable groups and cellular automata, Ann. Inst. Fourier (Grenoble) \textbf{49} (1999), no. 2, 673–685 (English, with English and French summaries). MR1697376 (2000k:43001)

[3] Tullio G. Ceccherini-Silberstein and Michel Coornaert, Cellular automata and groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. MR2683112 (2011k:37002)

[4] Erling Følner, On groups with full Banach mean value, Math. Scand. \textbf{3} (1955), 243–254. MR0079220

[5] Mikhael L. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. (JEMS) \textbf{1} (1999), no. 2, 109–197. MR1694588 (2000f:43001)

[6] Victor S. Guba, Thompson’s group at 40 years. Preliminary problem list (2004), \texttt{http://aimath.org/WWN/thompsonsgroup/thompsonsgroup.pdf} Accessed May 31, 2016.

[7] Gustav A. Hedlund, Endormorphisms and automorphisms of the shift dynamical system, Math. Systems Theory \textbf{3} (1969), 320–375. MR0259881 (41 #4510)

[8] Antonio Machi and Filippo Mignosi, Garden of Eden configurations for cellular automata on Cayley graphs of groups, SIAM J. Discrete Math. \textbf{6} (1993), no. 1, 44–56. MR1201989 (95a:68084)

[9] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR934572

[10] Tom Meyerovitch, Finite entropy for multidimensional cellular automata, Vol. 28, 2008. MR2437229 (2010c:37022)

[11] Edward F. Moore, Machine models of self-reproduction, Mathematical problems in the biological sciences. Proc. Sympos. Appl. Math. XIV, 1962, pp. 17–33. MR0299409 (45 #8457)

[12] John Myhill, The converse of Moore’s Garden-of-Eden theorem, Proc. Amer. Math. Soc. \textbf{14} (1963), 685–686. MR0155764 (27 #5698)

[13] John von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math. \textbf{13} (1929), 73–116 and 333. = Collected works, vol. 1, pages 599–643.

[14] Dov Tamari, A refined classification of semi-groups leading to generalised polynomial rings with a generalized degree concept, Proc. ICM vol. 3, Amsterdam, 1954, pp. 439–440.

[15] Stan Wagon, The Banach-Tarski paradox, Cambridge University Press, Cambridge, 1993. With a foreword by Jan Mycielski; Corrected reprint of the 1985 original. MR1251963 (94g:04005)

L.B.: DÉPARTEMENT DE MATHÉMATIQUES ET APPLICATIONS, ÉCOLE NORMALE SUPÉRIEURE, PARIS and MATHEMATISCHES INSTITUT, GEORG-AUGUST UNIVERSITÄT ZU GÖTTINGEN
E-mail address: laurent.bartholdi@gmail.com

D.K.: FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT BIELEFELD
E-mail address: dkielak@math.uni-bielefeld.de