Risk and prognosis of COVID-19 in patients treated with renin–angiotensin–aldosterone inhibitors

Simon T. Vistisen, Jacob Bodilsen, Thomas W.L. Scheeren and Ulf Simonsen

The recent emergence of the COVID-19 pandemic has required physicians, researchers and health authorities to navigate uncharted territory at lightning speed. This has led to an unprecedented scientific output with a primary focus on antiviral therapy and vaccine development.

Awaiting such advances and to potentially curb some of the immediate pandemic impact, researchers quickly identified advanced age and comorbidities such as hypertension, diabetes mellitus and heart failure as risk factors for hospitalisation with COVID-19 and as prognostic factors for a poor outcome. These patients are often treated with angiotensin-converting enzyme inhibitors (ACEi) or angiotensin II type 1 receptor blockers (ARBs).

Concurrently, scientists discovered that the SARS-CoV-2 virus infects human cells via binding to the ACE2 receptor of human cell membranes. Because ACE2 plays an important role in the renin–angiotensin system and also acts as a receptor for SARS-CoV-2 cell entry, hypotheses about an association between ACEi/ARBs and COVID-19 outcomes were rapidly generated. Since ACEi/ARBs markedly improve outcome in patients with cardiovascular disease, diabetes and hypertension, several scientific societies have advocated that patients should continue prescribed ACEi/ARBs treatment in case of SARS-CoV-2 infection. Others have stated that ARBs may even have protective effects against acute respiratory distress syndrome (ARDS) in COVID-19 patients, reflected by the initiation of clinical trials with losartan (ClinicalTrials.gov NCT04311177 and NCT04312009).

Rationale for hypotheses

ACE converts angiotensin I to angiotensin II, which binds to the angiotensin II type 1 (AT1) receptor. ACE and ACE2 are exopeptidases, where ACE2 cleaves angiotensin I to angiotensin (1–9) and angiotensin II to the peptide fragment, angiotensin (1–7). SARS-CoV-2 surface glycoprotein binding to ACE2 is followed by pro tease (TMPRSS2) cleaving of the virus spike and SARS-CoV-2 entry and infection of human cells. Although cell and tissue-dependent, ACE2 is upregulated in heart failure and obstructive coronary disease, and is traceable in urine of diabetic patients. The expression of ACE2 is also markedly upregulated in lung epithelium and in the hearts of rats treated with ACE inhibitors (five-fold) or ARBs (three-fold and significantly less than for ACE inhibitors), and also detectable in the urine of hypertensive patients treated with the ARB, olmesartan. Taken together, these findings form the hypothesis of an association between the use of ACEi/ARBs, virus entry and multiorgan dysfunction.

However, complicating the picture, there are two ACE2 forms; a transmembrane structural protein that serves as a receptor for cell entry of SARS-CoV-2, and a soluble circulating ACE2, which SARS-CoV-2 may bind to and thereby prevent SARS-CoV-2 from binding to the transmembrane ACE2 isoform and thus from infecting cells. Shedding of ACE2 from the cells is regulated by the metallopeptidase 17 (ADAM17) and is not affected by treatment with ACEi/ARBs. Furthermore, ACE2 knockout in mice seems to aggravate ARDS induced by means other than SARS-CoV infection, again suggesting a protective effect of ACE2 for SARS-CoV-2 infection. Finally, ARBs increase angiotensin II levels, which act on AT2 receptors and provide an increased amount of substrate to ACE2 followed by formation of angiotensin (1–7) and activation of Mas receptors (Fig. 1). The activation of AT2 and Mas receptors produces vasodilating and anti-inflammatory effects in the lung.

Therefore, based on available mechanistic evidence, it is unclear whether there is an association between ACEi/
ARB use and SARS-CoV-2 infection and/or COVID-19 outcome or whether the increased risk is solely limited to the presence of the comorbidities, i.e. confounding-by-indication.

Evidence from observational studies

A recent series of observational studies may provide valuable insights into the question of whether ACEi/ARBs medication influences risk of COVID-19 or its prognosis. We manually screened all COVID-19-related publications in each of the journals and subjournals of New England Journal of Medicine, Journal of American Medical Association, British Medical Journal, The Lancet and Annals of Internal Medicine until 15 May 2020.

Risk studies

Four studies addressed risk of COVID-19 and observed no increased risk among ACEi/ARB users compared with control groups. For patients treated with ACEi, the adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were 0.89 (95% CI 0.72 to 1.1) and 0.96 (95% CI 0.87 to 1.07) compared with non-ACEi users. Similarly, the adjusted ORs were 1.09 (95% CI 0.87 to 1.37) and 0.95 (95% CI 0.86 to 1.05) for patients treated with ARBs. A third study applied propensity score matching and found median differences in risk of COVID-19 of −2.5 (95% CI −6.7 to 1.6) for ACEi users versus non-ACE users and 2.2 (95% CI −1.9 to 6.3) for similar comparisons of patients treated with ARBs. Finally, a study estimating risk of COVID-19 requiring hospitalisation reported adjusted ORs of 0.80 (95% CI 0.64 to 1.00) for ACEi and 1.10 (95% CI 0.88 to 1.37) for ARBs.

Observational studies on risk of COVID-19 are particularly difficult to conduct and interpret since several confounders and biases are hard to control for. First, testing policies/strategies have evolved rapidly in most countries and often favoured testing certain risk groups. Combined with variations in testing capacity within and between countries during the course of the pandemic, this may result in significant time-dependent selection bias. Second, government appeals of for example, lockdowns, social distancing, hand washing and use of face masks seem to have been key factors for bringing virus reproduction numbers down in many countries. Yet, it remains unclear whether adherence to such measures and similar behavioural patterns differ between ACEi/ARB users and nonusers. For example, ACEi/ARB users may have enforced particularly strict isolation routines upon themselves since the hypotheses of increased risks with these drugs were announced early in a high-impact medical journal and on social media.

Nevertheless, based on these initial observational findings, there seems to be no increased risk of SARS-CoV-2 infection for ACEi/ARB users.

Prognostic studies

Four studies examined the prognosis of COVID-19 patients and uniformly found that risk of severe outcomes was not higher for the collapsed group of ACEi and ARB

Inhibition of angiotensin-converting enzyme on the angiotensin II type 1 receptor by sartans (angiotensin II type 1 receptor blockers) leads to upregulation of angiotensin-converting enzyme 2. The transmembrane angiotensin-converting enzyme 2 receptor allows SARS-CoV-2 entry and leads to virus replication, activation of innate immune system/complement, cytokine formation followed by neutrophils/lymphocytes in the lung and development of acute respiratory distress syndrome (ARDS). The antagonism of angiotensin II type 1 receptors leads to upregulation of angiotensin II and activation of angiotensin II type 2 and Mas receptors. Cleaving of angiotensin-converting enzyme 2 by ADAM17 leads to shedding of soluble angiotensin-converting enzyme 2, which binds SARS-CoV-2 in plasma.
users versus control groups (Table 1). However, one study observed an increased risk of hospitalisation and ICU admission for collapsed ACEi/ARB users, which for ICU admission appeared to be driven by ACEi users. Importantly, this study stressed the explorative nature of these secondary findings and advised that they should be interpreted with caution.

Besides limitations imposed by variations in testing strategies and capacities, confounding-by-indication remains the most obvious and important bias in these studies, that is, outcome is associated with the comorbidity for which the drug is given and not the drug itself. Thus far, prognostic studies have applied multivariable regression, matching and propensity scores, but none has incorporated active comparison to define the control group, for example, by comparing ACEi/ARB users with a control group of calcium channel blocker users. Calcium channel blockers do not interfere with ACE2, so this approach could further decrease the risk of confounding-by-indication. Prognostic studies are also at risk of differential classification of nonfatal outcomes, for example, physician thresholds for ICU admissions may be lower for patients treated with ACEi/ARBs compared with nonusers. This would lead to an increased risk of severe disease in ACEi/ARB users. Nevertheless, clinical indicators of disease severity have been similar between ACEi/ARB users and nonusers thus far.

The real-time nature of COVID-19 observational studies of ACEi/ARBs is additionally challenged by possible delays in exposure and/or outcome information. For example, prescription information may be delayed if based on registries and deaths may occur late during the course of disease. Another critical aspect of studies of ACEi/ARB is whether patients actually took this medication on the day of infection and/or whether they continued treatment after infection. Contrary to the recommendations of scientific societies' urging continued use of ACEi/ARBs in patients with cardiovascular disease and diabetes mellitus, others have insisted on conversion to other antihypertensive drugs or stopping treatment in certain patient groups. This raises concern about the exposure, particularly if exposure information is derived from 'historic' data in a registry and outcomes are recorded after these publications. Regarding continued ACEi/ARBs use after a positive test, little is reported apart from a recent large study from New York state (n=5700) in which 50% of hospitalised patients treated

Table 1 Characteristics of included studies investigating prognosis of patients using angiotensin-converting enzyme inhibitors/angiotensin II type 1 receptor blockers

Study, study design, source population and period	Exposure, outcome and analysis	Demographics and baseline characteristics	Results
Li et al.17 Cohort study of 1178 hospitalised COVID-19 patients from the Central Hospital of Wuhan, China, 15 January to 15 March 2020	Exposure: ACEi/ARB use Outcomes: In-hospital mortality Severe COVID-19 Analysis: Contingency table tests	Age 55.5 [IQR 38 to 67] Male sex 46.3% Diabetes 203 (17.2%) CHF 21 (1.8%) CKD 44 (3.7%) IHD 103 (8.7%) HT 362 (30%) COPD 54 (4.6%)	In the hypertensive subgroup (n=362) of hospitalised COVID-19 patients, ACEi/ARB use was not associated with disease severity (P=0.65) or mortality (P=0.34)
Mehta et al.12 Cohort study of 18 472 tested persons from Cleveland Clinic Health System in Ohio and Florida; 1735 tested positive for COVID-19, 8 March to 12 April 2020	Exposure: ACEi/ARB use Outcomes: Use of ventilator ICU admission Hospitalisation Analysis: Overlap propensity weighted analyses	Age 49 (SD 21) Male sex 7384 (40%) Diabetes 3478 (19%) CHF 1879 (10%) CKD, N/A IHD 2179 (12%) HT 7312 (40%) COPD 2186 (12%)	In overlap PS-weighted analyses, ORs for 'Use of ventilator' 1.32 (CI 0.80 to 2.18) 'ICU admission' 1.64 (CI 1.07 to 2.51) 'Hospitalisation' 1.93 (CI 1.38 to 2.71) For ACEi/ARB users
Reynolds et al.14 Cohort study of 12 594 tested persons from Langone Health System in New York City; 5984 tested positive for COVID-19, 1 March to 15 April 2020	Exposure: ACEi/ARB use Outcomes: Severe COVID-19 Analysis: Propensity matched median differences	Age 49 [IQR 34 to 63] Male sex 5229 (41.5%) Diabetes 2271 (18%) CHF 784 (6%) CKD 1214 (10%) IHD 525 (4%) HT 4257 (35%) COPD 1833 (15%)	PS matched median differences between patients treated and untreated for hypertension ACEi –3.3 (CI –8.2 to 1.7) ARB –0.1 (CI –4.8 to 4.9) ACEi/ARB –0.5 (CI –4.3 to 3.2)
Mancia et al.13 Case–control study of 6272 COVID-19 patients from Lombardy, Italy, 21 February to 11 March 2020	Exposure: ACEi/ARB use Outcomes: Mild/moderate disease severity Critical or fatal illness Analysis: Conditional logistic regression adjusted for baseline covariates	Age 68 (SD 13) Male sex 3969 (63.3%) Diabetes, N/A CHF 323 (5.1%) CKD 181 (2.9%) IHD 473 (7.5%) HT, N/A COPD 188 (3.0%)	Adjusted ORs for Mild-to-moderate illness ACEi 0.97 (CI 0.88 to 1.07) ARBs 0.96 (CI 0.87 to 1.07) Critical or fatal illness ACEi 0.91 (CI 0.69 to 1.21) ARBs 0.83 (CI 0.63 to 1.10)
with ACEi or ARBs discontinued use during hospitalisation. One reason for discontinuation could be development of hypotension, another could be the hypothesised concerns about these drugs. Future studies intended to address continued use of ACEi/ARB and prognosis of COVID-19 should pay particular attention to avoid immortal time bias in outcome analyses.

In conclusion, the currently available evidence from observational studies suggests neither harm nor benefit from taking ACEi or ARBs in terms of risk-of-infection or prognosis of COVID-19. While awaiting the results of ongoing randomised trials, these results are reassuring for both clinicians managing COVID-19 patients and persons treated with ACEi or ARB.

Acknowledgements relating to this article
Assistance with the Editorial: none.
Financial support and sponsorship: none.
Conflicts of interest: none.
Comment from the editor: this article was checked and accepted by the Editors, but was not sent for external peer-review.

References
1 Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (Covid-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323:1239–1242.
2 LeiKo M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5:562–569.
3 Fang L, Karakulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8:e21.
4 Bavishi C, Maddox TM, Messeri FH. Coronavirus disease 2019 (COVID-19) infection and renin angiotensin system blockers. JAMA Cardiol 2020; doi:10.1001/jamacardio.2020.1282 (in press).
5 Alexander SP, Armstrong J, Davenport AP, et al. A rational roadmap for SARS-CoV-2/COVID-19 pharmacotherapeutic research and development. IUPHAR review 29. Br J Pharmacol 2020; doi:10.1111/bph.15094 (in press).
6 Sama IE, Ravera A, Santema BT, et al. Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin–angiotensin–aldosterone inhibitors. Eur Heart J 2020; doi:10.1002/ehj.18110–1817.
7 Burrell LM, Risvanis J, Kubota E, et al. Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J 2005; 26:369–735.
8 Gutta S, Grobe N, Kumbaj M, et al. Increased urinary angiotensin converting enzyme 2 and nephrin in patients with type 2 diabetes. Am J Physiol Ren Physiol 2018; 315:F263–274.
9 Abe M, Oikawa O, Okada K, et al. Urinary angiotensin-converting enzyme 2 increases in diabetic nephropathy by angiotensin II type 1 receptor blocker olmesartan. J Renin Angiotensin Aldosterone Syst 2015; 16:159–164.
10 Lambert DW, Yarsi M, Warner FJ, et al. Tumor necrosis factor-convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 2005; 280:30113–30119.
11 Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436:112–116.
12 Mehta N, Kalra A, Nowacki AS, et al. Association of use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; doi:10.1001/jamacardio.2020.1855 (in press).
13 Mancia G, Rea F, Ludergnani M, et al. Renin–angiotensin–aldosterone system blockers and the risk of Covid-19. N Engl J Med 2020; 382:2431–2440.
14 Reynolds HR, Adhikari S, Pulgarin C, et al. Renin–angiotensin–aldosterone system inhibitors and risk of Covid-19. N Engl J Med 2020; 382:2441–2448.
15 de Abajo FJ, Rodriguez-Martín S, Lerma V, et al. Use of renin–angiotensin–aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study. Lancet 2020; 395:1705–1714.
16 Pottegård A, Kurz X, Moore N, et al. Considerations for pharmacoepidemiological analyses in the SARS-CoV-2 pandemic. Pharmacoepidemiol Drug Saf 2020; doi:10.1002/pds.5029 (in press).
17 Li J, Wang X, Chen J, et al. Association of renin–angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for coronavirus disease 2019 (COVID-19) infection in Wuhan, China. JAMA Cardiol 2020; doi:10.1001/jamacardio.2020.1624 (in press).
18 Aronson JK, Ferner RE. Drugs and the renin–angiotensin system in Covid-19. BMJ 2020; 369:m1313.
19 Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020; 323:2052–2059.