Data Article

Prediction of functional consequences of the five newly discovered G6PD variations in Taiwan

Yen-Hui Chiua, b, 1, Yu-Ning Liu a, 1, Hsiao-Jan Chen c, Ying-Chen Chang d, 2, Shu-Min Kao c, Mei-Ying Liuc, Ying-Yen Weng d, Kwang-Jen Hsiao a, e, **, Tze-Tze Liu a, d, *

a Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
b Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
c Neonatal Screening Center, The Chinese Foundation of Health, Taipei, Taiwan
d Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
e Preventive Medicine Foundation, Taipei, Taiwan

A R T I C L E I N F O

Article history:
Received 25 April 2019
Received in revised form 28 May 2019
Accepted 3 June 2019
Available online 11 June 2019

Keywords:
G6PD deficiency
Mutation analysis
In silico analysis
Structural predication

A B S T R A C T

Glucose-6-phosphate dehydrogenase deficiency (G6PD deficiency; OMIM #300908) is the most common inborn error disorders worldwide. While the G6PD is the key enzyme of removing oxidative stress in erythrocytes, the early diagnosis is utmost vital to prevent chronic and drug-, food- or infection-induced hemolytic anemia. The characterization of the mutations is also important for the subsequent genetic counseling, especially for female carrier with ambiguous enzyme activities and males with mild mutations. While multiplex SNAPshot assay and Sanger sequencing were performed on 500 G6PD deficient males, five newly discovered variations, namely c.187G > A (p.E63K), c.585G > C (p.Q195H), c.586A > T (p.I196F), c.743G > A (p.G248D), and c.1330G > A (p.V444I) were detected in the other six patients. These variants were previously named as the Pingtung, Tainan, Changhua, Chiayi, and Tainan-2 variants, respectively. The in silico analysis, as well as the prediction of the structure of the resultant mutant G6PD

* Corresponding author. Cancer Progression Research Center, National Yang-Ming University, No.155, Sec. 2, Li-Nong Street, Taipei 11221, Taiwan.
** Corresponding author. Preventive Medicine Foundation, Taipei P.O. Box 26-553, Taipei 10699, Taiwan
E-mail addresses: hsiao@pmf.tw (K.-J. Hsiao), tttliu@ym.edu.tw, tze@pmf.tw (T.-T. Liu).

1 The three authors contributed equally to this work.
2 Current position: Excelsior Pharmatech Labs, Taipei, Taiwan.

https://doi.org/10.1016/j.dib.2019.104129
2352-3409/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
protein indicated that these five newly discovered variants might be disease causing mutations.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Genetics, Genomics and Molecular Biology
More specific subject area	Inborn errors of metabolism
Type of data	DNA sequencing using 3730xl Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA, USA), mutation severity prediction softwares, structural effect prediction software
How data was acquired	DNA sequencing using 3730xl Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA, USA), mutation severity prediction softwares, structural effect prediction software
Data format	Analyzed
Experimental factors	DNA extracted from dried blood spot used in newborn screening
Experimental features	Bioinformatic tools
Data source location	Taiwan
Data accessibility	Provided within this article
Related research article	Chiu YH, Chen HJ, Chang YC, Liu YN, Kao SM, Liu MY, Weng YY, Hsiao KJ, Liu TT. Applying a multiplexed primer extension method on dried blood spots increased the detection of carriers at risk of glucose-6-phosphate dehydrogenase deficiency in newborn screening program. Clin. Chim. Acta 495 (2019) 271–277. https://doi.org/10.1016/j.cca.2019.04.074 [1].

Value of the Data

- This study extends the G6PD mutation spectrum.
- The three-dimensional structure illustrates the importance of the amino acid residues related to the function of the G6PD protein.
- The in silico analysis served as a tool in determining the functional consequence of the mutations, making it potentially valuable for primary care as well as research processes.

1. Data

This dataset presented the in silico and structural analysis of the five newly discovered variations, namely c.187G > A (p.E63K), c.585G > C (p.Q195H), c.586A > T (p.I196F), c.743G > A (p.G248D), and c.1330G > A (p.V444I) (Fig. 1), detected in the six Taiwanese G6PD deficient patients using Sanger Sequencing (Table 1).

The comparison sequence of these variants in G6PD protein of different species [2], including Homo sapiens, Mus musculus, Danio rerio (zebrafish), Drosophila melanogaster (fruit fly), and Caenorhabditis elegans were presented in Fig. 2. The in silico analysis using SIFT [3], PolyPhen-2 [3], Mutation Taster [4] and Slicing Finder [5] softwares, as well as the conservation between species and allele frequency in Taiwanese population [6] were summarized in Table 2. Furthermore, the amino acid alterations were presented in the functional domains [7] (Fig. 3) and in partial 3D model of G6PD [8] (Fig. 4). The structure of the resultant mutant G6PD protein were analyzed by HOPE, Have yOur Protein Explained [9] (Table 3).

2. Experimental design, materials and methods

2.1. Mutation identification: sanger sequencing

In 500 G6PD-deficient male newborns detected by G6PD enzyme activity assay [10], nine of which do not carry any of the 21 common mutations described in Taiwan and Southeast Asia using multiplex
SNaPshot assay [1]. Their dried blood spots used in newborn screening were subsequently subjected to mutational analysis by sequencing. The whole coding exons and exon-intron boundary sequences of

![Fig. 1. Detection of five new G6PD variations by Sanger sequencing. G6PD gene sequence showed the wild type sequence with variants of different individuals. (A) c.187G > A in patient A397, (B) c.585G > C in patient A367, (C) c.586A > T in patient A 129, (D) c.743G > A in patient A244 and (E) c.1330G > A in patients A281 and A453. The red arrows showed substitution in a hemizygous state in the missense mutations observed.](image-url)
G6PD gene were amplified and analyzed by forward and reverse Sanger sequencing. Putative mutations were confirmed by sequencing of an independent PCR product. The study protocol was reviewed and approved by the Institutional Review Board of Taipei City Hospital, Taiwan.

2.2. Sequence alignments between species

Conservation of the peptide sequence around the affected residues was assessed by alignment of orthologous and human G6PD sequences with ClustalW2.[2]

2.3. Severity prediction and allele frequency in population

Different online algorithms were used to predict the functional consequences of the five variants. The in silico analyses were performed using the SIFT [3], PolyPhen-2 [3], MutationTaster2 [4], and Human Splicing Finder [5] programs. Furthermore, the allele frequency of the alterations in Taiwanese population was listed as provided in Taiwan Biobank [6].

2.4. Distribution of mutations along the coding region and protein sequence

Distribution of alterations was highlighted in the coding region and the functional domains [7]. The A at the ATG translational initiation codon was numbered as 1 in reference accession number NM_001042351. The amino acid numbers were counted from the N-terminal Met of human G6PD protein.

2.5. 3D structure model of wide type G6PD protein

The 3D structure of G6PD variations observed in this study were presented based on the X-ray crystal structure available at the Protein Data Bank from human G6PD protein (PDB code 1QKI) [8].

2.6. Prediction of structural effects of variations

When protein structure is important to predict the effects of variants [11], effect of mutations over G6PD protein structure was determined using HOPE (Have yOur Protein Explained) software [9].
Fig. 2. The similarity alignment of G6PD proteins across different species. The red characters show the corresponding positions of the five substitutions between species whereas the conserved residues were outlined in green box. The species abbreviations are: *D. melanogaster*, *Drosophila melanogaster*; *C. elegans*, *Caenorhabditis elegans*.

Species	Sequence	p.E63K	p.I196F	p.Q195H	p.L196F	p.G248D	p.V4441	p.512
Homo sapiens	001 MAEQVALSRTQCVGILRLEQFGDFQHSDTHIFIIMGAGDGLAKKLYPTIWLLFREDGL	060						
Mus musculus	001 MAEQVALSRTQCVGILRLEQFGDFQHSDTHIFIIMGAGDGLAKKLYPTIWLLFREDGL	060						
Danio rerio	015 LLSRSEVPQFQKLEKHDDTAFQSDHVFIFINGGAGDGLAKKLYPTIWLLFREDGL	068						
D. melanogaster	020 SPITMC--------EGTHFDGKIPHTFVIPSAGDGLAKKLYPTIWLLWYRDL	064						
C. elegans	034 FGASGDLAKKLYPTIWLLWFDNL	062						
Homo sapiens	061 LFLKTFPCGYARSLRQSLVTDADIRQSF PKFATPEKEKLEKLFERD FARNSSYRAGQYDDAA Q2R	120						
Mus musculus	061 LFLKTFPCGYARSLRQSLVTDADIRQSF PKFATPEKEKLEKLFERD FARNSSYRAGQYDDAA Q2H	120						
Danio rerio	069 LFLKTFPCGYARSLRQSLVTDADIRQSF PKFATPEKEKLEKLFERD FARNSSYRAGQYDDAA Q2Y	120						
D. melanogaster	065 LFYKTFPCGYARSLRQSLVTDADIRQSF PKFATPEKEKLEKLFERD FARNSSYRAGQYDDAA 12E	120						
C. elegans	063 LFYKTFPCGYARSLRQSLVTDADIRQSF PKFATPEKEKLEKLFERD FARNSSYRAGQYDDAA 12E	120						

Y.-H. Chiu et al. / Data in brief 25 (2019) 104129
Table 2
The severity prediction for five newly discovered G6PD missense variations.

Nucleotide substitution	Amino acid substitution	SIFT	PolyPhen-2	Mutation Taster	Splicing finder	Conservationa	Allele Frequencyb	Predicted Classc
c.187G > A	p.E63K	Tolerated	Benign	Disease causing	Potential alteration	Moderately	<2/1417d	III-IV
c.585G > C	p.Q195H	Damaging	Probably damaging	Disease causing	Potential alteration	Highly	<1/1000	II
c.586A > T	p.I196F	Damaging	Probably damaging	Disease causing	Potential alteration	Highly	<1/1000	II
c.743G > A	p.G248D	Damaging	Probably damaging	Disease causing	Probably no impact	Highly	<1/1000	III
c.1330G > A	p.V444I	Tolerated	Possibly damaging	Disease causing	Potential alteration	Highly	<1/1000	III

a Sequence comparison between Homo sapiens, Mus musculus, Danio rerio (zebrafish), Drosophila melanogaster (fruit fly), and Caenorhabditis elegans and Saccharomyces cerevisiae as shown in Fig. 2.

b Allele frequency in Taiwanese population (https://taiwanview.twbiobank.org.tw/browse38, accessed on 25 April 2019) [6].

c Classification of G6PD variants in the study according to the WHO definition [7].

d Two alleles in 1417 people with indeterminate sex.

Fig. 3. Schematic representation of alterations in G6PD coding regions and protein functional domains. (A) The coding region of the G6PD gene containing 13 exons. (B) The G6PD protein of 515 amino acids contains two binding domains, namely NAD(P)-binding domain (blue box, amino acids 25–210) and C-terminal domain (green box, amino acids 212–503), and two binding sites, namely NAD(P) binding site (left red box, amino acids 38–44) and G6P-binding site (middle red box, amino acids 198–206), and one dimer interface (right red box, amino acids 380–425). The five mutations were highlighted in black in the coding region and protein domains.
Acknowledgments

This research was supported by the Taipei City Government, Taiwan [grant number 10501-62-058], and Taipei City Hospital, Taiwan [grant number TPCH-103-002].

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References

[1] Y.H. Chiu, H.J. Chen, Y.C. Chang, Y.N. Liu, S.M. Kao, M.Y. Liu, et al., Applying a multiplexed primer extension method on dried blood spots increased the detection of carriers at risk of glucose-6-phosphate dehydrogenase deficiency in newborn screening program, Clin. Chim. Acta 495 (2019) 271–277. https://doi.org/10.1016/j.cca.2019.04.074.

[2] M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, et al., Clustal W and clustal X version 2.0. Bioinformatics 23 (2007) 2947–2948.

[3] S.E. Flanagan, A.M. Patch, S. Ellard, Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations, Genet. Test. Mol. Biomark. 14 (2010) 533–537. https://doi:10.1089/gtmb.2010.0036.

[4] J.M. Schwarz, D.N. Cooper, M. Schuelke, D. Seelow, MutationTaster2: mutation prediction for the deep-sequencing age, Nat. Methods 11 (2014) 361–362. https://doi:10.1038/nmeth.2890.

[5] F.O. Desmet, D. Hamroun, M. Lalande, G. Collod-Béroud, M. Claustres, C. Béroud, Human Splicing Finder: an online bioinformatics tool to predict splicing signals, Nucleic Acids Res. 37 (2009) e67. https://doi:10.1093/nar/gkp215.

[6] Taiwan Biobank, Genetic and Medical Information for Taiwan, 2019 accessed, https://taiwanview.twbiobank.org.tw/browse38. (Accessed 25 April 2019).

[7] M.D. Cappellini, G. Fiorelli, Glucose-6-phosphate dehydrogenase deficiency, Lancet 37 (2008) 64–74. https://doi:10.1016/S0140-6736(08)60073-2.

[8] S.W. Au, S. Gover, V.M. Lam, M.J. Adams, Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency, Structure 8 (2000) 293–303.

[9] H. Venselaar, T.A. Te Beek, R.K. Kuipers, M.L. Hekkelman, G. Vriend, Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces, BMC Bioinf. 11 (2010) 548. https://doi:10.1186/1471-2105-11-548.

[10] S.H. Chiang, M.L. Fan, K.J. Hsiao, External quality assurance programme for newborn screening of glucose-6-phosphate dehydrogenase deficiency, Ann. Acad. Med. Singapore 37 (2008) 84.

[11] J.R.C. Muniz, N.W. Szeto, R. Frise, W.H. Lee, X.S. Wang, B. Thony, et al., Role of protein structure in variant annotation: structural insight of mutations causing 6-pyruvoyl-tetrahydropterin synthase deficiency, Pathology 51 (2019) 274–280. https://doi:10.1016/j.pathol.2018.11.011.