Angle-dependent electron spin resonance of YbRh$_2$Si$_2$ measured with planar microwave resonators and in-situ rotation

Linda Bondorfa, Manfred Beutela, Markus Thiemanna, Martin Dressela, Daniel Bothnerb,1, Jörg Sichelschmidtc, Kristin Kliemtd, Cornelius Krellnerd, Marc Schefflera,*

a1. Physikalisches Institut, Universität Stuttgart, Germany
bPhysikalisches Institut and Center for Quantum Science (CQ) in LISA+, Universität Tübingen, Germany
cMax-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany
dGoethe-Universität, Frankfurt am Main, Germany

Abstract

We present a new experimental approach to investigate the magnetic properties of the anisotropic heavy-fermion system YbRh$_2$Si$_2$ as a function of crystallographic orientation. Angle-dependent electron spin resonance (ESR) measurements are performed at a low temperature of 1.6 K and at an ESR frequency of 4.4 GHz utilizing a superconducting planar microwave resonator in a 4He-cryostat in combination with in-situ sample rotation. The obtained ESR g-factor of YbRh$_2$Si$_2$ as a function of the crystallographic angle is consistent with results of previous measurements using conventional ESR spectrometers at higher frequencies and fields. Perspectives to implement this experimental approach into a dilution refrigerator and to reach the magnetically ordered phase of YbRh$_2$Si$_2$ are discussed.

Keywords: heavy fermion, YbRh$_2$Si$_2$, anisotropy, electron spin resonance, microwave chip

*Corresponding author
URL: scheffler@p1.physik.uni-stuttgart.de (Marc Scheffler)
1Present address: Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands

Preprint submitted to Elsevier November 17, 2017
1. Introduction

The tetragonal heavy-fermion metal YbRh$_2$Si$_2$ shows pronounced magnetic anisotropy [1 2 3] and is an intensively studied model system for quantum criticality [4]. It exhibits antiferromagnetic order at temperatures below 70 mK and in-plane magnetic fields below 60 mT [3]. Its Néel temperature T_N decreases with increasing field down to a quantum-critical point (with $T_N = 0$) induced by the external magnetic field of 60 mT (within the tetragonal ab-plane) or 660 mT (along the c-axis) [4 5]. Due to the presence of the quantum-critical point, the system shows pronounced non-Fermi-liquid properties [4 5]. As the antiferromagnetic state underlies the quantum-critical nature of YbRh$_2$Si$_2$, the details of the magnetic order are highly interesting in context of the peculiar properties of YbRh$_2$Si$_2$. However, due to major experimental challenges in commonly used methods such as neutron scattering [6], the magnetically ordered phase of YbRh$_2$Si$_2$ is not sufficiently investigated and understood yet. ESR could be a promising alternative method to elucidate details of the antiferromagnetic order, but conventional ESR spectrometers are limited in both temperature and magnetic field to energies much higher than the magnetic order of YbRh$_2$Si$_2$. Multiple ESR investigations on YbRh$_2$Si$_2$ have been performed [7 8 9 10 11], but they could not reach the mK temperature range that is required to address the regimes that are key to understanding the quantum-critical nature of YbRh$_2$Si$_2$. As the ESR response of YbRh$_2$Si$_2$ is a very interesting topic on its own [7] and as its possible relation to quantum criticality is not settled [12 13], ESR studies close to the quantum-critical point are also desired from a fundamental perspective of magnetic resonance. Planar microwave resonators can be used as ESR probes [14 15 16] for YbRh$_2$Si$_2$ to overcome the limitations of conventional ESR spectrometers: as such resonators [17 18 19 20] can be operated with a multimode measurement technique [14 21 22 23], they can simultaneously address multiple ESR frequencies and thus multiple magnetic magnetic fields in the phase diagram [14], and they can also be employed at mK temperatures [23 17 24 25 26 27].
2. Experiment

We performed microwave measurements on YbRh$_2$Si$_2$ inside a 4He-cryostat equipped with a superconducting electromagnet. The arrangement of microwave probe and sample is shown in Fig. 1(a): the flat YbRh$_2$Si$_2$ sample is kept at a small distance parallel to the microwave resonator chip (see Fig. 1(b)) and is mounted (see Fig. 1(c)) via a brass stamp to a commercial piezoelectric rotator [28], and thus can be rotated within the sample plane. The microwave chip with meander-type superconducting Nb resonator (see Fig. 1(b)) is installed in a brass box and connected via coaxial cables to the vector network analyzer for microwave transmission measurements.

In this arrangement of resonator and sample, precise ESR measurements on high-quality YbRh$_2$Si$_2$ single crystals [29] require sample dimensions of order one millimeter for the relevant surface, namely the ac-plane (or another plane that includes the c-axis). While such sample dimensions can readily be obtained for the ab-plane, growing a YbRh$_2$Si$_2$ crystal with millimeter dimension along the c-direction is challenging. This work is the first demonstration of an ESR measurement that combines a planar resonator and a YbRh$_2$Si$_2$ sample in ac-plane.
3. Results

Fig. 2 shows a typical transmission spectrum of the microwave resonator, and it clearly features sharp resonances of the first four harmonics with roughly equidistant resonance frequencies around 1.5, 2.9, 4.4, and 5.8 GHz. From such spectra, we determine the quality factor Q_n of the n-th mode through a Lorentzian fit of the resonance peak in the transmission signal. Q_n is defined as the ratio between resonance frequency f_n and bandwidth (resonance width at half maximum) Δf_n:

$$Q_n = \frac{f_n}{\Delta f_n} \quad (1)$$

The transmission in the frequency range close to a resonance peak is measured as a function of magnetic field, and a pronounced change of the resonance peak can be observed. Thus we obtain the field dependence of the quality factor, which is shown in Fig. 3 for different sample orientations. Q is generally decreasing with increasing field due to field-induced losses in the superconducting resonator [17, 30, 31, 32, 33] and due to the microwave charge response of the heavy
Figure 3: ESR in YbRh$_2$Si$_2$ at 1.6 K and 4.4 GHz. The quality factor Q as a function of external magnetic field and normalized to the zero-field value, shown for several angles Θ between the external field and the symmetry axis c of the crystal, exhibits a pronounced minimum at the ESR field B_0.

fermions $^{14, 26, 34, 35, 36}$, and additionally it has a dip at the resonance magnetic field B_0, indicating ESR absorption and thus the spin response of YbRh$_2$Si$_2$. As can be seen in Fig. 3, the resonance field B_0 increases if the angle Θ between the external magnetic field and the crystallographic c-axis is decreased from 90° (ab-plane) towards the c-axis.

After subtraction of the background the resonance magnetic field B_0 and ESR linewidth ΔB can be obtained through a fit of an inverse Dysonian function, which describes the absorbed power $P(B)$ at ESR in dependence of the magnetic field strength 37

$$P(B) = \frac{\Delta B + \alpha(B - B_0)}{4(B - B_0)^2 + \Delta B^2} + \frac{\Delta B - \alpha(B + B_0)}{4(B + B_0)^2 + \Delta B^2}. \quad (2)$$

The obtained B_0 is inserted into the ESR resonance condition to determine the ESR g-factor (with Planck constant \hbar and Bohr magneton μ_B):

$$g = \frac{\hbar \nu}{B_0 \mu_B}. \quad (3)$$
Figure 4 shows the ESR g-factor of the angle-dependent measurement at 1.6 K and 4.4 GHz between $\Theta = 104^\circ$ and $\Theta = 36^\circ$. There is a maximum around $\Theta = 90^\circ$, and g continuously decreases when the crystal is rotated such that the orientation of the magnetic field moves from the ab-plane towards the c-axis. This evolution is consistent with data obtained previously at higher temperatures (5 K) and higher field with a conventional X-band spectrometer [8], which are shown as stars in Fig. 4 for comparison. The slightly higher absolute values of g for the X-band measurement can be explained by the well-established decrease of the g-factor with decreasing temperature [7, 14].

4. Conclusions

The presented results prove that planar resonators are sensitive enough for ESR measurements of YbRh$_2$Si$_2$ for magnetic-field directions within the ac-plane. We performed the first ESR measurement using a superconducting coplanar microwave resonator in combination with in-situ sample rotation, and this
also includes the lowest temperature of any angle-dependent ESR measurement on YbRh$_2$Si$_2$ so far. Our results agree well with former results obtained by conventional techniques at higher frequencies and higher temperatures.

To investigate the magnetically ordered phase of YbRh$_2$Si$_2$ below 70 mK and 60 mT, this experimental approach for angle-dependent ESR measurements can now be implemented inside a dilution refrigerator. There the technical situation features additional challenges due to the smaller available cooling power (to be considered for the wiring and electrical power needed to drive the rotator). On the other hand, the generally increasing ESR intensity upon cooling promises strong signal for such an experiment.

Acknowledgments

We thank G. Untereiner for support during preparation of experiments and R. Kleiner and D. Koelle for support during resonator fabrication. We thank the Deutsche Forschungsgemeinschaft (DFG, projects KR 3831/4-1, SCHE 1580/2-1, SI 1339/1-1) for financial support of this project.

References

References

[1] O. Trovarelli, C. Geibel, S. Mederle, C. Langhammer, F. M. Grosche, P. Gegenwart, M. Lang, G. Sparn, F. Steglich, YbRh$_2$Si$_2$: Pronounced non-fermi-liquid effects above a low-lying magnetic phase transition, Phys. Rev. Lett. 85 (2000) 626–629. doi:10.1103/PhysRevLett.85.626

[2] O. Trovarelli, C. Geibel, C. Langhammer, S. Mederle, P. Gegenwart, F. Grosche, M. Lang, G. Sparn, F. Steglich, Non-fermi-liquid effects at ambient pressure in the stoichiometric heavy-fermion compound YbRh$_2$Si$_2$, Physica B: Condensed Matter 281 (2000) 372–373. doi:10.1016/S0921-4526(99)01124-2
[3] P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, F. Steglich, Magnetic-field induced quantum critical point in YbRh$_2$Si$_2$, Phys. Rev. Lett. 89 (2002) 056402. doi:10.1103/PhysRevLett.89.056402.

[4] P. Gegenwart, Q. Si, F. Steglich, Quantum critical in heavy fermion metals, Nature Physics 4 (2008) 186–197. doi:10.1038/nphys892.

[5] J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, P. Coleman, The break-up of heavy electrons at a quantum critical point, Nature 424 (2003) 524–527. doi:10.1038/nature01774.

[6] C. Stock, C. Broholm, F. Demmel, J. Van Duijn, J. Taylor, H. Kang, R. Hu, C. Petrovic, From incommensurate correlations to mesoscopic spin resonance in YbRh$_2$Si$_2$, Phys. Rev. Lett. 109 (2012) 127201. doi:10.1103/PhysRevLett.109.127201.

[7] J. Sichelschmidt, V. A. Ivanshin, J. Ferstl, C. Geibel, F. Steglich, Low temperature electron spin resonance of the Kondo ion in a heavy fermion metal: YbRh$_2$Si$_2$, Phys. Rev. Lett. 91 (2003) 156401. doi:10.1103/PhysRevLett.91.156401.

[8] J. Sichelschmidt, J. Wykhoff, H.-A. Krug von Nidda, J. Ferstl, C. Geibel, F. Steglich, Spin dynamics of spin dynamics of YbRh$_2$Si$_2$ observed by electron spin resonance, Journal of Physics: Condensed Matter 19 (2007) 116204. doi:10.1088/0953-8984/19/11/116204.

[9] J. Wykhoff, J. Sichelschmidt, G. Lapertot, G. Knebel, J. Flouquet, I. I. Fazlishanov, H.-A. Krug von Nidda, C. Krellner, C. Geibel, F. Steglich, On the local and itinerant properties of the ESR in YbRh$_2$Si$_2$, Science and Technology of Advanced Materials 8 (2007) 389–392. doi:10.1016/j.stam.2007.07.005.
[10] J. G. S. Duque, E. M. Bittar, C. Adriano, C. Giles, L. M. Holanda, R. Lora-Serrano, P. G. Pagliuso, C. Rettori, C. A. Pérez, R. Hu, C. Petrovic, S. Maquilon, Z. Fisk, D. L. Huber, S. B. Oseroff, Magnetic field dependence and bottlenecklike behavior of the ESR spectra in YbRh$_2$Si$_2$, Phys. Rev. B 79 (2009) 035122. doi:10.1103/PhysRevB.79.035122

[11] U. Schaufuß, V. Kataev, A. A. Zvyagin, B. Büchner, J. Sichelschmidt, J. Wykhoff, C. Krellner, C. Geibel, F. Steglich, Evolution of the Kondo state of YbRh$_2$Si$_2$ probed by high-field ESR, Phys. Rev. Lett. 102 (2009) 076405. doi:10.1103/PhysRevLett.102.076405

[12] B. I. Kochelaev, S. I. Belov, A. M. Skvortsova, A. S. Kutuzov, J. Sichelschmidt, J. Wykhoff, C. Geibel, F. Steglich, Why could electron spin resonance be observed in a heavy fermion Kondo lattice?, The European Physical Journal B 72 (2009) 485–489. doi:10.1140/epjb/e2009-00386-9

[13] P. Wölflle, E. Abrahams, Phenomenology of ESR in heavy-fermion systems: Fermi-liquid and non-fermi-liquid regimes, Phys. Rev. B 80 (2009) 235112. doi:10.1103/PhysRevB.80.235112

[14] M. Scheffler, K. Schlegel, C. Clauss, D. Hafner, C. Fella, M. Dressel, M. Jourdan, J. Sichelschmidt, C. Krellner, C. Geibel, F. Steglich, Microwave spectroscopy on heavy-fermion systems: Probing the dynamics of charges and magnetic moments, Physica Status Solidi B 250 (2013) 439–449. doi:10.1002/pssb.201200925

[15] M. Javaheri Rahim, T. Lehleiter, D. Bothner, C. Krellner, D. Koelle, R. Kleiner, M. Dressel, M. Scheffler, Metallic coplanar resonators optimized for low-temperature measurements, J. Phys. D: Appl. Phys. 49 (2016) 1–6. doi:10.1088/0022-3727/49/39/395501

[16] A. Ghirri, C. Bonizzoni, M. Righi, F. Fedele, G. Timco, R. Winpenny, M. Affronte, Microstrip resonators and broadband lines for x-band epr
spectroscopy of molecular nanomagnets, Applied Magnetic Resonance 46 (2015) 749–756. doi:10.1007/s00723-015-0672-5

[17] L. Frunzio, A. Wallraff, D. Schuster, J. Majer, R. Schoelkopf, Fabrication and characterization of superconducting circuit qed devices for quantum computation, IEEE Transactions on Applied Superconductivity 15 (2005) 860–863. doi:10.1109/TASC.2005.850084

[18] M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink, P. J. Leek, G. Puebla, L. Steffen, A. Wallraff, Coplanar waveguide resonators for circuit quantum electrodynamics, Journal of Applied Physics 104 (2008) 113904. doi:10.1063/1.3010859

[19] C. Clauss, D. Bothner, D. Koelle, R. Kleiner, L. Bogani, M. Scheffler, M. Dressel, Broadband electron spin resonance from 500 MHz to 40 GHz using superconducting coplanar waveguides, Applied Physics Letters 102 (2013) 162601. doi:10.1063/1.4802956

[20] H. Malissa, D. I. Schuster, A. M. Tyryshkin, A. A. Houck, S. A. Lyon, Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy, Review of Scientific Instruments 84 (2013) 025116. doi:10.1063/1.4792205

[21] M. S. DiIorio, A. C. Anderson, B. Y. Tsaur, rf surface resistance of Y-Ba-Cu-O thin films, Phys. Rev. B 38 (1988) 7019–7022. doi:10.1103/PhysRevB.38.7019

[22] D. Hafner, M. Dressel, M. Scheffler, Surface-resistance measurements using superconducting stripline resonators, Rev. Sci. Instrum. 85 (2014) 014702. doi:10.1063/1.4856475

[23] M. Thiemann, M. H. Beutel, M. Dressel, N. R. Lee-Hone, D. M. Broun, E. Fillis-Tsirakis, H. Boschker, J. Mannhart, M. Scheffler, Single gap superconductivity in doped SrTiO3, ArXiv e-prints arXiv:1703.04716
[24] Y. Wiemann, J. Simmendinger, C. Clauss, L. Bogani, D. Bothner, D. Koelle, R. Kleiner, M. Dressel, M. Scheffler, Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides, Appl. Phys. Lett. 106 (2015) 193505. doi:10.1063/1.4921231

[25] M. Scheffler, M. M. Felger, M. Thiemann, D. Hafner, K. Schlegel, M. Dressel, K. S. Ilin, M. Siegel, S. Seiro, C. Geibel, F. Steglich, Broadband corbino spectroscopy and stripline resonators to study the microwave properties of superconductors, Acta IMEKO 4 (2015) 47. doi:10.21014/acta_imeko.v4i3.247

[26] K. Parkkinen, M. Dressel, K. Kliemt, C. Krellner, C. Geibel, F. Steglich, M. Scheffler, Signatures of phase transitions in the microwave response of YbRh$_2$Si$_2$, Physics Procedia 75 (2015) 340–347. doi:10.1016/j.phpro.2015.12.040

[27] W. Voesch, M. Thiemann, D. Bothner, M. Dressel, M. Scheffler, On-chip ESR measurements of DPPH at mK temperatures, Physics Procedia 75 (2015) 503–510. doi:10.1016/j.phpro.2015.12.063

[28] Attocube ANRv51/RES.

[29] C. Krellner, S. Taube, T. Westerkamp, Z. Hossain, C. Geibel, Single-crystal growth of YbRh$_2$Si$_2$ and YbIr$_2$Si$_2$, Philosophical Magazine 92 (2012) 2508–2523. doi:10.1080/14786435.2012.669066

[30] D. Bothner, T. Gaber, M. Kemmler, D. Koelle, R. Kleiner, S. Wünsch, M. Siegel, Magnetic hysteresis effects in superconducting coplanar microwave resonators, Phys. Rev. B 86 (2012) 014517. doi:10.1103/PhysRevB.86.014517

[31] S. E. de Graaf, A. V. Danilov, A. Adamyan, T. Bauch, S. E. Kubatkin, Magnetic field resilient superconducting fractal resonators for coupling to
free spins, Journal of Applied Physics 112 (2012) 123905. doi:10.1063/1.4769208

[32] D. Bothner, C. Clauss, E. Koroknay, M. Kemmler, T. Gaber, M. Jetter, M. Scheffler, P. Michler, M. Dressel, D. Koelle, R. Kleiner, Reducing vortex losses in superconducting microwave resonators with microsphere patterned antidot arrays, Applied Physics Letters 100 (2012) 012601. doi:10.1063/1.3673869.

[33] N. G. Ebensperger, M. Thiemann, M. Dressel, M. Scheffler, Superconducting Pb stripline resonators in parallel magnetic field and their application for microwave spectroscopy, Supercond. Sci. Technol. 29 (2016) 115004. doi:10.1088/0953-2048/29/11/115004.

[34] L. Degiorgi, The electrodynamic response of heavy-electron compounds, Rev. Mod. Phys. 71 (1999) 687–734. doi:10.1103/RevModPhys.71.687.

[35] M. Scheffler, M. Dressel, M. Jourdan, H. Adrian, Extremely slow Drude relaxation of correlated electrons, Nature 438 (2005) 1135. doi:10.1038/nature04232.

[36] M. Scheffler, M. Dressel, M. Jourdan, Microwave conductivity of heavy fermions in UPd2Al3, The European Physical Journal B 74 (2010) 331–338. doi:10.1140/epjb/e2010-00085-6.

[37] J. P. Joshi, S. Bhat, On the analysis of broad Dysonian electron paramagnetic resonance spectra, Journal of Magnetic Resonance 168 (2004) 284–287. doi:10.1016/j.jmr.2004.03.018.