Supplementary Information

Graphene tailored by Fe$_3$O$_4$ nanoparticles: low-adhesive and durable superhydrophobic coatings

Muqiu Wu,a Rong An,*ab Sudheer Kumar Yadav,*a Xiaohong Jiang c

a Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, P.R. China. *E-mail: ran@njust.edu.cn.

Phone: +86-25-83403400. Fax: +86-25-83403400 (R.A.)

b Center for Nanotechnology and Physical Institute, University of Münster, 48149 Münster, Germany

c International Chinese-Belarusian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, Nanjing 210094, P.R. China

210094, P.R. China

Figure S1. Variation of water static contact angles on (a) different FLG (0.1, 0.5, 0.7 g) coatings, without Fe$_3$O$_4$, and (b) different Fe$_3$O$_4$ (0.1, 0.5, 0.7, 1.0 g) coatings, without FLG, with 1 g PDMS as glue. (c) 1.0 g Fe$_3$O$_4$ with varying amounts of FLG (0.1, 0.2, 0.3, 0.4 g) in 20 mL hexane, with 1 g PDMS as glue.
Figure S2. X-ray powder diffraction (XRD) pattern for as-synthesized Fe$_3$O$_4$ nanoparticles.

Figure S3. SEM images of bare Fe$_3$O$_4$, FLG, and Fe$_3$O$_4$/FLG hybrid coatings at low resolution, showing the presence of graphene sheets. Arrows show some graphene sheets. Scale bars are 25 μm.
Fe₂O₃ • 0.1

Fe₂O₃ • 0.5

Fe₂O₃ • 0.7

Fe₂O₃ • 1.0
Figure S4. (a) XPS survey spectra of Fe$_3$O$_4$/FLG hybrid coatings, and (b)–(h) their high resolution spectra for C 1s and O 1s respectively.
Figure S5. Cross-sectional views of a water droplet (∼5 μL) during an approach/separation cycle on the Fe₃O₄/FLG hybrid coating surfaces: (a) Fe₃O₄-1.5, (b) Fe₃O₄-1.8, and (c) Fe₃O₄-2.1.

Figure S6. The self-cleaning performance of bare Fe₃O₄, FLG, and Fe₃O₄/FLG hybrid coating surfaces tested by sand dust.