Longicorn beetles (Coleoptera: Disteniidae, Cerambycidae) of the Russky Island (Primorsky Krai, Russia)

NIKOLAY S. ANISIMOVA & VITALY G. BEZBORODOV

1 Federal Scientific Center All-Russian Scientific Research Institute of Soybean, Ignatevskoye Shosse 19, Blagoveschensk 675027 Russia.
2 Amur Branch of the Botanical Garden-Institute FEB RAS, Ignatevskoye Shosse 2-d km, Blagoveschensk 675000 Russia.

*Corresponding Author: e-mail: havamal1@mail.ru

Received: 13 January 2021 | Accepted by V. Pešić: 17 February 2021 | Published online: 27 February 2021.

Russky Island was a restricted military area for most of the 20th century (1935–1997). Furthermore, the ecosystems of the Island were significantly transformed by intensive deforestation in the late 19th and early 20th centuries (Ganzei, 2016). In 2012, opening the bridge between the mainland and Russky Island has offered great opportunities for researchers and tourists. Meanwhile, the next stage of anthropogenic pressure on the Island’s nature has occurred.

The biodiversity and ecological features of many groups of insects, including longicorn beetles of the Island’s fauna, have been studied insufficiently. Our analysis of the entomological collections of the Federal Scientific Center of the East Asia Territorial Biodiversity FEB RAS (Vladivostok) and Institute of Systematics and Ecology of Animals SB RAS (Novosibirsk), containing extensive material from Primorsky Krai, did not reveal any longicorn beetles specimens from Russky Island. No research publications focused on the longicorn beetles from this territory are currently available.

This is the first report to present data on species composition, the seasonal dynamics of imago activity, as well as trophic and zoogeographic features of the longicorn beetle fauna of Russky Island.

Russky Island is located in the Sea of Japan in Peter the Great Bay and is separated from the Muravyov-Amursky Peninsula by the Eastern Bosphorus Strait (800 m to the South) (Fig. 1). It administratively belongs to the urban district of Vladivostok. It is the largest Island in the Empress Eugénie Archipelago. Its total area is 99.47 km². The terrain is hilly, with heights up to 291 m. The climate is temperate monsoon, with the average annual precipitation of 830 mm, of which 85% occurs during the summer season. The vegetation is mainly represented by forests, which occupied about 75% of the total area of the island in 2014 (Ganzei, 2016). The flora of Russky Island includes 859 species of vascular plants belonging to 123 families. Historically, the Island was covered by Manchurian fir-broad-leaved forests, which were transformed into broad-leaved forests under anthropogenic pressure. The broad-leaved low forests are found on the windward slopes of peninsulas and capes. The multi-species broad-leaved forest communities of the Inland include Quercus mongolica, Tillia taquetii, T. amurensis, Acer pseudosieboldianum, Kalopanax septemlobus, Cerasus sargenti, Carpinus cordata, Fraxinus rhynchophylla, and Juglans mandshurica (Nedoluzhko, Denisov, 2001).

Longicorn beetles specimens were collected on Russky Island by V. Bezborodov in 2014 and 2019, as well as by S. Samokhin in 2015. The beetles were either picked manually from flowers and tree trunks or...
captured in flight using a butterfly net, or captured using a light system. All the material studied is stored in the authors' personal collections.

Information on the distribution and trophic relationships of species is presented according to the main literary sources (Danilevsky, 2014, 2020a, 2020b; Cherepanov, 1979, 1981, 1982, 1983, 1984, 1985, 1996; Löbl, Smetana, 2010; Vorontsov, 1982).

The data on species phenology were obtained by the authors during long-term observations in the Far East (Anisimov et al., 2018; Anisimov, Bezborodov, 2020a, 2020b; Bezborodov, Anisimov, 2018), as well as literature analysis (Danilevsky, 2014; Cherepanov, 1979, 1981, 1982, 1983, 1984, 1996; Tatarinova et al., 2007).

In the annotated list and in Fig. 1, the collection points are denoted with the following numbers:

1 – Rynda Bay: broad-leaved low forests of *Ulmus japonica*, *U. pumila* and *Quercus mongolica* with undergrowth of *Lespedeza bicolor*, on the coast: rosehip *Rosa rugosa*;
2, 3 – The isthmus of the Kondratenko Peninsula: pine-broadleaved forest of *Ulmus japonica*, *Quercus mongolica*, *Phellodendron amurense*, *Fraxinus mandshurica*, *Tilia taquetit*, *Maackia amurensis* and *Pinus koraiensis*;

4 – Fort No. 9 (“Prince Rurik's Fort”): sparse forest of *Quercus mongolica* with undergrowth of *Lespedeza bicolor* and *Artemisia sp.*;
5 – an abandoned military unit: broad-leaved forest of *Quercus mongolica*, *Ulmus japonica*, *Fraxinus mandshurica* and *Tilia amurensis*;

6 – The Tobizin Peninsula: sparse forest of *Quercus mongolica* and *Betula dahurica* with undergrowth of *Artemisia sp.* By the sea: meadow formed by *Calamagrostis neglecta* and *Angelica dahurica*;
7 – The Vyatlin Peninsula: sparse forest of *Quercus mongolica* and *Betula dahurica* with *Lespedeza bicolor* and *Angelica czerniaeia*;

8 – Bogdanovich Bay: sparse forest of *Quercus mongolica* with undergrowth of *Lespedeza bicolor*;
9 – the surroundings of battery No. 367 (“Peshchernaya” battery): sparse forest of *Quercus mongolica* and *Betula dahurica* with undergrowth of *Lespedeza bicolor* and *Artemisia sp.*

![Figure 1. Locality map of the longicorn beetles on Russky Island.](image-url)
In order to reduce the amount of text in the annotated listing, only the name of the collector S. Samokhin is indicated; all other material was collected by V. Bezborodov.

The taxonomic nomenclature is provided according to I. Löbl and A. Smetana (Löbl, Smetana, 2010), as well as M. L. Danilevsky (Danilevsky, 2020b).

Annotated list

Disteniidae Thomson, 1861
Disteniini Thomson, 1861

Distenia Lepeletier & Audinet-Serville, 1828

Distenia gracilis (Blessig, 1872)
Material examined. 2: 2 ex., 5-6.VIII.2015, S. Samokhin leg.
Distribution. Russia (Far East), China, Korea.
Remarks. Larvae develop in Alnus sp., Acer sp., Salix sp., Quercus sp., and Chosenia arbutifolia. Adults are active in July and August.

Cerambycidae Latreille, 1802
Lepturinae Latreille, 1802
Rhagioninae Kirby, 1837

Stenocorus Geoffroy, 1762

Stenocorus amurensis (Kraatz, 1879)
Material examined. 5: 3 ex., 7.VII.2019; 6: 2 ex., 24.VI.2014; 8: 1 ex., 7.VII.2019.
Distribution. Russia (Far East), China, Korea.
Remarks. Larvae develop in Ulmus sp., Acer sp., Quercus sp., Prunus sp., Phellodendron amurense, and Juglans mandshurica. Adults are active from early June to late August.

Paragaurotes Plavilstshikov, 1921

Paragaurotes ussuriensis (Blessig, 1873)
Material examined. 5: 2 ex., 7.VII.2019.
Distribution. Russia (Far East), China, Korea.
Remarks. Larvae develop in Juglans mandshurica, less often Ulmus sp., Acer sp., Quercus sp., Prunus sp., Alnus sp., Prunus armeniaca, and Eleutherococcus sp. Adults are active in June and July.

Dinoptera Mulsant, 1863

Dinoptera minuta minuta (Gebler, 1832)
Material examined. 3: 2 ex., 6.VII.2019; 4: 2 ex., 4-6.VII.2019; 5: 2 ex., 7.VII.2019; 7: 3 ex., 4-6.VII.2019; 9: 1 ex., 4-6.VII.2019.
Distribution. Russia (Eastern Siberia, Far East), Mongolia, China, Korea.
Remarks. Larvae develop in Fraxinus sp., Acer sp., and Juglans mandshurica. Adults are active from late May to the second half of July.

Pseudosieversia Pic 1902

Pseudosieversia rufa (Kraatz, 1879)
Material examined. 3: 1 ex., 6.VII.2019.
Distribution. Russia (Far East), China, Korea.
Remarks. Larvae develop in Juglans mandshurica and Fraxinus mandshurica. Adults are active from late June to early August.
**Pidonia Mulsant, 1863**

*Pidonia alticollis* (Kraatz, 1879)
**Material examined.** 7: 1 ex., 4-6.VII.2019.
**Distribution.** Russia (Far East), China, Korea.
**Remarks.** Larvae develop in *Acer* sp. Adults are active from early June to early July.

*Pidonia amurensis* (Pic, 1900)
**Material examined.** 2: 1 ex., 4-6.VII.2019; 3: 2 ex., 6.VII.2019.
**Distribution.** Russia (Far East), China, Korea.
**Remarks.** Larvae develop in *Salix* sp., *Alnus* sp., *Prunus maackii*, and *Abies* sp. Adults are active in June and July.

*Pidonia debilis* (Kraatz, 1879)
**Material examined.** 4: 1 ex., 4-6.VII.2019.
**Distribution.** Russia (Far East), China, Korea, Japan.
**Remarks.** Larvae develop in *Fraxinus* sp., and *Acer tegmentosum*. Adults are active from late June to early August.

*Pidonia puziloi* (Solsky, 1873)
**Material examined.** 3: 1 ex., 6.VII.2019.
**Distribution.** Russia (Far East), China, Korea.
**Remarks.** Larvae develop in *Pyrus* sp., *Prunus* sp., *Fraxinus* sp., and *Ulmus* sp. Adults are active from early June to the second half of July.

**Lepturini Latreille, 1802**

**Grammoptera Dejean, 1835**

*Grammoptera gracilis* Brancsik, 1914
**Material examined.** 7: 1 ex., 4-6.VII.2019.
**Distribution.** Russia (Far East), China, Korea.
**Remarks.** Larvae develop in *Euonymus* sp., *Viburnum* sp., *Phellodendron amurense*, *Tilia* sp., *Maackia amurensis*, *Fraxinus* sp., *Pyrus* sp., *Malus* sp., *Juglans mandshurica*, and *Carpinus* sp. Imago activity starts in late May and ends in July.

**Nivellia Mulsant, 1863**

*Nivellia sanguinosa* (Gyllenhal, 1827)
**Material examined.** 2: 1 ex., 4-6.VII.2019; 5: 1 ex., 7.VII.2019.
**Distribution.** Germany, Austria, Serbia, Romania, Slovakia, Poland, Norway, Sweden, Finland, Estonia, Belarus, Ukraine, Russia, Mongolia, China, Korea, Japan.
**Remarks.** Larvae develop in deciduous trees (*Salix* sp., *Betula* sp., *Prunus* sp., *Corylus* sp., *Carpinus* sp., *Rhododendron* sp., and *Sorbus* sp.) and also in conifers (*Taxus* sp., *Picea* sp., and *Larix* sp.). Adults are active from late May to August.

**Strangalomorpha Solsky, 1873**

*Strangalomorpha tenuis tenuis* Solsky, 1873
**Material examined.** 2: 1 ex., 4-6.VII.2019; 3: 2 ex., 6.VII.2019; 5: 1 ex., 7.VII.2019; 7: 2 ex., 4-6.VII.2019; 9: 6 ex., 4-6.VII.2019.
**Distribution.** Russia (Far East), China, Korea.
**Remarks.** Larvae develop in deciduous trees: *Juglans mandshurica*, *Acer* sp., *Corylus* sp., *Salix* sp., and *Quercus* sp. Adults are active from mid-June to August.

**Alosterna Mulsant, 1863**
LONGICORN BEETLES OF THE RUSSKY ISLAND

**Alosterna diversipes** Pic, 1929

**Material examined.** 3: 1 ex., 6.VII.2019; 5: 1 ex., 7.VII.2019; 7: 1 ex., 4-6.VII.2019.

**Distribution.** Russia (Far East), China, Korea.

**Remarks.** Larvae develop in *Juglans mandshurica*, *Acer* sp., *Quercus* sp., *Populus* sp., *Picea* sp., and *Abies* sp. Imago activity starts in May and ends in July.

**Pseudalosterna Plavilstshikov, 1934**

**Pseudalosterna elegantula** (Kraatz, 1879)

**Material examined.** 8: 1 ex., 7.VII.2019.

**Distribution.** Russia (Far East), China, Korea.

**Remarks.** Larvae develop in *Salix* sp., and *Abies* sp. Imago activity starts in June and ends in the first half of August.

**Anoplodera Mulsant, 1839**

**Anoplodera cyanea** (Gebler, 1832)

**Material examined.** 2: 1 ex., 4-6.VII.2019; 4: 2 ex., 4-6.VII.2019; 5: 2 ex., 7.VII.2019; 7: 2 ex., 4-6.VII.2019; 9: 2 ex., 4-6.VII.2019.

**Distribution.** Russia (Eastern Siberia, Far East), Mongolia, China, Korea, Japan.

**Remarks.** Larvae develop in *Pinus* sp., *Picea* sp., *Abies* sp. and occasionally in *Populus* sp. Adults are active from early June to mid-August.

**Stictoleptura Casey, 1924**

**Stictoleptura dichroa** (Blanchard, 1871)

**Material examined.** 5: 1 ex., 7.VII.2019; 8: 1 ex., 7.VII.2019.

**Distribution.** Russia (Eastern Siberia, Far East), China, Korea, Japan.

**Remarks.** Larvae develop in *Pinus* sp., *Picea* sp., *Abies* sp. and occasionally in *Populus* sp. Adults are active from mid-June to late September.

**Stictoleptura variicornis** (Dalman, 1817)

**Material examined.** 8: 2 ex., 7.VII.2019.

**Distribution.** Poland, Estonia, Lithuania, Latvia, Belarus, Ukraine, Russia, Kazakhstan, Mongolia, China, Korea, Japan.

**Remarks.** Larvae develop in *Pinus* sp., *Picea* sp., *Abies* sp. and also in *Betula* sp., *Salix* sp., *Tilia* sp. Adults are active from mid-June to late August.

**Anastrangalia Casey 1924**

**Anastrangalia scotodes continentalis** (Plavilstshikov, 1936)

**Material examined.** 3: 1 ex., 6.VII.2019; 4: 11 ex., 4-6.VII.2019; 7: 3 ex., 4-6.VII.2019; 9: 1 ex., 4-6.VII.2019.

**Distribution.** Russia (Far East), China, Korea.

**Remarks.** Larvae develop in *Picea* sp., *Abies* sp., *Larix* sp., *Pinus* sp., and *Juniperus* sp. Adults are active from early June to mid-August.

**Anastrangalia sequensi** (Reitter, 1898)

**Material examined.** 3: 1 ex., 6.VII.2019.

**Distribution.** Russia (Asian part), Kazakhstan, Mongolia, China, Korea, Japan.

**Remarks.** Larvae develop in coniferous trees: *Picea* sp., *Abies* sp., *Larix* sp., and *Pinus* sp. Adults are active from late May to August.

**Oedecnema** Thomson, 1857
Oedecnema gebleri Ganglbauer, 1889

Material examined. 4: 1 ex., 4-6.VII.2019; 5: 3 ex., 7.VII.2019; 7: 1 ex., 4-6.VII.2019.

Distribution. Ukraine, Russia, Kazakhstan, Mongolia, China, Korea.

Remarks. Larvae develop in Quercus sp., Betula sp., Tilia sp., Salix sp., Prunus sp., Abies sp., and Pinus sp. Adults are active from late May to early August.

Leptura Linnaeus, 1758

Leptura thoracica Creutzer, 1799

Material examined. 1: 1 ex., 7.VII.2019; 5: 3 ex., 7.VII.2019; 6: 2 ex., 24.VI.2014.

Distribution. Slovenia, Croatia, Bosnia and Herzegovina, Serbia, Romania, Slovakia, Poland, Finland, Estonia, Lithuania, Latvia, Belarus, Ukraine, Russia, Kazakhstan, Mongolia, Korea, Japan.

Remarks. Larvae develop in deciduous trees: Betula sp., Tilia sp., Acer sp., Salix sp., Quercus sp., and Juglans mandshurica. Adults are active from mid-June to late August.

Leptura annularis annularis Fabricius, 1801

Material examined. 1: 6 ex., 7.VII.2019; 3: 2 ex., 6.VII.2019; 5: 5 ex., 7.VII.2019; 6: 1 ex., 24.VI.2014.

Distribution. Europe, Russia, Kazakhstan, Mongolia, China, Korea.

Remarks. Larvae develop in deciduous trees (Alnus sp., Betula sp., Populus sp., Salix sp., Tilia sp., Acer sp., Quercus sp., Corylus sp., Prunus sp., Sorbus sp.) and occasionally in conifers (Abies sp., Pinus sp., Picea sp.). Adults are active from late May to late August.

Leptura duodecimguttata Fabricius, 1801

Material examined. 5: 2 ex., 7.VII.2019.

Distribution. Russia (Asian part), Kazakhstan, Mongolia, China, Japan.

Remarks. Larvae develop in Quercus sp., Betula sp., Populus sp., Salix sp., Prunus sp., and Alnus sp. Adults are active from late May to early August.

Leptura aethiops Poda 1761

Material examined. 1: 2 ex., 7.VII.2019; 2: 2 ex., 4-6.VII.2019; 3: 2 ex., 6.VII.2019; 4: 2 ex., 4-6.VII.2019; 7: 2 ex., 4-6.VII.2019.

Distribution. Europe, Russia, Kazakhstan, Mongolia, China, Korea, Japan.

Remarks. Larvae develop in deciduous trees (Alnus sp., Betula sp., Populus sp., Salix sp., Quercus sp., Acer sp., and Corylus sp.) and occasionally in conifers (Pinus sp.). Adults are active from late May to early August.

Strangalia Dejean, 1835

Strangalia attenuata (Linnaeus, 1758)

Material examined. 3: 1 ex., 6.VII.2019.

Distribution. Europe, Russia, Transcaucasia, Iran, Turkey, Kazakhstan, Mongolia, China, Korea, Japan.

Remarks. Larvae develop in Betula sp., Quercus sp., Tilia sp., Corylus sp. and occasionally in Pinus sp. Adults are active from early June to early September.

Necydalinae Latreille, 1825

Necydalini Latreille, 1825

Necydis Linnaeus, 1758

Necydalis pennata Lewis, 1879

Material examined. 1: 1 ex., 7.VII.2019.

Distribution. Russia (Far East), China, Korea, Japan.

Remarks. Larvae develop in Alnus sp., Betula sp., Prunus sp., Ulmus sp., Quercus sp., Tilia sp., Acer sp., Fraxinus sp., and Prunus armeniaca. Imago activity starts in June and ends in late August.

Spondylidinae Audinet-Serville, 1832
LONGICORN BEETLES OF THE RUSSKY ISLAND

Asemini Thomson, 1860

Arhopalus Audinet-Serville, 1834

Arhopalus rusticus rusticus (Linnaeus, 1758)

Material examined. 2: 1 ex., 5-6.VIII.2015, S. Samokhin leg.

Distribution. Europe, Russia, Transcaucasia, Turkey, Iran, Tajikistan, Kazakhstan, Mongolia, China, Korea, Japan, Morocco.

Remarks. Larvae develop in Pinus sp., Picea sp., Abies sp., and Larix sp. Adults are active from early June to early September.

Cerambycinae Latreille, 1802

Hesperophanini Mulsant, 1839

Trichoferus Wollaston, 1854

Trichoferus campestris (Faldermann, 1835)

Material examined. 5: 2 ex., 7.VII.2019.

Distribution. Central and Eastern Europe, Russia, Transcaucasia, Turkey, Iran, Turkmenistan, Tajikistan, Kazakhstan, Kyrgyzstan, Mongolia, China, Korea, Japan.

Remarks. Larvae develop in deciduous trees (Quercus sp., Populus sp., and Sorbus alnifolia) and herbaceous plants (Astragalus sp.). Adults are active from late May to early August.

Purpuricenini Thomson, 1864

Amarysius Fairmaire, 1888

Amarysius sanguinipennis (Blessig, 1872)

Material examined. 3: 1 ex., 6.VII.2019.

Distribution. Russia, Kazakhstan, Mongolia, China, Korea, Japan.

Remarks. Larvae develop in Quercus sp., Acer sp., Lespedeza sp., Corylus sp., and Fraxinus sp. Adults are active from early June to August.

Callichromatini Swainson & Shuckard, 1840

Chloridolum Thomson, 1864

Chloridolum sieversi (Ganglbauer, 1886)

Material examined. 2: 1 ex., 5-6.VIII.2015, S. Samokhin leg.

Distribution. Russia (Far East), China, Korea, Japan.

Remarks. Larvae develop in Juglans mandshurica. Adults are active in August and the first half of September.

Molorchini Gistel, 1848

Molorchus Fabricius, 1793

Molorchus minor minor (Linnaeus, 1758)

Material examined. 4: 1 ex., 4-6.VII.2019.

Distribution. Europe, Russia, Turkey, Kazakhstan, Mongolia, China, Korea, Japan.

Remarks. Larvae develop in Picea sp., Abies sp., Pinus sp., Larix sp., Cupressus sp., Juglans sp., Carpinus sp., Betula sp., Ulmus sp., Crataegus sp., and Frangula sp. Imago activity starts in late May and ends in July.

Callidiini Kirby, 1837

Callidium Fabricius, 1775
**Callidium violaceum** (Linnaeus, 1758)

**Material examined.** 3: 2 ex., 6.VII.2019.

**Distribution.** Europe, Russia, Kazakhstan, Mongolia, China, Korea, Japan, North America.

**Remarks.** Larvae develop in *Picea* sp.; less often, in *Abies* sp., *Pinus* sp., *Larix* sp., *Salix* sp., and *Alnus* sp. Imago activity starts in the second half of May and ends in mid-August.

**Oupyrrhidium Pic, 1900**

**Oupyrrhidium cinnabarimum** (Blessig, 1872)

**Material examined.** 5: 2 ex., 7.VII.2019; 9: 1 ex., 4-6.VII.2019.

**Distribution.** Russia (Far East), China, Korea.

**Remarks.** Larvae develop in *Ulmus* sp.; less often, in *Quercus* sp. Adults are active from mid-June to late July.

**Phymatodes Mulsant, 1839**

**Phymatodes testaceus** (Linnaeus, 1758)

**Material examined.** 3: 1 ex., 6.VII.2019.

**Distribution.** Europe, Russia, Transcaucasia, Turkey, Iran, Syria, Israel, Kazakhstan, Mongolia, China, Korea, Japan, North Africa, North America.

**Remarks.** Larvae develop in *Quercus* sp., *Castanea* sp., *Ulmus* sp., *Salix* sp., *Fagus* sp., and *Alnus* sp. Adults are active from late May to mid-July.

**Anaglyptini Lacordaire, 1869**

**Agaopphis Thomson, 1857**

**Agaopphis colobotheoides** Bates, 1884

**Material examined.** 9: 1 ex., 4-6.VII.2019.

**Distribution.** Russia (Far East), China, Korea, Japan.

**Remarks.** Larvae develop in *Maackia amurensis*, *Prunus armeniaca*, *Acer* sp., *Prunus maackii*, and *Fraxinus* sp. Imago activity starts in mid-May and ends in July.

**Phaglyptini Mulsant, 1839**

**Plagionotus Mulsant, 1842**

**Plagionotus pulcher** (Blessig, 1872)

**Material examined.** 2: 1 ex., 5-6.VIII.2015, S. Samokhin leg.; 3: 2 ex., 6.VII.2019.

**Distribution.** Russia (Far East), China, Korea, Japan.

**Remarks.** Larvae develop in *Quercus* sp. and occasionally in *Betula dahurica*. Adults are active from late May to early August.

**Rhabdoclytus Ganglbauer, 1889**

**Rhabdoclytus acutivittis acutivittis** (Kraatz, 1879)

**Material examined.** 2: 1 ex., 4-6.VII.2019; 7: 1 ex., 4-6.VII.2019; 9: 2 ex., 4-6.VII.2019.

**Distribution.** Russia (Far East), China, Korea, Japan.

**Remarks.** Larvae develop in *Acer* sp., *Carpinus* sp., *Pyrus* sp., *Fraxinus* sp., *Ulmus* sp., *Vitis amurensis*, *Quercus* sp., and *Viburnum* sp. Imago activity starts in June and ends in August.

**Chlorophorus Chevrolat, 1863**

**Chlorophorus simillimus** (Kraatz, 1879)

**Material examined.** 2: 1 ex., 5-6.VIII.2015, S. Samokhin leg., 1 ex., 4-6.VII.2019; 4: 1 ex., 4-6.VII.2019; 5: 3 ex., 7.VII.2019.
LONGICORN BEETLES OF THE RUSSKY ISLAND

Distribution. Russia (Eastern Siberia, Far East), Mongolia, China, Korea, Japan.
Remarks. Larvae develop in *Acer* sp., *Crataegus* sp., *Prunus maackii*, and *Juglans mandshurica*. Adults are active from mid-June to mid-August.

**Rhaphuma Pascoe, 1858**

**Rhaphuma gracilipes** (Faldermann, 1835)
Material examined. 4: 1 ex., 4-6.VII.2019; 5: 1 ex., 7.VII.2019; 7: 2 ex., 4-6.VII.2019.
Distribution. Eastern Europe, Russia, Kazakhstan, Mongolia, China, Korea, Japan.
Remarks. Larvae develop in *Quercus* sp., *Tilia* sp., *Acer* sp., *Ulmus* sp., *Alnus* sp., *Prunus* sp., *Betula* sp. and occasionally in *Abies* sp. Adults are active from late May to mid-August.

**Rhaphuma diminuta diminuta** (Bates, 1873)
Material examined. 9: 1 ex., 4-6.VII.2019.
Distribution. Russia (Far East), Korea, Japan.
Remarks. Larvae develop in *Rosa davurica*, *Carpinus* sp., *Quercus* sp., *Corylus* sp., *Acer* sp., *Syringa* sp., and *Ulmus* sp. Imago activity starts in May and ends in mid-July.

**Xylotrechus Chevrolat, 1860**

**Xylotrechus hircus** (Gebler, 1825)
Material examined. 5: 1 ex., 7.VII.2019.
Distribution. Russia (Asian part), Kazakhstan, Mongolia, China, Korea, Japan.
Remarks. Larvae develop in *Betula* sp. Adults are active from early June to early August.

**Xylotrechus cuneipennis** (Kraatz, 1879)
Material examined. 2: 1 ex., 5-6.VIII.2015, S. Samokhin leg.; 5: 1 ex., 7.VII.2019.
Distribution. Russia (Eastern Siberia, Far East), Mongolia, China, Korea, Japan.
Remarks. Larvae develop in *Quercus* sp., *Betula* sp., *Fraxinus* sp., *Carpinus* sp., *Ulmus* sp., and *Prunus* sp. Imago activity starts in July and ends in August.

**Xylotrechus ibex** (Gebler, 1825)
Material examined. 3: 2 ex., 6.VII.2019; 5: 1 ex., 7.VII.2019.
Distribution. Germany, Poland, Finland, Belarus, Russia, Kazakhstan, Mongolia, China, Korea, Japan.
Remarks. Larvae develop in *Betula* sp., *Ulmus* sp., and *Alnus* sp. Imago activity starts in June and ends in July.

**Xylotrechus rusticus** (Linnaeus, 1758)
Material examined. 3: 1 ex., 6.VII.2019.
Distribution. Europe, Russia, Transcaucasia, Turkey, Iran, Turkmenistan, Tajikistan, Mongolia, China, Korea, Japan.
Remarks. Larvae develop in deciduous trees: *Populus* sp., *Tilia* sp., *Acer* sp., *Ulmus* sp., *Quercus* sp., *Salix* sp., *Betula* sp., and *Sorbus* sp. Adults are active from late May to September.

**Cyrtoclytus Ganglbauer, 1882**

**Cyrtoclytus capra** (Germar, 1824)
Material examined. 6: 1 ex., 24.VI.2014; 9: 1 ex., 4-6.VII.2019.
Distribution. Europe, Russia, Azerbaijan, Kazakhstan, Mongolia, China, Korea.
Remarks. Larvae develop in deciduous trees: *Acer* sp., *Quercus* sp., *Carpinus* sp., and *Sorbus* sp. Adults are active from early June to mid-August.

**Lamiinae Latreille, 1825**

**Ceroplesini Thomson, 1860**

**Moechotypa Thomson, 1864**

54
Moechotypa diphysis (Pascoe, 1871)

Material examined. 3: 1 ex., 6.VII.2019; 4: 1 ex., 4-6.VII.2019; 5: 1 ex., 7.VII.2019.

Distribution. Russia (Far East), China, Korea, Japan.

Remarks. Larvae develop in *Quercus* sp. Imago activity starts in late May and ends in July.

Mesosini Mulsant, 1839

Mesosa Latreille, 1829

*Mesosa myops* (Dalman, 1817)

Material examined. 1: 6 ex., 7.VII.2019; 2: 2 ex., 5-6.VIII.2015, S. Samokhin leg.; 3: 1 ex., 6.VII.2019; 4: 1 ex., 4-6.VII.2019; 5: 1 ex., 7.VII.2019; 6: 3 ex., 24.VI.2014.

Distribution. Poland, Sweden, Finland, Lithuania, Latvia, Belarus, Ukraine, Russia, Kazakhstan, Mongolia, China, Korea.

Remarks. Larvae develop in deciduous trees: *Quercus* sp., *Tilia* sp., *Acer* sp., *Ulmus* sp., *Populus* sp., *Betula* sp., and *Salix* sp. Adults are active from late May to early August.

Mesosa hirsuta continentalis Hayashi, 1964

Material examined. 2: 1 ex., 5-6.VIII.2015, S. Samokhin leg.

Distribution. Russia (Far East), China, Korea.

Remarks. Larvae develop in *Prunus* sp., *Fraxinus* sp., *Carpinus* sp., *Salix* sp., *Quercus* sp., and *Ulmus glabra*. Imago activity starts in June and ends in early August.

Monochamini Gistel, 1848

*Monochamus* Dejean, 1821

*Monochamus guttulatus* Gressitt, 1951

Material examined. 1: 1 ex., 7.VII.2019; 7: 1 ex., 4-6.VII.2019.

Distribution. Russia (Far East), China, Korea.

Remarks. Larvae develop in *Acer tegmentosum*, *Juglans mandshurica*, *Quercus* sp., *Prunus* sp., *Ulmus* sp., *Corylus* sp., *Betula* sp., *Carpinus* sp., and *Alnus* sp. Adults are active from late June to late August.

*Monochamus saltuarius saltuarius* Gebler, 1830

Material examined. 2: 1 ex., 4-6.VII.2019.

Distribution. Russia, Kazakhstan, Mongolia, China, Korea, Japan.

Remarks. Larvae develop in coniferous trees: *Picea* sp., *Abies* sp., *Larix* sp. and *Pinus* sp. Adults are active from late May to early September.

*Monochamus galloprovincialis cinerascens* (Motschulsky, 1860)

Material examined. 5: 1 ex., 7.VII.2019.

Distribution. Russia (Asian part), Kazakhstan, Mongolia, China, Korea, Japan.

Remarks. Larvae develop in coniferous trees: *Pinus* sp., less often *Picea* sp., *Larix* sp. and *Abies* sp. Adults are active from late May to September.

*Monochamus urussovii* (Fischer von Waldheim, 1805)

Material examined. 8: 1 ex., 7.VII.2019.

Distribution. Czech Republic, Poland, Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Belarus, Ukraine, Russia, Kazakhstan, Mongolia, China, Korea, Japan.

Remarks. Larvae develop in many conifer species, but more often in *Picea* sp. and *Abies* sp. They can also develop in *Betula* sp. Adults are active from early May to mid-September.

Lamiini Latreille, 1825

*Lamia* Fabricius, 1775
**Lamia textor** (Linnaeus, 1758)

**Material examined.** 5: 1 ex., 7.VII.2019.

**Distribution.** Europe, Russia, Transcaucasia, Iran, Turkey, Kazakhstan, Mongolia, China, Korea, Japan.

**Remarks.** Larvae develop in *Salix* sp., *Populus* sp. and occasionally in *Alnus* sp. Adults are active from early May to mid-September.

**Dorcaschematini Thomson, 1860**

**Olenecamptus Chevrolat, 1835**

**Olenecamptus riparius** Danilevsky, 2011

**Material examined.** 8: 1 ex., 7.VII.2019.

**Distribution.** Russia (Far East), China, Korea, Japan.

**Remarks.** Larvae develop in *Juglans mandshurica*. Adults are active from late June to mid-August.

**Apodasyini Lacordaire, 1872**

**Rhopaloscelis Blessig, 1873**

**Rhopaloscelis unifasciata** Blessig, 1873

**Material examined.** 2: 1 ex., 4-6.VII.2019; 7: 2 ex., 4-6.VII.2019.

**Distribution.** Russia (Asian part), Kazakhstan, Mongolia, China, Korea, Japan.

**Remarks.** Larvae develop in deciduous trees: *Salix* sp., *Acer* sp., *Ulmus* sp., *Fraxinus* sp., and *Populus* sp. Imago activity starts in May and ends in July.

**Saperdini Mulsant, 1839**

**Eutetrapha Bates, 1884**

**Eutetrapha sedecimpunctata** (Motschulsky, 1860)

**Material examined.** 5: 2 ex., 7.VII.2019; 8: 1 ex., 7.VII.2019.

**Distribution.** Russia (Far East), China, Korea, Japan.

**Remarks.** Larvae develop in *Tilia* sp., *Ulmus* sp., and *Juglans mandshurica*. Adults are active from late May to August.

**Eutetrapha metallescens** (Motschulsky, 1860)

**Material examined.** 3: 1 ex., 6.VII.2019; 6: 1 ex., 24.VI.2014; 8: 1 ex., 7.VII.2019.

**Distribution.** Russia (Far East), China, Korea, Japan.

**Remarks.** Larvae develop in deciduous trees: *Acer* sp., *Carpinus* sp., *Tilia* sp., *Salix* sp., *Fraxinus* sp., *Syringa* sp., *Quercus* sp., *Betula* sp., *Prunus* sp., *Ulmus* sp., and *Alnus japonica*. Imago activity starts in the second half of June and ends in early September.

**Saperda Fabricius, 1775**

**Saperda alberti** Plavilstshikov, 1915

**Material examined.** 5: 2 ex., 7.VII.2019; 6: 1 ex., 24.VI.2014.

**Distribution.** Russia (Asian part), Kazakhstan, Mongolia, China, Korea, Japan.

**Remarks.** Larvae develop in *Populus* sp. and *Salix* sp. Adults are active from early June to August.

**Thyestilla Aurivillius, 1923**

**Thyestilla gebleri** (Felder-Marchant, 1835)

**Material examined.** 2: 3 ex., 4-6.VII.2019; 4: 1 ex., 4-6.VII.2019; 5: 3 ex., 7.VII.2019; 7: 2 ex., 4-6.VII.2019; 9: 1 ex., 4-6.VII.2019.

**Distribution.** Russia (Far East), China, Korea, Japan.
Remarks. Larvae develop in herbaceous plants: Artemisia sp., Cirsium sp., and Boehmeria nivea. Adults are active from late May to August.

Phytoeciini Mulsant, 1839

Oberea Dejean, 1835

Oberea depressa (Gebler, 1825)
Material examined. 2: 1 ex., 4-6.VII.2019.
Distribution. Russia (Asian part), Mongolia, China, Korea.
Remarks. Larvae develop in Lonicera sp. and Spiraea flexuosa. Adults are active from early June to mid-August.

Agapanthiini Mulsant, 1839

Agapanthia Audinet-Serville, 1835

Agapanthia daurica Ganglbauer, 1884
Material examined. 4: 3 ex., 4-6.VII.2019.
Distribution. Russia (Eastern Siberia, Far East), Mongolia, China, Korea, Japan.
Remarks. Larvae develop in herbaceous plants (Lobelia sessilifolia), some plants belonging to the families Asteraceae and Apiaceae. Adults are active from June to August.

A total of 61 species belonging to 44 genera, 21 tribes, five subfamilies, and two families of longicorn beetles have been identified on Russky Island. Disteniidae are represented by one of the two species found in Russia: Distenia gracilis. The remaining species belong to the family Cerambycidae with the subfamilies of Lepturinae (24 species), Cerambycinae (18 species), Lamiinae (16 species), Nectyalinae and Spondylidinae (one species for each subfamily).

The chorological analysis of the longicorn beetles fauna of Russky Island shows that the species belonging to the East Asian faunistic complex are predominating: 33 species (54.1%). The remaining species belong to the boreal complex and are widely distributed throughout the Palearctic region (18 species; 29.5%) or the Eastern part of Eurasia (seven species; 11.4%); three species occur in the Holarctic region (4.9%).

Forty species (65.6%) are trophically linked only to deciduous trees and shrub vegetation. The group of polyphagous species inhabiting deciduous and coniferous trees is much smaller (14 species; 22.9%); five species (8.2%) inhabit only coniferous trees. The trophic group linked to herbaceous plants is represented by only two species (3.3%).

An analysis of imago phenology makes it possible to single out four phenological groups.

The early-summer group. Imago activity begins in May or early June and ends in July: 14 species (22.9% of the total fauna).

The summer group. Imago are active throughout all three summer months: 38 species (62.3%).

The late-summer group. Imago activity begins in July and ends in August or September: three species (4.9%).

The spring-summer-autumn group. Imago activity begins in May and ends in September: six species (9.8%).

The following dynamics of activity of longicorn beetle imago are observed on Russky Island: for 44.2% species, adults are active in May; the number of species increases (95%) in June, peaks in July (98.3%), decreases in August (60.6%), and the smallest number of species is active in September (16.4%).

Thus, the family Cerambycidae dominates the longicorn beetles fauna of Russky Island. The largest number of species belongs to the subfamily Lepturinae. Most species of the longicorn beetles inhabiting Russky Island are of East Asian origin. The vast majority (88.5%) of the species found on the Island are trophically linked to deciduous trees or are wide polyphages. The peak of imago activity of most species occurs at the end of June and in July. The insects were collected during all summer months. It can be assumed that most of the Russky Island's longicorn beetles fauna has been identified. These species make up 23% of the total number of the longicorn beetle species of Primorsky Krai (Danilevsky, 2014, 2020a; Cherepanov, 1979, 1981, 1982, 1983, 1984, 1985, 1996). The relatively small number of longicorn beetles species inhabiting Russky Island compared to the mainland can be attributed to its isolation and small area, as well as the relatively low landscape diversity.
Acknowledgments

The authors are sincerely grateful to E.G. Kovalchuk (Volno-Nadezhdinskoye village) and A.A. Voronkov (Vladivostok) for their active assistance with organizing the field studies on Russky Island.

References

Anisimov, N.S., Bezborodov, V.G. & Koshkin, E.S. (2018) The longicorn beetles (Coleoptera, Cerambycidae) of the Bureinskii State Nature Reserve, Khabarovskii Krai, Russia. Euroasian Entomological Journal, 17(2), 139–145 [in Russian]

Anisimov, N.S. & Bezborodov, V.G. (2020a) Longicorn beetles (Coleoptera, Cerambycidae) of the Amur-Zeya interfluve (Amurskaya Oblast, Russia). Amurian Zoological Journal, 12(2), 138–157 [in Russian]

Anisimov, N.S. & Bezborodov, V.G. (2020b) Longicorn beetles (Coleoptera, Cerambycidae) of the Shantar Islands (Khabarovsk Krai, Russia). Ecologica Montenegrina, 34, 43–48.

Bezborodov, V.G. & Anisimov, N.S. (2018) The first data on the fauna of longicorn beetles (Coleoptera, Cerambycidae) of Zeiskii Nature Reserve, Amurskaya Oblast, Russia. Euroasian Entomological Journal, 17(5), 320–327 [in Russian]

Cherepanov, A.I. (1979) The longicorn beetles of North Asia (Prioninae, Desteniinae, Lepturinae, Aseminae). Nauka, Novosibirsk, 472 pp [in Russian]

Cherepanov, A.I. (1981) The longicorn beetles of North Asia (Cerambycinae). Nauka, Novosibirsk, 216 pp [in Russian]

Cherepanov, A.I. (1982) The longicorn beetles of North Asia (Cerambycinae: Clytini, Stenaspini). Nauka, Novosibirsk, 259 pp [in Russian]

Cherepanov, A.I. (1983) The longicorn beetles of North Asia (Lamiinae: Dorcadionini, Apomecynini). Nauka, Novosibirsk, 223 pp [in Russian]

Cherepanov, A.I. (1984) The longicorn beetles of North Asia (Lamiinae: Pterycoptini, Agapanthiini). Novosibirsk, Nauka, 214 pp [in Russian]

Cherepanov, A.I. (1985) The longicorn beetles of North Asia (Lamiinae: Saperdini, Tetraopini). Nauka, Novosibirsk, 256 pp [in Russian]

Cherepanov, A.I. (1996) 104. Fam. Cerambycidae – Longicorn or Timber beetles. In: Lehr, P.A. (Ed.), Key to the insects of Russian Far East. Coleoptera. Vol. III. Part 3. Dalnauka, Vladivostok, 56–140 [in Russian]

Danilevsky, M.L. (2014) Longicorn beetles (Coleoptera, Cerambycoidea) of Russia and adjacent countries. Part 1. Higher School Consulting Publ., Moscow, 522 pp [in Russian]

Danilevsky, M.L. (2016) Dynamics of land use (2007–2014) and future prospects for development of Russkii Island (Gulf of Peter the Great). Geography and Natural Resources, 37(3), 257–263 [in Russian]

Löbl, I. & Smetana, A. (eds.) (2010) Catalogue of Palaearctic Coleoptera. Vol. 6. Apollo Books, Stenstrup, 924 pp.

Nedoluzhko, V.A. & Denisov, N.I. (2001) Vascular flora of the Russian Island (Peter the Great Bay, Sea of Japan). In: Nedoluzhko, V.A. (Ed.), Proceedings of the Botanical Gardens of the FEB RAS. Vol. IV. Dalnauka, Vladivostok, 98 pp [in Russian]

Tatarinova, A.F., Nikitsky, N.B. & Dolgin, M.M. (2007) Longicorn beetles (Coleoptera, Cerambycidae). Fauna of European North-East of Russia. Vol. VIII. Part 2. Nauka, Saint Petersburg, 301 pp [in Russian]

Vorontsov, A. I. (1982) Forest Entomology. Vyshhaya Shkola, Moscow, 384 pp [in Russian]