INTRODUCTION

Hypoplasia or absence of the left lobe of the liver has been found in more than 20 patients in the world. To the best of our knowledge, the first report was conducted by Arnold and Ashley-Montagu (1), and it was followed by Benz et al. (2) and Belton and vanZandt (3). Later, from 1984 until now, most cases were found in Japan under radiographic and/or ultrasound examinations (4), while a few cases were reported in Korea (5, 6). However, there is little information about the associated observations. The associated absence of the gall-bladder was seen only in Saigusa et al. (7). Merrill (8) and Saigusa et al. (7) described the usual morphology of S4 and Spiegel’s lobe in their specimen, but other reports had no descriptions as such. Detailed description of intrahepatic vessels was limited to that by Saigusa et al. (7).

The present case study aimed to describe the extra- and intrahepatic morphology of a left anatomical lobe hypoplasia to provide better understanding of the pathogenesis, as well as heterogeneity in those anomalous morphologies.

MATERIALS AND METHODS

We obtained an anomalous liver, 165 × 90 mm in size, 355 g in weight, from a Korean female cadaver in the dissection course for undergraduate anatomical education in Chonbuk University in 2002. She died at 59 yr old with stomach cancer. In the present report, terminology for the intrahepatic vessels was based on system of Couinaud (9).

Immunohistochemical and hematoxylin-eosin (HE) staining was conducted for fragments of the specimen after macroscopic observations. We chose 3 parts of the liver corresponding to the abnormal left anatomical lobe and quadrate lobe for consideration of the pathogenesis and S6 for the control. The vascular lumen of the middle hepatic vein tributaries in the left lobe was labeled by carbon particles for easy identification on histology. The 3 fragments were dehydrated, embedded in paraffin (melting point, 58 ℃) and processed into 10-15 m-thick sections. The primary antibodies used in the immunohistochemical evaluation were Dako-mono-clonal anti-human alpha-smooth muscle actin (mouse IgG2a, kappa, clone No. 1A4, code No. M151, 1:50 solution in phosphate-buffered saline [PBS]) and Dako-polyclonal anti-
RESULTS

Macroscopic observations

The peritoneal fusion around the liver was evident when the liver was removed. The anomalous liver carried flat, white, scar-like left anatomical lobe with a small parenchymal mass (25 × 12 mm) on its visceral or inferior surface (Fig. 1A). The round ligament was slightly shifted to the right side of a deep fissure along the right margin of the scar-like lobe. This fissure was filled with the connective tissue mass continuous to the round ligament, and it looked like the main lobar fissure. The round and falciform ligaments were stuck to a connective tissue mass, occupying the porta hepatis. Any vessels and ducts at the porta were embedded in the connective tissue mass. Notably, the portal vein was stuck to the inferior vena cava (IVC) because of no Spiegel’s lobe. The gall bladder occupied near the usual position on the right anatomical lobe. On the right ventrosuperior side of the right anatomical lobe, a hepatic groove was observed (50 mm in length, and 15 mm in maximum depth). We did not investigate the extrahepatic courses of the portal vein, hepatic artery, and bile duct.

The portal vein showed the trifurcation pattern (Fig. 2). It was divided into posterior sectorial trunk, thin left portal vein, and thick anterior sectorial trunk. We could easily identify the branches of the posterior sectorial trunk as a P7 and multiple P6s, according to Hata et al. (10). The anterior sectorial trunk supplied a parenchymal area much larger than usual and than the posterior sector of the specimen. The P8-like thick branches were counted at least 3 in number and, in the present report, we temporarily termed them P8 ventral (P8v), P8 dorsal (P8d) and others (P8*). This P8d crossed the bottom of the hepatic groove and reached the right side of the groove. Notably, P8* crossed in the dorsal side of a thick tributary of the right hepatic vein. P5 was identified as the ventromedial subdivision of P8v. The left portal vein

human vonWillebrand Factor (Factor VIII Related Antigen, Code No. A0082, 1:200 in PBS). No counterstaining was performed.
issued thin branches for the scar-like S4. Along the left portal vein, we could not find a dilated portion corresponding to the umbilical portion. P2 and P3 were not identified, but several thin twigs supplied the left parenchymal tissue scattering in the scar-like left lobe. The portal vein branches showed tendency to stick not only to bile ducts and to arterial branches but strangely, also to the hepatic vein tributaries. However, the intrahepatic anastomosis was not evident between the portal vein and hepatic vein systems. Thick portal vein branches were accompanied by the dilated bile ducts, although the present figures did not provide the observations. The dilation was evident in one part of the quadrate lobe.

Topographical anatomy of terminal portions of the major three hepatic veins looked usual when the internal surface of the retrohepatic IVC was observed after opening (Fig. 1B). However, the right hepatic vein was very thick and it drained most of the right anatomical lobe, including a part of S5. The inferior right hepatic vein (11) and the right superior vein (12, 13) were present at usual positions, i.e., the former was located almost along the S6/S7 border, while the latter drained uppermost portion of S7. Thus, the drainage pattern seemed to correspond to a rare population (1–4). One of the major tributaries of the right hepatic vein interdigitated with P8* and P8v, while another ran between S8 and the posterior sector. The middle hepatic vein exhibited a short upward course between S5 and the scar-like S4. Although it was obliterated, the Arantius duct (AR) was clearly identified as a bundle connecting the left portal vein and the uppermost portion of the retrohepatic IVC. A small opening near the middle hepatic vein terminal was very similar to the opening for the high dorsal drainage route of Spiegel’s lobe (15). However, the corresponding vein drained a liver parenchyme ventral to the porta hepatis because of no Spiegel’s lobe.

Histological observations

In the anatomical left lobe, the liver parenchyme was enclosed and fragmented by the scar-like tissue (Fig. 3A, B). The portal triad in the parenchyme appeared normal as seen in S6. However in S6, as well as in the left anatomical lobe, bile ducts were not dilated, but even thin and small in number. In both parts, liver parenchyme also appeared atrophic and the hepatic cell plate looked thin. The scar-like tissue of the left lobe, except for vessels, did not contain either of the smooth muscle tissue and factor VIII-positive structures (immuno-
histochemistry not shown). In contrast to usual thick hepatic veins, the hepatic vein tributaries had poor contents of the media although dilated. The scar-like tissue was characterized by rich contents of vessels, bile ducts and nerves (Fig. 3A-C). Difference in tissue components was not evident between the quadrate lobe and other parts. In the scar-like part, the arterial branches carried the hypertrophic media much thicker than those in the parenchyma. Moreover, the portal vein branches also carried the media-like, thick venous wall, and those were similar to the arterial wall (Fig. 3B). Notably, however, these venous wall of the portal vein system contained no or little smooth muscle tissue according to the immunohistochemistry (photograph, not shown). Clusters of very thin bile ducts were also evident in number (Fig. 3D), and those suggested budding and/or proliferative change of bile ducts during or after scar-like change of the left parts of the liver. The cluster of fine bile ducts was not usually located near the portal vein branches (Fig. 3B). Using labelling with carbon particles, we discriminated the left hepatic vein tributaries from those of the middle hepatic veins (Fig. 3A). The territorial border between the left and middle hepatic veins was located along the line corresponding to the main lobar fissure, i.e., the territory of the middle one was restricted in the scar-rich quadrate lobe part in contrast to other left lobe anomaly (16) in which the middle hepatic vein drained most of S3.

DISCUSSION

The present work reported a left lobe hypoplasia of the liver that was characterized by 1) the scar-like left surgical lobe with few parenchymal tissue, 2) no Spiegel's lobe, 3) unusual configurations of the right hepatic vein and the anterior sectorial trunk of the portal vein. The present hepatic groove was not evident because the groove crossing P8 course was common (17), although the groove associated with left hypoplasia seemed not to be reported. We believe that the thickest primary division of the portal vein was the anterior sectorial trunk (P5 + P8) because the present case seemed to correspond to the trifurcation pattern, i.e., one of the major variants of the portal vein primary division (18) and because, in the present specimen, there was another definite right trunk (i.e., the posterior sectorial trunk) showing the usual morphology. Moreover, Saigusa et al. (7) also reported well-developed P5 and P8, especially P5, with extended territories in combination with poorly-developed P4 in a liver with the absence of S2 and S3. Their pattern of the ramification is similar to that in the present case, although the middle hepatic vein was usual in Saigusa et al. (7). In a variant liver with the left hepatic vein (or the left IVC) draining directly into the right atrium near the opening of the coronary sinus, Yoshinaga and Kodama (16) described an abnormal right hepatic vein crossing ventrally to the anterior sectorial trunks in combination with the thick inferior right hepatic vein. This case seems to be similar to the present right hepatic vein interdigitating with branches of the anterior sectorial trunk. Overall, the present identification of abnormal intrahepatic vessels seems to be almost adequate and logical.
Why did the left surgical lobe develop or change to be scar-like? Peritoneal fusion around the liver appeared to provide a clue. We speculated that, in the late embryonic stage or even during postnatal growth, scar formation happened at and around the porta hepatis, and it involved the round ligament and left portal vein. We can easily speculate a small injury during birth or a restricted infection around the cut terminal of the umbilical cord. Thus, the round ligament was shifted from the main lobar fissure. We speculate that clusters of very thin bile ducts in the left lobe are caused by secondary budding and/or proliferative change of bile ducts during or after scar formation in the left liver. Conversely, the basic portal triad structures seemed to be preserved even in the scar-like tissue. Therefore, we hypothesized that the secondary hypoplasia happened due to the peritoneal fusion involving the left liver structures. Dilated intrahepatic bile ducts in the quadrato lobe suggested an obstruction due to the peritoneal fusion. Moreover, in contrast to the present specimen, Spiegel's lobe is clearly seen in a left hypoplasia according to the case reported by Saigusa et al. (7). Notably, we found a hepatic vein similar to the typical superior cavo-date vein for the high dorsal drainage (15). Thus, the secondary fusion seemed to be likely to involve the IVC near the porta hepatis, which resulted in abnormal fusion between the portal vein and IVC and atrophy of Spiegel's lobe. Finally, we have to discuss about the topographical anatomy between P8 and a thick tributary of the right hepatic vein because a branch of P8 should be located ventral to the hepatic vein. Hata et al. (14) reported that such a thick tributary (over 5 mm in the outer diameter) was present in 9.1% of 77 usual adult livers. Thus, subsegmental branches of P8 can sandwich the hepatic vein. Nevertheless, the abnormal right hepatic vein crossing ventrally to the anterior sectorial trunks was associated with a congenital anomaly (16). We speculated that the hepatic vein course frequently shows significant variations such as those disturbing the basic topographical anatomy between the intrahepatic portal and hepatic veins.

Consequently, the present case seemed to carry secondary atrophy for the pathogenesis. It seemed to be different from those in cases reported by Saigusa et al. (7) and Merrill (8) because their specimens were associated with absence of the gallbladder and/or the usual morphology of S4 and Spiegel's lobe.

ACKNOWLEDGEMENT

We are grateful to Professor Lee of Department of Anatomy in Chonbuk University for the use of their materials.

REFERENCES

1. Arnold M, Ashley-Montagu MF. A note on a case of complete absence of the left lobe of the liver in man. Anat Rec 1932; 53: 169-72.
2. Benz EJ, Baggenstoss AH, Wollarger EE. Atrophy of the left lobe of the liver. Am A Arch Pathol 1952; 33: 315-30.
3. Belton RL, vanZandt TF. Congenital absence of the left lobe of the liver: a radiologic diagnosis. Radiology 1983; 147: 184.
4. Suzuki T, Sakurabayashi S, Yoshino K, Yamamoto Y, Nishimura S, Abe K, Iwase T, Hirano M, Oka H, Kajiwara S, Yamada F. A case of hypoplasia of the hepatic left lobe complicated by cholangiocarcinoma. Jpn J Gastroenterol 1996; 93: 276-81.
5. Jung P, Bae JS, Kim JP. A case report of anomaly in liver: Absence of left hepatic lobe and left sided gall bladder. J Korean Surg Soc 1969; 11: 229-32.
6. Joo DB, Yoo H, Hur GB. Intrahepatic gall bladder with the agensis of the left lobe of the liver. J Korean Surg Soc 1983; 25: 131-6.
7. Saigusa K, Aoki Y, Horiiuchi M. Hypoplasia of the left lobe of the liver. Surg Radiol Anat 2001; 23: 345-7.
8. Merrill GG. Complete absence of the left lobe of the liver. Arch Pathol 1946; 42: 232-3.
9. Cudinaud C. Le foie. Etudes anatomogiques et chirurgicales. Masson, Paris, 1957.
10. Hata F, Hirata K, Murakami G, Mukaiya M. Identification of segments VI and VII of the liver based on the ramification patterns of the intrahepatic portal and hepatic veins. Clin Anat 1999; 12: 229-44.
11. Makuuchi M, Hasegawa H, Yamazaki S, Bandai Y, Watanabe G, Ito T. The inferior right hepatic vein: ultrasonic demonstration. Radiology 1983; 148: 213-7.
12. Nakamura S, Tsutuki T. Surgical anatomy of the hepatic veins and the inferior vena cava. Surg Gynecol Obstet 1981; 152: 43-50.
13. Hardy KJ. The hepatic veins. Aust NZ J Surg 1972; 42: 11-4.
14. Hata F, Murakami G, Hirata K, Kitagawa S, Mukaiya M. Configuration of the hepatic veins in the right surgical lobe of the human liver with special reference to their complementary territorial relationships: morphometric analysis of controlled specimens with clearly defined portal segmentation. Okajimas Folia Anat Jpn 1999; 76: 1-16.
15. Kanamura T, Murakami G, Hina I, Hata F, Harata K, Sato TJ, Kumon M, Nakajima Y. High dorsal drainage routes of Spiegel’s lobe. J Hepatobiliary Pancreat Surg 2001; 8: 549-56.
16. Yoshinaga K, Kodama K. Persistence of the hepatic segment of the left inferior vena cava in man and its relation to the ductus venosus development. Acta Anat 1997; 160: 132-8.
17. Ono ML, Murakami G, Sato TJ, Sawada K. Hepatic groove and portal segmentation. Acta Anat Nippon 2000; 75: 517-23.
18. Inoue T, Kinoshita H, Hirohashi K, Sakai K, Uozumi A. Ramification of the intrahepatic portal vein identified by percutaneous transhepatic portography. World J Surg 1986; 10: 287-93.