Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Characterization of the Specificity and Genetic Restriction of Human CD4+ Cytotoxic T Cell Clones Reactive to Capsid Antigen of Rubella Virus

DAWEI OU,* PELE CHONG,† PAUL McVEISH,† WILFRED A. JEFFERIES,† AND SHIRLEY GILLAM**

Department of Pathology, University of British Columbia, Research Centre, 950 West 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada; †Connaught Centre for Biotechnology Research, 1755 Steeles Avenue West, Willowdale, Ontario M2R 3T4, Canada; and *Biotechnology Laboratory and the Departments of Medical Genetics, Microbiology, and Zoology, University of British Columbia, 6174 University Boulevard, Vancouver, British Columbia V6T 1W5, Canada

Received April 21, 1992; accepted August 10, 1992

Using 11 overlapping synthetic peptides covering more than 95% of the amino acid sequence of capsid protein of rubella virus, 7 CD4+ T cell clones (R10, R11, R18, A2, A10, A11, and A12) isolated from 2 rubella seropositive donors reacted strongly to rubella capsid peptides C6 (residues 119–152), C9 (residues 205–233), or C11 (residues 255–280), respectively, in both proliferation and cytotoxicity assay. Truncated peptides C6E (residues 125–139), C9B (residues 205–216), and C11E (residues 260–272) were shown to be involved directly to the T cell determinants of C6, C9, and C11, respectively. Genetic restriction of these T cell clones was analyzed by using human cell lines with various HLA-DR phenotypes as targets and/or antigen-presenting cells in cytotoxicity assay and/or proliferation assays. The results indicated that the recognition of peptide C6 by T cell clones (R11 and R18) was associated with DRw9 molecule, while the HLA restriction element of the responses of other T cell clones (A2 and A11, A10, and A12) that reacted with peptide C9 or C11 was DR4 molecule. However, there may be a cross-recognition by the T cell clone (A12) between DR1 and DR4 subtypes.

Rubella virus (RV) is a common human pathogen. RV infections during pregnancy may result in spontaneous abortion and congenital defects or viral persistence in newborns (Sandra et al., 1985). Several live, attenuated rubella vaccines have been introduced since 1969 (Pet-fins, 1985). Immunization of infants and susceptible women of child-bearing age against RV is now a standard public health measure. However, there are still major medical concerns: the reinfection of vaccinees by wild-type RV and the risk of both congenital infection of the fetus and rubella-associated arthritis arising from vaccination (Chantler et al., 1982; Fraser et al., 1983; Sandra et al., 1985). There is a clear requirement for the development of a noninfectious rubella vaccine. Recent studies indicate that synthetic peptides can function as inexpensive and noninfectious candidate vaccines against infectious diseases (Milich, 1988).

It is important to know the major human T cell sites when selecting short synthetic peptides as components of potential subunit vaccines. Evidence from many virus studies has indicated a central role for CD4+ rather than CD8+ T cells in the induction of specific immune responses to virus antigens such as subunit peptides (Good et al., 1988; Korner et al., 1991; Fayolle et al., 1991). It is known that CD4+ T cells recognize foreign antigens (Ag) not in their native form but as small peptides that are produced from processed Ag within Ag-presenting cells (APCs) and presented at the cell surface as a complex with major histocompatibility complex (MHC) class II molecules (Milich et al., 1987; Berzofsky, 1989). Thus, identifying these small peptide epitopes within the primary sequence of a candidate vaccine Ag and defining their genetic restriction of recognition by T lymphocytes could facilitate effective vaccine design (Milich et al., 1987; Wallace et al., 1991).

RV is an enveloped RNA virus with two envelope glycoproteins (F1 and F2) on the virion surface and a capsid protein in the RNA core (Oker-Blom et al., 1983). We have synthesized 49 synthetic peptides comprising approximately 95% of the amino acid sequences of the structural proteins E1 (23 peptides), E2 (15 peptides), and C (11 peptides) of RV strain M33 (Clarke et al., 1987) and initiated a series of experiments to search for peptide-specific T cell responses in individuals naturally infected with RV. We have showed that C peptides such as C5 (residues 96–123), C6 (residues 119–152), C9 (residues 205–233) or C11 (residues 255–280) can induce significant proliferation of T cells in short-term cultured T cell lines from some RV-seropositive donors (Ou et al., 1992). The T cell clones used in this study were initially established from the T cell lines of two RV seropositive donors (Ou et al., 1992). A total of 36 clones were isolated by the method.
A total of 2 × 10^4 T cells from each clone was tested for their proliferative response to each synthetic peptide at a final concentration of 5 μg/ml in the presence of γ-irradiated (3000 rad) autologous PBMC 5 × 10^5 as APC. Results are presented as the mean cpm obtained from triplicate determinations.

Underlined numbers represent significant cell proliferation values of limiting dilution (Celis et al., 1988a,b) and their RV specificity was tested in proliferation assays (Ou et al., 1992). To further identify the capacity of these T cell clones to recognize the T cell epitopes of the structural proteins of RV, their responses to 49 synthetic peptides were tested in proliferation assays. Based on their positive responses to both UV-inactivated RV and individual C peptides, 7 clones were selected for this study. T cell clones (R10, R11, and R18) isolated from an oriental donor (RM) reacted strongly only with peptide C6 (residues 119-152) (Table 1). T cell clones A2, A10, A11, and A12 were isolated from a Caucasian donor (AT). Clones A2 and A11 responded to C9 (residues 205-233) while clones A10 and A12 reacted with C11 (residues 255-280) (Table 1). Surface marker analysis of all T cell clones showed that more than 99% of cells were CD3+, CD4+, and CD8- cells (data not shown), demonstrating that these T cell clones are probably T helper cells.

The cytotoxic activities of capsid peptide-specific T cell clones were studied by using autologous Epstein–Barr virus-transformed B cell line (EBV-BL) cells as targets in a standard 51Cr release assays (Celis et al., 1988a). Strong and specific cytotoxic responses of T cell clones R11, R18, A2, A10, A11, and A12 were observed when target cells were preincubated with either RV or peptides C6, C9, or C11, respectively (Fig. 1). The results indicated that T cell clones R11 and R18 had the ability to kill autologous EBV-BL target cells incubated with peptide C6 and that T cell clones A2 and A11, A10, and A12 had cytotoxic activities to autologous EBV-BL cells expressing peptide C9 or C11 determinants. Target cells that were incubated with medium alone or with UV-inactivated EBV or other peptides of RV were not killed by these T cells or were only marginally lysed in a dose-independent manner (data not shown), indicating that the cytotoxic responses were indeed Ag-specific.

In order to identify the minimal antigenic peptide for these T cell clones, a nested set of truncated peptides within the relevant region of C6, C9 or C11 determinant were prepared and tested, in both proliferation and 51Cr release assays. Peptides C6B (residues 119-152), C6C (residues 124-145) and C6E (residues 125-139) were equally efficient in proliferation assays, as compared to the antigenic 34-mer peptide C6 (C6A, residues 119-152). C6E (15 residues) is the shortest peptide that could stimulate T cell clones R11 and R18 (Table 2). The results obtained in cytotoxicity assays with T cell clones R10, R11 and R18 were found paralleled with the results in proliferation assays (data not shown). Thus these T cell clones displayed cytotoxic activities against autologous EBV-BL targets expressing epitopes C6C and C6E but not C6D, C6F or C6H.

The results obtained in cytotoxicity assays with T cell clones R10, R11 and R18 were found paralleled with the results in proliferation assays (data not shown). Thus these T cell clones displayed cytotoxic activities against autologous EBV-BL targets expressing epitopes C6C and C6E but not C6D, C6F or C6H. Besides the C9 peptide (C9A, residues 205-233), only the truncated peptide C9B (residues 205-216) stimulated the proliferative responses of T cell clones R11 and R18 (Table 2). The results obtained in cytotoxicity assays with T cell clones R10, R11 and R18 were found paralleled with the results in proliferation assays (data not shown). Thus these T cell clones displayed cytotoxic activities against autologous EBV-BL targets expressing epitopes C6C and C6E but not C6D, C6F or C6H.
Fig. 1. Cytotoxic activity of T cell clones. CTL responses of six C peptide-specific T cell clones were tested in a standard ⁵¹Cr release assay. Target cells used were autologous EBV-BL cells incubated with corresponding C peptide at 5 μg/ml (△) or UV-inactivated RV at 1 × 10⁶ FFU/ml overnight before addition of T cells (▲) or EBV-BL cell alone (■). T cell clones and corresponding specific peptides are (A) R11-C10, (B) R18-C10, (C) A2-C9, (D) A11-C9, (E) A10-C11, and (F) A12-C11.

mer C11 peptide (C11A, residues 255–280) as well as truncated C11B (residues 265–276), C11C (residues 260–276), C11D (residues 264–276), C11E (residues 260–272), and C11F (residues 264–272) in proliferation assays (Table 2). C11F is the shortest C11-truncated peptide that stimulated the T cell clones with significant cell proliferation responses (Table 2). In ⁵¹Cr release assays, T cell clones A10 and A12 were cytotoxic against autologous EBV-BL target cells expressing peptides C11 (C11A), C11B, C11C, and C11E, but not C11D and C11F (data not shown). These results suggest that there is some difference in the T cell recognition of C11 epitope between two T cell functional assays. It appears that the induction of cytotoxic responses of these T cell clones to C11-binding targets requires residues TTER of C11 sequence.

We are interested in determining whether these T cell clones were restricted through different HLA determinants. mAbs specific to monomorphic regions of the HLA-A,B,C., HLA-DR, and HLA-DQ antigens were
tested for their ability to block presentation of the C6 and C11 peptide epitopes by autologous peripheral blood mononuclear cells (PBMC). Stimulation of clones R10 and R11 by peptide C6, clone A11 by peptide C9 and clones A12 by peptide C11 were clearly inhibited in the presence of anti-HLA-DR, DQ mAb 9.3F10 (Van Voorhis et al., 1983) and anti-HLA-DR mAb W6/32 (Brodsky and Parham, 1982) and anti-HLA-DQ mAbs IVD12 (Giles et al., 1983) data not shown. These results indicate that these T cell clones were HLA-DR-restricted. In order to complete a detailed analysis of the genetic restriction of the capsid peptide specific T cell clones, we used 10 EBV-BLs with different HLA phenotypes as APCs in proliferation assays (Table 3) and as targets in cytotoxicity assays. Six homozygous human HLA phenotype cell line (HCL) cells were used as target cells in 51Cr release assays in this study (Table 4). The characterization of the restriction elements of T cell clones R11 and R18 was established by using both proliferation and 51Cr release assays. The peptide C6 (residues 119–152) was presented by EBV-BL RM and DO, but not by others in proliferation assays (Table 3). EBV-BL RM is an autologous B cell line of T cell clones R11 and R18. The most important difference between EBV-BL DO and 6 other EBV-BLs is that the former shares the HLA DRw9 phenotype with RM (Table 3). Similar results were observed in 51Cr release assays. Five EBV-BLs were used as target cells. These T cell clones recognized only RM and DO targets but not HE, MS, and AT targets (data not shown). These results suggested that the restriction molecule used to present the C6 determinant is of DRw9-associated haplotype.

In order to define the restriction molecules in the responses of T cell clones A11 to the C9 determinant, we tested the cytotoxic responses of T cell clone A11 against six HCLs and five EBV-BLs previously incubated with the C9 peptide. The results demonstrated that T cell clone A11 recognized only HCL PRIESS (Table 4) and EBV-BLs CM, AT, and MT (data not shown), all of which share the HLA DR4 phenotype. EBV-BL AT is the autologous EBV-BL of T cell clone A11. The results of proliferation assays using EBV-BLs as APCs correlated well with the results of these cytotoxicity assays. T cell clones A2 and A11 responded to C9 peptide when this peptide was presented by EBV-BLs (CM, HC, MS, AJ, AT, and MT) which expressed the DR4 phenotype, but not by RM and LM (data not shown). Hence, DR4 is the restriction element presenting the C9 peptide epitope to T cell clone A11.

The restriction specificity of T cell clones A10 and A12 to the C11 determinant was analyzed by using 51Cr release assays. Six HCLs and EBV-BL AT were used as targets for T cell clone A12. The results show that T cell clone A12 was strongly lytic only against EBV-BL AT and HCL PRIESS, which share the HLA DR4 phenotype with the autologous EBV-BL AT (Fig. 2A). When clone A10 was used as the effector, four EBV-BL cells previously incubated with C11 peptide were used as target cells in cytotoxicity assay. The results indicated that the T cell clone A10 was cytotoxic against targets (EBV-BLs CM, AT, and MT) which expressed the DR4 phenotype, but not against target RM (Fig. 2C). These results demonstrate that the genetic restriction molecule of T cell clones A10 and A12 is DR4. In proliferation responses of T cell clones A10 and A12, however, EBV-BL LM, whose DR phenotype is DR1, like CM, HC, MS, AI, and AT, were able to present the C11 determinant (data not shown). In order to further test the ability of EBV-BL LM presenting C11 to T cell clone A12, we used EBV-BL LM cells as the targets in the 51Cr release assay. The results indicated that EBV-BL LM cells were able to present the C11 peptide similar to that elicited by target cells such as AT and AI (Fig. 2B).
TABLE 3

APC	HLA phenotype of APCa	Cell proliferation (cpm)			
		DR	DQ	R11	R18
RM	2, 11	w3	w9	w3	29,982
	w4, w6		w53		15,719
CM	1, 32	w4	1, 4	w1, w3	931
	w6		w53		318
DO	2	w9	w3	10,782	
	60			11,889	
HC	24, 30	w1, w3	4, w8	w4	228
	w6		w52, w53		492
MS	2, 24	w3	4, w11	w7, w8	187
	w6		w52, w53		528
LM	2	1, w13	w1	185	
	35		w52	329	
AJ	1, 29	w6	4, w17	w2, w7	151
	w8		w52, w53	408	
RD	2, 19	w7	4	w3	223
	w4, w6		w53	383	
AT	3, 11	w3, w6	4, 7	w3	ND
	w4		w53	ND	
MT	2, 3	w3	4	w3 (7)	ND
	w4, w6			ND	

a Cloned T cells 2 × 10⁴ were cultured for 72 hr in the presence of γ-irradiated (3000 rad) EBV-BL cells 2 × 10⁴ as APC from 10 HLA-typed donors with or without C6 peptide (5 µg/ml). [³H]thymidine was added over the last 18 hr of culture. Results are expressed as the mean cpm of triplicate cultures.

b APC RM is autologous EBV-BL for these C6-specific clones.

c All cpms from the culture without C peptide were under 500 cpm. ND, not tested.

Two models have been proposed to predict and identify the amino acid sequences of antigen involved in T cell recognition. De Lisi and Berzofsky (1985) have proposed that a large proportion of lymphocytes appear to react with α-helical amphipathic structures (AS) contained within the amino acid sequences of the antigen proteins (Margalit et al., 1987). On the other hand, the study by Rothbard and Taylor (1988) points to the existence of a 4- to 5-amino acid sequence motif in a large number of T cell antigenic determinants. Consistent with the first model, we found that C6E, C9B, and C11E, which were efficient in inducing both proliferative and cytotoxic responses in the corresponding C6, C9, or C11-reactive T cell clones, are located at the

TABLE 4

Cell line	HLA Phenotype	Percentage specific ⁶²⁵²Cr releaseb
MAIA	2, 3	1.1
MST	3, 3	2.2
WT-20	30, 30	3.3
PRIESS	2, 2	4.4
Lg-38	25, 25	6.6
MANN	28, 29	7.7

a Cell lines used as targets were incubated with or without peptide C9 at 5 µg/ml overnight before addition of T cells.

b Cytotoxicity was determined using the T cell clone A11 at an effector/target ratio of 5.
Effecter/Target Ratio

Fig. 2. Cytolytic activity of T cell clone Al2 and Al0 to Cl1 determinant presented on target cells with different HLA phenotypes. (A) Clone Al2 is effector. Target cells used were human HLA homozygous cell lines MAJA (), MST (○), WT-20 (●), PRIESS (□), LG-38 (○), MANN (●), and EBV-BL AT (▲). (B) Clone Al2 is effector. Target cells used were EBV-BL RM (□), DO (△), LM (▲), AJ (○), and AT (●). (C) Effector is clone Al0. Target cells used were EBV-BL RM (□), CM (○), AT (●), and MT (▲). AT is autologous EBV-BL. Target cells were incubated with Cl1 peptide (5 μg/ml) overnight before addition of T cells.

peak region of the α-helix index within the C6, C9, or Cl1 peptide sequences according to the profiles of α-helix, β-turn and hydrophilicity of the C protein of RV (Ou et al., 1992). We have analyzed the T cell motif (second model) structures within C6, C9, and Cl1 sequences (Ou et al., 1992). C6E is located in the region between two T cell motif structures. C9B contains a 4-amino acid T cell motif structure. The C11E sequence contains only half of such a 4-amino acid structure. Although antigenicity prediction methods are popular for predicting the location of viral epitopes, our results indicate that that latter model may not achieve a high level of correct prediction.

The questions of HLA class II polymorphism and epitope selection are clearly important issues in the design of subunit or synthetic vaccines for the genetically diverse human populations. The HLA restriction patterns of T cell clones Al0 and Al2 are more complex than those of the clones mentioned above. Besides six EBV-BLs of HLA-DR4 phenotype, EBV-BL LM of DR1 phenotype could also present peptide Cl1 to stimulated clones Al0 and Al2 in proliferation responses (data not shown). Similar genetic restriction by HLA DR4 was shown in cytotoxicity assays (Fig. 2). Interestingly, T cell clone Al2 was cytotoxic against targets AJ, AT, MT (DR4 phenotype), and LM (DR1 phenotype), which presented C11 determinants (Fig. 2B). These results suggest that there is some cross-recognition by T cell clones between DR1 and DR4 subtypes. This phenomenon is consistent with reports regarding HLA restriction of human T cell clones (Rees et al., 1989; Lombardi et al., 1989; Lamb et al., 1988). However, in contrast to this, T cell clone Al2 exhibited specific cytotoxic responses against HCL PRIESS (DR4 phenotype), which expressed C11, but not against HCL MAJA of the HLA-DR1 phenotype (Fig. 2A). There may be differences in the structure of the antigen-binding site between the DR1 molecules of HCL MAJA and EBV-BL LM. Three different DR1 subtypes that have amino acid substitution in the putative peptide-binding site (residues 52–86 of β domain) have been identified (Marsh and Bodmer, 1989). These differences between DR1 subtypes may result in DR4-restricted C11 peptide not binding with sufficient affinity or in the required conformation of the DR1 molecule of HCL MAJA to stimulate the T cell clone. There is no cross-recognition by T cell clones A2 and A11 between DR1 and DR4 subtypes. Similar results have been reported in the study of human T cell recognition of influenza virus (Brett et al., 1991).

Examinations of the fine specificity of T cell recognition of the protein antigens of viruses and parasites in both human and murine systems have revealed multiple but distinct T cell sites among individuals with different HLA phenotypes or a panel of H-2 congenic strains. Due to the limits imposed on T cell antigen recognition by MHC restriction, it is becoming apparent that a number of T cell sites will be required to ensure that a synthetic vaccine will engage the majority of an outbred population. Presentation of a number of short synthetic T cell sites within a particular structure may be an economical and feasible way to accomplish this task (Milich, 1988). The recognitions of C9 and C11 by T cell clones were associated with DR4, which was the most frequently occurring HLA DR allele among Orientals (22%) and is also common among Caucasians (13%). Furthermore, HLA-DRw9 is also frequent among Orientals (12%) (Giles and Capra,
1985). Recently we have tested 20 T cell lines from 10 RV patients and 10 healthy donors with different HLA phenotypes by using 11 synthetic C peptides. Our results demonstrate that C11, C6, and C9 are recognized by these T cell lines at a higher frequency than other peptides (unpublished data). These T cell determinants may be selected as the candidates for T cell sites for future RV vaccine development.

ACKNOWLEDGMENTS

We thank Dr. A. J. Tingle (Department of Paediatrics, University of British Columbia) for supplying the blood samples and for helpful discussions, Dr. Anne Junker (Department of Paediatrics, University of British Columbia) for kindly providing EB virus, Dr. Dana Devine and Ms. Gwen Epstein (Canadian Red Cross HLA Laboratory, Vancouver) for the HLA tissue typing, and Dr. Roberto Acocella (Istituto di scienze immunologiche, Università degli Studi di Verona, Italy) for providing six homozygous human HLA phenotype cell lines. This work was supported jointly by grants from the Medical Research Council of Canada and British Columbia Health Care Research Foundation to S.G. and an Natural Sciences and Engineering Research Council of Canada grant to W.J. S.G. is an investigator of the B.C. Children’s Research Foundation.

REFERENCES

BERZOFSKY, J. A. (1987). Immunodominance of T-cell epitopes: Applications to vaccine design. In "Vaccines 89. Modern Approaches to New Vaccines Including Prevention of AIDS" (R. A. Lerner, H. Ginsberg, R. M. Chanock, and F. Brown, eds.), pp. 27–31. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

BRETT, S. J., BLAU, J., HUGHES-JENKINS, C. M., RHODES, J., LIEW, F. Y., and TITE, J. P. (1991). Human T cell recognition of influenza A nucleoprotein: Specificity and genetic restriction of immunodominant T helper cell epitopes. J. Immunol. 147, 984–991.

DE LISI, C., and BERZOFSKY, J. A. (1985). T-cell antigenic sites to be selected as the candidates for T cell determinants may be selected as the candidates for T cell sites for future RV vaccine development.