Anti-self-dual Maxwell solutions on hyperkähler manifold and $N = 2$ supersymmetric Ashtekar gravity

*Takayoshi OOTSUKA , †Sayuri MIYAGI , ‡Yukinori YASUI and §Shoji ZEZE
Department of Physics, Osaka City University, Sumiyoshiku, Osaka, Japan

Abstract

Anti-self-dual (ASD) Maxwell solutions on 4-dimensional hyperkähler manifolds are constructed. The $N = 2$ supersymmetric half-flat equations are derived in the context of the Ashtekar formulation of $N = 2$ supergravity. These equations show that the ASD Maxwell solutions have a direct connection with the solutions of the reduced $N=2$ supersymmetric ASD Yang-Mills equations with a special choice of gauge group. Two examples of the Maxwell solutions are presented.

PACS numbers 04.20.Jb, 04.65.+e

1 Introduction

The Ashtekar formulation of Einstein gravity gives a new insight to the search for anti-self-dual (ASD) solutions without cosmological constant. These are constructed from the solutions of certain differential equations for volume-preserving vector fields on a 4-dimensional manifold. This characterization of the ASD solutions has been originally given by Ashtekar, Jacobson and Smolin [1], and further elaborated by Mason and Newman [2]. In the following, we call their differential equations the half-flat equations. These equations clarify the relationship between the ASD solutions of the Einstein and the Yang-Mills equations. Indeed, if we specialize the gauge group to be a volume-preserving diffeomorphism group, the reduced ASD Yang-Mills equations on the Euclidean space are identical to the half-flat equations [3].

Looking at geometrically, the Ashtekar formulation emphasizes the hyperkähler structures that naturally exist on ASD Einstein solutions. A hyperkähler manifold is a 4n-dimensional Riemannian manifold (M, g) such that (1) M admits three complex structures $J^a(a = 1, 2, 3)$ which obey the quaternionic relations $J^aJ^b = -\delta_{ab} - \epsilon_{abc}J^c$; (2) the metric...
is preserved by J^a; (3) the 2-forms B^a defined by $B^a(X, Y) = g(J^a X, Y)$ for all vector fields X, Y are three kähler forms, i.e. $dB^a = 0$ $(a = 1, 2, 3)$. The solutions of the half-flat equations ensure the conditions above and hence 4-dimensional hyperkähler metrics are ASD Einstein solutions.

Recently, making use of the half-flat equations we have explicitly constructed several hyperkähler metrics [3]. Subsequently here we extend the half-flat equations to the case of $N = 2$ supergravity. Our formulation has the advantage that the setting of $N = 2$ supersymmetric Yang-Mills theory is automatically provided. In particular ASD Maxwell solutions on hyperkähler manifolds are elucidated through the relationship to the reduced $N = 2$ ASD Yang-Mills equations. In the literature [4, 5] the $N = 2$ ASD supergravity has been investigated by using the superfield formulation, but our approach is very different and the results in the present work are more concrete.

In Section 2 we review the half-flat equations. In Section 3 we present a new construction of ASD Maxwell solutions on hyperkähler manifolds and derive the $N = 2$ supersymmetric half-flat equations. Finally, in Section 4 two examples of ASD Maxwell solutions are given.

The following is a summary of the notation used in this paper. The $so(3)$ generators and the Killing form are denoted by $E_a (a = 1, 2, 3)$ and \langle , \rangle, respectively. The symbols $\eta^a_{\mu\nu}$ and $\eta^a_{\mu\nu}$ $(a = 1, 2, 3; \mu, \nu = 0, 1, 2, 3)$ represent the 't Hooft matrices satisfying the relations:

$$\eta^a_{\mu\nu} = -\frac{1}{2} e_{\mu\nu\lambda\sigma} \eta^a_{\lambda\sigma}, \quad \eta^a_{\mu\nu} = \frac{1}{2} e_{\mu\nu\lambda\sigma} \eta^a_{\lambda\sigma}$$

(1.1)

and

$$\eta^a_{\mu\nu} \eta^b_{\lambda\sigma} = \delta_{ab} \delta_{\nu\sigma} + \epsilon_{abc} \eta^c_{\nu\sigma}, \quad (\eta^a_{\mu\nu} \text{ satisfy the same relations}).$$

(1.2)

In Section 3 we consider a space-time with the signature $(++--)$. Then the metrics $\hat{g}_{\mu\nu} = \text{diag}(1, 1, -1, -1)$ and $\kappa_{ab} = \text{diag}(1, -1, -1)$ are used to lower and rise the indices of $\eta^a_{\mu\nu}$ ($\tilde{\eta}^a_{\mu\nu}$).

2 Half-flat equations

In this section, we briefly describe the 4-dimensionial hyperkähler geometry from the point of view of Ashtekar gravity [1, 2]. We use the metric of the Euclidean signature for avoiding complex variables. The Ashtekar gravity consists of an $so(3)$ connection 1-form $A = A^a \otimes E_a$ and an $so(3)$-valued 2-form $B = B^a \otimes E_a$ on a 4-dimensional manifold M. The action is given by

$$S_{Ash} = \int_M \langle B \wedge F \rangle - \frac{1}{2} \langle C(B) \wedge B \rangle,$$

(2.1)

where $F = dA + \frac{1}{2}[A \wedge A]$, $C(B) = C^a_b B^b \otimes E_a$ and $C = C^a_b E_a \otimes E_b$ is a Lagrange multiplier field which obeys the conditions, $C^a_b = C^b_a$ and $C^a_a = 0$. The equations of

\footnote{\textit{1} $N = 1$ half-flat equations are obtained from our equations (3.20) \sim (3.23) by putting $T = 0.$}
motion are

\[F - C(B) = 0 \]
(2.2)
\[DB = 0 \]
(2.3)
\[B^1 \wedge B^2 = B^2 \wedge B^3 = B^3 \wedge B^1 = 0 \]
(2.4)
\[B^1 \wedge B^1 = B^2 \wedge B^2 = B^3 \wedge B^3, \]
(2.5)

where \(D \) is the covariant derivative with respect to \(A \). The algebraic equations (2.4) and (2.5) represent the constraints of this system.

To solve the constraints we introduce linearly independent four vector fields \(V^\mu (\mu = 0,1,2,3) \) and a volume form \(\omega \) on \(M \). Then the solutions become the self-dual \(2 \)-forms

\[B^a = \frac{1}{2} \eta^a_{\mu \nu} \iota_{V^\mu} \iota_{V^\nu} \omega, \]
(2.6)

where \(\iota_{V^\mu} \) denotes the inner derivation with respect to \(V^\mu \). We proceed to solve the remaining equations (2.2) and (2.3). For the hyperkähler geometry, which we will focus on in this paper, \(C \) must be taken to be zero because \(C^a_b \) are the coefficients of self-dual Weyl curvature; this is equivalent to the requirement that the holonomy group is contained in subgroup \(\text{Sp}(1) \) of \(\text{SO}(4) \). With this choice, (2.2) becomes \(F = 0 \) and if we take the gauge fixing \(A = 0 \), (2.3) reduces to

\[dB^a = 0 \quad (a = 1,2,3). \]
(2.7)

Thus (2.6) implies the half-flat equations [1, 2],

\[\frac{1}{2} \eta^a_{\mu \nu} [V^\mu, V^\nu] = 0, \]
(2.8)
\[L_{V^\mu} \omega = 0. \]
(2.9)

This can be seen by applying the formula :

\[d(\iota_X \iota_Y \alpha) = \iota_{[X,Y]} \alpha + \iota_Y L_X \alpha - \iota_X L_Y \alpha + \iota_X \iota_Y d \alpha \]
(2.10)

for vector fields \(X, Y \) and a form \(\alpha \). Given a solution of (2.8) and (2.9), we have a metric

\[g(V^\mu, V^\nu) = \phi \delta^\mu_\nu, \]
(2.11)

where \(\phi = \omega(V_0, V_1, V_2, V_3) \). This metric is invariant by the three complex structures

\[J^a(V^\mu) = \eta^a_{\mu \nu} V^\nu \quad (a = 1,2,3), \]
(2.12)

which obey the relations \(J^a J^b = -\delta^a_b - \epsilon^{abc} J^c \) and give the three Kähler forms \(B^a(V^\mu, V^\nu) = g(J^a(V^\mu), V^\nu) \). Thus the triplet \((M, g, J^a) \) is a hyperkähler manifold. Conversely, it is known that every 4-dimensional hyperkähler manifold locally arises by this construction [2, 7].

This formulation yields that the vector fields \(V^\mu \) may be identified with the components of a space-time independent ASD Yang-Mills connection on \(\mathbb{R}^4 \). Indeed, (2.7) is the
assertion that the gauge group is the diffeomorphism group \(\text{SDiff}_\omega(M) \) preserving the volume form \(\omega \), and (2.8) are explicitly written as

\[
[V_0, V_1] + [V_2, V_3] = 0 \quad (2.13)
\]
\[
[V_0, V_2] + [V_3, V_1] = 0 \quad (2.14)
\]
\[
[V_0, V_3] + [V_1, V_2] = 0, \quad (2.15)
\]

which are equivalent to the reduced ASD Yang-Mills equations \([2]\).

3 N=2 supersymmetric Ashtekar gravity

We start with the chiral action for \(\mathbb{N}=2 \) supergravity without cosmological constant \([8, 9]\). The bosonic part, which is the chiral action of Einstein-Maxwell theory, contains a \(U(1) \) connection 1-form \(a \) and a 2-form \(b \) in addition to \(A, B \) in (2.1) \([8]\). The fermionic fields (two gravitino fields) are expressed by Weyl spinor 1-forms \(\psi^i \) and Weyl spinor 2-forms \(\chi^i \), where \(i (= 1, 2) \) is a \(\text{Sp}(1) \) index representing the two supersymmetric charges.

By using the 2-component spinor notation, the chiral action is written as

\[
S_{\text{Ash}}^{\mathbb{N}=2} = \int B^{AB} \wedge F_{AB} + b \wedge f + \chi^i_A \wedge D\psi^A_i - \frac{1}{2} b \wedge b - \frac{1}{8} b \wedge \psi^A_i \wedge \psi^j_A - \frac{1}{2} C_{ABCD} B^{AB} \wedge B^{CD} - \frac{1}{2} \kappa^{iABC} B^{AB} \wedge \chi^C - \frac{1}{2} H_{AB} (B^{AB} \wedge b - \chi^A_i \wedge \chi^B_i) \quad (3.1)
\]

where \(f = da \), and \(C_{ABCD}, \kappa^{iABC} \) and \(H_{AB} \) are totally symmetric Lagrange multiplier fields.

Let us focus on ASD solutions. Then we can put \(A_{AB} = C_{ABCD} = 0 \) as stated in Sect.2, and further impose the conditions \(H_{AB} = \kappa^{iABC} = \psi^A_i = 0 \). It should be noticed that these restrictions preserve the \(\mathbb{N}=2 \) supersymmetry; as we will see in Sect.3.2 this symmetry is properly realized in the \(\mathbb{N}=2 \) supersymmetric ASD Yang-Mills equations with the gauge group \(\text{SDiff}_\omega(M) \). Now the equations of motion derived from \(S_{\text{Ash}}^{\mathbb{N}=2} \) reduce to

\[
f = b \quad (3.2)
\]
\[
dB^{AB} = db = d\chi^A_i = 0 \quad (3.3)
\]
\[
B^{(AB} \wedge B^{CD)} = 0 \quad (3.4)
\]
\[
B^{(AB} \wedge \chi^C_i) = 0 \quad (3.5)
\]
\[
B^{AB} \wedge b - \chi^A_i \wedge \chi^B_i = 0. \quad (3.6)
\]

3.1 Maxwell solutions on hyperkähler manifolds

We first consider the bosonic sector \((b = f, B) \) in a space-time with the Euclidean signature. The relevant equations are obtained from (3.2) \(\sim (3.6) \) by putting \(\chi^A_i = 0 \). In the

\footnote{We have re-named the variables in \([10]\) as \((A_{AB}, A, B, \psi^A, B, \chi^A_i, \psi_{ABCD}, \kappa^{iABC}, \phi_{AB}) \mapsto (A_{AB}, a, \sqrt{2} \psi^A_i, -A^{AB}, -\frac{1}{2} b, -\sqrt{2} \chi^A_i, -C_{ABCD}, -\frac{1}{\sqrt{2}} \kappa^{iABC}, -\frac{1}{2} H_{AB}) \).}
previous section we have seen that the solutions $B^a(a = 1, 2, 3)$ are self-dual Kähler forms on a hyperkähler manifold M. Thus the equations (3.3) and (3.6) imply that b is an ASD closed 2-form (ASD Maxwell solution) on M. The following proposition holds.

Proposition. Let M be a hyperkähler manifold expressed by linear independent vector fields $V_\mu(\mu = 0, 1, 2, 3)$ and a volume form ω as mentioned in (2.8) and (2.9). If the vector field $T = T_\mu V_\mu$ satisfies

\begin{align*}
L_T \omega &= 0, \\
[V_\mu, [V_\mu, T]] &= 0,
\end{align*}

then b defined by

\[b = \frac{1}{2} b^a \eta^a_{\mu \nu} \iota_{V_\mu} \iota_{V_\nu} \omega \quad \text{for} \quad b^a = \eta^a_{\mu \nu} V_\mu T_\nu, \tag{3.9} \]

is an ASD closed 2-form on M.

Proof. The ASD condition of b immediately follows from (3.9). Therefore it suffices to prove that b is a closed 2-form. Using the identity of the 't Hooft matrices

\[\eta^a_{\mu \nu} \eta^a_{\lambda \sigma} = \delta_{\mu \lambda} \delta_{\nu \sigma} - \delta_{\mu \sigma} \delta_{\nu \lambda} - \epsilon_{\mu \nu \lambda \sigma}, \tag{3.10} \]

we rewrite (3.3) in the form,

\[b = \iota_{V_\mu} \iota_{V_\nu} L_{V_\mu} (T_\nu \omega) - \frac{1}{2} \epsilon_{\mu \nu \lambda \sigma} \iota_{V_\mu} \iota_{V_\sigma} L_{V_\lambda} (T_\nu \omega). \tag{3.11} \]

Let us define the vector fields

\[W_{\mu \nu} = [V_\mu, V_\nu] + \frac{1}{2} \epsilon_{\mu \nu \lambda \sigma} [V_\lambda, V_\sigma]. \tag{3.12} \]

Then,

\[b + \iota_{V_\mu} \iota_{W_{\mu \nu}} T_\nu \omega = \iota_{V_\mu} L_{V_\nu} (T_\nu \omega) + \frac{1}{2} \epsilon_{\mu \nu \lambda \sigma} \iota_{V_\mu} \iota_{V_\sigma} L_{V_\lambda} (T_\nu \omega). \tag{3.13} \]

The exterior derivative of (3.13) is evaluated as follows: Since both the vector fields V_μ and T preserve the volume form ω, we have

\[d(\iota_{V_\mu} L_{V_\nu} \iota_{T_\nu} \omega) = L_{V_\mu} L_{V_\nu} \iota_{T_\nu} \omega = \iota_{[V_\mu, [V_\nu, T]]} \omega \tag{3.14} \]

and

\[d(\epsilon_{\mu \nu \lambda \sigma} \iota_{V_\mu} L_{V_\lambda} \iota_{V_\sigma} (T_\nu \omega)) = \frac{1}{2} \epsilon_{\mu \nu \lambda \sigma} (L_{V_\mu} L_{V_\lambda} \iota_{V_\sigma} - \iota_{V_\mu} L_{V_\lambda} L_{V_\sigma})(T_\nu \omega) \]

\[= \frac{1}{4} \epsilon_{\mu \nu \lambda \sigma} \iota_{[V_\mu, [V_\lambda, V_\sigma]]} T_\nu \omega = 0. \tag{3.15} \]

We thus find

\[d(b + \iota_{V_\mu} \iota_{W_{\mu \nu}} T_\nu \omega) = \iota_{[V_\mu, [V_\nu, T]]} \omega. \tag{3.16} \]

Finally, making use of (2.8), i.e. $W_{\mu \nu} = 0$, combined with the condition (3.8), we obtain the required formula $db = 0$. \[\square \]
Remark. Using the hyperkähler metric \((2.11)\), we can rewrite \((3.9)\) as
\[
b = dg(T) + \iota_{[V, T]}\omega.
\]
(3.17)

This expression is convenient to the explicit calculation in Sect.4.

3.2 \(N = 2\) supersymmetric half-flat equations

Let us return to the equations \((3.2)\)∼\((3.6)\) and assume a space-time with the signature \((++--)\). It is known that the hyperkähler manifolds with this signature provide the consistent backgrounds for closed \(N=2\) strings \([11, 12]\). We follow the paper for the spinor notation of \([4]\); the spinor indices \(A,B,C\) · · · in \((3.1)\) are replaced by the dotted indices \(\dot{A}, \dot{B}, \dot{C}\) · · · . To solve the constraints we introduce spinor valued vector fields \(V^A\) in addition to the vector fields \(V_\mu\) (or \(V_{\dot{A}}\)) and \(T\). Referring to \((3.9)\), we put
\[
\chi_{i\dot{A}} = \iota_{V_{\dot{B}}} V^{i\dot{A}} \omega,
\]
(3.18)
and
\[
\frac{1}{2} \bar{\eta}^{\mu\nu} [V_\mu, V_\nu] = 0
\]
(3.20)

\[
[V_\mu, [V_\mu, T]] + [V_i^A, V_i^A] = 0
\]
(3.21)

and
\[
[V_{\dot{B}}, V_i^A] = 0
\]
(3.22)

\[
L_{V_\mu} \omega = L_{V_i^A} \omega = L_T \omega = 0.
\]
(3.23)

This result is satisfactory in that it gives the direct correspondence between the ASD solutions of the \(N = 2\) supergravity and the \(N = 2\) supersymmetric Yang-Mills theory; the equations \((3.20)\)∼\((3.23)\) can be regarded as \(N = 2\) supersymmetric extension of the half-flat equations. To say more precisely, let us recall the \(N = 2\) ASD Yang-Mills equation in a flat space-time with the signature \((++--)\) \([4, 5]\). The \(N = 2\) Yang-Mills theory has the field content \((A_\mu, \lambda_i^A, \tilde{\lambda}_{i\dot{A}}, S, \tilde{S})\), where \(\lambda_i^A\) and \(\tilde{\lambda}_{i\dot{A}}\) are chiral and anti-chiral Majorana-Weyl spinors, while the fields \(S\) and \(\tilde{S}\) are real scalars. All the fields are in the adjoint representation of gauge group. By the supersymmetric ASD condition, i.e. \(\tilde{S} = 0\), the equations of motion reduce to
\[
\frac{1}{2} \bar{\eta}^{\mu\nu} [D_\mu, D_\nu] = 0
\]
(3.24)

\[
D^\mu D_\mu S + [\lambda_i^A, \lambda_i^A] = 0
\]
(3.25)

\[
(\sigma^\mu D_\mu)_{BA} \lambda_i^B = 0,
\]
(3.26)

where \(D_\mu = \partial_\mu + [A_\mu, \cdot]\). If we require that the fields are all constant on the space-time, and further choose the gauge group as \(SDiff_\omega(M)\), then the equations \((3.24)\)∼\((3.26)\) just become the \(N = 2\) supersymmetric half-flat equations \((3.20)\)∼\((3.23)\) with the identification \(A_\mu = V_\mu, \lambda_i^A = V_i^A\) and \(S = T\).
4 Examples of ASD Maxwell solutions

As an application of the proposition, we present two examples of ASD Maxwell solutions on 4-dimensional hyperkähler manifolds with one isometry generated by a Killing vector field $K = \frac{\partial}{\partial \tau}$. The first example gives the well-known Maxwell solution and the second one leads to a new solution as far as the authors know. We use local coordinates (τ, x^1, x^2, x^3) and a volume form $\omega = d\tau \wedge dx^1 \wedge dx^2 \wedge dx^3$ for the background manifold.

4.1 Gibbons-Hawking background

In this case we choose the vector fields V_μ as \[V_0 = \phi \frac{\partial}{\partial \tau}, \]
\[V_i = \frac{\partial}{\partial x^i} + \psi_i \frac{\partial}{\partial \tau} \quad (i = 1, 2, 3), \]
where the functions ϕ, ψ_i are all independent of τ. Then these vector fields preserve the volume form ω and (2.8) implies
\[*d\phi = d\psi, \]
where $\psi = \psi_i dx^i$ and $*$ denotes the Hodge operator on $\mathbb{R}^3 = \{ (x^1, x^2, x^3) \}$. The resultant metric is the Gibbons-Hawking multi-center metric \[ds^2 = \phi^{-1}(d\tau + \psi)^2 + \phi dx^i dx^i. \]
The Killing vector field $T = K$ clearly satisfies (3.7) and (3.8). Applying the proposition, we have an ASD Maxwell solution \[b = da \quad \text{with} \quad a = \phi^{-1}(d\tau - \psi). \]

4.2 Real heaven background

We choose the vector fields V_μ as \[V_0 = e^\psi \left(\partial_3 \psi \cos \left(\frac{\tau}{2} \right) \frac{\partial}{\partial \tau} + \sin \left(\frac{\tau}{2} \right) \frac{\partial}{\partial x^3} \right), \]
\[V_1 = e^\psi \left(-\partial_3 \psi \sin \left(\frac{\tau}{2} \right) \frac{\partial}{\partial \tau} + \cos \left(\frac{\tau}{2} \right) \frac{\partial}{\partial x^3} \right), \]
\[V_2 = \frac{\partial}{\partial x^1} + \partial_2 \psi \frac{\partial}{\partial \tau}, \]
\[V_3 = \frac{\partial}{\partial x^2} - \partial_1 \psi \frac{\partial}{\partial \tau}, \]
If the function ψ is independent of τ and satisfies the 3-dimensional continual Toda equation:
\[\partial_1^2 \psi + \partial_2^2 \psi + \partial_3^2 e^\psi = 0, \]
these vector fields are solutions of the half-flat equations (2.8) and (2.9). Then, the hyperkähler metric (the real heaven solution) is given by [16]

\[ds^2 = (\partial_3 \psi)^{-1}(d\tau + \beta)^2 + (\partial_3 \psi)\gamma_{ij}dx^i dx^j, \] (4.11)

where

\[\beta = -\partial_2 \psi dx^1 + \partial_1 \psi dx^2, \] (4.12)

and \(\gamma_{ij} \) is the diagonal metric \(\gamma_{11} = \gamma_{22} = e^{\psi}, \gamma_{33} = 1. \)

In this case we find solution of (3.7) and (3.8):

\[T = c_1(\partial_1 \psi) \frac{\partial}{\partial \tau} + c_2(\partial_2 \psi) \frac{\partial}{\partial \tau} \] for constants \(c_i \) (i = 1, 2). (4.13)

The corresponding ASD Maxwell solution is given by

\[b = c_1 da^{(1)} + c_2 da^{(2)}, \] (4.14)

where

\[a^{(1)} = \partial_1 \psi(\partial_3 \psi)^{-1}(d\tau + \beta) + \partial_3 e^{\psi} dx^2 - \partial_2 \psi dx^3, \] (4.15)

\[a^{(2)} = \partial_2 \psi(\partial_3 \psi)^{-1}(d\tau + \beta) - \partial_3 e^{\psi} dx^1 + \partial_1 \psi dx^3. \] (4.16)

Acknowledgments

We want to thank Y. Hashimoto for many useful discussions.

References

[1] A. Ashtekar, T. Jacobson and L. Smolin, A new characterization of half-flat solutions to Einstein’s equation, Commun. Math. Phys. 115 (1988) 631-648.

[2] L.J. Mason and E.T. Newman, A connection between the Einstein and Yang-Mills equations, Commun. Math. Phys. 121 (1989) 659-668.

[3] Y. Hashimoto, Y. Yasui, S. Miyagi and T. Ootsuka, Applications of the Ashtekar gravity to four-dimensional hyperkähler geometry and Yang-Mills instantons, J. Math. Phys. 38 (1997) 5833-5839.

[4] S.V. Ketov, H. Nishino and S.J. Gates Jr., Self-dual supersymmetry and supergravity in Atiyah-Ward space-time, Nucl. Phys. B 393 (1993) 149-210.

[5] S.J. Gates Jr., H. Nishino and S.V. Ketov, Extended supersymmetry and self-duality in 2+2 dimensions, Phys. Lett. B 297 (1992) 99-104.

[6] R. Capovilla, J. Dell, T. Jacobson and L. Mason, Self-dual 2-forms and gravity, Class. Quantum Grav. 8 (1991) 41-57.
[7] S.K. Donaldson, Complex cobordism, Ashtekar’s equations and diffeomorphisms, in: *Symplectic Geometry*, ed. D. Salamon, London Math. Soc. (1992) 45-55.

[8] D.C. Robinson, A $GL(2, \mathbb{C})$ formulation of Einstein-Maxwell theory, *Class. Quantum Grav.* 11 (1994) L157-L161.

[9] H. Kunitomo and T. Sano, The Ashtekar Formulation for Canonical N=2 Supergravity, *Prog. Theor. Phys. Supplement* 114 (1993) 31-39.

[10] K. Ezawa, Ashtekar’s Formulation for N=1,2 Supergravities as ”Constrained” BF Theories, *Prog. Theor. Phys.* 95 (1996) 863-882.

[11] H. Ooguri and C. Vafa, Self-Dual and N=2 String Magic, *Mod. Phys. Lett.* (1990) 1389-1398.

[12] H. Ooguri and C. Vafa, Geometry of N=2 String, *Nucl. Phys.* B361 (1991) 469-518.

[13] D.D. Joyce, Explicit construction of self-dual 4-manifolds, *Duke Math. J.* 77 No.3 (1995) 519-552.

[14] G.W. Gibbons and S.W. Hawking, Gravitational multi-instantons, *Phys. Lett.* B 78 (1978) 430-432.

[15] T. Eguchi and A.J. Hanson, Self-Dual Solutions to Euclidean Gravity, *Ann. Phys.* 120 (1979) 82-106.

[16] C. Boyer and J. Finley, Killing vectors in self-dual, Euclidean Einstein spaces, *J. Math. Phys.* 23 (1982) 1126-1130.