Partial hyperbolicity and central shadowing

SERGEY KRYZHEVICH AND SERGEY TIKHOMIROV

Abstract. We study shadowing property for a partially hyperbolic diffeomorphism f. It is proved that if f is dynamically coherent then any pseudotrajectory can be shadowed by a pseudotrajectory with “jumps” along the central foliation. The proof is based on the Tikhonov-Shauder fixed point theorem.

Keywords: partial hyperbolicity, central foliation, Lipschitz shadowing, dynamical coherence.

1 Introduction

The theory of shadowing of approximate trajectories (pseudotrajectories) of dynamical systems is now a well developed part of the global theory of dynamical systems (see, for example, monographs [12], [13]). This theory is of special importance for numerical simulations and the classical theory of structural stability.

It is well known that a diffeomorphism has the shadowing property in a neighborhood of a hyperbolic set [2], [4] and a structurally stable diffeomorphism has the shadowing property on the whole manifold [11], [17], [19].

There are a lot of examples of non-hyperbolic diffeomorphisms, which have shadowing property (see for instance [14], [21]) at the same time this phenomena is not frequent. More precisely the following statements are correct. Diffeomorphisms with C^1-robust shadowing property are structurally stable [18]. In [11] Abdenur and Diaz conjectured that C^1-generically shadowing is equivalent to structural stability, and proved this statement for so-called tame diffeomorphisms. Lipschitz shadowing is equivalent to structural stability [15] (see [21] for some generalizations).

In present article we study shadowing property for partially hyperbolic diffeomorphisms. Note that due to [7] one cannot expect that in general shadowing holds for partially hyperbolic diffeomorphisms. We use notion of central pseudotrajectory and prove that any pseudotrajectory of a partially hyperbolic diffeomorphism can be shadowed by a central pseudotrajectory. This result might be considered as a generalization of a classical shadowing lemma for the case of partially hyperbolic diffeomorphisms.
2 Definitions and the main result

Let M be a compact n–dimensional C^∞ smooth manifold, with a Riemannian metric dist. Let $|\cdot|$ be the Euclidean norm at \mathbb{R}^n and the induced norm on the leaves of the tangent bundle TM. For any $x \in M$, $\varepsilon > 0$ we denote

$$B_\varepsilon(x) = \{ y \in M : \text{dist}(x, y) \leq \varepsilon \}.$$

Below in the text we use the following definition of partial hyperbolicity (see for example [6]).

Definition 1. A diffeomorphism $f \in \text{Diff}^1(M)$ is called *partially hyperbolic* if there exists $m \in \mathbb{N}$ such that the mapping f^m satisfies the following property. There exists a continuous invariant bundle

$$T_xM = E^s(x) \oplus E^c(x) \oplus E^u(x), \quad x \in M$$

and continuous positive functions $\nu, \hat{\nu}, \gamma, \hat{\gamma} : M \to \mathbb{R}$ such that

$$\nu, \hat{\nu} < 1, \quad \nu < \gamma < \hat{\gamma} < \hat{\nu}^{-1}$$

and for all $x \in M$, $v \in \mathbb{R}^n$, $|v| = 1$

$$|Df^m(x)v| \leq \nu(x), \quad v \in E^s(x);$$

$$\gamma(x) \leq |Df^m(x)v| \leq \hat{\gamma}(x), \quad v \in E^c(x);$$

$$|Df^m(x)v| \geq \hat{\nu}^{-1}(x), \quad v \in E^u(x). \quad (1)$$

Denote

$$E^{cs}(x) = E^s(x) \oplus E^c(x), \quad E^{cu}(x) = E^c(x) \oplus E^u(x).$$

For further considerations we need the notion of dynamical coherence.

Definition 2. We say that a k–dimensional distribution E over TM is *uniquely integrable* if there exists a k–dimensional continuous foliation W of the manifold M, whose leaves are tangent to E at every point. Also, any C^1–smooth path tangent to E is embedded to a unique leaf of W.

Definition 3. A partially hyperbolic diffeomorphism f is *dynamically coherent* if both the distributions E^{cs} and E^{cu} are uniquely integrable.
If \(f \) is dynamically coherent then distribution \(E_c \) is also uniquely integrable and corresponding foliation \(W^c \) is a subfoliation of both \(W^{cs} \) and \(W^{cu} \). For a discussion how often partially hyperbolic diffeomorphisms are dynamically coherent see [5], [9].

In the text below we always assume that \(f \) is dynamically coherent.

For \(\tau \in \{s, c, u, cs, cu\} \) and \(y \in W^\tau(x) \) let \(\text{dist}_\tau(x, y) \) be the inner distance on \(W^\tau(x) \) from \(x \) to \(y \). Note that
\[
\text{dist}(x, y) \leq \text{dist}_\tau(x, y), \quad y \in W^\tau(x).
\]

Denote
\[
W^\tau_\varepsilon(x) = \{y \in W^\tau(x), \text{dist}_\tau(x, y) < \varepsilon\}.
\]

Let us recall the definition of the shadowing property.

Definition 4. A sequence \(\{x_k : k \in \mathbb{Z}\} \) is called \(d \)-pseudotrajectory \((d > 0)\) if \(\text{dist}(f(x_k), x_{k+1}) \leq d \) for all \(k \in \mathbb{Z} \).

Definition 5. Diffeomorphism \(f \) satisfies the *shadowing property* if for any \(\varepsilon > 0 \) there exists \(d > 0 \) such that for any \(d \)-pseudotrajectory \(\{x_k : k \in \mathbb{Z}\} \) there exists a trajectory \(\{y_k\} \) of the diffeomorphism \(f \) such that
\[
\text{dist}(x_k, y_k) \leq \varepsilon, \quad k \in \mathbb{Z}.
\]

Definition 6. Diffeomorphism \(f \) satisfies the *Lipschitz shadowing property* if there exist \(\mathcal{L}, d_0 > 0 \) such that for any \(d \in (0, d_0) \), and any \(d \)-pseudotrajectory \(\{x_k : k \in \mathbb{Z}\} \) there exists a trajectory \(\{y_k\} \) of the diffeomorphism \(f \), satisfying (3) with \(\varepsilon = \mathcal{L}d \).

As was mentioned before in a neighborhood of a hyperbolic set diffeomorphism satisfies the Lipschitz shadowing property [2], [4], [13].

We suggest the following generalization of the shadowing property for partially hyperbolic dynamically coherent diffeomorphisms.

Definition 7 (see for example [10]). An \(\varepsilon \)-pseudotrajectory \(\{y_k\} \) is called *central* if for any \(k \in \mathbb{Z} \) the inclusion \(f(y_k) \in W^c_\varepsilon(y_{k+1}) \) holds (see Fig. 1).

Definition 8. A partially hyperbolic dynamically coherent diffeomorphism \(f \) satisfies the *central shadowing property* if for any \(\varepsilon > 0 \) there exists \(d > 0 \) such that for any \(d \)-pseudotrajectory \(\{x_k : k \in \mathbb{Z}\} \) there exists an \(\varepsilon \)-central pseudotrajectory \(\{y_k\} \) of the diffeomorphism \(f \), satisfying (3).
Definition 9. A partially hyperbolic dynamically coherent diffeomorphism \(f \) satisfies the \textit{Lipschitz central shadowing property} if there exist \(d_0, \mathcal{L} > 0 \) such that for any \(d \in (0, d_0) \) and any \(d \)-pseudotrajectory \(\{x_k : k \in \mathbb{Z}\} \) there exists an \(\epsilon \)-central pseudotrajectory \(\{y_k\} \), satisfying (3) with \(\epsilon = \mathcal{L}d \).

Note that the Lipschitz central shadowing property implies the central shadowing property.

We prove the following analogue of the shadowing lemma for partially hyperbolic diffeomorphisms.

Theorem 1. Let diffeomorphism \(f \in C^1 \) be partially hyperbolic and dynamically coherent. Then \(f \) satisfies the Lipschitz central shadowing property.

Note that for Anosov diffeomorphisms any central pseudotrajectory is a true trajectory.

Let us also mention the following related notion [10].

Definition 10. Partially hyperbolic, dynamically coherent diffeomorphism \(f \) is called \textit{plaque expansive} if there exists \(\epsilon > 0 \) such that for any \(\epsilon \)-central pseudotrajectories \(\{y_k\}, \{z_k\} \), satisfying

\[\text{dist}(y_k, z_k) < \epsilon, \quad k \in \mathbb{Z} \]

hold inclusions

\[z_0 \in W^c_\epsilon(y_0), \quad k \in \mathbb{Z}. \]

In the theory of partially hyperbolic diffeomorphisms the following conjecture plays important role [3], [10].

Conjecture 1 (Plague Expansivity Conjecture). Any partially hyperbolic, dynamically coherent diffeomorphism is plaque expansive.
Let us note that if the diffeomorphism \(f \) in Theorem \(\text{[1]} \) is additionally plaque expansive then leaves \(W^c(y_k) \) are uniquely defined (see Remark \(\text{[1]} \) below).

Among results related to Theorem \(\text{[1]} \) we would like to mention that partially hyperbolic dynamically coherent diffeomorphisms, satisfying plaque expansivity property are leaf stable (see \([10\), Chapter 7], \([10\) for details).

3 Proof of Theorem \(\text{[1]} \)

In what follows below we will use the following statement, which is consequence of transversality and continuity of foliations \(W^s, W^c \).

Statement 1. There exists \(\delta_0 > 0, L_0 > 1 \) such that for any \(\delta \in (0, \delta_0] \) such that for any \(x,y \in M \) satisfying \(\text{dist}(x,y) < \delta \) there exists unique point \(z = W^s_\varepsilon(x) \cap W^c_\varepsilon(y) \) for \(\varepsilon = L_0\delta \).

Note that for a fixed diffeomorphism \(f \), satisfying the assumptions of the theorem, it suffices to prove that its fixed power \(f^m \) satisfies the Lipschitz central shadowing property. Since foliations \(W^\tau, \tau \in \{s,u,c,cs,cu\} \) of \(f^m \) coincide with the corresponding foliations of the initial diffeomorphism \(f \) we can assume without loss of generality that conditions \(\text{(1)} \) hold for \(m = 1 \). Note that a similar claim can be done using adapted metric, see \([8\).

Denote
\[
\lambda = \min_{x \in M} (\min(\hat{\nu}^{-1}(x), \nu^{-1}(x))) > 1.
\]

Let us choose \(l \) so big that
\[
\lambda^l > 2L_0.
\]

Arguing similarly to previous paragraph it is sufficient to prove that \(f^l \) has the Lipschitz central shadowing property and hence, we can assume without loss of generality that \(l = 1 \).

Decreasing \(\delta_0 \) if necessarily we conclude from inequalities \(\text{(1)} \) that
\[
\text{dist}_s(f(x), f(y)) \leq \frac{1}{\lambda} \text{dist}_s(x, y), \quad y \in W^s_{\delta_0}(x) \quad \text{(4)}
\]
and
\[
\text{dist}_u(f(x), f(y)) \geq \lambda \text{dist}_u(x, y), \quad y \in W^u_{\delta_0}(x).
\]
Denote

\[I^\tau_r(x) = \{ z^\tau \in E^\tau(x), \ |z^\tau| \leq r \}, \quad \tau \in \{ s, u, c, cs, cu \}, \quad r > 0, \]

\[I_r(x) = \{ z \in T_x M, \ |z| \leq r \}, \quad r > 0. \]

Consider standard exponential mappings \(\exp_x : T_x M \to M \) and \(\exp_x^\tau : T_x W^\tau(x) \to W^\tau(x) \), for \(\tau \in \{ s, c, u, cs, cu \} \). Standard properties of exponential mappings imply that there exists \(\varepsilon_0 > 0 \), such that for all \(x \in M \) maps \(\exp_x, \exp_x^\tau \) are well defined on \(I_{\varepsilon_0}(x) \) and \(I_{\varepsilon_0}^\tau(x) \) respectively and \(D \exp_x(0) = \text{Id}, \ D \exp_x^\tau(0) = \text{Id} \). Those equalities imply the following.

Statement 2. For \(\mu > 0 \) there exists \(\varepsilon \in (0, \varepsilon_0) \) such that for any point \(x \in M \), the following holds.

A1 For any \(y, z \in B_\varepsilon(x) \) and \(v_1, v_2 \in I^\varepsilon_x(x) \) the following inequalities hold

\[
\frac{1}{1 + \mu} \text{dist}(y, z) \leq |\exp_x^{-1}(y) - \exp_x^{-1}(z)| \leq (1 + \mu) \text{dist}(y, z),
\]

\[
\frac{1}{1 + \mu} |v_1 - v_2| \leq \text{dist}(\exp_x(v_1), \exp_x(v_2)) \leq (1 + \mu) |v_1 - v_2|.
\]

A2 Conditions similar to **A1** hold for \(\exp_x^\tau \) and \(\text{dist}^\tau, \ \tau \in \{ s, c, u, cs, cu \} \).

A3 For \(y \in W^\varepsilon_\tau(x), \ \tau \in \{ s, c, u, cs, cu \} \) the following holds

\[
\text{dist}^\tau(x, y) \leq (1 + \mu) \text{dist}(x, y).
\]

A4 If \(\xi < \varepsilon \) and \(y \in W^\varepsilon^s_\xi(x) \cap W^\varepsilon^{cu}_\xi(x) \) then

\[
\text{dist}^c(x, y) \leq (1 + \mu) \xi.
\]

Consider small enough \(\mu \in (0, 1) \) satisfying the following inequality

\[
(1 + \mu)^2 L_0 / \lambda < 1. \quad (5)
\]

Choose corresponding \(\varepsilon > 0 \) from Statement 2. Let \(\delta = \min(\delta_0, \varepsilon / L_0) \).

For a pseudotrajectory \(\{ x_k \} \) consider maps \(h_k^* : U_k \subset E^s(x_k) \to E^s(x_{k+1}) \) defined as the following:

\[
h_k^*(z) = (\exp_{x_{k+1}}^*)^{-1}(p)
\]
where
\[p = W_{\omega_0b_0}^cL(f(\exp_{x_k}(z))) \cap W_{\omega_0b_0}^sL(x_{k+1}) \]
and \(U_k \) is the set of points for which map \(h_k^s \) is well-defined (see Fig. 2). Note that maps \(h_k^s(z) \) are continuous. The following lemma plays a central role in the proof of Theorem 1.

Lemma 1. There exists \(d_0 > 0, L > 1 \) such that for any \(d < d_0 \) and \(d \)-pseudotrajectory \(\{x_k\} \) maps \(h_k^s \) are well-defined for \(z \in I_{Ld}^s(x_k) \) and the following inequalities hold

\[|h_k^s(z)| \leq Ld, \quad k \in \mathbb{Z}. \]

Proof. Inequality (5) implies that there exists \(L > 0 \) such that

\[L_0(1 + L(1+\mu)/\lambda)(1 + \mu) < L. \]

Let us choose \(d_0 < \delta_0/2L \). Fix \(d < d_0 \), \(d \)-pseudotrajectory \(\{x_k\}, k \in \mathbb{Z} \) and \(z \in I_{Ld}^s(x_k) \).

Condition A2 of Statement 2 implies that

\[\text{dist}_{s}(x_k, \exp_{x_k}(z)) \leq Ld(1 + \mu). \]

Inequality (4) implies the following

\[\text{dist}_{s}(f(x_k), \exp_{x_k}(z)) \leq \frac{1}{\lambda}Ld(1 + \mu). \]

Inequalities (2) and \(\text{dist}(f(x_k), x_{k+1}) < d \) imply (see Fig. 3 for illustration)

\[\text{dist}(x_{k+1}, f(\exp_{x_k}(z))) \leq \text{dist}(x_{k+1}, f(x_k)) + \text{dist}(f(x_k), f(\exp_{x_k}(z))) \leq d \left(1 + \frac{1}{\lambda}L(1 + \mu) \right) < Ld < \delta_0. \]
Statement 1 implies that point p from relation (6) is well-defined and inequality (8) implies the following

$$\text{dist} \left(p, x_{k+1} \right), \text{dist}_{cu} \left(p, f(\exp^{s}_{x_{k}}(z)) \right) < dL_0 \left(1 + \frac{1}{\lambda} L \left(1 + \mu \right) \right) < \frac{Ld}{1 + \mu}.$$

This inequality and Statement 2 imply

$$\text{dist}_{cu} \left(f(\exp^{s}_{x_{k+1}}(z)), \exp^{s}_{x_{k}}(h^s_k(z)) \right) < Ld, \quad (9)$$

$$|h^s_k(z)| < Ld,$$

which completes the proof.

Let $d_0, L > 0$ are constants provided by Lemma 1. Let $d < d_0$ and $\{x_k\}$ is a d-pseudotrajectory. Denote

$$X^s = \prod_{k=-\infty}^{\infty} I^s_{Ld}(x_k).$$

This set endowed with the Tikhonov product topology is compact and convex.

Let us consider map $H : X^s \rightarrow X^s$ defined as following

$$H(\{z_k\}) = \{z'_{k+1}\}, \quad \text{where} \quad z'_{k+1} = h^s_k(z_k).$$

By Lemma 1 this map is well-defined. Since z'_{k+1} depends only on z_k map H is continuous. Due to the Tikhonov-Schauder theorem [20], the mapping H
has a (maybe non-unique) fixed point \(\{ z^*_k \} \). Denote \(y^s_k = \exp^s_{z_k}(z^*_k) \). Since \(z^*_k + 1 = h^s_k(z^*_k) \), inequality (9) implies that
\[
y^s_{k+1} \in W^c_{Ld}(f(y^s_k)), \quad k \in \mathbb{Z}.
\] (10)
Since \(|z^*_k| < Ld \) we conclude
\[
dist(x_k, y^s_k) \leq dist_s(x_k, y^s_k) < (1 + \mu)Ld < 2Ld, \quad k \in \mathbb{Z}.
\]

Similarly (decreasing \(d_0 \) and increasing \(L \) if necessarily) one may show that there exists a sequence \(\{ y^u_k \in W^u_{2Ld}(x_k) \} \) such that
\[
y^u_{k+1} \in W^c_{Ld}(f(y^u_k)), \quad k \in \mathbb{Z}.
\]
Hence \(dist(y^s_k, y^u_k) < dist(y^s_k, x_k) + dist(x_k, y^u_k) < 4Ld \). Decreasing \(d_0 \) if necessarily we can assume that \(4L_0Ld < \delta_0 \). Then there exists an unique point \(y_k = W^c_{Ld}(y^s_k) \cap W^s_{Ld}(y^u_k) \) and inclusion (10) implies that for all \(k \in \mathbb{Z} \) the following holds
\[
dist_{cu}(y_{k+1}, f(y_k)) < \ dist_{cu}(y_{k+1}, y^s_{k+1}) + dist_{cu}(y^s_{k+1}, f(y^s_k)) + dist_{cu}(f(y^s_k), f(y_k)) < 4L_0Ld + Ld + 4RL_0Ld = L_{cu}d,
\]
where \(R = \sup_{x \in M} |Df(x)| \) and \(L_{cu} > 1 \) do not depends on \(d \). Similarly for some constant \(L_{cs} > 1 \) the following inequalities hold
\[
dist_{cs}(y_{k+1}, f(y_k)) < L_{cs}d, \quad k \in \mathbb{Z}.
\]
Reducing \(d_0 \) if necessarily we can assume that points \(y_{k+1}, f(y_k) \) satisfy assumptions of condition A4 of Statement 2 hence
\[
dist_{c}(y_{k+1}, f(y_k)) < (1 + \mu) \max(L_{cs}, L_{cu})d, \quad k \in \mathbb{Z}
\]
and sequence \(\{ y_k \} \) is an \(L_{1}d \)-central pseudotrajectory with
\[
L_1 = (1 + \mu) \max(L_{cs}, L_{cu}).
\]

To complete the proof let us note that
\[
dist(x_k, y_k) < dist(x_k, y^s_k) + dist(y^s_k, y_k) < 2Ld + 4L_0Ld, \quad k \in \mathbb{Z}.
\]

Taking \(L = \max(L_1, 2L + 4L_0) \) we conclude that \(\{ y_k \} \) is an \(Ld \)-central pseudotrajectory which \(Ld \) shadows \(\{ x_k \} \). □

Remark 1. Note that we do not claim uniqueness of such sequences \(\{ y^s_k \} \) and \(\{ y^u_k \} \). In fact it is easy to show (we leave details to the reader) that uniqueness of those sequences is equivalent to the plaque expansivity conjecture.
4 Acknowledgement

Sergey Kryzhevich was supported by the UK Royal Society (joint project with Aberdeen University), by the Russian Federal Program “Scientific and pedagogical cadres”, grant no. 2010-1.1-111-128-033. Sergey Tikhomirov was supported by the Humboldt postdoctoral fellowship for postdoctoral researchers (Germany). Both the coauthors are grateful to the Chebyshev Laboratory (Department of Mathematics and Mechanics, Saint-Petersburg State University) for the support under the grant 11.G34.31.0026 of the Government of the Russian Federation.

References

[1] F. Abdenur, L. Diaz, *Pseudo-orbit shadowing in the C¹ topology*, Discrete Contin. Dyn. Syst., 7 (2003), 223-245.

[2] D. V. Anosov, *Geodesic flows on closed Riemannian manifolds of negative curvature*, Trudy Mat. Inst. Steklov., 90 (1967), 3-210.

[3] Ch. Bonatti, L. J. Diaz, M. Viana, *Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective*, Springer, Berlin, 2004.

[4] R. Bowen, *Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms*, Lecture Notes Math., 470, Springer, Berlin, 1975.

[5] M. Brin, *On dynamical coherence*, Ergodic Theory Dynam. Systems, 23 (2003), 395-401.

[6] K. Burns, A. Wilkinson, *Dynamical Coherence and Center Bunching*, Discrete and Continuous Dynamical Systems, 22 (2008), 89-100.

[7] Ch. Bonatti, L. Diaz, G. Turcat, *There is no shadowing lemma for partially hyperbolic dynamics*, C. R. Acad. Sci. Paris Ser. I Math. 330 (2000), 587-592.

[8] N. Gourmelon, *Adapted metric for diffeomorphisms with dominated splitting*, Ergod. Theory Dyn. Syst. 27 (2007), 1839-1849.
[9] F. Rodriguez-Hertz, M. A. Rodriguez-Hertz, R. Ures, *A survey of partially hyperbolic dynamics*, Fields Institute Communications, Partially Hyperbolic Dynamics, Laminations and Teichmuller Flow, 51 (2007), 35-88.

[10] M. W. Hirsch, C. C. Pugh, M. Shub, *Invariant Manifolds*, Lecture Notes in Math., 583, Springer-Verlag, Berlin-Heidelberg, 1977.

[11] A. Morimoto, *The method of pseudo-orbit tracing and stability of dynamical systems*, Sem. Note, 39 (1979), Tokyo Univ.

[12] K. J. Palmer, *Shadowing in Dynamical Systems, Theory and Applications*, Kluwer, Dordrecht, 2000.

[13] S. Yu. Pilyugin, *Shadowing in Dynamical Systems*, Lecture Notes in Math., 1706, Springer, Berlin, 1999.

[14] S. Yu. Pilyugin, *Variational shadowing*. Discrete Contin. Dyn. Syst. Ser. B 14 (2010), 733-737.

[15] S. Yu. Pilyugin, S. B. Tikhomirov, *Lipschitz shadowing imply structural stability*, Nonlinearity 23 (2010), 2509-2515.

[16] C. C. Pugh, M. Shub, A. Wilkinson, *Hölder foliations, revisited*, arXiv:1112.2646v1.

[17] C. Robinson, *Stability theorems and hyperbolicity in dynamical systems*, Rocky Mount. J. Math., 7 (1977), 425-437.

[18] K. Sakai, *Pseudo orbit tracing property and strong transversality of diffeomorphisms of closed manifolds*, Osaka J. Math., 31 (1994), 373-386.

[19] K. Sawada, *Extended f-orbits are approximated by orbits*, Nagoya Math. J., 79 (1980), 33-45.

[20] J. Schauder, *Der Fixpunktsatz in Funktionalräumen*, Stud. Math., 2 (1930), 171-180.

[21] S. B. Tikhomirov, *The Hölder shadowing property*, arXiv:1106.4053v1.