The appearance function for paper-folding words

Rob Burns

27th October 2022

Abstract

We provide a complete characterisation of the appearance function for paper-folding sequences for factors of any length. We make use of the software package Walnut to establish these results.

1 Introduction

The regular paper-folding sequence begins 1, 1, -1, 1, 1, -1, -1, 1, It is derived from the hills and valleys created when a piece of paper is folded length-wise multiple times. In the limit, it consists of an infinite sequence of 1’s and -1’s, in which a 1 corresponds to a hill and a -1 to a valley in the unfolded paper. This sequence, with -1’s replaced by 0’s, appears as sequence A014577 in the On-Line Encyclopedia of Integer Sequences (OEIS).[1] In a more general form, introduced by Davis and Knuth,[2] a paper-folding sequence is derived from an infinite folding instruction set. This set of instructions also consists of an infinite sequence of 1’s and -1’s and determines the way in which the paper is folded. The regular paper-folding sequence is produced by an instruction set consisting of an infinite sequence of 1’s.

In this paper, we study the appearance function of the paper-folding sequences. We show that, when \(n \geq 7 \), the appearance function is determined in a simple way by the folding instruction set. The connection between the folding instructions and the appearance function for smaller values of \(n \) is not quite as simple, but can still be described.

We make use of the software package Walnut. Hamoon Mousavi, who wrote the program, has provided an introductory article [7]. Papers that have used Walnut include [8], [11], [9], [6], [4]. Further resources related to Walnut can be found at Jeffrey Shallit’s page.

The free open-source mathematics software system SageMath [12] was used to check some of the calculations.
2 Background and notation

Let w be an infinite word. The first element of w is denoted by $w[1]$, the second element by $w[2]$ etc. A sub-word of w is a continuous set of elements contained within w. The sub-word $w[i], w[i+1], w[i+2], \ldots, w[j]$ will be abbreviated to $w[i:j]$. A finite word is called a factor of w if it appears as a sub-word of w. The length k prefix of w is the length k sub-word of w starting with the element $w[1]$, i.e. the subword $w[1:k]$. The appearance function of w, denoted $A_w(n)$, is defined to be the least integer k such that a copy of each length n factor of w is contained in the prefix $w[1:k]$. For convenience we will use a related function which we call $S_w(n)$. $S_w(n)$ is defined to be the least integer k such that a copy of each length n factor of w starts somewhere within the prefix $w[1:k]$. The two functions are connected by the equation $A_w(n) = S_w(n) + n - 1$.

The set of folding instructions associated with a paper-folding sequence will be denoted by $f = (f_0, f_1, f_2, \ldots)$. The paper-folding sequence associated to the folding instructions f will be denoted by $P_f = P_f[1], P_f[2], \ldots$. The appearance function of P_f will be abbreviated to A_f and S_{P_f} will be abbreviated to S_f.

Dekking, Mendés France and van der Poorten [3] showed that the value of $P_f[k]$ can be written in terms of f in a fairly simple way. If $k = 2^s \cdot r$ where r is odd, then

$$ P_f[k] = \begin{cases} f_s, & \text{if } r \equiv 1 \pmod{4} \\ -f_s, & \text{if } r \equiv 3 \pmod{4} \end{cases} $$

(1)

Schaeffer [10] observed that equation (1) leads to a 5-state deterministic finite automaton that takes, as input the base-2 expansion of an integer k in parallel with the folding instructions f and outputs $P_f[k]$. The automaton outputs the correct value of $P_f[k]$ provided that enough folding instructions have been read in. In particular, more than $\log_2(k)$ folding instructions must be included in the input. The Walnut software package includes this automaton and can be used to investigate its behaviour.

For integers n, define the function $\phi(n)$ to be the least integer r such that $r \geq n$ and r is a power of 2. So, if $2^{k-1} < n \leq 2^k$, then $\phi(n) = 2^k$. An alternative definition is that

$$ \phi(n) = 2^k, \text{ where } k = \lceil \log_2(n) \rceil. $$

Schaeffer [10] showed that, when $n \geq 3$:

$$ \max_f S_f(n) = 6 \cdot \phi(n). $$

(2)

Goč et al. [5] showed that when $n \geq 7$,

$$ \min_f S_f(n) = 4 \cdot \phi(n). $$

(3)
3 Formula for S_f and A_f

We begin this section with some Walnut commands. Walnut includes an automaton which takes as parallel input a folding instruction set f and the base-2 representation of an integer k, written in least significant digit (lsd) first order, and outputs the value of $P_f[k]$. The Walnut representation of $P_f[k]$ is $PF[f][k]$. We now introduce some Walnut formulae which will be useful. Firstly we define the automaton pffaceq which takes as parallel input the folding instruction set f and three integers i, j, and n, written in base-2 lsd format. The resulting automaton accepts the input if and only if the length n subwords of P_f starting at indices i and j are identical. Since it has 153 states, it cannot be displayed here.

```
def pffaceq "?lsd_2 Ak (k < n) => PF[f][i+k] = PF[f][j+k]":
```

The following code creates an automaton related to the function ϕ which was defined in section 2. The automaton takes two integers x and y as input, written in base-2 lsd form. It accepts the input if x is a power of 2 and $\phi(y) = x$. We use the name pfphi for this automaton. It is pictured in figure 1.

```
reg power2 lsd_2 "0*10*":
def pfphi "?lsd_2 $power2(x) & (x >= y) & x < 2*y":
```

![Figure 1: Automaton pfphi.](image)

We next establish some preliminary results.

We now create an automaton pfapp which takes as parallel input a folding instruction set f and two integers i and n, written in base-2 lsd format. The resulting automaton accepts the input if and only if the length n factor of P_f starting at index i does not appear earlier within P_f. This automaton has 121 states.

```
def pfapp "?lsd_2 (Aj (j<i) => (Et t<n & PF[f][i+t] != PF[f][j+t]))":
```

We next establish some preliminary results.
Lemma 3.1. When \(n \geq 7 \), the length \(n \) factor \(P_f[6 \cdot \phi(n) : 6 \cdot \phi(n) + n - 1] \) first appears in \(P_f \) starting at either index \(4 \cdot \phi(n) \) or index \(6 \cdot \phi(n) \). This factor appears nowhere else in the prefix \(P_f[1 : 6 \cdot \phi(n) + n - 1] \) of \(P_f \).

Proof. We create an automaton which takes as input the folding instructions \(f \) and an integer \(n \) written in base-2 lsd form. It accepts the input if there is an index \(k < 6 \cdot \phi(n) \) such that \(k \neq 4 \cdot \phi(n) \) and the two factors \(P_f[6 \cdot \phi(n) : 6 \cdot \phi(n) + n - 1] \) and \(P_f[k : k + n - 1] \) are identical.

\[
\text{eval pftemp } "?\text{lsd}_2 (n >= 7) & (\text{Ex}, k x >= 1 & \text{pfphi}(x,n) & (k != 4*x) \& (k<6*x) \& (\text{Ai} (i<n) => \text{PF}[f][k+i]=\text{PF}[f][6*x+i]))":
\]

The automaton accepts no input showing that the factor \(P_f[6 \cdot \phi(n) : 6 \cdot \phi(n) + n - 1] \) first appears either at index \(4 \cdot \phi(n) \) or \(6 \cdot \phi(n) \) and appears nowhere else in the prefix \(P_f[1 : 6 \cdot \phi(n) + n - 1] \).

Lemma 3.2. When \(n \geq 7 \), the factor \(P_f[6 \cdot \phi(n) : 6 \cdot \phi(n) + n - 1] \) is always the last length \(n \) factor to appear in \(P_f \).

Proof. We know from (2) that no length \(n \) factor of \(P_f \) can first begin later than index \(6 \cdot \phi(n) \). We create an automaton which takes as parallel input a folding instruction set \(f \) and two integers \(i \) and \(n \), written in base-2 lsd format. The automaton accepts the input if and only if the length \(n \) factors beginning at \(4 \cdot \phi(n) \) and \(6 \cdot \phi(n) \) are identical, \(4 \cdot \phi(n) < i < 6 \cdot \phi(n) \) and the factor \(P_f[i : i + n - 1] \) appears no earlier within \(P_f \).

\[
\text{eval pftemp } "?\text{lsd}_2 (\text{Ex} (x >= 1) & \text{pfphi}(x,n) & \text{pffaceq}(f,4*x,6*x,n) & (\text{Ei} (i>4*x) \& (i<6*x) \& \text{pfapp}(f,i,n)))":
\]

The automaton accepts no input. So, if the factor \(P_f[6 \cdot \phi(n) : 6 \cdot \phi(n) + n - 1] \) first appears starting at \(6 \cdot \phi(n) \) then it is the last factor to appear in \(P_f \) because of (2). If, on the other hand, it first appears starting at index \(4 \cdot \phi(n) \) (the only other possibility due to lemma 3.1), it is again the last factor to appear, otherwise \text{pftemp} would accept some input.

\[
\text{Lemma 3.3. Let } n \geq 7 \text{ with } 2^{k-1} < n \leq 2^k, \text{ so } \phi(n) = 2^k. \text{ Then the factors } P_f[6 \cdot 2^k : 6 \cdot 2^k + n - 1] \text{ and } P_f[6 \cdot 2^k : 6 \cdot 2^k + 2^k - 1] \text{ first appear in } P_f \text{ at the same starting index.}
\]

Proof. If the factor \(P_f[6 \cdot 2^k : 6 \cdot 2^k + n - 1] \) first appears at index \(6 \cdot 2^k \) then the factor \(P_f[6 \cdot 2^k : 6 \cdot 2^k + 2^k - 1] \) must also first appear at index \(6 \cdot 2^k \) since \(n \leq 2^k \). So, assume the factor \(P_f[6 \cdot 2^k : 6 \cdot 2^k + n - 1] \) first appears at index \(4 \cdot 2^k \). By lemma 3.1, this is the only other possible starting index. We create an automaton which accepts
the pair f and n when $P_f[6 \cdot 2^k : 6 \cdot 2^k + n - 1]$ first appears at index $4 \cdot 2^k$ and $P_f[6 \cdot 2^k : 6 \cdot 2^k + 2^k - 1]$ does not first appear at index $4 \cdot 2^k$.

eval \text{pftemp} "?lsd_2 (n >= 7) & \text{Ex } x >= 1 & \text{pfphi}(x,n) & \\
(Ak (k<n) \& \text{PF}[f][4*x+k] = \text{PF}[f][6*x+k]) & \\
(Er (r<x) \& (\text{PF}[f][4*x+k] \neq \text{PF}[f][6*x+k])))"

The automaton accepts no input showing that, when $P_f[6 \cdot 2^k : 6 \cdot 2^k + n - 1]$ first appears at index $4 \cdot 2^k$, then so does the factor $P_f[6 \cdot 2^k : 6 \cdot 2^k + 2^k - 1]$.

Our main result is an exact formula for S_f (and therefore A_f).

Theorem 3.4. For $n \geq 7$,

$$S_f(n) = \begin{cases}
4 \cdot \phi(n), & \text{if } \phi(n) = 2^k \text{ and } f_{k+1} \neq f_{k+2} \\
6 \cdot \phi(n), & \text{if } \phi(n) = 2^k \text{ and } f_{k+1} = f_{k+2}.
\end{cases}$$

Proof. We start by showing that the theorem holds when n is a power of 2, so that $\phi(n) = n$. By lemmas 3.1 and 3.2, the factor $P_f[6 \cdot \phi(n) : 6 \cdot \phi(n) + n - 1]$ is always the last length n factor to appear in P_f and appears first at either index $4 \cdot \phi(n)$ or $6 \cdot \phi(n)$. The following automaton takes as parallel input the folding instructions f and an integer n and accepts the input if n is a power of 2 and the last length n factor to appear in P_f (i.e. the factor $P_f[6 \cdot \phi(n) : 6 \cdot \phi(n) + n - 1]$) starts at index $4 \cdot \phi(n)$.

eval \text{pfpow24} "?lsd_2 (n >= 7) & power2(n) & \\
(Ex x >= 1 & pfphi(x,n) & pffaceq(f,6*x, 4*x, n))":

![Automaton pfpow24](image)

Figure 2: Automaton pfpow24.

The automaton pfpow24 is pictured in figure 2. Remembering that the first element of the folding instructions f has index 0, it is clear from the picture that the pair f and n is accepted if and only if $n = 2^k$ for some $k \geq 3$ and $f_{k+1} \neq f_{k+2}$.

The next automaton takes as parallel input the folding instructions f and an integer n and accepts the input if n is a power of 2 and the last length n factor to appear in P_f starts at index $6 \cdot \phi(n)$.
The automaton is pictured at figure 3. It is clear from the picture that the pair \(f \) and \(n \) is accepted if and only if \(n = 2^k \) for some \(k \geq 3 \) and \(f_{k+1} = f_{k+2} \).

This completes the proof when \(n \) is a power of 2. The general case follows from lemma 3.3. If \(n \geq 7 \) and \(\phi(n) = 2^k \), then the last length \(n \) factor to appear is \(P_f[6 \cdot \phi(n) \cdot 6 \cdot \phi(n) + n - 1] \). If \(\phi(n) = 2^k \), lemma 3.3 says that this factor first appears at the same index as the factor \(P_f[6 \cdot 2^k : 6 \cdot \phi(n) + 2^k - 1] \). From above, this starting index is \(4 \cdot \phi(n) \) when \(f_{k+1} \neq f_{k+2} \) and is \(6 \cdot \phi(n) \) when \(f_{k+1} = f_{k+2} \).

Corollary 3.5. For \(n \geq 7 \),

\[
A_f(n) = \begin{cases}
4 \cdot 2^k + n - 1, & \text{if } 2^{k-1} < n \leq 2^k \text{ and } f_{k+1} \neq f_{k+2} \\
6 \cdot 2^k + n - 1, & \text{if } 2^{k-1} < n \leq 2^k \text{ and } f_{k+1} = f_{k+2}.
\end{cases}
\]

Corollary 3.6. \(A_f(n) = 4 \cdot \phi(n) + n - 1 \) for all \(n \geq 7 \) if and only if

\[
f = (f_0, f_1, f_2, f_3, 1, -1, 1, -1, \ldots) \text{ or } f = (f_0, f_1, f_2, f_3, -1, 1, -1, 1, \ldots)
\]

where \(f_0, f_1, f_2, f_3 \in \{-1, 1\} \).

\(A_f(n) = 6 \cdot \phi(n) + n - 1 \) for all \(n \geq 7 \) if and only if

\[
f = (f_0, f_1, f_2, f_3, 1, 1, 1, \ldots) \text{ or } f = (f_0, f_1, f_2, f_3, -1, -1, -1, \ldots)
\]

where \(f_0, f_1, f_2, f_3 \in \{-1, 1\} \).
4 What happens when $n < 7$?

When the word length is less than 7, the appearance function displays a number of different behaviours. A calculation shows that, for folding instructions f,

\[
\begin{align*}
S_f(1) &\in \{2, 3\} : A_f(1) \in \{2, 3\} \\
S_f(2) &\in \{4, 5, 6\} : A_f(2) \in \{5, 6, 7\} \\
S_f(3) &\in \{14, 16, 22, 24\} : A_f(3) \in \{16, 18, 24, 26\} \\
S_f(4) &\in \{14, 16, 22, 24\} : A_f(4) \in \{17, 19, 25, 27\} \\
S_f(5) &\in \{28, 32, 44, 48\} : A_f(5) \in \{32, 36, 48, 52\} \\
S_f(6) &\in \{31, 32, 47, 48\} : A_f(6) \in \{36, 37, 52, 53\}.
\end{align*}
\]

To see how the choice of folding sequence f determines $S_f(n)$ and $A_f(n)$, we use the automaton

\[
\text{eval pftemp# "?lsd_2 Ak (k < 50) => ($pfapp(f,r,#) & (Es (s <=r) & (At (t<#) => PF[f][k+t] = PF[f][s+t]))")},
\]

replacing the symbol # with the integers $\{1, 2, 3, 4, 5, 6\}$ as appropriate. The automaton accepts the pair (f, r) when $S_f(\#) = r$. We can restrict the search to $k < 50$ because we know that, for each f, $S_f(n)$ is an increasing sequence and $S_f(7) = 48$.

We start with the case $n = 1$. The automaton

\[
\text{eval pftemp1 "?lsd_2 Ak (k < 50) => ($pfapp(f,r,1) & (Es (s <=r) & (At (t<1) => PF[f][k+t] = PF[f][s+t]))")},
\]

is pictured in figure 4.

Figure 4: Automaton for $S_f(1)$.

\[
(f,r): ?lsd_2 Ak (k < 50) => ($pfapp(f,r,1) & (Es (s <=r) & (At (t<1) => PF[f][k+t] = PF[f][s+t])))
\]
State 5 is the only accepting state because of the requirement that more than $\log_2(k)$ folding instructions are read into the automaton. The automaton shows that

$$S_f(1) = 2 \text{ when } f_0 \neq f_1$$
$$S_f(1) = 3 \text{ when } f_0 = f_1.$$

The automaton for $S_f(2)$ is displayed in figure 5. It shows that

$$S_f(2) = 4 \text{ when } (f_0, f_1, f_2) \in \{(-1, -1, 1), (-1, 1, -1), (1, -1, 1), (1, 1, -1)\}$$
$$S_f(2) = 5 \text{ when } (f_0, f_1, f_2) \in \{(-1, 1, 1), (1, -1, -1)\}$$
$$S_f(2) = 6 \text{ when } (f_0, f_1, f_2) \in \{(-1, -1, -1), (1, 1, 1)\}.$$

![Figure 5: Automaton for $S_f(2)$](image)

Automata for $S_f(n)$ when $n \in \{3, 4, 5, 6\}$ are pictured in figures 6, 7, 8 and 9. In summary, formulae can be derived for $S_f(3)$ and $S_f(4)$ in terms of (f_1, f_2, f_3, f_4). A formula can be derived for $S_f(5)$ in terms of $(f_1, f_2, f_3, f_4, f_5)$. Finally, a formula can be derived for $S_f(6)$ in terms of $(f_0, f_1, f_2, f_3, f_4, f_5)$.

![Figure 6: Automaton for $S_f(3)$](image)
Figure 7: Automaton for $S_f(4)$.

Figure 8: Automaton for $S_f(5)$.
Observe that the corresponding automaton for $S_f(7)$, which is shown in figure 10, looks simple compared to that of smaller values of the factor length n.

References

[1] OEIS Foundation Inc. (2022). The on-line encyclopedia of integer sequences. 1

[2] C. Davis and D. E. Knuth. Number representations and dragon curves – 1. J. Recreat. Math., 3:66–81, 1970. 1

[3] F.M. Dekking, M. Mendès France, and A.J.v.d Poorten. Folds! Math. Intell., 4:30–138, 173–181, 190–195, 1982. 2

[4] Chen Fei Du, Hamoon Mousavi, Eric Rowland, Luke Schaeffer, and Jeffrey Shallit. Decision algorithms for Fibonacci-automatic words, II: Related sequences and avoidability. Theoretical Computer Science, 657:146–162, 2017. 1
[5] Daniel Goč, Hamoon Mousavi, Luke Schaeffer, and Jeffrey Shallit. A new approach to the paperfolding sequences. In *Evolving Computability*, pages 34–43. Springer International Publishing, 2015. 2

[6] Daniel Goč, Hamoon Mousavi, and Jeffrey Shallit. On the number of unbordered factors. In *Language and Automata Theory and Applications*, pages 299–310. Springer Berlin Heidelberg, 2013. 1

[7] Hamoon Mousavi. Automatic theorem proving in *Walnut*. arXiv, 2016. 1

[8] Hamoon Mousavi, Luke Schaeffer, and Jeffrey Shallit. Decision algorithms for Fibonacci-automatic words, I: Basic results. *RAIRO Theor. Informatics Appl.*, 50:39–66, 2016. 1

[9] Narad Rampersad and Jeffrey Shallit. Congruence properties of combinatorial sequences via *Walnut* and the Rowland-Yassawi-Zeilberger automaton. arXiv, 2021. 1

[10] Luke Schaeffer. Deciding properties of automatic sequences. Master’s thesis, University of Waterloo, School of Computer Science, 2013. 2

[11] Jeffrey Shallit. Frobenius numbers and automatic sequences. arXiv, 2021. 1

[12] The Sage Developers. *SageMath, the Sage Mathematics Software System (Version 8.2)*, 2018. https://www.sagemath.org. 1