Transcriptomic analysis of fetal membranes reveals pathways involved in preterm birth

Silvana Pereyra¹, Claudio Sosa², Bernardo Bertoni¹, Rossana Sapiro³*

¹ Departamento de Genética, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, C.P. 11800 Montevideo, Uruguay.

² Clínica de Ginecología y Obstetricia, CHPR, Facultad de Medicina, Universidad de la República, Bv. General Artigas, C.P. Montevideo, Uruguay.

³ Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, C.P. 11800 Montevideo, Uruguay.

* Corresponding author:
Email: rsapiro@fmed.edu.uy (RS)

Short title: Transcriptomic analysis of severe preterm birth

Key words: RNA-seq, preterm birth, gestational age, biomarkers
Abstract

Preterm birth (PTB), defined as infant delivery before 37 weeks of completed gestation, results of the interaction of both genetic and environmental components and constitutes a complex multifactorial syndrome. Transcriptome analysis of PTB has proved challenging because of the multiple causes of PTB and the numerous maternal and fetal gestational tissues that must interact to facilitate parturition. A common pathway of labor and PTB may be the activation of fetal membranes. In this work, chorioamnion membranes from severe preterm and term fetus were analyzed using RNA sequencing. A total of 270 genes were differentially expressed (DE): 252 were up-regulated and 18 were down-regulated in the severe preterm compared to the term births. We found great gene expression homogeneity in the control samples, and not in severe preterm samples. In this work, we identified up-regulated pathways that were previously suggested as leading to PTB like immunological and inflammatory paths. New pathways that were not identified in preterm like the hemopoietic path appeared up-regulated in preterm membranes. A group of 18 down-regulated genes discriminates between term and severe preterm cases. These genes potentially characterize a severe preterm transcriptome pattern and therefore are candidate genes for understanding the syndrome. Some of the down-regulated genes are involved in the nervous system, morphogenesis (WNT-1, DLX5, PAPPA2) and ion channel complexes (KCNJ16, KCNB1), making them good candidates as biomarkers of PTB.

The identification of this DE gene pattern may help to develop a multi-gene disease classifier. These markers were generated in an admixed South American population where PTB has a high incidence. Since genetic background may impact differentially in different populations it is mandatory to include populations like South American and African ones that are usually excluded...
from high throughput approaches. These classifiers should be compared to those in other populations to get a global landscape of PTB.

Introduction

Preterm birth (PTB), defined as the delivery of an infant before 37 weeks of completed gestation, is a worldwide health problem and remains the leading cause of global perinatal morbidity and mortality [1–3]. PTB is a complex, multifactorial syndrome comprised of multiple clinical subtypes that can be defined as either ‘spontaneous’ or ‘medically indicated’ [4,5]. 70 % of PTB cases are idiopathic; 5 % are due to the spontaneous onset of labor (sPTB) and the remaining 25 % are consequence of the preterm premature rupture of membranes (PPROM) [5,6]. PTB has also been stratified according to gestational age (GA); neonates born between 24 and 33 weeks (severe PTB) are at higher risk of death, and diseases later in life, than moderate PTB (GA between 34-36 weeks). It has been speculated that PTB from different GA groups has diverse causes and/or pathological mechanisms [6]. Regardless of PTB subtype, current therapies are not successful in prolonging time to birth once labor has been initiated [3].

PTB occurs as a result of the interaction of both, genetic and environmental components, and it constitutes a complex multifactorial syndrome [3,7]. Genetic architecture of pregnancy and PTB has proved challenging not only because of the multiple causes of PTB but also because of the numerous maternal and fetal gestational tissues that must interact to facilitate parturition [3,8]. These tissues include decidua, myometrium, cervix and maternal blood originating from the mother and villous placenta, fetal membranes (chorion and amnion), umbilical cord, and fetal blood originating from the fetus [5].
The main etiological factors related to PTB are inflammation, hemorrhage, activation of maternal or fetal hypothalamic-pituitary axis, immune dysregulation, distension of the myometrium and cervical insufficiency [1,3,7,9]. All these process have diverse and distinctive ways of initiating labor but may share a common pathway that end in the release of mediators that stimulate myometrial contraction, degradation of extracellular matrix components, inflammation and apoptosis. Consequently, these processes promote membrane rupture, cervical ripening, and uterine emptying resulting in PTB [1,9]. Studies of the transcriptome of those tissues can help to develop a molecular landscape of preterm labor and improve the understanding of the physiology and pathology of term and preterm parturition. Specifically, the study of the transcriptome of the membranes at the site of rupture in PTB may indicate shared genes of those pathways.

RNA sequencing (RNA-Seq) is a potent technology for the analysis of transcriptome that allows a comprehensive characterization of gene expression [10]. The published RNA-Seq studies on human labor have been restrained to normal term pregnancies and confined to placenta at different GA [11–13]. More placental gene expression data is available from experiments based on microarrays [14], but most of them are concentrated on preeclampsia [11].

As it was mentioned, GA determines diverse pathological mechanisms of PTB [6]. The genetic background seems to play a more relevant role in severe PTB neonates than in moderate PTB [15]. Modifications of chorioamniotic expression, that end in severe PTB should be more drastic than in term delivery or even moderate PTB. Therefore, we decided to focus on the transcriptome of severe PTB chorioamniotic tissues in an attempt to find DE genes with more biological significance. To validate the principal pathways found in this study, our results were compared with data reported in the previous literature. The ultimate goal of the study is to obtain an expression signature of PTB.
Materials and Methods

Patient recruitment

Controls and cases were term and preterm deliveries, respectively, from unrelated offspring of women in labor-receiving obstetrical care at the Pereira Rossell Hospital Center, Montevideo, Uruguay. Preterm tissues were collected from pregnancies complicated by spontaneous PTB before 33 weeks of gestational age (GA) while term chorioamnion tissues were obtained from no complicated pregnancies delivered after 37 weeks of GA. None of the patients presented multiple gestations, fetal anomalies, eclampsia, nor C-surgery delivery.

Maternal demographic characteristics were collected through questionnaires filled by mothers after delivery. Clinical and obstetric data were obtained from the Perinatal Information System which consists of basic perinatal clinical records developed by the Latin American Center for Perinatology (CLAP) from WHO/PAHO [16].

Ethics statement

The School of Medicine's Ethics Committee of the University of the Republic, (Comité de Etica de Facultad de Medicina-UDELAR) Uruguay approved the study protocol and an informed written consent was obtained from mothers prior to collection of biological material.

Chorioamnion tissue collection, RNA extraction, and sequencing

Samples from 35 deliveries were collected within 30 minutes post-delivery. The amnion and chorion were obtained from the extraplacental membranes (reflected membranes), which provide a purer source of the fetal membranes. A portion of 1 cm² of chorioamniotic membrane
surrounding the exact place of membrane rupture for each subject was collected and immediately
frozen in liquid nitrogen or submerged in RNA later solution (Qiagen). All samples were later
stored at -80°C until laboratory procedures were performed. Samples were grinded into a fine
powder in liquid nitrogen with a precooled pestle and mortar and subjected to RNA extraction.

Total RNA was extracted from each sample using a Trizol RNA extraction protocol that produces
mRNA-enriched purification. Quality and concentration of RNA products were determined by
UV-absorbance spectrophotometry (Nanodrop technologies Inc. Wilmington, DE, USA). The
integrity of RNA molecules was checked using a 2100 Bioanalyzer platform (Agilent
Technologies). We selected eight RNA samples (4 cases and 4 controls) for paired-end sequencing
based on matching mother’s age, fetus sex and socioeconomic status. All held RNA Integrity
Numbers (RINs) of 8 or higher. Total RNA samples were shipped to Macrogen Inc. (Seoul, South
Korea) under recommended RNA submission conditions. On arrival samples were further assessed
for RNA integrity on using a 2100 Bioanalyzer platform (Agilent Technologies). Messenger-RNA
(mRNA) content was purified from total RNA with the PolyATract mRNA Isolation System II
(Promega Inc.) and copied to cDNA molecules using Illumina TruSeq RNA Sample Preparation
Kit v2. One such cDNA library was constructed for each specimen; libraries were subjected to
massive sequencing following Illumina HiSeq2000 protocol (Illumina Inc.; www.illumina.com).
A read was defined as a 100 bp cDNA fragment sequenced from both ends (paired-end). The data
have been deposited in Sequence Read Archive (NCBI) and are accessible through SRA Series
accession number SRP139931. A subset of extracted RNAs, making up a total of 15 terms and 9
severe PTB samples including the sequenced samples, were used to validate the results by real-
time quantitative-PCR.
Mapping reads to the reference genome

Obtained reads were trimmed and clipped for quality control in Trimmomatic v0.32 [17], and checked for quality using FastQC v0.11.2 [21]. Reads were then aligned to the GRCh37 reference genome using Tophat v2.1.0 [22] and Ensembl annotations [23], as derived from Ensembl Release 75.

Only for data visualization purposes, gene read counts were transformed by the regularized logarithm (rlog) [24]. This transformation removes the dependence of the variance on the mean and normalizes count data with respect to library size.

Identification of differentially expressed (DE) genes and gene set enrichment analysis

HTSeq-count with parameters m = union, s = no, and t = exon was used to produce raw read counts of expression for each gene [25]. Differential expression analysis on the gene level was performed in R-packages DESeq2 v1.16.1[24], edgeR v3.18.0 [26] and Cuffdiff v2.2.1 [27]. P-values were adjusted for multiple testing using the Benjamini and Hochberg’s ("BH") approach [28] to control the false discovery rate (FDR) [23]. A gene was considered as expressed if it had more than 5 aligned reads. Genes were identified as DE with the following criteria: absolute log 2 fold change > 2 and FDR-adjusted p-value < 0.05 for multiple hypothesis testing (method="BH"). With the aim of reducing false-positive hits, we required a gene to be selected by all three methods to be considered as DE.

To understand the underlying biological processes, functional annotations of DE genes were performed using GAGE and GOSeq packages of Bioconductor 3.5 [29,30]. GOSeq method considers the effect of selection bias in RNA-Seq data that can arise as a result of gene length
differences [18]. All gene mapping was performed using the biomaRt R package [31]. We looked for enrichment for genetic association with KEGG pathways and Gene Ontology (GO) terms, and for GO terms that were supported by at least 3 analyzed genes. Multiple testing was adjusted using BH approach, and enrichment was declared if BH adjusted p-value was less than 0.05.

Validation of RNA-Seq results by assessment of gene expression by real-time PCR (qRT-PCR)

Six genes were selected for the confirmation of DE gene data by qRT-PCR; Interleukin 1 beta (IL1B), lipocalin 2 (LCN2), macrophage receptor with collagenous structure (MARCO), caspase 5 (CASP5), serpin family A member 1 (SERPINA1), and TNF superfamily member 15 (TNFSF15). These gene’s expression values were evaluated on the 15 term birth and 9 severe PTB collected samples.

Total RNA of 1µg from each sample was used to synthesize the first-strand cDNA using Superscript II RT reagent kit (Invitrogen) and oligo(dT)20 primers. qRT-PCR amplifications were performed in a Corbett Real-time thermocycler (Qiagen), using Biotools SYBR Green kit (Biotools, Spain). The relative expression ratio of a target gene was calculated as described in the 2-DDCt method [32].

Reaction mixtures contained 10 µl of QUANTIMIX EASY kit (Biotools; #10606-4153), 0.5 µM of each forward and reverse primers, 1 µl of cDNA sample, and deionized water to a final volume of 10 µl. The following conditions were used: 95°C for 5 min and 40 cycles at 95°C for 15 seconds, followed by 1 minute at 63°C. After amplification a melting step was performed, with a rise in the temperature from 72 to 90°C with continuous acquisition of fluorescence.
A positive and negative (non-template control, NTC) control was added to each PCR reaction. Each sample was assessed in duplicate and the %CV between the duplicates was < 2%. All primers sequences for the validated genes were designed to span exon-exon junctions to minimize the potential of amplifying genomic DNA (S1 Table). Amplification efficiencies of primers were within a range of 90% and 110% efficiency, and primer specificity was assessed by the presence of a single temperature dissociation peak. The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene and the TATA-box protein (TBP) gene were chosen as the reference genes to estimate the relative quantification. The arithmetic mean of GAPDH and TBP genes was used as the reference. The relative gene expression was calculated using the method $2^{-\Delta\Delta C_{t}}$ with the term group as the control group [32].

Validation of RNA seq results by comparison with previous preterm transcriptomic studies

In order to determine if the results presented here reflect the PTB mechanisms that are previously reported in the literature, a Pubmed search was performed using these search terms: [preterm AND (transcriptome OR transcriptomic)]. The electronic search was performed on March 19th, 2018 in PubMed with no restrictions, to identify all articles relating to DE genes in all gestational tissues. The results were analyzed based on 5 inclusion criteria: published in English, original research, human chorioamnion tissue samples, DE between term and PTB and candidate gene list assembled. All articles were cross-checked with database search results to find any additional available transcriptome data.

Statistical analysis and data visualization

Maternal demographic and clinical characteristics of term and severe preterm study groups were compared using the Student’s t-test for between-group comparisons of continuous data. For
comparisons of categorical data, the Chi-square test was used. All statistical analyses were performed using the R environment for statistical computing version 3.4.3 [19]. After multiple test correction, a p-value <0.05 was used to consider statistical significance. The ggplot2 R package was used to create plots [19].

Results

Demographic and clinical characteristics of the term and severe preterm groups are presented in Table 1. There were significant differences between cases and controls for the gestational age and prenatal medical appointments. The remaining assessed variables did not present significant differences between groups.

	Severe preterm birth group (n = 9)	Term birth group (n = 15)	p-value¶
Mothers age, years (SD)	20.56 (3.13)	24.08 (6.15)	0.146
Gestational age, weeks (SD)	30.67 (2.78)	39.27 (0.99)	1.9E-10
Maternal education (%)			0.399
Primary school or less	3/9 (33.33)	9/15 (60)	
High school	6/9 (66.67)	6/15 (40)	
PROM (%)	2/9 (22.22)	4/15 (26.67)	1
Preeclampsia (%)	1/9 (11.11)	0/15 (0)	0.238
RCIU (%)	1/9 (11.11)	0/15 (0)	0.238
Prenatal medical appointments (SD)	4.33 (2.83)	9.08 (3.21)	0.001

¶Significance was assessed with Student’s t-test or Chi-square test, as applicable.

SD: standard deviation.

Exploration and evaluation of overall gene expression

Genome-wide gene expression in chorioamnion tissue samples was evaluated using RNA-Seq technology. A summary of the sequencing read alignments to the reference genome is presented.
in S2 Table. Illumina sequencing was effective at producing large numbers of high quality reads from all samples. On average, 93.7% of the total reads were mapped successfully. Among the aligned reads, 91.5% were mapped to unique genomic regions.

A Principal Components Analysis (PCA) was performed on the gene expression \(rlog \) transformed values (Fig 1A). A high portion of the overall variance was accounted for by the first two principal components of this model (PC1, 64%; PC2, 22%). The PCA shows term samples as a clearly packed group, while severe preterm samples showed greater variability.

Fig 1. Overall gene expression of fetal membrane transcriptomes. (A) Principal Component Analysis (PCA) plot. (B) Heatmap of regularized log (rlog) normalized values of expression levels and hierarchical clustering for the 270 DE genes (FDR \(\leq 0.05 \) and absolute logarithm fold change \(\geq 2 \)). The condition of each sample is denoted at the top: red for term samples and blue for severe preterm samples. Rlog values are coded on the blue-to-orange scale (high expression: orange; low expression: blue). Blue dots on the gene’s dendogram represent 3 major groups according to gene expression patterns.

A total of 270 genes were DE simultaneously by the 3 methods employed (FDR \(\leq 0.05 \) and absolute logarithm fold change \(\geq 2 \)) (S1 Fig). Within the DE genes, 252 were up-regulated and 18 were down-regulated in the severe preterm compared to the term births. The full list of DE genes detected (FDR \(\leq 0.01 \) and fold change \(\geq 2 \)) can be found in S1 Supplemental File.

When visualizing the \(rlog \) transformed read counts of the 270 significantly DE genes, control samples have a homogenous expression pattern (Fig 1B). Notably, several of the DE genes were
related to immune-related functions such as interleukin 24, CXC motif chemokine ligands and Tumor Necrosis Factors signaling pathways. A hierarchical clustering analysis clusters genes in 3 groups. Remarkably, one of the clusters is a group of 18 genes which has a notably discordant expression pattern for term and severe preterm samples. This group is constituted by the aforementioned 18 down-regulated genes (Fig 2), which potentially characterize a severe preterm transcriptome pattern, and therefore are candidate genes for the understanding of the syndrome. These genes include potassium voltage-gated channel subfamily members, genes involved cell adhesion functions, the placental alkaline phosphatase and a Wnt family member. This gene cluster is related to GO terms involved in the nervous system, organ morphogenesis, and ion channel complexes, but no term remained as enriched with statistical significance in the group after BH p-value correction.

Fig 2. Gene expression levels of the 18 down-regulated genes. Heatmap of regularized log (rlog) normalized values of expression levels and hierarchical clustering for the 18 down-regulated DE genes. The condition of each sample is denoted at the top: red for term samples and blue for severe preterm samples. Gene symbols are stated at the right. rlog values are coded on the red-to-green scale (high expression: red; low expression: green).

The remainder two groups are constituted by 147 and 105 genes. Mainly, they have genes related to chemokines, TNF family members, coagulation factors, transmembrane proteins. A GO term enrichment search revealed 508 and 301 terms, respectively, were statistically significant (BH corrected p-value < 0.05). These terms were mostly immune and inflammatory response and immune system related terms.
Gene Set Enrichment Analysis using Gene Ontology

In an effort to identify processes and pathways that could be regulated differentially between severe preterm and term groups, we performed a Gene Set Enrichment Analysis (GSEA), as implemented in goseq R package. Genes that showed a FDR \(\leq 0.05 \) were tested against the background set of all expressed genes with ENSEMBL annotations. In this sense, for the enrichment analysis comparing the gene expression between severe preterm and term, 270 significant genes were tested against 18,675 background genes. The significant enrichment of Gene Ontology (GO) terms was tested using the Wallenius approximation and applying multiple hypothesis testing correction (BH). Only terms with 3 or more statistically significant genes were considered.

A total of 1886 GO terms were found enriched among the DE genes (FDR < 0.05), corresponding to Biological Processes (1495 terms), Cellular Component (195) and Molecular Function (196) (Fig 3A). Within Biological Processes category, immune response, immune system process and defense response terms were the most significantly enriched with DE genes. Likewise, the Cellular Component category subdivided annotated sequences into plasma membrane, cell periphery, and cytoplasmic vesicle part as the most represented terms. Within the category Molecular Function, the three principal groups were: signaling receptor activity, receptor activity, and transducer activity.

Fig 3. Enriched GO categories (A) and KEGG pathways (B) of genes in severe preterm birth.

Enrichment analysis of Biological Process GO categories (A) and KEGG pathways (B) of DE genes in severe preterm/term comparison. Top 10 most significant terms or pathways are shown.
The x-axis represents the enrichment value, as the logarithm of adjusted p-value (FDR). The number of genes identified in each pathway is reported inside brackets. All represented GO terms are significantly enriched, with an adjusted p-value <0.01.

When analyzing KEGG pathways, the most significant up-regulated pathways are Chemokine signaling pathway and Hematopoietic cell lineage (both with FDR = 7.038 $\times 10^{-9}$; Fig 4). Several relevant processes for PTB were up-regulated such as those involved in intracellular signaling: Toll-like, NOD-like, T cell and Jak-STAT signaling pathway (Fig 3B). No statistically significant down-regulated pathways were found.

Fig 4. KEGG diagram of the chemokine signaling pathway. Genes overexpressed in preterm birth fetal membranes are red, and down-regulated genes are green.

Validation of gene expression by qRT-PCR

To validate genes found to be significant in the RNA-Seq analysis, six DE genes were selected: IL1B, LCN2, MARCO, CASP5, SERPINA1 and TNFSF15, and their expression was assessed by qPCR. The RNA-Seq analysis showed all genes were significantly up-regulated in PTB. Fig 5 displays the logarithm fold differences in gene expression measured by both RNA-Seq and qRT-PCR. The six genes displayed similar patterns of mRNA abundance with both methods. Furthermore, LCN2 and MARCO had statistical significance differential expression between severe preterm and controls when analyzing qPCR expression data.
Figure 5. Validation of overall gene expression.

Fold changes of five DE genes measured by RNA-Seq (red) versus qRT-PCR (blue). Significance values for qRT-PCR fold-changes are presented. IL1B: Interleukin 1 beta, LCN2: lipocalin 2, MARCO: macrophage receptor with collagenous structure, CASP5: caspase 5, SERPINA1: serpin family A member 1, and TNFSF15: TNF superfamily member 15. ns: non-significant (adjusted p value>0.05).

Validation of RNA seq results by comparison with previous preterm transcriptomic studies

The results present in this study were compared with those previously reported in the literature. A PubMed search using the terms [preterm AND (transcriptome OR transcriptomic)] yielded 101 results. We collected the 101 abstracts and after analysing them, we found that most studies focused on preeclampsia, placental villi tissue, and animal models or maternal or cord blood. Six studies used RNAseq; two focused in cord blood [20,21], two on animal models [22,23] and two on the transcriptome of normal labor [12,24].

Only one study met all inclusion criteria mentioned above and included the transcriptome of chorion and amnion membranes and was included to match the results obtained in this work [25]. In this study, they used the microarray technology and found 50 genes that identified PT labor phenotype, seven of which we found as DE in this study (Table 1). The gene’s change direction of gene expression matches between studies in all cases [25].
Table 2. DE genes simultaneously found in Bukowski et al. (2017) and this study

Gene Symbol	Gene	HGNC ID	Change direction
BCL2A1	BCL2 related protein A1	HGNC:991	up-regulated in PTB
CCRL2	C-C motif chemokine receptor-like 2	HGNC:1612	up-regulated in PTB
CHI3L1	chitinase 3 like 1	HGNC:1932	up-regulated in PTB
CXCL2	C-X-C motif chemokine ligand 2	HGNC:4603	up-regulated in PTB
GPR84	G protein-coupled receptor 84	HGNC:4535	up-regulated in PTB
SAMSN1	SAM domain, SH3 domain and nuclear localization signals 1	HGNC:1052	up-regulated in PTB
SLC16A10	solute carrier family 16 member 10	HGNC:1702	up-regulated in PTB

Discussion

Although PTB is responsible for most neonatal deaths and morbidity [26], there has been a shortage of studies that permit to create a distinctive expression footprint of the pathology and consequently achieve improvements in its prevention, diagnosis, and treatment. To overcome this gap in knowledge, we analyzed the gene expression of the chorioamnion membranes from severe PTB and term newborns by RNA-seq.

In this study, we present a distinct transcriptome pattern of severe PTB. Our study revealed 270 DE genes between both conditions. A number of this magnitude may partially explain the lack of previous molecular signatures for PTB as well as the difficulty to identify biomarkers and potential therapeutic interventions [4,39]. Several pathways and genes are involved in labor and most of them would be either turn on or off during pathological conditions [4,16,37,40].

It has been proposed than pregnancy is maintained by down-regulation of chemokines at the maternal-fetal interface [25]. Removal of the down-regulation results in term birth while in the case of PTB, the activation of multiple pathways of the immune system overrides this down-
In concordance with this idea, we found that up-regulated genes were mostly related to immune response (e.g. interleukin 24, CXC motif chemokine ligands or Tumor Necrosis Factors). Moreover, we found that severe preterm labor has a significant enrichment of immune processes in comparison to term labor. Gene ontology and KEGG pathway enrichment analyses indicated that inflammatory and immune paths were enriched in severe preterm samples (Fig 3). These findings are in agreement with the mentioned studies, demonstrating that preterm labor is associated with an extensive immune response activation in several gestational tissues. In fact, the incidence of PTB in association with inflammation is higher earlier in pregnancy [31], so the overexpression of inflammatory and immune pathways in severe PTB is consistent with the results reported in the literature.

Interestingly, two of the overexpressed genes found in this study were previously proposed as biomarkers of PTB because their concentration in amniotic fluid was higher in PTB when compared to term labor: C-X-C motif chemokine ligand 10 (CXCL10) gene and matrix metallopeptidase 8 (MMP-8) [32–35]. Consequently, these biomarkers can be analyzed in amniotic fluid and provide information to prevent PTB. CXCL10 is related to maternal anti-fetal rejection, in the same way as it is with allograft rejection [34]. In this context, CLXC10 overexpression in PTBs may be leading to premature labor by triggering a fetal inflammatory response. MMP-8 is known to decrease the integrity of the cervical and fetal membrane extracellular matrix [36]. MMP-8 may alter the membranes extracellular matrix and permit the passage of bacteria into the endometrium, leading to bacteria-induced PTB [37].

A small group of 18 genes clustered together and discriminates between term and severe preterm cases (Figure 2B). All of them are down-regulated. These genes potentially characterize a severe preterm transcriptome pattern and therefore are candidate genes for understanding the syndrome.
None of these down-regulated genes were previously proposed in the literature as preterm birth biomarkers. However, placental alkaline phosphatase (\emph{ALPP}) and pappalysin 1 (\emph{PAPPA}) gene are included in a group of nine placental genes that together could predict GA in a recent pilot study [38]. \emph{ALPP} and Pappalysin 2 (\emph{PAPPA2}), a closely related gene to \emph{PAPPA}, are among the 18 down-regulated gene cluster found here. Also, \emph{PAPPA2}, a type of metalloproteinase, with a typical high gene expression in the placenta [39], was found DE in placenta tissue between spontaneous PTB and term birth [40].

The low number of down-regulated genes made difficult to establish statistically significant pathways: only two from the 18 clustered genes are included in the same KEGG pathway. \emph{WNT1} and \emph{DLX5} genes belong to the pathway: “Signaling pathways regulating pluripotency of stem cells” (hsa04550). In term births, this pathway increases its expression at the end of pregnancy [41]. \emph{WNT1} gene belongs to the WNT signaling pathway, which is involved in cell proliferation, development, and tumor progression. WNT signaling pathway inhibition could contribute to miscarriages and PTB, via decreasing trophoblast proliferation and invasion [42]. Notoriously, \emph{WNT2} gene, which is typically overexpressed in placenta, was not DE in our data. \emph{DLX5} is a member of a homeobox transcription factor gene family. Homeobox genes regulate embryonic as well as placental development [43]. They are widely expressed in the human placenta. A potential role of \emph{DLX5} may be related to neurobehavioural development and to regulating stem cell function, both important for normal placental development [43]. Also, \emph{DLX5} is up-regulated in preeclamptic placentas, presumably due to an altered methylation at the \emph{DLX5} locus in preeclampsia that results in loss of imprinting [44]. A decrease in expression later in gestation was found for this gene in human placenta, as a response to an increase in gene body methylation over gestational age [43]. Our results indicate that \emph{WNT1} and \emph{DLX5} expression are lower in fetal
membranes of severe PTBs than in term membranes. In this context, we speculate that the downregulated genes may act as maturation genes setting the gestation timing.

These putative maturation genes may be very difficult to discriminate from those leading to preterm birth. A major issue in the transcriptomic study of PTB in humans is the inability to collect healthy control tissue at the same gestational age (GA) to compare with pathologic preterm tissue. Consequently, DE genes between PTB and term reflect differences of both, GA and the pathological event of preterm labor. We are aware that as a consequence of the design of our study PTB and GA responsible genes are overlapped. By comparing human sPTB and term transcriptomes with GA-matched control transcriptomes from a closely related species (macaques), Eidem et al. [45], identified a low number of distinctive promising sPTB-specific candidate genes or potentially related to GA effects. They found similar functions of PTB and GA genes so they speculated that the effects of sPTB and GA do not correspond to biologically distinct processes [45].

Whether PTB is a labor that occurs too soon or it represents a pathological event with a new group of expressed genes is still an open question. The present transcriptome of chorioamnion membranes does not resolve the controversy but it adds information that would help to complete the PTB expression scenario. On one hand, our results confirmed that immune response pathways are up-regulated in PTB. On the other hand, this RNA-seq approach allowed to identify up-regulated genes and pathways not previously reported as associated with PTB (hematopoietic cell lineage pathway, osteoclast differentiation). Also, we found that some of the down-regulated genes are involved in the nervous system, morphogenesis (WNT-1, DLX5, PAPPA2) and ion channel complexes (KCNJ16, KCNB1). It is difficult to speculate on the importance of those genes and pathways in PTB; for example ion channels are involved in a wide spectrum of different functions
that eventually conduct to labor or PTB including implantation [46], Ca\(^{++}\) signaling [47], smooth muscle contraction [48] and inflammation [49]. Regarding the possibility that hematopoietic cell lineage pathway is connected with PTB, it is known that the placenta produces hematopoietic stem cells (HSCs) [50,51]. The placenta can generate HPCs and cause their expansion but not differentiation. Placental HSC pool was first considered to appear early in gestation and then to decrease while the development of the HSC reservoir in the liver [51,52]. Subsequent studies demonstrated that mid-gestation placenta also harbors a large pool of pluripotent hematopoietic stem cells that have the capacity to self-renewal [50][53]. Moreover, hematopoietic progenitors were also found in full-term placentas in a low percentage of lineage-committed cells [54]. Since the hematopoietic monocyte-macrophage lineage produces the osteoclasts, hematopoietic cell lineage and osteoclast differentiation pathways are connected. Although \textit{a priori} both pathways look far away from term labor or PTB, they could represent interesting unexplored paths to preterm. Nevertheless, all of the mentioned genes and biological process open new lines of research making them good candidates as biomarkers of PTB.

A literature search to validate these genes revealed that, surprisingly, there are not many high-throughput studies analyzing chorioamniotic tissues and none with RNA-seq technology. To our knowledge, this is the first RNA-seq study of chorioamniotic tissue in preterm and term birth. When comparing results from Bukowski et al. [25] only 7 genes are shared with our study. All these genes may be in one way or another related to PTB: \textit{CCRL2} and \textit{CXCL2} belong to inflammatory pathways [55,56], \textit{GPR84} is a receptor of fatty acids also related to inflammation [57], \textit{BCL2A1} and \textit{CHI3L1} were recently associated with chorioamnionitis in monkey and human [58], SLC16A10 is up-regulated in the mid-gestational placenta [59] and \textit{SAMSN1} is a poorly characterized gene that may be involved in differentiation of lymphocytes B [60]. The fact that
these subsets of genes overlap in both studies using different experimental techniques stresses that they should be a target of further research of PTB.

One interesting finding is the homogeneity for gene expression in the control samples. After a linear reduction of the variability for more than 30000 expressed genes, the control samples cluster together in a small group. The dispersion of the samples in the PCA analysis is lower compared to other tissue expression profiles using the same exploratory analysis [61]. In contrast, PTB chorioamniotic expression analysis revealed a more diverse group, further stressing the heterogeneity of this condition. This may be a consequence of the complexity of the syndrome characterization as it has been previously reported in the expression of other tissues related to PTB like the myometrium [62]. In concordance, Ngo et al. [38] developed a gene expression model based on GA that predicted time until delivery for full-term but that failed for preterm deliveries. This suggests that to predict PTB the classifiers must incorporate the several outlier physiological events that may lead to PTB [38]. Although we hypothesized that chorioamnion’s expression reflects a common pathway to most of the paths that end in PTB, it is possible that in different individuals diverse pathways participate making more difficult to define a landscape of PTB than one of term labor.

Finally, this study has been performed in an admixed population where PTB is frequent (approx. 10 %) indicating that it is a serious health public problem. Population-specific studies are relevant, as genetic background may impact differently in different populations, e.g. it is known that African American ancestry increases the risk of PTB [63–65]. Generally, there is a gap of information regarding specific populations except those coming from North America and Europe. With our literature search, we recovered only three out of 101 transcriptomic analyses based on populations
from Latin American countries [34,66,67], stressing the fact that most studies do not include susceptible populations from this part of the continent.

All of the Latin American studies were performed with microarray analysis, meaning that the data shown in this work will be the first RNA-seq data available to contrast in future studies. Specifically, the Uruguayan population is admixed, with a predominance of European contribution, and a Native American and African contribution of 10.4% and 5.6%, respectively [68,69]. Common genetic variation affects expression variability [70], as well as the admixed genome structure [71,72], stressing the necessity of population-specific transcriptome analyses or alternatively including diversity in high throughput population analyses.

Conclusions

The use of state-of-the-art analytics by RNA-seq identified already reported genes and pathways as well as novel candidates involved in labor and PTB. The combination of up- and down-regulated genes permitted to develop a multi-gene disease classifier. These markers were generated in an admixed population where PTB has a high incidence. Further studies including the testing of these classifiers using a second and larger independent sample are needed to validate these results. Moreover, these markers should be compared to other population studies to get a global landscape of severe PTB.
Acknowledgements

We acknowledge Drs. Ariel Díaz, Natalia Cabrera and Pamela Grimaldi (Pereira Rossell Hospital Center) for their invaluable support in patient and control subject recruitment.

Author Contributions

SP, BB and RS conceived and designed the experiments. CS assisted in sample collection. SP performed the experiments and analyzed the data. All authors discussed results. SP, BB and RS wrote the manuscript.

References

1. Behrman RE, Stith Butler A. Institute of Medicine Committee on understanding premature birth and assuring healthy outcomes board on health sciences outcomes: preterm birth: causes, consequences, and prevention. Preterm birth: causes, consequences, and prevention, National Academies Press, Washington, DC. 2007;
2. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379: 2151–2161.
3. Romero R, Dey SK, Fisher SJ. Preterm Labor: One Syndrome, Many Causes. Science. 2014;345: 760–765.
4. Myatt L, Eschenbach DA, Lye SJ, Mesiano S, Murtha AP, Williams SM, et al. A Standardized Template for Clinical Studies in Preterm Birth. Reprod Sci. SAGE Publications Inc; 2012;19: 474–482.
5. Eidem HR, Ackerman WE, McGary KL, Abbot P, Rokas A. Gestational tissue transcriptomics in term and preterm human pregnancies: a systematic review and meta-analysis. BMC Med Genomics. London: BioMed Central; 2015;8: 27.
6. Moutquin J. Classification and heterogeneity of preterm birth. BJOG. Wiley Online Library; 2003;110: 30–33.
7. Henderson JJ, McWilliam OA, Newnham JP, Pennell CE. Preterm birth aetiology 2004–2008. Maternal factors associated with three phenotypes: spontaneous preterm labour, preterm pre-labour rupture of membranes and medically indicated preterm birth. J Matern Fetal Neonatal Med. Taylor & Francis; 2012;25: 642–647.
8. Iams JD. Preterm birth categories–labels with consequences. Am J Obstet Gynecol. Elsevier; 2017;210: 97–98.
9. Monangi NK, Brockway HM, House M, Zhang G, Muglia LJ. The genetics of preterm birth: Progress and promise. Semin Perinatol. 2015;39: 574–583.

10. Kukurba KR, Montgomery SB. RNA Sequencing and Analysis. Cold Spring Harb Protoc. 2015;2015: 951–969.

11. Sõber S, Reiman M, Kikas T, Rull K, Inno R, Vaas P, et al. Extensive shift in placental transcriptome profile in preeclampsia and placental origin of adverse pregnancy outcomes. Sci Rep. 2015;5: 13336.

12. Kim J, Zhao K, Jiang P, Lu Z-X, Wang J, Murray JC, et al. Transcriptome landscape of the human placenta. BMC Genomics. 2012;13: 115.

13. Mikheev AM, Nabekura T, Kaddoumi A, Bammler TK, Govindarajan R, Hebert MF, et al. Profiling gene expression in human placentae of different gestational ages: an OPRU Network and UW SCOR Study. Reprod Sci. 2008;15: 866–877.

14. Buckberry S, Bianco-Miotto T, Bent SJ, Dekker GA, Roberts CT. Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal-maternal interface. Mol Hum Reprod. 2014;20: 810–819.

15. Rey G, Skowronek F, Alciaturi J, Alonso J, Bertoni B, Sapiro R. Toll receptor 4 Asp299Gly polymorphism and its association with preterm birth and premature rupture of membranes in a South American population. Mol Hum Reprod. 2008;14: 555–559.

16. De Mucio B, Abalos E, Cuesta C, Carroli G, Serruya S, Giordano D, et al. Maternal near miss and predictive ability of potentially life-threatening conditions at selected maternity hospitals in Latin America. Reprod Health. 2016;13: 1–10.

17. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114–2120.

18. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11. doi:10.1186/gb-2010-11-2-r14

19. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; 2016.

20. de Jong E, Hancock DG, Wells C, Richmond P, Simmer K, Burgner D, et al. Exposure to chorioamnionitis alters the monocyte transcriptional response to the neonatal pathogen Staphylococcus epidermidis. Immunol Cell Biol. 2018; doi:10.1111/imcb.12037

21. Chim S, Wong K, Chung C, Lam S, Kwok J, Lai C-Y, et al. Systematic Selection of Reference Genes for the Normalization of Circulating RNA Transcripts in Pregnant Women Based on RNA-Seq Data. Int J Mol Sci. 2017;18: 1709.

22. Migale R, MacIntyre DA, Cacciatore S, Lee YS, Hagberg H, Herbert BR, et al. Modeling hormonal and inflammatory contributions to preterm and term labor using uterine temporal transcriptomics. BMC Med. 2016;14: 86.

23. Willcockson AR, Nandu T, Liu C-L, Nallasamy S, Kraus WL, Mahendroo M. Transcriptome signature identifies distinct cervical pathways induced in lipopolysaccharide-mediated preterm birth. Biol Reprod. 2018;98: 408–421.
24. Saben J, Zhong Y, McKelvey S, Dajani NK, Andres A, Badger TM, et al. A comprehensive analysis of the human placenta transcriptome. Placenta. 2014;35:125–131.

25. Bukowski R, Sadovsky Y, Goodarzi H, Zhang H, Biggio JR, Varner M, et al. Onset of human preterm and term birth is related to unique inflammatory transcriptome profiles at the maternal fetal interface. PeerJ. 2017;5:e3685.

26. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379:2162–2172.

27. Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF 3rd, Petraglia F. Inflammation and pregnancy. Reprod Sci. 2009;16:206–215.

28. Behrman RE, Butler AS. Preterm birth: Causes, consequences, and prevention. Washington DC: National Academies Press; 2007. p. 791.

29. Vitoratos N, Papadias K, Makrakis E, Christodoulakos G, Panoulis K, Creatsas G. Association between serum tumor necrosis factor-alpha and corticotropin-releasing hormone levels in women with preterm labor. J Obstet Gynaecol Res. 2006;32:497–501.

30. Flood K, Malone FD. Prevention of preterm birth. Semin Fetal Neonatal Med. 2012;17:58–63.

31. Korebrits C, Ramirez MM, Watson L, Brinkman E, Bocking AD, Challis JR. Maternal corticotropin-releasing hormone is increased with impending preterm birth. J Clin Endocrinol Metab. 1998;83:1585–1591.

32. Holt R, Timmons BC, Akgul Y, Akins ML, Mahendroo M. The molecular mechanisms of cervical ripening differ between term and preterm birth. Endocrinology. 2011;152:1036–1046.

33. Maymon E, Romero R, Pacora P, Gomez R, Athayde N, Edwin S, et al. Human neutrophil collagenase (matrix metalloproteinase 8) in parturition, premature rupture of the membranes, and intrauterine infection. Am J Obstet Gynecol. 2000;183:94–99.

34. Lee J, Romero R, Chaiworapongs T, Dong Z, Tarca AL, Xu Y, et al. Characterization of the fetal blood transcriptome and proteome in maternal anti-fetal rejection: evidence of a distinct and novel type of human fetal systemic inflammatory response. Am J Reprod Immunol. 2013;70:265–284.

35. Kim SM, Romero R, Lee J, Chaemsathong P, Lee M-W, Chaiyasit N, et al. About one-half of early spontaneous preterm deliveries can be identified by a rapid matrix metalloproteinase-8 (MMP-8) bedside test at the time of mid-trimester genetic amniocentesis. J Matern Fetal Neonatal Med. 2016;29:2414–2422.

36. Arechavaleta-Velasco F, Marciano D, Diaz-Cueto L, Parry S. Matrix metalloproteinase-8 is expressed in human chorion during labor. Am J Obstet Gynecol. 2004;190:843–850.

37. Witkin SS. The vaginal microbiome, vaginal anti-microbial defence mechanisms and the clinical challenge of reducing infection-related preterm birth. BJOG. 2015;122:213–218.

38. Ngo TTM, Moufarrej MN, Rasmussen M-LH, Camunas-Soler J, Pan W, Okamoto J, et al. Noninvasive blood tests for fetal development predict gestational age and preterm delivery. Science. 2018;360:1133–1136.
39. Farr M, Strübe J, Geppert HG, Kocourek A, Mahne M, Tschesche H. Pregnancy-associated plasma protein-E (PAPP-E). Biochim Biophys Acta. 2000;1493: 356–362.

40. Chim SSC, Lee WS, Ting YH, Chan OK, Lee SWY, Leung TY. Systematic identification of spontaneous preterm birth-associated RNA transcripts in maternal plasma. Oudejans C, editor. PLoS One. Public Library of Science; 2012;7: e34328.

41. Winn VD, Haimov-Kochman R, Paquet AC, Yang YJ, Madhusudhan MS, Gormley M, et al. Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term. Endocrinology. 2007;148: 1059–1079.

42. Zmijanac Partl J, Partl JZ, Karin V, Skrtic A, Nikuseva-Martic T, Serman A, et al. Negative regulators of Wnt signaling pathway SFRP1 and SFRP3 expression in preterm and term pathologic placentas. J Matern Fetal Neonatal Med. 2017; 1–9.

43. Novakovic B, Fournier T, Harris LK, James J, Roberts CT, Yong HEJ, et al. Increased methylation and decreased expression of homeobox genes TLX1, HOXA10 and DLX5 in human placenta are associated with trophoblast differentiation. Sci Rep. 2017;7: 4523.

44. Zadora J, Singh M, Herse F, Przybyl L, Haase N, Golic M, et al. Disturbed Placental Imprinting in Preeclampsia Leads to Altered Expression of DLX5, a Human-Specific Early Trophoblast Marker. Circulation. 2017;136: 1824–1839.

45. Eidem HR, Rinker DC, Ackerman WE 4th, Buhimschi IA, Buhimschi CS, Dunn-Fletcher C, et al. Comparing human and macaque placental transcriptomes to disentangle preterm birth pathology from gestational age effects. Placenta. 2016;41: 74–82.

46. Davidson LM, Coward K. Molecular mechanisms of membrane interaction at implantation. Birth Defects Res C Embryo Today. 2016;108: 19–32.

47. Wray S, Burdyga T, Noble D, Noble K, Borysova L, Arrowsmith S. Progress in understanding electro-mechanical signalling in the myometrium. Acta Physiol. 2015;213: 417–431.

48. Buxton ILO, Heyman N, Wu Y-Y, Barnett S, Ulrich C. A role of stretch-activated potassium currents in the regulation of uterine smooth muscle contraction. Acta Pharmaco Sin. 2011;32: 758–764.

49. Vaeth M, Feske S. Ion channelopathies of the immune system. Curr Opin Immunol. 2018;52: 39–50.

50. Gekas C, Dieterlen-Lièvre F, Orkin SH, Mikkola HKA. The placenta is a niche for hematopoietic stem cells. Dev Cell. 2005;8: 365–375.

51. Khodadi E, Shahrabi S, Shahjahani M, Azandeh S, Saki N. Role of stem cell factor in the placental niche. Cell Tissue Res. 2016;366: 523–531.

52. Alvarez-Silva M, Belo-Diabangouaya P, Salaün J, Dieterlen-Lièvre F. Mouse placenta is a major hematopoietic organ. Development. 2003;130: 5437–5444.

53. Ottersbach K, Dzierzak E. Analysis of the mouse placenta as a hematopoietic stem cell niche. Methods Mol Biol. 2009;538: 335–346.

54. Kuchma MD, Kryyk VM, Svitina HM, Shablili YM, Lukash LL, Lobyntseva GS, et al. Comparative Analysis of the Hematopoietic Progenitor Cells from Placenta, Cord Blood, and Fetal Liver, Based
on Their Immunophenotype. Biomed Res Int. 2015;2015: 418752.

55. Mattern A, Zellmann T, Beck-Sickinger AG. Processing, signaling, and physiological function of chemerin. IUBMB Life. 2014;66: 19–26.

56. Kobayashi Y. The role of chemokines in neutrophil biology. Front Biosci. 2008;13: 2400–2407.

57. Mahmud ZA, Jenkins L, Ulven T, Labéguère F, Gosmini R, De Vos S, et al. Three classes of ligands each bind to distinct sites on the orphan G protein-coupled receptor GPR84. Sci Rep. 2017;7: 17953.

58. Presicce P, Park C-W, Sentharamaikannan P, Bhattacharyya S, Jackson C, Kong F, et al. IL-1 signaling mediates intrauterine inflammation and chorio-decidua neutrophil recruitment and activation. JCI Insight. 2018;3. doi:10.1172/jci.insight.98306

59. Uusküla L, Männik J, Rull K, Minajeva A, Kõks S, Vaas P, et al. Mid-gestational gene expression profile in placenta and link to pregnancy complications. PLoS One. 2012;7: e49248.

60. Zhu YX, Benn S, Li ZH, Wei E, Masih-Khan E, Trieu Y, et al. The SH3-SAM adaptor HACS1 is up-regulated in B cell activation signaling cascades. J Exp Med. 2004;200: 737–747.

61. Rahmioglu N, Drong AW, Lockstone H, Tapmeier T, Hellner K, Saare M, et al. Variability of genome-wide DNA methylation and mRNA expression profiles in reproductive and endocrine disease related tissues. Epigenetics. 2017;12: 897–908.

62. Ackerman WE 4th, Buhimschi IA, Brubaker D, Maxwell S, Rood KM, Chance MR, et al. Integrated microRNA and mRNA network analysis of the human myometrial transcriptome in the transition from quiescence to labor. Biol Reprod. 2018; doi:10.1093/biolre/ioy040

63. Plunkett J, Muglia LJ. Genetic contributions to preterm birth: implications from epidemiological and genetic association studies. Ann Med. 2008;40: 167–195.

64. Plunkett J, Doniger S, Orabona G, Morgan T, Haataja R, Hallman M, et al. An Evolutionary Genomic Approach to Identify Genes Involved in Human Birth Timing. Barsh GS, editor. PLoS Genet. Public Library of Science; 2011;7: e1001365.

65. Crider KS, Whitehead N, Buus RM. Genetic variation associated with preterm birth: A HuGE review. Genet Med. 2005;7: 593–604.

66. Romero R, Mazaki-Tovi S, Vaisbuch E, Kusanovic JP, Chaiworapongsa T, Gomez R, et al. Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. J Matern Fetal Neonatal Med. 2010;23: 1344–1359.

67. Kim J. Identification of genes contributing to preterm birth: insights from genetic, transcriptomic, and epigenetic analyses [Internet]. Theses and Dissertations. 2012. Available: http://ir.uiowa.edu/etd/2918

68. Sans M, Salzano FM, Chakraborty R. Historical genetics in Uruguay: estimates of biological origins and their problems. Hum Biol. 1997;69: 161–170.

69. Hidalgo PC, Bengochea M, Abilleira D, Cabrera A, Alvarez I. Genetic Admixture Estimate in the Uruguayan Population Based on the Loci LDLR, GYPA, HBGG, GC and D7S8. Int J Hum Genet. 2005;5: 217–222.
70. Yang E, Wang G, Yang J, Zhou B, Tian Y, Cai JJ. Epistasis and destabilizing mutations shape gene expression variability in humans via distinct modes of action. Hum Mol Genet. 2016;25: 4911–4919.

71. Lappalainen T, Sammeth M, Friedländer MR, ’t Hoen PAC, Monlong J, Rivas MA, et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501: 506–511.

72. Cappetta M, Berdasco M, Hochmann J, Bonilla C, Sans M, Hidalgo PC, et al. Effect of genetic ancestry on leukocyte global DNA methylation in cancer patients. BMC Cancer. 2015;15: 434.

Supporting information captions

S1 Fig 1. Differentially expressed genes. Venn diagram showing the number of differentially expressed genes identified by each of the three methods employed, when considering a FDR < 0.05.

S1 Table. Primers used for quantitative PCR analysis. Sequence of the primers used for qRT-PCR.

S2 Table. Alignment statistics obtained by tophet2.

S1 File 1. Full list of differentially expressed genes. (FDR ≤ 0.05 and fold change ≥ 2) detected in the severe preterm vs. term pairwise comparison.
edgeR n=820
DESeq2 n=1154

420
114
293

16
171
270

378

Cufflinks n = 835
