DOUBLE SQUARE MOMENTS AND BOUNDS FOR RESONANCE SUMS OF CUSP FORMS

TIM GILLESPIE, PRANEEL SAMANTA, AND YANGBO YE

Abstract. Let f and g be holomorphic cusp forms for the modular group $SL_2(\mathbb{Z})$ of weight k_1 and k_2 with Fourier coefficients $\lambda_f(n)$ and $\lambda_g(n)$, respectively. For real $\alpha \neq 0$ and $0 < \beta \leq 1$, consider a smooth resonance sum $S_X(f,g;\alpha,\beta)$ of $\lambda_f(n)\lambda_g(n)$ against $e(\alpha n^\beta)$ over $X \leq n \leq 2X$. Double square moments of $S_X(f,g;\alpha,\beta)$ over both f and g are nontrivially bounded when their weights k_1 and k_2 tend to infinity together. By allowing both f and g to move, these double moments are indeed square moments associated with automorphic forms for $GL(4)$. By taking out a small exceptional set of f and g, bounds for individual $S_X(f,g;\alpha,\beta)$ will then be proved. These individual bounds break the resonance barrier of $X^{\frac{5}{8}}$ for $\frac{1}{6} < \beta < 1$ and achieve a square-root cancellation for $\frac{1}{3} < \beta < 1$ for almost all f and g as an evidence for Hypothesis S for cusp forms over integers. The methods used in this study include Petersson’s formula, Poisson’s summation formula, and stationary phase integrals.

1. Introduction

According to Iwaniec, Luo, and Sarnak [8, Appendix C], a general form of Hypothesis S over integers predicts a square-root cancellation in the sum

$$S_X(\{a_n\};\alpha,\beta) = \sum_n a_n e(\alpha n^\beta) \phi\left(\frac{n}{X}\right) \ll X^{\frac{3}{4} + \varepsilon},$$

where $0 < \beta \leq 1$ and $\alpha \neq 0$ are fixed real numbers, ϕ is a smooth function of compact support in $(1,2)$, and $\{a_n\}$ is an arithmetically defined sequence of complex numbers satisfying $a_n \ll n^{\varepsilon}$. The Case III in [8] of $a_n = \lambda_f(n)$ for a fixed holomorphic cusp form f for $SL_2(\mathbb{Z})$, however, faces a resonance barrier when $\beta = \frac{1}{2}$ and $\alpha = \pm 2\sqrt{q}$ for a positive integer q. In other words,

$$S_X(f;\pm 2\sqrt{q},\frac{1}{2}) := \sum_n \lambda_f(n)e(\pm 2\sqrt{q}n)\phi\left(\frac{n}{X}\right)$$

has a main term of size $|\lambda_f(q)|X^{\frac{3}{2}}$. This resonance phenomenon has been further studied by Ren and Ye [12] – [17], Ernvall-Hytonen [4], Ernvall-Hytonen, Jääsaari, and Vesalainen [5], Czarnecki [2], Savala [19], and many other authors for fixed automorphic forms f.

It is believed that one might be able to break the resonance barrier if the cusp form f is allowed to move. In this direction, Ye [22] proved the first known non-trivial bound for $S_X(f;\alpha,\beta)$ when the weight k of f tends to infinity with the summation length X. This bound, however, is far from reaching the square-root cancellation.

The goal of the present paper is to break the resonance barrier for

$$S_X(f,g;\alpha,\beta) = \sum_n \lambda_f(n)\lambda_g(n)e(\alpha n^\beta)\phi\left(\frac{n}{X}\right)$$

2010 Mathematics Subject Classification. 11F30, 11F11.

Key words and phrases. holomorphic cusp form; Hypothesis S; Petersson’s formula; Poisson’s summation formula; resonance barrier; resonance sum; square moment.

These authors have contributed equally to this work and share first authorship.
for almost all holomorphic cusp forms \(f \) and \(g \) for \(SL_2(\mathbb{Z}) \) of even integer weights \(k_1 \) and \(k_2 \), respectively. Note here that \(\lambda_f(n)\lambda_g(n) \) in (1.1) corresponds to the Dirichlet coefficients coming from the Rankin-Selberg \(L \)-function

\[
L(s, f \times g) = \zeta(2s) \sum_{n \geq 1} \frac{\lambda_f(n)\lambda_g(n)}{n^s}.
\]

Consequently, \(S_X(f, g; \alpha, \beta) \) represents the interplay between the oscillation of the Dirichlet coefficients of \(L(s, f \times g) \) and that of a fractional exponential function.

By [16] and [2], the sum \(S_X(f, g; \alpha, \beta) \) has a main term of size \(|\lambda_f(q)\lambda_g(q)|X^{\frac{1}{4}+\frac{1}{2}} \) when \(\beta = \frac{1}{4} \) and \(\alpha \) is close or equal to \(\pm 4q^\frac{1}{4} \) for a positive integer \(q \) for fixed \(f \) and \(g \). The resonance barrier in this case is thus \(X^{\frac{1}{4}} \).

We will break this resonance barrier for almost all \(f \) and \(g \), in the sense that the number of exceptional pairs \((f, g)\) is a power less than the total number of pairs \((f, g)\) in consideration. In particular, the exceptional pairs have a probability tending to zero.

More precisely, let \(S_k(\Gamma) \) denotes the space of holomorphic cusp forms on \(\Gamma = SL_2(\mathbb{Z}) \) of even integral weight \(k \), and let \(H_k \) denote an orthogonal basis of \(S_k(\Gamma) \) consisting of Hecke eigenforms where each form is normalized to have the first Fourier coefficient equal to 1. Recall the dimension formula \(\dim S_k(\Gamma) = \frac{k}{12} + O(1) \). Consider parameters \(K_j \leq L_j \leq K_j^{1-\varepsilon} \) for \(j = 1, 2 \), and denote \(H_{K_j} = \bigcup_{K_j - L_j \leq k \leq K_j + L_j} H_k \).

We will bound the double square moment

\[
\sum_{f \in H_{K_1}, g \in H_{K_2}} |S_X(f, g; \alpha, \beta)|^2
\]

for \(K_1, K_2, L_1, L_2, X \) in various ranges. Let \(g_0 \in C^\infty(-1, 1) \) be a non-negative test function with \(g_0(0) = 1 \). We will equivalently bound the smooth double moment

\[
\sum_{2|k_1} \sum_{2|k_2} g_0\left(\frac{k_1 - K_1}{L_1}\right) g_0\left(\frac{k_2 - K_2}{L_2}\right) \sum_{f \in H_{k_1}, g \in H_{k_2}} |S_X(f, g, \alpha, \beta)|^2.
\]

In order to apply Petersson’s formula, we will actually bound a normalized sum

\[
\sum_{K_1L_1}^{K_2L_2} = K_1K_2 \sum_{2|k_1} \sum_{2|k_2} g_0\left(\frac{k_1 - K_1}{L_1}\right) g_0\left(\frac{k_2 - K_2}{L_2}\right) \sum_{f \in H_{k_1}} \frac{2\pi^2}{(k_1 - 1)L(1, Sym^2 f)}
\]

\[
\times \sum_{g \in H_{k_2}} \frac{2\pi^2}{(k_2 - 1)L(1, Sym^2 g)} |S_X(f, g, \alpha, \beta)|^2
\]

\[
= K_1K_2 \sum_{2|k_1} \sum_{2|k_2} g_0\left(\frac{k_1 - K_1}{L_1}\right) g_0\left(\frac{k_2 - K_2}{L_2}\right) \sum_{m} \sum_{n} e(\alpha n^\beta - \alpha m^\beta) \phi\left(\frac{n}{X}\right) \bar{\phi}\left(\frac{m}{X}\right)
\]

\[
\times \sum_{f \in H_{k_1}} \frac{2\pi^2\lambda_f(n)\lambda_g(m)}{(k_1 - 1)L(1, Sym^2 f)} \sum_{g \in H_{k_2}} \frac{2\pi^2\lambda_g(n)\lambda_f(m)}{(k_2 - 1)L(1, Sym^2 g)}.
\]

The factors

\[
\frac{2\pi^2K_1}{(k_1 - 1)L(1, Sym^2 f)} \quad \text{and} \quad \frac{2\pi^2K_2}{(k_2 - 1)L(1, Sym^2 g)}
\]

in (1.4) will result in a discrepancy bounded between \(K_i^{-\varepsilon} \) and \(K_i^\varepsilon, i = 1, 2 \), by Iwaniec [7] and Hoffstein and Lockhart [6].

For holomorphic cusp forms we have Deligne’s proof [3] of the Ramanujan conjecture which implies that \(\lambda_f(n) \ll n^\varepsilon \) and \(\lambda_g(n) \ll n^\varepsilon \) for \(\varepsilon > 0 \) arbitrarily small. Here the implied constants are independent of \(f \)
and g. Using this we obtain a trivial bound

\[S_X(f, g; \alpha, \beta) \ll X^{1+\varepsilon}, \]

where the implied constant is independent of f and g. Applying this to (1.4), we get a trivial bound $O(K_1L_1K_2L_2X^{2+\varepsilon})$ for $\sum_{K_1L_1}^{K_2L_2}$ in (1.4) and hence for (1.3) and (1.2). We seek to break this bound. Note that non-trivial bounds beyond (1.5) are known for $S_X(f, g; \alpha, \beta)$ for both f and g being fixed but not for f and g with their weights tending to infinity.

Theorem 1.1. For $j = 1, 2$ assume $K_j^\varepsilon \leq L_j \leq K_j^{1-\varepsilon}$. Then for $0 < \beta < 1$

\[\sum_{K_1L_1}^{K_2L_2} \ll \begin{cases} K_1L_1K_2L_2X^{1+\varepsilon} & \text{if } K_1L_1 \geq X^{1+\varepsilon} \text{ and } K_2 \geq X^{1/2+\varepsilon}; \\ K_1L_1K_2X^{1+\varepsilon} + \frac{K_1L_1L_2}{K_2}X^{\varepsilon} & \text{if } K_1L_1 \geq X^{1+\varepsilon} \text{ and } K_2 \leq X^{1/2}; \\ K_1^2L_1L_2X^{1+\varepsilon} + \frac{X^{3+\varepsilon}}{K_1} & \text{if } K_1L_1, K_2L_2 \leq X^{1-\varepsilon}, K_1 = K_2, \text{ and } K_1^2L_1L_2 \geq X^{1+\beta+\varepsilon}. \end{cases} \]

When $\beta = 1$, bounds in (1.6) and (1.7) remain valid, while (1.8) is replaced by

\[\ll \min(L_1, L_2)K_1X^{2+\varepsilon} + \frac{X^{3+\varepsilon}}{K_1} \text{ if } K_1L_1, K_2L_2 \leq X^{1-\varepsilon}, K_1 = K_2. \]

Since the number of terms in $\sum_{K_1L_1}^{K_2L_2}$ is $\asymp K_1L_1K_2L_2$, (1.6) show that the average size of $S_X(f, g; \alpha, \beta)$ is bounded by $O(X^{1/2+\varepsilon})$ when K_1 and K_2 are large. This represents a square-root saving on average for $S_X(f, g; \alpha, \beta)$.

If we take

\[K_1 = K_2 = X^{\frac{1+\beta}{2}}, \quad L_1 = L_2 = X^{\frac{1-\varepsilon}{2}} \]

in (1.8), we have $K_1^2L_1L_2 = X^{1+\beta+\varepsilon}$ and the bound in (1.8) becomes

\[\sum_{K_1L_1}^{K_2L_2} \ll X^{2+\beta+\varepsilon} + X^{\frac{2+\beta}{2}+\varepsilon}. \]

This is also a bound for (1.2) for $0 < \beta < 1$. Since the two terms on the right hand side of (1.11) are both larger than X^2, (1.11) cannot provide a non-trivial bound for all individual $S_X(f, g; \alpha, \beta)$. It can, nevertheless, allow us to break the resonance barrier $X^{\frac{5}{2}}$ for almost all forms f and g.

To this end, define

\[\Delta_{f,g}(\gamma) = \left\{ \text{pairs } (f, g) \bigg| f \in H_{K_1, L_1}, g \in H_{K_2, L_2} \text{ such that } |S_X(f, g; \alpha, \beta)| \geq X^{\gamma+\varepsilon} \right\} \]

for $0 < \gamma < 1$. By the bound (1.11) on (1.2) we get

\[X^{2\gamma+2\varepsilon} |\Delta_{f,g}(\gamma)| \ll X^{2+\beta+\varepsilon} + X^{\frac{2+\beta}{2}+\varepsilon}. \]

Consequently,

\[|\Delta_{f,g}(\gamma)| \ll X^{2+\beta-2\gamma-\varepsilon} + X^{\frac{2+\beta}{2}-2\gamma-\varepsilon}. \]

To make the exceptional set $\Delta_{f,g}(\gamma)$ a power smaller than the size $K_1^2L_1L_2 = X^{1+\beta+\varepsilon}$ of the averaging on H_{K_1, L_1} and H_{K_2, L_2}, we require the two terms on the right hand side of (1.12) $\leq X^{1+\beta}$. In other words, we
need \(2 + \beta - 2\gamma \leq 1 + \beta\) and \(\frac{5-\beta}{2} - 2\gamma \leq 1 + \beta\), i.e.,

\[(1.13) \quad \max \left(\frac{1}{2}, \frac{3}{4}(1 - \beta)\right) \leq \gamma < 1.\]

Corollary 1.2. For parameters in (1.10) and \(\gamma\) in (1.13), we have

\[(1.14) \quad |S_X(f, g; \alpha, \beta)| \leq X^{\gamma + \varepsilon}\]

for all \(f \in H_{K_1, L_1}\) and \(g \in H_{K_2, L_2}\) except for at most \(O(X^{2+\beta-2\gamma} + X^{\frac{5-\beta}{2} - 2\gamma})\) pairs of \(f\) and \(g\). The exceptional set is a power smaller than the size of \(H_{K_1, L_1} \times H_{K_2, L_2}\).

When we take \(\gamma = \max\left(\frac{1}{2}, \frac{3}{4}(1 - \beta)\right)\), the bound (1.14) breaks the resonance barrier \(X^\frac{\beta}{2}\) when \(\frac{1}{6} < \beta < 1\) and reaches the square-root cancellation \(X^{\frac{\beta}{4} + \varepsilon}\) when \(\frac{1}{3} < \beta < 1\) for almost all \(f\) and \(g\). Similar corollaries can be formulated from (1.10), (1.7), and (1.9).

2. Petersson's Trace Formula

We recall Petersson’s formula (Petersson [11], cf. Liu and Ye [9]) for \(m, n \geq 1\),

\[
\sum_{f \in H_k \atop (k-1)L(1, Sym^2 f)} 2\pi^2 \frac{\lambda_f(n)}{\lambda_f(m)} = \delta(m, n) + 2\pi i^k \sum_{c \geq 1} S(m, n, c) J_{k-1} \left(\frac{4\pi \sqrt{mn}}{c} \right),
\]

where \(\lambda_f(n)\) is the Fourier coefficient of \(f\) and \(S(m, n, c)\) is the classical Kloosterman sum. Applying it to (1.4) we get

\[(2.1) \quad \sum_{K_1L_1}^{K_2L_2} K_1K_2 \sum_{2 | k_1 2 | k_2} g_0 \left(\frac{k_1 - K_1}{L_1} \right) g_0 \left(\frac{k_2 - K_2}{L_2} \right) \sum_n \sum_m e(\alpha n^\beta - \alpha m^\beta) \phi \left(\frac{n}{X} \right) \phi \left(\frac{m}{X} \right)
\]

\[\times \left(\delta(n, m) + 2\pi i^{k_1} \sum_{c_1 \geq 1} S(m, n, c_1) J_{k_1-1} \left(\frac{4\pi \sqrt{mn}}{c_1} \right) \right) \]

\[\times \left(\delta(n, m) + 2\pi i^{k_2} \sum_{c_2 \geq 1} S(m, n, c_2) J_{k_2-1} \left(\frac{4\pi \sqrt{mn}}{c_2} \right) \right)
\]

\[= D_{00} + D_{01} + D_{10} + D_{11}.
\]

Here

\[(2.2) \quad D_{00} = K_1K_2 \sum_{2 | k_1 2 | k_2} g_0 \left(\frac{k_1 - K_1}{L_1} \right) g_0 \left(\frac{k_2 - K_2}{L_2} \right) \sum_n \frac{\phi \left(\frac{n}{X} \right)}{|n|}^2
\]

\[(2.3) \quad D_{01} = K_1K_2 \sum_{2 | k_1 2 | k_2} g_0 \left(\frac{k_1 - K_1}{L_1} \right) g_0 \left(\frac{k_2 - K_2}{L_2} \right) \sum_n \frac{\phi \left(\frac{n}{X} \right)}{|n|}^2
\]

\[\times 2\pi i^{k_2} \sum_{c_2 \geq 1} S(n, n, c_2) J_{k_2-1} \left(\frac{4\pi n}{c_2} \right)
\]

\[(2.4) \quad D_{10} = K_1K_2 \sum_{2 | k_1 2 | k_2} g_0 \left(\frac{k_1 - K_1}{L_1} \right) g_0 \left(\frac{k_2 - K_2}{L_2} \right) \sum_n \frac{\phi \left(\frac{n}{X} \right)}{|n|}^2
\]

\[\times 2\pi i^{k_1} \sum_{c_1 \geq 1} S(n, n, c_1) J_{k_1-1} \left(\frac{4\pi n}{c_1} \right)
\]
\[
\begin{align*}
(2.5) \quad D_{11} &= K_1 K_2 \sum_{2 \mid k_1, 2 \mid k_2} g_0 \left(\frac{k_1 - K_1}{L_1} \right) g_0 \left(\frac{k_2 - K_2}{L_2} \right) \sum_n \sum_m e(\alpha n^2 - \alpha m^2) \phi \left(\frac{n}{N} \right) \phi \left(\frac{m}{N} \right) \\
&\times 4\pi^2 t_{k_1+k_2} \sum_{c_1 \geq 1} S(m, n, c_1) c_1 \sum_{c_2 \geq 1} S(m, n, c_2) c_2 \left(4\pi \sqrt{mn} \right) J_{k_1-1} \left(\frac{4\pi \sqrt{mn}}{c_1} \right) J_{k_2-1} \left(\frac{4\pi \sqrt{mn}}{c_2} \right).
\end{align*}
\]

The diagonal term \(D_{00} \) in (2.5) can be estimated trivially for \(0 < \beta \leq 1 \):

\[
(2.6) \quad D_{00} \ll K_1 L_1 K_2 L_2 X.
\]

3. The \(k_1^- \) and \(k_2^- \)-sums of Bessel functions

For off-diagonal terms \(D_{01}, D_{10}, \) and \(D_{11} \), we have the quantity

\[
V_{K_i, L_j}(x) = \sum_{2 \mid k_j} \frac{i^{k_j} g_0 \left(\frac{k_j - K_j}{L_j} \right) J_{k_j - 1}(x)}{c_j},
\]

with \(x = \frac{4\pi \sqrt{mn}}{c_j} \). Rewriting this sum as an oscillatory integral

\[
V_{K_i, L_j}(x) = \frac{1}{2t} \left(W_{K_i, L_j}(-x) - W_{K_i, L_j}(x) \right),
\]

where for \(\eta = \pm 1 \),

\[
W_{K_i, L_j}(\eta x) = \int_{-\infty}^{\infty} \tilde{g}_0(t) e \left(-\left(\frac{K_j - 1}{L_j} \right) t \right) \frac{\eta x}{2\pi} \cos \frac{2\pi t}{L_j} dt,
\]

then applying the method of stationary phase again gives an asymptotic expansion. Denote

\[
g(t) = \tilde{g}_0(t), \quad f(t) = -\left(\frac{K_j - 1}{L_j} \right) t - \frac{x}{2\pi} \cos \frac{2\pi t}{L_j}.
\]

Lemma 3.1. (Sun and Ye \cite{21} Lemma 4.1). cf. Salazar and Ye \cite{18} Suppose \(K_j^+ \leq L_j \leq K_j^{-1-\epsilon} \).

(1) If \(x \leq 8\pi K_j^{-1-\epsilon} L_j \), then \(W_{K_i, L_j}(\eta x) \ll \epsilon, A K_j^{-A} \) for any \(A > 0 \).

(2) If \(x \geq K_j^{-1-\epsilon} L_j \), then

\[
W_{K_i, L_j}(\eta x) = \sum_{\nu = 0}^{n_0} \tilde{W}_{j, \nu}(\eta x) + O \left(\frac{L_j^{2n_0+2}}{x^{n_0+1}} \right).
\]

Here

\[
\tilde{W}_{j, \nu}(\eta x) = e \left(\frac{1}{x} \right) (-1)^{\nu}(2\nu - 1)!! \frac{L_j^{2\nu+1}}{2^{2\nu+\nu^2+\nu^2} \pi^{2\nu+\nu} x^{2\nu} \pi^{2\nu+\nu} x^{2\nu}} \times G_{2\nu}(\eta x) e \left(-\frac{\eta_2}{2} \sqrt{x^2 - (K_j - 1)^2} - \frac{\eta(K_j - 1)}{x\pi} \sin^{-1} \left(\frac{K_j - 1}{x} \right) \right),
\]

\[
G_{2\nu}(t_0) = \frac{g(2\nu)(t_0)}{(2\nu)!} + \sum_{\ell = 0}^{2\nu - 1} \frac{g^{(\ell)}(t_0)}{\ell!} \sum_{k = 1}^{2\nu - \ell} \frac{C_{2\nu, \ell, k}}{2\pi \sqrt{x^2 - (K_j - 1)^2}^k} \times \sum_{3 \leq n_1, n_2, \ldots, n_k \leq 2\nu + 3, n_1 + n_2 + \cdots + n_k = 2\nu - \ell + 2k} f^{(n_1)}(t_0) f^{(n_2)}(t_0) \cdots f^{(n_k)}(t_0)
\]

where \(\gamma = \frac{\sqrt{x^2 - (K_j - 1)^2}}{2\pi} \) and \(C_{2\nu, \ell, k} \) are constants.

By Lemma 3.1 (1), \(W_{K_i, L_j}(\eta x) \) is negligible if \(c_j \geq \frac{x}{K_j^{-1-\epsilon} L_j} \). Consequently, (2.6) is negligible if \(K_2 L_2 \geq X^{1+\epsilon} \). (2.8) is negligible if \(K_1 L_1 \geq X^{1+\epsilon} \), and (2.7) is negligible if either \(K_1 L_1 \) or \(K_2 L_2 \geq X^{1+\epsilon} \). In all other cases, we may restrict the \(c_j \)-sum to \(c_j \leq \frac{x}{K_j^{-1-\epsilon} L_j} \).
We will summarize the general strategy we use to bound $\sum_{k_1}^{K_2} L_2 \sum_{k_1}^{K_1} L_1$ in each case. For the first step we use Lemma 3.1 to rewrite the sum over k_1 and k_2 as an asymptotic expansion of an oscillatory integral, and we focus on the main term in this expansion. We then open up the Kloosterman sum over z, interchange the summation and use the orthogonality relation for characters to get a relation between the sum over n and z. Applying Poisson summation on n, we obtain another oscillatory integral and apply a weighted first derivative test as in McKee, Sun, and Ye [10] to shorten the sum over n. We follow a similar approach for the sum over m.

After applying Poisson summation for n and m, we combine the two oscillatory integrals into a double integral that can be bounded using the following two-dimensional second derivative test. This is the final step in obtaining the non-trivial upper bound for $\sum_{k_1}^{K_2} L_2 \sum_{k_1}^{K_1} L_1$.

Lemma 3.2. (Aggarwal [1] and Srinivasan [20]) Suppose in a region $D \subset \mathbb{R}^2$ we have

$$\frac{\partial^2 \theta}{\partial u^2} \gg r_1^2, \quad \left| \frac{\partial^2 \theta}{\partial u^2} \right| \gg r_2^2, \quad \frac{\partial^2 \theta}{\partial u^2} \frac{\partial^2 \theta}{\partial v^2} - \left(\frac{\partial^2 \theta}{\partial u \partial v} \right)^2 \gg r_1^2 r_2^2,$$

for some $r_1, r_2 > 0$. Define

$$\text{var}(a) = \int \int_D \left| \frac{\partial^2 a}{\partial u \partial v} \right| \, du \, dv.$$

Then

$$\int \int_D a(u, v) e(\theta(u, v)) \, du \, dv \ll \frac{\text{var}(a)}{r_1 r_2}.$$

4. The D_{01} and D_{10} Terms

By Lemma 3.1 we have

$$D_{01}^\eta = K_1 K_2 \sum_{2|k_1} g_0 \left(\frac{k_1 - K_1}{L_1} \right) \sum_n \phi \left(\frac{n}{X} \right)^2 \sum_{c_2 \leq \frac{X}{L_1}} \sum_{\chi \mod \ell_2} \frac{S(n, n, c_2)}{c_2} W_{K_2, L_2}(\eta x).$$

Notice c_2 is a positive integer and so we can assume $K_2 L_2 \leq X^{1+\varepsilon}$, otherwise $\frac{X}{K_2^{-1} L_2} < 1$ and there will be no D_{01} term. Focusing only on the leading term in the expansion for $W_{2,0}(\eta x)$, and expanding the Kloosterman sum, we obtain a term of the form

$$T_{01}^\eta = K_1 K_2 L_2 \sum_{2|k_1} g_0 \left(\frac{k_1 - K_1}{L_1} \right) \sum_n \phi \left(\frac{n}{X} \right)^2 \sum_{c_2 \leq \frac{X}{L_1}} \sum_{\chi \mod \ell_2} \frac{1}{c_2}$$

$$\times \sum_{z \mod c_2} e\left(\frac{nz + n\tilde{z}}{c_2} \right) h^\eta_2(n, n, c_2) e(\varphi^\eta_2(n, n, c_2)),$$

where

$$\varphi^\eta_2(m, n, c) = -\frac{\eta}{2\pi} \sqrt{\frac{16\pi^2 mn}{c^2}} - (K_j - 1)^2 - \frac{\eta (K_j - 1) c}{2\pi} \sin^{-1} \left(\frac{(K_j - 1)c}{4\pi \sqrt{mn}} \right),$$

$$h^\eta_2(m, n, c) = g_0 \left(\frac{\eta L}{2\pi} \sin^{-1} \left(\frac{(K_j - 1)c}{4\pi \sqrt{mn}} \right) \left(\frac{16\pi^2 mn}{c^2} - (K_j - 1)^2 \right)^{-\frac{3}{4}} \right).$$

Rewriting n as $nc_2 + r$,

$$T_{01}^\eta = K_1 K_2 L_2 \sum_{2|k_1} g_0 \left(\frac{k_1 - K_1}{L_1} \right) \sum_{c_2 \leq \frac{X}{L_1}} \sum_{\chi \mod \ell_2} \frac{1}{c_2} \sum_{r \mod c_2} \sum_{r \mod c_2} e\left(\frac{r z + r \tilde{z}}{c_2} \right)$$

$$\times \sum_{n \geq 1} \phi \left(\frac{nc_2 + r}{X} \right)^2 h^\eta_2(nc_2 + r, nc_2 + r, c_2) e(\varphi^\eta_2(nc_2 + r, nc_2 + r, c_2)).$$
Applying the Poisson summation to the \(n \)-sum in (4.3), we get

\[
\sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} \left| \phi \left(\frac{y_c + r}{X} \right) \right|^2 h_2^\eta (y_c + r, y_c, c) e \left(\varphi_2^\eta (y_c + r, y_c + r, c) \right) e \left(-y n \right) dy
\]

\[
= \frac{1}{c_2} \sum_{n \in \mathbb{Z}} e \left(\frac{r n}{c_2} \right) \int_{\mathbb{R}} \left| \phi \left(\frac{t}{X} \right) \right|^2 h_2^\eta (t, t, c) e \left(\varphi_2^\eta (t, t, c) - \frac{t n}{c_2} \right) dt
\]

by changing variables to \(t = y_c + r \). Substituting (4.4) back to (4.3), we may evaluating the \(r \)-sum and get rid of the Kloosterman sum

\[
T_{01}^\eta = K_1 K_2 L_2 \sum_{2|k_1} \sum_{c_2 \leq K_2^{-1} L_2} \sum_{c_2 \equiv z} \sum_{n \equiv -z \mod c_2} \frac{1}{c_2} \sum_{e} \int_{\mathbb{R}} \left| \phi \left(\frac{t}{X} \right) \right|^2 h_2^\eta (t, t, c) e \left(\varphi_2^\eta (t, t, c) - \frac{t n}{c_2} \right) dt.
\]

We denote by \(I \) the integral on the right hand side of (4.3) and change variables from \(t \) to \(t X \), thus making it an integral over \([1, 2]\), the support of \(\phi \)

\[
I = X \int_{1}^{2} |\phi(t)|^2 h_2^\eta (X t, X t, c) e \left(\varphi_2^\eta (X t, X t, c) - \frac{t n X}{c_2} \right) dt.
\]

By the Riemann-Lebesgue lemma \(I \) is negligible for \(n \) outside a compact interval. Note that \(\frac{d \phi}{dt} \ll 1 \) and by (4.2)

\[
h_2^\eta (X t, X t, c) = \tilde{g}_0 \left(\frac{\eta L_2}{2 \pi} \sin^{-1} \left(\frac{(K_2 - 1) c_2}{4 \pi X t} \right) \right) \left(\frac{16 \pi^2 X^2 t^2}{c_2^2} - (K_2 - 1)^2 \right)^{-\frac{1}{4}}
\]

\[
\gg \left(\frac{X^2}{c_2^2} \right)^{-\frac{1}{4}} \gg c_2^\frac{1}{2} X^{-\frac{1}{4}} =: U
\]

as \(16 \pi^2 X^2 t^2 c_2^{-2} \) always dominates \((K_2 - 1)^2 \). Taking derivatives,

\[
\frac{d}{dt} \left(\frac{16 \pi^2 X^2 t^2}{c_2^2} - (K_2 - 1)^2 \right)^{-\frac{1}{4}} \ll U,
\]

\[
\frac{d}{dt} g_0 \left(\frac{\eta L_2}{2 \pi} \sin^{-1} \left(\frac{(K_2 - 1) c_2}{4 \pi X t} \right) \right) = \tilde{g}_0 \left(\frac{\eta L_2}{2 \pi} \sin^{-1} \left(\frac{(K_2 - 1) c_2}{4 \pi X t} \right) \right) \frac{\eta L_2}{2 \pi \sqrt{1 - \frac{(K_2 - 1) c_2}{4 \pi X t}^2}} \gg \frac{K_2 L_2 c_2}{X} \ll K_2^{-\frac{1}{2}}.
\]

Subsequent derivatives yield \(\ll K_2^{-\frac{1}{2}} \) too. Putting them together we have

\[
\frac{d}{dt} |\phi(t)|^2 h_2^\eta (X t, X t, c) \ll \frac{U}{X^l}, \ l \geq 0,
\]

for \(N = K_2^{-\varepsilon} \). Recall the definition of \(\varphi_2^\eta (X t, X t, c) \) in (4.1). Computing derivatives we get

\[
\frac{d}{dt} \varphi_2^\eta (X t, X t, c) - \frac{t n X}{c_2} = -\frac{\eta}{4 \pi} \sqrt{\frac{16 \pi^2 X^2 t^2 c_2^2}{c_2^2} - (K_2 - 1)^2} - \frac{\eta (K_2 - 1) c_2}{2 \pi \sqrt{1 - \frac{(K_2 - 1) c_2}{4 \pi X t}^2}} - \frac{n X}{c_2}
\]

\[
= -\frac{\eta}{2 \pi} \sqrt{\frac{16 \pi^2 X^2 t^2}{c_2^2} - (K_2 - 1)^2} - \frac{n X}{c_2}
\]

\[
\gg \frac{4 \eta X t}{2 \pi c_2} \left(1 + O \left(\frac{c_2 K_2^2}{X^2} \right) \right) - \frac{n X}{c_2} = -(2 \eta + n) X \left(1 + O \left(\frac{c_2 K_2^2}{X^2} \right) \right),
\]

\[
(4.7)
\]
since
\[\frac{c_2^2 K_2^2}{X^2} \leq \frac{K_2^2}{K_2^{-\varepsilon} L_2} = \frac{K_2^\varepsilon}{L_2} \]
is small. Now from (4.7) using (4.6), if \(n \neq -2\eta \), we have
\[\left| \frac{d}{dt} \Phi_2^n(Xt, Xt, c_2) - \frac{tnX}{c_2} \right| \geq \frac{X}{c_2} \geq K_2^{-\varepsilon} L_2. \]
Subsequent derivatives are all \(\ll X c_2^{-1} \). Thus we may take \(T = X c_2^{-1} \) and \(M = 1 \). By the first derivative test (cf. [10]), the integral
\[I \ll U \left(\frac{c_2 K_2^2}{X} \right)^{n_0+1} \leq \frac{c_2^\varepsilon}{X^2 (K_2^{-1} L_2)^{n_0+1}} \]
is negligible for \(n_0 \) sufficiently large, when \(n \neq -2\eta \).

Excluding these negligible terms we get
\[T_{01}^\eta = K_1 K_2 L_2 \sum_{2k_1} g_0 \left(\frac{k_1 - K_1}{L_1} \right) \sum_{c_2 \leq \kappa_2^{\varepsilon}} \frac{1}{c_2} \sum_{z + \bar{\varepsilon} \equiv 2\eta \text{ mod } c_2} \times \int_{\mathbb{R}} \left| \phi \left(\frac{t}{X} \right) \right|^2 h_2^2(t, t, c_2) c \left(\frac{\Phi_2 (t, t, c_2) + 2nX}{c_2} \right) dt + O(K_2^{-A}). \]
The congruence \(z + \bar{\varepsilon} \equiv 2\eta \text{ mod } c_2 \) is equivalent to \(z^2 + 1 \equiv 2\eta z \text{ mod } c_2 \) or equivalently to \((z - \eta)^2 \equiv 0 \text{ mod } c_2 \). For \(c_2 = p^r \) with \(c \geq 1 \), this means \(p^r | (z - \eta)^2 \), i.e., \(p^r || z - \eta \text{ if } c \text{ is even, and } p^r || z - \eta \text{ if } c \text{ is odd. Consequently the number of solutions of } z + \bar{\varepsilon} \equiv 2\eta \text{ mod } c_2 \text{ for } z \text{ mod } c_2, (z, c_2) = 1, \text{ is } \ll \sqrt{c_2} \). Now we compute the integral \(I \) for \(n = -2\eta \).

By (4.7)
\[\frac{d}{dt} \Phi_2^n(Xt, Xt, c_2) + \frac{2nX}{c_2} = -\frac{\eta}{2\pi i} \left(\frac{16\pi^2 X^2 t^2}{c_2^2} - (K_2 - 1)^2 + \frac{2nX}{c_2} \right)^{-1} \]
\[\times \frac{K_2^{-1} \rho(X)}{\sqrt{4\pi X c_2}} \times \frac{c_2 K_2^\varepsilon}{X}. \]
Any subsequent differentiation yields a factor of \(\ll 1 \). By the first derivative test again,
\[I \ll U \left(\frac{X}{c_2 K_2^{2\varepsilon}} \right)^{n_0+1} \]
which is negligible for \(n_0 \) sufficiently large if \(\frac{X}{c_2 K_2^{-\varepsilon}} \leq K_2^{-\varepsilon} \), i.e., if
\[\frac{X}{K_2^{-\varepsilon}} \leq c_2 \leq \frac{X}{K_2^{1-\varepsilon} L_2}. \]
Therefore we can shorten the \(c_2 \)-sum and reduce \(T_{01}^\eta \) to
\[T_{01}^\eta = K_1 K_2 L_2 \sum_{2k_1} g_0 \left(\frac{k_1 - K_1}{L_1} \right) \sum_{c_2 \leq \kappa_2^{\varepsilon}} \frac{1}{c_2} \sum_{z + \bar{\varepsilon} \equiv 2\eta \text{ mod } c_2} \times \int_{\mathbb{R}} \left| \phi \left(\frac{t}{X} \right) \right|^2 h_2^2(t, t, c_2) c \left(\frac{\Phi_2 (t, t, c_2) + 2nX}{c_2} \right) dt + O(K_2^{-A}), \]
if \(K_2 \leq X^{\frac{1}{2} + \varepsilon} \), while \(T_{01}^\eta \) is negligible if \(K_2 \geq T^{\frac{1}{2} + \varepsilon} \).
By trivial estimation, we have $I \ll e^{\frac{1}{2}X^{\frac{1}{2}}}$, Consequently,

\begin{equation}
T_{01}^n \ll K_1 L_1 K_2 L_2 X^{\frac{1}{2}} \sum_{c_2 \leq \frac{X}{3}} \frac{1}{c_2^2} + O(K_2^{-A})
\end{equation}

\begin{equation}
\ll \frac{K_1 L_1 L_2 X^{\frac{1}{2}}}{K_2^{1-\varepsilon}} \quad \text{if } K_2 \leq X^{\frac{1}{2}+\varepsilon}
\end{equation}

\begin{equation}
\ll K_2^{-A} \quad \text{if } K_2 \geq X^{\frac{1}{2}+\varepsilon}.
\end{equation}

Similarly,

\begin{equation}
T_{10}^n \ll \frac{K_2 L_1 L_2 X^{\frac{1}{2}}}{K_1^{1-\varepsilon}} \quad \text{if } K_1 \leq X^{\frac{1}{2}+\varepsilon}
\end{equation}

\begin{equation}
\ll K_1^{-A} \quad \text{if } K_1 \geq X^{\frac{1}{2}+\varepsilon}.
\end{equation}

These give upper bounds for the main terms in the expansions of D_{01} and D_{10} for $0 < \beta \leq 1$. Bounds in (1.6) and (1.7) then follow.

5. Poisson summation for D_{11}

To use Poisson summation, we rewrite for $0 < \beta \leq 1$

\begin{equation}
T_{11}^{n,n_2} = K_1 L_1 K_2 L_2 \sum_{n} \sum_{m} e(\alpha m^\beta - \alpha m^\beta) \phi\left(\frac{n}{X}\right) \frac{m}{X} \sum_{d \leq \min(\frac{X}{L_1}, \frac{X}{L_2}, \frac{X}{L_2}, \frac{X}{L_2}, \frac{X}{L_2}, \frac{X}{L_2})} \sum_{c_j \leq \frac{X}{L_j}, j \leq \frac{X}{L_j}, (c_1, c_2) = 1} \frac{1}{c_1 c_2 d^2} \times \sum_{z_1 \mod d_{c_1}} \sum_{z_2 \mod d_{c_2}} e\left(\frac{m z_1}{d c_1} + \frac{n z_1}{d c_1} + \frac{r z_2}{d c_2}
ight) \times \sum_{r \mod d_{c_1} c_2} e\left(\frac{r z_1}{d c_1} + \frac{r z_2}{d c_2}
ight) \times h_1^{n,n_2}(m, c_1 c_2 d + r, c_1 d) h_2^{n_2}(m, c_1 c_2 d + r, c_2 d).\end{equation}

Rewriting n as $n c_1 c_2 d + r$, we have

\begin{equation}
T_{11}^{n,n_2} = K_1 L_1 K_2 L_2 \sum_{n} e(-\alpha m^\beta) \phi\left(\frac{n}{X}\right) \frac{m}{X} \sum_{d \leq \min(\frac{X}{L_1}, \frac{X}{L_2}, \frac{X}{L_2}, \frac{X}{L_2}, \frac{X}{L_2}, \frac{X}{L_2})} \sum_{c_j \leq \frac{X}{L_j}, j \leq \frac{X}{L_j}, (c_1, c_2) = 1} \frac{1}{c_1 c_2 d^2} \times \sum_{z_1 \mod d_{c_1}} \sum_{z_2 \mod d_{c_2}} e\left(\frac{m z_1}{d c_1} + \frac{n z_1}{d c_1} + \frac{r z_2}{d c_2}
ight) \times \sum_{r \mod d_{c_1} c_2} e\left(\frac{r z_1}{d c_1} + \frac{r z_2}{d c_2}
ight) \times h_1^{n,n_2}(m, n c_1 c_2 d + r, c_1 d) h_2^{n_2}(m, n c_1 c_2 d + r, c_2 d).\end{equation}

By Poisson summation on the n-sum, we get

\begin{equation}
\sum_{n} \int \phi\left(\frac{y c_1 c_2 d + r}{X}\right) h_1^{n,n_2}(m, y c_1 c_2 d + r, c_1 d) h_2^{n_2}(m, y c_1 c_2 d + r, c_2 d) \times e(\alpha(y c_1 c_2 d + r)\beta) \phi\left(\frac{v}{X}\right) h_1^{n,n_2}(m, v, c_1 d) h_2^{n_2}(m, v, c_2 d) = \sum_{n} \frac{1}{c_1 c_2 d} \left(\int \phi\left(\frac{v}{X}\right) h_1^{n,n_2}(m, v, c_1 d) h_2^{n_2}(m, v, c_2 d) - \frac{n v}{c_1 c_2 d}\right) dv.
\end{equation}
The r-sum in (5.1) becomes
\[
\sum_{r \mod c_1c_2d} e\left(\frac{r(n + c_2 \bar{z}_1 + c_1 \bar{z}_2)}{c_1c_2d}\right) = \begin{cases}
 c_1c_2d & \text{if } n \equiv -c_2 \bar{z}_1 - c_1 \bar{z}_2 \mod c_1c_2d \\
 0 & \text{otherwise}.
\end{cases}
\]
Consequently
\[
T_{n_1n_2}^{m_1m_2} = K_1 L_1 K_2 L_2 \sum_m e(-am\beta) \phi\left(\frac{m}{X}\right) \sum_{d \leq \min \left(\frac{X}{K_1L_1}, \frac{X}{K_2L_2}\right)} \frac{1}{d^2} \sum_{c_j \leq \frac{X}{d K_1^j L_1}} \sum_{(c_1, c_2) = 1} \frac{1}{c_1c_2}
\]
\[
\times \sum_{z_1 \mod d_{c_1}} \sum_{z_2 \mod d_{c_2}} e\left(\frac{mz_1}{d_{c_1}}\right) e\left(\frac{mz_2}{d_{c_2}}\right) \int_{-\infty}^{\infty} \phi\left(\frac{v}{X}\right) h_1^{n_1}(m, v, c_1d)
\]
\[
\times h_2^{n_2}(m, v, c_2d) \left(\alpha v^\beta - \varphi_1^{n_1}(m, v, c_1d) + \varphi_2^{n_2}(m, v, c_2d) - \frac{mv}{c_1c_2d} \right) dv.
\]
Applying the same to the m-sum, we have
\[
(5.2) \quad T_{n_1n_2}^{m_1m_2} = K_1 L_1 K_2 L_2 \sum_m e(-am\beta) \phi\left(\frac{m}{X}\right) \sum_{d \leq \min \left(\frac{X}{K_1L_1}, \frac{X}{K_2L_2}\right)} \frac{1}{d^2} \sum_{c_j \leq \frac{X}{d K_1^j L_1}} \sum_{(c_1, c_2) = 1} \frac{1}{c_1c_2}
\]
\[
\times \sum_{m \equiv -c_2z_1-c_1z_2 (mod c_1c_2d)} \sum_{n \equiv -c_2z_1-c_1z_2 (mod c_1c_2d)} \int_{-\infty}^{\infty} a(u, v) e(\theta^{n_1n_2}(u, v)) du dv,
\]
where
\[
a(u, v) = \phi\left(\frac{u}{X}\right) \phi\left(\frac{v}{X}\right) h_1^{n_1}(u, v, c_1d) h_2^{n_2}(u, v, c_2d),
\]
\[
\theta^{n_1n_2}(u, v) = \alpha u^\beta - \alpha u^\beta + \varphi_1^{n_1}(u, v, c_1d) + \varphi_2^{n_2}(u, v, c_2d) - \frac{mu}{c_1c_2d} - \frac{nv}{c_1c_2d} =: \theta(u, v).
\]
By (4.2), $a(u, v) \ll \frac{1}{d_{c_1}^{\frac{1}{2}}} X^{-1} =: U$, and each $\frac{\partial}{\partial u}$ produces a factor $\ll K_1^x K_2^x X^{-1} = \frac{1}{X}$ with $N = X K_1^x K_2^x$. Computing derivatives in the case of $0 < \beta < 1$ we get
\[
(5.3) \quad \frac{\partial \theta^{n_1n_2}}{\partial u} = -\alpha \beta u^{\beta-1} - \frac{m}{4\pi u} \sqrt{R_1} - \frac{n}{4\pi u} \sqrt{R_2} - \frac{m}{c_1c_2d},
\]
where $R_j = \frac{\alpha \beta + \sqrt{\alpha \beta + \sqrt{\alpha \beta + \sqrt{\alpha \beta}}}}{c_1c_2d} - (K_j - 1)^2$. Suppose that the absolute value of the sum of the first three terms on the right hand side of (5.3) is bounded by $\frac{\alpha \beta}{c_1c_2d}$ for some $0 < \delta < \tau$. Then for $|m| \geq \tau$, we have $|\frac{\partial \theta}{\partial u}| \geq \frac{\delta}{c_1c_2d}$. Moreover for $r \geq 2$, $\frac{\partial^r \theta}{\partial u^r} \ll \frac{T}{X^r}$, for $T = \frac{X}{c_1c_2d}$ and $M = X$. Denote by J the double integral in (5.2). Then by the first derivative test [10] Theorem 1.1, J is negligible for $|m| \geq \tau$. Therefore,
\[
(5.4) \quad T_{n_1n_2}^{m_1m_2} = K_1 L_1 K_2 L_2 \sum_m e(-am\beta) \phi\left(\frac{m}{X}\right) \sum_{d \leq \min \left(\frac{X}{K_1L_1}, \frac{X}{K_2L_2}\right)} \frac{1}{d^2} \sum_{c_j \leq \frac{X}{d K_1^j L_1}} \sum_{(c_1, c_2) = 1} \frac{1}{c_1c_2}
\]
\[
\times \sum_{m \equiv -c_2z_1-c_1z_2 (mod c_1c_2d)} \sum_{n \equiv -c_2z_1-c_1z_2 (mod c_1c_2d)} J + O(X^{-A}).
\]

Lemma 5.1. The z_1, z_2, m, n-sums in (5.4) have at most $d(2\tau + 1)\left(\frac{\tau}{c_1c_2d}\right) + 1$ terms.

Proof. Reducing
\[
(5.5) \quad m \equiv -c_2z_1 - c_1z_2 (mod c_1c_2d)
\]
to congruences mod c_1 and mod c_2, we see that for each m, z_j is uniquely determined mod c_j, $j = 1, 2$. But modulo $c_j d$, there are d such z_j's: $z_j + c_j k_j$ with $0 \leq k_j < d$. Then (5.5) becomes

$$k_1 + k_2 \equiv -\frac{m + c_1 z_2 + c_2 z_1}{c_1 c_2} \pmod{d}.$$

Consequently, given m, there are at most d such z_1 mod dc_1. Given m and z_1, there is a unique z_2 mod dc_2. Given m, z_1, and z_2, there is a unique n mod $dc_1 c_2$. The lemma then follows because there are at most $2\tau + 1$ m's.

We want to apply the second derivative test to get an upper bound for the double integral J. We have the following second derivatives in the case of $0 < \beta < 1$:

$$\frac{\partial^2 \varrho}{\partial u \partial v} = -\frac{2\eta_1 \eta_2}{c_1^2 d^2 \sqrt{R_1}} - \frac{2\eta_2}{c_2^2 d^2 \sqrt{R_2}}. \tag{5.7}$$

$$\frac{\partial^2 \varrho}{\partial u^2} \frac{\partial^2 \varrho}{\partial v^2} = \left(\frac{\partial^2 \varrho}{\partial u \partial v}\right)^2 = (U_4 + U_5)(V_4 + V_5), \tag{5.8}$$

$$\frac{\partial^2 \varrho}{\partial u^2} - \frac{\partial^2 \varrho}{\partial v^2} = U_1 V_1 + U_5 V_1 + \sum_{i=2}^{5} U_i V_i,$$

$$+ (U_2 + U_3) \sum_{i=2}^{5} V_i + (U_4 + U_5)(V_2 + V_3). \tag{5.9}$$

Note that (5.9) equals

$$\frac{(\eta_1 \sqrt{R_1} + \eta_2 \sqrt{R_2})^2}{16\pi^2 u^2 v^2} - \frac{\eta_1 \sqrt{R_1} + \eta_2 \sqrt{R_2}}{uvd^2} \left(\frac{\eta_1}{c_1^2 \sqrt{R_1}} + \frac{\eta_2}{c_2^2 \sqrt{R_2}}\right) \tag{5.10}$$

by

$$\frac{\sqrt{R_j}}{16\pi^2 u^2 v^2} = \frac{1}{u v c_1^2 d^2 \sqrt{R_j}} - \frac{16\pi^2 u^2 v^2 \sqrt{R_j}}{16\pi^2 u^2 v^2 \sqrt{R_j}} - \frac{1}{u v c_2^2 d^2 \sqrt{R_j}} = - \frac{(K_j - 1)^2}{16\pi^2 u^2 v^2 \sqrt{R_j}}. \tag{5.11}$$

6. CASE OF $\eta_1 = \eta_2$ FOR D_{11} WHEN $0 < \beta < 1$

Assume $\eta_1 = \eta_2$ in this section. Then there is no cancellation in the middle two terms of (5.5), and hence their sum is equal to

$$-\frac{\eta_1 \sqrt{R_1}}{4\pi u} - \frac{\eta_2 \sqrt{R_2}}{4\pi u} = -\frac{\eta_1}{d} \sqrt{\frac{v}{u}} \left(\frac{1}{c_1} + \frac{1}{c_2}\right) \frac{c_1 d K^2}{X^2} + O \left(\frac{c_2 d K^2}{X^2}\right),$$

where the first term on the right hand side dominates. Thus,

$$\frac{c_1 + c_2}{\sqrt{2} dc_1 c_2} \leq \left| -\frac{\eta_1 \sqrt{R_1}}{4\pi u} - \frac{\eta_2 \sqrt{R_2}}{4\pi u} \right| \leq \frac{\sqrt{2}(c_1 + c_2)}{dc_1 c_2}. \tag{6.1}$$
We will assume \(K_1 = K_2 \) and
\[
K_1^2 L_1 L_2 \geq X^{1+\beta+\varepsilon}.
\]
Then \(K_1 L_1, K_1 L_2 \geq X^{\beta+\varepsilon} \) because \(K_1 L_1, K_1 L_2 \leq X^{1+\beta} \). Consequently, \(|-\alpha \beta u^{\beta-1}| \leq \alpha \beta X^{\beta-1} \) is a power smaller than \(\frac{1}{d(\frac{1}{c_1} + \frac{1}{c_2})} \). Thus, the absolute value of the sum of the first three terms on the right hand side of (5.3) is
\[
\leq \alpha \beta X^{\beta-1} + \frac{\sqrt{2}(c_1 + c_2)}{c_1 c_2 d} \leq 1.42(c_1 + c_2)
\]
and we may take \(\tau = 1.5(c_1 + c_2) \) and \(\delta = 0.08(c_1 + c_2) \) and apply Lemma 5.1 to get (5.4).

Now we bound \(J \) in (5.4). Because \(\eta_1 = \eta_2 \), there are no cancellations in (5.11). Consequently, (5.9) is
\[
(6.3) \qquad \sum_{i=1}^{5} U_i \simeq \frac{1}{dX} \left(\frac{X}{c_1} + \frac{1}{c_2} \right) \geq \frac{K_1^{1-\varepsilon} L_1 + K_1^{1-\varepsilon} L_2}{X^2} \gg X^{\beta-2+\varepsilon} \gg U_1
\]
by (6.2). Likewise, \(\sum_{i=1}^{5} V_i \) dominates \(V_1 \). Therefore, (5.6) and (5.7) are both \(\simeq \frac{1}{dX} \left(\frac{1}{c_1} + \frac{1}{c_2} \right) \). By the same reason,
\[
(6.5) \qquad U_1 \sum_{i=1}^{5} V_i \simeq V_1 \sum_{i=2}^{5} U_i \simeq \frac{X^{\beta-3}}{d} \left(\frac{1}{c_1} + \frac{1}{c_2} \right)
\]
Since (6.9) dominates (5.5), the left hand side of (6.8) is \(\approx (6.3) \). We observe that
\[
(6.6) \qquad \frac{1}{dX^2} \left(\frac{1}{c_1} + \frac{1}{c_2} \right)^2 \geq \frac{K_1^{1-\varepsilon} L_1 + K_1^{1-\varepsilon} L_2}{dX^3} \left(\frac{1}{c_1} + \frac{1}{c_2} \right)
\]
\[
(6.7) \qquad \frac{K_1^2(c_1 + c_2)}{X^4} \left(\frac{1}{c_1} + \frac{1}{c_2} \right) \leq \frac{1}{dX^3} \left(\frac{K_1^{1+\varepsilon}}{L_1} + \frac{K_1^{1+\varepsilon}}{L_2} \right) \left(\frac{1}{c_1} + \frac{1}{c_2} \right).
\]
Since (6.6) is a power larger than (6.7), we may choose
\[
r_1 = r_2 = \frac{K_1^\frac{1}{2}(c_1 + c_2)}{X} \left(\frac{1}{c_1} + \frac{1}{c_2} \right)^\frac{1}{2} = \frac{K_1^\frac{1}{2}(c_1 + c_2)^\frac{1}{2}}{(c_1 c_2)^\frac{1}{2}X}
\]
as in (5.1).

Note that \(a(u, v) \ll d(c_1 c_2)^\frac{1}{2} X^{-1} \) and each differentiation produces a factor \(\ll K_1^{-1} X^{-1} \). Consequently,
\[
(6.8) \qquad \frac{\partial^2 a}{\partial u \partial v} \ll \frac{K_1^{1} d\sqrt{c_1 c_2}}{X^3}, \quad \text{var}(a) \ll \frac{K_1^{1} d\sqrt{c_1 c_2}}{X}.
\]
By Lemma 3.2 for \(\eta_1 = \eta_2 \) we have
\[
J \ll \frac{d\sqrt{c_1 c_2} K_1^\varepsilon}{X} \left(\frac{\sqrt{c_1 c_2} X}{(c_1 + c_2)K_1} \right)^{1/2} \frac{c_1 c_2 dX}{(c_1 + c_2)K_1^{1-\varepsilon}},
\]
and hence by (5.4)
\[T_{11}^{η,η} \ll K_1^{1+\varepsilon} L_1 L_2 X\]
\[\sum_{d \leq \min\{\frac{x}{\kappa_1^{\varepsilon} L_1}, \frac{x}{\kappa_2^{\varepsilon} L_2}\}} \sum_{c_j \leq \frac{x}{dK_j^{\varepsilon} L_j}} \sum_{z_1 \mod dc_1} \sum_{z_2 \mod dc_2} \sum_* \sum^* \]
\[\times \sum_{|m| \leq 1.5(c_1 + c_2)} \sum_{n \leq 1.5(c_1 + c_2)} \frac{1}{c_1 + c_2}, \]
\[\text{if we use } 3d(c_1 + c_2) + d + 4.5\frac{(c_1 + c_2)^2}{c_1 c_2} \text{ as the number of terms in the } z_1, z_2, m, n \text{ sums as proved in Lemma 5.1, we have} \]
\[(6.9) \quad T_{11}^{η,η} \ll K_1^{1+\varepsilon} L_1 L_2 \sum_{c_1 \leq \frac{x}{\kappa_1^{\varepsilon} L_1}} \sum_{c_2 \leq \frac{x}{\kappa_2^{\varepsilon} L_2}} \left(1 + \frac{c_1 + c_2}{c_1 c_2 d}\right) \]
\[\ll K_1^{1+\varepsilon} L_1 L_2 X \sum_{c_1 \leq \frac{x}{\kappa_1^{\varepsilon} L_1}} \sum_{c_2 \leq \frac{x}{\kappa_2^{\varepsilon} L_2}} 1 \ll \frac{X^{3+\varepsilon}}{K_1}, \]
because \(\frac{1}{c_1} + \frac{1}{c_2} \leq 2. \)

7. Case of \(η_1 \neq η_2 \) for \(D_{11} \) when \(0 < \beta < 1 \)

Going back to (5.3), we observe that for \(η_1 \neq η_2 \) and \(K_1 = K_2 \), we have
\[\sqrt{R_1} - \sqrt{R_2} = \frac{R_1 - R_2}{\sqrt{R_1} + \sqrt{R_2}} \]
\[(7.1) \]
\[R_1 - R_2 = \frac{16\pi^2 uv}{d^2} \left(\frac{1}{c_1^2} - \frac{1}{c_2^2}\right) = \frac{16\pi^2 uv}{d^2} \left(\frac{1}{c_1} - \frac{1}{c_2}\right) \left(\frac{1}{c_1} + \frac{1}{c_2}\right), \]
\[(7.2) \]
\[\sqrt{R_1} + \sqrt{R_2} = \frac{4\pi \sqrt{uv}}{d} \left(\frac{1}{c_1} + \frac{1}{c_2}\right) \left(1 + O\left(\frac{dK_1^2}{X^2}(c_1^2 + c_2^2)\right)\right). \]
\[(7.3) \]
Then (6.1) becomes
\[\frac{|c_1 - c_2|}{\sqrt{2} c_1 c_2 d} \leq \left| -\frac{\eta_1 \sqrt{R_1}}{\sqrt{2}} - \frac{\eta_2 \sqrt{R_2}}{\sqrt{2}} \right| \leq \frac{\sqrt{2}|c_1 - c_2|}{c_1 c_2 d}\]
We will first consider the case of \(c_1 \neq c_2 \) with \(K_1 = K_2 \) and (6.2). Then
\[\frac{|c_1 - c_2|}{\sqrt{2} c_1 c_2 d} \geq \frac{1}{\sqrt{2} c_1 c_2 d^2} \geq \frac{K_1^{1-\varepsilon} L_1 K_2^{1-\varepsilon} L_2}{\sqrt{2}X^2} \]
dominates \(-\alpha \beta u^{\beta - 1} \asymp X^{\beta - 1} \). Consequently, we may take \(\tau = 1.5|c_1 - c_2| \) and apply Lemma 5.1 to get (5.4) for this \(\tau \).

Now we bound \(J \) in (5.4) in the case at present. To compute (5.9) we note that (5.11) equals
\[(7.4) \quad \frac{(K_1 - 1)^2(\sqrt{R_1} - \sqrt{R_2})^2}{16\pi^2 u^2 v^2 \sqrt{R_1 R_2}} = \frac{(K_1 - 1)(R_1 - R_2)^2}{16\pi^2 u^2 v^2 \sqrt{R_1 R_2}(\sqrt{R_1} + \sqrt{R_2})^2} \]
by (7.1). Using (7.2), (7.3) and
\[\sqrt{R_1 R_2} = \frac{16\pi^2 uv}{c_1 c_2 d^2} \left(1 + O\left(\frac{dK_1^2}{X^2}(c_1^2 + c_2^2)\right)\right), \]
(7.3) and hence (5.11) and (5.9) are equal to
\[\frac{c_1 c_2 K_1^2}{16\pi^2 u^2 v^2} \left(\frac{1}{c_1} - \frac{1}{c_2}\right)^2 \left(1 + O\left(\frac{dK_1^2}{X^2}(c_1^2 + c_2^2)\right)\right) = \frac{K_1^2 |c_1 - c_2|^2}{16\pi^2 u^2 v^2 c_1 c_2} \left(1 + O\left(\frac{dK_1^2}{X^2}(c_1^2 + c_2^2)\right)\right). \]
By (6.4) and (6.2), we know that
\[
\left| \sum_{i=2}^{5} U_i \right| = \frac{1}{2d} u \left(\frac{1}{c_1} - \frac{1}{c_2} \right) \left(1 + O \left(\frac{d^2 K^2}{X^2} (c_1^2 + c_2^2) \right) \right) \gg X^{\beta - 2 + \varepsilon} \gg U_1 \sim V_1.
\]
Likewise, \(\sum_{i=2}^{5} U_i \) dominates \(U_1 \sim V_1 \). Then (6.3), (6.6), and (6.7) still hold and the left hand side of (5.8) is still \(\ll (6.3) \) if we replace \(\left(\frac{1}{c_1} + \frac{1}{c_2} \right) \) by \(\left| \frac{1}{c_1} - \frac{1}{c_2} \right| \). Since (6.8) is still a power larger than (6.7) with \(\left| \frac{1}{c_1} - \frac{1}{c_2} \right| \), we may choose
\[
r_1 = r_2 = \frac{|c_1 - c_2|^2 K_1^2}{(c_1 c_2)^3 X},
\]
and hence we may set \(T = X^{3 + \varepsilon} \), which is negligible for \(n \) sufficiently large. Therefore, the contribution of the case of \(\eta_1 \neq \eta_2 \) and \(c_1 = c_2 \) is negligible.

By (7.6) we obtain \(T_{11}^{\eta_1 \eta_2} \ll \frac{X^{3 + \varepsilon}}{K_1} \) when \(\eta_1 \neq \eta_2 \) and \(K_1 = K_2 \) under (6.2). Together with the bound in (6.9) for the case of \(\eta_1 = \eta_2 \), we finally prove
\[
D_{11} \ll \frac{X^{3 + \varepsilon}}{K_1}.
\]
when \(K_1 = K_2 \) under (6.2) when \(0 < \beta < 1 \).

Recall that \(D_{01} \) and \(D_{10} \) are negligible when \(K_1 = K_2 \geq X^{\frac{1}{3} + \varepsilon} \) by (4.8) and (4.9). When \(K_1 = K_2 \leq X^{\frac{1}{4} + \varepsilon} \), we have \(\frac{X^3}{K_1} \geq X^{\frac{1}{3}} \geq L_1 L_2 X^{\beta} \) and hence the bound in (7.7) dominates those in (4.8) and (4.9). Back to (2.1), by collecting (2.6) and (7.7) we prove (1.8) for Theorem 1.1 when \(0 < \beta < 1 \).
8. CASE OF $\beta = 1$ FOR D_{11}

When $\beta = 1$, (5.3) becomes

$$\frac{\partial^{\eta_1, \eta_2}}{\partial u} = -\alpha \beta - \frac{\eta_1}{4\pi u} \sqrt{R_1} - \frac{\eta_2}{4\pi u} \sqrt{R_2} - \frac{m}{c_1 c_2 d}.$$

By the same arguments after (5.3), J is negligible for $|n + \alpha c_1 c_2 d| \geq \tau$ and for $|n + \alpha c_1 c_2 d| \geq \tau$. Consequently, (5.4) holds after replacing summation conditions $|m| \leq \tau$ and $|n| \leq \tau$ by $|n + \alpha c_1 c_2 d| \leq \tau$ and $|n + \alpha c_1 c_2 d| \leq \tau$. Then Lemma 5.1 remains valid.

To use the second derivative test, we observe that $U_1 = V_1 = 0$ in (5.6) and (5.7). Then we don’t need to assume (6.2), and the same calculation leads to (7.6) for the case of $\eta_1 = \eta_2$ and (6.9) for the case of $\eta_1 \neq \eta_2$ with $c_1 \neq c_2$.

When $\eta_1 \neq \eta_2$ with $c_1 = c_2 = 1$, $\frac{\partial^{\eta_1, \eta_2}}{\partial u} = -\alpha - \frac{\eta_1}{\eta_2}$. Recall that

$$\frac{\partial}{\partial u} a(u, v) \ll \frac{U}{N^s}, \quad U = \frac{d \sqrt{2} c_2 \sqrt{X}}{X}, \quad N = \frac{X}{K_1}.$$

If $|\alpha + \frac{\eta_1}{\eta_2}| \geq X^{\epsilon - 1}$, then each integration by parts in $\int_R a(u, v)e(\theta(u, v))du$ produces a factor $\ll |\alpha + \frac{\eta_2}{\eta_1}|^{-1}K_1^{-1}X^{-1} \ll X^{-\epsilon}K_1^{-1}$. Hence the integral with respect to u is negligible when $|\alpha + \frac{\eta_1}{\eta_2}| \geq X^{\epsilon - 1}$. Similarly the v-integral is negligible for $|\alpha - \frac{\eta_2}{\eta_1}| \geq X^{\epsilon - 1}$. Then the corresponding sum for (5.2) becomes

$$T_{c_1 = c_2 = 1}^{\eta_1, \eta_2} = K_1 L_1 K_2 L_2 \sum_{d \leq \min\left(\frac{X}{K_1^{1-\epsilon}L_1}, \frac{X}{K_2^{1-\epsilon}L_2}\right)} \frac{1}{d^2} \sum_{z_1, z_2 \bmod d} J.$$

Under the assumption of $\max(K_1 L_1, K_2 L_2) = X^\delta$ with $0 < \delta < 1$, we have

$$\min\left(\frac{X}{K_1^{1-\epsilon}L_1}, \frac{X}{K_2^{1-\epsilon}L_2}\right) \leq X^{1-\delta + \epsilon},$$

and hence

$$\left(\min\left(\frac{X}{K_1^{1-\epsilon}L_1}, \frac{X}{K_2^{1-\epsilon}L_2}\right)\right)^{1-\delta + \epsilon} \leq X^{1-\epsilon}.$$

Take $\epsilon < \frac{\delta}{2}$ so that the exponent in (8.2) becomes $\frac{1-\delta + \epsilon}{1-\epsilon} > 1$. Consequently, for a given d as in (8.1), there is at most one m and n satisfying $|\alpha + \frac{\eta_1}{\eta_2}| \leq X^{\epsilon - 1}$ and $|\alpha - \frac{\eta_2}{\eta_1}| \leq X^{\epsilon - 1}$. For such a triple d, m, n, taking any $z_1 \mod d$ with $(z_1, d) = 1$, there is at most one $z_1 \mod d$ satisfying the congruences in (8.1). Thus, the multiple sums in (8.1) have at most $d \min\left(\frac{X}{K_1^{1-\epsilon}L_1}, \frac{X}{K_2^{1-\epsilon}L_2}\right)$ terms.

By $|a(u, v)| \leq \frac{d}{X}$, we bound $J \ll dX$ trivially. Then (8.1) is bounded by

$$\ll K_1 L_1 K_2 L_2 X \min\left(\frac{X}{K_1^{1-\epsilon}L_1}, \frac{X}{K_2^{1-\epsilon}L_2}\right) \ll \min(K_1 L_1, K_2 L_2)X^{2+\epsilon}.$$

Collecting (8.3) for the case of $\eta_1 = \eta_2$, and (6.9) for the case of $\eta_1 \neq \eta_2$ with $c_1 \neq c_2$, we prove (6.10).

References:

[1] K. Aggarwal, Weyl bound for $GL(2)$ in t-aspect via a simple delta method, J. Number Theory, 208 (2020), 72-100.

[2] K. Czarnecki, Resonance sums for Rankin-Selberg products of $SL_m(\mathbb{Z})$ Maass cusp forms, J. Number Theory, 163 (2016), 359-374.

[3] P. Deligne, La conjecture de Weil, Publications Mathématiques de l’IHÉS, 43 (1974), 273-307.
[4] A.-M. Ernvall-Hytönen, On certain exponential sums related to $GL(3)$ cusp forms, *C. R. Math. Acad. Sci. Paris*, **348**(1-2) (2010), 5-8.

[5] A.-M. Ernvall-Hytönen, J. Jääsaari, and E.V. Vesalainen, Resonances and Ω-results for exponential sums related to Maass forms for $SL(n, \mathbb{Z})$, *J. Number Theory* **153** (2015), 135-157.

[6] J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero, *Ann. Math.*, **140**(2) (1994), 161-181.

[7] H. Iwaniec, Small eigenvalue of laplacian for $\Gamma_0(N)$, *Acta. Arith.*, **56** (1990), 65-82.

[8] H. Iwaniec, W.Z. Luo, and P. Sarnak, Low lying zeros of families of L-functions. *Inst. Hautes Études Sci. Publ. Math.*, **91** (2001), 55-131.

[9] J.Y. Liu and Y.B. Ye, Petersson and Kuznetsov trace formulas, in: *Lie Groups and Automorphic Forms*, Amer. Math. Soc. and International Press, Providence, 2006, pp. 147-168.

[10] M. McKee, H.W. Sun, and Y.B. Ye, Weighted stationary phase of higher orders, *Front. Math. China*, **12**(3) (2017), 675-702.

[11] H. Petersson, Über die Entwicklungskoeffizienten der automorphen Formen, *Acta Math.*, **58** (1932), 169-215.

[12] X.M. Ren and Y.B. Ye, Resonance between automorphic forms and exponential functions, *Sci. China Math.*, **53** (2010), 2463-2472.

[13] X.M. Ren and Y.B. Ye, Asymptotic Voronoi’s summation formulas and their duality for $SL_3(\mathbb{Z})$, in: *Number Theory Arithmetic in Shangri-La*, Proceedings of the 6th China-Japan Seminar, edited by S. Kanemitsu, H.Z. Li, and J.Y. Liu, World Scientific 2013, pp. 213-236.

[14] X.M. Ren and Y.B. Ye, Sums of Fourier coefficients of a Maass form for $SL_3(\mathbb{Z})$ twisted by exponential functions, *Forum Math.*, **26** (2014), 221-238.

[15] X.M. Ren and Y.B. Ye, Resonance of automorphic forms for $GL(3)$, *Trans. Amer. Math. Soc.*, **367**(3) (2015), 2137-2157.

[16] X.M. Ren and Y.B. Ye, Resonance and rapid decay of exponential sums of Fourier coefficients of a Maass form for $GL_m(\mathbb{Z})$, *Sci. China Math.*, **58**(10) (2015), 2105-2124.

[17] X.M. Ren and Y.B. Ye, Hyper-Kloosterman sums of different moduli and their applications to automorphic forms for $SL_m(\mathbb{Z})$, *Taiwanese J. Math.*, **20**(6) (2016), 1251-1274.

[18] N. Salazar and Y.B. Ye, Spectral square moments of a resonance sum for Maass forms, *Frontiers Math. China*, **12**(5) (2017), 1183-1200.

[19] P. Savala, Computing the Laplace eigenvalue and level of Maass cusp forms, *J. Number Theory*, **173**(1) (2017), 1-22.

[20] B.R. Srinivasan, The lattice point problem of many dimensional hyperboloids. III, *Math. Annalen*, **160** (1965), 280-311.

[21] H.W. Sun and Y.B. Ye, Double first moment for $L(\frac{1}{2}, \text{Sym}^2 f \times g)$ by applying Petersson’s formula twice, *J. Number Theory*, **202** (2019), 141-159.

[22] Y.B. Ye, Bounds toward Hypothesis S for cusp forms, *J. Number Theory*, **236** (2022), 128-143.

Tim Gillespie\(^1\): GillespieTimothyL@sau.edu

Praneel Samanta\(^2\): praneel-samanta@uiowa.edu

Yangbo Ye\(^2\): yangbo-ye@uiowa.edu

\(^1\) Department of Mathematics and Statistics, St. Ambrose University, Davenport, Iowa 52803, USA

\(^2\) Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242, USA