Intraoperative Strategies for Minimal Manipulation of Autologous Adipose Tissue for Cell- and Tissue-Based Therapies: Concise Review

ANGELO TRIVISONNO,1,2 ROBERT W. ALEXANDER,1 SILVIA BALDARI,1,2,3 STEVEN R. COHEN,1 GIANLUCA DI ROCCO,1 GIULIA DI ROCCO,1 GIULIANA DI ROCCO,1 PIETRO GENTILE,1,4 GUY MAGALON,1 JÉRÉMY MAGALON,1,5 RANDY B. MILLER,1 HAYLEY WOMACK,1 GABRIELE TOIETTA,1

Key Words. Regenerative medicine • Adipose tissue • Adipose tissue-derived stromal and vascular fraction • Cell- and tissue-based therapy • Collagenase • Point-of-care systems

ABSTRACT

The stromal vascular fraction (SVF) is a heterogeneous population of stem/stromal cells isolated from perivascular and extracellular matrix (ECM) of adipose tissue complex (ATC). Administration of SVF holds a strong therapeutic potential for regenerative and wound healing medicine applications aimed at functional restoration of tissues damaged by injuries or chronic diseases. SVF is commonly divided into cellular stromal vascular fraction (cSVF) and tissue stromal vascular fraction (tSVF). Cellular SVF is obtained from ATC by collagenase digestion, incubation/isolation, and pelleting by centrifugation. Enzymatic disaggregation may alter the relevant biological characteristics of adipose tissue, while providing release of complex, multiaxial attachment of cell-to-cell and cell-to-matrix, effectively eliminating the bioactive ECM and perivascular attachments. In many countries, the isolation of cellular elements is considered as a “more than minimal” manipulation, and is most often limited to controlled clinical trials and subject to regulatory review. Several alternative, nonenzymatic methods of adipose tissue processing have been developed to obtain via minimal mechanical manipulation an autologous tSVF product intended for delivery, reducing the procedure duration, lowering production costs, decreasing regulatory burden, and shortening the translation into the clinical setting. Ideally, these procedures might allow for the integration of harvesting and processing of adipose tissue for ease of injection, in a single procedure utilizing a nonexpanded cellular product at the point of care, while permitting intraoperative autologous cellular and tissue-based therapies. Here, we review and discuss the options, advantages, and limitations of the major strategies alternative to enzymatic processing currently developed for minimal manipulation of adipose tissue.

INTRODUCTION

In 2001, Zuk et al. described in a seminal work the isolation of putative multipotent cells from liposarcomas [1]. In 2013, a position paper by the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) set recommendations to define cells isolated from adipose tissue. Uncultured cells were classified as cellular “stromal vascular fraction” (cSVF), which is a heterogeneous mixture including...
Collagenase-free methods for tissue SVF isolation use mechanical or physical forces to loosen the structural integrity of the adipose tissue extracellular matrix (ECM) and periadventitial structures. These methods are less specific than chemical bond release due to the forces broadly directed against the entire ATC, and do not create a cellular only product (cSVF) per se. Moreover, collagenase-free methods do not efficiently dislodge SVF cells from their niche, resulting in reduced yield compared with that obtained by the collagenase isolation. In general, the uncultured material obtained by nonenzymatic processing is not a pure cellular stromal vascular cellular product as the one obtained by enzymatic digestion, but rather a mixture containing contaminants such as cellular debris, blood cells, and ECM fragments [40]. Accordingly, Alexander set the distinction between cellular SVF (cSVF) and tissue SVF (tSVF) [41]. The correct term for the mechanically disrupted lipoaspirate product is tSVF, whereas true cSVF is only efficiently obtained via chemical digestion separating the cellular components from their complex, multisite contacts.

We performed a comprehensive survey for potentially relevant English-language articles on the use of adipose tissue-derived cells published in peer-reviewed journals retrieved by searching the main scientific databases and identified the methodological details regarding the approaches for adipose tissue processing. In the following sections, we review the major strategies for nonenzymatic adipose tissue disaggregation optimized for regenerative purposes.

![Figure 1. Comparison between methods for cellular stromal vascular fraction and tissue stromal vascular fraction isolation from the adipose tissue complex.](image-url)
A variety of analogous methods aiming at producing mechanically emulsified fat have been described (Table 1). Adipocytes are fragile and susceptible to rupture when exposed to mechanical stress; consequently, these procedures reduce the number of mature adipocytes, which constitute more than 90% of adipose tissue volume [48]. Moreover, reduction of the size of the fragmented fat has a beneficial effect on fat grafting, promoting nutrient and oxygen, which in tissues has a diffusion limit below 200 μm within the graft, reducing necrosis [49]. Accordingly, increase in engraftment of cSVF has been achieved by promoting hypoxic stress resistance [50]. Different methods to prepare the recipient site have been proposed to further increase the graft retention [51], as recently reviewed in detail [52]. The following subsections contain a short presentation of the principal methods for obtaining emulsified tSVF.

Nanofat

Use of the term “nanofat” was popularized in 2013 by Tonnard et al. [25] and recently used by others [26, 27, 53]. Technically speaking, the creation of thoroughly emulsified adipose tissue does not meet the true dimensions required as “nano” size; it is still an effective descriptor as compared with the tSVF recovered from microcannula harvesting (non-emulsified). The process consists in mechanical emulsification and filtering of the liposaprate to obtain a loose, homogeneous liquid suspension, which can be directly administered to patients for regenerative purposes via very small injectors [41]. In particular, mechanical fat emulsification is achieved by manually forcing the sample back and forth 30 times through two syringes connected by a step down diameter series of Luer lock connectors, followed by passage through an offset 600/400 μm disposable offset screen device. The procedure is simple, economical, and fast. It, therefore, represents a suitable method for treating small amounts of autologous adipose tissue, which can be processed and immediately readministrated in the same surgical intervention. A major drawback of the original procedure is represented by the limited amount of material that can be handled using inter-syringe shuffling, but the process can be scaled up. Nanofat grafting has been used in procedures such as facial skin rejuvenation, hair restorative procedures, and to promote wound and scar healing [25, 27, 54]. The procedure exposes the tissue to persistent mechanical shear stress forces, which are intended to remove the mature adipocytes, while maintaining the stem/stromal cells. As a matter of fact, some authors reported that nanofat emulsification does not significantly affect stromal cell viability [28, 41]. Others suggest that stromal cell viability is half and the yield is 12-fold less than that of enzymatic digestion isolation [35]. The testing protocols have not been standardized; moreover, forces applied to obtain manual emulsification of adipose tissue are in large part operator-dependent. One difficulty in comparative analytics continues to be the nonstandardization of emulsification processing (grid or screening used, pressures, volumes used, centrifugation time/G-force, etc.) and testing (including use of cell counters, types of flow cytometry, reagents used, etc.). As we are able to establish more detailed standardization, useful reproducible data will enable us to refine the emulsification protocols for clinical practice.

Microfat

The goal of microfat is to harvest adipose microparticles measuring approximately 0.5 mm of diameter trying to get closer to deeper skin layers without the risk of causing surface irregularities. Both harvesting cannulas (14-gauge, 2 mm, 130 mm long) and grafting cannulas (21-gauge, 0.8 mm, 40 or 60 mm long) are small. This development is consistent with the work of Eto et al. [55] defining a “surviving zone” of the fat lobule below 300 μm of diameter, where both adipocytes and ASCs survive. Furthermore, Alharbi et al. [29] have demonstrated that the viability and migration of isolated ASCs obtained following microfat harvesting were significantly higher making a

Table 1. Collagenase-free methods for adipose tissue processing

Method	Yield	References
Condensation	0.5 × 10^6/ml^a	[24]
Emulsification		
Nanofat	1.2 × 10^6/ml^b	[25–27], [28]
Millifat	3.6 × 10^5/g^a	[29]
Millimicrofat	1.3 × 10^5/g^b	Trivisonno (u.w.)
Superficial enhanced fluid fat	n.a.	[30]
Lipogems	n.a.	[31, 32]
MyStem EVO	2.0 × 10^5/ml	[33]
Squeezed fat	1.1 × 10^5/ml^a	[34]
Vortexing	1.5 × 10^7/ml	[35]
Liposuction aspirate fluid	2.5–8.0 × 10^5/ml	[36–39]

^aNumber of ASCs after expansion in culture.
^bNumber of cSVF after collagenase-mediated isolation of processed samples.

Abbreviations: ASCs, adipose tissue-derived stromal cells; cSVF, cellular stromal vascular fraction; n.a., not available; u.w., unpublished work.

ENZYME-FREE METHODS OF ADIPOSE TISSUE PROCESSING

Mechanical disruption of adipose tissue promotes the breakdown of tissue structural elements [42, 43]. One of the main advantages of using micronized tSVF is that the native ECM and perivascular structures, comprising a three-dimensional “scaffolding,” are maintained providing biophysical support. These remaining attachments are felt to produce an interaction, which may reduce possible cell death due to anoikis [44], improving graft retention [45].

Condensation

Condensation procedures aim to increase the relative number of SVF per tissue volume simply by eliminating some of the components such as adipocytes, red blood cells, oil, and aqueous fractions, which are present in the liposaprate. The primary methods for adipose tissue condensation are gravity-based decantation, filtration, and centrifugation [24, 46]. Depending on the magnitude of the applied centrifugal force, centrifugation might promote the selective damage of mature adipocytes without compromising SVF vitality [47]. Condensation procedures are often used as an initial step before further tissue processing. Decantation or centrifugation can also be used for removal of free lipids released by mechanical emulsification.

Emulsification

A variety of analogous methods aiming at producing mechanically emulsified fat have been described (Table 1). Adipocytes are fragile and susceptible to rupture when exposed to mechanical stress; consequently, these procedures reduce the number of mature adipocytes, which constitute more than 90% of adipose tissue volume [48]. Moreover, reduction of the size of the fragmented fat has a beneficial effect on fat grafting, promoting nutrient and oxygen, which in tissues has a diffusion limit below 200 μm within the graft, reducing necrosis [49]. Accordingly, increase in engraftment of cSVF has been achieved by promoting hypoxic stress resistance [50]. Different methods to prepare the recipient site have been proposed to further increase the graft retention [51], as recently reviewed in detail [52]. The following subsections contain a short presentation of the principal methods for obtaining emulsified tSVF.
suitable product for tissue engineering and regenerative surgery. Microfat injection is indicated for small volumes (less than 50 cc). It can be used in reconstructive surgeries for correction of adherent depressed scars, atrophy due to corticosteroids therapy, skin radiodermatitis, facial atrophy, and facial handicap in scleroderma patients. In pediatric surgery, microfat injection is used to treat the sequelae of nasolabial and velopalatine clefts. Finally, it can be used to improve facial volume and other signs of aging in aesthetic procedure.

Millifat

The procedure to obtain millifat consists in adipose tissue harvesting using a small diameter cannula (internal diameter 1 mm, corresponding to 14 G) followed by centrifugation (1200g, 3 minutes). Implantation of millifat, in conjunction with administration of SVF or platelet-rich plasma, has been proved effective in treating scleroderma skin-lesions in nude mice [56].

Millimicrofat

This method has been developed for intraoperative processing of adipose tissue suitable for one-step surgical procedures. Subdermal adipose tissue is harvested using a Trivisionno Micro Harvester (Tulip Medical Products, San Diego, CA) to obtain lipoaspirate characterized by small size (≤1 mm) lobules [57]. Lipoaspirate is then processed by 30 passages between two syringes through a 1.2 mm Luer lock to Luer lock Anaerobic Bioc F (Tulip Medical Products) to emulsify the sample [58]. Micronized fat obtained following this procedure (defined “millimicrofat,” size ~ 0.5 mm) could be infiltrated through 25 to 27 G needles into the superficial dermal and subdermal layers for dermatological indications, skin radiation damage, and skin aging treatment [59]. The procedure can be completed in less than 30 minutes. Processed tissue yielded up to 3.1 × 10^6 cells per milliliter after 2 weeks of explant culture, approximately 30% more compared with nonprocessed lipoaspirate. The tested viability of tSVF isolated by collagenase digestion from millimicrofat samples is above 90% with the stromal cellular yield of 1.3 × 10^6 cells per milliliter.

Superfacial Enhanced Fluid Fat Injection and Autologous Lipocyte Micronized Injections

The procedure known as “Superfacial Enhanced Fluid Fat Injection” (SEFFI) was designed to obtain a fluid preparation of adipose tissue clusters in the harvesting step using a cannula with small side-port holes. The fragmented and partially emulsified fluidic tissue is then mixed with platelet-rich plasma and used in facial skin rejuvenation procedures [60]. A similar procedure referred as “Autologous Lipocyte Micronized Injections” (ALMI) has also been developed for regenerative purposes. The procedure exploits the sequential administration of autologous micronized adipose tissue and platelet-rich plasma. To the best of our knowledge, no evidence of ALMI efficacy has been so far described in peer-reviewed publications.

Injectable Tissue Replacement and Regeneration

The technique referred as “Injectable Tissue Replacement and Regeneration—ITR” [61] is designed to replace and regenerate losses in deep and superficial fat compartments, bone, skin as well as in capillary density, elastin, and collagen tissues [62]. Candidates for the procedure are patients having different types of facelifts who have associated volume loss and patients having laser therapies, where skin damage with thinning of the dermis and epithelium, fat, and bone loss has occurred. The technique begins with a specific topographical facial assessment for all areas of volume loss and contour deficiencies; then these areas can be treated using two to three different size and types of fat grafts. One is a millifat parcel of 1.5 to 2.0 mm used for deep compartment and bone losses; the second, a microfat parcel of 1.0 mm, used for superficial fat losses above the facial musculature and in buccal fat pad if deficiency exists [63]; and the third is a cellular optimized nanofat made with LipocubeNano. Nanofat is administered in the ITR^2 using several methods including syringe delivery, automated delivery, microneedling with a variety of devices, and compound nanofat into a unique nanofat biocrème. ITR^2 in combination with facelift surgery has been shown to achieve progressive improvement of facial volume up to 24 months after surgery [62].

Single-Use Kits: Lipogems, Fatstem, Mystem, Lipocube

Lipogems (Lipogems International, Milan, Italy) is a proprietary single-use kit designed to obtain micro fragmented adipose tissue (0.2–0.8 mm) through application of mechanical forces and sequential filtering steps [31]. Lipogems micro fragmented emulsified fat can be directly used for regenerative applications, cryopreserved, or cultured to obtain ASC. Fatstem (Elitek, Casale Monferrato, Italy) is a single-use device for mechanical disruption and filtration of adipose tissue to obtain a product suitable to support fat graft take in breast reconstruction procedures [40, 64]. Mystem EVO system (Wilmington, NC) allows for the isolation tSVF via mechanical dissociation of lipoaspirate [33], which has been used for regenerative purposes such as treatment of perianal fistulas [65] and breast reconstruction [64]. The Lipocube Nanocube (Lipocube, London, U.K.) is a single-use mechanical device for the processing of lipoaspirate into milli (2.4 mm), micro (1.2 mm), and nano (500 μm) fat grafts. Overall, these kits allow for rapid, intraoperative tSVF processing. One of the main disadvantages is the cost of the kits.

LIPOSUCTION ASPIRATE FLUID (INFRANATANT) PROCESSING

Lipoaspirates consist of three distinct density gradients: an upper free lipid layer, the ATC (middle), and a lower layer of fluids known as infranatant. Most protocols for lipoaspirate processing and tSVF isolation recommend a compression step to permit unwanted tumescent solution, cellular debris and fragments, and excess fluid removal. Some authors claim that a portion of SVF cells are released into the blood/saline portion of lipoaspiration aspirates [36]. Indeed, Bellei et al. estimated that approximately 19% of the total number of cells isolated from lipoaspirate (in absence of collagenase digestion) are present in the fluid portion [37]. Therefore, collection by centrifugation (400g, 10 minutes) of cSVF from the lipid fraction of lipoaspirates has been claimed to be a practical option [38, 39]. The procedure is rapid, but the number of cells harvested from the infranatant is smaller, and has substantial debris remaining than that from the fatty portion [39]. Most practitioners have come to exclude this material, particularly because the minimal cellular contribution of regenerative type and the irritability of the other components.
Toward Clinical Translation of Nonenzymatic Methods for Adipose Tissue Processing

Cellular and tissue SVF-mediated therapies have been tested in numerous regenerative medicine clinical trials, specifically for functional restoration of tissues damaged by injuries or chronic diseases [6, 66]. Clinical applications of cSVF are very diverse with an enormous therapeutic potential due to unique inherent properties and cell populations contained within adipose tissue [67]. The multipotent feature of cSVF can stimulate the production of, and terminally differentiate into cells of the existing niche; moreover, their secretome is enriched with an array of soluble factors that have the capacity to promote neoangiogenesis, cytoprotection, or activation of reparative mechanisms [68]. Clinically, autologous cSVF has been used for many different clinical indications such as to regenerate and repair bone and cartilage in concert with bone grafting [69], in the treatment of osteoarthritis [70], and in the management of peripheral vascular disease sequela such as chronic wounds [71]. Cellular SVF has been very effective in the treatment of perianal and recto vaginal fistulas as well as for Crohn’s disease [72], in the treatment for the sequela of radiation injury such as fibrosis, atrophy, retraction, and soft tissue ulceration and to reduce aberrant scar formation [73]. The homing mechanism of cSVF to tumor sites makes them a promising vector for therapeutic delivery to tumors and metastatic niches [74].

Clinical use of cell therapy products, including human cells, tissues, and cellular and tissue-based products, is regulated by Food and Drug Administration (FDA) in the United States and by the European Medicines Agency in the European Union [22, 23, 75]. For the purpose of the regulatory framework, adipose tissue should be minimally manipulated, intended for homologous use and that the procedure is performed under the same day surgical exemption [76]. The main issue remains the strict understanding of what “homologous” uses might be. For ATC, the FDA in its guidelines has only considered the adipocyte, not taking into account the multipotent regenerative cells found in the ECM and periarventitia such as mesenchymal stromal cells, pericytes, and endothelial precursor cells. Including homologous use of these cells would be much more appropriate considering the actual target cell types, which have undesignated cellular capabilities determined on a “site specific” basis. Collagenase processing used for isolation of cSVF and ASC culture are currently considered as “more than minimal manipulation” and are subject to FDA Guidelines in United States and European Regulations adding complexity to clear use clinical applications. Conversely, some approaches have been suggested that do not require either enzymatic digestion or in vitro expansion of the cells, and can be considered within the minimally manipulated biological product category. Cells harvested and subjected to minimal manipulation may be readministered in the same anatomical or histological environment to maintain their original essential functions in the recipient as in the donor (homologous use). Moreover, eliminating the need for collagenase dissociation and ASC culture, it is currently possible to obtain an autologous product at the point of care, in a single procedure (intraoperative cell- and tissue-based therapies) such as in structural grafting or in musculoskeletal placement with ultrasonography [77, 78]. Well-conceived intraoperative tSVF therapies are more readily accessible to the patient who may benefit from the reduction of the number of the required procedures. Intraoperative tSVF therapies reduce the risk of contamination and genomic instability, decrease the costs, and alleviate regulatory burden, understanding that none of these products are suitable for intravascular or systemic parenteral applications. The nature of the treatment determines the optimal route of administration and dose to achieve the most effective clinical result. tSVF can be administered locally or seeded on transplantable scaffolds, whereas cSVF can also be administered systemically. Although the amount of cells in cSVF suspension can be accurately determined, the precise dose of tSVF is more critical to be defined due to the heterogeneous nature of the material. Current methods of analysis are limited and may not be adequate to fully characterize the material that is delivered to the patient, possibly raising safety concerns. Mechanical disruption methods yield a fragmented, small-particle, emulsified fat, rather than a suspension of cells, which can easily be characterized from a phenotypic point of view. The functional properties of cellular debris, blood cells, and ECM fragments present in non-enzymatically processed fat preparation has yet to be defined. Consequently, problems of reproducibility, lack of standardization, and reliably to predict the outcome of the treatment may arise [79]. Hence, it is very difficult to compare the therapeutic efficacy of poorly defined protocols and delivery of material even in groups of patients treated with the same procedure [80]. In addition, to determine the rate of engraftment, the biodistribution and the persistence of autologous SVF is an extraordinary challenging task.

At this point in time, the limited characterization of the processed material and the inconsistent methods used in a still-limited number of trials designed to determine the effect of cell and tissue transplant represent a limitation for the enormous therapeutic potential of SVF in a plethora of regenerative applications. Therefore, increased efforts to achieve optimized tSVF and cSVF isolation yield and more standardized methods for tissue manipulation for clinical purposes and analysis of grafting are needed.

CONCLUSION

We reviewed the major strategies under development for uses of tSVF vs cSVF, as an enzyme-free, minimal manipulation of adipose tissue, to achieve an alternative option for reparative and regenerative applications. We have explained the important understanding that the microtransplantation harvest, mechanical disruption, and emulsification protocols for regenerative uses are limited to targeted placement into tissues (tSVF) and are not comparable to the actual laboratory cell isolation and concentration protocols which are available (cSVF). Ongoing clinical testing under strict Institutional Review Board-type oversight is necessary to identify the critical features of safety and optimal efficacy of the cSVF and tSVF products, either as cell-enrichment or parenteral systemic uses. Each method has different advantages and disadvantages, but additional rigorous comparative studies are needed to define the best strategy. Moreover, a necessary condition for further clinical translation is represented by standardization of the procedures as well as of the clinical results of the transplantation studies.
ACKNOWLEDGMENTS

The study was supported by grants awarded by Cinque per Mille (IRE Sx1000 2015), Ministero della Salute—Ricerca Finalizzata (RF-2011-02347907), and ERAB (EA 17 19).

AUTHOR CONTRIBUTIONS

A.T., R.W.A., S.B., S.R.C., G.D.R., P.G., G.M., J.M., R.B.M., H.W., G.T.: conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing, final approval of manuscript.

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

S.R.C. declared royalties from Tulip Medical and Nanocube and royalties and stock options from Millenium Medical. The other authors indicated no potential conflicts of interest.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

REFERENCES

1. Zuk PA, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001;7:211–228.
2. Ramakrishnan VM, Boyd NL. The adipose stromal vascular fraction as a complex cellular source for tissue engineering applications. Tissue Eng Part B Rev 2018;24:289–299.
3. Bourin P, Bunnell BA, Castella L et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013;15:641–648.
4. Bateman ME, Strong AL, Gimble JM et al. Concise review: Using fat to fight disease: A systematic review of nonhomologous adipose-derived stromal/stem cell therapies. Stem Cells 2018;36:1311–1328.
5. Alexander RW. Understanding adipose-derived stromal vascular fraction (AD-SVF) cell biology and use on the basis of cellular, chemical, structural and paracrine components: A concise review. J Proliferation 2012;4:835–889.
6. Dijkstra IA, Facile T, Patrick RJ et al. Concise review: Fat and furious: Harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Translational Medicine 2017;6:1096–1108.
7. Mizuno H, Tobita M, Uysal AC. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 2012;30:804–810.
8. Orgun D, Mizuno H. Multipotency and secretome: The mechanisms behind the regenerative potential of adipose-derived stem cells. Plast Aesthetic Res 2017;4:32–40.
9. Fukuda H, Mizuno H et al. Adipose tissue: From energy reservoir to a source of cells for epithelial tissue engineering. In: Shiftman MA, di Giuseppe A, Bassetto F, eds. Stem Cells in Aesthetic Procedures. Heidelberg, Germany: Springer Berlin Heidelberg, 2014:303–326.
10. Malley B, Hosseini A, Baker J et al. Adipose-derived stem cells: Methods for isolation and applications for clinical use. Methods Mol Biol 2014;1210:151–181.
37 Belli B, Migliano E, Tedesco M et al. Maximizing non-enzymatic methods for harvesting adipose-derived stem cells from liposuction: Technical considerations and clinical implications for regenerative surgery. Scie Rep 2017;7:10005.

38 Bowen RE. Stromal vascular fraction from liposapirate infranatant: Comparison between suction-assisted liposuction and nutational infrasonic liposuction. Aesthetic Plast Surg 2016;40:367–371.

39 Yoshimura K, Shigeura T, Matsumoto D et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 2006;208:64–76.

40 Condé-Green A, Kotamarti VS, Sherman LS et al. Shift towards mechanical isolation of adipose-derived stromal vascular fraction: Review of upcoming techniques. Plast Reconstr Surg Glob Open 2016;4:e1017.

41 Alexander RW. Understanding mechanical emulsification (NanoFat) versus enzymatic isolation of tissue stromal vascular fraction (tSVF) cells from adipose tissue: Potential uses in biocellular regenerative medicine. J Prolother 2016;8:e947–e960.

42 Aronowitz JA, Lockhart RA, Hakakian CS. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. SpringerPlus 2015;4:713.

43 Zhu H, Ge J, Chen X et al. Mechanical microporization of liposapirates for regenerative therapy. J Vis Exp 2019;145:e58765.

44 Baldari S, Di Rocco G, Piccoli M et al. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci 2017;18:2087.

45 Alexander RW. Biocellular regenerative medicine: Use of adipose-derived stem/stromal cells and its native bioactive matrix. Phys Med Rehabil Clin N Am 2016;27:871–891.

46 Zhu M, Cohen SR, Hicok KC et al. Comparison of three different fat graft preparation methods: Gravity separation, centrifugation, and simultaneous washing with filtration in a closed system. Plast Reconstr Surg 2013;131:873–880.

47 Ferraro GA, De Francesco F, Tinro V et al. Effects of a new centrifugation method on adipose cell viability for autologous fat grafting. Aesthetic Plast Surg 2011;35:341–348.

48 Sugih, Matsumoto D, Ionue K et al. Numerical measurement of viable and non-viable adipocytes and other cellular components in aspirated fat tissue. Plast Reconstr Surg 2008;122:103–114.

49 Simonacci F, Bertozzi N, Greico MP et al. Procedure, applications, and outcomes of autologous fat grafting. Ann Med Surg 2017;20:49–60.

50 Baldari S, Di Rocco G, Trivisonno A et al. Promotion of survival and engraftment of transplanted adipose tissue-derived stromal and vascular cells by overexpression of manganese superoxide dismutase. Int J Mol Sci 2016;17:1082.

51 Oranges CM, Striebel J, Tremp M et al. The impact of recipient site external expansion in fat grafting surgical outcomes. Plast Reconstr Surg Glob Open 2016;4:e1549.

52 Oranges CM, Striebel J, Tremp M et al. The preparation of the recipient site in fat grafting: A comprehensive review of the pre-clinical evidence. Plast Reconstr Surg 2019;143:1099–1107.

53 Bi HS, Zhang C, Nie FF et al. Basic and clinical evidence of an alternative method to produce vivo nanofat. Chin Med J 2018;131:588–593.

54 Uyulmaz S, Sanchez Macedo N, Rezaeian F et al. Nanofat grafting for scar treatment and skin quality improvement. Aesthet Surg J 2018;38:421–428.

55 Eto H, Kato H, Suga H et al. The fate of adipocytes after nonvascularized fat grafting: Evidence of early death and replacement of adipocytes. Plast Reconstr Surg; 2012;129:1081–1092.

56 Serrattone N, Bruzzese L, Magalon J et al. New fat-derived products for treating skin-induced lesions of scleroderma in nude mice. Stem Cell Res Ther 2014;5:138.

57 Trivisonno A, Di Rocco G, Caninista C et al. Harvest of superficial layers of fat with a microcannula and isolation of adipose tissue-derived stromal and vascular cells. Aesthet Surg J 2014;34:601–613.

58 Alexander RW, Harrell DB. Autologous fat grafting: Use of closed syringe microcannula system for enhanced autologous structural grafting. Clin Cosmet Investig Dermatol 2013;6:91–102.

59 Trivisonno A, Rossi A, Monti M et al. Facial skin rejuvenation by autologous dermal microfat transfer in photoaged patients: Clinical evaluation and skin surface digital profilometry analysis. J Plast Reconstr Aesthet Surg 2017;70:1118–1128.

60 Rossi M, Roda B, Zia S et al. Characterization of the tissue and stromal cell components of Micro-SuperFAT (Micro-SEFFI) for facial aging treatment. Aesthet Surg J 2018. https://doi.org/10.1093/ajss/yjx142. [Epub ahead of print]

61 Cohen SR, Hewett S, Ross L et al. Regenerative cells for facial surgery: Bionifoil and bioncontouring. Aesthet Surg J 2017;37:516–532.

62 Cohen SR, Hewett S, Ross L et al. Progressive improvement in midfacial volume 18-24 months after simultaneous fat grafting and facelift: An insight to fat graft remodeling. Aesthet Surg J 2018. https://doi.org/10.1093/ajss/yjx279. [Epub ahead of print]

63 Cohen SR, Fireman E, Hewett S et al. Buccal fat pad augmentation for facial rejuvenation. Plast Reconstr Surg 2017;139:1273e–1276e.

64 Gentile P, Sciolli MG, Orlandi A et al. Breast reconstruction with enhanced stromal vascular fraction fat grafting: What is the best method? Plast Reconstr Surg Glob Open 2015;3:e406.

65 Lobascio P, Balducci G, Minaffra M et al. Adipose-derived stem cells (MYSTEM® EVO Technology) as a treatment for complex transsphincteric anal fistula. Tech Coloproctol 2018;22:373–377.

66 Fries L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 2016;43:268–274.

67 Si Z, Wang X, Sun C et al. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed Pharmacother 2019;114:108765.

68 Ong WK, Sugi S. Adipose-derived stem cells: Fatty potentials for therapy. Int J Biochem Cell Biol 2013;45:1083–1086.

69 Lendeckel S, Jodicke A, Christoph H et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: Case report. J Craniomaxillofac Surg 2004;32:370–373.

70 Pak J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose tissue-derived stem cells: A case series. J Med Case Rep 2011;5:296.

71 Goodarzi P, Alavi-Moghadam S, Sarvari M et al. Adipose tissue-derived stromal cells for wound healing. Adv Exp Med Biol 2018;1119:133–149.

72 Andjelkovic K, Sforza M, Barisic G et al. A novel method for treatment of chronic anal fissure: Adipose-derived regenerative cells—a pilot study. Colorectal Dis 2017; 19:570–575.

73 Rigotti G, Marchi A, Galile M et al. Clinical treatment of radiotherapy tissue damage by liposapirate transplant: A healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 2007;119:1409–1422, discussion 1423-1404.

74 Chulpanova DS, Kitaeva KV, Tazetdinova LG et al. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front Pharmacol 2018;9:259.

75 Marks P, Gottlieb S. Balancing safety and innovation for cell-based regenerative medicine. N Engl J Med 2018;378:954–959.

76 Simonacci F, Bertozzi N, Rapiso E. Off-label use of adipose-derived stem cells. Ann Med Surg 2017;24:44–51.

77 Coelho MB, Cabral JM, Karp JM. Intraoperative stem cell therapy: Annu Rev Biomed Eng 2012;14:325–349.

78 Lockhart RA, Aronowitz JA, Dos-Anjos VS. Use of freshly isolated human adipose stromal cells for clinical applications. Aesthet Surg J 2017;37:54–58.

79 Arshad Z, Halious-Haubold CL, Roberts M et al. Adipose-derived stem cells in aesthetic surgery: A mixed methods evaluation of the current clinical trial, intellectual property, and regulatory landscape. Aesthet Surg J 2018;38:199–210.

80 Gimble JM, Bunnell BA, Chiu ES et al. Concise review: Adipose-derived stromal vascular fraction cells and stem cells: Let’s not get lost in translation. Stem Cells 2011;29:749–754.

See www.StemCellsTM.com for supporting information available online.