Review Article

Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems

Lamia Mouhid,1 Marta Corzo-Martínez,2 Carlos Torres,2 Luis Vázquez,2 Guillermo Reglero,1,2 Tiziana Fornari,2 and Ana Ramírez de Molina1

1Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
2Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain

Correspondence should be addressed to Ana Ramírez de Molina; ana.ramirez@imdea.org

Received 29 December 2016; Accepted 6 March 2017; Published 7 May 2017

Academic Editor: Akira Hara

Copyright © 2017 Lamia Mouhid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cancer is among the leading causes of morbidity and mortality worldwide. Many of the chemotherapeutic agents used in cancer treatment exhibit cell toxicity and display teratogenic effect on nontumor cells. Therefore, the search for alternative compounds which are effective against tumor cells but reduce toxicity against nontumor ones is of great importance in the progress or development of cancer treatments. In this sense, scientific knowledge about relevant aspects of nutrition intimately involved in the development and progression of cancer progresses rapidly. Phytochemicals, considered as bioactive ingredients present in plant products, have shown promising effects as potential therapeutic/preventive agents on cancer in several in vitro and in vivo assays. However, despite their bioactive properties, phytochemicals are still not commonly used in clinical practice due to several reasons, mainly attributed to their poor bioavailability. In this sense, new formulation strategies are proposed as carriers to improve their bioefficacy, highlighting the use of lipid-based delivery systems. Here, we review the potential antitumoral activity of the bioactive compounds derived from plants and the current studies carried out in animal and human models. Furthermore, their association with lipids as a formulation strategy to enhance their efficacy in vivo is also reported. The development of high effective bioactive supplements for cancer treatment based on the improvement of their bioavailability goes through this association.

1. Introduction

The conventional treatments against cancer are nowadays replaced by new approaches such as hormone therapy, biological therapy, and stem cell transplantation. In addition to these proposals, new chemical compounds are tested, focusing on founding antitumoral agents with high specificity response and low toxic side effects and warding off resistance development. In this sense, phytochemicals (Phy) have received increasing attention due to their high potency and low toxicity compared with common chemotherapeutic agents [1] and with pharmacological properties acting through specific molecular targets [2–4]. Thus, Phy are considered as nonnutritive compounds found in plants and safe for human intake [2] and with promising applications since their consumption is integrated within diet components.

However, despite their promising benefits in vitro, results from several studies highlight a low Phy bioactivity in vivo [5], mainly attributed to their poor water solubility, rapid metabolism, and short half-live and even causing gastrointestinal irritation. These factors lead to low and variable oral bioavailability and nonreproducible absorption, which gives rise to therapeutic concentrations that are difficult to achieve, high intra- and intersubject variability, and lack of dose proportionality [6], offering significant limitations or challenges to the cancer therapy with Phy.

Therefore, to increase the Phy applicability, developing formulation strategies that overcome limited oral bioavailability of Phy is needed. In this sense, the association of Phy to delivery systems or carriers composed of diverse materials has been proposed [7]. Particularly, in the last decade,
association with lipids, usually referred to as lipid-based delivery systems, gained much interest as they are nontoxic, biodegradable, and highly biocompatible and show great versatility. In this respect, lipid formulations can be modified in various ways to meet a wide range of product stability requirements (molecular weight and physicochemical properties), disease conditions and route of administration, and existing commercial formulations for topical, oral, pulmonary, or parenteral product delivery [8, 9].

In these frameworks, the present work summarizes the existing dietary Phy with promising anticarcinogenic properties and Phy-based therapies that are being currently evaluated in vitro, in vivo, and in clinical trials as efficient approaches for the prevention and treatment of cancer and their bioavailability. Likewise, it also summarizes the delivery systems currently used to enhance the clinical use of Phy by increasing their oral bioavailability and by promoting their safe and targeted activity; mainly emphasizing the lipid-based delivery systems.

2. Dietary Phytochemicals Possessing Anticancer Properties

In the last years, several studies have amply demonstrated that tumor development could be highly associated with diet habits [10, 11]. In this sense, current researches on new approaches for cancer treatment are focused on the study of three axes: dietary patterns, specific foods, and safe and bioavailable dietary compounds [12]. Among the latter, Phy derived from diet might be considered as promising preventive and therapeutic alternative agents against cancer.

According to their chemical structure, Phy can be mainly classified into four groups: polyphenols, terpenes, organosulfur compounds, and phytosterols. The following provides a description of Phy belonging to the mentioned structural categories that have shown potential anticancer properties in in vitro studies, as the first step to evaluate their enhanced activities, and in in vivo models, as the second step of efficacy evaluation and determination of molecular action and targets. Phy tested in preclinical and clinical studies conducted with human cancer patients to validate their in vivo therapeutic effect are also listed.

2.1. Polyphenols. Antitumor benefits of polyphenols have been widely described. Polyphenols constitute one of the major constituents of plants and are abundant in our diet. The occurrence in plant matrix is very variable, going from simple phenolic molecules to complex associations (highly polymerized compounds). They are usually classified into different groups according to their structure and number of rings, highlighting phenolic acids, flavonoids, stilbenes, and curcuminoids, which are described below and compiled in Table 1.

(i) Phenolic acids represent 30% of total dietary polyphenols [13] and they are the major constituents of phenolic compounds. They usually include hydroxybenzoic acids and hydroxycinnamic acids [14], where one of the positions of the aromatic benzoic or cinnamic ring is occupied by a hydroxyl group and the remaining four positions are available for other chemical groups. One of the most studied phenolic compounds is the ellagic acid, as described in Table 1.

(ii) Flavonoids. Although they are not considered as essential dietary factors, they represent 60% of dietary polyphenols [2, 13] and are starting to be considered the key between prevention and treatment of chronic diseases and diet. Chemically, the flavonoid skeleton consists of two phenyl rings joined by a linear three-carbon bridge [15]. Table 1 summarizes those studied against cancer. Genistein, (−)-epigallocatechin-3-gallate (EGCG), and quercetin are the flavonoids more frequently tested in clinical trials against tumors. Genistein have been extensively studied as prospective antitumor molecules in the treatment of prostate cancer. Meanwhile, EGCG has also been largely studied in experimental studies against different types of tumors, even in clinical trials, particularly against prostate or cervical injuries. Quercetin was tested, in addition, against tumors related to the digestive tract, such as bowel, colon, or pancreas.

Within flavonoids, proanthocyanidins are also underlined as effective naturally occurring compounds in grape seeds or pine bark with antitumorigenic effects. They take the form of oligomers or polymers (+) catechin and (−) epicatechin, and the carried-out in vivo studies have remarked the preventive and effective action against UV-induced skin tumors but also showed the inhibition of lung metastasis and mammary and prostate cancer [16]. Concerning clinical studies, the is just one concluded trial which studied the positive chemoprevention proanthocyanidin effect on breast cancer [17].

(iii) Stilbenes constitute a large family within polyphenols and have numerous implications in plant disease resistance and human health (including antitumoral activity). Stilbenes have a 1,2-diphenylethylen core and belong to a small group of phenylpropanoids and only a few plants spics can synthetize them. They are produced in response to a biotic or abiotic stress [18]. The most largely studied is resveratrol, which is produced in plants in response to mechanical injuries. It is reported to be efficient against gastrointestinal tumors in clinical trials, and in vivo tests were carried out in breast, ovarian, lung, or skin tumors (Table 1).

(iv) Curcuminoids are derived from curcumin, and they are obtained from turmeric (Curcuma longa). Curcumin belongs to diarylheptanoid series and is characterized by 1,3-diketones and two methoxylated phenols [19]. Curcumin is largely used as medicinal and food ingredient in Asia, especially in India. Within cancer therapies, it has been tested in several in vivo tumor models and even in clinical trials (Table 1).

2.2. Terpenes. Another important group of phytochemicals is that constituted by terpenoids or terpenes, which is the most abundant and structurally diverse group synthetized by plants. Terpenes show a wide range of physiological functions, many of them related to the plant defense system, and they are often components of essential oils and resins [20]. Terpenes are synthesized from two to five carbon building blocks based upon the isoprene unit. Depending on the number of blocks, they can be classified as monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), triterpenes (C30),
Polyphenols	Phytochemical	Main source	Cancer targets in vivo and in vitro	Clinical trials	References cancer targets/clinical trials	Chemical structure
Phenolic acids	Ellagic acid	Pomegranate, berries, grapes	Prostate	Prostate	[161–165]/[166,167]	![Ellagic acid](https://example.com/ellagicacid.png)
			Pancreas			
			Bladder			
			Breast			
			Colon			
	(-)-Epigallocatechin-3-gallate (EGCG)	Green tea (Camellia sinensis)	Prostate	Prostate	[168–174]/[175–178]	![EGCG](https://example.com/epigallocatechin3gallate.png)
			Renal carcinoma			
			Breast			
			Laryngeal carcinoma			
			Non-small cell lung			
			Colon			
			Pancreas			
			Bone marrow			
	Genistein	Soybean	Prostate		[179–183]/[184–187]	![Genistein](https://example.com/genistein.png)
			Breast			
			Cervical			
			Colon			
	Luteolin	Cabbages, celery, broccoli, onion leaves, parsley	Prostate			![Luteolin](https://example.com/luteolin.png)
			Breast			
			Thyroid			
			Colorectal			
			Cervical			
			Lung			
	Silymarin	Thistle (Silybum marianum)	Prostate			![Silymarin](https://example.com/silymarin.png)
			Upper gastrointestinal		[194–198]/[199,200]	
			Leukemia			
			Colon			
			Lung			
			Bladder			
			Skin			
			Prostate			
Polyphenols	Phytochemical	Main source	Cancer targets in vivo and in vitro	Clinical trials	References cancer targets/clinical trials	Chemical structure
-------------	---------------	-------------	-----------------------------------	----------------	--	--------------------
	Quercetin	Capers, lovage leaves, apple	Pancreas, Breast, Cervical, Colon, Prostate, Lung	Large bowel, Ovary, Pancreas, Prostate, Thrombotic	[201–206]/[207–209]	![Quercetin structure](image)
	Stilbenes	Resveratrol	Grape, berries	Breast, Colorectal, Hepatic melanoma, Lung, Pancreas, Prostate, Skin, Bladder, Ovarian	Colorectal, Colon, Gastrointestinal tumors	[38, 39, 210–217]/[218–222]
	Curcuminoids	Curcumin	Curcuma longa L.	Pancreas, Prostate, Ovarian, Melanoma, Head and neck squamous cell carcinoma, Leukemia, Hepatoma, Gastric, Glioblastoma, Lung, Breast, Cervical, Colorectal	Pancreas, Colorectal, Colon, Liver, Pancreas, Breast, Head and neck	[40, 41, 223–230]/[96, 231–238]

Clinical trials carried out considering phytochemicals as dietary complements or drugs (therapy) in cancer patients.

For the experimental studies, in vivo studies are in italic characters.

Chemical structures were obtained by using ChemDraw Professional 15.0 software.
tetraterpenes (C40), and polyterpenes [21]. Their potential antitumor properties have been described in several works [22], as shown in Table 2.

(i) Carotenoids are the most abundant tetraterpenes, and in natural samples they could be found free or esterified by fatty acids, the degree of esterification being related to the hydroxyl groups. They also are characterized by the presence of 11 or 12 conjugated carbon double bonds [23]. All of them represent variants or degradation derivatives of \(\beta \)-carotene, which is found in carrot (Daucus carota). Antitumor activity of the acyclic tetraterpene lycopene has been largely studied in both in vivo and clinical trials, especially conducted with prostate tumors (Table 2). Besides lycopene, astaxanthin may exert antitumor activity through its antioxidant and immunomodulatory characteristics in tumors such as colon and hepatic carcinomas, as shown in Table 2.

(ii) Noncarotenoids are not derived from carotenoids. This group of terpenes includes carnosol, a phenolic diterpene largely studied in cancer and associated with bioactivity of rosemary (Table 2). For carnosol, there are in vivo positive studies against colon, prostate, and skin tumors and no clinical studies proposed.

2.3. Organosulfur Compounds. Organosulfur compounds are Phy with one or more carbon-sulfur bonds in their structure and a thiokeetal-linked glucose molecule (S-glycosides). They are classified into two groups: glucosinolates and thiosulfinate [24]. Glucosinolates are sulfur-containing plant secondary metabolites that usually exist in cruciferous plants and are hydrolyzed by specific enzymes (myrosinases) to release biologically active sulfurated aglycones, known as isothiocyanates [2, 25]. Glucosinolates and their hydrolysis products exhibit direct and indirect antioxidant effects by scavenging harmful radicals and modulation of detoxification enzymes, such as glutathione S-transferase [26]. Thus, consumption of cruciferous plants, such as cabbage and broccoli, is believed to promote health and to reduce the risk of cancer development [27]. Among isothiocyanates, sulforaphane, produced from the glucosinolate glucoraphanin, has been largely studied as chemopreventive agent in different tumors in vivo, and it is the unique organosulfur compound that has been tested in a clinical trial as antitumorigenic agent [28] (Table 2).

Thiosulfinates (allyl sulfides), such as diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS), are mainly present in garlic and onion (Allium family) [25]. Among them, DADS, an oil-soluble organosulfur compound, has been described as the major one responsible for therapeutic properties against prostate and colon in in vitro models and gastric, breast, and leukemia in in vivo models (Table 2).

2.4. Phytosterols. Phytosterols are lipid-like compounds and essential for maintaining permeability and fluidity on cell plant permeability. Vegetable oils are the main source of dietary phytosterols. They occur in various structural forms (as steryl glucosides, acetylated steryl glucosides, esters, or alcohols) [29], each of them existing in different compartments of the plant cell. There are approximately 200 phytosterols, among which \(\beta \)-sitosterol, campesterol, and sitostanol are the major ones [30].

\(\beta \)-Sitosterol is the most abundant phytosterol and although it is well known for its cholesterol lowering action [31], several in vitro and in vivo evidences suggest it possesses preventive effects against cancer (Table 2). Campesterol and sitostanol, however, have not shown any effect on tumor growth [32].

Within terpenes, triterpenoids (squalene) play a determinant role as they are considered common precursors of steroids, including phytosterols. Triterpenoids exist in free form or combined with sugar into glycosides. The free form shares the same chemical properties as phytosterol so long as they can be dissolved in organic solvents but insoluble in water [33]. In the last years, triterpenoids have demonstrated antitumor efficacy against breast, leukemia, multiple myeloma, and non-small cell lung carcinomas, specially affecting cell proliferation [34, 35]. Some triterpenes are already tested in Phase I clinical trials [36], with beneficial effects, even if some authors defend their combination with other triterpenoids, Phy, or synthetic drugs.

In general, in vitro and in vivo assays conducted with dietary Phy (Tables 1 and 2) showed tumorigenesis inhibition or potential chemopreventive effects. However, a high variability in antitumor effects was observed among different patients during clinical trials, which is one of the major limitations of the Phy-based therapy in the clinical practice.

3. In Vivo and Clinical Bioactivity of Phytochemicals

Although Phy hold part of their biological activity in vivo, as said above, their activity in this context is lower than observed for the same compound in the in vitro evaluation phase. An obvious reason for the “loss” of activity is the lack of pharmacokinetic optimization or compatibility [37]. One of the main factors that influences pharmacokinetics of the tested bioactive compound is its tissue bioavailability, which is defined by the Food and Drug Administration as “the rate and extent to which the active ingredient or active moiety is absorbed from a drug product, reach plasma and body tissues and becomes available at the site of action in an unchanged form”. Thus, bioavailability should be considered when the efficacy of dietary Phy is evaluated in vivo in animal models and/or human clinical trials. The impact of bioavailability is especially pronounced when the bioactive compound is intended for oral use, whereby gastrointestinal (GI) absorption constitutes the primary barrier between an active ingredient and systemic circulation. In the present review, we focus on oral bioavailability as the major pharmacokinetic aspect for the clinical application of orally delivered dietary Phy with high bioefficacy as anticancer agents. In this respect, factors affecting GI absorption and oral bioavailability of main dietary Phy will be addressed.

3.1. Oral Bioavailability of Dietary Phytochemicals. Oral route is generally considered the easiest and most convenient method for the delivery of drugs and dietary bioactive...
Table 2: Terpenes, organosulfur, and phytosterols commonly studied in cancer therapy.

Family	Phytochemical	Main source	Cancer targets in vivo and in vitro	Clinical trials	References cancer targets/clinical trials	Chemical structure
Terpenes	Lycopene (tetramerpenes)	Tomato *(Lycopersicon esculentum)*	Prostate, Colon, Breast, Lung, Cervical, Breast, Laryngeal, Liver carcinoma	Prostate	[239–242]/ [243, 244]	![Lycopene Chemical Structure](image)
	Astaxanthin	Green microalgae *(Haematococcus pluvialis)*	Oral carcinoma, Hepatic, Fibrosarcoma, Skin, Bladder, Colon, Laryngeal, Non-small cell lung, Gastric cancer	—	[245–251]	![Astaxanthin Chemical Structure](image)
	β-Elemene	Ginger, celery	Breast, Cervical, Colon, Ovarian, Melanoma, Glioblastoma	Glioma	[252–256]/ [257]	![β-Elemene Chemical Structure](image)
Noncarotenoid	Carnosol (diterpene)	Sage *(Salvia carnosa)*, Rosemary *(Rosmarinus officinalis)*	Colon, Prostate, Skin, Breast, Ovarian, Intestinal, Melanoma	—	[258–263]	![Carnosol Chemical Structure](image)
Table 2: Continued.

Family	Phytochemical	Main source	Cancer targets in vivo and in vitro	Clinical trials	References cancer targets/clinical trials	Chemical structure
Organosulfur						
Skin						
Gastrointestinal-colon						
Sulforaphane	Brassica vegetables		Prostate, Pancreas, Breast, Bladder	Breast	[42, 95, 264–267]/[268]	![Chemical structure](image1)
Thiosulfimates						
Ovary			Mammary, Gastric, Breast, Leukemia			
Diallyl disulfide	Allyl vegetables		Neuroblastoma	—	[43, 44, 269–273]	![Chemical structure](image2)
Phytosterols						
Phytosterols	β-Sitosterol	Vegetal oils	Colon, Breast, Stomach, Prostate	—	[274–278]	![Chemical structure](image3)

Clinical trials carried out considering phytochemicals as dietary complements or drugs (therapy) in cancer patients. For the experimental studies, in vivo studies are in italic characters. Chemical structures were obtained by using ChemDraw Professional 15.0 software.
Exogenous factors: physicochemical properties and pharmacokinetics of active compound and physiological, biochemical, and biological barriers

Endogenous factors: individual age and gender, mucosal mass, gastric emptying, genetics, and diseases

Coingested compounds or foods

A compound which can exist in a stable form to survive the GI environment and that has optimum physicochemical properties to penetrate the GI wall is most likely to possess acceptable oral bioavailability. Most of Phy, however, have shown physicochemical properties that lead to a poor water solubility and stability in the GI environment and poor permeability. These include complex structure, size, high molecular weight, high lipophilicity, compound H-bonding to solvent, intramolecular H-bonding, intermolecular H-bonding, crystal packing, crystallinity, polymorphic forms, ionic charge status, isoelectric point (pI), and salt form [47]. In addition to physicochemical properties limiting their GI absorption, Phy are usually subjected to extensive metabolism in the enterocyte and hepatocyte and/or quickly eliminated in the urine [48]. All these factors result in a poor and variable bioavailability, which leads to therapeutic concentrations that are difficult to achieve, nonreproducible absorption, variable efficacy intra- and intersubject during clinical trials, and lack of dose proportionality. This explains

Figure 1: Determinant factors of the oral bioavailability of bioactive compounds, including phytochemicals.
the lower in vivo bioactivity and nonreproducible data obtained in previous studies (Table 2) [6, 49]. Bioavailability studies of the major dietary Phy are described below.

3.1.1. Bioavailability Studies of the Major Dietary Phytochemicals

(i) Polyphenols. Most of the studies focus on bioavailability related to levels of the polyphenol present in blood or urine [50], but few of them determine the bioavailability in target tissues, which can be more determinant for affirming their application for a specific illness. After intestinal hydrolysis, polyphenols are conjugated by glucuronidation (addition of glucuronic acid), methylation (addition of a methyl group), or sulfation (addition of a sulfo-group), which often facilitate their urinary elimination. Thus, they are well absorbed on tissues where they are metabolized (bowel and liver) [51, 52], but their bioavailability in target tissues is low because of their rapid clearance from the body.

Nevertheless, there is a study that reveals that once sulfated and glucuronide conjugates of resveratrol are circulating in plasma (with an expected low bioavailability), their subsequent hydrolysis releases free resveratrol which can be captured by those cells with specific membrane receptors, increasing thus its bioavailability in specific tissues [53].

These conjugations may also depend on factors described in Section 3.1 such as age and gender, genetics and diseases, and protein-binding in tissues and blood. Moreover, independently of the mechanistic processing of flavonoids, some authors have also described the preventive efficacy of flavonoids (resveratrol) as dependent on the type of diet. In this sense, it has been demonstrated that low doses of resveratrol were able to reduce colon tumor progression better than high doses in subjects exposed to a high fat diet [54].

(ii) Terpenes. Clinical relevancies of terpenes depend on their presence in target organs. Terpenes have a high lipophilic behavior, and therefore they depend on their solubility in the aqueous phase of the gut lumen. Thus, it has been observed that bioavailability of terpenes is related upon their incorporation to a lipid phase either during digestion or during food processing, making the presence of a quantity of fat necessary for their absorption [20]. Lycopene, one of the major carotenoids described for its anticarcinogenic potential, has been demonstrated to enhance its bioavailability when they are integrated in a chylomicron [55].

(iii) Organosulfur Compounds. Studies related to organosulfur compounds are frequently carried out in combination with other Phy or drugs. Indeed, few experimental data determine their bioavailability, and urine levels after uptake of Brussels or broccoli sprouts [56] are the unique parameter usually measured.

But as they are increasingly consumed due to their potential antitumoral effects, a new variety with genetic variations has been proposed increasing thus the expression of transcription factors involved in glucosinolate biosynthesis. The resulting broccoli could deliver a larger amount of glucoraphanin (active sulforaphane) in plasma and urine [57], although it has not been evaluated in specific organs levels.

(iv) Phytosterols. Phytosterol structure is similar to that of cholesterol but each phytosterol has an additional side chain, which confers dissimilarities in their absorption. Low bioavailability of phytosterols is reported in human plasma after intake. Before absorption starts, the esters are split in the duodenum, increasing their hydrophobicity and reducing their absorption at the same time. In addition, it has been described that they poorly reesterify in the enterocytes, explaining their poor absorption and their subsequently low concentration in the blood circulation [58, 59].

4. Use of Lipid-Based Delivery Systems to Increase the Clinical Efficacy of Antitumor Phytochemicals Administered Orally

The development of crystalline solid formulations by modifying physicochemical properties, as salt formation and micronization (particle size reduction), was initially adopted to amend the poor water solubility of Phy [60]. However, the low wettability and handling difficulties of reduced size formulations as well as the aggregation of nanocrystals inside the body and the impossibility of salt formation from neutral compounds limit the use of these approaches [61]. Amorphous formulations, including solid solutions (active compound immobilized in polymer) and self-dispersing solid solutions (with surfactants), have been also applied; however, the questionable physical stability of product (possibility of crystallization of drug or polymer) limited their use [62].

Over the last years, new formulation strategies to increase the clinical efficacy of poor water-soluble active compounds have been developed. Figure 2 shows the new ones, specifically those developed for oral administration of active compounds (in italic). In addition, polymer-based delivery systems (PBDDS) have also been popularly adopted to increase the clinical efficacy of some Phy, as observed in Table 4 [63, 64]. To a lesser extent, inclusion complexes with cyclodextrins and its derivatives as well as inorganic, hybrid, and other novel nanocarriers are being currently used (Table 4).

Furthermore, it is worth mentioning that, in recent years, an increased interest has been focused on the incorporation of poorly water-soluble compounds into lipid-based delivery systems (LBDS). Association with lipid-based delivery systems has been shown to be one the most powerful strategies for the formulation of poorly water-soluble active compounds [8, 9], as they show several advantages compared to other carriers, including

1. **(i) higher degree of biodegradability and biocompatibility;**
2. **(ii) higher degree of versatility: lipid formulations can be modified in various ways to suit the stability requirements (molecular weight and physicochemical properties) and toxicity and efficacy of the active agent as well as the route of administration and cost;**
3. **(iii) high and enhanced loading capacity;**
(iv) pharmaceutical stability;
(v) release of the active compound in controlled and targeted way;
(vi) simple preparation methods and easy scale production;
(vii) low risk of side effects (nontoxic).

The present work reviews the novel LBDS (vesicle and lipid particulate systems and emulsions) as recorded in Figure 2, describing the formulation approaches and mechanism of action. Furthermore, the LBDS combined with Phy in vitro and in vivo studies are also listed.

4.1. Formulation Approaches for Oral Lipid-Based Delivery Systems. LBDS can be obtained by blending excipients such as pure triglyceride oils, mixed glycerides, lipophilic surfactants, hydrophilic surfactants, and water-soluble cosolvents, which determine the absorption process [65]. Thus, in order to maximize the success in lipid-Phy formulation development and commercialization, it is precise to consider the following aspects:

(i) Screening and preselection of lipid excipients, mainly considering their solubility, dissolution/dispersion properties, digestibility, and absorption. Other factors are irritancy, toxicity, purity, chemical stability (regulatory issues), capsule compatibility, melting point (depending on the fatty acid composition), and cost
(ii) Identification of the suitable formulation technique for the intended dosage form. Often solid form, developed mainly by adsorption on solid carriers [66], spray drying [67], lyophilization [68], melt extrusion [69], and nanoparticle technology [62], is preferred over liquid and semisolid forms, which offer low stability, irreversible drug/excipient precipitation, large volume of dose, and difficulty of handling and portability
(iii) Testing the formulation in appropriate animal models to predict the in vivo behavior (bioavailability, pharmacokinetics, and intestinal lymphatic absorption)
(iv) Optimization of the formulation based on the Phy loading and dissolution profile.
4.2. Mode of Action of Oral Lipid-Based Delivery Systems. The goal of any oral LBDS is to enhance the GI absorption and oral bioavailability of the active compound. Their mode of action involves the alteration of the following physiological effects.

(I) After oral administration of the lipid-Phy formulation and once in the aqueous environment of the stomach, gastric lipase initiates the digestion of formulation lipids. Simultaneously, peristaltic movements of the stomach facilitate dispersion of lipid excipients into small droplets (Figure 3(I)). This accelerates the solubilization process of Phy in the lipid base and keeps the Phy in solution for prolonged period, avoiding its precipitation and protecting it from the low pH in stomach and the enzymatic and/or chemical degradation within the GI tract [1, 5, 6, 70].

(II) Once in the small intestine, lipid excipients stimulate bile flow and pancreatic juices excretion [71]. Pancreatic lipase hydrolyzes triglycerols (TG) into free fatty acids (FFA), monoglyceride (MG), and diglyceride (DG), which, along with bile salts and phospholipids (PL) from gallbladder, form vesicles, micelles, and mixed micelles (Figure 3(II)). These colloidal structures favor solubilization and transportation of Phy until absorption area protecting it from microbiota metabolism and enzymatic degradation, prolonging its residence time, and leading to the uniform distribution of Phy.
in the GI tract, which minimizes irritation of gut wall due to direct contact with Phy [1, 72].

(III) Formation of colloidal systems (vesicles, micelles, and mixed micelles) that significantly enhances the intestinal absorption of lipid digestion products and Phy as follows:

(i) Changing Phy uptake by interacting with transport processes of enterocyte. These include mucoadhesion (interaction with mucin to increase membrane fluidity), paracellular transport by modulating tight junctions, and promotion of receptor-mediated transport processes (endocytosis, transcytosis, and phagocytosis) via M cells of Peyer's patches and other mucosa-associated lymphoid tissues (MALT) (Figure 3(III)(A)–(C)).

(ii) Inhibiting efflux transporter P-glycoprotein (P-gp) and metabolism by cytochrome P450 (CYP450) or cytochrome 3A (CYP-3A) isozymes (Figure 3(III)(D)). This increases the intracellular concentration and residence time of Phy in enterocyte.

(iii) Enhancing Phy transport to the systemic circulation via intestinal lymphatic system [73–75]. Lipid metabolites stimulate lipoprotein/chylomicron production, which react with Phy molecules enhancing its intestinal lymphatic transport (Figure 3(III)(E)). This avoids the first-pass hepatic metabolism, which provides resistance to metabolic processes, leading to changes in Phy disposition and, finally, in its pharmacokinetic properties [70, 75].

All of this leads to an enhanced absorption, oral bioavailability, and bioefficacy of Phy, which should allow applying an accurate oral dosage to obtain reproducible results in clinical assays (reduced inter- and intrasubject variability) and enhance, thus, the clinical use of Phy therapy.

(IV) In addition of increasing water solubility, absorption, and oral bioavailability, lipid-based delivery systems have been shown to

(i) reduce the effect of coingested food on pharmacokinetics of the bioactive molecule [70];

(ii) increase Phy pharmaceutical stability and lengthen its systemic circulation time [76];

(iii) release Phy slowly over an extended duration (days or months) after a single administration (sustained release) [77];

(iv) enhance penetration into tumoral matrices, promoting more reliable Phy access, and enhance blood-brain barrier permeability [78, 79];

(v) modulate the biodistribution of incorporated molecules, which leads to targeted effects and, hence, reduced side effects [1];

(vi) overcome multidrug resistance [80];

(vii) enhance efficiency of codelivery of active ingredients and therapeutic agents [81].

4.3. Types of the Main Oral Lipid-Based Delivery Systems and Their Applications

4.3.1. Vesicle Systems. As indicated in Figure 2, lipid-based delivery systems can be classified in three categories, including vesicle systems, lipid particulate systems, and emulsions. Among the vesicle systems, liposomes and phospholipid complexes are the most frequently used.

(i) Liposomes. Liposomes are the most common and well-investigated nanocarriers for targeted drug/active delivery. The use of liposomes to deliver phytochemicals began in the 1980s as an approach to overcome limitations of clinical application of these compounds [1]. Conventional liposomes consist in small spherical vesicles, which present a simple bilayer membrane enclosing aqueous spaces. The lipids mainly used are phospholipids, so that, in an aqueous medium, the hydrophobic tails tend to gather together, while the hydrophilic heads are exposed towards water, thereby forming the round-shape vesicles. Amphiphilic nature of these systems makes them capable of encapsulating from hydrophilic agents, which can be located within the aqueous core, to hydrophobic substances, which can be embedded into the inner fatty acid layers [82–85].

Liposomes are highly biocompatible and possess self-assembly capacity. They are considered pharmacologically inactive with minimal toxicity [82–85], although they are not as immunologically inert as previously suggested [86]. Likewise, conventional liposomes have been shown to increase oral bioavailability and bioefficacy of loaded agents by

(i) improving their water solubility and stability;

(ii) avoiding their early precipitation and intestinal and hepatic degradation;

(iii) leading to drug concentration in tumoral tissues. This is because liposomes are preferentially delivered and passively accumulate here due to the high interstitial pressure, enhanced vascular permeability and retention, and the lack of functional lymphatic drainage of solid tumors (passive targeting effect) [87, 88];

(iv) minimizing side effects.

However, conventional liposomes show some disadvantages that limit their applicability. These include poor stability in the systemic circulation and high recognition by reticuloendothelial system (RES), which leads to short circulation time (short shelf life) and low encapsulation efficacy expulsion of loaded molecules by intermembrane transfer [89].

Over the last years, structural and physicochemical properties of liposomes have been modified to develop different types of liposomal delivery systems, called nanostructured liposomes, which do not show the drawbacks of the conventional ones [90] (Figure 4). Among them, we find the PEGylated liposomes, which are modified by adding polyethylene glycol (PEG) to the surface. This confers steric stabilization and, hence, higher stability in vivo. Structural modification can also consist in the attachment of different types of ligands (e.g., antibodies, peptides, and carbohydrates) to the surface or to the terminal end of the attached PEG chains. These structures, which are called ligand-targeted liposomes, are used for specific (active or physicochemical) targeting [91, 92]. Finally, to develop more efficient drug delivery systems, multifunctional liposomal formulations, also called theranostic liposomes, have been recently developed. These
Figure 4: Schematic representation of the different types of liposomal drug delivery systems: (A) conventional liposome; (B) PEGylated liposome; (C) ligand-targeted liposome; (D) theranostic liposome (reprinted from Frontiers in Pharmacology, 6, article 286, 1–12. Advances and Challenges of Liposome Assisted Drug Delivery, by Sercombe et al. [87], with permission from the authors).

Carriers usually consist of the nanoparticle, the therapeutic agent, an imaging component, and one or more targeting ligands which enhance their accumulation in pathological sites and promote organelle-specific delivery. In this sense, theranostic liposomes can be used as therapeutic and diagnostic tool at the same time [87, 91].

The stability in vitro and in vivo of nanostructured liposomes as well as the release profile of the loaded agent is determined by the liposome surface charge, particle size, lipid composition, and number of lamellae and the nature of polymers and ligands attached to their surface [85, 93].

Nanostructured liposomes have been adopted in recent years for the efficient oral delivery of several Phy with poor water solubility and stability in the gastric environment (Table 5). Thus, for instance, vinorelbine, a chemotherapeutic obtained by semisynthesis from alkaloids extracted from the rosy periwinkle (Catharanthus roseus), has been loaded into a cholesterol-polyethylene glycol (cho-PEG) coated liposome with the purpose of increasing circulating half-life and reducing severe side effects of this agent [94]. Likewise, N-trimethyl chitosan chloride- (TMC-) coated liposomes for the oral delivery of curcumin were found to be a promising strategy to reduce toxicity and increase therapeutic index [88].

Moreover, brucine, an alkaloid isolated from Strychnos nux-vomica L. (Loganiaceae), produced impressive dose-dependent antitumor effects by causing apoptosis. However, brucine was characterized by a narrow therapeutic index, and high doses of brucine cause severe central nervous system toxicity. Brucine-loaded stealth liposomes enhanced antitumor activity and decreased distribution to the brain [95], which, therefore, considerably improved its therapeutic index.

(ii) Phospholipid-Phytochemical Complexes (Phytosomes®).

Several plant bioactive compounds and extracts, mainly constituted by polyphenols and terpenoids, are conjugated with naturally occurring phospholipids, as phosphatidylcholine (PC), in a ratio of 1:1 or 1:2 (w:w). This formulation strategy leads to the formation of the patented complexes called Phytosomes. Like liposomes, structure of these complexes consists in spherical vesicles with a bilayer membrane of phospholipids, in which the hydrophilic heads are exposed towards the aqueous medium, while the hydrophobic tails remain together in the inner layer. Unlike liposomes, the active agent is not located within the aqueous core, but it binds to the polar end of phospholipid through weak chemical bonds, and the nonpolar portion of the phospholipid remains free [96, 97]. Phy-loaded phytosomes are highly biocompatible and bioavailable as compared to unloaded Phy. Incorporation into phytosomes increases the enterocyte cell membrane permeability of Phy and, hence, the amount reaching the systemic circulation. Likewise, phytosomes offer a controlled and sustained Phy release pattern, which leads to a longer action time and, therefore, to the need of a reduced Phy dose [96, 97].

Silybin was the first bioactive compound marketed as Phytosome formulation. Phospholipid complexation significantly increased the water solubility and liver protection of silybin, which resulted in an increase of its oral bioavailability and pharmacological activity [98]. In a comparative pharmacokinetic study using an equimolar dose of silybin and its complex, the plasma C_{max} of silybin after four hours was <35 ng/mL, whereas, for the silybin complex, it was 112 ng/mL [99]. Similarly, quercetin loaded-phytosome showed a water solubility 12-fold higher than free-form quercetin. However, complexation did not affect its antioxidant activity [100].
There is a great attention has been paid to LNPs as an interesting and cost-effective alternative to polymeric nanoparticles, liposomes, and emulsions. LNPs are cheaper and safer than polymeric carriers, as their production is an organic solvent-free process [103]. Likewise, compared to conventional liposomes, nanoparticle solid matrix allows a higher control release and specific delivery of the loaded agent, which minimizes side effects [109]. LNPs show other benefits as compared to other systems, including ease of preparation and high scale production and sterilization [110, 111], excellent physical stability, and chemical versatility. Moreover, incorporation into the nanoparticle matrix can protect molecules from light, moisture, chemical degradation, and oxidation [109] and favor their penetration through the mucosal barrier due to nanosize [103, 112–114].

(i) Solid Lipid Nanoparticles (SLNs). Despite all these advantages, applicability of SLNs presents several limitations such as the growth of matrix lipid particles, high water content, ease of gelation, and unpredictable polymorphic transitions, resulting in poor loading capacity [115–117]. In general, drug molecules stay in between the fatty acid chains or as amorphous clusters in crystal imperfections within SLN matrix. However, during SLN storage time, a transition of lipids to a low-energetic form can occur, giving rise to a perfect crystalline structure with very little space for the drug molecules. This promote the expulsion of encapsulated molecules, especially when SLN matrix is composed of a highly purified lipid, which results in a nanoparticle low incorporation capacity and a changing release profile with storage time [103, 113].

(ii) Nanostructured Lipid Complexes (NLCs). To overcome SLNs drawbacks, NLCs have been developed as alternative carrier systems. The presence of liquid lipids (oil) in the solid matrix makes more imperfections to accommodate more active molecules than SLNs, which reduces the active molecule expulsion and enhances the nanoparticle loading capacity. Furthermore, the release and delivery of the active compound can be easily modulated by changing the lipid composition of matrix [113]. NLCs present a lower water content than SLNs and no significant differences regarding biotoxicity have been observed [118].

Table 5 shows in vitro/in vivo studies where SLNs and NLCs have been applied for the efficient oral delivery of antitumor Phy, mainly flavonoids, with limited therapeutic potential [119]. Thus, for instance, Luo et al. [120, 121] investigated the effect of loading puerarin, an isoflavonoid derived from Radix Puerariae, into SLNs, including pharmacokinetics, tissue distribution, and relative bioavailability in rats. When incorporated into the SLNs, puerarin was rapidly absorbed and its relative oral bioavailability was improved more than 3-fold as compared with that of the puerarin suspensions. In addition, SLNs produced increased tissue concentrations in puerarin target organs, particularly heart and brain. Likewise, triptolide, a diterpenoid epoxide isolated from Tripterygium wilfordii with anti-inflammatory, anticystogenesis, and anticancer effects, showed enhanced clinical efficacy and minimized side effects (irritation of the gastrointestinal tract) after encapsulation into SLN [122]. This was attributed to the solubilization of triptolide during GI digestion by the SLN matrix and colloidal mixed micelles (Figure 4), avoiding its precipitation and degradation as well as the GI irritation caused by insolubilized crystals. Moreover, SLNs minimize direct contact of triptolide with the mucosal
surface and lead to a gradual release, avoiding high local and irritating concentrations.

Several Phy have been also loaded into NLCs in studies focused on improving water solubility, enhancing GI absorption and oral bioavailability, controlling release, increasing stability, and lengthening circulation time by reducing the recognition by the reticuloendothelial system (RES) (Table 5). The flavonoid silymarin has been used clinically to treat several hepatic disorders without a high efficiency. To improve oral absorption, silymarin-loaded NLCs were developed [123]. These formulations showed fast in vitro lipid digestion, suggesting that NLCs may facilitate the rapid silymarin absorption, and gave rise to relative silymarin bioavailability 2.54- and 3.10-fold greater than that produced by marketed LEGALON® and solid dispersion pellets, respectively. The ability of NLCs to enhance absorption was confirmed in other studies using tripterine, a triterpenoid from the Celastracea family, extracted from the Chinese herbal plant Tripterygium wilfordii [124]. More recently, various novel and complex NLCs have emerged as carrier designed to achieve specific functions. For example, cell penetrating peptide- (CPP-) coated NLCs loaded with tripterine noticeably enhanced antitumor activity in vitro in prostate tumor cells, as well as in prostate tumor-bearing mice [124]. Ionic complex loaded NLCs enhanced the encapsulation efficiency, improved lipophilicity, and produced sustained release in vivo [95].

4.3.3. Emulsions

(i) Microemulsions and Nanoemulsions. Microemulsions (MEs) are optically isotropic systems with special features, including an average particle size that ranges from 10 to 100 nm; spontaneous formation, that is, without any energy input; thermodynamic stability; optical transparency or slight opalescence; and low viscosity and allergenicity. All this makes them very attractive delivery systems [125].

MEs are constituted by an oil phase, an aqueous phase, a surfactant, and, probably, a cosurfactant [126]. When there are similar amounts of oil and water, a bicontinuous ME is usually formed, in which both phases form continuous domains separated by surfactant-stabilized interfaces. Otherwise, when amounts of oil and water are not similar, MEs with droplet-like structure are formed, which can be water-in-oil (w/o) or oil-in-water (o/w) MEs depending on the major compound.

Like other promising carriers, MEs have been shown to improve oral delivery of bioactive compound by (i) enhancing stability and permeability, (ii) allowing a controlled and sustained release, and (iii) improving GI absorption and oral bioavailability via the lymphatic transport pathway [1, 127]. In this respect, it has been found that this absorption pathway can be significantly favored by w/o MEs as compared to o/w MEs. In addition, due to their special features, MEs offer further advantages, such as ease of preparation, high capacity to solubilize hydrophilic, and lipophilic compounds and long-term stability.

Despite their numerous advantages, MEs present some limitations. They are sensitive to changes of environmental conditions, such as temperature, ionic strength, and composition (adding/removing molecules to/from the aqueous continuous phase), which may compromise their stability. In addition, MEs formation requires the use of relatively large amounts of synthetic surfactants to achieve an efficient loading capacity, especially when using triglycerides as dispersed oil phase [126].

Nanoemulsions (NEs), often also called miniemulsions, are systems with droplet-like structure. They are formed by an oil phase, an aqueous phase, and a mixture of surfactants and cosurfactants stabilizing droplets, whose average size is significantly (10-fold or so) smaller than that of droplets present in conventional emulsions [126]. Like MEs, they are optically transparent and show low viscosity. Moreover, although NEs do not form spontaneously and have been shown to be thermodynamically unstable, they show high kinetic stability, which can be for several years. As compared to MEs, these systems are much less sensitive to changes of environmental conditions and require lower amounts of synthetic surfactants to be formed due to their higher loading capacity [126].

Application of MEs and NEs as carriers for the efficient oral administration of Phy is shown in Table 5. Hydroxysafflor yellow A (HSYA) is a flavonoid derived and isolated from the safflower plant (Carthamus tinctorius L.) that has been shown to possess antioxidant and anti-inflammatory actions, antiplatelet aggregation, and antitumor properties as well as antiarrhythmic activity [128, 129]. Unlike other flavonoids, water solubility of HSYA is high; however, it has very poor permeability, which limits its GI absorption, oral bioavailability, and bioefficacy. Qi et al. [130] developed a HSYA-loaded ME (w/o), which showed a bioavailability ca. 19-folds higher than that of the unloaded compound. MEs have been also used to deliver poor water-soluble and stable Phy, such as elemenes (sesquiterpene). Elemene-loaded emulsions have been used clinically as antitumor agents. However, due to their poor stability and water solubility, the oral bioavailability of these emulsions was only 18.8%. An o/w elemene-loaded ME was then prepared [131]. This showed high entrapment efficiency of 99.81% and significantly higher stability than a normal emulsion, which led to a relatively bioavailability 1.63-fold greater than that of the conventional emulsion (Table 5).

(ii) Self-Emulsifying Delivery Systems. A further and very successful approach to overcome problems associated with poor water solubility of Phy is self-emulsifying delivery systems (SEDSs), self-microemulsifying delivery systems (SMEDSs), and self-nanoemulsifying delivery systems (SNEDDSs). These systems consist in isotropic mixtures, which include a large variety of liquid or waxy excipients available, ranging from oils through biological lipids (natural/synthetic oil) and hydrophobic and hydrophilic surfactants to water-soluble cosolvents, generally regarded as safe (GRAS) status [132]. Moreover, additives like α-tocopherol, β-carotene, and propyl gallate can be added to prevent the oxidation of SEDSs-Phy formulations [133].

Unlike all the previously described lipid formulations, these systems have a unique property: they remain in
a preformulation state until ingestion. Upon dilution in aqueous physiological fluids of GI tract and with the gentle agitation provided by peristaltic movements, SEDSs are able to spread readily and self-emulsify spontaneously, forming fine o/w emulsions (50 nm > droplet size > 250 nm), that keep the active agent in solubilized form [134–136]. SEDDS formulations (oil, 40–80% (HLB < 12), 20–60%) commonly give rise to opaque dispersions with particle sizes >250 nm, while SMEDS formulations (oil, 40–80% (HLB > 11), 20–40%; hydrophilic cosolvents, 0–40%) disperse into smaller droplets with particle sizes between 50 and 250 nm, leading to optically clear or slightly opalescent microemulsions. SNEDS formulations with particle sizes between 50 and 250 nm, that give rise to nanoemulsions with a droplet size less than 50 nm and completely transparent [9, 62].

The reduction in emulsion particle size of these formulations once in the GI tract increases the surface area of particles, which, in turn, provides higher interfacial surface area and a very low interfacial tension. This provides SEDSs with a high capacity to solubilize the loaded Phy in the GI tract and to enhance its release and absorption and oral bioavailability [136–138]. It should be noted that droplet size of o/w emulsions formed after self-emulsification inside the body and, hence, capacity of SEDSs to act as efficient Phy carriers is highly determined by the excipient combination used in the formulation of these systems. Therefore, selection of excipients is a quite challenging task that should be considered.

Besides improving oral bioavailability of poor watersoluble Phy, SEDSs show multiple advantages. Among them are the following:

(i) Formulation surfactants increasing the intestinal permeability, which decreases surface tension and facilitates formulation contact with intestinal mucus [139]
(ii) SEDSs protecting loaded Phy against enzymatic degradation and avoid its first-pass hepatic metabolism
(iii) SEDSs providing higher loading capacity than conventional lipid solutions
(iv) Thermodynamic stability
(v) Ease of manufacture and scale-up. These advantages make SEDS unique when compared to other drug delivery systems like solid dispersions, liposomes, nanoparticles, and so forth [140–142]
(vi) Ease of administration and versatility of dosage form, in either liquid or solid form. Liquid dosage forms can be administered in soft or hard gelatin capsules but these have shown some drawbacks, such as high production costs, low drug compatibility and stability, drug leakage and precipitation, capsule ageing, and need of a large quantity of surfactants (30–60%), which can induce GI irritation. These disadvantages are overcome by formulating SEDS as solid forms by extrusion/spheronization methods [72].

The delivery of poorly water-soluble Phy using SEDSs has been extensively studied during the past decade and many of these studies are summarized in Table 5. Thus, for instance, the self-double emulsifying formulation of Hydroxysafflor yellow A (HSYA) was developed using phospholipid dissolved in Labrafil™, Lipophile WL1349, Tween 80, and oleic acid. The formulation results in 20-fold increase in C_{max} and 35-fold rise in AUC value of Phy as compared to the aqueous solution [143, 144]. The SMEDS of gentiopicrin obtained from the roots of gentians was formulated using phospholipids in Labrasol as oil phase and Cremophor EL and Transcutol P as other excipients. The SMEDS of gentiopicrin with phospholipids enhanced the relative bioavailability of Phy to 703.62% as compared to gentiopicrin alone. Similarly, the phospholipid complex of morin (MPC) was developed as SNEDS using Labrafac MI944 CS, Cremophor RH 40, and Transcutol P as excipients which exhibited a significant increase in C_{max} and T_{max}, and relative oral bioavailability (6.23-fold) as compared to the morin suspension [145]. Likewise, lutein formulated as SNEDDS demonstrated having immediate dissolution (within 5 min) as compared to commercial product of lutein (Eyelac®) where there is no dissolution within specific time [146]. Many other studies have been carried out to enhance oral bioavailability and therapeutic effect of other plant active compounds, including apigenin, berberine hydrochloride (BBH), puerarin, hesperidin, quercetin, curcumin, baicalin, oleanolic acid, vinpocetine, nobiletin, oridonin, and silymarin.

5. Other Approaches to Increase Bioefficacy of Antitumor Phytochemicals

5.1. Oral Codelivery of Phytochemicals and Chemotherapeutic Drugs. Combined cancer therapy consisting in (i) the combined application of some of the most common types of cancer treatment, including surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy or (ii) the coadministration of different chemotherapeutic drugs, is often more effective. The rationale for combination chemotherapy is to use drugs that work by different mechanisms, thereby decreasing the likelihood that resistant cancer cells will develop. Moreover, when drugs with different effects are combined, each drug can be used at its optimal dose, without intolerable side effects [147].

Following the same rationale, it is believed that codelivery of antitumor drugs and plant bioactive compounds could improve therapeutic effects by targeting diverse molecular targets, reducing toxicity, overcoming drug resistance, and facilitating the use of lower and safer doses [1]. Thus, as observed in Table 3, there are many in vitro and in vivo studies as well as some clinical trials focused on demonstrating the potential synergistic effect when codelivering phytochemicals, mainly polyphenols, and first line chemotherapeutic agents [148, 149].

Codelivery strategy is, however, usually limited by low water solubility, poor oral bioavailability, undesirable pharmacokinetic characteristics, and side effects [1]. In this sense, incorporation of two or more molecules (Phy + Phy or Phy + drug) in one nanocarrier seems to be a promising way to increase the bioefficacy of codelivery method. It has demonstrated to (i) improve water solubility and oral
Table 3: Phytochemicals combined with first-line antitumor drugs and their study in clinical trials. Nanocarriers used to enhance bioefficacy of codelivery are also shown.

Phytochemical	Codelivered antitumor agent	In vitro/in vivo	Clinical trial	Phase of study	Ref.
Ellagic acid	5-Fluorouracil	Colon	—	—	[279]
	Vinorelbine	—	Hormone refractory prostate cancer	Completed	[167]
	α-Difluoromethylornithine	Colon	—	—	[280]
(−)-Epigallocatechin-3-gallate (EGCG)	Tamoxifen + sulindac	Lung	—	—	[281]
	Sulindac	Intestinal	—	—	[281]
5-Fluorouracil	Tamoxifen	Breast	—	—	[282]
Gemcitabine hydrochloride	Pancreas	—	Breast	Completed	[283–285]
Decitabine	Osteosarcoma	—	Pediatric solid tumors, leukemia	Recruiting	[286]
Decitabine	—	—	Non-small cell lung	Completed	[287]
Interleukin-2 (high-dose)	—	—	Kidney cancer		[288]
Genistein	—	—	Melanoma		
5-Fluorouracil	Docetaxel	Colon	—	—	[289]
	Prostate	Lung	—	—	
		Breast	—	—	
Docetaxel		Pancreas	—	—	[290]
		Prostate	—	—	
Doxorubicin		Lung	—	—	[290]
		Breast	—	—	
		Pancreas	—	—	
		Ovarian	—	—	
		Prostate	—	—	
Cisplatin		Lung	—	—	[290, 291]
		Breast	—	—	
		Pancreas	—	—	
Erlotinib		—	Pancreas	Completed	[292]
Erlotinib + gemcitabine		Pancreas	—	Completed	[293, 294]
Luteolin	Celecoxib	Breast	—	—	[295]
Phytochemical	Codelivered antitumor agent	In vitro / in vivo	Clinical trial	Phase of study	Ref.
---------------	-----------------------------	-------------------	---------------	---------------	------
Quercetin	Docetaxel	Prostate	—	—	[296]
	5-Fluorouracil	—	—	—	[297–299]
	Sulindac	Colorectal	Liver	Completed	[300]
	Tamoxifen	Breast	—	—	[301]
	Paclitaxel	Liver	—	—	[302]
Resveratrol	Rapamycin	Breast	—	—	[303]
	Doxorubicin	Breast	—	—	[304]
	Temozolomide	Glioma	—	—	[305]
	5-Fluorouracil	Colon	—	—	[306]
	Mitomycin	Colorectal	—	—	[307]
Curcumin	Irinotecan	Colorectal	Colorectal	Active	[308, 309]
	Folfox	Colorectal	Colorectal	Active	[310]
	Sulindac	Lung	Colorectal	Completed	[224, 311]
	Capecitabine	Colorectal	Rectal	Active	[311]
	5-Fluorouracil	Colorectal	—	—	[312]
	Dasatinib	Colon	—	—	[313]
	Paclitaxel	Breast	—	—	[314]
	Celecoxib	Colon	—	—	[315]
	Gemcitabine	Lung	—	—	[316]
	Genistein	—	—	Active	[317]
Lycopene	Docetaxel	Prostate	—	Active	[318, 319]

Table 3: Continued.
Table 4: Overview of nonlipid formulations, which have been designed to administer phytochemicals by oral route.

Active ingredient	Lipid-based formulation	Effect of formulation	Ref.	
Curcumin	PLGA⁻⁻⁻NameValuePair	In vitro sustained release and enhanced cytotoxicity.	[321]	
Curcumin	Hydroxypropyl cellulose NPs	Temperature-dependent release in vitro.	[322]	
Puerarin	PBDS	Dendrimers	Increased in vitro oral bioavailability and reduced side effects.	[323, 324]
Resveratrol				
Genistein				
Podophyllotoxin				
Curcumin	Hyaluronic acid conjugate	Improved water solubility, stability, and antitumoral activity in vitro.	[325]	
Puerarin	Dendrimers	Improved in vitro oral bioavailability and reduced side effects.	[323, 324]	
Rutin	CD inclusion complexes	α-CD, β-CD, HP-β-CD, and DM-β-CD	Improved water solubility and stability, increasing the oral bioavailability and bioefficacy.	[327]
3-EGCG				
Silymarin (Silybum marianum)	Inorganic nanocarriers		Sustained release and enhanced oral bioavailability in vivo.	[321]
Silybin meglumine				
Resveratrol	Hybrid nanocarriers	TCC⁻⁻--;liposomes	Improved absorption and oral bioavailability and reduced side effects in vivo In vitro controlled release and in vivo enhanced targeting and reduced side effects.	[330]
Vincristine	Hybrid nanocarriers	DQA-PEG₁₉₃₀⁻⁻⁻--;liposomes	Overcome multidrug resistance.	[332]
Tripterine	Hybrid nanocarriers	PLGA-PEG-R7⁻⁻--;liposomes	Enhanced in vitro and in vivo antitumor activity.	[118]
Silymarin	Other novel nanocarriers	Liquid crystalline nanocarrier	Sustained release.	[333]
Quercetin	Other novel nanocarriers	Folate-modified lipid nanocapsules	Improved water solubility, oral bioavailability, and biological activity (active targeting-liver) in vivo.	[334]
Tetrandrine	Lipid nanocapsules			

Note:

- PLGA: poly(lactic-co-glycolic acid); PEG: polyethylene glycol; DM-β-CD: dimethyl-β-cyclodextrin.
- a/β-CD: alpha/beta-cyclodextrin.
- R7 is a cell-penetrating peptide.
- α-CD, β-CD, HP-β-CD, and DM-β-CD: cyclodextrins.
- CQ-PM: curcumin-loaded polymeric micelles.
- NLC: nanoliposomal formulation.

Bioavailability and Toxicity:

- (i) reduce drug resistance, by inhibiting transporter-mediated efflux; (ii) delay adaptation processes; (iii) retain cells in the tumor; (iv) produce synergistic therapeutic effects through the simultaneous delivery of multiple agents to the action site; and (v) minimize side effects [1, 150].

In this sense, few Phy described in Table 3 have been coencapsulated or coloaded in one oral nanocarrier. Quercetin + tamoxifen was administered through PLGA nanoparticles, while quercetin + paclitaxel was administered through CQ-PM and curcumin + genistein through NLC.

5.2. Parenteral and Topical Administration of Phytochemicals as Alternative to the Oral Route.

To overcome limitations in the oral administration of poor water-soluble Phy, parenteral (intravenous and intraperitoneal) and topical (transdermal, nasal, and ocular) administration routes can be used to increase dose precision and clinical efficacy.

Likewise, in recent years, topical delivery of bioactive compounds has also drawn great attention owing to its advantages over other administration routes and outstanding contribution in improving local action [151] or systemic absorption, which can minimize the first-pass effect [152]. Nevertheless, this application also shows several barriers that limit its use, including low skin permeation, short biological half-life, presystemic metabolism, or systemic toxicity [1].

On the other hand, and to get over limitations of parenteral and topical administration routes, application of nanocarriers has demonstrated to be also an efficient formulation strategy. Table 6 shows and overviews the lipid and nonlipid formulations specifically designed to parenteral and topical Phy administration. In case of the parenteral route, most of the investigations have focused on utilizing carriers to enhance antitumor efficiency through passive targeting or active targeting [153, 154], controlling drug release at the tumor site to minimize side effects [155, 156], or overcoming

Bioavailability and Toxicity:

- (i) reduce drug resistance, by inhibiting transporter-mediated efflux; (ii) delay adaptation processes; (iii) retain cells in the tumor; (iv) produce synergistic therapeutic effects through the simultaneous delivery of multiple agents to the action site; and (v) minimize side effects [1, 150].

In this sense, few Phy described in Table 3 have been coencapsulated or coloaded in one oral nanocarrier. Quercetin + tamoxifen was administered through PLGA nanoparticles, while quercetin + paclitaxel was administered through CQ-PM and curcumin + genistein through NLC.

5.2. Parenteral and Topical Administration of Phytochemicals as Alternative to the Oral Route.

To overcome limitations in the oral administration of poor water-soluble Phy, parenteral (intravenous and intraperitoneal) and topical (transdermal, nasal, and ocular) administration routes can be used to increase dose precision and clinical efficacy.
multidrug resistance [157]. Parenteral nanocarriers include either lipid formulations (liposomes, SLNs, and NCLs) or polymer formulations (polymeric NPs and polymer-bioactive conjugates). For topical application, the incorporation of active compounds into nanocarriers aims to enhance skin permeation and stability, lengthen systemic circulating time, and minimize metabolic degradation and systemic toxicity. Thus, for instance, MEs provide a safe, effective, and

Table 5: Overview of lipid-based delivery systems to administer phytochemicals by oral route.

Active ingredient	Lipid-based formulation	Effect of formulation	Ref.
Vinorelbine	Liposomes	Reduced side effects and increased circulation half-life. Improved therapeutic effect in vivo.	[94]
Gypenoside		Activated in vitro immune response in macrophages.	[335]
Curcumin	Liposomes	Improved pharmacokinetics and oral bioavailability in vivo.	[329, 336]
3-EGCG	Liposomes	Enhanced in vitro antitumor activity.	[337]
Brucine	Liposomes	Improved absorption and oral bioavailability, enhanced targeting, and reduced side effects in vivo.	[338, 339]
Quercetin	Phytosome	Enhanced membrane permeability, sustained and controlled release.	[101]
Kaempferol	Phytosome	Enhanced absorption, oral bioavailability, and bioefficacy.	[98, 99]
Isorhamnetin	Phytosome		[102]
Silybin	Phytosome		[100]
3-EGCG	Phytosome		
Quercetin	Phytosome		
β-Elemene	Microemulsions	Increased water solubility and permeability and improved oral bioavailability.	[131]
Hydroxysafflor yellow A	Microemulsions		[130]
Puercarin	Microemulsions		
Baicalin	SEDS	Enhanced stability, oral bioavailability, and targeting effects in vitro and in vivo.	[134]
Curcumin	SEDS		[341]
Indirubin	SEDS		[88]
Hydroxysafflor yellow A	SEDS		[143, 144]
Gentiotopicrin	SEDS		[341]
Lutein	SMEDS	Enhanced stability, oral bioavailability, and targeting effects in vitro and in vivo.	[137]
Apigenin	SMEDS		[343]
Nobiletin	SMEDS		
Oridonin	SMEDS		
Silymarin	SMEDS		
Puercarin	SMEDS		
Hesperidin	SMEDS		
Berberine hydrochloride (BBH)	SMEDS		[346]
Morin	SNEDS	Enhanced stability, oral bioavailability, and targeting effects in vitro and in vivo.	[145]
Curcumin	SNEDS		[347]
Lutein	SNEDS		
Oleanolic acid	SNEDS		
Vinpocetine	SNEDS		
Puercarin	NLCs	Improved absorption and oral bioavailability and reduced side effects (irritation of GI mucous membrane) in vivo.	[120, 121]
Triptolide	SLNs		[350]
Cantharidin	SLNs		[351]
Resveratrol	SLNs		[352]
Silymarin	NLCs	Increased absorption and oral bioavailability in vivo. Enhanced in vitro and in vivo antitumor activity.	[123]
Tripterine	NLCs		
Curcumin	NLCs		
multidrug resistance			
Table 6: Overview of lipid and nonlipid formulations, which have been designed to administer phytochemicals by parental and topical routes.

Phytochemical	Lipid-based formulation	Effect of formulation	Admin. route	Ref.
Curcumin	LBDS NLCs Tocol-NLCs	Enhanced stability and brain targeting in vivo.	Intraperitoneal	[353]
Baicalein	LBDS Tocol-NLCs	Less irritating and toxic and enhanced bioavailability and antitumor efficacy in vivo.	Intravenous	[354]
β-Elemene	LBDS NLCs	Reduced toxicity and improved pharmacokinetic profile in vivo.	Intravenous	[355]
Bufadienolides	Ionic-complex-based NLCs	Sustained-release and protection against liver enzyme degradation in vivo.	Intravenous	[356]
Breviscapine	Ionic-complex-based NLCs	Overcome multidrug resistance in vivo.	Transdermal	[357]
Berberine	DQA-PEG₂₀₀₀-DSPE liposomes	Enhanced antitumor activity and brain targeting in vivo.	Intranasal	[358]
Quercetin	LBDS MEs	Increased permeation and skin retention.	Efficient systemic distribution in vivo.	[359]
Genistein	Inorganic carriers Gold NPs	Enhanced efficacy and reduced toxicity in vivo.	Intratumoral injection	[360]
Chlorogenic acid	Inorganic carriers Dextransulfate-chitosan NPs	Controlled release and targeted effect against tumor cells in vitro.	Intravenous	[361]
Resveratrol	PBDS Chitosan/PBCA NPs	In vivo anticancer effect on hepatic tumor cells.	Intravenous	[362]
Bufadienolides	Poloxamer-liposomes	Reduced irritation of eye mucous membrane in vivo.	Transdermal	[363]
Breviscapine	Ethosomes	Enhanced skin permeation and bioactivity in vivo.	Efficient systemic distribution in vivo.	[364]
Curcumin	NLCs	Enhanced antitumor activity and brain targeting in vitro.	Intranasal	[365]
Tetrandrine	Charged SLNs	Enhanced targeting and binding to the specific site of action (liver).	Ocular	[366]
3-ECGC	Inorganic carriers Gold NPs	Enhanced efficacy and reduced toxicity in vivo.	Intratumoral injection	[367]
Curcumin	PBDS Chitosan/NPs	Higher in vivo liver targeting effect and in vitro cytotoxicity on hepatic cancer cells.	Intravenous	[368]
Trans-resveratrol	Galactosylated chitosan NPs	Enhanced targeting and binding to the specific site of action (liver).	Intravenous	[369]
Artemisinin	Polymeric micelles Targeted polymeric micelles	Achieving site-specific cell targeting and enhancing intracellular drug accumulation.	Intraperitoneal	[370]
Resveratrol	PBDS Transferrin modified PEG-PLA^a conjugate	Cellular uptake, in vivo biodistribution, and antitumor activity. Targeted therapy of glioma.	Intraperitoneal	[371]
Bufalin	Biotinylated chitosan NPs	Enhanced targeting and binding to the specific site of action breast carcinoma.	Transdermal	[372]
Quercetin	PBDS Lecithin-chitosan NPs	Enhanced targeting and binding to the specific site of action breast carcinoma.	Topical	[373]

^aPEG: polyethylene glycol; DQA: dequalinium; DSPE: polyethylene glycol-distearylphosphatidylethanolamine.

^bPBCA: poly(butyl cyanoacrylate).

^cPLA: polylactic acid.
noninvasive means to topically deliver Phy such as quercetin [158], genistein [159], and chlorogenic acid and resveratrol [160]. Other nanocarriers used for the topical delivery of Phy include liposomes, ethosomes, NLCs, polymeric NPs, and polymer-bioactive conjugates (Table 6).

6. Conclusions

Phy are molecules obtained from natural plant species and in the last decades have shown their positive benefits in human health, in prevention and treatment.

In the framework of cancer, polyphenols are the most studied group of phytochemicals, in both the in vitro and in vivo studies and clinical trials, with promising expectative, including the lack of side effects. Regarding terpenes, phytosterols, and organosulfur phytochemicals, they show hopeful results in breast, colon, and prostate models, although there are few clinical trials that started to confirm their effects in human models, compared with polyphenols.

The bioavailability of these compounds still adheres to measure urine levels as a routine parameter, but many authors defend the use of carriers to improve their availability in plasma and in targeted organs. This need is reflected in the development of new delivery mechanisms, where lipid-based delivery systems are part of a strategy to increase the water solubility and stability, prevent the rapid systemic clearance, prevent the intestinal and hepatic metabolism, enhance the bioavailability, and enhance the cancer cell targeting. The importance of measuring tissue levels of the chemopreventive agents would help to better understand the mode of action of the nanoparticles and phytochemicals and to avoid toxicity of both.

Conflicts of Interest

All the authors declare that there are no conflicts of interest regarding the publication of this paper.

Authors’ Contributions

Lamia Mouhid and Marta Corzo-Martinez contributed equally to the manuscript.

Acknowledgments

This work has been supported by Ministerio de Economía y Competitividad del Gobierno de España (MINECO, Plan Nacional 1+D+i AGL2013-48943-C2-2-R), Gobierno Regional de la Comunidad de Madrid (P2013/ABI-2728, ALIBIRD-CM), and EU Structural Funds. Marta Corzo-Martinez also thanks Ministerio de Economía y Competitividad (Spain) for her Juan de la Cierva contract.

References

[1] Y. Liu and N. Feng, "Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM),” Advances in Colloid and Interface Science, vol. 221, pp. 60–76, 2015.

[2] M. González-Vallinas, M. González-Castejón, A. Rodríguez-Casado, and A. Ramírez de Molina, "Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives,” Nutrition Reviews, vol. 71, no. 9, pp. 585–599, 2013.

[3] K. W. Lee, A. M. Bode, and Z. Dong, “Molecular targets of phytochemicals for cancer prevention,” Nature Reviews Cancer, vol. 11, no. 3, pp. 211–218, 2011.

[4] R. H. Liu, "Potential synergy of phytochemicals in cancer prevention: mechanism of action,” The Journal of Nutrition, vol. 134, no. 12, pp. 3479S–3485S, 2004.

[5] A. R. Bilia, B. Isacchi, C. Righeschi, C. Guccione, and M. C. Bergonzi, "Flavonoids loaded in nanocarriers: an opportunity to increase oral bioavailability and bioefficacy,” Food and Nutrition Sciences, vol. 5, no. 13, pp. 1212–1327, 2014.

[6] C. J. H. Porter and W. N. Charman, "In vitro assessment of oral lipid based formulations,” Advanced Drug Delivery Reviews, vol. 50, supplement 1, pp. S127–S147, 2001.

[7] F. Aqil, R. Munagala, J. Jeyabalan, and M. V. Vadhanam, "Bioavailability of phytochemicals and its enhancement by drug delivery systems,” Cancer Letters, vol. 334, no. 1, pp. 133–141, 2013.

[8] S. Kalepu, M. Manthina, and V. Padavala, "Oral lipid-based drug delivery systems—an overview,” Acta Pharmacutica Sinica B, vol. 3, no. 6, pp. 361–372, 2013.

[9] H. Shrestha, R. Bala, and S. Arora, "Lipid-based drug delivery systems,” Journal of Pharmaceutics, vol. 2014, Article ID 801820, 10 pages, 2014.

[10] T. M. Gibson, L. M. Ferrucci, J. A. Tangrea, and A. Schatzkin, "Epidemiological and clinical studies of nutrition,” in Anonymous Seminars in Oncology, pp. 282–296, Elsevier, Amsterdam, Netherlands, 2010.

[11] T. Norat, C. Scoccianti, M.-C. Boutron-Ruault et al., “European code against cancer 4th edition: diet and cancer,” Cancer Epidemiology, vol. 39, supplement 1, pp. S56–S66, 2015.

[12] A. Umar, B. K. Dunn, and P. Greenwald, "Future directions in cancer prevention,” Nature Reviews Cancer, vol. 12, no. 12, pp. 835–848, 2012.

[13] S. Ramos, "Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways,” Molecular Nutrition and Food Research, vol. 52, no. 5, pp. 507–526, 2008.

[14] W.-Y. Huang, Y.-Z. Cai, and Y. Zhang, "Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention,” Nutrition and Cancer, vol. 62, no. 1, pp. 1–20, 2010.

[15] T. Iwashina, ”The structure and distribution of the flavonoids in plants,” Journal of Plant Research, vol. 113, no. 111, pp. 287–299, 2000.

[16] V. Nandakumar, T. Singh, and S. K. Katiyar, "Multi-targeted prevention and therapy of cancer by proanthocyanidins," Cancer Letters, vol. 269, no. 2, pp. 378–387, 2008.

[17] City of Hope Medical Center and National Cancer Institute, IH636 Grape Seed Extract in Preventing Breast Cancer in Postmenopausal Women at Risk of Developing Breast Cancer, NCT00100893, 2015.

[18] J. Chong, A. Poutaraud, and P. Hugueney, “Metabolism and roles of stilbenes in plants,” Plant Science, vol. 177, no. 3, pp. 143–155, 2009.

[19] E. Portes, C. Gardrat, and A. Castellan, "A comparative study on the antioxidant properties of tetrahydrocurcuminoids and curcuminoids,” Tetrahedron, vol. 63, no. 37, pp. 9092–9099, 2007.
[54] H. Cai, E. Scott, A. Kholghi et al., “Cancer chemoprevention: evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice,” Science Translational Medicine, vol. 7, no. 298, Article ID 298ra171, 2015.

[55] Y. J. Chen, B. S. Inbaraj, Y. S. Pu, and B. H. Chen, “Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability,” Nanotechnology, vol. 25, no. 15, Article ID 155102, 2014.

[56] T. W. Kensler, J.-G. Chen, P. A. Egner et al., “Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo Township, Qidong, People’s Republic of China,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. II 1, pp. 2605–2613, 2005.

[57] T. Sivapalan, A. Melchini, M. Traka, S. Saha, and R. Mithen, “Investigating the bioavailability of phytochemicals and minerals from broccoli soups,” Proceedings of the Nutrition Society, vol. 74, article E191, 2015.

[58] Y. Sato, K. Nishikawa, K. Aiakawa et al., “Side-chain structure is critical for the transport of sterols from lysosomes to cytoplasm,” Biochimica et Biophysica Acta—Lipids and Lipid Metabolism, vol. 1257, no. 1, pp. 38–46, 1995.

[59] S. Rozner and N. Garti, “The activity and absorption relationship of cholesterol and phytosterols,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 282–283, pp. 435–456, 2006.

[60] S.-M. Khoo, D. M. Shackleford, C. J. H. Porter, G. A. Edwards, and W. N. Charman, “Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs,” Pharmaceutical Research, vol. 20, no. 9, pp. 1460–1465, 2003.

[61] E. S. Swenson, W. B. Milisen, and W. Curatolo, “Intestinal permeability enhancement: efficacy, acute local toxicity, and reversibility,” Pharmaceutical Research, vol. 11, no. 8, pp. 1132–1142, 1994.

[62] S. Gupta, R. Kesarla, and A. Omri, “Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems,” ISRN Pharnaceuc- tics, vol. 2013, Article ID 848043, 16 pages, 2013.

[63] B. J. Aungst, “Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or presystemic metabolism,” Journal of Pharmaceutical Sciences, vol. 82, no. 10, pp. 979–987, 1993.

[64] B. D. Patel, R. V. Modi, N. A. Thakkar, A. A. Patel, and P. H. Thakkar, “Development and characterization of solid lipid nanoparticles for enhancement of oral bioavailability of Rolaxifene,” Journal of Pharmacy and Bioallied Sciences, vol. 4, no. 5, pp. 14–16, 2012.

[65] C. W. Pouton, “Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsif- ying’ drug delivery systems,” European Journal of Pharmaceutical Sciences, vol. 11, no. 2, pp. 593–598, 2000.

[66] Y. Ito, T. Kusawake, M. Ishida, R. Tawa, N. Shibata, and K. Takada, “Oral solid gentamicin preparation using emulsifier and adsorbent,” Journal of Controlled Release, vol. 105, no. 1-2, pp. 23–31, 2005.

[67] G. Nicolaos, S. Crauste-Manciet, R. Farinotti, and D. Brossard, “Improvement of cefpodoxime proxetil oral absorption in rats by an oil-in-water submicron emulsion,” International Journal of Pharmaceutics, vol. 263, no. 1-2, pp. 165–171, 2003.

[68] M. El-Badry and M. Fathy, “Enhancement of the dissolution and permeation rates of meloxicam by formation of its freeze-dried solid dispersions in polyvinylpyrrolidone K-30,” Drug Development and Industrial Pharmacy, vol. 32, no. 2, pp. 141–150, 2006.

[69] G. Verreck and M. E. Brewster, “Melt extrusion-based dosage forms: excipients and processing conditions for pharmaceutical formulations,” Bulletin Technique Gat tinosse, vol. 97, pp. 85–95, 2004.

[70] A. J. Humster and W. N. Charman, “Lipid-based vehicles for the oral delivery of poorly water soluble drugs,” Advanced Drug Delivery Reviews, vol. 25, no. 1, pp. 103–128, 1997.

[71] B. N. Singh and K. H. Kim, “Drug delivery—oral route,” Encyclopedia of Pharmaceutical Technology, vol. 1, 2002.

[72] B. Chengaiah, M. Alagusundaram, S. Ramkanth, and C. M. Chetty, “Self-emulsifying drug delivery system: a novel approach for drug delivery,” Research Journal of Pharmacy and Technol- ogy, vol. 4, no. 2, pp. 175–181, 2011.

[73] C. J. H. Porter, N. L. Trevaskis, and W. N. Charman, “Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs,” Nature Reviews Drug Discovery, vol. 6, no. 3, pp. 231–248, 2007.

[74] W. N. Charman, C. J. H. Porter, S. Mithani, and J. B. Dressman, “Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH,” Journal of Pharmaceutical Sciences, vol. 86, no. 3, pp. 269–282, 1997.

[75] C. M. O’Driscoll, “Lipid-based formulations for intestinal lymp- phatic delivery,” European Journal of Pharmaceutical Sciences, vol. 15, no. 5, pp. 405–415, 2002.

[76] A. Gabizon and D. Papahadjopoulos, “Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 18, pp. 6949–6953, 1988.

[77] J. V. Natarajan, C. Nugraha, X. W. Ng, and S. Venkatraman, “Sustained-release from nanocarriers: a review,” Journal of Controlled Release, vol. 193, pp. 122–138, 2014.

[78] V. Kakkar, A. K. Mishra, K. Chuttani, and I. P. Kaur, “Proof of concept studies to confirm the delivery of curcumin loaded solid lipid nanoparticles (C-SLNs) to brain,” International Journal of Pharmaceutics, vol. 448, no. 2, pp. 354–359, 2013.

[79] J. Kreuter, “Nanoparticulate systems for brain delivery of drugs,” Advanced Drug Delivery Reviews, vol. 47, no. 1, pp. 65–81, 2001.

[80] S. Kunjachan, B. Rychlik, G. Storm, F. Kieslling, and T. Lam- mers, “Multidrug resistance: physiological principles and nanomedicinal solutions,” Advanced Drug Delivery Reviews, vol. 65, no. 13-14, pp. 1852–1865, 2013.

[81] S. Barui, S. Saha, G. Mondal, S. Hasena, and A. Chaudhuri, “Simultaneous delivery of doxorubicin and curcumin encapsulated in liposomes of pegylated RGDK-lipopeptide to tumor vasculature,” Biomaterials, vol. 35, no. 5, pp. 1643–1656, 2014.

[82] G. A. Koning and G. Storm, “Targeted drug delivery systems for the intracellular delivery of macromolecular drugs,” Drug Discovery Today, vol. 8, no. II, pp. 482–483, 2003.

[83] J. M. Metselaar and G. Storm, “Liposomes in the treatment of inflammatory disorders,” Expert Opinion on Drug Delivery, vol. 2, no. 3, pp. 465–476, 2005.

[84] B.-S. Ding, T. Dzubiila, V. V. Shuvaev, S. Muro, and V. R. Muzykantov, "Advanced drug delivery systems that target the vascular endothelium," Molecular Interventions, vol. 6, no. 2, pp. 98–112, 2006.
Northwestern University and National Cancer Institute, Y. Lin, R. Shi, X. Wang, and H.-M. Shen, “Luteolin, a flavonoid P. Pugalendhi, S. Manoharan, K. Panjamurthy, S. Balakrishnan, D. R. Yoo, Y. H. Jang, Y. K. Jeon et al., “Proteomic identification Shandong Cancer Hospital and Institute, H. X. Zhao, and Shandong Cancer Hospital and Institute, Study of Epigallocatechin-3-Gallate (EGCG) for Skin Prevention in Patients With Breast Cancer Receiving Adjuvant Radiotherapy, NCT02580279, 2015. Case Comprehensive Cancer Center and National Cancer Institute, Defined Green Tea Catechin Extract in Treating Patients With Localized Prostate Cancer Undergoing Surgery, NCT01340599, 2012. P. Pugalendhi, S. Manoharan, K. Panjamurthy, S. Balakrishnan, and M. R. Nirmal, “Antigenotoxic effect of genistein against 7,12-dimethylbenz[a]anthracene induced genotoxicity in bone marrow cells of female Wistar rats,” Pharmacological Reports, vol. 61, no. 2, pp. 296–303, 2009. H. G. Farina, M. Pomies, D. F. Alonso, and D. E. Gomez, “Anti-tumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer,” Oncology Reports, vol. 16, no. 4, pp. 885–891, 2006. Z.-M. Shao, J. Wu, Z.-Z. Shen, and S. H. Barsky, “Genistein exerts multiple suppressive effects on human breast carcinoma cells,” Cancer Research, vol. 58, no. 21, pp. 4851–4857, 1998. S.-H. Kim, S.-H. Kim, S.-C. Lee, and Y.-S. Song, “Involved of both extrinsic and intrinsic apoptotic pathways in apoptosis induced by genistein in human cervical cancer cells,” Annals of the New York Academy of Sciences, vol. 1171, pp. 196–201, 2009. Y. Nakamura, S. Yogosawa, Y. Izutani, H. Watanabe, E. Otsuji, and T. Sakai, “A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy,” Molecular Cancer, vol. 8, article 100, pp. 1476–4598, 2009. Northwestern University and National Cancer Institute, Genistein in Treating Patients With Prostate Cancer, NCT01126879, 2015. Masonic Cancer Center and University of Minnesota, Genistein in Treating Patients Undergoing External-Beam Radiation Therapy for Bone Metastases, NCT00769990, 2011. UNC Lineberger Comprehensive Cancer Center, “National Cancer Institute (NCI) Information provided by (Responsible Party): genistein in preventing breast or endometrial cancer in healthy postmenopausal women,” Tech. Rep. NCT00099008, 2013.

University of Wisconsin Madison and National Cancer Institute, Genistein in Patients Who Are Undergoing Surgery for Bladder Cancer, NCT00118040, 2010. D. R. Yoo, Y. H. Jang, Y. K. Jeon et al., “Proteomic identification of anti-cancer proteins in luteolin-treated human hepatoma Huh-7 cells,” Cancer Letters, vol. 282, no. 1, pp. 48–54, 2009. Y. Lin, R. Shi, X. Wang, and H.-M. Shen, “Luteolin, a flavonoid with potential for cancer prevention and therapy,” Current Cancer Drug Targets, vol. 8, no. 7, pp. 634–646, 2008. F. Yin, A. E. Giuliano, and A. J. Van Herle, “Growth inhibitory effects of flavonoids in human thyroid cancer cell lines,” Thyroid, vol. 9, no. 4, pp. 369–376, 1999. S.-F. Yang, W.-E. Yang, H.-R. Chang, S.-C. Chu, and Y.-S. Hsieh, “Luteolin induces apoptosis in oral squamous cancer cells,” Journal of Dental Research, vol. 87, no. 4, pp. 401–406, 2008. R.-X. Shi, C.-N. Ong, and H.-M. Shen, “Luteolin sensitizes tumor necrosis factor-α-induced apoptosis in human tumor cells,” Oncogene, vol. 23, no. 46, pp. 7712–7721, 2004. S.-H. Park, H. S. Park, J. H. Lee et al., “Induction of endoplasmic reticulum stress-mediated apoptosis and non-canonical autophagy by luteolin in NCI-H460 lung carcinoma cells,” Food and Chemical Toxicology, vol. 56, pp. 100–109, 2013. K. Ramasamy and R. Agarwal, “Multitargeted therapy of cancer by silymarin,” Cancer Letters, vol. 269, no. 2, pp. 352–362, 2008. R. Agarwal, C. Agarwal, H. Ichikawa, R. P. Singh, and B. B. Aggarwal, “Anticancer potential of silymarin: from bench to bed side,” Anticancer Research, vol. 26, no. 6, pp. 4457–4498, 2006. X. Zi, D. K. Feyes, and R. Agarwal, “Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: induction of G1 arrest through an increase in Cipl/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins,” Clinical Cancer Research, vol. 4, no. 4, pp. 1055–1064, 1998. R. P. Singh and R. Agarwal, “Flavonoid antioxidant silymarin and skin cancer,” Antioxidants and Redox Signaling, vol. 4, no. 4, pp. 655–663, 2002. G. Deep, R. P. Singh, C. Agarwal, D. J. Kroll, and R. Agarwal, “Silymarin and silibinin cause GI and G2–M cell cycle arrest via distinct circuits in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin,” Oncogene, vol. 25, no. 7, pp. 1053–1069, 2006. Tehran University of Medical Sciences, Evaluation of Effects of Silymarin on Cisplatin Induced Nephrotoxicity in Upper Gastrointestinal Adenocarcinoma, NCT01829178, 2025.

Herbert Irving Comprehensive Cancer Center and National Cancer Institute, Silymarin (Milch Thistle Extract) in Treating Patients With Acute Lymphoblastic Leukemia Who Are Receiving Chemotherapy, NCT00055718, 2013.

J. Johnson and E. G. De Meja, “Dietary factors and pancreatic cancer: the role of food bioactive compounds,” Molecular Nutrition and Food Research, vol. 55, no. 1, pp. 58–73, 2011.

L. Gibellini, M. Pinti, M. Nasi, J. P. Montagna, S. De Biasi, and E. Roat, “Quercetin and cancer chemoprevention,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 591356, 15 pages, 2011.

R. Vidy Priyadarshini, R. Senthil Murugan, S. Maitreyi, K. Ramalingam, D. Karunagaran, and S. Nagini, “The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition,” European Journal of Pharmacology, vol. 649, no. 1–3, pp. 84–91, 2010.

B.-E. Shan, M.-X. Wang, and R.-Q. Li, “Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/β-catenin signaling pathway,” Cancer Investigation, vol. 27, no. 6, pp. 604–612, 2009.

F. Yang, L. Song, H. Wang, J. Wang, Z. Xu, and N. Xing, “Quercetin in prostate cancer: chemotherapeutic and chemopreventive effects, mechanisms and clinical application potential (review),” Oncology Reports, vol. 33, no. 6, pp. 2659–2668, 2015.
S.-Y. Zheng, Y. Li, D. Jiang, J. Zhao, and J.-F. Ge, “Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549,” *Molecular Medicine Reports*, vol. 5, no. 3, pp. 822–826, 2012.

S. C. Bischoff, University of Hohenheim, University Hospital Tuebingen, and Quercetin Pharmaceuticals, Prostate Cancer Prevention Trial with Quercetin and Genistein (QUERGEN), NCT01538316, 2012.

J. Zwicker, Dana-Farber Cancer Institute, Quercetin Pharmaceuticals, National Heart, Lung, and Blood Institute (NHLBI), *Cancer Associated Thrombosis and Isocertin (CAT IQ)*, NCT02195232, 2015.

D. R. Ferry, A. Smith, J. Malkhandi et al., “Phase I clinical trial of Resveratrol in Treating Patients with Colon Cancer,” NCT02195232, 2015.

K. R. Patel, V. A. Brown, D. J. L. Jones et al., “Clinical Pharmacology of Resveratrol and its metabolites in colorectal cancer patients,” *Cancer Research*, vol. 70, no. 19, pp. 7392–7399, 2010.

E. Wright, J. B. Frye, B. Gorti, B. N. Timmermann, and J. L. Funk, “Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer,” *Current Pharmaceutical Design*, vol. 19, no. 34, pp. 6218–6225, 2013.

K.-W. Cheng, C. C. Wong, G. Mattheolabakis, G. Xie, L. Huang, and B. Rigas, “Curcumin enhances the lung cancer chemopreventive efficacy of phospho-sulindac by improving its pharmacokinetics,” *International Journal of Oncology*, vol. 43, no. 3, pp. 895–902, 2013.

K. Madden, L. Flowers, R. Salani et al., “Proteomics-based approach to elucidate the mechanism of antitumor effect of curcumin in cervical cancer,” *Prostaglandins Leukotrienes and Essential Fatty Acids*, vol. 80, no. 1, pp. 9–18, 2009.

L.-D. Guo, X.-J. Chen, Y.-H. Hu, Z.-J. Yu, D. Wang, and J.-Z. Liu, “Curcumin inhibits proliferation and induces apoptosis of human colorectal cancer cells by activating the mitochondria apoptotic pathway,” *Phytotherapy Research*, vol. 27, no. 3, pp. 422–430, 2013.

S. Bimonte, A. Barbieri, G. Palma, A. Luciano, D. Rea, and C. Arra, “Curcumin inhibits tumor growth and angiogenesis in an orthotopic mouse model of human pancreatic cancer,” *BioMed Research International*, vol. 2013, Article ID 810423, 8 pages, 2013.

R. Wilken, M. S. Veena, M. B. Wang, and E. S. Srivatsan, “Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma,” *Molecular Cancer*, vol. 10, article 12, 2011.

S.-X. Cui, X.-J. Qu, Y.-Y. Xie et al., “Curcumin inhibits telomerase activity in human cancer cell lines,” *International Journal of Molecular Medicine*, vol. 18, no. 2, pp. 227–231, 2006.

H. Aoki, Y. Takada, S. Kondo, R. Sawaya, B. B. Aggarwal, and Y. Kondo, “Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of akt and extracellular signal-regulated kinase signaling pathways,” *Molecular Pharmacology*, vol. 72, no. 1, pp. 29–39, 2007.

M. D. Anderson Cancer Center, “Sabinsa Corporation, Trial of Curcumin in Advanced Pancreatic Cancer,” NCT00094445, 2014, 2016.

N. Dhillon, B. B. Aggarwal, R. A. Newman et al., “Phase II trial of curcumin in patients with advanced pancreatic cancer,” *Clinical Cancer Research*, vol. 14, no. 14, pp. 4491–4499, 2008.

University of Rochester and J. Ryan, “Curcumin for the Prevention of Radiation-induced Dermatitis in Breast Cancer Patients,” NCT01042938, 2012, 2016.

C. A. Nathan, Louisiana State University Health Sciences Center Shreveport, Feist-Weiller Cancer Center, and National Cancer Institute (NCI), “Curcumin Biomarker Trial in Head and Neck Cancer,” NCT0160302, 2014, 2016.

Curcumin Biomarkers, University of North Carolina, Chapel Hill, NC, USA, NCT0133917, 2013, 2016.

Tata Memorial Hospital and Pharmazna Herbals Pvt Limited (PHPL), “Pilot Study of Curcumin Formulation and Ashwagandha Extract in Advanced Osteosarcoma (OSCAT),” NCT00068919, 2011, 2016.

M. Cruz-Correa, D. A. Shokes, P. Sanchez et al., “Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis,” *Clinical Gastroenterology and Hepatology*, vol. 4, no. 8, pp. 1035–1038, 2006.
[238] G. Garcea, D. J. L. Jones, R. Singh et al., “Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration,” British Journal of Cancer, vol. 90, no. 5, pp. 1011–1015, 2004.

[239] F.-Y. Tang, M.-H. Pai, Y.-H. Kuo, and X.-D. Wang, “Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer,” Molecular Nutrition and Food Research, vol. 56, no. 10, pp. 1520–1531, 2012.

[240] P. T. Uppala, T. Dissmore, B. H. S. Lau, T. Andacht, and S. Rajaram, “Selective inhibition of cell proliferation by lycopene in MCF-7 breast cancer cells in vitro: a proteomic analysis,” Phytotherapy Research, vol. 27, no. 4, pp. 595–601, 2013.

[241] P. Palozza, R. E. Simone, A. Catalano, and M. C. Mele, “Tomato lycopene and lung cancer prevention: from experimental to human studies,” Cancers, vol. 3, no. 2, pp. 2333–2357, 2011.

[242] A. I. Teodoro, F. L. Oliveira, N. B. Martins, G. D. A. Maia, R. B. Martucci, and R. Borovejic, “Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines,” Cancer Cell International, vol. 12, article 36, 2012.

[243] P. E. Clark, M. C. Hall, L. S. Borden Jr. et al., “Phase I-II prospective, dose-escalating trial of lycopene in patients with biochemical relapse of prostate cancer after definitive local therapy,” Urology, vol. 67, no. 6, pp. 1257–1261, 2006.

[244] clinicaltrials.gov, “Clinical trials database,” 2015.

[245] H. Kurihara, H. Koda, S. Asami, Y. Kiso, and T. Tanaka, “Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancer metastasis in mice treated with restraint stress,” Life Sciences, vol. 70, no. 21, pp. 2509–2520, 2002.

[246] T. Tanaka, Y. Morishita, M. Suzuki, T. Kojima, A. Okumura, and H. Mori, “Chemoprevention of mouse urinary bladder carcinoma by the naturally occurring carotenoid astaxanthin,” Carcinogenesis, vol. 15, no. 1, pp. 15–19, 1994.

[247] T. Tanaka, H. Makita, M. Ohnishi, H. Mori, K. Satoh, and A. Hara, “Chemoprevention of rat oral carcinoma by naturally occurring xanthophylls, astaxanthin and canthaxanthin,” Cancer Research, vol. 55, no. 18, pp. 4039–4046, 1995.

[248] H. Jyonouchi, S. Sun, K. Iijima, and M. D. Gross, “Antitumor activity of astaxanthin and its mode of action,” Nutrition and Cancer, vol. 36, no. 1, pp. 59–65, 2000.

[249] A. R. Rao, H. N. Sindhija, S. M. Dharmesh, K. U. Sankar, R. Sarada, and G. A. Ravishankar, “Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga haematococcus pluvialis,” Journal of Agricultural and Food Chemistry, vol. 61, no. 16, pp. 3842–3851, 2013.

[250] T. Tanaka, T. Kawamori, M. Ohnishi et al., “Suppression of azoxymethane-induced rat colon carcinoma by dietary administration of naturally occurring xanthophylls astaxanthin and canthaxanthin during the postinitiation phase,” Carcinogenesis, vol. 16, no. 12, pp. 2957–2963, 1995.

[251] P. Palozza, C. Torelli, A. Boninsegna et al., “Growth-inhibitory effects of the astaxanthin-rich algal Haematococcus pluvialis in human colon cancer cells,” Cancer Letters, vol. 283, no. 1, pp. 108–117, 2009.

[252] Q. Q. Li, G. Wang, F. Huang, M. Banda, and E. Reed, “Anti-neoplastic effect of β-elemene on prostate cancer cells and other types of solid tumour cells,” Journal of Pharmacy and Pharmacology, vol. 62, no. 8, pp. 1018–1027, 2010.

[253] X. Li, G. Wang, J. Zhao et al., “Antiproliferative effect of β-elemene in chemoresistant ovarian carcinoma cells is mediated through arrest of the cell cycle at the G2-M phase,” Cellular and Molecular Life Sciences, vol. 62, no. 7–8, pp. 894–904, 2005.

[254] Y.-Q. Yao, X. Ding, Y.-C. Jia, C.-X. Huang, Y.-Z. Wang, and Y.-H. Xu, “Anti-tumor effect of β-elemene in glioblastoma cells depends on p38 MAPK activation,” Cancer Letters, vol. 264, no. 1, pp. 127–134, 2008.

[255] W. Chen, Y. Li, J. Wu, M. Gao, A. Wang, and B. Xu, “Beta-elemene inhibits melanoma growth and metastasis via suppressing vascular endothelial growth factor-mediated angiogenesis,” Cancer Chemotherapy and Pharmacology, vol. 67, no. 4, pp. 799–808, 2011.

[256] J. Liu, Y. Zhang, J. Qu et al., “β-elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis,” BMC Cancer, vol. 11, article 183, 2011.

[257] Z. Chen and Sun Yat-sen University, “A Study on β-elemene as Maintain Treatment for Complete Remission Patients of Newly Diagnosed Malignant Gliomas Following Standard Treatment (β-elemene),” NCT02629757. 2015.

[258] A. E. Moran, A. M. Carothers, M. J. Weyant, M. Redston, and M. M. Bertagnolli, “Carnosol inhibits β-catenin tyrosine phosphorylation and prevents adenoma formation in the C57BL/6/Min/+ (Min/+) mouse,” Cancer Research, vol. 65, no. 3, pp. 1097–1104, 2005.

[259] J. J. Johnson, D. N. Syed, Y. Suh et al., “Disruption of androgen and estrogen receptor activity in prostate cancer by a novel dietary diterpene carnosol: implications for chemoprevention,” Cancer Prevention Research, vol. 3, no. 9, pp. 1112–1123, 2010.

[260] M.-T. Huang, C.-T. Ho, Z. Yuan Wang et al., “Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid,” Cancer Research, vol. 54, no. 3, pp. 701–708, 1994.

[261] R. Iratni, Y. Al Dhaheri, S. Attoub, N. Karuventevida, and K. Arafat, “P0174 Anti-metastatic and anti-tumour growth effects of carnosol on breast cancer through autophagy and apoptosis,” European Journal of Cancer, vol. 50, supplement 4, p. e59, 2014.

[262] D. Vergara, P. Simeone, S. Bettini et al., “Antitumor activity of the dietary diterpene carnosol against a panel of human cancer cell lines,” Food and Function, vol. 5, no. 6, pp. 1261–1269, 2014.

[263] S.-C. Huang, C.-T. Ho, S.-Y. Lin-Shiau, and J.-K. Lin, “Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappaB and c-Jun,” Biochemical Pharmacology, vol. 69, no. 2, pp. 221–232, 2005.

[264] J. J. Gills, E. H. Jeffery, N. V. Matusheski, R. C. Moon, D. D. Lantvit, and J. M. Pezzuto, “Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion,” Cancer Letters, vol. 236, no. 1, pp. 72–79, 2006.

[265] G. Shen, O. K. Tin, R. Hu et al., “Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in Apc Min/+ mouse,” Cancer Research, vol. 67, no. 20, pp. 9937–9944, 2007.

[266] S. V. Singh, R. Warin, D. Xiao et al., “Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells,” Cancer Research, vol. 69, no. 5, pp. 2117–2125, 2009.

[267] B. Abbaoui, K. M. Riedl, R. A. Ralston et al., “Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: characterization, metabolism, and interconversion,” Molecular Nutrition and Food Research, vol. 56, no. 11, pp. 1675–1687, 2012.
[268] B. S. Cornblatt, L. Ye, A. T. Dinkova-Kostova et al., “Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast,” Carcinogenesis, vol. 28, no. 7, pp. 1485–1490, 2007.

[269] J.-S. Yang, G.-W. Chen, T.-C. Hsia et al., “Diallyl disulfide induces apoptosis in human colon cancer cell line (COLO 205) through the induction of reactive oxygen species, endoplasmic reticulum stress, caspases cascade and mitochondrial-dependent pathways,” Food and Chemical Toxicology, vol. 47, no. 1, pp. 171–179, 2009.

[270] G. Filomeni, K. Aquilano, G. Rottoli, and M. R. Cirillo, “Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide,” Cancer Research, vol. 63, no. 18, pp. 5940–5949, 2003.

[271] D. Xiao, S. Choi, D. E. Johnson et al., “Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2,” Oncogene, vol. 23, no. 33, pp. 5594–5606, 2004.

[272] J.-S. Yang, L.-F. Kok, Y.-H. Lin et al., “Diallyl disulfide inhibits WEHI-3 leukemia cells in vivo,” Anticancer Research, vol. 26, no. 1, pp. 219–225, 2006.

[273] H. A. Shin, Y. Y. Cha, M. S. Park, J. M. Kim, and Y. C. Lim, “Diallyl sulfide induces growth inhibition and apoptosis of anaplastic thyroid cancer cells by mitochondrial signaling pathway,” Oral Oncology, vol. 46, no. 4, pp. e15–e18, 2010.

[274] A. A. Baskar, S. Ignacimuthu, G. M. Paulraj, and K. S. Al Numair, “Chemopreventive potential of β-Sitosterol in experimental colon cancer model—an in vitro and in vivo study,” BMC Complementary and Alternative Medicine, vol. 10, article 24, 2010.

[275] A. B. Awad, M. Chinnam, C. S. Fink, and P. G. Bradford, “β-Sitosterol activates Fas signaling in human breast cancer cells,” Phytomedicine, vol. 14, no. 11, pp. 747–754, 2007.

[276] Y. Zhao, S. K. C. Chang, G. Qu, T. Li, and H. Cui, “β-Sitosterol inhibits cell growth and induces apoptosis in SGC-7901 human stomach cancer cells,” Journal of Agricultural and Food Chemistry, vol. 57, no. 12, pp. 5211–5218, 2009.

[277] R. L. Von Holtz, C. S. Fink, and A. B. Awad, “β-sitosterol activates the sphingomyelin cycle and induces apoptosis in LNCaP human prostate cancer cells,” Nutrition and Cancer, vol. 32, no. 1, pp. 8–12, 1998.

[278] D.-O. Moon, K.-J. Lee, Y. H. Choi, and G.-Y. Kim, “β-Sitosterol-induced-apoptosis is mediated by the activation of ERK and the downregulation of Akt in MCA-102 murine fibrosarcoma cells,” International Immunopharmacology, vol. 7, no. 10, pp. 1044–1053, 2007.

[279] A. González-Sarrías, J. Tomé-Carneiro, A. Bellesia, F. A. Tomás-Barberán, and J. C. Espín, “The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells,” Food and Function, vol. 6, no. 5, pp. 1460–1469, 2015.

[280] C. V. Rao, K. Tokumo, J. Rigott, E. Zang, G. Kelloff, and B. S. Reddy, “Chemoprevention of colon carcinogenesis by dietary administration of picroxiam, alpha-difluoromethylornithine, 16 alpha-fluoro-5-androsten-17-one, and ellagic acid individually and in combination,” Cancer Research, vol. 51, pp. 4528–4534, 1991.

[281] H. Fujiki, M. Suganuma, M. Kurusu et al., “New TNF-α releasing inhibitors as cancer preventive agents from traditional herbal medicine and combination cancer prevention study with EGCG and sulindac or tamoxifen,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 523-524, pp. 119–125, 2003.

[282] Y. H. Ju, D. R. Doerge, K. F. Allred, C. D. Allred, and W. G. Helferich, “Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice,” Cancer Research, vol. 62, no. 9, pp. 2474–2477, 2002.

[283] S. Banerjee, Y. Zhang, S. Ali et al., “Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer,” Cancer Research, vol. 65, no. 19, pp. 9064–9072, 2005.

[284] Barbara Ann Karmanos Cancer Institute and National Cancer Institute (NCI), Gemcitabine Hydrochloride and Genistein in Treating Women with Stage IV Breast Cancer, NCT02449933, 2015.

[285] B. Zhang, Z.-L. Shi, B. Liu, X.-B. Yan, J. Feng, and H.-M. Tao, “Enhanced anticancer effect of gemcitabine by genistein in osteosarcoma: the role of Akt and nuclear factor-κB,” Anticancer Drugs, vol. 21, no. 3, pp. 288–296, 2010.

[286] H. Bittencourt, “St. Justin’s Hospital. Phase I/II a study of decitabine in combination with genistein in pediatric relapsed or refractory malignancies,” Tech. Rep. NCT02499861, 2016.

[287] Uman Pharma, DSM Nutritional Products I, MDEIE Minstry, Québec Government INRS-Institut Armand Frappier, and Université du Québec, “Genistein and Interleukin-2 in Treating Patients with Metastatic Melanoma or Kidney Cancer,” NCT01628471, 2015, 2015.

[288] T. Kuzel, “Northwestern University, National Cancer Institute (NCI). Genistein and Interleukin-2 in treating patients with metastatic melanoma or kidney cancer,” Tech. Rep. NCT00276835, 2015.

[289] J.-T. Hwang, J. Ha, and O. J. Park, “Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways,” Biochemical and Biophysical Research Communications, vol. 332, no. 2, pp. 433–440, 2005.

[290] Y. Li, F. Ahmed, S. Ali, P. A. Philip, O. Kucuk, and F. H. Sarkar, “Inactivation of nuclear factor-κB by soy isolavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells,” Cancer Research, vol. 65, no. 15, pp. 6934–6942, 2005.

[291] L. A. Solomon, S. Ali, S. Banerjee, A. R. Munkarah, R. T. Morris, and F. H. Sarkar, “Sensitization of ovarian cancer cells to cisplatin by genistein: the role of NF-kappaB,” Journal of Ovarian Research, vol. 1, no. 1, article 9, 2008.

[292] B. F. El-Rayes, P. A. Philip, F. H. Sarkar et al., “A phase II study of isolavones, erlotinib, and gemcitabine in advanced pancreatic cancer,” Investigational New Drugs, vol. 29, no. 4, pp. 694–699, 2011.

[293] B. F. El-Rayes, S. Ali, I. F. Ali, P. A. Philip, J. Abbruzzese, and F. H. Sarkar, “Potentiation of the effect of erlotinib by genistein in pancreatic cancer: the role of Akt and nuclear factor-κB,” Cancer Research, vol. 66, no. 21, pp. 10553–10559, 2006.

[294] Barbara Ann Karmanos Cancer Institute and National Cancer Institute (NCI), “Genistein, gemcitabine, and erlotinib in treating patients with locally advanced or metastatic pancreatic cancer,” Tech. Rep. NCT00376948, 2014.

[295] Y.-W. Jeon and Y. J. Suh, “Synergistic apoptotic effect of celecoxib and luteolin on breast cancer cells,” Oncology Reports, vol. 29, no. 2, pp. 819–825, 2013.
[296] P. Wang, S. Henning, D. Heber, and J. Vadgama, “Enhanced inhibition of PC-3 xenograft prostate tumor growth by combination of green tea and quercetin with docetaxel,” Cancer Research, vol. 75, article 5345, 2015.

[297] L. Chuang-Xin, W. Wen-Yu, C. Yao, L. Xiao-Yan, and Z. Yun, “Quercetin enhances the effects of 5-fluorouracil-mediated growth inhibition and apoptosis of esophageal cancer cells by inhibiting NF-κB,” Oncology Letters, vol. 4, no. 4, pp. 775–778, 2012.

[298] C. P. R. Xavier, C. F. Lima, M. Rohde, and C. Pereira-Wilson, “Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation,” Cancer Chemotherapy and Pharmacology, vol. 68, no. 6, pp. 1449–1457, 2011.

[299] W. Dai, Q. Gao, J. Qiu, J. Yuan, G. Wu, and G. Shen, “Quercetin induces apoptosis and enhances 5-FU therapeutic efficacy in hepatocellular carcinoma,” Tumor Biology, vol. 37, no. 5, pp. 6307–6313, 2016.

[300] University of Medicine and Dentistry of New Jersey and National Cancer Institute (NCI), “Sulindac and plant compounds in preventing colon cancer,” Compounds in Preventing Colon Cancer NCT00003365, 2011.

[301] A. K. Jain, K. Thanki, and S. Jain, “Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity,” Molecular Pharmaceutics, vol. 10, no. 9, pp. 3459–3474, 2013.

[302] X. Wang, Y. Chen, F. Z. Dahmani, L. Yin, I. Zhou, and J. Yao, “Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel,” Biomaterials, vol. 35, no. 26, pp. 7654–7665, 2014.

[303] X. He, Y. Wang, J. Zhu, M. Orloff, and C. Eng, “Resveratrol enhances the anti-tumor activity of the mTOR inhibitor rapamycin in multiple breast cancer cell lines mainly by suppressing rapamycin-induced AKT signaling,” Cancer Letters, vol. 301, no. 2, pp. 168–176, 2011.

[304] T. H. Kim, Y. J. Shin, A. J. Won et al., “Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin,” Biochimica et Biophysica Acta (BBA)—General Subjects, vol. 1840, no. 1, pp. 615–625, 2014.

[305] C.-J. Lin, C.-C. Lee, Y.-L. Shih et al., “Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy,” Free Radical Biology and Medicine, vol. 52, no. 2, pp. 377–391, 2012.

[306] J. Y. Chan, S. P. Meng, M.-V. Clement, S. Pervaiz, and C. L. Shao, “Resveratrol displays converse dose-related effects on 5-fluorouracil-evoked colon cancer cell apoptosis: the roles of caspase-6 and p53,” Cancer Biology and Therapy, vol. 7, no. 8, pp. 1305–1312, 2008.

[307] I. Ali and D. P. Braun, “Resveratrol enhances mitomycin C-mediated suppression of human colorectal cancer cell proliferation by up-regulation of p21WAF1/CIP1,” Anticancer Research, vol. 34, no. 10, pp. 5439–5446, 2014.

[308] D.-J. Zhu, X.-W. Chen, J.-Z. Wang, Y.-L. Ju, M.-Z. O. Yang, and W.-J. Zang, “Proteomic analysis identifies proteins associated with curcumin-enhancing efficacy of irinotecan-induced apoptosis of colorectal cancer LOVO cell,” International Journal of Clinical and Experimental Pathology, vol. 7, no. 1, article 7, 2014.

[309] UNC Lineberger Comprehensive Cancer Center, “A Prospective Evaluation of the Effect of Curcumin on Dose Limiting Toxicity and Pharmacokinetics of Irinotecan in Patients with Solid Tumors,” NCT01859858, 2016, 2015.

[310] University of Leicester, “Combining Curcumin with FOLFOX Chemotherapy in Patients with Inoperable Colorectal Cancer (CUFOX),” NCT01490996, 2016, 2015.

[311] M.D. Anderson Cancer Center, “Curcumin with pre-operative capecitabine and radiation therapy followed by surgery for rectal cancer,” Tech. Rep. NCT00745134, 2015.

[312] M. Shikibae, A. Mobasheri, C. Luiders, F. Busch, P. Shayan, and A. Goel, “Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways,” PLoS ONE, vol. 8, no. 2, Article ID e57218, 2013.

[313] J. Nautiyal, S. Banerjee, S. S. Kanwar et al., “Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells,” International Journal of Cancer, vol. 128, no. 4, pp. 951–961, 2011.

[314] B. B. Aggarwal, S. Shishodia, Y. Takada et al., “Curcumin suppresses the paclitaxel-induced nuclear factor-κB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice,” Clinical Cancer Research, vol. 11, no. 20, pp. 7490–7498, 2005.

[315] S. Lev-Ari, L. Strier, D. Kazanov et al., “Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells,” Clinical Cancer Research, vol. 11, no. 18, pp. 6738–6744, 2005.

[316] N. Rocks, S. Bekaert, I. Coia et al., “Curcumin-cyclohextrin complexes potentiate gemcitabine effects in an orthotopic mouse model of lung cancer,” British Journal of Cancer, vol. 107, no. 7, pp. 1083–1092, 2012.

[317] N. P. Aditya, M. Shim, I. Lee, Y. Lee, M.-H. Im, and S. Ko, “Curcumin and genistein coeloaded nanostructured lipid carriers: in vitro digestion and antiproteinase cancer activity,” Journal of Agricultural and Food Chemistry, vol. 61, no. 8, pp. 1878–1883, 2013.

[318] Y. Tang, B. Parmakhtiar, A. R. Simonneau et al., “Lycopene enhances docetaxel’s effect in castration-resistant prostate cancer associated with insulin-like growth factor I receptor levels,” Neoplasia, vol. 13, no. 2, pp. 108–119, 2011.

[319] Medical University of South Carolina and National Cancer Institute (NCI), “Docetaxel and Lycopene in Metastatic Prostate Cancer, NCT01949519, 2015.

[320] K. S. Snima, P. Arunkumar, R. Jayakumar, and V.-K. Lakshmi, “Synthesis and antitumor activity of novel quinoline-based curcumin delivery,” European Polymer Journal, vol. 49, no. 9, pp. 2485–2494, 2013.

[321] D. Bielska, A. Karewicz, K. Kamiński et al., “Self-organized polymersomes as a platform for targeted delivery of curcumin,” Journal of the American Chemical Society, vol. 136, no. 29, pp. 9292–9294, 2014.
F. Li, Y. Weng, L. Wang, H. He, J. Yang, and X. Tang, “The efficacy and safety of bufadienolides-loaded nanostructured lipid carriers,” *International Journal of Pharmaceutics*, vol. 393, no. 1-2, pp. 204–212, 2010.

M. Li, Y. Zheng, F.-Y. Shan, J. Zhou, T. Gong, and Z.-R. Zhang, “Development of ionic-complex-based nanostructured lipid carriers to improve the pharmacokinetic profiles of breviscapine,” *Acta Pharmacologica Sinica*, vol. 34, no. 8, pp. 1108–1115, 2013.

X. Ma, J. Zhou, C.-X. Zhanget al., “Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes,” *Biomaterials*, vol. 34, no. 18, pp. 4452–4465, 2013.

Y.-Z. Zhao, C.-T. Lu, Y. Zhang et al., “Selection of high efficient transdermal lipid vesicle for curcumin skin delivery,” *International Journal of Pharmaceutics*, vol. 454, no. 1, pp. 302–309, 2013.

K. Hu, L. Zhu, H. Liang, F. Hu, and J. Feng, “Improved antitumor efficacy and reduced toxicity of liposomes containing bufadienolides,” *Archives of Pharmacal Research*, vol. 34, no. 9, pp. 1487–1494, 2011.

L.-N. Shen, Y.-T. Zhang, Q. Wang, L. Xu, and N.-P. Feng, “Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes,” *International Journal of Pharmaceutics*, vol. 460, no. 1-2, pp. 280–288, 2014.

R. G. Madane and H. S. Mahajan, “Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study,” *Drug Delivery*, vol. 23, no. 4, pp. 1326–1334, 2016.

J. Li, X. Guo, Z. Liu et al., “Preparation and evaluation of charged solid lipid nanoparticles of tetrandrine for ocular drug delivery system: pharmacokinetics, cytotoxicity and cellular uptake studies,” *Drug Development and Industrial Pharmacy*, vol. 40, no. 7, pp. 980–987, 2014.

A. Anitha, V. G. Deepagan, V. V. D. Rani, D. Menon, S. V. Nair, and R. Jayakumar, “Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles,” *Carbohydrate Polymers*, vol. 84, no. 3, pp. 1158–1164, 2011.

J. Duan, Y. Zhang, S. Han et al., “Synthesis and in vitro/in vivo anti-cancer evaluation of curcumin-loaded chitosan/poly(butyl cyanoacrylate) nanoparticles,” *International Journal of Pharmaceutics*, vol. 400, no. 1-2, pp. 211–220, 2010.

L. Bu, L.-C. Gan, X.-Q. Guo et al., “Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma,” *International Journal of Pharmaceutics*, vol. 452, no. 1-2, pp. 355–362, 2013.

Q. Yao, L. Gan, S. Hou et al., “Development and biodistribution of trans-resveratrol loaded chitosan nanoparticles with free amino groups,” *Latin American Journal of Pharmacy*, vol. 31, no. 7, pp. 1038–1042, 2012.

D. Zheng, C. Duan, D. Zhang et al., “Galactosylated chitosan nanoparticles for hepatocyte-targeted delivery of oridonin,” *International Journal of Pharmaceutics*, vol. 436, no. 1-2, pp. 379–386, 2012.

Z. Wang, Y. Yu, J. Ma et al., “LyP-1 modification to enhance delivery of Artemisinin or fluorescent probe loaded polymeric micelles to highly metastatic tumor and its lymphatics,” *Molecular Pharmaceutics*, vol. 9, no. 9, pp. 2646–2657, 2012.

W. Guo, A. Li, Z. Jia, Y. Yuan, H. Dai, and H. Li, “Transferrin modified PEG-PLA-resveratrol conjugates: in vitro and in vivo studies for glioma,” *European Journal of Pharmacology*, vol. 718, no. 1–3, pp. 41–47, 2013.

X. Tian, H. Yin, S. Zhang et al., “Bufalin loaded biotinylated chitosan nanoparticles: an efficient drug delivery system for targeted chemotherapy against breast carcinoma,” *European Journal of Pharmaceutics and Biopharmaceutics*, vol. 87, no. 3, pp. 445–453, 2014.