Ambient Influenza and Avian Influenza Virus during Dust Storm Days and Background Days

Pei-Shih Chen,1 Feng Ta Tsai,1 Chien Kun Lin,1 Chun-Yuh Yang,1 Chang-Chuan Chan,2 Chea-Yuan Young,3 and Chien-Hung Lee1

1Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan; 2Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei City, Taiwan; 3Department of Natural Resource, College of Agriculture, Chinese Culture University, Taipei City, Taiwan

BACKGROUND: The spread of influenza and highly pathogenic avian influenza (H5N1) presents a significant threat to human health. Avian influenza outbreaks in downwind areas of Asian dust storms (ADS) suggest that viruses might be transported by dust storms.

OBJECTIVES: We developed a technique to measure ambient influenza and avian influenza viruses. We then used this technique to measure concentrations of these viruses on ADS days and background days, and to assess the relationships between ambient influenza and avian influenza viruses, and air pollutants.

METHODS: A high-volume air sampler was used in parallel with a filter cassette to evaluate spiked samples and unspiked samples. Then, air samples were monitored during ADS seasons using a filter cassette coupled with a real-time quantitative polymerase chain reaction (qPCR) assay. Air samples were monitored during ADS season (1 January to 31 May 2006).

RESULTS: We successfully quantified ambient influenza virus using the filtration/real-time qPCR method during ADS days and background days. To our knowledge, this is the first report describing the concentration of influenza virus in ambient air. In both the spiked and unspiked samples, the concentration of influenza virus sampled using the filter cassette was higher than that using the high-volume sampler. The concentration of ambient influenza virus was significantly higher during the ADS days than during the background days.

CONCLUSIONS: Our data imply the possibility of long-range transport of influenza virus.

KEY WORDS: ambient virus, avian influenza virus, bioaerosol, dust storm, infectious bioaerosol, influenza virus, quantification, real-time qPCR. Environ Health Perspect 118:1211–1216 (2010). doi:10.1289/ehp.0901782 [Online 30 April 2010]

The spread of highly pathogenic avian influenza (H5N1) into Asia, Europe, and even Africa has strongly affected the poultry industry and presents a significant threat to human health. To date, 363 human cases of avian influenza (61% of them fatal) have been officially reported by the World Health Organization (2008). In 2003, the rapid spread of severe acute respiratory syndrome (SARS) to Asia, North America, Europe, and Australia during the first two quarters of the year illustrated the speed at which influenza and avian influenza pandemics can spread across the world. Influenza and avian influenza outbreaks are expected to be much harder to control than SARS because, in contrast with SARS, people infected with influenza are contagious before the onset of case-defining symptoms (Koh et al. 2008). Therefore, it is important to understand the possibility of transmission pathways between countries in preparation for influenza or avian influenza pandemics.

How the highly pathogenic H5N1 avian influenza has spread between countries has been extensively debated. In a previous study, Kilpatrick et al. (2006) integrated data on phylogenetic relationships of virus isolates, poultry and wild bird trade, and migratory bird movements to determine the pathway for the introduction of H5N1 into each of 52 countries. Their results demonstrated that 9 of 21 H5N1 inductions into countries in Asia were most likely through poultry, and 3 of 21 were through migrating birds. However, H5N1 outbreaks in South Korea and Japan were not consistent with either reported poultry trade or the timing and direction of migratory bird travel during the month of outbreak, suggesting that other factors led to these introduction events.

Avian influenza outbreaks in Japan and South Korea, which, like Taiwan, include areas that are downwind of Asian dust storms (ADS), occurred during the ADS season, according to reports from the World Organization for Animal Health (OIE 2006). With increasing evidence from epidemiological studies, increased health effects, including respiratory diseases, during ADS days in downwind areas have recently drawn much attention (Bell et al. 2008; Chen et al. 2009). For comparison to determine an assay suitable for quantifying airborne viruses, we compared the performance of a high-volume air sampler and that of a filter cassette for evaluation of ambient influenza and avian influenza virus. However, higher sampling rates or longer sampling times may be necessary to measure extremely low virus concentrations in ambient air, and both of these approaches have the potential to injure or destroy viruses and thus inhibit detection.

To address these concerns and identify an assay suitable for quantifying airborne viruses, we compared the performance of a high-volume air sampler and that of a filter cassette for evaluation of ambient influenza and avian influenza virus. Next, we determined concentrations of ambient influenza/avian influenza virus during ADS days and background days using the more sensitive method, and evaluated associations between environmental parameters and ambient influenza virus levels.

Materials and Methods

Comparison of samplers. Airborne influenza and avian influenza viruses in a wet poultry market were successfully collected on 0.2-µm-pore polytetrafluoroethylene (PTFE; Teflon) membrane filters in disposable plastic cassettes (37 mm) as previously described (Chen et al. 2009). For comparison to determine an assay suitable for quantifying airborne viruses, we evaluated a high-volume air sampler configured with a high-volume air sampler coupled with a filter cassette for evaluation of ambient influenza.

Received 7 December 2009; accepted 30 April 2010.
Ambient influenza and avian influenza virus collection. Before the sampling, filters and support pads were autoclaved, and the plastic cassettes were sterilized with ethylene oxide. The samples were then transported at 4°C to our laboratory (Kaohsiung City, Taiwan, Republic of China) within 1 day. For quality control, trip blank and field blank controls were also evaluated. Results confirmed no detectable influenza virus RNA in either trip blanks or field blank controls (data not shown). In addition, side-by-side duplicate field samples yielded comparable results (with relative difference of 11%). Air samples were monitored during the ADS season (1 January to 31 May) in 2006 at two air monitoring stations run by the Taiwan Environmental Protection Administration (TEPA): Wan-Li (25°17´ N, 121°32´ E) in Shi-Men Township, a rural area (population density of 227/km²), and Shin-Jhuang (25°02´ N, 121°26´ E) in Shin-Jhuang City, an urban area (population density of 19,816/km²) (Wu et al. 2008). The Wan-Li station is located in a remote area near the northern tip of Taiwan that is upwind of Taipei during northeastern monsoons. The Shin-Jhuang station is located in Shin-Jhuang City, an important business and industrial center in Taipei County, close to two major highways that have heavy traffic (Wu et al. 2008).

Table 1. Primers and probes of influenza A virus and A/H5.

Virus type [target]	Primer or probe	Sequence	Reference
A (M gene)	INF-A1	5'-GGACTGGAGTATTAGACCCCT	van Elden et al. 2001
	INF-A2	5'-CATCGTGTTATATAAGGCCCAC	
	INF-A3	5'-TATCGTTGTTATATAAGGCCCAT	
	INF-A probe	5'-TATCGTTGTTATATAAGGCCCAT	
A/H5 (HA gene)	HS-1	5'-ACGTATAGCTATCCCAATACTCGA	Spackman et al. 2002
	HS-2	5'-AGACCACTAGCTACAGTACGG	
	HS probe	5'-TCAACACTTGGGCTAGTTCCTAGCA	

Table 2. Comparison of influenza A virus in samples collected for 24 hr using an MFC-PM10 high-volume sampler and a PTFE cassette for both the spiked samples (5 sets, n = 10) and unspiked air samples (13 sets, n = 26) at the Wan-Li air monitoring station in Taiwan.

Sample type	Sampler (mean ± SD)			
Unspiked samples	PTFE cassette	701.9 ± 309.6	33.1 ± 128.4	0.076
	High-volume sampler	43%	80%	

*Mann-Whitney U-test.

Table 3. Ambient influenza A virus and A/H5 on ADS days versus background days at air monitoring stations in Taiwan.

Sampling location/	Measure	ADS days (n = 24)	Background days (n = 10)	p-Valuea
Wan-Li station	Positive rate (%)	58 (14/24)	30 (3/10)	0.13
Influenza A	Mean (copies/m³)	268	13	0.02
Range (copies/m³)	1–810	11–15		
Inhibitory rate (%)	78.6 (11/14)	66.7 (2/3)		
A/H5	Positive rate (%)	13 (3/24)	0 (0/10)	
	Mean (copies/m³)	1.8	ND	
	Median (copies/m³)	0	ND	
	Range (copies/m³)	ND–25	ND	
	Inhibitory rate (%)	100 (3/3)		
Shin-Jhuang station	Positive rate (%)	46 (11/24)	20 (2/10)	0.25
Influenza A	Mean (copies/m³)	276	9	0.11
Median (copies/m³)	89	9		
Range (copies/m³)	4–1,160	5–13		
Inhibitory rate (%)	72.7 (8/11)	0 (0/2)		
A/H5	Positive rate (%)	0 (0/24)	0 (0/10)	
	Mean (copies/m³)	ND	ND	
	Median (copies/m³)	ND	ND	
	Range (copies/m³)	ND	ND	
	Inhibitory rate (%)	ND	ND	

*ND, not detected (below detection limit).

*Mann-Whitney U-test.

Viral genomic RNA isolation and real-time qPCR assay. Viral genomic RNA of influenza virus in the filters was isolated and analyzed as described previously (Chen et al. 2009). The commercially available QIAamp Viral RNA Mini Kit (Qiagen GmbH, Hilden, Germany) was used to isolate RNA. The
A and A/H5 viruses, respectively (Chen et al. 2009). The viral RNA was stored at –80°C until analysis within 1 month.

Table 1 shows the primers and probes used to amplify and identify influenza A virus and avian influenza (A/H5) virus. The primers and probe for influenza A virus target the matrix protein gene present in all types of influenza A. Primers and probes for A/H5 targeted conserved regions of North American H5 influenza viruses (Spackman et al. 2002; van Elden et al. 2001). Specificity was 100% for both influenza A and A/H5 viruses (Spackman et al. 2002; van Elden et al. 2001). In our study, samples were first analyzed for influenza A virus. Only those positive samples were then analyzed for A/H5.

Amplification and detection were performed using an ABI Prism 7500 sequence detection system (Applied Biosystems, Foster City, CA, USA) with a TaqMan One-step Reverse Transcriptase PCR Master Mix Reagents Kit (Applied Biosystems) with 5 µL viral RNA solution in an end volume of 25 µL as described previously (Chen et al. 2009). All samples analyzed using the real-time qPCR were done in triplicate. All manipulations of samples were performed in a biological safety cabinet.

Standard curves were derived as described in detail by Chen et al. (2009). In brief, the calibration curve was linear for 7 orders of magnitude with r > 0.988, and the detection limit of the filter/real-time qPCR method was 0.8 copy/m³ and 1.23 copies/m³ for influenza A and A/H5 viruses, respectively (Chen et al. 2009). The standard curve, positive controls, and negative controls were analyzed in triplicate for each run.

Inhibitory effect. Cosampled compounds may inhibit amplification assays of environmental samples (Alvarez et al. 1995). Alvarez et al. (1995) reported that 10³ to 10⁴ colony-forming units (CFU) per cubic meter bacterial and fungal bioaerosols inhibited PCR amplification, whereas a 1/10 dilution of these samples did not. In the present study, all samples were analyzed simultaneously using 1, 1/10, 1/100, and 1/1,000 dilutions. Positive samples were those in which cDNA was quantified in any diluted solution. Then, the true concentration was obtained by multiplying the detected concentration by diluted factor (Chen et al. 2009). We classified samples as inhibitory if they were initially negative and then positive after dilution. We defined the inhibitory rate as the number of inhibitory samples divided by the number of positive samples.

Environmental parameters. Hourly data for air pollution and meteorological parameters for the study period (1 January to 31 May 2006) were provided by the TEPA. Environmental parameters subjected to statistical analysis included concentrations of particulate matter (PM) with aerodynamic diameter ≤ 10 µm (PM₁₀; micrograms per cubic meter), PM with aerodynamic diameter ≤ 2.5 µm (PM₂.₅; micrograms per cubic meter), nitrogen monoxide and nitrogen dioxide (NO/NO₂; micrograms per cubic meter), ozone (O₃; parts per billion), sulfur dioxide (SO₂; parts per billion), carbon monoxide (CO; parts per million), temperature, relative humidity (RH; percent), and rainfall.

Statistical methods. Statistical analyses were performed using SigmaPlot for Windows (version 3.06; SPSS Inc., Chicago, IL, USA). The Mann-Whitney U-test was used to evaluate the difference between samplers and to estimate the impact of ADS on ambient influenza virus and on environmental factors. The chi-square test and Fisher exact test were used to evaluate the differences in positive rates and inhibitory rates between ADS days and background days. We used the Spearman correlation to evaluate relations between ambient influenza virus and environmental factors. Significance was accepted at p < 0.05.

Results

Sample comparison. Table 2 summarizes measured concentrations of influenza virus in 24-hr samples using a high-volume sampler and a PTFE cassette in parallel for both spiked samples (5 sets, n = 10) and unspiked samples (13 sets, n = 26) at the Wan-Li air monitoring station. The average concentrations of influenza virus measured from both spiked and unspiked samples were higher when sampled with the PTFE cassette than with the high-volume sampler, although the differences were not statistically significant. In addition, the overall inhibitory rate was higher for the high-volume sampler than for the PTFE cassette (Table 2).

Ambient influenza virus and ADS events. A total of six ADS episodes affected Taiwan from 1 January to 31 May 2006; a total of 24 days were classified as ADS days: three episodes affecting 5 days and three episodes affecting 3 days. We used two 24-hr samples taken 2 days after the end of each ADS episode (on days 8 and 9 after the first measurement before the predicted onset of three ADS episodes) and on days 6 and 7 after the first measurement before the predicted onset of another three ADS episodes, except two lost samples, as background days (a total of 10 days). Table 3 shows the descriptive statistics for airborne influenza virus and A/H5 during ADS days and background days at air monitoring stations in Taiwan.

For influenza A virus, both the positive rate (the number of positive samples divided by the number of all samples) and mean concentration were higher during ADS episodes than during background days at both monitoring stations (Table 3), with a significant difference in mean concentrations observed at the Wan-Li station on the northern tip of Taiwan (p < 0.05, Mann-Whitney U-test). Inhibitory rates for influenza A virus were higher during ADS days than during background days. For A/H5, only 3 of 68 samples were positive, with concentrations in the range of 2–25 copies/m³. All three of these positive samples were collected during episode days at the Wan-Li station.

PM₁₀, PM₂.₅, and CO concentrations were significantly higher (p < 0.05) during ADS days than during background days, whereas temperatures were significantly lower (p < 0.05; Table 4). No other environmental factors were significantly associated with the ADS episodes during the study period. HYSPIT back-trajectories indicated that the
trajectories of all positive samples collected during ADS periods were from mainland China (Figure 1A), whereas those collected during background days were not (Figure 1B).

Associations between ambient influenza virus and environmental parameters. At the Wan-Li station, PM$_{10}$ and PM$_{2.5}$ concentrations were negatively correlated with ambient influenza A virus on both ADS days and background days, but only the correlation with PM$_{10}$ on background days was significant (Table 5). In addition, mean concentrations of PM$_{10}$ among samples positive for influenza A virus collected on ADS days and background days (43.35 µg/m3 and 20.33 µg/m3, respectively) were lower than PM$_{10}$ concentrations among negative samples collected on ADS days and background days (53.82 µg/m3 and 37.19 µg/m3; p-values for both comparisons = 0.053). At the Shin-Jhuang station, PM$_{10}$, PM$_{2.5}$, NO$_x$, SO$_2$, and CO were all inversely correlated with ambient influenza virus A concentrations on background days but not on ADS days, but only the correlation with SO$_2$ was significant (Table 5). The concentration of SO$_2$ among samples positive for influenza A virus collected at the Shin-Jhuang station on background days (2.85 ppb) was significantly lower than that among negative samples (8.65 ppb, p-value 0.037). When we pooled samples from Wan-Li and Shin-Jhuang stations, ambient influenza A virus was significantly negatively correlated with PM$_{10}$ and PM$_{2.5}$ on background days (Table 5), and mean PM$_{10}$ and PM$_{2.5}$ concentrations were also significantly lower among samples positive for influenza A virus (22.86 µg/m3 and 10.85 µg/m3) than among negative samples (46.88 µg/m3 and 26.94 µg/m3; p-values for the difference in PM$_{10}$ and PM$_{2.5}$ concentrations of 0.010 and 0.013, respectively).

Discussion

In this study, we successfully quantified ambient influenza virus using filtration/real-time qPCR. To our knowledge, this is the first report describing concentrations of influenza virus in ambient air. In previous studies, airborne infectious viruses have been detected using filtration coupled with a PCR-based method in indoor environments with high virus concentrations (e.g., hospitals and offices), including varicella-zoster virus, human cytomegalovirus, respiratory syncytial virus, acute respiratory syndrome coronavirus, and rhinovirus (Aintablian et al. 1998; McCluskey et al. 1996; Myatt et al. 2004; Sawyer et al. 1994; Tsai et al. 2006). In those studies, airborne viruses were only qualitatively or semiquantitatively detected, involving only positive or negative responses in a narrow dynamic range (< 4 orders of magnitude), and no concentration profiles were reported.

Airborne influenza viruses were successfully quantified in hospitals and wet poultry markets in two recent studies (Blachere et al. 2009; Chen et al. 2009). Because the use of a high-volume sampler would increase the total amount of virus collected in a given sample, enhancing detection sensitivity, we compared the performance of a high-volume sampler with that of a PTFE cassette. Our results (Table 2) show that virus concentrations detected using the PTFE cassette were all higher than those detected using the high-volume sampler. Regarding sampling stress, the face velocity of the high-volume sampler (0.003 m/sec) is actually lower than that of the PTFE cassette (0.3 m/sec). We also observed the same trend in our previous study, where we obtained higher virus concentrations with a PTFE cassette than when with an open-face filter cassette with lower face velocity. Higher concentrations of various inhibitors such as airborne bacteria cosampled in the filters of a high-volume sampler might contribute to the lower sensitivity of this method. The inhibitory rates observed here were also consistent with this hypothesis (Table 2). According to our data, a PTFE cassette is superior for sampling ambient influenza virus.

To date, field study data on airborne influenza virus are extremely limited. Airborne influenza virus has been measured in 4-hr

![Figure 1. HYSPLIT back-trajectories of air masses arriving at the Wan-Li air monitoring station in Taiwan during the ADS period (A) and background days (B). Plots show 3-day air mass back-trajectories on 8 February 2006 (A) and 11 January 2006 (B). Abbreviations: AGL, above ground level; GDAS, Global Data Assimilation System (http://www.arl.noaa.gov/gdas1.php).](http://www.arl.noaa.gov/gdas1.php)
samples in a hospital emergency department at a mean concentration of 6.5×10^6 copies/m3 in the study by Blachere et al. (2009). In our previous study, airborne influenza virus concentrations in 4-hr samples were 6.9×10^5 copies/m3 and 2.0×10^3 copies/m3 in a chicken pen and duck pen, respectively, in a wet poultry market (Chen et al. 2009). The concentration of ambient influenza virus in 24-hr samples measured in our current study was 1–2 orders of magnitude lower than that reported in those two previous studies. Although Blachere et al.’s (2009) study did not specifically mention the detection limit, the lowest positive sample reported was 368 copies/m3. According to our previous data, the detection limits using the PTFE cassette coupled with real-time qPCR for influenza A and A/H5 virus were 0.8 copy/m3 and 1.23 copies/m3, respectively (Chen et al. 2009). The concentration limit, the lowest positive sample reported in the present study did not specifically mention the detection limit, the lowest positive sample reported in those two previous studies reviewed by Griffin (2007). The minimum concentration measured in positive samples were 1 copy/m3 and 2 copies/m3 for influenza A and A/H5 virus, respectively (Table 2). The present study demonstrates that sampling using the PTFE cassette coupled with real-time qPCR is a promising tool for ambient pathogen investigations.

The presence of desert dust in the atmosphere was associated with higher fungal and bacterial CFU concentrations relative to background or clear atmosphere conditions in all previous studies reviewed by Griffin (2007). The cultivable bacteria and fungi from air samples were 1 to > 1,500 times higher and 2.1–3 times higher, respectively, when African dust was affecting the region than when it was not (Brown et al. 1935; Choi et al. 1997; Fulton 1966; Griffin et al. 2001, 2003, 2006, 2007; Ho et al. 2005; Kellogg et al. 2004; Kwaasi et al. 1998; Proctor 1935; Prospero et al. 2005; Schlesinger et al. 2006; Wu et al. 2004). During Asian dust events that affect air quality in Taejon, Korea, the average bacterial CFU concentration was 4.3 higher than the concentration observed under normal atmospheric conditions (Choi et al. 1997). In Taiwan, the fungal CFU concentration was 1.01–3.3 times higher during ADS days than during background days (Ho et al. 2005; Wu et al. 2004). These studies demonstrated long-range atmospheric transport of cultivable bacteria and cultivable fungi in dust storms. Although there are already 14 studies investigating long-range atmospheric transport of cultivable bacteria and cultivable fungi, transport of viral pathogens using a PCR-based approach with positive detects in dust storms had not to our knowledge been investigated in a previous study (Joo et al. 2002).

Table 5. Correlations between ambient influenza A virus and environmental factors during ADS days and background days at air monitoring stations in Taiwan.

Sampling site/environmental factor	ADS days	Background days				
	r	p-Value	r	p-Value		
Wan-Li station						
PM_{10}	-0.403	0.051	24	-0.646	0.044	10
$PM_{2.5}$	-0.354	0.080	24	-0.494	0.147	10
NO_2	-0.189	0.376	24	-0.114	0.754	10
O_3	-0.012	0.955	24	-0.570	0.086	10
SO_2	-0.055	0.799	24	-0.114	0.754	10
CO	-0.232	0.275	24	-0.114	0.754	10
Temperature	-0.244	0.250	24	0.038	0.917	10
Rainfall	0.157	0.464	24	-0.325	0.359	10
RH	0.177	0.459	24	0.190	0.599	10
Shin-Jhuang station						
PM_{10}	0.066	0.758	24	-0.522	0.122	10
$PM_{2.5}$	0.187	0.381	24	-0.522	0.122	10
NO_2	0.103	0.633	24	-0.609	0.062	10
O_3	0.175	0.413	24	-0.261	0.466	10
SO_2	0.103	0.633	24	-0.696	0.025	10
CO	0.151	0.481	24	-0.522	0.122	10
Temperature	0.006	0.970	24	0.261	0.466	10
Rainfall	0.286	0.176	24	-0.521	0.305	10
RH	-0.260	0.220	24	-0.522	0.122	10
Both stations						
PM_{10}	-0.179	0.223	48	-0.591	0.006	20
$PM_{2.5}$	-0.089	0.548	48	-0.571	0.009	20
NO_2	-0.135	0.359	48	-0.290	0.214	20
O_3	0.152	0.302	48	-0.370	0.108	20
SO_2	-0.045	0.761	48	-0.390	0.089	20
CO	-0.113	0.446	48	-0.270	0.249	20
Temperature	-0.104	0.482	48	0.110	0.644	20
Rainfall	0.232	0.112	48	-0.329	0.157	20
RH%	0.039	0.792	48	-0.070	0.769	20

r: correlation coefficient.
differences observed between the Wan-Li and Shin-Jhuang stations. When we pooled data from both stations, ambient influenza concentration was significantly negatively correlated with PM$_{10}$ and PM$_{2.5}$ on background days. Although previous studies have noted a relationship between PM concentrations and enhanced viral survival, we found negative correlations between ambient influenza virus concentrations and PM$_{10}$, SO$_2$, and PM$_{2.5}$ (Chung and Sobsey 1993; Cox 1995; Labelle and Gerba 1981; Rao et al. 1984). One possible explanation is that PM$_{10}$, SO$_2$, or PM$_{2.5}$ might inhibit the PCR reaction. A second possibility is that PM$_{10}$, SO$_2$, or PM$_{2.5}$ might injure airborne virus in ambient air. Previous studies have reported that many compounds in environmental media such as soil and water can inhibit PCR (Alvarez et al. 1995; Jacobsen and Rasmussen 1992), but we are not aware of any study that has specifically examined effects of PM$_{10}$, SO$_2$, or PM$_{2.5}$ on viruses.

In summary, we successfully quantified ambient influenza viruses during ADS days and background days. The PTFE cassette used in this study was superior to a high-volume air sampler for ambient influenza virus collection. The concentration of ambient influenza A virus was significantly higher during ADS days than during background days. In addition, A/H5 was detected only during ADS days.

References

Aintablant, N, Walpita, P, Sawyer, MH. 1998. Detection of Bordetella pertussis and respiratory syncytial virus in air samples from hospital rooms. Infect Control Hosp Epidemiol 19:918–923.

Alvarez AJ, Buttner MP, Postenbach LD. 1995. PCR for bioaero-

sols monitoring: sensitivity and environmental interference. Appl Environ Microbiol 61:3639–3644.

Bell ML, Levy JK, Lin Z. 2008. The effect of sandstorms and air pollution on cause-specific hospital admissions in Taipei, Taiwan. Occup Environ Med 65:104–111.

Blachere FM, Lindsay WV, Pearce TA, Anderson SE, Fisher M, Khakoo R, et al. 2008. Measurement of airborne influenza virus in a hospital emergency department. Clin Infect Dis 47:438–440.

Brown EG, Gottlieb S, Layburn RL. 1935. Dust storms and their possible effect on health. Public Health Rep 50:1386–1383.

Chen CC, Chung KJ, Chen WJ, Chang WT, Lee CT, Peng CM. 2008. Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in Taiwan. Environ Res 106:393–400.

Chang CC, Lee IM, Tsai SS, Yang CY. 2006. Correlation of Asian dust storm events with daily clinic visits for allergic rhinitis in Taipei, Taiwan. J Toxicol Environ Health A 69:229–235.

Chen PS, Lin CK, Tsai FT, Yang CY, Lee CH, Liu JS, et al. 2009. Quantification of airborne influenza and avian influenza virus in a wet poultry market using a filter-based real-time qPCR method. Aerosol Sci Technol 42:290–297.

Chen YS, Sheen PC, Chen ER, Liu YK, Wu TN, Yang CY. 2004. Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. J Toxicol Environ Health A 68:1457–1484.

Choi DS, Park YK, Oh SK, Yoon HJ, Kim JC, Seo WJ, et al. 1997. Distribution of airborne microorganisms in yellow sands of Korea. J Microbiol 35:1–9.

Chung H, Sobsey MD. 1993. Comparative survival of indicator viruses and enteric viruses in seawater and sediment. Water Sci Technol 27:425–428.

Cox C. 1995. Stability of airborne microbiota and allergens. In: Bioaerosols Handbook (Cox CS, Wathes CM, eds). London, Lewis, 77–99.

Fulton JD. 1996. Microorganisms of the upper atmosphere. V. Relationship between frontality and the micropopul-

ation at altitude. Appl Environ Microbiol 14:245–250.

Griffin DW. 2007. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20:459–477.

Griffin DW, Garrison VH, Herman JR, Shinn EA. 2001. African desert dust in the Caribbean atmosphere: microbiology and public health. Aerobiologia 17:259–273.

Griffin DW, Kellogg CA, Garrison VH, Lisie JT, Borden TC, Shinn EA. 2003. African dust in the Caribbean atmosphere. Aerobiologia 19:143–157.

Griffin DW, Kublay N, Kocak M, Gray MA, Borden TC, Kellogg CA, et al. 2007. Airborne desert dust and aerobiology over the Turkish Mediterranean coastline. Atmos Environ 41:4059–4062.

Griffin PD, Westphal DL, Gray MA. 2006. Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge. Ocean Drilling Program, Leg 209. Aerobiologia 22:211–226.

Hammond, GW, Rabbolt RL, Gelsdes DE. 1989. Impact of atmos-

pheric dispersion and transport of viral aerosols on the epidemiology of influenza. Rev Infect Dis 11:494–497.

Ho HM, Rao CY, Hsu HH, Chiu YH, Liu CM, Chao HJ. 2005. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos Environ 39:5839–5850.

Jacobsen, CS, Rasmussen OF. 1992. Development and applica-

tion of a new method to extract bacterial DNA from soil and sediments from Galveston Bay: survival of polio-

virus and rotavirus adsorbed to sediments. Appl Environ Microbiol 58:2458–2462.

Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra JG, Aminov RI, et al. 2002. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40:3258–3260.

Keeley PM, Marianders Y, Grbicak AE. 2000. Transport of microorganisms to Israel during Saharan dust events. Aerobiologia 22:299–273.

Mackey K, Morinoux V, Goffaux V, Orito K, Buonaguro M, Ali

M. 2008. Particle size distribution of airborne microorganisms in a hospital emergency department. J Infect Dis 201:1124–1127.

Myatt TA, Johnston SL, Zuo Z, Wand M, Kebadze T, Rudnick S, et al. 2004. Detection of airborne rhinovirus and its relationship to respiratory symptoms in office environments. Am J Respir Crit Care Med 169:1187–1190.

OIE (World Organisation for Animal Health). 2006. Update on Highly Pathogenic Avian Influenza in Animals (type H5 and H7). Available: http://www.oie.int/eng/wah/AVIAN%20INFLUENZA/A006_AI.php [accessed 5 November 2009].

Polymenakou PN, Mandalakis M, Stephanou EG, Tsetepides A. 2008. Particle size distribution of airborne microorgan-
isms and pathogens during an intense African dust event in the eastern Mediterranean. Environ Health Perspect 116:292–296.

Proctor BE. 1935. The microbiology of the upper air. II. J Bacteriol 36:362–375.

Prospero JM. 1999. Long-term measurements of the trans-

port of African mineral dust to the southeastern United States: implications for regional air quality. J Geophys Res 104:15917–15927.

Prospero JM, Blades E, Mathison G, Naidu R. 2005. Intermediate transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 21:1–19.

Rao YC, Sadeel KM, Goyal SM, Metcalfe TG, Melnick JL. 1994. Isolation of enteroviruses from water, suspended solids, and sediments from Galveston Bay: survival of polio-
virus and rotavirus adsorbed to sediments. Appl Environ Microbiol 60:408–409.

Sawyer, MH, Chamberlin CJ, Wu YN, Aintablant N, Wallace MR. 1994. Detection of varicella-zoster virus DNA in air sam-

plers from hospital rooms. J Infect Dis 169:91–94.

Schleicher P, Mannesse Y, Grieble A. 2005. Transport of microorganisms to Israel during Saharan dust events. Aerobiologia 22:299–273.

Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, et al. 2002. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40:3258–3260.

Tsai YH, Wang GH, Wu YK, Tsao KC. 2006. Airborne severe acute respiratory syndrome coronavirus concentrations in a negative-pressure isolation room. Infect Control Hosp Epidemiol 27:523–525.

van Elden LJ, Nijhuis M, Schipper P, Schuurman R, van Loon AM. 2001. Simultaneous detection of influenza viruses A and B using real-time quantitative PCR. J Clin Microbiol 39:196–200.

WHO/World Health Organization. 2008. Confirmed Human Cases of Avian Influenza A(H5N1). Available: http://www.who.int/csr/disease/avian_influenza/country/en [accessed 1 August 2008].

Wu PC, Tsai JC, Lin FC, Lung SC, Su HJ. 2004. Increased levels of ambient fungal spores in Taiwan are associated with dust events from China. Atmos Environ 38:4879–4886.

Wu TS, Shih FY, Yang CY, Wu JS, Lu SW, Chang HC, et al. 2008. Establishing a nationwide emergency department-based syndromic surveillance system for better public health responses in Taiwan. BMC Public Health 8:18; doi:10.1186/1471-2458-8-18 [18 January 2008].

Yang CY, Chen YS, Chiu HF, Goggin WB. 2005a. Effects of Asian dust storm events on daily stroke admissions in Taipei, Taiwan. Environ Res 99:79–84.

Yang CY, Tsai SS, Chang CC, Ho SC. 2005b. Effects of Asian dust storm events on daily admissions for asthma in Taipei, Taiwan. Inhal Toxicol 17:817–921.

McCluskey R, Sandin R, Greene J. 1996. Detection of airborne cytomegalovirus in hospital rooms of immunocompromised patients. J Viral Methods 56:115–118.