Optimisation problems and replica symmetry breaking in finite connectivity spin-glasses

Rémi Monasson

CNRS - Laboratoire de Physique Théorique de l’ENS, 24 rue Lhomond, 75231 Paris cedex 05, France

(January 3, 2022)

A formalism capable of handling the first step of hierarchical replica symmetry breaking in finite-connectivity models is introduced. The emerging order parameter is claimed to be a probability distribution over the space of field distributions (or, equivalently magnetisation distributions) inside the cluster of states. The approach is shown to coincide with the previous works in the replica symmetric case and in the two limit cases \(m = 0, m = 1\) where \(m\) is Parisi’s break-point.

As an application to the study of optimization problems, the ground-state properties of the random 3-Satisfiability problem are investigated and we present a first RSB solution improving replica symmetric results.

I. INTRODUCTION

It is now commonly thought that spin-glasses may exhibit highly interesting and non trivial features already at the mean-field level \([1,2]\). This statement stems from the extensive studies performed during the last twenty years on models with infinite connectivity (IC), especially on the celebrated Sherrington-Kirkpatrick (SK) model \([1]\). Such models strongly differ from realistic finite-dimensional systems on two points, that is their large connectivity and the absence of any geometrical underlying structure. As was realized some years ago, only the latter aspect is intrinsic to mean-field theory while the unrealistic nature of the connectivity may be cured \([3,4]\). Mean-field spin-glasses with finite connectivity (FC) are of importance for at least two reasons. First, they are expected to share common properties with finite-dimensional physical systems that IC models cannot exhibit \([4]\). Secondly, it is now well-known that optimisation or decision problems can rigorously be mapped onto the ground-state of spin-glass models with FC \([1]\). The understanding of complex optimisation problems \([12]\), which would be of practical use for algorithmic design, therefore requires the introduction of sophisticated techniques that were invented in the IC models context, e.g. replica symmetry breaking (RSB) \([4]\). As regard to their potential interest, the investigation of the spin-glass phase of FC models has attracted few attention in the past years \([6,7]\). This situation is probably mainly due to the technical difficulties arising in the analytical calculations.

In this paper, we show that the complexity of FC models with respect to IC ones manifests itself through the emergence of new and richer order parameters (Section II). We expose how to compute the free-energy of FC models within the one-step RSB scheme in Section III. Section IV is devoted to the derivation of the saddle-point equation for the functional order parameter. Throughout the paper, we check that the present formalism gives back the known results for the RS theory of FC models and the RSB theory of IC models. Our approach can be applied to any Ising FC spin-glass and is therefore of particular relevance to optimization problems. As an illustration, we concentrate in Section V upon the so-called random 3-Satisfiability problem (3-SAT), of central importance in complexity theory \([12,13]\). Recent theoretical interpretations \([14,15]\) of the numerical data accumulated so far on 3-SAT \([16]\) speak indeed for the existence of a spin–glass phase, making 3-SAT a valuable testing ground for RSB calculations. A first RSB solution is found and shown to improve the RS result.

II. ORDER PARAMETER FOR FINITE-CONNECTIVITY MODELS

A. Occupation densities and the multi-level gas picture

Let \(\mathcal{H}\) be a Hamiltonian depending on \(N\) Ising spins \(S_i, i = 1, \ldots, N\) and on some quenched degrees of freedom. To compute the equilibrium properties, we resort to the replica method \([2]\). Once the system has been replicated \(n\) times and the disorder averaged out, we obtain an effective model of \(2^n\)-states spins \(\vec{S}_i = (S^1_i, S^2_i, \ldots, S^n_i)\). In the absence of any underlying geometry (e.g. lattice), the effective Hamiltonian \(\mathcal{H}_{\text{eff}}\) is invariant under any relabelling of the sites. As a consequence, \(\mathcal{H}_{\text{eff}}\) depends upon the spins only through the \(2^n\) occupation densities \(c(\vec{\sigma})\) defined as the normalized fractions of sites \(i\) such that \(\vec{S}_i = \vec{\sigma}\) \([15,17]\). This is the very meaning of a mean-field theory: the
effective Hamiltonian depends on the spins only through a finite set of global fields rather than an extensive set of local ones. For instance, the effective Hamiltonian of the SK model at inverse temperature β reads

$$N \mathcal{H}_{eff}^{SK} = -\frac{\beta}{2N} \sum_{i<j} \left(\sum_{n=1}^{N} S_i^n S_j^n \right)^2$$

$$\simeq -\frac{\beta N}{4} \sum_{\sigma_1,\sigma_2} c(\sigma_1) c(\sigma_2) (\sigma_1,\sigma_2)^2,$$

up to $O(1)$ irrelevant terms. In this picture, we may interpret any mean-field IC or FC replicated system as a ‘gas’ of N particles living on 2^n interacting levels. Each level is labelled by a vector $\vec{\sigma}$ comprised of n binary components $\sigma^a = \pm 1$ and is filled in with $N c(\vec{\sigma})$ particles. Taking into account the entropic contribution coming from the combinatorial choices of the sites, we obtain the general expression for the n^{th} moment of the partition function Z

$$Z^n = \int_0^1 \prod_{\vec{\sigma}} dc(\vec{\sigma}) \delta \left(\sum_{\vec{\sigma}} c(\vec{\sigma}) - 1 \right) e^{-N\beta F(c)}$$

where the bar denotes the average over the disorder and the free-energy functional reads, to the largest order in N,

$$F(\{c\}) = \mathcal{H}_{eff}(\{c\}) + \frac{1}{\beta} \sum_{\vec{\sigma}} c(\vec{\sigma}) \ln c(\vec{\sigma}) .$$

In the thermodynamical limit, the occupation densities $c(\vec{\sigma})$ are determined through the 2^n saddle-point equations corresponding to the optimisation of the free energy functional F,

$$c(\vec{\sigma}) = \lambda(n) \exp \left(-\beta \frac{\partial \mathcal{H}_{eff}}{\partial c(\vec{\sigma})} \right)$$

where $\lambda(n)$ is to be chosen to ensure the normalization of the c’s. All equilibrium properties can then be computed. Let us briefly comment the pros and cons of the above formalism with respect to the usual formulation which involves overlaps between spins belonging to different replicas. Expressions always require to compute 2^n order parameters c. In the case of IC models, most of them contain redundant information since only $\frac{1}{2}n(n-1)$ distinct overlaps are required. As we shall see in the following, the structure of the order parameters of IC models is indeed very simple and does not account for the whole spectrum of mean-field disordered models. For FC systems, the present formalism proves to be much more tractable than the usual formulation from the analytical standpoint. It amounts to encode all overlaps in a concise way through the generating function $c(\vec{\sigma})$. Another advantage of the present approach appears when focusing on Hamiltonians with p-spins interactions ($p \geq 3$). The use of the occupation densities c’s avoids the physically unclear introduction of Lagrange parameters, that are necessary to define overlaps even in the IC case.

B. Replica symmetric Ansatz

With a view to undertake RSB calculations, a short discussion of the replica symmetric (RS) Ansatz is illuminating. The RS theory of FC models was worked out ten years ago and may be reformulated within the Thouless-Anderson-Palmer (TAP) framework. Inside the single RS state, the spins S_i fluctuate around their Gibbs averages $\langle S_i \rangle$. All relevant information rest in the histogram $p_{rs}(h)$ of the effective fields $h_i = \frac{1}{\beta} \tanh^{-1}(\langle S_i \rangle)$. The order parameter proves thus to be a function p_{rs}, belonging to the space V of the probability distributions over real numbers. How are these results recovered in the present formalism? RS corresponds to the invariance of the saddle-point $c(\vec{\sigma})$ under any permutation of its components. In other words, $c(\vec{\sigma})$ is a function of the magnetisation $s = \sum_{a=1}^{N} \sigma^a$ only.

Inserting the above Ansatz into the extremisation conditions of $F(\{c\})$, one easily finds back all thermodynamical quantities through the one-to-one correspondence

$$c(\vec{\sigma}) = \int_{R} dh \ p_{rs}(h) \prod_{a=1}^{n} \left(\frac{e^\beta h \sigma^a}{e^{\beta h} + e^{\beta h}} \right),$$

where $e^{\beta h}$
We must keep in mind that ρ fluctuates from state to state. Consequently, the effective field h is distributed according to a function $\rho(h) \in V$. Due to the presence of numerous states in the single cluster, the thermal average $\langle S_i \rangle$ fluctuates from state to state. Consequently, the effective field h_i is distributed according to a function $\rho_i(h_i) \in V$. We must keep in mind that ρ_i is in turn a random variable depending on the particular spin under consideration. The variety of ρ_i's may be taken into account by introducing their histogram, that is a functional $P[\rho]$. This is a normalized distribution over V: $\int_V D\rho \ P[\rho] = 1$. We thus look for P such that

$$c(\vec{\sigma}) = \int_V D\rho \ P[\rho] \prod_{b=1}^{n/m} \int_R dh \rho(h) e^{\beta h s_b}$$

where $s_b = \sum_{b=1}^{m} \sigma^{(b,b)}$. To guess the structure of the order parameter, we again resort to the TAP approach. Consider spin S_i. Due to the presence of numerous states in the single cluster, the thermal average $\langle S_i \rangle$ fluctuates from state to state. Consequently, the effective field h_i is distributed according to a function $\rho_i(h_i) \in V$. We must keep in mind that ρ_i is in turn a random variable depending on the particular spin under consideration. The variety of ρ_i's may be taken into account by introducing their histogram, that is a functional $P[\rho]$. This is a normalized distribution over V: $\int_V D\rho \ P[\rho] = 1$. We thus look for P such that

$$c(\vec{\sigma}) = \int_V D\rho \ P[\rho] \prod_{b=1}^{n/m} \int_R dh \rho(h) e^{\beta h s_b}$$

satisfies the saddle-point equations for F. The generic order parameter P for FC models appears to be much more complex than in the IC case.

As a simple check of the above formalism, let us see how to find back the RS theory. In the latter case, there exists a unique state. The effective fields can therefore not fluctuate from ‘state’ to ‘state’ and ρ_i is simply a Dirac distribution in h_i. The fields h_i fluctuate according to their distribution ρ_i. Defining

$$P_{rs}[\rho] = \int_R dh \rho_{rs}(h) \delta \left[\rho(h) - \delta(h - \tilde{h}) \right]$$

we indeed find that the order parameter P simplifies to the RS expression. In eq. (8), the symbol δ denotes the Dirac functional, i.e. the product over all values of h is omitted for simplicity. It was first remarked by Wong and Sherrington (in a different formalism) that a generalization of the above equation to the RSB case may be obtained by replacing the inner Dirac distribution in eq. (8) with a function to be optimised over. This Ansatz may be correct if the distributions ρ with a non-zero weight can be labelled by (i.e. are not more ‘numerous’ than) real numbers. In the generic case, a full functional P is a priori needed.

How can expression (8) be analytically continued to real n, m? We first define $\nu(y)$ as the number of blocks b of magnetisations $s_b = y$, with $y = -m, -m + 2, \ldots, m - 2, m$. It is easy to check out on (8) that $c(\vec{\sigma})$ depends only on the set of $\nu(y)$’s, as expected from the invariance of the order parameter under permutations between blocks. The discrete nature of y is merely due to the integer value of m and can be omitted to define an analytical continuation of the order parameters. Consequently, $\nu(y)$ may be any function on the range $-m \leq y \leq m$ satisfying the constraint

$$\int_{-m}^{m} dy \nu(y) = \frac{n}{m} \to 0$$

C. Replica symmetry broken Ansatz

We now consider the first step of Parisi’s hierarchical RSB scheme, regardless of the possible existence of any new RSB pattern in FC spin-glasses. Each replica a is labelled by a couple of integers (b, \tilde{b}) according to the number b of the block it belongs to $(1 \leq b \leq n/m)$ and its position \tilde{b} inside this block $(1 \leq \tilde{b} \leq m)$. Following De Dominicis and Mottishaw, we see that $c(\vec{\sigma})$ is left unchanged under any permutation inside the blocks and depends only on the block magnetisations $s_b = \sum_{b=1}^{m} \sigma^{(b,\tilde{b})}$. To guess the structure of the order parameter, we again resort to the TAP approach. Consider spin S_i. Due to the presence of numerous states in the single cluster, the thermal average $\langle S_i \rangle$ fluctuates from state to state. Consequently, the effective field h_i is distributed according to a function $\rho_i(h_i) \in V$. We must keep in mind that ρ_i is in turn a random variable depending on the particular spin under consideration. The variety of ρ_i’s may be taken into account by introducing their histogram, that is a functional $P[\rho]$. This is a normalized distribution over V: $\int_V D\rho \ P[\rho] = 1$. We thus look for P such that

$$c(\vec{\sigma}) = \int_V D\rho \ P[\rho] \prod_{b=1}^{n/m} \int_R dh \rho(h) e^{\beta h s_b}$$

satisfies the saddle-point equations for F. The generic order parameter P for FC models appears to be much more complex than in the IC case.

As a simple check of the above formalism, let us see how to find back the RS theory. In the latter case, there exists a unique state. The effective fields can therefore not fluctuate from ‘state’ to ‘state’ and ρ_i is simply a Dirac distribution in h_i. The fields h_i fluctuate according to their distribution ρ_i. Defining

$$P_{rs}[\rho] = \int_R dh \rho_{rs}(h) \delta \left[\rho(h) - \delta(h - \tilde{h}) \right]$$

we indeed find that the order parameter P simplifies to the RS expression (8). In eq. (8), the symbol δ denotes the Dirac functional, i.e. the product over all values of h is omitted for simplicity. It was first remarked by Wong and Sherrington (in a different formalism) that a generalization of the above equation to the RSB case may be obtained by replacing the inner Dirac distribution in eq. (8) with a function to be optimised over. This Ansatz may be correct if the distributions ρ with a non-zero weight can be labelled by (i.e. are not more ‘numerous’ than) real numbers. In the generic case, a full functional P is a priori needed.

How can expression (8) be analytically continued to real n, m? We first define $\nu(y)$ as the number of blocks b of magnetisations $s_b = y$, with $y = -m, -m + 2, \ldots, m - 2, m$. It is easy to check out on (8) that $c(\vec{\sigma})$ depends only on the set of $\nu(y)$’s, as expected from the invariance of the order parameter under permutations between blocks. The discrete nature of y is merely due to the integer value of m and can be omitted to define an analytical continuation of the order parameters. Consequently, $\nu(y)$ may be any function on the range $-m \leq y \leq m$ satisfying the constraint

$$\int_{-m}^{m} dy \nu(y) = \frac{n}{m} \to 0$$
in the small n limit. Finally, the order parameter c becomes a functional over the set of all possible functions ν and reads, from (8),
\[
c[\nu] = \int_V D\rho \, P[\rho] \exp \left(\int_{-m}^m dy \, \nu(y) \ln \left[\int_R dh \, \rho(h) \frac{e^{\beta y}}{(2 \cosh \beta h)^m} \right] \right).
\]
(11)
Notice that the RS case is recovered by injecting the order parameter (8) into (11); one recovers (8) with $s = \int_{-m}^m dy \, \nu(y)$. In the generic RSB case, $c[\nu]$ depends on the whole ν function and not only on its first moment [24].

III. EXPRESSION OF THE ONE-STEP FREE-ENERGY FUNCTIONAL

A. Methods to compute the free-energy

Two procedures can be followed to access the thermodynamical properties, depending on the starting point of the calculation.

- **From the saddle-point equation**: We inject the expression of the order parameter (11) into the saddle-point equation (9). The resulting equation for $P[\rho]$ has to be solved. Then, one can compute the free-energy (8), possibly using the saddle-point equation to simplify the calculation (especially the entropic term whose calculation is uneasy).

- **From the free-energy functional**: Since we know that the saddle-point equation is closed within the one-step algebra, we may first compute the free-energy functional F given in (8) restricted to one-step order parameters (3). Once the analytical continuation of F to real $m, n \to 0$ has been carried out, we obtain the saddle-point equation for $P[\rho]$ by differentiating F with respect to the latter.

While both methods lead to the same result, the second one has an important practical advantage. The (total) derivative of F with respect to any parameter is equal to the partial derivative, while this is not necessarily true in the first procedure. This is of little interest for most of the control parameters which appear in the effective Hamiltonian only (it is usually easy to compute the partial derivative of H_{eff} in (8) and to perform the analytical continuation - see next paragraph). However, considerable simplifications arise when computing the derivative of F with respect to m. In the following, we shall therefore adopt the second procedure.

B. Energetic contribution

According to the interpretation given in Section II, the effective Hamiltonian H_{eff} describes the interactions between the different levels σ. If the levels interact K by K, the corresponding effective Hamiltonian typically reads
\[
H_{eff} \sim \sum_{\sigma_1, \sigma_2, \ldots, \sigma_K} c(\sigma_1)c(\sigma_2) \ldots c(\sigma_K) \, I(\sigma_1, \sigma_2, \ldots, \sigma_K)
\]
(12)
where the interaction function I is invariant under global permutations of both replicas and levels labels. For all usual IC or FC models, the computation of H_{eff} within the Ansatz (8) as well as taking the limit $n \to 0$ do not present any difficulty.

As an illustration, we consider three examples:

- **the SK model**: inserting $c(\sigma)$ (8) in H_{eff} (1), the trace over σ can be straightforwardly carried out by writing
\[
(\bar{\sigma}_1 \bar{\sigma}_2)^2 \equiv \frac{1}{2} \left. \frac{d^2}{dz^2} \right|_{z=0} \exp \left(z \sum_{a=1}^n \sigma_1^a \sigma_2^a \right).
\]
(13)
We obtain:
\[
\frac{1}{n} H_{SK}^{eff} = -\frac{\beta}{4n} \frac{d^2}{dz^2} \left. \right|_{z=0} \int_V D\rho_1 D\rho_2 \, P[\rho_1]P[\rho_2] \int_R dh_1dh_2 \rho_1(h_1)\rho_2(h_2) (\cosh z + \sinh z \tanh \beta h_1 \tanh \beta h_2)^m (n \to 0),
\]
(14)
where
\[
q_0 = \int_V \mathcal{D}\rho \mathcal{P}[\rho] \left(\int_R dh \rho(h) \tanh \beta h \right)^2
\]
\[
q_1 = \int_V \mathcal{D}\rho \mathcal{P}[\rho] \int_R dh \rho(h) (\tanh \beta h)^2.
\]
\((15) \)

As expected for IC models, the functional nature of the order parameter is indeed drastically washed out since only the two moments \(q_0, q_1 \) of \(\mathcal{P}[\rho] \) are relevant.

- **the Viana-Bray model**: this model was introduced as a FC version of the SK model \([3]\). The Viana-Bray Hamiltonian reads
\[
\mathcal{H}_{\text{eff}}^{\text{VB}} = \frac{\alpha}{\beta} \left[1 - \sum_{\vec{\sigma}_1, \vec{\sigma}_2} c(\vec{\sigma}_1) c(\vec{\sigma}_2) \cosh (\beta \vec{\sigma}_1 \cdot \vec{\sigma}_2) \right],
\]
\((16) \)

where \(\alpha \) denotes the mean connectivity per spin. We obtain
\[
\frac{1}{n} \mathcal{H}_{\text{eff}}^{\text{VB}} = -\frac{\alpha}{\beta m} \int_V \mathcal{D}\rho_1 \mathcal{D}\rho_2 \mathcal{P}[\rho_1] \mathcal{P}[\rho_2] \ln \left[\int_R dh_1 dh_2 \rho_1(h_1) \rho_2(h_2) (\cosh \beta + \sinh \beta \tanh \beta h_1 \tanh \beta h_2)^m \right],
\]
\((17) \)

which explicitly depends upon on the whole distribution \(\mathcal{P}[\rho] \).

- **the Satisfiability problem**: this FC model will be described in Section V. At this stage, we only recall its Hamiltonian based on K-spins interactions:
\[
\mathcal{H}_{\text{eff}}^{\text{SAT}} = -\frac{\alpha}{\beta} \ln \left[\sum_{\vec{\sigma}_1, \ldots, \vec{\sigma}_K} c(\vec{\sigma}_1) \ldots c(\vec{\sigma}_K) \exp \left(-\beta \sum_{a=1}^n \prod_{\ell=1}^K \delta[\sigma_a^\ell; 1] \right) \right],
\]
\((18) \)

where \(\delta[.;.] \) denotes the Kronecker function \([4]\) and \(\alpha \) is a positive real parameter. We obtain
\[
\frac{1}{n} \mathcal{H}_{\text{eff}}^{\text{SAT}} = -\frac{\alpha}{\beta} \int_V \mathcal{D}\rho_1 \ldots \mathcal{D}\rho_K \mathcal{P}[\rho_1] \ldots \mathcal{P}[\rho_K] \frac{1}{m} \ln \left[\int_R dh_1 \ldots dh_K \rho_1(h_1) \ldots \rho_K(h_K) \left(1 + (e^{-\beta} - 1) \frac{e^{\beta \sum_{j=1}^K h_j}}{\prod_{j=1}^K 2 \cosh \beta h_j} \right)^m \right].
\]
\((19) \)

Note the additional complexity of \((19)\) with respect to \((17)\) due to the presence of multispins interactions.

C. Entropic contribution

The calculation of the model-independent entropic contribution
\[
S = -\sum_{\vec{\sigma}} c(\vec{\sigma}) \ln c(\vec{\sigma})
\]
\((20) \)

to the free-energy is far more complicated. Indeed, contrary to \(\mathcal{H}_{\text{eff}} \), \(S \) is not a function of a finite number of the integer moments
\[
C_\ell = \sum_{\vec{\sigma}} |c(\vec{\sigma})|^\ell
\]
\((21) \)
of the order parameter. The computation of the entropy \(S \) is exposed in Appendix A. The final expression, in the small \(n \) limit
\[
\frac{1}{n} S = - \int \mathcal{D} \hat{\nu} \mathcal{D} \nu \exp \left(-i \int_{-m}^{m} dy \nu(y) \nu(y) \right) c[i\nu] \ln c[i\nu] \\
\frac{1}{m} \ln \left[\int \frac{dx}{2\pi} \int_{-m}^{m} dy e^{-ixy} (2\cos x)^{m} \exp \hat{\nu}(y) \right].
\]

(22)

involves a double functional integrals over \(\hat{\nu} \) and \(\nu \) functions, see Appendix A. The order parameter \(P \) enters expression (22) through the \(c \) functional as expected.

D. Back to RS : the \(m=0 \) and \(m=1 \) cases

In order to be self-consistent, the above formalism has to ensure that the RS free-energy is found back when \(m = 0 \) or \(m = 1 \). We shall now see that this is the case.

We first look at the energetic part of \(F \). Within the RS Ansatz, the order parameter \(P[\rho] \) simplifies to (9). It is a simple exercise to obtain the resulting expressions for the energy, see e.g. (14,19). We observe that the same expressions are found back if we identify the RS field distribution \(p_{rs}(h) \) with

- Case \(m = 0 \) :

\[
p_0(h) = \int_V \mathcal{D} \rho \, P[\rho] \, \rho(h)
\]

(23)

More generally, the expansion of the one-step free-energy functional in powers of \(m \) coincides with an expansion in terms of the cumulants of \(P[\rho] \). For instance, the first non trivial term (of order \(m \)) includes the two functions correlation

\[
\Gamma(h,h') = \int_V \mathcal{D} \rho \, P[\rho] \, \rho(h) \, \rho(h')
\]

(24)

which is diagonal in the RS assumption and shows off-diagonal contributions otherwise [17].

- Case \(m = 1 \) :

\[
p_1(h) = \int_V \mathcal{D} \rho \, P[\rho] \, \delta(h-H[\rho])
\]

(25)

where

\[
H[\rho] = \frac{1}{\beta} \tanh^{-1} \left(\int_R dh \, \rho(h) \tanh \beta h \right)
\]

(26)

When \(m = 1 \), an exponential number of states with exponentially small weights contribute to the partition function. As a result, these states may be considered as effective micro-configurations and their cluster as a single effective ‘state’. Equations (24,26) express that the mean spin magnetisations in the latter are simply the averages of the spins magnetisations over all physical states (with vanishingly small weights).

The validity of the above relationship between RS theory and the \(m=0,1 \) cases also holds for the entropic part of \(F \), see Appendix B. In addition, we show in Appendix B how to compute the path integrals in (22) in the RS scheme to obtain the RS entropy

\[
\frac{1}{n} S_{rs} = \int_R \frac{d\hat{\nu}d\nu}{2\pi} e^{-i\nu} \ln(2\cosh \beta \hat{\nu}) \, c_{rs}(i\nu) \left(1 - \ln c_{rs}(i\nu) \right)
\]

(27)

with

\[
c_{rs}(i\nu) = \int_R dh \, p_{rs}(h) \, e^{i\nu h}
\]

(28)

The field distribution \(p_{rs} \) is obtained through the optimisation of both entropic and energetic contributions to the RS free-energy. This approach, that gives the same result as previous works in the RS framework, we shall now extend to the first step of RSB.
IV. SADDLE-POINT EQUATION FOR THE FUNCTIONAL ORDER PARAMETER

We shall now obtain the saddle-point equation fulfilled by the order parameter $P[\rho]$. To do so, we differentiate both entropic and energetic parts of the free-energy functional.

A. Differentation of the entropic part

The entropy (22) depends on the order parameter through $c[11]$ only. It results convenient to introduce the operator

$$K[\rho, \nu] = \int D\nu \exp \left[-i \int_m^m dy \nu(y) \left(\hat{\nu}(y) - \ln \left(\int_R dh \rho(h) \frac{e^{\beta hy}}{(2 \cosh \beta h)^m} \right) \right) \right]$$

which depends on both functions $\rho(h)$ and $\nu(y)$. Using the above definition, we rewrite the derivative of the entropic contribution to the free-energy as

$$\frac{1}{n} \frac{\partial S}{\partial P[\rho]} = -\int D\nu \ K[\rho, \nu] \ln c[\nu],$$

which depends on the field distribution ρ through (29).

B. Differentation of the energetic part

As emphasized in paragraph III.2, the calculation of the (model-dependent) energetic part of the free-energy, and consequently of its derivative does not present any difficulty. It turns out that the latter may always be written under the convenient form

$$\frac{1}{n} \frac{\partial H^{eff}}{\partial P[\rho]} = \int D\nu \ K[\rho, \nu] \Omega[\nu].$$

The expressions of Ω we now give for the different models of interest.

- **the SK model** :

$$\Omega^{SK}[\nu] = -\frac{\beta}{2} \left(m(1 - q_1)\nu_0 + q_0(\nu_1)^2 + (1 - q_1)\nu_2 \right),$$

where q_0, q_1 have been defined in (15) and

$$\nu_j = \int_{-m}^m dy \nu(y) y^j.$$

- **the Viana-Bray model** :

$$\Omega^{VB}[\nu] = -\frac{2\alpha}{\beta} \int_D \rho_1 \ P[\rho_1] \frac{1}{2} \sum_{\sigma = \pm 1} \exp \left(\int_{-m}^m dy \nu(y) \right) \ln \left[\int_R dh \rho_1(h) \exp \left(\frac{1}{2} (m(A_+ + A_-) + \sigma y(A_+ - A_-)) \right) \right]$$

$$A_\pm \equiv \ln \left[\frac{\cosh \beta(h_1 + \epsilon)}{\cosh \beta h_1} \right] \quad (\epsilon = \pm 1).$$

7
the Satisfiability problem:

\[\Omega_{\text{SAT}}[\nu] = -\frac{\alpha K}{\beta} \int_V d\rho_1 \ldots d\rho_{K-1} P[\rho_1] \ldots P[\rho_{K-1}] \frac{1}{2} \sum_{\sigma = \pm 1} \exp \left(\int_{-m}^{m} dy \nu(y) \right) \]

\[\ln \left[\int \prod_{j=1}^{K-1} dh_j \rho_j(h_j) \exp \left(\frac{1}{2} (m + \sigma y) A_{K-1} \right) \right] \]

\[A_{K-1} \equiv \ln \left[1 + (e^{-\beta} - 1) \frac{e^\beta \sum_{j=1}^{K-1} h_j}{\prod_{j=1}^{K-1} 2 \cosh \beta h_j} \right] . \] (35)

C. Self-consistency equation for \(P[\rho] \)

Gathering derivatives (30) and (31) together, we obtain the following saddle-point equation

\[\int D\nu K[\rho, \nu] \left(-\ln c[\nu] - \beta \Omega[\nu] \right) = \lambda_0 , \] (36)

which has to be satisfied for any \(\rho(h) \). The Lagrange multiplier \(\lambda_0 \) in (36) is determined through the normalisation of \(P[\rho] \). It does not depend upon \(\rho(h) \) and may be computed for e.g. \(\rho(h) = \delta(h) \). Therefore, the saddle-point equation (36) simply means that \(\Omega[\nu] - \ln c[\nu] \) is a zero mode of the operator \(Q[\rho, \nu] = K[\rho, \nu] - K[\delta(h), \nu] \). (37)

The kernel of \(Q \) contains all constant functionals \(\lambda_1 \) due to the normalisation of \(\rho(h) \). Therefore, we end up with the following saddle-point equation

\[\ln c[\nu] + \beta \Omega[\nu] = \lambda_1 , \] (38)

where \(\lambda_1 \) can be determined for e.g. \(\nu(y) = 0 \). From (11) and (33), we get \(\lambda_1 = \beta \Omega[0] \), or equivalently

\[c[\nu] = \exp (-\beta \Omega[\nu] + \beta \Omega[0]) . \] (39)

We now have to find the \(\nu \) functions for which equation (33) has to be satisfied. \(P \) is a distribution of normalised probabilities \(\rho(h) \) merely by convention. Both \(P[\rho(h)] \) and \(P[a(\rho) \rho(h)] \) must lead to the same physics independently of the irrelevant \(a \) factors. This is ensured if

\[\int_{-m}^{m} dy \nu(y) = 0 , \] (40)

that is if condition (11) is satisfied. Consequently, \(P[\rho] \) has to be such that equation (33) is correct for any function \(\nu(y) \) over the range \(-m \leq y \leq m \) with zero integral \(\nu_0 \) (33).

D. A simple application : infinite-connectivity models

For the SK model, the self-consistency equation (32) is obtained from (11,32) and reads

\[\int_V D\rho P[\rho] \exp \left(\int_{-m}^{m} dy \nu(y) \ln \left[\int_R dh \rho(h) \frac{e^{\beta h y}}{2 \cosh \beta h} \right] \right) = \exp \left[\frac{\beta^2}{2} (q_0 \nu_1)^2 + (q_1 - q_0) \nu_2 \right] \]

for any \(\nu \) such that \(\nu_0 = 0 \). Solving the above equation, one finds the SK order parameter

\[P_{SK}[\rho] = \int_R d\tilde{h} w_{q_0}(\tilde{h}) \delta \left[\rho(h) - \frac{w_{q_1-q_0}(h - \tilde{h})(2 \cosh \beta h)^m}{\int_R dh' w_{q_1-q_0}(h' - \tilde{h})(2 \cosh \beta h')^m} \right] \] (41)

where \(w_a(z) = e^{-z^2/2a}/\sqrt{2\pi a} \). In eq. (42), the symbol \(\delta \) denotes the Dirac functional, i.e. the product over all values of \(h \) is omitted for simplicity. As expected, eqs. (13) are identical to the usual self-consistent equations for the RSB overlaps \(q_0 \) and \(q_1 \), see eq. (III.41) in [3]. Notice that the expression of \(\rho \) in (42) is in full agreement with the cavity derivation of the effective field distribution, see eq. (V.29) in [3].
V. APPLICATION TO THE 3-SATISFIABILITY PROBLEM

For generic FC models, the exact resolution of the saddle-point equation \([39]\) appears to be extremely difficult. At zero temperature, the limit indeed of interest for optimization problems, some analytical simplifications take place. We shall now see on 3-SAT how quantitative results may be obtained this way.

A. Presentation of the K-Satisfiability problem

The satisfiability (SAT) problem is the paradigm of the class of hard (NP–complete) computational problem arising in complexity theory \([13]\). A pedagogical introduction to the K-SAT problem, a version of SAT and some of the current open issues in theoretical computer science may be found in \([13]\).

K-SAT is defined as follows. Let us consider \(N\) Boolean variables \(\{x_i = 0,1\}_{i=1,\ldots,N}\). Choose randomly \(K\) among the \(N\) possible indices \(i\) and then, for each of them, a literal that is the corresponding \(x_i\) or its negation \(\bar{x}_i\) with equal probabilities one half. A clause \(C\) is the logical OR of the \(K\) previously chosen literals, that is \(C\) will be true (or satisfied) if and only if at least one literal is true. Next, repeat this process to obtain \(M\) independently chosen clauses \(\{C_{\ell}\}_{\ell=1,\ldots,M}\) and ask for all of them to be true at the same time (i.e. we take the logical AND of the \(M\) clauses). A logical assignment of the \(\{x_i\}\)'s satisfying all clauses, if any, is called a solution of the K–satisfiability problem.

For large instances \(\{M,N \to \infty\}\), K-SAT exhibits a striking threshold phenomenon as a function of the ratio \(\alpha = M/N\) of the number of clauses per variable. Numerical simulations indicate that the probability of finding a solution falls abruptly from one down to zero when \(\alpha\) crosses a critical value \(\alpha_c(K)\). Above \(\alpha_c(K)\), all clauses cannot be satisfied any longer. This scenario is rigorously established in the \(K = 2\) case, where \(\alpha_c = 1\) \([21]\). For \(K \geq 3\), much less is known; \(K(\geq 3)\)–SAT belongs to the class of hard computational problems, roughly meaning that running times of search algorithms are thought to scale exponentially in \(N\). Some upper and lower bounds on \(\alpha_c(K)\) have been derived \([22]\) and numerical simulations have recently allowed to find precise estimates of \(\alpha_c\), e.g. \(\alpha_c(3) \approx 4.2\) \([16]\).

In order to study the K–SAT problem, we map it onto a random diluted systems by introducing some spin variables \(S_i = \pm 1\) (a simple shift of the Boolean variables) and a quenched (unbiased) matrix \(C_{\ell,i} = 1\) (respectively \(-1\)) if \(x_i\) (resp. \(\bar{x}_i\)) belongs to the clause \(C_{\ell}\), 0 otherwise. Then the energy–cost function

\[
E[C,S] = \sum_{\ell=1}^{M} \delta \left[\sum_{i=1}^{N} C_{\ell,i} S_i - K \right],
\]

equals the number of violated clauses and therefore its ground state properties describe the transition from the SAT phase \((E_{GS} = 0)\) to the UNSAT phase \((E_{GS} > 0)\). Note that a similar cost function was first introduced for neural networks by Gardner and Derrida \([23]\). The effective Hamiltonian corresponding to the cost function \([13]\) was given in \([13]\). Previous studies have shown that the RS theory was able to find back the critical threshold of the 2-SAT problem but became wrong for \(K(\geq 3)\)–SAT instances \([14,15]\). In the following, we therefore concentrate upon the most interesting \(K = 3\) case. We briefly recall the RS solution and then present a first RSB solution.

B. Saddle-point equation and RS solution

Following the above-mentioned procedure, the saddle-point equation for \(\mathcal{P}\) reads

\[
\ln \epsilon[\nu] = 3\alpha \int_{V} \mathcal{D}\rho_1 \mathcal{D}\rho_2 \mathcal{P}[\rho_1] \mathcal{P}[\rho_2] \left(\frac{1}{2} e^{\Phi_-} + \frac{1}{2} e^{\Phi_+} - 1 \right)
\]

where (for \(\epsilon = \pm 1\))

\[
\Phi_\epsilon = \int_{-m}^{m} dy \nu(y) \ln \left\{ \int_{R} dh_1 dh_2 \rho_1(h_1) \rho_2(h_2) \times \right. \\
\left. \times \exp \left[\frac{m + \epsilon y}{2} \ln \left(1 + \frac{e^{-\beta} - 1}{(1 + e^{-2\beta h_1})(1 + e^{-2\beta h_2})} \right) \right] \right\}.
\]

Eq. \((44)\) has to be satisfied for all \(\nu\) of integral zero. The ground state properties are obtained by sending \(\beta \to \infty\).
Let us briefly recall the RS result \([14]\). Inserting Ansatz \([9]\) into \([44]\), we find that the simplest RS solution includes half-integer fields only \([14,17,23]\)

\[
p_{\rho_s}(h) = \sum_{\ell=-\infty}^{\infty} e^{-\gamma I_{\ell}(\gamma)} \delta\left(h - \frac{\ell}{2}\right)
\]

where \(I_{\ell}\) is the \(\ell^{th}\) modified Bessel function and \(\gamma\) is self-consistently determined through

\[
\gamma = \frac{3\alpha}{4} \left(1 - e^{-\gamma I_0(\gamma)}\right)^2
\]

In addition to the SAT phase solution \(\gamma = E_{\text{GS}} = 0\), there appears a metastable solution \(\gamma > 0\), \(E_{\text{GS}} \neq 0\) above \(\alpha = 4.67\), see Fig. 1. This solution becomes thermodynamically stable at \(\alpha = 5.18\), well above the ‘experimental’ threshold \(\alpha \approx 4.2\). The latter is indeed thought to coincide with a first-order spin-glass transition \([14,15]\). Moreover, the presence of 3-spins interactions in \([18]\) suggests that the one step RSB solution could be exact for 3-SAT and that \(m = 1\) at the threshold \([13]\).

C. Simplest RSB solution

We now turn to the RSB solution. In view of \([15]\), we first restrict to distributions \(\rho\)'s on half-integer fields \(h\). Secondly, the cavity theory teaches us that \(\rho\) is biased in favor of large fields (see Section V.2 in \([2]\) for a clear explanation of this point). For IC models, large \(h\)'s indeed benefit from a Boltzmann factor \(e^{\beta m|h|}\) as can be seen on \([15]\). We thus propose the following form for the distributions \(\rho\) with a non zero weight \(P[\rho]\) (for \(m = 1\)),

\[
\rho(h) = \omega(\beta) \sum_{\ell=-\infty}^{\infty} \rho_{\ell} \exp\left(\beta \frac{\ell}{2}\right) \delta\left(h - \frac{\ell}{2}\right),
\]

where \(\omega(\beta)\) is a normalization factor and the \(\rho_{\ell}\)'s do not contain exponential terms in \(\beta\). Identity \([16]\) is merely the simplest hypothesis compatible with the saddle-point equation; we shall come back to this point at the end of the letter. Sending the temperature to zero, we find that \(P[\rho]\) is a function of two variables only which are computed from \(\rho\), namely the ends of its support \(\ell(-)\) and \(\ell(+)\). This results from the zero temperature expression of the order parameter

\[
\lim_{\beta \to \infty} c[\nu/\beta] = \sum_{\ell(-) \leq \ell(+)} P_{\ell(-),\ell(+)} e^{\nu_- \ell(-) + \nu_+ \ell(+)},
\]

where \(P_{\ell(-),\ell(+)}\) equals the sum of the weights of the \(\rho\) functions having support \([\ell(-),\ell(+)\]). Note that \([18]\) depends on \(\nu\) through

\[
\nu_- = \int_{-1}^{0} dy \nu(y) y,
\]

\[
\nu_+ = \int_{0}^{1} dy \nu(y) y
\]

only, in agreement with the statement that \([17]\) is the simplest non RS solution to \([14]\). After some algebra, \(\Omega^\text{SAT}[\nu] \quad [18]\) can also be shown to depend on \(\nu_-\) only. The self-consistent equation for \(P[\rho]\) simplifies into an implicit equation for the matrix \(P_{\ell(-),\ell(+)}\) which can be easily solved,

\[
P_{\ell(-),\ell(+)} = e^{-\Delta} \left(\frac{\Delta}{2}\right)^{\ell(+) - \ell(-)} \sum_{\ell=\ell(-)}^{\ell(+)} e^{-\gamma I_{\ell}(\gamma)} \ell(+) \ell(-) \ell(+) \ell(-) \ell! \ell!.
\]

As in the RS solution \([15]\), \(\gamma\) controls the decay of the probability weights of large fields. The new parameter \(\Delta\) sets the width of the supports of the \(\rho\)'s, that is the magnitude of the fluctuations of the effective fields from state to state. When \(\Delta = 0\), the supports of the \(\rho\)'s shrink to single points and the RS solution \([15]\) is recovered, in agreement with \([9]\). The two self-consistent equations on \(\gamma\) and \(\Delta\) as well as the expression of the corresponding GS energy \(E_{\text{GS}}\) are given in Appendix C. The results are displayed Fig. 1. In addition to the trivial solution \(\gamma = \Delta = E_{\text{GS}} = 0\), there appears another solution for \(\alpha > 4.45\) with \(0 < \gamma < \Delta\) and a metastable, i.e. negative, GS energy. This solution becomes thermodynamically stable at \(\alpha = 4.82\).
VI. CONCLUSION

The formalism we have presented in this article has permitted us to find an explicit RSB solution improving the RS saddle-point. Yet, the predicted threshold $\alpha_c = 4.82$ exceeds the ‘experimental’ value. This discrepancy may stem from the assumption (47). Contrary to the IC case, the payoff for large fields appearing in ρ might be a non-linear function of $|h|$. If so, an inspection of the saddle-point equation (48) shows that h is not constrained to take half-integer values anymore. This refinement scheme is reminiscent of the iterative procedure used in the RS theory to improve the simplest solution (45). By increasing the resolution on the fields, the RS thresholds decreased from 5.18 down to 4.60 (12).

However, the meaning of non half-integer fields is far from being clear. From a physical point of view, the effective fields should be half-integer valued at zero temperature. Previous studies performed for the Viana-Bray model have nevertheless shown that the half-integer field distribution is unstable with respect to longitudinal (within the RS sector) fluctuations (8). Then, we face the following dilemma. The RS saddle-point equation admits a physically sensible but unstable solution and many other ones, whose significances are dubious. In this context, the RSB solution presented in the last Section has a remarkable property. While the supports of the ρ’s with non zero weights contain physical (i.e. half-integer) values only, the resulting effective distribution $P(h)$ (23) includes Dirac peaks on the integer multiples of a quarter! More precisely, the RSB ground state energy is equal to the ground state energy of the RS solution with fields which are integer multiples of a quarter (15). Work is in progress to reach a better understanding of this puzzling coincidence (26).

Acknowledgments: I am particularly indebted to R. Zecchina for very fruitful contributions. I also thank A. Baldassarri, D. Dean, S. Franz and I. Kanter for interesting and motivating discussions.

APPENDIX A: CALCULATION OF THE RSB ENTROPY

Clearly, the analytical continuation of the C_ℓ’s to real ℓ in the vicinity of the unity will allow us to compute the entropy (20),

$$S = - \frac{d}{d\ell} \bigg|_{\ell=1} C_\ell$$

For integer ℓ, the moments C_ℓ are easily expressed from (8) as $C_\ell \simeq 1 + n\Gamma_\ell$ in the small n limit with

$$\Gamma_\ell = \int_{V} D\rho_1 \ldots D\rho_\ell \mathcal{P}[\rho_1] \ldots \mathcal{P}[\rho_\ell] \frac{1}{m} \ln \left\{ \int_{R} dh_1 \ldots dh_\ell \rho_1(h_1) \ldots \rho_\ell(h_\ell) \left(\frac{2 \cosh(\beta \sum_{j=1}^{\ell} h_j)}{\prod_{j=1}^{\ell} 2 \cosh(\beta h_j)} \right)^m \right\}$$

(A2)

In order to achieve an analytical continuation of Γ_ℓ, we proceed in two steps. First, consider the argument A of the logarithm in (A2). Defining

$$\hat{A}(y; \rho_1, \ldots, \rho_\ell) = \sum_{j=1}^{\ell} \ln \left\{ \int_{R} dh \rho_j(h) \frac{e^{\beta hy}}{(2 \cosh(\beta h))^m} \right\}$$

(A3)

the latter may be rewritten as

$$A[\hat{A}(y; \rho_1, \ldots, \rho_\ell)] = \int_{R} \frac{dx dy}{2\pi} e^{-ixy} (2 \cosh x)^m \exp \hat{A}(iy; \rho_1, \ldots, \rho_\ell)$$

(A4)

$$= \int_{R} \frac{dx}{2\pi} \int_{-m}^{m} dy e^{-ixy} (2 \cosh x)^m \exp \hat{A}(y; \rho_1, \ldots, \rho_\ell)$$

(A5)

where the last expression has been obtained through the rotation $(x, y) \rightarrow (ix, -iy)$. Note that the range of integration over y in (A3) makes the integral over h in (A3) convergent. We now introduce the probability distribution $Q_\ell[g]$ of the functions $g(y; \rho_1, \ldots, \rho_\ell)$,

$$Q_\ell[\hat{A}] = \int_{V} D\rho_1 \ldots D\rho_\ell \mathcal{P}[\rho_1] \ldots \mathcal{P}[\rho_\ell] \delta [\hat{A}(y; \rho_1, \ldots, \rho_\ell)]$$

(A6)
and rewrite Γ_ℓ as a functional integral over all possible g functions (with support $[-m, m]$) weighted with measure Q_ℓ,

$$\Gamma_\ell = \int D\hat{\nu} \, Q_\ell[\hat{\nu}] \frac{1}{m} \ln A[\hat{\nu}(y)] .$$ \hspace{1cm} (A7)

The second step of the calculation lies in the analytical continuation of the measure Q_ℓ to real ℓ. This may be achieved through an exponential representation of the functional Dirac in (A6). We thus obtain

$$\frac{d}{d\ell} \bigg|_{\ell=1} Q_\ell[\hat{\nu}] = \int D\nu \, \exp \left(-i \int_{-m}^{m} dy \hat{\nu}(y) \nu(y) \right) c[\nu] \ln c[\nu]$$ \hspace{1cm} (A8)

where the functional $c[\nu]$ is given in (11). In equation (A8), the measure $D\hat{\nu}$ ensures the correct normalisation of the Dirac functional, that is factors $1/2\pi$ have to be included when discretising the path integral over $\hat{\nu}$. The resulting expression of the entropy is given in (22).

APPENDIX B: RS ENTROPY AND THE $M = 0, 1$ CASES

In this Appendix, we first derive the RS expression of the entropy (22). We then show how the latter is recovered when $m = 0$ or $m = 1$.

1. **Calculation of the RS entropy**

Consider the RS expression (9) for $P[\rho]$. The functional $c[\nu]$ (11) simplifies to

$$c(\nu_0, \nu_1) = \int_R dh \, p_{rs}(h) \exp \left(-i \nu_0 m \ln(2 \cosh \beta h) + i \nu_1 \beta h \right) .$$ \hspace{1cm} (B1)

It depends on ν through the two moments ν_0, ν_1 only, see (33). We now introduce the series expansion of $\hat{\nu}(y)$ around $y = 0$,

$$\hat{\nu}(y) = \sum_{j=0}^{\infty} \hat{\nu}_j \, y^j .$$ \hspace{1cm} (B2)

Combining the coefficients definitions (33) and (B2), we rewrite the coupling term between $\hat{\nu}$ and ν in (22) as follows

$$\exp \left(-i \int_{-m}^{m} dy \, \hat{\nu}(y) \nu(y) \right) = \exp \left(-i \sum_{j=0}^{\infty} \hat{\nu}_j \nu_j \right) .$$ \hspace{1cm} (B3)

The integration over all coefficients ν_j with $j \geq 2$ gives $\hat{\nu}_j = 0, \forall j \geq 2$. Therefore, only the $\hat{\nu}$'s that are linear functions of their argument y survive. We obtain

$$\frac{1}{m} S = - \int_R \frac{d\hat{\nu}_0 d\nu_0}{2\pi} \frac{d\hat{\nu}_1 d\nu_1}{2\pi} c(\nu_0, \nu_1) \ln c(\nu_0, \nu_1) e^{-i(\hat{\nu}_0 \nu_0 + \hat{\nu}_1 \nu_1)}$$

$$\frac{1}{m} \ln \left[\int_R \frac{dx dy}{2\pi} e^{-i xy} (2 \cosh x)^m \exp(\hat{\nu}_0 + \hat{\nu}_1 i y) \right] .$$ \hspace{1cm} (B4)

The argument of the logarithm in (B4) simply reads $e^{\hat{\nu}_0} (2 \cosh \hat{\nu}_1)^m$. The remaining integrals on $\hat{\nu}_0, \nu_0, \hat{\nu}_1, \nu_1$ may then be carried out and the final result is given in (27).
2. Case m=0

We expand the logarithm in (22) and find
\[
\frac{1}{m} \ln \left[\int_R \frac{dxdy}{2\pi} e^{-ixy} (2 \cosh x)^m \exp(\hat{\nu}(iy)) \right] = \frac{\hat{\nu}(0)}{m} + \int_R \frac{dyd\hat{\nu}}{2\pi} e^{-iy\hat{\nu}} \ln(2 \cosh y) e^{i(y\hat{\nu} - \hat{\nu}(0))} + O(m),
\]
(B5)
in the small m limit. We now consider the first term on the r.h.s of (B5) and integrate out all modes \(\hat{\nu}(y \neq 0)\) in (22). The resulting \(c[\nu]\) reads, for small \(m\),
\[
c[\nu] = 1 + i m \nu(0) \int_R dh p_0(h) \ln(2 \cosh \beta h) + O(m^2),
\]
(B6)
where \(p_0\) has been defined in (23). Integrating \(g(0), \nu(0)\) out, we obtain a first contribution to the entropy (22),
\[
\frac{1}{n} S_1 = \int_R dh p_0(h) \ln(2 \cosh \beta h)
\]
(B7)
We now focus on the second part of the r.h.s of (B5). By integrating the \(\hat{\nu}'s\) out, we get
\(\nu(y) = 0\) except \(\nu(i\hat{y}) = -\nu(0) = i\). The corresponding functional (11) reads
\[
c[\nu] \equiv c(\hat{\nu}) = \int_R dh p_0(h) e^{i\beta h \hat{\nu}},
\]
(B8)
giving rise to the following entropy
\[
\frac{1}{n} S_2 = -\int_R \frac{dyd\hat{\nu}}{2\pi} e^{-iy\hat{\nu}} \ln(2 \cosh y) c(\hat{\nu}) \ln c(\hat{\nu}).
\]
(B9)
Summing up \(S_1\) and \(S_2\), the RS entropy (27) is recovered with \(p_{rs} = p_0\).

3. Case m=1

For \(m = 1\), the argument of the logarithm in (22) reads \(e^{\hat{\nu}_+} + e^{\hat{\nu}_-}\), with \(\hat{\nu}_\epsilon = \hat{\nu}(i\epsilon), \epsilon = \pm 1\). For all \(y \neq \pm 1\), the integration over \(\hat{\nu}(y)\) gives \(\nu(y) = 0\). The entropy then reads
\[
\frac{1}{n} S = -\int_R \frac{d\hat{\nu}_+ d\nu_+}{2\pi} \frac{d\hat{\nu}_- d\nu_-}{2\pi} c(\nu_+, \nu_-) \ln c(\nu_+, \nu_-) e^{i(\hat{\nu}_+ \nu_+ + \hat{\nu}_- \nu_-)} \ln \left[e^{\hat{\nu}_+} + e^{\hat{\nu}_-} \right],
\]
(B10)
where, using definition (23),
\[
c(\nu_+, \nu_-) = \int_R dh p_1(h) \exp \left(i \left(\nu_+ + \nu_- \right) \ln(2 \cosh \beta h) - i \left(\nu_+ - \nu_- \right) \beta h \right).
\]
(B11)
We make the following unitary change of variables
\[
\hat{\nu}_0 = \frac{1}{2}(\hat{\nu}_+ + \hat{\nu}_-),
\nu_0 = \nu_+ + \nu_-
\hat{\nu}_1 = \frac{1}{2}(\hat{\nu}_+ - \hat{\nu}_-),
\nu_1 = \nu_+ - \nu_-,
\]
and find back the RS expression (B4). Therefore, when \(m = 1\), the RS entropy is recovered with \(p_{rs} = p_1\).
APPENDIX C: SELF-CONSISTENCY EQUATIONS FOR γ, Δ AND GROUND-STATE ENERGY E

The self-consistent equations for γ and Δ read

$$\gamma = 3\alpha \left(\frac{1}{2} - \frac{r_0}{2} - r_1 \right)^2 \quad (C1)$$

$$\Delta = 3\alpha \left(\frac{1}{2} - \frac{r_0}{2} \right)^2 - \gamma \quad (C2)$$

where

$$r_0 = \sum_{\ell=-\infty}^{\infty} e^{-\gamma-\Delta} I_{\ell}(\gamma) I_{2\ell}(\Delta)$$

$$r_1 = \frac{1}{2} \sum_{\ell=-\infty}^{\infty} e^{-\gamma-\Delta} I_{\ell}(\gamma) [I_{2\ell-1}(\Delta) + I_{2\ell+1}(\Delta)] \quad (C3)$$

To compute the ground state energy E, we insert the saddle-point solution for $c(\vec{\sigma})$ into the free-energy (3) and keep the linear term in n only. We then send $\beta \to \infty$ and find

$$E = -\alpha \left[\left(\frac{1-r_0}{2} \right)^3 + \left(\frac{1-r_0}{2} - r_1 \right)^3 \right] + \frac{3\alpha}{4} \left[\left(\frac{1-r_0}{2} \right)^2 + \left(\frac{1-r_0}{2} - r_1 \right)^2 \right] -$$

$$\frac{\Delta}{4} (r_0 + r_1) - \frac{\gamma}{4} (r_0 + r_2 + 2r_1)$$

$$r_2 = \frac{1}{2} \sum_{\ell=-\infty}^{\infty} e^{-\gamma-\Delta} I_{\ell}(\gamma) [I_{2\ell-2}(\Delta) + I_{2\ell+2}(\Delta)] \quad (C4)$$

Note that $\Delta = 0$ is always a solution of the self-consistent equation (C2); eq. (C1) then gives back the RS saddle-point constraint on γ (46). In this case, the ground state energy E (C4) simplifies to

$$E_{RS} = \frac{\gamma}{6} (1 - e^{-\gamma} I_0(\gamma) - 3e^{-\gamma} I_1(\gamma)) \quad ,$$

in agreement with the findings of [14,15].

Email: monasson@physique.ens.fr ; preprint 97/33

LPTENS is a unité propre du CNRS, associée à l’Ecole Normale Supérieure et à l’Université de Paris–Sud.

[1] D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35 (1975)
[2] M. Mézard, G. Parisi, M.A. Virasoro Spin Glass Theory and Beyond, World Scientific, Singapore, 1987
[3] L. Viana, A.J. Bray, J. Phys. C 18, 3037 (1985)
[4] A.J. Bray, D. Huifang, Phys. Rev. B 40, 6980 (1989)
[5] I. Kanter, H. Sompolinsky, Phys. Rev. Lett. 58, 164 (1987)
[6] H. Orland, J. Physique Lett. 46, L763 (1985)
[7] C. De Dominicis, P. Mottishaw, J. Phys. A20, L1267 (1987)
[8] P. Mottishaw, C. De Dominicis, J. Phys. A20, L375 (1987)
[9] K.Y.M. Wong, D. Sherrington, J. Phys. A21, L459 (1988)
[10] Y. Goldschmidt, P.Y. Lai, J. Phys. A 23, L775 (1990)
[11] for a review, see e.g. Heidelberg colloquium on glassy dynamics and optimization, Springer-Verlag, Berlin, 1987
[12] M. Garey, D.S. Johnson, Computers and Intractability; A guide to the theory of NP–completness, W.H. Freeman and Co., San Francisco, 1979 ;
[13] B. Hayes, American Scientist, vol. 85, 108 (1997)
Another generating function of all overlaps was already introduced by Mottishaw and De Dominicis for technical reasons. Their order parameter however includes some disorder dependence (see equation (3) in [7]) and its interpretation is therefore less clear than $c(\hat{\sigma})$'s one. See also [10].
FIG. 1. Decay parameters γ (thin curves-left side scale) and ground state energies E (bold curves-right side scale) for the RSB (full curves) and the RS (long-dashed curves) solutions as functions of the number of clauses per variables α. The RSB width parameter Δ is shown on the upper dotted curve. The vertical dashed lines indicate the spinodal points $\alpha_{RSB} = 4.45$ and $\alpha_{RS} = 4.67$.