Eco-friendly and Safe Role of *Juniperus procera* in Controlling of Fungal Growth and Secondary Metabolites

Abdel Ghany TM

Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Cairo, Egypt

Corresponding author: Dr. Tarek Mohamed Abdel Ghany, Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Cairo, Egypt, Tel: 00201015386248; E-mail: tabdelghany@yahoo.com

Rec date: April 21, 2014 Acc date: August 26, 2014 Pub date: August 28, 2014

Copyright: © 2014 Ghany TM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Radial growth *Aspergillus flavus* and *Fusarium oxysporum* was determined on medium amended with *Juniperus procera* methanolic extract. The radial growth of *A. flavus* and *F. oxysporum* was significantly reduced at 150 and 200 mg. The percentage of reduction was 16.55%, 48.54% and 48.64%, 59.86% for *A. flavus* and *F. oxysporum*, respectively. However, addition of *J. procera* extract to Carbomar significantly reduced radial growth compared with using Carbomar alone. On the other hand, with addition of the *J. procera* extract, the productivity percentage of aflatoxins B2, aflatoxins B1, sterigmatocystin, cyclopiazonic acid and fusaric acid was reduced by100, 67.44, 96.28, 60.33 and 8.36%, respectively as a result of applied *J. procera* extract. Moreover, the extract of *J. procera* significantly reduced the *F. oxysporum* colony-forming units (cfu) in the cultivated soil with Raphanus sativus at 5 days. *F. oxysporum* populations at 100 and 200 mg of *J. procera* extract were 25.33×103 and 21.33×103 cfu g-1, respectively. However, when added with Carbomar, extract of *J. procera* strongly reduced *F. oxysporum* populations (9.33×103 cfu g-1). In addition, the *J. procera* extract reduced the mean disease rating of wilt disease of *R. sativus* caused by *F. oxysporum*. Less content of chlorophyll a and b (3.56 and 1.65 mg/g fresh weight, respectively at P<0.01) was detected in infected *R. sativus* than treated with *J. procera* extract or Carbomar.

Keywords: Eco-friendly role; Fungal growth; *Juniperus procera*; Secondary metabolites

Introduction

Public pressure to minimize the use of chemical fungicides in agriculture has increased in the recent years [1]. The extensive use of chemical fungicides in plant protection against fungal disease generates long-term residues in food and in the environment [2,3]. Pesticide residues and development of resistant strains of fungi from the continuous application of pesticides are the major constraints to their use [4]. Various studies have confirmed the efficacy of plant extracts in the control of fungal diseases [5-12], with the view to countering obvious pollution problems in the environment and avoiding the toxic effects of synthetic chemicals on non-target organisms. Plant derived compounds possess a high potential for pest management since most of them are not phytotoxic, easily biodegradable and sometimes stimulatory to the host metabolism [13,14], and thus may have inhibitory effects on fungi and other microorganisms [15,16] as well as mycotoxin production [17-19]. *Juniperus* is one of the major genera of Cupressaceae family. It is estimated that 70 species of *Juniperus* are distributed throughout the world [20]. *Juniperus* species have been extensively investigated as a source of natural products with potential antibacterial, antifungal and insecticidal activities [21-25]. *J. procera* is used locally to treat tuberculosis and jaundice [26], intestinal worms and eye infections (Klaus and Adala), its wood is resistant to termite and rot [27]. Pankaj et al. [28] investigated the different fractions of *Juniperus* leaves and bark, it inhibit the growth of aflatoxigenic *Aspergillus flavus* and *A. niger*. Extracts from the aerial parts of *J. lucayana* were assayed against phytopathogenic fungus *Botrytis cinerea*. The hexane extract showed to have a higher antifungal activity than ethanolic extract [29]. Pirzada et al. [30] studied the effect of ethanol, methanol, ethylacetate, chloroform and aqueous extracts of *Juniperus* against the human pathogenic fungi (*Aspergillus niger* and *A. flavus*). Fungal contamination is undesirable because of the potential for mycotoxin production. *Aspergillus* genera are the most important toxigenic fungi [31]. Aflatoxins are a potent toxic produced as secondary metabolites by the fungus *A. flavus* [32]. Furthermore several other extrolites are produced by *A. flavus*, including cyclopiazonic acid, aspergillic acid and β-nitropropionic acid [33]. Antifungal agents extracted from plants could be exploited in controlling the growth of fungi consequently inhibiting aflatoxin formation [34].

Plant essential oils and their components have been known to exhibit biological activities such as antifungal [35]. Juniper essential oil was evaluated by Pepelnjak [36] for the antimicrobial activity against sixteen bacterial species, seven yeast-like fungi, three yeast and four dermatophyte strains. Juniper essential oil showed bactericial activities as well as a strong fungidical activity against yeasts, yeast-like fungi and dermatophytes. Recently, Mariana and Camelia, [37] reported that Juniper oil has inhibition action against *Aspergillus niger, Fusarium oxysporum, Monascus purpureus* and *Penicillium hirsutum*. Glicic et al. [38] stated that the oil of *J. communis* with a high content of α-pinene, and mixture of α-pinene and sabinene showed the highest antimicrobial activity, especially against fungi. The purpose of this study was to determine whether the natural control of *A. flavus* and *F. oxysporum* and their mycotoxins could be achieved by applying *J. procera* extract and to compare them with the effect of chemical fungicide Carbomar.
Materials and Methods

Plant material and preparation of extract

The leaves of Juniperus procera were collected in January 2012 from Fifa Mountains, Jazan, Kingdom of Saudi Arabia (KSA). The plant sample was kindly identified by Dr. Abdou Marie, Associate Professor of Plant Ecology, Biology department, Faculty of science, Jazan University, KSA according to Migahid, [39] and Chaudhary, [40]. Fresh leaves (500 g) of juniper (J. procera) were air-dried at room temperature under shade, and ground into powder using an electric grinder. Then extracted with methanol in a Soxhlet apparatus. The solvent was removed using rotary evaporator under reduced pressure at temperature below 50°C. The resulting crude extracts were stored at 4°C in dark until used.

Chemical fungicide: Carbomar (Methyl Benizimacold-2-ylcarbamate) was used as chemical fungicide. It was prepared in Gyansoetnal, China.

Fungal strains: Raphanus sativus seedlings showing symptoms of wilt were collected from farm in Minufiya governorate, Egypt, and transferred in polyethylene bags to the laboratory. The fungal pathogen was isolated from root tissues on potato dextrose agar (PDA) medium according to the growth requirements of the isolate at 25°C for 5 days. The obtained Fusarium; F. oxysporum, was purified and identified using PDA media according to the morphological characteristics of the mycelia and spores as described by Domsch and Gams [41], Domsch et al. [42] and John and Brett as F. oxysporum. Aspergillus flavus strain was isolated from spoiled grains (Zea mayse L.) and identified according to Raper and Fennell [43].

Investigation of antimycotic activity

Inhibitory effect of J. procera extract on mycelial radial growth of test fungi was performed by placing 5 mm mycelia agar disks, cuts from the periphery of 5-day-old culture of the target fungi, in the centre of Petri dishes (9 cm diameter) containing PDA medium supplemented with 100,150 and 200 mg J. procera extract, 10 mg fungicide (Carbomar) and mixture of 200 mg J. procera extract with 10 mg Carbomar. Colony radius was measured after incubation period (8 days) at 27°C. The control sets were prepared subsequently using sterile distilled water instead of J. procera extract. The percent inhibition of the radial growth of the target fungi was calculated according to the following formula. Percent inhibition=(DC−DT)/DC×100, where DC is the colony diameter of the control sets and DT is the colony diameter of the treated sets. Diagnostic chariteria of F. oxysporum only were recorded at each treatment by using software for TLC techniques. Twenty microliters of the samples, with or without treatment, were applied to HPTLC plates (10 cm × 10 cm, 0.2 mm silica gel Merck 60 F 254 precoated plate; Merck Darmstadt, Germany) using CAMMAG LINOMAT 5 application system. The TLC plates were eluted for the detection of extracellular metabolites in toluene/ethyl-acetate/90% formic acid 5:4:1 (TFF). Once the runs had finished, the plates were observed under visible and ultraviolet at 254 & 365 nm illumination. Griseofulvin dissolved in chloroform/methanol 2:1 was used as standard in all cases and relative retention factor value (RF value) to griseofulvin were calculated as Rfg. To identify the metabolites the absolute Rf and the relative RF to griseofulvin (Rfg) were measured. Secondary metabolites were identified by descriptions in literature and comparison with the available standard was made [44-47]. Retention factor value (RF value): The distance that the spot of a particular compound moved up on the TLC plate relative to the distance moved by the solvent front is called the retention factor or RF value. The RF values of individual secondary metabolites were calculated by following, RF=Distance traveled by the compound/Distance travelled by the solvent. Quantification of secondary metabolites were done by comparing the RF values and area % of secondary metabolite calculated using CAMMAG TLC scanner at Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University Cairo, Egypt. The percentage of Metabolite production inhibition was calculated using the following formula: (1 - Area of test sample/Area control)×100%.

Analysis of fungal fatty acids: Mycelium (5 g fresh weight) of A. flavus and F. oxysporum (cultivated on potato dextrose broth medium containing 200 mg of J. procera) was grinded in 10 ml Chloriform: Methanol (2:1 v/v), then filtered and concentrated into 1 ml. The concentrated extract was placed in Gas Chromatography (GC) auto-sampler vials until they were analyzed using Shimadzu GCMS-QP 5050 A. software class 5000. Searched library: Wiley229 LIB. Column: DB1, 30 m, 0.53 mm ID; 1.5 μm film. Carrier gas: Helium (flow rate 1 ml/min.). Ionization mode: EI (70 ev). Temperature program: 70°C (static for 2 min) then gradually increasing (at a rate of 2°C/min up to 220°C (static for 5 min). Detector temperature was set at 250°C and injector temperature at 250°C. The chromatograms were compared and individual peaks were identified by comparing mass spectra to the library references, at RCMB.

Pot experiment: Pots containing 750 g of autoclaved agricultural soil and cultivated with 15 seeds of radish (Raphanus sativus) surface-disinfected in 0.5% sodium hypochloride solution for 3 min, rinsed three times in sterile-distilled water prior to sowing, in an air conditioned glasshouse at 25-28°C, the soil was inoculated with 10 mm mycelia agar disk of F. oxysporum mycelia with their spores (1×104 /ml) and the soil was treated with various concentration of 100 to 200 mg J. procera extract, 10 mg Carbomar and mixture of 200 mg J. procera extract with 10 mg Carbomar. Control soil was treated separately with F. oxysporum and J. procera extract. After 10 to 20 days the growing and wilting seedlings were observed and quantitative determination of chlorophyll was estimated in the rest of seedlings.

Secondary metabolites analysis

After 10 days of incubation period, the growth medium (potato dextrose broth medium containing 200 mg of J. procera) of A. flavus and F. oxysporum containing extracellular metabolites was extracted twice with Chlorofrom/methanol (2:1 v/v), then concentrated and separated using High-Performance Thin-Layer Chromatography (HPTLC) techniques. Twenty microliters of the samples, with or without treatment, were applied to HPTLC plates (10 cm × 10 cm, 0.2 mm silica gel Merck 60 F 254 precoated plate; Merck Darmstadt, Germany) using CAMMAG LINOMAT 5 application system. The TLC plates were eluted for the detection of extracellular metabolites in...
The numbers of colony forming units (CFU) in the selective media were determined by means of the serial dilution technique and the spread plate method. Analyses were performed in three replicates. Viable count of F. oxysporum was performed using rose bengal-streptomycin agar containing (per liter): 10 g glucose; 5 g peptone; 1 g K2HPO4; 0.5 g MgSO4×7H2O; 0.033 g rose bengal; 15 g agar. The plates were incubated at 28°C and colonies were counted after 5 days.

All data were subjected to one-way analysis of variance (ANOVA) using a software package (SPSS ver. 15). The significance among treatments in each time interval was determined using the least significant difference test (LSD, P<0.05 and P<0.01).

Results and Discussion

In vitro antymycotic activity

Growth of A. flavus and F. oxysporum (Table 1 and Figure 1) indicated that both fungal species were sensitive to the J. procera extract with the severe inhibition of colony radius compared with the control. There was significant difference (P<0.01) among colony radius of A. flavus and F. oxysporum at different concentration of J. procera extract alone, J. procera extract with carbomar and carbomar alone and control. This confirms the antifungal activities exerted by juniper extracts against fungal mycelium [21,23,25]. Growth of A. flavus and F. oxysporum was decreased with increasing concentrations of J. procera extract (Figure 1B-D). On the other hand the antifungal activity of Carbomar was more pronounced (Figure 1E) against A. flavus and F. oxysporum. Furthermore, J. procera extract combined with Carbomar resulted in the best control of fungal species compared with using each of them alone, where the growth inhibition % was 82.1 and 88.42% for A. flavus and F. oxysporum and respectively (Table 1), similar findings were reported by Pirzada et al. [30]. Pankaj et al. [28] reported that the different fractions of Juniperus leaves and bark inhibit the growth of aflatoxigenic A. flavus and A. niger at concentrations ranged from 1000 to 4000 ppm of methanolic extract. The antifungal properties of J. procera may due to the presence of sandaracopimaric acid [29,49], diterpenes totarol, ferruginol, 7β-hydroxyabieta-8,13-dien-11,12-dione, and 4-epiabetol [50].

Concentration of J. procera extract (mg)	Growth and inhibition percentage (%) (mean ± SE)			
	A. flavus	F. oxysporum		
	Colony radius (mm)	Inhibition (%)	Colony radius (mm)	Inhibition (%)
Control	4.47 ± 0.15	0.00	7.40 ± 0.10	0.00
100	4.17 ± 0.15**	6.71	4.30 ± 0.10**	41.89
150	3.73 ± 0.06**	16.55	3.80 ± 0.10**	48.64
200	2.30 ± 0.10**	48.54	2.97 ± 0.12**	59.86
Carbomar (10 mg)	1.83 ± 0.06**	62.90	1.77 ± 0.15**	76.08
Carbomar (10 mg) + J. procera extract (200 mg)	0.80 ± 0.10**	82.10	0.87 ± 0.06**	88.42

Table 1: Growth of A. flavus and F. oxysporum on medium supplemented with different concentrations of J. procera extract and their mixture with chemical fungicide (Carbomar). Value is the mean ± SD of three replicates. **The mean difference is significant at the 0.01 level.

Extract of J. procera demonstrated good inhibitory effect on secondary metabolites production as well as mycotoxins of A. flavus and F. oxysporum (Tables 2 and 3). Production of all detected secondary metabolites (except aspergillic acid) of A. flavus including aflatoxins B1, sterigmatocystin, cyclopiazonic acid and ergosterol were reduced (Production inhibition was 67.44, 96.28, 60.33 and 42.75% respectively), while production of aflatoxins B2 was completely inhibited with the treatment of J. procera extract (Table 2). Fungitoxic effects indicate that J. procera extract block the biosynthesis pathway of aflatoxins B2. On the other hand, J. procera extract induced the production of 3-Nitropropionic acid. These results are partially supported by reports indicating that extracts of certain plants were able to inhibit production of aflatoxin, sterigmatocystin and cyclopiazonic acid [17,51].

It was revealed from the results (Table 3) that J. procera extract inhibit the secondary metabolites production of F. oxysporum, including fusaric acid and ergosterol (production inhibition was 8.36% and 73.34% respectively). Many researchers focused on controlling of F. oxysporum mycotoxins [10,11,52]. Fusaric acid is probably one of the most widely distributed mycotoxins produced by strains in the genus Fusarium [53].
Secondary metabolites of *A. flavus* cultivated on medium

Secondary metabolites	Without *J. procera* extract	With *J. procera* extract	Inhibition (%) of secondary metabolite production (%)	
Area (AU)	Area%	Area (AU)	Area%	
Aflatoxin B2	5692.6	11.19	0.0	100
Aflatoxin B1	6494.4	12.76	2114.5	75.38
Sterigmatocystin	4527.3	8.90	168.4	26.28
Aspegillinic acid	23824.4	46.81	29622.7	75.43
Cyclopiazonic acid	4078.5	46.81	4.12	96.28
Ergosterol	6278.7	12.33	3592.8	94.27
3-Nitropropionic acid	0.0	0.0	2156.0	-ve

Table 2: Secondary metabolites of *A. flavus* cultivated on medium supplemented with *J. procera* extract (200 mg/100 ml). -ve, Secondary metabolite production increased.

Data in Table 3 show that *J. procera* extract have no suppressive effect on the productivity of other mycotoxins, where T2-Toxin, dihydrofusarbin, dihydroxyscripenol and butenolide productivity increased as compared with their productivity in case of control (without *J. procera* extract). Overall, the findings suggest that this extract has potential for use as antifungal agent (Figure 1), although it induce certain mycotoxin production and supress other. According to the explanation of Kiran et al. [54], it appears that there is no a relationship between the growth and mycotoxin production. Natural antifungal agents can be potential exploited in controlling the growth of fungi consequently inhibiting mycotoxin production [51, 55, 56].

Secondary metabolites of *F. oxysporum* cultivated on medium

Secondary metabolites	Without *J. procera* extract	With *J. procera* extract	Inhibition (%) of secondary metabolite production (%)	
Area (AU)	Area%	Area (AU)	Area%	
Dihydroxyscripenol	2422.3	17.41	8797.1	19.32
Fusaric acid	7808.8	48.94	7155.6	15.72
T2-Toxin	1428.3	10.27	2087.7	4.59
Butenolide	594.7	4.27	3701.0	8.13
Dihydrofusarbin	130.4	0.94	326.3	0.72
Ergosterol	893.5	6.42	238.2	3.41
Emodin	1634.5	11.75	2065.7	4.54
Unknown 1	0.0	0.0	12935.3	28.42
Unknown 2	0.0	0.0	8439.1	18.04

Table 3: Secondary metabolites of *F. oxysporum* cultivated on medium supplemented with *J. procera* extract (200 mg/100 ml). -ve, Secondary metabolite production increased.

The most fatty acids of *A. flavus* and *F. oxysporum* mycelia treated with *J. procera* extract were detected in lower concentration compared to the non-treated (Table 4). Overall results indicated that certain fatty acids including caprylic, tridecanoic and pentadecanoic was completely disappeared in *A. flavus* cultivated in medium amended with *J. procera* extract. On the other hand, palmitoleic, heptadecanoic, stearic and arachidic acid were decreased (0.24, 0.35, 2.42 and 0.56 mg/g) sharply in *F. oxysporum* mycelia treated with *J. procera* extract compared with their concentration (2.98, 6.41, 9.43 and 1.82 mg/g) respectively in non-treated. Although the mode of action of *J. procera* extract is not completely explained, it has been suggested that they act over cytoplasmic membranes, producing changes in their fatty acids. Feng and Zheng [57] reported that the natural compounds from plants interfere in the electron transport, the nutrient absorption, the fatty acid synthesis, the adenosine triphosphatase activity, and other metabolic processes of the cell.
Table 4: Fatty acids content of A. flavus and F. oxysporum cultivated in medium supplemented with J. procera extract (200 mg/100 ml).

Fatty Acids	Fatty acids concentration (mg/g fresh weight)	A. flavus cultivated	F. oxysporum cultivated		
	Without J. procera extract	With J. procera extract	Without J. procera extract	With J. procera extract	
Caprylic	C8	0.31	0.00	0.04	1.89
Capric	C10	0.79	0.17	0.05	0.06
Lauric	C12	1.48	0.36	1.83	1.12
Tridecanoic	C13	0.63	0.00	0.20	0.47
Myristic	C14	1.84	1.16	1.58	1.87
Pentadecanoic	C15	0.12	0.00	0.32	0.14
Palmitic	C16	25.64	33.8	28.89	27.6
Palmitoleic	C16:1	0.66	0.21	2.98	0.24
Heptadecanoic	C17	14.92	15.19	6.41	0.35
Oleic	C18:1	26.59	12.74	29.54	49.81
Stearic	C18	9.78	9.17	9.43	2.42
Linoleic	C18:2	7.46	22.06	16.61	11.36
Arachidic	C20	7.31	5.51	1.82	0.56
Behenic	C22	3.26	0.15	0.12	0.08

Carbomar at concentration 10 mg had clear toxicity to F. oxysporum growth as well as their morphology and sporogenisis (Figure 2E and F), where hyphae were deformed with appearance of large vesicles inside hyphae. J. procera extract had a rather similar effect on the F. oxysporum morphology (Figure 2D) at high concentration (200 mg) but had a slight effect at low concentratin 100 and 150 mg (Figure 2A-C). Synergistic effect between Carbomar and J. procera extract was observed on diagnostic charaiteria of F. oxysporum can probably be explained by the varied concentration of the tested J. procera extract. Similar results have been reported, showing less number of conidiospores of F. oxysporum as a result of exposure to 20 μL natural mint extract [37].

In vivo antymycotic activity

The in vivo experiment demonstrated the J. procera extract showed efficient control of F. oxysporum, where the disease symptoms were suppressed when J. procera extract was added in R. sativus grown in fungus-infested soil. F. oxysporum suppression was based on observations of symptoms of their disease in the wilting and number of growing seedlings (Figure 3). Furthermore, the severity of symptoms decreased with increasing of J. procera extract concentration (Figure 3D and E) compared to the fungus-inoculated without any treatments (Figure 3C). Development of safer anti-fungal agents such as plant extracts to control phytopathogens in agriculture were reported in recent years [25,58].

Carbomar had the highest inhibitory effect on F. oxysporum wilt disease (Figure 3F) compared with using J. procera extract. Weitang et al. [59] indicated that carbendazim were the most effective fungicides in inhibiting mycelial growth of F. oxysporum f. sp. Furthermore, the disease severity of R. sativus was reduced after an integrated treatment of Carbomar combined with J. procera extract (Figure 3G). Surprisingly Nguefack et al. [60] found that the antifungal activity of chemical fungicide (Carbendazim 100 mg/ml + chlorothalonil 550 mg/ml) was lower than that of plant extract (Ocimum gratissimum and Callistemon citrinus) against Bipolaris oryzae. On the other hand no negative impact was observed on R. sativus grown in non fungus-infested soil amended with J. procera extract (Figure 3B). According to Bansal and Gupta [61] many plant extracts have been reported to increase seed germination through decreasing F. oxysporum incidence.
Figure 2: Morphological criteria of F. oxysporum in medium without treatment as control (A), 100 mg of J. procera extract (B), 150 mg of J. procera extract (C), 200 mg of J. procera extract (D), 10 mg Carbomar (E and F), 200 mg of J. procera extract and 10 mg Carbomar (G and H)

Anyway, the results suggest that the J. procera extract not only suppress F. oxysporum growth in vitro, but also in vivo. This is not the first study which used the plant extract to control plant pathogens under in vivo conditions. Application of Dittrichia viscosa extract [62], Ocimum basilicum extract [63] neem seed powder [64], J. oxycedrus [65] plant essential oils [66] gave efficient protection against phytopathogens under in vivo conditions. Data presented in Table 5 showed that chlorophyll a and b were significantly decreased in R. sativus at certain treatment. Minimum content of chlorophyll a and b (3.56 and 1.65 mg/g fresh weight for chlorophyll a and b respectively at P<0.01) was observed in R. sativus cultivated in soil inoculated with pathogen alone compared with other treatments. Chlorophyll a of R. sativus cultivated in soil inoculated with pathogen showed no significant decrease at treatment with 100 mg J. procera extract and Carbomar, where it was 4.86 and 4.93 mg/g fresh weight respectively.

The agricultural soil treated with J. procera extract and Carbomar showed significant (P<0.01) alterations in F. oxysporum population (Table 6). The population of F. oxysporum increased with increasing application time in the fungus-inoculated soil, where the mean of CFU/g was 28.67, 46.33, 56 and 57.33 at 1,5,10 and 15 days respectively. On the other hand, J. procera extract at 100 and 200 mg suppress F. oxysporum at 5 days of application (CFU was 25.33 and 21.33 respectively). At 10 and 15 days of plant extract application, the population of F. oxysporum increased. This may be due to degradation of active ingredient of J. procera. On the other hand the chemical fungicide was more effective than natural extract of J. procera. At the same time, the addition of J. procera extract (200 mg) to carbomar increased their antifungal activity on CFU of F. oxysporum. Alkhail [67] showed antifungal activity of some plant extracts when tested against fungi viz., F. oxysporum and Botrytis cinerea. Mogle and Maske [68] reported that chemical fungicide Dithane M-45 decreased the mycoflora and enhanced the seeds of cowpea germination percentage [69]. Screening for antimicrobial activity has been the subject of many investigations and plant extracts with very potent antimicrobial activity could be promising agents for in vivo examination. Among such plant extracts is the extract from J. procera and it has been emerged as alternative to replace chemical fungicides.
Figure 3: Seedlings growth of *R. sativus* cultivated in control soil without treatment (A), soil treated with 100 mg of *J. procera* extract (B), soil inoculated with *F. oxysporum* (C), soil inoculated with *F. oxysporum* and treated with 100 mg of *J. procera* extract (D), soil inoculated with *F. oxysporum* and treated with 200 mg of *J. procera* extract (E), soil inoculated with *F. oxysporum* and treated with 10 mg Carbomar (F), soil inoculated with *F. oxysporum*, treated with 200 mg of *J. procera* extract and 10 mg Carbomar (G).

Treatments	Chlorophyll contents (mg/g fresh weight)	
	Chlorophyll "a"	Chlorophyll "b"
Control	4.96 ± 0.17	2.31 ± 0.05
J. procera extract (100 mg)	4.38 ± 0.10**	1.94 ± 0.06*
F. oxysporum (FO)	3.56 ± 0.03**	1.65 ± 0.10*
J. procera extract (100 mg) and FO	4.86 ± 0.06	2.28 ± 0.06**
J. procera extract (200 mg) and FO	3.65 ± 0.11**	1.76 ± 0.06**
J. procera extract (200 mg), Carbomar (10 mg) and FO	4.23 ± 0.07**	1.93 ± 0.03**
Carbomar (10 mg) and FO	4.93 ± 0.05	2.30 ± 0.10**

Table 5: Chlorophyll contents (mg/g fresh weight) of *Raphanus sativus* seedlings cultivated in soil treated with *J. procera* extract, *F. oxysporum* and Carbomar. Control, autoclaved soil and without treatment. The mean difference is significant at the 0.05 level. **The mean difference is significant at the 0.01 level.

Soil treatments	Colony forming units (CFU) of *F. oxysporum* at different days			
	1	5	10	15
Control	0.00 ± 0.00	0.00 ± 0.00	1.33 ± 0.58	4.67 ± 1.15
F. oxysporum (FO)	28.67 ± 1.53**	46.33 ± 2.65**	56.00 ± 2.65**	57.33 ± 1.53**
J. procera extract (100 mg) and FO	26.00 ± 1.00**	25.33 ± 1.15**	57.67 ± 1.15**	61.33 ± 1.53**
J. procera extract (200 mg) and FO	23.67 ± 1.15**	21.33 ± 1.53**	36.67 ± 1.15**	42.67 ± 1.53**
J. procera extract (200 mg), Carbomar (10 mg) and FO	13.33 ± 0.58**	9.33 ± 0.58**	8.67 ± 1.15**	17.33 ± 0.58**
Table 6: Colony forming units (CFU) of F. oxysporum in soil inoculated with F. oxysporum and treated with J. procera extract and Carbomar at different days of application. Autoclaved soil without treatment was used as control. **The mean difference is significant at the 0.01 level.

Carbomar (10 mg)	FO			
	14.33 ± 0.58**	11.67 ± 1.15**	11.67 ± 1.53**	16.67 ± 1.15**

Acknowledgement

Thanks to Regional Center of Mycology and Biotechnology, Al Azhar University, Cairo, Egypt for providing laboratory facilities.

References

1. Shafique S, Javed A, Bajwa R (2007) Effect of aqueous leaf extracts of allolepathic trees on germination and seed-borne mycologia of wheat. Pak J Bot 39: 2619-2624.
2. Chen Y, Hengkui L, Chiangiu C, Mingguo Z (2008) Sensitivity of Fusarium graminearum f. sp. tritici and Fusarium graminearum f. sp. nodorum to fungicide. Phytoparasitica 36: 326-337.
3. Petit AN, Fontaine F, Clément C, Vaillant-Gaveau N (2008) Photosynthesis limitations of grapevine after treatment with the fungicide fludioxonil. J Agric Food Chem 56: 6761-6767.
4. Baraldi E, Mari M, Chierici E, Pondrelli M, Bertolini P, et al. (2003) Studies on thiabendazole resistance of Penicillium expansum of pears: pathogenic fitness and genetic characterization. Plant Pathol 52: 362-370.
5. Stoll G (1988) Natural Protection of Plants in Tropical Zone. Eds Margraf Verlag, CTA, AGRECOL.
6. Mamoci E, Cavoski I, Simeone V, Mondelli D, Al-Bitar L, et al. (2011) Antifungal activity of different fraction of Juniperus communis leaves and Dittrichia viscosa against postharvest fungi. Molecules 16: 4655-4661.
7. Abadiosha AC, Uchendu PN (2003) Post-harvest of tomato fruit rot caused by Fusarium solani with extracts of Azadirachta indica Discov Innov 15: 83-86.
8. Obagwu J, Korsten L (2003) Control of citrus green and blue molds with garlic extracts. European J Plant Pathol 109, 221-225.
9. Adandonon A, Aveling TAS, Labuschagne N, Tamo M (2006) Biocontrol agents in combination with Moringa oleifera extract for integrated control of Sclerotium-caused cowpea damping-off and stem rot. Europ J Phytopathol 115: 409-418.
10. Singh SP, Tanwer BS, Khan M (2010) Antifungal potential of chemical composition and in vitro activity of plant extracts from Ferula communis and Dittrichia viscosa against postharvest fungi. Molecules 16: 2609-2625.
11. Mamoci E, Cavoski I, Simeone V, Mondelli D, Al-Bitar L, et al. (2011) Chemical composition and in vitro activity of plant extracts from Ferula communis and Dittrichia viscosa against postharvest fungi. Molecules 16: 2609-2625.
12. Rinze A, Daarni-Remadi M, Ormezzine F, Ladhari A, Rinze L, et al. (2012) Assessment of the antifungal activity of Nicotiana glauca Graham aqueous and organic extracts against some pathogenic and antagonistic fungi. African J Microbiology Res 6: 4655-4661.
13. Rauf S, Javed A (2013) Antifungal activity of different extracts of Chenopodium album against Fusarium oxysporum f. sp. cepea the cause of onion basal rot. Interna J Agriculture and Biol 15: 367-371.
14. Mishra AK, Dubey NK (1994) Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities. Appl Environ Microbiol 60: 1101-1105.
15. Lajwani A, Shoaib A (2012) Chapter 12. Allelopathy for the Management of Phytopathogens. In: Allelopathy: Current Trends and Future Applications. Cheema, Z.A., Farooq M., Wahid, A. (Eds.). Springer Publishers, 299-319.
16. Odebode AC, Madachi SJM, Joseph CC, Irungu BN (2004) Antibacterial activities of constituents from Isolona cailifera Verdc and Cleistochlamys krikii Benthi(Olive) (Annonaceae). J Agricultural Sci 49: 109-16.
17. Sánchez E, Heredia N, García S (2005) Inhibition of growth and mycotoxin production of Aspergillus flavus and Aspergillus parasiticus by extracts of Agave species. Int J Food Microbiol 98: 273-279.
18. Krishnamurthy YL, Shashikala J (2006) Inhibition of aflatoxin B production of Aspergillus flavus, isolated from soybean seeds by certain natural plant products. Lett Appl Microbiol 43: 469-474.
19. Rosas-Taraco A, Sanchez E, Garcia S, Heredia N, Bhatnagar D (2011) Extracts of Agave americana inhibit aflatoxin production in Aspergillus parasiticus. World Mycotoxin J 4: 37-42.
20. Topçu G, Erenler R, Cakmak O, Johansson CB, Celik C, et al. (1999) Diterpenes from the berries of Juniperus excelsa. Phytochemistry 50: 1199.
21. Barrero AF, Quiles del Moral JF, Lara A, Herrador MM (2005) Antimicrobial activity of sesquiterpenes from the essential oil of Juniperus thurifera. Planta Med 71: 67-71.
22. el-Sawi SA, Motawae HM, Ali AM (2007) Chemical composition, cytotoxic activity and antimicrobial activity of essential oils of leaves and berries of Juniperus phoenicea L. grown in Egypt. Afr J Tradit Complement Altern Med 4: 417-426.
23. Ortiz Y, Spengler I, Rodríguez Y, Collado IG, Hernandez-Galan R (2008) Screening Study of Potential Lead Compounds for Natural Products Based Fungicides from Juniperus lucayana. Natural Product Communications 3: 469-473.
24. Menghani K, Sharma SK (2012) Antimicrobial activity of Juniperus communis and Solanum xanthocarpum. International J Pharmaceutical Sciences and Research 3: 2815-2818.
25. Tumen I, Fred JE, Carol AC, Jeffery AT (2013) Antifungal activity of heartwood extracts from three Juniperus species, BioResource 8: 12-20.
26. Samoylenko V, Dunbar DC, Gafur MA, Khan SI, Ross SA, et al. (2008) Antiparasitic, nematcidal and antifouling constituents from Juniperus berries. Phytother Res 22: 1570-1576.
27. Negash L (1995) Indigenous Trees of Ethiopia-Biology, Uses and propagation techniques. SLU Reprintenralen, Umea, Sweden, 285.
28. Pankaj k, Bhatt RP, Sati OP, Vinod KD, Lokendra S (2010) In-vitro antifungal activity of different fraction of Juniperus communis leaves and bark against Aspergillus niger and Aflatoxigenic Aspergillus flavus. International J Pharma and Bio Sci 1: 1-7.
29. Ortiz-Nunez Y, Spengler Salabarria I, Collado IG, Hernandez-Galan R (2010) Antifungal activity of extracts and terpene constituents of aerial parts of Juniperus lucayana. ev Latinoamer Quím 38: 145-152.
30. Pirzada AJ, Shaikh W, Kazi TG, Pervaiz I, Usmanhangi K, et al. (2005) Isolation of essential elements and inhibition production of medicinal plant Datura alba seeds against human pathogenic fungi, Hamdard Med 48: 80-86.
31. Dutta TK, Das P (2001) Isolation of aflatoxicogenic strains of Aspergillus and detection of aflatoxin B1 from feeds in India. Mycopathologia 151: 29-33.
32. Otto K, Mihaela T, Ovidiu T, Laura B, Florin A (2008) Reserches regarding aflatoxin production in feta chesse by direct contamination with Aspergillus flavus. Journal of Agroalimentary Processes and Technologies 14: 442-445.
33. Jan D, Robert AS (2007) Food Mycology A Multifaceted Approach to Fungi and Food, CRC Press, 8, 137.
34. Pankaj k, Shahia D, Bhatt RP, Lokendra S (2011) In-vitro Antifungal activity of Sapindus seibereum L. against Aspergillus Niger and Aflatoxigenic Aspergillus flavus. J Applied Pharmaceutical Sci 01: 108-110.

J Plant Pathol Microbiol
ISSN:2157-7471 JPPM, an open access journal
35. Soković MD, Vukoević J, Marin PD, Brtić DD, Vajs V, et al. (2009) Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 14: 238-249.

36. Pepeljnjak S, Kosalec I, Kalodera Z, Blazević N (2005) Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae). Acta Pharm 55: 417-422.

37. Mariana F, Camelia U (2012) Antimicrobial activity of essential oils against four food-borne fungal strains. U.P.B. Sci Bull Series B 74: 87-96.

38. Grayer RJ, Harborne JB (1994) A survey of antifungal compounds from higher plants. Phytochemistry 37: 19-42.

39. Al-Rahmah N, Mustafa A, Abdel-Megeed A (2011) Antifungal and antiaflatoxigenic activities of some plant extracts. African J Microbiol Res 5: 1342-1348.

40. Feng W, Zheng X (2007) Essential oil to control Alternaria alternate in vitro and in vivo. Food Control 18: 1126-1130.

41. Friesvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112: 231-240.

42. Paterson RRM, Bridge PD (1994) Biochemical Techniques for Filamentous Fungi, CABI International, Wallingford, 125.

43. Thrane U (2001) Development in the taxonomy of Fusarium species based on secondary metabolites. In: Fusarium: Paul. E. Nelson, Memorial Symposium (Summerrell, B.A., Leslie, J.F. Backhouse, D. Bryden, W.L. and Burgess, L.W. eds.), APS Press, St. Paul, MN, USA, 29-49.

44. Friesvad JC, Flenborg O, Thrane U (1989) Analysis and screening for mycotoxins and other secondary metabolites in fungal cultures by thin-layer chromatography and high-performance liquid chromatography. Arch Environ Contam Toxicol 18: 331-335.

45. Hashem M, Moharam AM, Zaied AA, Saleh FEM (2010) Effect of Fungicides and Plant Extracts on the Conidial Germination of Colletotrichum gloeosporioides Causing Mango Anthracnose. Mycobiology 33: 200-205.

46. Al-Rahmah N, Mostafa A, Abdel-Megeed A (2011) Antifungal and antiaflatoxigenic activities of some plant extracts. African J Microbiol Res 5: 1342-1348.

47. Canton MJ, Beachey M, Bligh ER, Herington AC (2009) Detoxification of Aflatoxins. KMITL Sci Tech J 10: 52-62.

48. Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62: 4039-4043.

49. Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62: 4039-4043.

50. Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62: 4039-4043.

51. Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62: 4039-4043.

52. Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62: 4039-4043.