Constraining the curvature density parameter in cosmology

Purba Mukherjee and Narayan Banerjee

Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal - 741246, India.

The cosmic curvature density parameter has been constrained in the present work independent of any background cosmological model. The reconstruction is performed adopting the non-parametric Gaussian Processes (GP). The constraints on Ω_{k0} are obtained via a Markov Chain Monte Carlo (MCMC) analysis. Late-time cosmological probes viz., the Supernova (SN) distance modulus data, the Cosmic Chronometer (CC) and the radial Baryon Acoustic Oscillations (rBAO) measurements of the Hubble data have been utilized for this purpose. The results are further combined with the data from redshift space distortions (RSD) which studies the growth of large scale structure in the universe. The only a priori assumption is that the universe is homogeneous and isotropic, described by the FLRW metric. Results indicate that a spatially flat universe is well consistent in 2σ within the domain of reconstruction 0 < z < 2 for the background data. On combining the RSD data we find that the results obtained are consistent with spatial flatness mostly within 2σ and always within 3σ in the domain of reconstruction 0 < z < 2.

PACS numbers: 98.80.Cq; 98.80.-k; 98.80 Es; 95.36.+x; 95.75.-z
Keywords: cosmology, curvature, reconstruction, dark matter, dark energy.

I. INTRODUCTION

The universe on a large scale is described by the spatially homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) metric,

$$ds^2 = -c^2 dt^2 + a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right].$$ (1)

The scale factor a(t) is the only unknown function to be determined by the field equations. The isotropy and homogeneity of the space section demand the spatial curvature to be a constant, which can thus be scaled to pick up values from −1, +1, 0. This constant spatial curvature is termed the curvature index and is denoted as k. This index is not determined by the field equations but is rather fixed by hand, essentially from observational requirements.

The effect of the spatial curvature k in the evolution of the universe is estimated through the curvature density parameter, defined as,

$$\Omega_k = \frac{k c^2}{a^2 H^2},$$ (2)

where $H = \frac{\dot{a}}{a}$ is the Hubble parameter. Ω_k is positive, negative or zero corresponding to $k = -1, +1, 0$, which in turn correspond to open, closed and flat space sections respectively.

For the standard cosmological model to correctly describe the present state of the evolution, the initial value of Ω_k has to be tantalizingly close to zero, indicating that the universe essentially starts with a zero spatial curvature. This is known as the flatness or fine-tuning problem for the standard cosmology which is believed to be taken care of by an early accelerated expansion called inflation. For a brief but systematic description, we refer to the monograph by Liddle and Lyth.[1] Indeed inflation can wash out an early effect of spatial curvature, in comparison with the inflaton energy and the Hubble expansion. However, if Ω_k is negligible but k itself is non-zero, it may reappear in course of evolution and make its presence felt as the universe evolves. Reconstruction of some dark energy parameters indicate that a non-flat space section may not be easily ruled out. The use of Ω_k as a free parameter is found to affect the reconstruction of dark energy equation of state parameter w(z), as shown by Clarkson, Cortes, and Bassett[2]. A reconstruction of the deceleration parameter q(z) by Gong and Wang[3] shows that although a flat universe is still consistent, $|\Omega_{k0}|$ is less than only 0.05 for a one-parameter dark energy model and lies between -0.064 and 0.028 for a ΛCDM model with spatial curvature, where a subscript 0 indicates the present value of the quantity. The recent Planck[4] data also indicates that a universe with a non-zero spatial curvature may not be completely ruled out.

The motivation of the present work is to constrain the curvature density parameter Ω_{k0} hence attempt to ascertain the signature of the curvature index k, directly from observational data without assuming any background cosmological model. We do not start from any
theory of gravity or use any form of matter distribution in the universe. The only a priori assumption is that the universe is homogeneous and isotropic, and thus described by the FLRW metric. There is quite a lot of interest in this direction, which is normally pursued along with constraining other cosmological parameters pertaining to the alleged accelerated expansion of the universe. Most of these investigations depend on some chosen parametric form of cosmological quantities related to the late-time expansion behaviour of the universe[5–14]. This approach is indeed biased by the parametrization, as the functional form of the quantity is already chosen.

Another way of reconstruction involves a verification of the FLRW metric from datasets, and ascertaining the value of Ω_k as a by-product by combining the dimensionless reduced Hubble parameter $E(z)$ and the normalised comoving distance $D(z)$[2, 15–20].

The present work does not assume any functional form of Ω_k, but rather resorts to a non-parametric reconstruction of Ω_k, the present value of the curvature density parameter. The idea is to obtain constraints on the geometrical quantity Ω_k using recent observational data provided by the high precision cosmological probes, namely, the Supernova (SN) distance modulus data, the Cosmic Chronometer (CC) and the radial Baryon Acoustic Oscillations (rBAO) measurements of the Hubble parameter. We also combine these data from background measurements with the data from redshift space distortions (RSD) due to the growth of large scale structures. The reconstruction is performed adopting the non-parametric Gaussian Processes (GP). The resulting marginalized constraints on Ω_k are obtained via a Markov Chain Monte Carlo (MCMC) analysis, independent of any parametric model of the expansion history.

Attempts towards obtaining constraints on Ω_k using the non-parametric approach started to gain momentum in the recent past. Li et al.[21], Wei and Wu[22] proposed to constrain the cosmic curvature in a model-independent way by combining the CC-$H(z)$ with Union 2.1[23], and Joint Light-curve Analysis (JLA)[24] SN-Ia data respectively. Model-independent constraints on cosmic curvature and opacity was carried out by Wang et al.[25] using the CC-$H(z)$ and JLA SN-Ia data. Liao[26] studied constraints on cosmic curvature with lensing time delays and gravitational waves (GWs). Model-independent distance calibration and Ω_k measurement using Quasi-Stellar Objects (QSOs) and CCs was done by Wei and Melia[27]. Ruan et al.[28] obtained constraints on Ω_k using the CC-$H(z)$ data and HII galaxy Hubble diagram. Model-independent estimation for Ω_k from the latest strong gravitational lens systems (SGLs) was performed by Zhou and Li[29]. Wang et al.[30] constrained Ω_k from SGL and Pantheon[31] SN-Ia observations. Wang, Ma and Xia[32] employed a machine learning algorithm called Artificial Neural Network (ANN) to constrain Ω_k using data from CC, SN-Ia and GWs. Recently, Yang and Gong[33] constrained the $\Omega_k h^2$ using CC-$H(z)$, Pantheon SN-Ia and RSD data where $h = \frac{H_0}{100 \text{ km Mpc}^{-1} \text{s}^{-1}}$ is the dimensionless Hubble parameter at the present epoch. Non-parametric spatial curvature inference using CC and Pantheon data was performed by Dhawan, Alsing and Vagnozzi[34]. A majority of these investigations use GP as their numerical tool.

We use observational data more recent than most of these investigations, but the major difference is that we include a wider variety of data in combination, measuring different features of the evolution. We also include a section where the RSD dataset which has mostly eluded the attention so far, except the work of Yang and Gong[33] in the reconstruction of $\Omega_k h^2$ despite its utmost relevance in this connection, as the growth of perturbations has to be consistent with the spatial curvature.

The other crucial addition in the present work is that we also check the consistency of the constraints on spatial curvature with thermodynamic requirements. Very recently, Ferreira and Pavón[35] imposed a relation using the generalized second law of thermodynamics, which reads as $1 + q \geq \Omega_k$, where q is the deceleration parameter. It is quite reassuring to see that constraints on Ω_k quite comfortably satisfies the requirement.

The results obtained indicate that a spatial curvature may indeed exist at the present epoch. But the estimated sign of the curvature depends on the strategies for measuring H_0 to some extent. But the results are statistically not too significant, as a zero curvature is mostly included in 1σ and always at least in 2σ.

The paper is organized as follows. Section 2 contains the details on the reconstruction method. In section 3, the observational data used in the present work have been briefly reviewed. The methodology is discussed in section 4. Reconstruction using background data is performed in section 5. Section 6 shows the consistency of Ω_k constraints with the second law of thermodynamics. Reconstruction using the perturbation data are presented in section 7. The final section 8 contains an overall discussion on the results.

II. GAUSSIAN PROCESS

We shall employ the well-known Gaussian processes (GP)[36–38] for the reconstruction of Ω_k. Assuming that the observational data obey a Gaussian distribution with mean and variance, the posterior distribution of the reconstructed function (say f) and its derivatives can
be expressed as a joint Gaussian distribution. In this method, the covariance function $\kappa(z, \tilde{z})$ plays a key role. It correlates the values of $f(z)$ at two redshift points z and \tilde{z}. This covariance function depends on a set of hyperparameters which are optimised by maximizing the log marginal likelihood. With the optimised covariance function, the data can be extended to any redshift point. The GP method has been widely applied in cosmology [39–59].

It deserves mention that the choice of $\kappa(z, \tilde{z})$, affects the reconstruction to some extent. The more commonly used covariance function is the squared exponential covariance, which is infinitely differentiable,

$$\kappa(z, \tilde{z}) = \sigma_f^2 \exp \left(-\frac{(z - \tilde{z})^2}{2l^2} \right).$$ \hspace{1cm} (3)

In this particular work we consider the squared exponential, Matérn 9/2, Cauchy and rational quadratic covariance functions. The Matérn 9/2 covariance function is given by,

$$\kappa(z, \tilde{z}) = \sigma_f^2 \exp \left(-\frac{3|z - \tilde{z}|}{l} \right) \left[1 + \frac{3|z - \tilde{z}|}{l} + \frac{27 (z - \tilde{z})^2}{7l^2} + \frac{18|z - \tilde{z}|^3}{7l^3} + \frac{27 (z - \tilde{z})^4}{35l^4} \right].$$ \hspace{1cm} (4)

The Cauchy covariance function is

$$\kappa(z, \tilde{z}) = \sigma_f^2 \left[\frac{l}{(z - \tilde{z})^2 + l^2} \right],$$ \hspace{1cm} (5)

and the rational quadratic covariance function is

$$\kappa(z, \tilde{z}) = \sigma_f^2 \left[1 + \frac{(z - \tilde{z})^2}{2al^2} \right]^{-\alpha},$$ \hspace{1cm} (6)

where σ_f, l and α are the kernel hyperparameters. Throughout this work, we assume a zero mean function a priori to characterize the GP.

For more details on the GP method, one can refer to the Gaussian Process website\footnote{http://www.gaussianprocess.org}. The publicly available GaPP\footnote{https://github.com/carlosandrepaes/GaPP} (Gaussian Processes in python) code by Seikel et al.[40] has been used in this work.

III. OBSERVATIONAL DATA

In this work we use both the background data and the perturbation data for the reconstruction of Ω_m.

The background level includes different combinations of datasets involving the Cosmic Chronometer data (CC), the Supernova distance modulus data (SN), the Baryon Acoustic Oscillation data (BAO). For the perturbation level data, the growth rate of structure $f\sigma_8$ from the redshift-space distortions (RSD) are utilized. A brief summary of the datasets is given below.

A. Background Level

The Hubble parameter $H(z)$ can be directly obtained from the differential redshift time derived by calculating the spectroscopic differential ages of passively evolving galaxies, usually called the Cosmic Chronometer (CC) method [60]. In this work we use the latest 31 CC $H(z)$ data [61–67], covering the redshift range up to $z \sim 2$. These measurements do not assume on any particular cosmological model.

We take into account the updated and corrected Pantheon compilation by Steinhardt, Sneppen and Sen[68]. This corrected sample improves upon some errors in the quoted values of the redshift z in the original Pantheon dataset by Scollnic et al.[31]. The Pantheon catalogue is presently the largest spectroscopically confirmed SNIa sample, consisting of 1048 supernovae from different surveys covering the redshift range up to $z \sim 2.3$, including the SDSS, SNLS, various low-z and some high-z samples from the HST.

An alternative compilation of the Hubble $H(z)$ data can be deduced from the radial BAO peaks in the galaxy power spectrum, or from the BAO peak using the Ly-α forest of quasars, which are based on the clustering of galaxies or quasi stellar objects (namely rBAO), spanning the redshift range $0 < z < 2.4$ reported in various surveys [69–81]. One may find that some of the $H(z)$ data points from clustering measurements are correlated since they either belong to the same analysis or there is an overlap between the galaxy samples. Here in this paper, we mainly consider the central value and standard deviation of the data into consideration. Therefore, we assume that they are independent measurements as in [56, 82].

In view of the known tussle between the value of H_0 as given by the Planck[4] 2018 data from the CMB measurements (hereafter referred to as P18), and that from HST observations of 70 long-period Cepheids in the Large Magellanic Clouds by the SH0ES[83] team (hereafter referred to as R19), reconstruction using both of them have been carried out separately. The recent global P18 and local R19 measurements of $H_0 = 67.27 \pm 0.60$ km s$^{-1}$ Mpc$^{-1}$ for TT+TE+EE+lowE (P18)[4] and $H_0 = 74.03 \pm 1.42$ km s$^{-1}$ Mpc$^{-1}$ (R19)[83] respectively, with a 4.4σ tension between them, are considered for the purpose.
B. Perturbation Level

The redshift space distortion (RSD) data is a very promising probe to distinguish between different cosmological models. Various dark energy models may lead to a similar evolution in the large scale but can show a distinguishable growth of the cosmic structure. In this work, we utilize the updated datasets of the $f\sigma_8$ measurements, including the collected data from 2006-2018 [84–88], and the completed SDSS, extended BOSS Survey, DES and other galaxy surveys [89–109]. We refer to [82] for a recent compilation of the 63 RSD data within the redshift range $0 < z < 2$ respectively. This $f\sigma_8$ is called the growth rate of structure.

IV. THE CURVATURE DENSITY PARAMETER AND DISTANCE MEASURES

In an FLRW universe, the proper distance from the observer to a celestial object at redshift z along the line of sight is given by,

$$d_p(z) = \frac{c}{H_0} \int_0^z \frac{dz'}{E(z')}$$

and the transverse comoving distance can be expressed as,

$$d_M(z) = \frac{c}{H_0 \sqrt{\Omega_{k0}}} \sin n \left(\sqrt{\Omega_{k0}} \int_0^z \frac{dz'}{E(z')} \right),$$

in which the $\sin n$ function is a shorthand for,

$$\sin n x = \begin{cases} \sin x & (\Omega_{k0} > 0), \\ \sinh x & (\Omega_{k0} \rightarrow 0), \\ \sin x & (\Omega_{k0} < 0). \end{cases}$$

We define the reduced Hubble parameter as,

$$E(z) = \frac{H(z)}{H_0}. \quad (9)$$

Here, a suffix 0 indicates the value of the relevant quantity at the present epoch and z is the redshift, defined as $1 + z \equiv a_0/a$. The dimensionless parameter Ω_{k0}, namely the cosmic curvature density parameter, defined as

$$\Omega_{k0} = -\frac{k c^2}{a_0^2 H_0^2}, \quad (10)$$

is positive, negative or zero corresponding to the spatial curvature $k = -1, +1, 0$ which signifies an open, closed, or flat universe, respectively.

For convenience, we can define the normalized proper distance,

$$D_p(z) \equiv \frac{H_0}{c} d_p(z)$$

and the normalized transverse comoving distance,

$$D(z) \equiv \frac{H_0}{c} d_M(z)$$

as dimensionless cosmological distance measures which will be used later in our work.

V. RECONSTRUCTION FROM BACKGROUND DATA

In the very beginning we use the GP method to reconstruct the Hubble parameter $H(z)$ from the CC data and CC+rBAO data. We then normalize the datasets with the reconstructed value of H_0 i.e., $H(z = 0)$ to obtain the dimensionless or reduced Hubble parameter $E(z)$. Considering the error associated with the Hubble data as σ_H, we calculate the uncertainty in $E(z)$ as,

$$\sigma_E = \sqrt{\frac{\sigma_{H}^2}{H_0^2} + \frac{H^2}{H_0^4} \sigma_{H_0}^2}, \quad (13)$$

where σ_{H_0} is the error associated with H_0.

With the function $E(z)$ reconstructed from the Hubble data, as described in equation (9), the normalised proper distance D_p is calculated via a numerical integration using the composite trapezoidal[110] rule.

$$D_p(z) = \int_0^z \frac{dz'}{E(z')} \approx \frac{1}{2} \sum_i \left(z_{i+1} - z_i \right) \left[\frac{1}{E(z_{i+1})} + \frac{1}{E(z_i)} \right]. \quad (14)$$

Thus we get D_p without assuming any prior fiducial cosmological model. The error associated with D_p, say σ_{D_p}, is obtained from the reconstructed function $E(z)$ along with its associated error uncertainties $\sigma_E(z)$ described in equation (13), and is given by,

$$\sigma_{D_p}^2 (z) \approx \frac{1}{4} \sum_i \left(z_{i+1} - z_i \right)^2 \left[\frac{\sigma_{E_{i+1}}^2}{E_{i+1}^4} + \frac{\sigma_{E_i}^2}{E_i^4} \right]. \quad (15)$$

From this reconstructed D_p, we can calculate the normalised transverse comoving distance D from the Hubble data as,
\[D(z) = \begin{cases} \frac{1}{\sqrt{\Omega_{k0}}} \sinh \left[\sqrt{\Omega_{k0}} D_\rho(z) \right] & \Omega_{k0} > 0, \\ D_\rho(z) & \Omega_{k0} = 0, \\ \frac{1}{\sqrt{-\Omega_{k0}}} \sin \left[\sqrt{-\Omega_{k0}} D_\rho(z) \right] & \Omega_{k0} < 0. \end{cases} \]

The error \(\sigma_D \) of the reconstructed \(D \) from the Hubble data is,

\[\sigma_D(z) = \begin{cases} \cosh \left[\sqrt{\Omega_{k0}} D_\rho(z) \right] \sigma_{D_\rho}(z) & \Omega_{k0} > 0, \\ \sigma_{D_\rho}(z) & \Omega_{k0} = 0, \\ \cos \left[\sqrt{-\Omega_{k0}} D_\rho(z) \right] \sigma_{D_\rho}(z) & \Omega_{k0} < 0. \end{cases} \]

Steinhardt et al.[68] lists the corrected distance modulus \(\mu \) corresponding to different redshift \(z \), along with their respective error uncertainties, from supernovae observations following the BEAMS with Bias Corrections (BBC)[111] framework.

The error \(\sigma_D \) of the reconstructed \(D \) from the Hubble data is,

\[\sigma_D(z) = \begin{cases} \cosh \left[\sqrt{\Omega_{k0}} D_\rho(z) \right] \sigma_{D_\rho}(z) & \Omega_{k0} > 0, \\ \sigma_{D_\rho}(z) & \Omega_{k0} = 0, \\ \cos \left[\sqrt{-\Omega_{k0}} D_\rho(z) \right] \sigma_{D_\rho}(z) & \Omega_{k0} < 0. \end{cases} \]

With another Gaussian Process on the observed distance modulus of the SN-Ia data, we reconstruct \(\mu_{SN} \) and the associated error uncertainties \(\sigma_{\mu_{SN}} \) at the same redshift as that of the Hubble data. The subscript SN stands for supernova.

The distance modulus is theoretically given by,

\[\mu = 5 \log_{10} \left(\frac{d_L}{\text{Mpc}} \right) + 25. \]

Here, \(d_L \) is the luminosity distance. This \(d_L \) is related to the normalised transverse comoving distance \(D \) as,

\[d_L(z) = d_M(1 + z) = \frac{c(1 + z)D}{H_0}. \]

Substituting equation (16) in equation (19), we estimate the reconstructed distance modulus from the Hubble data, say \(\mu_H \) along with its 1\(\sigma \) error uncertainty \(\sigma_{\mu_H} \) as,

\[\mu_H = 5 \log_{10} \left(\frac{c(1 + z)D}{H_0} \right) + 25, \]

\[\sigma_{\mu_H} = \frac{5 \sigma_D}{\ln 10 D}. \]

Equations (16), (17), (21) and (22) will finally be utilized for obtaining the contour plots between \(\Omega_{k0} \) and \(H_0 \) at different confidence levels.

Finally we constrain the curvature density parameter \(\Omega_{k0} \) and the Hubble parameter \(H_0 \) simultaneously by minimizing the \(\chi^2 \) statistics. The \(\chi^2 \) function is given by,

\[\chi^2 = \Delta \mu^T \Sigma^{-1} \Delta \mu. \]

\(\Delta \mu = \mu_{SN} - \mu_H \) is the difference between the distance moduli of Pantheon SN-Ia and that of the \(H(z) \) data. \(\Sigma = \sigma_{\mu_{SN}}^2 + \sigma_{\mu_H}^2 \) is the total uncertainty matrix from combined Pantheon and Hubble data.

We attempt to reconstruct \(\Omega_{k0} \) directly for the following combination of data sets,

- **Set I**
 1. N1 - CC+SN
 2. P1 - CC+SN+P18
 3. R1 - CC+SN+R19
- **Set II**
 1. N2 - CC+rBAO+SN
 2. P2 - CC+rBAO+SN+P18
 3. R2 - CC+rBAO+SN+R19

We get the constraints on \(\Omega_{k0} \) and \(H_0 \) along with their respective error uncertainties by a Markov Chain Monte Carlo (MCMC) analysis with the assumption of a uniform prior distribution for \(\Omega_{k0} \in [-1, 1] \) and \(H_0 \in [50, 100] \) in case of the N1 and N2 combinations respectively. For the P1 and P2 combinations, we consider the P18 Gaussian \(H_0 \) prior whereas, for R1 and R2 combinations, the R19 Gaussian \(H_0 \) prior has been used.

In this work, we adopt a python implementation of the ensemble sampler for MCMC, the publicly available \texttt{emcee}\(^3\), introduced by Foreman-Mackey et al.[112]. The best fit results along with their respective 1\(\sigma \), 2\(\sigma \) and 3\(\sigma \) uncertainties is given in Table I. We plot the results using the GetDist\(^4\) module of python, developed by Lewis[113]. The plots for the marginalized distributions with 1\(\sigma \) and 2\(\sigma \) confidence contours for \(\Omega_{k0} \) and \(H_0 \) are shown in Figures 1, 2, 3 and 4 considering the squared exponential, Matérn 9/2, Cauchy and rational quadratic covariance respectively.

The reconstructed \(\Omega_{k0} \) for the N1 combination are consistent with spatial flatness within 2\(\sigma \) confidence

\(^3\) https://github.com/dfm/emcee

\(^4\) https://github.com/cmbant/getdist
FIG. 1: Contour plots and the marginalized likelihood of H_0 and Ω_k_0 considering the squared exponential covariance for Set I (left) and Set II (right). The solid lines represent the results for N1 and N2 data-set combination, dash-dot lines corresponds to the P1 and P2 data-set combination, and the dashed lines represent the results for R1 and R2 data-set combinations. The associated 1σ, 2σ confidence contours are shown along with the respective marginalized likelihood functions.

FIG. 2: Contour plots and the marginalized likelihood of H_0 and Ω_k_0 considering the Matérn 9/2 covariance for Set I (left) and Set II (right). The solid lines represent the results for N1 and N2 data-set combination, dash-dot lines corresponds to the P1 and P2 data-set combination, and the dashed lines represent the results for R1 and R2 data-set combinations. The associated 1σ, 2σ confidence contours are shown along with the respective marginalized likelihood functions.

FIG. 3: Contour plots and the marginalized likelihood of H_0 and Ω_k_0 considering the Cauchy covariance for Set I (left) and Set II (right). The solid lines represent the results for N1 and N2 data-set combination, dash-dot lines corresponds to the P1 and P2 data-set combination, and the dashed lines represent the results for R1 and R2 data-set combinations. The associated 1σ, 2σ confidence contours are shown along with the respective marginalized likelihood functions.

level (CL) for the squared exponential, Matérn 9/2 and Cauchy covariance functions, and within 3σ CL for the
rational quadratic covariance. With the addition of rBAO data in Set II, the constraints on Ω_{k0} become tighter. From the combined N2 data-set, we find that Ω_{k0} is consistent with a spatially flat universe at 1σ CL for the squared exponential, Matérn 9/2 and Cauchy covariance, whereas in 2σ for the rational quadratic kernel. The best-fit values shows an inclination towards a closed universe for N1 and N2 data-sets. The degeneracy between H_0 and Ω_{k0} along with their correlation has also been shown.

We also examine if the two different strategies for determining value of H_0, with conflicting results, affect the reconstruction significantly. We plot the marginalized distributions with 1σ and 2σ confidence contours for Ω_{k0} and H_0 using the P1 and P2 combinations considering the P18 prior on H_0, and for the R1 and R2 combinations considering the R19 prior on H_0 in figures 1-4. With the inclusion of the P18 data prior we see that the best-fit values of Ω_{k0} favour a spatially open universe, whereas in case of the choice of R19 as a prior, the best-fit values of the constrained Ω_{k0} shows that the combined data favours a spatially closed universe. However, a spatially flat universe is mostly included at 2σ CL for both cases.

VI. THERMODYNAMIC CONSISTENCY OF Ω_{k0} CONSTRAINTS

In this section, the consistency of constraints obtained on Ω_{k0} with the second law of thermodynamics is looked at. We assume the universe as a system is bounded by a cosmological horizon, and the matter content of the universe is enclosed within a volume defined by a radius not bigger than the horizon [114–116]. In cosmology, the apparent horizon r_A serves as the cosmological horizon, which is given by the equation $g^{\mu\nu}R_{\mu\nu} = 0$, where $R = a(t)r$ is the proper radius of the 2-sphere and r is the comoving radius. For the FLRW universe with a spatial curvature index k, the apparent horizon is thus given by

$$r_A = \left(H^2 + \frac{k}{a^2}\right)^{-\frac{1}{2}}.$$ \hspace{1cm} (24)

For $k = 0$, the apparent horizon reduces to the Hubble horizon $r_H = \frac{H}{\dot{H}}$.

Now, the entropy of the horizon S_A can be written as [117],

$$S_A = 8\pi^2r_A^2 = \frac{8\pi^2}{H^2 + \frac{k}{a^2}}.$$ \hspace{1cm} (25)

For the second law to be valid, the entropy S should be non-decreasing with respect to the expansion of the universe. If S_f and S_A stand for the entropy of the fluid describing the observable universe, and that of the horizon containing the fluid, respectively, then the total entropy of the system, i.e., $S = S_f + S_A$, should satisfy the relation

$$\frac{dS}{da} = \frac{dS_f}{da} + \frac{dS_A}{da} \geq 0.$$ \hspace{1cm} (26)

Recently Ferreira and Pavón[35] gave a prescription to ascertain the signature of k from the second law of thermodynamics. It is a fair assumption that the entropy of the observable universe is dominated by that of the cosmic horizon S_A [118]. So, the second law can be safely written as [35],

$$\frac{dS_A}{da} \geq 0.$$ \hspace{1cm} (27)
TABLE I: The best fit values of Ω_{k0}, H_0 and reconstructed $1 + q_0$ along with their 1σ, 2σ and 3σ uncertainties from different combinations of datasets, for four choices of the covariance function using the background data.

Dataset	$\kappa(z, \ddot{z})$	H_0	Ω_{k0}	$1 + q_0$	
N1	68.301	0.56	1.09 ± 1.67	−0.05 ± 0.11 + 0.21 + 0.32	0.49 ± 0.06 + 0.12 + 0.18
N2	68.941	0.39	0.96 ± 1.69	0.09 ± 0.06 + 0.12 + 0.16	0.42 ± 0.03 + 0.06 + 0.09
P1	69.371	0.14	0.90 ± 1.66	−0.03 ± 0.06 − 0.16 + 0.25	0.46 ± 0.06 + 0.12 + 0.18
P2	69.081	0.52	0.92 ± 1.63	+0.06 ± 0.06 + 0.19 + 0.29	0.39 ± 0.03 + 0.06 + 0.10
R1	69.291	0.37	0.72 ± 1.10	0.07 ± 0.11 − 0.21 − 0.31	0.45 ± 0.06 − 0.12 − 0.18
R2	69.701	0.37	0.72 ± 1.10	0.07 ± 0.11 − 0.21 − 0.31	0.40 ± 0.03 + 0.06 + 0.09

Using equation (25) in (27) one can obtain the following condition,

$$H \frac{dH}{da} \leq \frac{k}{a^2}.$$

The inequality (28) can be rewritten, with a bit of simple algebraic exercise, as

$$1 + q \geq \Omega_k.$$

Here q is the deceleration parameter which gives a dimensionless measure of the cosmic acceleration and is defined as,

$$q = -\frac{\ddot{a}}{aH^2} = -1 + (1 + z) \frac{H'}{H}.$$

Test ing the thermodynamic validity for the obtained constraints on Ω_{k0} requires a reconstruction of q_0 from the respective combination of data sets. Quite a lot of work on a non-parametric reconstruction of the cosmic deceleration parameter q is already there in the literature. Some of them can be found in [50-54, 56]. The list, however, is far from being exhaustive. We use the same datasets, that were used for the reconstruction of Ω_{k0}, to find the corresponding values of q_0. A very brief methodology is the following. For a more detailed technical description, we refer to [50, 57]. The comoving distance $D(z)$, and its derivatives $D'(z)$ and $D''(z)$ are reconstructed w.r.t z for different combinations of data sets. The uncertainty in $D(z)$ from the corresponding data set is taken into account. For the CC and rBAO data, we convert the $H-s\sigma_H$ data to $E-s\sigma_E$ data set using Eq. (9) and (13). $D'(z)$ is then connected to $D(z)$ and $E(z)$ via Eq. (12) as,

$$D'(z) = \sqrt{\frac{1 + \Omega_{k0}D^2(z)}{E(z)}}.$$

Thus, we take into account the E data points, the uncertainty associated $s\sigma_E$ while performing the GP reconstruction. We add two extra points $D(0) = 0$ to the D data set, and $E(0) = 1$ to the E data before proceeding with the reconstruction. We obtain the reconstructed values of $D(z)$, $D'(z)$ and $D''(z)$ at the present epoch, along with their error uncertainties. Now, q can be rewritten as a function of $D(z)$ and its derivatives as,
\[q(z) = -1 + \frac{\Omega_{k0}DD' - (1 + \Omega_{k0}D^2)D''}{D'(1 + \Omega_{k0}D^2)} (1 + z). \] (32)

Using the reconstructed \(D(0) \), \(D'(0) \) and \(D''(0) \), we obtain the values of \(1 + q_0 \), shown in the third column of Table I. Eq. (29) asserts that \(\Omega_{k0} \leq 1 + q_0 \) for the second law to be valid. We see that for all combinations, the second law is satisfied by a generous margin, independent of the choice of the kernel.

VII. RECONSTRUCTION ALONG WITH THE PERTURBATION DATA

Redshift-space distortions are an effect in observational cosmology where the spatial distribution of galaxies appears distorted when their positions are looked at as a function of their redshift, rather than as functions of their distances. This effect occurs due to the peculiar velocities of the galaxies causing a Doppler shift in addition to the redshift caused by the cosmological expansion. The growth of large structure can not only probe the background evolution of the universe, but also distinguish between GR and different modified gravity theories [119, 120]. Recently, non-parametric constraints on the Hubble parameter \(H \) and the matter density parameter \(\Omega_m \) were obtained using the data from cosmic chronometers, type-Ia supernovae, baryon acoustic oscillations and redshift-space distortions, assuming a spatially flat universe [121]. In this section, we propose a non-parametric method to use the growth rate data measured from RSDs to constrain the spatial curvature.

In a background universe filled with matter and dark energy, the evolution of matter density contrast is given by,

\[\delta = \frac{\delta \rho_m}{\rho_m}. \] (33)

In the linearized approximation, \(\delta \) obeys the following second order differential equation for its evolution,

\[\ddot{\delta} + 2H \dot{\delta} - 4\pi G_{\text{eff}}\rho_m \delta = 0, \] (34)

where \(\rho_m \) is the background matter density, \(\delta \rho_m \) represents its first-order perturbation, and the ‘dot’ denotes derivative with respect to cosmic time \(t \). Note that \(G_{\text{eff}} \) is the effective gravitational constant. For Einstein’s GR, \(G_{\text{eff}} \) reduces to the Newton’s gravitational constant \(G \). Considering the growth factor \(f(a) = \frac{d\ln \delta}{d\ln a} \), Gong, Ishak and Wang[122] provided an approximate solution to equation (34) as,

\[f(z) = \Omega_m^\gamma + \left(\gamma - \frac{4}{7} \right) \Omega_k. \] (35)

Here, \(\Omega_m = \frac{\Omega_{m0}(1+z)^3}{E^2(z)} \) is the matter density parameter, \(\Omega_k = \frac{\Omega_{k0}(1+z)^2}{E^2(z)} \) is the curvature density parameter and \(E(z) = \frac{H(z)}{H_0} \). The growth index \(\gamma \) depends on the model. For the ΛCDM model, \(f(z) \approx \Omega_m^\gamma \), and \(\gamma = 6/11 \) is a solution to Eq. (34) where the terms \(O(1 - \Omega_m)^2 \) are neglected [123]. For dark energy models with slowly varying equation of state \(\gamma \approx 0.55 \) [124]. For modified gravity models, different values have been predicted in literature, such as \(\gamma \approx 0.68 \) for Dvali-Gabadadze-Porrati (DGP) model [125, 126]. The RSD data measure the quantity \(f\sigma_8 \), defined by,

\[f\sigma_8(z) = f(z) \sigma_{8,0} \frac{\delta(z)}{\delta_{0}}, \]

\[= \sigma_{8,0} f(z) \exp \left\{ \int_0^z \frac{-f(z')}{1+z'} dz' \right\}, \] (36)

where \(\sigma_8 \) is the linear theory root-mean-square mass fluctuation within a sphere of radius \(8h^{-1} \) Mpc [127–131], \(h \) being the dimensionless Hubble parameter at the present epoch.

On substituting equation (35) in (36) we get,

\[f\sigma_8(z) = \sigma_{8,0} \left[\Omega_m^\gamma + \left(\gamma - \frac{4}{7} \right) \Omega_k \right] \exp \left\{ \int_0^z \frac{\Omega_m^\gamma + \left(\gamma - \frac{4}{7} \right) \Omega_k}{1+z'} dz' \right\}. \] (37)

Here we consider the following combination of data sets,

- Set III

\[\frac{\Omega_{k0}}{\Omega_{m0}} = \{0.05, 0.3, 0.36\}, \]

\[\frac{\Omega_{k0}}{\Omega_{m0}} = \{0.3, 0.36\}. \]
TABLE II: The best fit values of Ω_m, Ω_k, σ_8, and γ along with their 1σ, 2σ, and 3σ uncertainties from different combinations of datasets for four choices of the covariance function using the background and perturbation data.

Set	$\kappa(z, \tilde{z})$	Ω_m	Ω_k	σ_8	γ
N3	0.204 ± 0.042 ± 0.082 ± 0.126	0.040 ± 0.152 ± 0.265 ± 0.419	0.952 ± 0.074 ± 0.163 ± 0.296	0.629 ± 0.053 ± 0.130 ± 0.311	
N4	0.196 ± 0.023 ± 0.044 ± 0.068	-0.097 ± 0.105 ± 0.205 ± 0.299	0.964 ± 0.039 ± 0.082 ± 0.120	0.619 ± 0.020 ± 0.040 ± 0.066	
P3	0.199 ± 0.042 ± 0.083 ± 0.125	0.077 ± 0.084 ± 0.159 ± 0.212	0.961 ± 0.077 ± 0.159 ± 0.232	0.626 ± 0.049 ± 0.102 ± 0.174	
P4	0.185 ± 0.021 ± 0.041 ± 0.066	0.007 ± 0.033 ± 0.122 ± 0.198	0.976 ± 0.040 ± 0.089 ± 0.141	0.618 ± 0.023 ± 0.047 ± 0.103	
R3	0.203 ± 0.032 ± 0.064 ± 0.096	0.078 ± 0.037 ± 0.144 ± 0.212	0.885 ± 0.052 ± 0.098 ± 0.144	0.689 ± 0.058 ± 0.096 ± 0.156	
R4	0.159 ± 0.020 ± 0.042 ± 0.077	-0.033 ± 0.061 ± 0.115 ± 0.171	0.963 ± 0.045 ± 0.097 ± 0.148	0.625 ± 0.026 ± 0.052 ± 0.079	

1. N3 - CC+SN+RSD
2. P3 - CC+SN+RSD+P18
3. R3 - CC+SN+RSD+R19

- **Set IV**
 1. N4 - CC+rBAO+SN+RSD
 2. P4 - CC+rBAO+SN+RSD+P18
 3. R4 - CC+rBAO+SN+RSD+R19

We use the GP method to reconstruct the function $f(x,z)$ from RSD data. Finally, we constrain the cosmological parameters Ω_m, Ω_k, σ_8, and γ utilizing the χ^2 minimization technique. The uncertainties associated are estimated via a Markov Chain Monte Carlo analysis. The best fit results along with their respective 1σ, 2σ, and 3σ uncertainties is given in Table II. Plots for the marginalized posteriors with 1σ and 2σ confidence contours using the Set III and Set IV data combinations are shown in Figures 5, 6, 7 and 8, for the squared exponential, Matérn 9/2, Cauchy and rational quadratic covariance respectively.

The marginalized Ω_k constraints for the N3 combination is consistent with spatial flatness within 1σ CL for the squared exponential and Matérn 9/2 covariance, within 2σ for the Cauchy covariance and within 3σ for the rational quadratic covariance. For the N4 combination, reconstructed Ω_k lies with 1σ for all four kernel choices. Considering the P18 and R19 H_0 prior, it is seen that the squared exponential kernel includes $\Omega_k = 0$ for P3, P4, R4 combinations within 1σ and for the R3 combination within 2σ. The Matérn 9/2 kernel includes $\Omega_k = 0$ for all P3, P4, R3, R4 combinations within 1σ. The Cauchy kernel includes $\Omega_k = 0$ for the P3, R3 combination in 2σ, and for the P4, R4 combination in 1σ CL. Lastly, utilizing the rational quadratic kernel, $\Omega_k = 0$ is included in 3σ.
FIG. 5: Contour plots and the marginalized likelihood of H_0 and Ω_{k0} considering the squared exponential covariance for Set III (left) and Set IV (right). The solid lines represent the results for N3 and N4 data-set combination, dash-dot lines corresponds to the P3 and P4 data-set combination, and the dashed lines represent the results for R3 and R4 data-set combinations. The associated 1σ, 2σ confidence contours are shown along with the respective marginalized likelihood functions.

FIG. 6: Contour plots and the marginalized likelihood of H_0 and Ω_{k0} considering the Matérn 9/2 covariance for Set III (left) and Set IV (right). The solid lines represent the results for N3 and N4 data-set combination, dash-dot lines corresponds to the P3 and P4 data-set combination, and the dashed lines represent the results for R3 and R4 data-set combinations. The associated 1σ, 2σ confidence contours are shown along with the respective marginalized likelihood functions.

for the P3 and R3 combination, whereas in 2σ for the P4, R4 combination. Inclusion of rBAO data leads to tighter constraints on Ω_{k0}, and the best-fit values are seen to favour a spatially open universe (see Table II).
FIG. 7: Contour plots and the marginalized likelihood of H_0 and Ω_{k0} considering the Cauchy covariance for Set III (left) and Set IV (right). The solid lines represent the results for N3 and N4 data-set combination, dash-dot lines corresponds to the P3 and P4 data-set combination, and the dashed lines represent the results for R3 and R4 data-set combinations. The associated 1σ, 2σ confidence contours are shown along with the respective marginalized likelihood functions.

FIG. 8: Contour plots and the marginalized likelihood of H_0 and Ω_{k0} considering the rational quadratic covariance for Set III (left) and Set IV (right). The solid lines represent the results for N3 and N4 data-set combination, dash-dot lines corresponds to the P3 and P4 data-set combination, and the dashed lines represent the results for R3 and R4 data-set combinations. The associated 1σ, 2σ confidence contours are shown along with the respective marginalized likelihood functions.

The reconstructed values of γ show that the ΛCDM model is mostly included in 2σ and always in 3σ, except for the rational quadratic kernel. From Table II, it can
been seen that for the N4, P4 and R4 combinations, the ΛCDM model is not included in \(3\sigma\) considering the rational quadratic kernel, and marginally included in \(3\sigma\) while using the Cauchy covariance.

VIII. DISCUSSION

In the present work, constraints on the cosmic curvature density parameter \(\Omega_{k0}\) have been obtained from different cosmological probes with the help of a non-parametric reconstruction. The Cosmic Chronometer and the radial Baryon Acoustic Oscillation measurements of the Hubble parameter, the recent supernova compilation of the corrected Pantheon sample, along with measurement of the Redshift Space Distortions which measure the growth of large structure are utilized for the purpose. The widely used Gaussian Process and the Markov Chain Monte Carlo method have been employed in this work. The analysis has been performed for four choices of the covariance function, namely the squared exponential, Matérn 9/2, Cauchy and rational quadratic kernel. The choice of covariance function involves some discretion and thus a bit subjective. The use of various choices of covariance makes the present investigation quite exhaustive in that respect.

The reconstructed \(\Omega_{k0}\) obtained by combining the CC and Pantheon data are consistent with spatial flatness within \(1\sigma\) confidence level for the squared exponential covariance function, within \(2\sigma\) CL level for the Matérn 9/2 and Cauchy covariance function, and within \(3\sigma\) CL for the rational quadratic covariance. Including the rBAO data to the analysis results in tighter constraints on \(\Omega_{k0}\). Combining the CC and Pantheon data with the BAO data, it can be seen that \(\Omega_{k0}\) is consistent with a spatially flat universe at the \(1\sigma\) CL for the squared exponential, Matérn 9/2 and Cauchy covariance, whereas in \(2\sigma\) for the rational quadratic kernel. The best-fit values show an inclination towards a closed universe in these cases. This result is obtained without using any given \(H_0\) priors. We then introduce the P18 and R19 \(H_0\) measurements as priors in our analysis and examine their effect on the reconstruction. Plots reveal that the best-fit values of \(\Omega_{k0}\) favour a spatially open universe for the P18 prior choice, whereas the R19 prior favours a spatially closed universe, except for the squared exponential kernel which favours a spatially open universe for both the P18 and R19 priors. However, a spatially flat universe is mostly included at \(2\sigma\) CL for both cases (see Table I).

Consistency with thermodynamic requirements imposed by the generalized second law of thermodynamics for the reconstructed constraints on \(\Omega_{k0}\) from the background data combinations are checked quite exhaustively. This has been done with the help of the inequality very recently given by Ferreira and Pavón[35] (see also Ref. [132]). It is quite encouraging to see that the constraints obtained are quite consistent with the thermodynamic requirements, independent of the choice of the kernel for all possible combinations of data sets (see Table I).

In addition to the background data, we also utilize the RSD data to determine \(\Omega_{k0}\) using two combination of datasets, CC+Pantheon+RSD and CC+rBAO+Pantheon+RSD respectively. This inclusion does not help in providing tighter constraints on \(\Omega_{k0}\), but is essential as the spatial curvature and the formation of large scale structure should be compatible. We also include the R18 and P18 \(H_0\) priors and see their effect on the reconstruction. The results obtained are consistent with spatial flatness mostly within \(2\sigma\) and always within \(3\sigma\) in the domain of the reconstruction, \(0 < z < 2\) (see Table II).

The GP method has previously been used for constraining \(\Omega_{k0}\) from observations. Li et al.[21] constrained the spatial curvature to be \(\Omega_{k0} = -0.045^{+0.172}_{-0.172}\) with \(22\) \(H(z)\) and Union 2.1 SN-Ia data, and \(\Omega_{k0} = -0.140^{+0.161}_{-0.158}\) considering the JLA SN-Ia data, which are in good agreement with a spatially flat universe. Wei & Wu[22] extended this analysis using different \(H_0\) priors and showed that the local and global \(H_0\) measurements can affect the constraints on \(\Omega_{k0}\). Wang et al.[25] showed that a spatially flat and transparent universe is preferred by observations. The results indicated a strong degeneracy between the curvature parameter and cosmic opacity. From 100 simulated GWs signals, Liao[26] found the results favoured a spatially flat universe with 0.057 uncertainty at \(1\sigma\), which was reduced to 0.027 for 1000 GWs signals. On combining with the SN-Ia data from DES, the uncertainty was further constrained to 0.027 and 0.018 respectively. The analysis by Wei & Melia[27] suggests that a mildly closed universe \((\Omega_{k0} = -0.918 \pm 0.429)\) is preferred at the \(1\sigma\) level using quasars and CC data. Recently, Wang, Ma & Xia[32] found a spatially open universe is favoured at \(1\sigma\) CL using 31 CC-\(H(z)\) measurements and simulated data form GWs, based on the ANN method. Another non-parametric reconstruction of \(\Omega_{k0}\) utilizing different approaches like the principal component analysis, genetic algorithms, binning with direct error propagation and the Padé approximation, was carried out by Sapone, Majerotto and Nesseris[20]. Their results were in good agreement with \(\Omega_k = 0\) at the \(1\sigma\) CL.

Our work is similar to the recent works by Yang & Gong[33] and Dhawan, Alsing & Vagonzzi[34], but there are quite a few differences to list. Yang and Gong[33], Dhawan, Alsing and Vagonzzi[34] have used the Pantheon compilation by Scolnic et al.[31] in their analysis. However, in this work we have utilized the very recent redshift corrected version of Pantheon compilation by Steinhardt, Sneppen and Sen[68]. Yang
and Gong[33] reconstructed the quantity \(\Omega_{ke}h^2 \) so that the discrepancy in the present value of Hubble parameter \(H_0 \) is avoided. Dhawan, Alsing and Vagnozzi[34] obtained constraints on \(\Omega_{k0} \) independent of the absolute calibration of either the SN-Ia or CC measurements. In this particular work, we have obtained constraints on both \(\Omega_{k0} \) and \(H_0 \) form the combined CC+Pantheon data, thereby capturing the degeneracy or correlation between them. Yang and Gong[33] imposed a zero mean prior similar to [33], but the best-fit squared exponential covariance. The present work starts solely the background data, Yang & Gong[33] found the function, which follows the work Seikel et al. [34] and is similar to our work. Dhawan, Alsing and Vagnozzi[34], on the other hand used a mean non-zero constant prior equal to 100, following Shafieloo et al. [41]. Utilizing solely the background data, Yang & Gong[33] found the case for a spatially open universe from the combined CC and Pantheon data at more than \(1\sigma \) CL considering the squared exponential covariance. The present work starts with a zero mean prior similar to [33], but the best-fit value for the combined CC+Pantheon data (N1) using the same squared exponential kernel favours a spatially closed universe, and \(\Omega_{k0} = 0 \) is well included within in \(1\sigma \) CL. This result is similar in nature to that given by Dhawan, Alsing and Vagnozzi[34] where the obtained constraints on \(\Omega_{k0} = -0.03 \pm 0.26 \) are consistent with spatial flatness at the \(O(10^{-1}) \) level. The qualitative difference of the present result with that obtained in [33] can stem from the fact that we have used the redshift corrected version of the Pantheon compilation[68].

Our conclusion is that although there is indeed a scope of revisiting the notion of a spatially flat universe, but the present state of affairs is still quite consistent with \(k = 0 \). Observations from future surveys, as well as more data on high redshift observations of CC, SN, BAO and other observables should be able to provide tighter constraints on \(\Omega_{k0} \).

[1] A R Liddle, D H Lyth, *Cosmological Inflation and Large Scale Structure*, Cambridge University Press, Cambridge, UK (2000).
[2] C. Clarkson, M. Cortes, and B. A. Bassett, J. Cosmol. Astropart. Phys. 08, 011 (2007).
[3] Y.-G. Gong and A. Wang, Phys. Rev. D 75, 043520 (2007).
[4] N. Aghanim et al. [Planck Collaboration], Astron. Astrophys. 641, A6 (2020).
[5] C. D. Leonard, P. Bull, R. Allison, Phys. Rev. D 94, 023502 (2016).
[6] A. Witzemann, P. Bull, C. Clarkson, M. G. Santos, M. Spinelli, A. Weltman, Mon. Not. R. Astron. Soc. 477, L122 (2018).
[7] M. Denissenya, E. V. Linder, and A. Shafieloo J. Cosmol. Astropart. Phys. 03, 041 (2018).
[8] S. Cao et al., Phys. Dark. Univ. 24, 100274 (2019).
[9] E.-K. Li, M. Du and L. Xu, Mon. Not. R. Astron. Soc. 491, 4960 (2020).
[10] G. Efstathiou and S. Gratton, Mon. Not. R. Astron. Soc. 496, L91 (2020).
[11] C.-G. Park and B. Ratra, Phys. Rev. D 101, 083508 (2020).
[12] R. C. Nunes and A. Bernui, Eur. Phys. J. C 80, 1025 (2020).
[13] D. Benisty and D. Staicova, Astron. Astrophys. 647, A38 (2021).
[14] W. Handley, Phys. Rev. D 103, 041301 (2021).
[15] C. Clarkson, B. Bassett, and T. H.-C. Lu, Phys. Rev. Lett. 101, 011301 (2008).
[16] R.-G. Cai, Z.-K. Guo, and T. Yang, Phys. Rev. D 93, 043517 (2016).
[17] A. Rana, D. Jain, S. Mahajan, and A. Mukherjee, J. Cosmol. Astropart. Phys. 03, 028 (2017).
[18] Y. Liu, S. Cao, T. Liu, X. Li, S. Geng, Y. Lian, and W. Guo, Astrophys. J. 901, 129 (2020).
[19] R. Arjona, S. Nesseris, Phys. Rev. D 103, 103539 (2021).
[20] D. Sapone, E. Majerotto, S. Nesseris, Phys. Rev. D 90, 023012 (2014).
[21] Z. Li, G.-J. Wang, K. Liao, and Z.-H. Zhu, Astrophys. J. 833, 240 (2016).
[22] J.-J. Wei and X.-F. Wu, Astrophys. J. 838, 160 (2017).
[23] N. Suzuki, D. Rubin, C. Lidman et al., Astrophys. J. 746, 85 (2012).
[24] M. Betoule et al. [SDSS Collaboration], Astron. Astrophys. 568, A22 (2014).
[25] G.-J. Wang et al. Astrophys. J. 847 45 (2017).
[26] K. Liao, Phys. Rev. D 99, 083514 (2019).
[27] J.-J. Wei and F. Melia, Astrophys. J. 888, 99 (2020).
[28] C.-Z. Ruan, F. Melia, Y. Chen, T.-J. Zhang, Astrophys. J. 881, 137 (2019).
[29] H. Zhou and Z. Li, Astrophys. J. 889, 186 (2020).
[30] B. Wang et al., Astrophys. J. 898, 100 (2020).
[31] D. M. Scolnic et al., Astrophys. J. 859, 101 (2018).
[32] G.-J. Wang, X.-J. Ma, J.-Q. Xia, Mon. Not. R. Astron. Soc. 501, 5714 (2021).
[33] Y. Yang and Y. Gong, Mon. Not. R. Astron. Soc. 504, 3092 (2021).
[34] S. Dhawan, J. Alsing, S. Vagnozzi, arXiv:2104.02485.
[35] P. C. Ferreira and D. Pavón, Universe 24, 27 (2017).
[36] C. Williams, *Prediction with Gaussian Processes: From linear regression to linear prediction and beyond*, Learning in Graphical Models, ed. Jordan M. I. (MIT Press, Cambridge, Massachusetts 1999).
[37] D. MacKay, *Information Theory, Inference and Learning Algorithms*. (Cambridge Univ. Press, Cambridge, UK, 2003)
[38] C. Rasmussen and C. Williams, *Gaussian Processes for Machine Learning*. (MIT Press, Cambridge, Massachusetts, 2006)
[39] T. Holoschw et al., Phys. Rev. Lett. 105, 241302 (2010).
[40] M. Seikel, C. Clarkson and M. Smith, J. Cosmol. Astropart. Phys. 06, 036 (2012).
[41] A. Shafieloo, A. G. Kim and E. V. Linder, Phys. Rev. D 85, 123530 (2012).
[42] S. Yahya, M. Seikel, C. Clarkson, R. Maartens and M. Smith, Phys. Rev. D 89, 023503 (2014).
[43] S. Santos-da Costa, V. C. Busti and R. F. Holanda, J. Cosmol. Astropart. Phys. 10, 061 (2015).
[117] D. Bak and S. J. Rey, Class. Quant. Grav. 17, L83 (2000).
[118] S. Frautschi, Science 217, 593 (1982).
[119] D. Polarski, A. A. Starobinsky and H. Giacomini, J. Cosmol. Astropart. Phys. 12, 037 (2016).
[120] L. Xu, Phys. Rev. D 88, 084032 (2013).
[121] J. R.-Zapatero, C. García-García, D. Alonso, P. G. Ferreira and R. D. P. Grumitt, arXiv:2201.07025.
[122] Y. Gong, M. Ishak, and A. Wang, Phys. Rev. D 80, 023002 (2009).
[123] L.-M. Wang and P. J. Steinhardt, Astrophys. J. 508, 483 (1998).
[124] E. V. Linder, Phys. Rev. D 72, 043520 (2005).
[125] E. V. Linder and R. N. Cahn, Astropart. Phys. 28, 481 (2007).
[126] H. Wei, Phys. Lett. B 664, 1 (2008).
[127] Q. Gao and Y. Gong, Class. Quant. Grav. 31, 105007 (2014).
[128] R. A. Battye, T. Charnock and A. Moss, Phys. Rev. D 91, 103508 (2015).
[129] P. Bull et al., Phys. Dark Univ. 12, 56 (2016).
[130] J. Sol Peracaula, J. d. C. Perez, and A. Gomez-Valent, Mon. Not. R. Astron. Soc. 478, 4357 (2018).
[131] I. G. McCarthy, S. Bird, J. Schaye, J. Harnois-Deraps, A. S. Font and L. Van Waerbeke, Mon. Not. R. Astron. Soc. 476, 2999 (2018).
[132] J. P. Mimoso and D. Pavón, Phys. Rev. D 94, 103507 (2016).