Electrostatic control over polarized currents through the spin-orbital Kondo effect
C. A. Büsser, A. E. Feiguin, and G. B. Martins
Phys. Rev. B 85, 241310 — Published 28 June 2012
DOI: 10.1103/PhysRevB.85.241310
Electrostatic control over polarized currents through spin-orbital Kondo effect

C. A. Büsser, 1 A. E. Feiguin, 1 and G. B. Martins 2, 3

1 Dept. of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA.
2 Department of Physics, Oakland University, Rochester, MI 48309, USA.

Numerical calculations indicate that by suitably controlling the individual gate voltages of a capacitively coupled parallel double quantum dot, with each quantum dot coupled to one of two independent non-magnetic channels, this system can be set into a spin-orbital Kondo state by applying a magnetic field. This Kondo regime, closely related to the SU(4) Kondo, flips spin from one to zero through cotunneling processes that generate almost totally spin-polarized currents with opposite spin orientation along the two channels. Moreover, by appropriately changing the gate voltages of both quantum dots, one can simultaneously flip the spin polarization of the currents in each channel. As a similar zero magnetic field Kondo effect has been recently observed by Y. Okazaki et al. [Phys. Rev. B 84, (R)161305 (2011)], we analyze a range of magnetic field values where this polarization effect seems robust, suggesting that the setup may be used as an efficient bipolar spin filter, which can generate electrostatically reversible spatially separated spin currents with opposite polarizations.

PACS numbers: 72.15.Qm, 72.25.-b, 73.63.Kv, 85.75.Hh

Introduction.—Traditional spintronic devices rely on the use of ferromagnetic source and drain leads to produce and detect polarized spin-currents, like, for example, the Datta-Das spin field-effect-transistor. More recently, the manipulation of single spins has become one of the paradigms for quantum information. To achieve easier integration with current technology, the use of semiconductor lateral single quantum dots (QD) has been suggested as a means to produce spin filtering and spin memory devices, which can be controlled through the use of electrostatic gates, without the need of ferromagnetic contacts or highly inhomogeneous static magnetic fields, or AC fields. Its experimental realization, using a single QD and a large magnetic field to produce a bipolar electrically tunable spin filter, has spurred a multitude of proposals, e.g., two QDs embedded in an Aharonov-Bohm ring, a double QD (DQD) in parallel, or in a T-shape geometry, to cite a few. More related to the results presented here, Borda et al. suggested the possibility of spin-filtering in a DQD device at quarter-filling, by exploiting spin and orbital degrees of freedom simultaneously through an SU(4) Kondo state. Right after that, Feinberg and Simon, by extending the ideas described in 2 to a similar DQD device, suggested the interesting possibility of a “Stern-Gerlach” spin filter effect at half-filling. In this work we use two fully independent channels, and present detailed numerical results confirming the high efficiency of the spin filtering effect and suggest experimental ways of observing it.

The utilization of the Kondo effect in a single-QD has the potential to add an extra dimension to spintronics, as now the localized moment in a QD participates in a many-body state that may provide new functionalities to spintronic devices. More complex Kondo-like regimes, like the so-called SU(4) Kondo state, may provide even additional latitude to create, manipulate, and explore spintronic devices using QDs. In this work, we extend a recently observed variant of the SU(4) Kondo effect (dubbed the spin-orbital Kondo effect) to propose a device based on a capacitively coupled parallel DQD which, when in the Kondo regime (through the application of a magnetic field — see below), functions as a bipolar spin filter that can produce currents with opposite polarities simultaneously (one in each channel of the DQD system). In addition, their polarities can be reversed by tuning the gate voltages of the QDs, i.e., the proposed bipolar spin filter is electrically tunable. As mentioned above, a similar device had been suggested before. Here, we provide extensive numerical results to stimulate experimental groups to try and observe this effect.

Device and Hamiltonian.—The proposed setup is that of capacitively coupled parallel DQDs connected to completely independent metallic leads [see Fig. 1(a)]. Through an even-odd transformation, two leads decouple from the DQD and the system is reduced to that shown in Fig. 1(b). Note that this transformation does not involve the QDs, therefore the interacting part of the Hamiltonian [Eq. (2) below] remains unchanged. Then, the two-impurity Anderson Hamiltonian modeling our system is

\[
H_{\text{tot}} = H_{\text{DQD}} + H_{\text{band}} + H_{\text{hyb}},
\]

\[
H_{\text{DQD}} = \sum_{\lambda=1,2,\sigma} \frac{U}{2} n_{\lambda\sigma} n_{\lambda\bar{\sigma}} + (V_{g\lambda} - sH) n_{\lambda\sigma} + U' \sum_{\sigma\sigma'} n_{1\sigma} n_{2\sigma'},
\]

\[
H_{\text{band}} = t \sum_{\lambda=1,2} \sum_{i=1;\sigma} \sum_{\lambda'=1;\sigma'} (c_{\lambda\sigma}^\dagger c_{\lambda'\sigma'} + \text{H.c.}),
\]

\[
H_{\text{hyb}} = \sum_{\sigma;\lambda=1,2} t_\lambda \left[d_{\lambda\sigma}^\dagger c_{\lambda\sigma} + \text{H.c.} \right].
\]

The operator \(d_{\lambda\sigma}^\dagger (d_{\lambda\sigma})\) creates (destroys) an electron in QD \(\lambda = 1, 2\) with spin \(\sigma = \pm\), while operator \(c_{\lambda'\sigma}^\dagger (c_{\lambda'\sigma})\) does the same at site \((i+1)\) in a non-interacting semi-infinite chain \(\lambda = 1, 2\); \(n_{\lambda\sigma} = d_{\lambda\sigma}^\dagger d_{\lambda\sigma}\) is the charge per spin at each QD, and both QDs have the same charging energy \(U\). We include the effect of a magnetic field \(H\) acting just on the QDs, and coupling just to the spin degree of freedom. For simplicity, we take the hybridization parameters \(t_1 = t_2 = t'\). It is important to note that, contrary to Ref. 10, the only interaction...
between electrons in different channels \(\lambda = 1, 2 \) is the inter-dot capacitive coupling \(U' \). Finally, as our setup consists of semiconducting lateral QDs, each of them can have different gate potentials \(V_{g1} \) and \(V_{g2} \), and we will concentrate on the experimentally relevant regime \(U'/U < 1.0 \) (the so-called \(SU(2) \odot SU(2) \) regime)\(^{14} \). All results shown were calculated using \(U \) as our unit of energy. The width of the one-body resonance for each QD is given by \(\Gamma = \pi |t|^2 \rho_0(E_F) \), where \(\rho_0(E_F) \) is the density of states of the leads at the Fermi energy \(E_F \). Throughout the paper \(t = 1.0 \) and all the other parameter values are indicated in the figures or in the text.

This model has been studied extensively in previous works, and it is well known that for \(U'/U = 1.0 \) and zero-field it has an \(SU(4) \) Kondo fixed point\(^{14} \), experimentally observed in Refs.\(^{20,21} \). Here, we want to address a completely different regime, although we will also show that our Density Matrix Renormalization Group (DMRG)\(^{22} \) calculations faithfully describe the \(SU(4) \) Kondo regime as well.

Density Matrix Elements.—The results presented in this work were calculated using the DMRG\(^{23} \) and the Friedel Sum Rule (FSR)\(^{11,24-26} \). The validity of the FSR for the system studied here is discussed in the supplemental material\(^{27} \). In order to characterize and identify different regimes, we use the reduced density matrix elements (DME), calculated with the DMRG. The ground state wave-function can be written as

\[
|\Psi_0\rangle = \sum_{\gamma,\delta} \psi_{\gamma,\delta} |\gamma\rangle |\delta\rangle, \tag{5}
\]

where \(\gamma \) stands for the 16 possible DQD configurations (0-0, 0-1, 0-2, 0-3, 1-0, 1-1, 1-2, 1-3, 2-0, 2-1, 2-2, 2-3, 3-0, 3-1, 3-2, 3-3), while \(\delta \) represents the states associated with the Fermi sea. Summing over the band states \(\delta \) we obtain the weight projection of the different DQD configurations in the ground state.

\[
\rho_{\gamma,\gamma'} = \sum_{\delta} \psi_{\gamma,\delta} \psi^*_{\gamma',\delta}. \tag{6}
\]

As will be shown in Fig. 4, the diagonal DME can be used as a ‘proxy order parameter’ for the typical correlations that characterize a many-body state like, for example, the Kondo state. This is very useful in the case of an unusual (or exotic) Kondo effect, where it may not be clear at first what are the relevant correlations that one should look for (from now on we generally refer to the diagonal matrix elements as DME weight, or simply DME).

Numerical Results.—Figure 2(a) shows the conductance \(G = G_1 + G_2 \) \((G_{1,2} \) is the conductance for each channel) obtained through the FSR\(^{27} \) in the \(V_{g1} - V_{g2} \) plane for \(U'/U = 0.5 \) at zero magnetic field. The different QD occupancies are indicated by the notation \((n_1, n_2)\). In Fig. 2(b) we present the conductance results for finite field \(H = 0.05 \), where the suppression of spin \(SU(2) \) Kondo in each channel can be clearly observed [color scales are not the same for panels (a) and (b)]. The (white) dashed line is the region of gate voltage variation in the \(V_{g1} - V_{g2} \) plane that interests us. It is parameterized by the expression \(V_{g2} = -V_{g1} - (1+2U') \). Conductance results along this line for \(0.0 \leq H \leq 0.04 \) are shown in Fig. 3, where the (black) solid line shows results at zero magnetic field, with a well defined plateau around \(V_{g1} = -1.0 \) [it corresponds to a cross section of the bright (yellow) region in Fig. 2(a)]. As the field increases, in steps of \(\Delta H = 0.025 \) (dotted lines), the conductance at (and around) the particle-hole (p-h) symmetric point \((V_{g1} = -1.0)\) is suppressed very quickly, while narrow peaks start to form close to the charge degeneracy points [(red) dashed line], denoted \(\alpha\) [(2,0)-(1,1)] and \(\beta\) [(0,2)-(1,1)] points in Fig. 2(b), where \(G = G_0 \). Note that these peaks are narrow along the (white) dashed line in Fig. 2(b), but along the charge degeneracy lines [the diagonal (yellow) bright lines in Fig. 2(b)] they present a clear plateau structure.

Now, in Fig. 4 we present one of the central results in this...
work. As an illustration of the use of DMEs to trace the possible existence of a Kondo regime, panel (a) shows the DME for half-filling \((n_1 + n_2 = 2)\) configurations of the DQD for \(U' = 1.0\) and zero magnetic field (SU(4) fixed point), as a function of \(V_{g1}\) for \(V_{g2} = -V_{g1} - (1 + 2U')\) [equivalent to the dashed (white) line in Fig. 2(b)], but for \(U' = 1.0\) (see supplemental material\(^{27}\)). At the p-h symmetric point \((V_{g1} = V_{g2} = -U' - U/2 = -1.5)\) in Fig. 4(a), i.e., at the half-filled SU(4) fixed point, one sees that the six possible two-electron configurations have all the same DME weight in the ground state, highlighting the fact that orbital and spin degrees of freedom are perfectly equivalent in the half-filled SU(4) Kondo state, i.e., spin and orbital degrees of freedom are maximally entangled\(^{21}\). This result is well known, but it serves to illustrate the use of the DME calculation to ‘look for’ possible Kondo states. This is what is done in panel (b), where we present the DME results for \(U' = 0.5\) and finite field \(H = 0.04\) (same parameters as the ones for the (red) dashed line in Fig. 3). In this case, we have two different values of \(V_{g1}\) for which we have two half-filling configurations with the same DME weight (same \(V_{g1}\) values as the \(\alpha\) and \(\beta\) points in Fig. 3). The crossing in the \(\alpha\) (\(\beta\)) point in panel (b) is between configurations \(\uparrow\uparrow\) and \(\downarrow\downarrow\) (0-2). The important fact to note is that exactly at these crossings \(G = G_0\) (see Fig. 3), indicating the possibility of a Kondo effect.

Indeed, in Fig. 5 we show eight cotunneling processes (four in the upper panel and four in the lower) that shift the total \(S_z\) spin of the DQD from \(S_z = 1\) to \(S_z = 0\) (and vice-versa). The top processes correspond to the degenerate states \(\uparrow\uparrow\) and \(\downarrow\downarrow\) [\(\alpha\) point in Fig. 4(b)], while the bottom processes correspond to the degenerate states \(\uparrow\downarrow\) and \(\downarrow\uparrow\) (\(\beta\) point). The virtual states contain either one or three electrons. The remarkable fact about these cotunneling processes is that they generate spin polarized currents in each channel, with opposite polarizations. In addition, once one sweeps \(V_{g1}\) from \(\alpha\) to \(\beta\), the polarization direction of the spin filtered current in each right-side lead is reversed: \(\downarrow\) (\(\uparrow\)) and \(\uparrow\) (\(\downarrow\)) in channels 1 and 2, respectively, for the upper (lower) processes. Note that no other virtual states are connected (by \(t'\)) to any of the degenerate states \([\uparrow\uparrow\) and \(\downarrow\downarrow\) (0-2)] in the \(\alpha\) (\(\beta\)) point\(^{29}\). There are similarities between the Kondo effect described here and the one in Ref.\(^{16}\); from the lower inset on their Fig. 2 we see that the magnetic field raises (lowers) the energy of the configuration \(\downarrow\downarrow\) (\(\uparrow\uparrow\)), while maintaining the configurations \(\downarrow\downarrow\) (\(\uparrow\uparrow\)), \(\downarrow\downarrow\) (\(\uparrow\uparrow\)), \(\downarrow\downarrow\) (\(\uparrow\uparrow\)), and \(\downarrow\uparrow\) (\(\uparrow\downarrow\)) degenerate (to zero-order in \(t'\)). By adjusting the gate potentials \(V_{g1}\) and \(V_{g2}\), the configurations \(\downarrow\downarrow\) (\(\uparrow\uparrow\)) can be made degenerate (\(\alpha\) point). Then, the coherent superposition of the cotunneling processes in Fig. 5 gives origin to the Kondo effect discussed here\(^{28}\).

In Fig. 6(a), we show conductance per spin type as a function of \(V_{g1}\) (same parameters as Fig. 3, (red) dashed curve) for channels 1 and 2 (see legend). These results confirm that the conductance at points \(\alpha\) and \(\beta\) are almost perfectly polarized, in accordance with the cotunneling processes described in Fig. 5. Figure 6(b) shows the conductance polarization \(P_3 = (G_{3L} - G_{3R}) / (G_{3L} + G_{3R})\) for channels \(L = 1, 2\). Panels (c) and (d) show polarization results for channels 1 and 2, respectively, for \(0.0025 \leq H \leq 0.04\) [other parameters as in panels (a) and (b)]. The results clearly indicate that the polarization effect is robust and does not require a high value of magnetic field. Indeed, as indicated in Fig. 5(c), a polariza-
FIG. 5: (Color online) Top: Schematic representation of the four possible processes that flip the total spin from \(S_z = 1 \) to \(S_z = 0 \), and back to \(S_z = 1 \), when the singlet state is in channel 1 (\(\alpha \) point). The net effect is the transport of a spin down (up) in channel 1 (2). The coherent superposition of these processes leads to Kondo-screening of the pseudospin associated to the two degenerate states with \(S_z = 1 \) and \(S_z = 0 \), and the consequent generation of a spin down (up) current in channel 1 (2). Bottom: Equivalent processes for the configuration where the singlet state is in channel 2 (\(\beta \) point). In this case, the polarity of the currents in channels 1 and 2 (when compared to top panel) is reversed.

FIG. 6: (Color online) (a) Channel conductance per spin vs \(V_{g1} \) [same interval as in Figs. 3 and 4(b), for \(H = 0.04 \) and \(\Gamma = 0.2 \): at point \(\alpha \) channel 1 (2) is polarized down (up), and at point \(\beta \) channel 1 (2) is polarized up (down)]. (b) Polarization \(P_\beta \) for each channel calculated using data from (a). (c), (d) Polarization vs \(V_{g1} \) (0.0025 \(\leq H \leq 0.04 \)) for channels 1 and 2, respectively. Panel (c) also shows that for \(H/U = 0.025 \) there is a substantial range \(\Delta V_{g1} \approx 0.045 \) for which the spin polarization varies between \(\approx 70\% \) and \(\approx 90\% \), indicating that the effect should be experimentally observable.

Conclusions.—In summary, we have presented a peculiar Kondo effect involving a capacitively coupled parallel DQD, connected to two independent channels. To achieve this effect it is necessary to apply a moderate magnetic field and adjust the gate potential of each QD to take the DQD to a half-filling charge degeneracy point. The cotunneling processes in this Kondo effect are such that spin polarized currents are generated in each channel, with opposite polarities. The results in Fig. 6 indicate that the effect should be experimentally observable.

The authors acknowledge very fruitful conversations with Sami Amasha, David Goldhaber-Gordon, Andrew Keller, and Edson Vernek. G.B.M. acknowledges financial support by NSF under Grant No. DMR-1107994, and A.E.F. under Grant No. DMR-0955707.

* Corresponding author: martins@oakland.edu

1 S. Datta and B. Das, Appl. Phys. Lett. **56**, 665 (1990).
2 F. Chi and Q.-F. Sun, Phys. Rev. B **81**, 075310 (2010); P. Trocha, Sol. Stat. Comm. **151**, 725 (2011), and references therein.
3 P. Recher et al., Phys. Rev. Lett. **85**, 1962 (2000).
4 S. Csonka et al., Nanoscale **4**, 3635 (2012).
5 R. Hanson et al., Phys. Rev. B **70**, 241304(R) (2004).
6 E. R. Hedin and Y. S. J. Joe, Appl. Phys. Lett. **110**, 026107 (2011).
7 J. P. Dahlhaus et al., Phys. Rev. B **81**, 075110 (2010).
8 F. Mireles et al., Appl. Phys. Lett. **88**, 093118 (2006).
9 L. Borda et al., Phys. Rev. Lett. **90**, 026602 (2003).
10 D. Feinberg and P. Simon, Appl. Phys. Lett. **85**, 1846 (2004).
11 A. C. Hewson, ‘The Kondo Problem to Heavy Fermions’, Cambridge University Press (1993).
D. Goldhaber-Gordon et al., Nature (London) 391, 156 (1998).
J. R. Hauptmann et al., Nature Physics 4, 373 (2008).
M. R. Galpin et al., Phys. Rev. Lett. 94, 186406 (2005); M. R. Galpin et al., Journ. Phys.: Cond. Matt. 18, 6545 (2006); idem, 6571 (2006), and references therein. See also F. B. Anders et al., Phys. Rev. Lett. 100, 086809 (2008).
C. A. Büsser and G. B. Martins, Phys. Rev. B 75, 045406 (2007); M. Mizuno et al., Journal of Phys.: Cond. Matt. 21, 292203 (2009).
Y. Okazaki et al., Phys. Rev. B 84, (R)161305 (2011).
A. Hübel et al., Phys. Rev. Lett. 101, 186804 (2008); P. Trocha, Phys. Rev. B 82, 125323 (2010); and G. C. Tettamanzi et al., Phys. Rev. Lett. 108, 046803 (2012).
S. Amasha, A. J. Keller, I. G. Rau, J. A. Katine, H. Shtrikman, and D. Goldhaber-Gordon (private communication).
Note that the pseudo-spin operator associated to the orbital degree of freedom depends only on the total charge in each QD and thus does not couple to the magnetic field.
A. Makarovski et al., Phys. Rev. Lett. 99, 066801 (2007).
P. Jarillo-Herrero et al., Nature 434, 484 (2005).
S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
The DMRG calculations were done keeping typically between 600 states and 1000 states, for clusters with up to 40 sites.
D. C. Langreth, Phys. Rev. 150, 516 (1966).
M. R. Galpin et al., Phys. Rev. B 81, 075437 (2010).
L. Vaugier et al., Phys. Rev. B 76, 165112 (2007).
See supplemental material at http://link.aps.org/supplemental/...