Matricvariate and matrix multivariate Pearson type II distributions

José A. Díaz-García *
Department of Statistics and Computation
25350 Buenavista, Saltillo, Coahuila, Mexico
E-mail: jadiaz@uaaan.mx

Ramón Gutiérrez Jáimez
Department of Statistics and O.R.
University of Granada
Granada 18071, Spain
E-mail: rgjaimez@ugr.es

Abstract
This paper proposes a unified approach to enable the study of diverse distributions in the real, complex, quaternion and octonion cases, simultaneously. In particular, the central, nonsingular matricvariate and matrix multivariate Pearson type II distribution, beta type I distributions and the joint density of the singular values are obtained for real normed division algebras.

1 Introduction
In the last twenty years, the concept and the statistical and mathematical techniques known as multivariate analysis have changed dramatically. New statistical and mathematical tools for the analysis of multivariate data have been developed in diverse areas of knowledge, and have promoted new disciplines such as pattern recognition, nonlinear multivariate analysis, data mining, manifold learning, generalised multivariate analysis, latent variable analysis and shape theory, among others. These and other fields constitute what is known as modern multivariate analysis.

Renewed interest in multivariate analysis in the complex case has emerged in diverse areas, see Metha [26], Ratnarajah et al. [30] and Micheas et al. [27], among many others. Similarly, several works involving multivariate analysis have appeared in the context of the quaternion case, see Bhavsar [2], Forrester [15], Li and Xue [25], among others. Although receiving little attention from a practical standpoint, but equally interesting from the theoretical point of view, some results have appeared in the octonion case, see Forrester [15]. This lack of widespread interest may be, because as asserted by Baez [1], ...there is still no proof that the octonions are useful for understanding the real world. We can only hope that eventually this question will be settled one way or another.

*Corresponding author

Key words. Matricvariate; elliptical distribution; inverted T distribution; nonsingular central distributions; real, complex, quaternion and octonion random matrices; beta type I distributions.

2000 Mathematical Subject Classification. Primary 60E05, 62E15; secondary 15A52
In terms of concepts, definitions, properties and notation from abstract algebra, it is possible to propose a unified approach that enables the simultaneous study of the distribution of a random matrix in real, complex, quaternion and octonion cases, which is termed as the distribution of a random matrix for real normed division algebras.

In the real case, the multivariate Pearson type II distribution appears in the frequentist approach to normal regression as the distribution of the Studentised error, see Díaz-García and Gutiérrez-Jáimez [3] and Kotz and Nadarajah [24]. In Bayesian inference, the multivariate Pearson type II distribution is assumed as the sampling distribution; then, considering a noninformative prior distribution, the posterior distribution and marginal distributions, the posterior mean and generalised maximum likelihood estimators of the parameters involved are found, Fang and Li [13]. A very important question is that of the role of the Pearson type II distribution in multivariate analysis, because if the matrix \(R \) has a multivariate Pearson type II distribution, then the matrix \(RR^* \) (or \(R^*R \)) is distributed as beta type I; and the distribution of the latter, in particular, plays a fundamental role in the MANOVA model, see Khatri [21, 23] and Muirhead [28].

The present article is organised as follows: a minimal number of concepts and the notation of abstract algebra and Jacobians are summarised in Section 2. Section 3 then derives the nonsingular central multivariate Pearson type II and the beta type I distributions and some basic properties. Similarly, results are obtained for the matrix multivariate Pearson type II and the corresponding beta type I distributions, see Section 4. Finally, the joint densities of the singular values are derived in Section 5. We emphasise that all these results are found for real normed division algebras.

2 Preliminary results

A detailed discussion of real normed division algebras may be found in Baez [1] and Gross and Richards [16]. For convenience, we shall introduce some notation, although in general we adhere to standard notation forms.

For our purposes, a vector space is always a finite-dimensional module over the field of real numbers. An algebra \(\mathfrak{F} \) is a vector space that is equipped with a bilinear map \(m \colon \mathfrak{F} \times \mathfrak{F} \rightarrow \mathfrak{F} \) termed multiplication and a nonzero element \(1 \in \mathfrak{F} \) termed the unit such that \(m(1, a) = m(a, 1) = 1 \). As usual, we abbreviate \(m(a, b) = ab \) as \(ab \). We do not assume \(\mathfrak{F} \) associative. Given an algebra, we freely think of real numbers as elements of this algebra via the map \(\omega \mapsto \omega 1 \).

An algebra \(\mathfrak{F} \) is a division algebra if given \(a, b \in \mathfrak{F} \) with \(ab = 0 \), then either \(a = 0 \) or \(b = 0 \). Equivalently, \(\mathfrak{F} \) is a division algebra if the operation of left and right multiplications by any nonzero element is invertible. A normed division algebra is an algebra \(\mathfrak{F} \) that is also a normed vector space with \(||ab|| = ||a|| ||b|| \). This implies that \(\mathfrak{F} \) is a division algebra and that \(||1|| = 1 \).

There are exactly four normed division algebras: real numbers (\(\mathbb{R} \)), complex numbers (\(\mathbb{C} \)), quaternions (\(\mathbb{H} \)) and octonions (\(\mathbb{O} \)), see Baez [1]. We take into account that \(\mathbb{R}, \mathbb{C}, \mathbb{H} \) and \(\mathbb{O} \) are the only normed division algebras, moreover, they are the only alternative division algebras, and all division algebras have a real dimension of 1, 2, 4 or 8, which is denoted by \(\beta \), see Baez [1, Theorems 1, 2 and 3]. In other branches of mathematics, the parameters \(\alpha = 2/\beta \) and \(t = \beta/4 \) are used, see Edelman and Rao [12] and Kabe [20], respectively.

Let \(L^\beta_{m,n} \) be the linear space of all \(m \times n \) matrices of rank \(m \leq n \) over \(\mathfrak{F} \) with \(m \) distinct positive singular values, where \(\mathfrak{F} \) denotes a real finite-dimensional normed division algebra. Let \(\mathfrak{F}^{m \times n} \) be the set of all \(m \times n \) matrices over \(\mathfrak{F} \). The dimension of \(\mathfrak{F}^{m \times n} \) over \(\mathbb{R} \) is \(\beta mn \).

Let \(A \in \mathfrak{F}^{m \times n} \), then \(A^* = \overline{A}^T \) denotes the usual conjugate transpose.

Table 1 sets out the equivalence between the same concepts in the four normed division
algebras.

Table 1: Notation

Real	Complex	Quaternion	Octonion	Generic notation
Semi-orthogonal	Semi-unitary	Semi-symplectic	Semi-exceptional type	$\mathcal{V}_{m,n}$
Orthogonal	Unitary	Symplectic	Exceptional type	$\mathcal{U}(m)$
Symmetric	Hermitian	Quaternion	Octonion	\mathcal{S}_{m}

In addition, let \mathcal{P}_m^β be the cone of positive definite matrices $S \in \mathbb{S}^{m \times m}$; then \mathcal{P}_m^β is an open subset of \mathcal{S}_m^β.

Let \mathcal{D}_m^β be the diagonal subgroup of \mathcal{L}_m^β consisting of all $D \in \mathbb{S}^{m \times m}$, $D = \text{diag}(d_1, \ldots, d_m)$.

For any matrix $X \in \mathbb{S}^{n \times m}$, dX denotes the matrix of differentials (dx_{ij}). Finally, we define the measure or volume element (dX) when $X \in \mathbb{S}^{m \times n}$, S^β_m, D_m^β or $V^\beta_{m,n}$, see Dimitriu [11].

If $X \in \mathbb{S}^{m \times n}$ then (dX) (the Lebesgue measure in $\mathbb{S}^{m \times n}$) denotes the exterior product of the βmn functionally independent variables

$$(dX) = \bigwedge_{i=1}^{m} \bigwedge_{j=1}^{n} dx_{ij} \quad \text{where} \quad dx_{ij} = \bigwedge_{k=1}^{\beta} dx_{ij}^{(k)}.$$

If $S \in \mathcal{S}_m^\beta$ (or $S \in \mathcal{T}_L^\beta(m)$) is a lower triangular matrix then (dS) (the Lebesgue measure in \mathcal{S}_m^β or in $\mathcal{T}_L^\beta(m)$) denotes the exterior product of the $\beta m(m + 1)/2$ functionally independent variables (or denotes the exterior product of the $m(m - 1)/2 + n$ functionally independent variables, if $s_{ii} \in \mathbb{R}$ for all $i = 1, \ldots, m$)

$$(dS) = \begin{cases} \bigwedge_{i \leq j}^{m} \bigwedge_{k=1}^{\beta} ds_{ij}^{(k)}, & s_{ii} \in \mathbb{R} \\ \bigwedge_{i=1}^{m} ds_{ii} \bigwedge_{i < j}^{m} \bigwedge_{k=1}^{\beta} ds_{ij}^{(k)}, & \text{if } s_{ii} \in \mathbb{R}. \end{cases}$$

The context generally establishes the conditions on the elements of S, that is, if $s_{ij} \in \mathbb{R}$, $\in \mathbb{C}$, $\in \mathbb{H}$ or $\in \mathcal{D}$. It is considered that

$$(dS) = \bigwedge_{i \leq j}^{m} \bigwedge_{k=1}^{\beta} ds_{ij}^{(k)} \equiv \bigwedge_{i=1}^{m} ds_{ii} \bigwedge_{i < j}^{m} \bigwedge_{k=1}^{\beta} ds_{ij}^{(k)}.$$

Observe, too, that for the Lebesgue measure (dS) defined thus, it is required that $S \in \mathcal{P}_m^\beta$, that is, S must be a non-singular Hermitian matrix (Hermitian definite positive matrix).

If $\Lambda \in \mathcal{D}_m^\beta$ then $(d\Lambda)$ (the Legesgue measure in \mathcal{D}_m^β) denotes the exterior product of the βm functionally independent variables

$$(d\Lambda) = \bigwedge_{i=1}^{n} \bigwedge_{k=1}^{\beta} d\lambda_i^{(k)}.$$

If $H_1 \in \mathcal{V}_{m,n}^\beta$ then

$$(H_1^* dH_1) = \bigwedge_{i=1}^{m} \bigwedge_{j=i+1}^{n} h_i^* dh_i.$$

3
Lemma 2.2. \(\text{SV D}\). Let \(X, Y \in \mathcal{L}_{m,n}^{\beta}\), such that \(X = V^* DW_1\) with \(V \in U(\beta)\), \(W_1 \in \mathcal{L}_{m,n}^{\beta}\), and \(D = \text{diag}(d_1, \ldots, d_m) \in \mathcal{D}_m^1, d_1 > \cdots > d_m > 0\). Then
\[
(dX) = 2^{-m} \frac{\tau}{m} \prod_{i=1}^{m} d_i^{\beta(n-m+1)-1} \prod_{i<j}^{m} (d_i^2 - d_j^2)^{\beta} (dD)(V dV^*)(W_1 dW_1^*),
\]
where
\[
\tau = \begin{cases}
0, & \beta = 1; \\
-m, & \beta = 2; \\
-2m, & \beta = 4; \\
-4m, & \beta = 8.
\end{cases}
\]

Lemma 2.3. Let \(X \in \mathcal{L}_{m,n}^{\beta}\), and \(S = X X^* \in \mathcal{H}_{m}^{\beta}\). Then
\[
(dX) = 2^{-m} |S|^{\beta(\beta-1)n+1/2-1} (dS)(V_1 dV_1^*).
\]
3 Matricvariate Pearson type II distribution

In the real case, the matricvariate Pearson type II distribution (also known in the literature as matricvariate inverted T distribution) was studied in detail by Dickey [10] and Cadet [3], see also Press [29]. This distribution was previously studied by Khatri [21], also in the real case.

Theorem 3.1. Let $R \in \mathcal{L}^\beta_{m,n}$ defined as

$$R = L^{-1}X$$

where L is any square root of $U = (U_1 + XX^*)$ such that $LL^* = U$, $U_1 \sim W^\beta_m(\nu, H)$, $
u > \beta(m-1)$, independent of $X \sim \mathcal{N}^\beta_m(0, I_m \otimes H)$, and $H \in \mathcal{P}^\beta_m$. Then $U \sim W^\beta_m(\nu+n, H)$ independently of R. Furthermore, the density of R is

$$\frac{\Gamma^\beta_m[\beta(n + \nu)/2]}{\pi^{mn/2} \Gamma^\beta_m[\beta\nu/2]} |I_m - RR^*|^{\beta(\nu - m + 1)/2 - 1}, \quad I_m - RR^* \in \mathcal{P}^\beta_m$$

which is termed the matricvariate Pearson type II distribution.

Proof. From Kabe [20] and Díaz-García and Gutiérrez-Jáimez [6, 9] the joint density of U_1 and X is

$$\propto |U_1|^{\beta(\nu - m + 1)/2 - 1} \operatorname{etr}\{-\beta U^{-1}(U_1 + XX^*)/2\},$$

where the constant of proportionality is

$$c = \frac{1}{(2\pi)^{-\beta m n/2} \Gamma^\beta_m[\beta\nu/2] |I|^{\beta\nu/2}} \cdot \frac{1}{(2\pi)^{-\beta m n/2} \Gamma^\beta_m[\beta\nu/2] |I|^{\beta\nu/2}}.$$

Making the change of variable $U_1 = (U - XX^*)$ and $X = LR$, where $U = LL^*$, then by (3)

$$(dU_1)(dX) = |LL^*|^{\beta\nu/2} (dU)(dR) = |U|^{\beta\nu/2} (dU)(dR),$$

and observing that $|U_1| = |U - XX^*| = |U - LRR^*L^*| = |U||I_m - RR^*|$, the joint density of U and R is

$$\propto |I_m - RR^*|^{\beta(\nu - m + 1)/2 - 1} |U|^{\beta(\nu + n - m + 1)/2 - 1} \operatorname{etr}\{-\beta U^{-1}/2\}.$$

Similarly to Dickey [10], (6) is alternatively given by

$$\frac{\Gamma^\beta_n[\beta(n + \nu)/2]}{\pi^{mn\beta/2} \Gamma^\beta_n[\beta(n + \nu - m)/2]} |I_n - R^*R|^{\beta(\nu - m + 1)/2 - 1}, \quad I_n - R^*R \in \mathcal{P}^\beta_n.$$

Corollary 3.1. Let $Q = (M^{-1})^* R N^{-1} + \mu$, R as in Theorem 3.1, M and N are any square root of the constant matrices $B = MM^* \in \mathcal{P}^\beta_m$ and $D = NN^* \in \mathcal{P}^\beta_n$, respectively, and $\mu \in \mathcal{L}^\beta_{m,n}$ is constant. Then, from (6) and (7) the density of Q is given by

$$\frac{\Gamma^\beta_m[\beta(n + \nu)/2]}{\pi^{mn\beta/2} \Gamma^\beta_n[\beta\nu/2]} |B|^{\beta(\nu + n - m + 1)/2 - 1} |D|^{-\beta m/2} |B^{-1} - (Q - \mu)D^{-1}(Q - \mu)^*|^{\beta(\nu - m + 1)/2 - 1},$$

In the literature it is customary to use the real matricvariate Pearson type II distribution, complex matricvariate Pearson type II distribution, quaternion matricvariate Pearson type II distribution and octonion matricvariate Pearson type II distribution; here, however, we use simply matricvariate Pearson type II distribution as the generic term.
and as
\[B^{-1} - (Q - \mu)D^{-1}(Q - \mu)^* \in \Omega_m^\beta, \]

This fact shall denoted as \(Q \sim PII_{m \times n}^\beta(\nu, \mu, B, D) \) (and of course \(R \sim PII_{m \times n}^\beta(\nu, 0, I_m, I_n) \)).

Proof. The proof follows observing that, by (3)
\[
(dR) = |MM^*|^{\beta n/2}|NN^*|^{\beta m/2}(dQ) = |B|^{\beta n/2}|D|^{\beta m/2}(dQ)
\]
and that
\[
|B^{-1} - (Q - \mu)D^{-1}(Q - \mu)^*| = |B|^{-1}|D|^{-1}|D - (Q - \mu)^*B(Q - \mu)|. \quad \square
\]

Corollary 3.2. Assume that \(Q \sim PII_{m \times n}^\beta(\nu, \mu, B, D) \), then
\[Q^* \sim PII_{n \times m}^\beta(\nu, \mu^*, D^*, B^{-1}). \]

Proof. The proof follows immediately from the two expressions for the density of \(Q \) in Corollary 3.1 \(\square \)

Corollary 3.3. Let \(R \in \mathcal{L}_{m,n}^\beta \) defined as
\[R = YL_1^{-1} \]
where \(L_1 \) is any square root of \(V = (V_1 + Y^*Y) \) such that \(L_1L_1^* = V, V_1 \sim W_{n \times n}^\beta(\nu + n - m, J^T) \), independent of \(Y \sim N_{m \times n}(0, J \otimes I_n) \), and \(J^T \in \Omega_n^\beta \). Then \(V \sim W_{n \times n}^\beta(\nu + n, J^T) \) independently of \(R \). Furthermore, \(R \sim PII_{m \times n}^\beta(\nu, 0, I_m, I_n) \).

Proof. The proof is a verbatim copy of the proof of Theorem 3.1 \(\square \)

Now, assume that \(R \sim PII_{m \times n}^\beta(\nu, 0, I_m, I_n) \) with \(n \geq m \) and let \(B \in \Omega_m^\beta \) defined as \(B = RR^* \) then, under the conditions of Theorem 3.1 and Corollary 3.3, we have
\[
B = L^{-1}XX^*(L^{-1})^* = L^{-1}W(L^{-1})^* = Y(V_1 + Y^*Y)^{-1}Y^*,
\]
where \(W = XX^* \sim W_{m \times n}^\beta(\nu, I) \), \(n > \beta(m - 1) \). Thus:

Theorem 3.2. The density of \(B \) is
\[
\frac{1}{B_m^\beta[\beta \nu/2, \beta n/2]}|B|^{\beta(n-m+1)/2-1}|I_m - B|^{\beta(n-m+1)/2-1}, \quad (8)
\]
where \(B_m^\beta[\cdot, \cdot] \) is given by (3) and \(B \) is said to have a matricvariate beta type I distribution.

Proof. The proof follows from (6) by applying (1) and (5). \(\square \)
In addition, assume that \(n < m \) and let \(\mathbf{B} \in \mathcal{P}_n^\beta \) defined as \(\mathbf{B} = \mathbf{R}^* \mathbf{R} \) then, under the conditions of Theorem 3.1 and Corollary 4.2 we have
\[
\mathbf{B} = \mathbf{X}^*(\mathbf{U}_1 + \mathbf{X}^\star)^{-1}\mathbf{X} = \mathbf{L}_1^{-1}\mathbf{Y}^\star(\mathbf{L}_1^{-1})^\star = \mathbf{L}_1^{-1}\mathbf{W}_1(\mathbf{L}_1^{-1})^\star
\]
where \(\mathbf{W}_1 = \mathbf{Y}^\star \mathbf{Y} \sim \mathcal{W}_n^\beta (m, \mathbf{H}) \), \(m > \beta(n - 1) \), Thus:

Theorem 3.3. \(\mathbf{B} \) has the density
\[
\frac{1}{\mathcal{B}_n^\beta[\beta(\nu + n - m)/2, \beta m/2]}|\mathbf{B}|^{\beta(m-n+1)/2-1} |\mathbf{I}_n - \mathbf{B}|^{\beta(\nu-m+1)/2-1}.
\]

Also, we say that \(\mathbf{B} \) has a matricvariate beta type I distribution.

Proof. The proof is the same as that given in Theorem 3.2 Alternatively, observe that density \(9 \) can be obtained from density \(8 \) making the following substitutions, see Muirhead \[28, Eq. (7), p. 455\] and Srivastava & Khatri \[31, p. 96\],
\[
m \to n, \quad n \to m, \quad \nu \to \nu + n - m.
\]

Densities \(8 \) and \(9 \) have been studied by several authors in the real case, see Khatri \[23\] and Srivastava & Khatri \[31\], Cadet \[3\], among many others; and by James \[19\], Díaz-García and Gutiérrez-Jáimez \[7\] and Díaz-García and Gutiérrez-Jáimez \[5\], in noncentral, doubly noncentral, singular and nonsingular and complex cases, among many others. By the analogous construction of \(\mathbf{B} = \mathbf{RR}^* \) (or \(\mathbf{B} = \mathbf{R}^* \mathbf{R} \)) in terms of \(\mathbf{R} \) compared with the construction of the Wishart matrix in terms of matrix multivariate normal distribution, the distribution of \(\mathbf{B} = \mathbf{RR}^* \) (or \(\mathbf{B} = \mathbf{R}^* \mathbf{R} \)) is sometimes termed the studentised Wishart distribution. Kabe \[20\] studied densities \(8 \) and \(9 \) for the hypercomplex case.

4 Matrix multivariate Pearson type II distribution

Theorem 4.1. Let \((S^{1/2})^2 \sim \chi^2(\nu) \) independent of \(\mathbf{Y} \sim \mathcal{N}_m^\beta (0, \mathbf{I}_m \otimes \mathbf{I}_n) \), and define \(S_1 = S + \text{tr} \mathbf{YY}^\star \) and \(\mathbf{R}_1 = S_1^{-1/2} \mathbf{Y} \). Then \(S_1 \sim \chi^2(\nu + mn) \) independently of \(\mathbf{R}_1 \). Furthermore, the density of \(\mathbf{R}_1 \) is
\[
\frac{\Gamma_1^\beta[\beta(\nu + mn)/2]}{\pi^{\beta mn/2} \Gamma_1^\beta[\beta\nu/2]} (1 - \text{tr} \mathbf{R}_1 \mathbf{R}_1^\star)^{\beta\nu/2-1}, \quad 1 - \text{tr} \mathbf{R}_1 \mathbf{R}_1^\star > 0,
\]
which is termed the matrix multivariate Pearson type II distribution.

Proof. The joint density of \(S \) and \(\mathbf{Y} \) is
\[
\propto s^{\beta\nu/2-1} \text{etr}\{-\beta(s + \text{tr} \mathbf{YY}^\star)/2\},
\]
and the desired results are obtained analogously to the proof of Theorem 3.1

Corollary 4.1. Let \(\mathbf{Q} = (\mathbf{M}^*)^{-1} \mathbf{R}_1 \mathbf{N}^{-1} - \mu, \mathbf{R}_1 \) as in Theorem 3.3, \(\mathbf{M} \) and \(\mathbf{N} \) are any square root of the constant matrices \(\mathbf{B} = \mathbf{MM}^* \in \mathcal{P}_m^\beta \) and \(\mathbf{D} = \mathbf{NN}^* \in \mathcal{P}_n^\beta \), respectively, and \(\mu \in \mathcal{C}^\beta_{m,n} \) is constant. Then,
\[
\frac{\Gamma_1^\beta[\beta(\nu + mn)/2]}{\pi^{\beta mn/2} \Gamma_1^\beta[\beta\nu/2]} |\mathbf{B}|^{\beta n/2} |\mathbf{D}|^{\beta m/2} [1 - \text{tr} \mathbf{B}(\mathbf{Q} - \mu) \mathbf{D}(\mathbf{Q} - \mu)^\star]^{\beta\nu/2-1},
\]
Proof. The proof follows observing that, by (3)

\[Q_1 \sim \mathcal{MP}I_{m \times n}^\beta(\nu, \mu, B, \mathcal{D}), \]

and, in particular \(R_1 \sim \mathcal{MP}I_{m \times n}^\beta(\nu, 0, I_m, I_n) \).

Proof. The proof follows observing that, by (5)

\[(dR_1) = |MM^*|^\beta n/2|NN^*|^\beta m/2(dQ_1) = |B|^\beta n/2 |\mathcal{D}|^{\beta m/2} (dQ_1). \]

Hence, we write

\[Q_1 \sim \mathcal{MP}I_{m \times n}^\beta(\nu, \mu, B, \mathcal{D}), \]

and, in particular \(R_1 \sim \mathcal{MP}I_{m \times n}^\beta(\nu, 0, I_m, I_n) \).

Now, assuming that \(R_1 \sim \mathcal{PI}^\beta_{m \times n}(\nu, 0, I_m, I_n) \), with \(n \geq m \) and defining \(B_1 = R_1 R_1^* \in \mathcal{P}_m^\beta \), then, under the conditions of Theorem 4.1 we have that

\[B_1 = S^{-1}YY^* \]

where \(W = YY^* \sim \mathcal{W}_m^\beta(n, I_m), n > \beta(m - 1) \). Furthermore:

Theorem 4.2. The density of \(B_1 \) is

\[\frac{\Gamma_n^{\beta}(\nu + mn/2)}{\Gamma_n^{\beta}(\nu/2)\Gamma_n^{\beta}(m/2)}|B_1|^{\beta(n-m+1)/2-1}(1 - \text{tr} B_1)^{\beta\nu/2-1}, \quad 0 < B_1 < I_m, \quad (12) \]

\(B_1 \) is said to have a matrix multivariate beta type I distribution.

Proof. The proof follows from (11) by applying (1) and (5). \(\square \)

Similarly, if \(n < m \) and \(\tilde{B}_1 = R_1^* R_1 \in \mathcal{P}_n^\beta \), thus:

Theorem 4.3. \(\tilde{B}_1 \) has the density

\[\frac{\Gamma_n^{\beta}(\nu + mn/2)}{\Gamma_n^{\beta}(\nu/2)\Gamma_n^{\beta}(m/2)}|B_1|^{\beta(m-n+1)/2-1}(1 - \text{tr} \tilde{B}_1)^{\beta\nu/2-1}, \quad 0 < \tilde{B}_1 < I_n. \quad (13) \]

Thus, \(\tilde{B}_1 \) is said to have a matrix multivariate distribution type I distribution.

Proof. Density (13) can be obtained from density (12) by making the following substitutions,

\[m \rightarrow n, \quad n \rightarrow m. \quad (14) \]

\(\square \)

5 Singular value densities

In this section, we derive the joint density of the singular values of matrices \(R, \tilde{R}, R_1 \) and \(\tilde{R}_1 \). In addition, the joint densities of the eigenvalues of \(B, \tilde{B}, B_1 \) and \(\tilde{B}_1 \) are obtained.

Theorem 5.1. Let \(\delta_1, \ldots, \delta_m \) be the singular values of \(R \sim \mathcal{PI}^\beta_{m \times n}(\nu, 0, I_m, I_n) \), \(1 > \delta_1 > \cdots > \delta_m > 0 \). Then its joint density is

\[\frac{2^m m^m \beta^2 + \tau}{\Gamma_m^{\beta}(\beta m/2)} \prod_{i=1}^{m} \delta_i^{\beta(n-m+1)-1}(1 - \delta_i^2)^{\beta(n-m+1)/2-1} \prod_{i<j}^{m} (\delta_i^2 - \delta_j^2)^{\beta} \quad (15) \]

where \(\tau \) is defined in Lemma 2.2.
Proof. The proof follows immediately from (6), first using (4) and then applying (1).

The joint density of the singular values of \tilde{R} is obtained from (16) after making the substitutions (10).

Theorem 5.2. Suppose that $R_1 \sim M^{\beta}P\Pi_{m \times n}(\nu, 0, I_m, I_n)$ and let $\alpha_1, \ldots, \alpha_m$, $1 > \alpha_1 > \cdots > \alpha_m > 0$, $0 < \sum_{i=1}^{m} \alpha_i < 1$, its singular values. Then its joint density is

$$
\frac{2m^{\beta m^2/2+\tau} \Gamma_m [\beta (\nu + mn)/2]}{\Gamma_1^{\beta} [\beta \nu/2] \Gamma_m^\beta [\beta m/2] \Gamma_m^\beta [\beta n/2]} \left(1 - \sum_{i=1}^{m} \alpha_i^2\right)^{\beta \nu/2 - 1} \prod_{i=1}^{m} \alpha_i^{\beta (n-m+1)-1} \prod_{i<j} (\alpha_i^2 - \alpha_j^2)^{\beta}
$$

(16)

Proof. The proof is analogous to that given for Theorem 5.1.

Similarly, the joint density of the singular values of \tilde{R}_1 is obtained from (16) and making the substitutions (14).

Finally, observe that $\delta_i = \sqrt{\text{eig}_i(\mathbf{R} \mathbf{R}^* \mathbf{R})}$ and $\alpha_i = \sqrt{\text{eig}_i(\mathbf{R}_1 \mathbf{R}_1^*)}$, where $\text{eig}_i(\mathbf{A})$, $i = 1, \ldots, m$, denotes the i-th eigenvalue of \mathbf{A}. Let $\lambda_i = \text{eig}_i(\mathbf{R} \mathbf{R}^*)$ and $\gamma_i = \text{eig}_i(\mathbf{R}_1 \mathbf{R}_1^*)$, hence, observing that, for example, $\delta_i = \sqrt{\lambda_i}$ and then

$$
\bigwedge_{i=1}^{m} d\delta_i = \bigwedge_{i=1}^{m} 2^{-m} \prod_{i=1}^{m} \lambda_i^{-1/2} d\lambda_i,
$$

the corresponding joint density of $\lambda_1, \ldots, \lambda_m$, $1 > \lambda_1 > \cdots > \lambda_m > 0$ is obtained from (16) as

$$
\frac{\pi^{\beta m^2/2+\tau} \Gamma_m [\beta m/2] \Gamma_m^{\beta} [\beta \nu/2, \beta m/2]}{\Gamma_m^{\beta} [\beta \nu/2] \Gamma_m^{\beta} [\beta m/2] \Gamma_m^{\beta} [\beta n/2]} \left(1 - \sum_{i=1}^{m} \alpha_i^2\right)^{\beta \nu/2 - 1} \prod_{i=1}^{m} \lambda_i^{\beta (n-m+1)-1} \prod_{i<j} (\lambda_i - \lambda_j)^{\beta}.
$$

Similarly, the joint density of $\gamma_1, \ldots, \gamma_m$, $1 > \gamma_1 > \cdots > \gamma_m > 0$, $0 < \sum_{i=1}^{m} \alpha_i < 1$, is obtained from (19) as

$$
\frac{\pi^{\beta m^2/2+\tau} \Gamma_m [\beta (\nu + mn)/2]}{\Gamma_m^{\beta} [\beta \nu/2] \Gamma_m^{\beta} [\beta m/2] \Gamma_m^{\beta} [\beta n/2]} \left(1 - \sum_{i=1}^{m} \gamma_i^2\right)^{\beta \nu/2 - 1} \prod_{i=1}^{m} \gamma_i^{\beta (n-m+1)-1} \prod_{i<j} (\gamma_i - \gamma_j)^{\beta}.
$$

Conclusions

- Beyond a doubt, in any generalisation of results there is a price to be paid, and in this case the price is that of acquiring a basic understanding of some concepts of abstract algebra, which can initially be summarised as the use of notation and a basic minimum set of definitions. However, we believe that a detailed study of mathematical properties from a statistical standpoint can have a potential impact on statistical theory.

- Furthermore, note that $\mathbf{X} \in \mathcal{L}_{m,n}^\beta$ has a matrix multivariate elliptically contoured distribution for real normed division algebras if its density, with respect to the Lebesgue measure, is given by (see Díaz-García and Gutiérrez-Jáimez [4]):

$$
C^\beta(m, n) \left\{ \text{tr} \left[\Sigma^{-1} (\mathbf{X} - \mu) \Theta^{-1} (\mathbf{X} - \mu)^* \right] \right\},
$$

(17)

where $\mathbf{X} \in \mathcal{L}_{m,n}^\beta$, $\Sigma \in \mathcal{P}_{m,n}^\beta$, $\Theta \in \mathcal{P}_m^\beta$. The function $h : \mathfrak{F} \to [0, \infty)$ is termed the generator function, and it is such that $\int_{\mathfrak{F}} u^{\beta m-1} h(u^2) du < \infty$ and

$$
C^\beta(m, n) = \frac{\Gamma[\beta mn/2]}{2\pi^{\beta mn/2}} \left\{ \int_{\mathfrak{F}} u^{\beta m-1} h(u^2) du \right\}.
$$
Such a distribution is denoted by $X \sim E_m(\mu, \Sigma, \Theta, h)$, for the real case, see Fang and Zhang [14] and Gupta, and Varga [17]; and Micheas et al. [27] for the complex case. Observe that this class of matrix multivariate distributions includes normal, contaminated normal, Pearson type II and VII, Kotz, Jensen-Logistic, power exponential and Bessel distributions, among others; these distributions have tails that are more or less weighted, and/or present a greater or smaller degree of kurtosis than the normal distribution.

Assume that $X = (X_1 \vdots X_2) \sim E_{m \times n}(0, I_m, I_{n + \nu}, h)$, and define, $R = L^{-1}X_1$, where L is any square root of $V = (X_2X_2^* + X_1X_1^*)$ such that $LL^* = V$. Then $R \sim PII_{m \times n}(\nu, 0, I_m, I_n)$ independently of $V \sim GW_m(n + \nu, I_m, h)$, $n + \nu > \beta(m - 1)$, where $GW_m(\cdot)$ denotes the generalised Wishart distribution based on an elliptical distribution, see Díaz-García and Gutiérrez-Jáimez [6] and Díaz-García and Gutiérrez-Jáimez [9]. From (17) the density of X is

$$C^{\beta}(m, n + \nu)h \{\text{tr}(X_1X_1^* + X_2X_2^*)\}.$$

Let $V_0 = X_2X_2^*$ then by (2.3), $(dX_2) = 2^{-m} |V_0|^{\beta(n - m + 1)/2 - 1} (dV_0)(H_1dH_1^*)$. Thus, the marginal density of X_1 and V_0 is obtained by integrating over $H_1 \in V^\beta_{m,n}$, and then using (11), to obtain

$$\frac{C^{\beta}(m, n + \nu)\pi^{\beta m/2}}{\Gamma_m[\beta/2]} |V_0|^{\beta(n - m + 1)/2 - 1} h \{\text{tr}(X_1X_1^* + V_0)\}.$$

Now, let $V = (V_0 + X_1X_1^*)$ and $R = L^{-1}X_1$, where $LL^* = V$, then by (2.1)

$$(dX_1)(dV_0) = |V|^{\beta n/2} (dR)(dV).$$

Observing that $|V_0| = |V||I_m - RR^*|$, and so the joint density of R and V is

$$\frac{C^{\beta}(m, n + \nu)\pi^{\beta m/2}}{\Gamma_m[\beta/2]} |I_m - RR^*|^{\beta(n - m + 1)/2 - 1} |V|^{\beta(n + \nu - m + 1)/2 - 1} h \{\text{tr}V\}.$$

from where the desired result follows. □

Observe that in this case, X_1 and X_2 (or $V_0 = X_2X_2^*$) are stochastically dependent. Furthermore, note that only when the particular matrix multivariate elliptical distribution is the matrix multivariate normal distribution, are X_1 and X_2 (or $V_0 = X_2X_2^*$) independent. Then, we can say that the matrixvariate Pearson type II distribution is invariant under the family of matrix multivariate elliptical distributions, and furthermore, its density is the same as when normality is assumed. In the same way, it can be proved that the matrix multivariate Pearson type II, matrixvariate and matrix multivariate beta type I distributions are invariant under the family of matrix multivariate elliptical distributions.

• Finally, following Kabe [20], the distributions studied in this paper are easily extended to the hypercomplex case (biquaternion and bioctonion cases, which are a Jordan algebras), simply replacing β by 2β in the obtained results.

Acknowledgements

This research work was partially supported by CONACYT-México, Research Grant No. 81512 and IDI-Spain, Grants No. FQM2006-2271 and MTM2008-05785. This paper was written during J. A. Díaz-García’s stay as a visiting professor at the Department of Statistics and O. R. of the University of Granada, Spain.
References

[1] J. C. Baez, The octonions, Bull. Amer. Math. Soc. 39 (2002) 145–205.

[2] C. D. Bhavsar, Asymptotic distributions of likelihood ratio criteria for two testing problems. Kybernetes 29(4)(2000) 510–517.

[3] A. Cadet, Polar coordinates in \mathbb{R}^{np}: Application to the computation of the Wishart and beta laws, Sankhyā A 58 (1996) 101-113.

[4] J. A. Díaz-García, R. Gutiérrez-Jáimez, The distribution of the residual from a general elliptical multivariate linear regression model, J. Multivariate Anal. 97(2006) 1829-1841.

[5] J. A. Díaz-García, R. Gutiérrez-Jáimez, Singular matrix variate beta distribution, J. Multivariate Anal. 99(2008) 637-648.

[6] J. A. Díaz-García, R. Gutiérrez-Jáimez, Random matrix theory and multivariate statistics, http://arxiv.org/abs/0907.1064, (2009). Also submitted.

[7] J. A. Díaz-García, R. Gutiérrez-Jáimez, Doubly singular matrix variate beta type I and II and singular inverted matrix variate t distributions, J. Korean Statist. Soc. 38(3)(2009) 297-303.

[8] J. A. Díaz-García, R. Gutiérrez-Jáimez, Doubly noncentral singular matrix variate beta distributions, J. Statist. Theory & Practice 4(3)(2010) 421-431.

[9] J. A. Díaz-García, R. Gutiérrez-Jáimez, On Wishart distribution. http://arxiv.org/abs/1010.1799, (2010). Also submitted.

[10] J. M. Dickey, Matrix variate generalizations of the multivariate t-distribution and the inverted multivariate t-distribution, Ann. Math.Statist. 38 (1967) 511-518.

[11] I. Dimitriu, Eigenvalue statistics for beta-ensembles. PhD thesis, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA., 2002.

[12] A. Edelman, R. R. Rao, Random matrix theory, Acta Numer. 14 (2005) 233–297.

[13] Fang, K. T. and Li, R., 1999. Bayesian statistical inference on elliptical matrix distributions. J. Multivar. Anal. 70, 66–85.

[14] K. T. Fang, Y. T. Zhang, Generalized Multivariate Analysis, Science Press, Beijing, Springer-Verlag, 1990.

[15] P. J. Forrester, Log-gases and random matrices. To appear. Available in: http://www.ms.unimelb.edu.au/~matpjf/matpjf.html, 2009.

[16] K. I. Gross, and D. St. P. Richards, Special functions of matrix argument I: Algebraic induction zonal polynomials and hypergeometric functions. Trans. Amer. Math. Soc. 301(2)(1987) 475–501.

[17] A. K. Gupta, T. Varga, Elliptically Contoured Models in Statistics, Kluwer Academic Publishers, Dordrecht, 1993.

[18] C. S. Herz, Bessel functions of matrix argument Ann. of Math. 61(3)(1955) 474-523.

[19] A. T. James, Distribution of matrix variate and latent roots derived from normal samples, Ann. Math. Statist. 35 (1964) 475–501.
[20] D. G. Kabe, Classical statistical analysis based on a certain hypercomplex multivariate normal distribution, Metrika 31(1984) 63–76.

[21] C. G. Khatri, On the mutual independence of certain statistics, Ann. Math. Statist. 30(4) (1959) 1258–1262.

[22] C. G. Khatri, Classical statistical analysis based on a certain multivariate complex Gaussian distribution, Ann. Math. Statist. 36(1) (1965) 98–114.

[23] C. G. Khatri, A note on Mitra’s paper “A density free approach to the matrix variate beta distribution”, Sankhyā A 32(1970) 311-318.

[24] S. Kotz, and S. Nadarajah, Multivariate t Distributions and Their Applications, Cambridge University Press, United Kingdom, 2004.

[25] F. Li, and Y. Xue, Zonal polynomials and hypergeometric functions of quaternion matrix argument, Comm. Statist. Theory Methods 38(8)(2009) 1184-1206.

[26] M. L. Metha, Random matrices, Second edition Academic Press, Boston, 1991.

[27] A. C. Micheas, D. K. Dey, and K. V. Mardia, Complex elliptical distribution with application to shape theory, J. Statist. Plann. Infer. 136 (2006) 2961-2982.

[28] R. J. Muirhead, Aspects of Multivariate Statistical Theory, John Wiley & Sons, New York, 1982.

[29] S. J. Press, Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference, Second Edition, Robert E. Krieger Publishing Company, Malabar, Florida, 1982.

[30] T. Ratnarajah, R. Villancourt, and A. Alvo, Complex random matrices and Rician channel capacity. Probl. Inf. Transm. 41(1)(2005), 1–22.

[31] S. M. Srivastava, C. G. Khatri, An introduction to multivariate statistics, North Holland, New York, 1979.