Abstract

Today’s programmers, especially data science practitioners, make heavy use of data-processing libraries (APIs) such as PyTorch, Tensorflow, NumPy, and the like. Program synthesizers can provide significant coding assistance to this community of users; however, program synthesis also can be slow due to enormous search spaces.

In this work, we examine ways in which machine learning can be used to accelerate enumerative program synthesis. We present a deep-learning-based model to predict the sequence of API functions that would be needed to go from a given input to a desired output, both being numeric vectors. Our work is based on two insights. First, it is possible to learn, based on a large number of input-output examples, to predict the likely API function needed. Second, and importantly, it is also possible to learn to compose API functions into a sequence, given an input and the desired final output, without explicitly knowing the intermediate values.

We show that we can speed up an enumerative synthesizer by using predictions from our model variants. These speedups significantly outperform previous ways (e.g., DeepCoder [2]) in which researchers have used ML models in enumerative synthesis.

CCS Concepts:
- Software and its engineering → Programming by example: Automatic programming; API languages.

Keywords: Program Synthesis, Programming By Example, PyTorch, Tensor Manipulation

1 Introduction

One of the cherished dreams of the programming languages research community is to enable automated synthesis of programs based on a specification. Synthesis approaches have been designed around several different forms of specification, e.g., a formal specification, or natural language description, or input-output examples (aka demonstration), or a combination thereof. Just as well, several different approaches to synthesis have been researched; see Related Work.

Our focus is on coding assistance for users of numeric libraries such as PyTorch, Tensorflow, Numpy, Pandas, and the like, each of which provide powerful data manipulation routines behind an API, and the API functions are generally side-effect free. We assume a specification in the form of a single input-output example, and we are looking for a straight-line program consisting of calls to API functions. We choose enumerative synthesis (explained in the next subsection) as the underlying synthesis approach. Our research goal—shared with recent works such as DeepCoder [2], TF-Coder [26], Autopandas [4], and others—is to speed up plain enumerative synthesis using machine learning (ML).

Here is an input matrix as well as the desired output matrix, and the synthesis problem is to come up with a sequence of function calls that would convert the input to output. We will use the PyTorch API for this purpose.

\[
in = \begin{bmatrix} 5., 2. \\ 1., 3. \\ 0., -1. \end{bmatrix}
\]
\[
out = \begin{bmatrix} 5., 5. \\ 1., 1. \\ 0., 0. \\ 2., 2. \\ 3., 3. \\ -1., -1. \end{bmatrix}
\]

The desired code fragment for this example is:

\[
\text{transpose}(\text{stack}((in, in), 2), 0, 1)
\]

The goal of program synthesis is to arrive at this expression, given only the input and output. Keep in mind that it is unlikely that random guessing of an expression will work: there are tens if not hundreds of available functions, and each function might take more than one argument. Thus, a systematic search is necessary.
Basic enumerative synthesis Refer to Figure 1, part (a), where we illustrate an enumerative synthesis in the style of Transit [31] and TF-Coder [26]. The idea is to organize the search in the order of increasingly complex expression trees, where the complexity is approximated by a cost. We assign a cost to each available value, and to each operation, which here are API functions. (The cost of a function is assigned heuristically, e.g. based on a global frequency of usage.) At each step, we work with a budget, which grows in successive steps. Expressions that can be formed from existing values within the budget are added to a pool of values. For instance, the expression stack((in, in), 2) would cost the two times the cost of in plus the costs of the value 2 and the function stack. In the figure, this cost comes to 48, based on the cost of stack being 36. The value computed by this expression is added to the pool of values, along with the expression that computes them and its cost. The process continues, with increasing budget at each step, until the desired output value is found. The expressions added to the pool of values are shown in the figure.

Trying likely functions first The enumerative search presented above is slow, and gets exponentially slower if a larger expression is needed to get the job done. A reason for this slowness is that the turn of the actually needed API function might come in quite late, as enumerative synthesis makes its way through the smaller cost budget and cheaper functions. Balog et al [2], in their seminal work DeepCoder, described a machine learning based strategy to accelerate enumerative program synthesis. DeepCoder’s insight is to re-assign costs to functions—based on a machine learning model over the given input and output—such that the function(s) more likely to be needed in a given situation are prioritized. See part (b) of Figure 1. Here, given the specific input and output, DeepCoder’s machine learning model, adapted to our setting, correctly deems transpose, and stack as likely to be needed. Operationally, an enumerative synthesis process (e.g. as implemented in TF-Coder [26]) can lower costs of these operations by some factor, so they are likely to be tried in preference to other API functions. The hope is that if the ML prediction is accurate, and the discounted costs work out, the process of enumerative synthesis can be sped up considerably.

This paper: Predicting function sequences Our thesis is that ML can be used in the setting of enumerative synthesis of API-centric code in a more powerful way: not for prioritization, but instead to directly predict the sequence of API functions that required to go from input(s) to the desired output. We describe two ways in which such a predictive model can be used to accelerate enumerative synthesis.

The first way in which we use this prediction model is to just let it predict the entire sequence of API functions in one shot, given the input and the output. In our running example, the model will predict stack, transpose as the sequence. See Figure 1, part (c). Given this sequence, the enumerative synthesizer will only look for values to fill into the function call arguments (shown by "_"). If the model predicts correctly,
the search space that an enumerative synthesizer faces is vastly reduced, leading to possibly significant speedups.

A second way in which we use this predictive model is to use it as a “first-of-sequence” (FOS) predictor. See Figure 1, part (d). Given the input and the desired output, the FOS predictor only predicts the first function in the sequence needed. Say it predicts that function is stack. The synthesizer tries out a set of concrete arguments for stack from the values pool. The result of evaluating stack on each of these sets of arguments is added to the values pool; these are intermediate values in the desired computation. Next, for each intermediate value thus obtained, the synthesizer invokes the model again, this time giving it the intermediate value (in place of the input) and the desired output value. Say the model now predicts that the first function in the remaining sequence needed is transpose. The synthesizer then looks for appropriate arguments for transpose. At this point, one of the argument choices would provide the desired output. Compared to the full prediction, the point of this FOS mode is that it gets to predict on the basis on known intermediate values, a bit akin to teacher forcing [32] in sequence prediction, and can be successful more often than the full prediction mode; but it can be less efficient than one-shot prediction of the entire sequence.

On the running example, here are the comparative times to a successful solution: plain enumerative synthesis, 54.79 seconds; DeepCoder-style ML-based prioritization, 34.71 seconds; our API sequence prediction, FOS mode, 0.49 seconds; and API sequence prediction, Full mode, 1.45 seconds. In this example, full sequence prediction mode took a tad longer than the FOS mode: this is because the correct full sequence was in top-3 but not top-1, whereas in the FOS mode the correct choice were at top-1. In general, we have found the full sequence mode to be faster than FOS mode. Other examples of Full-Seq guided synthesis are available in Table 1.

Contributions We make two contributions in this work. First, we present a way to incorporate powerful predictive models in the context of enumerative program synthesis. On a suite of benchmarks (adapted from Stack Overflow) for PyTorch, using our ML models reduces the (mean, max) synthesis time from (10.01, 96.53) to (1.04, 9.58). By contrast, an adaptation of the idea of DeepCoder [2] reduces the (mean,max) synthesis time only to (7.44, 77.00). (See Section 5.3, Table 4.) Second, our main technical advancement is in being able to carry out prediction of a sequence of API functions, given the input and the final desired output. Specifically, our model predicts one API function at a time and executes each predicted API function to convert the (intermediate) input state into another intermediate state until it becomes the target output state. Here, the intermediate states are not given to the model, but the model learns to represent what would be concrete intermediate values in the latent space during the training time. The ability to execute the API functions in the latent space indicates that the model learns the API function semantics (i.e., the relation between the input and output states) rather than the sequence distribution of the training dataset, and allows the model to generalize to unseen sequences or lengths. See Sec 6.

2 Learning to predict API sequences

Our technique works based on supervised learning over a large number of input and output examples, trained over individual API functions, or on sequences of API functions. Since the availability of real training data is a pervasive problem in ML, we use synthetic data generation similar to prior program synthesis work [28]. We pipe randomly-generated diverse inputs through sequences of API functions and collect resulting outputs (see Section 3.4). This helps capture the behavior of a single or a sequence of API functions in terms of how it transforms its input to the output.

Once trained, the model is able to predict a sequence of API functions. It can predict for input-output pairs that were never seen in the training data; thus it generalizes in the data space as long as the query input-output pairs are in distribution. More interestingly, it can predict sequences of API functions that were not seen in the training set either. This latter point is crucial, because the way we train the model, it learns to compose new, previously unseen sequences from the behaviors learned from training sequences.

Before we present operational details (Sec 3 onwards), we would like to present some intuitions behind our proposed ideas. We start with a basic classification model designed to predict one API function, given an input and desired output; and then build over it a compositional model that is designed to predict a sequence of API functions. The importance of examining the classification model on its own was crucial in our own journey, because it helped overcome several challenges in synthetic data generation for training. (In actual synthesis application, we use the model that predicts function sequences, described after this.)

Predicting a function from input-output data The first intuition we use is that for many common API functions, their behavior—the relationship of output to inputs—has simple patterns. Moreover, the behavior of a function is discriminable from behaviors of other functions based on simple clues. Many functions simply move around elements of a
There do exist operations with more complex behaviors, but here we limit ourselves to simple ones (see Appendix A.

function. (The correspondence of the internal representations to intermediate values is further explored in Section 6.) This representation, along with the final output, can then be passed to a recurrent invocation of the model, to make it predict the next API function in the sequence. In this way, we can train a compositional model for API sequences.

In our running example, the model first predicts stack based on in and out. Importantly, it also computes an internal representation of the intermediate value stack((in, in), 2). It then predicts transpose based on this internal representation and out. This is the principle by which the model is able to compose even longer previously-unseen sequences.

Here we emphasize that the model is not predicting the next API token (e.g. transpose) based on the tokens that came before (e.g. stack), as is done in code completion models [14]. At each step, the prediction is based only on (an internal representation of) the program state, as opposed to on program text. This is a new capability, which could optionally be combined with additional signals such as previous tokens, if desired.

3 Technical Details

In this section, we explain our models, the training and the inference. We will use Figure 3 to show details using an example.

3.1 Notations

We will work with following entities:

- \mathbb{T} for domain values, tensors or vectors (or lists thereof)
- \mathbb{E} for embeddings, which are vector representations internal to a neural network
- \mathbb{D} for distributions, which are probability distributions over names of API functions. For $d \in \mathbb{D}$, $d(f)$ is the probability of function f.

We will use some auxiliary operators:

- embedding, denoted by $[\cdot]_e : \text{encoding}(\mathbb{T}) \rightarrow \mathbb{E}$
- concatenation, denoted by $\#_c : \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{T}$

3.2 The encoding function

Before passing the input and output tensors to the models, we encode them into a fixed-length vector (Figure 3-Encoding). We extract three different pieces of information from the tensors: (i) tensor values, (ii) tensor shapes, and (iii) tensor types, and combine them as a sequence separated by a special separator $<$ shape $>$, i.e., $\{X = \text{type} \leftarrow \text{shape} \leftarrow \text{value}\}$ such that, the models can learn from all the three modalities together.

To manage the wide range of tensor values in the model, we normalize the values as follows: we encoded the values greater than 100 into 100, values greater than 1000 into 101, and similarly for the negative values. The intuition is based on how developers recognize patterns: when a value becomes large enough, the importance of the least significant digit decreases in pattern recognition.
Finally, all domain inputs and output encoding are concatenated together. We support up to 3 inputs and one output. Dummy inputs are added when there are less than 3 inputs to keep the model input size same for all examples.

3.3 Compositional Model

We train a model to predict the sequence of API functions $s_f = [f_1, ..., f_n]$, given a task specification $\phi = \{\text{inp, out}\}$, where inp is a list of input tensors that have gone through the sequence of API operations s_f, and out is the final output tensor.

In this description, we assume all functions take two inputs: first, the result of previous computation, and second, a “local” input, e.g. inp_i, here that comes from inp. Define $\text{args}_i = (f_{i-1}(\text{args}_{i-1}), \text{inp}_i)$, for $i > 1$, and $\text{args}_1 = (_ , \text{inp}_1)$. We train a model G, such that for $i = 1..n$:

$$f_i = G(\|\text{args}_i, \text{out}\|)$$

(1)

The embedding $\|\|$ of the encoded inputs is obtained using feed-forward networks (FFN), whereas G is rendered by employing recurrent neural networks (RNNs)2. The operation of one cell of an RNN has the type: $\text{RNN}: \mathbb{E}_1 \times \mathbb{E}_2 \rightarrow (\mathbb{E}_3, \mathbb{D})$ where:

- \mathbb{E}_1 is the hidden state coming from previous cell, or a zero value;
- \mathbb{E}_2 is the embedding of the local input and the final output; we permit each function to have an optional additional input;
- \mathbb{E}_3 is the output hidden state being passed to the next cell;
- \mathbb{D} is the prediction of API function from this cell; technically it is a distribution from which we take the argmax.

Then,

$$h_i, d_i = \text{RNN}_i(h_{i-1}, \|\text{inp}_i\#, \text{out}\|)$$

(2)

where h_{i-1} and h_i are incoming and outgoing hidden states, respectively, and d_i the predicted distribution. We expect $f_i = \text{argmax}(d_i)$.

Figure 3 Compositional Model shows three units of the model for an example. In each unit, the encoding passed to the feed forward network is similar to the one used before to create $\|\text{inp}_i\#, \text{out}\|$. When f_i needs to use $f_{i-1}(\text{args}_{i-1})$, we mask the position as empty (“<p>” in the figure) so that the model exploits h_{i-1}. Embedded encodings are passed to RNN units, and each unit further projects the input embedding into the RNN embedding space to generate h_i, using information flowed from adjacent units, h_{i-1}. Finally, the output of each unit is passed to a softmax layer (not shown here) to produce a probability distribution over API functions.

3.4 Synthetic Data Generation

To train a neural model so that it can understand the behavior of API functions, a large number of corresponding input-output pairs is necessary. Unlike other problems exploiting ML models, collecting real-world data from code repositories (e.g., GitHub) is not applicable here because we need runtime values, not static information such as static code. Therefore, we randomly generate input/output values, and use the synthetic dataset for model training.

For each API function, we randomly generate input tensors, run the API functions with them, and capture the corresponding outputs. In other words, we create a set of input/output values in a black-box manner: we do not assume API functions’ implementation details or internal behaviors.

As it does not require understanding internal program structures, it is easy to generate a large number of input-output pairs without much manual effort and can be easily parallelized.

Listing 1. Example data generation code for torch.sum

```python
import torch

def generate_sum_IO():
    in_tensor, tensor_size = random_tensor()
    if dim == len(tensor_size):
        out_tensor = torch.sum(in_tensor, dim)
    else:
        out_tensor = torch.sum(in_tensor, dim)
    return (in_tensor, out_tensor)
```

However, as even a simple API operation in modern libraries (e.g., PyTorch) imposes many constraints, inputting random values will generate many runtime errors due to the constraints violations. To reduce such errors, we exploit API specification, and generate a set of inputs with the valid combinations (see Listing 1 for an example of generating datapoints for `torch.sum`). By excluding invalid combinations of arguments to each API function, we can speed up the data generation and generate a large synthetic dataset that can capture API function input/output benign behavior.

4 Incorporating ML in Enumerative Syn.

Here we formally describe how the ML models were incorporated into the enumerative synthesis. Please refer to Figure 1 and Section 1 for a walk through of these on an example. Detailed description of our implementation and the pseudo code for each synthesis approach can be found in the supplementary material (Appendix C, D).

Basic enumerative synthesis. As a baseline, we implement an enumerative synthesizer without any ML models. Basic enumerative search starts with a set of base values and enumerates over combinations of operations and the values.

The list of base values includes `inp`, other basic constants such as `0`, `1`, `-1`, or heuristically-chosen values such as the dimensions of the given variables (e.g., `3`). Then, starting with the base values, the search enumerates ways of applying operations to previously-explored values and expand the set of known values. There are various ways of iterating the operations and the values (e.g. based on syntactic size as...
in Transit [31]), but we use weighted enumerative search, which is the approach of and TF-Coder [26]. It does so in the order of increasing cost. Operations and values are assigned costs based on their complexity: less common and more complex operations are assigned higher cost, and the common and simple operations are assigned lower cost. Costs are additive, so common operations and simpler expressions are explored earlier. The costs are manually set by the synthesizer developers, but only needed to be set once, and it will be used for all tasks.

Prioritizing likely functions with an ML model. As the needed operations for a specific problem are not known to the synthesizer ahead of time, the costs seeded in it will not always be ideally suited for all problems. TF-Coder [26] and DeepCoder [2] address this problem using an ML model to re-weigh all operations before the enumerative search starts. Given a task specification (i.e., input/output examples), it invokes a multi-label classification model to predict the probability of each needed operation and re-weighs them accordingly with the goal of encountering the needed operations earlier in the search. We trained multi-label classification model following DeepCoder [2].

Compositional Model - Full-Sequence. In this mode, compositional model predicts a sequence of API functions \(s_f = [f_1, f_2, ..., f_n] \) given the final output \(\text{out} \), and the inputs to each API function \(\{ \text{in}p_1, \text{in}p_2, ..., \text{in}p_n \} \). The synthesizer invokes the compositional model with the specification, predicts a sequence of operations, and searches only the parameter values (e.g., dimension) that were not provided in the specification.

The Full-Seq mode completely bypasses enumerative search over operations. Instead, the compositional model predicts the API functions needed in a synthesis instance as well as the order of those APIs in the synthesized code. Thus, the synthesizer does not need to search the operation space, but only needs to search the combinations of base values.

Compositional Model - First-Of-Sequence. In the First-Of-Seq mode, given an input and a final output, compositional model predicts the most probable API function needs to come in the sequence. As enumerative search keeps track of the intermediate output value, we can iteratively invoke compositional model, and compute the intermediate values using the predicted API functions, which can be used to predict the next API function.

5 Evaluation

In this section, we first describe the training and evaluation dataset (Section 5.1), and evaluate the trained API function sequence prediction model (Section 5.2). Then, we investigate the prediction-guided synthesis (Section 5.3). Finally, we show the generalizability and the compositional property of our model (Section 5.4).

5.1 Dataset

Program synthesis benchmarks. We evaluated the effectiveness of our approaches with a subset of TF-Coder's SO benchmarks [26]. These benchmarks contain 50 tensor manipulation examples collected from SO, each containing input and output tensor values and the desired solutions in Tensorflow. To evaluate our approach that supports PyTorch, we first translated them into PyTorch and excluded tasks that we could not translate by hand. Among the 33 API functions needed to for remaining 36 benchmarks, we selected 16 functions covering 18 benchmarks (Table 2-Stack Overflow) from core utility that modify values (e.g., add) or shapes (e.g., transpose) of tensors, create them, or manipulate them in similar ways. These operations were chosen because the model can clearly observe the behavior of each API function solely from input and output pairs (i.e., no side effects). The full benchmarks we support are available in the supplementary material (Appendix B).

Synthetic data generation. To train our sequence prediction model that work for the SO benchmarks, we synthesized a dataset as per Section 3.4. We synthesized 202 unique API functions sequences by using the exhaustive combination of 16 API functions, with 1 or 2-length sequences. From the 272 (16 + 16*16) possible sequences, 70 sequences were removed due to the constraints.
For each API function sequence in the training dataset, say \(f_1, f_2, f_3 \), we ran \(f_1 \) with randomly generated input and other parameter values (e.g., dimension, mode, etc.). Then, \(f_2 \) takes \(f_1 \)'s output as input and takes other random input tensors, if necessary. We treat \(f_3 \) similarly by propagating \(f_2 \)'s output.

To generate diverse and unbiased input-output pairs, we cover different properties of the functions, such that the model can explore the broad data space of input-output pairs.

It took 1-person week to encode the API specifications to write valid data generation code by reading the PyTorch documentation. To avoid expansion to large input values and to let the model learn the patterns sufficiently, we used a fixed range of values (from 0 to 20) and the size of tensors (up to 3 dimensions, and up to 5 elements in each dimension), to prevent the tensors to be dispersed too much.

We created the dataset with 100,000 input-output pairs for each unique API sequence (Table 2-Synthetic). We split the dataset into training, validation, and test sets. The training set of the synthetic data, and evaluated it with (1) SO benchmarks, the Full-Seq model found 13 sequences out of 18 and 17 respectively. However, although they synthesized fewer solutions, they required less time to synthesize the solutions: 5.87 seconds (First-Of-Seq) and 1.04 seconds (Full-Seq) on average, whereas the existing synthesizers took 10.01 and 7.44 respectively.

5.3 Prediction-guided enumerative synthesis

Using the trained Full-Seq and First-Of-Seq variants, we first evaluate our approach, against vanilla enumerative synthesis (similar to [26]). We further compared with a multi-label prediction model, a setting inspired by DeepCoder. [2]. Table 4 shows the results.

Model	Synthetic-Test	Stack Overflow
	Top-1	Top-1
Full-Seq	79.36%	35.29%
First-Of-Seq	66.88%	52.38%

Table 3. Model accuracy for unseen input/output values.

Table 4. End-to-end program synthesis results; our models in **bold**. Time, Max, and Median show the average, max, median synthesis time of found programs.

For each API function sequence in the training dataset, say \(f_1, f_2, f_3 \), we ran \(f_1 \) with randomly generated input and other parameter values (e.g., dimension, mode, etc.). Then, \(f_2 \) takes \(f_1 \)'s output as input and takes other random input tensors, if necessary. We treat \(f_3 \) similarly by propagating \(f_2 \)'s output.

To generate diverse and unbiased input-output pairs, we cover different properties of the functions, such that the model can explore the broad data space of input-output pairs.

It took 1-person week to encode the API specifications to write valid data generation code by reading the PyTorch documentation. To avoid expansion to large input values and to let the model learn the patterns sufficiently, we used a fixed range of values (from 0 to 20) and the size of tensors (up to 3 dimensions, and up to 5 elements in each dimension), to prevent the tensors to be dispersed too much.

We created the dataset with 100,000 input-output pairs for each unique API sequence (Table 2-Synthetic). We split the dataset into training, validation, and test sets. The training, validation, and test sets included all 202 API sequences, but the input/output values were not overlapped across the datasets.

5.2 Sequence Prediction Model

We trained both Full-Seq and First-Of-Seq variants using the training set of the synthetic data, and evaluated it with (1) the test set of the synthetic data, and (2) SO benchmarks.

Observation. Table 3 shows the result. Model's top-1 testing accuracies of the 10K synthetic test set are \(\sim 79\% \). Among 18 SO benchmarks, the Full-Seq model found 13 sequences are in top-3 (72.22%), among them 6 are in top-1 (33.33%). In comparison to the Full-Seq model, the First-Of-Seq model's top-1 accuracy is better. This is not surprising as First-Of-Seq model has more information (actual values of the intermediate inputs) than the Full-Seq variant. However, surprisingly, the top-3 accuracies of both are almost similar. These results indicate that the compositional model perhaps learned a representation of the intermediate states of the API operation sequence: even without passing the true intermediate values, the Full-Seq model behaves at per with the Full-Seq model at top-3.

5.3 Prediction-guided enumerative synthesis

Using the trained Full-Seq and First-Of-Seq variants, we first evaluate our approach, against vanilla enumerative synthesis (similar to [26]). We further compared with a multi-label prediction model, a setting inspired by DeepCoder. [2]. Table 4 shows the results.

Model	Found	Not Found	Mean	Max	Median
Enumerative	18	0	10.01	96.53	0.46
Multi-label	18	0	7.44	77.00	0.32
First-Of-Seq	17	1	5.87	59.93	0.39
Full-Seq	14	4	1.04	9.58	0.25

Table 4. End-to-end program synthesis results; our models in **bold**. Time, Max, and Median show the average, max, median synthesis time of found programs.
high even when one tries with the compositional model and employ other approaches once it fails.

First-Of-Seq vs. Full-Seq. Between the two variants, First-Of-Seq was able to synthesize more programs. For example, First-Of-Seq successfully synthesized the desired program \([\text{lt} \ (\text{in}, 1), \text{in}, 1]\) by predicting \(\text{lt}\) and \(\text{lt}\) correctly in top-3. However, Full-Seq failed, and predicted \([\text{eq}, \text{where}], [\text{eq}, \text{mul}], [\text{gt}, \text{where}]\] as top-3, which are close enough, but not entirely correct. This is expected. First-Of-Seq only has to get the first element of the sequence right; the next element is in fact the first element of the result of the subsequent prediction, which in turn, is based on the actual intermediate value computed by the first function predicted. Whereas, the Full-Seq gets only one chance to get the entire sequence right without knowing the intermediate values. When a sequence is correctly predicted, Full-Seq model could synthesize the solutions faster; it only needs to be invoked once, without the intermediate values computation.

5.4 Evaluating Generalization

To see whether the model truly learned the functionality of the API functions and learned their compositions, we tested whether the model can generate new API sequences that were not present in the training data. From the original synthetic dataset 2, we removed the data of 7 API function sequences with length-2 that were included in Stack Overflow benchmarks, and trained the First-Of-Seq and Full-Seq models. Our hypothesis was that if the models are able to learn the compositional property, instead of learning the distributions of sequences, they should be able to generate unseen sequences by composing API functions into a sequence.

Observation. Not surprisingly, the accuracy drops from the Section 5.2 result. Nevertheless, out of 8 benchmarks with 2 sequence, we can still predict 4 sequences at top-5 (50% accuracy) with Full-Seq, and 6 sequences (75% accuracy) with First-Of-Seq. In this setting, we sometimes narrowly miss some function sequences. For example, we miss a benchmark \([\text{lt}, \text{where}], \text{however}\), however it predicts \([\text{eq}, \text{where}], \text{and} \ [\text{gt}, \text{where}]\) instead. Note that \(\text{gt}\) and \(\text{eq}\) have very similar functionalities to the intended API function \(\text{lt}\). Both the models can correctly predict sequences like \([\text{unsqueeze}, \text{eq}], [\text{matmul}, \text{add}]\), etc. As expected, the First-Of-Seq model works much better than Full-Seq model.

To further check the model’s ability to generalize to unseen 3-length sequence, we randomly picked 71 unique 3-length sequences made out of 16 API functions and collected 100 instances of them with different input/output values. This gives a total of 7100 test samples. We used the model trained with only sequences with length 2. Overall, at top-5, model’s accuracy is ~34% when queried with unknown sequences and unknown values. However, the model can predict 69 out of 71 sequences correctly at least with one input-output. The only two sequences the model missed are \([\text{add}, \text{mul}, \text{any}]\) and \([\text{add}, \text{unsqueeze}, \text{ne}]\). In contrast, \([\text{where}, \text{expand}, \text{matmul}]\) was predicted correctly around 97% time. These results indicate the model’s ability to generalize.

5.5 Scaling to a larger set of API functions

First-Of-Seq vs. Full-Seq. We created a dataset covering all 36 SO benchmarks (1- to 3-length) in section 5.1 with 33 API functions (up from 16 before). Synthesizing a training data covering all exhaustive combinations of the 33 API functions, up to 3-length sequences, gives us a huge number of combinations (33x33x33=35,937). Generating the corresponding training data (>35B samples) and train the model accordingly is challenging. Therefore, as a start, we selected 65 unique sequences that can be a solution to one of the 36 benchmarks.

Observation. Table 5 shows the result. Compared to the model trained with the exhaustive combinations of 16 API functions (Section 3), the Full-Seq model trained with this dataset actually performed even better for (91.42% top-3 accuracy in SO benchmark data). We conjecture that this is because the model could focus its learning on the semantics of API functions sequences that are more likely to be in the test set, rather than learning semantics of all combinations. Unlike the accuracy difference in Full-Seq models, First-Of-Seq variant achieved slightly lower top-1 accuracy with this dataset. This is because the number of API functions it needs to learn has increased from 16 to 33. For First-Of-Seq, as it predicts each API function independent from others, it could not benefit from having a training set with the targeted sequences.

Generalizability. We also tested the generalizability of our model when it is trained with a dataset covering all 33 API functions needed to synthesize the solutions for 36 SO benchmarks. Due to the aforementioned challenge, we could not synthesize a dataset like in Section 5.4; instead, we synthesized a dataset with 598 random combinations of 1 or 2-length sequences of 33 API functions, that has not appeared in SO benchmark.

Observation. 7 out of 18 (39%) two-length unseen sequences were predicted correctly with Full-Seq, and the first API of a sequence correctly predicted by First-Of-Seq with 69% accuracy. They both achieved lower accuracy than the ones trained with the exhaustive combinations, as this model had fewer sequences to learn from, which is critical in generating unseen sequences.

Model	Synthetic-Test Top-1	Stack Overflow Top-1	Top-3
Full-Seq	88.15%	68.57%	91.42%
First-Of-Seq	65.44%	51.61%	79.03%

Table 5. Model accuracy for unseen input/output values, trained with a dataset covering all 30 benchmarks.
6 Why Composition works?

We show that a unit of our compositional model has an interesting property: it learns to convert its incoming hidden vector to its outgoing hidden vector in a way consistent with the semantics of the API function it predicts, albeit in embedding space. This property is crucial for predicting a sequence compositionally.

In Fig 4(a), we show two units of the compositional model, where the first one predicts function \(f_1 \), on the basis of \(inp_1 \), \(out \) and the previous hidden vector, if any. That unit also produces a hidden vector \(h_1 \). The second unit produces hidden vector \(h_2 \). It may also consume further local input (such as \(inp_2 \)). Fig 4(b) shows an alternate situation in which we give the result of \(f_1(inp_1) \) directly as input to the first unit, which then produces \(h_2' \).

The interesting property is that \(h_2 \) and \(h_2' \) are close together in the representational space. Figure 5 shows a part of a tSNE plot of \(h_2 \) (crosses) and \(h_2' \) (dots), as described above, for inputs drawn from our benchmarks. As we expect, black and white markers in the figure show that \(h_2 \) and \(h_2' \) for the same inputs are arranged close to each other in the embedding space. In producing \(h_2 \) (or \(h_2' \)), the RNN unit did not care whether it was given \(h_1 \), the representation produced by the previous RNN unit, or directly given \(f_1(inp_1) \). In this manner, successive hidden states contain information analogous to the results of concrete computations: \(f_1(inp_1) \), \(f_2(f_1(inp_1)) \), and so on. (In the actual model, these functions need not be unary, as implied here.)

Composition property formally. Refer to the notation introduced in Sec 3.3. If instead of \(h_{i-1} \), \(RNN_i \) is given (the embedding of) the concrete intermediate value computed by the computation so far, its observed behavior is the same in both cases. Formally,

\[
\begin{align*}
 h_i, d_i &= RNN_i([f_{i-1}(args_{i-1})#out], [inp_i#out]) \\
 &\approx RNN_i(h_{i-1}, [inp_i#out]) \\
\end{align*}
\]

Thus, the hidden vectors capture an abstraction of intermediate values that would have arisen in concrete computation \(f_1(i_1), f_2(f_1(i_1)) \), and so on. The composition takes place as each unit of RNN make a local decision based on incoming hidden vector, which is set up to capture the result of the corresponding concrete computation so far.

7 Limitations

Our results are promising, yet preliminary in many ways, and we have not established generality in several dimensions. First, we support a small set of API functions and have carried out a limited evaluation. As the number increases, the training data size also increases, and training the model well becomes harder due to computational needs. The robustness of training is a challenge in general.

Second, the model’s ability to generalize to unseen sequences is crucially dependent on training over a broad diversity of API sequences. This is challenging as we go to a larger number of API functions, because we cannot cover all permutations exhaustively. However, as seen in Section 5.5, the model can still learn the semantics reasonably well if the training data covers the sequences in the test set. Thus, the future works may benefit from creating a training dataset containing a distribution of sequences representing the real-world API usage patterns, through API usage mining [18, 36].

Third, we have explored the model’s training and inference on relatively short tensors, with small data ranges, and have generally worked only with integer data. In a real application, tensors can be out-of-distribution with respect to the model.

Fourth, we have worked only with PyTorch. We believe the work can be replicated easily to NumPy and Tensorflow API functions, because of their similar nature (acting over arrays of numbers.). Farther out, we may need to invent additional techniques. For example, Pandas is designed to deal with records (or “dataframes”) containing labeled axes (rows and columns); so it supports not only numeric manipulation, but also label-based slicing. Here we may be able to borrow some insights from the Autopandas work [4]. Finding ways to deal with the above threats is in our future work.
8 Related Work

Program Synthesis. It has a rich literature, including example driven LISP code generation [13, 25], deductive synthesis from decades ago [17], sketch completion using satisfiability [30], bit-vector manipulations [15], string processing [12, 22], data processing [29, 33], syntax transformations [23], database queries [34], data wrangling [10, 11, 16], and the highly successful programming-by-examples system FlashFill [12]. FlashFill uses enumerative synthesis, where a space of programs are explored in some order, until one that fulfills a requirement—typically one or more examples—is found. Transit [31] is another well-known work in enumerative synthesis, where the exploration is arranged in terms of finding sub-expressions in order of their costs. Increasingly more costly expressions are attempted, using expressions previously computed.

ML for Program Synthesis. With advances in ML, researchers tried to adopt ML on top of the enumerative search for more efficient program synthesis [2, 4, 19, 21, 26]. Our work is closely related to DeepCoder [2], TF-Coder [26] and BUSTLE [21]. Using prediction-guided enumerative synthesizer, they show the benefits of predicting API functions that are needed somewhere given a synthesis instance. However, they all use a explicit featurization over these the input-output values, which is not easy to generalize to other programming languages. Also, they only predict presence or absence of API functions, the prediction was only used to prioritize operations in the enumerative search, rather than directly predicting the API function(s) in sequence. With the ML model guiding the search, BUSTLE takes an approach similar to ours, which gives feedback to search iteratively, whereas the models of DeepCoder or TF-Coder only give feedback in the beginning of the search. However, BUSTLE and DeepCoder only support simple DSL tasks, which may not be generalized for real-world API-based synthesis.

Neural Program Synthesis. Approaches like [1, 3, 5, 8, 22, 22, 35] directly use neural networks for end-to-end synthesis [3, 5, 8, 22] to generate string transformation programs from examples. These works generally use encoder-decoder model. In particular, the encoder embeds the input/output strings, and the decoder generates the program sequences conditioned on the input embedding. However, these approaches are mostly built and evaluated with simple DSL tasks, mostly with simple string transformation. In this work, we worked on the real-world tensor manipulation library PyTorch. Although our evaluation does not cover the full range of PyTorch, we found several challenges in expanding these work into more complex programs, such as the scalability issue in training data generation and diversity of the API parameters especially in the tensor domain.

Execution-guided Program Synthesis. Recent works have tried to exploit program execution to learn better representations for the neural program synthesis [5–7, 9, 20, 27]. Some of the approaches [5, 27] use program interpreters to provide the actual intermediate execution results, and a more recent approach [7] learns the latent representation to approximate the execution of partial programs using a separate “Latent Executor”. We also learn the representation of the execution of partial programs and demonstrate that (see Section 4). However, we capture the intermediate execution results as part of the main recurrent model, without needing to use the separate module to approximate or execute the program.

9 Conclusion

In this paper, we proposed a new machine learning technique to speed up enumerative program synthesis. Our idea is to use an ML model to predict the sequence of API function calls required to go from an input to the final desired output, in our case, both numeric vectors. Our model is trained on randomly generated data. It is able to predict API sequences for previously unseen inputs and outputs. Moreover, it can predict API sequences that were not seen during training either. The model does so by learning to compose API sequences, by learning how to keep track of values in the hidden states of an RNN. We showed that our model can predict sequences of lengths 1 to 3 fairly well. In terms of effectiveness, we showed that our technique accelerates enumerative synthesis more effectively than related previous works DeepCoder [2] and TF-Coder [26].
A Supported operations of PyTorch

Below is the list of 33 PyTorch operations. 16 operations used in the original dataset (described in Section 5.1) are highlighted.

- add
- any
- arange
- argmax
- bincount
- cdist
- div
- eq
- expand
- eye
- gather
- gt
- lt
- masked_select
- matmul
- max
- minimum
- mul
- ne
- one_hot
- repeat_interleave
- reshape
- roll
- searchsorted
- square
- squeeze
- stack
- sum
- tensordot
- tile
- transpose
- unsqueeze
- where

B Stack Overflow Benchmarks

As mentioned in Section 5.1, we adapted the Stack Overflow benchmarks created for TF-Coder [26]. The examples were collected from Stack Overflow posts and the benchmarks were inspired by those posts. However, the input/output values were replaced by the TF-Coder authors for licensing reasons. The input/output values created by TF-Coder authors, and we updated some values to fit into our scope.
Input/output and Desired Code

Inputs	Output	Code & Function Sequence	Expected Sequence
SO01	\(\text{in1} = \begin{bmatrix} 5, 2 \end{bmatrix}, \begin{bmatrix} 1, 3 \end{bmatrix}, \begin{bmatrix} 0 \end{bmatrix}, \begin{bmatrix} -1 \end{bmatrix} \)	\(\text{torch.transpose(in1, expand((2, 3, 3))), 0, 2} \)	expand, transpose
SO02	\(\text{in1} = \begin{bmatrix} 5, 1, 0, 3, 0, 0, 2, 0, 2 \end{bmatrix}, \text{in2} = 1 \)	\(\text{torch.where(torch.in1, in1, in1, 1)} \)	it, where
SO05	\(\text{in1} = \begin{bmatrix} [4, 3, 1] \end{bmatrix}, \begin{bmatrix} 6, 5, 2 \end{bmatrix} \), \(\text{in2} = \begin{bmatrix} (2, 3, 3), [1, 5], (3, 5, 6) \end{bmatrix} \)	\(\text{torch.tensordot(in1, in2, 1)} \)	tensordot
SO06	\(\text{in1} = [3, 5, 0, 2, 3, 3, 0] \)	\(\text{torch.eq(in1, torch.unsqueeze(in1, 1))} \)	unsqueeze, eq
SO07	\(\text{in1} = [4, 4, 6, [2, 12, 3], \begin{bmatrix} [3, 12, 2], [3, 12, 2] \end{bmatrix}, [2, 10], [7, 1, 2]] \)	\(\text{torch.transpose(in1, 1, 0, 1)} \)	transpose
SO08	\(\text{in1} = [1, 0, 0, 2, 1, 3, 5, 0, 1, 2, 10], \text{in2} = [12, 3, 4, 6, 7, 8, 9, 8, 7, 65, 4, 32], \text{in3} = 1 \)	\(\text{torch.masked_select(in2, torch.gt(in1, 1))} \)	gt, masked_select
SO11	\(\text{in1} = [4, 0, 1, 1, 0, 4, 0, 3, 4, 1] \)	\(\text{torch.bincount(in1)} \)	bincount
SO13	\(\text{in1} = [3, 5, 10, 23], \text{in2} = [1, 0, 5, 4], [3, 10], [2, 0]] \)	\(\text{torch.transpose(torch.matmul(in1, in2), 0, 1)} \)	matmul, transpose
SO14	\(\text{in1} = [0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [1, 1, 0] \)	\(\text{torch.any(in1, -1)} \)	any
SO15	\(\text{in1} = [3, 1, 2, 0, 1, 0, 1, 1, 0, 1, 0] \)	\(\text{torch.mul(in1, torch.ne(in1, 1))} \)	ne, mul
SO16	\(\text{in1} = [2, 5], [3, 0], [8, 7], \text{in2} = [4, 10, 6] \)	\(\text{torch.mul(in1, torch.unsqueeze(in2, 1))} \)	unsqueeze, mul
SO17	\(\text{in1} = [17, 32, 99] \)	\(\text{torch.stack(in1, in1, 1), 1} \)	stack
SO18	\(\text{in1} = [1, 1, 1, [1, 0, 1], [1, 2, 3], [4, 5, 6]] \), \(\text{in2} = [1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8], \text{in3} = [100, 200, 300, 400] \)	\(\text{torch.add(in3, torch.matmul(in1, in2))} \)	matmul, add
SO20	\(\text{in1} = [7, 2, 1], [4, 5, 1], [4, 4, 2], [3, 4, 3], [0, 0, 1] \)	\(\text{torch.nn.functional.one_hot(torch.argmax(in1, 1), 3)} \)	argmax, one_hot
SO21	\(\text{in1} = [22, 0, 1, 0], [0], \text{in2} = [22, 5, 3, [1, 3, 6], [1, 6, 3], [7, 0, 3]] \)	\(\text{torch.gather(in2, 1, 1)} \)	gather
SO22	\(\text{in1} = [3, 1, 1, 10], \text{in2} = [5, 6, 4, 5, 1, [3, 4]] \)	\(\text{torch.tensordot(in1, in2, 1, 1)} \)	tensordot
SO23	\(\text{in1} = [0, 5, 2], [3, 1, 4], [5, 1, 5], [0, 0, 0, 1, 0, 0, 0, 0] \)	\(\text{torch.sum(torch.nn.functional.one_hot(in1, 9), 1)} \)	one_hot, sum
SO24

| in1 = [3, 1, 4, 5, 2, 8, 6, 7] | in2 = [1, 0, 2, 0, 1, 1, 0, 2] | div=where(torch.ne(in2, 0), torch.div(in1, in2), in1) |

SO25

in1 = 3	in2 = 4	
\[1, 0, 0, 0, 0, 0, 0, 0]\]	\[torch.tile(torch.eye(in1), (in2, 1))\]	div, where

SO26

| in1 = [3, 1, 4, 5, 2, 8, 6, 7] | in2 = [1, 0, 2, 0, 1, 1, 0, 2] | torch.div(in1, in2) |

SO27

| in1 = [3, 1, 4, 5, 2, 8, 6, 7] | in2 = [1, 0, 2, 0, 1, 1, 0, 2] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO28

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO29

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO30

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO31

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO32

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO33

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO34

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO35

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO36

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO37

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO38

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO39

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO40

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO41

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO42

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO43

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO44

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO45

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO46

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO47

| in1 = [3, 1, 2, 5, 2, 8, 6, 3.5] | torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1) |

SO48

in1 = [3, 1, 2, 5, 2, 8, 6, 3.5]	torch.where(torch.ne(in2, in3), torch.div(in1, in2), in1)		
SO49	in1 = [[[1, 2, 3], [4, 5, 6]], [[8, 10, 0], [6, 4, 2]], [[9, 8, 7], [1, 2, 3]]], in2 = [20, 5, 10]	[[[20, 40, 60], [80, 100, 120]], [[40, 50, 0], [30, 20, 10]], [[90, 80, 70], [10, 20, 30]]]	torch.transpose(torch.mul(torch.transpose(in1, 0, 3), in2), 0, 3) transpose, mul, transpose
SO50	in1 = [3]	[0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0]	torch.nn.functional.one_hot(in1.expand(in1,)) in2) expand, one_hot
B.2 Links to Original StackOverflow Posts

- https://stackoverflow.com/questions/40441503/tensorflow-tensor-reshape
- https://stackoverflow.com/questions/46408839/tensorflow-trim-values-in-tensor
- https://stackoverflow.com/questions/43067338/tensor-multiplication-in-tensorflow
- https://stackoverflow.com/questions/47816231/create-binary-tensor-from-vector-in-tensorflow
- https://stackoverflow.com/questions/38212205/swap-tensor-axes-in-tensorflow
- https://stackoverflow.com/questions/33769041/tensorflow-indexing-with-boolean-tensor
- https://stackoverflow.com/questions/50777704/n-d-tensor-matrix-multiplication-with-tensorflow
- https://stackoverflow.com/questions/35657003/aggregate-each-element-of-tensor-in-tensorflow
- https://stackoverflow.com/questions/39045797/conditional-assignment-of-tensor-values-in-tensorflow
- https://stackoverflow.com/questions/46240646/tensor-multiply-along-axis-in-tensorflow
- https://stackoverflow.com/questions/51690095/how-to-gather-element-with-index-in-tensorflow
- https://stackoverflow.com/questions/43284897/how-can-i-multiply-a-vector-and-a-matrix-in-tensorflow-without-reshaping
- https://stackoverflow.com/questions/53414433/tensorflow-tensor-binarization
- https://stackoverflow.com/questions/53643339/tensorflow-override-tf-divide-to-return-the-numerator-when-dividing-by-0
- https://stackoverflow.com/questions/53602691/duplicate-a-tensor-n-times
- https://stackoverflow.com/questions/54294780/how-to-perform-reduce-op-on-multiple-dimensions-at-once
- https://stackoverflow.com/questions/5425704/how-do-i-get-a-tensor-representing-the-on-positions-in-the-original-tensor
- https://stackoverflow.com/questions/54155085/bucketing-continuous-value-tensors-in-tensorflow
- https://stackoverflow.com/questions/54337925/reverse-order-of-some-elements-in-tensorflow
- https://stackoverflow.com/questions/54147780/tensorflow-how-to-calculate-the-euclidean-distance-between-two-tensor
- https://stackoverflow.com/questions/48659449/how-to-compute-the-weighted-sum-of-a-tensor-in-tensorflow
- https://stackoverflow.com/questions/49532371/compute-a-linear-combination-of-tensors-in-tensorflow
- https://stackoverflow.com/questions/5306788/divide-elements-of-1-d-tensor-by-the-correspondent-index
- https://stackoverflow.com/questions/49206051/multiply-4-d-tensor-with-1-d-tensor
- https://stackoverflow.com/questions/5492161/how-can-i-compute-element-wise-conditionals-on-batches-in-tensorflow
- https://stackoverflow.com/questions/5449051/elegant-way-to-access-python-list-and-tensor-in-tensorflow
- https://stackoverflow.com/questions/5449872/bucketing-continuous-value-tensors-in-tensorflow
- https://stackoverflow.com/questions/54402389/sum-the-columns-for-each-two-consecutive-rows-of-a-tensor-of-3-dimensions
- https://stackoverflow.com/questions/58537495/tensorflow-initialize-a-sparse-tensor-with-only-one-line-column-not-zero
C Implementation of ML Models

We implement the model in Python using the PyTorch. We describe some implementation details here, but the code will be shared after anonymous period is over.

Encoding. Encoding of a tensor requires three encodings, separated by a separator: value, size, and type. The max sizes of the encodings are 150, 5, 3, respectively. Our approach supports up to 3 input tensors and one output tensor, and each tensor is separated by a separator, which makes the the size of input encoding to be 640 (4 * (150 + 1 + 5 + 1 + 2 + 1)).

Compositional Model. For the embedding, we use the feed forward network, that is identical to the classification model, which is trained jointly with a bi-RNN model. The embedded input-output pair is passed to bi-RNN, having 1 hidden layer. To evaluate the model, we use a beam size of 3. We use the compositional model in two modes: “full sequence” mode, which returns the predicted API function sequence, and a “first-of-sequence” mode that returns only the first API function from the predicted sequence.

Multi-label Classification Model. For the weighted enumerative search with prioritization (Figure 1 (b)), we trained a simple multi-label classification model following DeepCoder, instead of TF-Coder which uses manually defined features (e.g., whether a value is a primitive) which we found less generalizable. We used the same model architecture with the classification model, but changed the last activation function into sigmoid for the multi-label classification. We trained this model with input-output of sequences of API functions.

Evaluation Metrics. We evaluate our models on the accuracy of their predictions. For the model accuracy with synthetic data, we check whether the model correctly predict the ground-truth APIs, and for the Stack Overflow benchmarks evaluation, we measure the rank of the correct prediction and extract top-1, top-3 and top-10 accuracy metrics.

D Algorithms

Algorithm 1 Weighted Enumerative Synthesis

Input: A task specification input/output, (I, O)
Output: A program P such that $P(I) = O$

1: $B \leftarrow \{I, 0, -1, 1, \ldots\}$ \hspace{1cm} \triangleright Base values
2: $E \leftarrow B$ \hspace{1cm} \triangleright Pool of values
3: $Ops \leftarrow \text{AssignOpCost}(I, O)$
4: for all $v \in C$ do
5: $v.cost \leftarrow \text{AssignValCost}(v)$
6: for $C = 1 \rightarrow \text{max_cost}$ do \hspace{1cm} \triangleright Cost Budget
7: for all $op \in Ops$ do
8: $c \leftarrow op.cost$
9: $n \leftarrow op.arity$
10: \triangleright Partition cost budgets into n arguments
11: for all $[c_1, \ldots, c_n] \in \text{partition}(C - c, n)$ do
12: for $i = 1, \ldots, n$ do
13: \triangleright Collect values satisfying i-th arg cost budget
14: $A_i \leftarrow \{e \in E | e.cost = c_i\}$
15: for all $args \in \Pi_i A_i$ do
16: $V \leftarrow \text{Execute}(op, args)$ \hspace{1cm} \triangleright Run op w/ $args$
17: if $V = 0$ then return $V.expr$
18: if $V \notin E$ then
19: $V.cost \leftarrow C$
20: $E \leftarrow E \cup \{V\}$
21: return "Fail: reached maximum cost"
Algorithm 2 AssignOpCost

Input: A task specification input/output, \((I, O)\)

Output: List of operations with costs \(Ops\)

1: for all \(op \in Ops\) do
2: \(op \leftarrow \text{preset}_\text{cost}\)
3: if doModelPrioritization then
4: \(\text{candidate}_\text{ops} \leftarrow \text{MultiClassificationModel}(I, O)\)
5: for all \(op \in \text{candidate}_\text{ops}\) do
6: \(op\text{.cost} \leftarrow op\text{.cost} \times \text{reweight}_\text{multiplier}\)
7: return \(Ops\)

Algorithm 3 Compositional Model - Full-Sequence

Input: A task specification input/output, \((I, O)\)

Output: A program \(P\) such that \(P(I) = O\)

1: \(B \leftarrow \{I, 0, -1, 1, ...\}\)
2: \(op_seq \leftarrow \text{CompositionalModel}(I, O)\)
3: \(n \leftarrow \sum \text{op}_i\text{.arity}\)
4: \(\text{args}_\text{list} \leftarrow \Pi_n B\)
5: for all \(\text{args} \in \text{args}_\text{list}\) do
6: \(V \leftarrow \text{Execute}(op_seq, \text{args})\)
7: if \(V = O\) then return \(V\text{.expr}\)
8: return “Fail” or start “Enumerative Search”

Algorithm 4 Compositional Model - First-Of-Sequence

Input: A task specification input/output, \((I, O)\)

Output: A program \(P\) such that \(P(I) = O\)

1: \(B \leftarrow \{I, 0, -1, 1, ...\}\)
2: for \(i = 0 \rightarrow k\) do \hspace{1cm} \(*\text{Sequence of } k\text{ operations}\)
3: \(op_i \leftarrow \text{CompositionalModel}(V_{i-1}, I_i, O)\)
4: \(n \leftarrow \text{op}_i\text{.arity}\)
5: \(\text{args}_\text{list} \leftarrow \Pi_n B\)
6: for all \(\text{args} \in \text{args}_\text{list}\) do
7: \(V_i \leftarrow \text{Execute}(op_i, \text{args})\)
8: if \(V_i = O\) then return \(V_i\text{.expr}\)
9: return “Fail” or start “Enumerative Search”