Supporting information for “Reduced scaling of optimal regional orbital localization via sequential exhaustion of the single-particle space”

Guorong Weng, Mariya Romanova, Arsineh Apelian, Hanbin Song, and Vojtěch Vlček

Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, U.S.A.

E-mail: vlcek@ucsb.edu

Downfolded effective Hamiltonian

In large systems with a certain anisotropy (defects in semiconductors, molecules in solvent environments) all physical phenomena can be attributed to a small active space embedded in a host environment. Thus, it is common to map the problem onto the effective Hamiltonian, defined within an active space.

\[
\hat{H} = \sum_{i\sigma} \varepsilon_i \hat{c}_{i\sigma}^\dagger \hat{c}_{i\sigma} - \sum_{i\neq j,\sigma} t_{ij} \hat{c}_{i\sigma}^\dagger \hat{c}_{j\sigma} + \\
+ \sum_{i\sigma} U \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + \sum_{i>j,\sigma,\sigma'} V \hat{n}_{i\sigma}^\dagger \hat{n}_{j\sigma'},
\]

(S1)

where \(\hat{c}_{i\sigma}^\dagger\) and \(\hat{c}_{i,\sigma}\) are creation and annihilation operators in site \(i\) with spin \(\sigma\) and \(\hat{n}_{i\sigma}^\dagger\) is a particle number operator. The \(\varepsilon_i\), \(t_{ij}\) are the on-site and hopping energies.

We extract the Hamiltonian parameters \(\varepsilon\), \(t\) \(U_i\) and \(V_{ij}\) from the first-principles calcula-
tions employing large supercells. To compute the onsite and hopping parameters we calculate the integral containing kinetic and ionic potential terms:

\[
\varepsilon_i = \int \phi^*_i(r) \left[-\frac{1}{2} \nabla^2 + V^{\text{ion}}\right] \phi_i(r) dr
\]

\[
t_{ij,i\neq j} = \int \phi^*_i(r) \left[-\frac{1}{2} \nabla^2 + V^{\text{ion}}\right] \phi_j(r) dr
\]

(S2)

The \(U_i \) represents Coulomb on-site interactions of electrons with a different spin, while \(V_{ij} \) is the Coulomb inter-site interaction, which we compute as:

\[
U_i = \int \phi^*_i(r) \phi_i(r) V(r, r') \phi^*_j(r') \phi_j(r') dr dr'
\]

\[
V_{ij} = \int \phi^*_i(r) \phi_i(r) V(r, r') \phi^*_j(r') \phi_j(r') dr dr'
\]

(S3)

where, the \(V(r, r') \) is the bare Coulomb interaction.

Excited states of the NV\(^-\) center

Table S1 shows the excited states of the NV\(^-\) center computed in the basis of the Wannier functions that were obtained with different energy windows. The full space energy window is \(\sim 24 \text{ eV} \) below the Fermi energy. One can see that even 20 eV window results in an extremely underestimated result, while for 10 eV window the order of states is reversed. As a measure of the localization we report the value of the objective functional \(P' \) (see main text). The \(P' \) is set to 100% for case where the full space is used in the energy window.
Table S1: Comparison of the excited-state transition energies of the NV\(^{−}\) center in the 511-atom system with various truncated orbital space for the localization.

Symmetry	10 eV	20 eV	full space
\(\tilde{3}E - \tilde{3}A_2\)	0.121	1.003	1.556
\(1\tilde{A}_1 - \tilde{3}A_2\)	0.156	0.947	1.324
\(1\tilde{E} - \tilde{3}A_2\)	0.039	0.259	0.378

\(\mathcal{P}' (\%)\) | 49.5 | 86.6 | 100 |

Preparation of stochastic basis using deterministic eigenstates

The stochastic basis representing the complement (rest) space in our sF-PMWF calculations is prepared in a three-step manner. First, a random vector is constructed in the full space

\[
|\zeta^m_i\rangle = \sum_{j=1}^{N_s} \alpha_{ij}^m |\phi_j\rangle , \tag{S4}
\]

where \(m\) denotes the \(m^{th}\) iteration in the outer-loop and \(|\phi_j\rangle\) is the eigenstate in the full space. The set of random coefficients \(\{\alpha_{ij}^m\}\) are associated with the outer-loop step \(m\), i.e., a different \(m\) corresponds to a different set of coefficients.

The second step is to perform Gram-Schmidt orthogonalization such that the stochastic basis is orthogonal to the core space

\[
|\zeta^m_i\rangle = |\zeta^m_i\rangle - \sum_{k=1}^{N_c} \frac{\langle \psi^c_k |\zeta^m_i\rangle}{\langle \psi^c_k | \psi^c_k \rangle} |\psi^c_k\rangle , \tag{S5}
\]

where \(|\psi^c_k\rangle\) represents the state in the core space. The stochastic basis is then made mutually orthogonal

\[
|\zeta^m_i\rangle = |\zeta^m_i\rangle - \sum_{j=1}^{i-1} \frac{\langle \zeta^m_j |\zeta^m_i\rangle}{\langle \zeta^m_j | \zeta^m_j \rangle} |\zeta^m_j\rangle \quad i \geq 2. \tag{S6}
\]

The last step is to normalize the stochastic basis such that

\[
\langle \zeta^m_i | \zeta^m_j \rangle = \delta_{ij} \tag{S7}
\]
and

$$\langle \psi_i^c | \zeta_j^m \rangle = 0. \quad (S8)$$

After these three steps, the construction of stochastic basis for the m^{th} step is completed and it is ready to enter the work space.

Supplementary Tables and Figures

Figure S1: Chemical structures of the four investigated diamond with NV$^-$ center systems: (a) 215-atom supercell; (b) 511-atom supercell; (c) 999-atom supercell; (d) 2303-atom slab.
Figure S2: Composition of the three fragments as well as the all-atom system: (a) 4-atom fragment; (b) 16-atom fragment; (c) 40-atom fragment; (d) all-atom system. The fragments are exemplified using the 215-atom cell while each fragment is found extremely similar around the NV[−] center in the other investigated systems.

Table S2: Comparison of sF-PMWF and F-PMWF with different combinations of N_c and N_r for orbital localization on the 215-atom system

Method	N_c	N_r	N_w	N_{outer}	Converged P'	Converged P	P' after 1st cycle	t_{outer} (s)	t_{macro} (s)	n_{macro}	Total wall time (s)
F-PMWF	-	1	-	1	4.9345	4.6656	4.7882 (97%)	0.09	9.07	5	47
sF-PMWF	16	4	20	104	4.9346	4.6656	4.8366 (98%)	0.11	5.87	5	31
sF-PMWF	16	8	24	42	4.9346	4.6656	4.6533 (94%)	0.17	4.65	6	29
sF-PMWF	16	16	32	26	4.9345	4.6655	4.7659 (95%)	0.32	4.19	5	22
sF-PMWF	16	32	48	13	4.9346	4.6656	4.6888 (95%)	0.50	4.51	6	28
sF-PMWF	16	64	80	7	4.9346	4.6656	4.7448 (96%)	0.73	5.09	5	27
sF-PMWF	24	48	48	17	4.9346	4.6656	4.7523 (96%)	0.37	6.31	4	26
sF-PMWF	32	16	48	25	4.9346	4.6657	4.8435 (98%)	0.29	7.21	4	30
sF-PMWF	40	8	48	49	4.9346	4.6657	4.8868 (99%)	0.29	14.06	5	72
sF-PMWF (stochastic)	16	32	48	216	4.9346	4.6656	-	3.47	-	-	729

Figure S3: The log of the time per outer-loop iteration (t_{outer}) as a function of the log of the number of states in the work space (N_w). The scaling of t_{outer} with N_w is derived from the slope of the linear fitting.
Figure S4: Convergence of the functional P' with respect to the outer-loop step m for the NV$^-$ center of the 215-atom system. Blue curve: localization performed with deterministic basis in the rest space. Orange curve: localization performed with stochastic basis in the rest space. The (16,32) combination is employed in both calculations.

Table S3: Comparison of sF-PMWF and F-PMWF with different combinations of N_c and N_r for orbital localization on the 511-atom system

Method	N_c	N_r	N_{outer}	N_{macro}	Converged P'	Converged P	P' after 1st cycle (percentage gained)	t_{outer} (s)	t_{macro} (s)	n_{macro}	Total wall time (s)
F-PMWF	-	-	-	1	4.9222	4.6498	4.6254 (94%)	4.9223	4.6498	4.6254 (94%)	7360
sF-PMWF	16	4	20	252	4.9223	4.6498	4.6392 (94%)	0.26	64.97	6	397
sF-PMWF	16	8	126	630	4.9223	4.6498	4.6674 (94%)	0.35	44.65	5	230
sF-PMWF	16	16	32	63	4.9223	4.6498	4.634 (94%)	0.53	34.44	5	175
sF-PMWF	16	20	24	128	4.9223	4.6498	4.7189 (96%)	0.83	26.67	4	114
sF-PMWF	16	36	21	126	4.9223	4.6498	4.8208 (98%)	1.12	23.52	6	148
sF-PMWF	24	4	48	252	4.9223	4.6498	4.8476 (98%)	0.66	36.75	6	224
sF-PMWF	32	4	48	62	4.9223	4.6498	4.8791 (99%)	0.83	51.56	5	265
sF-PMWF	40	8	48	738	4.9223	4.6498	4.9071 (99%)	0.83	102.13	6	621
Figure S5: Investigation of different combinations of N_c and N_r for the localization on the NV− center of the 511-atom cell. N_c is fixed at 16. (a) Total number of iteration steps in the outer-loop as a function of the N_r. (b) Total wall time of the calculation as a function of N_w. Dashed line indicates the total wall time from the F-PMWF method using the full orbital space.
Figure S6: Investigation of different combinations of N_c and N_r for the localization on the NV$^-$ center of the 511-atom cell. N_w is fixed at 48. (a) Total number of iteration steps in the outer-loop as a function of the N_r/N_c ratio; (b) The total wall time as a function of the N_r/N_c ratio.

Table S4: Comparison of sF-PMWF and F-PMWF with different combinations of N_c and N_r for orbital localization on the 999-atom system

Method	N_c	N_r	N_w	N_{outer}	Converged P'	Converged P	P' after 1st cycle (percentage gained)	t_{outer} (s)	t_{macro} (s)	n_{macro}	Total wall time (s)
F-PMWF	-	-	48	210	-	-	-	23.78	-	-	695370
sF-PMWF	16	32	32	999	-	-	-	23.78	-	-	24172
sF-PMWF (stochastic)	16	32	32	999	-	-	-	23.78	-	-	24172

Table S5: Comparison of sF-PMWF and F-PMWF with different combinations of N_c and N_r for orbital localization on the 2303-atom slab system

Method	N_c	N_r	N_w	N_{outer}	Converged P'	Converged P	P' after 1st cycle (percentage gained)	t_{outer} (s)	t_{macro} (s)	n_{macro}	Total wall time (s)
F-PMWF	-	-	48	210	-	-	-	23.78	-	-	695370
sF-PMWF	16	32	32	999	-	-	-	23.78	-	-	24172
sF-PMWF (stochastic)	16	32	32	999	-	-	-	23.78	-	-	24172
Table S6: Time spent on the folding and unfolding steps of the four investigated systems. The unfolding step of each calculation employs the (16,32) combination.

System	Folding step	Unfolding step
215-atom cell	22	0.52
511-atom cell	114	1.85
999-atom cell	489	6.90
slab	1683	17.79

Table S7: Information of the four investigated systems as well as the time and normalized time per outer-loop iteration and per macro-cycle.

System	N_e	N_s	N_g	t_{outer} (s)	t_{outer} (s)	t_{macro} (s)	t_{macro} (s)	n_{macro}
215-atom cell	864	432	314432	0.32	1.99	4.19	25.83	5
511-atom cell	2048	1024	778688	0.83	2.08	26.67	66.45	4
999-atom cell	4000	2000	1404928	1.50	2.07	92.81	128.16	5
slab	9312	4656	1940120	1.89	1.89	266.02	266.02	6

Figure S7: Total wall time of orbital localization on each system with respect to the number of occupied states N_s. Blue bar: F-PMWF using the full orbital space. Orange Bar: sF-PMWF using the work space.
Table S8: Total wall time and normalized total wall time of four investigated systems.

System	Total wall time (s)	Normalized total wall time (s)		
	F-PMWF	sF-PMWF	F-PMWF	sF-PMWF
215-atom cell	308	22	1903	139
511-atom cell	7360	114	18339	284
999-atom cell	42006	489	58007	675
slab	695370	1683	695370	1683

Table S9: Time per SA iteration step in F-PMWF and sF-PMWF calculations for the four investigated systems

System	Time per SA iteration (s)	
	F-PMWF	sF-PMWF
215-atom cell	0.29	5.28×10⁻⁴
511-atom cell	8.62	5.11×10⁻⁴
999-atom cell	61.80	5.13×10⁻⁴
slab	1056.26	4.94×10⁻⁴

Figure S8: Number of total SA iteration steps in sF-PMWF calculation relative to the number of total SA iteration steps in the F-PMWF calculation for the 215-atom system using different \(N_r \). The \(N_c \) is fixed at 16.
Figure S9: Number of total SA iteration steps in sF-PMWF calculation relative to the number of total SA iteration steps in the F-PMWF calculation for the 511-atom system using different N_r. The N_c is fixed at 16.
Figure S10: The log of the normalized time per iteration plotted as a function of the log of number of occupied states N_s for the four investigated systems. The black line and square points represent the normalized t^{SA} obtained from the F-PMWF method using the full orbital space. The red line and circle points represent the normalized t^{outer} obtained from the sF-PMWF method using the constructed work space. The time per iteration is normalized to the largest grid (2303-atom system). The scaling is derived from the slope of each fitting.

Table S10: Number of iterations required to reach convergence in F-PMWF and sF-PMWF calculations.

System	N_{it}^{SA} in F-PMWF	N_{it}^{outer} in sF-PMWF
215-atom cell	637	65
511-atom cell	700	128
999-atom cell	586	310
slab	650	870

Table S11: Converged maximized \mathcal{P}' from F-PMWF and sF-PMWF calculations. The (16,32) combination is used in the sF-PMWF calculations.

System	Converged \mathcal{P}'	
	F-PMWF	sF-PMWF
215-atom cell	4.9345	4.9346
511-atom cell	4.9222	4.9223
999-atom cell	4.9194	4.9195
slab	4.9414	4.9414
Table S12: Converged maximized \mathcal{P} from F-PMWF and sF-PMWF calculations.

system	Converged \mathcal{P}	F-PMWF	sF-PMWF
215-atom cell	4.6656	4.6656	
511-atom cell	4.6498	4.6498	
999-atom cell	4.6447	4.6446	
slab	4.6731	4.6731	

Figure S11: Electron density constructed from the 16 regionally localized states on the NV$^-$ center of the 215-atom system: (a) F-PMWF; (b) sF-PMWF. The isosurface value is set at 0.05 for all the plots.

Figure S12: Electron density constructed from the 16 regionally localized states on the NV$^-$ center of the 511-atom system: (a) F-PMWF; (b) sF-PMWF. The isosurface value is set 0.05 for all the plots.
Figure S13: Electron density constructed from the 16 regionally localized states on the NV− center of the 999-atom system: (a) F-PMWF; (b) sF-PMWF. The isosurface value is set at 0.05 for all the plots.

Figure S14: The 4 regionally localized “p”-like states around the NV− center of the 215-atom system. The left 4 states are obtained from F-PMWF and the right 4 are obtained from sF-PMWF. The yellow and blue colors represent the phases of the single-particle wavefunction. The isosurface value is set 0.05 for all the plots.

Figure S15: The 4 regionally localized “p”-like states around the NV− center of the 511-atom system. The left 4 states are obtained from F-PMWF and the right 4 are obtained from sF-PMWF. The yellow and blue colors represent the phases of the single-particle wavefunction. The isosurface value is set at 0.05 for all the plots.
Figure S16: The 4 regionally localized “p”-like states around the NV$^-$ center of the 999-atom system. The left 4 states are obtained from F-PMWF and the right 4 are obtained from sF-PMWF. The yellow and blue colors represent the phases of the single-particle wavefunction. The isosurface value is set at 0.05 for all the plots.

Figure S17: Electron density constructed from the 4 regionally localized states on an arbitrary carbon of the four investigated systems: (a) 215-atom system; (b) 511-atom system; (c) 999-atom system; (d) 2303-atom system. The isosurface value is set at 0.01 for all the plots.
Figure S18: The 4 regionally localized “p”-like states around the NV$^-$ center of the 215-atom system using different sizes of the fragment or using all the atoms. The last column shows the electron density constructed from these 4 states in each calculation. The isosurface value is set at 0.02 for all the plots.

Table S13: The spatial overlap between the set of Wannier basis from the fragment approaches and the set from the all-atom calculation.

Entry	state 1	state 2	state 3	state 4
{4,4}	0.981877	0.978799	0.978799	0.978799
{4,16}	0.999874	0.999704	0.999704	0.999704
{16,16}	0.991859	0.985258	0.985259	0.985259
{40,40}	0.997118	0.993832	0.993832	0.993789

Table S14: The locality of each set of Wannier function basis on the corresponding atom plus the neighboring bonded atoms.

Entry	state 1	state 2	state 3	state 4	$\sum L_i$
{4,4}	0.925726	0.862677	0.862680	0.862677	3.513760
{4,16}	0.915932	0.849211	0.849211	0.849209	3.463562
{16,16}	0.922626	0.861534	0.861534	0.861534	3.507228
{40,40}	0.908731	0.834126	0.833826	0.834018	3.410700
all-atom	0.915629	0.848489	0.848488	0.848488	3.461094
Table S15: Excited-state transition energies of the NV$^-$ center in the four investigated systems using the Wannier function basis obtained from F-PMWF calculations. The numbers with and without the parenthesis correspond to the \{4,4\} and \{16,16\} fragment, respectively.

Transition symmetry	215-atom cell	511-atom cell	999-atom cell	slab
$3^E - 3^2A_2$	2.108 (1.560)	2.279 (1.695)	2.312 (1.710)	1.343 (0.399)
$1^A_1 - 3^2A_2$	1.433 (1.325)	1.310 (1.270)	1.202 (1.193)	1.159 (0.324)
$1^E - 3^2A_2$	0.447 (0.378)	0.435 (0.381)	0.413 (0.368)	0.329 (0.101)

Table S16: The spatial overlap between the two sets of “p-like” Wannier functions obtained from the sF-PMWF (ψ_s) method and the F-PMWF (ψ) method for the 2303-atom system.

ψ_s^1	ψ_s^2	ψ_s^3	ψ_s^4	
ψ_1	0.9999798	1.11×10^{-3}	2.68×10^{-4}	7.89×10^{-4}
ψ_2	1.11×10^{-3}	0.9999992	9.19×10^{-6}	1.33×10^{-6}
ψ_3	2.64×10^{-4}	9.33×10^{-6}	0.999997	7.12×10^{-6}
ψ_4	7.93×10^{-4}	2.65×10^{-6}	6.89×10^{-6}	0.9999995

Table S17: Comparison of sF-PMWF and F-PMWF with different combinations of N_c and N_r for orbital localization on the 215-atom system with 16 atoms in the fragment.

Method	N_c	N_r	N_{outer}	N_{inner}	Converged P'	Converged P	P' after 1st access (percentage gained)	ρ_{outer} (s)	Total wall time (s)
F-PMWF	-	-	-	-	1	-	-	13.9402	356
sF-PMWF	16	4	20	104	13.9403	6.7472	13.2386 (88%)	0.10	170
sF-PMWF	16	8	24	42	13.9398	6.7471	12.3630 (87%)	0.14	46
sF-PMWF	16	16	32	26	13.9381	6.7466	11.9140 (85%)	0.23	43
sF-PMWF	16	32	48	13	13.9361	6.7463	11.9952 (86%)	0.43	46
sF-PMWF	16	64	64	9	13.9398	6.7471	12.5275 (90%)	0.58	48
sF-PMWF	16	64	64	9	13.9400	6.7471	12.9316 (93%)	1.02	44
sF-PMWF	16	80	80	7	13.9400	6.7471	13.5550 (97%)	1.36	51
sF-PMWF	32	48	80	9	13.9403	6.7472	13.6312 (98%)	0.72	66
sF-PMWF	48	32	80	12	13.9403	6.7472	13.9004 (99%)	0.75	82
sF-PMWF	64	16	80	23	13.9403	6.7472	13.9268 (99%)	0.71	132
Table S18: Comparison of sF-PMWF and F-PMWF with different combinations of N_c and N_r for orbital localization on the 511-atom system with 16 atoms in the fragment

Method	N_c	N_r	N_w	N_b	N_{outer}	Converged \mathcal{P}	Converged \mathcal{P}	\mathcal{P}' after 1st access (percentage gained)	t_{outer} (s)	Total wall time (s)
F-PMWF	-	-	-	-	1	13.9227	6.7261	-	-	10631
sF-PMWF	16	8	24	126	2142	13.9227	6.7260	11.2259 (81%)	0.34	732
sF-PMWF	16	32	63	882	13.9226	6.7261	11.1987 (80%)	0.46	416	
sF-PMWF	16	32	48	32	352	13.9225	6.7260	11.3184 (81%)	0.74	269
sF-PMWF	16	64	64	21	210	13.9216	6.7258	12.3472 (89%)	1.21	263
sF-PMWF	16	64	80	16	160	13.9222	6.7260	11.5273 (83%)	1.57	259
sF-PMWF	16	80	96	13	104	13.9225	6.7260	12.0496 (86%)	2.13	230
sF-PMWF	16	96	112	11	77	13.9226	6.7260	12.6309 (91%)	3.00	240
sF-PMWF	16	112	128	9	90	13.9225	6.7260	13.2126 (95%)	4.06	374
sF-PMWF	16	32	48	21	252	13.9226	6.7260	13.6220 (98%)	1.54	398
sF-PMWF	16	48	64	31	310	13.9262	6.7260	13.8586 (99%)	1.47	283
sF-PMWF	16	64	80	48	160	13.9225	6.7260	13.8899 (99%)	1.42	434

Table S19: Comparison of sF-PMWF and F-PMWF with different combinations of N_c and N_r for orbital localization on the 999-atom system with 16 atoms in the fragment

Method	N_c	N_r	N_w	N_b	N_{outer}	Converged \mathcal{P}	Converged \mathcal{P}	\mathcal{P}' after 1st access (percentage gained)	t_{outer} (s)	Total wall time (s)
F-PMWF	-	-	-	-	1	13.9167	6.7200	-	-	58937
sF-PMWF	16	32	48	62	1178	13.9169	6.7198	11.0295 (79%)	1.53	1832
sF-PMWF	16	48	64	42	672	13.9172	6.7199	11.1849 (80%)	2.09	1435
sF-PMWF	16	64	80	31	310	13.9159	6.7195	11.3705 (82%)	3.06	978
sF-PMWF	16	80	96	25	200	13.9161	6.7195	11.6463 (84%)	4.06	840
sF-PMWF	16	96	112	21	189	13.9160	6.7195	12.1530 (87%)	5.52	1074
sF-PMWF	16	128	144	16	128	1.9169	6.7198	12.2390 (88%)	8.74	1148

Table S20: Comparison of sF-PMWF and F-PMWF with different combinations of N_c and N_r for orbital localization on the 2303-atom system with 16 atoms in the fragment

Method	N_c	N_r	N_w	N_b	N_{outer}	Converged \mathcal{P}	Converged \mathcal{P}	\mathcal{P}' after 1st access (percentage gained)	t_{outer} (s)	Total wall time (s)
F-PMWF	-	-	-	-	1	13.9451	6.7539	-	-	761005
sF-PMWF	16	32	48	145	1595	13.9451	6.7539	12.2360 (88%)	1.75	2888
sF-PMWF	16	48	64	97	970	13.9451	6.7539	12.3156 (88%)	2.44	2454
sF-PMWF	16	64	80	73	730	13.9450	6.7540	12.2248 (88%)	3.66	2761
sF-PMWF	16	80	96	58	580	13.9451	6.7539	12.0172 (86%)	4.73	2837