First passage time processes and subordinated SLE

M. Ghasemi Nezhadhaghighi, 1 M. A. Rajabpour, 2 and S. Rouhani 1

1 Department of Physics, Sharif University of Technology, Tehran, P.O.Box: 11365-9161, Iran
2 SISSA and INFN, Sezione di Trieste, via Bonomea 265, 34136 Trieste, Italy

We study the first passage time processes of the anomalous diffusion on the self similar curves in two dimensions. The scaling properties of the mean square displacement and mean first passage time of the fractional Brownian motion and subordinated walk on the different fractal curves (loop erased random walk, harmonic explorer and percolation front) are derived. We also define natural parametrized subordinated Schramm Loewner evolution (NS-SLE) as a mathematical tool that can model diffusion on fractal curves. The scaling properties of the mean square displacement and mean first passage time for NS-SLE are obtained by numerical means.

I. INTRODUCTION

The anomalous or non-Fickian diffusive transports have attracted a lot of interest in the past few years. There is a wide range of heterogeneous or pre-asymptotic systems in the fields of physics, astronomy, biology, chemistry, and economics, where anomalous diffusion occur 1, 2. This phenomenon is observed in diffusion on fractal structures in geophysical and geological media 2, 3, charge transport in disordered and amorphous semiconductors 4, acceleration of particles inside a turbulent medium 5, transport process in the biological systems 6, and many other examples, for an extensive collection of references see 1. The well-known examples of anomalous diffusions are the continuous time random walk (sub-diffusive processes) 7 and Lévy flight 8. In this type of processes, the mean square displacement (MSD) obeys a power law equation with respect to the time with exponent $0 < \nu < 2$. Anomalous transport, especially the continuous time random walk and Lévy flight can be studied within the fractional Fokker Planck equation approach 9.

One of the most important characteristics in normal and anomalous diffusions is the first passage time (FPT), which is defined as the time needed the dynamic variable to cross a given threshold value for the first time 10, 11. The FPT has been used to characterize diffusive processes in various systems such as the spreading of disease 12, the passage of polymers and DNA in sub-diffusive media and membranes 13, the firing of neurons 14, animals searching for food 15 and Lévy stable random motion 8.

One of the interesting subjects of the diffusion problem is the study of FPT processes in fractal geometries such as percolating fronts, crack patterns, polymer chains, lightening paths, etc 16, 20. In this work we are interested in simple fractal objects with fractal dimension $1 < d_f < 2$ without any branch point. Since the coordination number of all the points on the fractal is two it is easy to conclude that there should be lots of similarities between FPT processes in these systems and one dimensional systems. This was already discussed in 21, and the important rule of the length of the fractal objects in FPT processes were understood. In 21 the connection with the Schramm Loewner evolution (SLE) 22 were also discussed, especially the important role of the definition of the length in the SLE studies 21, 22 were emphasized. In this work we will generalize the work done in 21, in many different directions. To have an idea of fractal objects with fractal dimension $1 < d_f < 2$ we will study the scaling exponents of MSD and mean FPT (MFPT) of the diffusing particles on loop erased random walk (LERW), harmonic explorer (HE) and percolation fronts (PF) on the upper half plane. We will study different random walkers such as fractional Brownian motion and subordinated walk on the fractal curves. The scaling properties of the MSD of the walker and MFPT will be discussed. Finally we give a novel method to study diffusion on fractal curves by using SLE. We show that all the scaling behaviors discussed for the discrete fractal curves can be rederived by using subordinated natural SLE which is the time changed Schramm Loewner evolution.

The central aim of this work is to use the subordinated natural SLE to find a new connection between diffusion on the self similar traces and SLE as a growth process. Our analysis of MSD and MFPT are the key points of this connection.

The paper is organized as follows: In the next section we will fix the notation and introduce the scaling relations for the diffusion problem on semi-1D fractal paths, where we measure the scaling exponents of MSD and MFPT, for two sided diffusion and diffusion with waiting times on the self similar curves with fractal dimension d_f. In the third section we use the Schramm Loewner evolution (SLE) as a mathematical model to introduce new classes of diffusion processes (subordinated SLE). The results of this section are compatible with the two-sided diffusion and diffusion with the waiting time on the discrete fractal paths. In the last section we conclude our findings. To be self explanatory we add three appendices explaining the details of our simulation methods.

arXiv:1102.2966v3 [cond-mat.stat-mech] 8 May 2011
II. FIRST PASSAGE TIME IN LATTICE FRACTAL INTERFACES

We begin by considering the diffusion problem on semi-1D random curves. For our purposes we restrict ourselves to the fractal curves with Hausdorff dimensions 1 < d_f < 2 \footnote{1} that start from the origin and remain in the upper half-plane. To understand statistical properties of diffusion along such inhomogeneous paths it is important to first introduce diffusion problem in 1D case.

A. First passage time statistics in one dimensional domain

Consider a one-dimensional diffusion X_t with dynamics
\[dX_t = a(X_t)dt + \sigma dW_t, \tag{1} \]
where W_t is a one dimensional stochastic process. The interval for the solution of Eq. (1) is defined as closed on the left hand side x_0 = 0 and open on the right hand side x_R = R. These special choices force diffusing particle to move only in x ≥ 0.

An interesting problem in the theory of stochastic processes is finding the time that a particle reaches a certain level. The problem of finding this time is called first passage time (FPT) \footnote{1, 11}. The first passage time is the time \(\tau_r \) taken for the process having started from x = 0 to be reached in x = r \footnote{11}
\[\tau_r = \inf\{t > 0 | X_t = r\}, \tag{2} \]
where the infimum for every subset S of real numbers is denoted by \(\inf\{S\} \) and is defined to be the biggest real number that is smaller than or equal to every number in S.

Clearly FPT is a random variable which varies from one sample of \(X_t \) to another one. In general we are interested in those processes where the two statistical variables \(\langle X_t^2 \rangle \) and \(\langle \tau_r \rangle \) have scaling behavior
\[\langle X_t^2 \rangle \propto t^\nu, \quad \langle \tau_r \rangle \propto r^\beta. \tag{3} \]

One example of Eq. (1) is \(a = 0, \sigma = 1 \) and \(W_t = |B_t^H| \), where \(B_t^H \) is the fractional Brownian motion (fBm) process. Note that, fBm with Hurst index 0 < H < 1 is the only self-similar Gaussian process with stationary of increments. \footnote{26} The correlation function of fBm is
\[\langle B^H(t)B^H(s) \rangle \sim |t|^{2H} + |s|^{2H} - |t - s|^{2H}. \tag{4} \]

Absolute value of \(B^H_t \) is used to force diffusing particle to move only in the region x ≥ 0. The particle’s position \(X_t = |B^H_t| \) is a stochastic variable with
\[\langle X_t^2 \rangle = \langle |B^H_t|^2 \rangle \sim t^{2H}. \tag{5} \]
The scaling relation in Eq. (5) is in agreement with Eq. \footnote{27} and shows that \(\nu = 2H \). Diffusion is said to be anomalous if \(\nu \neq 1 \), where 0 < \(\nu < 1 \) (1 < \(\nu < 2 \)) indicates the sub-diffusive (super-diffusive) behavior.

It is easy to determine the exponent \(\beta = 1/H \) analytically for the mentioned boundary condition. To find the scaling parameter \(\beta \), consider a random process \(X_t \) as \(X_t/\lambda^{1/H} = \frac{1}{\lambda}X_t \). Now one can replace \(r \to \lambda r \) in Eq. (2) to find \(\tau_{\lambda r} \). It is straightforward to show that \(\tau_{\lambda r} \) is the same as \(\lambda^{1/H}\tau_r \) in the distributional sense. By this scaling argument, one can observe that MFPT is given by
\[\langle \tau_r \rangle \propto r^{1/H}. \tag{6} \]

It is worth mentioning that by choosing \(W_t = |B_t| \), where \(B_t \) is a Brownian motion (fBm with \(H = \frac{1}{2} \)), one can use the Fokker-Planck (FP) equation, which describes the space-time evolution of the probability density function (pdf) of \(X_t \), to find FPT distribution. More details can be found in \footnote{28}.

Although studying diffusion in one dimensional systems is interesting for its own sake there are many examples of diffusion in self-similar interfaces with fractal dimensions 1 < \(d_f < 2 \). We will generalize the above arguments to self-similar interfaces with arbitrary fractal dimension and will study the statistical properties of the diffusion on the fractal curves.

To motivate our method of measurement of the scaling parameters \(\nu, \beta \) for diffusing particle on the fractal curves we first consider models on a lattice domain, e.g., the loop-erased random walk, harmonic explorer and the percolation explorer process.

a. The loop-erased random walk

The LERW on the square lattice domain is a random walk with erased loops when they appear. This process is stopped when it reaches a given length. To produce LERW curves started from the origin and conditioned to be in the upper half plane one can use reflecting boundary condition on the real axis for the random walker. The fractal dimension of LERW is 5/4 \footnote{30}.

b. An explorer processes

Explorer processes (EP) on honeycomb lattice such as percolation front with \(d_f = \frac{7}{4} \), and harmonic explorer with \(d_f = \frac{3}{2} \) are used as other classes of fractal interfaces \footnote{23, 25}. To construct an EP path with a fixed number of steps \(N \), we used from a class of explorer processes on the honeycomb lattice. This process is named over-rulled harmonic explorer \footnote{31}. For numerical analysis, we simulated this process on the extremely large rectangular domain, where it can approximate the upper half plane (see appendix A).

Although other studies such as \footnote{21} have also used self similar traces to study the FPT problem they have not characterized the scaling relations in the measurable quantities such as MSD and MFPT for the general diffusion processes e.g. two sided diffusion and diffusion with the waiting time which we have studied in our simulations.
B. Two sided Diffusion on the fractal paths

In this subsection we study the statistical properties of the diffusing particles along self-similar curves. An interesting problem in this direction is the determination of the scaling exponents of the random displacement.

For one dimensional domain with reflecting boundary condition, we mentioned in section 2.1 that the MSD and the MFPT according to Eq. (5) and Eq. (9), obey scaling laws with the exponents \(\nu = 2H \) and \(\beta = 1/H \). In the following we explain how to use the discrete random walk model to simulate stochastic process \(X_t \) on 1D domain with reflecting boundary condition on \(x = 0 \) and we then favourably apply this model to random process on the discrete fractal curves.

First we consider the random walker on the one dimensional discrete lattice. This random walker started from the position \(x = 0 \) at \(t_0 = 0 \) and at the time \(t_n = n \delta t \) moves one step to right (left) when \(\{ |B_{t+\delta t}^H| - |B_t^H| \} > 0 \) \(\{ |B_{t+\delta t}^H| - |B_t^H| \} < 0 \). The normal random walk (discrete version of Brownian motion) corresponds to \(H = 1/2 \). This random process corresponds to two sided diffusion on 1D domain. Following the idea presented in one dimension, we obtain the statistics of two sided diffusion on the fractal curves. To this aim we consider a random walker with position coordinates \(X_n \) and \(Y_n \) for the \(n \)th walk where \((X_0, Y_0) = (0, 0) \) is the start position and it moves back and forth along the discrete self-similar curve. In order to simulate random walk on the curve started from the origin and remains in the upper half plane we used from fBm process \(|B_t^H| \). Using this correlated stochastic process we define another stochastic process \(S_n^H \) so that \(S_{n+1}^H = S_n^H + 1 \) \(S_{n+1}^H = S_n^H - 1 \) when \(\{ |B_{t+\delta t}^H| - |B_t^H| \} > 0 \) \(\{ |B_{t+\delta t}^H| - |B_t^H| \} < 0 \) with the initial value \(S_0^H = 0 \). The random walk position can be defined by \(X_n = x(S_n^H) \) and \(Y_n = y(S_n^H) \) where \(x(i) \) and \(y(i) \) are the position components of the \(i \)th point of the curve.

We now study numerically scaling dependence of \(\langle R_n^2 \rangle / \langle R_1^2 \rangle \) and \(\langle \tau_r \rangle \) to \(n \) and \(r \) for many random walkers moving along such similar one-dimensional objects. Especially we study the scaling forms of \(\langle R_n^2 \rangle \) and \(\langle \tau_r \rangle \).

To study the scaling laws in two sided diffusion, it should be mentioned here that the scaling exponents \(\nu(H, d_f) \) and \(\beta(H, d_f) \) in two sided diffusion on the fractal curves are in general a function of Hurst parameter \(H \) and geometrical dimension \(d_f \). Within the FPT statistics of one dimensional diffusing particle approach, one can consider the self-similar curve as a one dimensional non-straight line with length \(l \). For this semi-1D object using Eq. (8) one can observe that \(\langle \tau_1 \rangle \propto l^{1/H} \). On the other hand for a fractal curve (with length \(l \)) inside a circle there is a scaling law \(l \propto r^{d_f} \) where \(r \) is the radius of the circle. Under these assumptions, the MFPT reads as \(\langle \tau_r \rangle \propto r^{d_f} / H \).

The very same method can be applied to scaling law of MSD. Same as before we consider the fractal curve as a semi-1D object. There is a scaling relation \(\langle r_1^2 \rangle \propto n^{2H} \) (similar to Eq. (4)) for the position of diffusing particle \(l_n \) after \(n \) walks along such semi-1D curve. In addition, the scaling relation \(l_n \sim R_n^{d_f} \) for the fractal curve is well-known, where \(R_n \) is the radius of the semi-circle enclosed \(l_n \)th walks. We therefore obtain a universal law \(\langle R_n^2 \rangle \propto n^{2H/d_f} \) for MSD of two sided diffusing particles on the fractal curves. Using these arguments we expect

\[
\nu(H, d_f) = 2H / d_f, \quad \beta(H, d_f) = d_f / H, \quad (7)
\]

These equations are in agreement with the scaling exponents in the Eqs. (4) and (9) in the \(d_f \rightarrow 1 \) limit. The above results for \(H = 1/2 \) recover the predictions in \([21] \).

Table 1 summarizes our numerical results for the two scaling exponents \(\nu \) and \(\beta \), where it shows that our results are well compatible with the predictions in Eq. (4) for two sided diffusion on the fractal curves. In our measurements we used from 50000 fractal curves and 10 independent realizations of random process \(S_n^H \) per curve for each numerical test.

Model	\(\nu(H=0.8) \)	\(\beta(H=0.8) \)	\(\nu(H=0.9) \)	\(\beta(H=0.9) \)
LERW	1.280 ± 0.001	1.56 ± 0.01	1.437 ± 0.005	1.385 ± 0.005
HE	1.066 ± 0.001	1.88 ± 0.01	1.195 ± 0.005	1.670 ± 0.003
PF	0.92 ± 0.01	2.17 ± 0.01	1.029 ± 0.003	1.945 ± 0.005

TABLE I: Numerical values of the scaling exponents \(\nu \) and \(\beta \) for the two sided diffusion on the fractal curves. To measure these exponents we used from correlated process \(S_n^H \) with \(H=0.8 \) and 0.9.

C. Diffusion with waiting times on the fractal curves

In this subsection we study anomalous motion of a free particle with waiting time on the self-similar curve. In the preceding section, we have obtained statistics of walkers moving back and forth randomly along self-similar discrete curves. The physical time between two consecutive steps of walks in the previous examples is equal to a constant \(\Delta t \).

We can also consider the random time elapsing between two consecutive jumps of a diffusing particle. The particle starts from the origin and trapped in site \(n \) for some random time. These positive random waiting times \(\tau_n \) are identically distributed random variables each having the same probability density function \(\psi(\tau) \). The role of the waiting time forces us to identify operational time \(S_n^x = \sum \tau_n \) and physical time \(t_n = n \Delta t \). The physical time \(n \) is always accelerated against the strictly increasing random time \(S_n^x \). This is so, the random time \(S_n^x \) is called subordinator. As mentioned in \([32, 33] \) it is described as
\[S_n^\alpha = \inf \{ \tau_m : U(\tau_m) > t_n \}, \tag{8} \]

where \(U(\tau_m) \) is \(\alpha \)-stable subordinator \((0 < \alpha < 1) \) and \(\tau_m = m\Delta t \). The random process \(S_n^\alpha \) is called the inverse time \(\alpha \)-stable subordinator. The above process has neither stationary nor independent increments but it is easy to show that we have distributional scaling \(S_M^\alpha = \lambda^\alpha S_t^\alpha \) which leads us to the following symmetry for the subordinated Brownian motion

\[B(S_{ct}^\alpha) = B(c^\alpha S_c^\alpha) = c^{\alpha/2} B(S_c^\alpha). \tag{9} \]

Although \(B(S_t^\alpha) \) is self similar with Hurst exponent \(\alpha/2 \) it is not fractional Brownian motion because it does not have a Gaussian distribution and it does not have stationary increments. The process \(S_t^\alpha \) is strictly increasing and it tends to infinity for \(t \to \infty \) and so it is a good process to consider as the time, whereas in the \(\alpha \to 1 \) limit the subordinated time converges to the physical time. In our study we generated the subordinator \(S_n^\alpha \) following the reference \([33]\) (see appendix. B).

We study statistical properties of position coordinates \(X_n = x(S_n^\alpha) \) and \(Y_n = y(S_n^\alpha) \) for a subordinated walker with operational time \(S_n^\alpha \) moves on the discrete self-similar curve with fractal dimension \(d_f \) and position components \(x(i) \) and \(y(i) \). For this class of particle diffusion in fractal path, we again expect universal scaling dependence of the MSD \((\langle R_n^2 \rangle = \langle X_n^2 + Y_n^2 \rangle)\) and the MFPT \((\langle \tau_r \rangle)\) to the geometrical parameters \(n \) and \(r \) as

\[\nu(\alpha, d_f) = 2\alpha/d_f, \quad \beta(\alpha, d_f) = d_f/\alpha. \tag{10} \]

Our numerical results for \(\alpha = 0.8 \) and \(\alpha = 0.9 \) (see Table II) are in good agreement with the scaling exponents in Eq. [10].

Model	\(\nu(\alpha = 0.8) \)	\(\beta(\alpha = 0.8) \)	\(\nu(\alpha = 0.9) \)	\(\beta(\alpha = 0.9) \)
LERW	1.280 ± 0.001	1.56 ± 0.01	1.440 ± 0.001	1.39 ± 0.01
HE	1.065 ± 0.005	1.88 ± 0.001	1.200 ± 0.001	1.67 ± 0.001
PF	0.920 ± 0.005	2.18 ± 0.01	1.030 ± 0.005	1.95 ± 0.001

TABLE II: Numerical values of the scaling exponents \(\nu \) and \(\beta \) for subordinated diffusion on the fractal curves. To measure these exponents we used from subordination \(S_n^\alpha \) with \(\alpha = 0.8 \) and 0.9.

III. FIRST PASSAGE TIME AND SCHRAMM LOEWNER EVOLUTION

In the preceding section we studied scaling exponents of MSD and MFPT for some important examples of two sided and subordinated diffusion on the discrete self-similar curves in the upper half plane. In our study we used three statistical models, loop-erased random walk, harmonic explorer and percolation interfaces on the lattice.

The scaling limit of the lattice models as the lattice spacing goes to zero corresponds to Schramm Loewner evolution. This mathematical model is defined in the complex plane and it was introduced by Schramm [23]. SLE is based on the Loewner equation

\[\partial_t g_t(z) = \frac{2}{g_t(z) - \xi_t}, \tag{11} \]

where the real-valued function \(\xi_t \) is called driving (or forcing) function, which determines all the properties of SLE. Loewner showed that for any non-intersecting curve parametrized by a complex function \(\gamma(t) \) in the upper-half plane \(\mathbb{H} \), there exist a conformal map \(g_t(z) \), which maps upper half plane minus curve and the region which is separated from infinity by the curve \((\text{hull: } K_t)\) \(\mathbb{H} \setminus K_t \), to the upper half plane \(\mathbb{H} \).

Ordinary SLE is the Loewner evolution with \(\xi_t = \sqrt{\kappa} B_t \), where \(B_t \) is the Brownian motion with mean zero and \(E[B_t B_s] = \min(t, s) \) and also with diffusion constant \(\kappa > 0 \) [23]. These properties ensure that the curve is conformally invariant.

SLE_6 is a random conformally invariant curve with the fractal dimension \(d_f = 1 + \kappa/8 \) \((0 < \kappa < 8)\) [24, 36]. The scaling limits of LERW, HE and PF are SLE_6 with \(\kappa = 2, 4, 6 \) respectively [29, 30, 37].

The SLE_6 curve \((\gamma(t))\) is parametrized with the time \(t \). On the other hand the lattice models (LERW, HE and PF) usually have a natural parametrization given by the number of steps with equal length along the curve. In general the scaling limit of the lattice models are not the same as SLE_6, where this difference comes from parametrization of each model [38]. We will use from an appropriate method to re-parametrize the SLE_6 curve.

A. Natural parametrized SLE

First step in simulating SLE is time-step discretization. Let us consider a partition of the time interval \([0, t]\), where it is discretized into \(0 = t_0 < t_1 < t_2 < \cdots < t_n = t \). One method to simulate SLE is the foregoing approximation with the equally spaced discrete time points \(t_i = idt \). In this method the points \(z_j \) on the curve \(\gamma(t) \) is given by an iteration process \(z_1 = f_1 \circ f_2 \circ \cdots \circ f_j(\xi_j) \), where \(f_j(z) = \sqrt{(z - \xi_j)^2 - 4i\Delta t} + \xi_j \) is the inverse conformal map and \(\xi_j \) is the discretized drift, where it will be approximated by a piece-wise constant function in the uniform partition of the time interval \([(i-1)dt, idt]\). Notice that the conformal map \(f_j(\xi_j) \) can produce a small slit at \(\xi_j \) with length \(L_i = \Im(f_j(\xi_j)) = 2\sqrt{t_{i+1} - t_i} \) on the upper-half plane. In this method the two-dimensional distances \(l_i = |\gamma(t_i) - \gamma(t_{i-1})| \) are extremely non-uniform [22, 38, 40].

We hereby, require the natural parametrized SLE_6 (NSLE_6) curve, where it is the discrete SLE_6 curve \(\{\gamma_i\} \)
with an approximately equal step length $|\gamma(t_i) - \gamma(t_{i-1})| \approx \lambda$. There are some mathematical and numerical procedures used to find a sensible definition of N-SLE$_\kappa$. κ (see appendix C).

B. Subordinated SLE

In order to understand the scaling relations for the models of diffusion with waiting time on the self-similar traces and also two sided diffusion on the fractal curves, we present here the subordinated version of SLE$_\kappa$.

The motivation of our approach comes from this idea that the probability distribution of the point at the tip of the SLE$_\kappa$ trace satisfies Fokker-Planck equation (FPE) which basically one can think about it as the FPE of the position of a particle in the fractal interface. In a similar way one may think about the FPE for the probability distribution of the tip of the N-SLE and also subordinated N-SLE (NS-SLE) curve in the continuum limit and study diffusion. In principle it should be possible to calculate analytically MSD and MFPT for these semi-1D interfaces by using the FPE in two dimensions. Unfortunately we do not know how to write the FPE of the curved process by the inverse time ν.

The time steps Δt_i that the probability distribution of the point at the tip of the N-SLE$_\kappa$ trace satisfies the same Loewner equation as g_{κ} (SLE) are similar. The only difference is the conformal map S_{κ} (see appendix C) which is still scale invariant in the following sense: the conformal map $g_{\kappa}(z) = \frac{1}{|z|} g_{\kappa}(\lambda^{\kappa/2}z)$ with $B(S_{\kappa}) := \frac{1}{\kappa} \sum_j B(S_{\kappa})$ satisfies the same Loewner equation as $g_{\kappa}(z)$. The above scale invariance enforces scale invariance of the curve.

We have discussed the simulation of SLE and N-SLE in the last section. The simulation of subordinated SLE (S-SLE) and natural parametrized subordinated SLE (NS-SLE) are similar. The only difference is the conformal map $f_{\kappa}(z) = (z - \xi(S_{\kappa}))^2 - 4d$ where $d = \sum_j d_j$ and $0 = t_0 < t_1 < t_2 < \cdots < t_n = t$. The time steps $\Delta j = dt$ $(t_i = \sum_{j=1}^{i} \Delta j)$ in the case of S-SLEκ are selected uniformly and in the NS-SLEκ the non-uniform time steps Δ_{κ} are computed by using Jacobian scheme. The only difference between S-SLEκ (NS-SLEκ) and normal SLE$_\kappa$ (N-SLE$_\kappa$) is in the growth process of each of them. In the first case the tip of the curve has waiting time according to the α-stable Levy process.

As discussed earlier, the scaling exponents ν and β for subordinated walk along discrete fractal interfaces are defined explicitly in Eq. (10) where they are in agreement with numerical simulations. We will consider a tip of NS-SLEκ as a subordinated growth process where it is a mathematical model for subordinated walk along fractal curves. The scaling exponents of this subordinated process is collected in Table III where they are in a good agreement with Eq. (10) and also with the numerical simulation of the subordinated random walk along the self-similar discrete curves (see Table III).

κ	$\nu(\alpha = 0.8)$	$\beta(\alpha = 0.8)$	$\nu(\alpha = 0.9)$	$\beta(\alpha = 0.9)$
2.0	1.28 ± 0.02	1.52 ± 0.05	1.42 ± 0.04	1.35 ± 0.05
4.0	1.02 ± 0.05	1.84 ± 0.04	1.16 ± 0.05	1.63 ± 0.05
6.0	0.92 ± 0.03	2.15 ± 0.05	1.00 ± 0.03	1.90 ± 0.06

TABLE III: Numerical values of the scaling exponents ν and β for the tip of the NS-SLEκ curves with κ = 2.0, 4.0 and 6.0 and α = 0.8 and 0.9.

We also notice that another way to subordinate the Brownian motion $B(\cdot)$ is based on the iterated Brownian motion I_{ω} [22]. Consider two stochastic processes B_t and Y^H_t, where the first one is the Brownian motion and the second one is the fractional Brownian process. The iterated Brownian process is defined as $B(\cdot|Y^H_t)$, where $|Y^H_t|$ corresponds to the non-negative random time. It is easy to verify that the fractional Brownian time Brownian motion $B(\cdot|Y^H_t)$ is a self-similar process of index $H/2$, that is, for any $\lambda > 0$

$$B(\cdot|Y^H_t) = B(\lambda \cdot|Y^H_t) = \lambda^{H/2}B(\cdot|Y^H_t). \quad (12)$$

Simulation of the the natural parametrized version of fractional Brownian time SLE (NS-SLE$^\alpha_H$) is similar to the NS-SLE case. First consider discrete times $0 = t_0 < t_1 < t_2 < \cdots < t_n = t$ and the conformal map $f_{\kappa}(z) = \sqrt{(z - \xi(S_{\kappa}^0))^2 - 4dS_{\kappa}} + \xi(S_{\kappa}^0))$, where the infinitesimal values of the local time $dY^H_{t_j} = |Y^H_{t_j} - Y^H_{t_{j-1}}|$ can get positive and negative values. The length of NS-SLE$^\alpha_H$ curves increases for $dY^H_{t_j} > 0$ and decreases for $dY^H_{t_j} < 0$. This dynamical process is very similar to the two sided diffusion on the lattice fractal models. Our estimations for the two scaling parameters ν and β for MSD and MFPT, Table IV, are in a good agreement with the predicted values in Eq. (1) and also numerical results coming from the lattice models (see Table IV).

IV. CONCLUSION

To conclude, we studied the diffusive dynamics of the random processes on the self-similar curves and measured the scaling exponents of mean squared displacement and mean first passage time expressed in Eq. (3). The various
scaling exponents for MSD and MFPT are obtained numerically for two sided diffusion and diffusion with waiting time on three discrete fractal curves, i.e. loop-erased random walk, harmonic explorer and percolation front. It appears that the exponents only depend on the fractal dimension \(d_f \) of the curves and the scaling exponent \(H \) for the two sided diffusion and \(\alpha \) for the subordinated diffusion.

Finally, we redrew the properties of the anomalous diffusion (FPT, MSD) on the discrete fractal curves with subordinated version of the natural parametrized SLE. Our results offer a new method to investigate diffusion in the fractal interfaces. We believe that these results is a starting point for the development of the subordinated version of SLE.

Appendix. A

To find harmonic explorer and percolation front, we used overruled harmonic explorer process on the very large rectangular domain. This domain on the upper half plane as shown in Fig. 4 is splitting into three parts, a left boundary with yellow condition and a right boundary with blue and also uncoloured inner part. This boundary condition is used to limit the EP path to this part of half-plane to start from \(r_0 \) and stop when reach to \(r_s \) or length \(N \). The explorer process is the unique path from the origin. In each step, there is a yellow hexagon on the left and blue one on the right [25].

To generate this path dynamically, a growth process starts from the point \(r_0 \) on the lower boundary. In the first step the colour of face \(f_1 \) in front of \(r_0 \) is chosen so that to make it blue or yellow and the explorer is forced to turn left or right, respectively. To choose colour of face \(f_1 \), a random walker starts from \(f_1 \) and it stops when it crosses the rectangle’s boundary for the first time. Now, the colour of \(f_1 \) with probability \(0 < p < 1 \) is yellow if the touch boundary is yellow. Note that two stochastic operations are used to colour one hexagon, a random walker to find boundary colour and a coin to does or does not accept the boundary colour. The new tip of explorer path is located in the position \(r_1 \) and a new face \((f_2) \) should be coloured with the same restriction. In particular, the outcome of explorer process with \(p = \frac{1}{4} \) as shown in Fig. 5 are percolation front and harmonic explorer, respectively. The fractal dimension of the overruled harmonic explorers has a linear relationship with \(p \) and it is conjectured to be \(d_f = 2 - \frac{2}{\alpha^2} \) [31].

Appendix. B

The celebrated subordinated random time \(S^\alpha_t \), is given by the Eq. (8) where it can be efficiently generated by the algorithm proposed in [32]. As mentioned earlier the \(\alpha \)-stable subordinator \(U(\tau) \) denotes the strictly increasing Levy motion with Laplace transform \(\langle e^{-kU(\tau)} \rangle = e^{-\tau^{k/\alpha}} \) [34]. The first step in simulating \(S^\alpha_t \) begins with approximating of the strictly increasing \(\alpha \)-stable Levy motion \(U(\tau) \) on the discrete times \(\tau_i = i \Delta \tau \) \((i = 0, 1, \ldots, M)\). The numerical integration of the process \(U(\tau) \) for \(0 < \alpha \leq 1 \) yields

\[
U(\tau_{j+1}) = U(\tau_j) + \Delta \tau^{1/\alpha} L_\alpha(\beta),
\]

Table IV

\(\kappa \)	\(\nu(H = 0.8) \)	\(\beta(H = 0.8) \)	\(\nu(H = 0.9) \)	\(\beta(H = 0.9) \)
2.0	1.28 ± 0.01	1.57 ± 0.01	1.44 ± 0.01	1.40 ± 0.02
4.0	1.05 ± 0.03	1.90 ± 0.02	1.16 ± 0.05	1.70 ± 0.04
6.0	0.90 ± 0.03	2.20 ± 0.02	1.01 ± 0.03	2.00 ± 0.05

The numerical values of the scaling exponents \(\nu \) and \(\beta \) for the tip of the NF-SLE curves with \(\kappa = 2.0, 4.0 \) and 6.0 and \(H = 0.8 \) and 0.9.

FIG. 1: A rectangular domain with appropriate boundary conditions is used to build an explorer path. Top: Three parts of the domain which consist of left (right) boundary with yellow (blue) hexagons and uncoloured hexagons. Middle: First step to identify colour of face \(f_1 \). A random walker moves around uncoloured sites to hit the boundary. In this example, the colour of face \(f_1 \) with probability \(p \) (1 - \(p \)) will be blue (yellow). Notice that walker turn to right (left) when the yellow (blue) is selected. Bottom: A complete exploration process in a rectangle.
Eqs. (13) and (14) it is clear that

\[\lambda > 0 \]

where \(\lambda \) is a Levy stable random variable with parameter \(\beta \) and \(U(0) = 0 \). We use skewed Levy-stable distribution \(\beta = 1 \), to ensure \(U(\tau) \) gets almost increasing random process \([34] \). It can be generated by

\[
L_\alpha(1.0) = \frac{\sin[\alpha(V + \frac{\pi}{2})]}{[\cos(V)]^{1/\alpha}} \times \left\{ \frac{\cos[V - \alpha(V + \frac{\pi}{2})]}{W} \right\}^{(1-\alpha)/\alpha},
\]

(14)

where \(V \) is a random variable with uniform distribution between \((-\frac{\pi}{2}, \frac{\pi}{2}) \) and \(W \) has exponential distribution with mean 1. For the time horizon \(T \), the summation process in Eq. \([13] \) ends when we get \(U(\tau_{M-1}) \leq U(\tau_M) \). One can observe that \(U(\tau) \) is strictly increasing and \(M \) always exists \([33] \).

Now, for every \(t_i \in (0 = t_0 < t_1 < t_2 \cdots < t_N = T) \), we find \(\tau_j \) such that \(U(\tau_{j-1}) < t_i \leq U(\tau_j) \), and from the definition in the Eq. \([8] \), we can define \(S_i^n = \tau_j \). From Eqs. \([13] \) and \([14] \) it is clear that \(L_\alpha(1) = 1 \) and \(S_i^n = t_i \) in the \(\alpha \to 1 \) limit, where at this limit subordinated time converges to the normal time.

Appendix. C

A standard procedure \([40] \) to find the half plane N-SLE\(_\kappa \) trace is based on a change in the size of the \(i \)th slit length \(L_i \) (It is a function of time step parameter \(\Delta_i = t_i - t_{i-1} \) as \(L_i = 2\sqrt{\Delta_i} \), by the Jacobian. The Jacobian \(| J_{i-1} \approx |(\xi_i - \xi_{i-1})G_{i-1}'(\xi_{i-1})| \) of the conformal map \(G_i = f_1 \circ f_2 \circ \cdots \circ f_j \) acts on the corresponding segment to rescale the length \(L_i \) for the \(i \)th slit by

\[
L_i \approx \frac{\lambda}{| J_{i-1} |}.
\]

(15)

where \(\lambda > 0 \) is the step length. For a piece-wise constant Brownian process \(\xi_i = \xi_{i-1} \pm \sqrt{\kappa \Delta_i} \) (the sign of \(\sqrt{\kappa \Delta_i} \) is chosen randomly according to the uniform probability distribution), the above approximation yields

\[
\Delta_i = \frac{\lambda}{2\sqrt{\kappa} | G_{i-1}'(\xi_{i-1}) |}.
\]

(16)

Note that computing points along the N-SLE\(_\kappa \) curve requires this adaptive choice of \(\Delta_i \) and the total time with these non-uniform time steps will be equal to \(t_i = \sum_{n=1}^{i} \Delta_i \). In this procedure the distances between two sequential points \(t_i \approx \lambda \) approximately remain constant.

In our study we followed one straightforward motivation for computing the Jacobian. If one consider \(h_i(z) = f_i(z + \xi_i) - \xi_i \). The conformal map \(h_i(0) \), maps the upper half plane onto the upper half plane plus a slit. The length of this slit equals to \(2\sqrt{\Delta_i} \) and the position on the real line equals to \(\xi_i = \xi_{i-1} \). Following a simpler strategy one can decompose the incremental map \(h_i(z) \) to \(h_i(z) = T_{\delta_i} \circ \phi_i^\text{H} \), where \(\phi_i^\text{H} = \sqrt{z^2 - 4\Delta_i} \) is the slit map and \(T_{\delta_i}(z) = z + \delta_i \) is a translation map by the real value \(\delta_i \). The \(i \)th points of the the SLE or N-SLE curve computed from \(\gamma(t_i) \approx g_n(0) \)

\[
g_n(z) = T_{\delta_i} \circ \phi_i^\text{H} \circ T_{\delta_{i-1}} \circ \phi_{i-1}^\text{H} \circ \cdots \circ T_{\delta_1} \circ \phi_1^\text{H}(z).
\]

(17)

We now consider a new format of Eq. \([10] \) as

\[
\Delta_i = \frac{\lambda}{2\sqrt{\kappa} | G_{i-1}'(\xi_{i-1}) |}.
\]

(18)

where

\[
g_i^{\text{H}}(0) = | \phi_n'(0) | \prod_{j=0}^{n-2} | \phi_{n-1-j}(\Gamma_j) |.
\]

(19)

In the above equation a \(\Gamma_j \) is defined as

\[
\Gamma_j = T_{\delta_{n-j}} \circ \phi_{n-j}^\text{H} \circ T_{\delta_{n-j+1}} \circ \phi_{n-j+1}^\text{H} \circ \cdots \circ T_{\delta_0} \circ \phi_0^\text{H}(0).
\]

(20)

Following \([40] \) the proposed method of approximating sample paths of N-SLE\(_\kappa \) \(\{ \gamma(t_i), i = 0, \ldots, N \} \), consists of six steps: (1) Set the constants \(\lambda, \kappa \) and \(N \). (2) Set \(n = 1 \) and \(\Delta_1 = 1 \). (3) Compute \(\sqrt{\kappa \Delta_i} \) according to steps 1 and 2 with a random sign \(\pm \) with equal probability. (4) Calculate \(\gamma(t_i) = g_n(0) \) using the iteration map as we said in Eq. \([17] \). (5) Compute \(\Delta_{n+1} \) using Eq. \([16] \), \([19] \) and \([20] \). (6) If \(n < N \) increase \(n \) by one and repeat steps 3 to 6. The typical curves of the N-SLE\(_\kappa \) for \(\kappa = 2, 4 \) and 6 are presented in Fig. 6.
Acknowledgements

M. G. Nezhadhaghighi kindly acknowledge intensive discussions with Marco Gherardi.

[1] R. Metzler and J. Klafter, J. Phys. A: Math. Gen. 37, R161 (2004).
[2] B. Avraham and S. Havlin, Diffusion and reactions in fractals and disordered systems, (Cambridge University Press, 2000).
[3] B. Berkowitz, and H. Scher, Phys. Rev. Lett. 79, 4038-4041 (1997).
[4] H. Scher and M. Lax, Phys. Rev. B 7, 4491 (1973).
[5] T. H. Solomon, E. R. Weeks, and H. L. Swinney, Phys. Rev. Lett. 71, 3975-3978 (1993).
[6] M. Wachsmuth, W. Waldeck, and J. Langowski, Journal Of Molecular Biology, 298, 677-689 (2000).
[7] B. Berkowitz, and H. Scher, Phys. Rev. Lett. 79, 4038-4041 (1997).
[8] H. Scher and M. Lax, Phys. Rev. E 61, 132138 (2000).
[9] T. Koren, J. Klafter and M. Magdziarz, Phys. Rev. E 76, 031129 (2007); T. Koren, M. A. Lomholt, A. V. Chechkin, J. Klafter, and R. Metzler, Phys. Rev. Lett. 99, 160602 (2007).
[10] B. D. Hughes, Random Walks and Random Environments, Vol. 1 (Clarendon Press, Oxford, 1995).
[11] S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, England, 2001).
[12] A. Lloyd and R. May, Science, 292, 1316 (2001); M. E. J. Newman, Phys. Rev. E 66, 016128 (2002).
[13] J. Chuang, Y. Kantor, M. Kardar, Phys. Rev. E 65, 011802 (2001).
[14] RM. Capocelli, L.M. Ricciardi, Biological Cybernetics, Vol. 8, No. 6, 214-223, (1971).
[15] O. Benichou, M. Coppey, P. Suet, and R. Voituriez, Phys. Rev. Lett., 94, 198101 (2005).
[16] B. B. Mandelbrot, The fractal geometry of nature (Freeman, New York, 1982).
[17] H. Liebowitz, Fracture, (Academic. New York. Vols. I-VII, 1984).
[18] H. O. Peitgen, D. Saupe, Y. Fisher, M. McGuire, R. F. Voss, M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, The Science of Fractal Images, (Springer-Verlag, New York, 1988).
[19] B. Sapoval, A. Baldassarri, and A. Gabrielli, Phys Rev Lett, 93, 098501(2004).
[20] L. Niemeyer, L. Pietronero, H. J. Wiesmann, Phys Rev Lett, 52, 1033, (1984); G. Vecchi, D. Labate and F. Canavero, J Phys D: Appl Phys 29(4), (1996).