Life prediction for high temperature low cycle fatigue of two kinds of titanium alloys based on exponential function

To cite this article: G Y Mu et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 292 012052

View the article online for updates and enhancements.
Life prediction for high temperature low cycle fatigue of two kinds of titanium alloys based on exponential function

G Y Mu¹,²,₅, X Z Mi³ and F Wang⁴

¹Mechanical Engineering College, Dalian JiaoTong University, 794 Huanghe Road. Dalian, 116028, China
²Mechanical and Power Engineering College, Dalian Ocean University, 52 Heishijiao Street. Dalian, 116023, China
³Traffic and Transportation College, Dalian JiaoTong University, 794 Huanghe Road. Dalian, 116028, China
⁴Motor Train College, Dalian JiaoTong University, 794 Huanghe Road. Dalian, 116028, China
⁵E-mail: mugy1982@126.com

Abstract. The high temperature low cycle fatigue tests of TC4 titanium alloy and TC11 titanium alloy are carried out under strain controlled. The relationships between cyclic stress-life and strain-life are analyzed. The high temperature low cycle fatigue life prediction model of two kinds of titanium alloys is established by using Manson-Coffin method. The relationship between failure inverse number and plastic strain range presents nonlinear in the double logarithmic coordinates. Manson-Coffin method assumes that they have linear relation. Therefore, there is bound to be a certain prediction error by using the Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. The results show that the fatigue life of the two kinds of titanium alloys can be predicted accurately and effectively by using these two methods. Prediction accuracy is within ±1.83 times scatter zone. The life prediction capability of new methods based on exponential function proves more effective and accurate than Manson-Coffin method for two kinds of titanium alloys. The new method based on exponential function can give better fatigue life prediction results with the smaller standard deviation and scatter zone than Manson-Coffin method. The life prediction results of two methods for TC4 titanium alloy prove better than TC11 titanium alloy.

1. Introduction
Titanium alloy has been widely used in the manufacture of aircraft engine compressor discs, blades and casing because of its high specific strength, good corrosion resistance, good heat resistance and good mechanical properties [1]. When titanium alloy is used for aircraft manufacturing materials, metal materials bearing the main form of the force structure failure is fatigue fracture, a serious threat to flight safety. Therefore, it is very important to study on the fatigue behavior of titanium alloy.

The high temperature low cycle fatigue (HTLCF) life prediction has been a hot research topic for many researchers. In order to effectively predict the HTLCF life of materials, many methods have been proposed in the past years. Manson and Coffin [2, 3] proposed Manson-Coffin equation. Manson-Coffin equation is widely used in fatigue life prediction. They noted that there was a linear relationship between plastic strain range and failure inverse number in the double logarithmic coordinates. Manson [4] considered that the fatigue life of the material can be estimated by alternative
thermal fatigue test results when the thermal fatigue is superimposed by alternative mechanical loading. Halford and Manson [5] proposed the strain range partitioning method. They believe that high temperature and low cycle fatigue include fatigue damage and creep damage. The fatigue damage is mainly related to the deformation of the slip surface, and the creep damage is mainly related to the deformation of grain boundaries. Shengtian et al. [6] proposed a continuum damage mechanics method. They believed that with increment of damage the stress range decreases slowly and steady. This continuum damage stage is a main part of the whole life. The total continuum damage is not large. It means that the damage rate of TC4 titanium alloy is low but fatigue is sensitive to micro-crack damage. Yang et al. [7] proposed the fatigue life prediction method based on radial basis function neural network. Tisong et al. [8] proposed a life prediction model that describes the relation between damage energy density and fatigue life based on the formula of Three-Parameter Power Function. The results show that the proposed method is in good agreement with the experiment results. Weiping et al. [9] put forward a continuous miner method which combines stochastic load probability weighting, linear miner cumulative damage rule and fuzzy theory. The result shows that the improved fatigue prediction method is accurate within acceptable range. Ling et al. [10] proposed a new model for predicting low cycle fatigue life of magnesium alloy. The results show that the predicted results are in good agreement with the experimental results. Guodong et al. [11] proposed fatigue life prediction method based on power-exponent function. They considered that there was a power-exponent function relationship between the plastic strain range and inverse number in log-log scale coordinates. Although many models have been proposed for the HTLCF life prediction, each method has its limitations. Because the high temperature fatigue damage of materials is affected by creep-fatigue interaction and the other factors. It has been very difficult to accurately predict the high temperature fatigue life of the material. Yi et al. [12] considered that it is very difficult to analyze the behavior of fatigue creep interaction. So it becomes very important to study the high temperature fatigue life prediction model for specific materials.

In this paper, the HTLCF tests of TC4 titanium alloy and TC11 titanium alloy are carried out under total axial strain. The relationships of cyclic strain-life and stress-life are analyzed. The HTLCF life prediction models of two kinds of titanium alloys are established by Manson-Coffin method and new method based on exponential function. In addition, the fatigue life predictive ability of two methods was assessed. Related research can provide reference for component design and life evaluation.

2. Experimental methods

2.1. Materials

TC4 titanium alloy and TC11 titanium alloy are used as experimental materials. The Chemical composition of two kinds of titanium alloys are shown in table 1. The tensile property of two kinds of titanium alloys are shown in table 2 [13].

Material	Al	C	Fe	Si	O	H	N	Ti
TC4	6.22	0.02	0.09	0.04	0.12	0.015	0.02	surplus
TC11	5.8~7.0	≤0.10	≤0.25	0.20~0.35	≤0.15	≤0.012	≤0.05	surplus

Table 1. The chemical composition of two kinds of titanium alloys (wt%).

Material	Young’s modulus E (GPa)	Fracture limit σ_f (MPa)	Yield strength $\sigma_{0.2}$ (MPa)	Elongation δ (%)	Reduction of area ψ (%)
TC4	109	969	948	16	45.5
TC11	83	806	641	20.8	63.5

Table 2. The tensile property of two kinds of titanium alloys.
2.2. Experimental conditions and methods
The HTLCF experimental conditions and methods of two kinds of titanium alloys are shown in table 3.

Table 3. The experimental conditions and methods of two kinds of titanium alloys.

Experimental conditions and methods	TC4	TC11
Experimental temperature	350°C	500°C
Experimental control mode	Axial strain control	Axial strain control
Material specifications	d68 mm	d18mm
Loading Waves	Triangle wave	Triangle wave
Strain ratio	–1	–1
Loading frequency	0.033–0.33 Hz	0.167–0.333 Hz
Failure criterion	Crack	Crack
Heat treatment process	477°C, 4.5 h hardening, 121°C, 9h+177°C, 9h aging	800°C, 1 h, air-cooled

3. Results and discussion

3.1. Low cycle fatigue experimental results and discussion of TC4 titanium alloy
The HTLCF experimental results of TC4 titanium alloy are shown in table 4.

Table 4. The HTLCF experimental results of TC4 titanium alloy.

Total strain range $\Delta \varepsilon / 2$ (%)	Elastic strain range $\Delta \varepsilon_e / 2$ (%)	Plastic strain range $\Delta \varepsilon_p / 2$ (%)	Stress range $\Delta \sigma / 2$ (MPa)	Fatigue inverse number $2N_f$
4.160	0.816	3.344	759	81
3.198	0.827	2.371	769	118
2.237	0.843	1.394	781	229
1.831	0.824	1.007	766	363
1.221	0.777	0.444	722	830
0.902	0.696	0.206	647	2176
0.682	0.617	0.065	574	5681

The linear relationship of $\Delta \varepsilon / 2$ $-2N_f$, $\Delta \varepsilon_p / 2$ $-2N_f$ and $\Delta \varepsilon / 2$ $-2N_f$ in log-log coordinate is shown in figure 1. Regression formula (1) and formula (2) can be obtained by regression analysis:

$$\Delta \varepsilon / 2 = 1.8919 (2N_f)^{0.9052}$$

$$\Delta \varepsilon / 2 = 0.0117 (2N_f)^{0.0681}$$

The relationship curve of $\Delta \sigma / 2$ $-\Delta \varepsilon_p / 2$ is shown in figure 2. Regression formula (3) can be obtained by regression analysis:

$$\Delta \sigma / 2 = 1043.7 (\Delta \varepsilon_p / 2)^{0.0765}$$

3.2. The HTLCF experimental results and discussion of TC11 titanium alloy
The linear relationship curve of $\Delta \varepsilon / 2$ $-2N_f$, $\Delta \varepsilon_p / 2$ $-2N_f$ and $\Delta \varepsilon / 2$ $-2N_f$ in log-log coordinate are shown in figure 3. Regression formula (4) and formula (5) can be obtained by regression analysis:

$$\Delta \varepsilon_p / 2 = 4.8798 (2N_f)^{0.9994}$$

$$\Delta \varepsilon / 2 = 0.0151 (2N_f)^{0.1293}$$
The relationship curve of \(\Delta \varepsilon / 2 \) \(- \) \(2N_f \) is shown in Figure 1. Regression formula (6) can be obtained by regression analysis:

\[
\Delta \sigma / 2 = 1204.7(\Delta \varepsilon_p / 2)^{0.1275}
\]

Figure 1. The relationship curve of \(\Delta \varepsilon / 2 \) \(- \) \(2N_f \)

Figure 2. The relationship curve of \(\Delta \sigma / 2 \) \(- \) \(\Delta \varepsilon_p / 2 \).

Figure 3. The linear relationship curve of \(\Delta \varepsilon / 2 \) \(- \) \(2N_f \).

Figure 4. The relationship curve of \(\Delta \sigma / 2 \) \(- \) \(\Delta \varepsilon_p / 2 \).

4. Fatigue life prediction

4.1. Life prediction by the Manson-Coffin method

Manson-Coffin method is widely used in HTLCF life prediction. For HTLCF test under total strain ranges control, Manson-Coffin method predicts life using formula (7).

\[
\frac{\Delta \varepsilon}{2} = \frac{\Delta \varepsilon}{2} + \frac{\Delta \varepsilon_p}{2} = \frac{\sigma_f}{E} (2N_f)^b + \varepsilon_f (2N_f)^c
\]

where, \(\frac{\Delta \varepsilon}{2} \) is total strain ranges, \(\frac{\Delta \varepsilon}{2} \) is elastic strain range, \(\frac{\Delta \varepsilon_p}{2} \) is plastic strain range, \(\sigma_f \) is fatigue strength coefficient, \(b \) is fatigue strength exponent, \(\varepsilon_f \) is fatigue ductility coefficient, \(c \) is fatigue ductility exponent. The \(\frac{\sigma_f}{E} \), \(b \), \(\varepsilon_f \) and \(c \) values can are obtained by regression analysis.

The \(\frac{\sigma_f}{E} \), \(b \), \(\varepsilon_f \) and \(c \) values are shown in table 5.
Table 5. Corresponding coefficients in formula (7) of two kinds of titanium alloys.

Material	$\frac{\sigma_f}{E}$	b	ε'_f	c
TC4	0.0117	-0.0681	1.8919	-0.9052
TC11	0.0151	-0.1293	4.8798	-0.9994

4.2. Life prediction method based on exponential function

According to the HTLCF data analysis results, the relationship between plastic strain and failure inverse number presents nonlinear in log-log coordinate. It will lead to generating a prediction error using Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. Assuming a exponential relationship exists between $\left(-\ln\frac{\Delta\varepsilon_p}{2}\right)$ and $\ln(2N_f)$, the relationship can be expressed as formula (8):

$$(-\ln\frac{\Delta\varepsilon_p}{2}) = a_1 e^{a_2 \ln(2N_f)}$$ \hspace{1cm} (8)

Figure 5. Curve of TC4 titanium alloy $\left(-\ln\frac{\Delta\varepsilon_p}{2}\right)$-ln$(2N_f)$.

Figure 6. Curve of TC11 titanium alloy $\left(-\ln\frac{\Delta\varepsilon_p}{2}\right)$-ln$(2N_f)$.

Figure 5 and figure 6 present the exponent fit relationship of $\left(-\ln\frac{\Delta\varepsilon_p}{2}\right)$ and ln$(2N_f)$. a_1 and a_2 are obtained by regression for formula (8).

Formula (9) is obtained by transforming formula (8):

$$\frac{\Delta\varepsilon_p}{2} = e^{a_1 e^{a_2 \ln(2N_f)}}$$ \hspace{1cm} (9)

Therefore, the life prediction method based on exponential function can be expressed as the formula (10):

$$\frac{\Delta\varepsilon_f}{2} = \frac{\Delta\varepsilon_c}{2} + \frac{\Delta\varepsilon_p}{2} = \frac{\sigma'_f}{E} \left(2N_f\right)^b + e^{a_1 e^{a_2 \ln(2N_f)}} \left(2N_f\right)^b$$ \hspace{1cm} (10)

The $\frac{\sigma'_f}{E}$, b, a_1 and a_2 values are shown in table 6.

Table 6. Corresponding coefficients in formula (10).

Material	$\frac{\sigma'_f}{E}$	b	a1	a2
TC4	0.0117	-0.0681	1.6041	0.1772
TC11	0.0151	-0.1293	2.038	0.1407
5. Evaluation of life prediction ability
Shichao et al. [14] and Lijia et al. [15] believed that the life prediction ability of model can be quantitatively evaluated by scatter zone and standard deviation. The deviation degree between the experimental life and predicted life can be analyzed by scatter zone. The scatter zone (x_{max}) can be expressed as formula (11):

$$x_{\text{max}} = \max \left[\frac{N_f^p}{N_f^s}, \frac{N_f^e}{N_f^s} \right]$$ \hspace{1cm} (11)

where, N_f^p is predicted life, N_f^e is experimental life.

The standard deviation is smaller; the life prediction ability of the model is better. The standard deviation(S) can be expressed as formula (12):

$$S = \left[\frac{\sum (\log N_f^p - \log N_f^s)^2}{(n-1)} \right]^{1/2}$$ \hspace{1cm} (12)

where, n is total number of experimental samples.

Scatter zone and standard deviation of two life prediction models are shown in table 7. As seen from the table 7 that the life prediction for TC4 titanium alloy by the Manson-Coffin method and exponential function method had standard deviation of 0.20 and 0.12 respectively. The life prediction for TC11 titanium alloy by the Manson-Coffin method and exponential function had standard deviation of 0.43 and 0.36 respectively.

Material	Prediction method	Scatter zone	Standard
TC4	Manson-Coffin	1.54	0.20
	New method	1.28	0.12
TC11	Manson-Coffin	1.83	0.43
	New method	1.62	0.36

6. Conclusions
In order to study the HTLCF behaviour of TC4 titanium alloy and TC11 titanium alloy, the HTLCF tests were carried out under total axial strain control. The relationships of cyclic strain-stress and strain-life are analyzed. Cyclic strain-stress and strain-life relationship curves of the two kinds of titanium alloys were obtained. According to analysis results, there was an exponential relationship between $\Delta \varepsilon_p/2$ and $2N_f$ in log-log coordinate.

The high temperature LCF life prediction models of two kinds of titanium alloys are established by Manson-Coffin method and new method based on exponential function.

Manson-Coffin method and exponential function method can effectively predict the HTLCF life of TC4 titanium alloy and TC11 titanium alloy. Prediction accuracy within ± 1.83 times scatter zone.

The fatigue life prediction results of two kinds of titanium alloys by two prediction models showed new method based on exponential function proved more accurate and effective than Manson-Coffin method. The new method can give better life prediction results with the smaller scatter zone and standard deviation.

Manson-Coffin method and new method based on exponential function can effectively predict the HTLCF life of TC4 titanium alloy. The fatigue life prediction for TC4 titanium alloy by the Manson-Coffin method and new method based on exponential function has scatter zone of 1.54 and 1.28 respectively and standard deviations of 0.20 and 0.12 respectively.

The life prediction capability of Manson-Coffin method and new method for TC4 titanium alloy prove more accurate than TC11 titanium alloy. Two methods can give better fatigue life prediction results for TC4 titanium alloy with the smaller standard deviation and scatter zone than TC11 titanium alloy.
Acknowledgements
This work was financially supported by Natural Science Foundation of Liaoning Province of China (Research Project 20170540107).

References
[1] Huang Xinyue, Zhang Shichao, Lu Yuan & Yu Huichen 2011 Investigation on fatigue crack propagation behavior of TC11 and TC4 Ti alloys at room temperature and 400 °C. Journal of aeronautical materials 31(5) 82-85
[2] Manson S S 1954 Behavior of materials under conditions of thermal stress. National Advisory Commission on Aeronautics: Report 1170 Lewis Flight Propulsion Laboratory, Cleveland
[3] Coffin L F 1954 A study of the effects of cyclic thermal stresses on a ductile metal Transactions of the American Society of Mechanical Engineers 76 931-50
[4] Manson S S 1974 Thermal stress and low-cycle fatigue McGraw Hill Book company
[5] Manson S S and Halford G 1967 A method of estimating high temperature and LCF behaviour of materials Int. Conf. on thermal high-strain fatigue
[6] Zhou Shentian, Liu Jun & Huang Baozong 2008 Continuum damage mechanics study on low cycle fatigue damage of TC4titanium alloy Journal of aeronautical materials 31(5) 82-85
[7] Gao Yang, Bai Guangchen& YU Linchong 2009 Fatigue reliability analysis of turbedisk based on RBFneural network Journal of machine design 26(5) 8-14
[8] Shang Tisong, Zhao Ming& Chen Yanghui 2015 Low Cycle Fatigue Life Prediction Method Based on Three-Parameter Power Function Journal ofPropulsion Technology 36(6) 907-911
[9] Li Weiping, Cao heli, Lilei & Kang Jin 2017 Continuous Miner Method for Fatigue Life Estimation Computer Simulation 34(1) 414-417
[10] Chen Ling, Zhang xianming & Liu Fei 2017 Discussion of Low Cycle Fatigue Life Prediction Models for Magnesium Alloys China Mechanical Engineering 28(5) 512-517
[11] Gao Guodong, Duan Shulin, Zhang Wenxiao 2015 Low cycle fatigue life prediction for GH4133 at 550 °C based on power-exponent function Journal of engineering research 3(3) 111-124
[12] Liu Yi, Chen Lijia & Wang Zhongguang 2006 Fatigue-Creep behavior and deformation structures of GH4049 nickel-base superalloy ActaMetallurgica Sinica 35(9) 955–959
[13] Xie Jizhou 1992 Handbook of Low-cycle Fatigue Beijing Institute of Materials Publications, Beijing
[14] Zhang Shichao, Yu Huichen & Li Ying 2013 Investigation on low cycle fatigue properties of superalloy GH3044 at elevated temperature Journal of aeronautical materials 33 100–104
[15] Chen Lijia, Wu Wei& P.K.Liaw 2006 Creep-fatigue interaction behaviors and life predictions for three superalloys ActaMetallurgica Sinica 42 952–958