CASE REPORT OF RHIZOBIUM RADIOBACTER NEONATAL SEPSIS IN SANGLAH HOSPITAL

Samantha Celena Triadi *, I Dewa Made Sukrama ** and Ni Made Adi Tarini **

* Clinical Microbiology Specialist Program, Faculty of Medicine and Health Sciences, Udayana University/Sanglah General Hospital Denpasar, Bali, Indonesia
** Department of Clinical Microbiology, Faculty of Medicine and Health Sciences, Udayana University/Sanglah General Hospital Denpasar, Bali, Indonesia

ABSTRACT Neonatal sepsis is still a problem in the health sector, particularly in developing countries, and the incidence is quite high; therefore requires early detection and proper therapy. We report a rare manifestation of Rhizobium radiobacter infection in which sepsis occurred in a newborn infant. In patients with sepsis caused by R. radiobacter appropriate antibiotics are needed to prevent worsening. R. radiobacter is often a bacterial contaminant and rarely causes infection in humans, but in immunocompromised patients, this microorganism can be an agent in an infection. This study aims to improve understanding of sepsis caused by R. radiobacter. This study is a case report of a 27-day-old neonate with sepsis neonatal. From the result of the two-sided blood culture using VITEK 2 Compact on September 28, 2020, R. radiobacter was detected. Meropenem was administered intravenously from day 20 in hospital, but the patient’s condition gradually deteriorated, and the patient died 28 days after birth. R. radiobacter was rarely reported as a pathogen. Immunocompromised patients, delayed detection and inadequate treatment can increase morbidity and mortality.

KEYWORDS Rhizobium radiobacter, blood culture, sepsis

Introduction
Infection is the major cause of neonatal deaths in developing countries. This infection can be acquired through exposure to microbes that colonize the maternal genital tract (vertical transmission) or through exposure during treatment in a health care setting[1]. R. radiobacter is a member of the genus Agrobacterium, formerly known as Agrobacterium radiobacter. This bacterium is gram-negative motile rods, non-spore-forming, aerobic, oxidase-positive, saprophytic, and plant pathogens[2]. Rhizobium radiobacter infection in neonates leading to neonatal sepsis. Neonatal sepsis is a clinical syndrome of bacteremia characterized by systemic symptoms and signs, especially in the first month of life. This condition is one of the most common causes of death in neonates. One factor is the inappropriate administration of antibiotics which causes an increase in antibiotic resistance. First-line antibiotic resistance will lead to the administration of newer and more expensive antibiotics. Therefore, the importance of microbiological examination and monitoring of bacterial patterns can improve the management of neonatal sepsis[3]. The incidence of neonatal sepsis in Sanglah Hospital is 5%, with a mortality rate of 30.4%. In contrast, at Cipto Mangunkusumo Hospital, Jakarta, the incidence of neonatal sepsis is still high at 13.7%, with a mortality rate of 14%. Low birth weight and prematurity are associated with mortality in neonatal sepsis. The difficulty in evaluating and optimal treatment of bacterial infection in neonates is caused by the clinical signs of neonatal sepsis, which are often variable and non-specific. Infections caused by R. radiobacter are very rare often occur if the patient is immunocompromised and associated with intravascular devices in immunocompetent patients.

Case Report
A 41-year-old pregnant woman with Congestive Heart Failure and a suspect of Peripartum cardiomyopathy presented in the emergency department delivered a preterm male infant. The clinical examination of the infant showed admission weight 2200 g, the patient was somnolence (GCS 6, E2V2M2), respiratory rate 60/min, heart rate 170/min, capillary refill time 4 s,
audible grunting with subcostal and intercostal retraction, nasal flaring, mottling, abdominal distention, normal heart sounds and the infant was born with Apgar scores of 1 at one minute and 2 at five minutes. On chest examination, ronchi were heard. On examination, the eyes, ears, nose and throat, lymph nodes, heart, abdomen, and extremities were within normal limits. On examination, bowel sounds were normal, and there was no enlargement of the liver, spleen, and distention. The diagnosis of this baby was severe asphyxia and suspected sepsis. The infant was started on nasal bubble CPAP (Continuous positive airway pressure) for respiratory system support and was evaluated with a chest radiograph and sepsis screen. The chest X-ray showed homogenous opacity in the right lower and right middle lobe suggesting pneumonia. Because there was a problem in this patient hemodynamic, the infant was started on vasopressors. The sepsis screen revealed an absolute neutrophil count of 1043/µL (neutropenia), platelet count of 126,000/µL (thrombocytopenia), immature neutrophil/total neutrophil (I/T) ratio of 0.299. Blood gas analysis showed acidosis with a pH of 7.30, Pco2 25.9 mmHg. The blood culture showed the growth of colonies with a clear appearance, uneven edges, bumpy surfaces and mucoid appearance. The examination continued with identification using the VITEK2 machine (Biomerieux, France), where R. radiobacter was identified with the antibiotic sensitivity test showing sensitivity to Levofloxacin only. The patient has been given Ampicillin 110 mg every 12 hours and Amikacin 17 mg every 8 hours, followed by Meropenem. The patient showed no clinical improvement, and at the age of 28 days, the patient died.

Discussion

R. radiobacter is a pathogen that causes tumorigenic disease in plants. This bacterium is often considered non-pathogenic, but it has been found to cause infections in a patient with the immunocompromised condition and chronic diseases in the last decade. One of the factors causing the patient to become infected with this bacterium is the use of invasive devices, especially peritoneal dialysis catheters or central venous catheters. Infection caused by R. radiobacter in children has not been reported frequently. Infection is common in pediatric patients who use medical devices such as central venous catheters. The common pathogens that cause infection in central venous catheters are staphylococci, Gram-negative bacilli and fungi. Reports of central venous catheter infection caused by R. radiobacter are rarely reported. However, several studies show this organism can cause other infections, including endocarditis, urinary tract infections and peritonitis. One of the important factors that increase the risk for R. radiobacter infection is the installation of medical devices. R. radiobacter is a Gram-negative bacillus that grows aerobically on Blood Agar and MacConkey agar media. These bacteria are motile because they have peritrichous flagella. These bacteria are catalase-positive, oxidase negative and urease-positive. In media containing higher concentrations of carbohydrates, the production of extracellular polysaccharide mucus usually appears. These bacteria have microbiological features similar to Pseudomonas, Alcaligenes and Bordetella but can easily be distinguished by biochemical tests and morphological examination of flagella. Identification of these bacteria can be made by testing the production of 3-ketolactose. If the 3-ketolactose production test cannot be carried out, an alternative test that can be used is the carbohydrate, mannitol, lactose and maltose oxidation test. Based on the phytoxic effect, bacteria are classified into three species: Agrobacterium tumefaciens, Agrobacterium rhizogenes and Agrobacterium rubi. R. radiobacter has the character of lacking tumorigenic Ti plasmids, while A. tumefaciens is a pathogen that often causes infections in humans. The species name, “radiobacter,” is of Greek origin, meaning “ray” because this group of bacteria forms a star. The mechanism of transmission of R. radiobacter in humans has not been elucidated. The earliest reports of infection caused by R. radiobacter in 1967 considered that this organism was often a contaminant and had weak pathogenic properties[5]. In a study by Plotkin, the first case of R. radiobacter infection in humans was endocarditis in a patient following a prosthetic aortic valve in 1980[6]. In adult and pediatric patients, this bacterium is associated with infections associated with the insertion of invasive devices such as CVC. In one study, it was found that more than half of R. radiobacter infections were catheter-associated bacteremia[7]. Infection is common in pediatric patients who use medical devices such as central venous catheters. The pathogens that cause infection in central venous catheters are staphylococci, Gram-negative bacilli, and fungi. Reports of central venous catheter infection
caused by R. radiobacter are rarely reported. These bacteria have low virulence. If these bacteria are identified in the patient, removing or replacing the medical device is an important part of the patient’s therapy. This bacteria are sensitive to gentamicin, ceftazidime, amikacin, carbapenems, piperacillin tazobactam, cefepime and polymyxin. There is some prevention for this infection such as removing or replacing medical devices, the appropriate antibiotic is given according to the results of the sensitivity test, minimizing the use of medical devices made of plastic, use of cuff and tunnelled CVC or CVC with impregnated chlorhexidine and silver sulfadiazine in patients, giving impregnated antimicrobial to CVC with non-cuff and non tunnelled type, considering the patient’s condition so that the frequency of CVC installation can be minimized, advise outpatient CVC patients to avoid activities that are directly related to the soil, such as gardening or repairing the house. In summary, we report a case of invasive R. radiobacter infection in a newborn infant with a history of central venous access. This case highlights a rare manifestation of R. radiobacter infection.

Conclusion
A male baby was born with severe asphyxia in the emergency department. The patient was treated by CPAP for respiratory support and got evaluated with a chest radiograph, blood culture and sepsis screen. The chest X-ray showed homogenous opacity in the right lower and right middle lobe suggesting pneumonia. The blood culture showed the growth of colonies with a clear appearance, uneven edges, bumpy surfaces and mucoid appearance. The examination continued with the VITEK2 machine (Biomerieux, France), where R. radiobacter was identified with the antibiotic sensitivity test showing sensitivity to Levofloxacin only. The infant was started on Ampicillin 110 mg every 12 hours and Amikacin 17 mg every 8 hours, followed by Meropenem. The patient showed no clinical improvement, and at the age of 28 days, the patient died.
List of abbreviation

I/T ratio : immature neutrophil/total neutrophil
GCS : Glasgow Coma Scale
CVC : Central Venous Catheter
CPAP : Continuous positive airway pressure

Acknowledgement

We want to thank Ida Sri Iswari (clinical Microbiology medical Doctor, head of Clinical Microbiology Laboratory Department Sanglah General Hospital), Ni Nyoman Sri Budayanti, Clinical Microbiologists and technicians of Clinical Microbiology Installation at Sanglah Hospital, for their support.

Funding

This work did not receive any grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict Of Interest

There are no conflicts of interest to declare by any of the authors of this study.

References

1. Wilar, R., Kumalasari, E., Suryanto, D. Y., & Gunawan, S. (2016). Risk factors for early-onset sepsis. Pediatrics sari, 12(4), 265-9.
2. Rhizobium radiobacter: A Recently Recognized Cause of Bacterial Keratitis. Nigel H. Barker. Cornea Journal. Volume 35, Number 5, May, 2016.
3. Roger G. Finch, David Greenwood, S. Ragnar Norrby, Richard J. Whitley. Antibiotic and Chemotherapy. Ninth edition. Elsevier Limited. 2010
4. Lai, C. C., Teng, L. J., Hsueh, P. R., Yuan, A., Tsai, K. C., Tang, J. L., & Tien, H. F. (2004). Clinical and Microbiological Characteristics of Rhizobium radiobacter Infections. Clinical Infectious Diseases, 38(1), 149–153. https://doi.org/10.1086/380463
5. Zaidi, A. K. M., Huskins, W. C., Thaver, D., Bhutta, Z. A., Abbas, Z., & Goldmann, D. A. (2005). Hospital-acquired neonatal infections in developing countries. Lancet, 365(9465), 1175–1188. https://doi.org/10.1016/S0140-6736(05)71881-X
6. Nazir, A. (2019). Multidrug-resistant Acinetobacter septicemia in neonates: A study from a teaching hospital of Northern India. Journal of laboratory physicians, 11(1), 23.
7. Abarca-Grau, A. M., Burbank, L. P., De Paz, H. D., Crespo-Rivas, J. C., Marco-Noales, E., Lopez, M. M., ... & Penyalver, R. (2012). Role for Rhizobium rhizogenes K84 cell envelope polysaccharides in surface interactions. Applied and environmental microbiology, 78(6), 1644-1651.
8. Sawhney, S., Naab, T., & Oneal, P. (2016). Rhizobium radiobacter infection in a 27-year-old african American woman with munchausen syndrome. Laboratory medicine, 47(3), e32-e34.
9. Juniatiningsih, A., Aminullah, A., & Firmansyah, A. (2016). Profile of microorganisms causing neonatal sepsis in the Department of Pediatrics, Cipto Mangunkusumo Hospital, Jakarta. Sari pediatrics, 10(1), 60-5.
10. Kaselitz, T. B., Hariadi, N. I., LiPuma, J. J., & Weinberg, J. B. (2012). Rhizobium radiobacter bacteremia in a neonate. Infection, 40(4), 437-439.
11. Barker, N. H., Thompson, J. M., Mullen, M. G., Weekes, M. A., Nguyen, L. N., Haynes, C. K., & Miller, D. (2016). Rhizobium radiobacter: a recently recognized cause of bacterial keratitis. Cornea, 35(5), 679-682.
12. Ponnapula, S., Swanson, J. M., Wood, G. C., Boucher, B. A., Wells, D. L., Croce, M. A., & Fabian, T. C. (2013). Treatment of Rhizobium radiobacter bacteremia in a critically ill trauma patient. Annals of Pharmacotherapy, 47(11), 1584-1587.
13. Hamer, D. H., Darmstadt, G. L., Carlin, J. B., Zaidi, A. K., Yeboah-Antwi, K., Saha, S. K., ... & Weber, M. W. (2015). Etiology of bacteremia in young infants in six countries. The Pediatric infectious disease journal, 34(1), e1.
14. Sorsa, A. (2019). Epidemiology of neonatal sepsis and associated factors implicated: observational study at neonatal intensive care unit of Arsi University Teaching and Referral Hospital, South East Ethiopia. Ethiopian journal of health sciences, 29(3).
15. Pereira, L. A., Chan, D. S. G., Ng, T. M., Lin, R., Jureen, R., Fisher, D. A., & Tambyah, P. A. (2009). Pseudo-outbreak of Rhizobium radiobacter infection resulting from laboratory contamination of saline solution. Journal of clinical microbiology, 47(7), 2256-2259.
16. Kanno, Y., Wakabayashi, Y., Ikeda, M., Tatsuno, K., Misawa, Y., Sato, T., & Yotsuyanagi, H. (2017). Catheter-related bloodstream infection caused by Kodamaea ohmeri: a case report and literature review. Journal of Infection and Chemotherapy, 23(6), 410-414.
17. Youssef, D., Youssef, I., Marrouch, T. S., & Sharma, M. (2019). Gemella endocarditis: A case report and a review of the literature. Avicenna journal of medicine, 9(4), 164.