Electronic Supplementary Material for:
Collective navigation can facilitate passage through human-made barriers by homeward migrating Pacific salmon

Connie Okasaki, Matthew L. Keefer,
Peter A. H. Westley & Andrew M. Berdahl

September 28, 2020

1 Statistical Analysis

We fit two proportional hazards (PH) models and one logistic model: these models are termed “finding,” “ladder,” and “committing” respectively. Each model was fit for Chinook and sockeye separately, since we expected inter-species differences in most or all coefficients. The PH models were fit in R [7] using the \texttt{phreg} function from the eha package [1]. All models included daily counts of conspecifics. Since counts are available for each ladder, we used ladder-specific counts for the “ladder” and “commit” processes; however since a fish might approach either ladder upon entering the tailrace we used dam-level counts for the “finding” process.

All models controlled for temperature [3], dam identity, and a binary diel effect [4]. For the finding and committing processes we included a spill effect, but since fish cannot detect spill from within the fishway, no spill effect was included in the ladder models.

For all models we included a binary covariate (\texttt{middle}) indicating whether a fish’s tailrace entry was in the middle (2nd and 3rd) quartiles. This variable controlled for the effect of run timing on fish condition and passage speed, since timing is highly correlated with density (very high densities near the modal date) and might otherwise confound our analysis.

For Chinook we included a binary variable (\texttt{spring}) indicating whether a fish was labeled spring- or summer-run. For sockeye we included a three-level factor variable indicating whether a fish was sourced to the Wenatchee, the Okanogan, or to any other site. The Wenatchee and Okanogan tributaries each accounted for about a third of the sockeye in our sample.

Two of our predictors — \texttt{temperature} and \texttt{day} — had strong prior evidence from the literature [3, 4]. To reduce the number of variables being selected and the risks associated with model dredging, we included these variables a priori. The remainder of the predictors we selected using \texttt{AICc}. For consistency, however, we wished to fit structurally identical models to each set of species/process submodels. We examined the \texttt{AICc} for each set of models and
subjectively chose what seemed to be the best-fitting overall model. Due to the extremely long tails of the count predictor, we then considered adding either an un-transformed or a log-transformed count variable to the best-fitting null model. In most cases there was no discernible difference in AICc between the two, but in several cases the un-transformed variable was selected. For consistency, despite the long tails, we used the un-transformed version to conduct the remainder of our analysis.

The classical form of the PH model uses a partial likelihood function and does not specify the baseline hazard function, but in order to simulate from our bootstrapped distributions we assumed a constant baseline hazard $\lambda_0(t) = \lambda_0$. This was visually consistent with the empirical hazard functions. However, since there is a small but non-trivial minimum time to complete each task, the empirical hazard functions are zero for a short period of time. To account for this discrepancy, we truncated each fish’s timeline by a constant amount (per model) such that the minimum passage time was less than 1 minute, effectively assuming a piecewise constant baseline hazard function with the first section fixed at zero hazard. In several models there were outlier individuals detected as passing through the fishway in as little as 2 minutes. Since such passage times are implausible (fast passage times are ≈ 1 hour), we attribute this to data error and remove all records which show passage in < 10 minutes. This approach conservatively includes several extraordinarily fast passage times of ≈ 30 minutes.

For each model, we dropped any fish with censored measurements. Censoring is a standard concern for time-to-event models, and occurs when an event is not observed to occur because an individual leaves observation. This could occur when a fish passed but was not detected by a telemetry antenna, or because a fish died in a tailrace. Incorrect assumptions regarding censoring are known to bias inference in PH models [5]. We did not account for censoring because, for each system, we used essentially only two measurements for each fish: “entry” and “exit.” A censoring analysis would require follow-up measurements between entry and exit to verify that an individual is still being detected but has not yet exited. Although the aerial tailrace antenna misses a large number of measurements, the underwater fishway antennas miss far fewer. Only a very small portion ($\approx 1\%$) of fish are observed to enter but not exit the fishway. Since a very similar portion of fish are observed to exit but not enter, we attribute this censoring almost entirely to randomly missed telemetry detections rather than mortality. Since individuals were therefore dropped from the dataset independently of hazard we lose little information and incur very little bias in this manner.

Finally, we conducted a parametric bootstrap test on the count coefficient to detect density effects, using our best-fitting null models. Since these models do not contain reverse causality, they provide valid, unbiased fits under the null hypothesis. To each simulation, we fit a model with an effect of count. Assuming our null model is correctly specified, comparing our fitted count coefficients to these null distributions provide valid p-values to test for density effects. We do not Bonferroni correct these p-values because by the nature of our split models a single false-positive result is not statistically convincing, as we note when discussing our two marginally significant results. Instead we demand consistency between matching models, and indeed we found that several models were consistently highly significant (and would remain so even with a Bonferroni correction).

To ensure that our null models were well-specified, we conducted standard model diagnostics. For our PH models we tested the proportional hazards assumption using the
The `cox.zph` function in the `survival` package [8], applied to the partial-likelihood model fits. Since the `cox.zph` function tests the proportional hazards assumption for each covariate as well as globally for each model we made 36 tests. Using a Bonferroni correction, this test identified strong differences (corrected $p < 10^{-5}$) in baseline hazard functions between dams, likely caused by differences in the layout of the monitoring arrays. We thus split our models by dam. Retesting these sub-models, we made an additional 59 tests. These tests caused us to split our Chinook ladder models by run ($p < 10^{-5}$) and to split our `sockeye.ladder.TD` models by site ($p < 0.005$; East (TDE) vs. North (TDN)). Since all of these were individual-level variables, we could not assign interactions with time, since this could (and did) result in predictions of effectively infinite survival time. We also added interaction effects between temperature and time ($p < 0.001$) in all of the Chinook ladder models. Finally we made an additional 41 tests after conducting this second level of model-splitting, with no significant results. After splitting, the Chinook ladder models each contained between 330 and 440 fish. All other models contained over 500 fish, with the exception of `sockeye.ladder.TDN` which had only 59. Our bootstrap simulations frequently produced ill-conditioned fits for this model, and we subsequently removed it from our analysis. A diagram of our analysis can be found in Figure 1.

For the `commit` models we fit one logistic regression model per species, without splitting by dam. We plotted binned residuals from the null model, which motivated the addition of a threshold variable (count ≤ 150) to the Chinook model, due to substantially higher-than-expected commit rates for these low-density fish. Of these 89 individuals, 88 of them were detected at The Dalles’s east ladder. Elevated commit probability was not observed at TDE at higher densities.

Although we hypothesized positive density effects, we conducted two-sided tests in all cases to allow for the possibility of negative effects (e.g. overcrowding in the fishway).

Because of the reverse causality in our system, the null modeling approach we took was the most reliable way we knew to detect a density effect. However, this approach provides only p-values, and not confidence intervals for the true magnitude. In order to quantify magnitude, we conducted another parametric bootstrap to produce 95% confidence intervals for the count coefficient. To produce these intervals we sampled from the full model (i.e. the model with a count coefficient) and fit to these simulations new count coefficients. We calculate the confidence intervals using the hybrid method, recommended in [2] for use when estimating regression coefficients in Cox models. In all cases, the bootstrapped distribution was symmetric and centered on the fitted coefficient. This secondary bootstrap also roughly reproduced the p-values of our primary bootstrap. These two metrics lend credibility to this bootstrap, despite possible biases that might enter due to reverse causality. Thus, we also report approximate 95% confidence intervals for the magnitude of the density coefficient, calculated from these bootstrapped distributions. All bootstraps included >2000 simulations.

To speed up calculation we did bootstrap simulations in parallel using 24 cores of a 48 core Windows compute server. We parallelized using the R package `parallel` [7] and set our random seeds using [6]’s method.
Figure 1: A diagram of the models we fit. Originally we planned to fit the 6 models shown in blue on the left. However, due to model diagnostic violations (specifically violations detected by \texttt{cox.zph}) we were forced to split further to allow baseline hazard functions to differ between factors. These more specific final models are shown in red. Our final set of models which passed all model diagnostics are shown in green.
2 Model Summaries

Below, we have included the model output for our final selected models. For the three models where a highly significant density effect was detected we include that density effect. Otherwise we include the best-fitting null model.

Find Chin JD

```r
Call:
phreg(formula = Surv(tstart, tstop, success) ~ day + middle +
      spring + temp.c + spill + chin, data = find.chin.JD.trunc,
      dist = "pch")

Covariate       W.mean  Coef Exp(Coef)  se(Coef) Wald p
day              0.577  2.245  9.445      0.134  0.000
middle
      FALSE  0.375  0   1          (reference)
      TRUE  0.625 -0.523  0.593     0.075  0.000
spring
      FALSE  0.364  0   1          (reference)
      TRUE  0.636  0.044  1.045     0.113  0.697
temp.c          -0.297  0.616  1.852     0.120  0.000
spill           0.682  0.204  1.227     0.108  0.058
chin            -0.048  0.559  1.748     0.090  0.000

Events     804
Total time at risk  5255.9
Max. log. likelihood  -1997.2
LR test statistic   632.58
Degrees of freedom  6
Overall p-value      0
```
Find Chin TD

Call:
phreg(formula = Surv(tstart, tstop, success) ~ day + middle +
 spring + temp.c + spill + chin, data = find.chin.TD.trunc,
 dist = "pch")

Covariate	W.mean	Coef	Exp(CoeF)	se(CoeF)	Wald p	
day		0.575	2.889	0.187	0.000	
middle						
FALSE	0.484	0	1		(reference)	
TRUE	0.516	0.155	1.168	0.079	0.051	
spring						
FALSE	0.345	0	1		(reference)	
TRUE	0.655	0.654	1.923	0.164	0.000	
temp.c		-0.322	1.299	3.667	0.191	0.000
spill		0.777	-0.075	0.928	0.191	0.695
chin		0.093	0.324	1.383	0.082	0.000

Events 751
Total time at risk 6445.7
Max. log. likelihood -2030.9
LR test statistic 669.09
Degrees of freedom 6
Overall p-value 0
Fishway Chin JD Spring

Call:
phreg(formula = Surv(tstart, tstop, success) ~ day + site.JDN +
 temp.c + temp.ct, data = ladder.chin.JD.spring.trunc, dist = "pch")

 Covariate W.mean Coef Exp(Coef) se(Coef) Wald p
 day 0.755 2.945 19.002 0.382 0.000
site.JDN
 FALSE 0.738 0.000 1.000 (reference)
 TRUE 0.262 0.203 1.225 0.102 0.047
temp.c -0.578 0.296 1.344 0.154 0.055
temp.ct -2.409 -0.003 0.997 0.012 0.798

Events 439
Total time at risk 1707
Max. log. likelihood -935.96
LR test statistic 198.41
Degrees of freedom 4
Overall p-value 0
Fishway Chin JD Summer

Call:
phreg(formula = Surv(tstart, tstop, success) ~ day + site.JDN +
 temp.c + temp.ct, data = ladder.chin.JD.summer.trunc, dist = "pch")

Covariate	W.mean	Coef	Exp(Coef)	se(Coef)	Wald p
day	0.797	2.360	10.594	0.282	0.000
site.JDN	FALSE	0.436	1.000	1	(reference)
	TRUE	0.564	1.771	0.110	0.829
temp.c	0.292	-0.651	0.521	0.249	0.009
temp.ct	0.619	0.437	1.548	0.048	0.000

Events 345
Total time at risk 1101.5
Max. log. likelihood -681.38
LR test statistic 128.25
Degrees of freedom 4
Overall p-value 0
Fishway Chin TD Spring

Call:
phreg(formula = Surv(tstart, tstop, success) ~ day + site.TDN +
 temp.c + temp.ct, data = ladder.chin.TD.spring.trunc, dist = "pch")

Covariate	W.mean	Coef	Exp(Coef)	se(Coef)	Wald p
day	0.589	2.783	16.161	0.257	0.000
site.TDN					
FALSE	0.820	0	1	1	(reference)
TRUE	0.180	0.108	1.114	0.130	0.405
temp.c	-0.520	-0.342	0.711	0.191	0.074
temp.ct	-2.105	0.063	1.065	0.021	0.003

Events 415
Total time at risk 1115.4
Max. log. likelihood -659.5
LR test statistic 331.65
Degrees of freedom 4
Overall p-value 0
Fishway Chin TD Summer

Call:

```r
phreg(formula = Surv(tstart, tstop, success) ~ day + site.TDN +
       temp.c + temp.ct, data = ladder.chin.TD.summer.trunc, dist = "pch")
```

Covariate	W.mean	Coef	Exp(Coef)	se(Coef)	Wald p
day	0.784	2.101	8.172	0.310	0.000
site.TDN					
FALSE	0.671	0	1	1	(reference)
TRUE	0.329	-0.224	0.799	0.127	0.076
temp.c	0.234	0.337	1.401	0.260	0.196
temp.ct	0.658	0.048	1.049	0.047	0.309

Events 332
Total time at risk 1017.7
Max. log. likelihood -654
LR test statistic 99.77
Degrees of freedom 4
Overall p-value 0
Find Sock JD

Call:
phreg(formula = Surv(tstart, tstop, success) ~ day + middle +
 wenatchee + okanogan + temp.c + spill, data = find.sock.JD.trunc,
 dist = "pch")

Covariate	W.mean	Coef	Exp(Coef)	se(Coef)	Wald p
day	0.459	1.951	7.034	0.111	0.000
middle					
FALSE	0.461	0	1		(reference)
TRUE	0.539	-0.211	0.810	0.084	0.012
wenatchee	0.187	0.381	1.463	0.114	0.001
okanogan	0.456	0.195	1.215	0.094	0.039
temp.c	0.220	0.668	1.950	0.113	0.000
spill	0.546	-0.456	0.634	0.143	0.001

Events 609
Total time at risk 1836.4
Max. log. likelihood -1067.7
LR test statistic 426.88
Degrees of freedom 6
Overall p-value 0
Find Sock TD

Call:
phreg(formula = Surv(tstart, tstop, success) ~ day + middle +
 wenatchee + okanogan + temp.c + spill, data = find.sock.TD.trunc,
 dist = "pch")

Covariate	W.mean	Coef	Exp(Coef)	se(Coef)	Wald p
day	0.589	2.703	14.926	0.190	0.000
middle					
FALSE	0.525	0	1		(reference)
TRUE	0.475	0.122	1.129	0.082	0.137
wenatchee	0.195	0.400	1.491	0.112	0.000
okanogan	0.432	0.131	1.140	0.094	0.164
temp.c	0.301	0.759	2.135	0.221	0.001
spill	0.677	-0.269	0.765	0.219	0.221

Events 616
Total time at risk 3905.7
Max. log. likelihood -1524.1
LR test statistic 459.16
Degrees of freedom 6
Overall p-value 0
Fishway Sock JD

Call:
phreg(formula = Surv(tstart, tstop, success) ~ day + site.JDN + temp.c, data = ladder.sock.JD.trunc, dist = "pch")

Covariate	W.mean	Coef	Exp(Coef)	se(Coef)	Wald p
day	0.786	1.533	4.634	0.182	0.000
site.JDN					
FALSE	0.676	0	1	1	(reference)
TRUE	0.324	0.743	2.102	0.082	0.000
temp.c	0.300	0.214	1.239	0.179	0.231

Events 605
Total time at risk 2347.6
Max. log. likelihood -1320.5
LR test statistic 209.60
Degrees of freedom 3
Overall p-value 0
Fishway Sock TD East

Call:
phreg(formula = Surv(tstart, tstop, success) ~ day + temp.c,
 data = ladder.sock.TDE.trunc, dist = "pch")

Covariate	W.mean	Coef	Exp(Coef)	se(Coef)	Wald p
day	0.784	1.199	3.315	0.156	0.000
temp.c	0.219	0.872	2.391	0.156	0.000

Events 553
Total time at risk 1871.9
Max. log. likelihood -1169
LR test statistic 116.59
Degrees of freedom 2
Overall p-value 0
Commit Chin

Call:
glm(formula = success ~ day + site + spring + temp.c + thresh +
 chin.specific, family = binomial, data = prob.chin)

Deviance Residuals:
 Min 1Q Median 3Q Max
 -1.7907 -1.0415 -0.6673 1.1420 2.1301

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.03122 0.28168 -0.111 0.91176
 day -0.04247 0.23845 -0.178 0.85863
siteJDS -1.02322 0.17067 -5.995 2.03e-09 ***
 siteTDE 0.04591 0.16864 0.272 0.78544
 siteTDN 0.11066 0.28167 0.393 0.69442
springTRUE -0.31638 0.22854 -1.384 0.16625
 temp.c -1.22897 0.26553 -4.628 3.68e-06 ***
threshTRUE 1.50867 0.28215 5.347 8.94e-08 ***
 chin.specific 0.75259 0.21903 3.436 0.00059 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 2129.1 on 1554 degrees of freedom
Residual deviance: 1898.2 on 1546 degrees of freedom
AIC: 1916.2

Number of Fisher Scoring iterations: 4
Commit Sock

Call:
glm(formula = success ~ day + site + temp.c, family = binomial,
 data = prob.sock)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.7249 -1.1053 0.7476 0.7485 1.3937

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.911939 0.243638 3.743 0.000182 ***
day 0.319363 0.202688 1.576 0.115110
siteJDS -1.401290 0.183263 -7.646 2.07e-14 ***
siteTDE -0.098865 0.180317 0.548 0.583497
siteTDN -0.313573 0.375813 -0.834 0.404064
temp.c -0.006558 0.314959 -0.021 0.983387

--
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1564.5 on 1224 degrees of freedom
Residual deviance: 1457.1 on 1219 degrees of freedom
AIC: 1469.1

Number of Fisher Scoring iterations: 4
References

[1] Göran Broström and Maintainer Göran Broström. Package ‘eha’, 2019.

[2] Deborah Burr. A comparison of certain bootstrap confidence intervals in the cox model. *Journal of the American Statistical Association*, 89(428):1290–1302, 1994.

[3] Christopher C Caudill, Matthew L Keefer, Tami S Clabough, George P Naughton, Brian J Burke, and Christopher A Peery. Indirect effects of impoundment on migrating fish: temperature gradients in fish ladders slow dam passage by adult chinook salmon and steelhead. *PloS one*, 8(12):e85586, 2013.

[4] Matthew L Keefer, Christopher C Caudill, Christopher A Peery, and Mary L Moser. Context-dependent diel behavior of upstream-migrating anadromous fishes. *Environmental Biology of Fishes*, 96(6):691–700, 2013.

[5] David G Kleinbaum and Mitchel Klein. *Survival analysis*, volume 3. Springer, 2010.

[6] Pierre L’ecuyer, Richard Simard, E Jack Chen, and W David Kelton. An object-oriented random-number package with many long streams and substreams. *Operations research*, 50(6):1073–1075, 2002.

[7] R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria, 2019.

[8] Terry M Therneau and Thomas Lumley. Package ‘survival’. *Survival analysis Published on CRAN*, 2:3, 2014.