Ionic Liquid Based Electrolytes for Dye Sensitized Solar Cells
Andreas Hofmann*, Felix Kiliani*, Thomas Hanemann*,**

* Karlsruher Institut für Technologie, Institut für Angewandte Materialien - Werkstoffprozesstechnik, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Andreas Hofmann, e-mail: andreas.hofmann2@kit.edu, Tel. +49 (0)721-608-25920
** Universität Freiburg, Institut für Mikrosystemtechnik (IMTEK), Freiburg, Germany

Summary
- New ionic liquid based electrolyte possesses better performance than commercial ionic liquid based one at 25°C
- Improved stability up to 600 h at 65°C demonstrated

Motivation
Since the invention of the dye sensitized solar cell almost 20 years ago this very promising energy harvester suffers from the limited efficiencies around 12% considering lab-size cells and reduced long-term stability under environmental conditions. Especially the presence of volatile electrolyte components with considerable vapour pressure under operation conditions (20-80°C) during a sunny day can cause a pronounced negative impact on the device sealing stability. One possible solution to overcome the electrolyte volatility is the use of iodide-based ionic liquids (IL) in combination with low vapour pressure solvents like propylene carbonate (PC). This mixture enables a low electrolyte viscosity which ensures a high ionic conductivity according to the Walden rule established in electrolyte development for lithium-ion-batteries.

General electrolyte features
- High ionic conductivity
- Low viscosity (mPas-range)
- Good solubility for iodine enabling I_3^- complex
- Low vapour pressure under operation conditions (20-80°C)
- Long-term stability at 80°C

Materials and Methods
- Reference electrolyte: IoLiLyte SP-163:
 - 0.60 M 1-Butylmethylimidazolium iodide (BMIM-I)
 - 0.03 M Iodine
- Additives:
 - 0.10 M Guanidinium thiocyanate
 - 0.50 M 4-tert-butylpyridine
- Solvent mixture: 85% Acetonitrile (bp.: 81°C)
 - 15% Valeronitrile (bp.: 139°C)

New electrolytes:
- 1-Butylmethylimidazolium iodide (BMIM-I) or 1-Propylmethylimidazolium iodide (PMIM-I)
- Iodine
- Additives: same as in reference
- Solvent: Propylene carbonate (PC) (bp.: 240°C)

Investigations on:
- Viscosity
- Ionic conductivity
- Functional tests in commercial DSSC at different temperatures

Results
- Electrolyte viscosity
 - All components possess a higher viscosity than the reference electrolyte, especially at low temperatures
 - Increasing ionic liquid content increases viscosity

- Electrolyte conductivity
 - Increasing ionic liquid content increases conductivity
 - PMIM-I induces higher conductivity than BMIM-I
 - Conductivity at 80°C comparable to reference at 60°C

- Functional tests in commercial DSSC @Solaronix
 - 25°C and 65°C: New electrolyte exhibits higher efficiency than commercial IL-based system
 - 65°C: New electrolyte shows reduced long-term stability > 600h

Conclusions
- Viscosity and ionic conductivity increases with IL content
- Molecular structure of the IL influences conductivity
- New electrolyte composition with improved DSSC efficiencies even at elevated temperatures found

Acknowledgements
We gratefully acknowledge financial support from the Baden-Württemberg Stiftung and A. Hinsch (ISE) for fruitful discussions.