The effect of CYP1A2 gene polymorphism on the metabolism of theophylline

SHIJUAN XIONG and LINGLING LI

1Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002; 2Department of Pharmacy, Chengdu Women and Children's Center Hospital, Chengdu, Sichuan 610091, P.R. China

Received July 12, 2017; Accepted September 18, 2017

DOI: 10.3892/etm.2017.5396

Abstract. This aim of the study was to investigate the effect of CYP1A2 gene polymorphism on the metabolism of theophylline in minority and Han nationality. A total of 50 cases of Han (Han group) and 50 minority nationalities (ethnic groups) treated with theophylline were selected for the study. The genotype and allele frequencies of the two groups of CYP1A2 gene, G-3113A and G-3860A, were compared to determine the rate of theophylline clearance. The results showed that there was no significant difference in the concentration of the homeostasis and the rate of the theophylline removal rate (P>0.05). There was no significant difference in the genotype and allele frequencies of the CYP1A2 gene, G-3113A and G-3860A apolymorphic site. This study employed a logarithm to determine theophylline clearance in order to correlate it with the normal distribution. The results showed that the theophylline clearance of the two groups of CYP1A2 G-3113A gene loci A allele carriers (AA+GA genotype) was significantly lower than that of the G allele carriers (GG genotype), and a significant difference between the groups was identified (P<0.05). There was no significant difference in the theophylline clearance rates in the two groups for the CYP1A2 gene, G-3860A apolymorphic site (P>0.05). Compared to the GG genotype of the CYP1A2 gene, the G-3113A site AA and GA genotype patients had a low clearance rate in the theophylline, whereas there was no correlation between teh genotypes of the CYP1A2 gene, G-3860A and the rate of theophylline clearance.

Introduction

Cytochrome P450 (cytochrome P450, CYP450), which is commonly found in organisms, is also known as monooxygenase or mixed functional enzymes, which belong to a group of functional and structurally related superfamily genes encoding heme enzymes. Since the carbon monoxide complex and the reduced cytochrome P450 have the same absorption peak at 450 nm, it is known as CYP450 (1,2). CYP450 plays a key role in the metabolism of exogenous and endogenous substances. Of more than 300 identified P450 isozymes, 2E1 (CYP1A2, CYP2E1) and P4501A2 in chemical carcinogenesis play a critical role, and are classified as ‘toxic’ isoenzyme (3-5). The content of CYP1A2 in the liver is relatively high, carcinogens such as amino acids, aflatoxin, toxins and aromatic compounds are metabolized by CYP1A2 and eventually produce carcinogenic substances. It has been observed that many drugs are metabolized by CYP1A2 (6-8). Thus, there are some drugs involved in the metabolic process and the role of individual differences in the key factors, that is, the activity of CYP1A2 in vivo differences between individuals. The aim of the present study was to investigate the genotype frequencies of G-3113A and G-3860A loci and the correlation between allele frequencies and theophylline metabolism in CYP1A2 gene of 50 cases of Han and 50 minority nationalities.

Materials and methods

Subjects and groups. A total of 50 cases of Han (Han group) and 50 cases of minorities (ethnic groups) were enrolled in the hospital between November 2015 and May 2016.

Inclusion criteria. Criteria for inclusion were: Patients with bronchial asthma or chronic obstructive pulmonary emphy-sema; aged, 20-60 years, with a weight of 40-70 kg. Patients who actively cooperate with the study and signed informed consent were included in the study. The study was approved by the Ethics Committee of Guizhou Provincial People's Hospital.

Exclusion criteria. Patients with severe liver and kidney disease, patients with short-term use of theophylline on the metabolism, with severe mental illness, pregnant or lactating women, or patients who refused to cooperate with the researchers were excluded.

Research methods

Clinical specimen collection. Blood samples were collected via the elbow vein as the blank blood sample. Patients were treated with aminophylline solution i.v.gtt 250 mg q.d. x10 days, after which the blood samples were collected and
preserved under fasting conditions. Blood samples were placed in EDTA anticoagulant, centrifuged for 10 min at 1,610 x g, and blood cells and plasma were separated and stored at -80°C in a refrigerator for subsequent use.

Results

Comparison of characteristic data between two groups. According to the results of the survey, there were no significant differences (P>0.05) between the Han nationality and the ethnic patients with regard to sex, age, weight, smoking status and disease. Thus, the data were comparable (Table I).

Comparison of steady-state serum theophylline concentration and theophylline clearance rate between the two groups. The steady-state serum theophylline concentration used for Han subjects was 3.52±0.46 mg/l, while that for the minority group was 3.48±0.48 mg/l. The difference between the two groups was not statistically significant (P>0.05). The theophylline clearance rate for the Han subjects was 0.058±0.010, while that for the minority group was 0.059±0.009. The difference between the two groups was not statistically significant (P>0.05) (Table II).

Comparison of genotype distribution of G-3113A locus of CYP1A2 gene between the two groups. The frequencies of CYP1A2, GA and GG genotypes were 82, 16 and 2% in the G-3113A loci of Han subjects, respectively. The frequency of A alleles was 90% and the frequency of G alleles was 10%. For the minority groups of subjects with CYP1A2 G-3113A gene AA, GA and GG genotype frequencies were 80, 18 and 2%, respectively. The A allele frequency was 89% and G allele frequency was 11% for the two groups. The genotype and allele frequencies were not significantly different (P>0.05) (Table III).

Comparison of genotype distribution of the CYP1A2 gene G-3860A locus between the two groups. The frequencies of AA, GA and GG genotypes of the CYP1A2 gene in Han subjects were 46, 44 and 10%, respectively. The frequency of A allele was 68% and that of G allele was 32% for G-3860A. By contrast, the minority groups of subjects CYP1A2 G-3860A gene AA, GA and GG genotype frequencies were 48, 42 and 10%, respectively, while the A allele frequency was 69% and the G allele frequency was 31% for the two groups. The genotype and allele frequencies were not significantly different (P>0.05) (Table IV).

Correlation between the genotype of G-3113A locus and theophylline clearance rate of CYP1A2 gene in the two groups. In this study, logarithmic methods were used for theophylline clearance to make it more consistent with the normal distribution. The results showed that there were significant differences in the number of theophylline clearance (P<0.05) in the G-3113A locus of the CYP1A2 gene in the Han nationality group and the ethnic group (Table V).

Correlation between CYP1A2 gene G-3113A allele and theophylline clearance in the two groups. The number of theophylline clearance for the G-3113A locus A (AA+GA genotype) of the CYP1A2 gene of the Han group was -1.32±0.10. The number of theophylline clearance for the G allele (GG genotype) was -1.32±0.06. There was a significant difference between the two groups (P<0.05). The number of theophylline clearance of the CYP1A2 gene G-3113A locus A allele (AA + GA genotype) was -1.22±0.10, while the number for the G allele (GG genotype) was -1.33±0.08. There was a significant difference between the two groups (P<0.05) (Table V).
Logarithmic methods were used for theophylline clearance to make it more consistent with the normal distribution. The results showed that there was no significant difference in the selectivity of theophylline corresponding to the genotype of the \(\text{CYP1A2} \) gene G-3860A in the Han nationality and ethnic groups (\(P>0.05 \)) (Table VII).

Discussion

The \(\text{CYP1A2} \) gene is located on human chromosome 15 and contains 7 exons and 6 introns. The expression of \(\text{CYP1A2} \) mRNA and protein in liver was 15- to 40-fold higher than that between individuals, and the activity of \(\text{CYP1A2} \) in females was significantly lower than that in males (9-11). Differences between species can also lead to differences in \(\text{CYP1A2} \) activity. Relevant reports found that the \(\text{CYP1A2} \) activity of Africans and Asians is significantly lower than occidental individuals, for example, the \(\text{CYP1A2} \) activity of Swedish is 1.5-fold higher than that of Korean patients (12). In addition, \(\text{CYP1A2} \) activity among individuals is also affected by environmental factors, for example, oral contraceptives can cause a decrease in \(\text{CYP1A2} \) activity, while the consumption of cruciferous vegetables, smoking and the use of omeprazole can cause increased activity of \(\text{CYP1A2} \).

However, the difference in \(\text{CYP1A2} \) from 35 to 75% was due to genetic factors. At present, 41 \(\text{CYP1A2} \) alleles and corresponding mutants have been identified. Of these, more studies have been conducted on \(\text{CYP1A2}^*1\text{C}, *1\text{D}, *1\text{E} \) and \(*1\text{F} \) (13,14). \(\text{CYP1A2}^*1\text{C} \) was able to reduce the effect of cigarettes on \(\text{CYP1A2} \) activity in smokers because it reduced the expression level of the enzyme. However, \(\text{CYP1A2}^*1\text{F} \) can increase the effect of certain inducing substances on \(\text{CYP1A2} \) activity. There is a difference in the frequency of alleles between different ethnicities. The \(\text{CYP1A2}^*\text{IC} \) mutation frequency in the Chinese population is 22%, while that in the Japanese population is 23%. The \(\text{CYP1A2}^*1\text{K} \) mutation frequency in the Saudi Arabian population is 3.6%, 3% in the Ethiopian population and 0.5% in the Spanish population. \(\text{CYP1A2}^*3, \text{*4}, \text{*7}, \text{*11}, \text{*15} \) and \(*16 \) reduce the activity of \(\text{CYP1A2} \) in the identified \(\text{CYP1A2} \) allele mutations, but not in the remaining \(\text{CYP1A2} \). There is no definite report on
the association between allele polymorphism and enzyme activity (15, 16).

The serum concentration of theophylline used for relieving asthma was 10-20 mg/l, bid, the dose is generally 200 to 400 mg (17). However, the use of theophylline is more likely to produce some side effects and the anti-asthmatic effect of β-agonists is more rapid and effective than theophylline. Therefore, in the GOLD guidelines, theophylline is already a second-line preparation for COPD asthma treatment (18). A recent study found that low concentrations of theophylline (5-10 mg/l) can produce anti-inflammatory and immunomodulatory effects, with <5 mg/l concentration of theophylline playing a role in enhancing hormone sensitivity (19). Previous findings have shown that the daily administration of 250-375 mg of theophylline and 40 g of budesonide compared to only 800 mg dose of budesonide administered for moderate asthma does not yield a significant difference, even though the combination of theophylline and budesonide is cost-effective (19).

Table III. Comparison of genotype distribution of G-3113A locus of CYP1A2 gene between the two groups.
Groups

Han (n =50)
Ethnic (n =50)
χ²
P-value

Table IV. Comparison of genotype distribution of G-3860A locus of CYP1A2 gene between the two groups.
Groups

Han (n =50)
Ethnic (n =50)
χ²
P-value

Table V. Correlation between the genotype of G-3113A locus and theophylline clearance rate of CYP1A2 gene in the two groups.
Groups

Han
Ethnic

Table VI. Correlation between CYP1A2 gene G-3113A allele and theophylline clearance in the two groups.
Groups

Han
Ethnic
observed that the duration of acute exacerbation of COPD patients and the duration of acute attack were significantly higher than those of placebo in patients with COPD compared with placebo at a dose of 100 mg twice daily. By contrast, the effect of treatment with 100 mg of theophylline twice a day to reach the number of body concentration remains to be determined. Additionally, use of this dose as a target in vivo plasma concentration has not been previously reported. Previous findings have shown that for a theophylline dose of 250 mg twice daily, steady-state plasma concentration of theophylline was 6.1 mg/l. However, conclusions of that study are discrepant from our study, which showed that the theophylline metabolism of Han and ethnic minorities was slower than that of occidental populations. Thus, the prescribed dose should be less than that for occidental populations (21).

It can be seen that the drug concentration of theophylline between different ethnicities is quite different and appropriate attention should be paid in the use of theophylline between different regions and ethnic groups. In this study, the difference between the scavenging rates of the Han population and the minorities was not found, and the effect of body weight on the plasma concentration of theophylline was not excluded. The metabolism of theophylline in vivo may be more susceptible to the clearance rate of theophylline. The genotype and allele frequencies between the G-3113A and G-3860A loci in CYP1A2 gene between Han and minority groups in this study.

In this study, the frequency of G-3113A mutation in the Chinese Han and ethnic minority groups was approximately 10 and 11%, respectively. However, in the experiment on gene polymorphism in the Korean and Swedish population, the mutation frequency of the G-3113A locus was 2.7% in the population and 2.3% in the Swedish population (28), which was much lower than the conclusion of the study. In this study, it was observed that the clearance rate of theophylline was slower than that of the G-3113A mutation, which may explain the metabolism of theophylline in the Chinese population. However, this conclusion requires a large number of samples from different ethnicities to be studied.

By studying the clearance rate of theophylline and the mutation of the G-3860A function site, we found that the clearance rate of theophylline did not affect the mutation between the genotypes. The conclusion is different from other reports. Japanese researchers have observed the relationship between the plasma concentration of theophylline and the mutation of the G-3860A site of the CYP1A2 gene in asthmatic patients (29). It has been observed that the selenium clearance of G-3860A site was decreased. A decrease was observed for Korean workers in the rate of CYP1A2-3860 (G/A) G-A theophylline metabolism of 1,3-dimethyluric acid. However, it has been reported that the level of theophylline clearance between G-3860A genotypes is similar, and our findings also reveal that the metabolism of theophylline in vivo is not affected by the genetic polymorphism of the locus. The production of such differences may be related to racial differences, or because the sample size is slightly smaller (30-32). Therefore, the ability of such sites to affect the metabolism of theophylline requires more samples and studies between different ethnicities.

Groups	Genotype	Lg (1,3 DU/TP)	χ²	P-value
Han	AA	-1.45±0.16	0.775	>0.05
	GA	-1.38±0.24		
	GG	-1.42±0.19		
Ethnic	AA	-1.40±0.19	1.450	>0.05
	GA	-1.42±0.20		
	GG	-1.43±0.22		

Groups	Allele	Lg (1,3 DU/TP)	χ²	P-value
Han	AA+ GA	-1.40±0.20	1.022	>0.05
	GG	-1.42±0.19		
Ethnic	AA+ GA	-1.41±0.20	1.016	>0.05
	GG	-1.43±0.22		
In conclusion, the results have shown that there was no significant difference between the *CYP1A2* gene G-3113A and G-3860A genotypes in the Han and ethnic minorities. Compared with the GG genotype, the clearance rate of the main body of the *CYP1A2* gene in the G and 3113A loci of the Han and ethnic minorities was decreased. The clearance rate of theophylline in the genotype of the *CYP1A2* gene G-3860A in the Han and ethnic minorities was decreased, with significant differences.

References

1. Donzelli M, Derungs A, Serratore MG, Noppen C, Necz L, Krähenbühl S and Haschke M: The baseline cocktail for simultaneous phenotyping of human cytochrome P450 isoenzymes in plasma, saliva and dried blood spots. Clin Pharmacokinet 53: 271-292, 2014.
2. Kennedy WK, Jann MW and Kutcher EC: Clinically significant drug interactions with atypical antipsychotics. CNS Drugs 27: 1021-1048, 2013.
3. Borba MA, Melo-Neto RP, Leitão GM, Castelletti CH, Lima-Filho IL and Martins DB: Evaluating the impact of missense mutations in CYP2D6 and CYP2D6*14A: Does it compromise tamoxifen metabolism? Pharmacogenetics 17: 573-582, 2016.
4. Werk AN, Lefeldt S, Bruckmuller H, Hemmrich-Stanisik G, Frackowiak RS, Roos M, Küchle C, Steubl D, Schmaderer C, Bässler JH, et al.: Identification and characterization of a defective CYP3A4 genotype in a kidney transplant patient with severely diminished tacrolimus clearance. Clin Pharmacol Ther 95: 416-422, 2014.
5. Chauldury AS, Prasad B, Shariraka Y, Fohner A, Finkelstein DL, Fan Y, Wang S, Wu G, Akkili E, Sim SC, et al.: The CYP2C19 intron 2 branch point SNP is the ancestral polymorphism contributing to the poor metabolizer phenotype in livers with CYP2C19*3 and CYP2C19*2 alleles. Drug Metab Dispos 43: 1226-1235, 2015.
6. Fleeman N, McLeod C, Bagust A, Beale S, Boland A, Dundur Y, Jorgensen A, Payne K, Firlough M, Pushpakom S, et al.: The clinical effectiveness and cost-effectiveness of testing for cytochrome P450 polymorphisms in patients with schizophrenia treated with antipsychotics: A systematic review and economic evaluation. Health Technol Assess 14: 1-157, 2010.
7. de Brito RB, de Carvalho Araújo L, Diniz MJA, de Castro Georg R, Nabout JC, Vianelo RP, da Silva Santos R, da Silva Cruz AH and Ghedini PC: The CYP3A41G genotype and enzyme activity between Swedes and Koreans of European descent. BMC Med 4: 21, 2016.
8. Pedersen RS, Damkier P, Christensen MM and Brosen K: Dipeptidyl peptidase-4 inhibitor with pharmaceutical potential of budesonide/formoterol maintenance and reliever therapy in asthma patients across Asia: SMARTASIA study. BMC Pulm Med 13: 22, 2013.
9. Burney P, Jarvis D and Perez-Padilla R: The global burden of chronic respiratory disease in adults. Int J Tuberc Lung Dis 19: 10-20, 2015.
10. Chauldury AS, Prasad B, Shariraka Y, Fohner A, Finkelstein DL, Fan Y, Wang S, Wu G, Akkili E, Sim SC, et al.: The CYP2C19 intron 2 branch point SNP is the ancestral polymorphism contributing to the poor metabolizer phenotype in livers with CYP2C19*3 and CYP2C19*2 alleles. Drug Metab Dispos 43: 1226-1235, 2015.
11. Kohlrausch FB, Severino-Gama C, Lobato MI, Belmonte-de-Abreu P, Carracedo A and Hutz MH: The CYP1A2-163C > A polymorphism is associated with clozapine-induced generalized tonic-clonic seizures in Brazilian schizophrenia patients. Psychiatry Res 209: 242-245, 2013.
12. Woo YS, Wang HR, Yoon BH, Lee SY, Lee KH, Seo JS and Bahk WY: Bioequivalence of generic and brand name clozapine in Korean schizophrenic patients: A randomized, two-period, crossover study. Psychiatry Investig 12: 356-360, 2015.
13. Satomi Y and Nishimo H: Inhibition of the enzyme activity of cytochrome P450 1A1, 1A2 and 3A4 by fucosaxanthin, a marine carotenoid. Oncol Lett 6: 860-864, 2013.
14. Ivanova SA, Toschhakov VA, Filipenko ML, Fedorenko OY, Boyarko EG, Boiko AS, Semke AV, Bokhan NA, Aftanis LA and Loonen AJ: Cytochrome P450 1A2 co-determines neuroleptic liability and may determine an increased risk of tardive dyskinesia by increased inducibility. World J Biol Psychiatry 16: 200-205, 2015.
15. Amini-Shirazi N, Ghahreman MH, Ahmadkhania R, Mandegary A, Adagiar A, Abdollahi M, Shadnia S, Pahkhan D and Kebreabzeadah A: Influence of CYP2C9 polymorphism on metabolism of valproate and its hepatotoxic metabolite in Iranian patients. Toxicol Mech Methods 20: 452-462, 2010.
16. Tan L, Yu JT, Sun YP, Ou JR, Song JH and Yu Y: The influence of cytochrome oxidase CYP2A6, CYP2B6, and CYP2C9 polymorphisms on the plasma concentrations of valproic acid in epileptic patients. Clin Neurosurg 112: 320-323, 2010.
17. Albertson TE, Schivo M, Gedwani N, Kenyon NJ, Soder ME, Chan AL and Louie S: Pharmacotherapy of critical asthma syndrome: Current and emerging therapies. Clin Rev Allergy Immunol 48: 7-30, 2015.
18. Miravitlles M and Soler-Cataluña JJ: GOLD in 2017: A view from the Spanish COPD guidelines (GesCOPD). Arch Bronconeumol 53: 89-90, 2017.
19. Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouria ZA and Anwar F: A review on therapeutic potential of *Nigella sativa*: A miracle herb. Asian Pac J Clin Pharm Biomed 3: 337-353, 2014.
20. Zhong X, Lin J, Mehta P, Nganjamayoporn P, Wu TC and Yunus F: Real-life effectiveness of budesonide/formoterol maintenance and reliever therapy in asthma patients across Asia: SMARTASIA study. BMC Pulm Med 13:22, 2013.