A Study of Antibiotic Susceptibility Pattern of
Salmonella typhi and Salmonella paratyphi A

S.C. Chandrashekar* and M. Sudeep Kumar

Sri Siddhartha Medical College and Research Centre, B H road, Agalakote,
Tumkur – 572107, Karnataka, India

*Corresponding author

ABSTRACT

Typhoid fever is a systemic infection caused by Salmonella enterica subspecies enterica serovar Typhi. A very similar but often less severe disease is caused by S. paratyphi A, B and sometimes C. Enteric fever is endemic in all parts of India. S. typhi and S. paratyphi A are the predominant types of Salmonella responsible of enteric fever in India. An antibiogram is the result of a laboratory testing for the sensitivity of an isolated bacterial strain to different antibiotics. A descriptive study was conducted at the Department of Microbiology, Sri Siddhartha Medical College and Research centre, Tumkur from January 2015 to December 2016. A total of 292 isolates were studied. Antibiotic sensitivity was observed on Muller –Hinton agar plates by Kirby-Bauer disc diffusion methods according to National Committee for Clinical Laboratory (NCCL) guidelines. The male to female ratio was 2.3:1. More cases are reported among males compared to females probably as a result of increased exposure to infection. Antibiotic susceptibility/resistance profile is also found to be similar in these two agents. In the recent days a change towards increased isolation of S. paratyphi A has been observed in many places. This can be explained by two hypothesis: 1. Increased vaccination against Typhoid fever and 2. Increased interest among the microbiologists. Both S. typhi and S. paratyphi A has similar distribution rate (54% and 46%). Present study represents amoxycillin and clavulnic acid, ceftriaxone, cefotaxime and amikacin are the drug of choice for typhoid fever.

Keywords
Salmonella typhi, Salmonella paratyphi A, Susceptibility, Antibiogram, Enteric fever

Article Info
Accepted: 07 January 2018
Available Online: 10 February 2018

Introduction

Typhoid fever is a systemic infection caused by Salmonella enterica subspecies enterica serovar Typhi. A very similar but often less severe disease is caused by S. paratyphi A, B and sometimes C. S. typhi, a highly adapted human-specific pathogen that evolved about 50,000 years ago, has remarkable mechanisms for persistence in its host (Pegues et al., 2005). Enteric fever continues to be a major public health problem, especially in the developing countries of the tropics (Gautam et al., 2002).

It is an important cause of morbidity and mortality with an estimated 33 million cases worldwide (Kumar et al., 2008) and an estimated 600,000 deaths annually (Gautam et al., 2002). Enteric fever is endemic in all parts of India. S. typhi and S. paratyphi A are the predominant types of Salmonella responsible of enteric fever in India (Gautam et al., 2002).
Chloramphenicol was first introduced in 1948 as effective antibiotic in the treatment of enteric fever and was the undisputed drug of choice until the mid 1970’s (Lakshmi et al., 2006). An antibiogram is the result of a laboratory testing for the sensitivity of an isolated bacterial strain to different antibiotics. The susceptibility or resistance patterns to selected antimicrobial drugs can be a very valuable screen for epidemiological investigations. Because of mutation and/or plasmid acquisition such patterns cannot be regarded as definitive. Nevertheless, patterns such as ACSSuT (Ampicillin, chloramphenicol, streptomycin, sulphonamides and tetracycline) for S. typhimurium. (Venkatesh et al., 2013; Das and Bhattacharya, 2006).

Materials and Methods

A descriptive study was conducted at the Department of Microbiology, Sri Siddhartha Medical College and Research centre, Tumkur from January 2015 to December 2016. A total of 292 isolates were studied. Patients attending the outpatient department (OPD) or admitted at Sri Siddhartha Hospital who are clinically suspected as enteric fever cases formed the source for the material of the study. Venous blood was collected under aseptic precautions from these patients. 5 ml from children and 10 ml from adults respectively were collected for blood culture. Non Salmonella species isolated from blood cultures and patients below one year of age were not included. Antibiotic sensitivity was observed on Muller–Hinton agar plates by Kirby-Bauer disc diffusion methods according to National Committee for Clinical Laboratory (NCCL) guidelines (Bauer et al., 1966; National Committee for clinical laboratory standards performance standards for antimicrobial susceptibility testing NCCLS, 2002). In this study following antibiotics were included: Ampicillin, Amoxycillin and Clavulinic acid, Ceftriaxone, Cefotaxime, Chlorampenicol, Ciprofloxacin, Co-trimoxazole, Amikacin and Nalidixic acid. Data collected was entered in Microsoft excel 2007 and analysed using Epi Info 3.4.3. Descriptive statistics such as proportion, mean and SD were used.

Results and Discussion

Enteric fever continues to be a public health related problem in all the developing countries. Failure to supply safe drinking water and unhygienic eating habits in the population are mainly responsible for persistence of enteric fever. The male to female ratio was 2.3:1. More cases are reported among males compared to females probably as a result of increased exposure to infection. Generally gender has no role in the Enteric fever distribution. Salmonella Typhi was the main agent of enteric fever till now. In the recent days a change towards increased isolation of S. paratyphi A has been observed in many places. This can be explained by two hypothesis-1. Increased vaccination against Typhoid fever and 2. Increased interest among the microbiologists. Both S. typhi and S. paratyphi A has similar distribution rate (54% and 46%).

Antibiotic susceptibility/resistance profile is also found to be similar in these two agents. The present study found that Enteric fever Salmonellae have regained susceptibility to the drugs to which they had become resistant earlier such as Ampicillin, Chloromycetin and Co-trimoxazole. Nalidixic acid resistant Salmonella typhi are being increasingly isolated in recent years. But all these isolates are found to be susceptible to Ciprofloxacin by disc diffusion and by MIC detection. This difference in the susceptibility pattern between Nalidixic acid and Ciprofloxacin resistance needs to be further evaluated so that an optimum screening method is implemented (Table 1–6 and Fig. 1).
Table 1 Distribution of *Salmonella* isolates

Sl. No.	Isolate	No.	%
1	*Salmonella typhi*	160	54.8
2	*Salmonella paratyphi A*	132	45.2

Table 2 Isolate and sex distribution

Sl. No.	Isolate	No. of patients	Total (%)	
		Male (%)	Female (%)	
1	*Salmonella typhi*	113 (55.7)	47 (52.8)	160 (54.8)
2	*Salmonella paratyphi A*	90 (44.3)	42 (47.2)	132 (45.2)
	Total	**203 (100)**	**89 (100)**	**292 (100)**

Table 3 Age and sex distribution of *Salmonella* isolates

Sl. No.	Age group	No. of patients	Total (%)	
		Male (%)	Female (%)	
1	1–10	31 (15.3)	24 (27)	55 (18.8)
2	11–20	89 (43.8)	31 (34.8)	120 (41.1)
3	21–30	74 (36.4)	29 (32.6)	103 (35.3)
4	31–40	4 (2)	2 (2.2)	6 (2.1)
5	41–50	4 (2)	3 (3.4)	7 (2.4)
6	51–60	1 (0.5)	0	1 (0.3)
7	> 60	0	0	0
	Total	**203 (100)**	**89 (100)**	**292 (100)**

Table 4 Seasonal distribution of *Salmonella* isolates

Sl. No.	Month	*S. typhi*	*S. paratyphi A*	Total Number (%)
1	January	3	4	7 (2.4)
2	February	8	3	11 (3.8)
3	March	18	9	27 (9.2)
4	April	14	8	22 (7.5)
5	May	3	7	10 (3.4)
6	June	9	2	11 (3.8)
7	July	20	18	38 (13)
8	August	17	36	53 (18.2)
9	September	18	14	32 (11)
10	October	13	9	22 (7.5)
11	November	14	13	27 (9.2)
12	December	23	9	32 (11)
	Total	**160**	**132**	**292 (100)**
Table 5 Antibiotic susceptibility pattern of *S. typhi* by disc diffusion method (N=160)

Sl. No.	Antibiotic	Sensitive n (%)	Intermediate n (%)	Resistant n (%)
1	Ampicillin	148 (92.5)	1 (0.6)	11 (6.9)
2	Amoxycillin & Clavulinic acid	160 (100)	0	0
3	Ceftriaxone	160 (100)	0	0
4	Cefotaxime	160 (100)	0	0
5	Chloramphenicol	154 (96.3)	2 (1.2)	4 (2.5)
6	Ciprofloxacin	158 (98.8)	0	2 (1.2)
7	Co-trimoxazole	158 (98.8)	0	2 (1.2)
8	Amikacin	160 (100)	0	0
9	Nalidixic acid	19 (11.9)	13 (8.1)	128 (80)

Table 6 Antibiotic susceptibility pattern of *S. paratyphi A* by disc diffusion method (N=132)

Sl. No.	Antibiotic	Sensitive n (%)	Intermediate n (%)	Resistant n (%)
1	Ampicillin	128 (97)	1 (0.7)	3 (2.3)
2	Amoxycillin & Clavulinic acid	130 (98.5)	0	2 (1.5)
3	Ceftriaxone	132 (100)	0	0
4	Cefotaxime	132 (100)	0	0
5	Chloramphenicol	129 (97.7)	0	3 (2.3)
6	Ciprofloxacin	130 (98.5)	0	2 (1.5)
7	Co-trimoxazole	130 (98.5)	0	2 (1.5)
8	Amikacin	132 (100)	0	0
9	Nalidixic acid	14 (10.6)	4 (3)	114 (86.4)

Fig.1 Seasonal distribution of *Salmonella* isolates
Typhoid fever is a major public health problem in this area. Present study represents amoxycillin and clavulenic acid, ceftriaxone, cefotaxime and amikacin are the drug of choice for typhoid fever.

References

Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility Testing by Standardized single disc method. *American J Clinical pathology*; 1966, 45(4)

Das U, and Bhattacharya SS. Antibiogram, phage typing & biotyping of *Salmonella typhi* & *Salmonella paratyphi* A from Rourkela, Orissa. *Indian J Med Res.* 2006; 124:109–11.

Gautam V, Gupta NK, Chaudhary U, Arora DR. Sensitivity pattern of *Salmonella* serotypes in Northern India. The Brazilian Journal of Infectious diseases 2002; 6(6): 281-287.

Kumar S, Rizvi M, Berry N. Rising prevalence of enteric fever due to multidrug-resistant *Salmonella*: an epidemiological study. *Journal of Medical Microbiology* 2008; 57: 1247-1250.

Lakshmi V, Ashok R, Susmita J, Shailaja V. Changing trends in the antibiograms of *Salmonella* isolates at a tertiary care hospital in Hyderabad. *Indian Journal of Medical Microbiology* 2006; 24: 45-48.

National Committee for clinical laboratory standards performance standards for antimicrobial susceptibility testing NCCLS, Villanova, PA: 2002

Pegues DA, Ohl ME, Miller SI. *Salmonella* species, including *Salmonell typhi*. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. 6th ed. Churchill Livingstone: New york; 2005. p. 2636-54.

Venkatesh BM, Joshi S, Adhikary R, Bhaskar BH. Antibiogram of *Salmonella typhi* and *Salmonella paratyphi* A in a tertiary care hospital in 2012. *Indian J Pathol Microbiol.* 2013 Oct-Dec; 56(4):484-5.

How to cite this article:

Chandrashekar, S.C. and Sudeep Kumar, M. 2018. A Study of Antibiotic Susceptibility Pattern of *Salmonella typhi* and *Salmonella paratyphi* A. *Int.J.Curr.Microbiol.App.Sci.* 7(02): 658-662. doi: https://doi.org/10.20546/ijcmas.2018.702.081