Computed tomography-measured adipose tissue attenuation and area both predict adipocyte size and cardiometabolic risk in women

Côté Julie Anne¹,², Nazare Julie-Anne⁴,⁵, Nadeau Mélanie⁴, Leboeuf Mathieu³, Blackburn Line³, Després Jean-Pierre⁴, Tchernof André¹,²

¹ Endocrinology and nephrology, CHU de Quebec Medical Research Center, 2705 Boulevard Laurier, Quebec, Canada, G1V 2L9
² Department of Nutrition, Laval University, 2425, rue de l'Agriculture, Quebec, Canada, G1V 0A6
³ Gynecology Unit, CHU de Quebec, 2705 Boulevard Laurier, Quebec, Canada, G1V 2L9
⁴ Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy Québec, Canada, G1V 4G5
⁵ Centre Européen pour la Nutrition et la Santé, Car Men laboratory, Centre Hospitalier Lyon-Sud, c/o CRNH ,165 chemin du Grand Revoyet, Pierre-Bénite, France

Running title: Adipose tissue attenuation and adipocyte size

Address for correspondence: André Tchernof, PhD
Endocrinology and nephrology
CHU de Quebec Medical Research Center
2705 Laurier Blvd. (R-4779)
Québec, Qc
Canada
G1V 4G2
Tel: (418) 654-2296
Fax: (418) 654-2761
Email: andre.tchernof@crchul.ulaval.ca

Keywords: adipose tissue radiologic attenuation, visceral fat, women, computed tomography, omental adipocytes
ABSTRACT

Objective: To assess the ability of CT-derived measurements including adipose tissue attenuation and area to predict fat cell hypertrophy and related cardiometabolic risk. Methods: Abdominal adipose tissue areas and radiologic attenuation were assessed using 4 CT images in 241 women (age: 47 years, BMI: 26.5 kg/m²). Fat cell weight was measured in paired VAT and SAT samples. Fasting plasma lipids, glucose and insulin levels were measured. Results: Adipose tissue attenuation was negatively correlated with SAT (r=-0.46) and VAT (r=-0.67) fat cell weights in the corresponding depot (p<0.0001 for both). Women with visceral adipocyte hypertrophy had higher total-, VLDL-, LDL- and HDL-triglyceride and apoB levels as well as a higher cholesterol/HDL-cholesterol ratio, fasting glucose and insulin levels compared to women with smaller visceral adipocytes. Adjustment for VAT area minimized these differences while subsequent adjustment for attenuation eliminated all differences, with the exception of fasting glycaemia. In SAT, adjustment for VAT area and attenuation eliminated all adipocyte hypertrophy-related alterations except for fasting hyperglycaemia. Conclusion: CT-derived adipose tissue attenuation and area both contribute to explain variation in the cardiometabolic risk profile associated with the same biological parameter: visceral fat cell hypertrophy.
INTRODUCTION

Visceral obesity is associated with numerous alterations in the cardiometabolic risk profile, which increase the risk of type 2 diabetes and cardiovascular diseases. Under a positive energy imbalance, adipose tissue expansion relies on adipocyte hypertrophy and/or adipose tissue hyperplasia. Arner et al. have shown that subcutaneous adipose tissue (SAT) hypertrophy is associated with an altered lipid profile independent of body fat mass. In addition, we have previously reported that visceral adipose tissue (VAT) hypertrophy is associated with an increase in plasma VLDL-TG levels and with higher total cholesterol/HDL-cholesterol ratio independent of total and regional adiposity. We also found that visceral adipocyte hypertrophy is related to alterations in lipolysis and adipose tissue expression of genes coding for proteins involved in adipocyte metabolism or inflammation, independent of overall adiposity and body fat distribution. Further, obesity is associated with extra-cellular matrix remodelling that often leads to the development of fibrosis in adipose tissue. These alterations may partially explain the increased cardiometabolic risk associated with the visceral obesity phenotype.

Over the past decades, computed tomography (CT) has emerged as the gold-standard technique to measure abdominal body fat distribution. Using a range of attenuation values expressed in Hounsfield units (HUs), this imaging technique is based on the ability of tissues to attenuate x-rays. Using this scale, most soft tissues are characterized by positive HUs while adipose tissue attenuation is located in the negative range. In 1990, Tyrrel et al. compared mean adipose tissue attenuation between patients with and without cirrhosis and found that patients with biopsy-proven cirrhosis were characterized by higher fat attenuation compared to controls. In that study, mean attenuation of mesenteric fat was higher than that of retroperitoneal and
subcutaneous depots \(^\text{10}\). Further, Hu et al. \(^\text{11}\) observed higher attenuation values in brown compared to white adipose tissue. More recently, Fox et al. \(^\text{12}\) examined associations between SAT and VAT attenuation values and cardiometabolic risk factors. They found that low CT attenuation of both VAT and SAT \(^\text{13}\) was associated with an adverse cardiometabolic risk profile, independent of total adiposity. In 2014, Murphy et al. \(^\text{13}\) have shown that SAT and VAT attenuation values were good markers of mortality risk in older adults, independent of CRP and IL-6 levels. However, the reason for the relationship between adipose tissue attenuation and cardiometabolic risk is still unclear. To the best of our knowledge, no study has ever examined the association between CT-based measurements and SAT or VAT fat cell size assessed in surgical fat samples, and the extent to which these CT characteristics could explain the risk associated with adipocyte hypertrophy. Our objective was to test the ability of CT-derived measurements to predict adipocyte hypertrophy-related cardiometabolic risk. We hypothesized that the increased cardiometabolic risk associated with visceral adipocyte hypertrophy is largely explained by CT-based measurements of VAT area and radiologic attenuation.

RESULTS

Anthropometric and metabolic characteristics of the women recruited in this study are outlined in Table 1. Mean age of the sample was 47 years. Participants were slightly overweight with a mean body mass index (BMI) of 26.5 kg/m\(^2\) but they covered a large range of adiposity (17.2 - 41.1 kg/m\(^2\)). SAT area measured by CT was significantly greater than VAT area (p<0.0001). Accordingly, higher adipocyte weight was observed in SAT compared to VAT adipose tissue (p<0.0001). Adipose tissue mean attenuation was significantly higher in VAT than in the SAT compartment (p<0.0001).
We tested the associations between adipose tissue areas, adipocyte weight and adipose tissue attenuation values in each body fat compartment. As shown in Figure 1, SAT mean attenuation was a significant and negative correlate of SAT area. A significant association was also observed in the visceral fat depot. SAT and VAT areas were positively and significantly associated with adipocyte weight in the corresponding depot. In the SAT depot, adipose tissue attenuation was negatively and significantly correlated with adipocyte weight. The same pattern was observed in the visceral depot.

We investigated whether adipose tissue mean attenuation was related to cardiometabolic risk profile before and after statistical adjustment for VAT area. Supplemental Table 1 shows that markers of cardiometabolic risk, except for fasting glucose levels and the HOMA-IR index, remained associated with attenuation even after adjustment for VAT area, especially in the visceral fat compartment.

To assess whether CT-based measurements explain the increased cardiometabolic risk associated with adipocyte hypertrophy, women were subdivided according to the median of their VAT or SAT adipocyte weights and statistical adjustments for VAT area or for both VAT area and radiologic attenuation were performed. As shown in Figure 2, in the VAT depot, women with high adipocyte weight had higher total and VLDL-TG levels as well as apo B levels compared to women with low adipocyte weight. These differences remained significant after statistical adjustment for VAT area but they were no longer significant after adjustments for both VAT area and radiologic attenuation. The same pattern was observed for the cholesterol/HDL-cholesterol ratio. LDL-TG levels and the HOMA-IR index were also higher in women with high VAT
adipocyte weight. This difference remained significant after adjustment for VAT area but only tended to be significant when adjusted for both VAT area and radiologic attenuation. Women with high VAT fat cell weight were also characterized by higher fasting glucose and insulin levels before and after adjustment for VAT area. When adjusted for both VAT area and radiologic attenuation, only the difference in fasting glucose remained significant. HDL-TG levels were higher in women with high VAT adipocyte weight but this association was not independent of VAT area and radiologic attenuation.

As shown in Figure 3, women with high SAT adipocyte weight had higher total-, VLDL- and LDL-TG levels, a higher total cholesterol/HDL-cholesterol ratio, higher apo B, glucose and insulin levels as well as a higher HOMA-IR index than the subgroup of women with low SAT adipocyte weight. Most of these differences were lost after statistical adjustment for VAT area and for both VAT area and radiologic attenuation, except for total- and VLDL-TG levels. A small but significant difference remained between the 2 groups for glucose levels when adjusted for both VAT area and radiologic attenuation.

Successively excluding participants in each category of hormonal status or adjusting for age had little impact on the association or difference patterns observed in our analyses.

DISCUSSION

The aim of this study was to assess the ability of CT-derived measurements including attenuation and area to predict adipocyte hypertrophy-related cardiometabolic risk factors. Our results first show that SAT and VAT mean attenuation values are inversely significantly correlated with
adipocyte weight or size in the corresponding depot. The fact that adipose tissue area and attenuation both relate to the same biological parameter (adipocyte size) suggest that they perhaps should not be described as opposing aspects of adipose tissue quantification (e.g. adipose tissue quantity vs. quality).

We have previously reported that women with VAT adipocyte hypertrophy have increased VLDL-TG levels and cholesterol/HDL-cholesterol ratio, independent of regional/overall adiposity. Arner et al. also found that obese subjects with VAT adipocyte hypertrophy are characterized by an altered lipid profile. This holds true in the present study, as subjects with high VAT or SAT fat cell weights showed clear alterations in many cardiometabolic variables. A major finding in the present analysis is that CT-derived measurements can largely predict the altered lipid profile associated with VAT adipocyte hypertrophy. Indeed, most metabolic differences related to both VAT and SAT adipocyte weights were lost after adjustment for both VAT area and radiologic attenuation. To the best of our knowledge, our paper is the first to provide evidence that two variables derived from CT analysis of adipose tissue (area and attenuation) both partially capture cardiometabolic risk related to the same biological parameter: visceral adipocyte hypertrophy. Yet, based on the associations between CT-based measurements and adipocyte weight in the corresponding compartment, a portion of the adipocyte weight variance was not explained by attenuation and size of the compartment, suggesting that the latter do not entirely explain interindividual variability in fat cell size.

We found that women with a low VAT mean attenuation were characterized by increased VAT area as well as adipocyte hypertrophy. In the visceral depot, adipose tissue mean attenuation was negatively related to fat cell weight in a linear manner whereas this association appeared to be
curvilinear in the SC depot. We suggest that these observations reflect the propensity of each adipose tissue compartment for adipocyte hypertrophy and hyperplasia. As reflected by adipogenic and lipogenic gene expression, we have previously reported that fat cell hypertrophy occurs in both fat depots while hyperplasia is predominant in the SAT compartment. These results were corroborated by Tchkonia et al. who observed much higher expression levels of two key adipogenic transcription factors: peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (CEBPα) in SAT compared to VAT. Furthermore, preadipocyte replication and lipid accumulation were found to be more extensive in abdominal SAT than in VAT adipocytes. The non-linear relationship observed between SAT mean attenuation and SAT adipocyte weight could be attributable to the capacity of abdominal SAT to recruit new fat cells in this range of adiposity values in women. Conversely, the predominantly hypertrophic nature of the VAT depot could explain the lower mean attenuation observed in VAT adipocytes containing large lipid droplets. Although the present study was not designed to investigate the mechanisms underlying the association between adipose tissue mean attenuation and fat cell weights, we speculate that increased organelle content of small fat cells per surface unit could possibly explain why they show greater mean attenuation. Baba et al. demonstrated that brown adipose tissue mean attenuation increased under activated conditions following a decrease in lipid content. Furthermore, Hu et al. observed that HUs of brown adipose tissue were more positive than those of white adipose tissue and speculated that brown adipocyte characteristics could account for this difference as they contain more non-lipid components and are more vascularized and innervated than white adipocytes. In our study, CT attenuation of VAT was significantly greater than that of SAT. This could result from structural and functional differences between these two abdominal fat depots. Indeed, VAT is more
vascularized with higher blood supply and is more innervated than SAT. As blood CT HUs are located in the positive range, this could partially explain the results observed here. More studies are needed to confirm the physiological significance of adipose tissue attenuation.

As opposed to other markers of cardiometabolic risk, fasting glucose levels remained associated with VAT adipocyte hypertrophy even after adjustment for VAT area and radiologic attenuation. Arner et al. have reported that SAT adipocyte hypertrophy was associated with higher fasting insulin levels and HOMA-IR index independent of BMI. Conversely, Ledoux et al. reported that VAT adipocyte size was more closely related to alterations in indices of plasma glucose-insulin homeostasis in obese individuals than SAT adipocyte size. Our results suggest that factors other than VAT area and attenuation mediate the association between fat cell size and glycaemia.

In 2013, Fox et al. demonstrated that in diabetic and insulin resistant women, a 1-SD decrease in VAT attenuation values was associated with an increased risk of having impaired fasting glucose and insulin resistance. The present study extends this finding to nondiabetic women covering a wide range of adiposity and levels of insulin resistance. More recently, Fox et al. has also shown that VAT attenuation was inversely associated with CVD events (when adjusted for age and sex).

This study has some limitations, which should be acknowledged. The cross-sectional design cannot provide information about the directionality of the associations. Therefore, it is not possible to conclude on cause-and-effect relationships between adipose tissue radiologic attenuation or fat cell hypertrophy and metabolic profile variables. Further, this study only included women due to the difficulty of performing similar studies in men. Therefore the findings cannot be extended to men.
In conclusion, our study is the first to provide evidence that CT-derived measurements, including adipose tissue area in conjunction with radiologic attenuation, explain most of the variation in cardiometabolic risk profile associated with fat cell hypertrophy. This finding provides a novel framework by which CT imaging data of adipose tissue may be used as an indirect marker of fat cell size or adipocyte hypertrophy, especially in the visceral compartment.

METHODS AND PROCEDURES

Subjects

Women (n=241), aged 40 to 60 years, were recruited through the elective surgery schedule of the Gynecology Unit of Laval University Medical Research Center from 2001 to 2012. They were scheduled for total (n=229) or subtotal (n=10) abdominal hysterectomies or myomectomy (n=1), sometimes accompanied by salpingo-oophorectomy of one (n=35) or two (n=95) ovaries. Type of surgery was unavailable for one participant. A few weeks before surgery and on the morning of surgery, detailed information was obtained on medication use and reproductive, menstrual, and medical history for each patient. Women using medication affecting metabolic parameters (beta-blockers, ACE inhibitors, fibric acid derivatives, and statins) were not included in the present study. Women reporting use of nonsteroidal anti-inflammatory medication a few weeks before the surgery were also excluded. Menopausal status was assessed by questionnaire (133 premenopausal, 50 perimenopausal and 54 menopausal women). Status was unavailable for 4 women. This project was approved by the medical ethics committee of Laval University Medical Research Center. All women provided written, informed consent before their inclusion in the project.
Body fatness and body fat distribution measurements

These tests were performed on the morning of surgery or a few days before the intervention and in a few cases shortly after the intervention. Body fat percentage, total body fat mass and lean body mass were assessed by dual energy x-ray absorptiometry (DEXA) using a Hologic QDR-2000 densitometer and the enhanced array whole-body software V5.73A (n=73) or a Hologic QDR-4500 densitometer and the whole-body fan V8.26A:3 (n=168) (Hologic Inc., Bedford, MA). Abdominal SAT and VAT data were acquired by CT using a GE Light Speed 1.1 CT scanner (n=233) or the Brightspeed CT scan (General Electric Medical Systems, Milwaukee, WI) (n=8). The scan was performed at the L4-L5 vertebrae level using a scout image of the body to establish the precise scanning position. Four images that were 5 mm-thick and 5 mm apart in the intervertebral space were obtained for each woman. Subjects were examined in the supine position with arms stretched above the head. VAT area was quantified by delineating the intra-abdominal cavity at the internal-most aspect of the abdominal and oblique muscle walls and the posterior aspect of the vertebral body using Image J 1.33u software (National Institutes of Health, USA). The abdominal muscle layer was completely excluded. Adipose tissue areas were computed using an attenuation range of –190 to –30 HUs. Mean SAT and VAT attenuation were computed from the 4 images. All these measurements were performed by the same investigator.

Adipose tissue sampling, adipocyte isolation and cell weight measurements

During surgery, paired SAT and VAT (omental) samples were obtained for each woman at the site of incision and at the distal portion of the greater omentum, respectively. Adipose tissue samples were digested with collagenase type I in Krebs-Ringer-Henseleit (KRH) buffer for up to 45 minutes at 37°C according to a modified version of the Rodbell method. Adipocyte
suspensions were filtered through nylon mesh and washed 3 times with KRH buffer. Adipocyte weight and cell number in the suspensions were calculated using lipid weight, average cell volume and the density of triolein as previously described.

Lipid profile and glucose homeostasis

Blood samples were obtained on the morning of surgery after a 12-hour fast. Cholesterol and triglyceride levels were measured in plasma and lipoprotein fractions with a Technicon RA-500 analyzer (Bayer, Etobicoke, ON, Canada) using enzymatic methods or with the Olympus AU400 (Beckman Coulter, Mississauga, Canada). Plasma VLDL were isolated by ultracentrifugation and the HDL fraction was obtained after precipitation of LDL in the infranatant with heparin and MnCl₂. Cholesterol content of the infranatant was measured before and after precipitation and LDL cholesterol concentration was obtained by difference. Apolipoprotein (apo) B and apo A1 concentrations were measured using the rocket immunoelectrophoretic method of Laurell as described previously or using the Siemens Healthcare Diagnostics BN ProsSpect (Siemens Healthcare Diagnostics, Mississauga, Ontario, Canada). Plasma glucose was measured using the glucose oxidase method or with a fully automated Modular P800 system (Roche, Diagnostics, Laval, Canada). Insulin was measured by ELISA (Alpco, Salem, NH, USA and EMD Millipore, Massachusetts, USA) or by radioimmunoassay (Linco Research, St Charles, MO). The homeostasis model assessment of insulin resistance (HOMA-IR) was calculated as fasting insulin (μU/mL) x fasting glucose (mmol/L)/22.5.

Statistical analyses
Paired t tests were used to compare measures performed in the SAT vs. VAT depots. Spearman correlation coefficients were computed to test associations between adipose tissue mean attenuation in each fat compartment and body fat distribution as well as adipocyte weight. To investigate the linearity assumption, a generalized additive model (GAM) was performed to appreciate linearity of an unknown smooth function among variables. GAM was also used for inference about these smooth functions. The relationship between adipocyte weight and cardiometabolic profile variables was examined by subdividing women in 2 subgroups according to the median of adipocyte weight in each fat depot (100 low adipocyte weight vs. 100 high adipocyte weight in SAT and 100 low adipocyte weight vs. 100 high adipocyte weight in VAT). Differences between subgroups were tested using Student’s t-test. Similar analyses were performed after adjustment for adipose tissue area or adjustment for both adipose tissue area and radiologic attenuation. For these analyses, stratification was based on the residuals of the regressions between adipocyte weight in a given compartment vs. adipose tissue area, or between adipocyte weight in a given compartment vs. adipose tissue area and radiologic attenuation, respectively. We perform all analyses according to menopausal status by successively excluding participants in each category of hormonal status. All statistical analyses were also computed after adjustment for age using multiple regression analysis. Analyses were performed on log10-transformed or Box Cox-transformed values when variables were not normally distributed. P-values lower than 0.05 were considered statistically significant. Statistical analyses were performed using JMP statistical software 10.0.2 (SAS Institute, Cary, NC).

CONFLICTS OF INTEREST STATEMENT AND ACKNOWLEDGMENTS

This study was supported by operating funds from the Canadian Institutes of Health Research-
Institute of Gender and Health to André Tchernof (MOP-64182) and a Grant-in-Aid from the Canadian Diabetes Association. J.A.C is the recipient of a Alexander Graham Bell Canada Graduate Scholarships (Doctoral Program and NSERC Postgraduate Scholarships-Doctoral Program). André Tchernof received research funding from Johnson & Johnson Medical Companies for projects unrelated to this manuscript. The author contributions follow: Julie Anne Côté: analysis and interpretation of data, manuscript writing, revision of the manuscript, final approval; Julie-Anne Nazare: analysis and interpretation of data, revision of the manuscript, approval; Mélanie Nadeau: analysis and interpretation of data, revision of the manuscript, final approval; Mathieu Leboeuf: clinical aspects, sample acquisition, review of the manuscript, approval; Line Blackburn: clinical aspects, sample acquisition, review of the manuscript, approval; Jean-Pierre Després; analysis, interpretation of data, manuscript writing, revision of the manuscript final approval, study supervision; André Tchernof: study funding, design and conduction of the study, data collection and analysis, interpretation of data, manuscript writing, revision of the manuscript final approval, study supervision. **Competing interests**: The authors have no competing interests.
REFERENCES

1. Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiological reviews 2013; 93:359-404.

2. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. The Journal of clinical investigation 2011; 121:2094-101.

3. Arner E, Westermark PO, Spalding KL, Britton T, Ryden M, Frisen J, et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 2010; 59:105-9.

4. Veilleux A, Caron-Jobin M, Noel S, Laberge PY, Tchernof A. Visceral adipocyte hypertrophy is associated with dyslipidemia independent of body composition and fat distribution in women. Diabetes 2011; 60:1504-11.

5. Michaud A, Boulet MM, Veilleux A, Noel S, Paris G, Tchernof A. Abdominal subcutaneous and omental adipocyte morphology and its relation to gene expression, lipolysis and adipocytokine levels in women. Metabolism: clinical and experimental 2014; 63:372-81.

6. Kuritzky L. A piece of my mind. On knowledge. Jama 2007; 298:1137.

7. Divoux A, Tordjman J, Lacasa D, Veyrie N, Hugol D, Aissat A, et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 2010; 59:2817-25.

8. Divoux A, Clement K. Architecture and the extracellular matrix: the still unappreciated components of the adipose tissue. Obesity reviews : an official journal of the International Association for the Study of Obesity 2011; 12:e494-503.

9. Larry RCochard LAG, Carla Harmath, Nancy Major and Srinivasan Mukundan. Introduction to imaging modalities. Elsevier, 2012.

10. Tyrrel RT, Montemayor KA, Bernardino ME. CT density of mesenteric, retroperitoneal, and subcutaneous fat in cirrhotic patients: comparison with control subjects. AJR American journal of roentgenology 1990; 155:73-5.

11. Hu HH, Chung SA, Nayak KS, Jackson HA, Gilsanz V. Differential computed tomographic attenuation of metabolically active and inactive adipose tissues: preliminary findings. Journal of computer assisted tomography 2011; 35:65-71.

12. Rosenquist KJ, Pedley A, Massaro JM, Therkelsen KE, Murabito JM, Hoffmann U, et al. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovascular imaging 2013; 6:762-71.

13. Murphy RA, Register TC, Shively CA, Carr JJ, Ge Y, Heilbrun ME, et al. Adipose tissue density, a novel biomarker predicting mortality risk in older adults. The journals of gerontology Series A, Biological sciences and medical sciences 2014; 69:109-17.

14. Hoffstedt J, Arner E, Wahrenberg H, Andersson DP, Qvisth V, Lofgren P, et al. Regional impact of adipose tissue morphology on the metabolic profile in morbid obesity. Diabetologia 2010; 53:2496-503.

15. Drolet R, Richard C, Snideman AD, Mailloux J, Fortier M, Huot C, et al. Hypertrophy and hyperplasia of abdominal adipose tissues in women. Int J Obes 2008; 32:283-91.

16. Tchkonia T, Giorgadze N, Pirtskhalava T, Tchoukalova Y, Karagiannides I, Forse RA, et al. Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. American journal of physiology Regulatory, integrative and comparative physiology 2002; 282:R1286-96.
17. Baba S, Jacene HA, Engles JM, Honda H, Wahl RL. CT Hounsfield units of brown adipose tissue increase with activation: preclinical and clinical studies. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2010; 51:246-50.

18. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity reviews: an official journal of the International Association for the Study of Obesity 2010; 11:11-8.

19. Ledoux S, Coupaye M, Essig M, Msika S, Roy C, Queguiner I, et al. Traditional anthropometric parameters still predict metabolic disorders in women with severe obesity. Obesity 2010; 18:1026-32.

20. Rosenquist KJ, Massaro JM, Pedley A, Long MT, Kreger BE, Vasan RS, et al. Fat quality and incident cardiovascular disease, all-cause mortality, and cancer mortality. The Journal of clinical endocrinology and metabolism 2015; 100:227-34.

21. Rodbell M. Metabolism of Isolated Fat Cells. I. Effects of Hormones on Glucose Metabolism and Lipolysis. The Journal of biological chemistry 1964; 239:375-80.

22. Havel RJ, Eder HA, Bragdon JH. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. The Journal of clinical investigation 1955; 34:1345-53.

23. Gidez LI, Miller GJ, Burststein M, Slagle S, Eder HA. Separation and quantitation of subclasses of human plasma high density lipoproteins by a simple precipitation procedure. Journal of lipid research 1982; 23:1206-23.

24. Laurell CB. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Analytical biochemistry 1966; 15:45-52.

25. Moorjani S, Dupont A, Labrie F, Lupien PJ, Brun D, Gagne C, et al. Increase in plasma high-density lipoprotein concentration following complete androgen blockage in men with prostatic carcinoma. Metabolism: clinical and experimental 1987; 36:244-50.

26. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28:412-9.
FIGURE LEGENDS

Figure 1. Correlations between SAT (A) or VAT (B) attenuation and adipose tissue area in the corresponding depot; between SAT (C) or VAT (D) areas and adipocyte weight in the corresponding depot; and between SAT (E) or VAT (F) attenuation and adipocyte weight in the corresponding depot. Spearman correlation coefficients were computed to test associations. P-values lower than 0.05 were considered statistically significant. Linearity testing indicated a significant order 2 for panels A and B, linear relationship for panels C, D and F, and a significant order 3 for panel E.

Figure 2. Cardiometabolic risk profile in subgroups of women defined on the basis of their VAT fat cell weight (low vs. high) using the median value of VAT fat cell weights as cutoff, before (Unadj) and after (Adj) statistical adjustments for adipose tissue area or adipose tissue area and attenuation. Differences between subgroups were tested using Student’s t-test. Adjustment for VAT area and after adjustment for both VAT area and radiologic attenuation were performed using multiple regression analysis. P-values lower than 0.05 were considered statistically significant. chol: cholesterol

Figure 3. Cardiometabolic risk profile in subgroups of women defined on the basis of their SAT fat cell weight (low vs. high) using the median value of SAT fat cell weights as cutoff, before (Unadj) and after (Adj) statistical adjustments for adipose tissue area or adipose tissue area and attenuation. Differences between subgroups were tested using Student’s t-test. Adjustment for SAT area and after adjustment for both SAT area and radiologic attenuation were performed using multiple regression analysis. P-values lower than 0.05 were considered statistically significant. chol: cholesterol
	Mean ± SD	Range
Age (years)^a	47.0 ± 5.2	35.2-68.3
Height (cm)^a	161 ± 6	145-176
Weight (kg)^a	68.6 ± 12.6	42.8-110
BMI (kg/m²)^a	26.5 ± 4.6	17.2-41.1
Body fat mass (kg)^a	25.5 ± 8.1	5.9-58.2
Body fat percentage (%)^a	36.3 ± 6.4	14.0-58.2
Lean body mass (kg)^a	41.2 ± 6.4	25.4-58.9

Abdominal adipose tissue areas (cm²) and attenuation (HU)^a

	Mean ± SD	Range
Total area	403 ± 146	70-871
Subcutaneous area	300 ± 114	42-735
Visceral area	91 ± 44*	21-280
Subcutaneous attenuation	−87.8 ± 7.5	−103.2 - −72.4
Visceral attenuation	−103.2 ± 5.2*	−110.6 - −66.2

Adipocyte weight (µg lipid)^b

	Mean ± SD	Range
Subcutaneous	0.56 ± 0.23	0.04-1.31
Visceral	0.34 ± 0.19*	0.02-1.00

Cholesterol content (mmol/L)^c

	Mean ± SD	Range
Total	5.03 ± 0.91	2.62-7.52
VLDL	0.44 ± 0.30	0.03-1.92
LDL	3.14 ± 0.84	1.07-5.60
HDL	1.45 ± 0.38	0.63-2.75
Total cholesterol/HDL chol	3.68 ± 1.07	1.66-9.29

Triglyceride content (mmol/L)^c

	Mean ± SD	Range
Total	1.28 ± 0.67	0.40-6.0
VLDL	0.75 ± 0.52	0.10-3.64
LDL	0.25 ± 0.09	0.09-0.58
HDL	0.26 ± 0.07	0.13-0.62

Apolipoprotein (mg/dL)^c

	Mean ± SD	Range
Apo B	0.9 ± 0.2	0.4-1.6
Apo A1	1.4 ± 0.3	0.7-2.2
Apo B/ Apo A1	0.7 ± 0.2	0.2-1.6

Glucose homeostasis

	Mean ± SD	Range
Fasting glucose (mmol/L)	5.5 ± 0.7	3.8-8.0
Fasting insulin (uU/mL)	8.6 ± 5.0	1.5-27.6

*p<0.0001 : Subcutaneous vs omental significantly different by paired t test, a : n=241; b : n=217; c : n=238
Supplemental Table 1. Spearman correlation coefficients between cardiometabolic profile variables and SAT or VAT mean attenuation before and after statistical adjustment for VAT area.

Adipose tissue attenuation	Subcutaneous	Visceral		
	Unadjusted	Adjusted for VAT area	Unadjusted	Adjusted for VAT area
Cholesterol content				
Total	-0.10	0.05	-0.21	**
VLDL	-0.25	***	-0.46	***
LDL	-0.14	*	-0.25	***
HDL	0.19	*	0.35	***
Cholesterol/HDL-chol	-0.22	**	-0.46	***
Triglyceride content				
Total	-0.20	*	-0.44	***
VLDL	-0.25	***	-0.47	***
LDL	-0.16	*	-0.31	***
HDL	-0.07	0.02	-0.18	*
Apolipoprotein				
Apo B	-0.18	*	-0.35	***
Apo A1	0.21	**	0.27	***
Apo B/Apo A1	-0.21	**	-0.39	***
Glucose homeostasis				
Fasting glucose	-0.21	*	-0.31	***
Fasting insulin levels	-0.22	**	-0.45	***
HOMA-IR index	-0.25	*	-0.48	***

*** p<0.0001, ** p<0.001, * p<0.05, † p<0.08

chol: cholesterol, apo: apolipoprotein, VAT: visceral adipose tissue
A) SAT attenuation (HUs) vs. SAT area (cm^2) with a correlation coefficient of r = -0.61, p < 0.0001.

B) VAT attenuation (HUs) vs. VAT area (cm^2) with a correlation coefficient of r = -0.80, p < 0.0001.

C) SAT area (cm^2) vs. SC adipocyte weight (μg lipid/cell) with a correlation coefficient of r = 0.54, p < 0.0001.

D) VAT area (cm^2) vs. Visceral AT area (cm^2) with a correlation coefficient of r = 0.70, p < 0.0001.

E) SAT attenuation (HUs) vs. SC adipocyte weight (μg lipid/cell) with a correlation coefficient of r = -0.46, p < 0.0001.

F) VAT attenuation (HUs) vs. OM adipocyte weight (μg lipid/cell) with a correlation coefficient of r = -0.67, p < 0.0001.
Total Triglycerides (mmol/L)

- **Unadj.**
 - Low visceral fat cell weight: p<0.0001
 - High visceral fat cell weight: p=0.001
 - NS

- **Adj. for VAT area**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

- **Adj. for VAT area and att.**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

VLDL-Triglycerides (mmol/L)

- **Unadj.**
 - Low visceral fat cell weight: p<0.0001
 - High visceral fat cell weight: p=0.001
 - NS

- **Adj. for VAT area**
 - Low visceral fat cell weight: p=0.005
 - High visceral fat cell weight: NS

- **Adj. for VAT area and att.**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

HDL-Triglycerides (mmol/L)

- **Unadj.**
 - Low visceral fat cell weight: p=0.005
 - High visceral fat cell weight: NS
 - NS

- **Adj. for VAT area**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

- **Adj. for VAT area and att.**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

Total Chol/HDL-chol Ratio

- **Unadj.**
 - Low visceral fat cell weight: p<0.0001
 - High visceral fat cell weight: p=0.005
 - NS

- **Adj. for VAT area**
 - Low visceral fat cell weight: p=0.007
 - High visceral fat cell weight: NS

- **Adj. for VAT area and att.**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

Apolipoprotein B (g/L)

- **Unadj.**
 - Low visceral fat cell weight: p<0.0001
 - High visceral fat cell weight: p=0.02
 - NS

- **Adj. for VAT area**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

- **Adj. for VAT area and att.**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

Glucose Levels (mmol/L)

- **Unadj.**
 - Low visceral fat cell weight: p<0.0001
 - High visceral fat cell weight: p=0.007
 - p=0.05

- **Adj. for VAT area**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

- **Adj. for VAT area and att.**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

Insulin Levels (µU/mL)

- **Unadj.**
 - Low visceral fat cell weight: p<0.0001
 - High visceral fat cell weight: p=0.004
 - NS

- **Adj. for VAT area**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

- **Adj. for VAT area and att.**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

Homa-IR Index

- **Unadj.**
 - Low visceral fat cell weight: p<0.0001
 - High visceral fat cell weight: p=0.001
 - p=0.07

- **Adj. for VAT area**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

- **Adj. for VAT area and att.**
 - Low visceral fat cell weight: NS
 - High visceral fat cell weight: NS

Legend:

- **Low visceral fat cell weight**
- **High visceral fat cell weight**
