Changes in anticoagulant prescription patterns over time for patients with atrial fibrillation around the world

Monika Koziel MD, PhD1,2 | Christine Teutsch MD3 | Valentina Bayer PhD4 | Shihai Lu PhD4 | Venkatesh K. Gurusamy MSc5 | Jonathan L. Halperin MD6 | Kenneth J. Rothman DrPH7 | Hans-Christoph Diener MD, PhD8 | Chang-Sheng Ma MD9,10 | Menno V. Huisman MD, PhD, FESC11 | Gregory Y. H. Lip MD1,2,12 | on behalf of the GLORIA-AF Investigators

1Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK
2Department of Cardiology and Angiology, Silesian Centre for Heart Diseases, Zabrze, Poland
3Department of Clinical Development and Medical Affairs, Therapeutic Area Cardiometabolism, Boehringer Ingelheim International GmbH, Ingelheim, Germany
4Biostatistics and Data Sciences Department, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
5Global Epidemiology, Boehringer Ingelheim International GmbH, Ingelheim, Germany
6Icahn School of Medicine at Mount Sinai, New York City, NY, USA
7RTI Health Solutions, Research Triangle Park, NC, USA
8Institute for Medical Informatics, Biometry and Epidemiology, Essen, Germany
9University of Duisburg-Essen, Essen, Germany
10Cardiology Department, Atrial Fibrillation Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
11Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
12Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark

Abstract

Background: Prescribing patterns for stroke prevention in atrial fibrillation (AF) patients evolved with approval of non-Vitamin K antagonist oral anticoagulants (NOACs) over time.

Objectives: To assess changes in anticoagulant prescription patterns in various geographical regions upon first approval of a NOAC and to analyze the evolution of oral anticoagulants (OACs) use over time in relation to CHA2DS2-VASc and HAS-BLED risk profiles.

Methods: Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation (GLORIA-AF) Phases II and III reported data on antithrombotic therapy for patients with newly diagnosed AF and ≥1 stroke risk factor. We focused on sites enrolling patients in both phases and reported treatment patterns for the first 4 years after initial NOAC approval.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. Journal of Arrhythmia published by John Wiley & Sons Australia, Ltd on behalf of Japanese Heart Rhythm Society
Atrial fibrillation (AF) is the most common cardiac arrhythmia, with both incidence and prevalence increasing with age. Nonvalvular AF is associated with a fivefold increase in risk of stroke. Therefore, stroke prevention is the cornerstone of the holistic approach to AF management. Currently, when oral anticoagulation (OAC) is indicated for stroke prevention in patients with AF, non-Vitamin K antagonist oral anticoagulants (NOACs) are recommended in preference to Vitamin K antagonists (VKAs).

In contrast, when NOACs were introduced and adopted into practice, clinical guidelines were still assessing results from pivotal trials. Since then, the rationale for using NOACs has changed. It is challenging to measure temporal trends of global prescription patterns, however, because the timing of NOAC approval varied across countries and prescription patterns can change rapidly as uptake of a new agent increases. Moreover, use of a particular OAC may reflect the manner in which physicians interpret stroke and bleeding risk scores, which have also been incorporated variably into clinical practice guidelines. Published descriptions of global NOAC uptake have not consistently accounted for these variables, overlooking distinctions based on the local availability of NOACs for clinical use. Therefore, results of such analyses are affected by the distribution of countries included in the evaluation.

The specific design of the large, prospective, global registry Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation (GLORIA-AF) Phases II and III provides an opportunity to assess temporal changes over time on a global scale. Enrolment for Phases II and III continued from 2011 to 2016 allowing for assessment of changes in practice patterns in a large number of patients over more than 4 years.

This report is based on baseline data, including antithrombotic prescriptions for stroke prevention in patients with newly diagnosed AF enrolled in Phases II and III of GLORIA-AF. We assessed temporal changes in antithrombotic prescription patterns within specific geographical regions, starting from initial NOAC approval. We also analyzed changes in types of OAC prescribed in relation to CHA₂DS₂-VASc (heart failure, hypertension, age ≥75 years, diabetes, stroke/transient ischemic attack, vascular disease, age 65-74 years, sex category) and HAS-BLED (hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile international normalized ratio, elderly [>65 years], drugs or alcohol concomitantly) risk scores during each year of enrolment.

Results

From GLORIA-AF Phases II and III, 27,432 patients were eligible for this analysis. When contrasting the first year with the fourth year of enrolment, the proportion of NOAC prescriptions increased in Asia from 29.2% to 60.8%, in Europe from 53.4% to 75.8%, in North America from 49.0% to 73.9% and in Latin America from 55.7% to 71.1%. The proportion of Vitamin K antagonists (VKAs) use decreased across all regions over time, in Asia from 26.0% to 9.8%, in Europe from 35.5% to 16.8%, in North America from 28.9% to 12.1%, and in Latin America from 32.4% to 17.8%. In the multivariable analysis, factors associated with NOAC prescription were as follows: enrolment year, type of site, region, stroke and bleeding risk scores, and type and categorization of AF.

Conclusions

During 4 years after the approval of the first NOAC, NOAC use increased, while VKA use decreased, across all regions.

Keywords

atrial fibrillation, bleeding risk, GLORIA-AF, oral anticoagulants, stroke risk
VKA in Phase II showed substantial overlap, as measured by comparison of propensity score distributions. During Phase III, follow-up data were collected for up to 3 years regardless of prescribed antithrombotic therapy.

Adults with nonvalvular AF and ≥1 CHA$_2$DS$_2$-VASc risk factor score for stroke were included. Stroke and bleeding risks were assessed using the CHA$_2$DS$_2$-VASc and HAS-BLED risk scores. Patients were managed according to local practice. This report includes regions and sites enrolling patients during Phases II and III.

Standard electronic case reports forms (eCRFs) were used to collect patients' baseline characteristics and follow-up observation.
data. Baseline therapy was the treatment prescribed for long-term anticoagulation subsequent to the diagnosis of AF and recorded at the baseline visit.

Time zero in a participating country was set to the date of the baseline visit for the first patient in each country. The first year of enrolment for a participating country was the first year after time zero in that country. Most countries continued enrolment for up to 4 years. In this paper, we classify newly enrolled patients according to which prescribed treatment they received at their baseline visit, by year of enrolment.

2.1 | Statistical analysis

Treatment patterns are presented as a percentage of patients prescribed NOAC, VKA, or no OAC in each of the 4 years of enrolment, overall and by region. Categorical variables are reported as absolute frequencies and percentages, and continuous variables are summarized by median (Q1, Q3). Baseline characteristics were described by categorization of patients with AF according to stroke prevention treatment (NOAC, VKA, no OAC) and year of enrolment (first year versus last year, ie, Year 4), as well as by CHA₂DS₂-VASc and HAS-BLED risk scores. For each treatment, standardized differences were included to compare baseline characteristics between the last year and first year of enrolment.

Factors associated with OAC prescription patterns over time were evaluated using log-binomial regression models, providing estimates of relative probability for NOAC prescription (vs. VKA prescription). Both univariate and multivariable log-binomial regression analyses were fit to evaluate the crude as well as adjusted probability ratios together with 95% confidence intervals (CIs).

Missing data were imputed using multiple imputation. The imputation model was constructed with 56 baseline patient characteristic variables including those used in the multivariable analyses. The COPY method was used to obtain approximate maximum likelihood estimates when log-binomial models failed to converge. Statistical analyses were performed using SAS version 9.4 (SAS Institute, Inc, Cary, NC).

3 | RESULTS

There were 27,432 eligible patients who enrolled in GLORIA-AF during Phases II and III and who qualified to be included in this

![FIGURE 2](image-url) Temporal trends of antithrombotic therapy prescription globally. NOAC, non-Vitamin K antagonist oral anticoagulants; OAC, oral anticoagulation; VKA, Vitamin K antagonists
analysis. Of 8969 patients who enrolled in the first year, 46.6% were prescribed NOAC, 31.9% were prescribed VKA, and 21.5% were prescribed no OAC. Of 4388 patients enrolled in the fourth year, 71.6% received NOAC, 14.1% received VKA, and 14.3% received no OAC (Figure 2). A similar trend in treatment pattern over time, ie, increase in NOAC and decrease in VKA, was observed for Europe and North America. From the third to fourth year, an increase in NOAC prescriptions and a decrease in VKA or no OAC prescription was reported in Asia (Figure 3). The prevalence of non-OAC slightly decreased from Years 1-4, except Latin America (Figure 2).

Baseline characteristics of patients prescribed NOAC by region are summarized in Table 1. Paroxysmal AF was less prevalent in patients with NOAC during the first year of enrolment than in patients with NOAC during the last year of enrolment in Europe, North America, and Latin America. The standardized differences for stroke and bleeding risk scores (CHA\textsubscript{2}DS\textsubscript{2}-VASc and HAS-BLED) between the last and first year for NOAC patients were small in Europe, North America, and Latin America (less than 0.1).

Baseline characteristics of patients prescribed VKA by region are shown in Table 2. The standardized differences for CHA\textsubscript{2}DS\textsubscript{2}-VASc were small between the patients enrolled during the last and first year in North America, while they were more than 0.1 in Europe, Asia and Latin America. The standardized differences for HAS-BLED were more than 0.1 between last and first year in Asia, North America, and Latin America.

Prescription of oral antithrombotic treatment by region is presented in Table 3 and Figure 3. A decrease in no OAC use including acetylsalicylic acid (ASA) was reported in Asia between the third and fourth year of enrolment. An increase in NOAC use and decrease in VKA and no OAC use including ASA was present in Europe and North America. An increase in NOAC and a decrease in VKA were reported between second and fourth year in Latin America.

3.1 | Factors associated with NOAC prescription in phases II and III

Results from univariate analyses are presented in Table 4. In the multivariable log-binomial regression analysis, factors strongly associated with increased prescription of NOAC were as follows: enrolment year, type of site (higher probability outside of a university hospital, such as GP/primary care, specialist office, community hospital, and other), and region (higher prescription probability in North America compared with Europe) (Table 4).

Factors associated with decreased prescription of NOAC were the following: HAS-BLED score ≥3 (compared with HAS-BLED score <3), categorization of AF (lower probability of symptomatic AF compared with asymptomatic AF), CHA\textsubscript{2}DS\textsubscript{2}-VASc score ≥2 (compared with CHA\textsubscript{2}DS\textsubscript{2}-VASc score <2), and type of AF (lower probability of persistent or permanent AF compared with paroxysmal AF) (Table 4).

3.2 | Prescription of antithrombotics over time by CHA\textsubscript{2}DS\textsubscript{2}-VASc score class

Regional patterns of prescription of antithrombotics over time by CHA\textsubscript{2}DS\textsubscript{2}-VASc score class are presented in Table S1.

In the first year after approval, 32.5% of those with CHA\textsubscript{2}DS\textsubscript{2}-VASc scores ≥2 received NOACs in Asia. Corresponding proportions for patients in Europe, North America, and Latin America were 53.5%, 49.6%, and 56.2%. In the fourth year after approval, 67.1% of patients with CHA\textsubscript{2}DS\textsubscript{2}-VASc scores ≥2 received NOACs in Asia. Corresponding proportions for patients in Europe, North America, and Latin America were 75.7%, 75.4%, and 70.4%.

Let interval change denote the change between Year 4 and Year 1 in prescription rate. The interval changes in those with CHA\textsubscript{2}DS\textsubscript{2}-VASc scores ≥2 who received NOACs in Asia were +34.6%. The
Characteristic	Asia	Europe	North America	Latin America
	Age, median, IQR, y	NOAC during first year (n = 666)	NOAC during last year (n = 570)	NOAC during first year (n = 714)
	71.0	(64.0-78.0)	72.0	72.0
		Std diff	Std diff	Std diff
	−0.161		0.064	−0.121
	Females, n (%)	285 (42.8)	1191 (45.8)	305 (42.7)
		Std diff	Std diff	Std diff
	0.106		0.002	0.069
	Alcohol abuse, n (%)	61 (9.2)	185 (7.1)	55 (7.7)
		Std diff	Std diff	Std diff
	−0.310		−0.094	0.013
	Unknown	24 (3.6)	277 (10.7)	36 (5.0)
		Std diff	Std diff	Std diff
	0.273		−0.042	0.002
	BMI, median, IQR, kg/m²	25.1 (22.2-28.4)	27.7	29.6
		Std diff	Std diff	Std diff
	−0.207		0.078	0.121
	Missed, n (%)	26 (3.9)	21 (0.8)	0 (0.0)
		Std diff	Std diff	Std diff
	0.177		0.078	0.067
	Type of AF, n (%)	Paroxysmal	1212 (46.7)	422 (59.1)
		Std diff	Std diff	Std diff
	0.017		0.132	0.215
	Persistent	196 (29.4)	1028 (39.6)	253 (35.4)
		Std diff	Std diff	Std diff
	0.151		−0.053	−0.169
	Permanent	77 (11.6)	358 (13.8)	39 (5.5)
		Std diff	Std diff	Std diff
	−0.300		−0.125	−0.122
	Categorization of AF, n (%)	Symptomatic	814 (31.3)	152 (21.3)
		Std diff	Std diff	Std diff
	−0.117		0.189	0.072
	Minimally symptomatic	256 (38.4)	1030 (39.6)	269 (37.7)
		Std diff	Std diff	Std diff
	0.021		−0.184	−0.089
	Asymptomatic	192 (28.8)	754 (29.0)	293 (41.0)
		Std diff	Std diff	Std diff
	0.094		−0.007	0.025
	Creatinine clearance (measured), median,	65.4	74.4	80.1
	IQR, ml/min	(50.8-84.4)	(56.5-96.8)	(59.7-107.4)
		Std diff	Std diff	Std diff
	0.062		0.079	0.075
	<15, n (%)	0 (0.0)	1 (0.2)	0 (0.0)
		Std diff	Std diff	Std diff
	0.028		0.056	0.002
	15-29, n (%)	13 (2.0)	18 (0.7)	3 (0.4)
		Std diff	Std diff	Std diff
	−0.043		0.053	0.002
	30-49, n (%)	117 (17.6)	319 (12.3)	72 (10.1)
		Std diff	Std diff	Std diff
	−0.097		0.022	0.047
	50-79, n (%)	248 (37.2)	843 (32.4)	179 (25.1)
		Std diff	Std diff	Std diff
	−0.052		0.047	0.032
	≥80, n (%)	169 (25.4)	898 (34.6)	265 (37.1)
		Std diff	Std diff	Std diff
	−0.011		0.099	0.149
	Missing, n (%)	119 (17.9)	505 (19.4)	186 (26.1)
		Std diff	Std diff	Std diff
	0.168		−0.175	−0.169
	CHA2DS2-VASc score, median, IQR	3.0 (2.0-4.0)	3.0 (2.0-4.0)	3.0 (2.0-4.0)
		Std diff	Std diff	Std diff
	−0.271		−0.007	−0.003

(Continues)
Characteristic	Asia	Europe	North America	Latin America					
	NOAC during first year (n = 666)	NOAC during last year (n = 570)	Std diff	Std diff					
HAS-BLED score, median, IQR	1.0 (1.0-2.0)	1.0 (2598)	1.0 (1330)	1.0 (1.0-2.0)					
Missing (HAS-BLED), n (%)	50 (7.5)	354 (13.6)	173 (13.0)	64 (9.0)					
Medical history, n (%)									
Congestive heart failure	189 (28.4)	669 (25.8)	265 (19.9)	119 (16.7)					
Unknown	7 (1.1)	23 (0.9)	13 (1.0)	6 (0.8)					
Hypertension	523 (78.5)	1965 (75.6)	1032 (77.6)	580 (81.2)					
Unknown	5 (0.8)	6 (0.2)	4 (0.3)	1 (0.1)					
Diabetes mellitus	159 (23.9)	519 (20.0)	272 (20.5)	186 (26.1)					
Previous stroke/TIA/systemic embolism	103 (15.5)	423 (16.3)	196 (14.7)	93 (13.0)					
Myocardial infarction	38 (5.7)	230 (8.9)	117 (8.8)	71 (9.9)					
Unknown	0 (0.0)	2 (0.1)	0 (0.0)	1 (0.1)					
Coronary artery disease	117 (17.6)	419 (16.1)	245 (18.4)	199 (27.9)					
Unknown	15 (2.3)	78 (3.0)	48 (3.6)	13 (1.8)					
Vascular disease	50 (7.5)	313 (12.0)	156 (11.7)	94 (13.2)					
Cancer	62 (9.3)	204 (7.9)	131 (9.8)	124 (17.4)					
Unknown	10 (1.5)	33 (1.3)	25 (1.9)	2 (0.3)					
Chronic gastrointestinal disease	146 (21.9)	220 (8.5)	95 (7.1)	145 (20.3)					
Unknown	16 (2.4)	41 (1.6)	27 (2.0)	3 (0.4)					
Hepatic disease	43 (6.5)	29 (1.1)	9 (0.7)	10 (1.4)					
Unknown	11 (1.7)	47 (1.8)	32 (2.4)	5 (0.7)					
Chronic kidney disease	216 (32.4)	623 (24.0)	302 (22.7)	135 (18.9)					
Unknown	119 (17.9)	505 (19.4)	173 (13.0)	186 (26.1)					
Prior bleeding	40 (6.0)	118 (4.5)	53 (4.0)	42 (5.9)					
Characteristic	Asia	Europe	North America	Latin America					
------------------------------------	-----------------------	-------------------------	--------------------------	--------------------------					
	NOAC during first year (n = 666)	NOAC during last year (n = 570)	Std diff	NOAC during first year (n = 714)	NOAC during last year (n = 930)	Std diff	NOAC during first year (n = 201)	NOAC during last year (n = 312)	Std diff
Unknown	14 (2.1)	0 (0.0)	-0.195	16 (2.2)	10 (1.1)	-0.091	2 (1.0)	0 (0.0)	-0.110

	NOAC	**during**	** Std**	**during**	**last year**	** Std**	**during**	**last year**	** Std**
	first year	** during first year **	**(n = 2598)**	** during last year**	**(n = 1330)**	**(n = 714)**	**(n = 930)**	**(n = 201)**	**(n = 312)**
Type of site, n (%)									
GP/primary care	48 (7.2)	0 (0.0)	-0.387	68 (9.5)	63 (6.8)	-0.100	39 (19.4)	66 (21.2)	0.044
Specialist office	66 (9.9)	37 (6.5)	-0.125	557 (78.0)	677 (72.8)	-0.121	70 (34.8)	102 (32.7)	-0.046
Community hospital	385 (57.8)	49 (8.6)	-1.226	48 (6.7)	91 (9.8)	0.112	71 (35.3)	65 (20.8)	-0.327
University hospital	154 (23.1)	484 (84.9)	1.580	16 (2.2)	10 (1.1)	-0.091	2 (1.0)	0 (0.0)	-0.110
Otherc	13 (2.0)	0 (0.0)	-0.186	9 (1.3)	2 (0.2)	-0.122	5 (2.5)	30 (9.6)	0.302

	Physician specialty, n (%)									
	GP/PCP/geriatrician	13 (2.0)	1 (0.2)	-0.174	50 (1.9)	22 (1.7)	-0.020	18 (2.5)	33 (3.5)	0.060
Cardiologist	649 (97.4)	554 (97.2)	0.016	2279 (87.7)	1183 (88.9)	0.038	622 (87.1)	801 (86.1)	-0.029	
Neurologist	0 (0.0)	14 (2.5)	0.214	118 (4.5)	95 (7.1)	0.111	22 (3.1)	17 (1.8)	-0.081	
Internist	4 (0.6)	1 (0.2)	0.068	61 (2.3)	16 (1.2)	-0.087	49 (6.9)	58 (6.2)	-0.025	
Angiologist	0 (0.0)	0 (0.0)	0.000	0 (0.0)	0 (0.0)	0.000	0 (0.0)	0 (0.0)	0.000	
Other	0 (0.0)	0 (0.0)	0.000	90 (3.5)	14 (1.1)	-0.163	3 (0.4)	21 (2.3)	0.160	

	Medical treatment reimbursed by, n (%)									
	Self-pay/no coverage	66 (9.9)	106 (18.6)	0.250	105 (4.0)	21 (1.6)	-0.149	13 (1.8)	17 (1.8)	0.001
Not self-payd	581 (87.2)	415 (72.8)	-0.367	2329 (89.6)	1263 (95.0)	0.201	669 (93.7)	881 (94.7)	0.044	
Unknown	19 (2.9)	49 (8.6)	0.249	164 (6.3)	46 (3.5)	-0.133	32 (4.5)	32 (4.3)	-0.053	

Abbreviations: AF, atrial fibrillation; BMI, body mass index; CHA₂-VASc, congestive heart failure, hypertension, age ≥75 years, diabetes, stroke/transient ischemic attack/systemic embolism, vascular disease, age 65-74 years, sex category (female); GP, general practitioner; HAS-BLED, hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile international normalized ratio, elderly (>65 years), drugs or alcohol concomitantly; IQR, interquartile range; NOAC, non-Vitamin K antagonist oral anticoagulant; PCP, primary care physician; TIA, transient ischemic attack.

a ≥ 8 units/wk.

b < 60 mL/min.

*Anticoagulation clinics, out-patient healthcare centers, and other healthcare settings.

d Private and statutory/ federal insurance.
TABLE 2 Baseline characteristics for VKA patients by first and last year of enrollment by region

Characteristic	Asia	Europe	North America	Latin America
	VKA during first year (n = 594)	VKA during first year (n = 1728)	VKA during first year (n = 422)	VKA during first year (n = 117)
	VKA during last year (n = 92)	VKA during last year (n = 295)	VKA during last year (n = 152)	VKA during last year (n = 78)
	Std diff	Std diff	Std diff	Std diff
Age, median, IQR, y	68.0 (60.0-75.0)	74.0 (66.0-79.5)	73.0 (65.0-81.0)	70.0 (62.0-77.0)
	(63.5 (56.0-71.5)	(75.0 (68.0-80.0)	(72.5 (63.5-79.0)	(69.0 (63.0-76.0)
Females, n (%)	259 (43.6)	819 (47.4)	202 (47.9)	46 (39.3)
	(32.4 (38.8)	(157 (53.2)	(68 (44.7)	(30 (38.5)
Alcohol abuse, n (%)	46 (7.7)	156 (9.0)	21 (5.0)	0 (0.0)
Unknown	68 (11.4)	112 (6.5)	18 (4.3)	3 (2.6)
BMI, median, IQR, kg/m²	24.7 (22.7-27.1)	28.0 (25.0-31.6)	30.0 (26.4-35.5)	28.1 (25.6-31.6)
	(24.8 (22.7-27.6)	(28.0 (25.0-32.4)	(31.2 (26.5-35.8)	(27.2 (24.4-31.9)
Missed, n (%)	22 (3.7)	20 (1.2)	0 (0.0)	1 (0.9)
Type of AF, n (%)				
Paroxysmal	294 (49.5)	689 (39.9)	245 (58.1)	42 (35.9)
Persistent	275 (46.3)	792 (45.8)	150 (35.5)	44 (37.6)
Permanent	25 (4.2)	247 (14.3)	27 (6.4)	31 (26.5)
Categorization of AF, n (%)				
Symptomatic	135 (22.7)	532 (30.8)	97 (23.0)	31 (26.5)
Minimally symptomatic	297 (50.0)	661 (38.3)	162 (38.4)	44 (37.6)
Asymptomatic	162 (27.3)	535 (31.0)	163 (38.6)	42 (35.9)
Creatinine clearance (measured, median, IQR, ml/min)	69.1 (52.1-86.3)	72.0 (52.8-94.5)	73.7 (50.4-109.7)	74.1 (57.9-95.7)
<15, n (%)	9 (1.5)	18 (1.0)	5 (1.2)	0 (0.0)
15-29, n (%)	20 (3.4)	52 (3.0)	14 (3.3)	3 (2.6)
30-49, n (%)	73 (12.3)	231 (13.4)	61 (14.5)	10 (8.5)
50-79, n (%)	215 (36.2)	533 (30.8)	61 (14.5)	4 (5.1)
≥80, n (%)	148 (24.9)	566 (32.8)	10 (8.5)	0.000
Missing, n (%)	129 (21.7)	328 (19.0)	98 (19.7)	53 (45.3)
CHA²DS²-VASc score, median, IQR	3.0 (2.0-4.0)	3.0 (2.0-4.0)	4.0 (2.0-4.0)	3.0 (2.0-4.0)
HAS-BLED score, median, IQR	1.0 (1.0-2.0)	1.0 (1.0-2.0)	1.0 (1.0-2.0)	1.0 (0.0-2.0)

(Continues)
Characteristic	Asia	Europe	North America	Latin America		
	VKA during first year (n = 594)	VKA during last year (n = 92)	Std diff	VKA during first year (n = 422)	VKA during last year (n = 152)	Std diff
Missing (HAS-BLED), n (%)	95 (16.0)	6 (6.5)	−0.303	50 (11.8)	10 (6.6)	−0.183
	VKA during first year (n = 1728)	VKA during last year (n = 295)	Std diff	VKA during first year (n = 117)	VKA during last year (n = 78)	Std diff
	204 (11.8)	38 (12.9)	0.033	50 (11.8)	10 (6.6)	−0.183
	VKA during first year (n = 1172)	VKA during last year (n = 204)	Std diff	VKA during first year (n = 422)	VKA during last year (n = 152)	Std diff
	1728 (11.8)	295 (12.9)	0.033	50 (11.8)	10 (6.6)	−0.183
	Missing (HAS-BLED), n (%)			VKA during first year (n = 117)	VKA during last year (n = 78)	Std diff
	95 (16.0)	6 (6.5)	−0.303	50 (11.8)	10 (6.6)	−0.183
	Medical history, n (%)			VKA during first year (n = 117)	VKA during last year (n = 78)	Std diff
	Congestive heart failure			60 (11.8)	10 (6.6)	−0.183
	Unknown			5 (0.8)	0 (0.0)	−0.036
	Hypertension			402 (67.7)	52 (65.6)	−0.232
	Unknown			1 (0.2)	0 (0.0)	0.063
	Diabetes mellitus			135 (22.7)	17 (18.5)	−0.105
	Unknown			0 (0.0)	0 (0.0)	0.000
	Previous stroke/ TIA/systemic			91 (15.3)	8 (8.7)	−0.205
	Unknown			0 (0.0)	0 (0.0)	0.000
	Congestive heart failure			117 (19.7)	30 (32.6)	0.297
	Unknown			5 (0.8)	0 (0.0)	−0.036
	Hypertension			402 (67.7)	52 (65.6)	−0.232
	Unknown			1 (0.2)	0 (0.0)	0.063
	Diabetes mellitus			135 (22.7)	17 (18.5)	−0.105
	Unknown			0 (0.0)	0 (0.0)	0.000
	Previous stroke/ TIA/systemic			91 (15.3)	8 (8.7)	−0.205
	Unknown			0 (0.0)	0 (0.0)	0.000
TABLE 2 (Continued)

Characteristic	Asia (n = 594)	Europe (n = 1728)	North America (n = 422)	Latin America (n = 117)					
	VKA during first year	VKA during last year	Std diff	VKA during first year	VKA during last year	Std diff	VKA during first year	VKA during last year	Std diff
Prior bleeding	28 (4.7)	3 (3.3)	-0.074	90 (5.2)	12 (4.1)	-0.054	34 (8.1)	17 (11.2)	0.106
Unknown	10 (1.7)	0 (0.0)	-0.109	23 (1.3)	10 (3.4)	0.136	16 (3.8)	1 (0.7)	-0.214
Type of site, n (%)									
GP/primary care	5 (0.8)	0 (0.0)	-0.036	62 (3.6)	1 (0.3)	-0.236	55 (13.0)	12 (7.9)	-0.169
Specialist office	83 (14.0)	15 (16.3)	0.065	193 (11.2)	75 (25.4)	0.375	295 (69.9)	93 (61.2)	-0.184
Community hospital	43 (7.2)	9 (9.8)	0.091	695 (40.2)	120 (40.7)	0.009	35 (8.3)	14 (9.2)	0.032
University hospital	460 (77.4)	69 (73.9)	-0.082	714 (41.3)	99 (33.6)	-0.161	27 (6.4)	28 (18.4)	0.371
Other	3 (0.5)	0 (0.0)	0.005	64 (3.7)	0 (0.0)	-0.259	10 (2.4)	5 (3.3)	0.056
Physician specialty, n (%)									
GP/PCP/geriatrician	1 (0.2)	0 (0.0)	0.063	68 (3.9)	2 (0.7)	-0.218	21 (5.0)	10 (6.6)	0.069
Cardiologist	592 (99.7)	92 (100.0)	-0.031	1385 (80.2)	281 (95.3)	0.473	360 (85.3)	122 (80.3)	-0.134
Neurologist	1 (0.2)	0 (0.0)	0.063	32 (1.9)	9 (3.1)	0.078	5 (1.2)	6 (3.9)	0.175
Internist	0 (0.0)	0 (0.0)	0.000	57 (3.3)	3 (1.0)	-0.158	35 (8.3)	12 (7.9)	-0.015
Angiologist	0 (0.0)	0 (0.0)	0.000	0 (0.0)	0 (0.0)	0.000	0 (0.0)	0 (0.0)	0.000
Other	0 (0.0)	0 (0.0)	0.000	166 (10.8)	0 (0.0)	-0.479	1 (0.2)	2 (1.3)	0.123
Medical treatment reimbursed by, n (%)									
Self-pay/no coverage	69 (11.6)	5 (5.4)	-0.223	108 (6.3)	7 (2.4)	-0.192	14 (3.3)	8 (5.3)	0.096
Not self-pay^d	510 (85.9)	76 (82.6)	-0.089	1437 (83.2)	284 (96.3)	0.442	376 (89.1)	136 (89.5)	0.012
Unknown	15 (2.5)	11 (12.0)	0.370	183 (10.6)	4 (1.4)	-0.397	32 (7.6)	8 (5.3)	-0.095

Abbreviations: AF, atrial fibrillation; BMI, body mass index; CHA₂DS₂-VASc, congestive heart failure, hypertension, age ≥75 years, diabetes, stroke/transient ischemic attack/systemic embolism, vascular disease, age 65-74 years, sex category (female); GP, general practitioner; HAS-BLED, hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile international normalized ratio, elderly (>65 years), drugs or alcohol concomitantly; IQR, interquartile range; PCP, primary care physician; TIA, transient ischemic attack; VKA, Vitamin K antagonists.

^a ≥ 8 units/wk.
^b < 60 mL/min.
^c Anticoagulation clinics, out-patient healthcare centers, and other healthcare settings.
^d Private and statutory/ federal insurance.
TABLE 3 Prescription of oral antithrombotic treatment over time by region

Region: Asia	Year 1	Year 2	Year 3	Year 4	Total
Number of patients	2284 (100.0)	1336 (100.0)	1396 (100.0)	937 (100.0)	5953 (100.0)
NOAC (N, %)	666 (29.2)	619 (46.3)	527 (37.8)	570 (60.8)	2382 (40.0)
On NOACs standard dose (N, %)					
Yes	214 (9.4)	239 (17.9)	204 (14.6)	224 (23.9)	881 (14.8)
No	452 (19.8)	380 (28.4)	323 (23.1)	346 (36.9)	1501 (25.2)
On NOACs reduced dose (N, %)					
Yes	452 (19.8)	380 (28.4)	323 (23.1)	346 (36.9)	1501 (25.2)
No	214 (9.4)	239 (17.9)	204 (14.6)	224 (23.9)	881 (14.8)
VKA (N, %)	594 (26.0)	266 (19.9)	330 (23.6)	92 (9.8)	1282 (21.5)
No OAC (N, %)	1024 (44.8)	451 (33.8)	539 (38.6)	275 (29.3)	2289 (38.5)
ASA (N, %)	522 (22.9)	251 (18.8)	313 (22.4)	150 (16.0)	1236 (20.8)
Antiplt other than ASA (N, %)	34 (1.5)	22 (1.6)	35 (2.5)	16 (1.7)	107 (1.8)
None (N, %)	468 (20.5)	178 (13.3)	191 (13.7)	109 (11.6)	946 (15.9)

Region: Europe	Year 1	Year 2	Year 3	Year 4	Total
Number of patients	4866 (100.0)	4090 (100.0)	2911 (100.0)	1754 (100.0)	13 621 (100.0)
NOAC (N, %)	2598 (53.4)	2308 (56.4)	1899 (65.2)	1300 (75.8)	8135 (59.7)
On NOACs standard dose (N, %)					
Yes	1523 (31.3)	1514 (37.0)	1373 (47.2)	1016 (57.9)	5426 (39.8)
No	1075 (22.1)	794 (19.4)	526 (18.1)	314 (17.9)	2709 (19.9)
On NOACs reduced dose (N, %)					
Yes	1075 (22.1)	794 (19.4)	526 (18.1)	314 (17.9)	2709 (19.9)
No	1523 (31.3)	1514 (37.0)	1373 (47.2)	1016 (57.9)	5426 (39.8)
VKA (N, %)	1728 (35.5)	1367 (33.4)	741 (25.5)	295 (16.8)	4131 (30.3)
No OAC (N, %)	540 (11.1)	415 (10.1)	271 (9.3)	129 (7.4)	1335 (9.9)
ASA (N, %)	280 (5.8)	228 (5.6)	115 (4.0)	66 (3.8)	689 (5.1)
Antiplt other than ASA (N, %)	43 (0.9)	36 (0.9)	22 (0.8)	4 (0.2)	105 (0.8)
None (N, %)	217 (4.5)	151 (3.7)	134 (4.6)	59 (3.4)	561 (4.1)

Region: North America	Year 1	Year 2	Year 3	Year 4	Total
Number of patients	1458 (100.0)	2045 (100.0)	1593 (100.0)	1258 (100.0)	6354 (100.0)
NOAC (N, %)	714 (49.0)	1215 (59.4)	1093 (68.6)	930 (73.9)	3952 (62.2)
On NOACs standard dose (N, %)					
Yes	599 (41.1)	1033 (50.5)	943 (59.2)	772 (61.4)	3347 (52.7)
No	115 (7.9)	182 (8.9)	150 (9.4)	158 (12.6)	605 (9.5)
On NOACs reduced dose (N, %)					
Yes	115 (7.9)	182 (8.9)	150 (9.4)	158 (12.6)	605 (9.5)
No	599 (41.1)	1033 (50.5)	943 (59.2)	772 (61.4)	3347 (52.7)
VKA (N, %)	422 (28.9)	442 (21.6)	216 (13.6)	152 (12.1)	1232 (19.4)
No OAC (N, %)	322 (22.1)	388 (19.0)	284 (17.8)	176 (14.0)	1170 (18.4)
ASA (N, %)	200 (13.7)	262 (12.8)	200 (12.6)	134 (10.7)	796 (12.5)
Antiplt other than ASA (N, %)	4 (0.3)	21 (1.0)	5 (0.3)	4 (0.3)	34 (0.5)
None (N, %)	118 (8.1)	105 (5.1)	79 (5.0)	38 (3.0)	340 (5.4)

Region: Latin America	Year 1	Year 2	Year 3	Year 4	Total
Number of patients	361 (100.0)	420 (100.0)	284 (100.0)	439 (100.0)	1504 (100.0)
NOAC (N, %)	201 (55.7)	219 (52.1)	164 (57.7)	312 (71.1)	896 (59.6)

(Continues)
corresponding interval changes for Europe, North America, and Latin America were +22.2%, +25.8%, and +14.2%. The interval changes in those with CHA\textsubscript{2}DS\textsubscript{2}-VASc scores ≥2 who received VKAs in Asia were −17.5%. The corresponding interval changes for Europe, North America, and Latin America were −18.5%, −17.2%, and −15.3% (Table S2).

3.3 Prescription of antithrombotics over time by HAS-BLED score class

Regional patterns of prescription of antithrombotic drugs over time by HAS-BLED score class are presented in Table S3. The interval changes in those with HAS-BLED scores ≥3 who received NOACs in Asia were +4.1%. The corresponding interval changes for Europe, North America and Latin America were +20.7, +20.3, and +22.5%. The interval changes in those with HAS-BLED scores ≥3 who received VKAs in Asia were −9.7%. The corresponding interval changes for Europe, North America, and Latin America were −18.5%, −17.2%, and −21.3% (Table S4).

4 DISCUSSION

We found that use of NOAC increased and VKA decreased over time in patients with newly diagnosed AF. In consecutive years after their introduction, the proportions of patients prescribed NOAC increased and exceeded that of VKA or no OAC in all geographical regions, just as prescriptions for VKA decreased in all regions. North America was associated with NOAC prescription in the univariate analysis of NOAC vs. VKA prescription. The interval changes between fourth and first year after NOAC approval regarding NOAC prescription in patients with CHA\textsubscript{2}DS\textsubscript{2}-VASc scores ≥2 were the highest in Asia and North America. The interval changes between fourth and first year after NOAC approval regarding NOAC prescription in patients with HAS-BLED score ≥3 were the highest in Latin America, Europe, and North America but remained little changed in Latin America.

The use of NOAC appears to have increased over time in Europe. This finding is consistent with other reports.7-9 After the release of NOAC, the prevalence of NOAC use rose steadily in Japan.10 Similar patterns of NOAC and VKA prescription were shown in Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF).11

Smaller proportions of patients from Latin America were prescribed NOAC or VKA at baseline in the Global Anticoagulant Registry in the Field-Atrial Fibrillation (GARFIELD-AF) than in our registry.12 Patients prescribed VKA during the last year of enrolment were more likely to have concomitant diseases, such as CHF, diabetes or vascular disease, than those who use NOAC during their last year of enrolment in Europe. In other studies, patients prescribed VKAs also had more comorbidities than those prescribed NOACs.13-14 Similar to our study, patients prescribed VKA were more likely to have permanent AF than those prescribed NOAC in each region.13-14 Interestingly, in Korean patients those who used VKAs were less likely to have prior stroke/TIA/systemic embolism than those who used NOACs.15

In our study, the proportion of patients who were prescribed a reduced dose of NOAC is highest in Asia, a finding that could be related to smaller body size in Asian patients. The risk of major bleeding seems to be higher in Asian patients medicated with VKAs than in non-Asian patients.16 In one study, lower NOAC doses were frequently used in Asian patients in routine daily practice. However, unjustified underdosing of apixaban was associated with a less apparent clinical benefit over warfarin in patients.17

The data from baseline Phase II of GLORIA-AF showed that considerable numbers of patients were not treated with OAC, especially in Asia and North America.18 Our observations are concordant with other studies in the United States, Denmark, Australia, and Korea.15,19-21 However, data from the United States (from

Note: Standard dose: Dabigatran 150-mg BID, Rivaroxaban 20-mg QD, Apixaban 5-mg BID, Edoxaban 60-mg QD. The other doses are reduced.

Abbreviations: ASA, acetylsalicylic acid, NOAC, non-vitamin K antagonist oral anticoagulants, VKA, Vitamin K antagonists.
TABLE 4 Multivariable log-binomial analysis for factors associated with prescription of oral antithrombotic therapy (NOAC versus VKA)

Variable	Total N (100%)	NOAC n (%)	VKA n (%)	Univariate analysis relative proportion (95% CI) for NOAC prescription	Multivariate analysis relative proportion (95% CI) for NOAC prescription
Time (categorical, Years 1-4)					
Year 1	7040	4179 (59.4)	2861 (40.6)	1.0 (ref)	1.0 (ref)
Year 2	6573	4361 (66.3)	2212 (33.7)	1.118 (1.09-1.15)	1.10 (1.07-1.12)
Year 3	5043	3683 (73.0)	1360 (27.0)	1.23 (1.20-1.26)	1.20 (1.17-1.23)
Year 4	3759	3142 (83.6)	617 (16.4)	1.41 (1.38-1.44)	1.34 (1.31-1.37)
Region					
Asia	3664	2382 (65.0)	1282 (35.0)	0.98 (0.95-1.01)	1.03 (0.99-1.05)
Europe	12 266	8135 (66.3)	4131 (33.7)	1.0 (ref)	1.0 (ref)
North America	5184	3952 (76.2)	1232 (23.8)	1.15 (1.13-1.17)	1.05 (1.03-1.08)
Latin America	1301	896 (68.9)	405 (31.1)	1.04 (0.99-1.08)	0.99 (0.96-1.04)
BMI class					
<18.5	297	201 (67.7)	96 (32.3)	0.99 (0.92-1.09)	0.98 (0.91-1.05)
18.5-24	5856	3970 (67.8)	1887 (32.2)	1.0 (ref)	1.0 (ref)
25-29	8623	5884 (68.2)	2738 (31.8)	1.01 (0.98-1.03)	1.00 (0.98-1.02)
≥35	4582	3165 (69.1)	1417 (30.9)	1.02 (0.99-1.05)	0.99 (0.97-1.01)
Categorization of AF					
Symptomatic	6996	4740 (67.8)	2256 (32.2)	0.96 (0.94-0.98)	0.98 (0.96-0.99)
Minimally symptomatic	7915	5332 (67.4)	2583 (32.6)	0.96 (0.94-0.98)	0.99 (0.97-1.00)
Asymptomatic	7504	5293 (70.5)	2211 (29.5)	1.0 (ref)	1.0 (ref)
HAS-BLED score					
<3	20 619	14 176 (68.8)	6443 (31.2)	1.0 (ref)	1.0 (ref)
≥3	1796	1189 (66.2)	607 (33.8)	0.96 (0.93-0.99)	0.96 (0.93-0.99)
CHA2DS2-VASc score					
=1	2741	1902 (69.4)	839 (30.6)	1.0 (ref)	1.0 (ref)
≥2	19 674	13 463 (68.4)	6211 (31.6)	0.99 (0.96-1.01)	0.97 (0.95-0.99)
Chronic gastrointestinal disease					
Yes	2968	2101 (70.8)	867 (29.2)	1.04 (1.01-1.06)	1.01 (0.99-1.03)
No	19 447	13 264 (68.2)	6183 (31.8)	1.0 (ref)	1.0 (ref)
Type of AF					
Paroxysmal	11 828	8536 (72.2)	3292 (27.8)	1.0 (ref)	1.0 (ref)
Persistent	8239	5304 (64.4)	2935 (35.6)	0.89 (0.88-0.91)	0.93 (0.92-0.95)
Permanent	2348	1525 (64.9)	823 (35.1)	0.90 (0.87-0.93)	0.93 (0.90-0.96)
Type of site					
GP/primary care	1123	830 (73.9)	293 (26.1)	1.282 (1.230-1.334)	1.24 (1.19-1.29)
Specialist office	6945	5199 (74.9)	1746 (25.1)	1.29 (1.27-1.33)	1.22 (1.19-1.25)
Community hospital	7205	5171 (71.8)	2034 (28.2)	1.25 (1.21-1.28)	1.23 (1.20-1.27)
University hospital	6540	3769 (57.6)	2771 (42.4)	1.0 (ref)	1.0 (ref)
Other	602	396 (65.8)	206 (34.2)	1.14 (1.07-1.21)	1.15 (1.09-1.22)
Cancer					
Yes	2261	1586 (70.1)	675 (29.9)	1.026 (0.99-1.06)	0.99 (0.97-1.02)
No	20 154	13 779 (68.4)	6375 (31.6)	1.0 (ref)	1.0 (ref)

(Continues)
The proportion of patients on OAC increased with CHA²DS₂-VASc score, as described in other datasets.\(^{24}\)

Table 4 (Continued)

Variable	Total N (100%)	NOAC n (%)	VKA n (%)	Univariate analysis relative proportion (95% CI) for NOAC prescription	Multivariate analysis relative proportion (95% CI) for NOAC prescription
Self-pay/no overage	1362	894 (65.6)	467 (34.3)	0.956 (0.92-0.99)	0.99 (0.96-1.03)
Not self-pay	21 053	14 471 (68.7)	6583 (31.3)	1.0 (ref)	1.0 (ref)

Abbreviations: AF, atrial fibrillation; BMI, body mass index; CHA²DS₂-VASc, congestive heart failure, hypertension, age ≥75 years, diabetes, stroke/transient ischemic attack/systemic embolism, vascular disease, age 65-74 years, sex category (female); CI, confidence interval; GP, general practitioner; HAS-BLED, hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile international normalized ratio, elderly (>65 years), drugs or alcohol concomitantly; NOAC, nonvitamin K antagonist oral anticoagulants; ref, reference; VKA, Vitamin K antagonist.

2008 to 2014) indicate no increase in OAC prescriptions overall due to an increase in NOAC uptake being offset by a decrease in VKA use.\(^{22}\)

In our analysis, the prescription of NOAC for stroke prevention has been increasingly associated with individual patient stroke risk as recommended by the European Society of Cardiology guidelines.\(^{23}\)

The proportion of patients on OAC increased with CHA²DS₂-VASc score, as described in other datasets.\(^{24}\)

Increased prescription of NOAC over the 4 years of enrollment in GLORIA-AF is consistent with other reports.\(^{15,20,25}\) The proportion of patients with moderate-to-high risk of stroke who are not prescribed OAC has declined continuously. Increased awareness of physicians and patients, improved implementation of guidelines, and educational programs might have resulted in greater NOAC prescription.\(^{26}\)

Indeed, noticeable differences in patients’ baseline characteristics between consecutive years of enrollment are evident. The use of NOAC has also been increasing among patients with higher bleeding risk.

This study has important practical implications and may help in identifying the “action points” needed to improve stroke prevention in AF patients in “routine” clinical practice. Our observations also reflect the evolution of international guidelines on the management of AF in clinical practice.\(^{27}\)

Numerous registries have reported data on prescription patterns of antithrombotics for stroke prevention in AF, but comparison across registries appears to be challenging for a variety of reasons. The GLORIA-AF registry’s specific design facilitated a description of how the OAC prescription patterns changed across participating countries after NOAC approval. In contrast, in the EURObservational Research Programme (EORP) and the GARFIELD-AF registries, temporal OAC prescription patterns were presented by calendar year, which led to an aggregation of countries with and without NOAC approval particularly in the first years of NOAC availability; ie, while the first NOAC, dabigatran, was approved in the United States in 2011, the first approval in Italy only occurred in 2013; therefore, country composition as well as the amount patients by country had an impact on the observed treatment patterns. aggregated\(^{7,25}\)

In our study, that only started with NOACs availability, the proportion of patients prescribed NOAC increased within a period of between 1 and 4 years, while the proportions of VKA and non-OAC prescriptions decreased. A pattern similar to that in our study has also been seen in other studies,\(^{25}\) with a decline in the use of VKA as well as antiplatelets, and a rise in the use of NOAC. In the EORP-AF registry\(^{7}\), most of patients who were medicated with VKA or NOAC at the baseline and at 1-year follow-up were still anticoagulated with the same OAC at 2-year follow-up.

In this study, patients with a high HAS-BLED score had a generally increasing proportion of OAC prescriptions between the first and fourth year of enrollment. The percentage of patients with no OAC among patients with HAS-BLED score ≥3 was relatively stable (approximately one third of the patients) over the same period. A high percentage of patients with HAS-BLED score ≥3 had no OAC prescription, possibly reflecting the lack of concordance between empirical bleeding scores and physician assessment of bleeding risk in AF.\(^{28}\) Importantly, there appears to be a need to emphasize that AF patients with a high risk of bleeding should continue taking OAC with close monitoring and frequent visits and individual reassessment of thromboembolic and bleeding risks.\(^{23,29-30}\) In the mobile atrial fibrillation application (mAFA-II) randomized trial, proactive use of HAS-BLED for dynamic bleeding risk assessment was associated with lower bleeding rates and an increase in OAC use.\(^{31}\)

Furthermore, year of enrollment, type of site, region, type and categorization of AF, and stroke and bleeding risks are associated with NOAC prescription in the combined Phase II and III data in our analysis. A similar pattern was found in another report where persistent or permanent AF was inversely associated with NOAC prescription.\(^{13}\)

Also, the year of enrollment was associated with NOAC prescription.\(^{13}\)

4.1 Limitations

These findings may not generalize to the entire global nonvalvular AF patient population or even to the patient population of the participating countries, because the study is restricted to patients with a CHA²DS₂-VASc score ≥1. Furthermore, this analysis represents only a snapshot of the prescribing practice in the course of treatment and does not take into account treatment continuation, switching or adherence. These issues were addressed in other reports from GLORIA-AF. Data on the reasons for OAC non-prescription were not collected.
5 | CONCLUSIONS

In this global registry of prospectively enrolled AF patients, NOACs have been more commonly prescribed than VKA. During 4 years after approval of the first NOAC for stroke prevention in AF, NOAC use increased over time, while VKA use decreased across all regions.

ACKNOWLEDGEMENTS

The study was funded by Boehringer Ingelheim. The authors thank the patients who participated in this trial, their families, the investigators, study co-ordinators, and study teams.

CONFLICT OF INTEREST

Dr Kozieł and Professor Rothman declare they have no conflict of interest. Dr Bayer, Gurusamy, and Dr Teutsch are employees of Boehringer Ingelheim. Dr Lu was employee of Boehringer Ingelheim at time of manuscript writing. Dr Diener has received honoraria for participation in clinical trials, contribution to advisory boards or oral presentations from: Abbott, Bayer Vital, Bristol-Myers Squibb (BMS), Boehringer Ingelheim, Daiichi-Sankyo, Medtronic, Pfizer, Portola, Sanofi-Aventis, and WebMD Global. Financial support for research projects was provided by Boehringer Ingelheim. Dr Diener chairs the Treatment Guidelines Committee of the German Society of Neurology and contributed to the EHRA and ESC guidelines for the treatment of AF. Professor Halperin has engaged in consulting activities with Boehringer Ingelheim, for advisory activities involving anticoagulants, and he is a member of the Executive Steering Committee of the GLORIA-AF Registry. Professor Ma has received honoraria for lectures from AstraZeneca, Bayer HealthCare, Boehringer Ingelheim, BMS, Johnson & Johnson, and Pfizer. Professor Huisman reports grants from ZonMW Dutch Healthcare Fund, grants and personal fees from Boehringer Ingelheim, Pfizer-BMS, Bayer HealthCare, Aspen, Daiichi-Sankyo, outside the submitted work. Professor Lip: Consultant and speaker for BMS/Pfizer, Boehringer Ingelheim and Daiichi-Sankyo. No fees are received personally.

ORCID

Monika Kozieł https://orcid.org/0000-0003-0384-1975
Gregory Y. H. Lip https://orcid.org/0000-0002-7566-1626

REFERENCES

1. Lip GYH, Banerjee A, Boriani G, Chiang CE, Fargo R, Freedman B, et al. Antithrombotic therapy for atrial fibrillation: CHEST guideline and expert panel report. Chest. 2018;154:1121–201.
2. Huisman MV, Lip GYH, Diener HC, Dubner SJ, Halperin JL, Ma CS, et al. Design and rationale of global registry on long-term oral antithrombotic treatment in patients with atrial fibrillation: a global registry program on long-term oral antithrombotic treatment in patients with atrial fibrillation. Am Heart J. 2014;167:329–34.
3. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on atrial fibrillation. Chest. 2010;137:263–72.
4. Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest. 2010;138:1093–100.
5. Rothman KJ. Disengaging from statistical significance. Eur J Epidemiol. 2016;31:443–4.
6. Deddens JA, Petersen MR. Approaches for estimating prevalence ratios. Occup Environ Med. 2008;65(8):501–486.
7. Proietti M, Laroche C, Opolski G, Maggioni AP, Boriani G, Lip GYH. Real-world’ atrial fibrillation management in Europe: observations from the 2-year follow-up of the EURObservational Research Programme-Atrial Fibrillation General Registry Pilot Phase. Europace. 2017;19(5):722–33.
8. Catev T, Ten Cate H, Verheugt FWA. The global anticoagulant registry in the FIELD-atrial fibrillation (GARFIELD-AF): exploring the changes in anticoagulant practice in patients with non-valvular atrial fibrillation in the Netherlands. Neth Heart J. 2016;24(10):574–80.
9. Apenteng P, Gao H, Hobbs R, Fitzmaurice D. Temporal trends in antithrombotic treatment of real-world UK patients with newly diagnosed atrial fibrillation: findings from the GARFIELD-AF registry. BMJ Open. 2018;8(1):e018905.
10. Yamashita Y, Uozumi R, Hamatani Y, Esato M, Chun YH, Tsuji H, et al. Current status and outcomes of direct oral anticoagulant use in real-world atrial fibrillation patients - Fushimi AF Registry. Circ J. 2017;81(9):1278–85.
11. Steinberg BA, Gao H, Shrader P, Pieper K, Thomas L, Camm AJ, et al. International trends in clinical characteristics and oral anticoagulation treatment for patients with atrial fibrillation: results from the GARFIELD-AF’, ORBIT-AF I’, and ORBIT-AF II registries. Am Heart J. 2017;194:132–40.
12. Jerjes-Sanchez C, Corbalan R, Barretto ACP, Luciardi HL, Allu J, Illingworth L, et al. Stroke prevention in patients from Latin American countries with non-valvular atrial fibrillation: insights from the GARFIELD-AF registry. Clin Cardiol. 2019;42(5):553–60.
13. Boriani G, Proietti M, Laroche C, Fauchier L, Marin F, Nabauer M, et al. Contemporary stroke prevention strategies in 11,096 European patients with atrial fibrillation: a report from the EURObservational Research Programme on Atrial Fibrillation (EORP-AF) Long-Term General Registry. Europace. 2018;20(5):747–57.
14. Steinberg BA, Shrader P, Thomas L, Ansell J, Fonarow GC, Gersh BJ, et al. Factors associated with non-vitamin K antagonist oral anticoagulants for stroke prevention in patients with new-onset atrial fibrillation: results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation II (ORBIT-AF II). Am Heart J. 2017;189:40–7.
15. Lee S-R, Choi E-K, Han K-D, Cha M-J, Oh S, Lip GYH. Temporal trends of antithrombotic therapy for stroke prevention in Korean patients with non-valvular atrial fibrillation in the era of non-vitamin K antagonist oral anticoagulants: a nationwide population-based study. PLoS One. 2017;12(12):e0189495.
16. Wang KL, Lip GYH, Lin S-J, Chiang C-E. Non-vitamin K antagonist oral anticoagulants for stroke prevention in Asian patients with nonvalvular atrial fibrillation: meta-analysis. Stroke. 2015;46(9):2555–61.
17. Cho MS, Yun JE, Park JJ, Kim YJ, Lee J, Kim H, et al. Outcomes after use of standard- and low-dose non-vitamin K oral anticoagulants in Asian patients with atrial fibrillation. Stroke. 2018;STROKEAHA118023093.
18. Huisman MV, Rothman KJ, Paquette M, Teutsch C, Diener HC, Dubner SJ, et al. The changing landscape for stroke prevention in AF: findings from the GLORIA-AF Registry Phase 2. J Am Coll Cardiol. 2017;69:777–85.
19. Marzec LN, Wang J, Shah ND, Chan PS, Ting HH, Goeckl KL, et al. Influence of direct oral anticoagulants on rates of oral anticoagulation for atrial fibrillation. J Am Coll Cardiol. 2017;69:2475–84.
20. Gadsbøll K, Staerk L, Fosbøl EL, Sindet-Pedersen C, Gundlund A, Lip GYH, et al. Increased use of oral anticoagulants in patients with atrial fibrillation: temporal trends from 2005 to 2015 in Denmark. Eur Heart J. 2017;38:899–906.
21. Admassie E, Chalmers L, Bereznicki LR. Changes in oral anticoagu-
lant prescribing for stroke prevention in patients with atrial fibril-
lation. Am J Cardiol. 2017;120:1133–8.
22. Alalwan AA, Voils SA, Hartzema AG. Trends in utilization of warfa-
rin and direct oral anticoagulants in older adult patients with atrial fibrillation. Am J Health Syst Pharm. 2017;74:1237–44.
23. Kirchhof P, Benussi S, Kotecha D, Aalsson A, Atar D, Casadei B, et al. 2016 ESC guidelines for the management of atrial fibrillation de-
veloped in collaboration with EACTS. Eur Heart J. 2016;37:2893–962.
24. Hsu JC, Maddox TM, Kennedy KF, Katz DF, Marzec LN, Lubitz SA, et al. Oral anticoagulant therapy prescription in patients with atrial fibrillation across the spectrum of stroke risk: insights from the NCDR PINNACLE Registry. JAMA Cardiol. 2016;1:55–62.
25. Camm AJ, Accetta G, Ambrosio G, Atar D, Bassand J-P, Berge E, et al. Evolving antithrombotic treatment patterns for patients with newly diagnosed atrial fibrillation. Heart. 2017;103:307.
26. Clarkesmith DE, Pattison HM, Lip GYH, Lane DA. Educational in-
tervention improves anticoagulation control in atrial fibrillation pa-
ients: the TREAT randomised trial. PLoS One. 2013;8:e74037.
27. Lip G, Freedman B, De Caterina R, Potpara TS. Stroke prevention in atrial fibrillation: past, present and future. comparing the guidelines and practical decision-making. Thromb Haemost. 2017;117:1230–9.
28. Steinberg BA, Kim S, Thomas L, Fonarow GC, Hylek E, Ansell J, et al. Lack of concordance between empirical scores and

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Kozieł M, Teutsch C, Bayer V, Lu S, Gurusamy VK, Halperin JL, et al; the GLORIA-AF Investigators. Changes in anticoagulant prescription patterns over time for patients with atrial fibrillation around the world. J Arrhythmia. 2021:37:990–1006. https://doi.org/10.1002/joa3.12588