Microdialysis technique for in-vivo monitoring of •OH generation on myocardial injury in the rat

Toshio Obata*
School of Nursing, Faculty of Health Sciences, Osaka Aoyama University, 2-11-1 Niina, Mino City, Japan

Abstract

The micro dialysis procedure is a technique that has been established for some years. Although free radical reaction is a part of normal metabolism, sustained elevation of noradrenaline (NA) in the extracellular fluid can be autoxidized, which in turn leads (possibly by an indirect mechanism) to the formation of cytotoxic free radicals. Reactive oxygen causes excessive Na+ entry through the fast Ca2+ channel, leading to intracellular Ca2+ overload through the Na+-Ca2+ exchange system. However, the interaction between intracellular Ca2+ overload and oxygen free radicals in myocardium is not clear. Angiotensin converting enzyme (ACE) inhibitor is associated with cardioprotective effect due to suppression of NA-induced hydroxyl radical (•OH) generation in the heart. Low-density lipoprotein (LDL) oxidation may be related to NA induced •OH generation. Although the neuroprotective effects of nitric oxide (NO) is discussed, NO contributes to the extracellular potassium concentration ([K+])o-induced •OH generation via NO synthase (NOS) activation. Opening of ATP sensitive K+ channel (KATP) channel may cause •OH generation. These finding may be useful in elucidating the actual mechanism of free radical formation in the pathogenesis of heart disorders.

Introduction

Ischaemia-reperfusion tissue injury is a major pathophysiological process responsible for severe organ damage in human health problems [1-3]. Oxygen-derived free radicals play an important role in several models of experimentally induced reperfusion injury [4]. The deleterious effects of reperfusion of the ischaemic myocardium have been linked to the production of oxygen-derived free radicals [5]. Although free radical reactions are a part of normal metabolism, overproduction or reduced efficiency of defense system towards reactive oxygen species (ROS), such as superoxide anion (O2-) itself is somewhat poorly reactive in aqueous solution, but does it participates in reactions with iron ions, generating the more damaging •OH [8]. The •OH radicals are extremely reactive and rapidly react with a number of compounds, including lipids, proteins and nuclei acid [9]. It is important to explain the role played by free radicals in some disease states. We developed the flexibly mounted microdialysis technique [6]. This technique has made it possible not only to collect dialysis samples from interstitial fluid with minimum injury to the cardiac muscles located the probe of the microdialysis system. Therefore, we will demonstrate and discuss the effects of the several drugs of the role of played by radicals in some disease state.

Detection of •OH generation

Although improved colorimetric [10] and fluorescence based [11, 12] assays for measurement of hydroxylated products have been described, complete determination of hydroxylated product formation can be achieved only by use of gas chromatography [10,13] or high-performance liquid chromatography (HPLC) with or UV-or electrochemical (EC) detection, or both [14].
The •OH react with salicylate and generates 2,3- and 2,5-dihydroxybenzoic acid (DHBA), which can be measured electrochemically in picomoles quantity by an HPLC-EC procedure [15,16]. The in vivo generation of •OH free radicals in myocardium can be measured by in vivo microdialysis perfusion of salicylate, avoiding many of the pitfalls inherent in the systemic administration of salicylate. After minimizing the contribution of enzyme and/or blood-borne 2,5-DHBA, the present data demonstrate the validity of the use of 2,3-DHBA as an index of •OH formation in the heart. Therefore, we focused on the possible use of salicylate hydroxylation as an in vivo trapping procedure for monitoring the time course of 2,3-DHBA generation in the myocardium. However, 2,3-DHBA can be non-enzymatically formed by aromatic hydroxylation [17,18].

Microdialysis technique

Microdialysis technique was recently introduced for in vivo heart experiments to measure interstitial biological substances, such as catecholamine, •OH and purine metabolites [19]. We measured •OH in rat hearts by use of a microdialysis technique. With this technique it was feasible to make stable long-term measurements of •OH. The concentration profile of the administered dialysate is unknown; in general given through the probe would never reach the concentration in the dialysis probe [20]. This is an unavoidable limitation of the microdialysis technique that should be kept in mind when interpreting the experimental data.

We designed a system for holding the microdialysis probe [6] which includes loose fixation of the tube and synchronization of the probe with that of the heart (Figure 1). Details of the technique necessary for manipulation of the flexibly mounted microdialysis probe in in vivo rat hearts (to measure the 2,3-DHBA) were described previously [6]. We created a suitable microdialysis probe. In brief, the tip of the microdialysis probe (3 mm in length and 220 µm o.d. with the distal end closed) was made of dialysis membrane (cellulose membrane 10 µm thick, blocking components with molecular weights >50 kDa). Two fine silica tubes (75 µm i.d.) were inserted into the tip of the cylinder shape dialysis probe and one of these served as the inlet for the perfusate and the other as the outlet for the dialysate. The inlet tube was connected to a micro-injection pump, and the outlet tube was led to the dialysate reservoir. These tubes of the dialysis probe (~15cm long) were supported loosely at the mid-point on a semi-rotatable stainless-steel wire, so that their movement fully synchronized with the rapid up-and-down motion of the tip caused by the heart beats.

![Figure 1: Microdialysis probe in heart. Microdialysis probe was implanted from the epicardial surface into the left ventricular myocardium to the depth of 3 mm and perfused with Ringer's solution by a microinjection pump. The probe (3 mm exposure) was implanted from the epicardial surface into the left ventricular myocardium to the depth of 3 mm. Drugs were administered directly through the fine silica tube. Inlet side of microdialysis probe was connected to micro injection pump. Outlet side of probe was led to the HPLC pump. SA, salicylic acid; ECD, electrochemical detector [6].](image-url)
The probe was implanted from the epicardial surface into the left ventricular myocardium and was perfused through the inlet tube. For trapping •OH radicals in the myocardium, sodium salicylate in Ringer's solution was perfused by a micro-injection pump, and the basal level of 2,3-DHBA during a definite time period was determined. In the preparation of ischemic rat heart, after the microdialysis probe implantation in the ischemic zone, the left anterior descending coronary artery (LAD) branch was clamped by a thread through a tube surrounding the coronary artery. The heart was subjected to regional ischemia for 15 min by the occlusion of the LAD coronary artery followed by reperfusion for 60 min. In order to ascertain the protective effect of myocardial infarction and reperfusion damage, the serum creatine phosphokinase (CPK) assay was measured [21].

Oxygen-derived free radical in post ischaemic tissue injury

It appears likely that free radical production may make a major contribution at certain stages in the progression of the ischaemic and reperfusion injury [22]. The primary source of superoxide in reperfused reoxygenated tissues appears to be the enzyme xanthine oxidase (XO), released during ischaemia by a calcium-triggered proteolytic attack on xanthine dehydrogenase [4]. Dysfunction induced by free radicals may be a major component of ischaemic disease of the heart. The XO is also thought to be a source of O$_2^-$. The O$_2^-$ itself is somewhat poorly reactive in aqueous solution, but also participate in the reaction in which the iron ions are involved, leading to the generation of more damaging •OH species. Theoretically, •OH may be formed *in vivo* during non-enzymatic oxidation [23,24] and/or enzymatic oxidation. According to the reaction pathway in Figure 2, •OH was generated by the presence of oxygen. The •OH can be also arise from an interaction between H$_2$O$_2$ and O$_2^-$ (Haber-Weiss reaction). On the other hand, iron (II) in the presence of H$_2$O$_2$ results in further formation of •OH [25,26]. These results suggest that iron (III) may reduce •OH formation by Fenton reaction in the heart. The suppression of •OH formation by iron (III) may play a key role in the cardioprotective effect of iron (III) on the rat heart [27]. There are other sources of •OH generation. The effect of pargyline, a monoamine oxidase (MAO) inhibitor, on the generation of •OH was confirmed in the rat hearts. The accumulation of noradrenaline (NA) in the extracellular fluid by pargyline can be autoxidized, which in turn, leads (possibly by an indirect mechanism) to the formation of cytotoxic •OH [28]. Based on the mass-action principle, an increase of iron (III) should reverse the Fenton reaction and reduce the •OH production.

![Figure 2: The reaction pathway in rat heart illustrates the formation of hydroxyl radical in the presence of iron (III) and oxygen. Abbreviations: XO, xanthine oxidase; O$_2^-$, superoxide anion; •OH, hydroxyl radical; MAO, monoamine oxidase, SOD, superoxide dismutase.](image-url)
Although the mechanism of \(\bullet \)OH generation in the ischaemic heart is obscure, a concomitant increase of NA and \(\bullet \)OH takes place in myocardial injury. In case of ischaemic arrhythmia appeared, the presence of NA and free radicals was observed in ischaemia-reperfused rat heart [6]. The accumulation of NA in the extracellular fluid by ischaemia-reperfusion can be autoxidized, which in turn leads (possibly by an indirect mechanism) to the formation of \(\bullet \)OH radicals [29]. In the presence of iron (III), ischaemia-reperfusion failed to increase in \(\bullet \)OH production [30]. The suppression of \(\bullet \)OH formation by iron (III) may play a key role in the cardioprotective effect of iron (II) in the heart.

Effect of angiotensin-converting enzyme (ACE) inhibitor

Angiotensin-converting enzyme (ACE) inhibitor is known to have a cardio protective effect by reducing reperfusion arrhythmia [31,32]. It is well known that antihypertensive action of the ACE inhibitor is associated with an inhibition of NA release from peripheral sympathetic neuron [33]. ACE inhibitors cardioprotective effects are associated with suppression of \(\bullet \)OH generation [29,34]. It is well known that angiotensin II causes an increase of NA release from peripheral sympathetic neuron [35]. The accumulation of NA may cause cytotoxic \(\bullet \)OH generation. The free radical scavenging action of ACE inhibitor (i.e. captopril) is believed to be due to the presence of an SH-group in its structure [36]. Numerous investigators have reported that myocardial ischaemia also increases catecholamine levels [36-38].

The accumulation of NA in the extracellular fluid elicited by ischaemia/reperfusion can be autoxidized, which in turn, leads (possibly by an indirect mechanism) to the formation of cytotoxic \(\bullet \)OH radicals. NA release by ischaemia/reperfusion of the myocardium may be associated with oxidant damage in \(\bullet \)OH generation. Endogenous angiotensin II may facilitate NA release via presynaptic angiotensin II receptors [39,40] or inhibit NA uptake at synaptic nerve terminals [41]. Rona [42] documented that catecholamines play an important role in reperfusion and ischaemic myocardial injury, and proposed a common pathway in the pathogenesis of catecholamine-induced and reperfusion myocardial injuries. It is possible that ACE inhibitors may reduce catecholamine release and hence ameliorate myocardial injury. ACE inhibitors have been shown to potentiate the effects of endogenous bradykinin in animal models and in humans [43]. However, the role of bradykinin in therapeutic effects of ACE inhibitors has remained controversial, mainly due to the lack of potent and specific bradykinin-blocking agents with which to test this hypothesis experimentally.

Potassium depolarization induce \(\bullet \)OH generation

The interaction between depolarization and oxygen free radicals are not clear. It is well known that in the case of acute myocardial infarction or ischaemia, there is a marked increase in the extracellular potassium-ion concentration, \([K+]_o\) and the resulting membrane potential of the ventricular muscle in the infarcted area is remarkably depolarized [44]. In the heart, the release of NA was induced by nerve depolarization [45,46]. Catecholamine release contributes to the formation of cytotoxic free radicals. K\(^+\) depolarization enhances calcium ions (Ca\(^{2+}\)) overload by \([K+]_o\)-induced depolarization and may generate \(\bullet \)OH radicals in the myocardium. Although the precise mechanism of \(\bullet \)OH generation in the ischaemic heart is obscure, we previously found concomitant increase of NA and \(\bullet \)OH generation in myocardial injury [6].

This data are in agreement with the data that K\(^+\) depolarization evokes \(\bullet \)OH radicals [16]. However, the release of NA was induced by nerve depolarization [45]. NA may also have a deleterious effect on the myocardium by serving as a source of free radicals [47]. It has been suggested that free radical production may mainly contribute to certain stages in the progression of the injury [22]. Oxygen-derived free radicals are thought to be responsible for post ischaemia reperfusion injury [4,48]. Although controversial, a considerable effect on ischaemia/reperfusion exists [49] to support the notion that oxygen radicals play a role in ischaemia/reperfusion injury.
Calcium overload and •OH generation

Calcium ions (Ca$^{2+}$) might have be a very important factor in the induction of irreversible ischaemic injury [50]. Intracellular Ca$^{2+}$ overload is then considered to lead to cell death under physiological conditions such as ischaemia and reperfusion injury [51]. Several experimental studies have shown that oxygen-derived free radicals contribute to myocardial damage induced by ischaemic and reperfusion injury [52]. The occurrence of intracellular Ca$^{2+}$ plays a key role in cardiac dysfunction. Intracellular Ca$^{2+}$ level builds and catalyzes the conversion of xanthine dehydrogenase to XO [53], which produces superoxide. Ca$^{2+}$ may be a very important factor in the induction of irreversible ischaemic injury [54]. However, the interaction between intracellular Ca$^{2+}$ overload and oxygen free radicals in myocardium is not clear. Intracellular Ca$^{2+}$ level has been proposed as a source of oxidative toxicity [55].

Elevation of intracellular Ca$^{2+}$ levels causes the conversion of xanthine dehydrogenase to XO [53,56], which produces superoxide. Superoxide, either directly or after conversion to •OH [57], damages the biological membranes [58] and other cellular components, including DNA [59], resulting in cell death. The ischaemia is attributed to the occurrence of intracellular Ca$^{2+}$ overload [60]. Intracellular Ca$^{2+}$ overload has been reported to be one of the causes of ischaemia reperfusion injury [61]. Although the participation of Na$^+$-Ca$^{2+}$ exchange in the mechanism of intracellular Ca$^{2+}$ elevation has been suggested [62], detailed information about the relationship between the status of Na$^+$-Ca$^{2+}$ exchange and oxygen free radical formation has not been available. Free radical formation may be attributed to the free radical formation by Ca$^{2+}$ [63].

Effect of activation of ATP sensitive K$^+$ (KATP) channels on hydroxyl radical production

Numerous mechanisms have been proposed to explain the cardioprotective action of the activation of KATP channels, including vasodilatation of coronary arteries and collateral vessels, inhibition of platelet aggregation, and inhibition of the release of oxygen free radicals. Glibenclamide has been used as a pharmacological tool to block selectively the KATP channels [64]. Qian et al. [65], demonstrated that glibenclamide blocked cardioprotection conferred by ischaemic preconditioning in the heart. However, Thornton et al. [66], found that glibenclamide, given intravenously to rabbits did not abolish myocardial preconditioning. Thus it appears that controversy exists as to the role of KATP channels in mediating cardioprotection. Tokube et al reported [67], that opening of cardiac KATP channels is induced by oxygen free radicals produced via xanthine oxidase reaction. However, the relationship between the opening of cardiac KATP channels and oxygen free radicals in myocardium is not clear. It is well known that myocardial ischaemia increases interstitial K$^+$ concentrations of compromised ventricular muscles and decreases the resting membrane potential, leading to the slow conduction and ventricular tachyarrhythmias [68]. Although interaction between KATP channels and oxygen free radicals in the myocardium is discussed, increased intracellular Ca$^{2+}$ concentrations cause superoxide production [69]. It is known that Ca$^{2+}$ overload by K$^+$ induced depolarization may generate •OH radicals. Although the mechanism of the action of K$^+$ channel activators in subsequent •OH production is obscure, K$^+$ channel activators were assessed by recording •OH formation in vivo hearts. Rat hearts, cromakalim and nicorandil both increased ROS, measured with microdialysis probe perfused with sodium salicylate, which reacts with •OH radicals produced in the muscle to yield a production of 2,3-DHBA [70]. EC$_{50}$ of cromakalim and nicorandil were approximately 10 μM and 1 mM, respectively [70]. Therefore, cromakalim may be a more potent K$^+$ channel activator. Opening KATP channels significantly increased the level of 2,3-DHBA.

KATP channel openers can cause release of catecholamine, irrespective of their ability to open KATP [71,72]. The sustained elevation of NE in the extracellular fluid by KATP channel opener can be auto-xidized, which in turn, leads (possibly by an indirect
mechanism) to the formation of cytotoxic •OH radicals. Activating K_{ATP} channel on nerve terminal may facilitate NA release. Activation of K_{ATP} channels was proposed to offer a protective effect on the ischaemia-reperfused myocardium [73]. It is likely that K_{ATP} channels play, at least, in part a role to protect the heart during episodes of ischemia. Although the relationship between K_{ATP} channels and cardioprotective effect was obscure, glibenclamide decreased the production of •OH by preventing the opening of K_{ATP} channels. The •OH generation by cromakalim was suppressed by subsequent treatment with glibenclamide. Glibenclamide decreases the level of 2,3-DHBA [70]. Cardioprotection mediated by attenuated free radical generation may be mitigated or abolished in the presence of K_{ATP} channel blockers. 5-Hydroxydecanoate (5-HD), a selective type of K_{ATP} channel blocker [74] also decreased cromakalim-induced 2,3-DHBA formation. Moreover, another K_{ATP} channel activator, nicorandil, also enhanced •OH formation. Both glibenclamide and 5-HD also decreased nicorandil-induced 2,3-DHBA formation [70].

Several experimental studies have shown that oxygen radicals contribute to myocardial damage induced by the ischemia-reperfusion [6,75]. When the ischemic arrhythmia appeared, the presence of free radicals was observed in the ischaemic-reperfused rat heart [6]. Activation of K_{ATP} channel on ischemia-reperfusion of myocardium may be cause release of NA. However, in the presence of glibenclamide or 5-HD, the elevation of 2,3-DHBA was not observed in ischemic-reperfused rat heart. Glibenclamide is associated with a cardioprotective effect due to suppression of ischemia-reperfusion-induced •OH generation. It is possible that opening of K_{ATP} in the cardiac nerve terminals facilitates the release of catecholamines, which increase ROS production to trigger the protection [76]. Cardioprotection mediated by these mechanisms may be mitigated or abolished in the presence of glibenclamide or 5-HD. Although it is well established that high levels of ROS are detrimental [77], moderate levels of H_2O_2 and O_2^- have been shown to elicit a cardioprotective effect similar to that observed with ischemia preconditioning [78,79]. Forbes et al. [80], proposed that cardioprotective actions of diazoxide, a selective opener of the mitochondrial K_{ATP} channel, are mediated by generation of pro-oxidant environment. Pain et al. [81], also reported that the dioxide-induced reduction infarct size is attenuated by addition of antioxidants. These findings are agreement with that the assumption that both mitochondrial and sarcolemmal channels induced •OH formation [70].

Prazosin attenuate •OH generation

Prazosin has been demonstrated to exibit a protective effect on myocardial ischaemic injury [82]. It is known that prazosin has a Na$^+$ channel blocking action as well as an α_1-adrenoceptor blocking action [83]. Reactive oxygen causes excessive Na$^+$ entry through the fast Ca$^{2+}$ channel, leading to intracellular Ca$^{2+}$ overload through the Na$^+$/Ca$^{2+}$ exchange system, and hence myocardial damage [84]. Ca$^{2+}$ overload is then mediated via activation of Na$^+$-Ca$^{2+}$ exchange due to increased cytosolic Na$^+$ content. Na$^+$ channel blocking drugs have been demonstrated to provide protection in ischemia/reperfusion model [85]. Although the role of catecholamines in the myocardial cellular injury is unclear, NA was induced by ischemia/reperfusion [6,86]. NA released is thought to play a significant role in the etiology of various cardiac pathophysiological disorders [87]. Accumulation of endogenous NA can leads to the formation of cytotoxic •OH radicals. Radical scavengers or anti-oxidant substances have been shown to attenuate myocardial dysfunction [88,89]. Theoretically, •OH may be formed in vivo during non-enzymatic oxidation [23] and/or enzymatic oxidation of NA [90]. We demonstrated that tyramine (a catecholamine releaser)-induced •OH formation was attenuated by prazosin [91]. It is possible that Na$^+$ accumulation triggers Na$^+$-Ca$^{2+}$ exchange leading to Ca$^{2+}$ overload. It is well known that Ca$^{2+}$ overload may involve the formation of free radicals [26,92].
According to recent studies [83], prazosin has a Na⁺ channel blocking action as well as the α₁-adrenoceptor blocking action. Su et al. [93], have found that prazosin inhibits inward Na⁺ current in the rat, guinea-pig and human myocardium and that this action of prazosin is unrelated to the blockade of α₁-adrenoceptors. On the other hand, the reactive oxygen causes excessive Na⁺ entry through the fast Na⁺ channel, leading to intracellular Ca²⁺ overload through the Na⁺-Ca²⁺ exchange system, and hence myocardial damage [94]. The beneficial effect of prazosin on the H₂O₂-induced derangements, therefore, may be due to its blocking effect on the Na⁺ channel of the cardiac cells. This notion is in agreement with the data from a recent study, in which α₁-adrenoceptor antagonistic action of prazosin may not contribute to its action to attenuate the free radical induced damage, although the possibility of contribution of α₁-adrenoceptor blockade cannot be completely excluded [95].

Intracellular extracellular Ca²⁺ overload is considered to be the pathway leading to cell death in several pathological condition. Increases in intracellular Na⁺ levels could be caused by modified Na⁺ channel function [94,96]. Contribution of the Na⁺ channel blocking activity of prazosin to attenuate the ischaemia/reperfusion induced damage remain to be studied. During myocardial ischaemia, reduced ATP production generates disturbances in intracellular ion homeostasis, which ultimately lead to cellular Ca²⁺ overload and contractile failure. Ca²⁺ overload is then considered to be maintained via activation of Na⁺-Ca²⁺ exchange due to increased cytosolic Na⁺ content under ischaemic conditions. Intracellular Ca²⁺ overload is then considered to contribute to cell death under pathological conditions such as ischaemia/reperfusion injury [97]. These results suggest that Na⁺-mediated Ca²⁺ overload may be relevant to ischaemia/reperfusion Ca²⁺ overload [94]. This is a new cardioprotective principle.

Nitric oxide induces •OH generation

Nitric oxide (NO) is responsible for tissue damage during ischaemia. NO is a free radical which regulates a variety of biological function and pathogenesis of cellular injury. NO is synthesized from L-arginine by NO synthase (NOS) [98]. It is known that O₂⁻ and NO rapidly to form the stable peroxynitrite (ONOO⁻) and then its decomposition generates •OH [99,100]. However, this theory is under consideration [101]. NO may mediate •OH-induced ischaemia/reperfusion via depolarization of the ventricular muscle. Cytotoxic free radicals such as ONOO⁻ and •OH may also be implicated in NO-mediated cell injury [99]. It is known that NOS inhibition may inhibit depolarization-induced NOS activation by Ca²⁺ influx through blockade of Na⁺ and Ca²⁺ channels [102]. The reactive oxygen species causes excessive Na⁺ entry through the fast Na⁺ channel, leading to intracellular Ca²⁺ overload through the Na⁺-Ca²⁺ exchange system [94]. However, NG-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, attenuate •OH generation by ischaemia/reperfusion [27]. It is possible that NO mediates ischaemia/reperfusion induced •OH generation via depolarization in ventricular muscle. Accordingly to the reaction pathway in (Figure 3). •OH was generated by the presence of NOS and O₂⁻. NO may possibility induce •OH generation after reaction with O₂⁻ and NO. NO mediates •OH generation via NOS inhibition.

Controversy exist concerning possible neurotoxicity and/or neuroprotective roles of NO, which may prevent •OH-induced oxidative injury [103,104]. Moreover, iron complex-induced •OH generation and associated oxidative cellular injury was blocked by the co-administration of NO and dihydropyridine acid (a potent antioxidant compound). Some NO donor (e.g., sodium nitroprusside) stimulated, while others (nitroglycerin, diethylamine/NO, NO in Ringer's solution) suppressed •OH generation in vivo [105]. Exogenous NO can act as •OH scavenger and protect neurons from oxidative injury [106].

LDL oxidation and •OH generation

Several experimental studies have shown that oxygen radical contributes to myocardial damage induced by ischaemia/reperfusion [6,107]. It is well known that
ischaemia induces depolarization [108,109]. NO may mediate ischaemia/reperfusion-induced •OH generation via depolarization in ventricular muscle. NO is responsible for tissue damage during ischaemia. L-NAME (NG-nitro-L-arginine methyl ester, a NOS inhibitor) attenuated •OH generation by ischaemia/reperfusion of rat heart [27]. It is known that NOS inhibition is prevents depolarization induced NOS activation by affecting Ca²⁺ influx through blockade by Na⁺-Ca²⁺ channel [102]. Oxidative modification of low-density lipoprotein (LDL) is thought to contribute to the production of oxygen derived-free radicals [110]. Oxidative LDL (Ox-LDL) may be important in neurotoxicity in the brain [111]. It is well known that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor reduce the oxidizability of LDL [112]. The inhibitory effect on the oxidizability of LDL oxidation can reduced •OH formation. The blockage of LDL oxidation by fluvastatin (an inhibitor of LDL oxidation) can reduce •OH generation. However, L-NAME did not affect NA-induced •OH formation. Fluvasatin is associated with a cardioprotective effect due to the suppression of NA-induced •OH formation by inhibiting LDL oxidation [27]. LDL oxidation may be related to NA-induced •OH generation, but LDL oxidation may be unrelated •OH generation [27].

Effect of histidine on the formation of •OH in ischaemic injury

Histidine, a free amino acids, has been demonstrated to have an antioxidative action [113,114]. Although histidine is known to scavenger singlet oxygen (¹Ο₂) scavenger [115,116], the effect of histidine on ischaemic reperfusion injury still remains uncertain. Histidine is also a chelator of metal ions. Therefore, histidine could remove transition metals from the reactive site, resulting in a markedly decreased rate of •OH formation [117].

Ischaemia-reperfusion increased the level of NA. However, in the presence of histidine, ischaemia-reperfusion failed to increase the level of NA. Moreover, when the ischaemic arrhythmia appeared, the presence of free radicals were observed in the ischaemic-reperfused rat heart [6]. However, neither typical changes in Electrocardiogram (ECG) nor •OH generation in the ischaemic-reperfused rat heart was observed after administration of histidine [29]. Histidine is a poor scavenger of •OH. Unfortunately, it is difficult to separate •OH radical from that by ¹Ο₂ because of the nonspecificity of histidine in scavenging both of the oxidant species. In addition, most of the ¹Ο₂ scavengers react with •OH radical, often with a greater rate constant than the reaction with ¹Ο₂. Histidine appears to scavenge most ¹Ο₂ species, as indicated by the present and previous studies [118].

Figure 3: The reaction pathway in rat heart illustrates the formation of hydroxyl radical by depolarization-induced NO. Abbreviations: NO, nitric oxide; NOS, nitric oxide synthase; L-NAME, NG-nitro-L-arginine methyl ester; XO, xanthine oxidase; O₂⁻, superoxide anion; •OH, hydroxyl radical; MAO, monoamine oxidase, DOPGAL, 3,4-dihydroxyphenylglycol-aldehyde [27].
Conclusion

In vivo microdialysis techniques enable monitoring of generation of free radicals in myocardial tissues and could answer fundamental questions about the clinical implications of ROS. Data obtained in human are needed with the conduction of clinical studies investigating the effects of medications in physiological in vivo conditions. Although the cardioprotective effect of NO is discussed, NO also has a role in the pathogenesis of cellular injury. These experiments with cardiac microdialysis technique have versatile applications and offer new possibilities for the in vivo study of cardiac physiology.

References

1. Souidi N, Stolk M, Seifert M. Ischemia-reperfusion injury: beneficial effects of mesenchymal stromal cells. Curr Opin Organ Transplant. 2013; 18: 34-43. Ref.: https://tinyurl.com/y9zkqw7r
2. Yoshida M, Honma S. Regeneration of injured renal tubules. J Pharmacol Sci. 2014; 124: 117-122. Ref.: https://tinyurl.com/y7qG63p6
3. Lekli I, Haines DD, Balla G, Tosaki A. Autophagy: an adaptive physiological countermeasure to cellular senescence and ischaemia/reperfusion-associated cardiac arrhythmias. J Cell Mol Med. 2017; 21: 1058-1072. Ref.: https://tinyurl.com/ybokkzbb
4. McCord JM. Oxygen-derived free radicals in posts ischemic tissue injury. N Engl J Med. 1985; 312: 159-163. Ref.: https://tinyurl.com/y9su3xjz
5. Gozal Y, Chevion M, Elami A, Berenshtein E, Kitrossky N, et al. Ischaemic preconditioning but not isoflurane prevents post-ischaemic production of hydroxyl radicals in a canine model of ischaemia-reperfusion. Eur J Anaesthesiol. 2005; 22: 49-55. Ref.: https://tinyurl.com/y7exate9
6. Obata T, Hosokawa H, Yamanaka Y. In vivo monitoring of norepinephrine and •OH generation on myocardial ischemic injury by dialysis technique. Am J Physiol. 1994; 266; 903-908. Ref.: https://tinyurl.com/y95gpyqp
7. Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res. 2014; 114: 524-537. Ref.: https://tinyurl.com/y8fjypu
8. Hitchler MJ, Domann FE. Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis. Antioxid Redox Signal. 2014; 20: 1590-1598. Ref.: https://tinyurl.com/y88ubw4m
9. Newcomb M, Hollenberg PF, Coon MJ. Multiple mechanisms and multiple oxidants in P450-catalyzed hydroxylations. Arch Biochem Biophys. 2003; 409: 72-79. Ref.: https://tinyurl.com/yazqzv4x
10. Richmond R, Halliwell B, Chauhan J, Darbre A. Superoxide-dependent formation of hydroxyl radicals: detection of hydroxyl radicals by the hydroxylation of aromatic compounds. Anal Biochem. 1981; 118: 328-335. Ref.: https://tinyurl.com/ybhr6c6u
11. Baker MS, Gebicki JM. The effect of pH on yields of hydroxyl radicals produced from superoxide by potential biological iron chelators. Arch Biochem Biophys. 1986; 246: 581-588. Ref.: https://tinyurl.com/y86ou7v9
12. Gutteridge JM. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem J. 1987; 243: 709-714. Ref.: https://tinyurl.com/yap6z47d
13. Karam LR, Simic MG. Detecting irradiated foods: use of hydroxyl radical biomarkers. Anal Chem. 1988; 60: 1117-1119. Ref.: https://tinyurl.com/y7mnpnwth
14. Radzik DM, Roston DA, Kissinger PT. Determination of hydroxylated aromatic compounds produced via superoxide-dependent formation of hydroxyl radicals by liquid chromatography/electrochemistry. Anal Biochem. 1983; 131: 458-464. Ref.: https://tinyurl.com/y9x4tgpo
15. Floyd RA, Watson JJ, Wong PK. Sensitive assay of hydroxyl free radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. J Biochem Biophys. 1984; 10: 221-235. Ref.: https://tinyurl.com/ybzn7kw4
16. Obata T. Blocking cardiac ATP-sensitive K+ channels reduces hydroxyl radicals caused by potassium chloride-induced depolarization in the rat myocardium. Anal Biochem. 2006; 356: 59-65. Ref.: https://tinyurl.com/yadqgu57
17. Halliwell B, Kaur H, Ingleman-Sundberg M. Hydroxylation of salicylate as an assay for hydroxyl radicals: a cautionary note. Free Radic Biol Med. 1991; 10: 439-441. Ref.: https://tinyurl.com/ydhv33f
18. Kostrzewa RM, Kostrzewa JP, Brus R. Dopaminergic denervation enhances susceptibility to hydroxyl radicals in rat neostriatum. Amino Acids. 2000; 19: 183-199. Ref.: https://tinyurl.com/y99bwqza

19. Van Wylen DGL, Schmit TJ, Lasley RD, Gingell RL, Mentzer Jr RM. Cardiac microdialysis in isolated rat hearts: interstitial adenosine purine metabolites during ischemia. Am J Physiol. 1992; 262, 1934-1938. Ref.: https://tinyurl.com/y82rw64s

20. Benveniste H. Brain microdialysis. J Neurochem. 1989; 52: 1667-1679. Ref.: https://tinyurl.com/yakzo3x8

21. Sarapultsev P, Chupakhin O, Sarapultsev A, Rantsvet M, Sidorova L, et al. New insights into the treatment of myocardial infarction. Int J Exp Pathol. 2012; 93: 18-23. Ref.: https://tinyurl.com/y8y9p4bh

22. Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med. 2013; 61: 473-501. Ref.: https://tinyurl.com/y7sozec

23. Ben-Shachar D, Youdim MBH. Intranigral iron injection induces behavioral and biochemical “parkinsonism” in rats. J Neurochem. 1991; 57: 2133-2135. Ref.: https://tinyurl.com/y9gwuhzp

24. Ashraf MZ, Kar NS, Podrez EA. Oxidized phospholipids: biomarker for cardiovascular diseases. Int J Biochem Cell Biol. 2009; 41: 1241-1244. Ref.: https://tinyurl.com/y9uny5ye

25. Obata T, Yamanaka Y. Effect of iron (II) on the generation of hydroxyl free radicals in rat myocardium. Biochem Pharmacol. 1996; 51: 1411-1413. Ref.: https://tinyurl.com/yd33zsvb

26. Obata T, Tamura M, Yamanaka Y. Evidence of hydroxyl free radical generation by calcium overload in rat myocardium. J Pharm Pharmacol. 1997; 49: 787-790. Ref.: https://tinyurl.com/y9dqskdu

27. Obata T, Yamanaka Y. Nitric oxide induce hydroxyl radical generation in rat hearts via depolarization-induced nitric oxide synthase activation. Naunyn-Schmiedeberg's Arch Pharmacol. 2001; 364: 59-65. Ref.: https://tinyurl.com/y9ydr6q

28. Obata T. Use of microdialysis for in-vivo monitoring of hydroxyl free-radical generation in the rat. J Pharm Pharmacol. 1997; 49: 724-730. Ref.: https://tinyurl.com/yaaidsst

29. Obata T, Yamanaka Y. Protective effect of imidaprilat, an angiotensin-converting enzyme inhibitor on •OH generation in rat myocardium. Biochim Biophys Acta. 1999; 1472: 62-70. Ref.: https://tinyurl.com/yasmp43f

30. Obata T, Yamanaka Y. Iron (III) attenuates hydroxyl radical generation accompanying non-enzymatic oxidation of noradrenaline in the rat heart. Naunyn-Schmiedeberg's Arch Pharmacol. 2002; 365: 158-163. Ref.: https://tinyurl.com/y74t2vw2

31. Wang LX, Ideishi M, Yahiro E, Urata H, Arakawa K, Saku K. Mechanism of the cardioprotective effect of inhibition of the renin-angiotensin system on ischemia/reperfusion-induced myocardial injury. Hypertens Res. 2001; 24: 179-187. Ref.: https://tinyurl.com/ydf5ayal

32. Mangieri A. Renin-angiotensin system blockers in cardiac surgery. J Crit Care. 2015; 30: 613-618. Ref.: https://tinyurl.com/ycc3ye69

33. Herring N, Lee CW, Sunderland N, Wright K, Paterson DJ. Pravastatin normalises peripheral cardiac sympathetic hyperactivity in the spontaneously hypertensive rat. J Mol Cell Cardiol. 2011; 50: 99-106. Ref.: https://tinyurl.com/y6v3kxf8

34. Obata T, Yamanaka Y. Effect of OH scavenging action by non-SH-containing angiotensin converting enzyme inhibitor imidaprilat using microdialysis. J Physiol. 1998; 92: 1-4. Ref.: https://tinyurl.com/yccsnbwa

35. Bagchi D, Prasad R, Das DK. Direct scavenging of free radicals by captopril, an angiotensin converting enzyme inhibitor. Biochem Biophys Res Commun. 1989; 158: 52-57. Ref.: https://tinyurl.com/y9frqpxz

36. Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol. 2012; 302: 10-23. Ref.: https://tinyurl.com/ybw9xs4

37. Rana OA, Byrne CD, Greaves K. Intensive glucose control and hypoglycaemia: a new cardiovascular risk factor? Heart. 2014; 100: 21-27. Ref.: https://tinyurl.com/ydcrv5x

38. Isaacson JS, Reid IA. Importance of endogenous angiotensin II in the cardiovascular responses to sympathetic stimulation in conscious rabbits. Circ Res. 1990; 66: 662-671. Ref.: https://tinyurl.com/ya9l6uat
Microdialysis technique for in-vivo monitoring of •OH generation on myocardial injury in the rat

40. Stegbauer J, Oberhauser V, Vonend O, Rump LC. Angiotensin-(1-7) modulates vascular resistance and sympathetic neurotransmission in kidneys of spontaneously hypertensive rats. Cardiovasc Res. 2004; 61: 352-359. Ref.: https://tinyurl.com/ycqcrv2

41. Naito M, Yang XP, Chiba S. Modification of transmitter release from periarterial nerve terminals by dipyridamole in canine isolated splenic artery. Clin Exp Pharmacol Physiol. 2004; 31: 185-189. Ref.: https://tinyurl.com/y7sy233g

42. Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol. 1985; 17: 291-306. Ref.: https://tinyurl.com/y8uapmg

43. Erdös EG, Jackman HL, Brovkovych V, Tan F, Deddish PA. Products of angiotensin I hydrolysis by human cardiac enzymes potentiate bradykinin. J Mol Cell Cardiol. 2002; 34: 1569-1576. Ref.: https://tinyurl.com/yaf344q

44. Knorr AM. Why is nisoldipine a specific agent in ischemic left ventricular dysfunction? Am J Cardiol. 1995; 75: 36-40. Ref.: https://tinyurl.com/ybreh5fg

45. Malik KU, Sehic E. Prostaglandins and the release of the adrenergic transmitter. Ann NY Acad Sci. 1990; 604: 222-236. Ref.: https://tinyurl.com/y7gxcjj2

46. Fern R, Ransom BR. Ischemic injury of optic nerve axons: the nuts and bolts. Clin Neurosci. 1997; 4: 246-250. Ref.: https://tinyurl.com/ybwfc92

47. Liu T, O’ourke B. Regulation of mitochondrial Ca\(^{2+}\) and its effects on energetics and redox balance in normal and failing heart. J Biogeno Biomerembr. 2009; 41: 127-132. Ref.: https://tinyurl.com/yamqyc93

48. Williams MW, Taft CS, Ramnauth S, Zhao ZQ, Vinten-Johansen J. Endogenous nitric oxide (NO) protects against ischaemia-reperfusion injury in the rabbit. Cardiovasc Res. 1995; 30: 79-86. Ref.: https://tinyurl.com/y97enf34

49. Hearse DJ, Bolli R. Reperfusion-induced injury: manifestation, mechanisms and clinical relevance. Cardiovasc Res. 1992; 26: 101-108. Ref.: https://tinyurl.com/yicl6hfk

50. Goldhaber JI, Qayyum MS. Oxygen free radicals and excitation-contraction coupling. Antioxid Redox Signal. 2000; 2: 55-64. Ref.: https://tinyurl.com/y7u7fwcc

51. Barba I, Chavarria L, Ruiz-Meana M, Mirabet M, Aguilló E, et al. Effect of intracellular lipid droplets on cytosolic Ca\(^{2+}\) and cell death during ischaemia-reperfusion injury in cardiomyocytes. J Physiol. 2009; 587: 1331-1341. Ref.: https://tinyurl.com/yceca9ag

52. Boucher FR, Jouan MG, Moro C, Rakotovao AN, Tanguy S, et al. Does selenium exert cardioprotective effects against oxidative stress in myocardial ischemia? Acta Physiol Hung. 2008; 95: 187-194. Ref.: https://tinyurl.com/yd2teccx

53. Vannucci RC. Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res. 1990; 27: 317-326. Ref.: https://tinyurl.com/yak34pdx

54. Pepe S. Effect of dietary polyunsaturated fatty acids on age-related changes in cardiac mitochondrial membranes. Exp Gerontol. 2005; 40: 751-758. Ref.: https://tinyurl.com/yccn9gb8

55. An J, Zou W, Zhong Y, Zhang X, Wu M, et al. The toxic effects of Aroclor 1254 exposure on the osteoblastic cell line MC3T3-E1 and its molecular mechanism. Toxicology. 2012; 295: 8-14. Ref.: https://tinyurl.com/yau7ydeo

56. Zhang Y, Hu S, Chen Y. Hepatocyte growth factor suppresses hypoxia/reoxygenation-induced XO activation in cardiac microvascular endothelial cells. Heart Vessels. 2015; 30: 534-544. Ref.: https://tinyurl.com/ybq4rp9j

57. Deby C, Goutier R. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutases. Biochem Pharmacol. 1990; 39: 399-405. Ref.: https://tinyurl.com/ybyen82o

58. Minyailenko TD, Pozharov VP, Seredenko MM. Severe hypoxia activates lipid peroxidation in the rat brain. Chem Phys Lids. 1990; 55: 25-28. Ref.: https://tinyurl.com/yb6fckxt

59. Andreoli SP. Mechanisms of endothelial cell ATP depletion after oxidant injury. Pediatr Res. 1989; 25: 97-101. Ref.: https://tinyurl.com/y9m4fshk

60. Demaison L, Moreau D, Martine L, Chaudron I, Grynpberg A. Myocardial ischemia and in vitro mitochondrial metabolic efficiency. Mol Cell Biochem. 1996; 158: 161-169. Ref.: https://tinyurl.com/ycdaedvm

61. Hoffman JW Jr, Gilbert TB, Poston RS, Silldoff EP. Myocardial reperfusion injury: etiology, mechanisms, and therapies. J Extra Corpor Technol. 2004; 36: 391-411. Ref.: https://tinyurl.com/y7vqgqg
62. Murphy E, Jacob R, Lieberman M. Cytosolic free calcium in chick heart cells. Its role in cell injury. J Mol Cell Cardiol. 1985; 17: 221-231. Ref.: https://tinyurl.com/y5c548zw

63. Obata T, Yamanaka Y. Cardiac microdialysis of salicylic acid \(\cdot \)OH generation on nonenzymatic oxidation by norepinephrine in rat heart. Biochem Pharmacol. 1997; 53: 1375-1378. Ref.: https://tinyurl.com/y5c548zw

64. Edwards G, Weston AH. The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol. 1993; 33: 597-637. Ref.: https://tinyurl.com/y77sdbccp

65. Qian YZ, Levasseur JE, Yoshida K, Kukreja RC. KATP channels in rat heart: blockade of ischemic and acetylcholine-mediated preconditioning by glibenclamide. Am J Physiol. 1996; 271: 23-28. Ref.: https://tinyurl.com/y5c548zw

66. Thornton JD, Liu GS, Olsson RA, Downey JM. Intravenous pre-treatment with A1-selective adenosine analogues protects the heart against infarction. Circulation. 1992; 85: 659-665.

67. Tokube KA, Kiyosue T, Arita M. Openings of cardiac KATP channel by oxygen free radicals produced by xanthine oxidase reaction. Am J Physiol. 1996; 271: 478-489. Ref.: https://tinyurl.com/y9f6v6c

68. Hirche HJ, Franz CH, Bös L, Bissig R, Scharrmann M. Myocardial extracellular K\(^+\) and H\(^+\) increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion. J Mol Cell Cardiol. 1980; 12: 579-593. Ref.: https://tinyurl.com/y7fue5z5

69. Chacon E, Acosta D. Mitochondrial regulation of superoxide by Ca\(^2+\): an alternate mechanism for the cardiotoxicity of doxorubicin. Toxicol Appl Pharmacol. 1991; 107: 117-128. Ref.: https://tinyurl.com/y7c6fbrx

70. Obata T, Yamanaka Y. Block of cardiac ATP-sensitive K\(^+\) channels reduces hydroxyl radicals in the rat myocardium. Arch Biochem Biophys. 2000; 378: 195-200. Ref.: https://tinyurl.com/y988e79

71. Fabiani ME, Story DF. Prejunctional effects of cromakalim, nicorandil and pinacidil on noradrenergic transmission in rat isolated mesenteric artery. J Auton Pharmacol. 1994; 14: 87-98. Ref.: https://tinyurl.com/y7pxkfsks

72. D’Alonzo AJ, Zhu JL, Darbenzio RB, Dorso CR, Grover GJ. Proarrhythmic effects of pinacidil are partially mediated through enhancement of catecholamine release in isolated perfused guinea-pig hearts. J Mol Cell Cardiol. 1998; 30: 415-423. Ref.: https://tinyurl.com/y8rz4og

73. Shigematsu S, Sato T, Abe T, Saikawa T, Sakata T, Arita M. Pharmacological evidence for the persistent activation of ATP-sensitive K\(^+\) channels in early phase of reperfusion and its protective role against myocardial stunning. Circulation. 1995; 92: 2266-2275. Ref.: https://tinyurl.com/yarue7nx

74. Notsu T, Tanaka I, Takano M, Noma A. Blockade of the ATP-sensitive K\(^+\) channel by 5-hydroxydecanoate in guinea pig ventricular myocytes. J Pharmaco Exp Ther. 1992; 260: 702-708. Ref.: https://tinyurl.com/yceeyez2

75. Lipic C, Lederer WJ, Nichols CG. On the mechanism of inhibition of K\(_{ATP}\) channels by glibenclamide in rat ventricular myocytes. J Cardiovasc Electrophysiol. 1993; 4: 38-47. Ref.: https://tinyurl.com/ydh77zozl

76. Liu Y, O’Rourke B. Opening of mitochondrial K\(_{ATP}\) channels triggers cardioprotection: are reactive oxygen species involved? Circ Res. 2001; 88: 750-752. Ref.: https://tinyurl.com/y9e4yj22

77. Jeroudi MO, Hartley CJ, Bolli R. Myocardial reperfusion injury: role of oxygen radicals and potential therapy with antioxidants. Am J Cardiol. 1994; 73: 2-7. Ref.: https://tinyurl.com/yapvme2b

78. Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997; 29: 207-216. Ref.: https://tinyurl.com/ybbttuhhe

79. Tritto I, D’Andrea D, Eramo N, Scognamiglio A, De Simone C, et al. Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res. 1997; 80: 743-748. Ref.: https://tinyurl.com/y9hku3d

80. Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res. 2001; 88: 802-809. Ref.: https://tinyurl.com/y8s65bst

81. Pain T, Yang XM, Critz SD, Yue Y, Nakano A, et al. Opening of mitochondrial K\(_{ATP}\) channels triggers the preconditioned state by generating free radicals. Circ Res. 2000; 87: 460-466. Ref.: https://tinyurl.com/y9e8l3lv

82. Billman GE. Effect of alpha 1-adrenergic receptor antagonists on susceptibility to malignant arrhythmias: protection from ventricular fibrillation. J Cardiovasc Pharmacol. 1994; 24: 394-402. Ref.: https://tinyurl.com/yaaypu6bx
Microdialysis technique for in-vivo monitoring of •OH generation on myocardial injury in the rat

Pérez O, Valenzuela C, Delpón E, Tamargo J. Class I and III antiarrhythmic actions of prazosin in guinea-pig papillary muscles. Br J Pharmacol. 1994; 111: 717-722. Ref.: https://tinyurl.com/ya6tetem

Donck LV, Borgers M. Myocardial protection by R 56865: a new principle based on prevention of ion channel pathology. Am J Physiol. 1991; 261: 1828-1835. Ref.: https://tinyurl.com/ybnoq2ef

Tosaki A, Koltaï M, Paubert-Braquet M. Effect of iloprost on reperfusion-induced arrhythmias and myocardial ion shifts in isolated rat hearts. Eur J Pharmacol. 1990; 191, 69-81. Ref.: https://tinyurl.com/yfc5idmj

Toombs, CF, Wiltse AL, Shebuski RJ. Ischemic preconditioning fails to limit infarct size in reserpinized rabbit myocardium. Implication of norepinephrine release in the preconditioning effect. Circulation. 1993, 88: 2351-2358. Ref.: https://tinyurl.com/yax6kw7x

Pèrez O, Valenzuela C, Delpón E, Tamargo J. Class I and III antiarrhythmic actions of prazosin in guinea-pig papillary muscles. Br J Pharmacol. 1994; 111: 717-722. Ref.: https://tinyurl.com/yat6tetm

Donck LV, Borgers M. Myocardial protection by R 56865: a new principle based on prevention of ion channel pathology. Am J Physiol. 1991; 261: 1828-1835. Ref.: https://tinyurl.com/ybnoq2ef

Tosaki A, Koltaï M, Paubert-Braquet M. Effect of iloprost on reperfusion-induced arrhythmias and myocardial ion shifts in isolated rat hearts. Eur J Pharmacol. 1990; 191, 69-81. Ref.: https://tinyurl.com/yfc5idmj

Toombs, CF, Wiltse AL, Shebuski RJ. Ischemic preconditioning fails to limit infarct size in reserpinized rabbit myocardium. Implication of norepinephrine release in the preconditioning effect. Circulation. 1993, 88: 2351-2358. Ref.: https://tinyurl.com/yax6kw7x

Slezak J, Tribulova N, Pristacova J, Uhrik B, Thomas T, et al. Hydrogen peroxide changes in ischemic and reperfused heart. Cytochemistry and biochemical and X-ray microanalysis. Am J Pathol. 1995; 147: 772-781. Ref.: https://tinyurl.com/yah8nf2w

Vaage J, Antonelli MB, Irtun O, DeBlasi RA, et al. Exogenous reactive oxygen species deplete the isolated rat heart of antioxidants. Free Rad Biol Med. 1997; 22: 85-92. Ref.: https://tinyurl.com/ybopo59vn

Obata T, Aomine M, Yamanaka Y. Protective effect of histidine on iron (II)-induced hydroxyl radical generation in rat hearts. J Physiol Paris. 1999; 93: 213-218. Ref.: https://tinyurl.com/ybvo60qa

Hoffmann P, Richards D, Heinroth-Hoffmann I, Mathias P, Wey H, et al. Arachidonic acid disrupts calcium dynamics in neonatal rat cardiac myocytes. Cardiovasc Res. 1995; 30: 889-898. Ref.: https://tinyurl.com/ycevka8x2

Su MJ, Chi JF, Chu SH. Effects of prazosin on rat, guinea pig and human cardiac tissues. Chin J Physiol. 1995; 38: 159-169. Ref.: https://tinyurl.com/ybfr708l

Ver Donck L, Borgers M. Myocardial protection by R 56865: a new principle based on prevention of ion channel pathology. Am J Physiol. 1991; 266: 903-908. Ref.: https://tinyurl.com/ybnoq2ef

Akahira M, Hara A, Hashizume H, Nakamura M, Abiko Y. Protective effect of prazosin on the hydrogen peroxide-induced derangements in the isolated perfused rat heart. Life Sci. 1998; 62: 1755-1766. Ref.: https://tinyurl.com/ycuc5y36

Wermelskirchen D, Wilffert B, Nebel U, Wirth A, Peters T. Veratridine-induced intoxication in the isolated left atrium of the rat: effects of some anti-ischemic compounds. Naunyn-Schmiedeberg's Arch Pharm. 1991; 344: 101-106. Ref.: https://tinyurl.com/yb4o59vn

Tani, M., 1990. Mechanisms of Ca²⁺ overload in reperfused ischemic myocardium. Annu. Rev. Physiol. 52, 543-559.

Comini L, Bachetti T, Gaia G, Pasini E, Agnoletti L, Pepi P, et al. Aorta and skeletal muscle NO synthase expression in experimental heart failure. J Mol Cell Cardiol. 1996; 28: 2241-2248. Ref.: https://tinyurl.com/y7qsg5oo7

Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci. 1990; 87: 1620-1624. Ref.: https://tinyurl.com/yax9xts7

Pietri S, Maurelli E, Drieu K, Culcasi M. Cardioprotective and anti-oxidant effects of the terpenoid constituents of Ginkgo biloba extract (EGb 761). J Mol Cell Cardiol. 1997; 29: 733-742. Ref.: https://tinyurl.com/y7j9k9ees

Darley-Usmar V, Wiseman H, Halliwell B. Nitric oxide and oxygen radicals: a question of balance. FEBS Lett. 1995; 369: 313-315. Ref.: https://tinyurl.com/yaujfm9a

Tatsunami S, Itoh Y, Ma FH, Higashima H, Ukai Y, et al. Inhibition of depolarization-induced nitric oxide synthase activation by NS-7, a phenylpyrimidine derivative, in primary neuronal culture. J Neurochem. 1998; 70: 59-65. Ref.: https://tinyurl.com/y3kkwyc

Chiu, CC, Wu RM, Mohanakumar KP, Sternberger LM, Krishna G, et al. In vivo generation of hydroxyl radicals and MPTP-induced dopaminergic toxicity in the basal ganglia. Ann NY Acad Sci. 1994; 738: 25-36. Ref.: https://tinyurl.com/yccxr2jm
104. Mohanakumar KP, Steinbusch HW. Hydroxyl radicals and nitric oxide in neurotoxicity and neuroprotection. J Chem Neuroanat. 1998; 14: 125-127. Ref.: https://tinyurl.com/y9ze37ox

105. Mohanakumar KP, Hanbauer I, Chieue CC. Neuroprotection by nitric oxide against hydroxyl radical-induced nigral neurotoxicity. J Chem Neuroanat. 1998; 14: 195-205. Ref.: https://tinyurl.com/y9a343dph

106. Rauhala P, Mohanakumar KP, Sziraki I, Lin AM, Chieue CC. S-nitrosothiols and nitric oxide, but not sodium nitroprusside, protect nigrostriatal dopamine neurons against iron-induced oxidative stress in vivo. Synapse. 1996; 23: 58-60. Ref.: https://tinyurl.com/y8ktw24

107. Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol. 2014; 2: 702-714. Ref.: https://tinyurl.com/y82pcp29

108. Seyed N, Win T, Lander HM, Levi R. Bradykinin B2-receptor activation augments norepinephrine exocytosis from cardiac sympathetic nerve endings. Mediation by autocrine/paracrine mechanisms. Circ Res. 1997; 81: 774-784. Ref.: https://tinyurl.com/y8txxxv

109. Snabaitis AK, Shattock MJ, Chambers DJ. Comparison of polarized and depolarized arrest in the isolated rat heart for long-term preservation. Circulation. 1997; 96: 3148-3156. Ref.: https://tinyurl.com/y8by35zu

110. Sugawa M, Ikeda S, Kushima Y, Takashima Y, Cynshi O. Oxidized low density lipoprotein caused CNS neuron cell death. Brain Res. 1997; 761: 165-172. Ref.: https://tinyurl.com/y9bvy4v0

111. Joshi S, Husain MM, Chandra R, Hasan SK, Srivastava RC. Hydroxyl radical formation resulting from the interaction of nickel complexes of L-histidine, glutathione or L-cysteine and hydrogen peroxide. Hum Exp Toxicol. 2005; 24: 13-17. Ref.: https://tinyurl.com/y7sk36v8