ELASTIC ANOMALIES IN INTERMEDIATE VALENCE RARE-EARTH INTERMETALLICS

R. MOCK, B. HILLEBRANDS, H. SCHMIDT, G. GÜNTERODT

II. Phys. Inst. +, Universität Köln, 5000 Cologne 41, Fed. Rep. Germany

Z. FISK

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

and A. MEYER

L.M.S.E.S., Institut de Physique, Université Louis Pasteur, 67084 Strasbourg, France

The bulk moduli c_B of Rare earth (R) and Actinide (A) intermetallics (R–Cu$_2$Si$_2$, R–Rh$_2$, R–Ru$_2$, R–Be$_{13}$, A–Be$_{13}$) have been determined by means of Brillouin scattering. A softening of c_B is found in EuCu$_2$Si$_2$, YbCu$_2$Si$_2$, CeCu$_2$Si$_2$ and CeRh$_2$, but not in UBe$_{13}$. CeRu$_2$ shows a c_B twice as large as that of LaRu$_2$.

By means of an improved technique for Brillouin scattering, using a 3 + 3 pass tandem Fabry–Perot interferometer according to Sandercock [1], it has now become feasible to reliably measure bulk transverse and longitudinal acoustic sound velocities of metals. Thus we are able to determine the bulk modulus of both single crystals and polycrystals [2].

With the help of this method we have determined the bulk moduli c_B of various polycrystalline Rare earth (R) and Actinide (A) intermetallics (R–Cu$_2$Si$_2$, R–Ru$_2$, R–Rh$_2$, R– and A–Be$_{13}$) with particular emphasis on intermediate valence effects. These should show up most pronounced in the bulk modulus because of the volume changes associated with $4f^{n-1} + e^-$ valence fluctuations. All measurements were carried out at room temperature. The c_B values of each series of compounds (except R–Ru$_2$) have been plotted as functions of Q/V, where Q is the valence of the R or A ion and V is the unit cell volume. For stable valent compounds this should yield a linear dependence of c_B on Q/V, whereas the intermediate valence effects are indicated by deviations from this behavior.

Fig. 1 shows the results for R–Cu$_2$Si$_2$. Contrary to the stable valent R–Cu$_2$Si$_2$ the compounds EuCu$_2$Si$_2$ and YbCu$_2$Si$_2$ exhibit a softening of the bulk modulus of 32 and 43%, respectively, with respect to the reference line. This softening is attributed to the $4f^{n-1} + e^-$ configurational mixing near the Fermi level [3–5] which causes the R ions, and thus in turn the lattice, to become more compressible. A comparison of our c_B values with those determined by X-ray diffraction under hydrostatic pressure [6–8] as given elsewhere [2] shows good agreement within the error bars.

The 14% softening of c_B of CeCu$_2$Si$_2$ may also be associated with a valence instability effect, but even more so it may be indicative of the electron–phonon...
coupling in this "heavy-fermion" superconductor \((T_c = 0.5 \text{ K}) \). The large volume dependence of the spin-fluctuation or Kondo temperature \((T^* = 10 \text{ K}) \) has recently been considered as the dominant electron-phonon coupling mechanism in CeCu_2Si_2 [10]. The softening of \(c_B \) is consistent with such a Kondo volume collapse-type of electron-phonon interaction.

An extraordinary situation is found in the case of the superconductor CeRu\(_2\) \((T_c = 6.2 \text{ K}) \). It turns out that \(c_B \) of CeRu\(_2\) is twice as large as that of the reference compound LaRu\(_2\) \((c_B = 134 \text{ GPa, LaRu}_2: c_B = 63 \text{ GPa}). \) An explanation for this behavior can be found in the valence of CeRu\(_2\), which was determined by L\(_{III}\) X-ray absorption as \(v = 3 + \nu = 3.3 \) [12]. On the basis of this valence and the superconducting properties of CeRu\(_2\), the Ce ion may be considered as in the \(\alpha'\)-Ce type phase [13], where the valence is not pressure-dependent \((\frac{dv}{dp} = 0) \). Thus in eq. 1

\[
\frac{1}{c_B} = -\frac{1}{V} \frac{\partial V}{\partial p} \bigg|_V - \frac{1}{V} \frac{\partial V}{\partial r} \frac{dr}{dp},
\]

the second term vanishes and therefore CeRu\(_2\) should show at least no softening in \(c_B \), because the first term represents the "isovalent" contribution to the compressibility. Moreover, in the \(\alpha'\)-phase of Ce the valence becomes reduced as compared to the \(\alpha\)-phase of Ce towards, implying an increased volume of the Ce atom. Consequently, the \(\alpha'\)-Ce type ion in CeRu\(_2\) acquires a larger volume as compared to an \(\alpha\)-Ce type ion. On the other hand, the unit cell volume of CeRu\(_2\) is 6% smaller with respect to LaRu\(_2\) \((\text{LaRu}_2: V = 457 \text{ Å}^3, \text{CeRu}_2: V = 428 \text{ Å}^3) \) [14]. As a consequence of the "external" and the very large "internal" pressure the bulk modulus of CeRu\(_2\) exceeds that of LaRu\(_2\) by a factor of two.

CeRh\(_2\) has a valence of 3.24 [12], which raises the question whether it is \(\alpha\)-Ce or \(\alpha'\)-Ce like [13] and might exhibit a similar behavior as CeRu\(_2\). The bulk modulus of CeRh\(_2\) has been determined together with that of La-, Y- and LuRh\(_2\). The \(c_B \) vs. \(Q/V \) plot in fig. 2 shows a 20% softening of \(c_B \) of CeRh\(_2\) with respect to the reference line of the stable valent R–Rh\(_2\). Hence we conclude that the behavior of CeRh\(_2\) resembles that of the \(\alpha\)-Ce phase where the valence increases with increasing external pressure [13], so that the softening of \(c_B \) is caused by the second term in eq. 1.

The series of R– and A–Be\(_{13}\) intermetallics has been investigated in order to clarify whether \(c_B \) of intermediate valent CeBe\(_{13}\) is indeed larger than that of LuBe\(_{13}\) [15] and to determine \(c_B \) of the supposed p-wave superconductor UBe\(_{13}\) [16] \((T_c = 0.85 \text{ K}) \). The results of \(c_B \) vs. \(Q/V \) are shown in fig. 3. The overall magnitude of the \(c_B \) values in fig. 3 is of the order of \(c_B = 100 \text{ GPa of Be.} \) This is due to the fact that the Be atoms form cages around the R or A ions and in first order dominate the elastic behavior. For the presently available data a tentative reference line has been indicated in fig. 3 by the dashed line. The scaling between R- and A-Be\(_{13}\) compounds has to be taken with some caution as seen by the behavior of their optical phonon frequencies \(\hbar \omega_{opt} \) vs. \(Q/V \) [18]. (While the stable valent R-Be\(_{13}\) show a linear variation of all \(\hbar \omega_{opt} \) vs. \(Q/V \), particularly ThBe\(_{13}\) shows non-systematic deviations from this behavior.) The non-softening of \(c_B \) of intermediate valent CeBe\(_{13}\) at 300 K is somewhat puzzling, especially in view of its anomalous temperature dependence upon cooling below 300 K [15]. While the overall softening of \(c_B \) of CeBe\(_{13}\) between 300 and 0.5 K has been attributed to the effect of approaching a second-order \(\gamma\)-\(\alpha \) Ce type phase transition because of

Fig. 2. \(c_B \) vs. \(Q/V \) of R–Rh\(_2\) (R = rare earth).

Fig. 3. \(c_B \) vs. \(Q/V \) of R– and A–Be\(_{13}\) (R = rare earth, A = actinide).
the Ce dilution in the Be matrix [15,19], a magnetoelectric coupling of the volume strain to two distinct electronic states (possibly reminiscent of $\Gamma_7-\Gamma_6$ crystalline electric field excitations) has been used to explain the minimum in the temperature dependence of c_B near 135 K [20].

The "heavy-fermion" superconductor UBe$_{13}$ shows no anomaly in c_B, even when assuming a horizontal reference line for the A-Be$_{13}$. This result is in contrast to the behavior of CeCu$_2$Si$_2$ and may be indicative of an electronic superconducting transition of UBe$_{13}$ due to an interaction different from the usual electron–phonon interaction [16].

Acknowledgements

We would like to thank D. Wohlleben and J. Rohler for many stimulating and helpful discussions.

References

[1] J.R. Sandercock, Solid State Commun. 26 (1978) 347.
[2] R. Mock and G. Güntherodt, J. Phys. C 17 (1984) 5635.
[3] E.R. Bauminger, D. Froindlich, I. Nowik, S. Ofer, L. Felner and I. Mayer, Phys. Rev. Lett. 30 (1973) 1053.
[4] B.C. Sales and D. Wohlleben, Phys. Rev. Lett. 35 (1975) 1240.
[5] E. Holland-Moritz, D. Wohlleben and M. Loewenhaupt, Phys. Rev. B25 (1982) 7482.
[6] J. Röhler, D. Wohlleben, G. Kaindl and H. Balster, Phys. Rev. Lett. 49 (1982) 65.
[7] H. Zahel, Diplomarbeit, Universität Köln (1983), unpublished.
[8] G. Neumann, H. Zahel, J. Langen, W. Schlabitz and D. Wohlleben, this conference and to be published.
[9] F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz and H. Schäfer, Phys. Rev. Lett. 43 (1979) 1892.
[10] H. Razafimandimby, P. Fulde and J. Keller, Z. Phys. B 54 (1984) 111.
[11] M. Wilhelm and B. Hillenbrand, Z. Naturf. 26 a (1971) 141.
[12] D. Wohlleben and J. Röhler, J. Appl. Phys. 55 (1984) 1904.
[13] J. Röhler, D. Wohlleben, J.P. Kappler and G. Krill, Phys. Lett. 103 A (1984) 220.
[14] P. Weidner, PhD thesis, Universität Köln (1984), unpublished.
[15] D. Lenz, H. Schmidt, S. Ewert, W. Boksch, R. Pott and D. Wohlleben, this conference and Solid State Commun. 52 (1984) 759.
[16] H.R. Ott, H. Rudigier, T.M. Rice, K. Ueda, Z. Fisk and J.L. Smith, Phys. Rev. Lett. 52 (1984) 1915.
[17] H.R. Ott, H. Rudigier, Z. Fisk and J.L. Smith, Phys. Rev. Lett. 50 (1983) 1595.
[18] S. Blumenröder, E. Zirngiebel, G. Güntherodt, A. Jayaraman, B. Batlogg, Z. Fisk and A. Meyer, J. Magn. Magn. Mat. 47&48 (1985) 318; to be published.
[19] J.D. Thompson, Z. Fisk, J.M. Lawrence, J.L. Smith and R.M. Martin, Phys. Rev. Lett. 50 (1983) 1081.
[20] S. Blumenröder, E. Zirngiebel and G. Güntherodt, this conference, Z. Phys. B (submitted) and to be published.