Meeting Report

Using the Monocyte Activation Test as a Stand-Alone Release Test for Medical Devices

doi:10.14573/altex.20212021

Abstract

Monocyte activation tests (MAT) are widely available but rarely used in place of animal-based pyrogen tests for safety assessment of medical devices. To address this issue, the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods and the PETA International Science Consortium Ltd. convened a workshop at the National Institutes of Health on September 18-19, 2018. Participants included representatives from MAT testing laboratories, medical device manufacturers, the U.S. Food and Drug Administration’s Center for Devices and Radiologic Health (CDRH), the U.S. Pharmacopeia, the International Organization for Standardization, and experts in the development of MAT protocols. Discussions covered industry experiences with the MAT, remaining challenges, and how CDRH’s Medical Device Development Tools (MDDT) Program, which qualifies tools for use in evaluating medical devices to streamline device development and regulatory evaluation, could be a pathway to qualify the use of MAT in place of the rabbit pyrogen test and the limulus amebocyte lysate test for medical device testing. Workshop outcomes and follow-up activities are discussed.

1 Introduction

Pyrogens are a diverse group of substances that produce fever when parenterally introduced to the body. Pyrogens may be classified as endogenous (produced in the body) or exogenous (from outside sources). Exogenous pyrogens include bacterial endotoxins, such as lipopolysaccharides, the most prevalent and potent pyrogens, which are unique to Gram-negative bacteria. Exogenous microbial non-endotoxin pyrogens originate from yeast, mold, viruses, and other organisms beyond Gram-negative bacteria, such as lipoteichoic acid, a cell wall polymer found in Gram-positive bacteria. A loosely-defined third class of non-endotoxin exogenous pyrogens called material-mediated pyrogens (MMPs) – chemicals which may leach from medical devices during use and directly initiate a pyrogenic response – are discussed below.

Medical products that come in contact with the cardiovascular system, cerebrospinal fluid, have ophthalmic contact or are implanted or injected, and any devices labeled “non-pyrogenic” should meet pyrogen limit specifications before they can be marketed. Two animal-based pyrogen tests are typically used for evaluation of pyrogenicity: the rabbit pyrogen test (RPT) and the limulus amebocyte lysate test (LAL), which are performed using rabbits or hemolymph derived from horseshoe crabs, respectively. However, non-animal replacements, including monocyte activation tests (MAT), are available. The MAT methods have been described in detail elsewhere and will not be reviewed here (Hartung et al., 2001; Hasiwa et al., 2013; Hartung, 2015; Fennrich et al., 2016).

Pyrogen tests continue to account for a significant number of animals used in laboratory procedures despite the availability of MAT, with annual usage of rabbits for this endpoint remaining relatively constant over the past several years. In 2017, the most recent year for which these figures are available, 6,716 rabbits were used in pyrogen tests in Germany\(^1\) and the UK\(^2\) alone. The LAL (also known as the bacterial endotoxin test or BET), which is based on the premise that the blood of horseshoe crabs clots in the presence of bacteria (Levin and Bang, 1964, 1968), was suggested as a replacement for the RPT in 1971 (Cooper et al., 1971). Today, the vast majority of pyrogen testing is conducted using this method (Hartung, 2015), and its use has been associated with a decline in the horseshoe crab population (Anderson et al., 2013).

The first MAT papers were published in 1982 using peripheral blood mononuclear cells (PBMCs; Duff and Atkins, 1982) and in 1995 using whole blood (Hartung and Wendel, 1995). The MAT can be conducted using whole blood, cryopreserved blood, PBMCs, or monocytoid cell lines, and protocols are available for each of these approaches. Based on replicating the initiating events of the human fever response, in the MAT, pyrogens are recognized by pattern recognition receptors, including the toll-like receptors (TLRs) expressed on monocyte cells. When

1 BMEL (2017). Data on the use of laboratory animals in 2017. https://www.bmel.de/SharedDocs/Downloads/DE/_Tiere/Tierschutz/Tierversuche/Versuchstierdaten2017.pdf?__blob=publicationFile&v=2 (accessed 25.11.2020).
2 UK Home Office (2018). Annual Statistics of Scientific Procedures on Living Animals Great Britain 2017. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/724611/annual-statistics-scientific-procedures-living-animals-2017.pdf (accessed 25.11.2020).
stimulated by pyrogens, monocytes produce cytokines (e.g., interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ), which are measured via ELISA as a marker of the fever response. Standardized ELISA kits are available from several providers, including Merck Millipore (PyroDetect and PyroMAT™ System), CTL-MAT (MAT Kit), Sanquin (MAT Cell Set), Haemochrom Diagnostica (HaemoMAT), and MAT Research (MAT). The only remaining restriction on the MAT is a U.S. patent that applies to the use of cryopreserved blood, which expires in 2020. Several MAT studies have been conducted with medical devices to detect pyrogenic contamination from Gram-negative and Gram-positive bacterial and fungal sources (Hasiwa et al., 2007; Mazzotti et al., 2007).

2 Regulatory landscape for pyrogen testing guidance and standards

The MAT was validated in 2004 (Hoffmann et al., 2005; Schindler et al., 2006), and in 2006 and 2007. The European Centre for the Validation of Alternative Methods and the Interagency Coordinating Committee on the Validation of Alternative Methods endorsed the MAT for identifying Gram-negative endotoxins and recognized its capacity to detect a wider range of pyrogens. In 2009, the U.S. Food and Drug Administration (FDA) acknowledged that the MAT may be used after product-specific validation for parenteral drugs.3 Information about FDA’s acceptance of the MAT can be found in “Guidance for Industry: Pyrogen and Endotoxins Testing: Questions and Answers”.4 Specifically, the 2012 guidance allows for the MAT assay to be used as a replacement for the LAL for medical device testing using product-specific validation. In 2010, the MAT was integrated into general chapter 2.6.30 (“Monocyte Activation Test”) in the European Pharmacopoeia, stating that the MAT could be used as a full replacement for the RPT following product-specific validation (EDQM, 2010). The U.S. Pharmacopeia (USP) General Chapter <151> (“Pyrogens”) allows use of a “validated, equivalent in vitro pyrogen or bacterial endotoxin test” in place of the RPT, where appropriate.5 ISO 10993-1:2018 gives preference to in vitro models when they yield equally relevant information (ISO, 2018), and additional information on pyrogen testing can be found in ISO 10993-11:2017 (ISO, 2017). In December 2018, ISO Technical Committee (TC) 194 (“Biological and clinical evaluation of medical devices”) Working Group (WG) 16 (“Pyrogenicity”) met to discuss its draft technical report 21582 on “Principle and method for pyrogen testing of medical devices”. This report notes that in some cases the MAT can be a useful alternative to traditional pyrogenicity test methods (rabbit and LAL); however, “the rabbit test will need to be retained for detection of pyrogens not detected by the MAT, including material-mediated pyrogens”. This is because, as the report states, “material-mediated pyrogens are chemical agents that do not operate through the cytokine network to induce a febrile reaction and most likely will not be detected on the MAT”. ISO/TC 194 WG 16 recommends further studies to validate the detection of known MMPs by the MAT assay and thereby show that MMPs that induce a pyrogenic response through mechanisms other than the TLR signaling pathway are detected.

3 Workshop discussion

This workshop was convened by the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) and the PETA International Science Consortium Ltd. with a goal of fostering discussions

3 US FDA (2009). Response from Dr Norris Alderson, Associate Commissioner for Science. https://ntp.niehs.nih.gov/iccvam/methods/pyrogen/transmittnov08/fda-response.pdf (accessed 20.04.2020).

4 US FDA (2012). Guidance for industry pyrogen and endotoxins testing: Questions and answers. https://www.fda.gov/media/83477/download (accessed 20.04.2020).

5 United States Pharmacopeia (2017). General Chapter 151 “Pyrogens.” http://www.pharmacopeia.crv/v/29240/usip29r24s0_c151.html (accessed 20.04.2020).
between key stakeholders at MAT testing laboratories, medical device manufacturers, standards-making organizations, and the FDA’s Center for Devices and Radiologic Health (CDRH) on the use of the MAT. Presentations (Tab. 1) were followed by a lively discussion. The topics below reflect the workshop discussions, which were focused by questions posed by CDRH in preparation for the workshop.

4 CDRH medical device development tools program

A central element of this workshop was exploring the use of the CDRH Medical Device Development Tools (MDDT) program\(^6\) to allow companies to provide data demonstrating that MAT assays could routinely be used as a replacement for the LAL for all medical devices and to explore whether the MAT is capable of detecting MMPs such that the RPT for medical devices also could be replaced. This program facilitates collaboration where individuals, stakeholders, consortia, or companies may work together to expedite development, validation and use of in vitro methods as non-clinical assessment models for a defined context of use as a replacement for animal-based tests without the need to reconfirm the suitability and utility of the tool when used in medical device submissions to CDRH. Once qualified under this program, and when used within the qualified context of use, the qualified MDDT can be used by multiple sponsors across multiple medical device development programs. The MDDT program is actively seeking new submissions with a strong potential to meet a public health need, thus the MAT is a good candidate for review under this program. Proposals submitted to the program, designed to be relatively short, should include a description of the development tool with sufficient detail for the agency to understand how the tool works for the proposed context of use, a discussion of how this tool meets a public health need, with no need to submit data during the proposal stage as the data is reviewed in the subsequent phases of the MDDT process. Once an MDDT is accepted into the program, this initiates collaboration between the tool submitter and CDRH to aid in the development of this tool by providing feedback on a plan to collect evidence to support qualification of the tool.

There was consensus on the need and interest in submitting a MDDT proposal for the MAT. Drivers for the use of the MAT included the desire for: (1) a quantitative, sensitive, and reliable in vitro test that can detect both endotoxin and material-mediated pyrogenic response, (2) an extract method that requires a smaller amount of test article for smaller devices and/or a direct contact test that adequately assesses both small and large devices, and (3) a test that is not affected by the stress level or physiological state of an animal. Furthermore, qualification of the MAT through the MDDT program would streamline product review. Workshop participants discussed the process of developing a MDDT to validate the MAT as a replacement for the RPT and/or LAL with input from CDRH attendees on the agency’s critical needs.

4.1 Addressing material-mediated pyrogens in a MDDT proposal

Borton and Coleman (2018) proposed the following definition for MMPs: “any exogenous non-biological substance known to cause a febrile response. This definition excludes substances such as endogenous chemicals (i.e., cytokines and prostaglandins), fungi, yeast, viruses, bacteria, and parasites.” The ISO TC 194 WG 11 Task Force developed a list of known MMPs, which have generated a pyrogenic response in rabbits in testing performed by medical device companies, that is included as Annex G of ISO-10993-11 (2017). The list, which was reaffirmed recently by ISO/TC 194 WG 16, includes:

- prostaglandin;
- inducers (e.g., polyadenylic, polyuridylic, polybionosinic and polyrribocytidylic acids);
- substances disrupting the function of thermoregulatory centers (e.g., LSD, cocaine, morphine);
- uncoupling agents of oxidative phosphorylation (e.g., 4, 6-dinitro-o cresol, dinitrophenol, picric acid);
- N-phenyl-β-naphthylamine and aldo-α-naphthylamine (the febrile mechanism is unknown);
- neurotransmitters (e.g., noradrenaline, serotonin); and
- metals such as nickel salts, in some instances.

However, the relevance of MMPs in pyrogen testing of medical devices, and whether any of the pyrogen tests can detect these substances, is disputed (Borton and Coleman, 2018). The relevance of material-mediated pyrogenicity is debatable as the list of chemicals includes substances that should not be found in many medical devices. Whether the MAT could detect MMPs was debated, because the listed substances do not signal via a pattern recognition receptor (PRR) pathway. To address this question, there was a recommendation to evaluate the ISO-defined MMPs in the MAT to see if these substances are detectable. One important step in completing this exercise will be acquiring pure test substances that can be used as positive controls.

The MMP biocompatibility evaluation (currently the RPT) typically only needs to be performed once on the final, finished device. Whether the MAT could also be used in the nearer term to perform product release testing (i.e., to replace the LAL) was also discussed. For both types of pyrogenicity assessments, appropriate positive controls would need to be selected to demonstrate that the MAT can detect endotoxins as well as MMPs and to be made available as reference preparations. CDRH expressed a need to understand if there are any pyrogens that the RPT would detect that the MAT would not (for example, whether any pyrogens of concern act through mechanisms other than PRRs and whether these would be detectable in the MAT). It

\(^6\) US FDA (2017). MDDT program final guidance, qualification of medical device development tools – Guidance for industry, tool developers, and Food and Drug Administration staff. https://www.fda.gov/MedicalDevices/ScienceandResearch/Medical DeviceDevelopmentToolsMDDT/default.htm (accessed 20.04.2020).
The importance of understanding how cytokine levels produced in monocyte cultures relate to fever in humans was emphasized as well as the need for a standardized positive control. A number of potential non-endotoxin standards (e.g., prostaglandins, metals, inducers) were discussed and merit additional consideration. Other points to understand and explain in an MDDT application include whether cytokine measurement alone is sufficient for assessing the fever response irrespective of the mechanism of action of pyrogens and which cytokine(s) need to be measured to predict what will happen in vivo (Davila et al., 2014; Lee et al., 2014).

4.5 Grouping of devices for an MDDT proposal

It was acknowledged that different types of devices may require the use of distinct test protocols, and one suggestion was to start by optimizing the testing protocol for a representative group of small devices that fit into a 10 mL tube and can come in complete contact with small volumes of whole blood/PBMCs/monocytic cell line. In an MDDT proposal, it is critical to outline the proposed context of use and why it is appropriate. For example, CDRH would need to know with what types of devices the proposed MAT protocol could be used (e.g., durable/absorbable devices that include polymers, ceramics, metals, biologics, hydrogels, liquids, nanoparticles) and what test substances would be incompatible with the test system. The protocol would also need to define whether any device-specific method optimizations are needed; for example, whether the protocol can be used with large and small surface area devices, with device extracts, or by direct testing of the device itself.

If direct testing is conducted on the device, the MDDT would need to describe if the test is limited to detecting surface-bound pyrogens only and, if so, whether this is sufficient. The protocol would also need to state whether there are any differences if the test is conducted under static versus dynamic incubation conditions and consider optimization of the incubation period to increase test sensitivity. Engaging USP, the National Institute of Standards and Technology, or other organizations in the development of reference standards was recommended.

4.6 Next steps for organizing the development of an MDDT project proposal

The workshop attendees agreed that next steps should include publication of a brief workshop report and MDDT proposal development. Each MDDT proposal would briefly describe a proposed context of use, a description of the MAT test methods, an overview of the proposed evidence plan that will be used to qualify the tool, including a timeline and a description of how the tool will meet a public health need. Once prepared, the tool submitter assembles information for the agency via the FDA Q-Submission Program as an Informal Meeting, including a cover sheet indicating this is an MDDT proposal. Once submitted to the agency, CDRH notifies tool submitters within 60 days whether the proposal has been accepted into the MDDT Program.
One workshop recommendation was to submit a two-part MDDT with one part focused on bio compatibility and the other on batch-release testing. The reason for this is that, as we learn more about MMPs and whether they can be assessed using the MAT or require an additional detection test process, acceptance of the MAT for batch-release testing in place of the LAL in a broader context is likely to be a nearer-term goal than replacing the RPT for biocompatibility testing of new products. In the meantime, another action item was to test the ISO 10993-11:2017 Appendix G list of MMPs with the MAT. This process will involve identifying: (1) companies interested in participating in a MDDT application; (2) avenues for gaining access to existing data; and (3) funding opportunities for prospective MAT testing to include in the MDDT submission.

Training and education on the MAT were also highlighted as critical activities to facilitate its adoption. To help address this issue, the USP held a workshop on June 10-11, 2019 in Rockville, Maryland, USA on the “Future of Endotoxins and Pyrogen Testing: Standards and Procedures.”

5 Conclusions

The formation of public-private partnerships and training opportunities will be critical to accomplish the workshop recommendations. NICEATM and the PETA International Science Consortium Ltd. will collaborate with companies and CDRH to facilitate ongoing activities, including MDDT development and organizing training for reviewers and companies concerning the use of the MDDT in medical device regulatory submissions.

References

Anderson, R. L., Watson, W. H. and Chabot, C. C. (2013). Sublethal behavioral and physiological effects of the biomedically bleeding process on the american horseshoe crab, Limulus polyphemus. Biol Bull 225, 137-151. doi:10.1086/BBLv225n3p137

Borton, L. K. and Coleman, K. P. (2018). Material-mediated pyrogens in medical devices: Applicability of the in vitro Monocyte Activation Test. ALTEX 35, 453-463. doi:10.14573/altex.1709221

Cooper, J. F., Levin, J. and Wagner, H. N. (1971). Quantitative comparison of in vitro and in vivo methods for the detection of endotoxin. Transl Res 78, 138-148. doi:10.5555/URI: PII:002214371902113

Correa, W., Brandenburg, K., Zähringer, U. et al. (2017). Biophysical analysis of lipopolysaccharide formulations for an understanding of the low endotoxin recovery (LER) phenomenon. Int J Mol Sci 18, 2737. doi:10.3390/ijms18122737

Davila, M. L., Riviere, I., Wang, X. et al. (2014). Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6, 224ra25-224ra25. doi:10.1126/scitranslmed.3008226

Duff, G. W. and Atkins, E. (1982). The detection of endotoxin by in vitro production of endogenous pyrogen: Comparison with limulus amebocyte lystate gelation. J Immunol Methods 52, 323-331. doi:10.1016/0022-1759(82)90004-7

EDQM (2010). General Chapter 2.6.30. Monocyte-activation test. European Pharmacopoeia.

Fennrich, S., Hennig, U., Toliashvili, L. et al. (2016). More than 70 years of pyrogen detection: Current state and future perspectives. Altern Lab Anim 44, 239-253. doi:10.1177/02611929164400305

Hartung, T. and Wendel, A. (1995). Die Erfassung von Pyrogenen in einem humanen Vollblutmodell (Detection of pyrogens using human whole blood). ALTEX 12, 70-75. https://www.altex.org/index.php/altex/article/view/1671

Hartung, T., Aaberge, I., Berthold, S. et al. (2001). Novel pyrogen tests based on the human fever reaction. Altern Lab Anim 29, 99-123. doi:10.1177/026119290102900203

Hartung, T. (2015). The human whole blood pyrogen test – Lessons learned in twenty years. ALTEX 32, 79-100. doi:10.14573/altex.1503241

Hasiwa, M., Kullmann, K., von Aulock, S. et al. (2007). An in vitro pyrogen safety test for immune-stimulating components on surfaces. Biomaterials 28, 1367-1375. doi:10.1016/j. biomaterials.2006.11.016

Hasiwa, N., Daneshian, M., Bruegger, P. et al. (2013). Evidence for the detection of non-endotoxin pyrogens by the whole blood monocyte activation test. ALTEX 30, 169-208. doi:10.14573/altex.2013.2.169

Hoffmann, S., Peterbauer, A., Schindler, S. et al. (2005). International validation of novel pyrogen tests based on human monocyteid cells. J Immunol Methods 298, 161-173. doi:10.1016/j. jimm.2005.01.010

ISO (2017). ISO 10993-11:2017. Biological evaluation of medical devices – Part 11: Tests for systemic toxicity. Geneva, Switzerland: International Organization for Standardization.

ISO (2018). ISO 10993-1:2018. Biological evaluation of medical devices – Part 1: Evaluation and testing within a risk management process. Geneva, Switzerland: International Organization for Standardization.

Lee, D. W., Gardner, R., Porter, D. L. et al. (2014). Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188-195. doi:10.1182/blood-2014-05-552729

Levin, J. and Bang, F. B. (1964). The role of endotoxin in the extracellular coagulation of limulus blood. Bull Johns Hopkins Hosp 115, 265-274.

Levin, J. and Bang, F. B. (1968). Clottable protein in Limulus; its localization and kinetics of its coagulation by endotoxin. Thromb Diath Haemorrh 19, 186-197. http://www.ncbi.nlm.nih.gov/pubmed/5690028

Mazzotti, F., Beuttler, J., Zeller, R. et al. (2007). In vitro pyrogen test – A new test method for solid medical devices. J Biomed Mater Res A 80, 276-282. doi:10.1002/jbm.a.30922

Schindler, S., Spreitzer, I., Löschner, B. et al. (2006). International validation of pyrogen tests based on cryopreserved human primary blood cells. J Immunol Methods 316, 42-51. doi:
Introduction

The international Virtual Class on Alternative Methods: Ethics & Science (http://ames.lakecomoschool.org), aimed at young scientists, was focused on alternative methods and the 3Rs (Reduce, Refine, Replace animal use), from the ethical and scientific points of view. The purpose was to provide an overview, through an ethical, scientific, and philosophical approach, to illustrate the history, the application, and the future of alternative methods. The class was chaired by Francesca Caloni, Università degli Studi di Milano, Department of Environmental Science and Policy, and was attended by 27 participants from all over the world with backgrounds ranging from agronomy, biology, environmental science, veterinary medicine, to economy, and computer and social sciences.

Francesca Caloni started the class with a brief overview entitled “Alternative methods: Educational experience”. The main aspects underlined during the presentation were related to the importance of an “inclusive” education on the 3Rs, not only focused on scientific aspects but promoting and developing a mental attitude through a multidisciplinary 3Rs educational approach, answering the increasingly tangible needs of a complex knowledge. An educational experience of the 3Rs, merging different disciplines through a well-structured pathway and a multi-step approach, aimed at undergraduates to early career researchers would address the future requirements of a global society.

Marco Pedrazzi, Università degli Studi di Milano, Department of International, Legal, Historical and Political Studies, presented a lecture entitled “Ethics and science: Which role for research integrity?” Research integrity (RI) has become a central topic worldwide, particularly in Europe. The presentation defined RI and looked at some of the main themes of RI, such as the duties existing within a research group and towards external participants and society as a whole, plagiarism, and self-plagiarism.

Isabella De Angelis, Environment and Health (ISS), spoke on “Alternative methods move towards new approach methodologies: Reflections and perspectives”. Since the early 2000’s, an impressive acceleration in efforts to develop non-animal approaches for investigating hazardous properties of chemical substances and drugs has taken place. These efforts have gone hand in hand with the new, exciting possibilities offered by human biology-based innovative technologies and approaches. For this reason, researchers and legislators now prefer to address their attention to new approach methodologies (NAMs) instead of “sim-