Микробиота нижних дыхательных путей при внебольничных пневмониях, в том числе ассоциированных с SARS-CoV-2

Катаева Л.В.*, Вакарина А.А., Степанова Т.Ф., Степанова К.Б.

Тюменский научно-исследовательский институт краевой инфекционной патологии, Тюмень, Россия

Аннотация
Введение. Многие аспекты патогенеза и патоморфологии коронавирусной пневмонии нуждаются во всестороннем комплексном изучении с использованием современных методов диагностики.

Цель исследования — изучение микробиоты нижних дыхательных путей при внебольничных пневмониях (ВБП), ассоциированных с SARS-CoV-2, оценка антибиотико- и фагорезистентности циркулирующих штаммов микроорганизмов.

Материалы и методы. Проведён анализ биопроб от 486 пациентов, находящихся на стационарном лечении в 5 моногоспиталей Тюмени и Тюменской области с диагнозом ВБП средней и тяжёлой степени. Почти в 90% случаев пациенты получали оксигенотерапию, около 8% больных были подключены к аппаратам искусственной вентиляции лёгких. Посев клинического материала осуществлялся на протяжении 6 мес (с апреля по октябрь 2020 г.). Идентификацию выделенных штаммов бактерий выполняли методом масс-спектрометрии. У обнаруженных изолятов определяли резистентность к антимикробным препаратам и бактериофагам.

Результаты. В микробиоте нижних дыхательных путей пациентов с диагнозом «ВБП, ассоциированная с SARS-CoV-2» превалировали грамположительные кокки, преимущественно условно-патогенные микроорганизмы рода Streptococcus и грибы рода Candida. При этом бактерии семейства Enterobacteriaceae и неферментирующие грамотрицательные бактерии встречались реже, чем у пациентов без COVID-19. В структуре патогенов лидирующее положение занимали бактерии Klebsiella pneumoniae и Acinetobacter spp. Анализ чувствительности микроорганизмов к антимикробным препаратам показал наиболее высокую резистентность у штаммов Acinetobacter spp., Enterococcus spp., коагулазонегативных Staphylococcus spp. Установлено, что в группе пациентов с ВБП, ассоциированной с SARS-CoV-2, шансы встретить штаммы Streptococcus spp. с высокой устойчивостью к антибиотикам в 1,5 раза выше, а с учётом 95% доверительного интервала величина этого показателя колебалась в пределах 1,1–2,1 раза.

Вывод. Полученные данные свидетельствуют о том, что микробиота нижних дыхательных путей при ВБП, ассоциированных с SARS-CoV-2, представлена преимущественно бактериями рода Streptococcus, обладающими высоким уровнем резистентности к антимикробным препаратам.

Ключевые слова: антибиотикорезистентность, внебольничная пневмония, COVID-19, SARS-CoV-2, штаммы бактерий, мокрота, промывные воды бронхов, бронхоальвеолярный лаваж

Этическое утверждение. Исследование проводилось при добровольном информированном согласии пациентов. Протокол исследования одобрен Этическим комитетом Тюменского научно-исследовательского института краевой инфекционной патологии (протокол № 2 от 20.03.2020).

Источник финансирования. Авторы заявляют об отсутствии внешнего финансирования при проведении исследования.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Для цитирования: Катаева Л.В., Вакарина А.А., Степанова Т.Ф., Степанова К.Б. Микробиота нижних дыхательных путей при внебольничных пневмониях, в том числе ассоциированных с SARS-CoV-2. Журнал микробиологии, эпидемиологии и иммунобиологии. 2021;98(5):528–537. DOI: https://doi.org/10.36233/0372-9311-107

Original article
https://doi.org/10.36233/0372-9311-107

Microbiota of the lower respiratory tract in community-acquired pneumonia, including cases associated with SARS-CoV-2

Lyubov V. Kataeva*, Arina A. Vakarina, Tatiana F. Stepanova, Kseniya B. Stepanova

Tyumen Region Infection Pathology Research Institute, Tyumen, Russia

© Коллектив авторов, 2021
Abstract

Introduction. Many aspects of the pathogenesis and pathomorphology of pneumonia associated with novel coronavirus require a comprehensive study using modern diagnostic methods. The aim of the study was to study the microbiota of the lower respiratory tract in community-acquired pneumonia associated with SARS-CoV-2, to assess the antibiotic and phage resistance of circulating strains of microorganisms.

Materials and methods. The analysis of biosamples from 486 patients undergoing inpatient treatment in five mono-hospitals in Tyumen and Tyumen region with a diagnosis of moderate and severe community-acquired pneumonia was carried out. In almost 90% of cases patients received oxygen therapy, about 8% of patients were connected to ventilators. The inoculation of the cultures with clinical samples was carried out for six months (from April to October 2020). The isolated bacterial strains were identified by mass spectrometry. The resistance to antimicrobial drugs and bacteriophages was assessed for identified isolated.

Results. Gram-positive cocci, mainly opportunistic microorganisms of the genus Streptococcus and Candida fungi predominated in the microbiota of the lower respiratory tract of patients diagnosed with community-acquired pneumonia associated with SARS-CoV-2. At the same time, bacteria of the Enterobacteriaceae family and non-fermenting gram-negative bacteria were less common compared to patients without coronavirus infection. In the structure of pathogens, the leading position was occupied by the bacteria K. pneumoniae and Acinetobacter spp. The analysis of the sensitivity of microorganisms to antimicrobial drugs showed the highest resistance rates in strains of Acinetobacter spp., Enterococcus spp., Coagulase-negative Staphylococcus. It has been established that in the group of patients with community-acquired pneumonia associated with SARS-CoV-2, the risk of infection with Streptococcus spp. with high level of antibiotic resistance was 1.5 times higher, and taking into account the 95% confidence interval, the value of this indicator ranged from 1.1 to 2.1 times.

Conclusion. The data obtained indicate that the microbiota of the lower respiratory tract in community-acquired pneumonia associated with SARS-CoV-2 is represented mainly by bacteria of the genus Streptococcus, which have a high level of resistance to antimicrobial drugs.

Keywords: antibiotic resistance, community-acquired pneumonia, SARS-CoV-2, bacterial strains, sputum, bronchial lavage water, bronchoalveolar lavage

Ethics approval. The study was conducted with the informed consent of the patients. The research protocol was approved by the Ethics Commitee of the Tyumen Region Infection Pathology Research Institute (protocol No. 2, 20.03.2020).

Funding source. This study was not supported by any external sources of funding.

Conflict of interest. The authors declare no apparent or potential conflicts of interest related to the publication of this article.

For citation: Kataeva L.V., Vakarina A.A., Stepanova T.F., Stepanova K.B. Microbiota of the lower respiratory tract in community-acquired pneumonia, including cases associated with SARS-CoV-2. Journal of microbiology, epidemiology and immunology = Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2021;98(5):528–537. DOI: https://doi.org/10.36233/0372-9311-107
Adenovirus (14.9%). Chlamyphila pneumoniae обнаруживается значительно реже (6.7%) [4]. Несмотря на то что в популяции 1–6% населения являются носителями Klebsiella pneumoniae, локализованной в носоглотке, и 5–38% — в кишечнике, у госпитализированных пациентов носительство K. pneumoniae составляет 23% [5]. Указывается, что представители группы Enterobacteriaceae (K. pneumoniae) являются маркером прогностически неблагоприятного течения процесса в лёгких [6]. Информация по возбудителям бактериальных пневмоний свидетельствует о полимикробной этиологии и сочетании большего числа ассоциаций микроорганизмов и вирусов [4, 7].

На сегодняшний день пандемия COVID-19 по праву считается главной чрезвычайной ситуацией в области здравоохранения за столетие. У значительной части пациентов развивается пневмония, требующая госпитализации или прогрессирующая до манифестации респираторных осложнений [8]. SARS-CoV-2 становится исключительно опасным, если вторичная бактериальная пневмония порождает пациента с COVID-19 в качестве осложнения. Существенную часть тяжёлых течений инфекции и смертности, связанных с коронавирусом в России в марте–мае 2020 г., можно отнести на счёт вторичной бактериальной пневмонии и, в гораздо меньшей степени, сопутствующих вирусных инфекций [9].

Анализ результатов лабораторных исследований пациентов с ВБП, ассоциированных с COVID-19, представленных в научных изданиях указывает на различную частоту присоединения вторичных инфекций (0–54%) [3, 10–13]. В зарегистрированных осложнениях, обусловленных сопутствующими контаминацией, этиологические агенты включали M. pneumoniae, Legionella pneumophila, S. pneumoniae и K. pneumoniae. По данным М.В. Ступовой и соавт., к наиболее часто встречающимся бактериальным возбудителям относятся S. pneumoniae (70%), S. agalactiae (10%), S. pneumoniae в ассоциации с Staphylococcus aureus (6,6%) и Pseudomonas aeruginosa (13,3%) [8]. В исследованиях Е. Sharifipour и соавт. у пациентов с COVID-19 в 90% случаев идентифицированы бактерии Acinetobacter baumannii и в 10% — S. aureus, все штаммы A. baumannii оказались устойчивыми к антибиотикам [14]. По результатам изучения микробиоты пациентов в Ростовской области наиболее часто этимологическим агентом ВБП бактериальной природы являлись бактерии рода Streptococcus. В исследовании N. Chen и соавт. только 4% госпитализируемых имели сопутствующие грибковые инфекции, представленные Candida albicans и C. glabrata [15]. Следует отметить, что идентификация патогенов является сложной задачей в странах с низким и средним уровнем доходов, поскольку отсутствуют легкодоступные и рентабельные клинические или биологические маркёры, которые могли бы эффективно различать бактериальные и вирусные инфекции [10].

Остаются нерешёнными вопросы о синергических взаимодействиях между вирусом SARS-CoV-2 и некоторыми сопутствующими бактериями, о влиянии на тяжесть заболевания коинфекций, вызванных устойчивыми к антибиотикам культурами [16]. В числе механизмов взаимодействий коинфекционных агентов особое внимание уделяется влиянию вирусов на токсинообразование бактерий, а бактерий — на инфекционность вирусов. Коинфекционные микроорганизмы способствуют сочетанному преодолению ими эпидемиологического барьера, могут взаимовыгодно модифицировать функции клеток иммунной системы и способствовать ускользанию этих патогенов от иммунного ответа. Показано, что разнообразие бактериально-вирусных взаимодействий при коинфекции не только вызывает необходимость новых подходов к их своевременному распознаванию и контролю, но и порождает новые биотехнологии и стратегии борьбы с конфицированием, развитию которых во всём мире уделяется огромное внимание [17].

В настоящее время распространение антибиотикорезистентности приняло глобальный характер [16, 18]. Известно, что большинство госпитализированных пациентов с COVID-19 назначение антибактериальных препаратов проводится эмпирически [11, 12]. Это обеспечивает формирование и распространение антибиотикорезистентных штаммов [18–21]. Необходимо помнить, что основой рациональной антибактериотерапии является региональная или локальная особенность резистентности бактериальных агентов [16, 18]. Инфекции, вызванные устойчивыми штаммами, чаще требуют госпитализации и увеличивают продолжительность пребывания в стационаре, ухудшают прогноз для пациента по сравнению с заболеваниями, обусловленными чувствительными микроорганизмами, результата того что является более высокий показатель летальности [22, 23]. Рациональная антибактериальная терапия невозможна без современных знаний этиологической структуры заболевания, антибиотико- и фагочувствительности возбудителя.

Целью исследования явилось изучение микробного консорциума НЦП при ВБП, ассоциированных с SARS-CoV-2, оценка антибиотико- и фагорезистентности циркулирующих штаммов микроорганизмов.

Материалы и методы

Материалом для исследования послужила мокрота, промывные воды бронхов, бронхоальвеолярный лаваж 486 пациентов, находящихся на стационарном лечении в 5 многопрофильных больницах Ямало-Ненецкого автономного округа, причём значительная часть пациентов была госпитализирована в отношении COVID-19, а также пациенты с сопутствующими вирусными инфекциями.
ВБП средней и тяжёлой степени и давших информированное добровольное согласие на проведение исследования. Из них у 282 человек подтверждено наличие SARS-CoV-2. Почти в 90% случаев пациенты получали оксигенотерапию, около 8% больных были подключены к аппаратам искусственной вентиляции легких.

Отбор и транспортировка биологического материала для лабораторного исследования проводились в соответствии с требованиями законодательства РФ в отношении воздушителей инфекционных заболеваний человека I–II групп патогенности1. Посев клинических проб осуществлялся на протяжении 6 мес (с апреля по октябрь 2020 г.). Штаммы выделяли общепринятыми методами в соответствии с Приказом № 535 «Об унификации бактериологических (микробиологических) методов исследования, применяемых в клинико-диагностических лабораториях лечебно-профилактических учреждений»2. Отобраные бактерии идентифицировали диско-диффузионным методом на среде Мюллера–Хинтона («HiMedia»), результаты анализа оценивали к ампициллину, амоксициллин/клавулановой кислоте, аминогликозидам, цефотаксиму, цефоперазон/сульбактама, ко-тримоксазолу.

В соответствии с клиническими рекомендациями3 изучена чувствительность 30 штаммов K. pneumoniae к двум коммерческим бактериофагам (АО НПО «Микроген»): бактериофаг клебсиеллы I-типа и бактериофаг нептувиевого псевдомонад (П11, выпуск 0011) и секстафага (П11, выпуск 0219). На сухую поверхность среды Мюллер–Хинтона наносили культуру микроорганизма в концентрации 1,5 × 10⁸ КОЕ/мл и с помощью шпателя равномерно распределяли на поверхности питательной среды. Через несколько минут после подсыхания инокулята, не касаясь поверхности агара, капали исследуемые бактериофаги. Чаши инкубировали в термостате при 37ºС в течение 24 ч. Литическую активность фага оценивали по пятибалльной шкале (по количеству «крестов»):

- «–» — отсутствие литической активности;
- «+» — низкая активность;
- «++» — образование зоны лизиса с большим количеством колоний вторичного роста бактерий;
- «+++» — зона лизиса с единичными колониями вторичного роста;
- «++++» — прозрачная зона лизиса без колоний вторичного роста.

Статистическую обработку результатов исследования осуществляли с использованием программного обеспечения «Statisticа v.22» («IBM SPSS»), предназначенного для научных работ. Если значения p-критерия были менее 0,05, а доверительные интервалы разности средних не содержали внутри себя 0, то гипотеза об их равенстве отвергалась и с достоверностью 95% можно было утверждать, что исследуемые группы различались по величине оцениваемого явления.

Результаты и обсуждение

У 282 (58%) пациентов с диагнозом ВБП с помощью ПЦР выявлен вирус SARS-CoV-2. Практически у десятой части пациентов, вне зависимости от антибиотикограмму с использованием дисков с ампициллином, амоксициллином/сульбактамом, амоксициллином/клавулановой кислотой, ципрофлоксацином, левофлоксацином, имипенемом, меропенемом, гентамицином, кандамином, амоксициллином/клавулановой кислотой, цефотаксим, цефтриаксоном, аминогликозидами, цефтриазоном/сульбактам, тримоксазолом, цефотаксим, цефтриаксон, цефоперазон/сульбактам, меропенем, цефперазон/сульбактам, меропенем, цефтикал, цефтикал/сульбактам, меропенем, цефтриаксон, аминогликозидами, цефтикал, цефтикал/сульбактам, меропенем, цефтроциклическими и противосудорожными препаратами.

1 СП 3.1.3597-20 «Профилактика новой коронавирусной инфекции (COVID-19)». М., 2020; МР 4.2.0114-16 «Методические рекомендации. Лабораторная диагностика внебольничной пневмонии пневмококковой этиологии». М., 2014; МУК 4.2.3115-13 «Методические указания. Лабораторная диагностика внебольничной пневмонии» (П261, выпуск 1118) и секстафага (П11, выпуск 0219).
2 Приказ Министерства здравоохранения СССР от 22.04.1985 № 535 «Об унификации бактериологических (микробиологических) методов исследования, применяемых в клинико-диагностических лабораториях лечебно-профилактических учреждений».
3 Федеральные клинические (методические) рекомендации «Рациональное применение бактериофагов в лечебной и противоэпидемической практике». М., 2014.
4 Федеральные клинические (методические) рекомендации «Определение чувствительности макроорганизмов к антимикробным препаратам». М., 2017; МУК 4.2.1890–04 «Определение чувствительности макроорганизмов к антибактериальным препаратам». М., 2004.
от наличия SARS-CoV-2, условно-патогенные бактерии в биоматериале не были обнаружены (SARS-CoV-2 обнаружен — 10,6%, SARS-CoV-2 не обнаружен — 12,3%).

В ходе бактериологического исследования в биопробах пациентов с положительными тестами на РНК SARC-CoV-2 выделено и изучено 430 штаммов микроорганизмов, с отрицательными результатами — 297 культур. Безусловно, при сборе мокроты происходит её контаминация бактериями носоглоточной слизи (верхних дыхательных путей), поэтому при статистической обработке результатов учитывался диагностически значимый для мокроты титр количества микроорганизмов. В структуре бактерий превалировали грамположительные кокки, в основном они представлены родом Streptococcus и грибами рода Candida. Подавляющее большинство культур микроорганизмов рода Streptococcus spp. относилось к сапрофитной микрофлоре верхних дыхательных путей, из условно-патогенных стрептококков был изолирован S. pneumoniae только у 5 пациентов с лабораторно подтверждённым COVID-19. По результатам идентификации клинических штаммов грибов рода Candida особое место заняли C. albicans (80%), кроме того, были выделены C. kefyr, C. glabrata, C. dubliniensis, C. tropicalis, C. krusei.

Сравнительная характеристика микробиоценоза мокроты, промывных вод бронхов и альвеолярного лаважа больных с ВБП в зависимости от лабораторного подтверждения SARC-CoV-2 представлена в табл. 1.

При оценке частоты встречаемости различных групп микроорганизмов было установлено, что шансы обнаружения грамположительных микроорганизмов были выше при наличии у пациентов в пробах РНК SARC-CoV-2 (p < 0,001). Шанс выявления неферментирующих грамотрицательных бактерий и бактерий семейства Enterobacteriaceae у данной категории обследованных оказался ниже, чем у пациентов с отрицательными результатами ПЦР-исследования на коронавирусную инфекцию (p = 0,040 и p = 0,012) соответственно. При сравнении частоты встречаемости других бактерий в зависимости от наличия SARC-CoV-2 статистически значимые различия отсутствовали.

В табл. 2 показаны данные об основной структуре потенциальных возбудителей ВБП, выделенных из биоматериала пациентов. Лидирующее место из семейства Enterobacteriaceae занимают бактерии K. pneumoniae. Большая часть неферментирующих грамотрицательных бактерий представлена штаммами Acinetobacter spp.

Наибольшие уровни резистентности выявлены у штаммов Acinetobacter spp., Enterococcus spp. и коагулоznегативных Staphylococcus spp. (96,9, 75,8 и 75,4% соответственно), изолированных от пациентов с наличием вируса SARS-CoV-2. При этом у больных без лабораторного подтверждения SARS-CoV-2 наименьшая устойчивость бактерий зафиксирована у Acinetobacter spp., коагулоznегативных Staphylococcus spp. и K. pneumoniae (92,3, 74,2 и 70% соответственно; табл. 3).

При сравнении показателей устойчивости микрофлоры в зависимости от наличия у пациентов SARS-CoV-2 с помощью расчёта шансов установлена статистически подтверждённая разница по антибиотикорезистентности штаммов в группе неферментирующих грамотрицательных бактерии и

Таблица 1. Результаты сравнения частоты обнаружения микроорганизмов в биопробах пациентов в зависимости от выявления SARC-CoV-2

Бактерии	SARS-CoV-2					
	обнаружен / detected (n = 430)	не обнаружен / not detected (n = 297)	p	% (95% ДИ)	% (95% CI)	
Грамположительные бактерии (Staphylococcus spp., Streptococcus spp., Enterococcus spp.)	156	36,3	69	23,2	<0,001*	1,88 (1,34–2,62)
Бактерии семейства Enterobacteriaceae	47	10,9	48	16,2	0,040*	1,56 (1,01–2,42)
Неферментирующие грамотрицательные бактерии	38	8,8	44	14,8	0,012*	1,79 (1,12–1,66)
Грибы рода Candida	160	37,2	112	37,7	0,891	0,97 (0,72–1,32)
Прочие	29	6,7	24	8,1	0,496	0,82 (0,46–1,44)

Примечание. *Статистически значимые различия.
Note. *Statistically significant differences.
Таблица 2. Видовой состав микроорганизмов, обнаруженных в содержимом НДП пациентов с диагнозом ВБП

Виды бактерий	Types of bacteria	Частота выявления SARS-CoV-2 / SARS-CoV-2 detection frequency					
		обнаружен / detected	не обнаружен / not detected	абс. / abs	%	абс. / abs	%
Бактерии семейства Enterobacteriaceae							
Klebsiella pneumoniae	20	42,55	30	62,50			
Escherichia coli	7	14,89	7	14,58			
Enterobacter spp.	12	25,53	6	12,50			
Proteus mirabilis	3	6,38	2	4,17			
Прочие (единичные)	5	10,64	3	6,25			
Грамотрицательные неферментирующие бактерии							
Pseudomonas spp.	10	26,32	11	25,00			
Acinetobacter spp.	16	42,11	28	63,64			
Stenotrophomonas maltophilia	5	13,16	4	9,09			
Прочие (единичные)	7	18,42	1	2,27			
Грамположительные бактерии							
Staphylococcus aureus	10	6,41	9	13,04			
Staphylococcus spp., кроме S. aureus	20	12,82	7	10,14			
Streptococcus pneumoniae	5	3,21	2	2,90			
Streptococcus spp., кроме S. pneumoniae	107	68,59	43	62,32			
Enterococcus spp.	14	8,97	8	11,59			

Бактерий семейства Enterobacteriaceae, а также у представителей рода Streptococcus spp. и у изолятов S. aureus.

Статистический анализ выявил, что в группе пациентов с ВБП, ассоциированных с SARS-CoV-2, шансы встретить резистентные штаммы Streptococcus spp. в 1,5 раза выше, а с учётом 95% доверительного интервала величина этого показателя составила 1,1–2,1 раза.

У пациентов с отрицательным ПЦР-тестом на COVID-19 шансы обнаружить антибиотикорезистентные штаммы выше в группе неферментирующих грамотрицательных бактерий за счёт Pseudomonas spp., среди штаммов семейства Enterobacteriaceae — за счёт K. pneumoniae. Также зафиксирован более высокий уровень устойчивых штаммов S. aureus у данной категории пациентов.

Данные о резистентности грамположительных и грамотрицательных бактерий в зависимости от вида антимикробного препарата представлены в табл. 4 и табл. 5.

Группа бактерий Streptococcus spp. представлена преимущественно следующими видами: S. mitis, S. parasanguinis, S. vestibularis, S. salivarius, S. oralis, которые проявляли набольший уровень устойчивости к антимикробным препаратам пенициллинового ряда. Все указанные бактерии признаны доминирующей флорой слизистых оболочек верхних дыхательных путей, обеспечивающей нормобиоценоз у здоровых людей. Штаммы S. pneumoniae, изолированные от пациентов с подтверждённым COVID-19, отличались резистентностью к азитромицину. Среди бактерий рода Staphylococcus обнаружены S. aureus, S. haemolyticus, S. warneri, чаще демонстрирующие резистентность к пенициллиновой группе и азитромицину. Выявлены 2 штамма S. aureus, которые чувствительны только к амикацину. Штаммы бактерий рода Enterococcus представлены преимущественно видом E. faecium, отличались множественной резистентностью, исключение составил ванкомицин.

Бактерии семейства Enterobacteriaceae показывают высокий уровень толерантности к пенициллинам, что связано с природной устойчивостью штаммов K. pneumoniae, а также к цефалоспоринам III поколения, при этом цефалоспорины IV поколения демонстрировали максимальную чувствитель-
Таблица 3. Антибиотикорезистентность бактерий, изолированных из биоматериала пациентов с ВБП
Table 3. Antibiotic resistance of bacteria isolated from the biosamples of patients with community-acquired pneumonia

Бактерии Bacteria	SARS-CoV-2					
	обнаружен / detected	не обнаружен / not detected				
	(n = 299)	(n = 242)				
	абс. / abs	%	абс. / abs	%		
Неферментирующие грамотрицательные бактерии	31	67,5	43	78,6	0,011*	1,8 (1,14–2,76)
Non-fermenting gram-negative bacteria						
Acinetobacter spp.	16	96,9	28	92,3	0,131	2,6 (1,39–9,37)
Pseudomonas spp.	10	30,9	11	49,3	0,027*	2,2 (1,09–4,35)
Бактерии семейства *Enterobacteriaceae*	47	31	48	48,4	<0,001*	2,1 (1,52–2,87)
Bacteria of the family *Enterobacteriaceae*						
Escherichia coli	7	25	7	32,7	0,377	1,5 (1,59–3,37)
Klebsiella pneumoniae	20	41,9	30	69,9	<0,001*	3,2 (2,04–5,1)
Enterobacter spp.	12	15,8	6	8,1	0,259	2,1 (1,78–8,05)
Грамположительные кокки:						
Gram-positive cocci:						
Enterococcus spp.	14	75,8	8	66,7	0,174	1,6 (1,22–3,01)
Staphylococcus aureus	10	16,7	9	29,0	0,036*	2,0 (1,04–4,02)
Staphylococcus spp., кроме *S. aureus*	20	75,4	7	74,2	0,854	1,1 (1,78–2,01)
Streptococcus spp.	112	51,2	45	41,0	0,019*	1,5 (1,07–2,13)

Примечание. *Статистически значимые различия.*
Note. *Statistically significant differences.*

ности. Для лечения пневмоний, вызванных неферментирующими грамотрицательными бактериями, оптимально применять цефтазидим и цефоперазон/сульбактам. Практически все штаммы *Serratia marcescens* были чувствительны к ко-тримоксазолу, что является особенностью данной культуры.

Проведено исследование чувствительности 30 штаммов *K. pneumoniae*, выделенных от пациентов с ВБП, ассоциированной с SARS-CoV-2, к двум коммерческим бактериофагам (бактериофаг клебсиелл пневмонии очищенный и сектафаг) методом Spot-test. Выявлен один клинический штамм *K. pneumoniae*, проявляющий чувствительность к вышеуказанным бактериофагам. Концентрацию фаговых частиц определяли методом агаровых слоёв по Грациа [24]. Титр бактериофагов составлял 10⁸ БОЕ/мл. Таким образом, решение вопроса о необходимости расширения банка бактериофагов к наиболее значимым возбудителям бактериальных инфекций требует дальнейших углублённых исследований.

Выводы

1. В структуре микробиоты НДП пациентов при ВБП средней и тяжёлой степени, ассоциированной с SARS-CoV-2, преобладала грамположительная кокковая флора, представленная в основном бактериями рода *Streptococcus*, достоверно отличающимися большей резистентностью к антибиотикам.

2. Микробиом отделяемого НДП пациентов с ВБП средней и тяжёлой степени при отсутствии подтверждения наличия SARS-CoV-2 характеризовался более частым обнаружением грамотрицательных бактерий: семейства *Enterobacteriaceae* (*K. pneumoniae*) и неферментирующих грамотрицательных бактерий (*Acinetobacter* spp.).

3. Высокая антибиотикорезистентность грамположительных изолятов, вне зависимости от наличия коронавируса, регистрировалась преимущественно к пенициллиновой группе антимикробных препаратов.

4. Грамотрицательные изоляты семейства *Enterobacteriaceae* характеризуются резистентностью к пенициллинам и цефалоспоринам III поколения; неферментирующие грамотрицательные бактерии — множественной лекарственной устойчивостью.

5. Исследованные штаммы *K. pneumoniae* показали высокую резистентность к коммерческим бактериофагам.

С П И С О К Л И Т Е Р А Т У Р Ы

1. Yang D., Xing Y., Song X., Qian Y. The impact of lung microbiota dysbiosis on inflammation. *Immunology*. 2020; 159(2): 156–66. https://doi.org/10.1111/imm.13139

2. Похиленко В.Д. Как микробиом легких борется с бактериальной и вирусной инфекцией. Чебоксары; 2020. https://doi.org/10.21661/a-723
Таблица 4. Антибиотикорезистентность грамположительных изолятов от пациентов с ВБП, %
Table 4. Antibiotic resistance of gram-positive bacteria isolates from patients diagnosed with community-acquired pneumonia, %

Антибиотики	Стрептококк spp.	Стaphylococcus spp.	Enterococcus spp.			
	COVID-19 (+)	COVID-19 (-)	COVID-19 (+)	COVID-19 (-)	COVID-19 (+)	COVID-19 (-)
Ампициллин / Ampicillin	79,6	70,7	-	-	86,7	75
Ампициллин/сульбактам Ampicillin/sulbactam	-	-	75	63,6	-	-
Амоксициллин/клавулановая кислота Amoxicillin/clavulanic acid	79,6	70,7	75	63,6	85,7	71,4
Амоксициллин/сульбактам Amoxicillin/sulbactam	-	-	-	-	100	71,4
Офлоксацин / Ofloxacin	-	-	54,2	41,7	-	-
Ципрофлоксацин Ciprofloxacin	-	-	57,7	41,7	85,7	75
Левофлоксацин Levofloxacin	17,4	14,5	54,2	41,7	83,3	75

Таблица 5. Антибиотикорезистентность грамотрицательных изолятов от пациентов с ВБП, %
Table 5. Antibiotic resistance of gram-negative bacteria isolates from patients diagnosed with community-acquired pneumonia, %

Антибиотики	Семейство Enterobacteriaceae	Klebsiella pneumoniae	Неферментирующие грамотрицательные бактерии	Acinetobacter spp.				
	COVID-19 (+)	COVID-19 (-)						
Ампициллин / Ampicillin	80	77,8	-	-	-	-	-	-
Амоксициллин/клавулановая кислота Amoxicillin/clavulanic acid	69,2	80	76,5	84,6	-	-	-	-
Амикацин / Amikacin	20	36,5	31,6	56,7	69,2	74,4	93,8	85,7
Ципрофлоксацин Ciprofloxacin	35,5	54,9	57,9	79,3	73,1	82,1	100	96,4
Имипенем / Imipenem	15,2	40,4	25	66,7	73,1	79,5	100	92,9
Меропенем / Meropenem	17,4	38,5	30	66,7	76,9	79,5	100	92,9
Цефепим / Cefepim	12,5	0	-	-	-	-	-	-
Цефотаксим / Cefotaxime	48,4	72,5	50	80	-	-	-	-
Цефазидим / Ceftazidime	-	-	-	-	33,3	54,5	-	-
Цефоперазон/сульбактам Cefoperazone/sulbactam	20	30	23,1	60	22,2	50,0	-	-
Ко-тримоксазол / Co-trimoxazole	-	-	-	-	0	25	-	-
БЛРС / ESBL	41,2	42,9	33,3	37,5	-	-	-	-
3. Popova A.Yu., Ezhova E.B., Demina Yu.V., Noskov A.K., Kovalen E.V., Chemev O.S. and others. The characteristics of secondary bacterial infections associated with COVID-19. Diseases of secondary bacterial infections. 2020; (4): 99–105. https://doi.org/10.21055/s370-1069-2020-4-99-105

4. Brusnigina N.F., Mazepa V.N., Samokhina L.P., Chernevskaia O.M., Koophaap A., et al. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect. Dis. 2020; 20(1): 646. https://doi.org/10.1186/s12870-020-05374-z

5. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10233): 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7

6. Vaillancourt M., Jorth P. The unrecognized threat of secondary bacterial infections with COVID-19. mBio. 2020; 11(4): e01806-2. https://doi.org/10.1128/mBio.01806-20

7. Balmasova I.P., Malova E.S., Senniashvili R.I. Virussano-bacterial complications as a global problem of modern medicine. Immunology. Infectious pathology. 2018; 22(1): 29–42. https://doi.org/10.22363/2313-0245-2018-22-1-29-42

8. Holodkov G.N. Lecartological resistance clinical isolates of the causative agents of pneumonia in patients Primorye. Zdorovye. Meditsinskaya Ekologiya. Nauch. 2009; (2): 38–40.

9. Sharov K.S. SAR-CoV-2-related pneumonia cases in pneumonia with community-acquired pneumonia. J. Microbiol. Immunol. Infect. 2020; 53(4): 505–12. https://doi.org/10.1016/j.jmii.2020.05.013

10. Lansbury L., Lim B., Baskaran V., Lim W.S. Co-infections in patients with COVID-19. GMS Hyg. Infect. Control. 2020; 15: 35. https://doi.org/10.3205/dkgfh000370

11. Co K.S. Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea. J. Microbiol. 2019; 57(3): 195–202. https://doi.org/10.1007/s12275-019-8491-2

12. Savenkova M.S. Macrolides: contemporary studies and results of treatment. Russian journal of phathology. 2012; (11): 37–43.

13. Цыганко Д.В., Бердникова Н.Г. Исследование микробиологических показателей сыворотки крови больных с факторами риска развития пневмонии с внебольничной пневмонией бактериальной этиологии. Кабинет инфекционной патологии. 2008; (12): 59–62.

14. Getahun H., Smith I., Trivedi K., Paulin S., Balkhy H.H. Targeting antibiotic-resistant strains of Klebsiella pneumoniae (Friedlander pneumonia). PRACTICAL PULMONOLOGY. 2019; (1): 22–31.

15. Getahun H., Smith I., Trivedi K., Paulin S., Balkhy H.H. Targeting antibiotic-resistant strains of Klebsiella pneumoniae (Friedlander pneumonia). Pract. Pulmolog. 2019; 156–66. https://doi.org/10.1111/imm.13139

16. Балмасова И.П., Малова Е.С., Сениашвили Р.И. Вирусно-бактериальные коинфекции как глобальная проблема медицины. Уральский медицинский журнал. 2009; (12): 59–62.

17. Ступова М.В., Кудряшева И.А., Полунина О.С., Черенкова Л.П., Лисина О.А. and others. Comparative clinical diagnostics of ventilator-associated pneumonia: practical experience. Dal‘nevostochnyy zhurnal infektsionnoy patologii. 2019; (1): 22–31.

18. Шаров К.С. Саратовская медицинская лаборатория: опыт работы с новыми биопрепаратами для деконтаминации микрофлоры, показания к назначению "нового" кларитромицина. Проблемы особо опасных инфекций. 2020; (4): 99–105. https://doi.org/10.22363/2313-0245-2018-22-1-29-42

REFERENCES

1. Yang D., Xing Y., Song X., Qian Y. The impact of lung microbiota dysbiosis on inflammation. Immunology. 2020; 159(2): 156–66. https://doi.org/10.1111/imm.13139

2. Pokhilenko V.D. How the Lung Microbiome Fights Bacterial and Viral Infection [Kak mikrobiom legkikh boretsya s bakterial'noy i virusnoy infektsiey]. Cheboksary; 2020. https://doi.org/10.21661/a-723 (in Russian)

3. Popova A.Yu., Ezhlova E.B., Demina Yu.V., Noskov A.K., Kovalen E.V., Chemev O.S., et al. Factors of etiology of community-acquired pneumonia associated with COVID-19. Problemy osobo opasnykh infektsiy. 2020; (4): 99–105. https://doi.org/10.21055/s370-1069-2020-4-99-105 (in Russian)

4. Brusnigina N.F., Mazepa V.N., Samokhina L.P., Chernevskaia O.M., Orlova K.A., Speranskaya E.V., et al. Etiological structure of community-acquired pneumonia. Meditsinskii al’manakh. 2009; (2): 118–21. (in Russian)

5. Fesenko O.V., Shravko S.N. Pneumonia caused by Klebsiella pneumoniae. Problemy infektsionnoy patologii. 2008; 13(53): 64–7. (in Russian)

6. Molchanova O.V., Khamidulina A.I., Shcheminok E.L., Ivanova O.A., Shmylenko V.A. Etiological structure of community-acquired pneumonia, bacterial etiology. Problemy infektsionnoy patologii. 2008; (12): 59–62. (in Russian)

7. Rozanova S.M., Shilova V.P., Perevalova E.Yu., Sheveleva L.V., Krugova K.V., Beikin Ya.B., et al. Microbiological diagnostics of ventilator-associated pneumonia: practical experience. Ural’skiy meditsinskiy zhurnal. 2008; (3): 134–35. (in Russian)

8. Molchanova O.V., Khamidulina A.I., Shcheminok E.L., Ivanova O.A., Shmylenko V.A. Etiological structure of community-acquired pneumonia, bacterial etiology. Problemy infektsionnoy patologii. 2008; (12): 59–62. (in Russian)

9. Sharov K.S. SAR-CoV-2-related pneumonia cases in pneumonia with community-acquired pneumonia. J. Microbiol. Immunol. Infect. 2020; 53(4): 505–12. https://doi.org/10.1016/j.jmii.2020.05.013

10. Lansbury L., Lim B., Baskaran V., Lim W.S. Co-infections in people with COVID-19: a systematic review and meta-analysis. J. Infect. 2020; 81(2): 266–75. https://doi.org/10.1016/j.jinf.2020.05.046

11. Savenkova M.S. Macrolides: contemporary studies and results of treatment. Russian journal of phathology. 2012; (11): 37–43.

12. Fesenko O.V., Shravko S.N. Pneumonia caused by Klebsiella pneumoniae. Problemy infektsionnoy patologii. 2008; 13(53): 64–7. (in Russian)

13. Molchanova O.V., Khamidulina A.I., Shcheminok E.L., Ivanova O.A., Shmylenko V.A. Etiological structure of community-acquired pneumonia, bacterial etiology. Problemy infektsionnoy patologii. 2008; (12): 59–62. (in Russian)

14. Rozenova S.M., Shilova V.P., Perevalova E.Yu., Sheveleva L.V., Krugova K.V., Beikin Ya.B., et al. Microbiological diagnostics of ventilator-associated pneumonia: practical experience. Ural’skiy meditsinskiy zhurnal. 2008; (3): 134–35. (in Russian)
10. Lucien M.A.B., Canarie M.F., Kilgore P.E., Jean-Denis G., Fénélôn N., Pierre M., et al. Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings. Int. J. Infect. Dis. 2021; 104: 250–4.
https://doi.org/10.1016/j.ijid.2020.12.087

11. Lansbury L., Lim B., Baskaran V., Lim W.S. Co-infections in people with COVID-19: a systematic review and meta-analysis. J. Infect. 2020; 81(2): 266–75.
https://doi.org/10.1016/j.jinf.2020.05.046

12. Lai C.C., Wang C.Y., Hsueh P.R. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? J. Microbiol. Immunol. Infect. 2020; 53(4): 505–12.
https://doi.org/10.1016/j.jmii.2020.05.013

13. Getahun H., Smith I., Trivedi K., Paulin S., Balkhy H.H. Tackling antimicrobial resistance in the COVID-19 pandemic. Bull. World Health Organ. 2020; 98(7): 442–A.
https://doi.org/10.2471/BLT.20.268573

14. Sharifipour E., Shams S., Esmkhani M., Khodadadi J., Fotouhi-Ardakani R., Kohpayei A., et al. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect. Dis. 2020; 20(1): 646.
https://doi.org/10.1186/s12879-020-05374-z

15. Vailancourt M., Jorth P. The unrecognized threat of secondary bacterial infections with COVID-19. mBio. 2020; 11(4): e01806-2. https://doi.org/10.1128/mBio.01806-20

16. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10223): 507–513.
https://doi.org/10.1016/S0140-6736(20)30211-7.

17. Balmasova I.P., Malova E.S., Sepiashvili R.I. Viral and bacterial coinfection as a global problem of modern medicine. Immunology. Infektsionnaya patologiya. 2018; 22(1): 29–42.
https://doi.org/10.22363/2313-0245-2018-22-1-29-42

18. Khodorok G.N. Drag resistant clinical isolates agent of pneumo niae in children Amur-river region. Zdorov’e. Meditsinskaya ekologiya. Nauka. 2009; (2): 38–40. (in Russian)

19. Cantón R., Gijón D., Ruiz-Garbajosa P. Antimicrobial resistance in ICUs: an update in the light of the COVID-19 pandemic. Curr. Opin. Crit. Care. 2020; 26(5): 433–41.
https://doi.org/10.10109/MCC.0000000000000755.

20. Mahmoudi H. Bacterial co-infections and antibiotic resistance in patients with COVID-19. GMS Hyg. Infect. Control. 2020; 15: 35. https://doi.org/10.3205/dghk000370

21. Ko K.S. Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea. J. Microbiol. 2019; 57(3): 195–202. https://doi.org/10.1017/S12275-019-8491-2

22. Savenkova M.S. Macroutines: current research and indication for the appointment of a "new" clarithromycin. Detskie infektsii. 2012; 11(1): 37–43. (in Russian)

23. Tsyganko D.V., Berdnikova N.G. The study of the microbiological features of the lower respiratory tract infections in the hospital. Natsional’naya associatissiya uchenykh. 2015; (6-3): 36–9. (in Russian)

24. Vasilev D.A., Fokkistova N.A., Aleshkin A.V., Zolotukhin S.N., Mastilenko A.V., Kiseleva I.A., et al. Development of Biotechnological Parameters for the Creation of Bacterial Biological Products for Decontamination of Microflora that Causes Spoilage of Food Raw Materials of Animal Origin and Meat, Fish, Dairy Products (Bioprocessing) [Razrabotka biotekhnologicheskikh parametrov sozdaniya bakteriologovkh biopreparatov dlya dekontaminatsii mikroflory; vzyvavshchey porchu pishchevogo syr’ya zhitvotnogo proiskhozhdeniya i myasnykh, rybnykh, molochnykh produktov (bioprosessing)]. Ulyanovsk; 2019. (in Russian)