Schauder’s estimates for nonlocal equations with singular Lévy measures

Mingyan Wu

Based on a joint work with Zimo Hao and Guohuan Zhao

School of Mathematics and Statistics, Wuhan University

The 15th Workshop on Markov Processes and Related Topics

Jilin University, July 11-15, 2019
Plan of this talk

1. Singular Lévy measures
2. Aims and Assumptions
3. The Littlewood-Paley characteristic of Hölder spaces
4. Schauder’s estimates
5. Sketch of proofs
Part 1: Introduction
Lévy measures

Definition 1 (Lévy measures)

ν is a Lévy measure on \mathbb{R}^d, if it is a σ-finite (positive) measure such that

$$
\nu(\{0\}) = 0, \quad \int_{\mathbb{R}^d} \left(1 \wedge |x|^2\right) \nu(dx) < +\infty.
$$

Definition 2 (α-stable Lévy measures)

For $\alpha \in (0, 2)$, Lévy measure $\nu^{(\alpha)}$ is an α-stable Lévy measure, if it has the polar coordinates form

$$
\nu^{(\alpha)}(A) = \int_0^\infty \left(\int_{S^{d-1}} \frac{1_A(r\theta)\Sigma(d\theta)}{r^{1+\alpha}}\right) dr, \quad A \in \mathcal{B}(\mathbb{R}^d),
$$

where Σ is a finite measure over the unit sphere S^{d-1} (called spherical measure of $\nu^{(\alpha)}$).
Scaling property $\nu^{(\alpha)}(d(\lambda z)) = \lambda^{-\alpha} \nu^{(\alpha)}(dz)$ for any $\lambda > 0$.

Moments property For any $\gamma_1 > \alpha > \gamma_2 \geq 0$,

$$\int_{\mathbb{R}^d} (|z|^{\gamma_1} \wedge |z|^{\gamma_2}) \nu^{(\alpha)}(dz) < \infty.$$

Definition 3 (Non-degenerate Lévy measures)

One says that an α-stable Lévy measure $\nu^{(\alpha)}$ is **non-degenerate** if

$$\int_{S^{d-1}} |\theta_0 \cdot \theta|^\alpha \Sigma(\theta) > 0 \quad \text{for every } \theta_0 \in S^{d-1}.$$
Non-degenerate α-stable Lévy measures

Example 4 (Standard α-stable Lévy measures)

If Σ is rotationally invariant with $\Sigma(S^{d-1}) = |S^{d-1}|$, then $\nu^{(\alpha)}$ is the standard or strict α-stable Lévy measure and

$$\nu^{(\alpha)}(dy) = \frac{dy}{|y|^{d+\alpha}}.$$

The d-dimensional Lévy process associated with this Lévy measure is called d-dimensional α-stable process.
Non-degenerate α-stable Lévy measures

Example 4 (Standard α-stable Lévy measures)

If Σ is rotationally invariant with $\Sigma(\mathbb{S}^{d-1}) = |\mathbb{S}^{d-1}|$, then $\nu^{(\alpha)}$ is the standard or strict α-stable Lévy measure and

$$
\nu^{(\alpha)}(dy) = \frac{dy}{|y|^{d+\alpha}}.
$$

The d-dimensional Lévy process associated with this Lévy measure is called d-dimensional α-stable process.

- If $W_t = (W_t^1, \cdots, W_t^d)$ is a d-dimensional Brownian Motion, then W_t^i are i.i.d 1-dimensional Brownian Motions.
Example 4 (Standard α-stable Lévy measures)

If Σ is rotationally invariant with $\Sigma(S^{d-1}) = |S^{d-1}|$, then $\nu^{(\alpha)}$ is the standard or strict α-stable Lévy measure and

$$\nu^{(\alpha)}(dy) = \frac{dy}{|y|^{d+\alpha}}.$$

The d-dimensional Lévy process associated with this Lévy measure is called d-dimensional α-stable process.

- If $W_t = (W_t^1, \cdots, W_t^d)$ is a d-dimensional Brownian Motion, then W_t^i are i.i.d 1-dimensional Brownian Motions.
- Let $L_t = (L_t^1, \cdots, L_t^d)$ be a d-dimensional α-stable process. L_t^i may not be independent or 1-dimensional standard α-stable processes.
Non-degenerate α-stable Lévy measures

Example 4 (Standard α-stable Lévy measures)

If Σ is rotationally invariant with $\Sigma(\mathbb{S}^{d-1}) = |\mathbb{S}^{d-1}|$, then $\nu^{(\alpha)}$ is the standard or strict α-stable Lévy measure and

$$\nu^{(\alpha)}(dy) = \frac{dy}{|y|^{d+\alpha}}.$$

The d-dimensional Lévy process associated with this Lévy measure is called d-dimensional α-stable process.

- If $W_t = (W_t^1, \cdots, W_t^d)$ is a d-dimensional Brownian Motion, then W_t^i are i.i.d 1-dimensional Brownian Motions.
- Let $L_t = (L_t^1, \cdots, L_t^d)$ be a d-dimensional α-stable process. L_t^i may not be independent or 1-dimensional standard α-stable processes.

Question

If $L_t^i, i = 1, \cdots, d$ are i.i.d 1-dimensional standard α-stable processes, then what is $L_t = (L_t^1, \cdots, L_t^d)$?
Non-degenerate α-stable Lévy measures

Example 5 (Cylindrical α-stable Lévy measures)

If $\Sigma = \sum_{k=1}^{d} \delta_{e_k}$, where $e_k = (0, \cdots, 1_{k^{th}}, \cdots, 0)$, then

$$\nu^{(\alpha)}(dx) = \sum_{k=1}^{d} \delta_{e_k}(dx) \frac{dx_k}{|x_k|^{\alpha+1}},$$

called cylindrical α-stable Lévy measures. Moreover, this Lévy measure is associated with a d-dimensional Lévy process $(L_t^1, L_t^2, \cdots, L_t^d)$, where $L_t^1, L_t^2, \cdots, L_t^d$ are i.d.d 1-dimensional standard α-stable processes.
Infinitesimal generators

- Standard α-stable Lévy process with $\alpha \in (0, 1)$:
 \[
 \mathcal{L} f(x) = \text{p.v.} \int_{\mathbb{R}^d} \frac{f(x + z) - f(x)}{|z|^{d+\alpha}} \, dz = \Delta^{\alpha/2} f(x).
 \]

- Cylindrical α-stable Lévy process with $\alpha \in (0, 1)$:
 \[
 \mathcal{L} f(x) = \sum_{i=1}^d \text{p.v.} \int_{\mathbb{R}} \frac{f(x + z e_i) - f(x)}{|z|^{1+\alpha}} \, dz,
 \]
 where $e_i = (0, \ldots, 1_{i_{th}}, \ldots, 0)$.
Fourier’s multipliers

- **Fourier’s multipliers**

 - Standard α-stable Lévy process:
 \[
 \mathcal{F}(\mathcal{L} f)(\xi) = |\xi|^\alpha \mathcal{F} f(\xi) = \mathcal{F}(\Delta^{\frac{\alpha}{2}} f)(\xi),
 \]
 where $\phi(\xi) := |\xi|^\alpha \in C^\infty(\mathbb{R}^d \setminus \{0\})$.

 - Cylindrical α-stable Lévy process:
 \[
 \mathcal{F}(\mathcal{L} f)(\xi) = \sum_{i=1}^{d} |\xi_i|^\alpha \mathcal{F} f(\xi),
 \]
 where $\phi(\xi) := \sum_{i=1}^{d} |\xi_i|^\alpha \in C^\infty(\mathbb{R}^d \setminus \bigcup_{i=1}^{d} \{x_i = 0\})$.

 - **Note** It is more difficult to deal with cylindrical Lévy measures than standard Lévy measures.
Our work

- We want to show **Schauder’s estimates** for the following nonlocal equations:

\[
\partial_t u = \mathcal{L}_{\kappa,\sigma}^{(\alpha)} u + b \cdot \nabla u + f, \quad u(0) = 0,
\]

(2.1)

where \(\mathcal{L}_{\kappa,\sigma}^{(\alpha)} \) is an \(\alpha \)-stable-like operator with the form:

\[
\mathcal{L}_{\kappa,\sigma}^{(\alpha)} u(t, x) := \int_{\mathbb{R}^d} (u(t, x + \sigma(t, x) z) - u(t, x))
\]

\[
- \sigma(t, x) z^{(\alpha)} \cdot \nabla u \kappa(t, x, z) \nu^{(\alpha)}(dz),
\]

where \(\nu^{(\alpha)} \) is a non-degenerate \(\alpha \)-stabe Lévy measure and \(z^{(\alpha)} := z 1_{\{z \leq 1\}} 1_{\alpha = 1} + z 1_{\alpha \in (1, 2)} \).

- **Schauder’s estimates:**

\[
\|u\|_{C^{\alpha+\beta}} \leq c \|f\|_{C^\beta}.
\]

PDE Schauder’s estimates play a basic role in constructing classical solutions for quasilinear PDEs.

SDE The Schauder estimate can be used to solve the existence and uniqueness of the solution for SDE. (The Zvonkin transform)
Supercritical Case: $\alpha \in (0, 1)$

- **Supercritical case:** If $\alpha \in (0, 1)$, then

$$\partial_t u = \mathcal{L}^{(\alpha)}_{\kappa, \sigma} u + b \cdot \nabla u + f, \quad u(0) = 0,$$

with

$$\mathcal{L}^{(\alpha)}_{\kappa, \sigma} u(t, x) := \int_{\mathbb{R}^d} \left(u(t, x + \sigma(t, x)z) - u(t, x) \right) \kappa(t, x, z) \nu^{(\alpha)}(dz).$$

When $\alpha \in (0, 1)$, the drift term will play the important role instead of the diffusion term.
Previous results

2009 (Bass) Consider the elliptic equation $L_\alpha u = f$, where $\alpha \in (0, 2)$ and

$$L_\alpha u = \int_{\mathbb{R}^d} (u(x + z) - u(x) - z1_{|z| \leq 1}1_{\alpha \in [1, 2)} \cdot \nabla u(x)) \frac{\kappa(x, z)}{|z|^{d+\alpha}} \, dz.$$

2012 (Silvestrei) Consider the following parabolic equation:

$$\partial_t u + b \cdot \nabla u + (-\Delta)^{\alpha/2} = f,$$

where $\alpha \in (0, 1)$ and b is bounded but not necessarily divergence free.

2018 (Zhang, Zhao) Consider

$$\partial_t u = L_\alpha u + b \cdot \nabla u + f,$$

where b is bounded globally Hölder function and

$$L_\alpha u = \int_{\mathbb{R}^d} (u(x + z) - u(x) - z^{(\alpha)} \cdot \nabla u(x)) \frac{\kappa(x, z)}{|z|^{d+\alpha}} \, dz$$

with $\alpha \in (0, 2)$ and $z^{(\alpha)} = z1_{|z| \leq 1}1_{\alpha = 1} + z1_{\alpha \in (1, 2)}$.

2019 (Chaudru de Raynal, Menozzi, Priola) Consider

$$\partial_t u + L_\alpha u + b \cdot \nabla u = -f, u(T) = g,$$

where b is unbounded local Hölder function and

$$L_\alpha u = \int_{\mathbb{R}^d} (u(x + z) - u(x)) \nu(dz)$$

with singular Lévy measure ν and $\alpha \in (1/2, 1)$.

References:
Assumptions on diffusion coefficients

Recall

\[\partial_t u = \mathcal{L}^{(\alpha)}_{\kappa,\sigma} u + b \cdot \nabla u + f, \quad u(0) = 0, \tag{2.2} \]

where

\[\mathcal{L}^{(\alpha)}_{\kappa,\sigma}(t, x) := \int_{\mathbb{R}^d} (u(t, x + \sigma(t, x)z) - u(t, x) - \sigma(t, x)z^{(\alpha)} \cdot \nabla u) \kappa(t, x, z) \nu^{(\alpha)}(dz). \]

\textbf{(H}^{\beta}_{\kappa}) \text{ For some } c_0 \geq 1 \text{ and } \beta \in (0, 1), \text{ it holds that for all } x, z \in \mathbb{R}^d,

\[c_0^{-1} \leq \kappa(t, x, z) \leq c_0, \quad \left[\kappa(t, \cdot) \right]_{C^\beta} := \sup_{h} \frac{\| \kappa(t, \cdot + h, z) - \kappa(t, \cdot, z) \|_{\infty}}{|h|^{\beta}} \leq c_0, \]

and in the case of \(\alpha = 1, \)

\[\int_{r \leq |z| \leq R} z \kappa(t, x, z) \nu^{(\alpha)}(dz) = 0 \text{ for every } 0 < r < R < \infty. \]

\textbf{(H}^{\gamma}_{\sigma}) \text{ For some } c_0 \geq 1 \text{ and } \gamma \in (0, 1], \text{ it holds that for all } x, \xi \in \mathbb{R}^d,

\[c_0^{-1} |\xi|^2 \leq \xi^T \sigma(t, x) \xi \leq c_0 |\xi|^2, \quad |\sigma(t, x) - \sigma(t, y)| \leq c_0 |x - y|^\gamma. \]
Assumptions on drift coefficients

\((H_{b}^{\beta})\) For some \(c_0 \geq 1\) and \(\beta \in (0, 1)\), it holds that for all \(t \in \mathbb{R}\),

\[
|b(t, 0)| \leq c_0, \quad [b(t, \cdot)]_{C^{\beta}} := \sup_{0 < |h| \leq 1} \frac{\|b(t, \cdot + h) - b(t, \cdot)\|_{\infty}}{|h|^\beta} \leq c_0.
\]

That is the Local H"older regularity.

- Here, \(b\) is not necessarily bounded in \(x\). For example, \(b(x) = x\) satisfies

\[
[b]_{C^{s}} < \infty, \quad \forall s \in (0, 1).
\]

It is related to the nonlocal Ornstein-Uhlenbeck operator:

\[
\Delta^{\alpha/2} - x \cdot \nabla.
\]

- For any fixed \(x\), function \(t \to b(t, x)\) is bounded because

\[
|b(t, x) - b(t, y)| \leq [b(t, \cdot)]_{C^{\beta}} |x - y| \mathbf{1}_{\{|x-y| > 1\}}
+ [b(t, \cdot)]_{C^{\beta}} |x - y|^\beta \mathbf{1}_{\{|x-y| \leq 1\}}. \tag{2.3}
\]
Littlewood-Paley Decomposition

- Let ϕ_0 be a radial C^∞-function on \mathbb{R}^d with
 \[\phi_0(\xi) = 1 \text{ for } \xi \in B_1 \text{ and } \phi_0(\xi) = 0 \text{ for } \xi \notin B_2. \]

 For $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^d$ and $j \in \mathbb{N}$, define
 \[\phi_j(\xi) := \phi_0(2^{-j}\xi) - \phi_0(2^{-(j-1)}\xi). \]

- It is easy to see that for $j \in \mathbb{N}$, $\phi_j(\xi) = \phi_1(2^{-(j-1)}\xi) \geq 0$ and
 \[\text{supp} \phi_j \subset B_{2j+1} \setminus B_{2j-1}, \quad \sum_{j=0}^{k} \phi_j(\xi) = \phi_0(2^{-k}\xi) \to 1, \quad k \to \infty. \]
Littlewood-Paley Decomposition

- If $|j - j'| \geq 2$, then $\text{supp}(\phi_1(2^{-j} \cdot)) \cap \text{supp}(\phi_1(2^{-j'} \cdot)) = \emptyset$.
Block operators

- For $j \in \mathbb{N}_0$, the block operator Δ_j is defined on $\mathcal{S}'(\mathbb{R}^d)$ by
 \[
 \Delta_j f(x) := (\phi_j \hat{f})(x) = \tilde{\phi}_j * f(x) = 2^{j-1} \int_{\mathbb{R}^d} \tilde{\phi}_1(2^{j-1}y)f(x - y)dy.
 \]

- For $j \in \mathbb{N}_0$, by definition it is easy to see that
 \[
 \Delta_j = \Delta_j \tilde{\Delta}_j, \quad \text{where} \quad \tilde{\Delta}_j := \Delta_{j-1} + \Delta_j + \Delta_{j+1} \quad \text{with} \quad \Delta_{-1} \equiv 0,
 \]
 and Δ_j is symmetric in the sense that
 \[
 \langle \Delta_j f, g \rangle = \langle f, \Delta_j g \rangle.
 \]

- Noticing that
 \[
 \sum_{j=0}^{k} \Delta_j f = 2^{dk} \int_{\mathbb{R}^d} \tilde{\phi}_0(2^k (x - y)) f(y)dy \to f,
 \]
 we have the Littlewood-Paley decomposition of f:
 \[
 f = \sum_{j=0}^{\infty} \Delta_j f.
 \]
Then, we have the following definition.

Definition 6 (Besov spaces)

For $s \in \mathbb{R}$, the Besov space $B_{\infty, \infty}^s$ is defined as the set of all $f \in \mathcal{S}'(\mathbb{R}^d)$ such that

$$
\|f\|_{B_{\infty, \infty}^s} := \sup_{j \geq -1} 2^j s \|\Delta_j f\|_{\infty} < \infty.
$$

Proposition 7 (H. Triebel)

For any $0 < s / t \in \mathbb{N}_0$, it holds that

$$
\|f\|_{B_{\infty, \infty}^s} \asymp \|f\|_{C^s},
$$

where C^s is the usual Hölder space. For $n \in \mathbb{N}$, we have $C^n \subset B_{\infty, \infty}^n$.

Proposition 8 (Interpolation inequalities)

For any $0 < s < t$, there is a constant $c > 0$ such that for any $\varepsilon \in (0, 1)$,

$$
\|f\|_{B_{\infty, \infty}^s} \leq \|f\|_{B_{\infty, \infty}^s}^{s/t} \|f\|_{B_{\infty, \infty}^{(t-s)/t}} \leq \varepsilon \|f\|_{B_{\infty, \infty}^t} + c \varepsilon^{-s/(t-s)} \|f\|_{\infty}.
$$
Part 2: Main results
Definition 9 (Classical solutions)

We call a bounded continuous function u defined on $\mathbb{R}_+ \times \mathbb{R}^d$ a classical solution of PDE (2.2) if for some $\varepsilon \in (0, 1)$,

$$u \in \cap_{T > 0} L^\infty([0, T]; C^{1+\varepsilon})$$

with $\nabla u(\cdot, x) \in C([0, \infty))$ for any $x \in \mathbb{R}^d$, and for all $(t, x) \in [0, \infty) \times \mathbb{R}^d$,

$$u(t, x) = \int_0^t \left(\mathcal{L}_{\kappa, \sigma}^{(\alpha)} u + b \cdot \nabla u + f\right)(s, x)ds.$$

Lemma 10 (Maximum principles)

Assume that $\sigma(t, x)$ and $\kappa(t, x, z) \geq 0$ are bounded measurable functions. Let $b(t, x)$ be measurable function and bounded in $t \in \mathbb{R}_+$ for any fixed $x \in \mathbb{R}^d$. For any $T > 0$ and classical solution u of (2.2) in the sense of Definitions 9, it holds that

$$\|u\|_{L^\infty([0, T])} \leq T\|f\|_{L^\infty([0, T])}.$$
Theorem 11 (Schauder’s estimates)

Suppose that $\gamma \in (0,1]$, $\alpha \in (1/2,2)$ and $\beta \in ((1 - \alpha) \vee 0, (\alpha \wedge 1)\gamma)$. Under conditions (H^{β}_{κ}), (H^{γ}_{σ}), and (H^{β}_{ν}), for any $T > 0$, there is a constant $c = c(T, c_0, d, \alpha, \beta, \gamma) > 0$ such that for any classical solution u of PDE (2.2),

$$
\|u\|_{L^\infty([0,T],\mathcal{C}^{\alpha+\beta})} \leq c\|f\|_{L^\infty([0,T],\mathcal{C}^{\beta})}.
$$

- Since we consider classical solutions, $\alpha + \beta$ must be larger than 1 such that ∇u is meaningful. In addition, we must assume $\beta < \alpha$ for the moment problem. Thus, $1 - \alpha < \beta < \alpha$.
- The critical case $\alpha + \beta = 1$ is a technical problem. We have no ideas to fix it.
Existences

Theorem 12 (Existences)

Suppose that \(\gamma \in (0, 1] \), \(\alpha \in (1/2, 2) \) and \(\beta \in ((1 - \alpha) \vee 0, (\alpha \wedge 1) \gamma) \). Under conditions \((H_\kappa^b), (H_\sigma^\gamma), \text{ and } (H_b^\beta)\), for any \(f \in \cap_{T > 0} L^\infty([0, T], C^\beta) \), there is a unique classical solution \(u \) for (2.2) in the sense of Definition 9 such that for any \(T > 0 \) and some constant \(c > 0 \),

\[
\|u\|_{L^\infty([0,T], C^{\alpha+\beta})} \leq c \|f\|_{L^\infty([0,T], C^\beta)}, \quad \|u\|_{L^\infty(0,T)} \leq c \|f\|_{L^\infty(0,T)}.
\]
Part 3: Sketch of proofs
Main technics

Step 1 Using perturbation argument to prove the Schauder estimate under (H^γ, H^γ) and

$$[b(t, \cdot)]_{C^\beta} \leq c_0, \forall t \geq 0.$$

- Freeze the coefficients along the characterization curve.
- Use Duhamel’s formulas. (Heat kernel estimates of integral form, Littlewood-Paley’s decomposition, and interpolation inequalities.)

Step 2 Using cut-off technics to obtain the desired Schauder estimate.

Step 3 By Schauder’s estimates, using the continuity method and the vanishing viscosity approach to get existences of the classical solutions.
The characterization curve

- Fix \(x_0 \in \mathbb{R}^d \). Let \(\theta_t \) solve the following ODE in \(\mathbb{R}^d \):
 \[
 \dot{\theta}_t = -b(t, \theta_t), \quad \theta_0 = x_0.
 \]

Define
 \[
 \tilde{u}(t, x) := u(t, x + \theta_t), \quad \tilde{f}(t, x) := f(t, x + \theta_t), \quad \tilde{\sigma}(t, x) := \sigma(t, x + \theta_t),
 \]
 \[
 \tilde{\kappa}(t, x, z) := \kappa(t, x + \theta_t, z), \quad \tilde{\sigma}_0(t) := \tilde{\sigma}(t, 0), \quad \tilde{\kappa}_0(t, z) := \tilde{\kappa}(t, 0, z).
 \]

and
 \[
 \tilde{b}(t, x) := b(t, x + \theta_t) - b(t, \theta_t).
 \]

It is easy to see that \(\tilde{u} \) satisfies the following equation:
 \[
 \partial_t \tilde{u} = \mathcal{L}^{(\alpha)}_{\tilde{\kappa}_0, \tilde{\sigma}_0} u + \tilde{b} \cdot \nabla \tilde{u} + \left(\mathcal{L}^{(\alpha)}_{\tilde{\kappa}, \tilde{\sigma}} - \mathcal{L}^{(\alpha)}_{\tilde{\kappa}_0, \tilde{\sigma}_0} \right) \tilde{u} + \tilde{f}.
 \]
Heat kernels $p_{s,t}^{\tilde{\kappa}_0,\tilde{\sigma}_0}(x)$

- For the case of $\alpha \in (0, 1)$. Let $N(dt, dz)$ be the Possion random measure with intensity measure

 $$\tilde{\kappa}_0(t, z)\nu^{(\alpha)}(dz)dt.$$

 For $0 \leq s \leq t$, define

 $$X_{s,t}^{\tilde{\kappa}_0,\tilde{\sigma}_0} := \int_s^t \int_{\mathbb{R}^d} \tilde{\sigma}_0(r)zN(dr, dz),$$

 whose generator is $\mathcal{L}_{\tilde{\kappa}_0,\tilde{\sigma}_0}^{(\alpha)}$.

- Under our conditions, the random variable $X_{s,t}^{\tilde{\kappa}_0,\tilde{\sigma}_0}$ has a smooth density $p_{s,t}^{\tilde{\kappa}_0,\tilde{\sigma}_0}(x)$. Moreover, for any $\beta \in [0, \alpha)$ and $m \in \mathbb{N}_0$, there exists a positive constant c such that for all $0 \leq s < t$,

 $$\int_{\mathbb{R}^d} |x|^\beta |\nabla^m p_{s,t}^{\tilde{\kappa}_0,\tilde{\sigma}_0}(x)|dx \leq c(t - s)^{(\beta-m)/\alpha}, \quad (5.1)$$

 where the constant c depends on $d, m, c_0, \nu^{(\alpha)}, \beta, \alpha$.
Duhamel’s formulas

By Duhamel’s formula and operating the block operator Δ_j on both sides, we have

$$\Delta_j \tilde{u}(t, x) = \int_0^t \Delta_j P_{s,t} \left(\mathcal{L}_{\tilde{\kappa}, \tilde{\sigma}}^{(\alpha)} - \mathcal{L}_{\tilde{\kappa}_0, \tilde{\sigma}_0}^{(\alpha)} \right) \tilde{u}(s, x) \, ds$$

$$+ \int_0^t \Delta_j P_{s,t} (\tilde{b} \cdot \nabla \tilde{u})(s, x) \, ds + \int_0^t \Delta_j P_{s,t} \tilde{f}(s, x) \, ds,$$

where

$$\int_0^t P_{s,t} f(s, x) \, ds = \int_0^t \int_{\mathbb{R}^d} P_{\tilde{\kappa}_0, \tilde{\sigma}_0}^{(\alpha)}(y) f(s, x + y) \, dy \, ds.$$
Convolution to Product

- Recall $\|u(t)\|_{B^\alpha_\infty, \infty} = \sup_{j \geq 0} 2^{\alpha j} \|\Delta_j u(t)\|_{\infty}$.

- Noticing

$$|\Delta_j u(t, \theta_t)\| = |\Delta_j \tilde{u}(t, 0)|,$$

we get $\|\Delta_j u(t)\|_{\infty}$ by taking the supremum of the θ_t’s initial data x_0 for $|\Delta_j \tilde{u}(t, 0)|$.

- Therefore, we only need to consider values at the origin point:

$$\Delta_j \tilde{u}(t, 0) = \int_0^t \Delta_j P_{s,t} \left(\mathcal{L}^{(\alpha)}_{\tilde{\kappa}, \tilde{\sigma}} - \mathcal{L}^{(\alpha)}_{\tilde{\kappa}_0, \tilde{\sigma}_0} \right) \tilde{u}(s, 0) ds$$

$$+ \int_0^t \Delta_j P_{s,t} (\tilde{b} \cdot \nabla \tilde{u})(s, 0) ds + \int_0^t \Delta_j P_{s,t} \tilde{f}(s, 0) ds.$$ \hspace{1cm} (5.4)

Here,

$$\int_0^t \Delta_j P_{s,t} f(s, 0) ds = \int_0^t \int_{\mathbb{R}^d} p_{\tilde{\kappa}_0, \tilde{\sigma}_0}(y) \cdot \Delta_j f(s, y) dy ds.$$ \hspace{1cm} (5.5)

Convolution \implies Product
A crucial Lemma for heat kernels

Lemma 13 (Heat kernel estimates)

For any $T > 0$, $\beta \in [0, \alpha)$, and $n \in \mathbb{N}_0$, there is a constant $c = (d, m, c_0, \nu(\alpha), \beta, \alpha)$ such that for any $s, t \in [0, T]$ and $j \in \mathbb{N},$

$$
\int_{\mathbb{R}^d} |x|^{\beta} |\Delta_j p_{s,t}^{\tilde{\kappa}_0, \tilde{\sigma}_0}(x)| \, dx \leq c 2^{(m-n)j} (t - s)^{-\frac{n}{\alpha}} ((t - s)^{\frac{1}{\alpha}} + 2^{-j})^\beta,
$$

(5.6)

and

$$
\int_0^t \int_{\mathbb{R}^d} |x|^{\beta} |\Delta_j p_{s,t}^{\tilde{\kappa}_0, \tilde{\sigma}_0}(x)| \, dx \, ds \leq c 2^{-(\alpha+\beta)j}.
$$

(5.7)

- **Note** We use the regularity of time to get the regularity of space.

- Under (H_{κ}^{β}), (H_{σ}^{β}) and (H_{b}^{β}), we have

$$
\begin{align*}
|\tilde{\kappa}(t, x, z) - \tilde{\kappa}_0(t, z)| &\leq [\kappa(t, \cdot, z)]_{C^\beta} |x|^{\beta} \leq c_0 |x|^{\beta}; \\
|\tilde{\sigma}(t, x) - \tilde{\sigma}_0(t)| &\leq [\sigma(t, \cdot)]_{C^\gamma} |x|^{\gamma} \leq c_0 |x|^{\gamma}; \\
|\tilde{b}(t, x)| &\leq [b(t, \cdot)]_{C^\beta} |x|^{\beta} \leq c_0 |x|^{\beta}.
\end{align*}
$$

(5.8)
Thank you for your attention!

Thank Zimo Hao for his advices to this presentation.