Aspleniaceae of Tandikek Mountain, West Sumatra

Mildawati1*, Ardinis Arbain1, Hary Fitrah1

1Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University

ABSTRACT

Research on ferns of Aspleniaceae family of Tandikek Mountain in West Sumatra, Indonesia has been done through a survey method and direct collection in the field, followed by a study at Herbarium of ANDA (Andalas University). Eleven species consisting of Asplenium affine, A. batuense, A. belangeri, A. pellucidum, A. phyllitis, A. robustum, A. salignum, A. scalar, A. tenerum, A. unilateralis, and Asplenium sp1. have been found as part of the Aspleniaceae genus. The species of Asplenium genus have been obtained from the elevation of 1231 – 2336 meter above the sea level.

Keywords: Aspleniaceae, Tandikek Mountain, West Sumatera

INTRODUCTION

Tandikek Mountain is located in Tanah Datar, West Sumatra, Indonesia. The topography of Tandikek Mountain has a maximum elevation of 2.437 meters above sea level. One of the floras found in Mount Tandikek is fern. Fern is cormophyta with spores that can live anywhere (cosmopolitan). Abundance and distribution of fern is very high, especially in the area of tropical rainforest and many are in the mountain forests [1]. According to [2], ferns are high diversity species and are widely spread. [3] States that the number of ferns in the world is approximately 10,000 species spread throughout the tropics and subtropics.

One of the members of fern is Aspleniaceae. Aspleniaceae is one of the richest species among leptosporangiate ferns, with 720 teresterial, epilithic or ephyphytic ferns [4]. [5]Places ferns with linear sori and vascular bundle is a genus of Asplenium. [6, 7] find that the sporangia of Aspleniaceae are long stalked as a typical of Leptosporangiate ferns. The existing familes of Aspleniaceae with “X” shape vascular bundles onthe upper petiole was found firstly by [8].

[9] has been the -first who based aspleniaceae classification on phylogenetics assumption by taking into account the relationship between species groupings. [10] publishes the characteristic of Asplenium group, that is a sory distinctly elongate along the veins, segments of frond usualy with more than one vein, and sori all facing the same way except in a few species which have simple fronds and then the raised line between adjacent sori is lacking.

Indonesia is one of the areas having rich biodiversity in the world. Research on the inventarization of ferns Indonesia is done by [11] in National Park Laiwangi-Wanggameti NTT; the study has found about 21 family, 30 genus, and 70 species of ferns. There are 8 species of Aspleniaceae among them. Indonesian Institute of Science (LIPI) [12] publish a report about ferns in Indonesia, and among the 54 described species, three of them are Asplenium. They are Asplenium belangeri (Bory), Asplenium nidus L. and Asplenium tenerum Forst. [13] Reports 25 species of the seven families in Tourism Area of Minangkabau Village in Padang Panjang. [14] Reports 11 species of four families in Bung Hatta Forest Park Padang.

Research about species of the Aspleniaceae ferns family from Tandikek Mountain West Sumatra has never been done. There has never been a report of herbarium specimen at Herbarium of Andalas University. Under these conditions, it is important to conduct research to
Aspleniaceae Of Tandikek Mountain, West Sumatra

examine the Aspleniaceae species of Mount Tandikek West Sumatra Indonesia.

MATERIALS AND METHODS

The study on the morphological diversity of the Aspleniaceae Family took place at Mountain Tandikek in Tanah Datar, West Sumatra, Indonesia and was continued at the Laboratory of Plant Taxonomy and Herbarium of the Biology Department, Andalas University (ANDA) in Padang. The materials used in this study were methylene blue, 70% alcohol, and distilled water. The tools used were shears, oven, newsprint, plastic bags, bottles collection, field labels, tweezers, glue, white paper board, clips, binocular microscopes, light microscopes, cameras, and stationery. The method used in this study was survey and sample collection in the field. At the location of the research, data was collected by way of collecting and recording field data such as the habit of the plant, frond, stem color, leaf color, shape and location of the sorus [15]. Further herbarium specimen was made. The process of making specimens was held based on [16]. A herbarium is a collection of dried plants systematically named and arranged for references and study. To make a herbarium specimen, the plant is collected, and notes are made about it. The plant is then pressed until dry between blotters that absorb moisture and mounted into a herbarium sheet with a suitable label. Identification of specimens is done using literature in accordance with the following reference: [1, 8, 17, 18, 19].

RESULTS AND DISCUSSION

Tandikat is a mountain located in the Highlands of Minangkabau, of approximately 7.5 km from the city of Padang Panjang, West Sumatra, Indonesia. The mountain is stretched wide to the south, and to the west bordering the lake. On the northern side of the mountain there is Mount Singgalang, while on the east side there is an old cluster of tertiary volcanic mountains. The mount type is strato volcano, which is also known by the name of Tandikek in Minangkabau language. It is very relevant to point out here that two Mountains have always been rich in biodivers-
No	Species	Coordinate	Elevation (M. above sea level)
1	*Asplenium affine* Sw.	S.0650609	1243
		E.9952742	
2	*Asplenium batuense* V.A.V.R	S.0650402	1320
		E.9952790	
3	*Asplenium belangeri* (Bory) Kze.	S.0650642	1231
		E.9952758	
4	*Asplenium pellucidum* Lam.	S.0650498	1286
		E.9952763	
5	*Asplenium phylitisidis* Don Subsp. *Malesicum* Holtt	S.0650590	1241
		E.9952730	
6	*Asplenium robustum* Bl.	S.0650534	1260
		E.9952759	
7	*Asplenium salignum* Bl.	S.0646889	2336
		E.9952369	
8	*Asplenium scalarareae* Rosenst	S.0649984	1362
		E.9952979	
9	*Asplenium tenerum* Forst	S.0659454	2018
		E.0647875	
10	*Asplenium unilaterale* Lam.	S.0659454	1496
		E.0646861	
11	*Asplenium sp1.*	S.9952419	2361

Figure 1. Distribution of ferns family Aspleniaceae by rhizome morphological characters, frond, lamina and sorus
are found from the elevation of 1,100 m - 2,400 m with a very diverse number of species. Based on measurement, the Aspleniaceae in Tandikek mountain of West Sumatra were found from the altitude of 1231 m to 2361 m. The altitude of 1200 m has the most abundant family of Aspleniaceae. The most optimal life for ferns is at the altitudes above 600 meters [3]. Based on the data obtained, the distribution of most species of ferns is found at altitude of 1000-1500 m. For the altitude above 1,500 m, the species obtained are very limited.

Ferns is transitional vegetation between thalophyta to chormophyta, because ferns have a mix of nature and form of the moss to higher plants [27]. Ferns have been identified to have around 11,000 species throughout the world; this number is classified into 400 genera and 36 families. [28] States that genus having the largest number of species are Asplenium and Cyathea, each consists of approximately 700 species. [28] States that the tropic is the center to ferns biodiversity, in which the total number of species exceeds 50% of the total species identified.

ACKNOWLEDGMENT

We would like to send our gratitude to University of Andalas, DIPA Year 2012 for funding this research. We would also express my gratitude to the Dean of the Faculty of Mathematics and Natural Sciences, Andalas University Padang, the Chairperson of the Biology Department, Andalas University Padang, and the students of the Biology Department, Andalas University Padang, and all the parties having provided assistance.

REFERENCES

1. Ewusie JY (1990) *Pengantar Ekologi Tropika*. ITB, Bandung.
2. Tjitrosoepomo G (1992) *Taksonomi Tumbuhan Rendah (Taksonomi Tumbuhan Khusus)*. Gadjah Mada University Press. Yogyakarta.
3. Holttum RE (1967) *A Revised Flora of Malaya Volume II. Ferns of Malaya*. Government Printing Office. Singapore.
4. Kramer KV and Viane RLL (1990) *Aspleniaceae*. In: *The family and Genera of Vascular plants*. Vol. I. Pterydophytae and Gymnospermae. Berlin. *Springer Verlag*. 52 – 57.
5. Linnaeus C (1753) *Species Plantarum, exhibentes plantas rite cognitae ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas*, Tomus II.L. Salvius. Stockholm.
6. Bower FO (1926) *The Ferns*. Vol II. London. Cambridge University Press.
7. Bower FO (1928) *The Ferns*. Vol III. London. Cambridge University Press.
8. Copeland EB (1947) *Genera Filicum*. Chronica Botanica, Waltham, Mass.
9. Holttum RE (1967) *A Revised Flora of Malaya Volume II. Ferns of Malaya*. Government Printing Office. Singapore.
10. Holttum RE (1959) *Series II – Pterydopytha Ferns and Ferns Allies*. Flora Malesiana. Vol I.
11. Darma IDP and Peneng IN (2007) *Fern Inventorization in Laiwangi-Wanggameti National Park, East Sumba, Waingapu, NTT*. *Biodiversitas*. 8: 242 – 248.
12. LIPI (1980) *Jenis Paku Indonesia*. Lembaga Biologi Nasional. LIPI. Bogor.
13. Lamid DM (2007) *Jenis-JenisPaku Epifit yang Terdapat di Kawasan Wisata Perkampungan Minangkabau Padang Panjang*. Skripsi Sarjana Biologi FMIPA Universitas Andalas.
14. Mildawati (2011) *Tumbuhan paku epifit di Taman Hutan Raya Bung Hatta Kota Padang*. Proceeding Seminar Nasional MIPA dan Pendidikan MIPA. FMIPA UNP. Padang. 19-20 November 2011.
15. Pryer K.M, Sceutpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) *Phylogeni and evolution of Ferns (Monilophytes) With A Focus on The Early Leptosporangiate Divergences*. *American Journal of Botany*. 91(10): 1582-1598.
16. Jain SK and Rao RH (1977) *Hand Book of Fieldland Herbarium Methods*. Today and Tomorrows Printers and Publishers. New Delhi.
17. Andrew SB (1990) *Ferns of Queensland*. Queensland Department of Primary Industries.
18. Johnson A (1960) *Student Guide to the Ferns of Singapore Island*. Singapore University Press. Singapore.
19. Piggott AG (1988) *Ferns of Malaysia in Colour*. Tropical Press SDN. BHD. Malaysia.
20. Hasar A and Kaban B (1997) *Prinsip-prinsip Dasar Ekologi*. PT. Raja Grafindo Persada. Jakarta.
21. Ellyzarti and Gusniati (2011) *Potensi Kekayaan dan Keanekaragaman Jenis. Paku-Pakuan (Pteridophyta) Di Gunung Betung Taman Hutan Raya Wan Abdurahman Bandar Lampung*. Jurusan Biologi Fmipa Universitas Lampung. http://Fmipa. Ipib.Ac.Id/Index.Php/Id/Biosains.
22. Sastrapradja SJJ, Afriastini, Darnaedi & Elizabeth (1980) JenisPaku Indonesia. Lembaga Biologi Nasional. Bogor.

23. Schmitt JL and Windisch PG (2010) Biodiversity and spatial distribution of epiphytic ferns on Alsopilasetosa Kaulf. (Cyatheaceae) caudices in Rio Grande do Sul, Brazil. *Braz J Biol.* 70(3): 521-528.

24. Johnes SBJr and Luchsinger AE (1979) Plant Systematics. Second edition. Mc Grawhil International Edition.

25. Tryon R (1992) Pteridophytes. In: H. Lierh and M. J. A Werger (Editor), Tropical Rain Forest Ecosystem. Elsevier Science Publisher B. V. Netherland.

26. Rambe (2008) Aspleniaceae in phylogeny and Biosystematic. Biosainstifika. 1: 88 – 100.

27. Raven PH, Evert RF, Eichorn SE (1992) Biology of Plants. Worth Publishers. New York.

28. Haufler CH (2006) Fern and Fern Allies. http://ftp.rbgkew.org.uk/scihort/ferns.html. Accessed date: February 19, 2010.