Polychaetes from Jan Mayen (Annelida, Polychaeta)

Torkild Bakken,1 Jon Anders Kongsrud,2 Eivind Oug,3 Sabine K.J. Cochrane,4 Toril Loennechen Moen1 & Beata E.B. Solbakken1

1 Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
2 Bergen Museum, University of Bergen, PO Box 7800, NO-5020 Bergen, Norway
3 Norwegian Institute for Water Research, Southern Branch, Televeien 3, NO-4879 Grimstad, Norway
4 Akvaplan-Niva AS, Polar Environmental Centre, NO-9295 Tromsø, Norway

Abstract

A thorough literature review has been undertaken to establish the first complete account of polychaetes recorded from the area around the volcanic island of Jan Mayen. The annotated checklist lists 121 species-level taxa, representing an increase from the 75 species previously recorded. The checklist is based on existing records, supplemented with material sampled in 1999, from which 42 species new to the area were reported. Some previously reported species from the area have been excluded because of inadequate documentation. The polychaete fauna of Jan Mayen is comparable with that of the mainland Norwegian coast and the Svalbard area. No taxa unique to the island were found. However, knowledge of the marine invertebrate fauna in general at Jan Mayen is sparse because few surveys have been undertaken there. It is expected that future expeditions will reveal further new taxon records for the area.

Keywords

Distribution; diversity; Jan Mayen; Nordic seas; Norwegian Sea; Polychaeta.

Correspondence

Torkild Bakken, Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway. E-mail: torkild.bakken@vm.ntnu.no

doi:10.1111/j.1751-8369.2009.00132.x

In the northern waters around Svalbard and the volcanic island of Jan Mayen, a total of 1708 marine benthic macrofaunal organisms have been recorded. However, only 547 of these records are from Jan Mayen (Gulliksen et al. 1999). Although recently updated, the list of taxon records from Jan Mayen is very short, including 607 benthic species, of which 75 are polychaetes (Gulliksen et al. 2004). This most likely reflects the sparse sampling of marine benthic fauna that has been carried out around Jan Mayen (Gabrielsen et al. 1997; Gulliksen et al. 2004), and highlights our still superficial knowledge of the biodiversity in this area.

The most comprehensive survey was carried out in 1972 after the volcanic eruption in 1970 (Gulliksen 1974a). As a result of this survey, a series of papers was published on different taxonomic groups: ascidians (Gulliksen 1974b), echinoderms (Skjæveland 1973), molluscs (Sneli & Steinnes 1975; Sneli 1977) and sponges (Tendal 1983). Surveys in 1978, 1994 and 1999 investigated the succession patterns of faunal colonization on the newly-formed land (Gulliksen et al. 2004).

Polychaetes from Jan Mayen have never been studied explicitly, but several species were reported from the 1972 expedition (Gulliksen 1974a), and also in later follow-up studies (Gulliksen et al. 1980; Gulliksen et al. 2004). From the general area, several other species were recorded in early expedition reports, such as the Norwegian North Atlantic Expedition of 1876–78 (Hansen 1879a, b, 1880, 1882), the Austrian expedition of 1882–83 (von Marenzeller 1886) and the Danish Ingolf Expedition of 1895–96 (Ditlevsen 1917; Wesenberg-Lund 1950).

This paper presents an updated and annotated checklist of polychaetes from Jan Mayen and the surrounding waters, compiled from existing records from the earliest expeditions to the most recent studies. Older records have been checked for synonyms, and polychaetes from the 1972 expedition (Gulliksen 1974a) were re-examined and records amended as appropriate. New (unpublished) polychaete material collected in 1999 is identified, and the taxon list and station data are presented. This list is intended to serve as a reference for regional comparisons and other environmental studies. Future studies may investigate temporal changes in the area, as well as further address the taxonomic issues highlighted here.

Study area

The island of Jan Mayen (70°49′–71°10′N, 07°56′–09°05′W) has an isolated location between the Greenland
Sea, Iceland Sea and the Norwegian Sea (Fig. 1). It is surrounded by deep basins in the Greenland Sea to the north and in the Norwegian Sea to the east, and the somewhat shallower Iceland plateau to the south. The island is of volcanic origin, and is part of the Mid-Atlantic Ridge. During the most recent volcanic eruptions in 1970, lava flowed into the sea, and a new coastal platform extending over approximately 4 km2 was formed, in the north-eastern part of the island (Gulliksen et al. 1980).

The bottom topography around Jan Mayen is heterogeneous. To the east and south-east there is a small shelf at depths down to 150–250 m, and a similar flat-bottomed shelf with depths between 300 and 600 m extends from the south-west to the north-west. North and north-east of the island, the bottom topography slopes steeply down to a depth of 2000 m into the Jan Mayen Channel (Blindheim 2004). The water masses around Jan Mayen are a mixture of cold Arctic Water...
(ArW; bottom temperatures down to −0.3°C and salinities around 34.4–34.6) from the Arctic Ocean, transported southwards by the East Greenland Current, and warmer, more saline Atlantic Water (AW; temperature from around 1°C at bottom to 5°C on surface, and salinity around 34.9), penetrating northwards via the North Atlantic Current (Gulliksen et al. 1980). In addition to the surface currents, cold water from the Arctic Ocean flows as deep bottom currents under the East Greenland Current in the southern part of the Greenland Sea (Blindheim 2004).

The meeting of ArW and AW forms the Arctic Front, where complex patterns of turbulence occur (Sundfjord et al. 2007 and references therein). Usually the Arctic Front is situated south of the island, giving a dominance of Arctic water at Jan Mayen. However, because the distribution of water masses and currents fluctuate within the area (Gabrielsen et al. 1997; Blindheim 2004), there may be variable AW influence. Salinity and temperature profiles recorded in 1999 at a number of stations are given in Lønne (1999). The ice front often reaches Jan Mayen during the oceanographic winter, but there are considerable interannual variations. Drift ice frequently surrounds the island from February to April.

Methods and materials

The material from 1999 arises from an extensive sampling programme carried out during 12–19 September 1999 from the RV Jan Mayen. The sampling scheme encompassed different substrates and depth intervals, from intertidal to 770 m in depth (Fig. 1; Table 1). On soft substrates, epifauna and hyperbenthos were collected using Sneli (Sneli 1998) and Rothlisberg and Pearcy (RP) (Brattegard & Fosså 1991) sledges, with collecting times of 15 and 20 min, respectively. Quantitative samples of infauna were taken at some stations using a 0.1-m² van Veen grab, and sieved through a 1-mm round-pore diameter mesh screen. On gravel and rocky substrates a triangular dredge (side length 0.9 m) was used, with a collecting time of 5 min. In shallow subtidal waters qualitative samples were taken by SCUBA diving.

The 1972 material was sampled in August from the sea rescue vessel RK Sjøfareren (Gulliksen 1974a). Mostly hard bottoms and coarse substrates down to 100 m were sampled, using a triangular dredge and by SCUBA diving.

The material was fixed in the field using an approximately 8–15% formalin–seawater solution (depending on the nature of the sample). Samples were later rinsed in freshwater, sorted into higher taxa and preserved in 70–80% ethanol. Identification was carried out using morphological features under light microscopy. All specimens are deposited in the collections of the Museum of Natural History and Archaeology, Norwegian University of Science and Technology, Trondheim.

Results and discussion

A total of 67 polychaete taxa were identified from the material from 1999 (Table 2), of which 42 are new records for Jan Mayen. As far as possible, identifications were made to species level, but some taxa are identified to genus level, and informally distinguished from named species, such as *Capitella* sp. A, *Capitella* sp. B, *Chaetozone*

Date	Station	Latitude (N)	Longitude (W)	Depth (m)	Sampling gear
13/09/1999	793-99	71°09.41	8°06.65	49	Diving
14/09/1999	803-99	71°02.34	8°44.90	451	RP sledge*
14/09/1999	806-99	70°57.98	8°45.23	46	van Veen grab
14/09/1999	808-99	70°58.61	8°46.41	109	van Veen grab
14/09/1999	809-99	70°59.39	8°48.73	269	Triangular dredge
15/09/1999	813-99	71°06.41	9°35.26	514	RP sledge
15/09/1999	817-99	71°04.94	9°27.53	142	Sneli sledge
15/09/1999	819-99	71°10.18	8°06.54	534	Triangular dredge
15/09/1999	822-99	71°09.38	8°06.63	44	van Veen grab
15/09/1999	826-99	71°06.21	7°57.54	54	Diving
16/09/1999	834-99	70°45.07	7°57.74	771	RP sledge
16/09/1999	838-99	70°53.04	8°43.61	39	Sneli sledge
17/09/1999	848-99	70°38.87	9°22.33	599	RP sledge
17/09/1999	849-99	70°37.34	9°20.30	390	Sneli sledge
17/09/1999	850-99	70°36.19	9°20.72	313	RP sledge

*Rothlisberg and Pearcy sledge.

Table 1 Data for sampling stations at Jan Mayen in 1999, where polychaetes were found. All samples were taken from the RV Jan Mayen. The material is deposited in the collections of the Museum of Natural History and Archaeology, Norwegian University of Science and Technology, Trondheim.
Table 2 Polychaete species represented in the material examined from the 1999 cruise to Jan Mayen.

Family	Species
Euphosinidae	Euphosine borealis Ørsted, 1843
Polynoidae	Bylgides groenlandica (Malmgren, 1867)
Pholoidae	Pholoe assimilis Ørsted, 1844
Phyllodocidae	Phyllodocida groenlandica Ørsted, 1842
Phyllodocidae	Phyllodocida groenlandica Ørsted, 1842
Nephtyidae	Nephtys ciliata (O.F. Müller, 1776)
Nephtyidae	Nephtys paradoxa Malm, 1874
Nephtyidae	Nephtys ponte Rainer, 1984
Sphaeroderidae	Euphosine abyssorum Hansen, 1878
Sphaeroderidae	Sphaerodorum flavum Ørsted, 1843
Onuphridae	Hyalinoeca tubulica (O.F. Müller, 1776)
Onuphridae	Nothria conchylega (M. Sars, 1835)
Lumbrineridae	Abyssyri normei de abyssorum McIntosh, 1885
Lumbrineridae	Scoleomana fragilis (O.F. Müller, 1776)
Dorvilleidae	Ophryotrocha sp. A
Dorvilleidae	Paragraphe gynodentata (Oug, 1978)
Orbinidae	Scolepolus armiger (O.F. Müller, 1776)
Orbinidae	Scolepolus arcticus (Hansen, 1879)
Spionidae	Polydora caulleryi Mesnil, 1897
Spionidae	Polydora socialis (Schmarda, 1861)
Spionidae	Prionospis cirrata Wirén, 1883
Spionidae	Spio filicornis (O.F. Müller, 1776)
Spionidae	Spio gonocephala Thulin, 1957
Spionidae	Spiophanes kroyeri Grube, 1860
Spionidae	Pygospio elegans Clarabéde, 1863
Poecilochaetidae	Poecilochaetus serpens Allen, 1904
Paraonidae	Arcidea quadridobata Webster & Benedict, 1887
Paraonidae	Arcidea suecaia Eliason, 1920
Paraonidae	Levinsenia gracilis Tauber, 1920
Paraonidae	Paradonies eliasoni Mackie, 1991
Cirratulidae	Chaetozone christiei Chambers, 2000
Cirratulidae	Chaetozone sp. C
Cirratulidae	Chaetozone setosa Malmgren, 1867
Acrocciridae	Macrochaeta polonynx Eliason, 1962
Opheliidae	Ophelina cylindracaudata (Hansen, 1879)
Opheliidae	Trivisa forbesi Johnston, 1840
Scalibregmatidae	Scalibregma inflatum Rathke, 1843
Scalibregmatidae	Pseudoscalibregma parvum (Hansen, 1879)
Capitellidae	Capitella sp. A
Capitellidae	Capitella sp. B
Capitellidae	Heteromastus filiformis Clarabéde, 1864
Capitellidae	Notomastus latericeus M. Sars, 1851
Malandidae	Nicomache quadrispinata Arwedsson, 1906
Malandidae	Praxillella gracilis (M. Sars, 1861)
Malandidae	Praxillella praeterrisa minor Arwedsson, 1907
Malandidae	Macroclymene sp. A
Malandidae	Microclymene sp. A
Malandidae	Notopraastes oculatus arctica Arwedsson, 1907
Malandidae	Rhodine gracilior Tauber, 1879
Oweniidae	Galatheaena oculata (Zaks, 1923)
Oweniidae	Owenia polaris Koh, Bhard & Jirkov, 2003
Ampharetidae	Elysippe vanelli (Fauvel, 1936)
Ampharetidae	Glyphanostomum palliscens (Théel, 1879)
Ampharetidae	Melinna elaebiaeth McIntosh, 1922
Ampharetidae	Melythenide laubieri Desbruyerres, 1978
Terebellidae	Lanassa venusta (Malm, 1874)
Terebellidae	Laphania bowcki Malmgren, 1866
Sabellidae	Chone duni Merlimgren, 1867
Sabellidae	Chone favei McIntosh, 1916
Sabellidae	Chone paucidibranchiata (Kreyer, 1856)
Sabellidae	Euchone analis (Kreyer, 1856)
Sabellidae	Laonome kroyeri Malmgren, 1865
Sabellidae	Bispia crassicornis (M. Sars, 1831)
Serpulidae	Apomatus similis Marion & Bobretzky, 1875
sp. C. Macroclymene sp. A, Microclymene sp. A and Ophrytrocha sp. A. These may represent undescribed species or morphological variants within less well-described groups. Further study of these is beyond the scope of the present work, but some problematic issues are remarked upon within the taxon list below. Furthermore, of the re-examined material collected in 1972, some specimens were missing from the museum collections, and could not be traced. These specimens are omitted from the present treatment and, as a consequence, there are some discrepancies between the list below and that of Gulliksen (1974a). Based on the checklist presented here, 121 recognized polychaete taxa are recorded from Jan Mayen. This represents a threefold increase (Gulliksen et al. 1999) in our knowledge of the polychaete fauna of Jan Mayen. From North Atlantic waters, current records list a total of 656 polychaete taxa from mainland Norwegian coastal waters, and 259 from around Svalbard (Brattegard & Holthe 1997; Gulliksen et al. 1999; Gulliksen et al. 2004). The fact that the present list from Jan Mayen is still relatively short may result from several factors. Firstly, the number of benthic studies conducted around Jan Mayen is low, compared with Svalbard and, especially, the mainland Norwegian coast (see Gulliksen et al. 1999; Gulliksen et al. 2004). Secondly, quantitative methods that take into account small organisms (retained on a 1-mm sieve) have only been used in the most recent studies; the earlier data were largely from SCUBA-diving and triangular-dredge samples, where polychaetes are usually under-represented. Thirdly, the faunal richness around Jan Mayen may be, in fact, lower than other areas as a result of its geological history, and the resulting more uniform topography and narrower range of available habitats. As might be expected from the hydrology of the area, the species reported from around Jan Mayen are typical for north Atlantic waters, and only a few are not previously reported from the Norwegian coast, such as Abyssyri normei de abyssorum, Bathysfavella affinis, Eusyllis monilicornis, Nicomache quadrispinata and the recently described Chaetozone christiei. This checklist advances current knowledge of the biodiversity around Jan Mayen, but further sampling expeditions are to be encouraged, in order to achieve a more complete picture.	

Annotated checklist

The list of polychaete taxa given below represents a compilation of data from the literature, supplemented with information from the newly-identified material. The geographic coverage is the shelf areas and immediate deep
waters around Jan Mayen. Rather than giving a strict geographical definition, we have included deep water samples from expeditions with reported records from the Jan Mayen area.

In the list that follows, information for each species comprises species name, relevant synonymies, material examined, previous records, or previous reports, and remarks. The synonymies are restricted to reports from Jan Mayen only. “Material examined” refers to the material collected in 1972 and 1999. “Previous records” refers to cases in which the identity of the species has been confirmed, whereas “previous reports” refers to cases in which no material has been examined. Species records that are invalid because of taxonomic revisions or obvious misidentifications are marked with an asterisk preceding the species name. These are not included in calculations of numbers of taxa recorded from the fauna of Jan Mayen.

For material examined, the number of specimens from each station is given in parentheses following the station number. The Norwegian North Atlantic Expedition (Hansen 1879a, b, 1880, 1882) is abbreviated as NNAE. The Ingolf Expedition is referred to simply as Ingolf.

The terebellomorh polychaetes from the area have been studied in detail by Holthe (1986). He examined most of the specimens reported earlier by others, and hence records noted by Holthe (1986) may not represent new records. Holthe also identified the polychaete material reported in Gulliksen (1974a) and Gulliksen et al. (1980).

Euprosinidae

Euphosine borealis Ørsted, 1843

Material examined. Station (stn) 826-99 (1).

Polynoidae

Bylgides annenkovae Pettibone, 1993

Antinoëlla sarsi sarsi. – Gulliksen 1974a: 23.

Bylgides annenkovae Pettibone, 1993: 11–14, figs. 6–7. – Pettibone in Loshamn 1980: 214–211, figs. 105–106.

Material examined. Stns 3-72 (10), 17-72 (3), 29-72 (1), 42-72 (3).

Previous records. Stns 3-72 (3), 17-72 (3), 29-72 (1), 42-72 (3), Gulliksen (1974a) and Loshann (1980).

Remarks. Specimens identified as *Antinoëlla sarsi sarsi* (Gulliksen, 1974a) were revised and identified as *Bylgides annenkovae* by Loshamn (1980). In his unpublished Master’s thesis, Loshann gave a full species description (in Norwegian) as well as the name of the species later to be formally described by Pettibone (1993).

Bylgides groenlandica (Malmgren, 1867)

Harmothoe badia. – Ditlevsen 1917: 22–23 (?).

Material examined. Stn 834-99 (1).

Previous reports. Ingolf stn 116, 23 July 1896, 70°05′N, 8°26′W, 699 m depth (Ditlevsen 1917).

Remarks. One specimen with regenerating abdomen and lacking elytra was found. The identification is primarily based on chaetae as described by Pettibone (1993). Théel (1879) included several taxa today recognized as valid species in his *Polynoe badia*, among them *Bylgides groenlandica* and *Bylgides promamme* (Loshamn 1980; Pettibone 1993). The identity of the specimens Ditlevsen (1917) reported on from Jan Mayen is therefore uncertain, but most probably *Bylgides groenlandica* was represented.

Bylgides sarsi Malmgren, 1865

Harmothoe sarsi. – Ditlevsen 1917: 23–24.

Antinoëlla sarsi. – von Marenzeller 1886: 20. – Fauvel 1946: 398.

Material examined. Jan Mayen, 40 m depth (von Marenzeller 1886); off Jan Mayen, about 100 m depth (Ditlevsen 1917); Jan Mayen, Drivtømmerbukt (Fauvel 1946).

Remarks. This species has been widely reported in the literature. Because of the distribution of *Bylgides sarsi*, as well as a history of misidentified specimens, it is doubtful that the true *Bylgides sarsi* has been recorded from Jan Mayen (Pettibone 1993). The material previously reported from Jan Mayen should be revised.

Eunoe nodosa (M. Sars, 1861)

Polynoe (Eunoe) islandica Hansen, 1879a: 2–3, table II, figs. 1–7.

Polynoe arctica Hansen, 1879b: 267–268, table I, figs. 1–5.

Polynoe spinulosa Hansen, 1880: 225–226, table II, figs. 6–10.

Eunoe scabra. – von Marenzeller 1886: 19.

Harmothoe nodosa. – Ditlevsen 1917: 6–8, pl. II, fig. 1; pl. III, fig. 10.

Eunoe nodosa. – Gulliksen 1974a: 23. – Loshann 1980: 185–189, fig. 91.

Material examined. Stn 23-72 (2).

Previous reports. NNAE stn 223, 1 Aug. 1877, 70°54′N, 8°24′W, 128 m depth; NNAE stn 224, 1 Aug. 1877, 70°51′N, 8°20′W, 174 m depth; NNAE stn 237, 3 Aug. 1877, 70°41′N, 10°10′W, 481 m depth (Hansen 1882); Jan Mayen, 100–140 m depth (von Marenzeller 1886); Jan Mayen, 105 m depth (Ditlevsen 1917); stns 3-72 (3), 23-72 (2) Gulliksen (1974a).

Remarks. The specimens from station 3-72 reported by Gulliksen (1974a) could not be retrieved. Loshann (1980) examined the material sampled in 1972 (Gullik-
sen 1974a). He discussed the similarity of *Eunoe nodosa* to *Harmothoe vittata* Trautzsch, 1889, a species found in Svalbard; that Loshann believed should belong to *Eunoe*. Because of problems regarding earlier synonymies of *Eunoe nodosa* and *Eunoe oerstedi*, the records cited above should be treated with care (Loshann 1980). The three species described by Hansen (1879a, b, 1880) were considered synonyms of *Eunoe nodosa* by Loshann (1980), but he did not comment further on their status.

Eunoe oerstedi Malmgren, 1865

Eunoe oerstedi. – Loshann 1980: 181–185, figs. 89–90.

Previous reports. Ditlevsen 1917 as *Harmothoe nodosa* – possible record.

Remarks. *Eunoe oerstedi* has been synonymized with *Eunoe nodosa* in the literature (Loshann 1980), but they were considered separate species by Pettibone (1954), which has been followed ever since. As a result, earlier records must be treated with care (Loshann 1980). Gulliksen et al. (1999) cited *Eunoe oerstedi* from Jan Mayen, which is most likely to be based on the record of *Eunoe nodosa* by Ditlevsen (1917) (see above). Loshann (1980) outlined the problem with this species, but did not place *Eunoe oerstedi* on his list of confirmed identifications from Jan Mayen.

Harmothoe fragilis Moore, 1910

Harmothoe fragilis. – Gulliksen 1974a: 23. – Loshann 1980: 115–119, fig. 55.

Material examined. Stns 22-72 (2), 23-72 (1), 37-72 (1).

Previous records. Stns 23-72 (1), 37-72 (1) Gulliksen (1974a).

Remarks. The material examined here has previously been revised by Loshann (1980). *Harmothoe fragilis* is close to *Harmothoe impar*. Loshann (1980) commented that before 1910, most specimens were probably identified as *Harmothoe impar*. Also, later accounts have treated *Harmothoe fragilis* as a synonym of *Harmothoe impar*.

Harmothoe imbricata (L., 1767)

Harmothoe imbricata. – Ditlevsen 1917: 10–12.

Previous reports. 70°21′N 8°25′W, about 300 m depth (Ditlevsen 1917).

Harmothoe impar (Johnston, 1839)

Evarne impar. – von Marenzeller 1886: 19–20.

Previous reports. Jan Mayen, 140–230 m depth (von Marenzeller 1886).

Remarks. Several reports of *Harmothoe impar* should be referred to *Harmothoe fragilis* (Loshann 1980). The present report by von Marenzeller (1886) is dubious. Verified records of *Harmothoe impar* suggest that this species has a more southern distribution (Loshann 1980).

Harmothoe globifera (G.O. Sars, 1873)

Harmothoe globifera. – Ditlevsen 1917: 9.

Previous reports. Ingolf stn 116, 23 July 1896, 70°05′N, 8°26′W, 699 m depth (Ditlevsen 1917).

Harmothoe rarispina (M. Sars, 1861)

Lagisca extenuata. – Ditlevsen 1917: 13–14. – Wesenberg-Lund 1953: 25–26.

Previous reports. 70°21′N 8°25′W, about 300 m depth (Ditlevsen 1917).

Remarks. Several authors (e.g. Fauvel 1923; Wesenberg-Lund 1953; Pettibone 1963) treat *Harmothoe rarispina* and *Lagisca extenuata* (= *Harmothoe extenuata*) as synonymous. *Lagisca extenuata* is described from the Mediterranean. Loshann (1980) keeps the species separate, and indicates that *Lagisca extenuata* does not occur in North Atlantic waters.

Macellicephala longipalpa Uschakov, 1957

Macellicephala violacea. – Ditlevsen 1917: 39. – Wesenberg-Lund 1953: 27.

Macellicephala longipalpa. – Pettibone 1976: 17, figs. 8–9.

Previous reports. Ingolf stn 116, 70°05′N, 8°26′W, 699 m depth; 70°32′N, 8°10′W, 880 m depth (Ditlevsen 1917).

Remarks. Specimens identified by Ditlevsen (1917) as *Macellicephala violacea* from the Ingolf Expedition sampled at Jan Mayen were revised by Pettibone (1976), and were found to belong to *Macellicephala longipalpa*.

Bathyfauvelia affinis (Fauvel, 1914)

Bathyfauvelia affinis. – Pettibone 1976: 35, figs. 21–22. – Kirkegaard 1982: 254–259, table 2.

Previous reports. Swedish Polar Expedition 1900, 72°01′N 08°33′W, 2400 m depth (Pettibone 1976).

Pholoidae

Pholoe assimilis Ørsted, 1845

Material examined. Stns 803-99 (1), 834-99 (2), 848-99 (35).

Remarks. The specimens agree with characters given by Petersen (1998). They are pale, rather flattened and with elytrae covering the dorsum completely.

Pholoe minuta (O. Fabricius, 1780)

Pholoe minuta. – von Marenzeller 1886: 20. – Ditlevsen 1917: 49–50. – Wesenberg-Lund 1953: 28–29. – Gulliksen et al. 1980: 140.
Previous reports. Jan Mayen, 230–400 m depth (von Marenzeller 1886); Ingolf stn 115, 23 July 1896, 70°50′N, 9°29′W, 162 m depth (Ditlevsen 1917); north part of Jan Mayen, 5–30 m depth (Gulliksen et al. 1980).

Remarks. Petersen (1998) noted that Pholoe minuta, which is a western Atlantic species, does not occur in European waters, from where several separate species have been confounded under this name. Jan Mayen lies within what could be a western Atlantic distribution, and the occurrence of Pholoe minuta is not unlikely. Specimens identified as Pholoe minuta should be revised.

Phyllodocidae

Eumida arctica (Annenkova, 1946)

Eulalia bilineata. – Wesenberg-Lund 1953: 32.

Eumida arctica. – Eibye-Jacobsen 1991: 97–99. – Pleijel 1993: 69–70, figs. 46–47.

Previous reports. Jan Mayen, 100 m depth (Wesenberg-Lund 1953; Eibye-Jacobsen 1991).

Remarks: The taxonomy of this species was discussed by Eibye-Jacobsen (1991) and Pleijel (1993).

Phyllodocidae

Install

Eulalia hanssoni Pleijel, 1987

Eulalia hanssoni. – Pleijel 1993: 94–97, figs. 66–68.

Previous reports. Jan Mayen (Pleijel 1993).

Eteone picta Quatrefages, 1866

Eteone picta. – Fauvel 1946: 398.

Previous reports. South-east coast of Jan Mayen (Fauvel 1946).

Remarks. Wesenberg-Lund (1953) doubted Fauvel’s (1946) record, considering that Eteone picta has a southern (Lusitanian) distribution. According to Pleijel (1993), it is not found north of the British Isles.

Eteone cf. longa (O. Fabricius, 1780)

Eteone longa. – Gulliksen 1974a: 23.

Material examined. Stns 40–72 (1), 806–99 (21), 808–99 (29), 822–99 (3).

Previous records: Stn 40–72 (1) Gulliksen (1974a).

Remarks. Specimens are identified to Eteone cf. longa according to Pleijel (1993). This species belongs in a species group with Eteone flava, where species identities are unclear (Pleijel 1993).

Paranaitis near polynoides (Moore, 1909)

Paranaitis near polynoides. – Pleijel 1993: 26–28, fig. 16.

Previous reports. Jan Mayen, 70°40′N, 9°38′W, 1236–1243 m depth, 1 specimen (Pleijel 1993).

Remarks. Pleijel (1993) reported Paranaitis near polynoides from Jan Mayen. He stated that the identification was uncertain, and that the specimens might represent an undescribed species. Kato & Pleijel (2003) later revised Paranaitis, and found Paranaitis polynoides to occur only in the Pacific, and that Atlantic specimens previously assigned to Paranaitis polynoides belong to a different species. They did not, however, mention the material referred to by Pleijel (1993). It is unlikely that this species is found in the North Atlantic, but the specimens from Jan Mayen referred to in Pleijel (1993) should be re-examined.

Paranaitis wahlbergi (Malmgren, 1865)

Anaitis wahlbergi. – Ditlevsen 1917: 61. – Wesenberg-Lund 1953: 30.

Material examined. Stn 834–99 (1).

Previous records. Off Jan Mayen, about 100 m depth (Ditlevsen 1917, Wesenberg-Lund 1953; based on the same single record).

Phyllodoce groenlandica Ørsted, 1842

Phyllodoce groenlandica. – Fauvel 1946: 398.

Anaitides mucosa. – Gulliksen 1974a: 23.

Material examined. Stns 3–72 (1), 16–72 (1), 17–72 (1), 25–72 (1), 32–72 (1), 806–99 (2), 808–99 (1), 822–99 (1).

Previous records. RV Pourquoi-Pas? 1929 stn VIII, Jan Mayen (Fauvel 1946); stns 3–72, 16–72, 17–72, 25–72, 32–72 (Gulliksen 1974a).

Remarks: Re-examination of specimens identified to Anaitides mucosa from the 1972 cruise (Gulliksen 1974a) revealed that all specimens belonged to Phyllodoce groenlandica.

Hesionidae

Nereimyra punctata (O.F. Müller, 1776)

Castalia punctata. – von Marenzeller 1886: 20.

Previous reports. Jan Mayen, 230–400 m depth (von Marenzeller 1886).

Remarks. Nereimyra punctata has been redescribed, and has been found to be a common species in the North Atlantic (Nygren et al. 2005).

Syllidae

Autolytinae indet.

Autolytinae sp. indet. – Gulliksen 1974a: 23.

Material examined. Stn 5B–72 (1).

Previous records. Stn 5B–72 (Gulliksen 1974a).

Remarks. The specimen is not well preserved, and was not possible to identify further.
Eusyllis blomstrandi Malmgren, 1867
Eusyllis monilicornis. – von Marenzeller 1886: 21.
Eusyllis blomstrandi. – Wesenberg-Lund 1953: 38.
Previous reports. Jan Mayen, 20–400 m depth (von Marenzeller 1886).

Eusyllinae sp.
Syllinae sp. indet. – Gulliksen 1974a: 23.
Material examined. Stns 13B-72 (2), 793-99 (1), 822-99 (4), 834-99 (1).
Previous records: Stn 13B-72 (2) (Gulliksen 1974a).
Remarks. These specimens were assigned to Eusyllinae, and have not been available for further identification.

Syllis armillaris (O.F. Müller, 1776)
Syllis armillaris. – Fauvel 1946: 398.
Previous reports. Jan Mayen, south-east coast (Fauvel 1946).

Syllis cornuta (Rathke, 1843)
Syllis cornuta. – Wesenberg-Lund 1950: 15–16.
Previous reports. Ingolf stn 115, 23 July 1896, 70°50′N, 8°29′W, 162 m depth (Wesenberg-Lund 1950).

Syllis fasciata Malmgren, 1867
Typosyllis fasciata. – von Marenzeller 1886: 20.
Syllis fasciata. – Wesenberg-Lund 1947: 10–11.
Previous reports. Jan Mayen, 20–400 m depth (von Marenzeller 1886); Jan Mayen, about 20 m depth, 26 June 1900, Søren Jensen (Wesenberg-Lund 1947).

Nereididae

Nereis pelagica L., 1758
Nereis pelagica. – Wesenberg-Lund 1953: 40. – Gulliksen et al. 1980: 140.
Material examined. Stns 11B-72 (1), 17-72 (1), 24-72 (3).
Previous records. Stns 11B-72 (1), 17-72 (1), 24-72 (3) Gulliksen (1974a); northern part of Jan Mayen, 5–30 m depth (Gulliksen et al. 1980).
Remarks. Wesenberg-Lund (1953) referred to Hansen (1882) for a record from Jan Mayen. This is, however, a literature reference by Hansen, and cannot be related to any records from the Norwegian North Atlantic Expedition (Hansen 1879a, b, 1880, 1882). This record therefore cannot be verified.

Nereis zonata Malmgren, 1867
Nereis zonata. – Wesenberg-Lund 1950: 20.
Previous reports. RV Ryder, 70°21′N, 8°25′W, 300 m depth (Wesenberg-Lund 1950).

Nephtyidae

Nephtys ciliata (O.F. Müller, 1776)
Material examined. Stns 803-99 (1), 834-99 (1).
Remarks. All specimens reported by Gulliksen (1974a) were re-examined and found to belong to Nephtys pente Rainer, 1984. This species was described after identification of the specimens from the 1972 cruise (see below).

Nephtys paradoxa Malm, 1874
Material examined. Stns 808-99 (5), 819-99 (1), 849-99 (2).

Nephtys pente Rainer, 1984
Nephtys ciliata. – Gulliksen 1974a: 23.
Material examined. Stns 2-72 (2), 16-72 (1), 17-72 (5), 23-72 (36), 25-72 (6), 29-72 (4), 42-72 (4), 806-99 (1), 808-99 (1), 819 (1), 838-99 (1).
Previous records. Gulliksen (1974a) as Nephtys ciliata.
Remarks. A re-examination of the specimens collected in 1972 (Gulliksen 1974a) and identified to Nephtys ciliata proved to be Nephtys pente, following Rainer’s (1991) revision.

Sphaerodoridae

Ephesiella abyssorum Hansen, 1878
Ephesia peripatus. – Wesenberg-Lund 1950: 22–23. – 1953: 47.
Material examined. Stns 813-99 (8), 834-99 (9), 848-99 (35), 850-99 (15).
Previous records. 70°32′N, 8°10′W, 770 m depth (Wesenberg-Lund 1950).
Remarks. We follow the nomenclatorial reasoning of Hartman & Fauchald (1971) in using Ephesiella abyssorum for this species.

Sphaerodorus minuta (Webster & Benedict, 1887)
Sphaeroderorus minutum. – Wesenberg-Lund 1950: 23. – 1953: 47.
Material examined. Stns 803-99 (1), 813-99 (2), 834-99 (8), 848-99 (19), 850-99 (1).
Previous records. Jan Mayen, 75–112 m depth (Wesenberg-Lund 1950); 70°50′N, 8°29′W, 162 m depth (Wesenberg-Lund 1953).

Sphaerodoropsis philippi (Fauvel, 1911)
Material examined. Stns 813-99 (22), 834-99 (44), 848-99 (556), 850-99 (2).

Sphaerodoropsis flavum Ørsted, 1843
Ephesia gracilis. – von Marenzeller 1886: 22. – Wesenberg-Lund 1953: 46.
Material examined. Stns 813-99 (9), 834-99 (81), 848-99 (1).

Previous records. Jan Mayen, 140–400 m depth (von Marenzeller 1886).

Onuphidae

Hyalinoecia tubicola (O.F. Müller, 1776)

Material examined. Stns 834-99 (2), 848-99 (1).

Nothria conchylega (M. Sars, 1835)

Onuphis conchylega. – Hansen 1879b: 268. – von Marenzeller 1886: 21. – Fauvel 1913: 82. – Wesenberg-Lund 1950: 27. – Fauvel 1913: 82. – Wesenberg-Lund 1950: 26.

Nothria conchylega. – Gulliksen 1974a: 23.

Material examined. Stns 2-72 (1), 808-99 (1), 834-99 (11).

Previous records. NNAE stn 223, 1 Aug. 1877, 70°54’N, 8°24’W, 128 m depth; NNAE stn 225, 2 Aug. 1877, 70°55’N, 8°4’W, 357 m depth (Hansen 1879b); Jan Mayen, 140–200 m depth (von Marenzeller 1886); RV Pourquoi-Pas? stn XX, 20 July 1912, 70°50’N, 10°33’W, 180 m depth (Fauvel 1913); Ingolf stn 115, 23 July 1896, 70°50’N, 8°29’W, 162 m depth (Wesenberg-Lund 1950); Stns 17-72 (1), 23-72 (2), 39 (1) Gulliksen (1974a).

Remarks. The specimens agree with the description given by Frame (1992). Most present specimens were 1.5–3.0 mm wide, measured at chaetiger 10. Single simple hooded hooks appear from chaetiger 12 to chaetiger 20, inserted between superior and inferior limbate chaetae. Maxillae III are provided with one strong blunt tooth. Maxillae IV are somewhat variable in shape, and in some specimens appear triangular in shape, in contrast to the “riding-hat” shape described by Frame (1992).

*Scoletoma impatiens (Claparède, 1868)

Lumbriconeris impatiens. – Wesenberg-Lund 1950: 27-28.

Previous reports. Ingolf stn 115, 23 July 1896, 70°50’N, 8°29’W, 162 m depth (Wesenberg-Lund 1950).

Remarks. This must be considered a dubious record. This species is a temperate water species that, according to recent studies, does not occur in the northern North Atlantic (Oug. pers. obs.).

Dorvilleidae

Ophryotrocha littoralis (Levinsen, 1879)

Paractius littoralis. – von Marenzeller 1886: 21.

Paractius littoralis. – Wesenberg-Lund 1953: 54.

Previous reports. Jan Mayen, 230–400 m depth (von Marenzeller 1886).

Ophryotrocha sp. A

Material examined. Stn 822-99 (1).

Remarks. The material consists of one complete specimen, measuring 4.5 mm for 57 chaetigers, width 0.45 mm (without parapodia). The prostomium carries small papilliform palps and antennae. The parapodia are without dorsal and ventral cirri. The maxillae are of the p-type, with forceps and 12–15 teeth, and a strong fang. The mandibles have two serrated teeth. The specimen differs from all known small species of Ophryotrocha from North Atlantic waters by the high number of chaetigers (see George & Hartmann-Schröder 1985). In other respects it resembles Ophryotrocha gracilis Huth, 1933, by the presence of both antennae and palps, by the lack of parapodial cirri and by having bidentate mandibles.
Parougia nigridentata (Oug, 1978)

Material examined. Stns 806-99 (1), 808-99 (5).

Orbiniidae

Naineris quadricuspida (Fabricius, 1780)

Naineris quadricuspida. – von Marenzeller 1886: 22. *Naineris quadricuspida.* – Gulliksen et al. 1980: 140.

Previous reports. Jan Mayen, 20 m depth (von Marenzeller 1886); northern part of Jan Mayen, 5–30 m depth (Gulliksen et al. 1980).

Scoloplos armiger (O. F. Müller, 1776)

Scoloplos armiger. – von Marenzeller 1886: 22. – Wesenberg-Lund 1953: 54. – Gulliksen et al. 1980: 140. – Solbakken 2002: 34, 42–44.

Material examined. Stn 806-99 (25).

Previous records. Jan Mayen (von Marenzeller 1886); northern part of Jan Mayen, 5–30 m (Gulliksen et al. 1980); stn 806-99 (Solbakken 2002).

Remarks. *Scoloplos armiger* appears to have been confused with several closely related species in North Atlantic waters (Żadan 1998; Oug 2000; Solbakken 2002). The present specimens were compared with specimens from the North Sea and coastal Norwegian waters, and were found to agree in critical features such as neuropodial thoracic hooks, subpodal papillae and rose bengal staining patterns (Solbakken 2002). Wesenberg-Lund (1953) reported *Scoloplos armiger* from Jan Mayen by treating *Aricia arctica* Hansen, 1879 as a synonym. The latter species is considered here as valid (see below).

Scoloplos arctica (Hansen, 1879)

Aricia arctica Hansen, 1879b: 269, table II, figs. 1–8. *Scoloplos sp. A.* – Solbakken 2002: 39–40, 44.

Material examined. Stns 806-99 (7), 822-99 (65).

Previous records. NNAE stn 224, 1 Aug. 1877, 70°51′ N, 8°20′ W, 174 m depth; Jan Mayen, 18–27 m depth (Hansen 1879b).

Remarks. The specimens are similar to *Scoloplos armiger* in most respects, but differ by not having subpodal papillae, and by showing a different staining pattern when stained with rose bengal. Furthermore, the subpodal flanges are less well developed and flange papillae are lacking (Solbakken 2002). The present specimens were compared with Hansen’s original material, which confirmed their similarity. *Aricia arctica* Hansen, 1879 has been synonymized with *Scoloplos armiger* in the literature (see, e.g., Wesenberg-Lund 1953), but is recognized here as a separate species. Żadan (1998) reported *Scoloplos acutus* from the north-east Atlantic. *Scoloplos arctica* differs from present descriptions of *Scoloplos acutus* (Pettibone 1963; Żadan 1998) by larger size, more thoracic setigers and the presence of numerous thoracic neuropodial hooks.

Spionidae

Polydora caulteryi Mesnil, 1897

Material examined. Stn 822-99 (1).

Remarks. The single specimen agrees with descriptions given by Kirkegaard (1996) and Hartmann-Schröder (1996).

Polydora caeca (Ørsted, 1843)

Polydora caeca. – Wesenberg-Lund 1953: 59.

Previous reports. Wesenberg-Lund (1953).

Remarks. Wesenberg-Lund (1953) reported *Polydora caeca* from Jan Mayen with reference to Möbius (1874) and his species *Leipekeras uviferum*. This record cannot be confirmed from the original description, however, as there are no references to Jan Mayen (Möbius 1874).

Polydora socialis (Schmarda, 1861)

Material examined. Stn 806-99 (1).

Remarks. The specimen agrees with the description given by Hartmann-Schröder (1996).

Prionospio cirrifera Wirén, 1883

Prionospio cirrifera. – Söderström 1920: 237–238, fig. 146.

Material examined. Stns 808-99 (5), 813-99 (4), 834-99 (11), 850-99 (1), unknown (2).

Previous records. 71°12′ N, 8°28′ W, 1275 m depth (Söderström 1920).

Remarks. The present material agrees well with the description given by Mackie (1984), who also examined the specimens reported by Söderström (1920) from Jan Mayen. The presence or absence of lateral pouches and their distribution are consistent with remarks by Sigvaldadottír (2002).

Pygospio elegans Claparède, 1863

Material examined. Stn 808-99 (6).

Remarks. All specimens were small, measuring up to 4–5 mm in length.

Spiop sp.

Material examined. Stns 806-99 (1), 822-99 (1).

Remarks. Two small and incomplete specimens were not possible to identify to species level.

Spiop cf. filicornis (O.F. Müller, 1776)

Spiop filicornis. – Gulliksen 1974a: 23. – Gulliksen et al. 1980: 140.

Material examined. Stns 13B-72 (23), 806-99 (1).
Previous records. Stn 13B-72 (Gulliksen 1974a); northern part of Jan Mayen, 5–30 m depth (Gulliksen et al. 1980).

Remarks. The specimens agree with present descriptions of *Spio filicornis* (Maciolek 1990; Worsaae 1999), by having well developed gills on chaetiger 1 and bidentate neuropodial hooded hooks starting on chaetiger 11. There is, however, no pigmentation in the anterior body, which is distinctive for this species (Maciolek 1990). Presumably at least two species are confused under the name *Spio filicornis* in northern waters (Oug 2000).

Spio goniocephala Thulin, 1957

Material examined. Stn 822-99 (10).

Remarks. Specimens agree with the original description of *Spio goniocephala* (Thulin 1957), and with the characters given by Maciolek (1990). The prostomium is slightly prolonged, there are relatively well-developed gills on chaetiger 1 and bidentate hooded hooks commencing on chaetiger 16–18. These specimens resemble specimens reported as *Spio armata* from northern Norway (Oug 2000), but differ by having larger gills on chaetiger 1. On the anterior body there are brownish pigment spots on the prostomium, peristomium, and between the notopodia and the neuropodia.

Poecilochaetidae

Poecilochaetus serpens Allen, 1904

Material examined. Stn 848-99 (1).

Cirratulidae

Chaetozone christiei Chambers, 2000

Material examined. Stns 806-99 (559), 808-99 (2), 822-99 (7).

Remarks. Specimens clearly differ from *Chaetozone setosa*, in lacking the characteristic long, fine capillary chaetae. Thoracic chaetae are short and arranged in prominent tufts, “bushiest” around the mid-thorax. The intersegmental furrows in posterior abdominal segments were not particularly marked, and the stout unidentate spines were present only laterally, i.e., not forming rings. The palps also clearly originated from a posterior position on the last achaetigerous peristomial segment. Specimens measure generally between 10–12 mm long and 1–1.5 mm wide for 85–89 chaetigers, which is within the range reported by Chambers (2000). Specimens from station 822–99 were markedly larger in size, up to 24 mm in length and 1.5 mm wide, for 105 chaetigers, with very indistinct segmentation, and preserved specimens were dark reddish-brown in colour.

Chaetozone setosa Malmgren, 1867

Material examined. Stns 806-99 (69), 808-99 (255), 822-99 (1), 848-99 (1).

Remarks. Specimens conformed well to the re-description of the taxon (Chambers 2000), and were easily recognized by the presence of very long, pale “silky” capillary chaetae along the thorax, especially in the posterior part, and the arrangement of the stout abdominal unidentate spines in almost complete rings in the posterior part of the abdomen. Pronounced intersegmental furrows in posterior abdominal segments (“concertina-like”). Also characteristic is the anterior origin of the palps on the last achaetous peristomial segment. The specimens also agree well with material found in the Norwegian Sea and northern North Sea.
Specimens measure generally 15–23 mm long, and 1–1.5 mm wide, for 75–86 chaetigers.

Chaetozone sp. C

Material examined. Stns 806-99 (4), 808-99 (3), 808-99 (2).

Remarks. The prostomium is narrow and pointed, typical for *Chaetozone*, but the general body form is more reminiscent of *Tharyx*. It is narrowest in the mid-body segments, becoming wider and somewhat flattened in the posterior abdomen, and tapering to a narrow conical pygidium. The specimens tended to coil upon fixation. Prominent tufts of relatively long and fine capillary chaetae in posterior segments were present, almost reminiscent of *Aphelochaeta*, but the posterior three or four segments contain approximately between one and three very short unidentate spines. Several undescribed species in the North Atlantic have been reported (Chambers & Woodham 2003).

Cirratulus cirratus (O. F. Müller, 1776)

Cirratulus cirratus – Gulliksen et al. 1980: 140.

Previous reports. Northern part of Jan Mayen, 5–30 m depth (Gulliksen et al. 1980).

Acrodiridae

Macrochaeta polyonyx Eliason, 1962

Material examined. Stns 813-99 (3), 834-99 (76), 848-99 (1), 848-99 (79), 850-99 (1).

Remarks. All specimens are incomplete. The species is particularly characterized by the number of ventral compound hooks.

Flabelligeridae

Brada villosa (Rathke, 1843)

Brada villosa. – Wesenberg-Lund 1953: 67.

Previous reports. Jan Mayen (Wesenberg-Lund 1953).

Flabelligera affinis M. Sars, 1829

Flabelligera affinis. – Gulliksen et al. 1980: 140.

Previous reports. Northern part of Jan Mayen, 5–30 m depth (Gulliksen et al. 1980).

Opheliidae

Ophelina cylindricaudata (Hansen, 1879)

Ammotrypane cylindricaudatus. – Wesenberg-Lund 1950: 38. – 1953: 73.

Material examined. Stn 808-99 (15); 848-99 (1).

Previous records. Ingolf stn 115, 23 July 1896, 70°50′N, 8°29′W, 162 m depth (Wesenberg-Lund 1950).

Travisia forbesii Johnston, 1840

Travisia forbesii. – Hansen 1879b: 270. – von Marenzeller 1886: 22. – Støp-Bowitz 1945a: 26–32, fig. 1. – Fauvel 1946: 401. – Gulliksen 1974a: 23.

Material examined. Stns 7-72 (2), 21-72 (2), 29-72 (1), 806-99 (4), 822-99 (21).

Previous records. Jan Mayen, 18–27 m depth (Hansen 1879b); Jan Mayen, 20–30 m depth (von Marenzeller 1886); 12–22 June 1899, 70°55′′N, 8°30′′W, 14–36 m depth; 14 August 1930, 70°51′′N, 9°2′′W, 37–65 m depth; Mary Muss Bay, 23 m depth (Støp-Bowitz 1945a); Stns 7-72 (2), 21-72 (2), 29-72 (1) (Gulliksen 1974a).

Scalibregmatidae

Pseudoscalibregma parvum (Hansen, 1879)

Scalibregma parvum Hansen, 1879a: 7–8, table V, figs. 7–14. *Pseudoscalibregma longisetosum*. – Furreg 1925: 170–176, figs. S–X. – Wesenberg-Lund 1953: 70. *Pseudoscalibregma parvum*. – Støp-Bowitz 1945b: 72–75, fig. 3.

Material examined. Stns 808-99 (1), 813-99 (22), 834-99 (26), 834-99 (76), 848-99 (7), 850-99 (4).

Previous records. 71°12′′N, 8°28′′W, 1275 m depth (Furreg 1925).

Remarks. Most specimens are complete, measuring 9–12 mm for 30–32 chaetigers. The body is elongate, with a more or less strongly swollen part from chaetiger 5 to chaetigers 11 or 12. The parapodia are knoblike in the anterior body, and well developed in the posterior body behind the swollen area. Parapodia are supplied with capillary chaetae and dense tufts of lyrate chaetae in both rami. Støp-Bowitz (1945b) confirmed that *Scalibregma parvum* Hansen, 1879 and *Eumenia longisetosa* Théel, 1879 (= *Pseudoscalibregma longisetosum*) are synonymous, and pointed out that Hansen’s name was published first, and takes priority.

Scalibregma inflatum Rathke, 1843

Scalibregma inflatum. – Furreg 1925: 157–163. – Støp-Bowitz 1945b: 67–72, fig. 2.

Material examined. Stns 808-99 (17), 813-99 (1).

Previous records. 24 June 1899, 71°12′′N, 8°28′′W, 1275 m depth (Furreg 1925).

Capitellidae

Capitella sp. A

Material examined. Stns 806-99 (120), 822-99 (84).
Remarks. The specimens have six anterior chaetigers with pale capillary chaetae in slender bundles, sometimes also with a few capillary chaetae mixed with the hooks on the seventh notopodia. All specimens with at least one pair of genital hooks on the dorsum of chaetigers 8 or 9, pale yellow in colour, often difficult to observe. As such, the specimens conform to the description of *Capitella giardi* (Mesnil, 1897), which has mixed chaetae on chaetiger 7 (Warren 1991), and was previously recorded from the North Atlantic (reviewed in Hartmann-Schröder 1996). However, eyes were observed on most of the specimens, which are reputed to be absent in adult *Capitella giardi*. Specimens of up to 14 mm in length, for approximately 50 segments, were recorded. Oug (2000) noted similar specimens near Tromsø, northern Norway, albeit with fully seven anterior chaetigers with capillary chaetae, and reported these as *Capitella* sp. We do not have the opportunity to compare the Jan Mayen material with certified specimens of *Capitella giardi* and related taxa, so the specimens are simply referred to as *Capitella* sp. A.

Capitella sp. B

Material examined. Stn 822-99 (52).

Remarks. All specimens clearly with seven anterior chaetigers, they are generally stouter and larger than *Capitella* sp. A. Chaetal bundles are generally more prominent than those observed in *Capitella* sp. A. All specimens bear genital hooks. Some individuals with dark, amber-coloured capillary chaetae; others with pale, almost transparent chaetae. One brooding female was observed in a tube made of brittle transparent mucus, with large adhering sand grains. Future studies should investigate whether *Capitella* sp. A and B are juvenile and adult forms, respectively.

Capitella capitata (O. Fabricius, 1780)

Capitella capitata. – Gulliksen et al. 1980: 140.

Previous reports. Northern part of Jan Mayen, 5–30 m depth (Gulliksen et al. 1980).

Remarks. *Capitella capitata* is one of the most widely recorded polychaetes worldwide, and numerous recent studies show it is also one of the most misidentified taxa. This record should be treated with caution until the specimen can be re-examined to confirm its identity.

Heteromastus filiformis Claparède, 1864

Material examined. Stns 806-99 (3), 808-99 (13), 822-99 (13).

Remarks. All specimens observed with five segments with capillary chaetae, followed by five segments bearing only hooks. Specimens from station 808-99 are consistently smaller than those from station 806-99, almost reminiscent of *Mediomastus* from more southern locations such as the UK (Cochrane, pers. obs.), but definitely bearing five sets of capillary chaetae. Characteristic anal cirrus is observed on specimens from station 808-99; posterior segments are missing from specimens from station 806-99.

Notomastus latericeus M. Sars, 1851

Material examined. Stn 808-99 (3).

Remarks. The specimen is missing posterior segments. The thorax bears one anterior achaetous and 11 chaetigerous segments. The thorax has a characteristic rugose appearance.

Maldanidae

Praxillura longissima Arwidsson, 1907

Praxillura longissima. – Arwidsson 1907: 27–32, table 1, figs. 1–7, table 7, figs. 208, 212, 214, 215, 218.

Previous reports. RV *Pourquoi-Pas?* stn XX, 20 July 1912, 70°58′N, 8°42′W, 36 m depth; 71°50′N, 8°51′W, 800 m depth (Arwidsson 1907).

Nicomache lumbricalis (O. Fabricius, 1780)

Nicomache lumbricalis. – von Marenzeller 1886: 22. – Fauvel 1913: 89–90. – 1946: 401.

Previous reports. Jan Mayen (von Marenzeller 1886); RV *Pourquoi-Pas?* stn V, Jan Mayen (1929) (Fauvel 1946).

Nicomache quadrispinata Arwidsson, 1907

Material examined. Stn 850-99 (1).

Remarks. A small anterior fragment with six setigerous segments is present. The distribution of glands and the presence of a single, straight acicular spine per torus in the first four chaetigers are characteristic for the species.

Clymenura polaris (Théel, 1879)

Leiachone polaris. – Arwidsson 1907: 150–156, table 4, figs 118–128, table 9, figs 284–287.

Previous reports. 70°55′N, 8°30′W, 14–21 m depth (Arwidsson 1907).

Macroclaymene sp. A

Material examined. Stn 808–99 (2).

Remarks. One complete specimen and one anterior fragment are present. The complete specimen is about 17 mm long for 33 or 34 chaetigers and one achaetous pre-anal segment (the number of segments is difficult to count precisely because of the regeneration of the posterior part). The anterior fragment is 9 mm long with 18 chaetigers. The specimens are referred to the genus *Macroclaymene* Verrill, 1900 *inter alia* based on the presence
of a cephalic plate with a rim, a relatively high number of chaetigerous segments and the presence of a pygidial funnel rimmed with several (>10) cirri. (Wolf 1984). The specimens probably belong to an undescribed species.

Microclymene sp. A

Material examined. Stn 808-99 (2).

Remarks. Two anterior fragments are present. The largest is 20 mm long for 28 chaetigers, with the head and first two chaetigers regenerating. The second specimen is 11 mm long for 10 chaetigers. The specimens agree well with specimens from Iceland (BIOICE collection, several complete specimens) identified to the same taxon (Kongsrud, pers. obs.). The general form of the pygidium, with a short caudal cirrus extending along the ventral side of the anal cone, indicates a close relationship with *Microclymene caudata* Imajima & Shiraki, 1982 from Japan.

Remarks. 14. Two anterior fragments are present. The band is present on all the examined specimens, and the typical pigment spots in some specimens, and with pigmentation absent in others.

Praxillella gracilis (M. Sars, 1861)

Material examined. Stn 808-99 (4).

Praxillella praetermissa minor Arwidsson, 1907

Praxillella praetermissa var. minor. – Arwidsson 1907: 204–205, table 4, fig. 144.

Material examined. Stns 806-99 (34), 808-99 (1).

Previous reports. Mary Muss Bay, 71°00′N, 8°30′W, 23 m depth; Treibholz Bay, 70°55′N, 8°30′W, 14–21 m depth (Arwidsson 1907).

Remarks. Arwidsson (1907) described this taxon based on two specimens from Jan Mayen. In the present material there are 22 complete specimens and several anterior and posterior fragments. There seems to be no other records of this taxon in the literature, and the validity has been questioned (Banse 1981). The main character separating it from the nominal species *Praxillella praetermissa* (Malmgren, 1866), is the presence of a glandular band in front of the parapodium on the ninth chaetiger. This band is present on all the examined specimens, and the typical *Praxillella praetermissa* is not known from Jan Mayen.

Maldane sarsi Malmgren, 1866

Maldane sarsi. – Arwidsson 1907: 251–261, table 6, figs. 192–199, table 10, figs. 333–338.

Previous reports. 71°50′N, 8°51′W, 800 m depth (Arwidsson 1907).

Notoprocotus oculatus arctica Arwidsson, 1907

Material examined. Stn 848-99 (1).

Remarks. A small complete specimen, about 6 mm long for 17 chaetigers and three achaetous pre-anal segments.

Rhodine gracilior Tauber, 1879

Material examined. Stn 808-99 (6).

Remarks. The specimens of *Rhodine* are extremely fragile, and only anterior fragments are present in the sample. The distribution of glands on the anterior chaetigers and shape of the collar on chaetigers 2 and 3 agrees well with the description of *Rhodine gracilior* by Arwidsson (1907).

Oweniidae

Galathowenia oculata (Zaks, 1923)

Myriochele sp. – Gulliksen 1974a: 23.

Material examined. Stns 9-72 (1), 22-72 (1), 23-72 (3), 37-72 (1), 38-72 (2), 39-72 (1), 808-99 (>100), 817-99 (1).

Previous records. Stns 9-72, 22-72, 23-72, 37-72, 38-72, 39-72 (Gulliksen 1974a).

Remarks. Nilsen & Holte (1985) mentioned characteristic eye spots as a character for identification of this species. Although eye spots and pigmentation have not been reported to be present in different populations (Nilsen & Holte 1985; Parapar 2003), pigmented eye spots were observed in all samples from Jan Mayen. Pigmentation on the collar was variable, with some pigment spots in some specimens, and with pigment spots absent in others.

Owenia assimilis (Sars, 1851)

Amnochara assimilis. – Hansen 1879b: 270.

Owenia assimilis. – Koh, Bhaud & Jirkov 2003: 182–183.

Previous reports. NNAE stn 224, 70°50′N, 8°20′W, 174 m depth (Hansen 1879b).

Remarks. This species was originally treated as synonymous with *Owenia fusiformis*, e.g., by Fauvel (1927), a synonymy that has been accepted by most authors since. Koh et al. (2003), however, re-established the species, but advised that more material should be examined for a re-description and clarification of the characters. Koh et al. (2003) indicated records from Jan Mayen, but referred incorrectly to Malmgren (1867) and Sars (1851) as sources, rather than Hansen (1879b). The identity of the species needs to be confirmed, considering that several similar species may occur in the area (see Koh et al. 2003).

Owenia fusiformis delle Chiaje, 1841

Owenia fusiformis. – Wesenberg-Lund 1950: 45–46. – 1953: 87. – Nilsen & Holte 1985: 19.

Previous reports. Ingolf stn 115, 23 July 1896, 70°50′N, 8°29′W, 162 m depth (Wesenberg-Lund 1950).

Remarks. *Owenia fusiformis* does not occur in the North Atlantic (Koh et al. 2003). Specimens identified by Wesenberg-Lund (1950) from Jan Mayen need to be
re-examined to confirm their identity. Wesenberg-Lund (1953) and Nilsen & Holthe (1985) reported *Owenia fusiformis* from Jan Mayen based on the record of *Amnochaes assimilis* by Hansen (1879b).

Owenia polaris Koh, Bhaud & Jirkov, 2003

Owenia fusiformis. – Gulliksen 1974a: 23.

Material examined. Stns 7-72 (4), 21-72 (3), 38-72 (1), 806-99 (1), 808-99 (11).

Previous records. Stns 7-72, 21-72, 38-72 (Gulliksen 1974a) as *Owenia fusiformis*.

Remarks. Specimens identified as *Owenia fusiformis* from the 1972 survey (Gulliksen 1974a) were re-identified to *Owenia polaris*, based on the recent description by Koh et al. (2003). The specimens conform well to their description: the angle of teeth of the uncini relative to the front shaft, no shoulder present, the tentacular crown being short in all specimens in a 1 : 2 tentacular crown: thorax length ratio (Koh et al. 2003). Hence, these specimens differ from the *Owenia fusiformis* described from the Mediterranean (Koh et al. 2003) by the length of the tentacular crown, and also by the angle of teeth of the uncini. As previously reported for *Owenia fusiformis* from the same area (Nilsen & Holthe 1985), the examined specimens were pigmented on the collar and thoracic segments, although pigmentation patterns varied from a few small spots to larger dorsal and lateral areas. Specimens measured up to 40 mm in length. The variation of these few specimens compared with the few studied by Koh et al. (2003) indicate a larger variation that should be taken into account when more material is available. The bottom temperature at the sampling locality was measured to 1.5°C at the time of sampling (Lønne 1999), which is consistent with the report by Koh et al. (2003).

Ampharetidae

Ampharete acutifrons (Grube, 1860)

Ampharete acutifrons. – Wesenberg-Lund 1950: 47.

Previous reports. Ingolf stn 115, 23 July 1896, 70°50’N, 8°29’W, 162 m depth (Wesenberg-Lund 1950).

Ampharete baltica Eliason, 1955

Ampharete baltica. – Gulliksen 1974a: 23. – Holthe 1986: 34–35, fig. 9, map 8.

Material examined. Stn 7–72 (1).

Previous records. Stn 7–72 (Gulliksen 1974a).

Ampharete finmarchica (M. Sars, 1866)

Ampharete finmarchica. – Gulliksen 1974a: 23. – Holthe 1986: 38–39, fig. 11, map 10.

Previous records. Stns 3–72, 9–72, 17–72, 23–72, 29–72, 39–72 (Gulliksen 1974a).

Amphicteis gunneri (M. Sars, 1835)

Amphicteis gunneri. – Wesenberg-Lund 1950: 47–48.

Previous reports. Ingolf stn 115, 23 July 1896, 70°50’N, 8°29’W, 162 m depth (Wesenberg-Lund 1950).

Anobothrus gracilis (Malmgren, 1866)

Anobothrus gracilis. – Holthe 1986: 50–51, fig. 18, map 17.

Previous reports. Jan Mayen (Holthe 1986).

Edysippe vanelli (Fauvel, 1936)

Material examined. Stns 834-99 (2), 848-99 (12).

Remarks. Specimens agree with description given by Holthe (1986). Holthe reported this species from the Norwegian coast at 15–313 m depth. This depth range is increased here by the specimens found in this study, from stations 834 and 848 at depths of 771 and 599 m, respectively.

Glyphanostomum pallescens (Théel, 1879)

Glyphanostomum pallescens. – Holthe 1986: 70–73, fig. 29, map 28.

Material examined. Stn 813-99 (1).

Previous records. Holthe (1986) referred to previous records of this species from Jan Mayen, but the original references have not been traced.

Melinna cristata (M. Sars, 1851)

Melinna cristata. – Holthe 1986: 81–83, fig. 34, map 33.

Previous reports. Ingolf stn 115, 23 July 1896, 70°50’N, 8°29’W, 162 m depth (Wesenberg-Lund 1950); Jan Mayen (Holthe 1986).

Remarks. The specimens reported from Jan Mayen by Holthe (1986) were most likely the same material identified by Wesenberg-Lund (1950). *Melinna cristata* as used in the literature has recently been shown to be a species complex in North Atlantic waters representing the three species *Melinna cristata*, *Melinna elisabethae* and *Melinna albicincta* (Mackie & Pleijel 1995). The material of *Melinna cristata* from Jan Mayen should be re-examined.

Melinna elisabethae McIntosh, 1922

Material examined. Stn 808-99 (2).

Remarks. Specimens agree with description given by Mackie & Pleijel (1995).

Melythasides laubieri Desbruyeres, 1978

Material examined. Stn 848-99 (13).

Terebellidae

Baffinia hesslei (Annenkova, 1924)

Baffinia hesslei. – Gulliksen 1980 et al.: 140.

Baffinia hesslei. – Holthe 1986: 94–95, fig. 39, map 38.
Previous reports. Northern part of Jan Mayen, 5–30 m depth (Gulliksen et al. 1980); Jan Mayen (Holthe 1986).

Eupolymnia nesidensis (delle Chiaje, 1828)
Polymnia nesidensis. – Gulliksen 1974a: 24.
Eupolymnia nesidensis. – Holthe 1986: 111–112, fig. 48, map 47.
Material examined. Stn 11B–72 (1).
Previous records. Stn 11B (Gulliksen 1974a); Jan Mayen (Holthe 1986).

Eupolymnia nesidensis (delle Chiaje, 1828)
Polymnia nesidensis. – Gulliksen 1974a: 24.
Eupolymnia nesidensis. – Holthe 1986: 111–112, fig. 48, map 47.
Material examined. Stn 11B–72 (1).
Previous records. Stn 11B (Gulliksen 1974a); Jan Mayen (Holthe 1986).

Lanassa venusta (Malm, 1874)
Material examined. Stn 808-99 (7).

Lapbania bocki Malmgren, 1866
Lapbania bocki. – Gulliksen 1974a: 24. – Holthe 1986: 130–131, fig. 58, map 57.
Material examined. Stns 8-72 (1), 17-72 (3), 806-99 (1), 808-99 (19), 822-99 (23).
Previous records. Stns 8-72, 17-72 (Gulliksen 1974a); Jan Mayen (Holthe 1986).

Neoamphitrite affinis (Malmgren, 1866)
Amphitrite affinis. – von Marenzeller 1886: 22. – Wesenberg-Lund 1953: 95.
Previous reports. Jan Mayen, 230 m depth (von Marenzeller 1886).

Nicolea venustula (Montagu, 1818)
Nicolea venustula. – von Marenzeller 1886: 22–23. – Wesenberg-Lund 1950: 51–52.
Previous reports. Jan Mayen, 20 and 140 m depths (von Marenzeller 1886); Ingolf stn 116, 23 July 1896, 70°05′N, 8°26′W, 699 m depth (Wesenberg-Lund 1950).

Nicolea zostericola (Ørsted, 1844)
Nicolea zostericola. – Fauvel 1946: 402. – Gulliksen et al. 1980: 140. – Holthe 1986: 124–126, fig. 55.
Previous reports. RV Pourquoi-Pas? 1929 stn VII, Jan Mayen (Fauvel 1946); northern part of Jan Mayen, 5–30 m depth (Gulliksen et al. 1980); Jan Mayen (Holthe 1986).

Thelepus cincinnatus (O. Fabricius, 1780)
Thelepus cincinnatus. – von Marenzeller 1886: 23.
Previous reports. Jan Mayen, 230 m depth (von Marenzeller 1886).

Polycirrus arcticus M. Sars, 1865
Polycirrus albicans. – Wesenberg-Lund 1950: 55.
Previous reports. Ingolf stn 116, 23 July 1896, 70°05′N, 8°26′W, 699 m depth (Wesenberg-Lund 1950).

References
Chone duneri Malmgren, 1867
Material examined. Stn 822-99 (1).
Remarks. Chone duneri was described from Svalbard. However, the abundant records of Chone duneri along the Norwegian coast and the northern North Sea very often refer to Chone longocirrata Langerhans, 1881 and at least one other undescribed taxon (discussed as Chone A in Cochrane 2000). The specimens have six pairs of flanged radioles, united by the inter-radiolar (palmate) membrane for approximately two-thirds of their length. The collar is ventrally intact, with an anteriorly rounded margin that bears an inverted horseshoe-shaped ciliated patch (remains uncoloured after staining with methyl green; also see comments in Banse 1970). It is distinguished from both Chone fauveli and Chone infundibiliformis by having fewer pairs of radioles, and from the former by the long free ends of the radioles. It is further distinguished from Chone longocirrata by having fully spatulate thoracic notochaetae (in inferior posterior position), rather than the narrower, “pseudospatulate” chaetal type.

Chone fauveli McIntosh, 1916
Chone infundibiliformis. – Gulliksen 1974a: 24.
Material examined. Stns 11-72 (30), 24-72 (16), 25-72 (83), 806-99 (1), 822-99 (145).
Previous records. Stns 11-72, 24-72, 25-72 (Gulliksen 1974a, as Chone infundibuliformis).

Remarks. All specimens measure more than 80 mm in trunk length, some more than 120 mm. Chone fauveli has until recently not been given much attention in the literature, such that it is often misidentified as Chone infundibuliformis. The most obvious feature is the prominent outward flare of the collar, which does not appear to be a preservation artefact (Knight-Jones, pers. com.). It is easily distinguished from Chone infundibuliformis by having more pairs of radioles (up to 36 pairs, compared with just over 20 pairs), with short, broad flanged tips, instead of long, tapering free ends. Chone fauveli completely lacks the characteristic apinate ventral cirri (also called radiolar appendages), but does have distinctly elongated pinnules on the dorsalmost radioles (pinnular appendages). However, the radiolar lobes tend to curl inwards on fixation, such that the dorsal pinnular appendages are actually visible ventrally. This may cause the feature to be misinterpreted as apinate ventral cirri, and consequently the specimens are misidentified. Specimens collected in 1972 were around half the size of those found in 1999. Chone fauveli is common in British waters (generally lesser body size), and is also recorded from northern Norway (Sars 1862), described as Chone fauvelii by Knight-Jones, pers. com.; also discussed in Cochrane (2000).

Chone infundibuliformis Kroyer, 1856
Chone infundibuliformis. – von Marenzeller 1886: 23. – Fauvel 1913: 91. – Wesenberg-Lund 1953: 108–109.

Previous records. Jan Mayen, 20–240 m depth (von Marenzeller 1886); south coast of Jan Mayen RV Pourquoi-Pas? stn XXI, 21 July 1912, 70°57′W, 10°39′W, 37 m depth (Fauvel 1913); Jan Mayen, 30 m depth (Wesenberg-Lund 1953).

Remarks. As a result of revisions and frequent misidentifications (see above for comments on Chone fauveli and Chone dumeri), early references to Chone infundibuliformis should be re-examined to verify the true identity of the specimens. More specimens were reported in Gulliksen (1974a) than are included here. This material has not been possible to obtain, and may be lost.

Chone paucibranchiata (Kroyer, 1856)
Material examined. Stns 808-99 (198), 848-99 (1), 850-99 (1).

Remarks. Specimens characteristically with a trunk length of less than 10 mm, approximately 1–1.5 mm wide. Three pairs of radioles only, with a low palmate membrane. The crown is typically detached from trunk on fixation. Dorsal collar margins are thin, membranous and often slightly bulged. Very characteristic is the presence of prominent bilobed ventral extensions of the anterior peristomial ring, projecting beyond the anterior collar margins. The tube is made of thick parchment-like mucus, with adhering sand/mud particles. A further description is given in Banse (1970) and Cochrane (2000).

Euchone analis (Kroyer, 1856)
Euchone analis. – von Marenzeller 1886: 23. – Wesenberg-Lund 1950: 59.

Material examined. Stn 822-99 (3).

Previous records. Jan Mayen, 30 m depth, (von Marenzeller 1886); Ingolf stn 115, 23 July 1896, 70°50′N, 8°29′W. 162 m depth; Ingolf stn 116, 23 July 1896, 70°05′N, 8°26′W, 699 m depth (Wesenberg-Lund 1950).

Remarks. Specimens conform to the description given in Banse (1970), with 10 pairs of flanged radioles and three or four pairs of ventral cirri (adjacent to the ventralmost radiolis, lacking pinnules), and with the ventral pair being shortest. The free ends of the radioles are tapering. The palmate membrane extends approximately half the length of the crown. They are readily distinguished from Euchone elegans Verrill, 1873 by having a larger number of radioles and abdominal segments, as well as more tapering free ends of radioles. In addition, the abdominal uncin in Euchone analis are characteristically square or box-shaped, whereas those in Euchone elegans usually have a pronounced posterior extension.

Laonome kroyeri Malmgren, 1865

Material examined. Stn 806-99 (2).

Remarks. Laonome often superficially resembles large Chone, such as Chone fauveli in this study. However, it is easily distinguished by its lack of palmate membrane, and by both the thoracic and abdominal uncin having rounded breasts and lacking handles. Further information is given in Fitzhugh (1989).

Bispira crassicornis (M. Sars, 1851)
Sabella crassicornis. – von Marenzeller 1886: 23.

Material examined. Stn 834-99 (1).

Previous records. Jan Mayen, 130 m depth (von Marenzeller 1886).

Remarks. The previously large and complex group Sabella, together with Bispira and Stylomma, was relatively recently revised (Knight-Jones & Perkins 1998). Sabella was restricted to include only species that have spiralled fascicles of abdominal chaetae, a straight anterior border of the first thoracic shield, and radioles that lack composite eyes and flanges. Most species formerly placed in Sabella, including Sabella crassicornis, were referred to Bispira. These have abdominal chaetal fascicles possessing C-shaped fascicles of abdominal chaetae, first thoracic
shield with a W-shaped anterior border, and, in most species, radioles with paired composite eyes and flanges (Knight-Jones & Perkins 1998). Spirality of the crown is not unique for the group *Bispira*, and not all of its members possess the feature. *Bispira crassicornis* was described from northern Norway, but has been misidentified from numerous localities, including the Mediterranean, Moroccan coast and the British Isles. The geographical distribution appears to be in deeper or cold waters of the northern Atlantic, extending across the Arctic Ocean to Alaska. In the far northern Atlantic/Arctic, it is likely to be replaced by *Bispira fabricii* (see Knight-Jones & Perkins 1998). Both Johansson (1927) and Fauvel (1927) erroneously synonymized *Bispira crassicornis* with *Bispira fabricii*. As a result, previous records of both taxa should be treated with some caution, or the specimens should be re-examined. Also see the remarks below for *Bispira fabricii*.

Bispira fabricii (Krøyer, 1856)

Sabella fabricii. – Wesenberg-Lund 1953: 106.

Remarks. This taxon was originally described from Greenland as *Sabella fabricii*, and was referred to *Bispira* by Knight-Jones & Perkins (1998; see remarks above), but has often been confused with *Bispira crassicornis*. Furthermore, *Sabella spetsbergensis* Malmgren, 1866 is referred to *Bispira fabricii*. *Bispira crassicornis* has longer ventral collar lappets and more numerous eyes on the radioles than *Bispira fabricii* (for a full description, see Knight-Jones & Perkins 1998). The distribution appears to be confined to the Arctic waters of the North Atlantic. The record mentioned by Wesenberg-Lund (1953) is not a primary record, but a reference to von Marenzeller (1886), who referred to this species as *Sabella crassicornis*. Von Marenzeller (1886) listed this species as a synonym of *Sabella crassicornis*. As mentioned above, specimens should be re-examined to verify their true identity.

Serpulidae

Apomatus similis Marion & Bobretzky, 1875

Material examined. Stn 817-99 (2).

Remarks. Both specimens are lacking an operculum. One has a regenerating branchial crown. The identification is based on the collar, thoracic neuropodia and presence of “*Apomatus* chaetae” on the fourth thoracic segment.

Placostegus tridentatus (O. Fabricius, 1779)

Placostegus tridentatus. – Wesenberg-Lund 1950: 60.

Previous reports. Ingolf stn 115, 23 July 1896, 70°50′N, 8°29′W, 162 m depth (Wesenberg-Lund 1950).

Remarks. In her text, Wesenberg-Lund (1950) stated the depth to be 1802 m, which contradicts the depth of 162 m in the station list. It is assumed that the latter is the correct one, as 1802 m is the depth of the Ingolf station 104, where this species is also found.

Serpulidae: Spirorbinae

Remarks. Eleven specimens in tubes were found in the material collected in 1999, all lacking the anterior part of the body, possibly as a result of rough handling when parting the tubes from the substrate, and are therefore not identifiable. Of these, two tubes had wide prominent trumpet-shaped openings and transversal growth rings. The tubes were very delicate.

Circeis spirillum (L., 1758)

Spirorbis spirillum. – van Marenzeller 1886: 23. – Wesenberg-Lund 1953: 116.

Previous reports. Jan Mayen (von Marenzeller 1886).

Jugaria quadrangularis (Stimpson, 1854)

Spirorbis sp. – Gulliksen 1974a: 24.

Material examined. Stn 2-72 (2).

Previous records. Stn 2-72 (Gulliksen 1974a).

Remarks. Two specimens are present, one partly in a tube, with an opercular brood chamber and a distinct angular hourglass-shaped talon. An additional five small specimens are present in the material, with no eggs in the operculum, but talons similar to the one referred to *Jugaria quadrangularis* by Knight-Jones et al. (1991: 194, fig. 4b).

Jugaria granulata (L., 1767)

Spirorbis granulatus. – Fauvel 1913: 82. – Wesenberg-Lund 1950: 63. – 1953: 118.

Previous reports. Jan Mayen RV ‘Pourquoi-Pas’ stn XX, 20 July 1912, 70°50′N, 10°33′W, 180 m depth (Fauvel 1913); Ingolf stn 117, 24 July 1896, 69°13′N, 8°23′W, 1889 m depth (Wesenberg-Lund 1950).

Spirorbis spirorbis (L., 1758)

Spirorbis spirorbis. – Wesenberg-Lund 1950: 63.

Previous reports. Ingolf stn 115, 23 July 1896, 70°50′N, 8°29′W, 162 m depth (Wesenberg-Lund 1950).

Remarks. This is a littoral or shallow sublittoral species living on large algae such as *Fucus* spp. (Knight-Jones & Knight-Jones 1977). The report from Jan Mayen at a depth of 162 m by Wesenberg-Lund must be considered dubious, and the specimens should be re-examined.

Acknowledgements

The cruise in 1999 was organized by the University Centre in Svalbard as a part of a graduate course in Arctic...
benthic fauna (course AB301). We are grateful to Bjørn Gulliksen and Ole Jørgen Lønne who organized the 1999 cruise in which one of us (TB) participated, to fellow students for their help with sampling, to Jon-Arne Sneli and Torleiv Brattegard for help and advice during the cruise and to the crew of the RV Jan Mayen. We would like to thank the late Torleif Holthe for fruitful discussions on Arctic fauna and biogeography, and Ruth Barnich and Ole S. Tendal for help with information. This is a contribution from the Norwegian Polychaete Forum.

References

Arwidsson I. 1907. Studien über die skandinavischen und arktischen Maldaniden nebst Zusammenstellung der übrigen bisher bekannten Arten dieser Familie. (Studies of the Scandinavian and Arctic maldanids, with a compilation of the currently known species within this family.) Zoologische Jahrbücher, Abteilung für Systematik, Geographie und Biologie der Tiere 25, Supp. 9. Jena: Gustav Fischer.

Banse K. 1970. The small species of Euchone Malmgren (Sabellidae, Polychaeta). Proceedings of the Biological Society of Washington 83, 387–408.

Banse K. 1981. On some Cossuridae and Maldanidae (Polychaeta) from Washington and British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 38, 633–637.

Blindheim J. 2004. Oceanography and climate. In H.R. Banse K. 1981. On some Cossuridae and Maldanidae (Polychaeta: Cirratulidae) from deep water in the northeast Atlantic. Descriptions of a new genus and two new species. Canadian Journal of Fisheries and Aquatic Sciences 38, 633–637.

Brattegard T. & Holthe T. (eds.) 1997. Blindheim J. 2004. Oceanography and climate. In H.R. Banse K. 1981. On some Cossuridae and Maldanidae (Polychaeta: Cirratulidae) from deep water in the northeast Atlantic. Descriptions of a new genus and two new species. Canadian Journal of Fisheries and Aquatic Sciences 38, 633–637.

Brattegard T. & Fossá J.H. 1991. Replicability of an epibenthic sampler. Journal of the Marine Biological Association of the UK 71, 153–166.

Brattegard T. & Holthe T. (eds.) 1997. Distribution of marine, benthic macro-organisms in Norway. Research Report for DN 1997-1. Trondheim: Directorate for Nature Management.

Chambers S. 2000. A redescription of Chaetognome setosa Malmgren, 1867 including a definition of the genus, and a description of a new species of Chaetognome (Polychaeta: Cirratulidae) from the northeast Atlantic. Bulletin of Marine Science 67, 587–596.

Chambers S.J. & Woodham A. 2003. A new species of Chaetognome (Polychaeta: Cirratulidae) from deep water in the northeast Atlantic, with comments on the diversity of the genus in cold northern waters. Hydrobiologia 496, 41–48.

Cochrane S.J. 2000. Taxonomy and systematics of selected marine soft-bottom fan-worms (Polychaeta: Sabellidae: Sabellinae). PhD thesis, University of St. Andrews.

Ditlevson H. 1917. The Danish Ingolf-Expedition. Vol. 4. Part 4. Annelids. I. Copenhagen: H. Hagerup.

Eliason A. 1955. Neue oder wenig bekannte Schwedische Amphareteniden (Polychaeta). (New and lesser known Ampharetidae from Sweden.) Göteborgs Kungliga Vetenskaps- och vitterhetssamhälles Handlingar 6(16), 1–17.

Eliason A. 1962. Die polychaeten der Skagerak-Expedition 1933. (Polychaetes from the Skagerak Expedition in 1933.) Zoologiska Bidrag, Uppsala 33, 207–293.

Fauvel P. 1913. Campagne de Pourquoi-Pas? (Island et Jan Mayen, 1912). Annelidés Polychètes. (The Pourquoi-Pas? Expedition. [Iceland and Jan Mayen, 1912]. Annelida, Polychaeta.) Bulletin de Muséum d’Histoire Naturelle, Paris 2, 80–93.

Fauvel P. 1923. Polychètes errantes. (Polychaeta errantia.) Faune de France 5. Paris: P. Lechevalier.

Fauvel P. 1927. Polychètes sedentaires. Addenda aux Errantes, Archiannelides, Myzostomaires. (Polychaeta sedentaria. With supplement on errantia, Archiannelida, Myzostomida.) Faune de France 16. Paris: P. Lechevalier.

Fauvel P. 1946. Annélides Polychètes des Croisières du Pourquoi-Pas? (Annelida Polychaeta from cruises with the Pourquoi-Pas?) Bulletin du Muséum d’Histoire Naturelle, Paris 18(5), 397–403.

Fitzhugh K. 1989. A systematic revision of the Sabellidae–Coelobranchiidae–Sabellonidae complex (Annelida: Polychaeta). Bulletin of the American Museum of Natural History 192. New York: American Museum of Natural History.

Frame A.B. 1992. The lumbrinerids (Annelida: Polychaeta) collected in two northwestern Atlantic surveys with descriptions of a new genus and two new species. Proceedings of the Biological Society of Washington 105, 185–218.

Furreg E. 1925. Zur Systematik der Polychätenfamilie Scalibregmidae. (On the systematics of the polychaete family Scalibregmidae.) Zoologische Jahrbücher, Abteilung für Systematik, Geographie und Biologie der Tiere 50(2), 123–190.

Gabrielsen G.W., Brekke B., Alsos I.G. & Hansen J.R. 1997. Natur- og kulturmiljøet på Jan Mayen. (The nature and cultural environment on Jan Mayen.) Norsk Polarinstitutt Meddelelser 144. Oslo: Norwegian Polar Institute.

George J.D. & Hartmann-Schröder G. 1985. Polychaetes: British Amphinomida, Spintherida and Eunicida. Synopsis British Fauna New Series 32. London: E.J. Brill.

Gulliksen B. 1974a. Marine investigations at Jan Mayen. Kongelige Norske Videnskabers Selskap Museet, Miscellanea 19, 1–46.

Gulliksen B. 1974b. Ascidians of Jan Mayen. Norsk Polarinstitutt Meddelelser 144. Oslo: Norwegian Polar Institute.

Gulliksen B. 1974a. Marine investigations at Jan Mayen. Kongelige Norske Videnskabers Selskap Museet, Miscellanea 19, 1–46.

Gulliksen B. 1974b. Ascidians of Jan Mayen. Astarte 7, 67–70.

Gulliksen B., Beuchel F., Brattegard T. & Palerud R. 2004. The marine sublittoral fauna of Jan Mayen, Zoogeography and succession on “New” lava grounds. In S. Skreslet (ed.): Jan Mayen island in scientific focus. Pp. 159–171. Dordrecht: Kluwer Academic Publishers.

Gulliksen B., Haug T. & Sandnes O.K. 1980. Benthic macrofauna on new and old lava grounds at Jan Mayen. Sarsia 65, 137–148.

Gulliksen B., Palerud R., Brattegard T. & Sneli, J.-A. (eds.) 1999. Distribution of marine benthic macro-organisms at Svalbard (including Bear Island) and Jan Mayen. Research Report for DN 1999-4. Trondheim: Directorate for Nature Management.
Hansen G.A. 1879a. Annelider fra den norske Nordhavsexpedition i 1876. (Annelids from the Norwegian northern seas expedition in 1876.) Nyt Magazin for Naturvidenskaberne 24, 1–17.

Hansen G.A. 1879b. Annelider fra den norske Nordhavsexpedition i 1877. (Annelids from the Norwegian northern seas expedition in 1877.) Nyt Magazin for Naturvidenskaberne 24, 267–272.

Hansen G.A. 1880. Annelider fra den norske Nordhavsexpedition i 1878. (Annelids from the Norwegian northern seas expedition in 1878.) Nyt Magazin for Naturvidenskaberne 25, 224–234.

Hansen G.A. 1882. Annelida. The Norwegian North-Atlantic Expedition 1876–1878. VII. Vol. 3. Zoology. Christiania: Grøndahl & Son.

Hartman O. & Fauchald K. 1971. Deep-water benthic polychaetous annelids off New England to Bermuda and other North Atlantic Areas. Part II. Allan Hancock Monographs in Marine Biology 6. Los Angeles: University of Southern California Press.

Hartmann-Schröder G. 1996. Annelida, Borrstenwürmer, Polychaeta. 2. Neubearbeitete Auflage. Die Tierwelt Deutschlands 58. (Annelida, bristleworms, Polychaeta. 2. The Fauna of Germany. Revised edition) Jena: Gustav Fischer.

Holthe T. 1986. Polychaeta Terebellomorpha. Marine Invertebrates of Scandinavia 7. Oslo: Norwegian University Press.

Imajima M. & Shiraki Y. 1982. Maldanidae (Annelida: Polychaeta). Zoologiska Bidrag från Uppsala 11, 47–88.

Johansson K.E. 1927. Beiträge zur Kenntnis der Polychaeten-Familien Herminellidae, Sabellidae und Serpulidae. (Contributions to knowledge of the polychaete family Hermellidae, Sabellidae and Serpulidae.) Zoologiska Bidrag från Uppsala 11. Stockholm: Almqvist & Wiksell Periodical Co.

Kato T. & Pleijel F. 2003. Two new species of Owenia (Annelida: Polychaeta) from the southern Indian Ocean. Antarctic Research Series 52, 273–276.

Koh B.-S., Bhaud M.R. & Jirkov I.A. 2003. A revision of Sabella, Bispira and Stylomma (Polychaeta: Sabellidae). Zoological Journal of the Linnean Society 123, 385–467.

Knights-Jones P. & Knight-Jones E.W. 1977. Taxonomy and ecology of British Spirorbidae (Polychaeta). Journal of the Marine Biological Association of the UK 57, 453–499.

Knight-Jones P., Knight-Jones E.W. & Buzhinskaya G. 1991. Distribution and interrelationships of northern spirobid genera. Bulletin of Marine Science 48(2), 189–197.

Knight-Jones P. & Perkins T.H. 1998. A revision of Sabella, Bispira and Stylomma (Polychaeta: Sabellidae). Zoological Journal of the Linnean Society 123, 385–467.

Lonne O.J. (ed.) 1999. AB-301A. Marine benthic fauna of Svalbard. 1999. Cruise report. Longyearbyen: University Courses on Svalbard.

Losshann A.-A. 1983. En systematisk og dyregeografisk undersøkelse over skjellrygg-gruppen (Familie Aphroditidae sensu Fauvel 1923). (A systematic and zoogeographical investigation of the scale-worm group [Family Aphroditidae sensu Fauvel 1923].) Cand. real. thesis. University of Oslo.

Maciolek N.J. 1990. A redescription of some species belonging to the genera Spio and Microspio (Polychaeta: Annelida) and descriptions of three new species from the northwestern Atlantic Ocean. Journal of Natural History 24, 1109–1114.

Mackie A.S.Y. 1984. On the identity and zoogeography of Prionospio cirrifera Wirén, 1883 and Prionospio multibranchiata Berkely, 1927 (Polychaeta; Spionidae). In P.A. Hutchings (ed.): Proceedings of the First International Polychaete Conference, Sydney, Pp. 34–47. Sydney: Linnean Society of New South Wales.

Mackie A.S.Y. & Pleijel F. 1995. A review of the Melinna cristata—species group (Polychaeta: Ampharetidae) in the northeastern Atlantic. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 92 (Ergänzungsband 1), 103–124.

Malmgren A.J. 1867. Annulata polychaeta Spetsbergæ, Grönländæ, Islandæ et Scandinaviæ hastenus cognita. (Present knowledge of Annelida Polychaeta from Greenland, Iceland and Scandinavia.) Öfversikt af Kongliga Vetenskaps-Akademins Förhandlingar 24, 127–235.

Möbius K. 1874. Mollusken, Wirrmer, Echinodermern und Coelenteraten. Die Zweite Deutsche Nordpolarfarht in die Jahren 1869 und 1870 unter führung Kapitän Karl Koldewey. (Molluscs, worms, echinoderms and coelenterates. The second German north polar expedition during the years 1869 and 1870 under the leadership of Captain Karl Koldewey.) Leipzig: Wissenschaftliche Erfiibrinisse.

Nilsen R. & Holthe T. 1985. Artic and Scandinavian Oweniidae (Polychaeta) with a description of Myriochile fragilis sp. n., and comments on the phylogeny of the family. Sarsia 70, 17–32.

Nygren A., Pleijel F. & Sundberg P. 2005. Genetic relationships between Nereimyra punctata and N. woodsholea (Hesionidae, Polychaeta). Journal of Zoological Systematics and Evolutionary Research 43, 273–276.

Orensanz J.M. 1990. The eunicemorph polychaeta annelids from Antarctic and subantarctic seas. With addenda to the Eunicemorpha of Argentina, Chile, New Zealand, Australia, and the southern Indian Ocean. Antarctic Research Series 52. Washington, D.C.: American Geophysical Union.

Oug E. 2000. An annotated list of polychaetous annelids from the region of Tromsø, northern Norway. In E. Oug: The marine benthic fauna in the region of Tromsø, northern Norway, with particular reference to bristle worms (Annelida: Polychaeta). PhD thesis, University of Tromsø.

Parapar J. 2003. Oweniidae (Annelida, Polychaeta) from Icelandic waters, collected by the BIOICE project, with a description of Myrioglobula islandica n. sp. Sarsia 88, 274–290.
Petersen M.E. 1998. Pholoe (Polychaeta: Pholoidae) from northern Europe: a key and notes on the nearshore species. Journal of the Marine Biological Association of the UK 78, 1373–1376.

Pettibone M.H. 1954. Marine polychaete worms from Point Barrow, Alaska, with additional records from the North Atlantic and North Pacific. Proceedings of the United States National Museum 103, 203–356.

Pettibone M.H. 1963. Marine polychaete worms of the New England region. I. Aphroditidae through Trochochaetidae. Bulletin of the United States National Museum 227, 1–356.

Pettibone M.H. 1976. Revision of the genus Macellicephala McIntosh and the subfamily Macellicephalinae Hartmann-Schröder (Polychaeta: Polynoidae). Smithsonian Contributions to Zoology 229. Washington, D.C.: Smithsonian Institution Press.

Pettibone M.H. 1993. Revision of some species referred to Anitoe, Antinoeulla, Antinoana, Byglides, and Harmothoe (Polychaeta: Polynoidae: Harmothoninae). Smithsonian Contributions to Zoology 545. Washington, D.C.: Smithsonian Institution Press.

Pleijel F. 1993. Polychaeta Phyllodocidae. Marine Invertebrates of Scandinavia 8. Oslo: Norwegian University Press.

Rainer S.F. 1991. The genus Nephtys (Polychaeta): Phyllodocida of northern Europe: a review of species, including the description of N. pulchra sp. n. and a key to the Nephtyidae. Helgoländer Meeresuntersuchungen 45, 65–96.

Sars M. 1851. Beretning om en i sommeren 1849 foretagen zoologisk reise i Lofoten og Finnmark. (Accounts from a zoological journey to Lofoten and Finnmark in 1849.) Nyt Magazin for Naturvidenskaberne, Christiania 2(2), 121–211.

Sars M. 1852. Foredrag om de ved Norges Kyster forekommende Arter al den Linnéiske Annelideslægt Sabella. (Lecture on current species in the annelid genus Sabella, described by Linné.) Forhandlinger fra Videnskabs-Selskabet i Christiania 1862, 116–133.

Sigvaldadtóttir E. 2002. Polychaetes of the genera Prionospio and Aurosio (Spionidae, Polychaeta) from Icelandic waters. Sarsia 87, 207–215.

Skjæveland S.H. 1973. Echinoderms of Jan Mayen. Astarte 6, 69–74.

Sneli J.-A. 1977. Jan Mayen molluscs. Malacologia 16, 257–260.

Sneli J.-A. 1998. A simple benthic sledge for shallow deep-sea sampling. Sarsia 83, 69–72.

Sneli J.-A. & Steinnes A. 1975. Marine mollusca of Jan Mayen Island. Astarte 8, 7–16.

Söderström A. 1920. Studier über die Polychätenfamilie Spionidae. (Study of the polychaete family Spionidae.) Uppsala: Uppsala University.

Solbakken B.E.B. 2002. Familien Orbiniidae (Polychaeta) i nordiske og tilgrensende arktiske farvann. (The family Orbiniidae [Polychaeta] in Nordic and adjacent Arctic waters.) Cand. scient. thesis, Norwegian University of Science and Technology.

Stop-Bowitz C. 1945a. Les Ophéliens Norvégiens. (The opheliids of Norway.) Nyt Magazin for Naturvidenskapene 85, 21–61.

Stop-Bowitz C. 1945b. Les Scalibregmiens de Norvège. (The scalibregmids of Norway.) Nyt Magazin for Naturvidenskapene 85, 63–87.

Tendal O.S. 1983. Sponges of Jan Mayen. Astarte 12, 53–55.

Théel H.J. 1879. Les Annélides Polychètes des mers de la Nouvelle-Zemble. (Polychaetous annelids from the waters around Novaya Zemlya.) Nyt Magazin for Naturvidenskapene 16(3), 1–75.

Thulin G. Über einige Spioniden (Polychaeta) aus dem Öresund. (On a spionid [Polychaeta] from Öresund.) Kungliga Fysiografiska Sällskapets i Lund Föhandlingar 27(5), 49–59.

von Marenzeller E. 1886. Porifera, Anthozoen, Ctenophoren und Würmer von Jan Mayen. Die Österreichische Polarstation Jan Mayen (Poriferans, ctenophores and worms from Jan Mayen. The Austrian Polar station Jan Mayen.) Beobachtungs-Ergebnisse Herausgeben von der Kaiserlichen Akademie der Wissenschaften 3, 9–24.

Warren L.M. 1991. Problems in capitellid taxonomy. The genera Capitella, Capitomastus and Capitellides (Polychaeta). Ophelia Suppl. 5, 275–282.

Wesenberg-Lund E. 1947. Syllidae (Polychaeta) from Greenland waters. Meddelelser om Grønland 134(6). Copenhagen: Commission for Scientific Research in Greenland.

Wesenberg-Lund E. 1950. Polychaeta. The Danish Ingolf-Expedition. Vol. 4. Part 14. Copenhagen: Bianco Luno.

Wesenberg-Lund E. 1953. The zoology of East Greenland. Polychaeta. Meddelelser om Grønland 122(3). Copenhagen: Commission for Scientific Research in Greenland.

Wolf P.S. 1984. Family Maldanidae Malmgren, 1867. In J.M. Uebelacker & P.G Johnson (eds.): Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Final report to the Minerals Management Service, contract 14-12-001-29091. Vol. 2. Pp. 15.1–15.21. Mobile: Barry A. Vittor & Associates.

Worsaae K. 1999. On the taxonomy of Spio filicornis (Spionidae, Polychaeta)—Nipisat, Disko, Greenland. Berichte zur Polarforschung 330, 164–169.

Žadan A.Ž. 1998. Taxonomija polihet roda Scoloplos (Orbiniidae) v Belom, Barentsevom i Severnom morjah. (Taxonomy of the polychaete genus Scoloplos Blainville, 1828 [Orbiniidae] in the White, Barents and North seas.) Zoologičeskij Žurnal 77, 177–190.