The Fundamental Properties of Galaxies and a New Galaxy Classification System

Christopher J. Conselice

1 University of Nottingham, School of Physics & Astronomy, Nottingham, NG7 2RD UK

Accepted ; Received ; in original form

ABSTRACT

We present in this paper a new three-dimensional galaxy classification system designed to account for the diversity of galaxy properties in the nearby universe. To construct this system we statistically analyse a sample of $> 22,000$ galaxies at $v < 15,000$ km s$^{-1}$ ($z < 0.05$) with Spearman rank and principal component analyses. Fourteen major galaxy properties are considered, including: Hubble type, size, colour, surface brightness, magnitude, stellar mass, internal velocities, HI gas content, and an index that measures dynamical disturbances. We find, to a high degree, that most galaxy properties are correlated, with in particular Hubble type, colour, and stellar mass all strongly related. We argue that this tight 3-way correlation is a result of evolutionary processes that depend on galaxy mass, as we show that the relation between colour and mass is independent of Hubble type. Various principal component analyses reveal that most of the variation in nearby galaxy properties can be accounted for by eigenvectors dominated by: (i) the scale of a galaxy, such as its stellar mass, (ii) the spectral type, and (iii) the degree of dynamical disturbances. We suggest that these three properties: mass, star formation, and interactions/mergers are the major features that determine a galaxy’s physical state, and should be used to classify galaxies. As shown in Conselice (2003), these properties are measurable within the CAS (concentration, asymmetry, clumpiness) structural system, thus providing an efficient mechanism for classifying galaxies in optical light within a physical meaningful framework. We furthermore discuss the fraction and number density of galaxies in the nearby universe as a function of Hubble type, for comparison with higher redshift populations.

Key words: Galaxies: Evolution, Formation, Structure, Morphology, Classification

1 INTRODUCTION

Galaxies as distinct stellar, gaseous, and dark matter units have dozens of properties measurable by a variety of techniques from gamma-ray to radio wavelengths. Some of the most basic properties include: spectral energy distributions, spectral line properties, sizes, internal velocities, structural features, and morphologies. From these observable quantities we can derive additional physical information, such as stellar, gaseous, and total masses, metallicities, the current and past star formation rates, and the fraction of light in various structural components. Each of these features reveals potentially important clues for how galaxies, including their gas content and dark matter halos, were created and have evolved. These properties are also interrelated through well-known scalings, such as the colour-magnitude relation (e.g., Sandage & Visvanathan 1978), the size-magnitude relation (e.g., Romanishin 1986), the Tully-Fisher relation (Tully & Fisher 1977), and the Fundamental Plane (Djorgovski & Davis 1987; Dressler et al. 1987). These correlations all describe the scaling of structural features of normal galaxies with each other, or with the internal kinematics of galaxies.

It is however not yet clear what the most basic evolutionary processes and galaxy observables are, and whether or not well known relations between galaxy parameters capture essential galaxy features. Is there a single, or a group of processes responsible for the diversity of galaxies? Although it is widely known that physical properties vary along the Hubble sequence, galaxies within a Hubble type have a large range of sizes, colours, surface brightnesses, masses, and so on. Perhaps there is an alternative way to classify galaxies based on the properties responsible for driving evolution. One goal of this paper is determining what physical features of galaxies are the best for classification purposes.
Currently it is assumed by many that the optical morphology of a galaxy provides this classification, either in the form of a Hubble type, or through quantitative methods. However there is no a priori reason that optical morphologies should reveal information needed to classify galaxies into a meaningful system.

We utilise fourteen properties of 22,121 galaxies in the nearby universe to address this problem. We begin our analysis with the hypothesis that our fourteen measurable features provide the basic physical information needed to fully characterise nearby galaxies. We analyse these measurable through statistical methods, such as Spearman rank and principal component analyses, to determine which observables are the most fundamental for classifying galaxies. We demonstrate that at a fundamental level many measured properties of galaxies correlate with each other. For example, scale features correlate strongly, and Hubble types correlate with many properties, including colour and stellar mass. We argue that this correlation is the reason that Hubble types have been successful in describing the nearby galaxy population.

We further show through principal component analyses that most of the variation in galaxy properties can be accounted for by three eigenvectors dominated by scale (e.g., mass), the presence of star formation, and the degree of recent interaction/merger activity. As a result, our main conclusion is that these three features are needed to understand the current and past evolutionary state of a galaxy. We further argue that galaxy mass, star formation, and mergers/interactions are responsible for the diversity in the galaxy population in the nearby universe, and should be used to construct a galaxy classification system.

This paper is a more general companion, and in some ways a prequel, to the quantitative CAS (concentration, asymmetry, clumpiness) structural analysis paper presented in Conselice (2003). In Conselice (2003) we created a new quantitative way to classify galaxies under the assumption that mass, star formation, and recent mergers were the critical properties for understanding galaxies. We now show that this assumption is justifiable through our statistical analysis of > 22,000 nearby galaxies. Conselice (2003) furthermore developed a quantitative and reproducible method for retrieving this information through the optical light of galaxies.

The outline of this paper is as follows. In §2 we give a summary of the physical features, and formation histories of various types of galaxies we study. §3 describes our galaxy sample, and the properties we use to characterise each system. §4 gives a detailed description of the nearby galaxy population, including the relative numbers and number densities of various morphological types. §5 presents our statistical analysis of our sample, while §6 utilises this information to produce a new physical classification system, and §7 is a summary. For distance measurements we use a Hubble constant of $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$, unless otherwise noted.

2 NEARBY GALAXY TYPES AND THEIR POSSIBLE FORMATION HISTORIES

There are a few generally agreed upon major nearby basic galaxy types, generally classified according to morphology, whose properties and range of possible formation histories are becoming well understood. These types are: ellipticals, spirals, lenticulars, dwarf spheroidals/ellipticals, low surface-brightness galaxies, irregulars, and mergers, which we review below. These groups can, but do not necessarily include, other types of galaxies such as starbursting systems (e.g., ultra luminous infrared galaxies, ULIRGs), galaxies with active galactic nuclei (quasars, radio galaxies, etc.).

Most ellipticals, particularly those in clusters, contain old stellar populations that likely formed early in the universe (Kuntschner & Davies 1998). Many of these galaxies are thought to form by the mergers of smaller galaxies (Barnes & Hernquist 1992), or from a rapid collapse of non-rotating gas (van Albada 1982). The merger idea for the origin of ellipticals is currently popular, with both indirect and direct supporting evidence (e.g., Schweizer & Seitzer 1988; Conselice 2006).

Spiral galaxies are a mixed galaxy class, but all generally show evidence of recent star formation and past merger/accretion activity (e.g., Kennicutt 1998; Zaritsky & Rix 1997). The stellar populations in spirals are also younger, on average, than those found in giant ellipticals (e.g., Trager et al. 2000).

The lenticular class (S0s) are disk-like galaxies without the presence of strong spiral arms, star-formation, obvious dust, or gas usually associated with spirals and other star-forming galaxies. S0 galaxies are usually found in galaxy clusters (Dressler 1984), but can also exist in the field (e.g., van den Bergh 1997). It has been suggested since Spitzer & Baade (1951) that S0s originate from spirals due to environmental effects. Evidence for this includes spirals in nearby clusters that are highly depleted in gas (Haynes & Giovanelli 1986), and might be evolving into S0 galaxies.

Dwarf ellipticals (dEs), the most common type of galaxy in the nearby universe, are almost always located in dense environments such as galaxy clusters and groups (Ferguson & Bingel 1994). These objects resemble ellipticals due to their symmetric structure, and elliptical isophotes, although they differ in several significant properties, such as containing different light profiles, and how they follow scaling relations (e.g., Wirth & Gallagher 1984; Graham & Guzman 2003). These objects likely have several formation mechanisms, including a primordial origin and evolution from stripped galaxies (Conselice et al. 2001, 2003c).

Low surface brightness galaxies (LSBs) are one of the last major class of galaxies discovered to date (Disney 1976). These objects come in many shapes and sizes, but generally mimic the Hubble sequence in terms of bulge to disk ratios, but at a much lower surface brightness, at $\mu > 24 \text{ mag arcsec}^{-2}$ (see Impey & Bothun 1997). It has been suggested from several pieces of observational evidence that LSB galaxies have had few, if any, major merging or interaction events with other galaxies, and are found in relative isolation (e.g., Knezek 1993; Mo, McGaugh & Bothun 1994). LSB galaxies therefore potentially represent a class of objects formed mostly through the collapse of gas, with
The Fundamental Properties of Galaxies and a New Galaxy Classification System

3 NEARBY GALAXY ANALYSIS

3.1 RC3 Sample and Data

The sample of galaxies with which we performed our statistical analyses were taken from galaxies in the Third Reference Catalog of Bright Galaxies (hereafter RC3; de Vaucouleurs et al. 1991). These RC3 galaxies were chosen based on their size (> 1'), apparent magnitude $B_T < 15.5$ and radial velocity ($v < 15,000$ km s$^{-1}$), although the catalogue is supplemented by objects that met only one of these criteria. This catalogue is however inhomogeneous, which we deal with in several ways, described in the following analysis. For each galaxy we culled from the literature, or derive, the following features. Our total sample consists of 22,121 galaxies distributed across the sky as shown in Figure 1. The average galaxy in our sample is at L_*, and its average galaxy colour is $(B - V)_0 = 0.66$.

I. T-Type (T): The mean de Vaucouleurs (1959) T-type is an expression of the gross morphology of a galaxy. The T-type values we used are means for each galaxy, computed from a variety of sources (RC3). These T-types can be equated with Hubble types as: -6 through -4 are ellipticals, -3 through -1 are S0s, and (0,1,2,3,4,5,6,7,8,9) are (S0/a,Sa, Sab, Sb, Sbc, Sc, Scd, Sd, Sdm, Sm), respectively. The RC3 is the largest eye-ball estimated morphological catalogue to date.

II. Size (R): The sizes of each galaxy is computed from the isophotal major axis diameter (D_{25}) measured in arcminutes and converted into kpc by using the distance modulus for each galaxy. While Petrosian radii, or a radius which does not use isophotes, is more ideal, the effects of using an isophotal radii for these nearby systems is minor.

III. Mean Effective Surface Brightness ($<\mu>_e$): The mean effective surface brightness is the surface brightness within the half light radius of each galaxy. This parameter, effectively combines the size and magnitude of a galaxy and gives us a rough idea of the projected density of stars.

IV. $(U - B)_0$ and $(B - V)_0$ colours: these are photometrically determined colour indices corrected for galactic and internal extinction. We used these indices as a measure of the average luminosity weighted age of stars in galaxies, although for older (> 6 Gyr) stellar populations these colours can be dominated by metallicity effects (e.g., Worthey 1994).

V. HI line widths (W_{20} and W_{50}): The HI line widths at the 20% and 50% of the maximum level in the 21-cm line profile.

VI. HI linewidth ratio ($I = W_{20}/W_{50}$). We used this number, based on the arguments in Conselice, Bershadly & Gallagher (2000b) as a measure of the importance of recent interactions and mergers. Values of $I > 1.5$ are interpreted as systems that have recently undergone interactions or merger with other galaxies. We discuss this index in more detail in \S3.2 and Conselice et al. (2000b).

VII. Central velocity dispersion (V_0). This is usually only defined for early type galaxies, and V_0^2 times a size can be used as a measure of early type galaxy mass.

VIII. HI line index (HI) is defined as $m_{21} = 16.6 - 2.5 \log S_H$, where S_H is the flux of the HI line measured in units of W m$^{-2}$. We further subtract this value by the distance modulus (DM) to obtain physical quantities that are independent of distance. We use the HI line index as a measure of the cold neutral gas content in a galaxy.

IX. Far infrared index (FIR) is defined in a similar manner as the HI line index (HI), as $m_{FIR} = -20 - 2.5 \log (FIR) - DM$, where $FIR = 1.26(2.58 \times f_6(60 \mu m) + f_6(100 \mu m))$, and $f_6(60 \mu m)$ and $f_6(100 \mu m)$ are the total flux densities in the IRAS 60 and 100 μm bands (RC3) and where DM is the distance modulus of the galaxy.

X. Luminosity class (λ): λ is the van den Bergh (1966) DDO, morphologically determined luminosity class index, which have been extended to fainter magnitudes in the RC3. The luminosity class values we used are weighted averages,
just as the T-types, and have values that range from $\lambda = 1$ to 11 with higher λ values for fainter galaxies.

XI. The maximum rotational velocity (V_{max}): V_{max} is defined as the maximum rotational velocity of a galaxy, as measured from HI or Hα rotation curve profiles. The size of a disk galaxy times V_{max} is sometimes used as a measure of its total mass.

XII. The absolute B-band magnitude (M_B).

XIII. The environmental galaxy density ρ. This is defined as the number of galaxies within 3 Mpc and < 1000 km s$^{-1}$ of each galaxy in our catalog. To avoid severe incompleteness for faint galaxies, we only compute this number for bright galaxies with $M_B < -20$ and at declinations $\delta > -30$.

XIV. Galaxy Stellar Mass. Stellar masses for our sample were computed by deriving the stellar (M/L) ratio in the B-band using the $(B-V) - M_B$ ratio relation discussed in Bell et al. (2003), using their ‘diet’ Salpeter initial mass function. There is a general correlation between stellar (M/L) and colour, such that bluer colors have lower stellar (M/L) ratios. We used this relation, and the measured $(B-V)_0$ colours for our galaxies to derive the (M/L) in the B-band for our sample. We then compute stellar masses by multiplying the luminosity in the B-band for each galaxy by its derived stellar (M/L) ratio.

Not all galaxies in our sample have each of these parameters measured, therefore when comparing different parameters we often had to use a subset of the data. We also associate with these parameters an error that reflects the variation in the measured values.

3.2 The Galaxy Interaction/Merger Index (I)

The galaxy interaction and merger index, I, defined by the ratio of the width of the HI line at 20% and 50% of maximum (property VI in §3.1) is used in this paper as the principle indicator for finding galaxies undergoing mergers and interactions. It is a dynamical indicator and has been used at least once before for this purpose in Conselice et al. (2000b). However, it is not a standard galaxy measure and it is worth describing it, and the galaxies it selects, in more detail.

The idea behind its use is that a normal galaxy with HI, will present a regular HI profile that is relatively narrow, or at least does not significantly change shape. If a galaxy is interacting or merging, and HI gas is disturbed by these dynamical events then the HI profile will have a shallow rise, or will have wings. This leads to higher values of $I = W_{20}/W_{50}$. Conselice et al. (2000b) show that the I index correlates well with the asymmetry parameter, such that galaxies with very large asymmetries due to merging have large I values.

However, beyond the sample in Conselice et al. (2000b), this index has not been tested to determine its success rate in finding merging galaxies. To understand this better we examined the literature and Digitised Sky Survey (DSS) imaging for several hundred systems with $I > 2$. What we found was a diversity of galaxy morphology, from spirals and obvious mergers, to galaxies classified as S0s/ellipticals. However, it was nearly always the case that a system with a regular apparent morphology was in a galaxy pair, such that it is likely involved in an interaction with another galaxy. Examples of the optical morphology of the high-I systems taken from the NASA/IPAC Extragalactic Database (NED) and the DSS are shown in Figure 2. It is clear from these images that the I indicator is a more sensitive probe than the asymmetry index (Conselice 2003), which is designed to find galaxies that have already merged. It appears that the I index will become large during an interaction as well as throughout the merger of two galaxies. There is however some contamination from non-interacting galaxies into our high I sample, as might be expected. This rate is however low, and does not affect our results, as it is only at the 5% level. Much of this contamination seems to arise from edge-on disk galaxies.

4 NEARBY GALAXY PROPERTIES

Our primary goal using our large sized-limited sample of nearby galaxies with morphologies is determining the strongest correlations between measurable parameters (§5). Before doing this, we examine the nearby galaxy population, its overall distribution of properties, and how each relates to morphological type. One purpose for this is having a well defined morphological census of nearby galaxies to compare with more distant samples studied with the Hubble Space Telescope.

4.1 Galaxy Stellar Mass and Spectro-Morphology at $z \sim 0$

As the Hubble Space Telescope can now reveal the morphological properties, and stellar masses of thousands of galaxies at $z > 0.5$ (Papovich et al. 2005; Bundy et al. 2005; Conselice et al. 2004, 2005a), direct morphological and stellar mass comparisons with the $z = 0$ galaxy population are now possible (e.g., van den Bergh, Cohen & Crabbe 2001; Conselice et al. 2005). It is thus desirable to determine the morphological distribution of galaxies at $z \sim 0$ and how these relate to stellar masses and colours.

We first calculate some basic spectro-morphological...
properties of nearby galaxies, including how stellar masses relate to morphology at \(z \sim 0 \). Our catalog of 22,121 RC3 galaxies is however inhomogeneous, particularly for low surface brightness systems. As Figure 3 shows, we sample fainter galaxies at lower radial velocities, implying we are incomplete at fainter magnitudes. To partially overcome the incompleteness of our catalog, we limit our morphological statistical analyses to systems which have \(M_B \leq -20 \) and \(v < 10,000 \text{ km s}^{-1} (z \sim 0.033, 133 \text{ Mpc}) \) (shown by the lines in Figure 3). When investigating fainter galaxies with \(M_B < -18 \), we limit our analyses to objects with velocities \(v < 3000 \text{ km s}^{-1} (z \sim 0.01, 30 \text{ Mpc}) \).

In addition to the \(M_B < -20 \) and \(v < 10,000 \text{ km s}^{-1} \) cut, we furthermore only consider galaxies between declination \(-50 < \delta < 50\), and take into account the incompleteness of the galaxy distribution due to the Milky Way (Figure 1) when calculating total number densities. Note that these number densities are based on the RC3 selection, and are not complete in any sense. Our densities however generally agree well with the densities derived from the morphological-type specific Schechter functions published in Marzke et al. (1998) and Nakamura et al. (2003). We investigate the completeness of our sample down to \(M_B = -20 \) through statistical tests. From this sample we create \(V/V_{\text{max}} \) diagrams for all morphological types, revealing that we are nearly complete to 10,000 km s\(^{-1}\) for galaxies brighter than \(M_B = -20 \).

We show fractional histograms in Figure 4 of the distribution of morphological types, \((B-V)_0\) colours, stellar masses, and absolute magnitudes (\(M_B \)) for the entire sample. Figure 5 shows the fraction of all galaxies that are classified into different T-types. From Figure 5, the most common galaxy type in the nearby universe appears to be mid/late type spirals, with a peak fraction at \(T\text{-type} = 4 \) (Sbc). This peak remains unchanged when we cut the sample at brighter, \(M_B < -22 \), or fainter, \(M_B < -18 \), limits.

The relative percentages of nearby galaxies with different morphological types are listed in Table 1. It appears that \(\sim 75\% \) of all nearby bright galaxies with \(M_B < -20 \) are spirals, with \(\sim 40\% \) late type spirals (Sb-Sc). Thus, in the nearby universe most bright galaxies (with \(M_B < -8 \)) are spirals with small bulges. After accounting for spatial incompleteness in the catalog, we further find that the total number density of spirals is \(\sim 3 \times 10^6 \text{ Gpc}^{-3} \) at \(M_B < -20 \) (Table 1).

Early-type galaxies, including ellipticals and S0s, acceptably complete the near complete sample we used for analyses that require near complete samples brighter than \(M_B < -20 \).

![Figure 3](image3.png)

Figure 3. The radial velocity distribution of the galaxies used in our analysis verses their absolute magnitude (\(M_B \)). The box formed by the solid line outlines the nearly complete sample we used for analyses that require near complete samples brighter than \(M_B < -20 \).

![Figure 5](image5.png)

Figure 5. The fraction of different morphological types for all nearby bright galaxies with \(M_B < -22 \) (solid line), \(M_B < -20 \) (dashed line) and \(M_B < -18 \) with \(V < 3000 \text{ km s}^{-1} \) (dotted line). The most common galaxy in our sample is therefore a mid-type spiral, which does not change significantly at different luminosity cuts.

\(M_B \)	\((\# \text{ Gpc}^{-3} \text{ h}^3_{100}) \) Fraction	\(M_B \)	\((\# \text{ Gpc}^{-3} \text{ h}^3_{100}) \) Fraction	\(M_B \)	\((\# \text{ Gpc}^{-3} \text{ h}^3_{100}) \) Fraction			
E	2.0±0.8 \times 10^4	0.19	E	1.3±0.4 \times 10^5	0.09	E	2.7±0.8 \times 10^5	0.07
S0	1.1±0.5 \times 10^4	0.10	S0	1.6±0.5 \times 10^5	0.12	S0	5.7±1.5 \times 10^5	0.15
eDisk	2.5±1.0 \times 10^4	0.25	eDisk	4.8±1.3 \times 10^5	0.36	eDisk	1.3±0.3 \times 10^6	0.36
lDisk	4.5±1.6 \times 10^4	0.44	lDisk	5.4±1.5 \times 10^5	0.41	lDisk	1.5±0.4 \times 10^6	0.39
Irr	2.4±1.8 \times 10^3	0.02	Irr	2.0±0.8 \times 10^4	0.02	Irr	8.4±2.7 \times 10^4	0.02

Table 1. Morphological Fractions and Densities of Nearby Bright Galaxies

The Fundamental Properties of Galaxies and a New Galaxy Classification System

© 2002 RAS, MNRAS
count for nearly all of the remainder (22%) of nearby bright galaxies, with the rest ∼ 2% irregulars (Table 1). These number densities and morphological type fractions are being directly compared to bright galaxies at high redshifts where these same properties can now be determined (e.g., Conselice 2004; Conselice et al. 2005a). Figure 6 shows the fraction of each morphological classed type that is also classified as having a bar, ring or part of a multiple system, which we discuss below.

Another feature we investigate is how galaxy morphology correlates with the positions of galaxies in the colour-magnitude plane (Figure 7). There is a well characterised red-sequence and blue-cloud in the $(U - B)_0$ vs. M_B diagram (e.g., Baldry et al. 2004), which has been proposed as a fundamental feature for understanding how galaxies have evolved. When we label the morphological types of galaxies on the colour-magnitude diagram we find a good correlation between the morphologies of galaxies and their positions. The early types (denoted by solid red squares) are mostly on the red-sequence, while later types ($T_{-type} > 3$, blue crosses) are in the blue cloud, and mid-types ($T_{-type} > 0$ & $T_{-type} < 3$) are in between.

This is also the case for stellar masses, with the $M_* > 10^{11}$ M_\odot galaxies mostly ellipticals on the red-sequence. Lower mass galaxies are increasingly bluer. This can also be seen in Figure 8, where we plot the morphological fraction as a function of stellar mass. At the highest masses, nearly all galaxies are ellipticals, but this gradually changes, and by $M_* = 10^{11}$ M_\odot ellipticals and spirals each represent about ∼50% of the population. At the low mass end, irregulars begin to dominate the population, with spirals accounting for only 20% of the population at $M_* < 10^{9}$ M_\odot and ellipticals accounting for about 10%.

4.1.1 Bars

Bars and rings are usually, but not uniquely, associated with spiral galaxies (e.g., Buta & Combes 1996). Bars are dynamical features that reveal, and contribute to, several galaxy evolution processes such as star formation and AGN activity (Barnes & Hernquist 1992), or galaxy interactions. It is debated however whether bars are a fundamental feature of galaxies that should be used in classifications (e.g., Abraham & Merrifield 2000; Conselice 2003). The evolution of bars through cosmic time is also debated, although there are some claims that the bar fraction and sizes of disks have not evolved since $z \sim 1$ (Jogee et al. 2004; Ravindranath et al. 2004). As the evolution of bars will continue to be addressed in the future through observations with the Hubble Space Telescope, we compute basic physical information on barred galaxies in the nearby universe for comparison purposes (Figure 6a, Table 2).

Table 2 lists, for all barred galaxies in the nearby universe, the fractional breakdown of host galaxy morphological type, and the number densities of each type, for systems brighter than $M_B < -20$. For example, 43% of nearby bright barred galaxies are found in late type disks, and late type disks with bars have a total number density of 5.2 ± 1.4
\[\times 10^5 \text{ h}_{100}^3 \text{ galaxies Gpc}^{-3} \]. Not surprisingly, we find that almost all (97\%) of barred galaxies are classified as disks/S0s, with an equal proportion belonging to early and late types. Roughly 10\% of all barred galaxies are S0s, while 3\% of classified barred galaxies are ellipticals and irregular galaxies. The small fraction of bars that are found in ellipticals shows that these systems have been misclassified, as a bar needs a disk to exist.

By examining the fraction of galaxies in each morphological type that are barred (plotted in Figure 6), we find that roughly 50\% of all disk galaxies are barred, while the fraction of barred galaxies increases for later types. There is also a fairly high fraction of nearby galaxies with bars, with a number density in the nearby universe of \(\sim 1.2 \times 10^9 \text{ h}_{100}^3 \) barred galaxies Gpc\(^{-3}\).

4.1.2 Rings

Rings often follow the presence of bars in galaxies (Buta & Combes 1996), and this can be quantitatively demonstrated as they occupy the same types of galaxies. Of all ringed galaxies brighter than \(M_B < -20 \), nearly all (98\%) are located in disks/S0s (Table 2). The fraction of ringed galaxies which are hosted inside ellipticals, S0s and irregulars is similar to the fraction with bars. There are however fewer ringed galaxies than barred galaxies in the nearby universe, with a number density of \(3.8 \times 10^5 \) ringed galaxies Gpc\(^{-3}\). Figure 6b shows the fraction of galaxies of all morphological types with rings, revealing that early disks are more likely to host a ring than later types.

4.1.3 Multiple Components

In addition to bars and rings, the RC3 also includes a classification for galaxies that have multiple components. Intuitively, this might correlate with the presence of merging activity. About 71\% of galaxies classified as having multiple components are disks, while 11\%, 13\% and 5\% of multiple galaxies are ellipticals, S0s and irregulars, respectively. However, a different pattern emerges when we consider the fractions of each galaxy type that have a multiple classification. Figure 6c plots the fraction of galaxies in each T-type that have morphological evidence for multiple components. This demonstrates that only about 5 - 10\% of all galaxies in the RC3 are classified as multiple galaxies. A higher fraction of irregulars are classified as having multiple components, although this is likely partially due to low number statistics. If these fractions are tracing the merging activity of galaxies in the nearby universe, the derived fraction of 5\% is close to the \(z \sim 0 \) merger fraction estimates from pairs (e.g., Patton et al. 2000).
Table 3. Spearman Correlation Matrix For All Galaxies

	T-Type	R	< µ >	(U-B)_0	(B-V)_0	W_20	V_S	HI	FIR	λ	V_max	M_B	I	ρ	M_∗
T-type	1.00	-0.24	0.53	-0.79	-0.80	-0.51	-0.43	0.18	0.13	0.91	-0.50	0.25	0.23	-0.14	-0.68
R	-0.24	1.00	0.08	0.23	0.20	0.66	0.48	-0.76	-0.55	-0.62	0.65	-0.85	-0.36	-0.13	0.51
< µ >	0.53	0.08	1.00	-0.35	-0.36	-0.38	0.09	-0.01	0.08	0.56	-0.35	0.00	0.07	-0.10	-0.07
(U - B)_0	-0.79	0.23	-0.35	1.00	0.91	0.51	0.60	0.04	0.03	-0.67	0.48	-0.23	-0.30	0.19	0.75
(B - V)_0	-0.80	0.20	-0.36	0.91	1.00	0.47	0.57	0.09	0.03	-0.64	0.47	-0.19	-0.28	0.22	0.80
W_20	-0.51	0.66	-0.38	0.51	0.47	1.00	0.30	-0.54	-0.39	-0.72	0.87	-0.68	-0.38	-0.03	0.51
V_S	-0.43	0.48	0.09	0.60	0.57	0.30	1.00	0.09	0.07	-0.31	0.21	-0.55	-0.16	0.06	0.67
HI	0.18	-0.76	-0.01	0.04	0.09	-0.54	0.09	1.00	0.56	0.53	0.55	0.68	0.23	0.05	-0.05
FIR	0.13	-0.55	0.08	0.03	0.03	-0.39	0.07	0.56	1.00	0.40	-0.46	0.64	0.05	0.23	-0.08
λ	0.91	-0.62	0.56	-0.67	-0.64	-0.72	-0.31	0.53	0.40	1.00	-0.72	0.67	0.40	-0.03	-0.51
V_max	-0.50	0.65	-0.35	0.48	0.47	0.87	0.21	-0.55	-0.46	-0.72	1.00	-0.69	-0.36	-0.05	0.55
M_B	0.25	-0.85	0.00	-0.23	-0.19	-0.68	-0.55	0.68	0.64	0.67	-0.69	1.00	0.31	0.10	-0.59
I	0.23	-0.36	0.07	-0.30	-0.28	-0.38	-0.16	0.23	0.05	0.40	-0.36	0.31	1.00	-0.01	-0.28
ρ	-0.14	-0.13	-0.10	0.19	0.22	-0.05	0.06	0.20	0.23	-0.03	-0.05	0.10	-0.01	1.00	0.13
M_∗	-0.68	0.51	-0.07	0.75	0.80	0.67	-0.05	-0.08	-0.51	0.55	-0.59	-0.28	0.13	1.00	

Spearman correlation matrix for all the galaxies in our sample. Displayed are the correlation between various physical properties, including morphology (T-type), radius (R), surface brightness (< µ >), colour (both (U - B)_0 and (B - V)_0), HI line width (W_20), central velocity dispersion (V_S), HI and far infrared line fluxes (FIR), the luminosity class (λ), the maximum rotation velocity (V_max), the absolute magnitude (M_B), an interaction index (I), local density (ρ) and the stellar mass M_*. The numbers in bold show the strongest correlations between the various parameters. Tables 4-6 show these correlations after the same is divided into early/late, red/blue and bright/faint systems.

Figure 7. The colour-magnitude relation for galaxies in our sample. The solid line divides red-sequence galaxies from blue cloud galaxies (Faber et al. 2005). Early types are denoted by solid red squares, while later types (T-type > 3) are labelled as blue crosses, and mid-types (T-type > 0 & T-type < 3) are labelled as green triangles.

Figure 8. The fractional contribution of various morphological types to the local stellar mass density down to a lower limit of M_*= 10^8 M_⊙. The solid line shows the ellipticals, the dashed line spirals, and the dotted line irregular galaxies.

5 GALAXY PROPERTIES AND THEIR CORRELATIONS

5.1 Statistical Analysis of the Nearby Galaxy Population

We now examine how the 14 properties described in §3.1 correlate with each other, and how strongly. We do this by performing Spearman rank correlation tests on various cuts of our data (Tables 3-6). These correlation analyses are performed on the entire sample (Table 3), when divided by early and late morphological types (Table 4), colour at (B - V)_0 = 0.7 (Table 5), and absolute magnitude at M_B = -20 (Table 6). Our sample for the Spearman rank correlations include the RC3 sample out to radial velocities of 15,000 km s^{-1}. We discuss in specific cases where not having a volume limited sample may be affecting our results.

Our entire sample’s correlation matrix (Table 3) reveals several strong relationships, including between: V_S and M_B
The Fundamental Properties of Galaxies and a New Galaxy Classification System

(Faber-Jackson), log V_{max} and M_B (Tully-Fisher), and size (R) with M_B (Kormendy relation). However, the relations we find are weaker than these scaling relationships, as the sample here has not been divided into different morphological types. In general however, there are many correlations between the 14 parameters, revealing that to one degree or another most properties of galaxies are interrelated. Is this interrelation the result of a single principle, or a group of physical principles producing different observational effects? For example, it is possible that size and M_B have a strong correlation because they both fundamentally scale with an underlying feature, which is likely the total mass? The same is also true for the strong correlation between both M_B and size with internal velocities - as things get bigger and brighter they are likely to have more mass, an effect traced by larger internal motions.

We divide these parameters into three classes, following the ideas described in Bershady, Jangren & Conselice 2000 (hereafter BJC00). BJC00 determined from an analysis of nearby galaxy images that galaxies can be classified according to scale, form, and spectral index. In this study colour represents the spectral index, scale includes the size, various fluxes, internal velocities and stellar mass, while form is given by the T-type, bars and the multiple component classification. We investigate which of these measurable properties are the most fundamental, and which are the most useful for classifying galaxies.

5.1.1 Form Correlations

We use the T-type to represent the form of a galaxy and to first order assume it correlates with the bulge to disk ratio of each galaxy (see also Conselice 2003). T-types (or Hubble types) have been known since at least Holmberg (1958) to correlate broadly with other physical properties, such as recent star formation. Almost by definition this should be the case, as ellipticals and S0s, which populate the earlier T-types, appear fundamentally different from later type galaxies. This difference has been described in more detail by e.g., Roberts & Haynes (1994). It is not yet clear however which physical properties of galaxies correlate strongest with morphology, and if Hubble morphology is enough to describe the most fundamental aspects of galaxies. With our Spearman correlation coefficients, we can begin to address this question.

Table 3 shows the Spearman coefficients for the entire RC3 galaxy sample. If we consider strong correlations those with coefficients > 0.5 (listed in bold) then T-types correlate strongly with both ($B - V$)$_0$ and ($U - B$)$_0$ colours, W_{20}, the luminosity index (λ), V_{max}, μ_m, and M_*. This reveals several things about what a T-type is measuring. Since T-types correlate with B/T ratios, then the strong correlation between T-types and colour is not surprising, as it is well known that the relative contributions of bulge and disk light correlates with old and young stellar populations. The correlation between the stellar masses of galaxies and Hubble T-type (-0.68 coefficient), is stronger than the correlation between T-type and absolute magnitude (0.25), showing that fundamentally the Hubble sequence (or bulge to disk ratio) is partially one of stellar mass. There is likewise a strong correlation (coefficient $0.75-0.8$) between stellar mass and colour (Table 1), which we discuss in §5.1.2.

T-types also correlate strongly with other scale features, as the strong correlations between T-types and V_{max}, W_{20}, V_S and M_*. The absolute magnitude and size of galaxies do not show the same strong correlation, although later type galaxies are smaller and fainter. This weaker correlation between T-type and magnitude/radius might be the result of magnitude/radius being secondary scale features. This is because the measured size of a galaxy is influenced by both the form of a galaxy (i.e., how light is distributed, for example bulge vs. disk components) and the intrinsic scale, and magnitude is influenced by scale, and spectral type, as younger, bluer stars will make a galaxy brighter. In this sense these values are not clean measurements of the scale. However, the internal velocities of galaxies and stellar masses are not affected by these secondary effects, and they thus represent more accurately the scale of a galaxy.

Table 4 shows the Spearman correlation matrix between our 14 parameters when the sample has been divided into early ($T < 1$) and late type ($T > 1$) galaxies. We repeat the Spearman correlation analysis on both early and late types, to determine how correlations between T-types and the other parameters are affected by this division. Table 4 shows that for early-types galaxies with $T < 1$ there is very little to no correlation between T-type and other physical parameters, with the exception of perhaps colour. This is such that later-type early-types (E6-7,S0) are bluer and have a slightly lower stellar mass.

When we examine correlations between T-types and physical properties for the late-type galaxies (Table 4) many of the correlations seen in Table 3 remain, but with most weaker. The correlation with colour for the late types declines from ~ -0.8 to -0.61, as does the correlation with stellar mass. Interestingly, the mild correlation between T-types and surface brightness (μ_s) seems to remain for the late types, such that later-types have a lower surface brightness. This is perhaps the only correlation in the Hubble sequence (besides V_{max}) which is driven mostly by later type galaxies alone.

Most correlations between physical features and Hubble types is strongest when considering the entire sequence. One exception to this is the correlation between stellar mass and colour which remains strong after dividing the sample into early/late Hubble types (Table 4). This shows that this correlation is not driven entirely by morphology. There is however little correlation within the early-types themselves, with the exception of scale-scale correlations. This demonstrates that the division of early types onto the Hubble sequence, which is typically done by estimating the axis ratios of galaxies (Sandage 1961), is largely devoid of much useful physical information (Kormendy & Bender 1996). The fact that T-types correlate strongly with colour and stellar mass can be understood to first order if star formation follows the presence of disks. Galaxies with types $T > 1$ have a diversity in B/T ratios, and a mix of segregated stellar populations (Papovich et al. 2003), while ellipticals have $B/T \sim 1$ and tend to have nearly homogenous old stellar populations.

5.1.2 Spectral Type Correlations

As discussed in §5.1.1 galaxy T-types correlate strongly with colour. Spectral type, as denoted by either the ($B - V$)$_0$
Late-types are blue, and systems with lower internal velocities, lower stellar masses, to have av-

ticles have physical properties that correlate well with each other, i.e. stellar mass with colour, HI with stellar mass, and size with V\text{max}. Interestingly, the correlation between T-types and colour within the red galaxies is slightly stronger than it is for the blue galaxies (\sim -0.55 vs. -0.45). There is still a fairly strongly correlated with internal velocity dispersion (V\text{S}), and size with V\text{S} (0.56), for red galaxies, revealing that these relationships are independent of star formation.

5.1.3 Scale

As was mentioned earlier, the different scale features of galaxies, namely: size, stellar mass, internal velocities, magnitude, HI and FIR magnitudes, all correlate with each other with coefficients \sim 0.5 - 0.7 for most correlations. Some of these strong correlations are: R with: W\text{20}, V\text{S}, V\text{max} (0.65), M\text{B} (0.85), and M\text{B} with: W\text{20} (-0.68), V\text{S} (-0.55) and V\text{max} (-0.69). This indicates that measures of scale correlate with each other, and are independent of classification. There is also a correlation between scale parameters, particularly internal velocities, and the morphological T-type, as discussed in §5.1.1.

Correlations between scale parameters remain when examining galaxies divided by morphology, colour and abso-
Table 5. Spearman Correlation Matrix For Red/(Blue) Galaxies Divided at \((B-V)_0 = 0.7\)

T-Type	FIR	R	\(\lambda\)	\(< \mu >\)	\((U-B)_0\)	\((B-V)_0\)	\(W_{20}\)	\(V_S\)	HI
T-type	1.00 (1.00)	0.02 (-0.20)	0.07 (0.54)	-0.58 (-0.43)	-0.55 (-0.48)	0.09 (0.48)	-0.38 (-0.27)	-0.41 (0.19)	
R	-0.24 (0.23)	0.72 (0.88)	0.16 (-0.45)	0.07 (0.28)	-0.01 (0.21)	0.00 (0.00)	0.23 (-0.39)	0.00 (0.00)	
\(< \mu >\)	-0.49 (-0.55)	0.00 (-0.60)	0.40 (0.62)	-0.88 (-0.87)	-0.11 (-0.36)	-0.04 (0.01)	0.83 (0.84)		
\((U-B)_0\)	-0.07 (0.54)	0.48 (0.02)	1.00 (1.00)	-0.08 (-0.14)	-0.05 (-0.20)	-0.04 (-0.36)	0.18 (0.10)	0.10 (0.01)	
\((B-V)_0\)	-0.22 (0.21)	0.23 (0.46)	0.09 (-0.28)	-0.43 (0.13)	-0.01 (0.04)	-0.08 (-0.02)	0.38 (-0.16)		
\(W_{20}\)	-0.58 (-0.43)	0.06 (0.39)	-0.08 (-0.14)	-0.01 (0.04)	-0.08 (-0.02)	0.38 (-0.16)			
\(V_S\)	-0.39 (-0.19)	-0.39 (-0.60)	-0.04 (0.49)	-0.14 (-0.37)	-0.02 (-0.31)	0.06 (0.09)	0.32 (0.57)		
HI	0.39 (-0.16)	-0.24 (-0.59)	-0.05 (0.48)	-0.08 (-0.33)	0.06 (0.28)	0.08 (0.08)	0.35 (0.62)		

For example, the correlation between \(M_B\) and \(R\) remains quite strong no matter how the sample is divided with coefficients of \(\sim 0.85\). Other strong correlations are between internal velocities, \(V_S\), for early-types, \(V_{\text{max}}\) for late-types and absolute magnitude (\(M_B\)), with values \(-0.68, -0.72\), respectively.

Correlations for systems divided into blue and red galaxies at \((B-V) = 0.7\), and for systems divided into ‘bright’ galaxies with \(M_B > -20\), and faint galaxies with \(M_B < -20\) show a similar dichotomy as late/early types (Table 5-6). Likewise, as for red and early-types, the bright systems tend to have weaker correlations compared to when the entire magnitude range is considered.

For the more luminous galaxies, parameters that correlate strongly are: magnitude/stellar mass with size scalings and internal velocity (\(V_S\)), as well as \(M_\star\), colour and T-type among each other (Table 6). This is also the case for fainter galaxies where there is a strong correlation (\(\sim 0.8\)) between \(M_\star\) and colour, such that more massive galaxies are redder. Both \(W_{20}\) and \(V_{\text{max}}\) correlate well with most parameters except with the I index, an indication that for fainter systems \(V_{\text{max}}\) is measuring something fundamental about the scale of these systems. This is also true when examining the correlation of internal velocities (\(V_S\)) of the more massive systems.

5.1.4 Local Density

The local density (hereafter environment) of a galaxy has been known since Hubble (1926) to correlate with galaxy populations. This morphology-density relation can be summarised by stating that in locally dense environments a large fraction of galaxies are early-types (either S0s or ellipticals), while in lower density environments spiral galaxies are more common (e.g., Dressler 1980; Postman & Geller 1984).

We can reexamine the correlation of environment with other physical properties by using the calculated galaxy number density (\(\rho\)) parameter (§3.1). We however do not find a strong correlation between \(\rho\) and other parameters, including morphological type. This is perhaps because galaxies of all types are found in all environments, but their relative proportions can change, creating for example, the morphology-density relation. Table 3 shows that the correlations between local density and properties such as colour and T-type have the general trend expected, such as later types and bluer galaxies are found in lower density environments. However, these correlations are not as strong as many others.
5.1.5 Summary of Correlations

It is clear from the above discussion that there are strong correlations between various galaxies properties. A few of these correlations, such as size and brightness are very strong, and are independent of other properties such as recent star formation. Perhaps the most interesting correlation is the one between T-type, stellar mass and colour, which all seem to relate to each other.

Scale-features, such as size and stellar mass correlate strongly, which does not change after dividing the population into early/late, red/blue or bright/faint systems. However, other correlations break down when we examine them within these subsets, showing the scale is a fundamental feature of galaxies.

In particular, many correlations remain for late-type, or star forming galaxies, as defined by \((B-V) < 0.7\), but do not appear as strong as for the early/red galaxies. These correlations, which break down in the absence of recent star formation are: stellar mass/magnitude with colour and HI/FIR magnitudes, and T-type with surface brightness. There is also little correlation between T-types and size when galaxies are broken into red/blue systems.

Ongoing star formation is therefore a critical component for trying to understand the properties of galaxies. Finally, if we accept the idea that the strongest correlations with Hubble type reveal its underlying meaning, then the fact that T-types correlate with colour and internal velocities demonstrates that the Hubble sequence is fundamentally one of decreased total mass and increased dominance of young stars, which accounts for its success in the nearby universe.

Note, that the form index, \(I\), which has been shown to correlate with dynamical disturbances (Conselice et al. 2000b), does not correlate strongly with any of the other observational properties we study in this paper (Table 3). This reveals that \(I\) is not directly related to, or always causes, other parameters to change, with the exception of perhaps the luminosity index.

5.2 Principal Component Analysis

We carry out a principal component analysis of the properties of our sample to determine the most fundamental features needed to describe nearby galaxies. The question we address is whether we can use only morphological type to describe a galaxy’s major properties. We perform several principal component analyses (PCA) to determine which features cannot be accounted for by other properties, and to reduce the dimensionality of our data set with its 14 parameters.
PCA methods are commonly used in astronomy, and good introductions to the topic can be found in e.g., Faber (1973), Whitmore (1984), Han (1995), Brotherton (1996) and Madgwick et al. (2003). The basic goal of a PCA analysis is to reduce the number of variables \((n)\) to a set of \(m < n\) parameter combinations. This is done through the calculation of eigenvectors and eigenvalues for the different parameter combinations. The first eigenvector is a line through the cloud of \(n\) data points which minimises the variance. Remaining eigenvectors are calculated until all the variance is explained. Eigenvalues reveal how much of the variation is accounted for by each eigenvector. Typically the eigenvalue for an eigenvector must be \(\geq 1\) to be significant. Before we carry out our various PCA analyses, we linearise all variables, subtract the mean from each variable, and normalise by the standard deviation.

We preformed a large number of PCA analyses on our data. A typical analysis that includes most of our properties is shown in Table 7. We have created a new index here called “Vel” which is the internal velocity of our galaxies, \(V_{\text{max}}\), or \(V_S\) when \(V_{\text{max}}\) is not available. When we calculate the total masses of our galaxies using \(\sim R \times V_{\text{max}}^2\) or total masses derived based on scalings derived from models (Conselice et al. 2005b), we find the same correlations. The eigenvectors listed in Table 7 show that several vectors are needed to reach a reasonable accounting of the total variance in galaxy properties. The total summation of the five eigenvectors listed in Table 7 represent 83% of the variance in the properties of galaxies. Due to the errors on the measurements, this is likely the limit for meaningful eigenvectors. In fact, when we plot the eigenvalues for the analysis in Table 7 vs. principal component rank we find a shallow slope past EV-5 than before it, suggesting that these higher components are dominated by noise.

The first eigenvector (EV 1; Table 7) is dominated by \(M_\text{HI}\), \(M_\star\), size (R), and HI content, which all positively correlate (\(M_\text{HI}\) was converted into a positive linear flux for this analysis). The first vector can therefore be thought of as the scale of the system. The second vector is dominated by the T-type, \((B-V)_0\) colour, and surface brightness. The strong correlation between Hubble types and colour suggests that this vector measures the presence of recent star formation in a galaxy. Vector 3 and Vector 4 are both dominated by the merger parameter (\(I\)) and the FIR luminosity, and as such it represents the merging properties of galaxies. Vector 5 is dominated by the internal velocities of galaxies.

We find a similar pattern after we remove various variables from the PCA analysis. If we do not consider FIR or surface brightness in the analysis, we find that the eigenvectors are always dominated by \(I\), \((B-V)_0\), and \(M_\star\) in the first three principal components. We find in general that the T-type is a significant contributor to many components after the analysis is carried out through different cuts in the data.

When we do a basic PCA analysis on our sample separated into only T-types, a spectral index \((B-V)_0\) colour), the merger index \((I)\), and stellar mass \((M_\star)\) we obtain Table 8. We find that the T-type, stellar mass and colour are highly correlated and dominate the first component. The \(I\) merger index defines the second principal component, while the third component is dominated by the T-type, and the stellar mass. This shows that the T-type is successful as a general galaxy classification criteria as it correlates strongly with colour and stellar mass, and several other properties (cf. Table 3). Therefore the three most fundamental properties for describing nearby galaxies appear to be their scale, recent star formation, and the presence of mergers.

From §5.1 and Table 3 we know that the interaction/merger index, \(I\), does not correlate strongly with any other galaxy property, with the exception of the luminosity index. The meaning of this is that galaxies which are undergoing a merger cannot be accounted for by other measurable features. When we analyse only galaxies undergoing mergers, defined as objects with \(I > 1.5\), we find that three principal components are necessary to describe these systems. In fact, for systems with \(M > 1.5\) the correlation between T-type and \((B-V)_0\) colours breaks down. We conclude from the above analyses that our hypothesis, described in Conselice (2005) that mass, star-formation and the presence of mergers are fundamental criteria, is a reasonable assumption.

Table 7. PCA Eigenvector (EV) Projections onto Galaxy Properties

Property	EV 1	EV 2	EV 3	EV 4	EV 5
T-type	-0.06	0.61	0.03	-0.07	0.12
R	0.49	0.07	0.08	0.11	-0.07
\(< \mu >\)	0.10	0.42	0.36	0.35	0.03
\((B-V)_0\)	0.19	-0.55	0.15	0.14	-0.10
Vel	0.19	-0.12	0.07	-0.34	0.90
HI	0.42	0.28	-0.12	-0.06	-0.06
FIR	0.14	0.06	-0.69	-0.41	-0.19
M_B	0.50	0.09	-0.06	0.02	-0.04
I	-0.06	-0.02	-0.58	0.74	0.34
M_\star	0.47	-0.20	0.05	0.11	-0.05

Eigenvalues: 3.4 2.0 1.1 0.94 0.90 33.6% 19.7% 11.1% 9.4% 9.0%

Table 8. EVs for PCA with T-type, Colour and \(M_\star\)

Property	EV 1	EV 2	EV 3
T-type	-0.57	-0.13	0.60
\((B-V)_0\)	0.63	-0.04	-0.10
I	0.06	0.96	0.23
M_\star	0.52	-0.20	0.76

Eigenvalues: 2.0 1.02 0.64 50.8% 25.4% 16.1%

5.3 Galaxies in PCA Space

In this section we examine whether the principal component projections for our sample are correlated, and if different galaxy types separate cleanly within PCA space (see Madgwick et al. 2003 for examples of this using galaxy spectra). For this analysis we examine the principal components shown in Table 8. Figure 9 shows the correlation between the projections of our galaxies onto their first three eigenvectors listed in Table 8, which as we have discussed, generally correlate with colour (\(p_1\)), interactions/mergers (\(p_2\)), and stellar mass (\(p_3\)). We furthermore label the morphological type of

...
galaxies on Figure 9, which shows that this relatively simple PCA analysis separates nicely the major galaxy classes: early-types, disks, irregulars and merging galaxies. The left panel of Figure 9 shows a correlation between the projection of the eigenvectors dominated by recent star formation (colour) and scale (stellar mass). There is however a perpendicular relation as well which is occupied mostly by disk galaxies.

The correlation between \(p_1 \) and \(p_2 \) shows a similar pattern, but with only a slight correlation between the two eigenvector projections. However, it is clear that interacting and merging galaxies, with \(I > 2 \), deviate from the nominal relation. Examples of these high-\(I \) systems are shown in Figure 2. There is also a correlation between the second and third eigenvector projections for most galaxies in our sample. Just as in the right panel of Figure 9, galaxies with a high \(I \) index deviate from this relation with a larger projection onto the second eigenvector.

5.4 The Strongest Correlations

With our current data set we can address which scaling relations are statistical the strongest for nearby galaxies. While most of these relations are well known and characterised, we discuss several below which are found independent of sample selection. These correlations are: T-type with \((B-V)_0\) colours, T-type with \(\log V_{\text{max}} \), radius with absolute magnitude, radius with \(V_{\text{max}} \), \((B-V)_0\) with \(\log V_{\text{max}} \), and absolute magnitude with \(\log V_{\text{max}} \). The relationship between these parameters are shown in Figure 10. The best fits between these parameters are,

\[
T = 0.66 \pm 0.02 \times (B-V)_0^{-0.15 \pm 0.02},
\]

\[
T = 2.30 \pm 0.01 \times (\log V_{\text{max}})^{-0.06 \pm 0.003},
\]

\[
M_B = -15.5 \pm 0.02 \times R^{0.12 \pm 0.004},
\]

\[
\log V_{\text{max}} = 1.57 \pm 0.001 \times R^{0.16 \pm 0.01},
\]

\[
\log V_{\text{max}} = 2.64 \pm 0.03 \times (B-V)_0^{0.16 \pm 0.01},
\]

\[
M_B = -4.7 \pm 0.1 \times \log V_{\text{max}} - 9.8 \pm 0.2.
\]

Most of these scalings are already well known, and have been described in various contexts previously. Many become stronger when only considering certain types of galaxies (e.g., ellipticals for the Faber-Jackson, disks for Tully-Fisher). We are particularly interested here in the correlation of T-type with colour and \(V_{\text{max}} \) (as a proxy for other scale features). Figure 10 plots the relationship between these properties. As can be seen, later T-types are both bluer and have lower internal velocities. These are in particular strong correlations, as shown in Table 3. As we argue in this paper, these two correlations are the reason why the Hubble sequence has been generally successful at separating galaxy types. However, as can be seen there is a large scatter in these correlations, such that at every T-type there is a wide range in colour and \(V_{\text{max}} \) values. This is also true for the relationship between \((B-V)_0\) and \(V_{\text{max}} \). This diversity cannot be accounted for by errors on classifications, or on the measured values. This shows that there are variations in colour and scale which is not accounted for by Hubble type.

6 DISCUSSION

6.1 Physical Classification

For the remainder of this paper we address whether the results of the first part of this paper can be used to construct a classification system for galaxies that is physically meaningful. First, it is worth asking if we need a physical classification system for galaxies. Is it possible that relations between observables and (non-morphological) galaxy properties are enough to characterise the population? The first classification schemes by Wolf (1908), Hubble (1926), de Vaucouleurs (1959) and Sandage (1961,1975) are purely descriptive, and the idea that a galaxy’s classification should be based solely on the most obvious features seen in optical light persists (Sandage 2005). The reason given for this philosophy is that no physical understanding of what drives galaxy formation/evolution should be used to create a classification system. As Sandage (2005) explains, “A good classification can drive the physics, but the physics must not be used to drive the classification.”

Sandage’s (2005) argument, which follows Hubble’s original philosophy, likely resulted from the earliest attempts to classify galaxies through the use of theoretical arguments by Jeans (1919). Hubble quite rightly avoided theory when developing his classification system, yet physical morphology does not necessarily rest upon theory, but empirical observations. Physical morphology in this sense is not a theoretical morphology. If we knew with reasonable certainty what the physical effects were that drove the properties of galaxies, a classification based on these features would be superior to theoretically, or subjectively based systems.

Several features of galaxies also make them fundamentally different from other objects which have been successfully classified based solely on their appearance, including stars, plants/animals and the chemical elements. Galaxies are fundamentally different from these types of objects as they are not stable or passive systems, nor do they have a well defined life/death as do living organisms and stars. Furthermore, elements, plants/animals and most stars spend most of their life span in the same form. This is not the case for galaxies, where it has been shown that systems of the same mass change their appearance in optical light dramatically in the last 10 Gyr (e.g., van den Bergh et al. 2001; Conselice et al. 2005a; Ravindrinath et al. 2006). Galaxies are not static systems - they are always changing and evolving due to the complex mixtures of stars, gas, dust, dark matter, and from interactions with other galaxies.

Another reason that the physical properties of galaxies can be used to devise a classification system is the fact that it is not a given that the rest-frame optical light of galaxies reveal the most important features of galaxies. For example, we now know that the bulk emission from an average galaxy
The Fundamental Properties of Galaxies and a New Galaxy Classification System

is in the mid infrared (e.g., Dale et al. 2005), and if any wavelength should be used to classify galaxies it would naturally be where most of the light is emitted. Fundamentally, if we want to classify galaxies through structure, the best approach is using a map of the distribution of mass, which would be mostly dark matter. A mapping such as this, with enough resolution for classification, does not currently exist. In blue light, where the Hubble system was and is being used, we are examining only the stars in galaxies, and often only the brightest ones, which tend to be young. This leads to physical classifications, where if we think we understand the major properties of galaxies, we can utilise these for classification.

Knowing which properties of galaxies are not important for classification is just as critical as uncovering the dominant ones. We can understand why through analogies with other sciences. In biological taxonomy, such as separating different populations of mammals, features such as hair or eye colour, or exact size, are not classification criteria. Similarly, features such as rings, bars and even spiral arms are important for the immediate appearance of a galaxy, but these are not basic features. Classifications using these criteria are purely descriptive. Their inclusion as major classification criteria are also arbitrary, as other properties, such as the steepness of light profiles, the clumpy nature of light seen in many galaxies, the spokes and spurs seen in spiral arms, etc. were never considered important, or were technically infeasible to measure, by early morphologists.

We can use the results of this paper to construct a physically based method for classifying galaxies. Physical morphology is not a new idea, and attempts to construct a meaningful system for galaxies started with the work of Morgan (1958; 1959) who attempted to correlate “the forms of certain galaxies and their stellar content as estimated from composite spectra” from Morgan & Mayall (1957). Later attempts include van den Bergh’s (1960) study on the correlation between spiral arm structure and intrinsic brightness. Modern studies have attempted to classify ellipticals by their structures (Kormendy & Bender 1996), and at using interacting and star formation properties to classify all galaxies (e.g., Conselice 1997; Conselice et al. 2000a; Conselice et al. 2000b; Bershady et al. 2000). As we argued in §5, star formation, interactions/mergers, and the masses of galaxies are the three most fundamental parameters that can be used together to form a new physical galaxy classification.

6.1.1 Mass

We concluded in §5 that the underlying mass (scale) of a galaxy is a fundamental property, which is responsible for the major component in our PCA analyses. While few would argue that the mass of a galaxy is not a fundamental criterion for classification, it is not obvious that it is possible to classify galaxies based on their mass, without direct measurements.

However, there are structural indicators in optical light which can be used as a proxy for the underlying mass in a galaxy. As shown by e.g., Graham et al. (2001) and Conselice (2003) the concentration of a galaxy’s light, measured through either parametrised fits to light distributions, or from direct measurements using a concentration index (Bershady et al. 2000), broadly correlate with the stellar and kinematic masses of galaxies. This is true at low redshift, as well as out to $z \sim 1$ (Conselice et al. 2005a).

The degree of apparent concentration of stellar light in a galaxy has been used (even if not explicitly stated) since Hubble (1926) as the main axis for nearly all galaxy classification systems. As shown in e.g., Conselice (2003) galaxy concentration relates to the bulge to disk ratio and Hubble type, although this breaks down for dwarfs. Furthermore, light concentration has continued as the main axis in all galaxy classification systems, such as in de Vaucouleurs
Figure 10. The strongest correlations found between the properties of the 22,000+ galaxies studied in this paper. Most of these relationships are already well known, and described for morphological subsets, such as the Tully-Fisher relation, and the size-magnitude relation. For our purposes, the most interesting trends are those of T-type with colour and V_{max}, where considerable scatter can be seen. This is also true for the correlation between colour and V_{max}. The scatter in these correlations is larger than the observational errors, and suggests that while morphology, colour, and scale all correlate in nearby galaxies, they are still independent features.
6.1.2 Star Formation

As shown in §5 we find a morphological dichotomy between galaxies that are dominated by recent star formation and those that are not. Our principal component analyses reveals that colour is the major contribution to a significant principal component, which is not accounted for solely by the Hubble type, as galaxies at a given morphology type have a range of colours (§5.1, Figure 10). Therefore, if we knew the current star formation rate of a galaxy it would be a very powerful classification parameter. Typically the current star formation rate is derived from either ultraviolet, Hα or far-infrared fluxes (Kennicutt 1998), although these measurements are typically time-consuming and hard to obtain for large samples. It is therefore desirable to use a method that can estimate the star formation properties of galaxies based on optical imaging. For most galaxies, this can be done by combining colour information along with high-frequency structural features produced by young stars. While bright Hubble types generally correlate with the masses of galaxies, they do not account for other galaxy properties needed for a full classification. The fact that late-type galaxies, which generally have low: masses, bulge to disk ratios, and light concentrations, are blue is a result of evolutionary processes, rather than an inherent success of the classification. It is a coincidence that Hubble types correlate well with colour in the nearby universe, as this is not the case at higher redshifts where morphologically classified ellipticals are often blue in colour and star forming (e.g., Stanford et al. 2004; Bundy et al. 2005). This correlation breaks down even more at $z > 1$, where the Hubble sequence itself begins to dissipate.
information that is still ongoing. As such they occupy the
with other galaxies. They also have a very gradual star for-
have little evidence for companions or signs of interaction s
Figure 12).
ways to the star formation/mass plane presented here (see
of their bulge to disk ratios, making it very similar in some
recent interactions or star formation will occupy the high-
ecessary to major mergers, and other accretion processes. In reality, all merger
events for any one galaxy are nearly impossible to trace with certainty, especially old mergers that have gone through vi-
mergers, and other accretion processes. In reality, all merger
events for any one galaxy are nearly impossible to trace with certainty, especially old mergers that have gone through vi-
ty galaxies appear, as well as their internal evolution, as
has been shown in various methodologies.

6.1.3 Galaxy Mergers/Interactions
Like the scale of a galaxy and its current star formation rate, galaxy mergers and interactions are an important aspect for
driving galaxy evolution. Although mergers are rarely found in the local galaxy population, they have strong effects on the evolution of galaxies and their properties. Ellipticals and high surface brightness bulges are likely the result of major mergers, and other accretion processes. In reality, all merger
events for any one galaxy are nearly impossible to trace with certainty, especially old mergers that have gone through vi-
nty galaxies appear, as well as their internal evolution, as
has been shown in various methodologies.

6.2 A New Classification System: The Classification Cube
Figure 11 shows how galaxies of various types fit into a 3-
dimensional parameter space defined by galaxy mass, recent star formation, and interactions. On this diagram, the x-axis signifies the mass, while the y-axis represents the recent star formation, and the z-axis represents the degree of recent interactions with other galaxies.

As opposed to previous classification systems, the one presented in Figure 11 can account for all the major galaxy types described in §2. Classical ellipticals, with little sign of recent interactions or star formation will occupy the high-
low interaction side of the interaction sequence. Several other galaxy types, such as distorted cluster galaxies and
they occupy the same star formation and interaction space as the ellipticals. dEs are systems with low-mass, and as such they occupy the far end of the mass sequence for these galaxies. The dwarf irregulars have a similar internal structure and mass to the dEs, except they contain star forma-
thus fall in the same mass and interaction space, but are separated in star formation space.

This system is not completely new and various aspects of it have been published in different forms. For example, van
den Bergh (1976) proposed a revision of the Hubble system where SO galaxies occupy a parallel sequence to the spirals, instead of lodged between the ellipticals and Sa galaxies as in the original Hubble sequence. van den Bergh’s (1976) classification also contains an anamorphic sequence for objects with little gas. This system also classifies galaxies in terms of their bulge to disk ratios, making it very similar in some ways to the star formation/mass plane presented here (see

Low surface brightness galaxies, as discussed earlier, have little evidence for companions or signs of interactions with other galaxies. They also have a very gradual star for-
mass sequence as the spirals, but are located on the low interaction side of the interaction sequence.

The dichotomy between ellipticals that appear boxy and disky can also be represented by this system (Kormendy & Bender 1996), since these galaxies naturally fall along different regions of interaction and mass space. Disky ellipticals, with rotation, would have a lower mass, while the degree of boxiness correlates with the interaction history.

Other galaxies can also be classified in this system. Star-
starbursts induced by major mergers, are placed at the high

Figure 12. The system in Figure 11 projected onto the star for-
mass plane. The Hubble sequence is labelled, and includes
galaxies with a range of masses, modest star formation with no distinction made for interactions. Ellipticals, S0s, dEs and dwarf spheroidals are located at the bottom of the star forma-
tion sequence. Massive star bursts are those galaxies located at the high star formation area of this projection.

Figure 13. Projection of the star formation/interaction plane
of Figure 11. Several classes of galaxies separate along this plane perpendicular to the mass sequence. Low surface brightness galax-
ies (LSBs) are those with modest star formation and very little recent interaction history. Ellipticals and S0s are objects with relatively little star formation or interactions, and no recent in-
teractions/mergers. Several other galaxy types, such as distorted cluster galaxies undergoing little star formation due to gas re-
moval by the cluster, dry-mergers, and starbursts induced by ma-
jor mergers, are also labelled.
end of the interaction and star formation sequence. Galaxies undergoing violent relaxation, such as Arp 220, containing spheroidal components and step light profiles (Wright et al. 1990), would be classified towards the high-mass end of the mass sequence.

This system is constructed based on the results presented in the earlier part of this paper. Measuring the star formation, merging, and masses (either stellar or dynamical) properties of a galaxy are not trivial, but are likely to become easier in the future. We are therefore not setting out in this section a stringent method for classifying galaxies by these properties. One could do these classifications directly by measuring the star formation rate through emission lines, masses through dynamics or spectral energy distributions, and mergers/interactions through an asymmetry index or a dynamical indicator. We discuss in §6.3 a possible way to use the apparent morphologies of galaxies in optical light to carry out these classifications. Future work will reveal better ways of carrying out these measurements, which can then be applied for classification according to Figure 11.

6.2.1 Other Systems as Projections

Other morphological systems, including physical morphological ones, can be viewed as projections of this system. The Hubble sequence, to first order, is a one dimension projection with the star formation and interactions collapsed onto the mass sequence. As discussed before, the Hubble sequence does not take into account these features, thus there exists a wide range of properties at each Hubble type (Roberts & Haynes 1994; Kennicutt 1998).

The colour-asymmetry diagram is a projection, in part, of the star formation, interaction sequence (Figure 13). This is not an exact projection since the asymmetry parameter measures interactions, as well as star formation (Conselice et al. 2000a). To first order the \((B - V)_{0}\) colour measures the star formation history of a galaxy. Galaxies with purely old stars have very red colours, while those with recent star formation are bluer. The concentration-asymmetry diagram used by Bershady et al. (2000) and others, is furthermore a projection of the mass-interaction sequence. More recently, Driver et al. (2006) argue that light concentration and colour are fundamental properties that separate galaxies into early and late types, which is again a two-dimensional projection of this new system. Likewise, Blanton et al. (2005) suggest that colour and and luminosity are the most important galaxy properties, which is also shown in our analysis.

6.2.2 Idealised Classifications

When Hubble invented his classification, he did so with specific examples of galaxies, however Hubble types are now thought to characterise ideal types. There are few galaxies that fit this ideal, nor is any one galaxy exactly similar to any other. This is due to the chaotic interaction and star formation history of galaxies that are, at present, not easily retrievable.

The classification system presented here replaces ideal galaxies with parameters that are in some ways idealised measurements. It is not trivial to determine the star formation history of a galaxy, or even accurately measure its current star formation rate. Star formation does have a morphological appearance in most galaxies, the exception being systems heavily enshrouded by dust. The system presented here can still account for those galaxies, as it is very general. The method for classifying the star formation properties of a galaxy does not have to be based on morphology, but can also be done through other properties, such as fluxes at various wavelengths.

The same is true for measuring the merger history of galaxies. While many galaxies have some clues left over from merger events, these clues can be quite diverse, requiring various methods to retrieve them. Structural methods, such as the asymmetry CAS parameter (Conselice et al. 2000a,b), are useful for determining the presence of, and quantifying, current major mergers. Determining the history of past interactions is more difficult. One way is to investigate the outer parts of galaxies where the dynamical time scales are long, and where apparently normal galaxies show evidence for past merger activity (Schweizer & Seitzer 1988). Other methods include searching for distorted HI halos surrounding galaxies, galaxy core depletion from merging black holes (Graham 2004), and finding distorted rotation curves (Swaters et al. 1999) or line profiles (Haynes et al. 1998; Conselice et al. 2000b). These features are potentially all remnants of accretion, merging or interactions with other galaxies, and can in principle be used to quantify the interaction history of galaxies.

6.2.3 Unidentified Galaxies?

The system presented here can classify all known galaxies, but it also has classification ‘corners’ where no nearby galaxies are known to exist, or have not been identified. One type are massive, low interaction high star formation systems. There are plenty of galaxies that have these features at high redshift. These are likely ellipticals or disks in formation that will evolve into spheroids. For example, systems with high mass, high star formation, and little merging could originate from gas accreted onto elliptical-like systems. Other possible galaxies not yet identified are those with various mass ranges, but low star formation and high interaction strength. Perhaps the population of distorted, but non-star forming galaxies, or compact dwarfs found in clusters (Conselice & Gallagher 1999; Drinkwater et al. 2003) are examples of these, where the gas has been removed by the intracluster medium. Another example are the ‘dry’ mergers between spheroids with little gas (e.g., Hernandez-Toledo et al. 2006). Other possible galaxy populations can be hypothesised by studying Figure 11.

6.3 An Optical View of Galaxy Classification

We have argued that the three parameters: mass, star formation and interactions can be used together to classify and trace the evolution of galaxies. These parameters have a direct correlation with the semi-irreversible processes of mass assembly or removal, and star formation where gas mass is converted into stellar mass by some conversion efficiency \(\alpha\). Therefore, in principle these features can be measured through stellar light distributions, which has been the primary method for classifying galaxies for nearly a century.
We show in this section that this is possible. The following description follows closely the more detailed calculation given in appendix B of Conselice (2003).

We can write the initial baryonic mass of a galaxy after its initial formation, \(M_{0,B} \), as,

\[
M_{0,B} = M_{0,S} + M_{0,G},
\]

where \(M_{0,S} \) and \(M_{0,G} \) are the initial stellar and gas masses.

Over time, mass will accrete or be removed from a galaxy due to interactions and mergers. At a time \(T \), the amount of mass added to or removed from the system, \(M'(T) \), is given by,

\[
M'(T) = \int_0^T \dot{M}(t) dt = \int_0^T \dot{M}_S(t) dt + \int_0^T \dot{M}_G(t) dt,
\]

where \(\dot{M} \) is the mass accretion, or removal, rate as a function of time, and \(T \) is the age of the galaxy when observed. We can further divide the mass flux into stellar \(\dot{M}_S \) and gas \(\dot{M}_G \) components. Some gas will be converted into stars at each time, \(t \), by a conversion rate, \(\alpha(t) \), such that the mass converted into stars, \(\dot{M}_S \), is given by

\[
\dot{M}_S(T) = \int_0^T \alpha(t) \dot{M}_G(t) dt,
\]

where \(\alpha(t) \) and \(\dot{M}_G \) are the gas conversion rate, and gas mass as a function of time. We can then write the total stellar and gas masses as a function of time by:

\[
M_S(t) = M_{0,S} + \int_0^t \left(\dot{M}_S(t) + \alpha(t) \dot{M}_G(t) \right) dt,
\]

\[
M_G(t) = M_{0,G} + \int_0^t \left(\dot{M}_G(t) - \alpha(t) \dot{M}_G(t) \right) dt.
\]

The three axes of our system (Figure 11) can be represented by three terms in these equations. An interaction parameter can be represented by \(M_0' \), and a star formation parameter by \(M_S \). We can also create dimensionless parameters that in principal correlate with measurable stellar light features. We can write the integrated interaction, \(I(t) \) and star formation \(F(t) \) strengths weighted by the final mass, and time as:

\[
I(t) = \int_0^t \frac{t \ |\dot{M}_S(t)|}{\bar{T} \ M_S(T)} dt,
\]

\[
F(t) = \int_0^t \frac{t \ \alpha(t) \dot{M}_G(t)}{\bar{T} \ M_S(T)} dt.
\]

These two ideal morphological parameters are quantities that should correlate with the appearance of a galaxy, and are further elaborated in appendix B of Conselice (2003). They are weighted by time since older star formation and interactions will have less of an effect on the appearance of a galaxy. Likewise, more massive galaxies will have appearances that, in general, will be less affected by relatively lower amounts of gas converted into stars, and stars lost or gained from galaxy interactions.

What this section shows is that the main galaxy formation processes - star formation and interactions/mergers can be traced through optical light. Typically, a galaxy which has undergone recent star formation will contain clumpy light, occupied by clusters of young stars. Likewise, a galaxy undergoing a merger or interaction will appear lopsided and/or distorted in some manner. The mass of a galaxy often correlates with the light concentration, which can be estimated by eye. Therefore, by estimating the degree of: disturbances, clumpy structures, and how concentrated a galaxy is (i.e., bulge vs. disk structures) it is possible to classify galaxies into this new system using optical light. A detailed exploration of this idea in terms of eye-ball classifications is however beyond the scope of this current paper. Quantitatively, this approach has been successfully used to classify both nearby (Conselice et al. 2002; Conselice 2003) and high redshift galaxy populations (Conselice et al. 2003b; Conselice et al. 2004; Grogin et al. 2005; Papovich et al. 2005; Lehmer et al. 2005; Conselice et al. 2005c; Lotz et al. 2006) within the CAS system.

7 SUMMARY AND CONCLUSIONS

This paper attempts to answer a few very basic questions about galaxies and their properties. The first is how galaxies of different morphological types are related to each other, including the relationship between various major evolutionary processes. Another question we address is whether or not the structural appearance of a galaxy contains enough information to offer this classification. To answer the first question, which constitutes the bulk of the paper, we carried out a series of statistical analyses, including principal component analyses, of fourteen properties in 22,121 galaxies. The major results of our investigations are:

I. Spearman correlation analysis show that most measurable properties of galaxies are correlated with each other, and that Hubble types correlate strongest with stellar mass and \((U - B)_0\) and \((B - V)_0\) colour. Scale features (\(M_*, R_e, r_H, \) HI gas content, far-infrared luminosity) correlate strongly with each other independent of morphological, colour, or luminosity selection. Furthermore, the strong correlation between \(M_*\) and colour is independent of Hubble type.

II. We carry out several principal component analyses (PCA) to determine how many PCA eigenvectors are needed to describe the major properties of all nearby galaxies. Our conclusion from this is that the major eigenvector is dominated by the scale, or mass, of a galaxy, while the next two major eigenvectors are dominated by the star formation, and galaxy interactions/mergers, respectively.

III. Based on points I and II, we conclude that the three major processes that should be used to classify a galaxy are: the scale or mass, interactions and mergers with other galaxies, and recent star-formation.

IV. We argue that these three features (mass, star formation and interactions) are revealed through the stellar mass distributions within galaxies. Thus the optical structure of a galaxy can be used, in principle, to accurately classify galaxies into a physically meaningful system. One way this can be done is through the CAS parameters described in Conselice (2003).

V. Based on our analysis we present a morphological break down of \(z \approx 0 \) galaxies, including the fraction and number densities of different Hubble types (ellipticals, spirals, irregulars) at different luminosities. We find that the bulk of nearby bright galaxies with \(M_B < -20 \) are spirals (60%), while 19% are elliptical, 10% S0 and 2% irregular. We also
investigate which types of galaxies are barred, and the number densities of barred galaxies in the nearby universe. These are intended to be useful for higher redshift comparisons, which are just now becoming possible.

In summary, this paper presents a new basic methodology for understanding and classifying galaxies. It is a physical system that uses the quantifiable parameters of mass, star formation, and interactions, and is not based on galaxy morphology. The system can account for all known galaxy types, and is a naturally outgrowth of detailed studies of galaxies over the past century. Future work on this classification scheme will include understanding the origin of the mass sequence, and why it correlates at $z \sim 0$ with star formation and bulge to disk ratios. Furthermore, our new classification system is by no means finalised. In the future, we will likely be able to measure galaxy masses, star formation rates, and ongoing interactions with a high accuracy. Whether these measurements are done morphologically or not is irrelevant, as these three properties measured in any way can be used to classify galaxies.

ACKNOWLEDGEMENTS

This work, in one way or another, has been in progress since 1995, although the bulk of it was completed and written in 2001-2002 and 2006. I thank the University of Wisconsin-Madison, the Space Telescope Science Institute, Caltech and the University of Nottingham for their support while this work was completed. An early form of section 6 was originally included in the conclusions to my PhD thesis. I thank Jay Gallagher and Matt Bershady for their collaboration which led to many of the ideas discussed in this paper, and Alister Graham, Michael Merrifield and Sidney van den Bergh for reading and commenting on various drafts. I also thank the referee for a very constructive report with many useful suggestions. Finally, I thank Sylvia and Scott Mencer for the inspiration to produce Figure 11. Financial support for this work was provided by the National Science Foundation through a Astronomy and Astrophysics postdoctoral Fellowship, NASA, and the UK Particle Physics and Astronomy Research Council through grants to the University of Nottingham. This research has made use of the Lyon extragalactic Database (LEDA) and the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

Abraham, R.G., Merrifield, M.R. 2000, AJ, 120, 2835
Baldry, I.K., et al. 2004, ApJ, 600, 681
Barnes, J.E., Hernquist, L. 1992, ARA&A, 30, 705
Bell, E.F., McIntosh, D.H., Katz, N., Weinberg, M.D. 2003, ApJS, 149, 289
Bershady, M.A., Jangren, J.A., Conselice, C.J. 2000, AJ, 119, 2645
Binggeli, B., Sandage, A., Tammann, G.A. 1985, AJ, 90, 1681
Blanton, M.R., Eisenstein, D., Hogg, D.W., Schlegel, D.J., Brinkmann, J. 2005, ApJ, 629, 143
Brotherton, M.S. 1996, ApJS, 102, 1
Bundy, K., Ellis, R., Conselice, C.J. 2005, ApJ, 625, 621
Bundy, K., Fukugeta, M., Ellis, R., Kodama, T., Conselice, C.J. 2004, ApJ, 601, 123L
Bundy, K., Ellis, R., Conselice, C., et al. 2006, ApJ, 651, 120
Buta, R., Combes, F. 1996, Fund. Cosmic Phys., 17, 95
Conselice, C.J. 1997, PASP, 109, 1251
Conselice, C.J., Gallagher, J.S. 1999, AJ, 117, 75
Conselice, C.J., Bershady, M.A., Jangren, A. 2000a, ApJ, 529, 886
Conselice, C.J., Bershady, M.A., Gallagher, J.S. 2000b, A&A, 354, 21L
Conselice, C.J., Gallagher, J.S., Wyse, R.F.G. 2001, ApJ, 559, 791
Conselice, C.J., Gallagher, J.S., Wyse, R.F.G. 2002, AJ, 123, 2246
Conselice, C.J. 2003, ApJS, 147, 1
Conselice, C.J., Bershady, M.A., Dickinson, M., Papovich, C. 2003a, AJ, 126, 1183
Conselice, C.J., Chapman, S.C., Windhorst, R.A. 2003b, ApJ, 596, 5L
Conselice, C.J., Gallagher, J.S., Wyse, R.F.G. 2003c, AJ, 125, 66
Conselice, C.J., et al. 2004, ApJ, 600, 139L
Conselice, C.J. 2004, in “Penetrating bars through masks of cosmic dust: the Hubble tuning fork strikes a new note”, p. 489, astro-ph/0407463
Conselice, C.J., Blackburne, J.A., Papovich, C. 2005a, ApJ, 620, 564
Conselice, C.J., Bundy, K., Ellis, R.S., Brinchmann, J., Vogt, N.P., Phillips, A.C. 2005b, ApJ, 628, 160
Conselice, C.J. et al. 2005c, ApJ, 633, 29
Conselice, C.J. 2006, ApJ, 638, 686
Curtis, H.D. 1918, Lick Obs. Pub., 13, 12
de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H.G., Buta, R.J., Paturel, G., Fouque, P. 1991, Third Reference Catalogue of Bright Galaxies (RC3)
de Vaucouleurs, G. 1959, Handb. der Physik, 53, 275
Dale, D.A., et al. 2005, ApJ, 633, 857
Disney, M.J. 1976, Nature, 263, 573
Djorgovski, S., Davis, M. 1987, ApJ, 313, 59
Dressler, A. 1980, ApJ, 236, 351
Dressler, A. 1984, ARA&A, 22, 185
Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R.L., Faber, S.M., Terlevich, R., Wegner, G. 1987, ApJ, 313, 42
Drinkwater, M.J., et al. 2003, Nature, 423, 519
Driver, S., et al. 2006, MNRAS, 368, 414
Faber, S.M. 1973, ApJ, 179, 731
Faber, S.M. et al. 2005, astro-ph/0506044
Fall, S.M., Efstathiou, G. 1980, MNRAS, 193, 189
Ferguson, H.C., Binggeli, B. 1994, A&ARv, 6, 67
Gallagher, J.S., Hunter, D.A. 1984, ARA&A, 22, 37
Gallagher, J.S., Hunter, D.A. 1986, AJ, 92, 557
Graham, A.W., Trujillo, I., Caon, N. 2001, AJ, 122, 1707
Graham, A.W. 2004, ApJ, 613, 33L
Graham, A.W. Guzman, R. 2003, AJ, 125, 2936
Grogin, N.A., et al. 2005, ApJ, 627, 97L
Han, M. 1995, ApJ, 442, 504
Haynes, M.P., Giovannelli, R. 1986, ApJ, 306, 55
Christopher J. Conselice

Haynes, M.P., van Zee, L., Hogg, D.E., Roberts, M.S., Madgakdala, R.J. 1998, AJ, 115, 62
Hernandez-Toledo, H.M., Avila-Reese, V., Salazar-Contreras, J.R., Conselice, C.J. 2006, AJ, 132, 71
Holmberg, E. 1958, Lund Medd. II, 136
Hubble, E. 1926, ApJ, 64, 321
Impey, C., Bothun, G. 1997, ARA&A, 35, 267
Jeans, J. 1919, Problems of Cosmogony and Stellar Dynamics. Cambridge: Cambridge Univ. Press
Jogee, S., et al. 2004, ApJ, 615, 105L
Kennicutt, R.C. 1998, ARA&A, 36, 189
Knezek, P.M. 1993, PhD Thesis, Univ. Massachusetts
Kuntschner, H., Davies, R.L. 1998, MNRAS, 295, 29L
Kormendy, J., Bender, R. 1996, ApJ, 464, 119L
Lehmer, B.D., et al. 2005, AJ, 129, 1
Lin, L., et al. 2004, ApJ, 617, 9L
Lotz, J.M., et al. 2006, astro-ph/0602088
Nakamura, O., Fukugita, M., Yasuda, N., Loveday, J., Brinkmann, J., Schneider, D.P., Shimasaku, K., Subba Rao, M. AJ, 125, 1682
Madgwick, D.S., et al. 2003, ApJ, 599, 997
Marzke, R.O., da Costa, L.N., Pellegrini, P.S. Willmer, C.N.A., & Geller, M.J. 1998, ApJ, 503, 617
Mo, H.J., McGaugh, S.S., Bothun, G.D. 1994, MNRAS, 267, 129
Morgan, W.W., Mayall, N.U. 1957, PASP, 69, 291
Morgan, W.W. 1958, PASP, 70, 304
Morgan, W.W. 1959, PASP, 71, 394
Papovich, C., Dickinson, M., Giavalisco, M., Conselice, C.J., Ferguson, H.C. 2003, ApJ, 598, 827
Papovich, C., Dickinson, M., Giavalisco, M., Conselice, C.J., Ferguson, H.C. 2005, ApJ, 631, 101
Patton, D.R., Carlberg, R.G., Marzke, R.O., Pritchet, C.J., da Costa, L.N., & Pellegrini, P.S. 2000, ApJ, 536, 15
Pope, A., Borys, C., Scott, D., Conselice, C., Dickinson, M., Mobasher, B. 2005, MNRAS, 358, 149
Postman, M., Geller, M.J. 1984, ApJ, 281, 95
Ravindranath, S., et al. 2004, ApJ, 604, 9L
Ravindranath, S., et al. 2006, astro-ph/0606696
Roberts, M.S., Haynes, M.P. 1994, ARA&A, 32, 115
Romanishin, W. 1986, AJ, 91, 76
Sandage, A. 1975, in Galaxies and the Universe, eds. A. Sandage, M. Sandage & J. Kristien, U. Chicago Press, Chicago, 1
Sandage, A. 1961, The Hubble Atlas of Galaxies, Carnegie Institute of Washington, Washington, D.C.
Sandage, A., Visvanathan, N. 1978, ApJ, 223, 707
Sandage, A. 2005, ARA&A, 43, 581
Schweizer, F., Seitzer, P. 1988, ApJ, 328, 88
Spitzer, L., & Baade, W. 1951, ApJ, 113, 431
Stanford, S.A., et al. 2004, AJ, 127, 131
Swaters, R.A., Schoenmakers, R.H., Sancisi, R., van Albada, T.S. 1999, MNRAS, 304, 330
Trager, S.C., Faber, S.M., Worthey, G., Gonzalez, J.J. 2000, AJ, 119, 1645
Tully, R.B., Fisher, J.R. 1977, A&A, 54, 661
van Albada, T.S. 1982, MNARS, 201, 939
van den Bergh, S. 1960, ApJ, 131, 215
van den Bergh, S. 1966, AJ, 71, 922
van den Bergh, S. 1976, ApJ, 206, 883
van den Bergh, S. 1997, AJ, 113, 2054
van den Bergh, S., Cohen, J.G., Crabbe, C. 2001, AJ, 122, 611
Whitmore, B.C. 1984, ApJ, 278, 61
Wirth, A., Gallagher, J.S. 1984, ApJ, 282, 85
Wolf, M. 1908, Pub. Ap. Inst. Konig. Heidelberg, Vol. 3, No. 5
Worthey, G. 1994, ApJS, 95, 107
Wright, G.S., James, P.A., Joseph, R.D., & McLean, I.S. 1990, Nature, 334, 417
Zaritsky, D., Rix, H.-W. 1997, ApJ, 477, 118