The Role of the Exclusion Principle for Atoms to Stars: A Historical Account

Norbert Straumann
Institute for Theoretical Physics University of Zurich, CH–8057 Zurich, Switzerland

April 1, 2022

Abstract

In a first historical part I shall give a detailed description of how Pauli discovered – before the advent of the new quantum mechanics – his exclusion principle. The second part is devoted to the insight and results that have been obtained in more recent times in our understanding of the stability of matter in bulk, both for ordinary matter (like stones) and self-gravitating bodies.

1 Introduction

I have to apologize that my contribution will not be on a topic of current research. At this meeting in honor of Wolfgang Hillebrandt’s 60th birthday it may not be out of place that my talk will have a historical accent. After all, Wolfgang has now become an elderly physicist with ‘his brilliant future (almost) behind him’.

As a former student of Wolfgang Pauli, I was always interested in his way of doing science, which appears to me as an ideal of rare quality. Many of you rely in their daily work at least on two great discoveries of this man: the exclusion principle and the neutrino(s). In a contribution to Sommerfeld’s 60th birthday in 1928, Pauli also developed the kinetic theory of particles that satisfy the exclusion principle [1]. All of you who work on core collapse induced supernova explosions use this theory, in one way or the other, in

*Invited talk at the 12th Workshop on “Nuclear Astrophysics”, March 22-27, 2004, Ringberg Castle, Germany.
the study of the impact of the enormous neutrino pulse in supernova events. Wolfgang Hillebrandt and his coworkers have addressed this difficult task vigorously over many years. (I remember, for instance, very well the talk by Thomas Janka in Garching on his diploma thesis, that was devoted to a realistic treatment of the neutrino transport.)

In the historical part of my talk, I shall sketch how Pauli arrived at the exclusion principle. At the time – before the advent of the new quantum mechanics – the exclusion principle was not at all on the horizon, because of two basic difficulties: (1) There were no general rules to translate a classical mechanical model into a coherent quantum theory, and (2) the spin degree of freedom was unknown. It is very impressive indeed how Pauli arrived at his principle on the basis of the fragile Bohr-Sommerfeld theory and the known spectroscopic material. The Pauli principle was not immediately accepted, although it explained many facts of atomic physics. In particular, Heisenberg’s reaction was initially very critical, as I will document later. My historical discussion will end with Ehrenfest’s opening laudation when Pauli received the Lorentz medal in 1931. This concluded with the words: “You must admit, Pauli, that if you would only partially repeal your prohibitions, you could relieve many of our practical worries, for example the traffic problem on our streets.” According to Ehrenfest’s assistant Casimir who was in the audience, Ehrenfest improvised something like this: “and you might also considerably reduce the expenditure for a beautiful, new, formal black suit” (quoted in [3], p.258).

These remarks indicate the role of the exclusion principle for the stability of matter in bulk. A lot of insight and results on this central issue, both for ordinary matter (like stones) and self-gravitating bodies, have been obtained in more recent times, beginning with the work of Dyson and Lenard in 1967. Beside some qualitative remarks on a heuristic level, I intend to give in the second part of my talk a flavor of the deep insight, as well as of the concrete results, mathematical physicists have reached in this field over the last few decades. For further information, I highly recommend the review articles in Lieb’s Selecta.
Part I. Wolfgang Pauli and the Exclusion Principle

Let me begin with a few biographical remarks. Pauli was born in 1900, the year of Planck’s great discovery. During the high school years Wolfgang developed into an infant prodigy familiar with the mathematics and physics of his day.

2 Pauli’s Student Time in Munich

Pauli’s scientific career started when he went to Munich in autumn 1918 to study theoretical physics with Arnold Sommerfeld, who had created a “nursery of theoretical physics”. Just before he left Vienna on 22 September he had submitted his first published paper, devoted to the energy components of the gravitational field in general relativity. As a 19-year-old student he then wrote two papers about the recent brilliant unification attempt of Hermann Weyl (which can be considered in many ways as the origin of modern gauge theories). In one of them he computed the perihelion motion of Mercury and the light deflection for a field action which was then preferred by Weyl. From these first papers it becomes obvious that Pauli mastered the new field completely.

Sommerfeld immediately recognized the extraordinary talent of Pauli and asked him to write a chapter on relativity in Encyklopädie der mathematischen Wissenschaften. Pauli was in his third term when he began to write this article. Within less than one year he finished this demanding job, beside his other studies at the university. With this article [5] of 237 pages and almost 400 digested references Pauli established himself as a scientist of rare depth and surpassing synthetic and critical abilities. Einstein’s reaction was very positive: "One wonders what to admire most, the psychological understanding for the development of ideas, the sureness of mathematical deduction, the profound physical insight, the capacity for lucid, systematic presentation, the knowledge of the literature, the complete treatment of the subject matter or the sureness of critical appraisal." Hermann Weyl was also astonished. Already on 10 May, 1919, he wrote to Pauli from Zürich: “I am extremely pleased to be able to welcome you as a collaborator. However, it is almost inconceivable to me how you could possibly have succeeded at so young an age to get hold of all the means of knowledge and to acquire the liberty of thought that is needed to assimilate the theory of relativity.”

Pauli studied at the University of Munich for six semesters. At the time when his Encyclopedia article appeared, he obtained his doctorate with a
dissertation on the hydrogen molecule ion H^+_2 in the old Bohr-Sommerfeld theory. In it the limitations of the old quantum theory showed up.

In the winter semester of 1921/22 Pauli was Max Born’s assistant in Göttingen. During this time the two collaborated on the systematic application of astronomical perturbation theory to atomic physics. Already on 29 November, 1921, Born wrote to Einstein: “Little Pauli is very stimulating: I will never have again such a good assistant.” Well, Pauli’s successor was Werner Heisenberg.

3 Discovery of the Exclusion Principle

Pauli’s next stages were in Hamburg and Copenhagen. His work during these crucial years culminated with the proposal of his exclusion principle in December 1924. This was Pauli’s most important contribution to physics, for which he received a belated Nobel Prize in 1945. Since this was made before the advent of the new quantum mechanics, I ask you to forget for a while what you know about quantum mechanics.

The discovery story begins in fall 1922 in Copenhagen when Pauli began to concentrate his efforts on the problem of the anomalous Zeeman effect. He later recalled: ‘A colleague who met me strolling rather aimlessly in the beautiful streets of Copenhagen said to me in a friendly manner, “You look very unhappy”; whereupon I answered fiercely, “How can one look happy when he is thinking about the anomalous Zeeman effect?”’.

In a Princeton address in 1946 [6], Pauli tells us how he felt about the anomalous Zeeman effect in his early days:

“The anomalous type of splitting was on the one hand especially fruitful because it exhibited beautiful and simple laws, but on the other hand it was hardly understandable, since very general assumptions concerning the electron, using classical theory as well as quantum theory, always led to a simple triplet. A closer investigation of this problem left me with the feeling that it was even more unapproachable (...). I could not find a satisfactory solution at that time, but succeeded, however, in generalizing Landé’s analysis for the simpler case (in many respects) of very strong magnetic fields. This early work was of decisive importance for the finding of the exclusion principle.”
Step 1: Zeeman effect for strong fields and Pauli’s sum rule

I would like to show you now in some detail what Pauli did in his first step \cite{7}. In doing this, I use ‘modern’ (post-quantum mechanics) notations and first summarize the state of knowledge at the time when Pauli did his work.

• The energy levels of an atom determine the spectrum by Bohr’s rule:

\[E_2 - E_1 = h \nu. \]

• In spectroscopy some quantum numbers were already associated to energy levels, namely\(^1\):

\(L \) \([= k - 1] \), \(L = 0, 1, 2, 3, \ldots \) \((S, P, D, F, \ldots)\), our present day orbital angular momentum.

\(S \) \([= i - \frac{1}{2}]\): Each term belongs to a singlet or multiplet system, characterized by a maximal multiplicity \(2S + 1 \) \((S = 0, \frac{1}{2}, 1, \ldots)\), reached with increasing \(L \). \(S \) is our present day spin quantum number.

The various terms of a multiplet, having the same \(L \) and \(S \), are distinguished by a quantum number \(J \) [Sommerfeld’s \(j \)], which takes the values:

\[J = L + S, L + S - 1, \ldots \ L - S \quad \text{for} \quad L \geq S, \]
\[J = S + L, S + L - 1, \ldots \ S - L \quad \text{for} \quad L < S. \]

\(J \) is our present day total angular momentum. The maximal multiplicity \(2S + 1 \) is reached for \(L \geq S \).

• One knew the following selection rules (valid in most cases):

\[L \rightarrow L \pm 1, \]
\[S \rightarrow S, \]
\[J \rightarrow J + 1, J, J - 1 \quad (0 \rightarrow 0 \text{ forbidden}). \]

• For a given atomic number \(Z \) \((Z - p\) if the atom is ionized \(p\) times) the following holds:

\(Z \) even \(\rightarrow \) \(S, J \): integer,
\(Z \) odd \(\rightarrow \) \(S, J \): half integer.

\(^1\)In square brackets I give the historical notation.
• **Splitting in a magnetic field:**

 ▶ Each term splits into \(2J + 1\) terms, distinguished by a quantum number \(M\) taking the values \(M = J, J - 1, \ldots, -J\).

 ▶ **Landé:** If the field is *weak*, the terms are equidistant and their deviation from the unperturbed term is \(\Delta E_M = M \cdot g(\mu_0 B)\), where \(\mu_0 = \frac{e\hbar}{2mc}\) is the Bohr magneton (introduced by Pauli in 1920) and \(g\) is Landé’s \(g\) factor:

 \[
g = \frac{3}{2} + \frac{S(S + 1) - L(L + 1)}{2J(J + 1)};
\]

 ▶ **Selection rules** for Zeeman transitions:

 \[
 M \to M \pm 1 \quad (\sigma - \text{component}),
 \]

 \[
 M \to M \quad (\pi - \text{component}).
 \]

 If the \(g\) factors for the initial and final states are the same, we have the following triplet:

 \[
 \begin{array}{c}
 \sigma (g \mu_0 B) \\
 \pi \\
 \sigma (-g \mu_0 B)
 \end{array}
 \]

 Pauli accepts these *empirical rules* as established, and proceeds to investigate the spectroscopic material for *strong* fields. In a table he gives the energy splitting’s \(\Delta E\) as multiples of \(\mu_0 B\) and describes the result as follows:

 If two quantum numbers \(M_L, M_S \equiv m_1, \mu\) are introduced, whose sum is equal to \(M\),
 \[
 M = M_L + M_S,
 \]

 and which take the values
 \[
 M_L = L, L - 1, \ldots, -L,
 \]

 \[
 M_S = \{ \pm \frac{1}{2} \quad \text{for doublets (alkali atoms)}
 \]

 \[
 0, \pm 1 \quad \text{for triplets (alkaline earths)},
 \]

 then the following simple formula holds for strong fields:

 \[
 \frac{\Delta E}{\mu_0 B} = M_L + 2M_S = M + M_S.
 \]
Pauli generalizes this at once to arbitrary multiplets, assuming that the same formula holds, but that M_S takes the values

$$S, S - 1, \ldots, -S.$$

This generalization was at the time not experimentally tested.

The selection rule for M_S is: $M_S \to M_S$, hence the Zeeman effect is normal for strong fields. Thus the situation is simpler in this case.

As the main point of the paper Pauli postulates a remarkable formal rule which allows him to derive Landé’s whole set of g factors. Pauli’s sum rule reads:

“The sum of the energies of all states of a multiplet belonging to given values of M and L remains a linear function of B, when we pass from weak to strong fields.”

(In quantum mechanics this rule follows immediately \(^2\).)

Special cases:

1) $M = J = L + S$. Then there is only one state, whose energy must be linear in B.

2) If M is chosen such that there are $2S + 1$ states (the maximal possible number) then the arithmetic mean of their energies ΔE_M in strong magnetic fields is $M \mu_0 B$. Hence Pauli’s sum rule, which later became known as Pauli’s g-permanence rule, implies that the mean of all Landé factors is equal to 1, for all $L \geq S$.

Pauli now shows – and he puts most weight to this – that all factors g can uniquely be calculated from the energies for strong fields. He shows this by applying the sum rule recursively for different values of M with a given L. (This might serve as a nice exercise for students in a quantum mechanics course.)

Pauli was very unhappy when he wrote this paper, which only later turned out to be important. In several letters he laments about his ‘unfortunate work on the anomalous Zeeman effect’. To Sommerfeld he wrote \(^3\):

\(^2\)The sum in Pauli’s rule is the trace of $\langle H_B \rangle$, $H_B = \mu_0 B(J_3 + S_3)$, where $\langle H_B \rangle$ is the perturbation matrix for fixed M. This trace is obviously linear in B.

\(^3\)“Ich habe mich sehr lange mit dem anomalen Zeemaneffekt geplagt, wobei ich oft auf Irrwege geriet und eine Unzahl von Annahmen prüfte und dann wieder verworf. Aber es wollte und wollte nicht stimmen! Dies ist mir bis jetzt einmal gründlich danebengegangen! Eine Zeit lang war ich ganz verzweifelt ... ich habe das Ganze mit einer Träne im Augenwinkel geschrieben und habe davon wenig Freude.”
“I have long vexed myself with the anomalous Zeeman effect and often lost my way. I considered and discarded untold assumptions. But it just wouldn’t ever work out! In this I have miserably failed for once up to now! For a time I was quite desperate ... I have written all of this with a tear in the corner of my eyes and am anything but delighted.”

In the final section of his paper he expresses very clearly why he believes that the presently known principles of quantum theory will not lead to an understanding of the anomalous Zeeman effect. Since I find it very difficult to preserve the characteristic style of Pauli’s writing I quote only the German original:

“Eine befriedigende modellmässige Deutung der dargelegten Gesetzmässigkeiten, insbesondere der in diesem Pararaphen besprochenen formalen Regel ist uns nicht gelungen. Wie schon in der Einleitung erwähnt, dürfte eine solche Deutung auf Grund der bisher bekannten Prinzipien der Quantentheorie kaum möglich sein. Einerseits zeigt das Versagen des Larmorschen Theorems, dass die Beziehung zwischen dem mechanischen und dem magnetischen Moment eines Atoms nicht von so einfacher Art ist wie es die klassische Theorie fordert, indem das Biot-Savartsche Gesetz verlassen oder der mechanische Begriff des Impulsmomentes modifiziert werden muss. Anderseits bedeutet das Auftreten von halbzahligen Werten von m und j bereits eine grundsätzliche Durchbrechung des Rahmens der Quantentheorie der mehrfach periodischen Systeme.”

After his return to Hamburg Pauli began to think about the closing of electronic shells. He was convinced that there must be a closer relation of this problem to the theory of multiplet structure. In his Nobel Prize lecture he writes:

“I therefore tried to examine again critically the simplest case, the doublet structure of the alkali spectra. According to the point of view then orthodox, which was also taken over by Bohr in his lectures in Göttingen, a non-vanishing angular momentum of the atomic core was supposed to be the cause of this doublet structure.”

In his next paper Pauli rejected this ‘orthodox’ point of view, and introduced instead a classically non-describable two-valuedness of the electron, now called the spin.
Step 2: Two-valuedness of the electron

Let me show you in some detail how he arrived at this fundamental conclusion. First, he calculates the relativistic corrections upon the magnetic moment and the orbital angular momentum of electrons in the K-shell. For the ratio of the two he finds with simple classical arguments

$$\frac{|\vec{M}|}{|\vec{L}|} = \frac{e}{2mc} \langle \left(1 - \frac{v^2}{c^2}\right)^{1/2} \rangle_{\text{time}}.$$

According to the virial theorem the time average on the right must be equal to the total energy of the electron in units of mc^2. For the latter Pauli uses Sommerfeld’s relativistic formula and finds for the K-shell ($L = 0, n = 1$) the value $(1 - \alpha^2 Z^2)^{1/2}$ for the relativistic correction factor (≈ $1 - \frac{1}{2} \alpha^2 Z^2 / n^2$ for an arbitrary n).

Adopting the ‘orthodox’ point of view, Pauli now calculates the relativistic correction on the anomalous Zeeman effect, using his earlier results – in particular his sum rule. I do not have to tell you this in detail, because it turns out that this influence on the g-factors is not compatible with experience. The empirical factors g are rational numbers depending only on the quantum numbers of the term. The result is summarized by Pauli as follows:

“In order to explain the observed factors g by means of an angular momentum of closed shells, such as the K-shell of the alkali atoms, one would have to assume a doubling of the ratio of magnetic to mechanical momentum for electrons in the shell, and also a compensation of the classically computed relativistic effect of velocity,”

Pauli rejects this logical possibility. Instead he assumes that closed shells have no angular momentum and no magnetic moment. This implies that in the case of alkali atoms the angular momentum of the atom and its change of energy in a magnetic field are due to the valence electron only. In Pauli’s words:

“Insbesondere werden bei den Alkalien die Impulswerte des Atoms und seine Energieänderungen in einem äusseren Feld im wesentlichen als alleinige Wirkung des Leuchtelektrons angesehen, das auch als Sitz der magneto-mechanischen Anomalie betrachtet wird.”

So far Pauli had only made a critical analysis of an existing hypothesis, but now comes a big jump when he writes:
“According to this point of view the doublet structure of alkali spectra as well as the deviation from Larmor’s theorem is due to a particular two-valuedness of the quantum theoretical properties of the electron, which cannot be described from the classical point of view.”

Since Pauli does not explain these prophetic words any further in this second paper, it may be helpful if I add a few remarks. For strong fields he had the formulae

\[M = M_L + M_S, \quad \Delta E/\mu_0 B = M_L + 2M_S. \]

Pauli follows Sommerfeld and interprets \(M \) in his next paper as the total angular momentum in the direction of the field. (Sommerfeld also introduced the quantum number \(J \).) For alkali atoms the closed shells do not contribute to \(M \) nor to the magnetic moment. Hence,

\[M = m_\ell + m_s, \quad \Delta E/\mu_0 B = m_\ell + 2m_s, \]

where \(m_\ell, m_s \) are the values of \(M_L \) and \(M_S \) for the single valence electron.

The integer number \(m_\ell \) may be interpreted classically as the orbital angular momentum in the direction of the field. Therefore, \(m_s \) is an intrinsic contribution of the electron to the total angular momentum \(M \) in the direction of the field which must be added to \(m_\ell \). We have already seen that for the alkali doublets \(m_s \) takes the values \(\pm \frac{1}{2} \).

Since \(m_\ell \) is an integer it follows that \(M \) is a half-integer, and since \(J \) of a multiplet is defined to be the maximal value of \(M \), we have for the two terms of an alkali doublet

\[J = L \pm 1/2. \]

Thus, the two-valuedness of \(J \), which is responsible for the doublet splitting, is a direct consequence of the two-valuedness of \(m_s \). This explains the first part of Pauli’s key sentence:

“...the doublet structure of alkali spectra (...) is due to a particular two-valuedness (...) of the electron.”

What exactly did Pauli mean concerning “the deviation of Larmor’s theorem”?

In the paper of Pauli I have just discussed he uses the well-known formula for the energy of an atom in a magnetic field

\[\Delta E = -\vec{M} \cdot \vec{B}, \quad \vec{M} : \text{magn. moment}. \]
If we compare this with his expression for strong fields, we see that an atom behaves in a strong field like a magnet having a magnetic moment $\mu_0(M_L + 2M_S)$ in the direction of the field. For a single valence electron this is equal to $\mu_0(m_\ell + 2m_s)$.

So far strong fields have been assumed. But if we consider an S state of an alkali atom, we have $M_L = 0$, $M = M_S = m_s$, and now the formula $\Delta E/\mu_0B = 2m_s$ holds -- by Pauli's sum rule -- for weak fields too. This means: For S states the magnetic moment of alkali atoms is equal to $2m_s\mu_0$. According to Pauli, this magnetic moment is entirely due to the valence electron.

Pauli did not attempt to give a meaning to the fourth degree of freedom in terms of a model. In his Nobel Prize lecture [9] he said about this:

"The gap was filled by Uhlenbeck and Goudsmit’s idea of electron spin, which made it possible to understand the anomalous Zeeman effect. (...) Although at first I strongly doubted the correctness of this idea because of its classical mechanical character, I was finally converted to it by Thomas’ calculations on the magnitude of doublet splitting."

Step 3: The exclusion principle

In his decisive third paper [10] Pauli first summarizes his previous results for alkali metals. For these the quantum numbers L, J, M of the atom coincide with those of the valence electron for which we use the modern notation ℓ, j, m_j. (Pauli’s notation is: $k_1 = \ell + 1$, $k_2 = j + \frac{1}{2}$, $m_1 = m_j$.) Beside these there is, of course, also the principle quantum number n. As already explained, the number j is equal to $j = \ell \pm \frac{1}{2}$. Pauli emphasizes:

"The number of states in a magnetic field for given ℓ and j is $2j + 1$, the number of these states for both doublets with a given ℓ taken together is $2(2\ell + 1)$.”

For the case of strong fields, Pauli adds, one can use instead of j the quantum number $m_2 := m_j \pm 1/2 (= m_j + m_s)$, which directly gives the component of the magnetic moment parallel to the field. (We would use for the Paschen-Back region the four quantum numbers n, ℓ, m_ℓ, m_s.)

Next, Pauli extends the “formal classification of the valence electron by the four quantum numbers n, ℓ, j, m_j to complicated atoms”. This is performed with the help of Bohr’s principle of permanence (Aufbauprinzip), which says: If, to a partially ionized atom, one (or more) electron is added, the quantum numbers of the electrons already bound remain the same as in
the ionized atom. Pauli shows that in simple as well as in more complicated cases the application of this principle gives just the right variety of terms for the atom.

For Pauli’s further line of thought the formulae for the Zeeman effect in strong fields are again essential. First, the principle of permanence implies that one can associate quantum numbers m_j for the individual electrons, the sum of which is the total angular momentum of the atom in the direction of the field:

$$M = \sum m_j.$$

By the same rule, the magnetic moment $(M + M_S)\mu_0$ is also equal to the sum of the moments $m_2\mu_0$ of all the electrons, i.e.,

$$M_2 := M_L + 2M_S = M + M_S = \sum m_2.$$

In the sums m_j and m_2 have to assume independently all values which belong to the quantum numbers j, ℓ. Pauli checked (for instance for neon) that this gives the correct results for the Zeeman terms.

This result, he says, suggests the following hypothesis: “Every electron in the atom can be characterized by its principle quantum number n and three additional quantum numbers ℓ, j, m_j.” As for the alkali spectra, j is always equal to $\ell \pm 1/2$. For strong fields the quantum number $m_2 = m_j \pm 1/2$ is used instead of j.

It must be emphasized that Pauli had to assume a magnetic field so strong that every electron has, independently of the others, a definite mechanical angular momentum m_j and a magnetic moment m_2 (in units of μ_0), but he notes that for thermodynamic reasons (invariance of the statistical weights under adiabatic transformations of the system) the number of states in weak fields must be the same as in strong fields. In an article of van der Waerden [11], I have made heavy use of in this section, this is commented as follows:

“It is clear that the definition of these quantum numbers presented great difficulties at a time when quantum mechanics did not exist and the types of motion of the electron had to be described by inadequate classical models. (...) We have to admire Pauli’s courage and persistence in developing the logical consequences of his hypothesis. The subsequent development of quantum mechanics led to a complete justification of every one of his assumptions.”

Next, Pauli considers the case of equivalent electrons. First of all he notes that in this case some combinations of quantum numbers do not occur in nature. For instance, if two valence electrons are in s states belonging to different values of n, we observe a singlet S term and a triplet S term.
If, however, both electrons have the same \(n \), \textit{only the singlet term occurs.} For Pauli the question arises, which quantum theoretical rules govern this behavior of the terms.

This reduction of terms, Pauli says, is closely connected with the phenomenon of closed shells. About this E.C. Stoner \cite{12} had recently made a new proposal which deviated from Bohr’s theory of the periodic system. For example, Bohr had divided the 8 electrons of the \(L \)-shell into two subgroups of 4 electrons. Stoner, on the other hand, proposed to divide the electrons into a subgroup of 2 electrons having \(\ell = 0 \), and a subgroup of 6 electrons with \(\ell = 1 \). Generally, for any closed shell and every value of \(\ell < n \), Stoner associated a \textit{subgroup of \(2(2\ell + 1) \) electrons.}

Even more important was Stoner’s remark that the same number \(2(2\ell + 1) \) is also equal to the number of states of an \textit{alkali atom in a magnetic field} belonging to the same value of \(\ell \) and to a given principle quantum number of the valence electron. This remark of Stoner gave Pauli the clue to his exclusion principle. He explains the fact that there are exactly \(2(2\ell + 1) \) electrons in every subgroup of a closed shell by assuming that every state, characterized by the quantum numbers \((n, \ell, j, m_j) \), is occupied by \textbf{just one electron}. Then we have for a given \(n \) and \(\ell > 0 \) just the two possibilities \(j = \ell \pm \frac{1}{2} \) with \(2j + 1 \) values for \(m_j \), giving together \(2(2\ell + 1) \) electrons.

In Pauli’s words of his Nobel Prize lecture \cite{9}:

“The complicated numbers of electrons in closed subgroups reduce to the simple number \textbf{one} if the division of the groups by giving the values of the 4 quantum numbers of an electron is carried so far that every degeneracy is removed. A single electron already occupies an entirely non-degenerate energy level.”

In his \textit{original paper} Pauli enunciates his principle as follows:

“There can \textbf{never be two or more equivalent electrons} in an atom, for which in strong fields the values of all quantum numbers \(n, \ell, j, m_j \) are the same. If an electron is present in the atom, for which these quantum numbers have definite values, this state is ‘occupied’.”

From this Pauli deduces the numbers \(2, 8, 18, 32, \ldots \) of electrons in closed shells, and the \textbf{reduction of terms} for equivalent electrons. Several further applications are always in accordance with experience.

At the end of his paper Pauli expresses the hope that a deeper understanding of quantum mechanics might lead to a derivation of the exclusion
principle from more fundamental hypothesis. To some extent this hope was fulfilled in the framework of relativistic quantum field theory. Pauli’s key role in establishing the spin-statistic theorem is well-known (see, e.g., [13]).

Initially Pauli was not sure to what extent his exclusion principle would hold good. In a letter to Bohr of 12 December 1924 Pauli writes ‘The conception, from which I start, is certainly nonsense. (...) However, I believe that what I am doing here is no greater nonsense than the hitherto existing interpretation of the complex structure. My nonsense is conjugate to the hitherto customary one.’ The exclusion principle was not immediately accepted, although it explained many facts of atomic physics. A few days after the letter to Bohr, Heisenberg wrote to Pauli on a postcard: ‘Today I have read your new work, and it is certain that I am the one who rejoices most about it, not only because you push the swindle to an unimagined, giddy height (by introducing individual electrons with 4 degrees of freedom) and thereby have broken all hitherto existing records of which you have insulted me. (…).’

For the letters of Pauli on the exclusion principle, and the reactions of his influential colleagues, I refer to Vol.1 of the Pauli Correspondence, edited by Karl von Meyenn [14]. Some passages are translated into English in the scientific biography by Charles Enz [3].

Exclusion principle and the new quantum mechanics

On August 26, 1926, Dirac’s paper containing the Fermi-Dirac distribution was communicated by R. Fowler to the Royal Society. This work was the basis of Fowler’s theory of white dwarfs. I find it remarkable that the quantum statistics of identical spin-1/2 particles found its first application in astrophysics. Pauli’s exclusion principle was independently applied to statistical thermodynamics by Fermi. 4 In the same year 1926, Pauli simplified Fermi’s calculations, introducing the grand canonical ensemble into quantum statistics. As an application he studied the behavior of a gas in a magnetic field (paramagnetism).

Heisenberg and Dirac were the first who interpreted the exclusion principle in the context of Schrödinger’s wave mechanics for systems of more than one particle. In these papers it was not yet clear how the spin had to be described in wave mechanics. (Heisenberg speaks of spin coordinates, but he does not say clearly what he means by this.) The definite formulation was

4According to Max Born, Pascual Jordan was actually the first who discovered what came to be known as the Fermi-Dirac statistics. Unfortunately, Born, who was editor of the Zeitschrift für Physik, put Jordans paper into his suitcase when he went for half a year to America in December of 1925, and forgot about it. For further details on this, I refer to the interesting article [15] by E.L. Schucking.
soon provided by Pauli in a beautiful paper [16], in which he introduced his famous spin matrices.

At this point the foundations of non-relativistic quantum mechanics had been completed in definite form. For a lively discussion of the role of the exclusion principle in physics and chemistry from this foundational period, I refer once more to the address [2] of Ehrenfest.

Part II. Stability of matter in bulk

One of the immediate great qualitative successes of quantum mechanics was that it implies the stability of atoms. A much less obvious consequence of the theory is that ordinary matter in bulk, held together by Coulomb forces, is also stable. The mystery of this fact before the dawn of quantum mechanics was described by Jeans in 1915 with the following words [17]:

“There would be a very real difficulty in supposing that the (force) law $1/r^2$ held down to zero values of r. For the force between two charges at zero distance would be infinite; we should have charges of opposite sign continually rushing together and, when once together, no force would be adequate to separate them (...). Thus matter in the universe would tend to shrink into nothing or to diminish indefinitely in size.”

In quantum mechanics the electrons cannot fall into the nuclei.

4 Stability of atoms and ‘ordinary’ matter in bulk

Atoms and ‘ordinary’ matter in bulk, consisting of a system of N electrons and k nuclei with charges $Z_1e, ..., Z_ke$, can be well described by the mutual Coulomb interactions. For the discussion that follows we use the Hamiltonian

$$H = T_e + V_{eK} + V_{ee} + V_{KK}.$$ \hspace{1cm} (1)

T_e is the kinetic energy of the electrons, and the three potential energies V_{eK}, V_{ee}, V_{KK} are the Coulomb energies between the electrons and nuclei, among the electrons and among the nuclei, respectively. We treat the nuclei as infinitely heavy in fixed positions $\mathbf{R}_1, ..., \mathbf{R}_k$ (Born-Oppenheimer approximation). Since we are mainly interested in lower bounds of the ground state energy of the system, this is not a serious simplification; if the nuclei are treated dynamically, the nuclear kinetic energy adds a positive contribution.
Two different notions of stability are useful.

(i) **Stability of the first kind:**

\[E(N, k, \mathbf{R}) := \inf_\psi (\psi, H \psi) \]

is finite for every \(N, k \), and positions \(\mathbf{R} = (R_1, \ldots, R_k) \) of the nuclei.

(ii) **Stability of the second kind:** Assuming that \(Z_j \leq Z \) for all \(j = 1, \ldots, k \), then

\[E(N, k) := \inf_{\mathbf{R}} E(N, k, \mathbf{R}) \geq -A(Z)(N + k), \]

where \(A \) depends only on \(Z \).

Four decades after non-relativistic quantum mechanics was developed, Dyson and Lenard gave the first rigorous proof of the stability of the second kind for matter in bulk [18]. For this the Pauli principle for the electrons is essential, while the statistics of the nuclei does not matter. How crucial the exclusion principle really is, was demonstrated shortly afterwards by Dyson [19]. With the help of the variational principle, using a strongly correlated trial wave function, Dyson established the following inequality for \textbf{bosons}:

If, without loss of generality \(N \leq k \), then the ground state energy is bounded as

\[E(N, k) \leq -\text{const} \frac{N^{7/5}}{\text{Ry}} \]

for large \(N \). For Dyson’s trial wave function, that was suggested by the work of Bogolubov on superfluidity and is related to the wave function used by Bardeen, Cooper and Schrieffer in their work on superconductivity, the constant in (4) is small \((\sim 10^{-6})\). A satisfactory upper bound was very recently achieved in [20].

Two decades later, it was shown by Conlon, Lieb and H-T. Yau [21] that the ground state energy can also be bounded from below as

\[E(N, k) \geq -AN^{7/5} \text{Ry}, \]

with \(A \simeq 0.2 \) for \(N = k \). The exact value of \(A \) has recently been derived in [22], and comes out of a mean field equation predicted by Dyson in [19].

So the ground state energy is expected to be close to \(-N^{7/5} \text{ Ry}\). For \(N \sim 10^{23} \) this corresponds to a binding energy of \(\sim 10^{32} \text{ Ry} \sim 1 \text{ megaton} \). Thus the energy that would be released if two pieces of such bosonic matter with \(N \sim 10^{23} \) would be put together would be that of a hydrogen bomb; very explosive stuff indeed.
4.1 Stability of atoms

The stability of the first kind for isolated atoms is obvious, even without the Pauli principle for electrons. The remarkable fact is that the exclusion principle guarantees stability of the second kind. This can easily be demonstrated.

For a single atom the Hamiltonian is

$$H_N = \frac{1}{2m} \sum_{i=1}^{N} p_i^2 - Ze^2 \sum_{i=1}^{N} \frac{1}{|x_i|} + e^2 \sum_{i<j} \frac{1}{|x_i - x_j|}. \quad (6)$$

Since the last term gives a positive contribution to the ground state energy, a lower bound for the “unperturbed” Hamiltonian H_0 (without the mutual Coulomb repulsion) gives a rough lower bound for H_N. But the ground state energy for H_0 is obtained by filling up the Balmer levels. The last completely filled level has principal quantum number n_0 determined by

$$2 \sum_{n=1}^{n_0} n^2 \leq N \leq 2 \sum_{n=1}^{n_0+1} n^2,$$

i.e.,

$$\frac{2}{3} n_0(n_0 + 1)(n_0 + 1) \leq N \leq \frac{2}{3} (n_0 + 1)(n_0 + \frac{3}{2})(n_0 + 2).$$

The ground state energy E_0 of the unperturbed Hamiltonian satisfies in units of $Z^2 Ry$

$$- \sum_{n=1}^{n_0+1} \frac{2n^2}{n^2} \leq E_0 \leq - \sum_{n=1}^{n_0} \frac{2n^2}{n^2},$$

i.e. $-2(n_0 + 1) \leq E_0 \leq -2n_0$. For large N, $n_0 = (\frac{3N}{2})^{1/3} + O(1)$, thus the ground state energy E_N of H_N is bounded as

$$E_N \geq -2\left(\frac{3}{2}\right)^{1/3} N^{1/3}(1 + O(N^{-1/3}))Z^2 Ry. \quad (7)$$

This inequality implies stability of the second kind. For a neutral atom this lower bound is proportional to $Z^{7/3}$.

It is not difficult to derive also a upper bound proportional to $N^{1/3}Z^2$, using the variational principle with the Slater determinant belonging to the shell state considered above. Using also the fact that the exchange term is non-positive, as well as the virial theorem for the direct Coulomb term, one easily finds

$$E_N \leq -2\left(\frac{3}{2}\right)^{1/3} \left(1 - \frac{N}{2Z}\right) N^{1/3} Z^2 \left(1 + O(N^{-1/3})\right) Ry. \quad (8)$$
These bounds can be improved.
We note that the Thomas-Fermi theory gives for neutral atoms
\[E_{TF}^{N} = -1.5375 \ Z^{7/3} \ \text{Ry} . \] (9)

4.2 Size of large atoms

We are interested in an inequality for the size of an atom in its ground state, defined as
\[r := \left\{ \frac{1}{N} \left\langle \sum_{i=1}^{N} x_i^2 \right\rangle \right\}^{1/2}, \]
where the angular bracket denotes the ground state expectation value. One expects, for instance on the basis of the Thomas-Fermi theory, that \(r > \text{const} \ N^{-1/3} \).

As a first ingredient we use the following operator inequality (\(\hbar = 1 \)):
\[\frac{1}{2} \sum_{i=1}^{N} \left(p_i^2 + \omega^2 x_i^2 \right) \geq \omega N^{4/3} \frac{3^{4/3}}{4} \left(1 + O(N^{-1/3}) \right). \]

This is obtained as the previous inequalities for \(E_0 \) of \(H_0 \), using that the energy levels of an isotropic harmonic oscillator are \(\frac{3}{2} + n \omega \), with degeneracies \(g_n = 2 \cdot \frac{1}{2} (n + 1)(n + 2) \).

Taking now the expectation value of this inequality with the ground state of \(H_N \), and setting
\[\omega = \frac{4}{3^{4/3} N^{4/3}} \left\langle \sum_{i=1}^{N} p_i^2 \right\rangle, \]
leads, up to \(N^{-1/3} \) corrections, to
\[\left\langle \sum_{i=1}^{N} x_i^2 \right\rangle \geq \frac{(3N)^{8/3}}{16 \left\langle \sum_{i=1}^{N} p_i^2 \right\rangle}. \]

Finally, we use the virial theorem for \(H_N \) and the previous lower bound for \(E_N \) to conclude that in units with \(\hbar^2 / 2m = 1, e = 1 \)
\[\frac{1}{2} \left\langle \sum_{i=1}^{N} p_i^2 \right\rangle = |E_N| \leq \left(\frac{3}{2} \right)^{1/3} N^{7/3} \left(1 + O(N^{-1/3}) \right). \]

Together this gives
\[\left\langle \sum_{i=1}^{N} x_i^2 \right\rangle \geq \frac{9 \cdot 6^{1/3}}{32} N^{1/3}, \]
i.e.
\[r \geq 0.71 \ N^{-1/3} \left(1 + O(N^{-1/3}) \right). \] (10)
Supplementary remarks

For matter in bulk it is not possible to arrive at energy estimates in such an explicit and elementary fashion as for (7) and (8), and one has to use more general methods. As a nice illustration of these, we show how one arrives at a quite accurate lower bound without solving a differential equation, but by making use of the following Sobolev inequality \[23\] for any $\psi \in L^2(\mathbb{R}^3)$:

\[
(\psi, T_e \psi) = \| \nabla \psi \|_2^2 \geq K_s \| \psi \|_6^2 = K_s \| \rho_\psi \|_3 ,
\]

where $\rho_\psi := |\psi|^2$ and $K_s = 3(\pi/2)^{4/3} \approx 5.5$ (this numerical value is known to be optimal). This inequality (which is a special case of a whole class), allows us to bound the ground state energy of hydrogen like atoms as

\[
E \geq \inf_\rho \left\{ h(\rho) : \rho(x) \geq 0, \int_{\mathbb{R}^3} \rho \, d^3x = 1 \right\} ,
\]

with

\[
h(\rho) = K_s \| \rho \|_3 - Z \int \frac{\rho(x)}{|x|} \, d^3x .
\]

It is straightforward (a nice exercise for students) to find the minimizing ρ, and to show that it gives the lower bound

\[
E \geq -\frac{4}{3} Z^2 \text{ Ry}.
\]

This instructive calculation is from Lieb’s review paper \[24\].

One does not lose much by using an even weaker inequality, which has the advantage to be generalizable to many electron systems. This is obtained from (11) with the help of Hölder’s inequality:

\[
\| fg \|_1 \leq \| f \|_p \| g \|_{p'} \quad \left(\frac{1}{p} + \frac{1}{p'} = 1, \quad p \geq 1. \right)
\]

For $p = 3$, $p' = \frac{3}{2}$ this implies for a normalized ρ

\[
\int \rho^{5/3} \leq \| \rho \|_3 \| \rho^{2/3} \|_{3/2} = \left(\int \rho^3 \right)^{1/3} \left(\int \rho \right)^{2/3} = \left(\int \rho^3 \right)^{1/3} .
\]

Hence,

\[
(\psi, T_e \psi) \geq K_1 \int_{\mathbb{R}^3} \rho_\psi(x)^{5/3} \, d^3x
\]

for $K_1 = K_s$, but K_1 can be improved to $K_1 = 9.57$. Instead of (13) we now have the simpler functional

\[
h(\rho) = K_1 \int \rho^{5/3} \, d^3x - Z \int \frac{\rho}{|x|} \, d^3x ,
\]

for $K_1 = K_s$.
but the lower bound comes out only slightly worse.

For antisymmetric N-electron wave functions, Lieb and Thirring [25] were able to generalize (14), where now ρ_ψ is the one-particle density, normalized as $\int \rho_\psi = N$. With the help of this generalized inequality they were able to bound $(\psi, H_N \psi)$ in terms of the Thomas-Fermi energy functional\(^5\).

4.3 The Dyson-Lenard-Lieb-Thirring Theorem

I have already mentioned that Dyson and Lenard gave in 1967 a proof of the stability of matter in the sense of (3). This proof was long and involved a large number of estimates. Even in sharp estimations it is unavoidable that about a factor two is lost per page. For a total of 40 pages of the paper one would thus expect a loss of about $2^{40} \sim 10^{14}$, and this is what actually happened. In his preface to Lieb’s Selecta [4] Dyson writes:

“Our proof was so complicated and so unilluminating that it stimulated Lieb and Thirring to find the first decent proof. Why was our proof so bad and why was theirs so good? The reason is simple. Lenard and I began with mathematical tricks and hacked our way through a forest of inequalities without any physical understanding. Lieb and Thirring began with physical understanding and went on to find the appropriate mathematical language to make their understanding rigorous. Our proof was a dead end. Theirs was a gateway to the new world of ideas collected in this book.”

Heuristic considerations

On a heuristic level it is easy to understand the stability of the second kind of Coulomb dominated matter. Consider a neutral system of N electrons and N_Z nuclei with charge Ze and mass m_Z ($m_Z \approx Am_N$, $m_N =$ nucleon mass). Screening effects reduce the effective interactions essentially to one between nearest neighbors. Thus the Coulomb potential energy is roughly (for bosons and fermions)

$$V_{\text{Coul}} \approx -N_Z \frac{(Ze)^2}{(R/N_Z^{1/3})},$$

where R is the dimension of the system. For the kinetic energy we have $T \approx Np^2/2m$, where p is the average momentum of the electrons. Roughly

\[^{5}\text{Lieb and Simon [26] showed much earlier that the Thomas-Fermi theory becomes exact in the limit } Z \rightarrow \infty, \text{ with the number of nuclei fixed.}\]
speaking, the Pauli principle allows at most one electron in a de Broglie cube \((\hbar/p)^3\), and thus \(p \geq N^{1/3}\hbar/R\). For the total energy of the system, we therefore obtain the approximate inequality — including for later purposes also the Newtonian potential energy \(-\frac{1}{2}N^2Gm^2Z/R\) of the nuclei —,

\[
E \geq N \frac{p^2}{2m} - \frac{1}{2} \left(\frac{N}{Z}\right)^2 \frac{Gm^2Z}{\hbar N^{1/3}}p - \frac{Ne^2Z^{2/3}}{\hbar}p .
\]

(16)

The minimum of the right hand side is attained for the average electron momentum \(p_0\), given by

\[
Np_0/m = \frac{1}{2} \left(\frac{N}{Z}\right)^2 \frac{Gm^2Z}{\hbar N^{1/3}} + \frac{Ne^2Z^{2/3}}{\hbar} ,
\]

(17)
in terms of which the ground state energy is \(E_0 \approx -Np_0^2/2m\). Ignoring the gravitational interaction, this is linear in \(N\):

\[
E_0 \approx -N \cdot Ry .
\]

(18)

For the electron density \(n_0 \approx (p_0/\hbar)^3\) and the matter density \(\rho_0\) we obtain, if \(a_0\) denotes the Bohr radius,

\[
n_0 \approx Z^2/a_0^3 , \quad \rho_0 \approx AZm_N/a_0^3 \approx 10 \text{ g/cm}^3 .
\]

(19)

If we would treat the electrons as bosons, we would only have the restriction imposed by the uncertainty relation, \(p \geq \hbar/R\), and instead of (18) we would obtain

\[
E_0 \approx -N^{5/3} \cdot Ry \quad \text{(bosons)} .
\]

(20)

This \(N^{5/3}\) law was established rigorously by Lieb for fixed positions of the nuclei. However, when the nuclei are also treated dynamically the \(N^{7/5}\) law, discussed earlier, holds.

Rigorous bound

Lieb and Thirring [25] have established the rigorous bound

\[
E(N, k) \geq -\text{const} \cdot \left\{N + \sum_{j=1}^{k} Z_j^{7/3}\right\} Ry ,
\]

(21)

with a constant of about 20 instead of \(10^{14}\) in the work of Dyson and Lenard. The main step of the proof consists in bounding the ground state energy in terms of the Thomas-Fermi functional. Instead of minimizing this functional, Lieb and Thirring used a theorem of Teller stating that atoms do not bind in Thomas-Fermi theory (see [26]). In this way a lower bound in terms of a lower bound of the Thomas-Fermi functional for atoms was obtained, for which a previous result of Lieb and Simon could be used.
5 Stability and instability of cold stars

Once gravity becomes important we can no more expect stability of the second kind, because of the purely attractive and long range character of the gravitational interaction. Let us begin with some heuristic considerations.

‘Newton begins to dominate Coulomb’ when the last two terms in (16) become comparable, i.e., for the ‘critical’ electron number

\[N_c \approx Z \left(\frac{Z}{A} \right)^3 \alpha^{3/2} \left(\frac{M_{Pl}}{m_N} \right)^3. \]

Here \(\alpha \) is the fine structure constant and \(M_{Pl} \) the Planck mass. Numerically this is about the number of electrons in Jupiter.

For \(N \gg N_c \) we can neglect the Coulomb contribution in (16) and then obtain from (17)

\[\frac{p_0}{mc} \approx \frac{1}{2} \left(\frac{A}{Z} \right)^2 \frac{m_N^2}{M_{Pl}^2} N^{2/3}. \]

This shows that the electrons become relativistic for

\[N > N_r := \left(\frac{Z}{A} \right)^3 \left(\frac{2M_{Pl}}{m_N} \right)^{3/2}. \] (22)

Therefore we treat the electrons in (16) relativistically. In units with \(c = 1 \) we then have

\[E_0(N) \approx \inf \left\{ N \sqrt{p^2 + m^2} - \frac{1}{2} \left(\frac{N}{Z} \right)^2 \frac{Gm_N^2}{\hbar N^{1/3}} p \right\}. \] (23)

One readily sees that the minimum only exists for \(N < N_r \). The corresponding limiting mass

\[M_r = (N_r/Z)m_N \approx 2.8 \left(\frac{Z}{A} \right)^2 \frac{M_{Pl}^3}{m_N^2} \] (24)

is close to the Chandrasekhar mass.

The delayed acceptance of the discovery by the 19 year old Chandrasekhar that quantum theory plus special relativity imply the existence of a limiting mass for white dwarfs belongs to the bizarre stories of astrophysics.

The Fowler theory of white dwarfs is just the Thomas-Fermi theory, whereby the white dwarf is considered as a big “atom” with about \(10^{57} \) electrons, and the Chandrasekhar theory is its relativistic version. In other words, the basic Chandrasekhar equation is the same as the relativistic Thomas-Fermi equation (for details see [31]). For white dwarfs the (semiclassical) Thomas-Fermi approximation is ideally justified (a rigorous result will be mentioned below).
In this context the following close historical coincidence is interesting. Thomas’ paper \[27\] was presented at the Cambridge Philosophical Society on November 6, 1926. (Fermi’s work was independent, but about one year later.) On the other hand, Fowler communicated his important paper \[28\] on the non-relativistic theory of white dwarfs about one month later, on December 10, to the Royal Astronomical Society. I wonder who first noticed the close connection of the two approaches.

It is worthwhile mentioning that Lieb and H-T. Yau have shown \[29\] that Chandrasekhar’s theory can be obtained as a limit of a quantum mechanical description in terms of a semi-relativistic Hamiltonian.

In a quantum mechanical description of white dwarfs the proper model to analyze would be a Hamiltonian for electrons and ions with Coulomb and gravitational interactions, for which the kinetic energy of the electrons is the relativistic one:

\[
T_e = \sum_{i=1}^{N} \left[\sqrt{p_i^2 + m^2} - m \right].
\]
(25)

Unfortunately, a rigorous analysis of this model has (to my knowledge) not yet reached a satisfactory stage. A somewhat more modest goal has, however, been reached.

The Coulomb forces in white dwarf material establish local neutrality to a very high degree. For this reason the Coulomb interactions play energetically almost no role. (The corrections can be estimated and are on the few percent level.) The spatial distribution of the nuclei and hence their momentum distribution is much the same as those of the electrons. Based on these considerations it is reasonable to expect that the relevant Hamiltonian is

\[
H_N = T_e - \sum_{1 \leq i < j \leq N} \frac{G(m_Z/Z)^2}{|x_i - x_j|}.
\]
(26)

\((m_Z/Z \simeq (A/Z)m_N)\) is the mass in the star per electron).

It is now natural to compare the ground state energy

\[
E(N) = \inf_{\psi} \langle \psi, H_N \psi \rangle
\]

with the semi-classical energy of the Thomas-Fermi theory:

\[
E^{TF}(N) = \inf \left\{ \mathcal{E}^{TF}(n) : \int n = N \right\},
\]
(27)

where

\[
\mathcal{E}^{TF}(n) = \int_{\mathbb{R}^3} \varepsilon(n(x)) \, d^3x - \frac{\kappa}{2} \int \frac{n(x)n(x')}{|x - x'|} \, d^3xd^3x'.
\]
(28)
Here \(\kappa = G(m_Z/Z)^2 \) and

\[
\varepsilon(n) = \frac{1}{\pi^2} \int_0^{p_F(n)} \left(\sqrt{p^2 + m^2} - m \right) dp ,
\]

where \(p_F(n) \) is the Fermi momentum belonging to the number density \(n \):

\[
p_F(n) = (3\pi^2 n)^{1/3} .
\]

Lieb and H-T.Yau have proved the following

Theorem. Fix the quantity \(\tau = \kappa N^{2/3} \) at some value below the critical value \(\tau_c \) of the Chandrasekhar theory (\(\tau_c \approx 3.1 \)). Then

\[
\lim_{N \to \infty} E(N)/E_{TF}(N) = 1.
\]

If \(\tau > \tau_c \), then

\[
\lim_{N \to \infty} E(N) = -\infty .
\]

As a corollary one can show that the ratio of the critical numbers of electrons for stability becomes 1 in the limit \(G \to 0 \).

This demonstrates that we can study \(H_N \) by means of the semi-classical approximation. This is, of course, not surprising. Indeed, corrections to the Thomas-Fermi approximations are of the order \(N^{-1/3} \), i.e., of the order \(10^{-19} \) for \(N \sim 10^{57} \). (In contrast to this tiny number for white dwarfs, corrections of the order \(Z^{-1/3} \) for atoms are not negligible.)

For an analogous discussion of boson stars, I refer again to [29]; see also [30].

6 Concluding remarks

For neutron stars such a quantum mechanical description is not possible, since general relativity has to be used. We are then bound to use a semi-classical description à la Thomas-Fermi, but from what has been said in the last section there can be no doubt that this is an excellent approximation.

When GR is used as the correct theory of gravity, the exclusion principle still influences the magnitudes of limiting masses for stars. But while in Newtonian gravity theory the total energy of a system can be indefinitely negative, this is not the case in GR. The positive energy theorem implies
that it is impossible to construct an object out of ordinary matter, whose total energy is negative. (For a detailed proof and discussion, see, e.g., \[31\]). As a system is compressed to take advantage of the negative gravitational binding energy, a black hole is eventually formed which has positive total energy. This is, however, another story.

Acknowledgements

I am very grateful to Elliott Lieb for his constructive criticism of the first version of this article. He also informed me on some recent work which I did not know.

References

[1] W. Pauli, Über das H-Theorem vom Anwachsen der Entropie vom Standpunkt der neuen Quantenmechanik, in Probleme der modernen Physik, Arnold Sommerfeld zum 60. Geburtstage, gewidmet von seinen Schülern, S. Hirzel Verlag, Leipzig, 1928, pp. 30-45.

[2] P. Ehrenfest, Ansprache zur Verleihung der Lorentzmedaille an Professor Wolfgang Pauli am 31. Oktober 1931. Versl. Akad. Amsterdam 40, 121–126 (1931).

[3] Ch.P. Enz, No Time to be Brief: A Scientific Biography of Wolfgang Pauli, Oxford University Press, 2002.

[4] E.H. Lieb, The Stability of Matter: From Atoms to Stars, Selecta of Elliott H. Lieb, Springer-Verlag, 1991.

[5] W. Pauli, Relativitätstheorie, in Enzyklopädie der mathematischen Wissenschaften, Bd.5, Teil 2 (Teubner, Leipzig, 1921), p.p. 539–775. Neu herausgegeben und kommentiert von D. Giulini, Springer-Verlag, 2000. English Edition: Theory of Relativity, Pergamon Press, 1958.

[6] W. Pauli, Remarks on the History of the Exclusion Principle, Science 103, 213-215 (1946).

[7] W.Pauli, Über die Gesetzmässigkeiten des anomalen Zeemaneffektes, Z. Physik 16, 155-164 (1923).

[8] W. Pauli, Über den Einfluss der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den Zeemaneffekt, Z. Physik 31, 373–385 (1925).
[9] W. Pauli, *Exclusion principle and quantum mechanics*. Nobel lecture, delivered at Stockholm, December 13, 1946.

[10] W. Pauli, *Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren*, Z. Phys. 31, 765–783 (1925).

[11] B.L. van der Waerden, *Exclusion Principle and Spin*, in M. Fierz and V.F. Weisskopf: *Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli*. Interscience, New York 1960, p. 199–244.

[12] E.C. Stoner, *The Distribution of Electrons among Atomic Levels*, Philosophical Magazine 48, 719–736 (1924).

[13] N. Straumann, On Wolfgang Pauli’s most important contributions to physics. Opening talk at the symposium: WOLFGANG PAULI AND MODERN PHYSICS, in honor of the 100th anniversary of Wolfgang Pauli’s birthday, ETH (Zurich), Mai 4-6 2000; physics/0010003.

[14] Wolfgang Pauli. *Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a.* Band I: 1919–1929. Herausgegeben von A. Hermann, K. v. Meyenn und V.F. Weisskopf. Springer-Verlag, New York/Heidelberg/Berlin 1979.

[15] E.L. Schucking, *Jordan, Pauli, Politics, Brecht, and a variable gravitational constant*, Physics Today, October 1999, p. 26-31.

[16] W. Pauli, *Zur Quantenmechanik des magnetischen Elektrons*, Z. Physik 43, 601–623 (1927).

[17] J.H. Jeans, *The mathematical theory of electricity and magnetism*, Cambridge Univ. Press, Cambridge, third edition, 1915, p. 168.

[18] F.J. Dyson and A. Lenard, *Stability of Matter, I and II*, J. Math. Phys. 8, 423-434 (1967); ibid 9, 698-711 (1968).

[19] F.J. Dyson, *Ground state energy of a finite system of charged particles*, J. Math. Phys. 8, 1538-1545 (1967).

[20] J.P. Solovej, *Upper Bounds to the Ground State Energies of the One- and Two-Component Charged Bose Gases*, math-ph/0406014.

[21] J.G. Conlon, E.H. Lieb and H-T. Yau, *The \(N^{7/5}\) law for charged bosons*, Comm. Math. Phys. 116, 417-448 (1988).
[22] E.H. Lieb and J.P. Solovej, *Ground State Energy of the Two-Component Charged Bose Gas*, Commun. Math. Phys. (in press); [math-ph/0311010](http://arxiv.org/abs/math-ph/0311010).

[23] L.C. Evans, *Partial Differential Equations*, Graduate Studies in Mathematics, Vol.19, American Mathematical Society, 1998; Sect. 5.6.

[24] E.H. Lieb, *The Stability of Matter*, Rev. Mod. Phys. 48, 553-569 (1976).

[25] E.H. Lieb and W. Thirring, *Bound for the kinetic energy of fermions which proves the stability of matter*, Phys. Rev. Lett. 35, 687-689 (1975). Errata ibid. 35, 1116 (1975).

[26] E.H. Lieb and B. Simon, *The Thomas-Fermi theory of atoms, molecules and solids*, Adv. in Math. 23, 22-116 (1977).

[27] L.H. Thomas, *The calculations of atomic fields*, Proc. Cambridge Philos. Soc. 23, 542-548 (1927).

[28] R.H. Fowler, *Dense Matter*, Mon. Not. Roy. Astron. Soc. 87, 114-122 (1926).

[29] E.H. Lieb and H-T. Yau, *The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics*, Comm. Math. Phys. 112,147-174 (1987).

[30] N. Straumann, *Fermion and Boson Stars*, in Relativistic Gravity Research, Lecture Notes in Physics 410, 267 (1992), p. 267-293.

[31] N. Straumann, *General Relativity, with Applications to Astrophysics*, Texts and Monographs in Physics, Springer-Verlag, 2004; Chapter 8.