Artificial intelligence (AI) in healthcare holds great potential to expand access to high-quality medical care, while reducing systemic costs. Despite hitting headlines regularly and many publications of proofs-of-concept, certified products are failing to break through to the clinic. AI in healthcare is a multiparty process with deep knowledge required in multiple individual domains. A lack of understanding of the specific challenges in the domain is the major contributor to the failure to deliver on the big promises. Herein, a “decision perspective” framework for the development of AI-driven biomedical products from conception to market launch is presented. The framework highlights the risks, objectives, and key results which are typically required to navigate a three-phase process to market-launch of a validated medical AI product. Clinical validation, regulatory affairs, data strategy, and algorithmic development are addressed. The development process proposed for AI in healthcare software strongly diverges from modern consumer software development processes. Key time points to guide founders, investors, and key stakeholders throughout the process are highlighted. This framework should be seen as a template for innovation frameworks, which can be used to coordinate team communications and responsibilities toward a viable product development roadmap, thus unlocking the potential of AI in medicine.

1. Introduction

Healthcare systems all over the world face tremendous challenges. The age-related illness burden is increasing, particularly in wealthy countries, due to ageing populations. Lifetime risk for cancer has reached up to 50%[1] and lifetime risk for stroke is 25%.[2] As a consequence of the increasing incidence of these costly diseases, along with broadening access to healthcare and major advances in pharmaceutical and technological disease treatment, costs are increasing enormously. Thus, there is an urgent need to deliver better quality healthcare while simultaneously lowering costs to keep our healthcare systems sustainable.

Technological innovation appears to be the only mechanism which has the potential to fulfill both of these, seemingly contradictory, requirements. Artificial intelligence (AI), more specifically machine learning (ML)-based AI, has become one of the main technologies driving the so-called fourth industrial revolution.[3] The main ML method at the forefront are so-called deep artificial neural networks (ANNs). ANNs are inspired by simplified neuronal structures and consist of layers of artificial neurons. The strengths of the connection between neurons of different layers are determined in the training process and determine the predictive capability of the model.[4] ANNs are general function approximators, in theory, capable of approximating any mathematical function of data.[5] Other non-ANN ML methods successfully applied in healthcare include decision tree algorithms,[6–8] generalized linear models,[9] support vector machines,[10,11] and Gaussian processes (GPs).[12,13] Modern ML methods constitute the new state of the art in computer vision,[14] natural language processing,[15] and recommender systems,[16–18] facilitating technologies from smart assistants to self-driving cars. Increasingly, they are applied for healthcare use cases. They have the potential to deliver personalized treatments[19–21] and monitoring[22,23] with lower error rates,[23,24] at greatly reduced costs.[20,23]

Many publications share the vision that AI in healthcare will achieve the aforementioned goals to keep our healthcare systems sustainable.[19,20,25–27] However, the overwhelming majority of reported positive studies to date are retrospective in nature and the presented solutions, more often than not, provide mere proofs of concept (PoC) as evidenced by systematic reviews.[28,29] AI/ML-based tools which are applicable in the clinical setting—with medical device certification, clinical validation, and routine clinical use—are still scarce. Despite a rapidly increasing number of scientific publications describing potential applications, products benefiting patients and our healthcare systems are not deployed at the rates necessary. This translational gap constitutes a major public health challenge. One of the most promising technologies of recent years is not reaching the patients and healthcare systems in need. As the translational gap refers to a block on transforming PoC into actual products, we are facing a crisis of AI in healthcare
product development. Thus, in this work, we outline a novel framework of AI in healthcare product development. Product development is defined as “the transformation of a market opportunity and a set of assumptions about product technology into a product available for sale.”[30] It is possible to focus on product development from different angles, i.e., marketing, organizational structure, engineering, and operations. However, these views are highly specialized and have a tendency to over- or underfocus on certain challenges. We base our framework on the model of the “decision perspective” where a string of decisions transforms an idea into a product.[31] This model is based on the observation that “what is being decided” is fairly consistent over the course of all types of product development, whereas how decisions are implemented can vary tremendously.[30] Thus, importantly, our framework does not give many recommendations on how to implement the decisions that are suggested. We focus largely on what needs to be decided for a certain stage in development to proceed successfully to the next stage and what needs to be decided to keep the risks of failure for further stages as low as possible.

The main finding that underlies the presented product development framework is that, in contrast to other software products, healthcare-specific differences exist in the development path of AI healthcare products. Product development for a typical technology start-up is long and can be broken down into multiple stages.[31] Typically there is an initial “formation stage,” in which a team comes together around a potential product idea. This is followed by a “validation stage,” in which prototypes are turned into products and an eventual business model is settled-on. Also, finally, there is a “scaling phase,” where the addition of considerable capital allows the small company, with a now validated product-market fit, to quickly expand to capture considerable market share of an existing market or to expand into a newly discovered market niche. In this approach, current methodologies drive entrepreneurs toward early contact with potential customers and early trials of incomplete versions of the final product.[32] For AI products aimed at healthcare, the main hidden difficulty is that to capture the enhanced value available for medical treatments evidence must first be presented that the product is safe. In addition, to be incorporated into standards of care, the product must also be shown to either enhance treatment outcomes or decrease costs. This requires a validation pipeline tailored to regulatory and clinical requirements[33] which make data acquisition and analysis time-consuming and difficult. Current software product development practices are rarely a fit for both the medical certification as well as the clinical validation process. This—in turn—leads to 1) much longer development cycles and 2) quite different proof points inherent in developing a product which must be medically certified.

Thus, we argue that to develop an AI in healthcare product, the entire development cycle must be changed. We present a rethought product development cycle, primarily aimed at products in the clinical setting, bridging the cognitive gap between modern digital development practices and current biotech practices. The purpose of this map is, on one hand, to enable potential digital health founders in the area of AI in healthcare to have a more accurate perspective of the road ahead, and to allow existing digital health entrepreneurs to better allocate their resources.

2. Results

We have developed a framework following three consecutive phases and covering four domains for AI/ML-driven clinical product development. The three phases follow an entrepreneurial timeline. We break the process down into three distinct product development phases before a product exists in the market. Each of these phases is self-contained and typically can be recognized by both investors and regulators as a distinct stage on the road to market. For each of the phases, our framework spans across four major domains which are relevant for the development of an AI/ML product in healthcare: clinical, regulatory, data, and model development. Finally, we present an overview of the most important postmarket risks, delivering software updates, changes in medical practice, and surveillance, each of which must be mitigated against once the product enters the market.

In the following, we will give definitions of the three phases and four domains before outlining the framework in detail. The phases and domains are shown in Figure 1, 2, 3, and 4 following a domain perspective.

2.1. Definition of the Three Phases

Phase 1, called “Form”, involves bringing together a small team/group around a potential clinical need, with the purpose of providing a preliminary technical solution. This phase may take place within the support structures of a hospital spin-out.
unit or company incubator. In this phase, the main goals are to form, and maintain, the group membership, check the technical feasibility of a solution, and to understand the pathway to market by validating the clinical need. This latter point, we will explain, actually already requires a basic understanding of regulatory and clinical validation paths. At the end of the Form phase, the intrinsic value will typically amount to a PoC solution and little more.

Phase 2 is called the “Build” phase. At this point, a more defined team decides to work together for a period ranging from 18 months to 5 years. Clinical members may initially maintain other commitments, but they need to provide enough availability to help steer the development process. The goal of this phase is to build a basic implementation appropriate from a clinical and regulatory point of view. The outcomes of this phase are multimodal, but the intrinsic value at its end-point is a solid codebase which demonstrably solves a clinical need.

Phase 3, called “Launch,” is the phase which least matches current (consumer-oriented) software development practices. A medical product cannot directly enter the market without first passing certification and clinical validation steps. Therefore, processes such as medical device certification or a clinical study demonstrating efficacy must be conducted. To conduct certification, or a study, typically the software version must be frozen.

Clinical Validation

Form	Build	Launch
Risks	**Objectives**	**Key Results**
- There is no clinical need	- Demonstrate clear evidence for a clinical need	- Basic market research / interviews completed indicating a real clinical need
- False assumptions about the clinical need	- Demonstrate that the clinical need is technically solvable (Proof of concept)	- Promising initial results, derived from a robust approach, suggesting the clinical need can be solved (see also data section)
- Inability/failure to form a team which can solve the clinical need	- Inability to show clinical benefit	- Proof of concept
- PoC product is not robust to clinical conditions	- A mismatch between pilot product and actual clinical need	- Development of prototype systems working in several clinical environments
- Clinically validated performance is considerably lower than pilot studies	- Time and cost of clinical validation are underestimated	- Evidence that clinical need is solved across patient populations
- Users don’t understand or bypass the solution	- Demonstrate that users are actually willing to use the product	- Interest from clinical partners to continue using the software
- Clinically validate the efficacy of proposed product	- Discover potential clinical barriers to deployment	- Extensive UI/UX testing
- Ensure that clinical validation resembles the actual clinical setting	- Demonstrate clinical safety of product	- Third-party validation of product in a non-controlled environment (usually RCT)
- Evaluate degree to which ‘naive’ clinical users are willing to engage with product	- Develop a system for monitoring changes in clinical practice	- Procedures for detection / tracking of updated clinical standards
Advice	**Advice**	**Advice**
- Develop market-fit / clinical-need hypotheses	- Observe how technically naive users interact with pilot product	- Be aware that you cannot sell a product into a non-pilot study environment unless it is demonstrably safe
- Test these hypotheses early	- Do not rely on testimonials	- Users will avoid change unless you provide clear, visible, proven benefits to them
- Cycle through them on an ongoing basis	- Gather use statistics	- Choose the trial with smallest efforts and lowest costs. It might be beneficial to work with a contract research organization
- Test the bigger (cost weighted) risks first!	- Be open to surprising results of your validation that might change your product direction	- Demonstrate clearly proven clinical benefits (doctors are forced!) to use the solution or reduce costs. If you will do neither, nobody will pay for your solution
- Demonstrate clearly proven clinical benefits (doctors are forced!) to use the solution or reduce costs. If you will do neither, nobody will pay for your solution		

Figure 1. The clinical domain refers to identifying real-world clinical needs and validating these needs throughout the life cycle of the project. Herein, the major risks, objectives and key results, and practical advice, across the three time-phases of development, are presented.
Medical device regulation encompasses all laws and rules with regards to the development of a healthcare product falling under the definition of a medical device. Herein, the major risks, objectives and key results, and practical advice, across the three time-phases of development, are presented.

Figure 2. Medical device regulation encompasses all laws and rules with regards to the development of a healthcare product falling under the definition of a medical device. Herein, the major risks, objectives and key results, and practical advice, across the three time-phases of development, are presented.
This does not mean, however, that the team stops working. In our framework, there is still considerable technical work in this period. That said, the main goal of the phase is to complete the certification and validation steps. The end result of this phase is a product which can be deployed, in the majority of appropriate clinical settings, in the market.

Data Strategy	Form	Build	Launch
Risks	Lack of access to data	Site-to-site variability in clinical data is greater than expected (data harmonization fails)	Real-world data has lower fidelity than that obtained from prototyping sites
	Not enough data/signal in data to develop proof-of-concept	Increased access to data does not lead to hoped for improvements in signal detection	Real-world patients are less homogenous than those in early data sets
	Assumptions about the statistical characteristics of data are wrong	Failure to acquire extended data access rights	
	Lack of understanding what kind of data is needed for later stages (beyond proof-of-concept)		
Objectives	Acquire access rights for initial data set	Data harmonization of different data sources	Ensure that data collected in the clinical validations is equivalent to the real clinical setting
	Understand the structure of the clinical data (width, depth, (N), regularity, signal/noise, bias)	Obtain legal access to multiple new datasets	Determine whether the general (clinical) population have the same data characteristics as those used to build the algorithms
	Determine appropriateness of data set to solve clinical need		
	Construct a data plan for data you need in later stages		
Key Results	Fitting data source identified	Sufficiently sized and diverse data has been obtained	Sufficient data with the pre-defined characteristics are gathered to allow clinical validation
	Data is acquired / collected	Harmonized database including all data sources	Data is similar to previous pilot studies
	Data structure is understood		
	Hypotheses formed, and validated, about ability to solve clinical need		
	Data plan developed		
Advice	Explore free datasets	Avoid, identify and mitigate bias	Caveat: data heterogeneity can be a real problem
	Partner with clinical institutions (study data or RDD)	Look out for corner cases	Ask yourself this question often: How good is your system in the real world?
	Utilize an interdisciplinary approach (understand what each feature and label exactly means)	Make sure you have the data for all populations that are covered by your clinical need	
	Be aware that you have little to no control over what is captured	Hardware from different manufacturers produce different data sets. Make sure you have data from all	
	Focus in this stage should be on whether the insight actually makes sense	Remove locally specific identifiers. If not, your model might identify those instead of the pathology	
	It is appropriate to develop the PoC on potentially biased data, but be aware of it	At every point of the process, make sure that predictive value holds up	
	Use your PoC to determine how many data points you are likely to need for a product	Make sure your team has enough people dedicated to data processing and harmonization	

Figure 3. For each of the three phases, it is highlighted which data sources founders and developers should focus on. Again, the major risks, objectives and key results, and practical advice, across the three time-phases of development, are given.
2.2. Definition of the Four Domains

2.2.1. Clinical Domain

The clinical domain refers to the process of identifying real-world clinical needs and validating these needs throughout the life cycle of the project. Clinical needs are not just medical needs but extend to identifying different interaction requirements of different types of users (UI/UX research), and process needs of all clinical partners, including patients and payers. We visualize, including supplementary advice, this domain in Figure 1.

2.2.2. Regulatory Domain

Medical device regulation encompasses all laws and rules with regards to the development of a healthcare product falling under the definition of a medical device. AI in healthcare products are

Figure 4. At every stage of algorithm development, we try to simplify this process outlining the long- and short-term priorities and how the two should align. This is presented under the framework of major risks, objectives and key results, and practical advice, across the three time-phases of development.
highly likely to fall under such regulations. We will explore for all three phases of a healthcare AI project, how to always be prepared for the regulatory requirements of the next phase and to de-leverage critical risks early in the project. As the particulars of regulatory processes differ enormously throughout the world, we will give only general advice which should apply across regions. A visualization for the regulatory domain appears in Figure 2.

2.2.3. Data Domain

Because AI methods are inherently data-driven, the right kind of data is crucial to develop an AI-based healthcare product. In the data domain sections, we will explore which kind of data needs to be leveraged in each phase. The data necessary for an early PoC to get traction can differ tremendously from the data which are necessary in later stages for certification and for clinical validation. We will highlight for each of the three phases, what data sources founders and developers should focus on. Figure 3 shows an overview.

2.2.4. Algorithm Domain

Another crucial domain is the choice of the AI methods applied for product development. With regards to the algorithms, attention must be paid to the number of addressable patients in both the early training phases, also in subsequent deployment; to questions of engineering around energy use, timeliness, and location of the data; to neglected populations in biased training samples; and to the use of algorithms which will support any planned subsequent integration of other data streams. At every stage, we try to simplify this process outlining the long- and short-term priorities and how the two should align. Figure 4 shows the algorithm domain results.

2.3. Form Phase

The Form phase of a medical AI project can last 6–12 months and involves the earliest stages of proofing a concept around a digital solution to a perceived clinical need.

2.3.1. Clinical Domain

The most important goals of the Form phase are to define a clinical need and to show that it is solvable in the form of a PoC. Clinicians are expert practitioners, and as such rely on their expertise to identify those clinical needs. Decades of experience in product design and development have shown, however, that while expert vision is useful for the identification of product-market fit, experts might fall too quickly in love with their own solutions and their own pet pain points. This means, that the correct—objective—identification and validation of a clinical need is a high priority for the Form phase of development. The biggest risk for the Form phase is to focus on work that has no validated clinical need.

A valid clinical need is not solely defined as a clinical problem which needs solving. As development is the goal, the solution for the clinical need at hand must either provide a proven clinical benefit—thus, doctors will be led to use it despite potentially higher treatment costs—or it must reduce costs. If the solution neither reduces costs nor shows a proven clinical benefit, then the potential product is not financially viable. The team which comes together in the Form phase will thus need to be able to identify the clinical need, to validate it and build a first technical solution to address this need.

2.3.2. Regulatory Domain

Regulatory requirements are a significant hidden cost of development of medical AI solutions. Medical device regulators, such as the Federal Drug Administration (FDA) in the USA and European Medicines Agency (EMA) in the EU, have a mandate to protect the public from potentially dangerous medical inter-ventions. This means that the choice to be regulated is rarely, if not, a choice. Given this situation, entrepreneurs need to understand very early how their future product will be regulated. In the Form phase, it is unlikely that software developers will need to follow best practices for the development of a medical device. Most projects fall apart long before even a pilot study, so spending time and effort on regulatory compliant software-development processes at this early stage is inefficient. This is the time, however, for the founding team to familiarize themselves with the regulatory road ahead and to be aware of future requirements. Here, it is prudent to seek professional help as regulatory requirements are legally complex. This knowledge will build confidence with potential funders and will de-leverage a large portion of Build (phase 2) risk ahead of time.

2.3.3. Data Domain

New projects frequently lack access to fitting data or realize (too) late that access to promised data cannot be granted. Many clinicians are not aware of legal impediments to share data, for commercial use, so the decision to form a team should be based on clear evidence that data will be available and usable.

When such initial data are successfully secured, it is paramount to evaluate whether the data are supportive toward solving the identified clinical need. Here, clinical founders often overestimate the value of their initial data set. Although it is certainly admirable, and indeed necessary, to bring data to the table at the outset of a medical AI project, the iterative procedure of product development will often make the utility of the initial data set redundant.

Any initial data set should be seen as an early research tool, from which to draw insights, which will contribute to the product development process. In the Form phase, it is enough to build models which can only predict outcomes based on this, typically, single-sourced—with multiple hidden biases—data. Practitioners should, however, begin to test the limits of their assumptions about these data. The urge to cherry-pick and to oversell the data utility, at this point, is only storing up larger problems for later. Be aware that a thorough validation of data hypotheses will be unavoidable in later stages. It is thus crucial to come up with a data plan outlining the usefulness of the currently used data and defining the need for future data sets.
2.3.4. Algorithm Domain

Similar to the data domain, models developed in the Form phase will often be superseded in later stages. What is important in this early phase is to choose algorithms which are fit for purpose, not only with this smaller data set but also with data on the intended deployment scale. Testing of multiple algorithms and the development of performance benchmarks are also very important. Choosing methods which overperform on the initial data set, but which store up problems for subsequent expansion, along with performance metrics which are inappropriate for clinical applications are common errors at this point.

A tempting self-deception is to fall into the habit of adopting bad scientific practices to produce initial results which in turn lead to very high chances of failure in later stages. We understand the need to show quick initial results which will be the basis to attract further funding—be it public or private. However, sloppy development in this stage will lead to high failure rates in the Build phase, even if a clinical need exists and the team has the right data to solve it.

2.3.5. Outlook

Form phase is a crucial phase where a few vital key objectives need to be kept in mind. Foremost, the focus must lie on the validation of a clinical need and the development of a PoC to solve it. The clinical need must lead to reimbursement—either through proven clinical benefit or proven cost reduction. The formalization of the data and algorithmic hypotheses, and associated benchmarks, is a demanding process for smaller teams. Thus, it is essential to focus on the key objectives.

2.4. Build Phase

Following the early incubation of the Form phase, comes Build phase, which can take as long as 2–5 years depending on the type of product being developed. In this phase, a concerted effort is made to develop an AI-driven solution, while also demonstrating a clear clinical need.

2.4.1. Clinical Domain

During the Build phase, it is highly important to continuously validate and fine-tune the clinical need, to make sure that the development process follows the right path. Due to the multimodal nature of product development, a typical product will morph multiple times during this phase. A strong risk, in this phase, is that one ends up with a technical solution which works well but no longer addresses the actual clinical need. Another potential risk is that the solution works on the available data but is actually nonperformant on data from other sources (i.e., a highly biased model is developed). Thus, it is important to work with partner clinics, or practitioners, which are not directly under the control of the project initiator. This is partly to avoid complications of medical hierarchy, but also to expose the product development team to differences in clinical practices, hardware, and opinions. Only this exposure will allow the team to fine-tune the solution to real-world needs. Especially in the Build phase, it is crucial to follow a predefined and continuously updated clinical validation plan.

2.4.2. Regulatory Domain

The Build phase involves an earnest attempt to develop software which will form the bedrock of a future product. As such, this is the kick-off point for the development of a solution which will withstand regulatory approval. There is the evident risk that incorrect assumptions are made about the required certification levels and the associated costs and timelines. In the worst case, this discovery is made so late in the Build phase that mistakes cannot be undone and the project or startup fails. It is also important to make sure that every single piece of technology is used in the correct manner for the certification process.

There is a strong trade-off between instituting correct medical device (MD) certifiable software development processes early versus late in the product development cycle. The process overhead for developing an MD-certified product is considerable, especially in a product which is not yet tightly designed to fit a product-market niche. However, introducing retrospective audits and new development processes late in the development cycle can be extremely financially costly and time-consuming. Potentially tipping the balance in favor of introducing MD certifiable guidelines early in the process is the fact that this will also bed-down appropriate practices in the development team. Because these practices will need to be continued for the entire lifecycle of the product, it makes sense to begin as early as feasible. It is clear, however, that for some products, a later start might be the better option. The key is that decision-makers actively make an informed decision as to how to proceed and when development will switch to the scrutiny required for the certification process.

2.4.3. Data Domain

This is the stage at which external data sources must be aggregated with internal ones, allowing hypotheses about homogeneity and data quality to be assessed systematically for the first time. This, however, requires a strong focus on data processing and harmonization. It is important to make sure that the team has not only ML expertise but is also experienced in correct data processing. Because any work conducted in the Build phase is typically in very close partnership with clinics, or partners, it allows a relatively tight feedback loop on data which will not exist in later stages of development. Here, new data sets allow continuous assessment of the model performance. It is crucial to emulate in the Build phase the heterogeneity of the real world, e.g., in terms of different hardware or different clinical practices.

Depending on the clinical need, it might be necessary to run a data collection study in the Build phase. For example, data from a new study might be necessary to reflect a change in current clinical practice, where retrospective data might not exactly reflect the use case anymore. It is also possible that in the Form phase the PoC was purely technical and data for the specific use case was not, at that point, available. It is crucial to understand that the data set, on which the medical AI product is built, can rarely be used for the subsequent validation of the product itself (see Section 2.5 and 3). At the end of the Build phase, the data...
set must one-to-one reflect the real-world conditions to allow the development of models which will perform as well during medical certification and clinical validation as in-house.

2.4.4. Algorithm Domain

Model development in the Build phase is tightly coupled to issues with data and clinical fit. With access to a larger data set, priority should be set on maintaining the predictive value, despite potential differences between the sources. It is not uncommon that the initial technology is unsuited to accommodating heterogeneous data. Thus, it happens frequently that the models need to be rebuilt from scratch in this phase, often with the assistance of more experienced engineers.

Associated with predictive value, the single biggest issue in the Build phase is the mitigation of bias. The developed models must maintain predictive value on all real-world data (RWD) which the future product will encounter and not just on a subpopulation. Patients from different regions can exhibit very different disease patterns, for example. In image generating fields such as radiology/pathology, different hardware (scanners/digitalization software) and different clinical practices (sequence settings/staining practices) can lead to tremendous differences in image statistics. Thus, funders and founders should not be blinded by high predictive values on single-source data. Models developed under such conditions can fail miserably when confronted with even slightly different data sets.

From an engineering point of view, the finished product will be deployed somewhere and must fit into the clinical workflow. Choosing algorithms which both scale appropriately and are deployable in the context is vital. Algorithm designers should also bear in mind extensibility, e.g., a coherent product roadmap might incorporate plans for future data streams enabling potential extended applications.

The Build phase is also the phase where the necessity of explainable AI (xAI) deserves to be considered. Applications, such as clinical decision support, might require explanations as the users (doctors) demand them [36], or are required to use them [37]. A more comprehensive product vision might even leverage xAI to provide different levels of explanation to different classes of users (e.g., doctors vs nurses vs patients). For the developers, it might be prudent to utilize xAI to identify potential hidden prediction biases. For example, it could be that a certain pathology is coupled to a certain hardware characteristic in the data. In that case, the model might learn to identify that hardware-tag instead of the pathology [38]. Most importantly, there are signs that xAI might be required by medical device regulatory authorities in the future [26].

2.4.5. Outlook

Build phase is the phase which most closely corresponds to the public perception of product development. Here, clinical validation should ideally switch from identifying the clinical need to fulfilling it. It is also the phase in which most companies stagnate. Reasons for that can be discoveries which indicate that initial assumptions about data were not accurate. Software solutions may be found to contain bugs or are more difficult to build than early results suggested. The largest effort, in this phase, must be applied to bringing all the components together. This applies on the software side, requiring not only the development of an AI tool but also a practical user interface (UI). But it applies equally to the validation side, users can never be forced to use your tool, they need to want to use it. Getting to this point requires many cycles of user interviews and testing. In Build phase, it is still possible that the true nature of the clinical need has been misinterpreted by the development team, or that the proposed technical solution is not capable of attaining the required level of performance. Ideally, however, this phase ends with a product which is ready for medical device certification and efficacy studies and all major risks for the Launch phase have been kept as low as possible.

2.5. Launch Phase

The last phase, Launch, can take up to 3 years depending on the type of medical AI product. In this phase, medical device certification is achieved and clinical validation is performed.

2.5.1. Clinical Domain

The final clinical validation is the proof that the product fulfills its promise in the clinical real-world setting. There are a few cases where retrospective data (also referred to as real-world evidence [RWE]) might be used to “prove” clinical products. There are clinical, regulatory, and even statistical reasons [39] to argue that these cases will always prove to be a very small minority (see also Section 3). In general, then, it will typically be necessary to run a clinical trial of any new AI-based medical product. The goal of this trial will be to prove not only safety but also clinical efficacy. This step is crucial. Without proven clinical efficacy—either for clinical benefit or for cost reduction—there is no real incentive for customers to buy the product. Thus, the successful completion of such a trial is usually the final step before widespread sales of the product in the medical-product marketplace can happen.

It is crucial to understand that such a trial will almost always have to be a randomized controlled trial (RCT). Only RCTs can provide the necessary evidence level which is required to change clinical practice and to find their way into clinical standard-of-care guidelines. RCTs can also be designed to allow the identification of effects on subpopulations, which is often necessary for AI-based products. A major risk for the Launch phase is to underestimate the time and costs required for the planning and conduct of an RCT trial, which can amount to several years.

Any evidence established by the trial will be subsequently examined under the lens of the trial design. A trial closer to real-world conditions will bring a higher value to the product (and will be necessary if the route to market requires changes to standards of care), but it runs a higher risk of failure due to uncontrolled conditions. This risk is mitigated by practices in the previous phases working with heterogeneous data sets and minimizing bias. To ensure an optimal trial outcome, it is highly advisable to allocate necessary funding and to work as early as possible with a contract research organization (CRO). Particular attention should be paid as to whether clinicians, in the trial, actually use the software in the manner expected by the designers. Once the
product is approved and it appears on the market, further validation and changes will be extremely costly.

2.5.2. Regulatory Domain

In many senses, the Launch phase is the regulatory phase. In it, the team will focus on the implementation of a fully compliant software development process and all steps necessary for medical certification will be taken. The major regulatory risk for this phase is that key assumptions about the certification process were wrong and the certification process is massively delayed. Importantly, this phase will also involve considerable efforts to consider the regulatory aspects of a product postlaunch when it is already in the market. Processes must be developed to handle surveillance of how the product behaves in real-world usage. If users report a bug, which may cause harm to life (i.e., an adverse event), product managers must already have contingency plans in place as to how this situation will be handled. Given the current state of medical device certification, negotiations must also be entered into with regulatory bodies as to how minor and bug-fixing software updates will be handled without requiring a rerun of clinical trials. A software solution which requires a complete clinical trial for every minor bug fix will not be worth much. By addressing these issues before they arise, regulators will be more willing to put in place framework agreements laying out conditions for automatic certification of updates.

2.5.3. Data Domain

The Launch phase is, in most cases, the final phase in which the development team can expect to see new forms of medical data. For certain cases, clinical trials can be constructed such that the internal team are, subsequently, allowed to train their models on the newly acquired data. Retraining the model will likely require backtesting, demonstrating that, had the new model been used throughout the trial then the algorithm behavior would have been identical. What happens, however, in the case where backtesting indicates minor differences in treatments is still an open debate in regulatory circles. Notwithstanding, a major risk is that the data used in the previous stages were not heterogeneous enough and RWD within the clinical validation are much noisier or so different that the predictive value does not hold. It is also paramount to ensure that the data collected in the clinical validation study actually represent the real-world setting. Here, it will be necessary to obtain proof for this claim. It should be kept in mind that the acquisition of patient data directly from postlaunch usage of the product is likely to be rare. It is true that a product which, through its usage, accretes additional knowledge about patients is an incredibly valuable product design. However, patient privacy practices throughout the world vary to such an enormous degree that we find it unlikely that many products will successfully follow this path. Thus, data collection in this final premarket phase must be planned and performed with the highest scrutiny.

2.5.4. Algorithm Domain

The greatest risk in the Launch phase is that the final software solution will fail. It should be mentioned that at this stage, next to model failure, design failure can also be the cause. Extensive testing in Build phase, both on the model development and the UI/UX side, should help to keep the risk of such an outcome as low as possible. That said, AI models and software solutions around them fail at all stages of development. Typically, in Launch, this will occur due to some previously unrecognized regularities in in-house data (“house effect”) which does not transfer to RWD. Assuming such a catastrophic failure does not occur, the algorithmic focus should be on how well the model transfers to out-of-house data. Often, despite all previous efforts, RWD are still more noisy and less homogenous than previously acquired data. The Launch phase is the last phase in which it is possible to easily detect lower performance on lower quality data and make final adjustments to the algorithms. To build a product which will reach market acceptance, it is important to be prepared for this challenge, to embrace it and to solve it. The team should be experienced enough by now.

2.5.5. Outlook

For a general nonmedical digital startup, the third phase is the one in which advice turns toward rapidly expanding the user base and optimizing the product–market fit. In a medically regulated product, however, the third phase must precede rapid growth because the product needs to become certified and clinically validated. The processes for certification and clinical validation remain, to a certain degree, very much the last chance to get product–market fit aligned. Minimizing the risks in the previous phases of development and working with professional partners both for regulation and clinical validation will keep the risks for failure low in this final phase.

2.6. Postmarket

After completing Launch, the product development roadmap returns to that more typically seen in nonregulated markets. A certified medical AI product has been shown to be safe. If it has been through an RCT, it may also demonstrate certain standards of clinical efficacy. In most cases, this means that a sales process can proceed and the delivery of the product massively scaled-up. The addition of new product features will usually follow a slightly condensed version of the Form–Build–Launch cycle. For the product in the market, three topics remain of considerable ongoing concern: software updates, data practices, and surveillance.

Software, as it is developed today, is incredibly buggy. Even when following advanced software development best practices (e.g., B-Method) software errors persist and must be corrected for. In physical medical devices, the electronic solutions follow decades of engineering-led best practices. In the event of a problem, the scale of the problem (risk) is analyzed and regulators usually influence the decision as to whether to recall the product or merely fix it in future models. Software combines the ability to update the working system remotely, at almost zero cost, with a lower quality of initial engineering. Because software for medical purposes has seen relatively little development to date, no clear working regulatory practice has yet emerged. What is clear is that medical products are evaluated in terms of risk: What risk does
this product pose to the patient? What if it goes wrong? What must happen if it goes wrong? This evaluation is conducted at the macrolevel of the whole product, at the microlevel of the individual components, and at the intermediate level of the interface which brings the components together. Development teams need to stay on top of shifting standards of best practice and, in all likelihood, should consider medical AI development to require similar levels of oversight as that historically required by aeronautical, spaceflight, and automobile software development.

A further, often overlooked process, in developing a medical AI solution is the question of shifting clinical standards. AI experts refer to this problem as “stationary of the data.” For example, the diagnostic criteria, and how they are encoded in medical records, change over time. This is an expert-driven process which trickles down through medical practitioners. The development of a medical AI usually happens in a concentrated window in time, during which medical practices might be relatively stable, but the deployment of such a solution must then be used over a much longer time period. Detection, whether by automated means or by internal human-driven processes, of changes in medical practice must be planned for and processes established as to how to update the software in response. This is a huge challenge, as the whole process of Form, Build, and Launch might be based on a single snapshot of clinical practice. A major shift in clinical practice can invalidate most of the work done during development.

Surveillance is a concept which healthcare professionals and pharmaceutical manufacturers understand reasonably well. It is not something which software and AI developers will naturally consider without prompting. There must be feedback methods for reporting misapplications of the software in the wild. The spectrum of events which must be accounted for ranges from actual medical adverse events, to users accidentally misunderstanding certain display elements. Most likely, these methods must span the spectrum from paper-based reporting methods to in-device automated monitoring. Furthermore, awareness must be paid to the fact that streaming of telemetry is usually frowned upon in medical circles; it is too easy to leak patients’ private medical data. We are not aware of good examples of medical AI device surveillance solutions which do not require ongoing access to patient medical records and extensive use of clinical review panels. No matter what the solution arrived at, it is the company producing the medical AI device which will be responsible for product surveillance and must pay for ongoing support in this domain or face a loss of medical certification.

3. Discussion

Healthcare systems all over the world face the same challenges. There is an urgent need to deliver better quality healthcare and simultaneously lower costs to keep our healthcare systems sustainable. AI has the potential to fulfill both of these requirements. Although AI often hits the headlines with high performance in concept studies, certified and clinically validated products are still rare. To battle this translational gap, we present a framework addressing best practices for the development of AI healthcare products.

The presented framework is an original and unique analysis of the development of AI healthcare products. It divides the development into three consecutive phases: Form, Build, and Launch. Each phase is set to fulfill important requirements and delevage the major risks of the subsequent phases. These three phases represent distinct stages as they appear in the course of the development of AI in healthcare products. Researchers, founders, and other stakeholders should be able, with the aid of our framework, to easily identify the current phase and relative progress of a project. Within these three phases, the framework covers the four most important domains of such a project, namely the clinical, regulatory, algorithmic, and data domains. Each domain must meet strict requirements to successfully complete the phase. If one of the areas is lagging behind, this will lead to the accumulation of—potentially fatal—risks for the project and jeopardize the product.

We are not aware of other frameworks focusing on AI in healthcare product development to date. Our approach largely follows the “decision perspective” model introduced by Krishnan and Ulrich.\(^{30}\) Its advantage is that it does not rely on the perspective of a single domain, but rather divides the development process in a series of decisions. Thus, for each phase, the right decisions can be made to achieve specific goals. This, of course, paves the way for future research work, which can focus on more specialized areas of AI in healthcare development such as marketing, organizations research, and other topics. Importantly, the advantage of a decision perspective framework is the focus on what to do and not how to do it. Thus, frameworks focusing on how to best perform development are complementary to our framework as well as field-specific roadmaps aimed at the individual challenges to adopt AI.\(^{41}\)

The literature about this topic is too broad to be covered fully here. We will give a short overview of some frameworks in use. A key discovery, of the past 20 years, was the coining of the concept of an “effectual entrepreneur.”\(^{42}\) Such an entrepreneur works at the extreme end of low inherent knowledge—unplannable processes. Over time, they develop an enterprise which increases inherent knowledge and beds down processes, which ultimately lead to a product. In startup culture, such an entrepreneur is characterized using product life-cycle approaches such as lean startup or agile (not to be confused with Toyota’s lean manufacturing).\(^{32,43}\) Larger industries, attempting to learn from startups have adopted Design Thinking\(^{44}\)—an essentially two-step process which begins by focusing on need before moving to lean startup-style product development. From a funding point of view, the Business Model Canvas\(^{45}\) has proved invaluable in identifying the product–market fit for new companies. Finally, the Three Lenses of Innovation—a potential product must be desirable, feasible, and viable—has proven useful to examine prospective market needs and product–market fit.\(^{46}\) Our framework is both compatible with and extends these frameworks.

Importantly, within the framework, we deliberately did not focus on funding schemes. The reason here is that current funding schemes often lead to a misalignment of interests. The reasons for this status quo are complex. Current funding schemes for AI in healthcare products—often termed Digital Health—usually follow experiences from products outside of healthcare, derived in the modern digital era, where a sufficient return of investment (ROI) is expected within a few years. However,
despite being digital software products, AI in healthcare products are more closely related to biotech products sharing the complex development and heavy regulatory requirements. Why then are funding schemes from biotech not adapted to the AI in healthcare sector? This can be attributed, in part, to the fact that the main exit for biotech companies is a combination of initial public offering (IPO) and merger and acquisition (M&A), usually in partnership with large biotech or pharma companies. In general, outside of biotech, IPO activity has significantly decreased, meanwhile, few large acquiring companies have emerged for medical AI. Thus, it is very hard for investors to ensure that a potentially very large investment sum will yield the required ROI. Relatively few investors are even aware of this challenge. Founders, whether unscrupulous or naive, attract investment by advertising their product niche as being equal to any other (AI) software. This strategy, typically involving categorising the product as a nonmedical device, leads to stark consequences in terms of self-limiting the potential capabilities of the product or, worse, risking subsequent regulatory backlash. Thus, AI in healthcare development is forced into following development paths of simpler products due to unreasonable expectations. This inevitably leads to founders cutting corners to pretend fast agile development. Evidently, such endeavors are bound to fail, when the hard requirements of medical device regulation and clinical validation cannot be met. In the words of venture capitalists, the main challenge for AI in healthcare startups is the so-called “valley of death,” where the startup already exists but does not generate revenue. This phase is usually equivalent to the Build + Launch phases in our framework. Thus, there is a need for an honest appraisal of the development roadmap for AI healthcare products. Here, our framework is an important contribution. Early-stage funding needs to be made aware of the true roadmap and timelines, and expectations need adjustment accordingly. As an example of increased public funding, a scheme specifically targeting the valley of death is currently set up by the European Union launching in 2021. As the sector matures, we hope that there will be an expansion of the acquisition activities by large pharma- and med-tech companies leading to a clearer pathway to product and company development.

The previously identified crisis of the funding models for AI in healthcare products opens up the question as to how AI in healthcare products will be funded in the future. The current industry response which we have identified is to lobby for reduced regulations. The proposed rationale for this is that faster and less-regulated technological innovation will ultimately deliver on the healthcare goals of broadening access while reducing costs. This cost argument has led to a willingness, on the part of regulators, to open up avenues for clearance of medical software solutions without the full burden associated with traditional pharmaceutical drug and medical device regulations. This opening of alternative regulatory routes is tempered by an awareness that medical AI can, and will, directly impact on patient health. In practice, however, the reduction of regulatory barriers appears to lead to a potential diversion of spending, from clinical validation and software engineering, to paying experts on the navigation of such shortcuts—and subsequent enormous payment for product-risk insurance when the product reaches market. We do not see this as a sustainable path, indeed much of the current excitement around health-tech fails to appreciate that sales in this space are typically subject to subsequent regulatory approval. In addition, the ethical implications of potentially endangering patients’ health in a trade-off for faster development are tremendous. Instead of reducing regulations, we suggest a more mature approach to clinical validation based on realistic approaches such as that contained in our framework. That said, there are alternatives. We see huge scope for the certification of AI “platforms” or manufacturers where only the new components or the manufacturer need to be certified upon upgrades.

A related narrative is the increasing discussion of RWD as the real goldmine for AI in medicine. Currently, efforts are being made to allow RWE for the clinical validation of healthcare products. What is the challenge of RWD for clinical validation with regards to AI in healthcare products? Importantly, the term “AI” only describes the method used in the product, not the model of medicine which lies behind it. Here, a significant observation is that many AI solutions developed and marketed today can be considered—often unbeknownst to their creators—precision medicine approaches. Precision medicine is a type of personalized medicine aiming to integrate all available data for each patient into an individual profile and tailoring diagnostics or therapy to this profile. AI is a great fit for precision medicine due to its inherent ability to utilize high-dimensional data to identify subpopulations and make individualized predictions. Thus, RWD often allows the development of AI products—in the Form and Build phases—as, currently, only RWD has available data for subpopulations. In this sense, RWD can be seen as a driver of AI development. Data from classic randomized clinical trials (RCT), typically lack the granularity to distinguish differing populations and have—often—less value for AI in healthcare products. RWD is per definition retrospective and thus has—all widely known and accepted—drawbacks, e.g., bias, lack of controls, confounding, and others. Here, the main challenge is that availability is not a valid surrogate for the required level of evidence for safety and efficacy. One of the greatest hidden risks in a medical AI product developed on RWD is in algorithmically enforcing bias. Also, indeed, commercial products in healthcare have already been shown to contain considerable racial bias. RCTs, in contrast, have been developed to minimize bias and confounding, and provide the highest level of evidence. It is perfectly possible to perform an RCT to show efficacy and safety also for subpopulations and hence for any AI in healthcare product. The main difference is that a subpopulation RCT is very costly and time-consuming, as a sufficient number of patients per subgroup need to be enrolled. A push to use RWE instead of RCTs for the validation of AI in healthcare products is essentially a push to trade the level of evidence of safety and efficacy for lower costs, increased speed of development and higher risk for patients due to bias and confounding. It is fair to say that such a push would ethically and publicly never be acceptable if it was suggested for pharmaceutical products. Thus, it is hard to justify such a move for AI in healthcare products which often might have the same potential for patient risk. Consequently, our framework stresses the importance of an RCT as the required level of clinical validation for the overwhelming majority of AI in healthcare products in the Launch phase.

In developing our framework, we have largely envisaged medium- to high-risk medical AI products. This has streamlined our thought processes and allowed us to develop rules
particularly of use to a medical audience. However, we do not see any real differences in the process for developing low-risk products. The only place where there is a question mark is in products which attempt to fall below all risk thresholds for medical regulation. At this point, we would question the wisdom of any strategy which looks at providing clinically oriented benefits while attempting to market itself as a nonmedical product. This continues to run the risk of falling foul of regulatory attention while also failing to attain the enhanced sales values associated with medical products. In any case, a familiarity with our framework will allow key decision-makers to evaluate the potential costs and benefits of following a regulatory path.

4. Conclusion

We have developed a framework which outlines, what we consider to be, best practices in AI in healthcare development. Our goal is to pave the way for products which are both efficacious and safe for patients. Through direct participation in the development of a spectrum of medical AI products, our experience, and that of our peers, is of enormous waste in the process. Current initiatives to improve the flow of AI in healthcare products aim at reducing costs and speeding up development through means which potentially increase risks for patients. Our framework outlines an alternative to this approach. We aim to improve the development situation of AI-driven medical products by enhancing accountability, transparency, and planning, hopefully increasing success rates for such products, without facing some of the safety and ethical trade-offs mentioned previously, to fulfill the promise of AI in healthcare: better care at lower costs.

Acknowledgements

We would like to acknowledge Michelle Livne, Nicholas Borsotto, Tim Higgins, and Dorothée Doepfer for valuable ideas and proofreading.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

artificial intelligence, digital health, healthcare, innovation frameworks, medicine

Received: March 24, 2020
Published online: July 2, 2020

[1] Lifetime Risk of Developing or Dying from Cancer, https://www.cancer.org/cancer/cancer-basics/lifetime-probability-of-developing-or-dying-from-cancer.html (accessed: March 2020).
[2] The GBD 2016 Lifetime Risk of Stroke Collaborators, New Engl. J. Med. 2018, 379, 2429.
[3] F. Griffiths, M. Ooi, IEEE Instrum. Meas. Mag. 2018, 21, 29.
[4] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, S. Thrun, J. Dean, Nat. Med. 2019, 25, 24.
[5] M. Leshno, V. Lin, A. Pinkus, S. Schocken, Neural Netw. 1993, 6, 861.
[6] Z. Zhang, Y. Zhao, A. Canes, D. Steinberg, O. Lyshevksa, Ann. Transl. Med. 2019, 7, 152.
[7] L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen, Classification and Regression Trees, Chapman and Hall/CRC, Boca Raton, FL 1984.
[8] V. Podgorelec, P. Kokol, B. Stiglic, I. Rozman, J. Med. Stat. 2002, 26, 445.
[9] P. McCullagh, J. A. Nelder, Generalized Linear Models, Chapman and Hall/CRC, Boca Raton, FL 1989.
[10] C. Cortes, V. Vapnik, Mach. Learn. 1995, 20, 273.
[11] A. Mammonne, M. Turchi, N. Cristianini, WIREs Comput. Stat. 2009, 1, 283.
[12] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, MIT Press, Cambridge, MA 2006.
[13] M. Seeger, Int. J. Neural Syst. 2004, 14, 69.
[14] P. Patel, A. Thakkar, Int. J. Electr. Comput. Eng., 2020, 10, 538.
[15] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, Proc. of the 2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1 (Long Papers), Association for Computational Linguistics, New Orleans, LA 2018, pp. 2227–2237.
[16] J. Saha, C. Chowdhury, S. Biswas, Deep Learning Techniques for Biomedical and Health Informatics (Eds: S. Dash, B. R. Acharya, M. Mittal, A. Abraham, A. Kelemen), Springer International Publishing, Cham 2020, pp. 101–126.
[17] S. Rendle, F. Machines, in Proc. IEEE Int. Conf. on Data Mining, IEEE, Sydney 2010.
[18] R. Ying, R. He, K. Chen, P. Ekobatchai, W. L. Hamilton, J. Leskovec, in Proc. 24th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY 2018.
[19] A. Panesar, Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes (Eds: A. Panesar), Apress, Berkeley, CA 2019, pp. 255–304.
[20] J. A. Savino, R. Latifi, in The Modern Hospital: Patients Centered, Disease Based, Research Oriented, Technology Driven (Eds: R. Latifi), Springer, Cham 2019, pp. 375–387.
[21] M. Livne, XPOMET©: 360° Next Generation Healthcare, MWV Medizinisch Wissenschaftliche Verlagsgesellschaft, Berlin, Germany 2019.
[22] E. Basch, A. M. Deal, A. C.Dueck, H. I. Scher, M. G. Kris, C. Hudis, D. Schrag, JAMA 2017, 318, 197.
[23] A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, H. J. W. L. Aerts, Nat. Rev. Cancer 2018, 18, 500.
[24] N. Larios Delgado, N. Usubaya, A. K. Hall, R. J. Hazen, M. Ma, S. Sahu, J. Lundin, Npj Digital Med. 2019, 2, 1.
[25] T. Davenport, R. Kalakota, Future Heal. J. 2019, 6, 94.
[26] S. Reddy, J. Fox, M. P. Purohit, J. R. Soc. Med. 2019, 112, 22.
[27] E. Racine, W. Boehlen, M. Sample, Healthc. Manage. Forum 2019, 32, 272.
[28] D. Ben-Israel, W. B. Jacobs, S. Casha, S. Lang, W. H. A. Ryu, M. de Lobiniere-Bassett, D. W. Cadotte, Artif. Intell. Med. 2020, 103, 101785.
[29] D. W. Kim, H. Y. Jang, K. W. Kim, Y. Shin, S. H. Park, Korean J. Radiol. 2019, 20, 405.
[30] V. Krishnan, K. T. Ulrich, Manage. Sci. 2001, 47, 1.
[31] B. Masters, P. Thiel, Zero to One: Notes on Start Ups, or How to Build the Future, Virgin Books, London, UK 2015.
[32] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses, Currency, New York, NY 2011.
[33] W. J. Gordon, A. Landman, H. Zhang, D. W. Bates, Npj Digital Med. 2020, 3, 1.
[34] B. Englich, T. Mussweiler, F. Strack, Pers. Soc. Psychol. Bull. 2016, 2, 188.
35] O. Bergman, T. Ellingsen, M. Johannesson, C. Svensson, Econ. Lett. 2010, 107, 66.
36] E. H. Shortliffe, M. J. Sepúlveda, JAMA 2018, 320, 2199.
37] P. Hacker, R. Krestel, S. Grundmann, F. Naumann, Artif. Intell. Law 2020, https://doi.org/10.1007/s10506-020-09260-6.
38] J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano, E. K. Oermann, PLoS Med. 2018, 15, e1002683.
39] J. Wilkinson, D. R. Brison, J. M. N. Duffy, C. M. Farquhar, S. Lensent, S. Mastenbroek, M. Wely, A. Vail, Hum. Reprod. 2019, 34, 2093.
40] S. Schneider, The B-Method, Red Globe Press, Basingstoke 2001.
41] B. Allen, S. E. Seltzer, C. P. Langlotz, K. P. Dreyer, R. M. Summers, N. Petrick, D. Marinac-Dabic, M. Cruz, T. K. Alkasab, R. J. Hanisch, W. J. Nilsen, J. Burleson, K. Lyman, K. Kandarpa, J. Am. Coll. Radiol. 2019, 16, 1179.
42] S. D. Sarasvathy, Acad. Manage. Rev. 2001, 26, 243.
43] K. N. Manjunath, J. Jagadeesh, M. Yogeesht, Int. Mutli-Conf. on Automation, Computing, Communication, Control and Compressed Sensing, IEEE, New York, USA 2013, pp. 26–34.
44] J. P. Roberts, T. R. Fisher, M. J. Trowbridge, C. Bent, Healthcare 2016, 4, 11.
45] M. C. León, J. I. Nieto-Hipólito, J. Garibaldi-Beltrán, G. Amaya-Parra, P. Luque-Morales, P. P. Magaña-Espinoza, J. Aguilar-Velazco, J. Med. Syst. 2016, 40, 144.
46] How to prototype a new business, https://www.ideou.com/blogs/inspiration/how-to-prototype-a-new-business (accessed: March 2020).
47] Silicon Valley Bank, 2019 annual healthcare report, https://www.svb.com/globalassets/library/managedassets/pdfs/healthcare-report-2019-annual.pdf (accessed: March 2020).
48] X. Gao, J. R. Ritter, Z. Zhu, Financ. Quant. Anal. 2013, 48, 1663.
49] E. U. Plans, $3.9 billion fund for startups in ‘valley of death’, https://www.bloomberg.com/news/articles/2019-11-23/eu-plans-3-9-billion-fund-for-startups-in-valley-of-death (accessed: March 2020).
50] F. D. A. Pre-Cert, http://www.fda.gov/medical-devices/digital-health/digital-health-software-precertification-pre-cert-program (accessed: March 2020).
51] N. A. Dreyer, Ther. Innov. Regul. Sci. 2018, 52, 362.
52] M. R. Kosorok, E. B. Laber, Annu. Rev. Stat. Appl. 2019, 6, 263.
53] D. D. Miller, E. W. Brown, Am. J. Med. 2018, 131, 129.
54] J. M. Franklin, S. Schneeweiss, Clin. Pharmacol. Ther. 2017, 102, 924.
55] Z. Obermeyer, B. Powers, C. Vogeli, S. Mullainathan, Science 2019, 366, 447.