A Hybrid Swarm and Gravitation-based feature selection algorithm for handwritten Indic script classification problem

Ritam Guha1 · Manosij Ghosh1 · Pawan Kumar Singh2 · Ram Sarkar1 · Mita Nasipuri1

Received: 21 July 2020 / Accepted: 17 November 2020 / Published online: 3 January 2021
© The Author(s) 2021

Abstract
In any multi-script environment, handwritten script classification is an unavoidable pre-requisite before the document images are fed to their respective Optical Character Recognition (OCR) engines. Over the years, this complex pattern classification problem has been solved by researchers proposing various feature vectors mostly having large dimensions, thereby increasing the computation complexity of the whole classification model. Feature Selection (FS) can serve as an intermediate step to reduce the size of the feature vectors by restricting them only to the essential and relevant features. In the present work, we have addressed this issue by introducing a new FS algorithm, called Hybrid Swarm and Gravitation-based FS (HSGFS). This algorithm has been applied over three feature vectors introduced in the literature recently—Distance-Hough Transform (DHT), Histogram of Oriented Gradients (HOG), and Modified log-Gabor (MLG) filter Transform. Three state-of-the-art classifiers, namely, Multi-Layer Perceptron (MLP), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM), are used to evaluate the optimal subset of features generated by the proposed FS model. Handwritten datasets at block, text line, and word level, consisting of officially recognized 12 Indic scripts, are prepared for experimentation. An average improvement in the range of 2–5% is achieved in the classification accuracy by utilizing only about 75–80% of the original feature vectors on all three datasets. The proposed method also shows better performance when compared to some popularly used FS models. The codes used for implementing HSGFS can be found in the following Github link: https://github.com/Ritam-Guha/HSGFS.

Keywords Feature selection · Hybrid Swarm and Gravitation-based Feature Selection · Particle swarm optimization · Gravitational search algorithm · Handwritten script classification · Indic script

Introduction
The past decade has witnessed an increased availability of digital images and high-capacity low-cost storing devices. This has made storage of handwritten or printed documents in digital format a lot easier and budget-friendly. These handwritten documents are non-editable in nature. To achieve easy editing, maintenance, indexing, retrieval, and transfer of contents, researchers throughout the world strive to develop various Optical Character Recognizers (OCRs) which are currently used to convert images of handwritten, typed or printed text into machine-readable text. This machine-readable text produced by OCR engines are easily editable and maintainable, but the problem with these OCRs is that they are largely script-specific (the writing style or graphical form of a language is known as script). This has not been an issue till there were only single-script documents, but as document storage became a regular practice.
among a large group of people, it became a necessity to store and process the multi-script documents as well. As OCRs are script-specific, multi-script documents require multiple OCRs to be converted into machine-readable configuration. The problem of converting multi-script documents into machine-readable format can be solved by introducing a new layer of workflow ahead of OCR feeding of documents which is known as Automatic Script Classification (ASC). The entire workflow for an automated multi-script document storage system is shown in Fig. 1.

The difficulty of ASC can be easily realized by providing an overview of the vast set of languages that are currently used across the globe. According to Ethnologue catalogue of world languages, one of the best linguistic resources, currently, there are 7097 living languages used throughout the world [1]. A large multitude of scripts are constantly being used, while these languages are expressed through writings. The presence of these large multitude of scripts has made the process of ASC very complex. The problem is profound in highly multilingual countries. One of the best examples of such a country is India which has 23 officially recognized languages and around 150 other languages. Therefore, script/language identification has huge importance to increase digital communication in the field of culture, research, and language studies. The 23 constitutionally recognized languages in India are Bangla, English, Hindi, Punjabi, Marathi, Gujarati, Sindhi, Oriya, Assamese, Malayalam, Urdu, Telugu, Sanskrit, Tamil, Kannada, Nepali, Kashmiri, Maithali, Manipuri, Konkani, Bodo, Santhali, and Dogari [2]. A total of 12 official scripts used to write the said Indian languages are: Devanagari, Gujarati, Gurumukhi, Bangla, Tamil, Kannada, Urdu, Telugu, Malayalam, Manipuri, Oriya, and Roman.

The identification of handwritten or printed scripts is a complicated process with a number of steps which includes pre-processing, segmentation, feature extraction, and finally classification. Depending on the mode of segmentation, the problem of script classification can be conceived at three different levels: (1) word-level, (2) text line-level, and (3) block-level. The next step is the creation of a feature vector through some feature extraction strategies. Many algorithms have been employed to extract features from the pre-processed and segmented documents. Each algorithm gives different feature vector which is then passed through a classifier for ASC.

Sometimes, the size of the feature vectors used for the ASC process becomes significantly large. Most of the times, such large feature vectors contain many redundant information which may decrease the overall classification accuracy provided by the classifiers. Even processing such large feature vectors results in huge time requirement. That is why, before recognition, an FS algorithm can be used to keep the necessary and significant features which provide two advantages. First, it extracts a near optimal set of features which improves the overall classification accuracy and secondly use of a reduced set of features decreases the load on the classifiers, thereby speeding up the recognition process. This fact motivates us to apply FS in the field of ASC for handwritten Indic scripts. There are mainly three categories of FS algorithms: filter [3, 4], wrapper [5–7], and embedded [8–10]. Filter methods use the statistical measures of various features to select the optimal feature subset, whereas wrapper methods take help of a classifier to check the classification capability of a feature subset. Due to supervision of a classifier, wrapper methods usually require more time than filter methods, but on the other hand, wrapper methods are able to perform better classification than filter methods. Nowadays, some of the researchers have proposed a hybrid version of both filter and wrapper versions which are known as embedded methods. For ASC, classification accuracy is lot more important than time requirement. Hence, we have

![Fig. 1 Schematic representation of the multi-script document storage system](image-url)
focused on developing a hybridization of two popularly used wrapper models.

In this paper, we have proposed a hybridized version of Binary Particle Swarm Optimization (BPSO) and Binary Gravitational Search Algorithm (BGSA) known as Hybrid Swarm and Gravitation-based FS (HSGFS) to get an optimal feature subset to be used for ASC from handwritten Indic script documents. Ebelhart and Kennedy in 1995 [6] created PSO which simulates the social behavior observed in flocks of fish and birds. Over the years, PSO has gained huge popularity as an FS algorithm. In 2008, Rashedi and Saryazdi proposed GSA [7] to optimize solutions for single objective function. Contrasting to PSO, GSA works on the principles of Gravitational forces of Newtonian laws. PSO and GSA are two popularly used optimization algorithms, but in our proposed model, we have used their hybrid binary version to overcome the drawbacks of both the algorithms. A local search is also implemented within this hybrid version to improve the exploitation ability of the algorithm which is very useful to circumvent local optimal solution and reach the global optimal one. After getting the optimized output, the feature vector selected by HSGFS method is finally used to identify the script. The step-by-step procedure of handwritten ASC is represented in Fig. 2. From the schematic representation presented in the figure, it can be observed that we have introduced an FS section (highlighted in red) to the existing workflow for ASC.

The rest of the paper is organized in six sections. The motivation behind proposing this modified ASC workflow is described in Sect. “Motivation and contributions”. Section “Related study” provides a brief description about some of the existing research works related to the domain of our work. The detailed explanation of our proposed FS model in ASC is provided in Sect. “Proposed model”. Section “Experimental outcomes and analysis” consists of descriptions of the various experimentations we have performed to test and analyze the proposed method. Finally, Sect. “Conclusion” concludes our work and provides a brief overview of the future scope mentioning the possible extension of this work.

Motivation and contributions

The feature extraction phase of ASC produces different feature values from the input text images, which are then fed to the classifier for identifying the script in which the text images are written. However, sometimes, the size of the feature vectors used for the ASC process becomes significantly large. Most of the time, such large feature vectors contain many redundant and irrelevant information which may decrease the overall classification accuracy. Even processing such large-sized feature vectors needs a huge amount of time. That is why, before recognition, an FS algorithm is used in the present work to keep the necessary and significant features which provide two advantages. First, it extracts a near optimal set of features which improves the overall classification accuracy, and second, the use of a reduced set of features decreases the load on the classifiers, thereby speeding up the recognition process.

Our main contributions of this work are enlisted below:

- Introducing an FS method to the existing workflow of ASC to remove redundant and unimportant features from the extracted feature vectors, thereby reducing the time requirement and improving overall classification accuracy.
- Developing a new FS method called HSGFS which combines the benefits of two existing FS models namely BPSO and BGSA. A local search technique is also incorporated in the hybrid model to improve the exploitation in the system of solutions.

![Fig. 2 Schematic diagram of the handwritten ASC system using FS procedure](image)
• Applying the proposed FS model over handwritten datasets written in 12 Indic scripts at all the three different levels of ASC namely, block-level, text line-level, and word-level.
• Comparing our proposed HSGFS method with existing FS models for handwritten ASC problem.

Related study

This section contains brief discussion of some previously proposed methods in the domain of script identification and FS. At first, we have discussed various script classification techniques and the later part of this section contains description of some significant variants of PSO and GSA found in the literature.

In 2017, Singh et al. [11] developed some standard datasets of handwritten Bangla-Roman and Devanagari-Roman mixed-script document images. Modified log-Gabor filter (MLG) was used for feature extraction to develop bi-script (Devanagari-Roman and Bangla-Roman) and tri-script (Bangla-Devanagari-Roman) word-level script identification modules. In 2017, Obaidullah et al. [12] presented a handwritten document image dataset at page-level named PHDIndic_11 having 11 officially recognized Indic scripts: Devanagari, Bangla, Urdu, Roman, Oriya, Gujarati, Gurumukhi, Tamil, Malayalam, Telugu, and Kannada. The paper also contained the results for handwritten script identification (HSI). The authors used SL (Simple Logistics) and Multi-layer Perceptron (MLP) and their voting-based integration using average of probabilities to perform HSI.

In 2015, Singh et al. [13] performed script identification at word-level on some handwritten Indic scripts such as Devanagari, Bangla, Gurumukhi, Oriya, Malayalam, Telugu and Roman. Feature extraction was done by a combination of polygonal and elliptical approximation and MLP was found to be the best classifier for ASC. In 2016, Chaudhuri et al. [14] performed script classification of Gujarati and English languages at word-level. To perform feature extraction, the directional energy distribution of a word was obtained employing Gabor filters having suitable frequency and orientations. Their proposed model used SVM classifier to perform classification. Mukhopadhyay et al. [15] implemented an ensemble of two MLP classifiers (where each MLP classifier was trained on two different feature vectors) using Dempster–Shafer (DS) theory for handwritten script classification problem. The ensemble approach found to improve the final classification accuracy by 4–6% for both text line-level and word-level. In 2017, Goswami et al. [16] put forward a novel approach for separating Indic scripts based on the presence of ‘Matra’, which was used as precursor to simplify following HSI in multi-script environment. Two different scripts, Devanagari and Bangla, were considered as positive samples as ‘Matra’ is present there; and two other scripts, Roman and Urdu, were considered as negative samples for the experimentation as they do not have ‘Matra’. After experimentation, Fractal Geometry Analysis (FGA) was found to be the best-suited feature extraction methodology for script identification and RF classifier was the most appropriate classifiers among the classifiers used in the process. Singh et al. proposed a tree-oriented approach to perform recognition of 12 handwritten Indic scripts in [17]. The authors separated the Matra and non-Matra-based scripts using Distance-Hough transform (DHT), and then, they identified each script individually using MLG-based features.

In 2018, Mukhopadhyay et al. proposed a method [18] to combine classifiers to efficiently recognize scripts in multi-lingual environment. Combination of classifiers reduced the complementary nature imposed by different classifiers on the same pattern. This reduced the burden of selecting appropriate classifier for a particular pattern recognition problem. The classifier combination approach was applied to handwritten Indic script (word-level) database developed by the authors which was named as CMATERdb8.4.1 and was made online. Two textural methods have been adapted in [19] for identifying different Indic scripts from handwritten documents. The first method extracts Haralick features, while the second method calculated fractal dimension which finally results into a 104-dimensional feature vector corresponding to each page image. A convolutional neural network-based deep learning architecture called Not-Fully-Connected Network or NFC-Net has been proposed in [20] to perform handwritten Indic script recognition in resource-constrained environment like limited computational ability, insufficient training samples, etc. In 2017, Obaidullah et al. [21] analyzed the performance of ASC when input data were conceived at different levels, i.e., page-, block-, text line/word-level. The same multi-script handwritten document images were considered at 4 different levels and mainly two kinds of features were considered, namely, Script-Independent Features (SIF) and Script-Dependent Features (SDF). Final classification was performed by MLP and Random Forest (RF) classifiers. Ukil et al. have proposed an ensemble of different small Convolutional Neural Network (CNN) architectures in [22] to perform script identification. The authors have varied the CNN architectures based on three different parameters: Transformation, Scale, and Depth. These variations help to keep the individual networks significantly small, and each of these individual networks addresses a part of the learning constraint and as combination they can work efficiently on script identification. They have also used Discrete Wavelet Transform (DWT) to reduce the dimension of the data. In [23], the authors have used a CNN-Long Short-Term Memory (LSTM) based framework with dynamic weighting for script recognition. From each image, patches
are extracted which are fed to the CNN-LSTM combination. A softmax layer at the end of this combination produces attention-oriented patch weights. These weights are patch-wise multiplied with patch features generated by the CNN to produce local features which, when combined with the global features provided by the LSTM, are able to classify the scripts accurately.

In 2015, Singh et al. [2] provided a survey on the feature extraction and script identification techniques used for the classification of printed or handwritten Indic scripts. The survey gave a platform to encourage future research activities in the field of script classification. A similar survey can be found in [24] which contained a detailed discussion of various handwritten Indic script identification techniques, various pre-processing and feature extraction schemes, etc.

In spite of its importance, till date, FS in script classification has been least explored. An FS approach for script identification was first attempted in printed documents using ReliefF algorithm [25]. In 2016, Singh et al. [13] proposed a Harmony Search (HS)-based FS procedure which was applied for HSI. In this approach, each candidate solution was considered as a musician. Just as musicians play various notes with different instruments and eventually find a perfect combination to get a harmony among the musical instruments, the candidate solutions were also fine-tuned and processed to achieve the most appropriate combination of frequencies (i.e., the final solution) which was then used to optimize the objective function. A clustering-based FS framework is proposed in [27] for handwritten Indic script classification. The clustering-based FS proceeds by applying K-means algorithm over the entire set of features after finding an optimal value for K. The features present in each cluster are then ranked and only some top percentage of features are selected from each cluster for classification. These reduced set of features are finally used in the classification process. Thus, it can be seen that although FS can play an important role in ASC, yet it has not been attempted much by the researchers till now.

Throughout the years, many optimization algorithms have been proposed which can be applied in the domain of FS. In 1995, Eberhart et al. [6] proposed two initial versions of PSO: GBEST (Global BEST) model and LBEST (Local BEST) model. GBEST model’s candidate solutions (particles in case of PSO) use their own information as well as the information provided by the global best candidate to form their own solutions. Similarly, LBEST model particles produce solutions using their own information, but instead of global best particle, they seek additional information from certain number of their neighbors. Canonical PSO utilizes information obtained from only one neighbor, whereas in Full Information PSO (FIPSO), each neighbor acts as a source of information. Thus, Canonical PSO overlooks information provided by all the neighbors except one and FIPSO retains a lot of redundant features due to inclusion of too much information. To get rid of these limitations, Du et al. proposed an adequate-information version of PSO [28] in 2015 which was known as Limited Information PSO (LIPSO). LIPSO particles are influenced by top individuals of the swarm and the number of individuals influencing each particle may vary from particle to particle. In 2014, Cheng et al. incorporated social learning in PSO particles [29]. According to this approach, any particle may learn or retrieve information from the particles which are better than the individual of consideration. In 2007, Ghamisi et al. proposed a hybridized model combining Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) [30]. The authors introduced elitism among the particles in the swarm. The elites or top performing particles in swarm qualify to reach the next generation after going through PSO. All the other particles are discarded and GA is performed on the elites to obtain other candidates for the next generation.

In 2009, Rashedi et al. presented an optimization approach [7] based on Newtonian Laws of Motions and interaction of masses. The search agents were considered to be collections of masses interacting among themselves obeying laws of motions which guided the agents towards optimal solutions. A binary version of the GSA or BGSA has also been developed [31] by the same authors, Rashedi and Saryazdi to solve FS problems [32]. BGSA has been merged with Simulated Annealing (SA) to create GABSA [33]. Use of SA in GSA increases the local search and hence improves its exploitation abilities.

Recently, Ghosh et al. proposed an improved version of GA known as Histogram-based Multi-Objective GA (HMOGA) in [34]. They have produced optimized feature vectors for multiple runs of GA and combined the results using histogram-based cut-off criteria. In [35], Guha et al. proposed another updated version of GA where they replaced the mutation operation of GA with Great Deluge Algorithm (DGA) to improve the local searching capabilities of conventional GA. Like GA, Ant Colony Optimization (ACO) has gained massive popularity over the years as an efficient FS algorithm. Ghosh et al. introduced a wrapper-filter embedded version of ACO in [9]. The proposed model known as Wrapper-Filter ACOFS (WFACOFS) used both wrapper and filter methods to evaluate its candidate solutions, thereby reducing the time requirement of the overall model (wrapper methods require more time to evaluate candidates than filter). Guha et al. proposed another level of improvement over HMOGA in [36] where they added memory to the existing technique to store the best candidate solutions generated over the iterations which are eventually lost in the process. The model was then applied on handwritten numeral classification datasets.

Therefore, from the literature review, it can be noticed that application of FS in handwritten digit or word recognition is
Proposed model

BPSO and BGSA are two well-known algorithms in the domain of FS. The first one is impressive in its exploitation abilities and the second one is rich in exploration. To attain a good exploitation–exploration trade-off, we have combined the methodologies of these two algorithms to create the new optimization method known as HSGFS. Even after combining these two algorithms, there remains a chance of premature convergence as both these algorithms tend to follow the global best in each iteration. Hence, we have implemented a local search within the algorithm to escape this convergence.

Hybrid Swarm and Gravitation-based Feature Selection (HSGFS)

BPSO–BGSA [42] is built combining the properties of both BPSO (gbest which signifies the social thinking) and BGSA (which brings about its significant exploration abilities). The same concept is utilized in FS by converting the value of velocity to probability of whether a feature should be selected or not. A binary string \(B_j\) of size \(n\) is used to signify the feature selection status. A ‘1’ and a ‘0’ denotes that the feature is selected and not selected, respectively:

\[
B_j = (f_{j1}, \ldots, f_{jd}, \ldots, f_{jn}), \quad j = 1, 2, \ldots, N. \tag{1}
\]

\(N\) is the total number of particles, \(d\) is the index of the feature which is considered, \(n\) is the number of features, and \(f_{jd}\) is a binary value determining if the \(d\)th feature is selected or not. Each particle in the population is randomly initialized with ‘0’ and ‘1’s.

Each particle influences the others with its influence proportional to its own fitness. The fitness of a particle is evaluated from the classification ability of the features chosen by that particle. The classification ability refers to the recognition accuracy of the candidate solutions (particles) obtained with the help of a trained classifier. The least performing particle (worst(t)) and the best performing particle (best(t)) are utilized to derive the masses of the particles using Eq. 2. The masses are then modified using Eq. 3 so as to allow the masses of each particle to be proportional to its relative strength. \(\text{fit}_j(t)\) is the fitness (recognition accuracy) of agent \(j\) at time \(t\):

\[
m_j = \frac{\text{fit}_j(t) - \text{worst}(t)}{\text{best}(t) - \text{worst}(t)} \tag{2}
\]

\[
M_j = \frac{m_j(t)}{\sum_{i=1}^{N} m_i(t)} \tag{3}
\]

\(G\), Gravitational constant, and \(R_{ji}\), the Hamming distance between two particles \(j\) and \(i\), are obtained as follows:

\[
G(t) = G_0 \ast \exp\left(-\alpha \ast \frac{\text{iter}}{\text{max iter}}\right) \tag{4}
\]

\[
R_{ji} = \sqrt{\sum_{i=0}^{D} (X_{jk}(t) - X_{ik}(t))^2}. \tag{5}
\]

\(\alpha\) is the descending coefficient taken as 20 here. \(G_0\) indicates the initial gravitational constant which is taken as 1, iter denotes the current iteration number, and max_iter is the total number of iterations we set. Each particle asserts a force on another particle following Eq. 6:

\[
F_{ji}^d = G(t) \times \left(\frac{M_j(t) \times M_i(t)}{R_{ji}(t) + \varepsilon} \right) \times (x_{id}(t) - x_{jd}(t)). \tag{6}
\]

\(M_j(t)\) is the mass related to agent \(j\) at time \(t\), \(M_i\) is the mass corresponding to agent \(i\), \(G(t)\) is a gravitational constant at time instant \(t\), \(\varepsilon\) is a very small positive value, and \(R_{ji}(t)\) is the Euclidean distance between two agents \(j\) and \(i\) at time instant \(t\). \(F_{ji}^d\) is the force between the two particles for the \(d^{th}\) feature. The total force on a particle is calculated by Eq. 7 for all the \(N\) particles where \(r\) is a randomly generated number in the interval \([0, 1]\):

\[
F_{jd}(t) = \sum_{i=1,i \neq j}^{N} r \times F_{ji}^d(t). \tag{7}
\]

In accordance with the laws of motion, the value of acceleration is found by dividing the force by the mass of the particle (Eq. 8). The force derived from the value of mass and the Hamming distance allow the particles to be influenced more by better particles which are similar (less Hamming distance). This value is then used to modify the velocity corresponding to the particle, as shown in Eq. 9. It combines the velocity updating strategies of both GSA and PSO. \(c_1\) is the accelerating factor (Eq. 10) and \(c_2\) is the velocity factor (Eq. 11):
The value of velocity is interpreted as the probability of the feature being selected. The overall flow of the algorithm is represented in Fig. 3. The process starts by creating a random initial population of candidate solutions (known as particles). Then, the fitness scores of these particles are calculated using the fitness function under consideration which in our case is the script recognition accuracy. After calculating the fitness scores, the particles enter the main loop of the algorithm. During this, at every iteration, the particles are moved in the search space according to Eqs. 2–11 and their qualities are evaluated at the end. Depending on the qualities of the particles, the global and local best solutions are modified. This loop continues till a stopping criterion (e.g., maximum number of iterations, minimum fitness score, etc.) is met, after which the algorithm terminates.

The problem with BPSO–BGSA as developed till now is the relatively poor local search capability, especially in GPS which is pointed out in [43]. To account for this...
shortcoming, we introduce a local search method, where we perform a filter ranking in offline mode and utilize it in local search. In doing so, we add the top k ranked features into a particle and delete the lowest d ranked chromosomes we find in the particle. The ordered pair (k, d) is generated randomly and lies between 1 and $\text{floor}(5 \times n)/100$.

Another major problem of BPSO-BGSA is the lack of storage of the best feature sets. Therefore, if the population degrades to a worse solution over the iterations, the better solutions are lost. To account for this shortcoming, a memory has been added to the algorithm to retain the best solutions produced over the iterations. The overall steps of the proposed HSGFS are stated below:

Feature extraction

The proposed FS method has been applied on three previously used feature descriptors such as DHT Algorithm [39], HOG [40], and MLG Transform [41] used for ASC. Since these feature descriptors have already been proposed earlier, this subsection contains brief descriptions of them.

Distance-Hough transform (DHT) algorithm:

A feature vector consisting of 144 ($72 + 72$) attributes has been extracted using DHT algorithm [39]. The steps of implementation of the DHT algorithm, as proposed in [39], are given below:

1. **Create a random set of particles (consisting of 0 and 1s).**
2. **Evaluate the fitness of the particles.**
3. **Recalculate the masses of the particles.**
4. **Move the particles following the laws of gravitation.**
5. **Reevaluate the fitness of the particles.**
6. **Update the memory with the new particles.**
7. **Check if the stopping criteria are met.**
8. **If no then go to step 3.**
9. **Find the particle with highest classification accuracy and label it as final result.**

ALGORITHM 1: DHT Algorithm

1. **Convert the RGB script image into a gray scale image.**
2. **Implement image smoothing operation using Gaussian low — pass filter [45].**
3. **Implement image thinning operation.**
4. **Implement Hough transform [45] along 36 different orientations $\theta = -90^\circ, -85^\circ, -80^\circ, \ldots, 0^\circ, \ldots, 75^\circ, 80^\circ$ with ρ resolution taken as 1 pixel.**
5. **Calculate the ρ value corresponding to the maximum accumulator value along each orientation. This generates 72 features.**
6. **Implement Euclidean distance transform [45] of the output word image from Step 5.**
7. **Steps 6 and 7 are repeated to extract 72 features.**
8. **Finally, the features produced from Steps 5 and 7 create a feature vector consisting of 144 elements for a specific script image.**
9. **Exit**
Histogram of oriented gradients (HOG)

For object detection from images, the HOG descriptor was first proposed by Dalal and Triggs [40]. This descriptor was applied for detection of pedestrian from static images. The essential thought behind the HOG descriptors is that local object appearance and shape within an image can be described by the distribution of intensity gradients or edge directions. This method is similar to that of edge orientation histograms, scale-invariant feature transform descriptors, and shape contexts. The only difference is that it is computed on a dense grid of uniformly spaced cells and uses overlapping local contrast normalization for improved accuracy. The algorithm for implementing HOG descriptors is as follows:

ALGORITHM 2: Algorithm for HOG feature extraction

1. **Step 1:** Convert the RGB script image into gray scale image.
2. **Step 2:** Calculate the intensity gradient for each pixel. The intensity gradient is a vector with magnitude \(m\) and orientation \(\theta\) representing the change in the intensity.
3. **Step 3:** Quantize the gradient orientations into 8 bins histogram for each cell (5 \(\times\) 5 pixels) using the gradient magnitude and orientation.
4. **Step 4:** Compute the feature vector of 200 dimensions for each script image.
5. **Step 5:** Exit

MLG transform

MLG filter transform-based features, as proposed in [41], are also considered as the one of texture feature descriptors for the classification of textual images based on the script in which it is written at three different levels, viz., word-level, block-level, and text line-level. In this work, a Windowed Fourier Transform (WFT) is taken into account for preserving the spatial information. The process of WFT consists of two steps. In the first step, the input image is multiplied with the window function, whereas in the second step, the Fourier transform is applied to the previous step to get the resulting output. In short, WFT is mainly a convolution of the low-pass filter with the input image. MLG transform uses a Gaussian function as the optimally concerted function in both spatial as well as frequency domain [44]. To get the filtered images as output, the inverse Fourier transform is finally applied on the resulting vector. For the calculation of feature vector, two important measures such as energy and entropy features [45] are calculated from the MLG filter transformed images. Here, the number of scales \((n_s)\) is chosen as 5 (that is, \(n_s = 1, 2, 3, 4,\) and 5) and the number of orientations \((n_0)\) is taken as 18 (that is, \(10^\circ, 20^\circ, 30^\circ,\) to \(180^\circ\)). Hence, this produces a feature set comprising 180 elements for a given input image containing handwritten text.

Experimental outcomes and analysis

This section describes the experimentation results achieved using the proposed FS method and related comparisons with other popularly used algorithms applied to ASC of handwritten Indic documents. All the experimentations of the proposed method are implemented in MATLAB 2016a environment and tested on a PC with Intel Core-i3 (5th Gen.) CPU having 4 GB of RAM. The classification accuracy, used to measure the performance of handwritten ASC, is calculated as follows:

\[
\text{Classification Accuracy (\%) } = \frac{\#\text{successfully classified components}}{\#\text{total components present}} \times 100. \tag{12}
\]

Preparation of handwritten Indic script database

We have prepared our own datasets for handwritten Indic script documents in the laboratory due to unavailability of the same in public domain. These document pages are collected from different writers who contributed their handwriting on A-4-sized white pages. We then scan the input script images at 300 dpi and save them in gray-scale form. Gaussian filter is then used to de-noise the noisy pixels in the collected images. First, handwritten text blocks written in 12 Indic scripts of pre-defined size \(256 \times 256\) pixels are automatically cropped from the document pages. The extracted text blocks also have a chance of containing lines of varying size, thickness, and white spaces between characters, lines, and words. Instead of performing any homogenizing
technique to compensate for this, we try to manually ensure that at least 50% of our input image region contains text. Figure 4 shows samples of handwritten text blocks in 12 Indian scripts. In a similar manner, the words and then the test-lines are also extracted from the input document pages employing the techniques described in [46] and [47], respectively. Finally, a set of 7200 text blocks (with exactly 600 text blocks per script), 3600 text lines (with exactly 300 text lines per script), and 12,000 text words (with exactly 1000 text words per script) written in 12 Indic scripts namely Bangla, Devanagari, Gujarati, Gurmukhi, Kannada, Malayalam, Manipuri, Oriya, Tamil, Telegu, Urdu, and Roman are prepared to evaluate the proposed HSGFS methodology for ASC from handwritten text obtained at block, text line, and word level, respectively.

Parameter setting of HSGFS methodology

The performances of DHT algorithm, HOG, and MLG transform feature sets are observed by altering the size of population and number of iterations, the two most important parameters of our FS method called HSGFS. This is done to select the optimal values for these two parameters in the present context. Throughout this process, MLP has been used as the classifier. After initial experimentation, it is observed that setting population size as 20 and number of iterations as 15 produces great results. Then, we have varied one of these values keeping the other one constant. First, the number of iterations is kept constant (in present case, 15), while the population size is varied for all the three datasets. Outcome of this experiment is graphically illustrated in Fig. 5. Then, the population size is kept constant (in our case, 20), while the number of iterations is varied which is depicted in Fig. 6. It can be observed from Fig. 5a–c that the optimal values of population size are 15, 20, and 20 for DHT algorithm, HOG, and MLG Transform feature sets, respectively. From Fig. 6a–c, it is also clear from that the optimal number of iterations is 15 for all three feature sets.

The results obtained from the variation of parameters indicate that our initial estimations of number of iterations being 15 and population size being 20 are optimal with minor variations. Hence, we have used these values for population size and number of iterations for rest of the experimentations.

ASC performance results without using HSGFS methodology

At first, previously mentioned three feature sets have been used separately for classification of the Indic scripts on all
the three types of datasets at three different levels without any FS (i.e., all available features are used for identification). Here, training and testing of handwritten script samples are done using three popular classifiers namely, MLP [48], KNN [49], and SVM [50]. The script classification accuracies attained by these three classifiers, without using any FS scheme, are noted in Table 1. It can be witnessed from Table 1 that in case of DHT algorithm, KNN classifier scores the highest classification accuracies of 91.62, 92.16, and 87.25% at block, text-line, and word-level datasets, respectively. In case of HOG feature descriptor, SVM classifier records the highest classification accuracies of 93.16, 94.55, and 89.6% at block, text-line, and word-level datasets, respectively. Whereas, for MLG transform, the highest classification accuracies of 93.15, 95.8, and 91.34% are attained by MLP classifier at block, text-line, and word-level datasets, respectively.

Fig. 5 Performance comparison illustrating the variation of classification accuracy with population size keeping number of iterations fixed on block, text line, and word-level datasets for: a DHT algorithm, b HOG, and c MLG Transform feature sets

Fig. 6 Performance comparison illustrating the variation of classification accuracy with number of iterations keeping population size fixed on block, text line, and word-level datasets for: a DHT algorithm, b HOG, and c MLG transform feature sets
ASC performance results using HSGFS methodology

MLP classifier

MLP classifier, described in [48], is used to measure the performance of the optimal feature sets produced by the proposed HSGFS methodology. The values of two parameters namely, η and α, for MLP classifier are experimentally set to be 0.6 and 0.5, respectively, and the classifier is made to run for 1000 epochs. The MLP classification model is taken as $\alpha' - \beta' - \gamma'$. Here, γ' and α' are defined as the number of neurons present in the output and input layers which are taken as the number of output classes and the number of features considered here, respectively. The number of neurons present in hidden layer (denoted by β') for the three feature sets is varied experimentally to achieve the optimal results. ESM Appendix A contains the graphical representation of the various results obtained through alteration of number of neurons for MLP classifier. Then, we perform ASC on the previously mentioned datasets after FS using our proposed method HSGFS. Table 2 depicts that for DHT algorithm, the highest classification accuracies of 95.7, 95.91, and 93.73% are achieved using MLP classifier on block, text line, and word-level datasets. The numbers of optimal features selected for this case are 114, 112, and 118. For HOG feature set, the highest classification accuracies of 97.33, 96.98, and 94.7% are achieved using MLP classifier on block, text line, and word-level datasets. The numbers of optimal features selected for this case are 140, 149, and 164. Similarly, for MLG transform feature set, the highest classification accuracies of 98.06, 97.74, and 96.28% are achieved using MLP classifier on block, text line, and word-level datasets.

Table 1 ASC accuracies of three different original feature sets (without FS) using MLP, KNN, and SVM classifiers on block, text-line, and word-level datasets (maximum accuracy achieved at each level is marked in bold style)

Feature vector	Size of feature vector	Level of classification	Number of training samples	Number of testing samples	Classification accuracy without FS
DHT algorithm	144	Block-level	400	200	90.56% 91.62% 89.24%
		Text line-level	200	100	91.02% 92.16% 91.39%
		Word-level	650	350	85.69% 87.25% 84.40%
HOG	200	Block-level	400	200	91.50% 92.33% 93.16%
		Text line-level	200	100	92.26% 91.62% 94.55%
		Word-level	650	350	88.41% 88.94% 89.60%
MLG transform	180	Block-level	400	200	93.15% 92.50% 91.19%
		Text line-level	200	100	95.80% 92.18% 93.95%
		Word-level	650	350	91.34% 89.95% 90.08%

Table 2 ASC accuracies of three different feature sets after FS by HSGFS using MLP, KNN, and SVM classifiers on block, text line, and word-level datasets (maximum accuracy achieved at each level is made bold)

Feature vector	Level of classification	Classification accuracy after FS using HSGFS					
		Classification accuracy	Size of feature vector	Classification accuracy	Size of feature vector	Classification accuracy	Size of feature vector
DHT algorithm	Block-level	95.7%	114	94.75%	115	94.95%	114
	Text line-level	95.91%	112	93.62%	118	94.75%	117
	Word-level	93.73%	118	93.13%	120	93.97%	116
HOG	Block-level	97.33%	140	97.02%	144	97.12%	142
	Text line-level	96.98%	149	95.42%	118	96.83%	151
	Word-level	94.7%	164	93.05%	149	93.97%	168
MLG transform	Block-level	98.06%	132	97.93%	146	97.58%	155
	Text line-level	97.74%	130	96.63%	133	97.08%	134
	Word-level	96.28%	138	95.83%	127	96.73%	137
datasets. The numbers of optimal features selected for this case are 132, 130, and 138.

KNN classifier

KNN classifier [49] is selected next for evaluation of the proposed HSGFS methodology and is made to run for different values of k on all the three types of script datasets. The experimental value of k is made to vary from 2 to 6. ESM Appendix A contains the graphical representation of the various results obtained through alteration of the k-value for KNN classifier. Table 2 depicts that for DHT algorithm, the highest classification accuracies of 94.75, 93.62, and 93.13% are achieved using KNN classifier on block, text line, and word-level datasets. The numbers of optimal features selected required to attain the best accuracies are 115, 118, and 120. For HOG feature set, the maximum classification accuracies of 97.02, 95.42, and 93.05% are achieved KNN classifier on block, text line, and word-level datasets. The numbers of optimal features selected for this case are 144, 118, and 149. Similarly, for MLG transform feature set, the highest classification accuracies of 97.93, 96.63, and 95.83% are achieved using k-NN classifier on block, text line, and word-level datasets. The numbers of optimal features selected for this case are 146, 133, and 127.

SVM classifier

Finally, SVM classifier with polynomial kernel is employed to measure the FS ability of the proposed HSGFS methodology on the three script datasets. Table 2 illustrates that for DHT algorithm, the highest classification accuracies of 94.95, 94.75, and 93.97% are achieved using SVM classifier on block, text line, and word-level datasets. The numbers of optimal features required to attain the best accuracies are 114, 117, and 116. For HOG feature set, the highest classification accuracies of 97.12, 96.83, and 93.97% are achieved using SVM classifier on block, text line, and word-level datasets. The numbers of optimal features selected for this case are 142, 151, and 168. Similarly, for MLG Transform feature set, the highest classification accuracies of 97.58, 97.08, and 96.73% are achieved using SVM classifier on block, text line, and word-level datasets. The numbers of optimal features selected for this case are 155, 134, and 137.

For easy interpretation, the parametric configurations of the three classifiers are mentioned in Table 3.

Table 3 Parameter values used by different classifiers in experimentation

Classifier name	Parameter type	Parameter value
MLP	Number of units in the hidden layer	120
KNN	Number of neighbours—K	3
SVM	Kernel Function	Polynomial

Table 4 Overall summarization of performance results of our proposed FS method, called HSGFS, on block, text line, and word-level datasets

Datasets	Before FS	After FS						
Size of original feature set	Best classifier	Original classification accuracy	Size of optimal feature set	Best classifier	Reported best classification accuracy	Number of original features considered (in %)	Increment in accuracy	
Block-level	180	SVM	93.16%	132	MLP	98.06%	73.33	4.90%
Text line-level	180	MLP	95.80%	130	MLP	97.74%	72.22	1.94%
Word-level	180	MLP	91.34%	137	SVM	96.73%	76.11	5.39%
130, and 137 for block, text line, and word-level datasets, respectively. This means that the proposed HSGFS methodology selects only about 73, 72, and 76% of the original feature vectors for the three datasets, respectively. Moreover, increments of about 5, 2, and 5% in the original classification accuracies are also noticed in case of the three datasets.

Performance comparison of HSGFS methodology with other well-known optimization algorithms

It can be seen that FS can increase the accuracy of the ASC system, but there exist several previously proposed optimization algorithms which can be used to perform FS. Therefore, to evaluate the efficiency of the proposed FS method, i.e., HSGFS, we have provided a comparison of some popularly used FS methods such as GA, PSO, GSA, SA, and HS with HSGFS when applied for solving ASC problem. We have used three classifiers for evaluation of our proposed method and MLP was found to provide the best classification accuracy. Hence, we have compared the FS performance of HSGFS with the other previously mentioned algorithms in terms of classification accuracies obtained using MLP classifier. From Tables 5, 6 it can be seen that HSGFS outperforms other optimization algorithms at all the three different levels of ASC in terms of classification accuracy.

Comparison with previously proposed FS techniques reported for ASC

Since, there is hardly any work found in the literature which uses FS for handwritten ASC problem, in the present work, we have compared the proposed HSGFS with one of the previously proposed works where Harmony Search (HS)-based FS technique is reported [13]. The same MLG transform feature vector is implemented on the current datasets and classified using MLP classifier. It can be noticed from comparative analysis given in Table 6 that using lesser number of features, the present HSGFS methodology performs better than the HS based FS method for all the three levels of ASC.

Comparison with deep learning models

The modern research industry is witnessing a war between traditional and deep learning techniques. Both the contenders have their own strengths and weaknesses. While traditional machine learning requires feature engineering, deep learning techniques can extract useful features from the raw data. On the other hand, deep learning models require ample amount of data and computational resources to perform a decent classification; however, traditional machine learning techniques can work with low amount of data as well. Therefore, it is certain that both the techniques have their specific application areas depending on the situation.
However, due to great generalization abilities and simplicity, deep learning-based solutions have gained huge popularity in recent times. In this section, we have compared the results of our proposed HSGFS methodology with some popular deep learning architectures, namely VGG16 [51], AlexNet [52], and ResNet50 [53]. The hyperparametric settings used for all these architectures are mentioned in Table 7 and the results are shown in Table 8. From the comparison shown in Table 8, it can be observed that the proposed model has dominated over the other models at all the three script levels except in case of ResNet50 for word-level. This fact clearly establishes the superiority of HSGFS method over state-of-the-art deep learning techniques.

Conclusion

Though FS is an important research topic in the area of ASC, researchers have not yet addressed it in the domain of handwritten Indic script identification. In this work, a new hybridized version of BPSO and BGSA, called HSGFS, has been proposed for implementing FS. The FS capability of the proposed method has been tested on three different feature sets, namely, MLG, HOG, and DHT at three different levels of script classification. It can be witnessed from the experimental results that the proposed HSGFS method attains increments of around 5, 2, and 5% with respect to when no FS method has been applied, and choosing only around 73, 72, and 76% of the original feature vectors for the block, text-line, and word-level datasets, respectively. Our proposed HSGFS method is also found to perform better than other renowned optimization algorithms like GSA, PSO, GA, SA, and HS. In the future, we aim to apply HSGFS over some other high-dimensional datasets. Apart from Indic scripts, some additional scripts can be used to ascertain the applicability of the proposed technique in ASC. Moreover, as the proposed method is applicable to any pattern recognition problem, it can be employed to solve other such problems like facial emotion recognition, handwritten digit, and character recognition, etc. to test its efficiency.
Funding This study was self-funded.

Compliance with ethical standards

Conflict of interest All the authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless otherwise indicated in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. https://en.wikipedia.org/wiki/Ethnologue. Accessed on 20-05-2018. (n.d.) https://en.wikipedia.org/wiki/Ethnologue
2. Singh PK, Sarkar R, Nasipuri M (2015) Offline Script Identification from multilingual Indic-script documents: a state-of-the-art. Comput Sci Rev 15:1–28. https://doi.org/10.1016/j.cosrev.2014.12.001
3. Liu H, Motoda H (2007) Computational methods of feature selection, CRC Press. https://doi.org/10.1201/9781584888796
4. Mitra P, Murthy CA, Pal SK (2002) Unsupervised feature selection using feature similarity. IEEE Trans Pattern Anal Mach Intell 24:301–312
5. Dorigo M, Birattari M (2011) Ant colony optimization, In: Encycl. Mach. Learn., Springer, pp. 36–39
6. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory, in: Micro Mach. Hum. Sci. 1995. MHS ’95, Proc. Sixth Int. Symp., IEEE, pp. 39–43
7. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a Gravitational search algorithm. Inf Sci (Ny) 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004
8. Ghosh M, Begum S, Sarkar R, Chakraborty D, Maulik U (2019) Recursive Memetic Algorithm for gene selection in microarray data. Expert Syst Appl 116:172–185
9. Ghosh M, Guha R, Sarkar R, Abraham A (2019) A wrapper-filter feature selection technique based on ant colony optimization. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04171-3
10. Ghosh M, Adhikary S, Ghosh KK, Sardar A, Begum S, Sarkar R (2019) Genetic algorithm based cancerous gene identification from microarray data using ensemble of filter methods. Med Biol Eng Comput 57:159–176
11. Singh PK, Sarkar R, Das N (2018) Benchmark databases of handwritten Bangla—Roman and Devanagari—Roman mixed-script document images. Multimedia Tools Appl. https://doi.org/10.1007/s11042-017-4745-3
12. Obaidullah SM, Halder C, Santosh KC, Das N, Roy K (2018) PHDIndic_11: page-level handwritten document image dataset of 11 official Indic scripts for script identification. Multimed Tools Appl 77:1643–1678. https://doi.org/10.1007/s11042-017-4373-y
13. Singh PK, Das S, Sarkar R, Nasipuri M (2018) Feature selection using harmony search for script identification from handwritten document images. J Intell Syst 27:465–488
14. Chaudhari S, Gulati M (2016) Script identification using Gabor feature and SVM classifier. Proc—Proc Comput Sci 79:85–92. https://doi.org/10.1016/jprocs.2016.03.012
15. Mukhopadhyay A, Singh PK, Sarkar R, Nasipuri M (2018) Handwritten Indic script recognition based on the Dempster-Shafer theory of evidence. J Intell Syst 29:264–282
16. Goswami C, Santosh KC, Das N, Halder C, Roy K (2017) Separating Indic Scripts with mata for E ©ective Handwritten Script Identification in Multi-Script Documents. https://doi.org/10.1142/S0218001417530032
17. Singh PK, Sarkar R, Bhatteja V, Nasipuri M (2018) A comprehensive handwritten Indic script recognition system: a tree-based approach. J Ambient Intell Humaniz Comput 1–18
18. Mukhopadhyay A, Singh PK, Sarkar R, Nasipuri M (2018) A study of different classifier combination approaches for handwritten Indic Script Recognition. https://doi.org/10.3390/jimagging4020039
19. Singh PK, Sarkar R, Nasipuri M (2019) Indic script identification from handwritten document images. Int J Intell Syst Technol Appl 18:303–321
20. Kundu S, Paul S, Singh PK, Sarkar R, Nasipuri M (2020) Understanding NFC-Net: a deep learning approach to word-level handwritten Indic script recognition. Neural Comput Appl 32:7879–7895
21. Obaidullah SM, Santosh KC, Halder C, Das N, Roy K (2019) Automatic Indic script identification from handwritten documents: page, block, line and word-level approach. Int J Mach Learn Cybern 10:87–106
22. Ukil S, Ghosh S, Obaidullah SM, Santosh KC, Roy K, Das N (2019) Improved word-level handwritten indiac script identification by integrating small convolutional neural networks. Neural Comput Appl 1–16
23. Bhnua AK, Konwer A, Bhnua AK, Bhowmick A, Roy PP, Pal U (2019) Script identification in natural scene image and video frames using an attention based Convolutional-LSTM network. Pattern Recognit 85:172–184
24. Obaidullah SM, Santosh KC, Das N, Halder C, Roy K (2018) Handwritten Indic script identification in multi-script document images: a survey. Int J Pattern Recognit Artif Intell 32:1856012
25. Ablavsky V, Stevens MR (2003) Automatic feature selection with applications to script identification of degraded documents, in: Null, IEEE, p. 750
26. Singh P, Das S, Sarkar R et al (2017) Feature selection using harmony search for script identification from handwritten document images. J Intell Syst. https://doi.org/10.1515/jisys-2016-0070
27. Chatterjee I, Ghosh M, Singh PK, Sarkar R, Nasipuri M (2019) A clustering-based framework for handwritten Indic script classification. Expert Syst 36:e12459
28. Du W, Gao Y, Liu C, Zheng Z, Wang Z (2015) Adequate is better: particle swarm optimization with. Appl Math Comput 268:832–838. https://doi.org/10.1016/j.amc.2015.06.062
29. Cheng R, Jin Y (2015) A social learning particle swarm optimization algorithm for scalable optimization. Inf Sci (Ny) 291:43–60. https://doi.org/10.1016/j.ins.2014.08.039
30. Ghamisi P, Member S, Benediktsson JA (2015) Feature selection based on hybridization of genetic algorithm and particle swarm. Optimization 12:309–313. https://doi.org/10.1109/LGRS.2014.2337320
31. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) BGSAs: binary gravitational search algorithm. Nat Comput 9:723–740. https://doi.org/10.1007/s11047-009-9175-3
32. FEATURE SELECTION THROUGH GRAVITATIONAL SEARCH ALGORITHM Department of Computing University
of São Paulo University of Campinas Institute of Computing, Sort. (2011) 2052–2055

33. Tong C (2014) Gravitational search algorithm based on simulated annealing. J Converg Inf Technol 9:231

34. Ghosh M, Guha R, Mondal R, Singh PK, Sarkar R (2017) Feature selection using histogram based multi-objective GA for handwritten Devanagari numeral recognition

35. Guha R, Ghosh M, Kapri S, Shaw S, Mutsumi S, Bhateja V, Sarkar R (2019) Deluge based Genetic Algorithm for feature selection. Evol Intell 1–11

36. Guha R, Ghosh M, Singh PK, Sarkar R, Nasipuri M (2019) M-HMOGA: a new multi-objective feature selection algorithm for handwritten numeral classification. J. Intell. Syst. 29:1453–1467. https://doi.org/10.1515/jisys-2019-0064

37. Ghosh M, Guha R, Mondal R, Singh PK, Sarkar R, Nasipuri M (2018) Feature selection using histogram-based multi-objective GA for handwritten Devanagari numeral recognition, in: Adv. Intell Syst Comput. https://doi.org/10.1007/978-981-10-7566-7_46

38. Ghosh M, Malakar S, Bhowmik S, Sarkar R, Nasipuri M (2019) Feature Selection for Handwritten Word Recognition Using Memetic Algorithm, in: Adv Intell Comput. Springer, pp. 103–124

39. Singh PK, Das S, Sarkar R, Nasipuri M (2016) “Line Parameter based Word-Level Indic Script Identification System”, In: International Journal of Computer Vision and Image Processing, IGI Global Publishers, 6(2): pp. 18–41

40. Dalal N, Triggs B, “Histograms of Oriented Gradients for Human Detection”, http://lear.inrialpes.fr, (n.d.).

41. Singh PK, Chatterjee I, Sarkar R “Page level Handwritten Script Identification using Modified Log-Gabor filter based features”, In: Proc. Of 2nd IEEE International Conference on Recent Trends in Information Systems (ReTIS), pp. 225–230, Kolkata, Ind, (n.d.)

42. Mirjalili S, Hashim SZM (2010) A new hybrid PSOGSA algorithm for function optimization, Proc. ICCIA 2010—2010 Int. Conf. Comput. Inf. Appl. 374–377. https://doi.org/10.1109/ICCIA.2010.6141614

43. Angeline PJ (1998) Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. In: International Conference on Evolutionary Programming. Springer, pp 601–610., (n.d.)

44. Daugman JG Uncertainty relation for resolution in space, spatial-frequency, and orientation optimized by two-dimensional visual cortical filters., J. Opt. Soc. Amer. 2 (n.d.) 1160–1169

45. Gonzalez RC, Woods RE (1992) “Digital Image Processing”, Vol. 1, Prentice-Hall, India, (n.d.)

46. Sarkar R (2011) Pattern recognition and machine intelligence. https://doi.org/10.1007/978-3-642-21786-9

47. Singh PK, Chowdhury SP, Sinha S, Eum S, Sarkar R “Page-to-Word Extraction from Unconstrained Handwritten Document Images”, In: Proc. of 1st International Conference on Intelligent Computing and Communication (ICIC2), AISC 458, pp. 517–524, 2, (n.d.)

48. Basu S, Das N, Sarkar R, Kundu M, Nasipuri M, Basu DK (2005) Handwritten ‘ Bangla ’ alphabet recognition using an MLP based classifier, in: 2nd Natl. Conf. Comput. Process. Bangla-2005, pp. 285–291

49. PEHTM Cover, Nearest neighbor pattern classification, In: , IT-13(1), pp. 21–27, 1967., IEEE Trans. Inform. Theory. 13 (1967) 21–27

50. Saitta L (1995) Support-vector networks, 297: 273–297

51. Guan Q, Wang Y, Ping B, Li D, Du J, Qin Y, Lu H, Wan X, Xiang J (2019) Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study. J Cancer 10:4876

52. Lu S, Lu Z, Zhang Y-D (2019) Pathological brain detection based on AlexNet and transfer learning. J Comput Sci 30:41–47

53. Rezende E, Ruppert G, Carvalho T, Ramos F, De Geus P (2017) Malicious software classification using transfer learning of resenet-50 deep neural network, in: 2017 16th IEEE Int. Conf. Mach. Learn. Appl., IEEE, pp. 1011–1014

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.