Knowledge, Preventative Practices and Depression of Chinese university students in Korea and China During the COVID-19 Pandemic: An Online Cross-sectional Study

Bo Zhao
Yonsei University - Wonju Campus https://orcid.org/0000-0002-6780-1633

Fanlei Kong (✉ kongfanlei@sdu.edu.cn)
Shandong University https://orcid.org/0000-0001-7792-4488

Eun Woo Nam
Yonsei University

Research article

Keywords: COVID-19, Chinese University Students, China, Korea, Preventative Practices, Depression

DOI: https://doi.org/10.21203/rs.3.rs-48092/v4

License: © ☛ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: To investigate the knowledge, preventative practices, and depression of Chinese university students living in South Korea (‘International Group’) and Mainland China (‘Mainland Group’) during the Coronavirus Disease 2019 (COVID-19) outbreak, and furtherly explore the determinants of depression among these students;

Methods: The study was conducted using an online questionnaire tool designed by the Yonsei Global Health Center, with preventative knowledge and practice questions on COVID-19, as well as PHQ-9 (used to diagnose depression for patients). 420 Chinese college students were finally included in the analysis (171 students in South Korea and 249 students in mainland China). This data was collected from March 23 to April 12, 2020;

Results: Majority of these students had a good level of knowledge of COVID-19. The ‘International Group’ did better than the ‘Mainland Group’ students regarding preventative practices, but the percentage with moderate-to-severe depression was higher among the ‘International Group’. Highly concerned about family members, highly concerned about getting COVID-19, and having a suspicion of contact with patients increased the depression state among the respondents. Meanwhile, taking preventative behaviors more comprehensively decreased the depression state of both groups;

Conclusions: During the pandemic of COVID-19, the depression status of ‘International Group’ students was significantly severer than that in ‘Mainland Group’ ($\chi^2 = 5.50, p < 0.05$). While the high-level of depression status of these two groups’ students was affected by highly concerning family members and getting COVID-19 and having a suspicion of contact with patients. Therefore, psychological counseling and education programs are needed in order to support and improve the mental health of ‘International Group’ students.

1. Background

An increasing number of infectious diseases recently [1] have led to serious economic and social consequences around the world [2]. Studies have shown that these emergent public-health events not only result in physical pain but could also have a profound psychological impact [3,4], such as panic, anxiety, and depression [5,6]. It was evidenced that psychological stress could lead to immune dysfunction that negatively impacts human health [7]. For instance, the SARS virus brought a series of psychological problems such as post-traumatic stress disorder (PTSD) to the public [8]. Therefore, it is necessary to find out the population’s mental health status during a health emergency as early as possible and to make recommendations and provide interventions.

Coronavirus Disease 2019 (COVID-19) broke out in Wuhan, Hubei Province, China at the end of January 2020, and quickly spread to 188 countries and regions worldwide as of 20 May 2020 [9]. On January 30, 2020, the World Health Organization (WHO) declared that it was a “pandemic” [10]. And it has been causing confirmed cases and deaths so far. The disease is contagious, widespread, and lacking in targeted drugs [11,12]. More and more confirmed patients, suspected cases, and outbreak-affected provinces made the Chinese people feel worried and scared [13,14]. Coupled with the ongoing social distancing and isolation measures implemented in more countries and regions, this outbreak is leading to additional mental health problems such as stress, anxiety, depressive symptoms, insomnia, and fear [15] around the world [16,17]. WHO also noted that mental health and psychological well-being in different target groups should need to be taken into considerations during the COVID-19 outbreak [18].

College students who are entering adulthood, may not only have to take the stress related to academic performance but face the task of taking on more adult-like responsibilities without having yet mastered the skills and cognitive
maturity of adulthood [19]. Past research related to emergency found that there were quite a few college students who lack the experience of an emergency, lack analytical and speculative skills, with impulsive behavior, vulnerable and unstable mood [20,21]. Many researchers put forward that mental health problems are increasingly common among college students [22,23,24]. Potential anxiety, stress, and depression problems predicted less year-end degree commitment and lower their academic performance [25,26]. The outbreak of COVID-19 coincided with the Chinese lunar New Year holiday and the opening of South Korean universities, shared fields in the two countries have been affected, directly or indirectly. To prevent the outbreak from escalating, universities in China and South Korea have postponed the start of the semester and canceled all campus events such as workshops, conferences, sports, and other activities [27]. The mental health of college students who are forced to stay at home for a long time with decreasing collective activities may be affected, leading to anxiety or depressive symptom [28,29]. Thus, the psychological conditions of college students cannot be overlooked and are necessary to be monitored.

Because China was the first country to have a virus outbreak, the Chinese have been targeted and blamed for the COVID-19 and stigmatized internationally, for example, the use of the term “China virus” and the use of terms such as “Wuhan virus” by the media [30]. Among foreign students studying in South Korea, the proportion of Chinese students is the biggest [31]. Most of them are living alone on their own and have ever known or experienced a severe outbreak in China firstly. Experience demonstrated that the transition of studying abroad adds another layer of stress that can exacerbate and amplify mental problems if they already existed [32]. Their loneliness abroad [33] paired with discrimination globally and stress over the epidemic in Korea are also probable to affect their academic performance and depression level.

Although some researches have been conducted in different countries to identify the risk and protective factors contributing to depression and anxiety of college students during the COVID-19 pandemic [34,35,36,37,38,39], there is no research examined the knowledge and risk factors of depression during COVID-19 among overseas Chinese students. Particularly, the Chinese students in South Korea have become one of the underprivileged groups. Therefore, using the online questionnaire survey, this study aimed to explore the conditions and determinants of the knowledge, preventative practices and depression of the Chinese students in mainland China and South Korea during the COVID-19 pandemic.

2. Materials And Methods

2.1. Sampling Method

Firstly, the sample size needed for the study was calculated using the G*Power 3.19 program. When calculated based on parameters of the two-sided test, χ^2 test, a residual variance of 0.83, α probability = 0.05, and power = 0.95 for F tests and linear multiple regression analysis, the minimum total sample size was estimated to be 356 overall.

Secondly, 461 respondents were finally collected in this study from 23 March to 12 April 2020[1] via Snowball Sampling method (recruit respondents from among acquaintances). Respondents were 180 Chinese in South Korea collected during March 23-April 8, 2020, and 281 Chinese in mainland China during April 2-12, 2020. In line with the research aim, which was to survey college students, the respondents of those who stated “Employed”, “Unemployed” and “Others” in the occupation question were removed, leaving a total of 420 students (171 Chinese in South Korea, named as “International Group”, and 249 Chinese in mainland China, named as “Mainland Group”). All respondents expressed a willingness to participate and understand the background and purpose of the study.

2.2. Data Collection
The online questionnaire surveys were distributed using the Naver Online Survey (Tool) for International Group and Surveystar Online Survey (Tool) for Mainland Group respectively. The questionnaires for the two groups were at the same design and written in Simplified Chinese Characters. Before conducting the survey, we did the revision and verification of the contents of the questionnaire through the online pilot survey and to make sure that the statements are appropriate and understandable. During the initial screening of the online questionnaire, the purpose of the research, and the confidentiality and privacy of individuals was ensured in written format on the first page of the survey questionnaire. Only after reading and clicking “AGREE” to make the consent, the filling of the questionnaire could begin. In addition, we stipulated that the main questions in the survey were mandatory questions, which means the participants have to complete all answers before they submitted the online questionnaire. All the measures above made the response rate of our study was 100%.

2.3. Research Tools

This study was combined with 1) YGHC COVID-19 Online Survey Tool and 2) Patient Health Questionnaire-9. YGHC COVID-19 Online Survey Tool was designed and updated by Yonsei Global Health Center (YGHC), aiming to evaluate the target respondents’ basic demographics characteristics, knowledge about COVID-19, preventive practices against COVID-19, depressive symptoms. Questions in the YGHC COVID-19 Online Survey Tool were found to own a reasonable validity and reliability in Wang's research on the Chinese general population [15]. YGHC made changes on Part E (Precaution measures) and Part F (Additional information) according to the specific situation in the two countries. The Patient Health Questionnaire-9 (PHQ-9) was added to the study to provide a baseline for the incidence of depression.

2.4. Variables Description

2.4.1. General Demographics Data

In this study, to reflect the demographic characteristics of the respondents, the basic survey asked questions related to: “sex”, “age”, “education level”, “marital status”, “family size”, “whether you had medical insurance”, “whether you had chronic diseases”, “whether you had traveled abroad in the past 14 days”, and “whether you had experienced quarantine”. The educational level was divided into “Undergraduate” and “Graduate”, and the marriage status comprised of “Single” and “Married”. Family size includes “1-person family”, “2-person family”, “3~5 persons family” and “more than 6-member family”. The questions about having “Medical insurance”, “Chronic illness”, “Travelled abroad”, and “Self-quarantined” had two possible answers: “no” and “yes”. The question about the “Self-assessed physical condition” was also included: “above good” and “below fair”.

2.4.2. Knowledge and perception about COVID-19

Understanding and perception of COVID-19 and other topics were assigned in a self-enumeration questionnaire, including knowledge on transmission pathway, information satisfaction, sources of related information, confidence about diagnose, degree of concern about this disease, perceived probability, and concern about family members.

2.4.3. Preventive practices of COVID-19

Nine basic preventive practices were incorporated into the questionnaire. We gave the score corresponding to the degree to which a measure was practiced on a daily basis (1 = “Never do this” and 5 = “Do this every day”) and added total points to all the questions to calculate the total preventive practices. Cronbach's Alpha coefficient of preventive practices of the COVID-19 scale was 0.78.
2.4.4. Patient Health Questionnaire-9

Depressive symptoms could be diagnosed based on the 9 criteria for depression in the Diagnostic and Statistical Manual of Mental Disorders published by the American Psychiatric Association [40]. To understand the response to these question, each question was divided into 4 categories: “not at all” (0 points), “several days” (1 point), “more than half the days” (2 points), and “almost every day” (3 points) [41]. According to the scoring criteria, the score on PHQ-9 was divided into five groups: 0–4, 5–9, 10–14, 15–19, 20–27, which corresponded to “minimal or none”, “mild”, “moderate”, “moderately severe”, and “severe” depression, respectively [42]. The higher the score, the more intense the level of depression.

The symptoms of depression were able to be assessed based on the 10 scores in PHQ-9. With a sensitivity of 88% and a specificity of 88% for detecting major depressive disorders, a score of 10 has been recommended as the cut-off score for diagnosing depression [43]. Thus, in this study, 10 and more points were classified as “moderate-to-severe”, and less than 10 points were classified as “minimal-to-mild”. Cronbach’s Alpha coefficient of the scale in this study was 0.89.

2.5. Statistical Analysis Approach

(1) In this study, STATA 15·0 and SPSS 24·0 were used to conduct statistical analysis. The specific analytical methods are as follows: Firstly, descriptive statistics, t-test, and Chi-squared tests were performed in each variable between “International Group” and “Mainland Group”.

(2) Secondly, to explore the determinants of the different depression levels, hierarchical regression was performed.

[1] From WHO, date as of 31 March 2020: China: Total confirmed cases 82,545, total deaths 3314; Korea: Total confirmed cases 9,786, total death 162

3. Results

3.1. General Characteristics

(Table 1) Significant differences among these general demographic characteristics of the two groups were found in the “Age” (t = 5.427, p < 0.001), “Educational level” (χ² = 8.509, p = 0.004), “Marital status” (χ² = 4.153, p = 0.042), “Family size” (χ² = 32.126, p < 0.001), “Medical insurance” (χ² = 10.699, p = 0.001), and “Self-quarantine” (χ² = 42.230, p < 0.001). The mean age for “International Group” was 24.08 ± 4.14 compared with that of “Mainland Group”. The proportions of Graduate students, and the Married, and whose Family size is 1 or 2 members in “International Group” were higher than those of “Mainland Group”. In addition, the “International group” had a higher percentage who did have medical insurance (16.4%). In the contrast, nearly half (47.8%) of the “Mainland Group” students had the experience of self-quarantined. Totally, more than 90% of respondents reported good results of self-assessed physical condition.

Table 1. Demographic and general characteristics of the participants.
Variables

Variables	International Group (n = 171)	Mainland Group (n = 249)	Total (n = 420); n(%)	t/χ²(Pearson)	P
Gender					
Male	57 (33.33)	76 (30.52)	133 (31.67)	0.370	0.543
Female	114 (66.67)	173 (69.48)	287 (68.33)		
Age				5.427^a	<0.001
Mean ± S.D.	24.08 ± 4.14	22.12 ± 2.28	22.90 ± 3.30		
Educational Level					
Undergraduate	98 (57.31)	177 (71.08)	275 (65.48)	8.509	0.004
Graduate	73 (42.69)	72 (28.92)	145 (34.52)		
Marital Status					
Single	159 (92.98)	242 (97.19)	401 (95.48)	4.153	0.042
Married	12 (7.02)	7 (2.81)	19 (4.52)		
Family Size				32.126	<0.001
1 member	9 (5.26)	1 (0.40)	10 (2.38)		
2 members	24 (14.04)	8 (3.21)	32 (7.62)	32.126	<0.001
3-5 members	134 (78.36)	221 (88.76)	355 (84.52)		
6 members or more	4 (2.34)	19 (7.63)	23 (5.48)		
Medical Insurance				10.699	0.001
No	28 (16.37)	16 (6.43)	44 (10.48)		
Yes	143 (83.63)	233 (93.57)	376 (89.52)		
Chronic illness				0.006	0.940
No	159 (92.98)	232 (93.17)	391 (93.10)		
Yes	12 (7.02)	17 (6.83)	29 (6.90)		
Traveled abroad				0.366	0.545
No	166 (97.08)	244 (97.99)	410 (97.62)		
Yes	5 (2.92)	5 (2.01)	10 (2.38)		
Self-quarantined				42.230	<0.001
No	29 (16.96)	119 (47.79)	148 (35.24)		
Yes	142 (83.04)	130 (52.21)	272 (64.76)		
Self-assessed physical condition				1.206	0.752
Above good	153 (89.47)	227 (91.16)	380 (90.48)		
Below fair	18 (10.53)	22 (8.84)	40 (9.52)		

Note: ‘International Group’ means the Chinese college students who studying in South Korea; ‘Mainland Group’ means the Chinese college students who studying in Mainland China. a: t-test

3.2. Knowledge about COVID-19

Table 2 showed knowledge about COVID-19 in these respondents. About 99.8% of them knew that the virus can spread through droplets, followed by the thoughts that it could be transmitted via contacting contaminated objects (88.8%) and the air (66.9%). The “Infected cases”, “Death cases”, and “Recovered cases” information were also updated among the two groups. Regarding the sources of information, 92.1% of respondents got information using one source to three sources like the internet, TV, or family members. Overall, the respondents realized a good level of basic COVID-19 information satisfaction.

Table 2. Difference in knowledge about COVID-19.
Variables	International Group (n = 171)	Mainland Group (n = 249)	Total (n = 420); n(%)	t/χ²(Pearson)	P
Route of transmission					
Droplets (agree)	171 (100)	248 (99.60)	419 (99.76)	0.688	0.407
Objects (agree)	145 (84.80)	228 (91.57)	373 (88.81)	6.213	0.045
Air (agree)	116 (67.84)	165 (66.27)	281 (66.90)	1.037	0.595
Updated information					
Infected cases (yes)	168 (98.25)	249 (100)	417 (99.29)	4.400	0.036
Death cases (yes)	169 (98.93)	247 (99.20)	416 (99.05)	0.144	0.704
Recovered cases (yes)	163 (95.32)	245 (98.39)	388 (92.14)	3.447	0.063
Number of information source					
1~3	161 (94.15)	226 (90.76)	387 (92.14)	1.608	0.205
4~6	10 (5.85)	23 (9.24)	33 (7.86)		
Information satisfaction					
Above Satisfied	157 (91.81)	239 (95.98)	396 (94.3)	3.274	0.070
Below dissatisfied	14 (8.19)	10 (4.02)	24 (5.7)		
Confidence about diagnose					
Highly confident	101 (59.06)	192 (77.11)	293 (69.76)	15.647	<0.001
Lowly confident	70 (40.93)	57 (22.89)	127 (30.24)		
Concern about this disease					
Highly	123 (61.93)	155 (62.25)	278 (66.19)	4.246	0.039
Lowly	48 (38.07)	94 (37.75)	142 (33.81)		
Perceived probability					
Get infected (high)	59 (34.50)	48 (19.28)	107 (25.48)	12.379	<0.001
Survive after infection (high)	157 (91.81)	216 (86.74)	373 (88.81)	2.618	0.106
Concern about family members					
Highly	139 (81.29)	192 (77.11)	331 (78.81)	1.060	0.303
Lowly	32 (18.71)	57 (22.89)	89 (21.19)		
Knowledge score					
Mean ± S.D	13.95 ± 1.88	13.99 ± 1.92	13.97 ± 1.90	-0.184	0.854

a: t-test

Between the “International Group” and “Mainland Group”, the significant differences were founded in “Confidence in diagnose” (χ² = 15.647, p < 0.001), “Concern about the disease” (χ² = 4.246, p = 0.039), and “Get infected probability (highly)” (χ² = 12.379, p < 0.001). Although the “Mainland Group” had bigger proportions of the respondents who were highly confident in the diagnose and who highly concerned about the disease, higher percentages of received probability results appeared in the “International Group”. In “International Group” students, 34.5% of them thought they were highly likely to be infected (19.3% in “Mainland Group”), but they still had more proportion of students who thought they were more likely to survive after infection (91.8% in “International Group” VS. 86.7% in “Mainland Group”). Furthermore, no statistically significant difference was found in the “Concern about family members”.

3.3. Differences in preventative practices between the Chinese students in the two countries during COVID-19

Table 3 illustrated the performance results between the “International Group” and “Mainland Group” on preventative practices against COVID-19. On the whole, there were seven practices out of the total that showed significant differences between the two groups. The mean scores of “International Group” in the first six practices were higher than those in “Mainland Group”. Statistically significant differences were reported between the two groups’ mean scores in “Covering mouth when coughing and sneezing” (t = 3.28, p < 0.001), “Washing hands with soap and water” (t = 2.93, p < 0.001), “Wash hands immediately after coughing, rubbing nose or sneezing” (t = 1.76, p < 0.05), “Washing hands after touching contaminated objects” (t = 7.11, p < 0.001) and “Avoiding public transportation” (t = 2.23, p < 0.05), but excluding the practice: “Wearing mask regardless of the presence or absence of symptoms”. On
the contrary, the “Mainland Group” achieved higher levels of performance than that of “International Group” in the last three practices. Particularly, the mean scores of “Sitting in one row while having a meal” (t = -5.81, p < 0.001) and “Avoiding meeting more than 10 people” (t = -10.13, p < 0.001) showed the significant differences between the two groups.

Table 3. Preventative practice against COVID-19 taken by Chinese students in the two countries.

Variables (Score: 1–5)	International Group (n = 171)	Mainland Group (n = 249)	Total (n = 420)	t
Wearing mask regardless of the presence or absence of symptoms	4.32 ± 0.79	4.27 ± 0.89	4.30 ± 0.86	0.52
Wearing mouth when coughing and sneezing	4.67 ± 0.80	4.36 ± 1.02	4.49 ± 0.95	3.28 ***
Washing hands with soap and water	4.84 ± 0.44	4.62 ± 0.66	4.71 ± 0.59	2.83 ***
Washing hands immediately after coughing, sneezing, or touching contaminated objects	4.18 ± 1.05	3.98 ± 1.13	4.06 ± 1.10	1.76 *
Washing hands after touching contaminated objects	4.93 ± 0.38	4.47 ± 0.78	4.66 ± 0.69	7.11 ***
Using public transportation	4.73 ± 0.66	4.58 ± 0.72	4.65 ± 0.70	2.23 *
Using elevators	3.44 ± 1.40	4.18 ± 1.19	3.88 ± 1.33	-5.81 ***
Avoiding meeting more than 10 people	2.80 ± 1.70	4.22 ± 1.18	3.64 ± 1.57	-10.13 ***
Sitting in one row while having a meal	4.74 ± 0.89	4.76 ± 0.62	4.75 ± 0.74	-0.22

*p < 0.05 **p < 0.01 ***p < 0.001.

3.4. Depressive symptoms resulting from the analysis

The Chi-Square Test was performed to find the relationship between the level of depression symptoms between the “International Group” and “Mainland Group”. The depressive symptoms were categorized into “minimal-to-mild” and “moderate-to-severe” (cut-off score of 10) in this study. As Table 4 shown, the difference between the two groups which was confirmed as statistically significant ($\chi^2 = 5.50, p < 0.05$), the depression status of “International Group” was severer than that of Mainland Groups’.

Table 4. Difference in depressive states of the students in the two countries.
A simple linear stepwise regression analysis was firstly conducted to explore factors of the depression status of the respondents including all variables. The results showed in Table 5 found that “information satisfaction”, “patients’ contact history”, “concern about family members”, and “self-assessed physical condition” were statistically significantly related to the respondents’ depression. So the four variables were put in place of the hierarchical regression in different models in combination with the variables of demographics characteristic, knowledge score, and preventative score.

Table 5. Stepwise regression analysis on related factors of depression due to COVID-19

Dependent Variable	Independent Variables	β	Std. Error	β’	t	p	[95% Conf. Interval]
PHQ-9 Scores	Constant	13.793	3.186	4.329	0.000	7.501	20.084
	Concern on family members	1.069	0.386	0.205	2.772	0.006	0.308
	Patients contact history	0.574	0.231	0.185	2.489	0.014	0.119
	Information Satisfaction	-1.351	0.671	-0.148	-2.013	0.046	-2.676
	Self-assessed physical condition	-1.491	0.594	-0.179	-2.509	0.050	-2.388

Table 6 displayed the results of hierarchical regression analysis on the determinants of depression on COVID-19 with 4 models. In Model 1 and Model 2, there was no statistically significant relationship between age, sex, education level, or marital status and depression scores of respondents. While the students who had a better assessment of their health got less depression scores (t = -1.865, p < 0.05). As more variables added in Model 3 and Model 4, the coefficients of “Not sure contact patients history” (p < 0.001), “Highly concern about family members” (p < 0.01), and “Highly concern about this disease” (p < 0.05) were sufficient evidence that depression scores were statistically significantly increased when people had doubts about their past contact with the patient and were highly worried about the disease and their family members. In four models, the preventative practice scores all showed significant negative relationships with depression scores, which could be explained that the better preventative practices students did, the fewer depression scores they got. The value of Waston was close to 2, indicating that the observed value was independent. Although R was small, the p values of F value in these 4 models were less than 0.01, showing a strong correlation of the interpretive power of the models.

Table 6. Hierarchical regression analysis on determinants of depression using PHQ-9 during COVID-19 (n = 420).
Variables

Variables	Model 1		Model 2		Model 3		Model 4	
	β	$t(p)$	β	$t(p)$	β	$t(p)$	β	$t(p)$
Constant	12.122	3.439***	13.137	3.713***	11.586	3.296***	10.264	2.936**
Preventative practice score	-0.165	-3.221***	-0.155	-3.027**	-0.139	-2.745**	-0.138	-2.749**
Age	0.199	1.691	0.214	1.823	0.213	1.842	0.225	1.966*
Gender	Male	(ref)	Female	(ref)	Male	(ref)	Female	(ref)
Educational level								
Undergraduates	-0.401	-0.531	(ref)	(ref)	-0.609	-0.820	(ref)	-0.706
Graduates	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)
Marital status								
Single	-0.990	-0.742	-1.186	-0.892	-0.938	-0.714	-0.898	-0.693
Married	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)
Knowledge belief score	-0.142	-1.025	-0.149	-1.081	-0.109	-0.836	-0.165	-1.279
Information satisfaction								
Lowly	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)
Highly	-1.517	-1.415	-1.486	-1.392	-1.316	-1.249	-1.486	-1.426
Self-assessed physical condition								
Below fair	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)
Above good	-1.865	-2.208*	-1.702	-2.040*	-1.501	-1.820		
Contact patients history								
No	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)	(ref)
Yes								
Not sure								
Concern on family members								
Lowly								
Highly								
Concern on this disease								
Lowly								
Highly								
F	2.778**	3.063**	3.875***	4.456***				
R^2	0.045	0.056	0.087	0.116				
Adjusted R^2	0.029	0.038	0.064	0.090				
Durbin-Waston					1.972			

*p<0.05 **p<0.01 ***p<0.001

4. Discussion

4.1. Preventative Practices and Depression Status of the “International Group” and “Mainland Group” Students

This study found that these college students had a certain degree of knowledge of COVID-19. Combined with the results of information satisfaction and information sources, most of them had mastered how the virus transmitted and heard about the detailed information of cases. The results show that the publicity work and health education of
schools, health institutions and mass media are showing impact. And it has been reported that public concern over
the outbreak is growing as confirmed and suspected cases continue to increase, with the increasing number of
provinces and countries affected by the outbreak [13].

Some studies have done early on the effects of the COVID-19 on Chinese university students’ psychological state
[15,28,36], but the related Chinese respondents investigated were only in mainland China. Because the “Patient No.
31” who had participated in a gathering in Daegu at the Shincheonji Church of Jesus the Temple of the Tabernacle of
the Testimony led to a sudden outbreak of the epidemic in South Korea [44] that attracted worldwide attention, which
suggested upgraded quarantine and isolation were needed [45]. Due to most of the “International Group” students in
South Korea live alone, they are faced with the fear and further quarantine of the epidemic by themselves (83.1% of
them had self-quarantined). The study also demonstrated that “International Group” students and “Mainland Group”
students experienced similar worries and concerns about this disease and family members. But it should be taken
seriously that a notable part of students believed they had a high perceived probability of getting an infection from
this disease in “Mainland Group”. This is also consistent with the situation in mainland China, where COVID-19 has
covered almost every province since January. In addition, as for the preventative practices, only in “avoiding using
elevator” and “sitting in one row while having a meal”, the “Mainland Group” did better than that in “International
Group”. Therefore, effective measures to prevent the virus should be more publicized through health education and
publicity work by health institutions and mass media in mainland China.

The depressive disorder is one of the most common mental disorders, with a lifetime prevalence of 6.9% and a 12-
month prevalence of 3.6% in the Chinese general population [46]. The average scores of PHQ-9 in these two groups
were 7.20 (CI: 6.390-7.800) for “International Group” and 6.20 (CI: 5.583-6.819) for “Mainland Group” respectively,
and the proportion (28.7%) of “International Group” who experienced mild-to-severe symptoms was much higher than
that in “Mainland Group” (18.9%) according to the cut-off 10 points. The depression result is higher than the average
prevalence (12.6%) for college students in the general survey [47]. Under the stress of the coronavirus outbreak, the
relationships of preventative practices, contact patients history, concern about family members, and concern about
this disease, with depression scores in these respondents also showed that the outbreak of COVID-19 may have a
certain impact on the psychological state of these college students. Especially for “International Group” students, the
universities of South Korea urgently need to take necessary psychological interventions and health education
measures for them.

Improving college students' knowledge and prevention of the virus is conducive to their psychological health. As
demonstrated in this study, the more comprehensive preventive measures, the better the psychological state of
college students, which were further manifested by the lower risk of mild depression and the more positive their
response to the epidemic. Therefore, pertinent departments and universities should make good use of social
networking platforms, social software, etc. to attract university students to receive relevant and comprehensive news
and information, and education on COVID-19.

Psychological thoughts of college students could also affect college students’ mental health. The results of the
study showed that students who felt good about their bodies and did not suspect contact with the patient, in the low
level of stress and worry about their families and this disease, had lower depression scores. In this outbreak, the
generation of rumors and their influence cannot be overlooked [48]. The negative and false contents of the epidemic
information have a great deal of psychological impact [49] on the students because receiving a lot of negative
information could make them feel negative and require the companionship of family and friends at this time, but the
biggest problem is that most of the students studying abroad are alone because the countries’ banning on
transportation and migration. Thus, more social and school support is needed to help them turn into a positive
mindset. At the same time, government departments should release fair information in time to reduce the spread of discriminatory information, and schools should give students more caring.

4.2. Implications

Both government departments and universities should provide and ensure the dissemination of fair information, and carry out a variety of effective health education and health activities according to the characteristics of the two students groups in time so that university students could understand the more comprehensive information of COVID-19 and implement the relevant preventive measures better. Moreover, psychological consultation and help to reduce the negative effects on university students brought by the outbreak are also needed.

4.3. Limitation and Future Research

This study has several limitations. Owing to the restrictions of various activities and methods limitations during the COVID-19 pandemic, first, a web-based questionnaire was adopted in this study, which may have some shortcomings. One example is that self-assessed levels of physical condition and depression scores may not always be aligned with assessment by their real situation because of the “socially desirable response”. Second, the survey method employed was a Snowball sampling method and therefore may not be possible to make statistical inferences from the sample to the population on account of the absence of random selection of samples. Third, the case that the severity of the epidemic varies from region to region, and the effects on depression of these university students may be also different. Therefore, we need further study on their depression status, we are planning to conduct a prospective study on a comparable group. Notwithstanding the above limitations, this study provides invaluable information on the Knowledge, Preventative practice, and Depressive symptoms from Chinese students in two countries (China and South Korea) that had suffered the big outbreak of COVID-19 at that time. Our results could be used as a valuable reference for further psychological interventions for college students in different areas during public health events.

5. Conclusions

The present study investigates the knowledge, preventative practices, and depression status of Chinese university students living in South Korea and Mainland China during the COVID-19 outbreak, and furtherly explore the determinants of depression among these 2 groups’ students. The results showed that the majority of these 2 groups’ respondents had a satisfactory level of knowledge of COVID-19. The “International Group” students did better than the “Mainland Group” students regarding preventative practices, but the percentage of mild depression was higher in the “International Group”. Highly concerned about family members, highly concerned about getting COVID-19, and having a suspicion of contact with patients increased the depression state among the respondents. Meanwhile, taking preventative behaviors more comprehensively can decrease the depression state of both groups.

Abbreviations

COVID-19: Coronavirus Disease 2019

PTSD: Post-traumatic stress disorder

WHO: World Health Organization

PHQ-9: Patient Health Questionnaire-9
Declarations

Ethics approval and consent to participate: Ethical approval for the study was obtained from Yonsei University Institutional Review Committee (IRB) before the data collection (Task No. 1041849-202005 - SB-054-01). Written informed consent was obtained from respondents for inclusion before they participated in the study. Confidentiality was maintained throughout the study by not recording participant names on questionnaires.

Availability of data and materials: The questionnaire used in the study are included in the submission. The datasets however, are not available publicly, but can be made available upon request from the corresponding author.

Consent of publication: Not applicable.

Competing interests: The authors declare that they have no competing interests.

Funding: This research received no funding.

Author Contributions: Study design and concept: EN. Data collection: FK, BZ. Data Analysis BZ. Data interpretation: BZ. BZ wrote the first draft of the manuscript under the supervision of FK and EN. All authors reviewed and approved the final version of the manuscript.

Acknowledgments: Thanks for the participation of every respondent in this research and cooperation of researchers in Yonsei Global Health Center.

References

1. Reperant LA, Osterhaus AD. AIDS, Avian flu, SARS, MERS, Ebola, Zika… what next?. Vaccine. 2017 Aug 16;35(35):4470-4.

2. Schlipköter U, Flahault A. Communicable diseases: achievements and challenges for public health. Public Health Reviews. 2010 Jun 1;32(1):90-119.

3. World Health Organization. Securing regional health though APSED: building sustainable capacity for managing emerging diseases and public health events: progress report 2012. Rev. Manila: WHO Regional Office for the Western Pacific; 2012.

4. Hua L, Hua F. Progress in Health Education and Health Promotion. Chinese General Practice. 2001;4(10):757-9. doi:10.3969/j.issn.1007-9572.2001.10.001. Available online: http://www.cnki.com.cn/Article/CJFDTotal-QKYX200110001.htm (accessed on 30 October 21, 2020). (In Chinese).

5. Jeong H, Yim HW, Song YJ, Ki M, Min JA, Cho J, Chae JH. Mental health status of people isolated due to Middle East Respiratory Syndrome. Epidemiology and health. 2016;38.

6. Mohammed A, Sheikh TL, Gidado S, Poggensee G, Nguku P, Olayinka A, Ohuabunwo C, Waziri N, Shuaib F, Adeyemi J, Uzoma O. An evaluation of psychological distress and social support of survivors and contacts of Ebola virus disease infection and their relatives in Lagos, Nigeria: a cross sectional study– 2014. BMC Public Health. 2015 Dec;15(1):1-8.

7. Godbout JP, Glaser R. Stress-induced immune dysregulation: implications for wound healing, infectious disease and cancer. Journal of Neuroimmune Pharmacology. 2006 Dec 1;1(4):421-7.
8. Qun L, Zhong C. Basic Methods of Psychological Intervention in SARS. Chinese Mental Health Journal. 2003;17(8):534-5. doi:10.3321/j.issn:1000-6729.2003.08.007. Available online: http://www.cnki.com.cn/Article/CJFDTOTAL-ZXWS200308006.htm (accessed on 30 October 21, 2020). (In Chinese).

9. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2020. Available online: https://coronavirus.jhu.edu/map.html (accessed on 20 May 2020).

10. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta bio-medica: Atenei Parmensis. 2020 Mar 19;91(1):157-60.

11. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama. 2020 Apr 7;323(13):1239-42.

12. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezaña JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, Paniz-Mondolfi A. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel medicine and infectious disease. 2020 Mar 13:101623.

13. Bao Y, Sun Y, Meng S, Shi J, Lu L. 2019-nCoV epidemic: address mental health care to empower society. The Lancet. 2020 Feb 22;395(10224):e37-8.

14. Wang C, Pan R, Wan X, Tan Y, Xu L, McIntyre RS, Choo FN, Tran B, Ho R, Sharma VK, Ho C. A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain, behavior, and immunity. 2020 Apr 13.

15. Wang C, Pan R, Wan X, Tan Y, Xu L, Ho CS, Ho RC. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. International journal of environmental research and public health. 2020 Jan;17(5):1729.

16. Rajkumar RP. COVID-19 and mental health: A review of the existing literature. Asian journal of psychiatry. 2020 Apr 10:102066.

17. Torales J, O’Higgins M, Castaldelli-Maia JM, Ventriglio A. The outbreak of COVID-19 coronavirus and its impact on global mental health. International Journal of Social Psychiatry. 2020 Mar 31:0020764020915212.

18. World Health Organization. Mental health and psychosocial considerations during the COVID-19 outbreak, 18 March 2020. World Health Organization; 2020.

19. Pedrelli P, Nyer M, Yeung A, Zulauf C, Wilens T. College students: mental health problems and treatment considerations. Academic Psychiatry. 2015 Oct 1;39(5):503-11.

20. Scharl JC. Lonely and Scared: College Students’ Culture of Immaturity. Academic Questions. 2020 Jan 27:1-1.

21. Meng H, Han W, Li W. The Effect of Interactive Approach yo Teaching Health Psychology on Mental Health Status of College Students [J]. Chinese Journal of School Health, 2004, 25(2): 160-161. doi:10.3969/j.issn.1000-9817.2004.02.010. Available online: https://www.cnki.com.cn/Article/CJFDTotal-XIWS200402019.htm (accessed on 30 October 21, 2020). (In Chinese).

22. Blanco C, Okuda M, Wright C, Hasin DS, Grant BF, Liu SM, Olfson M. Mental health of college students and their non–college-attending peers: Results from the national epidemiologic study on alcohol and related conditions. Archives of general psychiatry. 2008 Dec 1;65(12):1429-37.

23. Auerbach RP, Alonso J, Axinn WG, Cuijpers P, Ebert DD, Green JG, Hwang I, Kessler RC, Liu H, Mortier P, Nock MK. Mental disorders among college students in the World Health Organization world mental health surveys. Psychological medicine. 2016 Oct;46(14):2955-70.
24. Twenge JM, Cooper AB, Joiner TE, Duffy ME, Binau SG. Age, period, and cohort trends in mood disorder indicators and suicide-related outcomes in a nationally representative dataset, 2005–2017. Journal of abnormal psychology. 2019 Apr;128(3):185.

25. Ruthig JC, Haynes TL, Stupnisky RH, Perry RP. Perceived academic control: Mediating the effects of optimism and social support on college students’ psychological health. Social psychology of education. 2009 Jun;12(2):233-49.

26. Beiter R, Nash R, McCrady M, Rhoades D, Linscomb M, Clarahan M, Sammut S. The prevalence and correlates of depression, anxiety, and stress in a sample of college students. Journal of affective disorders. 2015 Mar 1;173:90-6.

27. Fisher M, Sang-Hun C. How South Korea flattened the curve. The New York Times. 2020 Mar 23;23.

28. Cao W, Fang Z, Hou G, Han M, Xu X, Dong J, Zheng J. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry research. 2020 Mar 20:112934.

29. Sahu P. Closure of universities due to Coronavirus Disease 2019 (COVID-19): impact on education and mental health of students and academic staff. Cureus. 2020 Apr;12(4).

30. Usher K, Durkin J, Bhullar N. The COVID-19 pandemic and mental health impacts. International Journal of Mental Health Nursing. 2020 Jun;29(3):315.

31. Lee SW. Circulating East to East: Understanding the push–pull factors of Chinese students studying in Korea. Journal of Studies in International Education. 2017 May;21(2):170-90.

32. McCabe L. Mental health and study abroad: Responding to the concern. International Educator. 2005 Nov 1;14(6):52.

33. Hunley HA. Students’ functioning while studying abroad: The impact of psychological distress and loneliness. International Journal of Intercultural Relations. 2010 Jul 1;34(4):386-92.

34. Rakhmanov O, Dane S. Knowledge and anxiety levels of African university students against COVID-19 during the pandemic outbreak by an online survey. Journal of Research in Medical and Dental Science. 2020 May;8(3):53-6.

35. Husky MM, Kovess-Masfety V, Swendsen JD. Stress and anxiety among university students in France during Covid-19 mandatory confinement. Comprehensive Psychiatry. 2020 Oct 1;102:152191.

36. Zhao B, Kong F, Aung MN, Yuasa M, Nam EW. Novel coronavirus (CoViD-19) knowledge, precaution practice, and associated depression symptoms among university students in Korea, China, and Japan. International journal of environmental research and public health. 2020 Jan;17(18):6671.

37. Al-Hanawi MK, Angawi K, Alshareef N, Qattan AM, Helmy HZ, Abudawood Y, Alqrashi M, Kattan WM, Kadasah NA, Chirwa GC, Alsharqi O. Knowledge, Attitude and Practice Toward COVID-19 Among the Public in the Kingdom of Saudi Arabia: A Cross-Sectional Study. Frontiers in Public Health. 2020;8.

38. Saqlain M, Munir MM, Rehman SU, Gulzar A, Naz S, Ahmed Z, Tahir AH, Mashhood M. Knowledge, attitude, practice and perceived barriers among healthcare workers regarding COVID-19: a cross-sectional survey from Pakistan. Journal of Hospital Infection. 2020 Jul 1;105(3):419-23.

39. Azlan AA, Hamzah MR, Sern TJ, Ayub SH, Mohamad E. Public knowledge, attitudes and practices towards COVID-19: A cross-sectional study in Malaysia. Plos one. 2020 May 21;15(5):e0233668.

40. Ferrando SJ, Samton J, Mor N, Nicora S, Findler M, Apatoff B. Patient Health Questionnaire-9 to screen for depression in outpatients with multiple sclerosis. International Journal of MS Care. 2007;9(3):99-103.
41. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. Journal of general internal medicine. 2001 Sep;16(9):606-13.

42. Spitzer RL, Kroenke K, Williams JB, Patient Health Questionnaire Primary Care Study Group. Validation and utility of a self-report version of PRIME-MD: the PHQ primary care study. Jama. 1999 Nov 10;282(18):1737-44.

43. Manea L, Gilbody S, McMillan D. Optimal cut-off score for diagnosing depression with the Patient Health Questionnaire (PHQ-9): a meta-analysis. Cmaj. 2012 Feb 21;184(3):E191-6.

44. Choi S, Ki M. Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiology and health. 2020 Mar 12;42.

45. Yoo JH, Hong ST. The outbreak cases with the novel coronavirus suggest upgraded quarantine and isolation in Korea. Journal of Korean Medical Science. 2020 Jan 6;35(5).

46. Huang Y, Wang Y, Wang H, Liu Z, Yu X, Yan J, Yu Y, Kou C, Xu X, Lu J, Wang Z. Prevalence of mental disorders in China: a cross-sectional epidemiological study. The Lancet Psychiatry. 2019 Mar 1;6(3):211-24.

47. Chen The Research on Predictive Model of Depression among College students [D]. Zhejiang University, 2011. Available online: http://cdmd.cnki.com.cn/article/cdmd-10335-1012275447.htm (accessed on 30 October 21, 2020). (In Chinese).

48. Cinelli M, Quattrociocchi W, Galeazzi A, Valensise CM, Brugnoli E, Schmidt AL, Zola P, Zollo F, Scala A. The covid-19 social media infodemic. arXiv preprint arXiv:2003.05004. 2020 Mar 10.

49. Nicomedes CJ, Avila RM. An analysis on the panic during COVID-19 pandemic through an online form. Journal of affective disorders. 2020 Nov 1;276:14-22.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- StudyQuestionnaireRe.docx
- StudyQuestionnaireRe.docx
- 2019nCoVQuestionnairesEnglish.docx
- 2019nCoVQuestionnairesEnglish.docx