Non-perturbative renormalization for a renormalization group improved gauge action

CP-PACS Collaboration:
S. Aoki, R. Burkhalter, M. Fukugita, S. Hashimoto, K. Ide, N. Ishizuka, Y. Iwasaki, K. Kanaya, T. Kaneko, Y. Kuramashi, V. Lesk, M. Okawa, Y. Taniguchi, A. Ukawa and T. Yoshie

aInstitute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
bCenter for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
cInstitute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan
dHigh Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

Renormalization constants of vector (Z_V) and axial-vector (Z_A) currents are determined non-perturbatively in quenched QCD for a renormalization group improved gauge action and a tadpole improved clover quark action using the Schrödinger functional method. Non-perturbative values of Z_V and Z_A turn out to be smaller than the one-loop perturbative values by $O(10\%)$ at $a^{-1} \approx 1$ GeV. A sizable scaling violation of meson decay constants f_π and f_ρ observed with the one-loop renormalization factors remains even with non-perturbative renormalization.

1. Introduction

Reliable lattice calculations of hadronic matrix elements and quark masses require both high precision numerical simulations and non-perturbative determinations of renormalization constants (Z-factors). The CP-PACS collaboration recently carried out a sophisticated spectrum calculation in $N_f = 2$ full QCD using a renormalization group (RG) improved gauge action and a tadpole improved clover quark action. However, non-perturbative Z-factors were not available for this action combination. Hence analyses had to rely on one-loop perturbative values.

As a first step toward a systematic study of non-perturbative renormalization for this action, we apply the Schrödinger functional method to calculations of Z factors for vector (Z_V) and axial-vector (Z_A) currents in quenched QCD with the same improved action. We examine in particular whether a large scaling violation of meson decay constants observed for this action is improved with non-perturbative Z-factors. We report preliminary results in these proceedings.

2. Calculational Method

We follow the method developed by the ALPHA collaboration. Namely, we use a lattice geometry of $L^3 \cdot T$ with $T = 2L$ for Z_V with a vector operator at $t = L$, and $T = 3L$ for Z_A with two axial vector operators at $t = L$ and $t = 2L$, except at $\beta = 2.2$ and 2.4 for Z_A (see sec. for details of this exception). Tree-level values are used for coefficients of boundary counter terms of the action. For improving the axial current, we use the one-loop perturbative value for the coefficient c_A.

Values of Z_V and Z_A are determined for $\beta = 2.2 - 8.0$ which almost covers the range of the CP-PACS quenched spectrum calculation, $\beta = 2.187 - 2.575$. Physical size is normalized at $\beta = 2.6$ on an 8^3 lattice. For other β values, two lattice sizes are analyzed to match the physical size using the string tension. Our action has $O(a)$ errors since we employ a tadpole improved value of $c_{sw} = (1 - 0.8412/\beta)^{-3/4}$. Therefore we extrapolate/interpolate results linearly in $1/L$. We have analyzed 300–4000 configurations depending on β value and lattice size.

*Talk presented by K. Ide.
3. Exceptional Configurations

It is straightforward to calculate Z-factors for $\beta > 2.4$ for Z_V and $\beta > 2.8$ for Z_A. We find reasonable plateaux in the ratio of Green functions for the Z-factors in spite of the $O(a)$ error of the action, which implies viability of the Schrödinger functional method for our action.

However, for lower β values on a large lattice, anomalously large values appear in the ensemble of f_1, f_V and f_{AA} where $Z_V = f_1/f_V$ and $Z_A = \sqrt{f_1/f_{AA}}$. This is illustrated with a time history of f_1 and f_V at $\beta = 2.4$ in Fig. 1.

In order to estimate Z-factors at low β values, we have investigated the properties of these “exceptional configurations”. We find: i) Large values of f_1 and f_V for Z_V and f_1 and f_{AA} for Z_A are strongly correlated (see Fig. 1). ii) Histograms of f’s have a long tail toward very large values as shown in Fig. 2. We then impose a cutoff in taking the average of the f’s, and find that Z-factors are stable against change of the cutoff as long as anomalously large values are discarded, as the numerator and denominator for Z-factors are correlated and effects mostly cancel out. See Fig. 3.

We then estimate Z-factors for low β values taking a certain value of the cutoff. For Z_A at $\beta = 2.2$ and 2.4, the lattice geometry is also changed from $T = 3L$ to $T = 2L$ because “exceptional configurations” appear very frequently for the original geometry to the extent that the cutoff analysis above does not work. We have checked at $\beta = 2.6$ that the change of geometry does not lead to any significant difference in Z_A.

4. Results for Z-factors

In Fig. 4 we show results of Z-factors together with Padé fits (solid curves in the figure) to them. Non-perturbative estimates give values smaller than the one-loop perturbative ones (dashed lines) by about 10% (6%) for Z_V (Z_A) at the largest coupling of the CP-PACS simulation, $\beta = 2.187$.

5. Scaling Property of Decay Constants

We compare in Fig. 5 f_π and f_ρ determined with non-perturbative (filled circles) and perturbative (open circles) Z-factors. Also shown are the results from the standard plaquette and Wilson action (squares) [4] using the perturbative Z-factors.

We observe that, even with the non-perturbative Z-factors, large scaling violation of meson decay constants remains for the range we have in-
investigated. A possible reason is the necessity of non-perturbatively fixing the \(O(a) \) and perhaps higher terms in the currents themselves. For the axial vector current, it will be worth investigating if non-perturbative estimates of the \(O(a) \) coefficient \(c_A \) yield a large value.

6. Conclusions

We have successfully applied the Schrödinger functional method to calculations of \(Z_V \) and \(Z_A \) for the combination of a RG-improved gauge action and a tadpole improved clover quark action down to the lattice spacings \(a^{-1} = 1 - 2 \) GeV where the quenched CP-PACS data for decay constants were taken.

While \(Z \)-factors estimated non-perturbatively are smaller by \(O(10\%) \) than perturbative ones for this range, there still remain large scaling violations of \(O(a) \) and higher in meson decay constants with non-perturbative \(Z \)-factors. Further work is needed to examine if hadronic matrix elements could be reliably extracted at lattice spacings much coarser than \(a^{-1} \approx 2 \) GeV with operators improved non-perturbatively at \(O(a) \) and beyond.

This work is supported in part by Grants-in-Aid of the Ministry of Education (Nos. 10640246, 10640248, 11640250, 11640294, 12014202, 12304011, 12640253, 12740133, 13640260). VL is supported by the Research for Future Program of JSPS (No. JSPS-RFTF 97P01102).

REFERENCES

1. CP-PACS collaboration: A. Ali Khan et al., hep-lat/0105017.
2. M. Lüscher et al., Nucl. Phys. B384 (1992) 168.
3. M. Lüscher et al., Nucl. Phys. B491 (1997) 344.
4. CP-PACS collaboration: S. Aoki et al., Phys. Rev. Lett. 84 (2000) 238.