Phylomitogenomics reconfirm the phylogenetic position of the genus *Metaplax* inferred from the two grapsid crabs (Decapoda: Brachyura: Grapsoidea)

Jianqin Chen¹*, Yuhui Xing², Wenjia Yao³, Xue Xu³, Chenling Zhang¹, Zhenhua Zhang¹, Qing Liu¹

1 Institute of Aquatic Biology, Jiangsu Key Laboratory of Biofunctional Molecule, School of Life Sciences, Chemistry & Chemical Engineering, Jiangsu Second Normal University, Nanjing, China, 2 Nanjing Normal University Zhongbei College, Nanjing, China, 3 College of Life Sciences, Nanjing Normal University, Nanjing, China

* jqchen1102@126.com

Abstract

Two new complete mitogenomes of the grapsids, *Metaplax longipes* Stimpson, 1858 and *Nanosesarma minutum* (De Man, 1887) were sequenced using next-generation sequencing (NGS). By analyzing a combination of 75 Brachyura taxa, our phylomitogenomic inferences suggested that *Metaplax* crab separated earlier from the sesarmid crabs and closely related to the varunids with respect to *Nanosesarma* crab. It reconfirmed that the *Metaplax* should be removed from the Sesarmidae and assigned to the Varunidae. Additional mitogenomic comparisons including gene rearrangement and genomic organization were conducted among the 33 taxa of Grapsoidea and Ocypodoidea, and a shared rearrangement pattern between *Metaplax longipes* and the varunids were recovered, which also strongly supported the inference for the phylogenetic position of the *Metaplax*.

Introduction

The genus *Metaplax* H. Milne Edwards, 1852, which currently contains 12 species [1], along with three other genera, *Cyclograpsus*, *Chasmagnathus* and *Helice*, found in the China Seas, were historically assigned to the Sesarminae [2–3], based on the presence of a hairy crest on the third maxilliped and distinct characters in the pterygostomial and ventrolateral regions of the carapace [3–6]. However, the cladistic analysis proposed by Sternberg and Cumberlidge [7] found that *Metaplax* and the five genera *Chasmagnathus* De Haan, 1833, *Helice* De Haan, 1833; *Cyclograpsus* H. Milne Edwards, 1837; *Paragrapsus* H. Milne Edwards, 1853; and *Helograpsus* Campbell & Griffin, 1966 fail to conform to the other sesarmine genera. The early molecular phylogenetic analysis based on partial sequences of 12S rRNA and/or 16S rRNA revealed that these six genera were more closely related to other varunid crabs and suggested that *Metaplax* and the five related genera were excluded from the Sesarminae and were included in the Varuninae [8–11]. The validity of the character of a hairy crest on the 3rd maxilliped.
maxilliped for intergeneric taxonomy, therefore, needs to be reevaluated, as proposed by Schubart et al [8, 9]. The morphological characters, such as the adult morphological characters, i.e., the location of the male genital openings [12], typically a stridulatory suborbital crest that is relatively straight and extends some distance across the lateral branchial region [13] and several larval characters, i.e., the 2, 2 seta I pattern on the endopod of the maxilla and the type of antenna and telson [14], provide strong support that these genera are included to the Varunidae. Therefore, these six genera, including *Metaplax*, combined with *Helicana* K. Sakai & Yatsuzuka, 1980, in the updated system of the Brachyurans of the world, were assigned to the Cyclograpsinae and Grapsidae by Davie in 2002 [13] and, more recently, to the Cyclograpsinae, Varunidae, and Grapsoida by Ng et al. in 2008 [1]. However, the updated position of the genus *Metaplax* that proposed by Ng et al. was not commonly accepted, as in recent years the genus still has been included within the Grapsidae rather than in the Varunidae in some researchs [15, 16]. The phylogenetic position of the *Metaplax* needs to be further confirmed.

Mitogenomic data, including both primary sequences and gene rearrangements, have been shown to contain useful phylogenetic information for inferring the evolutionary relationships among eubrachyurans [17–22]. Compared to the data on the partial fragments of genes, phylogenetic reconstruction using mitogenomic data could help avoid the interference of nuclear pseudogenes [23]. Gene order patterns have the potential to act as synapomorphies for specific lineages and taxonomic groups, providing support for the hypotheses for phylogenetic relationships [21, 24]. Here, to reconfirm the taxonomic assignment of the genus *Metaplax*, we first sequenced and annotated the complete mitogenome of *Metaplax longipes* Stimpson, 1858. We also added the mitogenome of *Nanosesarma minutum* (De Man, 1887), representing the first species from the *Nanosesarma* (Grapsoida: Sesarmidae), not only to increase the taxon, but also to make additional comparisons in the nucleotide contents and the gene rearrangements of mitogenome among related groups by which to provide new evidence for taxonomic position of the *Metaplax*. As typical semiterrestrial species, Grapsoida live in mangrove swamps or on rocky shores, muddy and sand shores or other swampy ground, but in this kind of large ecological regions there are various niches [3]. For example, the *M. longipes* likes intertidal mud flats and sand beach, while the *N. minutum* prefers to living on the muddy ground or under stones. Obtaining a stable phylogenetic position of *M. longipes* and *N. minutum* based on mitogenomic data will help us to understand the their habitatal preference.

Materials and methods

Ethics statement

No specific permits were required for crab collection and research in the selected locations. The sampling locations were not privately owned or protected in any way. The crabs used for the experiments were not considered protected or endangered, and their collection is legal in China.

Specimen collection and identification

M. longipes and *N. minutum* were collected by hand in mangrove of Golden gulf, Beihai (21˚25’27.74”N, 109˚13’3.20”E), Guangxi Province and in Mawei Seafood Market, Fuzhou (25˚59’45.76”N, 119˚28’40.63”E), Fujian Province, China, respectively. Both specimens were preserved in 95% ethanol and deposited at the Jiangsu Key Laboratory of Biofunctional Molecule (Jiangsu Second Normal University), School of Life Sciences, Chemistry & Chemical Engineering. Identification was performed morphologically with a stereo dissecting microscope according to the morphological information on crabs of the China Seas [3].
DNA extraction and sequencing

Total genomic DNA was extracted using a Cell and Tissue DNA Extraction Kit according to the manufacturer’s instructions (Generay Biotech, Shanghai, China). The quality of the extracted DNA was examined by 1% agarose gel electrophoresis and was then sent to Novogene (Beijing, China) for sequencing using the Illumina MiSeq Desktop Sequencer (2 × 150 bp paired-end reads). The average insert size of the sequencing libraries was approximately 300 bp.

Mitochondrial genome assembly and annotation

Mitochondrial genome assemblies were conducted in Geneious 11.1.2 using parameter settings described previously [22, 25]. Protein-coding genes (PCGs) were identified by finding the ORFs (https://www.ncbi.nlm.nih.gov/orffinder) using the invertebrate mitochondrial genetic code. The secondary structure and anticodons of transfer RNA (tRNA) genes were identified using the results of both tRNAscan-SE [26] and MITOS Web Server (http://mitos2.bioinf.uni-leipzig.de/index.py) analyses [27]. Similarly, the large and small rRNA subunits (srRNA and lrRNA) were determined using MITOS Web Server or alignment to closely related references. The graphical map of the mitogenomes was drawn using the online mitochondrial visualization tool Organellar Genome DRAW (https://chlorobox.mpimp-golm.mpg.de/OGDraw.html) [28]. The nucleotide composition was calculated in MEGA 6.0 [29]. The mitogenomes of M. longipes and N. minutum were deposited under the following respective GenBank accession numbers: MH899176 and MH899177.

Phylogenetic analysis

To infer the phylogenetic position of the studied species, we used a 75-taxon set as ingroups from divergent lineages comprising the 55 genera, 25 families and 15 superfamilies of Brachyura (S1 Table). Eight species from the Gebiidea and Anomura were also included in the analyses as outgroups (S1 Table). After removing all termination codons, the putative amino acid (AA) sequences of the 13 PCGs and sequences for two rRNAs were individually aligned using MAFFT 7.215 [30]. The ambiguously aligned regions from each gene were removed by Gblocks V. 0.91b with default settings [31]. The pruned, aligned AA sequences were then used as a backbone to align the corresponding nucleotide (NT) sequences using DAMBE 5.3.15 [32]. The final NT data was composed of a concatenation of the 13 PCGs and two rRNAs. We then conducted phylogenetic analyses using Maximum likelihood (ML) and Bayesian Inference (BI). The best-fit partitioning schemes and the substitution model for each partition were selected by PartitionFinder 1.1.1 [33] and ModelFinder [34] using a greedy search with Bayesian information criteria (BIC). The ML tree was reconstructed in IQTREE v1.6.3 with 1,000 ultrafast bootstrap (BS) replicates [35, 36]. Bayesian inference (BI) was performed using MrBayes 3.2.2 [37] through the Cipres Science Gateway [38]. The Markov chain Monte Carlo (MCMC) was started with one million generations, with every 1000 generations sampled, and the first 25% of the generations were discarded as burn-in. The standard deviation of split frequencies was 0.0089 (below 0.01) after 1,500,000 generations, which reflected that the two runs strongly indicated convergence.

Results

Mitogenomic general characters

The mitogenomes of M. longipes and N. minutum were determined to contain an entire set of 37 genes plus a larger main noncoding region (mNCR), and were 16,305 and 15,637 bp in
length, respectively (Table 1; Fig 1). Notably, the length of the *M. longipes* mitogenome was similar to that of the varunid crabs sampled (ranging from 16,170 to 16,212 bp; Fig 1; S2 Table). We found that the length of varunid crabs mitogenomes was longer than the average length of the other grapsid mitogenomes (15,698 bp) and ranged from 15,406 to 15,920 bp.

Table 1. Mitogenomic features of *Nanosesarma minutum* and *Metaplax longipes*.

Feature	Position	Length(bp)	IGN*	Feature	Position	Length(bp)	IGN*
Nanosesarma minutum				**Metaplax longipes**			
cox1	1–1539	1539	-5	cox1	1–1539	1539	-5
trnL2	1535–1603	69	7	trnL2	1535–1600	66	8
cox2	1611–2298	688	0	cox2	1609–2313	705	55
trnK	2299–2367	69	0	*atp8*	2369–2530	162	-7
trnD	2368–2435	68	0	*atp6*	2524–3198	675	-1
atp8	2436–2594	159	-4	*cox3*	3198–3898	792	-1
atp6	2591–3262	672	7	*trnG*	3989–4052	64	0
cox3	3270–4061	792	-1	*nad3*	4053–4403	351	5
trnG	4061–4124	64	-3	*trnA*	4409–4473	65	8
nad3	4122–4475	354	2	*trnR*	4482–4543	62	1
trnA	4478–4541	64	7	*trnN*	4545–4609	65	0
trnR	4549–4612	64	0	*trnS1*	4610–4702	93	0
trnN	4613–4678	66	1	*trnT*	4703–4768	66	0
trnS1	4680–4747	68	1	*trnA*	4769–4834	66	11
trnE	4749–4815	67	1	*nad1*	4846–5778	933	40
trn4f*	4817–4880	64	1	*trnL1*	5819–5885	67	0
trn6f*	4882–4947	66	4	*lrRNA*	5886–7238	1353	70
nad5	4952–6664	1713	50	*srRNA*	7309–8208	900	0
nad4	6715–8064	1350	-7	*trnF*	8209–8272	64	41
nad4L	8058–8360	303	8	*nad5*	8314–10044	1731	71
trnT	8369–8434	66	0	*trnR*	10116–10186	71	0
trn6p*	8435–8499	65	2	*rnCR*	10187–11096	910	0
nad6	8502–9005	504	-1	*trnQ*	11097–11165	69	13
cob	9005–10139	1135	0	*trnQ*	11179–11243	65	8
trnS2	10140–10205	66	17	*trnE*	11252–11320	69	8
nad1	10223–11161	939	33	*trnK*	11329–11399	71	-2
trn1L1*	11195–11261	67	0	*trnD*	11398–11467	70	9
lrRNA	11262–12580	1319	0	*trnE*	11477–11544	68	5
trnY	12581–12653	73	0	*trnF*	11550–11613	64	13
srRNA	12654–13489	836	0	*nad4*	11627–12970	1344	-7
rnCR	13490–14186	697	0	*nad4L*	12964–13266	303	64
trnQ	14187–14255	69	14	*nad6*	13331–13849	519	-1
trnI	14270–14336	67	18	*cob*	13849–14983	1135	0
trnM	14355–14424	70	0	*trnS2*	14984–15409	66	38
nad2	14425–15432	1008	0	*trnI*	15088–15152	65	0
trnW	15433–15501	69	4	*trnM*	15153–15224	72	0
trnC*	15506–15572	67	0	*nad2*	15225–16235	1011	-2
trnY*	15573–15637	65	0	*trnW*	16234–16302	69	3
overall	15637	15481	156	overall	16305	15860	445

IGN: intergenic nucleotide; negative numbers indicate that adjacent genes overlap.

* Indicates the gene is encoded on the opposite strand.

https://doi.org/10.1371/journal.pone.0210763.t001
The length of the *N. minutum* mitogenome located within the characteristic size of most of the sesarmids (15,612 to 15,920 bp). The A+T content of the *M. longipes* mitogenome was 71.40%, which is similar to the average value for varunid crabs (avg. 70.39%, ranging from 68.5 to 73.0%; Fig 1; S2 Table), while the A+T content of the *N. minutum* mitogenome was the highest among the sesarmid crabs (avg. 76.03%), which is greater than the average value for the other grapsids, even ocypodid crabs.

Gene rearrangement

Of the two species presented in this study, *M. longipes* presented a major gene rearrangement pattern identical to that of varunid crabs, including three tRNA gene pairs (C-Y, K-D, and E-F), two tRNA genes (Q and V) and a mNCR translocated into the *nad5-nad4* gene junction; furthermore, a four-gene block (*nad1-L1-lrRNA-srRNA*) and a tRNA gene pair (T-P) were rearranged into the location between *nad3* and *nad5*, while *N. minutum* exhibited a typical tRNA gene cluster (Q-I-M) rearrangement identical to that of the other five sesarmid crabs (Fig 2).

Fig 1. Length and A+T content of the mitogenomes of 33 taxa from the Grapsoidea and Ocypodoidea. The nine families studied are represented by different colors. Circles represent Grapsoidea, while triangles depict Ocypodoidea. https://doi.org/10.1371/journal.pone.0210763.g001
Phylogenetic analysis

The ML and BI phylogenetic trees produced similar topologies, but slightly different in several species (i.e. Dynomene pilumnoides, Scylla serrate, Cyclograpsus granulosus, and Gaetice depresus) (Fig 3). Within Thoracotremata, the samples from Grapsoidea and Ocypodoidea did not form monophyletic groups. For example, Macrophthalmus species as a distinct lineage from other ocypodids that was sister to grapsid species with high support (BPP = 1.00, BS = 99). As well, the two dotillid crabs were more closely related to Grapsoidea than Ocypodoidea, with strong nodal support in the BI analysis (BPP = 1.00) and ML analysis (BS = 96). As to the grapsid species newly presented in these trees, the M. longipes separated from the sesarmid crabs and formed a clade with other eight publicly available species of Varunidae, while N. minutum is sister to Parasesarma tripectinis (Shen, 1940) and then formed a strongly supported monophyletic clade (BPP = 1.00, BS = 100) with other four species from Sesarmidae.

Discussion

Comparisons of mitogenomes, usually using both gene orders and DNA sequences (PCGs and the two rRNAs), provide strong support for brachyuran phylogenies [17, 18, 21–23, 39]. The length of the mitogenome is a basic character for each animal organism, with the entire set of 37 genes (except for several groups), which are closely packed and probably reflect a strong purifying selection over the evolutionary history, being highly conserved [17, 40, 41]. However, it was found here that there was an increase in the genome size of the mitogenome of the Metaplax crab. In addition, this length is similar to that found in the varunid crabs known to date. Further comparisons of gene orders and intergenic spacers revealed a consistent gene rearrangement pattern shared by the Metaplax and varunid crabs (Figs 3 and 4) with concordant
multiple minor noncoding regions scattered in the mitogenomes. The genome organization with multiple intergenic spacers was first discovered in a varunid crab, *Eriocheir*, and was recognized as retention resulting from gene duplication and incomplete deletion, which further resulted in the gene rearrangement and increased genome size [17].
A recent reevaluation of the partial mtDNA sequences and morphological data for the phylogenetic position of *Metaplax* and other related crabs suggested that contrary to earlier studies positing this genus in the Sesarmidae family of grapsids, this genus presented a closer relationship with varunid genera [8–12, 14, 42]. We report here the first complete mitogenome of *Metaplax* crabs. Our mitogenome-based phylogenetics indicate that *M. longipes* was closely related to the other representative varunid crabs and was separated earlier from the “Sesarmidae” and “Grapsidae” clades. This result strongly supported the suggestion that *Metaplax* should be removed from Sesarmidae [8–11], and assigned to Varunidae [1]. This relationship was also supported by the shared gene rearrangements among *Metaplax* and the varunid species sampled and genome organization recovered in the present study. The result has helped to clarify that the morphologies located at the 3rd maxilliped are not a synapomorphy for supporting the genus *Metaplax* as a taxon within the Sesarmidae, which appear to have symplesiomorphy.

Previous studies have pointed out there are four distinct patterns of gene rearrangements in the available mitogenomes from Grapsoidea and Ocypodoidea (Fig 4) [39]. Gene order patterns can act as synapomorphies for specific lineages at family level, and show potential in providing additional phylogenetic markers [21, 24]. In this study, the 2nd pattern of gene rearrangement shared by all available mitogenomes from Sesarmidae. Noticeably, species from different superfamilies (Ocypodoidea and Grapsoidea) shared the 4th gene rearrangement pattern, i.e. Macrophthalmidae and Varunidae, which supports a sister relationship presented in phylogenetic trees. The result also agreed with the previous suggestion that the polyphyly of Grapsoidea and Ocypodoidea [39, 43]. Considering that only species from Grapsoidea and Ocypodoidea within Thoracotremata were sampled, the validity of their relationship needs to be reconfirmed by further taxonomic sampling.

![Fig 4. Gene rearrangements within the Grapsoidea and Ocypodoidea. Linear representation of the four patterns of gene rearrangements (I–IV). The transposition routes of the gene rearrangements are marked by lines and arrows.](https://doi.org/10.1371/journal.pone.0210763.g004)
Conclusion

In this study, we first determined the complete mitogenomes of the grapsid crabs *M. longipes* and *N. minutum*. Further, phylomitogenomic inferences suggested that *N. minutum* formed a clade with other sesarmids, while the *M. longipes* separated earlier from the sesarmid clade. It reconfirmed that the *Metaplax* should be removed from the Sesarmidae and assigned to the Varunidae that proposed by Ng et al. or even older literature [1, 8–11]. New evidence that a consistent rearrangement pattern between *M. longipes* and the varunids was recovered, which also strongly supported the inference for the phylogenetic position of the *Metaplax*.

Supporting information

S1 Table. List of species used for phylogenetic analysis.
(DOCX)

S2 Table. The lengths and A+T contents of the mitogenomes of 33 taxa from the Grapsoidea and Ocypodoidea.
(DOCX)

Acknowledgments

We thank the anonymous reviewers for their valuable comments and suggestions.

Author Contributions

Conceptualization: Jianqin Chen, Yuhui Xing.
Data curation: Wenjia Yao, Xue Xu.
Formal analysis: Yuhui Xing.
Funding acquisition: Jianqin Chen.
Investigation: Jianqin Chen, Chenling Zhang, Zhenhua Zhang.
Methodology: Yuhui Xing.
Project administration: Jianqin Chen, Qing Liu.
Resources: Jianqin Chen, Chenling Zhang, Zhenhua Zhang.
Software: Yuhui Xing, Wenjia Yao, Xue Xu.
Supervision: Jianqin Chen.
Validation: Jianqin Chen.
Visualization: Yuhui Xing, Wenjia Yao.
Writing – original draft: Yuhui Xing, Wenjia Yao.
Writing – review & editing: Jianqin Chen, Yuhui Xing, Wenjia Yao.

References

1. Ng PKL, Guinot D, Davie PJF. Systema Brachyurorum: Part I. An annotated checklist of extant brachyuran crabs of the world. Raffles Bulletin of Zoology. 2008; 17(17):1–286.
2. Sakai T. Crabs of Japan and the Adjacent Seas. Kodansha Ltd, Tokyo; 1976.
3. Dai AY, Yang SL. Crabs of the China seas. China Ocean Press, Beijing; 1991.
4. Alcock A. The Brachyura Catometopa or Grapsoidea: Material for a carcinological fauna of India, No. 6: the Brachyura Catometopa, or Grapsoidea. Journal of the Asiatic Society of Bengal. 1900; 69:279–456.

5. Rathbun MJ. The grapsoid crabs of America. United States National Museum Bulletin. 1918; 97:1–461.

6. Balss H. Decapoda VIII: Systematik. In: Bronn HG, editor. Klassen und Ordnungen des Tierreichs, Crustacea. Akademische Verlagsgesellschaft Geest and Portig, Leipzig; 1957. pp. 1505–1672.

7. Von SR, Cumberlidge N. Taxic relationships within the Grapsidae MacLeay, 1838 (Crustacea: Decapoda: Eubrachyura). Journal of Comparative Biology. 1998; 3(2):115–136.

8. Schubart CD, Cuesta JA, Diesel R, Felder DL. Molecular phylogeny, taxonomy, and evolution of non-marine lineages within the American grapsoid crabs (Crustacea: Brachyura), Molecular Phylogenetics and Evolution. 2000; 15(2):179–190. https://doi.org/10.1006/mpev.1999.0754 PMID: 10837150

9. Schubart CD, Cuesta JA, Felder DL. Glyptograpsidea, a new brachyuran family from Central America: larval and adult morphology, and a molecular phylogeny of the Grapsaoidea. Journal of Crustacean Biology. 2002; 22:28–44. https://doi.org/10.1163/20021975-99990206

10. Schubart CD, Cannicci S, Vannini M, Fratini S. Molecular phylogeny of grapsoid crabs (Decapoda, Brachyura) and allies based on two mitochondrial genes and a proposal for refraining from current superfAMILY classification. Journal of Zoological Systematics and Evolutionary Research. 2016; 44(3):193–199. https://doi.org/10.1111/j.1439-0469.2006.00354.x

11. Kitaura J, Wada K, Nishida M. Molecular phylogeny of grapsoid and ocypodoid crabs with special reference to the genera Metaplax and Macrophthalmus. Journal of Crustacean Biology. 2002; 22:682–693. https://doi.org/10.1163/20021975-99990281

12. Guinot D. Principes d’une classification évolutive des Crustacés Décapodes Brachyures. Bulletin Biologique De La France Et De La Belgique. 1978; 112:211–292.

13. Davie P.J.F. Crustacea: Malacostraca: Eucarida (Part 2) Decapoda—Anomura, Brachyura. In: Wells A, Houston WWK editor. Zoological Catalogue of Australia. 2002; 19.3B:1–614.

14. Cuesta JA, Diesel R, Schubart CD. Re-examination of zoeal morphology of Chasmagnathus granulatus, Cyclograpsus lavauxi, Hemigrapsus crenulatus, and H.edwardsi confirms consistent chaetotaxy in Varunidae (Decapoda: Brachyura). Crustaceana. 2001; 74(9):895–912. https://doi.org/10.1007/1568540152682656

15. Ding HY, Zhang FJ, Qiu SP, Zhang Q. The species composition and distribution of intertidal crabs in xishan island. Transactions of Oceanology and Limnology. 2010; 30(2):49–53.

16. Huang XX, Peng R, Li HH, Bao YX. Niche analysis of dominant species of macro benthos in different mangrove habitats on Maoyan Island. Journal of Zhejiang Normal University. 2017; 40(4):446–452.

17. Sun HY, Zhou KY, Song DX. Mitochondrial genome of the Chinese mitten crab Eriocheir japonica sinensis (Brachyura: Thoracotremata: Grapsoidea) reveals a novel gene order and two target regions of gene rearrangements. Gene. 2005; 349:207–217. https://doi.org/10.1016/j.gene.2004.12.036 PMID: 15780981

18. Ji YK, Wang A, Lu JL, Lu XL, Jin YH, Song DH. Mitochondrial genomes of two brachyuran crabs (Crustacea: Decapoda) and phylogenetic analysis. Journal of Crustacean Biology. 2014; 34:494–503. https://doi.org/10.1163/1937240X-00002252

19. Shen X, Tian M, Yan B, Chu K. Phylomitogenomics of Malacostraca (Arthropoda: Crustacea). Acta Oceanologica Sinica. 2015; 34(2):84–92. https://doi.org/10.1007/s13131-015-0583-1

20. Tan MH, Gan HM, Schultz MB, Austin CM. MitPhAST, a new automated mitogenomic phylogeny tool in the post-genomic era with a case study of 89 decapod mitogenomes including eight new freshwater crayfish mitogenomes. Molecular Phylogenetics and Evolution. 2015; 85:180–188. https://doi.org/10.1016/j.ympev.2015.02.009 PMID: 25721538

21. Tan MH, Gan HM, Lee YP, Poore GC, Austin CM. Digging deeper: new gene order rearrangements and distinct patterns of codons usage in mitochondrial genomes among shrimps from the Axiidea, Gebiidea and Caridea (Crustacea: Decapoda). Peerj. 2017; Peerj 5: e2982. https://doi.org/10.7717/peerj.2982 PMID: 28265498

22. Xing YH, Zhou LJ, Hou Y, Wang XQ, Zhang C, Zhang HL. Complete mitochondrial genomes from two species of Chinese freshwater crabs of the genus Sinopotamon recovered using next-generation sequencing reveal a novel gene order (Brachyura, Potamidae). ZooKeys. 2017; 705:41–60. https://doi.org/10.3897/zookeys.705.11852

23. Qian GH, Zhao Q, Wang A, Zhu L, Zhou KY, Sun HY. Two new decapod (Crustacea: Malacostraca) complete mitochondrial genomes: bearings on the phylogenetic relationships within the Decapoda. Zoological Journal of the Linnean Society. 2011; 162:471–481. https://doi.org/10.1111/j.1096-3642.2010.00686.x
24. Tan MH, Gan HM, Lee YP, Lintona S, Grandjeand F, Austin CM. ORDER within the chaos: Insights into phylogenetic relationships within the Anomura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements. Molecular Phylogenetics and Evolution. 2018; 127:320–331. https://doi.org/10.1016/j.ympev.2018.05.015 PMID: 29800651

25. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S. GENEIOUS Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012; 28(12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 PMID: 22543367

26. Lowe TM, Chan PP. IRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research. 2016; 44:W54–57. https://doi.org/10.1093/nar/gkw413 PMID: 27174935

27. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G. MITOS: Improved de novo Metazoan Mitochondrial Genome Annotation. Molecular Phylogenetics and Evolution. 2013; 69(2):313–319. https://doi.org/10.1016/j.ympev.2012.08.023 PMID: 22982435

28. Lohe M, Drechsel O, Kahliu S, Bock R. OrganelarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research. 2013; 41:W575–W581. https://doi.org/10.1093/nar/gkw413 PMID: 23609545

29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution. 2013; 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197 PMID: 24132122

30. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013; 30:772–780. https://doi.org/10.1093/molbev/mst010 PMID: 23329690

31. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology. 2007; 56:564–577. https://doi.org/10.1080/10635150701472164 PMID: 17654362

32. Xia X, Xie Z. DAMBE: software package for data analysis in molecular biology and evolution. Journal of Heredity. 2001; 92:371–373. https://doi.org/10.1093/jhered/92.4.371 PMID: 11535656

33. Lanfear R, Calcott B, Ho SY, Guindon S. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution. 2012; 29:1695–1701. https://doi.org/10.1093/molbev/msq281 PMID: 23191688

34. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Meth. 2017; 14(6):587–589. https://doi.org/10.1038/nmeth.4285

35. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating Maximum-Likelihood phylogenies. Molecular Biology and Evolution. 2015; 32(1):268–274. https://doi.org/10.1093/molbev/msu300 PMID: 25371430

36. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution. 2017; 35(2):518–522. https://doi.org/10.1093/molbev/msx281

37. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001; 17(8):754–755. https://doi.org/10.1093/bioinformatics/17.8.754 PMID: 11524833

38. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE) IEEE. 2010;1–8. https://doi.org/10.1109/GCE.2010.5676129

39. Chen JQ, Xing YH, Yao WJ, Zhang CL, Zhang ZH. Characterization of four new mitogenomes from Ocypodoidea & Grapsoidea, and phylomitogenic insights into thoracotreme evolution. Gene. 2018; 675(30):27–35. https://doi.org/10.1016/j.gene.2018.06.088

40. Rand DM. Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends in Ecology and Evolution. 1994; 9(4):125–31. https://doi.org/10.1016/0169-5347(94)90176-7 PMID: 21236795

41. Wolstenholme DR. Animal mitochondrial DNA: structure and evolution. International Review of Cytology. 1992; 141(6):173–216. https://doi.org/10.1016/S0074-7696(08)62066-5

42. Kitaura J, Wada K, Fukui Y, McLay CL. Molecular phylogenetic position of the New Zealand sentinel crab, Macrophthalmus (Hemiplus) hirtipes (Jacquinot, in Homborn & Jacquinot, 1846) (Decapoda, Brachyura, Macrophthalmidae). Crustacea. 2010; 83(11):1315–1326. https://doi.org/10.1163/00121610X533548

43. Tsang LM, Schubart CD, Ahyong ST, Lai JC, Au EY, Chan TY. Evolutionary history of true crabs (Crustacea: Decapoda: Brachyura) and the origin of freshwater crabs. Molecular Biology and Evolution. 2014; 31:1173–1187. https://doi.org/10.1093/molbev/msu068 PMID: 24520090