Expression of MYCN in Multipotent Sympathoadrenal Progenitors Induces Proliferation and Neural Differentiation, but Is Not Sufficient for Tumorigenesis

Bret C. Mobley1,*, Minjae Kwon1, Bradley R. Kraemer2,3, F. Edward Hickman2,3, Jingbo Qiao4, Dai H. Chung4, Bruce D. Carter2,3*

1 Department of Pathology, Microbiology, and Immunology, Division of Neuropathology, Vanderbilt University Medical Center, Nashville, Tennessee, the United States of America, 2 Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, the United States of America, 3 Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee, the United States of America, 4 Department of Pediatric Surgery, Vanderbilt University Medical Center; Nashville, Tennessee, the United States of America

* bret.mobley@vanderbilt.edu (BCM); bruce.carter@vanderbilt.edu (BDC)

Abstract

Neuroblastoma is a pediatric malignancy of the sympathetic ganglia and adrenal glands, hypothesized to originate from progenitors of the developing sympathetic nervous system. Amplification of the MYCN oncogene is a genetic marker of risk in this disease. Understanding the impact of oncogene expression on sympathoadrenal progenitor development may improve our knowledge of neuroblastoma initiation and progression. We isolated sympathoadrenal progenitor cells from the postnatal murine adrenal gland by sphere culture and found them to be multipotent, generating differentiated colonies of neurons, Schwann cells, and myofibroblasts. MYCN overexpression in spheres promoted commitment to the neural lineage, evidenced by an increased frequency of neuron-containing colonies. MYCN promoted proliferation of both sympathoadrenal progenitor cells from the postnatal murine adrenal gland by sphere culture and found them to be multipotent, generating differentiated colonies of neurons, Schwann cells, and myofibroblasts. MYCN overexpression in spheres promoted commitment to the neural lineage, evidenced by an increased frequency of neuron-containing colonies. MYCN promoted proliferation of both sympathoadrenal progenitor spheres and differentiated neurons derived from these spheres, but there was also an increase in apoptosis. The proliferation, apoptosis, and neural lineage commitment induced by MYCN are tumor-like characteristics and thereby support the hypothesis that multipotent adrenal medullary progenitor cells are cells of origin for neuroblastoma. We find, however, that MYCN overexpression is not sufficient for these cells to form tumors in nude mice, suggesting that additional transforming mutations are necessary for tumorigenesis.

Introduction

Neuroblastoma is the most common cancer in infants and the most common extracranial tumor of childhood [1,2]. Neuroblastomas arise from the developing sympathetic nervous system, with half of tumors originating in the adrenal medulla, and the remainder arising in...
paraspinal sympathetic ganglia of the chest, abdomen, pelvis, or neck [1,3]. While neuroblastoma patient outcomes have improved over the last several decades, a significant proportion of patients do not survive their disease; the ten-year survival is 70%, and for patients with “high risk” clinical, histologic, and molecular features the ten-year survival is less than 50% [4,5]. In addition, current treatment regimens cause long-term complications including hearing impairment, endocrine disturbances, and orthopedic problems in a large percentage of survivors [6–8]. The anatomical sites at which neuroblastomas arise and their gene expression profiles suggest that these tumors arise from sympathoadrenal progenitors [9,10]. It has been hypothesized that neuroblastoma and other embryonal tumors arise as a result of impaired differentiation, driven by tumor initiating cells that are unable to undergo terminal differentiation. Studying the development of sympathoadrenal progenitors and the changes in behavior they show in the context of oncogene expression may therefore improve our understanding of disease initiation and progression.

MYCN is a member of the *MYC* oncogene family originally identified in human neuroblastoma [11], and subsequently found to be expressed in the newborn murine adrenal gland [12]. Soon after its discovery, amplification of *MYCN* was found to correlate with poor prognosis in neuroblastoma patients [13], and amplification is routinely assayed in the clinical setting to stratify risk. A strong link to a neural crest-derived cell of origin for neuroblastoma was established when mice overexpressing *MYCN* in neural crest cells under the tyrosine hydroxylase promoter were shown to develop neuroblastoma-like tumors, specifically in the paraspinal sympathetic ganglia [14,15]. Similarly, MYCN expression was shown to drive tumor development from a neural crest cell line [16]. It has also been shown that expression of MYCN can induce tumor formation in the zebrafish interrenal gland, the equivalent of the mammalian adrenal gland [17]. Despite these advances, very little is known about the role of MYCN in the early steps of neuroblastoma initiation.

It has recently been shown that multipotent sympathoadrenal progenitor cells (SAPs) can be isolated from the adrenal gland. Chung and colleagues first demonstrated the presence of sphere-forming progenitor cells in the adult bovine adrenal medulla, capable of producing functionally mature neurons in the presence of NGF and chromaffin cells in the presence of dexamethasone [18]. The same group went on to describe progenitor cells in the adult human adrenal gland [19]. Most recently, SAPs were isolated from the adrenal glands of postnatal mice; these cells grew as spheres in non-adherent conditions and expressed the sympathoadrenal progenitor marker *Phox2b* together with the neural crest stem cell associated genes *Bmi1*, *Sox10*, and *Mycn* [20].

While the adrenal gland is a frequent site of neuroblastoma origin, the impact of MYCN expression on multipotent mammalian SAPs has not been described. We isolated SAPs from the postnatal murine adrenal gland by clonal sphere culture and found that they are multipotent, capable of generating the well characterized neural crest derivatives: neurons, Schwann cells, and myofibroblasts [21,22]. MYCN overexpression in these cells markedly shifted their differentiation toward the neural lineage, compatible with the neural histologic phenotype observed in neuroblastoma. We also show that MYCN enhanced the proliferation of murine SAP spheres and adherent sphere-derived sympathetic neurons, while imparting increased sphere-forming capacity. Nevertheless, MYCN overexpressing SAPs were not able to form tumors in nude mice.
Materials and Methods

Ethics Statement

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Vanderbilt Institutional Animal Care and Use Committee. All efforts were made to minimize suffering.

Culture of Adrenal Gland Cells

Adrenal glands were harvested from postnatal day 0/1 C57BL/6 mice, dissociated, and grown as spheres using neural crest stem cell procedures modified from Morrison and colleagues [21,23,24]. Freshly harvested tissue was dissociated for 30 minutes at 37°C with 0.15% collagenase (Sigma), 0.06% trypsin (Worthington), and 150 units/ml deoxyribonuclease (DNAse) (Sigma) in HBSS (GIBCO) plus 0.53 mM EDTA (Sigma). The digest was quenched in staining medium including L15 (GIBCO) with 1 mg/ml BSA (Sigma), 10 mM HEPES (GIBCO), 0.53 mM EDTA, and 15 units/ml DNAse. Cells were initially plated on 35mm TC dishes (Greiner Bio-One), and at two hours non-adherent cells within the supernatant were transferred to ultra-low attachment surface plates (Costar). Cells were grown at a clonal density of 1 cell per microliter (S1 Fig) in self-renewal medium including a 5:3 mixture of DMEM-low glucose:neurobasal medium (Invitrogen) supplemented with 20 ng/ml basic fibroblast growth factor (bFGF)(StemCell Technologies), 1% N2 (Invitrogen), 2% B27 (Invitrogen), 50 μM β-mercaptoethanol (Sigma), 117nM retinoic acid (Sigma), 15% chick embryo extract (CEE), and 1% penicillin/streptomycin (Gibco).

Spheres were grown for five days and differentiated for colony composition assessment by transfer to differentiation medium (10ng/ml bFGF and 1% CEE) in 48-well tissue culture dishes sequentially coated with 0.15 mg/ml poly-d-lysine (MP Biomedicals) and 0.2 mg/ml human fibronectin (Biomedical Technologies). Colonies were maintained in differentiation medium for 48 hours prior to fixation with 4% paraformaldehyde (Sigma) for immunohistochemical analysis. For secondary and tertiary sphere formation assays, primary spheres were dissociated in a mixture of 10 units/ml papain (Worthington), 470 units/ml type IV collagenase (Worthington), 600 units/ml DNAse, and 40% Accutase (Millipore) per volume with frequent agitation. The digest was quenched in staining medium, the dissociated single cells were pelleted, and an additional quench step with ovomucoid protease inhibitor (Worthington) was performed. Cells were then plated at a clonal density of 1 cell per microliter of self-renewal medium (S1 Fig). All cultures were maintained at 37°C in gas-tight chambers flushed with 1% O2/6% CO2/balance N2 to achieve a physiologic oxygen concentration of 5% [23].

Quantitative Real Time PCR (qRT-PCR)

TRIzol reagent (Life Technologies) was used to isolate total RNA from primary spheres on day 5 of culture or from postnatal day 3 superior cervical ganglion (SCG) or adrenal gland. cDNA was synthesized using SuperScript III reverse transcriptase (Life Technologies). qPCR reactions were prepared in 10 ul volumes in triplicate using SsoAdvanced SYBR Green Supermix (Bio-Rad) following the manufacturer’s instructions. qRT-PCR was performed using the CFX96 Real-Time PCR Detection System (primer sequences listed in S1 Table). Cycling conditions were 95°C for 10 min, followed by 40 cycles with 95°C for 15 s, 55°C for 30 s, and 72°C for 30 s. After the final cycle, melting curve analysis was performed to confirm correct product amplification. Tbp1 was used as the endogenous reference gene, where the fold difference between the gene of interest and Tbp1 = 2(mean Ct Tbp1—mean Ct gene of interest).
Lentiviral construct and infection

The wild type mouse Mycn gene including an N-terminal Flag tag, kindly provided by Dr. Anna M. Kenney, was cloned into the pHIV-Zsgreen lentiviral vector. 293T cells were transfected with pHIV-Zsgreen vector with or without the Mycn gene, the packaging plasmid psPAX2, and the envelope plasmid pCI-VSVG. Viral supernatant was concentrated by ultracentrifugation and incubated overnight with sphere-forming cells isolated by differential plating. A functional virus titer of 7.55 x 10^7 transducing units per ml was determined by 293T cell infection using the formula: titer = \(\frac{F \times C_0 \times V}{D} \) where F is the frequency of GFP-positive cells determined by flow cytometry, C0 is the number of target cells exposed to virus, V is the volume of the inoculum, and D is the virus dilution factor. Adrenal progenitor cells isolated by differential plating were infected overnight with a 1:3 dilution of virus in self-renewal medium using 96-well ultra-low attachment surface plates (Costar), and transferred to 24-well ultra-low attachment plates (Costar) the following morning for primary sphere formation. Primary spheres were grown for 4 days to allow oncogene expression prior to dissociation for differentiation, proliferation, apoptosis, or tumor formation assay.

Western Blot Analysis

Whole spheres were lysed with RIPA buffer (50 mM Tris HCl (pH 8.0), 150 mM, NaCl, 2 mM EDTA, 1% sodium orthovanadate, 1% Triton X-100, 0.5% deoxycholate, 0.1% sodium dodecyl sulfate) and 40ug of cell extract was separated using SDS–10% PAGE and transferred to a Nitrocellulose membrane (Protran, Whatman). After blocking with 5% milk powder, the membrane was incubated with anti-N-myc antibody (Cell Signaling #9405, 1:1000) or anti-alpha-tubulin antibody (1:5000, Calbiochem Cat# CP06), followed by incubation with anti-rabbit IgG HRP (Cell Signaling) or anti-mouse IgG HRP, respectively. The membranes were rinsed and visualized with ECL Western Blotting Substrate (Pierce).

Proliferation Assay, Apoptosis, and Immunohistochemistry

To assess the proliferation rate of cells in secondary spheres, 10 μM EdU (Click-iT imaging kit, Invitrogen) was added to the self-renewal medium at day 3 of growth for a 24-hour interval. Spheres were dissociated to single cells, plated on poly-d-lysine and fibronectin coated dishes in self renewal medium, and fixed with 4% paraformaldehyde following attachment at 1.5 hours. EdU staining was performed per manufacturer’s instructions. Apoptosis was measured by TUNEL labeling (ApopTag Fluorescein Direct In Situ Apoptosis Detection Kit, Millipore) in the same samples. To assess the proliferation rate of adherent cells, the spheres were dissociated and the cells plated on poly-d-lysine and fibronectin coated dishes in differentiation medium. After 24 hours in culture, EdU was added to the medium for a 24-hour period after which time the cells were fixed and stained as above. Primary antibodies used to assess differentiation by immunocytochemistry included those against neuronal class III β-tubulin (TUJ1) (Covance, MMS-435P, 1:400), S100 (Immunostar, 22520, 1:1), smooth muscle actin (Sigma, A5228, 1:200), and tyrosine hydroxylase (Millipore, AB152, 1:400) following block/permeabilization with 10% goat serum and 0.1% Triton X-100. Alexa Fluor 488 or 546-conjugated secondary antibodies (Invitrogen, 1:1000) were used. Cells were counterstained with 2.5 μg/ml 4',6-diamino-2-phenylindole dihydrochloride (DAPI) to visualize the nuclei. Images were acquired on a Leica DM IRB inverted microscope. For colony composition analysis, S100 non-reactive/TuJ1 non-reactive cells with large nuclei and flat morphology were counted as myofibroblasts, as cells with these cytologic features routinely demonstrated SMA-reactivity. Primary antibodies used to examine spheres included nestin (Millipore, MAB 353, 1:200), tyrosine hydroxylase (Millipore, AB152, 1:400), and SOX10 (Cell Marque, PA0813). On day 5 of
culture, spheres were fixed with 4% PFA for 10 minutes at room temperature, washed with PBS, embedded in OCT, and sectioned at 10 μm intervals. Block/permeabilization with 5% BSA plus 0.2% Triton X-100 or 10% goat serum plus 0.3% Triton X-100 was performed prior to staining for nestin and TH, respectively. These were followed by an Alexa Fluor 488-conjugated secondary antibody (Invitrogen, 1:1000) and DAPI counterstain. Images were acquired on a Zeiss LSM 710 META inverted confocal microscope. For SOX10 immunoperoxidase staining, fixed spheres were pelleted, processed in Histogel (Richard-Allan) on a tissue processor, embedded in paraffin, and sectioned at 5 μm. Slides were deparaffinized and heat induced antigen retrieval was performed on the Leica Bond Max IHC stainer using Epitope Retrieval 2 solution for 10 minutes. The sections were incubated with anti-SOX10 for one hour and the Bond Refine Polymer detection system was used for visualization. Sections were visualized using an Olympus BX40 light microscope.

Tumor Formation Assay

Male athymic nude mice (4–6 weeks old) were maintained as previously described [26]. All studies were approved by the Institutional Animal Care and Use Committee at Vanderbilt University and were conducted in accordance with NIH guidelines. 5 x 10⁴ BE (2)-C cells or MYCN-overexpressing adrenal progenitor cells were resuspended in 100 μl of HBSS including 30% Matrigel (BD Biosciences) and injected subcutaneously into the right flank using a 26-gauge needle (n = 7 per group). Tumor growth was assessed by measuring the two greatest perpendicular tumor dimensions with vernier calipers (Mitutoyo) and body weights were recorded weekly.

Statistical Analyses

GraphPad Prism 5 software was used for statistical analysis. All statistics were mean ± s.e.m. and p-values were calculated by one-way ANOVA or with Student’s t-test.

Results

MYCN promotes neural lineage commitment in multipotent sympathoadrenal progenitors

Recent studies have shown that multipotent sympathoadrenal progenitor cells (SAPs) can be isolated from the adrenal gland by differential plating and grown as spheres [18–20]. We employed this strategy to study the impact of *Mycn*, the murine homolog of *MYCN*, on neural progenitor cell differentiation and proliferation. Postnatal mouse adrenal progenitors were grown as spheres in chick embryo extract (CEE)-containing self-renewal medium at physiologic oxygen levels [23]. Cells were plated at a density of one cell per μL, a clonal density at which spheres formed would be derived from single cells (S1 Fig). Quantitative PCR was used to examine gene expression in spheres, and expression levels were compared to those found in postnatal superior cervical ganglia (SCG), a sympathoadrenal tissue containing neurons and Schwann cells. Spheres expressed genes characteristic of neural crest stem cells (NCSCs) including Bmi1, Mycn, Snai1, Sox10, and Nestin (Fig 1A). Bmi1 and Snai1 were expressed more highly by spheres than by SCG tissue. Mycn and Nestin showed greater expression on average in spheres, but the differences did not reach statistical significance. Sox10 expression was higher in sympathetic ganglia, where it is expressed by mature glial cells. Expression of the SAP genes Ascl1 and Phox2b was also greater in spheres, while the sympathetic neuron (SN) markers TrkA and Peripherin were more highly expressed by SCG. Tyrosine hydroxylase and dopamine β hydroxylase were expressed highly by the two tissue types, indicating that adrenal-
derived spheres express markers common to neural crest progenitors and sympathetic neurons. Quantitative PCR for the adrenal cortical markers Sf-1, Cyp11a1, and Cyp11b2 revealed no significant expression in spheres relative to postnatal adrenal gland control (data not shown).

Fig 1. Sympathoadrenal Progenitor Sphere Characterization and Differentiation. (A) Spheres grown from postnatal mouse adrenal glands express markers of neural crest stem cells (NCSCs), sympathoadrenal progenitors (SAPs), and sympathetic neurons (SNs). mRNA levels were analyzed by qRT-PCR and are shown in relation to TATA-Box binding protein-1 (TBP1). Expression data from postnatal mouse superior cervical ganglia (SCG) are included for comparison. Data are the mean values from four experiments run in triplicate. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, unpaired Student’s t-test. (B) The majority of sphere cells show nuclear SOX10 reactivity by immunoperoxidase labeling. Cytoplasmic nestin expression with linear morphology was observed by immunofluorescence microscopy in spheres. TH expression was prominent at the periphery of spheres. Representative images from 3 independent experiments. Scale bars equal 20 microns. (C) Sphere differentiation was induced by transfer to poly-d-lysine and fibronectin-coated plates in medium with low CEE content. Immunofluorescent images show the three cell types observed in differentiated spheres: TuJ1/TH-reactive neurons, SMA-reactive myofibroblasts, and S100-reactive Schwann cells. Scale bars 50 μM upper left panel and 25 μM all other panels. (D) A shift in differentiation potential was observed from primary spheres, grown directly from adrenal gland cells by differential plating, to secondary spheres, the products of dissociated primary spheres. Differentiated secondary spheres showed a reduced frequency of bipotent and neuron-containing colonies, and were more likely to show myofibroblast-only colonies (primary spheres n = 3, secondary spheres n = 4). Primary and secondary spheres were grown at clonal density.
shown). Immunohistochemical studies of primary spheres demonstrated expression of the NCSC proteins SOX10 and nestin (Fig 1B), with expression of tyrosine hydroxylase at the periphery of spheres.

Spheres were then transferred to differentiation medium, characterized by low CEE levels and including retinoic acid, on poly-d-lysine and fibronectin-coated plates to determine differentiation potential. Primary adrenal spheres formed colonies containing both TuJ1-immunoreactive neurons (N) and smooth muscle actin (SMA)-reactive myofibroblasts (M), with rare tri-lineage colonies including S100-positive Schwann cells (S) with spindled morphology (Fig 1C and 1D). Colonies demonstrating only neurons (N-only) or myofibroblasts (M-only) were seen as well. Neurons showed tyrosine hydroxylase (TH) reactivity indicative of sympathoadrenal differentiation. Primary spheres were then dissociated and plated at clonal density to generate secondary spheres. Limited self-renewal was observed: bipotent N+M colonies were seen, although these were reduced in number relative to the primary spheres (Fig 1D). Neuron-containing colonies were decreased in frequency overall as well, with no N-only colonies observed.

To explore the effects of MYCN overexpression on sympathoadrenal progenitor lineage commitment, we delivered the oncogene to freshly harvested cells by lentiviral transduction. Primary spheres were allowed to form, and western blot confirmed overexpression of the MYCN protein by spheres (Fig 2A). Quantitative PCR showed a lower mean level of the NCSC marker Bmi1 in the setting of MYCN expression, and increased levels of the sympathetic neural lineage markers Dbh and Th (Fig 2B). These differences, however, did not reach statistical significance. Primary spheres were then dissociated for secondary sphere growth at a density of one cell per microliter, and the resulting secondary spheres were differentiated to assess the impact of MYCN expression on colony composition. Interestingly, with MYCN expression, differentiated colonies were significantly more likely to contain neurons: N-only colonies were observed at a markedly increased frequency with a substantial reduction of M-only colonies (Fig 2C). Neural lineage induction by MYCN was maintained in the subsequent passage to tertiary spheres (Fig 2D), where N-only colonies were absent from controls but constituted the majority of MYCN overexpressing colonies. Control spheres were again more likely to form M-only colonies in this passage. While MYCN expression in development and neoplasia inhibits neural differentiation to maintain cells in a precursor state [27–30], our results indicate that MYCN strongly promotes the neural lineage in multipotent SAPs. This finding is consistent with the neural lineage commitment seen in neuroblastomas.

MYCN induces proliferation of sympathoadrenal progenitors and neurons

MYCN is required for the normal expansion of neural precursors during development of the mammalian forebrain and hindbrain [30]. Correspondingly, MYCN upregulation promotes proliferation in many nervous system tumors [31–33] and amplification of MYCN correlates with poor prognosis in neuroblastoma patients [13]. To better understand the role of MYCN in oncogenesis, proliferation assays were performed on SAPs, the likely cells of origin for neuroblastoma. Progenitor cells were isolated from freshly harvested adrenal cells and exposed to MYCN expressing or control lentivirus. Primary spheres were grown for 3–4 days to allow expression of the oncogene, and then dissociated for secondary sphere formation. MYCN overexpressing spheres grew roughly twice as large as control spheres (Fig 3A), suggesting enhanced proliferation. When proliferation was measured directly by EdU incorporation, MYCN overexpressing sphere cells showed a significantly higher proliferation rate (Fig 3B). Sympathoadrenal neuronal precursors retain the ability to proliferate after the acquisition of neuronal properties [34–37], and a recent study showed that precursors temporarily exit the
cell cycle upon expression of TuJ1 and TH with subsequent cycle re-entry before terminally exiting [38]. To learn the impact of MYCN overexpression on adherent, process-bearing neurons, spheres infected with Mycn lentivirus were dissociated to single cells and plated in differentiation medium on poly-d-lysine and fibronectin-coated plates. EdU was added to the medium 24 hours after plating, by which point neuronal cells had extended processes, and the cells were fixed 24 hours later. We observed that TuJ1-reactive neurons derived from MYCN overexpressing sphere cells were significantly more proliferative than control infected neurons (Fig 3C), demonstrating that MYCN induces proliferation not only of sympathoadrenal progenitors grown as spheres, but also of neurons grown adherently.

To learn the impact of MYCN expression on sphere-forming ability by SAPs, we dissociated secondary spheres expressing MYCN or a control construct and measured the number of tertiary spheres formed. The ratio of tertiary spheres formed per secondary sphere dissociated was significantly greater in the context of MYCN expression (Fig 3D). Therefore, not only does MYCN stimulate proliferation, but it also confers increased colony-forming potential.

MYCN induces sympathoadrenal progenitor apoptosis

Neuroblastoma tumors include a subset of dying cells, and measures of karyorrhexis correlate directly with tumor aggressiveness [39]. The recent finding that MYCN overexpression induces caspase-3 in zebrafish neuroblasts [17] raises the possibility that oncogene activity may be an important cause of cell death in SAPs and in tumor cells. To determine whether MYCN...
induces cell death in mammalian SAPs, we performed TUNEL labeling of cells from spheres infected with control or MYCN expressing lentivirus. MYCN overexpressing sphere cells showed more cell death, with approximately twice the rate of apoptosis (Fig 4).

MYCN expression is not sufficient for tumor formation

Given that MYCN overexpression imparts tumor-like features including enhanced proliferation, neural lineage commitment, and colony forming potential, we assessed the ability of MYCN overexpressing adrenal progenitor cells to form tumors in vivo. Fifty thousand cells dissociated from primary spheres infected with MYCN expressing lentivirus were resuspended in HBSS with 30% matrigel and injected subcutaneously into the flanks of male nude mice. As a positive control, the same number of cells from the MYCN-amplified human neuroblastoma cell line BE (2)-C were delivered in an identical manner. While tumors with neuroblastoma-
like histology and expression of the neuroblastoma SAP lineage markers Phox2B and TH developed in 6 out of 7 mice receiving BE (2)-C cells, no tumors formed following injection of the MYCN-overexpressing progenitor cells (Fig 5), indicating that overexpression of this oncogene in multipotent SAPs is not sufficient for tumorigenesis.

Discussion

Following delamination from the dorsal neural tube, neural crest cells migrate widely and differentiate into a variety of derivatives. These derivatives include melanocytes of the skin, myelinating and non-myelinating Schwann cells, pericytes and smooth muscle cells of the vascular system, bone and cartilage tissue in portions of the face and teeth, and neurons of the dorsal root ganglia and autonomic (sympathetic and parasympathetic) ganglia (recently reviewed by La Noce et al. [40]). Sympathetic neurons form from a group of trunk neural crest cells that first differentiate into sympathoadrenal progenitors, which also give rise to adrenal medulla cells. The pediatric cancer neuroblastoma is thought to arise from these sympathoadrenal precursors, with tumors originating in the paraspinal sympathetic ganglia and the adrenal medulla [1,3,9,10]. Given that sympathoadrenal progenitor cells (SAPs) are the likely cells of origin for neuroblastoma, and that MYCN plays a key role in neuroblastoma development and prognosis, it is important to understand the effects of MYCN expression on SAPs. Few studies have directly addressed the influence of MYCN on non-neoplastic progenitor cells, and this is the first study to characterize the oncogene’s impact on primary mammalian sympathoadrenal progenitors.

We cultured SAPs as spheres from early postnatal mouse adrenal glands, and observed expression of NCSC and SAP markers in these cells. While spheres also expressed genes
characteristic of sympathetic neuroblasts (e.g. tyrosine hydroxylase reactivity at the periphery), the NCSC/SAP profile and the capacity for secondary sphere formation with multi-lineage differentiation indicates a progenitor population. We found that overexpressing the murine MYCN homolog Mycn led to a dramatic increase in sphere size, with a significant increase in proliferation rate of sphere cells. MYCN expression also increased the proliferation rate of adrenal-derived adherent neurons in culture. These findings are compatible with previous in vivo studies showing increased numbers of neuroblasts in the MYCN transgenic zebrafish interrenal gland and TH-MYCN mouse sympathetic ganglia (hyperplasias) [17,41], and are consistent with a previous in vitro study showing MYCN-induced proliferation of chick sympathetic chain neurons in vitro [42].

Beyond its effect on proliferation, we also observed enhanced sphere-forming ability with MYCN overexpression, with greater numbers of tertiary spheres formed per secondary sphere dissociated. Enhanced sphere-forming ability is often used as an indicator of self-renewal [18,43,44]. In our system, MYCN simultaneously enhanced sphere-forming potential while promoting neural lineage commitment, and therefore does not promote “self-renewal” as strictly defined with maintenance of multipotency in subsequent colonies [21]. MYCN did, however, convey increased colony-forming potential in this system, raising the possibility that MYCN overexpression alone might permit SAPs to form a viable neoplasm, where pro-proliferative and survival factors outweigh factors promoting cell death. Compatible with this possibility are the findings that transgenic expression of the human MYCN gene in mouse neural

Fig 5. MYCN Expressing Progenitors Do Not Form Tumors. (A) Tumors derived from subcutaneously injected BE (2)-C cells showed neuroblastoma-like histologic features including dense cellularity, high nuclear-to-cytoplasmic ratios, high mitotic activity, and frequent apoptotic bodies. Scale bar equals 100 microns. (B) BE (2)-C derived tumors showed diffuse nuclear expression of PHOX2B and (C) diffuse cytoplasmic TH expression. Scale bars equal 100 microns. (D) While human neuroblastoma cells formed tumors in 6/7 mice, MYCN overexpressing adrenal progenitor cells did not form tumors (0/7). Average tumor volumes are shown. 5 x 10⁴ BE (2)-C human neuroblastoma cells or cells dissociated from Mycn-infected primary spheres were resuspended in HBSS with 30% Matrigel and delivered subcutaneously to nude mice.

doi:10.1371/journal.pone.0133897.g005
crest cells induces neuroblastoma formation in sympathetic ganglia [14,15,41] while overexpression in zebrafish induces tumor formation in the adrenal gland equivalent [17].

We find, however, that MYCN overexpression alone in primary SAPs is not sufficient for tumor formation in nude mice. This finding stands in contrast to a similar experiment by Schulte and colleagues who found that overexpressing MYCN in neural crest progenitor cells was sufficient to permit formation of neuroblastoma-like tumors in vivo [16]. Schulte and colleagues used the neural crest progenitor cell line JoMa1, while we infected primary adrenal cells with the oncogene. While it is possible that MYCN overexpression alone may be sufficient for human tumor formation, we suggest that additional changes in gene expression, which likely characterize transgenic tumors and cell lines, are required for engraftment and tumor growth. Weiss et al, for example, found recurrent chromosomal gains and losses in MYCN transgenic mice, suggesting that genetic mutations in addition to misexpressed MYCN were required to promote neuroblast transformation [14,2]. The long delay between initiation of MYCN expression and tumor generation in that mouse model also supports the concept that additional genetic mutations are necessary [41,45]. Mutation of the ALK tyrosine kinase receptor occurs together with MYCN amplification in a subset of human neuroblastomas [46] and may be one such tumor-promoting mutation. Perhaps ALK-induced upregulation of TRKB [45], a protein shown to enhance the survival of neuroblastoma-derived cells [47], may act as a pro-survival factor in the context of MYCN-driven tumor development.

In tumors and developing tissues, MYCN expression inhibits neuronal maturation. The hyperplastic precursor lesions of transgenic MYCN mice include cells which express the neural progenitor marker Phox2B, but lack full neuronal maturation as indicated by absence of tyrosine hydroxylase expression [27]. Inhibition of MYCN expression in vitro results in maturation of neuroblastoma cell lines, with neurite outgrowth and upregulation of the differentiation markers neurofilament and GAP43 [28,29]. Similarly, many studies demonstrate reduced MYCN expression in cell lines induced to differentiate by retinoic acid exposure [48,49]. MYCN antagonizes differentiation in the central nervous system as well, where mice lacking the oncogene show precocious neural differentiation in the subventricular zone, as well as increased tubulin beta-3 expression and neuritic extensions [30]. We found that Mycn enhanced neural differentiation, as defined by neural lineage commitment, of multipotent SAPs with more neuron-containing colonies formed. A previous study of neural crest progenitors described a similar result: Wakamatsu and colleagues showed that MYCN overexpression induced early ventral migration of avian neural crest progenitors, with premature neuronal differentiation of cells in ganglion-forming areas [50]. A recent study found MYCN gene expression to be required for neuroblastoma cell line differentiation, with an increase in MYCN expression during early phases of retinoic acid-induced differentiation and a strong reduction of neurite formation with MYCN silencing [51]. Considered together with our findings, the results of these studies suggest that MYCN expression predisposes multipotent SAPs to a neuronal fate, while simultaneously limiting their potential for full neuronal maturation.

A neural-lineage promoting role for MYCN is very interesting in the context of the neuroblastoma histologic phenotype, where even poorly differentiated tumors show diffuse reactivity for the neural marker synaptophysin, and truly “undifferentiated” tumors are rare [39]. The MYCN target genes responsible for inducing neural differentiation have not been studied extensively. It has been shown that MYCN can bind to promoter and enhancer regions of the ASCL1 (MASH1) gene [52], a pro-neural transcription factor required for sympathoadrenal neural differentiation [53]. And Yazawa et al. showed that MYCN can regulate ASCL1 expression [54]. Future studies will explore the downstream targets of MYCN in neural differentiation, and examine the requirement for ASCL1 in MYCN-induced neural lineage commitment.
In addition to its effects on proliferation and differentiation, we observed that MYCN expression increases the rate of apoptotic cell death in SAPs. This finding is compatible with those of Zhu et al, who found caspase-3 induction in interrenal gland neuroblasts of zebrafish overexpressing MYCN [17]. When the highly homologous oncogene MYCC is overexpressed in vivo, pancreatic beta-cell apoptosis occurs through an ARF-p53 dependent mechanism [55]. Interestingly, neuronal cells from the pre-cancerous sympathetic ganglia of TH-MYCN transgenic mice are resistant to apoptosis induced by nerve growth factor (NGF) withdrawal [41]. It has also been shown that silencing MYCN in neuroblastoma cell lines results in apoptotic cell death [56, 57]. The influence of MYCN on survival may therefore depend on the degree to which a sympathoadrenal cell has progressed along the spectrum of tumorigenesis: in naïve primary cells MYCN would function as a gate-keeper, only permitting cells that have successfully down-regulated its expression to survive and progress further in differentiation. Precancerous or cancerous cells would have evolved to require oncogene expression for maintenance of inappropriate survival pathways. The cellular response to MYCN may also depend on the level of oncogene expression as shown for MYCC by Murphy and colleagues, with a proliferative oncogenic response at lower levels and apoptosis at higher expression levels [55]. The in vitro model we describe is uniquely suited to explore the survival pathways that overcome MYCN’s pro-apoptotic effects, as well as to test the effects of oncogene expression level on cellular response.

Conclusions

Here we have shown that MYCN imparts neuroblastoma tumor-like characteristics, including enhanced proliferation, neural lineage commitment, and higher rates of cell death, to multipotent sympathoadrenal progenitor cells. Hence, these findings support the hypothesis that multipotent sympathoadrenal progenitor cells are cells of origin for neuroblastoma. Further, we have presented an in vitro system for modeling the changes that may occur in the initial steps of neuroblastoma development. Future studies will examine the impact of MYCN expression on human sympathoadrenal progenitor cells, and explore the hypothesis that additional gene expression changes cooperate with MYCN to permit neuroblastoma growth.

Supporting Information

S1 Fig. Clonal Density Determination. (A) To determine clonal density parameters for primary sphere formation, single cells isolated from the adrenal gland by differential plating were grown in ultra-low attachment plates at 1, 2, or 4 cells per microliter of self-renewal medium. The number of resulting spheres was quantified after 6 days of growth. The number of spheres formed doubles between 1 and 2 cells per microliter plated; this indicates that cell clumping is an uncommon occurrence in this density range. Therefore 1 cell per microliter is a density at which each sphere formed typically arises from a single cell (clonal density). Experiments were performed 3 times. (B) To determine clonal density for secondary sphere formation, primary spheres were dissociated and plated at 1, 2, or 4 cells per microliter. The number of spheres formed roughly doubles between 1 and 2 cells per microliter plated, indicating that 1 cell per microliter is a density at which each sphere typically arises from a single cell. Experiments were performed 5 times. (C) To determine clonal density in the context of lentiviral infection, primary spheres infected with control lentivirus were dissociated and plated at 1, 2, or 4 cells per microliter in self-renewal medium in low adherence plates. The number of spheres formed doubles between 1 and 2 cells per microliter plated, indicating that 1 cell per microliter is a density at which each sphere typically arises from a single cell. Experiments were performed 4 to 6
Acknowledgments

We acknowledge Dr. Anna M. Kenney of Emory University for the Mycn gene construct. Immunohistochemical data collection was performed in part through the use of the VUMC Cell Imaging Shared Resource. We thank the VUMC CISR staff for technical help. We also acknowledge the Vanderbilt Translational Pathology Shared Resource.

Author Contributions

Conceived and designed the experiments: BCM MK JQ DHC BDC. Performed the experiments: BCM MK BRK FEH JQ. Analyzed the data: BCM BDC. Contributed reagents/materials/analysis tools: BCM BDC DHC. Wrote the paper: BCM BDC.

References

1. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003; 3:203–216. PMID: 12612655
2. Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 2013; 3:a014415. doi: 10.1101/cshperspect.a014415 PMID: 24086065
3. Delellis RA, Mangray S. The Adrenal Glands. In: Mills SE, Carter D, GreensoN JK et al, eds. Sternberg’s Diagnostic Surgical Pathology. 4th Ed. Philadelphia, PA: Lippincott Williams and Wilkins, 2004:622–667.
4. Maris JM. Recent advances in neuroblastoma. N Engl J Med 2010; 362:2202–2211. doi:10.1056/NEJMra0804577 PMID: 20558371
5. Gutierrez JC, Fischer AC, Sola JE, Perez EA, Koniaris LG. Markedly improving survival of neuroblastoma: a 30-year analysis of 1,646 patients. Pediatr Surg Int 2007; 23:637–646. PMID: 17476512
6. Escobar MA, Grosfeld JL, Powell RL, West KW, Scherer LR 3rd, Fallon RJ, et al. Long-term outcomes in patients with stage IV neuroblastoma. J Pediatr Surg 2006; 41:377–381. PMID: 16481255
7. Kubota M, Okuyama N, Hirayama Y, Asami K, Ogawa A, Watanabe A. Mortality and morbidity of patients with neuroblastoma who survived for more than 10 years after treatment—Niigata Tumor Board Study. J Pediatr Surg 2010; 45:673–677. doi:10.1016/j.jpedsurg.2009.09.002 PMID: 20385269
8. Cohen LE, Gordon JH, Popovsky EY, Gunawardene S, Duffey-Lind E, Lehmann LE, et al. Late effects in children treated with intensive multimodal therapy for high-risk neuroblastoma: High incidence of endocrine and growth problems. Bone Marrow Transplant 2014; 49:502–508. doi: 10.1038/bmt.2013.218 PMID: 24442245
9. Hoehner JC, Hedborg F, Eriksson L, Sandstedt B, Grimelius L, Olsen L, et al. Developmental gene expression of sympathetic nervous system tumors reflects their histogenesis. Lab Invest 1998; 78:29–45. PMID: 9461120
10. De Preter K, Vandesompele J, Heimmann P, Yigit N, Beckman S, Schramm A, et al. Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes. Genome Biol 2006; 7:R84. PMID: 16986664
11. Schwab M, Ailtalo K, Kiempnauer KH, Varmus HE, Bishop JM, Gilbert F, et al. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 1983; 305:245–248. PMID: 6885651
12. Zimmerman KA, Yancopoulos GD, Collum RG, Smith RK, Kohl NE, Denis KA, et al. Differential expression of myc family genes during murine development. Nature 1986; 319:780–783. PMID: 2419762
13. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 1985; 313:1111–1116. PMID: 4047115
14. Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 1997; 16:2985–2995. PMID: 9214616
15. Teitz T, Stanke JJ, Federico S, Bradley CL, Brennan R, Zhang J, et al. Preclinical models for neuroblastoma: establishing a baseline for treatment. PLoS One 2011; 6:e19133. doi: 10.1371/journal.pone.0019133 PMID: 21559450

16. Schulte JH, Lindner S, Bohrer A, Maurer J, De Preter K, Lefever S, et al. MYCN and ALK/F1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells. Oncogene 2013; 32:1059–1065. doi: 10.1038/onc.2012.106 PMID: 22484425

17. Zhu S, Lee JS, Guo F, Shin J, Perez-Araye AR, Kutok JL, et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 2012; 21:362–373 doi: 10.1016/j.ccr.2012.02.010 PMID: 22439933

18. Chung KF, Sicard F, Vukicevic V, Hermann A, Storch A, Huttner WB, et al. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 2009; 27:2602–2613. doi: 10.1002/stem.180 PMID: 19609938

19. Santana MM, Chung KF, Vukicevic V, Rosmaninho-Salgado J, Kanczkowski W, Cortez V, et al. Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla. Stem Cells Transl Med 2012; 1:783–791. doi: 10.5966/sctm.2012-0022 PMID: 23197690

20. Saxena S, Wahl J, Huber-Lang MS, Stadel D, Braubach P, Debatin KM, et al. Generation of murine sympathoadrenergic progenitor-like cells from embryonic stem cells and postnatal adrenal glands. PLoS One 2013; 8:e64454. doi: 10.1371/journal.pone.0064454 PMID: 23675538

21. Morrison SJ, White PM, Zock C, Anderson DJ. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 1999; 96:737–749. PMID: 10089888

22. Joseph NM, Mukouyama YS, Mosher JT, Jaegle M, Crone SA, Dormand EL, et al. Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 2004; 131:5599–5612. PMID: 15494645

23. Morrison SJ, Csete M, Groves AK, Melega W, Wold B, Anderson DJ. Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J Neurosci 2000; 20:7370–7376. PMID: 11007895

24. Taylor MK, Yeager K, Morrison SJ. Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 2007; 134:2435–2447. PMID: 17537790

25. Sastry L, Johnson T, Hobson MJ, Smucker B, Cornetta K. Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 2002; 9:1155–1162. PMID: 12170379

26. Kang J, Ishola TA, Baregiamn N, Mourot JM, Rychahou PG, Evers BM, et al. Bombesin induces angiogenesis and neuroblastoma growth. Cancer Lett 2007; 253:273–281. PMID: 17383815

27. Alam G, Cui H, Shi H, Yang L, Ding J, Mao L, et al. MYCN promotes the expansion of Phox2B-positive neuronal progenitors to drive neuroblastoma development. Am J Pathol 2009; 175:856–866. doi: 10.2353/ajpath.2009.090019 PMID: 19608868

28. Negroni A, Scarpa S, Romeo A, Ferrari S, Modesti A, Raschellà G. Decrease of proliferation rate and induction of differentiation by a MYCN antisense DNA oligomer in a human neuroblastoma cell line. Cell Growth Differ 1991; 2:511–518. PMID: 1751406

29. Henriksen JR, Haug BH, Buechner J, Tente M, Lekke C, Flagstad T, et al. Conditional expression of retrovirally delivered anti-MYCN shRNA as an in vitro model system to study neuronal differentiation in MYCN-amplified neuroblastoma. BMC Dev Biol 2011; 11:1. doi: 10.1186/1471-213X-11-1 PMID: 21194500

30. Knoepfler PS, Cheng PF, Eisenman RN. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 2002; 16:2699–2712. PMID: 12381668

31. Kenney AM, Cole MD, Rowitch DH. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 2003; 130:15–28. PMID: 12441288

32. Bell E, Premkumar R, Carr J, Lu X, Lovat PE, Kees UR, et al. The role of MYCN in the failure of MYCN amplified neuroblastoma cell lines to G1 arrest after DNA damage. Cell Cycle 2006; 5:2639–2647. PMID: 17172827

33. Swartling FJ, Savov V, Persson AI, Chen J, Hackett CS, Northcott PA, et al. Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell 2012; 21:601–613. doi: 10.1016/j.ccr.2012.04.012 PMID: 22624711

34. Rohrer H, Thoenen H. Relationship between differentiation and terminal mitosis: chick sensory and ciliary neurons differentiate after terminal mitosis of precursor cells, whereas sympathetic neurons continue to divide after differentiation. J Neurosci 1987; 7:3739–3748. PMID: 3681410
35. DiCicco-Bloom E, Townes-Anderson E, Black IB. Neuroblast mitosis in dissociated culture: regulation and relationship to differentiation. J Cell Biol 1990; 110:2073–2086. PMID: 2190991

36. Wolf E, Black IB, DiCicco-Bloom E. Mitotic sympathetic neuroblasts initiate axonal pathfinding in vivo. J Neurobiol 1999; 40:366–374. PMID: 10440736

37. Straub JA, Sholler GL, Nishi R. Embryonic sympathoblasts transiently express TrkB in vivo and proliferate in response to brain-derived neurotrophic factor in vitro. BMC Dev Biol 2007; 7:10. PMID: 17309801

38. Gonsalvez DG, Cane KN, Okudela K, Hayashi H, et al. Complicated mechanisms of class II gene expression and relationship to differentiation. J Neurosci 2013; 33:5969–5979. doi: 10.1523/JNEUROSCI.4350-12.2013 PMID: 23554478

39. Shimada H, Ambros IM, Dehner LP, Hata J, Yoshii VV, Roald B, et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 1999; 86:364–372. PMID: 10421273

40. La Noce M, Mele L, Tirino V, Paino F, De Rosa A, Naddeo P, et al. Neural crest stem cell population in cranioaxillofacial development and tissue repair. Eur Cell Mater 2014; 28:348–357. PMID: 25350250

41. Hansford LM, Thomas WD, Keating JM, Norris MD, et al. Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Proc Natl Acad Sci USA 2004; 101:12664–12669. PMID: 15314226

42. Reiff T, Tsarova K, Margaritis A, Schmidt M, del Pino I, Rohrer H. Neuroblastoma phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons. J Neurosci 2010; 30:905–915. doi: 10.1523/JNEUROSCI.5368-09.2010 PMID: 20988999

43. Nishino J, Saunders TL, Sagane K, Souchon S. Lg4 promotes the proliferation and differentiation of glial lineage cells throughout the developing peripheral nervous system. J Neurosci 2010; 30:15228–15240. doi: 10.1523/JNEUROSCI.2286-10.2010 PMID: 21068328

44. Mundell NA, Labsky PA. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates. Development 2011; 138:641–652. doi: 10.1242/dev.054719 PMID: 21288004

45. Reiff T, Huber L, Kramer M, Delattre O, Janoueix-Lerosey I, Rohrer H, Midkine and Akl signaling in sympathetic neuron proliferation and neuroblastoma predisposition. Development. 2011; 138:4699–4708. doi: 10.1242/dev.072157 PMID: 21989914

46. De Brouwer S, De Preter K, Kamps C, Zabrocki P, Porcu M, Westerhout EM, et al. Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification. Clin Cancer Res 2010; 16:4353–4362. doi: 10.1158/1078-0432.CCR-09-2660 PMID: 20719933

47. Nakagawara A, Azar CG, Sacavarda NJ, Brodeur GM. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 1994; 14:759–767. PMID: 8264643

48. Thiele CJ, Reynolds CP, Israel MA. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 1985; 313:404–406. PMID: 3855502

49. Matsumoto M, Akiyama T, Miyatake S, Oda Y, Hanaoka M, et al. Expression of proto-oncogene products during drug-induced differentiation of a neuroblastoma cell line SK-N-DZ. Acta Neuropathol 1989; 79:217–221. PMID: 2480694

50. Watanabe Y, Watanabe N, Nakamura H, Kondoh H. Regulation of the neural crest cell fate by N-myc: promotion of ventral migration and neuronal differentiation. Development. 1997; 116:291–300. PMID: 9230987

51. Guglielmi L, Cinella C, Nardella M, Maresca G, Valentini A, Mercanti D, et al. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death Dis 2014; 5:e1081. doi:10.1038/cddis.2014.42 PMID: 24556696

52. Murphy DJ, Junttila MR, Pouyet L, Keating JM, Burkhart CA, Peaston AE, et al. Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 2008; 14:447–457. doi: 10.1016/j.ccr.2008.10.016 PMID: 19061836

53. Kang JH, Rychahou PG, Ishola TA, Qiao J, Evers BM, Chung DH. MYCN silencing induces differentiation and apoptosis in human neuroblastoma cells. Biochem Biophys Res Commun 2006; 351:192–197. PMID: 17055458
57. Nara K, Kusafuka T, Yoneda A, Oue T, Sangkhathat S, Fukuzawa M. Silencing of MYCN by RNA interference induces growth inhibition, apoptotic activity and cell differentiation in a neuroblastoma cell line with MYCN amplification. Int J Oncol 2007; 30:1189–1196. PMID: 17390021