Genetic polymorphisms of MBL2 and tuberculosis susceptibility: a meta-analysis of 22 case-control studies

Yan Cao1, Xinjing Wang1, Zhihong Cao1, Chunyan Wu2, Dongmei Wu2, Xiaoxing Cheng1

1Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, the 309th Hospital, Beijing, China
2Tangshan Tuberculosis Hospital, Tangshan, Hebei, China

Submitted: 25 June 2016
Accepted: 21 September 2016

Arch Med Sci
DOI: https://doi.org/10.5114/aoms.2017.65319
Copyright © 2017 Termedia & Banach

Abstract

Introduction: The association of mannose-binding lectin gene (MBL2) polymorphisms with tuberculosis susceptibility was inconclusive. In this study, a meta-analysis of 22 case-control studies was carried out to assess the effect of MBL2 polymorphisms on tuberculosis risk.

Material and methods: A search was performed in Embase, PubMed and Web of Science up to Sep 30, 2015. Odds ratio (OR) and 95% confidence interval (95% CI) were used to assess the association. Statistical analyses were performed using STATA 12.0 software.

Results: rs1800451 was associated with a decreased tuberculosis risk in the allele model (C vs. A: OR = 0.93, 95% CI: 0.86–1.00, p = 0.050). In analyses stratified by ethnicity, rs7096206 (C/G: OR = 1.31, 95% CI: 1.10–1.57, p = 0.003; GG vs. GC + CC: OR = 0.69, 95% CI: 0.56–0.85, p < 0.001) and A/O (O/A: OR = 1.34, 95% CI: 1.10–1.64, p = 0.004) were associated with tuberculosis risk in Asians, A/O (AA vs. AO + OO: OR = 0.71, 95% CI: 0.51–0.99, p = 0.043) and rs1800451 (AC vs. AA + CC: OR = 2.70, 95% CI: 1.27–5.74, p = 0.010) were associated with tuberculosis risk in Americans, and rs1800451 (CA/A: OR = 0.92, 95% CI: 0.86–0.99, p = 0.035) was associated with tuberculosis risk in Africans. Additionally, rs1800450 (B/A: OR = 0.42, 95% CI: 0.25–0.72, p = 0.001) was associated with tuberculosis risk in Europeans.

Conclusions: The MBL2 rs1800451 polymorphism is associated with decreased TB risk in the general population, and A/O, rs7096206, rs1800450 and rs1800451 are likely to be associated with the risk for some specific ethnic groups.

Key words: tuberculosis; gene polymorphism; susceptibility.

Introduction

Mycobacterium tuberculosis (TB) is one of the most common infectious diseases and ranks as the leading cause of mortality worldwide, with approximately 9 million new cases and 1.5 million deaths globally in 2013. According to the latest World Health Organization (WHO) report, the greatest burden of disease falls in developing countries, with approximately 56% of new cases occurring in the South-East Asia and Western Pacific regions [1]. It is well known that the outcome of infection with M. tuberculosis may be influenced by many factors, such as smoking history, physical condition, environmental and host genetic factors [2]. Recently, there have been vari-
ous studies reporting that host genetic factors may play an important role in TB susceptibility, which includes single nucleotide polymorphisms (SNPs) as a major factor. Multiple candidate genes have been investigated to determine the relationship between SNPs and TB risk, including TIRAP [3], VDR [4], P2X7 [5], and MBL2 [6].

The MBL2 gene codes for the complement factor mannose binding lectin (MBL), which can bind through multiple lectin domains to the carbohydrate moieties present in a wide variety of bacteria, viruses and fungi. Upon binding, MBL-associated serine proteases (MASPs) are activated to initiate the lectin pathway of the complement system, opsonizing and facilitating phagocytosis of micro-organisms by macrophages [7]. MBL2 deficiency may be advantageous in resistance against mycobacteria by reducing opsonization. MBL2 also plays a role in the regulation of inflammatory cytokines released by monocytes and enhances toll-like receptor (TLR) 2 and TLR6 signaling in response to microbial infection, and hence may affect the inflammation severity or disease progression [8].

Previous studies have suggested that certain SNPs within the promoter region and structural region of the MBL2 gene affect the formation of MBL multimer and serum MBL concentration [9]. The reduction of MBL multimer results in impaired binding with the ligand and the increased likelihood of being degraded by metalloproteinase. Three SNPs (rs1800450, rs5030737 and rs1800451) in exon 1 of the MBL2 gene give rise to amino acid substitutions, which disrupt the collagenous structure and the formation of functional oligomers. These three SNPs, collectively designated as "AO" polymorphisms, while the wild-type allele is described as allele "A" and the mutant allele as "O", indicate the presence of one or more mutant alleles in either rs1800450, rs5030737 or rs1800451. The heterogeneous-type A/O correlates with low MBL levels in the serum and the homologous-type O/O with almost undetectable MBL levels. The other SNPs, rs11003125, rs7096206, and rs7095891, also have been found in the promoter and 5 untranslated region, and the X variant shows negatively regulated transcriptional activity and results in reduced serum MBL levels [10]. Studies have evaluated the relationship of these polymorphisms with TB risk in black people, Asians, and Caucasians. However, the results obtained are controversial. Considering the critical role of the MBL2 gene in the pathogenesis of tuberculosis and the fact that a small sample size may lack the power to provide comprehensive conclusions, we performed a meta-analysis to investigate the association between MBL2 gene polymorphisms and TB risk.

Material and methods

Literature search

A systematic search was conducted using the databases of the US National Institutes of Health (PubMed), Web of Science and Embase databases, with the following combination of search terms: ‘Mycobacterium tuberculosis’ OR ‘tuberculosis’ AND ‘polymorphism’ OR ‘variant’ OR ‘genotype’ OR ‘allele’ OR ‘mutation’ OR single nucleotide polymorphism AND ‘MBL’ OR ‘mannose-binding lectin’ OR ‘mannose-binding protein’. To identify additional eligible articles, the relevant published articles and review articles were also identified by hand searching. The search in these databases was limited to articles relating to humans, covering all relevant English and Chinese language publications published up to March 2016.

The studies identified in our meta-analysis met all of the following criteria: (1) studies had to assess the association between MBL2 polymorphisms rs5030737, rs1800450, rs1800451, A/O, rs11003125, rs7096206, rs7095891 and tuberculosis risk; (2) unrelated case-control studies or cohort design, and studies included available genotype frequencies to calculate odds ratio (OR) and 95% confidence interval (CI); (3) independent studies using original data. Studies were excluded for the following criteria: (1) studies not providing genotype distribution or allele frequency data; (2) reviews or case reports, case studies without control subjects; (3) duplicated previous publications.

Data extraction

Two investigators (CY and WXJ) independently performed the required data extraction, and then conducted group discussion to resolve the disagreements. The following data were extracted from each study: publication year, name of first author, country, ethnicity, genotyping method, method of diagnosis of cases, tuberculosis type, number of cases and controls, numbers and mean age of cases and controls, genotypic and allele frequencies for cases and controls, and HIV status of cases and controls.

Statistical analysis

Hardy-Weinberg equilibrium (HWE) was assessed among the control population for each study using the Hardy-Weinberg Equilibrium Online Calculator (http://www.changbioscience.com/genetics/hardy.html). A p-value of > 0.05 was considered to meet HWE.

All statistical analyses were performed using Stata statistical software 12.0 (Stata Corporation,
College Station, TX, USA), with two-sided \(p\)-values. The OR and its corresponding 95% CI were calculated to assess the strength of association between MBL2 polymorphism and the TB risk. The pair-wise differences were analyzed to indicate the best genetic models as suggested by Thakkinstian et al. [11]. Data were then pooled using the best model. Ethnicity was adopted to carry out the stratified analysis, when data were available.

The significance of pooled ORs was measured by the \(Z\)-test \((p < 0.05\) was considered statistically significant). The heterogeneity assumption was tested by the \(\chi^2\)-based Q-statistic and Higgins’ \(I^2\) test. If \(p < 0.10\), the heterogeneity was considered statistically significant, and then the RE model was used. The heterogeneity was considered significant if \(I^2 > 50\%\), then ORs were pooled according to the random effect model (Mantel-Haenszel method) [12]. Otherwise the fixed effect model was used (DerSimonian-Laird method) [13]. Meta-regression was performed to detect the source of heterogeneity. Publication bias was evaluated by examining the Beggs’s funnel plots and Egger’s linear regression test [14, 15].

Results

Characteristics of studies

Our initial search identified 250 articles according to the search terms (PubMed: 56; Embase: 89; Web of Science: 105). One hundred and thirty-two abstracts were retrieved for more detailed evaluation after removing duplicates. Thirty-four articles addressing the association of MBL2 polymorphisms and TB were identified. After reviewing the full text, 12 articles were excluded (1 was excluded due to not being on MBL2 polymorphism; 1 was excluded due to not being on tuberculosis; 10 were excluded due to not providing genotype distribution). Finally, a total of 22 case-control studies that consisted of a total of 7056 tuberculosis patients and 7764 control subjects were included in this meta-analysis [16–37]. Figure 1 provides the detailed screening process. Among them, 9 were performed in an Asian population, 2 were performed in an American population, 6 were performed in a European population, and 5 were performed in an African population. The study of Soborg et al. 2003 has mixed data with 59 Europeans, 26 Asians, 17 Africans, and 7 Inuit, so it is not included in the subgroup analysis. The characteristics of each included study are listed in Table I.

Quantitative data synthesis

MBL2 rs7096206 polymorphism

Six case-control studies (3154 cases and 3441 controls) on the relationship between the rs7096206 polymorphism and the risk of TB were included in the meta-analysis. For rs7096206, the estimated OR1 (CC vs. GG), OR2 (GC vs. GG) and OR3 (CC vs. GC) were 0.964 (95% CI: 0.689–1.347), 1.290 (95% CI: 1.004–1.657) and 0.828 (95% CI: 0.587–1.168) (Table II). Thus, we mainly pooled the OR for allele comparison and the recessive genetic model in the subgroup analysis by ethnicity (Table III). The pooled examination showed no significant association between rs7096206 polymorphism and the risk of tuberculosis (C/G: OR = 1.15, 95% CI: 0.97–1.36, \(p = 0.100\), \(p^* = 0.061\); GG vs. GC + CC: OR = 0.80, 95% CI: 0.64–1.01, \(p = 0.058\), \(p^* = 0.010\)) (Table III). The results of subgroup analysis based on ethnicity indicated that the rs7096206 C allele increased susceptibility to tuberculosis risk in Asian populations, but not in American and African populations (C/G: OR = 1.31, 95% CI: 1.10–1.57, \(p = 0.003\), \(p^* = 0.634\); GC vs. GG + CC: OR = 0.69, 95% CI: 0.56–0.85, \(p < 0.001\), \(p^* = 0.381\)) (Table III). For the subgroup analysis by the genotyping methods, the recessive genetic model (GG vs. GC + CC: OR = 0.76, 95% CI: 0.59–0.96, \(p = 0.022\), \(p^* = 0.152\)) remained statistically significant in polymerase chain reaction sequence-specific primer (PCR-SSP) studies (Table III).

Table I. Articles included in this meta-analysis (n = 22)

Article	Study Design	Population	Genotyping Method	Ethnicity
Soborg et al. 2003	Clinic	Mixed	PCR-SSP	European, Asian, African, Inuit

Figure 1. Flowchart for study selection
Year	First author	Country	Ethnicity	Study design	Tuberculosis	Samples (n)	Age, years mean ± SD or mean (range)	Diagnosis method	Genotyping method	Controls source	HIV status	SNPs	
2015	Chen	China	Chinese Han	HB	Pulmonary tuberculosis	503	419	> 19 years Matched	Confirmed with the TB diagnosis criteria	PCR-SSP	Healthy persons	Not available	rs7096206
2014	Chen	China	Chinese Han	HB	Pulmonary tuberculosis	205	216	> 19 years Matched	Confirmed with the TB diagnosis criteria	PCR-SSP	Healthy persons	Not available	rs7096206
2014	Garcia-Gasalla	Spain	Spanish	PB	Pulmonary tuberculosis (58) extra-pulmonary or military TB (21)	76	106	45 (18–84) 45 (18–94)	Clinically, radiologically diagnosed and culture	PCR-SSP	Household contacted	Case: positive: 33%; Control: positive: 2.5%	rs7096206 rs1800450 rs5030737 rs1800451 rs11003125 rs7096891
2013	da Cruz	Brazil	Brazilian	PB	Pulmonary tuberculosis (119) and extra-pulmonary tuberculosis (36)	155	148	29.8 ±16.14 25 ±2.42	Clinical symptoms, radiographic findings, bacteriological confirmation (culture, smear and/or polymerase chain reaction)	Sequencing	Healthy persons	Negative	rs11003125 rs7096206 rs1800450 rs5030737 rs1800451
2013	Araujo	Brazil	Brazilian	HB	Pulmonary tuberculosis (133) and extra-pulmonary tuberculosis (34)	167	159	\	AFB smear and culture, X-rays and positive biopsy for M. tuberculosis	PCR-RFLP	Contacted workers	Negative	rs1800450 rs5030737 rs1800451
2011	Singla	India	North Indian	HB	Pulmonary tuberculosis (286) and extra-pulmonary tuberculosis (71)	357	392	33.1 ±15.42 36.4 ±14.88	Respiratory symptoms, sputum smear or culture, chest radiographs	PCR-RFLP	Healthy persons, contacted workers	Negative	rs1800450
2011	Thye	Ghana	Akan, Ga-Adangbe, Ewe	PB	Pulmonary tuberculosis	2010	2346	\	X-rays, clinical symptoms, and AFB smear and culture	Pyrosequencing, dynamic allele-specific hybridization with FRET	Contacted healthy persons	Negative	rs11003125 rs7096206 rs7095891 rs1800451
2011	de Wit	South Africa	South African Coloureds	PB	Pulmonary tuberculosis	505	318	31 30	Culture-proven	PCR-RFLP	Healthy persons	Negative	rs5030737 rs1800450 rs1800451
Year	First author	Country	Ethnicity	Study design	Tuberculosis	Samples (n)	Age, years mean ± SD or mean (range)	Diagnosis method	Genotyping method	Controls source	HIV status	SNPs	
------	--------------	---------	-----------	--------------	--------------	-------------	--------------------------------------	-----------------	-----------------	----------------	------------	------	
2011	Li Y	China	Chinese Han	PB	Pulmonary tuberculosis	231 / 226	39.2 (23–75) / 36.8 (25–72)	Confirmed with the TB diagnosis criteria	PCR-SSP	Healthy persons	Negative	rs11003125, rs7095891, rs1800450	
2009	Capparelli	Italy	Italian	PB	Pulmonary tuberculosis	277 / 288	47 ±17 / 40 ±17	Chest radiography and sputum smears	PCR-sequencing	Household contacted	Negative	rs11003125, rs7096206, rs7095891	
2008	Cosar	Turkish	Turkish	PB	Pulmonary tuberculosis (27) and extra-pulmonary tuberculosis (17)	44 / 99	7.02 ±4.5 / 7.38 ±4.07	Culture, clinical and radiological findings	PCR-RFLP	Healthy persons	Negative	rs1800450	
2007	Alagarasu	India	Dravidian	PB	Pulmonary tuberculosis (226) and extra-pulmonary tuberculosis (31)	257 / 297	35.37 ±10.8 / 32.87 ±8.76	Clinical, radiographic, bacteriological findings, AFB smear	PCR-sequencing	Healthy persons	Cases: positive (109); negative (148) / Controls: positive (151); negative (146)	rs5030737, rs1800450, rs1800451	
2007	Soborg	Tanzania	Tanzania	HB	Pulmonary tuberculosis	443 / 426	35 (15–73) / 34 (14–85)	Culture positive	PCR-SSP	Culture negative	Cases: Positive (44%); controls: positive (18%)	rs5030737, rs1800450, rs1800451, rs7096206	
2006	Liu W	China	Chinese Han	PB	Pulmonary tuberculosis	152 / 293	25.69 ±7.98 / 27.40 ±8.62	Confirmed with the TB diagnosis criteria	PCR-SSP	PCR-SSOP	Healthy persons	Negative	rs1800450, rs7096206, rs11003125, rs7095891
2006	Selvaraj	India	Indian	HB	Pulmonary tuberculosis	58 / 48	29.93 ±1.5 / 27.48 ±0.95	Clinical, radiographic, AFB smear and culture	PCR-SSOP	Healthy persons	Negative	rs5030737, rs1800450, rs1800451	
Year	First author	Country	Ethnicity	Study design	Tuberculosis	Samples (n)	Age, years mean ± SD or mean (range)	Diagnosis method	Genotyping method	Controls source	HIV status	SNPs	
------	--------------	---------	-----------	--------------	--------------	-------------	-------------------------------------	----------------	----------------	----------------	------------	------	
2006	Garcia-Laorden	Spain	Spanish	PB	Pulmonary tuberculosis	233/344	(27–47); (6–3 y)	Culture and microscopy	PCR-RFLP, PCR-SSP	Healthy persons and household contacted	Cases: positive (106)	rs5030737, rs1800450, rs1800451	
2004	Fitness	Malawi	Malawian	PB	Pulmonary tuberculosis	322/546	(25–45)	Culture, smear, or histology	PCR-RFLP	Healthy persons	Cases: positive (154)	rs1800451	
2003	Soborg	Tanzania	59 whites, 26 Asians, 17 Africans, and 7 Inuits	PB	Pulmonary tuberculosis	109/250	(27–47); (6 m–3 y)	Culture positive or microscopy	PCR-SSP	Healthy persons	Negative	rs5030737, rs1800450, rs1800451	
2003	Ozbas-Gerceker	Turkey	Turkish	PB	Pulmonary tuberculosis	118/100	(25–45)	Not available	PCR-RFLP	Healthy persons	Negative	rs1800450	
2000	Selvaraj	India	Indian (Dravidian)	PB	Pulmonary tuberculosis	67/44	37.1 ±1.7	Smear and culture	PCR-RFLP	Healthy persons (35); House contacted (32)	Not available	rs5030737, rs1800450, rs1800451	
1999	Selvaraj	India	Indian (Dravidian)	PB	Pulmonary tuberculosis	202/109	40.3 ±0.9	Smear and culture	PCR-SSOP	Healthy persons (62); House contacted (47)	Not available	rs5030737, rs1800450, rs1800451	
1998	Bellamy	Gambia	Gambian	PB	Pulmonary tuberculosis	397/422	\	\	TB/leprosy clinics	PCR-SSOP	Healthy persons	Negative	rs1800450, rs1800451

PB – population-based, HB – hospital-based, AFB – acid-fast bacilli, HIV – human immunodeficiency virus, MDR – multi-drug resistance for isoniazid and rifampicin, PPD – purified protein derivative, SNPs – single nucleotide polymorphisms, TB – tuberculosis, PCR-RFLP – polymerase chain reaction-restriction fragment length polymorphism.
Table II. Multiple comparisons of genotype effects

Genotype	Pooled OR examination		
	OR (95%CI)	P-value	P*
rs7096206 X/Y:			
YY vs. XX (OR1)	0.964 (0.689–1.347)	0.829	0.970
XY vs. XX (OR2)	1.290 (1.004–1.657)	0.047	0.005
YY vs. XY (OR3)	0.828 (0.587–1.168)	0.282	0.739
A/O T/C:			
CC vs. TT (OR1)	1.973 (0.935–4.163)	0.075	0.000
CT vs. TT (OR2)	1.179 (0.852–1.633)	0.321	0.000
CC vs. CT (OR3)	1.547 (0.954–2.507)	0.077	0.001
rs11003125 H/L:			
LL vs. HH (OR1)	0.716 (0.501–1.024)	0.062	0.501
LH vs. HH (OR2)	0.890 (0.692–1.144)	0.798	0.052
LL vs. LH (OR3)	0.911 (0.645–1.286)	0.454	0.432
rs5030737 A/D:			
DD vs. AA (OR1)	2.985 (0.712–12.510)	0.135	0.718
AD vs. AA (OR2)	1.021 (0.746–1.395)	0.898	0.499
DD vs. AD (OR3)	3.054 (0.696–13.395)	0.139	0.510
rs1800450 A/B:			
BB vs. AA (OR1)	0.989 (0.544–1.797)	0.971	0.117
AB vs. AA (OR2)	0.911 (0.717–1.157)	0.443	0.014
BB vs. AB (OR3)	1.074 (0.621–1.856)	0.798	0.232
rs1800451 A/C:			
CC vs. AA (OR1)	0.833 (0.697–0.995)	0.044	0.709
AC vs. AA (OR2)	0.955 (0.802–1.138)	0.607	0.085
CC vs. AC (OR3)	0.894 (0.747–1.070)	0.222	0.699
rs7095891 P/Q:			
QQ vs. PP (OR1)	1.089 (0.906–1.309)	0.362	0.815
PQ vs. PP (OR2)	0.953 (0.841–1.080)	0.449	0.845
QQ vs. PQ (OR3)	1.133 (0.948–1.353)	0.169	0.882

OR = odds ratio, CI = confidence interval. P-value for OR, P* = P-value of Q-test for heterogeneity test.

MBL2 rs11003125 polymorphism

Four case-control studies (2370 cases and 2760 controls) on the relationship between the rs11003125 polymorphism and the risk of TB were included in the meta-analysis. For rs11003125, the estimated OR1 (GG vs. CC), OR2 (CG vs. CC) and OR3 (GG vs. CG) were 0.716 (95% CI: 0.501–1.024), 0.890 (95% CI: 0.693–1.144) and 0.911 (95% CI: 0.645–1.286) (Table II). Thus, we mainly pooled ORs for allele comparison and the codominant genetic model in the subgroup analysis by ethnicity. The pooled examination revealed no significant association between rs11003125 polymorphism and the risk of tuberculosis (G/C: OR = 0.89, 95% CI: 0.58–1.35, p = 0.572, p* < 0.001; CG vs. CC + GG: OR = 1.00, 95% CI: 0.87–1.16, p = 0.946, p* = 0.290) (Table III).

MBL2 rs7095891 polymorphism

Three case-control studies (2325 cases and 2668 controls) on the relationship between the
Table III. Meta-analysis results

rs7096206	N	Case/control	Allele comparison	OR (95% CI)	P	p*	Genetic model comparison	OR (95% CI)	P	p*
		Total					Dominant			
		6595	3154/3441	1.15 (0.97–1.36)	0.100	0.061	1.09 (0.78–1.52)	0.610	0.957	
		Ethnicity:								
		Asian		1.31 (1.10–1.57)*	0.003	0.634	0.69 (0.56–0.85)*	0.000	0.381	
		American		1.35 (0.88–2.07)*	0.173	/	0.65 (0.39–1.06)*	0.084	/	
		African		0.95 (0.85–1.08)*	0.451	0.955	1.05 (0.92–1.20)*	0.476	0.788	
		Genotype methods:								
		PCR-SSP		1.21 (1.04–1.40)*	0.016	0.241	0.76 (0.59–0.96)*	0.022	0.152	
		Sequencing		1.06 (0.78–1.46)	0.699	0.131	0.88 (0.55–1.40)	0.585	0.061	
		A/O		1.35 (0.96–1.88)	0.083	0.000	0.49 (0.26–0.93)	0.028	0.000	
		Ethnicity:								
		European		1.49 (0.49–4.52)	0.480	0.000	0.60 (0.15–2.41)	0.474	0.000	
		American		1.32 (1.00–1.75)*	0.054	0.182	0.71 (0.51–0.99)*	0.041	0.129	
		Asian		1.34 (1.10–1.64)*	0.004	0.211	0.79 (0.62–1.02)*	0.066	0.285	
		African		0.83 (0.67–1.02)*	0.076	/	1.30 (0.99–1.71)*	0.062	/	
		Genotype methods:								
		PCR-SSP		1.15 (0.84–1.57)*	0.392	0.056	1.00 (0.69–1.46)*	0.988	0.496	
		Sequencing		1.62 (1.07–2.44)*	0.022	/	0.54 (0.33–0.88)*	0.013	/	
		PCR-RFLP		1.05 (0.64–1.71)	0.845	0.021	0.97 (0.58–1.62)	0.893	0.046	
		PCR-SSOP		1.26 (0.73–2.18)	0.401	0.003	0.43 (0.08–2.19)	0.568	0.019	
		PCR-Sequencing		1.97 (0.64–6.13)	0.240	0.000	0.85 (0.49–1.10)	0.307	0.000	
Allele comparison	N	Case/control	OR (95% CI)	P	P*					
-------------------	---	--------------	-------------	---	----					
rs11003125										
Total	5130	2370/2760	0.89 (0.73–1.09)	0.254	0.068					
Codominant	1.00 (0.87–1.16)*	0.946	0.290							
Ethnicity:										
American	303	155/148	0.73 (0.51–1.03)*	0.074	/					
TR (0.62–1.54)*	0.920	/								
Asian	810	372/438	0.83 (0.68–1.02)*	0.078	0.440					
TR (0.61–1.07)*	0.139	0.533								
African	4017	1843/2174	1.09 (0.92–1.30)*	0.296	/					
TR (0.92–1.32)*	0.280	/								
Genotype methods:										
Sequencing	303	155/148	0.73 (0.51–1.03)*	0.074	/					
TR (0.62–1.54)*	0.920	/								
Pyro-sequencing	4017	1843/2174	1.09 (0.92–1.30)*	0.296	/					
TR (0.92–1.32)*	0.280	/								
PCR-SSP	810	372/438	0.83 (0.68–1.02)*	0.078	0.440					
TR (0.61–1.07)*	0.139	0.533								
rs5030737										
Total	2647	1410/1237	1.20 (0.90–1.60)*	0.225	0.787					
Dominant	0.27 (0.07–1.04)*	0.058	0.705							
Recessive	0.90 (0.66–1.22)*	0.489	0.770							
Ethnicity:										
American	520	265/255	1.25 (0.66–2.39)	0.491	0.924					
TR (0.40–1.53)*	0.467	0.950								
African	1443	759/684	0.84 (0.45–1.54)	0.564	0.359					
TR (0.65–2.23)	0.560	0.353								
Asian	684	386/298	1.45 (0.91–2.32)	0.114	0.631					
TR (0.49–1.32)	0.394	0.272								
Genotype methods:										
Sequencing	303	155/148	1.23 (0.55–2.74)*	0.621	/					
Recessive	0.79 (0.34–1.87)*	0.593	/							
PCR-RFLP	819	488/331	0.85 (0.46–1.57)	0.595	0.326					
Recessive	1.19 (0.64–2.21)	0.590	0.319							
PCR-sequencing	373	184/189	1.59 (0.89–2.85)	0.121	/					
Recessive	0.66 (0.36–1.22)	0.183	/							
PCR-SSP	841	381/460	1.17 (0.66–2.07)	0.587	0.891					
Recessive	0.87 (0.48–1.58)	0.647	0.852							
PCR-SSOP	311	202/109	1.26 (0.59–2.69)	0.558	/					
Recessive	1.17 (0.51–2.68)	0.703	/							
rs1800450										
Total	4956	2481/2475	0.94 (0.74–1.19)	0.610	0.001					
Dominant	1.07 (0.73–1.55)	0.742	0.156							
Recessive	1.09 (0.85–1.40)	0.508	0.003							
Case/control Allele comparison										

	OR (95% CI)	OR (95% CI)								
	P	P								
Table III.										
Cont.										
N										
Case/control										
Allele comparison										
Genetic model comparison										
P										
P										
Ethnicity:										
American										
155/148	1.27 (0.75–2.15)	0.379								
OR										
(95% CI)										
Dominant										
0.618										
Asian										
232/9	1.14 (0.79–1.63)	0.462								
OR										
(95% CI)										
Dominant										
0.160										
African										
196/3	1.29 (1.07–1.31)	0.100								
OR										
(95% CI)										
Dominant										
0.001										
European										
361/199	0.92 (0.62–1.40)	0.075								
OR										
(95% CI)										
Dominant										
0.338										
Total										
8415/4465	0.93 (0.86–1.00)	0.501								
OR										
(95% CI)										
Codominant										
0.152										

Ethnicity:		
American		
512/18	2.59 (1.23–5.46)	0.032
OR		
(95% CI)		
Codominant		
0.073		
African		
7540/2762	2.75 (1.21–6.28)	0.046
OR		
(95% CI)		
Codominant		
0.338		

Genotype methods:		
Sequencing		
8415/4465	2.75 (1.21–6.28)	0.046
OR		
(95% CI)		
Codominant		
0.338		

Ethnicity:		
American		
155/148	1.27 (0.75–2.15)	0.379
OR		
(95% CI)		
Dominant		
0.618		
Asian		
232/9	1.14 (0.79–1.63)	0.462
OR		
(95% CI)		
Dominant		
0.160		
African		
196/3	1.29 (1.07–1.31)	0.100
OR		
(95% CI)		
Dominant		
0.001		
European		
361/199	0.92 (0.62–1.40)	0.075
OR		
(95% CI)		
Dominant		
0.338		
Total		
8415/4465	0.93 (0.86–1.00)	0.501
OR		
(95% CI)		
Codominant		
0.152		

Ethnicity:		
American		
512/18	2.59 (1.23–5.46)	0.032
OR		
(95% CI)		
Codominant		
0.073		
African		
7540/2762	2.75 (1.21–6.28)	0.046
OR		
(95% CI)		
Codominant		
0.338		

Genotype methods:		
Sequencing		
8415/4465	2.75 (1.21–6.28)	0.046
OR		
(95% CI)		
Codominant		
0.338		
Genetic polymorphisms of MBL2 and tuberculosis susceptibility: a meta-analysis of 22 case-control studies

Table III. Cont.

rs7095891	N	Case/control Allele comparison	OR (95% CI)	P	Genetic model comparison	OR (95% CI)	P
Genetic model comparison	P	Case/control Allele comparison	OR (95% CI)	P			
Dominant	0.90 (0.76–1.06)*	1.02 (0.94–1.11)*	0.922				
Recessive	1.01 (0.88–1.14)*	1.01 (0.88–1.14)*	0.922				
rs7095891 polymorphism and the risk of TB were included in the meta-analysis. For rs7095891, the estimated OR1 (TT vs. CC), OR2 (CT vs. CC) and OR3 (TT vs. CT) were 1.089 (95% CI: 0.906–1.309), 0.953 (95% CI: 0.841–1.080) and 1.133 (95% CI: 0.948–1.353) (Table II). Thus, we mainly pooled ORs for allele comparison and the recessive genetic model in the subgroup analysis by ethnicity. The pooled examination revealed no significant association between rs7095891 polymorphism and the risk of tuberculosis (T/C: OR = 1.02, 95% CI: 0.93–1.11, p = 0.707, p_a = 0.585; CC vs. CT + TT: OR = 1.02, 95% CI: 0.91–1.15, p = 0.723, p_a = 0.731) (Table III).							

MBL2 rs5030737 polymorphism

Seven case-control studies (1410 cases and 1237 controls) on the relationship between the rs5030737 polymorphism and the risk of TB were included in the meta-analysis. For rs5030737, the estimated OR1 (DD versus AA), OR2 (AD vs. AA) and OR3 (DD vs. AD) were 2.985 (95% CI: 0.712–12.51), 1.021 (95% CI: 0.746–1.395) and 3.054 (95% CI: 0.696–13.40) (Table II). Thus, we mainly pooled ORs for allele comparison and the recessive genetic model in the subgroup analysis by ethnicity. The pooled examination revealed no significant association between rs5030737 polymorphism and the risk of tuberculosis (D/A: OR = 1.20, 95% CI: 0.90–1.60, p = 0.225, p_a = 0.787; AA vs. AD + DD: OR = 0.90, 95% CI: 0.66–1.22, p = 0.489, p_a = 0.770) (Table III).

MBL2 rs1800450 polymorphism

Thirteen case-control studies contained sufficient data for analysis of the relationship between the rs1800450 polymorphism and the risk of TB. The distribution of genotypes from the study of Mauro et al. was not consistent with HWE (Table IV), so only twelve studies (2481 cases and 2493 controls) were included in the meta-analysis [20]. For rs1800450, the estimated OR1 (BB vs. AA), OR2 (AB vs. AA) and OR3 (BB vs. AB) were 0.989 (95% CI: 0.544–1.797), 0.911 (95% CI: 0.717–1.157) and 1.074 (95% CI: 0.621–1.856) (Table II). Thus, we mainly pooled ORs for allele comparison and the dominant genetic model in the subgroup analysis by ethnicity. The pooled examination revealed no significant association between rs1800450 polymorphism and the risk of tuberculosis (B/A: OR = 0.94, 95% CI: 0.74–1.19, p = 0.610, p² = 0.001; AA + AB vs. BB: OR = 0.83, 95% CI: 0.62–1.10, p = 0.742, p² = 0.156) (Table III). When stratified by ethnicity, a significantly decreased risk was found among Europeans in allele contrast (B/A: OR = 0.42, 95% CI: 0.25–0.72, p = 0.001, p² = 0.338 (Table III, Figure 3). When stratified by genotyping method, the allele comparison (B/A: OR = 0.68, 95% CI: 0.57–0.83,
SNP	Year	First author	Cases	Controls	HWE	P-value								
			YY	YX	XX	Y	X	YY	YX	XX	Y	X	χ²	P-value
rs7096206	2015	Chen	325	166	12	816	190	296	113	10	705	133	0.0411	0.8393
	2014	Chen	123	77	5	323	87	159	49	8	367	65	2.7405	0.0978
	2013	da Cruz	101	49	5	251	59	110	32	6	252	44	3.1437	0.0762
	2011	Thye	1437	396	26	3270	448	1663	486	31	3812	548	0.4491	0.5028
	2007	Soborg	182	96	13	460	122	166	85	15	417	115	0.8652	0.3523
	2006	Liu W	91	44	6	226	56	151	54	7	356	68	0.6227	0.4300
		A/O	AA	AO	OO	A	O	AA	AO	OO	A	O		
	2014	Garcia-Gasalla	48	24	4	120	32	71	34	1	176	36	2.0077	0.1565
	2013	da Cruz	92	55	8	239	71	108	34	6	250	46	2.3077	0.1287
	2013	Araujo	102	62	3	266	68	101	56	2	258	60	3.5960	0.0579
	2009	Capparelli	55	158	61	268	280	166	112	10	444	132	2.9226	0.0873
	2008	Alagarasu	145	87	25	377	137	169	109	19	447	147	0.0638	0.8006
	2007	Soborg	289	132	22	710	176	271	131	30	673	191	6.1675	0.0130
	2006	Selvaraj	24	19	5	67	29	37	18	3	92	24	0.1713	0.6789
	2006	Garcia-Laorden	144	79	10	367	99	183	134	27	500	188	0.1273	0.7213
	2003	Soborg	71	30	8	172	46	157	86	7	400	100	1.4063	0.2357
	2000	Selvaraj	32	24	6	88	36	22	9	1	53	11	0.0046	0.9458
	1999	Selvaraj	107	73	22	287	117	68	39	2	175	43	1.8374	0.1753
	1998	Bellamy	198	166	33	562	232	183	197	42	563	281	1.0967	0.2950
rs11003125	2013	da Cruz	82	63	10	227	83	68	61	19	197	99	0.8147	0.3667
	2011	Thye	1570	265	8	3405	281	1878	287	9	4043	305	0.3115	0.5768
	2011	Li Y	105	92	34	302	160	89	106	31	284	168	0.0040	0.9498
	2006	Liu W	44	66	31	154	128	49	105	58	203	221	0.0124	0.9114
rs5030737	2013	da Cruz	142	12	1	296	14	138	9	1	285	11	3.3406	0.0676
	2013	Araujo	102	8	0	212	8	101	6	0	208	6	0.0890	0.7654
	2011	de Wit	363	15	0	741	15	211	13	0	435	13	0.2000	0.6547
	2008	Alagarasu	156	26	2	338	30	169	20	0	358	20	0.5899	0.4425
	2007	Soborg	289	8	0	586	8	271	6	0	548	6	0.0332	0.8554
	2003	Soborg	71	12	1	154	14	157	25	1	339	27	0.0001	0.9965
	1999	Selvaraj	186	9	7	381	23	99	10	0	208	10	0.2519	0.6157
Table IV. Cont.

SNP	Year	First author	Cases	Controls	HWE	χ^2	P-value
rs1800450							
	2013	da Cruz	122	31	2	275	35
			124	21	3	269	27
	2013	Araujo	102	50	0	254	50
			50	101	48	0	250
	2011	Singla	218	126	13	562	152
			207	155	30	569	215
	2011	de Wit	363	63	2	789	67
			211	50	0	472	50
	2011	Li Y	171	57	3	399	63
			186	37	3	409	43
	2008	Cosar	40	4	0	84	4
			71	27	1	169	29
	2008	Alagarasu	156	44	12	356	68
			169	68	10	406	88
	2007	Soborg	289	9	0	587	9
			271	13	1	555	15
	2006	Liu W	103	34	4	240	42
			166	42	4	374	50
	2003	Soborg	71	16	3	158	22
			157	48	3	362	54
	2003	Ozbas-Gerceker	101	16	1	218	18
			76	20	4	172	28
	1999	Selvaraj	137	51	14	325	79
			84	24	1	192	26
	1998	Bellamy	198	7	0	403	7
			183	5	0	371	5
rs1800451							
	2013	da Cruz	133	22	0	288	22
			140	8	0	288	8
	2013	Araujo	102	4	0	208	4
			101	2	0	204	2
	2011	Thye	885	815	193	2585	1201
			1002	977	257	2981	1491
	2011	de Wit	363	56	0	782	56
			211	39	0	461	39
	2008	Alagarasu	156	14	1	326	16
			169	21	2	359	25
	2007	Soborg	289	115	20	693	155
			271	112	20	654	152
	2004	Fitness	205	105	12	515	129
			362	160	24	884	208
	2003	Soborg	71	2	1	144	4
			157	13	0	327	13
	1999	Selvaraj	176	25	1	377	27
			103	5	1	211	7
	1998	Bellamy	198	159	29	555	217
			183	192	42	558	276
rs7095891							
	2011	Thye	725	920	308	2370	1536
			825	1086	319	2736	1724
	2011	Li Y	189	39	3	417	45
			181	41	4	403	49
	2006	Liu W	118	22	1	258	24
			171	39	2	381	43

HWE – Hardy-Weinberg equilibrium.

$p < 0.001$, $p^2 = 0.224$ and dominant genetic model (AA + AB vs. BB: OR = 2.08, 95% CI: 1.15–3.78, $p = 0.015$, $p^2 = 0.554$) remained statistically significant in PCR-RFLP studies. We also found a significant association of TB in polymerase chain reaction sequence-specific oligonucleotide probe (PCR-SSOP) studies for two comparison models: the allele model (B/A: OR = 1.72, 95% CI: 1.10–2.66, $p = 0.016$, $p^2 = 0.604$) and the dominant model (AA + AB vs. BB: OR = 0.12, 95% CI: 0.02–0.96, $p = 0.045$) (Table III).

MBL2 rs1800451 polymorphism

Excluding the study of Selvaraj et al., which was not consistent with HWE (Table IV) [36], nine
A

Study ID	OR (95% CI) Weight (%)
Asian:	
Chen 2015	1.23 (0.97–1.57) 14.97
Chen 2014	1.52 (1.07–2.17) 6.34
Liu 2006	1.30 (0.88–1.92) 5.54
Subtotal	1.31 (1.10–1.57) 26.85
American:	
da Cruz 2013	1.35 (0.88–2.06) 4.64
Subtotal	1.35 (0.88–2.06) 4.64
African:	
Thye 2011	0.95 (0.83–1.09) 56.43
Søborg 2007	0.96 (0.72–1.28) 12.08
Subtotal	0.95 (0.85–1.08) 68.51
Overall	1.07 (0.97–1.18) 100.00

B

Study ID	OR (95% CI) Weight (%)
Asian:	
Chen 2015	0.76 (0.57–1.00) 17.04
Chen 2014	0.54 (0.36–0.81) 9.24
Liu 2006	0.74 (0.47–1.16) 6.38
Subtotal	0.69 (0.56–0.85) 32.65
American:	
da Cruz 2013	0.65 (0.39–1.06) 5.85
Subtotal	0.65 (0.39–1.06) 5.85
African:	
Thye 2011	1.06 (0.91–1.23) 51.81
Søborg 2007	1.01 (0.71–1.42) 9.69
Subtotal	1.05 (0.92–1.20) 61.50
Overall	0.91 (0.82–1.01) 100.00

Figure 2. Forest plot of tuberculosis risk associated with MBL2 rs7096206 polymorphism (A – allele comparison: C allele vs. G allele, B – recessive comparison: GG vs. GC + CC)
Genetic polymorphisms of MBL2 and tuberculosis susceptibility: a meta-analysis of 22 case-control studies

Arch Med Sci 15

case-control studies (3950 cases and 4465 controls) on the relationship between the rs1800451 polymorphism and the risk of TB were included in the meta-analysis. For rs1800451, the estimated OR1 (CC vs. AA), OR2 (AC vs. AA) and OR3 (CC vs. AC) were 0.833 (95% CI: 0.697–0.995), 0.955 (95% CI: 0.802–1.138) and 0.894 (95% CI: 0.747–1.070) (Table II). Thus, we mainly pooled ORs for allele comparison and the codominant genetic model in the subgroup analysis by ethnicity. The pooled examination revealed a significant association between rs1800451 polymorphism and the risk of tuberculosis (C/A: OR = 0.93, 95% CI: 0.86–1.00, \(p = 0.050 \), \(p_a = 0.152 \)) (Table III).

When performing a meta-analysis by ethnicity, increased risk of TB was found among Americans (C/A: OR = 2.59, 95% CI: 1.23–5.43, \(p = 0.012 \), \(p^* = 0.727 \); AC vs. AA + CC: OR = 2.70, 95% CI: 1.27–5.74, \(p = 0.010 \), \(p^* = 0.698 \)), and a protective effect was observed among Africans (C/A: OR = 0.92, 95% CI: 0.86–0.99, \(p = 0.035 \), \(p^* = 0.460 \)) (Table III, Figure 4). For the subgroup analysis by genotyping method, the allele comparison (C/A: OR = 2.75, 95% CI: 1.21–6.28, \(p = 0.016 \)) and recessive genetic model (AC vs. AA + CC: OR = 2.90, 95% CI: 1.25–6.73, \(p = 0.013 \)) remained statistically significant in sequencing studies. We also found a decreased risk of TB in PCR-SSOP studies in the allele model (C/A: OR = 0.79, 95% CI: 0.64–0.98, \(p = 0.031 \)) (Table III).

MBL2 exon 1 polymorphisms

Excluding the study of Søborg et al., which was not consistent with HWE (Table IV) [28], eleven case-control studies (1980 cases and 2213 controls) on the relationship between the MBL2 exon 1 polymorphisms (wild-type (AA) versus any MBL2 variant allele (OA/OO) genotype) and the risk of TB were included in the meta-analysis. The estimated OR1 (OO vs. AA), OR2 (AO vs. AA) and OR3 (OO vs. AO) were 1.973 (95% CI: 0.935–4.163), 1.179 (95% CI: 0.852–1.633) and 1.547 (95% CI: 0.954–2.507) (Table II). Thus, we mainly pooled OR for allele comparison and the recessive genetic model in the subgroup analysis by ethnicity. Overall, a significant association between exon 1 gene polymorphisms and the risk of TB was observed (AA + AO vs. OO: OR = 0.49, 95% CI: 0.26–0.93, \(p = 0.028 \), \(p^* = 0.000 \)) (Table III). The results of subgroup analysis based on ethnicity indicated that MBL2 O allele carriers (AO and/or OO) in Asian populations were associated with increased risk of TB (O/A: OR = 1.34, 95% CI: 1.10–1.64, \(p = 0.004 \), \(p^* = 0.211 \)), and a significant protective effect was detected between MBL2 exon 1 polymorphisms and TB risk in Americans under recessive models (AA vs. AO + OO: OR = 0.71, 95% CI: 0.51–0.99, \(p = 0.041 \), \(p^* = 0.129 \), suggesting genetic diversity among ethnicities (Table III, Figure 5). For the subgroup analysis by genotyping method, the allele

Study ID	OR (95% CI)	Weight (%)
American:		
da Cruz 2013	1.27 (0.75–2.15)	5.16
Subtotal	1.27 (0.75–2.15)	5.16
Asian:		
Singla 2011	0.72 (0.56–0.91)	33.94
Li 2011	1.50 (1.00–2.27)	7.90
Alagarasu 2008	0.88 (0.62–1.25)	14.36
Liu 2006	1.31 (0.84–2.03)	7.15
Selvaraj 1999	1.80 (1.11–2.89)	5.72
Subtotal (\(I^2 = 78.9\% \), \(p = 0.001 \))	0.99 (0.85–1.16)	69.07
African:		
De Wit 2011	0.80 (0.55–1.18)	12.05
Søborg 2007	0.57 (0.25–1.31)	3.18
Bellamy 1998	1.29 (0.41–4.10)	1.08
Subtotal (\(I^2 = 0.0\% \), \(p = 0.522 \))	0.79 (0.57–1.10)	16.30
European:		
Cosar 2008	0.28 (0.09–0.82)	3.58
Ozbas-Gerceker 2003	0.51 (0.27–0.95)	5.89
Subtotal (\(I^2 = 0.0\% \), \(p = 0.338 \))	0.42 (0.25–0.72)	9.47
Overall (\(I^2 = 68.3\% \), \(p < 0.001 \))	0.92 (0.81–1.05)	100.00

Figure 3. Forest plot of tuberculosis risk associated with MBL2 rs1800450 polymorphism (allele comparison: B allele vs. A allele)
Figure 4. Forest plot of tuberculosis risk associated with MBL2 rs1800451 polymorphism (A – allele comparison: C allele vs. A allele. B – codominant comparison: AC vs. AA + CC)
Figure 5. Forest plot of tuberculosis risk associated with MBL2 exon 1 polymorphisms. A – Comparison of the MBL2 exon 1 polymorphisms allele comparison (O allele vs. A allele) with tuberculosis risk. B – Comparison of the MBL2 exon 1 polymorphisms recessive comparison (AA vs. AO + OO) with tuberculosis risk.
Comparison (O/A: OR = 1.62, 95% CI: 1.07–2.44, \(p = 0.022 \)) and recessive genetic model (AA vs. AO + OO: OR = 0.54, 95% CI: 0.33–0.88, \(p = 0.013 \)) remained statistically significant in sequencing studies (Table III).

Sensitivity analysis

Sensitivity analysis was performed to evaluate the root of heterogeneity by sequentially excluding individual studies. Statistically similar results were obtained for the allele model of rs5030737, rs1800450, rs1800451, MBL2 A/O, rs11003125, rs7096206 and rs7095891 by excluding studies one after another. This indicates that this meta-analysis is stable and reliable in nature.

Publication bias

The publication bias of included studies was assessed by Begg's funnel plot and Egger's test. The funnel plots did not reveal any evidence of obvious asymmetry under the allele model (A/O, \(p = 0.161 \); rs1800450, \(p = 0.732 \); rs1800451, \(p = 0.754 \); rs5030737, \(p = 0.764 \); rs7095891, \(p = 0.296 \); rs11003125, \(p = 0.462 \); rs7096206, \(p = 0.452 \)), and Egger's test also did not show any statistically significant evidence of publication bias under the allele model (A/O, \(p = 0.547 \); rs1800450, \(p = 0.946 \); rs1800451, \(p = 0.538 \); rs5030737, \(p = 0.682 \); rs7095891, \(p = 0.051 \); rs11003125, \(p = 0.109 \); rs7096206, \(p = 0.049 \)), which indicated low risk of publication bias in this meta-analysis (Figure 6).

Discussion

The outcome of TB is modulated by the environment as well as *Mycobacterium tuberculosis* and hosts. Many investigations have confirmed that the genes for host susceptibility to disease appear to play the critical roles in the development of TB. MBL2 is an innate immune protein and plays a critical role in tuberculosis infection, which is elevated in active tuberculosis infection as part of an acute-phase reaction [8]. Several polymorphisms of the MBL2 gene have been identified, six of which are known for their functional effect (rs1800450, rs5030737, rs1800451, rs11003125, rs7096206 and rs7095891). A number of studies have been performed to investigate the impact of MBL2 gene polymorphism on susceptibility to TB in different regions and among different races. However, the clinical studies have yielded inconsistent results. To investigate these controversial issues further, we performed a comprehensive meta-analysis on the correlation between the MBL2 polymorphisms and tuberculosis risk.

Based on a meta-analysis of 12 studies, Denholm et al. found no statistically significant association between MBL2 genotype and pulmonary TB infection [38]. Our meta-analysis, which involved 22 studies including 7056 cases and 7764 controls, showed that the MBL2 rs7096206 and A/O polymorphisms were risk factors of TB in Asian, but not in European or African populations. Because the included participants of this meta-analysis mainly came from China and India, the results may be applicable only to East Asians. Therefore, people from East Asia who carry the MBL2 rs7096206 and A/O gene polymorphisms may have a 31% and 34% increased TB risk, respectively.

Interestingly, the total results showed that MBL2 rs1800451 polymorphism was a protective factor, which means that persons who carry the MBL2 rs1800451 gene polymorphism may have a 7% decreased TB risk compared with the control group. In contrast, the subgroup analysis indicated that the MBL2 rs1800451 polymorphism might increase TB risk in Americans, but not in Asians or Africans. The contradiction between the overall result and subgroup result may reflect the small number of included participants belonging to the American group. Hence, more well-designed studies are required, focusing on more ethnicities to confirm the results in the future. Unfortunately, the present results suggest no significant association between the MBL2 rs5030737, rs11003125 and rs7095891 gene polymorphisms and TB risk.

Some limitations of this meta-analysis should be considered. First, some detailed information, such as age, HIV status, and types of TB (pulmonary TB and extra-pulmonary TB), was not all available, which limited our further assessment by performing stratified analysis based on those confounding factors. Secondly, some SNPs such as rs7095891 contained only 3 studies in this systematic analysis. The limited number of studies and small sample sizes restricted the power of the study. Thirdly, the significant between-study heterogeneity detected in some comparisons, different patient populations and different sources of controls may contribute to the heterogeneity. Fourthly, three studies deviated from HWE [20, 28, 36], making the sample a poor representation. We therefore conducted the meta-analyses after exclusion of these studies. However, this exclusion did not materially affect the results. Fifthly, our study could not assess gene-gene and gene-environment interactions due to the limited information of included studies. Finally, the small sample sizes in some subgroup analyses may have limited statistical power to estimate the possible risk for MBL2 polymorphisms. Only two articles on Americans were included, so we must be careful when we refer to the result. Thus, more studies are needed to confirm the association between MBL2 and tuberculosis risk, especially in different ethnic populations.
In conclusion, our meta-analysis suggested that MBL2 rs7096206 and A/O gene polymorphisms may be risk factors contributing to TB susceptibility, especially in East Asia. However, the MBL2 rs1800451 gene polymorphism may be a protective factor for TB risk. The findings of our study could be pooled in a future meta-analysis of multiple studies, providing more power to detect an association. It is critical that larger scale and well-designed epidemiological studies based on different ethnicities be performed to re-evaluate the association. Moreover, additional future studies should include more detailed information concerning the potential confound-
ing factors and multiple SNPs to extend our investigations.

Acknowledgments

Yan Cao and Xinjing Wang contributed equally to this work.

Supported by key project of 309th Hospital to Y.C. (2014ZD-004). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

1. World Health Organization. WHO global tuberculosis report. Geneva, Switzerland: WHO, 2013.
2. Hill AV. Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet 2006; 40: 469-86.
3. Liu Q, Li W, Li D, Feng Y, Tao C. TIRAP C59T polymorphism contributes to tuberculosis susceptibility: evidence from a meta-analysis. Infect Genet Evol 2014; 27: 32-9.
4. Haussler MR, Whitfield GK, Hausler CA. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 1998; 13: 324-49.
5. Singla N, Gupta D, Joshi A, Batra N, Singh J. Genetic polymorphisms in the P2X7 gene and its association with susceptibility to tuberculosis. Int J Tuberc Lung Dis 2012; 16: 224-9.
6. Chen M, Deng J, Su C, et al. Impact of passive smoking, cooking with solid fuel exposure, and MBL/MASP-2 gene polymorphism upon susceptibility to tuberculosis. Int J Infect Dis 2014; 29: 1-6.
7. Matsushita M, Endo Y, Fujita T. Cutting edge: complement-activating complex of ficolin and mannan-binding lectin-associated serine protease. J Immunol 2000; 164: 2281-4.
8. Weitzel T, Zulantz I, Danquah I, et al. Mannose-binding lectin and Toll-like receptor polymorphisms and Chagas disease in Chile. Am J Trop Med Hyg 2012; 86: 229-32.
9. You HL, Lin TM, Wang JC, et al. Mannose-binding lectin gene polymorphisms and mycobacterial lymphadenitis in young patients. Pediatr Infect Dis J 2013; 32: 1005-9.
10. Madsen HO, Garred P, Thiell S, et al. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol 1995; 155: 3013-20.
11. Thakkinstian A, McEllduff P, D’Esté C, et al. A method for meta-analysis of molecular association studies. Stat Med 2005; 24: 1291-306.
12. Mantel N, Haenszel W. Statistical aspects of the analysis from data of retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719-48.
13. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-88.
14. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088-101.
15. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-34.
16. Chen M, Liang Y, Li W, et al. Impact of MBL and MASP-2 gene polymorphism and its interaction on susceptibility to tuberculosis. BMC Infect Dis 2015; 25: 151.
17. Chen M, Deng J, Su C, et al. Impact of passive smoking, cooking with solid fuel exposure, and MBL/MASP-2 gene polymorphism upon susceptibility to tuberculosis. Int J Infect Dis 2014; 29: 1-6.
18. García-Gasalla M, Milá Llambi J, Losada-López L, et al. Mannose-binding lectin exon 1 and promoter polymorphisms in tuberculosis disease in a Mediterranean area. Int J Immunogenet 2014; 41: 306-11.
19. da Cruz HL, da Silva RC, Segat L, et al. MBL2 gene polymorphisms and susceptibility to tuberculosis in a northeastern Brazilian population. Infect Genet Evol 2013; 19: 323-9.
20. Araújo MS, Graça ES, Azevedo VN, et al. No evidence of association between MBL2A/O polymorphisms and Mycobacterium tuberculosis infection in populations from the Brazilian Amazon region. Hum Immunol 2013; 74: 82-4.
21. Singla N, Gupta D, Joshi A, et al. Association of mannose-binding lectin gene polymorphism with tuberculosis susceptibility and sputum conversion time. Int J Immunogenet 2012; 39: 10-4.
22. Thye T, Niemann S, Walter K, et al. A genetic variant in the promoter region of Toll-like receptor 9 and cervical cancer susceptibility. PLoS One 2011; 6: e20908.
23. de Wit E, van der Merwe L, van Helden PD, Hoal EG. Gene-gene interaction between tuberculosis candidate genes in a South African population. Mammm Genome 2011; 22: 100-10.
24. Li Y, Wu F, Zhang L, Zhang WJ. Association between polymorphism of MBL gene with susceptibility to tuberculosis in Han Population in Xinjiang. Chin J Zoonoses 2011; 27: 769-73.
25. Capparelli R, Iannaccone M, Palumbo D, et al. Role played by human mannose-binding lectin polymorphisms in pulmonary tuberculosis. J Infect Dis 2009; 199: 666-72.
26. Cosar H, Özkinay F, Onay H, et al. Low levels of mannose-binding lectin confers protection against tuberculosis in Turkish children. Eur J Clin Microbiol Infect Dis 2008; 27: 1165-9.
27. Alagarsu K, Selvaraj P, Swaminathan S, et al. Mannose binding lectin gene variants and susceptibility to tuberculosis in HIV-1 infected patients of South India. Tuberculosis (Edinb) 2007; 87: 535-43.
28. Søborg C, Andersen AB, Range N, et al. Influence of candidate susceptibility genes on tuberculosis in a high endemic region. Mol Immunol 2007; 44: 2213-20.
29. Liu W, Zhang F, Xin ZT, et al. Sequence variations in the MBL gene and their relationship to pulmonary tuberculosis in the Chinese Han population. Int J Tuberc Lung Dis 2006; 10: 1098-103.
30. Selvaraj P, Jawahar MS, Rajeswari DN, et al. Role of mannose-binding lectin gene variants on its protein levels and macrophage phagocytosis with live Mycobacterium tuberculosis in pulmonary tuberculosis. FEMS Immunol Med Microbiol 2006; 46: 433-7.
31. García-Laorden M, Pena MJ, Caminero JA, et al. Influence of mannose-binding lectin on HIV infection and tuberculosis in a Western-European population. Mol Immunol 2006; 43: 2143-50.
32. Fitness J, Floyd S, Warndorff DK, et al. Large-scale candidate gene study of tuberculosis susceptibility in the Karonga district of northern Malawi. Am J Trop Med Hyg 2004; 71: 341-9.
33. Søborg C, Madsen HO, Andersen AB, et al. Mannose-binding lectin polymorphisms in clinical tuberculosis. J Infect Dis 2003; 188: 777-82.
34. Ozbaş-Gerceker F, Tezcan I, Berkel AI, et al. The effect of mannos-binding protein gene polymorphisms in recurrent respiratory system infections in children and lung tuberculosis. Turk J Pediatr 2003; 45: 95-8.
35. Selvaraj P, Kurian SM, Uma H, Reetha AM, Narayanan PR. Influence of non-MHC genes on lymphocyte response to Mycobacterium tuberculosis antigens; tuberculin reactive status in pulmonary tuberculosis. Indian J Med Res 2000; 112: 86-92.
36. Selvaraj P, Narayanan PR, Reetha AM. Association of functional mutant homozygotes of the mannos-binding protein gene with susceptibility to pulmonary tuberculosis in India. Tuber Lung Dis 1999; 79: 221-7.
37. Bellamy R, Ruwende C, Mcadam KP, et al. Mannose binding protein deficiency is not associated with malaria, hepatitis B carriage nor tuberculosis in Africans. Q J Med 1998; 91: 13-8.
38. Denholm JT, McBryde ES, Eisen DP. Mannose-binding lectin and susceptibility to tuberculosis: a meta-analysis. Clin Exp Immunol 2010; 162: 84-90.