Modeling and Optimization of The Energy Bill

Khaoula Amarray¹, Aziz Ettahir¹*, Kamal Kettani¹, Omar Bourass¹ and Abdelaziz Chaouch²

¹Material, Energy and Acoustics Team (MEAT), University Mohammed in Rabat, Morocco, Morocco
²Ibn Tofail University, Faculty of Science, Laboratory of Applied Chemistry and Quality Control, Morocco

Abstract
In our shaken world of energy crisis and inadequate supply in relation to the increased demand of our country, it is important that all companies have a good control of their energy consumption which is synonymous with gain of profit for the country, and on the other hand to relieve demand. The objective of this work is to find the correlations between the sulfur consumed and the thermal energy produced (high pressure steam) of a Moroccan company which is one of the five largest fertilizer companies in the world and the leader in the field of phosphate industry. These correlations will then make it possible to realize a simulator which will be used to optimize the energy bill on the basis of linear programming.

Keywords: Thermal energy; Modeling; High pressure; Sulfur

Methods
The Principal Component Analysis (PCA) is part of the data analysis, which is to reduce the number of descriptive characters and seeking the most faithful projection plane by distorting the least possible reality. The characters obtained through this analysis are new characters ‘principal’ [2]. Predicting the future is all about optimizing decisions must be based on an increasing number of data [3]. It is not easy to handle this data in hand it is the reason for which data processing software is used. In our study we used the SPSS statistical analysis software.

Discussion of Results
Modelling of the principal component’s analysis

The principal component analysis (PCA) is part of the data analysis, which is to reduce the number of descriptive characters and seeking the most faithful projection plane by distorting the least possible reality. The characters obtained through this analysis are new characters ‘principal’ [2]. Predicting the future is all about optimizing decisions must be based on an increasing number of data [3]. It is not easy to handle this data in hand it is the reason for which data processing software is used. In our study we used the SPSS statistical analysis software.
616,090.61 and a standard deviation of 58,755.744 shows that the values are dispersed around the average.

Correlations table: We then study the correlation between the different variables. The table 2 represents the correlations between the various input-output sulfuric plants. This is the correlation matrix that gives an insight into the relationship between pairwise variables. Note that all correlations are positive (all variables vary in the same direction) which means that characters are considered correlated. There are strong positive correlations around 0.987 and 0.828 respectively between HP steam, MP steam and sulfuric acid production, which explain the influence of H_2SO_4 production on HP and PM steam production and thus the power generation platform. A strong positive correlation in the order of 0.816 between steam extraction and steam HP production which explains why it has less losses in steam extraction.

Table 1: Descriptive statistics.
N

Valid
Missing
Average
Standard-deviation
Variance
Minimum
Maximum
Percentiles

Table 2: The correlation between the different variables.

The Cadence	Seawater (m3)	Consumed Sulfur	HP Steam (T)	MP Steam (T)	H_2SO_4 (T)	
Pearson correlation	1	0.620**	1.000**	0.987**	0.828**	
Sig. (Bilatérale)	0.00	0.00	0.00	0.00	0.00	
N	184	184	184	184	184	
Seawater (m3)	Pearson correlation	0.620**	1	0.618**	0.605**	0.482**
Sig. (Bilatérale)	0.00	0.00	0.00	0.00	0.00	
N	184	184	184	184	184	
Consumed sulfur	Pearson correlation	1.000**	0.618**	1	0.986**	0.829**
Sig. (Bilateral)	0.00	0.00	0.00	0.00	0.00	
N	184	184	184	184	184	
HP steam (T)	Pearson correlation	0.987**	0.605**	0.986**	1	0.816**
Sig. (Bilateral)	0.00	0.00	0.00	0.00	0.00	
N	184	184	184	184	184	
MP steam (T)	Pearson correlation	0.828**	0.482**	0.829**	0.816**	1
Sig. (Bilateral)	0.00	0.00	0.00	0.00	0.00	
N	184	184	184	184	184	
H_2SO_4 (T)	Pearson correlation	1.000**	0.620**	1.000**	0.987**	0.828**
Sig. (Bilateral)	0.00	0.00	0.00	0.00	0.00	
N	184	184	184	184	184	
EE (MWH)	Pearson correlation	0.674**	0.717**	0.673**	0.675**	1
Sig. (Bilateral)	0.00	0.00	0.00	0.00	0.00	
N	184	184	184	184	184	

Note: Correlation is significant at 0.01 (bilateral).

It is also noted that there is a very high correlation between the consumed sulfur and sulfuric acid product it indicates that, for a good combustion and conversion absorption generates good production of sulfuric acid and vice versa. On the other hand, we cannot estimate a correlation between the production of MP steam and the seawater consumption since our correlation coefficient is not sufficiently determinative which is of the order of 0.482.

Citation: Khaoula Amarray, Aziz Ettahir, Kamal Kettani, Omar Bourass, Abdelaziz Chaouch. Modeling and Optimization of The Energy Bill. Glob J Eng Sci. 4(3): 2020. GJES.MS.ID.000588. DOI: 10.3355/GJES.202004.000588.
Factorial analysis: The projection of variables on a plane gives the distribution shown in the following diagram.

Linear regression

A regression problem is to find a function f such that for all i, Y_i is approximately equal to $f(X_i)$. The simplest case is that of simple linear regression. In simple linear regression, it is to estimate the parameters and test the validity of the model $[4,5]$.

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \quad (1)$$

With:
- β_0 is the intercept: The value of Y when $X = 0$.
- β_1 is the slope: Variation caused by the variation of one unit of X.
- ϵ_i is a random variable reflecting the inadequacy of the model.

We will estimate the β vector by a vector b. There will therefore be a straight:

$$Y_i^\wedge = b_0 + b_1 x_i \quad (2)$$

To estimate β_0 and β_1, we use the famous method of least squares $[6]$, which is to choose b_0 and b_1 so that the sum of the squares differences e_i between the observed values and calculated values is minimum.

The term that minimizes, $\sum_i (Y_i - Y_i^\wedge)^2$, named the sum of squared residuals (SCRes).

Where:
- $e_i = Y_i - (b_0 + b_1 x_i) \quad (3)$
- $b_0 = \bar{y} - b_1 \bar{x}$
- $b_1 = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2} \quad (4)$

We find:

We measure the adequacy of the estimated regression equation to the observed values y_i by R^2 “coefficient of determination” $[7]$:

$$R^2 = \frac{SC \text{Re} g}{SC \text{Re} g + SC \text{Re} s} = \frac{SC \text{Re} g}{SC \text{Tot}}; 0 \leq R^2 \leq 1 \quad (5)$$

R^2 expresses the percentage of the sum of total 1 square explained by the estimated regression equation.

With:
- $SC \text{Re} s = \sum_i (y_i - Y_i^\wedge)^2 \quad (6)$
- $SC \text{Re} g = \sum_i (Y_i^\wedge - Y)^2 \quad (7)$

Table 4: The model parameters and their degrees of significance.

Model	Non-Standardise Coefficients	Standardise Coefficients	t	sig	
Constant Consumed Sulf	942,77,3,2017	121,064,025	.986	778,780,166	.000

Conclusion

The maximum energy efficiency, a fundamental challenge for sustainability of production, suggests solutions for the mastery of electricity consumption. In our case, modeling and optimization of the energy bill was necessary. Indeed, thanks to the ACP method, synthesized and summarized data, we could highlight trends combinations or contrasts between individuals or between
variables. Information obtained via the graphical representations and correlations table allowed us to choose the model of simple linear regression to study the connections of the energy cycle of the workshop between the sulfur consumed and HP steam produced to address the problem of energy modeling, first step towards optimizing energy bills. This modeling allowed HP steam management and thereafter, developing the energy performance of the thermal station used for the production of electrical energy.

Figure 1: Diagrams components.

Acknowledgement
None.

Conflict of Interest
No conflict of interest.

References
1. Philippe Besse (2003) Pratique de la modélisation statistique. Publ Lab Stat Probab Univ Paul Sabatier Toulouse Dispon, Partir L'URL Httpwww-SvCct FrhspBesse.
2. JLL Moigne (1994) La théorie du système général: théorie de la modélisation. jeanlouis le moigne ae mcx.
3. Jean-Marie Bouroche, Gilbert Saporta (1987) L'Analyse des données. Presses Universitaires de France - PUF.
4. George AF Seber, Alan J Lee (2012) Linear Regression Analysis. John Wiley & Sons.
5. Sylvie Huet, Emmanuel Jolivet, Antoine Messéan (1992) La régression non-linéaire: méthodes, applications en biologie. Editions Quae.
6. P Tchébychev (1859) Sur l'interpolation par la méthode des moindres carrés. Éggers, Comp.
7. JS Tanaka, GJ Huba (1989) A general coefficient of determination for covariance structure models under arbitrary GLS estimation. Br J Math Stat Psychol 42(2): 233-239.