Fine-grained Termhood Prediction for German Compound Terms Using Neural Networks

Anna Hätty
Robert Bosch GmbH

Sabine Schulte im Walde
University of Stuttgart

Motivation

- domain-specific terms = linguistic expressions which characterize a domain
- automatic term extraction and term understandability
 \[\rightarrow \text{separately researched} \]
- classes of termhood, which naturally include understandability

Background

- Tiers of terminology for different degrees of association to the domain
- Appearance in only this domain (= very specific) \rightarrow not likely to be known outside of domain (= difficult to understand)

Termhood Classes

Class	Description	Example
NONTERM	Not a domain term	Deutsch „Germany“
SemTerm	Semantically related to the domain	Vitaminebedarf „requirement of vitamins“
TERM	Prototypical and understandable term of the domain	Schweinebraten „roast pork“
SPECTERM	Prototypical and non-understandable term of the domain	Blasensalat (blue boiling) specialty kind of boiling fish

Compound Examples

- **Perfect matches:**
 - Tomato (Tomato) + Puree (Tomato) \rightarrow Tomatenpüree (Tomato)
 - tomato + puree \rightarrow tomato puree

- **Same component classes, but different compound classes:**
 - Mittel (Mittel) + Alter (Mittel) \rightarrow Mittelalter (Mittel)
 - mit = age \rightarrow Middle Ages
 - Bei (Bei) + Fuß (bei Fuß) \rightarrow Beifuß (bei Fuß)
 - with + foot \rightarrow mugwort

- **Different component classes, but same compound class:**
 - Paprika (Paprika) + Salat (Salat) \rightarrow Paprikasalat (Paprika)
 - sweet pepper + salad \rightarrow sweet pepper salad
 - Paprika (Paprika) + Hälften (Paprika) \rightarrow Paprikahälften (Paprika)
 - sweet pepper + halves \rightarrow sweet pepper halves

Data Extraction & Annotation

- 400 cooking recipes (kochwiki.de, wikibooks cookbook, wikihow)
- 5 native speaker annotators
- 396 compounds

Model Pipeline

- Input: Compound
 - Compound Splitting
 - Feature Extraction (Lex, Word Embeddings)
 - Neural Network Classifier
 - Output: Predicted Class

Models & Features

- Baseline model:
 - Word embeddings: pre-trained on Wikipedia, adapted on cooking recipes
 - Features for components in cooking-domain:
 - Frequency: How frequently does a constituent appear in other expressions?
 - Productivity: How many expressions the constituent is part of?
 - Optimization on heuristically estimated component classes (ConstOpt)

Results

- Better results for models using both compound and component information
- Optimization on heuristically estimated component class improves the results

Conclusion

- New model of fine-grained classes of termhood, representing both the different degree of association to the domain and a domain term’s understandability
- Including and optimizing information about components leads to 0.8 F-score for best model

References

- Faller, W. 2014. Morphological Processing of Compounds for Statistical Machine Translation. Dissertation, Institute for Natural Language Processing (IWR), University of Stuttgart.
- Thormann, Bernhard, and Stephan Wuhrer. Grundlagen der Terminologie- und Lexikographielehre. Mannheim: Bibliographisches Institut. 2013.
- Faller, W., & Thormann, B. 2016. Morphological processing of compounds for automatic terminology extraction. Proceedings of the 11th Workshop on Morphological Processing, MWE@EACL, 2017, pages 151–154, Valencia, Spain.