Which spectral distortions does ΛCDM actually predict?

Jens Chluba

1 Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL, UK

Accepted 2016 April 18. Received 2016 March 12

ABSTRACT

Ever refined cosmological measurements have established the ΛCDM concordance model, with the key cosmological parameters being determined to percent-level precision today. This allows us to make explicit predictions for the spectral distortions of the cosmic microwave background (CMB) created by various processes occurring in the early Universe. Here, we summarize all guaranteed CMB distortions and assess their total uncertainty within ΛCDM. We also compare simple methods for approximating them, highlighting some of the subtle aspects when it comes to interpreting future distortion measurements. Under simplified assumptions, we briefly study how well a PIXIE-like experiment may measure the main distortion parameters (i.e., μ and y). Next generation CMB spectrometers are expected to detect the distortion caused by reionization and structure formation at extremely high significance. They will also be able to constrain the small-scale power spectrum through the associated μ-distortion, improving limits on running of the spectral index. Distortions from the recombination era, adiabatic cooling of matter relative to the CMB and dark matter annihilation require a higher sensitivity than PIXIE in its current design. The crucial next step is an improved modeling of foregrounds and instrumental aspects, as we briefly discuss here.

Key words: Cosmology: cosmic microwave background – theory – observations

1 INTRODUCTION

The standard ΛCDM cosmology has been shown to describe our Universe to extremely high accuracy (Bennett et al. 2003, Planck Collaboration et al. 2014a, 2014b). This model is based upon a spatially flat, expanding Universe with dynamics governed by General Relativity and whose dominant constituents at late times are cold dark matter (CDM) and a cosmological constant (Λ). The primordial seeds of structures are furthermore Gaussian-distributed adiabatic fluctuations with an almost scale-invariant power spectrum thought to be created by inflation.

Today, we know the key cosmological parameters (e.g., the total, CDM and baryon densities, the CMB photon temperature, Hubble expansion rate, etc.) to percent-level precision or better (Planck Collaboration et al. 2015b). Assuming standard Big Bang Nucleosynthesis (BBN) and a standard thermal history, we can furthermore derive precise values for the helium abundance, Y_p, and effective number of relativistic degrees of freedom, N_{eff} (e.g., Steigman 2007). Also the physics of the recombination era, which defines the decoupling of photons and baryons around redshift $z \approx 10^3$, is now believed to be well understood within ΛCDM (e.g., Chluba & Thomas 2011, Ali-Haimoud & Hirata 2011).

Of the many cosmological data sets, measurements of the cosmic microwave background (CMB) temperature and polarization anisotropies, beyond doubt, have driven the development towards precision cosmology over the few past years. Today, cosmologists have exhausted practically all information about the primordial Universe contained in the CMB temperature power spectra. WMAP and Planck have also clearly seen the E-mode polarization signals (Page et al. 2007, Planck Collaboration et al. 2014a, 2015b). Several sub-orbital and space-based experiments (e.g., BICEP3, CLASS, SPTpol, ACTpol, SPIDER, PIPER, LiteBird, PIXIE, CorE+) are now rushing to detect the primordial B-modes at large angular scales and to squeeze every last bit of information out of the E-mode signals, all to deliver the long-sought proof of inflation.

It is well known that CMB spectral distortions – tiny departures of the average CMB energy spectrum from that of a perfect blackbody – deliver a new independent probe of different processes occurring in the early Universe. The case for spectral distortions has been made several times and the physics of their formation is well understood (for recent overview see, Chluba & Sunyaev 2012, Sunyaev & Khatri 2013, Chluba 2013a, Tashiro 2014, De Zotti et al. 2015). The purpose of this article is to provide an overview of all distortion signals created within ΛCDM (Fig. 1), also assessing their total uncertainty. Although non-standard processes (i.e., decaying particles or evaporating primordial black holes) could cause additional interesting signals, the CDM distortions define clear targets for designing future distortion experiments.

Thus far, no all-sky distortion has been found (Fixsen et al. 1996, Fixsen 2009), however, new experimental concepts, such as PIXIE (Kogut et al. 2011), are being actively discussed and promise improvements of the measurements carried out with COBE/FIRAS by several orders of magnitude. It is thus time to ask what new information could be extracted from the CMB spectrum and how this could help refine our understanding of the Universe.

* E-mail: Jens.Chluba@manchester.ac.uk

© 0000 RAS
2 Chluba

The case for spectral distortions as a new independent probe of inflation has also been made several times (e.g., Hu & Silk 1999a; Chluba et al. 2012b; Dent et al. 2012; Pajer & Zaldarriaga 2013; Khatri & Sunyaev 2013; Chluba & Grin 2013; Chluba et al. 2013a, Cleisse et al. 2014), most recently by Cabass et al. (2016), who emphasized that, given the constraints from Planck, an improvement in the sensitivity by a factor of ≃ 3 over PIXIE guarantees either a detection of μ or of negative running (≳ 95% c.l.). Here we add a few aspects to the discussion related to the interpretation of future distortion measurements carried out with a relation similar to PIXIE. For real distortion parameter estimation, one has to simultaneously determine the average CMB temperature, μ, and redshift (r) perturbations also contribute to the dissipation process; however, can be treated in a similar manner (e.g., Chluba & Grin 2013); however, the damping of small-scale fluctuations of the CMB temperature (Sunyaev & Zeldovich 1972; Cen & Ostriker 1999; Refregier et al. 2000; Zhang et al. 2004; Hill et al. 2015). The relativistic correction can be computed using the temperature moment method of Szpak (Chluba et al. 2012b) and it differs from the distortions produced in the early Universe. This correction should be detectable with PIXIE at ≃ 30σ (Hill et al. 2015) and could teach us about the average temperature of the intergalactic medium, promising a way to solve the missing baryon problem. Both distortion signals are illustrated in Fig. [1]

2.2 Damping of primordial small-scale perturbations

The damping of small-scale fluctuations of the CMB temperature set up by inflation at wavelength λ < 1 Mpc causes another inevitable distortion of the CMB spectrum (Sunyaev & Zeldovich 1970a; Daly 1991; Barrow & Coles 1991; Hu et al. 1994a; Hu & Sugiyama 1994). While the idea behind this mechanism is quite simple, it was only recently rigorously described (Chluba et al. 2012b), allowing us to perform detailed computations of the associated distortion signal for different early universe models (Chluba et al. 2012b; Dent et al. 2012; Pajer & Zaldarriaga 2013; Khatri & Sunyaev 2013; Chluba & Grin 2013; Chluba et al. 2013a; Cleisse et al. 2014; Cabass et al. 2016). The distortion is sensitive to the amplitude and shape of the power spectrum at small scales (wavenumbers 1 Mpc⁻¹ ≲ k ≲ 2 × 10⁴ Mpc⁻¹) and thus provides a promising new way to constrain inflation.

For a given initial power spectrum of perturbations, the effective heating rate in general has to be computed numerically. However, at high redshifts the tight coupling approximation can be used to simplify the calculation. An excellent approximation for the effective heating rate is obtained with1 (Chluba et al. 2012b; Chluba & Grin 2013)

\[\frac{dQ(p_r)}{dz} \approx 4A^2 D(k_0)^2 \int_{k_{min}}^{k_{max}} k^4 dk P_r(k)e^{-2k^2/k_0^2}, \]

where \(P_r(k) = 2\pi^2 A^2(k^3/k_0^3)^{n-1} \) defines the usual curvature power spectrum of scalar perturbations and \(k_0 \) is the photon damping scale (Weinberg 1971, Kaiser 1983). Since scales as \(k_0 \sim 10^{-4} \) Mpc⁻¹ early on. For adiabatic modes, we have a heating efficiency \(A^2 \approx (1 + 4R_e/15)^2 \approx 0.813 \), where \(R_e \approx 0.409 \) for \(N_{eff} = 3.046 \). The k-space integral is truncated at \(k_{min} \sim 0.12 \) Mpc⁻¹, which reproduces the full heating rate across the recombination era quite well (Chluba 2013a). With this we can directly compute the associated distortion using CosmoTherm (Chluba & Sunyaev 2012). The various isocurvature perturbations can be treated in a similar manner (e.g., Chluba & Grin 2013); however, in the standard inflation model these should be small. Tensor perturbations also contribute to the dissipation process; however, the associated heating rate is orders of magnitudes lower than for adiabatic modes even for very blue tensor power spectra and thus can be neglected (Ota et al. 2014; Chluba et al. 2013a).

1 Here, we define the heating rate such that \(\int_0^\infty \frac{dQ(p_r)}{dz} > 0 \).

© 0000 RAS, MNRAS 000, 000–000
For $A_s = 2.207 \times 10^{-9}$, $n_S = 0.9645$ and $n_{int} = 0$ (Planck Collaboration et al. 2015b), we present the result in Fig. 1. The adiabatic cooling distortion (see Sect. 2.3) was simultaneously included. The signal is uncertain to within $\approx 10\%$ in ΛCDM (Sect. 2.3). The distortion lies between a μ- and γ-distortion and is close to the detection limit of PIXIE. As we will see below (Sect. 4), with the current design the μ-distortion part of the signal should be seen at the level of $\approx 1.5\sigma$, which is in good agreement with earlier analysis (Chluba et al. 2012b; Chluba & Jeong 2014). A clear 5σ detection of this signal should be possible with ≈ 3.4 times higher sensitivity (Sect. 4). We will discuss various approximations for the damping signal below (Sect. 3.3), but simply performing a fit using μ, γ and temperature shift (see Chluba & Jeong 2014; for explicit definitions of these spectral shapes), $\Delta = \Delta T/T_0$, we find $\mu_{tot} \approx 1.984 \times 10^{-9}$, $\gamma_{tot} \approx 3.554 \times 10^{-9}$ and $\Delta_{tot} \approx -0.586 \times 10^{-9}$ with a non-vanishing residual at the level of $20\% - 30\%$.

2.3 Adiabatic cooling for baryons

The adiabatic cooling of ordinary matter continuously extracts energy from the CMB photon bath by Compton scattering leading to another small but guaranteed distortion that directly depends on the baryon density and helium abundance. The distortion is characterized by negative μ- and γ-parameters at the level of $\approx 1\%$ in ΛCDM (Sect 3.3) and cancels part of the damping signal; however, it is roughly one order of magnitude weaker and cannot be separated at the currently expected level of sensitivity of next generation CMB spectrometers.
2.4 The cosmological recombination radiation

The cosmological recombination process is associated with the emission of photons in free-bound and bound-bound transitions of hydrogen and helium (Zeldovich et al. 1968; Peebles 1968; Dubrovich 1975). This causes a small distortion of the CMB and the redshifted recombination photons should be visible as the cosmological recombination radiation (CRR), a tiny spectral distortion (∼ nK–µK level) present at mm to dm wavelength (for overview see Sunyaev & Chluba 2009). The amplitude of the CRR depends directly on the number density of baryons in the Universe. The helium abundance furthermore affects the detailed shape of the recombination lines. Finally, the line positions and widths depend on when and how fast the Universe recombinied. The CRR thus provides an independent way to constrain cosmological parameters and map the recombination history (Chluba & Sunyaev 2008).

Several computations of this CRR have been carried out in the past (Rybicki & dell Antonio 1993; Dubrovich & Stolyarov 1995; 1997; Kholupenko et al. 2005; Rubi˜no-Mart´ın et al. 2006; Chluba & Sunyaev 2006; Chluba et al. 2007; Rubi˜no-Martín et al. 2008; Chluba & Sunyaev 2010; Chluba et al. 2010). These calculations were very time-consuming, taking a few days of supercomputer time for one cosmology (e.g., Chluba et al. 2007, 2010). This big computational challenge was recently overcome (Ali-Haimoud et al. 2015, Chluba & Ali-Haimoud 2016), today allowing us to compute the CRR in about 15 seconds on a standard laptop using CosmoSpec (Chluba & Ali-Haimoud 2016). The fingerprint of the superposition of blackbodies with different temperatures is caused by the presence of the CMB dipole, with β = ν/c ≃ (1.23 ± 0.003) × 10^{-3} (Hinshaw et al. 2009). Averaging the CMB intensity over the whole sky yields (Chluba & Sunyaev 2004)

\[y_d = \frac{\beta^2}{6} \approx (2.525 \pm 0.012) \times 10^{-7}. \] (4)

with sky-averaged temperature dispersion \(\langle (\beta \cos(\theta))^2 \rangle = \beta^2/3 \). The uncertainty, \(\Delta y_d \approx 1.2 \times 10^{-9} \), in the contribution of the CMB dipole to the average γ-parameter is a few times larger than the γ-parameter induced by multipoles \(\ell \geq 1 \) (see below). One may also worry about higher order temperature terms from the dipole (Chluba & Sunyaev 2004), however, only even moments contribute, so that the next order correction averaged over the whole sky, \(\langle (\beta \cos(\theta))^4 \rangle \approx \beta^4/5 \approx (4.59 \pm 0.04) \times 10^{-13} \), is negligible, although it could still contribute noticeably in the far Wien tail (ν ≥ 1 THz). We mention that in the presence of a primordial dipole, we would in addition obtain a γ-parameter contribution \(\gamma^y_{\nu} \approx \beta \Delta \nu \sqrt{12 \pi} \), which is caused by aberration and Doppler boosting (Chluba 2011) and could reach \(\approx 10^{-9} \). Here, \(\Delta \nu \) is the spherical harmonic coefficient of the primordial dipole along the direction of the CMB dipole.

Averaging the CMB intensity spectrum over the whole sky (after subtracting the CMB dipole spectrum), from the measured Planck temperature power spectrum (Planck Collaboration et al. 2015b) we find

\[y_{\text{pol}} = \sum_{\ell=2} (2\ell + 1) \frac{C_{\ell}}{8\pi} \approx 8.23 \times 10^{-10}. \] (5)

which is extremely close to an earlier estimate based on the theoretical CMB power spectrum (Chluba et al. 2012b). The uncertainty in this derived value is dominated by large-angle foreground residuals but is estimated to be below ≃ 1%. As this number is specific to our realization of the Universe and to our own location, it is not limited by cosmic variance. The CMB temperature is increased by \(\Delta T \approx 4.49 \mu K \) due to the same effect.

We mention that the superposition of blackbodies of different temperatures has a slightly different physical effect than energy exchange through Compton scattering. In the latter case, energy is transferred from the electrons to the photons (assuming heating), such that photons are (partially) upscattered and afterwards all the energy is stored in the associated (γ-type) distortion. For

\[\beta \] 2

See www.Chluba.de/CosmoSpec

© 0000 RAS, MNRAS 000, 000–000

2.5 Superposition of blackbodies

It is well-known that the superposition of blackbodies with different temperatures no longer is a blackbody but exhibits a γ-type spectral distortion (Zeldovich et al. 1972; Chluba & Sunyaev 2004; Stebbins 2007). It is precisely this effect that leads to the distortion caused by Silk-damping (e.g., Chluba et al. 2012b). To second order in the temperature fluctuations \(\Delta T = \Delta T/T \ll 1 \), the effective γ-parameter is given by (cf., Chluba & Sunyaev 2004)

\[y = \frac{1}{2} \left\langle \Delta \tau \right\rangle, \] (3)

where \(\bar{T} = \langle T \rangle \) and the average can be related to any blackbody intensity mixing process. This can be i) Thomson scattering, ii) weighted averages of CMB intensity maps (e.g., due to spherical harmonic decomposition) or iii) inevitable averaging inside the instrumental beam (Chluba & Sunyaev 2004). As mentioned above, i) occurs in the early Universe and also during reionization (e.g., Hu et al. 1994b; Chluba et al. 2012b) while ii) can occur as an artefact of the standard analysis of CMB intensity/antenna temperature maps, which can in principle be avoided by consistently converting to thermodynamic temperature at second order in \(\Delta T \).

For the standard CMB temperature anisotropies, the beam averaging effect is tiny for angular resolution typical for today’s CMB imaging experiments (Planck, SPT, ACT, etc.) and should be completely negligible (Chluba & Sunyaev 2004). For a PIXIE-type experiment with beam ≃ 2°, the effect should be limited to \(y \lesssim 5 \times 10^{-10} \) (Chluba & Sunyaev 2004). However, since high-resolution CMB temperature maps are available, this unavoidable effect can be taken into account very accurately.

The largest distortion due to the superposition of blackbodies with different temperatures is caused by the presence of the CMB dipole, with β = ν/c ≃ (1.23 ± 0.003) × 10^{-3} (Hinshaw et al. 2009). Averaging the CMB intensity \(\lambda \) over the whole sky yields (Chluba & Sunyaev 2004)

\[y_d = \frac{\beta^2}{6} \approx (2.525 \pm 0.012) \times 10^{-7}. \] (4)
the mixing of blackbodies, no energy exchange between photons and electrons is required (\leftrightarrow Thomson limit) and 2/3 of the energy stored by the original temperature fluctuations causes an increase for the average blackbody temperature. Thus, for a y-distortion created through the superposition of blackbodies one also finds an average temperature shift $\Delta T / T = 2\varphi_{\gamma y}$ (Chluba et al. 2012b 2015b Ingamov & Sunyaev2015). For the effect of the dipole this implies $\Delta T_d / T_0 = \beta^2 / 3$ caused by the superposition. However, another correction, $\Delta T_d / T_0 \approx -\beta^2 / 2$, arises from the Lorentz boost, so that the total temperature shift is $\Delta T = \Delta T_d + \Delta T_0 = -T_0 \beta^2 / 6 \approx -0.688 \pm 0.003 \mu K$ (Chluba & Sunyaev2004, Chluba2011).

2.6 Dark matter annihilation

Today, cold dark matter is a well-established constituent of our Universe (Bennett et al. 2003 Planck Collaboration et al. 2014d 2015b). However, the nature of dark matter is still unclear and many groups are trying to gather any new clue to help unravel this big puzzle (e.g., Adriam et al. 2009 Gali et al. 2009 CDMS II Collaboration et al. 2010 Zavala et al. 2011 Hütz et al. 2011 Bringmann et al. 2012 Aslanyan et al. 2015). Similarly, it is unclear how dark matter was produced, however, within ΛCDM, the WIMP scenario provides one viable solution (e.g., Jungman et al. 1996 Bertone et al. 2005). In this case, dark matter should annihilate at a low level throughout the history of the Universe and even today.

For specific dark matter models, the level of annihilation around the recombination epoch is tightly constrained with the CMB anisotropies (Galli et al. 2009 Cirelli et al. 2009 Hütz et al. 2009 Slatyer et al. 2009 Hütz et al. 2011 Giesen et al. 2012 Diamanti et al. 2014 Planck Collaboration et al. 2015b). The annihilation of dark matter can cause changes in the ionization history around last scattering ($\zeta \approx 10^8$), which in turn can lead to changes of the CMB temperature and polarization anisotropies (Chen & Kamionkowski 2004 Padmanabhan & Finkbeiner 2005 Zhang et al. 2006). Albeit significant dependence on the interaction of the annihilation products with the primordial plasma (Shull & van Steenberg 1985) Slatyer et al. 2009 Valdés et al. 2010 Galli et al. 2013 Slatyer 2016), the same process should lead to distortions of the CMB (McDonald et al. 2001 Chluba et al. 2010 Chluba & Sunyaev 2012). The effective heating rate of the medium can be expressed as (see also Chluba 2013a)

$$\frac{d Q_{\rho_{\gamma}}}{dz} = f_{\text{ann}} N_{\text{th}}(z)(1 + z)^2 \frac{1}{H(z) \rho_{\gamma}(z)}$$

(6)

where $\lambda = 0$ for s-wave annihilation. Here, H denotes the Hubble factor and ρ_{γ} the CMB photon energy density. The annihilation efficiency, f_{ann}, captures all details related to the dark matter physics (e.g., annihilation cross section, mass, decay channels, etc.) and can be roughly taken as constant. For existing upper limits on f_{ann}, the distortion is well below the detection limit of PIXIE (Chluba & Sunyaev2012 Chluba 2013a Chluba & Jeong 2014). Using the latest constraints from Planck, we find the µ-distortion to be $\mu \lesssim 10^{-10}$ to 10^{-9} (see Sect. 3.3). For s-wave annihilation scenarios, this limit ought to be rather conservative, and it is hard to imagine a much larger effect. However, spectral distortion measurements are sensitive to all energy release at $z \leq 2 \times 10^9$ and not only limited to around last scattering. Thus, searches for this small distortion could deliver an important test of the WIMP paradigm should any signature of dark matter annihilation be found through another probe. Possible coupling of WIMPs to the baryons or photons could further enhance the adiabatic cooling effect (Ali-Haimoud et al. 2015), which could provide additional tests of the nature of dark matter especially for low dark matter masses.

2.7 Anisotropic CMB distortions

To close the discussion of different distortion signals, we briefly mention anisotropic (\leftrightarrow spectral-spatial) CMB distortions. Even in the standard ΛCDM cosmology, anisotropies in the spectrum of the CMB are expected. The largest source of anisotropies is due to the Sunyaev-Zeldovich effect caused by the hot plasma inside clusters of galaxies (Zeldovich & Sunyaev 1969 Sunyaev & Zeldovich1980 Birkinshaw 1999 Carlstrom et al. 2002). The y-distortion power spectrum has already been measured directly by Planck (Planck Collaboration et al. 2014e 2015d) and encodes valuable information about the atmospheres of clusters (e.g., Refregier et al. 2000 Komatsu & Seljak 2002 Diego & Majumdar 2004 Battatia et al. 2010 Shaw et al. 2010 Munshi et al. 2013 Dolag et al. 2013). Similarly, the warm hot intergalactic medium contributes (Zhang et al. 2004 Dolag et al. 2015).

In the primordial Universe, anisotropies in the μ and y distortions are expected to be tiny (relative perturbations $\lesssim 10^{-4}$, e.g., see Pitrou et al. 2010) unless strong spatial variations in the primordial heating mechanism are expected (Chluba et al. 2012b). This could in principle be caused by non-Gaussianity of perturbations in the ultra-squeezed limit (Pajer & Zaldarriaga2012 Ganc & Komatsu 2012 Biagetti et al. 2013 Emami et al. 2015), however, this is beyond ΛCDM cosmology and will not be considered further.

Another guaranteed anisotropic signal is due to Rayleigh scattering of CMB photons in the Lyman-series resonances of hydrogen around the recombination era (Yu et al. 2001 Lewis 2013). The signal is strongly frequency dependent, can be modeled precisely and may be detectable with future CMB imagers (e.g., CORE+) or possibly PIXIE at large angular scales (Lewis 2013). In a very similar manner, the resonant scattering of CMB photons by metals appearing in the dark ages (Loeb 2001 Zaldarriaga & Loeb 2002 Basu et al. 2004 Hernández-Monteagudo et al. 2007) or scattering in the excited levels of hydrogen during recombination (Rubino-Martín et al. 2005 Hernández-Monteagudo et al. 2007) can lead to anisotropies. To measure these signals, precise channel cross-calibration and foreground rejection is required.

Due to our motion relative to the CMB rest frame, the spectrum of the CMB dipole should also be distorted simply because the CMB monopole has a distortion (Danese & de Zotti 1981 Balashev et al. 2015). The signal associated with the large late-time y-distortion could be detectable with PIXIE at the level of a few σ (Balashev et al. 2015). Since for these measurements no absolute calibration is required, this effect will allow us to check for systematics. In addition, the dipole spectrum can be used to constrain monopole foregrounds (Balashev et al. 2015 De Zotti et al. 2015).

Finally, again due to the superposition of blackbodies (caused by the spherical harmonic expansion of the intensity map), the CMB quadrupole spectrum is also distorted, exhibiting a y-distortion related to our motion (Kamionkowski & Knox 2003 Carlstrom et al. 2002). The associated effective y-parameter is $y_0 = \beta^2 / 6 \approx (2.525 \pm 0.012) \times 10^{-7}$ and should be noticeable with PIXIE and future CMB imagers.

3 APPROXIMATIONS FOR THE DISTORTION SIGNALS

The primordial distortion signals that are caused by early energy release can be precisely computed using CosmoTherm (Chluba & Sunyaev2012). However, for parameter estimation we will use Green’s function method developed by Chluba (2013b). The results for different scenarios will be compared with more approximate but very simple estimates summarized in the next section.
3.1 Simple estimates for the μ- and y-parameters

To compute estimates for the μ- and y-parameters, several approximations have been discussed in the literature. Given the energy release history, $d(Q/\rho_i)/dz$, they can all be compactly written as (e.g., Chluba 2013b, Chluba & Jeong 2014)

$$ y = \frac{1}{4} \frac{\Delta \rho_y}{\rho_i} = \frac{1}{4} \int_0^\infty \mathcal{J}_s(z') \frac{d(Q/\rho_i)}{dz'} dz' $$

$$ \mu = 1.401 \frac{\Delta \rho_y}{\rho_i} = 1.401 \int_0^\infty \mathcal{J}_\mu(z') \frac{d(Q/\rho_i)}{dz'} dz' $$

(7a)

(7b)

where $\Delta \rho_y/\rho_i$, and $\Delta \rho_y/\rho_i$, denote the effective energy release in the y- and μ-era, respectively. The individual distortion visibility functions, $\mathcal{J}_s(z)$, determine the differences between various existing approximations. The simplest approach assumes that the transition between μ and y occurs sharply at $z = z_{\text{rec}} \approx 5 \times 10^3$ and that no distortions are created at $z > z_{\text{rec}}$, where z_{rec} is the thermalization redshift, which is given by (Burigana et al. 1991; Hu & Silk 1993a)

$$ z_{\text{rec}} \approx 1.98 \times 10^6 \left[\frac{1 - Y_p/2}{0.8767} \right]^{1/5} \frac{\Omega_b h^2}{0.02225} \left[\frac{T_0}{2.726 \text{ K}} \right]^{1/5}.$$

(8)

In this case, we have the simple approximation (‘Method A’)

$$ \mathcal{J}_s(z) = \begin{cases} 1 & \text{for } z_{\text{rec}} \leq z \leq z_{\text{rec}} \\ 0 & \text{otherwise} \end{cases} $$

(9a)

$$ \mathcal{J}_\mu(z) = \begin{cases} 1 & \text{for } z_{\text{rec}} \leq z \leq z_{\text{rec}} \\ 0 & \text{otherwise}. \end{cases} $$

(9b)

For the estimates of y from early energy release, we will not include any contributions from after recombination, $z \leq 10^3 = z_{\text{rec}}$. These contributions will be attributed to the reionization y-parameter.

The next improvement is achieved by taking into account that the thermalization efficiency does not abruptly vanish at $z = z_{\text{rec}}$, but that even at $z > z_{\text{rec}}$, a small μ-distortion is produced (Sunyaev & Zeldovich 1970b; Danese & de Zotti 1982; Burigana et al. 1991; Hu & Silk 1993a). With this we have (‘Method B’)

$$ \mathcal{J}_s(z) = \begin{cases} 1 & \text{for } z_{\text{rec}} \leq z \leq z_{\text{rec}} \\ 0 & \text{otherwise} \end{cases} $$

(10a)

$$ \mathcal{J}_\mu(z) = \begin{cases} \mathcal{J}_{\mu_0}(z) & \text{for } z_{\text{rec}} \leq z \\ 0 & \text{otherwise}. \end{cases} $$

(10b)

where $\mathcal{J}_{\mu_0}(z) \approx e^{-y_i(z_{\text{rec}})}$ is the distortion visibility function.

The next simple approximations also include the fact that the transition between μ and y distortions is not abrupt at $z = z_{\text{rec}}$. The distortion around this redshift is mostly given by a superposition of μ and y, with a smaller correction in form of the residual (r-type) distortion, which can be modeled numerically. By simply determining the best-fitting approximation to the distortion Green’s function using only μ and y one can write (Chluba 2013b)

$$ \mathcal{J}_s(z) \approx \begin{cases} \left[1 + \left(\frac{z_{\text{rec}}}{5} \right)^{1.38} \right]^{-1} & \text{for } z_{\text{rec}} \leq z \\ 0 & \text{otherwise} \end{cases} $$

(11a)

$$ \mathcal{J}_\mu(z) \approx \mathcal{J}_{\mu_0}(z) \left[1 - \exp \left(-\left(\frac{1 + z}{5.8 \times 10^2} \right)^{1.38} \right) \right]. $$

(11b)

We shall refer to this as ‘Method C’ and only represents the exact proportions of μ and y to $\approx 10\% - 20\%$ precision. To ensure full energy conservation (no leakage of energy to the r-distortion), instead one can use $\mathcal{J}_\mu(z) \approx \left[1 - \mathcal{J}_s(z) \right] \mathcal{J}_{\mu_0}(z)$ (‘Method D’).

All the above expressions give slightly different results for the expected distortion μ and y-parameters. Below we will compare them with the more accurate distortion principal component decomposition (Chluba & Jeong 2014), which optimizes the representation when simultaneously estimating μ, y and $\Delta = T/T_0$. At the same time, these approximations allow one to quickly estimate the expected distortion signals and their dependence on different parameters, which can be useful for order of magnitude work. We will see that a simple interpretation of the distortion in terms of μ and y derived in this way differs slightly from what future measurements will recover (Sect. 3.3). Specifically, due to the uncertainty in the value of the CMB monopole, the projections of the distortion signals on to μ are underestimated by $\approx 20\% - 30\%$ (Table 1).
The approximations given in the previous section are all based on simple analytical considerations. However, the CMB spectrum is further complicated by the presence of large foregrounds. Also, when considering instrumental effects (number of channels, upper and lower frequency channel and frequency resolution, etc.), different spectral shapes cannot be uniquely separated and projected on to each other. In this case, a principal component analysis (PCA) helps parametrizing the expected distortion shapes with a small number of distortion parameters, ranked by their expected signal to noise ratio.

3.2 Distortion principal component decomposition

The signal eigenmodes, $S_{ij}^{(k)}$, are associated with a set of energy release eigenvectors, $E_{ij}^{(k)}$, in discretized redshift space, which are normalized as $E_{ij}^{(k)s} = \delta_{ij}$. Any given energy-release history, $Q(z') = (\partial Q(z)/\partial \mu) / \partial \ln z$, can then be written as

$$Q \approx \sum_k E_{ij}^{(k)} \mu_j,$$

(13)

where $Q = (Q(z_0), Q(z_1), ..., Q(z_m))^T$ is the energy-release vector of $Q(z)$ in different redshift bins. By construction, the eigenvectors, $E_{ij}^{(k)}$, span an orthonormal basis, while all $S_{ij}^{(k)}$ only define an orthogonal basis (generally $S_{ij}^{(k)} S_{ji}^{(l)} = \delta_{kl}$). The mode amplitudes are then obtained as simple scalar products, $\mu_j = E_{ij}^{(k)} Q$. The eigenmodes are ranked by their signal-to-noise, such that modes with larger k contribute less to the signal. In a similar way, we can write $\mu = 1.401 J_{\mu} \cdot Q$, $4y = J_y \cdot Q$ and $4AT/T_0 = J_T \cdot Q$, where the J_ν vectors play the role of effective visibilities, like in the integral versions, Eq. (7). The first few energy-release eigenmodes and E_4 are shown in Fig. 2. We note that again only heating at $z \geq 10^3$ is included in the estimates of the distortion parameters. This can underestimate the γ-parameter at the $\approx 10\%$ level (see Sect. 5).

Although in terms of simple scattering physics, distortion signals created by energy release at $z \leq \text{few} \times 10^3$ should deviate from a simple μ-distortion (Hu 1995; Chluba & Sunyaev 2009, 2012; Khatri & Sunyaev 2012; Chluba 2013a), even at lower redshift a non-vanishing additional projection on to μ is found (Chluba & Jeong 2014), as reflected by an increase of J_4 around $z \approx 10^3$ (see Fig 2). This enhances the recovered value of μ when the parameter estimation problem for μ, γ and Λ is solved (see below), an effect that is mainly due to the fact that the average CMB temperature has to be determined simultaneously.

Parameter	Dissipation I	Dissipation II	Adiabatic cooling	Annihilation (s-wave)
$\ln(10^{10} A_s)$	3.094 ± 0.034	3.103 ± 0.036	$- \pm -$	$- \pm -$
θ_s	0.9645 ± 0.0049	0.9639 ± 0.0050	$- \pm -$	$- \pm -$
δ_{ann}	$0 \pm -0.0057 \pm 0.0071$	$0 \pm -0.0057 \pm 0.0071$	2.225 ± 0.016	2.225 ± 0.016
$100 \Omega_b h^2$	2.225 ± 0.016	2.225 ± 0.017	2.225 ± 0.016	2.225 ± 0.016
δ_{ann}	2.225 ± 0.016	2.225 ± 0.016	$< 3.5 \times 10^{-24}$ eV sec$^{-1}$ (95% c.l.)	$< 3.5 \times 10^{-24}$ eV sec$^{-1}$ (95% c.l.)

Method A

$y/10^{-9}$ | 3.67 ± 0.17 | 3.53 ± 0.25 | -0.532 ± 0.003 | < 0.091 |
$\mu/10^{-8}$ | 1.72 ± 0.13 | 1.31 ± 0.52 | -0.296 ± 0.002 | < 0.062 |

Method B

$y/10^{-9}$ | 3.67 ± 0.17 | 3.54 ± 0.23 | -0.532 ± 0.003 | < 0.091 |
$\mu/10^{-8}$ | 1.62 ± 0.12 | 1.27 ± 0.49 | -0.277 ± 0.002 | < 0.058 |

Method C

$y/10^{-9}$ | 3.83 ± 0.20 | 3.66 ± 0.28 | -0.558 ± 0.003 | < 0.097 |
$\mu/10^{-8}$ | 1.71 ± 0.12 | 1.34 ± 0.48 | -0.290 ± 0.002 | < 0.061 |

Method D

$y/10^{-9}$ | 3.83 ± 0.19 | 3.66 ± 0.26 | -0.558 ± 0.003 | < 0.097 |
$\mu/10^{-8}$ | 1.54 ± 0.11 | 1.18 ± 0.46 | -0.263 ± 0.003 | < 0.055 |

PCA

$y/10^{-9}$ | 3.63 ± 0.17 | 3.49 ± 0.26 | -0.527 ± 0.004 | < 0.091 |
$\mu/10^{-8}$ | 2.00 ± 0.14 | 1.59 ± 0.54 | -0.334 ± 0.002 | < 0.070 |
$\mu_1/10^{-8}$ | 3.81 ± 0.22 | 3.39 ± 0.58 | -0.587 ± 0.003 | < 0.12 |
$\mu_2/10^{-8}$ | -1.19 ± 0.22 | -2.79 ± 0.95 | -0.051 ± 0.001 | < 0.046 |
We immediately mention that one alternative approach, which could mitigate the above problem, could be to determine the average CMB temperature using the integral properties of the μ, y, and r-distortions. Since these are created by a scattering process, the number density of photons should not change. Thus, determining the effective temperature of the CMB by computing the total photon number density ($N_\gamma \propto T_e^3$) from the measured spectrum, the distortions would not contribute under idealized assumptions. However, this procedure is not expected to work well for discretized versions of the spectra. It is furthermore complicated by the presence of foregrounds and the possibility of non-standard processes that can actually lead to non-trivial photon injection (Chluba 2015). Finally, the r-distortion parameters would no longer remain uncorrelated, so that we do not explore this avenue any further.

3.3 Results from the different methods

We are now in the position to explicitly compute the μ- and y-parameters for the different distortion scenarios discussed above. With the PCA, we are furthermore able to obtain the eigenmode amplitudes, μ_1 and μ_2. We stop at the second residual distortion eigenmode, since observing μ_2 is already very futuristic for standard scenarios. We also mention that the values for y are only used as a comparison, since the y-distortion from the low-redshift Universe is much larger in all cases.

In our estimates, we include the measurement uncertainties for the relevant ΛCDM parameters (Planck Collaboration et al. 2015b). For the dissipation scenarios, these are mainly related to the power spectrum parameters, while for the adiabatic cooling distortion it is the baryon density (assuming standard BBN). The results are summarized in Table 1. For the dissipation scenarios, we obtained the error estimates by using the relevant covariance matrix for the Planck data, while the error for the adiabatic cooling effect was directly estimated using Gaussian error propagation.

For the y-parameter estimates, methods A and B are equivalent and give results which are quite close to those of the PCA, which should be considered the most precise representation of what would be recovered in a distortion analysis. The methods C and D are also equivalent, but overestimate the estimate 1σ error for PIXIE in its current design (Chluba & Jeong 2014), which degrades quickly for the μ_2. In parenthesis, we show estimates for the expected significance in terms of distortion measurements.

Parameter	Dissipation I	Adiabatic cooling	PIXIE 1σ
$y/10^{-9}$	3.54 ($\pm 0.3\sigma$)	-0.623 ($\pm 0.5\sigma$)	1.20
$\mu_1/10^{-8}$	2.00 ($\pm 1.5\sigma$)	-0.334 ($\pm 0.2\sigma$)	1.37
$\mu_2/10^{-8}$	3.82 ($\pm 0.3\sigma$)	-0.588 ($\pm 0.04\sigma$)	14.8
$\mu_2/10^{-8}$	-1.18 ($\pm 0.04\sigma$)	-0.054 ($\pm 0.0\sigma$)	761

For the y-parameter estimates, methods A and B are equivalent and give results which are quite close to those of the PCA, which should be considered the most precise representation of what would be recovered in a distortion analysis. The methods C and D are also equivalent, but overestimate the estimate 1σ error for PIXIE in its current design (Chluba & Jeong 2014), which degrades quickly for the μ_2. In parenthesis, we show estimates for the expected significance in terms of distortion measurements.

In Fig. 3, we highlight the differences in the predicted y and μ-parameters for the dissipation scenario I obtained with method B and the PCA. The errors are dominated by uncertainties in the power spectrum parameters. The result for y agrees quite well, while the result for μ is biased low by $\approx 2.6\sigma$ with method B, a difference that needs to be taken into account when interpreting...
future distortion measurements. The result from method B is very close to what was recently discussed in [Cabass et al. (2016)] for μ.

In Fig. 3 we show the posterior for dissipation scenario II (see Table 1). This no longer is a ΛCDM case, as for the standard inflation model running is negligible. However, it illustrates how well Planck data might constrain running and we will return to this case below when forecasting spectral distortion constraints. While in the case without running the posteriors for the distortion parameters remained fairly Gaussian, when including running those for μ, μ1 and μ2 become non-Gaussian. Since the Planck data prefers slightly negative running, implying less power at small scales, the median for μ decreases. Due to the long lever arm, small changes in nrun have a large effect on μ and μ1, so that their uncertainties increase significantly relative to the case without running (see Table 1). Conversely, this means that distortion measurements have constraining power in particular for nrun (e.g. Chluba et al. 2012b).

Again, the expected recovered value for μ is slightly larger than what Cabass et al. (2016) find, whose central value is more close to that of methods A-C. However, in this case the significance of the bias is only ≈ 1σ due to increased uncertainty in the prediction.

3.4 Distortion parameters for full CosmoTherm outputs

We mention that by explicitly using the output from CosmoTherm for the dissipation scenario I and the adiabatic cooling case we find values summarized in Table 2. We can see that the agreement is excellent in comparison with the Green’s function projections found in Table 2. We can see that the agreement is excellent in comparison with the Green’s function approximations discussed further (see Chluba 2013a; Chluba & Jeong 2014).

For the fiducial sensitivity of PIXIE, adding spectral distortions does not improve the constraints on power spectrum parameters significantly. For ≈ 3.4 times higher channel sensitivity, we find an ≈ 4.5σ detection of μ in terms of the uncertainty of the distortion measurement and a factor of ≈ 1.4−1.5 improvement of the error on nrun, which starts to move towards the ACDM value. The uncertainties in the values of A1 and n2 are not improved much (see Fig. 5). At 10 times the sensitivity of PIXIE, which is similar to the spectrometer of the PRISM concept (André et al. 2014), the constraints are further tightened by adding spectral distortions, reducing the error on nrun by a factor of ≈ 3 over Planck alone. We also find an ≈ 15σ detection of the μ-distortion parameter and a marginal ≈ 2.6σ detection of μ1 from distortions alone in this case. This sensitivity would furthermore make the CRR detectable at the level of a few σ (Desjacques et al. 2015).

4 FORECAST FOR PIXIE-LIKE EXPERIMENTS

We now discuss the prospects for detecting the different distortion signals. First of all, the γ-parameter contributions are all insignificant compared to the γ-parameter caused by low-redshift processes (Sect. 2.1). Although in terms of sensitivity, the contributions summarized in Table 2 are significant at the level of a few σ for PIXIE in its current design, these cannot be separated and are thus not discussed further (see Chluba 2013a; Chluba & Jeong 2014).

The μ-distortion amplitude for the dissipation scenario I is detectable at the level of ≈ 1.45σ (see also Chluba & Jeong 2014). This is a factor of ≈ 3.4 short of a clear ≈ 5σ detection of the standard ΛCDM signal (cf., Chluba et al. 2012b). One simple improvement in the sensitivity is achieved by halving the number of channels. For a Fourier Transform Spectrometer (FTS), such as in PIXIE, this improves the detection limits by a factor of ≈ √2, since about twice as much time can be spent on each sample and but the total number of collected photons remains the same. However, this also reduces the number of frequency channels in the CMB regime and thus degrades our ability to reject foregrounds, requiring a more detailed optimization. Similarly, changes in the distribution of channels could improve the performance of PIXIE, but also call for a more careful analysis of foreground effects. Another way to improve the sensitivity is by extending the mission duration or by changing the time spent on spectral distortions versus B-mode science (Kogut et al. 2011; Chluba 2013a). Thus, factors of a few improvement in the raw spectral sensitivity seem to be within reach of current technology, although ultimate limitations by foregrounds need to be addressed carefully (Sect. 4.1).

One interesting questions is at what effective sensitivity can a spectral distortion measurement confirm ΛCDM assuming the simplest slow-roll inflation model (see Baumann 2009 for review), which predicts nrun ≈ −1/2(nS − 1) ≈ 6 × 10−6 (Starobinsky 1980). To answer this, we assume a fiducial model for the small-scale power spectrum as in dissipation scenario I, which gives μ = 2.0 × 10−8. However, we then compute the posterior assuming Planck constraints for the case with running. Adding spectral distortions should then pull the best-fitting solution closer to nrun ≈ 0. We also add a large y-distortion signal y = 2 × 10−6 and a small shift in the CMB monopole temperature. Both parameters are estimated simultaneously with the power spectrum parameters using the MCMC tool of the Greens software package.

In Fig. 6 we illustrate this aspect for two channel sensitivities. Derived combined parameter constraints are summarized in Table 3. For the fiducial sensitivity of PIXIE, adding spectral distortions does not improve the constraints on power spectrum parameters significantly. For ≈ 3.4 times higher channel sensitivity, we find an ≈ 4.5σ detection of μ in terms of the uncertainty of the distortion measurement and a factor of ≈ 1.4−1.5 improvement of the error on nrun, which starts to move towards the ACDM value. The uncertainties in the values of A1 and n2 are not improved much (see Fig. 6). At 10 times the sensitivity of PIXIE, which is similar to the spectrometer of the PRISM concept (André et al. 2014), the constraints are further tightened by adding spectral distortions, reducing the error on nrun by a factor of ≈ 3 over Planck alone. We also find an ≈ 15σ detection of the μ-distortion parameter and a marginal ≈ 2.6σ detection of μ1 from distortions alone in this case. This sensitivity would furthermore make the CRR detectable at the level of a few σ (Desjacques et al. 2015).

In the near future, ground-based observations (Stage-IV CMB) in combination with the upcoming spectroscopic galaxy surveys, eBOSS and DESI, aim at improving limits on nrun by factors of a few (Abazajian et al. 2015a). One other target is to obtain improved constraints on neutrino physics (Abazajian et al. 2015b). As the μ-distortion from the dissipation scenario is mostly sensitive to nrun, adding spectral distortion measurements could help improving these limits by alleviating some existing degeneracies. However, enhanced versions of PIXIE are required in this case.

We highlight that the small-scale damping process is the dominant source of μ-distortions in ΛCDM. This implies that any significant departure from the expected signal (Table 2) inevitably points towards new physics. If the signal is much lower, then the small-scale CMB power spectrum, around wavenumbers k ≈ 740 Mpc−1, where most of the μ-signal is created (see Emami et al. 2015 for illustration), either has a much lower amplitude (Chluba et al.

The effective channel sensitivity improves by a factor of 2, but half the number of channels are available to constrain the distortions so that overall only ≈ √2 is gained (compare Kogut et al. 2011).

© 0000 RAS, MNRAS 000, 000–000
or an enhanced cooling process through the coupling of another non-relativistic particle to the CMB is required (e.g., Ali-Haïmoud et al. [2015]). Conversely, if the \(\mu \)-distortion signal is much larger than expected, then the small-scale power spectrum could be strongly enhanced, possibly containing a localized feature (Chluba et al. [2012a, 2015b]), or another heating mechanism (e.g., a decaying particle [Hu & Silk [1993b], Chluba & Sunyaev [2012], Chluba [2013a], Dimastrogiovanni et al. [2015]) has to be at work. Thus, spectral distortions provide a powerful new avenue for testing ACMD cosmology without purely relying on an extrapolation from large (\(k \leq 1 \text{ Mpc}^{-1} \)) to small scales (\(1 \text{ Mpc}^{-1} \leq k \leq \text{few} \times 10^4 \text{ Mpc}^{-1} \)).

4.1 Importance of refined foreground modeling

It is clear that for the success of spectral distortion measurements, the name of the game will be foregrounds. The biggest challenge is that, aside from the large \(y \)-distortion introduced at late times, all known foregrounds are orders of magnitudes larger than the primordial signals. This means that tiny effects related to the spectral and spatial variation of the foreground signals need to be taken into account. Ways to tackle this problem are i) to measure the spectrum in as many individual channels as possible, ideally with high angular resolution and sensitivity, and ii) to exploit synergies with other future or existing datasets to inform the modeling of averaged signals. In both cases, refined modeling of the foregrounds with extended parametrizations are required to capture the effects of averaging of spatially varying components across the sky.

An FTS concept like PIXIE pushes us into a qualitatively different regime in terms of its spectral capabilities, where instead of playing with a few channels we have a few hundred at our disposal. Most of these channels are at high frequencies (\(v \geq 1 \text{ THz} \)), above the CMB bands and can be used to subtract the dust and cosmic infrared background components at lower frequencies [Kogut et al. [2011]]. Simple, commonly used two-temperature modified blackbody spectra (e.g., Pinkbeiner et al. [1999]) will not provide suf-
cient freedom to capture all relevant properties of the averaged dust spectrum. Existing maps from Planck (e.g., Planck Collaboration et al. [2014a] 2015a) can be used to estimate the effect of spatial variations of the dust temperature across the sky. Similar to the superposition of blackbodies with varying temperature (Sect. 2.5), this will cause new spectral shapes because of the i) beam average and ii) all-sky averaging, which need to be captured by extended foreground parametrizations (Chluba et al., 2016, in preparation). The associated parameters have to be directly determined in the distortion measurement, as existing data are not expected to provide sufficient information down to the noise level of experiments like PIXIE, but can be used to guide the modeling and parametrization.

Similar comments apply to the modeling of the synchrotron and free-free components at low frequencies. Albeit spectrally quite smooth, the superposition of spatially varying power-law spectra, \(I_\nu \propto A_0 (\nu/\nu_0)^\alpha \) [where \(I_\nu \) denotes the intensity], causes new spectral shapes that depend on moments of the underlying distribution functions. The common addition of curvature to the spectral index, \(I_\nu \propto A_0 (\nu/\nu_0)^{\alpha+1/2} \ln (\nu/\nu_0) \) (e.g., compare Remazeilles et al. 2015), is too restrictive. Extending the list of curvature parameters, \[P_\ell \propto A_0 (\nu/\nu_0)^{\alpha+\frac{1}{2} \ln (\nu/\nu_0)} \frac{1}{\ell} (\ln (\nu/\nu_0))^\gamma \frac{1}{\ell} (\ln (\nu/\nu_0))^\delta, \]
can be shown to capture all the new degrees of freedom for the superposition of power-law spectra, although this generalization does not have the best convergence properties (Chluba et al., 2016, in preparation). In Eq. (14), the coefficients \(\alpha, \beta, \gamma \) and \(\delta \) are directly related to the aforementioned moments of the spectral index distribution functions. These have to be determined with the distortion measurement, while external data sets (e.g., C-BASS, Ifràn et al. 2015) can likely only be used to guide the modeling at the level of sensitivity targeted by future CMB spectroscopy.

Additional important foreground components are due to anomalous microwave emission (Draine & Lazarian [1998] Ali-Haimoud et al. [2009] Planck Collaboration et al. [2011]), various narrow molecular lines (e.g., CO, HCN, HCO, etc., zodiacal light (Planck Collaboration et al. 2014b) and the integrated flux of CO emission throughout cosmic history (Righi et al. 2008; Mashian et al. 2016), all of which will also affect future CMB imaging experiments. In all cases, one will have to make use of properties of the underlying physical mechanism to motivate refined foreground parametrizations. The primordial distortion signals caused by energy release are all unpolarized, which is another important property to exploit. Systematic effects related to the absolute calibration could furthermore be tested using the motion-induced leakage of monopole signals into the CMB dipole (Balashev et al. 2015).

It was also pointed out that the relativistic correction signal (see Sect. 2.1) could cause significant confusion for the \(r \)-distortion signals (Hill et al. 2015), which has to be modeled more carefully. All the above challenges need to be addressed to demonstrate the full potential and feasibility of future spectroscopic CMB experiments, a problem we are currently investigating. For additional recent discussion of the foreground separation problem for the CMB monopole see Sathyarayana Rao et al. (2015), Desjacques et al. (2015) and De Zotti et al. (2015).

5 CONCLUSIONS

Within \(\Lambda\)CDM, a range of guaranteed distortion signals is expected. Here, we summarized these distortions and also provided an assessment of the expected uncertainties in their prediction (Sect. 2 and Fig. 1). The largest signals is due to the formation of structures and reionization process at late times (Sect. 2.1). The signal is characterized by a \(y \)-type spectrum, with a \(y \)-parameter reaching \(\approx \) few \(10^{-6} \). Although the uncertainty in the amplitude of this contribution is rather large, this signal will be detectable with a PIXIE-like experiment at very high significance, even allowing us to determine the small relativistic temperature correction caused by abundant low-mass haloes with temperature \(T_e \approx 10^4 \) K (see Hill et al. 2015). This promises a way to solve the missing baryon problem and constrain the first sources of reionization.

The largest primordial signal expected within \(\Lambda\)CDM is due to the damping of small-scale acoustic modes (Sect. 2.2). The \(y \)-distortion contribution is swamped by the low-redshift signal, but the \(\mu \)-distortion should be detectable with a slightly improved version of PIXIE. Using Planck data, we find \(\mu \approx (2.00 \pm 0.14) \times 10^{-8} \) for the standard \(\Lambda\)CDM cosmology, where the uncertainty is dominated by those of power spectrum parameters. This value includes the fact that temperature shift, \(\mu \), \(y \) and \(r \)-distortions are not uniquely separable, but that these parameters have to be determined simultaneously. As our comparison of different approximation methods shows (Sect. 3.1), simple estimates for \(\mu \), based solely on scattering physics arguments, are expected to underestimate the recovered/measured value obtained with future distortion experiments by \(\approx 20\% - 30\% \) (see Table 1).

Our simple forecasts show (Sect. 4), that by combining CMB spectral distortion measurements with existing Planck data, one can achieve an \(\approx 40\% - 50\% \) improvement of the error on \(n_{\text{eff}} \) for \(\approx 3.4 \) times the sensitivity of PIXIE. At this sensitivity, also an \(\approx 5\sigma \) detection of \(\mu \) from distortion measurements alone can be expected. About \(\approx 10 \) times the sensitivity of PIXIE is required for a marginal \(\approx 2.6\sigma \) detection of the first \(r \)-distortion parameter, \(\mu_1 \approx (3.82 \pm 0.22) \times 10^{-8} \), assuming \(\Lambda\)CDM. This sensitivity would furthermore render the CRR detectable at the level of a few \(\sigma \) (Desjacques et al. 2015) and deliver a factor of \(\approx 3 \) improvement of the error on \(n_{\text{eff}} \) (Fig. 2) and Table 3. A combination of CMB spectral distortion measurements with upcoming ground-based experiments (e.g., Stage-IV CMB) could help further tightening constraints on power spectrum parameters and neutrino physics; however, enhanced versions of PIXIE are required to achieve this.

In Sect. 4.1, we gave a brief discussion of the spectral distortion foreground challenge. Simple, physically-motivated extensions of the foreground parametrizations are required to capture the effect of averaging of spatially varying spectral components inside the instrumental beam and across the sky. While existing data can be used to inform the underlying models, at the high sensitivity targeted by future spectroscopic missions, these foreground parameters ultimately have to be determined in the measurements. FTS concepts provide many hundred channels, which should allow us to extend the parameter list of refined foreground models from a few to tens, promising a path towards detailed spectral distortion measurements that we will investigate in the future.

We close by mentioning that in spite of all the successes of \(\Lambda\)CDM, there are open puzzles, such as the nature of dark matter and dark energy, to name the obvious ones. Spectral distortions are sensitive to new physics and any departure from the expected \(\Lambda\)CDM predictions for the high-\(z \) signals will inevitably point in this direction. For example, if at early times dark matter coupled to baryons or photons, then this will leave an effect on the CMB spectrum (e.g., Ali-Haimoud et al. 2015), potentially diminishing the net distortion. Also, significantly higher or significantly lower power at small scales, responsible for the \(\mu \)-distortion signal (\(k \approx 740 \) Mpc\(^{-1} \)), are necessarily related to departures from simple slow-roll inflation (Chluba et al. [2012a] Chluba & Jeong 2014, Clesse et al. 2014; Chluba et al. 2015b; Cabass et al. 2016). The...
presence of unaccounted relics (e.g., gravitinos or moduli) or exci-
tated states of dark matter, decaying early enough to leave the CMB
anisotropies unaffected, could furthermore play a role [Hu & Silk
1993b, Chluba & Sunyaev 2012].

ACKNOWLEDGEMENTS

JC cordially thanks Nick Battaglia, Giovanni Cabass, Colin Hill, Alessan-
dro Melchiorri and Enrico Pajer for valuable feedback on the manu-
script, and Steven Gratton for helpful advice on Planck data. JC is supported by
the Royal Society as a Royal Society University Research Fellow at the
University of Manchester, UK.

REFERENCES

Abazajian K. N. et al., 2015a, Astroparticle Physics, 63, 55
Abazajian K. N. et al., 2015b, Astroparticle Physics, 63, 66
Adriani O. et al., 2009, Nature, 458, 607
Ali-Ha¨ımoud Y ., Grin D., 2013, MNRAS, 434, 1619
Ali-Ha¨ımoud Y ., 2013, Phys.Rev.D, 87, 023526
Ali-Ha¨ımoud Y ., 2012a, ApJ, 758, 76
Ali-Ha¨ımoud Y ., 2011, MNRAS, 415, 3227
Ali-Haˆımoud Y ., 2010, MNRAS, 402, 1221
Ali-Haˆımoud Y ., 2009, ApJ, 698, 1129
Ali-Haˆımoud Y ., 2008, MNRAS, 407, 599
Ali-Haˆımoud Y ., 2007, ApJ, 657, 725
Abazajian K. N. et al., 2015b, Astroparticle Physics, 63, 66
Abazajian K. N. et al., 2015a, Astroparticle Physics, 63, 55
Adriani O. et al., 2009, Nature, 458, 607
Ali-Haˆımoud Y ., Grin D., 2013, MNRAS, 434, 1619
Ali-Haˆımoud Y ., 2013, Phys.Rev.D, 87, 023526
Ali-Haˆımoud Y ., 2012a, ApJ, 758, 76
Ali-Haˆımoud Y ., 2011, MNRAS, 415, 3227
Ali-Haˆımoud Y ., 2010, MNRAS, 402, 1221
Ali-Haˆımoud Y ., 2009, ApJ, 698, 1129
Ali-Haˆımoud Y ., 2008, MNRAS, 407, 599
Ali-Haˆımoud Y ., 2007, ApJ, 657, 725
Abazajian K. N. et al., 2015b, Astroparticle Physics, 63, 66
Abazajian K. N. et al., 2015a, Astroparticle Physics, 63, 55
Adriani O. et al., 2009, Nature, 458, 607
ΛCDM distortions

Khatri R., Sunyaev R. A., Chluba J., 2012, A&A, 540, A124
Kholupenko E. E., Ivanchik A. V., Varshalovich D. A., 2005, Gravitation and Cosmology, 11, 161
Kogut A. et al., 2011, JCAP, 7, 25
Komatsu E., Seljak U., 2002, MNRAS, 336, 1256
Lewis A., 2013, JCAP, 8, 053
Loeb A., 2001, ApJL, 555, L1
Mashtian N., Loeb A., Sternberg A., 2016, MNRAS
McDonald P., Scherrer R. J., Walker T. P., 2001, Phys.Rev.D, 63, 023001
Minniai F., Ryu D., Kang H., Jones T. W., Cen R., Ostriker J. P., 2000, ApJ, 542, 608
Munshi D., Joudaki S., Missild J., Coles P., Kay S. T., 2013, MNRAS, 429, 1564
Oh S. P., Cooray A., Kamionkowski M., 2003, MNRAS, 342, L20
Ota A., Takahashi T., Tashiro H., Yamaguchi M., 2014, JCAP, 10, 29
Padmanabhan N., Finkbeiner D. P., 2005, Phys.Rev.D, 72, 023508
Page L. et al., 2007, ApJS, 170, 335
Pajer E., Zaldarriaga M., 2012, Physical Review Letters, 109, 021302
Pajer E., Zaldarriaga M., 2013, JCAP, 2, 36
Peebles P. J. E., 1968, ApJ, 153, 1
Pérou C., Bernardeau F., Uzan J.-P., 2010, JCAP, 7, 19
Planck Collaboration et al., 2015a, ArXiv:1502.01588
Planck Collaboration et al., 2014a, A&A, 571, A12
Planck Collaboration et al., 2014b, A&A, 571, A14
Planck Collaboration et al., 2014c, A&A, 571, A15
Planck Collaboration et al., 2014d, A&A, 571, A16
Planck Collaboration et al., 2014e, A&A, 571, A21
Planck Collaboration et al., 2011, A&A, 536, A20
Planck Collaboration et al., 2015b, ArXiv:1502.01589
Planck Collaboration et al., 2015c, ArXiv:1507.02704
Planck Collaboration et al., 2015d, ArXiv:1502.01596
Refregier A., Komatsu E., Spergel D. N., Pen U.-L., 2000, Phys.Rev.D, 61, 123001
Remazeilles M., Dickinson C., Eriksen H. K. K., Wehus I. K., 2015, ArXiv:1509.04714
Righi M., Hernández-Monteagudo C., Sunyaev R. A., 2008, A&A, 489, 489
Rubido-Martín J. A., Chluba J., Sunyaev R. A., 2006, MNRAS, 371, 1939
Rubido-Martín J. A., Chluba J., Sunyaev R. A., 2008, A&A, 485, 377
Rubido-Martín J. A., Hernández-Monteagudo C., Sunyaev R. A., 2005, A&A, 438, 461
Rybicki G. B., dell’Antonio I. P., 1993, in ASP Conf. Ser. 51: Observational Cosmology, Chincarini G. L., Iovino A., Maccacaro T., Maccagni D., eds., pp. 548–
Sathyaprakash Rao M., Subrahmanyan R., Udaya Shankar N., Chluba J., 2015, ApJ, 810, 3
Shaw L. D., Nagai D., Bhattacharya S., Lau E. T., 2010, ApJ, 725, 1452
Shull J. M., van Steenberg M. E., 1985, ApJ, 298, 268
Slatyer T. R., 2016, Phys.Rev.D, 93, 023521
Slatyer T. R., Padmanabhan N., Finkbeiner D. P., 2009, Physical Review D (Particles, Fields, Gravitation, and Cosmology), 80, 043526
Smirnov A. V. et al., 2012, in SPIE Conference Series, Vol. 8442
Starobinsky A. A., 1980, Physics Letters B, 91, 99
Stebbins A., 2007, astro-ph/0703541
Steigman G., 2007, Annual Review of Nuclear and Particle Science, 57, 463
Sunyaev R. A., Chluba J., 2009, Astronomische Nachrichten, 330, 657
Sunyaev R. A., Khatri R., 2013, International Journal of Modern Physics D, 22, 30014
Sunyaev R. A., Zeldovich I. B., 1980, MNRAS, 190, 413
Sunyaev R. A., Zeldovich Y. B., 1970a, ApSS, 9, 368
Sunyaev R. A., Zeldovich Y. B., 1970b, ApSS, 7, 20
Sunyaev R. A., Zeldovich Y. B., 1972, A&A, 20, 189
Tashiro H., 2014, Prog. of Theo. and Exp. Physics, 2014, 060000
Valdés M., Evoli C., Ferrara A., 2010, MNRAS, 404, 1569
Weinberg S., 1971, ApJ, 168, 175
Yu Q., Spergel D. N., Ostriker J. P., 2001, ApJ, 558, 23
Zaldarriaga M., Loeb A., 2002, ApJ, 564, 52

Zavala J., Vogelsberger M., Slatyer T. R., Loeb A., Springel V., 2011, Phys.Rev.D, 83, 123513
Zeldovich Y. B., Illarionov A. F., Sunyaev R. A., 1972, SJETP, 35, 643
Zeldovich Y. B., Kurt V. G., Sunyaev R. A., 1968, Zhurnal Eksperimental no i Teoreticheskoi Fiziki, 55, 278
Zeldovich Y. B., Sunyaev R. A., 1969, ApSS, 4, 301
Zhang L., Chen X., Lei Y., Si Z., 2006, Phys.Rev.D, 74, 103519
Zhang P., Pen U.-L., Trac H., 2004, MNRAS, 355, 451