ABSTRACT

Lupus is a complex heterogeneous disease characterised by autoantibody production and immune complex deposition followed by damage to target tissues. Animal models of human diseases are an invaluable tool for defining pathogenic mechanisms and testing of novel therapeutic agents. There are perhaps more applicable murine models of lupus than any other human disease. There are spontaneous models of lupus, inducible models of lupus, transgenic-induced lupus, gene knockout induced lupus and humanised mouse models of lupus. These mouse models of lupus have contributed significantly to our knowledge of the pathogenesis of lupus and served as valuable preclinical models for proof of concept for new therapies. Despite their utility, mouse models of lupus have their distinct limitations. Although similar, mouse and human immune systems are different and thus one cannot assume a mechanism for disease in one is translatable to the other. Efficacy and toxicity of compounds can vary significantly between humans and mice, also limiting direct translation. Finally, the heterogeneous aspects of human lupus, both in clinical presentation, underlying pathogenesis and genetics, are not completely represented in current mouse models. Thus, proving a therapy or mechanism of disease in one mouse model is similar to proving a mechanism/therapy in a limited subset of human lupus. These limitations, however, do not marginalise the importance of animal models nor the significant contributions they have made to our understanding of lupus.

INTRODUCTION

Research into human diseases spans in vitro assessments to preclinical animal models of disease to in vivo human assessments and finally testing of therapeutics in humans. This step-by-step model has resulted in most of the major breakthroughs in new treatments for disease. Perhaps more so in lupus than any other human disease, mouse models have contributed significantly to our understanding of the disease and the development/testing of new treatments for the disease. For the last four decades, we have characterised spontaneous murine models of lupus that were defined genetically and immunologically and served as the initial step in supporting or not the progress of new treatments to clinical trials for lupus. As science and medicine progressed, transgenic techniques, gene knockout techniques, inducible knockouts and humanised mouse models were developed that allowed further insight into the role of a single gene or molecule in lupus pathogenesis. Most of the mouse models of lupus produce autoantibodies and develop immune complex glomerulonephritis and thus provide insight into the mechanisms of loss of tolerance and the development of glomerulonephritis. No mouse model is completely representative of human lupus, perhaps due to the fact that human lupus is so heterogeneous that not one inbred mouse model can manifest the broad spectrum of disease present in human lupus. Despite this shortcomings and the growing trend to move more into studying humans rather than mice, murine models of lupus have and continue to provide significant insight into disease pathogenesis and treatment. In this review, we cover selected mouse models of lupus; however, there are many others that are not included due to the expanding number of knockout models and transgenic models that develop a disease with similarities to human lupus.

Spontaneous models of lupus

Spontaneous models of lupus were recognised four decades ago beginning with the New Zealand Black crossed with the New Zealand White mouse, the NZB/NZWFl (BW) mouse. BW mice produce autoantibodies (ANA and anti-dsDNA predominantly) and develop immune complex glomerulonephritis and mild vasculitis. Similar to humans, lupus develops primarily in females with lesser percentage and severity in male mice. They do develop splenomegaly and hypergammaglobulinemia. They do not manifest other clinical manifestations of lupus such as rash or arthritis. Disease develops slowly, primarily after 6 months of age, with 50% mortality in female mice at 9 months of age and in male mice at 15 months of age. BW mice were studied early on regarding mechanisms of loss of tolerance, autoantibody production, impact of sex/gender, sex hormones on disease and pathogenic factors in renal...
disease development. They were used in the preclinical testing of many of the therapeutics taken to clinical trials in lupus. One drawback for research of the BW mice is the long disease incubation time as well as the predominantly single-organ involvement. Investigators have used strategies to enhance disease expression including giving adenoviruses that express interferon (IFN)α leading to earlier disease expression or injecting toll-like receptor (TLR)7/9 agonists to accelerate disease development. Another drawback is the need to breed the two strains together to get offspring for study. Nevertheless, they remain a useful staple for studies of lupus.

Related strains to the NZB/NZW/F1 mice are the NZM strains. These mice were generated by mating of pairs of NZB/NZW/F1 mice for multiple generations. Over 20 NZM strains were generated and characterised for manifestations of lupus-like disease. Two of them are used in lupus research laboratories today. One is the NZM2410 mouse. NZM2410 mice, like the parental NZB/NZW/F1 mice, make autoantibodies and develop immune complex glomerulonephritis. They do not develop vasculitis. Different from B/W mice, the development of lupus occurs more or less at the same time and similar severity in males and females, though there are differences. The NZM2410 mouse strain was used extensively for defining the genetics of lupus. By backcrossing to C57BL6 mice, Mohan, Wakeland and Morel generated a series of congenic mice that contained the susceptibility loci for lupus (sle1,2,3). They further characterised the phenotype of immune abnormalities and disease expression for each of the three loci and fine mapped the genes involved, primarily focusing on the sle1 locus. There are a number of genes in this locus that they further characterised, including identifying complement receptor 2 as one of the candidate genes. NZM2410 mice have the advantage over B/W mice in that they are a single strain that can be expanded by breeding to each other. They, like BW mice, are primarily a model of immune complex glomerulonephritis without skin disease or arthritis. Disease develops faster in NZM2410 mice than in B/W mice with a 6-month 50% mortality rate. They are being used currently in preclinical trials of candidate drugs. They have significantly contributed to our understanding of multi-genic interactions in the pathogenesis of lupus. The congenic sle1,2,3 mice, which express the susceptibility loci of NZM2410 mice on the C57BL6 background, are also used extensively. Different transgenes and gene knockouts can be more rapidly bred onto the sle1,2,3 background as most transgenes and knockouts are on the B6 genetic background. Thus, one can backcross a gene knockout or transgenic much more quickly onto the sle1,2,3 compared with the time-intensive process of crossing to Murphy Roths Large (MRL)/lymphoproliferation (lpr) or NZM2410 mice, allowing quicker assessment of the impact of the knockout or transgene on disease.

One can derive congenic mice to study on the sle1,2,3 strain after only 3–4 generations, while it takes 10–12 generations of backcrosses to fully backcross to NZM2410 or other lupus strains. The other NZM strain being studied is the NZM2328. They also develop renal disease, produce anti-dsDNA antibodies, but slower onset of disease with 50% mortality occurring at 9 months of age. This strain has the advantage that disease is much more prevalent in females than males similar to BW mice and human disease. The other interesting feature of this strain is that they have two-stage renal disease, acute glomerulonephritis followed by a more chronic nephritis. These mice were also used to show that autoantibodies, especially anti-dsDNA antibodies, are not required for development of renal disease.

A third strain of mice, the MRL/lpr mouse was generated by backcrossing four different strains of mice (LG, B6, AKR and C3H). MRL/lpr mice are unique among lupus strains in that they develop a full panel of lupus autoantibodies (ANA, anti-dsDNA, anti-Sm, anti-Ro and anti-La) and have additional lupus manifestations including arthritis, cerebritis, skin rash and vasculitis. The disease, however, is more prevalent and accelerated in females, but not as prominent as in B/W or NZM2328 mice, with 50% mortality at 6 months. The background genetics of the MRL/lpr mouse is complex, but the lpr gene is a single-gene mutation in the Fas receptor gene. This gene is important in apoptosis of B cells and T cells. The defect in Fas thus leads to marked splenomegaly and lymphadenopathy, primarily made up of an unusual set of ‘double-negative T cells’ (CD3+CD4–CD8–). The role of these double-negative T cells remains unclear, but the lpr gene significantly accelerates development of disease compared with MRL/+ mice that lack the Fas mutation. A deficiency of Fas ligand (called gld) has a similar accelerating effect on lupus-like disease as the Fas receptor on the MRL background. It is of interest that although Fas-deficient humans have lymphopenopathy and other immune abnormalities they do not develop a lupus-like syndrome, perhaps due to their not having an otherwise susceptible genetic background. Similarly, B6, BALB/c, C3H and AKR mice, onto which the lpr gene was bred, develop splenomegaly, autoantibodies and lymphopenopathy, but have very mild autoimmune disease. The MRL+ mouse lacks the lpr mutation. These mice develop a more benign lupus phenotype at a much later age (18 months) and are used primarily to study accelerants of disease. The MRL/lpr mouse is used extensively for assessments of candidate treatments for lupus due to the more rapid onset of disease and the multiple manifestations of disease. The mouse is not a perfect model for human lupus as, unlike in the majority of human lupus, disease is not primarily driven by IFNγ, but more IFNα, and the dominance of the lpr mutation in accelerating disease also differs from human lupus.

Another spontaneous murine model of lupus is the BXSB mouse. This mouse model is different from all others as disease only occurs in male mice. The genetic risk for disease was mapped to a locus on the Y chromosome.
Two regions near simultaneously identified yaa as a translocation of a region of the X chromosome onto the Y chromosome. This region was shown to contain the TLR7 gene and subsequent eloquent studies confirmed it is the duplication and resultant overexpression of TLR7 that is required for lupus-like disease expression. The Yaa genetic locus was then bred onto other lupus-prone backgrounds and shown to accelerate and enhance disease expression. This discovery was critical in demonstrating the important role of TLR7-inducing increased type I IFNs as a causative pathway for lupus. Disease in the BXSB mouse is limited, similar to most other models, to glomerulonephritis. There are other spontaneous lupus mouse models, including SNF1 mice, whose disease expression is similar to that of BW mice. Use of SNF1 mice and other models is limited compared with the above-listed strains.

Most of these strains have served as preclinical models for the testing of potential new lupus therapies. Therapies directed at the BAFF/BLYs axis, IFN, interleukin (IL) 17, B cells, plasmablasts, T cells, dendritic cells and TLRs, among many others, were given to at least one of the murine lupus models. Unfortunately, efficacy in a mouse model of lupus does not always translate to efficacy in human lupus, as the therapies that failed in human mouse model of lupus does not always translate to efficacy in human lupus, as the therapies that failed in human trials, all had efficacy in preclinical mouse models. Given that the mouse strains are genetically alike and experimental conditions and concomitant meds are easily controlled, compared with the heterogeneity of human lupus and confounders present in any human experiment, success in mouse studies can only be considered a first necessary step in drug development.

Induced/accelerated models of lupus

The spontaneous models of lupus provided important insight into the complex genetics of lupus, as well as the potential for a single-gene mutation to markedly accelerate/enhance disease expression. Lupus in humans, however, is believed to be the result of an environmental factor triggering disease in a genetically prone individual. Identifying the environmental trigger has been as elusive or more so than defining the susceptibility genes. Perhaps the most widely used murine model of induced disease is the pristane-induced model. Pristane is a mineral oil that was given intraperitoneally in BALB/c mice to induce periportal inflammation and enhance the yield of mononclonal antibodies from ascites when hybridomas were subsequently injected. Satoh et al noted that pristane-injected mice, after a number of months, developed a lupus-like disease with immune complex glomerulonephritis, mild erosive arthritis and many lupus-associated autoantibodies. A number of strains of mice develop a lupus-like disease following pristane injection. B6 mice, when injected with pristane, develop low-grade autoimmunity, but also develop pulmonary vasculitis and pulmonary haemorrhage, yielding a valuable animal model for studying this rare, but devastating complication of lupus. A number of studies have identified key pathways involved in development of disease that are relevant to human lupus. Among other key findings, studies demonstrated that pristane-induced lupus is highly dependent on overproduction of type I IFNs, similar to over half of patients with lupus. This overproduction of type I IFNs requires expression of TLR7. Pristane-induced lupus is the best example of an environmental factor inducing lupus-like disease in a strain that otherwise is not autoimmune.

A more recently developed mouse model for lupus used resiquimod cream administered to the ears of specific strains of mice. This cream, containing a TLR7 ligand, is in human use in management of pre-cancerous skin lesions. When repeatedly rubbed onto the ears of BALB/c mice and limited other strains, a lupus-like disease develops in 2–4 weeks with autoantibody production, splenomegaly and immune complex glomerulonephritis. The mice exhibit, as expected, heightened levels of type I IFN activity. Unfortunately, induction of disease in B6 mice is less predictable, thus limiting, to some extent, the ability to use this model to discern disease mechanisms and key pathways using transgenic or genetic knockout mice. The rapidity of disease onset is, however, attractive compared with the incubation time of other induced or spontaneous models.

Solvent exposure is thought to be a possible occupational risk factor for developing lupus. In particular, the degreasing solvent, trichloroethylene (TCE), has been most frequently implicated and most widely studied. TCE has been identified as a possible factor in studies of geographic lupus clusters in Arizona and North Carolina near military bases where high levels of TCE were found in drinking water. Other potential environmental exposures tested for their role in lupus include silica, persistent organic pollutants and heavy metals, most commonly mercury. Different gulf war environmental exposures were also used to assess their impact on autoimmunity. In most of these cases, exposure of non-autoimmune-prone mice with these agents did not induce autoimmunity or lupus, though specific effects on immune cell subsets could be defined. Alternatively, most were found to accelerate development of lupus in lupus-prone mice such as MRL/+ mice. Defining the relevance of these studies to induction of human lupus via environmental exposure remains to be determined.

Another studied induced murine model of lupus is graft-versus-host (GVH) disease, induced by performing bone marrow transplant experiments into F1 crosses, using as the donor one of the parental strains. Depending on the strains used in these experiments, one can induce acute GVH disease with autoantibodies and immune complex nephritis. Other combinations lead to development of chronic GVH disease. Given that GVH is primarily a T-cell-driven disease, these models were informative in defining the role of T cell alloreactivity/autoreactivity in driving B cell autoantibody production and tissue damage.

A specific, but rapid model of immune complex glomerulonephritis, developed by the Lefkowith group, can be generated by injecting anti-glomerular basement...
membrane (GBM) antibodies into mice. These antibodies are usually generated by injecting rabbits with mouse glomerular extracts and deriving their serum containing anti-mouse GBM antibodies. An even more robust disease, developed by Mohan and colleagues, can be induced by pre-immunising the mice with rabbit IgG subcutaneously inducing an anti-rabbit IgG response prior to then injecting the rabbit anti-GBM antibodies. These induced models of glomerulonephritis are helpful for discerning the pathogenic factors in renal inflammation and damage that occur downstream of immune complex deposition.

Transgenic models of lupus
The advent of transgenic techniques allowed researchers to express or overexpress a gene product or protein to discern their role in lupus and immunity in general. One of the earliest uses of transgenic technology was to introduce immunoglobulin heavy and light chain genes that code for autoantibodies (ie, rheumatoid factor or anti-dsDNA antibodies). Since these antibodies were against self-antigens, insight was gained as to how tolerance is maintained by studying how an autoantibody-producing B cell is handled in a lupus-prone mouse versus a normal mouse. The concept of receptor editing was defined using transgenic mice expressing autoreactive antibodies. In normal immunity, a B cell expressing a heavy chain that is autoreactive when paired with a specific light chain will receptor edit, dropping the autoreactive light chain and replacing it with a different light chain that is not autoreactive. Lupus-prone mice were subsequently shown to not be as effective in receptor editing. Overexpression of the Ets factor Fli-1 gene led to a lupus-like disease among other models where overexpression of a gene can lead to disease (ie, TLR7 as in BXSB mice). Overexpression of genes that are immune modulatory (transforming growth factor (TGF)β, IL10, Bcl2) provided insight into the role of these factors in immune tolerance. Knock-in technology was developed that allowed putting a gene specifically into the genetic locus of the native gene. This technique is used to further define defects in immune function and autoimmune development in lupus.

Knockout models of lupus
The technique of gene knockout has been used extensively to study pathogenetic mechanisms in lupus. A large number of such knockout studies were performed on the MRL/lpr background and provided important understanding of the effects of certain genes and certain cells on disease. An example of new insight derived from MRL/lpr knockout studies were the experiments by the Shlomchik group on B cells. Total knockout of B cells ameliorated disease. Mice that have B cells, but cannot produce antibodies, had less disease, but not a complete lack of disease. These findings support that B cells play an important role in lupus independent of autoantibody production, including production of key cytokines, serving as antigen-presenting cells and being necessary for formation of lymphoid-like organs in target tissues such as the kidney and synovium. Another example is when the TLR7 and TLR9 knockouts were bred onto the MRL/lpr background. TLR7-deficient mice have significantly less disease, do not produce anti-Sm or anti-RNP and have prolonged survival. TLR9-deficient mice, surprisingly, have accelerated disease despite lacking anti-dsDNA antibodies. TLR7/TLR9 double knockouts were protected, suggesting the TLR9-accelerant effect is dependent on TLR7. Using Cre recombinase and Floxed technology allowed specific deletion of a gene in a cell of choice, while allowing expression in all other cell types, thus allowing definition of the role of a specific gene in a specific cell type. Conditional knockout technology allowed one to induce the knockout at a specific time point in the mouse, thus allowing the immune system to develop and mature prior to knocking out the specific gene of choice. Decades of genes were knocked out, leading to autoimmunity including C1q, C4, DNAseIL3 and TGFβ. Studies knocking out specific FcRs, apoptosis genes and cellular debris clearance genes have provided important insight into the role these different factors play in immunity and autoimmunity. Knockout of genes other than TLR7 (ie, factor B, Fli-1, IFNα, among others) resulted in decreased disease expression, implying a key role of these factors in disease development.

The latest technology and perhaps most useful for studies of gene function is the CRISPR/Cas9 technique. This incredible gene editing technology allows one to specifically introduce point mutations into genes of choice that can either knockout gene function or alter gene function/expression. Thus, a specific lupus susceptibility single-nucleotide polymorphism can be introduced through this technique, allowing one to study the effect of that specific nucleotide change. An advantage to this technology is that it can be applied to any strain of mice, whereas prior knockout work was very difficult unless done in the B6/129 strain. CRISPR/Cas9 can be done in any strain, including MRL/lpr or NZM2410 mice, allowing rapid assessment of the impact of the genetic change without having to perform multiple genetic backcrosses. To study the dozens of identified and verified lupus susceptibility loci, a number of laboratories are using the CRISPR/Cas9 system to introduce the identified nucleotide change and study the effects in specific immune cells and systemic disease.

Humanised mice
A common concern and criticism of studies done in mice is that mice are not humans and the mouse and human immune systems differ in a number of different areas including TLR expression, complement protein and inhibitor differences, Ig differences and FcR differences, among others. Using immune-deficient mice, techniques are available for establishing a humanised mouse immune system, including a lupus humanised mouse immune system. Once fully developed, these mice...
understanding lupus pathogenesis and treatment
not always translatable to human lupus, studies of lupus in
systems are different and efficacy of a treatment in mice is
lupus pathogenesis. Although mouse and human immune
mice, will provide even more valuable as tools for dissecting
therapeutic value of a pharmacological intervention. Newer
able as preclinical models in discerning the possible ther-

of lupus at the cellular and molecular level. They are valu-

to study lupus over the last 40 years. Findings in these
Lupus mouse models have proven an invaluable resource

will be useful in specific gene editing experiments and
in preclinical testing of new therapeutics as the response
to treatment in these mice will be more like the human
response than the mouse response.

SUMMARY
Lupus mouse models have proven an invaluable resource
to study lupus over the last 40 years. Findings in these
models have provided novel insight into the pathogenesis
of lupus at the cellular and molecular level. They are valu-
able as preclinical models in discerning the possible ther-
apeutic value of a pharmacological intervention. Newer
technologies, specifically CRISPR/Cas9 and humanised
mice, will provide even more valuable as tools for dissec
ting lupus pathogenesis. Although mouse and human immune
systems are different and efficacy of a treatment in mice is
not always translatable to human lupus, studies of lupus in
mice remain, and will continue to be, extremely valuable for
understanding lupus pathogenesis and treatment (table 1).

Competing interests None declared.
Provenance and peer review Commissioned; internally peer reviewed.
Open Access This is an Open Access article distributed in accordance with
the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially,
and license their derivative works on different terms, provided the original work is
properly cited and the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/
© Article author(s) (or their employer(s) unless otherwise stated in the text of
the article) 2018. All rights reserved. No commercial use is permitted unless otherwise
expressly granted.

REFERENCES
1 Perry D, Sang A, Yin Y, et al. Murine models of systemic lupus erythematosus. J Biomed Biotechnol 2011;2011:1–19.
2. Andrews BS, Eisenberg RA, Theofilopoulos AN, et al. Spontaneous murine lupus-like syndromes. Clinical and immunopathological
manifestations in several strains. J Exp Med 1978;148:1198–215.
3. Dixon FJ, Andrews BS, Eisenberg RA, et al. Etiology and pathogenesis of a spontaneous lupus-like syndrome in mice. Arthritis Rheum 1978;21:S64–S67.
4. Reilly CM, Gilkeson GS. Use of genetic knockouts to modulate disease expression in a murine model of lupus, MRL/lpr mice. Immunol Res 2002;25:143–54.
5. Du Y, Sanam S, Kate K, et al. Animal models of lupus and lupus nephritis. Curr Pharm Des 2015;21:2320–49.
6. Nadeau JH. Maps of linkage and synteny homologies between mouse and man. Trends Genet 1989;5:82–6.
7. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology, J Immunol 2004;172:2731–8.
8. Jacob CO, van der Meide PH, McDevitt HO. In vivo treatment of (NZB X NZW)F1 lupus-like nephritis with monoclonal antibody to gamma interferon. J Exp Med 1987;166:708–803.
9. Gordon C, Ranges GE, Greenspan JS, et al. Chronic therapy with recombinant tumor necrosis factor-alpha in autoimmune NZB/NZW F1 mice. Curr Immunol Immunopathol 1989;52:421–34.
10. Ramanujam M, Kahn P, Huang W, et al. Interferon-alpha treatment of female (NZW x BXSB)F(1) mice mimics some but not all features associated with the Yaa mutation. Arthritis Rheum 2009;60:1096–101.
11. Boneparth A, Huang W, Bethunaickan R, et al. TL7R7 influences germinal center selection in murine SLE. PLoS One 2015;10:e0119925.
12. Rudofsky UH, Lawrence DA. New Zealand mixed mice: a genetic systemic lupus erythematosus model for assessing environmental
effects. Environ Health Perspect 1999;107(Suppl 5):713–21.
13. Morel L, Croker BP, Brienman KR, et al. Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic
murine strains. Proc Natl Acad Sci U S A 2000;97:6670–5.
14. Mohan C, Morel L, Yang P, et al. Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. J Clin Invest 1999;103:1685–95.
15. Mohan C, Yu Y, Morel L, et al. Genetic dissection of Sle pathogenesis: Sle3 on murine chromosome 7 impacts T

Richard ML, Gilkeson G. Lupus Science & Medicine 2018;5:e000199. doi:10.1136/lupus-2016-000199 5
features of double negative T cells in human Fas deficiency. Blood 2014;124:851–60.

43. Gilkeson GS, Ruiz P, Pritchard AJ, et al. Genetic control of inflammatory arthritis and glomerulonephritis in congenic lpr mice and their F1 hybrids. J Autoimmun 1991;4:505–606.

44. Gilkeson GS, Ruiz P, Gruder JP, et al. Genetic control of inflammatory arthritis in congenic lpr mice. Clin Immunol Immunopathol 1989;53:460–74.

45. Izui S, Kelley VE, Masuda K, et al. Induction of various autoantibodies by mutant lpr gene in several strains of mice. J Immunol 1984;133:227–33.

46. Reilly CM, Mishra N, Miller JM, et al. Modulation of renal disease in MRL/lpr mice by suberylanilide hydroxamic acid. J Immunol 2004;173:4717–8.

47. Gu F, Molano I, Ruiz P, et al. Differential effect of allogeneic versus syngeneic mesenchymal cell transplantation in MRL/lpr and (NZB/NZW)F1 mice. Clin Immunol 2012;145:142–52.

48. Mishra N, Reilly CM, Brown DR, et al. Histone deacetylase inhibitors modulate renal disease in the MRL/lpr-pmr mouse. J Clin Invest 2003;111:539–52.

49. Niccoletti F, Meroni P, Di Marco R, et al. In vivo treatment with a monoclonal antibody to interferon-gamma neither affects the survival nor the incidence of lupus-nephritis in the MRL/lpr-pmr mouse. Immunopharmacology 1992;24:11–16.

50. Merino R, Fossati L, Izzi S. The lupus-prone BXSB strain: the Y gene model of systemic lupus erythematous. Springer Semin Immunopathol 1992;14:141–57.

51. Izui S, Hisagi M, Morrow D, et al. The Y chromosome from autoimmune BXSB/MpJ mice induces a lupus-like syndrome in (NZW x C57BL/6)F1 male mice, but not in C57BL/6 male mice. Eur J Immunol 1988;18:911–5.

52. Santiago-Raber ML, Kikuchi S, Borel P, et al. Evidence for genes in addition to Tlr7 in the Yaa translocation linked with acceleration of systemic lupus erythematous. J Immunol 2008;181:1556–62.

53. Deane JA, Prikpur P, Barrett RS, et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 2007;27:801–10.

54. Subramanian S, Tus K, Li Q, et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci U S A 2007;104:12659–64.

55. Pisetsy DS, Klatt C, Dawson D, et al. The influence of Yaa on anti-DNA responses of B6-lpr mice. Clin Immunol Immunopathol 1985;37:369–76.

56. Johnson BM, Gaudreau MC, Al-Gadban MM, et al. Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice. Clin Exp Immunol 2015;181:332–37.

57. Barrat FJ, Meeker T, Chan JH, et al. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. J Immunol 2015;195:5681–92.

58. Li W, Titov AA, Morel L. An update on lupus animal models. Curr Opin Rheumatol 2017;29:434–41.

59. Liao R, Liu Q, Zheng Z, et al. Tacrolimus Protects Podocytes from Injury in Lupus Nephritis Partly by Stabilizing the Cytoskeleton and Inhibiting Podocyte Apoptosis. PLoS One 2013;10:e0137234.

60. Boneparth A, Woods M, Huang W, et al. The effect of BAFF inhibition on autoreactive B cell selection in murine SLE. Mol Med 2016.

61. Merrill JT, Neuwelt CM, Wallace DJ, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase III/IIIb systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum 2010;62:222–33.

62. Satoh M, Reeves WH. Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane. J Exp Med 1994;180:2341–6.

63. Satoh M, Kumar A, Kanwar YS, et al. Anti-nuclear antibody production and immune-complex glomerulonephritis in BALB/c mice treated with pristane. Proc Natl Acad Sci U S A 1995;92:10363–4.

64. Reeves WH, Lee PY, Weinstein JS, et al. Induction of autoimmunity by pristane and naturally occurring hydrocarbons. Trends Immunol 2009;30:455–64.

65. Satoh M, Richards HB, Shaheen VM, et al. Widespread susceptibility among inbred mouse strains to the induction of lupus autoantibodies by pristane. Clin Exp Immunol 2000;121:399–405.

66. Zhuang H, Han S, Lee PY, et al. Pathogenesis of Diffuse Alveolar Hemorrhage in Murine Lupus. Arthritis Rheum 2017;69:1280–93.

67. Lee PY, Kumagai Y, Liu Y, et al. TLR7-dependent independent production of type I interferon in experimental murine lupus. J Exp Med 2008;205:2995–3006.
2018;68.
69. Nacionales DC, Kelly KM, Lee PY, et al. Type I interferon-producing cell subset in murine lupus. J Immunol 2008;180:5010–8.
70. Nacionales DC, Kelly-Scumpia KM, Lee PY, et al. Deficiency of the type I interferon receptor protects mice from experimental lupus. Arthritis Rheum 2007;56:1370–93.
71. Yokogawa M, Takai A, Nakajima K, et al. Epicutaneous application of toll-like receptor 7 agonists leads to systemic autoimmunity in wild-type mice: a new model of systemic Lupus erythematosus. Arthritis Rheumatol 2014;66:694–706.
72. Yoshida H, Isagon M, Belkin KM, et al. Effect of an exogenous trigger on the pathogenesis of lupus in NZB x NZWF1 mice. Arthritis Rheum 2002;46:2235–44.
73. Cooper GS, Makris SL, Nielert PJ, et al. Evidence of autoimmune-related effects of trichloroethylene exposure from studies in mice. Environ Health Perspect 2009;117:896–702.
74. Keil DE, Peden-Adams MM, Eudaly JG, Lee AM, et al. Occupational silica and solvent exposures and risk of systemic lupus erythematosus in urban women. Arthritis Rheum 2006;54:3648–54.
75. Brown JM, Archer AJ, Pfau JC, et al. Silica accelerated systemic autoimmune disease in lupus-prone New Zealand mixed mice. Clin Exp Immunol 2001;124:141–21.
76. Silbergeld EK, Silva IA, Nyland JF. Mercury and autoimmunity: implications for occupational and environmental health. Toxicol Appl Pharmacol 2005;207:282–92.
77. Via GS, Nguyen P, Niculescu F, et al. Low-dose exposure to inorganic mercury enhances nephritis and mortality in acquired murine lupus. Environ Health Perspect 2003;111:1273–7.
78. Reiber H, Davey B. Desert Storm syndrome and immunization. Arch Intern Med 1996;156:217.
79. Eisenberg RA, Via CS, T cells, murine chronic graft-versus-host disease and autoimmunity. J Autoimmun 2012;39:240–7.
80. Via CS, R practitioner et al. Differential effect of CTLA4Ig on murine chronic graft-versus-host disease (GVHD) development: CTLA4Ig prevents both acute and chronic GVHD development but reverses only chronic GVHD. J Immunol 1996;157:4258–67.
81. Via CS, Shearer GM. T-cell interactions in autoimmunity: insights from a murine model of graft-versus-host disease. Immunol Today 1988;9:207–13.
82. Lefkowith JB, Di Valerio R, Norris J, et al. Murine glomerulotropism monoclonal antibodies are highly oligoclonal and exhibit distinctive molecular features. J Immunol 1996;157:1297–305.
83. Lefkowith JB, Gilkeson GS. Nephritogenic autoantibodies in lupus: current concepts and continuing controversies. Arthritis Rheum 1996;39:894–903.
84. Du Y, Yu Y, Mohan C. Experimental anti-GBM nephritis as an analytical tool for studying spontaneous lupus nephritis. Arch Immunol Ther Exp 2008;56:31–40.
85. Xie C, Sharma R, Wang H, et al. Strain distribution pattern of susceptibility to immune-mediated nephritis. J Immunol 2004;172:5047–55.
86. Williams J, Euler C, Primano L, et al. B cell tolerance checkpoints that restrict pathways of antigen-driven differentiation. J Immunol 2006;176:2142–51.
87. Stewart JJ, Agosto H, Litwin S, et al. A solution to the rheumatoid factor paradox: pathologic rheumatoid factors can be tolerated by competition with normal rheumatoid factors. J Immunol 1997;159:1728–36.
88. Sato S, Leonard Richard M, Brandon D, et al. A critical role of the transcription factor flI-1 in murine lupus development by regulation of interleukin-6 expression. Arthritis Rheumatol 2014;66:3436–44.
89. Zhang L, Eddy A, Teng YT, et al. An immunological renal disease in transgenic mice that overexpress Fl-I, a member of the ets family of transcription factors. J Autoimmun 2001;16:70–77.
90. Anders H, Schöndorf D. Murine models of renal disease: possibilities and problems in studies using mutant mice. Exp Nephrol 2000;8:181–93.
91. Friedmann D, Yachimovich N, Mostoslavsky G, et al. Production of high affinity autoantibodies in autoimmune New Zealand Black/New Zealand white F1 mice targeted with an anti-dsDNA heavy chain. J Autoimmun 1999;16:2406–16.
92. Stephanou A, Conroy S, Isenberg DA, et al. Elevation of IL-6 in transgenic mice results in increased levels of the 90 kDa heat shock protein (hsp90) and the production of anti-hsp90 antibodies. J Autoimmun 1998;11:249–53.
93. Chan O, Shlomchik MJ. A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J Immunol 1996;156:101–9.
94. Nickerson KM, Christensen SR, Cullen JL, et al. TLR9 promotes tolerance by restraining germinal center responses. Mol Biol Cell 2005;16:861–6, yet is also required for their activation. J Immunol 2013;190:1447–56.
95. Nickerson KM, Cullen JL, Kashgarian M, et al. Exacerbated autoimmunity in the absence of TLR9 in MRL-Faslpr(lpr) mice depends on Ifnar1. J Immunol 2013:190:3889–94.
96. Nickerson KM, Wang J, Bantick S, et al. Toll-like receptor 9 suppresses lupus disease in Fas-sufficient MRL Mice. PLoS One 2017;12:e0173471.
97. Wang X. Cre transgenic mouse lines. Methods Mol Biol 2009;561:265–73.
98. Suzuki E, Karam E, Williams S, et al. Fl-I transcription factor affects glomerulonephritis development by regulating expression of monocytic chemotactrant protein-1 in endothelial cells in the kidney. Clin Immunol 2012;145:201–8.
99. Freedman RS. Modeling Kidney Disease with IPS Cells. Biomark Insights 2015;10:8ML.S20064–169.
100. Jordi M, Marty J, Mordasini V, et al. IRAK4 is essential for TLR9-induced suppression of Epstein-Barr virus BZLF1 transcription in Akata Burkitt’s lymphoma cells. PLoS One 2017;12:e0186614.
101. Andrade D, Redecha PB, Vukelic M, et al. Engraftment of peripheral blood mononuclear cells from systemic lupus erythematosus and antiphospholipid syndrome patient donors into BALB-RAG-2/−/− IL-2R−/− mice: a promising model for studying human disease. Arthritis Rheum 2011;63:2764–73.
102. Kerekov N, Mihaylova N, Prechli J, et al. Humanized SCID mice models of SLE. Curr Pharm Des 2011;17:1261–6.
103. Fossati-Jimack L, Cortes-Hernandez J, Norsworthy PJ, et al. C1q deficiency promotes the production of transgenic-derived IgM and IgG3 autoantibodies in anti-DNA knock-in transgenic mouse. Mol Med 2008;14:787–95.
104. Sekine H, Reilly CM, Molano ID, et al. Complement component C3 is not required for full expression of immune complex glomerulonephritis in MRL/lpr mice. J Immunol 2001;166:6444–51.