A comparative study of carbonic anhydrase activity in lymphocytes from colorectal cancer tissues and adjacent healthy counterparts

Giulia Nanninia, Viviana De Luca, Chiara D’Ambrosio, Andrea Scalon, Antonio Taddei, Maria Novella Ringressi, Fabio Cianchia, Fabio Staderini, Clemente Capasso, Amedeo Amedei, and Claudiu T. Supuran

ABSTRACT

Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms play an essential role in processes connected to tumorigenesis, as they efficiently accelerate the hydration of carbon dioxide to bicarbonate and proton. In this context, examples are CA IX and CA XII, which were proved to be upregulated in many solid malignancies. On the other hand, cancer and the immune system are inextricably linked, and targeting the immune checkpoints recently was shown to efficiently improve the treatment of malignancies. In this study, we have investigated the expression of CA isoforms in tumour-infiltrating lymphocytes (TILs) that, according to the immunosurveillance theory, were suggested to have a crucial role in the development of colorectal cancer (CRC). T lymphocytes isolated from healthy surrounding mucosa showed a higher CA activity compared to those present in tumour and peripheral blood in the same patients. CA I and II were confirmed as enzyme isoforms involved in the process, as determined by proteomic analysis of corresponding TIL samples. These preliminary findings suggest a dysregulation of the local immune response in the CRC tissues and a loss of effective anticancer mechanisms mediated by CAs therein.

1. Introduction

Colorectal cancer (CRC) is the world’s third most frequent malignancy and the second most deadly. Twenty-five percent of newly diagnosed patients have metastatic disease, and 40% will develop metastases within a year. Currently, the most popular conventional treatments for CRC include surgery, chemotherapy, and radiotherapy, which can be used in combination depending on the location and progression of the cancer. The immune system is one of the approaches that has revolutionised cancer treatment in the previous few decades. In detail, immunotherapy tries to overcome the limitations of chemotherapy and radiotherapy by focussing on the immune system of the patient. Immune checkpoint inhibitors (ICIs) for programmed death receptor (PD-1) blockade have been approved for the CRC treatment with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H). For patients with proficient mismatch repair or microsatellite stability, however, immunotherapy using the anti-PD-1 monoclonal antibody did not have the expected impact. Despite the fact that ICIs have just recently been used in MSI-H/dMMR CRC patients, resistance to treatment has already been described. It is well known that solid tumours are characterised by the hypoxic microenvironment, extracellular acidosis, and chemoresistance. In nutrient-limited situations, tumour cells modify their metabolism by shifting the balance of energy production away from oxidative metabolism and towards a more glycolytic source. The accumulation of lactic acid and carbon dioxide (CO₂) caused by glycolytic metabolism contributes to a drop in extracellular pH. In order to survive, tumour cells must adapt to these settings, and several carbonic anhydrases (CAs, EC 4.2.1.1) play an essential role in this process since they accelerate the hydration of CO₂ into bicarbonate (HCO₃⁻) and proton (H⁺), a reaction essential to all living organisms. Up to date, the CA superfamily is divided into eight CA classes, denoted by the Greek letters α, β, γ, δ, ε, η, θ, and ρ. CA classes are spread out in a variegated way in plants, animals, bacteria, and archaea. The genome of mammals, for example, only contains α-CAs, with 15 different isoforms (CA I-XV) that perform various tasks in different tissues and organs.

Recent studies suggest that some CA isoforms, namely CA IX and CA XII, are upregulated in several solid malignancies. For example, CA IX is found in only a few normal tissues, with almost complete exclusivity in the epithelium of the gastrointestinal tract. On the other hand, this protein is expressed ectopically in a range of cancer tissues, among which CRC, which by using

CONTACT Clemente Capasso, clemente.capasso@ibbr.cnr.it, Institute of Biosciences and Bioresources, National Research Council, 80131 Napoli, Italy; Amedeo Amedei, amedeo.amedei@unifi.it, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy

Supplemental data for this article is available online at https://doi.org/10.1080/14756366.2022.2085694

†These authors contributed equally to this work.

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE HISTORY
Received 5 May 2022
Revised 27 May 2022
Accepted 30 May 2022

KEYWORDS
Carbonic anhydrase; isoforms; T cells; tumour-infiltrating lymphocyte; colorectal cancer
CA II-deficient mice, a strong relationship between cellular control of acid-base balance and innate renal defence was discovered. This finding may corroborate the existence of a possible link between CA II dysregulation and the immune system in cancer. Despite this evidence, none investigated the expression of CAs in tumour-infiltrating lymphocytes (TILs) that, according to the immunosurveillance theory, were suggested to have a crucial role in developing tumours, as we have previously documented in human CRC. In addition, growing evidence suggests that tumour mutation burden and TILs are linked to ICI response. For these reasons, the aim of this preliminary study was to investigate the expression of CAs in TILs obtained from patients with CRC.

2. Materials and methods

2.1. Patients

The patients included in the study (P1-P18) and their clinico-pathological features are shown in Table 1.

2.2. Isolation of lymphocytes

Surgical specimens of CRC tissue were dissociated in order to isolate TILs. Tissue pieces from each patient were obtained from two different sites, namely central tumour (CT) and adjacent healthy mucosa (HM). Tissue samples were dissociated with the Tumour Dissociation Kit, human (Miltenyi Biotech, UK) in combination with the gentleMACSTM Octo Dissociator (Miltenyi Biotech, GmbH) to obtain a gentle and rapid generation of single-cell suspensions. In parallel, heparinised venous blood samples were collected and peripheral blood (PBMC) samples were isolated by density gradient centrifugation. Then, lymphocytes were magnetically isolated from dissociated CT, HM and PBMC samples with antihuman CD3 microbeads (Miltenyi Biotech, UK) using an AutoMACS Pro Separator device (Miltenyi Biotech, GmbH).

2.3. Protonography

An identical amount of lymphocyte proteins isolated from CT, HM, and PBMC samples from patients P1-P18 were mixed in a loading buffer for SDS-PAGE without containing 2-mercaptoethanol, and they were not boiled to avoid protein denaturation. Protein electrophoresis was performed as described by De Luca et al. After, the gel was subjected to protonography to detect the hydratase activity. A parallel SDS-PAGE gel was run simultaneously in the same electrophoretic chamber. This gel was not used for investigating the hydratase activity, but for protein identification purposes; thus, it was stained with colloidal Coomassie blue.

2.4. Proteomic analysis

Gel slices associated with CA activity in the protonogram were manually excised from the colloidal Coomassie blue-stained gel, minced, and washed with water. Corresponding proteins were in-gel reduced, S-alkylated with iodoacetamide and digested with trypsin, as previously reported. Individual protein digests were then analysed with a nanoLC-ESI-Q-Orbitrap-MS/MS platform consisting of an UltiMate 3000 HPLC RSLC nanosystem (Thermo Fisher Scientific, USA) coupled to a Q-ExactivePlus mass spectrometer through a Nanoflex ion source (Thermo Fisher Scientific). Peptides were loaded on an Acclaim PepMapTM RSLC C18 column (150 mm × 75 μm ID, 2 μm particles, 100 Å pore size; Thermo Fisher Scientific), and eluted with a gradient of solvent B (19.9/80/0.08 v/v/v water/acetoni trile/formic acid) in solvent A (99.9/0.1 v/v water/formic acid), at a flow rate of 300 nl/min. The gradient of solvent B started at 3%, increased to 40% over 40 min, raised to 80% over 5 min, remained at 80% for 4 min, and finally returned to 3% in 1 min, with a column equilibrating step of 30 min before the subsequent chromatographic run. The mass spectrometer operated in data-dependent mode using a full scan (m/z range 375–1500, a nominal resolution of 70,000, an automatic gain control target of 3,000,000, and a maximum ion target of 50 ms), followed by MS/MS scans of the 10 most abundant ions. MS/MS spectra were acquired in a scan m/z range 200–2000, using normalised collision energy of 32%, an automatic gain control target of 100,000, a maximum ion target of 100 ms, and a resolution of 17,500. A dynamic exclusion value of 30 s was also used. Duplicate analysis of each sample was performed to increase the number of identified peptides/protein coverage.

MS and MS/MS raw data files per sample were merged for protein identification into Proteome Discoverer v. 2.4 software (Thermo Scientific), enabling the database search by Mascot algorithm v. 2.6.1 (Matrix Science, UK) with the following parameters: UniProtKB human protein database (11/2020, 214889 sequences) including the most common protein contaminants; carbamidomethylation of Cys as fixed modification; oxidation of Met, deamidation of Asn and Gln, and pyroglutamate formation of Gln as variable modifications. Peptide mass tolerance and fragment mass tolerance were set to ± 10 ppm and ± 0.05 Da, respectively. Proteolytic enzyme and maximum number of missed cleavages were set to trypsin and 2, respectively. Protein candidates assigned on the basis of at least one sequenced peptides with Mascot score ≥30 were considered confidently identified. Definitive peptide assignment was always associated with manual spectra visualisation and verification.

3. Results and discussion

3.1. CA activity and isofrom detection in lymphocytes

3.1.1. CA activity

A cohort of 18 patients (10 males and 8 females) with intestinal adenocarcinoma was included in this study (Table 1). Colorectal tumour tissues and healthy mucosal tissues were collected during surgery and analysed by pathologists to determine TNM (tumour, nodes, and metastases) stage. In parallel,
Carbonic anhydrases were proven to act as significant pH mediators in tumour cells by regulating \(\text{HCO}_3^- \) and \(\text{H}^+ \) concentrations. Among the 15 CA isoforms present in humans, two CA isoforms have attracted significant attention as anticancer targets, namely CA IX and CA XII\(^{37}\). These two transmembrane proteins are significantly expressed in solid tumours and, through their catalytic extracellular domain, were proved to modulate the pH value of the tumour microenvironment, increasing cancer cell survival and proliferation\(^{37}\). On the other side, few data are reported on the role of other CA isoforms in tumours\(^{38}\). For example, CA I and CA II were shown to be upregulated in some cancer types, such as prostate, breast, melanomas, bladder, thyroid, breast, lung, liver, gliomas, renal cell carcinomas, and head and neck. Conversely, pancreatic, colorectal, gastric, and gastrointestinal stromal cancerous tissues showed a downregulation of the CA II protein expression, which was associated with cancer aggressiveness\(^{38}\). In addition, CA XII downregulation was found in CRC samples, even though the clinical significance of these findings has not been investigated.
In this context, the combined use of protonography and proteomic procedures has allowed us originally to evaluate the representation of CA activity and isoforms in TILs, which play a critical role in the development of malignancies such as CRC. As a result, we have here demonstrated that T lymphocytes isolated from the healthy surrounding mucosa had a higher hydratase activity than those present in tumour and peripheral blood. Notably, we also have documented that CA I and II were the isoforms responsible for the different enzymatic activity we measured in TC, HM, and PBMC samples of the enrolled patients.

Previous studies have detailed that CAs are variably represented in different immune cell types, such as B cells, NK, monocytes, and T cells. Noteworthy, CA I and CA II expression was observed in both CD4⁺ and CD8⁺ activated T cells. In addition, several T cell subsets, such as Treg, Th1, Th17, and Th2 cells, which we have previously demonstrated to have a crucial role in the development of CRC and other gastrointestinal cancers, were proved to express CA I and CA II. Accordingly, we can realistically hypothesise that the downregulation of CAs can affect systemic acidosis, thus impairing the immune function and the related cancer-associated inflammation, promoting genomic instability, epigenetic change, cancer cell proliferation, angiogenesis, and ultimately cancer spread. Interestingly, lymphocytes were shown to promote a CA-dependent epithelial HCO₃⁻ secretion as a critical host defence mechanism in other immunity-related contexts, such as during human prostatitis and lung bacterial infection. Based on the data reported in this study, we could suppose that the immune system is damaged at the tumour site and cannot promote HCO₃⁻ secretion, thus leading to a drastic reduction of HCO₃⁻ levels compared to the corresponding adjacent healthy tissue. The low hydratase activity of CA I and CA II and a corresponding reduction of HCO₃⁻ secretion in CRC-infiltrating T lymphocytes may suggest a dysregulation of the local immune response and a consequent loss of effective anticancer mechanisms. Further studies are necessary to corroborate this preliminary observation and elucidate the ongoing processes linking acidosis and CRC development.

Acknowledgements

The authors are grateful to Chiara Nobile, Valentina Brasiello and Gianfranco Novi for technical assistance. CT Supuran is Editor-in-Chief of Journal of Enzyme Inhibition and Medicinal Chemistry and he was not involved in the assessment, peer review or decision making process of this paper. The authors have no relevant affiliations of financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research received no external funding.

ORCID

Fabio Cianchi http://orcid.org/0000-0002-6936-8693
Fabio Staderini http://orcid.org/0000-0002-2438-2563
Clemente Capasso http://orcid.org/0000-0003-3314-2411
Claudi T. Supuran http://orcid.org/0000-0003-4262-0323

References

1. Bray F, Ferlay J, Soerjomataram I, et al. Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2020;70:1651.
2. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020;5:22.
3. Yoshino T, Arnold D, Taniguchi H, et al. Pan-Asian adapted ESMO consensus guidelines for the management of patients with metastatic colorectal cancer: a JSMO-ESMO initiative endorsed by CSCO, KACO, MOS, SSO and TOS. Ann Oncol 2018;29:44–70.
4. Johdi NA, Sukor NF. Colorectal cancer immunotherapy: options and strategies. Front Immunol 2020;11:1624.
5. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. New Engl J Med 2015;372:2509–20.
6. Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017;18:1182–91.
7. Sahin IH, Akce M, Alese O, et al. Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. Br J Cancer 2019;121:809–18.
8. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 2010;20:51–6.
9. Chiche J, Ilc K, Laferrriere J, et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by countering acidosis through the regulation of the intracellular pH. Cancer Res 2009;69:358–68.
10. Annunziato G, Angeli A, D’Alba F, et al. Discovery of new potential anti-infective compounds based on carbonic anhydrase inhibitors by rational target-focused repurposing approaches. ChemMedChem 2016;11:1904–14.

Table 2. Protein identification details of gel portions associated with CO₂ hydratase activity through protonography.

Sample	Accession	Gene name	Description	Sequence coverage (%)	Peptides (number)	PSMs	Unique Peptides	Amino acids	Score (Mascot)
Patient P1-HM E5RHP7	CA1	Human carbonic anhydrase I	22	4	10	4	251	382	
P22748	CA4	Human carbonic anhydrase IV	9	2	4	2	312	134	
V9HW21; P00918	CA2	Human carbonic anhydrase II	32	6	18	6	260	502	
Patient P1-CT V9HW21; P00918	CA2	Human carbonic anhydrase II	3	1	1	1	260	45	
Patient P1-PMBs E5RHP7	CA1	Human carbonic anhydrase I	39	7	18	7	251	627	
V9HW21; P00918	CA2	Human carbonic anhydrase II	25	5	9	5	260	379	
11. Ozenson Guler O, Capasso C, Supuran CT. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J Enzyme Inhib Med Chem 2016;31:689–94.

12. Del Prete S, Vullo D, De Luca V, et al. Sulfonamide inhibition studies of the \(\beta \)-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Bioorg Med Chem 2016;24:1115–20.

13. Del Prete S, De Luca V, De Simone G, et al. Cloning, expression and purification of the complete domain of the eta-carbonic anhydrase from Plasmodium falciparum. J Enzyme Inhib Med Chem 2016;31:54–9.

14. Capasso C, Supuran CT. An overview of the carbonic anhydrases from two pathogens of the oral cavity: streptococcus mutans and Porphyromonas gingivalis. Curr Top Med Chem 2016;16:2359–68.

15. Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem 2015;30:325–32.

16. Supuran CT, Capasso C. An overview of the bacterial carbonic anhydrases. Metabolites 2017;7:56.

17. Aspatwar A, Tolvanen MEE, Barker H, et al. Carbonic anhydrases in metazoan model organisms: molecules, mechanisms, and physiology. Physiol Rev 2022;102:1327–83.

18. Viikila P, Kivela AJ, Mustonen H, et al. Carbonic anhydrase enzymes II, VII, IX and XII in colorectal carcinomas. World J Gastroenterol 2016;22:8168–77.

19. Barathova M, Grossmannova K, Belvoncikova P, et al. Impairment of hypoxia-induced CA IX by beta-blocker propranolol-impact on progression and metastatic potential of colorectal cancer cells. Int J Mol Sci 2020;21:8760.

20. Liao SY, Brewer C, Zavada J, et al. Identification of the Mn antigen as a diagnostic biomarker of cervical intraepithelial squamous and glandular neoplasia and cervical carcinomas. Am J Pathol 1994;145:598–609.

21. Pastorekova S, Parkkila S, Parkkila AK, et al. Carbonic anhydrase IX, MN/CA IX: Analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology 1997;112:398–408.

22. Zhang BY, Thompson RH, Lohse CM, et al. Carbonic anhydrase IX (CAIX) is not an independent predictor of outcome in patients with clear cell renal cell carcinoma (ccRCC) after long-term follow-up. BJU Int 2013;111:1046–53.

23. Hains DS, Chen X, Saxena V, et al. Carbonic anhydrase 2 deficiency leads to increased pyelonephritis susceptibility. Am J Physiol Renal Physiol 2014;307:F869–80.

24. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 2018;32:1267–84.

25. Niccolai E, Russo E, Baldi S, et al. Significant and conflicting correlation of IL-9 With prevotella and bacteroides in human colorectal cancer. Front Immunol 2021;11:573158.

26. Niccolai E, Ricci F, Russo E, et al. The different functional distribution of "not effector" T cells (Treg/Tnull) in colorectal cancer. Front Immunol 2017;8:1900.

27. Lavin Y, Kobayashi S, Leader A, et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 2017;169:750–65 e17.

28. Sadanandam A, Lyssiotis CA, Homicsko K, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med 2013;19:619–25.

29. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 2019;19:133–50.

30. De Luca V, Del Prete S, Supuran CT, Capasso C. Protonography, a new technique for the analysis of carbonic anhydrase activity. J Enzyme Inhib Med Chem 2015;30:277–82.

31. Zhou DW, Noviello C, D’Ambrosio C, et al. Growth factor receptor-bound protein 2 interaction with the tyrosine-phosphorylated tail of amyloid beta precursor protein is mediated by its Src homology 2 domain. J Biol Chem 2004;279:25374–80.

32. Antoniali G, Serra F, Lirussi L, et al. Mammalian APE1 controls miRNA processing and its interactome is linked to cancer RNA metabolism. Nat Commun 2017;8:797–814.

33. Joshi RN, Stadler C, Lehmann R, et al. TcellSubC: an atlas of the subcellular proteome of human T cells. Front Immunol 2019;10:2708–18.

34. Riaz T, Soliid LM, Olsen I, de Souza GA. Quantitative proteomics of gut-derived Th1 and Th1/Th17 clones reveal the presence of CD28+NKG2D-Th1 cytotoxic CD4+ T cells. Mol Cell Proteomics 2016;15:1007–16.

35. Voigt J, Malone DFG, Dias J, et al. Proteome analysis of human CD56neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56dim NK cells. Eur J Immunol 2018;48:1456–69.

36. Zhao M, Jia SJ, Gao XF, et al. Comparative analysis of global proteome and lysine acetylome between naive CD4+ T cells and CD4+ T follicular helper cells. Front Immunol 2021;12:643441–58.

37. Supuran CT. The tumor-associated metalloenzyme carbonic anhydrase IX (CA IX) as a drug target. Metal Ions Biol Med 2010;58:80.

38. Pan PW, Leppilampi M, Pastorekova S, et al. Carbonic anhydrase gene expression in CA II-deficient (Car2/-) and CA IX-deficient (Car9/-) mice. J Physiol-London 2006;571:319–29.

39. Amadei A, Niccolai E, Della Bella C, et al. Characterization of tumor antigen peptide-specific T cells isolated from the neoplastic tissue of patients with gastric adenocarcinoma. Cancer Immunol Immun 2009;58:1821–32.

40. Amadei A, Niccolai E, Benagiano M, et al. Ex vivo analysis of pancreatic cancer-infiltrating T lymphocytes reveals that ENO-specific Tregs accumulate in tumor tissue and inhibit Th1/Th17 effector cell functions. Cancer Immunol Immunother 2013;62:1249–60.

41. White MA. Change in pH of expressed prostatic secretion during course of prostatitis. Proc R Soc Med 1975;68:511–13.

42. Tang XX, Fok KL, Chen H, et al. Lymphocyte CFTR promotes epithelial bicarbonate secretion for bacterial killing. J Cell Physiol 2012;227:3887–94.