Aims: Cardiovascular diseases (CVD) are a global leading cause of mortality. However, few biomarkers are available to predict future coronary plaque rupture. We have recently demonstrated that low levels of anti-apolipoprotein B-100 autoantibody (anti-apo B-100 Ab) correlated with an increased CVD risk in Japanese patients with diabetes. In the present study, we examined the relationship between serum anti-apo B-100 Ab levels and coronary plaque characteristics in patients undergoing elective percutaneous coronary intervention (PCI).

Methods: We conducted iMap® intravascular ultrasound (IVUS) in 88 Japanese male patients undergoing elective PCI, and the five consecutive slices of IVUS images at the center of the most stenotic culprit lesion were used for identifying the plaque characteristics. The serum levels of anti-apo B-100 Ab against synthetic peptides (p45 or p210) were measured using a homemade enzyme-linked immunosorbent assay.

Results: Serum IgG levels of anti-apo B-100 Ab against both native p45 and p210 (IgG N-p45 and IgG N-p210) and malondialdehyde (MDA)-modified p45 and p210 (IgGMDA-p45 or IgGMDA-p210) showed a negative correlation with plaque burden in total male patients undergoing elective PCI. Additionally, both IgG N-p45 and IgG N-p210, but neither IgGMDA-p45 nor IgGMDA-p210, correlated negatively with necrotic and positively with fibrotic components of iMap® IVUS plaque characteristics in the patients with <1 month statin treatment before elective PCI (“statin-untreated” group). There was no significant correlation between anti-apo B-100 Ab and any plaque characteristics in the patients with statin treatment for 1 month or more before elective PCI (“statin-treated” group).

Conclusion: Measuring serum levels of anti-apo B-100 Ab might be helpful in the evaluation of unstable coronary plaque in male CVD patients without statin treatment.

Key words: Antibody, Apo B-100, Cardiovascular disease, Plaque, Vulnerability

Abbreviations: Ab, antibody; Apo, apolipoprotein; CRP, C-reactive protein; CVD, cardiovascular diseases; IL, interleukin; IVUS, intravascular ultrasound; LDL, low-density lipoprotein; MDA, malondialdehyde; SMC, smooth muscle cell; VLDL, very low-density lipoprotein

Introduction

In the past two decades, cardiovascular diseases (CVD) and other noncommunicable diseases have been entrenched as the major causes of preventable health loss from disease in every region worldwide. According to the Global Burden of Disease 2016 Study, CVD alone accounted for 20% of total burden in women and 24% of total burden in men, and the leading cause of total global CVD burden was ischemic heart disease, followed by stroke. It is well known that the risk factors for CVD include high blood pressure, hypercholesterolemia, diabetes mellitus, obesity, and tobacco usage and that improving these lifestyle factors would be crucial in preventing and reducing the incidence of acute coronary events. However, the onset of acute coronary events is often preceded by the awareness of...
such CVD risk factors.

Acute coronary events are associated with two atherosclerotic plaque morphologies, namely, plaque rupture and plaque erosion\(^5\), and the former has been detected at the culprit lesion site in 59%–75% of patients\(^6,7\). Therefore, intensive research has been conducted to identify coronary atherosclerotic plaques that are prone to rupture, i.e., “vulnerable plaques.” Among such vulnerable plaques, the thin-cap fibroatheroma characterized by a large necrotic core covered by a thin layer of the fibrous cap has been considered to be at the greatest risk of rupture\(^8,9\). Intravascular ultrasound (IVUS) has been applied for \textit{in vivo} intracoronary imaging\(^10\), and the real-time quantification of coronary plaques using iMAP\(^\text{®}\)-IVUS. IVUS (Boston Scientific, Boston, MA) can categorize them into four different plaque characteristics (i.e., fibrotic, necrotic, lipidic, and calcified), thus helping to presume their vulnerability levels\(^11\).

Elevated low-density lipoprotein (LDL) cholesterol is one of the most established CVD risk factors. The evidence generated from genetic, observational, and randomized studies has consistently demonstrated a causal, log-linear association between exposure to LDL and CVD risk\(^12\). Lipid-lowering therapies, especially statin treatment to specifically reduce LDL levels, have been shown to reduce the risk of cardiovascular events by 20% for each decreased LDL cholesterol level of 1 mmol/L (40 mg/dL), even in people considered as at low cardiovascular risk\(^13\). Apolipoprotein B (apo B) is a large protein enveloping the surface of LDL as a macromolecular scaffold to provide structural integrity, and the majority of apo B-containing lipoproteins (up to approximately 70 nm in diameter) can promote plaque formation, except for fully formed chylomicrons and large very low-density lipoproteins (VLDLs)\(^14\). Furthermore, it was demonstrated that the retention of apo B-containing lipoproteins within the artery wall induces a self-accelerating process by promoting their proinflammatory modifications, evoking inflammatory cellular responses, and entrapping further lipoproteins, which leads to the development of atherogenic lesions\(^15-17\). Therefore, blocking the retention of apo B-containing lipoproteins should be a potential therapeutic target.

In this context, several studies have explored the relationship between anti-apo B-100 autoantibody (anti-apo B-100 Ab) and atherosclerosis\(^18-20\). We have also recently reported that serum levels of anti-apo B-100 Ab were significantly lower in patients with diabetes with macroangiopathy than in those without macroangiopathy\(^21\). In the present study, we further investigated the clinical significance of anti-apo B-100 Ab in male patients undergoing elective percutaneous coronary intervention (PCI) and found that serum levels of anti-apo B-100 Ab showed a negative correlation with both coronary plaque burden and plaque instability marker, necrotic component, in the patients with less than 1 month statin treatment before the elective PCI. Therefore, we suggest that anti-apo B-100 Ab could be a novel marker for determining plaque stability/vulnerability.

Methods

Patients

Study participants were enrolled at the Department of Cardiology in Hyogo Prefectural Nishinomiya Hospital, Japan. In this single-center study, data were reviewed for 88 consecutive male patients who underwent elective PCI and IVUS, using iMAP\(^\text{®}\)-IVUS. We excluded those who were older than 82 years, had renal dysfunction (serum creatinine >1.5 mg/dL) or malignant disease, or whose target lesions were chronic total occlusion or in-stent restenosis. The patients were divided into two groups according to the duration of statin treatment before the elective PCI: the patients with less than 1 month statin treatment (“statin-untreated” group) and those with statin treatment for 1 month or more before the elective PCI (“statin-treated” group). The ethics committees of both Hyogo Prefectural Nishinomiya Hospital and Osaka University Graduate School of Medicine approved the present study. Each patient provided written informed consent.

iMAP\(^\text{®}\)-IVUS

IVUS was conducted using a 40 MHz catheter (Atlantis\(^\text{TM}\) SR Pro2 or OptiCross\(^\text{TM}\) Imaging Catheter, Boston Scientific, Marlborough, MA) and analyzed, as described previously\(^22\). We conducted a volumetric analysis of the five consecutive slices of IVUS images at the center of the most stenotic culprit lesion and calculated the plaque burden and percentage contribution of each component to the entire plaque.

Measurement of Serum Parameters and Antibody Levels Against Anti-Apolipoprotein B-100

Fasting serum biochemical markers were measured in commercial laboratories. The serum levels of anti-apo B-100 Ab against two native or malondialdehyde (MDA)-modified synthetic peptides (p45 and p210) were measured using homemade enzyme-linked immunosorbent assay (ELISA), as previously reported\(^21\).

Statistical Analysis

Statistical analysis was conducted using JMP Pro
were 0.519 ± 0.434 and 0.587 ± 0.424, respectively. Serum IgG levels against MDA-modified p45 (IgGMDA-p45) and p210 (IgGMDA-p210) were 0.546 ± 0.340 and 0.557 ± 0.348, respectively. The number of patients in the statin-treated and statin-untreated groups was 43 and 45, respectively, and there were no significant differences in any serum anti-apo B-100 Ab levels between these two groups (Supplemental Fig. 1).

Characteristics of Coronary Plaque Evaluated using iMAP®-IVUS

The characteristics of the target coronary plaque were evaluated using the five consecutive slices of iMAP®-IVUS images at the center of the most stenotic culprit lesion. The average plaque burden and total plaque volume were 71.3% ± 7.7% and 24.2 ± 8.0 mm³, respectively (Table 2). The percentage of each component within the target plaque was as follows: necrotic, 32.8% ± 12.3%; lipidic, 11.7% ± 3.2%; fibrotic, 53.0% ± 14.2%; and calcified, 3.0% ± 2.5%.

Relationship between Serum Anti-Apo B-100 Ab Levels and Plaque Characteristics

First, we analyzed the correlation between serum

Table 1. Characteristics of the patients

1) Clinical parameters	mean ± SD	range
Age (year)	68 ± 10	(37-82)
Body Mass Index (kg/m²)	24.7 ± 3.5	(16.0-34.5)
TC (mg/dL)	169 ± 36	(106-310)
TG (mg/dL)	144 ± 85	(50-434)
LDL-C (mg/dL)	99 ± 29	(46-210)
HDL-C (mg/dL)	42 ± 9	(23-80)
RLP-C (mg/dL)	8.0 ± 5.5	(1.6-47.7)
Fasting plasma glucose (mg/dL)	111 ± 35	(77-245)
HbA1c (%)	6.4 ± 1.2	(4.9-10.2)
Creatinine (mg/dL)	0.90 ± 0.21	(0.48-1.62)
hsCRP (mg/dL)	0.33 ± 0.66	(0.01-4.34)
IgGN-p45	0.519 ± 0.434	
IgGN-p210	0.587 ± 0.424	
IgGMDA-p45	0.546 ± 0.340	
IgGMDA-p210	0.557 ± 0.348	

2) Complications	(+) / (-)	positive rate
Diabetes	36 / 52	40.9%
Hypertension	60 / 28	68.2%
Dyslipidemia	50 / 38	56.8%
Smoking (ex- or current)	60 / 28	68.2%

TC; total cholesterol, TG; triglyceride, RLP-C; remnant-like particles-cholesterol, hsCRP; high sensitive CRP

Patients

Table 1 details the demographic and clinical characteristics of the enrolled 88 male patients of elective PCI. The average age and body mass index were 68 ± 10 years and 24.7 ± 3.5 kg/m², respectively. The rates of patients in diabetes, hypertension, and dyslipidemia were 40.9%, 68.2%, and 56.8%, respectively. The rate of ex-smokers or current smokers was 68.2%. Because of the medical treatment including statins, serum LDL-C levels were well controlled (99 ± 29 mg/dL). Serum glucose levels were also well controlled, and the mean HbA1c level was 6.4% ± 1.2%. The results of the homemade ELISA revealed that the serum levels of anti-apo B-100 Ab of IgG class against p45 (IgGN-p45) and p210 (IgGN-p210) were 0.519 ± 0.434 and 0.587 ± 0.424, respectively.

Results

version 14.0.0 (SAS Institute Inc., Cary, NC). Data are presented as mean ± standard deviation (SD) values. Spearman’s correlation coefficient and multiple regression analysis were used to evaluate the association between two variables. P values of <0.05 showed statistical significance.
anti-apo B-100 Ab levels and plaque characteristics in the total enrolled patients. We found that the plaque burden negatively correlated with autoantibody against both native and MDA-modified p45 and p210 significantly (IgGN-p45: $\rho = -0.271$, $p = 0.011$; IgGN-p210: $\rho = -0.302$, $p = 0.004$; IgGM-p45: $\rho = -0.290$, $p = 0.006$; IgGN-p210: $\rho = -0.230$, $p = 0.031$) (Table 3). None of the abovementioned four plaque components of the target lesion showed correlation with any serum levels of anti-apo B-100 Ab, but total plaque volume had a negative correlation trend with the serum IgGN-p210 levels ($\rho = -0.205$, $p = 0.055$).

Statin treatment has been widely used for patients with coronary artery diseases, to achieve both lipid-lowering effects and stabilization of the plaques. Then, we conducted a sub-analysis, according to the duration of statin treatment before the elective PCI. In the patients of the statin-untreated group, the plaque burden showed a negative correlation with both IgGN-p45 ($\rho = -0.355$, $p = 0.017$) and IgGN-p210 levels ($\rho = -0.356$, $p = 0.049$) significantly and a negative correlation trend with IgGM-p210 levels ($\rho = -0.263$, $p = 0.081$) (Table 4 and Fig. 1). Total plaque volume negatively and significantly correlated with IgGN-p210 ($\rho = -0.330$, $p = 0.027$) and had a negative correlation trend with IgGN-p45 ($\rho = -0.277$, $p = 0.065$). Additionally, IgGN-p45 levels correlated negatively with necrotic components ($\rho = -0.300$, $p = 0.046$) significantly and had a negative correlation trend with necrotic plus lipidic components ($\rho = -0.268$, $p = 0.076$). They also correlated positively with the fibrotic components ($\rho = 0.328$, $p = 0.028$) significantly and had a correlation trend with the fibrotic plus calcified components ($\rho = 0.260$, $p = 0.085$). IgGN-p210 levels showed a significant positive correlation with the fibrotic component ($\rho = 0.295$, $p = 0.049$), whereas a negative correlation trend with the necrotic component ($\rho = -0.270$, $p = 0.073$). In the statin-treated group, only IgGM-p45 levels had a negative correlation trend with plaque burden ($\rho = -0.298$, $p = 0.052$).

Discussion

In the present study conducted in patients with elective PCI, we found that serum IgG levels of anti-apo B-100 Ab showed a significant correlation with the plaque characteristics of the culprit coronary arteries as follows: 1) serum IgG levels of apo B-100 Ab negatively correlated with plaque burden, and 2) they also correlated with necrotic and fibrotic components, negatively and positively, respectively. These results suggest that anti-apo B-100 Ab could be used as a predictable marker for determining future

Table 2. Characteristics of the target coronary plaque

	mean ± SD	range
Plaque burden (%)	71.3 ± 7.7	(52.5-84.4)
Total plaque volume (mm³)	24.2 ± 8.0	(46.0-8.5)
Necrotic components (%)	32.8 ± 12.3	(9.6-63.0)
Lipidic components (%)	11.7 ± 3.2	(5.2-20.6)
Fibrotic components (%)	53.0 ± 14.2	(21.4-84.9)
Calcified components (%)	3.0 ± 2.5	(0.2-15.0)
Necrotic plus Lipidic components (%)	44.5 ± 13.7	(14.8-76.5)
Fibrotic plus Calcified components (%)	56.0 ± 13.7	(24.0-85.6)

Table 3. Correlation between plaque characteristics and anti-apo B-100 antibodies

	IgGN-p45	IgGN-p210	IgGM-p45	IgGM-p210				
Plaque burden	-0.271	0.111	-0.302	0.004	-0.290	0.006	-0.230	0.031
Total plaque volume	-0.171	0.111	-0.205	0.055	-0.060	0.581	-0.141	0.191
Necrotic components	-0.156	0.147	-0.140	0.195	-0.149	0.167	-0.126	0.242
Lipidic components	-0.029	0.792	-0.076	0.482	0.046	0.674	-0.007	0.947
Fibrotic components	0.138	0.200	0.128	0.236	0.130	0.228	0.131	0.225
Calcified components	0.039	0.720	0.046	0.671	-0.093	0.387	-0.065	0.548
Necrotic plus Lipidic components	-0.130	0.228	-0.127	0.240	-0.117	0.279	-0.107	0.319
Fibrotic plus Calcified components	0.128	0.236	0.124	0.250	0.113	0.293	0.103	0.340
acute coronary events in male patients with CVD. CVD remains a major cause of premature death and chronic disability in several countries\(^{23}\). Patients with CVD often experience acute coronary syndromes and/or sudden cardiac death when the plaque ruptures\(^{24}\). Common culprit lesions are ruptured coronary plaques with superimposed thrombus, and the precursors of such lesions are known as vulnerable plaques that depend on four features, namely, a large lipid core, a thin fibrous cap covering the lipid core, inflammation in the cap due to macrophages and T cells, and no significant stenosis in coronary angiography\(^{25, 26}\). The plaque ruptures where the fibrous cap is thinner and heavily infiltrated with macrophages, and there are probably two concurrent mechanisms responsible for the thinning of fibrous caps. One is the gradual loss of smooth muscle cells (SMCs) from the fibrous cap\(^{27}\). At the same time, macrophages degrade the collagen-rich cap matrix, and the site of infiltrating macrophages is occupied by the necrotic core. In some lesions, isolated lipid pools grow into confluent necrotic cores infiltrated by macrophages. This process irreversibly disrupts the normal structure of the intima and leaves behind a matrix-devoid gruel of lipids and cell debris\(^{28}\).

Furthermore, apoptosis and secondary necrosis of foam cells and SMCs are believed to be an important cause for the development of the necrotic core\(^{29}\).

The primary challenge that we face today is to identify patients at high risk of acute coronary events before they occur. Multiple devices have been introduced to evaluate plaque vulnerability, such as IVUS, virtual-histology IVUS (VH-IVUS), optical coherence tomography, coronary angioscopy, CT coronary angiography, and near-infrared spectroscopy\(^{30}\). Among these modalities, IVUS was introduced in the late 1990s and has been the standard for intravascular imaging in catheterization laboratories. IVUS imaging has an advantage of excellent tissue penetration, enabling the visualization of the entire vessel structures and further analysis of vessel remodeling. Overcoming the problems of low spatial resolution of IVUS and its gray-scale representation, the developed VH-IVUS demonstrates distinct plaque characteristics by superimposing a color scheme on gray-scale images of IVUS. VH-IVUS, iMAP\(^{31}\)-IVUS, and integral backscatter IVUS (IB-IVUS) provide similar results when evaluating plaque composition; however “lipid pools” evaluated by IB-IVUS correlated with “necrosis” but not with

Table 4. Correlation between plaque characteristics and apo B-100 antibodies in Statin-treated and -untreated groups

	IgG\(_{N-p45}\)	IgG\(_{N-p210}\)	IgG\(_{MDA-p45}\)	IgG\(_{MDA-p210}\)				
Statin-untreated group (\(n = 45\))								
Plaque burden \(\rho\)	-0.355	0.017	-0.356	0.049	-0.237	0.117	-0.263	0.081
Total plaque volume \(\rho\)	-0.277	0.065	-0.330	0.027	-0.041	0.791	-0.225	0.137
Necrotic components \(\rho\)	-0.300	0.046	-0.270	0.073	-0.148	0.332	-0.169	0.266
Lipidic components \(\rho\)	-0.144	0.345	-0.151	0.322	0.123	0.423	0.021	0.894
Fibrotic components \(\rho\)	0.328	0.028	0.295	0.049	0.175	0.250	0.218	0.151
Calcified components \(\rho\)	-0.130	0.394	-0.133	0.385	-0.317	0.034	-0.178	0.242
Necrotic plus Lipidic components \(\rho\)	-0.268	0.076	-0.238	0.115	-0.075	0.624	-0.141	0.355
Fibrotic plus Calcified components \(\rho\)	0.260	0.085	0.232	0.126	0.067	0.663	0.133	0.382

	IgG\(_{N-p45}\)	IgG\(_{N-p210}\)	IgG\(_{MDA-p45}\)	IgG\(_{MDA-p210}\)				
Statin-treated group (\(n = 43\))								
Plaque burden \(\rho\)	-0.183	0.240	-0.205	0.187	-0.298	0.052	-0.213	0.171
Total plaque volume \(\rho\)	-0.034	0.831	-0.025	0.875	-0.048	0.758	-0.081	0.608
Necrotic components \(\rho\)	-0.042	0.788	-0.005	0.974	-0.190	0.222	-0.075	0.635
Lipidic components \(\rho\)	0.080	0.609	-0.001	0.966	-0.041	0.793	-0.067	0.668
Fibrotic components \(\rho\)	-0.049	0.757	-0.062	0.694	0.124	0.428	0.045	0.776
Calcified components \(\rho\)	0.239	0.123	0.263	0.088	0.112	0.475	0.058	0.712
Necrotic plus Lipidic components \(\rho\)	-0.034	0.830	-0.022	0.887	-0.200	0.198	-0.095	0.546
Fibrotic plus Calcified components \(\rho\)	0.029	0.855	0.016	0.918	0.196	0.207	0.090	0.568
with several known risk factors and inflammation in a large cohort without known CVD [34], and another study reported that an assessment of serum CRP or fibrinogen level could help prevent one additional event over a period of 10 years for every 400 to 500 people screened who have intermediate CVD risk [35]. However, the association between CRP and plaque stability was unclear. In the present study, serum CRP levels correlated with neither plaque burden nor plaque component in the statin-untreated group (Supplemental Table 1).

CVD is triggered by an elevated serum LDL-C level. Recent research indicated that not only cholesterol-rich LDL but also other apo B-containing lipoproteins, including VLDL and their remnants, intermediate-density lipoprotein, and lipoprotein(a),

Fig. 1. Correlation between anti-apo B-100 antibodies and plaque characteristics in the statin-untreated patients

The serum IgG levels of anti-apolipoprotein B autoantibodies (IgG_{N-p45} and IgG_{N-p210}) were compared with plaque characteristics (plaque burden and necrotic or fibrotic component) in the statin-untreated group (n = 45).

the “lipid” component evaluated by iMAP®. IVUS [31, 32].

Besides these various diagnostic imaging devices, noninvasive serum biomarkers have been developed to prevent acute coronary syndrome. The major candidates have been inflammation-associated markers, because inflammation and immune cell activation are involved in the vulnerability of the plaque to rupture and thrombosis, such as C-reactive protein (CRP), cytokines (interleukin (IL)-6 and IL-18), chemokines (monocyte chemoattractant protein-1), lipid and its associated molecules (oxidized apo A-1, oxidized LDL, lipoprotein-associated phospholipase A2 (PLA2), and secretory PLA2), and matrix metalloproteinases (reviewed by Shah PK [33]); however, to date, no established marker has been identified. Serum CRP levels were found to correlate
are directly implicated in the development of atherosclerotic CVD\(^3\). In the present study, we demonstrated that serum anti- apo B-100 Ab, IgG\(_{N-p45}\), and IgG\(_{N-p210}\) levels correlated negatively with plaque burden and necrotic plaque component and positively with fibrotic plaque component in the statin-untreated group, suggesting that IgG\(_{N-p45}\) and IgG\(_{N-p210}\) are useful for predicting vulnerable plaques, at least for patients without statin treatment. These results are in line with previous reports showing the negative correlation between serum IgG levels (IgG\(_{N-p45}\) and IgG\(_{N-p210}\)) and cardiovascular disease\(^19, 20, 37\), cardiovascular mortality\(^38\), coronary calcification in type 2 diabetes\(^39\), and early atherosclerosis in healthy participants\(^40\). Our observation that the autoantibodies against MDA-modified apo B-100 and plaque burden were negatively correlated was also in line with the previous reports showing the reduced risk of cardiovascular death in those with high serum levels of IgG\(_{MDA-p45}\) and IgG\(_{MDA-p210}\)\(^38, 41\). The anti-atherogenic effects of autoantibodies were reported in mice immunized with apo B peptides\(^42-44\), although the anti-atherogenic mechanisms of these autoantibodies have not been fully elucidated. Recently, some direct actions of autoantibody on monocyte and macrophage have been reported. These studies demonstrated reduced TNF-\(\alpha\) expression in oxLDL-treated monocytes by IgG\(_{MDA-p45}\) and enhanced cholesterol efflux from macrophage through increasing ABCA1 expression by anti-p210 Ab, although further investigation is needed\(^41, 42\).

Additionally, it was reported that monoclonal antibodies against apo B-binding sites on glycosaminoglycan chains within the arterial matrix could decrease the retention of intra-arterial lipoproteins and hence could prevent the progression of atherosclerosis in apo E-deficient mice\(^43, 44\). Statin therapy can reduce CVD events\(^45\) through the significant reduction of lipid-rich necrotic core volume\(^46\), and this mechanism might have resulted in the statistically insignificant correlation between serum anti-apo B-100 Ab levels and plaque instability in the statin-treated group in the present study. Therefore, further investigation would be needed to elucidate the full range of anti-inflammatory and anti-atherogenic effects of these autoantibodies.

The present study has some limitations. This was a cross-sectional and single-center study with a relatively small sample size and limited clinical parameters to be analyzed. Further larger case-control studies are required to confirm our results.

To conclude, serum levels of anti-apo B-100 Ab, especially IgG\(_{N-p45}\), and IgG\(_{N-p210}\), can be used to evaluate residual CVD risk in Japanese male patients of elective PCI.

Acknowledgements

The authors would like to thank S. TANAKA for technical assistance with the experiments. This study is supported by Grant-in-Aid for Scientific Research (C) (JSPS/KAKENHI 15K08613 and 18K07444) to H.Y.

Disclosure Summary

There are no financial conflicts of interest to disclose.

Contribution Statement

M.I., M.K., I.K., and H.Y. performed research and clinical data analysis; T.M. performed clinical work and analysis; H.Y. and S.K. designed research, and M.I., S.K., and H.Y. wrote the manuscript.

References

1) Thomas H, Diamond J, Vieco A, Chaudhuri S, Shinnar E, Cromer S, Perel P, Mensah GA, Narula J, Johnson CO, Roth GA and Moran AE: Global Atlas of Cardiovascular Disease 2000-2016: The Path to Prevention and Control. Glob Heart, 2018; 13: 143-163
2) (IHME) IfHMaE: Global Burden of Disease Study 2016. Global Burden of Disease Study 2016 (GBD2016) Results. https://vizhubhealthdataorg.
3) Nowbar AN, Gitto M, Howard JR, Francis DP and Al-Lamee R: Mortality From Ischemic Heart Disease. Circ Cardiovasc Qual Outcomes, 2019; 12: e005375
4) Perk J, De Backer G, Gohlke H, Reiner Z, Verschuren M, Albus C, Benlian P, Boysen G, Cifkova R, Deaton C, Ebrahim S, Fisher M, Germaino G, Hobbs R, Hoes A, Karadeniz S, Mezzani A, Prescott E, Ryden L, Scherer M, Svyanne M, Scholte op Reimer WJ, Vrints C, Wood D, Zamorano JL, Zannad F, European Association for Cardiovascular P, Rehabilitation and Guidelines ESCCfP: European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular P, Rehabilitation and Guidelines ESCCfP: European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J, 2012; 33: 1635-1701
5) Bentzon JF, Otsuka F, Virmani R and Falk E: Mechanisms of plaque formation and rupture. Circ Res, 2014; 114: 1852-1866
6) Davies MJ: Anatomic features in victims of sudden coronary death. Coronary artery pathology. Circulation, 1992; 85: I19-24
7) Virmani R, Kolodgie FD, Burke AP, Farb A and Schwartz SM: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol, 2000; 20: 1262-1275
8) Stary HC: Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol, 2000; 20: 1177-1178
9) Virmani R, Burke AP, Farb A and Kolodgie FD: Pathology of the vulnerable plaque. J Am Coll Cardiol, 2006; 47: C13-18
10) Nissen SE and Yock P: Intravascular ultrasound: novel pathophysiologic insights and current clinical applications. Circulation, 2001; 103: 604-616
11) Sathyanarayana S, Carlier S, Li W and Thomas L: Characterisation of atherosclerotic plaque by spectral similarity of radiofrequency intravascular ultrasound signals. EuroIntervention, 2009; 5: 133-139
12) Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, Hegele RA, Krauss RM, Raal FJ, Schiopu A, Shah PK and Nilsson J, Fisher RM, Nilsson J and Hamsten A: High density lipoprotein in atherosclerosis. Curr Opin Lipidol, 2000; 11: 451-456
13) Williams KJ and Tabas I: The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol, 2016; 27: 473-483
14) Boren J and Williams KJ: The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis. Curr Opin Lipidol, 2000; 11: 451-456
15) Williams KJ and Tabas I: Lipoprotein retention--and clues for atheroma regression. Arterioscler Thromb Vasc Biol, 1995; 15: 551-561
16) Williams KJ and Tabas I: Lipoprotein retention--and clues for atheroma regression. Arterioscler Thromb Vasc Biol, 2005; 25: 1536-1540
17) Fredrikson GN, Hedblad B, Berglund G, Alm R, Nilsson JA, Schiopu A, Shah PK and Nilsson J: Association between IgM against an aldehyde-modified peptide in apoB-100 and progression of carotid disease. Stroke, 2007; 38: 1495-1500
18) Fredrikson GN, Hedblad B, Berglund G, Alm R, Nilsson J: Association between IgM against an aldehyde-modified peptide in apoB-100 are related to less coronary atherosclerosis and lower risk of myocardial infarction. Eur Heart J, 2008; 29: 2218-2226
19) Fredrikson GN, Samnegard A, Ericsson CG, Ohrvik J, Fisher RM, Nilsson J and Hamsten A: High plasma concentrations of autoantibodies against native peptide 210 of apoB-100 are related to less coronary atherosclerosis and lower risk of myocardial infarction. Eur Heart J, 2008; 29: 2218-2226
20) Yamamoto H, Kawamura M, Kochi I, Imai M, Murata Y, Suzuki T, Chen Y, Hashimoto K and Kihara S: Serum Anti-Apo B Antibody Level as Residual CVD Marker in DM Patients under Statin Treatment. J Atheroscler Thromb, 2019; 26: 931-943
21) Matsuo N, Matsuoka T, Onishi S, Yamamoto H, Kato A, Makino Y and Kihara S: Impact of Remnant Lipoprotein on Coronary Plaque Components. J Atheroscler Thromb, 2015; 22: 783-795
22) Roth GA, Johnson C, Ababojir A, Abd-Allah F, Abena SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Arnlov J, Asayesh H, Atey TM, Avila-Burgos L, Awasthi A, Banerjee A, Barac A, Barnighausen T, Barregard L, Bedi N, Belay Ketema E, Bennett D, Berhe G, Bhutta Z, Bitew S, Carapetis J, Carrero JJ, Malta DC, Castaneda-Onjuela CA, Castillo-Rivas J, Catala-Lopez F, Choi JY, Christensen H, Cirillo M, Cooper L, Jr., Criqui M, Cundiff D, Damasceno A, Dandona L, Dandona R, Davletov K, Dharmaratne S, Dorairaj P, Dubey M, Ehrenkranz R, El Sayed Zaki M, Faraoon EJA, Esteghamati A, Farid T, Farvid M, Feigin V, Ding EL, Fowkes G, Gebrehiwot T, Gillum R, Gold A, Gona P, Gupta R, Habtewold TD, Hafezi-Nejad N, Hailu T, Hailu GB, Hankey G, Hassen HY, Abate KH, Harnoeloo R, Hay SI, Horino M, Hotez PJ, Jacobsen K, James S, Javenbakht M, Jeemon P, John D, Jonas J, Kalkonde Y, Karimkhani C, Kasaeian A, Khader Y, Khan A, Khang YH, Khera S, Khoja AT, Khubchandani J, Kim D, Kolte D, Kosen S, Krohn KJ, Kumar GA, Kwan GF, Lak DL, Larsson A, Linn S, Lopez A, Lotufo PA, El Razek HMA, Malekzadeh R, Mazidi M, Meier T, Meles KG, Mensah G, Meretoja E, Mezgebe H, Miller T, Mirrakhimov E, Mohammed S, Moran AE, Musa KI, Narula J, Neal B, Ngalesoni F, Nguyen G, Obermeyer CM, Owalobi M, Patton G, Pedro J, Qato D, Qorbani M, Rahimi K, Rai RK, Rawaf S, Ribeiro A, Safiri S, Salonen J, Santos I, Satyan, Santric Milicevic M, Sartorious B, Schatte S, Sépanol S, Shaikh MA, Shin MJ, Shishehbor M, Shore H, Silva DAS, Sobngwi E, Stranges S, Swaminathan S, Tabares-Seisdedos R, Tadele Attnafu N, Tesfay F, Thakur JS, Thrift A, Topor-Madry R, Trunelsen T, Tyrovilos S, Ukwaia K, Uthman O, Vasankari T, Vlassov V, Vollset SE, Wakayo T, Watkins D, Weintraub R, Werdecker A, Westerman R, Wiysonge CS, Won M, Xu G, Yano Y, Yip F, Yonemoto N, Younis M, Yu C, Vos T, Naghavi M and Murray C: Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol, 2017; 70: 1-25
23) Nissen SE, Yock P, Burke AP, Farb A and Kolodgie FD: Pathology of the vulnerable plaque. J Am Coll Cardiol, 2006; 47: C13-18
24) Naghavi M, Libby P, Falk E, Cassells SW, Litovskiy S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Wexman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani Airaksinen MA, Shin MJ, Shishehbor M, Shore H, Silva DAS, Sobngwi E, Stranges S, Swaminathan S, Tabares-Seisdedos R, Tadele Attnafu N, Tesfay F, Thakur JS, Thrift A, Topor-Madry R, Trunelsen T, Tyrovilos S, Ukwaia K, Uthman O, Vasankari T, Vlassov V, Vollset SE, Wakayo T, Watkins D, Weintraub R, Werdecker A, Westerman R, Wiysonge CS, Wolle C, Workchoo A, Xu G, Yano Y, Yip F, Yonemoto N, Younis M, Yu C, Vos T, Naghavi M and Murray C: Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol, 2017; 70: 1-25
patient: a call for new definitions and risk assessment strategies: Part I. Circulation, 2003; 108: 1664-1672
25) Falk E, Shah PK and Fuster V: Coronary plaque disruption. Circulation, 1995; 92: 657-671
26) Libby P: Molecular bases of the acute coronary syndromes. Circulation, 1995; 91: 2844-2850
27) Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, Finn AV and Virmani R: The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol, 2001; 16: 285-292
28) Kolodgie FD, Burke AP, Nakazawa G and Virmani R: Is pathologic intimal thickening the key to understanding early plaque progression in human atherosclerotic disease? Arterioscler Thromb Vasc Biol, 2007; 27: 986-989
29) Moore KJ and Tabas I: Macrophages in the pathogenesis of atherosclerosis. Cell, 2011; 145: 341-355
30) Garcia-Garcia HM, Jang IK, Serruys PW, Kovacic JC, Narula J and Fayad ZA: Imaging plaques to predict and better manage patients with acute coronary events. Circ Res, 2014; 114: 1904-1917
31) Kawasaki M, Bouma BE, Bressner J, Houser SL, Nadkarni SK, MacNeill BD, Jang IK, Fujiwara H and Tearney GJ: Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J Am Coll Cardiol, 2006; 48: 81-88
32) Yamada R, Okura H, Kume T, Neishi Y, Kawamoto T, Miyamoto Y, Imai K, Saito K, Hayashida A and Yoshida K: A comparison between 40 MHz intravascular ultrasound iMap imaging system and integrated backscatter intravascular ultrasound. J Cardiol, 2013; 61: 149-154
33) Shah PK: Biomarkers of plaque instability. Curr Cardiol Rep, 2014; 16: 547
34) Emerging Risk Factors C, Kaptoge S, Di Angelantonio E, Lowe G, Pepys MB, Thompson SG, Collins R and Danesh J: C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet, 2010; 375: 132-140
35) Emerging Risk Factors C, Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, Walker M, Thompson A, Sarwar N, Caslake M, Butterworth AS, Amouyel P, Assmann G, Bakker SJ, Barr EL, Barrett-Connor E, Benjamin EJ, Bjorklund C, Brenner H, Brunner E, Clarke R, Cooper JA, Cremer P, Cushman M, Dagenais GR, D’Agostino RB, Sr., Dankner R, Davey-Smith G, Deeg D, Dekker JM, Engstrom G, Folsom AR, Fowkes FG, Gallacher J, Gaziano J, Giampaoli S, Smith G, Deeg D, Dekker JM, Strandberg TE, Tipping RW, Tosetto A, Wassenhove-Smoller S, Wennberg P, Westendorp RG, Whincup PH, Wilhelmsen L, Woodward M, Lowe GD, Wareham NJ, Khaw KT, Sattar N, Packard CJ, Gudnason V, Ridker PM, Pepys MB, Thompson SG and Danesh J: C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med, 2012; 367: 1310-1320
36) Goldstein JL and Brown MS: A century of cholesterol and coronaries: from plaques to genes to statins. Cell, 2015; 161: 161-172
37) Bjorkbacka H, Alm R, Persson M, Hedblad B, Nilsson J and Fredrikson GN: Low Levels of Apolipoprotein B-100 Autoantibodies Are Associated With Increased Risk of Coronary Events. Arterioscler Thromb Vasc Biol, 2016; 36: 765-771
38) Asciotto G, Dias NV, Edsfeldt A, Alm R, Fredrikson GN, Goncalves I and Nilsson J: Low levels of IgG autoantibodies against the apolipoprotein B antigen p210 increases the risk of cardiovascular death after carotid endarterectomy. Atherosclerosis, 2015; 239: 289-294
39) Fredrikson GN, Andan DV, Hopkins D, Corder R, Alm R, Bengtsson E, Shah PK, Lahiri A and Nilsson J: Associations between autoantibodies against apolipoprotein B-100 peptides and vascular complications in patients with type 2 diabetes. Diabetologia, 2009; 52: 1426-1433
40) McLeod O, Silveira A, Fredrikson GN, Gerton K, Baldassarre D, Veglia F, Sennblad B, Strawbridge RJ, Larsson M, Leander K, Gigante B, Kauhanen J, Rauramaa R, Smit AJ, Mannarino E, Giral P, Humphries SE, Tremoli E, de Faire U, Ohrvik J, Nilsson J and Hamsten A: Plasma autoantibodies against apolipoprotein B-100 peptide 210 in subclinical atherosclerosis. Atherosclerosis, 2014; 232: 242-248
41) Asciotto G, Wigren M, Fredrikson GN, Mattisson IY, Gronberg C, Alm R, Bjorkbacka H, Dias NV, Edsfeldt A, Goncalves I and Nilsson J: Apolipoprotein B-100 Antibody Interaction With Atherosclerotic Plaque Inflammation and Repair Processes. Stroke, 2016; 47: 1140-1143
42) Zeng Z, Cao B, Guo X, Li W, Li S, Chen J, Zhou W, Zheng C and Wei Y: Apolipoprotein B-100 peptide 210 antibody inhibits atherosclerosis by regulation of macrophages that phagocytize oxidized lipid. Am J Transl Res, 2018; 10: 1817-1828
43) Brito V, Mellal K, Portelance SG, Perez A, Soto Y, deBlois D, Ong H, Marleau S and Vazquez AM: Induction of anti-anti-idiotypic antibodies against sulfated glycosaminoglycans reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 2012; 32: 2847-2854
44) Delgado-Roche L, Brito V, Acosta E, Perez A, Fernandez JR, Hernandez-Matos Y, Grinan T, Soto Y, Leon OS, Marleau S and Vazquez AM: Arresting progressive atherosclerosis by immunization with an anti-glycosaminoglycan monoclonal antibody in apolipoprotein E-deficient mice. Free Radic Biol Med, 2015; 89: 557-566
45) Soran H, Dent R and Durrington P: Evidence-based goals and treatment strategy for patients with high cardiovascular risk: a call to action. Eur Heart J, 2017; 38: 2385-2406
46) Goldstein JL and Brown MS: A century of cholesterol and coronaries: from plaques to genes to statins. Cell, 2015; 161: 161-172
47) Bjorkbacka H, Alm R, Persson M, Hedblad B, Nilsson J and Fredrikson GN: Low Levels of Apolipoprotein B-100 Autoantibodies Are Associated With Increased Risk of Coronary Events. Arterioscler Thromb Vasc Biol, 2016; 36: 765-771
48) Asciotto G, Dias NV, Edsfeldt A, Alm R, Fredrikson GN, Goncalves I and Nilsson J: Low levels of IgG autoantibodies against the apolipoprotein B antigen p210 increases the risk of cardiovascular death after carotid endarterectomy. Atherosclerosis, 2015; 239: 289-294
49) Fredrikson GN, Andan DV, Hopkins D, Corder R, Alm R, Bengtsson E, Shah PK, Lahiri A and Nilsson J: Associations between autoantibodies against apolipoprotein B-100 peptides and vascular complications in patients with type 2 diabetes. Diabetologia, 2009; 52: 1426-1433
50) McLeod O, Silveira A, Fredrikson GN, Gerton K, Baldassarre D, Veglia F, Sennblad B, Strawbridge RJ, Larsson M, Leander K, Gigante B, Kauhanen J, Rauramaa R, Smit AJ, Mannarino E, Giral P, Humphries SE, Tremoli E, de Faire U, Ohrvik J, Nilsson J and Hamsten A: Plasma autoantibodies against apolipoprotein B-100 peptide 210 in subclinical atherosclerosis. Atherosclerosis, 2014; 232: 242-248
51) Asciotto G, Wigren M, Fredrikson GN, Mattisson IY, Gronberg C, Alm R, Bjorkbacka H, Dias NV, Edsfeldt A, Goncalves I and Nilsson J: Apolipoprotein B-100 Antibody Interaction With Atherosclerotic Plaque Inflammation and Repair Processes. Stroke, 2016; 47: 1140-1143
52) Zeng Z, Cao B, Guo X, Li W, Li S, Chen J, Zhou W, Zheng C and Wei Y: Apolipoprotein B-100 peptide 210 antibody inhibits atherosclerosis by regulation of macrophages that phagocytize oxidized lipid. Am J Transl Res, 2018; 10: 1817-1828
53) Brito V, Mellal K, Portelance SG, Perez A, Soto Y, deBlois D, Ong H, Marleau S and Vazquez AM: Induction of anti-anti-idiotypic antibodies against sulfated glycosaminoglycans reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 2012; 32: 2847-2854
54) Delgado-Roche L, Brito V, Acosta E, Perez A, Fernandez JR, Hernandez-Matos Y, Grinan T, Soto Y, Leon OS, Marleau S and Vazquez AM: Arresting progressive atherosclerosis by immunization with an anti-glycosaminoglycan monoclonal antibody in apolipoprotein E-deficient mice. Free Radic Biol Med, 2015; 89: 557-566
55) Soran H, Dent R and Durrington P: Evidence-based goals and treatment strategy for patients with high cardiovascular risk: a call to action. Eur Heart J, 2017; 38: 2385-2406
Supplemental Table 1. Correlation between serum hsCRP levels and plaque characteristics

hsCRP	ρ	p
Plaque burden	0.047	0.669
Total plaque volume	0.080	0.460
Necrotic components	-0.014	0.896
Lipidic components	0.053	0.629
Fibrotic components	0.036	0.738
Calcified components	-0.126	0.244
Necrotic plus Lipidic components	-0.006	0.957
Fibrotic plus Calcified components	0.005	0.960

Supplemental Fig. 1. Comparison of serum levels of anti-apo B-100 antibodies in the statin-treated and -untreated group

The serum IgG levels of anti-apolipoprotein B autoantibodies (IgG N-p45, IgG N-p210, IgG MDA-p45, and IgG MDA-p210) were compared in statin-treated (n=43) and statin-untreated groups (n=45).