Aldehyde breath test as a disease marker in patients with esophageal and hypopharyngeal squamous cell carcinoma

Fumisato Sasaki (bungohs@m2.kufm.kagoshima-u.ac.jp)
Kagoshima University School Of Medical And Dental Sciences
https://orcid.org/0000-0003-4824-4154

Shuji Kanamura
Kagoshima University Graduate School Of Medical And Dental Sciences

Kohei Oda
Kagoshima University Graduate School Of Medical And Dental Sciences

Hidehito Maeda
Izumi general Medical Center

Masayuki Kabayama
Kagoshima University Graduate School Of Medical and Dental Sciences

Hiromichi Iwaya
Kagoshima University Graduate School Of Medical And Dental Sciences

Yuga Komaki
Kagoshima University Graduate School Of Medical And Dental Sciences

Shiho Arima
Kagoshima University Graduate School Of Medical And Dental Sciences

Shiroh Tanoue
Kagoshima University Graduate School Of Medical And Dental Sciences

Shinichi Hashimoto
Kagoshima University Graduate School Of Medical And Dental Sciences

Hiroshi Fujita
Izumi General Medical Center

Akio Ido
Kagoshima University Graduate School Of Medical And Dental Sciences

Research article

Keywords: aldehyde breath test, esophageal squamous cell carcinoma, hypopharyngeal squamous cell carcinoma

DOI: https://doi.org/10.21203/rs.3.rs-30598/v1
Abstract

Background

Patients with inactive aldehyde dehydrogenase 2 (ALDH2) are at high risk for esophageal squamous cell carcinoma (ESCC) and hypopharyngeal squamous cell carcinoma (HPSCC). The aldehyde breath test (ABT) may demonstrate ALDH2 gene polymorphisms. We evaluated the usefulness of the ABT in patients with ESCC and HPSCC.

Methods

The SCC group consisted of 100 patients who were treated with endoscopic submucosal dissection (ESD) for ESCC or HPSCC, and the control group (HC) consisted of 275 healthy subjects. The SCC group comprised the “single subgroup” (n = 61), in which a single lesion was initially treated with ESD, and the “multiple subgroup” (n = 31), in which multiple lesions were initially treated with ESD. First, we compared the groups’ risk factors for carcinogenesis and measured acetaldehyde-to-ethanol (A/E) ratio. Then we tested the groups’ differences in the abovementioned carcinogenic risk factors.

Results

We found that the proportion of individuals in the SCC group with inactive ALDH2 (A/E ratio ≥ 23.3) was significantly higher than that in the HC group (p = 0.035), as was the A/E ratio (p < 0.001). Also, the proportion of individuals with inactive ALDH2 in the multiple subgroup was significantly higher than that in single subgroup (p = 0.015), as was the A/E ratio (p = 0.008).

Conclusions

In conclusion, ABT could be a useful tool to identify ESCC and HPSCC and detect multiple or double carcinomas.

Trial registration:

Trial Registration number: UMIN000040615, Data of Registration: 01 June 2020, retrospectively registered.

Background

Hypopharyngeal squamous cell carcinoma (HPSCC) and esophageal squamous cell carcinoma (ESCC) are two of the deadliest cancers worldwide [1–3]. HPSCC and ESCC are often advanced when detected,
the prognosis is relatively poor prognosis. [4, 5]. Acetaldehyde is the first metabolite of ethanol and a definite carcinogen for organs affected by the abovementioned cancers [2, 3]. Field cancerization is a biological process in which large areas of cells at a tissue surface or within an organ are affected by one or more carcinogenic alterations. The results of one study indicated that field cancerization might be due to the accumulation of acetaldehyde rather than alcohol itself [6].

Acetaldehyde is metabolized primarily by aldehyde dehydrogenase 2 (ALDH2). People with inactive heterozygous ALDH2 who drink alcohol are at high risk for HPSCC and ESCC [7–9]. ALDH2 activity is related to two alleles: ALDH2*1 (active ALDH2) and ALDH2*2 (inactive ALDH2). ALDH2 genotypes are classified as follows: ALDH2*1/*1 (homozygous active ALDH2); ALDH2*1/*2 (heterozygous inactive [<10% activity] ALDH2; and ALDH2*2/*2 (homozygous inactive [0% activity] ALDH2) [10–13]. Carriers of the ALDH2*2 allele (ALDH2*1/*2 and ALDH2*2/*2) account for 40–50% of East Asian populations [14–16]. Many epidemiological studies have revealed that ALDH2*1/*2 individuals who drink large amounts of alcohol are at high risk for HPSCC and ESCC [17–21].

Aoyama et al. [22] recently reported the development of a new breath study, the acetaldehyde breath test (ABT), which can measure very low levels of acetaldehyde and alcohol quantitatively after ingestion of a very small amount of alcohol (100 mL of 0.5% ethanol) and can accurately and rapidly identify ALDH2*2 allele carriers. According to Aoyama et al., the ratio of breath acetaldehyde level to breath ethanol level (A/E ratio) could identify ALDH2*2 allele carriers very accurately; the A/E ratio in carriers of the ALDH2*2 allele was significantly higher than that in participants who did not have the ALDH2*2. In addition, the accuracy, sensitivity, and specificity of the A/E ratio for identifying carriers of the ALDH2*2 allele were 96.4%, 100%, and 92.5%, respectively [22].

However, there is no report on the clinical significance of ABT for patients with ESCC or HPSCC. In recent years, as a result of advances in endoscopic technology, many cases of superficial ESCC and superficial HPSCC have been discovered and treated with methods of endoscopic resection, such as endoscopic submucosal dissection (ESD) [23, 24]. These cases may reflect the genesis of full-blown ESCC or HPSCC. In this study, we analyzed the clinical significance and usefulness of ABT as a disease marker for superficial ESCC and superficial HPSCC in patients treated with ESD.

Methods

Patients and methods

Two groups of subjects were compared: patients with squamous cell carcinoma (SCC group) and healthy controls (HC group). The patients in the SCC group had undergone ESD treatment for superficial ESCC or superficial HPSCC, or both, at the Kagoshima University Hospital, Kagoshima, Japan, between December 2016 and August 2018. The criteria for inclusion in the SCC group were (1) pathological diagnosis of superficial ESCC or superficial HPSCC in the resected specimens, (2) the patient’s written informed consent, and (3) the patient’s ability to provide breath samples. Exclusion criteria were (1) history of
surgical resection of any part of the upper gastrointestinal tract, (2) history of alcohol allergy, and (3) being younger than 20 years of age.

The patients included in the HC group were examined in a medical checkup that included esophagogastroduodenoscopy and ABT at Izumi General Medical Center, Kagoshima, Japan. The criteria of inclusion in the HC group were (1) age of 20 years or older, (2) the patient’s written informed consent, and (3) the patient’s ability to provide breath samples. Exclusion criteria were (1) history of surgical resection of any part of the upper gastrointestinal tract, (2) history of alcohol allergy, (3) age below 20 years, (4) detection of cancer of the upper gastrointestinal tract by esophagogastroduodenoscopy, and (5) current pregnancy.

A total of 100 participants were included in the SCC group and 275 in the HC group (Fig. 1). Table 1 lists the characteristics of the participants in the SCC and HC groups. Of the patients in the SCC group, 64 had superficial ESCC, 14 had superficial HPSCC, and 22 had both conditions. Six patients were eventually excluded because of history of head and neck or esophageal cancer; 3 had undergone oral resection of pharyngeal cancer, 1 had undergone radiotherapy for pharyngeal cancer, 1 had undergone radiotherapy for vocal cord cancer, and 1 had undergone chemoradiotherapy for tongue cancer. The remaining 94 patients were subdivided into the “single” subgroup, which comprised 63 patients in whom a single lesion was initially treated with ESD, and the “multiple” subgroup, which comprised 31 patients in whom multiple lesions were initially treated with ESD.
Table 1
Characteristics of patients with SCC and healthy controls

Characteristics	SCC (n = 100)	HC (n = 275)	p
Gender (male/female)	95/5	167/108	< 0.001
Age (years)			
< 40	0%	21.1%	
40–49	1.0%	32.4%	
50–59	18.0%	29.5%	
60–69	43.0%	13.1%	
70–79	32.0%	3.6%	
≥ 80	6.0%	0.4%	< 0.001
Mean ± SD	66.4 ± 8.5	49.1 ± 10.9	< 0.001
Daily alcohol consumption (g)			
< 25	12.0%	76.7%	
≥ 25	88.0%	23.3%	< 0.001
Mean ± SD	53.6 ± 29.4	15.1 ± 18.9	< 0.001
Smoking (yes/no)	58/42	147/128	0.454
Alcohol flushing			
Current flushing	28.0%	26.5%	
Former flushing	24.0%	14.2%	
Never flushing	48.0%	59.3%	0.052
Alcohol flush reaction (yes/no)	52/48	112/163	0.053
HRA score	8.17 ± 2.46	3.41 ± 2.87	< 0.001
Toothbrushing score			
0–2	60.9%	79.6%	
3–4	32.6%	20.4%	
5–6	6.5%	0.0%	< 0.001

ESCC, esophageal squamous cell carcinoma; HC, healthy control; HRA, health risk appraisal; HPSCC, hypopharyngeal squamous cell carcinoma; SCC, squamous cell carcinoma; SD, standard deviation.
Characteristics

Characteristics	SCC (n = 100)	HC (n = 275)	p
Mean ± SD	1.90 ± 1.35	1.32 ± 1.35	< 0.001

Type of lesion (number of patients)

Lesion	SCC	HC
ESCC	64	
HPSCC	14	
Overlap	22	

ESCC, esophageal squamous cell carcinoma; HC, healthy control; HRA, health risk appraisal; HPSCC, hypopharyngeal squamous cell carcinoma; SCC, squamous cell carcinoma; SD, standard deviation.

Table 2
Comparing risk factors between SCC and HC groups: univariate analysis and multivariate analysis

Characteristics	Subjects	Univariate analysis	Multivariate analysis			
	SCC group (n = 100)	HC group (n = 275)	p	OR	95% CI	p
Gender (male/female)	95/5	167/108	< 0.001	1.189	1.130–1.251	< 0.001
Mean age (years)	66.4 ± 8.5	49.1 ± 10.9	< 0.001	1.189	1.130–1.251	< 0.001
Mean daily alcohol consumption (g)	53.6 ± 29.4	15.1 ± 18.9	< 0.001	1.079	1.056–1.012	< 0.001
Mean HRA score	8.17 ± 2.46	3.41 ± 2.87	< 0.001	1.585	1.322–1.900	< 0.001
Toothbrushing score	1.90 ± 1.35	1.32 ± 1.35	< 0.001	1.048	1.021–1.075	< 0.001
A/E ratio	24.0 ± 16.5	18.8 ± 16.2	< 0.001	1.048	1.021–1.075	< 0.001

A/E, acetaldehyde-to-ethanol; CI, confidence interval; HC, healthy control; HRA, health risk appraisal; OR, odds ratio; SCC, squamous cell carcinoma.
Characteristics	Single ($n = 63$)	Multiple ($n = 31$)	p
Gender (male/female)	60/3	29/2	0.731
Age (years)			
40–49	0%	3.2%	
50–59	19.0%	12.9%	
60–69	42.9%	48.4%	
70–79	34.9%	25.8%	
≥80	3.2%	9.7%	0.305
Mean ± SD	66.3 ± 8.2	66.6 ± 8.4	0.965
Daily alcohol consumption (g)			
< 25	11.1%	12.9%	
≥25	88.9%	87.1%	0.799
Mean ± SD	52.7 ± 26.3	55.9 ± 35.8	0.984
Smoking	28/35	13/18	0.818
Alcohol flushing			
Current flushing	27.0%	29.0%	
Former flushing	22.2%	25.8%	
Never flushing	50.8%	45.2%	0.869
Alcohol flush reaction (yes/no)	32/31	14/17	0.608
Mean HRA score	8.35 ± 2.19	7.81 ± 2.96	0.318
Toothbrushing score			
0–2	60.3%	65.5%	
3–4	34.5%	32.2%	

The “single” subgroup comprised patients in whom a single lesion was initially treated with ESD; the “multiple” subgroup comprised patients in whom multiple lesions were initially treated with endoscopic submucosal dissection (ESD).

HRA, health risk appraisal.
The “single” subgroup comprised patients in whom a single lesion was initially treated with ESD; the “multiple” subgroup comprised patients in whom multiple lesions were initially treated with endoscopic submucosal dissection (ESD).

HRA, health risk appraisal.

Table 4
Comparing risk factors between single and multiple subgroups: univariate analysis and multivariate analysis

Characteristics	Subgroup	Univariate analysis	Multivariate analysis	
	Single (n = 63)	Multiple (n = 31)		
Gender (male/female)	60/3	29/2	0.731	
Mean age (years)	66.3 ± 8.2	66.6 ± 8.4	0.965	
Lugol-voiding lesions	40/23	11/20	0.010	
		2.682	1.060–6.788	< 0.001
A/E ratio	21.2 ± 13.9	31.3 ± 20.0	0.008	
		1.032	1.003–1.061	< 0.001

The “single” subgroup comprised patients in whom a single lesion was initially treated with ESD; the “multiple” subgroup comprised patients in whom multiple lesions were initially treated with endoscopic submucosal dissection (ESD). A/E, acetaldehyde-to-ethanol.

History regarding alcohol consumption and smoking was carefully documented in health risk appraisal (HRA) score [25], and a table of daily alcohol consumption was compiled for each age (Additional file 1).
In addition, all patients were surveyed in detail about alcohol flushing and frequency of toothbrushing. Alcohol flushing, in which the face turns red after drinking a small amount of alcohol, has been reported to be associated with esophageal cancer [25], and the frequency of toothbrushing was recently reported to be correlated with risk for head and neck cancer [26]. We scored frequency of toothbrushing as follows: 0 points for brushing almost every morning, noon, and evening; 1 point for brushing often; and 2 points for rarely or never brushing.

Squamous dysplasia, a preneoplastic lesion, is identified easily on Lugol chromoendoscopy as a Lugol-voiding lesion (LVL) [27]. For all patients in the SCC group, the presence of LVLs on Lugol chromoendoscopy of esophagus was documented in accordance with the report of Katada et al. as grades A (no LVLs), B (1–9 LVLs), and C (≥10 LVLs; Additional file 2) [27].

Acetaldehyde breath test

Participants were asked to drink 100 mL of 0.5% ethanol in one draught after at least 12 h of fasting and abstinence. The 0.5% ethanol was made with vodka, which contains little acetaldehyde [28]. Breath samples were collected with dedicated gas bags immediately before and 1 min after participants drank the alcohol. We used the dedicated gas bags to collect the end-tidal gas [22]. The gas bags were made of vinyl alcohol polymer and uniquely shaped to remove the gas derived from the physiological dead space. Approximately 100 mL of end-tidal gas can be collected with one breath into the bag. In this study, the breath was collected into these bags at standard temperature with air conditioning.

Measurement of breath acetaldehyde and ethanol levels

Breath acetaldehyde and ethanol levels were measured by highly sensitive gas chromatography [29] performed using the AERoChrome (Nissha FIS, Inc., Osaka, Japan), which can measure acetaldehyde and ethanol content. This device can also calculate the A/E ratio for each individual 1 min after ethanol ingestion. With the cutoff value of the A/E ratio set to 23.3, a previous study revealed that the AERoChrome was able to determine the presence of ALDH2*1 (active ALDH2) and ALDH2*2 (inactive ALDH2) with an accuracy of 96.4% [22].

Statistical analyses

The absolute and relative frequencies for qualitative variables were calculated for the SCC and HC groups. Statistical analysis was conducted using IBM SPSS Statistics 26 software (IBM, Armonk, NY, USA) and Prism (version 6 or later; GraphPad Software, Inc., La Jolla, CA, USA). The continuous variables are expressed as means and ranges. The Mann–Whitney U test was employed to compare continuous data. Pearson's chi-squared test or Fisher's exact test was employed to analyze categorical data to compare proportions. A p value of less than 0.05 was considered statistically significant. Cox's proportional-hazards model for univariate and multivariate analyses was used to examine the predictors of the development of SCC and multiple lesions in the esophagus and the hypopharynx.

Ethical Approval
This study was approved by the institutional review board of the Kagoshima University Hospital Clinical Research Ethics Committee [Research No. 28-137] and Izumi General Medical Center. Written informed consent was obtained from all participants. The procedures followed were in accordance with the guidelines for the care and use of laboratory animals of their institution or national animal welfare committee, or with the World Medical Association's Declaration of Helsinki (1964, and its later amendments).

Results

SCC vs HC groups

We compared the SCC and HC groups with regard to characteristics and risk factors for carcinogenesis, such as alcohol consumption, smoking, measured A/E ratio, and proportion of subjects with inactive ALDH2 (A/E ratio \geq 23.3). Patients in the SCC group were significantly older and had a higher proportion of men than did the HC group. In addition, HRA scores of the SCC group were higher than those of the HC group. There was no significant difference with regard to smoking and alcohol flushing. In the SCC group, the frequency of toothbrushing was lower (Table 1). Univariate analysis also revealed that the proportion of individuals with inactive ALDH2 (A/E ratio \geq 23.3) was significantly higher in the SCC group (43%) than in the HC group (31.3%; $p = 0.035$). In addition, the A/E ratio in the SCC group (24.0 ± 16.5) was significantly higher than that in the HC group (18.8 ± 16.2; $p < 0.001$; Fig. 2). The A/E ratio was extracted as a factor contributing to carcinogenesis in multivariate analysis, together with age, alcohol consumption, and HRA score (Table 2).

Single versus multiple

We compared differences in the abovementioned characteristics and carcinogenic risk factors between the single and multiple subgroups. There were no significant differences with regard to gender, age, alcohol consumption, smoking, alcohol flushing, HRA score, or toothbrushing frequency. The proportion of patients in the multiple subgroup with grade C LVLs was significantly higher than that in the single subgroup. There was no difference between the two groups with regard to other organ cancers (Table 3). The proportion of individuals with inactive ALDH2 (A/E ratio \geq 23.3) was significantly higher in the multiple subgroup (61.3%) than in the single subgroup (34.9%; $p = 0.015$). In addition, the A/E ratio in the multiple subgroup (31.3 ± 20.0) was significantly higher than that in single subgroup as well (21.2 ± 13.9; $p = 0.008$; Fig. 3). In multivariate analysis, the A/E ratio and LVL grade were extracted as factors contributing to carcinogenesis in the multiple subgroup (Table 4).

Discussion

In this study, we hypothesized that the ABT, which accurately identifies ALDH2 inactivity noninvasively as a disease marker for superficial ESCC and superficial HPSCC treated with ESD, would exhibit clinical significance and usefulness. To support this hypothesis, we demonstrated that ABT was useful for
identifying patients with superficial ESCC or superficial HSCC and that the A/E ratio was useful for identifying patients with multiple lesions.

Alcohol metabolic capacity has been found to vary greatly with regard to race, and 35% of the Japanese population [30]. Individuals with inactive ALDH2 who drink heavily are at high risk for ESCC and HPSCC [17–21]. Genetic testing is the most reliable way to identify ALDH2*2 allele carriers; however, it is not suitable for mass screening because it is a time-consuming and cumbersome procedure. The alcohol flushing questionnaire and the ethanol patch test have been considered as alternative diagnostic tools. However, their accuracy is unsatisfactory [20, 31]. The ABT could accurately identify ALDH2*2 allele carriers within 8 min; thus, people would be able to know the result shortly after the test [22].

In recent years, early esophageal cancer was reported to have a good prognosis; several studies have shown that the overall rate of 5-year survival in patients with intramucosal ESCC who underwent endoscopic resection was 89–95% [23, 32, 33]. Furthermore, the cause-specific rate of 5-year survival among patients with superficial pharyngeal cancer who underwent endoscopic resection was 97% [24]. ESD as a minimally invasive treatment for superficial pharyngeal cancer was reported to be effective and safe [34]. As mentioned previously, early detection of ESCC and HPSCC is very important for long-term survival of patients with esophageal cancer.

According to a recent report, multiple LVLs in the esophagus increase the risk of multiple SCC [34]. However, Lugol chromoendoscopy is invasive and painful or uncomfortable. A major advantage of ABT is its noninvasiveness. We demonstrated that the A/E ratio and LVL grade were extracted as factors contributing to carcinogenesis in the multiple subgroup; the ABT can be used easily in healthy patients at high risk of ESCC and HPSCC. Furthermore, conducting the ABT at a young age in healthy individuals may help prevent ESCC and HPSCC by encouraging these individuals to modify drinking habits.

On the other hand, in patients with ESCC, the incidence of multiple lesions simultaneously is high. In addition, 10–50% of patients with HPSCC also have ESCC [35–38]. It is extremely important to accurately diagnose HPSCC and ESCC that have occurred at the same time. Our results indicate that ABT, which reflects alcohol metabolic ability, may be useful for identifying such patients.

This study had some limitations. First, because genetic testing is time consuming and cumbersome, it was not conducted in this study. However, Aoyama et al. [22] reported that the A/E ratio could identify ALDH2*2 allele carriers very accurately (in their study, the rate of accuracy was 96.4%). Second, patients who had undergone gastrointestinal surgery, which could have affected the breath ethanol or acetaldehyde levels, were not tested in this study. Third, the subjects of this study were patients who received only endoscopic treatment; we did not include patients who underwent surgery or chemotherapy for esophageal cancer and pharyngeal cancer. In the future, we also need to test the ABT in patients who underwent surgery and chemotherapy.

Conclusion
The results of this study suggest that the ABT is a useful, noninvasive tool for identifying individuals at high risk for pharyngeal and esophageal cancer, as well as for the detection of multiple carcinomas. In the future, the use of ABT may help prevent pharyngeal and esophageal cancer by encouraging individuals to modify their drinking habits.

Abbreviations

HPSCC
hypopharyngeal squamous cell carcinoma
ESCC
esophageal squamous cell carcinoma
ALDH2
aldehyde dehydrogenase 2
ABT
acetaldehyde breath test
A/E ratio
the ratio of breath acetaldehyde level to breath ethanol level
ESD
endoscopic submucosal dissection
HRA score
health risk appraisal score
LVL
Lugol-voiding lesion

Declarations

Ethics approval and consent to participate

This study was approved by the institutional review board of the Kagoshima University Hospital Clinical Research Ethics Committee [Research No. 28–137] and Izumi General Medical Center. Written informed consent was obtained from all participants. The procedures followed were in accordance with the guidelines for the care and use of laboratory animals of their institution or national animal welfare committee, or with the World Medical Association's Declaration of Helsinki (1964, and its later amendments).

Consent for publication

This manuscript does not contain data in any form (including individual details, images or videos). Hence, Consent for publication is not applicable here.

Availability of data and materials
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

None.

Author Contributions:

Conceptualization – FS; Data curation – FS, KO; Formal analysis – FS, KO; Investigation - FS, HM, MK, HF; Methodology - FS, KO, ST, SH; Project administration - HI, YK; Resources - FS, SA; Software – KO, Supervision – SK, Validation - FS, Visualization – FK;

Acknowledgements

The authors would like to thank Ms. Yuko Morinaga-Nakamura for her technical assistance.

References

1. Ohashi S, Miyamoto S, Kikuchi O, Goto T, Amanuma Y, Muto M. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology. 2015;149:1700–15.

2. Secretan B, Straif K, Baan R, Grosse Y, El Ghissassi F, Bouvard V, et al. A review of human carcinogens—Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 2009;10:1033–4.

3. Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, et al. Carcinogenicity of alcoholic beverages. Lancet Oncol. 2007;8:292–3.

4. Tateya I, Muto M, Morita S, Miyamoto SI, Hayashi T, Funakoshi M, et al. Endoscopic laryngo-pharyngeal surgery for superficial laryngo-pharyngeal cancer. Surgical Endosc. 2016;30:323–9.

5. Minashi M, Nihei K, Mizusawa J, Takizawa K, Yano T, Ezoe Y, et al. Efficacy of endoscopic resection and selective chemoradiotherapy for stage I esophageal squamous cell carcinoma. Gastroenterology. 2019;157:382–90.

6. Boyle P, Autier P, Bartelink H, Baselga J, Boffetta P, Burn J, et al. European code against cancer and scientific justification: third version (2003). Ann Oncol. 2003;14:973–1005.

7. Yokoyama A, Muramatsu T, Ohmori T, Higuchi S, Hayashida M, Ishii H. Esophageal cancer and aldehyde dehydrogenase-2 genotypes in Japanese males. Cancer Epidemiol Biomark Prev.
1996;5:99–102.
8. Yokoyama A, Mizukami T, Yokoyama T. Genetic polymorphisms of alcohol dehydrogenase-1B and aldehyde dehydrogenase-2, alcohol flushing, mean corpuscular volume, and aerodigestive tract neoplasia in Japanese drinkers. Adv Exp Med Biol. 2015;815:265–79.
9. Yokoyama A, Omori T, Yokoyama T. Alcohol and aldehyde dehydrogenase polymorphisms and a new strategy for prevention and screening for cancer in the upper aerodigestive tract in East Asians. Keio J Med. 2010;59:115–30.
10. Bosron WF, Li TK. Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationship to alcohol metabolism and alcoholism. Hepatology. 1986;6:502–10.
11. Crabb DW, Edenberg HJ, Bosron WF, Li TK. Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2) allele is dominant. J Clin Invest. 1989;83:314–16.
12. Harada S, Misawa S, Agarwal DP, Goedde HW. Liver alcohol dehydrogenase and aldehyde dehydrogenase in the Japanese: isozyme variation and its possible role in alcohol intoxication. Am J Hum Genet. 1980;32:8–15.
13. Yoshida A, Huang Y, Ikawa M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci USA. 1984;81:258–61.
14. Higuchi S, Matsushita S, Murayama M, Takagi S, Hayashida M. Alcohol and aldehyde dehydrogenase polymorphisms and the risk for alcoholism. Am J Psychiatry. 1995;152:1219–21.
15. Muramatsu T, Zu-Cheng W, Yi-Ru F, Kou-Bao H, Heqin Y, Yamada K, et al. Alcohol and aldehyde dehydrogenase genotypes and drinking behavior of Chinese living in Shanghai. Hum Genet. 1995;96:151–4.
16. Thomasson HR, Edenberg HJ, Crabb DW, Mai XL, Jerome RE, Li TK, et al. Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Am J Hum Genet. 1991;48:677–81.
17. Yokoyama A, Omori T. Genetic polymorphisms of alcohol and aldehyde dehydrogenases and risk for esophageal and head and neck cancers. Jpn J Clin Oncol. 2003;33:111–21.
18. Lee CH, Lee JM, Wu DC, Goan YG, Chou SH, Wu IC, et al. Carcinogenetic impact of ADH1B and ALDH2 genes on squamous cell carcinoma risk of the esophagus with regard to the consumption of alcohol, tobacco and betel quid. Int J Cancer. 2008;122:1347–56.
19. Yang CX, Matsuo K, Ito H, Hirose K, Wakai K, Saito T, et al. Esophageal cancer risk by ALDH2 and ADH2 polymorphisms and alcohol consumption: exploration of gene-environment and gene-gene interactions. Asian Pac J Cancer Prev. 2005;6:256–62.
20. Yokoyama A, Muramatsu T, Ohmori T, Higuchi S, Hayashida M, Ishii H. Esophageal cancer and aldehyde dehydrogenase-2 genotypes in Japanese males. Cancer Epidemiol Biomarkers Prev. 1996;5:99–102.
21. Yokoyama A, Omori T, Yokoyama T, Sato Y, Mizukami T, Matsushita S, et al. Risk of squamous cell carcinoma of the upper aerodigestive tract in cancer-free alcoholic Japanese men: an endoscopic follow-up study. Cancer Epidemiol Biomarkers Prev. 2006;15:2209–15.
22. Aoyama I, Ohashi S, Amanuma Y, Hirohashi K, Mizumoto A, Funakoshi M, et al. Establishment of a quick and highly accurate breath test for ALDH2 genotyping. Clin Transl Gastroenterol. 2017;8:e96.
23. Ono S, Fujishiro M, Niimi K, Goto O, Kodashima S, Yamamichi N, et al. Long-term outcomes of endoscopic submucosal dissection for superficial esophageal squamous cell neoplasms. Gastrointest Endosc. 2009;70:860–6.
24. Muto M, Satake S, Yano T, Minashi K, Hayashi R, Fujii S. Long-term outcome of transoral organ-preserving pharyngeal endoscopic resection for superficial pharyngeal cancer. Gastrointest Endosc. 2011;74:477–84.
25. Yokoyama T, Yokoyama A, Kumagai Y, Omori T, Kato H, Igaki H, et al. Health risk appraisal models for mass screening of esophageal cancer in Japanese men. Cancer Epidemiol Biomarkers Prev. 2008;17:2846–54.
26. Zeng XT, Leng WD, Zhang C, Liu J, Cao SY, Huang W. Meta-analysis on the association between toothbrushing and head and neck cancer. Oral Oncol. 2015;51:446–51.
27. Katada C, Yokoyama T, Yano T, Kaneko K, Oda I, Shimizu Y, et al. Alcohol consumption and multiple dysplastic lesions increase risk of squamous cell carcinoma in the esophagus, head, and neck. Gastroenterology. 2016;151:860–9.
28. Lachenmeier DW, Sohnius EM. The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: evidence from a large chemical survey. Food Chem Toxicol. 2008;46:2903–11.
29. Hanada M, Koda H, Onaga K, Tanaka K, Okabayashi T, Itoh T, et al. Portable oral malodor analyzer using highly sensitive In2O3 gas sensor combined with a simple gas chromatography system. Anal Chim Acta. 2003;475:27–35.
30. Higuchi S, Matsushita S, Murayama M, Takagi S, Hayashida M. Alcohol and aldehyde dehydrogenase polymorphisms and the risk for alcoholism. Am J Psychiatry. 1995;152:1219–21.
31. Yokoyama T, Yokoyama A, Kato H, Tsujinaka T, Muto M, Omori T, et al. Alcohol flushing, alcohol and aldehyde dehydrogenase genotypes, and risk for esophageal squamous cell carcinoma in Japanese men. Cancer Epidemiol Biomarkers Prev. 2003;12:1227–33.
32. Yamashina T, Ishihara R, Nagai K, Matsuura N, Matsu F, Ito T, et al. Long-term outcome and metastatic risk after endoscopic resection of superficial esophageal squamous cell carcinoma. Am J Gastroenterol. 2013;108:544–51.
33. Pech O, Gossner L, May A, Vieth M, Stolte M, Ell C. Endoscopic resection of superficial esophageal squamous-cell carcinomas: Western experience. Am J Gastroenterol. 2004;9:1226–32.
34. Hanaoka N, Ishihara R, Takeuchi Y, Suzuki M, Otozai S, Kida K, et al. Endoscopic submucosal dissection as minimally invasive treatment for superficial pharyngeal cancer: a phase II study (with video). Gastrointest Endosc. 2015;82:1002–8.
35. Vergez S, Moriniere S, Dubrulle F, Salaun PY, De Mones E, Bertolus C, et al. Initial staging of squamous cell carcinoma of the oral cavity, larynx and pharynx (excluding nasopharynx). Part I:
Locoregional extension assessment: 2012 SFORL guidelines. Eur Ann Otorhinolaryngol Head Neck Dis. 2013;130:39–45.

36. Kim do H, Gong EJ, Jung HY, Lim H, Ahn JY, Choi KS, et al. Clinical significance of intensive endoscopic screening for synchronous esophageal neoplasm in patients with head and neck squamous cell carcinoma. Scand J Gastroenterol. 2014;49:1486–92.

37. Watanabe S, Ogino I, Inayama Y, Sugiura M, Sakuma Y, Kokawa A, et al. Impact of the early detection of esophageal neoplasms in hypopharyngeal cancer patients treated with concurrent chemoradiotherapy. Asia Pac J Clin Oncol. 2014;13:e3–10.

38. Morimoto M, Nishiyama K, Nakamura S, Suzuki O, Kawaguchi Y, Nakajima A, et al. Significance of endoscopic screening and endoscopic resection for esophageal cancer in patients with hypopharyngeal cancer. Jpn J Clin Oncol. 2010;40:938–43.

Supplementary Figure Legends

Additional file 1

Daily alcohol consumption, calculated as the sum of scores A to D for each age.

Additional file 2

Grading and appearance of Lugol-voiding lesions (LVLs). The number of LVLs per endoscopic view was counted, and the grading was divided into three categories.

Figures
Outline of this study. Flowchart of enrollment for analysis. The “single” subgroup comprised patients in whom a single lesion was initially treated with ESD; the “multiple” subgroup comprised patients in whom multiple lesions were initially treated with endoscopic submucosal dissection (ESD).
Comparison of the A/E ratios between SCC and HC. (a) The proportion of individuals with inactive aldehyde dehydrogenase 2 (ALDH2; acetaldehyde-to-ethanol [A/E] ratio ≥ 23.3) was significantly higher in the group of patients with squamous cell cancer (SCC; 43.0%) than among the healthy controls (HC; 31.3%; p = 0.035, chi-squared test). (b) Plot of the A/E ratios of each individual 1 min after alcohol ingestion. The A/E ratio in the SCC group (24.0 ± 16.5) was significantly higher than that in the HC group (18.8 ± 16.2; p < 0.001, Mann-Whitney U test).
Comparison of the A/E ratios between Single subgroup and Multiple subgroup. (a) The proportion of individuals with inactive aldehyde dehydrogenase 2 (ALDH2; acetaldehyde-to-ethanol [A/E] ratio ≥ 23.3) was significantly higher among patients with Multiple subgroup (61.3%) than among those with Single subgroup (34.9%; $p = 0.015$, chi-squared test). (b) The A/E ratio in patients with Multiple subgroup (31.3 ± 20.0) was significantly higher than that in patients with Single subgroup (21.2 ± 13.9; $p = 0.008$, Mann–Whitney U test).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- FCCONSORT2010ChecklistMSWord1420200512.doc
- ESM2FUMSQJ10CPAWE1.tif
- ESM1FUMSQJ10CPAWE1.tif