In Vitro Activities and Inoculum Effects of eftazidime-Avibactam and Aztreonam-Avibactam against Carbapenem-Resistant Enterobacterales Isolates from South Korea

Taeun Kim 1, Seung Cheol Lee 2, Moonsuk Bae 2, Heungsup Sung 3, Mi-Na Kim 3, Jiwon Jung 2, Min Jae Kim 2, Sung-Han Kim 2, Sang-Oh Lee 2, Sang-Ho Choi 2, Yang Soo Kim 2, and Yong Pil Chong 2*

1 Division of Infectious Diseases, Department of Medicine, Nowon Eulji University Hospital, Seoul 01830, Korea; sleepju@naver.com
2 Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; sclee628@naver.com (S.C.L.); carukeion@gmail.com (M.B.); trueblue27@naver.com (J.J.); nahani99@gmail.com (M.J.K.); kimsunghanmd@hotmail.com (S.-H.K.); solemd@amc.seoul.kr (S.-O.L.); sangho@amc.seoul.kr (S.-H.C.); yskim@amc.seoul.kr (Y.S.K.)
3 Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; sung@amc.seoul.kr (H.S.); mnkim@amc.seoul.kr (M.-N.K.)

* Correspondence: drchong@amc.seoul.kr; Tel.: +82-2-3010-3306; Fax: +82-3010-3306
Supplemental Table S1. Antimicrobial susceptibility of carbapenem-resistant *E. coli* and *K. pneumoniae* isolates to seven antimicrobial agents (n=81).

Antimicrobial agent	Inoculum size	No. of isolates (cumulative %) with indicated MICs (μg/mL)	MIC (μg/mL)	S (n %)														
		0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	≥512	MIC₉₀	MIC₁₀₀	
CAZ	Standard	1	1	1	1	2	1	10	17	47	≥512	≥512	3					
	High	1	(1.2)	(2.5)	(3.7)	(4.9)	(7.4)	(8.6)	(21.0)	(42.0)	(100)	≥512	≥512	(3.7)				
CAZ-AVI	Standard	2	1	2	3	6	13	16	7	14	4	≥512	59					
	High	6	(2.5)	(18.5)	(49.4)	(65.4)	(72.8)	(81.5)	(82.7)	(100)	15	8	≥512	(58.0)				
ATM	Standard	4	1	1	1	1	1	1	3	2	8	62	≥512	≥512	5	(6.2)		
	High	2	(2.5)	(3.7)	(4.9)	(7.4)	(11.1)	(13.6)	(23.5)	(100)	72	≥512	≥512	3	(3.7)			
ATM-AVI	Standard	3	(3.7)	(4.9)	(38.3)	(63.0)	(81.5)	(85.2)	(92.6)	(95.1)	(97.5)	(98.8)	(100)	0.5	4	NA^b		
	High	2	(2.5)	(19.8)	(31.1)	(34.6)	(46.9)	(51.9)	(55.6)	(59.3)	(82.7)	(85.2)	(86.4)	(96.3)	(100)	4	256	NA^b
MEM	Standard	3	(3.7)	(7.4)	(9.9)	(14.8)	(19.8)	(34.6)	(53.1)	(66.7)	(81.5)	(86.4)	(100)	16	≥256	8	(9.9)	
	High	2	(2.5)	(3.7)	(9.9)	(12.3)	(24.7)	(40.7)	(51.9)	(63.0)	(75.3)	(100)	32	≥256	3	(3.7)		
CST	Standard	19	(23.5)	(86.4)	(88.9)	(91.4)	(95.1)	(98.8)	(100)	0.5	8	(86.4)						
	High	2	(2.5)	(13.6)	(24.7)	(46.9)	(64.2)	(85.2)	(93.8)	(96.3)	(97.5)	(98.8)	(100)	2	8	20	(24.7)	

MIC, minimum inhibitory concentration; CAZ, ceftazidime; CAZ-AVI, ceftazidime-avibactam; ATM, aztreonam; ATM-AVI, aztreonam-avibactam; MEM, meropenem; CST, colistin; TGC, tigecycline; NA, not available.^a CLSI susceptibility breakpoints were used: ceftazidime, ≤4 μg/mL; ceftazidime-avibactam, ≤8/4 μg/mL; aztreonam, ≤4 μg/mL; meropenem, ≤1μg/mL; 2019 EUCAST susceptibility breakpoints were used for colistin and tigecycline: colistin, ≤2 μg/mL; tigecycline, ≤0.5 μg/mL.^b Not available because no breakpoint criteria have been defined for aztreonam-avibactam.^c MIC is greater than or equal to the indicated value.
Supplemental Table S2. Ceftazidime-avibactam and aztreonam-avibactam MIC distribution according to meropenem, colistin and tigecycline susceptibility pattern in carbapenem-resistant isolates.

	Susceptible (n = 70)	Resistant (n = 11)	\(P \) value	Susceptible (n = 20)	Resistant (n = 61)	\(P \) value
Ceftazidime-avibactam MIC						
S (≤8 µg/mL)	50 (71.4)	9 (81.8)	.47	14 (70.0)	45 (73.8)	.74
R (>8 µg/mL)	20 (28.6)	2 (18.2)	.50	6 (30.0)	16 (26.2)	.99
Aztreonam-avibactam MIC						
Lower MIC (≤8 µg/mL)	67 (95.7)	10 (90.9)	.50	19 (95.0)	58 (95.1)	.99
Higher MIC (>8 µg/mL)	3 (4.3)	1 (9.1)	.37	1 (5.0)	3 (4.9)	

Data are presented as the number of isolates with the corresponding percentage shown in parentheses. *Ceftazidime-avibactam CLSI breakpoints: S ≤8/4 µg/mL, R >8/4 µg/mL.* **Colistin EUCAST breakpoints: S ≤2 µg/mL, R >2 µg/mL.*** Tigecycline EUCAST breakpoints: S ≤0.5 µg/mL, R >0.5 µg/mL.
Supplemental Table S3. MIC distributions of ceftazidime-avibactam and aztreonam-avibactam for carbapenem-resistant *E. coli* and *K. pneumoniae* (n=81).

AZT/AVI, MIC (µg/mL)	CAZ-AVI MIC (µg/mL) No. of isolates (no. of CPE) with indicated MIC	Grand total (No. of CPE)											
	0.5	1	2	4	8	16	32	64	128	256	>256		
0.06	1	1							2		2	3 (2)	
0.125	1	0								2		1 (0)	
0.25	1	8	9	6	1				8	8	27	17 (1)	
0.5	3	9	6	1						1		20	8 (8)
1	1	4	5	4	1	2				2	15	7 (2)	
2	1	0	1							3		3 (1)	
4	1	1	3	0	1					6		0 (6)	
8	1				1					2		0 (2)	
16						1				2		0 (2)	
32									1			1 (0)	
64											1		
128											1		
Grand total (No. of CPE)	2	13	25	13	6	1			7	1	14	13 (1)	81 (81)
Supplemental Table S4. Resistance mechanisms of carbapenem-resistant E. coli (n=25) and K. pneumoniae (n=56).

Mechanism	E. coli, n (%)	K. pneumoniae, n (%)	Total, n (%)
Non-CP-CRE	18 (72.0)	28 (50.0)	46 (100)
ESBL	13 (52.0)	17 (30.4)	30 (65.2)
AmpC	1 (4.0)	1 (1.8)	2 (4.3)
ESBL+AmpC	0	7 (12.5)	7 (15.2)
Others	4 (16.0)	3 (5.4)	7 (15.2)

CP-CRE: 7 (28.0) 28 (50.0) 35 (100)
KPC: 2 (8.0) 15 (26.8) 17 (48.6)
NDM: 4 (16.0) 7 (12.5) 11 (31.4)
OXA-48-like: 1 (4.0) 3 (5.4) 4 (11.4)
VIM: 0 1 (1.8) 1 (2.9)
Others: 0 2 (3.6) 2 (5.7)

Data are presented as the number of isolates with the corresponding percentage shown in parentheses. Non-CP-CRE, non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae.
Supplemental Table S5. Antimicrobial susceptibility and positive rate of inoculum effect of carbapenem-resistant isolates according to resistance mechanism.

Species (n)	Mechanism (n)	Antimicrobial agent	Inoculum size	MIC (µg/mL)	S (%)	No. of isolates (%) with inoculum effect		
E. coli (25)	Non-CRE (18)	CAZ-AVI	Standard	2	16	≥512	13 (77.8)	1/17 (5.9)
	CRE (18)	CAZ-AVI	High	4	≥512	1 to ≥512	13 (72.2)	
		ATM-AVI	Standard	0.5	32	0.06 to 128	NA	1/18 (5.6)
			High	0.5	256	0.125 to ≥512	NA	
	ESBL (13)	CAZ-AVI	Standard	2	16	1 to ≥512	11 (84.6)	1/12 (8.3)
		ATM-AVI	High	8	≥512	1 to ≥512	10 (76.9)	
			Standard	0.5	8	0.06 to 8	NA	1/13 (7.7)
	AmpC (1)	CAZ-AVI	High	-	-	1	1 (100)	0
		ATM-AVI	Standard	-	-	0.5	NA	0
	CRE (7)	CAZ-AVI	High	≥512	≥512	1 to ≥512	3 (42.9)	1/3 (33.3)
		ATM-AVI	Standard	0.25	2	0.06 to 2	NA	1/7 (14.3)
			High	1	32	0.125 to 2	NA	
	KPC (2)	CAZ-AVI	Standard	-	-	1 to 4	2 (100)	1/2 (50.0)
		ATM-AVI	High	-	-	4 to 8	2 (100)	
	NDM (4)	CAZ-AVI	Standard	≥512	≥512	≥512	0	ND
		ATM-AVI	High	0.25	2	0.06 to 2	NA	0
K. pneumoniae (56)	Non-CRE (28)	CAZ-AVI	Standard	2	16	0.5 to 32	23 (82.1)	9/28 (32.1)
		ATM-AVI	High	8	256	1 to 256	14 (50.0)	22/28 (78.6)
	ESBL (17)	CAZ-AVI	Standard	4	16	0.5 to 32	13 (76.5)	6/17 (35.3)
		ATM-AVI	High	16	128	1 to 256	6 (35.3)	
	AmpC (1)	CAZ-AVI	High	-	-	1	1 (100)	1/1 (100)
		ATP-AVI	Standard	0.5	1	256	NA	
			High	-	-	32	NA	1/1 (100)
	ESBL + AmpC (7)	CAZ-AVI	Standard	2	4	1 to 4	7 (100)	1/7 (14.3)
		ATM-AVI	High	4	128	2 to 128	6 (85.7)	
	CRE (28)	CAZ-AVI	Standard	4	≥512	1 to ≥512	19 (67.9)	1/19 (5.3)
		ATM-AVI	High	8	≥512	2 to ≥512	17 (60.7)	
	KPC (15)	CAZ-AVI	Standard	2	≥512	2 to ≥512	12 (80.0)	1/12 (8.3)
		ATM-AVI	High	8	≥512	8 to ≥512	11 (73.3)	
	NDM (7)	CAZ-AVI	Standard	2	≥512	≥512	3 (42.9)	0/3
		ATM-AVI	High	0.5	32	0.25 to 256	NA	
			Standard	0.25	1	0.25 to 1	NA	3/7 (42.9)

Non-CP-CRE, non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae; CAZ-AVI, ceftazidime-avibactam; ATM-AVI, aztreonam-avibactam, NA, not available; ND, not determined.\(^a\)

CLSI susceptibility breakpoints were used: ceftazidime, ≤4 µg/mL; ceftazidime-avibactam,
≤8/4 μg/mL; aztreonam, ≤4 μg/mL; meropenem, ≤1μg/mL; 2019 EUCAST susceptibility breakpoints were used for colistin and tigecycline: colistin, ≤2 μg/mL; tigecycline, ≤0.5 μg/mL.