Dysarthria is a speech disorder caused by muscle weakness due to brain damage. Hyperkinetic Dysarthria is usually caused due to pathologies and/or lesion in the Basal Ganglia, the related portion of the Extrapyramidal System, or sometimes the Cerebellar control unit. Spasmodic Torticollis is a condition in which tonic or clonic spasm in the Sternocleidomastoid and Trapezius muscles causes the head to be deviated to the right or left and has also been reported to disrupt speech production. Spasmodic Torticollis is a part of unknown etiology of Hyperkinetic Dysarthria.

Introduction

Spasmodic Torticollis is a condition in which tonic or clonic spasm in the Sternocleidomastoid and Trapezius muscles, cause the head to be deviated to the right or left and has also been reported to disrupt speech production. Spasmodic Torticollis is a part of unknown etiology of Hyperkinetic Dysarthria.

Case Report

We report a case of 30 years old male diagnosed as Hyperkinetic Dysarthria who was treated with speech therapy and without Botulinum toxin. Post therapy status was recorded after 12 sessions (frequency twice a week) and it shows improvement in speech characteristics.

Discussion

Management of the patients with Hyperkinetic Dysarthria with Spasmodic Torticollis is a long term and often a lifelong process. Speech therapy is offered at intervals in order to maintain communicative competence. Reported studies suggest the use of Botulinum toxin, but in the present study treatment efficacy was proven without the use of Botulinum toxin.

Keywords

Dysarthria, Hyperkinetic; Torticollis, Spasmodic; Speech Therapy

Case Report

We report a case of 30 years old male patient with paresis of left hand and presented to us with symptoms of getting stuck during conversation and having effortful speech. Previous medical report revealed to have variable diagnoses such as Focal Dystonia, Spasmodic Dysphonia and Orofacial Dyskinesia. He reported with a history of Hepatitis and Seizures at the age of 9 yrs. He took various medications for recovery from Dyskinesia but it was not benefitted. We followed an assessment protocol for the subject as given by American Speech Language Hearing Association. Assessment involves the use of both formal and informal tests. Pre-therapy assessment involves non-speech assessment, speech production assessment and other assessments include language, cognitive-communication and dysphagia assessment. (Table I)

As the management, speech therapy was provided to establish intelligible communication skills in all the communicative situations. Specific targets were selected as the goal for treatment to improve respiratory support, articulation, oral resonance, prosodic features, alternate

Corresponding author:

Dr Shruti Kabra

email: shruti.kabra1994@gmail.com
Case Report

motion rate, sequential motion rates, and vocal function and to reduce rate of speech.11 (Table II)

Treatment method used while treating the patient was devoid of Botulinum Toxin-A (BOTOX). Post therapy status was recorded after 12 sessions (frequency twice a week) and it shows improvement in speech characteristics. (Table III)

Discussion

The aim of the therapy given in this case study was to achieve “compensated intelligible speech” rather than “normal speech” and through speech therapy this aim was achieved successfully. Although, pharmacological therapy with Botulinum toxin is used more commonly,13

Table I: Pre-therapy assessment of the case
1. Non speech assessments:
a. Oral peripheral mechanism (OPM) examination showed normal appearance of all the articulators except for tongue which is short. Functions of articulators were assessed and it revealed restricted movement of soft palate. Gag reflex was found to be hypoactive.
b. Maximum phonation duration (MPT) was found to be 15 seconds with the average of 3 trials.
c. Alternate Motion Rate (AMR) and Sequential Motion Rate (SMR) were found to be affected.
d. Observation of facial and neck muscle tone:
i. At rest: Hypertonia
ii. During non-speech activities: Hypertonia
e. Cranial nerve examination (CN V, VII, IX, X, XI, XII) — shows VII, IX, X, XII are affected.
2. Speech Production Assessment:
a. Articulation assessment was done using Bengali Articulation Test5 and findings revealed devoicing of Stop sounds.
b. 7-point Intelligibility rating scale6 was used and client’s speech was rated as 3, which indicates that the speech could be understood with concentration and effort especially by sympathetic listener (where 0 is denoted as normal and 6 as unintelligible).
c. Through informal assessment prosodic features of the client was evaluated and it was found to be affected.
d. Frenchay Dysarthria Assessment7 revealed all the domains were affected with varying degree except for Reflex (figure 1).
e. Acoustic analysis involved both perceptual and instrumental measurements. Perceptual assessments was done using GRBAS8 scale which revealed Grade 1, Roughness 2, Breathiness 0, Asthenic 0, and Strain 1. Instrumental assessment of voice analysis was done using Dr. Speech software by Tiger electronics version 4.0 and Nasometer-II version 2.6 and findings revealed hoarse voice and Hypernasal voice respectively.
3. Other assessments include Language, Cognitive-Communication and Dysphagia assessment.
a. Language assessment was done using Aphasia screening and language was found to be intact.
b. Cognitive-Communication assessment was done using Mini Mental State Examination (MMSE)9 and cognition was found to be intact with a score of 30.
c. Dysphagia assessment was done using Mann Assessment of swallowing ability (MASA)10 and it revealed no difficulty in swallowing with a score of 187.
d. Differential Diagnosis was done and the Final diagnosis for the case was Hyperkinetic Dysarthria.
Table II: Therapy plan illustrating the goals and activities

GOALS	ACTIVITIES
To improve respiratory support	Client was instructed to take a breath deeply before initiation of speech and exhale slowly while onset of speaking.
Rehabilitate and improve vocal function	Techniques: - Relaxation:

 · Relax the shoulders and using a mirror for visual feedback.

 · Discrimination between tensed and relaxed muscles.

To improve Reduced loudness (Change of loudness technique):

 · Client was instructed to raise his shoulders, inhale and phonate a high pitch “humm”. And then was instructed to lower the shoulders and exhale and produce “humm” sound.

 · Client was made to produce inhalation phonation and exhalation phonation.

To facilitate oral resonance and improve articulation | Client was instructed to speak in an increased loudness with mouth and jaw- open |
To elicit gag reflex	Palpation of the soft palate was administered as a therapeutic management.
To improve prosodic features	Stress and emphasis were used to convey different meanings and at a reduced rate of speech by increasing the pauses between words.
To improve alternate motion rate (AMR)	The client will be asked to take a breath and repeat “Puh-Puh-Puh ” as fast and as steadily as possible for 3 to 5 sec s2. This will be followed by similar repetitions of “Tuh-Tuh-Tuh----” and “Kuh-Kuh-Kuh-----”. These AMR tasks permit judgments of rate, rhythm, precision and range of motion and rapid movements of the lips, jaw and tongue.
To improve sequential motion rate (SMR)	The client will be instructed to take a breath and produce “Puh-Tuh-Kuh” repeatedly for 3 to 5 seconds2.
To reduce the rate of speech,	Client was counseled to speak at a slower rate, and Hand tapping12 was also demonstrated to the client as a self-monitoring skill for the same.
much research is still needed to establish the findings of this case study.

The treatment for Hyperkinetic Dysarthria with Spasmodic Torticollis is basically based on the Client-Oriented approach. Here in this case report, compensatory speaker strategies were used to improve speech intelligibility and it was noted that rate reduction resulted in improvement in the speech intelligibility. Another study also reported similar findings that reducing the speech rate resulted in improved speech intelligibility. Also enhancement in the voice quality results in improvement of speech intelligibility as seen in the present case. Although some people with Hyperkinetic Dysarthria inadvertently discover their own tricks, which they use to inhibit certain movements and facilitate speech and these may be further explored with the speech pathologist to develop communication.

Basically the client’s presenting Hyperkinetic Dysarthria with Spasmodic Torticollis (Laterocollis) might not be fully cured with speech therapy and if speech impairment prevails in further Dysarthria assessment, then BOTOX or Botulinum Toxin-A injection might be required as advised by the Neurologist. In the present case, the patient was not willing to go for BOTOX treatment. Thus it might be suggested that speech therapy might improve symptoms of these clients.

Table III: Showing the post therapy improvement

DOMAINS	PRE THERAPY	POST THERAPY					
Acoustic analysis (instrumental)							
Nasometer II (Normative values for Bengali speakers)							
Zoo passage: 11.25±5.63							
Nasal passage: 59.25±7.96							
PB passage: 31.47±6.65							
Hoarse voice (as measured using Dr. Speech software). Hypernasality was found (as measured using Nasometer-II)		Normal voice (as measured using Dr. Speech software) and Hypernasality was reduced (as measured using Nasometer-II).					
Passage	Mean %	Min %	Max %	Passage	Mean %	Min %	Max %
ORAL	22	4	98	ORAL	20	4	96
NASAL	80	16	98	NASAL	62	11	97
PB	87	45	99	PB	38	7	96
Acoustic analysis (Perceptual)							
GRBAS scale showed G1R2B0A0S1		GRBAS scale showed G1R0B0S1					
FDA							
Revealed all the domains were affected with varying degree except for Reflex	Showed improvements in all the domains as illustrated in figure 2						
Gag reflex							
Absent		Present					
MPT (average of 3 trials)							
18 seconds		22 seconds					
AMR							
/pa/- 20 times in 7 seconds	/pa/- 20 times in 5 seconds						
/ta/- 20 times in 9 seconds	/ta/- 20 times in 6 seconds						
/ka/- 20 times in 10 seconds	/ka/- 20 times in 7 seconds						
/pataka/- 20 times in 14 seconds	/pataka/- 20 times in 9 seconds						
Cranial nerve examination (CN V , VII, IX, X, XI, XII)	Shows CN VII, IX, X, XII are affected	Shows CN XII is affected					
Speech Intelligibility (measured using 7-point intelligibility rating scale where ‘0’ indicates normal and ‘6’ indicates unintelligible)	Client’s speech was rated as 3, which indicates that the speech could be understood with concentration and effort especially by sympathetic listener.	Speech intelligibility was also improved to achieve point 1 rating in which indicates “speech could be understood without difficulty, however still feel that speech is not normal”					
Rate of speech	Cannot be measured due to unintelligible speech	140 words/min					
Bangla Articulation test	Devoicing of speech sounds: /b/, /g/, /gh/.	Correct production of all speech sounds					
thereby reducing the dependency on medications.

References

1. Dysarthria [Internet]. Asha.org. 2019 [cited 30 August 2019]. Available from: https://www.asha.org/public/speech/disorders/dysarthria/
2. Duffy, JR. Motor Speech Disorders: Substrates, Differential diagnosis and Management. 3rd ed. United States: Elsevier Mosby; 2013
3. Murdoch B. Acquired Speech and Language Disorders. 2nd ed. New York, NY: Springer; 2013
4. Botox injections - Care at Mayo Clinic - Mayo Clinic [Internet]. Mayoclinic.org. 2019 [cited 1 June 2019]. Available from https://www.mayoclinic.org/tests-procedures/botox/care-at-mayo-clinic/pec-20384660
5. Dysarthria in Adults: Assessment [Internet]. Asha.org. 2019 [cited 1 June 2019]. Available from: https://www.asha.org/PRPSpecificTopic.aspx?folderid=8589943481§ion=Assessment
6. Home | Ali Yavar Jung National Institute of Speech and Hearing Disabilities (Divyangjan), Mumbai. [Internet]. Ayjnih.nic.in. 2019 [cited 1 June 2019]. Available from: http://www.ayjnih.nic.in
7. Enderby P. Frenchay Dysarthria Assessment. International Journal of Language & Communication Disorders. 1980; 15(3):165-73
8. Hirano, M. Clinical examination of the voice. New York, NY: Springer-Verlag; 1981
9. Kabir ZN, Hertlit A. The Bangla adaptation of Mini-Mental State Examination (BAMSE): an instrument to assess cognitive function in illiterate and literate individuals. Int J Geriatr Psychiatry. 2000;15(5):441-50. doi:10.1002/(sici)1099-1166(200005)15:5<441::aid-gps142>3.0.co;2-o
10. Mann G. MASA : the Mann assessment of swallowing ability. Australia ; Clifton Park, NY : Singular/Thomson Learning; 2002
11. Shipley, KG, McAfee, JG. Assessment in speech-language pathology: a resource manual. (2nd ed.). San Diego: Singular publishing group; 1998
12. Hegde M. Pocket guide to treatment in speech language pathology. San Diego: Singular Publ. Group; 1990
13. Spasmodic Torticollis | American Association of Neuromuscular & Electrodiagnostic Medicine [Internet]. Aanem.org. 2019 [cited 1 June 2019]. Available from: https://www.aanem.org/Patients/Muscle-and-Nerve-Disorders/Spasmodic-Torticollis
14. Nishio M, Tanaka Y, Sakabibara C, & Abe N. (2011). Effectiveness of speech rate conversion software for patients with dysarthria. Journal of Communications Research 2011; 2(1):1-12
15. Will L, Ramig LO, Spielman JL. Application of the Lee Silverman Voice Treatment (LSVT) to Individuals with multiple sclerosis, ataxic dysarthria, and stroke. In Seventh International Conference on Spoken Language Processing 2002
16. Fabbro F, Asher R. Concise encyclopedia of language pathology. New York: Elsevier; 1999.