Hematological parameters and ACS

Gökhan Yılmaz1, Özkan Erarslan1, Şeref Emre Ateş1, Bahadır Çağlar1, Ufuk Öner1, Süha Serin4, Oğuzhan Bol1, Ziya Şimşek5, Mustafa Erkan1, Umut Şaşmaz1, Murat Çelik1
1Department of Emergency Medicine, Kayseri City Hospital, Kayseri
2Department of Emergency Medicine, Cizre State Hospital, Şırnak
3Department of Emergency Medicine, Mersin City Hospital, Mersin
4Department of Emergency Medicine, Balıkesir University, Balıkesir
5Department of Cardiology, Kayseri City Hospital, Kayseri, Turkey

Retrospective evaluation of hematological parameters for the differentiation between non-st elevation myocardial infarction and unstable angina

Abstract
Aim: In this study, we aimed to investigate the utility of hematological parameters associated with acute coronary syndrome (ACS) in the differentiation of non-ST elevation myocardial infarction (NSTEMI) from unstable angina (UA).

Material and Methods: The retrospective study included patients aged over 18 years who presented to the emergency department with a prediagnosis of ACS and were diagnosed with NSTEMI and UA between January 1, 2014 and February 28, 2018. Sociodemographic and clinical characteristics, including age, gender, and white blood cell count (WBC), platelet count (PLT), mean platelet volume (MPV), red cell distribution width (RDW), and neutrophil-to-lymphocyte ratio (NLR) were recorded for each patient.

Results: The study included a total of 1005 patients (749 NSTEMI and 256 UA). In multivariate logistic regression analysis, the mean WBC level was 1.375 (1.258-1.503) times and the mean NLR was 3.631 (range, 2.864-4.602) times higher in the NSTEMI group compared to the UA group (p<0.001). In the ROC analysis, the cutoff value of NLR for the differentiation of NSTEMI from UA was 2.237, with a sensitivity of 84.1% and a specificity of 81.6%.

Discussion: WBC and NLR values can be used as inflammatory markers in the differentiation of NSTEMI from UA.

Keywords
Hematological parameters; Unstable angina; NSTEMI; Neutrophil-to-lymphocyte ratio

DOI: 10.4328/ACAM.20617 Received: 2021-04-01 Accepted: 2021-07-14 Published Online: 2021-08-01 Printed: 2021-09-15 Ann Clin Anal Med 2021;12(Suppl 4): S410-413

Corresponding Author: Özkan Erarslan, Cizre State Hospital, Department of Emergency Medicine, Şırnak, Turkey.
E-mail: dr.ozkanepraslan@gmail.com P: +90 555 397 49 64
Corresponding Author ORCID ID: https://orcid.org/0000-0002-4606-3467
Introduction
The clinical spectrum of acute coronary syndrome (ACS) is classified into ST-elevation myocardial infarction (STEMI) and non-ST elevation ACS (NSTEMI) based on electrocardiography (ECG) findings. The NSTEMI group is further divided into non-ST elevation myocardial infarction (NSTEMI) and unstable angina (UA) [1]. A pathological correlate for ACS at the myocardial level is cardiomyocyte necrosis in patients with NSTEMI and myocardial ischemia without cell damage in patients with UA [2]. Due to the differences in their pathophysiological processes and treatment strategies, the differentiation of these two clinical conditions in the early period in the emergency department is of paramount importance.

Diagnosis, treatment, and risk management of patients with suspected NSTEMI-ACS often includes clinical evaluation, 12-lead ECG, and biomarkers. Moreover, measurement of cardiac troponin, the most important biomarker of cardiomyocyte damage, is mandatory, since troponin levels are often positive in NSTEMI and are often negative in UA [3-5]. Additionally, troponin is the most sensitive and tissue-specific cardiac marker and is also considered the golden-standard biochemical tool for ACS risk stratification. Nonetheless, troponin positivity may not be detected in approximately 40-60% of patients with ACS [6]. There have been recent studies investigating the inflammatory mechanism in the ACS process and these studies have shown the efficacy of numerous hematological parameters in the diagnosis of ACS, including white blood cell count (WBC), platelet count (PLT), mean platelet volume (MPV), red cell distribution width (RDW), and neutrophil-to-lymphocyte ratio (NLR) [7-9]. However, to our knowledge, there have been no large-scale studies investigating the utility of hematological parameters in the differential diagnosis of NSTEMI and UA. The aim of this study was to investigate the utility of hematological parameters, along with cardiac troponin measured at the time of admission to the emergency department in the differential diagnosis of NSTEMI and UA.

Material and Methods
Study design and setting
Ethics committee approval was obtained before starting the study (Erciyes University Ethics Committee approval date: 20.06.2018 and the Decision Number: 2018/325). The study was conducted in an emergency department, which is visited by approximately 300,000 patients a year. The retrospective study included patients aged over 18 years who presented to the emergency department with a prediagnosis of ACS and were hospitalized between January 1, 2014, and February 28, 2018. The patients included in the study were selected from the hospital data registry system, taking into account the relevant ICD codes (chest pain R07.4, unstable angina pectoris I20.1, acute subendocardial myocardial infarction I21.4). The NSTEMI group was determined as the patients with non-ST elevation, with troponin positivity and having lesion, detected in coronary angiography. The unstable angina group, on the other hand, was composed of patients with clinical symptoms of unstable angina, with the negativity of troponin, and lesions detected in coronary angiography.

Sociodemographic and clinical characteristics including age, gender, and WBC, NLR, RDW, MPV, and PLT levels were recorded for each patient.

Inclusion and exclusion criteria
All male and female patients over the age of 18 who met the diagnostic criteria for UA and NSTEMI were included in the study. Patients age under the age of 18 and those with a diagnosis of STEMI, patients with missing data, patients with a history of hematological disease (anemia, thrombocytopenia, bicytopenia, pancytopenia, immune thrombocytopenic purpura, thrombotic thrombocytopenic purpura, leukemia, lymphoma),and patients with evidence of infection (those who were started antibiotic treatment during hospitalization due to infection, such as pneumonia, urinary tract, etc., or who were asked for an infectious diseases consultation during hospitalization) were excluded from the study (Figure 1).

Statistical analysis
Data were analyzed using SPSS for Windows version 25.0 (Armonk, NY: IBM Corp.). Normal distribution of continuous variables was assessed using the Lilliefors-corrected Kolmogorov-Smirnov test. Continuous variables (age, WBC, NLR, RDW, MPV, and PLT) were compared between the two groups (NSTEMI and UA) using the Mann-Whitney U Test with Monte Carlo Simulation. Categorical variables (treatment method and gender) were compared between the two groups using Pearson's Chi-Squared test, followed by Fisher's exact test for gender and Monte Carlo simulation for treatment method. Subsequently, column proportions were compared and expressed according to the Benjamini-Hochberg adjusted-p-value. Multivariate Logistic Regression (method = enter) was used to determine the cause-effect relationship between the diagnosis (NSTEMI and UA) and continuous variables (age, WBC, NLR, RDW, MPV, and PLT) and categorical variables (treatment method). Continuous variables were expressed as medians (minimum/maximum), and categorical variables were expressed as frequencies (n). A p-value < 0.05 was considered significant.

Results
The study included 1005 patients (749 NSTEMI and 256 UA). Table 1 presents the demographic data of the patients. The mean WBC level in all patients was 9.5 (range, 4.0-27.6) x 10^3/μL, mean NLR was 2.9 (range, 0.5-42.4), mean RDW was 42.1 (range, 31.8-69.2) %, mean MPV was 10.2 (range, 7.7-14.0) fL, and mean PLT was 240 (range, 54-736) x 10^3/μL. A significant difference was found between the two groups with regard to WBC, PLT, RDW, and NLR values (p < 0.05), whereas no significant difference was found with regard to MPV values (p = 0.123) (Table 1).

The mean WBC level was 3.175 (range, 1.258-5.303) times and the mean NLR was 3.631 (range, 2.864-4.602) times higher in the NSTEMI group compared to the UA group (Figure 2). The multivariate logistic regression model indicated that both NLR and WBC predicted NSTEMI and UA with a sensitivity of 92.8% and 66.8%, respectively, and also had an overall sensitivity of 86.2% (model, p = 0.001), which suggests that both NLR and WBC were significant independent predictors of NSTEMI (Table 2).
Discussion

Troponin is the most important biomarker in patients admitted to the emergency department with a prediagnosis of ACS[10]. Our findings indicated that hematological parameters could be beneficial when used together with the troponin value in the differential diagnosis of NSTE-ACS in the emergency department. To our knowledge, there have been no studies evaluating the utility of hematological parameters in the differential diagnosis of NSTE-ACS.

Studies have shown that inflammation plays a key role in the pathogenesis and progression of atherosclerosis by participating in many processes such as endothelial damage and plaque formation[11,12]. In the literature, proinflammatory functional responses of neutrophils have been shown to be associated with cardiovascular risk factors in atherosclerosis, and the role of neutrophils has been shown in both acute and chronic vascular damage[13,14]. Lymphocytes constitute a heterogeneous subgroup of WBC, along with pro-atherogenic and pro-inflammatory cells, and also may influence immune regulatory pathways[15]. NLR has recently emerged as a novel potential biomarker in the detection of individuals at risk for new cardiovascular events. A previous review indicated that NLR is the best predictor of death and major adverse cardiovascular events in patients with ACS[16]. Another study reported that the NLR value, assessed on admission, is a strong and independent predictor of cardiovascular mortality in NSTEMI and UA patients[17]. Tahto et al. evaluated the inflammatory parameters of 50 acute myocardial infarction (AMI) and 50 UA patients and reported that the mean NLR value was significantly higher in the AMI group compared to the UA group (7.22 vs. 4.62) [18]. In our study, the mean NLR was 3.6 in the NSTEMI group as opposed to 1.7 in the UA group. Moreover, the mean WBC level was 1.375(1.258-1.503) times and the mean NLR was 3.631(range, 2.864-4.602) times higher in the NSTEMI group compared to the UA group. Accordingly, the higher levels of WBC and NLR

Table 1. Numerical data of patients and analysis of quantitative and categorical variables with respect to NSTEMI and UA diagnosis

	NSTEMI (n=749)	UA (n=256)	Total (N=1005)	p
Age	66 (18)	62 (15)	64 (18)	<0.001
Gender (Female)	244 (32.6)	75 (29.3)	319 (31.7)	0.353
WBC (10^3/uL)	10.435 (3.98)	7.86 (2.63)	9.545 (4.17)	<0.001
RDW (fL)	42.4 (5.2)	41.35 (4.66)	42.1 (5.2)	0.001
MPV (fL)	10.2 (1.3)	10.15 (1.3)	10.2 (1.2)	0.123
PLT (10^3/uL)	202 (92)	234 (70)	240 (87)	0.029
NLR	3.51 (3.37)	1.7 (0.75)	2.91 (2.75)	<0.001

Table 2. Multiple Logistic Regression Analysis Findings for Age, Treatment Type, WBC, NLR, RDW, PLT Variables with NSTEMI and UA Dependent Variables

	B	S.E.	p	ODDS Ratio	95% C.I. for ODDS Ratio	
Age	-0.0009	0.0085	0.954	1.000	0.983	1.016
WBC	-0.3174	0.0454	<0.001	1.375	1.258	1.503
NLR	-1.2854	0.1210	<0.001	3.631	2.864	4.602
RDW	-0.0439	0.0243	0.098	0.959	0.915	1.006
PLT	-0.0003	0.0015	0.859	1.000	0.997	1.003
Constant	7.4518	1.1893	<0.001			

Multiple Logistic Regression (Method = Enter), C.I.-Confidence interval, B.-regression coefficients, SE.-Standard error

Figure 1. Flowchart of the study

Figure 2. Comparison of PLT, WBC, RDW, NLR between diagnosis NSTEMI and UA

412 | Annals of Clinical and Analytical Medicine
in our NSTEMI group compared to the UA group support the literature findings. In addition to these findings, multivariate logistic regression analysis revealed that WBC and NLR were strong predictors in the differentiation between NSTEMI and UA.

Limitations
The fact that our study was retrospective and conducted as a review of the data recording system caused difficulties in the classification of patients and in determining the missing parts in the history. Again, it is possible that we have no idea about the way and duration of taking the hemogram panel, determining other factors that will cause variations in the parameters. Another problem is that the approach of the cardiologist in determining the treatment method is uncertain. Another limitation is that we cannot include patients with unstable angina who were discharged despite admitting to the emergency department and could not be detected.

Conclusion
Our study is the first step towards using hematological parameters in the differential diagnosis of NSTE-ACS. WBC and NLR can be safely used as independent markers in the differential diagnosis of NSTEMI and UA. Further multi-center and comprehensive studies are needed to substantiate our findings.

Scientific Responsibility Statement
The authors declare that they are responsible for the article’s scientific content including study design, data collection, analysis and interpretation, writing, some of the main line, or all of the preparation and scientific review of the content and approval of the final version of the article.

Animal and human rights statement
All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. No animal or human studies were carried out by the authors for this article.

Funding: None

Conflict of interest
None of the authors received any type of financial support that could be considered potential conflict of interest regarding the manuscript or its submission.

References
1. Buja P, Tarantini G. Acute Coronary Syndrome: Clinical Assessment. In: Cademartiri F, Casado G, Midiri M, editors. Clinical Applications of Cardiac CT. Milano: Springer; 2012.
2. Raffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. ESC Scientific Document Group. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016; 37(3):267-315. DOI: 10.1093/eurheartj/ehv320.
3. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. ESC Committee for Practice Guidelines (CPG). Third universal definition of myocardial infarction. Eur Heart J. 2012; 33(20):2551-67. DOI: 10.1093/eurheartj/ehs184.
4. Thygesen K, Mair J, Giannitsis E, Mueller C, Lindahl B, Blankenberg S, et al. Study Group on Biomarkers in Cardiology of ESC Working Group on Acute Cardiac Care. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J. 2012; 33(18):2252-7. DOI: 10.1093/eurheartj/ehs154.
5. Mueller C. Biomarkers and acute coronary syndromes: an update. Eur Heart J. 2014; 35(9):552-6. DOI: 10.1093/eurheartj/ehu530.
6. Dehghani MR, Taghipour-Sani L, Rezaei Y, Rostami R. Diagnostic importance of admission platelet volume indices in patients with acute chest pain suggesting acute coronary syndrome. Indian Heart J. 2014; 66(6):622-8. DOI: 10.1016/j.ijhj.2014.10.415.
7. Wang X, Xu XL, Li XM, Zhao R, Yang X, Cong HL. Diagnostic Value of Mean Platelet Volume Combined with Troponin I for Acute Coronary Syndrome. Am J Med Sci. 2016; 352(2):159-65. DOI: 10.1097/AMJ.0000000000001517.
8. Akgöz SK, Akkoşlu MK, Akgöz E, Yaya Ç, Şensoy B, Aydoğdu S. Red cell distribution width predicts totally occluded infarct-related artery in NSTEMI. Scand Cardiovasc J. 2016; 50(4):224-9. DOI: 10.3109/14017431.2016.1152398.
9. Karakas MS, Karucuk N, Tosun V, Altekin RE, Koş F, Özdek SC, et al. Red cell distribution width and neutrophil-to-lymphocyte ratio predict left ventricular dysfunction in acute anterior ST-segment elevation myocardial infarction. J Saudi Heart Assoc. 2016; 28(3):152-8. DOI: 10.1016/j.jsaha.2015.07.001.
10. Dastgir MD, Gray KM, Watts A, Diercks DB, Mummna BE. Troponin Limit of Detection Plus Cardiac Risk Stratification Scores to Rule Out Acute Myocardial Infarction and 30-Day Major Adverse Cardiac Events in ED Patients. Crit Pathw Cardiol. 2017; 16(4):142-6. DOI: 10.1097/HPC.0000000000000129.
11. Ates AH, Canpolat U, Yorgun H, Kaya EB, Sunman H, Demri E, et al. Total white blood cell count is associated with the presence, severity and extent of coronary atherosclerosis detected by dual-source multislice computed tomographic coronary angiography. Cardio J. 2011; 18(4):371-7.
12. Congiu T, Schembru L, Tozzi M, Guasti L, Maio RC, Cosentino M, et al. Scanning electron microscopy examination of endothelium morphology in human carotid plaques. Microsc. 2010; 41(5):532-6. DOI: 10.1093/micro/m10.1.006.
13. Marino F, Maresca AM, Castiglioni L, Cosentino M, Maio RC, Schembru L, et al. Simvastatin down-regulates the production of interleukin-8 by neutrophil leukocytes from dyslipidemic patients. BMC Cardiovasc Disord. 2014; 14:37. DOI: 10.1186/1471-2261-14-37.
14. Guasti L, Marino F, Cosentino M, Maio RC, Rasini E, Ferrari M, et al. Prolonged statin-associated reduction in neutrophil reactive oxygen species and angiotensin II type 1 receptor expression: 1-year follow-up. Eur Heart J. 2008; 29(9):1118-26. DOI: 10.1093/eurheartj/ehn138.
15. Gistered A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017; 13(6):368-80. DOI: 10.1038/nrneph.2017.51.
16. Dentali F, Nigro O, Squizzato A, Gianini M, Zuretti F, Grandi AM, et al. Impact of neutrophils to lymphocytes ratio on major clinical outcomes in patients with acute coronary syndromes: A systematic review and meta-analysis of the literature. Int J Cardiovasc. 2018; 266:31-7. DOI: 10.1016/j.ijcard.2018.02.116.
17. Gu M, Uyaret H, Ergelen M, Ugru M, Isik T, Ayhan E, et al. Predictive value of neutrophil to lymphocyte ratio in clinical outcomes of non-ST elevation myocardial infarction and unstable angina pectoris: a 3-year follow-up. Clin Appl Thromb Hemost. 2014; 20(4):378-84. DOI: 10.1177/1076029612465669.
18. Tahto E, Jadric R, Pajsikic L, Ristic U. Neutrophil-to-lymphocyte Ratio and Its Relation with Markers of Inflammation and Myocardial Necrosis in Patients with Acute Coronary Syndrome. Med Arch. 2017; 71(2):312-15. DOI: 10.5453/medarch.2017.71.312-315.

How to cite this article: Gökhan Yılmaz, Özkan Eraslan, Şerif Emre Atış, Bahadır Çağlar, Ufuk Öner, Süha Sorin, Olçuzhan Bol, Ziya Şimşek, Mustafa Erkan, Umut Şaşmaz, Murat Çelik. Retrospective evaluation of hematological parameters for the differentiation between non-st elevation myocardial infarction and unstable angina. Ann Clin Anal Med 2021;12(Suppl 4): S410-413.