テーマ解説

宇宙マイクロ波背景放射観測実験 POLARBEAR-2 のための
TES ボロメータアレイ読み出しの開発

服部 香里*

Synopsis: Transition edge sensors (TES) have achieved a low noise level and become an attractive tool for detecting photons and measuring the power of millimeter waves. While large TES arrays are awaited in many fields, multiplexing schemes limit the multiplexing factor and the number of detectors. In the case of frequency-domain multiplexing, extending the multiplexing factor requires an increase in the bandwidth of the SQUID electronics. To overcome this limitation, we use digital active nulling (DAN) on a digital frequency multiplexing platform. We present development of the large array’s readout for the POLARBEAR-2 cosmic microwave background (CMB) experiment. It aims to observe B-mode polarization generated by the gravitational lensing of CMB and inflationary gravitational waves, with high sensitivity. We will build a receiver that has 7,588 TES bolometers coupled to polarization-sensitive antennas. We present implementation of DAN and show that our system is able to bias a bolometer in its superconducting transition at approximately 3 MHz.

Keywords: transition edge sensor (TES), digital feedback, frequency-domain multiplexing, cosmic microwave background, POLARBEAR-2

1. はじめに

超伝導検出器 Transition Edge Sensor (TES) 1) は、超伝導転移温度付近での急激な温度変化を利用して、高感度で温度変化を測定できる検出器である。TES は低雑音であるために、高精度な測定が求められる分野にとっては、魅力的な検出器となっている。

TES には通常、捉えたい対象を熱化する吸収体を取り付けて動作させる。その物体が、放射線の吸収体であるなら、放射線検出器として使用できる 3)。放射線によって生成されたパルス信号のエネルギーを、高分解能で測定できる。その他に、アンテナと結合することもできる 34)。アンテナで捉えられた電磁波は、アンテナと結合した終端抵抗で熱に変換される。これを TES で捉えることによって、アンテナに入射したパワーがわかる。このように、TES によってパワーを測定する検出器を TES ボロメータと呼ぶ。我々は、宇宙マイクロ波背景放射（Cosmic Microwave Background, 以下 CMB と称す）観測に向けた TES ボロメータを開発している。本稿には以前、CMB 観測用超伝導検出器の開発に携わった服部が開発している TES の多チャンネル同時読み出しについて解説する。ここで紹介する TES は CMB 観測用に開発されているが、放射線検出用 TES の多チャンネル同時読み出しと原理は同一である。読み出し系のパラメータを変えれば、放射線検出器に応用可能である。この点についても後で述べる。

2. 宇宙マイクロ波背景放射観測実験に向けた TES ボロメータの開発

2.1 宇宙マイクロ波背景放射（CMB）

CMB は、全天の至るところからやってくるマイクロ波であり、宇宙年齢が 38 万年のときに生まれた。宇宙は時間とともに、温度が下がっていき、ある時期に電子と陽子が結合して水素原子が生成された。それまでは、電子や陽子はプラズマ状態にあり、光子は高い頻度でこれらの粒子
モード偏光は未発見だったが、もう一つは宇宙の大規模構造による重力レンズ効果による。発見された。さらに、インフレーション起源の BICEP2 合型も桁で小さいの帯域を狙って観測を行う。偏光と考えられる信号が BICEP2 で観測される。

黑体放射分布は、2.7 K なって、光子の波長が伸び、現在は透明になった。これを「宇宙の晴れ上がり」と呼ぶ。こで、光子は散乱されることなく、宇宙は光子に対し透明になった。これは、水素原子になったことである。

TES を実現するために、三段ソープション冷凍機（K 冷）を用いている。ラックス 3,200 から、信号読み出し線の本数を増やせないので、これらの二つの用途に用いられている TES 多チャンネル同時読み出しの共通点や違いにも触れる。現在、この手法では、一本の信号線で 10 個程度の TES 同時読み出しが可能である。我々はこの数を増やす研究を行っている。

3. TES 多チャンネル同時読み出し

3.1 TES の動作原理

TES は Fig. 1 のように、超伝導と常伝導の中間点にバイアスとして動作させる。この領域ではわずかな温度変化で抵抗が変化する。したがって、高感度の温度計としての動作が現実である。一方、非常に精密な温度制御が必要である。これは電流の温度制御では不可能であるので、あえて TES を熱浴から離す。そして、Fig. 2 のように TES と熱浴を弱い熱リンクで結ぶ。熱浴の温度は超伝導転移温度よりも十分低く設定する。一方、TES に電流を流しジュール熱を発生させることで、TES を超伝導転移温度に保つ。

TES には一度電圧をかける（電圧バイアス）。電圧バイアスの利点は、安定動作が実現できる点である。もし外部からの与えられるパワーが増加して TES が温度上昇した場合、抵抗が増加し電流が減少する。したがって、ジュール熱を減少し、負のフィードバックがある。一方、一定電流を流す場合（電流バイアス）、温度上昇すると抵抗が増加する。電流は変化しないので、まずは温度が上昇する、という正のフィードバックが働く。これを防ぐために、TES に一定の電圧をかけることが重要となる。ここまでは、TES の用途に関わらず共通である。

3.2 アンテナ結合型 TES ポロメータ

TES 観測には、TES とアンテナを結合したものを用いている。アンテナで受け取ったパワー P_{antenna} は TES に入力される。TES が安定動作しているとき、アンテナからのパワー P_{antenna} とジュール熱 P_{joule} の和は、熱浴に流れる熱流 P_{bath} と釣り合う。測定したい値はアンテナからのパワー P_{antenna} であるが、測定可能な値はジュール熱 P_{joule} である。したがって、これらの値の和 P_{bath} が一定であれば

前後のとおり、2013 年から 2014 年にかけて、二種類の B モード偏光の検出が報告された。今後は、B モード偏光の観測精度を上げることでこれらの結果を検証していく。さらに、重力レンズ効果の精密測定と、それによるニュートリノ総質量の測定、そしてインフレーションを明らかにしている。そのため我々は、CMB 偏光の感度向上を目指して、アップグレード実験 POLARBEAR-2 を計画している。POLARBEAR-2 実験は、0.3 K ステージに TES ポロメータアイレイ 7,588 個を搭載して観測する。熱流の問題から、信号読み出し線の本数を増やさないので、30 個程度の TES ポロメータを一つの SQUID で読み出す予定である。

本稿ではまず、TES を多チャンネル同時読み出しするために衝突させている周波数分割多重化について紹介する。TES は、CMB 観測や X 線計測に広く使われており、これらの二つの用途に用いられている TES 多チャンネル同時読み出しの共通点や違いに触れる。現在、この手法では、一本の信号線で 10 個程度の TES 同時読み出しが可能である。我々はこの数を増やす研究を行っている。
低温工学 49巻 8号 2014年 419

Fig. 2 Schematic of a TES bolometer. A voltage bias is applied across the TES to generate electrical power and have the TES in transition. The sum of the electrical power and absorbed power from radiation is equal to power flowing through a weak thermal link with conductance G_0.

P_{antenna} がわかる。

P_{bath} は、TES と熱浴を結ぶ熱リンクの両端の温度で決まる。観測中、アンテナからのパワーに応じて、TES の抵抗が変化する。超伝導転移端では、温度に対して抵抗の変化が急激である。したがって、TES の温度変化は非常に小さい。熱リンクの両端の温度は一定なので、P_{bath} も一定となる。Fig. 1 の例だと、$R/R_n > 0.85$ では、この仮定が成り立たない。したがって、これよりも抵抗値が小さい点にチューニングする必要がある。

X 線などの放射線を検出する場合は、放射線吸収体を TES と結合させる。X 線吸収された放射線は熱化され、TES の温度を上昇させる。発生した熱は、熱リンクによって熱浴へ流れ、元の温度に戻る。したがって、信号はパルス状になる。一方、アンテナ結合型 TES ボロメータの場合、観測中に常にアンテナは空からの信号を受けていている。したがって TES から得られる信号は、パルス状ではなく、大きな DC 成分に揺らぎが載ったような状態となっている。これらの検出器は時定数が異なるので、読み出し系のパラメータを注意深く選ばなければならない。

3.3 周波数分割多重化と時分割多重化読み出し

TES の多重チャンネル同時読み出しの主な手法として、時分割多重化 (Time-domain multiplexing) と周波数分割多重化 (Frequency-domain multiplexing) 読み出しが挙げられる。時分割多重化は TES より早い時定数で次々にチャンネルを切り替えて複数の検出器を一本の信号線で読み出す。それぞれの TES にかける電圧バイアスは直流である。一方、本稿で解説する周波数分割多重化読み出しでは、電圧バイアスに交流を用いる。TES の信号は、この周波数で変調される。それぞれの TES に異なる変調周波数を割り当てることで、それぞれの TES の信号を区別することができる。

時分割読み出しのほうが歴史的に古く、技術的に成熟している。応用例としては、James Clerk Maxwell 望遠鏡に搭載されているサブミリ波カメラ SCUBA-2 と CMB 地上観測実験 BICEP, X 線カロリメータ などである。利点は、TES にかけるバイアスが直流でよいことである。一方、一本の信号線で読み出す検出器の数 N に対して、ノイズが \sqrt{N} で減衰されるのが欠点である。また、T を増やすと、より高速のチャンネル切り替えが必要になる。切り替えに電力を要するため、使用できる電力が限られている衛星実験には向かない。

周波数分割多重化読み出しは、時分割読み出しよりも後から開発が始まった。しかし、技術的に成熟しつつあり、複数のアンテナ結合型 TES ボロメータを安定して読み出すことに成功している。CMB 地上観測実験は、POLARBEAR-1 実験を始め、SPTpol, EBEX 実験で用いられている。課題は、電圧バイアスに高周波を用いたときの性能劣化である。また、X 線カロリメータの場合、交流バイアスしたときのエネルギー分解能が、直流バイアスよりも劣る問題がある。一方、一本の信号線で読み出す TES の数を増やしても、原理的にはノイズは増加しない。多ビクセルの TES アレイ実現のためには、同時読み出しが可能である。

本稿ではまず、従来の周波数分割読み出しについて POLARBEAR-1 実験で使用されているものを例に説明する。そして、従来の読み出しは、SQUID のアナログフィードバック回路の帯域 (< 1 MHz) で制限されていることについて述べる。帯域の制限で、同時読み出しで TES の数を 10 個程度に制限している。そして、POLARBEAR-2 実験に向けて、同時読み出し数を 30 に増やす取り組みを紹介する。
3.4 従来型の周波数分割多重化読み出し

Fig. 3 は、POLARBEAR-1 実験で実際に使われている周波数分割多重化読み出しである。以下、具体的にどのように TES を動作させ、信号を読み出していくかを見ていき。

TES に数μV 程度の一定電圧をかけるために、Fig. 3(a)のように、TES の抵抗 R_{bolo} (1 Ω 程度) より十分小さい抵抗 R_{bias} (0.03 Ω) を並列に配置する。Fig. 3(b)のように、それぞれの TES にインダクター L とコンデンサー C_n からなる LC フィルターを直列に接続する。LC フィルターの共振周波数 f_n で一定振幅の電圧を与えたとき、選択的に n 番目の TES のみに電圧をかける。f_n が TES の応答速度より十分速いければ、実効的に一定電圧バイアスとなる。得られる信号は、TES の応答を周波数 f_n で変調したものである。それぞれの LC フィルターに異なる周波数を割り当てるこことによって、複数の TES の信号を区別できる。

POLARBEAR-1 の場合は 8 個の TES を、0.3 – 1 MHz の帯域で、Fig. 3(c) のように一本の信号線でまとめて読み出す。得られた信号は、Analog-to-Digital Converter (ADC) を用いてデジタルで処理される。なお、LC フィルターのインダクタンスと静電容量は TES の時定数で決定される。L と C の値を変更すれば、X 線カロリメータにも応用可能である。

3.5 SQUID

TES は低インピーダンスであるため、TES に直列に接続される信号増幅器の入力インピーダンスはさらに低く抑えられる必要がある。なぜなら、3.1 節で述べたように、電圧バイアスは安定動作に必須であるが、これが実現できなくなるからである。観測中、TES の抵抗は時変化するので、寄生インピーダンスとの比が変化し、一定電圧バイアスを実現できないのである。

SQUID は低温で動作する低入力インピーダンスの増幅器であるため、TES 読み出しに広く用いられている。Fig. 3(e)のように SQUID は信号入力部分がコイルになっている。入力電流は磁束に変換され、SQUID で電圧に変換される。入力コイルのインダクタンス L_{sq} は 150 nH 程度である。従来の読み出しでは、1 MHz まで使用するが、このときインピーダンスは 1 Ω 程度となってしまい、TES の抵抗と同じ程度になってしまう。これでは当然、電圧バイアスを実現できない。そこで、入力インピーダンスを実効的に減らし、また SQUID のバイアス点を一定に保つために、shunt-feedback flux-locked-loop 回路 24)を用いる。これによって、SQUID にオペアンプを接続し、フィードバック抵抗を介して、SQUID の入力コイルにフィードバックをかける回路である。これによって、SQUID の入力コイルに流れる電流を抑え、実効的な入力インピーダンスを抑えることができる。

SQUID のフィードバック回路の安定性は、配線や配線によって生じる位相遅れに大きく依存する。配線長が長く、位置遅れが増加するために、いかに短くするかが重要である。POLARBEAR-1 実験では、TekData 社 27)の Analog-to-Digital Converter (ADC) を用いてデジタルで処理される。なお、LC フィルターのインダクタンスと静電容量は TES の時定数で決定される。L と C の値を変更すれば、X 線カロリメータにも応用可能である。

3.5 SQUID

TES は低インピーダンスであるため、TES に直列に接続される信号増幅器の入力インピーダンスはさらに低く抑えられる必要がある。なぜなら、3.1 節で述べたように、電圧バイアスは安定動作に必須であるが、これが実現できなくなるからである。観測中、TES の抵抗は時変化するので、寄生インピーダンスとの比が変化し、一定電圧バイアスを実現できないのである。

SQUID は低温で動作する低入力インピーダンスの増幅器であるため、TES 読み出しに広く用いられている。Fig. 3(e)のように SQUID は信号入力部分がコイルになっている。入力電流は磁束に変換され、SQUID で電圧に変換される。入力コイルのインダクタンス L_{sq} は 150 nH 程度である。従来の読み出しでは、1 MHz まで使用するが、このときインピーダンスは 1 Ω 程度となってしまい、TES の抵抗と同じ程度になってしまう。これでは当然、電圧バイアスを実現できない。そこで、入力インピーダンスを実効的に減らし、また SQUID のバイアス点を一定に保つために、shunt-feedback flux-locked-loop 回路 24)を用いる。これによって、SQUID にオペアンプを接続し、フィードバック抵抗を介して、SQUID の入力コイルにフィードバックをかける回路である。これによって、SQUID の入力コイルに流れる電流を抑え、実効的な入力インピーダンスを抑えることができる。
Nomex 生地の中に 18 対のマンガニンのより線（100 μm）が編み込まれたケーブルで 300 K のオペアンプと 4 K の SQUID を接続している。ケーブル長を片道数十 cm 程度に抑えており、1 MHz の帯域を実現している。

SQUID の動作領域は狭いため、入力コイルに流せる電流量は限られる。上述の shunt-feedback によって、電流は大幅に抑制される。さらに Fig. 3(d) のように、TES ポロメーターからの信号のオフセットを打ち消す信号（null信号）を入力し、SQUID の動作領域を確保する。CMB 偏光観測実験では、空からやってくる信号の揺らぎを測定するので、オフセットを差し引いても問題ない。

3.6 SQUID 信号の読み出し・復調

SQUID からの信号は、室温に設置された Analog-to-digital converter (ADC) でデジタル信号に変換される。それぞれの TES の信号は変換されているため、復調する必要がある。これを行うために、取り出したい周波数 \(f_i \) の sin 波を掛け算し、ローパスフィルターを通す。この操作を式で表すと、

\[
\sum_i A_i \sin(\omega_i t + \phi_i) \sin \omega_i t
\]

となり。ここで、\(A_i \sin(\omega_i t + \phi) \) は、\(i \) 番目のチャンネルの変調周波数 \(f_i \) における電流である。同様に、TES の信号に \(\cos \omega_i t \) をかけば、振幅と位相が求められる。

3.7 TES 間の電気的なクロストーク

次に、各 TES に割り当てる周波数について考える。周波数の間隔の下限値は、TES 間の電気的なクロストーク（信号の漏れ）で決まる。CMB 観測実験の場合、光学系によるピクセル間のクロストークは 1%程度である。電気的なクロストークはそれよりも小さく抑える必要がある。以下、周波数の間隔とクロストークの関係についてみていこう。

\(i \) 番目の TES の周波数 \(\omega_i \) を考える。このとき、周波数空間で隣り合う \(i-1, i+1 \) 番目の TES にも無視できない量の電流が流れる。これは、\(i-1, i+1 \) 番目の LC フィルターのインピーダンスが周波数 \(\omega \) で有限値を持つからである。\(i-1, i+1 \) 番目の TES の抵抗値が変化すると、これらの TES を流れる電流も変化する。読み出す信号は、それぞれの TES に流れる電流の和であり、各 TES に流れる電流はわからない。これがクロストークとなる。したがって、\(i \) 番目以外の TES にできるだけ電流を流さないようにする。

\(i \) 番目の TES 周波数 \(\omega_i \) について、\(i, i-1, i+1 \) 番目の TES に流れる電流の変化量 \(\Delta I \) の比は、

\[
\frac{\Delta I_{i-1}(\omega)}{\Delta I_{i}(\omega)} = \left(\frac{R}{2\Delta \omega L} \right)^2
\]

なお、\(R \) は TES の抵抗、\(L \) は LC フィルターのインダクタンスである。
$$\Delta \omega = \omega_{i+1} - \omega_{i} = \omega_{i} - \omega_{i-1}$$

なる。なお、$$L$$ の値は、TES の時定数で決定される。アシテナ結合型 TES ボロメータ、X 線カロリメータでは時定数が異なるので、$$L$$ は異なる。POLARBEAR-1 では 16 μH を用いている。一本の信号線で読み出す TES の数を増やす場合、周波数間隔$$\Delta \omega$$ は狭められないから、結果として読み出しに用いる帯域を広げることがある。

3.8 既存の周波数分割多重化読み出しの問題点

3.4 節で述べたように、既存の SQUID flux-locked-loop 回路は 1 MHz 程度までしか帯域がない。加えて、(4) 式の制限により一度に読み出せる TES の数が 10 個程度に限られていた。POLARBEAR-1 では 8 個の同時読み出しを実現している。一方、アップグレード実験 POLARBEAR-2 では、熱流入やコストの面から、32 個同時読み出しを行う。しかがって、帯域を現在の 1 MHz から 2-3 MHz 程度にまで広げる必要がある。そのためには、(1) 新しい SQUID フィードバック回路、(2) 高周波に対応した LC フィルターの開発が必要である。これらの開発要素は、TES の用途にかかわらず、多ピクセルアレイ読み出しを行うには必須の項目である。なお、(1) に必要な室温系の読み出しシステムは主に McGill 大学を中心に開発されている。筆者らは、それを用いて高周波での TES ボロメータ動作試験を行った。また、高周波に対応した新しい LC フィルターの検討も進めていっている。

4. 高周波（1 > MHz）での TES 読み出し

4.1 デジタルフィードバックの導入

周波数分割多重化読み出しに用いることのできる周波数の上限は、Fig. 3 に示す SQUID のアナログフィードバックで決まっている。まず、これを取り払い、Fig. 4(a) のようにオープンループで SQUID を動作させる。これによって、1 MHz という帯域の制限がなくなる。この状態では、SQUID の入力コイルに TES からの信号が全て流れてしまい、SQUID のダイナミックレンジを圧迫する。そこで、なんらかの手法で、信号を打ち消す必要がある。この役割を null 信号に持たせる。従来の読み出しシステムでは、TES からの電流のオフセットを打ち消すために、null 信号線から一定電流を流していた。デジタルフィードバックを導入し、常に TES からの電流と逆位相の信号を生成して null 信号線に入力する。これによって、SQUID 入力コイルに流れる電流を打ち消せる。逆に、null 信号線の電流を読み出せば、TES に流れる電流がわかる。この手法を Digital Active Nulling (以下 DAN と称す) と呼ぶ。Fig. 4 は DAN を導入した TES 読み出しである。
伝導と超伝導の中間点にバイアスすることに成功した。

6. まとめと今後の展望

本研究では、従来の周波数分割多重化読み出しに、デジタルフィードバックを導入した。これによって、TES を 3 MHz で動作点にチューニングできることを示した。今後は、低い誘電体損失を持つコンデンサの開発を行い、寄生インピーダンスを削減し、TES の安定性を改善する。今回は少数の TES を同時読み出ししたが、今後は 30 個の TES ボロメータの同時読み出し試験を行っていく。

また、LC フィルターのパラメータを変更すれば、X 線検出器の読み出しとして応用可能である。TES 検出器は、優れたエネルギー分解能を達成している一方、アレイ化が課題となっている。一本の信号線で読み出せる TES の数を増やせば、より多くのピクセルを読み出すようになり、多素子化が進む。そうすれば、高エネルギー分解能だけでなく、高感度、広視野も実現でき、応用範囲は大きく広がると期待される。

本研究は、平成 22 年度～24 年度日本学術振興会頭脳循環を加速する若手研究者戦略的海外派遣プログラム「実験的宇宙論に関する国際的リーダーの育成」（主担当研究者：羽澄昌史）の補助を受けている。本稿は、カリフォルニア大学バークレー校 Adrian T. Lee 研究室に長期滞在し、共同研究を行った結果をまとめたものである。また、平成 21 年度～25 年度文部科学省科学研究費補助金新学術領域研究「背景放射で拓く宇宙創成の物理～インフレーションからダークエイジまで～」（領域代表：羽澄昌史）の支援を受けている。本研究は、POLARBEAR-2 実験のメンバーから多大なる支援をいただいている。この場を借りて、厚く御礼申し上げます。
A. Suzuki, et al.: “Multichroic dual-polarization bolometric focal plane for studies of the cosmic microwave background,” J. Low Temp. Phys. 167 (2012) 852 - 858
5) M. Hazumi: “Measurements of cosmic microwave background (CMB) radiation and very-low-temperature detectors,” TEION KOGAKU 46 (2011) 522-529 (in Japanese)

6) T. Tomaru, et al.: “The POLARBEAR-2 experiment,” Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE) (2012) 8452 (53)
7) D.J. Fixsen, et al.: “Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument,” Astrophys. J. 420 (1994) 445-449
8) C.L. Bennett, et al.: “Four-year COBE DMR cosmic microwave background observations: Maps and basic results,” Astrophys. J. 464 (1996) L1-L4
9) Z.D. Kermish, et al.: “The POLARBEAR experiment,” Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE) (2012) 8452 (48)
10) J.M. Kovac, et al.: “Detection of polarization in the cosmic microwave background using DASI,” Nature 420 (2002) 772-787
11) D. Hanson, S. Hoover, A. Crites, et al.: “Detection of B-mode polarization in the cosmic microwave background with data from the south pole telescope,” Phys. Rev. Lett. 111 (2013) 141301
12) POLARBEAR Collaboration: “Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background,” Phys. Rev. Lett. 112 (2014) 131302
13) POLARBEAR Collaboration: “Measurement of the cosmic microwave background polarization lensing power spectrum with the POLARBEAR experiment,” Phys. Rev. Lett. 113 (2014) 021301
14) POLARBEAR Collaboration: “A measurement of the cosmic microwave background b-mode polarization power spectrum at sub-degree scales with polarbear,” arXiv: 1403.2369 (2014)
15) BICEP2 Collaboration: “Detection of B-mode polarization at degree angular scales by BICEP2,” Phys. Rev. Lett. 112 (2014) 241101
16) K. Arnold, et al.: “The bolometric focal plane array of the Polarbear CMB experiment,” Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE) (2012) 8452 (49)
17) http://www.chassercyogenics.com/
18) http://www.cryomech.com/
19) J.A. Chevernak, K.D. Irwin, E.N. Grossman, J.M. Martinis, C.D. Reintsema and M.E. Huber: “Superconducting multiplexer for arrays of transition edge sensors,” Appl. Phys. Lett. 74 (1999) 4043-4035
20) J. Yoon, J. Clarke, J.M. Gildemeister, A.T. Lee, M.J. Myers, P.L. Richards and J.T. Skidmore: “Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors,” Appl. Phys. Lett. 78 (2001) 371-373
21) W.S. Holland et al.: “SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope,” Monthly Notices of the Royal Astronomical Society 430 (2013) 2513-2533
22) R.W. Ogburn IV, et al.: “The BICEP2 CMB polarization experiment,” Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE) (2010) 7741
23) W.B. Dorise, et al.: “Progress toward kilopixel arrays: 3.8 eV micrometer radiation in 8-channel SQUID multiplexer,” Nuclear Instruments and Methods in Physics Research Section A 559 (2006) 808-810
24) M. Dobbs, et al.: “Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements,” Rev. Sci. Instrum. 83 (2012) 073113
25) B. Reichborn-Kjennerud, et al.: “EBEX: a balloon-borne CMB polarization experiment,” Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE) (2010) 7741C
26) H. Akamatsu, et al.: “Performance of TES X-ray microcalorimeters with AC bias read-out at MHz frequencies,” J. Low Temp. Phys. (2014) DOI 10.1007/s10909-014-1130-8
27) http://www.tekdata-interconnect.com/
28) K.D. Irwin, G.C. Hilton, D.A. Wollman and J.M. Martinis: “Thermal-response time of superconducting transition-edge microcalorimeters,” J. Appl. Phys. 83 (1998) 3978-3985
29) T. de Haan, G. Smecher and M. Dobbs: “Improved Performance of TES bolometers using digital feedback” Proc. SPIE 8452, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI (2012) 845213
30) R. den Hartog, J. Beyer, D. Boersma, M. Bruijn, L. Gottardi, H. Hoevers, R. Hoo, M. Kiviranta, P. de Korte, J. van der Kuur, B.-J. van Leeuwen and M. Lindeman: “Frequency domain multiplexed readout of TES detector arrays with baseband feedback,” IEEE Trans. Appl. Supercond. 21 (2011) 289-293
31) K. Hattori, et al.: “Adaptation of frequency-domain readout for transition edge sensor bolometers for the POLARBEAR-2 cosmic microwave background experiment,” Nuclear Instruments and Methods in Physics Research Section A 732 (2013) 299-302
32) M.P. Bruijn, et al.: “High-Q LC filters for FDM read out of cryogenic sensor arrays,” J. Low Temp. Phys. 167 (2012) 695-700
33) S. Doyle, et al.: “Lumped element kinetic inductance detectors,” J. Low. Temp. Phys. 151 (2008) 530-536