Scalar Quintuplet Minimal Dark Matter
with Yukawa Interactions: Perturbative up to Planck Scale

Chengfeng Cai¹, Zhaofeng Kang², Zhu Luo¹, Zhao-Huan Yu¹,³; and Hong-Hao Zhang¹,*

¹School of Physics, Sun Yat-Sen University, Guangzhou 510275, China

²School of physics, Huazhong University of Science and Technology, Wuhan 430074, China and

³ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, Victoria 3010, Australia

Abstract

We confront the perturbativity problem in the real scalar quintuplet minimal dark matter model. In the original model, the quintuplet quartic self-coupling inevitably hits a Landau pole at a scale \(\sim 10^{14} \text{ GeV} \), far below the Planck scale. In order to push up this Landau pole scale, we extend the model with a fermionic quintuplet and three fermionic singlets which couple to the scalar quintuplet via Yukawa interactions. Involving such Yukawa interactions at a scale \(\sim 10^{10} \text{ GeV} \) not only can keep all couplings perturbative up to the Planck scale, but also can explain the smallness of neutrino masses via the type-I seesaw mechanism. Furthermore, we identify the parameter regions favored by the condition that perturbativity and vacuum stability are both maintained up to the Planck scale.
CONTENTS

I. Introduction 3

II. Real scalar quintuplet MDM Model 4
 A. Model details 4
 B. Experimental constraints 6
 C. β functions and the Landau pole scale 8

III. 5-5-1 model 10
 A. Yukawa interactions 10
 B. β functions and analytic results 11
 C. Numerical calculation 13

IV. Conclusions and discussions 16

Acknowledgments 17

A. β functions in the SM and initial values of couplings 17

References 18
I. INTRODUCTION

As one of the biggest mysteries of Nature, dark matter (DM) has drawn much attention from astrophysicists, cosmologists, and particle physicists. Among various guesses of the identity of the DM particle, the most extensively studied class of DM candidates is weakly interacting massive particles (WIMPs), because they can naturally explain the observed DM relic abundance via the thermal production mechanism in the early Universe [1–4]. WIMP models can be easily constructed by introducing a dark sector with electroweak SU(2)\textsubscript{L} multiplets. Introducing one nontrivial SU(2)\textsubscript{L} multiplet leads to the so-called minimal dark matter (MDM) models [5–18], which only involve the minimal content of new fields. Introducing more than one SU(2)\textsubscript{L} multiplet results in a richer phenomenology, but the models would be much more complicate [19–42].

The philosophy of the MDM models is to extend the standard model (SM) in a minimal way for involving dark matter [5]. For this purpose, a fermionic or scalar SU(2)\textsubscript{L} × U(1)\textsubscript{Y} multiplet in a representation (\textit{n}, \textit{Y}) is introduced. The potential DM candidate would be the electrically neutral component that should be the lightest new state. If the dimension of the SU(2)\textsubscript{L} representation \textit{n} is large enough to forbid dangerous decay operators, this neutral state would be able to play the role of the DM particle without imposing an artificial Z\textsubscript{2} symmetry. In other words, the stability of DM can be protected by an accidental Z\textsubscript{2} symmetry due to a large dimension of the SU(2)\textsubscript{L} representation and the Lorentz invariance. As proposed in the original paper [5], the minimal choices are a quintuplet (\textit{n} = 5) for the fermionic case [6, 8, 14–16] and a septuplet (\textit{n} = 7) for the scalar case [9, 11, 12, 16, 17]. Adding new electroweak multiplets will push up the SU(2)\textsubscript{L} gauge coupling \textit{g}_2 when it runs to high scales. Nevertheless, the MDM model with a quintuplet fermion or a septuplet scalar can keep \textit{g}_2 perturbative up to \(\sim 10^{19}\) GeV [5] (\(\sim 10^{16} – 10^{17}\) GeV [43]) based on one-loop (two-loop) \(\beta\) functions.

Scalar MDM models are quite different from fermionic ones, since scalars will bring in more coupling terms. Such a complexity has caused the neglect of a dangerous decay operator for the septuplet scalar model in the original consideration: the dimension-5 operator \(\Phi^3 H^\dagger H\) will induce DM decay at loop level [43]. Therefore, the accidental Z\textsubscript{2} symmetry in the septuplet scalar model is not totally strict. Nonetheless, one can always introduce an artificial Z\textsubscript{2} symmetry to make the model work again, but considering \textit{n} = 7 would not be special any more. In this case, discussing a triplet (\textit{n} = 3) or quintuplet (\textit{n} = 5) real1 scalar multiplet with \(Y = 0\) would be more economic. The real scalar triplet model have been well studied in Refs. [44–46], while the real scalar quintuplet model is less explored and will be the main topic of this paper.

In such scalar MDM models, scalar coupling terms may lead to another problem. Solutions to the renormalization group equations (RGEs) show that the scalar self-interaction

1 The term “real” means that the multiplet is self-conjugated. A electroweak multiplet with even \textit{n} must be complex, and hence allows more interaction terms.
couplings will go to infinity, i.e., a Landau pole (LP) will show up, at an energy scale far below the Planck scale [17, 46, 47]. With two independent septuplet self-interaction terms, the real scalar septuplet model hits a Landau pole at a scale around 10^8 GeV if the DM particle mass is fixed to satisfy the observed relic abundance. In our previous work [17], we attempted to push up the LP scale via introducing Yukawa couplings between the scalar septuplet and extra fermionic multiplets. A bonus of these extra fermions is to explain the smallness of neutrino masses through the type-III seesaw mechanism [48]. We found that such a setup can push up the LP scale to $\sim 10^{14}$ GeV at best.

On the other hand, a real scalar quintuplet lives in a smaller representation and has only one independent self-interaction term. Consequently, the quintuplet couplings should evolve slower and reach a Landau pole at a higher scale. If extra fermionic multiplets are introduced, we may even push the LP scale above the Planck scale. Besides, such fermions could be used to explain the tiny neutrino masses via the type-I seesaw mechanism [49–52]. In this work, we will explore these possibilities in the real scalar quintuplet MDM model. For completeness, we will also discuss the constraint from the observed DM relic abundance, the bounds from direct and indirect detection experiments, and the stability of the electroweak vacuum.

The paper is organized as follows. In Sec. II, we introduce the quintuplet MDM model, and discuss its phenomenological constraints and the LP scale. In Sec. III, we study an extension with extra fermions for pushing up the LP scale, and discuss the constraints from perturbativity and vacuum stability. Conclusions and discussions are given in Sec. IV.

II. REAL SCALAR QUINTUPTLET MDM MODEL

A. Model details

In the real scalar quintuplet MDM model, the dark sector only involves a real scalar quintuplet Φ with $Y = 0$, which can be expressed as

$$\Phi = \frac{1}{\sqrt{2}} (\Delta^{(2)}, \Delta^{(1)}, \Delta^{(0)}, \Delta^{(-1)}, \Delta^{(-2)})^T. \tag{2.1}$$

The self-conjugate condition implies $(\Delta^{(Q)})^* = \Delta^{(-Q)}$. The real scalar $\Delta^{(0)}$ is a viable DM candidate. The gauge covariant derivative of Φ is

$$D_\mu \Phi = \partial_\mu \Phi - ig_2 W_\mu^a \sigma^a \Phi, \tag{2.2}$$
where \(\tau^a \) are generators for the \(SU(2)_L \) representation 5:

\[
\tau^1 = \begin{pmatrix} -1 & -\sqrt{6}/2 \\ -\sqrt{6}/2 & \sqrt{6}/2 \end{pmatrix}, \quad \tau^2 = \begin{pmatrix} i & \sqrt{6}/2 \\ -\sqrt{6}/2 & -i \end{pmatrix}, \quad \tau^3 = \text{diag}(2, 1, 0, -1, -2).
\]

Thus, the covariant kinetic term for \(\Phi \) can be expanded as

\[
\mathcal{L}_{\text{kin}} = (D_\mu \Phi)^\dagger D^\mu \Phi
\]

\[
= \frac{1}{2} (\partial_\mu \Delta^{(0)})^2 + \sum_{Q=1}^2 (\partial_\mu \Delta^{(Q)})(\partial^\mu \Delta^{(-Q)}) + \sum_{Q=1}^2 (Q_\mu A^\mu + Q g_2 c_W Z^\mu) \Delta^{(-Q)} i \partial_\mu \Delta^{(Q)}
\]

\[
- g_2 [W^{\mu+}(\sqrt{2} \Delta^{(-2)} i \partial_\mu \Delta^{(1)} + \sqrt{3} \Delta^{(-1)} i \partial_\mu \Delta^{(0)}) + \text{h.c.}]
\]

\[
+ (e^2 A_\mu A^\mu + g_2 s_w Z^\mu + 2 e g_2 c_W A_\mu Z^\mu) \sum_{Q=1}^2 Q^2 \Delta^{(Q)} \Delta^{(-Q)}
\]

\[
+ g_2^2 W^{\mu+} W^{-\mu} \left[3 (\Delta^{(0)})^2 + 5 \Delta^{(1)} \Delta^{(-1)} + 2 \Delta^{(2)} \Delta^{(-2)} \right]
\]

\[
- g_2^2 \left[W^{\mu+}(s_w A^\mu + c_w Z^\mu)(\sqrt{3} \Delta^{(0)} \Delta^{(-1)} + 3 \sqrt{2} \Delta^{(1)} \Delta^{(-2)})
\]

\[
+ W_\mu^+ W^{-\mu} \left[\frac{3}{2} (\Delta^{(1)})^2 - \sqrt{6} \Delta^{(0)} \Delta^{(-2)} \right] + \text{h.c.} \right),
\]

where \(s_w \equiv \sin \theta_w, c_w \equiv \cos \theta_w \), and \(\partial_\mu \) is defined as \(F \partial_\mu G = F \partial_\mu G - G \partial_\mu F \).

In order to protect the stability of \(\Delta^{(0)} \), we require that \(\Phi \) is odd under a \(Z_2 \) symmetry, while all SM fields are even. The scalar potential is constructed by \(\Phi \) and the SM Higgs doublet \(H \). Since the operator \(\Phi^\dagger \tau^a \Phi \) vanishes due to the self-conjugation condition, the general form of the potential respecting the \(Z_2 \) symmetry is given by only five independent terms:

\[
V = \mu^2 H^\dagger H + m^2 \Phi^\dagger \Phi + \lambda (H^\dagger H)^2 + \lambda_2 (\Phi^\dagger \Phi)^2 + \lambda_3 (H^\dagger H)(\Phi^\dagger \Phi).
\]

Therefore, this model just brings in two couplings, \(\lambda_2 \) and \(\lambda_3 \), and one mass parameter \(m \) as new free parameters. We assume that the vacuum expectation value (VEV) of the Higgs field is nonzero, while the VEV of \(\Phi \) remains zero. Then the minimization of the potential implies two conditions, \(\mu^2 < 0 \) and \(m^2 - \lambda_3 \mu^2/(2\lambda) \geq 0 \). As in the SM, the VEV of the Higgs doublet is \(\langle H \rangle = (0, v/\sqrt{2})^T \) with \(v \equiv \sqrt{-\mu^2/\lambda} = 246.22 \text{ GeV} \).

After the Higgs field acquires a VEV, the \(\lambda_3 (H^\dagger H)(\Phi^\dagger \Phi) \) term equally contributes to the masses of all the \(\Phi \) components. Therefore, at the tree level all components are degenerate.
with a shifted mass m_0, given by
\[m_0^2 = m^2 + \frac{\lambda_3}{2} v^2. \tag{2.7} \]

Electroweak one-loop corrections break this degeneracy, making $\Delta^{(1)}$ and $\Delta^{(2)}$ slightly heavier than $\Delta^{(0)}$. When $m_0 \gg m_Z$, the mass difference between $\Delta^{(Q)}$ and $\Delta^{(0)}$ is \[m_Q - m_0 = Q^2 \Delta m, \tag{2.8} \]

where $\Delta m = \alpha_2 m_W \sin^2(\theta_W/2) \simeq 167$ MeV, with $\alpha_2 \equiv g_2^2/(4\pi)$.

Vacuum stability (VS) sets a stringent constraint on the model. The philosophy is that the potential should keep bounded from below as the couplings evolving to high energies. The VS conditions can be obtained by means of the copositive criteria \[\lambda \geq 0, \quad \lambda_2 \geq 0, \quad \lambda_3 + 2\sqrt{\lambda\lambda_2} \geq 0. \tag{2.9} \]

B. Experimental constraints

The observation of the DM relic abundance sets a constraint on the $\Delta^{(0)}$ mass m_0. Assuming DM is thermally produced in the early Universe, its relic abundance can be expressed as \[\Omega_{\text{DM}} h^2 \simeq 1.07 \times 10^9 \text{ GeV}^{-1} \]

with $J(x_F) = \int_{x_F}^{\infty} \frac{\langle \sigma_{\text{eff}} v \rangle}{x^2} dx$, \[\langle \sigma_{\text{eff}} v \rangle \simeq \frac{66\pi\alpha_2^2}{5m_0^2} + \frac{\lambda_3^2}{80\pi m_0^2}. \tag{2.11} \]

We take $x_F \simeq 25$ and $\sqrt{g_\ast} \simeq 10.33$ for $T \sim \mathcal{O}(\text{TeV})$, and calculate the prediction to the relic abundance in the quintuplet MDM model.

A more proper treatment is to include the Sommerfeld enhancement (SE) effect for DM annihilation, following the strategy in Ref. [6]. The annihilation channels in the dark sector are categorized by the electric charges of the two-body states. Enhancement factors can be computed in various categories via numerically solving the Schrödinger equations for the two-body states. The inclusion of the SE effect would increase the effective annihilation cross section, and hence reduce the relic abundance for fixed model parameters.
FIG. 1. Constraints on the real scalar quintuplet MDM model in the λ_3-m_0 plane. The purple (blue) strip corresponds to the 1σ range of the DM relic abundance measured by the Planck experiment [55] without (with) the Sommerfeld enhancement effect. The red regions are excluded at 95% CL by the combined result of the MAGIC and Fermi-LAT indirect detection experiments [56]. The green band indicates the region satisfying the vacuum stability and perturbativity conditions in the 5-5-1 model described in Sec. III.

Assuming thermally produced $\Delta^{(0)}$ particles in the early Universe fulfill the observed relic abundance, $\Omega_{DM}h^2 = 0.1193 \pm 0.0014$ [55], the $\Delta^{(0)}$ mass m_0 can be constrained within a narrow range, depending on the coupling λ_3. As shown in Fig. 1, a slightly larger m_0 is favored for a larger $|\lambda_3|$. If the SE effect is not taken into account, the favored m_0 is ~ 5 TeV. After including the SE effect, the favored value 2 is $m_0 \sim 7$ TeV.

Other constraints come from DM direct and indirect detection experiments. Direct detection is response to DM-nucleon scattering. The only tree-level diagram of the spin-independent $\Delta^{(0)}$-nucleon scattering process is mediated by the Higgs boson, but its cross section is suppressed by m_0^2 and thus insignificant unless λ_3 is very large. On the other hand, according to the discussions in Ref. [58], the gauge loops lead to a DM-nucleon cross section of $\sim 2 \times 10^{-46}$ cm2 for a fermionic quintuplet. As the gauge interactions of the scalar quintuplet is similar to a fermionic one, we may expect that the cross section for the scalar case would also be around this value3. Current direct detection experiments, such as PandaX-II [59] and XENON1T [60], have set an upper bound of $\sim 5 \times 10^{-45}$ cm2 on the DM-nucleon cross section for a DM particle mass of 7 TeV. Thus, the scalar quintuplet model can evade current direct searches, but would be well tested in near future experiments.

2 This value may be slightly modified if the bound state formation effect is also considered [57].

3 In order to give an accurate DM-nucleon cross section, a detailed calculation for loop diagrams is needed. But such a calculation would be beyond the scope of this paper. We will leave it to a further study.
For indirect detection of DM annihilation in space, the dominant process is $\Delta^{(0)} \Delta^{(0)} \rightarrow W^+ W^-$, whose cross section for $m_0 \gg m_h$ without the SE effect is given by \[\langle \sigma v \rangle \simeq \frac{9 g_4^2}{4 \pi m_0^2} + \frac{\lambda_3^2}{32 \pi m_0^2}. \] (2.12)

But we must also involve the SE effect, which is even more significant as the velocities of Galactic DM particles are much lower than those at the freeze-out epoch. Using the 95% CL exclusion limit on DM annihilation into $W^+ W^-$ obtained by the combined MAGIC and Fermi-LAT observations of dwarf satellite galaxies \[56], we find that indirect detection experiments have given very stringent constraints, as shown by the red regions in Fig. 1. Nonetheless, three windows around $m_0 \approx 7$ TeV, $8 - 10$ TeV, and $13 - 14$ TeV survive. As a result, the parameter regions suggested by the observation of relic abundance is still available.

C. β functions and the Landau pole scale

RGE evolution of couplings are determined by β functions. In Appendix A, we list the β functions in the SM, as well as initial values of SM couplings. When the renormalization scale μ goes above a scale $\Lambda_s \sim m_0$, the effect of the real scalar quintuplet should be involved. Hereafter we will adopt $\Lambda_s = 10$ TeV, as suggested by the observed relic abundance. At one-loop level, the real scalar quintuplet MDM model introduces new terms in the β functions of the SU(2)$_L$ gauge coupling g_2 and the Higgs quartic coupling λ, while the β functions of the other SM couplings do no change. Here we list the β functions that are relevant in the following analysis: \[47\]

\begin{align*}
\beta_{g_1} &= \beta_{g_1}^{SM}, \\
\beta_{g_2} &= \beta_{g_2}^{SM} + \frac{1}{16 \pi^2} \frac{5}{3} g_3^2, \\
\beta_{g_3} &= \beta_{g_3}^{SM}, \\
\beta_{y_t} &= \beta_{y_t}^{SM}, \\
\beta_\lambda &= \beta_\lambda^{SM} + \frac{1}{16 \pi^2} \frac{5}{2} \lambda_3^2, \\
\beta_{\lambda_2} &= \frac{1}{16 \pi^2} [26 \lambda_2^2 + 108 g_4^4 - 72 g_2^2 \lambda_2 + 2 \lambda_3^2], \\
\beta_{\lambda_3} &= \frac{1}{16 \pi^2} \left[12 \lambda_3 \lambda_3 + 14 \lambda_2 \lambda_3 + 4 \lambda_3^2 + 18 g_4^4 - \lambda_3 \left(\frac{81}{2} g_2^2 + \frac{9}{10} g_1^2 - 6 y_t^2 \right) \right].
\end{align*}

(2.13) \hspace{1cm} (2.14) \hspace{1cm} (2.15)

Note that g_1 is related to the U(1)$_Y$ gauge coupling g' by $g_1 \equiv \sqrt{5/3} g'$. The solution to $\alpha_2 = g_2^2/(4\pi)$ for $\mu > \Lambda_s$ is just

\begin{align*}
\alpha_2^{-1}(\mu) &= \alpha_2^{-1}(m_Z) - \frac{b_2^{SM}}{2 \pi} \ln \frac{\Lambda_s}{m_Z} - \frac{b_2^s}{2 \pi} \ln \frac{\mu}{\Lambda_s},
\end{align*}

(2.16)

where $b_2^{SM} = -19/6$ and $b_2^s = b_2^{SM} + 5/3 = -3/2$ are coefficients corresponding to β_{g_2} in Eq. (A1) and β_{g_2} in Eq. (2.13), respectively.

Below we analyze the Landau pole scale. The large coefficients of the λ_2 and g_4^2 terms
in the beta function of λ_2 drive λ_2 going to divergence at high energy scales. At one-loop level, g_1 and y_t do not enter the beta function of λ_2, while λ_2 and λ_3 do not contribute to the beta functions of g_1 and y_t. Therefore, g_1 and y_t remain small at high energy scales. For an approximate analysis, we can safely neglect g_1 and y_t in Eqs. (2.14) and (2.15). Thus, the RGEs for λ, λ_2, and λ_3 become

\[
\frac{d\lambda}{dt'} = 24\lambda^2 + \frac{9}{8}g_2^4 - 9g_2^2\lambda + \frac{5}{2}\lambda_3^2, \tag{2.17}
\]

\[
\frac{d\lambda_2}{dt'} = 26\lambda_2^2 + 108g_2^4 - 72g_2^2\lambda_2 + 2\lambda_3^2, \tag{2.18}
\]

\[
\frac{d\lambda_3}{dt'} = 4\lambda_3^2 + 18g_2^4 - \frac{81}{2}g_2^2\lambda_3 + 12\lambda_3 + 14\lambda_2\lambda_3, \tag{2.19}
\]

where $t' \equiv (4\pi)^{-2}\ln(\mu/\Lambda_s)$. For convenient, we define three functions f_i by $\lambda = f_1g_2^2$, $\lambda_2 = f_2g_2^2$, and $\lambda_3 = f_3g_2^2$, and obtain the equations for them:

\[
\frac{df_1}{dG} = 24f_1^2 + \frac{9}{8} - (9 + 2b_2^s) f_1 + \frac{5}{2}f_3^2, \tag{2.20}
\]

\[
\frac{df_2}{dG} = 26f_2^2 + 108 - (72 + 2b_2^s) f_2 + 2f_3^2, \tag{2.21}
\]

\[
\frac{df_3}{dG} = 4f_3^2 + 18 - \left(\frac{81}{2} + 2b_2^s\right) f_3 + 12f_1f_3 + 14f_2f_3. \tag{2.22}
\]

where $G(t') = (b_2^s)^{-1}\ln[g_2(t')/g_2(0)]$.

In order to eliminate the linear terms, we further define functions \hat{f}_1 and \hat{f}_2 by the shifts $f_1 = \hat{f}_1 + 1/8$ and $f_2 = \hat{f}_2 + 69/52$. Then we have

\[
\frac{d\hat{f}_1}{dG} = 24\hat{f}_1^2 + \frac{3}{4} + \frac{5}{2}f_3^2, \quad \frac{d\hat{f}_2}{dG} = 26\hat{f}_2^2 + \frac{6471}{104} + 2f_3^2. \tag{2.23}
\]

Noting that \hat{f}_2 runs much faster than \hat{f}_1 and f_3, we can simply neglect f_3 in the second equation and find its solution as

\[
\hat{f}_2(t') = \hat{d}\tan\left(\hat{c}_2\hat{d}G(t') + \tan^{-1}\left(\frac{\hat{f}_2(0)}{\hat{d}}\right)\right), \tag{2.24}
\]

where $\hat{c}_2 = 26$ and $\hat{d} = \sqrt{6471/(104c_2)} \approx 1.55$. Obviously, the Landau pole is reached when $\hat{c}_2\hat{d}G(t') + \tan^{-1}[\hat{f}_2(0)/\hat{d}] = \pi/2$. Thus, the corresponding scale is

\[
\Lambda_{LP}^{(f_2)} = \Lambda_s \exp\left[\frac{-2\pi}{b_2^s\alpha_2(\Lambda_s)}\left(\exp\left(-\frac{b_2^s\pi}{\hat{c}_2\hat{d}}\left[1 - \frac{2}{\pi}\tan^{-1}\left(\frac{\hat{f}_2(0)}{\hat{d}}\right)\right]\right) - 1\right)\right]. \tag{2.25}
\]

Setting $\hat{f}_2(0) = -69/52$, which is corresponding to $\lambda_2 = 0$ at $\mu = \Lambda_s$, we find that the maximal LP scale for λ_2 is $\Lambda_{LP}^{(\lambda_2)} = 5.6 \times 10^{14}$ GeV, which is far below the Planck scale. Such
a Landau pole implies that other new physics may exist between the quintuplet mass scale and the Planck scale, rendering all the couplings finite.

III. 5-5-1 MODEL

In this section, we will attempt to push up the LP scale obtained above. A lesson we can learn from the standard model is that the top Yukawa coupling gives a negative contribution to the self-coupling of the Higgs boson. As the Landau pole is induced by the self-coupling of the quintuplet, it is straightforward to introduce extra fermions with a Yukawa coupling to the quintuplet for postponing the Landau pole. Such a motivation leads to the 5-5-1 model studied below.

A. Yukawa interactions

There are three minimal ways to construct Yukawa interactions with the quintuplet scalar: introducing fermions living in $(1,0) \oplus (5,0)$, $(3,0) \oplus (3,0)$, and $(4,\pm 1/2) \oplus (2,\mp 1/2)$. The first and second options have potential for explaining the tiny neutrino masses via the type-I and type-III seesaw mechanisms, respectively. In order to keep $\Delta^{(0)}$ stable, one of the two fermions participating the Yukawa interaction should be odd under the Z_2 symmetry. Particularly, in the second option, the two $(3,0)$ fermions should be different: one is Z_2-odd, and the other one is Z_2-even. Consequently, in order to give correct neutrino oscillation properties, we have to introduce at least one more triplet which is Z_2-even. On the other hand, in the third option, the $(4,\pm 1/2)$ representation should correspond to a Z_2-odd Dirac fermion for avoiding anomalies [61–64]. The $(2,\mp 1/2)$ fermions can just be the SM lepton doublets which are Z_2-even. However, this case is less interesting for us, as it cannot explain the neutrino masses.

For these reasons, in this work we only concentrate on the $(1,0) \oplus (5,0)$ case. The resulting model is dubbed as the “5-5-1” model. Minimally, we introduce a left-handed self-conjugated fermionic quintuplet Ψ_L and several right-handed fermionic singlets $N_{a,R}$. It is convenient to use the tensor notation for writing down the interaction terms. The tensor notation can be translated to the familiar vector notation using the following dictionaries of Φ and Ψ:

\[
\begin{align*}
\Phi &= \frac{1}{\sqrt{2}} \begin{pmatrix}
\Delta^{(2)} \\
\Delta^{(1)} \\
\Delta^{(0)} \\
\Delta^{(-1)} \\
\Delta^{(-2)}
\end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix}
\Phi_{1111} \\
2\Phi_{1112} \\
\sqrt{6}\Phi_{1122} \\
-2\Phi_{1222} \\
\Phi_{2222}
\end{pmatrix}, \\
\Psi_L &= \begin{pmatrix}
\Psi_{+2,L} \\
\Psi_{+1,L} \\
\sqrt{6}\Psi_{0,L} \\
-2\Psi_{-1,L} \\
-\Psi_{-2,L}
\end{pmatrix}, \\
\Psi_{a,R} &= \begin{pmatrix}
\Psi_{1111,L} \\
2\Psi_{1112,L} \\
\sqrt{6}\Psi_{1122,L} \\
-2\Psi_{1222,L} \\
\Phi_{2222,L}
\end{pmatrix}.
\end{align*}
\]
At the renormalizable level, the Yukawa interactions can be expressed as

\[L_{\text{yuk}} = -(y_\nu)_{ab} \ell_{a,L} H_i N_{b,R} - \sqrt{6} y \Phi_{ijkl} \Psi_{L}^{ijl} N_{3,R} + \text{h.c.}, \]

where \(\ell_{a,L} \) denotes the SM lepton doublets. \(i,j,k,l = 1,2 \) are totally symmetric SU(2)_L indices. \(a \) and \(b \) are family indices and at least two singlets are required for generating the realistic neutrino mixing. Eq. (3.2) respects the \(Z_2 \) symmetry, with \(\Psi_L \) being \(Z_2 \)-odd and \(N_{a,R} \) being \(Z_2 \)-even. Consequently, the new terms does not endanger stability of the scalar quintuplet, which has mass far below the fermionic one.

The above Yukawa interactions involve many new parameters. To illustrate the point, we adopt some working simplifications. In the first, we assume that there are three generations of \(N_R \), and their Yukawa couplings \((y_\nu)_{33} \approx y_\tau \). Next, we assume all the new fermions, \(\Psi_L \) and \(N_{a,R} \) have the same mass \(M_{51} \), which is a characteristic scale of the 5-5-1 model. Thus, the neutrino masses given by the seesaw mechanism are \(\sim m_\tau^2/M_{51} \). According to the current cosmological constraint [65], \(m_\nu \sim m_\tau^2/M_{51} \lesssim 0.2 \text{ eV} \), which implies that \(M_{51} \sim 10^{10} \text{ GeV} \). Hereafter, \(M_{51} = 10^{10} \text{ GeV} \) will be set as a benchmark scale of the 5-5-1 model. In the concrete numerical analysis, we will comment on the situation of deviation from this scale setup. Finally, in the 5-5-1 Yukawa interaction term, \(i.e., \) the second term of \(L_{\text{yuk}} \), we only consider the coupling to \(N_{3,R} \), neglecting the other two couplings. Thus, we just need to deal with one 5-1-1 Yukawa coupling, \(y \). This 5-5-1 Yukawa term can be expanded as

\[L_{\text{yuk}} \supset -\sqrt{3} y [\Delta^{(0)} \Psi_{0} N_3 + (\Delta^{(-1)} \Psi_{-1} N_3 + \Delta^{(-2)} \Psi_{-2} N_3 + \text{h.c.})], \]

where \(\Psi_{-Q} = \Psi_{-Q,L} + (\Psi_{+Q,L})^c \) and \(N_3 = N_{3,R} + (N_{3,R})^c \). The gauge couplings of the fermionic quintuplet \(\Psi \) are given by

\[L_{\Psi} = g_2 (\sqrt{3} W^+_{\mu} \overline{\Psi}_0 \gamma^\mu \Psi_{-1} + \sqrt{2} W^+_{\mu} \overline{\Psi}_{-1} \gamma^\mu \Psi_{-2} + \text{h.c.}) \]

\[- (e A_\mu + g_2 c_W Z_\mu) (2 \overline{\Psi}_{-2} \gamma^\mu \Psi_{-2} + \overline{\Psi}_{-1} \gamma^\mu \Psi_{-1}). \]

B. \(\beta \) functions and analytic results

The contributions of the quintplet and singlet fermions at \(\mu > M_{51} \) further modify the one-loop \(\beta \) functions of the SU(2)_L gauge coupling and scalar couplings:

\[\delta \beta_{g_2} = \frac{1}{16 \pi^2} \frac{20}{3} g_2^3, \quad \delta \beta_{\lambda_2} = \frac{1}{16 \pi^2} (-72 y^4 + 16 y^2 \lambda_2), \]

\[\delta \beta_{\lambda_3} = \frac{1}{16 \pi^2} 8 y^2 \lambda_3, \quad \beta_y = \frac{1}{16 \pi^2} y(19 y^2 - 18 g_2^2). \]
In these expressions, we have neglected the effect of the neutrino Yukawa couplings \((y_\nu)_{ab}\). This will be justified later.

Note that the \(\beta\) function of \(g_2\) becomes positive for \(\mu > M_{51}\). Thus, one may worry about up to which scale \(g_2\) can keep perturbative. By requiring \(\alpha_2 = 4\pi\), we find the non-perturbative scale of \(g_2\) in the 5-5-1 model as

\[
\Lambda_{g_2}^{\text{NP}} = M_{51} \left(\frac{\Lambda_s}{M_{51}}\right)^{b_2^s/b_2^{\text{tot}}} \exp \left[\frac{2\pi}{b_2} \left(\alpha_2^{-1}(\Lambda_s) - \frac{1}{4\pi}\right)\right],
\]

(3.7)

where \(b_2^{\text{tot}} = b_2^s + 20/3 = 31/6\). Setting \(\Lambda_s = 10\) TeV, we find that almost any \(M_{51} > \Lambda_s\) will give \(\Lambda_{g_2}^{\text{NP}} > M_{\text{Pl}}\). Thus, \(g_2\) would still be perturbative at the Planck scale.

By solving the RGEs, we obtain the exact values of \(g_2(\mu)\) and \(y(\mu)\) at \(\mu > M_{51}\) as

\[
g_2^2(\mu) = g_2^2(M_{51}) \left[1 - \frac{1}{8\pi^2} b_2^{\text{tot}} g_2^2(M_{51}) \ln \frac{\mu}{M_{51}}\right]^{-1},
\]

(3.8)

\[
y^2(\mu) = (18 + b_2^{\text{tot}}) g_2^2(\mu) \left[19 + F_0 \left(\frac{g_2^2(\mu)}{g_2^2(M_{51})}\right)^{(18+b_2^{\text{tot}})/b_2^{\text{tot}}}\right]^{-1},
\]

(3.9)

where

\[
F_0 \equiv (18 + b_2^{\text{tot}}) g_2^2(M_{51}) - 19.
\]

(3.10)

\(F_0 = 0\) leads to a critical value of \(y(M_{51})\),

\[
y_c(M_{51}) \equiv \sqrt{\frac{18 + b_2^{\text{tot}}}{19}} g_2(M_{51}).
\]

(3.11)

If \(y(M_{51}) > y_c(M_{51})\), i.e., \(F_0 < 0\), the 5-5-1 Yukawa coupling \(y\) will reach a Landau pole at

\[
\Lambda_{\text{LP}}^{(y)} = M_{51} \exp \left[\frac{8\pi^2}{b_2^{\text{tot}} g_2^2(M_{51})} \left(1 - \left[1 - \frac{18 + b_2^{\text{tot}} g_2^2(M_{51})}{19} \frac{8\pi^2}{M_{51}}\right]^{rac{b_2^{\text{tot}}/(18+b_2^{\text{tot}})}{b_2^{\text{tot}}}}\right)\].
\]

(3.12)

Then the condition for \(\Lambda_{\text{LP}}^{(y)} > M_{\text{Pl}}\) is

\[
y^2(M_{51}) < \frac{18 + b_2^{\text{tot}}}{19} g_2^2(M_{51}) \left[1 - \left(1 - \frac{b_2^{\text{tot}} g_2^2(M_{51})}{8\pi^2 M_{51}}\right)^{(18+b_2^{\text{tot}})/b_2^{\text{tot}}}\right]^{-1}.
\]

(3.13)

Note that the perturbative condition \(y \leq 4\pi\) will give a smaller upper bound on \(y(M_{51})\).

As \(y\) grows at high scales, the effect of \((y_\nu)_{ab}\) may become important. The \(\beta\) function of \(y_\nu\) with all Yukawa coupling included is

\[
\beta_{y_\nu} = \frac{y_\nu}{16\pi^2} \left[3 y_\nu y_\nu^* + T \left(\frac{15}{2} y^2 - \frac{3}{2} y_\nu^* y_e - \frac{9}{4} g_2^2 - \frac{9}{20} g_1^2\right)\right],
\]

(3.14)
where \(T = 3 \text{tr}(y_u^\dagger y_u) + 3 \text{tr}(y_d^\dagger y_d) + \text{tr}(y_e^\dagger y_e) + \text{tr}(y_\nu^\dagger y_\nu) \), and \(y_u, y_d, y_e, y_\nu \) are the Yukawa coupling matrices for quarks and leptons. For simplicity we consider only one real element of \(y_\nu \) on the diagonal dominates, and denote it \(\tilde{y}_\nu \). At high scales, \(y \) and \(g_2 \) are large, and the above equation can be approximated as

\[
\beta_{\tilde{y}_\nu} \simeq \frac{\tilde{y}_\nu}{16\pi^2} \left[\frac{5}{2} y_\nu^2 + \frac{15}{2} y^2 - \frac{9}{4} g_2^2 \right].
\] (3.15)

As \(\tilde{y}_\nu \) contributes to the self-energy of \(N_{3,R} \), it will modify \(\beta_y \) by

\[
\delta \beta_y = \frac{y}{16\pi^2} \tilde{y}_\nu^2.
\] (3.16)

Therefore, the growing \(\tilde{y}_\nu \) will boost the running of \(y \), and hence the LP scale of \(y \) becomes lower. Nonetheless, \(\tilde{y}_\nu \) is important only when \(y \) is very large (not far from its LP), so the LP scale would not change too much. Thus, it is still reasonable to neglect the effect of \((y_\nu)_{ab} \).

On the other hand, if \(y(M_{51}) < y_c(M_{51}) \), i.e., \(F_0 > 0 \), as \(\mu \) goes up \(y(\mu) \) will increase at the beginning, and then turn its direction at some scale, and then exponentially drop down to zero. If the decreasing behavior happens at a scale lower than the Planck scale, the effect of the 5-5-1 Yukawa coupling would not be significant. In this case, the model is quite similar to the original quintuplet MDM model, where \(\lambda_2 \) blows up before the Planck scale. If the decrease happens at some scale higher than the Planck scale, then \(y \) might be large enough for keeping the \(\lambda_2 \) finite.

C. Numerical calculation

The above analysis is based on analytic calculations. Below we present the results obtained by numerically solving the RGEs.

Firstly, we investigate the impact of \(y(M_{51}) \) on the running of couplings. Fig. 2 shows the evolution of the couplings with different values of \(y(M_{51}) \) for fixing \(\Lambda_s = 10 \text{ TeV}, M_{51} = 10^{10} \text{ GeV}, \lambda_2(\Lambda_s) = 0.015, \) and \(\lambda_3(\Lambda_s) = 0.2 \). We can see that the evolution behavior dramatically depends on the delicate input value of \(y(M_{51}) \).

- If \(y(M_{51}) = 0.662 \), it will be unable to slow down the growing of \(\lambda_2 \), which reaches a Landau pole at a scale lower than the Planck scale.

- If \(y(M_{51}) = 0.666 \), the Landau pole scale of \(\lambda_2 \) will be push up to near the Planck scale.

- If \(y(M_{51}) = 0.667 \), all couplings will keep perturbative up to the Planck scale, and the VS conditions will be satisfied at the same time.
FIG. 2. Evolution of the couplings λ_2, λ_3, and y in the 5-5-1 model with different values of $y(M_{51})$. We have fixed $\Lambda_s = 10$ TeV, $M_{51} = 10^{10}$ GeV, $\lambda_2(\Lambda_s) = 0.015$, and $\lambda_3(\Lambda_s) = 0.2$. The red, blue, and green lines correspond to the evolution of λ_2, λ_3, and y, respectively.

- If $y(M_{51}) = 0.672$, although all couplings will keep perturbative up to the Planck scale, λ_2 will become negative and lead to an unstable vacuum before the Planck scale.

The above fine-tuning of $y(M_{51})$ is expected. In the β function of λ_2 one has to arrange a delicate cancellation between $108 g_2^4$ and $72 y^4$ at M_{51} so that β_{λ_2} could be under well control in a wide energy region. Otherwise, the effect of Yukawa damping on λ_2 is insufficient for a slightly smaller $y(M_{51})$ while too much for a slightly larger $y(M_{51})$ that renders a negative β_{λ_2} too early.

Secondly, we study the parameter regions where the perturbativity and VS conditions are satisfied. We choose $y(M_{51}) = 0.662, 0.666, 0.670$ as three typical inputs, and perform scans in the λ_2-λ_3 plane with $\Lambda_s = 10$ TeV and $M_{51} = 10^{10}$ GeV. The results are shown in Fig. 3. In the blue regions, all parameters can keep perturbative up to the Planck scale, while in the orange region, the vacuum keeps stable up to the Planck scale. The overlap regions simultaneously satisfied the perturbativity and VS conditions.
FIG. 3. Regions favored by the perturbativity and VS conditions in the $\lambda_2(\Lambda_s)$-$\lambda_3(\Lambda_s)$ plane for the 5-5-1 model with different values of $y(M_{51})$. We have fixed $\Lambda_s = 10$ TeV and $M_{51} = 10^{10}$ GeV. The blue and orange regions correspond to the parameter regions satisfying the perturbativity and VS conditions, respectively. The overlap regions are favored by both conditions.

As we vary the initial value of the Yukawa coupling $y(M_{51})$, the overlap region varies. We find that the perturbativity and VS conditions constrain $\lambda_3(\Lambda_s)$ within a range of $0.14 < \lambda_3(\Lambda_s) < 0.4$, and $\lambda_2(\Lambda_s)$ within a range of $0 < \lambda_2(\Lambda_s) < 0.053$. This favored range of $\lambda_3(\Lambda_s)$ is also indicated as a green strip in Fig. 1 for comparing with other phenomenological constraints.

The VS condition $\lambda_3 + 2\sqrt{\lambda_2} \geq 0$ seems to allow a small negative $\lambda_3(\Lambda_s)$. However, the results in Fig. 3 exclude the whole regions with negative $\lambda_3(\Lambda_s)$. The reason is that the vacuum stability also requires the Higgs quartic coupling λ remaining positive when running to higher scales. In the SM, λ will turn to negative at a scale $\sim 10^9$ GeV. The existence of the quintuplet scalar could change this behavior, because the λ_3 coupling has a positive contribution to the β function of λ, as shown in Eq. (2.14). If $|\lambda_3|$ is not large enough to
FIG. 4. Evolution of λ in the 5-5-1 model with $\Lambda_s = 10$ TeV, $M_{51} = 10^{10}$ GeV, $\lambda_2(\Lambda_s) = 0.015$, $\lambda_3(\Lambda_s) = -0.02$, and $y(M_{51}) = 0.666$. We turn around the trend of λ, however, the vacuum will be unstable at some scale. We set $\lambda_3(\Lambda_s) = -0.02$, $\lambda_2(\Lambda_s) = 0.015$, and $y(M_{51}) = 0.666$, and demonstrate the evolution of $\lambda(\mu)$ in Fig. 4. We can see that λ goes to negative values at scales $\sim 10^9 - 10^{14}$ GeV. In this case, the vacuum stability cannot be ensured along the whole way to the Planck scale.

To end up this section, we would like to make a comment on the possible impacts from a different scale set for M_{51} other than the benchmark scale 10^{10} GeV. If M_{51} lies below this scale, the Yukawa term can slow down the running of λ_2 since a lower scale, thus requiring a smaller $y(M_{51})$. But M_{51} cannot be many orders of magnitude below, because β_{λ_2} is about to change the sign and render λ_2 negative even far below the Planck scale. $M_{51} \gg 10^{10}$ GeV is disfavored neither, because $\lambda_2(M_{51})$ would be too large to be stopped by a perturbative y. Anyway, one can employ a parallel analysis for other choice of M_{51}, and the configuration of the viable parameter space will not change significantly as long as M_{51} is not very far from the benchmark value.

IV. CONCLUSIONS AND DISCUSSIONS

Perturbativity puts a strong constraint on scalar MDM models, especially when the multiplet lives in a large SU(2)$_L$ representation. The scalar self-couplings usually reach a Landau pole at an energy scale far below the Planck scale, in spite of the initial values. There are two reasons leading to such a disaster. One is that the quadratic self-interaction Lagrangians result in terms with large coefficients in the β functions of the self-couplings. Once the self-couplings obtains a modest value, such terms will drive the self-couplings growing exponentially and soon violating the perturbativity. Another reason is that there are also significant terms contributed by other couplings in the β functions of the self-couplings, e.g., a g_4^2 term with a large coefficient. These terms ensure that even when their initial values are very tiny, the self-couplings will quickly obtain modest values after a short
journey of running.

In a previous work \cite{17}, we found that the perturbativity problem in the real septuplet scalar MDM model is quite stubborn: even after some fermions with Yukawa interactions are introduced to slow down the running of scalar self-couplings, the model is still unable to keep perturbative up to the Planck scale. Nonetheless, this may be achievable if the MDM scalar lives in a smaller representation. Therefore, we have studied the real scalar quintuplet MDM model in this work. The observed relic abundance implies that the scale for introducing such a quintuplet should be near 10 TeV. Our calculation suggests that the quintuplet self-coupling λ_2 will hit a Landau pole at a scale of 5.6×10^{14} GeV, which is consistent with Ref. \cite{47}.

In order to push up this LP scale, we have extended the model with Yukawa couplings of the scalar quintuplet to a fermionic quintuplet and three fermionic singlets, resulting in the so-called 5-5-1 model. The new singlets can also play the role of right-handed neutrinos, explaining the smallness of neutrino masses by the type-I seesaw mechanism. We have found that if such Yukawa couplings are involved after a scale of $M_{51} \sim 10^{10}$ GeV, all couplings can remain perturbative up to the Planck scale, The reason is that the Yukawa couplings contribute a large negative term to the β function of λ_2 and hence slow down the growing of λ_2 at high scales.

We have also investigated the parameter regions favored by the perturbativity and vacuum stability conditions up to the Planck scale. It has been found that these conditions constrain the Higgs-quintuplet coupling $\lambda_3(\Lambda_s)$ at the quintuplet scale Λ_s within a range of $0.14 < \lambda_3(\Lambda_s) < 0.4$, and the quintuplet self-coupling $\lambda_2(\Lambda_s)$ within a range of $0 < \lambda_2(\Lambda_s) < 0.53$.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 11375277, 11410301005, 11647606, 11005163 and 11775086, the Fundamental Research Funds for the Central Universities, the Natural Science Foundation of Guangdong Province under Grant No. 2016A030313313, and the Sun Yat-Sen University Science Foundation. ZHY is supported by the Australian Research Council.

Appendix A: β functions in the SM and initial values of couplings

At one-loop level, the β functions of SM couplings are given by

\[
\beta_{g_1}^\text{SM} = \frac{1}{16\pi^2} \frac{41}{10} g_1^3, \quad \beta_{g_2}^\text{SM} = \frac{1}{16\pi^2} \left(-\frac{19}{6}\right) g_2^3, \quad \beta_{g_3}^\text{SM} = \frac{1}{16\pi^2} (-7) g_3^3; \quad (A1)
\]

\[
\beta_\gamma^\text{SM} = \frac{1}{16\pi^2} y_t \left(\frac{9}{2} y_t^2 - \frac{9}{4} g_2^2 - \frac{17}{20} g_1^2 - 8 g_3^2\right), \quad (A2)
\]
\[\beta_{\lambda}^{\text{SM}} = \frac{1}{16\pi^2} \left\{ 24\lambda^2 - 6y_t^4 + \frac{3}{8} \left[2g_2^4 + \left(g_2^2 + \frac{3}{5}g_1^2 \right)^2 \right] + \lambda \left(-9g_2^2 - \frac{9}{5}g_1^2 + 12y_t^2 \right) \right\}. \tag{A3} \]

As most of the Yukawa couplings are negligible, only the top Yukawa coupling \(y_t \) is considered in the above expressions.

In the RGE calculation, we use the following \(\overline{\text{MS}} \) values at \(m_Z \) as initial values for gauge couplings: \[66]\]

\[\alpha_s(m_Z) = \frac{1}{4\pi} \left[g_3(m_Z) \right]^2 = 0.1184, \tag{A4} \]

\[\alpha(m_Z) = \frac{1}{4\pi} \left[g_2(m_Z)s_W(m_Z) \right]^2 = \frac{1}{127.926}, \tag{A5} \]

\[s_W^2 = \sin^2 \theta_W(m_Z) = 0.2312. \tag{A6} \]

The measured values of \(y_t \) and \(\lambda \) are obtained from the pole masses of the top quark and the Higgs boson, \(m_t \) and \(m_h \), respectively. Therefore, we need to derive their \(\overline{\text{MS}} \) values \(y_t(m_Z) \) and \(\lambda(m_Z) \) at \(m_Z \) by the matching conditions \[67]\]

\[y_t(\mu_0) = \frac{\sqrt{2}m_t}{v} \left[1 + \delta_t(\mu_0) \right], \quad \lambda(\mu_0) = \frac{m_h^2}{2v^2} \left[1 + \delta_h(\mu_0) \right], \tag{A7} \]

with setting \(\mu_0 = m_Z \). The related functions are

\[\delta_t(\mu_0) = \left(-\frac{4\alpha_s}{4\pi} - \frac{4}{3} \frac{\alpha}{4\pi} + \frac{9}{4} \frac{m_t^2}{16\pi^2 v^2} \right) \ln \frac{\mu_0^2}{m_t^2} + c_t, \tag{A8} \]

\[\delta_h(\mu_0) = \frac{2v^2}{m_h^2} \frac{1}{32\pi^2 v^4} \left[h_0(\mu_0) + m_h^2 h_1(\mu_0) + m_t^4 h_2(\mu_0) \right], \tag{A9} \]

\[h_0(\mu_0) = -24m_t^4 \ln \frac{\mu_0^2}{m_t^2} + 6m_t^2 \ln \frac{\mu_0^2}{m_Z^2} + 12m_h^4 \ln \frac{\mu_0^2}{m_W^2} + c_0, \tag{A10} \]

\[h_1(\mu_0) = 12m_t^2 \ln \frac{\mu_0^2}{m_t^2} - 6m_t^2 \ln \frac{\mu_0^2}{m_Z^2} - 12m_h^2 \ln \frac{\mu_0^2}{m_W^2} + c_1, \tag{A11} \]

\[h_2(\mu_0) = \frac{9}{2} \ln \frac{\mu_0^2}{m_p^2} + \frac{1}{2} \ln \frac{\mu_0^2}{m_Z^2} + \ln \frac{\mu_0^2}{m_W^2} + c_2. \tag{A12} \]

Here the constants \(c_0, c_1, \) and \(c_2 \) are independent of \(\mu_0 \). Their contributions to \(\delta_h \) are less than 0.02 and can be neglected. The constant \(c_t \) lies in a range of \(-0.052 \leq c_t \leq -0.042 \). We take \(c_t = -0.052 \) in the calculation, but choosing another value within the range would not essentially change our results.

[1] G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rept. 405 (2005) 279–390, arXiv:hep-ph/0404175 [hep-ph].
[2] J. L. Feng, “Dark Matter Candidates from Particle Physics and Methods of Detection,” Ann. Rev. Astron. Astrophys. 48 (2010) 495–545, arXiv:1003.0904 [astro-ph.CO].

[3] B.-L. Young, “A survey of dark matter and related topics in cosmology,” Front. Phys. (Beijing) 12 no. 2, (2017) 121201. [Erratum: Front. Phys. (Beijing) 12 no. 2, 121202 (2017)].

[4] G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo, and F. S. Queiroz, “The Waning of the WIMP? A Review of Models, Searches, and Constraints,” arXiv:1703.07364 [hep-ph].

[5] M. Cirelli, N. Fornengo, and A. Strumia, “Minimal dark matter,” Nucl. Phys. B753 (2006) 178–194, arXiv:0512090 [hep-ph].

[6] M. Cirelli, A. Strumia, and M. Tamburini, “Cosmology and Astrophysics of Minimal Dark Matter,” Nucl. Phys. B787 (2007) 152–175, arXiv:0706.4071 [hep-ph].

[7] M. Cirelli, R. Franceschini, and A. Strumia, “Minimal Dark Matter predictions for galactic positrons, anti-protons, photons,” Nucl. Phys. B800 (2008) 204–220, arXiv:0802.3378 [hep-ph].

[8] M. Cirelli and A. Strumia, “Minimal Dark Matter: Model and results,” New J. Phys. 11 (2009) 105005, arXiv:0903.3381 [hep-ph].

[9] T. Hambye, F. S. Ling, L. Lopez Honorez, and J. Rocher, “Scalar Multiplet Dark Matter,” JHEP 07 (2009) 090, arXiv:0903.4010 [hep-ph]. [Erratum: JHEP05,066(2010)].

[10] M. R. Buckley, L. Randall, and B. Shuve, “LHC Searches for Non-Chiral Weakly Charged Multiplets,” JHEP 05 (2011) 097, arXiv:0909.4549 [hep-ph].

[11] Y. Cai, W. Chao, and S. Yang, “Scalar Septuplet Dark Matter and Enhanced $h \to \gamma\gamma$ Decay Rate,” JHEP 12 (2012) 043, arXiv:1208.3949 [hep-ph].

[12] K. Earl, K. Hartling, H. E. Logan, and T. Pilkington, “Constraining models with a large scalar multiplet,” Phys. Rev. D88 (2013) 015002, arXiv:1303.1244 [hep-ph].

[13] M. Cirelli, F. Sala, and M. Taoso, “Wino-like Minimal Dark Matter and future colliders,” JHEP 10 (2014) 033, arXiv:1407.7058 [hep-ph]. [Erratum: JHEP01,041(2015)].

[14] B. Ostdiek, “Constraining the minimal dark matter fiveplet with LHC searches,” Phys. Rev. D92 (2015) 055008, arXiv:1506.03445 [hep-ph].

[15] M. Cirelli, T. Hambye, P. Panci, F. Sala, and M. Taoso, “Gamma ray tests of Minimal Dark Matter,” JCAP 1510 no. 10, (2015) 026, arXiv:1507.05519 [hep-ph].

[16] C. Garcia-Cely, A. Ibarra, A. S. Lamperstorfer, and M. H. G. Tytgat, “Gamma-rays from Heavy Minimal Dark Matter,” JCAP 1510 no. 10, (2015) 058, arXiv:1507.05536 [hep-ph].

[17] C. Cai, Z.-M. Huang, Z. Kang, Z.-H. Yu, and H.-H. Zhang, “Perturbativity Limits for Scalar Minimal Dark Matter with Yukawa Interactions: Septuplet,” Phys. Rev. D92 no. 11, (2015) 115004, arXiv:1510.01559 [hep-ph].

[18] E. Del Nobile, M. Nardecchia, and P. Panci, “Millicharge or Decay: A Critical Take on
Minimal Dark Matter,” *JCAP* **1604** no. 04, (2016) 048, arXiv:1512.05353 [hep-ph].

[19] R. Mahbubani and L. Senatore, “The Minimal model for dark matter and unification,” *Phys. Rev.* **D73** (2006) 043510, arXiv:hep-ph/0510064 [hep-ph].

[20] F. D’Eramo, “Dark matter and Higgs boson physics,” *Phys. Rev.* **D76** (2007) 083522, arXiv:0705.4493 [hep-ph].

[21] R. Enberg, P. J. Fox, L. J. Hall, A. Y. Papaioannou, and M. Papucci, “LHC and dark matter signals of improved naturalness,” *JHEP* **11** (2007) 014, arXiv:0706.0918 [hep-ph].

[22] T. Cohen, J. Kearney, A. Pierce, and D. Tucker-Smith, “Singlet-Doublet Dark Matter,” *Phys. Rev.* **D85** (2012) 075003, arXiv:1109.2604 [hep-ph].

[23] O. Fischer and J. J. van der Bij, “The scalar Singlet-Triplet Dark Matter Model,” *JCAP* **1401** (2014) 032, arXiv:1311.1077 [hep-ph].

[24] C. Cheung and D. Sanford, “Simplified Models of Mixed Dark Matter,” *JCAP* **1402** (2014) 011, arXiv:1311.5896 [hep-ph].

[25] A. Dedes and D. Karamitros, “Doublet-Triplet Fermionic Dark Matter,” *Phys. Rev.* **D89** no. 11, (2014) 115002, arXiv:1403.7744 [hep-ph].

[26] M. A. Fedderke, T. Lin, and L.-T. Wang, “Probing the fermionic Higgs portal at lepton colliders,” *JHEP* **04** (2016) 160, arXiv:1506.05465 [hep-ph].

[27] L. Calibbi, A. Mariotti, and P. Tziveloglou, “Singlet-Doublet Model: Dark matter searches and LHC constraints,” *JHEP* **10** (2015) 116, arXiv:1505.03867 [hep-ph].

[28] A. Freitas, S. Westhoff, and J. Zupan, “Integrating in the Higgs Portal to Fermion Dark Matter,” *JHEP* **09** (2015) 015, arXiv:1506.04149 [hep-ph].

[29] C. E. Yaguna, “Singlet-Doublet Dirac Dark Matter,” *Phys. Rev.* **D92** no. 11, (2015) 115002, arXiv:1510.06151 [hep-ph].

[30] T. M. P. Tait and Z.-H. Yu, “Triplet-Quadruplet Dark Matter,” *JHEP* **03** (2016) 204, arXiv:1601.01354 [hep-ph].

[31] S. Horinch, O. Macias, D. Restrepo, A. Rivera, O. Zapata, and H. Silverwood, “The Fermi-LAT gamma-ray excess at the Galactic Center in the singlet-doublet fermion dark matter model,” *JCAP* **1603** no. 03, (2016) 048, arXiv:1602.04788 [hep-ph].

[32] S. Banerjee, S. Matsumoto, K. Mukaida, and Y.-L. S. Tsai, “WIMP Dark Matter in a Well-Tempered Regime: A case study on Singlet-Doublets Fermionic WIMP,” *JHEP* **11** (2016) 070, arXiv:1603.07387 [hep-ph].

[33] C. Cai, Z.-H. Yu, and H.-H. Zhang, “CEPC Precision of Electroweak Oblique Parameters and Weakly Interacting Dark Matter: the Fermionic Case,” *Nucl. Phys.* **B921** (2017) 181-210, arXiv:1611.02186 [hep-ph].

[34] T. Abe, “Effect of CP violation in the singlet-doublet dark matter model,” *Phys. Lett.* **B771** (2017) 125–130, arXiv:1702.07236 [hep-ph].

[35] W.-B. Lu and P.-H. Gu, “Mixed Inert Scalar Triplet Dark Matter, Radiative Neutrino Masses and Leptogenesis,” *Nucl. Phys.* **B924** (2017) 279-311, arXiv:1611.02106 [hep-ph].
C. Cai, Z.-H. Yu, and H.-H. Zhang, “CEPC Precision of Electroweak Oblique Parameters and Weakly Interacting Dark Matter: the Scalar Case,” Nucl. Phys. B924 (2017) 128–152, arXiv:1705.07921 [hep-ph].

N. Maru, T. Miyaji, N. Okada, and S. Okada, “Fermion Dark Matter in Gauge-Higgs Unification,” JHEP 07 (2017) 048, arXiv:1704.04621 [hep-ph].

X. Liu and L. Bian, “Dark matter and electroweak phase transition in the mixed scalar dark matter model,” arXiv:1706.06042 [hep-ph].

D. Egana-Ugrinovic, “The minimal fermionic model of electroweak baryogenesis,” arXiv:1707.02306 [hep-ph].

Q.-F. Xiang, X.-J. Bi, P.-F. Yin, and Z.-H. Yu, “Exploring Fermionic Dark Matter via Higgs Precision Measurements at the Circular Electron Positron Collider,” arXiv:1707.03094 [hep-ph].

A. Voigt and S. Westhoff, “Virtual signatures of dark sectors in Higgs couplings,” JHEP 11 (2017) 009, arXiv:1708.01614 [hep-ph].

J.-W. Wang, X.-J. Bi, Q.-F. Xiang, P.-F. Yin, and Z.-H. Yu, “Exploring Triplet-Quadruplet Fermionic Dark Matter at the LHC and Future Colliders,” arXiv:1711.05622 [hep-ph].

L. Di Luzio, R. Gröber, J. F. Kamenik, and M. Nardecchia, “Accidental matter at the LHC,” JHEP 07 (2015) 074, arXiv:1504.00359 [hep-ph].

T. Araki, C. Q. Geng, and K. I. Nagao, “Dark Matter in Inert Triplet Models,” Phys. Rev. D83 (2011) 075014, arXiv:1102.4906 [hep-ph].

S. Yaser Ayazi and S. M. Firouzabadi, “Constraining Inert Triplet Dark Matter by the LHC and FermiLAT,” JCAP 1411 no. 11, (2014) 005, arXiv:1408.0654 [hep-ph].

N. Khan, “Exploring Hyperchargeless Higgs Triplet Model up to the Planck Scale,” arXiv:1610.03178 [hep-ph].

Y. Hamada, K. Kawana, and K. Tsumura, “Landau pole in the Standard Model with weakly interacting scalar fields,” Phys. Lett. B747 (2015) 238–244, arXiv:1505.01721 [hep-ph].

R. Foot, H. Lew, X. G. He, and G. C. Joshi, “Seesaw Neutrino Masses Induced by a Triplet of Leptons,” Z. Phys. C44 (1989) 441.

P. Minkowski, “µ → eγ at a Rate of One Out of 10⁹ Muon Decays?,” Phys. Lett. 67B (1977) 421–428.

M. Gell-Mann, P. Ramond, and R. Slansky, “Complex Spinors and Unified Theories,” Conf. Proc. C790927 (1979) 315–321, arXiv:1306.4669 [hep-th].

T. Yanagida, “HORIZONTAL SYMMETRY AND MASSES OF NEUTRINOS,” Conf. Proc. C7902131 (1979) 95–99.

R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Violation,” Phys. Rev. Lett. 44 (1980) 912.

K. Kannike, “Vacuum Stability Conditions From Copositivity Criteria,” Eur. Phys. J. C72 (2012) 2093, arXiv:1205.3781 [hep-ph].
[54] K. Griest and D. Seckel, “Three exceptions in the calculation of relic abundances,” *Phys. Rev. D43* (1991) 3191–3203.

[55] Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters,” *Astron. Astrophys. 594* (2016) A13, arXiv:1502.01589 [astro-ph.CO].

[56] Fermi-LAT, MAGIC Collaboration, M. L. Ahnen et al., “Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies,” *JCAP 1602* no. 02, (2016) 039, arXiv:1601.06590 [astro-ph.HE].

[57] A. Mitridate, M. Redi, J. Smirnov, and A. Strumia, “Cosmological Implications of Dark Matter Bound States,” *JCAP 1705* no. 05, (2017) 006, arXiv:1702.01141 [hep-ph].

[58] J. Hisano, K. Ishiwata, and N. Nagata, “QCD Effects on Direct Detection of Wino Dark Matter,” *JHEP 06* (2015) 097, arXiv:1504.00915 [hep-ph].

[59] PandaX-II Collaboration, X. Cui et al., “Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment,” *Phys. Rev. Lett. 119* no. 18, (2017) 181302, arXiv:1708.06917 [astro-ph.CO].

[60] XENON Collaboration, E. Aprile et al., “Dark Matter Search Results from a One Tonne×Year Exposure of XENON1T,” arXiv:1805.12562 [astro-ph.CO].

[61] S. L. Adler, “Axial vector vertex in spinor electrodynamics,” *Phys. Rev. 177* (1969) 2426–2438.

[62] J. S. Bell and R. Jackiw, “A PCAC puzzle: $\pi^0 \rightarrow \gamma \gamma$ in the σ-model,” *Nuovo Cim. A60* (1969) 47–61.

[63] E. Witten, “An SU(2) Anomaly,” *Phys. Lett. 117B* (1982) 324–328.

[64] O. Bar, “On Witten’s global anomaly for higher SU(2) representations,” *Nucl. Phys. B650* (2003) 522–542, arXiv:hep-lat/0209098 [hep-lat].

[65] Particle Data Group Collaboration, C. Patrignani et al., “Review of Particle Physics,” *Chin. Phys. C40* no. 10, (2016) 100001.

[66] Particle Data Group Collaboration, J. Beringer et al., “Review of Particle Physics (RPP),” *Phys. Rev. D86* (2012) 010001.

[67] T. Hambye and K. Riesselmann, “Matching conditions and Higgs mass upper bounds revisited,” *Phys. Rev. D55* (1997) 7255–7262, arXiv:hep-ph/9610272 [hep-ph].