Relationship between Homocysteine, Folate, Vitamin B12 and Physical Performance in the Institutionalized Elderly

Misora Ao1, Nao Inuiya1, Junko Ohta2, Satoshi Kurose1, Yasusei Abe3, Naho Niki4, Shino Inoue5, Shizuo Tanaka6, Takashi Miyawaki1 and Kiyoshi Tanaka1,2

1Department of Food and Nutrition, Kyoto Women's University, Kyoto 605-8501, Japan
2Faculty of Nutrition, Kobe Gakuin University, Hyogo 651-2180, Japan
3Department of Health Science, Graduate School of Medicine, Kansai Medical University, Osaka 573-1010, Japan
4Nursing Care Home, Life in Kyoto, Kyoto 615-8256, Japan
5Nursing Care Home, Airanomori Ujigokasho, Kyoto 611-0011, Japan
6Nursing Care Center, Care House Ajisai, Kyoto 619-1154, Japan
7Nursing Care Center, Care House Yamabuki, Kyoto 611-0021, Japan
8Nursing Care Home, Villa Joyo, Kyoto 610-0114, Japan

(Received December 21, 2017)

Summary
Hyperhomocysteinemia causes various diseases including cardiovascular disease, osteoporotic fracture and dementia. Although there have been reports that hyperhomocysteinemia decreases physical performance, findings are inconsistent on the association of homocysteine, folate, vitamin B12 and physical performance. Considering that lower physical performance increases the risk of fall and fracture in the elderly, the effect of nutritional status on physical function must be clarified. This is a cross-sectional study conducted from April 2015 to November 2016. Eighty-six residents and users in five care facilities were evaluated for their blood homocysteine, folate and vitamin B12 concentrations and indices for physical performance; lower limb muscle strength, handgrip strength and gait speed. Analyses of physical performance were done in women only, considering the high proportion of women in the study population and the muscular gender difference. In the third tertile of plasma homocysteine concentration, handgrip strength was significantly lower than in the first tertile \((p=0.027)\). In the first tertile of serum folate concentration, handgrip strength was significantly lower than in the third tertile \((p=0.002)\). Although not statistically significant, lower limb muscle strength in the third tertile of folate was higher than in the first \((p=0.061)\) and second \((p=0.057)\) tertile. In the multiple regression analysis, however, only serum folate concentration was a significant contributor except for age. In subjects with their serum folate and vitamin B12 concentrations both exceeding the median, lower limb muscle strength was higher. Low serum folate concentration is a risk factor for lower physical performance independent of homocysteine in elderly women.

Key Words
folate, vitamin B12, homocysteine, physical performance, elderly

Homocysteine (Hcy) is an intermediate in the methionine cycle. Methionine is metabolized to S-adenosylmethionine, S-adenosyl-Hcy, then to Hcy.

Hcy is metabolized to methionine with vitamin B12 and folate as cofactors, or to cysteine vitamin B6-dependently. Therefore, blood Hcy concentration is increased by the deficiency of these vitamins (hyperhomocysteinemia) (1). Hyperhomocysteinemia has been known to be a risk factor for cardiovascular disease, which is independent of dyslipidemia (2).

Vitamin deficiency causes classical deficiency diseases with typical phenotypic changes. For example, vitamin B12 deficiency causes beriberi, and vitamin D deficiency leads to rickets (3, 4). In vitamin insufficiency, which is milder than deficiency, such classical diseases do not occur, but the risk for various diseases is increased. For example, it is well known that vitamin D insufficiency is a serious risk factor for osteoporotic fracture (5). Similarly, vitamin B12 deficiency causes pernicious anemia and folate deficiency leads to megaloblastic anemia or neurological disorders. Moreover, insufficiency of these vitamins causes hyperhomocysteinemia, and increases the risk for cardiovascular diseases (6–8).

Recently, hyperhomocysteinemia has also been reported to be a risk for various other diseases including osteoporotic fracture and dementia (9, 10). Since Japan has been becoming a super-aging society, such a relationship would be important both clinically and socially (11).

Bone is formed through calcium phosphate deposition onto the protein matrix composed mainly of collagen. It has been reported that hyperhomocysteinemia dis-
rupts the collagen-cross links and impairs bone strength (12, 13). Furthermore, previous papers have reported the relationship between Hcy and muscle strength (14–18). It is possible that hyperhomocysteinemia increases the fracture risk through two mechanisms: impaired bone strength and decreased muscle strength. However, recent data are not necessarily consistent. In some papers, insufficiencies of vitamin B₁₂ or folate were reported to cause hyperhomocysteinemia, which in turn, leads to low physical performance. In contrast, these vitamins were related to low physical performance independently of Hcy in other reports. There have been only a few reports on the relationship among Hcy, folate, vitamin B₁₂ and physical performance in Japanese elderly. Therefore in this paper, we have studied such a relationship in the institutionalized elderly.

MATERIALS AND METHODS

Subjects and study design. This is a cross-sectional study conducted from April 2015 to November 2016. The participants are 86 residents and users in five care facilities. Written consent to participate in this study was obtained from each subject after explanation of the objective and protocol of this study. The study protocol was approved by the Ethical Committee of Kyoto Women’s University (Ethics Approval number: 28-9), and the study was performed complying with the Declaration of Helsinki.

Subjects were either ambulatory or users of a wheelchair, but not bedridden. Subjects were excluded if they were taking vitamin B₁₂, folate, or vitamin B₆. Since food fortification of folate or vitamin B₁₂ is not done in Japan, the possibility for the undeclared use of supplementation was considered to be possible in subjects with extremely high concentrations for these vitamins. Participants whose serum vitamin B₁₂ or folate concentrations were above average plus 2SD, 1,162.8 pmol/L for vitamin B₁₂, and 37.5 nmol/L for folate, were excluded (19). In addition, participants whose plasma Hcy concentration exceeded average plus 2SD, 30.9 μmol/L were excluded. A total of 77 subjects (65 women, 12 men) were included in this analysis. Since there is a marked gender difference in muscle strength and female subjects constitute most participants in the current study, analyses for muscle strength were done in female subjects only.

Biochemical measurements. Non-fasting blood was drawn by venipuncture. After centrifugation, serum or plasma was stored at −70°C until measurement. Serum concentrations of vitamin B₁₂ and folate were measured by chemiluminescent enzyme immunoassay (CLEIA). Plasma Hcy concentration was measured by HPLC. Serum albumin concentration was measured by dye-binding (BCG) methods and serum total cholesterol concentration was measured by enzymatic (cholesterol oxidase) methods. Estimated glomerular filtration rate (eGFR; mL/min/1.73 m²) was calculated as 194 × creatinine⁻¹.₉₀₄ × age⁻₀.₂₈⁷ for men and 194 × creatinine⁻¹.₉₀₄ × age⁻₀.₂₈⁷ × 0.₇₃₉ for women (20).

Statistical analyses. Statistical analyses were done using SPSS version 22 (IBM Japan, Tokyo). Spearman’s correlation was used to examine the relationship between plasma Hcy and serum folate and vitamin B₁₂ concentrations. The difference between two independent groups was analyzed by the unpaired t test. Comparisons of subjects’ characteristics among tertiles of Hcy or folate were carried out using one-way ANOVA followed by Tukey’s multiple comparison test. The homogeneity of the variance was analyzed by the Levene test. Data were analyzed by the Kruskal-Wallis test when the variances were unequal. Multiple regression analysis was employed to assess the contributing factors for muscle strength. The significance level of the associations was set at p<0.05.

RESULTS

Background profiles of the study subjects are shown in Table 1. They were aged 83.5 ± 7 years on average with no gender difference. Their eGFR was almost the same as the reference value of 60 mL/min/1.73 m², and there was no gender difference (https://www.jsn.or.jp/guide/line/pdf/CKD_evidence2013/all.pdf). Their BMI and serum concentrations of albumin and total cholesterol were within the reference range, suggesting that these subjects were not generally malnourished. Although the men had higher height and weight than the women, there was no difference in BMI. Mean lower limb muscle strength was lower than that in general Japanese in
Homocysteine, Folate, B12 and Physical Performance

Comparisons of physical performance among tertiles of serum vitamin B12 concentrations and plasma Hcy concentration. Post hoc test showed a significant difference between the first and third tertile in handgrip strength ($p=0.002$). Although not statistically significant, lower limb muscle strength in the third tertile was higher than in the first ($p=0.061$) and second ($p=0.057$) tertile. There was no significant association between serum folate concentration and gait speed. Nor were there any significant differences in the indices for physical performance between the tertiles of serum vitamin B12 concentrations.

Multiple regression analysis was performed to study the contributing factors to muscle strength. Independent variables included for analysis were age, skeletal muscle mass percentage, serum albumin, folate, vitamin B12 concentrations and plasma Hcy concentration. Age has negatively, and serum folate concentration has positively contributed to handgrip strength (adjusted $R^2=0.376; p<0.001$). Similar results were obtained for lower limb muscle strength (Table 5).

Analysis for an interaction between folate, vitamin B12 and physical performance in women

Subjects were categorized into four groups according to their serum folate and vitamin B12 concentrations: group 1 (both lower than median), group 2 (folate lower than, and vitamin B12 higher than median), group 3 (folate higher than, and vitamin B12 lower than median), group 4 (both higher than median). According to ANOVA, lower limb muscle strength was significantly different between these groups ($p=0.027$), and

Table 2. Correlation of Hcy with folate or vitamin B12.

Correlation of Hcy with	r	p value
Folate	-0.435	<0.001
Vitamin B12	-0.388	<0.001

The r value represents the Spearman’s correlation coefficient.

Based on tertiles of folate are shown in Table 4. According to ANOVA, plasma Hcy concentration, lower limb muscle strength and handgrip strength were significantly different between tertiles of serum folate. The Post hoc test showed a significant difference between the first and third tertile in handgrip strength ($p=0.002$). Although not statistically significant, lower limb muscle strength in the third tertile was higher than in the first ($p=0.061$) and second ($p=0.057$) tertile. There was no significant association between serum folate concentration and gait speed. Nor were there any significant differences in the indices for physical performance between the tertiles of serum vitamin B12 concentrations.

Table 1. Background profiles of the study subjects.

	Total ($n=77$)	Men ($n=12$)	Women ($n=65$)	p value
Age (y)	83.5±7.4	81.0±8.8	84.0±7.1	0.207
Body height (cm)	147.6±9.2	161.0±5.9	145.0±7.3	<0.001
Body weight (kg)	49.1±9.5	57.7±10.9	47.4±8.3	0.001
BMI (kg/m²)	22.3±3.3	22.1±3.5	22.4±3.3	0.783
Skeletal muscle mass (%)	21.9±3.5	27.6±2.9	20.8±2.3	<0.001
Fat percentage (%)	33.4±6.6	23.7±9.0	35.2±4.2	0.002
Serum albumin (g/dL)	4.02±0.34	4.08±0.27	4.01±0.35	0.530
Total cholesterol (mg/dL)	190.1±34.4	186.8±36.8	190.7±34.2	0.723
eGFR (mL/min/1.73 m²)	60.7±14.7	59.5±11.4	61.0±15.3	0.747
Plasma Hcy (μmol/L)	13.9±4.7	16.3±6.5	13.4±4.2	0.168
Serum folate (nmol/L)	15.1±7.9	13.4±8.4	15.4±7.9	0.416
Serum vitamin B12 (pmol/L)	420.3±177.1	367.9±152.0	429.9±180.7	0.268
Lower limb muscle strength (N)	188.3±93.6	260.2±98.3	172.3±85.5	0.003
Lower limb muscle strength (kgf)	0.39±0.18	0.46±0.16	0.38±0.18	0.154
Handgrip strength (kg)	15.6±6.8	25.8±5.2	13.7±5.1	<0.001
Gait speed (m/s)	1.1±0.4	1.2±0.4	1.1±0.3	0.341

Data are expressed as mean±SD. Comparison was made according to gender using t test. Lower limb muscle strength, handgrip strength, and gait speed were measured in 66 (men 12, women 54), 76 (men 12, women 64), and 42 subjects (men 9, women 33), respectively.

In their eighties, probably because most of these subjects were not able to live independently (21). Correlation of blood Hcy, folate and vitamin B12 concentrations

Plasma Hcy concentration exhibited significant negative correlation with both serum folate ($r=-0.435, p<0.001$) and vitamin B12 ($r=-0.388, p=0.001$) (Table 2). Similar results were obtained even when individually analyzed for men and women.

Comparisons of physical performance among tertiles of plasma Hcy in women

Subjects’ characteristics and physical performance according to tertiles of Hcy are shown in Table 3. ANOVA has revealed significant differences in serum folate, serum vitamin B12 and handgrip strength between tertiles. There was a significant difference between the first and third tertile in handgrip strength ($p=0.027$) shown by the post hoc analysis, but no significant association was observed between tertiles of plasma Hcy concentration and lower limb muscle strength or gait speed.

Comparisons of physical performance among tertiles of folate in women

Subjects’ characteristics and physical performance based on tertiles of folate are shown in Table 4. According to ANOVA, plasma Hcy concentration, lower limb muscle strength and handgrip strength were significantly different between tertiles of serum folate. The Post hoc test showed a significant difference between the first and third tertile in handgrip strength ($p=0.002$). Although not statistically significant, lower limb muscle strength in the third tertile was higher than in the first ($p=0.061$) and second ($p=0.057$) tertile. There was no significant association between serum folate concentration and gait speed. Nor were there any significant differences in the indices for physical performance between the tertiles of serum vitamin B12 concentrations.

Analysis for an interaction between folate, vitamin B12 and physical performance in women

Subjects were categorized into four groups according to their serum folate and vitamin B12 concentrations: group 1 (both lower than median), group 2 (folate lower than, and vitamin B12 higher than median), group 3 (folate higher than, and vitamin B12 lower than median), group 4 (both higher than median). According to ANOVA, lower limb muscle strength was significantly different between these groups ($p=0.027$), and
there was a significant difference in lower limb muscle strength between group 1 and group 4 in the post hoc test \((p=0.017)\), (Fig. 1). There were no significant associations with handgrip strength and gait speed (data not shown).

DISCUSSION

There have been reports on the relationship among folate, vitamin B_{12} and Hcy and physical performance. Elevated Hcy has been reported to be as an independent risk factor for low physical performance. A cohort study
from the Netherlands has shown that high plasma Hcy is an independent risk factor for lower physical performance in older women (14). Another cross-sectional study from Singapore has shown that physical and functional decline was associated with elevated Hcy (15). Additionally, analysis of the baseline data of B-PROOF (B-Vitamins for the PRevention Of Osteoporotic Fractures) Study has shown that elevated plasma Hcy was associated with reduced physical performance and muscle strength in older women (16).

However, previous reports are not necessarily consistent on the relative involvement of each vitamin. Physical and functional decline was associated with elevated Hcy and low folate, but not with vitamin B12, in the Singapore study (15). In the B-PROOF study, elevated plasma Hcy was associated with reduced physical performance and muscle strength independently of vitamin B12 and folate, but there was no significant association between folate, vitamin B12 and physical activity (16). In the Dutch study, high plasma Hcy was an independent risk factor for lower physical performance although the association between vitamin B12 and physical performance was less clear (14). Unfortunately, serum folate concentration was not measured in their study. In another cross-sectional study, the frequency of sarcopenia and dynapenia were significantly higher in vitamin B12 deficiency (<400 pg/mL) (17).

Such inconsistency can be due to various reasons. First, folate fortification may obscure the contribution of folate (15). In the current study, serum folate concentration, but not vitamin B12, has significantly contributed the muscle strength. Cereals are not fortified with folate in Japan, which may be related to the results that folate was the only risk factor for low physical function in the present study. Indeed, the serum folate concentration was 15.1 ± 7.9 nmol/L in the current study, while it was 24.1 ± 12.6 nmol/L from the folate fortified region (15). Difference in the background profiles of the study subjects would also greatly influence the results. Both folate and vitamin B12 deficiency are common in older people, mainly due to malabsorption or low intake (25, 26). However, folate deficiency (serum folate concentration <6.8 nmol/L) was more common than vitamin B12 deficiency (serum vitamin B12 concentration <150 pmol/L) in our study. The mean age in the current study population was higher than that in the previous studies (14–16). Additionally, subjects in our study were institutionalized elderly, whereas study subjects in the previous studies were community-dwelling. These differences in subjects’ characteristics between previous reports and the current study may have influenced the results.

Several mechanisms have been suggested on the relationship between low folate and low physical performance. Wei has studied the folate status and its association with muscle strength and gait measures in diabetic patients in Singapore over 65 y old, and reported that folate concentration was significantly correlated with handgrip and leg strength which was corrected by BMI (18). Leg strength was positively correlated with gait measures and negatively correlated with a history of falls. He has argued that folate deficiency may negatively affect strength and gait measurement through mechanisms independent of elevated Hcy concentration, such as neurotransmitter synthesis, myelination, synthesis of DNA and protein, DNA methylation and epigenetic regulation. Although this study is from Singapore, a folate fortified region, he has suggested the possibility that inclusion of diabetic patients receiving rather high doses of vitamin B12 may have affected the results. de Lau et al. have reported that a higher plasma folate concentration is associated with better global cognitive function and better performance on tests of psychomotor speed regardless of Hcy concentration (27). In their study, brain imaging was also studied, and folate deficiency was associated with white matter lesion, but not with decreased hippocampal or amygdalar volume. Since white matter lesion and decreased hippocampal or amygdalar volume represent small vessel disease and early manifestation of Alzheimer’s disease, respectively, they have concluded that folate deficiency leads to impaired cognitive function through vascular mechanisms.

There also have been reports demonstrating unique mechanisms between high Hcy, low vitamin B12 and low physical performance, respectively, although such a significant association was not observed in the current study. McDermott et al. have reported the association of lower calf muscle characteristics with inflammatory markers such as D-dimer, and Hcy in patients with peripheral arterial disease (28). Elevated Hcy was associated with multiple domains of disability mediated in part by muscle strength and gait speed. Another basis was suggested for these findings. Hcy is metabolized to highly reactive homocysteine thiolactone by methionyl
transfer RNA synthetase. Then, homocysteine thiolactone reacts with lysine residues of proteins, a process called homocysteinyllation. The mechanism could be a possible factor of protein damage by Hcy (29, 30). An additional mechanism, the contribution of hyperhomocysteinemia to ischemic change to the brain, has been suggested based on the MRI (magnetic resonance imaging) finding of white matter hyperintensities (31). Vitamin B12 insufficiency may also be related to low physical performance independently through its association with neurological problems (32).

The lack of an obvious relationship between vitamin B12 and physical performance in our study does not preclude the involvement of vitamin B12. Compared to subjects with their folate and vitamin B12 status both lower than median (folate, 13.6 nmol/L; vitamin B12, 391.1 pmol/L), lower limb muscle strength was significantly higher in those with their vitamin statuses both higher than median, but not in those with only one of these vitamins. Therefore, even if folate more potently affects physical performance, vitamin B12 also seems to have some role in the current population. Despite controversies concerning the mechanisms underlying the relationship among Hcy, folate and vitamin B12 and physical performance, maintaining the status of these vitamins would be of importance from a practical point of view.

Our study has some limitations. First, although plasma Hcy is also influenced by vitamin B6 status, its serum concentration could not be measured. Since vitamin B6 measurement is not approved under Japanese Health Insurance, its measurement is not common in clinical practice. An additional problem is related to the technical one. Serum vitamin B12 or folate can be measured by immunoassay, and is easily available. However, serum vitamin B6 must be measured by HPLC (33). Second, folate status was evaluated only by its serum concentration. Folate concentration in the serum and blood cells reflects the short-term and long-term folate status, respectively. Third, we could not measure methylenalonic acid (MMA). MMA has the advantage that it is influenced by vitamin B12 status alone, but can be measured only by gas chromatography mass spectrometry, which is difficult to perform (32). Finally, physical performance was measured in a limited number of subjects.

In conclusion, lower serum folate concentration was associated with decreased physical performance in elderly women, and maintaining appropriate folate status is of pivotal importance in the elderly to avoid impaired physical function and the unfavorable consequences thereof.

Acknowledgments
This study was supported by JSPS KAKENHI Grant Number 16K00881.

REFERENCES
1) Selhub J. 2008. Public health significance of elevated homocysteine. Food Nutr Bull 29: (2 Suppl): S116–S125.
2) Wald DS, Law M, Morris JK. 2002. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325: 1202.
3) Bowman BA, Pfeiffer CM, Barfield WD. 2013. Thiamine deficiency: beriberi, and maternal and child health: why pharmacokinetics matter. Am J Clin Nutr 98: 635–636.
4) Fischer PR, Rahman A, Cinna JP, Kyaw-Myint TO, Kabir AR, Talukder K, Hussain N, Manaster BJ, Staab DB, Duxbury JM, Welch RM, Meisner CA, Haque S, Combs GF Jr. 1999. Nutritional rickets without vitamin D deficiency in Bangladesh. J Trop Pediatr 45: 291–293.
5) Sakuma M, Endo N, Oinuma T. 2007. Serum 25-OHD insufficiency as a risk factor for hip fracture. J Bone Miner Metab 25: 147–150.
6) Stabler SP. 2013. Clinical practice. Vitamin B12 deficiency. N Engl J Med 368: 149–160.
7) Bailey LB, Stover PJ, McNulty H, Fenech ME, Gregory JF 3rd, Mills JL, Pfeiffer CM, Fazili Z, Zhang M, Ueland PM, Molloy AM, Caudill MA, Shane B, Berry RJ, Bailey RL, Hausman DB, Raghavan R, Raiten DJ. 2015. Biomarkers of nutrition for development-folate review. J Nutr 145: 1636S–1680S.
8) Marti-Carvajal AJ, Solá I, Lathyris D, Dayer M. 2017. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 8: CD006612.
9) van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, de Groot LC, Holman A, Witteman JC, van Leeuwen JP, Breter M, Lips P, Pols HA, Uitterlinden AG. 2004. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350: 2033–2041.
10) Smith AD, Reisman H. 2016. Homocysteine, B vitamins, and cognitive impairment. Ann Rev Nutr 36: 211–239.
11) Kondo K. 2016. Progress in aging epidemiology in Japan: The JAGIS Project. J Epidemiol 26: 331–336.
12) Saito M, Fujii K, Marumo K. 2006. Degree of mineralization-related collagen crosslinking in the femoral cancellous bone in cases of hip fracture and controls. Calcif Tissue Int 79: 160–168.
13) Saito M, Fujii K, Soshi S, Tanaka T. 2006. Reductions in links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int 17: 986–995.
14) van Schoor NM, Swart KM, Pluijm SM, Visser M, Simsek S, Smulders Y, Lips P. 2012. Cross-sectional and longitudinal association between homocysteine, vitamin B12 and physical performance in older persons. Eur J Clin Nutr 66: 174–181.
15) Ng TP, Aung KC, Feng L, Scherer SC, Yap KB. 2012. Homocysteine, folate, vitamin B-12, and physical function in older adults: cross-sectional findings from the Singapore Longitudinal Ageing Study. Am J Clin Nutr 96: 1362–1368.
16) Swart KM, Enneman AW, van Wijngaarden JP, van Dijk SC, Brouwer-Brolsma EM, Ham AC, Dhonukshe-Rutten RA, van der Velde N, Brug J, van Meurs JB, de Groot LC, Uitterlinden AG, Lips P, van Schoor NM. 2013. Homocysteine and the methylenetetrahydrofolate reductase 677C→T polymorphism in relation to muscle mass and strength, physical performance and postural sway. Eur J Clin Nutr 67: 743–748.
17) Bulut EA, Soysal P, Aydin AE, Dokuzlar O, Kocyigit SE, Isik AT. 2017. Vitamin B12 deficiency might be related to sarcopenia in older adults. Exp Gerontol 95: 136–140.
18) Wee AK. 2016. Serum folate predicts muscle strength: a pilot cross-sectional study of the association between serum vitamin levels and muscle strength and gait measures in patients ≥65 years old with diabetes mellitus in a primary care setting. Nutr J 15: 89.

19) Yetley EA, Pfeiffer CM, Phinney KW, Bailey RL, Blackmore S, Bock JL, Brody LC, Curmel R, Curtin LR, Durazo-Arvizu RA, Eckfeldt JH, Green R, Gregory JF. 3rd. Hoofnagle AN, Jacobsen DW, Jacques PF, Lacher DA, Jacques PF, Lacher DA, Mayne ST, Miettinen TA, Molloy AM, Massaro J, Mills JL, Nexo E, Rader JI, Selhub J, Sempio C, Shane B, Stabler S, Stover P, Tamura T, Teston A, Thorpe SJ, Coates PM, Johnson CL, Picciano MF,时机 Nelson A, Selhub J, Sempos C, Shane B, Stabler S, Stover P, Tamura T, Tedstone A, Thorpe SJ, Coates PM, Johnson CL, Picciano MF. 2011. Biomarkers of vitamin B-12 status in NHANES: a roundtable summary. Am J Clin Nutr 94: 313S–321S.

20) Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A; Collaborators Developing the Japanese Equation for Estimated GFR. 2009. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53: 982–992.

21) Narumi K, Funaki Y, Yoshimura N, Muraki S, Omori G, Nawa H, Seki R. 2017. Quadriceps muscle strength reference value as index for functional deterioration of locomotive organs: Data from 3617 men and women in Japan. J Orthop Sci 22: 765–770.

22) Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB. 1994. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49: M85-M94.

23) Kyle OG, Bosausc I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Schafetter H, Schols AM, Pichard C; Composition of the ESPEN Working Group. 2004. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr 23: 1226–1243.

24) Oshima Y, Shiga T, Namba H, Kuno S. 2010. Estimation of whole-body skeletal muscle mass by bioelectrical impedance analysis in the standing position. Obes Res Clin Pract 4: e1–e82.

25) Baik HW, Russell RM. 1999. Vitamin B12 deficiency in the elderly. Annu Rev Nutr 19: 357–377.

26) Allen LH. 2008. Causes of vitamin B12 and folate deficiency. Food Nutr Bull 29(2 Suppl): S20–S34; discussion S35–S37.

27) de Lau LM, Refsum H, Smith AD, Johnston C, Breteler MM. 2007. Plasma folate concentration and cognitive performance: Rotterdam Scan Study. Am J Clin Nutr 86: 728–734.

28) McDermott MM, Ferrucci L, Guralnik JM, Tian L, Green D, Liu K, Tan J, Liao Y, Pearce WH, Schneider JR, Ridker P, Rifai N, Hoff F, Criqui MH. 2007. Elevated levels of inflammation, d-dimer, and homocysteine are associated with adverse calf muscle characteristics and reduced calf strength in peripheral arterial disease. J Am Coll Cardiol 50: 897–905.

29) Kuo HK, Liao KC, Leveille SG, Bean JF, Yen CJ, Chen JH, Yu YH, Tai TY. 2007. Relationship of homocysteine levels to quadriceps strength, gait speed, and late-life disability in older adults. J Gerontol A Biol Sci Med Sci 62: 434–439.

30) Jakubowski H. 2000. Homocysteine thiolactone: metabolic origin and protein homocysteinylination in humans. J Nutr 130(2S Suppl): 377S–381S.

31) Feng L, Isaac V, Sim S, Ng TP, Krishnan KR, Chee MW. 2013. Associations between elevated homocysteine, cognitive impairment, and reduced white matter volume in healthy old adults. Am J Geriatr Psychiatry 21: 164–172.

32) Hunt A, Harrington D, Robinson S. 2014. Vitamin B12 deficiency. BMJ 349: g5226.

33) Ueland PM, Ulvik A, Riis-Avila L, Midttun Ø, Gregory JF. 2015. Direct and functional biomarkers of vitamin B6 status. Ann Nutr Metab 55: 8–14.