Predicting the Effectiveness of Hydrochloric Acid Treatment in an Oil Field Using the Calculation of Changes in the Skin Factor and Hydrodynamic Modeling

S N Krivoshchekov¹, K A Vyatkin¹, K A Ravelev¹
¹Perm National Research Polytechnic University, Perm 614990, Komsomolsky Prospect 29, Russian Federation

E-mail: krivoshchekov@gmail.com

Abstract. The article provides an effectiveness assessment of the designed hydrochloric acid treatment at one of the wells of the Western field (Perm Krai). Efficiency was predicted with hydrodynamic modeling of measures to intensify the influx of oil based on a preliminary calculation of the change in the skin factor. Daccord and Lenormand’s experiments were used as the basis for improving the state of the bottomhole zone. These studies allow us to calculate the decrease in filtration resistance in the near-wellbore zone of the considered well formation. The calculation took into account key factors that affect the effectiveness of hydrochloric acid treatment. Using a hydrodynamic simulator, the procedure to stimulate oil production in the studied field is designed. Based on simulation calculations, an analysis of additional oil production was carried out in comparison with the base case for 10 years of operation of this development object. The methodology used in this work will allow oil companies to more reasonably approach the design of hydrochloric acid treatments, and also take into account key factors to find optimal solutions in order to maximize the effectiveness of measures.

1. Introduction

During the development of oil fields, deterioration of the bottomhole zone (BHZ) is observed. This is caused by numerous factors that lead to the mudding of the void space and, consequently, to a decrease in well productivity. Due to these complications, there is a need for geological and technical measures to intensify oil production.

Hydrochloric acid treatment (HAT) is the most common method for stimulating oil wells in the worsened condition of the BHZ today [1 - 6]. However, with the existing experience of using this technology and the simplicity of the method, the share of successful treatments is less than 50% [7 - 9]. This indicates an inadequate approach to planning and conducting the procedure, which consists in the insufficient study of the key factors affecting the HAT effectiveness.

The procedure success can be estimated by the skin factor, which takes into account the degree of contamination of the near-wellbore zone (NWZ). The skin factor is usually calculated using the Hawkins’ formula (expression 1) [10]:

\[S = \left(\frac{k}{k_d} - 1 \right) \cdot \ln \frac{r_d}{r_w} \]

(1)

S is skin factor;

k is permeability coefficient of the farfield zone, μm²;
2. Materials and methods

In this paper, we propose to evaluate the HAT effectiveness in one oil well of the Western field (Perm Krai) using the Tempest More hydrodynamic simulator, which is based on a change in the skin factor calculated by the Daccord and Lenormand’s formula (expression 2) [18, 19]:

$$\Delta S = -\frac{1}{d} \cdot l n \left(1 + A c \cdot \left(\frac{q}{D \cdot h} \right)^{-1/3} \cdot \frac{1.7 \cdot 10^4 \cdot V}{\pi \cdot h \cdot m \cdot r_w^d} \right)$$

(2)

d is fractal dimension of pore space structure in bottomhole zone;

$A c$ is acid value;

q is rate of acid composition injection, m^3/s;

D is diffusion coefficient, m^2/s;

h is perforated thickness of formation, m;

V is volume of injected acid composition, m^3;

m is porosity, %.

Daccord and Lenormand’s experiments made it possible to derive an empirical equation that allows us to estimate the change in the skin factor taking into account many factors, which include the geological features of the reservoir, the technological parameters of the injection of the acid composition and its properties, and also the well design.

This event is scheduled for 2021. The considered well has a standard diameter of 0.146 m and reveals the Tournaisian reservoir which has a porosity of 16%. Oil and water samples were taken from this development object to study the nature of the interaction with the acid composition to prevent complications in the form of highly viscous emulsions and sediments. Using hydrodynamic modeling, it is possible to analyze the procedure effectiveness when calculating the additional oil production obtained after 10 years of this facility operation.

3. Results

In order to determine the change in the skin factor, a number of laboratory works were carried out, as well as a review of scientific publications on HAT to ensure correct calculations.
The lithological and mineralogical composition of productive deposits plays a large role in the effectiveness of HAT since an increased content of terrigenous minerals reduces the effectiveness of the measure [20 - 22]. In this regard, expression 2 takes into account the quantitative contents of calcite and dolomite in the rock, which are expressed in the fractal dimension \(d \) (expression 3):

\[
d = \frac{1.6 \cdot x + 2 \cdot y}{x + y}
\]

\(x \) is limestone content in rock, %;
\(y \) is dolomite content in rock, %.

To determine the percentage of calcite and dolomite in the rock, laboratory tests were carried out with a carbonate meter KM-04M. This device allows you to ascertain the mass content of calcite, dolomite and insoluble mineral residue in the crushed rock sample. According to the study, it was determined that the content of calcite was 84 % and dolomite – 3 %.

In expression (2), the acid value is represented by the following relationship:

\[
Ac = \frac{m \cdot C_{HCl}}{C_{rock} \cdot \theta}
\]

\(C \) is molar concentration, mol/l;
\(\theta \) is stoichiometric coefficient.

The acid composition was FLUXOCORE-210 (grade P), which shows good performance in the field experience and in laboratory tests [23]. Several laboratory tests were carried out with this AC to study its interaction with reservoir fluids in various consistencies. The state of the obtained mixtures was evaluated visually for the presence of a precipitate and phase separation, and the amount of residue was examined when filtering through a 100-mesh sieve. Table 1 illustrates some results of the tests on the reservoir fluids and AC compatibility.

Table 1. Compatibility of formation fluids collected from the target well with the acid composition under test.
Prepared Mixture

Composition of interacting products

Water	0 %
Oil	50 %
AC	50 %

According to the laboratory studies on compatibility, it has been found that the AC is suitable for these conditions since there are no complications when mixing and filtering. The molar concentration of hydrochloric acid in this AC is 32.39 mol/l.

The concentration value of the reservoir depends on the percentage of calcite and dolomite in the rock, as well as on their molar concentrations $C_{CaCO_3} = 27.08$ mol/l and $C_{CaMg(CO_3)2} = 15.40$ mol/l. The concentration value of the reservoir is calculated using the following equality:

$$C_{rock} = \frac{C_{CaCO_3} \cdot x + C_{CaMg(CO_3)2} \cdot y}{x + y} \quad (5)$$

The reservoir stoichiometric coefficient presented in expression (4) is calculated like a fractal value. The stoichiometric coefficient for calcite $\theta_{CaCO_3} = 2$, and for dolomite $\theta_{CaMg(CO_3)2} = 4$, then for the collector it is calculated using the following expression:

$$\vartheta = \frac{\theta_{CaCO_3} \cdot x + \theta_{CaMg(CO_3)2} \cdot y}{x + y} \quad (6)$$

The diffusion coefficient is estimated by the Stokes-Einstein equation [24]:

$$D = \frac{k_B \cdot T}{6 \cdot \pi \cdot \mu \cdot r} \quad (7)$$

k_B is Boltzmann constant, J/K;
T is absolute reservoir temperature, K;
μ is dynamic viscosity of acid composition, Pa⋅s;
r is diffusing particle radius, m.

The dynamic viscosity of AC was determined with a Pinkevich Viscometer (VPZh-4) and it amounted to 1.37 mPa⋅s. The radius of the diffusing AC particles, as determined with a binocular microscope, was $1.0 \cdot 10^{-6}$ m. The temperature at the bottom of the considered well is 29°C, therefore $T = 302.15$ K.

Based on the hydrodynamic parameters of the target object and the technical characteristics of the Azinmash-30 pumping unit, it was decided to pump AC into the reservoir at a rate of 9.36 l/s. The BHZ is characterized by a deteriorated state, therefore it is planned to carry out large-volume hydrochloric acid treatment. Given the specific volumes of AC with this technology [25], it is planned to inject 40 m³ with a 9.7 m perforated formation thickness into this target well.

According to the calculations and recommendations, it has been found that after the planned HAT at the target site, the change in the skin factor will be -3.9. This value corresponds to a significant decrease in filtration resistance in the BHZ and an increase in oil flow to the wellbore. For a more accurate assessment of efficiency, hydrodynamic modeling is given, which will establish the increase in oil production. The hydrodynamic model of the development object, which is presented in Figure 1,
allows us to obtain data on the values of the well flow rate and accumulated production of interest for the base and forecast options, as given in Table 2. The calculations were conducted through 2030.

![Illustration of the hydrodynamic model](image)

Figure 1. Illustration of the hydrodynamic model.

Table 2. Simulation of the basic and design variants.

Date	Oil flow rate, m³/day	Cumulative oil production, thous. m³	Water flow rate, m³/day	Cumulative water production, thous. m³						
	Basic	Design								
01.2020	4.1583	4.1583	36.7074	36.7074	1.0667	1.0667	36.7074	36.7074	3.7342	3.7342
01.2021	4.0424	10.5711	38.0841	39.4028	1.1826	3.6789	41.6629	43.0817	4.1026	4.4446
01.2022	3.6541	8.9702	39.4996	42.9740	1.2104	5.2798	44.1547	46.5835	4.5456	6.0888
01.2023	3.2985	7.0429	40.7666	45.8541	1.2139	7.2071	46.9223	49.3511	4.9884	8.4100
01.2024	2.9957	6.2093	41.9128	48.2448	1.2132	8.0407	49.1185	51.5473	5.4314	11.2205
01.2025	2.7520	5.9245	42.9603	50.4548	1.2136	8.3256	51.2769	53.6757	5.8744	14.2119
01.2026	2.5522	5.3397	43.9298	52.5485	1.2109	8.4273	52.5485	54.6773	6.3182	17.2792
01.2027	2.3838	4.9750	44.8293	54.4287	1.2001	8.1239	53.7108	55.8396	6.7585	20.3116
01.2028	2.2261	4.6390	45.6699	56.1766	1.1883	7.4533	54.9607	57.2169	7.1945	23.1674
01.2029	2.0844	4.3402	46.4557	57.8119	1.1758	6.6629	56.1766	58.4268	7.6260	25.7426
01.2030	1.9680	4.0870	47.1967	59.3506	1.1659	6.1919	57.8119	60.0738	8.0544	28.0785
Analyzing the data presented in Table 2, it can be concluded that a significant increase in oil production is expected, approximately a 2.5-fold growth after HAT at the target oil producing well. Based on the conducted forecast with a hydrodynamic simulator, by the beginning of 2030 the cumulative oil production will have increased by 12.15 thousand m3, and the cumulative water production - by 20.02 thousand m3.

4. Conclusion
This work demonstrates unique approach to predicting the effectiveness of HAT in carbonate reservoirs. The technology allows us to estimate the increase in oil production using hydrodynamic modeling which takes into account a change in the filtration resistance in the BHZ calculated on the basis of key factors. These factors include the lithological and mineralogical composition of the rock, the technological parameters of the AC injection and its properties, as well as the design features of the well. Consideration of these factors will make it possible to predict the efficiency of oil production intensification measures most accurately. This paper provides a complete calculation cycle to change the skin factor for the target object and HAT design in the hydrodynamic model. The effectiveness of this technology is substantiated according to the results of oil production growth on the basis of laboratory work to study the properties and characteristics of the applied AC, analysis of the required technological parameters of the AC injection into the formation and the nature of its interaction with formation fluids, structural features of the developed formation, as well as a review of scientific publications on the methods of well stimulation. The methodology will allow oil companies to more competently approach HAT planning, design and conducting. This method can be used to make recommendations on the selection of AC and the technological parameters of its injection into the formation in order to obtain the greatest effect.

5. References
[1] Khizhnyak G P and Amirov A M et al 2015 Study of Acid-Generating Composition Impact on Core Samples of Productive Sediments of Kuyumbinsky License Block Oil Industry 3 31-35
[2] Aidagulov G and Gwaba D et al 2019 Effects of Pre-Existing Fractures on Carbonate Matrix Stimulation Studied by Large-Scale Radial Acidizing Experiments SPE Middle East Oil and Gas Show and Conference
[3] Moid F and Rodoplu R et al 2020 Acid Stimulation Improvement with the Use of New Particulate Base Diverter to Improve Zonal Coverage in HPHT Carbonate Reservoirs International Petroleum Technology Conference
[4] Ridner D and Frick T et al 2019 Influence of Transport Conditions on Optimal Injection Rate for Acid Jetting in Carbonate Reservoirs SPE Production & Operations
[5] Sarmah A and Farid Ibrahim A et al 2019 A Novel Cationic Polymer System That Improves Acid Diversion in Heterogeneous Carbonate Reservoirs SPE Oil and Gas India Conference and Exhibition
[6] Singh R and Tong S et al 2019 Stimulation of Calcite-Rich Shales Using Nanoparticle-Microencapsulated Acids SPE Journal
[7] Liu P and Yao J et al 2017 Modeling and simulation of wormhole formation during acidization of fractured carbonate rocks Journal of Petroleum Science and Engineering 154 284-301
[8] Santos R M and Chiang Y W et al 2014 Distinguishing between carbonate and non-carbonate precipitates from the carbonation of calcium-containing organic acid leachates Hydrometallurgy 147 90-94
[9] Martyushev D A 2018 Laboratory studies of acid compositions for treating reservoirs characterized by different carbonates and the structure of the void space of rocks Bulletin of Tomsk Polytechnic University. Georesourse Engineering 329 (4)
[10] Hawkins M F 1956 A note on the skin effect Journal of Petroleum Technology 8 (12) 65-66
[11] Ali M T and Ezzat A A et al 2019 A Model To Simulate Matrix-Acid Stimulation for Wells in Dolomite Reservoirs with Vugs and Natural Fractures SPE Journal
[12] Abdrazakov D and Ziauddin M et al 2019 Integration of Latest Laboratory, Software and Retarded Acid Technologies to Increase Efficiency of Acid Treatments in Carbonates: Case Studies from Central Asia *International Petroleum Technology Conference*

[13] Hall-Thompson B and Ernesto A R et al 2020 Acid Stimulation-Best Practices for Design, Selection and Testing of Acid Recipes in Low Permeability Carbonate Reservoirs *International Petroleum Technology Conference*

[14] Gurbatova I P and Plotnikov V V et al 2013 Specifics of Study of Flow Properties of Oriented Core of Structurally Complex Carbonate Reservoirs *Bulletin of Perm National Research Polytechnic University. Geology, Oil and Gas and Mining* 9 79-86

[15] Farooq U and Ahmed J et al 2019 Heterogeneity in the Petrophysical Properties of Carbonate Reservoirs in Tal Block *SPWLA 60th Annual Logging Symposium*

[16] Trushin Y and Aleshchenko A et al 2019 Complex Approach to the Design of Acid Treatment of Carbonate Reservoirs *SPE Russian Petroleum Technology Conference*

[17] Khuzin R and Shevko N et al 2019 Improving Well Stimulation Technology Based on Acid Stimulation Modeling, Lab and Field Data Integration *SPE Russian Petroleum Technology Conference*

[18] Daccord G and Touboul E et al 1989 Carbonate acidizing: toward a quantitative model of the wormholing phenomenon *SPE production engineering* 4 (1) 63-68

[19] Ikonnikova L N and Zolotukhin A B 2013 Prediction of well flow rate after hydrochloric acid treatment at bottomhole pressure below saturation pressure *Equipment and technologies for the oil and gas complex* 2 35-37

[20] Kalinin V F 2007 Lithological and physical criteria for optimizing the technology of clay acid treatment of terrigenous reservoirs *Bulletin of the Saratov University. New episode. Earth Science Series* 7 (1)

[21] Petrov I A and Azamatov M A et al 2010 An integrated approach to the treatment of the bottomhole formation zone as a way to intensify production *Georesources* 1 (33)

[22] Napalkov V N and Nurgalieva N G et al 2009 Features of the application of the hydrochloric acid treatment method in cavernous-fractured carbonate reservoirs of high-viscosity oils *Georesources* 3 (31)

[23] Ravelev K A 2019 Comparative Analysis of Effectiveness of Acid Compositions Application for Hydrochloric Acid Treatment of Bottomhole Zone of a Carbonate Reservoir *Problems of Hydrocarbon and Ore Mineral Deposit Development* 1 194-196

[24] Chordia M and Trivedi J J 2010 Diffusion in naturally fractured reservoirs-a-review *SPE Asia Pacific Oil and Gas Conference and Exhibition*

[25] Musabirov M K and Dmitrieva A Y et al 2019 Increasing the Effectiveness of Foam Acid and Large-Volume Selective Treatment in the Carbonate Fields of PAO TATNEFT *Oil Industry* 11 116-119

Acknowledgments

This research was funded by the state assignment of the Ministry of Science and Higher Education of the Russian Federation as part of a government assignment, grant number FSNM-2020-0027.