Cluster Evaluation of Density Based Subspace Clustering
Rahmat Widia Sembiring, Jasni Mohamad Zain

Abstract — Clustering real world data often faced with curse of dimensionality, where real world data often consist of many dimensions. Multidimensional data clustering evaluation can be done through a density-based approach. Density approaches based on the paradigm introduced by DBSCAN clustering. In this approach, density of each object neighbours with MinPoints will be calculated. Cluster change will occur in accordance with changes in density of each object neighbours. The neighbours of each object typically determined using a distance function, for example the Euclidean distance. In this paper SUBCLU, FIRES and INSCY methods will be applied to clustering 6x1595 dimension synthetic datasets. IO Entropy, F1 Measure, coverage, accurate and time consumption used as evaluation performance parameters. Evaluation results showed SUBCLU method requires considerable time to process subspace clustering; however, its value coverage is better. Meanwhile INSCY method is better for accuracy comparing with two other methods, although consequence time calculation was longer.

Index Terms — clustering, density, subspace clustering, SUBCLU, FIRES, INSCY.

1 DATA MINING AND CLUSTERING
Data mining is the process of extracting the data from large databases, used as technology to generate the required information. Data mining methods can be used to predict future data trends, estimate its scope, and can be used as a reliable basis in the decision making process. Functions of data mining are association, correlation, prediction, clustering, classification, analysis, trends, outliers and deviation analysis, and similarity and dissimilarity analysis.

One of frequently used data mining method to find patterns or groupings of data is clustering. Clustering is the division of data into objects that have similarities. Showing the data into smaller clusters to make the data becomes much simpler, however, can also be loss of important piece of data, therefore the cluster needs to be analyzed and evaluated.

This paper organized into a few sections. Section 2 will present cluster analysis. Section 3 presents density-based clustering, followed by density-based subspace clustering in Section 4. Our proposed experiment based on performance evaluation discussed in Section 5, followed by concluding remarks in Section 6.

© 2010 Journal of Computing Press, NY, USA, ISSN 2151-9617
http://sites.google.com/site/journalofcomputing/
4 DENSITY BASED SUBSPACE CLUSTERING

Subspace clustering is a method to determine the clusters that form on a different subspace, this method is better in handling multidimensional data than other methods.

Figure-4 (wikipedia) shows the two dimensions of the clusters placed in a different subspace. On the dimension of the subspace cluster c_a (in the subspace (x)) and c_r, c_s (in the subspace (y)) can found. Meanwhile c_r not included in the subspace cluster. In two-dimensional cluster, c_a and c_d identified as clusters.

There is some discussion of subspace clustering ([3], [4], [5], [6], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]). The main problem in clustering is the cluster can be in a different subspace, with the combination of different dimensions, if the number of dimensions higher, caused more difficult to find clusters. Subspace clustering method will automatically find the units clustered in each subspace. As clustering in general, important to analyze in subspace clustering is the problem of density of each data object. In this paper will discuss the application of SUBCLU [20], FIRES [21], and INSCY [22] for subspace clustering.

SUBCLU (density-connected SUBspace CLUSTERing) [20], is an effective and efficient method in subspace clustering problems. Using the concept of density in relation DBSCAN [2], with grid-based approach, this method can detect the shape and position of clusters in the subspace. Monotonous nature of the relationship density, bottom-up approach used to pruning subspace and produces clusters that are connected with density (Figure-5) and which are not connected with the density (Figure-6).
As long as no unnecessary subspace produced, the result will be the same SUBCLU obtained by DBSCAN, SUBCLU processes can be seen through the algorithm in Figure-7.

SUBCLU(*SetOfObjects DB*, *Real ϵ*, *Integer m*)

/* STEP 1 Generate all 1-D clusters */
S1 := {} // set of 1-D subspaces containing clusters
C1 := {} // set of all sets of clusters in 1-D subspaces
FOR each *ai ∈ A* DO
 Cfaig := DBSCAN(DB; faig; ϵ; m) // set of all clusters in subspace *ai*;
 IF *Cfaig ≠ {}* THEN // at least one cluster in subspace *faig* found
 S1 := S1 ∪ faig;
 C1 := C1 ∪ Cfaig;
 END IF
END FOR

/* STEP 2 Generate (k + 1)-D clusters from k-D clusters */
k := 1;
WHILE *Ck ≠ {}* DO
 /* STEP 2.1 Generate (k + 1)-dimensional candidate subspaces */
 CandSk+1 := GenerateCandidateSubspaces(Sk);
 /* STEP 2.2 Test candidates and generate (k + 1)-dimensional clusters */
 FOR EACH *cand ∈ CandSk+1* DO
 // Search k-dim subspace of *cand* with minimal number of objects in the clusters
 bestSubspace := min
 s2Sk^s_cand
 Ci2Cs
 jCij
 Ccand := {};
 FOR EACH cluster *cl ∈ CandSk* DO
 Ccand := Ccand ∪ DBSCAN(cl; cand; ϵ; m);
 IF *Ccand ≠ {}* THEN
 Sk+1 := Sk+1 ∪ cand;
 Ck+1 := Ck+1 ∪ Ccand;
 END IF
 END FOR
 END FOR
 k := k + 1;
 END WHILE

Second subspace method used in this paper is FIRES [21]. FIRES (Filter Refined Subspace clustering) framework based on efficiency filter refinement, by determining the frequency scale quadratic of data dimensions and dimensional subspace clusters. This method can applied to clusters that recognized based on the local threshold density.

FIRES consist of three phases, namely pre-clustering, in this phase all the so-called cluster 1D-base clusters will be calculated, which can use existing methods of subspace clustering. The second phase is the generation of subspace cluster approximations, in this phase the existing clusters will combined to find the maximum dimensional subspace cluster approach, but not incorporate in apriori style, but using the scale most quadratic of the number of dimensions. The final stage is to post-processing subspace clusters, by smoothing the cluster on the second phase.

Another method that was used INSCY [22] (INdexing Subspace Clusters with in-process-removal of redundancy), used breadth first approach, by performing recursive mining in all parts of the cluster of subspace projections, before passing to the next section.

This strategy has two advantages, high dimensional maximal projection will done first, then perform pruning of all loop dimensions and gain efficiency, second, indexing potential of subspace clusters that may occur. For more details can see in the algorithm INSCY in Figure-8.
Based on experiment with SUBCLU, FIRES and INSCY methods with some parameters, we obtained the results as in Table-1.

Method	No of cluster	Clustering time (ms)	Accuracy	Coverage	IO Entropy	F1 Measure	Calculation Time (ms)
SUBCLU	31	58449	0.1	1	0.01	0.01	133
FIRES	2	569	0.1	0.01	0.64	0.01	14
INSCY	1	1899	0.39	0.34	1	0.42	1281

5.2 Efficiency

From the experimental results, we can see that the clustering time for SUBCLU method is more than 20 times longer than the FIRES and INSCY, as shown in Figure-10.

![Figure-10 Clustering time vs number of cluster](image)

Meanwhile, if evaluated based on the time required to perform calculations of each parameter, it can be seen that INSCY method requires a longer time than SUBCLU and FIRES methods, as shown in Figure-11.

![Figure-11 Calculation time vs number of cluster](image)

5.3 Accurate

In addition to evaluating the work efficiency of subspace clustering method, this paper also discusses other related parameters of clustering results. There are four parameters: accuracy, coverage, IO Entropy and F1 Entropy.

The experimental results show that the accuracy of INSCY method is more accurate than SUBCLU and FIRES, as shown in Figure-12.

![Figure-12 Accuracy vs number of cluster](image)

IO Entropy used to evaluate the purity of the clustering, while the coverage used to evaluate the scope of the size of clustering. For coverage, SUBCLU method is better than FIRES and INSCY, as shown in Figure-13.

![Figure-13 Coverage vs number of clusters](image)

For IO Entropy, INSCY method is better than FIRES and SUBCLU method, as shown in Figure-14.

![Figure-14 IO Entropy vs number of clusters](image)
F1-Measure generally used to evaluate classifier, but also can be used to evaluate or projected subspace clustering, by measuring the average value of harmony from the cluster, whether all the clusters detected and precision (if all the clusters detected with accuracy). For F1 Measure INSCY method is better than FIRES and SUBCLU method, as shown in Figure-15.

6 CONCLUSION

SUBCLU, FIRES and INSCY methods were applied to clustering 6x1595-dimension synthetic datasets. IO Entropy, F1 Measure, coverage, accurate and time consumption used as evaluation performance parameters. Evaluation results showed SUBCLU method assessed require however considerable time to process subspace clustering, its value coverage is better. Meanwhile INSCY method is better for accuracy comparing with two other methods, although consequence time calculation was longer. Research in subspace clustering method has a lot of potential to be developed further in the future. We will be conducting more in-depth study related to pre-processing, dimension reduction, and outlier detection of subspace clustering method in the future.

ACKNOWLEDGMENT

The authors wish to thank Universiti Malaysia Pahang. This work supported in part by a grant from GRS090116.

REFERENCES

[1] Han, Jiawei, Micheline Kamber, “Data Mining: Concepts and Techniques, 2nd Edition”, 2006, p.25-26, Morgan Kaufmann
[2] Ester, Martin, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, “A Density-Based Algorithm for Discovering Clusters”, 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), 1996, [DOI> 10.1.1.71.1980]
[3] Agrawal, Rakesh, Johannes Gehrke, Dimitrios Gunopulos, Prabhakar Raghavan, “Automatic Subspace Clustering of High Dimensional Data for Data”, IBM Almaden Research Center, 1998, [DOI> 10.1.1.24.1044]
[4] Boumedjet, Sabri, Djemel Ziou, Nizar Bouguila, “Model-Based Subspace Clustering of Non-Gaussian Data”, Neurocomputing, Volume 73, p.1730-1739, 2010, 2010, [DOI> 10.1016/j.neucom.2009.11.044]
[5] Chen, Guanhua, Xiuli Ma, Dongping Yang, Shiwai Tang, Meng Shuai, “Mining Representative Subspace Clusters in High Dimensional Data”, Sixth International Conference on Fuzzy Systems and Knowledge Discovery, p.490-494, 2009, [DOI>10.1109/FSDK.2009.463]
[6] Cheng, Chung-hung, Ada Wai-chee Fu, Yi Zhang, “Entropy-based Subspace Clustering for Mining Numerical Data”, International Conference on Knowledge Discovery and Data Mining, p.849, 1999, [DOI> 10.1145/312129.312199]
[7] Cordeiro, Robson, L.F, Agma J.M. Traina, Christos Faloutsos, Caetano Traina Jr., “Finding Clusters in Subspaces of Very Large Multi-dimensional Datasets”, 26th International Conference on Data Engineering (ICDE), p.625-636, 2010, [DOI> 10.1109/ICDE.2010.5447924]
[8] Domeniconi, Carlotta, Dimitris Papadopoulos, Dimitrios Gunopulos, “Subspace Clustering of High Dimensional Data”, 2008, [DOI> 10.1.1.107.8676]
[9] Elhamifar, Ehsan, Rene Vidal, “Sparse Subspace Clustering”, IEEE Conference on Computer Vision and Pattern Recognition, p.2790-2797, 2009, [DOI> 10.1234/12345678]
[10] Gan, Guojun, Jianhong Wu, Zijiang Yang, “PART-CAT : A Subspace Clustering Algorithm for High Dimensional Categorical Data”, International Joint Conference on In Neural Networks (IJCNN), p.4406-4412, 2006, [DOI> 10.1234/12345678]
[11] Gunnemann, Stephan, Hardy Kremer, Thomas Seidl, “Subspace Clustering for Uncertain Data”, SIAM In-
ternational Conference on Data Mining, p.245-260, 2009, [DOI> 10.1007/s10618-009-0139-0]

[12] Muller, Emmanuel, Stephan Gunemann, Ira Assent, Thomas Seidl, “Evaluating Clustering in Subspace Projections”, PVLDB Journal, Volume 2 No. 2, p.1270-1281, 2009, [DOI> 10.1.1.151.6901-1]

[13] Parson, Lance, Ehtesham Haque, Huan Liu, “Subspace Clustering for High Dimensional Data: A Review”, ACM SIGKDD Explorations Newsletter, Volume 6, Issue 1, p.90–105, 2004, [DOI> 10.1145/1007730.1007731]

[14] Ren, Jiadong, Lining Li, Jiadong Ren, Changzhen Hu, “A Weighted Subspace Clustering Algorithm in High-Dimensional Data Streams”, Fourth International Conference on Innovative Computing, Information and Control, p.631-6342009, [DOI> 10.1109/ICICIC.2009.64]

[15] Seidl, Thomas, Emmanuel Muller, Ira Assent, Uwe Steinhausen, “Outlier Detection and Ranking Based on Subspace Clustering”, 2009, [DOI> 10.4230/LIPIcs.STACS.2009.1858]

[16] Shao, Yuanhai, Yining Feng, Jing Chen, Naiyang Deng, “Density Clustering Based SVM and Its Application to Polyadenylation Signals”, The Third International Symposium on Optimization and Systems Biology (OSB’09), 2009

[17] Woo, Kyoung-Gu, Jeong-Hoon Lee, Myoung-Ho Kim, Yoon-Joon Lee, “FINDIT : A Fast and Intelligent Subspace Clustering Algorithm”, Information and Software Technology 46, p.255–271. 2004, [DOI> 10.1016/j.infsof.2003.07.003]

[18] Ying, Deng, Yang Shuangyuan, Liu Han, “A Subtractive Based Subspace Clustering Algorithm on High Dimensional Data”, First IEEE International Conference on Information Science and Engineering, p.766-769, 2009, [DOI> 10.1109/ICISE.2009.189]

[19] Sembiring, Rahmat Widia, Jasni Mohamad Zain, Abdullah Embong, “Clustering High Dimensional Data Using Subspace and Projected Clustering Algorithm”, International Journal of Computer Science & Information Technology (IJCSIT) Vol.2 No.4, p.162-170, 2010, [DOI> 10.5121/ijcsit.2010.2414]

[20] Kailing, Karin, Hans-Peter Krieger, Peer Kroger, “Density-Connected Subspace Clustering for High-Dimensional Data”, 4th SIAM International Conference of Data Mining, p.246-257, 2004, [DOI> 10.111.2.9775]

[21] Krieger, Hans-Peter, Peer Kroger, Matthias Renz, Sebastian Wurst, “A Generic Framework for Efficient Subspace Clustering of High-Dimensional Data”, Fifth IEEE International Conference on Data Mining (ICDM’05), 2005, [DOI> 10.1109/ICDM.2005.5]

[22] Assent, Ira, Ralph Krieger, Emmanuel Müller, Thomas Seidl, “INSCY: Indexing Subspace Clusters with In-Process-Removal of Redundancy”, Eighth IEEE International Conference on Data Mining In ICDM, p. 414–425, 2008, [DOI> 10.1109/ICDM.2008.46]

Rahmat Widia Sembiring received the degree in 1989 from Universitas Sumatera Utara, Indonesia, Master degree in computer science/information technology in 2003 from Universiti Sains Malaysia, Malaysia. He is currently as Ph.D student in the Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang. His research interests include data mining, data clustering, and database.

Jasni Mohamad Zain received the BSc.(Hons) Computer Science in 1989 from the University of Liverpool, England, UK, Master degree in 1998 from Hull University, UK, awarded Ph.D in 2005 from Brunel University, West London, UK. She is now an Associate Professor of Universiti Malaysia Pahang, also as Dean of Faculty of Computer System and Software Engineering, Universiti Malaysia Pahang.