Comorbidities in Iranian Obese Psoriatic Patients Compared With Non-Obese Patients

Omid Zargari1, Seyyede Zeinab Azimi2, Tara Barat1, Vahideh Lajevardi1, Ehsan Kazemnejad4, Mohammad Shahidi Dadras1

1 Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Dermatology, Skin Research Center, Guilan University of Medical Sciences, Rasht, Iran
3 Department of Dermatology, Tehran University of Medical Sciences, Tehran, Iran
4 Department of Biostatistics, Guilan University of Medical Sciences, Rasht, Iran

Received: 15 Oct. 2018; Accepted: 28 Dec. 2018

Abstract - Psoriasis is a common chronic inflammatory skin disease, which is gradually being recognized as a systemic inflammatory disorder. Psoriasis and obesity are strongly linked, but there is not enough data whether obese psoriatic patients present differently from non-obese psoriatic patients. To compare the phenotype, clinical features, severity, baseline comorbidities and laboratory findings among psoriatic patients with/without obesity all the psoriatic patients, from three centers, who were receiving systemic therapy were included in the study. Patients were divided into two groups: those with obesity and those without obesity. We included 497 patients: 154 (31%) patients were obese and 343 (69%) were non-obese. Obese patients had more comorbidities, particularly hyperlipidemia, followed by hypertension and diabetes. Fasting blood sugar and serum lipids were significantly higher among obese subjects. Given the differences between obese patients and non-obese patients, the former group should be followed and managed more closely and with specific attention.

Keywords: Psoriasis; Obesity; Metabolic syndrome; Comorbidity

Introduction

Psoriasis is a chronic inflammatory skin disease, affecting about 2-4% of the world population (1). In recent years, clear links have been established between psoriasis and a variety of diseases. Obesity, along with the metabolic syndrome and several other comorbidities are known to be associated with psoriasis (2,3). Obesity is an independent risk factor for psoriasis. In a meta-analysis of 16 observational studies, it has been shown that there is a pooled odds ratio (OR) of 1.66 for the association between psoriasis and obesity (4).

It is assumed that in both psoriasis and obesity, similar pathways of immune disorders occur. Psoriasis is an inflammatory condition associated with increased production of Th1 and Th17 cytokines, such as tumor necrosis factor (TNF)-a, interleukin (IL)-6, IL-17 and IL-23, among others. Some of these cytokines such as TNF-a and IL-6 are also involved in obesity (5,6).

In fact, the white adipose tissue is the largest endocrine organ. It has the ability to synthesize and secrete inflammatory mediators such as TNF-α, IL 6 and also peptides such as adipokines, which have an impact on many physiological functions (7,8).

Epidemiological evidence has shown that obesity is linked to both pro-inflammatory and autoimmune diseases (9). However, the relationship between psoriasis and obesity is complex and there are still many unanswered questions about it. For instance;

- Do obese patients have the more severe disease?
- Are some specific variants more common in obese patients?
- Are some specific comorbidities more common in obese patients?
- Do they coexist because they have a common antecedent link?

To address these questions, we conducted a study to evaluate the relationship between obesity and clinical factors as well as comorbidities in patients with psoriasis.
Psoriasis and obesity; more than comorbidity?

Materials and Methods

All patients with moderate to severe psoriasis on treatment with any systemic agents at three psoriasis clinics were selected for this cross-sectional study. The study was conducted from January to November 2017. These patients were classified into two mutually exclusive groups: (1) obese psoriatic patients or (2) non-obese psoriatic patients. Obesity was defined as a body mass index (BMI) greater than 30.

Diagnosis of psoriasis was according to the clinical findings, and if necessary, a skin biopsy was performed. Demographic data, family history of psoriasis, BMI, waist circumference (WC), age at onset, clinical phenotypes, Psoriasis Area and Severity Index (PASI) score and metabolic comorbidities were collected for all patients using a standardized form.

Weight and height were measured for each subject. BMI (as weight in kilograms divided by height in meters squared) was measured for all of the cases. Fasting blood sugar (FBS) and lipid profile was requested for each patient at the time of examination. All the laboratory examinations were performed in a single laboratory in each center.

Statistical analysis was performed using software SPSS 18.0 (SPSS Inc., IBM Corporation, and Armonk, New York). Categorical variables were expressed as frequencies and percentages and analyzed by Chi-square test or Fisher’s exact test. Normality of variables was verified by the Kolmogorov-Smirnov test. Quantitative variables were given as means (SD) or medians (range). T student test was used for quantitative variables with normal distribution. For quantitative variables with an abnormal distribution, the Mann Whitney test was performed. Statistical significance was considered at a level of 5% ($P<0.05$) for all tests.

Results

A total of 497 patients were included in the study. Forty-nine percent were female. The mean age of patients was 45±14.85 years. The mean PASI score was 11.31±10.53. Overall BMI was calculated as 27.98±5.82 kg/m². 31% of patients with psoriasis were obese. Obese psoriatic patients were more likely to be female (67%, $P=0.001$). The severity of psoriasis was not significantly different between the two groups. Also, the mean age of onset and duration of psoriasis were similar between both groups (Table 1).

Table 1. Baseline characteristics according to BMI

	All patients (497)	Non-obese (N=343)	Obese (N=154)	P
Age (yr.)	45.07±14.85	44.53±15.21	46.29±13.97	0.22
Gender (Female)	243(48.89%)	140(40.82%)	103(66.88%)	0.001
Age of onset (yr.)	29.80±16.20	29.03±16.21	31.53±16.11	0.12
Duration of disease	15.26±11.48	15.49±11.71	14.76±10.98	0.51
Smoking	138 (27.8%)	102 (29.7%)	36 (23.4%)	0.14
Alcohol	66 (13.3%)	47 (13.7%)	19 (12.3%)	0.67
PASI	11.31±10.53	11.27±10.67	11.38±10.26	0.93
BMI (kg/m²)	27.98±5.82	25.03±3.15	34.55±4.97	0.001

PASI: psoriasis area severity index, BMI: body mass index

Table 2 shows anthropometric values in the two groups. The mean waist and hip circumferences in obese psoriatic patients were significantly higher than non-obese cases.

Overall, the most prevalent comorbidity among our patients was hyperlipidemia (13.5%). The prevalence of diabetes mellitus, blood hypertension, hyperlipidemia, and hypothyroidism were significantly higher among obese psoriatic patients. While the prevalence of cardiovascular diseases was not significantly different between the two groups (Table 3).

Table 2. Anthropometric values of studied groups

	All patients (N=497)	Non-obese (N=429)	Obese (N=429)	P
Weight (Kg)	76.68±16.38	69.81±11.96	91.69±14.64	0.001
Height (cm)	165.67±10.06	166.37±9.64	164.15±10.79	0.025
Waist circumference (cm) (N=439)	146±14.73	89.65±11.25	109.01±12.56	0.001
Hip circumference (cm) (N=429)	149±13.01	98.37±8.77	114.62±14.02	0.001
Table 3. Prevalence of comorbidities

Comorbidity	All patients (497)	Non-obese (N=343)	Obese (N=154)	P
DM	62 (12.5%)	34 (9.9%)	28 (18.2%)	0.01
HTN	65 (13.1%)	30 (8.7%)	35 (22.7%)	0.001
CVD	24 (4.8%)	16 (4.7%)	8 (5.2%)	0.79
HLP	67 (13.5%)	28 (8.2%)	39 (25.3%)	0.001
Hypothyroidism	25 (5%)	12 (3.5%)	13 (8.4%)	0.02

DM: diabetes mellitus, HTN: hypertension, CVD: cardiovascular disease, HLP: hyperlipidemia

Mean of FBS, triglyceride (TG), cholesterol (Chol) and low-density lipoprotein (LDL) were significantly higher in obese subjects (P=0.02, P=0.002, P=0.03 and P=0.03, respectively). The mean of high-density lipoprotein (HDL) was lower in obese patients (P=0.06) (Table 4).

Table 4. Laboratory findings in the studied groups

Test	All patients (497)	Non-obese (N=343)	Obese (N=154)	P
FBS	104.65±35.41	101.59±31.16	110.70±42.07	0.02
TG	158.80±94.34	148.55±91.67	181.95±96.58	0.002
Chol	183.92±88.64	181.04±87.48	190.19±93.68	0.03
HDL	43.53±12.22	44.35±12.33	41.73±11.82	0.06
LDL	110.05±32.78	107.6±34.48	115.07±28.20	0.03

FBS: fasting blood sugar, TG: triglyceride, Chol: cholesterol, HDL: high-density lipoprotein, LDL: low-density lipoprotein

Chronic plaque type was the most prevalent type in both groups (Table 5).

Table 5. Phenotype of psoriasis in the groups studied

Type	All patients (497)	Non-obese (N=343)	Obese (N=154)	P
Chronic Plaque	444 (89.3%)	299 (87.2%)	145 (94.2%)	0.02
Pustular	4 (0.8%)	3 (0.9%)	1 (0.6%)	0.79
Palmoplantar	48 (9.7%)	37 (10.8%)	11 (7.1%)	0.20
Flexoral	12 (2.4%)	6 (1.7%)	6 (3.9%)	0.14
Guttate	30 (6%)	17 (5%)	13 (8.4%)	0.13
Erythrodermic	18 (3.6%)	17 (5%)	1 (0.6%)	0.02

In this study, we could find a nonlinear correlation between BMI and PASI score (P=0.034, R=0.021), (Table 6, Figure 1).

Table 6. Model Summary and Parameter Estimates

Equation	Dependent Variable: BMI								
	R Square	F	df1	df2	P	Constant	b1	b2	b3
Cubic	.021	2.925	3	406	.034	26.357	.415	-.021	.000
Psoriasis and obesity: more than comorbidity?

Spearman correlation coefficient was used for comparing PASI scores with other parameters in two groups of obese and non-obese psoriatic patients. Findings revealed that in obese psoriatic patients, PASI scores correlate with patients’ height, serum cholesterol, low-density lipoprotein, and blood urea nitrogen level, as well as blood hypertension and alcohol consumption. In contrast, in non-obese psoriatic patients, PASI correlates with patients’ age, the age of onset of disease and serum uric acid level.

Both obese and non-obese patients were found to have correlations between PASI score and the age at the onset of disease and the duration of disease (Table 7 and 8).

Canonic correlation coefficient revealed a strong correlation between the panel consisting of both PASI score and lipid profiles (Chol, HDL, LDL, TG) in comparison with the panel of the anthropometrics profile (BMI, weight circumference, hip circumference) (canonical correlation=0.424, $P=0.0001$, $r^2=0.18$). The correlation coefficient of the PASI score on the anthropometric indices was 0.13. Cholesterol had the strongest correlation followed by TG (Table 9).

Table 7. Correlation between the PASI score and quantitative variables in obese and non-obese psoriatic patients

Variable	BMI<30	BMI>30
PASI score	R	
Age	-.163	-.132
P value	.006	.139
Number	283	127
R	.999	.147
Weight	.999	.999
P value	278	127
Number	.966	.224
Height	.277	.011
P value	273	127
Number	.010	.031
Weight circumference	.872	.735
P value	259	120
Number	.084	.021
Hip circumference	.181	.827
P value	257	114
Number	-.278	-.239
Age of onset	.000	.007
P value	283	127
Number	.026	.049
FBS	.725	.633
P value	189	96
Number	.001	.149
TG	.988	.148
Number	222	96

Figure 1. Estimation of PASI distribution curve
Continuance of Table 7

	R	P value	Number	P	Standard Deviation	Median	P	Number	P	Standard Deviation	Median
Cholesterol	.025	.232	219	.714	.021	99	.130	.288	201	.006	.90
LDL	.067	.232	90	.714	.021	201	.288	.288	90	.006	.90
HDL	.046	.232	86	.714	.021	201	.288	.288	90	.006	.90
BUN	.529	.232	86	.714	.021	201	.288	.288	90	.006	.90
Cr	.738	.232	86	.714	.021	201	.288	.288	90	.006	.90
SGPT	.954	.232	119	.714	.021	201	.288	.288	90	.006	.90
SGOT	.655	.232	119	.714	.021	201	.288	.288	90	.006	.90
ALKP	.030	.232	.94	.714	.021	.288	.288	.288	.288	.006	.90
P value	.050	.232	.122	.714	.021	.288	.288	.288	.288	.006	.90
Number	250	119	63	284	119	119	63	119	63	119	119
R	.176	.232	.197	.714	.021	.288	.288	.288	.288	.006	.90
Uric acid	.007	.232	.013	.714	.021	.288	.288	.288	.288	.006	.90
Number	283	127	127	384	114	127	127	127	127	127	127
R	.073	.232	.001	.714	.021	.288	.288	.288	.288	.006	.90
Weight to Hip ratio	.246	.232	.993	.714	.021	.288	.288	.288	.288	.006	.90
Number	257	114	114	114	114	114	114	114	114	114	114

FBS: fasting blood sugar, TG: triglyceride, Chol: cholesterol, HDL: high-density lipoprotein, LDL: low-density lipoprotein, Cr: creatinine, BUN: blood urea nitrogen, SGPT: Serum glutamic-pyruvic transaminase, SGOT: Serum glutamic oxaloacetic transaminase.

Table 8. Comparison of PASI score and demographic variables in obese and non-obese psoriatic patients

	Mean±Standard Deviation	Median	P	Mean±Standard Deviation	Median	P
	<30	>30		<30	>30	
Sex						
Male	11.36±11.51	8.20	.675	12.58±10.99	11.35	.247
Female	10.30±9.05	8.20	.675	10.74±9.86	9.20	.247
DM	12.60±10.50	8.20	.346	15.37±15.50	10.40	.339
HTN	9.61±7.75	7.80	.877	12.89±11.05	10.40	.318
CVD	13.37±9.84	12.60	.331	12.80±6.19	11.60	.256
HLP	12.10±7.49	9.20	.14	14.53±12.05	12.00	.01
Hypothyroidism	10.80±6.11	10.25	.492	9.38±6.16	9.90	.748
Family history	11.02±11.02	8.00	.659	12.68±12.05	9.90	.607
Smoking	11.19±9.91	8.20	.576	11.31±11.32	8.00	.702
Alcohol	12.42±9.25	11.00	.096	15.20±9.31	14.80	.019
Chronic plaque	10.80±10.14	8.10	.109	11.30±10.18	9.90	.968
Pustular	21.73±1.58	22.10	.044	9.10	9.10	.891
Palmoplantar	13.78±14.37	10.70	.631	3.78±2.32	4.35	.019
Flexural	20.90±9.74	20.10	.044	17.73±8.52	17.00	.140
Guttate	14.30±7.77	12.35	.075	21.38±9.65	21.45	.007
Erythrodermic	24.90±18.88	24.40	.004	2.20	2.20	.190

DM: diabetes mellitus, HTN: hypertension, CVD: cardiovascular disease, HLP: hyperlipidemia
Psoriasis and obesity; more than comorbidity?

Table 9. Standardized canonical coefficients section

Variables	Explained by the anthropometric variables	Unexplained by the anthropometric variables
PASI	-0.133505	0.203532
FBS	-0.251819	-0.222742
TG	-0.478380	0.004409
Chol	-0.671355	0.066018
LDL	0.183803	0.006431
HDL	0.018109	0.964880

Explained by the PASI and lipid profile |
Unexplained by the PASI and lipid profile |

Variables	Coefficient	Coefficient
Weightcircumference	-0.816631	1.630921
Hipcircumference	-0.049753	-1.028725
BMi	-0.174884	-0.871489

DM: diabetes mellitus, HTN; hypertension, CVD: cardiovascular disease, HLP: hyperlipidemia, BMI: body mass index

Discussion

Several studies have shown the association between obesity and psoriasis (10-13). Herron and colleagues demonstrated an almost two-fold risk of obesity in their psoriatic patients compared to the general population (34% vs 18%; \(P=0.001 \)) (10). In our study, the prevalence of obesity in psoriatic patients was 31%, which is higher than the prevalence of obesity in the general population of Iran (21%, CI 95%: 18.5%-25%) (14). However, it seems that the prevalence of obesity in Iranian psoriatic patients is not as high as what was found in some other studies. For instance, Takahashi et al. and Warnecke et al., reported a rate of 39.7% and 44% for obesity in patients with psoriasis respectively (15,16).

Some studies have revealed that the risk of psoriasis increases with higher BMI (17,18). The relationship between obesity and severity of psoriasis has been noted in a number of cross-sectional studies in which increased BMI coincides with a greater degree of psoriasis disease severity (10,18). We did not find such a relationship in our patients.

Most studies reported that obesity probably predates or co-exists with psoriasis. However, one study revealed new-onset obesity in patients with existing psoriasis, showing a slightly increased risk for developing obesity in psoriasis patients in comparison with controls (20). Behavioral factors, the unwillingness of psoriatic patients to participate in physical activities due to psychological burden of visibility of the skin lesions, in addition to genetic and immune-mediated mechanisms, are possible mechanisms explaining the association between psoriasis and obesity (21-25).

It should be emphasized that a high BMI also has a negative impact on the response to treatment in patients with psoriasis (26). It has been revealed that response to treatment will be improved after a low-calorie diet-induced weight loss in subjects with psoriasis (27).

We found that hyperlipidemia, diabetes, hypertension, and hypothyroidism are all more common in obese psoriatic patients. However, we could not find any association between obesity and a higher risk of CVD. This data shows that perhaps the risk of CVD in psoriasis is independent of the metabolic syndrome and is related to the inflammatory nature of the disease itself.

This is in accordance with a prospective, population-based cohort study conducted in the UK by Gelfand et al., The cohort was adjusted for hypertension, hyperlipidemia, diabetes, history of myocardial infarction (MI), age, sex, smoking, and BMI. They showed that psoriasis may confer an independent risk of MI. Relative risk is especially higher in younger patients and in patients with more severe psoriasis (28). On the other hand, some studies have found no statistically significant association between psoriasis and cardiovascular events (29-31).

A pooled odds ratio (OR) for the association between psoriasis and hypertension of 1.58 (95% CI, 1.42-1.76) was found by a meta-analysis of 24 observational...
studies (32). Alexandroff et al., reported the increase in odds of hypertension among patients with psoriasis parallel to the increase in disease severity (ORs of 1.30 for mild and 1.49 for severe psoriasis) (33).

Independent of other risk factors, psoriasis is associated with an increased risk for DM. A meta-analysis of 5 cohort studies found a pooled relative risk (RR) for diabetes of 1.27 (95% CI, 1.16-1.40) among patients with psoriasis (34). The risk of insulin resistance and the likelihood of diabetes and its complications are increased with greater psoriasis severity as, independent of other risk factors such as BMI. Both means of FBS and prevalence of DM were significantly greater among obese psoriatic patients (35-37).

Dyslipidemia may be more prevalent among patients with psoriasis than others without (38). Lipid testing techniques have revealed atherogenic lipid profile and decreased high-density lipoprotein (HDL) cholesterol efflux capacity (CEC) among patients with psoriasis (39,40). In our study, the mean level of TG, Chol and HDL were all higher among obese psoriatic patients in comparison with non-obese patients.

Studies have shown an association between hypothyroidism and psoriasis. This association had been reported in both psoriatic patients with and without psoriatic arthritis (41,42). However, James et al., found that rates of hypothyroidism in psoriasis patients were similar to rates of hypothyroidism in those without psoriasis (43). To the best of our knowledge, this is the first study that reported the association between hypothyroidism and obesity in psoriatic patients. Having known that psoriasis has different clinical phenotypes, the present study examined the hypothesis that obese patients may present differently from non-obese patients. We did not find any data support this hypothesis.

We recognize that our study has some limitations. Regarding there is no psoriasis registry in Iran, our patients were only from three psoriasis clinics. Therefore, our data might not be generalizable to all Iranian psoriasis patients. Another limitation is that hypothyroidism was considered based on medical and drug history. Also, Hemoglobin A1c might have been a better test for DM but was not routinely available.

In summary, a considerable proportion of patients with psoriasis have comorbid conditions. In obese psoriatic patients, the risk of these comorbidities is even higher. Psoriasis and obesity are interconnected through multiple aspects (Figure 2). Obese psoriatrics should be considered as “at-risk” patients and special attention should be applied when formulating a treatment and management plan for them.

In this cross-sectional study, we found that comorbidities such as DM, HTN, HLP, and hypothyroidism are all statistically more common in obese as compared to non-obese psoriatic patients. Regarding the higher incidence of obesity in psoriatic patients and its association with other signs of metabolic syndrome, dermatologists should consider obese psoriatrics as “at-risk patients” and initiate an interdisciplinary approach to the screening and management of their comorbidities.

Figure 2. Multiple aspects of interconnection between psoriasis and obesity
Psoriasis and obesity; more than comorbidity?

References

1. Christophers E. Psoriasis—epidemiology and clinical spectrum. Clin Exp Dermatol 2001; 26: 314–320
2. Kimball AB, Gladman D, Gelfand JM, Gordon K, Horn EJ et al. National Psoriasis Foundation clinical consensus on psoriasis comorbidities and recommendations for screening. J Am Acad Dermatol. 2008; 58(6):1031-42.
3. Love TJ, Qureshi AA, Karlson EW, Gelfand JM, Choi HK. Prevalence of the metabolic syndrome in psoriasis: results from the National Health and Nutrition Examination Survey, 2003-2006. Arch Dermatol. 2011; 147(4):419-24
4. Armstrong AW, Harskamp CT, Armstrong EJ. The association between psoriasis and obesity: a systemic review and meta-analysis of observational studies. Nutr Diabetes. 2012; 2:e54
5. Coimbra S, Catarino C, Santos-Silva A. The triad psoriasis-obesity-adipokine profile. J Eur Acad Dermatol Venereol. 2016; 30(11):1876-1885.
6. Sumarac-Dumanovic M, Stevanovic D, Ljubic A, Jorga J, Simic M, Stamenkovic-Pejkovic D, et al. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int J Obes. 2009; 33:151–156
7. Baran A, Flisiak I, Jaroszewicz J, Swiderska M. Effect of psoriasis activity on serum adiponectin and leptin levels. Postep Derm Alergol. 2015; 32:101–6
8. Wozniak SE, Gee LL, Wachtel MS, et al. Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci. 2009; 54:1847–56
9. Kanneganti TD, Dixit VD. Immunological complications of obesity. Nat Immunol. 2012; 13:707–712
10. Herron MD, Hinckley M, Hoffman MS et al. Impact of obesity and smoking on psoriasis presentation and management. Arch Dermatol 2005; 141: 1527–1534.
11. Naldi L, Chatenoud L, Linder D et al. Cigarette smoking, body mass index, and stressful life events as risk factors for psoriasis: results from an Italian case-control study. J Invest Dermatol 2005; 125: 61–67.
12. Huerta C, Rivero E, Rodriguez LA. Incidence and risk factors for psoriasis in the general population. Arch Dermatol 2007; 143:1559–1565.
13. Neumann AL, Shin DB, Wang X et al. Prevalence of cardiovascular risk factors in patients with psoriasis. J Am Acad Dermatol. 2006; 55: 829–835.
14. Rahmani A, Sayehmiri K, Asadollahi K, Sarokhani D, Islami F, Sarokhani M. Investigation of the Prevalence of Obesity in Iran: a Systematic Review and Meta-Analysis Study. Acta Med Iran. 2015 ;53(10):596-607
15. Takahashi H, Takahashi I, Honma M, Ishida-Yamamoto A, Iizuka H. Prevalence of metabolic syndrome in Japanese psoriasis patients. J Dermatol Sci 2010; 57:143–144.
16. Warnecke C, Manousaridis I, Herr R, Terris DD, Goebeler M, Goerd S et al. Cardiovascular and metabolic risk profile in German patients with moderate and severe psoriasis: a case-control study. Eur J Dermatol 2011; 21: 761–770.
17. Setty AR, Curhan G, Choi HK. Obesity, waist circumference, weight change, and the risk of psoriasis in women: Nurses’ Health Study II. Arch Intern Med. 2007;167:1670-1675.
18. Kumar S, Han J, Li T, et al. Obesity, waist circumference, weight change and the risk of psoriasis in US women. J Eur Acad Dermatol Venereol. 2013;27:1293-1298.
19. Zhang C, Zhu KJ, Zheng HF, Cui Y, et al. The effect of overweight and obesity on psoriasis patients in Chinese Han population: a hospital-based study. J Eur Acad Dermatol Venereol. 2011;25(1):87-91.
20. Kaye JA, Li L, Jick SS. Incidence of risk factors for myocardial infarction and other vascular diseases in patients with psoriasis. Br J Dermatol 2008; 159: 895–902.
21. Florin V, Cottencin AC, Delaporte E, Staumont-Salle D. Body weight increment in patients treated with infliximab for plaque psoriasis. J Eur Acad Dermatol Venereol; 2013; 27(2):e186-90.
22. Renzo LD, Saraceno R, Schipani C, Rizzo M, Bianchi A, Noce A et al. Prospective assessment of body weight and body composition changes in patients with psoriasis receiving anti-TNF-alpha treatment. Dermatol Ther 2011; 24: 446–451.
23. Prignano F, Ricceri F, Pescielli L, Buggiani G, Troiano M, Zanieri F et al. Comparison of body weight and clinical-parameter changes following the treatment of plaque psoriasis with biological therapies. Curr Med Res Opin 2009; 25: 2311–2316.
24. Saraceno R, Schipani C, Mazzotta A, Esposito M, Di Renzo L, De Lorenzo A et al. Effect of anti-tumor necrosis factor-alpha therapies on body mass index in patients with psoriasis. Pharmacol Res 2008; 57: 290–295.
25. Gisondi P, Cotena C, Tessari G, Girolomoni G. Anti-tumour necrosis factor-alpha therapy increases body weight in patients with chronic plaque psoriasis: a retrospective cohort study. J Eur Acad Dermatol Venereol 2008; 22: 341–344.
26. Lebwohl M, Yeilding N, Szapary P, et al. Impact of weight on the efficacy and safety of ustekinumab in
patients with moderate to severe psoriasis: rationale for
dosing recommendations. J Am Acad Dermatol 2010;63:571-579.
27. Gisondi P, Del Giglio M, Di Francesco V, Zamboni M,
Girolomoni G. Weight loss improves the response of
obese patients with moderate-to-severe chronic plaque
psoriasis to low-dose cyclosporine therapy: a randomized,
controlled, investigator-blinded clinical trial. Am J Clin
Nutr 2008;88:1242-1247.
28. Gelfand JM, Neumann AL, Shin DB, et al. Risk of
myocardial infarction in patients with psoriasis. JAMA
2010;63:571-579.
29. Wakkee M, Herings RM, Nijsten T. Psoriasis may not be
an independent risk factor for acute ischemic heart
disease hospitalizations: results of a large population
based Dutch cohort. J Invest Dermatol. 2010;130:962-967.
30. Dowlatshahi EA, Kavousi M, Nijsten T, et al. Psoriasis is
not associated with atherosclerosis and incident
cardiovascular events: the Rotterdam Study. J Invest
Dermatol. 2013;133: 2347-2354.
31. Parisi R, Rutter MK, Lunt M, et al. Psoriasis and the risk
of major cardiovascular events: cohort study using the
Clinical Practice Research Datalink. J Invest Dermatol. 2015;135: 2189-2197.
32. Armstrong AW, Harskamp CT, Armstrong EJ. The
association between psoriasis and hypertension: a
systematic review and meta-analysis of observational
studies. J Hypertens. 2013;31:433-442.
33. Alexandroff AB, Pauriah M, Camp RD, et al. More than
skin deep: atherosclerosis as a systemic manifestation of
psoriasis. Br J Dermatol. 2009;161:1-7.
34. Armstrong AW, Harskamp CT, Armstrong EJ. Psoriasis
and the risk of diabetes mellitus: a systematic review and
meta-analysis. JAMA Dermatol. 2013;149:84-91.
35. Yeung H, Takeshita J, Mehta NN, et al. Psoriasis severity
and the prevalence of major medical comorbidity: a
population-based study. JAMA Dermatol. 2013;149:
1173-1179.
36. Langan SM, Seminara NM, Shin DB, et al. Prevalence of
metabolic syndrome in patients with psoriasis: a
population-based study in the United Kingdom. J Invest
Dermatol. 2012;132(3 pt 1):556-562.
37. Azfar RS, Seminara NM, Shin DB, et al. Increased risk of
diabetes mellitus and the likelihood of receiving diabetes
mellitus treatment in patients with psoriasis. Arch
Dermatol. 2012; 148:995-1000.
38. Ma C, Harskamp CT, Armstrong EJ, et al. The
association between psoriasis and dyslipidemia: a
systematic review. Br J Dermatol. 2013;168:486-495.
39. Mehta NN, Li R, Krishnamoorthy P, et al. Abnormal
lipoprotein particles and cholesterol efflux capacity in
patients with psoriasis. Atherosclerosis. 2012;224:218-
221.
40. Holzer M, Wolf P, Curcic S, et al. Psoriasis alters HDL
composition and cholesterol efflux capacity. J Lipid Res.
2012;53:1618-1624.
41. Gul U, Gonul M, Kayi I, Aslan E. Autoimmune thyroid
disorders in patients with psoriasis. Eur J Dermatol.
2009;19(3):221-3.
42. Antonelli A, Delle Sedie A, Fallahi P, Ferrari SM,
Maccheroni M, Ferrannini E, et al. High prevalence of
thyroid autoimmunity and hypothyroidism in patients
with psoriatic arthritis. J Rheumatol. 2006;33(10):2026-8.
43. James SM, Hill DE, Feldman SR. Hypothyroidism in
Patients with Psoriasis or Rosacea: A Large Population
Study. Dermatol Online J. 2016; 22 (10).