Research Article

Triterpenes and the Antimycobacterial Activity of Duroia macrophylla Huber (Rubiaceae)

Daiane Martins,1 Lillian Lucas Carrion,2 Daniela Fernandes Ramos,2 Kahlil Schwanka Salomé,3 Pedro Eduardo Almeida da Silva,2 Andersson Barison,3 and Cecilia Veronica Nunez1

1 Bioprospection and Biotechnology Laboratory, National Research Institute of Amazonia (INPA), 69060-001 Manaus, AM, Brazil
2 Mycobacterial Laboratory, Federal University Foundation of Rio Grande (FURG), 96200-190 Rio Grande, RS, Brazil
3 NMR Laboratory, Department of Chemistry, Federal University of Paraná (UFPR), 81530-900 Curitiba, PR, Brazil

Correspondence should be addressed to Cecilia Veronica Nunez; cecilia@inpa.gov.br

Received 9 September 2012; Revised 17 December 2012; Accepted 1 January 2013

Copyright © 2013 Daiane Martins et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Duroia macrophylla popularly known as “cabeça-de-urubú,” “apurúi,” or “puruí-grande-da-mata” occurs in the Amazon Forest. Its leaves and branches were collected twice and extracted with dichloromethane and methanol. All extracts were subjected to phytochemical investigation and terpenes and flavonoids were found in all dichloromethane extracts, respectively. Methanol extracts from both branches (1st collection) and leaves (2nd collection) presented hydrolyzed tannins, yet alkaloids were only detected in the dichloromethane and methanol extracts from branches at the 2nd collection. Phenol compounds were found in both dichloromethane extracts’ collections. The action of every extract was assayed against Mycobacterium tuberculosis (RMP, H37Rv, and INHr strains), showing that the dichloromethane extract from leaves (1st collection) has the major biological activity, with a MIC of 6.25 µg/mL for the INHr strain, 25.0 µg/mL for the RMP strain, and ≤ 6.25 µg/mL for the H37Rv strain. The chromatographic fractioning of the dichloromethane extract from leaves (1st collection) yielded the isolation of two triterpenes: oleanolic and ursolic acids, which were identified by NMR analysis and reported for the first time in the Duroia genus.

1. Introduction

Rubiaceae is the largest family in the Magnoliopsida class, encompassing around 550 genera and 9,000 species being used in several ethnomedical practices [1]. The family is characterized by the production of several classes of secondary metabolites with a great pharmacological potential, mainly alkaloids, terpenes, quinovic acid glycosides, flavonoids, and coumarins with antibacterial properties [2]. Rubiaceae plants’ secondary metabolites have been investigated scientifically for antimicrobial activities and a large number of plant products have shown to inhibit the growth of pathogenic microorganisms [3–6]. A literature review article pertaining to Rubiaceae species reveals that 48 out of 611 genera showed a wide range of antibacterial [3] and antimycobacterial activities [4].

The Duroia genus, belonging to Gardenieae tribe and Ixoroideae subfamily, holds about 30 species but few studies have been carried out on this genus. D. hirsuta, which is used as folk healing medicine, is one of these species which has undergone investigation and showed antimycobacterial activity against Mycobacterium phlei [7] and antiviral activity against Herpes simplex viruses (HSV) on in vitro studies [8]. One flavone, one lactone iridoid, one flavonol [9] and one tetracyclic iridoid [10] were isolated from its root petroleum ether and CHCl3 extract. There is still a large number of species with no chemical or biological study.

Duroia macrophylla Huber, popularly known as “cabeça-de-urubú,” “apurúi,” or “puruí-grande-da-mata,” occurs in the Amazon Forest [11]. To the best of our knowledge, no chemical or biological investigations other than ours [12, 13] have been carried out on this species as yet. Hence this
work aims to evaluate the antimycobacterial activity of their extracts and isolate and identify the substances present in D. macrophylla active extracts.

2. Material and Methods

2.1. Plant Material. Two collections were performed, the first one, at the “A. Ducke” Forest Reserve, 26 km from Manaus, was carried out on December 5th, 2008, and a voucher specimen (222383) was deposited at the Herbarium of the Botanical Research Coordination of the National Research Institute of Amazonia (INPA). The second one at the Natural Heritage Private Reserve, locally known as “Cachoeira da Onça,” in “Presidente Figueiredo” County, AM, was carried out on May 18th, 2011. A voucher specimen (222501) was deposited at the same Herbarium.

2.2. Extracts Preparation. Plant material (leaves and branches) was dried in an oven at 50°C and powdered. Each plant part was extracted three times separately, first with dichloromethane (DCM) followed by methanol (MeOH), in a sonic bath for 20 minutes. After filtration, DCM and MeOH extracts were concentrated under reduced pressure.

2.3. Phytochemical Investigation. The extracts were analyzed following the methodology described by Matos [14], as well as by thin layer chromatography (TLC) (Merck) using silica with UV254 fluorescence detector on aluminum support, eluted with appropriated systems, and revealed with UV light (λ = 254 and 365 nm), sulfuric p-anisaldehyde, Ce(SO₄)₂, 2,2-diphenyl-1-picrylhydrazyl (DPPH), FeCl₃, and Dragendorff reagents. Chemical extract profile was identified through thin layer chromatography (TLC) (Merck) using silica with fluorescence detector on aluminum support, eluted with hexane/ethyl acetate and ethyl acetate/methanol, yielding 19 fractions with 10 mL each. Afterwards, fraction 25–40 (130 mg) was fractionated on silica gel (17 g) CC and eluted with hexane/ethyl acetate and ethyl acetate/methanol gradients, yielding 19 fractions with 10 mL each. The NMR data was obtained at 295K on a Bruker AVANCE 400 NMR spectrometer operating at 9.4 Tesla, observing 1H and 13C at 400 and 100 MHz, respectively. The spectrometer was equipped with a 5 mm multinuclear direct detection probe, with z-gradient. One-bond (HSQC) and long-range (HMBC) 1H–13C NMR correlation experiments were optimized for coupling constants 1JH, C and LR 1JH, C of 140 and 8Hz, respectively. All NMR chemical shifts were expressed in ppm related to TMS signal at 0.00 ppm as internal reference, and samples were dissolved in CDCl₃.

2.4. Extract Fractionation. Dichloromethane extract from leaves (1st collection) (9 g) was submitted to a chromatographic column (CC) fractionation on silica gel (332 g), eluted with gradients of hexane/ethyl acetate and ethyl acetate/methanol, yielding 99 fractions with 50 mL each. Fraction 25–40 (900 mg) was fractionated on silica gel (90 g) CC and eluted with hexane/ethyl acetate and ethyl acetate/methanol gradients, yielding 42 fractions with 20 mL each. Fraction 25–40.6 (130 mg) was fractionated on silica gel (17 g) CC and eluted with hexane/ethyl acetate and ethyl acetate/methanol gradients, yielding 19 fractions with 10 mL each. Afterwards, fraction 25–40.6.4 (4 mg) was submitted to high-performance liquid chromatography (HPLC) analysis. HPLC was performed with a Shimadzu system SCL-10AVP, processing software programs CLASS VP, dual LC-6AD pumps, 10AF autosampler, SPD-M20 diode-array detector, cyanopropyl column (250 x 10 mm, 4 μm particle sizes, Luna-Phenomenex), with acetonitrile:water (90:10) as the isocratic mobile phase, at a 5 mL/min flow rate. The injection volume was 35 μL. The resolved peaks retention times were 11.5 and 12 min, identified by NMR analyses as oleanolic acid (I) and ursolic acid (2), respectively (Figure 1).

All fractions were evaluated by TLC analysis, eluted with appropriated systems, and revealed under UV light exposure (λ = 254 and 365 nm), sulfuric p-anisaldehyde, Ce(SO₄)₂, 2,2-diphenyl-1-picrylhydrazyl (DPPH), FeCl₃, and Dragendorff reagents.

2.5. NMR Data. The NMR data was obtained at 295 K on a Bruker AVANCE 400 NMR spectrometer operating at 9.4 Tesla, observing 1H and 13C at 400 and 100 MHz, respectively. The spectrometer was equipped with a 5 mm multinuclear direct detection probe, with z-gradient. One-bond (HSQC) and long-range (HMBC) 1H–13C NMR correlation experiments were optimized for coupling constants 1JH, C and LR 1JH, C of 140 and 8 Hz, respectively. All NMR chemical shifts were expressed in ppm related to TMS signal at 0.00 ppm as internal reference, and samples were dissolved in CDCl₃.

Figure 1: Schematic representation of D. macrophylla dichloromethane extract of leaves (1st collection) fractionation. DCM: dichloromethane; CC: chromatographic column; HPLC: high-performance liquid chromatography.
2.6. Antimycobacterial Activity. Resazurin microtiter assay (REMA) was used to evaluate the antimycobacterial activity. This method uses resazurin as an oxidoreduction indicator to evaluate the bacterial viability and contamination, in addition to analyzing the antimicrobial activity [15].

2.6.1. Microorganisms. The extracts activity was evaluated against three *Mycobacterium tuberculosis* strains: one pansensible (H37Rv, ATCC 27294), one isoniazid monoresistant (INH, ATCC 35882) with mutation in *katG*, codon S315T (AGC-ACC), and other rifampicin monoresistant (RMP, ATCC 35338), with mutation in *rpoB*, codon H526T (CAG-TAC). The strains were cultivated in Ogawa-Kudoh’s medium at 37°C for nearly 14 days. The bacterial suspension of each strain was prepared in a sterile tube with glass pearls and turbidity adjusted with distilled water, according to Mc Farland scale's number 1 tube, which corresponds to approximately 3 × 10⁸ CFU/mL. Then, Middlebrook 7H9 medium was added to bacterial suspension in 1:20 ratio [15].

2.6.2. Assay Procedure. Samples were first evaluated in 96-well microplates at a 200 μg/mL concentration against the three *M. tuberculosis* strains. The assay started adding 75 μL of Middlebrook 7H9 medium enriched with 10% of OADC (oleic acid, albumin, dextrose, and catalase) for *M. tuberculosis*, 75 μL of each extract, and 75 μL of inoculum. Then, 200 μL of sterile water were added to each peripheral well, so as to avoid medium liquid evaporation when heater-incubated. Finally, the plate was incubated at 37°C for seven days.

2.6.3. Minimum Inhibitory Concentration Determination. The extracts presenting an antimycobacterial activity at the 200 μg/mL concentration screening were chosen to evaluate their minimum inhibitory concentration (MIC) value [16]. This value was determined by adding 100 μL of medium, 100 μL of extract (starting at 200 μg/mL concentration on the first well and performing a 1:2 microdilution), and 100 μL of bacterial inoculum in each well. Also, 200 μL of sterile water was added to each peripheral well, in order to avoid medium liquid evaporation when heater-incubated. Then, the plate was incubated at 37°C for seven days.

2.6.4. Bacterial Viability. Following the incubation period, 30 μL of resazurin (0.02%) was added in each well and incubated for two days at 37°C. The biological activity was based on the color change, from blue to pink when an oxidoreduction reaction of the reagent occurs due to bacterial growth [15].

3. Results and Discussion

3.1. Phytochemical Investigation. All *Duroia macrophylla* extracts were analyzed in order to evaluate the chemical profile [17, 18]. Dichloromethane extracts from branches and leaves in both collections showed to be rich in terpenes. Regarding methanolic extracts, only those from branches (1st collection) and leaves (2nd collection) showed the presence of both terpenes and hydrolyzed tannins. Alkaloids were only detected on dichloromethane and methanolic extracts from branches (2nd collection). All methanolic extracts showed the presence of flavonoids. All dichloromethane extracts from branches showed the presence of phenolic compounds. ¹H-NMR spectra analysis showed the presence of aromatic substances in the methanolic extract of branches (1st collection), with several signals between 6.50 and 7.80 ppm.

3.2. Substances Isolation and Identification. Following crude extracts chemical and biological analysis, the dichloromethane extract from leaves (1st collection) was chosen to be fractionated, since it showed to be the most active against the three *Mycobacterium tuberculosis* strains (RMP, H37Rv and INHr) (Table 2).

Fraction 25–40. ¹H-NMR data showed the presence of several signals in the shielded region between δH 0.7 and 1.2 (s), characteristic of methyl hydrogens; two signals at δH 5.31 (dd, J = 3.6; 3.5 Hz) and 5.27 (dd, J = 3.6; 3.5 Hz) characteristic of olefinic hydrogen, and also two signals at 3.23 (dd, J = 10.7; 4.7 Hz) and 3.22 (dd, J = 10.8; 4.9 Hz) which agree with carboxilic hydrogens. All this data suggests the mixture of two triterpenes.

HPLC fractionation of this mixture was performed in order to isolate them, and yielded two fractions, 1 and 2, with retention times of 11.5 and 12.0 min. The ¹H-NMR spectrum from fraction 25–40.6.4.1 showed the signal at δH 5.31 (dd, J = 3.6; 3.5 Hz) and from fraction 25–40.6.4.2, the signal at δH 5.27 (dd, J = 3.6; 3.5 Hz).

The substance 1 ¹H-¹³C NMR (HSQC) correlation map showed the hydrogen at 5.31 ppm with the carbon at 122.8, which were identified as the vinilic C-12 carbon of oleanolic acid [7, 19] (Table 1). The signal in δC 180.0 was assigned to the carboxyl group (C-28).

The ¹H-NMR spectrum from fraction 25–40.6.4.2 showed several signals at the shielded region, between δH 0.79 and δH 1.72 characteristic of methyl hydrogens, moreover two signals were observed at 3.22 (dd, J = 10.8 and 4.9 Hz) and δH 5.27 (dd, J = 3.6 and 3.5 Hz) characteristic of olefinic hydrogen, which were assigned to H-12 in triterpenes, characterizing the ursanic skeleton of substance 2.

When analyzing the ¹H-¹³C NMR spectral data one can find seven methyl carbons (CH₃), nine methane carbons (CH₄), seven methine carbons (CH), and seven non-hydrogenated carbons (C), resulting in thirty carbons characteristic of pentacyclic triterpenes. δC 179.6 from the carboxylic acid carbon (not hydrogenated), δC 137.9 characteristic of unhydrogenated olefinic carbon (sp³) and δC 125.9 of hydrogenated olefinic carbon are the major signals characteristic of a ursanic skeleton. These signals represent, carbons C-28, C-13 and C-12 in ursolic acid triterpene, respectively.

On the other hand, the ¹H-¹³C NMR (HSQC) correlation map showed correlation of the hydrogen at 5.27 ppm with the carbon at 125.9, which were identified as the vinilic C-12 carbon and the multiplicity of the signals corresponding to...
Table 1: 1H and 13C NMR chemical shifts (δ, ppm) data of oleanolic and ursolic acids (400 MHz, CDCl$_3$).

Position	Oleanolic acid	Ursolic acid				
	δ$_C$	δ$_H$ (multiplicity)	δ$_C$	δ$_H$ (multiplicity)	δ$_C$	δ$_H$ (multiplicity)
1	38.5	1.63 (m)	39.0	1.72 (m)	39.2	
2	28.1	1.60 (m)	28.1	1.60 (m)	28.2	
3	79.1	3.23 (dd; $J = 10.7$; 4.7 Hz)	78.2	3.22 (dd; $J = 10.8$; 4.9 Hz)	78.2	
4	38.8	—	38.6	—	39.6	
5	55.3	0.74 (m)	55.9	1.34 (m)	55.9	
6	18.8	1.54 (m)	18.8	1.60 (m)	18.8	
7	32.7	1.49 (m)	33.4	32.9 (m)	33.7	
8	39.3	—	39.5	—	40.1	
9	47.6	1.54 (m)	48.2	1.60 (m)	48.1	
10	37.0	—	37.0	—	37.5	
11	23.8	0.94 (m)	23.8	1.91 (m)	23.7	
12	122.8	5.31 (dd; $J = 3.6$; 3.5 Hz)	122.6	5.27 (dd; $J = 3.6$; 3.5 Hz)	125.7	
13	143.5	—	144.8	137.9	139.3	
14	41.5	—	42.2	42.0	42.6	
15	27.7	1.60 (m)	28.4	1.60 (m)	28.8	
16	23.7	0.94 (m)	23.8	25.0	25.0	
17	46.7	—	46.7	48.1	48.1	
18	42.1	2.82 (m)	42.1	53.8	53.6	
19	46.0	2.87 (m)	46.6	38.5	39.5	
20	31.0	—	31.0	0.95 (m)	39.4	
21	33.9	1.62 (m)	34.3	30.3	31.1	
22	33.2	1.30 (m)	33.2	37.2	37.4	
23	28.0	1.00 (s)	28.8	1.00 (s)	28.8	
24	16.8	0.79 (s)	16.5	15.6	16.5	
25	15.3	0.93 (s)	15.6	0.79 (s)	15.7	
26	17.1	0.79 (s)	17.5	0.82 (s)	17.5	
27	26.0	1.16 (s)	26.2	1.10 (s)	24.0	
28	310.0	—	180.0	179.6	179.7	
29	33.1	0.92 (s)	33.4	17.0	17.5	
30	23.7	0.94 (s)	23.8	21.4	21.4	

H-18 and related CH$_3$-29 and CH$_3$-30 determined the ursolic acid.

In the two-dimensional 1H-1H NMR (COSY) correlation map, the following correlations are observed: hydrogen H-11 (δ 1.91) with H-12 (δ 5.27).

It is common to isolate the ursolic acid with oleanolic acid mixture due to molecular similarity, yet a few differences between them enable telling them apart through NMR, due to the difference between the H-18, C-18, C-12, C-13 and C-29 [20] chemical shifts, and mainly on account of H-29 being a doublet for ursolic acid, and a singlet for oleanolic acid.

1H-NMR spectra and HSQC and HMBC NMR correlation maps overall analysis as well as comparison with literature data [7] enabled the complete structure to be determined as the triterpenes oleanolic and ursolic acids (Table 1) (Figure 2).

The mass spectra analysis of each triterpene isolated showed the molecular ion peak at $m/z = 456$ u, and showed the common fragmentation pattern of triterpenes, described in the literature [21]. All these data together confirmed to be the triterpenes, ursolic acid and oleanolic acid. To the best of our knowledge, this is the first report of these two triterpenes in Duroia genus.

3.3. Antimycobacterial Activity. All extracts showed activity against M. tuberculosis at least for one strain, except for the methanol extract of branches (1st collection) (Table 2). The dichloromethane extract of leaves (1st collection) showed the highest activity, with a MIC of 6.25 μg/mL for INHr strain, 25.0 μg/mL for RMPr strain and \leq 6.25 μg/mL for H37Rv strain. Triterpenes oleanolic and ursolic acids were isolated from this extract. The methanolic extract of leaves (2nd collection) that showed a MIC of 12.5 μg/mL for INHr strain was the second most active one (Table 2).

The wide variety of natural products chemical structures plays a major role on the development of new antimycobacterial drugs generations, as shown in the extensive literature...
Table 2: Minimum inhibitory concentration (MIC) of *D. macrophylla* extracts against *M. tuberculosis* strains.

Extracts	*M. tuberculosis*		
	H37Rv (µg/mL)	INHr (µg/mL)	RMPr (µg/mL)
1st Collection			
Leaves DCM	S 6.25	S 25	S ≤6.25
Leaves MeOH	R >200	R >200	S 200
Branches DCM	S 100	S 100	S 100
Branches MeOH	R >200	R >200	R >200
2nd Collection			
Leaves DCM	S 200	S 50	R >200
Leaves MeOH	S 100	S 12.5	S 100
Branches DCM	S 25	S 50	R >200
Branches MeOH	S 100	S 100	S 100

DCM: dichloromethane, MeOH: methanol, R: resistant, S: sensible, H37Rv: sensible strain, INHr: isoniazid resistant strain, RMPr: rifampicin resistant strain. Extract with MIC > 200 µg/mL were considered inactive.

Out of the 27 assayed fractions present in this work, only fraction 63-65 was as active against *M. tuberculosis* INHr strain as the dichloromethane extract of leaves (1st collection) (MIC of 25 µg/mL). Among the others, 15 fractions were active against *M. tuberculosis* H37Rv strain (MIC between 50 and 200 µg/mL), 17 fractions were active against INHr strain (MIC between 25 and 200 µg/mL), and 16 fractions were active against RMPr strain (MIC between 50 and 200 µg/mL) (Table 3). Fraction 25-40.6 was active against the three strains, with a MIC of 200 µg/mL and their fractionation yielded the substances 1 and 2 corresponding to the triterpenes oleanolic and ursolic acids, respectively.

Studies conducted by Higuchi et al. [27] reported the oleanolic and ursolic acids’ mixture MIC to be 62.5 µg/mL. Other studies showed the growth inhibitory activity against *Mycobacterium tuberculosis* with a MIC of 16 µg/mL for oleanolic acid and 50 µg/mL for ursolic acid [24].

Ge et al. [31] also obtained a better MIC value for oleanolic acid (MIC of 28.7 µg/mL) than that for ursolic acid (MIC of 41.9 µg/mL). These latter examples showed each isolated compound to exhibit a better MIC than the mixture’s.

The high lipophilicity of terpenes is probably the main factor that allows their penetration through the mycobacterial cell wall [27].

Other studies showed these substances inhibited 99% the growth of *M. tuberculosis* H37Rv [32]. The literature data reported that oleanolic acid has a synergistic effect when combined with isoniazid, rifampicin, or ethambutol (first line antitubercular drugs) [32].

According to Pauli et al. [33], a crude extract MIC may or not be a reliable antimycobacterial activity indicator since such extracts could hold active compound antagonist substances decreasing the MIC. Otherwise, a crude extract could hold compound agonists with increasing effects on MIC, the so called synergism effect. According to the author an extract with high activity (lower MIC) could present large amounts of compounds with moderated antimycobacterial activity. In other scenario, crude extracts with moderated MIC could hold small amounts of chemically active compounds. When the extract loses its activity during the fractionation, it could be due to a synergism effect between the substances on it. Therefore, the combined action of two or more substances...
Table 3: Minimum inhibitory concentration (MIC) of dichloromethane fractions from the leaves of D. macrophylla (1st collection) against M. tuberculosis strains.

Fraction	H37Rv (µg/mL)	INHr (µg/mL)	RMPr (µg/mL)
Fr1–4	R >200	R >200	R >200
Fr1–4.17–20	R >200	R >200	R >200
Fr5	R >200	R >200	R >200
Fr6–12	S 50	S 100	S 100
Fr6–12.30	R >200	R >200	R >200
Fr6–12.33–35	R >200	R >200	R >200
Fr6–12.38–63	R >200	R >200	R >200
Fr14–16	S 100	S 50	S 100
Fr17–21	R >200	R >200	R >200
Fr17.21.1–5	R >200	R >200	R >200
Fr25–40	S 200	S 200	S 200
Fr25–40.2	R >200	S 200	S 200
Fr25–40.6	S 200	S 200	S 200
Fr25–40.6.32	S 100	S 100	S 100
Fr41–44	S 100	S 50	S 100
Fr46–56	S 200	S 200	S 200
Fr46–56.5	S 200	S 200	S 200
Fr46–56.8-10	S 50	S 50	S 50
Fr46–56.13–17	R >200	R >200	R >200
Fr57	S 100	S 200	S 200
Fr57.6–12	S 100	R >200	R >200
Fr63–65	S 100	S 25	S 100
Fr66–68	S 200	S 100	S 200
Fr70–74	R >200	S 200	R >200
Fr76–86	R >200	S 200	S 200
Fr87–92	S 200	S 50	S 100
Fr94–99	S 200	S 200	S 100

Fr: fraction, R: resistant, S: sensible, H37Rv: susceptible strain, INHr: isoniazid resistant strain, RMPr: rifampicin resistant strain. Fractions with MIC > 200 µg/mL were considered inactive.

can result on a biological effect higher than any single one’s. Hence, more thorough studies are necessary to find which substances should be mixed in order to attain the desirable antimycobacterial activity.

Acknowledgments

The authors are grateful to CT-Agro/CNPq/MCTI (520281/2007-1 and 562892/2010-9), PPBio/CNPq/MCTI (558321/2009-7), and CENBAM/CNPq/MCTI for the financial support.

References

[1] E. Robbrecht, “Tropical woody Rubiaceae,” Opera Botanica Belgica, vol. 1, no. 272, pp. 599–602, 1988.
[2] M. E. Heitzman, C. C. Neto, E. Winiarz, A. J. Vaisberg, and G. B. Hammond, "Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae);" Phytochemistry, vol. 66, no. 1, pp. 5–29, 2005.
[3] K. D. Choudhury, M. D. Choudhury, and M. Baruah, "Antibacterial activity of some plants belonging to the family Rubiaceae: a review," World Journal of Pharmacy and Pharmaceutical Sciences, vol. 1, no. 3, pp. 1170–1192, 2012.
[4] T. M. D. S. Moraes, M. H. de Araújo, N. R. Bernardes et al., "Antimycobacterial activity and alkaloid prospect of Psychotria species (Rubiaceae) from the Brazilian Atlantic Rainforest," Planta Medica, vol. 77, no. 9, pp. 964–970, 2011.
[5] K. A. Muthu and C. D. Shajisvelin, "In vitro evaluation of free radical scavenging potential of various extracts of whole plant of Borneria hispida (Linn)," International Journal of Pharmaceutical Sciences and Research, vol. 1, no. 2, pp. 127–130, 2010.
[6] R. Usha, S. Sashidharan, and M. Palaniswami, "Antimicrobial activity of a rarely known species Morinda citrifolia L.," Ethnobotanical Leaflets, vol. 14, pp. 306–311, 2010.
[7] A. Lopez, J. B. Hudson, and G. H. N. Towers, "Antiviral and antimicrobial activities of Colombian medicinal plants," Journal of Ethnopharmacology, vol. 77, no. 2-3, pp. 189–196, 2001.
[8] M. T. H. Khan, A. Ather, K. D. Thompson, and R. Gambari, "Extracts and molecules from medicinal plants against herpes simplex viruses," Antiviral Research, vol. 67, no. 2, pp. 107–119, 2005.
[9] R. Aquino, N. de Tommasi, M. Tapia, M. R. Lauro, and L. Rastrelli, "New 3-methoxyflavones, an iridoid lactone and a flavonol from Duroia hisruta," Journal of Natural Products, vol. 62, no. 4, pp. 560–562, 1999.
[10] J. E. Page, S. Madriñán, and G. H. N. Towers, "Identification of a plant growth inhibiting iridoid lactone from Duroia hisruta, the allelopathic tree of the "Devil's garden"," Experientia, vol. 50, no. 9, pp. 840–842, 1994.
[11] J. E. L. S. Ribeiro, M. J. G. Hopkins, A. Vicentini et al., Flora da Reserva Ducke. Guia de identificação das plantas em uma floresta de terra firme na Amazônia central, Instituto Nacional de Pesquisas da Amazonia (INPA) and Department for International Development (DFID), Manaus, Brazil, 1999.
[12] C. V. Nunez, P. A. Santos, V. Roumy et al., “Raunitidine isolated from Duroia macrophylla (Rubiaceae),” Planta Medica, vol. 75, no. 9, pp. 1037–1037, 2009.
[13] C. V. Nunez, V. Roumy, D. W. O. Mesquita et al., “Indole alkaloids from Duroia macrophylla (Rubiaceae),” Planta Medica, vol. 78, no. II, pp. 1209–1209, 2012.
[14] E. J. A. Matos, Introdução à Fitoquímica Experimental, EUFC, Fortaleza, Brazil, 1997.
[15] J. C. Palomino, A. Martin, M. Camacho, H. Guerra, J. Swings, and F. Portaels, "Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis," Antimicrobial Agents and Chemotherapy, vol. 46, no. 8, pp. 2720–2722, 2002.
[16] S. G. Franzblau, R. S. Witzig, J. C. Mclaughlin et al., "Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay," Journal of Clinical Microbiology, vol. 36, no. 2, pp. 362–366, 1998.
[17] M. Abreu, Triagem fitoquímica de plantas por cromatografia em camada delgada (CCD), Apostal de Curso, Laboratorio de Fitoquímica, Escola de Farmácia, Universidade de Ouro Preto, 2000.
[18] H. Wagner and S. Bladt, Plant Drug Analysis: A Thin Layer Chromatography Atlas, Springer, New York, NY, USA, 2001.
[19] W. Seebacher, N. Simic, R. Weis, R. Saf, and O. Kunert, “Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18α-oleanolic acid, ursolic acid and their 11-oxo derivatives,” *Magnetic Resonance in Chemistry*, vol. 41, no. 8, pp. 636–638, 2003.

[20] V. G. Kontogianni, V. Exarchou, A. Troganis, and I. P. Gerothanassis, “Rapid and novel discrimination and quantification of oleanolic and ursolic acids in complex plant extracts using two-dimensional nuclear magnetic resonance spectroscopy—comparison with HPLC methods,” *Analytica Chimica Acta*, vol. 635, no. 2, pp. 188–195, 2009.

[21] I. Ogunkoya, “Application of mass spectrometry in structural problems in triterpenes,” *Phytochemistry*, vol. 20, no. 1, pp. 121–126, 1981.

[22] B. R. Copp, “Antimycobacterial natural products,” *Natural Product Reports*, vol. 20, no. 6, pp. 535–557, 2003.

[23] S. M. Newton, C. Lau, and C. W. Wright, “A review of antimycobacterial natural products,” *Phytotherapy Research*, vol. 14, no. 5, pp. 303–322, 2000.

[24] C. L. Cantrell, S. G. Franzblau, and N. H. Fischer, “Antimycobacterial plant terpenoids,” *Planta Medica*, vol. 67, no. 8, pp. 685–694, 2001.

[25] V. Seidel and P. W. Taylor, “In vitro activity of extracts and constituents of *Pelagonium* against rapidly growing mycobacteria,” *International Journal of Antimicrobial Agents*, vol. 23, no. 6, pp. 613–619, 2004.

[26] R. M. Aguiar, J. P. David, and J. M. David, “Unusual naphthoquinones, catechin and triterpene from *Byrsonima microphylla*,” *Phytochemistry*, vol. 66, no. 19, pp. 2388–2392, 2005.

[27] C. T. Higuchi, F. R. Pavan, C. Q. F. Leite et al., “Triterpenes and antitubercular activity of *Byrsonima crassa*,” *Quimica Nova*, vol. 31, no. 7, pp. 1719–1721, 2008.

[28] D. F. Ramos, G. G. Leitão, F. N. Costa et al., “Investigation of the antimycobacterial activity of 36 plant extracts from the brazilian Atlantic Forest,” *Revista Brasileira de Ciências Farmacêuticas*, vol. 44, no. 4, pp. 669–674, 2008.

[29] J. Schripsema, A. Ramos-Valdivia, and R. Verpoorte, “Robustaquinones, novel anthraquinones from an elicited *Cinchona robusta* suspension culture,” *Phytochemistry*, vol. 51, no. 1, pp. 55–60, 1999.

[30] M. R. Khan and A. D. Omoloso, “Antibacterial and antifungal activities of *Angiopteris evecta*,” *Fitoterapia*, vol. 79, no. 5, pp. 366–369, 2008.

[31] F. Ge, F. Zeng, S. Liu et al., “In vitro synergistic interactions of oleanolic acid in combination with isoniazid, rifampicin or ethambutol against *Mycobacterium tuberculosis*,” *Journal of Medical Microbiology*, vol. 59, no. 5, pp. 567–572, 2010.

[32] A. Jiménez, M. Meckes, V. Alvarez, J. Torres, and R. Parra, “Secondary metabolites from *Chamaedora tepejilote* (Palmae) are active against *Mycobacterium tuberculosis*,” *Phytotherapy Research*, vol. 19, no. 4, pp. 320–322, 2005.

[33] G. F. Pauli, R. J. Case, T. Inui et al., “New perspectives on natural products in TB drug research,” *Life Sciences*, vol. 78, no. 5, pp. 485–494, 2005.