Cochlear amplification and tuning depend on the cellular arrangement within the organ of Corti

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Motallebzadeh, Hamid, Joris A. M. Soons, and Sunil Puria. 2018. “Cochlear amplification and tuning depend on the cellular arrangement within the organ of Corti.” Proceedings of the National Academy of Sciences of the United States of America 115 (22): 5762-5767. doi:10.1073/pnas.1720979115. http://dx.doi.org/10.1073/pnas.1720979115.
Published Version	doi:10.1073/pnas.1720979115
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:37298298
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Cochlear amplification and tuning depend on the cellular arrangement within the organ of Corti

Hamid Motallebzadeh*a,b, Joris A. M. Soonsc, and Sunil Puriaa,b,d,1

*Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114; †Department of Otolaryngology, Harvard Medical School, Boston, MA 02115; Department of Biomedical Physics, University of Antwerp, 2000 Antwerpen, Belgium; and 2Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115

Edited by David P. Corey, Harvard Medical School, Boston, MA, and accepted by Editorial Board Member Charles F. Stevens April 6, 2018 (received for review December 7, 2017)

The field of cochlear mechanics has been undergoing a revolution due to recent findings made possible by advancements in measurement techniques. While it has long been assumed that basilar-membrane (BM) motion is the most important determinant of sound transduction by the inner hair cells (IHCs), it turns out that other parts of the sensory epithelium closer to the IHCs, such as the reticular lamina (RL), move with significantly greater amplitude for weaker sounds. It has not been established how these findings are related to the complex cytoarchitecture of the organ of Corti between the BM and RL, which is composed of a lattice of asymmetric Y-shaped elements, each consisting of a basally slanted outer hair cell (OHC), an apically slanted phalangeal process (PhP), and a supporting Deiters’ cell (DC). Here, a computational model of the mouse cochlea supports the hypothesis that the OHC micromotors require this Y-shaped geometry for their contribution to the exquisite sensitivity and frequency selectivity of the mammalian cochlea. By varying only the OHC gain parameter, the model can reproduce measurements of BM and RL gain and tuning for a variety of input sound levels. Malformations such as reversing the orientations of the OHCs and PhPs or removing the PhPs altogether greatly reduce the effectiveness of the OHC motors. These results imply that the DCs and PhPs must be properly accounted for in emerging OHC regeneration therapies.

Cochlear amplification and tuning depend on the cellular arrangement within the organ of Corti

Significance

While the near-crystalline structure of the organ-of-Corti cytoarchitecture in the mammalian cochlea has been known for some time, its functional consequences on hearing remain to be established. The present computational-modeling studies show that individual outer hair cells (OHCs) can work together to produce high hearing sensitivity and frequency selectivity because of the overlapping asymmetrical Y-shaped structures that they form with the Deiters’ cells (DCs) and phalangeal processes (PhPs). Altering the geometry and material properties of these structures reveals that all three components have a profound effect on basilar-membrane and reticular-lamina amplification and tuning. One implication is that the DCs and PhPs are not just supporting structures, but that they must also be properly restored in emerging therapies to regenerate OHCs.

Author contributions: H.M., J.A.M.S., and S.P. designed research; H.M., J.A.M.S., and S.P. performed research; H.M., J.A.M.S., and S.P. analyzed data; and H.M. and S.P. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. D.P.C. is a guest editor invited by the Editorial Board.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence should be addressed. Email: Sunil_Puria@meei.harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720979115/-/DCSupplemental.

Published online May 14, 2018.
FE model of the mouse cochlea that explicitly incorporates the cytoarchitectural geometries of the OHCs, DCs, and PhPs, which were recently quantified using a two-photon imaging approach (10). This “baseline” model has been tested against two sets of recent experimental measurements of BM and RL vibrations from the 10-kHz apical region (2) and 48-kHz basal region (3). In addition, the model is able to generate stimulus-frequency otoacoustic emissions that are comparable with experimental measurements (15). In contrast to earlier work that used an asymptotic method (16, 17), in which algebraic expressions were formulated for the “feed-forward” and “feed-backward” mechanisms of the Y-shaped structures, in the present model the geometry is incorporated directly.

As there are no known mutations that change the orientation and geometry of the Y-shaped elements, we used the baseline model as a “numerical genetics laboratory” by making a series of changes to the geometry and material properties of the Y-shaped structures, so as to evaluate the extent to which normal BM and RL tuning and amplification depend upon the natural arrangement of the Y-shaped elements. The geometric alterations to the repeating and overlapping Y-shaped structures include (i) flipping the orientation of the OHCs and PhPs so that the OHCs are oriented apically and the PhPs are oriented basally, (ii) deleting the PhPs altogether, and (iii) altering the PhP length and angle, which changes the number of OHCs that each PhP spans across.

We also performed sensitivity analyses of the material properties by increasing and decreasing the Young’s moduli (stiffnesses) of the OHCs, DCs, PhPs, and RL. This modeling study provides a first step toward understanding the implications of the OoC cytoarchitecture on cochlear amplification and tuning and has far-reaching implications for emerging regeneration methods that aim to restore in vivo OHC function but not necessarily the normal cytoarchitecture of the OoC.

Results

Testing the Baseline Model Against Physiological Measurements. By varying only the OHC gain-factor value \(\alpha \), the FE model of the uncoiled mouse cochlea (Fig. 1 and Methods) produces RL and BM velocities (normalized by the oval-window input velocity) that are generally consistent with the magnitude of measured motions from the basal (Fig. 2 A and B) and apical (Fig. 2 C and D) regions (normalized by the middle-ear motion). In the basal region, the postmortem BM motion has a broad peak of \(\sim 30 \) dB near 35 kHz (Fig. 2A, black lines). For the 20-dB sound pressure level (SPL) input (\(\alpha = 0.225 \)), the peak increases by 30 dB and approaches the best frequency (BF) of 48 kHz, and the BW of the response becomes narrower (Fig. 2A, magenta lines). The experimental data for input levels of 40, 60, and 80 dB SPL are reproduced by the model with lower \(\alpha \) values. For input frequencies below 30 kHz, the gains are similar for all input levels.

A new set of \(\alpha \) gain factors reproduces the experimental BM data at the apex (Fig. 2C). For an input level of 80 dB SPL (model \(\alpha = 0.18 \)), the BM has a broad peak of \(\sim 30 \) dB near 4–6 kHz (Fig. 2C, blue lines). For the 10-dB SPL input level (\(\alpha = 0.255 \)), the peak increases by 45 dB and approaches the BF of 10 kHz with a narrower BW (Fig. 2C, red lines). The experimental data for input levels of 20, 40, and 60 dB SPL are reproduced by the model with lower \(\alpha \) values. For input frequencies below about 4 kHz, the gains for all input levels are similar.

Similar to the BM, lower stimulus levels cause the RL gain to increase and the BF peaks to shift to higher frequencies, in both the basal and apical regions. However, unlike the BM, which exhibits linear regions below 30 kHz at the base and 5 kHz at the apex (Fig. 2 A and C, respectively), where all curves merge regardless of input level, the RL exhibits level-dependent gain in these regions. This model demonstrates RL gain below BF consistent with measurements (Fig. 2 B and D). In addition, whereas the basal results show that RL motion is higher (for active cases) than the corresponding BM motion (by more than 10 dB at the 48-kHz BF for a 20-dB SPL input), in the apical region the RL/BM motion...
To evaluate the values.

Comparison of model vibration results between the baseline (dashed lines) and a version with flipped OHCs and PhPs (solid lines) for the BM (A and C) and RL (B and D) at the cochlear base (A and B) and apex (C and D). The BM and RL gains are reduced most dramatically at the apex. An inset in the top right of A shows the alteration of the Y-shaped elements by flipping the OHCs and PhPs. The Fig. 2 legend lists the corresponding α values.

ratio decreases from 2 dB to -10 dB when the input changes from 10-dB SPL (Fig. 2 C and D, red lines at 10 kHz) to 80-dB SPL (Fig. 2 C and D, blue lines at 6 kHz).

At 10-kHz and 10-dB SPL (the lowest reported level), the BM and RL Q_3 values in Lee et al. (2) were 11.7 and 9.0, respectively, versus 9.1 and 9.6 in the present model. At 48-kHz and 20-dB SPL (the lowest reported level), the BM and RL Q_3 values in Ren et al. (3) were 6.7 and 9.1, respectively, versus 8.8 and 8.0 in the present model.

The model shows a sharper phase roll-off than the experimental data, and the phase decay increases as the gain factor α increases (Fig. S1). The measured BM and RL motions are nearly in phase at low frequencies (Fig. S1 A and B, dashed lines). However, the active models show that the BM and RL differ by approximately one-half cycle up to BF for high (Fig. 1 A and B, solid lines) and low frequencies (Fig. 1 C and D, solid lines). These phase relationships can be observed in the traveling wave at the base (Movie S1) and apex (Movie S2), consistent with measurements made at the mouse apex (movie S1 in ref. 18).

Deleting the PhPs. For a second alteration (Fig. 4), we deleted the PhPs (solid lines) and compare the results to the baseline model (dashed lines) to evaluate their role in the tuning characteristics. Deleting the PhPs, similar to flipping the OHCs and PhPs, significantly reduces both the BM and RL gains (Fig. 4). The basal responses still have amplification, although with broader peaks, lower gains, and almost no BF shift (Fig. 4 A and B). The RL motion is still generally higher than the BM motion, with a difference of about 10 dB at frequencies below 6 kHz.

Similar to the spatial responses after flipping the OHCs and PhPs (Fig. S2), deleting the PhPs does not affect the long-wave region but does affect the short-wave region (Fig. S3A), causing lower gains and broader tuning, which can also be observed in the traveling wave at the base (Movie S5) and apex (Movie S6). The spatial responses often show noisy behavior above BF on the apical side. The phase rolls off similarly to the baseline around the BF locations (Fig. S3B).

Changing the PhP Span. For the third alteration (Fig. 5), we varied from 1 to 10 the number of OHCs that the PhPs extend across, which we refer to as the “span number” (N). Instead of plotting frequency–response tuning curves, we summarize these results by comparing the maximum gain and equivalent rectangular bandwidth (ERB), which is similar to the critical BW as a different frequencies, with fixed $\alpha = 0.23$ (corresponding to 20- and 40-dB SPL at the basal and apical locations, respectively), is largely unaffected by flipping the OHCs and PhPs (Fig. S2A, solid and dashed lines). However, in the BF short-wave region (i.e., where the phase decreases rapidly in Fig. S2B, in the vicinity of the star symbols), lower gains are produced in the altered model (solid lines), which can also be observed in the traveling wave at the base (Movie S3) and apex (Movie S4). All of the phase responses plateau with fewer cycles than the baseline response (Fig. S2B).

To evaluate the values.

Comparison of model vibration results between the baseline (dashed lines) and a version with flipped OHCs and PhPs (solid lines) for the BM (A and C) and RL (B and D) at the cochlear base (A and B) and apex (C and D). The BM and RL gains are reduced most dramatically at the apex. An inset in the top right of A shows the alteration of the Y-shaped elements by flipping the OHCs and PhPs. The Fig. 2 legend lists the corresponding α values.
measure of the sharpness of the peak, as a function of N, for a constant OHC gain factor of $\alpha = 0.23$.

The gain maxima and ERBs for both the BM and RL are dependent on frequency and N. At low spans of 1 and 2, higher frequencies have higher gain maxima and narrower ERBs (Fig. 5, black and blue lines). Lower frequencies conversely exhibit lower gain maxima and wider ERBs (red, magenta, green, and cyan lines). The BM gain maxima generally converge at $n = 3$ for the baseline model, to about 60 dB, and reach a minimum ERB of 0.5–0.7 mm (Fig. 5 A and C). Above this N, the gain maxima decrease and the ERBs generally increase. The RL gain maxima show similar converging behavior at $n = 3$ (60–78 dB) and a general decrease for $n > 3$ (Fig. 5B). The ERBs are generally higher (i.e., with broader peaks) for the RL.

Changing OoC Material Properties. We performed sensitivity analyses on the stiffness of individual OoC components by separately varying the Young’s moduli of the OHCs (E_{OHC}), DCS (E_{DC}), PhPs (E_{PhP}), and RL (E_{RL}) by several orders of magnitude (Fig. S4). These parameters contribute to the stiffness of the individual model components, as well as to the overall longitudinal stiffness of the OoC due to the mechanical coupling of the Y-shaped structures across multiple OHCs.

The BM and RL gain maxima are functions of E_{OHC} up to ~10 MPa (Fig. S4 A and B), but above that the gain decreases and converges toward the passive case (dashed gray lines) for all input frequencies (i.e., amplification goes away). This indicates that the OHC motility force is not strong enough to expand stiffer OHCs to produce amplification. For uniform gain across frequencies, E_{OHC} should decrease monotonically from base to apex. This variation, accompanied by the changes of the length and diameter of the OHCs along the cochlear length, produces a decreasing stiffness gradient from base to apex, similar to the stiffness gradient of the BM.

The BM and RL gain maxima are also affected by E_{PhP} and E_{DC} (Fig. S4 C–F), but less dramatically than by E_{OHC}. The BM and RL gain maxima are not very sensitive to E_{PhP} and E_{DC} from 4 to 100 MPa, over which they converge into a narrow band of 55–60 and 60–70 dB, respectively. DCS softer than 1 MPa result in significant loss of gain (Fig. S4 E and F). However, PhPs or DCS stiffer than 100 MPa result in gains that depend on frequency.

A more complicated relationship is observed for E_{RL} (Fig. S4 G and H). At 10 kHz, the BM gain has a peak around 0.1 MPa then decreases toward the passive response (Fig. S4G, red line). The other frequencies maintain more gain until E_{RL} reaches 100 MPa, at which point the BM and RL gain maxima reduce dramatically. This is because the Y-shaped elements are sandwiched between two stiff membranes in that case, both the BM and the RL, such that the OHCs cannot push them apart to generate amplification.

Sensitivity analyses were also performed for the altered models (i.e., the cases with flipped OHCs and PhPs, and deleted PhPs). Through the course of these analyses we were not able to find parameters that resulted in BM and RL gains and BWs similar to measured data (see Supporting Information for a summary). This further strengthens the argument for the importance of the natural arrangement of the Y-shaped elements.

Discussion

Model Development and Testing. The FE model of the mouse cochlea was developed as a numerical laboratory to test the hypothesis that the asymmetrical Y-shaped elements are necessary for amplification and sharp tuning. With a single anatomical configuration (Fig. 1) and corresponding material properties (Table S1), the adjustment of a single parameter representing the OHC gain factor (α) allows the model to reproduce RL and BM motion measurements (Fig. 2) from the apical (10 kHz) and basal (48 kHz) BF locations in response to input levels ranging from 10- to 80-dB SPL (2, 3). This agreement with measurements is achieved through the asymmetrical arrangement of the OoC cytoarchitecture in the baseline model (Fig. 1A).

A striking feature of the model results and measurements is that the RL motion is typically greater than the BM motion (Fig. 2). The main exception to this is for input levels higher than 40-dB SPL in the apical region (Fig. 2 C and D). As has been shown previously in several species (19–21), the BM gain becomes level-independent, without compression, about one octave below BF (Fig. 2 A and C). However, the RL gain continues to be a function of input level even below BF, indicating some degree of compression (Fig. 2 B and D). These results are consistent with the enhancement of auditory-nerve responses by active processes several octaves below BF, as shown by their inhibition from medial-nerve activity (22) and suppression by high-level, low-frequency “bias” tones (23). Since the excitation of the OHCs (and also the IHCs) is a function of the deflection of their HBs, which are in close proximity to the RL, these results suggest the possibility of yet-to-be-discovered excitation mechanisms that depend on input level and frequency.

Alterations to the Y-Shaped Structures. Flipping the OHCs and PhPs or deleting the PhPs demonstrates that cochlear amplification in the baseline model depends on basally oriented OHCs with axial motor forces and apically oriented PhPs. These results suggest that the DCS and PhPs are not just supporting structures but are essential for cochlear function.

When the OHCs and PhPs are flipped, the OHC forces become apically oriented and thus cannot efficiently boost the traveling wave. The situation is worse at the apex because there is no gain. At the base, there is some gain, but still less than the baseline response (Fig. S2, blue and black solid lines).

With no PhPs, the gain is reduced from the baseline (Fig. S3). However, compared with the passive case there is some gain with broad peaks (Fig. 4, PM) due to the basally oriented OHC axial forces. The lack of anchoring by the PhPs leads to more motion at the OHC–DC junctions and less coupling of the OHC forces to the RL and BM (Movies S5 and S6, Bottom), which thus produces less amplification. Similar, but smaller, motions at the OHC–DC junctions are seen in the baseline model as well (Movies S4 and S6, Top), which may be related to phenomena reported as “hot spots” in the gerbil OoC hook region (24).

Increasing N beyond the normal baseline case of three OHCs ($N = 3$) has a deleterious effect on the maximum gain (Fig. 5 A and B) and sharpness of tuning (ERB; Fig. 5 C and D) of the BM and RL. However, the behavior is very different for the $N = 1$ and 2 cases, with the effect on the gain and sharpness of tuning
being frequency-dependent. This indicates that for the mouse the trade-off between gain and sharpness is relatively uniform for all frequencies when the PhPs span across 3 OHCs, which is consistent with anatomical measurements of the PhP span from the first two rows of Y-shaped structures (10).

Longitudinal Coupling. An implication of the present analyses is that the longitudinal coupling of forces in the forward and backward directions in the OoC, due to the cross-bracing arrangement of the Y-shaped structures, appears to play a critical role in OoC amplification and the sharpness of auditory-nervous tuning, and could have possible consequences for speech and music processing by the OoC. Since the intercellular distance between the Y-shaped elements in the model is 8 \(\mu \text{m} \) from base to apex and one PhP spans across three OHCs, the longitudinal-coupling distance for a Y-shaped element in the forward direction is \(\sim 24 \mu \text{m} \). Because the overlapping Y-shaped elements are coupled through the RL and BM stiffness in both the forward and reverse directions, however, the overall longitudinal reach is estimated to be 48 \(\mu \text{m} \). The wavelength of the BM and RL traveling wave near BF (in the short-wave region) is presently calculated to be 80–100 \(\mu \text{m} \) for all frequencies tested for the active case, which is close to twice the longitudinal-coupling distance of the Y-shaped structures. The relationship between these lengths is critical for amplification because it limits the phase difference from the basally oriented OHC forces relative to the apically oriented PhP forces.

It has been shown that the TM exhibits wave motion and longitudinal coupling (25, 26). The TM wavelength was estimated to be 415 and 560 \(\mu \text{m} \) at 3.5 and 18 kHz, respectively, within an isolated passive mouse TM. In the present passive model, the RL and BM wavelengths are calculated to be in the 800- to 2,000- \(\mu \text{m} \) range, for input frequencies from 60 to 10 kHz, which is nearly two to four times longer. Sandwiched between the TM and RL are the stiff HBs of the OHCs that deflect due to radial shearing motion arising from transverse motion of the TM and RL. The present formulation does not take into account possible sharpening effects of the TM on RL and BM motions.

RL–BM Phase Difference. Active force production by situ OHCs should generally result in the RL’s and BM’s being one-half cycle out of phase. The model calculations show that this phase difference is one-half cycle at low frequencies but that it decreases to about 0.35 cycles at 48 \(\text{kHz} \) near BF for an orthogonal measurement beam (Fig. S5, black line). The measured RL–BM phase difference is reported to be one-half cycle at low frequencies, but it decreases to 0 at the 48-kHz BF (3). However, the angle of the measurement beam between the RL and BM was not reported.

We test the hypothesis that this discrepancy between the model and measurements could be due to a nonorthogonal measurement-beam angle of the optical probe (Fig. S5). For the largest angle tested (+39", corresponding to a 40 \(\mu \text{m} \) or 5-OHC longitudinal deviation of the beam in the apical direction), the phase difference decreases to about 0.3 cycles near BF (magenta line) and approaches the measured phase data (3). Still, below BF the model RL–BM phase difference remains higher than the measured phase. It has been proposed that the measured decrease with frequency of the RL–BM phase difference is due to in part to an intrinsic OHC delay of \(\sim 20 \mu \text{s} \) (27). In the present model the OHC gain \(\alpha \) has no phase, but incorporating such a delay in future models could produce better agreement.

Comparison with Modeling Studies in the Literature. Some of the earliest models of BM transverse motion incorporated forces from basally oriented OHCs coupled to DCs (28, 29). In later studies, full Y-shaped elements were formulated to add forces from apically oriented PhPs (16, 17). In both cases forward- and backward-directed forces were algebraically summed with fluid pressure, without any inertial frame of reference to push against. While those asymptotic models helped to establish the importance of these forces, motions of the RL were not considered.

FE models, in contrast, can explicitly incorporate the microanatomy of the Y-shaped elements. However, most initial attempts, as well as recent studies, have neglected the specific geometry of the OoC and often do not consider the PhPs (30, 31). A prime motivator for many of these simplifications and assumptions is to reduce computational cost. For example, many models treat the cochlear fluid as inviscid (32), which is not appropriate because a primary reason for OHC amplification is to overcome the dissipation of mechanical power due to viscous losses (17). Nam and Fettiplace (32) were the first to develop FE models incorporating the Y-shaped elements, but again with an inviscid 2D fluid formulation. In their later models, viscosity effects were replaced with additional damping in the BM (33), which is still a simplification for computational efficiency.

Limitations. For any modeling study, judicious simplifications are a necessity. Presently, the OoC cytoarchitecture is represented by Y-shaped structures between the BM and RL in a single row, rather than the typical three rows, and without a tunnel of Corti. The model does not explicitly include the TM, and thus its mechanics and subcortical viscous losses are not incorporated. The OHC HB deflection, proportional to the shear displacement of the HBs, is assumed to be proportional to the pressure gradient across the BM according to a simplified model of OoC equilibrium (34). A constant value of \(\alpha \) through the whole cochlear length is assumed for each input level. This invokes de Boer’s EQ-NL theorem that an equivalent linear model corresponding to each OHC gain factor can represent the nonlinear function of the cochlea (35). The theorem as originally formulated is valid for a white-noise input that effectively linearizes an otherwise nonlinear system, although in the present case it is assumed to remain valid for sinusoidal inputs. The microanatomy of the Y-shaped structures is represented as beam elements without fluid interaction, which underestimates viscous losses. The alternative is to use 3D elements, but this ends up causing a large increase in computational cost that would have made running the simulations impractical. While the anatomical parameters of the Y-shaped elements were recently measured (10), not all of the material properties are well characterized, and thus some parameters, especially the Young's moduli, have been chosen based on a priori estimates (36) followed by sensitivity analyses (Fig. S4).

When active amplification occurs in the model, the wavelength of the traveling wave becomes short near BF, which results in a sharper phase roll-off compared with measurements (Figs. S2 and S3, dashed lines). This phase discrepancy has been seen in other modeling studies as well (16, 17, 33, 34) and continues to be an active area of investigation toward further improving cochlear models. Possible areas for improvement include accounting for the arch-shaped cross-section of the pectinate zone of the mouse BM (37), the phase delay of OHC activity (27), and TM viscoelastic behavior (25, 26, 38), none of which have been implemented in this model. It has been shown that power generation from OHC motility has an approximately linear dependence on the wavenumber (17), so the steeper phase in the model indicates greater power generation by approximately a factor of four according to a previous estimate (17).

Suggestions for Future Work. For the third row of Y-shaped structures, the longitudinal span of the PhPs is on average about 10 \(\mu \text{m} \), which corresponds to a PhP span across just one OHC (N = 1). This indicates that the third row of Y-shaped structures may be capable of generating more amplification than the neighboring rows, particularly for higher frequencies (Fig. 5 A and B, black and blue lines). A full model incorporating all three rows of OHCs is needed to test the effects of PhP span when integrated across the three rows. The model can be further improved by taking into account the arched BM of the pectinate zone (37), adding an overlying viscoelastic TM, and incorporating OHC HB transduction, which should result in a more robust baseline model, from which the altered cases can also be further tested.
Implications for Regenerative Therapy. Because mammalian OHCs do not regenerate, irreversible loss of hearing can occur due to aging, noise exposure, and other forms of cochlear insult. To remedy this, significant efforts are underway to develop therapies for regenerating OHCs. For example, McLean et al. (39) have shown that OoC supporting cells, when combined with appropriate drugs and growth factors, can differentiate into OHCs in a 3D cell-culture environment. Even if the OHCs could be regenerated in situ, however, that does not guarantee that cochlear function will return to normal. The present model suggests that the functional efficacy of the OHCs depends critically on their arrangement with respect to the connected DCs and PhPs. As such, if a strategy for restoring the OHCs fails to reconstitute normal in situ cellular arrangement, it may prove disappointing when it comes to restoring cochlear function. For this reason, it may behoove researchers to not only verify the genetic characteristics, morphology, and physiology of restored OHCs but to also ensure that the DCs and PhPs are maintained or regenerated in close to their natural arrangement with respect to the OHCs, to fully restore cochlear function.

Methods
An FE-model representation of the uncoiled mouse cochlea was developed (Fig. 1), in which the cross-sectional areas of the scala vestibuli (including scala media) and scala tympani chambers were obtained from microcomputed tomography (μCT) measurements (40). Symmetry of the half-cochlea with respect to the x-z plane is assumed for computational efficiency for all but the cytoarchitecture (Fig. 1f). The OoC is represented by a single row of overlapping asymmetrical Y-shaped elements arranged along the longitudinal (α) direction (Fig. 1 D–F), sandwiched between the acellular BM and RL (Fig. 1G), whose varying dimensions and angles are based on measurements in mouse (Fig. 1 C–E) (10).

The cochlear fluid is divided into two domains: the viscous fluid in the vicinity of and within the OoC that interacts with the BM and RL and the inviscid fluid elsewhere that only solves for the acoustic pressure. Linear elastic shell elements are used to model the BM (orthotropic) and the RL and RW (isotropic), which interact with the fluid. For computational efficiency, the Y-shaped elements of the OoC are modeled as linear elastic beams. The material properties of the model components were defined either from data available in the literature or were adjusted by a priori estimates (36) followed by sensitivity analyses (Fig. 54).

The biological micromotor function of the OHCs is well-established (41). Prestin proteins in the OHC plasma membrane provide a piezoelectric effect, such that depolarization causes axial contraction and hyperpolarization causes axial expansion (7). In this model, the resulting compression and tension are represented by equal and opposite axial forces acting on the OHC ends. The OHC gain factor, α, is defined as the ratio of the OHC axial-output force to the HB-input shear force (Fig. 51). We adjust α from 0.255 to 0.14 to replicate experimentally measured BM responses corresponding to different stimulus levels ranging from 10- to 80-dB SPL (2). As stimulus intensity increases further, α decreases to 0 in the model, which also corresponds to the postmortem condition. Further model details are found in Supporting Information and Table 51.

ACKNOWLEDGMENTS. We thank Charles R. Steele, John J. Guinan, Jr., Kevin N. O’Connor, Charles Liberman, Albert S. Edge, Mark E. Warchol, Yani Wang, and Caitlin E. O’Connell-Rodwell for helpful comments and suggestions. Gary-fallia Pagonis, Peter K. Gottlieb, and Haobing Wang helped with Fig. 1. This work was supported in part by National Institute on Deafness and Other Communication Disorders Grant R01 DC07910.