The Impact of COVID-19 on Surgical Training: the Past, the Present and the Future

Marina Yiasemidou

Received: 15 May 2021 / Accepted: 19 May 2021 / Published online: 12 June 2021
© The Author(s) 2021

Abstract
The COVID-19 pandemic and infection control measures had an unavoidable impact on surgical services. During the first wave of the pandemic, elective surgery, endoscopy, and ‘face-to-face’ clinics were discontinued after recommendations from professional bodies. In addition, training courses, examinations, conferences, and training rotations were postponed or cancelled. Inadvertently, infection control and prevention measures, both within and outside hospitals, have caused a significant negative impact on training. At the same time, they have given space to new technologies, like telemedicine and platforms for webinars, to blossom. While the recovery phase is well underway in some parts of the world, most surgical services are not operating at full capacity. Unfortunately, some countries are still battling a second or third wave of the pandemic with severely negative consequences on surgical services. Several studies have looked into the impact of COVID-19 on surgical training. Here, an objective overview of studies from different parts of the world is presented. Also, evidence-based solutions are suggested for future surgical training interventions.

Keywords COVID-19 · Training · Simulation · Virtual reality

Within 6 months of the declaration of a coronavirus SARS-CoV-2 pandemic, nearly six million cases have been confirmed worldwide and around 400,000 deaths were recorded [1]. Countries responded with unprecedented infection control and prevention measures, in an effort to contain the spread of the virus [2]. These included restrictions in unnecessary movement, widespread use of protective equipment, and sealing off national or regional borders [3].

The pandemic and infection control measures had an unavoidable impact on surgical services [4]. During the first wave of the pandemic, elective surgery, endoscopy, and ‘face-to-face’ clinics were discontinued after recommendations from professional bodies [5–10]. In addition, training courses [11, 12], examinations, conferences, and training rotations were postponed or cancelled [13]. Due to the reports of worryingly high postoperative complications, during the early days of the pandemic, several emergency pathologies were treated conservatively (e.g. appendicitis and diverticulitis) [14–17]. A further reduction of training opportunities was caused by the attempts to minimise staff members in operating theatres [18]. Many hospitals applied a ‘consultant-only’ operating policy, in order to reduce operating times and hence staff exposure [18].

Inadvertently, infection control and prevention measures, both within and outside hospitals, have caused a significant negative impact on training [19]. At the same time, they have given space to new technologies, like telemedicine and platforms for webinars, to blossom [19, 20]. Several studies have looked into the impact of COVID-19 on surgical training [19, 21–29]. Here, the author will attempt a comprehensive summary of their findings.

An Overview

A great number of studies have reported a detrimental effect on surgical training. The majority of them described it ‘severe’ or ‘significant’ and some even ‘catastrophic’ [19, 21, 22, 28, 30–43]. These reports come both from developed [13, 21, 22, 24, 26, 31–34, 44–52] and developing countries [28, 30, 35, 53–55] with very different healthcare systems.
Moreover, the results were uniform between a variety of surgical specialties; general surgery [13, 19, 21, 30, 32, 34, 37, 41, 42, 44, 47, 56, 57], orthopaedics [19, 24, 58], ENT (ear, nose, throat) surgery [19, 31, 50], vascular surgery [19, 22, 26], urology [22, 26, 53], oral and maxillofacial surgery [19, 33], and neurosurgery [19, 54, 59].

Most of the evidence provided are extracted from surveys and editorials [19, 21–29]. While most surveys have a decent response rate and a great number of responders [19, 21–29], surveys are considered to provide low-level evidence [60]. There are several reasons for this. Establishing population size estimates are important for assessing the generalizability of the results of any research attempt [60]. However, there is no ideal method for population size estimation. Different methods are subject to different biases; even employing multiple approaches in an attempt to minimise these resulted in a wide variance of estimates [61]. As such, several assumptions have to be made in order to establish the ideal response rate, inevitably introducing biases [62].

In surveys, the principle of random recruitment may be violated, if authors select responders with specific characteristics from their networks [62]. Surveys are also liable to recall bias and sampling bias [62]. For instance, in the current scenario of assessing the impact of COVID-19 on surgical training, responders may misremember the number of operations performed. Moreover, in order to assess the impact of COVID-19, responders may have compared their current situation to 1 year ago, which enhances the probability of recall bias.

A degree of sampling data is unavoidable. For example, surgeons that have no access to an internet network lack access to surveys that are distributed electronically [19, 55]. Specifically, for international surveys that are distributed in the English language, sampling bias is introduced as the non-English speakers will be unable to complete the survey. Despite the potential introduction of bias, the ‘unanimous’ results from all the surveys strengthen the findings [19, 21–29]. Also, in agreement is the demonstrated reduction of performed cases on the electronic logbook of trainees [63], which provides an ‘independent’ confirmation of the effect demonstrated in the surveys.

Areas of Training Affected

Theatre Exposure

Operating theatre exposure was significantly reduced [13, 19, 30, 31, 44, 53], with some authors reporting a reduction of case numbers as great as 50% [41]. Several factors contributed to this. Elective surgery came to a standstill during the first wave of the pandemic [64–66]. Emergency admissions and emergency surgery were also reduced [67]. The reduction of theatre staff numbers and ‘consultant-only operating’ policies have further reduced trainee exposure to surgery [18].

Laparoscopic surgery was identified as an aerosol-generating procedure and was hence considered high risk [68, 69]. This caused anxiety amongst theatre staff and surgeons and prompted guidelines for avoidance of laparoscopic surgery [68, 69]. While there were some exceptions [70, 71], a large number of hospitals discontinued or refrained from minimally invasive surgery [69]. As such, trainees did not get the opportunity to enhance their minimal invasive surgical skills.

Immediately after the first wave of the pandemic, the surgical community engaged in a recovery phase for surgery [72–74]. This entailed the formation of COVID-19-free pathways (‘green’ pathways) for elective patients and vigorous testing of patients and staff [74]. These processes, although necessary, are time consuming and often lead to surgical departments operating at less than 100% capacity [75]. Even to this day, delays are noticed in patient care due to testing and difficulty in self-isolating prior to elective surgery [75]. All these contribute to reduced theatre cases and hence less training opportunities for surgical learners.

The rapid development of vaccines provided a slither of hope [72] for an accelerated pathway to theatre; however, there are large discrepancies in their distribution globally [76]. Also, there are concerns that they do not prevent asymptomatic transmission [77]. Therefore, vaccination can only be used as an adjunct to self-isolation rather than a replacement.

In addition to delays outside the theatre complex, several authors report reduced workflow within it as well [78]. Several strategies were employed to increase theatre workflow during the pandemic and recovery phase [78]. Whether these are effective remains to be seen [78].

Undoubtedly, the extra steps to get the patients to theatre reduced workflow and the establishment of COVID-19-free surgical pathways [74] and have reduced the number of cases performed on an operating list. As a result, training opportunities are reduced, not only during the pandemic but the recovery phase as well.

Outpatient Clinics

During the COVID-19 pandemic, outpatient clinics were either cancelled or converted from ‘face-to-face’ to virtual consultations [21, 22, 30, 34, 46, 55, 58, 66, 79–82]. This, initially, decreased the exposure of trainees to supervised outpatient clinics, further limiting their training opportunities [19]. On the other hand, once the initial transition period had passed, many found several advantages in virtual clinics [58, 81], accrediting them for the continuation of outpatient clinic exposure for trainees [58]. Some authors suggest that
with some modifications in existing curricula, alternative interventions such as virtual clinics can form part of the routine training experience [83].

The notion of virtual outpatient clinics is at least 10 years old [84]. Their implementation saw a reduction in patients seen in ‘face-to-face’ clinic [85], improving patient experience [86]. Patient satisfaction was also high, reported in some cases as 97% [87]. A recent systematic review and meta-analysis by Chaudhry et al. [86] included 12 studies, 8 of which were randomised controlled trials comparing surgeon and patient satisfaction with ‘face-to-face’ and virtual clinics. They found no statistical difference in surgeon satisfaction (pooled OR 0.38 [95% CI 0.07 to 2.19]; p = 0.28) or in patient-reported clinical outcomes [86]. Patients reported time savings, both in respect to travel time (17 min shorter [95% CI 2 to 32]; p = 0.03) and other waiting times (180 min shorter [95% CI 78 to 281]; p < 0.001) [86]. Moreover, a randomised controlled trial by Llorens et al. [88] comparing an in-person and telemedicine clinic demonstrated significant cost savings with the virtual intervention.

Besides the expert surgeons who report at least equal satisfaction with virtual as with in-person clinics, trainees would like to see telemedicine and virtual clinics remaining as part of their practice even after the pandemic [19]. Phone or other virtual consultations can be as easily supervised as ‘face-to-face’ consultations, therefore not impeding the potential of a learning experience.

Conferences, Training Courses, and Teaching Sessions

As a result of infection control measures aiming to reduce large gatherings, conferences, training sessions, and teaching were postponed or took place on a virtual platform [19, 56]. In a global survey conducted by our team, the trainees express a relative dissatisfaction with the virtual platforms [19]. They cited technical challenges (lack of hardware and access to a high-quality network), lack of engagement and/or interaction and inappropriate timing, as the reasons for their dissatisfaction [19]. Despite that, in the same survey, trainees did recognise the potential of these educational processes and state that they would like to see virtual conferences and courses remain as part of training after the pandemic [19]. The survey was conducted from the 23 April to the 15 May 2020, which was rather early on in the pandemic. At that time, the surgical world had to quickly adjust to the new teaching methods and perhaps was not as adequately prepared to provide high-quality virtual resources.

Surveys conducted subsequently showed extremely good trainee satisfaction with virtual conferences and teaching sessions [89–95]. Specifically, Ottesen et al. [89] reported that the virtual platform exceeded expectations of 85.7% of attendees and 100% would participate in future virtual events. There were also reports of virtual events believed to be superior to traditional conferences [90, 93].

One notable exception is the 2021 paper by Woodruff et al. [96]. While they accept that the results of phase 2/3 clinical trials are adequately reported in virtual conferences, they report fewer overall submissions [96]. They are particularly concerned that this may lead to fewer presentations of observational and post hoc analyses of clinical trials, often presented by residents, fellows, and trainees [96]. Conference presentations are essential for career progression and form an integral part of job applications [96]. The authors of this study are worried that virtual conferences hinder presentation and public speaking skills for trainees [96]. They also point out the missed opportunity for ad hoc spontaneous networking which often result in collaboration and mentorship [96]. These are all valid points which need to be addressed. The authors see hybrid conferences as a potential solution for the future [96].

Endoscopy

Endoscopy sessions were also discontinued during the first wave of the pandemic [19, 23, 25]. This was due to concerns about viral contamination between both patients and providers of endoscopy [97]. Studies have shown that there is indeed a substantial risk of exposure and infection with respiratory diseases that can be spread via an airborne route [98]. Endoscopists are often exposed to infectious biologic samples during procedures [99]. This is particularly true due to the short physical distance between patient and endoscopist during procedures. This distance is shorter than 6 feet; the distance that SARS droplets from infectious patients can reach [100].

While endoscopy sessions were reinstated during the recovery phase of the pandemic, the numbers of procedures are reduced, again causing a negative impact on training [25, 27, 101]. Pawlak et al. [27] conducted an international survey assessing the impact of COVID-19 on endoscopy training. 93.8% out of 770 respondents reported a reduction in endoscopy case volume, with a median percentage reduction of 99% (interquartile range, 85–100%) [27]. The reduction was greatest for colonoscopy procedures [27]. The restrictions concerned not only case volume but also trainee activity (i.e. procedures were performed by experts only) [27]. A survey conducted amongst UK trainees showed similar paucity in endoscopy training [101]. The reasons cited for this were changes to institutional policy that excluded trainees from procedures (75.8%), low case volume (56.8%), and redeployment to another clinical area (47.7%) [101].
Recovery of Training

Our group have worked on a framework for training recovery based on the results of a global survey that we conducted [19]. It emerged that trainees had concerns about the lack of guidance from training stakeholders and would like to see their mentors and trainers prioritising training at every opportunity possible [19]. Based on this and the opinion of experts, we proposed a four-stage recovery plan. This consists of:

Guidance from national/international training stakeholders.

Involvement of trainees, trainers, regional training programme representatives, the hospital managerial team, and the digital support team in order to discuss local implementation of guidelines and necessary adjustments that may be required locally.

Formation of implementation team who will carry out the plan set up by above teams.

Auditing and adjusting the plan by engaging in a ‘trial and error’ process [19].

Alternative Methods of Training

The severe reduction of case volume is apparent in studies evaluating the impact of COVID-19 on surgical training [4, 19, 29, 39, 63, 82, 83, 101]. Therefore, methods outside the operating theatre must be sought as an adjunct to conventional training, to enhance surgical skills. Surgical simulation has been utilised for years in the surgical and other fields and was shown to be effective in enhancing surgical skills, particularly for novices [102–106]. In addition to simulation, methods like mental practice and ‘warm up’ before surgery may enhance the learning experience in the operating theatre [107–110]. Concerns about poor fidelity have now degree been resolved due to modern additive technologies such as 3D reconstruction from CT or MR images or 3D printing [107–110]. Moreover, new embalming methods made cadaveric simulation more accessible, by reducing the storage requirements and making cadavers ‘reusable’ [105, 111].

Immersive technologies are also useful for training during the pandemic [112]. These refer to virtual reality (VR), augmented reality (AR), and mixed reality (MR) [112]. Perhaps their biggest advantage is that they provide Omni-Learning: the ability to learn anywhere, anytime, with anyone [113]. AR uses holograms projected into the real-world environment [112]. This could include three-dimensional (3D) object transmission which can be viewed by a remote headset user [114]. The author in no way is suggesting that these can replace operating theatre experience, but can exponentially increase the didactic impact of every theatre session. Technologies such as these can allow for real-time streaming of operations during which the trainee can have the same optic output as their trainer (see what they see) [112], something which is of great importance in identifying efficiently and promptly the appropriate planes of dissection. Knowledge that can be put in good use the next time they are in theatre.

Conclusion

There is little doubt that COVID-19 has significantly decreased training opportunities for surgeons [4, 19, 29, 39, 63, 82, 83, 101]. This was partially counteracted by the introduction of alternative teaching methods such as virtual teaching platforms [19, 43, 95, 96]. However, there is a long way to go to ensure that surgical training is not heavily impacted long term. This effort needs to be coordinated by training authorities nationally, with the involvement of trainees in decision-making. Alternative teaching methods should be used, not to replace, but to enhance the scarce training opportunities in existence.

Declarations

Competing Interests The author declares no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. WHO (2020) Coronavirus disease (COVID-19) outbreak. https://www.who.int/westernpacific/emergencies/covid-19. Accessed 20 July 2020
2. Xiao Y, Torok ME (2020) Taking the right measures to control COVID-19. Lancet Infect Dis 20(5):523–524. https://doi.org/10.1016/S1473-3099(20)30152-3
3. Ruyi L (2020) Ministry of Communications: it is strictly forbidden to seal highways, highways, and quarantine stations. Beijing Daily Client. https://baijiahao.baidu.com/s?id=1658210115200722778&kwfr=spider&for=pc. Accessed 17 Feb 2020
4. Tech JY, Ong WLK, Gonzalez-Padilla D, Castellani D, Dubin JM, Esperto F, Campi R, Gudaru K, Talwar R, Okhunov Z, Ng CF, Jain N, Gauhar V, Wong MC, Wroclawski ML, Tanidir Y, Rivas JG, Tong H, Loeb S, UroSoMe Working G (2020) Global survey on the impact of COVID-19 on urological services. Eur Urol 78(2):265–275. https://doi.org/10.1016/j.eururo.2020.05.025
5. Ali MJ, Hegde R, Nair AG, Bajaj MS, Betharia SM, Bhattacharjee K, Chhabra AK, Das JK, Dudeja G, Grover AK, Honavar SG, Kim U, Mahesh L, Mukherjee B, Sethi A, Sharma M, Singh U (2020) All India Ophthalmological Society - Oculoplastics Association of India consensus statement on preferred practices in oculoplasty and lacrimal surgery during the COVID-19 pandemic. Indian J Ophthalmol 68(6):974–980. https://doi.org/10.4103/ijo.IJO_1415_20
6. Brat GA, Hersey S, Chhabra K, Gupta A, Scott J (2020) Protecting surgical teams during the COVID-19 outbreak: a narrative review and clinical considerations. Ann Surg. https://doi.org/10.1097/SLA.0000000000003926
7. Pignatti M, Pinto V, Miralles MEL, Giorgini FA, Cannamela G, Cipriani R (2020) How the COVID-19 pandemic changed the plastic surgery activity in a regional referral center in Northern Italy. J Plast Reconstr Aesthet Surg 73(7):1348–1356. https://doi.org/10.1016/j.bjps.2020.05.002
8. Poulose BK, Phielifer LS, Mayerson J, Like D, Forrest LA, Rahaman A, Bellamy B, Guertin M, Pawlik TM (2021) Responsible return to essential and non-essential surgery during the COVID-19 pandemic. J Gastrointest Surg 25(5):1105–1107. https://doi.org/10.1007/s11605-020-04673-9
9. Thaler M, Khosravi I, Hirschmann MT, Kort NP, Zagra L, Eriepette JA, Liebenstein MC (2020) Disruption of joint arthroplasty services in Europe during the COVID-19 pandemic: an online survey within the European Hip Society (EHS) and the European Knee Associates (EKA). Knee Surg Sports Traumatol Arthros 28(6):1712–1719. https://doi.org/10.1007/s00167-020-06033-1
10. Zheng MH, Boni L, Fingerhut A (2020) Minimally invasive surgery and the novel coronavirus outbreak: lessons learned in China and Italy. Ann Surg 272(1):e5–e6. https://doi.org/10.1097/SLA.0000000000003924
11. Elangovan S, Mahrous A, Marchini L (2020) Disruptions during a pandemic: gaps identified and lessons learned. J Dent Educ 84(11):1270–1274. https://doi.org/10.1002/jded.12226
12. Hevia V, Lorca J, Hevia M, Dominguez A, Lopez-Plaza J, Sanz E, Ruiz M, Alcaraz E, Burgos FJ (2020) COVID-19 pandemic: impact and rapid reaction of urology. Actas Urol Esp 44(7):450–457. https://doi.org/10.1016/j.acuro.2020.04.006
13. Al-Jabir A, Kerwan A, Nicola M, Alsafi Z, Khan M, Sohrabi C, O’Neill N, Iosifidis C, Griffin M, Mathew G, Agha R (2020) Impact of the coronavirus (COVID-19) pandemic on Surgical Practice - Part 1. Int J Surg 79:168–179. https://doi.org/10.1016/j.ijsu.2020.05.022
14. Brothers L, Shaw GL, Wright EL (1993) Durations of extended mental rehearsals are remarkably reproducible in higher level human performances. Neurol Res 15(6):413–416. https://doi.org/10.1080/01616412.1993.11740175
15. Chiofalo B, Baiocco E, Mancini E, Vocaturo G, Cutillo G, Vincenzoni C, Bruni S, Bruno V, Mancari R, Vizza E (2020) Practical recommendations for gynecologic surgery during the COVID-19 pandemic. Int J Gynaecol Obstet 150(2):146–150. https://doi.org/10.1016/j.ijgo.2020.05.022
16. Iyengar K, Vaish A, Vaishya R (2020) Revisiting conservative orthopaedic management of fractures during COVID-19 pandemic. J Clin Orthop Trauma 11(4):718–720. https://doi.org/10.1016/j.jcot.2020.05.010
17. Suwanwongse K, Shaharek N (2020) Successful conservative management of acute appendicitis in a coronavirus disease 2019 (COVID-19) patient. Cureus 12(4):e7834. https://doi.org/10.7759/cureus.7834
18. Royal College of Surgeons of England. COVID-19: good practice for surgeons and surgical teams. https://www.rcseng.ac.uk/standards-and-research/standards-and-guidance/good-practice-guides/coronavirus/covid-19-good-practice-for-surgeons-and-surgical-teams/ Accessed 25th May 2020
19. Research Education Innovation in Surgery (REINS) initiative COVID-19 group, Yiassimidou M, Tomlinson J, Chetter I, Shenkar BC (2021) Impact of the SARS-CoV-2 (COVID-19) crisis on surgical training: global survey and a proposed framework for recovery. BJU Open 5(2):zraa051. https://doi.org/10.1038/s41390-021-00575-2
20. Laloo R, Giraga A, Williams A, Biyani CS, Yiassimidou M, Scott J (2020) Virtual surgical education for core surgical trainees in the Yorkshire deanery during the COVID-19 pandemic. J Med Libr Assoc 65(4):138–143. https://doi.org/10.1177/0036933020951927
21. Hope C, Reilly JJ, Griffiths G, Lund J, Humes D (2021) The impact of COVID-19 on surgical training: a systematic review. Tech Coloproctol 25(5):505–520. https://doi.org/10.1007/s10151-020-02404-5
22. Johnson AP, Wohlauer MV, Mouawad NJ, Malgor RD, Coogan SM, Sheahan MG, Singh N, Cuff RF, Woo K, Coleman DM, Shalhub S (2021) The impact of the COVID-19 pandemic on vascular surgery trainees in the United States. Ann Vasc Surg 72:182–190. https://doi.org/10.1016/j.avsurgery.2020.09.045
23. Kumar S, Prenger S, Kochman ML (2020) The impact of COVID-19 on endoscopic surgery. Am J Gastroenterol 115(7):1142–1143. https://doi.org/10.14309/ajg.0000000000000716
24. Megalokonomos PD, Thaler M, Igoumenou VG, Bonanzinga T, Ostojić M, Couto AF, Diallo J, Khosravi I (2020) Impact of the COVID-19 pandemic on orthopaedic and trauma surgery training in Europe. Int Orthop 44(9):1611–1619. https://doi.org/10.1007/s00264-020-04742-3
25. Mejia Perez LK, Sharma N (2020) Endoscopy training during COVID-19. Gastrointest Endosc 92(4):988. https://doi.org/10.1016/j.gie.2020.06.006
26. Mousa AY, Broce M (2020) The impact of COVID-19 on vascular training. J Vasc Surg 72(1):380–381. https://doi.org/10.1016/j.jvs.2020.04.046
27. Pawlak KM, Kral J, Khan R, Amin S, Bilal M, Lui RN, Sandhu DS, Hashim A, Bollipo S, Charabaty A, de-Madaria E, Rodriguez-Parras A, Sanchez-Luna SA, Zorniak M, Walsh CM, Grover SC, Siau K (2020) Impact of COVID-19 on endoscopy trainees: an international survey. Gastrointest Endosc 92(4):925–935. https://doi.org/10.1016/j.gie.2020.06.010
28. Prezotti JA, Henriques JVT, Favorito LA, Canali AF, Machado MG, Brandao TBV, Barbosa AMV, Moromizato JKM, Anzolch KMJ, Fernandes RC, Rodrigues FRA, Bellucci CHS, Silva CS, Pompeo ACL, de Bessa Jr J, Gomes CM (2021) Impact of COVID-19 on education, health and lifestyle behaviour of Brazilian urology residents. Int Braz J Urol 47(4):753–776. https://doi.org/10.1590/s1677-5538.ibju.2021.99.09
29. Segui-Moya E, Gonzalez-Padilla DA, Ortega-Polledo LE, Sanchez-Garcia M, Lopez-Gonzalez JA, Anton-Juanna M, Mercader-Barrull C, Carrion DM, Gomez Rivas J, Alvarez-Ossorio JL (2020) Impact of COVID-19 in spanish urology residents: recommendations and perspective. Arch Esp Urol 73(5):471–478
30. Adeosunannmi AO, Ubom AE, Olaoshinde O, Wuraola FO, Ijarotimi OA, Okon NE, Ikimalo JI, Fasubaa OB, Adesunkannmi ARK (2021) Impact of the COVID-19 pandemic on surgical residency training: perspective from a low-middle income
60. Salganik MJ (2012) Commentary: respondent-driven sampling in the real world. Epidemiology 23(1):148–150. https://doi.org/10.1097/EDE.0b013e3182b69f79
61. Vadivoo S, Gupte MD, Adhikary R, Kohli A, Kangusamy B, Joshua V, Mathai AK, Kumar K, Mainkar M, Goswami P, Team IS (2008) Appropriateness and execution challenges of three formal size estimation methods for high-risk populations in India. AIDS 22(Suppl 5):S137–148. https://doi.org/10.1097/01.aids.0000343772.82647.2d
62. Chabata ST, Fearon E, Webb EL, Weiss HA, Hargreaves JR, Cowan FM (2020) Assessing bias in population size estimates among hidden populations when using the service multiplier method combined with respondent-driven sampling surveys: survey study. JMRIR Public Health Surveill 6(2):e1504. https://doi.org/10.2196/15044
63. Sheridan GA, Hughes AJ, Quinlan JF, O’Byrne JM, O’Callaghan M, Kavanagh D, Lowry P, Nield J, O’Keeffe K, O’Donnell D, Halligan P, Horgan S, Callanan P, O’Connell B, Jones P, Ryan M, Swinburn P, O’Byrne A, Derouiche A, Slama RB, Ayed H, Chebil M (2020) Urological oncology during COVID-19 pandemic: an international, multicenter, comparative cohort study. J Clin Oncol 39(1):66–78. https://doi.org/10.1200/JCO.20.01933
64. Garcia-Rojo E, Manfredi C, Santos-Perez-de-la-Blanca R, Micali A, Daidone MG, Raspagliesi F (2020) Transmission of COVID-19 from contact with trigeminal sensory branches: a prospective, proof-of-concept study. J Minim Invasive Gynecol. https://doi.org/10.1016/j.jmig.2020.12.026
65. Wang VT, Odani T, Ito M (2021) Impact of COVID-19 pandemic on orthopaedic trauma: a national prospective cohort study. Bone Jt Open 1(10):645–652. https://doi.org/10.1302/2633-1462.110.BJO-2020-0149.R1
66. Garcia-Rojo E, Manfredi C, Santos-Perez-de-la-Blanca R, Tejido-Sanchez A, Garcia-Gomez B, Aliaga-Benitez M, Romero-Otero J, Rodriguez-Antolin A (2021) Impact of COVID-19 outbreak on urology surgical waiting lists and waiting lists prioritization strategies in the post-COVID-19 era. Actas Urol Esp 45(3):207–214. https://doi.org/10.1016/j.acuro.2020.01.001
67. Wang VT, Odani T, Itto M (2021) Considerations and strategies for restarting elective spine surgery in the midst of a pandemic of COVID-19. Spine Surg Relat Res 5(2):52–60. https://doi.org/10.22603/ssrr.2020.0154
68. Zouari S, Saadi A, Chakroun M, Oueslati A, Fliss M, Bouzouita A, Derouiche A, Slama RB, Ayed H, Chebil M (2020) Urological activity at the time of COVID-19 pandemic: is there any difference between public and private field? Pan Afr Med J 37:389. https://doi.org/10.11604/pamj.2020.37.389.25297
69. Guadalajara H, Munoz de Nova JL, Fernandez Gonzalez S, Viasemidou M, Recarte MD, Lpez JG, Galindo Jara P, Garcia Virosta M, Lobo Martinez E, Martin-Perez E, Semidou M, Recarte Rico M, Juez LD, Garcia Septiem J, Galindo Jara P, Garcia Virosta M, Lobo Martinez E, Martin-Perez E, Garcia Olmo D, PC Group (2020) Patterns of acute surgical inflammatory processes presentation of in the COVID-19 outbreak (PIACO Study): surgery may be the best treatment option. Br J Surg 107(11):e494–e495. https://doi.org/10.1002/bjs.11950
70. Bogan G, Dito A, De Cecco L, Lopez S, Guerra R, Piccioni F, Micale A, Daidone MG, Raspagliesi F (2020) Transmission of SARS-CoV-2 in surgical smoke during laparoscopy: a prospective, proof-of-concept study. J Minim Invasive Gynecol. https://doi.org/10.1016/j.jmig.2020.12.026
71. Bagasra O, Karama M, Van Heest A, Brandt AM, Dyer G, Homer CJ, Murray PM (2021) Impact of COVID-19 pandemic on orthopaedic business as usual after COVID-19: strategies and options. Knee Surg Sports Traumatol Arthrosc 28(6):1699–1704. https://doi.org/10.1007/s00167-020-06031-3
72. Van Heest A, Brandt AM, Dyer G, Homer CJ, Murray PM (2021) COVID-19 and its effects upon orthopaedic surgery: the Trinidad and Tobago experience. World Orth J Orthop 12(3):94–101. https://doi.org/10.5312/wjo.v12.i3.94
73. Hoi KK, Curtis SH, Driver L, Wisnosky E, Zopf DA, Bohm LA (2021) Adoption of telemedicine for multidisciplinary care in pediatric otolaryngology. Ann Otol Rhinol Laryngol. https://doi.org/10.1177/0003489421997651
74. Mencia MM, Goalan R (2021) COVID-19 and its effects upon orthopaedic surgery: the Trinidad and Tobago experience. World J Orthop 12(3):94–101. https://doi.org/10.5312/wjo.v12.i3.94
75. Stanley C, Kelly M, Elzaki M, Butler A, Condon F, Lenehan B (2021) Lessons from lockdown: virtual clinics and service reorganisation in fracture management during COVID-19 experience of an Irish Regional Trauma Unit. Surgeon. https://doi.org/10.1016/j.surge.2021.02.006
76. Silva N, Laiginhas R, Meireles A, Barbosa Breda J (2020) Impact of COVID-19 pandemic on ophthalmology residency training in Portugal. Acta Med Port 33(10):640–648. https://doi.org/10.20344/amp.14341
77. Van Heest A, Brandt AM, Dyer G, Homer CJ, Murray PM (2021) COVID-19: impact on orthopaedic graduate medical education in the U.S.: AOA Critical Issues Symposium. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.20.01948
78. Jenkins PJGA, Murray O, Anthony I (2014) The Glasgow fracture pathway: a virtual clinic. BJJ News 2:22–24
79. Kelly MOKN, Francis A (2020) Connolly Hospital Trauma Assessment Clinic: virtually a safe and smarter way of managing trauma care in Ireland. Injury 50(4):898–902. https://doi.org/10.1016/j.injury.2019.03.046
91. Terhune KP, Choi JN, Green JM, Hildreth AN, Lipman JM, McDowell L, Goode S, Sundaresan P (2020) Adapting to a global resource country. J Surg Educ. https://doi.org/10.1016/j.jsurg.2021.01.002

92. Martin-Gorgojo A, Bernabeu-Wittel J, Linares-Barrios M, Llorens R, Noe E, Colomer C, Alcaniz M (2015) Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil 96(3):418-425.e412. https://doi.org/10.1016/j.apmr.2014.10.019

93. Tuma F, Nituica C, Mansuri O, Kamel MK, McKenna J, Blebea D (2022) Ad astra per aspera (Through Hardships to the Stars): lessons learned from the First National Virtual APDS Meeting. J Surg Educ 77(6):1465-1472. https://doi.org/10.1016/j.jsurg.2020.06.015

94. DePietro DM, Santucci SE, Harrison NE, Kiefer RM, Trerotola SO, Sudheendra D, Shamimi-Noori S (2021) Medical student education during the COVID-19 pandemic: initial experiences implementing a virtual interventional radiology elective course. Acad Radiol 28(1):128-135. https://doi.org/10.1016/j.acra.2020.10.005

95. Vervoort D, Dearani JA, Starnes VA, Thourani VH, Nguyen TC (2021) Brave new world: virtual conferencing and surgical education in the coronavirus disease 2019 era. J Thorac Cardiovasc Surg 161(3):748-752. https://doi.org/10.1016/j.jtcvs.2020.07.094

96. Woodruff P, Wallis CJD, Albers P, Klaassen Z (2021) Virtual conferences and the COVID-19 pandemic: are we missing out with an online only platform? Eur Urol. https://doi.org/10.1016/j.euro.2021.03.019

97. Repici A, Maselli R, Colombo M, Gabbiadini R, Spadaccini M, Anderloni A, Carrara S, Fugazza A, Di Leo M, Galtieri PA, Pellegatta G, Ferrara EC, Azzolini E, Lagioia M (2020) Coronavirus (COVID-19) outbreak: what the department of endoscopy should know. Gastrointest Endosc 92(1):192-197. https://doi.org/10.1016/j.gie.2020.03.019

98. Tang JW, Li Y, Eames I, Chan PK, Ridgway GL (2006) Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. J Hosp Infect 64(2):100–114. https://doi.org/10.1016/j.jhin.2006.05.022

99. Johnston ER, Habib-Bein N, Dueker JM, Quiroz B, Corsaro E, Ambrogio M, Kingsley M, Papachristou GL, Kreiss C, Khalid A (2019) Risk of bacterial exposure to the endoscopist’s face during endoscopy. Gastrointest Endosc 89(4):818–824. https://doi.org/10.1016/j.gie.2018.10.034

100. Wong TW, Lee CK, Tam W, Lau JT, Yu TS, Lui SF, Chan PK, Li Y, Breece JS, Sung JJ, Parashar UD, Outbreak Study G (2004) Cluster of SARS among medical students exposed to single patient. Hong Kong. Emerg Infect Dis 10(2):269–276. https://doi.org/10.3201/eid1002.030452

101. Siau K, Iacucci M, Dunckley P, Penman I, EndoTrain Survey C (2020) The impact of COVID-19 on gastrointestinal endoscopy training in the United Kingdom. Gastroenterology. 159(4):1582-1585.e1583. https://doi.org/10.1053/j.gastro.2020.06.015

102. Yiassimidou M, Glassman D, Tomlinson J, Song D, Gough MJ (2017) Perceptions about the present and future of surgical simulation: a national study of mixed qualitative and quantitative methodology. J Surg Educ 74(1):108–116. https://doi.org/10.1016/j.jsurg.2016.07.011

103. Yiassimidou M, Glassman D, Khan K, Downing J, Sivakumar R, Fawole A, Biyani CS (2020) Validation of a cost-effective appendectomy model for surgical training. Scott Med J 65(2):46–51. https://doi.org/10.1177/0036933019900340

104. Yiassimidou M, Gkaragkani E, Glassman D, Biyani CS (2018) Cadaveric simulation: a review of reviews. Ir J Med Sci 187(3):827–833. https://doi.org/10.1007/s11845-017-1704-y

105. Yiassimidou M, de Siqueira J, Tomlinson J, Glassman D, Stock S, Gough M (2017) “Take-home” box trainers are an effective alternative to virtual reality simulators. J Surg Res 213:69–74. https://doi.org/10.1016/j.jss.2017.02.038

106. Glassman D, Yiassimidou M, Venkateswaran B, Sivakumar R, Majumder S, Biyani CS (2016) A multi-specialty surgical course for residents transitioning from early to intermediate training. Int J Med Educ 7:130–131. https://doi.org/10.5116/ijme.5708.e9ea

107. Yiassimidou M, Glassman D, Mushtaq F, Athanasiou C, Williams MM, Jayne D, Miskovic D (2017) Mental practice with interactive 3D visual aids enhances surgical performance. Surg Endosc 31(10):4111–4117. https://doi.org/10.1007/s00464-017-5459-3

108. Yiassimidou M, Glassman D, Jayne D, Miskovic D (2018) Is patient-specific pre-operative preparation feasible in a clinical environment? A systematic review and meta-analysis. Comput Assist Surg (Abingdon) 23(1):37–68. https://doi.org/10.1080/24693322.2018.1495266

109. Yiassimidou M, Galli R, Glassman D, Tang M, Azir R, Jayne D, Miskovic D (2018) Patient-specific mental rehearsal with interactive visual aids: a path worth exploring? Surg Endosc 32(3):1165–1173. https://doi.org/10.1007/s00464-017-5788-2

110. Yiassimidou M, Mushtaq F, Basheer M, Galli R, Panagiotou D, Stock S, Preston N, Mon-Williams M, Jayne DG, Miskovic D (2021) Patient-specific mental rehearsal with three-dimensional models before low anterior resection: randomized clinical trial. BJSS Open 5(2):zaa004. https://doi.org/10.1093/bjss/zaa004

111. Tomlinson JE, Yiassimidou M, Watts AL, Roberts DJ, Timothy J (2016) Cadaveric spinal surgery simulation: a comparison of cadaver types. Global Spine J 6(4):357–361. https://doi.org/10.1055/s-0035-1563724

112. Pears M, Yiassimidou M, Ismail MA, Veneziano D, Biyani CS (2015) How digitalization is changing the way executives learn. IESE Insight 26:31–38

113. Auricchio G, Kaganerh E (2015) Dimensions Studio. XR content and virtual production www.dimensionsstudio.co Accessed 15th May 2020

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.