Update Article

Data extraction of nano silica as a potential filler in nanocomposites from rice husk ash with ballmill and coprecipitation methods

Eva Marlina Ginting, Nurdin Bukit*, Motlan Motlan, Ridwan Abdullah Sani

Department of Physics, Universitas Negeri Medan, Medan 2022, Indonesia

A R T I C L E I N F O

Article history:
Received 20 September 2022
Revised 28 September 2022
Accepted 30 September 2022
Available online 4 October 2022

Keywords:
Agricultural Waste Material Nanoparticle

A B S T R A C T

This article consists of data from the extraction of nano silica from rice husk ash (RHA) by ball mill and coprecipitation methods. RHA is an agricultural waste that is widely found in Indonesia. The extracted RHA can be used as a filler in nanocomposites. Calcining RHA did silica extraction from rice husk ash at 500 °C for 5 h. After calcining RHA in the Ball Mill for 10 h with a rotation of 250 rpm. Furthermore, RHA was mixed with 5 M HCl in a ratio of 1:4, stirred, and heated with a Magnetic Stirrer at 70 °C for 4 h at a speed of 400 rpm. Then mixed again with NH₄OH M in a ratio of 1:4, stirred, and heated with a Magnetic Stirrer at a temperature of 70 °C for 4 h at a speed of 400 rpm. The resulting RHA was further characterized by Scanning Electron Microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The data shows that nano silica from RHA is optimal and can be used as a filler in nanocomposites.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

* Corresponding author.
E-mail address: nurdinbukit5@gmail.com (N. Bukit).

https://doi.org/10.1016/j.dib.2022.108656
2352-3409/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications Table

Subject:	Materials Science
Specific subject area:	Material Characterization
Type of data:	Table
How the data were acquired:	The functional group changes that occurred in the compounds were analyzed by FTIR Agilent Cary 630. Crystal structure and size were characterized by XRD y type Shimadzu 6100 (40 kV, 30 mA) with a wavelength of Cu-Kα = 1.5405 = 0.15406 nm, at a rate of 2°/min at an angle range of 2θ = 5°–70°. The surface morphology of the samples was characterized by SEM
Data format:	Raw
Description of data collection:	The functional group changes that occurred in the compounds, Crystal structure, size and the surface morphology of the samples was characterized by FTIR, XRD and SEM
Data source location:	• Institution: Universitas Negeri Medan
• City/Region: Medan, Sumatera Utara	
• Country: Indonesia	
Data accessibility:	Reserved DOI: Mendeley Data, V1, DOI: 10.17632/3bkssdznyg.2
https://data.mendeley.com/datasets/3bkssdznyg	
Related research article:	Ginting, E. M., Wirjosentono, B., Bukit, N., & Agusnar, H. (2014). Preparation and characterization of rice husk ash as filler material in thermoplastic composites. Chem. Mater. Res., 6(7), 14-24
https://iiste.org/Journals/index.php/CMR/article/view/14125 |

Value of the Data

• This data is useful because the data shows the silica potential of rice husk ash.
• This data is useful for researchers who want to find alternatives to silica which usually comes from its precursors.
• This data is useful for researchers who want to research about the use of fillers in nanocomposites.
• This data can be reused for further insight and/or experimental development by modifying the method used and using this silica data as a filler in nanocomposites.
• This data can be used by researchers to find sources of silica from other agricultural wastes.
• This data can be used by researchers to determine the potential of silica derived from rice husk ash as a substitute for silica in other materials.

1. Objective

The reason and context behind this data set are to find the potential of silica derived from rice husk ash. In addition, the context of making this data set was made to determine the optimum method of silica preparation to obtain the optimal silica yield to be applied as a nanocomposite filler.

2. Data Description

Indonesia is one of the largest rice-producing countries in the world. So, there is a massive waste of rice husks (RH). It is still widely used as a fuel for burning. About 20% of ash can be obtained from RH combustion. Many researchers report that rice husk ash (RHA) contains about 87–98% silica (SiO₂). The rest is metal impurities such as K₂O, Al₂O₃, CaO, MgO, Na₂O, Fe₂O₃ with the percentage of each compound less than 1% [1–3]. This article consists of data from the
Fig. 1. FTIR of RHA: a. ballmill and b. coprecipitation.

Table 1
Shows the functional groups of RHA ballmill and coprecipitation.

Wavenumber (cm$^{-1}$)	RHA Ballmill	RHA Coprecipitation	Functional Group
601.89	620.59	Bending vibration of Si-O	
788.05	788.14	Symmetric and symmetric stretching mode at SiO-Si	
1063.26	1063.45	Si-O-Si stretching modes	

extraction of nano silica from rice husk ash (RHA) by ball mill and coprecipitation methods. RHA is an agricultural waste that is widely found in Indonesia. The extracted RHA can be used as a filler in nanocomposites [4].

2.1. FTIR Characterization

The FTIR used is the Agilent Cary 630 FTIR. This flexible benchtop FTIR instrument that offers high performance and exceptional ease of use in an ultra-compact design. Fig. 1 shows the FTIR data of RHA ballmill and RHA coprecipitation. Table 1 shows the functional groups of RHA ballmill and coprecipitation.

2.2. SEM Characterization

SEM characterization was carried out using the SEM TM3030 model. Hitachi High-Tech has provided a “5 kV mode” that allows for sharper observations of the surface structure of the finest samples, which cannot be observed at high accelerating voltages (Fig. 2).

2.3. XRD Characterization

XRD characterization is useful for obtaining diffraction patterns and crystal structures. The XRD used is the Shimadzu 6100 type (40 kV, 30 mA) with a wavelength of Cu-Kα1 = 1.5405 = 0.15406 nm, with a rate of 2°/min at an angle range of 2θ = 5 ° 70°. Fig. 3 shows the XRD data of RHA ballmill and RHA coprecipitation [5]. Meanwhile, the XRD data of RHA ballmill and coprecipitation are shown in Table 2.
Fig. 2. SEM of RHA: a. ballmill and b. coprecipitation.

Fig. 3. XRD of RHA: a. ballmill and b. coprecipitation.

Table 2
The XRD data of RHA ballmill and coprecipitation.

XRD Data	RHA Ballmill	RHA Coprecipitation
Crystal system	Tetragonal	Monoclinic
Space group	P 4 1 2 1 2 (92)	C 1 c 1 (9)
Unit cell	a = 499,600 Å, c = 701,600 Å	a = 1,852,400 Å, c = 2,381,000 Å
Density	227,900 g/cm³	225,600 g/cm³
2 theta angle	2182	2179
Maximum d_{hkl}	101	112
Intensity I/I₀	1000	1000
Lattice distance d (Å)	40,696	43,278
2 theta angle	1094	10,88
Maximum d_{hkl}	200	40-4
Intensity I/I₀	125	825
Lattice distance d (Å)	24,980	40,998
2 theta angle	2060	2071
Maximum d_{hkl}	012	204
Intensity I/I₀	92	564
Lattice distance d (Å)	28,709	43,127
2 theta angle	3607	3608
Maximum d_{hkl}	111	-114
Intensity I/I₀	75	270
Lattice distance d (Å)	31,553	38,280
3. Experimental Design, Material and Methods

3.1. Materials

This research was carried out in the laboratory of Universitas Negeri Medan, Universitas Sumatera Utara. The materials used are Rice husk ash (RHA), 5M HCl, NH₄OH Merck Pro Analis, Aquades.

3.2. Methods

Raw RHA obtained from rice processing was calcined at a temperature of 500 °C for 5 h and the milling for 10 h with a rotation of 250 rpm. Furthermore, RHA was mixed with 5 M HCl in a ratio of 1:4, stirred, and heated with a magnetic stirrer at 70 °C for 4 h at a speed of 400 rpm. RHA, which has been mixed with 5M HCL, is filtered using filter paper, then remixed with NH4OH in a ratio of 1:4, stirred, and heated with a Magnetic Stirrer at a temperature of 70 °C for 4 h at a speed of 400 rpm. Then filtered and washed with distilled water to produce a neutral pH and dried in an oven at 150 °C for 5 h. The resulting RHA was further charac-
characterized by Scanning Electron Microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The preparation scheme for extracting silica from RHA is shown in Fig. 4.

Ethics Statements

The research does not involve using humans and animals as subjects, and the data were not collected from social media platforms.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data extraction of nano silica as a potential filler in nanocomposites from rice husk ash with ballmill and coprecipitation methods (Original data) (Mendeley Data).

CRediT Author Statement

Eva Marlina Ginting: Data curation, Writing – original draft; Nurdin Bukit: Writing – review & editing; Motlan Motlan: Methodology, Investigation; Ridwan Abdullah Sani: Visualization, Investigation.

Acknowledgments

This research was funded by the DIPA Fund of the Directorate of Research, Technology and Community Service, Directorate General of Higher Education, Research and Technology, Ministry of Education, Research Culture, and Technology for Fiscal Year 2022 according to No SP DIPA 023.17.1.690523/2022 02th revision dated 22 April 2022.

References

[1] J. Hadipramana, F.V. Riza, I.A. Rahman, L.Y. Loon, S.H. Adnan, A.M.A. Zaidi, Pozzolanic characterization of waste rice husk ash (RHA) from Muar, Malaysia, IOP Conf. Ser. Mater. Sci. Eng. 160 (1) (2016), doi: 10.1088/1757-899X/160/1/012066.

[2] R. Suryana, Y. Iriani, F. Nurossyid, D. Fasquelle, Characteristics of silica rice husk ash from Mojogedang Karanganyar Indonesia, IOP Conf. Ser. Mater. Sci. Eng. 367 (1) (2018), doi: 10.1088/1757-899X/367/1/012008.

[3] S.K.S. Hossain, L. Mathur, P.K. Roy, Rice husk/rice husk ash as an alternative source of silica in ceramics: a review, J. Asian Ceram. Soc. 6 (4) (2018) 299–313, doi: 10.1080/21870764.2018.1539210.

[4] E.M. Ginting, N. Bukit, E. Frida, Preparation and characterization of nano composites hdpe blend with rice husk ash nanoparticles, Int. J. Chemtech. Res. 10 (13) (2017) 348–356.

[5] N. Bukit, E.M. Ginting, M. Motlan, and R.A. Sani, “Data extraction of nano silica as a potential filler in nanocomposites from rice husk ash with ballmill and coprecipitation methods,” Mendeley Data, V1, doi: 10.17632/3bksddznyg.1.