THE ZARISKI-LIPMAN CONJECTURE FOR LOG CANONICAL SPACES

STEFAN HEUVER

Abstract. In this paper we give an elementary proof of the Zariski-Lipman conjecture for log canonical spaces.

Contents

1. Introduction 1
2. The 2-dimensional case 1
3. The n-dimensional case 2
References 4

1. Introduction

The Zariski-Lipman conjecture claims that an n-dimensional complex variety with locally free tangent sheaf of rank n is smooth. Although not proven in general, this conjecture holds in special cases (see [Dru13]). In 2013 Druel has proven this conjecture for log canonical spaces by using foliations and the Camacho-Sad formula. In 2014 Graf-Kovács obtained the result of Druel by strengthening the extension theorem (see [GKRPT11 Theorem 1.5]) for 1-forms on log canonical pairs (see [GK14]). For more information on log canonical spaces, see [Rei87] or [KM98]. The goal of this paper is to give a more elementary proof for log canonical surfaces in the style of [GKK10] and to conclude the Zariski-Lipman conjecture for log canonical spaces by using the reduction technique of Druel (see [Dru13 Theorem 5.2]).

Theorem 1.1 (The Zariski-Lipman conjecture for log canonical spaces). Let \(X \) be a log canonical variety of dimension \(n \) such that the tangent sheaf \(T_X \) is locally free of rank \(n \). Then \(X \) is smooth.

To prove the 2-dimensional case, we will use an argument of [vSS85]. The idea is that under the given properties, a smooth 1-form on the variety will extent to a smooth 1-form on the resolution, which leads to a contraction, unless the variety has already been smooth. After this we will reduce the n-dimensional case to the surface case by using hyperplane sections.

Conventions and basics. In this paper a variety is a integral, separated scheme of finite type over an algebraic closed field. Varieties are also assumed to be reduced and irreducible. In [Lip65] Lipman has proven that his conjecture fails to be true if \(X \) is a variety over a field with positive characteristic and that a variety with locally free tangent sheaf is necessarily normal. That is why we will work over the field of complex numbers and assume that \(X \) is normal. The sheaf \(\Omega^1_X \) of Kähler differentials behaves badly near a singular point. Therefore it is more useful to work with the reflexive hull \(\Omega^1_X \), which is the double dual of \(\Omega^1_X \) (see [Rei87] (1.5),(1.7)). For the definition of logarithmic differential forms and logarithmic vector fields we recommend [Sai80] and [EV92].

Acknowledgement. The author would like to thank Daniel Greb for interesting discussions on this topic and great help with the master’s thesis this paper is based on.

2. The 2-dimensional case

To prove the Zariski-Lipman conjecture for log canonical surfaces, we use the minimal resolution \(\pi : Y \to X \) and show that a reflexive 1-form on \(X \) lifts to a regular 1-form on \(Y \) under \(\pi \). An example of [Rei87] (1.8), (1.9)] shows that this is wrong if \(X \) is not log canonical. In general a reflexive 1-form
only lifts to a 1-form that is regular outside the exceptional locus. We will have to show that it extends regular over the exceptional locus.

Proposition 2.1 (Logarithmic extension). Let X be a log canonical surface with locally free tangent sheaf T_X of rank 2. Let $\omega \in H^0(X, \Omega_X^{[1]} \mathbb{Q})$ be a reflexive 1-form, $\pi : Y \to X$ the minimal resolution and E the largest reduced divisor included in $\text{excep}(\pi)$. Then ω extends to a logarithmic 1-form $\tilde{\omega} := \pi^* \omega \in H^0(Y, \Omega_Y^{[1]}(\log E))$ on Y.

Proof. (cf.

Let $\omega \in H^0(X, \Omega_X^{[1]} \mathbb{Q})$. Since T_X is locally free of rank 2 we can assume without loss of generality that $\mathcal{O}_X(K_X) \cong \mathcal{O}_X$. Since $\Omega_X^{[1]}$ is the dual of T_X there exists a unique vector field $\xi \in H^0(Y, \mathcal{O}_Y \mathbb{Q}(\log E))$ corresponding to ω via the perfect pairing

$$\Omega_X^{[1]} \times \Omega_Y^{[1]} \to \mathcal{O}_X(K_X) \cong \mathcal{O}_X.$$

The minimal resolution π is functorial and we can lift the vector field ξ to a vector field $\tilde{\xi} \in H^0(Y, T_Y(\log E))$. As X is assumed to be log canonical we have $\mathcal{O}_Y(K_Y + E) \cong \mathcal{O}_Y(D)$ for some effective divisor D on Y. Hence $\tilde{\xi}$ corresponds to an element $\tilde{\omega} \in H^0(Y, \Omega_Y^{[1]}(\log E) \otimes \mathcal{O}_Y(-D))$ via the pairing

$$\Omega_Y^{[1]}(\log E) \times \Omega_Y^{[1]}(\log E) \to \mathcal{O}_Y(K_Y + E) \cong \mathcal{O}_Y(D).$$

This yields the extension of ω. \hfill \Box

The following result is a consequence of the negative definiteness of the self-intersection form in E.

Proposition 2.2. Let X be a normal surface and π and E as in Proposition 2.1. Then the inclusion

$$H^0(Y, \Omega_Y^{[1]}) \hookrightarrow H^0(Y, \Omega_Y^{[1]}(\log E))$$

is an isomorphism.

Proof. See [Wah85, Lemma 1.3.b]. \hfill \Box

Theorem 2.3 (The Zariski-Lipman conjecture for log canonical surfaces). Let X be a log canonical surface such that the tangent sheaf T_X is locally free of rank 2. Then X is smooth.

Proof. Let π, Y, and E be as defined above. Using Proposition 2.1 and 2.2 we see that a reflexive 1-form on X lifts to a regular 1-form on Y under π. With $\pi_!(T_Y(\log E)) \cong T_X$ Theorem 2.3 is a consequence of a classical argument presented in [NSSS55, (1.6)]. \hfill \Box

3. The n-dimensional case

In this section X is an n-dimensional log canonical variety with locally free tangent sheaf and $\pi : Y \to X$ a functorial resolution (see [Kol07, 3.45]). We will use $n-2$ hyperplane sections $G_1, \ldots, G_{n-2} \subset X$ to cut X down to a surface $S := X \cap G_1 \cap \cdots \cap G_{n-2}$ and show that S is a log canonical surface with locally free tangent sheaf and therefore already smooth. Using the fact that a singularity of X necessarily is a singularity of S, we conclude that X must have been smooth. For more information on hyperplane sections used in this paper see [GKKP11, 2.E.]. With $H := \pi^{-1}(G)$ we will denote the preimage of G under π. Please note the following facts.

Fact 3.1 (see [GKKP11, 2.E.]). Let X, G, H and π be as defined above and E be the largest reduced divisor contained in $\text{excep}(\pi)$ then G is affine and normal, H is smooth and $\pi|_H$ is a functorial resolution and the largest reduced divisor $E|_H = E \cap H$ contained in $\text{excep}(\pi|_H)$ is a simple normal crossing (snc) divisor (this uses Bertini’s Theorem).

Define $T := Y \cap H_1 \cap \cdots \cap H_{n-2}$, then by induction we get

1. S is affine and normal and T is smooth,
2. $\pi|_T : T \to S$ is a functorial resolution and the largest reduced divisor $C := E|_T$ contained in the exceptional locus $\text{excep}(\pi|_T)$ of $\pi|_T$ is a snc divisor.

We will now show that S has the right properties.

The behavior of the singularities under reduction. The following lemma gives us a connection between $\text{Sing}(X)$ and $\text{Sing}(G)$.
Lemma 3.2. Let X be a normal variety and $G \subset X$ an effective, ample Cartier divisor. If G is smooth, then $\text{Sing}(X) \cap G = \emptyset$ and the singularities of X are isolated.

Proof. This is a consequence of [Che96 Lemma 1] and the Jacobian criteria.

Lemma 3.3. The surface S constructed above is log canonical.

Proof. Since X is log canonical and normal, $|G|$ is a basepoint free system of Cartier divisors and $G_1 \in |G|$ is a hyperplane section, Theorem 1.13 in [Rei80] shows that G is log canonical, too. Using Fact 3.1 we get Lemma 3.3 by induction.

The tangent sheaf of S is locally free. To show that T_S is locally free we first need to prove the following Lemma.

Lemma 3.4. Let Y be a smooth variety of dimension $n \geq 2$ and $E \subset Y$ a snc divisor. Let $H \subset Y$ be a smooth hyperplane such that $E \cap H$ is a snc divisor. Then the sequence

$$0 \to \mathcal{N}_{H|Y}^* \to Y^*(\log E)|_{H} \to H^1(Y^*(\log E)|_{H}) \to 0$$

is exact.

Proof. Since E and $E|_H$ are snc divisors we can use the sequence of [EV92 2.3 a]. Using the Snake Lemma we then get Lemma 3.4.

Theorem 3.5. Let X be a log canonical variety of dimension n with locally free tangent sheaf of rank n. Then the tangent sheaf T_S of the surface S defined above is locally free of rank 2.

Proof. The following proof is basically the cutting-down procedure of Druel (see the proof of [Dru13 Theorem 5.2]) supplemented with additional steps for the convenience of the reader. For $n = 2$ the theorem is clear and we can assume that $n \geq 3$. Suppose that $\text{Sing}(X) \neq \emptyset$. Since X is normal $\text{codim}_X(\text{Sing}(X)) \geq 2$ and with [Fle88 p.318] we get that $\text{codim}_X(\text{Sing}(X)) = 2$. Replacing X with an affine open dense subset we may assume that X is affine, $\text{Sing}(X)$ is irreducible of codimension 2 and $T_X \cong \mathcal{O}_X^{\oplus n}$.

Let $\pi : Y \to X$ be a functorial resolution and E the largest reduced divisor contained in $\text{excep}(\pi)$. Note that $E \neq \emptyset$. We consider the morphism of vector bundles

$$F : \pi^* T_X \to T_Y(-\log E).$$

Since $T_X \cong \pi_* T_Y(-\log E)$ the morphism F is induced by the evaluation map

$$\pi^* (\pi_* T_Y(-\log E)) \hookrightarrow T_Y(-\log E)$$

and induces an injective map of sheaves

$$\pi^* (\mathcal{O}_X(-K_X)) \cong \pi^* \text{det}(T_X) \xrightarrow{\pi^* \text{det}(T_Y(-\log E))} \mathcal{O}_Y(-K_Y - E).$$

Using the ramification formula $K_Y := \pi^* K_X + \sum a_i E_i$ this yields $a_i \leq -1$. Since X is log canonical we get $a_i = -1$. Thus F is an isomorphism. Since T_X is free we deduce that $T_Y(-\log E)$ is free and that $\Omega_{H}^1(\log E)|_{H_1} \cong \mathcal{O}_{H_1}^{\oplus n}$.

Let $G_1 \subset X$ be a general hyperplane section and $H_1 = \pi^{-1}(G_1) \subset Y$. By Lemma 3.4 we have the exact sequence

$$0 \to \mathcal{N}_{H_1|X}^* \xrightarrow{\Phi} \Omega^1_Y(\log E)|_{H_1} \xrightarrow{\Psi} \Omega^1_{H_1}(\log E)|_{H_1} \to 0.$$

We want to prove

$$\Omega^1_{H_1}(\log E)|_{H_1} \cong \mathcal{O}_{H_1}^{\oplus \text{dim}(H_1)}.$$

Since X is affine and $G_1 \in |G|$ is an effective Cartier divisor and $|G|$ basepoint free, we can define G_1 by a global function g. Due to this the ideal sheaf $\mathcal{O}_X(-G_1) = \mathcal{N}_{G_1|X}$ is free. Since H_1 is the total transform of G_1 we get $\mathcal{N}_{H_1|X} = \pi^* \mathcal{N}_{G_1|X} \cong \mathcal{O}_{H_1}$. Thus we can represent the map

$$\Phi : \mathcal{O}_{H_1} \cong \mathcal{N}_{H_1|X} \to \Omega^1_Y(\log E)|_{H_1} \cong \mathcal{O}_{H_1}^{\oplus n}$$

by regular functions f_1, \ldots, f_n on H_1 and since $\pi_*(\mathcal{O}_{H_1}) \cong \mathcal{O}_{G_1}$ by regular functions g_1, \ldots, g_n in G_1 with $f_i = g_i \circ \pi|_{H_1}$. If $g_j|_{G_1 \cap \text{Sing}(X)} = 0$ for all i then Φ would vanish at every point of $\pi^{-1}(G_1 \cap \text{Sing}(X))$. Since $E_1|_{H_1}$ is snc divisor, the sheaf $\Omega^1_{H_1}(\log E)|_{H_1}$ is locally free, which yields in a contradiction. Take an $i \in \{1, \ldots, n\}$, so that $g_i|_{G_1 \cap \text{Sing}(X)} \neq 0$ then, by replacing X with
we can ensure that $\pi_{|H_1}(x) \neq 0$ for all $x \in H_1$ and thus assume that Φ has full rank 1 in every fiber. We obtain the following exact sequence:

$$0 \to \mathcal{O}_{H_1} \xrightarrow{\Phi} \mathcal{O}_{H_1}^{\oplus n} \xrightarrow{\Psi} \mathcal{O}_{H_1}^{\oplus (n-1)} \to 0.$$

Thus $\Omega_{H_1}(\log E|H_1) \cong \mathcal{O}_{H_1}^{\oplus \dim(H_1)}$ and $E_{H_1} \neq \emptyset$. By replacing X with an appropriate open subset we may assume that $T_{H_1}(-\log C|H_1) \cong \mathcal{O}_{H_1}^{\oplus 2}$ and thus that T_S is locally free of rank 2.

Proof of Theorem 1.1. Using the notation of Theorem 3.5 we assume that $\text{Sing}(X) \neq \emptyset$. With Lemma 3.2 (by induction) we can deduce that the surface S constructed above necessarily has an isolated singularity. However S is a log canonical surface with locally free tangent sheaf and thus smooth by Theorem 2.3. This contradicts the assumption. □

References

[Che96] I. A. Cheltsov: Singularities of 3-Dimensional Varieties Admitting an Ample Effective Devisor of Kodaira Dimension Zero, Mathematical Notes, Vol. 163, no. 4, 1970. UDC 512.774.42

[Dru13] S. Druel: The Zariski-Lipman conjecture for log canonical spaces, 2014 in Bulletin of the London Mathematical Society Advance Access, June 9, 2014. 10.1112/blms/bdu040

[EV92] H. Esnault and E. Viehweg: Lectures on vanishing theorems, DMV Seminar, vol. 20, Birkhäuser Verlag, Basel, 1992. MR1193913 (94a:14017)

[Fle88] H. Flenner: Extendability of differential forms on nonisolated singularities, Invent. Math. 94 (1988), no. 2.317–326 MR958835 (89j:14001)

[GK14] P. Graf and S. J. Kovács: An optimal extension theorem for 1-forms and the Zariski-Lipman conjecture, Doc. Math. 19, 815–830, 2014.

[GKK10] D. Greb, S. Kebekus and S. J. Kovács: Extension theorems for differential forms, and Bogomolov-Sommese vanishing on log canonical varieties, Compositio Math. 1 193–219, 2010.

[GKKP11] D. Greb, S. Kebekus, S. J. Kovács and T. Peternell: Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci. 114, 87–169, 2011.

[KM98] J. Kollár and S. Mori: Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998.

[Kol07] J. Kollár: Lectures on resolution of singularities, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007. MR2289519

[Lip65] J. Lipman: Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), no. 4.

[Rei80] M. Reid: Canonical Threefolds, Géométrie Algébrique Angers, A. Beauville ed., Sijthoff and Noordhoff, 1980.

[Rei87] M. Reid: Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987. MR927963 (89b:14016)

[Sai80] K. Saito: Theory of logarithmic differential forms and logarithmic vector fields, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics 27 (2), JAIRO:jfs270202

[vSS85] D. van Straten and J. Steenbrink: Extendability of holomorphic differential forms near isolated hypersurface singularities, Abh. Math. Sem. Univ. Hamburg 55 (1985). MR831521 (87j:32025)

[Wah85] J. M. Wahl: A characterization of quasi-homogeneous Gorenstein surface singularities, Compositio Math. 55 (1985), no. 3, 269–288.