Frobenius Manifolds on Orbits Spaces

Zainab Al-Maamari · Yassir Dinar

Received: 28 March 2022 / Accepted: 7 August 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
The orbits space of an irreducible linear representation of a finite group is a variety whose coordinate ring is the ring of invariant polynomials. Boris Dubrovin proved that the orbits space of the standard reflection representation of an irreducible finite Coxeter group W acquires a natural polynomial Frobenius manifold structure. We apply Dubrovin’s method on various orbits spaces of linear representations of finite groups. We find some of them has non or several natural Frobenius manifold structures. On the other hand, these Frobenius manifold structures include rational and trivial structures which are not known to be related to the invariant theory of finite groups.

Keywords Invariant rings · Frobenius manifold · Representations of finite groups · Flat pencil of metrics · Quotient singularities · Orbifolds

Mathematics Subject Classification 53D45

1 Introduction

Frobenius manifold are a geometric realization introduced by B. Dubrovin associated to a potential satisfying a system of partial differential equations known as Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations which describes the moduli space of two dimensional topological field theory. Remarkably, Frobenius manifolds are also recognized in many other fields in mathematics like invariant theory, quantum cohomology, integrable systems and singularity theory [4]. Briefly, a Frobenius algebra is a commutative associative algebra with identity e and a nondegenerate bilinear form.
A Frobenius manifold is a manifold with a smooth structure of a Frobenius algebra on the tangent space at any point with certain compatibility conditions. Globally, we require the metric Ω_1 to be flat and the identity vector field e is constant with respect to its Levi-Civita connection. In this article, we show that orbits spaces of some non-reflection representations of finite groups acquire Frobenius manifold structures.

We use the following notations and facts for a finite group G and a linear representation $\psi : G \to GL(V)$, where V is a complex vector space. We denote by $\mathbb{C}[V]$ the ring of polynomial functions on V, $\mathbb{C}[\psi]$ the subring of invariant polynomials in $\mathbb{C}[V]$, and $\mathcal{O}(\psi)$ the orbits space of the action of G on V, i.e., the spectrum of $\mathbb{C}[\psi]$. Then $\mathbb{C}[\psi]$ is finitely generated by homogeneous polynomials and $\mathcal{O}(\psi)$ is a variety whose coordinate ring is $\mathbb{C}[\psi]$ [2, 15]. By the Chevalley–Shephard–Todd theorem, $\mathbb{C}[\psi]$ is a polynomial ring if and only if ψ is generated by pseudo-reflections. Let (x_1, \ldots, x^n) be linear coordinates on V and $f \in \mathbb{C}[\psi]$. Then the Hessian $H(f) := \frac{\partial^2 f}{\partial x_i \partial x_j}$ defines a bilinear form on the tangent space of $\mathcal{O}(\psi)$ and if $\det(H(f)) \neq 0$ then f is a minimal degree invariant polynomial ([16], p. 6). In this article, we will drop the word pseudo as all representations will be representations over complex vector spaces.

Let \mathcal{W} be a finite irreducible Coxeter group or Shephard group of rank r and ρ_{ref} is the standard reflection representation of \mathcal{W}. Dubrovin proved that the orbits space $\mathcal{O}(\rho_{\text{ref}})$ acquires a polynomial Frobenius manifold structure [5, 8]. This result led to the classification of irreducible semisimple polynomial Frobenius manifolds with positive degrees (see Sect. 4.1 for more details). His method was used in [22] when \mathcal{W} is a Coxeter group of type B_r or D_r to construct r Frobenius manifolds on $\mathcal{O}(\rho_{\text{ref}})$.

In this article, we show that linear representations of finite groups are a valuable source to construct examples of Frobenius manifolds even if the representations are not reflection representations.

We mention that Dubrovin and his collaborators constructed Frobenius manifolds using invariant rings of infinite discrete groups being extensions of affine Weyl groups [7, 9, 23]. However, we focus in this article on linear representations of finite groups.

Let us fix a finite group G and an irreducible linear representation $\psi : G \to GL(V)$ of rank r. Then we summarize Dubrovin’s method to construct Frobenius manifold structure on $\mathcal{O}(\psi)$ as follows:

1. Fix homogeneous invariant polynomial f_1 of the minimal degree.
2. Verify that the inverse of the Hessian $H(f_1)$ defines a contravariant flat metric Ω_2 on some open subset U of $\mathcal{O}(\psi)$. For example, this happens if ψ is a real representation (in this case degree f_1 equals 2) [11] or ψ is the standard reflection representation of a Shephard group [16].
3. Construct another contravariant metric Ω_1 which forms with Ω_2 a regular quasi-homogeneous flat pencil of metrics (regular QFPM) on U (see Sect. 2.2 for details).
4. Then using a theorem due to Dubrovin (see Theorem 2.6 below), we get a Frobenius manifold structure on U which depends on the representation ψ of G or $\mathbb{C}[\psi]$.

Definition 1.1 A Frobenius manifold structure obtained using Dubrovin’s method will be called a natural Frobenius manifold structure on the orbits space.

© Springer
Note that for a fixed metric Ω_2, the problem of finding another metric Ω_1 such that (Ω_2, Ω_1) form a flat pencil of metric is not straightforward. For example, see the discussion on the classification of flat pencils of metrics related to the theory of Frobenius manifolds given in [10]. We also observe that an orbits space can have several natural Frobenius manifold structures. In this article, we will prove that the orbits spaces of the following representations posses natural Frobenius manifold structures:

1. The standard reflection representation of a finite irreducible Coxeter group: We prove there is a natural rational Frobenius manifold structure different from the ones constructed in [5, 22]. We give details in Sect. 4.1.

2. The non-standard irreducible representation of dimension r of a Coxeter group of type A_r: We show that it is a non-reflection representation and we construct certain r algebraically independent invariant polynomials. Then, we show that the orbits space carries natural rational Frobenius manifold structures. We give the details in Sect. 4.2.

3. Irreducible representations of dihedral groups and dicyclic groups: These groups have only rank 1 and 2 irreducible representations. We will prove that any rank 2 representation acquires two natural Frobenius manifold structures. See Sect. 4.3 for details.

4. All finite subgroups of the special linear group $SL_2(\mathbb{C})$: We get natural polynomial and rational Frobenius manifold structures related to representations of the dihedral groups. See Sect. 5.3.

5. All finite subgroups of the special linear group $SL_3(\mathbb{C})$ where the invariant rings are complete intersection: Dubrovin’s method fails on some of them and we find natural trivial Frobenius manifold structures on others. We give details in Sect. 6.

As a consequence of this work, we noticed that Frobenius manifold structures on orbits spaces of some non-reflection representations appear in pairs. Analyzing such pairs led us to the notion of the conjugate Frobenius manifold structures and we wrote the details on a separated article [1]. We review this notion in Sect. 3 and we show that the conjugate of a natural Frobenius manifold structure is a natural Frobenius manifold structure.

To make the article as self-contained as possible, we review in Sects. 2.1 and 2.2 the definition of Frobenius manifold and its relation with flat pencils of metrics.

2 Frobenius Manifolds and Flat Pencil of Metrics

2.1 Frobenius Manifolds

Let M be a Frobenius manifold with flat metric Π and identity vector field e. In flat coordinates (t^1, \ldots, t^r) for Π where $e = \partial_{t^r}$ the compatibility conditions imply that there exists a function $\mathcal{F}(t^1, \ldots, t^r)$ which encodes the Frobenius structure, i.e., the flat metric is given by

$$\Pi_{ij}(t) = \Pi(\partial_{t^i}, \partial_{t^j}) = \partial_{t^r} \partial_{t^i} \partial_{t^j} \mathcal{F}(t)$$

(2.1)
and, setting $\Omega_1(t)$ to be the inverse of the matrix $\Pi(t)$, the structure constants of the Frobenius algebra are given by

$$C_{ij}^k(t) = \Omega_1^{kp}(t) \partial_{t^p} \partial_{t^i} \partial_{t^j} F(t).$$

Here, and in what follows, summation with respect to repeated upper and lower indices is assumed. In this article, we assume the quasihomogeneity condition for $F(t)$ takes the form

$$E F(t) = d t^i \partial_{t^i} F(t) = (3 - d) F(t); \quad d = 1. \quad (2.2)$$

The vector field $E = d t^i \partial_{t^i}$ is known as Euler vector field and it defines the degrees d_i and the charge d of M. The associativity of the Frobenius algebra implies that the potential $F(t)$ satisfies WDVV equations, i.e.,

$$\partial_{t^i} \partial_{t^j} \partial_{t^k} F(t) \Omega_1^{kp} \partial_{t^p} \partial_{t^q} \partial_{t^r} F(t) = \partial_{t^q} \partial_{t^i} \partial_{t^k} F(t) \Omega_1^{kp} \partial_{t^p} \partial_{t^q} \partial_{t^i} F(t), \quad \forall \, i, j, q, n. \quad (2.3)$$

We say M is a polynomial (resp. rational) if $F(t)$ is a polynomial (resp. rational) function. Moreover, we say M is a semisimple or massive if the algebra $T_t M$ is semisimple for generic t.

Definition 2.1 Let M and \tilde{M} be two Frobenius manifolds with flat metrics Π and $\tilde{\Pi}$. Let F and \tilde{F} be the corresponding potentials, respectively. We say M and \tilde{M} are (locally) equivalent if there are open sets $U \subseteq M$ and $\tilde{U} \subseteq \tilde{M}$ with a local diffeomorphism $\phi : U \rightarrow \tilde{U}$ such that

$$\phi^* \tilde{\Pi} = c^2 \Pi, \quad (2.4)$$

for some nonzero constant c, and $\phi_* : T_t U \rightarrow T_{\phi(t)} \tilde{U}$ is an isomorphism of Frobenius algebras.

Note that if M and \tilde{M} are equivalent Frobenius structures then it is not necessary that $\phi^* \tilde{F} = F$ [5].

2.2 Flat Pencil of Metrics

We review the relation between flat pencils of metrics and Frobenius manifolds outlined in [6].

Let M be a smooth manifold of dimension r and fix local coordinates (u^1, \ldots, u^r) on M.

Definition 2.2 A symmetric bilinear form (\cdot, \cdot) on $T^* M$ is called a contravariant metric if it is invertible on an open dense subset $M_0 \subseteq M$. We define the contravariant Christoffel symbols Γ_{ij}^k for a contravariant metric (\cdot, \cdot) by

$$\Gamma_{ij}^k := -\Omega^{im} \Gamma_{mk}^j$$
where Γ^j_{mk} are the Christoffel symbols of the metric $<.,.>$ defined on TM_0 by the inverse of the matrix $\Omega^{ij}(u) = (du^i, du^j)$. We say the metric $<.,.>$ is flat if $<.,.>$ is flat.

Let $(.,.)$ be a contravariant metric on M and set $\Omega^{ij}(u) = (du^i, du^j)$. Then we will use Ω to refer to the metric and $\Omega(u)$ to refer to its matrix in the coordinates. In particular, the Lie derivative of $(.,.)$ along a vector field X will be written $\text{Lie}_X \Omega$ while $X \Omega^{ij}$ means the vector field X acting on the entry Ω^{ij}. The Christoffel symbols given in Definition 2.2 determine for Ω the contravariant (resp. covariant) derivative ∇^i (resp. ∇_i) along the covector du^i (resp. the vector field ∂_{u^i}). They are related by the identity $\nabla^i = \Omega^{ij}(u) \nabla_j$.

Definition 2.3 A flat pencil of metrics (FPM) on M is a pair (Ω_2, Ω_1) of two flat contravariant metrics Ω_2 and Ω_1 on M satisfying

1. $\Omega_2 + \lambda \Omega_1$ defines a flat metric on T^*M for a generic constant λ,
2. The Christoffel symbols of $\Omega_2 + \lambda \Omega_1$ are $\Gamma^{ij}_{2k} + \lambda \Gamma^{ij}_{1k}$, where Γ^{ij}_{2k} and Γ^{ij}_{1k} are the Christoffel symbols of Ω_2 and Ω_1, respectively.

Definition 2.4 A flat pencil of metrics (Ω_2, Ω_1) on M is called quasihomogeneous flat pencil of metrics (QFPM) of degree d if there exists a function τ on M such that the vector fields E and e defined by

$$E = \nabla_2 \tau, \quad E^i = \Omega^{ij}_2(u) \partial_{u^j} \tau, \quad (2.5)$$

$$e = \nabla_1 \tau, \quad e^i = \Omega^{ij}_1(u) \partial_{u^j} \tau$$

satisfy

$$[e, E] = e, \quad \text{Lie}_E \Omega_2 = (d - 1) \Omega_2, \quad \text{Lie}_e \Omega_2 = \Omega_1 \quad \text{and} \quad \text{Lie}_e \Omega_1 = 0. \quad (2.6)$$

Such a QFPM is regular if the $(1,1)$-tensor

$$R^j_i = \frac{d - 1}{2} \delta^j_i + \nabla_1 \partial^j_i E^i \quad (2.7)$$

is nondegenerate on M.

We will use the following source for FPM.

Lemma 2.5 [5] Let Ω_2 be a contravariant flat metric on M. Assume that in the coordinates (u^1, \ldots, u^r), $\Omega^{ij}_2(u)$ and $\Gamma^{ij}_{2k}(u)$ depend almost linearly on u^r, i.e., $\partial_{u^r} \Omega^{ij}_2(u)$ and $\partial_{u^r} \Gamma^{ij}_{2k}(u)$ are constants. Suppose that $\Omega_1 := \text{Lie}_{\partial_{u^r}} \Omega_2 = \partial_{u^r} \Omega_2(u)$ is nondegenerate. Then (Ω_2, Ω_1) form a FPM. The Christoffel symbols of Ω_1 has the form

$$\Gamma^{ij}_{1k}(u) = \partial_{u^r} \Gamma^{ij}_{2k}(u).$$

If M is a Frobenius manifold then M has a QFPM of degree d but it does not necessarily satisfy the regularity condition (2.7) [6]. In the notations of Sect. 2.1, the QFPM consists of the intersection form $\Omega_2(t)$ and the flat metric $\Omega_1(t)$ where

$$\Omega^{ij}_2(t) := (d - 1 + d_i + d_j) \Omega^{i\alpha}_1 \Omega^{j\beta}_1 \partial_{u^\alpha} \partial_{u^\beta} \mathbb{F}. \quad (2.8)$$
Furthermore, \(\tau = \Pi_{ij} t^i \) and \(E \) with \(e \) are defined by (2.5) and satisfy equations (2.6). The converse is given by the following theorem

Theorem 2.6 [6] Let \(M \) be a manifold carrying a regular QFPM \((\Omega_2, \Omega_1)\) of degree \(d \). Then there exists a unique Frobenius manifold structure on \(M \) of charge \(d \) where \((\Omega_2, \Omega_1)\) is the associated QFPM.

3 Conjugate Frobenius Manifold and Dubrovin’s Method

We begin this section with a theorem proved in [1] which leads to the notion of conjugate Frobenius manifold structure. Then we will prove that the conjugate natural Frobenius manifold structure constructed on an orbits spaces is also natural.

Theorem 3.1 [1] Let \(M \) be a Frobenius manifold with the Euler vector field \(E \) and the identity vector field \(e \). Suppose the associated QFPM is regular of degree \(d \) with a function \(\tau \). Assume that

\[
 e(\tau) = 0 \quad \text{and} \quad E(\tau) = (1 - d) \tau. \tag{3.1}
\]

Then there exists another Frobenius manifold structure on \(M \setminus \{\tau = 0\} \) of degree \(2 - d \). Moreover, we can apply the same method to the new Frobenius manifold structure and it leads to the original Frobenius manifold structure.

The existence of the Frobenius manifold structure mentioned in Theorem 3.1 was proved by constructing it as follows. Let \(M \) be a Frobenius manifold satisfies the hypothesis of the theorem and \(T = (\Omega_2, \Omega_1) \) be the associated QFPM. We define the vector field \(\tilde{e} = \tau^{\frac{1}{2}} e \) and consider the Lie derivative \(\tilde{\Omega}_1 := \text{Lie}_{\tilde{e}} \Omega_2 \). Then it turns out that \(T \) is regular and \(\tilde{\Omega}_1 \) defines a contravariant metric. Furthermore, \(\tilde{T} := (\Omega_2, \tilde{\Omega}_1) \) forms a regular QFPM of degree \(2 - d \) with the function \(-\tau\) which leads to a different Frobenius manifold structure.

For a fixed Frobenius manifold the new structure that can be obtained using Theorem 3.1 will be called the conjugate Frobenius manifold structure.

Let us adapt the notations of Sect. 2.1 and assume \(\Pi_{ij} = \delta_{i+j}^{r+1} \), i.e., the potential \(\mathbb{F} \) has the standard form

\[
 \mathbb{F}(t) = \frac{1}{2} (t^r)^2 t^1 + \frac{1}{2} t^r \sum_{i=2}^{r-1} t^i t^{r-i+1} + G(t^1, \ldots, t^{r-1}). \tag{3.2}
\]

Then we get the following consequence of Theorem 3.1.

Theorem 3.2 [1] Let \(M \) be a Frobenius manifold with charge \(d \neq 1 \). Suppose in the flat coordinates \((t^1, \ldots, t^r)\), the potential \(\mathbb{F}(t) \) has the standard form (3.2) and the quasihomogeneity condition takes the form (2.2) with \(d_i \neq \frac{d_i}{2} \) for every \(i \). Then we can construct the conjugate Frobenius manifold structure on \(M \setminus \{t^1 = 0\} \).
flat coordinates for the conjugate Frobenius manifold are
\[s^1 = -t^1, \quad s^i = t^i(t^1)^{d_i - 2d_1} \quad \text{for} \quad 1 < i < r, \quad s^r = \frac{1}{2} \sum_{i=1}^{r} t^i t^{r-i+1}(t^1)^{\frac{r-2}{2} - 1}. \] (3.3)

In addition, the corresponding potential equals the potential obtained by applying the inversion symmetry to \(F(t) \) and it is given by
\[\tilde{F}(s) = (t^1)^{d_1 - 2} \left(F(t^1, \ldots, t^r) - \frac{1}{2} t^r \sum_{i=1}^{r} t^i t^{r-i+1} \right). \] (3.4)

The degrees \(\tilde{d}_i \) and the charge \(\tilde{d} \) of the conjugate Frobenius manifold structure are given by
\[\tilde{d}_1 = -d_1, \quad \tilde{d}_r = 1, \quad \tilde{d}_i = d_i - d_1 \quad \text{for} \quad 1 < i < r, \quad \tilde{d} = 2 - d. \] (3.5)

See ([4], Appendix B) for details about inversion symmetry of solutions to WDVV equations. From the point of view of this article, Theorem 3.2 explains the appearance of pairs of natural Frobenius manifold structures on orbits space of some linear representations of finite groups.

Theorem 3.3 Let \(M \) be the orbits space of a linear representation of a finite group. Assume \(M \) inherits a natural Frobenius manifold structure which has a conjugate Frobenius manifold structure. Then the conjugate Frobenius manifold structure on \(M \) is also natural.

Proof Let \(T = (\Omega_2, \Omega_1) \) be the associated QFPM of the Frobenius manifold structure on \(M \) which is obtained using Dubrovin’s method. Then \(\Omega_2 \) is defined using the Hessian of a minimal invariant polynomial \(f_1 \). The QFPM associated to the conjugate Frobenius manifold has the same intersection form \(\Omega_2 \) and hence it constructed by Dubrovin’s method.

For convenience we write in the examples the indices of coordinates as subscripts instead of as superscripts.

Example 3.4 The potential
\[F = \frac{t_1^3}{6} - \frac{1}{2} t_2^2 t_1 + \frac{1}{2} t_2^2 t_3 + \frac{1}{2} t_1 t_3^2. \] (3.6)
defines two inequivalent trivial Frobenius manifold structures, i.e., both have charge \(d = 0 \) and Euler vector field \(E = \sum t_i \partial_{t_i} \) (all degrees equal 1). Setting the identity vector field to be \(\hat{e} = \partial_{t_1} \), \(F \) defines a Frobenius manifold structure \(\hat{P}_3 \) whose associated regular QFPM does not satisfy condition (3.1), i.e., it does not have a conjugate structure. Considering instead \(e = \partial_{t_3} \) as the identity vector field, we get a Frobenius
manifold structure P_3 which has conjugate. The associated regular QFPM (Ω_2, Ω_1) has $\Omega_1^{ij}(t) = \delta_3^{i+j}$ while

$$\Omega_2(t) = \begin{pmatrix} t_1 & t_2 & t_3 \\ t_2 & t_3 - t_1 & -t_2 \\ t_3 & -t_2 & t_1 \end{pmatrix}.$$

Setting

$$s_1 = -t_1, \ s_2 = \frac{t_2}{t_1}, \ s_3 = \frac{t_2}{2t_1^3} + \frac{t_3}{t_1^3},$$

the conjugate QFPM has $\tilde{\Omega}_1^{ij}(s) = \delta_3^{i+j}$ and

$$\tilde{\Omega}_2(s) = \begin{pmatrix} -s_1 & 0 & s_3 \\ 0 & s_3 + \frac{3s_2^2}{2s_1} + \frac{1}{s_1} & -\frac{s_3}{s_1} - \frac{2s_2}{s_1^2} \\ s_3 & \frac{s_3^2}{s_1} - \frac{2s_2}{s_1} & \frac{3s_2^4}{4s_1^2} + \frac{3s_2^2}{s_1^3} - \frac{1}{s_1} \end{pmatrix}.$$

The potential of the conjugate Frobenius manifold structure reads

$$\tilde{F}(s) = \frac{-1}{6s_1} + \frac{s_2^2}{2s_1} + \frac{s_3^4}{8s_1} + \frac{1}{2} s_2 s_3 + \frac{1}{2} s_1 s_3^3. \quad (3.7)$$

Here $\tilde{E} = -s_1 \partial_{s_1} + s_3 \partial_{s_3}$ and $\tilde{E}\tilde{F} = \tilde{F}$.

4 Coxeter Groups

4.1 The Standard Reflection Representation

In this section, we recall the standard reflection representations of irreducible finite Coxeter groups and review the construction of natural Frobenius manifolds on their orbits space. Then we classify those having conjugate Frobenius manifold structures. Note that the conjugate Frobenius manifold structures will be rational and they are not known to be related to the invariant theory of finite groups.

We fix an irreducible finite Coxeter system (\mathcal{W}, S) of rank r, i.e.,

$$\mathcal{W} = \langle S \mid (ss')^{m(s,s')} = 1; \forall s, s' \in S \rangle, \quad r = |S|. \quad (4.1)$$

Let V be the formal vector space over \mathbb{C} with basis $\{\alpha_s \mid s \in S\}$. Then the standard reflection representation of \mathcal{W} is defined by

$$\alpha_s \mapsto E_s.$$
ρ_{ref} : \mathcal{W} \rightarrow GL(V), \ s \mapsto R_s, s \in S.

R_s(v) := v - 2B(\alpha_s, v)\alpha_s, \ v \in V, \ B(\alpha_s, \alpha_{s'}) := -\cos \frac{\pi}{m(s, s')}.

Here \(B \) is the standard positive-definite Hermitian form on \(V \) which is invariant under \(\rho_{ref} \). By Chevalley–Shephard–Todd theorem, the invariant ring \(\mathbb{C}[\rho_{ref}] \) is a polynomial ring generated by \(r \) homogeneous polynomial. We fix generators \(u^1, \ldots, u^r \) for \(\mathbb{C}[\rho_{ref}] \). We assume deg \(u^i = \eta_i \) and

\[2 = \eta_1 < \eta_2 \leq \eta_3 \leq \ldots \leq \eta_{r+1} < \eta_r. \tag{4.2} \]

These degrees are uniquely determined by the group \(W \) \[13\].

We assume that \(u^1 \) equals the quadratic from of \(B \). Hence, the inverse of the Hessian of \(u^1 \) defines a flat contravariant metric \(\Omega_1^2 \) on \(O(\rho_{ref}) \). It is easy to prove that \(\Omega_2^i(u) \) is almost linear in \(u^i \) by analysing the degrees of \(\Omega_2^i(u) \). We fix the vector field \(e = \partial_u^1 \). Note that changing the generators of \(\mathbb{C}[\rho_{ref}] \), \(e \) is uniquely defined up to a constant factor. Setting \(\Omega_1 := (\Omega_2, \Omega_1) \) is a regular QFPM of charge \(\frac{\eta_r - 2}{\eta_r} \) \[6\]. In this case, \(\tau = \frac{1}{\eta_r} u_1 \) and the vector field \(E \) is given by \(E = \frac{1}{\eta_r} \sum \eta_i u^i \partial_u^i \). This result initiated what we call Dubrovin’s method. We observe that \(E \) is uniquely defined and does not depend on the choice of invariants \(u^i \)’s. We also mention that the flat metric \(\Omega_1 \) was studied by Saito \[17, 18\] and his results was very important to the work \[5\]. We restate Dubrovin’s theorem.

Theorem 4.1 \([5, 6]\) The FPM \((\Omega_2, \Omega_1)\) defines a unique (up to equivalence) natural polynomial Frobenius manifold on \(O(\rho_{ref}) \) with degrees \(\frac{\eta_r}{\eta_r} \) and charge \(\frac{\eta_r - 2}{\eta_r} \).

The following theorem was conjectured by Dubrovin and proved by C. Hertling.

Theorem 4.2 \([12]\) Any irreducible semisimple polynomial Frobenius manifold with positive degrees is isomorphic to a polynomial Frobenius manifold constructed by Theorem 4.1 on the orbit space of the standard reflection representation of an irreducible finite Coxeter group.

The following theorem guarantees the existence of another natural Frobenius manifold structure on \(O(\rho_{ref}) \).

Theorem 4.3 The polynomial Frobenius manifold constructed by Theorem 4.1 on the orbits space \(O(\rho_{ref}) \) has a conjugate Frobenius manifold structure. Thus, we get a rational natural Frobenius manifold structure on \(O(\rho_{ref}) \).

Proof There exist invariant polynomials \(t^1, \ldots, t^r \) which form flat coordinates and the potential has the form \((3.2) \) \[5\]. From the structure of the degrees, we can and we will apply Theorem 3.2 to get a rational conjugate Frobenius manifold. The last statement is a consequence of Theorem 3.3. \(\square \)

Let us assume \(\mathcal{W} \) is of type \(B_r \). Then Dafeng Zuo obtained \(r \) Frobenius manifold structures on \(O(\rho_{ref}) \) by fixing certain generators \(z^1, \ldots, z^r \) for \(\mathbb{C}[\rho_{ref}] \) \[22\]. Under these generators, \(\Omega_2(z) \) and its Christoffel symbols \(\Gamma_{2k}^{ij}(z) \) are almost linear.
in each z^k, $k = 1, 2, \ldots, r$. Then he proved that Lemma 2.5 can be applied and constructed r rational Frobenius manifold structures using the flat pencils of metrics $\hat{T}_k := (\Omega_2, \text{Lie}_{\frac{\partial}{\partial z}} \Omega_2)$. He also proved that the same Frobenius manifold structures can be constructed when \mathcal{W} is of type D_r. Even it is not written explicitly in [22], we confirm that they are natural Frobenius manifold structures as each \hat{T}_k is regular QFPM of degree $1 - \frac{1}{k}$. Here $e = \frac{1}{2}z^1$. Thus, we can obtain these Frobenius manifolds directly using Theorem 2.6. Here is the statement of Zuo’s theorem.

Theorem 4.4 [22] There exists a unique natural Frobenius structure for each $1 \leq k \leq r$ of charge $d = 1 - \frac{1}{k}$ on the orbit space $O(\rho_{ref})$ when \mathcal{W} is of type B_r or D_r polynomial in t_1, t_2, \ldots, t_r, such that:

1. The identity vector field is $e = \frac{\partial}{\partial z^k} = \frac{\partial}{\partial t^k}$.
2. The Euler vector field is $E = \sum_{i=1}^{r} d_i t_i \frac{\partial}{\partial t_i}$, where $d_1 = \frac{1}{k}$, $d_i = \frac{i}{k}$ for $2 \leq i \leq k$, $d_i = \frac{2k(r-i)+r}{2k(r-k)}$ for $k+1 \leq i \leq r$.

3. The associated QFPM is \hat{T}_k.

Note that when $k = 1$, \hat{T}_1 does not satisfy condition (3.1). Thus the corresponding Frobenius manifold structure has no conjugate. For $k > 1$, we get the following theorem.

Theorem 4.5 For $k > 1$, the natural Frobenius manifold structure corresponding to \hat{T}_k constructed by Theorem 4.4 has a conjugate Frobenius manifold structure which is also natural.

Proof Similar to the proof of Theorem 4.3, we apply Theorems 3.2 and 3.3.

Considering Theorem 4.2, let K be the type of \mathcal{W}, then we say a Frobenius manifold is of type K (rep. of type \tilde{K}) if it isomorphic to a natural polynomial Frobenius manifold (resp. a natural conjugate Frobenius manifold) constructed on $O(\rho_{ref})$ by Theorem 4.1 (resp. Theorem 4.3).

Example 4.6 We list in Table 1 all Frobenius structures constructed on $O(\rho_{ref})$ when \mathcal{W} is of rank 3 using the above theorems. We borrow the potentials of Frobenius structures of type A_3, B_3 and H_3 from [6]. From these potentials, we find Frobenius manifold structures of type \tilde{A}_3, \tilde{B}_3 and \tilde{H}_3 using the formula (3.4). Then applying Theorem 4.4 to a Coxeter group of type B_3, we get a Frobenius manifold of type B_3 (resp. A_3) when $k = 3$ (resp. $k = 2$). For $k = 1$, we get a rational Frobenius manifold B_1^1 which has no conjugate.

4.2 Sign Times Reflection Representation

We keep the notations of the last section and we assume \mathcal{W} is of type A_r. We study an irreducible representation ρ_{new} of \mathcal{W} which can be defined using the sign representation and the representation ρ_{ref}. The definition will enable us to construct r invariant
polynomials of \(\rho_{\text{new}} \). We will prove the invariant ring \(\mathbb{C}[\rho_{\text{new}}] \) is not a polynomial ring when \(r > 2 \). We recall that the degrees of a complete set of generators of \(\mathbb{C}[\rho_{\text{ref}}] \) are \(2, 3, \ldots, r + 1 \).

We consider the sign representation of \(\mathcal{W} \), \(\rho_{\text{sign}} : \mathcal{W} \to \mathbb{C}^* \) defined by sending each element \(s \in S \) to \(-1\). Then we define the representation \(\rho_{\text{new}} \) of \(\mathcal{W} \) by

\[
\rho_{\text{new}} : \mathcal{W} \to GL(\mathbb{C} \otimes V), \quad \rho_{\text{new}}(w) = \rho_{\text{sign}}(w) \otimes \rho_{\text{ref}}(w), \quad \forall w \in \mathcal{W}. \quad (4.3)
\]

Note that \(\rho_{\text{new}} \) is a real representation of rank \(r \). The following proposition proves that \(\rho_{\text{new}} \) is an irreducible representation.

Proposition 4.7 The new representation \(\rho_{\text{new}} \) is an irreducible representation of \(\mathcal{W} \). Moreover, \(\rho_{\text{new}} \) and \(\rho_{\text{ref}} \) are isomorphic when \(r = 2 \) and different otherwise.

Proof Recall that if \(\chi_{\psi} \) denotes the character of a representation \(\psi \) of a finite group \(G \), then \(\psi \) is irreducible if and only if [19]

\[
\frac{1}{|G|} \sum_{g \in G} \chi_{\psi}(g) \overline{\chi_{\psi}(g)} = 1. \quad (4.4)
\]

Note that \(\rho_{\text{ref}} \) and \(\rho_{\text{sign}} \) are irreducible representations and

\[
\chi_{\rho_{\text{new}}}(w) = \chi_{\rho_{\text{sign}}}(w) \chi_{\rho_{\text{ref}}}(w).
\]

Then

\[
\frac{1}{|\mathcal{W}|} \sum_{w \in \mathcal{W}} \chi_{\rho_{\text{new}}}(w) \overline{\chi_{\rho_{\text{new}}}(w)} = \frac{1}{|\mathcal{W}|} \sum_{w \in \mathcal{W}} (\chi_{\rho_{\text{sign}}}(w) \chi_{\rho_{\text{ref}}}(w)) (\overline{\chi_{\rho_{\text{sign}}}(w) \chi_{\rho_{\text{ref}}}(w)}) = \frac{1}{|\mathcal{W}|} \sum_{w \in \mathcal{W}} (\chi_{\rho_{\text{ref}}}(w) \overline{\chi_{\rho_{\text{ref}}}(w)}) = 1. \quad (4.5)
\]
For the second part, note that for any generator \(s \in S \), \(\chi_{\rho_{\text{new}}}(s) = -\chi_{\rho_{\text{ref}}}(s) = -(r - 2) \). Hence, the two representations are different when \(r \neq 2 \). For \(r = 2 \), we can check that \(\rho_{\text{new}} \) is equivalent to \(\rho_{\text{ref}} \) by direct computations. \(\square \)

For the remainder of this section we assume the rank \(r > 2 \). Recall that the Coxeter group of type \(A_r \) is isomorphic to the symmetric group \(S_{r+1} \). Thus, irreducible representations of \(A_r \) are in one to one correspondence with the partition of \(r + 1 \). For a given partition \(\lambda \) of \(r + 1 \), the corresponding irreducible representation can be constructed using Young tableaux associated to \(\rho_{\lambda} \).

Proof Assume that \(\rho_{\text{new}} \) is a reflection representation. Then, it is generated by a set of involutions \(w_1, \ldots, w_r \). Since \(\rho_{\text{new}} \) is a real representation, we must have \(\chi_{\rho_{\text{new}}}(w_i) = r - 2 \). From \(\rho_{\text{new}}(w_i) = \rho_{\text{sign}}(w_i) \rho_{\text{ref}}(w_i) \), we have \(\rho_{\text{sign}}(w_i) = -1 \) and \(\chi_{\rho_{\text{ref}}}(w_i) = \chi_{\rho_{\text{sign}}}(w_i) \chi_{\rho_{\text{new}}}(w_i) = 2 - r \). Otherwise, \(\chi_{\rho_{\text{ref}}}(w_i) = r - 2 \), i.e., \(\rho_{\text{ref}}(w_i) \) is a reflection which implies that \(\chi_{\rho_{\text{new}}}(w_i) = 2 - r \), a contradiction. On the other hand, considering the one-to-one correspondence between conjugacy classes of \(S_{r+1} \) and integer partitions of \(r + 1 \), \(w_i \) corresponds to a partition of the from \([2, 2, \ldots, 2, 1, 1, \ldots, 1] = [2^p, 1^q] \) with \(2p + q = r + 1 \), \(p > 0 \). Using Frobenius formula, \(\chi_{\rho_{\text{ref}}}(w_i) \) is the coefficient of \(x^{r+1} y \) in the expansion \(g := (x - y)(x^2 + y^2)^p(x + y)^{r+1-2p} \) which equals the coefficient of \(\lim_{y \to 0} \frac{\partial g}{\partial y} = (r - 2p)x^{r+1} \). Hence, \(\chi_{\rho_{\text{ref}}}(w_i) = r - 2p \). Comparing the two values of \(\chi_{\rho_{\text{ref}}}(w_i) \) we get \(2r - 2 = 2p \leq r + 1 \). Thus \(r \leq 3 \). However, the case \(r = 3 \) is excluded by direct computations. \(\square \)

We study the ring \(\mathbb{C}[\rho_{\text{new}}] \) in order to apply Dubrovin’s method. We fix a basis \(e_1, e_2, \ldots, e_r \) for \(V \) and let \(x^1, \ldots, x^r \) be the dual basis satisfying \(x^i(e_j) = \delta^i_j \). Then \(\tilde{e}_i := 1 \otimes e_i \), \(i = 1, \ldots, r \) form a basis of \(\mathbb{C} \otimes V \) and we get a natural isomorphism

\[
\theta : \mathbb{C} \otimes V \rightarrow V, \; \tilde{e}_i \mapsto e_i. \tag{4.6}
\]

Then the pullback \(\tilde{x}^i = \theta^*(x^i) \) defines the dual basis of \(\tilde{e}_i \). Let \(w \in \mathcal{W} \) and \(a^j_i \) be the matrix of \(\rho_{\text{ref}}(w) \) under the basis \(e_i \). Then \(\rho_{\text{new}}(w)(\tilde{e}_i) = \rho_{\text{sign}}(w) 1 \otimes \rho_{\text{ref}}(w) e_i = \rho_{\text{sign}}(w) a^j_i \tilde{e}_j \). Therefore, \(\rho_{\text{new}}(w) = \rho_{\text{sign}}(w) \rho_{\text{ref}}(w) \).

Lemma 4.9 Let \(w \in \mathcal{W} \) with \(\rho_{\text{sign}}(w) \rho_{\text{new}}(w) \neq \rho_{\text{ref}}(\mathcal{W}) \) and \(f \in \mathbb{C}[\rho_{\text{ref}}] \) be a homogeneous polynomial. Then

\[
 w \cdot \theta^*(f) = (\rho_{\text{sign}}(w))^{\deg(f)} \theta^*(f). \tag{4.7}
\]

In particular, if degree \(f \) is even then \(\theta^*(f) \in \mathbb{C}[\rho_{\text{new}}] \).
Proof We obtain $\theta^*(f)$ simply by replacing the coordinate x^i with \tilde{x}^i. Therefore,

\begin{align*}
w.\theta^*(f)(\tilde{x}^1, \tilde{x}^2, \ldots, \tilde{x}^n) &= \theta^*(f)(\rho_{\text{new}}(w)\tilde{x}^1, \rho_{\text{new}}(w)\tilde{x}^2, \ldots, \rho_{\text{new}}(w)\tilde{x}^n) \\
&= \theta^*(f)\left(\rho_{\text{sign}}(w)\rho_{\text{ref}}(w)\tilde{x}^1, \rho_{\text{sign}}(w)\rho_{\text{ref}}(w)\tilde{x}^2, \ldots, \rho_{\text{sign}}(w)\rho_{\text{ref}}(w)\tilde{x}^n\right) \\
&= (\rho_{\text{sign}}(w))(\deg(f))\theta^*(f)(\tilde{x}^1, \tilde{x}^2, \ldots, \tilde{x}^n).
\end{align*}

\qed

Let z^1, \ldots, z^r be algebraically independent invariant polynomials of ρ_{new} and u^1, \ldots, u^r be the generators of $\mathbb{C}[\rho_{\text{ref}}]$ (in the notation of Sect. 4.1). We assume $z^1 = \theta^*(u^1)$. Hence, the Hessian of z^1 defines a contravariant flat metric Ω_2 on $\mathcal{O}(\rho_{\text{new}})$. Examples show that the entries of $\Omega_2(z)$ are rational in general and it is hard to construct flat pencil of metrics. We overcome this problem by defining certain invariants for ρ_{new} which also leads to the construction of Frobenius manifold structures.

Proposition 4.10 There exist r algebraically independent invariant polynomials z^1, z^2, \ldots, z^r of ρ_{new} with the degrees

\begin{equation}
2, 4, 6, \ldots, 2\left\lfloor \frac{r+1}{2} \right\rfloor; 6, 8, \ldots, 2\left\lfloor \frac{r+3}{2} \right\rfloor.
\end{equation}

\begin{proof}
We will use the invariants u^1, \ldots, u^r of ρ_{ref} to construct invariants of ρ_{new}. We set $I = \{i : \eta_i \text{ is even}\}$ and $J = \{j : \eta_j \text{ is odd}\}$. Using Lemma 4.9, $\theta^*(u^i)$ is an invariant of ρ_{new} for any $i \in I$. Let κ be the minimal index in J. Then $\theta^*(u^\kappa u^j)$ is an invariant of ρ_{new} for any $j \in J$. By this way, we construct r invariants polynomial, z^1, \ldots, z^r for ρ_{new} with the degrees given in (4.8). Note that any polynomial in z^1, \ldots, z^r can be written as a polynomial in u^1, \ldots, u^r. Hence, z^1, \ldots, z^r are algebraically independent. \qed

Remark 4.11 We observe that the invariant polynomials constructed by Proposition 4.10 do not necessarily form a set of primary invariant polynomials of ρ_{new}. According to the invariant theory [2], the product of the degrees of primary invariants is divisible by the order of the group. For example, when \mathcal{W} is type A_4, the degrees of z^i are 2, 4, 6, 8. The product of these degrees is not divisible by the order 120 of the group.

We keep the notations z^1, \ldots, z^r for the invariant polynomials of ρ_{new} constructed in Proposition 4.10.

Theorem 4.12 The orbits space $\mathcal{O}(\rho_{\text{new}})$ has natural Frobenius manifold structures isomorphic to the natural Frobenius manifolds structures defined on $\mathcal{O}(\rho_{\text{ref}})$ by Theorems 4.1 and 4.2.

\begin{proof}
We consider the map $(u^1, \ldots, u^r) \to (z^1, \ldots, z^r)$ given in Proposition 4.10 as diffeomorphism on some open subset of $u^\kappa \neq 0$ where κ is defined in the proof of Proposition 4.10. Note that, under this diffeomorphism, the metric defined by the Hessian of u^1 is identified with the metric defined by the Hessian of z^1. Thus, we can transfer to $\mathcal{O}(\rho_{\text{new}})$, any regular QFPM given by the Theorems 4.1 and 4.2. In this way, we obtain natural Frobenius manifold structures on $\mathcal{O}(\rho_{\text{new}})$. \qed
Example 4.13 The irreducible reflection representation ρ_{ref} of Coxeter group of type A_4 is generated by the matrices

$$\sigma = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 \end{pmatrix} \quad \text{and} \quad \tau = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \end{pmatrix}. \quad (4.9)$$

The polynomial ring $\mathbb{C}[\rho_{\text{ref}}]$ coincides with $\mathbb{C}[u_1, u_2, u_3, u_4]$, where

$$u_1 = x_1^2 - \frac{1}{2}x_1x_2 - \frac{1}{4}x_1x_3 - \frac{1}{2}x_1x_4 + x_2^2 - \frac{1}{2}x_2x_3 - \frac{1}{2}x_2x_4 + x_3^2 - \frac{1}{2}x_3x_4 + x_4^2,$$

$$u_2 = x_1^3 - \frac{3}{4}x_1^2x_2 - \frac{3}{4}x_1^2x_3 - \frac{3}{4}x_1^2x_4 - \frac{3}{4}x_1x_2^2 + x_1x_2x_3$$
$$+ x_1x_2x_4 - \frac{3}{4}x_1x_3^2 + x_1x_3x_4 - \frac{3}{4}x_1x_4^2 + x_2^3 - \frac{3}{4}x_2x_3^2 + x_2x_3x_4 - \frac{3}{4}x_2x_4^2 + x_3^3 - \frac{3}{4}x_3x_4^2 + x_4^3,$$

$$u_3 = x_1^4 - x_1^3x_2 - x_1^3x_3 - x_1^3x_4 + x_1^2x_2x_3 + x_1^2x_2x_4 + x_1^2x_3x_4 - x_1x_2^3$$
$$+ x_1x_2^2x_3 + x_1x_2^2x_4 + x_1x_2x_3^2 - 3x_1x_2x_3x_4$$
$$+ x_1x_2x_4^2 - x_1x_3 + x_1x_3^2x_4 + x_1x_3x_4^2 - x_1x_4^3 + x_2^4 - x_2x_3 - x_2x_4^3 + x_2x_3x_4$$
$$- x_2x_3^2 + x_2x_3x_4 + x_2x_4^2$$
$$- x_2x_4^3 + x_3^4 - x_3x_4^3 + x_3x_4^2 + x_4^4,$$

$$u_4 = x_1^5 - \frac{5}{4}x_1^4x_2 - \frac{5}{4}x_1^4x_3 - \frac{5}{4}x_1^4x_4 - \frac{5}{4}x_1^3x_2x_3 + \frac{5}{3}x_1^3x_2x_4 + \frac{5}{3}x_1^3x_3x_4$$
$$- \frac{5}{2}x_1^2x_2x_3x_4 - \frac{5}{4}x_1x_2^4 + \frac{5}{3}x_1x_2x_3^2$$
$$+ \frac{5}{3}x_1x_2x_4^2 - \frac{5}{2}x_1x_3^2x_4 + \frac{5}{3}x_1x_3x_4^2 - \frac{5}{2}x_1x_2x_3x_4^2$$
$$+ \frac{5}{3}x_1x_2^2x_3 - \frac{5}{4}x_1x_3^4 + \frac{5}{3}x_1x_3x_4^3 + \frac{5}{3}x_1x_3x_4^2$$
$$+ \frac{5}{3}x_1x_3x_4^3 - \frac{5}{4}x_1x_3^4 + x_2^5 - \frac{5}{4}x_2x_3^4 + \frac{5}{4}x_2x_4^4 + \frac{5}{3}x_2x_3x_4 + \frac{5}{2}x_2x_3x_4^2$$
$$+ \frac{5}{3}x_2^3x_3x_4 - \frac{5}{3}x_2x_3x_4^3 - \frac{5}{4}x_2x_4^4 + x_3^5$$
$$- \frac{5}{4}x_3x_4^4 - \frac{5}{4}x_3x_4^4 + x_4^5.$
The Frobenius manifold of type A_4 is a result of the regular QFPM and it consists of $\Omega_2(u)$ and $\Omega_1 = \partial_u \Omega_2(u)$ where $\Omega_2(u)$ is defined by the Hessian of u_1. The representation ρ_{new} is generated by τ and $-\sigma$. It turns out that the primary invariants of ρ_{new} have degrees 2, 4, 6, 10 while the secondary invariants have degrees 8, 13, 15. The Hessian of the degree 2 invariant z_1 leads to the flat contravariant metric $\Omega_2(z)$ but it is hard to find a FPM. We fix the following 4 invariants polynomials for $\mathcal{O}(\rho_{new})$ of degrees 2, 4, 6 and 8:

$$z_1 = u_1, \quad z_2 = u_3, \quad z_3 = u_2^2, \quad z_4 = u_2u_4.$$

Then the matrix of $\Omega_2(z)$ consists of the columns

$$\Omega_2^1(z) = \begin{pmatrix} z_1 \\ 2z_2 \\ 3z_3 \\ 4z_4 \end{pmatrix}, \quad \Omega_2^2(z) = \begin{pmatrix} -\frac{64}{625}z_1^3 + \frac{68}{25}z_1z_2 + \frac{864}{625}z_3 \\ \frac{64}{75}z_1z_3 + \frac{43}{15}z_2z_3 + \frac{62}{25}z_1z_4 + \frac{9}{3}z_4^2 \end{pmatrix},$$

$$\Omega_2^3(z) = \begin{pmatrix} \frac{12}{5}z_1z_3 + \frac{18}{5}z_4 \\ \frac{5}{3}z_2z_3 + \frac{25}{7}z_2z_3 \\ -\frac{26}{45}z_1z_3 + \frac{95}{18}z_1z_2z_3 + \frac{14}{3}z_2z_4 + \frac{1}{3}z_1z_4 + \frac{25}{6}z_2z_4 \end{pmatrix}$$

and

$$\Omega_2^4(z) = \begin{pmatrix} \frac{4z_4}{4z_4} \\ \frac{64}{75}z_1z_3 + \frac{43}{15}z_2z_3 + \frac{62}{25}z_1z_4 + \frac{9}{3}z_4^2 \\ -\frac{26}{45}z_1z_3 + \frac{95}{18}z_1z_2z_3 + \frac{14}{3}z_2z_4 + \frac{1}{3}z_1z_4 + \frac{25}{6}z_2z_4 \\ \frac{214}{625}z_1z_3 + \frac{52}{81}z_1z_2z_3 + \frac{62}{25}z_2z_3 + \frac{56}{25}z_1z_3 - \frac{26}{45}z_1z_4 + \frac{95}{18}z_1z_2z_4 + \frac{62}{75}z_2z_4 + \frac{1}{3}z_1z_4 + \frac{17}{3}z_4^2 + \frac{25}{12}z_2^2 \end{pmatrix}.$$

Therefore, we get on $\mathcal{O}(\rho_{new})$ the regular QFPM formed by $\Omega_2(z)$ and $\Omega_1(z) = \text{Lie}_e \Omega_2$ where $e = \sqrt{z_3}\partial_{z_4}$. Of course, the resulted Frobenius manifold is of type A_4.

Remark 4.14 It is straightforward to generalized the results of this section to other types of Coxeter groups and we obtain natural Frobenius manifolds on $\mathcal{O}(\rho_{new})$. But we lack sorting out when ρ_{new} is not a reflections group (i.e. see Proposition 4.8). Robert Howett informed us that when W is of type E_8, the representation ρ_{new} is generated by reflections.

5 Dihedral and Dicyclic Groups

In this section, we give results of applying Dubrovin’s method to irreducible representations of the Dihedral groups (Coxeter groups of type) $I_2(m), m > 2$ and Dicyclic
groups Dic_m. We mention that Dubrovin computed by an ad-hoc procedure all possible potentials of 2-dimensional Frobenius manifolds [4]. Here we find some of them are related to invariant theory of finite groups.

5.1 Dihedral Groups

Irreducible representations of $I_2(m)$ are of rank 1 or 2. Let ξ_m be a primitive m-th root of unity. The rank 2 representations are ρ_k, $k = 1, 2, \ldots, \frac{m-2}{2}$ for even m, and $k = 1, 2, \ldots, \frac{m-1}{2}$ for odd m. Here, ρ_k is generated by the matrices

$$
\begin{pmatrix}
\xi_m^k & 0 \\
0 & \xi_m^{-k}
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}.
$$

(5.1)

Note that ρ_1 is the standard reflection representation of $I_2(m)$. We observe that $\mathbb{C}[\rho_k]$ can be interpreted as the invariant ring of the standard reflection representation of $I_2(h)$ where $h = \frac{m}{\gcd(m,k)}$, i.e. it is generated by

$$
t_1 = \frac{1}{h}x_1x_2, \quad t_2 = x_1^h + x_2^h.
$$

Hence, applying Dubrovin’s method, we get the polynomial Frobenius manifold of type $I_2(h)$ and its conjugate $\tilde{I}_2(h)$ obtained by Theorems 4.1 and 4.3.

5.2 Dicyclic Groups

We fix a natural number m. The dicyclic group Dic_m is a group of order $4m$ defined by

$$
\text{Dic}_m = \langle \sigma, \alpha \mid \sigma^{2m} = 1, \alpha^2 = \sigma^m, \alpha^{-1}\sigma\alpha = \sigma^{-1} \rangle.
$$

(5.2)

The irreducible representations of Dic_m are of rank 1 or 2. The 2-dimensional irreducible representations ψ_k and ϱ_l are defined by setting

$$
\psi_k(\sigma) = \begin{pmatrix}
\xi_m^k & 0 \\
0 & \xi_m^{-k}
\end{pmatrix}, \quad \psi_k(\alpha) = \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix},
$$

(5.3)

and

$$
\varrho_l(\sigma) = \begin{pmatrix}
\xi_m^l & 0 \\
0 & \xi_m^{-l}
\end{pmatrix}, \quad \varrho_l(\alpha) = \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}.
$$

(5.4)

Here $1 \leq k \leq \frac{m-2}{2}$ and $1 \leq l \leq m - 1$ when m is even while $1 \leq k \leq \frac{m-1}{2}$ and $1 \leq l \leq m - 2$ when m is odd. Note that ψ_1 is the standard representation of Dic_m in the literature. We observe that the invariant ring $\mathbb{C}[\varrho_l]$ can be interpreted as the invariant ring $\mathbb{C}[\rho_l]$ where ρ_l is the representation of $I_2(m)$ given in Sect. 5.1. Thus, the result
Now we show that f and \hat{f} of applying Dubrovin’s method to \mathfrak{g}_l is given in that section. We consider here the representations ψ_k. Let us fix the integer k and set $h = \frac{m}{\gcd(m,k)}$. We define

$$u_1 = x_1^2 x_2^2, \quad u_2 = x_1^{2h} + x_2^{2h}, \quad u_3 = x_1 x_2 (x_1^{2h} - x_2^{2h}).$$

(5.5)

It is straightforward to verify that u_1, u_2 and u_3 are invariants under the action of ψ_k.

Proposition 5.1 The invariant ring $\mathbb{C}[\psi_k]$ is generated by u_1, u_2 and u_3.

Proof A general homogeneous polynomial of degree q has the form

$$f(x_1, x_2) = a_q x_1^q + a_{q-1} x_1^{q-1} x_2 + \cdots + a_1 x_1 x_2^{q-1} + a_0 x_2^q$$

(5.6)

where $a_0, \ldots, a_q \in \mathbb{C}$. Being invariant under $\psi_k(\alpha)$, we get

$$f = a_q x_1^q + a_{q-1} x_1^{q-1} x_2 + \cdots + a_1 x_1 x_2^{q-1} + a_0 x_2^q$$

$$= \psi_k(\alpha) f = (-1)^q a_q x_2^q + (-1)^{q-1} a_{q-1} x_2^{q-1} x_1 + \cdots - a_1 x_2 x_1^{q-1} + a_0 x_1^q.$$

Thus $a_i = (-1)^{q-i} a_{q-i}$ for all $i = 0, \ldots, q$. Similarly, the invariant of f under $\psi_k(\alpha^2)$ implies q is even. Hence, f has the form

$$f = \sum_{i=0}^{q} a_{q-i} (x_1 x_2)^i [x_1^{q-2i} + (-1)^{q-i} x_2^{q-2i}].$$

Moreover,

$$f = \psi_k(\alpha) f = \sum_{i=0}^{q} a_{q-i} (x_1 x_2)^i [\xi^{-k(q-2i)} x_1^{q-2i} + (-1)^{q-i} \xi^{k(q-2i)} x_2^{q-2i}]$$

implies $k(q-2i) = 0 \mod(2m)$. Then $q - 2i = 2hl$ for some integer l. Therefore, we can write

$$f = \sum_{q=2hl+2i} a_{q-i} (x_1 x_2)^i [x_1^{2hl} + (-1)^{q-i} x_2^{2hl}].$$

(5.7)

Now we show that $f \in \mathbb{C}[u_1, u_2, u_3]$. It is sufficient to prove $\tilde{f}_l = x_1^{2hl} + x_2^{2hl}$ and $\hat{f}_l = x_1 x_2 (x_1^{2hl} - x_2^{2hl})$ are invariant for every natural number l. When $l = 1$, $f_1 = u_2$ and $\tilde{f}_1 = u_3$. For $l + 1$, we get

$$\tilde{f}_{l+1} = x_1^{2h(l+1)} + x_2^{2h(l+1)} = (x_1^{2h} + x_2^{2h})^{l+1} - \sum_{d=1}^{l} (l+1) \binom{l+1}{d} x_1^{2hd} x_2^{(l+1-d)2h}$$
\[\mathcal{F}_\pm = \frac{2^{\pm\sqrt{3}h} \frac{1}{3} \left(1 \pm \sqrt{3}h\right) (ht_1)^{1 \mp \sqrt{3}h}}{\pm (3h^2 - 1)} + \frac{1}{2} t_1^2 t_2^2 \]
5.3 Finite Subgroups of $SL_2(\mathbb{C})$

In this section we use Dubrovin’s method on finite non trivial subgroups of $SL_2(\mathbb{C})$. They are classified up to conjugation and they are called binary polyhedral groups. They consist of the cyclic groups C_m and binary dihedral groups D_m, binary tetrahedral group T, binary octahedral group O and binary icosahedral group I. We treat them as representations of the corresponding groups. It is known that the invariant rings of these representations are not polynomial rings and the relations between the generators lead to the classification of simple hypersurface singularities. We use the sets of generators of the invariant rings listed in [14]. Applying Dubrovin’s method, we obtain natural polynomial Frobenius manifold structure and their conjugations (as given in Sect. 4.1). We write below only the flat coordinates of the resulting polynomial Frobenius manifold structures and its type. Note that the findings are not apparent from examining the invariant rings.

1. Cyclic groups C_m: Here $m \geq 2$ and the invariant ring is generated by $x y$, x^m, y^m. We fix the following invariant polynomials

$$t_1 = \frac{1}{m} x y, \quad t_2 = x^m + y^m.$$

Then the ring generated by t_1 and t_2 is isomorphic to the invariant ring of the standard representation of the dihedral group $I_2(m)$. Thus, using Dubrovin’s method and (t_1, t_2) as coordinates on the orbits space, we get Frobenius manifold of type $I_2(m)$. In case we set $t_1 = \frac{1}{m} x y$ and $t_2 = x^m$, we get the WDVV solution $\frac{1}{m} t_1^2 t_2$. It corresponds to a trivial Frobenius manifold structure but here the natural charge is $\frac{m-2}{m}$ while the degrees are $\frac{1}{m}$ and 1.

2. The binary dihedral group D_m: This is the standard representation of the dicyclic group D_{2m}. A result of applying Dubrovin’s method is given in Sect. 5.2.

3. The binary tetrahedral T: We fix the following set of generators of the invariant ring

$$t_1 = \frac{5}{12} x y \left(x^4 - y^4 \right), \quad t_2 = \left(x^4 + y^4 \right)^3 - 36 x^4 y^4 \left(x^4 + y^4 \right),$$

$$t_3 = 16 x^4 y^4 + 2 \left(x^4 - y^4 \right).$$

(5.14)

We choose (t_1, t_2) as coordinates on the orbits space. Then the Hessian of $\frac{5}{12} t_1$ defines a flat metric $\Omega_2(t)$ linear in t_2. Here, we apply Lemma 2.5 and we get a regular QFPM of degree $d = \frac{1}{2}$ with $\tau = t_1$ consists of

$$\Omega_2^{ij}(t) = \left(\begin{array}{c} t_1 \\ t_2 \\ \text{Lie}_t \Omega_2^{ij}(t) = \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) \end{array} \right).$$

(5.15)

The resulting Frobenius manifold is of type $I_2(4)$.

\[\text{Springer} \]
4. The binary octahedral O: Let us fix the generators of the invariant ring to be
\[t_1 = \frac{7}{12}(16x^4y^4 + (x^4 - y^4)^2), \quad t_2 = \left(xy \left(x^4 - y^4\right)\right)^2, \]
\[t_3 = yx^{17} - 34y^5x^{13} + 34y^{13}x^5 - y^{17}x. \]
(5.16)

In the coordinates (t_1, t_2), the metric $\Omega_2(t)$ defined by the Hessian of $\frac{12}{7}t_1$ is linear in t_2 and leads to a regular QFPM with charge $\frac{1}{5}$. The resulting Frobenius manifold is of type $I_2(3)$.

5. The binary icosahedral I: We fix the generators of the invariant ring
\[t_1 = \frac{11}{30}(x^{11}y + 11x^6y^6 - xy^{11}), \]
\[t_2 = x^{30} + 522x^{25}y^5 - 10005x^{20}y^{10} - 10005x^{10}y^{20} - 522x^5y^{25} + y^{30}, \]
\[t_3 = x^{20} - 228x^{15}y^5 + 494x^{10}y^{10} + 228x^5y^{15} + y^{20}. \]
(5.17)

We consider (t_1, t_2) as coordinates, the Hessian of $\frac{30}{11}t_1$ leads to a metric $\Omega_2(t)$ linear in t_2. The regular QFPM formed by Ω_2 and $\Omega_1 = \partial_{t_2}\Omega_2(t)$ leads to a Frobenius manifold of type $I_2(5)$.

6 Finite Subgroups of $SL_3(\mathbb{C})$

Finite subgroups of $SL_3(\mathbb{C})$ are classified into the families (A), (B), ..., (L) [21]. We treat them as representations of the corresponding groups and they are not reflection representations. Watanabe and Rotillon listed in [20] those subgroups where the invariant rings are complete intersections missing type (J) and (K). These missing groups were recognized by Yau and Yu [21]. In the end, there is a total of 29 types of finite subgroups of $SL_3(\mathbb{C})$ whose invariant rings are complete intersection and their sets of generators are known explicitly. We treat them as linear representations of finite groups and we apply Dubrovin’s method. The set of generators is taken from [20] and we use the same numbering (1), (2), ..., (27) of the 27 families of subgroups listed there.

Recall that to apply Dubrovin’s method, we must find

\begin{equation}
\text{a minimal degree invariant polynomial where the Hessian defines a flat contravariant metric.}
\end{equation}

(6.1)

This condition excluded the following subgroups

1. (17) which are of type (A).
2. (3) – (8), (19) – (23) which are of type (B).
3. (10), (24) and (25) which are of type (C).
4. (13), (15), (16) and (27) which are of types (G), (L), (I) and (E), respectively.
5. The groups (J) and (K) which are not considered in [20].
For the remaining family of subgroups, when condition (6.1) is satisfied, we use Lemma 2.5 to construct flat pencil of metric under appropriate choice of a set of invariant polynomials. We find natural Frobenius manifold structures of types A_3, B_3, H_3, B_1^3, or the trivial P_3 (see Examples 4.6 and 3.4). In each case, we will mention the type of the resulting Frobenius structure and the corresponding flat coordinates. From Theorem 3.3, we know that ones the orbits space acquire one of these structures then it also possess the conjugate structure. Thus we will not mention explicitly the appearance of the natural conjugate Frobenius manifold structures.

(1) This is a family of groups of type (\mathcal{A}) depending on an integer $m > 1$. Complete set of generators of the invariant rings consists of x^m, y^m, z^m, xyz. The Hessian of xyz does not define a flat metric. Hence, condition (6.1) exclude the case $m > 3$.

For $m = 2$, we fix the invariant polynomials

$$u_1 = x^2 + y^2 + z^2, \quad u_2 = x^2y^2 + z^2x^2 + x^2z^2, \quad u_3 = (xyz)^2. \quad (6.2)$$

Then $\{u_1, u_2, u_3\}$ can be identified with the set of generators of the invariant ring of the standard reflection representation of Coxeter groups of type B_3. Thus, applying Dubrovin’s method, we get natural Frobenius manifold structures of types A_3, B_3 and B_1^3. We also get the natural trivial Frobenius manifold structure of type P_3 using the setting of the family (2) given below. Thus, considering the conjugate structures and Frobenius manifolds obtained in Example 3.4, we proved that the orbits space has 8 different natural Frobenius manifold structures.

For $m = 3$, we fix the invariant polynomials

$$u_1 = x^3 + y^3 + z^3, \quad u_2 = x^3y^3 + y^3z^3 + z^3x^3, \quad u_3 = (xyz)^3. \quad (6.3)$$

The Hessian of u_1 defines a contravariant flat metric Ω_2. This metric and its Christoffel symbols are almost linear in each variable u_i. We can and will apply Lemma 2.5 and we get three regular QFPM. From QFPM $(\Omega_2, \text{Lie}_{\partial_{u_3}} \Omega_2)$, we get Frobenius manifold structure of type B_3. It has flat coordinates

$$t_1 = \frac{2}{9} u_1, \quad t_2 = -\frac{u_1^2 - 4u_2}{6\sqrt{2}}, \quad t_3 = \frac{7u_1^3}{216} - \frac{1}{6} u_2u_1 + u_3. \quad (6.4)$$

The QFPM $(\Omega_2, \text{Lie}_{\partial_{u_2}} \Omega_2)$ leads to type A_3. It has flat coordinates

$$t_1 = \frac{1}{3} u_1, \quad t_2 = u_2 - \frac{1}{8} u_1^2, \quad t_3 = \sqrt{u_3}. \quad (6.5)$$

Finally we get Frobenius manifold structure of type B_1^3 from the QFPM $(\Omega_2, \text{Lie}_{\partial_{u_1}} \Omega_2)$. Here the flat coordinates are

$$t_1 = u_1, \quad t_2 = u_2u_3^{-\frac{1}{3}}, \quad t_3 = \frac{4}{3} u_3^{\frac{1}{3}}. \quad (6.6)$$
This is a family of groups of type \((B)\) depending on an integer \(m \geq 1\). The polynomials \(x^{2m} + y^{2m}, (xy)^2, xyz (x^{2m} - y^{2m})\) and \(z^2\) form complete sets of generators for the invariant rings. Because of condition (6.1), we can only consider \(m = 1\). In this case, we fix the invariant polynomials

\[u_1 = x^2 + y^2 + z^2, \quad u_2 = z^2, \quad u_3 = x^2 y^2. \]

The metric \(\Omega_2(u)\) defined by the Hessian of \(u_1\) and its Christoffel symbols are linear in each variable \(u_i\). However, Lemma 2.5 is applicable only for \(u_2\). The QFPM \((\Omega_2, \text{Lie}_{\partial u_2} \Omega_2)\) has degree 0 with \(\tau = u_1\). It leads to a natural trivial Frobenius manifold structure of type \(P_3\). Here the flat coordinates are

\[t_1 = \frac{1}{2} u_1, \quad t_2 = u_2 - \frac{1}{2} u_1, \quad t_3 = (-2u_3)^{\frac{1}{2}}. \quad (6.7) \]

This is a family of groups of type \((C)\) depending on an integer \(m > 1\). Complete sets of generators of the invariant rings consist of \(xyz, x^m + y^m + z^m, x^m y^m + x^m z^m + y^m z^m\), and \((x^m - y^m)(z^m - x^m)(y^m - z^m)\). Here we get the same natural Frobenius manifold structure obtained for the family (1).

For \(m = 2\) we can use the same argument given for the family (1).

For \(3 \leq m \leq 6\), the contravariant metric \(\Omega_2^{ij}\) defined by the Hessian of \(u_1\) and its Christoffel symbols are almost linear in \(u_1\) and \(u_3\) and we can apply Lemma 2.5 to both variables.

The FPM \((\Omega_2, \text{Lie}_{\partial u_1} \Omega_2)\) is regular quasihomogeneous of degree \(\frac{1}{2}\) with \(\tau = u_1\). We can fix the flat coordinates

\[t_1 = \frac{m - 1}{2m} u_1, \quad t_2 = u_2^\frac{m}{2}, \quad t_3 = u_3 - \frac{1}{8} u_1^2. \quad (6.10) \]

The resulting natural Frobenius manifold structure is a polynomial of type \(A_3\). Similarly, the FPM \((\Omega_2, \text{Lie}_{\partial u_1} \Omega_2)\) is regular quasihomogeneous of degree 0 with \(\tau = \frac{m - 1}{m} u_1\). We can fix the flat coordinates

\[t_1 = u_1, \quad t_2 = u_2^\frac{m}{2}, \quad t_3 = u_3 u_2^{-\frac{m}{2}}. \quad (6.11) \]

We get a natural Frobenius manifold structure of type \(B_3^1\).
(12) This is a group of type \((\mathcal{F})\). A complete set of generators of the invariant ring consists of

\[
\begin{align*}
 u_1 &= (x^3 + y^3 + z^3)^2 - 12(x^3 y^3 + y^3 z^3 + z^3 x^3), \\
 u_2 &= (x^3 - y^3)(y^3 - z^3)(z^3 - x^3), \\
 u_3 &= (xyz)^4 + 216(xyz)^3(x^3 + y^3 + z^3), \\
 u_4 &= ((x^3 + y^3 + z^3)^2 - 18(xyz)^2)^2.
\end{align*}
\]

(6.12)

The FPM \((\Omega_2^{ij}, \text{Lie}_{\theta_2} \Omega_2^{ij})\) is regular quasihomogeneous of degree \(d = \frac{1}{2}\) with \(\tau = \frac{5}{12} u_1\). Flat coordinates are given by

\[
\begin{align*}
 t_1 &= \frac{5}{12} u_1, \\
 t_2 &= 10 \sqrt{\frac{62}{41}} u_2, \\
 t_3 &= u_3 - \frac{847}{1312} u_1^2.
\end{align*}
\]

(6.13)

The resulting natural Frobenius manifold structure is of type \(A_3\).

(14) This is a group of type \((\mathcal{H})\) and a minimal set of generators of the invariant ring consists of

\[
\begin{align*}
 u_1 &= x^2 + yz, \\
 u_2 &= 8yzx^4 - 2y^2z^2x^2 - \left(y^5 + z^5 \right) x + y^3z^3, \\
 u_3 &= y^{10} + 6z^5y^5 + 20x^2z^4y^4 - 160x^4z^3y^3 + 320x^6z^2y^2 + z^{10} \\
 &\quad - 4x \left(y^5 + z^5 \right) \left(32x^4 - 20yzx^2 + 5y^2z^2 \right).
\end{align*}
\]

The Hessian of \(10u_1\) leads to a regular QFPM \((\Omega_2, \text{Lie}_{\theta_2} \Omega_2)\) of degree \(d = \frac{4}{5}\) with \(\tau = \frac{1}{10} u_1\). By fixing the flat coordinates

\[
\begin{align*}
 t_1 &= \frac{1}{10} u_1, \\
 t_2 &= \sqrt{2} u_2 - \sqrt{2} u_1^3, \\
 t_3 &= 14u_1^5 - 20u_2u_1^2 + u_3,
\end{align*}
\]

we arrive to a natural polynomial Frobenius structure of type \(H_3\).

(18) This is a family of groups of type \((\mathcal{B})\) depending on integers \(p \geq 1\) and \(q \geq 2\). A complete sets of generators of the invariant rings consists of

\[
\begin{align*}
 (x^{2pq} + y^{2pq}), (x y)^{2q}, (x y z)^2, (x^{2pq} - y^{2pq}) x y z, z^{2q}.
\end{align*}
\]

The Hessian of \((x y z)^2\) does not define a flat metric. From condition (6.1), we consider only the two cases: \(p = 1\) but \(q = 2\) or \(q = 3\). In both cases we get 3 types of natural Frobenius manifold structures. The first natural Frobenius structure is of type \(P_3\). It has the flat coordinates

\[
\begin{align*}
 t_1 &= \frac{2q - 1}{2q} (x^{2q} + y^{2q} + z^{2q}), \\
 t_2 &= \frac{-1}{2} (x^{2q} + y^{2q}), \\
 t_3 &= (\frac{2}{q} \frac{4q}{x^{2q}} y^{2q})^q.
\end{align*}
\]

(6.14)
The corresponding regular QFPM is \((\Omega_2, \text{Lie}_{\partial_2} \Omega_2)\) with \(\tau = t_1\) where \(\Omega_2\) defined by the Hessian of \(t_1\). Let us fix

\[
u_1 = x^{2q} + y^{2q} + z^{2q}, \quad \nu_2 = (xyz)^2, \quad \nu_3 = -2x^{2q}y^{2q} - 2x^{2q}z^{2q} - 2y^{2q}z^{2q}.
\]

(6.15)

Then the second natural Frobenius manifold structure is of type \(B_3^1\). It has the flat coordinates

\[
t_1 = \frac{2q - 1}{2q} \nu_1, \quad t_2 = \nu_2^{\frac{q}{2}}, \quad t_3 = \nu_3^{\frac{q}{2}}.
\]

(6.16)

The corresponding regular QFPM \((\Omega_2^1, \text{Lie}_{\partial_1} \Omega_2)\) has degree 0 with \(\tau = t_1\). Finally, we get natural Frobenius manifold structure of type \(A_3\) having the flat coordinates

\[
t_1 = \frac{2q - 1}{4q} \nu_1, \quad t_2 = \frac{2\sqrt{2q - 1}}{\sqrt{q}} \nu_2^{\frac{q}{2}}, \quad t_3 = \nu_3^{\frac{q}{2}}.
\]

(6.17)

The corresponding regular QFPM \((\Omega_2, \text{Lie}_{\partial_3} \Omega_2)\) is of degree \(\frac{1}{2}\) with \(\tau = t_1\).

(6.18)

This is a family of groups of type \((C)\) depending on even integer \(m \geq 2\). The set of minimal generators of invariant ring has

\[
x^{3m} + y^{3m} + z^{3m}, (xyz)^2, x^{2m}y^m + x^my^{2m} + y^{2m}z^m + y^mz^{2m} + z^{2m}x^m + z^m x^{2m},
\]

\[
xyz(x^m - y^m)(y^m - z^m)(z^m - x^m), (x^m - y^m)^2(y^m - z^m)^2(z^m - x^m)^2.
\]

The only possible case under condition (6.1) is when \(m = 2\). In this case we get a natural Frobenius manifold of type \(A_3\). It has the flat coordinates

\[
t_1 = \frac{5}{12}(x^6 + y^6 + z^6), \quad t_2 = \sqrt{\frac{20}{3}}(xyz)^3, \quad t_3 = x^{12} + y^{12} + z^{12} - \frac{3}{4}(x^6 + y^6 + z^6)^2.
\]

Here, \(\Omega_2\) is defined by the Hessian of \(\frac{12}{5}t_1\) and the corresponding regular QFPM \((\Omega_2, \text{Lie}_{\partial_3} \Omega_2)\) is of degree \(\frac{1}{2}\) with \(\tau = t_1\). On the other hand, the Hessian of \(\frac{5}{6}t_1\) leads to a regular QFPM \((\Omega_2, \text{Lie}_{\partial_1} \Omega_2)\) of degree 0 with \(\tau = t_1\). In this case the flat coordinates are

\[
t_1 = \frac{5}{6}(x^6 + y^6 + z^6), \quad t_2 = (xyz)^{\frac{1}{2}}, \quad t_3 = \frac{-5}{6}(xyz)^{\frac{1}{2}} \left(x^{12} + y^{12} + z^{12} - \frac{3}{4}(x^6 + y^6 + z^6)^2 \right).
\]

(6.18)

The resulting natural Frobenius manifold structure is of type \(B_3^1\).
Acknowledgements The authors thank Robert Howett, Hans-Christian Herbig and Christopher Seaton for useful discussions. They very much appreciate the Magma program’s support team for their helpful cooperation.

Funding This work was partially funded by the internal grant of Sultan Qaboos University (Grant No. IG/SCI/DOMS/19/08).

Data Availability Non applicable.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

1. Al-Maamari, Z., Dinar, Y.: Inversion symmetry on Frobenius manifolds, arXiv:2106.08000 (2021)
2. Derksen, H., Kemper, G.: Computational Invariant Theory. Springer, Berlin (2015)
3. Dinar, Y., Al-Maamari, Z.: Dicyclic groups and Frobenius manifolds. SQU J. Sci. 25(2), 107–111 (2020)
4. Dubrovin, B.: Geometry of 2D Topological Field Theories, Integrable Systems and Quantum Groups, pp. 120–348. Springer, Berlin, Heidelberg (1996)
5. Dubrovin, B.: Differential geometry of the space of orbits of a Coxeter group. Surv. Differ. Geom. IV: Integr. Syst. 4, 181–211 (1998a)
6. Dubrovin, B.: Flat Pencils of Metrics and Frobenius Manifolds, Integrable Systems and Algebraic Geometry, pp. 47–72. World Scientific Publishing, River Edge (1998b)
7. Dubrovin, B., Zhang, Y.: Extended affine Weyl groups and Frobenius manifolds. Compos. Math. 111, 167–219 (1998c)
8. Dubrovin, B.: On almost duality for Frobenius manifolds. Transl. Am. Math. Soc. Ser. 2(212), 75–132 (2004)
9. Dubrovin, B., Strachan, I.A.B., Zhang, Y., Zuo, D.: Extended affine Weyl groups of BCD-type: their Frobenius manifolds and Landau–Ginzburg superpotentials. Adv. Math. 351, 897–946 (2019)
10. Fordy, A.P., Mokhov, O.I.: ON a special class of compatible Poisson structures of hydrodynamic type. Physica D: Nonlinear Phenom. 152, 475–490 (2001)
11. Fulton, W., Harris, J.: Representation Theory: A First Course, vol. 129. Springer Science and Business Media, Berlin (2013)
12. Hertling, C.: Frobenius Manifolds and Moduli Spaces for Singularities, Cambridge Tracts in Mathematics, vol. 151. Cambridge University Press, Cambridge (2002)
13. Humphreys, J.E.: Reflection Groups and Coxeter Groups, vol. 29. Cambridge University Press, Cambridge (1990)
14. Leuschke, G.J., Wiegand, R.: Cohen–Macaulay Representations, Mathematical Surveys and Monographs, vol. 181. American Mathematical Society, Providence (2012)
15. Neusel, M.: Invariant Theory, vol. 36. American Mathematical Society, Providence (2006)
16. Orlik, P., Solomon, L.: The Hessian map in the invariant theory of reflection groups. Nagoya Math. J. 109, 1–21 (1988)
17. Saito, K.: On a linear structure of the quotient variety by a finite reflexion group. Publ. Res. Inst. Math. Sci. 29(4), 535–579 (1993)
18. Saito, K., Yano, T., Sekeguchi, J.: On a certain generator system of the ring of invariants of a finite reflection group. Commun. Algebra 8(4), 373–408 (1980)
19. Steinberg, B.: Representation Theory of Finite Groups: An Introductory Approach. Springer Science Business and Media, Berlin (2012)
20. Watanabe, K.I., Rotillon, D.: Invariant subrings of $\mathbb{C}[X, Y, Z]$ which are complete intersections. Manuscripta Mathematica 39(2), 339–357 (1982)
21. Yau, S.T., Yau, S.S.T., Yu, Y.: Gorenstein Quotient Singularities in Dimension Three, vol. 505. American Mathematical Society, Providence (1993)
22. Zuo, D.: Frobenius Manifolds Associated to B_l and D_l, Revisited. International Mathematics Research Notices (2007)

23. Zuo, D.: Frobenius manifolds and a new class of extended affine Weyl groups $\tilde{W}^{(k,k+1)}(A_l)$. Lett. Math. Phys. 110, 1903–1940 (2020)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.