The Need for Testing Isomer Profiles of Perfluoroalkyl Substances to Evaluate Treatment Processes

Kaushik Londhe, Cheng-Shiuan Lee, Carrie A. McDonough, and Arjun K. Venkatesan*

ABSTRACT: Many environmentally relevant poly-/perfluoroalkyl substances (PFASs) including perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) exist in different isomeric (branched and linear) forms in the natural environment. The isomeric distribution of PFASs in the environment and source waters is largely controlled by the source of contamination and varying physicochemical properties imparted by their structural differences. For example, branched isomers of PFOS are relatively more reactive and less sorptive compared to the linear analogue. As a result, the removal of branched and linear PFASs during water treatment can vary, and thus the isomeric distribution in source waters can influence the overall efficiency of the treatment process. In this paper, we highlight the need to consider the isomeric distribution of PFASs in contaminated matrices while designing appropriate remediation strategies. We additionally summarize the known occurrence and variation in the physicochemical properties of PFAS isomers influencing their detection, fate, toxicokinetics, and treatment efficiency.

KEYWORDS: PFAS isomers, treatment, sequestration, destructive, analytical bias

1. INTRODUCTION

Two of the most used and studied PFASs are perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). Although the intent is to manufacture linear forms of PFOA and PFOS for various applications, the type of manufacturing process used can result in the formation of different chain lengths and structural isomers of PFASs as impurities.1−3 Electrochemical fluorination (ECF) and telomerization are the major manufacturing processes for PFOA.1 As the ECF process is of a free-radical nature, it leads to the rearrangement and breakage of the carbon chain. This leads to the production of linear and branched isomers, mainly perfluorinated, as well as homologues of the raw material.2−3 3M Co. was the major manufacturer of PFOA from the 1950s until 2002, after which perfluorooctyl chemistries were phased out. 3M Co. produced PFOA from the 1950s to 2002 with a distribution of approximately 70% linear and 30% branched.1,4 Since the phase out of PFOA by 3M Co. in 2002, production of perfluorooctane sulfonyl fluoride (POSF) and its derivatives has continued in developing countries.1 The residual impurities, generated as byproducts of PFAS manufacturing processes, can influence the isomeric distribution of PFASs in the environment. In addition to PFOA and PFOS, other PFASs can also exhibit isomerism, including several PFCAs such as PFBA/perfluorobutanoic acid (C4), PFPeA/perfluoropentanoic acid (C5), PFHxA/perfluorohexanoic acid (C6), PFHpA/perfluoroheptanoic acid (C7), PFHxDA/perfluorohexadecanoic acid (C16), PFHpA/perfluoroheptanoic acid (C7), PFNA/perfluorononanoic acid (C9), PFUnA/perfluoroundecanoic acid (C11), and PFDoA/perfluorodecanoic acid (C12).5,6

Received: July 30, 2022
Revised: October 12, 2022
Accepted: October 16, 2022
Published: October 31, 2022

https://doi.org/10.1021/acs.est.2c05518
Environ. Sci. Technol. 2022, 56, 15207−15219
canonic acid (C11),\(^5,6\) and perfluorosulfonic acids (PFosas) such as PFPeS/ perfluoroperanesulfonic acid (CS), PFHxs/ perfluorohexanesulfonic acid (C6),\(^7,8\) POSF,\(^9,8\) and perfluoro-octane sulfonamide (FOSA).\(^10\)

In the past two decades, although many pieces of literature have reported multiple PFAs in diverse aquatic environments, PFAS isomers (i.e., branched or br-PFAS vs linear or L-PFAS forms) have received relatively little attention probably due to analytical difficulty and the relatively low abundance of branched isomers compared to their linear counterparts in the environment.\(^7,10,11,12\) The structural difference between linear and branched PFAS isomers would determine their physical and chemical properties, such as hydrophobicity, leading to differing fates and transport mechanisms of PFAS isomers in the environment. In some instances, the concentration of branched isomers may surpass linear isomers in source waters.\(^7,12\) This may have an impact on the overall treatment efficiency of PFAs as a few studies have highlighted the variation in the treatment efficiency between linear and branched isomers of PFAs.\(^13−19\) For example, early break-through of a branched isomer from a granular activated carbon (GAC) filtration system\(^19,20\) and preferential degradation of branched isomers over a linear form in destructive approaches\(^16,17,21\) have been reported. In this paper, we highlight the need for differentiating the isomers of PFAs during treatment/remediation approaches as the branched-to-linear ratio in source waters can influence the overall treatment efficiency of the selected approach. The specific objectives of this critical review paper were to (i) summarize the environmental occurrence of branched and linear isomers of PFAs; (ii) highlight isomer-dependent physicochemical properties and toxicokinetics of PFAs; (iii) provide the current understanding of the variability in treatment efficacy between PFAS isomers; and (iv) highlight the impact of isomer profile on PFAS treatability.

2. ISOMERIC DISTRIBUTION OF PFASs IN THE ENVIRONMENT

Source waters can have large variations in the isomeric distribution of PFAs. One of the factors contributing to this is the proximity and type of PFAS manufacturing industry, which can greatly influence the type of PFAs released into the environment. The isomeric distribution in natural waters can also be influenced by the inherent properties of linear and branched forms. A recent study\(^7\) summarized the global distribution of linear and branched forms of PFAs in surface water, groundwater, and seawater. They found that the ratio of br-PFAS to L-PFAS in certain surface waters was higher than expected. This was attributed to the higher normalized organic carbon to water partition coefficient\(^16\) of L-PFAS compared to the branched forms, which is elaborated more on in the later sections. They further theorized that this could lead to stagnant water bodies such as lakes having a reduced percentage of L-PFAS than flowing bodies such as rivers, as river currents might reduce adsorption further from equilibrium conditions. Linear isomers accounted for 42−87% in lake waters and 24−89.5% in river waters, with the distribution highly dependent on the location and water source. Similar to behavior in sediments, L-PFAS sorb better to soils than the br-PFAS, leading to relatively higher concentrations of br-PFAS in groundwaters.\(^17\) The br-PFAS are less retarded during subsurface transport, leading to a possible enrichment of br-PFAS in groundwater with distance.\(^22,23\) This was also observed in a recent study conducted in El Paso County, Colorado, when the PFOS isomer concentration was analyzed at locations near and farther away from the source. The average br-PFOS contribution (br-PFOS to PFOS-total) was ∼26% near the source but increased to ∼46% at the location farthest from the source.\(^24\) It is also important to note that biotransformation could enhance the concentration of L-PFAS in the environment due to the preferential degradation of br-PFAS.\(^22\) However, the preferential transformation of br-PFAS precursors over L-PFAS precursors\(^25,26\) could increase the br-PFAS/L-PFAS ratio in the environment, making concentration estimations and predictions entirely based on source tracking in environmental samples difficult.

Figure 1 summarizes the percentage of L-PFOS out of total PFOS in the environment reported in the literature. The number of studies used to construct Figure 1 for each matrix is listed as follows: \(n\) (freshwater) = 169, \(n\) (seawater) = 31, \(n\) (groundwater) = 14, \(n\) (sediment) = 13, \(n\) (biota) = 63. The ratio (LPFOS/∑PFOS), represented as % L-PFOS, varies significantly (\(p\) value < 0.01) between the aqueous phases, abiotic solids (sediment and suspended particles), and biota and is also influenced by different locations and studies. The largest variation of the L-PFOS was observed in freshwater systems, ranging from 25% to 100%. In contrast, % L-PFOS showed a more compact distribution in sediment and biota samples, ranging from ~70% to 100%. These distributions seem to be impacted by the differences in the sorption properties of linear and branched isomers of PFOS. For PFOA, the L-PFOA accounted for 50% to 100% in water and 80% to 100% in sediment and biota samples.\(^32,33\) For PFHxs, the linear L-PFHxs accounted for 64% to 99% in water and 85% to 96% in sediment and biota samples. PFOS exhibited a more considerable variation in terms of the isomeric fractionation than PFOA and PFHxs. Because of the nature of the longer chain-length of PFOS, the outcome of isomeric fractionation of L-PFOS from br-PFOS would be more distinct after a series of natural and anthropogenic processes, possibly due to the
greater variation in physicochemical properties reported between the isomeric forms with increasing chain length.\(^9\)

Several factors are known to govern the composition of PFAS isomers in water. Some of these factors include (i) the initial isomeric distribution from manufacturing process release; (ii) interactions with and effects of both natural and biological processes; and (iii) isomer-specific precursor transformations. First of all, the release from manufacturing processes (e.g., ECF and telomerization processes) can directly determine the isomeric distribution of PFASs in water. Natural and anthropogenic processes can further modify the ratio between linear and branched isomers. For natural processes in water, L-PFAS would preferentially sorb to suspended particles, sediments, and phytoplankton cells, therefore leading to scavenging of L-PFAS from the aqueous phase and the enrichment of L-PFAS in abiotic solids\(^10\) and algal cells. Floating foam formed by natural organic matter could also take up more L-PFAS than br-PFAS, leaving more br-PFAS in the sediment phase. For natural processes in water, L-PFAS would preferentially sorb to suspended particles, sediments, and phytoplankton cells, therefore leading to scavenging of L-PFAS from the aqueous phase and the enrichment of L-PFAS in abiotic solids\(^10\) and algal cells. Floating foam formed by natural organic matter could also take up more L-PFAS than br-PFAS, leaving more br-PFAS in the sediment phase.

Table 1. Reported and Predicted Physicochemical Properties of PFAS Isomers in the Literature along with Their Significance

PFAS analyte	property	reported values	difference in value for br-PFAS relative to L-PFAS (%)	significance
L-PFOS\(^{33}\)	CCC bond angle (deg)	\(~115\)	\(~4.3–5.2 \downarrow\)	Distortion in molecular structure impacts molecule stability.
br-PFOS\(^{33}\)	CCC bond angle (deg)	\(~109–110\)		
L-PFOS\(^{33}\)	relative \(\Delta G\) of the acid form (normalized) (kJ/mol)	0		
br-PFOS\(^{33}\)	relative \(\Delta G\) of the acid form (normalized) (kJ/mol)	1.4–16.6	\(~6.2–34 \downarrow\)	Higher \(K_{oc}\) values indicate higher partitioning onto sediment phase.
L-PFOS\(^{10}\)	sediment derived \(K_{oc}\) (cm\(^3\)/g)	\(~3.3\)		
L-PFOS\(^{10}\)	K\(_{oc}\) (cm\(^3\)/g)	\(~2.2–3.1\)	\(~4.8–11 \downarrow\)	
L-PFOS\(^{10}\)	K\(_{oc}\) (cm\(^3\)/g)	\(~3.1\)		
L-PFOS\(^{10}\)	K\(_{oc}\) (cm\(^3\)/g)	\(~2.7–2.9\)	\(~18 \downarrow\)	
L-PFOSA\(^{26}\)	dynamic bioconcentration factor (BCF) in carp (L/kg)	\(~134\)	\(~92 \downarrow\)	Higher BCF indicates longer retention in the body.
br-PFOSA\(^{26}\)	dynamic bioconcentration factor (BCF) in carp (L/kg)	10.7		
br vs L-PFOS\(^{55}\)	retention in rats	NA		
L-PFNA\(^{16}\)	growth-corrected elimination rate constants in male rats	\(~0.012–0.018\)	\(~50 \uparrow\) (average)	Branched isomers are preferentially excreted in rats compared to linear forms.
br-PFNA\(^{16}\)	growth-corrected elimination rate constants in male rats	\(~0.019–0.026\)		
L-PFOS\(^{34}\)	Human population average half-life\(^a\) (years)	2.9	\(~77–81 \downarrow\)	Branched isomers are preferentially excreted in humans compared to linear forms.
1m-PFOS\(^{54}\)	1m-PFOS\(^{54}\)	\(~0.55\)		
3/4/5m-PFOS\(^{54}\)	3/4/5m-PFOS\(^{54}\)	\(~0.64\)		
2/6m-PFOS\(^{54}\)	2/6m-PFOS\(^{54}\)	\(~0.66\)		
L-PFOS\(^{57}\)	\(K_{f}\) (dissociation constant for human serum albumin)	\(8(±4) \times 10^{-4}\)	\(~10^5\) to \(~5 \times 10^5\)	Linear isomer preferentially binds to human serum albumin.
3m-PFOS	3m-PFOS	\(4(±2) \times 10^{-4}\)		
4m-PFOS	4m-PFOS	\(8(±1) \times 10^{-5}\)		
5m-PFOS	5m-PFOS	\(9(±5) \times 10^{-5}\)		
L-PFOA	L-PFOA	\(1(±9) \times 10^{-4}\)	\(~200–300\)	
3m-PFOA	3m-PFOA	\(4(±2) \times 10^{-4}\)		
4m-PFOA	4m-PFOA	\(3(±2) \times 10^{-4}\)		
L-PFOS\(^{10}\)	drinking water equivalent levels (DWELs) in \(\mu g/L\)\(^{15}\)	0.29	\(~206–638 \uparrow\)	Higher DWEL levels suggest less effectiveness in reducing thyroid hormonal blood levels.
1m-PFOS\(^{58}\)	1m-PFOS\(^{58}\)	\(~1.26\)		
2m-PFOS	2m-PFOS	\(~1.84\)		
3m-PFOS	3m-PFOS	\(~1.40\)		
4m-PFOS	4m-PFOS	\(~1.75\)		
5m-PFOS	5m-PFOS	\(~2.14\)		
6m-PFOS	6m-PFOS	\(~0.89\)		
br-PFFEa\(^8\)	br-PFFEa\(^8\)	\(3.24–3.42\)	\(~0.3–5.5 \downarrow\)	Higher \(K_{ow}\) values indicate higher potential for bioaccumulation.
L-PFFEa\(^8\)	L-PFFEa\(^8\)			
br-PFHHx\(^8\)	br-PFHHx\(^8\)	\(~3.54–4.01\)	\(~1.2–13 \downarrow\)	
L-PFHPx\(^8\)	L-PFHPx\(^8\)	\(~4.06\)		
br-PFHP\(^{8}\)	br-PFHP\(^{8}\)	\(~3.61–4.64\)	\(~0.6–23 \downarrow\)	
L-PFHP\(^{8}\)	L-PFHP\(^{8}\)	\(~4.67\)		

\(^a\)Model considers original serum levels in humans. \(^\uparrow\) and \(^\downarrow\) indicate increase and decrease respectively in the percentage value of the property being considered. Note: \(m\)-PFAS indicates the branching at the \(m\)th carbon.
the environment. The distribution among the branched isomer products can also differ due to the difference in biotransformation rates of br-PFAS precursors. In organisms, L-PFOS is known to be more bioaccumulative and br-PFAS can be eliminated faster, explaining why L-PFASs are often highly enriched in biota (Figure 1).

3. VARIATION IN PHYSICOCHEMICAL PROPERTIES OF DIFFERENT PFAS ISOMERS

There are only a few studies that report the variation in physicochemical properties of PFAS isomers as summarized in Table 1. In a study done by Chen et al. (2015), the field-based water sediment distribution coefficients (Kd) were used to calculate the organic carbon–water partitioning coefficient (Koc) values. For PFOA, the L-PFOA had a log Koc value of 3.11 ± 0.38 cm³/g, whereas the iso, 4m, and 5m (br-PFOA) forms had relatively lower log Koc values of 2.96 ± 0.48, 2.77 ± 0.53, and 2.82 ± 0.51 cm³/g, respectively.

A similar trend was observed for PFOS where the L-PFOS had the highest log Koc value of 3.38 ± 0.43 cm³/g, and the values for br-PFOS ranged from 2.65–3.17 cm³/g. These values suggest that the L-PFASs are more likely to be preferentially distributed (~16% more) in the particulate phase than the br-PFASs. This could explain the lower-than-expected concentrations of the L-PFOS in surface and groundwaters (as shown in Figure 1) as the preferential adsorption would enrich the br-PFOS/L-PFOS ratios in the aqueous phase.

Unlike traditional lipophilic persistent organic pollutants that partition primarily to storage lipids, PFAS bioaccumulation factors and tissue distribution appear to be influenced both by interactions with transporter proteins as well as partitioning to phospholipids. The composition of branched and linear PFOS in human serum and their association with adverse health outcomes were recently reviewed. Branched PFOS isomers tend to have shorter half-lives in the human body than linear PFOS, likely due to the variation in affinity for lipids and transporter proteins, including varying binding affinities for human serum albumin and organic anion transport proteins. The average half-lives for L-PFOS were found to be 4.4–5.3 times greater than that of br-PFOS in a cohort with AFFF-impacted drinking water. It is important to note that the serum levels were obtained after subtracting general population levels or were replaced with half of the these levels, if the serum PFAS levels, post subtraction, were less than half of the background levels. This may have implications for remediation targets and safe drinking water levels that are defined for branched versus linear isomers. Differences in toxicokinetics have been considered when developing drinking water equivalent levels (DWELs), resulting in lower values for L-PFOS (0.26 µg/L) versus br-PFOS isomers (0.89–2.14 µg/L), in this case suggesting that the linear isomers pose a greater risk for lowering thyroid hormonal blood levels. For the most part, current regulatory levels do not differentiate between branched and linear isomers. In cases where branched isomers make up a significant portion of total drinking water contamination, this may mean that recommended levels would become more conservative. While branched isomers generally display more rapid elimination rates and lower bioaccumulation factors, it is important to note that each branched isomer is distinct. In some studies, certain branched isomers have displayed longer elimination rates than L-PFOS. Due to branched isomers being summed during analysis, there is very little information on specific isomers, and elimination rates reported for the human population usually represent an average for multiple isomers with unknown composition. At this time, there are not sufficient data related to differences in relative source contributions and reference doses for branched versus linear isomers to safely define distinct isomer-specific drinking water guidelines.

Despite their faster elimination rates, summed branched PFOS is detected at concentrations similar to linear isomers in serum from some populations, with typical % br-PFOS ranging from 30 to 50%. In contrast, most wildlife studies report lower contributions from branched isomers (Figure 1). This may indicate greater direct exposure of humans to PFAS precursors, which are transformed in situ to form perfluoroalkyl acids (PFAs), with preferential formation of branched isomers. This elevated exposure likely arises from sources other than drinking water, such as certain foods, paper products, textiles, and other consumer products.

The structural and thermodynamic properties of the PFAS isomers can provide insights into their overall stability and susceptibility to degradation. It was found that all the carbon–carbon (CCC) angles for L-PFOA were approximately 115°, whereas in br-PFOS, the CCC angles where the -CF3 group was bonded were approximately 109–110°. This distortion in the CCC angle in the backbone structure can affect the stability of the br-PFAS, making them less stable and more susceptible to degradation. This can be further elucidated by comparing the Gibbs free energy (∆G) of the PFOS isomers by setting the least positive value to zero for relative comparison. It was observed that, for the acidic forms, L-PFOS had the least positive value of ∆G and was set to zero, while 1-CF3-PFOS, 2-CF3-PFOS, 3-CF3-PFOS, 4-CF3-PFOS, 5-CF3-PFOS, and 6-CF3-PFOS had ∆G values ranging from 1.4–14.6 kJ/mol, where n-CF3-PFOS indicates branching at the carbon position ‘n’. A more positive ∆G value for br-PFAS indicates that these isomers are more likely to be reactive and degraded by reactions with species such as hydrated electrons or hydroxyl radicals than their linear counterparts. However, it is important to note that the study done by Rayne et al. (2010) using different models to predict the ∆G values of isomers of PFOS and PFOA pointed out the lack of utility of using thermodynamic data for PFAS isomeric distribution studies. When the authors studied the thermodynamic stability of isomeric forms of alkanes such as hexane and heptane, the modeling data agreed with the experimental data in stating that the linear form of alkanes was the least stable thermodynamically. The model predicted similar results for PFASs, where the L-PFOS and L-PFOA were predicted to be the least stable, with the stability increasing with branching. The authors attributed this to a lack of thermodynamic data available for PFCAs and stated that improved models might be essential for accurate data sets, which could bridge the gap between predicted and experimental data, where L-PFAS have been found to be the dominant isomers. As a result, although certain models may predict L-PFAS as the most stable form under certain conditions, more information is needed to accurately predict stability of various PFAS isomers from mere thermodynamic data.

A similar conclusion, favoring the stability of the L-PFASs, however, can also be drawn based on the bond dissociation energies (BDE) of L-PFAS and br-PFAS. Previous studies have reported that the BDE values were ranked in the order of...
Table 2. Summary of Analytical Techniques Used for Differentiating Branched and Linear Isomers

column	column dimensions	analytical reagents	injection volume	instrument	PFAS isomers (with count) studied	study
FluoroSep-RP Octyl column	150 × 2.1 mm, 3 μm particle size	methanol and water (3 mM formic acid in water, adjusted to pH 4.0 with ammonia)	10 μL	LC-MS/MS	PFOA (4), PFOS (6), PFOSA (2)	Chen et al. 2015[10]
FluoroSep RP Octyl column	150 × 2.1 mm, 3 μm particle size	methanol and water (adjusted to pH 4.0 with ammonium formate)	20 μL	HPLC−MS/ MS	N-EtFOSA(12), FOSA (6), PFHpA (4), PFHxA (8), PFOA (10), PFOS (11), PFNA (11), PFDA (3), PFUnA (7), PFDoA (18)	Benskin et al. 2007[70]
BEH C18 column	2.1 × 50 mm, 1.7 μm particle size	methanol and 2 mM ammonium acetate	1 μL	UPLC MS-MS	PFOS (2)	Gu et al. 2016[64]
HyperSil Gold precolumn + Betasil C18 column	10 × 2.1 mm, 5 μm particle size + 50 × 2.1 mm, 5 μm particle size respectively	methanol and water (both with 10 mM aqueous ammonium acetate)	10 μL	HPLC	PFHxS (2), PFOS (2)	Bellouteb et al. 2020,[13] Ahrens et al. 2016[67]
Zorbax Extend-C18 column	2.1 × 50 mm, 1.8 μm particle size	methanol and ammonium acetate in water (pH 6)	10 μL	HPLC + Q-TOF	PFOS (8)	Trojanowicz et al. 2019[70]
Zorbax RRHD Eclipse Plus C18 column	100 mm × 2.1 mm, 1.8 μm particle size	methanol and 5 mM ammonium acetate in water	10 μL	LC-MS/MS	PFOS (2)	Park et al. 2020[19]
Zorbax Eclipse Plus C18 column	46 mm × 100 mm, 3.5 μm particle size	3% methanol in water and 10 mM ammonium acetate in methanol	10 μL	HPLC + MS/MS	PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFBS, PFPeS, PFHxS, PFHpS PFOA, FFOSA, FHXSA, FOSA, N-TAmP, FHXSA (2 for each)	Rodowa et al. 2020,[20] Barzen-Hanson et al. 2017[70]
C18, analytical column	100 × 3.0 mm, 5 μm particle size	methanol and 20 mM ammonium acetate in water	1 mL	QTOF	PFOS, PFHpS, PFHxS, PFOA, and PFHpA (2 for each)	Tenorio et al. 2020[70]
Perfluorinated phenyl (PFP) phase + X-Terra C18 phase	150 × 2.1 mm, 5 μm particle size 100 Å pore size + 100 × 30 mm, 3.5 μm particle size, 125 Å pore size respectively	methanol and 4 mM ammonium acetate in water	1 mL	ion trap mass spectrometer (LCQ)	PFOS (7)	Langlois et al. 2006[30]
Thermo Acclaim 120 C18 column + FluoroSep RP Octyl column (3 mm, 2.1 mm150 mm)	46 × 150 mm, 5 μm particle size + 2.1 × 150 mm, 3 μm particle size	acetonitrile and 10 mM ammonium acetate in water	10 μL	HPLC + MS/MS	PFHxS (2), PFOS (6), PFOA (6)	Gao et al. 2019[73]

aNote: 2 indicates br (grouped together/single isomer studied) and L-PFAS.
tertiary < secondary < primary bonds. This means that the initial C–F bond cleavage occurs at the bond with the lowest BDE, i.e., the tertiary C–C bond. Thus, it can be expected for br-PFASs to behave differently during various physical and chemical treatment processes impacting the overall PFAS treatment efficiency.

4. IMPACT OF ISOMERIC PROPERTIES ON TREATMENT PERFORMANCE

Difference in the physicochemical properties between PFAS isomers and their relative levels in source waters can influence the overall treatment efficiency of PFAS. In the case of adsorption techniques such as GAC filtration, where the dominant mechanism is hydrophobic interaction with contaminants, the L-PFASs tend to show better removal than the br-PFASs. This has been reported in previous studies using GACs as well as materials such as Geothite. A study involving a pilot scale GAC system indicated that the br-PFAS showed an earlier breakthrough than their respective linear isomer, attributed to better interactions between L-PFAS and GAC. In another study involving two-stage carbon filters, the relative percentage of br-PFAS kept increasing in treated waters as water passed through the filters. This would also imply that the br-PFAS would exhibit an earlier breakthrough from GAC columns than L-PFAS.

In the case of adsorption processes involving charged interactions as the dominant mechanism, there would be minimal effect on the final L-PFAS/br-PFAS ratio after treatment. In a previous study that utilized anion exchange resins (AIX) and GAC to remove PFCAs, PFASs, and FOSA, similar removals were observed for PFOS, PFHxS, and FOSA isomers using AIX, but branched isomers showed lower removals using GAC. In another study to remove PFCAs and PFASs utilizing magnetic AIX, identical uptake was observed for br-PFAS and L-PFAS. As br-PFAS and L-PFAS will have similar electrostatic interactions, we hypothesize that treatment techniques that rely on charged interactions with PFAS will not have an observable impact on the isomeric distribution of PFASs in treated water.

While the BDE and the C–F bond will play a crucial role when considering the interactions of PFAS isomers with reactive species during chemical treatment processes. As mentioned previously, in certain cases, the br-PFAS possesses more positive ΔG (thus more reactive) and a lower BDE than L-PFAS. This makes them more prone to an attack by reducing species and susceptibility to degradation. In a study done to evaluate reductive defluorination of PFOS, br-PFOS showed more susceptibility to reductive dehalogenation than L-PFOS. When PFOS degradation was performed by electron beam, br-PFOS preferentially degraded over L-PFOS and this was attributed to higher electron affinity of branched isomers. Similar results were observed for PFOS using a UV-sulfite system and using photodegradation where the br-PFOS degraded faster than L-PFOS due to the tertiary – CF₃ group being more susceptible to degradation. In another study done by using UV-sulfite to degrade PFASs of different chain lengths and functional groups, rate constants for degradation for branched forms (> 2 h⁻¹) of PFOS, PFHxA, PFHpS, PFHxS, and PFOA were an order of magnitude higher than the corresponding linear forms (0.018–0.440 h⁻¹). Thus, it can be concluded that contrary to adsorption techniques, destructive treatment will enrich the L-PFAS-to-br-PFAS ratio due to the preferential degradation of branched isomers. However, this may not be valid in certain destructive techniques such as electrochemical oxidation processes (eAOPs) that employ a two-step mechanism. This technique consists of inactive electrodes such as boron-doped diamond or Magnel-phase titanium suboxide anodes, where the first step is the adsorption of PFAS on the surface of the electrodes, followed by a direct electron transfer (DET) reaction and mineralization of the PFAS radical by hydroxyl radicals. As the first step of this technique involves a sorption step, the linear isomers would be preferentially adsorbed and partake in the DET and get degraded in the process. This may lead to a scenario where more L-PFAS are degraded than br-PFAS, leading to a possible enrichment in the br-PFAS in the treated water. Thus, as more and more destructive techniques involving multistep mechanisms are looked at for PFAS treatment, it is essential to understand the behavior and monitor the final concentrations of PFAS isomers.

5. ANALYTICAL CHALLENGES IN QUANTIFYING ISOMERS OF PFAS

EPA Methods 537.1 and 533 are commonly used by research and commercial laboratories for PFAS measurements in water matrices. However, the fraction of linear and branched isomers for the same compound can vary based on the supplier for the analytical standards. This was clearly shown by Vyas et al. (2007) that for potassium perfluorooctane sulfonate (K-PFOS) from different manufacturers the percentage of linear form varied from 76.0 ± 1.9% to 82.2 ± 0.9%. Similarly, for perfluorooctane sulfonyl fluoride, the linear form accounted for 71.8 ± 1.3% to 74 ± 1.6%, based on the manufacturer. In the majority of commercially available PFAS standards and neat materials, the relative mass or concentration of linear and branched PFAS is often not reported. ¹³C NMR is required to accurately determine the fraction of the isomeric composition. Although liquid chromatography tandem mass spectrometer (LC-MS/MS) can differentiate branched and linear PFASs (for PFOS, PFHxS, etc.), the EPA methods require the users to integrate both peaks together and report total concentration rather than isomeric-specific concentrations. Ideally, the assumption is that the peak area can reflect the mass of the uncharacterized isomers in samples. However, the instrument sensitivity, the collision energy, and the abundant ion transitions of each isomer is different and therefore can potentially lead to a bias in quantification of total PFAS levels. A summary of analytical techniques including column specifications, reagents utilized, etc. to identify different PFAS isomers by previous studies can be found in Table 2.

Previous researchers have also observed in the case of PFOS that if the isomer profile in the sample and the quantification standards were not identical, this could lead to an analytical bias of unknown proportion. This was further quantified by a later study that used individual, purified PFAS isomers to compare the response factors, albeit relative to the linear isomer. The L-CF₃ PFOS was monitored using a mass to charge (m/z) ratio of 80, whereas 4,4-CF₃, m/z- and 4,5-CF₃-PFOS (br-PFOS) were monitored using a ratio of 99. It was observed that at least one PFOS isomer was missing from the final chromatogram, irrespective of the product ion used. This could lead to underreporting of certain isomers, leading to an analytical bias being introduced during quantification. An example chromatogram featuring br-PFAS and L-PFAS with different precursor–product pairs is shown in Figure 2. It is
challenging to separate and quantify every single branched isomer, and therefore it is understandable that EPA Methods 537.1 and 533 only require determining linear and “bulk” branched isomers. Transitions 499 → 80 and 499 → 99 are chosen for PFOS quantification and qualification because m/z 80 and m/z 90 are the most common products among all PFOS isomers, and m/z 80 gives great sensitivity. A systematic bias could also be introduced during analysis if the concentration of branched isomers in samples reaches the detection limit. This could lead to the contribution of the linear form for PFAS to be incorrectly reported as 100%. This bias can be eliminated by reporting the ratio of each individually detected branched isomer to the linear isomer.

To demonstrate the uncertainty that can occur with different calibration methods, as an example here we use the K-PFOS standard purchased from Wellington Lab Inc. with % L-PFOS of 78.8%. Calibration Method 1 involved the addition of peak areas of linear and branched isomers, creating one calibration curve to calculate the total PFOS concentration and then calculating linear and branched PFOS concentrations separately based on the fraction of the peak area. Calibration method 2 involved the generation of two calibration curves based on the peak areas for linear and branched PFOS individually with the well-characterized standard, calculating their concentrations separately and then summing the values to determine the total PFOS concentration. Both linear and quadratic regressions were used for creating calibration curves (Figure 3). To simulate the uncertainty in these two methods, we fixed the total peak area equivalent to 1 μg-total PFOS/L but varied the percentage of the linear isomer’s peak from 0% to 100% to calculate total PFOS concentrations using Methods 1 and 2. The simulated result is shown in Figure 3. Because the total peak area (linear plus branched) is fixed, the calculated total PFOS concentrations by Method 1 were the same.
Table 3. Summarizing Removal Mechanism, Advantages and Disadvantages of Treatment Techniques for Removal of PFAS Isomers

Technology	Type of Treatment	Removal/Breakdown Mechanism	PFAS Studies	Difference in Removal for br-PFAS Relative to L-PFAS	Removal Summary	Advantages	Disadvantages	
GAC filtration	sequestration adsorption-hydrophobicity dependent	5 PFCAs, 13 PFCAs, 2 FOSAs, 2 FOSAAs, 2 FOSEs, 1 FTSA	8–29% ↓	br-PFAS showed earlier breakthrough/poor removal vs L-PFAS	cost-effective and good removal of hydrophobic L-PFAS	Isomerism did not impact removal efficiency.	relatively poor removal/early breakthrough of br-PFAS, PFAS-concentrated waste stream	
AIX	adsorption-electrostatic interactions	6 PFCAs, 2 PFSAs		similar removal for br and L-PFAS	L-PFOS showed better removal	Isomerism did not impact removal efficiency.	fouling issues, high initial costs, PFAS-concentrated waste stream	
AIX	Floc formation followed by sorption oxidation by OH·	10 PFCAs, 3 PFSAs, 1 FOSA	0–5% ↓	L-PFOS showed better removal	cost-effective and good removal of hydrophobic L-PFAS	Isomerism did not impact removal efficiency.	relatively poor removal of br-PFAS, PFAS-concentrated waste stream	
electrocoagulation	destructive reactions with oxidative/reductive species	5 PFCAs, 1 PFSA		similar removal for br and L-PFAS	br-PFAS preferentially degraded	Isomerism did not impact removal efficiency.	high initial costs (e.g., electrode materials)	
eAOP	destructive reactions with oxidative/reductive species	7 PFCAs, 3 PFSAs		~78% ↑ (degradation)	br-PFAS preferentially degraded	Isomerism did not impact removal efficiency.	breaking down L-PFAS requires more energy.	
E-beam/gamma irradiation	reactions with oxidative/reductive species	1 PFSA, 1 PFCa, 1 FTS		~78% ↑ (degradation)	br-PFAS preferentially degraded	Isomerism did not impact removal efficiency.	high energy requirements, capital costs	
advanced reduction processes	reactions with reductive species	7 PFSAs, 5 PFCAs, 3 FTS		17–30% ↑ (rate constant)	L-PFOS showed more resistance to degradation	Isomerism did not impact removal efficiency.		
photocatalysis	direct reactions with UV irradiation	PFOS		PFOS	7–170% ↑ (rate constants)	L-PFOS showed more resistance to degradation	Isomerism did not impact removal efficiency.	

Note: Table created using previous studies that have compared the removal/degradation efficiencies of br and L-PFAS.
regardless of the fraction of L-PFOS (Figure 3c,d, blue lines). In contrast, the calculated total PFOS concentrations by Method 2 (Figure 3c,d, red lines) showed a clear deviation from Method 1. Two methods have a similar result only if the fraction of L-PFOS in the sample is very close to the calibration standard (where the blue and red lines cross, L-PFOS/total-PFOS ≈ 0.75). The deviation becomes greater as the L-PFOS fraction declines or increases. The relative percentage deviation (Figure 3c,d, green lines) between two methods can be up to 15% in certain cases, and the deviation is primarily contributed by branched isomers. It should be noted that such deviation can vary a lot from one analytical batch to another, depending on the quality of the calibration curves established. This simulation demonstrates that biases could occur merely due to the selection of calibration methods and PFAS standards. As a result, the concentrations of L-PFAS and br-PFAS reported in the literature and summarized in Figure 1 can differ based on the method employed. Thus, for accurate quantitation of PFAS isomers in samples, it is important to select not only the correct analytical techniques mentioned in Table 2 but also the PFAS standards and the methods that can distinguish different PFAS isomers.

6. THE NEED FOR TESTING PFAS ISOMERS IN SOURCE WATERS AND TREATMENT PROCESSES

The scientific community has not recognized the need to differentiate PFAS isomers during development and testing of treatment technologies. This is partly due to the absence of any differentiation in the regulation of PFAS isomers and technologies used with available analytical methods as highlighted above. Many U.S. states have proposed stringent drinking water limits for selected PFASs in drinking water at different concentrations. It should be noted that such deviation can vary a lot from one analytical batch to another, depending on the quality of the calibration curves established. This simulation demonstrates that biases could occur merely due to the selection of calibration methods and PFAS standards. As a result, the concentrations of L-PFAS and br-PFAS reported in the literature and summarized in Figure 1 can differ based on the method employed. Thus, for accurate quantitation of PFAS isomers in samples, it is important to select not only the correct analytical techniques mentioned in Table 2 but also the PFAS standards and the methods that can distinguish different PFAS isomers.

reported a mean PFOS concentration of 77 ppt in source water. For destructive techniques, the model considers efficiencies of 100% (br-PFOS) and 45% (L-PFOS) reported for the UV-sulfite technique to generate the line of highest degradation and of 90% (br-PFOS) and 13% (L-PFOS) reported using the e-beam technique as the line of lowest degradation. Similarly, the model considers removal efficiencies of 90% (L-PFOS) and 80% (br-PFOS) using GACs and 35% (L-PFOS) and 25% (br-PFOS) estimated for treatment using coagulation as lines of highest and lowest removal, respectively. The shaded regions below the curve represent scenarios showing violation of individual state and federal PFOS limits after treatment. Numbers adjacent to the curves indicate the fraction of L-PFOS at which a particular violation occurs.

![Figure 4](image)

Figure 4. Simulation of total PFOS after treatment using (a) destructive techniques and (b) sequestration techniques as a function of fraction of L-PFOS in the source water. The upper black curve represents a scenario featuring minimum removal percent efficiencies for L-PFOS and br-PFOS at (a) 13 and 90% and (b) 35 and 25%, respectively, when treating a source water with an initial total PFOS concentration of 100 ppt. The bottom red curve represents a scenario featuring maximum removal percent efficiencies for L-PFOS and br-PFOS at (a) 45 and 100% and (b) 90 and 80%, respectively, when treating a source water with an initial total PFOS concentration of 50 ppt. The shaded regions below the curve represent scenarios showing violation of individual state and federal PFOS limits after treatment. Numbers adjacent to the curves indicate the fraction of L-PFOS at which a particular violation occurs.
violating the EPA drinking water limit (70 ppt) at an L-PFOS fraction of 0.81. For sequestration techniques, California State regulation is violated using a coagulation approach to treat 50 ppt initial concentration of PFAS (Figure 4a), but as the fraction L-PFOS increases, the system performance improves below the California State limit at a fraction of ~0.7. It is important to note that this model does not include the interim updated health advisory limit of 20 parts per quadrillion or below the California State limit at a fraction of L-PFOS increases, the system performance improves.

This simulation demonstrates that the same treatment system can violate or abide by a regulation limit if the isomeric composition of the source water changes over time. This simulation highlights the need for considering the isomeric distribution of PFAS in source waters and during the design selection of treatment approaches for PFAS. This critical review highlights the need to consider the following when studying PFASs that exhibit isomers:

(i) Standardized analytical methods are needed to differentiate and quantify the isomeric forms of PFASs in the source waters.

(ii) Violation of federal and state regulatory limits may occur due to inaccurate data processing and exclusion of branched isomers from analysis.

(iii) Selection and optimization of treatment technologies are contingent on the isomeric distribution of PFASs in source waters;

(iv) Research needs on degradation rates, reaction mechanisms, and competitive sorption of specific isomers in environmentally realistic mixtures; and

(v) Consideration of the behavior and transformation of different isomers of PFAS precursors and their impact on the final results of different water treatment technologies.

AUTHOR INFORMATION

Corresponding Author

Arjun K. Venkatesan — Department of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States; New York State Center for Clean Water Technology and School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, United States; orcid.org/0000-0001-9760-9004; Phone: +1 631-632-1998; Email: arjun.venkatesan@stonybrook.edu

Authors

Kaushik Londhe — Department of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, New York 11794, United States; orcid.org/0000-0002-0264-6118

Cheng-Shiuan Lee — New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, New York 11794, United States; Research Center for Environmental Changes, Academia Sinica, Taipei 115, Taiwan; orcid.org/0000-0001-7582-8193

Carrie A. McDonough — Department of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States; Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States; orcid.org/0000-0001-5152-8495

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.est.2c05518

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of this work by the Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET-2052772) of the US National Science Foundation and a grant to the Center for Clean Water Technology (CCWT) from the New York State Department of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsors.

REFERENCES

(1) Benskin, J. P.; Yeung, L. W. Y.; Yamashita, N.; Taniyasu, S.; Lam, P. K. S.; Martin, J. W. Perfluorinated Acid Isomer Profiling in Water and Quantitative Assessment of Manufacturing Source. Environ. Sci. Technol. 2010, 44, 9049–9054.

(2) Buck, R. C.; Franklin, J.; Berger, U.; Conder, J. M.; Cousins, I. T.; de Voogt, P.; Jensen, A. A.; Kannan, K.; Mabury, S. A.; van Leeuwen, S. P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integ Environ. Assess. Manag 2011, 7 (4), 513–41.

(3) Benotti, M. J.; Fernandez, L. A.; Pezalee, G. F.; Douglas, G. S.; Uhler, A. D.; Emsho-Mattingly, S. A. Forensic approach for distinguishing PFAS materials. Environmental Forensics 2020, 21 (3–4), 319–333.

(4) Reagen, W. K. L. K. R.; Jacoby, C. B.; Purcell, R. G.; Kestner, T. A.; Payfer, R. M.; Miller, J. W. In Environmental Characterization of 3M Electrochemical Fluorination Derived Perfluorooctanoate and Perfluorooctanesulfonate, 28th North American meeting, Milwaukee, WI, November; Society of Environmental Toxicology and Chemistry: Milwaukee, WI, 2007.

(5) Benskin, J. P.; De Silva, A. O.; Martin, J. W. Isomer profiling of perfluorinated substances as a tool for source tracking: a review of early findings and future applications. Rev. Environ. Contam. Toxicol. 2011, 208, 111–160.

(6) De Silva, A. O.; Muir, D. C.G.; Mabury, S. A. Distribution of perfluorocarboxylate isomers in select samples from the North American environment. Environ. Toxicol. Chem. 2009, 28, 1801–1814.

(7) Schulz, K.; Silva, M. R.; Klapfer, R. Distribution and effects of branched versus linear isomers of PFOA, PFOS, and PFHxS: A review of recent literature. Sci. Total Environ. 2020, 733, 139186.

(8) Wang, Z.; MacLeod, M.; Cousins, I. T.; Scheringer, M.; Hungerbühler, K. Using COSMOtherm to predict physicochemical properties of poly- and perfluorinated alkyl substances (PFASs). Environmental Chemistry 2011, 8 (4), 389.

(9) Rayne, S.; Forest, K. Comparative semiempirical, ab initio, and density functional theory study on the thermodynamic properties of linear and branched perfluoroalkyl sulfonic acids/sulfon fluorides; perfluoroalkyl carboxylic acid/acyl fluorides, and perhydroalkyl sulfonic acids, alkanes, and alcohols. Journal of Molecular Structure: THEOCHEM 2010, 941 (1–3), 107–118.

(10) Chen, X.; Zhu, L.; Pan, X.; Fang, S.; Zhang, Y.; Yang, L. Isomeric specific partitioning behaviors of perfluoralkyl substances in water dissolved phase, suspended particulate matters and sediments in Liao River Basin and Taihu Lake, China. Water Res. 2015, 80, 235–44.

(11) Chen, M.; Wang, Q.; Shan, G.; Zhu, L.; Yang, L.; Liu, M. Occurrence, partitioning and bioaccumulation of emerging and legacy
per- and polyfluoroalkyl substances in Taihu Lake, China. Sci. Total Environ. 2018, 634, 251–259.

(12) Yu, N.; Shi, W.; Zhang, B.; Su, G.; Feng, J.; Zhang, X.; Wei, S.; Yu, H. Occurrence of perfluorooalkyl acids including perfluorooctane sulfonate isomers in Huai River Basin and Taihu Lake in Jiangsu Province, China. Environ. Sci. Technol. 2013, 47 (2), 710–7.

(13) Belkouhteb, N.; Franke, V.; McCleaf, P.; Kohler, S.; Ahrens, L. Removal of per- and polyfluoroalkyl substances (PFASs) in a full-scale drinking water treatment plant: Long-term performance of granular activated carbon (GAC) and influence of flow-rate. Water Res. 2020, 182, 115913.

(14) Eschauzier, C.; Beerendonk, E.; Scholte-Beenendaal, P.; De Voogt, P. Impact of treatment processes on the removal of perfluorooalkyl acids from the drinking water production chain. Environ. Sci. Technol. 2012, 46 (3), 1708–15.

(15) McCleaf, P.; Englund, S.; Ostlund, A.; Lindegren, K.; Wiberg, K.; Ahrens, L. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Res. 2017, 120, 77–87.

(16) Gu, Y.; Dong, W.; Luo, C.; Liu, T. Efficient Reductive Decomposition of Perfluorocarboxylate Sulfonate in a High Flux Photon Flux UV/Sulfite System. Environ. Sci. Technol. 2016, 50 (19), 10554–10561.

(17) Trojanowicz, M.; Bartosiewicz, I.; Bojanowska-Czajka, A.; Szreder, T.; Bobrowski, K.; Nalecz-Jaweki, G.; Meczyńska-Wielgosz, S.; Nichipor, H. Application of ionizing radiation in decomposition of perfluorooctane sulfonate (PFOS) in aqueous solutions. Chemical Engineering Journal 2020, 379, 123303.

(18) Park, M.; Daniels, K. D.; Wu, S.; Ziska, A. D.; Snyder, S. A. Magnetic ion-exchange (MIEX) resin for perfluorinated alkyl substances (PFAS) removal in groundwater: Roles of atomic charges for adsorption. Water Res. 2020, 181, 115897.

(19) Park, M.; Wu, S.; Lopez, I. J.; Chang, J. Y.; Karanfil, T.; Snyder, S. A. Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics. Water Res. 2020, 170, 115364.

(20) Rodowa, A. E.; Knappe, D. R. U.; Chiang, S.-Y. D.; Pohlmann, D.; Varley, C.; Bodour, A.; Field, J. A. Pilot scale removal of per- and polyfluoroalkyl substances and precursors from AFFF-impacted groundwater by granular activated carbon. Environmental Science: Water Research & Technology 2020, 6 (4), 1083–1094.

(21) Ochoa-Herrera, V.; Sierra-Alvarez, R.; Somogyi, A.; Jacobsen, N. E.; Wysocki, V. H.; Field, J. A. Reductive Defluorination of PFOS. Environ. Sci. Technol. Lett. 2008, 4, 3260–3264.

(22) Charbonnet, J. A.; Rodowa, A. E.; Joseph, N. T.; Guello, J. L.; Field, J. A.; Jones, G. D.; Higgins, C. P.; Helbling, D. E.; Houtz, E. F. Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques. Environ. Sci. Technol. 2021, 55 (11), 7237–7245.

(23) Gao, Y.; Liang, Y.; Gao, K.; Wang, Y.; Wang, C.; Fu, J.; Wang, Y.; Jiang, Y.; Jiang, Y. Levels, spatial distribution and isomer profiles of perfluorooalkyl acids in soil, groundwater and tap water around a manufacturing factory. Chemosphere 2019, 227, 305–314.

(24) McDonough, C. A.; Choyko, S.; Barton, K. E.; Mass, S.; Starling, A. P.; Adgate, J. L.; Higgins, C. P. Unsatuated PFOS and Other PFASs in Human Serum and Drinking Water from an AFFF-Impacted Community. Environ. Sci. Technol. 2021, 55, 8139.

(25) Liu, J.; Zhong, G.; Li, W.; Mejia Avendaño, S. Isomer-specific biotransformation of perfluoroalkyl sulfonamide compounds in aerobic soil. Science of The Total Environment 2019, 651, 766–774.

(26) Chen, M.; Qiang, L.; Pan, X.; Fang, S.; Han, Y.; Zhu, L. In Vivo and in Vitro Isomer-Specific Biotransformation of Perfluorooctane Sulfonamide in Common Carp (Cyprinus carpio). Environ. Sci. Technol. 2015, 49 (23), 13817–24.

(27) Benskin, J. F. Application of Perfluorinated Acid Isomer Profiles for Manufacturing and Exposure Source Determination, Ph.D. Thesis, University of Alberta, 2011.
Environmental Science & Technology

Four Different Seasons; Swedish University of Agricultural Sciences: Uppsala, 2018.

(44) Ma, X.; Shan, G.; Chen, M.; Zhao, J.; Zhu, L. Riverine inputs and source tracing of perfluoroalkyl substances (PFASs) in Taihu Lake, China. Sci. Total Environ. 2018, 612, 18–25.

(45) Munoz, G.; Labadie, P.; Botta, F.; Lestremau, F.; Lopez, B.; Geneste, E.; Pardon, P.; Devier, M. H.; Budzinski, H. Occurrence survey and spatial distribution of perfluoralkyl and polyfluoralkyl surfactants in groundwater, surface water, and sediments from tropical environments. Sci. Total Environ. 2017, 607–608, 243–252.

(46) Picard, J.-C.; Munoz, G.; Vo Duy, S.; Sauvé, S. Longitudinal and vertical variations of waterborne emerging contaminants in the St. Lawrence Estuary and Gulf during winter conditions. Science of the Total Environment 2021, 777, 146073.

(47) Powley, C. R.; George, S. W.; Russell, M. H.; Hoke, R. A.; Buck, R. C. Polyfluorinated chemicals in a spatially and temporally integrated food web in the Western Arctic. Chemosphere 2008, 70 (4), 664–72.

(48) Roscales, J. L.; Suarez de Puga, B. R.; Vicente, A.; Munoz-Arnaz, J.; Sanchez, A. I.; Ros, M.; Jimenez, B. Levels and trends of perfluorooalkyl acids (PFAAs) in water (2013–2020) and fish from selected riverine basins in Spain. Chemosphere 2022, 286, 131940.

(49) Shan, G.; Qian, X.; Chen, X.; Feng, X.; Cai, M.; Yang, L.; Chen, M.; Zhu, L.; Zhang, S. Legacy and emerging per- and poly-fluoralkyl substances in surface seawater from northwestern Pacific to Southern Ocean: Evidences of current and historical release. J. Hazard Mater. 2021, 411, 125049.

(50) Shi, Y.; Vestergren, R.; Nost, T. H.; Zhou, Z.; Cai, Y. Probing the Differential Tissue Distribution and Bioaccumulation Behavior of Per- and Polyfluoroalkyl Substances of Varying Chain-Lengths, Isomeric Structures and Functional Groups in Crucian Carp. Environ. Sci. Technol. 2018, 52 (8), 4592–4600.

(51) Zhou, J.; Li, S.; Liang, X.; Feng, X.; Wang, T.; Li, Z.; Zhu, L. First report on the sources, vertical distribution and human health risks of legacy and novel per- and polyfluoralkyl substances in groundwater from the Loess Plateau, China. J. Hazard Mater. 2022, 404 (Pt A), 124134.

(52) Jiang, W.; Zhang, Y.; Zhu, L.; Deng, J. Serum levels of perfluoralkyl acids (PFAAs) with isomer analysis and their associations with medical parameters in Chinese pregnant women. Environ. Int. 2014, 64, 40–7.

(53) Torres, F. J.; Ochoa-Herrera, V.; Blowers, P.; Sierra-Alvarez, R. Ab initio study of the structural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and its branched isomers. Chemosphere 2009, 76 (8), 1143–9.

(54) Xu, Y.; Fletcher, T.; Pineda, D.; Lindh, C. H.; Nilsson, C.; Glynn, A.; Vogs, C.; Norstrom, K.; Lilja, K.; Jakobsson, K.; Li, Y. Serum Half-Lives for Short- and Long-Chain Perfluoroalkyl Acids after Cessing Exposure from Drinking Water Contaminated by Fighting Foam. Environ. Health Perspect. 2020, 128 (7), 077004.

(55) McDonough, C. A.; Choyke, S.; Ferguson, P. L.; DeWitt, J. C.; Higgins, C. P. Bioaccumulation of Novel Per- and Polyfluoroalkyl Substances in Mice Dosed with an Aqueous Film-Forming Foam. Environ. Sci. Technol. 2020, 54, 5700–5709.

(56) De Silva, A. O.; Benskin, J. P.; Martin, L. J.; Arsenault, G.; McCurdy, M.; Schaefer, M. A. How Well Do Product Labels Indicate the Presence of PFAS in Consumer Items Used by Children and Adolescents? Environ. Sci. Technol. 2022, 56 (10), 6294–6304.

(57) Uwayezu, J. N.; Carabante, I.; Lejon, T.; van Hees, P.; Karlsson, P.; Hollman, P.; Kumpiene, J. Electrochemical degradation of per- and polyfluorooalkyl substances with cobalt complex catalysts. Environmental Science & Technology Letters 2018, 5 (5), 289–294.

(58) Uwayezu, J. N.; Yeung, L. W. Y.; Backstrom, M. Sorption of PFOS isomers on goethite as a function of pH, dissolved organic matter (humic and fulvic acid) and sulfate. Chemosphere 2019, 233, 896–904.

(59) Yamamoto, T.; Noma, Y.; Sakai, S.; Shibata, Y. Photo-degradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environ. Sci. Technol. 2007, 41 (16), 5660–5.

(60) Armitage, J. M.; Erickson, R. J.; Luckenbach, T.; Ng, C. A.; Prosser, R. S.; Arnot, J. A.; Schirmer, K.; Nichols, J. W. Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities. Environ. Toxicol. Chem. 2017, 36 (4), 882–897.

(61) Han, X.; Nabb, D. L.; Russell, M. H.; Kennedy, G. L.; Rickard, R. W. Renal elimination of perfluorocarboxylates (PFCAs). Chem. Res. Toxicol. 2012, 25 (1), 35–46.

(62) Weaver, Y. M.; Ehresman, D. J.; Butenhoff, J. L.; Hagenbuch, B. Roles of rat renal organic anion transporters in transporting perfluorinated carboxylates with different chain lengths. Toxicol. Sci. 2010, 113 (2), 305–14.

(63) Ross, M. S.; Wong, C. S.; Martin, J. W. Isomer-specific biotransformation of perfluorooctane sulfonamide in Sprague-Dawley rats. Environ. Sci. Technol. 2012, 46 (6), 3196–203.

(64) McDonough, C. A.; Li, W.; Bischel, H. N.; De Silva, A. O.; DeWitt, J. C. Widening the Lens on PFAEs: Direct Human Exposure to Perfluoralkyl Acid Precursors (pre-PFAAs). Environ. Sci. Technol. 2022, 56, 6004.

(65) Schultes, L.; Vestergren, R.; Volkova, K.; Westberg, E.; Jacobson, T.; Benskin, J. P. Per- and polyfluoralkyl substances and fluorine mass balance in cosmetic products from the Swedish market: implications for environmental emissions and human exposure. Environ. Sci. Process Impacts 2018, 20 (12), 1680–1690.

(66) Rodgers, K. M.; Swartz, C. H.; Occhialini, J.; Bassignani, P.; McCurdy, M.; Schaefer, L. A. How Well Do Product Labels Indicate the Presence of PFAS in Consumer Items Used by Children and Adolescents? Environ. Sci. Technol. 2022, 56 (10), 6294–6304.

(67) Liu, J.; Van Hoomissen, D. J.; Liu, T.; Maizel, A.; Huo, X.; Fernández, S. R.; Ren, C.; Xiao, X.; Fang, Y.; Schaefer, C. E.; Higgins, C. P.; Vyas, S.; Strathmann, T. J. Reductive Defluorination of Branched Per- and Polyfluoroalkyl Substances with Cobalt Complex Catalysts. Environmental Science & Technology Letters 2018, 5 (5), 289–294.

(68) Chapman, B. P. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci. Process Impacts 2014, 16 (6), 1182–203.

(69) Radjenovic, J.; Sedlak, D. L. Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water. Environ. Eng. Sci. Technol. 2015, 49 (19), 11292–302.

(70) Uwayezu, J. N.; Carabante, I.; Lejon, T.; van Hees, P.; Karlsson, P.; Hollman, P.; Kumpiene, J. Electrochemical degradation of per- and polyfluoroalkyl substances using boron-doped diamond electrodes. J. Environ. Manage 2021, 290, 112573.

(71) Wang, Y.; Pierce, R. D.; Shi, H.; Li, C.; Huang, Q. Electrochemical degradation of perfluorooalkyl acids by titanium suboxide anodes. Environmental Science: Water Research & Technology 2020, 6 (1), 144–152.

(72) Vyas, S. M.; Kania-Korwel, I.; Lehmier, H. J. Differences in the isomer composition of perfluorooctanesulfonfyl (PFOS) derivatives. J. Environ. Sci. Health A Tox Hazard Subst Environ. Eng. 2007, 42 (3), 249–55.

(73) Benskin, J. P.; Bataineh, M.; Martin, J. W. Simultaneous Characterization of Perfluorooalkyl Carboxylate, Sulfonate, and Sulfonamide Isomers by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2007, 79 (17), 6455–6464.

https://doi.org/10.1021/acs.est.2d05518
Environ. Sci. Technol. 2022, 56, 15207–15219
(77) Ahrens, L.; Gaschaw, H.; Sjoholm, M.; Gebrehiwot, S. G.; Getahun, A.; Derbe, E.; Bishop, K.; Akerblom, S. Poly- and perfluoroalkylated substances (PFASs) in water, sediment and fish muscle tissue from Lake Tana, Ethiopia and implications for human exposure. *Chemosphere* 2016, 165, 352–357.

(78) Trojanowicz, M.; Bartosiewicz, I.; Bojanowska-Czajka, A.; Kulisa, K.; Sreder, T.; Bobrowski, K.; Nichipor, H.; Garcia-Reyes, J. F.; Nalecz-Jawecki, G.; Mecyny-Wielgosz, S.; Kisala, J. Application of ionizing radiation in decomposition of perfluorooctanoate (PFOA) in waters. *Chem. Eng. J.* 2019, 357, 698–714.

(79) Barzen-Hanson, K. A.; Roberts, S. C.; Choyke, S.; Oetjen, K.; McAleece, A.; Riddell, N.; McCrindle, R.; Ferguson, P. L.; Higgins, C. P.; Field, J. A. Discovery of 40 Classes of Per- and Polyfluorinated Substances in Historical Aquatic Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. *Environ. Sci. Technol.* 2017, 51 (4), 2047–2057.

(80) Langlois, I.; Oehme, M. Structural identification of isomers present in technical perfluorooctane sulfonate by tandem mass spectrometry. *Rapid Commun. Mass Spectrom.* 2006, 20 (5), 844–50.

(81) Martin, J. W.; Kannan, K.; Berger, U.; Voogt, P. D.; Field, J.; Franklin, J.; Giesy, J. P.; Harner, T.; Muir, D. C. G.; Scott, B.; Kaiser, M.; Jamberg, U.; Jones, K. C.; Mabury, S. A.; Schroeder, H.; Simcik, M.; Sottani, C.; Bavel, B. V.; Karrman, A.; Lindstrom, G.; Leuwen, S. V. Analytical challenges hamper perfluoralkyl research. *Environ. Sci. Technol.* 2004, 38, 248A–25A.

(82) Riddell, N.; Arsenault, G.; Benskin, J. P.; Chittim, B.; Martin, J. W.; McAleece, A.; McCrindle, R. Branched Perfluorooctane Sulfonate Isomer Quantification and Characterization in Blood Serum Samples by HPLC/ESI-MS(/MS). *Environ. Sci. Technol.* 2009, 43, 7902–7908.

(83) Bagenstos, K. New Jersey approves drinking water standards for toxic PFAS chemicals. Will legal battles follow? USA Today, https://www.usatoday.com/story/news/2020/04/07/new-jersey-approves-drinking-water-standards-toxic-pfas-chemicals/2963032001/ (accessed November 2020).

(84) State-by-State Regulation of PFAS Substances in Drinking Water. https://www.bclplaw.com/en-US/insights/state-by-state-regulation-of-pfas-substances-in-drinking-water.html (accessed June 15, 2021).

(85) Per- and Polyfluoralkyl Substances (PFAS) Summary of State Regulation to Protect Drinking Water. https://www.awwa.org/Portals/0/A_W_W_A_Government/SummaryofStateRegulationtoProtectDrinkingWater.pdf (accessed 06/23/2021).

(86) California Issues the Nation’s Strictest Notice Levels for PFAS in Drinking Water. https://www.bklaw.com/news-events/insights/2019/legal-alerts/09/california-issues-the-nations-strictest-notice-levels (accessed November 2020).

(87) Lin, H.; Wang, Y.; Niu, J.; Yue, Z.; Huang, Q. Efficient Sorption and Removal of Perfluorooctyl Acids (PFAAs) from Aqueous Solution by Metal Hydroxides Generated in Situ by Electrocoagulation. *Environ. Sci. Technol.* 2015, 49 (17), 10562–9.

(88) Fenti, A.; Jin, Y.; Rhoades, A. J. H.; Dooley, G. P.; Iovino, P.; Saltvetrini, S.; Musmarra, D.; Mahendra, S.; Peaslee, G. F.; Blotevogel, J. Performance testing of mesh anodes for in situ electrochemical degradation mechanisms for a range of per- and polyfluoralkyl substances (PFAS) via controlled irradiation studies. *Sci. Total Environ.* 2018, 631–632, 1295–1303.

(89) Shi, H.; Wang, Y.; Li, C.; Pierce, R.; Gao, S.; Huang, Q. Degradation of Perfluorooctane sulfonate by Reactive Electrochemical Membrane Composed of Magneli Phase Titanium Suboxide. *Environ. Sci. Technol.* 2019, 53, 14528.

(90) Kim, T. H.; Yu, S.; Choi, Y.; Jeong, T. Y.; Kim, S. D. Profiling the decomposition products of perfluorooctane sulfonate (PFOS) irradiated using an electron beam. *Sci. Total Environ.* 2018, 631–632, 1295–1303.

(91) Londhe, K.; Lee, C.-S.; Zhang, Y.; Gridanovska, S.; Kroc, T.; Cooper, C. A.; Venkatesan, A. K. Energy Evaluation of Electron Beam Treatment of Perfluoralkyl Substances in Water: A Critical Review. *ACS ES&T Engineering* 2021, 1, 827.