How to perform EUS-guided tattooing?

Mihai Rimbaș1,2, Alberto Larghi2,3, Pietro Fusaroli4, Yi Dong5, Stephan Hollerbach6, Christian Jenssen7, Adrian Săftoiu8, Anand V Sahai9, Bertrand Napoleon10, Paolo Giorgio Arcidiacono11, Barbara Braden12, Sean Burmeister13, Silvia Carrara14, Xing Wu Cui15, Michael Hocke16, Julio Iglesias-Garcia17, Masayuki Kitano18, Kofi W Oppong19, Siyu Sun20, Milena Di Leo24, Maria Chiara Petrone24, Anthony Y B Teoh25, Christoph F Dietrich22

1Gastroenterology and Internal Medicine Departments, Colentina Clinical Hospital, Carol Davila University of Medicine, Bucharest, Romania; 2Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; 3CERTT, Center for Endoscopic Research Therapeutics and Training, Catholic University, Rome, Italy; 4Department of Medical and Surgical Sciences, Gastroenterology Unit, University of Bologna/Imola Hospital, Imola, Italy; 5Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; 6Department of Gastroenterology, Allgemeines Krankenhaus Celle, Celle, Germany; 7Department of Internal Medicine, Krankenhaus MärkischOderland, Strasburg and Brandenburg Institute for Clinical Ultrasound, Neuruppin, Germany; 8Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania; 9Center Hospitalier de l’Université de Montréal, Montreal, Canada; 10Digestive Endoscopy Unit, Hopital Privé J Mermoz Ramsay Générale de Santé, Lyon, France; 11Pancreatico/Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Vita Salute San Raffaele University, Milan, Italy; 12Johann Wolfgang Goethe University, Frankfurt, Germany & Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK; 13Surgical Gastroenterology Unit, Groote Schuur Hospital, Cape Town, South Africa; 14Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Clinical and Research Center, Milan, Italy; 15Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; 16Medical Department, Helios Klinikum, Meiningen, Germany; 17Department of Gastroenterology and Hepatology, Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela, Santiago de Compostela, Spain; 18Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan; 19HPB Unit, Freeman Hospital, Newcastle upon Tyne, UK; 20Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; 21Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; 22Department Allgemeine Innere Medizin, Kliniken Hirslanden, Beau Site, Salem und Permanence, Bern, Switzerland

ABSTRACT

Recently, we introduced a series of papers describing on how to perform certain techniques and controversies in EUS. In the first paper, “What should be known before performing EUS examinations, Part I,” the authors discussed clinical information and whether other imaging modalities should be needed before embarking in EUS examination. In Part II, some technical controversies on how EUS is performed are discussed from different points of view by providing the relevant available evidence. Herewith, we describe on how to perform EUS-guided fine needle tattooing (FNT) in daily practice. The aim of this paper is to discuss pros and cons for several issues including historical remarks, injecting material, technical approach, and how to perform EUS-FNT including argues in favor and against.

Key words: EUS, India ink, neuroendocrine neoplasms, pancreatic, pancreatic solid tumors, tattooing

Access this article online

Quick Response Code:

Website: www.eusjournal.com

DOI: 10.4103/eus.eus_44_20

How to cite this article: Rimbaș M, Larghi A, Fusaroli P, Dong Y, Hollerbach S, Jenssen C, et al. How to perform EUS-guided tattooing? Endosc Ultrasound 2020;9:291-7.

Address for correspondence

Dr. Mihai Rimbaş, Department of Gastroenterology, Colentina Clinical Hospital, Department of Internal Medicine, Carol Davila University of Medicine 19-21 Stefan cel Mare Street, 020125, Bucharest, Romania.

E-mail: mihai.rimbas@umfcd.ro

Received: 2020-04-10; Accepted: 2020-06-08; Published online: 2020-09-02
INTRODUCTION

Recently, we introduced a series of papers describing on how to perform certain techniques, controversies in EUS, and “what should be known before performing EUS examinations.”

In Part I, the authors discussed clinical information and whether other imaging modalities should be needed before embarking in EUS examination. The content includes the “nihilistic” or “puristic” approach, “I need nothing before EUS” versus the clinical approach (“Performing EUS as a clinician, I prefer to review as much clinical data as possible before EUS”. Should transcutaneous ultrasound and EUS be performed by the same operator? The use of esophagogastroduodenoscopy [EGD] before EUS. Should consenting for EUS differ from consenting for EGD? The utility of coagulation tests before EUS and interventions).

In Part II, some technical controversies on how EUS is performed are discussed from different points of view by providing the relevant available evidence. Does equipment design influence the complication rate? Should we have a standardized screen orientation? Radial versus longitudinal (linear) echoendoscopes. Should we search for incidental findings using EUS?

Herewith, we describe on how to perform EUS-guided fine needle tattooing (EUS-FNT) in daily practice. The aim of this paper is to discuss pros and cons for several issues including historical remarks, injecting material, technical approach, and how to perform EUS-FNT including arguments in favor and against.

The authors declare that this paper is not intended as a guideline, but rather an opportunity to document the current practice, allowing readers to evaluate their own EUS procedures and to stimulate further discussion.

EUS-GUIDED TATTOOING

Historical remarks

Tattooing has been widely used in luminal endoscopy by injecting India ink or sterile carbon particles into the submucosa of the gastrointestinal tract adjacent to neoplastic lesions, to favor their recognition during subsequent surgery or to facilitate the identification of prior endoscopically resected areas during follow-up endoscopic examinations. In 2002, the utilization of EUS-FNT to help recognition of a pancreatic lesion during surgery has been successfully applied for the first time by Gress et al. The authors performed preoperative EUS-FNT of a 19 mm × 5 mm insulinoma localized at the pancreatic body–tail junction, in between the splenic vein and the splenic artery. Four milliliters of diluted, filtered, and presterilized India ink solution (Permark Inc., Edison, NJ, USA) was injected at the center of the lesion utilizing a standard 22-gauge fine needle aspiration (FNA) needle. This procedure was performed at the surgeon’s request to obtain the best possible preoperative localization in an attempt to allow safe performance of lesion enucleation. EUS-FNT was well tolerated by the patient, the lesion could be visualized at laparotomy performed the same day, but unfortunately, enucleation could not be done and distal pancreatectomy with splenectomy was finally performed.

The increasing use of the laparoscopic approach to surgically resect pancreatic body and tail lesions, in particular, small solid and cystic lesions with high-risk features, has intensified the need for a very precise preoperative localization of the target lesion. Indeed, loss of capability to palpate the pancreas may impair tumor recognition or proper assessment of its position, thus impairing surgical resection with tumor-free margins or conservation of as much viable pancreatic tissue as possible. Moreover, the frequently confusing appearance of the surrounding retroperitoneal fat can render intraoperative ultrasound localization of pancreatic lesions difficult (possible in only 60%–90% of the cases). In one case series, intraoperative identification of the lesion failed in four out of 61 patients (6.5%), for whom re-operation was needed. Thus, a role for EUS-FNT was foreseen particularly for small tumors, located deeply, or in cases in which the resection was deemed problematic because of the close relationship to local vessels or vicinity to the pancreatic duct.

Review of the literature

Table 1 summarizes all case reports and case series describing the use of EUS-FNT up to now. Different techniques and solutions were utilized. After few adverse events (AEs) associated with the use of undiluted improperly sterilized India ink solution were described in the literature, Ashida et al. utilized diluted indocyanine green that was injected using EUS-FNT into the pancreatic capsule located just above
a 5-mm tumor in the pancreatic tail. The area was easily recognized by the surgeons at open laparotomy performed the following day, whereas the tumor could not be found by palpation or intraoperative ultrasound. In another report of a small insulinoma in the pancreatic tail, EUS-FNT by injecting methylene blue was successfully performed after the tumor could not be identified by intraoperative ultrasound at initial laparotomy.

Farrell and colleagues were the first to report the use of the sterile carbon-based Spot® solution (GI Supply, Camp Hill, PA, USA) for EUS-FNT of a very small pancreatic adenocarcinoma located at the level of the pancreatic body, close to the portal vein confluence, to guide laparoscopic resection. The sterile carbon-based solution was injected into an area of normal pancreatic parenchyma located toward the pancreatic head close to the lesion. Tattooing was, in this case also, the only method to identify the tumor, which made possible a safe and uneventful laparoscopic distal pancreatic resection.

In the first large retrospective study on 30 patients with pancreatic body/tail lesions, 13 underwent preoperative EUS-FNT using a sterile carbon-based solution injected in 0.5-mL increments into the normal pancreatic parenchyma, a few millimeters to the right side of the lesion. The indications for EUS-FNT were either the small size of the lesion to increase the chance for its intraoperative localization or the presence of indistinct borders in cases of larger lesions to increase the possibility of achieving negative resection margins. The pathologic diagnoses were similar between the groups with and without preoperative EUS-FNT, but the lesion size was significantly smaller in the former (median 1.3 cm vs. 4.0 cm, \(P = 0.03 \)). Importantly, all 13 tattoos were clearly identified intraoperatively despite the mean interval of 20 days (range 1–69) between EUS-FNT and surgical laparoscopic resection, and all these 13 patients had negative surgical resection margins. None of the patients in the EUS-FNT group needed conversion to an open surgery, with the advantage of a significantly shorter mean operative time for laparoscopic distal pancreatectomy in the EUS-FNT

Author, year	Diagnosis (n)	Number of patients	Number of lesions	Lesion size (median)	Needle gauge	Injected solution	Quantity (median)	Intra-operative recognition	Adverse events
Gress, 2002^{CR}	Insulinoma	1	1	19 mm×5 mm	22	India ink	4 mL	Yes	None
Zografos, 2005^{CR}	Insulinoma	1	1	9.8 mm×8.2 mm	NR	Methylene blue	1 mL	Yes	None
Ashida, 2006^{CR}	NR	1	2	5 mm	22	Diluted indocyanine green	0.5 mL	Yes	None
Farrell, 2009^{CR}	IPMN with carcinoma in situ	1	1	5 mm	22	GI Spot[®]	2 mL	Yes	None
Lennon, 2010^{RS}	PanNEN (6); MCN (2); PDAC (1); IPMN (1); serous cystadenoma (2); epidermoid cyst (1)	13⁵	13	8-50 mm (13 mm)	22	GI Spot[®]	1.25-5 mL (3 mL)	100%	None
Lennon, 2010^{RS}	PanNEN (5); MCN (2); PDAC (2); Serous cystadenoma (1)	10²	10	8-28 mm (13 mm)	22	GI Spot[®]	2-4 mL	100%	None
Rodriguez, 2011^{CR}	Insulinoma	1	1	9 mm	NR	GI Spot[®]	NR	Yes	None
Leelasinjaroen, 2014^{CR}	Insulinoma	1	1	15.5 mm	22	GI Spot[®]	2 mL	Yes	None
Okuzono, 2016^{CR}	PanNEN (1); IPMN (3); SPN (1); PDAC (1)	6	6	7-35 mm (16 mm)	25	Sodium hyaluronate and India ink	0.06-0.1 mL (0.08 mL)	5/6 (83%)	None

¹All lesions were located in the pancreas. ²It is possible that some or most of the patients might have been reported in both studies. CR: Case report; RS: Retrospective study; NR: Not reported; IPMN: Intraductal papillary mucinous neoplasm; PanNEN: Pancreatic neuroendocrine neoplasm; MCN: Mucinous cystic neoplasm; PDAC: Pancreatic ductal adenocarcinoma; SPN: Solid pseudopapillary neoplasm.
The advantage of this solution is related to its carbon particle mechanisms. Water soluble and cleared by the organism’s cleaning processes, the tattooing solution was injected too deep into the pancreatic parenchyma, which did not allow its recognition on the pancreatic surface.

Injecting material

EUS-FNT has been performed injecting several different types of solutions: India ink, indocyanine green, methylene blue, and GI Spot® (GI Supply, Camp Hill, PA, USA), which have to be sterile to avoid infectious AEs. The initial solution that was used for EUS-FNT was India ink, which is composed of a variety of fine soot (impure carbon particles resulting from the incomplete combustion of hydrocarbons) in colloidal suspension in water to form a liquid. However, since some reports of AEs have been described during its use in endoscopy, it has been largely replaced by other solutions. The most frequently utilized is the GI Spot®, a purified and sterilized preparation of carbon black, which is internalized by macrophages without determining any inflammation in surrounding tissues. The advantage of this solution is related to its carbon particle content, which is nondegradable and remains into the tissues indefinitely, thus creating a permanent tattoo. Differently, when indocyanine green or methylene blue dye is used, EUS-FNT has to be performed time-wise as close as possible to surgery, since these dyes are water soluble and cleared by the organism’s cleaning mechanisms.

Technical approach

A standard EUS-FNA needle should be used for performing EUS-FNT, which should be of a sufficient size to allow easy injection of the tattooing solution but avoid its dispersion (the 22-gauge has been used in most cases). Before inserting it into the working channel of the echoendoscope, the needle should be preloaded with the solution to eliminate all the air from the needle lumen that, once injected, would obscure the ultrasonographic view. The needle is then inserted inside the target lesion where a small amount of the tattooing solution should be slowly injected inside the lesion or immediately near the tumor borders into the normal parenchyma. The process is done while slowly withdrawing the needle to allow for a small quantity of the ink to be also placed in the subcapsular pancreatic space. Care must be taken not to overinject the tattooing solution since the compound can migrate into the peritoneum or the retroperitoneal space and create major discoloration, which could have a negative impact on the intraoperative lesion localization and consequently surgical resection. For pancreatic body or tail lesions, injection should be performed in the nearby pancreatic parenchyma proximal to the lesion toward the pancreatic head [Figure 1].

How to perform EUS-guided fine needle tattooing

Step by step

Once preloaded with the solution to be injected [Figure 2], the needle is inserted into the channel of the echoendoscope. The needle tip should then be advanced into the target lesion or the adjacent parenchyma using a thrust movement as it is done for EUS-FNA. A small amount of solution should be injected until a hyperechoic area appears in the endosonographic image at the level of the needle tip. For lesions that are not visualized, injection can be repeated in other spots, if needed, in the same endoscopic session. Injection should be done by slowly retracting the needle while continuing injecting, to leave an inked tract and induce discoloration of the subcapsular pancreatic tissues to help surgeons identify the marked spot. Particular attention should be given to inject only anterior to the Wirsung duct and to avoid injecting outside the gastrointestinal tract into the peritoneal/retroperitoneal space.

Routine pre-EUS coagulation testing and management of anticoagulants/antiplatelet drugs

Prothrombin time, INR, and activated partial thromboplastin time should be checked before the
procedural equally to a standard EUS-FNA/FNB procedure. Withholding and restarting antiplatelet or anticoagulant treatment periprocedurally should follow the guidelines on the management on anticoagulants/antiplatelet agents for endoscopic procedures, similar to that described for EUS-FNA.[23,24]

Antibiotic prophylaxis
Once a foreign solution is injected from a nonsterile organ (the upper gastrointestinal tract) into an extraparietal space, broad-spectrum antibiotics, such as ciprofloxacin, second- or third-generation cephalosporins, or clindamycin, should be used prophylactically just before and for 24–72 h after the procedure, even though no solid evidence is available supporting this suggestion.

Possible other indications
Other possible indications could be marking of subepithelial lesions of the gastrointestinal tract (such as gastrointestinal stromal tumors), with exophytic development for surgical identification and resection, or marking of lymph nodes for intraoperative identification and harvest. However, none of these possible indications has been reported so far.

Pros
The technique is simple, easy to perform even during the same session of EUS-guided tissue acquisition, and cheap. Using carbon-based solutions, EUS-FNT can be performed at the time of initial EUS evaluation, without any concern about the time span between the tattooing procedure and the surgical intervention, thus avoiding the costs and risks associated with repeating the EUS-FNT procedure.[16]

Preoperative marking of small tumors is of great value in assisting in their localization during surgery, particularly during the laparoscopic approach.[25] Indeed, up to two-thirds of pancreatic insulinomas measure <2 cm, and up to a quarter of them have a
diameter of \(<1\) cm.\(^8\) Because of these characteristics, up to one-fifth of insulinomas cannot be localized intraoperatively by palpation only.\(^9\) In particular, if located in the pancreatic head.\(^1\) Thus, EUS is not only superior to other methods in the identification of pancreatic insulinomas and of other pancreatic neuroendocrine neoplasms, when preoperative transabdominal ultrasound, computed tomography, and MRI scans failed,\(^26-29\) but also provides a method for easier intraoperative recognition by performing EUS-FNT. In other cases, EUS-FNT should be used as a landmark for performing limited surgical resection (by laparoscopy) or tumor enucleation,\(^3\) since preservation of pancreatic parenchyma is of utmost importance to decrease the risk for long-term endocrine and exocrine pancreatic insufficiency, especially after distal pancreatectomy, when new-onset diabetes mellitus is observed in from \(8\%\) to \(23\%\) of patients.\(^30,31\) Moreover, utilization of EUS-FNT for preoperative delineation of small pancreatic tumors results in a decreased operative time and in lower re-operation rates, due to the inappropriate primary resection of the lesion.\(^3\)

Cons

There are limited studies that have evaluated the performance of EUS-FNT in terms of applicability and clinical effectiveness in a meaningful number of patients and with proper study design. The limited experience accumulated so far suggests that the use of the above-mentioned solutions for marking, when utilized in a proper manner, is not associated with significant AEs. However, although the clinically apparent AEs are so far nil in the reported cases, in two of the patients, mild local pancreatic inflammatory changes were noted at surgery performed very soon after EUS-FNT.\(^16,17\) Thus, since EUS-FNA of pancreatic lesions is associated with a small risk of acute pancreatitis (\(0.9\%\)) and infection (\(0.9\%\)),\(^32\) and India ink colonic endoscopic tattooing has been reported to rarely cause infectious complications (\(0.22\%\))\(^33,34\), one should expect a small rate of AEs associated with this procedure. Moreover, the choice of the proper marking solution and the quantity needed for tattooing have not been clarified yet.

CONCLUSIONS

EUS-FNT is a safe and effective procedure to provide intraoperative identification of small pancreatic lesions, with the potential to increase their recognition, reduce operative time by helping surgeons to plan in advance pancreatic resections, achieve negative resection margins, and spare normal pancreatic parenchyma. Large prospective multicenter randomized studies are needed to clearly demonstrate the role of EUS-FNT in all patients undergoing surgical resection of small pancreatic lesions, as well as to assess its efficacy in reducing the incidence of exocrine/endocrine postoperative pancreatic insufficiency. Other applications for EUS-FNT are awaited.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Atkinson NS, Bryant RV, Dong Y, et al. How to perform gastrointestinal ultrasound: Anatomy and normal findings. *World J Gastroenterol* 2017;23:9931-41.

2. Atkinson NS, Bryant RV, Dong Y, et al. WFUMB position paper. Learning gastrointestinal ultrasound: Theory and practice. *Ultrasound Med Biol* 2016;42:2732-42.

3. Dietrich CF, Averkiou M, Nielsen MB, et al. How to perform contrast-enhanced ultrasound (CEUS). *Ultrasound Int Open* 2018;4:E2-15.

4. Dietrich CF, Bibby E, Jansen C, et al. EUS elastography: How to do it? *Endosc Ultrasound* 2018;7:20-8.

5. Dietrich CF, Barr RG, Farrokhi A, et al. Strain elastography - How to do it? *Ultrasound Int Open* 2017;3:E137-49.

6. Dietrich CF, Arcidiacono PG, Braden B, et al. What should be known prior to performing EUS? *Endoscopic ultrasound* 2019;8:3-16.

7. Dietrich CF, Arcidiacono PG, Braden B, et al. What should be known prior to performing EUS exams? (Part II). *Endosc Ultrasound* 2019;8:369-90.

8. Gress FG, Barawi M, Kim D, et al. Preoperative localization of a neuroendocrine tumor of the pancreas with EUS-guided fine needle tattooing. *Gastrointest Endosc* 2002;55:594-7.

9. Jaroszewski DE, Schlinskert RT, Thompson GB, et al. Laparoscopic localization and resection of insulinomas. *Arch Surg* 2004;139:270-7.

10. Ayav A, Bresler L, Bruanda L, et al. Laparoscopic approach for solitary insulinoma: A multicentre study. *Langenbecks Arch Surg* 2005;390:134-40.

11. Mabrut JY, Fernandez-Cruz L, Azagra JS, et al. Laparoscopic pancreatic resection: Results of a multicenter European study of 127 patients. *Surgery* 2005;137:597-605.

12. Nikfarjam M, Warshaw AL, Axelrod L, et al. Improved contemporary surgical management of insulinomas: A 25-year experience at the Massachusetts General hospital. *Ann Surg* 2008;247:165-72.

13. Zografos GN, Stathopoulou A, Mitropapas G, et al. Preoperative imaging and localization of small sized insulinoma with EUS-guided fine needle tattooing: A case report. *Hormones (Athens)* 2005;4:111-6.

14. Ashida R, Yamao K, Okubo K, et al. Indocyanine green is an ideal dye for endoscopic ultrasound-guided fine-needle tattooing of pancreatic tumors. *Endoscopy* 2006;38:190-2.

15. Farrell JJ, Sherrad A, Paredhi D. EUS-guided fine-needle tattooing for preoperative localization of early pancreatic adenocarcinoma. *Gastrointest Endosc* 2009;69:176-7.

16. Lennon AM, Newman N, Makary MA, et al. EUS-guided tattooing before laparoscopic distal pancreatic resection (with video). *Gastrointest Endosc* 2010;72:1089-94.

17. Newman NA, Lennon AM, Edil BH, et al. Preoperative endoscopic
tattooing of pancreatic body and tail lesions decreases operative time for laparoscopic distal pancreatectomy. Surgery 2010;148:371-7.

18. Rodriguez A, Canto MI, Makary MA. Endoscopic localization and tattooing of a proinsulinoma for minimally invasive resection. Pancreas 2011;40:474-7.

19. Leelasinjaroen P, Manatsathit W, Berri R, et al. Role of preoperative endoscopic ultrasound-guided fine-needle tattooing of a pancreatic head insulinoma. World J Gastrointest Endosc 2014;6:506-9.

20. Okuzono T, Kanno Y, Nakahori M, et al. Preoperative endoscopic ultrasonography-guided tattooing of the pancreas with a minuscule amount of marking solution using a newly designed injector. Digestive Endosc 2016;28:744-8.

21. Ginsberg GG, Barkun AN, Bosco JJ, et al. Endoscopic tattooing: February 2002. Gastrointest Endosc 2002;55:811-4.

22. Available from: https://en.wikipedia.org/wiki/India_ink. [last accessed on 2020 Jan 30].

23. Veitch AM, Vanbiervliet G, Gershlick AH, et al. Endoscopy in patients on antplatelet or anticoagulant therapy, including direct oral anticoagulants: British Society of Gastroenterology (BSG) and European Society of Gastrointestinal Endoscopy (ESGE) guidelines. Endoscopy 2016;48:e1.

24. Jenssen C, Fusaroli P, Hocke M, et al. EFSUMB guidelines on interventional ultrasound (INVUS). Part IV – EUS-guided interventions: General aspects and EUS-guided sampling (long version). Ultraschall Med 2016;37:E33-76.

25. Briggs CD, Mann CD, Irving GR, et al. Systematic review of minimally invasive pancreatic resection. J Gastrointest Surg 2009;13:1129-37.

26. Rosch T, Lightdale CJ, Botet JF, et al. Localization of pancreatic endocrine tumors by endoscopic ultrasonography. New England J Med 1992;326:1721-6.

27. James PD, Tsolakis AV, Zhang M, et al. Incremental benefit of preoperative EUS for the detection of pancreatic neuroendocrine tumors: A meta-analysis. Gastrointest Endosc 2015;81:848-560.

28. van Asselt SJ, Brouwers AH, van Dullemen HM, et al. EUS is superior for detection of pancreatic lesions compared with standard imaging in patients with multiple endocrine neoplasia type 1. Gastrointest Endosc 2015;81:159-670.

29. Kann PH. Is endoscopic ultrasonography more sensitive than magnetic resonance imaging in detecting and localizing pancreatic neuroendocrine tumors? Rev Endocr Metab Disord 2018;19:133-7.

30. Hutchins RR, Hart RS, Pacifico M, et al. Long-term results of distal pancreatectomy for chronic pancreatitis in 90 patients. Ann Surg 2002;236:612-8.

31. Lillemoe KD, Kaushal S, Cameron JL, et al. Distal pancreatectomy: Indications and outcomes in 235 patients. Ann Surg 1999;229:693-8.

32. Eloubeidi MA, Tamhane A, Varadarajulu S, et al. Frequency of major complications after EUS-guided FNA of solid pancreatic masses: A prospective evaluation. Gastrointest Endosc 2006;63:622-9.

33. Nizam R, Siddiqi N, Landas SK, et al. Colonic tattooing with India ink: Benefits, risks, and alternatives. Am J Gastroenterol 1996;91:1804-8.

34. Alba LM, Pandya PK, Clarkston WK. Rectus muscle abscess associated with endoscopic tattooing of the colon with India ink. Gastrointest Endosc 2000;52:557-8.