Subjective Somatosensory Experiences Disclosed by Focused Attention: Cortical-Hippocampal-Insular and Amygdala Contributions

Clemens C. C. Bauer¹, Fernando A. Barrios¹, José-Luis Díaz²*

¹Laboratorio de Neuroimagen Functional, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México, ²Departamento de Historia y Filosofía de la Medicina, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D. F., México

Abstract

In order to explore the neurobiological foundations of qualitative subjective experiences, the present study was designed to correlate objective third-person brain fMRI measures with subjective first-person identification and scaling of local, subtle, and specific somatosensory sensations, obtained directly after the imaging procedure. Thus, thirty-four volunteers were instructed to focus and sustain their attention to either provoked or spontaneous sensations of each thumb during the fMRI procedure. By means of a Likert scale applied immediately afterwards, the participants recalled and evaluated the intensity of their attention and identified specific somatosensory sensations (e.g. pulsation, vibration, heat). Using the subject’s subjective scores as covariates to model both attention intensity and general somatosensory experiences regressors, the whole-brain random effect analyses revealed activations in the frontopolar prefrontal cortex (BA10), primary somatosensory cortex (BA1), premotor cortex (BA 6), precuneus (BA 7), temporopolar cortex (BA 38), inferior parietal lobe (BA 39), hippocampus, insula and amygdala. Furthermore, BA10 showed differential activity, with ventral BA10 correlating exclusively with attention (r(32) = 0.54, p = 0.0013) and dorsal BA10 correlating exclusively with somatosensory sensation (r(32) = 0.46, p = 0.007). All other reported brain areas showed significant positive correlations solely with subjective somatosensory experiences reports. These results provide evidence that the frontopolar prefrontal cortex has dissociable functions depending on specific cognitive demands; i.e. the dorsal portion of the frontopolar prefrontal cortex in conjunction with primary somatosensory cortex, temporopolar cortex, inferior parietal lobe, hippocampus, insula and amygdala are involved in the processing of spontaneous general subjective somatosensory experiences disclosed by focused and sustained attention.

Introduction

Before attempting to explain how and why neurophysiological processes relate to consciousness traits, it seems necessary to find consistent correlations between subjective phenomenological features and brain activity patterns [1]. For example, it is now possible to correlate introspective evaluations of sensory aspects of subjective experience with imaged local brain activations [2]. Such neurophenomenological program depends on the development of dynamic approaches to cerebral activity in conjunction to standardized and rigorous measurements of subjective experience obtained from first-person reports [3,4]. A particular difficulty concerning the subjective character of conscious experience is the neural substrate of sensorial qualia features such as color, sound, scent, taste, touch, pain, and the like [5]. It has been suggested that the ventral prefrontal cortex is necessary, but not sufficient, for the generation of subjective experiences [6–8] and that there may be different areas involved depending on their specific character (e.g. auditory, tactile, emotional) [9,10]. Other studies also report signal increases in frontopolar prefrontal cortex during different self-referential processing tasks [11–13] and the magnitude and time course of its activation predicts whether information is consciously perceived or slips away unnoticed [6].

Bilateral activations of temporopolar cortex were found during object encoding, tactile perception and self-related processing [14–16]. Furthermore, the phenomenal character of perceiving some objects as different from others is associated with right temporopolar activation [15].

The ability to voluntarily direct, concentrate, and sustain attention can bring into focus and enhance bottom-up qualitative processes of either a somatosenory/external or proprioceptive/inner nature [17–21]. A form of insight meditation requiring sustained awareness of subtle somatic sensations spontaneously arising from different body parts increases parieto-occipital
Tactile attention also biases the processing of selected stimuli relevant features by amplifying somatosensory cortex responses [23]. Attention towards particular somatic stimuli, in turn, selectively enhances domain-specific cortical representations that probably are determinant for their conscious perception [21,24]. Based on previous studies implicating several brain regions in the generation of subjective experiences [6-8,14,15] and the evidence that top-down attention control can be used to define particular sensory targets [21,22,24], we hypothesized that focusing attention on subtle pre-reflective somatosensory experiences would activate frontopolar prefrontal and temporopolar cortices, and, specifically, that the objectively measured brain activity within these regions would correlate with subjective sensory experience reports.

Materials and Methods

Subjects

All subjects gave written informed consent for the experimental procedure, and the protocol follows the principles expressed in the Declaration of Helsinki and was authorized by The Bioethics Committee of the Neurobiology Institute (Comité de Bioética del Instituto de Neurobiología, Universidad Nacional Autónoma de México). After standard exclusion criteria for functional magnetic resonance imaging (fMRI) were applied, 37 healthy volunteers participated in the study (16 female and 21 male, mean age 35.58 years, SD 7.97, 14 left handed and 23 right handed). Subjects were evaluated with digital versions of the Symptom Checklist 90 and Edinburgh Inventory to exclude psychological and/or pathological symptoms, and to evaluate handedness [25,26]. All subjects gave informed consent for the experimental procedure, and the protocol had IRB approval.

Experimental design

Brain activation was examined during covert focused attention directed towards either the right or left thumb under two experimental conditions: (a) External-Stimulus Condition (manual caressing of either thumb with a 2-cm sponge brush at 1–2 Hz and stimulation aftereffect) and (b) Spontaneous-Sensation Condition in absence of any external stimulation (Figure 1). Resting periods without attention tasks separated both experimental conditions. Subjects were instructed to focus their attention on either thumb during the two experimental conditions and to abstain from moving it during the whole experiment. The instructions emphasized that, in the absence of touch stimuli, the subjects should focus their attention on the spontaneous sensations arising from either thumb rather than visualizing or imagining this body part. The protocol consisted of a block design paradigm alternating between focusing of attention towards the External-Stimulus of either thumb (60 sec blue block in Figure 1) or focusing of attention towards Spontaneous-Sensation of the same body part in the absence of external stimuli (60 sec yellow block in Figure 1). The length of the blocks was decided after a pilot study where the response showed that the subjects started to feel clear and distinct sensations 20–40 sec after the instruction. Right and left thumbs were run in separate procedures and the order of the thumb was randomly counterbalanced (Left thumb first 52%). The External-Stimulus block was further divided into a 30 sec Touch-Stimulus Condition (shown as a dark-block in Figure 1) and a 30 sec Stimulation Aftereffect Condition (shown as a light-blue block in Figure 1). External-Stimulus and Spontaneous-Sensation conditions were separated by 30 sec resting intervals to ensure no overlapping brain activity. Each run lasted 540 sec and consisted of three epochs. One epoch was a 180 sec sequence of Rest, Touch-Stimulus, Stimulation Aftereffect, Resting, and Spontaneous-Sensation. While in the scanner, the subjects received a previously agreed one-word instruction (“attention” or “rest”) via MRI compatible audio equipment (NordicNeuroLab, Bergen, Norway) directing them to focus their attention on the target thumb, or to rest. Subjects had their eyes closed during the whole experiment. Immediately after the scanning procedure all subjects were submitted to a Phenomenology Questionnaire to assess first-person Subjective Sensations experienced during the Spontaneous-Sensation Condition. The Phenomenology Questionnaire was designed to reflect the participant’s subjective assessment of their experience through all the blocks. It consisted of a qualitative free description of the experienced sensations followed by a quantitative section where attention strength and intensity of specific sensory qualia experienced across all Spontaneous-Sensation blocks were assessed by means of a 1 to 5 Likert scale (see below and Table 1 in Results section for details).

During the scanning an examiner closely monitored the subject’s thumb to ensure there was no motion. If there was any perceptible movement the run was discarded. Only six runs from 3 subjects (all right handed) were discarded due to involuntary thumb movement, and the results presented were obtained from the remaining 34 subjects.

Imaging protocol

fMRI imaging was performed on a 3.0T GE MR750 instrument (General Electric, Waukesha, WI) using a 32-channel head coil. Functional imaging included 35 axial slices, acquired using a T2*- weighted EPI sequence with TR/TE 3000/40 ms, a 64×64 matrix and 4-mm slice thickness, resulting in a 4×4×4 mm^3 geometric voxel. High-resolution structural 3D-T1-weighted images were acquired for anatomical localization (resolution of 1×1×1 mm^3, TR = 2.3 sec, TE = 3 ms) covering the whole brain. The images were acquired with an acceleration factor = 2.

Quantitative evaluation of the Phenomenology Questionnaire

Attention strength towards each thumb was assessed with a Likert scale ranging from weak attention (1) to strong attention (5). Subject’s subjective sensations scores for attention strength were used as covariates to model the attention regressor. A pilot study performed where volunteers were instructed to focus their attention on either thumb and generate an unrestricted phenomenological description revealed that the most frequently used adjectives were: pulsation, vibration, enlargement, heat, cold, shrinking, itching, stingning, and numbness. Thus, these were the adjectives used in the subjective sensations Likert scale assessment ranging from no sensation (1) to intense sensation (5). The mean subjective sensation for all these nine somatosensory sensations was used as the covariate to model the qualia regressor (see row Q in Table 1 in Results section for details).

Image processing and statistical analyses

Functional image datasets were processed and analyzed with FSL 4.1.5 [FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl] [27]. Preprocessing. The skull and other non-brain areas were extracted from the anatomical and functional scans using the script brain extraction tool (BET) of FSL, motion correction using MCFLIRT [28], spatial smoothing using a Gaussian kernel of FWHM 6 mm, mean-based intensity normalization, and nonlinear highpass temporal filtering. Extracted brains of all participants were linearly registered into the brain-extracted MNI152template using a linear spatial transformation function.
First-level fMRI analysis. Statistical analysis was performed with FMRI Expert Analysis Tool using FMRIB’s Improved Linear Model (FEAT FILM) Version 5.98 with local autocorrelation correction contrasts with a significance threshold criterion of \(Z > 2.3 \) with a cluster significance threshold of \(P < 0.05 \) corrected for multiple comparisons [29] and using the canonical hemodynamic response function (HRF) convolved with a function longer in duration to model the entire blocks and its time derivative as basic functions. The model included the following regressors with their corresponding HRF and their temporal derivatives: Touch-Stimulus and Spontaneous-Sensation as well as stimulation-aftereffect per thumb, with motion parameters controlled for in the model. The Touch-Stimulus regressor was modeled to fit a transient response curve in accord with previous somatosensory habituation reports [30,31] where somatosensory cortex activation peaked around 6 sec after the onset of the stimulation and then exponentially returned to baseline for the rest of the block. In this manner it was ensured that only the touch-related processes were identified and measured. The Spontaneous-Sensation regressor was modeled to fit the last 30 sec of the block, as this would have stronger correspondence to the subjective ratings (see Experimental design), and the first 30 sec were modeled as dummy condition and discarded. Although all four conditions were considered in the GLM, only the response obtained for the Spontaneous-Sensation Condition of the last thumb of each participant was assessed and correlated with the subject’s Subjective Sensation scores obtained from the Phenomenology Questionnaire. The rationale is that, although two functional runs were conducted (one for each thumb), the Phenomenology Questionnaire was only conducted once at the end of the session. Due to the recency effect, responses to this Questionnaire are more applicable to the last thumb stimulated, so only data acquired from the last functional run were analyzed with the Questionnaire data.

Group-level Subjective-Sensation analysis. To identify activations at the group-level related to attention strength and subjective-sensation for somatosensory experiences, a subjective-sensation analysis using FLAME (FMRIB’s Local Analysis of Mixed Effects) was conducted using subject’s subjective sensations scores as covariates to model both attention and somatosensory experience regressors (see the Quantitative evaluation of the phenomenology questionnaire and rows \(A \) and \(Q \) of Table 1). All group \(Z \) statistical images were thresholded at \(Z > 2.3 \) (\(P < 0.05 \)) to define contiguous voxel clusters. The FSL cluster correction for multiple comparisons (Gaussian-random field theory based) was set at \(P < 0.05 \), whole brain correction [http://www.fmrib.ox.ac.uk/fsl] [29]. Because we did not find any frontal activation at this threshold as previously hypothesized (see Introduction), we additionally performed an exploratory whole-brain group-level analyses using an uncorrected \(p \)-value of \(p < 0.001 \) with a minimum cluster size threshold (\(k \)) of 15 voxels [32,33]. This statistical threshold is in line with the recommendations for such complex and subtle cognitive processes, as used in previous social and affective neuroscience studies [33]. Subsequently, except where indicated, and due to the documented importance of the frontopolar prefrontal cortex in the integration of multiple separate cognitive processes in the service of higher-order behavioral goals like self referential processes (i.e. mentalizing) and attention [11], we specifically explored this region using a small-volume-correction through a region of interest (ROI) approach. The frontopolar prefrontal ROIs were based on the peak activation of this exploratory whole-brain group-level analyses and the results reported in the meta-analysis in Gilbert et al 2006 that specifically relate to left frontopolar cortex activation either during attention [34–37] or during self referential processes (i.e. mentalizing) [11–13]. The ROIs were defined by merging individually created ROIs of 3 voxel (10 mm) diameter spheres (\(\sim 131 \) mm\(^3\)) around each of the documented peak coordinates and our own results in order to obtain oblong ROI volumes for a) Attention of \(k = 725 \) voxels (1450 mm\(^3\)) and b) Subjective Sensation of \(k = 500 \) voxels (1000 mm\(^3\)) covering the left frontopolar prefrontal cortex associated with these processes (ROIs were constructed in the 2 mm MNI-152 template). The statistical significance for the ROI analysis were corrected for multiple comparisons using the false discovery rate (FDR) correction as implemented in FSL [38]. The FDR procedure ensures that on average no more than 5% of activated voxels for each contrast are expected to be false positives. The resulting peak voxel activation for either regressor was used to calculate the percent changes of BOLD signal in each subject using Featquery (part of FSL 4.1.5). These signal changes were then correlated with the subject’s individual specific subjective attention strength or mean somatoatosensory qualia scores of the Likert scale using Spearman’s rank correlation coefficient (see rows \(A \) and \(Q \) of Table 1). Results were projected onto the surface representation of the MNI-152 template with the Freesurfer suite [http://surfer.nmr.mgh.harvard.edu/] [39] for visualization purposes.

Results

Qualitative evaluation of the phenomenology questionnaire

Subject’s answers for the Phenomenology Questionnaire during the Spontaneous-Sensation Condition are shown in Table 1. All
Table 1. Phenomenology Questionnaire.

Subject ID	Freely Narrated exposure of subjective sensations	Quantitative Part	Attentional Strength & Specific Sensory Qualia experienced											
	First Thumb		L	A	Q	P	V	E	H	C	Sh	I	St	N
1	Pulsation, enlargement and tickling		L	5	3.67	5	5	5	1	1	1	5	5	5
2	I just felt it		R	3	2.00	1	1	3	4	3	2	1	1	1
3	Trembling, c.d.d, heaviness		L	2	2.22	3	4	4	3	2	1	1	1	1
4	Light tickling		L	5	1.78	5	2	1	1	1	1	1	3	
5	Tickling		R	3	2.78	1	4	2	4	4	1	3	1	
6	Heat and pulsation		L	2.5	2.22	4	3	3	3	1	2	1	1	2
7	A bit like a scratchy feeling, like a very porous sponge touching you, tickle		R	3.5	2.22	3	2	2	1	3	1	2	2	4
8	Increased awareness of the area regarding the sensory plates and dermatomes		R	5	1.89	1	1	1	2	1	1	4	4	2
9	I think I felt the air in the resonance room		R	3	2.22	3	2	3	4	1	1	1	1	4
10	Pricking		L	4.5	3.22	4	5	3	3	2	2	4	2	4
11	I felt something like palpitations		L	3	2.44	4	3	5	5	1	1	1	1	1
12	As very light pressure, palpitation occasionally		R	4	1.89	4	2	2	1	1	1	1	1	2
13	Tingling and a bit like touching sandpaper		L	4.5	3.44	5	4	1	1	4	1	5	5	5
14	Tingling and rubbing as if stimulation		L	3.5	2.67	2	3	1	3	4	1	4	3	3
15	Tingling		R	3.5	1.89	3	4	4	1	1	1	1	1	1
16	Sense of changes in temperature, particularly heat		R	4	1.33	1	1	3	1	1	1	2	1	1
17	Slight tingling sensation		R	4	1.00	1	1	1	1	1	1	1	1	1
18	Pricking and pulses		R	4	1.56	2	1	1	1	1	1	3	3	1
19	Blood pulse in the center of the finger and tingling		L	4	2.00	3	1	1	1	1	1	3	2	3
20	I could evoke the feeling of the sponge, I also felt tingling		L	2.5	1.44	3	3	1	1	1	1	1	1	1
21	Movement and enlargement		R	4.5	1.22	2	2	1	1	1	1	1	1	1
22	Feeling pressure pulsations slightly in the yolks		L	3.5	1.78	3	4	3	1	1	1	1	1	1
23	Temperature fluctuations		R	3.5	1.44	1	2	3	2	1	1	1	1	1
24	I felt like the energy flows into my finger as stimulating untouched, but feeling something very similar		L	5	2.00	3	3	1	4	3	1	1	1	1
25	I could feel pulsations and tingling		R	4	1.56	3	4	1	1	1	1	1	1	1
26	Some tingling in moments of attention, pulsation		L	4.5	1.33	1	4	1	1	1	1	1	1	1
27	Vibrating or pulsing		R	4	2.00	1	1	4	1	4	1	1	4	1
28	I felt it was a little big and sometimes it stung		R	4	1.78	4	1	4	1	1	1	2	1	1
29	Palpitation, heart rate		L	3.5	2.33	3	4	4	1	2	1	3	1	2
Table 1. Qualitative Part Quantitative Part

Subject ID	First Thumb	Mean VES	Mean QES	PVEH	CS	h	I	S	t	N
30	Throbbing thumb and felt sleepy	3.5	1.1	1.5	6	25	11	1	1	1
31	Feeling like a wave that came and went	1.44	4	1	2	1	1	1	2	
32	Pulsation, tingling	2.22	4	3	4	3	1	2	2	
33	Slightly heavier than the other fingers	4.5	5	4	3	4	1	4	3	1

The Phenomenology Questionnaire includes a free report of subjective sensations felt during the Spontaneous Sensation Condition and a quantitative part Likert scale (1 no sensation to 5 intense sensation) assessment to evaluate the intensity of specific sensory quales experienced:

- P: Pulsation
- V: Enlargement
- C:
- S: Shrinkage
- I: Itching
- St: Stinging
- N: Numbness

The mean for all quale experienced by each subject is shown in (QQ). Accordingly (A) and (QQ) were used to model the respective regressors.

Subjective-Sensation analysis

Attention. left frontopolar prefrontal cortex (ventral portion) (BA 10: −4, 66, −4; Z = 3.78, p < 0.05, small-volume-FDR-corrected; red cluster in Figure 3A) was active for attention as covariate and the percentage BOLD signal change correlated positively with the subjects’ subjective attention strength reports (r(32) = 0.54, p = 0.0013, Figure 3B.1) but not for subjects’ subjective somatosensory experience reports (r(32) = −0.1, p = 0.563, Figure 3B.4).

Subjective Somatosensory Experiences. Activity in several regions co-varied with subjective somatosensory experiences (Figure 3A, green clusters, all clusters corrected p < 0.05). These regions include the left frontopolar prefrontal cortex (dorsal portion) (BA10: −20, 72, 8), right primary somatosensory cortex (BA 2: −28, −42), right prefrontal cortex (BA 6: 50, 0, 28), right precuneus (BA 7: 8, −64, 52), left temporopolar cortex (BA 38: −32, 2, −18), right inferior parietal lobe (BA 39: 46, −70, 32), right hippocampus (30, −26, −16), right insula (38, −8, 4), and right amygdala (26, −8, −18). Additionally, the percentage BOLD signal change correlated positively with the subjects’ subjective somatosensory experience reports (i.e. BA10: r(32) = 0.46, p = 0.007, Figure 3B.2; BA 2: r(32) = 0.36, p = 0.039, Figure 3B.5; BA 6: r(32) = 0.38, p = 0.029, Figure 3B.6; Precuneus: r(32) = 0.37, p = 0.034, Figure 3B.7; BA 38: subjects experienced and spontaneously expressed their subjective sensations.

Spontaneous-Sensation analysis

Sixty-eight runs (34 right thumb and 34 left thumb) from 34 subjects were included in the analysis. Figure 2 shows that, compared with the resting task-free condition (neither external touch-stimuli nor spontaneous sensations), focusing of attention to Spontaneous-Sensation showed a group activation where the peak MNI coordinates for the right thumb (Figure 2B) were found in the left primary somatosensory cortex (BA 3b: X = −36 mm, Y = 6 mm, Z = 14 mm), bilateral secondary somatosensory cortices (SII: −34, 2, 20 and −42, −2, 12), left prefrontal cortex (BA 6: −2, 6, 52), left parietal lobe (PL: −26, −49, 26), left Broca’s area (BA 44: −46, 4, −2), anterior cingulate cortex (BA 32: −18, 14, 28) and right insula (BA 13: 38, 10, 2). Focusing attention on Spontaneous-Sensation of the left thumb (Figure 2A), showed activations in the left primary somatosensory cortex (BA 3a: −46, 4, 16), left prefrontal cortex (BA 6: −56, 10, 42), and left Broca’s area (BA 44: −50, 6, 3). Coordinates of peak activation, cluster size and z-values for this and all subsequent contrasts are shown in Table 2.

The activations found during the Touch-Stimulus Condition and their relation to the activations during the Spontaneous-Sensation Condition are detailed in a separate communication [21]. It is relevant to mention here that the contralateral activation of the somatosensory cortex (BA 3a/b corresponding to the hand area) obtained during the Touch-Stimulus Condition was also observed during the Spontaneous-Sensation Condition. Additionally, a left parieto-frontal activation was detected in the first-level analysis in the right-handed subjects during the Spontaneous-Sensation Condition. This prompted us to include a sample of 14 left-handed individuals for a statistically suitable comparison, but no differences between right and left-handed subjects were found after analyzing right and left thumbs separately and between groups for details please refer to [21]. Thus, we considered both hand-dominance groups as statistically similar and the left parieto-frontal activation as a result of top-down attentional mechanisms for a discussion on this please see [21].

Table 2. Size and z-values for this and all subsequent contrasts are shown in (QQ). Accordingly (A) and (QQ) were used to model the respective regressors.
Figure 2. Spontaneous-Sensation analysis: Overall activations associated with focusing of attention during the different phases of the experimental paradigm. A) Focusing attention on Spontaneous-Sensation of the left thumb. B) Focusing of attention on Spontaneous-Sensation of the right thumb. All statistical maps had a significance threshold of Z>2.3, with a cluster significance threshold of p<0.05 (corrected for multiple comparisons). Images are presented in radiological convention and mapped to the MNI-152 template.

doi:10.1371/journal.pone.0104721.g002

Table 2. Peak voxel activation for all experiments.

Contrast	Anatomical Location	MNI Peak coordinates (mm) x, y, z	Z-score
Spontaneous-Sensation			
Right Thumb			
SS > resta	Ba3b L, SI L	-58, 6, 14	3.23
	SII R	34, 2, 20	3.29
	SII L	-42, -2, 12	5.24
	Ba6 L, PMC	-2, 6, 52	3.82
	PL L	-26, -48, 26	5.28
	Ba44 L, Broca	-48, 4, -2	3.81
	Ba32, ACC	-18, 14, 28	4.62
	Ba13 R, Insula	38, 10, 2	5.16
Left Thumb			
SS > resta	Ba3b L, SI L	-46, 4, 16	3.39
	Ba6 L, PMC	-56, 10, 42	4.10
	Ba44 L, Broca	-50, 6, 8	3.38
Subjective-Sensations			
Attentionb	Ba 10 L, fpPFCb	-4, 66, -4	3.78
Subjective Somatosensory experiencesa,b			
Ba 10 L, fpPFCb	-20, 72, 8	3.16	
Ba 2 R, SIa	28, -42, 62	2.83	
Ba 6 R, PMC	50, 0, 28	3.47	
Ba 7, R, Precun	8, -64, 52	3.39	
Ba 38 L, TPCa	-32, 2, -18	3.49	
BA39 R, IPLa	46, -70, 32	3.93	
Hippo R*	30, -26, -14	3.94	
Insula R*	38, -8, 4	3.73	
Amygdala R*	26, -8, -18	4.98	

Peak activations for Spontaneous- and Subjective-sensations analysis conditions. SS: Spontaneous-Sensation, R: right, L: left, Ba: Brodmann area, ACC: anterior cingulate cortex, SI: primary somatosensory cortex, SII: secondary somatosensory, fpPFC: frontopolar prefrontal cortex, MFG: medial frontal gyrus, SFG: superior frontal gyrus, Hippo: hippocampus, TPC: temporopolar cortex, Precun: precuneus, IPL: inferior parietal lobe.

= cluster corrected with threshold z>2.3, p<0.05;
b = small-volume-correction using False Discovery Rate (FDR) with a p<0.05 as implemented in FSL [38].

doi:10.1371/journal.pone.0104721.g002
Neural Correlates of Subjective Experiences

(A)
- BA 2 (28,-42,62)
- BA 6 (50,0,28)
- *BA 10 (-20,72,8)
- BA 10 (-4,66,-4)
- Ins (38,-8,4)
- BA 39 (46,-70,32)
- Hippo (30,-26,-14)
- Amy (26,-8,-18)
- Precuneus (8,-64,52)

(B)
1) BA 10 L (-4,66,-4)
2) BA 10 L (-20,72,8)
3) BA 10 R (-20,72,8)
4) BA 2 R (28,-42,62)
5) Precuneus R (8,-64,52)
6) BA 6 R (50,0,28)
7) BA 38 L (-32,2,-18)
8) Hippo R (30,-26,-14)
9) BA 39 R (46,-70,32)
10) Amygdala R (26,-8,-18)
11) Insula R (38,-8,4)

*small-volume-FDR correction, p<0.05

Attention 3.0
Subjective Sensation 3.0
p=0.05 corrected
Subjective somatosensory experiences correlate with left dorsal frontal prefrontal cortex, right primary somatosensory cortex, left temporopolar cortex, right inferior parietal lobe, right hippocampus, right insula, and right amygdala. Additionally, ventral BA 10 (~20, 72, 8) did not correlate with subjects’ subjective attention strength reports (r = -0.07, p = 0.719, Figure 3B.3). To check for outliers we ran a non-parametric correlation test for all the brain areas, i.e., Spearman’s rank-order correlation, which only showed a significant change for BA 38 (see above and Figure 3B.8).

Discussion

After verifying in 34 healthy volunteers that sustained attention directed to the spontaneous sensations of either thumb in the absence of any external stimuli effectively activates brain somatosensory areas, the present results show that corresponding subjective somatosensory experiences correlate with left dorsal frontal prefrontal cortex, right primary somatosensory cortex, left temporopolar cortex, right inferior parietal lobe, right hippocampus, right insula, and right amygdala activations. Therefore, the main hypothesis of this work was largely corroborated with the additional finding that the left frontopolar prefrontal cortex (BA 10) and the temporopolar cortex (BA 38), in conjunction with primary somatosensory cortex (BA 2), cortex, premotor cortex (BA 6), precuneus (BA 7), inferior parietal lobe (BA 39), hippocampus, insula, and amygdala are involved in general spontaneous subjective somatosensory experiences.

The results show that the frontopolar prefrontal cortex has functional subdivisions, updating previous theories [11]. In particular, we show that the dorsal part of the frontopolar prefrontal cortex is involved during subjective sensory experiences known as *qualia* [6–8] and that it is coupled with other brain areas during this process. Hence, contributing to narrow down the individual brain structures involved [9,10,40]. In particular, our results agree with Feinstein et al. [6] in terms that the magnitude and time course of activation within the frontopolar prefrontal cortex, medial prefrontal cortex, and the anterior cingulate predict whether information is consciously perceived or slips away unnoticed. Other studies also report signal increases in frontopolar prefrontal cortex during different self-referential processing tasks [11–13]. It has also been shown that synchronous frontal gamma patterns (around 40 Hz) emerge with the recognition of a 3D object from an auto-stereogram and this pattern occurred only when subjects were readily expecting the arrival of the concealed visual object [26].

We also found that the left temporopolar cortex (BA38), together with the frontopolar cortex, becomes active during both attention mechanisms and subjective experience. Since the temporopolar cortex is a convergence zone where information from sensory, association, and limbic systems is integrated [41,42]; this activation may relate to the awareness and conscious processing of the affective component of somatosensory experiences. In agreement with this interpretation, Ramsøy et al. [14] found that object encoding evokes bilateral activations of temporopolar, perirhinal, parahippocampal cortices, hippocampus and amygdala, while D’Argembeau et al. [43] found that the temporopolar cortex along with dorsomedial prefrontal cortex, left anterior middle temporal gyrus, and right cerebellum is implicated in reflective tasks pertaining to self, another person, and social issues.

Besides frontopolar and temporopolar activation, in the present study other areas appeared to be involved in the retrieval and processing of somatosensory experiences, i.e., primary somatosensory cortex, premotor cortex, precuneus, inferior parietal lobe, hippocampus, insula and amygdala. The combined activity of these areas probably supports conscious perceptual and phenomenological awareness [44,45]. Consequently, primary somatosensory cortex activation suggests its causal involvement due to the nature of the attended somatosensory experiences [21,45]. Parietal and premotor cortices have been implicated in multisensory integration, embodiment, localization and self-attribute of body parts [46–49] and insula activation has been implicated in the integration of interoceptive and exteroceptive signals to construct the mental self [49,50] and amygdala activation has been found coupled to frontal brain regions when subjects involve in self-related processing [43] and is probably a key node involved in self-referential emotion processing [51–53]. Finally, autobiographical memory and past experiences relate to consciousness of one self, which requires hippocampal processing [54–57]. Even though the instructions in our study focus on actual somatosensory experiences, the activations detected in these brain areas suggest an underlying neurocognitive requirement of body-ownership and self-consciousness. Finally, the noteworthy finding that primary somatosensory cortex is activated in the absence of external stimulation by the focusing of attention on spontaneous sensory *qualia* verifies that selective attention controlled by top-down cognitive processes enhance bottom-up qualitative processes of somatosensory/external and proprioceptive/internal nature that normally do not elicit primary somatosensory cortex activity in absence of stimuli [17–20]. This spontaneously-elicited somatosensory activity is accompanied by phenomenological somatosensory qualitative experiences or *qualia*, some of the most characteristic and enigmatic subjective phenomena [38], but suitable to be correlated with objective measures of brain activity [59].

Within a broader perspective, the study of sensory *qualia* intending to match third-person fMRI brain imaging with standardized first-person somatosensory reports constitutes a particular neurophenomenological endeavor to study the neural...
correlates of qualitative subjective experience. In the light of the present results, the precise mechanism for the production or correspondence of subjective sensory experiences in the detected neural networks remains a challenging, but perhaps a more delimited research question.

Supporting Information

Data S1 (DOCX)

Acknowledgments

We are grateful to Dr. Luis Concha for his relevant comments and to Dr. G. Andrew James for his thorough and insightful review of the paper and wonderful suggestions to improve it. Also to M.Sc. Leopoldo González-Santos, M.Sc. Juan J. Ortiz, Dr. Sarael Alcauter, and Dr. Erick Pasaye for technical support.

Author Contributions

Conceived and designed the experiments: CCCB FAB JLD. Performed the experiments: CCCB FAB. Analyzed the data: CCCB FAB. Contributed reagents/materials/analysis tools: FAB. Contributed to the writing of the manuscript: CCCB FAB JLD.

References

1. Thompson E (2004) Life and mind: From autoptosis to neurophenomenology. A tribute to Francisco Varela. Phenomenol Cogn Sci 3: 301–398. doi:10.1023/B:PHEN.0000009336.73339.6d
2. Varela FJ (1996) Neurophenomenology: A methodological remedy for the hard problem. Journal of Consciousness Studies 3:4: 330–349.
3. Diaz JL (2007) La conciencia viviente. Fondo de Cultura Económica.
4. Diaz JL (2013) A Narrative Method for Consciousness Research. Front Hum Neurosci 7.
5. Nagel T (1974) What is it like to be a bat? Philos Rev 435:450.
6. Feinstein JS, Stein MB, Castillo GN, Paulus MP (2004) From sensory processes to conscious perception. Conscious Cogn 13:323–335. doi:10.1016/j.concog.2003.04.008
7. Northoff G (2003) Qualia and the Ventral Prefrontal Cortical Function Neurophenomenological Hypothesis. J Conscious Stud 10:14–48.
8. Lutz A (2002) Toward a neurophenomenology as an account of generative passages: A first empirical case study. Phenomenol Cogn Sci 1:135–167.
9. Damasio AR (1999) The feeling of what happens: Body and emotion in the making of consciousness. Mariner Books.
10. Paradiso S, Johnson DL, Andreasen NC, O'Leary DS, Watkins GL, et al. (1999) Increased regional activation of the human medial temporal lobe during intentional encoding of objects and positions. Neuroimage 47:1296–1305.
11. Gilbert SJ, Spengler S, Simonis JS, Steele JD, Laviwe SM, et al. (2006) Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. J Cogn Neurosci 18:932–949.
12. McCaig RG, Dixon M, Keramatian K, Liu I, Christoff K (2011) Improved parametric working memory in the prefrontal cortex. Nature 399:470–473.
13. Brass M, Derrfuss J, von Cramon DY (2005) The inhibition of imitative and metacognitive awareness. Neuroimage 55:6381–6397.
14. Rees G (2013) Neural correlates of consciousness. Ann N Y Acad Sci 1296:4–10. doi:10.1111/nyas.12257.
15. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113.
16. Christoff K, Ream JM, Gabrieli JDE (2004) Neural Basis of Spontaneous Meta-Cognitive Awareness. Neuroimage 23:8208–8219.
17. Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cognitive Psychology 12(1):97–136.
18. Lepsien J, Pollmann S (2002) Covert reorienting and inhibition of return: an event-related fMRI study. J Cogn Neurosci 14:127–144.
19. Pollmann S, Weider H, Müller HJ, Vyss von Gramon D (2006) Neural correlates of visual dimension weighting. Vis Cogn 14:187–213. doi:10.1080/13506290500196142.
20. Petersen SE, Posner MI (2012) The Attention System of the Human Brain: 20 Years After. Annual Review of Neuroscience 35:73–89. doi:10.1146/annurev-neuro-061111-130325.
21. Czech M, Gielis D, De Schutter J (2014) Regional activation of the human medial temporal lobe during intentional encoding of objects and positions. Neuroimage 47:1863–1872.
22. Araki T, Konishi S, Jimura K, Chikazoe J, Nakamura N, Miyashita Y (2008) Right temporo-parietal activation associated with unique perception. Neuroimage 40:3: 125–132. doi:10.1016/j.neuroimage.2008.01.059.
23. Christoff K, Ream JM, Gabrieli JDE (2004) Neural Basis of Spontaneous Meta-Cognitive Awareness. Neuroimage 23:8208–8219.
24. Lepsien J, Pollmann S (2002) Covert reorienting and inhibition of return: an event-related fMRI study. J Cogn Neurosci 14:127–144.
25. Pollmann S, Weider H, Müller HJ, Vyss von Gramon D (2006) Neural correlates of visual dimension weighting. Vis Cogn 14:187–213. doi:10.1080/13506290500196142.
26. Lutz A, Lachaux JP, Martinerie J, Varela FJ (2002) Guiding the study of brain dynamics in patients with brain abnormalities. Brain Cogn 49:20–48.
27. Smith SM, Johnsson M, Woolrich MW, Becknham CE, Behrens TEJ, et al. (2004) Advances in functional and structural MR image analysis and implementation as FMR. Neuroimage 23:8208–8219.
49. Cabanis M, Pyka M, Mehl S, Müller BW, Loose-Jankowiak S, et al. (2013) The precuneus and the insula in self-attributional processes. Cogn Affect Behav Neurosci 13: 330–345. doi:10.3758/s13415-012-0143-5.
50. Seth AK (2013) Interoceptive inference, emotion, and the embodied self. Trends Cogn Sci 17: 565–573. doi:10.1016/j.tics.2013.09.007.
51. Northoff G, Heinzl A, de Greck M, Bermpoil F, Dobrowolsky H, et al. (2006) Self-referential processing in our brain? A meta-analysis of imaging studies on the self. Neuroimage 31: 440–457.
52. Frewen PA, Lundberg E, Brimsson-Théberge M, Théberge J (2013) Neuroimaging self-esteem: a fMRI study of individual differences in women. Soc Cogn Affect Neurosci 8: 546–555. doi:10.1093/scan/nss032.
53. Schwarz KA, Wieser MJ, Gerdes ABM, Mülberger A, Pauli P (2013) Why are you looking like that? How the context influences evaluation and processing of human faces. Soc Cogn Affect Neurosci 8: 430–445. doi:10.1093/scan/nss013.
54. Smith C, Squire LR (2005) Declarative Memory, Awareness, and Transitive Inference. J Neurosci 25: 10138–10146. doi:10.1523/JNEUROSCI.2731-05.2005.
55. Prebble SC, Addis DR, Tippett LF (2013) Autobiographical memory and sense of self. Psychol Bull 139: 815–840. doi:10.1037/a0030146.
56. Martinelli P, Sperduti M, Pedro P (2013) Neural substrates of the self-memory system: New insights from a meta-analysis. Hum Brain Mapp 34: 1515–1529. doi:10.1002/hbm.22008.
57. Behrendt R-P (2013) Hippocampus and consciousness. Rev Neurosci 24: 239–266. doi:10.1515/revneuro-2012-0089.
58. Campana F, Tallon-Baudry C (2013) Anchoring visual subjective experience in a neural model: The coarse vividness hypothesis. Neuropsychologia 51: 1050–1060. doi:10.1016/j.neuropsychologia.2013.02.021.
59. Garrison KA, Scheinost D, Worhunsky PD, Elwafi HM, Thornhill IV TA, et al. (2013) Real-time fMRI links subjective experience with brain activity during focused attention. NeuroImage 81: 110–118. doi:10.1016/j.neuroimage.2013.05.030.