A Novel Missense Mutation of Doublecortin: Mutation Analysis of Korean Patients with Subcortical Band Heterotopia

The neuronal migration disorders, X-linked lissencephaly syndrome (XLIS) and subcortical band heterotopia (SBH), also called “double cortex”, have been linked to missense, nonsense, aberrant splicing, deletion, and insertion mutations in doublecortin (DCX) in families and sporadic cases. Most DCX mutations identified to date are located in two evolutionarily conserved domains. We performed mutation analysis of DCX in two Korean patients with SBH. The SBH patients had mild to moderate developmental delays, drug-resistant generalized seizures, and diffuse thick SBH upon brain MRI. Sequence analysis of the DCX coding region in Patient 1 revealed a c.386 C>T change in exon 3. The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1 or in a large panel of 120 control X-chromosomes. We report here a novel c.386 C>T mutation of DCX that is responsible for SBH.

MATERIALS AND METHODS

Patients

Two unrelated Korean patients with epilepsy and SBH (Patients 1 and 2) and their clinically unaffected family members were studied after obtaining informed consent. The clinical characteristics of the patients are summarized in Table 1. The SBH patients had mild to moderate developmental delays, drug-resistant generalized seizures, and diffuse thick (Fig. 1A) and thick SBH upon brain MRI (Fig. 1B).

Mutation analysis

DNA was extracted from peripheral blood using a standard protocol, and all coding regions of DCX (exons 1 to 7; exon numbering according to RefSeq AJ003112.1, GenBank) were amplified by PCR. PCR assays were performed by using 1.25 U of AmpliTaq polymerase Gold (Applied
A Novel Missense Mutation of Doublecortin 671

Biosystem, Foster City, CA, U.S.A.), 100 ng genomic DNA, 2.0 mM MgCl₂, and a final concentration of 10 μM for each set of primers (Table 2). Amplification conditions were as follows: an initial denaturing cycle at 95°C for 7 min followed by 35 cycles of denaturation at 94°C for 30 sec, annealing at 62°C for 30 sec, and extension at 72°C for 1 min. A final extension step of 72°C for 7 min was used. The PCR products were electrophoresed in a 1.2% agarose gel, and the amplified genomic DNA fragments were extracted and purified using the manufacturer's recommended protocol (QIAquick™ gel extraction kit; Qiagen, Germany). Direct sequencing of both strands was performed with BigDye terminator chemistry (PE Biosystems, Foster City, CA, U.S.A.). Sequence analysis of the DCX coding region for Patient 1 revealed a c.386C>T change in exon 3 (Fig. 2A). The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1, including maternal grandmother, parents, or siblings. RFLP analysis was conducted to confirm the sequencing result and to exclude the possibility that the genetic variation is a polymorphism. The heterozygous mutant band pattern was observed in Patient 1, whereas it was not found in other family members of Patient 1 or in a control population of 60 healthy, unrelated Korean women (Fig. 2B). No genetic variation in DCX coding region was found for Patient 2 and her mother.

RESULTS

Table 1. Clinical features of the patients with subcortical band heterotopia

Patient	Age (yr)	Sex	Seizure onset (yr)	Neurologic features
1	26	Woman	4	Drug resistant generalized seizure, ataxic gait, dysarthria, dysmetria, mutistic, and short stature
2	14	Woman	8	Drug resistant generalized seizure, mild to moderate mental retardation, no neurologic deficit at age of 8 yr

Table 2. Primers used for analysis of DCX

Fragments name	Primer sequence
E1 DCX-E1F	5’ ACC GGG GGA AGA CAG TAG TAA C 3’
DCX-E1R	5’ GGG GGT TGG GAG TAA GAG ATA GAG A 3’
E2 DCX-E2F	5’ TCT TTT CAC AAG CAG CAG ATT GCA G 3’
DCX-E2R	5’ CAA CCG AAG AAT GTA GTC ATT ACC A 3’
E3 DCX-E3F	5’ CCA GTG TCA GTG TGT ATT AGT GG TGT T 3’
DCX-E3R	5’ AAG AGT CCG TCA ACA AGA AAT GAT ATT T 3’
E4 DCX-E4F	5’ TCA CTA GGG GTC ATG ATT CAG ACT TGT 3’
DCX-E4R	5’ ACA GGA GAA AGA CCA ACA ATA TAA GCC T 3’
E5 DCX-E5F	5’ AGG TGG CTT TGG AAG GTT TCC CTA ATG 3’
DCX-E5R	5’ TGT TAC TGT TTA GAG TCA ATG 3’
E6 DCX-E6F	5’ TTA CTT GCT CTT TTA GTG ATT GAT T 3’
DCX-E6R	5’ TGG TAC TGG TCA AAG CTA ATG TGT 3’
E7 DCX-E7F	5’ AAG TCC AGA GAA AGA CCA CAG TGT GGC TGT 3’
DCX-E7R	5’ TGA TCC AGA GAA GAG GGG CAC TTG TGT TGT 3’

Fig. 1. Brain MRI scans of Patient 1 (A) and 2 (B) showing diffuse thin and thick subcortical band heterotopia, respectively.

Table 3. Primers used for analysis of DCX

Fragments name	Primer sequence
E1 DCX-E1F	5’ ACC GGG GGA AGA CAG TAG TAA C 3’
DCX-E1R	5’ GGG GGT TGG GAG TAA GAG ATA GAG A 3’
E2 DCX-E2F	5’ TCT TTT CAC AAG CAG CAG ATT GCA G 3’
DCX-E2R	5’ CAA CCG AAG AAT GTA GTC ATT ACC A 3’
E3 DCX-E3F	5’ CCA GTG TCA GTG TGT ATT AGT GG TGT T 3’
DCX-E3R	5’ AAG AGT CCG TCA ACA AGA AAT GAT ATT T 3’
E4 DCX-E4F	5’ TCA CTA GGG GTC ATG ATT CAG ACT TGT 3’
DCX-E4R	5’ ACA GGA GAA AGA CCA ACA ATA TAA GCC T 3’
E5 DCX-E5F	5’ AGG TGG CTT TGG AAG GTT TCC CTA ATG 3’
DCX-E5R	5’ TGT TAC TGT TTA GAG TCA ATG 3’
E6 DCX-E6F	5’ TTA CTT GCT CTT TTA GTG ATT GAT T 3’
DCX-E6R	5’ TGG TAC TGG TCA AAG CTA ATG TGT 3’
E7 DCX-E7F	5’ AAG TCC AGA GAA AGA CCA CAG TGT GGC TGT 3’
DCX-E7R	5’ TGA TCC AGA GAA GAG GGG CAC TTG TGT TGT 3’

RESULTS

Sequence analysis of the DCX coding region for Patient 1 revealed a c.386C>T change in exon 3 (Fig. 2A). The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1, including maternal grandmother, parents, or siblings. RFLP analysis was conducted to confirm the sequencing result and to exclude the possibility that the genetic variation is a polymorphism. The heterozygous mutant band pattern was observed in Patient 1, whereas it was not found in other family members of Patient 1 or in a control population of 60 healthy, unrelated Korean women (Fig. 2B). No genetic variation in DCX coding region was found for Patient 2 and her mother.
In the developing cortex, cortical neurons must migrate long distances to reach the site of their final differentiation. The protein encoded by the DCX gene is a cytoplasmic protein that appears to direct neuronal migration by regulating the organization and stability of microtubules (10). Mutation clusters in the DCX gene were previously identified in exons 2 and 3, and 3 and 4, overlapping significantly with two proposed evolutionarily conserved domains of the DCX protein (7, 9). The first conserved domain binds tubulin and enhances microtubule polymerization, and the second binds tubulin less well and does not enhance microtubule assembly. Both domains seem necessary for optimal DCX protein function, and differences in the location and type of mutations in these regions may produce variable functional disturbances. The mutation identified in the present study is located in the first preserved domain of the DCX protein, which has not been reported previously.

In the setting of a family with a single girl affected with SBH, it is hard to determine the risk for SBH or XLIS in future children. Because of X-linkage, a male with a DCX mutation should be clinically affected while a female with the mutation may be unaffected due to germline or somatic mosaicism or skewed X inactivation (5, 11-13). In the present study, the genetic analysis of the DCX mutation c.386C>T was negative in the maternal grandmother, mother, and two siblings of Patient 1 who are free from SBH or XLIS. Thus, it seems most likely that the mutation is sporadic rather than familial. However, predicting the risk to offspring with absolute certainty remains to be clear.

Although Patient 2 in the present study had similar clinical and radiological features to those of Patient 1, she did not carry any genetic variation in the coding region of DCX. This suggests that the non-coding region of DCX, including the promoter region and introns, or other genes implicated in neuronal migration disorders may be responsible for this patient’s condition. Further study is required to clarify the pathogenesis of neuronal migration disorders. We identified a previously unreported missense mutation in the first preserved domain of the DCX protein. This mutation S129L exhibits features suggesting that it is pathogenic. First, like all pathogenic DCX mutations described to date, it is heterozygous. Second, it is absent from a large panel of 120 control X-chromosomes. Third, it occurs in a highly conserved position—the first domain of the DCX protein where the majority of the known DCX mutations cluster.

The discovery of the new mutation reported here supports existing evidence that mutation in the first conserved domain of the DCX protein is important in the pathogenesis of SBH.

REFERENCES

1. Aigner L, Fluegel D, Dietrich J, Ploetz S, Winkler J. Isolated lissencephaly sequence and double-cortex syndrome in a German family with a novel doublecortin mutation. Neuropediatrics 2000; 31: 195-8.
2. des Portes V, Pinard JM, Billuart P, Vinet MC, Koulaikoff A, Carrie A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M, Kahn A, Beldjord C, Chelly J. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 1998; 92: 51-61.
3. Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME, Walsh CA. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 1998; 92: 63-72.
4. Gleeson JG, Luo RF, Grant PE, Guerrini R, Hutenlocher PR, Berg MJ, Racci S, Cusmai R, Wheless JW, Berkovic S, Scheffer I, Dobyns WB, Walsh CA. Genetic and neuroradiological heterogeneity of double cortex syndrome. Ann Neurol 2000; 47: 265-9.
5. Gleeson JG, Minnerath S, Kuzniecky RI, Dobyns WB, Young ID,
Ross ME, Walsh CA. *Somatic and germline mosaic mutations in the doublecortin gene are associated with variable phenotypes. Am J Hum Genet* 2000; 67: 574-81.

6. Kato M, Kanai M, Soma O, Takusa Y, Kimura T, Numakura C, Matsuki T, Nakamura S, Hayasaka K. *Mutation of the doublecortin gene in male patients with double cortex syndrome: somatic mosaicism detected by hair root analysis. Ann Neurol* 2001; 50: 547-51.

7. Matsumoto N, Leventer RJ, Kuc JA, Mewborn SK, Dudliecek LL, Ramocki MB, Pilz DT, Mills PL, Das S, Ross ME, Ledbetter DH, Dobyns WB. *Mutation analysis of the DCX gene and genotype/phenotype correlation in subcortical band heterotopia. Eur J Hum Genet* 2001; 9: 5-12.

8. Pilz DT, Kuc J, Matsumoto N, Bodurtha J, Bernadi B, Tassinari CA, Dobyns WB, Ledbetter DH. *Subcortical band heterotopia in rare affected males can be caused by missense mutations in DCX (XLIS) or LIS1. Hum Mol Genet* 1999; 8: 1757-60.

9. Sapir T, Horesh D, Caspi M, Atlas R, Burgess HA, Wolf SG, Francis F, Chelly J, Elbaum M, Pietrokovski S, Reiner O. *Doublecortin mutations cluster in evolutionarily conserved functional domains. Hum Mol Genet* 2000; 9: 703-12.

10. Gleeson JG, Minnerath SR, Fox JW, Allen KM, Lao RF, Hong SE, Berg MJ, Kuzniecky R, Reitnauer PJ, Borgatti R, Mira AP, Guerrini R, Holmes GL, Rooney CM, Berkoic S, Scheffer I, Cooper EC, Ricci S, Cusmai R, Crawford TO, Leroy R, Andermann E, Wheless JW, Dobyns WB, Ross ME, Walsh CA. *Characterization of mutations in the gene doublecortin in patients with double cortex syndrome. Ann Neurol* 1999; 45: 146-53.

11. Aigner L, Uyanik G, Couillard-Despres S, Ploetz S, Wolff G, Morris-Rosendahl D, Martin P, Eckel U, Spranger S, Otte J, Woerle H, Holthausen H, Apheshiotis N, Fluegel D, Winkler J. *Somatic mosaicism and variable penetrance in doublecortin-associated migration disorders. Neurology* 2003; 60: 329-32.

12. Demelas L, Serra G, Conti M, Achene A, Mastropolo C, Matsumoto N, Dudliecek LL, Mills PL, Dobyns WB, Ledbetter DH, Das S. *Incomplete penetrance with normal MRI in a woman with germline mutation of the DCX gene. Neurology* 2001; 57: 327-30.

13. Poolos NP, Das S, Clark GD, Lardizabal D, Noebels JL, Wyllie E, Dobyns WB. *Males with epilepsy, complete subcortical band heterotopia, and somatic mosaicism for DCX. Neurology* 2002; 58: 1559-62.