ON ASYMPTOTIC FERMAT OVER \mathbb{Z}_p-EXTENSIONS OF \mathbb{Q}

NUNO FREITAS, ALAIN KRAUS, AND SAMIR SIKSEK

Abstract. Let p be a prime and let $\mathbb{Q}_{n,p}$ denote the n-th layer of the cyclotomic \mathbb{Z}_p-extension of \mathbb{Q}. We prove the effective asymptotic FLT over $\mathbb{Q}_{n,p}$ for all $n \geq 1$ and all primes $p \geq 5$ that are non-Wieferich, i.e. $2^{p-1} \not\equiv 1 \pmod{p^2}$. The effectiveness in our result builds on recent work of Thorne proving modularity of elliptic curves over $\mathbb{Q}_{n,p}$.

1. Introduction

Let F be a totally real number field. The asymptotic Fermat’s Last Theorem over F is the statement that there exists a constant B_F, depending only on F, such that, for all primes $\ell > B_F$, the only solutions to the equation $x^\ell + y^\ell + z^\ell = 0$, with $x, y, z \in F$ are the trivial ones satisfying $xyz = 0$. If B_F is effectively computable, we refer to this as the effective Fermat’s Last Theorem over F. Let p be a prime, n a positive integer and write $\mathbb{Q}_{n,p}$ for the n-th layer of the cyclotomic \mathbb{Z}_p-extension. In [3], the authors established the following theorem.

Theorem 1. The effective asymptotic Fermat’s Last Theorem holds over each layer $\mathbb{Q}_{n,2}$ of the cyclotomic \mathbb{Z}_2-extension.

The proof of Theorem 1 relies heavily on class field theory and the theory of 2-extensions, and the method depends crucially on the fact that 2 is totally ramified in $\mathbb{Q}_{n,2}$. In this paper we establish the following.

Theorem 2. Let $p \geq 5$ be a prime. Suppose p is non-Wieferich, i.e. $2^{p-1} \not\equiv 1 \pmod{p^2}$. The effective asymptotic Fermat’s Last Theorem holds over each layer $\mathbb{Q}_{n,p}$ of the cyclotomic \mathbb{Z}_p-extension of \mathbb{Q}.

We remark that the only Wieferich primes currently known are 1093 and 3511. It is fascinating to observe that these primes originally arose in connection with historical attempts at proving Fermat’s Last Theorem. Indeed Wieferich [7] showed that if $2^{p-1} \not\equiv 1 \pmod{p^2}$ then the first case of Fermat’s Last Theorem holds for exponent p.

In contrast to Theorem 1, the proof of Theorem 2 makes use of a criterion (Theorem 3 below) established in [2] for asymptotic FLT in terms of solutions to a certain S-unit equation. The proof of that criterion builds on many deep results including modularity lifting theorems due to Breuil, Diamond, Gee, Kisin, and others, and Merel’s uniform boundedness theorem, and exploits the strategy of Frey, Serre, Ribet, Wiles and Taylor, utilized in Wiles’ proof [8] of Fermat’s
Last Theorem. In this paper we use elementary arguments to study these S-unit equations in $\mathbb{Q}_{n,p}$ and this study, together with the S-unit criterion, quickly yields Theorem 2. The effectiveness in Theorem 2 builds on the following great theorem due to Thorne [5].

Theorem (Thorne). Elliptic curves over $\mathbb{Q}_{n,p}$ are modular.

2. An S-unit criterion for asymptotic FLT

The following criterion for asymptotic FLT is a special case of [2, Theorem 3].

Theorem 3. Let F be a totally real number field. Suppose the Eichler–Shimura conjecture over F holds. Assume that 2 is inert in F and write $q = 2\mathcal{O}_F$ for the prime ideal above 2. Let $S = \{q\}$ and write \mathcal{O}_S^\times for the group of S-units in F. Suppose every solution (λ, μ) to the S-unit equation

$$\lambda \equiv 1 \pmod{\mathcal{O}_S^\times}$$

satisfies both of the following conditions

$$\max\{\ord_q(\lambda), \ord_q(\mu)\} \leq 4, \quad \ord_q(\lambda \mu) \equiv 1 \pmod{3}.$$

Then the asymptotic Fermat’s Last Theorem holds over F. Moreover, if all elliptic curves over F with full 2-torsion are modular, then the effective asymptotic Fermat’s Last Theorem holds over F.

For a discussion of the Eichler–Shimura conjecture see [2, Section 2.4], but for the purpose of this paper we note that the conjecture is known to hold for all totally real fields of odd degree. In particular, it holds for $\mathbb{Q}_{n,p}$ for all odd p.

To apply Theorem 3 to $F = \mathbb{Q}_{n,p}$ we need to know for which p is 2 inert in F. The answer is given by the following lemma, which for $n = 1$ is Exercise 2.4 in [6].

Lemma 2.1. Let $p \geq 3$, q be distinct primes. Then q is inert in $\mathbb{Q}_{n,p}$ if and only if $q^{p-1} \not\equiv 1 \pmod{p^2}$.

Proof. Let $L = \mathbb{Q}(\sqrt[p]{q})$ and $F = \mathbb{Q}_{n,p}$. Write σ_q and τ_q for the Frobenius elements corresponding to q in $\text{Gal}(L/\mathbb{Q})$ and $\text{Gal}(F/\mathbb{Q})$. The prime q is inert in F precisely when τ_q has order p^2. The natural surjection $\text{Gal}(L/\mathbb{Q}) \to \text{Gal}(F/\mathbb{Q})$ sends σ_q to τ_q and its kernel has order $p-1$. Thus q is inert in F if and only if the order of σ_q is divisible by p^2, which is equivalent to σ_q^{p-1} having order p^2. There is a canonical isomorphism $\text{Gal}(L/\mathbb{Q}) \to (\mathbb{Z}/p^n\mathbb{Z})^\times$ sending σ_q to $q + p^n\mathbb{Z}$. Thus q is inert in F if and only if $q^{p-1} + p^n\mathbb{Z}$ has order p^2. This is equivalent to $q^{p-1} \not\equiv 1 \pmod{p^2}$. □

3. Proof of Theorem 2

Lemma 3.1. Let p be the unique prime above p in $F = \mathbb{Q}_{n,p}$. Let $\lambda \in \mathcal{O}_F$. Then $\lambda \equiv \text{Norm}_{F/\mathbb{Q}}(\lambda) \pmod{p}$.

Proof. As p is totally ramified in F, we know that the residue field \mathcal{O}_F/p is \mathbb{F}_p. Thus there is some $a \in \mathbb{Z}$ such that $\lambda \equiv a \pmod{p}$. Let $\sigma \in G = \text{Gal}(F/\mathbb{Q})$. Since $p^\sigma = p$, we have $\lambda^\sigma \equiv a \pmod{p}$. Hence

$$\text{Norm}_{F/\mathbb{Q}}(\lambda) = \prod_{\sigma \in G} \lambda^\sigma \equiv a^G \pmod{p}.$$

However $\#G = p^n$ so $\text{Norm}_{F/\mathbb{Q}}(\lambda) \equiv a \equiv \lambda \pmod{p}$. □
Lemma 3.2. Let $p \neq 3$ be a rational prime. Let $F = \mathbb{Q}_{n,p}$. Then the unit equation
\begin{equation}
\lambda + \mu = 1, \quad \lambda, \mu \in \mathcal{O}_F^*.
\end{equation}
has no solutions.

Proof. Let (λ, μ) be a solution to (3.1). By Lemma 3.1, $\lambda \equiv \pm 1 \pmod{p}$ and $\mu \equiv \pm 1 \pmod{p}$. Thus $\pm 1 \pm 1 \equiv \lambda + \mu = 1 \pmod{p}$. This is impossible as $p \neq 3$. \hfill \Box

Remark 3.3. Lemma 3.2 is false for $p = 3$. Indeed, Let $p = 3$ and $n = 1$. Then $F = \mathbb{Q}_{1,3} = \mathbb{Q}(\theta)$ where θ satisfies $\theta^3 - 6\theta^2 + 9\theta - 3 = 0$. The unit equation has solution $\lambda = 2 - \theta$ and $\mu = -1 + \theta$. In fact, the unit equation solver of the computer algebra system Magma [1] gives a total of 18 solutions.

Lemma 3.4. Let $p \geq 5$ be a rational prime. Let $F = \mathbb{Q}_{n,p}$. Suppose 2 is inert in F and write $q = 2\mathcal{O}_F$ for the unique prime above 2. Let $S = \{q\}$ and write \mathcal{O}_S^* for the group of S-units. Then every solution to the S-unit equation (2.1) satisfies one of the following:

(i) $\text{ord}_q(\lambda) = 1$, $\text{ord}_q(\mu) = 0$;
(ii) $\text{ord}_q(\lambda) = 0$, $\text{ord}_q(\mu) = 1$;
(iii) $\text{ord}_q(\lambda) = \text{ord}_q(\mu) = -1$.

Proof. Write $n_\lambda = \text{ord}_q(\lambda)$ and $n_\mu = \text{ord}_q(\mu)$. Suppose first $n_\lambda \geq 2$. Then $n_\mu = 0$ and so $\mu \in \mathcal{O}_F^*$. Moreover, as $4 \mid \lambda$, we have $\mu \equiv 1 \pmod{4}$ and so $\mu \equiv 1 \pmod{4}$ for all $s \in G = \text{Gal}(F/\mathbb{Q})$. Hence $\text{Norm}_{F/\mathbb{Q}}(\mu) = \prod \mu^a \equiv 1 \pmod{4}$. But $\text{Norm}_{F/\mathbb{Q}}(\mu) = \pm 1$, thus $\text{Norm}_{F/\mathbb{Q}}(\mu) = 1$. As before, denote the unique prime above p by p. By Lemma 3.1 we have $\mu \equiv 1 \pmod{p}$. Hence p divides $1 - \mu = \lambda$ giving a contradiction.

Thus $n_\lambda \leq 1$. Next suppose $n_\lambda \leq -2$. Then $n_\lambda = n_\mu$. Let $\lambda' = 1/\lambda$ and $\mu' = -\mu/\lambda$. Then (λ', μ') is a solution to the S-unit equation satisfying $n_{\lambda'} \geq 2$, giving a contradiction by the previous case. Hence $-1 \leq n_\lambda \leq 1$ and by symmetry $-1 \leq n_\mu \leq 1$. From Lemma 3.2 either $n_\lambda \neq 0$ or $n_\mu \neq 0$. Thus one of (i), (ii), (iii) must hold. \hfill \Box

Remark 3.5. Possibilities (i), (ii), (iii) cannot be eliminated by the solving of the solutions $(2, -1)$, $(-1, 2)$ and $(1/2, 1/2)$ to the S-unit equation.

Proof of Theorem 2. We suppose $p \geq 5$ and non-Wieferich. It follows from Lemma 2.1 that 2 is inert in $F = \mathbb{Q}_{n,p}$. Write $q = 2\mathcal{O}_F$. By Lemma 3.4 all solutions (λ, μ) to the S-unit equation (2.1) satisfy (2.2). We now apply Theorem 3. As elliptic curves over $\mathbb{Q}_{n,p}$ are modular thanks to Thorne’s theorem, we conclude that the effective Fermat’s Last Theorem holds over $\mathbb{Q}_{n,p}$. \hfill \Box

Remark 3.6. The proof of Theorem 2 for $p = 3$ and for the Wieferich primes seems out of reach at present. There are solutions to the unit equation in $\mathbb{Q}_{1,3}$ (as indicated in Remark 3.3), and therefore in $\mathbb{Q}_{n,3}$ for all n, and these solutions violate the criterion of Theorem 3. For p a Wieferich prime, 2 splits in $\mathbb{Q}_{n,p}$ into at least p prime ideals and we would need to consider the S-unit equation (2.1) with S the set of primes above 2. It appears difficult to treat the S-unit equation in infinite families of number fields where $\#S \geq 2$ (c.f. [3, Theorem 7] and its proof).

4. A Generalization

In fact, the proof of Theorem 2 establishes the following more general theorem.

Theorem 4. Let F be a totally real number field and $p \geq 5$ be a rational prime. Suppose that the following conditions are satisfied.

...
(a) F is a p-extension of \mathbb{Q} (i.e. F/\mathbb{Q} is a Galois extension of degree p^n for some $n \geq 1$).

(b) p is totally ramified in F.

(c) 2 is inert in F.

Then the asymptotic Fermat’s Last Theorem holds for F.

Example 4.1. A quick search on the L-Functions and Modular Forms Database [4] yields 153 fields of degree 5 satisfying conditions of the theorem with $p = 5$. The one with smallest discriminant is $\mathbb{Q}_{1.5}$. The one with the next smallest discriminant is $F = \mathbb{Q}(\theta)$ where $\theta^5 - 110\theta^3 - 605\theta^2 - 990\theta - 451 = 0$. The discriminant of F is $5^8 \cdot 11^4$. It is therefore not contained in any \mathbb{Z}_p-extension of \mathbb{Q}.

References

[1] W. Bosma, J. Cannon et C. Playoust: The Magma Algebra System I: The User Language, J. Symb. Comp. 24 (1997), 235–265. (see also http://magma.maths.usyd.edu.au/magma/)

[2] N. Freitas and S. Siksek, The asymptotic Fermat’s Last Theorem for five-sixths of real quadratic fields, Compositio Mathematica 151 (2015), 1395–1415. 1, 2, 2

[3] N. Freitas, A. Kraus and S. Siksek, Class field theory, Diophantine analysis and the asymptotic Fermat’s Last Theorem, Advances in Mathematics 363 (2020), to appear. 1, 3.6

[4] The LMFDB Collaboration, The L-functions and Modular Forms Database, http://www.lmfdb.org, 2020, [Online; accessed 24 January 2020]. 1.1

[5] J. Thorne, Elliptic curves over \mathbb{Q}_∞ are modular, Journal of the European Mathematical Society 21 (2019), 1943–1948. 1

[6] L. C. Washington, Introduction to Cyclotomic Fields, second edition, GTM 83, Springer, 1997.

[7] A. Wieferich, Zum letzten Fermatschen Theorem, Journal für die reine und angewandte Mathematik 136 (1909), 293–302. 1

[8] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Annals of Math. 141 (1995), 443–551. 1