Distance Magic Index One Graphs

A V Prajeesh*, Krishnan Paramasivam**

*Department of Mathematics
National Institute of Technology Calicut
Kozhikode 673601, India.

Abstract

Let \(S \) be a finite set of positive integers. A graph \(G = (V(G), E(G)) \) is said to be \(S \)-magic if there exists a bijection \(f : V(G) \to S \) such that for any vertex \(u \) of \(G \), \(\sum_{v \in N_G(u)} f(v) \) is a constant, where \(N_G(u) \) is the set of all vertices adjacent to \(u \). Let \(\alpha(S) = \max x \). Define \(i(G) = \min_{S} \alpha(S) \), where the minimum runs over all \(S \) for which the graph \(G \) is \(S \)-magic. Then \(i(G) - |V(G)| \) is called the distance magic index of a graph \(G \). In this paper, we compute the distance magic index of graphs \(G[\bar{K}_n] \), where \(G \) is any arbitrary regular graph, disjoint union of \(m \) copies of complete multipartite graph and disjoint union of \(m \) copies of graph \(C_p[\bar{K}_n] \), with \(m \geq 1 \). In addition to that, we also prove some necessary conditions for an regular graph to be of distance magic index one.

Keywords: Distance magic, \(S \)-magic graph, distance magic index, complete multi-partite graphs, lexicographic product.

2010 MSC: 05C78, 05C76.

1. Introduction

In this paper, we consider only simple and finite graphs. We use \(V(G) \) for the vertex set and \(E(G) \) for the edge set of a graph \(G \). The neighborhood, \(N_G(v) \) or shortly \(N(v) \) of a vertex \(v \) of \(G \) is the set of all vertices adjacent to \(v \) in \(G \). For further graph theoretic terminology and notation, we refer Bondy and Murty [1] and Hammack et al. [2].

*Corresponding author

Email addresses: prajeesh_p150078ma@nitc.ac.in (A V Prajeesh),
sivam@nitc.ac.in (Krishnan Paramasivam)

Preprint submitted to Elsevier
August 3, 2018
A distance magic labeling of a graph G is a bijection $f : V(G) \to \{1, \ldots, |V(G)|\}$, such that for any u of G, the weight of u, $w_G(u) = \sum_{v \in N_G(u)} f(v)$ is a constant, say c. A graph G that admits such a labeling is called a distance magic graph.

The motivation for distance magic labeling came from the concept of magic squares and tournament scheduling. An equalized incomplete tournament, denoted by $EIT(n, r)$, is a tournament, with n teams and r rounds, which satisfies the following conditions:

(i) every team plays against exactly r opponents.

(ii) the total strength of the opponents, against which each team plays is a constant.

Therefore, finding a solution for an equalized incomplete tournament $EIT(n, r)$ is equivalent to establish a distance magic labeling of an r-regular graph of order n. For more details, one can refer [3, 4].

The following results provide some necessary condition for distance magicness of regular graphs.

Theorem 1. [5, 6, 7, 8] No r-regular graph with r-odd can be a distance magic graph.

Theorem 2. [4] Let $EIT(n, r)$ be an equalized tournament with an even number n of teams and $r \equiv 2 \mod 4$. Then $n \equiv 0 \mod 4$.

In [6], Miller et al. discussed the distance magic labeling of the graph $H_{n, p}$, the complete multi-partite graph with p partitions in which each partition has exactly n vertices, $n \geq 1$ and $p \geq 1$. It is clear that $H_{n, 1}$ is a distance magic graph. From [6] it is observed that K_n is distance magic if and only if $n = 1$ and hence, $H_{1, p} \cong K_p$ is not distance magic for all $p \neq 1$. The next result gives a characterization for the distance magicness of $H_{n, p}$.

Theorem 3. [6] Let $n > 1$ and $p > 1$. $H_{n, p}$ has a labeling if and only if either n is even or both n and p are odd.

Recall a standard graph product (see [2]). Let G and H be two graphs. Then, the lexicographic product $G \circ H$ or $G[H]$ is a graph with the vertex set $V(G) \times V(H)$. Two vertices (g, h) and (g', h') are adjacent in $G[H]$ if and only if g is adjacent to g' in G, or $g = g'$ and h is adjacent to h' in H.

Miller et al. [6] proved the following.
Theorem 4. [6] Let G be an arbitrary regular graph. Then $G[\overline{K}_n]$ is distance magic for any even n.

Later, Froncek et al. [4, 9] proved the following results.

Theorem 5. [4] For n even an EIT(n,r) exists if and only if $2 \leq r \leq n - 2; r \equiv 0 \mod 2$ and either $n \equiv 0 \mod 4$ or $n \equiv r + 2 \equiv 2 \mod 4$.

Theorem 6. [9] Let n be odd, $p \equiv r \equiv 2 \mod 4$, and G be an r-regular graph with p vertices. Then $G[\overline{K}_n]$ is not distance magic.

Theorem 7. [9] Let G be an arbitrary r-regular graph with an odd number of vertices and n be an odd positive integer. Then r is even and the graph $G[\overline{K}_n]$ is distance magic.

The following results by Shafiq et al. [10], discusses the distance magic labeling of disjoint union of m copies of complete multi-partite graphs, $H_{n,p}$, and disjoint union of m copies of product graphs, $C_p[\overline{K}_n]$.

Theorem 8. [10]

(i) If n is even or mnp is odd, $m \geq 1; n > 1$ and $p > 1$; then $mH_{n,p}$ has a distance magic labeling.

(ii) If np is odd, $p \equiv 3 \mod 4$, and m is even, then $mH_{n,p}$ does not have a distance magic labeling.

Theorem 9. [10] Let $m \geq 1, n > 1$ and $p \geq 3$. $mC_p[\overline{K}_n]$ has a distance magic labeling if and only if either n is even or mnp is odd or n is odd and $p \equiv 0 \mod 4$.

In [10], Shafiq et al. posted a problem on the graph $mH_{n,p}$.

Problem 1. For the graph $mH_{n,p}$, where m is even, n is odd, $p \equiv 1 \mod 4$, and $p > 1$, determine if there is a distance magic labeling.

Later, Froncek et al. [9] proved the following necessary condition for $mH_{n,p}$.

Theorem 10. The graph $mH_{n,p}$, where m is even, n is odd, $p \equiv 1 \mod 4$, and $p > 1$, is not distance magic.
Figure 1: A graph G with $c' = 13$ and $S = \{1, 3, 4, 5, 6, 7\}$.

For more details and results, one can refer Arumugam et al. [11].

From Theorem 1, one can observe that any odd-regular graph G of order n is not distance magic. But if we label the graph with respect to a different set S of positive integers with $|S| = n$, then G may admit a magic labeling with a magic constant c'. See Figure 1.

Motivated by this fact Godinho et al. [?] defined the concept of S-magic labeling of a graph.

Definition 1. [?] Let $G = (V(G), E(G))$ be a graph and let S be a set of positive integers with $|V(G)| = |S|$. Then G is said to be S-magic if there exists a bijection $f : V(G) \rightarrow S$ satisfying $\sum_{v \in N(u)} f(v) = c$ (a constant) for every $u \in V(G)$. The constant c is called the S-magic constant.

Definition 2. [?] Let $\alpha(S) = \max \{s : s \in S\}$. Let $i(G) = \min \alpha(S)$, where the minimum is taken over all sets S for which the graph G admits an S-magic labeling. Then $i(G) - |V(G)|$ is called the distance magic index of a graph G and is denoted by $\theta(G)$.

From above definitions, one can observe that a graph G is distance magic if and only if $\theta(G) = 0$ and if G is not S-magic for any S with $|V(G)| = |S|$, then $\theta(G) = \infty$.

Let G be a graph for which $\theta(G)$ is finite (however so small) and non-zero. Now, a natural question arises that for all such graphs G, does there exist an S-magic labeling with $\theta(G) = 1$?

In the following section, we prove some necessary conditions for an r-regular S-magic graph G to have $\theta(G) = 1$. Further, we compute the distance
magic index of disjoint union of m copies of $H_{n,p}$ and disjoint union of m
copies of $C_p[K_n]$, where $m \geq 1$. Also, for any arbitrary regular graph G,
we compute the distance magic index of the graph $G[K_n]$. In addition to that,
we construct twin sets S and S' for the same graph $H_{n,p}$ with $\theta(G) = 1$,
for which $H_{n,p}$ is both S-magic and S'-magic with distinct magic constants.
We also discuss the maximum and minimum bounds attained by the magic
constant for the graph $H_{n,p}$.

2. Main results

If G is a graph with $\theta(G) = 1$, then it is clear that G is S-magic for
$S = \{1, ..., n + 1\} \setminus \{a\}$, for at least one $a \in \{1, ..., n\}$. We call a, the deleted
label of S.

The following results are similar to that of Theorem 1 and 2.

Lemma 1. If G is an odd r-regular S-magic graph with $\theta(G) = 1$, then
$a \neq 1$.

Proof. Assume that G is an r-regular graph with $\theta(G) = 1$, where r is odd.
If $S = \{1, ..., n + 1\} \setminus \{a\}$ with the S-magic constant c, then,

\begin{align*}
nc &= r(1 + ... + n + 1) - ra \\
c &= \frac{rn + 3r}{2} + \frac{r - ra}{n}.
\end{align*}

Therefore, if $a = 1$, then c is not an integer, a contradiction.

Lemma 2. If G is an r-regular S-magic graph with $\theta(G) = 1$ and $r, n \equiv 2$
mod 4, then a is an even integer, $a \neq 2, n$.

Proof. Assume that G is an r-regular graph with $\theta(G) = 1$ and $r, n \equiv 2$
mod 4. Let c be the S-magic constant of G, where $S = \{1, 2, ..., n + 1\} \setminus \{a\}$
and a is an odd integer belonging to $\{1, 2, ..., n\}$. Let $r = 4k + 2$ and $n = 4k' + 2$, with $0 < k < k'$.

Case 1: when $a = 1$, from eq.(2), we have,

\[c = (2k + 1)(4k' + 5). \]

Here c is an odd integer and every vertex is adjacent to odd number of vertices
which are labeled with odd integers. Note that, here there are $2k' + 1$ such
vertices. Then the graph induced by the vertices having odd label has every vertex of odd degree, a contradiction.

Case 2: When $a = 2q + 1$, with $q > 0$. Then $rn + 3r \equiv 2 \mod 4$ and $r - ra \equiv 0 \mod 4$ and hence c fails to be an integer.

Case 3: When $a = 2$ or $a = n$, c is not an integer and hence the result follows.

The following theorem discusses the distance magic index of the graph, $H_{n,p}$, $n > 1$ and $p > 1$. We define the integer-valued function α given by

$$\alpha(j) = \begin{cases} 0 & \text{for } j \text{ even} \\ 1 & \text{for } j \text{ odd} \end{cases}$$

and the sets $\Omega_k = \{i : 5 \leq i \leq n-1 \text{ and } i \equiv k \mod 4\}$, where $k \in \{0, 1, 2, 3\}$. Both α and Ω_i’s are used in the next theorem.

Theorem 11. If G is a complete multi-partite graph $H_{n,p}$ with p partitions having n vertices in each partition, then

$$\theta(G) = \begin{cases} 0 & \text{for } n \text{ even or } n \text{ and } p \text{ both odd} \\ 1 & \text{for } n \text{ odd and } p \text{ even} \end{cases}$$

Proof. Let $G \cong H_{n,p}$ with $n > 1, p > 1$. From Theorem 3, it is clear that if n is even or when n and p both are odd, then $\theta(G) = 0$.

Now, to construct an $(n \times p)$-rectangular matrix $A = (a_{i,j})$ with distinct entries from a set S having column sum b (a constant) is equivalent to find an S-magic labeling of G with magic constant $(p-1)b$.

Note that j^{th} column of A can be used to label the vertices of j^{th} partition of G and hence G admits a magic labeling with magic constant $(p-1)b$. In addition, if the entries of A are all distinct and are from $S = \{1, ..., np+1\} \setminus \{a\}$, where $a \in \{1, ..., np\}$, then G is S-magic with $\theta(G) = 1$.

Let n be an odd and p be an even integer.

Case 1: If $n = 3$ and $p = 2m, m > 0$, then construct A as,

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & \cdots & 2m-3 & 2m-2 & 2m-1 & 2m \\
3m & 4m & 3m-1 & 4m-1 & \cdots & 2m+2 & 3m+2 & 2m+1 & 3m+1 \\
6m+1 & 5m & 6m & 5m-1 & \cdots & 5m+3 & 4m+2 & 5m+2 & 4m+1
\end{pmatrix}
$$

Note that, the deleted label is $5m+1$ here. One can observe that each column adds up to a constant $9m+2$ and thus, $\theta(H_{3,2m}) = 1$.

Here, the deleted label is 9m + 1 and each column adds up to a constant 25m + 3. Therefore, \(\theta(H_{5,2m}) = 1 \).

Case 3: If \(n > 5 \) is odd and \(p = 2m, m > 0 \), then for each \(j \in \{1, ..., p\} \), construct \(A \) as follows.

\[
a_{i,j} = \begin{cases}
 j & \text{for } i = 1 \\
 (2i-1)m - (\frac{i-1}{2}) + \alpha(j + 1)(m + \frac{1}{2}) & \text{for } i = 2, 4 \\
 2mi - (\frac{i-1}{2}) + \alpha(j + 1)(-m + \frac{1}{2}) & \text{for } i = 3 \\
 2mi - m + \frac{i}{2} + \alpha(j)(-m + \frac{1}{2}) & \text{for } i \equiv 1 \mod 4, i \in \{5, 6, ..., n-1\} \\
 2mi - m + \frac{i}{2} + \alpha(j)\frac{1}{2} - \alpha(j+1)m & \text{for } i \equiv 2 \mod 4, i \in \{5, 6, ..., n-1\} \\
 2mi - (\frac{i-1}{2}) + \alpha(j)(-m) + \alpha(j+1)\frac{1}{2} & \text{for } i \equiv 3 \mod 4, i \in \{5, 6, ..., n-1\} \\
 2mi - m + \frac{j}{2} + \alpha(j)\frac{3}{2} - \alpha(j+1)m & \text{for } i = n \equiv 1 \mod 4 \\
 2mi - \frac{j}{2} + \frac{1}{2} - \alpha(j+1)(m + \frac{1}{2}) & \text{for } i = n \equiv 3 \mod 4
\end{cases}
\]

Therefore, \(m(2n - 1) + 1 \) is the deleted label in this case.

Subcase 1: If \(n \equiv 1 \mod 4 \), then \(n - 5 \equiv 0 \mod 4 \). Let \(n = 4q + 5 \), where \(q \geq 1 \).

Now for any fixed odd \(j \), the \(j^{th} \) column sum in \(A \) is,

\[
\sum_{i=1}^{n} a_{i,j} = \sum_{i=1}^{4} a_{i,j} + \sum_{i \in \Omega_1} a_{i,j} + \sum_{i \in \Omega_2} a_{i,j} + \sum_{i \in \Omega_3} a_{i,j} + \sum_{i \in \Omega_0} a_{i,j} + \left(2mn - m + \frac{j}{2} + \frac{3}{2}\right)
\]

\[
= j + 3m - (\frac{j-1}{2}) + 6m - (\frac{j-1}{2}) + 7m - (\frac{j-1}{2}) + \sum_{k=1}^{q} \left(2m(4k+1) - 2m + \frac{j+1}{2}\right) + \sum_{k=1}^{q} \left(2m(4k + 2) - m + \frac{j+1}{2}\right) + \sum_{k=1}^{q} \left(2m(4k + 3) - (\frac{j-1}{2})\right) + \sum_{k=1}^{q} \left(2m(4k + 4) - m - (\frac{j-1}{2})\right) + 2mn - m + 1 + \frac{j+1}{2}
\]
\[= 15m + 32mq + 16mq^2 + 2mn + 2q + 3 = \frac{n^2p+n+1}{2}.\]

Similarly, for any fixed even \(j\), the \(j^{th}\) column sum in \(A\) is,
\[
\sum_{i=1}^{n} a_{i,j} = \sum_{i=1}^{4} a_{i,j} + \sum_{i \in \Omega_1} a_{i,j} + \sum_{i \in \Omega_2} a_{i,j} + \sum_{i \in \Omega_3} a_{i,j} + \sum_{i \in \Omega_0} a_{i,j} + \left(2mn - 2m + \frac{j}{2}\right)
\]
\[
= j + 4m - \left(\frac{j-2}{2}\right) + 5m - \left(\frac{j-2}{2}\right) + 8m - \left(\frac{j-2}{2}\right) + \sum_{k=1}^{q} \left(2m(4k+1) - m + \frac{j}{2}\right) + \sum_{k=1}^{q} \left(2m(4k + 2) - 2m + \frac{j}{2}\right) + \sum_{k=1}^{q} \left(2m(4k + 4) - \left(\frac{j-2}{2}\right)\right) + 2mn - 2m + \frac{j}{2}
\]
\[
= 15m + 32mq + 16mq^2 + 2mn + 2q + 3 = \frac{n^2p+n+1}{2}.
\]

Subcase 2: if \(n \equiv 3 \pmod{4}\), then \(n - 5 \equiv 2 \pmod{4}\). Let \(n = 4q + 3\) where \(q \geq 0\).

Now, for any fixed odd \(j\), the \(j^{th}\) column sum in \(A\) is,
\[
\sum_{i=1}^{n} a_{i,j} = \sum_{i=1}^{4} a_{i,j} + \sum_{i \in \Omega_1} a_{i,j} + \sum_{i \in \Omega_2} a_{i,j} + \sum_{i \in \Omega_3} a_{i,j} + \sum_{i \in \Omega_0} a_{i,j} + \left(2mn - \frac{j}{2} + \frac{3}{2}\right)
\]
\[
= j + 3m - \left(\frac{j-1}{2}\right) + 6m - \left(\frac{j-1}{2}\right) + 7m - \left(\frac{j-1}{2}\right) + \sum_{k=1}^{q+1} \left(2m(4k+1) - 2m + \frac{j+1}{2}\right) + \sum_{k=1}^{q+1} \left(2m(4k + 2) - m + \frac{j+1}{2}\right) + \sum_{k=1}^{q+1} \left(2m(4k + 4) - \left(\frac{j-1}{2}\right)\right) + 2mn + 1 - \left(\frac{j-1}{2}\right)
\]
\[
= 35m + 48mq + 16mq^2 + 2mn + 2q + 4 = \frac{n^2p+n+1}{2}.
\]

Similarly, for any fixed even \(j\), the \(j^{th}\) column sum in \(A\) is,
\[
\sum_{i=1}^{n} a_{i,j} = \sum_{i=1}^{4} a_{i,j} + \sum_{i \in \Omega_1} a_{i,j} + \sum_{i \in \Omega_2} a_{i,j} + \sum_{i \in \Omega_3} a_{i,j} + \sum_{i \in \Omega_0} a_{i,j} + \left(2mn - m + \frac{j}{2} + 1\right)
\]
\[
= j + 4m - \left(\frac{j-2}{2}\right) + 5m - \left(\frac{j-2}{2}\right) + 8m - \left(\frac{j-2}{2}\right) + \sum_{k=1}^{q+1} \left(2m(4k+1) - m + \frac{j}{2}\right) + \sum_{k=1}^{q+1} \left(2m(4k + 2) - 2m + \frac{j}{2}\right) + \sum_{k=1}^{q} \left(2m(4k + 3) - \left(\frac{j-2}{2}\right)\right) + \sum_{k=1}^{q} \left(2m(4k)^2 - \left(\frac{j-2}{2}\right)\right) +
\]
\[
= 35m + 48mq + 16mq^2 + 2mn + 2q + 4 = \frac{n^2p+n+1}{2}.
\]
\[\sum_{k=1}^{q} \left(2m(4k + 4) - \left(\frac{j-2}{2} \right) \right) + 2mn - m - \left(\frac{j-2}{2} \right) \]

\[= 35m + 48mq + 16mq^2 + 2mn + 2q + 4 = \frac{n^2p+n+1}{2}. \]

Since the sum of the entries in each column of \(A \) is \(\frac{n^2p+n+1}{2} \) for odd \(n > 5 \), \(H_{n,2m} \) is \(S \)-magic with magic constant \(\frac{n^2p+n+1}{2}(p-1) \) and \(\theta(H_{n,2m}) = 1. \)

Theorem 12. If \(G \cong H_{n,p} \) is an \(S \)-magic graph with \(\theta(G) = 1 \) and \(S \)-magic constant \(\frac{n^2p+n+1}{2}(p-1) \), then there exists a set \(S' \) such that \(G \) is an \(S' \)-magic graph with \(\theta(G) = 1 \) and \(S' \)-magic constant \(\frac{n^2p+3n-1}{2}(p-1) \).

Proof. For every \(S \)-magic graph \(G \cong H_{n,p} \) with \(\theta(G) = 1 \), one can obtain the corresponding rectangular matrix \(A = (a_{i,j}) \) associated with \(G \) by Theorem 11.

Define a new \((n \times p)\)-rectangular matrix \(A' = (a'_{i,j}) \) with entries,

\[a'_{i,j} = (np + 2) - a_{i,j} \text{ for all } i \text{ and } j. \]

By Theorem 11, it is clear that the entries in \(A \) belong to the set \(\{1, ..., np + 1\} \setminus \{np + 1 - \frac{p}{2}\} \), which sum up to \(\frac{n^2p^2+p(n+1)}{2} \) and is divisible by \(p \). Hence the magic constant is \(\frac{n^2p+n+1}{2}(p-1) \).

Now using (3), define the new set \(S' = S \cup \{np + 1 - \frac{p}{2}\} \) and the sum of all the entries in \(A' = np(np + 2) - \left(\frac{n^2p^2+p(n+1)}{2} \right) \right) = \frac{n^2p^2+3np-p}{2} \), which is divisible by \(p \). Therefore, we obtain the magic constant as \(\frac{n^2p+3n-1}{2}(p-1) \).

The rectangular matrices \(A \) and \(A' \) associated with \(H_{5,6} \) are given below,

\[
A = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
9 & 12 & 8 & 11 & 7 & 10 \\
18 & 15 & 17 & 14 & 16 & 13 \\
21 & 24 & 20 & 23 & 19 & 22 \\
29 & 25 & 30 & 26 & 31 & 27
\end{pmatrix}
A' = \begin{pmatrix}
31 & 30 & 29 & 28 & 27 & 26 \\
23 & 20 & 24 & 21 & 25 & 22 \\
14 & 17 & 15 & 18 & 16 & 19 \\
11 & 8 & 12 & 9 & 13 & 10 \\
3 & 7 & 2 & 6 & 1 & 5
\end{pmatrix}
\]

Here, the sum of the entries in each column of \(A \) and \(A' \) are 78 and 82 respectively. Then, \(H_{5,6} \) is \(S \)-magic with magic constant 390 and \(S' \)-magic
with magic constant 410.

Now the following result is immediate.

Lemma 3. If G is an r-regular graph with $\theta(G) = 1$ and with S-magic constant c, then

$$\frac{nr + r}{2} + \frac{r}{n} \leq c \leq \frac{nr + 3r}{2}.$$

Proof. The proof is obtained from Lemma 1 by substituting $a = 1$ and $a = n$ for c. \qed

Observation 1. If $G \cong H_{n,p}$ is a graph with $\theta(G) = 1$ and S-magic constant c, then

$$\frac{n^2p + n + 1}{2} (p - 1) \leq c \leq \frac{n^2p + 3n - 1}{2} (p - 1).$$

The lower and upper bounds in Observation 1 are tight when one compares with Lemma 3. It is noticed that if $S = \{1, ..., np + 1\} \setminus \{a\}$, which confirms that $H_{n,p}$ is S-magic, then the sum of all the entries in S is divisible by p. Therefore, the highest a that can be removed to get a multiple of p is
and the lowest a that can be removed to get a multiple of p is $p^2 + 1$. Hence the result follows.

Lemma 4. Let B be an $(n \times p)$-rectangular matrix with distinct entries from the set $\{1, 2, ..., np+1\} \setminus \{a\}$, where $a \in \{1, 2, ..., np\}$ having column sum s. If there exists an integer $m \geq 1$, $m|p$, then there exists m, $(n \times t)$-rectangular matrices, $B_m, (1 \leq m \leq t)$, having column sum s.

Proof. Consider the $(n \times mt)$-rectangular matrix B with distinct entries from the set $\{1, 2, ..., np+1\} \setminus \{a\}$, where $a \in \{1, 2, ..., np\}$ and having column sum s.

Construct an $(n \times t)$-rectangular matrix, B_1 by choosing any t distinct columns of B and update the B matrix by replacing all the entries in the newly chosen t columns with 0's. Now the updated B matrix will have exactly $(m - 1)t$ nonzero columns and t columns having all zero entries.

Now, repeat the process to obtain the next matrix B_2 by choosing any t non-zero columns from the remaining $(m - 1)t$ columns and update the B matrix in the same manner as in first step. Now repeatedly apply the above technique to obtain the remaining $m - 2$ matrices, $B_i, (3 \leq i \leq m)$, until the matrix B becomes an zero matrix.

From Theorem 8, it is observed that in both the cases when n is odd, p is even and when np is odd, $p \equiv 3 \mod 4$ and m is even, $\theta(mH_{n,p}) \neq 0$. The following theorem computes the distance magic index of $mH_{n,p}$ for above cases.

Theorem 13. If $n > 1, p > 1, m \geq 1$, then

$$\theta(mH_{n,p}) = \begin{cases} 0 & \text{for } n \text{ even or } mnp \text{ is odd}, \\ 1 & \text{otherwise.} \end{cases}$$

Proof. Using Theorem 8, it is clear that $\theta(mH_{n,p}) = 0$, when either n is even or mnp is odd and $\theta(mH_{n,p}) \neq 0$, when either np is odd, $p \equiv 3 \mod 4$, and m is even. On the other hand, by Theorem 10, one can conclude that $\theta(mH_{n,p}) \neq 0$, when m is even, n is odd, $p \equiv 1 \mod 4$, and $p > 1$.

For all the remaining cases, use Theorem 11 to construct the rectangular matrix A associated with the graph $H_{n,mp}$. Now using Lemma 4, construct the $(n \times p)$-matrices B_k, for $k \in \{1, ..., m\}$ Here, each B_k forms the matrix associated with the k^{th} copy of $H_{n,p}$ and hence we obtain an S-magic labeling of $mH_{n,p}$ with $c = \frac{n^2mp+n+1}{2} (p - 1)$. Therefore, $\theta(mH_{n,p}) = 1$.

\[\]
Theorem 9 confirms that if \(n \) is even or \(mnp \) is odd or \(n \) is odd and \(p \equiv 0 \pmod{4} \), then \(\theta(mC_p[K_n]) = 0 \). Now the remaining cases are given below.

Case 1: \(n \) is odd, \(m \) is even, \(p \equiv 2 \pmod{4} \).

Case 2: \(n \) is odd, \(m \) is odd, \(p \equiv 2 \pmod{4} \).

Case 3: \(n \) is odd, \(m \) is even, \(p \) is odd.

The following theorem determines the distance magic index of the graph \(mC_p[K_n] \) for all the above mentioned three cases.

Theorem 14. Let \(m \geq 1, n > 1 \) and \(p \geq 3 \), then

\[
\theta(mC_p[K_n]) = \begin{cases}
0 & \text{if } n \text{ is even or } mnp \text{ is odd or } n \text{ is odd, } p \equiv 0 \pmod{4}, \\
1 & \text{otherwise.}
\end{cases}
\]

Proof. Let \(G \cong mC_p[K_n] \). From Theorem 9 it is clear that \(\theta(G) = 0 \), when \(n \) even or \(mnp \) is odd or \(n \) is odd and \(p \equiv 0 \pmod{4} \).

Now, for all the remaining cases, using Theorem 11 construct the matrix \(A \) associated with the graph \(H_{n,mp} \) and use \(A \) in Lemma 4 to construct the \(m \) rectangular matrices associated with \(m \) copies of graph \(C_p[K_n] \). Hence, we obtain a \(S \)-magic labeling of \(G \) with \(c = n^2mp + n + 1 \) and hence \(\theta(G) = 1 \).

Let \(G \) be an \(r \)-regular graph on \(p \) vertices. From Theorem 5, for the graph \(G[K_n] \), if \(n \) is odd, \(r \) is even and \(p \) is even except when \(p \equiv r \equiv 2 \pmod{4} \), then \(\theta(G[K_n]) = 0 \). The following theorem computes the distance magic index of the graph \(G[K_n] \).

Theorem 15. Let \(G \) be an \(r \)-regular graph on \(p \) vertices. Then,

\[
\theta(G[K_n]) = \begin{cases}
0 & \text{if } n \text{ is even or } n,p \text{ are odd, } r \text{ is even,} \\
1 & \text{if } n,r \text{ are odd or } n \text{ is odd, } r \equiv p \equiv 2 \pmod{4} \\
0 & \text{otherwise.}
\end{cases}
\]

Proof. Let \(G \) be a graph on \(p \) vertices \(v_1, ..., v_p \) and let \(V_i = \{v_1, ..., v_n\} \) be set the vertices of \(G[K_n] \) that replace the vertex \(v_i \) of \(G \) for all \(i = 1, ..., p \).

Note that here \(V(G[K_n]) = \bigcup_{i=1}^{p} V_i \).

When \(n \) is even, by Theorem 4 \(\theta(G[K_n]) = 0 \) and when \(n \) is odd, \(p \) is odd and \(r \) is even, by Theorem 7 \(\theta(G[K_n]) = 0 \). Further, when \(n \) is odd and \(p \equiv r \equiv 2 \pmod{4} \), then by Theorem 6 \(\theta(G[K_n]) \neq 0 \). Also when \(n \) is odd and \(r \) is odd, by Theorem 1 \(\theta(G[K_n]) \neq 0 \). Further for all the other cases \(\theta(G[K_n]) = 0 \) by Theorem 5. Now for both the cases when \(\theta(G[K_n]) \neq 0 \), use Theorem 11 to construct the rectangular matrix \(A \) associated with the
graph $H_{n,p}$ and use the i^{th} column of A to label the set of vertices, V_i, for all $i = 1, 2, \ldots, p$. Hence, we obtain a S-magic labeling of $G[K_n]$, with $c = r\left(\frac{n^2p+n+1}{2}\right)$. Therefore we obtain that $\theta(C_p[K_n]) = 1$. \hfill \square

3. Conclusion

In this paper, the distance magic index of disjoint union of m copies of $H_{n,p}$ and disjoint union of m copies of $C_p[K_n]$ are computed and few necessary conditions are derived for a regular graph G for which $\theta(G)$ is 1. The paper establishes a technique to construct a new set of labels from an existing one in such a way that both magic constants are distinct. Further, the lower and upper bounds of magic constant of a regular graph G with $\theta(G) = 1$, are also determined.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.
[2] R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, CRC Press, Boca Raton, FL, 2011.
[3] D. Froncek, Fair incomplete tournaments with odd number of teams and large number of games, Congressus Numerantium 187 (2007) 83–89.
[4] D. Froncek, P. Kovár, T. Kovárová, Fair incomplete tournaments, Bulletin of the Institute of Combinatorics and its Applications 48 (2006) 31–33.
[5] M. I. Jinnah, On $\sum -$ labelled graphs, in: Technical Proceedings of Group Discussion on Graph Labeling Problems, (eds.) B.D. Acharya and S.M. Hedge (1999) 71–77.
[6] M. Miller, C. Rodger, R. Simanjuntak, Distance magic labelings of graphs, Australasian Journal of Combinatorics 28 (2003) 305–315.
[7] S. B. Rao, Sigma graphs-a survey, in: Labelings of Discrete Structures and Applications, (eds.) B.D. Acharya, S. Arumugam, A. Rosa, Narosa Publishing House, New Delhi (2008) 135–140.
[8] V. Vilfred, $\sum -$ labelled graphs and circulant graphs, Ph.D. thesis, University of Kerala, Trivandrum, India, 1994.
[9] D. Froncek, P. Kovar, T. Kovárová, Constructing distance magic graphs from regular graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 78 (2011) 349.

[10] M. K. Shafiq, G. Ali, R. Simanjuntak, Distance magic labelings of a union of graphs, AKCE International Journal of Graphs and Combinatorics 6 (1) (2009) 191–200.

[11] S. Arumugam, D. Froncek, N. Kamatchi, Distance magic graphs-a survey, Journal of the Indonesian Mathematical Society (2012) 11–26.