High-quality genome sequence of the radioresistant bacterium *Deinococcus ficus* KS 0460

Vera Y. Matrosova, Elena K. Gaidamakova, Kira S. Makarova, Olga Grichenko, Robert P. Volpe, Rok Tkavc, Gözen Ertem, Isabel H. Conze, Evelyne Brambilla, Marcel Huntemann, Alicia Clum, Manoj Pillay, Krishnaveni Palaniappan, Neha Varghese, Natalia Mikhailova, Dimitrios Stamatis, TBK Reddy, Chris Daum, Nicole Shapiro, Natalia Ivanova, Nikos Kyrpides, Tanja Woyke, Hajnalka Daligault, Karen Davenport, Tracy Erkkila, Lynne A. Goodwin, Wei Gu, Christine Munk, Hazuki Teshima, Yan Xu, Patrick Chain, Michael Woolbert, Nina Gunde-Cimerman, Yuri I. Wolf, Tine Grebenc, Cene Gostinčar and Michael J. Daly

Abstract

The genetic platforms of *Deinococcus* species remain the only systems in which massive ionizing radiation (IR)-induced genome damage can be investigated in vivo at exposures commensurate with cellular survival. We report the whole genome sequence of the extremely IR-resistant rod-shaped bacterium *Deinococcus ficus* KS 0460 and its phenotypic characterization. *Deinococcus ficus* KS 0460 has been studied since 1987, first under the name *Deinobacter grandis*, then *Deinococcus grandis*. The *D. ficus* KS 0460 genome consists of a 4.019 Mbp sequence (69.7% GC content and 3894 predicted genes) divided into six genome partitions, five of which are confirmed to be circular. Circularity was determined manually by mate pair linkage. Approximately 76% of the predicted proteins contained identifiable Pfam domains and 72% were assigned to COGs. Of all *D. ficus* KS 0460 proteins, 79% and 70% had homologues in *Deinococcus radiodurans* ATCC BAA-816 and *Deinococcus geothermalis* DSM 11300, respectively. The most striking differences between *D. ficus* KS 0460 and *D. radiodurans* BAA-816 identified by the comparison of the KEGG pathways were as follows: (i) *D. ficus* lacks nine enzymes of purine degradation present in *D. radiodurans*, and (ii) *D. ficus* contains eight enzymes involved in nitrogen metabolism, including nitrate and nitrite reductases, that *D. radiodurans* lacks. Moreover, genes previously considered to be important to IR resistance are missing in *D. ficus* KS 0460, namely, for the Mn-transporter *nramp* and proteins *DdrF, DdrJ* and *DdrK*, all of which are also missing in *Deinococcus deserti*. Otherwise, *D. ficus* KS 0460 exemplifies the *Deinococcus* lineage.

Keywords: *Deinococcus-Thermus*, *Deinococcaceae*, *Deinococcus ficus*, Radiation-resistant, Rod-shaped, Phenotype characterization, Genome analysis, Phylogenetic analysis
Introduction
Species of the genus *Deinococcus* have been studied for their extreme IR resistance since the isolation of *Deinococcus radiodurans* in 1956 [1]. Since then, many other species of the same genus have been isolated. The current number of recognized *Deinococcus* species is greater than 50 while there are more than 300 non-redundant 16S rRNA sequences of the family *Deinococcaceae* in the ARB project database [2]. Apart from *Deinococcus ficus* KS 0460, only a few other representatives have been studied in detail for their oxidative-stress resistance mechanisms: *D. radiodurans*, *Deinococcus geothermalis* and *Deinococcus deserti* [3]. The picture that has emerged for the life cycle of most *Deinococcus* species is one comprised of a cell-replication phase that requires nutrient-rich conditions, such as in the gut of an animal, followed by release, drying and dispersal [1]. Desiccated deinococci can endure for years, and, if blown by winds through the atmosphere, are expected to survive and land worldwide. As reported, some deinococci become encased in ice, and some entombed in dry desert soils. High temperatures also are not an obstacle to the survival of some deinococcal species. *D. geothermalis* and *Deinococcus murrayi* were originally isolated from hot springs in Italy and Portugal, respectively [1]. The prospects of harnessing the protective systems of *D. radiodurans* for practical purposes are now being realized.

The complete genome sequence presented here is for *D. ficus* KS 0460, originally named *Deinobacter grandis* KS 0460, isolated in 1987 from feces of an Asian elephant (*Elephas maximus*) raised in the Ueno Zoological Garden, Tokyo, Japan (Table 1) [4]. Later, *Deinobacter grandis* was renamed *Deinococcus grandis* [5]. Strain KS 0460 was acquired by USUHS from the originating laboratory in 1988 by Kenneth W. Minton and has been the subject of study here ever since. As a candidate for bioremediation of radioactive DOE waste sites [6] and a target of study for Table 1 Classification and general features of *Deinococcus ficus* KS 0460 according to MIGS recommendations [49]

MIGS ID	Property	Term	Evidence codea
	Classification	Domain Bacteria	TAS [50]
	Phylum	*Deinococcus-Thermus*	TAS [51, 52]
	Class	*Deinococci*	TAS [53, 54]
	Order	*Deinococcales*	TAS [5]
	Family	*Deinococcaceae*	TAS [5, 55]
	Genus	*Deinococcus*	TAS [5, 55]
	Species	*Deinococcus ficus*	TAS [4, 9]
	Strain: KS 0460		
	Gram stain	Variable	TAS [4, 9]
	Cell shape	Rod	TAS [4, 9]
	Motility	Non-motile	TAS [4, 9]
	Sporulation	None	TAS [4, 9]
	Temperature range	Mesophile	TAS [4, 9]
	Optimum temperature	30-37 °C	TAS [4, 9]
	pH range; Optimum	e.g. 5.5–10.0; 7.0	TAS [4, 9]
	Carbon source	Glucose, fructose	TAS [9]
	Habitat	*Elephas maximus* feces	TAS [4]
MIGS-6	Salinity	1% NaCl (w/v)	TAS [4]
MIGS-6.3	Oxygen requirement	Aerobic	TAS [4]
MIGS-22	Biotic relationship	Free-living	NAS
MIGS-15	Pathogenicity	Non-pathogen	NAS
MIGS-14	Geographic location	Tokyo/Japan	TAS [4]
MIGS-4	Sample collection	1987	TAS [4]
MIGS-5	Latitude	Non reported	
MIGS-4.1	Longitude	Non reported	
MIGS-4.2	Altitude	Non reported	
MIGS-4.4			

Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [56]
DNA repair [7], D. ficus KS 0460 was chosen for whole genome sequencing. The D. ficus KS 0460 genome now adds to the growing number of sequenced Deinococcus species needed to decipher the complex extreme IR resistance phenotype. To date, a genetic explanation for the complex survival tactics of deinococci has not been provided by comparative genomics or transcriptomics [8].

Organism information

Classification and features

In a chemotaxonomic study published in 1987, an isolate (strain KS 0460) from γ-irradiated feces of an Asian elephant yielded an IR-resistant bacterium with a wall structure, cellular fatty acid composition, and GC content typical of members of the genus Deinococcus [4]. However, strain KS 0460 was rod-shaped and grew as pink-pigmented colonies, whereas most other deinococci grow as diplococci/tetracocci and yield red colonies. The original isolate was named Deinobacter grandis, but was later renamed Deinococcus grandis based on its close phylogenetic relationship (16S rRNA sequences) with deinococci [5]. Strain KS 0460 was subsequently included in experimental IR survival studies together with other Deinococcus species, where it was referred to as grandis [7]. Our 16S rRNA phylogenetic analysis confirms that strain KS 0460 belongs to the genus Deinococcus, most closely related to the type strain of Deinococcus ficus DSM 19119 (also referred to as CC-FR2-10) (Fig. 1).

Consistent with the original description of D. ficus KS 0460, the rod-shaped cells are 0.5 to 1.2 μm by 1.5 to 4.0 μm (Fig. 2a) and grow as pink colonies [4, 9]. D. ficus KS 0460 was shown to have a D10 of approximately 7 kGy (Co-60) (Fig. 2b) and is capable of growth under chronic γ-irradiation at 62 Gy/h (Cs-137) (Fig. 2c). The cells are aerobic, incapable of growth under anaerobic conditions on rich medium, irrespective of the presence or absence of chronic IR (Fig. 2c). The general structure of the D. ficus KS 0460 genome was analyzed by PFGE of genomic DNA prepared from embedded cells. The plugs containing digested cells were exposed to 200 Gy prior to electrophoresis, a dose gauged in vitro to induce approximately 1 DNA double strand break per chromosome in the range 0.5 - 2 Mbp [10]. Fig. 2d shows the presence of the five largest genomic partitions: main chromosome (~2.8 Mbp), 3 megaplasmids (~500 kb, ~400 kb and ~200 kbp) and one plasmid (~98 kbp), predicting a genome size ~4.0 Mbp. We did not observe the smallest genome partition (0.007 Mbp) by PFGE. The growth characteristics of D. ficus KS 0460 in liquid culture at 32 and 37 °C (Fig. 2e) are very similar to D. ficus.

Fig. 1 16S rRNA phylogenetic tree of the Deinococcus genus. The multiple alignment of 16S rRNA sequences was constructed using MUSCLE program [58] with default parameters. The maximum-likelihood phylogenetic tree was reconstructed using the FastTree program [59], with GTR substitution matrix and gamma-distributed evolutionary rates. The same program was used to compute bootstrap values. Truepera radiovictrix was chosen as an outgroup. D. ficus KS 0460 is marked in red, D. ficus DSM 19119/CC-FR2-10 [9] - in green, completely sequenced according to NCBI genomes - in purple.
Fig. 2 Deinococcus ficus KS 0460 (EXB L-1957) phenotype. a Transmission electron micrograph. D. ficus grown in TGY, early-stationary phase. b Survival of D. radiodurans BAA-816 (red), D. ficus (blue), and E. coli (strain K-12, MG1655) (black) exposed to acute IR. The indicated strains were inoculated in liquid TGY and grown to OD 600 ~ 0.9. Cells were then irradiated on ice with Co-60. c D. ficus is an aerobe capable of growth under 62 Gy/h. DR, D. radiodurans; DF, D. ficus; EC, E. coli. d PFGE of genome partitions in a 0.9% agarose gel. PFGE conditions: 0.5 × TBE, 6 V/cm with a 10 to 100 s switch time ramp at an included angle of 120°, 14 °C, 18 h. M, marker S. cerevisiae YNN (BioRad). e Growth curves at 37 °C (blue) and 32 °C (black) in TGY medium. f ICP-MS on Mn and Fe content of D. radiodurans BAA-816 and D. ficus. Inset: Mn/Fe ratios. g Protease secretion assay. Halos indicate activity of proteases [60]. Strains: 1. D. radiodurans BAA-816, 2. D. geothermalis DSM 11300, 3. D. ficus KS 0460, 4. D. murrayi (MD591), 5. D. radiopugnans (MD567), 6. D. radiodurans (MD878, SX-108-7B-1, [61]), 7. D. proteolyticus (MD568), 8. D. proteolyticus (MD628, [62]), and 9. D. proteolyticus (MD869). h Antioxidant capacities of D. radiodurans BAA-816 (red), D. ficus (blue), and E. coli (strain K-12, MG1655) (black) ultrafiltrates assessed by antioxidant assay as described previously [63, 64]. Net AUC is an integrative value of a total fluorescence during antioxidant reaction in the presence of ultrafiltrates.
radiodurans [11]. It is unknown if strain D. ficus KS 0460 is genetically tractable because the cells are naturally resistant to the antibiotics tetracycline, chloramphenicol and kanamycin at concentrations needed to select for plasmids and integration vectors designed for D. radiodurans [12] (data not shown). D. ficus KS 0460, like other deinococci, accumulate high concentrations of Mn^{2+} (Fig. 2f) [7, 13]. Bacterial Mn^{2+} accumulation was previously shown to be important to extreme IR resistance, mediated by the Mn transport gene _nramp_ and ABC-type Mn-transporter gene [14]. We also showed that D. ficus KS 0460 produces proteases, as detected in a protease secretion assay on an indicator plate containing skimmed milk (Fig. 2g). For example, in D. radiodurans, the products of proteases – peptides – form Mn^{2+}-binding ligands of _Deinococcus_ Mn antioxidants, which protect proteins from IR-induced ROS, superoxide in particular [8, 13, 15]. Finally, we show that _D. ficus_ KS 0460 cells have a high intracellular antioxidant capacity (Fig. 2h), which is a strong molecular correlate for IR resistance [1, 11].

Extended feature descriptions

16S rDNA gene phylogenetic analysis was based on sequences from 22 type strains of genus _Deinococcus_ including ten from completely sequenced genomes, and two from _Deinococcus ficus_ strains KS 0460 and DSM 19119; and _Truepera radiovictrix_ D. gobiensis with _Deinococcus_ groups deep in the _D. ficus_ branch (Fig. 2f) [7, 13]. Bacterial Mn^{2+} accumulation was previously shown to be important to extreme IR resistance, mediated by the Mn transport gene _nramp_ and ABC-type Mn-transporter gene [14]. We also showed that _D. ficus_ KS 0460 produces proteases, as detected in a protease secretion assay on an indicator plate containing skimmed milk (Fig. 2g). For example, in _D. radiodurans_, the products of proteases – peptides – form Mn^{2+}-binding ligands of _Deinococcus_ Mn antioxidants, which protect proteins from IR-induced ROS, superoxide in particular [8, 13, 15]. Finally, we show that _D. ficus_ KS 0460 cells have a high intracellular antioxidant capacity (Fig. 2h), which is a strong molecular correlate for IR resistance [1, 11].

Growth conditions and genomic DNA preparation

D. ficus KS 0460 was recovered from a glycerol frozen stock on TGY solid rich medium (1% bactotryptone, 0.1% glucose, and 0.5% yeast extract, 1.5% w/v bacto agar) (3 days, 32 °C) with following inoculation of 25 ml TGY medium. The culture was grown up to OD_{600} ~ 0.9. Subsequently, 19 ml were used to inoculate 2 L of TGY medium and the culture was grown at 32 °C, overnight in aerated conditions in a shaker incubator (200 rpm). The cells were harvested at OD_{600} ~ 1.6. The DNA was isolated from a cell pellet (5.6 g) using Jetflex Genomic DNA Purification Kit (GENOMED, Germany). The final DNA concentration was 80 μg ml^{-1}, in a volume of 800 μl. The DNA was RNA free and passed quality control.
were corrected with manual editing in Consed [25–27]. Gap closure was accomplished using repeat resolution software [Wei Gu, unpublished], and sequencing of bridging PCR fragments with Sanger and/or PacBio technologies [Cliff Han, unpublished]. A total of 21 PCR PacBio consensus sequences were completed to close gaps and to raise the quality of the final sequence.

Genome annotation

The genome sequence was annotated using the JGI Prokaryotic Automatic Annotation Pipeline [28] and further reviewed using the Integrated Microbial Genomes - Expert Review platform [29]. Genes were predicted using Prodigal [30], followed by a round of manual curation using the JGI GenePRIMP pipeline [31]. The genome sequence was analyzed and released publicly through the Integrated Microbial Genomes platform [32]. BLASTClust was used to identify internal clusters with thresholds of 70% covered length and 30% sequence identity [33]. SignalP [34] and TMHMM [35] were used to predict signal peptides and transmembrane helices, respectively.

Genome properties

The *D. ficus* KS 0460 genome consists of a 4,019,382 bp sequence which represents six genome partitions: 2.84, 0.49, 0.39, 0.20, 0.098 and 0.007 Mbp (Table 3), consistent with PFGE (Fig. 2d); note, the smallest partition (0.007 Mbp) was too small to resolve by PFGE. The final assembly was based on 4946 Mbp of Illumina draft data, which provided

Table 2 Project information

MIGS ID	Property	Term
MIGS 31	Finishing quality	High-Quality Draft
MIGS-28	Libraries used	Illumina Standard (short insert paired-end) and Illumina CLIP (long insert paired-end)
MIGS 29	Sequencing platforms	Illumina HiSeq 2000 (CLIP library); Illumina HiSeq 2000 (Standard library); PacBio
MIGS 31.2	Fold coverage	1237x
MIGS 30	Assemblers	Allpaths r38445 and Velvet 1.1.05
MIGS 32	Gene calling method	Prodigal within JGI Prokaryotic Automatic Annotation Pipeline

Table 3 Summary of genome: one chromosome and five plasmids

Label	Size (Mbp)	Topology	INSDC identifier	RefSeq ID
Chromosome	2.84	circular	ATTJ01000001	ATTJ01000001
Megaplasmid 1	0.49	circular	ATTJ01000002	ATTJ01000002
Megaplasmid 2	0.39	circular	ATTJ01000003	ATTJ01000003
Megaplasmid 3	0.20	unknown	ATTJ01000004	ATTJ01000004
Plasmid 1	0.098	circular	ATTJ01000005	ATTJ01000005
Plasmid 2	0.007	circular	ATTJ01000006	ATTJ01000006

an average of 1237x coverage of the genome. The total genomic GC content was 69.7% and was similar across all but the smallest contig, which contained 62.5% GC. The genome contains 3827 predicted protein-coding genes and 67 RNA-coding genes (total 3894).

Insights from the genome sequence

Comparative genomic analysis of strain KS 0460 confirmed the observations made on the basis of the 16S rDNA sequence (Fig. 1) – that the sequenced strain belongs to *D. ficus* and not to *D. grandis*, as originally reported. This is exemplified by the existence of long syntenic regions between the genomes of *D. ficus* strain KS 0460 and the type strain of *D. ficus* DSM 19119 (Fig. 3a), supporting near-identity between the strains; 16S rDNA sequences of these two strains are 99% identical. A close relationship between the strains is also supported by the high (97.8%) genome-wide average nucleotide identity between the two genomes as well as the high (0.84) fraction of orthologous genes (alignment fraction) between them. The suggested cutoff values for average nucleotide identity and alignment fraction between genomes belonging to the same species are 96.5% and 0.60, respectively [36]. The comparison between *D. ficus* KS 0460 and *D. radiodurans* BAA-816 revealed almost no synteny between these genomes (Fig. 3b). Approximately 76% of the predicted proteins contained identifiable Pfam domains, and 72% were assigned to COGs (Tables 4 and 5). Of all *D. ficus* KS 0460 proteins, 3059 and 2717 had homologues in *D. radiodurans* BAA-816 and *D. geothermalis* DSM 11300, respectively. Two regions with coordinates 150,375-159,184 and 2,690,525-2,700,151 on the 2.84 Mbp chromosome [20] were identified as likely prophages of Myoviridae family using PHAST program [37]. The largest number of transposable elements belongs to IS3 family (COG2801). There are 13 copies of this element in the genome. This transposon is absent in the genomes of *D. radiodurans* BAA-816 and *D. geothermalis* DSM 11300.

Extended insights

The mapping of *D. ficus* KS 0460 genes to KEGG pathways by KOALA [38] showed that the strain contains the same DNA replication and repair genes as *D. radiodurans*, which were previously shown to be unremarkable [39] (Additional file 2: Table S1). The most striking differences between *D. ficus* KS 0460 and *D. radiodurans* BAA-816 identified by the comparison of the KEGG pathways were in purine degradation and nitrogen metabolism. Specifically, compared to *D. radiodurans*, *D. ficus* lacks guanine deaminase, xanthine dehydrogenase/oxidase, urate oxidase 5-hydroxyisourate hydratase, 2-oxo-4-hydroxy-4-carboxy-

Table 4 Genome statistics

Attribute	Value	% of Total
Genome size (bp)	4,019,382	100.00%
DNA coding (bp)	3,614,725	89.93%
DNA G + C (bp)	2,803,041	69.74%
DNA scaffolds	6	0.00%
Total genes	3894	100.00%
Protein coding genes	3827	98.28%
RNA genes	67	1.72%
Pseudo genes	45	1.16%
Genes in internal clusters	982	25.66%
Genes with function prediction	2831	72.7%
Genes assigned to COGs	2747	71.77%
Genes with Pfam domains	2964	76.12%
Genes with signal peptides	458	11.97%
Genes with transmembrane helices	779	20.36%
CRISPR repeats	0	0.00%

The total is based on the total number of protein coding genes in the genome. Proteins were assigned to the latest updated COG database using the COGnitor program [57]. Other functional categories: defense and mobilome account for 2% and 1%, respectively.

Code	Value	%age	Description
J	226	6%	Translation, ribosomal structure and biogenesis
A	0	0%	RNA processing and modification
K	166	4%	Transcription
L	97	3%	Replication, recombination and repair
B	0	0%	Chromatin structure and dynamics
D	43	1%	Cell cycle control, Cell division, chromosome partitioning
V	71	2%	Defense mechanisms
T	228	6%	Signal transduction mechanisms
M	146	4%	Cell wall/membrane biogenesis
N	25	1%	Cell motility
U	23	1%	Intracellular trafficking and secretion
O	125	3%	Posttranslational modification, protein turnover, chaperones
C	152	4%	Energy production and conversion
G	179	5%	Carbohydrate transport and metabolism
E	280	7%	Amino acid transport and metabolism
F	90	2%	Nucleotide transport and metabolism
H	149	4%	Coenzyme transport and metabolism
I	116	3%	Lipid transport and metabolism
P	138	4%	Inorganic ion transport and metabolism
Q	58	2%	Secondary metabolites biosynthesis, transport and catabolism
R	217	6%	General function prediction only
S	145	4%	Function unknown
-	1080	28%	Not in COGs

The total is based on the total number of protein coding genes in the genome. Proteins were assigned to the latest updated COG database using the COGnitor program [57]. Other functional categories: defense and mobilome account for 2% and 1%, respectively.
5-ureidoimidazoline decarboxylase, allantoinase, allantoate deiminase, and the entire urease operon (DRA0311-DRA0319 in *D. radiodurans*). In *D. ficus* KS 0460, these metabolic disruptions might contribute to the accumulation of Mn$^{2+}$ antioxidants involved in the protection of proteins from radiation/desiccation-induced ROS [8]. In contrast, *D. ficus* KS 0460 contains eight genes involved in nitrogen metabolism, namely MFS transporter of NNP family, nitrate/nitrite transporter NarK, nitrate reductase/nitrite oxidoreductase alpha subunit, nitrous oxide-forming nitrite reductase, nitrous oxide reductase, nitrite reductase (cytochrome c-5 52), nitronate monooxygenase, hydroxylamine reductase Hcp, and assimilatory nitrate reductase catalytic subunit NapA, that *D. radiodurans* BAA-816 lacks. Other genes present in *D. ficus* KS 0460 but absent in *D. radiodurans* BAA-816 are listed in Additional file 3: Table S2.

Despite the high intracellular Mn concentrations of *Deinococcus* species (Fig. 2f), one of the proteins missing in *D. ficus* KS 0460 is the homologue of the *D. radiodurans* nramp Mn-transporter (DR1709), previously identified as critical to extreme IR resistance [40, 41]. On the other hand, *D. ficus* KS 0460 encodes a manganese/zinc/iron ABC transport system (KEGG Module M00319) that is also encoded in the *D. radiodurans* genome. This points to the existence of diverse genetic routes to the complex phenotype of extreme IR resistance even if the physico-chemical defense mechanisms (accumulation of Mn and small metabolites) may be the same [42].

The largest protein families expanded in *D. ficus* KS 0460 include several signal transduction proteins (e.g. CheY-like receiver domains, diguanylate cyclase, bacteriophytochrome-like histidine kinase), several families of acetyltransferases and a stress response protein DinB/YfiT family (Fig. 4a). Many of these families are known to be specifically expanded in previously characterized *Deinococcus* species (Fig. 4b). Thus, *D. ficus* displays the same trend.

In addition to the *nramp* transporter, other genes previously considered to be important to IR resistance...
are missing in the genome of *D. ficus* KS 0460, namely, the proteins DdrF, DdrJ and DdrK, all of which are also missing in *D. deserti* [3, 40]. DdrO and IrrE proteins found to be key players in regulation of irradiation responses in *D. radiodurans* and *D. deserti* [43, 44] are present in *D. ficus* KS 0460 (DeinoDRAFT_1503 and DeinoDRAFT_1002, respectively). This suggests that the same regulatory pathways are likely active in *D. ficus* KS 0460.

Conclusions

Twenty years have passed since the extremely IR-resistant bacterium *D. radiodurans* became one of the first free-living organisms to be subjected to whole genome sequencing [45]. Since then, comparative analyses between *D. radiodurans* and other high-quality draft and complete *Deinococcus* genomes have continued, but with few novel findings [10]. *Deinococcus ficus* KS 0460 hereby becomes the eleventh *Deinococcus* reference genome. We confirm by transmission electron microscopy that the very IR-resistant strain KS 0460 grows as single bacillus-shaped cells, whereas deinococci typically grow as diplococci and tetracocci. Our 16S rRNA phylogenetic analysis confirms that strain KS 0460 belongs to the genus *Deinococcus*, its ribosomal RNA being almost identical to the type strain of *D. radiodurans* DSM 19119. The *D. ficus* KS 0460 genome (4.019 Mbp) is 28% larger than *D. radiodurans* BAA-816 and is divided into six genome partitions compared to four partitions in *D. radiodurans*. Of the 875 genes representing the core genome of ten *Deinococcus* species, only five genes are missing from *D. ficus* KS 0460. In other words, *D. ficus* KS 0460 exemplifies the *Deinococcus* lineage. In particular, *D. ficus* KS 0460 contains the same DNA replication and repair genes, and antioxidant genes (e.g. Mn-dependent superoxide dismutase and catalase) as *D. radiodurans*, which were previously shown to be unremarkable [10]. The most striking genomic differences between *D. ficus* KS 0460 and *D. radiodurans* BAA-816 are metabolic: (i) *D. ficus* lacks nine genes involved in purine degradation present in *D. radiodurans*, possibly contributing to the accumulation of small metabolites known to be involved in the production of Mn$^{2+}$ antioxidants, which specifically protect proteins from IR-induced ROS; and (ii) *D. ficus* contains eight genes in nitrogen metabolism that are absent from *D. radiodurans*, including nitrate and nitrite reductases, suggesting that *D. ficus* has the ability to reduce nitrate, which could facilitate survival in anaerobic/microaerophilic environments. We also show that *D. ficus* KS 0460 accumulates high Mn concentrations and has a significantly higher antioxidant capacity than IR-sensitive bacteria. However, *D. ficus* KS 0460 lacks the homologue of the *D. radiodurans* nrramp Mn transporter, previously identified as critical to extreme IR resistance [40, 41], but *D. ficus* KS 0460 encodes at least one alternative manganese transport system. Thus, like previous *Deinococcus* genome comparisons, our *D. ficus* analysis demonstrates the limited ability of genomics to predict complex phenotypes, with the pool of genes consistently present in radioresistant, but absent from radiosensitive species of the phylum shrinking further [3, 10]. With *D. ficus* KS 0460, the number of completed *Deinococcus* genomes is now sufficiently large to determine the core genome and pangenome of these remarkable bacteria. We anticipate that these fresh genomic insights will facilitate approaches applying *Deinococcus* Mn antioxidants in the production of irradiated vaccines [46, 47] and as in vivo radioprotectors [48].

Additional files

Additional file 1: Figure S1. 16S rRNA phylogenetic tree of the *Deinococcus* genus. The multiple alignment of 16S rRNA sequences was constructed using MUSCLE program [58] with default parameters. The maximum-likelihood phylogenetic tree was reconstructed using the PhyML program [18], with GTR substitution matrix, empirical base frequencies, and gamma-distributed site rates; support values were computed using the aBayes method. *Truoperla radiocrista* was chosen as an outgroup. *D. ficus* KS 0460 is marked in red, *D. ficus* DSM 19119 in green, completely sequenced genomes (according to GenBank) in purple. (PDF 416 kb)

Additional file 2: Table S1. DNA repair genes that are present in *D. ficus* KS 0460 and in *D. radiodurans* BAA-816. (XLSX 13 kb)

Additional file 3: Table S2. Genes that are present in *D. ficus* KS 0460 but absent in *D. radiodurans* BAA-816. (XLSX 44 kb)

Abbreviations

COGs: Clusters of Orthologous Groups; D$_{10}$: Dose yielding 10% survival; IR: Ionizing radiation; KOALA: KEGG Orthology And Links Annotation; Mn$^{2+}$: Manganese ions; Net AUC: Net area under the fluorescence decay curve; PFGE: Pulsed-field gel electrophoresis; ROS: Reactive oxygen species; USUHS: Uniformed Services University of the Health Sciences

Acknowledgements

We thank Dr. Alexander Vasilenko for transmission electron microscopy of *D. ficus* KS 0460.

Funding

The work performed at the Uniformed Services University of the Health Sciences was supported by a Defense Threat Reduction Agency grant HDTRA-18774-M. CG, NGC and TG acknowledge the support of the Slovenian Research Agency (BI-US/12-13-003, BI-US/14-15-009, Infrastructure Centre Mycosmo, MRC UL) and the Research Program in Forest Biology, Ecology and Technology (P4-0107). The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Disclaimer

The opinions expressed herein are those of the authors, and are not necessarily representative of those of the USUHS, the Department of Defense; or, the United States Army, Navy, or Air Force.

Authors’ contributions

VM and EG designed experimental protocols; VM, EG, OG, PK, RT, RV and IC performed experiments, collection and analysis of data; MW was responsible for irradiator setup and dosimetry; EB purified the genomic DNA; CG, KM, TM, YW, MH, AC, MP, KP, NV, NM, DS, TBKR, CD, NS, NI, NK, TW, HD, KD, TE, LG, WG, CM, HT, YX and PC were involved in sequencing, assembly, annotation and analysis of the *D. ficus* genome; CG, MD, KM, and VM drafted the manuscript; MD, EG, VM, OG, RT, GE, NG-C, TG and YW were involved in editing the final manuscript; and all authors read and approved the final manuscript.
Competing interests
The authors declare they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1University of Bielefeld, Bielefeld, Germany. 2Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. 3DOE Joint Genome Institute, Walnut Creek, CA, USA. 4University of Bielefeld, Bielefeld, Germany. 5Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. 6DOE Joint Genome Institute, Walnut Creek, CA, USA. 7Los Alamos National Laboratory, Los Alamos, NM, USA. 8Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia. 9Slovenian Forestry Institute, Ljubljana, Slovenia.

Received: 9 March 2017 Accepted: 20 July 2017

Published online: 28 July 2017

References
1. Daly MJ. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol. 2009; doi:10.1038/nrmicro2073.
2. Ludwig W, Strunk O, Westram V, Richter L, Meier H, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004; doi:10.1093/nar/gkh293.
3. Makarova KS, Daly MJ. Comparative genomics of stress response systems in Deinococcus bacteria. In: Storz G, Henne R, editors. Bacterial stress responses; 2011. p. 445–57.
4. Oyaizu H, Stackebrandt E, Schleifer KH, Ludwig W, Pohla H, Ito H, et al. A radiation-resistant rod-shaped bacterium, Deinobacter grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. Int J Syst Bacteriol. 1987;37:62–72.
5. Rainey FA, Nobre MF, Schumann P, Stackebrandt E, Da Costa MS. Phylogenetic diversity of the deinococci as determined by 16S rRNA ribosomal DNA sequence comparison. Int J Syst Bacteriol. 1997; doi:10.1099/0022-2836-47-2-510.
6. Daly MJ. Engineering radiation-resistant bacteria for environmental biotechnology. Curr Opin Biotechnol. 2000;11(3):280–5.
7. Daly MJ, Gaidamakova EK, Matosova VV, Vasilienko A, Zhai M, Venkateswaran A, et al. Accumulation of MnIII in Deinococcus radiodurans facilitates gamma-radiation resistance. Science. 2004; doi:10.1126/science.1103185.
8. Daly MJ. Death by protein damage in irradiated cells. DNA Repair (Amst). 2012; doi:10.1016/j.dnarep.2011.10.024.
9. Lai WA, Kampfer P, Arun AB, Shen FT, Huber B, Rekha PD, Young CC. A genome sequence of Deinococcus radiodurans genomic DNA. Nat Biotechnol. 2007; doi:10.1038/nbt1457.
10. Makarova KS, Ormelchenko MV, Gaidamakova EK, Matosova VV, Vasilienko A, Zhai M, Venkateswaran A, et al. Accumulation of MnIII in Deinococcus radiodurans facilitates gamma-radiation resistance. Nucleic Acids Res. 2004; doi:10.1093/nar/gkh293.
11. Slade D, Redman M. Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev. 2012; doi:10.1128/MMBR.00015-10.
12. Bitm H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol. 2000; doi:10.1038/71986.
13. Daly MJ, Gaidamakova EK, Matosova VV, Kjeng JG, Fukumoto R, Lee DY, et al. Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS One. 2010; doi:10.1371/journal.pone.0012570.
14. Sun H, Li M, Xu G, Chen H, Jiao J, Tian B, et al. Radiation resistance in the radiation-resistant bacterium. PLoS Biol. 2007; doi:10.1371/journal.pbio.0050092.
15. Ivanova N, Rohde C, Munk C, Nolan M, Lucas S, Ritzi R, et al. Complete genome sequence of the radiation-resistant bacterium. PLoS Biol. 2007; doi:10.1371/journal.pbio.0050092.
16. Ivanova N, Rohde C, Munk C, Nolan M, Lucas S, Ritzi R, et al. Complete genome sequence of the radiation-resistant bacterium. PLoS Biol. 2007; doi:10.1371/journal.pbio.0050092.
17. Price MN, Dehal PS, Arkin AP. FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One. 2010; doi:10.1371/journal.pone.0094900.
18. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52(5):696–704.
19. JGI Genome Portal Deinococcus sp. 2009 database. http://genome.jgi.doe.gov/DensoDRAFT_10292/Deinococcus_10292.info.html. Accessed 9 May 2017.
20. NCBI GenBank site. https://www.ncbi.nlm.nih.gov/nuccore/AT50000000.1. Accessed 9 May 2017.
21. Smo MA, Waterhouse RM, Joannis P, Kirvesnaev EA, Zsdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015; doi:10.1093/bioinformatics/btv351.
22. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pan-genome analysis. Appl Environ Microbiol. 2013; doi:10.1128/AEM.02141-13.
23. Bennett S, Solexa Ltd. Pharmacogenomics. 2004; doi:10.1517/14623416.5.4.433.
24. Zebrowski D, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008; doi:10.1101/gr.74492.107.
25. Eving B, Green P. Base-calling of automated sequencer traces using phred. II Error probabilities Genomes Res. 1998; doi:10.1186/1471-2105-11-19.
26. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genomes Res. 1998; doi:10.1186/1471-2105-11-19.
27. Hunttemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paz-Espino D, Palaniappan K, et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v4). Stand Genomic Sci. 2015; doi:10.1186/1471-2105-11-19.
28. Ivanova NN, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, et al. Accumulation of MnIII in Deinococcus radiodurans facilitates gamma-radiation resistance. Nucleic Acids Res. 2016; doi:10.1093/nar/gkw929.
29. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; doi:10.1016/S0022-2836(05)80360-2.
30. Peterson TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2010; doi:10.1038/nmeth.1457.
31. Ewing B, Hiller L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I Accuracy assessment Genomes Res. 1998; doi:10.1186/1471-2105-11-19.
32. Pati A, Ivanova NN, Mikhailova N, Ochvinnikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods. 2010; doi:10.1038/nmeth.1457.
33. Daly MJ. Engineering radiation-resistant bacteria for environmental biotechnology. Curr Opin Biotechnol. 2001; doi:10.1016/S0958-1669(01)00009.55.
34. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2010; doi:10.1038/nmeth.1457.
35. Kyrpides NC, Pati A. Microbial species delineation using whole genome phylogenetic trees and whole genome sequences. J Mol Biol. 2016; doi:10.1016/j.jmb.2015.11.006.
36. Devigne A, Ithurbide S, Bouthier de la Tour, Passot F, Mathieu P, Sommer S, Servant P. DrDd is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioreistant Deinococcus radiodurans bacterium. Mol Microbiol. 2015; doi:10.1111/mmi.12991.
44. Ludanyi M, Blanchard L, Dulemer R, Brandelet G, Bellanger L, Pignol D, Lemaire D, de Groot A. Radiation response in Deinococcus deserti: Irp is a metalloprotease that cleaves repressor protein DdrQ. Mol Microbiol. 2014; doi:10.1111/mmm.12774.

45. White O, Eisen JA, Heidelberg JF, Hickey BK, Peterson JD, Dodson RJ, et al. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science. 1999;286(5445):1571–7.

46. Gaidamakova EK, Myles IA, McDaniel DP, Fowler CJ, Valdez PA, Naik S, et al. Preserving immunogenicity of lethally irradiated viral and bacterial vaccine epitopes using a radioprotective Mn2+–peptide complex from Deinococcus. Cell Host Microbe. 2012; doi:10.1016/j.chom.2012.05.011.

47. Gayen M, Gupta P, Morazzani EM, Gaidamakova EK, Knollmann-Ritschel B, Daly MJ, et al. Deinococcus Mn2+-peptide complex: a novel approach to alphavirus vaccine development. Vaccine. 2017; doi:10.1016/j.vaccine.2017.05.016.

48. Gupta P, Gayen M, Smith JT, Gaidamakova EK, Matrosova VY, Grichenko O, et al. MDP: a Deinococcus Mn2+-decapetide complex protects mice from ionizing radiation. PLoS One 2016; doi:10.1371/journal.pone.0160675.

49. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008; doi:10.1038/nbt.1360.

50. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87(12):4576–9.

51. Weisburg WG, Giovannoni SJ, Woese CR. The Deinococcus-Thermus phylum and the effect of tRNA composition on phylogenetic tree construction. Syst Appl Microbiol. 1989;11:126–34.

52. Garrity GM, Holt JG. Taxonomic outline of the Archaea and Bacteria. In: Garrity GM, Boone DR, Castenholz RW, editors. Bergey’s manual of systematic bacteriology. Second edition, volume 1. New York: Springer; 2001. p. 155–66.

53. List Editor. Validation list no. 85. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol. 2004;54:2285–90. http://dx.doi.org/10.1099/ijs.0.63767-0.

54. Garrity GM, Holt JG. Class I: In: Garrity GM, Boone DR, Castenholz RW, editors. Bergey’s manual of systematic bacteriology. Second edition, volume 1. New York: Springer; 2001. p. 395.

55. Brooks BW, Murray RG. Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci. Deinococcus fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol. 1981; doi:10.1099/00207713-31-3-353.

56. Matrosova et al. Standards in Genomic Sciences (2017) 12:46

57. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000; p. 25–9.

58. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015; doi:10.1093/nar/gku1223.

59. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004; doi:10.1186/1471-2105-5-113.

60. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009; doi:10.1093/molbev/msp077.

61. Fredrickson JK, Zachara JM, Balkwill DL, Kennedy D, Li SM, Kostendarthes HM, et al. Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington State. Appl Environ Microbiol. 2004; doi:10.1128/AEM.70.7:4230-4241.2004.

62. Masters CI, Murray RG, Moseley BE, Minton KW. DNA polymorphisms in new isolates of “Deinococcus radiopugnans”. J Gen Microbiol. 1991; doi:10.1099/00221287-137-7-1459.

63. Dávalos A, Barceló B, Suberviola J, Gómez-Cordovés C. ORAC-fluorescein as a model for evaluating antioxidant activity of wines. Pol J Food Nutr Sci. 2003;12(53):133–6.

64. Mikami I, Yamaguchi M, Shinmoto H, Tsuchida T. Development and validation of a microplate-based β-carotene bleaching assay and comparison of antioxidant activity (AOA) in several crops measured by β-carotene bleaching, DPPH and ORAC assays. Food Sci Technol Res. 2009; 15(2):171–8.