THE ANALYSIS OF MECHANICAL CHARACTERISTICS OF POLYESTER SEWING THREADS FROM STAPLE FIBERS

Nenad Ćirković*, Nataša Stamenković, Tatjana Šarac, Jovana Stepanović

Faculty of Technology, Leskovac, Serbia

Joining of the parts of clothing items in the clothing industry is mostly done with sewing threads, of which polyester threads occupy a significant place. At the joining places e.g. sewing, together with the seams and stitches, the threads should provide adequate comfort to the garment. The characteristics of the seams will also depend on their characteristics. The paper analyzes polyester threads from staple fibers, linear density from 23 tex to 48 tex. The dependences between the mechanical characteristics of the threads and the threads in the loop, as well as their mutual relations by the corresponding coefficients are presented. The obtained results can be used by manufacturers of sewing threads and clothes in the design and the selection of threads for the purpose of predicting the mechanical characteristics of seams on garments.

Keywords: polyester thread, mechanical characteristics of thread and loop thread

Introduction

During the exploitation of textile materials, their dimensions change (usually by stretching). It is the same with sewing threads. Therefore, the basic task when designing the process of their processing (e.g. sewing parts of clothes) is to predict the allowable loads that would not cause the occurrence of permanent deformations.

Quantities such as elasticity limit, tensile strength and residual deformations describe the deformation characteristics of the threads under the action of a certain tensile force. Knowing these characteristics under the action of a constant or variable force will enable the correct design of the technological process of sewing.

Due to the specific internal structure of fibers (complex polymeric materials), all three types of deformations (elastic, viscoelastic and plastic) appear at the same time during their loading, so that their rheological constants cannot be determined as in elastic materials. This problem is emphasized in single-thread and finished yarns, i.e. the threads in which it is additionally difficult to determine rheological constants due to their complex internal structure and the way of connecting the basic structural elements in them [1].

Mechanical properties determine the ability of sewing threads to resist the action of various external forces that can cause different types of deformations (shear, compression, stretching, twisting, bending, complete destruction, etc.). As a result of the action of these forces, there are changes in the shape and dimensions (i.e. external appearance) and disturbances in the structure. The magnitude of the induced deformation depends on the type, intensity, manner and time of action of the force, as well as on the time of relaxation and rest [2,3].

Some studies have shown that even small loads of textile materials cause residual (plastic) deformations. Therefore, the elastic limit means the stress which, after unloading and resting for one minute, does not leave behind a deformation greater than 0.1% (relative elongation). In other studies, half of the initial modulus is recommended for the allowable load limit (initial modulus - force causing a relative elongation of 1%) [4,5]. For the load limit, the so-called elastic limit to the “module” curve is used which is the first derivative of the force by relative elongation based on the curve F-ε [5,6].

Depending on the mode of action of the load, there are three groups of mechanical characteristics of yarns and threads: semi-cyclic, single-cycle and multi-cycle [7]. Semi-cyclic yarns and threads are obtained by testing during the action of the load, single-cyclic during the whole cycle load-unloading-rest and multi-cyclic during the action of the whole cycle several times. Depending on the material tear during testing, i.e. until complete disruption of the structure or not, the semi-cyclic and multicyclic characteristics can be intermittent and continuous [2,8].

Experimental

Material and methods

Polyester sewing threads made of "high strength" staple fibers were used for the experimental part in the work. The characteristics of the fibers according to the

*Author address: Nenad Ćirković, Faculty of Technology, Bulevar oslobođenja 124, 16000 Leskovac, Serbia
E-mail: nenadcira@gmail.com
The manuscript received: May, 18, 2020.
Paper accepted: May, 30, 2020.
manufacturer’s specification are: length 38 ÷ 40 mm, linear density 0.133 tex (1.2 den), relative breaking force >65 cN·tex⁻¹, breaking elongation 25%. 25 threads of different linear density from 23 tex to 48 tex were used, which have two (threads from 1 to 18) and three yarns (threads from 9 to 25) in the structure.

The following methods were used:
- SRPS EN 12751:2008 Textiles - Sampling of fibres, yarns and fabrics for testing
- SRPS EN ISO 139:2007/A1:2014 Textiles - Standard atmospheres for conditioning and testing - Amendment 1
- SRPS EN ISO 2060:2012 Textiles - Yarn from packages - Determination of linear density (mass per unit length) by the skein method
- Koehlin formula for thread twist coefficient
- SRPS EN ISO 2061:2016 Textiles - Determination of twist in yarns - Direct counting method
- SRPS EN ISO 2062:2012 Textiles - Yarns from packages - Determination of single-end breaking force and elongation at break using a constant rate of extension (CRE) tester (also for the mechanical characteristics of the thread of the loop).

According to the function of the curve F-ε, with the appropriate software, the values of forces and elongations at the first irreversible change in the structure of the thread and the thread of the loop, as well as the upper load limits were determined.

Uster Autosorter 3 and Tinius Olsen H5KS were used as test devices.

Results and discussion

Before each use of materials in the further production process, it is necessary to check their characteristics. Table 1 shows the test results of linear density \(T_t\), number of twist \(T\), thread twist coefficient \(\alpha_t\), breaking force \(F_t\), breaking elongation \(\varepsilon_t\), relative breaking force \(F_r\), breaking force in loop \(F_l\), breaking elongation in loop \(\varepsilon_l\).

Table 1. Results of testing the characteristics of polyester sewing threads and threads in the loop

Sewing thread	\(T_t\) (tex)	\(T\)	\(\alpha_t\)	\(F_t\) (cN)	\(\varepsilon_t\) (%)	\(F_r\) (cN·tex⁻¹)	\(F_l\) (cN)	\(\varepsilon_l\) (%)
1	23.2	1105	6332	631	14.46	27.19	1108	14.12
2	23.8	1076	5227	674	16.02	28.56	1042	15.12
3	25.1	1074	5381	584	16.02	27.55	1209	15.51
4	25.5	1064	5373	733	15.56	28.73	1372	14.66
5	26.0	1060	5405	605	18.98	30.97	1398	18.02
6	26.3	1066	5112	838	18.98	31.81	1302	18.37
7	27.0	985	5175	838	17.95	30.28	1489	17.54
8	28.6	981	5161	849	16.38	30.33	1554	17.90
9	29.7	952	5100	872	20.36	30.37	1504	18.33
10	29.3	933	4886	872	14.21	24.78	1500	13.75
11	30.0	898	4919	861	16.61	29.36	1894	15.26
12	30.7	870	4820	896	16.29	29.17	1732	15.87
13	31.6	866	4863	970	15.19	30.71	1812	14.82
14	32.2	848	4812	1095	14.40	31.24	1744	14.07
15	33.3	856	4875	1121	15.52	33.66	1808	14.34
16	34.2	814	4762	1132	19.50	33.09	1964	16.38
17	35.6	788	4732	1163	15.50	32.68	1830	14.87
18	36.1	761	4693	1173	20.25	32.50	1836	19.75
19	38.9	763	4759	1195	16.44	32.72	2128	15.11
20	39.5	758	4766	1240	15.14	31.36	2078	14.14
21	40.3	753	4816	1240	15.96	30.52	2032	15.35
22	41.6	756	4878	1265	15.70	30.14	1982	13.29
23	44.7	704	4705	1325	20.06	29.67	2060	18.89
24	45.9	696	4713	1430	16.62	31.18	2264	16.08
25	46.0	674	4666	1576	20.98	32.66	2432	17.27

According to the results shown in Table 1, Figure 1 shows the dependence of the breaking force of the thread in the loop on the breaking force of the thread, and Figure 2 shows the dependence of the breaking elongation of the thread in the loop on the breaking elongation of the thread.

![Figure 1. Dependence of the breaking force of the thread in the loop on the breaking force of the thread](image1)

![Figure 2. Dependence of the breaking elongation of the thread in the loop on the breaking elongation of the thread](image2)

From the Figures, it can be noticed that the dependencies between these characteristics are quite satisfactory in terms of the functional dependence, which is confirmed by the values of Adj. R-Squar (0.871 and 0.746) and can be represented by the corresponding functional equations (1 i 2):

\[F_l = 282.7158 \times 1.38039 \times F_t \] \[\varepsilon_l = 3.9436 \times 0.7025 \times \varepsilon_t \]

These dependencies can be used in predicting the breaking characteristics of sewing threads in a loop, and further used for breaking characteristics of seams.
Table 2 shows the values of deformation characteristics of threads and the threads in the loop determined on the basis of force-elongation curves: force at the first irreversible change in the thread structure F_{t1}, elongation at the first irreversible change in the thread structure ε_{t1}, force at the upper limit of the thread load F_{t2}, elongation at the upper limit of the thread load ε_{t2}, force at the first irreversible change in the thread structure in the loop F_{l1}, elongation at the first irreversible change in the thread structure in the loop ε_{l1}, force at the upper limit of the thread load in the loop F_{l2}, elongation at the upper limit thread loads in the loop ε_{l2}.

| Table 2. Values of deformation characteristics of polyester sewing threads and threads in the loop |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Sewing thread | F_{t1} (kN) | ε_{t1} (%) | F_{t2} (kN) | ε_{t2} (%) | F_{l1} (kN) | ε_{l1} (%) | F_{l2} (kN) | ε_{l2} (%) |
| 1 | 116 | 2,16 | 537 | 12,76 | 221 | 2,92 | 911 | 13,16 |
| 2 | 112 | 2,55 | 616 | 15,16 | 227 | 3,04 | 832 | 13,32 |
| 3 | 127 | 2,55 | 585 | 14,70 | 203 | 2,34 | 1153 | 15,02 |
| 4 | 115 | 2,28 | 761 | 14,88 | 238 | 2,84 | 1048 | 14,04 |
| 5 | 145 | 2,28 | 762 | 15,94 | 328 | 3,29 | 1431 | 15,84 |
| 6 | 113 | 2,24 | 522 | 2,96 | 273 | 2,92 | 1163 | 16,28 |
| 7 | 96 | 505 | 607 | 2,96 | 296 | 3,12 | 1257 | 15,76 |
| 8 | 170 | 2,36 | 808 | 15,84 | 326 | 2,80 | 1497 | 16,12 |
| 9 | 146 | 2,00 | 630 | 2,95 | 255 | 3,04 | 1091 | 15,92 |
| 10 | 155 | 1,84 | 710 | 12,04 | 336 | 2,44 | 1428 | 12,68 |
| 11 | 159 | 2,12 | 848 | 14,15 | 264 | 2,52 | 1283 | 13,48 |
| 12 | 173 | 2,72 | 808 | 13,72 | 448 | 3,44 | 1462 | 15,96 |
| 13 | 129 | 1,84 | 585 | 14,80 | 304 | 2,84 | 1085 | 14,68 |
| 14 | 172 | 1,80 | 943 | 13,96 | 307 | 2,36 | 1519 | 13,28 |
| 15 | 215 | 2,04 | 1076 | 14,12 | 457 | 2,64 | 1811 | 13,36 |
| 16 | 211 | 2,24 | 1021 | 16,16 | 466 | 2,80 | 1688 | 15,08 |
| 17 | 218 | 2,48 | 769 | 13,24 | 361 | 2,84 | 1483 | 14,08 |
| 18 | 195 | 2,24 | 899 | 13,60 | 323 | 3,29 | 1219 | 15,56 |
| 19 | 259 | 2,00 | 1071 | 13,88 | 556 | 2,48 | 2118 | 14,08 |
| 20 | 258 | 2,00 | 1229 | 13,90 | 450 | 2,04 | 2135 | 13,72 |
| 21 | 185 | 1,92 | 894 | 14,44 | 168 | 2,54 | 1362 | 16,24 |
| 22 | 174 | 1,84 | 945 | 12,72 | 328 | 2,12 | 1590 | 12,04 |
| 23 | 229 | 2,12 | 1138 | 14,26 | 396 | 2,48 | 2021 | 15,20 |
| 24 | 212 | 2,36 | 856 | 13,32 | 394 | 2,48 | 1858 | 14,56 |
| 25 | 211 | 2,00 | 1337 | 15,72 | 419 | 2,44 | 2399 | 16,00 |

In order to be able to use the stated values of thread characteristics (from Tables 1 and 2) for further analysis, Table 3 shows the coefficients of mutual relations of mechanical and deformation characteristics of polyester sewing threads and threads in a loop in relation to breaking characteristics of threads.

Table 3. Coefficients of mutual relations of mechanical and deformation characteristics of polyester sewing threads and threads in a loop in relation to breaking characteristics of threads

In order to be able to use the stated values of thread characteristics (from Tables 1 and 2) for further analysis, Table 3 shows the coefficients of mutual relations of mechanical and deformation characteristics of polyester sewing threads and threads in a loop in relation to breaking characteristics of threads.

Table 3. Coefficients of mutual relations of mechanical and deformation characteristics of polyester sewing threads and threads in a loop in relation to breaking characteristics of threads

In order to be able to use the stated values of thread characteristics (from Tables 1 and 2) for further analysis, Table 3 shows the coefficients of mutual relations of mechanical and deformation characteristics of polyester sewing threads and threads in a loop in relation to breaking characteristics of threads.

In order to be able to use the stated values of thread characteristics (from Tables 1 and 2) for further analysis, Table 3 shows the coefficients of mutual relations of mechanical and deformation characteristics of polyester sewing threads and threads in a loop in relation to breaking characteristics of threads.
elargements of threads and threads in the loop, forces and elongations at the first irreversible change in the structure of threads and threads in the loop, forces and elongations at the upper load limit of threads and threads in the loop. Thanks to these relations, the share of breaking characteristics of the threads contained in the deformation, and breaking characteristics of the threads and the threads in the loop can be defined.

Therefore, the basic task in designing the process of making sewing threads and their use (e.g. sewing parts of clothes) is to predict the allowable loads that would not cause the occurrence of permanent deformations.

Acknowledgement

The Republic of Serbia - Ministry of Education, Science and Technological Development, Program for financing scientific research, ev. no. 451-03-68/2020-14/200133

References

[1] H. M. Wan, X. G. Wang, The fineness variation of degummed hemp fibers, International Development of Kenaf and Allied Fibers-Proceedings of the International Kenaf Symposium, Minneapolis, MN, U.S.A. (2004) 127-136.

[2] Г. Н. Кукин, Л. Н. Соловьев, Л. И. Кобляков, Текстильное материаловедение (волокна и нити), Легпромбытиздат, Москва, 1989., p. 119.

[3] J. Stepanovic, D. Radivojevic, V. Petrovic, C. Besic, Projecting of deformation characteristics of single and twisted wool yarns, Industria textila, 61(3) (2010) 95-105.

[4] Y. P. Zhang, X. G. Wang, The effect of along-fibre diameter variation on fibre tensile behaviour, Wool Technology Sheep Breed., 48(4) (2000) 303-312.

[5] J. Stepanovic, S. Golubovic, D. Trajkovic, M. Stamenkovic, Analiza prekidanih karakteristika pamucnih koncanih predaca, Zbornik radova 19, Tehnološkog fakultet, Leskovac, (2009) 281-288.

[6] Y. P. Zhang, X. G. Wang, N. Pan, R. Postle, Weibull analysis of the tensile behavior of fibres with geometrical irregularities, Journal of Materials Science, 37(7) (2002) 1401-1406.

[7] D. Radivojevic, M. Dordevic, D. Trajkovic, Ispitivanje tekstila, Visoka strukovna škola za tekstil, Leskovac, 2016., p. 205.

[8] С. М. Кирюхин, Ю. С. Шустов, Текстильное материаловедение, КолосС, Москва, 2011., p. 147.

Izvod

ANALIZA MEHANIČKIH KARAKTERISTIKA POLIESTERSKIH ŠIVAČIH KONACA IZ ŠTAPELNIH VLAKANA

Nenad Ćirković, Nataša Stamenković, Tatjana Šarac, Jovana Stepanović

Tehnološki fakultet, Leskovac, Srbija

(KORIGOVAN NAPISUŠTECNI RAD)
UDK 677.072.6:677.494.674

Spajanje delova odevnih predmeta u industriji izrade oseću se najviše vrši šivačim koncima od kojih poliesterski konci zauzimaju značajno mesto. Na mestima spa- janja odnosno šivenja, zajedno sa šavovima i bodovima, konci treba na obe- bede odevnom predmetu odgovarajuću komformost. Od njihovih karakteristika zavisite i karakteristike šavova. U radu su analizirani poliesterski konci iz štapelnih vlakana, podužnih masa od 23 tex do 48 tex. Prikazane su zavisnosti između mehaničkih karakteristika konaca i konaca u petlji kao i njihovi međusobni odnosi odgovarajućim koeficijentima. Dobijeni rezultati mogu poslužiti proizvođačima šivačih konaca za projektovanje i izbor konaca u svrhu prognoziranja mehaničkih karakteristika šavova na odevnim predmetima.

Ključne reči: poliesterski konac, mehaničke karakteristike konca i konca u petljii

68