Ketogenic dietary interventions in autosomal dominant polycystic kidney disease—a retrospective case series study: first insights into feasibility, safety and effects

Sebastian Strubl1,2, Simon Oehm2, Jacob A. Torres1, Franziska Grundmann2, Jazmine Haratani1, Morgan Decker1, Sabrina Vuong1, Amrit Kaur Bhandal1, Nils Methot1, Rhianna Haynie-Cion1, Franziska Meyer3, Florian Siedek3, Uwe Korst4, Roman-Ulrich Müller2,5 and Thomas Weimbs1

1Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA, 2Department II of Internal Medicine and Center for Molecular Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, 3Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, 4PKD Familienärzte Zystennieren e.V., Bensheim, Germany and 5Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany

Correspondence to: Thomas Weimbs; E-mail: weimbs@ucsb.edu

ABSTRACT

Background. Our laboratory published the first evidence that nutritional ketosis, induced by a ketogenic diet (KD) or time-restricted diet (TRD), ameliorates disease progression in polycystic kidney disease (PKD) animal models. We reasoned that, due to their frequent use for numerous health benefits, some autosomal dominant PKD (ADPKD) patients may already have had experience with ketogenic dietary interventions (KDIs). This retrospective case series study is designed to collect the first real-life observations of ADPKD patients about safety, feasibility and possible benefits of KDIs in ADPKD as part of a translational project pipeline.

Methods. Patients with ADPKD who had already used KDIs were recruited to retrospectively collect observational and medical data about beneficial or adverse effects and the feasibility and safety of KDIs in questionnaire-based interviews.

Results. A total of 131 ADPKD patients took part in this study. About 74 executed a KD and 52 a TRD for 6 months on average. A total of 86% of participants reported that KDIs had improved their overall health, 67% described improvements in ADPKD-associated health issues, 90% observed significant weight loss, 64% of participants with hypertension reported improvements in blood pressure, 66% noticed adverse effects that are frequently observed with KDIs, 22 participants reported safety concerns like hyperlipidemia, 45 participants reported slight improvements in estimated glomerular filtration rate and 92% experienced KDIs as feasible while 53% reported breaks during their diet.
Conclusions. Our preliminary data indicate that KDIs may be safe, feasible and potentially beneficial for ADPKD patients, highlighting that prospective clinical trials are warranted to confirm these results in a controlled setting and elucidate the impact of KDIs specifically on kidney function and cyst progression.

Keywords: autosomal dominant polycystic kidney disease, caloric restriction, intermittent fasting, ketogenic diet

INTRODUCTION

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder caused by mutations in the PKD1 or PKD2 genes [1]. ADPKD is characterized by slow but relentless bilateral cyst growth that leads to organ enlargement, fibrosis and a decline in kidney function, ultimately requiring dialysis or kidney transplantation in most cases [2, 3].

Tolvaptan, the only drug approved by the US Food and Drug Administration (FDA) for polycystic kidney disease (PKD), is only available to a fraction of patients, has significant adverse effects, high cost and only slows disease progression but cannot halt or reverse it [4–6]. There is a great need for more widely accessible, more effective and safer treatment options.

Recent research revealed that PKD cyst lining cells are metabolically inflexible and rely on glucose as an energy source, indicating that defects in energy metabolism underlie the pathogenesis of PKD [7–9]. We and others reported that mild reductions in food intake in orthologous Pkd1 mouse models strongly decreased renal cyst growth [10, 11]. Recent work from our laboratory showed that the metabolic state of ketosis appeared to mediate the beneficial effects of food restriction. Ketosis induced by a time-restricted diet (TRD) or ketogenic diet (KD) significantly inhibited cyst growth, fibrosis and PKD-associated signaling pathways [12].

Ketosis represents the metabolic adaption to reduced blood glucose levels by utilizing fatty acid mobilization and synthesis of the ketone bodies acetoacetate and beta-hydroxybutyrate (BHB) as replacement energy sources [13, 14]. Ketogenic dietary interventions (KDIs) such as fasting, caloric restriction (CR) and a KD can result in physiological BHB levels of 0.5–7 mmol/L [13, 14]. Physiological ketosis must be distinguished from the pathological state of ketoacidosis, a metabolic dysregulation that primarily occurs in type 1 diabetes [15].

Classical KDs are characterized by high fat, low carbohydrate and moderate protein intake. The misconception that KDs must be high in protein actually often prevents robust ketosis [14, 16]. KDs are accepted clinical treatments for pediatric epilepsy or weight reduction and are emerging as potentially beneficial in several other diseases [17–20]. Nonetheless, adverse effects like hyperlipidemia, a higher risk for kidney stones and other temporary symptoms can occur and have been controversially discussed as safety concerns [21–23].

Since KDs are widely used in the general population for numerous potential health benefits, we reasoned that PKD patients might already have tried self-initiated KDIs. We were able to recruit a sizeable number of PKD patients into this retrospective case series study with the aim of collecting patient-reported experiences about safety, feasibility and possible beneficial effects (Figure 1A). These observations indicate that KDIs may be feasible and safe for ADPKD patients and could be beneficial for their well-being, PKD-associated health issues (HIs), weight, arterial hypertension and kidney function.
FIGURE 1: The study cohort KDIs. (A) Flow diagram of the case series study cohort KDIs. PKD patients were recruited by the Weimbs Laboratory and the University Hospital of Cologne to participate in questionnaire-based interviews about the experience of PKD patients with KDIs. (B) Description of the study cohort: distribution of age, sex and type of KDIs. (C) Average time on KDIs. Time on the diet is displayed as the median average. (D) Controlling measures of participants on a KD. Participants were asked how they control to reach ketosis. (E) Self-reported ketone body levels of participants who measured KB in the blood or urine. KB levels are displayed as the median average. N for KB in blood = 24. N for KB in urine = 10. (F) Fasting cycles used by participants executing a TRD. Participants were asked to specify their fasting cycle when practicing a TRD. n = 48. (G) Reason for experimenting with KDIs. Participants were asked why they started a KDI. (H) Resources used for starting a KDI. Participants were asked how they found out about KDIs in PKD.
statistically analyzed using the Mann–Whitney U-test, paired Student's t-test, Wilcoxon signed rank test or Spearman’s rank correlation. Analysis of blood pressure (BP) was based on self-reported values so for participants who measured BP regularly and could confirm no changes in BP medication during this time.

RESULTS
The Case series study cohort ‘Ketogenic dietary interventions (KDIs)’

An online survey about eating habits and diets in PKD patients in Germany suggested significant interest in dietary interventions as PKD treatment and indicated that some patients might already have tried KDIs (Supplementary data, Figure S1). We were able to recruit 131 PKD patients, mainly based in the USA, of which 74 followed a KD, 52 a TRD and 5 CR. More than half of the KD subgroup additionally executed a TRD (n = 35) or CR (n = 5). Participants followed KDIs for an average of 6 months (Figure 1B and C). Participants on KDs typically controlled their diets by tracking macronutrients and set target levels, while 38 participants measured ketone levels in their blood, urine or breath, which averaged ~1.15 mmol/L in the blood and ~1.75 mmol/L in the urine, indicating successful ketosis (Figure 1D and E). Participants executing TRD mostly adhered to the 16:8 regimen (8-h eating window per day; Figure 1F). The majority started their diet because of ADPKD and learned about KDIs through the internet and social media (Figure 1G and H).

KDIs reportedly improve overall health and PKD-related symptoms
We first analyzed whether participants experienced any general changes on KDIs. Surprisingly, 80% of participants reported improvements in their well-being (Figure 2A). Furthermore, participants were asked whether they observed changes in

Table 1. Baseline characteristics

Characteristics	Total cohort (N = 131)	KD cohort (n = 74)	TRD cohort (n = 52)	CR cohort (n = 5)
Age (years), median (IQR)	50 (20)	47 (18.25)	51 (19.75)	57 (24)
Gender, n (%)				
Female	91 (69.5)	52 (70.3)	36 (69.8)	3 (60)
Male	40 (30.5)	22 (29.7)	16 (30.8)	2 (40)
Time on diet (months), median (IQR)	6 (8)	5 (6.13)	6 (8)	8 (66.9)
Participants still on diet, n (%)	104 (79.4)	56 (75.7)	45 (86.5)	3 (60)
Weight (kg), median (IQR)	79.55 (25.91)	78.4 (25.46)	80.8 (20.06)	95.3 (61)
Patients on tolvaptan while on KDIs, n (%)	20 (15.4)	12 (16.2)	7 (13.5)	1 (20)
BMI, median (IQR)	26.2 (8.2)	25.65 (8.88)	26.36 (7.04)	32 (12.55)
Water consumption (L), median (IQR)	2.0 (1)	1.95 (1.05)	2 (1.25)	1.5 (1.5)
BP (mmHg), median (IQR)				
Systolic	132 (8.5)	131 (8.3)	135 (13)	130 (35)
Diastolic	85 (10)	85 (10)	80 (10)	90 (35)
eGFR (mL/min/1.73 m²), median (IQR)	57 (32.5)	53.5 (28.5)	60 (46)	67 (0)

List of baseline characteristics of all participants, separated by KDIs. IQR, interquartile range.

Safety concerns	Responses, n	Comments
Increased cholesterol levels	10	
Increased heart rate	3	2 of 3 responses reported a normalization over time
Strong side effects	2	Brain fog, ‘keto flu’
Increase in creatinine	2	2 of 2 responses reported a return back to levels before starting the diet
New incidence of kidney stones	1	Incidental finding
Increase in serum uric acid	1	
Increased serum bilirubin levels	1	Normalized over time
Decreased international normalized ratio levels	1	Participant on warfarin therapy prior to the start of the diet. Warfarin dose was adjusted accordingly
Decreased vitamin B levels	1	
Decline in BP	1	Consecutive dizziness. Normalized after adjusting BP medication

Full list of changes on KDIs that have raised safety concerns for the participants or their doctors.
FIGURE 2: Dietary impact on health and well-being and PKD-related HIs.

(A) Impact of KDIs on personal health and well-being. Participants were asked whether their diet had an impact on their overall health and well-being.

(B) Impact of KDIs on ADPKD symptoms. Participants were asked whether their diet improved personal ADPKD symptoms.

(C) Presence of recurrent HIs commonly associated with PKD. Participants were asked whether they experienced any recurrent HIs related to PKD before starting their diet.

(D) Specification of recurrent HIs and their improvements. Participants were asked to specify recurrent HIs before starting their diet and respective improvements after starting KDIs using a list of common PKD-associated symptoms.

(E) Impact of KDIs on recurrent HIs associated with PKD. Participants were asked whether any old recurrent HIs have changed after starting their diet. Five participants reported both improvement and worsening of old recurrent HIs.
FIGURE 3: Impact on weight. (A) Weight loss upon the start of KDIs. Participants were asked whether they experienced any weight loss after starting their diet. (B) Median average weight loss. Participants experiencing weight loss were asked for their starting weight and average weight loss. Total n = 103, KD n = 60, TRD n = 38. (C) Analysis of BMIs before and after starting KDIs of participants experiencing weight loss. n = 97. Dots are color-coded according to the BMI classifications. (D) Course of weight loss. Participants who experienced weight loss were asked whether weight loss has leveled off or was continuing over time. (E) BMI classification of participants experiencing weight loss before and after starting KDIs. n = 97. Statistical analyses by Mann–Whitney U-test. Error bars represent the median average with interquartile range.
recurrent PKD-associated HIs (Figure 2B). Therefore participants were asked to specify how such HIs affected their well-being before and after starting the diet. A total of 111 participants reported recurrent HIs before starting KDIs (Figure 2C), of which flank/back pain, fatigue and abdominal fullness were most common (Figure 2D). Most notably, 67% of participants with HIs reported improvements after starting KDIs (Figure 2E). More than 50% of all HIs were reportedly improved (Figure 2D). The KD cohort reported a more profound effect than the TRD cohort (Figure 2A and E). These observations indicate that KDIs could be beneficial for PKD-associated HIs and the overall well-being of PKD patients.

KDIs lead to a reduction in body weight and BMI in PKD patients

About 90% of participants reported weight loss on KDIs (Figure 3A). On average, participants reported 9.1 kg of weight reduction, reducing their body mass index (BMI) by 3.1 points (Figure 3B and C). A KD led to more weight reduction than a TRD. Participants described rapid weight loss within the first weeks, which then leveled off for 66% after a few months (Figure 3D). A total of 34% reported continued weight loss. Several participants could downgrade their BMI classification. No participant reported BMI levels of underweight (Figure 3C and E). While the interpretation of unadjusted BMI in ADPKD is limited [24, 25], these results indicate that KDIs appear to be effective for weight management in this cohort.

KDIs may improve arterial hypertension in PKD patients

Since arterial hypertension can accelerate PKD disease progression and KDIs reportedly improve hypertension [2, 26], we analyzed the study cohort for possible changes in BP. A total of 74% of participants reported having hypertension (Figure 4A). Most notably, 64% of those participants described improvements in BP on KDIs (Figure 4B). Self-reported BP values revealed a considerable decrease in BP averages, from 132/85 to 118/76 mmHg (Figure 4C and D), which is consistent with previous studies in individuals without PKD [27, 28]. A total of 23 participants additionally reported a decrease in BP medication on KDIs.

Impact of KDIs on water consumption

A total of 58% of participants not taking tolvaptan reported increased water intake by ~1.5 L (Figure 4E and F) and 42% did not experience any changes, which may be explained by the higher baseline consumption. This may be due to participants’ adherence to PKD treatment guidelines [1, 2]. Both subgroups did not display differences in beneficial or adverse effects (data not shown). Participants on tolvaptan mostly reported no changes in water intake. Taken together, KDIs may go along with increased water intake in PKD patients.

Impact of KDIs on renal function

Our laboratory showed that KDIs improve renal function and total kidney volume (TKV) in PKD animal models [12]. To obtain insights in PKD patients, we collected estimated glomerular filtration rate (eGFR) data from before and after starting KDIs. Of 70 participants providing data, 45 reported improvement, 8 no change and 17 a decline in eGFR (Figure 5A). A paired analysis indicated stabilization of eGFR with small increases of 3.6 mL/min/1.73 m² in the mean average (Figure 5B). Participants with documented ketosis had greater increases by 7.3 mL/min/1.73 m², which positively correlated with the corresponding average serum BHB levels (Figure 5B and C).

Side effects and safety considerations of KDIs in PKD patients

While one-third of participants did not report any new HIs, 66% observed on average 2.6 new symptoms on KDIs. Participants on a KD reported new HIs more frequently than those on a TRD (Figure 6A). Fatigue, hunger and ‘keto flu’ were most common (Figure 6B), in line with expected side effects of KDIs [22, 23]. A total of 55% reported that most HIs subsided over time, while 12% reported persistence of most HIs. In total, 76% of all new HIs reportedly resolved over time (Figure 6B and C).

Furthermore, 22 participants reported changes that raised safety concerns (Figure 6D and Table 2). The most commonly reported safety concern was the increase in cholesterol levels. Self-reported data indicated an average increase in total cholesterol of 13 mg/dL and in LDL levels of 8.5 mg/dL, which was significantly higher in the KD cohort (Figure 6E). Triglycerides and high-density lipoprotein (HDL) cholesterol seemed largely unchanged. No participant reported the concomitant start of hyperlipidemia treatment, one participant reported findings of kidney stones and two participants reported an increase in serum creatinine.

Feasibility of KDIs for PKD patients

A total of 76% of participants experienced the implementation of KDIs as manageable (Figure 7A). The food preparation time seemed not to be negatively affected (Figure 7B). Most participants described their diet as relatively easy to execute and would recommend it to others (Figure 7C and D). A total of 50% of participants reported adhering to their diet every day, while 42% skipped several times a month (Figure 7E). A total of 40% of participants reported breaks due to practical difficulties, indicating that the adherence to KDIs might still be challenging (Figure 7F). In particular, a KD was reported to be more demanding than a TRD. These observations indicate that KDIs appeared feasible for PKD patients in this study, with manageable implementation and adherence.

DISCUSSION

Our laboratory recently showed that KDIs inhibit renal cyst growth, preserve renal function and reverse existing cyst burden in PKD animal models [12]. This is consistent with the emerging consensus that PKD cyst lining cells rely on glucose as an energy source due to defective fatty acid metabolism. Our findings indicated that PKD cysts cannot adapt to the metabolic changes in ketosis, which could potentially be exploited therapeutically.

In this study we recruited a sizeable number of PKD patients who had already tried self-initiated KDIs. Participants executed variable dietary protocols and the majority could not provide measured ketone levels as evidence of ketosis. Since all data were self-reported in an uncontrolled, unbalanced (gender imbalance) retrospective setting, the reliability and interpretation of the data are clearly limited but can serve as an initial resource of ADPKD patients’ experiences with KDIs for future translation into clinical and real-life settings and to inform future clinical trials.

The observations indicate that PKD patients could benefit from KDIs, as most participants reported improvements in PKD-
FIGURE 4: Impact on hypertension and water consumption. (A) Presence of arterial hypertension. Participants were asked whether they were diagnosed with hypertension or have problems with high blood pressure? (B) Impact on BP on the start of KDIs. Participants with hypertension were asked whether they experienced any changes in BP after starting their diet. (C) Analysis of self-reported BP values from participants with hypertension before and after starting KDIs. n = 56. Error bars represent the median average with interquartile range. (D) Separate analysis for KD and TRD of self-reported BP values from participants with hypertension. KD n = 32, TRD n = 21. Box and whisker error bars represent median average with minimum to maximum. Statistical analysis by Mann–Whitney U-test. (E) Impact on water consumption. Participants were asked whether they experienced changes in water intake after starting KDIs. Since tolvaptan treatment significantly alters water consumption, participants on tolvaptan were analyzed separately. (F) Analysis of self-reported water consumption before and after starting KDIs. Since tolvaptan treatment significantly alters water consumption, participants on tolvaptan were excluded from this analysis. The cohort was analyzed separately based on whether participants reported changes or no changes in water consumption. Statistical analysis by Mann–Whitney U-test. Error bars represent the median average with interquartile range. n (experienced changes) = 57, n (no changes) = 33.
associated HIs and overall well-being. However, the retrospective setting could have facilitated biased data reports attracting more participants with positive rather than negative experiences. Additionally, most participants described considerable improvements in arterial hypertension. Whether those beneficial observations are due to the significant weight loss or other mechanistic considerations of KDIs remains unknown. Furthermore, participants might have changed other lifestyle factors besides their diet that could have affected results. Nonetheless, since overweight seems to be strongly associated with TKV progression in PKD [25, 29], effective weight management should be regarded as important for PKD management.

Several participants reported increases in eGFR on KDIs, which is consistent with previous reports in individuals with mild CKD [30, 31]. However, since our observations are based on single values obtained in a non-controlled fashion and eGFR values can fluctuate in individuals, the reliability of these data is limited [32–34]. While a slight eGFR increase might indicate a stabilization in renal function, it can also be interpreted as a sign of glomerular hyperfiltration [35]. Although classic KDs are not high in protein, this could be caused by increased protein intake associated with some KD variants, which has been considered to affect kidney health negatively [36, 37].

Since it is well-established that ADPKD is relentlessly progressive, eGFR values are not expected to stabilize or increase on average over time on a cohort basis, as observed in this study [38–40]. While it is still controversially discussed whether GFR can even be reversed and improved in CKDs, there are data to support this [41]. Mechanistically, of course, no new nephrons will develop in affected kidneys. However, one may speculate that relieving pressure due to inhibiting cyst expansion may beneficially affect the function of healthy, adjacent nephrons.

Our observations indicate that KDIs might not have negative, but rather positive outcomes in PKD. Thus it suggests that prospective clinical trials utilizing more standardized diets are warranted to elucidate the specific impact of KDIs on well-being, BP, weight, renal function and TKV of PKD patients.

This study further indicates that KDIs can trigger new HIs in PKD patients, which are commonly associated with KDIs and are likely to resolve over time [22, 23]. A few participants
FIGURE 6: Side effects and safety concerns. (A) New HIs on the start of KDIs. Participants were asked whether they experienced new HIs after starting their diet. (B) Specification of side effects on the start of KDIs. Participants were asked to specify those new side effects and their resolution over time using a list of common symptoms associated with KDIs. (C) Persistence of side effects. Participants were asked whether new side effects were resolving over time. (D) Safety concerns upon the start of KDIs. Participants were asked whether they or their doctors noticed changes that raised safety concerns. (E) Analysis of self-reported cholesterol levels before and after starting KDIs. Statistical analysis by Wilcoxon matched pairs signed rank test. Error bars represent the median average with interquartile range. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
FIGURE 7: Feasibility of KDIs and translational project pipeline. (A) Implementation of KDIs. Participants were asked how they experienced the switch from ‘standard’ nutrition to KDIs. (B) Implementation of KDIs. Participants were asked whether food preparation for KDIs takes more time than ‘standard’ food. n = 130. (C) Feasibility of KDIs. Participants were asked whether their diet is easy to do for people with ADPKD. n = 130. (D) Feasibility of KDIs. Participants were asked whether they would recommend their diet to friends or family members with ADPKD. (E) Adherence to KDIs. Participants were asked to rate the overall feasibility and adherence of their diet in daily life. (F) Adherence to KDIs. Participants were asked whether they had a break in between their diets. (G) Flow diagram showing the translational project pipeline of the University Hospital Cologne and the Weimbs Laboratory to translate KDIs into the clinical setting of ADPKD. The first results from these trials are expected in 2021 and early 2022.
reported new HIs that raised safety concerns. One participant reported the finding of kidney stones, which has been associated with KDIs [21]. Kidney stones are also common in PKD [42], and it is unclear whether they were related to the KDI in this case. Two participants reported an increase in serum creatinine as a safety concern, but increases in serum creatinine are also part of the natural course of disease progression in ADPKD. Nonetheless, the occurrence of new HIs underscores the importance of supervision by qualified healthcare practitioners.

The most common safety concern raised by our participants was the increase in total cholesterol and LDL levels. In the past, nutritional trials have suggested that dietary intake of cholesterol increases the risk for cardiovascular diseases (CVDs) [43]. However, this hypothesis could not be substantiated, which has led to the removal of a recommended dietary cholesterol limit in the Dietary Guidelines for Americans [44]. Nevertheless, the fear of the possibility of increased CVD risk with increased cholesterol persists, especially since ADPKD patients are already at higher risk [45]. Recent research suggests that KDIs might even have a beneficial effect on CVD risk. Several positive effects of KDIs, like improvements in body weight, body fat, BP, HDL or inflammation markers, could outweigh the possible adverse effect of increased cholesterol/LDL on CVD risk [26, 46–49]. Furthermore, transient increases in cholesterol/LDL are a well-reported and necessary effect of KDIs, indicating the successful depletion of adipose lipid stores, and have been shown to normalize again over time [50, 51]. The conclusive evaluation of any possible—positive or negative—impact of KDIs on CVD risk in ADPKD patients will require more long-term prospective trials.

Finally, our observations suggest that KDIs could be feasible for PKD patients. Most participants reported manageable implementation and good adherence to KDIs, taking into account that participants started their diet without medical/nutritional support. This is also consistent with a pilot study using a modified Atkins diet in three PKD patients [52]. However, since participants have elected, on their own, to experiment with KDIs, indicating a high motivation to succeed, the study cohort is likely unbalanced and may not be representative of the average PKD population. Breaks due to practical difficulty were commonly reported and not all participants executed their diet every single day, which further limits the interpretation of the data and indicates that the execution of KDIs can still be challenging in daily life. Professional assistance and regular monitoring will be important measures for prospective trials to ensure a high rate of dietary adherence. Predictions of more long-term effects or rebound effects after stopping KDIs cannot currently be made since participants only executed KDIs for an average of 6 months and most participants were still on the diet during data collection (Table 1).

ACKNOWLEDGEMENTS

We thank all participants for their time and effort in sharing their observations and data with us for this study. We thank the US PKD Foundation and the German patient advocacy group Familiaere Zystennieren for help with recruitment. The study was approved by the IRB at the University of California, Santa Barbara and the University Hospital of Cologne, Germany, as outlined above.

FUNDING

This work was supported by gifts from the Amy P. Goldman Foundation and gifts from the Jarrett Family Fund to T.W. S.S. was supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft (STR 1679/1-1) for work in T.W.’s laboratory. F.S. was supported by the Koenl Fortune Program/Faculty of Medicine, University of Cologne. R.U.M. was supported by the Ministry of Science Northrhine-Westfalia (Nachwuchsgruppen.NRW 2015-2021), the PKD Foundation and the Deutsche Forschungsgemeinschaft (KFO329). The Department II of Internal Medicine received research funding from Otsuka Pharmaceuticals, Fresenius Kabi and Thermo Fisher Scientific.

CONFLICT OF INTEREST STATEMENT

The results presented in this article have not been published previously in whole or part, except in abstract form. T.W. and J.A.T are inventors on issued and pending patents filed by the University of California, Santa Barbara related to discoveries reported in this article. T.W. is a shareholder and president and J.A.T. is a shareholder of Santa Barbara Nutrients. T.W. is on the scientific advisory board of Chinook Therapeutics, receives research funding from Chinook Therapeutics and is an inventor on a patent application by the University of California, Santa Barbara on a discovery unrelated to this article. R.U.M is on the advisory board of Santa Barbara Nutrients.

DATA AVAILABILITY STATEMENT

The data underlying this article are available in the article and in its online supplementary material.

REFERENCES

1. Cheib FT, Torres VE. Recent advances in the management of autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2018; 13: 1765–1776
2. Corneec-Le Gall E, Alam A, Perrone RD. Autosomal dominant polycystic kidney disease. Lancet 2019; 393: 919–935
3. Weimbs T, Shillingford JM, Torres J et al. Emerging targeted strategies for the treatment of autosomal dominant polycystic kidney disease. Clin Kidney J 2018; 11: i27–i38
4. Gattone VH, Wang X, Harris PC et al. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 2003; 9: 1323–1326
5. Erickson KF, Chertow GM, Goldhaber-Fiebert JD. Cost-effectiveness of tolvaptan in autosomal dominant polycystic kidney disease. Ann Intern Med 2013; 159: 382–389

SUPPLEMENTARY DATA

Supplementary data are available at ckj online.
6. Anderson CL. Doubts about the efficacy of tolvaptan for polycystic kidney disease. Clin Nephrol 2020; 93: 307–309
7. Rowe I, Chiaramalli M, Mannella V et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med 2013; 19: 488–493
8. Chiaramalli M, Rowe I, Mannella V et al. 2-Deoxy-d-glucose ameliorates PKD progression. J Am Soc Nephrol 2016; 27: 1958–1969
9. Menezes LF, Lin C-C, Zhou F et al. Fatty acid oxidation is impaired in an orthologous mouse model of autosomal dominant polycystic kidney disease. EBioMedicine 2016; 5: 183–192
10. Kipp KR, Rezaei M, Lin L et al. A mild reduction of food intake slows disease progression in an orthologous mouse model of polycystic kidney disease. Am J Physiol Renal Physiol 2016; 310: F726–31
11. Warner G, Hein KZ, Nin V et al. Food restriction ameliorates the development of polycystic kidney disease. J Am Soc Nephrol 2016; 27: 1437–1447
12. Torres JA, Kruger SL, Broderick C et al. Ketosis ameliorates renal cyst growth in polycystic kidney disease. Cell Metab 2019; 30: 1007–1023e5
13. Paoli A, Rubini A, Volek JS et al. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr 2015, 67: 789–796
14. Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004; 70: 309–319
15. Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 1999; 15: 412–426
16. Huffman J, Kossoff EH. State of the ketogenic diet(s) in epilepsy. Curr Neurosci Rep 2006; 6: 332–340
17. Shai I, Schwarzfuchs D, Henkin Y et al. Weight loss with a low-carbohydrate, mediterranean, or low-fat diet. N Engl J Med 2008; 359: 229–241
18. Neal EG, Chaffe H, Schwartz RH et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 2008; 7: 500–506
19. Ludwig DS, Willett WC, Volek JS et al. Dietary fat: from foe to friend? Science 2018; 362: 764–770
20. Henderson ST, Vogel JL, Barr LJ et al. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond) 2009; 6: 31
21. Sampath A, Kossoff EH, Furth SL et al. Kidney stones and the ketogenic diet: risk factors and prevention. J Child Neurol 2007; 22: 375–378
22. Bostock ECS, Kirkby KC, Taylor BV et al. Consumer reports of “keto flu” associated with the ketogenic diet. Front Nutr 2020; 7: 20
23. Kang HC, Chung DE, Kim DW et al. Early- and late-onset complications of the ketogenic diet for intractable epilepsy. Epilepsia 2004; 45: 1116–1123
24. Freise J, Tavakoli M, Gao Y et al. The effect of enlarged kidneys on calculated body mass index categorization in transplant recipients with ADPKD. Kidney Int Rep 2019; 4: 606–609
25. Nowak KL, You Z, Gitomer B et al. Overweight and obesity are predictors of progression in early autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2018; 29: 571–578
26. Cicero AFG, Benelli M, Brancaleoni M et al. Middle and long-term impact of a very low-carbohydrate ketogenic diet on cardiometabolic factors: a multi-center, cross-sectional, clinical study. High Blood Press Cardiovasc Prev 2015; 22: 389–394
27. Meckling KA, O’Sullivan C, Saari D. Comparison of a low-fat diet to a low-carbohydrate diet on weight loss, body composition, and risk factors for diabetes and cardiovascular disease in free-living, overweight men and women. J Clin Endocrinol Metab 2004; 89: 2717–2723
28. Tay J, Brinkworth GD, Noakes M et al. Metabolic effects of weight loss on a very-low-carbohydrate diet compared with an isocaloric high-carbohydrate diet in abdominally obese subjects. J Am Coll Cardiol 2008; 51: 59–67
29. Nowak KL, Steele C, Gitomer B et al. Overweight and obesity and progression of ADPKD. Clin J Am Soc Nephrol 2021; 16: 908–915
30. Oyabu C, Hashimoto Y, Fukuda T et al. Impact of low-carbohydrate diet on renal function: a meta-analysis of over 1000 individuals from nine randomised controlled trials. Br J Nutr 2016; 116: 632–638
31. Bruci A, Tuccinardi D, Tozzi R et al. Very low-calorie ketogenic diet: a safe and effective tool for weight loss in patients with obesity and mild kidney failure. Nutrients 2020; 12: 333
32. Levey AS, Greene T, Schluchter MD et al. Glomerular filtration rate measurements in clinical trials. Modification of Diet in Renal Disease Study Group and the Diabetes Control and Complications Trial Research Group. J Am Soc Nephrol 1993; 4: 1159–1171
33. Rowe C, Sitch AJ, Barratt J et al. Biological variation of measured and estimated glomerular filtration rate in patients with chronic kidney disease. Kidney Int 2019; 96: 429–435
34. Kistler AD, Poster D, Krauer F et al. Increases in kidney volume in autosomal dominant polycystic kidney disease can be detected within 6 months. Kidney Int 2009; 75: 235–241
35. Halil I, Fick-Brosnaham GM, Reed-Gitomer B et al. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 2012; 8: 293–300
36. Tirosch A, Golan R, Harman-Boehm I et al. Renal function following three distinct weight loss dietary strategies during 2 years of a randomized controlled trial. Diabetes Care 2013; 36: 2225–2232
37. Schwingshackl L, Hoffmann G. Comparison of high vs. normal/low protein diets on renal function in subjects without chronic kidney disease: a systematic review and meta-analysis. PLoS One 2014; 9: e97565
38. Yu ASL, Shen C, Landsittel DP et al. Long-term trajectory of kidney function in autosomal-dominant polycystic kidney disease. Kidney Int 2019; 95: 1253–1261
39. Irazabal MV, Rangel LJ, Bergstralh EJ et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol 2015; 26: 160–172
40. Torres VE, Chapman AB, Devuyst O et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N Engl J Med 2017; 377: 1930–1942
41. Weis L, Metzger M, Haymann JP et al. Renal function can improve at any stage of chronic kidney disease. PLoS One 2013; 8: e81835
42. Torres JA, Rezaei M, Broderick C et al. Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease. J Clin Invest 2019; 129: 4506–4522
43. Sacks FM, Lichtenstein AH, Wu J HY et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 2017; 136: e1–e23
44. Soliman GA. Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients 2018; 10: 780
45. Helal I, Reed B, Mettler P et al. Prevalence of cardiovascular events in patients with autosomal dominant polycystic kidney disease. *Am J Nephrol* 2012; 36: 362–370

46. Mansoor N, Vinknes KJ, Veierød MB et al. Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials. *Br J Nutr* 2016; 115: 466–479

47. Forsythe CE, Phinney SD, Fernandez ML et al. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. *Lipids* 2008; 43: 65–77

48. Volek JS, Phinney SD, Forsythe CE et al. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. *Lipids* 2009; 44: 297–309

49. Wood TR, Hansen R, Sigurdsson AF et al. The cardiovascular risk reduction benefits of a low-carbohydrate diet outweigh the potential increase in LDL-cholesterol. *Br J Nutr* 2016; 115: 1126–1128

50. Kwiterovich PO, Vining EPG, Pyzik P et al. Effect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. *JAMA* 2003; 290: 912–920

51. Groesbeck DK, Bluml RM, Kossoff EH. Long-term use of the ketogenic diet in the treatment of epilepsy. *Dev Med Child Neurol* 2006; 48: 978–981

52. Testa F, Marchio` M, Belli M et al. A pilot study to evaluate tolerability and safety of a modified Atkins diet in ADPKD patients. *PharmaNutrition* 2019; 9: 100154
Supplementary material

Table of contents

I. SUPPLEMENTARY FIGURES ..2

II. SUPPLEMENTARY FIGURE LEGENDS ... 3

III. ONLINE SURVEY ABOUT EATING HABITS AND SPECIAL DIETS IN ADPKD PATIENTS ... 4

IV. QUESTIONNAIRE ABOUT KETOGENIC DIETARY INTERVENTIONS IN ADPKD PATIENTS ... 7
I. Supplementary Figures

Supplementary Figure 1

A

Online survey on eating habits and special diets in PKD patients
Collection of observational data using an online questionnaire

Study cohort „Eating habits“
Recruited by “Familiare Zystennieren e.V.” and University Hospital of Cologne
N = 210 ADPKD patients

B

Have you followed a specific diet so far? If so, please specify the kind of diet.

C

Would you like to see more research about nutrition in ADPKD?

D

Would you take part in clinical studies regarding dietary interventions in ADPKD? If so, for what duration would you be willing to adapt your diet?

E

In which area of research do you see greatest need for new studies on ADPKD?
II. Supplementary Figure legends

Suppl. Figure 1. The interest of ADPKD patients in nutrition and diets

(A) PKD patients were recruited by the University Hospital of Cologne in collaboration with the German patient advocacy group “Familiaere Zystennieren e.V” to participate in an online questionnaire about eating habits and special diets. (B) Participants were asked whether and what kind of specific diets they have followed so far. (C) Participants were asked if they would like to see more research about nutrition in ADPKD. N= 205. (D) Participants were asked if and for what duration they would take part in clinical studies regarding dietary interventions. (E) Participants were asked which area of research they see the greatest need for new studies in ADPKD. N=204.
III. Online survey about eating habits and special diets in ADPKD patients

Fragebogen Diät Zystennieren

Eine gesunde Ernährung ist inzwischen für viele Erkrankungen als wichtiger Bestandteil der Vorbeugung und Therapie anerkannt. Grundlagenwissenschaftlich haben sich in den letzten Jahren auch für die Zystennieren-Erkrankung starke Hinweise ergeben, dass bestimmte Ernährungsformen positive Auswirkungen haben können. Bislang fehlen hierzu jedoch klinische Daten. Mithilfe dieser Befragung wollen wir aktuell Zystennieren-Patient(inn)en identifizieren, die einer spezifischen Diät folgen (oder dieser in den letzten Jahren gefolgt sind).
Wenn nicht anders angegeben, sollte immer nur eine der Optionen pro Frage ausgewählt werden.

Frage 1: Sind Sie an Zystennieren erkrankt?

Ja nein

Weitere Fragen müssen nur beantwortet werden, wenn Frage 1 mit ja beantwortet wurde.

Frage 2: Wie alt sind Sie?

_____ Jahre

Frage 3: Geschlecht?

männlich weiblich divers

Frage 4: Sind Sie dialysepflichtig oder nierentransplantiert?

Ja nein

Frage 5: Fühlen Sie sich gut über Ernährungsempfehlungen informiert?

Ja nein

Frage 6: Welche Quellen nutzen Sie aktuell, um sich über Ernährung zu informieren?

Mehrfachantworten möglich

Fachbroschüren Bücher Internet
Arztgespräche Ernährungsberatung

Andere bitte spezifizieren: __
Frage 7: Wie klappt die Umsetzung der Ernährungsempfehlungen im täglichen Leben?

Problemlos, mache ich nahezu jeden Tag
keine großen Probleme, ich weiche aber mehrmals im Monat hinon ab
oft Schwierigkeiten, mehrfach pro Woche kann ich mich nicht daran halten
schaffe ich nur sehr selten oder nie

Frage 8: Folgen Sie aktuell einer spezifischen Diät / Ernährung?

Ja nein (nein ankreuzen, falls Sie normale Vollkost essen)

Falls ja, welche Diätform / Ernährung (Mehrfachantworten möglich)?

Ketogene Diät	Atkins Diät	LowCarb
Kalorienreduktion (im Rahmen eines spezifischen Programms, z.B. OPTIFAST)		
Intermittierendes Fasten (z.B. 16+8)		Fasten
Vegan	Vegetarisch	Proteinarm
Kaliumarm	Phosphatarm	

Andere bitte spezifizieren: ___

Seit wann?

_____Jahre _____Monate

Falls Sie Frage 8 mit nein beantwortet haben, bitte Frage 9 beantworten.

Frage 9: Sind Sie in den letzten 5 Jahren einer spezifischen Diät / Ernährung gefolgt?

Ja nein

Falls ja, welche Diätform / Ernährung?

Ketogene Diät	Atkins Diät	LowCarb
Kalorienreduktion (im Rahmen eines spezifischen Programms, z.B. OPTIFAST)		
Intermittierendes Fasten (z.B. 16+8)		Fasten
Vegan	Vegetarisch	Proteinarm
Kaliumarm	Phosphatarm	

Andere bitte spezifizieren: ___
Über welchen Zeitraum?

_____Jahre _____Monate

Frage 10: Sollte aus Ihrer Sicht mehr Forschung zur Ernährung bei ADPKD durchgeführt werden?

Ja nein

Frage 11: In welchem Bereich der Forschung zu ADPKD besteht aus Ihrer Sicht momentan der größte Bedarf an neuen Studien?

- Prüfung der Wirksamkeit neuer Medikamente
- Prüfung der Wirksamkeit spezifischer Diät / Ernährung
- Beides von gleicher Bedeutung

Frage 12: Stellen Sie sich vor eine Studie zur Untersuchung einer spezifischen Diät / Ernährung wird begonnen (z.B. ketogene Diät oder intermittierendes Fasten). Hätten Sie Interesse an einer Teilnahme?

Ja nein

Falls ja, für welchen Zeitraum wären Sie bereit Ihre Ernährung unter Anleitung / Beratung umzustellen, um eine Untersuchung der Wirksamkeit in der Behandlung der ADPKD zu ermöglichen?

< 1 Monat
1-3 Monate
3-6 Monate
6-12 Monate
12-24 Monate
IV. Questionnaire about ketogenic dietary interventions in ADPKD patients

Weimbs Laboratory
Department of Molecular, Cellular and Developmental Biology
University of California Santa Barbara
Principal Investigator: Prof Thomas Weimbs

Questionnaire

Experience of people with ADPKD with ketogenic diets – Implementation and effects

Date: ______________________

Participant number: ______________________

Interviewer: ______________________

For privacy reasons, please do not write your name on any information you provide us!

Weimbs Laboratory, Department of Molecular, Cellular & Developmental Biology,
University of California Santa Barbara
Introduction
At first, we thank you for choosing to participate in this research study. As a reminder, you may stop your participation in the research at any time and you have the right to review, remove or modify your information provided if you do not agree with it anymore.

Design of the questionnaire
This questionnaire is not a test. It is not about right or wrong. It is designed to get as much relevant information as possible about your life with ADPKD trying a ketogenic diet. This questionnaire has three parts:

- **Part I:** General information about you and your ADPKD diagnosis
- **Part II:** Questions on personal observations and effects of the ketogenic diet (including Intermittent fasting and Caloric restriction)
- **Part III:** Questions on the feasibility of your diet

How to fill out this Questionnaire
This questionnaire is designed as an open guideline for an accompanying phone or video Interview. In this interview you will go over the questionnaire together with the interviewer who will take care of filling it out for you. We sent this questionnaire to you ahead of the interview so that you can go through the questions in advance and prepare yourself if you like. **If you fill out as many questions as you can ahead of time it will make the interview much faster.** It is important that you fully understand every question before answering it. Therefore, please feel free to ask the interviewer for clarification at any time.

Prof. Thomas Weimbs, PhD	Email: weimbs@ucsb.edu
Sebastian Strubl, MD	Email: strubl@ucsb.edu
	Phone: (805) 4553652

The interview itself will take you about 30 minutes (maximum 1 hour). If you do not wish to answer any of the questions just let the interviewer know. The interview may lead to follow-up questions that are not directly covered by the questionnaire. In this case, the data would be added by the interviewer unless you do not want to include it. If you do not want to participate in an interview it is also possible just to answer the questionnaire on your own and send it back to us.

The questions are in one of the following formats. Depending on the question format you may…

- Give your answer as free text or a bullet list in a certain order. In this case you may check as many bullet points as you wish.
- Describe a frequency like daily, weekly, monthly
- Give a scale rating e.g. from 0-10

Last, but not least, we kindly ask you to answer the questions as accurately as possible using your memories or any notes you may have taken at the time.

After completion of the Interview
For your privacy, your name will be replaced with a number on all notes that have been taken by the interviewer and will not be included at any time. All data will be stored safely. Additional information and data can be sent to our research team by US mail to the following address:

Attn: Sebastian Strubl
Department of Molecular, Cellular & Developmental Biology
University of California Santa Barbara
Mail Code 9625
Santa Barbara, California 93106
Part I: General Information

1. How old are you?

2. Gender
 - O Female
 - O Male
 - O Other: ____________

3. For how many years have you known to have ADPKD?

4. Are you undergoing dialysis treatment or have received kidney transplantation?
 - O YES (Please check below)
 - O NO
 - O Peritoneal dialysis
 - O Hemodialysis
 - O Kidney transplant

5. Are you diagnosed with any of the following ADPKD associated disorders?
 - O YES (Please check below)
 - O NO
 - O Hypertension (high blood pressure)
 - O Pancreas cysts
 - O Liver cysts
 - O Kidney stones
 - O Intracranial aneurysm
 - O Heart valve abnormality/defect
 - O Other (please specify): ____________

6. Do you have any other preexisting diseases? If so, please specify
 - O Heart and lung disease (e.g. congestive heart failure, COPD): ____________
 - O Vascular disease (e.g. cardiovascular or peripheral vascular disease): ____________
 - O Immune disease (e.g. Bowel disease, Rheumatoid arthritis): ____________
 - O Endocrinological diseases (e.g. Diabetes, Hyperthyroidism): ____________
 - O Other (please specify): ____________

Weimbs Laboratory, Department of Molecular, Cellular & Developmental Biology, University of California Santa Barbara
7. Have you ever tried any treatment or lifestyle change for ADPKD?
 O YES O NO
 O Tolvaptan
 O Blood pressure control
 O Limiting salt intake (<2g per day)
 O Sufficient fluid intake (>3 liters/102 ounces per day)
 O Increase of physical activity
 O Dietary changes. Please specify: __________________________
 O Other: __________________________

8. Do other members of your family suffer from ADPKD? If so, please check below if anyone of them is on dialysis or has undergone kidney transplant?
 O YES (Please check below) O NO
 O None
 O Peritoneal dialysis
 O Hemodialysis
 O Kidney transplant

9. Please rate your overall personal feeling concerning your health situation at this moment. Tick box and circle the intensity on the scale.
 O Very poor (“I’m struggling with daily life”)
 O Poor (“Could be better”)
 O Neutral (“I can not complain”)
 O Overall good (“Daily life is mostly not a big problem”)
 O Very good (“I feel great. I’m not compromised at all”)

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\text{Very Poor} & & & & & & & & & & & \\
\text{Very Good} & & & & & & & & & & & \\
\hline
\end{array}
\]
Part II: Questions on personal observations and effects of the ketogenic dietary intake

Before your diet (Ketogenic diet, Intermittent Fasting, Caloric Restriction)

1. What kind of diet have you done or are you currently executing?
 - Ketogenic diet
 - Intermittent fasting
 - Caloric restriction

In all further questions we will refer to “your/my diet” as the diet you have been on or you are currently executing as stated in question 1

2. Have you had any recurrent health issues due to ADPKD? If so, please tick/list those along with their frequency (daily, weekly, monthly) and intensity (using the scale) below.
 (Example: "Flank pain daily, 6"
 O YES (Please check below) O NO
 - Flank or back pain/discomfort: ____________ (frequency, intensity)
 - Fatigue: ____________ (frequency, intensity)
 - Diarrhea: ____________ (frequency, intensity)
 - Constipation: ____________ (frequency, intensity)
 - Head ache: ____________ (frequency, intensity)
 - Dizziness: ____________ (frequency, intensity)
 - Nausea: ____________ (frequency, intensity)
 - Anxiousness: ____________ (frequency, intensity)
 - Feeling of fullness in your abdomen: ____________ (frequency, intensity)
 - Blood in urine: ____________ (frequency, intensity)
 - Acid reflux ____________ (frequency, intensity)
 - Kidney/cyst infection: ____________ (frequency, intensity)
 - Bladder infection: ____________ (frequency, intensity)
 - Gout attacks: ____________ (frequency, intensity)
 - Depression: ____________ (frequency, intensity)
 - Other (please specify): __

Low Intensity 0 1 2 3 4 5 6 7 8 9 10 High Intensity

Weimbs Laboratory, Department of Molecular, Cellular & Developmental Biology, University of California Santa Barbara
3. Please rate your overall personal feeling concerning your health situation **before** your diet. Additionally, circle your answer on the scale: 0 very poor - 10 very good.

- O Very poor ("I was struggling with daily life")
- O Poor ("Could have been better")
- O Neutral ("I could not complain")
- O overall good ("Daily life was mostly not a big problem")
- O Very good ("I felt great. I was not compromised at all")

During/after your diet

1. How did you find out about your diet

- O Doctor/ Nephrologist
- O Nutritionist
- O Books and scientific publications
- O Internet
- O Social media
- O Other (please specify): ________________________________

2. Why are/were you on your diet?

- O ADPKD
- O Weight loss
- O Other (please specify): ________________________________

3. Have you changed/started anything else beside your diet (e.g. supplements, change in water intake)?

 - O YES (Please specify below)
 - O NO

 __

 __

 __
4. When you think back to the time when you started your diet did you have any new health issues? If so, how soon did they start and did they persist? Please tick/list along with their frequency (daily, weekly, monthly) and intensity (using the scale) below.
(Example: "head ache: Start within 1 week, daily, 6")
O YES (Please check below) O NO

- O Head ache: ___________________________ (frequency, intensity)
- O Nausea/Vomiting: ______________________ (frequency, intensity)
- O Fatigue: ______________________________ (frequency, intensity)
- O Foggy brain: __________________________ (frequency, intensity)
- O Stomach ache: _________________________ (frequency, intensity)
- O Other Pain (Please specify): ___________________________ (frequency, intensity)
- O Diarrhea: _____________________________ (frequency, intensity)
- O Constipation: __________________________ (frequency, intensity)
- O Bad breath: ___________________________ (frequency, intensity)
- O Excessive thirst: ________________________ (frequency, intensity)
- O Hunger: ______________________________ (frequency, intensity)
- O Difficulty concentrating __________________ (frequency, intensity)
- O Difficulty sleeping _____________________ (frequency, intensity)
- O Anxiety: ______________________________ (frequency, intensity)
- O Feeling cold: __________________________ (frequency, intensity)
- O "Keto flu": ____________________________ (frequency, intensity)
- O Other (Please specify):_________________________

__

Low Intensity	0	1	2	3	4	5	6	7	8	9	10	High Intensity

5. Did these issues go away over time?

- O I had no new health issues
- O All new issues went away within a week
- O All new issues went away within a month
- O Most new issues were gone within a month
- O Most new issues remained during the time I was on the ketogenic diet
6. If any new health issues persisted during the time on your diet please check below

- Headache: ___________________________ (frequency, intensity)
- Nausea/Vomiting: _______________________ (frequency, intensity)
- Fatigue: ______________________________ (frequency, intensity)
- Foggy brain: ___________________________ (frequency, intensity)
- Stomach ache: __________________________ (frequency, intensity)
- Other Pain (Please specify): ______________________ (frequency, intensity)
- Diarrhea: ______________________________ (frequency, intensity)
- Constipation: ___________________________ (frequency, intensity)
- Bad breath: _____________________________ (frequency, intensity)
- Excessive thirst: __________________________ (frequency, intensity)
- Hunger: _________________________________ (frequency, intensity)
- Difficulty concentrating ______________________ (frequency, intensity)
- Difficulty sleeping ________________________ (frequency, intensity)
- Anxiety: ________________________________ (frequency, intensity)
- Feeling cold: ____________________________ (frequency, intensity)
- "Keto flu": ______________________________ (frequency, intensity)
- Other (Please specify): ________________________ (frequency, intensity)

7. Did you experience any weight loss after starting your diet? Please check box and specify your starting weight and your average weight loss

- No, not at all
- Yes (please describe below)
 - It leveled off after a few weeks
 - I’m still benefitting from continued weight loss
 - I’m still struggling with continued weight loss

Starting weight before diet: __________ lbs
Average weight loss: __________ lbs

Please describe if you can recall details about your weight loss (E.g.: When did it start? Did the weight come back?)

8. Did you experience any change in water consumption after starting your diet?

- No, my water consumption has not changed
- Yes, I automatically consumed/needed more water
- Yes, I consumed more water because it is recommended when starting this diet

Water consumption before my diet: _______ liter/ounces per day
Water consumptions during my diet: _______ liter/ounces per day
9. Have any **old** health issues (mentioned above in Part 2, Question 1) changed after starting your diet? If so, please tick/list those along with their changed (improved or worsened) frequency (daily, weekly monthly) and intensity (using the scale).
(Example: "Fatigue: Improved O Worsened: monthly 2")

Health Issue	Improved	Worsened	Frequency/Intensity
Flank or back pain/discomfort			
Fatigue			
Diarrhea			
Constipation			
Headache			
Dizziness			
Nausea			
Anxiousness			
Feeling of fullness in your abdomen			
Blood in urine			
Acid reflux			
Kidney/cyst infection			
Bladder infection			
Gout attacks			
Depression			
Other (please specify)			

10. Did you have any changes in medication within the first year on your diet? If so, check below and if possible specify the change (e.g. dose, frequency)

Medication	Increased	Decreased	Dose/Frequency
Antihypertensive drugs			
Diabetes drugs			
Diuretics			
Pain killer			
Other medication			
11. Do you feel that your diet improved your ADPKD symptoms?

O Strongly agree
O Somewhat agree
O Neutral
O Somewhat disagree
O Strongly disagree

12. Have you found any changes in health data you are measuring (e.g. blood pressure, blood glucose). If so, please describe below.

O YES (Please check below) O NO O I have not measured anything

O Blood pressure
O Blood keto level
O Blood glucose level
O Other (please specify):

13. Has your physician found any changes in medical examination since you started your diet? If so, please tick/list below and specify if possible.

O YES (Please check below) O NO

O Blood pressure (Please specify):
O Blood parameter (Please specify):
O GFR (Please specify):
O Creatinine (Please specify):
O Kidney volume/size (Sonography/MRI):
O Kidney length/size (Sonography/MRI):
O Other (please specify):

14. Please rate your overall personal feeling concerning your health situation during your diet. Tick box and circle intensity on the scale below

O Very poor ("I was struggling with daily life")
O Poor ("Could have been better")
O Neutral ("I could not complain")
O Overall good ("Daily life was mostly not a big problem")
O Very good ("I felt great. I was not compromised at all")
15. What impact (if any) did your diet have on your health and well-being? Use the scale below. Tick box and circle effect on scale

- [] Strongly worsened
- [] Somewhat worsened
- [] Stayed about the same
- [] Somewhat improved
- [] Strongly improved

![Scale Image]

16. Have you experienced any other changes or effects upon your diet? If so, please list it below

17. During your experience with your diet, have you or your doctor noticed any changes that raised a safety concern?

- [] YES
- [] NO

If so, please explain:

18. Do you agree with self reporting health care information obtained from you, your primary care physician or nephrologist?

- [] YES (please specify your self report below)
- [] NO

- [] Blood tests (e.g. Creatinine, eGFR, Vitamin D, PTH, EPO)
- [] Urine tests (Proteins, Sediment, Glucose, Ketone bodies, crystals, citrate, pH)
- [] Blood pressure measurements/trends
- [] Imaging diagnostics (ultrasound, MRI, CT)

Please deidentify all personal information (e.g. Name, birth date) on the health care information by blackening it out and replace it with your participant number as stated on the first page of this questionnaire. Then, please send it to the following address:

Attn: Sebastian Strubl
Department of Molecular, Cellular & Developmental Biology
University of California Santa Barbara
Mail Code 9625
Santa Barbara, California 93106
Part III: Feasibility of your diet

1. Are you currently on your diet? If not, please describe below why you have stopped
 O YES O NO (please check below)
 - O Due to side effects of my diet
 - O Due to other health issues (please specify): ________________________
 - O Due to the practical difficulty in executing my diet
 - O Other: ________________________

2. For how long have you been on your diet?
 Years/months: ________________________

3. Have you had any breaks in between your diet?
 O YES (please check below) O NO
 - O Due to side effects of my diet
 - O Due to other health issues (please specify): ________________________
 - O Due to the practical difficulty in executing my diet
 - O Other: ________________________

4. Please describe your diet in detail, how you found it and why you chose it?

Weimbs Laboratory, Department of Molecular, Cellular & Developmental Biology,
University of California Santa Barbara
5. What resources do you use to keep yourself informed about nutrition and diets?
 - Books
 - Internet (websites)
 - Social media
 - Nutritionist
 - Physician
 - Scientific publications
 - Talking with friends or family
 - Other (please specify): __________________________

6. Do you feel well informed about nutrition and diets? Please tick box and circle intensity on scale
 - Not at all informed
 - Poorly informed
 - Neutral
 - Well informed
 - Very well informed

 Not at all informed | | | | | | | | | | | Very well Informed
 0 1 2 3 4 5 6 7 8 9 10

7. Does it take more time for you to prepare your dietary food than your regular food? Please tick box and circle on scale
 - It takes less time
 - It takes about the same time as a regular diet
 - It takes a little more time
 - It takes much more time

 Takes less Time | | | | | | | | | | | Takes much more time
 -5 -4 -3 -2 -1 0 1 2 3 4 5
8. Have you tried other diets? If so please check below
 O YES O NO
 O Atkins diet
 O Calorie restriction
 O Low-Carb diet
 O Glycemic index diet
 O Low-Fat diet
 O Intermittent fasting
 O Vegetarian diet
 O Vegan diet
 O Other (Please specify): ____________________________

9. Were/are you taking any nutritional or ketogenic supplements? If so, please list it below
 O YES O NO
 __

10. Are you performing any regular examination yourself regarding your diet? If so, please
 tick boxes when it applies
 O YES O NO
 O Blood pressure
 O Blood keto level
 O Blood glucose level
 O Urine keto level
 O Other (please specify): __________________________________

11. Are you doing your diet under supervision of a doctor or nephrologist? If so, please
 check examinations methods below and specify frequency
 (Example: "Blood work: Once a month"
 O YES O NO
 O Blood work: ________________________ (frequency)
 O Blood keto level: ________________________ (frequency)
 O Urine: ________________________ (frequency)
 O Urine keto level: ________________________ (frequency)
 O Blood pressure: ________________________ (frequency)
 O Sonography: ________________________ (frequency)
 O MRI/CT scan: ________________________ (frequency)
 O Other (please specify): ________________________ (frequency)
12. How was your doctor/nephrologist first thinking of the idea of trying your diet

- O He/she tried to hold me back
- O He/she was skeptical but supported me
- O He/she was curious and supported me
- O He/she actually suggested trying my diet

13. How is your doctor/nephrologist thinking after seeing your experience with your diet on your ADPKD?

- O He/she is not convinced at all
- O He/she is skeptical but still supporting me
- O He/she is convinced and suggesting the diet to other ADPKD patients
- O I don’t know what he/she thinks

14. How was the switch from normal nutrition to your diet for you? Additionally, circle your answer on the scale: 0 very easy - 10 very hard.

- O It was not a problem at all
- O It took some time but it was manageable
- O It was a difficult switch but I can manage now
- O It was very hard and I’m still struggling with it

15. Rate the overall feasibility of your dietary approach in daily life. Tick box and circle feasibility on scale

- O No problem at all, doing the diet every single day
- O No real problem but sometimes I skip it several times a month
- O Difficult, I skip it several times a week
- O Very difficult, I can barely execute the diet
16. Please list your personal problems concerning the feasibility of your diet in order (1. Biggest problem, 10. Less problem)

1. ______________________
2. ______________________
3. ______________________
4. ______________________
5. ______________________
6. ______________________
7. ______________________
8. ______________________
9. ______________________
10. ______________________

17. Please list all things that helped you and improved your execution of your diet in order (1. Biggest help, 10. Less help)

1. ______________________
2. ______________________
3. ______________________
4. ______________________
5. ______________________
6. ______________________
7. ______________________
8. ______________________
9. ______________________
10. ______________________

18. Do you **personally** know people with ADPKD (e.g. a family member or personal friend) who had a negative experience with your diet? If so, how many?
 O YES:_______ O NO

19. Do you feel that your diet is safe for people with ADPKD?
 O Strongly agree
 O Somewhat agree
 O Neutral
 O Somewhat disagree
 O Strongly disagree

20. Do you feel that your diet is easy to do for people with ADPKD?
 O Strongly agree
 O Somewhat agree
 O Neutral
 O Somewhat disagree
 O Strongly disagree
21. Would you recommend the your diet to a friend or family member with ADPKD?
 O Strongly agree
 O Somewhat agree
 O Neutral
 O Somewhat disagree
 O Strongly disagree

22. Do you have any further ideas and suggestions that would improve the feasibility of your diet?

Conclusion

We want to thank you again for participating in this research study and for taking time to answer this questionnaire. We will provide you with a copy of this questionnaire with the information you shared with us. As a reminder you may stop your participation in this research at any time even after handing in any information about you. At any time you have the right to review the information you have provided and you can ask to modify or remove information if you do not agree with it anymore. If you have any questions you are welcome to contact the members of our research team (Thomas Weimbs, Sebastian Strubl) at anytime.

Prof. Thomas Weimbs, PhD	Department of Molecular, Cellular & Developmental Biology	University of California Santa Barbara	Santa Barbara, California 93106-9625	Email: weimbs@ucsb.edu
Sebastian Strubl, MD	Department of Molecular, Cellular & Developmental Biology	University of California Santa Barbara	Santa Barbara, California 93106-9625	Email: strubl@ucsb.edu
			Mobile Phone: (805) 455-3852	

This Questionnaire has been reviewed and approved by the institutional review board (IRB) of the University of California Santa Barbara, which is a committee whose task it is to make sure that research participants are protected from harm. If you wish to find out more about the IRB, please contact

The Office of Research	3227 Cheadle Hall
UCSB	University of California, Santa Barbara
	Santa Barbara, CA. 93106-2050
	Phone: (805) 893-4188
	Fax: (805) 893-2611
	Mail Code: 2050

Weimbs Laboratory, Department of Molecular, Cellular & Developmental Biology, University of California Santa Barbara