Antifungal Activity of *Juglans regia* (L.) Leaf Extracts Against *Candida albicans* Isolates

Hubert Sytykiewicz*, Grzegorz Chrzanowski, Paweł Czerniewicz, Bogumił Leszczyński, Iwona Sprawka, Robert Krzyżanowski, Henryk Matok

Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland

Received: 25 October 2014
Accepted: 11 December 2014

Abstract

The objective of performed study was aimed at evaluating the antifungal potential of four extract fractions (methanolic, ethyl acetate, alkaloid, and hydrolyzed methanolic) derived from *Juglans regia* (L.) leaves against pathogenic *Candida albicans* strains. Furthermore, total phenolics and alkaloid content as well as the antioxidative potential of examined extract fractions were determined. Tested yeasts comprised 140 isolates from diverse biological specimens (oropharyngeal, rectal and vulvovaginal swabs, skin lesions, sputum, urine, and faeces), and one reference strain (*C. albicans* ATCC 90029). Methanolic extract from walnut leaves characterized by the highest anticandidal activity, the alkaloid fraction possessed a slightly lower antifungal efficacy, while ethyl acetate and hydrolyzed methanolic preparates inhibited the growth rate of examined fungal pathogens in the lowest degree. Additionally, it has been elucidated that all tested strains were susceptible for nystatin and amphotericin B, and only one yeast strain was resistant to fluocytosine. On the contrary, the group of azole antimycotics were characterized by reduced effectiveness against the candidal isolates.

Keywords: antifungal activity, antimycotic susceptibility testing, *Candida albicans*, *Juglans regia*, total phenolics content, alkaloids, antioxidative potential

Introduction

Candida albicans is a pleomorphic diploid yeast existing as part of normal microbial communities of skin surface, mucous membrane, and gastrointestinal tract in the vast majority of healthy humans [1]. Switching the ecological strategy of these fungi from commensalism to parasitism depends on the enhanced susceptibility of the host, rapid transcriptional reprogramming, and profound phenotypic modifications in the fungal cells in response to environmental stimuli [2]. Pathogenic *C. albicans* strains are involved in multifarious infections from mild cutaneous or mucosal disorders, through urinary tract infections to severe and life-threatening systemic invasions with candidemia [3]. In the past decade, there has been reported an increasing number of nosocomial *Candida* spp. infections [3-5]. Unfortunately, available options of the antifungal therapy are very limited in opposition to a wide battery of antibiotics used in eradication of bacterial infections. Secondarily, prolonged antifungal monotherapy or a combination of regiments is linked with a significant risk of hematologic, hepatic, and/or renal toxicity [6]. The plant kingdom may provide a wide spectrum of highly active antimycotic compounds exhibiting dissimilar modes of action in comparison with the agents broadly used in medicine [7-9]. In addition, synergistic interactions between the chemical constituents in plant extracts may significantly improve its anticandidal activity [7, 10].

It has been signally reported that aqueous extracts from the fruit of several varieties of the walnut (*Juglans regia* L.,...
Material and Methods

Plant Material

Mature leaves of the walnut (Juglans regia L.) cv. ‘Albi’ were harvested in June 2010 from plants grown in a small cottage orchard near Siedlce, Poland (52°11’N, 22°17’E). No phytosanitary procedures were applied. Only healthy cottage orchard near Siedlce, Poland (52°11’N, 22°17’E).

Preparation of Extracts

Groups of chemical substances tested in microbiological experiments were extracted and fractionated according to the procedures described by Chrzanowski et al. [12] and Chrzanowski [17].

In order to obtain the methanolic fraction (MF), 20 g of leaf dry weight (d.w.) was vigorously vortexed with 0.5 dm³ 80% methanol (v/v) for 6 h. The extract was filtered twice through Whatman No. 1 under reduced pressure. The filtrate was evaporated at 40°C using a vacuum rotary evaporator (Heidolph Hei-V AP Precision), and the dry residue was stored until antimycotic activity determination.

Plant material (50 g of leaf d.w.) was vigorously vortexed with 1 dm³ 80% methanol for 6 h. The extract was filtered through Whatman No. 1 paper under reduced pressure. Next, the filtrate was collected, and the residual pellet was secondly vortexed with 0.5 dm³ 80% methanol (v/v) at ambient temperature for 3 h, and filtered as mentioned above. The mixtures were pooled and evaporated at 40°C using the rotary evaporator to obtain the final 60% methanol concentration, and the solution was defatted with petroleum ether.

The purified methanolic extract was divided into two portions. The first part of the volume was subjected to acidic hydrolysis, whereas the second one was acidified to pH 2.0 with 6 M hydrochloric acid and shaken with ethyl acetate. The extraction was performed three times, using one volume of ethyl acetate to 1.5 volumes of the methanolic extract. Subsequently, the pooled organic layers were evaporated to dryness with the use of a vacuum evaporator at 40°C. The dry residue represented the ethyl acetate fraction without hydrolysis (EAF) that was tested in further stages of the study. In order to perform the hydrolysis, methanolic extract was acidified to pH 2 using concentrated hydrochloric acid, and the process was carried out for 6 h at 80°C under a water-cooled condenser.

After completion of hydrolysis, the extract was acidified to pH 2 (using 6 M HCl) and shaken with ethyl acetate (three portions of 150 cm³ each). The combined organic phases were evaporated to dryness to obtain the hydrolyzed methanolic fraction (HMF). Separation of the alkaloid fraction (AF) was made from 50 g of leaf d.w. by extraction with 1 dm³ 0.1 M hydrochloric acid for 3 h at 80°C. The mixture was filtered through Whatman No.1 paper, and the residue was treated again with 0.1 M HCl for 1 h at the same temperature. The combined filtrates were alkalized to pH 9.5 with 5 M NaOH, and shaken three times with diethyl ether.

The organic layers were pooled and evaporated to dryness at 40°C. The isolated fractions of walnut leaves were stored in dry form at -20°C until analysis. Before assessing the antimycotic activity of the walnut fractions, each tested preparate was dissolved in 50 cm³ 96% ethanol (molecular biology grade) to yield the crude extract. Next, several concentrations (0.01, 0.05, 0.10, 0.25, 0.5, 1.0, 1.5, and 2.0 mg·cm⁻³) of the fractions were prepared from the relevant stock solutions and subsequently used in the microbiological assays.

Chemical Analyses

Total phenolics content of the methanolic, ethyl acetate, and hydrolyzed methanolic fraction from the walnut leaves were measured using Folin-Ciocalteu’s spectrophotometric method, according to the procedure described by Singleton and Rossi [18]. The phenolics content was expressed as a percentage of dry weight residue of the respective extract fraction.

The alkaloid content in AF fraction of J. regia leaves was determined by the spectrophotometric method with the use of Dragendorff’s reagent [17]. Extract was acidified with 1 M HCl to pH 2.0-2.5, and 2 cm³ of Dragendorff’s reagent was added. The precipitate was washed with ethanol and centrifuged (6,000 × g for 15 min). Next, 2.0 cm³ 1% solution of sodium sulphide (Na₂S) was added to the residue. The brown-black pellet was dissolved in...
Antifungal Activity of Juglans regia (L.)... 1341

2.0 cm³ of concentrated nitric acid (V) and diluted with
10 cm³ of deionized water. A portion (1 cm³) of the mixture
was combined with 5 cm³ 3% solution of thiourea. The
absorbance value was measured at 435 nm, and the
alkaloid content was presented as a percentage of dry
weight of the extracted residue. Quinine was used as a stan-
dard, and the calibration curve was prepared in the concen-
tration range 10-75 μg·cm⁻³.

Antioxiative capacity of the investigated walnut
preparates against DPPH (1,1-diphenyl-2-picrylhydrazyl)
radicals was estimated with the protocol of Brand-Williams
et al. [19]. The reaction mix contained 380 mm³ 0.04%
methanolic solution of DPPH⁻ and 20 mm³ of the respective
J. regia extract (2 mg·cm⁻³). Subsequently, the preparates
were vigorously vortexed for 1 min, and incubated at ambi-
et temperature for 15 min. After this procedure, absorbance
values of the samples were measured at 517 nm. The antiox-
idant potential of the tested extracts was expressed as a per-
centage (%) inhibition of DPPH⁻ radicals.

Microorganisms Tested

The investigated human pathogenic C. albicans strains
(N=140) were isolated from a broad range of biological
samples (oropharyngeal, rectal and vulvovaginal swabs,
skin lesions, sputum, urine, and faeces). The yeast strains
were provided by the Department of Medical Microbiology
at Warsaw Medical University and Damian Medical Centre
in Warsaw (both in Poland). Furthermore, C. albicans
ATCC 90029 was used as a reference strain.

Species Identification and Antimycotic
Susceptibility Assay

Species level confirmation of the candidal isolates and
their in vitro susceptibility profiles to 10 standardized anti-
fungal agents: nystatin (NY), amphotericin B (AMB),
fluconosine (5-fluorocytosine, AFY), vorconazole (VO),
itraconazole (ITC), fluconazol (FLU), ketoconazole
(KCA), clotrimazole (CLO), miconazole (MCL), and
econazole (ECN) were verified by using the Integral
System YEASTS Plus (Liofilchem, Italy), following the
manufacturer’s protocol. Additionally, the antifungal
effects of these drugs toward the investigated C. albicans
strains were determined using the agar-based disk diffusion
method according to the protocol M44-A2 of the Clinical
and Laboratory Standards Institute (CLSI) [20].

Fluconazole and vorconazole disks were purchased from
Becton Dickinson & Co. (USA), itraconazole disks were
provided from Abtek Biologicals LTD (Liverpool, United
Kingdom), and the other antymycotic disks were produced
and supplied by Liofilchem (Italy).

Evaluation of the Antifungal Activity of Walnut
Leaf Extracts

All tested yeast isolates (N=140) and one reference
strain (C. albicans ATCC 90029) were used to assess the
antimycotic activity of methanolic, ethyl acetate, alkaloid,
and hydrolyzed methanolic fractions derived from the wal-
nut leaves. The antacandidal potential of investigated
extracts was screened using the disk diffusion method of
Noumi et al. with minor modifications [11]. It used the
Mueller-Hinton agar (Merck, Poland) supplemented with
2% glucose and 0.5 μg·cm⁻³ methylene blue (Sigma-
Aldrich, Poland). Sterile 6 mm disks (bioMérieux, Poland)
were impregnated with the relevant extract fractions
obained from J. regia leaves and placed on the agar plates
(120 mm diameter, 4 mm depth) previously inoculated with
the yeast cells suspended in sterile 0.85% NaCl solution
and adjusted to a 0.5 McFarland turbidity standard (approx.
10⁶ CFU cm⁻³). Individual C. albicans strains were tested on
separate Petri dishes (n=3), and after 24 h incubation at
35°C, diameters of the growth inhibition zone (in mm) were
measured. Furthermore, negative controls (blank disks sat-
urated with the extrahent) were included in all experiments.

Determination of Growth Rate of the Reference
Candidal Strain in the Presence of Examined
J. regia Extract Fractions

The bioassay comprised one reference C. albicans
strain (ATCC 90029). The effect of four leaf walnut frac-
tions (MF, EAF, HMF, and AF) on growth intensity of the
investigated strain was evaluated. Inoculum preparation
and assessment of the yeast growth rate was conducted
according to Hoot et al. method [21], with slight modifica-
tions. The examined C. albicans strain was cultured at 37°C
in liquid yeast peptone dextrose (YPD) broth containing
2.0 mg·cm⁻³ of the relevant extract fraction derived from the
walnut leaves. Optical density (OD₆₀₀) of the yeast suspensions
(aliquots of 200 mm³) was measured after 4 and 8 h
post inoculation (hpi) in 96-well sterile, flat-bottom, and
transparent microplates (Greiner Bio-One GmbH, Austria)
using an Epoch UV-Vis spectrophotometer (BioTek, USA).
Negative controls (inoculated YPD medium untreated with
the walnut extracts) were also included.

Statistical Analysis

The experiments were performed in three independent
replications (n=3) and the obtained results were presented
as the mean values ± standard deviation (SD). The effect of
yeast strain and concentration of J. regia extract fractions
on the growth inhibition zone of candidal isolates, as well
as the influence of tested preparates and exposure time on
the growth intensity (OD₆₀₀) of C. albicans ATCC 90029,
were analyzed using a factorial analysis of variance
(ANOVA). Significance of differences between the mean
values was evaluated using Tukey’s post-hoc test at
P < 0.05. All calculations were carried out using STATIS-
TICA 10.0 software (StatSoft, Poland).

Results and Discussion

The performed antifungal biotests revealed that all
examined isolates (N=140) from a variety of specimens
were sensitive to both nystatin and amphotericin B (Table 1). Furthermore, 139 C. albicans strains were susceptible to fluconazole (99.3%). Additionally, more than 90% of the candidal strains were highly sensitive to voriconazole and itraconazole, whereas dose-dependent susceptibility to these antifungics was identified in 3 (2.1%) and 4 (2.8%) isolates. A slightly lower number of the yeasts was sensitive for fluconazole (125/140; 89.3%) and ketoconazole (118/140; 84.3%). It is important to note that the group of tested fungal strains was markedly less sensitive to threeazole antifungals: clotrimazole, miconazole, and econazole (76.4, 74.3 and 73.6%, accordingly). Moreover, the status of dose-dependent susceptibility to these agents occurred in 20.0-24.3% of the investigated microorganisms (28-34 yeast strains), depending on the antifungal tested. The highest percent of C. albicans isolates were resistant to fluconazole (6.4%), moderate resistance levels were demonstrated with respect to ketoconazole (5.0%), econazole (5.0%), itraconazole (4.3%), and clotrimazole (3.6%), whereas the lowest percentage of the examined strains were resistant to miconazole (1.4%) and voriconazole (1.4%).

It has been identified that C. albicans is a predominant fungal pathogen responsible for multifarious forms of primary and re-emerging human candidiasis [22]. Therefore, identification and careful monitoring of environmental circulation of multi-drug resistant yeast strains seems to be an important issue in public health management. The conducted investigations revealed an excellent potency of nystatin and amphotericin B against the examined pathogenic yeast strains. These observations are coherent with findings reported by many other authors [22-24]. In contrast, Mishra et al. demonstrated an unusually high proportion of nystatin-resistant candidal isolates (20/57; 35.1%) from catheterized patients [25]. Nystatin and amphotericin B belong to polyene macrolide antibiotics and the mechanism of action involves their binding to ergosterol molecules within the yeast plasma membrane, which secondarily leads to uncontrolled leakage of ions and cell death [26]. However, therapeutic applications of these antifungals are very limited because of their high toxicity and haemolytic activity. In the present study, only one candidal strain (0.7%) was resistant to fluconazole (5'-fluorocytosine). Similarly, Dorocka-Bobkowska and Konopka established that 1.4% of the yeast strains isolated from patients with a diagnosed denture stomatitis were resistant to this antifungal agent [24]. High antifungal efficacy of this drug has been evidenced by many authors from different countries [3, 6, 27].

Flucytosine is a fluorinated pyrimidine analogue transformed in the yeast organisms to 5-fluorouracil and other metabolites that profoundly repress the biosynthesis of nucleic acids and proteins. However, monotherapy with this antifungal is not recommended because of possible prompt selection of resistant yeast strains [6, 27]. Testedazole antifungals characterized with significantly lower efficacy toward the investigated yeast isolates in comparison with fluconazole. The proportion of resistant yeast strains against tested azole drugs slightly differed and ranged from 6.4% (fluconazole) to 1.4% (voriconazole and miconazole). Additionally, this should be stressed to a considerable degree (above 20%) of dose-dependent susceptibility of examined candidal isolates to threeazole agents: clotrimazole, miconazole, and econazole. In contrast to polyene antifungics, many researchers have documented an increasing tendency in the emergence ofazole resistance in clinical candidal strains [3, 22, 24, 25]. Rathor et al. suggest that susceptibility levels to members of this antifungal class varied significantly in dependence on the geographic

Antifungal agents	Dose per disk	No. of C. albicans isolates tested (%)		
	S	SDD	R	
Nystatin (NY)	100 IU	140 (100)	0 (0.0)	0 (0.0)
Amphotericin B (AMB)	20 µg	140 (100)	0 (0.0)	0 (0.0)
Flucytosine (AFY)	1 µg	139 (99.3)	0 (0.0)	1 (0.7)
Voriconazole (VO)	1 µg	135 (96.5)	3 (2.1)	2 (1.4)
Itraconazole (ITC)	8 µg	130 (92.9)	4 (2.8)	6 (4.3)
Fluconazole (FLU)	25 µg	125 (89.3)	6 (4.3)	9 (6.4)
Ketoconazole (KCA)	10 µg	118 (84.3)	15 (10.5)	7 (5.0)
Clotrimazole (CLO)	10 µg	107 (76.4)	28 (20.0)	5 (3.6)
Miconazole (MCL)	10 µg	104 (74.3)	34 (24.3)	2 (1.4)
Econazole (ECN)	10 µg	103 (73.6)	30 (21.4)	7 (5.0)

Table 1. In vitro susceptibility profiles of C. albicans strains (N=140) against the examined antimiotic drugs.
distribution of \textit{C. albicans} strains, the nosocomial mode of transmission, and types of clinical specimens [3]. It has been postulated that a long-term and/or uncontrolled administration of azole agents, the main group of antimycotics used in treatment of chronic or recurrent candidiasis, leads to rapid selection and widespread use of resistant \textit{Candida} spp. strains [23, 28]. Fluconazole is one of the most commonly used antifungal drugs, which is probably the main cause of the increased resistance of the candidal strains to this chemical compound. The mode of action of azole antibiotics is involved with a disturbed ergosterol biosynthesis within the plasma membrane of the yeasts [4, 8].

Results regarding evaluation of the antifungal potential of several extracts obtained from walnut leaves toward the investigated \textit{C. albicans} strains are presented in Tables 2-3. The lowest concentrations (0.01 and 0.05 mg·cm\(^{-3}\)) of all tested extract fractions did not evoke any growth inhibition of the studied fungal strains. Similarly, slightly higher concentrations (0.10 mg·cm\(^{-3}\)) of the extracts did not exhibit any antifungal activity, with the exception of the reference strain and two groups of isolates (S – susceptible for all antymycotics, and RI – resistant to one of the tested antymycotics) that were slightly sensitive to the methanolic fraction (MF).

Application of increased extract content (0.25 mg·cm\(^{-3}\)) resulted in low antifungal activity of the MF fraction toward the investigated yeast strains, whereas the alkaloid fraction (AF) was only effective against the group of \textit{C. albicans} strains susceptible for all examined antifungal agents. Further increasing the extract concentrations (0.5 and 1.0 mg·cm\(^{-3}\)) led to a gradual increment in the anticanidal potential of MF, HMF, and AF preparates. Conversely, the ethyl acetate fraction (EAF) at these concentrations were characterized by a lack of antifungal activity against the pathogenic yeast isolates and low anticanidal activity toward the reference strain. The tested fungal strains were found to be more sensitive to higher concentrations (1.5 mg·cm\(^{-3}\)) of the examined walnut leaf preparates. The growth inhibition zones (IZ) of the candidal strains ranged from 9.5 to 21.5 mm (in diameters), depending on the respective extract fractions and the analysed group of yeasts. It should be emphasized that the highest tested concentration (2.0 mg·cm\(^{-3}\)) of MF extract derived from \textit{J. regia} leaves characterized with strong antifungal activity against the tested \textit{C. albicans} strains (20.5-23.4 and 18.6-22.0 mm of growth inhibition zones, respectively).

The conducted studies revealed that tested extract fractions (MF, EAF, HMF and AF) obtained from \textit{J. regia} leaves...
leaves markedly suppressed the growth rate of *C. albicans* ATCC 90029 strain when compared to the non-treated (control) samples. It has been elucidated that methanolic fraction possessed the strongest antifungal efficacy against the reference strain (Fig. 1). Moreover, a slightly lower antifungal potential was demonstrated in the case of the alkaloid fraction, whereas hydrolyzed methanolic and ethyl acetate extracts inhibited the yeast growth in the lowest degree in relation to the extract-free control. Furthermore, the antifungal efficacy of all investigated extract fractions after 8 hours post inoculation (8 hpi) was higher when compared to shorter exposure time (4 hpi). The significant influence of the extract fractions (F4, 20 = 130.6; P < 0.0001), exposure time (F1, 20 = 545.5; P < 0.0001), and interactions between these indicators (F4, 20 = 42.4; P < 0.0001) on growth intensity of the reference candidal strain has been confirmed.

The obtained results indicated that the highest contents of phenolic compounds occurred in EAF and HMF fractions, while MF preparate possessed a significantly lower amount of the examined group of walnut leaf constituents. Moreover, it has been elucidated that alkaloids constituted approx. 60% of dry weight of the alkaloid extract residual (Table 5). It has also been found that the EAF fraction of walnut leaves characterized by the highest level of antioxidative activity toward DPPH radicals (70.8% inhibition of DPPH•) and MF and HMF preparates were moderately active (63.57 and 56.97%, respectively), whereas the alka-
loid extract possessed the lowest antiradical potential (15.87%) (Fig. 2). Additionally, the statistical analyses revealed significant differences in DPPH radical scavenging activity of the tested *J. regia* preparates (*F*₃,₈ = 2098.3; *P* < 0.0001).

The English walnut (*J. regia*), also known as common or Persian walnut, is a commonly cultivated crop tree in Europe and Asia [29]. This light-demanding woody species grows in moist soil and reaches a height up to 35 m and 2 m of trunk diameter. The walnut leaves are commonly used in traditional Chinese and Iranian medicine, which is attributed to their unique phytochemical composition [30]. Mohammadi and co-workers uncovered that ethanolic extracts derived from *J. regia* leaves possessed hypoglycemic and hipolipidemic effects in type 2 diabetic rats [31]. Moreover, Salimi et al. elucidated the antiproliferative activity of the *J. regia* chloroform fraction against several human cancer cell lines [32]. Our previous report evidenced the presence of eleven phenolic acids (caffeic, chlorogenic, *trans*-cinnamic, *o*- and *p*-coumaric, ferulic, gallic, *p*-hydroxybenzoic, syringic, tannic, and vanillic) in methanolic extracts obtained from the leaves of *J. regia* cv. ‘Albi’ [12]. Moreover, it was found that foliar tissues of this walnut cultivar characterized with the highest amounts of *p*-hydroxybenzoic, vanillic, tannic, and *p*-coumaric acids, whereas *o*-coumaric and gallic acids occurred in the lowest concentrations. Salimi et al. also demonstrated that methanolic extracts derived from the walnut leaves contained high amounts of total phenols, flavonoids, and tannins [32]. Moreover, Cosmulescu et al. [33] revealed that mature leaves of five cultivars of *J. regia* (‘Germisara,’ ‘Jupanesti,’ ‘Franquette,’ ‘Vilna,’ and ‘Valcor’) grown in Romania markedly differed in the content of juglone (5.4-22.8 mg/100 g fresh weight). According to many researcher groups, walnut leaf extracts provide a significant source of secondary metabolites exhibiting a strong antioxidant efficacy [14, 32-34]. Seasonal dynamics of phenolic compounds in walnut leaves is associated with a profound increase in the content of these constituents in June and July, with a subsequent decline in August [14]. Based on the phytochemical analyses, *J. regia* leaves should be collected before this downward trend. Furthermore, strong correlation between the foliar concentration of polyphenols and the specific walnut genotype has been evidenced. Nour et al. uncovered a significant intervarietal variability in the content of phenolic compounds in walnut leaves [34]. Comparative analyses of flavonoids in foliar tissues of nine *J. regia* cultivars revealed high concentrations of catechin hydrate, myricetin, and rutin, and the low content of epicatechin and quercetin aglycones. Additionally, Amaral et al. demonstrated significant differences in the concentrations of individual phenolic substances in the walnut leaves.

Extract fraction	Dry weight of the residue (mg)	Total phenolic content a)	Alkaloid content a)
MF	1,619	46.8±0.3	-
EAF	1,595	80.3±0.5	-
HMF	608	76.2±1.8	-
AF	703	-	57.2±0.2

Extract preparates derived from the walnut leaves: MF – methanolic fraction, EAF – ethyl acetate fraction, HMF – hydrolyzed methanolic fraction, AF – alkaloid fraction; a) – total phenolics and alkaloid contents are expressed as percent of dry weight of the respective extract residue; “-” – not measured.

Table 5. Levels of tested parameters (total phenolic and alkaloid contents) in walnut leaf extract fractions.

Fig. 1. The effect of tested extract fractions obtained from walnut leaves on the growth intensity of *C. albicans* ATCC 90029.

The growth rate of the reference strain is expressed as optical density of yeast suspension (OD₆₀₀). CON – control (yeast suspension in YPD medium untreated with the walnut extract); MF, EAF, HMF and AF – yeast suspensions in YPD broth containing 2.0 mg·cm⁻³ of the relevant extract fraction derived from walnut leaves. The measurements of OD₆₀₀ were performed after 4 and 8 hours post inoculation. All data are presented as mean values (±SD). Different letters above the bars indicate significant differences between average values of optical density (*P* < 0.05; Tukey’s test).
between three consecutive crop seasons (2002-04), indicating the circumstantial effect of climatic factors on levels of the studied allelocompounds [35].

To the best of our knowledge, it is the first report comparing the antifungal effects of four extract fractions of walnut leaves against pathogenic strains of *C. albicans*. A dose-dependent inhibitory impact of the investigated foliar preparates on the growth of candidal strains has been evidenced. Noumi et al. revealed that ethyl acetate extracts of the walnut bark exhibited a low antymycotic activity towards clinical isolates of *C. albicans* [30]. Importantly, Pereira et al. proved that aqueous extracts from the *J. regia* fruits of five varieties (‘Franquette’, ‘Lara’, ‘Margot’, ‘Mayotte’; and ‘Parisienne’) grown in Portugal possessed an antifungal potential against *C. albicans* CECT 1394 [9]. Extracts derived from tissues of ‘Lara’ and ‘Franquette’ walnut plants exhibited the strongest antifungal activity against *C. albicans*, ‘Mayotte’, and ‘Parisienne’ varieties, demonstrating the high activity, whereas preparations from the ‘Marbot’ cultivar were characterized by a slight antymycotic potential. Several reports regarding the antymycotic potential of extracts from various organs of many plant species against the reference and clinical yeast isolates have been published [8, 36-39].

Höfling et al. revealed that methanolic extracts obtained from several plants (*Mentha piperita* L., *Syzygium cumini* (L.) Skeels, *Tabebuia avellanedae* Lorentz ex Griseb., *Rosmarinus officinalis* L., and * Punica granatum* L.) showed antymycotic activity against the yeast reference strain [37]. Oguro et al. established that the antifungal defense AFP1 isolated from *Brassica juncea* (L.) Czern. induced oxidative stress with subsequent membrane permeabilization, leading to circumstantial growth inhibition of *C. albicans* cells [38]. Interestingly, the combination of root and leaf ethanolic extracts from *Hypericum havvae* Güner displayed a markedly higher antifungal activity toward the reference strain *C. albicans* ATCC 10231 and many other species among *Candida* genus than the effects caused by using single preparates derived from these organs [36]. In the context of these findings, it is highly probable that a synergistic mode of action of a wide array of allelocompounds extracted from diverse plant systems may profoundly enhance the antymycotic efficacy against the opportunistic yeast pathogens. Furthermore, Pozzatti and colleagues elucidated fungistatic and fungicidal activity of cinnamon, ginger, Mexican oregano, oregano, and thyme essential oils towards the clinical isolates of *C. albicans* [39]. It was found that fluconazole-resistant candidal strains were also less sensitive to cinnamon essential oil in comparison with fluconazole-susceptible ones [8]. Pinto et al. documented that essential oil from aerial parts of *Ferulago capillaris* (Link ex Spreng.) Cout. possessed antifungal activity against pathogenic *C. albicans* strains, and suppressed germ tube formation at sub-inhibitory concentrations [40].

It should be stressed that Amber et al. evidenced a significant antymycotic potential of *Ocimum sanctum* L. essential oil (OSEO) against pathogenic isolates of *C. albicans* and its synergistic effect with azole antifungals: fluconazole and ketoconazole [7]. Implementation of complex therapy strategies involving both natural and synthetic antifungal compounds may lead to a more rapid and effective eradication of *Candida*-related mycoses in humans. Messier and Grenier revealed the synergistic antifungal effect of nystatin and two allelocompounds isolated from *G. glabra*, glabridin, and licochalcone A [41]. Interestingly, Budzyska et al. elucidated that saponin-rich fractions (SAPFs) of *Trifolium alexandrinum* L., *T. incarnatum* L., and *T. resupinatum* cv. *resupinatum* Gib & Belli significantly reduced the invasive capacity and germ tube formation of *C. albicans*. Moreover, SAPFs exhibited synergistic interactions with azole antymycotics against the reference yeast strain [42].

In summary, the present study evidenced the antifungal activity of several extract fractions of *J. regia* leaves against a wide range of pathogenic *C. albicans* strains characterized by different susceptibility levels to standardized antymycotics. The obtained results provide a basis for further experiments focused on identification of highly bioactive constituents in the walnut preparates exhibiting the antymycotic potential, assessment of cytotoxicity profiles to human cell lines, and deciphering their possible interactions with the antifungal drugs used in treatment of candidiasis.

Conclusions

It has been found that all the investigated yeast clinical isolates were sensitive to nystatin and amphotericin B, and only one strain of *C. albicans* showed resistance to flucytosine. Additionally, azole antymycotics were significantly less effective against the examined yeast pathogens. The methanolic fraction derived from *J. regia* leaves exhibited strong antifungal activity and the alkaloid fraction displayed moderate antymycotic potential, whereas hydrolyzed methanolic and ethyl acetate preparates possessed low antymycotic effects against examined *C. albicans* strains.
Furthermore, we documented the dose-dependent antican-
didal effect of tested walnut fractions. It has also been elu-
cidated that EAF and HMF fractions contained the highest
levels of total phenolics. Moreover, ethyl acetate prepare
characterized with the greatest antioxidative capacity, HMF
and MF fractions possessed intermediate activity, and AF
fraction showed the lowest antiradical potential.

Acknowledgements

This study was carried out with the financial support of
Siedlce University of Natural Science and Humanities
(Scientific Research Project No. 385/14/S).

References

1. PALUCHOWSKA P., TOKARCZYK M., BOGUSZ B.,
SKIBA I., BUDAK A. Molecular epidemiology of Candida albicans and Candida glabrata strains isolated from inten-
sive care unit patients in Poland. Mem. Inst. Oswaldo Cruz
109, 436, 2014.
2. HUBE B. From commensal to pathogen: stage- and tissue-
specific gene expression of Candida albicans. Curr. Opin.
Microbiol. 7, 336, 2004.
3. RATHOR N., KILLIAN V., SARIN S. K. Nosocomial can-
didiasis in chronic liver disease patients at a hepatobiliary
center. Indian J. Crit. Care Med. 18, 234, 2014.
4. HAMZA O. J., MATEE M. I., MOSHI M. J., SIMON E. N.,
MUGUSI E. N., MIKX F. X., HOLDERMAN W. H., RIS A.
J., VAN DER VEN A. J., VERWEIJ P. E. Species distribu-
tion and in vitro antifungal susceptibility of oral yeast iso-
lates from Tanzanian HIV-infected patients with primary
and recurrent oropharyngeal candidiasis. BMC Microbiol. 8,
135, 2008.
5. LIONAKIS M. S., NETEA M. G. Candida and host deter-
mnants of susceptibility to invasive candidiasis. PLoS Pathogens 9, e1003079, 2013. doi: 10.1371/journal.ppat.
1003079.
6. DODGSON A. R., DODGSON K. J., PUJOL C., PFALLER
M. A., SOLL, D. R. Clade-specific fusidic resistance is
due to a single nucleotide change in the FUR1 gene of
Candida albicans. Antimicrob. Agents Chemother. 48,
2223, 2004.
7. AMBER K., AJAZ A., IMMACULATA X., LUQMAN K.
A., NIHAT M. Anticandidal effect of Ocimum sanctum
essential oil and its synergy with fluconazole and ketocona-
zole. Phytochemistry 17, 921, 2010.
8. POZZATTI P., SCHIED L. A., SPADER T. B., ATAYDE M.
L., SANTURIO J. M., ALVES S. H. In vitro activity of
essential oils extracted from plants used as spices against
fluconazole-resistant and fluconazole-susceptible Candida
spp. Can. J. Microbiol. 54, 950, 2008.
9. PEREIRA J. A., OLIVEIRA I., SOUSA A., FERREIRA
I.C., BENTO A., ESTEVINHO L. Bioactive properties and
chemical composition of six walnut (Juglans regia L.) culti-
vars. Food Chem. Toxicol. 46, 2103, 2008.
10. LIU W., LI L. P., ZHANG J. D., LI Q., SHEN H., CHEN S.
M., HE L. J., YAN L., XU G. T., AN M. M., JIANG Y. Y.
Synergistic antifungal effect of glabridin and fluconazole.
PLoS One 9, e103442, 2014. doi: 10.1371/journal.pone.
0103442.
11. NOUMI E., SNOUSSI M., HAJLAOUI H., VALENTIN E.,
BAKHROUF A. Antifungal properties of Salvadora persica
and Juglans regia L. extracts against oral Candida strains.
Eur. J. Clin. Microbiol. Inf. Dis. 29, 81, 2010.
12. CHRZANOWSKI G., LESZCZYŃSKI B., CZERNIEWICZ
P., SYTYKIEWICZ H., HADZIC M., KRZYŻANOWSKI R.
Phenolic acids from black currant, sour cherry and walnut on grain aphid (Sitobion avenae F.) development. Crop Prot. 35, 71,
2012.
13. CHRZANOWSKI G., LESZCZYŃSKI B., CZERNIEWICZ
P., SYTYKIEWICZ H., HADZIC M., KRZYŻANOWSKI R.
Phenolic acids of walnut (Juglans regia L.). Herba Pol. 57, 22,
2014.
14. COSMULESCU S., TRANDAFIR I., NOUR V. Seasonal
variation of the main individual phenolics and juglone in
walnut (Juglans regia) leaves. Pharm. Biol. 52, 575, 2014.
15. COSMULESCU S., TRANDAFIR I. Seasonal variation of
total phenols in leaves of walnut (Juglans regia L.). J. Med.
Plants Res. 5, 4938, 2011.
16. TERRI Z. Allelopathic effects of juglone and decomposed
walnut leaf juice on muskmelon and cucumber seed germi-
nation and seedling growth. Afr. J. Biotechnol. 7, 1870,
2008.
17. CHRZANOWSKI G. Comparison of induced defense mechanisms influenced by feeding of grain aphid (Sitobion
avenae F.) and cereal leaf beetle (Oulema melanopus L.).
Scientific Dissertation No. 122, University of Natural
Sciences and Humanities, Siedlce, Poland, pp. 31-33, 2013
[In Polish].
18. SINGLETON V. L., ROSSI J. A. Colorimetry of total phe-
nolics with phosphomolybdic-phosphotungstic acid
reagents. Am. J. Enol. Vitic. 16, 1-44, 1965.
19. BRAND-Williams W., CUVELIER ME., BERSET C.
Use of a free radical method to evaluate antioxidan-
t activity. Food Sci. Technol. 28, 25, 1995.
20. CLINICAL AND LABORATORY STANDARDS INSTITUTE.
Method for antifungal disk diffusion susceptibility
testing of yeasts; Approved guideline – second edition. CLSI
document M44-A2. Wayne, PA, USA, 2009.
21. HOOK S. J., ZHENG X., POTENSKI C. J., WHITE T. C.,
KLEIN H. L. The role of Candida albicans homologous
recombination factors Rad54 and Radh54 in DNA damage
sensitivity. BMC Microbiol. 11, 214, 2011.
22. GAMARRA S., MORANO S., DUDIU C., MANCILLA
E., NARDIN M. E., DE LOS ANGELES MÉNDEZ E.,
GARCIA-EFFRON G. Epidemiology and antifungal sus-
ceptibilities of yeasts causing vulvovaginitis in a Teaching
Hospital. Mycopathologia 178, 251, 2014.
23. CARVALHINHO S., COSTA A. M., COELHO A. C.,
MARTEIS E., SAMPAIO A. Susceptibilities of Candida
albicans mouth isolates to antifungal agents, essentials oils
and mouth rinses. Mycopathologia 174, 69, 2012.
24. DOROCKA-BOBKOWSKA B., KONOPKA, K.
Susceptibility of Candida isolates from denture-related
 stomatitis to antifungal agents in vitro. Int. J. Prosthodont.
20, 504, 2007.
25. MISHRA M., AGRAWAL S., RAUT S., KURHADE A.
M., POWAR R. M. Profile of yeasts isolated from urinary
tracts of catheterized patients. J. Clin. Diagn. Res. 8, 44,
2014.
26. MARTINS H. P., DA SILVA M. C, PAIVA L. C., SVIDZIN-
SKI T. I, CONSOLARO M. E. Efficacy of fluconazole and
nystatin in the treatment of vaginal Candida species. Acta
Derm. Venereol. 92, 78, 2012.
27. PFALLER M. A., ESPINEL-INGROFF A., CANTON E., CASTANHEIRA M., CUENCA-ESTRELLA M., DIEKE-MA D. J., FOTHERGILL A., FULLER J., GHANNOUM M., JONES R. N., LOCKHART S. R., MARTIN-MAZUE-LOS E., MELHEM M. S., OSTROSKY-ZEICHERN L., PAPPAS P., PELAEZ T., PEMA J., REX J., SZESZS M. W. Wild-type MIC distributions and epidemiological cutoff values for amphotericin B, flucytosine, and itraconazole and Candida spp. as determined by CLSI broth microdilution. J. Clin. Microbiol. 50, 2040, 2012.

28. STRZELCZYK J. K., SLEMP-MIGIEL A., ROTHER M., GOŁĄBEK K., WICZKOWSKI A. Nucleotide substitutions in the Candida albicans ERG11 gene of azole-susceptible and azole-resistant clinical isolates. Acta Biochim. Pol. 60, 547, 2013.

29. LESZCZYŃSKI B., MATOK H., SYTYKIEWICZ. H. Basic aspects of walnut allelopathy: from field to biomolecules. LAP LAMBERT Academic Publishing, Saarbrücken, Germany, 2012.

30. NOUMI E., SNOUSSI M., TRABELSI N., HAJLAOUI H., KSOURI R., VALENTIN E., BAKHROUF A. Antibacterial, anticandidal and antioxidant activities of Salvadora persica and Juglans regia extracts. J. Med. Plants Res. 5, 4138, 2011.

31. MOHAMADI J., DELA VIZ H., MALEKZADEH J. M., ROOZBEHI A. The effect of hydro alcoholic extract of Juglans regia leaves in streptozotocin-nicotinamide induced diabetic rats. Pak. J. Pharm. Sci. 25, 407, 2012.

32. SALIMI M., MAJD A., SEPAHDRZAR S., AZADMANESH K., IRIAN S., ARDESTANIYAN M. H., HEDAYATI M. H., RASTKARI N. Cytotoxicity effects of various Juglans regia (walnut) leaf extracts in human cancer cell lines. Pharm. Biol. 50, 1416, 2012.

33. COSMULESCU S., TRANDAFIR L., CHIM G., BACIU A. Juglone content in leaf and green husk of five walnut (Juglans regia L.) cultivars. Not. Bot. Hort. Agrobot. 39, 237, 2011.

34. NOUR V., TRANDAFIR I., COSMULESCU S. HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves. J. Chromatogr. Sci. 5, 883, 2013.

35. AMARAL J. S., VALENTÃO P., ANDRADE P. B., MARTHINS R. C., SEABRA R. M. Do cultivate, geographical location and crop season influence phenolic profile of walnut leaves? Molecules 13, 1321, 2008.

36. DULGER G., DULGER B. Antifungal activity of Hypericum havvae against some medical Candida yeast and Cryptococcus species. Trop. J. Pharm. Res. 13, 405, 2014.

37. HÖFLING J. F., ANIBAL P. C., OBANDO-PEREDA G. A., PEIXOTO I. A., FURLETTI V. F., FOGLIO M. A., GONÇALVES R. B. Antimicrobial potential of some plant extracts against Candida species. Braz. J. Biol. 70, 1065, 2010.

38. OGURO Y., YAMAZAKI H., TAKAGI M., TAKAKU H. Antifungal activity of plant defensin AFP1 in Brassica juncea involves the recognition of the methyl residue in glucosylceramide of target pathogen Candida albicans. Curr. Genet. 60, 89, 2014.

39. POZZATTI P., LORETO E. S., LOPES P. G., ATHAYDE M. L., SANTURIO J. M., ALVES S. H. Comparison of the susceptibilities of clinical isolates of Candida albicans and Candida dubliniensis to essential oils. Mycoses 53, 12, 2010. doi: 10.1111/j.1439-0507.2008.01643.x.

40. PINTO E., HRIMPENG K., LOPES G., VAZ S., GONÇALVES M. J., CAVALERO C., SALGUEIRO L. Antifungal activity of Ferulago capillaris essential oil against Candida, Cryptococcus, Aspergillus and dermatophyte species. Eur. J. Clin. Microbiol. Inf. Dis. 32, 1311, 2013.

41. MESSIER C., GRENIER D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses 54, e801-6, 2011. doi: 10.1111/j.1439-0507.2011.02028.x.

42. BUDZYŃSKA A., SADOWSKA B., WIĘCKOWSKA-SZAKIEL M., MICOTA B., STOCHMAL A., JĘDREJEK D., PECIO L., RÓŻALSKA B. Saponins of Trifolium spp. aerial parts as modulators of Candida albicans virulence attributes. Molecules 19, 10601, 2014.