Drawing trees with perfect angular resolution and polynomial area. (English) Zbl 1260.05036
Discrete Comput. Geom. 49, No. 2, 157-182 (2013).

Summary: We study methods for drawing trees with perfect angular resolution, i.e., with angles at each node \(v \) equal to \(2\pi/d(v) \). We show:

1.) Any unordered tree has a crossing-free straight-line drawing with perfect angular resolution and polynomial area.

2.) There are ordered trees that require exponential area for any crossing-free straight-line drawing having perfect angular resolution.

3.) Any ordered tree has a crossing-free Lombardi-style drawing (where each edge is represented by a circular arc) with perfect angular resolution and polynomial area.

Thus, our results explore what is achievable with straight-line drawings and what more is achievable with Lombardi-style drawings, with respect to drawings of trees with perfect angular resolution.

MSC:

- 05C05 Trees
- 05C62 Graph representations (geometric and intersection representations, etc.)

Keywords:

tree drawings; straight-line drawings; circular-arc drawings; Lombardi drawings; polynomial area; perfect angular resolution

Full Text: DOI

References:

[1] Brandes, U.; Wagner, D., Using graph layout to visualize train interconnection data, J. Graph Algorithms Appl., 4, 135-155, (2000) · Zbl 0953.68114 · doi:10.7155/jgaa.00028

[2] Buchheim, C., Jünger, M., Leipert, S.: Improving Walker’s algorithm to run in linear time. In: Proceedings of 10th International Symposium on Graph Drawing (GD 2002). Lecture Notes in Computer Science, vol. 2528, pp. 344-353. Springer (2002). doi:10.1007/3-540-36151-0_32 · Zbl 1037.68569

[3] Cappos, J.; Estrella-Balderrama, A.; Fowler, J.J; Kobourov, SG, Simultaneous graph embedding with bends and circular arcs, Comput. Geom., 42, 173-182, (2009) · Zbl 1205.05216 · doi:10.1016/j.comgeo.2008.05.003

[4] Carlson, J., Eppstein, D.: Trees with convex faces and optimal angles. In: Proceedings of 14th International Symposium on Graph Drawing (GD 2006). Lecture Notes in Computer Science, vol. 4372, pp. 77-88. Springer (2007), arXiv:cs.CG/0607113. doi:10.1007/978-3-540-70904-6_9 · Zbl 1185.68464

[5] Chan, T.; Goodrich, MT; Kosaraju, SR; Tamassia, R., Optimizing area and aspect ratio in straight-line orthogonal tree drawings, Comput. Geom., 23, 153-162, (2002) · Zbl 1008.05038 · doi:10.1016/S0925-7721(01)00066-9

[6] Cheng, CC; Duncan, CA; Goodrich, MT; Kobourov, SG, Drawing planar graphs with circular arcs, Discrete Comput. Geom., 25, 405-418, (2001) · Zbl 0983.05060 · doi:10.1007/s004540000088

[7] Dickerson, M.; Eppstein, D.; Goodrich, MT; Meng, J., Confluent drawings: Visualizing non-planar diagrams in a planar way, J. Graph Algorithms Appl., 9, 31-52, (2005) · Zbl 1086.05022 · doi:10.7155/jgaa.00099

[8] Duncan, CA; Efrat, A.; Kobourov, SG; Wenk, C., Drawing with fat edges, Int. J. Found. Comput. Sci., 17, 1143-1164, (2006) · Zbl 1102.68513 · doi:10.1142/S0129054106004315

[9] Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Drawing trees with perfect angular resolution and polynomial area. In: Proceedings of 18th International Symposium on Graph Drawing (GD 2010). Lecture Notes in Computer Science, vol. 6502, pp. 183-194. Springer (2011), arXiv:1009.058. doi:10.1007/978-3-642-18469-7_17 · Zbl 1311.68113

[10] Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Löffler, M.: Planar and poly-arc Lombardi drawings. In: Proceedings of 19th International Symposium on Graph Drawing (GD 2011). Lecture Notes in Computer Science, vol. 7034, pp. 308-319. Springer (2012), arXiv:1109.0345. doi:10.1007/978-3-642-25587-7_30 · Zbl 1311.68168

[11] Duncan, CA; Eppstein, D.; Goodrich, MT; Kobourov, SG; Nöllenburg, M., Lombardi drawings of graphs, J. Graph Algorithms Appl., 16, 85-108, (2012) · Zbl 1232.05142 · doi:10.7155/jgaa.00251
