Bub1 and Bub3 promote the conversion from monopolar to bipolar chromosome attachment independently of shugoshin

Hanna Windecker, Maria Langegger, Stephanie Heinrich & Silke Hauf*

Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, Germany

INTRODUCTION

The eukaryotic spindle assembly checkpoint (SAC) delays anaphase in the presence of chromosome attachment errors. Bub3 has been reported to be required for SAC activity in all eukaryotes examined so far. We find that Bub3, unlike its binding partner Bub1, is not essential for the SAC in fission yeast. As Bub3 is needed for the efficient kinetochore localization of Bub1, and of Mad1, Mad2 and Mad3, this implies that most SAC proteins do not need to be enriched at the kinetochores for the SAC to function. We find that Bub3 is also dispensable for shugoshin localization to the centromeres, which is the second known function of Bub1. Instead, Bub3, together with Bub1, has a specific function in promoting the conversion from chromosome mono-orientation to bi-orientation.

Keywords: Bub1; Bub3; fission yeast; mitosis; spindle assembly checkpoint

RESULTS AND DISCUSSION

Fission yeast Bub3 is not essential for the SAC

To study SAC activity in fission yeast, we established a live-cell imaging assay using Plo1–GFP (green fluorescent protein). Plo1 localizes to spindle pole bodies (SPBs) specifically from the point of entry into mitosis to the onset of anaphase (Bahler et al, 1998;
Mulvihill et al., 1999). To create a situation in which the SAC is active, we used the β-tubulin nda3-KM311 allele (Hiraoka et al., 1984). At restrictive temperature, nda3-KM311 mutant cells are unable to form microtubules and cells show a delay in mitosis that persists for several hours (Fig 1A; supplementary Fig S1A online). When the SAC is inactivated by the deletion of mad1, mad2 or bub1, the mitotic delay cannot be sustained and cells exit mitosis within 1 h. We observed that deleting bub3 did not have the same effect and such cells were able to remain in mitosis for considerably longer. We obtained similar results when eliciting SAC activity through conditional mutants of kinesin-5 (cut7-446) and cohesin (psc3-1T; supplementary information online, note 1; supplementary Fig S2 online). Drosophila Bub3 has been shown to have a function in cell-cycle progression (Lopes et al., 2005). Therefore, we considered the possibility that bub3Δ nda3-KM311 cells remained in mitosis because Bub3 was required for the efficient progression into anaphase. However, the additional deletion of mad2 in nda3-KM311 bub3Δ cells considerably shortened mitosis (Fig 1A), indicating that the SAC had been active in nda3-KM311 bub3Δ cells and that Bub3 was not essential for progression into anaphase. Together, this indicates that fission yeast Bub3 is not essential for SAC activity, which is consistent with studies by two other groups (Tange & Niwa, 2008; V. Vanoosthuyse & K. Hardwick, personal communication). By contrast, two previous studies had reported that Bub3 is necessary for SAC function in fission yeast (Millband & Hardwick, 2002; Vanoosthuyse et al., 2004), as it is in many other eukaryotes (Hoyt et al., 1991; Kalitsis et al., 2000; Campbell & Hardwick, 2003; Meraldi et al., 2004; Lopes et al., 2005). We think that the use of indirect assays to judge SAC function in these earlier studies led to misinterpretation (supplementary information online, note 2).

Fission yeast Bub3 has been reported to bind to Mad3 and Bub1, and to be required for their localization to kinetochores (Millband & Hardwick, 2002; Vanoosthuyse et al., 2004; Kadura et al., 2005). In addition, we find that Bub3 is required for the kinetochore localization of Mad1 and Mad2 (Fig 1B; supplementary Fig S3 online). This implies that the SAC can function with undetectable levels of these SAC proteins at the kinetochores, which is not entirely consistent with the standard model (Musacchio & Salmon, 2007; Simonetta et al., 2009). It also indicates that fission yeast Bub3 remains intimately linked to the SAC and we hypothesize that, even in fission yeast, Bub3 contributes to SAC signalling but not in an essential manner. Interestingly, Caenorhabditis elegans Bub3 becomes dispensable for SAC activity when Mad2 levels are subtly elevated (Essex et al., 2009). It is therefore possible that Bub3 has a similar role in the SAC of all eukaryotes, but whether it is essential for SAC activity or not depends on other parameters in the SAC signalling network.

Bub3 is required for correct chromosome segregation

Cells lacking Bub3 are sensitive to the microtubule-destabilizing drug benomyl (Millband & Hardwick, 2002; Vanoosthuyse et al., 2004), which is a common phenotype of mutants that cause chromosome segregation defects. Indeed, cells lacking Bub3 showed a delay in mitosis, which was dependent on a functional SAC (Fig 2A). When directly monitoring the segregation of chromosome 2 in bub3Δ cells by using live-cell imaging, we observed only a slight increase in mis-segregation compared

Fig 1 Bub3 is not essential for the SAC, but for the efficient localization of SAC proteins. (A) Cells expressing polo-GFP and the β-tubulin nda3-KM311 allele were followed by live-cell microscopy at 17°C. The duration of prometaphase was determined by the presence of Polo-GFP on the SPBs. Circles indicate cells in which the entire prometaphase took place within the recording time. Triangles indicate cells that had not exited prometaphase when recording was stopped; thus the actual time of prometaphase must be longer than this value. Kymographs of exemplary cells are shown in supplementary Fig S1A online. (B) Kymographs of exemplary mitotic cells that were followed by live-cell microscopy at 30°C using Sid4-mCherry to visualize SPBs. A quantitative analysis is shown in supplementary Fig S3 online. GFP, green fluorescent protein; SAC, spindle assembly checkpoint; SPB, spindle pole body.
Mis-segregation in cells lacking Bub3 (Fig 2B), which indicates that Bub3 is more important for correct kinetochore–microtubule attachment in a situation in which kinetochores become unclustered from the SPBs.

Bub3 and Bub1 are required to promote bi-orientation

As chromosome segregation in bub3Δ cells was particularly perturbed after microtubule depolymerization and repolymerization, we followed chromosome segregation in these cells more closely. We used the kinetochore protein Mis6 fused to mCherry and GFP–tubulin as markers, which allowed us to follow all three chromosomes simultaneously (Fig 3A). By the time imaging started after washout of the drug, the chromosomes of wild-type cells had often achieved bi-orientation. Only 7% of all chromosomes showed clear mono-orientation for longer than 10 min (Fig 3C) and chromosome attachment was usually corrected to bi-orientation within 30 min (Fig 3B,D; supplementary information online, note 3; supplementary Fig S4A online). By contrast, bub3Δ cells more frequently showed mono-oriented chromosomes (20% of all chromosomes; Fig 3C) and, crucially, mono-oriented chromosomes in bub3Δ cells only became bi-oriented after a considerable delay, if at all (Fig 3B,D; supplementary Fig S4B–D online). Our results therefore suggest that Bub3 is involved in converting the mono-orientation of chromosomes to bi-orientation. Cells lacking Bub3 delayed anaphase when mono-oriented chromosomes were present (supplementary Fig S5 online), further supporting the idea that the SAC is functional in bub3Δ cells (supplementary information online, note 4). To test whether the role of Bub3 in promoting the conversion from mono-orientation to bi-orientation is shared with its interaction partner Bub1, we assayed chromosome segregation under similar conditions using a specific bub1 mutant (bub1ΔGLEBS), which lacks the Bub3-interacting region (Larsen et al, 2007). Bub1ΔGLEBS did not localize to kinetochores, abolished Bub3 localization to kinetochores (supplementary Fig S6 online), but preserved SAC activity (V. Vanoosthuyse & K. Hardwick, personal communication). Cells expressing the bub1ΔGLEBS mutant showed a defect in converting chromosome mono-orientation to bi-orientation that was similar to bub3Δ cells (Fig 3B–D; supplementary Fig S4E online). Thus, Bub1 and Bub3 together promote bipolar chromosome attachment in fission yeast.

Sgo2-independent bi-orientation by Bub3 and Bub1

In fission yeast, Sgo2 is the only mitotic shugoshin protein and its localization depends on Bub1 (Kitajima et al, 2004). Deletion of sgo2 also increases mis-segregation specifically after microtubule depolymerization and repolymerization (Kawashima et al, 2007; supplementary Fig S7 online). As Bub1 interacts with Bub3 (Vanoosthuyse et al, 2004; Kadura et al, 2005), it is possible that the defect in bi-orienting chromosomes in bub3Δ and bub1ΔGLEBS cells resulted from a loss of Sgo2 function. However, unlike in cells lacking Bub1, Sgo2 still localized to the centromeres in the bub3Δ or bub1ΔGLEBS mutants (Fig 3E; supplementary information online, note 5). To determine whether the bi-orientation defect seen in bub3Δ and bub1ΔGLEBS cells could nevertheless be due to the loss of Sgo2 function, we followed chromosome segregation in sgo2Δ cells after release from MBC arrest. We found that cells lacking Sgo2 had pronounced defects in attaching and segregating chromosomes correctly (supplementary Movie online). However, sgo2Δ cells

to wild-type cells (Fig 2B; Vanoosthuyse et al, 2004). In an unperturbed mitosis, kinetochores are in close proximity to SPBs and chromosomes often achieve bi-orientation without any visible intermediate state. By contrast, when microtubules are depolymerized, kinetochores tend to ‘uncluster’ from SPBs. On microtubule repolymerization, chromosomes need to be retrieved towards the spindle and often undergo a transient state of mono-orientation before reaching bi-orientation (Grishchuk & McIntosh, 2006; Franco et al, 2007; Gachet et al, 2008). We monitored chromosome segregation after depolymerizing microtubules by using the microtubule-destabilizing drug MBC (methyl-benzimidazole-2-yl carbamate), and then washing out MBC. This led to a strong increase in chromosome mis-segregation in cells lacking Bub3 (Fig 2B), which indicates
Non-checkpoint function of fission yeast Bub3

H. Windecker et al

scientific report

Fig 3 Bub3 and its interaction with Bub1 are required for chromosome bi-orientation in an Sgo2-independent manner. (A–C) Cells expressing GFP–atb2(tubulin) and the kinetochore marker mis6–mCherry were pre-synchronized and treated with MBC as described in Fig 2B. After washout of MBC, segregation of the chromosomes was monitored by using live-cell microscopy at 20 °C. (B) Chromosomes that persisted close to an SPB for at least 10 min were followed and the time until they became bi-oriented was determined (open circles). Filled circles indicate chromosomes that apparently never achieved bi-orientation; triangles indicate chromosomes that had failed to achieve bi-orientation by the end of the recording. The total number of cells observed, the number of cells showing mono-oriented chromosomes for at least 10 min and the number of mono-oriented chromosomes are given in (C). (D) Exemplary cells from this experiment. Arrowheads indicate mono-oriented chromosomes. For the bub3Δ cell, correction of mono-orientation to bi-orientation could be seen at 33 min. In the bub1-ΔGLEBS cell, mono-orientation was never corrected and the cell entered anaphase after 37 min. In the sgo2Δ cell, bi-orientation was achieved after about 15 min. The sgo2Δ bub3Δ cell failed to bi-orient two chromosomes and delayed entry into anaphase for more than 1 h (supplementary Fig S4 online). (E) Living cells from the indicated strains expressing mCherry–atb2(tubulin) and sgo2–GFP were imaged by fluorescence microscopy. For each genotype, two independent strains were used. The maximum signal intensity in the nucleus was determined. Interphase or metaphase cells were identified by the characteristic microtubule signal. bub3Δ and bub1-ΔGLEBS cells often showed more than one Sgo2–GFP signal in mitosis (supplementary Fig S9). GFP, green fluorescent protein; SPB, spindle pole body; wt, wild type.
showed a similar fraction of mono-oriented chromosomes as wild-type cells (Fig 3C), and rarely showed a delay in bi-orienting chromosomes that had been pulled towards one SPB (Fig 3B,D; supplementary Fig S4F online). When \(\text{bub3} \) was deleted in addition to \(\text{sgo2} \), mono-orientation was prolonged, similar to the \(\text{bub3}\alpha \) single mutant (Fig 3B,D; supplementary Fig S4G online), making it unlikely that \(\text{sgo2} \) acts downstream of \(\text{bub3} \) in promoting chromosome bi-orientation. Therefore, we suggest that \(\text{Bub1} \) and \(\text{Bub3} \) together have a \(\text{sgo2} \)-independent role in promoting the conversion from chromosome mono-orientation to bi-orientation. In human cells, knock down of \(\text{BUB1} \) or \(\text{BUB3} \) by RNA interference also causes a chromosome congression defect (Ditchfield et al, 2003; Meraldi & Sorger, 2005; Logarinho et al, 2008), which might not be caused exclusively by the loss of shugoshin from the kinetochores (Klebigh et al, 2009). Thus, this function of \(\text{Bub1} \) and \(\text{Bub3} \) might be conserved between yeast and humans.

Separate pathways for the correction of mono-orientation

Little is known about the molecular events that occur during conversion from chromosome mono-orientation to bi-orientation in any organism. Mono-oriented chromosomes might be captured directly by microtubules reaching over from the other pole (direct pathway; Fig 4A). In vertebrate cells, mono-oriented chromosomes can move on pre-existing kinetochore microtubules towards the centre of the spindle (indirect pathway; Fig 4A; Kapoor et al, 2006). As \(\text{Bub3} \) localizes to mono-oriented chromosomes up to the moment of bi-orientation (Fig 4B), and the abolishment of \(\text{Bub3} \) and \(\text{Bub1} \) localization to the kinetochores in the \(\text{bub1}\alpha-\text{AGLEBS} \) mutant leads to persistent mono-orientation (Fig 3B–D), we favour the idea that \(\text{Bub3} \) and \(\text{Bub1} \) promote bi-orientation by modulating kinetochore–microtubule interactions at the mono-oriented chromosome (indirect pathway). An additional observation supports the view that the direct pathway is functional in \(\text{bub3}\alpha \) cells: when one or more chromosomes remain mono-oriented or unattached, spindles often undergo cycles of elongation and shrinkage (Fig 5; supplementary information online, note 6; supplementary Figs S4D, S8A online). Interestingly, mono-oriented chromosomes in \(\text{bub3}\alpha \) cells often achieved bi-orientation when the spindle was short (Fig 5C,D). Our interpretation is that mono-oriented chromosomes in \(\text{bub3}\alpha \) cells are able to achieve bi-orientation through capture from the opposite spindle pole (direct pathway), which is more likely to happen when spindles are short (Fig 5A). This also explains why chromosome segregation of \(\text{bub3}\alpha \) cells is only slightly affected in an unperturbed mitosis (Fig 2B). In this situation, chromosomes are clustered close to the separating SPBs at the onset of mitosis and, hence, can rapidly achieve bi-orientation through the ‘direct’ pathway while the spindle is still short. After MBC release, by contrast, chromosomes first need to be retrieved towards the SPB by astral microtubules, and the spindle elongates while this happens. Once mono-oriented chromosomes reach the SPB, direct capture becomes unlikely owing to the paucity of long microtubules coming from the opposite pole (Grishchuk et al, 2007). Bi-orientation, therefore, needs a mechanism to move chromosomes closer to the opposing SPB, which depends on \(\text{Bub3} \) and \(\text{Bub1} \) (Fig 4A; supplementary information online, note 7). How \(\text{Bub3} \) affects kinetochore–microtubule interactions of mono-oriented chromosomes remains an open question. A study in budding yeast did not find any evidence for a direct interaction between \(\text{Bub3} \) and microtubules (Guenette et al, 1995). One candidate for a mediator between \(\text{Bub3} \) and microtubules is dynein, which has been found to interact with \(\text{Bub3} \) in the mammalian system (Lo et al, 2007) and to show a genetic interaction in the fungus *Aspergillus nidulans* (Efimov & Morris, 1998). In fission yeast, deletion of the dynein heavy chain (\(\text{dhc1} \)) causes a defect in the transition from chromosome mono-orientation to bi-orientation that resembles that seen in \(\text{bub3}\alpha \) cells (Grishchuk et al, 2007). For *C. elegans*, it has been proposed that dynein is involved in the regulation of microtubule attachment during both mono-orientation and bi-orientation (Gassmann et al, 2008). Thus, \(\text{Bub1} \), \(\text{Bub3} \) and dynein might cooperate at the kinetochores to promote chromosome bi-orientation.

METHODS

Strains, media and imaging conditions. Strains of fission yeast used in this study are listed in supplementary Table S1 online. The \(\text{bub1}\alpha-\text{AGLEBS} \) mutant was constructed by deleting the bases corresponding to amino-acids 264–299 (GKRV...SSIQ). For live-cell imaging, cells were grown in Edinburgh minimal medium (Moreno et al, 1991) containing the necessary supplements and mounted in glass-bottom culture dishes (Ibidi (Martinsried, Germany) or MatTek (Ashland, MA, USA)). Live cell imaging
was carried out on a DeltaVision Core system (Applied Precision, Issaquah, WA, USA) equipped with a climate chamber. MBC (Sigma, St Louis, MO, USA, 4536B) was used at a final concentration of 20 μg/ml. Detailed descriptions of culture conditions, live-cell imaging and image analysis are available in the supplementary information online.

Supplementary information is available at EMBO reports online (http://www.emboreports.org).

ACKNOWLEDGEMENTS
We thank K. Hardwick for communicating unpublished results, and for providing strains and reagents; Y. Watanabe for providing strains and reagents, and for comments on the paper; F. Chang and M. Knop for strains and reagents; D. Ivanov and members of the Haul laboratory for comments on the paper, as well as E. Illgen, J. Peper, M. Maerklin-Stradinger and P. Quecke for excellent technical help. St.H. was supported by the Ernst Schering Foundation. H.W. and S.H. conceived the project; H.W. designed and conducted the experiments mentioned in Figs 2–5 and supplementary Figs S4, S5, S7–10 online; M.L. and S.H. designed and conducted the experiments in Fig 1A and supplementary Figs S1, S2 online; and St.H. designed and conducted the experiments in Fig 1B and supplementary Figs S3, S6 online; H.W. and S.H. wrote the paper with input by St.H.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

REFERENCES
Bahlert J, Steever AB, Wheatley S, Wang Y, Pringle JR, Gould KL, McCollum D (1998) Role of polo kinase and Mad1p in determining the site of cell division in fission yeast. J Cell Biol 143: 1603–1616
Bernard P, Hardwick K, Javerzat JP (1998) Fission yeast bub1 is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis. J Cell Biol 143: 1775–1787
Campbell L, Hardwick KG (2003) Analysis of Bub3 spindle checkpoint function in Xenopus egg extracts. J Cell Sci 116: 617–628
De Antoni A et al (2005) The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol 15: 214–225
Ditchfield C, Johnson VL, Tighe A, Elston R, Haworth C, Johnson T, Morlock A, Keen A, Taylor SS (2005) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161: 267–280
Efimov VP, Morris NR (1998) A screen for dynein synthetic lethals in Aspergillus nidulans identifies spindle assembly checkpoint genes and other genes involved in mitosis. Genetics 149: 101–116
Essex A, Dammermann A, Leeseylln L, Oegema K, Desai A (2009) Systematic analysis in Caenorhabditis elegans reveals that the spindle checkpoint is composed of two largely independent branches. Mol Biol Cell 20: 1252–1267
Fernius J, Hardwick KG (2007) Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis. PLoS Genet 3: e213
Franco A, Meadows JC, Millar JB (2007) The Dam1/DASH complex is required for the retrieval of unclustered kinetochores in fission yeast. J Cell Sci 120: 3345–3351
Gachet Y, Reyes C, Courtheoux T, Goldstone S, Gay G, Serrurier C, Tourmiere S (2008) Sister kinetochore recapture in fission yeast occurs by two distinct mechanisms, both requiring Dam1 and Klp2. Mol Biol Cell 19: 1646–1662
Gassmann R et al (2008) A new mechanism controlling kinetochore–microtubule interactions revealed by comparison of two dynein-targeting components: SPD-1 and the Rod/Zwilch/Zw10 complex. Genes Dev 22: 2385–2399
Grishchuk EL, McIntosh JR (2006) Microtubule depolymerization can drive poleward chromosome motion in fission yeast. EMBO J 25: 4888–4896
Grishchuk EL, Spiriidonov IS, McIntosh JR (2007) Mitotic chromosome biorientation in fission yeast is enhanced by dynein and a minus-end-directed, kinesin-like protein. Mol Biol Cell 18: 2216–2225
Guemette S, Magendanz M, Solomon F (1995) Suppression of a conditional temperature-sensitive nda3 mutation reversibly blocks the spindle assembly checkpoint. J Cell Biol 125: 267–280
Hauf S, Biswas A, Langerger M, Kawashima SA, Tsukahara T, Watanabe Y (2007) Aurora controls sister kinetochore mono-orientation and homolog biorientation in meiosis-I. EMBO J 26: 4475–4486
Hirao K, Yoda T, Yanagida M (1984) The NDA3 gene of fission yeast encodes beta-tubulin: a cold-sensitive nda3 mutation reversibly blocks cell cycle progression. Mol Cell Biol 4: 1965–1970
Hiratsuka T, Elstob R, Haworth C, Johnson T, Johnson VL, Tighe A, Elston R, Morlock A, Keen A, Taylor SS (2005) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161: 267–280
Imanishi K, Yanagida M (1984) The NDA3 gene of fission yeast encodes beta-tubulin: a cold-sensitive nda3 mutation reversibly blocks cell cycle progression. Mol Cell Biol 4: 1965–1970
Imamori K, Motoyama T, Suzuki Y, Sugino A, Tada K, Ohnishi T (2007) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161: 267–280
spindle formation and chromosome movement in mitosis. Cell 39: 349–358

Hoy MA, Totis L, Roberts BT (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66: 507–517

Indjejian VB, Stern BM, Murray AW (2005) The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307: 130–133

Kadura S, He X, Vanoosthuyse V, Hardwick KG, Sazer S (2005) The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Mol Biol Cell 16: 385–395

Kalitsis P, Earle E, Fowler KJ, Choo KH (2000) Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev 14: 2277–2282

Kapoor TM, Lampson MA, Hergert P, Cameron L, Cimini D, Salmon ED, McEwen BF, Khodjakov A (2006) Chromosomes can congress to the metaphase plate before biorientation. Science 311: 388–391

Kawashima SA, Tsukahara T, Langegger M, Hauf S, Kitajima TS, Watanabe Y (2007) Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev 21: 420–435

Kiburz BM, Amon A, Marston AL (2008) Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae. Mol Biol Cell 19: 1199–1209

Kitajima TS, Kawashima SA, Watanabe Y (2004) The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427: 510–517

Klebzig C, Korinth D, Meraldi P (2009) Bub1 regulates chromosome segregation in a kinetochore-independent manner. J Cell Biol 185: 841–858

Kulkian A, Han JS, Cleveland DW (2009) Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev Cell 16: 105–117

Lampson MA, Kapoor TM (2005) The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nat Cell Biol 7: 93–98

Larsen NA, Al-Bassam J, Wei RR, Harrison SC (2007) Structural analysis of Bub3 interactions in the mitotic spindle checkpoint. Proc Natl Acad Sci USA 104: 1201–1206

Lo KW, Kogoy JM, Pfister KK (2007) The DYNLT3 light chain directly links cytoplasmic dynein to a spindle checkpoint protein, Bub3. J Biol Chem 282: 11205–11212

Loganrho E, Resende T, Torres C, Boubha H (2008) The human spindle assembly checkpoint protein Bub3 is required for the establishment of efficient kinetochore–microtubule attachments. Mol Biol Cell 19: 1798–1813

Lopes CS, Sampao P, Williams B, Goldberg M, Sunkel CE (2005) The Drosophila Bub3 protein is required for the mitotic checkpoint and for normal accumulation of cyclins during G2 and early stages of mitosis. J Cell Sci 118: 187–198

Meraldi P, Sorger PK (2005) A dual role for Bub1 in the spindle checkpoint and chromosome congression. EMBO J 24: 1621–1633

Meraldi P, Draviam VM, Sorger PK (2004) Timing and checkpoints in the regulation of mitotic progression. Dev Cell 7: 45–60

Millband DN, Hardwick KG (2002) Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mph1p-dependent manner. Mol Cell Biol 22: 2728–2742

Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194: 795–823

Mulvihill DP, Petersen J, Okhura H, Glover DM, Hagan IM (1999) Plo1 kinase recruitment to the spindle pole body and its role in cell division in Schizosaccharomyces pombe. Mol Biol Cell 10: 2771–2785

Musacchio A, Hardwick KG (2002) The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol 3: 731–741

Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8: 379–393

Nezi L, Rancati G, De Antoni A, Pasqualato S, Piatti S, Musacchio A (2006) Accumulation of Mad2–Cdc20 complex during spindle checkpoint activation requires binding of open and closed conformers of Mad2 in Saccharomyces cerevisiae. J Cell Biol 174: 39–51

Nilsson J, Vekezare M, Winnhall J, Pines J (2006) The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat Cell Biol 10: 1411–1420

Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7: 644–656

Simontella M, Manzoni R, Mosca R, Mapelli M, Massimiliano L, Vink M, Novak B, Musacchio A, Ciliberto A (2009) The influence of catalysis on Mad2 activation dynamics. PloS Biol 7: e10

Tange Y, Niwa O (2008) Schizosaccharomyces pombe Bub3 is dispensable for mitotic arrest following perturbed spindle formation. Genetics 179: 785–792

Vanoosthuyse V, Valsdottir R, Javerzat JP, Hardwick KG (2004) Kinetochore targeting of fission yeast Mad and Bub proteins is essential for spindle checkpoint function but not for all chromosome segregation roles of Bub1p. Mol Cell Biol 24: 9786–9801

Vanoosthuyse V, Pykhozhij S, Hardwick KG (2007) Shugoshin 2 regulates localization of the chromatosomal passenger proteins in fission yeast mitosis. Mol Biol Cell 18: 1657–1669

Warren CD, Brady DM, Johnston RC, Hanna JS, Hardwick KG, Spencer FA (2002) Distinct chromosome segregation roles for spindle checkpoint proteins. Mol Biol Cell 13: 3029–3041

This article is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. [http://creativecommons.org/licenses/by-nc-sa/3.0/]

EMBO reports is published by Nature Publishing Group on behalf of European Molecular Biology Organization.

Non-checkpoint function of fission yeast Bub3
H. Windecker et al

VOL 10 | NO 9 | 2009

©2009 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION

1028