Nonlinear SDOF Analytical Model of Mass-Timber Building with Post-Tensioned Rocking Walls

ANGELO ALOISIO (angelo.aloisio3@gmail.com)
Università degli Studi dell’Aquila
https://orcid.org/0000-0002-6190-0139

Marco Martino Rosso
Politecnico di Torino Facoltà di Ingegneria: Politecnico di Torino

Da Huang
Colorado State University

Asif Iqbal
UNBC: University of Northern British Columbia

Massimo Fragiacomo
Università degli Studi dell’Aquila: Universita degli Studi dell’Aquila

Shiling Pei
Colorado State University

Research Article

Keywords: cross-laminated timber, post-tensioned rocking wall, experimental investigation, non-linear dynamic analysis, fragility curve

Posted Date: January 31st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1286955/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The dynamic response of post-tensioned rocking walls in a mass timber building can be reduced to a single-degree-of-freedom (SDOF) model. In this model, the rocking wall panel is simplified as a rigid block, while the base rotation represents the degree of freedom of the entire structure. The paper presents an analytical approach to develop and calibrate this nonlinear model using shake table tests of a full-scale two-story building with CLT rocking walls. The experimental data are used to estimate the parameters of the governing equation using least-squares optimization. The correlation between the obtained parameters and the cumulative dissipated energy led to a nonlinear model with degradation behavior captured. After that, the calibrated model was used to assess the fragility functions of the structure under repetitive seismic events.

1 Introduction

Traditional wood structures are prone to exhibit a significant reduction of the structural capacity after the repetition of seismic events [1–3]. Many traditional wood buildings derive from the assemblage of timber elements with metal connectors, representing the primary source of energy dissipation during seismic events. The damage of the connections is irreversible and significantly compromises the quick recovery after the event [4, 5]. Furthermore, the plasticization of the connector causes the local plasticization of the timber fibres, determining an evident reduction of the structural capacity after the event [6]. Among engineered-wood solutions, cross-laminated timber (CLT) is growing as a practical, constructive choice in seismic prone areas, especially in tall timber buildings [7]. Compared to light-frame buildings, CLT structures have high in-plane stiffness and a significant load-carrying capacity; The main features of CLT building depend on the physical parameters of the timber panels and the mechanical properties of the connections used (hold-downs and angle brackets, more robust and stiffer than the connectors used in lightweight structures) [8–10]. However, although panelized CLT structures exhibit higher resistance and ductility than lightweight timber structures, they can experience significant damage during an earthquake that is hard to repair [11–13]. After a seismic event, the extensive damage related to the plasticization of the connections and local damage of timber entails the demolition and reconstruction of the building rather than a quick recovery obtained by a targeted replacement of a few structural components [14]. Damage to traditional wood frame building is represented as pinching in their hysteretic loops. Pinching manifests in a reduced stiffness of the reloading paths of the hysteretic response [15–17]. In timber connections, the first-loading path depletes most of the dissipation capacity. The reloading paths manifest an opposite curvature to the first loading ones and are associated with minimal energy dissipation [18, 19]. According to many scholars, pinching represents the primary weakness of timber structures [20, 21]. Therefore, many scientists attempted to enhance the resilience of timber structures by reducing or eliminating pinching [22, 23]. Dissipation devices, added as coupling elements between timber shear walls, increase the dissipation capacity due to the sole connections, reducing the consequences of pinching [24–26]. This solution does not eliminate pinching but enhances the structural dissipation sources. Other scholars attempted to eliminate pinching by developing pinching-free connections [27–33]. This solution improves the cyclic behaviour significantly, as demonstrated from multiple experimental tests [34–36]: the mutual sliding between metal plates with interposed shim material guarantees an almost Coulomb-like dissipation. Aside from pinching-free connections and friction-based devices, post-tensioned CLT rocking walls coupled with steel energy dissipators also can achieve a significant reduction of pinching and enhancement of structural resilience [37, 38]. These resilient wood lateral force-resisting systems were initially proposed and studied by researchers in New Zealand in the early 2000s [39, 40]. Post-tensioning techniques have been applied to wood-frame moment connections and walls [41–44] and used in real building projects [45]. The subsequent development of the post-tensioned wood system led to the commercial application of such techniques in building projects [46]. Recently, a reversed cyclic load testing of post-tensioned CLT rocking walls was conducted by [47] and modelling parameters were derived from that data by [48]. A six-university collaborative research project called the Natural Hazards Engineering Research Infrastructure (NHERI) Tall Wood Project funded by the National Science Foundation (NSF) aims to develop a resilience-based seismic design methodology for tall wood buildings. In 2017, Pei et al. [49] carried out shake table tests of a two-story mass timber building with post-tensioned cables and U-shaped steel dissipators. So far, a few modelling attempts aimed at estimating the response of mass-timber structures with CLT rocking walls using analytical modelling [25, 34, 50–52]. Pei et al. [53, 54] proposed a computationally efficient numerical model for predicting seismic responses of post-tensioned cross-laminated timber (CLT) rocking wall systems. The rocking wall is modelled as a simple linear beam element with a nonlinear rotational spring at the base. In this paper, the authors further investigate the experimental seismic response of the full-scale two-story mass timber building with generalization of the model proposed in [53], but with further reduced number of degrees of freedom and simplified kinematic hypotheses. The model was reduced to the equation of motion for a Single-Degree-of-Freedom (SDOF) oscillator that can accurately capture the dynamic response reflected in the experimental data. The equation, obtained from the principle of virtual works in linear dynamics, proved to effectively represent the building response in terms of base rotation of the CLT wall. Lastly, the fragility curves are obtained from Truncated Incremental Dynamic Analysis.

2 Mechanical Model Of A Structure With Rocking Post-tensioned Wall
Under specific kinematic assumptions, the mechanical model of a frame structure coupled with a rocking wall behaves like an SDOF oscillator. In this section, the authors will demonstrate this observation by deriving the equation of motion of a mechanical model possibly representative of the full-scale two-story mass timber building with post-tensioned rocking CLT walls tested in 2017 at the NHERI@UCSD large outdoor shake table facility. Fig. 1 represents the chosen simplified mechanical model of the two-story building. The model consists of a shear-type two-story frame with lumped masses and two rocking walls. The columns and the rocking walls have no mass, and the total mass is lumped in the storeys. The symmetry of both the tested structure and the excitation supported the development of a planar model, neglecting the 3-d effects. The two rocking walls are mutually connected by equivalent shear springs representatives of the UFP steel dissipators. The rocking walls are connected to the frame by sliding constraints. The shear transfer detail devised by [49] releases vertical constrain and allows the sliding between the CLT wall and each story. Each rocking wall possesses a pivot point by one edge of the panel due to the geometrical configuration of the building. The rocking walls are inside the building, and both connected to the storeys. This configuration leads to the identity of displacement between the two rocking walls and the stories. Unbonded prestressed steel cables connected to the foundation stabilize the rocking motion of the CLT walls. The model neglects the stiffness of the sliding constraints at the base of the CLT panels.

Two variables describe the kinematic response of the mechanical system: the rigid rotation of the CLT panels (\(\theta \)) and the horizontal displacement field of the CLT panel due to elastic deformation (\(v(z) \)), where \(z \) spans the CLT panel length. The displacement field of the rocking walls is the summation of the rigid and deformation contributions, as shown in Eq. 1:

\[
u(x) = V(x) + \theta z \quad v(x) = \theta x
\]

1

The following equations express the horizontal constraint between the rocking walls and the frame:

\[
u_1 = u(h_1) \quad \nu_2 = u(h_1 + h_2)
\]

2

where \(\nu_1 \) and \(\nu_2 \) are the horizontal displacements of the two storeys. The current model represents a possible enhancement of the model proposed by [53]. The main differences between this model and the one by [53] are:

- This model does not include the stiffening and dissipative contribution of the rocking walls into the equivalent stiffness of a lumped-mass shear-type frame model. The current model represents the rocking walls and the shear-type frame separately, each described by its kinematic variables.
- As a consequence of the previous point, this model does not divide the CLT wall into a sequence of segments, each one corresponding to the rocking wall comprised of two storeys. Instead, the CLT wall is modelled as a continuum and has the same displacement and rotation at each storey. Consequently, this model respects the continuity of rotation between segments of the CLT wall, neglected in the frame model, and includes the CLT deformability without segmenting the wall stiffness in the summation of cantilevered-like beam elements.
- This model did not explicitly account for the stiffness of the angle brackets connecting the wall to the foundation. The sliding is eliminated by considering a fixed pivot point. The model is derived under the assumption of small rotations and displacements. The maximum rotation values of the CLT panel are lower than 0.1. Therefore, the inclusion of the nonlinear terms considered by the Housner nonlinear block model [55] is unnecessary for engineering purposes.
- The model neglects the dissipative contribution of impact in the rocking motion [56, 57]. Dissipation depends on the UFP dissipators.

The equations of motion are derived from the Theorem of Virtual Works by minimizing the total energy of the mechanical system. There are three energy sources related to the action of elastic, inertial and external forces. The summation of the virtual works associated with the action of the three force typologies is zero:

\[
W_{\text{elastic}} + W_{\text{inertial}} + W_{\text{external}} = 0
\]

3

In the following paragraphs, the authors will explicit the virtual work made by the elastic, inertial an external forces, labelled \(W_{\text{elastic}} \), \(W_{\text{inertial}} \) and \(W_{\text{external}} \), respectively.

2.1 Elastic forces

The virtual work done by the elastic forces is the summation of the following addends:
\[W_{\text{elastic}} = W_{\text{CLT}} + W_{\text{UFP}} + W_{\text{tendons}} + W_{\text{columns}} \]

where \(W_{\text{CLT}}, W_{\text{UFP}}, W_{\text{tendons}} \) and \(W_{\text{columns}} \) are the virtual works done by the CLT internal stresses, the UFP resisting forces, the tendons stress and the columns internal forces, respectively.

Initially, the authors assumed that the CLT panel behaves like an equivalent Euler-Bernoulli beam. The equivalent beam has null horizontal displacement and bending moment at the base. The pivot point is fixed and does not allow sliding motions \((V(0) = 0) \), while the steel tendons are connected to the foundation and do not provide a bending constraint at the panel base \((V''(0)) \). The CLT panel has a free end, associated with null shear forces \((V''(h) = 0) \) and bending moment \((V''(h) = 0) \). The considered constraint conditions of the CLT panel lead to a null displacement field and consequently to a null virtual work \((W_{\text{CLT}} = 0) \). Straightforward analytical derivation can prove that a mass-less wall does not deform under the considered constraint conditions. This evidence led to the assumption of a rigid-like behaviour of the CLT wall, as anticipated in the introduction. The CLT panel does not deform and behaves like a rigid block, whose motion is described by the \(\theta \) variable. Accordingly, the virtual work associated with the elastic forces reduces to the summation of the UFP dissipators, the tendons and the columns. Therefore, the following equation holds:

\[
W_{\text{elastic}} = W_{\text{UFP}} + W_{\text{tendons}} + W_{\text{columns}} = \\
= \theta \left[+ n_s k_s h^2 + \sum_{i=1}^{n} \left(N_0 + E_s A_i h_i \right) \frac{h_i}{h} + k_1 h_1^2 + k_2 (h_2 - h_1)^2 \right] \delta \theta
\]

where \(\theta \) is the base rotation, \(n_s \) the number of UFP dissipators, \(k_s \) the stiffness of the UFP dissipators, \(n \) the number of tendons, \(N_0 \) the tendon prestressing force, \(E_s \) and \(A_i \) the elastic modulus and cross-section area of the \(i \)-th tendons, \(h_i \) the distance between the pivot point and the \(i \)-th tendon, \(h \) the height of the CLT panel, \(k_1 \) and \(k_2 \) the horizontal stiffness and the height of the first storey, \(k_2 \) and \(h_2 \) the horizontal stiffness and the height of the second storey. The absence of the CLT panel deformation reduces the degrees of freedom of the mechanical system to the sole base rotation \(\theta \). Interestingly, the coupling of a two-degrees of freedom system, a two-story frame, with an internal rocking wall causes the degrees of freedom condensation. This phenomenon does not happen in case of rocking walls coupled with linear or nonlinear devices to the building story’s. In that case, the mechanical system possess more degrees of freedom, as demonstrated by [57, 58].

2.2 Inertial and external forces

The virtual work of the inertial forces is associated with the storeys contributions:

\[
W_{\text{inertial}} = W_{\text{1st-story}} + W_{\text{2nd-story}} = \\
= m_1 \left(\ddot{u}_1 + \ddot{u}_g \right) \delta u_1 + m_2 \left(\ddot{u}_2 + \ddot{u}_g \right) \delta u_2 = \\
= \left\{ \left[m_1 \left(h_1 \ddot{\theta}_1 + \ddot{u}_g \right) \right] h_1 + \left[m_2 \left(h_2 \ddot{\theta} + \ddot{u}_g \right) \right] h_2 \right\} \delta \theta
\]

(6)

where \(\ddot{\cdot} \) indicates the double time derivative, \(u_1 \) and \(u_2 \) are the horizontal displacements of the first and second storey respectively, and \(\ddot{u}_g \) is the ground excitation in terms of acceleration. The two displacements are expressed as function of the base rotation.

The virtual work done by external forces is null, because there are no external forces acting on the structure.

\[W_{\text{external}} = 0 \]

2.3 Governing equations

The summation of Eq. 6 and Eq. 5 leads to the equation of the SDOF system representative of the mechanical model in Fig. 1:

\[I \ddot{\theta} + K \theta = - S_x \ddot{u}_g \]
\[I_\theta = m_1 h_1^2 + m_2 h_2^2 \]

\[K_\theta = n_s k_s b^2 + \sum_{i=1}^{n} \left(N_0 + E_s A_i \frac{b_i}{h} \right) \frac{b_i}{h} + k_1 h_1^2 + k_2(h_2 - h_1)^2 \]

\[S_x = m_1 h_1 + m_2 h_2 \]

where \(I_\theta \) is the rotational inertia of the storey masses, \(I_\theta \) is an equivalent rotational spring and \(S_x \) is the expression of the static moment.

Eq. 8 describes the dynamics of the mechanical system in Fig. 1 in linear elasticity, without dissipation. The next paragraphs will discuss the modelling choices of dissipation by including an equivalent viscous term.

3 Test Description

This paper utilizes the response of a full-scale two-story mass timber building with post-tensioned rocking CLT walls for model calibration. The authors present a few details of the tested building, significant for the current research, before discussing the building dynamics and deriving the equation of motion. Complete details of the building and the tests are in [49]. The building was tested in 2017 at the NHERI@UCSD large outdoor shake table facility. Fig. 2 shows the two-story building and a schematic detail of the post-tensioned rocking walls. The building is symmetric and tested using a uniaxial shake table.

There were two sets of coupled CLT rocking walls installed in the test specimen, as shown in Fig. 2. The walls were coupled using U-shaped flexural steel plate (UFP) energy dissipators, analogue to the ones tested by [59]. Each panel had four external post-tensioned steel rods placed symmetrically near the centre of the wall panel (two on each side). A steel saddle detail, installed on the top of the panel, anchored the post-tensioned rods. The rocking-wall lateral system was connected to the diaphragm using constructive details, which allows the uplift of the wall panel and provides out-of-plane bracing of the wall. A dowel-type steel shear key, inserted into a vertically slotted hole, allowed unconstrained uplift of the rocking wall while transferring lateral loads. The main objective of the testing program was to validate the resilient performance of the post-tensioned CLT rocking-wall lateral system at different levels of seismic intensity. The test building was subjected to a total of 14 earthquake excitations selected to represent three hazard levels for a site near Seattle WA.

4 Discussion Of The Modelling Choices And Estimation Of The System Nonlinearity

The mechanical model in Eq. 8 is designed to be simplistic, reducing a complex 3-d building into an equivalent SDOF system. In this section, the authors discuss the modelling choices by presenting selected results of the test data:

- The measured base rotation of the CLT panel is compared to the rotation of the storeys with respect to the pivot point (Subsec. Base rotation);
- The Fast-Fourier-Transform of the measured base rotation (Subsec. Fast-Fourier-Transform);
- The spectrogram of measured base rotation with indication of the frequency ridge with highest energy content (Subsec. Spectrogram);
- The measured deformation of the CLT panels measured by vertical strain gauges (Subsec. CLT deformation);
- The experimental force-displacement plots (Subsec. Hysteresis curve);

4.1 Base rotation

The authors prove that the base rotation is the prevalent degree of freedom of the structural system by comparing three measured parameters:

\[\theta, \frac{u_1}{h_1}, \frac{u_2}{h_2} \]
Figure 3 superposes the three measured variables $\theta, \frac{u_1}{h_1}$, and $\frac{u_2}{h_2}$ in each of the 14 tests. If θ is the structural degree of freedom, u_1 and u_2 can be written in terms of base rotation $\theta = \frac{u_1}{h_1} = \frac{u_2}{h_2}$.

Figure 3 plots the three measured variables, θ, u_1/θ and u_2/θ for each of the 14 shake table tests. Despite higher discrepancies in Test No 3, 4, and 5, there is a substantial coincidence between the three variables, proving that θ is the prevalent degree of freedom of the two-storey building. Additionally, the plots show that a very low rotation amplitude distinguishes the rocking motion. This fact endorses the adoption of the linear model in Eq. 8 and the consequent neglection of the nonlinear contributions typical of high-amplitude rocking motions. Tab. 1 reports the Root Mean Square Error estimated between the first story rotation (u_1/h_1) and the CLT wall base rotation (θ), and second story rotation (u_2/h_2) and the CLT wall base rotation (θ). The RMSE is minimal and further proves the significant agreement between the three variables. The horizontal displacements of the storeys are not independent, but related by the kinematic equations in Eq. 1.

4.2 Fast Fourier Transform

A direct proof of the presence of a leading kinematic variable comes from the FFT of the measured θ. Fig. 4 shows the FFT of the measured θ for each of the 14 tests.

Table 1 Relative difference between the maximum of the first ($u_{1,max}/h_1$) and second story rotation ($u_{2,max}/h_2$) and the maximum of the CLT wall base rotation (θ_{max}) in %

Test No	$(u_{1,max}/h_1 - u_{2,max}/h_2)/u_{1,max}$	$(u_{1,max}/h_1 - \theta_{max})/\theta_{max}$	$(u_{2,max}/h_2 - \theta_{max})/\theta_{max}$
1	-18.09	-33.68	-15.59
2	-17.42	-32.98	-15.36
3	-40.76	-51.42	-50.66
4	-41.56	-56.05	-54.49
5	-54.47	-51.09	-23.56
6	29.41	63.93	34.52
7	30.98	62.21	31.22
8	28.35	62.55	34.21
9	-16.86	-15.33	-1.53
10	-43.46	-60.05	-46.58
11	-15.64	-13.26	-2.38
12	-8.54	-13.59	-5.05
13	-26.24	-66.56	-40.32
14	-6.19	-5.93	-0.25
Mean	-14.32	-15.09	-11.15

The plots in the logarithmic scale of the y-axis display the presence of a dominant peak in the range 0.3-1 Hz. The observation of the FFT plots reveals a dominant degree of freedom in a pretty wide range. The mechanical system is not elastic and exhibits a significant non-stationary or, possibly, nonlinear response due to amplitude-dependent, hysteretic and degradation phenomena. The FFT helps prove the predominance of a single degree of freedom, but it does not provide information about the time-dependency of the response.

4.3 Spectrogram

Accordingly, the authors estimated the spectrograms of the θ signals. Spectrograms are visual representations of the spectrum of frequencies of a signal as it varies with time. Fig. 5 shows the spectrograms of the measured θ for each of the 14 tests using an Hamming window with a 20% overlap. The spectrograms, represented by contour plots in greyscale, exhibit a moving high-amplitude and sharp peak in white, characterized by a significantly varying response. The authors evidenced the moving peak by plotting the high-amplitude frequency ridge in red. The inspection of the spectrograms reveals two aspects: (i) the sharpness of the peak further confirms the presence of a dominant degree of freedom; (ii) The significant variation of the frequency ridge proves that the system is not elastic and the model in Eq. 8 is not adequate. It must include the effect of dissipation and the time-variability of the structural parameters.

The spectrograms can also reveal the possible nature of the system nonlinearity, helpful in enhancing the elastic model in Eq. 8. Fig. 6(a) superposes the frequency ridges estimated in Fig. 5 for each of the 14 tests. Fig. 6(a) demonstrates the high variability of the peak response, but it does not provide information about the structural properties. Still, there is an evident reduction of the fundamental frequency from the 1st to the 14th test due to possible degradation phenomena (e.g., the shift of the pivot point due to the yielding of the base beam).
Figure 6(b) shows the frequency ridges as a function of the amplitude. The obtained plot is a rough estimation of the structural system's Frequency Response Function (FRF). The estimation of the FRF from seismic response data is an unconventional practice. Accurate FRF estimates should derive from sweep sine tests. However, despite the roughness of the estimation, the dots gather along two main branches, revealing a marked softening response. The fundamental frequency is amplitude-dependent, and the softening effect is related to nonlinear phenomena due to nonlinear terms in the governing equation. The stable and unstable curves of the FRF are quite evident, although the high-amplitude dots are limited. A low number of points in correspondence of the high-amplitude response does not allow reliable estimation of the nonlinear structural parameters from the fitting of the FRF. However, this qualitative outcome is used in the next section to enhance the mathematical model of the two-story building, inclusive of time-dependent parameters and nonlinear terms.

4.4 CLT wall deformation

A direct consequence of the constraints adopted in Fig. 1 is the lack of deformation of the CLT panel, behaving like a rigid block. String pots were installed to measure the flexural and shear deformation of the panel.

Figure 7 shows the signals acquired by a sample string pot, measuring the longitudinal deformation of the CLT panel. The string pots are placed by the CLT panel edges along the vertical direction, where the fibre elongation is supposed to be higher. The signals acquired by the displacement sensors are noninformative. The low signal-to-noise ratio does not allow a reliable estimate of the panel deformation. The plots in Figure 7 prove that the deformation of the CLT panel is minimal, lower than the string pots resolution and, possibly, negligible in a practice-oriented structural model.

4.5 Hysteresis

Most dissipation in timber buildings depends on the hysteretic phenomena of steel connectors or dissipation devices. In the considered building, the pre-eminent dissipation source is the plasticization of the UFP connectors. Pei et al. [53] developed a flag-type hysteretic model representative of the nonlinear response of the tested building. The flag-type hysteretic model is characteristic of post-tensioned rocking structures. The hysteresis loop is very narrow compared to other hysteresis curves of timber-based systems due to the lack of pinching and manifest degradation phenomena.

The following considerations led the authors to model the rotational stiffness K_θ as elastic and reproduce the dissipation phenomena with an equivalent viscous term.

- The hysteresis model developed by [49] has three phases. In the considered structural model, the total mass is lumped in the storeys. Consequently, the CLT panel does not possess any self-weight stabilizing moment, and the panel must rotate to achieve equilibrium with the external loads. Therefore, adopting the hysteretic model by [49], which distinguishes between the rocking and non-rocking phase, is inconsistent with the modelling choices in Fig. 1.

- The narrowness and stability of the hysteresis loop may justify the modelling of dissipation with an equivalent viscous term. The shape of elliptic hysteresis curves, associated with viscosity, is not very dissimilar from flagtype hysteresis. Therefore, a displacement or energy equivalence can drive the assessment of an equivalent viscous term representative of a flag-type hysteresis curve. Besides, the direct displacement-based design procedure (DDBD) uses equivalent viscous damping and secant stiffness as proxies for the estimation of the nonlinear behaviour of structures. However, the available hysteretic models of timber structures are very elaborate, and the inelastic time-domain simulations using hysteretic models are not easily manageable. Hence, the adoption of equivalent viscous damping (EVD) is a crucial feature of any DDBD method.

- The hysteresis curves obtained from the experimental data by plotting the floor acceleration (proportional to the inertial forces) vs the storey displacement are very erratic and do not resemble the shape of any specific hysteresis curve. Fig. 8 shows the estimated backbone of a sample data set, obtained by selecting the measurement points. The backbone curve is not linear and exhibits two phases, a first with lower stiffness, a second very irregular. Furthermore, the backbones of all the 14 tests in Fig. 9 confirm that the hysteretic response of the structural system is very unpredictable and do not resemble the backbone of any specific hysteresis model. Therefore, the high uncertainty associated with estimating the hysteretic parameters sup- ported a more straightforward approach based on equivalent viscosity, which mirrors the global structural dissipation without focusing on the hysteretic response.

5 Identification Of The Structural Parameters

The selected results presented in the previous section showed that the SDOF mathematical model in Eq. 8 could be a reasonable compromise between computational efficiency and prediction accuracy. However, Eq. 8 has no dissipative neither nonlinear terms. Therefore, the authors upgraded Eq. 8 by including a viscous term representative of dissipation phenomena and nonlinear terms representative of the softening response.
where ξ is the equivalent damping ratio, f the natural frequency, $\gamma = \frac{S_y}{I_{\theta}}$, ϵ the dissipated energy. The model has two sources of nonlinearity. In particular, the natural frequency and damping ratio depend on both the rotation amplitude and the dissipated energy. The former aims at reproducing the softening behaviour of the rocking structure. The latter mirrors the effect of stiffness reduction observed between the 14 tests. As proven in the previous section, the natural frequencies globally reduce from the 1st to the 14th tests. The parameter γ can be estimated directly from the following equation:

$$\gamma = \frac{h_1 + k h_2}{h_1^2 + k h_2^2} \approx 0.18$$

where $k = \frac{m_1}{m_2} = 1$ and $h_1 = 3.66$ m and $h_2 = 6.71$ m. Therefore, the unknown parameters are f and ξ. Eqs. 15,16 express the possible nonlinear dependence of the natural frequency and damping ratio using a first-order approximation:

$$f = \{\widehat{f}_0\} + \{k\}_{f0,\epsilon} \epsilon + \{\hat{k}_f\} + \{k\}_{kf,\epsilon} \epsilon$$

$$\xi = \{\widehat{\xi}_0\} + \{k\}_{\xi,\epsilon} \epsilon + \{\hat{k}_\xi\} + \{k\}_{k\xi,\epsilon} \epsilon$$

Eqs. 17,18 modify Eq. 13 into the following:

$$\ddot{\theta} + 4\pi \{f\}_{(\cdot)0} \{f\} + \{k\}_{f0,\epsilon} \epsilon \dot{\theta} + 4\pi^2 \{f\}_{(\cdot)0} \{f\} \dot{\theta} + \{k\}_{f0,\epsilon} \epsilon \theta = -\gamma \ddot{u}_g$$

where $\{f\}_{(\cdot)0}$, $\{f\}$, $\{k\}_{f0,\epsilon}$, and $\{k\}_{f0,\epsilon}$ are the unknown parameters.

5.1 First step of system identification

The authors estimated the unknown parameters by maximizing the rank correlation [60] between the solution of Eq. (13) and the experimental measurement:

$$\text{corr}(\theta_s, \theta_e) = \frac{\theta_s \cdot \theta_e}{\theta_s \cdot \theta_e}$$

where $\langle \cdot \rangle$ is the inner product, the norm operator, θ_s and θ_e the experimental and simulated responses, respectively.

Table 5 lists the estimated parameters of Eq. 13, while Fig. 10 shows the superposition between the experimental and simulated time histories of the base rotation θ for each of the 14 shake table tests. There is an optimum agreement between the experimental and simulated values of θ. The root mean square error between the two time-histories is minimal and validates the chosen mechanical model in Fig. 1.
Table 2
Root Mean Square Error between the experimental and simulated response in terms of base rotation θ, and estimated parameters of the analytical model.

Test No	RMSE	f_0 [Hz]	k_f [Hz]	ξ [%]	k_ξ [%]	γ
1	0.0098	1.2	62	12	89	0.18
2	0.0163	1.2	65	15	123	0.18
3	0.0159	1.5	89	35	116	0.18
4	0.0159	1.5	91	40	165	0.18
5	0.0492	1.0	123	23	184	0.18
6	0.1156	0.9	122	18	86	0.18
7	0.0355	1.2	104	46	196	0.18
8	0.1031	0.9	115	24	108	0.18
9	0.0531	1.0	105	21	97	0.18
10	0.0574	0.9	54	18	98	0.18
11	0.0578	1.0	55	18	92	0.18
12	0.0763	0.9	20	24	43	0.18
13	0.0786	0.8	85	34	56	0.18
14	0.074	0.8	86	35	57	0.18
Mean	0.0542	1.1	84	26	108	0.18

Still, the estimated parameters are not stationary and exhibit a variability between the 14 tests due to degradation phenomena. The estimation of the model degradation is crucial because it allows quantifying the structural resilience under repeated earthquakes.

The identified parameters in Tab.5 can lead to estimating the mechanical parameters of the governing equation. The concurrent estimation of the stiffness and inertial parameters is an undetermined problem. Therefore, the authors provide a reasonable approximation of the rotational stiffness (\tilde{K}_{θ}) and estimate the rotational inertia (\tilde{I}_{θ}). The rotational stiffness summates three contributions, the UFP dissipators, the pre-stressed tendons and the mass timber frame. Since the most significant contribution to the lateral stiffness is the rocking wall, and the frame’s stiffness is challenging to estimate, the authors approximate the rotational stiffness by summing the sole tendons (K_{bars}) and UFP (K_{UFP}) contributions.

$$\tilde{K}_{\theta} = K_{UFP} + K_{bars} \approx n_s k_s b^2 + \sum_{i=1}^{n} \left(N_0 + E_s A_i \frac{b_i}{h}\right) \frac{b_i}{h}$$

where k_s is known from experimental tests on the UFP dissipators, see Tab.3. The approximate rotational inertia (\tilde{I}_{θ}) is:

$$\tilde{I}_{\theta} = \frac{\tilde{K}_{\theta}}{(2\pi f_0)^2}$$

Assuming the identity of the story masses, the mass of each story is:

$$m_{\text{story}} = \frac{\tilde{I}_{\theta}}{m_1^2 + m_2^2}$$

Table 3 reports the estimated mechanical parameters and the values of those assumed for their estimation following Eq. 26-27.

5.2 Second step of system identification
The variation of the modelling parameters between the 14 tests depends on minor degradation phenomena compared to traditional mass timber structures. Although these phenomena are trivial in a single seismic simulation, their effect can be more consistent under repeated earthquakes. Therefore, following a conventional approach in structural engineering, the authors correlated the parameters in Tab. 5 to the cumulative dissipated energy between the 14 tests.

Figure 11 plots the dissipated energy in the 14 tests as a function of time. The cumulation of the maximum values of the dissipated energy is used to derive the correlation parameters of the four variables \({f}_0, {k}_f, \xi \) and \({k}_\xi \) using an Ordinary Least Squares (OLS) optimization:

\[
\begin{align*}
{f}_0 &= \hat{f}_0 + k_{f0, e} e \\
{k}_f &= \hat{k}_f + k_{kf, e} e \\
\xi &= \hat{\xi}_0 + k_{\xi, e} e \\
{k}_\xi &= \hat{k}_\xi + k_{k\xi, e} e
\end{align*}
\]

Figure 12 shows that the \({k}_f \) coefficient are not markedly dependent on the cumulative dissipated energy. Conversely, the natural frequency \({f}_0 \) and the nonlinear damping term \({k}_\xi \) exhibit evident negative correlations. The results demonstrate that damage accumulation causes a global stiffness reduction, mainly due to the shift of the pivot point and a reduction of the dissipation capacity at higher displacement values.

Table 4 lists the estimated parameters of Eqs. 28-31 plotted in Fig. 12.

Parameter	\(\hat{f}_0 \) [Hz]	\(k_{f0, e} \) [Hz\cdot kJ^{-1}]	\(\hat{k}_f \) [kJ^{-1}]	\(k_{kf, e} \) [%]	\(\hat{\xi}_0 \) [%]	\(k_{\xi, e} \) [%\cdot kJ^{-1}]	\(\hat{k}_\xi \) [kJ^{-1}]	\(k_{k\xi, e} \) [kJ^{-1}]
Value	1.28	-0.0038	93.74	-0.1670	24.09	0.0314	142.45	-0.5929

5.3 Discussion on the parameters variability

The averaged parameters estimated in the first four tests refer to the SLE condition, characterized by a lower PGA level up to 0.2g. The averaged parameters in Tab. 6 are used to predict the response under different excitation levels characterized by PGA in the range 0.2-1.2g.

The analysis assesses if there is a specific level for the calibration of the parameters minimizing the error of the estimates. Tab. 7 lists the error related to the estimate of the displacement in the 14 tests in terms of Root Mean Square Error (RMSE), Maximum error (ME) and Relative Maximum Error (RME) between the experimental (\(\theta_e \)) and simulated (\(\theta_s \)) base rotations. As expected, predicting the displacement response in the first four tests is entirely accurate, leading to an average error of 1%. The same parameters yield a higher error, 20% on average, in the tests characterized by higher PGA. Still, the prediction can be considered reasonably accurate for engineering purposes, despite the variability related to the model approximation.
Table 5
Root Mean Square Error between the experimental and simulated response in terms of base rotation \(\theta \), and estimated parameters of the analytical model.

Test No	RMSE	\(f_0 \) [Hz]	\(k_f \) [Hz]	\(\xi \) [%]	\(k_\xi \) [%]	\(\gamma \)
1	0.0098	1.2	62	12	89	0.18
2	0.0163	1.2	65	15	123	0.18
3	0.0159	1.5	89	35	116	0.18
4	0.0159	1.5	91	40	165	0.18
5	0.0492	1.0	123	23	184	0.18
6	0.1156	0.9	122	18	86	0.18
7	0.0355	1.2	104	46	196	0.18
8	0.1031	0.9	115	24	108	0.18
9	0.0531	1.0	105	21	97	0.18
10	0.0574	0.9	54	18	98	0.18
11	0.0578	1.0	55	18	92	0.18
12	0.0763	0.9	20	24	43	0.18
13	0.0786	0.8	85	34	56	0.18
14	0.074	0.8	86	35	57	0.18
Mean	0.0542	1.1	84	26	108	0.18

Table 6
Avaraged parameters estimated between in Tests No 1-4 referred to the SLE

{f}_0(0)	{k}_f(0)	\(\xi \)	{k}_\xi(\xi)	\gamma
1.4	83.9	32.8	144.1	0.2
Table 7
Root Mean Square Error (RMSE), Maximum error (ME) and Relative Maximum Error (RME) between the experimental (θₑ) and simulated (θₚ) response in terms of base rotation.

Test No	RMSE(θₑ-θₚ)	Max(θₑ-θₚ)	Max(θₑ-θₚ)/Max(θₑ) [%]
1	0.0450	0.0191	22.73%
2	0.0484	0.0252	30.27%
3	0.0339	-0.0257	-36.77%
4	0.0327	-0.0155	-22.14%
Average	0.0400	0.0008	-1.48%

Test No	RMSE(θₑ-θₚ)	Max(θₑ-θₚ)	Max(θₑ-θₚ)/Max(θₑ) [%]
5	0.1940	-0.1086	-28.35%
6	0.2334	0.2717	70.51%
7	0.0478	-0.0198	-26.92%
8	0.2339	0.2476	64.74%
9	0.1862	0.0042	2.92%
10	0.1537	0.2166	84.84%
11	0.2130	0.1349	77.78%
12	0.2357	-0.2205	-62.48%
13	0.2373	0.4875	147.97%
14	0.2976	-0.4838	-105.38%
Average	0.2033	0.0530	22.56%

The use of the parameters in Tab.6 leads, on average, to an underestimation of the structural response at higher displacement levels. This effect mostly depends on the correct choice of the natural frequency related to minor degradation phenomena (reducing the pivot length due to local plasticization, e.g.). However, a close inspection of Tab.7 reveals that the error is both positive and negative even at higher displacement levels. Therefore, the error cannot be removed by simply reducing the natural frequency or adopting other intensity levels to calibrate the parameters. On the other hand, the SLE excitation yields satisfactory results at higher PGAs, proving that the structural system exhibits a mostly linear response related to minor degradation phenomena.

6 Estimate Of The Limit State Of The Post-tensioned Tendons

The assessment of the fragility functions of the considered structural model with degradation entails the evaluation of the base rotation associated with a given limit state. The authors assume that the limit state of the structure corresponds to the limit state of the post-tensioned tendons. The axial deformation of the i-th steel bar, \(i \), can be written as a function of the base rotation \(\theta \):

\[
\epsilon_{s}^{i} = \sqrt{\theta^2 + \left(1 + \theta \frac{b_i}{h}\right)^2} - 1
\]

The limit state rotation of the i-th bar \(\theta_{f,i} \) can be derived from the inversion of Eq. 32 by setting \(\epsilon_{s}^{i} \) equal to the yielding deformation of steel, \(\epsilon_{s,y} \). Eq. 32 is a 2nd order algebraic equation with the following two solutions:

\[
\theta_f = \left\{-\frac{h\left(h\sqrt{\frac{b_i^2(\epsilon_{s,y}+1)^2+h^2\epsilon_{s,y}(\epsilon_{s,y}+2)}{h^2}}+b_i\right)}{b_i^2+h^2}, +\frac{h\left(h\sqrt{\frac{b_i^2(\epsilon_{s,y}+1)^2+h^2\epsilon_{s,y}(\epsilon_{s,y}+2)}{h^2}}-b_i\right)}{b_i^2+h^2}\right\}
\]

Eq. 32 is obtained by assuming as positive the clockwise direction of the rocking panel. Therefore, the solution with physical meaning is the positive one:

\[
\theta_f = \frac{h\left(h\sqrt{\frac{b_i^2(\epsilon_{s,y}+1)^2+h^2\epsilon_{s,y}(\epsilon_{s,y}+2)}{h^2}}-b_i\right)}{b_i^2+h^2}
\]
By assuming a conservative collapse condition corresponding to the bar yielding, the assumed limit steel deformation, \(\epsilon_{(s,y)} \), is equal to 0.0021\%. The angle associated with the limit state of the post-tensioned bar is:

\[\theta_{f,\text{bar}} = 0.95^\circ \]

The failure angle in Eq. 35 is the minimum between the values obtained with the two \(b_i \), equal to the distance between the pivot point and the bar direction, see Tab. 8.

\(b_{(1)} \) [m]	\(b_{(2)} \) [m]	\(h \) [m]	\(\epsilon_{(y)} \) [%]	\(\epsilon_{(u)} \) [%]	\(\theta_{y}^{(1)} \) [°]	\(\theta_{f}^{(1)} \) [°]	\(\theta_{y}^{(2)} \) [°]	\(\theta_{f}^{(2)} \) [°]
0.89	0.64	7.32	0.0021	0.08	16.60	1.24	18.80	

7 Fragility Functions Under Repeated Earthquakes

The authors estimated the fragility functions of the tested structure under repeated earthquakes from truncated incremental dynamic analysis (TIDA) using the model with parameters in Tab. 4. The chosen control parameter is the maximum base rotation attained during the seismic response. The exceeding of the \(\theta \) value in Eq. 35 identifies the failure domain.

The fragility functions do not express the collapse probability, but the probability of exceeding a specific limit state, associated with the yielding of the post-tensioning bars, as formulated in Eq. 33. Therefore, the assumption of the considered limit state is in line with the modelling choices, which do not include structural nonlinearities due to failures of the structural components. Besides, the assumption of this limit state does not require a model extrapolation because the tested building experienced the post-tensioning bar yielding during the shake table tests used for the model validation. Following the approach in [13, 61], the list of 41 Italian earthquake records with magnitude ranging between 5 and 6.5, given in Tab. 9, represented the base for generating 41 artificial earthquakes, scaled to the same Peak Ground Acceleration (PGA) and optimized to match the design spectrum. Each earthquake is concatenated three times, resulting in a sequence of three identical seismic events. The earthquake records are homogenized to the same intensity level and optimized to match the design spectrum expected in L'Aquila (Italy) according to the national seismic code using the algorithm by [62]. A lognormal cumulative distribution function fits the fragility function from data collected from nonlinear dynamic analyses [63]:

\[
P(C|IM=x) = \Phi\left(\frac{\ln(x/\theta)}{\beta}\right)
\]
No	Year	Location (Italy)	Epicentral distance [km]	PGA [g]	Depth [km]	ML	MW
1	2016	Norcia	11.0	0.931	9.2	6.1	6.5
2	2016	Accumoli	8.5	0.851	8.1	6.0	6.0
3	2009	Fossa	3.6	0.652	17.1	5.4	5.5
4	2009	L’aquila	4.9	0.644	8.3	5.9	6.1
5	2016	Visso	7.1	0.638	7.5	5.9	6.1
6	1976	Lusevra	6.2	0.632	6.8	6.1	5.9
7	2009	Montereale	7.9	0.550	9.4	5.3	5.4
8	2012	Medolla	9.3	0.495	8.1	5.8	6.0
9	1976	Lusevra	27.7	0.346	5.7	6.4	6.4
10	1976	Gemona del friuli	16.2	0.342	11.3	6.0	6.0
11	1976	Friuli Venezia Giulia	9.4	0.322	4.3	5.8	5.6
12	1980	Laviano	33.3	0.314	15.0	6.5	6.9
13	2016	Castel Sant'Angelo sul Nera	9.4	0.295	8.1	5.4	5.4
14	2009	L'Aquila	11.0	0.294	11.0	5.1	5.4
15	2017	Cagnano amiterno	10.8	0.289	9.5	5.1	5.0
16	2009	L'Aquila	7.4	0.264	9.0	5.0	5.0
17	2012	Finale Emilia	16.1	0.259	9.5	5.9	6.1
18	2012	San Possidonio	6.9	0.252	7.2	5.1	5.5
19	1976	Nimis	7.0	0.241	13.3	5.5	5.1
20	1977	Trasaghis	7.1	0.238	10.8	5.3	5.3
21	2013	Fivizzano	11.9	0.227	7.0	5.2	5.1
22	2012	San Felice sul Panaro	7.4	0.205	5.0	5.1	9.1
23	1984	Perugia	20.6	0.201	6.0	5.2	5.6
24	2016	Norcia	4.4	0.191	8.0	5.4	5.3
25	1997	Foligno	20.1	0.184	5.5	5.4	5.4
26	1997	Foligno	21.6	0.184	5.7	5.8	6.0
27	2001	Naturno	25.9	0.167	5.3	4.8	4.8
28	1984	Villetta Barrea	17.4	0.158	12.1	5.7	5.5
29	1997	Foligno	24.2	0.152	5.7	5.6	5.7
30	2009	Pizzoli	10.1	0.148	9.7	5.0	5.1
31	1984	Settefrati	10.1	0.110	20.5	5.9	5.9
32	2012	Berceto	67.4	0.098	72.4	5.2	5.0
33	1990	Potenza	29.0	0.096	10.0	5.2	5.8
34	1997	Sellano	4.1	0.082	4.8	5.1	5.2
Table

No	Year	Location (Italy)	Epicentral distance [km]	PGA [g]	Depth [km]	ML	MW
35	1978	Bruzzano Zeffirio	9.2	0.076	5.0	5.3	5.2
36	2004	Vobarno	13.6	0.072	5.4	5.2	5.0
37	2012	Mirabello	20.4	0.070	3.4	5.1	5.2
38	2002	Bonefro	38.1	0.057	13.0	5.4	5.7
39	2018	Molise	22.3	0.045	19.6	5.2	5.1
40	2002	Casacalenda	46.1	0.032	10.0	5.3	5.7
41	2008	Neviano degli Arduini	47.6	0.022	22.9	5.2	5.5

where $P\left(C\mid IM=x\right)$ is the probability that a ground motion with $IM=x$ will cause the structure to exceed the considered limit state; Φ is the standard normal cumulative distribution function (CDF); θ is the median of the fragility function (the IM level with 50% probability of exceeding the considered limit state); and β is the standard deviation of $ln IM$. The TIDA leads to an alternative procedure [63] to estimate the parameters θ and β, obtained by varying the parameters until maximizing a specific likelihood function. Specifically, the parameters are obtained by maximizing the logarithm of the following likelihood function:

$$\hat{\theta}, \hat{\beta} = \text{arg max}_{\hat{\theta}, \hat{\beta}} \sum_{j=1}^{m} \left[\ln \Phi \left(\frac{\ln (IM_j/\theta)}{\beta} \right) \right] + [n-m] \ln \left[1 - \Phi \left(\frac{\ln (IM_{max}/\theta)}{\beta} \right) \right]$$

where $\hat{\phi}$ denotes an estimated parameter, ϕ the standard normal distribution PDF, n the number of ground motion used in the analysis, m the number of m ground motions that caused the limit state exceeding at IM levels lower than IM_{max}. Φ the standard normal distribution CDF. The authors estimated the parameters of Eq. (37) for each of the 41 earthquake records. The resulting two parameters of the fragility function, representative of all considered seismic scenarios, are obtained taking the mean of all the couples of parameters estimated from each TIDA.

Figure 13 shows the response of the structure under the repetition of earthquake No 41 (see Tab. 9). The effect of damage accumulation produces an increment of the maximum θ value attained during the structural response. The plot of the maximum θ in Fig. 14(a) as a function of the spectral acceleration (Sa) demonstrates the effect of stiffness reduction between the three earthquake repetitions, identified by three different colours: black the first repetition, red the second repetition and blue the third repetition. If successive earthquakes occur, the structure reaches the limit state associated with the bar yielding with a lower Sa.

The effect of damage accumulation is evident from the estimated fragility functions, plotted in Fig. 14(b). Earthquake repetitions determine a shift of the fragility function in the left direction, displaying a more fragile performance.

8 Conclusions

This paper investigates the seismic response of a resilient two-storeys mass timber building from shaking table tests. The authors enhanced the mechanical model proposed by [53], which was used to derive the fragility curves of the considered building under repeated earthquakes. The primary outcomes of this research are:

- The presence of a rocking post-tensioned Cross-Laminated Timber (CLT) panel, free to uplift, and connected to each storey, determines the substantive reduction of the building degrees of freedom to the sole base rotation. Under reasonable kinematic assumptions based on the geometrical and constructive features of the building, the authors derived the governing equation of the structural response.
- The model’s hypotheses are validated through selected experimental results, which proved that the base rotation is the prevalent degree of freedom and that the CLT wall behaves substantially like a rigid block.
- The experimental data of the 14 shake table tests led to the estimation of the parameters of the governing equation, corrected by first-order approximations to include nonlinear and degradation effects. Furthermore, the simulated and experimental responses in terms of base rotation prove a satisfactory agreement.
- The model is used to estimate the fragility functions of the building under three repeated earthquakes. The structural response is very stable after repeated earthquakes, compared to traditional mass timber buildings, which manifest a dramatic reduction of their initial
Declarations

9 Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

1. Johnston H, Watson C, Pampanin S, Palermo A (2014) : Shake table testing of an integrated low damage building system. In: 2nd European Con- ference in Earthquake Engineering and Seismology, Istanbul, pp. 25–29
2. van de Lindt JW, Bahmani P, Mochizuki G, Pryor SE, Gershfeld M, Tian J, Symans MD, Rammer D (2016) Experimental seismic behav- ior of a full-scale four-story soft-story wood-frame building with retrofits. ii: shake table test results. J Struct Eng 142(4):4014004
3. Van de Lindt JW, Pei S, Pryor SE, Shimizu H, Isoda H (2010) Experi- mental seismic response of a full-scale six-story light-frame wood building. J Struct Eng 136(10):1262–1272
4. Gavric I, Fragiacomo M, Ceccotti A (2015) Cyclic behaviour of typical metal connectors for cross-laminated (clt) structures. Mater Struct 48(6):1841–1857
5. Zhang X, Isoda H, Sumida K, Araki Y, Nakashima S, Nakagawa T, Akiyama N (2021) Seismic performance of three-story cross-laminated timber structures in japan. J Struct Eng 147(2):04020319
6. Aloisio A, Boggian F, Tomasi R, Fragiacomo M (2021) The role of the hold-down in the capacity model of ltf and clt shear walls based on the experimental lateral response. Constr Build Mater 289:123046
7. Sandoli A, DAmbra C, Ceraldi C, Calderoni B, Prota A (2021) Sustain- able cross-laminated timber structures in a seismic area: Overview and future trends. Applied Sciences 11(5):2078
8. Izzi M, Casagrande D, Bezzi S, Pasca D, Follesa M, Tomasi R (2018) Seismic behaviour of cross-laminated timber structures: A state-of-the-art review. Eng Struct 170:42–52
9. Brandner R, Flatscher G, Ringhofer A, Schickhofer G, Thiel A (2016) Cross laminated timber (clt): overview and development. Eur J Wood Product 74(3):331–351
10. Hristovski V, Dujic B, Stoijmanovska M, Mircevska V (2013) Full-scale shaking-table tests of xlam panel systems and numerical verification: Specimen 1. J Struct Eng 139(11):2010–2018
11. Ceccotti A, Sandhaas C, Okabe M, Yasumura M, Minowa C, Kawai N (2013) Sofie project–3d shaking table test on a seven-storey full-scale cross-laminated timber building. Earthquake Engineering & Structural Dynamics 42(13):2003–2021
12. van de Lindt JW, Furlay J, Amini MO, Pei S, Tamagnone G, Barbosa AR, Rammer D, Line P, Fragiacomo M, Popovski M (2019) Experimental seismic behavior of a two-story clt platform building. Eng Struct 183:408–422
13. Aloisio A, Alaggio R, Fragiacomo M (2021) Equivalent viscous damping of cross-laminated timber structural archetypes. J Struct Eng 147(4):04021012
14. Pei S, Van De Lindt J, Popovski M, Berman J, Dolan J, Ricles J, Sause R, Blomgren H, Rammer D (2016) Cross-laminated timber for seismic regions: Progress and challenges for research and implementation. J Struct Eng 142(4):2514001
15. Aloisio A, Alaggio R, K’ohler J, Fragiacomo M (2020) Extension of general- ized bouc-wen hysteresis modeling of wood joints and structural systems. Journal of Engineering Mechanics 146(3):04020001
16. Marano GC, Pelliciari M, Cuoghi T, Briseghella B, Lavorato D, Tarantino AM (2017) Degrading bouc-wen model parameters identification under cyclic load. International Journal of Geotechnical Earthquake Engi- neering 8(2):60–81.
https://doi.org/10.4018/IJGEE.2017070104
17. Greco R, Monti G, Marano GC (2017) Influence of post-yield stiffness on inelastic seismic response: A stochastic analysis. Int J Struct Stab Dyn 17(2). https://doi.org/10.1142/S0219455417500286
18. Jorissen A, Fragiacomo M (2011) General notes on ductility in timber structures. Eng Struct 33(11):2987–2997
19. Chen J, Chen YF, Shi X, Zhao Y, Li T (2018) Hysteresis behavior of traditional timber structures by full-scale tests. Advances in Structural Engineering 21(2):287–299
20. Pu W, Liu C, Dai F (2018) Optimum hysteretic damper design for multi- story timber structures represented by an improved pinching model. Bull Earthq Eng 16(12):6221–6241
21. Di Gangi G, Demartino C, Quaranta G, Monti G (2020) Dissipation in sheathing-to-framing connections of light-frame timber shear walls under seismic loads. Eng Struct 208:110246

22. Restrepo JI, Rahman A (2007) Seismic performance of self-centering structural walls incorporating energy dissipators. Journal of Structural Engineering 133(11):1560–1570

23. Kode A, Amini MO, van de Lindt JW, Line P (2021) Lateral load testing of a full-scale cross-laminated timber diaphragm. Practice Periodical on Structural Design and Construction 26(2):04021001

24. Hashemi A, Zarnani P, Quenneville P (2020) Seismic assessment of rocking timber walls with energy dissipation devices. Eng Struct 221:111053

25. Loo WY, Kun C, Quenneville P, Chouw N (2014) Experimental testing of a rocking timber shear wall with slip-friction connectors. J Struct Eng 142(4):4015010

26. Pei S, Van de Lindt J, Barbosa AR, Berman J, Blomgren H-E, Dolan J, McDonnell E, Zimmerman R, Fragiacomo M, Rammer D (2018): Full-scale shake table test of a two story mass-timber building with resilient rocking walls. In: In: Proceedings, 16th European Conference on Earthquake Engineering. Thessaloniki, Greece: 1-10.

27. Buchanan A, Deam B, Fragiacomo M, Pampanin S, Palemo A (2008) Multi-storey prestressed timber buildings in New Zealand. Structural Engineering International 18(2):166–173

28. Iqbal A, Pampanin S, Buchanan A (2015) Performance of ivl walls coupled with ufp dissipaters. J Earthquake Eng 19(3):383–409

29. Chen Z, Popovski M, Iqbal A (2020) Structural performance of post-tensioned clt shear walls with energy dissipators. J Struct Eng 146(4):04020035
46. Holden T, Devereux C, Haydon S, Buchanan A, Pampanin S (2012) Innovative structural design of a three storey posttensioned timber building. World 15:19
47. Ganey R, Berman J, Akbas T, Loftus S, Daniel Dolan J, Sause R, Ricles J, Pei S, Lindt Jvd, Blomgren H-E (2017) Experimental investigation of self-centering cross-laminated timber walls. J Struct Eng 143(10):04017135
48. Akbas T, Sause R, Ricles JM, Ganey R, Berman J, Loftus S, Dolan JD, Pei S, van de Lindt JW, Blomgren H-E (2017) Analytical and experimental lateral-load response of self-centering posttensioned CLT walls. J Struct Eng 143(6):04017019
49. Pei S, van de Lindt JW, Barbosa AR, Berman JW, McDonnell E, Daniel Dolan J, Blomgren H-E, Zimmerman RB, Huang D, Wichman S (2019) Experimental seismic response of a resilient 2-story mass timber building with post-tensioned rocking walls. J Struct Eng 145(11):04019120
50. Ajrab JJ, Pekcan G, Mander JB (2004) Rocking wall–frame structures with supplemental tendon systems. J Struct Eng 130(6):895–903
51. Sarti F, Palermo A, Pampanin S (2016) Quasi-static cyclic testing of two-thirds scale unbonded posttensioned rocking dissipative timber walls. J Struct Eng 142(4):4015005
52. Fitzgerald D, Miller TH, Sinha A, Nairn JA (2020) Cross-laminated timber rocking walls with slip-friction connections. Eng Struct 220:110973
53. Pei S, Huang D, Berman J, Wichman S (2021) Simplified dynamic model for post-tensioned cross-laminated timber rocking walls. Earthquake Engineering & Structural Dynamics 50(3):845–862
54. Huang D, Pei S, Busch A (2021) Optimizing displacement-based seismic design of mass timber rocking walls using genetic algorithm. Eng Struct 229:111603
55. Housner GW (1963) The behavior of inverted pendulum structures during earthquakes. Bull Seismol Soc Am 53(2):403–417
56. Di Egidio A, Alaggio R, Aloisio A, de Leo AM, Contento A, Tursini M (2019) Analytical and experimental investigation into the effectiveness of a pendulum dynamic absorber to protect rigid blocks from overturning. Int J Non-Linear Mech 115:1–10
57. Pagliaro S, Aloisio A, Alaggio R, Di Egidio A (2020) Rigid block coupled with a 2 dof system: Numerical and experimental investigation. Coupled systems mechanics 9(6):539–562
58. Di Egidio A, Pagliaro S, Fabrizio C, de Leo AM (2020) Seismic performance of frame structures coupled with an external rocking wall. Eng Struct 224:111207
59. Priestley MN, Sritharan S, Conley JR, Pampanin S (1999) Preliminary results and conclusions from the presss five-story precast concrete test building. PCI journal 44(6):42–67
60. Gibbons JD, Fielden JDG (1993) Nonparametric Statistics: An Introduction vol. 90. Sage, ???
61. Aloisio A, Fragiaccomo M (2021) Reliability-based overstrength factors of cross-laminated timber shear walls for seismic design. Eng Struct 228:111547
62. Ferreira F, Moutinho C, Cunha A, Caetano (2020) An artificial accelero- gram generator code written in matlab. Engineering Reports 2(3):12129
63. Baker JW (2015) Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra 31(1):579–599

Figures
Figure 1

Mechanical model of a 2-story frame coupled with a rocking wall.

Figure 2

Test building configuration: (a) solid model and dimensions; (b) photo of the constructed building and (c) schematic drawing of the rocking CLT wall.
Figure 3

Comparison between three different estimates of the base rotation, from the first (u_1/h_1) and second story (u_2/h_2) displacement and from the CLT wall uplift (θ).
Figure 4

Single side Fourier Spectrum of the base rotation (θ).
Figure 5

Spectrogram of the base rotation (θ) with indication of the frequency ridge with highest amplitude.
Figure 6

(a) Frequency ridge as a function of the window number and test number, (b) Correlation between the frequency ridge and the response amplitude.
Figure 7
Longitudinal deformation of the CLT panel.

Figure 8
Estimation of the backbone curve from the measured force-displacement curve of the first story in Test No 1. The resisting force is proportional to the inertial forces, therefore it is proportional to the measured acceleration, shown in the y-axis.

Figure 9
Superposition of the estimated backbone curves in terms of acceleration and floor displacement for all tests and the first (a) and second story (b).
Figure 10

Comparison between the experimental and simulated response in terms of base rotation θ.

![Graph comparing experimental and simulated response](image)

Figure 11

Dissipated energy of the SDOF in each of the 14 tests.

Figure 12

Correlation between the estimated model parameters and the cumulative maximum dissipated energy.

Figure 13

Response of the considered SDOF oscillator with.

Figure 14

Results of the Truncated Incremental Dynamic Analyses (a) and fragility curves (b) using three concatenations of each of the 41 earthquakes in Tab.9. Rep. stands for the number of earthquake repetition.