Classifying toric surface codes of dimension 7

Emily Cairncross1, Stephanie Ford2, & Eli Garcia3

\textbf{Mentor: Kelly Jabbusch}

University of Michigan - Dearborn REU 2019

1Oberlin College 2Texas A&M University 3MIT

February 1, 2020
Overview

1. Creating a code
2. Analyzing a code
3. Monomial equivalence and lattice equivalence
4. Classification of polygons with 7 lattice points
5. Future classification for polygons with 8 lattice points
Creating a code

- **k-dimensional linear code**: k-dimensional subspace of \mathbb{F}_q^n (where \mathbb{F}_q is a finite field of order q)
Creating a code

- **k-dimensional linear code**: k-dimensional subspace of \mathbb{F}_q^n (where \mathbb{F}_q is a finite field of order q)

- **Toric surface code**: a linear code given by a generator matrix constructed from a lattice polygon P in \mathbb{R}^2
Creating a code

- **k-dimensional linear code:** k-dimensional subspace of \mathbb{F}_q^n (where \mathbb{F}_q is a finite field of order q)

- **Toric surface code:** a linear code given by a generator matrix constructed from a lattice polygon P in \mathbb{R}^2

Simple example

We construct a toric surface code using the following parameters:

- Finite field: \mathbb{F}_5
- Lattice polygon in \mathbb{R}^2: unit triangle
Generator matrix \((G)\):

Lattice points \((\vec{e}_i)\)	Elements of \((\mathbb{F}_5^*)^2\) \((\vec{a}_j)\)
\((0, 0)\) | \[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}
\]
\((1, 0)\) | \[
\begin{bmatrix}
1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 4
\end{bmatrix}
\]
\((0, 1)\) | \[
\begin{bmatrix}
1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 4
\end{bmatrix}
\]
Example cont.

Generator matrix \((G)\):

Lattice points \((\vec{e}_i)\)
Elements of \((\mathbb{F}_5^*)^2\) \((\vec{a}_j)\)

\[
\begin{pmatrix}
 (0, 0) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 (1, 0) & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 \\
 (0, 1) & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4
\end{pmatrix}
\]

For \(\vec{e}_i = (e_1, e_2)\) and \(\vec{a}_j = (a_1, a_2)\):

\[
G_{ij} = (\vec{a}_j)\vec{e}_i = a_1^{e_1} a_2^{e_2}
\]
Example cont.

Generator matrix (generated by unit triangle and \mathbb{F}_5):

$$G = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 \\
1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4
\end{bmatrix}$$

Codewords:
Linear combinations of rows of G:

$$Code = \{ \bar{u}G : \bar{u} \in (\mathbb{F}_5)^3 \}$$
Example cont.

Generator matrix (generated by unit triangle and \mathbb{F}_5):

$$G = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 \\
1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4
\end{bmatrix}$$

Codewords:

Linear combinations of rows of G:

$$Code = \{\vec{u}G : \vec{u} \epsilon (\mathbb{F}_5)^3\}$$

Examples:

$$\begin{align*}
(1, 1, 0) \cdot G &= (2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 0, 0, 0, 0) \\
(0, 1, 2) \cdot G &= (3, 0, 2, 4, 4, 1, 3, 0, 0, 2, 4, 1, 1, 3, 0, 2)
\end{align*}$$
Analyzing a code

- **Hamming distance:** number of indices at which two codewords are different
 - Hamming distance between example codewords: 12
Analyzing a code

- **Hamming distance**: number of indices at which two codewords are different
 - Hamming distance between example codewords: 12

- **Three important invariants:**
 - length of codewords $n = (q - 1)^2$
 - $n = (5 - 1)^2 = 16$
Analyzing a code

- **Hamming distance:** number of indices at which two codewords are different
 - Hamming distance between example codewords: 12

- **Three important invariants:**
 - length of codewords \(n = (q - 1)^2 \)
 - \(n = (5 - 1)^2 = 16 \)
 - dimension of code \(k = \#(P) \), the number of lattice points in \(P \)
 - \(k = \#(P) = 3 \)
Analyzing a code

- **Hamming distance:** number of indices at which two codewords are different
 - Hamming distance between example codewords: 12

- **Three important invariants:**
 - length of codewords $n = (q - 1)^2$
 - $n = (5 - 1)^2 = 16$
 - dimension of code $k = \#(P)$, the number of lattice points in P
 - $k = \#(P) = 3$
 - minimum distance d varies (minimum Hamming distance between any two codewords)
 - $d = (q - 1)(q - 2) = (5 - 1)(5 - 2) = 12$
Motivation

- Previous work done by Little and Schwartz, Soprunov and Soprunova, and Yau et. al
 - Classification of toric surface codes up to dimension $k = 6$
- We continue this classification for dimension $k = 7$
Definition

Let G_1 and G_2 be the generator matrices for linear codes C_1 and C_2 with dimension k and length n. We call C_1 and C_2 monomially equivalent if there exists an invertible $n \times n$ diagonal matrix Δ and an $n \times n$ permutation matrix Π such that

$$G_1 = G_2 \Delta \Pi.$$
Lattice equivalence

Definition

Let P_1 and P_2 be lattice convex polytopes in \mathbb{R}^m. We call P_1 and P_2 *lattice equivalent* if there exists a unimodular affine transformation $T : \mathbb{R}^m \to \mathbb{R}^m$ defined by

$$T(\vec{x}) = M\vec{x} + \lambda$$

where $M \in SL(m, \mathbb{Z})$ and $\lambda \in \mathbb{Z}^m$ such that

$$T(P_1) = P_2.$$
Lattice equivalence

Definition

Let P_1 and P_2 be lattice convex polytopes in \mathbb{R}^m. We call P_1 and P_2 lattice equivalent if there exists a unimodular affine transformation

$$T : \mathbb{R}^m \to \mathbb{R}^m$$

defined by

$$T(\vec{x}) = M\vec{x} + \lambda$$

where $M \in \text{SL}(m, \mathbb{Z})$ and $\lambda \in \mathbb{Z}^m$ such that

$$T(P_1) = P_2.$$

- Valid transformations: shear, translation, rotation by a multiple of 90°
 - Scaling is not an affine transformation
Lattice equivalence

Definition

Let P_1 and P_2 be lattice convex polytopes in \mathbb{R}^m. We call P_1 and P_2 lattice equivalent if there exists a unimodular affine transformation $T : \mathbb{R}^m \to \mathbb{R}^m$ defined by

$$T(\vec{x}) = M\vec{x} + \lambda$$

where $M \in \text{SL}(m, \mathbb{Z})$ and $\lambda \in \mathbb{Z}^m$ such that

$$T(P_1) = P_2.$$

- Valid transformations: shear, translation, rotation by a multiple of 90°
 - Scaling is not an affine transformation
- Lattice equivalence \Rightarrow monomial equivalence
Lattice equivalence

Lattice equivalent:
Lattice equivalence

Lattice equivalent:

Lattice inequivalent:
Lattice equivalence classes for $k = 7$

For $P_k^{(i)}$, k refers to the number of lattice points while i is the number assigned to the equivalence class.
Lattice equivalence classes for $k = 7$
Lattice equivalence classes for $k = 7$
Theorem: C.F.G. 2019

Every toric surface code generated by a polygon with $k = 7$ lattice points is monomially equivalent to a code given by one of the polygons in the preceding slides.

Sketch of the proof

Goal:
prove that we have all polygons with 7 lattice points

Each P_7 polygon has at least one P_6 polygon as a subset

Take each P_6 and find all possible P_7 by adding lattice points
Classification of $k = 7$ polygons

Theorem: C.F.G. 2019

Every toric surface code generated by a polygon with $k = 7$ lattice points is monomially equivalent to a code given by one of the polygons in the preceding slides.

Sketch of the proof
Classification of $k = 7$ polygons

Theorem: C.F.G. 2019

Every toric surface code generated by a polygon with $k = 7$ lattice points is monomially equivalent to a code given by one of the polygons in the preceding slides.

Sketch of the proof

- **Goal**: prove that we have all polygons with 7 lattice points
- Each P_7 polygon has at least one P_6 polygon as a subset
Classification of \(k = 7 \) polygons

Theorem: C.F.G. 2019

Every toric surface code generated by a polygon with \(k = 7 \) lattice points is monomially equivalent to a code given by one of the polygons in the preceding slides.

Sketch of the proof

- **Goal:** prove that we have all polygons with 7 lattice points
- Each \(P_7 \) polygon has at least one \(P_6 \) polygon as a subset
- Take each \(P_6 \) and find all possible \(P_7 \) by adding lattice points
Illustration of the proof

Figure: Illustration for $P_6^{(2)}$.

[Diagram showing points labeled as original, possible, and impossible.
Classification of $k = 7$ codes

Theorem: C.F.G. 2019

The toric surface codes $C_{P_7^{(i)}}, 1 \leq i \leq 22$, are pairwise monomially inequivalent over \mathbb{F}_q for sufficiently large q.

Sketch of the proof

Goal: prove that no pair of the 22 codes are monomially equivalent

We know that codes with different minimum distances are inequivalent.

To further distinguish codes, we need finer invariants.

We consider the number of codewords of particular weights (distance from $\vec{0} \in \mathbb{F}_n^q$).
Classification of $k = 7$ codes

Theorem: C.F.G. 2019

The toric surface codes $C_{P_7^{(i)}}, 1 \leq i \leq 22$, are pairwise monomially inequivalent over \mathbb{F}_q for sufficiently large q.

Sketch of the proof
Theorem: C.F.G. 2019

The toric surface codes $C_{P_7^{(i)}}, 1 \leq i \leq 22$, are pairwise monomially inequivalent over \mathbb{F}_q for sufficiently large q.

Sketch of the proof

- **Goal:** prove that no pair of the 22 codes are monomially equivalent
Theorem: C.F.G. 2019

The toric surface codes $C_{P_7^{(i)}}$, $1 \leq i \leq 22$, are pairwise monomially inequivalent over \mathbb{F}_q for sufficiently large q.

Sketch of the proof

- **Goal**: prove that no pair of the 22 codes are monomially equivalent
- We know that codes with different minimum distances are inequivalent
Classification of $k = 7$ codes

Theorem: C.F.G. 2019

The toric surface codes $C_{P_7^{(i)}}$, $1 \leq i \leq 22$, are pairwise monomially inequivalent over \mathbb{F}_q for sufficiently large q.

Sketch of the proof

- **Goal**: prove that no pair of the 22 codes are monomially equivalent
- We know that codes with different minimum distances are inequivalent
- To further distinguish codes, we need finer invariants
- We consider the number of codewords of particular weights (distance from $\vec{0} \in \mathbb{F}_q^n$)
Minimum distances

Lattice Equivalence Class	Minimum Distance Formula
$P_7^{(1)}$	$(q - 1)(q - 7)$
$P_7^{(2)}$	$(q - 1)(q - 6)$
$P_7^{(3,14-18,22)}$	$(q - 1)(q - 5)$
$P_7^{(4,8-11,19)}$	$(q - 1)(q - 4)$
$P_7^{(5-7,12)}$	$(q - 2)(q - 3)$
$P_7^{(13)}$	$(q - 1)(q - 3) \geq d > (q - 2)(q - 3)$
$P_7^{(20-21)}$	$(q - 1)(q - 3)$
Classification of $k = 8$ polygons

Theorem: C.F.G. 2019

Every toric surface code generated by a polygon with $k = 8$ lattice points is monomially equivalent to a code given by one of the 42 polygons in the following slides.
Lattice equivalence classes for $k = 8$
Acknowledgements

This research was conducted at the NSF REU Site (DMS-1659203) in Mathematical Analysis and Applications at the University of Michigan-Dearborn. We would like to thank the National Science Foundation, National Security Agency, University of Michigan-Dearborn (SURE 2019), and the University of Michigan-Ann Arbor for their support.