A remark on the connectedness of spheres in Cayley graphs.

Antoine Gournay

February 14, 2014

1 Introduction

The aim of this note is to prove an elementary yet useful property of finitely presented groups. This property is called “connected spheres” in Blachère’s work [1] (where he shows that the Heisenberg group has this property). Filimonov & Kleptsyn [3] use this remark to get some nice results on certain groups of diffeomorphisms of the circle.

Recall that, for a finitely generated group Γ and $S \subset \Gamma$ a finite set such that $s \in S \implies s^{-1} \in S$, the Cayley graph is the graph whose vertices are the elements of Γ and where $g, h \in G$ are connected by an edge whenever there exists $s \in S$ such that $gs = h$. This 1-complex is central to the study of Γ as a geometric object.

A very rough property of Cayley graphs is the number of ends. Let B_n be the ball of radius n with centre at the identity element. This is defined to be the number of infinite connected components in the complement of B_n as $n \to \infty$. Hopf [5] showed that a Cayley graph may have only 0 (finite group), 1, 2, or ∞ many ends. Stallings [7] described the case of groups with 2 ends (virtually-\mathbb{Z}) and ∞ many ends (certain amalgamated products and HNN-extensions). Thus, it turns out “most” groups have 1 end.

The subject matter here is the number of “important” connected components in the spheres of thickness r. The term “important” needs to be added because the complement of B_n may have many finite connected components (and only the infinite one is of interest here). The aim is to show that when the group is finitely presented, there exists r (independent of n) such that these spheres are always connected. The complement of a set A will be denoted A^c.

Definition 1. Assume Γ is one-ended (and finitely generated). Let $B_n^{c,\infty}$ be the infinite connected component of B_n^c. For $r > 0$, a graph has the property of connected spheres with constant r if, for all $n \geq 0$, $B_{n+r} \cap B_n^{c,\infty}$ is connected.
When the constant is not specified, it should be interpreted that this is true for some r. It is necessary to restrict to the infinite connected component of B^n_c because of dead-ends. See section §4 below for further discussion on this topic.

Denote by $|w|$ the word length of a relation.

Theorem 2. Let Γ be a finitely generated group with one end. Assume Γ is finitely presented: $\Gamma = \langle S \mid R \rangle$. Take $r > \max_{w \in R} |w|$. Then the Cayley graph of Γ (with respect to generating set S) has connected spheres with constant r.

For completion, one could say that a non-empty subset Ω in a graph is simply connected if both Ω and its complement are connected. Let Ω^{+r} denote the set obtained by adding to Ω all points at distance $\leq r$ from Ω. Then the above proof also carries to the following situation: in the Cayley graph of a finitely presented group, if $r > \max_{w \in R} |w|$ and Ω is simply connected, then $\Omega^{+r} \setminus \Omega_n$ is connected.

Acknowledgments: The author would like to thank V. Kleptsyn for his encouragement to publish this small note. Comments from and discussions with J. Brieussel, E. Fink and J. Lehnert helped improve this note.

Remark: The property of connected spheres was called “uniformly one-ended” in [4, §4.3]. This result was removed from subsequent versions of the paper since there was a mistake in its application, and the author could not find any interesting application. It then became clear from subsequent discussions with various people and from its use in the paper of Filimonov & Kleptsyn [3] that, notwithstanding its elementary proof, this result is actually quite useful.

2 The Cayley 2-complex

When a group is finitely presented, one can associate the so-called Cayley 2-complex M_{Γ} to it\(^1\). Let R be a (finite) set of (cyclically and ... reduced) relations associated to the (finite) generating set S. This complex is constructed as follows. Partition S in sets of the form $A_i = \{s\} \cup \{s^{-1}\}$ where $i = 1, \ldots, n$. The 0-skeleton is made of a single point \star. The 1-skeleton is made of n loops (with both ends at \star). Each of these loops is given an orientation and a label $a_i \in A_i$. This yields a bouquet of circles.

For each word $w = s_1 s_2 \ldots s_k$ in R, take a disc whose boundary circle is cut into k segments. The j^{th} segment (in clockwise order) being labelled by the a_i in $\{s_j\} \cup \{s_j^{-1}\}$ and oriented clockwise if $a_i = s_j$ and counter-clockwise otherwise. These discs are then glued, respecting orientation and label, to the bouquet of circles.

In fact a group is the fundamental group of a CW-complex with finite k-skeleta for $k \leq 2$ if and only if it is finitely presented. In other words, it

\(^1\)Equivalently, the 2-skeleton of a $K(\Gamma, 1)$.

2
may always be assumed that the complex has no k-cells for $k > 2$. This can be shown using the cellular approximation theorem.

Another important remark is that a group generated by a symmetric finite set S which has a uniform bound on the length of its relations is finitely presented. Indeed, if all relations are of length $\leq \ell$, then there are at most $|S|\ell$ non-trivial reduced words with letters in S of length $\leq \ell$.

3 Proof

Since Γ is finitely presented, it is the fundamental group of its Cayley 2-complex M_Γ. The 1-skeleton of its universal covering, $\widetilde{M_\Gamma}$, is the Cayley graph of Γ. Take $r > \frac{1}{2}\max_{w \in R} |w|$. Given two points g and g' of $B_{n+r} \cap B_n^{c,\infty}$, they can be joined by a path inside B_{n+r} passing through the identity (since balls are connected), and a path through the complement of B_n (since the group has only one end and by definition of $B_n^{c,\infty}$).

Since $\widetilde{M_\Gamma}$ is simply connected, the loop obtained from these two paths may be filled in with a disc D. The boundary of D is a relation w (in bold lines above), and as such it may be decomposed itself into smaller discs corresponding to the 2-cells (i.e. the defining relations, this is the van Kampen diagram for w). Look at D' obtained from D by removing any 2-cell whose boundary contains a point at distance $> n + r$ from the identity. The claim is that the path $p = \partial D' \setminus \partial D$ (drawn above bold and dashed) is contained in $B_{n+r} \cap B_n^{c,\infty}$.

Indeed, assume p contains a point in B_n, then there would be a 2-cell with a boundary 0-cell in B_n and another boundary 0-cell in the complement of B_{n+r}. This means that the length of its boundary word is $\geq 2r$ (since any path from B_n to the complement of B_{n+r} is of length at least r). This contradicts the choice of r; indeed, $2r > \max_{w \in R} |w|$.

Finally, the path p reaches two segments $\partial D \cap (B_{n+r} \cap B_n^{c,\infty})$. These two segments contain g and g', so one can extend p to a path between g and g'.
and lying in the required sphere.

Q.E.D

4 Dead-end?... Questions and further comments

What really matters for the connectedness of spheres is the retreat depth (or strong depth) of $\gamma \in \Gamma$ (for a generating set S). This is the smallest d such that γ is in $B_{|\gamma|-d}^c$ where $|\gamma|$ is the word length of γ. Lehnert [6] (where it bears the name “strong depth”) shows that for the Houghton group H_2 (a group which is not FP_2, hence not finitely presented) it is unbounded. Warshall [8] (where it bears the name “retreat depth”) shows it is bounded for the Heisenberg group (for a generating set).

J. Lehnert pointed out to the author that retreat depth is not invariant under changing the (finite) generating set. The counterexample comes from lamplighter groups. Define the [usual] depth of an element g to be the distance between g and $B_{|g|}^c$. In [9], Warshall shows there is a generating set S for which the lamplighter (on \mathbb{Z}) has bounded [usual] depth, hence bounded retreat depth. On the other hand, Cleary and Tabbac [2] describe dead-end elements (for the usual generators) which are readily seen to be of unbounded retreat depth.

A discussion with J. Brieussel made it quite obvious that the lamplighter on \mathbb{Z} (i.e. $\mathbb{Z}_2 \wr \mathbb{Z}$) does not have connected spheres. Furthermore, $\mathbb{Z} \wr \mathbb{Z}$ (which does not have dead-ends with the usual generating set) has connected spheres. The situation is no longer so obvious on $\mathbb{Z}_2 \wr \mathbb{Z}^2$.

Here are a few interesting questions (which we believe should not be hard to prove or disprove). A group has F_n if its $K(\Gamma,1)$ is finite in dimensions $\leq n$. Finitely presented is equivalent to F_2. Recall that a group has F_{P_n} (for a ring R) if there is a [partial] projective resolution of length n by finitely generated $R\Gamma$-modules of the ring R. Finite presentation implies FP_2, but the converse is [non-trivially] false. It is usually understood that $R = \mathbb{Z}$, but in the following questions, it is not clear if a specific ring should be taken.

(i) Does FP_2 implies connected spheres?

(ii) Is uniformly bounded retreat depth invariant of the generating set amongst groups with a finite presentation?

(iii) Is connected spheres invariant under changing the generating set?

(iv) If Γ is such that $K(\Gamma,1)$ is finite, is the retreat depth uniformly bounded?

(v) Can one relax “finite $K(\Gamma,1)$” to F_k or FP_k (for some k) in (iv)?

(vi) For a group Γ, does there exist $\alpha \in \{0, 1, 2, \infty\}$, and $r > 0$, such that the number of connected components of $B_{n+r} \cap B_{n}^c$ tends to α as $n \to \infty$?
J. Lehnert pointed out to the author that potential candidates for a negative answer to question (v) are Houghton’s groups (H_k is finitely presented for $k \geq 3$, has FP_{k-1} but not FP_k). (iii) was pointed out to the author by E. Fink.

Lastly, it might be interesting to (try to) generalise the above result to higher filling properties and groups with property F_n or FP_n.

References

[1] S. Blachère, Word distance on the discrete Heisenberg group, *Colloq. Math.*, 95(1):21–36, 2003.

[2] S. Cleary and J. Taback, Dead end words in lamplighter groups and other wreath products, *Q. J. Math.* 56(2):165–178, 2005.

[3] D. A. Filimonov and V. A. Kleptsyn One end finitely presented groups acting on the circle, submitted.

[4] A. Gournay, Vanishing of ℓ^p-cohomology in rank one via transport, boundary and packing, ArXiv:1207.0451v1

[5] H. Hopf, Enden offener Räume und unendliche diskontinuierliche Gruppen, *Comment. Math. Helv.*, 16:81–100, 1944.

[6] J. Lehnert, Some remarks on depth of dead ends in groups. *Internat. J. Algebra Comput.*, 19(4):585–594, 2009.

[7] J. Stallings, *Group theory and three-dimensional manifolds*, Yale Mathematical Monographs, 4. Yale University Press, New Haven, Conn.-London, 1971. v+65 pp.

[8] A. Warshall, A group with deep pockets for all finite generating sets, *Israel J. Math.* 185:317–342, 2011.

[9] A. Warshall Strongly t-logarithmic t-generating sets: Geometric properties of some soluble groups, ArXiv:0808.2789