The Regulation of Exosporium-Related Genes in *Bacillus thuringiensis*

Qi Peng1, Guiwei Kao1, Ning Qu1,2, Jie Zhang1, Jie Li2 & Fuping Song1

Bacillus anthracis, *Bacillus cereus*, and *Bacillus thuringiensis* (Bt) are spore-forming members of the *Bacillus cereus* group. Spores of *B. cereus* group species are encircled by exosporium, which is composed of an external hair-like nap and a paracrystalline basal layer. Despite the extensive studies on the structure of the exosporium-related proteins, little is known about the transcription and regulation of exosporium gene expression in the *B. cereus* group. Herein, we studied the regulation of several exosporium-related genes in Bt. A SigK consensus sequence is present upstream of genes encoding hair-like nap proteins (*bclA* and *bclB*), basal layer proteins (*bxpA*, *bxpB*, *cotB*, and *exsY*), and inosine hydrolase (*iunH*). Mutation of SigK decreased the transcriptional activities of all these genes, indicating that the transcription of these genes is controlled by SigK. Furthermore, mutation of *gerE* decreased the transcriptional activities of *bclB*, *bxpB*, *cotB*, and *iunH* but increased the expression of *bxpA*, and GerE binds to the promoters of *bclB*, *bxpB*, *cotB*, *bxpA*, and *iunH*. These results suggest that GerE directly regulates the transcription of these genes, increasing the expression of *bclB*, *bxpB*, *cotB*, and *iunH* and decreasing that of *bxpA*. These findings provide insight into the exosporium assembly process at the transcriptional level.

Bacillus anthracis, *Bacillus cereus*, and *Bacillus thuringiensis* (Bt) are spore-forming members of the *Bacillus cereus* group1. These species vary in terms of host range and virulence2 and are mainly distinguished by the genes *Bacillus anthracis*, transcriptional level.

decreasing that of *bclB* regulates the transcription of these genes, increasing the expression of *bclB* binds to the promoters of *B. cereus* group are complex, multilayered structures. The nucleoid-containing core is enclosed within a peptidoglycan cortex, which is surrounded by the spore coat 4. The filaments of the nap closely follows the progressive assembly of the basal layer9,11. The filaments of the nap are formed by trimers of the collagen-like glycoprotein BclA, which is involved in early interactions with the host surface16. BclA is attached to the underlying basal layer by its N-terminal domain9, which is followed by an extensively glycosylated collagen-like β-jellyroll domain that promotes trimer formation16,18. A second collagen-like protein, BclB, is also present in the exosporium. BclB possesses an N-terminal sequence that targets it to the exosporium and is similar in sequence to a cognate-targeting region in BclA19. The attachment of nearly all BclA trimers requires the basal layer protein BxpB14, which has been implicated as a foundation upon which nap proteins are assembled. BclA and BxpB form high molecular mass complexes, which are stable under conditions that normally disrupt non-covalent interactions and disulfide bonds18,20. However, BclB

1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing. 2 College of Life Sciences, Northeast Agriculture University, Harbin, China. Correspondence and requests for materials should be addressed to F.S. (email: fpsong@ippcaas.cn)
Table 1. Exosporium homologous genes in Bt HD73.

Gene ID	Gene name	Source of homologous gene	Identity	Structure	Ref.
HD73_1438	bclA	B. anthracis Sterne strain 7702	67.8%	Hairy nap	13
HD73_2664	bclB	B. cereus ATCC 10876	90.0%	unknown	24,40
HD73_2410	bxpA	B. anthracis	75.4%	Basal layer	13
HD73_1452	bxpB	B. anthracis Ames	97.0%	Basal layer	15
HD73_0469	cotB	B. anthracis Ames	76.9%	Basal layer	15
HD73_1453	cotY	B. cereus ATCC 10876	92.9%	Basal layer	21
HD73_2208	exsB	B. anthracis Sterne	92.0%	Basal layer	23
HD73_1449	exsY	B. cereus ATCC 10876	87.0%	Basal layer	21
HD73_3089	iunH	B. anthracis Ames	93.1%	Enzyme	15
HD73_4056	cotE	B. cereus ATCC 10876	100%	Basal layer	24
HD73_4735	exsA	B. cereus ATCC 10876	89.4%	Basal layer	22
HD73_3082	exxC	B. cereus ATCC 10876	93.8%	Basal layer	24
HD73_1094	exxD	B. cereus ATCC 10876	46.2%	Basal layer	24
HD73_1970	exsE	B. cereus ATCC 10876	99.6%	Basal layer	24
HD73_2393	exsG	B. cereus ATCC 10876	100%	Basal layer	24
HD73_3464	exsK	B. cereus ATCC 14579	64.4%	Basal layer	24
HD73_5608	exsM	B. cereus ATCC 14579	100%	Basal layer	25

Figure 1. Nucleotide sequence and transcriptional activity of the bclA promoter. (A) Nucleotide sequence analysis. The indicated promoter region, 409 bp upstream and 104 bp downstream of the start codon (double-underlined), was fused with lacZ. Transcriptional start site (TSS, indicated by asterisks) is located 120 bp upstream from the start codon of the bclA gene. The SigK consensus sequence is indicated with a gray box, and the putative -35 and -10 sequences are underlined. (B) β-galactosidase activity assay of PbclA in wild-type HD73 (▲), sigK mutant (●), and gerE mutant (●). T0 is the end of the exponential phase, and Tn is n hours after T0. Values represent mean of at least three independent replicates; error bars represent standard deviation.

lacks sequence similarity to the region of BclA thought to mediate attachment to the basal layer via covalent interactions with BxpB19. In addition, several proteins have been implicated in exosporium formation, including BxpA13, CotB15, CotY21, ExsA22, ExsB23, ExsK24, ExsFB11,20, ExsM25, and ExsY21,26,27. Enzymes associated with the exosporium, including alanine racemase27, inosine hydrolase15, and superoxide dismutase13, may be involved in
preventing premature germination and providing protection against macrophages by detoxifying superoxide free radicals.

Despite the extensive studies on the structure of the exosporium-related proteins, little is known about the transcription and regulation of exosporium gene expression in the *B. cereus* group. Herein, we demonstrate that the transcription of *bclA*, *bclB*, *bxpA*, *bxpB*, *cotB*, *exsY*, and *iunH* are controlled by RNA polymerase sigma factor SigK in Bt HD73. Furthermore, the expression of *bclB*, *bxpA*, *bxpB*, *cotB*, and *iunH* is directly regulated by GerE.

Results

Transcriptional activity of hair-like nap protein genes. We identified 17 exosporium homologous genes with known functions in *B. cereus* and *B. anthracis* in Bt HD73 (Table 1) comprising genes encoding the hair-like nap proteins, basal layer proteins, and enzymes. A major component of the hair-like nap is the glycosylated collagen-like protein BclA. A second collagen-like protein, BclB, is also present in the exosporium. In Bt HD73, *HD73_1438* (*bclA*) and *HD73_2664* (*bclB*) encode BclA and BclB and have 67.8% and 90.0% identity, respectively, to homologous genes in *B. anthracis* Sterne strain 7702 and *B. cereus* ATCC 10876. To determine the transcription start site (TSS) of *bclA* and *bclB*, 5'-RACE analysis was performed as described in the Methods. The TSSs of *bclA* and *bclB* were confirmed to be a single 5'-end nucleotide residue C and G located 120 bp and 150 bp upstream of the start codon according to the sequences of 20 random clones, respectively (Figs 1A and 2A). Analysis of the *bclA* and *bclB* promoter sequences identified sequences CAC(-N₁₆-)CATATGTTA and CATATGTTA 5'-end nucleotide residue C and G located 120 bp and 150 bp upstream of the start codon according to the sequences of 20 random clones, respectively (Figs 1A and 2A). Analysis of the *bclA* and *bclB* promoter sequences identified sequences CAC(-N₁₆-)CATATGTTA and CATATGTTA.
AGC(-N16-)CATATAATT upstream of the bclA and bclB TSS, respectively, which are similar to the consensus sequences recognized by SigK-containing RNA polymerase35, with the putative binding site centered at -10 and -35 nt with appropriate spacing (16 nt) between these consensus sequences (Figs 1A and 2A). SigK is a sigma factor that plays a role in the late stage of sporulation, and some SigK-dependent genes are negatively or positively regulated by GerE in the late stage of sporulation31. Thus, to study the transcription and regulation of the promoters P\textsubscript{bclA} and P\textsubscript{bclB}, P\textsubscript{bclA}-lacZ and P\textsubscript{bclB}-lacZ fusions were constructed and transformed into Bt wild-type strain HD73 and mutant strains, HD(Δ\textit{sigK}) and HD(Δ\textit{gerE}). The β-galactosidase assay showed that the transcriptional activity of P\textsubscript{bclA} was sharply decreased from T\textsubscript{10} to T\textsubscript{23} in HD(Δ\textit{sigK}) (Fig. 1B). It was slightly increased from T\textsubscript{10} to T\textsubscript{18} in HD(Δ\textit{gerE}), and with no significant difference from T\textsubscript{18} to T\textsubscript{23} compared with that of wild-type strain HD73 (Fig. 1B). However, the transcriptional activity of P\textsubscript{bclB} was sharply decreased from T\textsubscript{9} to T\textsubscript{23} both in HD(Δ\textit{sigK}) and HD(Δ\textit{gerE}) compared with that of HD73 (Fig. 2B). To determine whether GerE directly or indirectly regulates the P\textsubscript{bclA} and P\textsubscript{bclB}, GerE-GST protein was expressed in E. coli and purified. The ability of GerE to bind to a DNA fragment containing the P\textsubscript{bclA} (267 bp) and P\textsubscript{bclB} (276 bp) promoters was examined by EMSA. FAM-labeled fragments containing the promoter regions of \textit{bclA} and \textit{bclB} were incubated with different amounts of GerE and assayed for the formation of protein-DNA complexes. Slower-migrating probe-protein complexes were observed upon incubation with increasing amounts of GerE (Fig. 2C). It indicated that GerE recognizes and specifically binds to sequences within the \textit{bclB} promoter region. To precisely determine the GerE-binding site in the \textit{bclB} promoter, DNase I footprinting assays were carried out using the same \textit{bclB} promoter fragment used in the EMSA (Fig. 2D). A 23-bp fragment corresponding to the boxed sequence in the \textit{bclB} promoter region (Fig. 2A) was protected by GerE binding. In sharp contrast, GerE did not bind to labeled \textit{bclA} promoter (Additional file 1). This may result from the lack of direct binding, from a purified GerE protein partially defective in binding or from unfavorable \textit{in vitro} binding conditions. These results indicated that transcription of P\textsubscript{bclA} and P\textsubscript{bclB} is controlled by SigK in the late stage of sporulation and that P\textsubscript{bclB} is directly activated by GerE, while P\textsubscript{bclA} is negatively regulated by GerE.
Transcriptional activity of basal layer protein genes. We studied the transcription and regulation of four basal layer protein genes bxpA (HD73_2410), bxpB (HD73_1452), cotB (HD73_0469), and exsY (HD73_1449). These genes have 75.4%, 97.0%, 76.9%, and 87.0% identity, respectively, to homologous genes in B. anthracis or B. cereus (Table 1). The TSSs of bxpA, bxpB, cotB, and exsY were confirmed to be a single 5′-end nucleotide residue A, A, G, and G located 26 bp, 24 bp, 33 bp and 33 bp upstream of the start codon according to the sequences of 20 random clones, respectively (Figs 3A, 4A, 5A and 6A). Bioinformatics analysis predicted strong SigK-like consensus binding sequences upstream of the respective start codons of all four genes (Figs 3A, 4A, 5A and 6A). The β-galactosidase assay showed that the transcriptional activities of PbxpB and PcotB were abolished in HD(ΔsigK) and decreased in HD(ΔgerE) compared with those of wild-type strain HD73 (Figs 3B and 4B). The transcriptional activity of PbxpA was also abolished in HD(ΔsigK), whereas it was increased in HD(ΔgerE) compared with HD73 (Fig. 5B). EMSA showed that GerE could bind to the promoters of bxpB, cotB, and bxpA (Figs 3C, 4C and 5C). To precisely determine the GerE-binding site in the bxpB, cotB, and bxpA promoters, DNase I footprinting assays were carried out using the same promoter fragments used in the EMSA. A 37-bp, 23-bp and 31-bp fragments located on bxpB, cotB, and bxpA promoters were protected by GerE binding (Figs 3D, 4D and 5D) (corresponding to the boxed sequence in the bxpB, cotB, and bxpA regions shown in Figs 3A, 4A and 5A). The transcriptional activity of PexsY was sharply decreased in HD(ΔsigK) but showed no significant difference in HD(ΔgerE) (Fig. 6B). These results indicated that transcription of PbxpA, PbxpB, PcotB, and PexsY is controlled by SigK in the late stage of sporulation and that PbxpA, PbxpB, and PcotB are directly regulated by GerE.

Transcriptional activity of the inosine hydrolase gene. Inosine hydrolase is encoded by iunH (HD73_3089) in Bt HD73, which has 93.1% identity to the homologous gene bas2693 in the B. anthracis Ames strain. According to the sequences of 20 random clones, the TSSs of iunH was confirmed to be a single 5′-end nucleotide residue G residue located 10 bp upstream of the start codon (Fig. 7A). SigK consensus binding site was present upstream of iunH (Fig. 7A). The β-galactosidase assay showed that the transcriptional activity of
PiunH was abolished from T₄ to T₂₂ in HD(ΔsigK) and lower in HD(ΔgerE) than in HD73 (Fig. 7B). EMSA showed that GerE could bind to the iunH promoter (Fig. 7C) and DNase I footprinting assays showed that a 15-bp fragment was protected by GerE binding (Fig. 7D) (corresponding to the boxed sequence in the iunH region shown in Fig. 7A), together suggesting that transcription of iunH is controlled by SigK and is directly regulated by GerE.

Discussion

In a *B. subtilis* mother cell, a regulatory network with a cascade of four transcription factors (SigE, SpoIID, SigK, and GerE) controls gene expression in the mother cell during sporulation. SigE and SigK are sigma subunits of RNA polymerase. SpoIID and GerE, two small DNA-binding proteins, repress or activate transcription of many mother cell genes. SigK directs the expression of most genes encoding coat structural components and factors required for spore germination, and mother-cell lysis. The decisive role of SigK in spore coat assembly is evidenced by the large number of genes encoding coat structural components found in the SigK regulon. Unlike the coat that constitutes the outermost layer of the mature *B. subtilis* spore, the *B. cereus* group species are encircled by the exosporium. Little is known about the transcription and regulation of the expression of exosporium genes in the *B. cereus* group. Indeed, only *exsB* is known to undergo SigK-mediated transcription and is positively regulated by GerE, as shown in our previous study. In this study, we first confirmed that the transcription of exosporium-related genes *bclA*, *bclB*, *bxpA*, *bxpB*, *cotB*, *exsY*, and *iunH* are controlled by SigK using a β-galactosidase assay. The SigK consensus sequence is located upstream of these and ten other exosporium-related genes in *Bt* and is predicted to be present in most *B. cereus* group strains. This finding suggested that the transcription mechanisms of exosporium genes are similar throughout the *B. cereus* group.

In the *B. subtilis* cascade, the synthesis of each factor depends upon the activity of the prior factor, and there is a feedback loop in which SigK RNAP transcribes gerE, which then negatively regulates transcription of the sigK gene.
gene31,40. Some SigK-dependent genes such as oxalate decarboxylase encoded gene \textit{oxdD}41 and the germination gene \textit{gerT}30 are negatively regulated by GerE. In contrast, other SigK-dependent genes encoding spore coat proteins such as \textit{cotB}31, \textit{cotC}31, \textit{yxeE}42, and \textit{yeeK}43 are positively regulated by GerE in \textit{B. subtilis}. We observed similar effects under the current conditions. The transcription of \textit{bclA} and \textit{bxpA} is negatively regulated by GerE, which could bind to the promoter of \textit{bxpA}. Furthermore, the transcription of \textit{bclB}, \textit{bxpB}, \textit{cotB}, and \textit{iunH} is positively regulated by GerE, and their promoters could bind to GerE.

The collagen-like glycoproteins BclA and BclB require BxpB to assemble the hair-like nap of exosporium19. Based on transcriptional level, we demonstrated that transcription of these three genes occurs nearly at the same stage (T\textsubscript{10}). BxpA is located below the spore coat associated with the cortex and is synthesized during sporulation and assembled into the spore before mother cell lysis, but it is not found in vegetative cells in \textit{B. anthracis} Ames44. Furthermore, the SigK consensus sequence is found upstream of \textit{bxpA}13. We provide new evidence that transcription of \textit{bxpA} initiates at T\textsubscript{9} and is abolished in the \textit{sigK} mutant. ExsY is a homologue of \textit{B. subtilis} cysteine-rich spore coat proteins CotY and CotZ45, that participates in assembly of an intact exosporium21. The time of synthesis of ExsY protein in the sporulation phase was detected by western-blot21. We confirmed that transcription of \textit{exsY} begins at T\textsubscript{7} under the control of SigK and is similar to the transcriptional mechanism of \textit{cotYZ} in \textit{B. subtilis}46. CotB is similar to ExsY in \textit{B. anthracis}47 and has 30\% amino acid identity to \textit{B. subtilis} spore coat protein CotB48. We confirmed that the transcription of \textit{cotB} begins at T\textsubscript{10} under the control of SigK, and is regulated by GerE in Bt. The manner of transcription and regulation is similar between Bt and \textit{B. subtilis}31,36. The transcriptional pattern of bclA, bxpB, cotB, bxpA, exsY, and iunH in wild-type HD73 is very similar, increasing from T\textsubscript{8} to T\textsubscript{17} and decreasing thereafter, suggesting that these proteins are assembled into the basal layer and hair-like nap simultaneously and are nearly complete at T\textsubscript{17}. However, the transcription of bclB is significantly higher than that of bclA after T\textsubscript{17} with continuous transcriptional activity from T\textsubscript{9} to T\textsubscript{13}. These transcriptional data are differ to previous reports, which have suggested that bclB and bclA are transcribed at an identical stage in sporulation, but with bclA transcribed at an approximately two-fold lower level9,49. The present data provide evidence that transcription of some exosporium genes is controlled by SigK and partially regulated by GerE. These findings provide insight into the exosporium assembly process at the transcriptional level.

Figure 6. Nucleotide sequence and transcriptional activity of the \textit{exsY} promoter. (A) Nucleotide sequence analysis. The indicated promoter region, 410 bp upstream and 163 bp downstream of the start codon (double-underlined), was fused with \textit{lacZ}. Transcriptional start site (TSS, indicated by asterisks) is located 33 bp upstream from the start codon of the \textit{exsY} gene. The SigK consensus sequence is indicated with a gray box, and the putative −35 and −10 sequences are underlined. (B) β-galactosidase activity assay of P\textit{exsY} in wild-type HD73 (▲), \textit{sigK} mutant (■), and \textit{gerE} mutant (●). T\textsubscript{0} is the end of the exponential phase, and T\textsubscript{n} is n hours after T\textsubscript{0}. Values represent mean of at least three independent replicates; error bars represent standard deviation.
Methods

Bacterial strains, plasmids, and growth conditions. The bacterial strains and plasmids used in this study are listed in Table 2. Bt strain HD73 was used throughout the study (accession numbers CP004069). *Escherichia coli* strain TG1 was used as the host for cloning experiments. The Dam-/Dcm- *E. coli* ET12567 strain (laboratory stock) was used to generate unmethylated DNA for the electrotransformation assay. Bt strains were transformed by electroporation, as described previously.

DNA manipulation techniques. PCR was performed using *Taq* and KOD DNA polymerase (New England BioLabs Ltd., Beijing, China). Amplified fragments were purified using purification kits (Axygen, Union City, CA, USA). *Bt* chromosomal DNA was extracted with the Puregene kit (Gentra, Minneapolis, MN, USA). Restriction enzymes and T4 DNA ligase (TaKaRa Biotechnology, Dalian, China) were used according to the manufacturer’s instructions. Oligonucleotide primers (Table 3) were synthesized by Sangon (Shanghai, China).

Total RNA isolation and 5′-RACE analysis. For total RNA purification, strain HD73 was grown as previously described in SSM medium until the T14 stage of stationary phase (corresponding to 14 h after the end of the exponential phase). cDNA synthesis and transcriptional start sites (TSSs) of the exosporium genes were determined using the SMARTerTM RACE cDNA Amplification Kit (Clontech, Mountain View, CA, USA) according to the manufacturer’s instructions. Gene-specific primers and the universal primer mix (UPM) (Table 3) were used to amplify the 5′ end of exosporium genes mRNA.

Expression and purification of GerE. GerE protein with a glutathione S-transferase (GST) tag was purified from *E. coli*^BL21(DE3)^. The *E. coli* BL21(DE3) strain carrying pGEXgerE plasmid was incubated in LB medium. When

Figure 7. Analysis of P_iunH transcription. (A) Nucleotide sequence analysis. The indicated promoter region, 465 bp upstream and 124 bp downstream of the start codon (double-underlined), was fused with lacZ. Transcriptional start site (TSS, indicated by asterisks) is located 10 bp upstream from the start codon of the *iunH* gene. The SigK consensus sequence is indicated, and the putative −35 and −10 sequences are underlined with a gray box. The GerE binding site is boxed. (B) β-galactosidase activity assay of *P_iunH* in wild-type HD73 (▲), *sigK* mutant (■), and *gerE* mutant (●). (C) Electrophoresis mobility shift assay of the *iunH* promoter fragment (590 bp) after interaction with GerE. Lane 1, FAM-labeled *P_iunH* probe incubated with GST protein; lane 2, FAM-labeled *P_iunH* probe; lanes 3–10, incubation of the probe with increasing concentrations of purified GerE indicated at the top of the figure. (D) Protection of a 15-bp sequence in the *iunH* promoter by GerE, as revealed by DNase I footprinting protection assay. The fluorograms correspond to the DNA in the protection reactions (with 0 and 1 μg GerE).
specific primers (Table 3) labeled with a fluorescent 5′-end 6-FAM modification and confirmed by DNA sequencing. Electrophoresis mobility shift assays (EMSA) were performed as previously described58 to analyze the binding of purified GerE protein to the promoter of exosporium genes. Briefly, the DNA probe (0.1 μg) was incubated with different concentrations of purified GerE at 25°C for 20 min in binding buffer [10 mM Tris-HCl, 0.5 mM dithiothreitol (DTT), 50 mM NaCl, 500 ng poly(dI:dC), pH 7.5, and 4% (v/v) glycerol] in a total volume of 20 μl. The DNA-protein mixtures were applied to non-denaturing 5% (w/v) polyacrylamide gels in TBE buffer (90 mM

the optical density at 600 nm (OD600) reached 0.6, IPTG was added to a final concentration of 1 mM. After 4 h of induction at 37°C, the bacterial cells were harvested by centrifuging the culture at 13,000 × g for 10 min. The pellet was resuspended in phosphate-buffered saline (PBS) and sonicated on ice. All subsequent procedures were carried out at 4°C. The supernatant was collected by centrifuging the lysate at 13,000 × g for 20 min and loading it onto a glutathione-Sepharose 4B column previously equilibrated with PBS buffer. The column was washed with 50 mM Tris-HCl containing 10 mM reduced glutathione (pH 8.0). The fractions were analyzed by SDS-PAGE. Fractions with the target protein were pooled and dialyzed against PBS buffer. The purified GST-GerE protein was analyzed by SDS-PAGE on a 12% polyacrylamide gel with a protein molecular standard. All the steps described above were performed according to the manufacturer’s instructions (Amersham Pharmacia Biotech, Little Chalfont, Bucks, UK).

Gel mobility shift assays. The DNA fragment was obtained by PCR of strain HD73 genomic DNA using specific primers (Table 3) labeled with a fluorescent 5′-end 6-FAM modification and confirmed by DNA sequencing. Electrophoresis mobility shift assays (EMSA) were performed as previously described58 to analyze the binding of purified GerE protein to the promoter of exosporium genes. Briefly, the DNA probe (0.1 μg) was incubated with different concentrations of purified GerE at 25°C for 20 min in binding buffer [10 mM Tris-HCl, 0.5 mM dithiothreitol (DTT), 50 mM NaCl, 500 ng poly(dI:dC), pH 7.5, and 4% (v/v) glycerol] in a total volume of 20 μl. The DNA-protein mixtures were applied to non-denaturing 5% (w/v) polyacrylamide gels in TBE buffer (90 mM

Table 2. Strains and plasmids.

Strain or plasmid	Relevant genotype and characteristics*	Reference or source
Strains		
HD73	Bt subsp. Kurstaki carrying the cryIAc gene	Laboratory collection
HD(ΔsigK)	Bt HD73 sigK gene mutant; Kan*	54
HD(ΔgerE)	Bt HD73 gerE gene mutant	
HD(PbxpA)	Bt HD73 carrying pHT-PbxpA plasmid; EmR	This study
HD(PbxpB)	Bt HD73 carrying pHT-PbxpB plasmid; EmR	This study
HD(PbcA)	Bt HD73 carrying pHT-PbcA plasmid; EmR	This study
HD(PbcB)	Bt HD73 carrying pHT-PbcB plasmid; EmR	This study
HD(PcotB)	Bt HD73 carrying pHT-PcotB plasmid; EmR	This study
HD(PexsY)	Bt HD73 carrying pHT-PexsY plasmid; EmR	This study
HD(PiunH)	Bt HD73 carrying pHT-PiunH plasmid; EmR	This study
ΔΔsigK(PbxpA)	HD(ΔsigK) carrying pHT-PbxpA plasmid; EmR	This study
ΔΔsigK(PbxpB)	HD(ΔsigK) carrying pHT-PbxpB plasmid; EmR	This study
ΔΔsigK(PbcA)	HD(ΔsigK) carrying pHT-PbcA plasmid; EmR	This study
ΔΔsigK(PbcB)	HD(ΔsigK) carrying pHT-PbcB plasmid; EmR	This study
ΔΔgerE(PbcA)	HD(ΔgerE) carrying pHT-PbcA plasmid; EmR	This study
ΔΔgerE(PbcB)	HD(ΔgerE) carrying pHT-PbcB plasmid; EmR	This study
ΔΔgerE(PcotB)	HD(ΔgerE) carrying pHT-PcotB plasmid; EmR	This study
ΔΔgerE(PexsY)	HD(ΔgerE) carrying pHT-PexsY plasmid; EmR	This study
ΔΔgerE(PiunH)	HD(ΔgerE) carrying pHT-PiunH plasmid; EmR	This study
E. coli TG1	Δ(lac-proAB) supE thi hsd-5 (F’ traD36 proA+ lacI q lacZΔM15), general purpose cloning host	Laboratory collection
E. coli ET12567	F. dam-13:Tn9 dcm-6 hsdM hsdR recF143 zj-202::Tn10 galK2 galT22 ara14 pacY1 xyl-5 leuB6 thi-1, for generation of unmethylated DNA	Laboratory collection
BL(pGEGerE)	BL21(DE3) with pGEGerE plasmid	54
Plasmids		
pHT304-18Z	Promoterless lacZ vector, EmR, ApR	Laboratory collection
pHT-PbxpA	pHT304-18Z carrying promoter upstream from bxpA	This study
pHT-PbxpB	pHT304-18Z carrying promoter upstream from bxpB	This study
pHT-PbcA	pHT304-18Z carrying promoter upstream from bclA	This study
pHT-PbcB	pHT304-18Z carrying promoter upstream from bclB	This study
pHT-PcotB	pHT304-18Z carrying promoter upstream from cotB	This study
pHT-PexsY	pHT304-18Z carrying promoter upstream from exsY	This study
pHT-PiunH	pHT304-18Z carrying promoter upstream from iunH	This study

* Reference or source
Tris-base, 90 mM boric acid, 2 mM EDTA, pH 8.0) for resolution of the complexes using a Mini-PROTEAN system (Bio-Rad) at 160 V for 1 h. Signals were visualized directly from the gel with the FLA Imager FLA-5100 (Fujifilm).

The specificity of the shift was confirmed using poly(dI:dC), GST protein, and bovine serum albumin (BSA); the cry1Ac promoter (which does not bind to GerE protein; data not shown) was used as the negative control.

DNase I footprinting assays. DNase I footprinting assays were performed based on a fluorescence labeling procedure. Briefly, the promoters DNA of exosporium genes were PCR-amplified using the fluorescently labeled primers and purified from an agarose gel. The labeled DNA probe (400 ng) was incubated for 30 min at 25 °C with the different amounts of GerE in a total volume of 40 μl binding buffer (described above for EMSA). DNase I digestion was then performed for 1 min at 25 °C and stopped with stop buffer (Promega). After phenol-chloroform extraction and ethanol precipitation, the samples were loaded on an Applied Biosystems 3730 DNA genetic analyzer with an internal-lane size standard (ROX-500, Applied Biosystems). A dye primer-based sequencing kit (Thermo) was used to precisely determine the sequences after their alignment with capillary electrophoresis results. Electropherograms were analyzed with GeneMarker v1.8 (Applied Biosystems).

Construction of the promoters of exosporium genes with lacZ gene fusion. The promoters of exosporium genes were amplified from Bt HD73 genomic DNA using specific primers. Promoter restriction fragments were then ligated into the pHT304-18Z vector containing a promoterless lacZ gene. Recombinant pHT-Pn (where n indicates the name of exosporium genes) was introduced into Bt HD73, ΔsigK and ΔgerE mutant strains. The resultant strains, HD73(Pn), ΔsigK(Pn), and ΔgerE(Pn), were selected by resistance to erythromycin and tested by PCR to confirm the presence of the promoter fragments in the plasmids.

β-Galactosidase assays. Bt strains containing lacZ transcriptional fusions were cultured in Schaefer's sporulation medium (SSM) at 30 °C and 220 rpm. A 2-ml volume was collected at 1-h intervals from T0 to T22 (T0 is the end of the exponential phase, and Tn is n hours after T0), from which cells were harvested by
centrifugation for 1 min at 10,000 × g. The supernatant was removed, and the pellet was stored at −20 °C or resuspended in 500 μl Buffer Z (0.06 M Na2HPO4, 0.04 M NaH2PO4, 0.01 M KCl, 1 mM MgSO4) with 1 mM dithiothreitol. The β-galactosidase activity was determined as previously described29 and expressed as Miller units. Reported values represent averages from at least three independent assays.

References

1. Helgason, E. et al. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis–one species on the basis of genetic evidence. Applied and environmental microbiology 66, 2627–2630 (2000).

2. Han, C. S. et al. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. Journal of bacteriology 188, 3382–3390, doi: 10.1128/JB.188.9.3382-3390.2006 (2006).

3. Schnepp, E. et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62, 775–806 (1998).

4. Henriques, A. O. & Moran, C. P. Jr. Structure, assembly, and function of the spore surface layers. Annual review of microbiology 61, 555–588, doi: 10.1146/annurev.micro.61.080706.093224 (2007).

5. Beaman, T. C., Pankratz, H. S. & Gerhardt, P. Ultrastructure of the exosporium and underlying inclusions in spores of Bacillus megaterium strains. Journal of bacteriology 109, 1198–1209 (1972).

6. McKenzie, P. T., Driks, A. & Eichenberger, P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nature reviews. Microbiology 11, 33–44, doi: 10.1038/nrmicro2921 (2013).

7. Rodenburg, C. M., McPherson, S. A., Turnbough, C. L. Jr. & Dokland, T. Cryo-EM analysis of the organization of BclA and BxpB in the Bacillus anthracis exosporium. Journal of structural biology 186, 181–187, doi: 10.1016/j.jsb.2014.02.018 (2014).

8. Oliva, C., Turnbough, C. L. Jr. & Kearney, J. F. CD14-Mac-1 interactions in Bacillus anthracis spore internalization by macrophages. Proceedings of the National Academy of Sciences of the United States of America 106, 13957–13962, doi: 10.1073/pnas.0902392106 (2009).

9. Thompson, B. M. & Stewart, G. C. Targeting of the BclA and BclB proteins to the Bacillus anthracis spore surface. Molecular microbiology 70, 421–434, doi: 10.1111/j.1365-2958.2008.06420.x (2008).

10. Tan, L. & Turnbough, C. L. Jr. Sequence motifs and proteolytic cleavage of the collagen-like glycoprotein BclA required for its attachment to the exosporium of Bacillus anthracis. Journal of bacteriology 192, 1259–1268, doi: 10.1128/JB.01003-09 (2010).

11. Thompson, B. M., Hsieh, H. Y., Spreng, K. A. & Stewart, G. C. The co-dependence of BxpB/ExsFA and BclA for proper incorporation into the Bacillus anthracis exosporium. Molecular microbiology 79, 799–813, doi: 10.1111/j.1365-2958.2010.07488.x (2011).

12. Giorno, R. et al. Localization and assembly of proteins comprising the outer structures of the Bacillus anthracis spore. Microbiology 155, 1133–1145, doi: 10.1099/mic.0.023333-0 (2009).

13. Steichen, C., Chen, P., Kearney, J. F. & Turnbough, C. L. Jr. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. Journal of bacteriology 185, 1903–1910 (2003).

14. Steichen, C. T., Kearney, J. F. & Turnbough, C. L. Jr. Characterization of the exosporium basal layer protein BxpB of Bacillus anthracis. Journal of bacteriology 187, 5868–5876, doi: 10.1128/JB.187.17.5868-5876.2005 (2005).

15. Redmond, C., Baillie, L. W., Hibbs, S., Moir, A. J. & Moir, A. Identification of proteins in the exosporium of Bacillus anthracis. Microbiology 150, 355–362 (2004).

16. Boydstun, J. A., Chen, P., Steichen, C. T. & Turnbough, C. L. Jr. Orientation within the exosporium and structural stability of the collagen-like glycoprotein BcA of Bacillus anthracis. Journal of bacteriology 187, 5310–5317, doi: 10.1128/JB.187.15.5310-5317.2005 (2005).

17. Dubenspeck, J. M. et al. Novel oligosaccharide side chains of the collagen-like region of BcA, the major glycoprotein of the Bacillus anthracis exosporium. The Journal of biological chemistry 279, 30945–30953, doi: 10.1074/jbc.M401613200 (2004).

18. Liu, C. Q. et al. Construction, crystal structure and application of a recombinant protein that lacks the collagen-like region of BcA from Bacillus anthracis spores. Biotechnology and bioengineering 99, 774–782, doi: 10.1002/bit.21637 (2008).

19. Thompson, B. M., Hoelscher, B. C., Driks, A. & Stewart, G. C. Assembly of the BcB glycoprotein into the exosporium and evidence for its role in the formation of the exosporium ‘cap’ structure in Bacillus anthracis. Molecular microbiology 86, 1073–1084, doi: 10.1111/j.mmi.12042 (2012).

20. Sylvestre, P., Couture-Tosi, E. & Mock, M. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Molecular microbiology 45, 169–178 (2002).

21. Todd, S. J., Moir, A. J., Johnson, M. J. & Moir, A. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. Journal of bacteriology 185, 3373–3378 (2003).

22. Haldenwang, W. G. The sigma factors of Bacillus subtilis. Microbiological reviews 59, 1–30 (1995).
36. Zheng, L. B. & Losick, R. Cascade regulation of spore coat gene expression in Bacillus subtilis. Journal of molecular biology 212, 645–660 (1990).
37. Halberg, R. & Kroos, L. Sporulation regulatory protein SpoIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. J Mol Biol 243, 425–436, doi: 10.1006/jmbi.1994.1670 (1994).
38. Steil, L., Serrano, M., Henriques, A. O. & Volker, U. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151, 399–420, doi: 10.1099/mic.0.27479-0 (2005).
39. Gu, N. et al. Transcriptional regulation of exsB in Bacillus thuringiensis by SigmaK and GerE. Wei sheng xue bao = Acta microbiologica Sinica 53, 241–248 (2013).
40. Ichikawa, H., Halberg, R. & Kroos, L. Negative regulation by the Bacillus subtilis GerE protein. J Biol Chem 274, 8332–8337 (1999).
41. Costa, T., Steil, L., Martins, L. O., Volker, U. & Henriques, A. O. Assembly of an oxoate decarboxylase produced under sigmaK control into the Bacillus subtilis spore coat. Journal of bacteriology 186, 1462–1474 (2004).
42. Kuwana, R., Takamatsu, H. & Watabe, K. Expression, localization and modification of YeeE spore coat protein in Bacillus subtilis. Journal of biochemistry 142, 681–689, doi: 10.1093/jb/mvm179 (2007).
43. Takamatsu, H., Imamura, D., Kuwana, R. & Watabe, K. Expression of yeeK during Bacillus subtilis sporulation and localization of YeeK to the inner spore coat using fluoresce microscopy. Journal of bacteriology 191, 1220–1229, doi: 10.1128/JB.01269-08 (2009).
44. Moody, K. L. et al. Processing, assembly and localization of a Bacillus antracis spore protein. Microbiology 156, 174–183, doi: 10.1099/mic.0.033407-0 (2010).
45. Zhang, J., Fitz-James, P. C. & Aronson, A. I. Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. Journal of bacteriology 175, 3757–3766 (1993).
46. Zheng, J., Ichikawa, H., Halberg, R. & Aronson, A. I. Regulation of the transcription of a cluster of Bacillus subtilis spore coat genes. Journal of molecular biology 240, 405–415, doi: 10.1006/jmbi.1994.1456 (1994).
47. Lai, E. M. et al. Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. Journal of bacteriology 185, 1443–1454 (2003).
48. Driks, A. Bacillus subtilis spore coat. Microbiology and molecular biology reviews MMBR 63, 1–20 (1999).
49. Bergman, N. H. et al. Transcriptional profiling of the Bacillus anthracis life cycle in vitro and an implied model for regulation of spore formation. Journal of bacteriology 188, 6092–6100, doi: 10.1128/JB.00723-06 (2006).
50. Liu, G. et al. Complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD73. Genome announcements 1, e000813. doi: 10.1128/genomeA.00080-13 (2013).
51. Dower, W. J., Miller, J. F. & Ragsdale, C. W. High efficiency transformation of Bacillus subtilis by high voltage electroporation. Nucleic acids research 16, 6127–6145 (1988).
52. Lereclus, D., Arantes, O., Chauvaux, J. & Lecadet, M. Transcriptional and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS microbiology letters 51, 211–217 (1989).
53. Du, L. et al. Identification of the promoter in the intergenic region between orf1 and cry8Ea1 controlled by sigma H factor. Applied and environmental microbiology 78, 4164–4168, doi: 10.1128/AEM.00622-12 (2012).
54. Yang, J. et al. Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in spore coat formation. Journal of bacteriology 195, 2887–2897, doi: 10.1128/JB.00112-13 (2013).
55. Li, R. et al. PoV, a transcriptional regulator with ATPase activity, directly activates transcription of poV in poliovirus biosynthesis in Streptomyces cacaoi. Molecular microbiology 75, 349–364, doi: 10.1111/j.1365-2958.2009.06968.x (2010).
56. Zianni, M., Tessanne, K., Meriggi, M., Laguna, R. & Tabita, F. R. Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument. Journal of biomolecular techniques JBT 17, 103–113 (2006).
57. Agaisse, H. & Lereclus, D. Structural and functional analysis of the promoter region involved in full expression of the cryIla toxin gene of Bacillus thuringiensis. Molecular microbiology 13, 97–107 (1994).
58. Schaefter, P., Millet, J. & Aubert, J. P. Catabolic repression of bacterial sporulation. Proceedings of the National Academy of Sciences of the United States of America 54, 704–711 (1965).
59. Verchat, S. et al. A cell-cell communication system regulates protease production during sporulation in bacteria of the Bacillus cereus group. Molecular microbiology 82, 619–633, doi: 10.1111/j.1365-2958.2011.07839.x (2011).
60. Thompson, B. M., Waller, L. N., Fox, K. F., Fox, A. & Stewart, G. C. The BcBl glycoprotein of Bacillus anthracis is involved in exosporium integrity. Journal of bacteriology 189, 6704–6713, doi: 10.1128/JB.00762-07 (2007).

Acknowledgements
This work was supported by grants from the National Natural Science Foundation of China (No. 31270111 and 31300085) and the National High Technology Research and Development Program of China (863 Program; 2011AA10A203). We thank Dr. Didier Lereclus from the Institut National de la Recherche Agronomique for his critical suggestions.

Author Contributions
FS. and Q.P. designed the research. G.K. and N.Q. performed the experimental work. Q.P. drafted the manuscript. FS., J.Z. and J.L. critically revised the manuscript for intellectual content. All authors read and approved the final version of the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Peng, Q. et al. The Regulation of Exosporium-Related Genes in Bacillus thuringiensis. Sci. Rep. 6, 19005; doi: 10.1038/srep19005 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.