Supplemental Data

Systemic clearance and brain distribution of carbazole-based cyanine compounds as Alzheimer’s disease drug candidates

Wei Zhou, Xiaohui Hu, and Kin Yip Tam*

Faculty of Health Sciences, University of Macau, Macau SAR, PR China.
Supplemental Figures and Tables legends

Table S1 Mass spectral characteristics of the in vitro metabolites of SLOH.

Table S2 Mass spectral characteristics of the in vitro metabolites of SLM.

Table S3 Systemic pharmacokinetics parameters of SLOH and SLM in C57BL/6 mice aging 2 months after i.v. administration (n=5, Mean ± SD). Statistical significance in parameters was estimated by Student’s t-test. (SLOH vs SLM group), $^{5}p < 0.05$ and $^{55}p < 0.01$ (n=5, Mean ± SD).

Table S4 Blood cell partitioning, non-specific plasma protein binding, microsomes binding, and brain distribution using brain slices of positive controls (n=3, Mean ± SD).

Table S5 The P_{app} and efflux ratio values of positive controls in Caco-2 cell transport (n=3, Mean ± SD).

Table S6 Liver microsomes stability and hepatocyte stability in mice and human of positive controls (n=3, Mean ± SD).

Fig. S1 Representative MS/MS spectrum of SLOH and SLM.

Fig. S2 Representative SIM chromatograms for T_{30min} incubations of SLOH in liver microsomes supplemented with NADPH.

Fig. S3 Representative MS spectrum for T_{30min} incubations of SLOH in liver microsomes supplemented with NADPH.

Fig. S4 Representative MS/MS spectrum for T_{30min} incubations of SLOH in liver microsomes supplemented with NADPH.

Fig. S5 The fragment ions characteristics of SLOH metabolites for T_{30min} incubations in liver microsomes supplemented with NADPH.

Fig. S6 Representative SIM chromatograms for T_{30min} incubations of SLM in liver microsomes supplemented with NADPH.

Fig. S7 Representative MS spectrum for T_{30min} incubations of SLM in liver microsomes supplemented with NADPH.

Fig. S8 Representative MS/MS spectrum for T_{30min} incubations of SLM in liver microsomes supplemented with NADPH.

Fig. S9 The fragment ions characteristics of SLM metabolites for T_{30min} incubations in liver microsomes supplemented with NADPH.
Fig. S10 The pharmacokinetics profiles in C57BL/6 mice aging 2 months. A: SLOH, B: SLM. A1 and B1 represent pharmacokinetics profiles; A2 and B2 represent linearity analysis between AUC and dosages ($n=5$, Mean ± SD).

Fig. S11 The pharmacokinetics and brain exposure in WT and transgenic AD model mice. A: SLOH, B: SLM. A1 and B1 represent pharmacokinetics profiles; A2 and B2 represent brain exposure in ISF. Statistical significance in parameters was estimated by Student’s t-test. (vs WT group), ’*’ $p < 0.05$ and ’**’ $p < 0.01$ ($n=3$, Mean ± SD).

Fig. S12 The efflux ratio values of SLOH and SLM in the presence or absence of specific OATP2B1 inhibitor (Erlotinib) in Caco-2 cell transport. Statistical significance in parameters obtained from multiple groups was estimated using One-way ANOVA followed by Dunnett’s test. (vs control group), ’*’ $p < 0.05$ and ’**’ $p < 0.01$ ($n=3$, Mean ± SD).

Fig. S13 The $V_{u,brain}$ values of SLOH and SLM in the presence or absence of P-gp and BCRP inhibitor in brain slice experiment. Statistical significance in parameters obtained from multiple groups was estimated using One-way ANOVA followed by Dunnett’s test. (vs control group), ’*’ $p < 0.05$ and ’**’ $p < 0.01$ ($n=3$, Mean ± SD).
Supplemental Methods

Blood-to-plasma ratio

Aliquots of fresh whole blood and reference plasma (C_P) are spiked with SLOH and SLM (1 μM) and incubated for an hour at 37 °C. At the end of the incubation period, plasma (C_P) is separated from whole blood by centrifugation and all plasma samples are analyzed after protein precipitation using 2 folds acetonitrile (ACN) containing berberine chloride as internal standard (IS) by LC-MS/MS (Analytical method seen below). The blood cell partitioning was calculated as follows.

\[K_{WB/P} = \frac{C_{WP}}{C_P} \] \hspace{1cm} (1)

Plasma, liver microsomes and hepatocyte binding by RED device

The stability of the compounds in plasma, liver microsomes and hepatocyte were studied to ensure the reliability of the binding data. Hepatocyte was deactivated by leaving them on a bench for 2 days and going through a freeze thaw cycle thereafter. This rendered the enzymes inactive but not totally denatured. Testosterone was used as a control for CYP3A to ensure no turnover, so that the enzymes were inactivated. All validation compounds were incubated at 37 °C over 4 h, and in triplicate. For plasma stability, 10 mM DMSO solutions of SLM and SLOH were diluted to 40 μM (10% DMSO). Plasma were thawed and 594 μL aliquots dispensed into a 1.5 mL tube, and then pre-warmed at 37 °C in a shaking water bath (60 oscillations/min approx.). The assay was started by addition of 6 μL aliquots to the plasma (final DMSO incubation concentration 0.1%). For liver microsomes without cofactors and deactivated hepatocyte stability, all validation compounds (1 μM) in deactivated liver microsomes (0.5 mg/mL protein concentration, same as the assay condition) or deactivated hepatocytes (0.5 million cells/mL, same as the assay condition) were added to the donor wells. 10 mM DMSO solutions of SLM and SLOH were diluted to 50 μM (10% DMSO). 490 μL aliquots microsomes (0.51 mg/mL) and hepatocytes (0.51 million cells/mL) were dispensed into a 1.5 mL tube, and then pre-warmed at 37 °C in a shaking water bath. The assay was started by addition of 10 μL aliquots of compound solutions to the corresponding biological matrices (final DMSO incubation concentration 0.2%, microsomes concentration 0.50 mg/mL, hepatocytes concentration 0.5 million cells/mL). At 0, 15, 30, 60, 120, 180 and 240 min, 50 μL plasma, microsomes or hepatocytes after protein precipitation were analyzed by LC-
MS/MS. Natural logarithm of peak area ratios (compound peak area normalized by IS peak area) were plotted against time and half-life calculated.

The spiked plasma solutions, microsomes and hepatocytes (400 μL) after observing stability were placed into the sample chamber (indicated by the red ring) with 400 μL of PBS into the adjacent chamber. The plate was sealed with a self-adhesive lid and incubated at 37 °C on an orbital shaker (1.5 g approx.) for 4 h. Aliquots (100 μL) were removed from each side of the insert, and analyzed after protein precipitation using 4 folds acetonitrile (ACN) containing berberine chloride as internal standard (IS) by LC-MS/MS (Analytical method seen below). The experimental procedure outlined in the Thermo Scientific RED device systems brochure was adopted in the present study. The several positive controls were assayed (Table S4).

In vitro stability in liver microsomes and hepatocytes

Half-life (t_{1/2}) of SLM or SLOH in liver microsomes was determined in duplicate. In phase I reaction, the compound (1 μM) was incubated with liver microsomes (0.5 mg/mL) in 100 mM sodium phosphate buffer (pH 7.4) including 81 mM Na₂HPO₄ and 19 mM NaH₂PO₄ at 37 °C, the reaction mixture was prewarmed at 37 °C for 2 minutes before adding NADPH (1.0 mM). In phase II reaction, the compound (1 μM) was incubated with liver microsomes (0.5 mg/mL) in 100 mM Tris-HCl buffer (pH 7.4) containing 5 mM MgCl₂, 10 μg/mL alamethicin, and 2% (w/v) BSA. After pre-incubated on ice for 15 min, the reactions were initiated with the addition of UDPGA (5.0 mM). Aliquots of the reaction mixture at 0, 5, 10, 15, 30 or 45 minutes were added to 4 folds acetonitrile (ACN) containing internal standard (IS), and the samples were centrifuged at 9,659 g for 5 mins before LC-MS/MS analysis of substrate disappearance. For control experiments, NADPH, UDPGA and/or liver microsomes were omitted from these incubations. For the purposes of metabolite identification studies, the concentration of SLOH and SLM in microsomal incubations was raised to 10 μM and the microsomal protein concentration increased to 3 mg/mL. *InVitroGRO™* HT Medium was used for thawing suspension of cryopreserved hepatocytes. Incubations were conducted in a 96-well flat-bottom polystyrene plate in duplicate. Hepatocytes were suspended at 0.5 x 10⁶ viable cells/mL of HT Medium and prewarmed at 37 °C for 10 minutes. Incubations were initiated with the addition of SLM and SLOH (final concentration=1 μM) and were conducted at 37 °C, 75% relative humidity, and 5% CO₂. The reaction was stopped at 0, 5, 15, 30, 60, 90, 120 minutes by the addition of 4 folds ACN containing berberine chloride as internal standard.
(40 nM). The samples were centrifuged at approximately 1,900 g for 10 mins before LC-MS/MS analysis.

The CYP3A4 and CYP1A2 activities in human hepatocytes were assayed by testosterone 6β-hydroxylation (141 ± 23.0 pmol/min/10⁶ cells) and phenacetin O-deethylation (24.3 ± 3.25 pmol/min/10⁶ cells). The other positive controls assays were shown in Table S6. The scaling of in vitro to in vivo clearance based on the well-stirred model [1] (equation 10) was carried out as follows (2-5: microsomes; 6-9: hepatocytes):

$$\text{Cl}_{\text{int, app}} = \frac{0.693 \cdot \text{mL incubation}}{t_{1/2 (\text{min})} \cdot \text{mg microsomes}}$$ \hspace{1cm} (2)\\

$$\text{Cl}_{\text{u, int, app}} = \frac{\text{Cl}_{\text{int, app}}}{f_u, \text{mic}}$$ \hspace{1cm} (3)\\

$$\text{Cl}_{\text{int, scaled}} = \frac{0.693 \cdot \text{mL incubation}}{t_{1/2 (\text{min})} \cdot \text{mg microsomes} \cdot \text{MPPGL} \cdot \text{LWPBW}}$$ \hspace{1cm} (4)\\

$$\text{Cl}_{\text{int, scaled}} = \frac{\text{Cl}_{\text{int, scaled}}}{f_u, \text{mic}}$$ \hspace{1cm} (5)\\

$$\text{Cl}_{\text{int, app}} = \frac{0.693 \cdot \text{mL incubation}}{t_{1/2 (\text{min})} \cdot \text{million cells}}$$ \hspace{1cm} (6)\\

$$\text{Cl}_{\text{u, int, app}} = \frac{\text{Cl}_{\text{int, app}}}{f_u, \text{hep}}$$ \hspace{1cm} (7)\\

$$\text{Cl}_{\text{int, scaled}} = \frac{0.693 \cdot \text{mL incubation}}{t_{1/2 (\text{min})} \cdot \text{million cells} \cdot \text{HPGL} \cdot \text{LWPBW}}$$ \hspace{1cm} (8)\\

$$\text{Cl}_{\text{int, scaled}} = \frac{\text{Cl}_{\text{int, scaled}}}{f_u, \text{hep}}$$ \hspace{1cm} (9)\\

Well-stirred model

$$\text{Cl}_{\text{hep}} = \frac{Q \cdot f_u, \text{plasma} \cdot \text{Cl}_{\text{u, int, scaled}}}{Q + f_u, \text{plasma} \cdot \text{Cl}_{\text{u, int, scaled}}}$$ \hspace{1cm} (10)\\

Where MPPGL is microsomal protein per gram liver (human: 48.8 mg/g Liver; mice: 45 mg/g Liver), HPGL is hepatocellularity (million cells per gram liver) (human: 99; mice: 128) and LWPBW is grams liver per kg body weight (human: 25.7 g/kg; mice: 87.5 g/kg) [2]. Cl\text{int, app} is apparent intrinsic clearance, Cl\text{u, int, app} is unbound apparent intrinsic clearance, Cl\text{int, scaled} is scaled intrinsic clearance, Cl\text{u, int, scaled} is unbound
scaled intrinsic clearance, C_{hep} is plasma hepatic clearance, Q is hepatic blood flow (human: 20.7 mL/min per kg; mice: 90 mL/min per kg) [3].

LC-HR MS (LTQ-Orbitrap XL hybrid MS) conditions for metabolites identification of SLOH and SLM

LC-MS experiments were carried out on a Thermo Electron LTQ-Orbitrap XL hybrid MS (ThermoFinnigan, Bremen, Germany) equipped with an ESI interface. An Accela HPLC system (ThermoElectron) was equipped with an autosampler, a vacuum degasser unit and a quaternary pump. The MS employing positive ionization was calibrated using calibration standards mixture allowing for mass accuracies less than 5 ppm in external calibration mode. The ionization voltage was 4.2 KV and the capillary temperature was set at 300 °C. Nitrogen was used as both the sheath gas (40 units) and auxiliary gas (10 units). The resolving power was 15000 for full-scan and 7500 for the MS2 scans. Chromatographic separation was achieved on a Luna ODS C18 column (150 × 2.1 mm, 5 μM; Phenomenex, Torrance, CA, USA). The mobile phase was composed of A (ACN containing 0.1% formic acid), B (Water containing 0.1% formic acid) using a gradient elution of 10%-10% A, 90%-90% B at 0-5 min, 10%-30% A, 90%-70% B at 5-8 min, 30%-90% A, 70%-10% B at 8-20 min, 90%-10% A, 10%-90% B at 20-21 min and hold for 4 min. The flow rate was set at 0.3 mL-min$^{-1}$. The auto-sampler was conditioned at 4 °C and the injection volume was 5 μL.

A Thermo Xcaliber 2.1 workstation was used for the data acquisition and processing. For the computer-based MDF approach, representative structures with predicted mass defect windows were set as filtering templates for screening homologous compounds. Thermo Scientific™ MetWorks™ and Mass Frontier software automated structural elucidation.

Bio-sample preparations and LC-MS/MS (TQD) analysis for quantitation of SLOH and SLM

The LC-MS/MS condition was reported previously [4]. Briefly, under positive mode of Waters Xevo TQD, SLM (m/z 437 $>$ 347 as quantifier ion and m/z 437 $>$ 168 as qualifier ion), SLOH (m/z 467 $>$ 333 as quantifier ion and m/z 467 $>$ 154 as qualifier ion) and berberine (as internal standard, m/z 336 $>$ 320 as quantifier ion and m/z 336 $>$ 278 as qualifier ion) were simultaneously monitored. Plasma, urine and bile samples preparation method was completed as previously described [4]. For brain sample, brain was weighted and PBS buffer (pH=7.4) was added based on 10-fold volume of each brain weight. Brain samples were cut into smaller pieces before homogenization. Then 20 μL of homogenate were vortex
mixed with nitrogen-dried IS for 1 min. 40 µL of ACN was then added to precipitate the protein. After vortexed for 1.5 mins, the samples were centrifuged at 9,659 g for 5 mins. The supernatant was transferred to an autosampler vial and an aliquot of 1 µL was injected onto the LC-MS/MS system for analysis.

References

[1] Obach, R.S. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: An examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab. Dispos. 27, 1350-1359 (1999).

[2] Barter, Z.E. et al. Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr. Drug Metab. 8, 33-45 (2007).

[3] Davies, B. & Morris, T. Physiological parameters in laboratory animals and humans. Pharm. Res. 10, 1093-1095 (1993).

[4] Zhou, W., Wu, X., Li, J., Hu, X. & Tam, K. Quantification of permanent positively charged compounds in plasma using one-step dilution to reduce matrix effect in MS. Bioanalysis 8, 497-509 (2016).
Metabolite	M*	Formula	Metabolic pathway	Retention time (tR)	Fragment ions
Parent	467.2329	C_{30}H_{31}N_{2}O_{3}	N.A.	16.8	423.2074, 377.1659, 347.1551, 333.1396, 320.1310, 319.1226, 154.0654
M1	467.2329	C_{30}H_{31}N_{2}O_{3}	Cis-trans isomer	15.4	423.2074, 377.1645, 347.1536, 333.1380, 320.1310, 319.1226, 154.0647
M2	453.2173	C_{29}H_{29}N_{2}O_{3}	O-demethylation	16.0	409.1898, 377.1645, 347.1530, 333.1378, 320.1290, 319.1226, 154.0645
M3	483.2278	C_{30}H_{31}N_{2}O_{4}	Hydroxylation	15.8	439.2010, 393.1593, 363.1488, 349.1331, 336.1250, 335.1172, 154.0648
M4	483.2278	C_{29}H_{29}N_{2}O_{4}	Hydroxylation	16.1	365.1641, 347.1530, 333.1378, 321.1379, 319.1226, 154.0647
M5	469.2122	C_{29}H_{29}N_{2}O_{4}	O-demethylation+ hydroxylation	15.6	425.1865, 393.1604, 363.1495, 349.1341, 336.1264, 335.1186, 154.0652
M6	469.2122	C_{29}H_{29}N_{2}O_{4}	O-demethylation+ hydroxylation	15.6	407.1760, 377.1645, 333.1391, 320.1309, 319.1226, 154.0652
M7	409.1911	C_{27}H_{25}N_{2}O_{2}	O-dealkylation	16.0	377.1648, 365.1648, 347.1530, 333.1387, 320.1309, 319.1233, 154.0650
M8	425.1860	C_{27}H_{25}N_{2}O_{3}	O-dealkylation+ hydroxylation	15.5	407.1760, 377.1658, 363.1498, 333.1396, 320.1310, 319.1233, 154.0654
M9	365.1648	C_{27}H_{25}N_{2}O	N-dealkylation	16.4	321.1380, 319.1233, 154.0648
M10	381.1598	C_{27}H_{25}N_{2}O	N-dealkylation+ hydroxylation	15.3	337.1334, 335.1186, 154.0650
M11	381.1598	C_{27}H_{25}N_{2}O	N-dealkylation+ hydroxylation	15.6	337.1335, 335.1186, 154.0650
M12	381.1598	C_{27}H_{25}N_{2}O	N-dealkylation+ hydroxylation	16.2	363.1487, 334.1462, 320.1209, 319.1230, 167.0728
M13	407.1754	C_{27}H_{25}N_{2}O	N-dealkylation+ hydroxylation+dehydration	15.8	N.A.
M14	423.1703	C_{27}H_{25}N_{2}O	O-dealkylation+carbonylation	16.0	379.1445, 333.1389, 320.1209, 319.1235, 154.0651
M15	451.2016	C_{29}H_{27}N_{2}O_{3}	O-demethylation+hydroxylation+dehydration	15.8	N.A.
M16	441.2067	C_{27}H_{25}N_{2}O	unknown	15.8	N.A.

All metabolites were observed in liver microsomes from preclinical mice and humans. (N.A.: unidentified).
Metabolite	M⁺	Formula	Metabolic pathway	Retention time (t_R)	Fragment ions
Parent	437.2224	C₂₉H₂₉N₂O₂	N.A.	17.1	361.1696, 347.1541, 334.1454, 333.1376, 319.1228, 168.0807
M1	437.2224	C₂₉H₂₉N₂O₂	Cis-trans isomer	15.7	361.1696, 347.1541, 334.1454, 333.1376, 319.1228, 168.0807
M2	423.2067	C₂₈H₂₇N₂O₂	O-demethylation	16.3	361.1693, 347.1538, 334.1452, 333.1374, 168.0806
M3	453.2173	C₂₉H₂₉N₂O₃	Hydroxylation	16.3	363.1497, 335.1534, 319.1226, 168.0804
M4	439.2016	C₂₉H₂₉N₂O₃	O-demethylation+ Hydroxylation	15.8	421.1917, 361.1703, 347.1548, 334.1466, 333.1388, 168.0810
M5	379.1805	C₂₉H₂₉N₂O₃	O-dealkylation	16.3	361.1703, 347.1545, 334.1457, 333.1379, 168.0809
M6	395.1754	C₂₉H₂₉N₂O₃	O-dealkylation+ Hydroxylation	15.8	377.1646, 347.1540, 334.1460, 333.1382, 168.0807
M7	335.1543	C₂₄H₁₉N₂	N-dealkylation	16.7	319.1232, 168.0808
M8	351.1492	C₂₄H₁₉N₂O₂	N-dealkylation+ Hydroxylation	15.9	N.A.
M9	421.1911	C₂₈H₂₁N₂O₂	O-demethylation+hydroxylation+dehydration	16.6	361.1703, 347.1544, 334.1460, 333.1382, 168.0811
M10	437.1860	C₂₈H₂₁N₂O₃	O-dealkylation+carbonylation	16.4	379.1810, 361.1703, 347.1545, 334.1459, 333.1381, 168.0809
M11	393.1598	C₂₈H₂₁N₂O₃	O-dealkylation+carbonylation	16.3	347.1534, 334.1451, 333.1373, 168.0804

All metabolites were observed in liver microsomes from preclinical mice and humans. (N.A.: unidentified)
Compound	Dose (mg/kg)	$AUC_{0-\infty}$ (ng/mL*H)	Cl_{f} (L/h per Kg)	Vd_{ss} (L/Kg)	$t_{1/2}$ (h)	$MRT_{0-\infty}$ (H)
SLM	0.2	240 ± 74.0	0.890 ± 0.240	1.50 ± 0.630	6.40 ± 4.0	3.50 ± 0.950
	0.6	580 ± 170	0.930 ± 0.140	2.10 ± 0.540⁶	6.00 ± 1.10	3.70 ± 0.860⁶
	1.0	140 × 10 ± 240	0.710 ± 0.130	2.20 ± 0.610⁶	9.30 ± 3.30	3.20 ± 1.00⁶
	2.0	320 × 10 ± 1000 × 10	0.750 ± 0.180	1.70 ± 0.550⁶	7.10 ± 0.550	2.50 ± 0.180⁶
	4.0	500 × 10 ± 880	0.830 ± 0.160	2.10 ± 0.200	6.50 ± 2.00	3.00 ± 0.520⁶
SLOH	0.2	220 ± 61.0	0.930 ± 0.240	1.00 ± 0.330	6.90 ± 3.70	2.70 ± 1.50
	0.6	860 ± 310	0.770 ± 0.0800	1.20 ± 0.580⁶	5.50 ± 1.10	2.30 ± 0.780
	1.0	230 × 10 ± 130 × 10	0.610 ± 0.140	0.830 ± 0.430⁶	5.80 ± 0.160	1.80 ± 0.100
	2.0	320 × 10 ± 86.0	0.640 ± 0.0200	1.00 ± 0.360⁶	4.60 ± 0.760	1.80 ± 0.170⁶
	4.0	620 × 10 ± 580	0.710 ± 0.130	1.00 ± 0.350	5.80 ± 1.70	1.70 ± 0.0800⁶
Parameters	Compounds	Species	Species			
--	---------------	----------	----------			
		Mouse	Human			
Blood to plasma ratio	Chlorthalidone	6.20 ± 0.200	11.0 ± 3.20			
	Atenolol	98.0 ± 0.210	96.0 ± 1.20			
	Propranolol	0.220 ± 0.0200	6.50 ± 0.480			
Unbound plasma (fu, plasma %)	Atenolol	100	100			
Unbound Liver microsomes (fu, mic %)	Propranolol	76.0 ± 0.700	61.0 ± 1.60			
Unbound brain distribution (Vu,brain mL/g brain)	Verapamil	36.0 ± 9.70	—			
	Gabapentin	2.20 ± 1.00	—			
Compounds	Parameters	P_{app} (A-B) (cm/s) $\times 10^{-6}$	Efflux ratio			
---------------------------	-----------------------------	--	--------------			
Sodium fluorescein (1 μM input)		1.40 ± 0.260	—			
Rhodamine 123 (1 μM input)		0.730 ± 0.0200	—			
Atenolol (1 μM input)		0.480 ± 0.0900	—			
Propranolol (1 μM input)		17.0 ± 1.30	—			
Verapamil (2 μM input)		23.0 ± 1.20	—			
Digoxin (2 μM input)		3.50 ± 0.340	5.00 ± 1.50			
Topotecan (2 μM input)		1.20 ± 0.0900	4.60 ± 1.70			
Compounds	Species	$\text{Cl}_{\text{int, app}}$ (μL/min/mg)	Mouse	Human		
-----------------------------------	--------------------------------	--	---------	-------------		
Propranolol (1 μM input) (Microsomes)		0.0740 ± 0.00200	0.0220 ± 0.00100			
Verapamil (1 μM input) (Microsomes)		0.290 ± 0.00500	0.0690 ± 0.00300			
Phenacetin (1 μM input) (Hepatocytes) (mL/min/10^6 cells)		0.0330 ± 0.00800	—	—		
Verapamil (1 μM input) (Hepatocytes) (mL/min/10^6 cells)		0.0310 ± 0.00100	—	—		
Fig. S1
Fig. S5

Parent

(M1)

(M2)

(M3)

(M4)

(M5)

(M6)

(M7)

(M8)

(M9)

(M10, M11)

(M12)

(M14)
Fig. S6

HLM +066+F1-130min_MDF

Multiple Mass Defect Filtered file

RT: 0.00 - 24.98 SM: 7G

N-dealkylation + O (M6)

P (M0); M1

N-side chain cutting off (M7)

P-CH₃ (M2)

N-side chain cutting off + O (M8)

P+O (M3)

O-demethylation + hydroxylation + dehydration (M9)

P-CH₂ + O (M4)

O-demethylation + carboxylation (M10)

O-dealkylation (M5)

O-dealkylation + carboxylation (M11)
Fig. S7

HLM+066+F1-1-30min

Run	RT (min)	AV (A)	FTMS + c ESI Full ms1 (100.00-800.00)
#819	15.68	1	F: FTMS + c ESI Full ms1
#851	16.27	1	F: FTMS + c ESI Full ms1
#855	16.35	1	F: FTMS + c ESI Full ms1
#827	15.83	1	F: FTMS + c ESI Full ms1

m/z	Relative Abundance
439.2013	
437.2220	
379.1807	
379.1839	
372.5400	
372.5400	
370.1839	
340.5296	
421.9006	
437.1556	
329.2321	
336.2216	
317.1520	
317.1520	
340.8085	
362.3254	
372.3769	
423.2067	
423.2067	
423.2067	
437.1556	
392.2877	
392.2877	
392.2877	
393.1596	

M1 M2 M3 M4 M5 M6 M7 M8

- Relative Abundance
- m/z Values

22
Fig. S10

- A1: Concentration (μg/mL) vs. Time (min) for different dosages (0.2 mg/kg, 0.6 mg/kg, 1.0 mg/kg, 2.0 mg/kg, 4.0 mg/kg).

- A2: Concentration (μg/mL) vs. Dosage (μg/kg) with a linear relationship, $R^2 = 0.9780$.

- B1: Concentration (μg/mL) vs. Time (min) for different dosages (0.2 mg/kg, 0.6 mg/kg, 1.0 mg/kg, 2.0 mg/kg, 4.0 mg/kg).

- B2: Concentration (μg/mL) vs. Dosage (μg/kg) with a linear relationship, $R^2 = 0.9701$.

Fig. S12
Fig. S13