Averaging Principle for Caputo Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion with Delays

Pengju Duan, Hao Li, Jie Li, and Pei Zhang

School of Mathematics and Statistics, Suzhou University, Suzhou 234000, Anhui, China

Correspondence should be addressed to Pengju Duan; pjduan1981@hotmail.com

Received 26 November 2020; Revised 5 April 2021; Accepted 17 July 2021; Published 3 August 2021

1. Introduction

Fractional differential equations have been developing as an active area on medicine, electrical engineering, biochemistry, and mechanical systems [1–5]. Because the systems are often subjected to noisy fluctuations, it is important to consider randomness into models. Since the fractional Brownian motion (fBm for short) owns many excellent properties, for example, long-range dependence and self-similar, it is usually used to describe the uncertainty. Since then, stochastic calculus with respect to fBm has been paid much attention in the stochastic analysis field, and many interesting works have obtained both qualitative and quantitative properties of stochastic differential equations (SDEs for short) driven by fBm [6–8]. Furthermore, the applications of fractional stochastic differential equations (FSDEs for short) driven by fBm have been widely applied in mathematical quantum, physics, and biology [9–11].

For the deterministic systems, many varieties of methods are proposed for average systems, such as gradient-based and least squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle, two-stage least squares-based iterative estimation algorithm for CARARMA system modeling, decomposition-based fast least squares algorithm for output error systems, and gradient-based and least squares-based iterative estimation algorithms for multi-input multi-output systems [12–14]. Compared to the deterministic systems, due to influence of stochastic factors, the exact solution of FSDEs driven by fBm is difficult to realize, and the above-mentioned methods do not work. Because the averaging principle shows that the complex original systems can be ignored and one can only concentrate on the average systems instead, it is usually taken as an effective tool to reduce the amount of calculation of the original systems. Khasminskii [15] first started with the averaging method to approximate the complex system with a simpler system. In recent years, the averaging method has been developed in many ways [16–18]. For example, Pei et al. [19] investigated stochastic averaging for stochastic differential equations driven by fBm and Brownian motion. Recently, Luo et al. [20] discussed the averaging principle for FSDEs of Itô-Doob with delays driven by Brownian motion. Xu et al. [21] presented the averaging principle for stochastic differential equations with Caputo fractional derivative.

Inspired by the above works, we will discuss averaging principle of a new kind of SDEs with Caputo derivative driven by fBm and Brownian motion, which is a general case of [19, 20]. On the other hand, because Lipschitz conditions restrict the application, we will adopt weakened Lipschitz conditions to obtain the result. Moreover, in order to overcome the influence of Caputo derivative and fBm, we introduce a new averaging method to realize the stochastic averaging principle.
In this article, we will deal with averaging principle of the following Caputo FSDEs driven by fBm and Brownian motion with delays:

\[
\begin{align*}
D^\alpha_t X(t) &= f(t, X(t), X_\tau) + g(t, X(t), X_\tau) \frac{dW_t}{dt} + \sigma(t, X(t), X_\tau) \frac{dB^H_t}{dt}, \quad t \in [0, T], \\
X(t) &= \phi(t),
\end{align*}
\]

where \(D^\alpha_t\) is the Caputo fractional derivative, \(\alpha \in (1/2, 1]\). \(f\): \([0, T] \times U \times B \rightarrow U, g\): \([0, T] \times U \times B \rightarrow \mathcal{L}^0_2(V, U), \sigma\): \([0, T] \times U \times B \rightarrow \mathcal{L}^0_2(V, U)\). \(B^H_t\) is a \(V\)-valued Q-cylindrical fBm with the Hurst parameter \(H \in (1/2, 1)\), \(W_t\) is a standard Wiener process on a real and separable Hilbert space \(V\) independent of \(B^H_t\), and \(X_\tau = \{X(t + \theta), \theta \in [-\tau, 0]\}\) is the \(B\) value stochastic process. The initial value \(\phi = \phi(\theta): -\tau \leq \theta \leq 0\) is a \(\mathcal{F}_0\)-measurable \(B\)-valued random variable independent of fBm \(B^H_t\) and Wiener process \(W_t\) with finite second moment.

The rest part is arranged as follows. Section 2 is devoted to some preliminary results and assumptions. In Section 3, the averaging principle is presented. An example is provided to show the result in Section 4.

2. Preliminary

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a completed probability space. For any \(t \in [0, T]\), \(\mathcal{F}_t\) denotes the \(\sigma\) field generated by \(B^H_s, W_s, s \in [0, t]\), and all \(\mathbb{P}\) null sets. A one-dimensional fractional Brownian motion with Hurst parameter \(H \in (0, 1)\) is a centered Gaussian process \(\beta^H = \beta^H(t)\) with the covariance function:

\[
R(t, s) = E[\beta^H(t)\beta^H(s)] = \frac{1}{\Gamma(2H)} \left[|t|^{2H} + |s|^{2H} - |t - s|^{2H} \right].
\]

When \(H > 1/2\), \(\beta^H(t)\) has the following representation:

\[
\beta^H(t) = \int_0^t K(t, s) d\beta(s),
\]

where \(\beta^H(s)\) is a standard Brownian motion, and the kernel \(K(t, s)\) is given by

\[
K(t, s) = c_H s^{(1/2) - H} \int_s^t (u - s)^{H - 3/2} u^{-H/2} du, \quad t \geq s,
\]

where \(c_H\) is a nonnegative constant with respect to \(H\).

For function \(\varphi \in L^2([0, T])\), the fractional Wiener integral of \(\varphi\) with respect to \(\beta^H\) is defined by

\[
\int_0^T \varphi(s) d\beta^H(s) = \int_0^T K^*_H \varphi(s) d\beta(s),
\]

where \(K^*_H(\varphi)(s) = \int_0^s \varphi(t) (\partial K(t, s)/\partial t) dt\).

(V, \|\cdot\|_V) and \((U, \|\cdot\|_U)\) are the two real separable Hilbert spaces with their norms. Let \(\mathcal{L}(V, U)\) denote the collection of all linear-bounded operators from \(V\) to \(U\) equipped with the norm \(\|\cdot\|\). For the sake of convenience, we shall use the same notation \(\|\cdot\|\) to denote the norms in \(V, U, \mathcal{L}(V, U)\). \(Q \in \mathcal{L}(V, U)\) is an operator defined by \(Q e_n = \lambda_n e_n\) with finite trace \(\text{tr}Q = \sum_{n=1}^{\infty} \lambda_n < +\infty\), where \(\lambda_n (n = 1, 2, \ldots)\) are nonnegative real numbers, and \(e_n (n = 1, 2, \ldots)\) denote a complete orthonormal basis in \(V\). We define the infinite dimensional fBm on \(V\) with covariance \(Q\) as

\[
B^H_t = \sum_{n=1}^{\infty} \beta^H_n(t) Q^{1/2} e_n = \sum_{n=1}^{\infty} \sqrt{\lambda_n} e_n \beta^H_n(t),
\]

where \(\beta^H_n(t)\) are the real, independent fBms. The process \(B^H_t\) called \(V\)-valued Q-fBm, starts from 0, has zero mean and covariance:

\[
E<\beta^H_t, x> <\beta^H_t, y> = R(t, s) <Q(x), y>,
\]

for all \(x, y \in V\) and \(t, s \in [0, T]\).

Now, we give the definition of the fractional Wiener integral of the function \(\varphi: [0, T] \rightarrow \mathcal{L}^0_2\) with respect to Q-fBm as follows:

\[
\int_0^t \varphi(s) d\beta^H(s) = \sum_{n=1}^{\infty} \int_0^t \varphi(s) Q^{1/2} e_n d\beta^H_n(s)
\]

\[
= \sum_{n=1}^{\infty} \int_0^t \left(K^*_H(\varphi Q^{1/2} e_n) \right) (s) d\beta_n(s),
\]

In the following parts, we shall introduce Wiener integral with respect to the Q-fBm \(B^H_t\). Let \(\mathcal{L}^0_2 = \mathcal{L}^0_2(V, U)\) denote the space of all Q-Hilbert–Schmidt operators \(\psi: V \rightarrow U\) equipped with the norm

\[
\|
\psi\|_{\mathcal{L}^0_2} = \sum_{n=1}^{\infty} \left\| \sqrt{\lambda_n} \psi e_n \right\|^2 < \infty,
\]

and the inner product \(\langle \varphi, \psi \rangle_{\mathcal{L}^0_2} = \sum_{n=1}^{\infty} \langle \varphi e_n, \psi e_n \rangle\) for \(\varphi, \psi \in \mathcal{L}^0_2\).
where β_n is the standard Brownian motion with respect to β_n^H.

We introduce $B([-\tau, 0], L^2(\Omega, U))$ (B for simply) denotes the family of all \mathcal{F}_0-measurable bounded continuous functions ξ: $[-\tau, 0] \rightarrow L^2(\Omega, U)$ endowed with the norm $\|\xi(t)\|^2 = \sup_{t \in [0,\tau]} E\|\xi(\theta)\|^2$. It is important of the following lemma to prove our main results, which is appeared in [22].

Lemma 1. If ψ: $[0, T] \rightarrow \mathcal{L}_2^0(V, U)$ satisfies

$$\int_0^T \|\psi(t)\|_{\mathcal{L}_2^0} \, dt < \infty,$$

then, for any $0 \leq s \leq t \leq T$,

$$E\left(\int_s^t \|\psi(t)\|_{\mathcal{L}_2^0} \, dt\right)^2 \leq C_H (t-s)^{2H-1} \int_s^t \|\psi(t)\|_{\mathcal{L}_2^0}^2 \, dt.$$

(10)

Now, we recall some notations and preliminary results about fractional calculus and some special functions.

Definition 1. For any $\alpha \in (0, 1)$ and function f: $[0, T] \rightarrow U$, the Riemann–Liouville fractional integral operator of order α is defined

$$I^\alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s) \, ds, \quad 0 \leq t \leq T,$$

(12)

where $\Gamma(\alpha) = \int_0^\infty r^{\alpha-1} e^{-r} \, dr$.

Definition 2. The Caputo fractional derivative with order α of function $f(t) \in \mathcal{H}_2^0([0, T]; U)$ is defined as

$$D^\alpha_t f(t) = \begin{cases} \frac{1}{\Gamma(\alpha)} \int_0^t \frac{f(n)(s)}{(t-s)^{\alpha-n+1}} \, ds, & n-1 < \alpha < n, \\ \frac{d}{dt} f(t), & \alpha = n. \end{cases}$$

(13)

In order to study the averaging principle of the system (1), we impose the following assumptions on the coefficient functions.

Assumption 1. For each $x_i \in U, y_i \in B, i = 1, 2$, there exists a nonnegative function $\lambda(t)$, such that

$$\|f(t, x_1, y_1) - f(t, x_2, y_2)\|_2 \leq \lambda(t) \|x_1 - x_2\|_2 + \|y_1 - y_2\|_2,$$

$$\|g(t, x_1, y_1) - g(t, x_2, y_2)\|_2 \leq \lambda(t) \|x_1 - x_2\|_2 + \|y_1 - y_2\|_2,$$

$$\|\sigma(t, x_1, y_1) - \sigma(t, x_2, y_2)\|_2 \leq \lambda(t) \|x_1 - x_2\|_2 + \|y_1 - y_2\|_2.$$
For each \(0 \leq t \leq T\), \(X(t)\) satisfies the following integral equation:

\[
X(t) = \left\{ \begin{array}{l}
X(0) + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s, X(s), X_s) ds + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} g(s, X(s), X_s) dW_s \\
+ \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \sigma(s, X(s), X_s) dB^H_s,
\end{array} \right.
\]

where \(\alpha \in (0,1]\) is a positive small parameter with \(\varepsilon_0\) being a fixed number.

Remark 3. If we let \(\sigma(t, \cdot, \cdot) = 0\), then (16) becomes stochastic differential equations with Caputo fractional derivative in [21]. Moreover, the averaging principle in [21] is the special case of this study.

3. Main Results

In this section, combining the existence and uniqueness results in the second part, we investigate the averaging principle for the Caputo FSDEs. Let us consider the standard form of (16):

\[
X^\varepsilon(t) = X(0) + \frac{\varepsilon}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s, X^\varepsilon(s), X^\varepsilon_s) ds \\
+ \frac{\sqrt{\varepsilon}}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} g(s, X^\varepsilon(s), X^\varepsilon_s) dW_s \\
+ \frac{\varepsilon^H}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \sigma(s, X^\varepsilon(s), X^\varepsilon_s) dB^H_s,
\]

where \(\varepsilon \in (0, \varepsilon_0]\) is a positive small parameter with \(\varepsilon_0\) being a fixed number.

The following step is to introduce the original solution \(X^\varepsilon(t)\) converges, as \(\varepsilon\) tends to zero, to the solution \(Y^\varepsilon(t)\) of the averaged system:

\[
Y^\varepsilon(t) = X(0) + \frac{\varepsilon}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \mathcal{J}(Y^\varepsilon(s), Y^\varepsilon_s) ds \\
+ \frac{\sqrt{\varepsilon}}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \mathcal{Y}(Y^\varepsilon(s), Y^\varepsilon_s) dW_s \\
+ \frac{\varepsilon^H}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \mathcal{\sigma}(Y^\varepsilon(s), Y^\varepsilon_s) dB^H_s.
\]

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then, for a given arbitrary small \(\delta > 0\), there exist constants \(L > 0, \varepsilon_1 \in (0, \varepsilon_0]\) and \(\beta \in (0,1]\), such that for all \(\varepsilon \in (0, \varepsilon_1]\),

\[
\sup_{t \in [-r, T]} E\left[\|X^\varepsilon(t) - Y^\varepsilon(t)\|^2\right] \leq \delta.
\]

Proof. Based on the standard forms of (17) and (18), it deduces

\[
X^\varepsilon(t) - Y^\varepsilon(t) = \frac{\varepsilon}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left(f(s, X^\varepsilon(s), X^\varepsilon_s) - \mathcal{J}(Y^\varepsilon(s), Y^\varepsilon_s) \right) ds \\
+ \frac{\sqrt{\varepsilon}}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left(g(s, X^\varepsilon(s), X^\varepsilon_s) - \mathcal{Y}(Y^\varepsilon(s), Y^\varepsilon_s) \right) dW_s \\
+ \frac{\varepsilon^H}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left(\sigma(s, X^\varepsilon(s), X^\varepsilon_s) - \mathcal{\sigma}(Y^\varepsilon(s), Y^\varepsilon_s) \right) dB^H_s.
\]
\[
E\left(\left\| X^\epsilon(t) - Y^\epsilon(t) \right\|^2 \right) \leq \frac{3\epsilon^2}{\Gamma(a)^2} E\left(\left\| \int_0^t (t-s)^{a-1} \left(f(s, X^\epsilon(s), X^\epsilon_s) - \overline{f}(Y^\epsilon(s), Y^\epsilon_s) \right) ds \right\|^2 \right) \\
+ \frac{3\epsilon^2}{\Gamma(a)^2} E\left(\left\| \int_0^t (t-s)^{a-1} \left(g(s, X^\epsilon(s), X^\epsilon_s) - \overline{g}(Y^\epsilon(s), Y^\epsilon_s) \right) dW_s \right\|^2 \right) \\
+ \frac{3\epsilon^{2H}}{\Gamma(a)^2} E\left(\left\| \int_0^t (t-s)^{a-1} \left(\sigma(s, X^\epsilon(s), X^\epsilon_s) - \overline{\sigma}(Y^\epsilon(s), Y^\epsilon_s) \right) dB^{H}_s \right\|^2 \right) = I_1 + I_2 + I_3.
\]

By the elementary inequality, Cauchy–Schwarz inequality, the Assumptions 1 and 2, we get

\[
I_1 \leq \frac{6\epsilon^2}{\Gamma(a)^2} E\left(\left\| \int_0^t (t-s)^{a-1} \left(f(s, X^\epsilon(s), X^\epsilon_s) - f(s, Y^\epsilon(s), Y^\epsilon_s) \right) ds \right\|^2 \right) \\
+ \frac{6\epsilon^2}{\Gamma(a)^2} E\left(\left\| \int_0^t (t-s)^{a-1} \left(f(s, Y^\epsilon(s), Y^\epsilon_s) - \overline{f}(Y^\epsilon(s), Y^\epsilon_s) \right) ds \right\|^2 \right) \\
\leq \frac{6\epsilon t}{\Gamma(a)^2} E\left(\int_0^t (t-s)^{2a-2} \left\| f(s, X^\epsilon(s), X^\epsilon_s) - f(s, Y^\epsilon(s), Y^\epsilon_s) \right\|^2 ds \right) \\
+ \frac{6\epsilon t}{\Gamma(a)^2} E\left(\int_0^t (t-s)^{2a-2} \left\| f(s, Y^\epsilon(s), Y^\epsilon_s) - \overline{f}(Y^\epsilon(s), Y^\epsilon_s) \right\|^2 ds \right) \\
\leq \frac{6\epsilon t}{\Gamma(a)^2} \sup_{0 \leq s \leq t} \lambda_1(t) \left(\sup_{0 \leq s \leq t} E\left\| X^\epsilon(r) - Y^\epsilon(r) \right\|^2 + E\left\| X^\epsilon_s - Y^\epsilon_s \right\|^2 \right) \\
+ \frac{6\epsilon t^2}{\Gamma(a)^2} \sup_{0 \leq s \leq t} \lambda_1(t) \left(\sup_{0 \leq s \leq t} E\left\| Y^\epsilon(r) \right\|^2 + \sup_{0 \leq s \leq t} E\left\| Y^\epsilon_s \right\|^2 \right)
\]

By the Itô isometry, the elementary inequality, Cauchy–Schwarz inequality, the Assumptions 1 and 2, we get

\[
I_2 \leq 3a \Gamma(a)^2 E\int_0^t (t-s)^{2a-2} \left\| g(s, X^\epsilon(s), X^\epsilon_s) - \overline{g}(Y^\epsilon(s), Y^\epsilon_s) \right\|^2 ds \\
\leq \frac{6\epsilon}{\Gamma(a)^2} E\int_0^t (t-s)^{2a-2} \left\| g(s, X^\epsilon(s), X^\epsilon_s) - g(s, Y^\epsilon(s), Y^\epsilon_s) \right\|^2 ds \\
+ \frac{6\epsilon}{\Gamma(a)^2} E\int_0^t (t-s)^{2a-2} \left\| g(s, Y^\epsilon(s), Y^\epsilon_s) - \overline{g}(Y^\epsilon(s), Y^\epsilon_s) \right\|^2 ds \\
\leq \frac{6\epsilon}{\Gamma(a)^2} \sup_{0 \leq s \leq t} \lambda_2(t) \left(\sup_{0 \leq s \leq t} \left\| X^\epsilon(s) - Y^\epsilon(s) \right\|^2 + \left\| X^\epsilon_s - Y^\epsilon_s \right\|^2 \right) \\
+ \frac{6\epsilon t^2}{\Gamma(a)^2} \sup_{0 \leq s \leq t} \lambda_2(t) \left(\sup_{0 \leq s \leq t} E\left\| Y^\epsilon(s) \right\|^2 + \sup_{0 \leq s \leq t} E\left\| Y^\epsilon_s \right\|^2 \right)
\]
By Lemma 1, elementary inequality, we have

$$I_3 \leq \frac{2\varepsilon^2 H}{\Gamma(\alpha)^2} E \left(\left| \int_0^t (t-s)^{\alpha-1} (\sigma(s, X^\varepsilon(s), X^\varepsilon_s) - \bar{\sigma}(Y^\varepsilon(s), Y^\varepsilon_s)) dB^H_s \right|^2 \right)$$

$$\leq \frac{3C_H \varepsilon^2 H t^{2H-1}}{\Gamma(\alpha)^2} E \int_0^t (t-s)^{2\alpha-2} \left| \sigma(s, X^\varepsilon(s), X^\varepsilon_s) - \bar{\sigma}(Y^\varepsilon(s), Y^\varepsilon_s) \right|^2 ds$$

$$\leq \frac{6C_H \varepsilon^2 H t^{2H-1}}{\Gamma(\alpha)^2} E \int_0^t (t-s)^{2\alpha-2} \left| \sigma(s, X^\varepsilon(s), X^\varepsilon_s) - \sigma(s, Y^\varepsilon(s), Y^\varepsilon_s) \right|^2 ds$$

$$+ \frac{6C_H \varepsilon^2 H t^{2H-1}}{\Gamma(\alpha)^2} E \int_0^t (t-s)^{2\alpha-2} \left| \sigma(s, Y^\varepsilon(s), Y^\varepsilon_s) - \bar{\sigma}(Y^\varepsilon(s), Y^\varepsilon_s) \right|^2 ds$$

$$\leq \frac{6C_H \varepsilon^2 H t^{2H-1}}{\Gamma(\alpha)^2} \sup_{0 \leq s \leq T} \lambda(t) \int_0^t (t-s)^{2\alpha-2} \left(E \|X^\varepsilon(s) - Y^\varepsilon(s)\|^2 + E \|X^\varepsilon_s - Y^\varepsilon_s\|^2 \right) ds$$

$$+ \frac{6C_H \varepsilon^2 H t^{2H}}{\Gamma(\alpha)^2} \sum_{i=1}^3 \sup_{0 \leq s \leq t} \lambda_i(s) \left(\sup_{0 \leq s \leq t} E \|Y^\varepsilon(s)\|^2 + \sup_{0 \leq s \leq t} E \|Y^\varepsilon_s\|^2 \right).$$

Submitting (22), (23), (24) to (21), we get

$$E \left(\|X^\varepsilon(t) - Y^\varepsilon(t)\|^2 \right)$$

$$\leq \frac{6\varepsilon^2 t + 6\varepsilon + 6C_H \varepsilon^2 H t^{2H-1}}{\Gamma(\alpha)^2} \sup_{0 \leq s \leq T} \lambda(t) \int_0^t (t-s)^{2\alpha-2} \left(E \|X^\varepsilon(s) - Y^\varepsilon(s)\|^2 + E \|X^\varepsilon_s - Y^\varepsilon_s\|^2 \right) ds$$

$$+ \frac{6\varepsilon^2 t^2 + 6\varepsilon t + 6C_H \varepsilon^2 H t^{2H}}{\Gamma(\alpha)^2} \sum_{i=1}^3 \sup_{0 \leq s \leq t} \lambda_i(s) \left(\sup_{0 \leq s \leq t} E \|Y^\varepsilon(s)\|^2 + \sup_{0 \leq s \leq t} E \|Y^\varepsilon_s\|^2 \right).$$

Noting that $E (\|X^\varepsilon(t) - Y^\varepsilon(t)\|^2) = 0$ when $-\varepsilon \leq t \leq 0$, it reduces

$$E \left(\|X^\varepsilon(t) - Y^\varepsilon(t)\|^2 \right)$$

$$\leq \frac{12\varepsilon^2 t + 12\varepsilon + 12C_H \varepsilon^2 H t^{2H-1}}{\Gamma(\alpha)^2} \sup_{0 \leq s \leq T} \lambda(t) \int_0^t (t-s)^{2\alpha-2} \left(E \|X^\varepsilon(s) - Y^\varepsilon(s)\|^2 \right) ds$$

$$+ \frac{6\varepsilon^2 t^2 + 6\varepsilon t + 6C_H \varepsilon^2 H t^{2H}}{\Gamma(\alpha)^2} \sum_{i=1}^3 \sup_{0 \leq s \leq t} \lambda_i(s) \left(\sup_{0 \leq s \leq t} E \|Y^\varepsilon(s)\|^2 + \sup_{0 \leq s \leq t} E \|Y^\varepsilon_s\|^2 \right).$$

By the Gronwall–Bellman inequality ([23]), we have
\[
E\left(\|X^\varepsilon(t) - Y^\varepsilon(t)\|^2\right) \\
\leq \frac{6t^2 + 6et + 6C_H^2H^2}{\Gamma(a)^2} \sum_{i=1}^{3} \sup_{t \in \mathbb{R}} \lambda_i(s) \left(\sup_{s \in \mathbb{R}} E\|Y^\varepsilon(s)\|^2 + \sup_{s \in \mathbb{R}} E\|Y^{\varepsilon'}(s)\|^2 \right) \\
\times \sum_{k=0}^{\infty} \left(12t^a + 12et^a + 12C_H^2H^a(2H + a - 1)\right)^k \sup_{\delta \in [0,T]} \lambda(t)^k \\
\Gamma(a)^k \Gamma(k\alpha + 1)
\] (27)

So,

\[
\sup_{-\varepsilon \leq t \leq \varepsilon} E\|X^\varepsilon(t) - Y^\varepsilon(t)\|^2 \\
\leq \frac{6t^2 + 6et + 6C_H^2H^2}{\Gamma(a)^2} \sum_{i=1}^{3} \sup_{t \in \mathbb{R}} \lambda_i(s) \left(\sup_{s \in \mathbb{R}} E\|Y^\varepsilon(s)\|^2 + \sup_{s \in \mathbb{R}} E\|Y^{\varepsilon'}(s)\|^2 \right) \\
\times \sum_{k=0}^{\infty} \left(12t^a + 12et^a + 12C_H^2H^a(2H + a - 1)\right)^k \sup_{\delta \in [0,T]} \lambda(t)^k \\
\Gamma(a)^k \Gamma(k\alpha + 1)
\] (28)

So, we can select \(\beta \in (0, 1) \) and \(L > 0 \), such that for every \(t \in [0, L^{1-\beta}] \subseteq [0, T] \),

\[
\sup_{-\varepsilon \leq t \leq \varepsilon} E\|X^\varepsilon(t) - Y^\varepsilon(t)\|^2 \leq C \varepsilon^{1-\beta},
\] (29)

where

\[
C = 6L^2 \varepsilon^{1-\beta} + 6L + 6L^2 H \varepsilon^{(2H-1)(1-\beta)} \Gamma(a)^2 \\
\times \sum_{i=1}^{3} \sup_{t \in \mathbb{R}} \lambda_i(s) \left(\sup_{s \in \mathbb{R}} E\|Y^\varepsilon(s)\|^2 + \sup_{s \in \mathbb{R}} E\|Y^{\varepsilon'}(s)\|^2 \right) \\
\times \sum_{k=0}^{\infty} \left(122t^a + 122et^a + 122C_H^2H^a(2H + a - 1)\right)^k \sup_{\delta \in [0,T]} \lambda(t)^k \\
\Gamma(a)^k \Gamma(k\alpha + 1)
\] (30)

Therefore, for any \(\delta > 0 \), there exists \(\varepsilon_1 \in (0, \varepsilon_0) \), such that for any \(\varepsilon \in (0, \varepsilon_1] \) and \(t \in [0, L^{1-\beta}] \),

\[
\sup_{-\varepsilon \leq t \leq \varepsilon} E\|X^\varepsilon(t) - Y^\varepsilon(t)\|^2 \leq \delta.
\] (31)

The proof is completed.

\[\square\]

4. Example

Let us consider the following FSDEs with delays:

\[
D_t^\alpha x(t) = \left[x(t) + x(t)(t - 1)^2 \right] + \frac{1}{\delta} dW_t + \frac{1}{\delta} dB_t^{H},
\] (32)

\[
D_t^\alpha y(t) = y(t) \left(1 + \frac{2\alpha - 1}{2\alpha + 1} \right) + \frac{1}{\delta} dW_t + \frac{1}{\delta} dB_t^{H}.
\] (34)
According to Theorem 1, as ε goes to zero, the solutions $x(t)$ and $y(t)$ are equivalent in the sense of mean square. So, the results can be checked.

Data Availability

The data used to support the findings of this study are freely available.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was funded by the Foundation for Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province (gxyx2018102), Natural Science Foundation of Anhui Colleges (KJ2020A0731), Research Projects of Humanities and Social Science of Anhui Province (SK2020A0527), Ministry of Education Cooperative Education Project (20202165040), Consulting Projects Entrusted by Enterprises (2020xhx119), and Key Scientific Research Projects of Suzhou University (2019yzd08).

References

[1] B. Bandyopadhyay and S. Kamal, “Stabilization and control of fractional order systems: A sliding mode approach,” *Lecture Notes in Electrical Engineering*, Springer International Publishing, Berlin, Germany, 2015.

[2] A. Kilbas, H. Srivastava, and J. Trujillo, “Theory and applications of fractional differential equations,” *North-Holland Mathematics Studies*, Elsevier Science B. V., Amsterdam, Netherlands, 2006.

[3] T. Doan, P. Huong, P. Kloeden, and H. Tuan, “Asymptotic separation between solutions of Caputo fractional stochastic differential equations,” *Stochastic Analysis and Applications*, vol. 36, no. 4, pp. 654–664, 2018.

[4] B. Shiri and D. Baleanu, “System of fractional differential algebraic equations with applications,” *Chaos, Solitons & Fractals*, vol. 120, pp. 203–212, 2019.

[5] B. Shiri, G.-C. Wu, and D. Baleanu, “Collocation methods for terminal value problems of tempered fractional differential equations,” *Applied Numerical Mathematics*, vol. 156, pp. 385–395, 2020.

[6] Z. Li, Y. Y. Jing, and L. Xu, “Controllability of neutral stochastic evolution equations driven by fBm with Hurst parameter less than $1/2$,” *International Journal of Systems Science*, vol. 50, no. 9, pp. 1835–1846, 2019.

[7] Z. Li and L. Yan, “Ergodicity and stationary solution for stochastic neutral retarded partial differential equations driven by fractional Brownian motion,” *Journal of Theoretical Probability*, vol. 32, no. 3, pp. 1399–1419, 2019.

[8] H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, and M. E. Ramadan, “Approximate controllability of non-instantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion,” *Boundary Value Problems*, vol. 2020, no. 1, p. 120, 2020.

[9] L. Xu and Z. Li, “Stochastic fractional evolution equations with fractional brownian motion and infinite delay,” *Applied Mathematics and Computation*, vol. 336, pp. 36–46, 2018.

[10] P. Tamilalagan and P. Balasubramaniam, “Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion,” *Applied Mathematics and Computation*, vol. 305, pp. 299–307, 2017.

[11] H. M. Ahmed and M. M. El-Borai, “Hilfer fractional stochastic integro-differential equations,” *Applied Mathematics and Computation*, vol. 331, pp. 182–189, 2018.

[12] J. Pan, H. Ma, X. Jiang, W. Ding, and F. Ding, “Adaptive gradient-Based iterative algorithm for multi-variable controlled autoregressive moving average systems using the data filtering technique,” *Complexity*, vol. 2018, Article ID 9598307, 11 pages, 2018.

[13] X. B. Jin, “Deep-learning prediction model with serial two-Level decomposition based on Bayesian optimization,” *Complexity*, vol. 2020, Article ID 4346803, 14 pages, 2020.

[14] J. Ding, “The hierarchical iterative identification algorithm for multi-input-output-error systems with autoregressive noise,” *Complexity*, vol. 2017, Article ID 5292894, 11 pages, 2017.

[15] R. Khasminskii, “On the principle of averaging the Itô stochastic differential equations,” *Kibernetika*, vol. 4, pp. 260–279, 1968.

[16] B. Pei, Y. Xu, G. Yin, and X. Zhang, “Averaging principles for functional stochastic partial differential equations driven by a fractional Brownian motion modulated by two-time-scale Markovian switching processes,” *Nonlinear Analysis: Hybrid Systems*, vol. 27, pp. 107–124, 2018.

[17] H. Ahmed and Q. Zhu, “The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps,” *Applied Mathematics Letters*, vol. 112, Article ID 106755, 2021.

[18] Z. Li and L. Yan, “Stochastic averaging for two-time-scale stochastic partial differential equations with fractional Brownian motion,” *Nonlinear Analysis: Hybrid Systems*, vol. 31, pp. 317–333, 2019.

[19] B. Pei, Y. Xu, and J. Wu, “Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion,” *Applied Mathematics Letters*, vol. 100, Article ID 106006, 2020.

[20] D. Luo, Q. Zhu, and Z. Luo, “An averaging principle for stochastic fractional differential equations with time-delays,” *Applied Mathematics Letters*, vol. 105, Article ID 106290, 2020.

[21] W. Xu, W. Xu, and S. Zhang, “The averaging principle for stochastic differential equations with Caputo fractional derivative,” *Applied Mathematics Letters*, vol. 93, pp. 79–84, 2019.

[22] T. Caraballo, M. Garrido-Atienza, and T. Taniguchi, “The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion,” *Nonlinear Analysis: Theory, Methods and Applications*, vol. 74, no. 211, pp. 3671–3684, 2011.

[23] H. Ye, J. Gao, and Y. Ding, “A generalized Gronwall inequality and its application to a fractional differential equation,” *Journal of Mathematical Analysis and Applications*, vol. 328, no. 2, pp. 1075–1081, 2017.