The half-metallic Heusler compound Co$_2$MnSi is a very attractive material for spintronic devices because it exhibits very high tunnelling magnetoresistance ratios. This work reports on a spectroscopic investigation of thin Co$_2$MnSi films as they are used as electrodes in magnetic tunnel junctions. The investigated films exhibit a remanent in-plane magnetisation with a magnetic moment of about 5 μ_B when saturated, as expected. The low coercive field of only 4 mT indicates soft magnetic behaviour. Magnetic dichroism in emission and absorption was measured at the Co and Mn 2p core levels. The photoelectron spectra were excited by circularly polarised hard X-rays with an energy of of 6 keV and taken from the remanently magnetised film. The soft X-ray absorption spectra were taken in an induction field of 4 T. Both methods yielded large dichroism effects. An analysis reveals the localised character of the electrons and magnetic moments attributed to the Mn atoms, whereas the electrons related to the Co atoms contribute an itinerant part to the total magnetic moment.

Keywords: Half-metallic ferromagnets, Heusler compounds, Thin films, Magnetic dichroism, Photoelectron spectroscopy, Photoabsorption spectroscopy, XMCD, Electronic structure.

1. Introduction

Half-metallic ferromagnets (HMFs) have attracted increasing interest because of their possible ap-
plications in spintronics devices. Their use has been suggested to realise spin-dependent devices such as spin injectors, tunnelling magnetoresistance (TMR) junctions, and giant magnetoresistance devices. In HMF materials, the minority spin density of states (DOS) exhibits a band gap at the Fermi energy ϵ_F, while the majority spins are responsible for the metallic properties. Among them, Co$_2$-based Heusler alloys with L2$_1$ structure [prototype Cu$_2$MnAl, cF16, space group Fm3m (225)] have attracted attention for future application as ferromagnetic electrodes in spintronic devices [1]. In particular, Co$_2$MnSi, with a high Curie temperature of 985 K and large magnetic moment of 5 μ_B, has been explored over a long period [2−5]. Very recently, the half-metallicity of Co$_2$MnSi thin films was directly reported. A spin polarisation of 93% at room temperature was measured by in-situ spin-resolved ultraviolet photoelectron spectroscopy [6]. Several groups developed fully epitaxial magnetic tunnel junctions (MTJs) based on Co$_2$MnSi as a lower electrode and an AlO$_x$ [7] or MgO [8,9] tunnelling barrier. The TMR ratio of Co$_2$MnSi-based MTJs was improved from 570% [8] to 1135% [11] at 4.2 K. Systematic studies of the effect of nonstoichiometry on the spin-dependent tunnelling characteristics of Co$_2$MnxSi-based MTJs have shown a direct dependence of the TMR ratio on the Mn content α. Recently, giant TMR ratios of up to 1995% at 4.2 K and up to 354% at 290 K were obtained for epitaxial off-stoichiometric Co$_2$Mn$_{1.35}$Si$_{0.88}$/MgO/Co$_2$Mn$_{1.35}$Si$_{0.88}$ MTJs [12]. It is incontrovertible that the Mn content influences the TMR ratio in Co$_2$MnSi-based MTJs. To understand the Mn behaviour in this type of Heusler compound, more element-specific investigation is required.

Since the observation of X-ray magnetic circular dichroism (XMCD) from Fe with hard X-rays (K edge) by Schütz et al. [13] and of Ni with soft X-rays (L edges) by Chen [14], XMCD measurements are widely used as a variant of X-ray absorption spectroscopy (XAS) to investigate the magnetic properties of complex systems in an element-specific way. XMCD enables the determination of the magnetic properties of the constituent elements of materials, as well as their spin and orbital magnetic moments, using integral sum rules [15]. XMCD investigation of several Heusler compounds and thin films verified the localised character of the Mn 3d valence states [16,17]. The $L_{3,2}$ edge absorption spectra for left and right circularly polarised soft X-rays reflect the spin-resolved partial density of states (PDOS) at the 3d transition metal atoms. XMCD studies of epitaxial Heusler thin films of Co$_2$Mn$_{1−x}$Fe$_x$Si provided a pathway for the improvement of HMF materials and interfaces for spintronic devices using a calculation scheme for recovering the spin-resolved unoccupied Co DOS [18]. In contrast to photon absorption, photoelectron spectroscopy allows a detailed illustration of the occupied states (valence band) close to the Fermi energy.

Hard X-ray photoelectron spectroscopy (HAXPES) has evolved into the most relevant, powerful, and nondestructive method of investigating the bulk electronic structure of solids, thin films, and multilayers. Owing to the large electron escape depth (the electron mean free path at kinetic energies of 6 keV is about 17 nm), it was possible to detect the valence band of buried Co$_2$MnSi Heusler compounds underneath 20 nm MgO, which was comparable with those of the bulk material [19,20]. The combination of HAXPES with variable photon polarisation provides, in addition to the electronic structure, the magnetic structures of buried layers. Very recently, magnetic circular dichroism in the angular distribution of photoelectrons (MCDAD) from core states provided another hint regarding the localised character of the magnetic moments of some transition elements, such as Fe and Co [21]. In FeGd, MCDAD of the rare earth element Gd reflects a stronger temperature dependence of the Gd moment compared to that of Fe [22].

The present study reports on a detailed investigation of the magnetic structure of epitaxial Co$_2$MnSi thin films. The spin-resolved DOSs are calculated using full potential ab-initio methods. Circularly polarised radiation in combination with bulk-sensitive HAXPES is used to study the magnetic circular dichroism of the core states. The element-specific magnetic moments are investigated by circular dichroism in XAS.

2. Experimental details

Half of a stack for MTJs was prepared by DC/RF sputtering with 4” magnetrons. The layers were deposited on MgO substrates in the following order: MgO(001)/MgO{5}/Co$_2$MnSi{20}/MgO{2}. The numbers in braces give the thickness of the layers in nm. A 5 nm thick MgO layer was deposited onto the MgO(001) substrate to level out defects of its surface. This results in an improved structure of
the Heusler layer. All the layers of the films were deposited at room temperature. The argon process pressure was set to 1.5×10^{-3} mbar in the sputtering system, where the base pressure was about 10^{-7} mbar. The samples were post-annealed for 1 h at 400°C in vacuum (2×10^{-7} mbar).

The magnetic properties of the films were determined at room temperature using an alternating-gradient magnetometer. The films exhibit an in-plane magnetic anisotropy. The measured hysteresis loop is shown in Figure 1. The saturation moment is 5 μ_B, as expected. The films are rather soft magnetic with a coercive field of only 4 mT. The magnetic moment in remanence is 2.4 μ_B, which is about half of the saturation moment.

The HAXPES measurements were made at beamline P09 [23] of PETRA III (Hamburg). See Reference [24] for the details of the HAXPES setup. The photon energy was set to $h\nu = 5947.9$ eV using a Si(111) high heat load double-crystal primary monochromator and the (333) reflection of a Si double channel-cut post monochromator. The resolution of the monochromator is better than 100 meV. The magnetic circular dichroism was measured at a fixed magnetisation by changing the helicity of the photons. The thin films were magnetised in situ along the direction of the photon beam after they were introduced into the ultrahigh-vacuum (UHV) μ-metal chamber. The helicity of the photons was changed using the (111) reflection of an in-vacuum phase retarder based on a 400 μm thick diamond single crystal with (100) orientation [25]. The degree of circular polarisation is about 98 to 99%. The energy in the spectra is given with respect to the Fermi energy ϵ_F, which was calibrated from measurements of a Au sample. ϵ_F appeared at a kinetic energy of $E_{kin} = 5946.48$ eV with a width of 200 meV. Accounting for the 28 meV thermal broadening of the Fermi–Dirac distribution at room temperature (300 K), this corresponds to an overall energy resolution of about 170 meV ($E/\Delta E \approx 3.5 \times 10^4$). The setup of the HAXPES-MCDAD experiment is sketched in Figure 2. A retractable Fe-Nd-B permanent magnet was used to magnetise the sample remanently or change the direction of magnetisation. It supplies an induction field of about ± 1 T, which is high enough to saturate the magnetisation of the thin film (compare Figure 1).

![Fig. 1. Magnetisation of Co$_2$MnSi thin films. The hysteresis was measured at room temperature using an alternating-gradient magnetometer.](image)

Fig. 1. Magnetisation of Co$_2$MnSi thin films.

The X-ray absorption spectroscopy and X-ray magnetic circular dichroism experiments were performed at the undulator beamline ID08 of the European Synchrotron Radiation Facility (ESRF, Grenoble, France). The measurements were performed in a UHV chamber with a pressure in the low 10^{-10} mbar range at room temperature. XAS was conducted at the Mn and Co $L_{3,2}$ edges in the energy ranges of 625 to 685 eV and 765 to 835 eV, respectively. The energy resolution of the Dragon-type monochromator was set to about 250 meV ($E/\Delta E > 2.5 \times 10^5$). The degree of circular polarisation delivered by the Apple II-type undulator is larger than 99%. A rapidly switchable high-field magnet was used to obtain the XMCD signal. The induction field was fixed at $\mu_0 H = 4$ T and ensures
saturation in the out-of-plane geometry. Measurements were performed for a normal geometry with the photon beam parallel to the surface normal and for a grazing geometry with an angle of incidence of $\theta = 70^\circ$. The magnetic field direction was chosen parallel to the incident photon beam in both cases. The setup of the XMCD experiment is sketched in Figure 3.

![XMCD setup](image)

Fig. 3. (Color online) X-ray absorption setup for XMCD experiments on Co$_2$MnSi thin films. The magnetisation M is induced by a magnetic field H applied during the measurement with circularly polarised photons of opposite helicity (σ^+ or σ^-). Note that H and M are generally parallel only in isotropic, soft magnetic materials.

3. Results and discussion

3.1. Electronic structure of Co$_2$MnSi

The electronic structure was calculated using the full-potential linear augmented plane wave (FPLAPW) method as implemented in Wien2k \cite{Wien2k, Wien2kManual}. The details of the calculations are reported in References \cite{Fechter2014, Fechter2015}. The atoms were placed on the 8c (Co), 4b (Mn), and 4a (Si) Wyckoff positions of the $L2_1$ structure with space group $F \overline{m} \overline{3}m$ \cite{Baader1998}. The charge density and other site-specific properties were analysed using Baader’s quantum theory of atoms in molecules (QTAIM) \cite{Baader1998} using the built-in routines of Wien2k as well as the CRITIC2 package of the programs \cite{CRITIC2}.

Figure 4 shows the result of the electronic structure calculations. The compound exhibits a DOS generally parallel only in isotropic, soft magnetic materials. The minority density has a width of $\Delta E = 0.82$ eV. The top of the minority valence band is about 0.32 eV below ϵ_F. Owing to the half-metallic character, the magnetic moment in the primitive cell is 5 μ_B, as expected from the Slater–Pauling rule \cite{SlaterPauling}.

![Electronic structure](image)

Fig. 4. (Color online) Electronic structure of Co$_2$MnSi. (a) Total DOS, (b) Co PDOS, (c) Mn PDOS.

Figure 5 shows the valence charge density $\rho(\mathbf{r})$ and the magnetisation density $\sigma(\mathbf{r})$ in the (110) plane of Co$_2$MnSi. The magnetisation density $\sigma(\mathbf{r}) = \rho_\uparrow(\mathbf{r}) - \rho_\downarrow(\mathbf{r})$ is calculated from the difference of the spin densities arising from majority (\uparrow) and minority (\downarrow) valence electrons, whereas the valence charge density is calculated from the sum $\rho(\mathbf{r}) = \rho_\uparrow(\mathbf{r}) + \rho_\downarrow(\mathbf{r})$. The magnetisation density is higher at the Mn atoms compared to the Co atoms and vanishes at the Si atoms, as expected. Baader’s QTAIM analysis was used to analyse the charge density and magnetic moments. The results of the QTAIM analysis are listed in Table 3.1. A small charge transfer is observed. On average, about 0.3 electrons are transferred from the Mn and Si atoms to the Co atoms.
Four different types of critical points exist in solids that are classified by their rank r and signature s:

- **$(3, -3)$** are local maxima of $\rho(r)$. These points appear at the position of an atom and are called *nuclear* critical points.
- **$(3, -1)$** are saddle points with a local minimum of $\rho(r)$ in 1 direction of space and a maximum in the other two. These points appear on the line between two neighbouring atoms and thus define the bond between them. Therefore, they are called *bond* critical points.
- **$(3, +1)$** are also saddle points but with a maximum in one and a minimum in the other two directions of space. These are called *ring* critical points because they appear in the middle of several bonds forming a ring.
- **$(3, +3)$** are local minima of $\rho(r)$ and called *cage* critical point.
- **$(0, 0)$** is a critical point at infinity that appears only in molecules but not in solids.

The QTAIM critical points of Co$_2$MnSi and their properties are summarised in Table 3.1. There are, indeed, three different nuclei that act as attractors. A cage critical point c is found between Mn and Si along the [001] axis and acts as a repeller. It is an absolute minimum of the charge density. Further, two bond critical points $b_{1,2}$ are found; they are located between Co and Si (b_1) and between Co and Mn (b_2). When the two ring critical points $r_{1,2}$ are also considered, the Morse invariant relationships: $n_a > 1, n_b > 3, n_r > 3, n_e > 1$ are fulfilled and the Morse sum of the numbers n_i of the different critical points vanishes $(n_a - n_b + n_r - n_e = 0)$ [34], as expected for crystals. The latter is also known as the Euler or the Poincaré–Hopf relation.

Table 1. QTAIM analysis of Co$_2$MnSi.

V [Å3]	n_e	q	m [μ$_B$]	
Co	11.525	-27.345	-0.345	1.064
Mn	9.975	24.467	0.533	2.972
Si	11.909	13.841	0.159	-0.028

The topology of the charge density $\rho(r)$ is characterised by critical points where $\nabla \rho(r) = 0$. Besides the gradient $\nabla \rho(r)$, the extrema or critical points of $\rho(r)$ are also characterised by the Laplacian $\nabla^2 \rho(r)$. Four different types of critical points (r, s) exist in solids:

- $(3, -3)$
- $(3, -1)$
- $(3, +1)$
- $(0, 0)$

Table 2. QTAIM critical point analysis of Co$_2$MnSi.

pg	type	position	W	name		
O_h	nucleus	0	0	4a	Si	
O_h	nucleus	1/2	1/2	1/2	4b	Mn
T_d	nucleus	1/4	1/4	1/4	8c	Co
C_{3v}	bond	0.1198	0.1198	0.1198	32f	b_1
C_{3v}	bond	0.6221	0.6221	0.6221	32f	b_2
D_{2h}	ring	0	3/4	3/4	24d	r_1
C_{2v}	ring	0	0.2049	0.2951	48i	r_2
T_d	cage	0	0	0.7357	24e	c
The analysis of the bonding type on hand of the properties of the critical points is discussed in Reference [35]. Metallic systems exhibit a flat electron density ρ throughout the valence region. The flatness $f = \rho_{\text{min}} / \rho_{\text{max}}$ is a measure of the metallicity. ρ_{min} is the cache critical point, at which the density is minimum, and ρ_{max} is the highest density among all the bond critical points. For Co$_2$MnSi, it is $f = 0.665$. This is of the same order of magnitude as the flatness in Cu or Fe (both ≈ 0.57; see Reference [35]), whereas compounds with covalent bonding typically have f values of less than 0.1. From the large flatness, the bonding in Co$_2$MnSi is clearly metallic.

Photoabsorption and electron emission spectra have been calculated using single-electron as well as many-electron approaches. The single-particle calculations are based on the full-potential, fully relativistic spin-polarised MUNICH SPR-KKR package of Ebert et al. [36]. The results of the electronic structure calculations are the same as those obtained with the FPLAPW scheme of WIEN2k. In particular, the half-metallic character is retained in the fully relativistic calculations, and the semi-relativistic spin-resolved band structures and DOS are nearly identical.

The core-levels themselves are strongly localized in the spherical part of the potential around the nuclei and behave like atomic states. Atomic-type many-particle calculations were performed to explain some details of the Mn $2p$ states in the photon absorption and electron emission spectra. The multiplet calculations were performed using de Groot's program CTM4XAS [37], which includes the effects of the crystal field and charge transfer. The details of the multiplet description and applied methods are given in References [38,39,40]. For the calculation of the $2p$ excitation, the Slater integrals were scaled to 90% of their value from the Hartree–Fock calculations. The spectra were broadened by 150 to 250 meV according to the experimental resolution. The lifetime broadening was varied over the spectrum, with larger values used for the $''p_{1/2}''$ parts of the spectra to account for Coster-Kronig contributions.

3.2. HAXPES

The polarisation-dependent core-level spectra near the Co and Mn $2p$ excitations are shown in Figures 6 and 8, respectively. It should be emphasised that the spectra were taken from remanently magnetised samples with no applied external field during the measurement. The magnetic moment is thus only about half of the saturation moment of 5 μ_B (see Section 2). The dichroism in the HAXPES spectra is here quantified by an asymmetry that is defined as

$$A = \frac{I_R - I_L}{\max(I_0 - I_{bg})},$$

I_R and I_L are the intensities for opposite helicity; their difference, $I_R - I_L = I_{CD}$, is the dichroism; $I_0 = I_R + I_L$ is the sum of the intensities; and I_{bg} is the intensity of the background at just above the energy of the $2p_{3/2}$ (or $2p_{1/2}$) excitation, where the dichroism is zero.

Figure 6(a) shows I_0 and I_{CD} in the energy region of the Co $2p$ states. The Co $2p_{3/2}$ excitation appears just above the Mn $2s$ state, which complicates the determination of the background in the energy region away from the Co $2p$ states. A possible dichroism of the Mn $2s$ state is very small and not detectable with the present settings. The Co $2p$ state exhibits a spin orbit splitting of $\Delta_{SO} = 14.6$ eV into the $2p_{1/2}$ and $2p_{3/2}$ sub-states. I_{CD} exhibits a change of sign in the series $++--$ across the energy range of the $2p$ excitation. This is typical of a Zeeman-type level ordering in the single-electron model [41]. A pronounced satellite is observed at about 4.3 eV below the $2p_{3/2}$ state but is not detectable at the $2p_{1/2}$ state. The polarisation-dependent spectra and dichroism near the $2p_{3/2}$ state are shown in Figure 6(b). The satellite obviously exhibits negative dichroism. Further, the polarisation- dependent spectra reveal that the main $2p_{3/2}$ excitation exhibits a splitting of about 200 meV. At the same time, the asymmetry, as defined by Equation (1), varies between $+17\%$ and -8% across the $2p_{3/2}$ part and between -34% and $+25\%$ across the $2p_{1/2}$ part of the spectra. Both the polarisation-dependent spectra and the dichroism indicate that the lines of the multiplet extend over the entire spectral range. In particular, the dichroism does not vanish between the two main parts of the spin-orbit doublet.
using Slater’s transition state theory. The binding energies may be found by introducing core holes and calculating the full relativistic spr-kkr formalism using the full solid-state potential, whereas Figure 7(b) shows the results of atomic-type Hartree–Fock calculations with CTM4XAS. The atomic-type calculations were performed assuming different states of Co: Co^{2+} and Co^{3+}. The spectra shown in Figure 7(b) are for pure jj and LS couplings. The spectra for LS coupling show typical multiplet structures. Those structures, however, do not appear in the experimental spectra, which show only the spin-orbit doublet and a single satellite. Calculations for intermediate couplings (LSJ) did not improve the situation. This observation is in accordance with multiplet calculations reported by other authors.

The splitting of the 2p state in jj coupling agrees well with the spin-orbit splitting found in the full relativistic SPR-KKR calculations. The main features of the spectra in the SPR-KKR calculations agree well with the measured spectra, in particular the +−−− series of the sign of the dichroism. The 4 eV satellite is not explained by the solid-state calculations. Note that those calculations did not include inelastic or many-body effects. The 2p_{1/2} and 2p_{3/2} lines are split by the magnetic interactions according to their m_J substates. The positions of the sublevels are plotted with vertical lines in Figure 7(a). The exchange interaction results in Zeeman-type splitting with Δ_{exc} ≈ 150 meV between neighbouring m_J levels.

The 2p spectra of Mn, as shown in Figure 8, exhibit a more complicated structure than the Co 2p core level. Splitting of Δ_{1/2} = 0.7 eV and Δ_{3/2} = 1.2 eV are revealed at the 2p_{1/2} and 2p_{3/2} excitations, respectively. The plot of the total intensity I_0 in Figure 8(b) obviously does not unambiguously reveal a spin-orbit splitting due to the additional splitting of both lines, 2p_{3/2} and 2p_{1/2}. The mean splitting between the doublet-type structure amounts to about Δ = 11 eV. The asymmetry across the 2p_{3/2}-type part of the spectrum varies between +48% and -16%. The dichroism does not vanish between the 2p_{1/2} and 2p_{3/2} lines. This confirms that the splitting is not of Zeemann type, in that case no additional states would appear between the main lines of the spin-orbit doublet.

Figure 6. (Color online) Co 2p and Mn 2s HAXPES spectra of Co_2MnSi on MgO(100).

(a) Sum and difference of spectra taken with photons of opposite helicity, (b) spectra at 2p_{3/2} taken with σ^+ (R) and σ^- (L) polarisation of the photons. Arrows indicate the “4 eV” satellite.

Figure 7 compares Co 2p photoelectron spectra that were calculated using different schemes. In all the calculations, a fixed lifetime broadening was assumed for the complete spectrum to make the single particle and many electron calculations comparable. Therefore, the details of the intensity may differ between the experiment and calculations. Note further that the energy scale of the single electron calculations in Figure 7(a) is related to the ground-state binding energies. Better absolute values for the energies may be found by introducing core holes and using Slater’s transition state theory.

Figure 7. (Color online) Calculated Co 2p photoelectron spectra of Co_2MnSi.

(a) Spectrum and dichroism calculated by SPR-KKR for the solid state (note the x axis break), (b) spectra calculated by CTM4XAS for atoms, assuming different coupling schemes (jj and LS) and states (2+ and 3+) of Co.

Figure 7(a) shows the results of the relativistic SPR-KKR formalism using the full solid-state potential, whereas Figure 7(b) shows the results of atomic-type Hartree–Fock calculations with CTM4XAS. The atomic-type calculations were performed assuming different states of Co: Co^{2+} and Co^{3+}. The spectra shown in Figure 7(b) are for pure jj and LS couplings. The spectra for LS coupling show typical multiplet structures. Those structures, however, do not appear in the experimental spectra, which show only the spin-orbit doublet and a single satellite. Calculations for intermediate couplings (LSJ) did not improve the situation. This observation is in accordance with multiplet calculations reported by other authors.

The splitting of the 2p state in jj coupling agrees well with the spin-orbit splitting found in the full relativistic SPR-KKR calculations. The main features of the spectra in the SPR-KKR calculations agree well with the measured spectra, in particular the +−−− series of the sign of the dichroism. The 4 eV satellite is not explained by the solid-state calculations. Note that those calculations did not include inelastic or many-body effects. The 2p_{1/2} and 2p_{3/2} lines are split by the magnetic interactions according to their m_J substates. The positions of the sublevels are plotted with vertical lines in Figure 7(a). The exchange interaction results in Zeeman-type splitting with Δ_{exc} ≈ 150 meV between neighbouring m_J levels.

The 2p spectra of Mn, as shown in Figure 8, exhibit a more complicated structure than the Co 2p core level. Splitting of Δ_{1/2} = 0.7 eV and Δ_{3/2} = 1.2 eV are revealed at the 2p_{1/2} and 2p_{3/2} excitations, respectively. The plot of the total intensity I_0 in Figure 8(b) obviously does not unambiguously reveal a spin-orbit splitting due to the additional splitting of both lines, 2p_{3/2} and 2p_{1/2}. The mean splitting between the doublet-type structure amounts to about Δ = 11 eV. The asymmetry across the 2p_{3/2}-type part of the spectrum varies between +48% and -16%. The dichroism does not vanish between the 2p_{1/2} and 2p_{3/2} lines. This confirms that the splitting is not of Zeemann type, in that case no additional states would appear between the main lines of the spin-orbit doublet.
any pronounced dichroism and thus should have a different origin from the 4.3 eV satellite observed in electron emission. It might, therefore, not belong to a multiplet-type splitting. Other than in the HAXPES-MCD where the asymmetry changes sign within each line of the doublet, the soft XMCD (SXMCD) of Co does not exhibit a change of sign across the L_3 or L_2 absorption edges. The sign of the SXMCD changes only between the two lines of the spectra. It is opposite at the two different edges and the change of sign takes place at 9.8 eV above the L_3 line.

The asymmetry of the XMCD is defined by

$$A = \frac{I^+ - I^-}{I^+ + I^-},$$

where I^\pm are the intensities for photon helicity parallel (+) and antiparallel (-) to the magnetic field after background subtraction. At the L_3 edge of Co, it amounts to -33% and has approximately half that value at the L_2 edge.

3.3. XAS, XMCD

Figure 9 shows the X-ray absorption spectra and magnetic circular dichroism taken at the $L_{2,3}$ edges of Mn (a) and Co (b). The spectra agree well with those reported by other authors. The striking differences in the HAXPES spectra are easily recognised. A splitting of the L_3 edge (corresponding to the $2p_{3/2}$ excitation) is not detectable for either Mn or Co. The spin-orbit splitting of the Co 2p states measured between the L_3 and L_2 maxima amounts to 15.2 eV; thus, it is slightly larger than the value observed in the electron emission spectra. A satellite is observed about 3.5 eV above the L_3 white line of Co. It does not exhibit any pronounced dichroism and thus should have a different origin from the 4.3 eV satellite observed in electron emission. It might, therefore, not belong to a multiplet-type splitting. Other than in the HAXPES-MCD where the asymmetry changes sign within each line of the doublet, the soft XMCD (SXMCD) of Co does not exhibit a change of sign across the L_3 or L_2 absorption edges. The sign of the SXMCD changes only between the two lines of the spectra. It is opposite at the two different edges and the change of sign takes place at 9.8 eV above the L_3 line.

The asymmetry of the XMCD is defined by

$$A = \frac{I^+ - I^-}{I^+ + I^-},$$

where I^\pm are the intensities for photon helicity parallel (+) and antiparallel (-) to the magnetic field after background subtraction. At the L_3 edge of Co, it amounts to -33% and has approximately half that value at the L_2 edge.

The Co $L_{3,2}$ spectrum was calculated with SPP-KKR and is shown in Figure 10. The calculated spectrum contains the 4 eV satellite that appears in the measured spectra. This satellite was previously also observed in other Heusler compounds based on Co$_2$ Ge [43,49,52]. It is due to a transition into empty states with high density. It is seen at about 4 eV above the Fermi energy in the majority density of Co, as plotted in Figure 10 (b), and also in the unoccupied part of the total majority DOS. Those empty states in photoelectron spectra may also serve as final states for interband transitions from states at
the Fermi energy. Also shown in Figure 10(b,c) are
the differential spin and orbital moments that fulfill
the differential sum rules [33].

Like the Mn 2p electron emission spectra in
Figure 9(a) the absorption spectrum shown in Fig-
ure 9(a) exhibits several satellites. The appearance
of metallic satellites or multiplet splittings from the
exchange interaction is typical of electron emission.
The metallic satellites arise from plasmon losses or
excitation of interband transitions, as explained for
the Co 2p spectra. Most striking in the Mn XAS
spectra is that the 1.3 eV splitting of the 2p3/2 state
in the HAXPES spectra is not observed at the L3
absorption edge. The splitting revealed by two max-
ima in the SXMCD at the L3 edge is 1.3 eV, which
is larger than that observed from the maxima at 2p1/2
in the electron emission spectrum. It is, however, of
the same order as the energy difference of 1.1 eV ob-
served between the negative and positive dichroism
maxima in the HAXPES-MCD. The asymmetry at
the L3 edge amounts to -31%. The XMCD changes
sign at 1.6 eV above the L3 maximum. The dichro-
ism does not vanish between the L3 and L2 lines,
similar to the observation in the electron emission
spectra.

In atoms, multiplet splitting is due to the inter-
action of the nl−1 core hole with the polarised open
valence shell. The core hole (here 2p5) in solids is
expected to interact with the polarised d states of
the valence band. The localised valence d states,
however, are screened by delocalised electrons. The
well-known multiplet theory may be used to explain
the observed splittings in the spectra [15, 38, 40, 54],
assuming that the atomic character of the valence
electrons is partially retained in the solid. It was
shown above that this approach is critical for Co
because of the rather delocalised character of the
valence d electrons. Therefore, we will focus on the
Mn atoms in Co2MnSi. The description becomes
complicated, as it is not a priori clear what ionic
state the Mn adopts in the metal. From the elec-
tronic structure calculations, one has Mn d5, ne-
glecting all the other shells. However, some of the
d electrons may be delocalised in the metal and do
not contribute to the coupling.

For the multiplet analysis, a Mn2+ ionic state
with a 6S5/2 ground state in LSJ coupling is as-
sumed (see [43] for Mn3+). Note that the descrip-
tion of the ground states of neutral Mn0(4s23d5) and
Mn2+(4s03d5) are principally the same because the
filled 4s2 shell contributes only 1S0. According to
the dipole selection rules, the following transitions
are allowed for the excited states during excitation
of the 2p core level from 2p53d5 (6S5/2):

- in electron emission to
 \[\{ 2p^53d^5 (5^7P_J) \} + (s,d) \} \{ 6P_{7/2,5,3/2,2} \}, \]

- or in photon absorption to
 \[2p^53d^6 (6P_{7/2,5,3/2,3/2}) \]
 \[2p^53d^5s^1 (6P_{7/2,5,3/2,3/2}) \].

The transition schemes given above contain
only the leading terms that can be reached accord-
ing to the selection rules. The final-state p5d6 config-
uration in the absorption scheme contains 1260
terms with a degeneracy of 180, and overall 110 dif-
ferent transitions are allowed by the selection rules,
\(\Delta J = 0, \pm 1 \). In the electron emission scheme, \(\epsilon(s,d) \)
denotes the ejected electrons with kinetic energy \(\epsilon_k \)
and orbital angular momentum \(l' = 0, 2 \) for ion-
sation of the 2p shell with \(l = 1 \). The interme-
derate ionic states in electron emission obviously have
spin values of \(S = 5, 7 \); thus, the splitting observed
in electron emission from the 2p shell core level may be
assigned to the spin-exchange splitting of the ionic
states. The smaller splitting observed in electron
emission from the 2p shell corresponds to states
with different total angular momentum \(J \) of the
\(7P_{J=4,3,2} \) and \(5P_{J=3,2,1} \), intermediate ionic states.
The \(1^P \) part of the multiplet can be formed only
from 2p5(2P) and 3d5(6S) subshell couplings [55].
In particular, the \(7P_1 \) state has the highest energy
in the electron emission spectrum. It is directly re-
lated to the \(p_{3/2} \) single particle sub-state of a \(jj \)
coupling scheme

The result of the multiplet calculations for photoexcitation of the $2p$ core level of Mn$^{2+}$ are shown in Figure 11. The line spectra as well as the broadened emission and absorption spectra are shown. The above-mentioned manifold of allowed transitions makes the spectra very complex. Many details of the line spectra are covered, however, by the lifetime broadening.

The calculated electron emission spectrum is shown in Figure 11(a). It was calculated with a crystal field parameter of $10D_q = 1.5$ eV for the initial state of Mn$^{2+}$. The spectrum exhibits splitting at the $7P (2p_{3/2})$ and $5P (2p_{1/2})$ lines. The $7P_4$ intermediate ionic state is clearly split off from the remaining spectrum. The multiplet lines related to the $7P$ part of the spectrum extend over a range of 10 eV. Figure 11(b) shows the photoabsorption spectrum. It was calculated for the $6S_{5/2}$ initial state of Mn$^{2+}$. The general shape of the spectrum corresponds to that of the measurement. The L_2 white line exhibits a splitting similar to that observed in the experiment. A pronounced feature appears at about 3.5 eV above the maximum of the L_3 white line. Unlike that in the Co spectrum, this satellite is attributed to a multiplet effect.

The further analysis of the XAS and XMCD data is given in the following using the measurements at the Co $L_{3,2}$ edges as an example. The starting point is the data normalised to the photon intensity. The ‘unpolarised’ total intensity $I_\Sigma = (I^+ + I^-)/2$ is found from the sum of the intensities for the circular polarisation parallel (I^+) and antiparallel (I^-) to the direction of magnetisation. Further, a constant background signal is subtracted such that $I_0 = I_\Sigma - I_{bg}$. The XMCD signal is given by the difference $I_{\text{MCD}} = (I^+ - I^-)$. The difference does not contain any background; therefore, it can easily be used to reconstruct the polarisation-dependent spectra from $I^\pm = I_0 \pm I_{\text{MCD}}/2$. The total intensity I_0 and the XMCD signal I_{MCD} are plotted in Figures 12 (a) and (b), respectively.

Several energies have to be extracted from the spectra for further analysis, also in view on sum rules. The differentiated total intensity – shown in the inset of Figure 12 (a) – is used for this purpose. The $L_{3,2}$ absorption edges are identified by the maxima of the derivative, and the energies of the maxima of the corresponding white lines are identified by the nearby zero crossings. The energy $E_{3,2}$ for the separation of the L_3 from the L_2 part of the spectrum is taken from the zero crossing of the derivative just in front of the L_2 white line (see arrow in the inset).

The final normalisation of the intensity and
XMCD is performed with respect to the white line intensities after an arctan-type step function, I_{step}, is subtracted for the edge jumps. The step function is modelled by

$$I_{\text{step}} = \frac{h}{3} \left[1 + \frac{2}{\pi} \arctan \left(\frac{E - E_3}{w_3} \right) \right] + \frac{h}{6} \left[1 + \frac{2}{\pi} \arctan \left(\frac{E - E_2}{w_2} \right) \right], \quad (3)$$

where h is the height and w_3 and w_2 are the widths of the step function. The latter were set to $w = 350$ meV for both edges. The used prefactors imply a branching ratio of $I_3/I_2 = 2$ for excitation from the p states into delocalised s or d states. The energies E_3 and E_2 for the steps were taken from the maxima of the derivative. In the literature, those energies were sometimes taken from the maxima of the white lines. The width w as well as the step energies E_3 and E_2 influence the quantities that are calculated from the spectra. In this work, tests indicated that variations in the energies and width do not influence the spin magnetic moments by more than 2.5% for Co or 4% for Mn. These variations may be considered small compared to the influence of any variation of the photon polarisation or deviations resulting from the uncertain number of unoccupied d states or other experimental uncertainties.

The area between I_0 and I_{step} is proportional to the number of unoccupied d states and is calculated by integration of $I(E) = I_0(E) - I_{\text{step}}(E)$.

$$F = F_3 + F_2 = \int_{E<E_3} I(E)dE + \int_{E>E_2} I(E)dE \quad (4)$$

The piecewise integration of F enables calculation of the branching ratio $b_i = F_3/F_2$. Note that the branching ratio is not consistently defined in the literature. In other work, it may be given as the inverse value $r_i = F_2/F_3$ [59] or by F_3/F [57]. Figure 12 (a) shows that $I(E_{3,2}) > 0$ does not vanish at the separation energy $E_{3,2}$, and some intensity of the $2p_{3/2}$ excitation is also found below $2p_{1/2}$. This effect leads to a small underestimation of the branching ratio when b_i is used.

The ratio $q = F_i/h$ of the areas F_i and the height of the step function is a measure of the relative contribution of transitions into localised d states to the absorption spectra [49]. From the data shown in Figure 9, one finds $q_{\text{Co}} = 13.2$ eV and $q_{\text{Mn}} = 22$ eV for Co and Mn, respectively. Similarly, from the white line maxima one finds $Q_m = I_{\text{max},L_2}/h$ values of 3.85 and 7.1. Both ratios are larger by a factor of about 2 for Mn than for Co. This hints directly at the stronger localisation of the Mn d valence states.

The areas A_3 and A_2 underneath the XMCD signal [see Figure 12 (b,c)] are needed for the sum rule analysis. They are found by integrating I_{MCD}. Similar to the areas F_i under the intensity, the areas A_i are found by piecewise integration. A_3 is found from integration up to $E_{3,2}$, and the total integral yields $|A_{3,2}| = |A_3| - |A_2|$ because of the opposite sign of the magnetic circular dichroism at the two white lines.

From the sum rule analysis (see References [58, 59]), the spin (m_s) and orbital (m_l) magnetic moments are given by

$$m_s + m_l = \frac{n_d^+}{P_c \cos(\theta)} \frac{A_3 - 2A_2}{F} \mu_B,$$

$$m_l = \frac{n_d^+}{P_c \cos(\theta)} \frac{2A_3 + A_2}{3F} \mu_B, \quad (5)$$

where P_c is the degree of circular polarisation, θ is the angle between the magnetisation and the photon momentum, and n_d^+ is the number of unoccupied d states. The factor n_d^+ / F is used to normalise the data. Further, m_l is the magnetic dipole or spin anisotropy term. These equations neglect the effect of different matrix elements. (Please note that the sum rules in Equation (5) are expressed in terms of magnetic moments instead of the expectation values $\langle S_z \rangle$ or $\langle L_z \rangle$ or magnetic dipole $(\langle S_z \rangle)$ or $\langle L_z \rangle)$ operators that are used in some other works (compare Equations (7) and (9) of Reference [59]).

The partial magnetic moments are found by a sum rule analysis as described above. The bare results (assuming $P_{\text{circ}} = 1$ and neglecting jj coupling corrections) are $m_s + m_l = 1.73 \mu_B$, $m_l = 0.02 \mu_B$ for Mn and $m_s + m_l = 0.99 \mu_B$, $m_l = 0.03 \mu_B$ for Co. In the sum rule analysis, $n_d^+_{\text{Mn}} = 4.5$ and $n_d^+_{\text{Co}} = 2.5$ as found from the electronic structure calculations were assumed for the number of d holes in Mn and Co, respectively. For both elements, the magnetic dipole or spin anisotropy term m_l vanishes in the calculations, as expected for cubic crystals. The magnetic moments of Co agree well with the calculations, which predict $m_s = 1.00 \mu_B$ and $m_l = 0.03 \mu_B$.

Spectroscopy of Co$_2$MnSi thin films

11
The sum rule value of the spin magnetic moment of Mn is, however, clearly smaller than the predicted value of \(m_s = 3.02 \mu_B \). It is also evident that the total of \(2 \times 1 + 1.73 \) \(\mu_B \) found by the sum rule analysis does not match the total magnetic moment of about 5 \(\mu_B \) found by magnetometry. This behaviour is well known from the literature on the \(L_{2,3} \) XMCD from Mn\(^{2+} \). It is usually attributed to \(jj \) mixing and overlap of the \(L_2 \) (\(2p_{3/2} \)) and \(L_3 \) (\(2p_{1/2} \)) lines. Goering discusses this in detail in Reference [66]. The spin correction factors were calculated according to that work from the multiplicity of the \(p \) states. Therefore, the spin correction factors are both slightly less than 1.

The branching ratio was calculated either from the area ratio \(b_i = F_3/F_2 \) or the ratio of the intensity maxima \(b_m = I_{3/2}^{\text{max}} / I_{1/2}^{\text{max}} \). The mixing (\(X \)) and spin correction (\(SC \)) factors are given by [56]:

\[
X = \frac{2r - 1}{r + 1} = \frac{2 - b}{1 + b}, \\
SC = \frac{1}{1 - 2X} = \frac{1 + r}{3 - 1 - r},
\]

where \(r = 1/b \) is the inverted branching ratio. The branching ratios are slightly higher than the statistical branching ratio of \(b_{\text{stat}} = 2 \) as derived from the multiplicity of the \(p \) states. Therefore, the spin correction factors are both slightly less than 1.

The average moment may be found from a simple measurement at the magic angle, where the second Legendre polynomial becomes zero \((\approx 54.7^\circ) \). The effective moment \(m_{\text{eff}} \) may be rewritten as the sum of the angle-independent spin moment and the angle-dependent dipolar moment \(m_D \) [60]:

\[
m_{\text{eff}} = m_s + m_D ,
\]

Table 3. Spin correction factors for Co and Mn \(L_{2,3} \) sum rule analysis.

	\(b_i \)	\(X \)	\(SC \)	\(b_m \)	\(c_{1E}^{\perp}\)	\(c_{1E}^{\parallel}\)	Ref.	\[61\]
Co	2.197	-0.062	0.890	2.9	1.096	1.181	-	-
Mn	2.135	-0.043	0.921	3.3	1.471	-	-	-

An empirical correction factor is usually introduced because of difficulties in correctly determining the magnetic moment of Mn using sum rule analysis. In many publications, the factor \(c_{1E} \approx 1.5 \) based on the work of Teramura et al. is used [61]. Their values are also given in Table 3.3 for Co\(^{3+} \), Co\(^{2+} \), and Mn\(^{2+} \). No value could be calculated for Mn\(^{3+} \) because \(L_3 \) and \(L_2 \) could not be separated. Here, the \(c_{1E} \) factors of Teramura et al. result in a spin magnetic moment of about 2.6 \(\mu_B \) for Mn and thus a total moment of about 4.6 \(\mu_B \). Together with the uncertainty about the number of core holes, a spin correction factor of 1.5 is used in the following for Mn, whereas the Co spin magnetic moments are not corrected.

The above reported values concern a single normal incidence measurement. Grazing incidence measurements with \(\alpha = 70^\circ \) were performed to study the magnetic anisotropy as proposed by Stöhr and König [62]. The results are summarised in Table 3.3. The normal and grazing incidence measurements differ only slightly; thus, no large anisotropies are expected.

	\(m_s \)	\(m_l \)	\(m_s \)	\(m_l \)
Co	0.987	0.0345	2.492	0.0208
Mn	0.948	0.0341	2.486	0.0202
\(m_l \)	0.987	0.0345	2.597	0.0208
\(m_s \)	0.942	0.0341	2.591	0.0202
\(\Delta m_0 \)	0.044	0.0004	0.006	0.0006
\(m_{av} \)	0.957	0.0342	2.593	0.0204

For uniaxial anisotropy, the angular dependence of the magnetic moments. The spin \((m_s) \) and orbital \((m_l) \) moments were measured for normal and grazing photon incidence and are given in multiples of the Bohr magneton \(\mu_B \). Mn spin moments are corrected by \(c_{1E} = 1.5 \).
where $\delta = \perp$ or \parallel represent the perpendicular or parallel components with respect to the film plane, respectively. The orbital moments are already very small; therefore, an analysis of their anisotropy is not reliable. The dipolar moments of the Mn atoms are also negligible, as seen from the very small difference Δm_0 (see Table 3). For the Co atoms, the difference Δm_0 is about 5%, and the resulting perpendicular and parallel components of the dipolar moment are 0.03 μ_B and -0.015 μ_B, respectively. From those values, the out-of-plane component is larger than the in-plane component. A nearly vanishing anisotropy is also expected because of the small coercive field (H_c). From the Stoner–Wolfahrt model, the anisotropy energy is on the order of

$$K = \frac{1}{2} H_A \times \mu_0 M_{\text{sat}}.$$ \hspace{1cm} (9)

The present films have $\mu_0 H_c = 4 \text{ mT}$ ($H_c = 0.3 \text{ kA/m}$), and their magnetic moment of $m_k = 5 \mu_B$ corresponds to a saturation magnetisation of $M_{\text{sat}} = 260 \text{ kA/m}$. Those values result in an expected anisotropy energy that is smaller than 0.5 kJ/m3, assuming that the coercive field is on the order of the anisotropy field ($H_A \approx H_c$). This agrees also with the fact that the dipolar term m_D nearly vanishes in accordance with the vanishing of m_l in the ab-initio calculations of the electronic structure.

The XMCD spectra were further used to determine the unoccupied electronic structure as described in References [18,64]. The spin-resolved unoccupied density of d states is calculated as

$$n_{d_{3/2}}^{\uparrow\downarrow}(E) = I_0(E) \pm \frac{1}{P_j} I_D(E).$$ \hspace{1cm} (10)

$I_0 = (I^+ + I^-)/2$ is the isotropic absorption coefficient (after step-function- type background subtraction), and $I_D = (I^+ - I^-)/2$ is half of the magnetic dichroism signal. P_j is the spin polarisation obtained for excitation from the $p_{3/2}$ ($P_{3/2} = 1/4$) and $p_{1/2}$ ($P_{1/2} = -1/2$) states (see Reference [65], page 391). The upper and lower sign correspond to the majority (n^\uparrow) and minority (n^\downarrow) densities, respectively. Note that this is an approximation to the DOS because the measured absorption spectra also contain cross section, lifetime, and many-particle effects, which are all energy dependent.

Figure [13] compares the unoccupied partial d DOS of Co and Mn in Co$_2$MnSi. The unoccupied PDOS is derived from the $L_{3,2}$ edges of the XMCD data using the spin-resolved unoccupied PDOS function (see Equation [10] and References [18,64]). The calculated, raw DOS as shown in Figure [1] was convoluted by the Fermi-Dirac distribution at 300 K and a Gaussian with a width of 300 meV, to account for experimental and lifetime broadening. The majority and in particular the minority PDOS of Co and Mn are well resolved and in particular the minority PDOS’s agree quantitatively with the calculated ones. The measured Co PDOS exhibits a shift of the majority states with respect to the high density of minority states just above ϵ_F. The shift is a consequence of the itinerant $3d-t_{2g}$ bands that dominate the unoccupied majority states at the Fermi energy (see Figure [1]). The interaction of the core hole in the final state with localized $3d$ states lowers the transition energy. The decrease of the transition energy is less for itinerant state because they screen the core hole to some extent [66, 67]. The different core-hole screening thus produces an energy shift between itinerant and localized states. A correlation energy of $\Delta E_c = 0.5 \text{ eV}$ was suggested in Reference [18]. An increase in the unoccupied majority states at Co is clearly visible at about 4 eV for both the calculated and measured PDOS. This high density is responsible for the 4 eV satellite observed in the Co 2p photo absorption and electron emission spectra. The minority PDOS of Mn shows a pronounced maximum at about 1 eV. In contrast, a characteristic double step increase is observed at the measured majority PDOS of Mn. An energy shift of $\delta E \approx 1.1 \text{ eV}$ is determined from the derivative of the PDOS (see Inset in Figure [13]). This is in the same order as the shift observed for bulk Co$_2$MnSi material and is characteristic of Heusler alloys [64,68,69]. It is induced by electron correlation effects between core hole and localised or itinerant minority states. Indeed, the correlation energy ΔE_c may strongly change the minority PDOS determined from the XMCD measurements. As a consequence, the half-metallic ferromagnetism is not unambiguously detectable with the used method.
Shown are the partial densities of DOS of Co and Mn.

Fig. 13. (Color online) Unoccupied, spin-resolved partial d DOS of Co and Mn. Shown are the partial densities of d states (PDOS) from first principles calculations (a, b) and the PDOS taken from the Mn L2,3 and Co L2,3 absorption data (c, d). Insets in (c) and (d) show the derivatives of the experimental data. The calculated PDOS is convoluted by the Fermi-Dirac distribution at 300 K and a Gaussian with a width of 300 meV. (Note the different zeros (ϵ_F or E_{L3}) of the energy scales.)

4. Summary and Conclusions

The 2p core levels of Co and Mn in the HMF Co$_2$MnSi were investigated by hard X-ray photoelectron and soft X-ray photoabsorption spectroscopies. Magnetic dichroism in HAXPES and XAS were used to explain the states of Co and Mn in thin films made of this intermetallic compound. A combination of ab-initio calculations and core-level spectroscopy with circularly polarised photons showed that the Mn d valence electrons and the accompanying magnetic moments have a localised character, whereas the Co d valence electrons result in an itinerant magnetic moment.

Acknowledgments

We thank W. Drube, S. Francoual, J. Strempfer, S. Thiess (PETRA III), and the group of R. Claessen (University of Würzburg) for help with the setup of the HAXPES experiment at PETRA III. We are very grateful to the group of G. Reiss (Bielefeld University) for sample preparation. Financial support from the DFG-JST (projects P 1.3-A and P 4.8-A in research unit FOR 1464 ASPIMAT) and from the ERC Advanced Grant (291472 Idea Heusler) is gratefully acknowledged. HAXPES was performed at beamline P09 of PETRA III (Hamburg) with the support of the Federal Ministry of Education and Research BMBF (Grant Nos. 05KSTUM1 and 05K10UMA). The XMCD experiment was performed at beamline ID08 of the European Synchrotron Radiation Facility (ESRF), Grenoble, France.

References

1. S. Kämmerer, A. Thomas, A. Hütten, and G. Reiss. Co$_2$MnSi Heusler alloy as magnetic electrodes in magnetic tunnel junctions. Appl. Phys. Lett., 85:79, 2004.
2. P. J. Webster. Magnetic and chemical order in Heusler alloys containing Cobalt and Manganese. J. Phys. Chem. Solids, 32:1221, 1971.
3. M. P. Raphael, B. Ravel, M. A. Willard, S. F. Cheng, B. N. Das, R. M. Stroud, K. M. Bussmann, J. H. Claassen, and V. G. Harris. Magnetic, structural, and transport properties of thin film and single crystal Co$_2$MnSi. Appl. Phys. Lett., 79:4396, 2001.
4. U. Geiersbach, A. Bergmann, and K. Westerholt. Structural, magnetic and magnetotransport properties of thin films of the Heusler alloys Cu$_2$MnAl, Co$_2$MnSi, Co$_2$MnGe and Co$_2$MnSn. J. Magn. Magn. Mater., 240:546, 2002.
5. L. J. Singh, Z. H. Barber, A. Kohn, A. K. Petford-Long, Y. Miyoshi, Y. Bugoslavsky, and L. F. Cohen. Interface effects in highly oriented films of the Heusler alloy Co$_2$MnSi on GaAs(001). J. Appl. Phys., 99:013904, 2006.
6. M. Jourdan, J. Minar, J. Braun, A. Kronenberg, S. Chadow, B. Balke, A. Gloskovskii, M. Kolbe, H. J. Elmers, G. Schönhense, H. Ebert, C. Felser, and M. Kläui. Direct observation of half-metallicity in the Heusler compound Co$_2$MnSi. Nat. Commun., 5:4974, 2014.
7. Y. Sakuraba, J. Nakata, M. Oogane, H. Kubota, Y. Ando, A. Sakuma, and T. Miyazaki. Huge Spin-Polarization of L$_2$$_1$-Ordered Co$_2$MnSi Epitaxial Heusler Alloy Film. Jpn. J. Appl. Phys., 44:L1100, 2005.
8. Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota. Giant tunneling magnetoresistance in Co$_2$MnSi/AIO/Co$_2$MnSi magnetic tunnel junctions. Appl. Phys. Lett., 88:192508, 2006.
9. T. Ishikawa, T. Marukame, H. Kijima, K.-i. Matsuda, T. Uemura, and M. Yamamoto. Spin-dependent tunneling characteristics of fully epitaxial magnetic tunnel junctions with a full-Heusler alloy Co$_2$MnSi thin film and MgO tunnel barrier. Appl. Phys. Lett., 89:192505, 2006.
10. T. Ishikawa, S. Hakamata, K.-i. Matsuda, T. Uemura, and M. Yamamoto. Fabrication of fully epi-
tactical Co$_2$MnSi/MgO/Co$_2$MnSi magnetic tunnel junctions. J. Appl. Phys., 103:07A919, 2008.

11. M. Yamamoto, T. Ishikawa, T. Taira, G. f. Li, K. i. Matsuda, and T. Uemura. Effect of defects in Heusler alloy thin films on spin-dependent tunnelling characteristics of Co$_2$MnSi/MgO/Co$_2$MnSi and Co$_2$MnGe/MgO/Co$_2$MnGe magnetic tunnel junctions. J. Phys.: Condens. Matter, 22:164212, 2010.

12. Hong-xi Liu, Yusuke Honda, T. Taira, K i. Matsuda, M. Arita, T. Uemura, and M. Yamamoto. Giant tunneling magnetoresistance in epitaxial Co$_2$MnSi/MgO/Co$_2$MnSi magnetic tunnel junctions by half-metallicity of Co$_2$MnSi and coherent tunneling. Appl. Phys. Lett., 101:132418, 2012.

13. G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and G. Materlik. Absorption of Circular Polarized X Rays in Iron. Phys. Rev. Lett., 58:737, 1987.

14. C. T. Chen, F. Sette, Y. Ma, and S. Modesti. Soft-x-ray magnetic circular dichroism at the $L_{2,3}$ edges of nickel. Phys. Rev. B, 42:7262, 1990.

15. G. van der Laan. M$_{2,3}$ absorption spectroscopy of 3d transition-metal compounds. J. Phys.: Condens. Matter, 3(38):7443, 1991.

16. S. Stadler, D. H. Minott, D. Harley, J. P. Craig, M. Khan, I. I. Dubenko, N. Ali, K. Story, J. Dvorak, Y. U. Idzerda, D. A. Arena, and V. G. Harris. Element-specific magnetic properties of Co$_2$MnSi thin films. J. Appl. Phys., 97:10C302, 2005.

17. N. D. Telling, P. S. Keatley, G. van der Laan, R. J. Hicken, E. Arenholz, Y. Sakuraba, M. Oogane, Y. Ando, and T. Miyazaki. Interfacial structure and half-metallic ferromagnetism in Co$_2$MnSi-based magnetic tunnel junctions. Phys. Rev. B, 74:224439, 2006.

18. M. Kallmayer, P. Klaer, H. Schneider, E. Arbelo Jorge, C. Herfort, G. Jakob, M. Jourdan, and H. J. Elmers. Spin-resolved unoccupied density of states in epitaxial Heusler-alloy films. Phys. Rev. B, 80:020406(R), 2009.

19. G. H. Fecher, B. Balke, A. Gloskovskii, S. Ouardi, C. Felser, T. Ishikawa, M. Yamamoto, Y. Yamashita, H. Yoshikawa, S. Ueda, and K. Kobayashi. Detection of the valence band in buried Co$_2$MnSiMgO tunnel junctions by means of photoemission spectroscopy. Appl. Phys. Lett., 92:193513, 2008.

20. S. Ouardi, G. H. Fecher, and C. Felser. Bulk electronic structure studied by hard X-ray photoelectron spectroscopy of the valence band: The case of intermetallic compounds. J. Electron Spectrosc. Relat. Phenom., 190:249, 2013.

21. X. Kozina, G. H. Fecher, G. Stryganyuk, S. Ouardi, B. Balke, C. Felser, E. Ikenaga, T. Sugiyama, N. Kawamura, M. Suzuki, T. Taira, T. Uemura, M. Yamamoto, H. Sukegawa, W. Wang, K. Inomata, and K. Kobayashi. Magnetic dichroism in angle-resolved hard x-ray photoemission from buried layers. Phys. Rev. B, 84:054449, 2011.

22. H. J. Elmers, A. Chernenkaya, K. Medjanik, M. Emmel, G. Jakob, G. Schönhense, D. Gottlob, I. Krug, F. M. F. de Groot, and A. Gloskovskii. Exchange coupling in the correlated electronic states of amorphous GdFe films. Phys. Rev. B, 88(17):174407, 2013.

23. J. Strempfer, S. Francoual, D. Reuther, D. K. Shukla, A. Skaugen, H. Schlote-Schrepping, T. Kracht, and H. Franz. Resonant scattering and diffraction beamline P09 at PETRA III. J. Synchrotron Radiation, 20:541, 2013.

24. A. Gloskovskii, G. Stryganyuk, G. H. Fecher, C. Felser, S. Thiess, H. Schulz-Ritter, W. Drube, G. Berner, M. Sing, R. Claessen, and M. Yamamoto. Magnetometry of buried layers - Linear magnetic dichroism and spin detection in angular resolved hard X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom., 185:47, 2012.

25. S. Francoual. Double phase-retarder set-up at beamline P09 at PETRA III. J. Phys.: Conf. Ser., 425:132010, 2013.

26. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz. WIEN2k: An Augmented PlaneWave + Local Orbitals Program for Calculating Crystal Properties. Wien, 2013.

27. K. Schwarz and P. Blaha. Solid state calculations using WIEN2k. Comput. Mater. Sci., 28:259, 2003.

28. H. C. Kandpal, G. H. Fecher, and C. Felser. Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D: Appl. Phys., 40:1507, 2007.

29. G. H. Fecher, S. Chadov, and C. Felser. Theory of the Half-Metallic Heusler Compounds, chapter 7, page 115. Springer Verlag, Dordrecht Heidelberg New York London, 2013.

30. R. F. W. Bader. Atoms in Molecules. A Quantum Theory. Oxford University Press, Oxford, 1990.

31. A. Otero-de-la Roza, M. A. Blanco, A. M. Pendas, and V. Luana. Critic: a new program for the topological analysis of solid-state electron densities. Comp. Phys. Comm., 180:157, 2009.

32. A. Otero-de-la Roza, E. R. Johnson, and V. Luana. Critic2: A program for real-space analysis of quantum chemical interactions in solids. Comp. Phys. Comm., 185:1007, 2014.

33. G. H. Fecher, H. C. Kandpal, S. Wurmehl, C. Felser, and G. Schönhense. Slater-Pauling Rule and Curie-Temperature of Co$_2$-based Heusler compounds. J. Appl. Phys., 99:083106, 2006.

34. P. F. Zou and R. F. W. Bader. A Topological Definition of a Wigner-Seitz Cell and the Atomic Scattering Factor. Acta Cryst. A, 50:714, 1994.

35. P. Mori-Sanchez, A. M. Pendas, and V. Luana. A
Classification of Covalent, Ionic, and Metallic Solids Based on the Electron Density. J. Am. Chem. Soc., 124:14721, 2002.

36. H. Ebert, D. Ködderitzsch, and J. Minar. Calculating condensed matter properties using the KKR-Green’s function method: Recent developments and applications. Rep. Prog. Phys., 74:096501, 2011.

37. E. Stavitski and F. M. F. de Groot. The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron, 41:687, 2010.

38. R. D. Cowan. The Theory of Atomic Structure and Spectra. California Press, Berkeley, 1981.

39. F. M. F. de Groot. Multiplet effects in X-ray spectroscopy. Coordin. Chem. Rev., 249:31, 2005.

40. F. de Groot and A. Kotani. Core Level Spectroscopy of Solids. CRC Press, Taylor & Francis group, Boca Raton, London, New York, 2008.

41. J. G. Menchero. One-electron theory of core-level photoemission from ferromagnets. Phys. Rev. B, 57:993, 1998.

42. M. Martins, K. Godenhuisen, T. Richter, P. Wernet, and P. Zimmermann. Open shells and multielectron interactions: core level photoionization of the 3d metal atoms. J. Phys. B: At. Mol. Opt. Phys., 29:R79, 2006.

43. S. Ouardi, G. H. Fecher, B. Balke, A. Beleanu, X. Kozina, G. Stryganyuk, C. Felser, W. Klöß, H. Schrader, F. Bernardi, J. Morais, E. Ikenaga, Y. Yamashita, S. Ueda, and K. Kobayashi. Electronic and crystallographic structure, hard x-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co$_2$MnGe. Phys. Rev. B, 84:155122, 2011.

44. J. Schmalhorst, S. Kämmerer, M. Sacher, and A. Scholl. Interface structure and magnetism of magnetic tunnel junctions with a Co$_2$MnSi electrode. Phys. Rev. B, 70:024426, 2004.

45. T. Saito, T. Katayama, T. Ishikawa, M. Yamamoto, D. Asakura, and T. Koide. X-ray absorption spectroscopy and x-ray magnetic circular dichroism of epitaxially grown Heusler alloy Co$_2$MnSi ultrathin films facing a MgO barrier. Appl. Phys. Lett., 91:262502, 2007.

46. T. Saito, T. Katayama, A. Emura, N. Sumida, N. Matsuoka, T. Ishikawa, T. Uemura, M. Yamamoto, D. Asakura, and T. Koide. Electronic and magnetic properties of Heusler alloy Co$_2$MnSi epitaxial ultrathin films facing a MgO barrier studied by x-ray magnetic circular dichroism. J. Appl. Phys., 103:07D712, 2008.

47. N. D. Telling, P. S. Keatley, G. van der Laan, R. J. Hicken, E. Arenholz, Y. Sakuraba, M. Oogane, Y. Ando, K. Takanashi, A. Sakuma, and T. Miyazaki. Evidence of local moment formation in Co-based Heusler alloys. Phys. Rev. B, 78:184438, 2008.

48. N. D. Telling, P. S. Keatley, L. R. Shelford, E. Arenholz, G. van der Laan, R. J. Hicken, Y. Sakuraba, S. Tsunegi, M. Oogane, Y. Ando, K. Takanashi, and T. Miyazaki. Temperature dependence of the interface moments in Co$_2$MnSi thin films. Appl. Phys. Lett., 92:192503, 2008.

49. H.-J. Elmers, G. H. Fecher, D. Valdatsev, S. A. Nepijko, A. Gloskovskii, G. Jakob, G. Schönhense, S. Wurmehl, T. Block, C. Felser, P.-C. Hsu, W.-L. Tsai, and S. Cramm. Element-specific magnetic moments from core-absorption magnetic circular dichroism of the doped Heusler alloy Co$_2$Cr$_0.6$Fe$_{0.4}$Al. Phys. Rev. B, 67:104412, 2003.

50. H. J. Elmers, S. Wurmehl, G. H. Fecher, G. Jakob, C. Felser, and G. Schönhense. Field dependence of orbital magnetic moments in the Heusler compounds Co$_2$FeAl and Co$_2$Cr$_0.6$Fe$_{0.4}$Al. Appl. Phys. A, 79:557 – 563, 2004.

51. S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Kensoftov, C. Felser, H.-J. Lin, and J. Morais. Geometric, electronic, and magnetic structure of Co$_2$FeSi: Curie temperature and magnetic moment measurements and calculations. Phys. Rev. B, 72:184434, 2005.

52. S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Kensofontov, C. Felser, and H.-J. Lin. Investigation of Co$_2$FeSi: The Heusler compound with highest Curie temperature and magnetic moment. Appl. Phys. Lett., 88:032503, 2006.

53. H. Ebert. Magneto-optical effects in transition metal systems. Rep. Prog. Phys., 59:1665, 1996.

54. P. S. Bagus, R. Broer, de Jong W. A., and W. C. Nieuwpoot. Atomic Many-Body Effects for the p-Shell Photoelectron Spectra of Transition Metals. Phys. Rev. Lett., 84:2259, 2000.

55. P. S. Bagus, R. Broer, W. A. de Jong, W. C. Nieuwpoort, F. Parmigiani, and L. Sangaleotti. Atomic Many-Body Effects for the p-Shell Photoelectron Spectra of Transition Metals. Phys. Rev. Lett., 84:2259, 2000.

56. E. Goering. X-ray magnetic circular dichroism sum rule correction for the light transition metals. Phil. Mag., 85:2895, 2005.

57. J. Grabis, A. Bergmann, A. Nefedov, K. Westerholt, and H. Zabel. Element-specific x-ray circular magnetic dichroism of Co$_2$MnGe Heusler thin films. Phys. Rev. B, 72:024437, 2005.

58. P. Carra, B. T. Thole, M. Altarelli, and X. Wang. X-Ray Circular Dichroism and Local Magnetic Fields. Phys. Rev. Lett., 73:694, 1993.

59. C. T. Chen, Y. U. Idzerda, H.-J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Settle. Experimental Confirmation of the X-Ray Magnetic Circular Dichroism Sum Rules for Iron and Cobalt. Phys. Rev. Lett., 75:152, 1995.

60. J. Stöhr. X-ray magnetic circular dichroism spec-
Spectroscopy of Co$_2$MnSi thin films. J. Electron Spectrosc. Relat. Phenom., 75:253, 1995.

61. Y. Teramura, A. Tanaka, and T. Jo. Effect of Coulomb Interaction on the X-Ray Magnetic Circular Dichroism Spin Sum Rule in 3d Transition Elements. J. Phys. Soc. Jpn., 65:1053, 1996.

62. J. Stöhr and H. König. Determination of Spin- and Orbital-Moment Anisotropies in Transition Metals by Angle-Dependent X-Ray Magnetic Circular Dichroism. Phys. Rev. Lett., 75:3748, 1995.

63. J. Stöhr. Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. J. Magn. Magn. Mater., 200:470, 1999.

64. P. Klaer, M. Kallmayer, C. G. F. Blum, T. Graf, J. Barth, B. Balke, G. H. Fecher, C. Felser, and H. J. Elmers. Tailoring the electronic structure of half-metallic Heusler alloys. Phys. Rev. B, 80:144405, 2009.

65. J. Stöhr and H. C. Siegmann. Magnetism : From Fundamentals to Nanoscale Dynamics. Springer Series in Solid-state Sciences. Springer, Berlin Heidelberg New York, 2006.

66. A. Bianconi. Multiplet splitting of final-state configurations in x-ray-absorption spectrum of metal VO$_2$: Effect of core-hole-screening, electron correlation, and metal-insulator transition. Phys. Rev. B, 26:2741, 1982.

67. P. J. W. Weijs, M. T. Czyzyk, J. F. van Acker, W. Speier, J. B. Goedkoop, H. van Leuken, H. J. M. Hendrix, R. A. de Groot, G. van der Laan, K. H. J. Buschow, G. Wiech, and J. C. Fuggle. Core-hole effects in the x-ray-absorption spectra of transition-metal silicides. Phys. Rev. B, 41:11899, 1990.

68. P. Klaer, T. Bos, M. Kallmayer, C. G. F. Blum, T. Graf, J. Barth, B. Balke, G. H. Fecher, C. Felser, and H. J. Elmers. Charge transfer and tunable minority band gap at the Fermi energy of a quaternary Co$_2$(Mn$_{1-x}$Ti$_x$)Ge Heusler alloy. Phys. Rev. B, 82:104410, 2010.

69. P. Klaer, B. Balke, V. Alijani, J. Winterlik, G. H. Fecher, C. Felser, and H. J. Elmers. Element-specific magnetic moments and spin-resolved density of states in CoFeMnZ (Z = Al, Ga; Si, Ge). Phys. Rev. B, 84:144413, 2011.