Roles of circular RNAs in osteogenic differentiation of bone marrow mesenchymal stem cells (Review)

JICHENG WANG, TENGYUN WANG, FUJIE ZHANG, YANGYANG ZHANG, YONGZHI GUO, XIN JIANG and BO YANG

Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China

Received February 22, 2022; Accepted May 10, 2022

DOI: 10.3892/mmr.2022.12743

Abstract. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts, chondrocytes, adipocytes and even myoblasts, and are therefore defined as pluripotent cells. BMSCs have become extremely important seed cells in gene therapy, tissue engineering, cell replacement therapy and regenerative medicine due to their potential in multilineage differentiation, self-renewal, immune regulation and other fields. Circular RNAs (circRNAs) are a class of non-coding RNAs that are widely present in eukaryotic cells. Unlike standard linear RNAs, circRNAs form covalently closed continuous loops with no 5' or 3' polarity. circRNAs are abundantly expressed in cells and tissues, and are highly conserved and relatively stable during evolution. Numerous studies have shown that circRNAs play an important role in the osteogenic differentiation of BMSCs. Further studies on the role of circRNAs in the osteogenic differentiation of BMSCs can provide a new theoretical and experimental basis for bone tissue engineering and clinical treatment.

Contents

1. Introduction
2. Biological functions of circRNAs
3. Associations between circRNAs and BMSCs
4. Conclusions and perspectives

1. Introduction

Bone marrow mesenchymal stem cells (BMSCs) were first discovered in the bone marrow by Friedenstein et al (1). Due to the multi-directional differentiation potential of BMSCs, under specific induction conditions, they can develop into osteoblasts, adipocytes, chondrocytes and osteoblasts fibroblasts, and even differentiate into myoblasts (2-4), and are therefore defined as pluripotent cells. In addition, BMSCs can also undergo self-renewal and generate immunomodulatory responses (5,6). Studies have shown that BMSCs are capable of differentiating into multiple lineages, including tissues other than their origin, such as neurons, hepatocytes and skeletal muscle cells (7-10). BMSCs are easy to obtain, easy to expand in vitro and still have good differentiation potential after they are isolated from adult bone marrow (11). BMSCs have become extremely important seed cells in gene therapy, tissue engineering, cell replacement therapy and regenerative medicine due to their potential for multi-directional differentiation, self-renewal and immune regulation.

Circular RNA (circRNA) is a large class of non-coding RNA (ncRNA) that is ubiquitous in eukaryotic cells. Unlike normative linear RNAs, circRNAs form covalently closed continuous loops without 5' or 3' polarity (12). circRNAs are abundantly expressed in cells and tissues, are highly conserved in evolution and are relatively stable, and they are generally considered to be by-products of mis-splicing or messenger RNA (mRNA) processes (13). With the rapid development of high-throughput RNA sequencing (RNA-Seq) technology and bioinformatics methods, a large number of circRNAs have been discovered and identified in a number of species; for example, circ_28313, circ_0016624, circ_0006393, circ_0076906 and circ_0048211. Numerous studies have shown that circRNAs play an important role in the osteogenic differentiation of BMSCs (11,13). Further research on the role of circRNAs in the osteogenic differentiation of BMSCs can provide a new theoretical and experimental basis for bone tissue engineering and clinical treatment.
2. Biological functions of circRNAs

In 1970s, Sanger et al (14) and Hsu and Coca-Prados (15) first discovered circRNA in plants and eukaryotes using electron microscopy. Subsequently, PCR amplification and sequencing confirmed the expression of circRNAs in humans (16). With the development of RNA-seq and bioinformatics, thousands of circRNAs have been discovered in different species (17), with each of circRNA regulating multiple biological processes, such as CDK1 and non-coding RNA ANRIL.

According to the genomic origin and structural characteristics of circRNAs, they are mainly divided into three types: Exonic circRNA, exon-intron circRNA and intronic circRNA (18,19). The production of circRNAs is a highly complex biological process and they are produced by different cyclization mechanisms. Usually, eukaryotic pre-mRNA catalyzes the removal of introns and ligates exons by a spliceosome mechanism to form linear RNA transcripts with 5' or 3' polarity (20). Unlike the normative splicing of linear RNA, most circRNAs are produced by a backsplicing process that does not follow the 5'-3' order of the specification (20,21). Exon cyclization between the downstream 5' splice site (splicing donor) and the upstream 3' splice site (shear acceptor) in the same pre-mRNA yields a circular product (circRNA) without a terminal structure [e.g., a 5' cap or polyadenylation (poly A) tail] (18,22,23). In 2013, Jeck et al (18) proposed a model for two exon cyclization mechanisms. One mechanism is known as lariat-driven circularization or exon skipping. The partially folded pre-mRNA transcript brings the original non-adjacent exons close to other exons, causing exon skipping, creating overlapping regions, and forming a lasso intermediate containing exons and introns. The intron in the lasso is removed, eventually producing an exon circRNA. In general, introns located between cyclized exons are spliced out, and in some cases are not spliced to form exon-intron circRNAs (24). Another mechanism is known as intron-pairing driven circularization or direct backsplicing. This model forms a circular structure by linking the downstream splice donor to the upstream splice acceptor by ALU (identified as the canonical ALU repeat) complementarity across the flanking intron or base assignment of other RNA secondary structures. Intron circRNAs produced by intron lasso are resistant to degradation by de-branching enzymes (18,24). In distinguishing intron circRNAs from exon circRNAs, intron circRNAs contain a unique 2'-5' linkage, which is formed by sequences near the 7 nt GU-rich 5' splice site and close to 11 nt-rich C-sequences at branch point sites (25). Fig. 1 shows a schematic illustration for the biogenesis of circRNAs.

In humans, osteoblasts, which are involved in bone formation, are inseparable from the differentiation of bone marrow mesenchymal stem cells. Studies have shown that circRNAs play an important role in the osteogenic differentiation of BMSCs, and different circRNAs can either promote or inhibit the osteogenic differentiation of BMSCs (41). Fu et al (42) found differentially expressed circRNAs in patients with osteoporosis (OP), and the study identified 237 upregulated and 279 downregulated circRNAs, which also confirmed that the role of circRNAs in the osteogenic differentiation of BMSCs is important in the process. Another study found that circRNAs were differentially expressed in patients with traumatic femoral head necrosis, and identified 234 upregulated and 148 downregulated circRNAs (43). Chen et al (44) found that circRNAs, such as circ_28313, circ_0016624, circ_0006393, circ_0076906 and circ_0048211, were differentially expressed in patients with OP and play an important role in the differentiation, proliferation and apoptosis of BMSCs. Zhang et al (43) found that circRNA_25487 was significantly upregulated in the peripheral blood of patients with traumatic femoral head necrosis according to reverse transcription-quantitative PCR, and further experiments found that circRNA_25487 could function as an miR-134-3p sponge. Inhibiting the expression of circRNA_25487 and promoting the expression of miR-134-3p can promote cell proliferation and invasion, and inhibit the apoptosis of BMSCs and osteoclast-like cells (43).
circRNA_25487 acts as an miR-134-3p sponge to upregulate p21 expression, thereby inhibiting bone repair in traumatic femoral head necrosis (43). Zhang et al (45) found that circIGSF11 inhibited the osteogenic differentiation process of BMSCs, while silencing circIGSF11 promoted osteoblast differentiation and increased the expression of miR-199b-5p, which also indicated that circRNA-miRNA interactions contribute to the osteogenic differentiation of BMSCs (45). This study provides a potential approach for the treatment of OP.

Steroid-induced osteonecrosis of the femoral head (SONFH) is a common orthopedic disease. Chen et al (46) showed that there are differentially expressed circRNAs in patients with SONFH. Bioinformatics analysis found that the expression of circRNA CDR1as was upregulated, and further experiments found that it may play a key role in the adipogenic/osteogenic differentiation of SONFH-BMSCs through the CDR1as-miR-7-5p-WNT5B axis. Knockdown of CDR1as promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs, while overexpression of CDR1as inhibited osteogenic differentiation and promoted adipogenic differentiation of BMSCs (46). This study provides new insights into the molecular mechanism of the osteogenic/adipogenic differentiation of SONFH-BMSCs and the diagnosis and treatment of SONFH. Phosphatase and tensin homolog (PTEN) is a classic tumor suppressor that inhibits phosphatidylinositol 3-phosphate kinase (PI3K)/AKT signaling (47). Another study found that the expression of circUSP45 was increased in patients with glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) (48). Overexpression of circUSP45 decreased the expression of osteogenic genes and inhibited the proliferation of BMSCs, and further experiments found that circUSP45 could directly interact with miR-127-5p. miR-127-5p regulates osteogenesis with its target PTEN (48). circUSP45 decreases the osteogenic differentiation of GIONFH by sponging miR-127-5p through the PTEN/AKT signaling pathway. Differentially expressed circRNAs were found in elderly patients with OP, and through further experiments, it was found that circRNA008876 can play a biological role as an miR-150-5p sponge (49), which provides a potential biomarker and therapeutic target for senile OP. A previous study showed that Shh coreceptor growth arrest-specific 1 (GAS1) is expressed in mesenchymal cells, and in a GAS1-deficient mouse model, mice have abnormal dentition (50). Another study has also shown that inhibiting the expression of circ_0003865 in patients with OP can promote the osteogenic differentiation of BMSCs, and that circ_0003865 regulates the expression of the GAS1 gene by sponging miR-3653-3p (51).

A summary of the effect of the inhibition of circRNAs on the osteogenic differentiation of BMSCs is shown in Table I. Although a number of circRNAs play an inhibitory role in the osteogenic differentiation of BMSCs, other circRNAs that can promote the osteogenic differentiation of BMSCs have been discovered following continuous exploration,

Figure 1. Schematic illustration of the biogenesis of circRNAs.

- **Pre-mRNA:** pre-messenger RNA; **RBP:** RNA-binding protein; **circRNA:** circular RNA; **QKI:** protein quaking; **MBL:** muscleblind protein.
such as circATRNL1, circRNA-016901, hsa_circ_0000219, hsa_circ_0004588 and hsa_circ_0005936 (52).

Runt-related transcription factor 2 (Runx2) belongs to the Runx family, with the DNA-binding domain runt, and consists of Runx1, Runx2 and Runx3 (53). Studies have shown that Runx2 plays an important role in the osteogenic differentiation of BMSCs (54). Ji et al. (55) found that the expression of hsa_circ_0006215 was decreased in the BMSCs of patients with OP. Lentiviral experiments found that overexpression of hsa_circ_0006215 promoted the osteogenic differentiation of BMSCs, and hsa_circ_0006215 combined with miRNA-942-5p to regulate the expression of RUNX2 and mediates OP. Another study showed that lentivirus-mediated small interfering RNA has_circ_0000885 plasmid transfection into BMSCs and an osteoclast co-culture system could promote BMSC cell proliferation, inhibit apoptosis and promote osteogenic differentiation (66). This provides a new target for the treatment of patients with OP. Research also found that circ_0005564 was highly expressed in postmenopausal OP patients, and further research found that hsa_circ_0090759 was the target of circ_0005564 (56). Liu et al. (62) showed that LLI can promote osteoblast proliferation and bone repair (57,58), LLI can promote BMSC proliferation (59,60), and LLI can increase the expression of VEGF, thereby inducing the angiogenesis necessary for wound healing (61). Liu et al. (62) showed that LLI can regulate the proliferation of BMSCs, and circRNA_0001052 can regulate the proliferation of BMSCs through the Wnt4/β-catenin pathway as an miR-124-3p sponge. The study also demonstrated that circRNA_0001052 plays an important role in the proliferation of BMSCs in response to LLI treatment, which provides a potential clinical application for the treatment of OP.

Articular cartilage damage is one of the main pathological changes in osteoarthritis, and cartilage repair is the key to solving osteoarthritis. Zheng et al. (63) found that circATRNL1 (hsa_circ_0020093) was highly expressed during the chondrogenic differentiation of BMSCs, and also found that the chondrogenic differentiation-related factors SRY-related HMG box 9 (SOX9), type II collagen (COL2) and aggrecan were highly expressed. Overexpression of circATRNL1 enhanced the proliferation of BMSCs and simultaneously enhanced the expression of SOX9, COL2 and aggrecan, as well as the degree of chondrogenic differentiation of BMSCs, and miR-338-3p was its target (63). This study demonstrated that circATRNL1 promotes the cartilage differentiation of BMSCs by regulating miR-338-3p, which provides new insights into cartilage repair. A previous study has shown that circ_016901 promotes the proliferation of irradiation-induced BMSCs and attenuates irradiation-induced apoptosis by regulating the miR-1249-5p/homeodomain interacting protein kinase 2 axis (64). Li et al. (65) found that circ45842081058485447, circ4340019343461320, circ183498456183537970 and circ10644279736106434369 acted together on miR-326-5p, and that overexpression of miR-326-5p could promote the osteogenic differentiation of BMSCs while inhibiting the adipogenic differentiation. Another study showed that lentivirus-mediated small interfering RNA has_circ_0000885 plasmid transfection into BMSCs and an osteoclast co-culture system could promote BMSC cell proliferation, inhibit apoptosis and promote osteogenic differentiation (66). This provides a new target for the treatment of patients with OP. There are differentially expressed circRNAs in postmenopausal OP patients, and further research found that hsa_circ_0009127, hsa_circ_0090759, hsa_circ_0058392, hsa_circ_0090247 and hsa_circ_00049484 were involved in the regulation of autophagy, and the PI3K-AKT, FoxO and MAPK signaling pathways, thereby regulating the osteogenic differentiation process of BMSCs (42). BMSCs were isolated from ovariectomized (OVX) mice and normal mice, and further experiments found that circRNA_0020 and circRNA_3832 were downregulated in the OVX mice, and that overexpression of circRNA_0020 and circRNA_3832 could promote the osteogenic differentiation of BMSCs and promote cell proliferation (67).

A previous study has shown that the expression of osteopontin (OPN) is increased in osteoarthritis, that it accelerates the renewal and remodeling of subchondral bone in osteoarthritis, and that it mediates the degeneration of articular cartilage induced by subchondral bone metabolism (68). Liu et al. (69) found that circ_0005564 was highly expressed and decreased the miRNA expression of RUNX2 and OPN during the osteogenic differentiation of BMSCs, and that knockdown of circ_0005564 inhibited osteoblast differentiation in BMSCs. Another recent study (70) found that circ-DAB1

circRNA	Target	Signaling pathway/axis	Function	(Refs.)
circRNA_2547	miR-134-3p	circRNA_2547-miR-134-3p-p21 axis	Inhibit cell proliferation and promote apoptosis	(43)
circIGSF11	miR-199b-5p	circIGSF11-miR-199b-5p-GSK-3β axis	Inhibit osteogenesis	(45)
circRNA CDR1as	miR-127-5p	CDR1as-miR-127-5p-WNT5B axis	Inhibit osteogenesis and promote adipogenesis	(46)
circUSP45	miR-127-5p	circUSP45-miR-127-5p-PTEN-AKT axis	Inhibit cell proliferation	(48)
circRNA_008876	miR-150-5p	circRNA_008876-miR-150-5p-mRNA axis	Inhibit cell proliferation	(49)
circ_c003865	miR-3653-3p	circ_c003865-miR-3653-3p-GAS1 axis	Inhibit osteogenesis	(51)
circRNA, circular RNA; mRNA, messenger RNA; miR, microRNA.				
was significantly upregulated during the osteogenic differentiation of human BMSCs, and that overexpression of circ-DAB1 could promote the proliferation and osteogenic differentiation of BMSCs. miR-1270 and miR-944 are targets of circ-DAB1, and further experiments found that circ-DAB1 promotes the cell proliferation and osteogenic differentiation of BMSCs through the NOTCH/recombination signal binding protein for immunoglobulin-κ-J region (70). Zhong et al (71) showed that circ_1983 acts as a sponge of miR-6931 to promote the osteogenic differentiation of BMSCs. Hao et al (72) found that circPVT1 was decreased in the femoral head of rats with SIONFH and glucocorticoid (GC)-treated BMSCs, whereas miR-21-5p was upregulated, and overexpression of circPVT1 attenuated GC-induced BMSC apoptosis and cell viability inhibition. circPVT1 acts as a sponge for miR-21-5p (72). Bone morphogenetic protein 2 (BMP2) plays an important role in osteogenesis. It was found that circ_0000020 was able to regulate the expression of BMP2 (73); circ_0000020 is upregulated during osteogenic differentiation, while the expression of miR-142-5p is significantly decreased (73). Silencing circ_0000020 inhibits osteogenic differentiation and promotes apoptosis, and inhibits the activity and mineralization of alkaline phosphatase. circ_0000020 can directly act on miR-142-5p (73). In conclusion, circ_0000020 positively regulates the osteogenic differentiation of BMSCs by regulating BMP2 expression via sponging miR-142-5p. Based on the aforementioned studies, circRNAs play a key role in the osteogenic differentiation of BMSCs. Different circRNAs can promote or inhibit the osteogenic differentiation of BMSCs, which also provides a new direction for OP and bone defect repair. The effect of the promotion of circRNAs on the osteogenic differentiation of BMSCs is shown in Table II.

4. Conclusions and perspectives

BMSCs are an important source of osteogenic seed cells in tissue engineering, and circRNAs play a key role in the osteogenic differentiation of BMSCs. Further studies on the functional specificity of circRNA target genes and the interactions between circRNAs are important for elucidating their mechanism of action. This research also provides a new theoretical and experimental basis for bone tissue engineering and clinical treatment.

Acknowledgements

Not applicable.

Funding

Not applicable.

Availability of data and materials

Not applicable.
Authors' contributions

IW and BY drafted the manuscript and revised the manuscript. TW, FZ, YZ, YG and XJ contributed to manuscript conception. All authors read and approved the final manuscript. Data authentication is not applicable.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Friedenstein AJ, Chailakhyan RK and Gerasimov UV: Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20: 263-272, 1987.

2. Kim N and Cho SG: Clinical applications of mesenchymal stem cells. Korean J Intern Med 28: 387-402, 2013.

3. Alves H, Mentink A, Le B, van Blitterswijk CA and de Boer J: Effect of antioxidant supplementation on the total yield, oxidative stress levels, and multipotency of bone marrow-derived human mesenchymal stroma cells. Tissue Eng Part A 19: 928-937, 2013.

4. Ren C, Gong W, Li F and Xie M: Pilose antler aqueous extract promotes the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells by stimulating the BMP-2/Smad1,5/Runx2 signaling pathway. Chin J Nat Med 17: 756-767, 2019.

5. Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, Miyado K, Higashi Y and Ochi M: Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med 5: 1620-1630, 2016.

6. Watanabe Y, Tsuchiya A, Ishioka Y, Ikeda K, Ikarashi S, Starkey Lewis PJ, Lu WY, Kikuta J, Kawai H, Patel M, Akbalik G, Wang X, Gao L, Wang J and Hummel D: Mesenchymal stem cells and induced bone marrow-derived macrophages synergistically improve liver fibrosis in mice. Stem Cells Transl Med 8: 271-284, 2019.

7. Ferrari G, Casella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G and Mavilio F: Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279: 1528-1530, 1998.

8. Petersen BE, Bowen WC, Patrone KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Akbalik G, Wang X, Gao L, Wang J and Hummel D: Mesenchymal stem cells and induced bone marrow-derived macrophages synergistically improve liver fibrosis in mice. Stem Cells Transl Med 8: 271-284, 2019.

9. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Haziri C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Conn SJ, Pillman KA, Toubia J, Conn VM, Salmonidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ: The RNA binding protein quaking regulates formation of circRNAs. Cell 160: 1125-1134, 2015.

10. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56: 55-66, 2014.

11. Memczak S, Jens M, Elefanti S, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gerschener LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495: 333-338, 2013.

12. Hansen TB, Jensen TI, Clausen BH, Dalgaard K, Mikkelsen TS, Tkačik G, Larsen BS, Helland I, Rasmussen HB, Hahne M, et al: A comprehensive database for human circular RNAs with transcriptome context. Nucleic Acids Res 43: D887-92, 2015.

13. Granados-Riveron JT and Aquino-Jarquin G: The complexity of the translation ability of circRNAs. Biochim Biophys Acta 1859: 1245-1251, 2016.

14. Ebert MS and Sharp PA: MicroRNA sponges: Progress and possibilities. RNA 16: 2043-2050, 2010.

15. Abdelmohsen K, Kuwano Y, Kim HH and Gorospe M: Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: Implications for cellular senescence. Biol Chem 389: 243-255, 2008.

16. Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW, Carmichael GG and Chen LL: Long noncoding RNAs with snoRNA ends. Mol Cell 48: 219-230, 2012.

17. Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding RNAs. Cancer Lett 365: 141-148, 2015.

18. Chen CY and Sarnow P: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268: 415-417, 1995.

19. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27: 626-641, 2017.

20. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottemeier C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Rambgerber E, et al: Translation of CircRNAs. Mol Cell 66: 9-21, 2017.

21. Lin, J, Tang X, Wan J, Zhang X, Liu C and Liu T: Functions and mechanisms of circular RNAs in regulating stem cell differentiation. RNA Biol 18: 2136-2149, 2021.
42. Fu M, Fang L, Xiang X, Fan X, Wu J and Wang J: Microarray analysis of circRNAs sequencing profile in exosomes derived from bone marrow mesenchymal stem cells in postmenopausal osteoporosis patients. J Clin Lab Anal 36: e23916, 2022.

43. Zhang Y, Jia S, Wei Q, Zhuang Z, Li J, Fan Y, Zhang L, Hong Z, Ma X, Sun R, et al.: CircRNA_25487 inhibits bone repair in trauma-induced osteonecrosis of femoral head by sponging miR-134-3p through p21. Regen Ther 16: 23-31, 2020.

44. Chen W, Zhang B and Chong X: Emerging roles of circular RNAs in osteoporosis. J Cell Mol Med 25: 9089-9101, 2021.

45. Zhang M, Jia L and Zheng Y: circRNA expression profiles in human bone marrow stem cells undergoing osteoblast differentiation. Stem Cell Res Rev 15: 126-138, 2019.

46. Chen G, Wang Q, Li Z, Yang Q, Liu Y, Du Z, Zhang G and Song Y: Circular RNA CDR1as promotes adipogenic and suppresses osteogenic differentiation of BMSCs in steroid-induced osteonecrosis of the femoral head. Bone 133: 115258, 2020.

47. Hou JF, Zhang H, Yuan X, Li J, Wei YJ and Hu SS: In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: Proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40: 726-733, 2008.

48. Kuang MJ, Xing F, Wang D, Sun L, Ma JX and Ma XL: Systematic analysis of mRNAs and ncRNAs in BMSCs of senile osteoporosis patients. Front Genet 12: 776984, 2021.

49. Geng Y, Chen J, Chang C, Zhang Y, Duan L, Zhu W, Mou L, Xiong J and Wang D: Systematic analysis of mRNAs and ncRNAs in BMSCs of senile osteoporosis patients. Front Genet 12: 776984, 2021.

50. Seppala M, Thivichon-Prince B, Xavier GM, Shaffie N, Sangani I, Siéssere S: Lasers Surg Med 50: 340-352, 2018.

51. Birjandi AA, Rooney J, Lau JNS, Dhaliwal R, Rossi O: Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1. Lasers Surg Med 50: 340-352, 2018.

52. Xiang S, Li Z and Weng X: Changed cellular functions and aberrantly expressed miRNAs and circRNAs in bone marrow stem cells in osteonecrosis of the femoral head. Int J Mol Med 45: 805-815, 2020.

53. Komori T: Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Adv Exp Med Biol 962: 83-93, 2017.

54. Komori T: Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Adv Exp Med Biol 962: 83-93, 2017.

55. Jiang W, Chen T, Deng Z, Gao W, Liang T, Qiu X, Gao B, Wu Z, Qiu J, Zhu Y, et al.: Melatonin promotes bone marrow mesenchymal stem cell osteogenic differentiation and prevents osteoporosis development through modulating circ_0003865 that sponges miR-3653-3p. Stem Cell Res Ther 12: 150, 2021.

56. Wang X, Li Z and Weng X: Changed cellular functions and aberrantly expressed miRNAs and circRNAs in bone marrow stem cells in osteonecrosis of the femoral head. Int J Mol Med 45: 805-815, 2020.

57. Liu Z, Liu Q, Chen S, Su H and Jing T: Circular RNA Circ_0005564 promotes osteogenic differentiation of bone marrow mesenchymal cells in osteoporosis. Bioengineered 12: 4911-4923, 2021.

58. Chia W, Liu J, Huang YG and Zhang C: A circular RNA derived from DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via RBP5/DAB1 axis. Cell Death Dis 11: 372, 2020.

59. Zhong W, Li X, Pathak JL, Chen L, Cao W, Zhu M, Luo Q, Wu A, Chen Y, Yi L, et al.: Dicalcium silicate microparticles modulate the differential expression of circRNAs and mRNAs in BMSCs and promote osteogenesis via circ_19383-miR-6931 Gas7 interaction. Biomater Sci 8: 3664-3677, 2020.

60. Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I and Vago R: Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20: 138-146, 2005.

61. Kipshidze N, Nikolaychik V, Keelan MH, Shankar LR, Khanna A, Kornowski R, Leon M and Moses J: Low-power helium: Neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28: 355-364, 2001.

62. Liu N, Lu W, Qu X and Zhu C: LLI1 promotes BMSC proliferation through circRNA_0001052/miR-124-3p. Lasers Med Sci 37: 849-856, 2022.

63. Zhong J, Lin Y, Tang F, Guo H, Yan L, Hu S and Wu H: Promoting role of CircATRI1 on chondrogenic differentiation of BMSCs mediated by miR-338-3p. Arch Med Res 52: 514-522, 2021.

64. Wen X, Zhang J, Yang W, Nie X, Gui R, Shan D, Huang R and Deng H: CircRNA-016901 silencing attenuates irradiation-induced injury in bone marrow mesenchymal stem cells via regulating the miR-1249-5p/HIPK2 axis. Exp Ther Med 21: 355, 2021.

65. Li X, Chen R, Lei X, Wang P, Zhu X, Zhang R and Yang L: Quercetin regulates ERα-mediated differentiation of BMSCs from daB1. Gene 769: 145172, 2021.

66. Zhao YS, Lin P, Tu YC, An T, Wu XP and Li XF: Lentivirus-mediated siRNA hsa-circ-0000885 transfection of BMSCs and osteoclast co-culture system on cell differentiation, proliferation and apoptosis. Zhongguo Gu Shang 34: 978-984, 2021 (In Chinese).

67. Wang H, Zhou K, Xiao F, Huang Z, Xu J, Chen G, Liu Y and Gu H: Identification of circRNA-associated cDNA network in BMSCs of OVX models for postmenopausal osteoporosis. Sci Rep 10: 10896, 2020.

68. Lin C, Chen Z, Guo D, Zhou L, Lin S, Li C, Li S, Wang X, Lin B and Ding Y: Increased expression of osteopontin in subchondral bone promotes bone turnover and remodeling, and accelerates the progression of OA in a mouse model. Aging (Albany NY) 14: 253-271, 2021.

69. Liu Z, Liu Q, Chen S, Su H and Jing T: Circular RNA Circ_0005564 promotes osteogenic differentiation of bone marrow mesenchymal cells in osteoporosis. Bioengineered 12: 4911-4923, 2021.

70. Chia W, Liu J, Huang YG and Zhang C: A circular RNA derived from DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via RBP5/DAB1 axis. Cell Death Dis 11: 372, 2020.