NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas

Jihan K. Osborne, Marcy L. Guerra, Joshua X. Gonzales, Elizabeth A. McMillan, John D. Minna, and Melanie H. Cobb

Department of Pharmacology and Hamon Cancer Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041

ABSTRACT Cigarette smoking is a major risk factor for acquisition of small cell lung cancer (SCLC). A role has been demonstrated for the basic helix-loop-helix transcription factor NeuroD1 in the pathogenesis of neural and neuroendocrine lung cancer, including SCLC. In the present study we investigate the possible function of NeuroD1 in established tumors, as well as actions early on in pathogenesis, in response to nicotine. We demonstrate that nicotine up-regulates NeuroD1 in immortalized normal bronchial epithelial cells and a subset of undifferentiated carcinomas. Increased expression of NeuroD1 subsequently leads to regulation of expression and function of the nicotinic acetylcholine receptor subunit cluster of α3, α5, and β4. In addition, we find that coordinated expression of these subunits by NeuroD1 leads to enhanced nicotine-induced migration and invasion, likely through changes in intracellular calcium. These findings suggest that aspects of the pathogenesis of neural and neuroendocrine lung cancers may be affected by a nicotine- and NeuroD1-induced positive feedback loop.

INTRODUCTION

Signature characteristics of tumor pathogenesis include the acquisition of qualities that enable unrestrained growth and metastasis. Many of the genes expressed during tumorigenesis regulate developmental gene programs initiated during embryogenesis and organogenesis (Wong et al., 2008; Ben-David and Benvenisty, 2011; Ben-David et al., 2011). Small cell lung cancers (SCLCs) and other neuroendocrine carcinomas display increased expression of the neuronal basic helix-loop-helix transcription factors neurogenic differentiation 1 (NeuroD1) and achaete-scute homologue (ASCL1;

This article was published online ahead of print in MBoC in Press (http://www.molbiocell.org/cgi/doi/10.1091/mbc.E13-06-0316) on April 9, 2014.

Address correspondence to: Melanie H. Cobb (Melanie.Cobb@UTSouthwestern.edu).

Abbreviations used: ERK2, extracellular signal-regulated kinase 2; MAPK, mitogen-activated protein kinase; nAChR, nicotinic acetylcholin receptors; NeuroD1, neuronal differentiation 1; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer.

© 2014 Osborne et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

“ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.
TABLE 1: Mutational status of cell lines.

Cell line	Cell type	p53 status	KRAS mutation	Additional mutation
H69	SCLC-V	Mutant	No	PIK3CA/RB1
H82	SCLC-V	Mutant	No	RB1
H358	NSCLC	Null	Yes (G12V)	
H460	NSCLC	Wild type	Yes (Q61H)	PIK3CA/CDKN2A/STK11
H524	SCLC-V	Mutant	No	RB1
H526	SCLC-V	Mutant	No	RB1
H889	SCLC-V/C	Mutant	No	–
H1155	NSCLC-NE	Mutant	Yes (Q61H)	PTEN/MSH6
H1184	SCLC-C	Mutant	No	a
H2171	SCLC-V	Mutant	No	a
H2227	SCLC-C	Mutant	No	RB1
SHSY5Y	Neuroblastoma	Wild type	No	ALK
NTERA2	Germ cell tumor	Wild type	No	SF3B1
HCC4017	NSCLC	Unknown	Yes (G12C)	–
HBEC3KTRL53-Clone 5	NSCLC-NE	Constitutive knockdown	Overexpress (G12V)	–
HBEC3KT-53	Immortalized bronchial epithelial	Constitutive knockdown	No	–
HBEC3KT	Immortalized bronchial epithelial	Wild type	No	–
HBEC4KT	Immortalized bronchial epithelial	Wild type	No	–
HBEC30KT	Immortalized bronchial epithelial	Wild type	No	–

C, classic; K, CDK4; T, hTERT; V, variant.

*Many more in COSMIC database (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/).

RESULTS
Nicotine induces expression of NeuroD1 in immortalized bronchial epithelial cells and some lung cancers
To gain perspective on the mechanism of NeuroD1 action, we examined its expression in several neural/neuroendocrine cancer cell lines, focusing predominantly on lung cancer and neuroblastoma models (Table 1). In addition to patient-derived SCLC cell lines, we used several human bronchial epithelial cell (HBEC) lines. The cells were immortalized by expressing cyclin-dependent kinase 4 and human telomerase and were from different donors (indicated by numbers, HBEC3K, HBEC4K, and HBEC30K). We also used an isogenic manipulated tumor-forming clone (HBEC3KTRL53-Clone 5, referred to hereafter as Clone 5) derived from HBEC3K by stable depletion of p53 and expression of oncogenic KRAS, because it displayed an increase in NeuroD1 relative to HBEC3K parent cells (Sato et al., 2006, 2013; Osborne et al., 2013b; Figure 1A). Previously, we characterized actions of NeuroD1 in Clone 5 and found that loss of the protein decreased migration and formation of colonies in soft agar (Osborne et al., 2013b). In addition, we used several non–small cell lung cancer (NSCLC) lines, including HCC4017, which was taken from the contralateral lung of the HBEC30K donor. For the neural cancer model, we used the human neuroblastoma cell line SHSY5Y, previously noted to express NeuroD1, and the human embryonal carcinoma cell line NTERA2 clone D1 (referred to hereafter as NTERA2), which we confirmed does not (Figure 1A). NTERA2 is reported to express NeuroD1, and the human embryonal carcinoma cell line NTERA2 clone D1 (referred to hereafter as Clone 5) derived from HBEC3KT by stable depletion of p53 and expression of oncogenic KRAS, because it displayed an increase in NeuroD1 relative to HBEC3K parent cells (Sato et al., 2006, 2013; Osborne et al., 2013b; Figure 1A). Previously, we characterized actions of NeuroD1 in Clone 5 and found that loss of the protein decreased migration and formation of colonies in soft agar (Osborne et al., 2013b). In addition, we used several non–small cell lung cancer (NSCLC) lines, including HCC4017, which was taken from the contralateral lung of the HBEC30K donor. For the neural cancer model, we used the human neuroblastoma cell line SHSY5Y, previously noted to express NeuroD1, and the human embryonal carcinoma cell line NTERA2 clone D1 (referred to hereafter as NTERA2), which we confirmed does not (Figure 1A). NTERA2 is reported to express NeuroD1, and the human embryonal carcinoma cell line NTERA2 clone D1 (referred to hereafter as Clone 5) derived from HBEC3KT by stable depletion of p53 and expression of oncogenic KRAS, because it displayed an increase in NeuroD1 relative to HBEC3K parent cells (Sato et al., 2006, 2013; Osborne et al., 2013b; Figure 1A).
of the patient-derived neuroendocrine lung cancer cell lines, as well as in the rodent pheochromocytoma PC12 cell; its expression was undetectable in the undifferentiated germ cell tumor NTERA2 and low in the immortalized normal HBEC lines (Figure 1, A and B).

Cigarettes contain various carcinogens, including the addictive component nicotine, which has been linked to the increased onset of lung cancer (Hecht, 1999). Of all the subtypes of lung cancer, SCLC has the highest occurrence in patients with a history of tobacco use (Jackman and Johnson, 2005). Nicotine has a half-life in smokers (Russell et al., 1980; Hukkanen et al., 2005; Pillai et al., 2011). To investigate potential effects of nicotine action on NeuroD1 early in tumor pathogenesis, we treated normal immortalized bronchial epithelial cell lines HBEC3KT, HBEC4KT, and HBEC30KT with increasing concentrations of nicotine for 24–48 h. An increase in NeuroD1 expression was observed after exposure of cells to concentrations of nicotine achieved in smokers (Figure 1B). Increased NeuroD1 mRNA and protein expression was detected at the lowest concentration of nicotine in both HBEC3 and 30KT lines and HCC4017 cells; however, further increase was not observed in Clone 5 (Figure 1, C and D).

Nicotine-induced NeuroD1 expression is ERK1/2 pathway independent in SCLC, NSCLC, clone 5, HBECs, and SHSY5Y neuroblastoma cells

Phosphorylation of serine residues in NeuroD1 by ERK1/2 is required for proper transactivation activity on the insulin promoter in pancreatic β-cells; however, the importance of these phosphorylation events for protein accumulation and activity seems to be cell type specific (Khoo et al., 2003; Dufton et al., 2005). Activating mutations of the MAPK-ERK1/2 pathway in SCLC are rarely observed; in addition, activation of this pathway via overexpression of Raf-1 in several SCLC cell lines results in growth arrest (Mitsudomi et al., 1991; Alessi et al., 1993; Ravi et al., 1998; Sun et al., 2007). The term “variant” refers to a subclass of SCLC cells with morphological features similar to those of NSCLC large cells, which in culture are floating, loosely bound, multicellular aggregates that contrast with classic SCLC cells, which form tightly packed spheres (Carney et al., 1985a,b; Gazdar et al., 1985; Figure 2A). We observed that variant SCLC (e.g., H69 and H82) had higher NeuroD1 expression than classic SCLC (Figures 1A and 2A). The variant SCLC cell line H82 had lower basal phosphorylated ERK1/2 than the classic SCLC cell line H1184 (Figure 2B). Treatment of the SCLC cell lines H69 and H82 with the MEK1/2 inhibitor PD0325901 did not decrease anchorage-independent growth; however, growth inhibition was observed in the NSCLC lines H358 and H460 (Figure 2C). In addition, we found that nicotine caused an increase in phosphorylated ERK1/2 within minutes in several of the SCLC cell lines (Figure 2D), consistent with previous work. (Dajas-Bailador et al., 2002b; Jin et al., 2004; Xu and Deng, 2004; Chen et al., 2008).

Nicotine acts through nicotinic acetylcholine receptors (nAChRs). These ion channels have many possible subunit compositions and have been shown to be expressed in normal lung and lung cancer cells, specifically SCLC (Lam et al., 2007; Improgo et al., 2010a). Thus we tested the effects of mecamylamine, a nonspecific and noncompetitive antagonist of several nAChRs. Mecamylamine caused >50% reduction in nicotine-induced NeuroD1 expression in HBEC30KT...
NeuroD1 regulates nAChR

Volume 25 June 1, 2014

NeuroD1 regulates nAChR α3 and α5 but not β4 subunits in SHSY5Y neuroendocrine, SCLC, and HBECKT

Several genome-wide studies mapped a specific region on chromosome 15q25 as a locus for lung cancer susceptibility, and this locus contains the genes that encode the nAChR subunit cluster of α3, α5, and β4 (Amos et al., 2008; Hung et al., 2008). ASCL1 can regulate the α3 and β4 subunits (Improgo et al., 2010a). We detected higher expression of the nAChR subunits and NeuroD1 in the cancer lines than in the HBECKT lines (Figure 4A). Several of the subunits are heavily glycosylated and acetylated to enable proper localization to the plasma membrane, which may explain the extra bands visualized (Albuquerque et al., 2009). Using low concentrations of nicotine, we found that NeuroD1 and all three AChR subunit mRNAs increased in SHSY5Y cells (Figure 4B). An increase in each of the subunits was also detected in the HBECKT cells with exposure to nicotine (Supplemental Figure S3A). Increase in neither NeuroD1 and HCC4017 cells (Figure 2E), confirming that nAChRs can mediate actions of nicotine on the transcription factor. We also asked whether inhibition of ERK1/2 or phosphatidylinositol 3-kinase (PI3K) affected nicotine-induced NeuroD1 expression. Effects of inhibitors of the MEK1/2 or PI3K pathway on nicotine-induced NeuroD1 expression varied (Supplemental Figures S1 and S2), suggesting that neither the MEK1/2 or PI3K pathway is essential for NeuroD1 expression, but instead multiple pathways can affect nicotine-induced NeuroD1 expression.

Nicotine can up-regulate NeuroD1 without causing differentiation of SHSY5Y and NTERA2 cells

Because NeuroD1 was originally identified as a gene required for neuronal differentiation, we investigated whether the increase in NeuroD1 expression was also accompanied by neuronal differentiation (Lee et al., 1995). To examine this possibility, we used the embryonal carcinoma cell line NTERA2 and the neuroblastoma cell line SHSY5Y. These cell lines were previously shown to differentiate along neuronal lineages after treatment with RA. The resulting cells have biochemical and morphological similarities to neurons (Andrews, 1984; Lopez-Carballo et al., 2002). Treatment of these cell lines with RA induced expression of NeuroD1 and one of its key targets, TrkB, as well as that of a marker of mature neurons, NeuN. In contrast, treatment with nicotine caused an increase in NeuroD1 and TrkB but no significant increase in NeuN (Figure 3, A and B), suggesting that it was not able to induce a differentiated state. We examined expression of transcription factors ASCL1 and NGN3, which lie upstream of NeuroD1. NGN3, like ASCL1, is a bHLH transcription factor found in brain and pancreas during development (Cau et al., 1997; Huang et al., 2000; Ito et al., 2000; McNay et al., 2006; Neptune et al., 2008). RA caused decrease or no change in expression of ASCL1 or NGN3 in either cell line (Figure 3B), whereas nicotine caused increased ASCL1 and NGN3 in the NTERA2 cell line, suggesting the idea that nicotine is not promoting a more differentiated state.

Nicotine decreases p53 expression in a cell type–specific manner

We demonstrated that loss of p53 led to increased NeuroD1 expression in a cell type–specific manner (Osborne et al., 2013a). Nicotine induces proliferation and leads to down-regulation of p53 (Pfeifer et al., 2002; Dasgupta and Chellappan, 2006; Dasgupta et al., 2006; Sato et al., 2008; Pulliyappadamba et al., 2010). Treatment of SHSY5Y and the NTERA2 cells with nicotine did not suppress p53 expression (Figure 3B). However, p53 expression was reduced by nicotine in HBECKT (Figure 3C). This leads to the idea that suppression of p53 in nonepithelial tissues may not be required to increase NeuroD1 expression.
NeuroD1 regulates nicotine-induced invasion by SHSY5Y neuroblastoma and Clone 5 via regulation of the α3 and α5 subunits

NeuroD1 regulates survival and the metastatic capabilities of several neural/neuroendocrine carcinomas (Huang et al., 2011; Osborne et al., 2013b). Nicotine acts through various combinations of nAChR subunits to promote epithelial-to-mesenchymal transition and metastasis (Xu and Deng, 2004; Tournier et al., 2006; Guo et al., 2008; Dasgupta et al., 2009; Pillai et al., 2011). Thus we sought to investigate the possibility that NeuroD1 could modulate nicotine-induced invasion in our cell lines. Nicotine exposure was able to increase invasion of Clone 5 and SHSY5Y lines through Matrigel, whereas knockdown of NeuroD1 led to >50% reduction in nicotine-induced migration in both cell lines (Figure 5, A and B). Loss of either α3 or α5 expression reduced invasion with or without nicotine treatment. The α5 results were not anticipated, because this receptor subunit is thought of as an accessory or an orphan subunit that is unable to yield functional receptors when expressed alone and speculated to increase receptor sensitivity to ligand (Ramirez-Latorre et al., 1996; Gerzanich et al., 1998; Jackson et al., 2010). Taken together, these data suggest that nicotine acts through nAChR subunits to mediate cell invasion and migration by a NeuroD1-dependent mechanism.

The NeuroD1 target TrkB regulates expression of several nAChR subunits in H69 and H82 SCLC

In addition to increased expression of NeuroD1, we observed that nicotine increased expression of TrkB in NTERA2 cells (Figure 3B). Nicotine via nAChR receptor subunit α7 was reported to stimulate proliferation in the SHSY5Y cell line via release of brain-derived neurotrophic factor (BDNF), the ligand for TrkB (Serres and Carney, 2006). On the basis of this idea, we asked whether phosphorylated TrkB bound the nAChR subunit complex. Immunoprecipitation experiments failed to detect interaction between TrkB and any of the complexes containing α5 (Supplemental Figure S4). We then examined whether there was a relationship between TrkB expression and expression of any other nAChR receptor subunits. Loss of TrkB led to decrease in expression of not only the cluster subunits of α3, α5, and β4 but also of α7, in three of the neuroendocrine lung cancer cell lines examined—H69, H82, and the neuroendocrine NSCLC H1155 (Figure 6A). Next we investigated whether TrkB activity was required for changes in AChR expression. The pan-Trk inhibitor lestaurtinib decreased expression of the nAChR cluster receptor subunits, with the most pronounced effects on α3, α5, and β2 subunits (Figure 6B). Nicotine combined with BDNF increased expression of the α3 and to some extent the α5 subunit (Figure 6C and Supplemental Figure S4A, lanes 1 and 4),

(Supplemental Figure S3C) nor subunit expression was observed in the HBEC3KT53, an HBEC cell line with constitutive knockdown of p53 (Supplemental Figure S3A). The inability of nicotine to cause a significant increase in NeuroD1 and AChR subunit expression was also observed in the NSCLC cell lines Clone 5 and H358 (both of which have oncogenic KRAS and have lost p53; Supplemental Figure S3B; see Table 1 for cell-line oncogenotype).

Next we knocked down NeuroD1 in the cancer cells and examined expression of the nAChR subunits. In the neuroendocrine lung cancer cell lines, knockdown of NeuroD1 led to a significant decrease in both α3 and α5, but less so in β4 or α7, nAChR receptor subunits (Figure 4C). Similarly, knockdown of NeuroD1 in SHSY5Y and Clone 5 cells led to a significant decrease in both α3 and α5 but not β4 subunits (Figure 4D). This suggests that increased expression of the α3 and α5 in response to nicotine may be mediated by NeuroD1.
NeuroD1 regulates nAChR subunits in SHSY5Y and clone 5 cells

Acetylcholine receptor subunits α3 and α5 contribute to invasion induced by nicotine in SHSY5Y and clone 5 cells. (A) SHSY5Y and (B) clone 5 cells were infected with shNeuroD1, shα3, shα5, or shControl vectors to deplete the targeted proteins. Cells were dissociated, and 25,000 cells were placed in 0.2 ml of growth factor-reduced Matrigel. Invasion was scored as described in Materials and Methods. SHSY5Y, N = 2; Clone 5, N = 3. *p < 0.05, **p < 0.005. Right, proteins remaining 48 h after treatment with shRNAs, with tubulin as the loading control.
findings suggest the presence of feedback mechanisms that may occur early or throughout neuroendocrine tumorigenesis.

DISCUSSION

Nicotine induces cell survival and metastasis and also has been shown to inhibit differentiation (Sato et al., 2008). We find that up-regulation of NeuroD1 by nicotine occurs in some but not all cell types. In normal immortalized HBEC, exposure to nicotine causes an increase in NeuroD1; however, this was not the case in several nonneuroendocrine cells that lack p53 alone or in combination with KRAS mutations. This is consistent with previous accounts demonstrating that nicotine does not enhance tumorigenesis in KRAS-driven mouse models of lung cancer (Maier et al., 2011). Our findings also suggest that long-term exposure to nicotine does not induce differentiation but does induce NeuroD1 in neural/neuroendocrine models. Consistent with their roles in maintenance of progenitor states during differentiation of stem cells, we found that transcription factors such as ASCL1 and NGN3 decrease with exposure to retinoic acid but increase with nicotine (Cau et al., 1997; Gu et al., 2002; McNay et al., 2006; Xu et al., 2008; Magenheim et al., 2011). It is possible that loss of p53 as result of nicotine exposure could lead to increase in NeuroD1 expression during the development of lung cancer. Similarly, overexpression of p53 in embryonic stem cells has also been shown to promote differentiation and limit proliferation potential, consistent with suppression of NeuroD1 (Li et al., 2012; Menendez et al., 2012).

The ERK1/2-MAPK pathway regulates both transactivation activity and accumulation of NeuroD1 protein in a context-dependent manner. Nicotine activates both AKT and ERK1/2, most likely by calcium-dependent mechanisms (Dajas-Bailador et al., 2002b; West et al., 2003; Tsurutani et al., 2005; Chen et al., 2008; Pillai et al., 2011); however, we find that the increase in NeuroD1 expression as a consequence of nicotine exposure can be independent of both ERK1/2 and PI3K. Calcium influx stimulates other pathways that may control NeuroD1 expression; for example, in neural stem cells this is believed to occur indirectly through calcium, calmodulin-dependent protein kinase II (Schneider et al., 2008). Therefore other pathways need to be investigated that may ultimately be activated by nicotine-induced calcium influx leading directly or indirectly to NeuroD1 expression.

The use of multiple cell lines in this study attempts to direct our understanding of the mechanisms by which nicotine induces NeuroD1 during neuroendocrine carcinogenesis of the lung, as well as in other neuroendocrine tumor types. Although we recently published results indicating that NeuroD1 may enhance metastasis of neuroendocrine carcinomas via regulation of the proto-oncogene TrkB, the link connecting NeuroD1 to active TrkB was not conserved in all cell lines tested (Osborne et al., 2013a). We found that conservation of the regulation of metastatic capability by TrkB depended on the likely cell of origin (i.e., whether the cell expressed neuroendocrine characteristics). This relationship may also be relevant to the actions of nicotine on NeuroD1 in various tissues. Further studies on regulation of NeuroD1 and TrkB by nicotine in other tissues will be valuable to a more thorough examination of this possibility.

We demonstrate that NeuroD1, like ASCL1, regulates the nAChR subunit cluster, specifically α3 and α5, whereas ASCL1 has been suggested to regulate α3 and β4 (Improgo et al., 2010b). Preliminary data suggest direct binding of NeuroD1 to the promoter regions of the nAChR subunit cluster (unpublished data); further characterization of the exact mode of regulation is necessary. Based on assays of intracellular free calcium, regulation of α3 and α5 affects the function of the receptors as ion channels. Thus we hypothesize that both NeuroD1 and ASCL1 regulate expression of the nAChR subunit cluster of α3, α5, and β4, with different relative action on specific subunits. Considering our present and previous findings, we suggest that NeuroD1 lies in a positive feedback loop through which nicotine enhances the expression of its own receptors (Figure 8). Increased expression of NeuroD1 by nicotine presumably leads to increased expression of the receptor subunits; effects may be both dependent on and independent of TrkB activity. This combinatorial regulation may ultimately lead to changes in the levels of calcium and increased migration and invasion. The exact composition of the...
to be the same as the DNA fingerprint library maintained by either ATCC or the Hamon Cancer Center. The lines were mycoplasma free, as confirmed by the e-Myco kit (Boca Scientific, Boca Raton, FL).

Antibodies and reagents

Immunoblot analyses were as previously described, using equal amounts of protein from each sample (Lawrence et al., 2005). The following antibodies were used for blotting and immunoprecipitation: goat NeuroD1 (N-19), rabbit pan-phospho-Trk (E-6), p53 (DO-1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; FL-335; Santa Cruz Biotechnology, Santa Cruz, CA); mouse ASCL1 (BD Biosciences, San Jose, CA); rabbit TrkB (Chemicon, Temecula, CA); mouse NGN3 (R&D Systems, Minneapolis, MN); rabbit nAChR subunits (Millipore, Billerica, MA); and mouse pERK1/2, mouse AKT, and rabbit pAKT-S473 (Cell Signaling [Danvers, MA], Sigma-Aldrich [St. Louis, MO], respectively). α-Tubulin hybridoma was purchased from the Developmental Studies Hybridoma Bank (University of Iowa, Iowa City, IA). Lestaurtinib was purchased from LC labs, Woburn, MA; BDNF from R&D Systems; nicotine, PD0325901, and mecamylamine from Sigma-Aldrich; and LY294002 was from Cell Signaling. Band intensities were quantified using a LI-COR Odyssey Infrared Imaging System.

Invasion assays

For invasion assays, 2.5 × 10⁴ cells were embedded in growth factor–reduced Matrigel in the presence or absence of 1 μM nicotine 48 h after knockdown. Transwell migration was assayed in Transwell permeable supports (3422; Corning, Corning, NY). Cells were seeded in the top chamber in either RPMI with 1% FBS or DMEM/Ham’s F12 with 1% FBS and allowed to migrate along a concentration gradient through a polycarbonate membrane with 8-μm pores toward the bottom chambers, which contained medium with 25% FBS. Cells were fixed, stained with methylene blue, and counted.

Transfection of short hairpin RNAs and plasmids

Virus was generated for infection of human pGIPZ lentiviral short hairpin RNA (shRNA) plasmids against (NeuroD1, CHRNA3/A5/B4) created by the RNAi Consortium. These were purchased by UT Southwestern as a library (TRC-Hs1.0 [Human]) from Open Biosystems (sequences are available online at the Open Biosystems website http://dharmacon.gelifesciences.com/rnai-and-custom-rna-synthesis/shrna/gipz-lentiviral-shrna/libraries/). NeuroD1 sh RNA, V2LHS_152218 (shRNA-1); TrkB shRNA, V2LHS_63731.

Calcium assays

Cells were washed twice with phosphate-buffered saline (PBS) and incubated with the fluorescent dye Fura-2AM diluted in

![Graphs](https://via.placeholder.com/150)

FIGURE 7: Depletion of NeuroD1 decreases nicotine-induced increases in intracellular free calcium in SHSY5Y cells. (A) The indicated cell lines were loaded with fura-2AM and then stimulated with 12.5 μM nicotine. Fluorescence was monitored every 0.74 s after stimulation. (B) SHSY5Y cells loaded with fura-2AM were stimulated with 12.5 μM nicotine plus mecamylamine, nifedipine, or both at 10 μM, and fluorescence was monitored as described. N = 2. (C) SHSY5Y cells were infected with shNeuroD1, shα3, shα5, or shControl vectors for 48 h and then stimulated with 12.5 μM nicotine. Fluorescence was monitored as described. Representative of (A) four, (B) two, and (C) three independent experiments. Bottom, immunoblots showing effectiveness of depletion.

MATERIALS AND METHODS

Cell culture

NTERA2 clone D1 cells (American Type Culture Collection [ATCC, Manassa, VA]) were grown in DMEM with 10% fetal bovine serum (FBS). SCLC and NSCLC lines were from the Hamon Cancer Center Collection (UT Southwestern). SCLC and HBECKTR3-Clone 5 and cell lines were cultured in RPMI 1640 with 10% FBS. SHSY5Y from ATCC were grown in DMEM/Ham’s F12 (1:1) with 10% FBS. Immortalized HBECS (except HBECKTRL5-Clone 5; Sato et al., 2006) were cultured in Keratinocyte-SFM (Invitrogen, Grand Island, NY) with 5 ng/ml epidermal growth factor and 50 μg/ml bovine pituitary extract. The lung cancer cell lines were DNA fingerprinted using the PowerPlex 1.2 kit (Promega, Madison, WI) and confirmed by the DNA fingerprint library maintained by either ATCC or the Hamon Cancer Center. The lines were mycoplasma free, as confirmed by the e-Myco kit (Boca Scientific, Boca Raton, FL).

Antibodies and reagents

Immunoblot analyses were as previously described, using equal amounts of protein from each sample (Lawrence et al., 2005). The following antibodies were used for blotting and immunoprecipitation: goat NeuroD1 (N-19), rabbit pan-phospho-Trk (E-6), p53 (DO-1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; FL-335; Santa Cruz Biotechnology, Santa Cruz, CA); mouse ASCL1 (BD Biosciences, San Jose, CA); rabbit TrkB (Chemicon, Temecula, CA); mouse NGN3 (R&D Systems, Minneapolis, MN); rabbit nAChR subunits (Millipore, Billerica, MA); and mouse pERK1/2, mouse AKT, and rabbit pAKT-S473 (Cell Signaling [Danvers, MA], Sigma-Aldrich [St. Louis, MO], respectively). α-Tubulin hybridoma was purchased from the Developmental Studies Hybridoma Bank (University of Iowa, Iowa City, IA). Lestaurtinib was purchased from LC labs, Woburn, MA; BDNF from R&D Systems; nicotine, PD0325901, and mecamylamine from Sigma-Aldrich; and LY294002 was from Cell Signaling. Band intensities were quantified using a LI-COR Odyssey Infrared Imaging System.

Invasion assays

For invasion assays, 2.5 × 10⁴ cells were embedded in growth factor–reduced Matrigel in the presence or absence of 1 μM nicotine 48 h after knockdown. Transwell migration was assayed in Transwell permeable supports (3422; Corning, Corning, NY). Cells were seeded in the top chamber in either RPMI with 1% FBS or DMEM/Ham’s F12 with 1% FBS and allowed to migrate along a concentration gradient through a polycarbonate membrane with 8-μm pores toward the bottom chambers, which contained medium with 25% FBS. Cells were fixed, stained with methylene blue, and counted.

Transfection of short hairpin RNAs and plasmids

Virus was generated for infection of human pGIPZ lentiviral short hairpin RNA (shRNA) plasmids against (NeuroD1, CHRNA3/A5/B4) created by the RNAi Consortium. These were purchased by UT Southwestern as a library (TRC-Hs1.0 [Human]) from Open Biosystems (sequences are available online at the Open Biosystems website http://dharmacon.gelifesciences.com/rnai-and-custom-rna-synthesis/shrna/gipz-lentiviral-shrna/libraries/). NeuroD1 sh RNA, V2LHS_152218 (shRNA-1); TrkB shRNA, V2LHS_63731.

Calcium assays

Cells were washed twice with phosphate-buffered saline (PBS) and incubated with the fluorescent dye Fura-2AM diluted in...
Quantitative RT-PCR (qRT-PCR) primers were as follows: \(\alpha_3 \), reverse, TGGCAAGAAAATCCTGGCTG, and forward, ATGGCTGTGC- GTCCCTCTCTCT; \(\alpha_5 \), forward, CCAACTGCTTGACATGAG, and reverse, TCCACAGAAACACCGATACA; \(\beta_7 \), forward, CCCAGTG- GACGAGAGCAT, and reverse, GCCACACATACCCCGAGTG; \(\beta_4 \), forward, TCCCTGTTCCTTTCTTCCCT, and reverse, TGACCT- TGATGGAGATGAG; and \(\beta_2 \), forward, GGCAATGACGGTGTC- CTT, and reverse, CACCTACCTCTCCAGCACCA.

ACKNOWLEDGMENTS

We thank current and former members of the Cobb and Minna laboratories, including A-Young Lee, Jill Larsen, Michael Kalwat, Aroon Karra, and Alileen Klein, for comments on the manuscript and Dione Ware for administrative assistance. We thank the Huber lab for the NeuN antibody and the Albanesi lab for use of the Synergy microplate reader. This work was supported by grants from the National Institutes of Health (R01DK55310 to M.H.C. and P50CA70907 to J.D.M.), grants from the Cancer Prevention and Research Institute of Texas to M.H.C. and J.D.M., and support from Department of Defense PROSPECT and the Longenbaugh Foundation to J.D.M. J.K.O. was supported by National Institute of General Medical Sciences Pharmacological Sciences Training Grant 5-T32 GM007062. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

REFERENCES

Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009). Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 99, 73–120.

Alessi DR, Smythe C, Keyse SM (1993). The human CL100 gene encodes a Tyr/Thr-protein phosphatase which potently and specifically inactivates MAP kinase and suppresses its activation by oncogenic ras in Xenopus oocyte extracts. Oncogene 8, 2015–2020.

Amos CI et al. (2008). Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 40, 616–622.

Andrews PW (1984). Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 103, 285–293.

Ball DW, Azzoli CG, Baylin SB, Chi D, Dou S, Donis-Keller H, Cumaraswamy A, Borges M, Nelkin BD (1993). Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors. Proc Natl Acad Sci USA 90, 5648–5652.

Ben-David U, Benvenisty N (2011). The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11, 268–277.

Ben-David U, Mayshar Y, Benvenisty N (2011). Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell 9, 97–102.

Carney DN, Bepler G, Gazdar AF (1985a). The serum-free establishment and in vitro growth properties of classic and variant small cell lung cancer cell lines. Recent Results Cancer Research 99, 157–166.

Carney DN, Gazdar AF, Bepler G, Guccion JG, Marangois PJ, Moody TW, Zweig MH, Minna JD (1985b). Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res 45, 2913–2923.

Cau E, Gradwohl G, Fode C, Guillemot F (1997). Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124, 1611–1621.

Chen RJ, Ho YS, Guo HR, Wang YJ (2008). Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicol Sci 104, 283–293.

Dajas-Bailador FA, Mogg AJ, Wonnacott S (2002a). Intracellular Ca2+ signals evoked by stimulation of nicotinic acetylcholine receptors in SH-SYSY cells: contribution of voltage-operated Ca2+ channels and Ca2+ stores. J Neurochem 81, 606–614.

Dajas-Bailador FA, Soliakov L, Wonnacott S (2002b). Nicotine activates the extracellular signal-regulated kinase 1/2 via the alpha7 nicotinic
acetylcholine receptor and protein kinase A, in SH-SYSY cells and hippocampal neurons. J Neurochem 80, 520–530.

Das Gupta P et al. (2009). Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int. J Cancer 124, 36–45.

Das Gupta P, Chellappan SP (2006). Nicotine-mediated cell proliferation and angiogenesis: new twists to an old story. Cell Cycle 5, 2324–2328.

Das Gupta P, Rastogi S, Pillai S, Ordorzone-Ercan D, Morris M, Haura E, Chellappan S (2006). Nicotine induces cell proliferation by beta-arrin-stimulated activation of Src and Rb-Raf-1 pathways. J Clin Invest 116, 2208–2217.

Dutton C, Marcera E, Chae JH, McCullough J, Eby J, Hausburg M, Stein GH, Khoos S, Cobb MH, Lee JE (2005). Context-dependent regulation of NeuroD activity and protein accumulation. Mol Cell Neurosci 22, 77–736.

Fratticci A et al. (2007). Differential expression of neurogenins and NeuroD1 in human pituitary tumours. J Endocrinol 194, 475–484.

Gazdar AF, Carney DN, Nau MM, Minna JD (1985). Characterization of variant subcellulars of cell lines derived from small cell lung cancer having distinctive biochemical, morphological, and growth properties. Cancer Res 45, 2924–2930.

Gerzanich V, Wang F, Kuryatov A, Lindstrom J (1998). alpha 5 Subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulaton of human neuronal alpha 3 nicotinic receptors. J Pharmacol Exp Ther 286, 311–320.

Govindan R et al. (2012). Genomic landscape of non-small cell lung cancer in smokers and nonsmokers. Cell 150, 1121–1134.

Gu G, Dubauskaite J, Melton DA (2002). Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457.

Guo J, Ibaragi S, Luo LY, Hu GF, Huppi PS, Chen CY (2008). Nicotine promotes mammary tumor migration via a signaling cascade involving protein kinase C and CDC42. Cancer Res 68, 8473–8481.

Hecht SS (1999). Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91, 1194–1210.

Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ (2000). Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol 20, 3292–3307.

Huang P, Kishida S, Cao D, Murakami-Tonami Y, Mu P, Nakaguro M, Koide T, Luo Y, Hu SF, Huppi PS, Chen CY (2008). Nicotine promotes mammary tumor migration via a signaling cascade involving protein kinase C and CDC42. Cancer Res 68, 8473–8481.

Hukkanen J, Jacob P 3rd, Benzwitz NL (2005). Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57, 79–115.

Hu Y, Wang T, Stormo GD, Gordon JJ (2004). RNA interference of achaete-scute homolog 1 in mouse prostate neuroendocrine cells reveals its gene targets and DNA binding sites. Proc Natl Acad Sci USA 101, 5559–5564.

Hunj RJ et al. (2008). A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452, 633–637.

Improgo MR, Scafield MD, Tapper AR, Gardner PD (2010a). ASCL1 regulates the expression of the CHRNA5/A3/B4 lung cancer susceptibility locus. Mol Cancer Res 8, 194–203.

Improgo MR, Scafield MD, Tapper AR, Gardner PD (2010b). The nicotinic acetylcholine receptor CHRNA3/B4 gene cluster: dual role in nicotine addiction and lung cancer. Prog Neurobiol 92, 212–226.

Ito T, Udaka N, Yasawa T, Okudeka K, Hayashi H, Sudo T, Guillemin F, Kayegama R, Kitamura H (2000). Basic helix-loop-helix transcription factors: NeuroD regulates neuroendocrine neuroendocrine morphology in the neonatal lung. J Biol Chem 283, 21160–21169.

Osborne JK et al. (2013b). NeuroD1 regulates survival and migration of neuroendocrine lung carcinomas via signaling molecules TrkB and NACM. Proc Natl Acad Sci USA 110, 6524–6529.

Osborne JK, Larsen JE, Gonzales JX, Shames DS, Sato M, Wistuba II, Girard L, Minna JD, Cobb MH (2011a). NeuroD1 regulation of migration accompanies the differential sensitivity of neuroendocrine carcinomas to TrkB inhibition. Oncogenesis 2, e63.

Pfeifer GP, Denissenko MF, Olivier M, Tsytkova N, Hecht SS, Hainaut P (2002). Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21, 7435–7451.

Pillai S, Rozwani W, Li X, Rawal B, Nair S, Schell MJ, Bepler G, Haura E, Coppola D, Chellappan S (2011). ID1 facilitates the growth and metastasis of non-small cell lung cancer in response to nicotinic acetylcholine receptor and epithelial growth factor receptor signaling. Mol Cell Biol 31, 3052–3067.

Pleassance ED et al. (2010). A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463, 184–190.

Przyborski SA, Morton JE, Wood A, Andrews PW (2000). Developmental regulation of neurogenin1 in the pluripotent human embryonal carcinoma cell line NTERA-2. Eur J Neurosci 12, 3521–3528.

Pulyappadamba VT, Cheriyan VT, Thulasidasan AK, Bava SV, Vinod BS, Prabhoo PR, Varghese R, Bevin A, Venugopal S, Anto RJ (2010). Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent. Mol Cancer 9, 220.

Quan AL, Videretic GM, Suh JH (2004). Brain metastases in small cell lung cancer. Oncology 18, 961–972; discussion, 974, 979–980, 987.
Sun S, Schiller JH, Spinola M, Minna JD (2007). New molecularly targeted therapies for lung cancer. J Clin Invest 117, 2740–2750.

Syder AJ, Karam SM, Mills JC, Jppolito JE, Ansari HR, Farook V, Gordon JI (2004). A transgenic mouse model of metastatic carcinoma involving transdifferentiation of a gastric epithelial lineage progenitor to a neuroendocrine phenotype. Proc Natl Acad Sci USA 101, 4471–4476.

Tournier JM et al. (2006). alpha3alpha5beta2-Nicotinic acetylcholine receptor contributes to the wound repair of the respiratory epithelium by modulating intracellular calcium in migrating cells. Am J Pathol 168, 55–68.

van Meerbeeck JP, Fennell DA, De Ruysscher DK (2011). Small-cell lung cancer. Lancet 378, 1741–1755.

West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA (2003). Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 111, 81–90.

Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY (2008). Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2, 333–344.

Xu L, Deng X (2004). Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butane induces phosphorylation of mu- and m-calpain in association with increased secretion, cell migration, and invasion. J Biol Chem 279, 53683–53690.

Xi X et al. (2008). Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207.