Maternal Complications following Open and Fetoscopic Fetal Surgery: a Systematic Review and Meta-Analysis

Short running title: Maternal Complications after Fetal Surgery

Manuscript word count: 3637
Table count: 6
Figure count: 1
Supplementary information: 4

Adalina Sacco1*, Lennart Van der Veeken2, Emma Bagshaw1, Catherine Ferguson1, Tim Van Mieghem3, Anna L David1,2,4, Jan Deprest1,2,5

1 Institute for Women's Health, University College London, London, UK
2 Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
3 Department of Obstetrics and Gynaecology, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
4 NIHR University College London Hospitals Biomedical Research Centre, London, UK
5 Clinical Department Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium

* Adalina Sacco
a.sacco@ucl.ac.uk
Fetal Medicine Unit, Elizabeth Garrett Anderson Wing, University College London Hospital, 235 Euston Road, London, NW1 2BU

Conflict of interest statement:
All authors report no conflict of interest.
What’s already known about this topic?

- Fetal surgery, both open and fetoscopic, is now widely performed.
- Fetoscopy is perceived as safe for the mother, although specific data on maternal complications is lacking.
- Open fetal surgery is known to cause maternal morbidity, but the exact nature and frequency of complications is not well established across different centres and types of surgery.

What does this study add?

- This study estimates the nature and frequency of maternal complications following fetoscopic and open fetal surgery.
- For open fetal surgery the severe complication rate (Grade III to V according to the Clavien-Dindo classification of surgical complications) is approximately 4% and minor complication rate is 16%.
- For fetoscopic fetal surgery the severe complication rate is approximately 2% and minor complication rate is 4%.
Abstract

Objective
To establish maternal complication rates for fetoscopic or open fetal surgery.

Methods
We conducted a systematic literature review for studies of fetoscopic or open fetal surgery performed since 1990, recording maternal complications during fetal surgery, the remainder of pregnancy, delivery and after the index pregnancy.

Results
One hundred and sixty-six studies were included, reporting outcomes for open fetal (n=1193 patients) and fetoscopic surgery (n=9403 patients). No maternal deaths were reported. The risk of any maternal complication in the index pregnancy was 20.9% (95%CI 15.22-27.13) for open fetal and 6.2% (95%CI 4.93-7.49) for fetoscopic surgery. For severe maternal complications (Grade III to V Clavien-Dindo classification of surgical complications) the risk was 4.5% (95%CI 3.24-5.98) for open fetal and 1.7% (95%CI 1.19-2.20) for fetoscopic surgery. In subsequent pregnancies, open fetal surgery increased the risk of preterm birth but not uterine dehiscence or rupture. Nearly one quarter of reviewed studies (n=175, 23.3%) were excluded for failing to report the presence or absence of maternal complications.

Conclusions
Maternal complications occur in 6.2% fetoscopic and 20.9% open fetal surgeries, with serious maternal complications in 1.7% fetoscopic and 4.5% open procedures.
Reporting of maternal complications is variable. To properly quantify maternal risks, outcomes should be reported consistently across all fetal surgery studies.

Keywords:
Fetal surgery, fetoscopic surgery, maternal safety, maternal complications

Funding:
This research is funded by the Wellcome Trust (WT101957) and Engineering and Physical Sciences Research Council (ESPRC) (NS/A000027/1). JD is also funded by the Great Ormond Street Hospital Children’s Charity Fund. ALD is supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. LvdV is funded with support of the Erasmus + Programme of the European Union (Framework Agreement number: 2013-0040). This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.
Introduction

The last 35 years have witnessed an expansion of fetal therapy options\(^1\), with surgery on the fetus, placenta, or cord now relatively common in tertiary-level fetal medicine units. Enabled by advancements in imaging, surgical instrumentation and techniques, early diagnosis and treatment of fetal anomalies is now possible for a wide range of conditions\(^3\).

The mother has been called an “innocent bystander” in fetal surgery\(^4\) and generally fetal therapy is almost exclusively offered to women who are healthy themselves. Fetal surgery poses risks to the mother not only during the procedure itself but also throughout the remainder of the index pregnancy, potentially during any future pregnancies and throughout the woman’s entire life. Fetal surgery offers no direct medical benefit to the mother, and from an ethical perspective maternal risks should be minor and acceptable to the mother and family\(^5\).

Information regarding safety of surgery is important for counselling and informed decision making; however, robust data on maternal complications of fetal surgery are lacking. One single-centre study of maternal outcomes following both open fetal and fetoscopic surgery performed between 1989 and 2003 found a number of short-term morbidities\(^6\). A systematic review of maternal complications following fetoscopic laser coagulation for twin-to-twin transfusion syndrome (TTTS) in 1785 patients treated between 1990 and 2009\(^7\) observed an overall adverse event rate of 5.4% with severe complications in 1.0%. The aim of this study was to estimate the incidence of immediate and long-term maternal complications of fetoscopic or open fetal surgery through a systematic review of the literature.
Methods

Protocol and Registration

This systematic review was conducted in accordance with Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidance. The protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO-CRD42017082411).

Eligibility criteria

All randomised, cohort and case-controlled studies and case series reporting the results of open fetal or fetoscopic fetal surgery in humans from January 1990 to October 2018 were considered eligible. No language restrictions were applied. Systematic reviews, narrative review articles and case reports were excluded. There is no accepted numerical definition of a case series. We used an empirical cut-off of at least three cases because of the rarity of some procedures and conditions searched for.

Search strategy

A systematic review was conducted in MEDLINE, EMBASE and Cochrane databases using free text and Medical Subject Headings (MESH). The electronic search strategy is described in Supplement 1. Subsequently, a grey literature (first 100 hits in Pubmed and Google Scholar) search was performed, and reference lists of relevant review articles were manually checked. Covidence software (Veritas Health Innovation Ltd, Melbourne, Australia) was used to eliminate duplicate articles and manage study screening.
Study selection

Two authors (A.S. and L.VdV.) screened all titles and abstracts independently, excluded irrelevant studies and then independently assessed the remaining full-text articles for eligibility; disagreements were resolved by consensus. Studies were excluded if the full text was unavailable online and the abstract contained insufficient information. Studies with interventions which were not fully described or were performed on the neonate instead of the fetus were excluded. Interventions involving access to the uterus using a device with a total outer diameter of <1.5mm were excluded; this cut-off was chosen to avoid procedures performed with needles only (e.g. amniocentesis, fetal blood transfusion, thoraco- or vesicocentesis etc.). Studies of shunting were only included if the outer shunt diameter was ≥1.5mm or the shunt was inserted fetoscopically. Studies which did not report maternal outcomes were excluded. For the purpose of this study, preterm rupture of membranes (PROM), chorionic membrane separation (CMS), preterm labour, preterm delivery and gestational age at delivery, though relevant, were not considered to be maternal complications. Studies from which data could not be extracted (e.g. composite or combined outcomes given) and studies containing patient cohorts which appeared to have been published previously by the same authors were excluded.

Data extraction

Two authors independently extracted data (A.S. and E.B. for open fetal surgery studies, A.S. and C.F. for fetoscopic studies) and entered them into a standardised Excel (Microsoft, Washington, USA) form. Disagreements were resolved by consensus. The ex-utero intrapartum treatment (EXIT) procedure was classified as open fetal surgery. Study characteristics noted included study design, underlying fetal
condition, type of intervention, presence of a control group, gestational age at surgery and number of patients in each study. Outcomes recorded for the duration of the index pregnancy included intra-operative complications (maternal death, placental abruption, uterine bleeding/haemorrhage, blood transfusion, organ damage or anaesthetic complications), post-operative complications (classified from the end of surgery until delivery; maternal death, placental abruption, uterine bleeding/haemorrhage, blood transfusion, sepsis, chorioamnionitis, other infections, pulmonary oedema, amniotic fluid embolism and other respiratory, gastro-intestinal, cardiac or wound problems), complications at delivery of the index pregnancy (uterine dehiscence or rupture or blood transfusion) and the need for additional treatment at any time during the pregnancy. Outcomes noted at any time following the index pregnancy (late outcomes) included fertility (number of further pregnancies, difficulty conceiving, mean time to conception), future pregnancy complications (miscarriage or pre-term delivery), complications during future deliveries (uterine dehiscence or rupture or haemorrhage at delivery), gynaecological and psychological symptoms.

When a study reported “haemorrhage” or an actual blood loss of ≥1000mL we noted this as “haemorrhage”. This cut-off is an accepted definition of severe bleeding both in pregnancy10 and post-partum11. If a study did not specify whether a complication occurred intra- or post-operatively (e.g. placental abruption, requirement for blood transfusion) then this was assumed to have occurred post-operatively.

All complications were independently graded according to the Clavien-Dindo classification of surgical complications12 by two authors (A.S. and L.VdV.) (Supplement 2). Clavien-Dindo grade I or II complications were defined as mild; grade III to V complications were defined as severe12.
Quality assessment of studies

Study quality and risk of bias were analysed by two authors (A.S. and L.VdV.) independently using a standardised form. Randomised trials were analysed using the Cochrane Collaboration’s tool for assessing risk of bias13. Case-control studies were analysed using the Newcastle-Ottawa scale for assessing the quality of non-randomised studies14. Case series were analysed using the National Institutes of Health study quality assessment tool15.

Assessment of heterogeneity

Methodological and clinical heterogeneity of data per study were evaluated. Variables were tested for statistical heterogeneity by applying the I2 test to determine whether data could be pooled. An I2 value less than 40% was taken to indicate minor heterogeneity; 40-75% moderate heterogeneity and >75% substantial heterogeneity13.

Meta-analysis

Meta-analysis for all outcomes was carried out using MedCalc statistical software version 15.4 (MedCalc Software, Ostend, Belgium). Results were expressed as proportions with 95% confidence intervals (CI) as all outcomes were categorical variables. Pooled proportions were calculated using both the fixed and random effects model in case of homogeneity or heterogeneity respectively.
Results

Study selection

The electronic literature search identified 70,367 studies published between 1990 and 2018 (Figure 1); search of the grey literature and reference lists identified a further 16 studies. Following this, 48,248 studies were immediately removed as duplicates. The remaining studies (22,135) were screened by title and abstract, and a further 21,384 were excluded as irrelevant. Full texts of the remaining 751 articles were reviewed, and 585 were excluded for the following reasons: no reporting of maternal outcomes (175/585, 29.9% of studies excluded and 23.3% [175/751] of all studies assessed), insufficient information available (conference abstract/poster only or full text unavailable) (119/585, 20.3%), study design other than randomised trial, case-control trial or case series (110/585, 18.8%) and uterine access using a device <1.5mm (59/585, 10.1%). Thirty studies were translated from French (10), Spanish (7), Polish (5), German (3), Dutch (2), Portuguese (2) and Turkish (1), of which 16 were included following review. Two Chinese-language papers were identified but the full text could not be accessed online. Eventually 166 studies were included; 41 on open fetal surgery, 122 on fetoscopic surgery and three studies including both surgery types.

Study characteristics

Characteristics of included studies are shown in Tables 1-3. Studies of open fetal surgery (Table 1) and fetoscopic surgery (Table 2) are presented and analysed separately as the difference in surgical technique was considered too great for combined analysis. Seven studies specifically focused on late complications, i.e. after the index pregnancy, and are presented separately (Table 3). The majority of studies (68.1%,
113/166) were case series i.e. without a control group; 27.1% (45/166) were case control studies and 4.8% (8/166) were randomised trials.

Risk of bias
Quality assessment of the studies is given in Supplement 3. Most studies (139/166, 83.7%) had a low risk of bias or were high quality. All remaining studies (27/166, 16.3%) had an unclear risk of bias or were fair quality. No studies were found to have a high risk of bias or be low quality overall. For randomised trials, included studies had a high risk of bias with regards to blinding. For case control studies, included studies did not describe statistical methods well overall.

Statistical heterogeneity
Maternal outcome data was pooled in 64 separate meta-analyses, of which 37.5% (24/64) had no or minor heterogeneity. In 39.1% (25/64) there was moderate heterogeneity and in 23.4% (15/64) there was considerable heterogeneity. The levels of heterogeneity per outcome measure are listed in Supplement 4. As both clinical and statistical heterogeneity were found, pooled proportions were given using the random effects model for meta-analysis.

Maternal complications in the index pregnancy - intra-operative
Table 4 summarises maternal complications according to type of surgery performed. No maternal deaths (Clavien-Dindo grade V) due to fetal surgery were reported in any study (10,596 procedures). One study\(^6\) reported a patient at 20 weeks' gestation experiencing a cardio-respiratory arrest prior to fetoscopy for laser photocoagulation. The cause was considered to be a combination of morbid obesity, spinal anaesthesia
and aorto-caval compression, and not related to the procedure which had not commenced. An immediate delivery was conducted by hysterotomy as part of maternal resuscitation and the patient made a full recovery. Another study17 reported brief maternal seizure-like activity during open fetal surgery, which was thought to be anaesthesia-related.

Haemorrhage severe enough to prompt delivery or termination of pregnancy at the time of surgery as a life-saving procedure for the mother (Clavien-Dindo grade III) occurred in 0.92\% of open fetal (95\% CI 0.46-1.62) and 0.26\% of fetoscopic surgeries (95\% CI 0.17-0.38). Three cases18 19 20 occurred due to placental abruption during open fetal surgery for myelomeningocele (MMC) repair, following which delivery occurred, with all three fetuses surviving. Two cases21 22 occurred following laser photocoagulation for TTTS said to be due to “excessive bleeding from placental anastomoses” and the uterine wall respectively. Two cases23 24 occurred during selective reduction, with haemorrhage from the uterine wall prompting delivery. Finally, one pregnancy was terminated due to bleeding from a trocar placental injury during fetoscopic MMC repair.25

In total, placental abruption (Clavien-Dindo grade III) occurred intraoperatively in 1.28\% of open fetal (95\% CI 0.73-1.98) and in 0.28\% of fetoscopic surgeries (95\% CI 0.18-0.39). Bleeding during the procedure was noted in 1.97\% of open fetal (95\% CI 0.97-3.31) and in 1.74\% of fetoscopic surgery cases (95\% CI 1.25-2.32). Intra-operative blood transfusion was required in 1.00\% of patients undergoing open fetal surgery (95\% CI 0.53-1.64) and in 0.27\% undergoing fetoscopic surgery (95\% CI 0.18-0.38). Intra-operative skin burns at the site of diathermy pads occurred in 0.26\% of
patients (95% CI 0.17-0.37) during fetoscopic surgery; this outcome was not reported in any open fetal surgery.

Maternal complications in the index pregnancy - postoperative

One study on laser photocoagulation for TTTS (n=132)\(^{26}\) reported a maternal death from disseminated intravascular coagulation (DIC) four weeks following an uneventful procedure. A post-mortem examination did not find any evidence of chorioamnionitis or amniotic fluid embolism and the authors therefore concluded that this death was unrelated to the procedure.

Haemorrhage severe enough to prompt return to theatre for termination or delivery of the pregnancy within 24 hours was not reported following any open fetal surgeries but occurred following 0.25% of fetoscopic procedures (95% CI 0.16-0.37). This included one\(^{27}\) four hours post-fetoscopic tracheal balloon removal with no cause of the bleeding found. There were two late placental abruptions, one\(^{28}\) 12 hours post-laser photocoagulation and one\(^{29}\) within 24 hours of bipolar cord coagulation.

Placental abruption occurred in 1.80% of patients following open fetal (95% CI 1.14-2.63) and in 1.29% following fetoscopic surgery (95% CI 0.90-1.75). Post-operative blood transfusion was given to 3.36% after open fetal surgery (95% CI 1.85-5.29) and in 0.32% following fetoscopic surgery (95% CI 0.22-0.44).

Chorioamnionitis following open fetal surgery or endometritis following an EXIT procedure occurred in 4.13% of women (95% CI 3.03-5.40), and in 1.45% undergoing fetoscopic surgery (95% CI 1.06-1.90). Of those, PROM was reported to have
occurred in 47.78% following open fetal surgery (95% CI 23.01-73.16) and in 36.31% following fetoscopic surgery (95% CI 22.00-51.99). One study reported severe chorioamnionitis five days after bipolar cord coagulation with septic shock and acute kidney injury which resolved leaving 70% residual renal function. Sepsis was also reported in one patient with chorioamnionitis following fetoscopic laser photocoagulation and in one patient following open MMC repair who developed post-operative peritonitis requiring an emergency laparotomy and delivery. Post-operative pneumonia occurred in two patients - one following fetoscopic radiofrequency ablation (RFA), necessitating three days of intubation and intensive care unit (ICU) care; and one requiring ICU admission following open MMC repair.

Pulmonary oedema occurred in 4.32% of open fetal surgery cases (95% CI 2.32-6.90), and in 0.63% of fetoscopic cases (95% CI 0.43-0.87). Three studies in which post-operative pulmonary oedema occurred reported on peri-operative fluid management (3/102, 2.9%) and 33 reported on the use of magnesium sulphate (33/102, 32.4%) without specifically suggesting causality. Six women required ICU admission, with four requiring intubation and ventilation; three following open fetal surgery and three following fetoscopic surgery.

Maternal complications in the index pregnancy - at delivery

Only a few fetoscopic surgery studies (4/121 studies, 0.33%) reported findings or complications at delivery. Complications at delivery following open fetal surgery are shown in Table 4. Hysterectomy at or around the time of delivery was reported in two patients (Clavien-Dindo grade III). In one case, caesarean delivery following open MMC repair in a woman with two previous caesareans, intra-abdominal scarring and
Friable tissue eventually resulted in hysterectomy. In the second case following laser photoacoagulation for TTTS and PROM, a caesarean section was performed at 33 weeks’ gestation. A hysterectomy was eventually required due to haemorrhage with DIC and the patient spent five days in ICU, where she also experienced an iatrogenic pneumothorax.

Uterine rupture occurred in 0.90% of patients at delivery following open fetal surgery (excluding EXIT procedures) in the index pregnancy (95% CI 0.41-1.59), and uterine dehiscence occurred in 3.67% (95% CI 2.01-5.81). Blood transfusion was given to 1.83% of women (95% CI 1.16-2.65) at delivery following open fetal surgery.

Overall maternal complication rates

Table 4 displays maternal complications. In open fetal surgery there was a 4.51% severe (95% CI 3.24-5.98), a 16.26% minor complication rate (95% CI 11.17-22.09), and a total complication rate of 20.86% (95% CI 15.22-27.13). For fetoscopic surgery, the corresponding rates were: 1.66% severe (95% CI 1.19-2.20), 4.33% minor (95% CI 3.33-5.45) and 6.15% total complications (95% CI 4.93-7.49). Complication rates in the six commonest fetal surgical procedures performed are displayed in Table 5.

Maternal outcomes following the index pregnancy (long-term)

Table 6 shows subsequent pregnancy outcomes and long-term maternal outcomes following a pregnancy in which fetal surgery was performed. New difficulties in conceiving were described in 3.81% of women after open fetal surgery (95% CI 1.22-7.76, reported in four studies); this outcome was not reported to occur after fetoscopic surgery (three studies). Pregnancy loss prior to 24 weeks’ gestation occurred in
19.95% of pregnancies conceived following open fetal surgery (95% CI 13.37-27.48, three studies) and 13.67% of pregnancies conceived after fetoscopic surgery (95% CI 9.34-18.68, three studies). Preterm birth occurred in 20.49% of pregnancies following open fetal surgery (95% CI 10.48-32.81, four studies) and in 2.12% of pregnancies following fetoscopic surgery (95% CI 0.02-9.01; three studies). Uterine rupture or dehiscence occurred respectively in 6.89% (95% CI 1.34-16.27, reported in three studies) and 11.09% (95% CI 5.34-18.59) of pregnancies following open fetal surgery. None were mentioned in fetoscopy studies.

Discussion
In this systematic review of the literature we found an overall complication rate of approximately 21% for open fetal surgery and 6% for fetoscopic fetal surgery, of which minor complications occurred in 16% and 4% of surgeries respectively. This maternal complication rate excludes obstetric complications which may also have occurred (e.g. PROM, CMS, preterm labour and preterm delivery). Additionally, many studies of fetal surgery fail to document maternal complications. Out of 751 full-text articles reviewed, 175 (23.3%) were excluded as no maternal outcomes were stated. Although 68 of these studies focused on a specific aspect of the surgery or its neonatal outcome, 107 studies (92 fetoscopic and 15 open) involving over 9000 patients did not comment on the presence or absence of any complications specifically affecting the mother’s health. Often the “maternal outcomes” stated meant in reality obstetric outcomes (e.g. PROM, preterm labour). We also found that maternal complications were often presented from the fetal perspective (e.g. fetal demise caused by placental abruption). Thirty included studies (18.1%) contained a statement that no adverse maternal outcomes were observed without specifying what was meant by maternal outcomes.
Among these studies were some large series, including a study of 201 patients undergoing fetoscopic tracheal balloon removal40 and studies of 20041 and 50042 patients undergoing fetoscopic laser coagulation. It is unlikely that such large numbers of procedures had no maternal complications, and more likely that complications were either not perceived as serious, not reported and/or the patient follow-up was incomplete. This lack of reporting has most likely led to an underestimation of the actual risk of maternal complications in our meta-analysis. Conversely, when maternal complications were reported, there was a wide variability in which outcomes were discussed and how they were presented.

There was a severe complication rate (Clavien-Dindo grade III or IV) of 4.5\% in women undergoing open fetal surgery and 1.7\% undergoing fetoscopic surgery. This is in keeping with a previous multi-centre review of maternal complications following laser photocoagulation for TTTS7 which found a 1.0\% rate of severe complications and a 5.4\% total rate of complications across all studies; however, when the authors only included studies which systematically assessed maternal complications as a primary or secondary outcome, this rose to 1.8\% for severe and 17.4\% for all complications.

In almost all studies of fetal surgery reviewed, long-term maternal follow up was not described. The seven studies that did so had a wide variation in the parameters described. Fertility does not appear to be negatively affected by fetal surgery, with the rates of de novo difficulties for conceiving in this review (3.81\% following open fetal surgery and none following fetoscopic surgery) being comparable, if not less, than published rates of secondary infertility in the general population43. Similarly, the rates of miscarriage described (19.85\% following open fetal and 13.67\% following fetoscopic
surgery) are similar to rates of spontaneous miscarriage in women who have not undergone fetal surgery44 45 46. Epidemiological studies47 have suggested a worldwide preterm birth rate of 11.1\% with a rate of 8.6\% in “developed regions”47. In the US and UK it is estimated at 9.8\%48 and 7.3\%49 respectively. The preterm birth rate in this review following open fetal surgery (20.49\%) is higher than the usual prevalence, but not higher following fetoscopic surgery (2.12\%). Open fetal surgery was followed by uterine rupture or dehiscence in 6.89\% and 11.09\% of subsequent pregnancies respectively, which is in line with published rates of rupture (6.2\%) and dehiscence (12.5\%) following a classical caesarean section50. Conversely, no uterine ruptures were reported following fetoscopic surgery.

This study included the commonest fetal procedures and, from a maternal perspective, involved similar surgical manipulations yet variable operating times. We included studies from multiple centres worldwide and attempted to identify the non-English literature. It is therefore likely that these results are generalisable to fetal surgery performed outside the included studies. An obvious weakness of this systematic review is that most studies did not include a control group. Furthermore, we decided to pool data for meta-analysis despite having high heterogeneity in some results. Another weakness is the extraction of patient data from papers, which is prone to error given the variable reporting; it is possible that some patients had more than one complication and this was not noted or cumulative rates were as a consequence miscalculated.

This systematic review has identified a significant rate of maternal complications, which should be discussed with patients before embarking on fetal surgery. Large
studies allow an estimation of the likelihood of these events, insomuch as the cases in these series are unselected and consecutive. Our systematic review search strategy may have missed relevant yet rare complications. For example, a letter to a journal editor describing maternal convulsions during general anaesthesia51 was excluded as a case report according to our criteria. In this circumstance, it appears the patient was also part of the cohort of a study that was included17, but it is possible that other rare events reported as case series have been missed. An international, prospective registry of fetal and fetoscopic surgery, such as the Eurofoetus52 and NAFTNet53 registries, would be the best way to accurately determine complication types and rates and avoid missing rare complications.

Conclusion

The maternal risks of fetal surgery are accepted by many patients and healthcare professionals for the possible benefit to the fetus54 55. This systematic review finds that studies of fetal surgery focus on the fetal outcomes of the procedure, and many fail to describe maternal complications. Fetal surgery comes at a risk to the mother, which may be underestimated by fetal therapists due to under-reporting and variable reporting quality. In order to properly quantify maternal risks, outcomes should be reported consistently across all studies of fetal surgery, preferentially in prospective registries.
References

1. Deprest JA, Flake AW, Gratacos E, et al. The making of fetal surgery. *Prenat Diagn.* 2010;30(7):653-667. doi:10.1002/pd.2571.

2. Jancelewicz T, Harrison MR. A history of fetal surgery. *Clin Perinatol.* 2009;36(2):227. doi:10.1016/j.clp.2009.03.007.

3. Deprest JA, Done E, Van Mieghem T, Gucciardo L. Fetal surgery for anesthesiologists. *Curr Opin Anaesthesiol.* 2008;21(3):298-307. doi:10.1097/ACO.0b013e3282ff8607.

4. Farrell JA, Albanese CT, Jennings RW, Kilpatrick SJ, Bratton BJ, Harrison MR. Maternal fertility is not affected by fetal surgery. *Fetal Diagn Ther.* 1999;14(3):190-192. http://gateway.proquest.com/openurl?ctx_ver=Z39.88-2004&res_id=xri:pqm&req_dat=xri:puil:pq_clntid=50325&rft_val_fmt=ori/fmt:ktev:mtx:journal&genre=article&issn=1015-3837&volume=14&issue=3&spage=190.

5. Moon-Grady A, Baschat A, Cass D. Fetal Treatment 2017: The Evolution of Fetal Therapy Centers – A Joint Opinion from the International Fetal Medicine and Surgical Society (IFMSS) and the North American Fetal Therapy Network (NAFTNet). *Fetal Diagn Ther.* 2017;42:241-248.

6. Golombeck K, Ball RH, Lee H, et al. Maternal morbidity after maternal-fetal surgery. *Am J Obstet Gynecol.* 2006;194(3):834-839. http://www.hlisd.org/LibraryDetail.aspx?LibraryID=3866.

7. Merz W, Tchatcheva K, Gembruch U, Kohl T. Maternal complications of fetoscopic laser photocoagulation (FLP) for treatment of twin-twin transfusion syndrome (TTTS). *J Perinat Med.* 2010;38(4):439-443. doi:10.1515/JPM.2010.061.

8. Moher D, Liberati A, Tetzlaff J, Altman D. The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Med.* (6(7)):e1000097.

9. Carey TS, Boden SD. A critical guide to case series reports. *Spine (Phila Pa 1976).* 2003;28(15):1631-1634. doi:10.1097/01.BRS.0000083174.84050.E5.

10. The Royal College of Obstetricians and Gynaecologists. Antepartum Haemorrhage Green-top Guideline No. 63. 2011;(63). https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_63.pdf.

11. Gulmezoglu AM, Souza JP, Mathai M. *WHO Recommendations for the Prevention and
12. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. *Ann Surg.* 2004;240(2):205-213. doi:10.1097/01.sla.0000133083.54934.ae.

13. Higgins J, Green S. Assessing risk of bias in included studies. *Cochrane Handb Syst Rev Interv.* 2008:187-241.

14. Wells G, Shea B, O’Connell D, Peterson J, Welch O, Loson M. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. *Ottawa Heal Res Inst.* 2011. http://www.ohri.ca/programs/clinical_epidemiology/nos_manual.pdf

15. National Institutes of Health: Study Quality Assessment Tools. www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Published 2014.

16. Müllers SM, McAuliffe FM, Kent E, et al. Outcome following selective fetoscopic laser ablation for twin to twin transfusion syndrome: an 8 year national collaborative experience. *Eur J Obstet Gynecol Reprod Biol.* 2015;191:125-129. doi:10.1016/j.ejogrb.2015.05.019.

17. Sinskey JL, Rollins MD, Whitlock E, et al. Incidence and Management of Umbilical Artery Flow Abnormalities during Open Fetal Surgery. *Fetal Diagn Ther.* 2017. doi:10.1159/000477963.

18. Bruner JP, Tulipan N, Paschall RL, et al. Fetal surgery for myelomeningocele and the incidence of shunt-dependent hydrocephalus. *JAMA.* 1999;282(19):1819-1825. http://www.hlisd.org/LibraryDetail.aspx?LibraryID=3866.

19. Moron A, Barbosa M, Milani H, et al. Perinatal outcomes after open fetal surgery for myelomeningocele repair: a retrospective cohort study. *BJOG An Int J Obstet Gynaecol.* 2018[Epub ahea. doi:10.1111/1471-0528.15312.

20. Ochsenbein-Kölble N, Krähenmann F, Hüsler M, et al. Tocolysis for in utero Surgery: Atosiban Performs Distinctly Better than Magnesium Sulfate. *Fetal Diagn Ther.* 2017. doi:10.1159/000478261.

21. Chang J, Tracy TF, Carr SR, Sorrells DL, Luks FI. Port insertion and removal techniques to minimize premature rupture of the membranes in endoscopic fetal surgery. *J Pediatr Surg.* 2006;41(5):905-909.

22. Huber A, Baschat AA, Bregenzer T, et al. Laser coagulation of placental anastomoses with a 30 degrees fetoscope in severe mid-trimester twin-twin transfusion syndrome with anterior
placenta. Ultrasound Obstet Gynecol. 2008;31(4):412-416. doi:10.1002/uog.5283.

23. Delabaere A, Favre N, Velemir L, et al. Suivi pédiatrique de 30 grossesses gémellaires monochorionales consécutives traitées par fœticide sélectif. Gynecol Obstet Fertil. 2013;41(2):85-89. doi:10.1016/j.gyobfe.2012.12.007.

24. Gallot D, Laurichesse H, Lemery D. Selective feticide in monochorionic twin pregnancies by ultrasound-guided umbilical cord occlusion. Ultrasound Obstet Gynecol. 2003;22(5):484-488. doi:10.1002/uog.917.

25. Kohl T, Tchatcheva K, Weinbach J, et al. Partial amniotic carbon dioxide insufflation (PACI) during minimally invasive fetoscopic surgery: early clinical experience in humans. Surg Endosc. 2010;24(2):432-444. doi:10.1007/s00464-009-0579-2.

26. Ville Y, Hecher K, Gagnon A, Sebire N, Hyett J, Nicolaides K. Endoscopic laser coagulation in the management of severe twin-to-twin transfusion syndrome. Br J Obstet Gynaecol. 1998;105(4):446-453.

27. Kohl T, Hering R, Van de Vondel P, et al. Analysis of the stepwise clinical introduction of experimental percutaneous fetoscopic surgical techniques for upcoming minimally invasive fetal cardiac interventions. Surg Endosc. 2006;20(7):1134-1143.

28. Yamamoto M, El Murr L, Robyr R, Leleu F, Takahashi Y, Ville Y. Incidence and impact of perioperative complications in 175 fetoscopy-guided laser coagulations of chorionic plate anastomoses in fetofetal transfusion syndrome before 26 weeks of gestation. Am J Obstet Gynecol. 2005;193(3):1110-1116. http://www.hlisd.org/LibraryDetail.aspx?LibraryID=3866.

29. Taylor MJO, Shalev E, Tanawattanacharoen S, et al. Ultrasound-guided umbilical cord occlusion using bipolar diathermy for Stage III/IV twin-twin transfusion syndrome. Prenat Diagn. 2002;22(1):70-76.

30. Lewi L, Gratacos E, Ortibus E, et al. Pregnancy and infant outcome of 80 consecutive cord coagulations in complicated monochorionic multiple pregnancies. Am J Obstet Gynecol.

This article is protected by copyright. All rights reserved.
31. Chmait RH, Korst LM, Llanes A, Mullin P, Lee RH, Ouzounian JG. Perioperative characteristics associated with preterm birth in twin-twin transfusion syndrome treated by laser surgery. *Am J Obstet Gynecol*. 2013;209(3):264. doi:10.1016/j.ajog.2013.05.025.

32. Zamlynski J, Olejek A, Tomasz K. Comparison of prenatal and postnatal treatments of spina bifida in Poland – a non-randomized, single-center study. *J Matern Neonatal Med*. 2014;27(14):1409-1417.

33. Moise KJKY, Johnson A, Nickeleit V, et al. Radiofrequency ablation for selective reduction in the complicated monochorionic gestation. *Am J Obstet Gynecol*. 2008;198(2):198.e1-198.e5. doi:10.1016/j.ajog.2007.07.043.

34. Bennett KA, Carroll MA, Shannon CN, et al. Reducing perinatal complications and preterm delivery for patients undergoing in utero closure of fetal myelomeningocele: further modifications to the multidisciplinary surgical technique. *J Neurosurg Pediatr*. 2014;14(1):108-114. doi:10.3171/2014.3.PEDS13266.

35. Flake AW, Crombleholme TM, Johnson MP, Howell LJ, Adzick NS. Treatment of severe congenital diaphragmatic hernia by fetal tracheal occlusion: clinical experience with fifteen cases. *Am J Obstet Gynecol*. 2000;183(5):1059-1066. http://www.hlisd.org/LibraryDetail.aspx?LibraryID=3866.

36. Duron VD, Watson-Smith D, Benzuly SE, et al. Maternal and fetal safety of fluid-restrictive general anesthesia for endoscopic fetal surgery in monochorionic twin gestations. *J Clin Anesth*. 2014;26(3):184-190. doi:10.1016/j.jclinane.2013.10.010.

37. Nakata M, Ishii K, Sumie M, et al. A prospective pilot study of fetoscopic laser surgery for twin-to-twin transfusion syndrome between 26 and 27 weeks of gestation. *Taiwan J Obstet Gynecol*. 2016;55(4):512-514. doi:10.1016/j.tjog.2016.06.002.

38. Rustico MA, Lanna MM, Faiola S, et al. Fetal and maternal complications after selective fetoscopic laser surgery for twin-to-twin transfusion syndrome: a single-center experience. *Fetal Diagn Ther*. 2012;31(3):170-178. doi:10.1159/000336227.

39. Moldenhauer JS, Soni S, Rintoul NE, et al. Fetal myelomeningocele repair: the post-MOMS experience at the Children’s Hospital of Philadelphia. *Fetal Diagn Ther*. 2015;37(3):235-240. doi:10.1159/000365353.
40. Jiménez JA, Eixarch E, DeKoninck P, et al. Balloon removal after fetoscopic endoluminal tracheal occlusion for congenital diaphragmatic hernia. *Am J Obstet Gynecol*. 2017;217(1):78. doi:10.1016/j.ajog.2017.02.041.

41. Hecher K, Diehl W, Zikulnig L, Vetter M, Hackelöer BJ. Endoscopic laser coagulation of placental anastomoses in 200 pregnancies with severe mid-trimester twin-to-twin transfusion syndrome. *Eur J Obstet Gynecol Reprod Biol*. 2000;92(1):135-139.

42. Martínez JM, Eixarch E, Crispi F, Puerto B, Gratacós E. Tratamiento por fetoscopia de la transfusión feto-fetal: Resultados en 500 casos consecutivos. *Diagnostico Prenat*. 2012;23(3):102-108. doi:10.1016/j.diapre.2012.06.010.

43. Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, Regional, and Global Trends in Infertility Prevalence Since 1990: A Systematic Analysis of 277 Health Surveys. *PLoS Med*. 2012;9(12):1-12. doi:10.1371/journal.pmed.1001356.

44. Wilcox A, Weinber C, O’Connor J, Baird D. Incidence of Early Pregnancy Loss. *N Engl J Med*. 1988;319(4):189-194.

45. Andersen AN, Wohlfahrt J, Christens P, Olsen J, Melbye M, Nybo A. Maternal age and fetal loss: population based register linkage study. *BMJ*. 2000;320(June):1708-1712.

46. Herbert D, Lucke J, Dobson A. Pregnancy Losses In Young Australian Women. Findings from the Australian Longitudinal Study on Women’s Health. *Women’s Heal Issues*. 2009;19(1):21-29. doi:10.1016/j.whi.2008.08.007.

47. Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. *Lancet*. 2012;379(9832):2162-2172. doi:10.1016/S0140-6736(12)60820-4.

48. Tanne JH. Preterm and low weight births rise again in the US. *BMJ*. 2017;3311:j3311. doi:10.1136/bmj.j3311.

49. National Institute for Health and Care Excellence. Preterm labour and birth. 2015. nice.org.uk/guidance/ng25.

50. Greene RA, Fitzpatrick C, Turner MJ. What are the maternal implications of a classical caesarean section? *J Obstet Gynaecol (Lahore)*. 1998;18(4):345-347. doi:10.1080/01443619867083.
51. Shavit C, Rollins M, Ferschl M. Maternal convulsion during high-dose sevoflurane anaesthesia for open foetal surgery. *Br J Anaesth.* 2017;118(4):634-635.

52. Gratacós E, Deprest J. Current experience with fetoscopy and the Eurofoetus registry for fetoscopic procedures. *Eur J Obstet Gynecol Reprod Biol.* 2000;92(1):151-159.

53. NAFTNet Website. https://www.naftnet.org.

54. Bliton MJ. Parental hope confronting scientific uncertainty: a test of ethics in maternal-fetal surgery for spina bifida. *Clin Obstet Gynecol.* 2005;48(3):595-607. https://go.openathens.net/redirector/nhs?url=http%3A%2F%2Fovidsp.ovid.com%2Fovidweb.cgi%3FT%3DJS%26PAGENODE%3Dforn%26src%3Df%26cmd%3Df%26view%3D5%26PAGETYPE%3Dfulltext%26MODE%3Dovid%26CSC%3D4%26NEWS%3D3D%26ovft%26SEARCH%3D%26252210.1097%2F01.grf.0000169660.80698.a8%2522.di.

55. Fry JT, Frader JE. “We want to do everything”: How parents represent their experiences with maternal-fetal surgery online. *J Perinatol.* 2018;38(3):226-232. doi:10.1038/s41372-017-0040-4.

56. Barthod G, Teissier N, Bellarbi N, et al. Fetal airway management on placental support: limitations and ethical considerations in seven cases. *J Obstet Gynaecol.* 2013;33(8):787-794. doi:10.3109/01443615.2013.823924.

57. Cass DL, Olutoye OO, Cassady CI, et al. EXIT-to-resection for fetuses with large lung masses and persistent mediastinal compression near birth. *J Pediatr Surg.* 2013;48(1):138-144. doi:10.1016/j.jpedsurg.2012.10.067.

58. Chen XY, Yang JX, Zhang HY, et al. Ex utero intrapartum treatment for giant congenital omphalocele. *World J Pediatr.* 2018;(0123456789):1-5. doi:10.1007/s12519-018-0129-7.

59. Dahlgren G, Törnberg DC, Pregner K, Irestedt L. Four cases of the ex utero intrapartum treatment (EXIT) procedure: anesthetic implications. *Int J Obstet Anesth.* 2004;13(3):178-182.

60. George RB, Melnick AH, Rose EC, Habib AS. Case series: Combined spinal epidural anesthesia for Cesarean delivery and ex utero intrapartum treatment procedure. *Can J Anaesth.* 2007;54(3):218-222. http://gateway.proquest.com/openurl?ctx_ver=Z39.88-2004&res_id=xri:pql&req_dat=xri:pql;pk_id=50325&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=article&issn=0832-610X&volume=54&issue=3&spage=218.

61. Hedrick HL. Ex utero intrapartum therapy. *Semin Pediatr Surg.* 2003;12(3):190-195.

62. Hedrick HL, Flake AW, Crombleholme TM, et al. The ex utero intrapartum therapy procedure
for high-risk fetal lung lesions. *J Pediatr Surg.* 2005;40(6):1038-1044.

doi:10.1016/j.jpedsurg.2005.03.024.

63. Kern C, Ange M, Morales, Peiry B, Pfister RE. Ex utero intrapartum treatment (EXIT), a resuscitation option for intra-thoracic foetal pathologies. *Swiss Med Wkly.* 2007;137(19-20):279-285.

64. Kornacki J, Szydłowski J, Skrzypczak J, et al. Use of ex utero intrapartum treatment procedure in fetal neck and high airway anomalies – report of four clinical cases. *J Matern Neonatal Med.* 2017;0(0):1-5. doi:10.1080/14767058.2017.1390740.

65. Kunisaki SM, Barnewolt CE, Estroff JA, et al. Ex utero intrapartum treatment with extracorporeal membrane oxygenation for severe congenital diaphragmatic hernia. *J Pediatr Surg.* 2007;42(1):98.

https://auth.elsevier.com/ShibAuth/institutionLogin?entityID=https://idp.eng.nhs.uk/openathens &appReturnURL=https%3A%2F%2Fwww.clinicalkey.com%2Fcontent%2FplayBy%3Fissn%3D0022-3468%26vol%3D34%26issue%3D1%26pgfirst%3D98.

66. Laje P, Johnson MP, Howell LJ, et al. Ex utero intrapartum treatment in the management of giant cervical teratomas. *J Pediatr Surg.* 2012;47(6):1208-1216.

doi:10.1016/j.jpedsurg.2012.03.027.

67. Laje P, Howell LJ, Johnson MP, Hedrick HL, Flake AW, Adzick NS. Perinatal management of congenital oropharyngeal tumors: the ex utero intrapartum treatment (EXIT) approach. *J Pediatr Surg.* 2013;48(10):2005-2010. doi:10.1016/j.jpedsurg.2013.02.031.

68. Laje P, Peranteau WH, Hedrick HL, et al. Ex utero intrapartum treatment (EXIT) in the management of cervical lymphatic malformation. *J Pediatr Surg.* 2015;50(2):311-314.

doi:10.1016/j.jpedsurg.2014.11.024.

69. Lazar DA, Olutoye OO, Moise KJ, et al. Ex-utero intrapartum treatment procedure for giant neck masses--fetal and maternal outcomes. *J Pediatr Surg.* 2011;46(5):817-822.

doi:10.1016/j.jpedsurg.2011.02.006.

70. Noah MMS, Norton ME, Sandberg P, Esakoff T, Farrell J, Albanese CT. Short-term maternal outcomes that are associated with the EXIT procedure, as compared with cesarean delivery. *Am J Obstet Gynecol.* 2002;186(4):773-777.

http://www.hlisd.org/LibraryDetail.aspx?LibraryID=3866.
71. Pellicer M, Pumarola F, Peiró JL, et al. [EXIT procedure in the management of severe foetal airway obstruction: the paediatric otolaryngologist’s perspective]. *Acta Otorrinolaringol Esp*. 2007;58(10):487-490.

72. Stoffan AP, Wilson JM, Jennings RW, Wilkins-Haug LE, Buchmiller TL. Does the ex utero intrapartum treatment to extracorporeal membrane oxygenation procedure change outcomes for high-risk patients with congenital diaphragmatic hernia? *J Pediatr Surg*. 2012;47(6):1053-1057. doi:10.1016/j.jpedsurg.2012.03.004.

73. Tuncay Ozgunen F, Kucukgoz Gulec U, Evruke I., Agcabay C, Kadayifci T., Ozcan K. Fetal orofarengeal tumorler ve EXIT islemine dogum hekimi acisindan bakis [The point of view by obstetricians to fetal oropharengal tumors and EXIT procedure: Case report]. *Turkiye Klin Jinekoloji Obstet*. 2010;20(4):247-251.

74. Zamora IJ, Ethun CG, Evans LM, et al. Maternal morbidity and reproductive outcomes related to fetal surgery. *J Pediatr Surg*. 2013;48(5):951-955. doi:10.1016/j.jpedsurg.2013.02.010.

75. Botelho R, Imada V, Rodrigues da Costa K, Watanabe L, R RJ. Fetal Myelomeningocele Repair through a Mini-Hysterotomy. *Fetal Diagn Ther*. 2017;42(1):28-34.

76. Bruner JP, Tulipan NB, Richards WO, Walsh WF, Boehm FH, Vrabacak EK. In utero repair of myelomeningocele: a comparison of endoscopy and hysterotomy. *Fetal Diagn Ther*. 2000;15(2):83-88. http://gateway.proquest.com/openurl?ctx_ver=Z39.88-2004&res_id=xri:pqm&req_dat=xri:pqil:pq_clntid=50325&rft_val_fmt=ori/fmt:kev:mtx:journal&genre=article&issn=1015-3837&volume=15&issue=2&spage=83.

77. Farmer DL, von Koch CS, Peacock WJ, et al. In utero repair of myelomeningocele: experimental pathophysiology, initial clinical experience, and outcomes. *Arch Surg*. 2003;138(8):872-878. http://www.hlisd.org/LibraryDetail.aspx?LibraryID=3866.

78. Friszer S, Dhombres F, Di Rocco F, et al. [Preliminary results from the French study on prenatal repair for fetal myelomeningoceles (the PRIUM study)]. *J Gynecol Obstet Biol Reprod (Paris)*. 2016;45(7):738-744. doi:10.1016/j.jgyn.2015.09.002.

79. Johnson MP, Bennett KA, Rand L, et al. The Management of Myelomeningocele Study: obstetrical outcomes and risk factors for obstetrical complications following prenatal surgery. *Am J Obstet Gynecol*. 2016;215(6):778. doi:10.1016/j.ajog.2016.07.052.

80. Marenco ML, Márquez J, Ontanilla A, et al. [Intrauterine myelomeningocele repair: experience
of the fetal medicine and therapy program of the Virgen de Rocío University Hospital. Rev Esp Anestesiol Reanim. 2013;60(1):47-53. doi:10.1016/j.redar.2012.07.011.

81. Soni S, Moldenhauer JS, Spinner SS, et al. Chorioamniotic membrane separation and preterm premature rupture of membranes complicating in utero myelomeningocele repair. Am J Obstet Gynecol. 2016;214(5):647. doi:10.1016/j.ajog.2015.12.003.

82. Harrison MR, Langer JC, Adzick NS, et al. Correction of congenital diaphragmatic hernia in utero, V. Initial clinical experience. J Pediatr Surg. 1990;25(1):47.

83. Harrison MR, Adzick NS, Flake AW, et al. Correction of congenital diaphragmatic hernia in utero: VI. Hard-earned lessons. J Pediatr Surg. 1993;28(10):1411.

84. Harrison MR, Mychaliska GB, Albanese CT, et al. Correction of congenital diaphragmatic hernia in utero IX: fetuses with poor prognosis (liver herniation and low lung-to-head ratio) can be saved by fetoscopic temporary tracheal occlusion. J Pediatr Surg. 1998;33(7):1017.

85. Adzick NS, Flake AW, Crombleholme TM. Management of congenital lung lesions. Semin Pediatr Surg. 2003;12(1):10-16.

86. Hedrick HL, Flake AW, Crombleholme TM, et al. Sacrococcygeal teratoma: prenatal assessment, fetal intervention, and outcome. J Pediatr Surg. 2004;39(3):430.

87. Longaker MT, Golbus MS, Filly RA, Rosen MA, Chang SW, Harrison MR. Maternal outcome after open fetal surgery. A review of the first 17 human cases. JAMA. 1991;265(6):737-741. http://www.hlisd.org/LibraryDetail.aspx?LibraryID=3866.

88. Aboudiab MS, Chon AH, Korst LM, Llanes A, Ouzounian JG, Chmait RH. Management of twin–twin transfusion syndrome with an extremely short cervix. J Obstet Gynaecol (Lahore). 2018;38(3):359-362. doi:10.1080/01443615.2017.1330324.

89. Baschat AA, Barber J, Pedersen N, Turan OM, Harman CR. Outcome after fetoscopic selective laser ablation of placental anastomoses vs equatorial laser dichorionization for the treatment of twin-to-twin transfusion syndrome. Am J Obstet Gynecol. 2013;209(3):234. doi:10.1016/j.ajog.2013.05.034.

90. Chalouhi GE, Quibel T, Benzina N, Bernard J-P, Essaoui M, Ville Y. [Outcome of triplet pregnancies managed for twin-to-twin transfusion syndrome: A single center experience]. J Gynecol Obstet Biol Reprod (Paris). 2016;45(8):929-935. doi:10.1016/j.jgyn.2015.08.006.

91. Chang Y-L, Chao A-S, Chang S-D, et al. Outcome of twin-twin transfusion syndrome treated by
laser therapy in Taiwan’s single center: Role of Quintero staging system. *Taiwan J Obstet Gynecol*. 2016;55(5):700-704. doi:10.1016/j.tjog.2015.05.006.

92. Chmait RH, Kontopoulos E V., Chon AH, Korst LM, Llanes A, Quintero RA. Amniopatch treatment of iatrogenic preterm premature rupture of membranes (iPPROM) after fetoscopic laser surgery for twin–twin transfusion syndrome. *J Matern Neonatal Med*. 2017;30(11):1349-1354. doi:10.1080/14767058.2016.1214123.

93. Crombleholme TM, Shera D, Lee H, et al. A prospective, randomized, multicenter trial of amnioreduction vs selective fetoscopic laser photocoagulation for the treatment of severe twin–twin transfusion syndrome. *Am J Obstet Gynecol*. 2007;197(4):396. https://auth.elsevier.com/ShibAuth/institutionLogin?entityID=https://idp.eng.nhs.uk/openathens &appReturnURL=https%3A%2F%2Fwww.clinicalkey.com%2Fcontent%2FplayBy%2Fdoi%2F%3Fv%3D10.1016%2Fj.ajog.2007.07.020.

94. De Lia JE, Kuhlmann RS, Harstad TW, Cruikshank DP. Fetoscopic laser ablation of placental vessels in severe previable twin-twin transfusion syndrome. *Am J Obstet Gynecol*. 1995;172(4):1202. http://www.hlisd.org/LibraryDetail.aspx?LibraryID=3866.

95. De Lia JE, Kuhlmann RS, Lopez KP. Treating previable twin-twin transfusion syndrome with fetoscopic laser surgery: outcomes following the learning curve. *J Perinat Med*. 1999;27(1):61-67.

96. De Lia JE, Worthington D, Carr MH, Graupe MH, Melone PJ. Placental laser surgery for severe previable feto-fetal transfusion syndrome in triplet gestation. *Am J Perinatol*. 2009;26(8):559-564. doi:10.1055/s-0029-1220789.

97. Deprest JA, Van Schoubroeck D, Van Ballaer PP, Flageole H, Van Assche FA, Vandenberghe K. Alternative technique for Nd: YAG laser coagulation in twin-to-twin transfusion syndrome with anterior placenta. *Ultrasound Obstet Gynecol*. 1998;11(5):347-352. http://onlinelibrary.wiley.com/doi/10.1046/j.1469-0705.1998.11050347.x/full.

98. Draga E, Janiak K, Bielak A, et al. Fetal therapy- laser therapy of twin-to-twin transfusion syndrome /TTTS/. *Polish Gynaecol*. 2016;87(02):104-110. doi:10.17772/gp/61328.

99. Ek S, Kublickas M, Bui T-H, et al. Establishing a national program for fetoscopic guided laser occlusion for twin-to-twin transfusion syndrome in Sweden. *Acta Obstet Gynecol Scand*. 2012;91(10):1196-1200. doi:10.1111/j.1600-0412.2012.01447.x.
100. Habli M, Bombrs A, Lewis D, et al. Incidence of complications in twin-twin transfusion syndrome after selective fetoscopic laser photocoagulation: a single-center experience. *Am J Obstet Gynecol.* 2009;201(4):417. doi:10.1016/j.ajog.2009.07.046.

101. Has R, Kalelioglu I, Corbacioglu Esmer A, et al. Stage-related outcome after fetoscopic laser ablation in twin-to-twin transfusion syndrome. *Fetal Diagn Ther.* 2014;36(4):287-292. doi:10.1159/000362385.

102. Hernández-Andrade E, Guzmán-Huerta M, Benavides-Serralde JA, et al. [Laser ablation of the placental vascular anastomoses for the treatment of twin-to-twin transfusion syndrome]. *Rev Invest Clin.* 2011;63(1):46-52.

103. Ishii K, Nakata M, Wada S, Hayashi S, Murakoshi T, Sago H. Perinatal outcome after laser surgery for triplet gestations with feto-fetal transfusion syndrome. *Prenat Diagn.* 2014;34(8):734-738. doi:10.1002/pd.4357.

104. Ishii K, Nakata M, Wada S, Murakoshi T, Sago H. Feasibility and preliminary outcomes of fetoscopic laser photocoagulation for monochorionic twin gestation with selective intrauterine growth restriction accompanied by severe oligohydramnios. *J Obstet Gynaecol Res.* 2015;41(11):1732-1737. doi:10.1111/jog.12827.

105. Lanna MM, Faiola S, Consonni D, Rustico MA. Increased risk of placental abruption after solomon laser treatment of twin-twin transfusion syndrome. *Placenta.* 2017;53:54-56. doi:10.1016/j.placenta.2017.03.018.

106. Lecointre L, Sananès N, Weingertner AS, et al. Photocoagulation laser par fœtoscopie pour syndrome transfuseur-transfusé : analyse d’une série consécutive unicentrique de 200 cas. *J Gynecol Obstet Hum Reprod.* 2017;46(2):175-181. doi:10.1016/j.jogoh.2016.10.004.

107. Matshe A, Snowise S, Mann LK, et al. Preterm delivery after fetoscopic laser surgery for twin-twin transfusion syndrome: etiology and risk factors. *Ultrasound Obstet Gynecol.* 2017;49(5):612-616. doi:10.1002/uog.15972.

108. Middeldorp JM, Sueters M, Lopriore E, et al. Fetoscopic laser surgery in 100 pregnancies with severe twin-to-twin transfusion syndrome in the Netherlands. *Fetal Diagn Ther.* 2007;22(3):190-194. http://gateway.proquest.com/openurl?ctx_ver=Z39.88-2004&res_id=xri:pqm&req_dat=xri:pqlx:pq_cltid=50325&rft_val_fmt=ori/fmt:kev:mtx:journal&genre=article&issn=1015-3837&volume=22&issue=3&spage=190.

This article is protected by copyright. All rights reserved.
109. Miyadahira M, Brizot M, Carvalho M, et al. Type II and III Selective Fetal Growth Restriction: Perinatal Outcomes of Expectant Management and Laser Ablation of Placental Vessels. *Clinics*. 2018;73:1-5. doi:10.6061/clinics/2018/e210.

110. Molina García FS, Zaragoza García E, Carrillo Badillo MP, Fernández de Santos AG, Calpena García A, Montoya Ventoso F. Implementación de la terapia láser endoscópica para las complicaciones de gestaciones gemelares monocoriales. *Progresos en Obstet y Ginecol*. 2009;52(6):313-319. doi:10.1016/S0304-5013(09)71466-9.

111. Morris RK, Selman TJ, Harbidge A, Martin WI, Kilby MD. Fetoscopic laser coagulation for severe twin-to-twin transfusion syndrome: factors influencing perinatal outcome, learning curve of the procedure and lessons for new centres. *BJOG*. 2010;117(11):1350-1357. doi:10.1111/j.1471-0528.2010.02680.x.

112. Nguyen HK, Cheng YW, Lee H, et al. 446: Recent experience with twin-twin transfusion syndrome: 2005-2011. *Am J Obstet Gynecol*. 2012;206(1):S205. doi:10.1016/j.ajog.2011.10.464.

113. Ozawa K, Sugabayashi R, Wada S, et al. Fetoscopic laser photocoagulation for amniotic fluid discordance bordering on twin–twin transfusion syndrome: Feasibility, perinatal and long-term outcomes. *J Obstet Gynaecol Res*. 2017;43(8):1256-1262. doi:10.1111/jog.13349.

114. Papanna R, Johnson A, Ivey RT, Olutoye OO, Cass D, Moise KJ. Laparoscopy-assisted fetoscopy for laser surgery in twin-twin transfusion syndrome with anterior placentation. *Ultrasound Obstet Gynecol*. 2010;35(1):65-70. doi:10.1002/uog.7495.

115. Papanna R, Habli M, Baschat AA, et al. Cerclage for cervical shortening at fetoscopic laser photocoagulation in twin-twin transfusion syndrome. *Am J Obstet Gynecol*. 2012;206(5):425. doi:10.1016/j.ajog.2012.02.022.

116. Peeters SHP, Stolk TT, Slaghekke F, et al. Iatrogenic perforation of intertwin membrane after laser surgery for twin-to-twin transfusion syndrome. *Ultrasound Obstet Gynecol*. 2014;44(5):550-556. doi:10.1002/uog.13445.

117. Persico N, Fabietti I, D’Ambrosi F, Riccardi M, Boito S, Fedele L. Postnatal survival after endoscopic equatorial laser for the treatment of twin-to-twin transfusion syndrome. *Am J Obstet Gynecol*. 2016;214(4):533. doi:10.1016/j.ajog.2015.10.020.

118. Quintero RA, Comas C, Bornick PW, Allen MH, Kruger M. Selective versus non-selective laser
photocoagulation of placental vessels in twin-to-twin transfusion syndrome. *Ultrasound Obstet Gynecol.* 2000;16(3):230-236. http://onlinelibrary.wiley.com/doi/10.1046/j.1469-0705.2000.00265.x/full.

119. Quintero RA, Bornick PW, Allen MH, Johson PK. Selective laser photocoagulation of communicating vessels in severe twin-twin transfusion syndrome in women with an anterior placenta. *Obstet Gynecol.* 2001;97(3):477-481. https://go.openathens.net/redirector/nhs?url=http%3A%2F%2Fovidsp.ovid.com%3FJS%3DT кам%3D6%3Dovft%3DSEARCH%3D%252210.1016%2FS0029-7844(00)01172-8%2522.di.

120. Rossi AC, Kaufman MA, Bornick PW, Quintero RA. General vs local anesthesia for the percutaneous laser treatment of twin-twin transfusion syndrome. *Am J Obstet Gynecol.* 2008;199(2):137. doi:10.1016/j.ajog.2007.12.008.

121. Ruano R, Brizot M de L, Liao AW, Zugaib M. Selective fetoscopic laser photocoagulation of superficial placental anastomoses for the treatment of severe twin-twin transfusion syndrome. *Clinics (Sao Paulo).* 2009;64(2):91-96. http://europepmc.org/search?query=(DOI:%2210.1590/S1807-59322009000200005%22).

122. Rüegg L, Hüsler M, Krähenmann F, Natalucci G, Zimmermann R, Ochsenbein-Kölble N. Outcome after fetoscopic laser coagulation in twin–twin transfusion syndrome – is the survival rate of at least one child at 6 months of age dependent on preoperative cervical length and preterm prelabour rupture of fetal membranes? *J Matern Neonatal Med.* 2018;0(0):1-9. doi:10.1080/14767058.2018.1506441.

123. Said S, Flood K, Breathnach F, et al. Fetoscopic laser treatment of twin-to-twin transfusion syndrome (TTTS). *Ir Med J.* 2008;101(6):191-193.

124. Senat M-V, Deprest J, Boulvain M, Paupe A, Winer N, Ville Y. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. *N Engl J Med.* 2004;351(2):136-144. http://gateway.proquest.com/openurl?ctx_ver=Z39.88-2004&res_id=xri:pqmlpq_clntid=50325&rft_val_fmt=ori/fmt:kev:mtx:journal&genre=article&issn=1533-4406&volume=351&issue=2&spage=136.

125. Sepulveda W, Wong AE, Dezerega V, Devoto JC, Alcalde JL. Endoscopic laser surgery in severe second-trimester twin-twin transfusion syndrome: a three-year experience from a Latin
126. Shamshirsaz AA, Javadian P, Ruano R, et al. Comparison between laparoscopically assisted and standard fetoscopic laser ablation in patients with anterior and posterior placentation in twin-twin transfusion syndrome: a single center study. *Prenat Diagn*. 2015;35(4):376-381. doi:10.1002/pd.4552.

127. Slaghekke F, Lopriore E, Lewi L, et al. Fetoscopic laser coagulation of the vascular equator versus selective coagulation for twin-to-twin transfusion syndrome: an open-label randomised controlled trial. *Lancet (London, England)*. 2014;383(9935):2144-2151. doi:10.1016/S0140-6736(13)62419-8.

128. Taniguchi K, Sumie M, Sugibayashi R, Wada S, Matsuoka K, Sago H. Twin anemia-polycythemia sequence after laser surgery for twin-twin transfusion syndrome and maternal morbidity. *Fetal Diagn Ther*. 2015;37(2):148-153. doi:10.1159/000365812.

129. Tchirikov M, Oshovskyy V, Steetskamp J, Falkert A, Huber G, Entezami M. Neonatal outcome using ultrathin fetoscope for laser coagulation in twin-to-twin-transfusion syndrome. *J Perinat Med*. 2011;39(6):725-730. doi:10.1515/JPM.2011.091.

130. Teoh M, Walker S, Cole S, Edwards A. “A problem shared is a problem halved”: success of a statewide collaborative approach to fetal therapy. Outcomes of fetoscopic laser photocoagulation for twin-twin transfusion syndrome in Victoria. *Aust N Z J Obstet Gynaecol*. 2013;53(2):108-113. doi:10.1111/ajo.12062.

131. Thia E, Thain S, Yeo G. Fetoscopic laser photocoagulation in twin-to-twin transfusion syndrome: experience from a single institution. *Singapore Med J*. 2017;58(6):321-326. doi:10.11622/smedj.2016067.

132. Ville Y, Van Peborgh P, Gagnon A, Frydman R, Fernandez H. [Surgical treatment of twin-to-twin transfusion syndrome: coagulation of anastomoses with a Nd:YAG laser, under endosonographic control. Forty four cases]. *J Gynecol Obstet Biol Reprod (Paris)*. 1997;26(2):175-181.

133. Weingertner A-S, Kohler A, Mager C, et al. [Fetoscopic laser coagulation in 100 consecutive monochorionic pregnancies with severe twin-to-twin transfusion syndrome]. *J Gynecol Obstet
134. Wilson I, Henry A, Hinch E, et al. Audit of immediate outcomes for MCDA twins following laser therapy for twin-twin transfusion syndrome at the NSW Fetal Therapy Centre. *Aust N Z J Obstet Gynaecol*. 2016;56(3):289-294. doi:10.1111/ajo.12464.

135. Yang X, Leung TY, Ngan Kee WD, Chen M, Chan LW, Lau TK. Fetoscopic laser photocoagulation in the management of twin-twin transfusion syndrome: local experience from Hong Kong. *Hong Kong Med J = Xianggang yi xue za zhi*. 2010;16(4):275-281.

136. Zaretsky M V, Tong SH, Lagueux M, et al. North American Fetal Therapy Network: Indications for delivery following laser ablation for twin-twin transfusion syndrome. *Am J Obstet Gynecol*. 2018;218(1):S316-S316. doi:10.1016/j.ajog.2017.11.055.

137. Zhao D, Cohen D, Middeldorp JM, et al. Histologic Chorioamnionitis and Funisitis After Laser Surgery for Twin-Twin Transfusion Syndrome. *Obstet Gynecol*. 2016;128(2):304-312. doi:10.1097/AOG.0000000000001469.

138. Bebbington MW, Danzer E, Moldenhauer J, Khalek N, Johnson MP. Radiofrequency ablation vs bipolar umbilical cord coagulation in the management of complicated monochorionic pregnancies. *Ultrasound Obstet Gynecol*. 2012;40(3):319-324. doi:10.1002/uog.11122.

139. Berg C, Holst D, Mallmann MR, Gottschalk I, Gembruch U, Geipel A. Early vs late intervention in twin reversed arterial perfusion sequence. *Ultrasound Obstet Gynecol*. 2014;43(1):60-64. doi:10.1002/uog.12578.

140. Deprest JA, Audibert F, Van Schoubroeck D, Hecher K, Mahieu-Caputo D. Bipolar coagulation of the umbilical cord in complicated monochorionic twin pregnancy. *Am J Obstet Gynecol*. 2000;182(2):340-345. doi:10.1016/S0002-9378(00)70221-3.

141. Gouverneur M, Klumper F, Loproire E, Vandenbussche F, Oepkes D. Selectieve foetische door navelstrengcoagulatie bij afwijkende monochoriale meerlingen. *Ned Tijdschr Geneeskd*. 2009;153(19):906-911.

142. Gül A, Güngördük K, Yıldırım G, et al. Bipolar cord coagulation in monochorionic twins discordant for major fetal anomalies. *J Turkish Ger Gynecol Assoc*. 2008;9(1):24-28.

143. Has R, Kalelioglu I, Esmer AC, et al. Bipolar cord coagulation in the management of complicated monochorionic twin pregnancies. *Fetal Diagn Ther*. 2014;36(3):190-195. doi:10.1159/000360853.
144. He ZM, Fang Q, Yang YZ, et al. Fetal reduction by bipolar cord coagulation in managing complicated monochorionic multiple pregnancies: Preliminary experience in China. *Chin Med J (Engl)*. 2010;123(5):549-554. doi:10.3760/cma.j.issn.0366-6999.2010.05.008.

145. Ilagan JG, Wilson RD, Bebbington M, et al. Pregnancy outcomes following bipolar umbilical cord cauterization for selective termination in complicated monochorionic multiple gestations. *Fetal Diagn Ther*. 2008;23(2):153-158. doi:10.1159/000111598.

146. Jelin E, Hirose S, Rand L, et al. Perinatal outcome of conservative management versus fetal intervention for twin reversed arterial perfusion sequence with a small acardiac twin. *Fetal Diagn Ther*. 2010;27(3):138-141. doi:10.1159/000295176.

147. King JR, Conturie CL, Ouzounian JK, Korst LM, Llanes A, Chmait RH. Umbilical Cord Occlusion via Laser Coagulation in Monochorionic Multifetal Gestations before and after 20 Weeks of Gestation. *Fetal Diagn Ther*. 2017;42(1):9-16. doi:10.1159/000448948.

148. Lanna MM, Rustico MA, Dell’Avanzo M, et al. Bipolar cord coagulation for selective feticide in complicated monochorionic twin pregnancies: 118 consecutive cases at a single center. *Ultrasound Obstet Gynecol*. 2012;39(4):407-413. doi:10.1002/uog.11073.

149. Lee H, Bebbington M, Crombleholme TM. The North American fetal therapy network registry data on outcomes of radiofrequency ablation for twin-reversed arterial perfusion sequence. *Fetal Diagn Ther*. 2013;33(4):224-229. doi:10.1159/000343223.

150. Nobili E, Paramasivam G, Kumar S. Outcome following selective fetal reduction in monochorionic and dichorionic twin pregnancies discordant for structural, chromosomal and genetic disorders. *Aust N Z J Obstet Gynaecol*. 2013;53(2):114-118. doi:10.1111/ajo.12071.

151. Paramasivam G, Wimalasundera R, Wiechec M, Zhang E, Saeed F, Kumar S. Radiofrequency ablation for selective reduction in complex monochorionic pregnancies. *BJOG An Int J Obstet Gynaecol*. 2010;117(10):1294-1298. doi:10.1111/j.1471-0528.2010.02624.x.

152. Peng R, Xie HN, Lin MF, et al. Clinical Outcomes after Selective Fetal Reduction of Complicated Monochorionic Twins with Radiofrequency Ablation and Bipolar Cord Coagulation. *Gynecol Obstet Invest*. 2016;81(6):552-558. doi:10.1159/000445291.

153. Quintero RA, Romero R, Reich H, et al. In utero percutaneous umbilical cord ligation in the management of complicated monochorionic multiple gestations. *Ultrasound Obstet Gynecol*. 1996;8(1):16-22. http://onlinelibrary.wiley.com/doi/10.1046/j.1469-0705.1996.08010016.x/full.
154. Quintero RA, Chmait RH, Murakoshi T, et al. Surgical management of twin reversed arterial perfusion sequence. *Am J Obstet Gynecol*. 2006;194(4):982-991. doi:10.1016/j.ajog.2005.10.195.

155. Roman A, Papanna R, Johnson A, et al. Selective reduction in complicated monochorionic pregnancies: Radiofrequency ablation vs. bipolar cord coagulation. *Ultrasound Obstet Gynecol*. 2010;36(1):37-41. doi:10.1002/uog.7567.

156. Schou K V., Jensen LN, Jørgensen C, Søgaard K, Tabor A, Sundberg K. Ultrasound-Guided Bipolar Umbilical Cord Occlusion in Complicated Monochorionic Pregnancies: Is There a Learning Curve. *Fetal Diagn Ther*. 2018;44(1):65-71. doi:10.1159/000479104.

157. Sugibayashi R, Ozawa K, Sumie M, Wada S, Ito Y, Sago H. Forty cases of twin reversed arterial perfusion sequence treated with radio frequency ablation using the multistep coagulation method: A single-center experience. *Prenat Diagn*. 2016;36(5):437-443. doi:10.1002/pd.4800.

158. Takano M, Murata S, Fujiwara M, Hirata H, Nakata M. Experience of fetoscopic laserphotoocoagulation and cord transection for twin-reversed arterial perfusion sequence. *J Obstet Gynaecol Res*. 2015;41(9):1326-1329. doi:10.1111/jog.12720.

159. Tsao KJ, Feldstein VA, Albanese CT, et al. Selective reduction of acardiac twin by radiofrequency ablation. *Am J Obstet Gynecol*. 2002;187(3):635-640. doi:10.1067/mob.2002.125242.

160. Zhang ZT, Yang T, Liu CX, Li N. Treatment of twin reversed arterial perfusion sequence with radiofrequency ablation and expectant management: A single center study in China. *Eur J Obstet Gynecol Reprod Biol*. 2018;225:9-12. doi:10.1016/j.ejogrb.2018.03.046.

161. Deprest J, Jani J, Gratacos E, et al. Fetal intervention for congenital diaphragmatic hernia: the European experience. *Semin Perinatol*. 2005;29(2):94-103.

162. Harrison M, Keller R, Hawgood S. A randomized trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia. *N Engl J Med*. 2003;349:1916-1924.

163. Jani J, Gratacós E, Greenough A, et al. Percutaneous fetal endoscopic tracheal occlusion (FETO) for severe left-sided congenital diaphragmatic hernia. *Clin Obstet Gynecol*. 2005;48(4):910-922.

https://go.openathens.net/redirector/nhs?url=http%3A%2F%2Fovidsp.ovid.com%2Fovidweb.cgi%3FT%3DJJS%26PAGE%3Dfulltext%26MODE%3Dovid%26CSC%3DY%26NEWS%3DN%2

This article is protected by copyright. All rights reserved.
164. Jani JC, Nicolaides KH, Gratacós E, Vandecruys H, Deprest JA, Group FT. Fetal lung-to-head ratio in the prediction of survival in severe left-sided diaphragmatic hernia treated by fetal endoscopic tracheal occlusion (FETO). *Am J Obstet Gynecol*. 2006;195(6):1646-1650. doi:10.1016/j.ajog.2006.04.004.

165. Jani JC, Nicolaides KH, Gratacós E, et al. Severe diaphragmatic hernia treated by fetal endoscopic tracheal occlusion. *Ultrasound Obstet Gynecol*. 2009;34(3):304-310. doi:10.1002/uog.6450.

166. Kosinski P, Wielgos M. Foetoscopic endotracheal occlusion (FETO) for severe isolated left-sided congenital diaphragmatic hernia: single center Polish experience. *J Matern Neonatal Med*. 2018;31(19):2521-2526. doi:10.1080/14767058.2017.1344969.

167. Manrique S, Munar F, Andreu E, et al. [Fetoscopic tracheal occlusion for the treatment of severe congenital diaphragmatic hernia: preliminary results]. *Rev Esp Anestesiol Reanim*. 2008;55(7):407-413.

168. Peralta CFA, Sbragia L, Bennini JR, et al. Fetoscopic endotracheal occlusion for severe isolated diaphragmatic hernia: Initial experience from a single clinic in Brazil. *Fetal Diagn Ther*. 2011;29(1):71-77. doi:10.1159/000314617.

169. Persico N, Fabietti I, Ciralli F, et al. Fetoscopic Endoluminal Tracheal Occlusion in Fetuses with Severe Diaphragmatic Hernia: A Three-Year Single-Center Experience. *Fetal Diagn Ther*. 2017;41(3):215-219. doi:10.1159/000448096.

170. Ruano R, da Silva MM, Campos JADB, et al. Fetal pulmonary response after fetoscopic tracheal occlusion for severe isolated congenital diaphragmatic hernia. *Obstet Gynecol*. 2012;119(1):93-101. doi:10.1097/AOG.0b013e31823d3aea.

171. Ruano R, Yoshisaki CT, da Silva MM, et al. A randomized controlled trial of fetal endoscopic tracheal occlusion versus postnatal management of severe isolated congenital diaphragmatic hernia. *Ultrasound Obstet Gynecol*. 2012;39(1):20-27. doi:10.1002/uog.10142.

172. Ruano R, Peiro JL, da Silva MM, et al. Early fetoscopic tracheal occlusion for extremely severe pulmonary hypoplasia in isolated congenital diaphragmatic hernia: preliminary results.
Arens C, Koch C, Veit M, et al. Anesthetic Management for Percutaneous Minimally Invasive Fetoscopic Surgery of Spina Bifida Aperta: A Retrospective, Descriptive Report of Clinical Experience. *Anesth Analg*. 2017;125(1):219-222. doi:10.1213/ANE.0000000000001896.

Belfort MA, Whitehead WE, Shamshirsaz AA, et al. Fetoscopic Open Neural Tube Defect Repair: Development and Refinement of a Two-Port, Carbon Dioxide Insufflation Technique. *Obstet Gynecol*. 2017;129(4):734-743. doi:10.1097/AOG.0000000000001941.

Degenhardt J, Schürg R, Winarno A, et al. Percutaneous minimal-access fetoscopic surgery for spina bifida aperta. Part II: maternal management and outcome. *Ultrasound Obstet Gynecol*. 2014;44(5):525-531. doi:10.1002/uog.13389.

Kohn J, Rao V, Sellner A, et al. Management of labor and delivery after fetoscopic repair of an open neural tube defect. *Obs Gynecol*. 2018;131(6):1062-1068. doi:10.1097/AOG.0000000000002577.

Pedreira DAL, Zanon N, de Sá RAM, et al. Fetoscopic single-layer repair of open spina bifida using a cellulose patch: preliminary clinical experience. *J Matern Fetal Neonatal Med*. 2014;27(16):1613-1619. doi:10.3109/14767058.2013.871701.

Pedreira DAL, Zanon N, Nishikuni K, et al. Endoscopic surgery for the antenatal treatment of myelomeningocele: the CECAM trial. *Am J Obstet Gynecol*. 2016;214(1):111. doi:10.1016/j.ajog.2015.09.065.

Verbeek RJ, Heep A, Maurits NM, et al. Fetal endoscopic myelomeningocele closure preserves segmental neurological function. *Dev Med Child Neurol*. 2012;54(1):15-22. doi:10.1111/j.1469-8749.2011.04148.x.

Ziemann M, Fimmers R, Khaleeva A. Partial amniotic carbon dioxide insufflation (PACI) during minimally invasive fetoscopic interventions on fetuses with spina bifida aperta. *Surg Endosc*. 2018;Epub ahead. doi:10.1007/s00464-018-6029-z.

Morris RK, Malin GL, Quinlan-Jones E, et al. Percutaneous vesicoamniotic shunting versus conservative management for fetal lower urinary tract obstruction (PLUTO): A randomised trial. *Lancet*. 2013;382(9903):1496-1506. doi:10.1016/S0140-6736(13)60992-7.

Ruano R, Duarte S, Bunduki V, Giron AM, Srougi M, Zugaib M. Fetal cystoscopy for severe lower urinary tract obstruction—initial experience of a single center. *Prenat Diagn*. 2010;30(1):30-
183. Welsh A, Agarwal S, Kumar S, Smith RP, Fisk NM. Fetal cystoscopy in the management of fetal obstructive uropathy: Experience in a single European centre. *Prenat Diagn*. 2003;23(13):1033-1041. doi:10.1002/pd.717.

184. Cavalcante S, Moron AF, Almodin CG, et al. Fetal hydrocephalus. *Childs Nerv Syst*. 2011;27(10):1575-1583. doi:10.1007/s00381-011-1539-1.

185. Mallmann MR, Graham V, Rössing B, et al. Thoracoamniotic Shunting for Fetal Hydrothorax: Predictors of Intrauterine Course and Postnatal Outcome. *Fetal Diagn Ther*. 2017;41(1):58-65. doi:10.1159/000446110.

186. Nivatpumin P, Pangthipampai P, Jiratvanont T, Dej-Arkom S, Triyasunant N, Tempeetikul T. Anesthetic Techniques and Incidence of Complications in Fetoscopic Surgery. *J Med Assoc Thai*. 2016;99(5):602-610.

187. Peralta CFA, Sbragia L, Corrêa-Silva EP de B, et al. [Maternal complications following endoscopic surgeries in fetal medicine]. *Rev Bras Ginecol Obstet*. 2010;32(6):260-266.

188. E.A. T. Maternal reproductive outcomes after in-utero repair of myelomeningocele. *Am J Obstet Gynecol*. 2016;214(1). http://www.hlisd.org/LibraryDetail.aspx?LibraryID=3866.

189. Wilson RD, Lemerand K, Johnson MP, et al. Reproductive outcomes in subsequent pregnancies after a pregnancy complicated by open maternal-fetal surgery (1996-2007). *Am J Obstet Gynecol*. 2010;203(3):209. doi:10.1016/j.ajog.2010.03.029.

190. Gregoir C, Engels AC, Gomez O, et al. Fertility, pregnancy and gynecological outcomes after fetoscopic surgery for congenital diaphragmatic hernia. *Hum Reprod*. 2016;31(9):2024-2030. doi:10.1093/humrep/dew160.

191. Le Lous M, Mediouni I, Chalouhi G, et al. Impact of laser therapy for twin-to-twin transfusion syndrome on subsequent pregnancy. *Prenat Diagn*. 2018;38(4):293-297. doi:10.1002/pd.5227.

192. Vergote S, Lewi L, Gheysen W, De Catte L, Devlieger R, Deprest J. Subsequent fertility, pregnancy, and gynecologic outcomes after fetoscopic laser therapy for twin-twin transfusion syndrome compared with normal monochorionic twin gestations. *Am J Obstet Gynecol*. 2018;218(4):447.e1-447.e7. doi:10.1016/j.ajog.2018.01.013.
Figure 1: Flow diagram of study selection adapted from PRISMA 2009

- Identified for screening (n = 70,383)
- Duplicates excluded (n = 48,248)
- Records screened by title and abstract (n = 22,135)
- Excluded as irrelevant (n = 21,384)
- Full-text articles assessed for eligibility (n = 751)
- Full-text articles excluded (n = 585)
 - No maternal outcomes reported (n = 175)
 - Insufficient information (conference abstract or full text unavailable) (n = 119)
 - Not RCT, cohort or case series (n = 110)
 - Access to uterus using device <1.5mm (n = 59)
 - Duplicate study (n = 51)
 - Same cohort as another study (n = 25)
 - Intervention unclear or not performed (n = 31)
 - Not fetal study (n = 12)
 - Unable to extract data (n = 3)
- Included studies (n = 166)
- Studies of open fetal surgery (n = 41)
- Studies of fetoscopic fetal surgery (n = 122)
- Studies of both open and fetoscopic surgery (n = 3)
Table 1: Included studies of open fetal surgery.

Category	First author and year of publication	Condition	Procedure	Study design	No. of patients
EXIT	Barthod 2013**6	Neck mass, CHAOS	EXIT	Case series	5
	Cass 2013**7	Lung mass, mediastinal mass	EXIT	Case series	9
	Chen 2018**8	Omphalocele	EXIT	Case control	7
	Dahlgren 2004**9	Head or neck tumour	EXIT	Case series	4
	Flake 2000†**5	CDH	EXIT	Case series	15
	George 2007**6	Skeletal dysplasia, micrognathia	EXIT	Case series	3
	Hedrick 2003**1	Multiple	EXIT	Case series	3
	Hedrick 2005**2	Lung lesions	EXIT	Case series	9
	Kern 2007**3	CCAM, hydrothorax	EXIT	Case series	5
	Kornacki 2017**4	Neck mass, CHAOS	EXIT	Case series	4
	Kunisaki 2007**6	CDH	EXIT	Case control	14
	Laje 2012**6	Cervical teratoma	EXIT	Case series	17
	Laje 2013**7	Neck mass	EXIT	Case series	4
	Laje 2015**8	Cervical lymphatic mass	EXIT	Case series	13
	Lazar 2011**9	Neck mass	EXIT	Case series	12
	Noah 2002**0	Not stated	EXIT	Case control	34
	Pellicer 2007**1	Neck mass	EXIT	Case series	3
	Stoffan 2012**2	CDH	EXIT	Case control	7
	Tuncay Ozgunen 2010**3	Neck mass	EXIT	Case series	3
	Zamora 2013***74	MMC, lung mass, SCT	EXIT	Case series	26
MMC	Bennett 2014**34	MMC	Neurosurgical repair	Case control	43
	Botelho 2017**75	MMC	Neurosurgical repair	Case series	45
	Bruner 1999**18	MMC	Neurosurgical repair	Case control	29
	Bruner 2000**76	MMC	Neurosurgical repair	Case series	4
	Farmer 2003**77	MMC	Neurosurgical repair	Case series	12
	Friszer 2016**78	MMC	Neurosurgical repair	Case series	3
	Johnson 2016**79	MMC	Neurosurgical repair	Randomised	91
	Mareno 2013**80	MMC	Neurosurgical repair	Case series	4
	Moldenhauer 2015**39	MMC	Neurosurgical repair	Case series	100
	Moron 2018**19	MMC	Neurosurgical repair	Case series	237
	Ochsenbein-Kolble 2017**20	MMC	Neurosurgical repair	Case control	30
	Sinskey 2017**17	MMC	Neurosurgical repair	Case series	47
	Soni 2016**81	MMC	Neurosurgical repair	Case series	88
	Zamlynski 2014**32	MMC	Neurosurgical repair	Case control	46
CDH	Flake 2000†**5	CDH	Tracheal occlusion	Case series	15
	Harrison 1990**42	CDH	Diaphragm repair	Case series	6
	Harrison 1993**43	CDH	Diaphragm repair	Case series	14
	Harrison 1998**44	CDH	Tracheal occlusion	Case control	13
CCAM	Adzick 2003**45	CCAM	Lung resection	Case series	22
SCT	Hedrick 2004**86	SCT	Debulking	Case series	4
Mixed	Golombeck 2006†**6	MMC, CCAM, SCT	Mixed	Case control	79
	Longaker 1991**87	LUTO, CDH, SCT, CCAM	Mixed	Case series	17
	Zamora 2013†**74	MMC, lung mass, SCT	Mixed	Case series	7
TOTAL					43 studies 1193 patients

† Studies including patients undergoing a primary fetal and later an EXIT procedure.
* Studies including both open and fetoscopic procedures, also included in Table 2
‡ Studies including immediate and late complications, also included in Table 3
CCAM - congenital cystic adenomatoid malformation, CDH - congenital diaphragmatic hernia, CHAOS - congenital high airway obstruction syndrome, EXIT - ex-utero intrapartum treatment, LUTO - lower urinary tract obstruction, MMC - myelomeningocele, SCT - sacrococcygeal teratoma

This article is protected by copyright. All rights reserved.
Table 2: Included studies of fetoscopic surgery.

Category	First author and year of publication	Condition	Procedure	Study design	No. of patients
Multiple pregnancy complications treated with laser	Aboudiab 2017⁸⁸	TTTS	Laser photocoagulation	Case series	18
	Baschat 2013⁶⁹	TTTS	Laser photocoagulation	Case control	147
	Chaluhi 2016⁵⁰	TTTS (triplets)	Laser photocoagulation	Case series	22
	Chang 2006²¹	TTTS	Laser photocoagulation	Case series	27
	Chang 2016⁹¹	TTTS	Laser photocoagulation	Case control	100
	Chmail 2013⁴¹	TTTS	Laser photocoagulation	Case control	318
	Chmail 2017⁹²	TTTS	Laser photocoagulation	Case series	19
	Crombleholm 2007⁹³	TTTS	Laser photocoagulation	Randomised	20
	De Lia 1995⁴⁴	TTTS	Laser photocoagulation	Case series	26
	De Lia 1999⁶⁶	TTTS	Laser photocoagulation	Case series	67
	De Lia 2009⁹⁶	TTTS (triplets)	Laser photocoagulation	Case series	10
	Deprest 1998⁹⁷	TTTS	Laser photocoagulation	Case series	6
	Draga 2016⁵⁸	TTTS	Laser photocoagulation	Case series	37
	Duron 2014³⁸	TTTS	Laser photocoagulation	Case control	85
	Ek 2012⁹⁹	TTTS	Laser photocoagulation	Case series	67
	Habli 2009¹⁰⁰	TTTS	Laser photocoagulation	Case series	152
	Has 2014¹⁰¹	TTTS	Laser photocoagulation	Case series	85
	Hecher 2000⁴¹	TTTS	Laser photocoagulation	Case control	200
	Hernandez-Andrade 2011¹⁰²	TTTS	Laser photocoagulation	Case series	35
	Huber 2008²²	TTTS	Laser photocoagulation	Case control	176
	Ishii 2014¹⁰³	TTTS (triplets)	Laser photocoagulation	Case series	16
	Ishii 2015¹⁰⁴	sFGR	Laser photocoagulation	Case series	10
	Lanna 2017¹⁰⁵	TTTS	Laser photocoagulation	Case control	373
	Lecontre 2017¹⁰⁶	TTTS	Laser photocoagulation	Case control	200
	Malshe 2017¹⁰⁷	TTTS	Laser photocoagulation	Case series	203
	Martinez 2012¹⁴²	TTTS	Laser photocoagulation	Case series	500
	Middeldorp 2007¹⁰⁸	TTTS	Laser photocoagulation	Case series	100
	Miyadahira 2018¹⁰⁹	sFGR	Laser photocoagulation	Case control	67
	Molina-Garcia 2009¹¹⁰	TTTS, sFGR	Laser photocoagulation	Case series	22
	Morris 2010¹¹¹	TTTS	Laser photocoagulation	Case series	164
	Mullers 2015¹¹²	TTTS	Laser photocoagulation	Case series	105
	Nakata 2016¹¹³	TTTS	Laser photocoagulation	Case series	6
	Nguyen 2012¹¹⁴	TTTS	Laser photocoagulation	Case series	98
	Ozawa 2017¹¹⁵	TTTS	Laser photocoagulation	Case control	11
	Papanna 2010¹¹⁶	TTTS	Laser photocoagulation	Case control	48
	Papanna 2012¹¹⁷	TTTS	Laser photocoagulation	Case control	163
	Peeters 2014¹¹⁸	TTTS	Laser photocoagulation	Case control	338
	Persico 2016¹¹⁹	TTTS	Laser photocoagulation	Case series	106
	Quintero 2000¹²⁰	TTTS	Laser photocoagulation	Case control	92
	Quintero 2001¹²¹	sFGR	Laser photocoagulation	Case series	11
	Rossi 2008¹²²	TTTS	Laser photocoagulation	Case control	266
	Ruano 2009¹²³	TTTS	Laser photocoagulation	Case series	19
	Ruegg 2018¹²⁴	TTTS	Laser photocoagulation	Case control	37
	Rustico 2012¹²⁵	TTTS	Laser photocoagulation	Case series	150
	Said 2008¹²⁶	TTTS	Laser photocoagulation	Case series	10
	Senat 2004¹²⁷	TTTS	Laser photocoagulation	Randomised	72
	Sepulveda 2007¹²⁸	TTTS	Laser photocoagulation	Case series	33
	Shamshirsaz 2015¹²⁹	TTTS	Laser photocoagulation	Case control	55
	Slaghekke 2014¹³⁰	TTTS	Laser photocoagulation	Randomised	274
	Taniguchi 2015¹³¹	TTTS	Laser photocoagulation	Case series	3
	Tchirikov 2011¹³²	TTTS	Laser photocoagulation	Case control	80
Multiple pregnancy complications treated with selective reduction

Reference	Year	Condition	Treatment	Study Design	N
Bebbington 2012	2012	TTTS, TRAP, sFGR, discordant anomaly	RFA	Case control	146
Berg 2014	2014	TRAP	RFA	Case control	7
Delabaere 2013	2013	TTTS, TRAP, sFGR, discordant anomaly	BCC, cord compression, cord ligation	Case series	30
Deprest 2000	2000	TTTS, TRAP	BCC	Case series	10
Gallot 2003	2003	TTTS, TRAP	CO	Case series	11
Gouverneur 2009	2009	TTTS, TRAP, sFGR, discordant anomaly	BCC, laser cord photocoagulation	Case series	54
Gul 2008	2008	TTTS, TRAP, discordant anomaly	BCC	Case series	9
Has 2014	2014	TTTS, TRAP, sFGR, discordant anomaly	BCC	Case series	71
He 2010	2010	TTTS, TRAP, sFGR, discordant anomaly	BCC	Case series	14
Ilagan 2008	2008	TTTS, TRAP, discordant anomaly	BCC	Case series	27
Jelin 2010	2010	TRAP	RFA	Case control	7
King 2017	2017	TRAP, discordant anomaly	Laser cord photocoagulation	Case series	43
Lanna 2012	2012	TTTS, TRAP, sFGR, discordant anomaly	BCC	Case series	118
Lee 2013	2013	TRAP	RFA	Case series	98
Lewi 2006	2006	TTTS, TRAP, sFGR, discordant anomaly	Laser cord photocoagulation	Case series	80
Moise 2008	2008	TTTS, discordant anomaly	RFA	Case series	9
Nobili 2013	2013	Discordant anomaly	BCC	Case series	48
Paramasivam 2010	2010	TTTS, TRAP, sFGR, discordant anomaly	RFA	Case series	35
Peng 2016	2016	TTTS, TRAP, sFGR, discordant anomaly	BCC	Case control	93
Quintero 1996	1996	TTTS, TRAP, discordant anomaly, TAPS	CO	Case series	13
Quintero 2006	2006	TRAP	CO or laser photocoagulation	Case control	51
Roman 2010	2010	TTTS, TRAP, sFGR, discordant anomaly	RFA	Case control	60
Schou 2018	2018	TTTS, TRAP, sFGR, discordant anomaly	BCC	Case control	102
Sugibayashi 2016	2016	TRAP	RFA	Case series	40
Takano 2015	2015	TRAP	Laser photocoagulation +/- transection of cord (MCMA)	Case series	10
Taylor 2002	2002	TTTS	BCC	Case series	15
Tsao 2002	2002	TRAP	RFA	Case series	13
Zhang 2018	2018	TRAP	RFA	Case series	25

Additional Conditions

- **CDH**
- **Deprest 2005**

This article is protected by copyright. All rights reserved.
Study	Condition	Intervention	Study Design	n
Harrison 1998*	CDH	Tracheal clip	Case control	8
Harrison 2003	CDH	FETO	Randomised	11
Jani 2005	CDH	FETO	Case series	24
Jani 2006	CDH	FETO	Case series	28
Jani 2009	CDH	FETO	Case series	210
Jimenez 2017	CDH	Fetoscopic balloon removal	Case control	201
Kosinski 2017	CDH	FETO	Case series	28
Manrique 2008	CDH	FETO	Case control	11
Peralta 2011	CDH	FETO	Case series	8
Persico 2017	CDH	FETO	Case series	21
Ruano 2012	CDH	FETO	Case control	35
Ruano 2012	CDH	FETO	Randomised	20
Ruano 2013	CDH	FETO	Case control	17
MMC				
Arens 2017	MMC	Patch	Case series	59
Belfort 2017	MMC	Single layer suture (skin + dura)	Case series	22
Bruner 2000	MMC	Maternal skin graft	Case control	4
Degenhardt 2014	MMC	Patch	Case series	51
Kohn 2018	MMC	Patch	Case series	34
Pedreira 2014	MMC	Patch + skin suture	Case series	4
Pedreira 2016	MMC	Patch + skin suture	Case series	10
Verbeek 2012	MMC	Patch	Case control	19
Zerhouni 2018	MMC	Patch	Case series	65
LUTO				
Morris 2013	LUTO	Vesicoamniotic shunting	Randomised	16
Ruano 2010	LUTO	Cystoscopy	Case control	11
Welsh 2003	LUTO	Cystoscopy	Case series	13
Shunts				
Cavalheiro 2011	Ventriculomegaly	Shunting	Case series	30
Mallman 2017	Hydrothorax	Shunting	Case series	78
Mixed				
Golombeck 2006	TTTS, TRAP, CDH, LUTO	Mixed	Case control	99
Kohl 2006	MMC, CDH, CHAOS	Mixed	Case series	16
Kohl 2010	MMC, TTTS, CDH, CHAOS, ABS	Mixed	Case series	37
Nivatpumin 2016	TTTS, LUTO, CDH, TRAPS	Mixed	Case series	152
Peralta 2010	TTTS, CDH, TRAP	Mixed	Case series	56
TOTAL				122

* Studies including both open and fetoscopic procedures, also included in Table 1

BCC - bipolar cord coagulation, CDH - congenital diaphragmatic hernia, CHAOS - congenital high airway obstruction syndrome, CO - cord occlusion, FETO - fetoscopic endoluminal tracheal occlusion, LUTO - lower urinary tract obstruction, MCMA - monochorionic monoamniotic, MMC - myelomeningocele, RFA - cord radiofrequency ablation, sFGR - selective fetal growth restriction, TAPS - twin anaemia-polycythaemia sequence, TO - tracheal occlusion, TRAP - twin reversed arterial perfusion sequence, TTTS - twin-to-twin transfusion syndrome.
Table 3: Included studies of open and fetoscopic surgery focusing on late complications.

First author and year of publication	Type of surgery	Condition	Study design	Number of patients
Farrell 1999	Open	CDH, CCAM, LUTO, SCT,	Case series	45
Thom 2016	Open	MMC	Randomised	87
Wilson 2010	Open	MMC, CCAM, CDH, SCT, mediastinal teratoma	Case series	47
Zamora 2013	Open	MMC, lung mass, SCT, EXIT	Case series	33
Gregoir 2016	Fetoscopic	CDH	Case control	89
Le Lous 2018	Fetoscopic	TTTS	Case control	122
Vergote 2018	Fetoscopic	TTTS	Case control	92
TOTAL				**7 studies** 515 patients

† Studies including immediate and late complications, also included in Table 1

CCAM - congenital cystic adenomatoid malformation, CDH - congenital diaphragmatic hernia, EXIT - ex-utero intrapartum treatment, LUTO - lower urinary tract obstruction, MMC - myelomeningocele, SCT - sacrococcygeal teratoma, TTTS - twin-to-twin transfusion syndrome
Clavien-Dindo classification	IV (requiring ICU care)	III (requiring surgical intervention)	I-II (requiring treatment)	I - IV	
Open surgery n = 1193					
Complication	n	Complication	n		
Severe infection	2	Haemorrhage requiring delivery	3		
Pulmonary oedema	4	Placental abruption	28		
Complete heart block^a	1	Bowel obstruction	1		
Wound drainage	2	Other infections^b	8		
Laparotomy/ dehiscence repair	1	Transfusion during/after procedure	41		
		Pulmonary oedema	50		
		Total Severe: 4.51%	(95% CI 3.24-5.98)		
Fetoscopic surgery n = 9403					
Maternal cardiac arrest and delivery by hysterotomy	1	Sepsis requiring delivery	1	Bleeding during procedure	165
Severe infection	2	Haemorrhage requiring delivery	8		
Pulmonary oedema	3	Placental abruption	159		
Lung collapse	1	Chorioamnionitis	114		
DIC + Caesarean hysterectomy	1	Other infections^d	2		
Amniotic fluid embolism	2	Pulmonary oedema	45		
		Upper GI bleed^e	1		
		Diathermy skin burns	4		
		“Epidural headache” + blood patch	1		
		Wound hernia	1		
		Pleural effusions	1		
Total Severe: 1.66%	(95% CI 1.19-2.20)	Total Minor: 4.33%	(95% CI 3.33-5.45)		

Pooled proportions calculated using random effect model for meta-analysis

This article is protected by copyright. All rights reserved.
n: number of women

† Complete heart block considered to be tocolysis-related (magnesium sulphate)

†b Other infections in open surgery: wound (6), chest (1), urinary tract (1)

†c Venous thromboembolism: confirmed pulmonary embolism (1); suspected PE with confirmed deep vein thrombosis (1)

†d Other infections in fetoscopic surgery: wound (1), chest (1)

†e Upper GI bleed considered to be tocolysis-related (indomethacin)
Table 5: Maternal complications according to type of fetal surgery in the six most common procedures.

Procedure	Severe complications	Minor complications	All complications			
EXIT						
n = 237						
	Complication	n	Complication	n	Complication	n
	Placental abruption	5	Bleeding during procedure	11		
	Transfusion during/after procedure	19				
	Endometritis	10				
	Wound infection	5				
	TOTAL SEVERE:	3.62%	**TOTAL MINOR:**	17.53%	**ALL COMPLICATIONS:**	20.19%
	(95% CI 1.69-6.24)		(95% CI 9.86-26.86)		(95% CI 4.93-7.49)	
Open MMC repair						
n = 779						
	Severe infection	2	Haemorrhage requiring delivery	3	Bleeding during procedure	1
	Complete heart block	1	Placental abruption	16	Transfusion during/after procedure	5
	Pulmonary oedema	1	Bowel obstruction	1	Chorioamnionitis	21
	Uterine rupture	4				
	Caesarean hysterectomy	1	Pulmonary oedema	15		
	TOTAL SEVERE:	3.35%	**TOTAL MINOR:**	6.63%	**ALL COMPLICATIONS:**	11.54%
	(95% CI 1.70-5.53)		(95% CI 3.63-10.45)		(95% CI 7.73-15.99)	
Fetoscopic MMC repair						
n = 268						
	Placental abruption	6	Bleeding during procedure	3		
	Chorioamnionitis	10				
	Pulmonary oedema	5				
	TOTAL SEVERE:	2.75%	**TOTAL MINOR:**	9.04%	**ALL COMPLICATIONS:**	12.49%
	(95% CI 0.56-6.52)		(95% CI 3.27-17.40)		(95% CI 4.83-23.06)	
FETO						
(insertion or						
	Placental abruption	4	Bleeding during procedure	1		
	Transfusion during/after procedure	1				
Procedure	Severe (n)	Minor (n)	All (95% CI)			
---	------------	-----------	--------------			
Fetoscopic removal of balloon n = 634	1	3	4.4% (0.98-7.32)			
Fetoscopic laser photocoagulation n = 6746	2	148	5.9% (4.33-7.61)			
Fetoscopic selective reduction n = 1239	2	14	5.2% (3.00-7.96)			

Pooled proportions calculated using random effect model for meta-analysis

n: number of women

† Other infections in MMC surgery: chest (1), urinary tract (1)

†b Venous thromboembolism: confirmed pulmonary embolism (1); suspected PE with confirmed deep vein thrombosis (1)
Upper GI bleed considered to be tocolysis-related (indomethacin)
EXIT - ex-utero intrapartum treatment, FETO - fetoscopic endoluminal tracheal occlusion, MMC - myelomeningocele, DIC - disseminated intravascular coagulation
Table 6: Long-term maternal complications following open and fetoscopic fetal surgery

	Open surgery**	Fetoscopic surgery**		
	% (95% CI)	% (95% CI)		
Conception				
Women attempting further pregnancy	50.11	(21.55-78.63)	51.76	(18.63-84.03)
Women conceiving further pregnancy	48.33	(26.74-70.26)	48.20	(31.46-65.16)
New sub-fertility	3.81	(1.22-7.76)	NR	
Pregnancy outcomes				
Miscarriage	19.95	(13.37-27.48)	13.67	(9.34-18.68)
Pre-term delivery	20.49	(10.48-32.81)	2.12	(0.02-9.01)
Uterine rupture	6.89	(1.34-16.27)	0	
Uterine dehiscence	11.09	(5.34-18.59)	NR	
Excessive bleeding at delivery	6.84	(2.16-13.88)	5.52	(2.83-9.03)
Non-pregnancy				
Abdominal pain	6.38**	(3.84-16.06)	9.01	(3.84-16.06)
Abnormal menstrual bleeding	NR		6.54	(3.43-10.57)
Gynaecological surgery**	8.68	(1.81-19.96)	NR	
Psychological symptoms	9.09**	(7.70-64.58)	32.56	(7.70-64.58)

Pooled proportions calculated using random effect model for meta-analysis

NR = not reported

Variable denominator as not all outcomes were reported by all studies

†No meta-analysis possible as reported by single study

‡Gynaecological surgery following open fetal surgery: endometrial ablation (1), hysterectomy (6): caesarean hysterectomy (1), ovarian cysts+/menstrual disorder (2), fibroids (1), unknown reason (2)