Novel temperature-responsive polymer brushes with carbohydrate residues facilitate selective adhesion and collection of hepatocytes

Naokazu Idota¹, Mitsuhiro Ebara¹, Yohei Kotsuchibashi², Ravin Narain² and Takao Aoyagi¹

¹ Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
² Department of Chemical and Materials Engineering and Alberta Ingenuity Center for Carbohydrate Science, University of Alberta, Edmonton, AB T6G2G6, Canada
E-mail: Aoyagi.Takao@nims.go.jp

Received 2 July 2012
Accepted for publication 17 September 2012
Published 23 November 2012
Online at stacks.iop.org/STAM/13/064206

Abstract
Temperature-responsive glycopolymer brushes were designed to investigate the effects of grafting architectures of the copolymers on the selective adhesion and collection of hepatocytes. Homo, random and block sequences of N-isopropylacrylamide and 2-lactobionamidoethyl methacrylate were grafted on glass substrates via surface-initiated atom transfer radical polymerization. The galactose/lactose-specific lectin RCA₁₂₀ and HepG₂ cells were used to test for specific recognition of the polymer brushes containing galactose residues over the lower critical solution temperatures (LCSTs). RCA₁₂₀ showed a specific binding to the brush surfaces at 37 °C. These brush surfaces also facilitated the adhesion of HepG₂ cells at 37 °C under nonserum conditions, whereas no adhesion was observed for NIH-3T3 fibroblasts. When the temperature was decreased to 25 °C, almost all the HepG₂ cells detached from the block copolymer brush, whereas the random copolymer brush did not release the cells. The difference in releasing kinetics of cells from the surfaces with different grafting architectures can be explained by the correlated effects of significant changes in LCST, mobility, hydrophilicity and mechanical properties of the grafted polymer chains. These findings are important for designing ‘on–off’ cell capture/release substrates for various biomedical applications such as selective cell separation.

Keywords: poly(N-isopropylacrylamide), 2-lactobionamidoethyl methacrylate, atom transfer radical polymerization, hepatocytes, selective cell adhesion, cell detachment

1. Introduction

‘Smart’ polymers responding to external stimuli have been actively studied to develop ‘on–off’ switchable materials for applications in biomedical [1, 2], environmental [3, 4] and analytical chemistry fields [5, 6]. Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) is one of the most reliable smart polymers that show discontinuous changes in water solubility in the physiological temperature range [7].
Figure 1. Schematic of an ‘on–off’ switchable surface trap for selective adhesion/detachment of hepatocyte using a temperature-responsive glycopolymer brush surface.

Method can avoid the use of deleterious enzymes, cells are harvested as a single contiguous sheet after they become confluent [12]. These transplantable cell sheets retain cell–cell junctional proteins as well as an intact extracellular matrix underneath the cell sheets, and therefore, they have been stratified in vitro [13] and directly transplanted in vivo [14]. PNIPAAm can also be functionalized by chemical conjugation to biomolecules such as targeting ligands to yield a large and diverse family of polymer-biomolecule hybrid systems [15]. We have developed temperature-responsive polymer-grafted surfaces modified with a series of cell adhesive peptides (Arg-Gly-Asp; RGDs), which is a minimal cell-binding domain in the extracellular matrix (ECM). The RGD-immobilized temperature-responsive surfaces bound cells at 37°C and spontaneously detached them at 20°C [16]. The time required for the cell detachment is strongly related to the cell adhesion strength according to the trend: RGD < RGDS < GRGD < GRGDS. These phenomena arise from the specific design of the grafted polymer, which protects peptides from integrin access below the LCST. More precise designs of the grafting architectures have also enabled the investigation of the effect of extensible nanotethers [17] and the synergistic effect of PHSRN sequences [18] on the integrin-mediated cell binding.

Because adhesive interactions between cells and the ECM are governed primarily by integrins, the RGD motif has been shown to enhance the adhesion of various cells. Although the versatility of the RGD peptide is attractive for surface modification, the use of highly specific sequences with strong affinities toward particular types of cell has gained much attention in the area of cell isolation [19]. An important risk in the clinical application of induced pluripotent stem (iPS) cells, for example, is residual undifferentiated cells that can induce spontaneous tumorigenesis in vivo [20]. To meet safety criteria, the selective separation of targeted cells from residual non-targeted cells is of crucial importance. From these perspectives, we focus on the carbohydrate moiety of glycoproteins, which is one of the most abundant and important biomolecules. The carbohydrates are not only a major source of metabolic energy but are signal biomolecules in a wide range of molecular recognition phenomena, including fertilization, immunological protection, nervous system reactions and viral infection [21]. Many types of glycopolymer with pendent carbohydrate residues have been studied to understand their molecular interactions, mimic biorecognition properties [22, 23], and develop various biomedical applications, such as drug/gene delivery systems for targeting carbohydrate receptors [24], glucose-sensitive biosensors [25] and cell culture substrates using recognition specificity [26–28]. Hepatocyte-specific poly(N-p-vinylbenzyl-D-lactonamide) (PVLA)-coated surfaces, for example, can control an affinity molecular recognition between the asialoglycoprotein receptors (ASGPRs) of hepatocytes and galactose moieties in the polymers [26, 27]. In this system, hepatocytes adhere on cell culture surfaces to form spheroidal shapes and multilayer aggregates in the presence of growth factor, and maintain their differentiated phenotype by regulating liver-specific transcriptions.

Here, we report the construction and characterization of a temperature-responsive ‘on–off’ surface capture and release system for hepatocytes using smart copolymer brushes comprising PNIPAAm and 2-lactobionamidoethyl methacrylate (LAMA), which is known as a sugar-based monomer [29]. Well-defined grafting architectures including a homo, random or hierarchical sequence were achieved by surface-initiated atom transfer radical polymerization (ATRP). The copolymers have been studied in detail by proton nuclear magnetic resonance (1H-NMR) analysis, gel permeation chromatography (GPC), and turbidity measurements. First, we explored the specific recognition of brush surfaces by the RCA120 lectin above the LCST. The reversible binding was also studied below the LCST. Additionally, HepG2 and NIH-3T3 cells were cultured on the brushes in the absence of serum at 37°C, respectively. The temperature was then decreased to 25°C to release the adhered cells from the surface (figure 1).

2. Experimental methods

2.1. Materials

N-Isopropylacrylamide (NIPAAm) was kindly provided by Kohjin (Tokyo) and purified by recrystallization from
n-hexane. LAMA was synthesized and purified according to the previously reported protocol \[29\]. CuCl\(_2\) was obtained from Aldrich (St Louis, Missouri), and washed with acetic acid to remove any soluble oxidized species. CuCl\(_2\) and 2,2’-bipyridyl (bpy) were also purchased from Aldrich. Ethylbenzyl chloride (EBC) was obtained from Kanto Chemical Co. Inc. (Tokyo). Tris(aminomethyl)amine (TREN) was purchased from Sigma Chemical Co. (St Louis, Missouri). Dulbecco’s modified Eagle’s medium (DMEM) were purchased from Sigma Chemical Co. (St Louis, Missouri).

2.2. Preparation of P(NIPAAm-co-LAMA) brushes by surface-initiated ATRP

Surface-initiated ATRP of NIPAAm-LAMA mixtures was performed according to the previously reported protocol (figure 2(a)) \[30, 31\]. Cover glasses were washed with 35% HCl, followed by repeated rinsing with distilled water and drying in vacuo. The clean substrates were immediately put on the bottom of a separable flask with (chloromethylphenyl)ethyltrichlorosilane, an ATRP initiator activated silane, and silanization was carried out for 2 h at 90 °C. After the silanization, the glass substrates were baked at 110 °C for 1 h. P(NIPAAm-co-LAMA) brushes with various feed ratios (molar ratio of NIPAAm/LAMA = 99/1, 97/3, 95/5 and 93/7) were synthesized in mixtures of methanol and water (3/2, v/v) by surface-initiated ATRP. Typically, NIPAAm (1.976 g, 17.5 mmol) and LAMA (0.253 g, 0.5 mmol) were dissolved in 45 ml of the solvent, and the resultant solution was then degassed by freeze-pump-thaw cycles. After being degassed, the monomer solution was poured into another flask containing CuCl\(_2\) (8.0 mg, 81 \(\mu\)mol), CuCl\(_2\) (1.2 mg, 9 \(\mu\)mol), and Me\(_6\)TREN (25 \(\mu\)l, 90 \(\mu\)mol) under Ar gas flow. The initiator-immobilized glasses and EBC (13 \(\mu\)l, 90 \(\mu\)mol), which was used as a free ATRP initiator, were added to the solution after stirring for 30 min, and the polymerization proceeded at 20 °C for 24 h. After the polymerization was stopped by exposing the solution to air, the substrates were rinsed with methanol and distilled water, and dried at 25 °C under vacuum. To estimate molecular weights and compositions of polymer chains, the reaction solution was passed through a neutral alumina column to remove the Cu complex, and the polymer was recovered by reprecipitation from diethyl ether.

2.3. Preparation of PNIPAAm-b-PLAMA brushes by surface-initiated ATRP

PNIPAAm-b-PLAMA brushes, where PLAMA stands for poly(LAMA), were prepared by ATRP of LAMA via surfaces pregrafted with PNIPAAm (figure 2(b)) \[31\]. PNIPAAm monomer (10.184 g, 90 mmol) was dissolved in 45 ml of a mixed solvent (acetonitrile/water = 4/1, v/v), and the solution was degassed by three freeze-thaw cycles. The degassed monomer solution was poured under Ar atmosphere into another flask containing CuCl\(_2\) (26.7 mg, 270 \(\mu\)mol), CuCl\(_2\) (4.0 mg, 30 \(\mu\)mol), and Me\(_6\)TREN (85 \(\mu\)l, 300 \(\mu\)mol). The silanized cover glasses and EBC (44 \(\mu\)l, 300 \(\mu\)mol) were added to the solution after stirring for 30 min, and ATRP proceeded at 0 °C for 5 h. CuCl\(_2\) and bpy were added to the reaction solution under N\(_2\) flow to quench the ATRP, and the polymerization was stopped by exposing the solution to air. The PNIPAAm brush glasses were then repeatedly washed with acetonitrile and water and dried at 25 °C under vacuum. Then, ATRP of LAMA was reinitiated on the quenched PNIPAAm brush surfaces. The reaction solution was passed through a neutral alumina column to remove the Cu complex, and the PNIPAAm, used as a macroinitiator, was recovered by reprecipitation from diethyl ether. Next, degassed LAMA (0.422 g, 0.9 mmol) was prepared in a mixed solvent (methanol/water = 3/2, v/v) as described above, and the ATRP of LAMA proceeded at 20 °C for 12 h. After the reaction, PNIPAAm-b-PLAMA brush glasses were rinsed repeatedly with methanol and water and dried at 25 °C in vacuo. The reaction solution was passed through a neutral alumina column to remove the Cu complex, and the polymer was recovered by reprecipitation from diethyl ether.
2.4. Characterizations

1H-NMR spectra of the free polymers were acquired using a JNM-GSX300 spectrometer (300 MHz, JEOL, Tokyo) to confirm the successful synthesis and determine the chemical composition. The molecular weight and polydispersity of the polymers were determined at 40 °C using a GPC system (TOSOH TSK-GEL α-2500; Tosho, Tokyo) equipped with a refractive index detector (RI-2031; JASCO International Co. Ltd, Tokyo). The transmittance of the polymer aqueous solution at 500 nm was continuously monitored at a heating rate of 1.0 °C min$^{-1}$ using a UV-visible spectrometer (V-550; JASCO International Co, Ltd). The LCST was determined as the temperature at which transparency decreased to 50%. Temperature-dependent aqueous wettabilities of the polymer brush surfaces were analyzed by static contact angle measurements using a digital camera. The sample temperature was regulated with a temperature-controlled plate within a deviation of ±0.1 °C. Contact angles were determined from the shapes of water droplets, and the results were expressed as a mean of three measurements with standard deviation (SD). The thicknesses of dry grafted copolymer brushes on the surfaces were determined by ellipsometry (M-2000U, J A Woollam Co, Lincoln, Nebraska). The measurements were performed at three different angles of incidence (55°, 60° and 65°), in the wavelength range from 300 to 1000 nm. The average dry thickness of a polymer brush was estimated by fitting the experimental data with the Cauchy model, taking refractive indexes n estimated by fitting the experimental data with the Cauchy model, taking refractive indexes n estimated by fitting the experimental data with the Cauchy model.

2.5. Adsorption of RC A$_{120}$ onto NIPAAm and LAMA copolymer brush surfaces

RC A$_{120}$ is a protein that specifically binds to glucose/lactose structures. The adsorption of fluorescein isothiocyanate (FITC)-conjugated RC A$_{120}$ onto NIPAAm–LAMA copolymer brush surfaces was examined at different temperatures. A stock solution of FITC-conjugated RC A$_{120}$ was diluted to 2 μg mL$^{-1}$ using a 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid (HEPES) buffer. The NIPAAm-LAMA copolymer brush glasses were immersed in the solution and incubated for 30 min at 37 °C. After the incubation, the glass substrates were rinsed with a HEPES buffer and dried by N$_2$ gas flow. The fluorescence images of the glass surfaces were photographed using a fluorescence microscope (IX71 N-23Fi/DIC, Olympus, Tokyo). The reversible binding of RC A$_{120}$ was also studied below the LCST. The surfaces were allowed to bind RC A$_{120}$ above the LCST; according to the above protocol, the temperature was decreased from 37 to 25 °C for 1 h, and the fluorescence images of the surfaces were acquired. To estimate the adsorption of RC A$_{120}$ on the polymer brush surfaces, the images were analyzed using ImageJ software [35].

2.6. Cell culture

HepG2 cells were suspended in serum-free DMEM with penicillin and streptomycin at a concentration of 1.0 × 105 cells ml$^{-1}$. The cells were then seeded on the polymer brush glass substrates and cultured at 37 °C. For the cell detachment assay, after 24 h of incubation at 37 °C, the cells were transferred to an incubator maintained at 25 °C. The remaining cell numbers on the surfaces were monitored and imaged using a phase-contrast microscope (IX71 N-23Fi/DIC, Olympus, Tokyo). NIH-3T3 mouse fibroblast cells were also used as a non-LAMA specific control.

3. Results and discussion

3.1. Characterization of NIPAAm and LAMA copolymers and the grafted surfaces

To construct an ‘on–off’ switchable platform for the selection of hepatocytes, temperature-responsive copolymer brushes comprising NIPAAm and LAMA were prepared by surface-initiated ATRP. This method has been successfully used to synthesize polymer brushes with well-defined molecular weights and narrow molecular weight distributions. The sensitivity of polymer brushes to external stimuli heavily depends on their grafting architectures [31], and therefore, we prepared both random and block architectures by one-step and sequential polymerizations, respectively. A sacrificial initiator EBC was added to the polymerization reaction to generate free copolymers. This allowed to the study of the composition and molecular weight by 1H-NMR and GPC of the grafted copolymer brushes, respectively. It has been reported that the number-average and weight-average molecular weight (M_n and M_w), and thus, the polydispersity index (M_w/M_n) of the polymer generated in solution from the sacrificial initiator agreed well with those of the polymer chains [36]. The addition of a free initiator also allowed to the adjustment of the ratio of monomer and initiator concentrations, which is an important factor for controlling the chain growth in the ATRP.

Random copolymer brushes with various compositions of NIPAAm and LAMA were synthesized using Me$_6$TREN as a ligand, which provides good control of the molecular weight of acrylamide-type monomers [37]. Block copolymer brushes were prepared by sequentially growing the blocks under identical reaction conditions. The LAMA blocks were prepared using bpy owing to its excellent ability to control the molecular weight of methacrylate-type monomers. The copolymer parameters are summarized in table 1. All the copolymers possess relatively narrow molecular weight distributions (M_w/M_n = 1.15–1.43) as determined by GPC. The 1H-NMR spectra of the copolymers reveal the presence of characteristic signals of NIPAAm and LAMA; the proton signals at 3.5–4.5 ppm in figure 3 were assigned to LAMA.
Table 1. Properties of free NIPAAm and LAMA copolymers and the brush surfaces

Code	Sequence	LAMA in feed [mol%]	$M_n \times 10^{-4}$a	M_w/M_n	LAMA contentb [mol%]	Thicknessc [nm]	Graft density [chains/nm2]
PNIPAAm	homopolymer	0.0	1.84	1.18	0.0	7.6	0.32
Random-1	1.0	1.32	1.43	1.1	6.8	0.39	
Random-5	P(NIPAAm-co-LAMA)	3.0	1.55	1.25	5.2	7.3	0.36
Random-9	5.0	1.70	1.15	9.1	7.6	0.34	
Block-3	PNIPAAm-b-PLAMA	0/100d	1.91	1.29	3.2	8.2	0.33

a Determined by GPC (standard: PEG; eluent: DMF with 10 mmol/L LiBr; flow rate: 0.6 ml min$^{-1}$; temperature: 40 °C).

b Estimated from 1H-NMR spectra (figure 2).

c Determined by ellipsometry under dry condition (incidence angles: 55°–65°, wavelength range: 300–1000 nm).

d First/second step of sequential ATRP processes.

The thicknesses of grafted polymer brushes on the glass substrates depended on their molecular weight. This result is plausible because all the brushes were created by the same method on the same silanized surfaces. The PNIPAAm copolymer brushes had a relatively high graft density of 0.3–0.4 chains nm$^{-2}$.

Figure 4(a) shows temperature-dependent transmittance changes at 500 nm for the copolymers in water, whereas figure 4(b) reveals the effect of LAMA content on LCST for random and block copolymers of NIPAAm and LAMA. The LCST of the random copolymers rises as the LAMA content increases simply because of the hydrophilic nature of LAMA monomerunits along the backbone. In contrast, the block copolymers show a constant LCST, independent of the LAMA moiety. As the temperature is raised, the PNIPAAm blocks independently phase-separate, as is the case for the NIPAAm homopolymer, whereas a random copolymer of similar composition may remain soluble [38].

Aqueous wettabilities on the copolymer brushes were investigated using static contact angle measurements. Figure 5 compares the contact angles between homo, random, and block copolymer brushes at 25 and 37 °C, which are the corresponding temperatures in the following RCA$_{120}$ adsorption and cell culture experiments. A contact angle of ca 77° was measured for the initiator-modified glass substrate. For the LAMA homopolymer brush, the contact angle decreased to ca 36° and was independent of temperature. The PNIPAAm homopolymer brush demonstrated temperature-responsive changes in the contact angles, i.e. the contact angle was smaller than 54.9° at 25 °C and larger than 64.9° at 37 °C. For random copolymer brushes, on the other hand, no significant change in the contact angle was observed between 25 and 37 °C, although they became slightly hydrophobic at 37 °C. This is closely related to the observed increase in LCST by temperature-dependent transmittance measurements of free-copolymer solutions. For the block copolymer brush, the contact angles were 53.9° and 63.4° at 25 and 37 °C, respectively.

3.2. Adsorption of RCA$_{120}$ on NIPAAm and LAMA copolymer brushes

Most biomolecules have immense recognition power (specific binding), but they also physically adsorb onto a solid substrate without specific receptor recognition (nonspecific adsorption).
3.3. Control of cell adhesion on NIPAAm and LAMA copolymer brushes

Cell adhesion to synthetic materials can be guided via specific interactions with cell surface receptors by modifying the substrate surface with short peptide sequences derived from ECM proteins. Most commonly, these cell adhesion peptides
are based on the RGD sequence, which is derived from the cell attachment domain of fibronectin and specifically binds to integrin receptors that are present on the cell surface [42]. Carbohydrate-mediated cell recognition has also been used to enhance selective interactions between materials and cells. In particular, the binding of multivalent galactose residues to ASGPRs on the hepatocyte membrane is the most extensively studied example [43]. In this study, newly designed temperature-responsive glycopolymer brushes were used to demonstrate the selective adhesion of hepatocytes above the LCST and their collection below the LCST. First, the specificity of the sugar moiety in LAMA in the copolymer brushes for cell adhesion was investigated using NIH-3T3 fibroblasts and HepG2 cells. To confirm the biospecificity between LAMA and hepatocyte, a cell adhesion assay was carried out under serum-free conditions, as the serum-containing medium commonly includes various cell adhesion proteins. Figure 7 shows phase contrast images of NIH-3T3 fibroblasts (a–d) and HepG2 cells (e–h) on the polymer brush surfaces at 37 °C after one-day culture. NIH-3T3 fibroblasts barely adhered to the surfaces in the absence of serum proteins, because they do not express ASGPR and could not interact with LAMA sequences in the polymer brushes [44]. By contrast, adhesion was observed for HepG2 cells on the LAMA-incorporated polymer brush surfaces, whereas the PNIPAAm brush did not demonstrate cell adhesion. The attached HepG2 cells on the LAMA-incorporated brush surfaces mainly showed spherical morphology. Akaike and colleagues reported that hepatocytes selectively adhere to the surfaces coated with poly(N-p-vinylbenzyl D-lactose lactonamide) (PVLA) by interaction between the sugar residues and ASGPRs. The morphologies of the attached cells depended on the amount of coated PVLA on the surfaces (spreading and spheroidal shapes for 1 and 100 µg ml⁻¹ of PVLA coatings, respectively) [26, 27]. The round morphologies of the attached HepG2 cells observed in this study imply that the condensed sugar density on the surface was achieved by surface-initiated ATRP. Therefore, these results strongly indicate that HepG2 cells recognized the LAMA moiety in the polymer brush and maintained the adhesion state.

Figure 8 compares the densities of attached HepG2 cells on the polymer brush surfaces after 1 day of culture at 37 °C and subsequent culture at 25 °C for another 1 h. HepG2 cells adhered to the LAMA-incorporated brush surfaces very well at 37 °C, although the initiator-immobilized surface is the most hydrophobic studied here. This result signifies that HepG2 adhesion to LAMA is not affected by the hydrophobic interaction. The density of attached cell number increased with the density of galactose residues in the random copolymer brushes. Interestingly, the density of HepG2 cells was higher on the Block-3 brush Random-5 brush even though the latter contained larger amounts of LAMA. This can be explained by the shielding effect of the random copolymer brush on ligand recognition. Namely, the steric hindrance of a random copolymer brush could prevent the interaction between HepG2 cells and receptors with the galactose residues, whereas the LAMA segments of the block copolymer brushes are exposed to the HepG2 cells. These observations agree well with the results of RCA₆₀₀ adsorption assays. A significant difference was, however, observed when the cell culture temperature of the cell culture was suddenly reduced to 25 °C. The cells started to spontaneously detach from the Block-3, but not from the random copolymer brushes. This is closely related to the observed increase in LCST and surface wettability of random copolymers. Because Block-3 has LCST between 25 and 37 °C, the temperature decrease induced a drastic hydration and extension of the
Figure 7. Phase contrast images of NIH-3T3 fibroblasts (a–d) and HepG2 cells (e–h) on PNIPAAm (a, c), PLAMA (b, f), Random-5 (c, g), and Block-3 (d, h) after one-day culture at 37°C under serum-free conditions. Bar: 100 µm.

Figure 8. Density of HepG2 cells remaining on NIPAAm and LAMA copolymer brush surfaces after the temperature was decreased from 37 to 25°C.

In addition, cells tend to detach from the surface if they lose intracellular tension. Recent studies have revealed that mechanical and structural factors are critical for controlling cell functions [46]. Therefore, the obtained results are attributed to the correlated effects of significant changes in mobility, hydrophilicity, and mechanical properties of the grafted polymer chains. Those factors can be controlled by not only the composition and sequence of comonomers but also the grafting density and chain length. Further studies are needed to investigate the correlations between the architectures of grafted polymers and surface properties.

Given the current public focus on stem cell biology, cancer diagnostics, and regenerative medicine, the development of highly effective and noninvasive cell separation techniques has been strongly desired [47]. Conventional fluorescence-activated and magnetically activated cell sorting techniques have been commonly used to separate target cells from a heterogeneous cell mixture [48]. They are increasingly applied to microfluidic systems because of the intrinsic compatibility of cell size with microchannels [49]. These methods, however, require labeling of the cells with either fluorescent or magnetic nanoparticles prior to the separation, and the sorting throughput is limited for microfluidic systems owing to their small sample volume. Our strategy of selective adhesion/detachment enables label-free cell separation using only variations in temperature. The simplicity, ease of use, sensitivity and noninvasive nature of this technique make it a particularly attractive alternative to more complex methods based on high throughput cell separation.

4. Conclusions

LAMA-incorporated temperature-responsive polymer brush surfaces with different grafting architectures were prepared via surface-initiated ATRP. The LCST increases with the grafted polymer chains which weaken the interaction between LAMA and ASGPR. This was followed by cell lifting. The difference in releasing kinetics between cells and lectins from the surfaces can be explained by the binding types. The binding between cell membrane receptors and the copolymer brushes is determined by polyvalent interactions, which can be easily disrupted by elastic deformations owing to the change in the distance between ligands and receptors. Mattiasson and colleagues for example, reported that the elastic deformation of NIPAAm-based hydrogels released multiple-bound particles, but not single-bound proteins [45].
LAMA content in random polymers, whereas it is independent of the LAMA content and type in block copolymers. The copolymer surfaces containing LAMA selectively attached HepG2 cells via the biospecific affinity between galactose residues and ASGPR, whereas NIH-3T3 cells barely adhered. The attached HepG2 cells were collected from the block copolymer surfaces only by cooling them below the phase transition temperature, whereas almost all the attached HepG2 cells remained on the random copolymer brush surfaces owing to the increased surface hydrophilicity. This methodology can be extended to the preparation of smart bioactive interfaces with diverse architectures and to cell screening. The versatility and noninvasive protocol of our temperature-responsive system may enable the realization of label-free high-throughput cell separation for stem cell biology, cancer diagnostics, and regenerative medicine.

Acknowledgments

The first author was financially supported by the Research Fellowships of the Japan Society for Promotion of Science (JSPS) for Young Scientists. This research was partially supported by the Japan Society for the Promotion of Science (JSPS) through the ‘Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program),’ initiated by the Council for Science and Technology Policy (CSTP).

References

[1] Purushotham S, Chang P E J, Rumpel H, Kee I H C, Ng R T H, Chow P K H, Tan C K and Ramanujan R V 2009 Nanotechnology 20 305101
[2] Ebara M, Uto K, Idota N, Hoffman J M and Aoyagi T 2012 Adv. Mater. 24 273
[3] Rodriguez E D, Luo X and Mather P T 2011 ACS Appl. Mater. Interfaces 3 152
[4] Tsukahara T and Idota N 2011 Chem. Lett. 40 1381
[5] Huber D L, Manginell R F, Samara M A, Kim B-I and Bunker B C 2003 Science 301 352
[6] Lai J J, Nelson K, Nash M, Hoffman A S, Yager P and Stayton P S 2009 Lab Chip 9 1997
[7] Heskins M, Guillett J E and James E 1968 J. Macromol. Sci. Chem. A2 1441
[8] Yamato M, Okuhara M, Karikusa F, Kikuchi A, Sakurai Y and Okano T 1999 J. Biomed. Mater. Res. 44 44
[9] Nath N and Chilkoti A 2002 Adv. Mater. 14 1243
[10] Ebara M, Hoffman J M, Hoffman A S and Stayton P S 2006 Lab. Chip 6 843
[11] Idota N, Tsukahara T, Sato K, Okano T and Katamori T 2009 Biomaterials 30 2095
[12] Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y and Okano T 1999 J. Biomed. Mater. Res. 45 355
[13] Kikuchi A, Okuhara M, Karikusa F, Sakurai Y and Okano T 1998 J. Biomater. Sci., Polym. Ed. 9 1331
[14] Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezoe M and Okano T 2002 Circ. Res. 90 e40
[15] Stayton P S, Shimoboji T, Long C, Chikoti A, Chen G, Harris J M and Hoffman A S 1995 Nature 378 472
[16] Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K and Okano T 2004 Biomacromolecules 5 505
[17] Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K and Okano T 2008 Biomaterials 29 3650
[18] Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K and Okano T 2008 Adv. Mater. 20 3034
[19] Kanie K et al 2012 Biotechnol. Bioeng. 109 1808
[20] Utikal J, Polo J M, Stadtfeld M, Maherali N, Kulalert W, Walsh R M, Khalil A, Rheinwald J G and Hochedlinger K 2009 Nature 460 1145
[21] Dwek R A 1996 Chem. Rev. 96 683
[22] Okada M 2001 Prog. Polym. Sci. 26 67
[23] Ladmiral V, Melia E and Haddleton D M 2004 Eur. Polym. J. 40 431
[24] Rathi R C, Kopeckova P, Rihova B and Kopecek J 1991 J. Polym. Sci. A: Polym. Chem. 29 1895
[25] Hasegawa T, Yonemura T, Matsuura K and Kobayashi K 2003 Bioconjug. Chem. 14 728
[26] Liang J F and Akaife T 1999 Biotechnol. Lett. 21 1065
[27] Kim S-H, Hoshiba T and Akaife T 2004 Biomaterials 25 1813
[28] Iwasaki Y, Takami U, Shinohara Y, Kurita K and Akiyoshi K 2007 Biomacromolecules 8 2788
[29] Narain R and Armes S P 2003 Biomacromolecules 4 1746
[30] Idota N, Kikuchi A, Kobayashi J, Akiyama Y, Sakai K and Okano T 2006 Langmuir 22 425
[31] Idota N, Kikuchi A, Kobayashi J, Sakai K and Okano T 2012 Colloids Surf. B: BioInterfaces 99 95
[32] Brandow S L, Chen M-S, Dulcey C S and Dressick W J 2008 Langmuir 24 3888
[33] Plunkett K N, Zhu X, Moore J S and Leckband D E 2006 Langmuir 22 4259
[34] Ishida N and Biggs S 2007 Langmuir 23 11083
[35] Savina I N, Gun’ko V M, Turov V V, Dainiak M, Phillips G J, Galaev I Y and Mikhailovsky V 2011 Soft Matter 7 4276
[36] Tsuji Y, Ohno K, Yamamoto S, Goto A and Fukuda T 2006 Adv. Polym. Sci. 197 171
[37] Matyjaszewski K and Xia J 2001 Chem. Rev. 101 3689
[38] Chen G H and Hoffman A S 1995 Nature 373 49
[39] Zhou W, Dai X H and Dong C M 2008 Macromol. Biosci. 8 268
[40] Yoshizako K, Akiyama Y, Yamakana H, Shinohara Y, Hasegawa Y, Carredano E, Kikuchi A and Okano T 2002 Biotechnol. Lett. 21 1065
[41] Mateescu A, Ye J, Narain R and Vanvakaki M 2009 Soft Matter 5 1621
[42] Xiong J P, Stehle T, Zhang R G, Joachimiak A, Frech M, Engler A J, Sen S, Sweeney H L and Discher D E 2006 Cell 126 677
[43] Nagrah S et al 2007 Nature 450 1235
[44] Bonner W A, Sweet R G, Hulett H R and Herzenbe L 1972 Rev. Sci. Instrum. 43 404
[45] Fu A Y, Spence C, Scherer A, Arnold F H and Quake S R 1999 Nature Biotechnol. 17 1109

Sci. Technol. Adv. Mater. 13 (2012) 064206

Naokazu Idota et al