CAR-T-OPENIA: Chimeric antigen receptor T-cell therapy-associated cytopenias

Alankrita Taneja1 | Tania Jain2

1 Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
2 Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA

Correspondence
Tania Jain, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
Email: tjain2@jhmi.edu

Abstract
Chimeric antigen receptor (CAR) T-cell is the most recent version in the evolution of cellular therapy with promising responses, which has revolutionized the management of some hematological malignancies in the current times. As the clinical use has progressed rather rapidly since the first approval in 2017, toxicities beyond cytokine release syndrome and immune effector cell-associated neurological syndrome have surfaced. Cytopenias are common in <30 days (“early”), 30–90 days (“short-term”) as well as >90 days (“prolonged”); and have clinical implications to patient care as well as resource utilization. We review the details of etiology, factors associated with cytopenias, and management considerations for patients with cytopenias for each of these time-frames. This would potentially serve as a clinical guide for hematological toxicity or CAR-T-OPENIA, which is commonly encountered with the use of CAR T-cell therapy.

KEYWORDS
anemia, chimeric antigen receptor, neutropenia, thrombocytopenia

1 INTRODUCTION

Chimeric antigen receptor (CAR) T-cell therapy is a major breakthrough and has revolutionized treatment of B-cell malignancies, while quickly establishing its role in other hematological and solid organ malignancies [1–10]. Despite the initial encouraging responses, more common use has brought to surface several on-target/off-tumor and off-target toxicities which remain imperative to understand for safe delivery of this therapy. Cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS) and hypogammaglobulinemia have been reported in the above mentioned pivotal trials and explored extensively otherwise [11–19]. Subsequently, cardiopulmonary toxicity has been reported while at the same time, safety from a standpoint of renal dysfunction as well as in the post-allogeneic blood or marrow transplantation (BMT) setting has been described [20–23].

More recently, delayed hematopoietic recovery has drawn increasing recognition in clinical practice and implications in the form of infections, resource utilization for transfusions, and limited options for salvage therapy [24, 25]. Hence, appropriate evaluation and management thereof is paramount to ensure safe and effective post-CAR T-cell infusion care of these patients. In this review, we discuss the various nuances for consideration when evaluating patients with cytopenias following CAR T-cell therapy or CAR-T-OPENIA.

2 CAR-T-OPENIA IS REAL

2.1 What the pivotal trials and data, thus far, taught us?

With tisagenlecleucel for relapsed/refractory B-cell acute lymphoblastic leukemia (ALL) in children and young adults, 41% patients had grade
Early CAR-T-OPENIA (Data from the “real-world”)

Possible etiologies, evaluation, and management considerations for early (≤30 days), short-term (30–90 days), and prolonged (>90 days). The patterns and rates of CAR-T-OPENIA from each of these studies are summarized in Table 1 and suggest that this is not a disease- or target-specific toxicity but a class effect from CAR T-cell therapy.

2.2 Data from the “real-world”

In line with the data from pivotal trials, data from retrospective studies using various products also suggest a high incidence of cytopenias following CAR T-cell infusion. In one of the larger studies from Memorial Sloan Kettering Cancer Center, details of severity, duration and associated factors were studied for 83 patients including those who received FDA-approved (axicabtagene ciloleucel and tisagenlecleucel) and institutionally developed products (19-28z CD19 CAR T-cell for relapsed/refractory ALL and BCMA directed for relapsed/refractory multiple myeloma) [26]. Nadir for hemoglobin was 7.1 g/dl, platelets were 29.5 × 10³, absolute neutrophil count was 0 and white blood cell (WBC) count was 0.2 × 10³/µl. This nadir was noted rather quickly, commonly within the first week after CAR T-cell infusion. In this study, “normalization” of hemoglobin was seen in 39% patients, platelets in 34%, neutrophil count in 71% and total WBC count in 39% patients at 3 months, while at 1 year, these respective proportions were 67%, 78%, 89% and 89%. “Recovery” of counts at 1 month was statistically associated with baseline cytopenias, CAR construct (count recovery more common with tisagenlecleucel), grade ≥3 CRS/ICANS, peak C-reactive protein and peak ferritin on univariate analysis. Association of count recovery at 1 month was significant for grade ≥3 CRS/ICANS after adjustment for baseline cytopenia and CAR construct. Interestingly, only CAR construct was associated with absence of count recovery at 3 months. This study overall suggests a possible contribution of the inflammatory milieu toward early hematopoietic recovery, or lack thereof. While serum cytokine levels were studied in a limited sample of 43 patients, this was not significantly associated with count recovery.

Another important retrospective study elucidating pattern of cytopenias was done in patients who received locally manufactured CD19 CAR T-cells with a CD28 co-stimulatory domain with fludarabine and cyclophosphamide lymphodepletion in relapsed/refractory B-cell malignancies [27]. In addition to the common and early occurrence of cytopenias, this study also demonstrated a “biphasic” pattern of cytopenias: the first phase was early in the first week, and the second phase occurred after 21 days, well beyond the direct impact from lymphodepletion chemotherapy. Prior allogeneic BMT and higher-grade CRS correlated with late cytopenias. In this study, stromal derived factor (SDF)-1 correlated with late neutropenia. SDF-1 is a chemokine produced by stromal cells upon binding to its receptor on hematopoietic cells (CXCR4) retains neutrophils in the marrow leading to a drop in neutrophil count in the peripheral blood [28, 29]. Similar perturbations in SDF-1 are noted with delayed neutropenia following rituximab therapy [28].

3 POSSIBLE ETIOLOGIES, EVALUATION, AND MANAGEMENT

Figure 1 depicts the overall plausible etiologies of CAR-T-OPENIA to consider. For the purpose of this writing, we categorized the timeframe for hematopoietic toxicity from the day of CAR T-cell infusion as early (<30 days), short-term (30–90 days), and prolonged (>90 days). Possible etiologies, evaluation, and management considerations for each of these time-frames are summarized in Table 2.

3.1 Early CAR-T-OPENIA (<30 days): Quick as a flash

As noted above, the cytopenias occur almost immediately following CAR T-cell infusion, and median time to nadir often lies within a week. For the most part, these early CAR-T-OPENIA is attributed to lymphodepletion chemotherapy. The later remains an integral part of CAR T-cell therapy as it enhances CAR T-cell expansion, activation, and persistence possibly by increase in interleukin (IL)-15 and depletion of regulatory T-cells [30–33]. However, lymphodepletion chemotherapy possibly exerts additional myelosuppressive effect on top of the bone marrow dysfunction from the underlying diagnosis, resulting in these early CAR-T-OPENIA [34]. Several studies, spanning various products and diagnoses, consistently suggest the correlation of higher-grade CRS or
Clinical trial (CAR target, disease)	Anemia	Thrombocytopenia	Neutropenia	Leukopenia	Additional comments
ELIANA (CD19 CAR T-cell, pediatric/young adult ALL) [8]	Grade 3–4: 4%	Grade 3–4: 7%	Grade 3–4: 11%	Grade 3–4: 9%	71% patients with grade 3–4 thrombocytopenia and 80% with grade 3–4 neutropenia had improved to grade 2 or lower at the time of last assessment.
ZUMA-1 (CD19 CAR T-cell, DLBCL) [1]	Grade 3–4: 43%	Grade 3–4: 38%	Grade 3–4: 78%	Grade 3–4: 29%	At 3 months, 17% of the patients had grade 3 or higher cytopenias including anemia (3%), thrombocytopenia (7%), and neutropenia (11%).
JULIET (CD19 CAR T-cell, DLBCL) [4]	Grade 3–4: 39%	Grade 3–4: 28%	Grade 3–4: 33%	Grade 3–4: 31%	At day 28, 41% patients had unresolved grade 3–4 thrombocytopenia, and 24% had unresolved grade 3–4 neutropenia. At 3 months, 38% had unresolved grade 3–4 thrombocytopenia, and no patients had unresolved grade 3–4 neutropenia.
TRANSCEND (CD19 CAR T-cell, DLBCL) [10]	Grade 3–4: 37%	Grade 3–4: 27%	Grade 3–4: 60%	Grade 3–4: 14%	At day 29, 37% of the patients had grade 3 or higher cytopenia. By day 90, recovery to grade 2 or lower seen in 82% (anemia), 62% (thrombocytopenia), and 84% (neutropenia).
ZUMA-2 (CD19 CAR T-cell, MCL) [2]	Grade 3–4: 50%	Grade 3–4: 51%	Grade 3–4: 85%	N.R	At day 90, 12% had persistent anemia while 16% patients had persistent thrombocytopenia and neutropenia.
ZUMA-3 (CD19 CAR T-cell, adult ALL) [3]	Grade 3–4: 49%	Grade 3–4: 30%	Grade 3–4: 27%	Grade 3–4: 23%	At day 30, 36% of patients had grade 3 or higher cytopenia: anemia 7%, thrombocytopenia 18%, neutropenia 25%.
KarMMa (BCMA CAR T-cell, Multiple Myeloma) [6]	Grade 3–4: 60%	Grade 3–4: 52%	Grade 3–4: 89%	Grade 3–4: 39%	Among patients with >1 month grade 3–4 cytopenia, recovery to grade 2 or lower occurred at a median: 2.1 months (range, 1.2–13.8) for thrombocytopenia and 1.9 months (range, 1.2–5.6) for neutropenia.
CARTITUDE-1 (BCMA CAR T-cell, Multiple Myeloma) [7]	Grade 3–4: 68%	Grade 3–4: 60%	Grade 3–4: 95%	Grade 3–4: 61%	Patients with grade 3–4 cytopenias recovered to grade 2 or lower by day 30 in 59% (thrombocytopenia) and 70% (neutropenia).
Jain et al. Blood Advances 2020 [26]	Grade 3–4: 77%	Grade 3–4: 65%	Grade 3–4: 95%	Grade 3–4: 100%	Normalization at 1 month in 7% (hemoglobin), 23% (platelets), 30% (neutrophils), 13% (WBC count).

Abbreviations: ALL, acute lymphoblastic leukemia; BCMA, B cell maturation antigen; CAR, chimeric antigen receptor; DLBCL, diffuse large B cell lymphoma; MCL, mantle cell lymphoma; NR, not reported.
TABLE 2 Evaluation and management of CAR-T-OPENIA at various time-frames following CAR T-cell

	Early (<30 days)	Short-term (30–90 days)	Prolonged (>90 days)
Possible etiologies	Lymphodepletion chemotherapy [34]	Lymphodepletion chemotherapy [34]	Disease relapse
	CRS/ICANS [17, 26, 27]	CAR-HLH [34, 36, 37]	MDS [26, 49]
	CAR-HLH [34, 36, 37]	Disease relapse	
	Infections [24]	Infections [24]	
	Antibody-mediated autoimmune cytopenias	Antibody-mediated autoimmune cytopenias	
Possible factors associated	Grade 3–4 CRS/ICANS [17, 26, 27]	CAR construct [26]	
	CAR construct [26]	CAR construct [26]	
	Peak CRP/ferritin* [26]	CAR construct [26]	
	Baseline cytopenia [32]		
	Number of prior lines of therapy [17, 26]		
	Prior allo-BMT [25, 26]		
	Marrow tumor burden [17]		
Considerations for management	Evaluation for CAR-HLH including ferritin, triglycerides,	Supportive care with transfusions, growth	Marrow biopsy for primary disease or another
	coagulopathy, bone marrow biopsy to assess for hemophagocytosis. Treatment with tocilizumab, anakinra/−steroids [37]	factors, TPO agonists [15, 16, 38, 46–48]	malignancy such as MDS
	Evaluation for hemolysis, immune mediated thrombocytopenia	Disease evaluation for relapse	
	Evaluation and treatment of infections [24]	Marrow biopsy for disease or another malignancy such as MDS	

Abbreviations: BMT, bone marrow transplant; CAR, chimeric antigen receptor; CAR-HLH, CAR T-cell-therapy-related hemophagocytic lymphohistiocytosis; CRP, C- reactive protein; CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; MDS, myelodysplastic syndrome; TPO, thrombopoietin.

*Only studied in univariate analysis.
ICANS with increased early CAR-T-OPENIA [18, 26, 27]. One possible reason for this is the higher interferon-gamma levels in patients with higher-grade CRS, which is known to negatively impact hematopoietic stem cell homeostasis resulting in exhaustion of this stem cell compartment [35]. However, a statistical difference in interferon-gamma levels was not demonstrated in a limited analysis conducted to compare cytokine levels in patients with count recovery with those whose counts did not recovery by 1 month [26]. This discrepancy underscores the need for a systematic exploration of inflammatory cytokines and the pathobiology of this inflammatory milieu following CAR T-cells in hematopoietic recovery. In addition to the above, infections including bacterial, fungal, or viral reactivations can play a perfect paradox, by being the cause or effect of early cytopenias [24]. Lastly, antibody-mediated autoimmune cytopenias and thrombotic microangiopathy can also occur after CAR T-cell therapy leading to at least transient CAR-T-OPENIA.

CAR-associated hemophagocytic lymphohistiocytosis (CAR-HLH) deserves a special mention, and consideration, in this early post-CAR T-cell phase. Like CRS, HLH is also an inflammatory syndrome which occurs from pathological T-cell and macrophage activation. Hence, the CAR T-cell CRS picture overlaps the commonly known clinical scenario of HLH including elevated ferritin levels, coagulopathy, liver dysfunction, and other end-organ involvement (renal or pulmonary) [34, 36]. This CAR-HLH can occur coinciding with CRS or following resolution of CRS [34]. A rising ferritin despite resolution of clinical symptoms of CRS can be indicative of ensuing CAR-HLH following CRS [36]. Criteria for CAR-HLH have been described by the pediatric group at National Cancer Institute as peak ferritin ≥100,000 µg/L with 2 of (a) hepatic transaminases or bilirubin ≥3, (b) creatinine ≥ grade 3 (c) pulmonary manifestations of edema or hypoxia, grade ≥ 3 (d) bone marrow evidence of hemophagocytosis (e) coagulopathy [37]. Specific evaluation for cytopenias where CAR-HLH is a possible etiology should include the above, as also summarized in Table 2. Treatment can include CRS-like management via IL-6 inhibition with tocilizumab [34], while recent studies show elevation of interferon-gamma and IL-1beta following CRS, which prompts the role of anakinra with or without corticosteroids [37].

3.2 | Short-term CAR-T-OPENIA (30–90 days): A test of patience

As shown in the aforementioned studies, it is common for CAR-T-OPENIA to persist beyond 1 month. There are limited data to state factors that impact count recovery at 3 months. In the study from Memorial Sloan Kettering Cancer Center, only CAR construct was statistically associated with count recovery at 3 months, such that all patients who received tisagenlecleucel had count “recovery” at 3 months while only 42% patients who received axicabtagene ciloleucel did [26]. These results are best interpreted with caution due to a smaller sample size at 3 months (n = 41) in this study [26]. Treatable conditions mentioned in the “early” phase, such as infections, CAR-HLH, or autoimmune cytopenias, can also occur in the “short-term” and remain imperative to rule out or treat, if present. Disease persistence or relapse involving the marrow is a plausible reason for cytopenias in this early time-frame and warrants evaluation.

Beyond the scope of the above addressable conditions, supportive care with the use of growth factors and/or thrombopoietin (TPO) agonists in addition to transfusions if needed is the mainstay. Granulocyte-macrophage colony-stimulating factor from CAR T-cells has been implicated in the biology of CRS and ICANS [11, 16, 17], which resulted in at least a transient trepidation in using growth factors for the possibility of worsening CRS or ICANS. However, of late, increasing reports were published most of which demonstrate safety of using growth factors following CAR T-cell therapy [38, 39], while one demonstrated an increase in severity of CRS [40]. Whether the later has meaningful clinical implications is unclear, and additional data will further clarify this enigma in future. In the meantime, a risk-versus-benefit balance discussion is warranted considering perils of prolonged neutropenia and risk of severe or recurrent infections.

The use of TPO agonists for CAR T-cell-related thrombocytopenia is anecdotal at this time [41]. Preclinical data support the role of TPO in proliferation and maintenance of hematopoietic stem cells [42–44]. Hence, TPO agonists have emerged as an attractive strategy for bone marrow failure syndromes and myelodysplastic syndromes [45–47]. While additional data will further elucidate the role of TPO agonists in CAR-T-OPENIA, the concept holds merit and remains worth exploring.

3.3 | Prolonged CAR-T-OPENIA (>90 days): And the saga goes on

Much to our despair, CAR-T-OPENIA can persist beyond 3 months in some patients. While it is probably not outside the realms of imagination that lymphodepletion can result in prolonged CAR-T-OPENIA, marrow recovery would usually be anticipated by 3 months following lymphodepletion. Therefore, at this time marrow involvement with primary disease or a secondary marrow process is worth consideration. Myelodysplastic syndrome has been anecdotally reported following CAR T-cell therapy [26, 48]. Whether this is related to CAR T-cell therapy would be premature to state, especially in a setting where these patients have previously received chemotherapy that is well known to cause therapy-related myeloid neoplasms. These include alkylating agents, platinum agents, and topoisomerase II inhibitors commonly used for treatment in lymphomas and ALL, or lenalidomide in multiple myeloma [49, 50]. A marrow biopsy is of utmost importance for evaluation of such marrow failure or dysplastic process contributing to these cytopenias.

4 | AND AS WE MARCH FORWARD, FUTURE DIRECTIONS

As we have noted above, the exact mechanism of CAR-T-OPENIA in these different time-frames remains to be understood. This is imperative to be able to appropriately manage and prevent, if possible, such
CONFLICT OF INTEREST
Alankrita Taneja has no conflict of interest. Tania Jain reports institutional research support from CTI Biopharma and Syneos Health, Consultancy with Targeted Healthcare Communications, advisory board with Care Dx, and Bristol Myers Squibb.

AUTHOR CONTRIBUTIONS
Alankrita Taneja and Tania Jain conceptualized the project, wrote, edited, revised, and finalized the manuscript.

REFERENCES
1. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-Cell lymphoma. N Engl J Med. 2017;377(26):2531–44.
2. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):1331–42.
3. Shah BD, Gobadi A, Oluwole OO, Logan AC, Boissel N, Cassaday RD, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021;398(10299):491–502.
4. Schuster SJ, Tam CS, Borchmann P, Worel N, McGuirk JP, Holte H, et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2022;21(10):1403–15.
5. Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380(18):1726–37.
6. Munshi NC, Anderson LD, Shah N, Madduri D, Berdeja J, Lonal S, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705–16.
7. Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CAR TITUDE-1): a phase 1b/2 open-label study. Lancet 2021;398(10297):314–24.
8. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukaemia. N Engl J Med. 2018;378(5):439–48.
9. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.
10. Abramson JS, Palomba ML, Gordon LI, Lunnning MA, Wang M, Arason J, et al. Lisoctabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet Lond Engl. 2020;396(10254):839–52.
11. Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 2019;133(7):697–709.
12. Jain T, Litzow MR. No free rides: management of toxicities of novel immunotherapies in ALL, including financial. Blood Adv. 2018;2(22):3393–403.
13. Jain T, Bar M, Kansagra AJ, Chong EA, Hashmi SK, Neelapu SS, et al. Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the European Society for transplantation and cellular therapy. Biol Blood Marrow Transplant. 2019;25(12):2305–21.
14. Kansagra AJ, Frey NV, Bar M, Laetsch TW, Carpenter PA, Savani BN, et al. Clinical utilization of chimeric antigen receptor T cells in B cell acute lymphoblastic leukaemia: an expert opinion from the European Society for Blood and Marrow Transplantation and the American Society for Transplantation and Cellular Therapy. Blood Marrow Transplant. 2019;25(3):e76–85.
15. Gust J, Hay KA, Hanafi L-A, Li D, Myerson D, Gonzalez-Cuyar LF, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7(12):1404–19.
16. Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell–induced cytokine release syndrome is mediated by macrophages and ablated by IL-1 blockade. Nat Med. 2018;24(6):731–8.
17. Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739–48.
18. Hay KA, Hanafi L-A, Li D, Gust J, Liles WC, Wurfel MM, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017;130(21):2295–306.
19. Hill JA, Giralt S, Torgerson TR, Lazarus HM, CAR-T, - and a side order of IgG, to go? - Immunoglobulin replacement in patients receiving CAR-T cell therapy. Blood Rev. 2019;38:100596.
20. Alvi RM, Frigault MJ, Fradley MG, Jain MD, Mahmood SS, Awdallama M, et al. Cardiovascular events among adults treated with chimeric anti-gener receptor T-Cells (CAR-T). J Am Coll Cardiol. 2019;74(25):3099–108.
21. Burstein DS, Maude S, Grupp S, Griffiths H, Rossano J, Lin K. Cardiac profile of chimeric antigen receptor T cell therapy in children: a single-institution experience. Biol Blood Marrow Transplant. 2018;24(8):1590–5.
22. Gutgarts V, Jain T, Zheng J, Maloy MA, Ruiz JD, Pennisi M, et al. Acute kidney injury after CAR-T cell therapy: low incidence and rapid recovery. Biol Blood Marrow Transplant. 2020;26(6):1071–6.
23. Jain T, Sauter CS, Shah GL, Maloy MA, Chan J, Scordo M, et al. Safety and feasibility of chimeric antigen receptor T cell therapy after allogeneic hematopoietic cell transplantation in relapsed/refractory B cell non-Hodgkin lymphoma. Leukemia 2019;33(10):2540–4.
24. Wudhikarn K, Palomba ML, Pennisi M, Garcia-Recio M, Flynn JR, Devlin SM, et al. Infection during the first year in patients treated with CD19 CAR T cells for diffuse large B cell lymphoma. Blood Cancer J. 2020;10(8):1–11.
25. Wudhikarn K, Pennisi M, Garcia-Recio M, Flynn JR, Afuye A, Silverberg ML, et al. DLBCL patients treated with CD19 CAR T cells experience a high burden of organ toxicities but low nonrelapse mortality. Blood Adv. 2020;4(13):3024–33.
26. Jain T, Knezevic A, Pennisi M, Chen Y, Ruiz JD, Purdon TJ, et al. Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies. Blood Adv. 2020;4(15):3776–87.
27. Fried S, Avigdor A, Bieloraj B, Meir A, Besser MJ, Schachter J, et al. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant. 2019;54(10):1643–50.

28. Arai Y, Yamashita K, Mizugishi K, Nishikori M, Hishizawa M, Kondo T, et al. Risk factors for late-onset neutropenia after rituximab treatment of B-cell lymphoma. Hematol Am Soc Hematol Educ Program. 2015;20(4):196–202.

29. Suratt BT, Petty JM, Young SK, Malcolm KC, Lieber JG, Nick JA, et al. Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 2004;104(2):565–71.

30. Gattinoni L, Finkelman SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PI, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–12.

31. Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 2005;26(2):111–7.

32. North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med. 1982;155(4):1063–74.

33. Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011;118(18):4817–28.

34. Slabai H, Gust J, Taraseviciute A, Wolters PL, Leahy AB, Sandi C, et al. Beyond the storm - subacute toxicities and late effects in children receiving CAR T cells. Nat Rev Clin Oncol. 2021;18(6):363–78.

35. Olnes MJ, Scheinberg P, Calvo KR, Desmond R, Tang Y, Dumitriu B, et al. Characterization of HLH-Like manifestations as a CRS variant in patients receiving CD22 CAR T-cells. Blood 2021. online ahead of print.

36. Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, etc. The role of interferon-gamma in hematopoietic stem cell development, homeostasis, and disease. Curr Stem Cell Rep. 2018;4(3):264–71.

37. North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med. 1982;155(4):1063–74.

38. Zeigler FC, de Sauvage F, Widmer HR, Keller GA, Donahue C, Schreiber RD, et al. In vitro megakaryocytopoietic and thrombopoietic activity of c-mpl ligand (TPO) on purified murine hematopoietic stem cells. Blood 1994;84(12):4045–52.

39. Vicente A, Patel BA, Gutierrez-Rodrigues F, Groarke E, Giudice V, Letter J, et al. eltrombopag monotherapy can improve hematopoiesis in patients with low to intermediate risk-1 myelodysplastic syndrome. Haematologica 2020;105(12):2785–94.

40. Gaut D, Tang K, Sim MS, Duong T, Young P, Sasine J. Filgrastim associations with CAR T-cell therapy. Int J Cancer. 2021;148(5):1192–6.

41. Baur R, Jitschin R, Kharboutli S, Stoll A, Völkl S, Böttner-Heidrich M, et al. Thrombopoietin receptor agonists for acquired thrombocytopenia following anti-CD19 CAR-T-cell therapy: a case report. J Immunother Cancer. 2021;9(7):e002721.

42. Alexander WS, Roberts AW, Maurer AB, Nicola NA, Dunn AR, Metcalf D. Studies of the c-Mpl thrombopoietin receptor through gene disruption and activation. Stem Cells Dayt Ohio. 1996;14(Suppl 1):124–32.

43. Kimura S, Roberts AW, Metcalf D, Alexander WS. Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proc Natl Acad Sci U S A. 1998;95(3):1195–200.

44. Arai Y, Yamashita K, Mizugishi K, Nishikori M, Hishizawa M, Kondo T, et al. CD8+ T cells. J Exp Med. 2005;155(4):1063–74.

45. Vicente A, Patel BA, Gutierrez-Rodrigues F, Groarke E, Giudice V, Letter J, et al. eltrombopag monotherapy can improve hematopoiesis in patients with low to intermediate risk-1 myelodysplastic syndrome. Haematologica 2020;105(12):2785–94.

46. Alexander WS, Roberts AW, Maurer AB, Nicola NA, Dunn AR, Metcalf D. Studies of the c-Mpl thrombopoietin receptor through gene disruption and activation. Stem Cells Dayt Ohio. 1996;14(Suppl 1):124–32.

47. Olnes MJ, Scheinberg P, Calvo KR, Desmond R, Tang Y, Dumitriu B, et al. eltrombopag and improved hematopoiesis in refractory aplastic anemia. N Engl J Med. 2012;367(1):11–9.

48. Arai Y, Yamashita K, Mizugishi K, Nishikori M, Hishizawa M, Kondo T, et al. eltrombopag and improved hematopoiesis in refractory aplastic anemia. N Engl J Med. 2012;367(1):11–9.

49. Jain T, Rampal R. Insights into the pathobiology of secondary AML. In: Faderl SH, Kantarjian HM, Estey E, editors. Acute leukemias. 2nd ed. Cham: Springer; 2020.57–68.

50. Jones JR, Cairns DA, Gregory WM, Collett C, Pawlyn C, Sigsworth R, et al. Second malignancies in the context of lenalidomide treatment: an analysis of 2732 myeloma patients enrolled to the Myeloma XI trial. Blood 2016;12(6):124–32.