Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
RAAS inhibitors are not associated with mortality in COVID-19 patients: Findings from an observational multicenter study in Italy and a meta-analysis of 19 studies

THE COVID-19 RISK and Treatments (CORIST) Collaboration (Augusto Di Castelnuovo, Simona Costanzo, Andrea Antinori, Nausicaa Berselli, Lorenzo Blandi, Marialaura Bonaccio, Roberto Cauda, Alessandro Giallussi, Giovanni Guaraldi, Lorenzo Menicanti, Marco Mennuni, Roberta Mussinelli, Ilaria My, Giustino Parruti, Giuseppe Patti, Stefano Perlini, Francesca Santilli, Carlo Signorelli, Giulio G. Stefanini, Alessandra Vergori, Pasquale Abete, Walter Ageno, Piergiuseppe Agostoni, Luca Aiello, Samir Al Moghazi, Rosa Arboretti, Filippo Aucella, Greta Barbieri, Martina Barchitta, Alessandro Bartoloni, Paolo Bonfanti, Francesca Cacciatore, Lucia Caiano, Laura Carrozzia, Giacomo Castiglione, Stefania Cianfrone, Arturo Ciccullo, Antonella Cingolani, Francesco Cipollone, Claudia Colomba, Crizia Colombo, Ottavia Cozzi, Annalisa Crocitti, Francesca Crosta, Gian Battista Danzi, Damiano D'Ardes, Katie de Gaetano Donati, Francesco Di Gennaro, Giuseppe Di Tano, Gianpiero D'offizi, Francesco Maria Fusco, Ivan Gentile, Emaele Graziani, Gabriella Guarnieri, Giovanni Larizza, Armando Leone, Veronica Lio, Mothanche Barbara Lucia, Gloria Maccagni, Ferruccio Madaro, Stefano Maitan, Sandro Mancarella, Rosa Manuele, Massimo Mapelli, Riccardo Maragna, Rossella Marcucci, Giulio Maresca, Silvia Marongiu, Lorenzo Marra, Franco Mastroianni, Maria Mazzitelli, Alessandro Mengozzi, Francesco Menichetti, Marianna Meschiari, Jovana Milic, Filippo Minutolo, Beatrice Molena, Cristina Mussini, Maria Musso, Anna Odone, Marco Olivier, Antonella Palimodde, Emanuela Pasi, Raffaele Pesavento, Francesco Petri, Biagio Pinchera, Carlo A. Pivato, Venerino Poletti, Claudia Ravaglia, Marco Rossato, Marianna Rossi, Anna Sabena, Francesco Salinaro, Vincenzo Sangiovanni, Carlo Sanrocco, Giancarlo Scoppetti, Laura Scorzolini, Raffaella Sgariglia, Paola Giustina Simeone, Enrico Maria Trecarichi, Roberto Vettori, Andrea Vianello, Marco Vinceti, Alexandra Virano, Laura Vociante, Raffaele De Caterina, Licia Iacoviello, Licia Iacoviello).

⁎ Corresponding author

https://doi.org/10.1016/j.vph.2020.106805

Available online 28 September 2020
1537-1891/ © 2020 Elsevier Inc. All rights reserved.
Coronavirus Disease-19 (COVID−19) is caused by the beta coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) [1]. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS-CoV-2, which is used by the virus to enter and infect the cell, a process requiring priming of the viral S protein by the cellular serine protease TMPRSS2 [2]. ACE2 mRNA has been detected in the bronchi and lung parenchyma, as well as in the heart, the kidney and the gastrointestinal tract. This tissue distribution is consistent with the pathophysiology and clinical features of SARS infection and related disease [3]. ACE2 is a key modulator of the renin–angiotensin–aldosterone system (RAAS), which is a signaling pathway involved in the regulation of vascular and heart function [4].

1. Introduction

Coronavirus Disease-19 (COVID−19) is caused by the beta coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) [1]. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS-CoV-2, which is used by the virus to enter and infect the cell, a process requiring priming of the viral S protein by the cellular serine protease TMPRSS2 [2]. ACE2 mRNA has been detected in the bronchi and lung parenchyma, as well as in the heart, the kidney and the gastrointestinal tract. This tissue distribution is consistent with the pathophysiology and clinical features of SARS infection and related disease [3]. ACE2 is a key modulator of the renin–angiotensin–aldosterone system (RAAS), which is a signaling pathway involved in the regulation of vascular and heart function [4].
The strict relationship of ACE2 with cardiovascular function supported the observation of a higher transmissibility and pathogenicity of the virus in patients with hypertension or heart failure [5]. Inhibition of RAAS by angiotensin-converting enzyme inhibitors (ACE–I) or angiotensin-receptor blockers (ARB), drugs largely used in the therapy of hypertension and heart failure, may result in a compensatory increase in tissue levels of ACE2 [6]. At the beginning of the COVID-19 pandemic, this experimental observation generated the hypothesis that use of RAAS inhibitors might be detrimental in patients infected by SARS-CoV-2. The rapid diffusion of the hypothesis of detrimental effects of RAAS inhibitors in the lay press induced hypertensive patients and/or their doctors to stop or replace previously prescribed ACE-I or ARB, despite the first evidence from China was controversial [7,8].

RAAS blockers were, however, also hypothesized to exert protective effects [4]. Indeed, recombinant ACE2 or losartan might counteract both pulmonary edema and the reduced lung function due to decreased expression of ACE2 [9,10]. RAAS blockade was then proposed as a potential treatment for SARS-CoV-2 [4]. This hypothesis was also supported by a report showing that serum angiotensin II levels in COVID-19 patients were higher than in non-infected individuals, and were linearly associated with viral load and lung damage [11].

Against this controversial background, in March 2020, we launched a large multicenter study in Italy (ClinicalTrials.gov ID: NCT04318418) aimed at investigating the role of RAAS inhibitors in COVID-19 patients [12]. We here present the findings of this collaborative project, supported by a set of related meta-analyses. In fact, several articles on the topic have meanwhile been published, and an updated quantitative review of the entire literature may help better define the relationship between RAAS inhibitors and COVID-19.

2. Methods

2.1. Setting

This national retrospective observational study was conceived, coordinated and analyzed within the CORIST Collaboration Project (ClinicalTrials.gov ID: NCT04318418). The CORIST Collaboration is a set of multicenter observational studies launched in March 2020, and aimed at testing the association of inhibitors of the renin-angiotensin system, risk factors and therapies with severity and mortality of COVID-19 hospitalized patients [13]. The study was approved by the institutional Ethics Board of the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, and of all recruiting centers. Data for the present analyses were provided by 34 hospitals distributed throughout Italy. Each hospital provided data from hospitalized adult (≥18 years of age) patients who all had a positive test result for the SARS-CoV-2 virus at any time during their hospitalization from February 19th to May 23rd, 2020. The follow-up continued through June 30th, 2020.

2.2. Data sources

We developed a cohort comprising 4312 patients with laboratory-confirmed SARS-CoV-2 infection in an in-patient setting. The SARS-CoV-2 status was defined on the basis of laboratory results (polymerase chain reaction on a nasopharyngeal swab) from each participating hospital. Clinical data were abstracted at one-time point from electronic medical records or charts, and collected using either a centrally-designed electronic worksheet or a centralized web-based database. Collected data included patients’ demographics, laboratory test results, medication administration, historical and current medication lists, historical and current diagnoses, and clinical notes [13]. In addition, specific information on the most severe manifestation of COVID-19 that occurred during hospitalization was retrospectively captured. The maximum clinical severity observed was classified as: light-mild pneumonia; or severe pneumonia; or acute respiratory distress syndrome (ARDS) [14]. Specifically, we obtained the following information for each patient: hospital; date of admission and date of discharge or death; age; gender; use of ACE-I or ARB (no/yes/suspended after COVID-19 manifestations); the first recorded in-patient laboratory tests at hospital entry (creatinine, C-reactive protein (CRP)); past and current diagnoses of chronic degenerative disease or risk factors (myocardial infarction, heart failure, diabetes, hypertension, chronic pulmonary disease and cancer), and in-hospital drug therapies for COVID-19. Chronic kidney disease was classified as: stage 1: normal or increased glomerular filtration rate (eGFR) (≥90 mL/min/1.73 m²); stage 2: kidney damage with mild reduction in eGFR (60–89 mL/min/1.73 m²); stage 3a: moderate reduction in eGFR (45–59 mL/min/1.73 m²); stage 3b: moderate reduction in eGFR (30–44 mL/min/1.73 m²); stage 4: severe reduction in eGFR (15–29 mL/min/1.73 m²); stage 5: kidney failure (eGFR <15 mL/min/1.73 m² or dialysis). eGFR was calculated by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. CRP levels were classified as ≤3, 3–10 and ≥10 mg/L.

2.3. Statistical analyses

The study index date was defined as the date of hospital admission. Index dates ranged from February 19th, 2020 to May 23rd, 2020. The study end point was the time from study index to death. The number of patients who either died, or had been discharged alive, or were still hospitalized as of June 30th, 2020, were recorded, and hospital length of stay was determined. Patients alive had their data censored on the date of discharge or as the date of the respective clinical data collection. Data were censored at 35 days of follow up in n = 405 (10.0%) patients with a follow up greater than 35 days.

Out of the initial cohort of 4312 patients, 243 patients were excluded from the analysis because of one or more missing data at baseline or during follow-up, including use of ACE-I (n = 93) or ARB (n = 79), history of hypertension (n = 54), time to event (n = 64), outcome (death/alive, n = 8), age (n = 4 with missing data and n = 2 with age <18 years), or gender (n = 2). At the end, the analyzed cohort consisted of N = 4069 patients. Among them, 284 (7.0%) had at least one missing value for covariates. Distribution of missing values was as follows: n = 196 for C-reactive protein; n = 77 for GFR; n = 38 for history of ischemic disease; n = 18 for history of chronic pulmonary disease; N = 8 for diabetes and N = 8 for cancer. We used multiple imputation techniques (SAS PROC MI, N = 10 imputed datasets; and PROC MIANALYZE) to maximize data availability. As sensitivity analysis, we also conducted a case-complete analysis on 3785 patients. For the primary analysis, we divided patients in 5 groups: a) controls, consisting of patients who used neither ACE-I nor ARB; b) patients treated with ACE-I but not ARB; c) patients treated with ARB but not ACE–I; d) patients treated with both drugs; e) patients who suspended ACE-I (ARB) and were not treated with ARB (ACE–I). Secondary analyses considered the use of ACE-I or ARB as a dichotomous exposure (no/yes). All analyses were conducted in all patients and then restricted to hypertensive patients. Cox proportional-hazards regression models were used to estimate the association between ACE-I and ARB use and in-hospital death. Since multiple imputation was applied, the final standard error was obtained using the Rubin’s rule based on the robust variance estimator in Cox regression [15]. The proportional hazards assumption was assessed using weighted Schoenfeld residuals, and no violation was identified. Multivariable Cox regression models included age, sex, diabetes, hypertension, history of ischemic heart disease, chronic pulmonary disease, chronic kidney disease, CRP, use of other anti-hypertensive drugs (different from ACE-I or ARB), use of hydroxychloroquine (classified as yes/no/missing) and use of other COVID-19 treatments (lopinavir, darunavir, tocilizumab, sarilumab, corticosteroids or remdesivir, considered as a group and classified as yes/no/missing) as fixed effects; and clustering of hospitals as random effect (frailty model). The use of a frailty model was chosen as suggested in
Table 1
General characteristics of COVID-19 patients at baseline, according to hypertension status.

Characteristic	All patients (N = 4069)	Hypertensive patients (N = 2057)
Age-median (IQR-yr)	67 (55–79)	74 (64–82)
Gender- no (%)	1560 (38.3%)	803 (39.0%)
Men	2509 (61.7%)	1254 (61.0%)
ACE-I	3406 (83.7%)	1442 (70.1%)
Yes	564 (13.9%)	520 (25.3%)
Suspended	99 (2.4%)	95 (4.6%)
ARB	3442 (84.6%)	1470 (71.5%)
No	557 (13.7%)	521 (25.3%)
No	70 (1.7%)	66 (3.2%)
ACE-I and ARB	2807 (69.0%)	882 (42.9%)
Yes	549 (13.5%)	506 (24.6%)
No	542 (13.3%)	507 (24.7%)
Yes	15 (0.4%)	14 (0.7%)
ACE-I or ARB suspended*	156 (3.8%)	148 (7.2%)
Other anti-hypertensive drug use		
No	3235 (79.5%)	1320 (64.2%)
Yes	834 (20.5%)	737 (35.8%)
Diabetes- no (%)	3268 (80.5%)	1476 (72.0%)
No	793 (19.5%)	575 (28.0%)
Ischemic heart disease- no (%)	3364 (83.5%)	1494 (73.6%)
No	667 (16.5%)	537 (26.4%)
Yes		
Chronic pulmonary disease- no (%)	3473 (85.7%)	1671 (81.6%)
No	578 (14.3%)	376 (18.4%)
Cancer- no (%)	3620 (89.1%)	1782 (86.9%)
No	441 (10.9%)	269 (13.1%)
CKD stage - no (%)	1412 (35.4%)	416 (20.6%)
Stage 1	1493 (37.4%)	799 (39.5%)
Stage 2	789 (19.8%)	571 (28.2%)
Stage 3 or stage 3b	298 (7.5%)	238 (11.8%)
C-reactive protein- no (%)		
< 1 mg/L	425 (11.0%)	151 (7.6%)
> 1-3 mg/L	491 (12.7%)	208 (10.5%)
> 3 mg/L	2957 (76.3%)	1622 (81.9%)
Hydroxychloroquine use*		
No	910 (22.9%)	482 (24.1%)
Yes	3067 (77.1%)	1520 (75.9%)
Lopinavir or Darunavir use*	2124 (54.0%)	1093 (55.4%)
No	1808 (46.0%)	879 (44.6%)
Yes		
Tocilizumab or Sarilumab use*	3401 (85.9%)	1692 (84.8%)
No	560 (14.1%)	304 (15.2%)
Yes		
Remdesivir use*	3889 (97.2%)	1954 (97.1%)
No	112 (2.8%)	58 (2.9%)
Corticosteroids use*	2376 (64.6%)	1144 (62.1%)
No	1302 (35.4%)	699 (37.9%)
Clusters of hospitals		
Northern regions (except Milan) (n)	1088 (26.7%)	554 (26.9%)
Milan (m)	926 (22.8%)	488 (23.7%)
Center regions (except Rome) (c)	1034 (25.4%)	539 (26.2%)
Rome (c)	498 (12.2%)	184 (9.0%)

Table 1 (continued)

Characteristic	All patients (N = 4069)	Hypertensive patients (N = 2057)
Southern regions (s)	523 (12.9%)	292 (14.2%)

*Missing values were N = 8 for diabetes, N = 38 for ischemic heart disease, N = 18 for chronic pulmonary disease, N = 8 for cancer, N = 77 for CKD stage, N = 196 for C reactive protein, N = 92 for hydroxychloroquine, N = 9 for lopinavir or darunavir, N = 108 for tocilizumab or sarilumab, N = 68 for remdesivir and N = 391 for corticosteroids. *ACE-I no and ARB suspended plus ACE-I suspended and ARB no plus both ACE-I and ARB suspended. Stage 1: Kidney damage with normal or increased glomerular filtration rate (GFR) (> 90 mL/min/1.73 m²); Stage 2: Mild reduction in GFR (60–89 mL/min/1.73 m²); Stage 3a: Moderate reduction in GFR (45–59 mL/min/1.73 m²); Stage 3b: Moderate reduction in GFR (30–44 mL/min/1.73 m²); Stage 4: Severe reduction in GFR (15–29 mL/min/1.73 m²); Stage 5: Kidney failure (GFR < 15 mL/min/1.73 m² or dialysis).

(n) includes hospitals of 5–10; (m) includes hospitals 1–4; (c) includes hospitals 11–17; (r) includes hospitals 18–20; (s) includes hospitals 21–34 (see list of clinical centers in the Online Supplemental Material).

[16]. Secondary analyses used multivariable logistic regression analyses comparing dead versus alive patients, or accounted for hospitals clustering via stratification or by robust sandwich estimator. Pre-established subgroup analyses were conducted according to the sex or age of patients, the degree of COVID-19 severity experienced during the hospital stay, history of hypertension, ischemic heart disease or diabetes or treatment with hydroxychloroquine or with other drug therapies for COVID-19. Hospitals were clustered according to their geographical distribution, as illustrated in Table 1. Analyses were performed with the aid of the SAS version 9.4 statistical software for Windows.

2.4. Methods used for the meta-analysis

The meta-analysis was conducted according to the recommendations outlined in the Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0, and reported in line with the PRISMA statement.

Articles published in English were retrieved until July 12th, 2020 by searching in MEDLINE, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials, using the following key words "COVID-19; Coronavirus; SARS-Cov-2; RAAS inhibitors; Renin-angiotensin system Inhibitors; angiotensin converting enzyme inhibitors; ACE-I; angiotensin II receptor blockers; ARB; ARBs". Twenty-eight publications were identified. No controlled randomized clinical trial was retrieved. To be included in this meta-analysis, each study had a) to include only COVID-19 patients; and b) to report quantitative data on the association of ACE-I or ARB use with severity of COVID-19, including mortality.

Two of us (SC and ADC) independently reviewed the studies identified, then jointly excluded the articles not adhering to one or both criteria, and agreed on a final selection of 18 studies [7,8,17–32]. Findings from the CORIST project presented in this manuscript were also included in the meta-analyses, for a total of 19 studies.

For each selected study, odds ratio (OR) or hazard ratio (HR) (possibly adjusted for confounders) and/or number of events (number of deaths/severe events (severe pneumonia or ARDS) and number of total COVID-19 patients) in both the ACE-I/ARB and the corresponding control groups were extracted. Number of events were used to calculate odds ratios (OR) and 95% confidence intervals (CIs) when OR or HR were not available from the primary study. Pre-specified subgroup analyses were conducted a) in hypertensive patients or in patients irrespective of the hypertension status; b) by considering combination of ACE-I and ARB use or ACE-I or ARB alone; c) according to different outcomes used in the primary studies (total mortality, illness severity or a combination of both).

All analyses were performed using standard statistical procedures.
3.1. The CORIST project

A funnel plot–based approach. The hypothesis that publication bias might have affected the validity of the estimates was visually tested by considering as the primary analysis. The hypothesis that publication bias as fixed effects; and hospitals clustering as random effect. ‡ACE-I no and ARB suspended plus ACE-I suspended and ARB no plus both ACE-I and ARB no/missing) and use of other COVID-19 treatments (lopinavir, darunavir, tocilizumab, sarilumab, corticosteroids or remdesivir considered as a unique group: yes/no/missing) as fixed effects; and hospitals clustering as random effect. Heterogeneity was assessed using the Higgins’s I² metric. Fixed and random effects were considered, but due to the large heterogeneity observed, findings from random effects were considered as the primary analysis. The null association was confirmed in secondary multivariable analyses when the use of ACE-I or ARB was considered together in a single group (HR = 0.91, 95%CI: 0.76 to 1.08) or for the case-complete analyses restricted to the 3785 patients without missing data for covariates (Table 2) or when the association with death was quantified by logistic regression multivariable analysis (Table 2). Control of hospitals clustering with different approaches (stratification or robust sandwich estimator) also yielded similar results (data not shown). Table 3 show that the null association of ACE-I or ARB with mortality was confirmed in all subgroups of patients.

3.2. All patients

Out of 4069 patients, 692 died (17.0%), 2822 were discharged alive (69.4%) and 555 (13.6%) were still hospitalized. The median follow-up was 13 days (interquartile range: 7 to 22). Death rates (per 1000 person-days) according to the various combinations in the use/non-use of ACE-I and ARB ranged between 10.0 and 17.7 (Table 2). In multivariable analysis, patients treated with ACE-I or ARB, alone or in combination, or who had suspended the use of these drugs had HR of death similar to patients not treated with any of the two drugs (Table 2). This null association was confirmed in secondary multivariable analyses when the use of ACE-I or ARB was considered together in a single group (HR = 0.91, 95%CI: 0.76 to 1.08) or for the case-complete analyses restricted to the 3785 patients without missing data for covariates (Table 2) or when the association with death was quantified by logistic regression multivariable analysis (Table 2). Control of hospitals clustering with different approaches (stratification or robust sandwich estimator) also yielded similar results (data not shown). Table 3 show that the null association of ACE-I or ARB with mortality was confirmed in all subgroups of patients.

3.3. Hypertensive patients

Incidence rates, HRs and ORs for death according to ACE-I and ARB use, in N = 2057 COVID-19 hypertensive patients (with N = 471 deaths) are reported in Table 4. The null association with in-hospital mortality of this class of drugs was confirmed in hypertensive patients (Table 4). When the use of ACE-I or ARB was grouped together, the hazard for death was 0.93, 95%CI: 0.77 to 1.12.

3.4. Meta-analysis

The general characteristics of the 19 selected observational retrospective studies are shown in Online Supplement Table 1. A total of N = 29,055 COVID-19 men and women adult patients (9700 with hypertension) were included in the meta-analysis. Seven studies from China [7,8,21,23,27,31,32], one from Italy [30] and one from the U.S. [29] only included hypertensive patients. It was not possible to separate data for patients with or without hypertension in 4 studies.

Table 2

Group	Death (N = 692)	Patient at risk (N = 4069)	Person-days	Death Rate*	Univariable	Multivariable*	Multivariable*
ACE-I no and ARB no	423 (15.1%)	2807 (100%)	42,498	10.0	-1	-1	-1
ACE-I yes and ARB no	116 (21.1%)	549 (100%)	8694	13.3	1.36 (1.11 to 1.67)	0.96 (0.77 to 1.20)	0.89 (0.67 to 1.19)
ACE-I no and ARB yes	112 (20.7%)	542 (100%)	9098	12.3	1.26 (1.02 to 1.55)	0.89 (0.71 to 1.12)	0.93 (0.69 to 1.24)
ACE-I yes and ARB yes	4 (26.7%)	15 (100%)	226	17.7	1.75 (0.66 to 4.69)	1.45 (0.54 to 3.94)	1.38 (0.32 to 6.03)
ACE-I or ARB suspended†	37 (23.7%)	156 (100%)	2929	12.6	1.32 (0.94 to 1.84)	0.76 (0.53 to 1.08)	0.85 (0.53 to 1.35)

Table 3 show that the null association of ACE-I or ARB with mortality was confirmed in all subgroups of patients.

Abbreviations: HR, hazard ratio; CI, confidence interval; OR, means odds ratio. *x1000 person-days. †Controlling for age, sex, diabetes, hypertension, history of ischemic heart disease, chronic pulmonary disease, chronic kidney disease, C-reactive protein, use of other anti-hypertensive drugs, use of hydroxychloroquine (yes/no/missing) and use of other COVID-19 treatments (lopinavir, darunavir, tocilizumab, sarilumab, corticosteroids or remdesivir considered as a unique group: yes/no/missing) as fixed effects; and hospitals clustering as random effect. ‡ACE-I no and ARB suspended plus ACE-I suspended and ARB no plus both ACE-I and ARB suspended.
Subgroups	Group 0	Group 1	Group 2	Group 1 vs Group 0	Group 2 vs Group 0
	ACE-I no and ARB no (N = 2807)	ACE-I yes and ARB no (N = 549)	ACE-I no and ARB yes (N = 542)	HR (95% CI)*	HR (95% CI)*
Women	No. death/patient at risk	No. death/patient at risk	No. death/patient at risk	0.80 (0.55 to 1.18)	1.07 (0.73 to 1.58)
Men	156/1105	39/206	39/197	0.80 (0.55 to 1.18)	1.07 (0.73 to 1.58)
Age < 75 years	139/2006	24/286	28/307	0.78 (0.48 to 1.27)	0.66 (0.42 to 1.04)
Age ≥ 75 years	284/801	92/263	84/235	1.00 (0.78 to 1.29)	0.98 (0.76 to 1.28)
Highest degree of COVID-19 severity experienced at hospital^					
Mild pneumonia	55/1523	15/312	8/268	1.06 (0.55 to 2.04)	0.64 (0.28 to 1.46)
Severe pneumonia	158/725	54/135	51/152	1.23 (0.87 to 1.75)	0.94 (0.67 to 1.32)
Acute respiratory distress syndrome	190/539	43/98	49/117	1.02 (0.71 to 1.47)	0.85 (0.59 to 1.22)
History of hypertension					
No	206/1925	10/43	2/35	0.78 (0.40 to 1.51)	0.26 (0.06 to 1.08)
Yes	217/882	106/506	110/507	0.98 (0.77 to 1.24)	0.94 (0.74 to 1.18)
History of ischemic heart disease					
No	399/2488	58/378	63/411	0.91 (0.68 to 1.23)	0.78 (0.58 to 1.04)
Yes	114/319	58/371	49/131	0.90 (0.64 to 1.28)	1.11 (0.76 to 1.61)
History of diabetes					
No	311/2360	78/398	77/401	0.92 (0.70 to 1.20)	0.77 (0.59 to 1.02)
Yes	112/447	38/151	35/141	1.00 (0.67 to 1.49)	1.18 (0.78 to 1.78)
Treated with hydroxychloroquine					
No	135/653	36/104	34/109	1.46 (0.95 to 2.22)	1.16 (0.76 to 1.77)
Yes	256/2091	75/437	72/417	0.78 (0.59 to 1.03)	0.90 (0.68 to 1.19)
Treated with other COVID-19 drugs†					
No	110/797	27/151	24/104	1.05 (0.65 to 1.71)	1.62 (0.98 to 2.69)
Yes	257/1853	78/365	73/391	0.92 (0.69 to 1.21)	0.87 (0.66 to 1.15)

Abbreviations: HR, hazard ratios; CI, confidence intervals; *Controlling for age, sex, diabetes, history of ischemic heart disease, chronic pulmonary disease, chronic kidney disease, C-reactive protein, use of other anti-hypertensive drugs, use of hydroxychloroquine (yes/no/missing) and use of other COVID-19 treatments (lopinavir, darunavir, tocilizumab, sarilumab, corticosteroids or remdesivir considered as a unique group yes/no/missing) as fixed effects and hospitals clustering as random effect; multiple imputed analytic patients with both ACE-I and ARB or patients who suspended ACE-I or ARB were excluded. †Missing data for N = 237 patients.
The exposure to either ACE-I or ARB was analyzed separately or in combination, and was tested for association with mortality or a combined outcome of severe illness and mortality (Online Supplement Table 1). In all studies the control group consisted of COVID-19 patients without drug exposure.

In studies including both hypertensive and non-hypertensive patients, the use of ACE-I or ARB was not associated with COVID-19 severity (9 studies, Fig. 1A and Online Supplement Table 2), as well as the use of ACE-I or ARB considered together in a single group (5 studies, Online Supplement Table 2).

The pooled association of 12 studies on ACE-I or ARB and mortality or severe illness in hypertensive patients is reported in Fig. 1B and Online Supplement Table 2. Use of ACE-I or ARB was not associated with COVID-19 severity (pooled OR: 0.90, 95%CI: 0.80 to 1.01; low level of heterogeneity: $I^2 = 5\%$, random effects, Fig. 1B). The lack of association was confirmed excluding the CORIST study (overall HR = 1.25, 95%CI:0.98 to 1.60 in Fig. 1A and overall HR = 0.86, 95%CI:0.73 to 1.02 in Fig. 1B) and in several subgroups analyses according to type of outcome (severe COVID-19 only as the outcome; mortality only as the outcome) or exposure (ACE-I or ARB combined in a single group; ACE-I alone; or ARB alone) (Online Supplement Table 2). Selection bias was not revealed at visual inspection of funnel plots in all meta-analyses.

4. Discussion

At the beginning of the COVID-19 pandemic, a diffuse suspicion emerged that the use of ACE-I and ARB drugs might be harmful in patients with COVID-19, due to their effects on the expression of ACE2, the putative SARS-CoV-2 receptor on target cells [4], causing concern among patients and physicians and leading in some cases to stop or change type of treatment with these anti-hypertensive drugs [33].

In a large cohort of 4069 patients hospitalized for COVID-19 in 34 clinical centers all over Italy covering almost completely the period of the hospitalization for COVID-19, neither previous treatment with ACE-I or ARB nor drug suspension did modify the risk of death. Discontinuation in the use of ACE-I or ARB occurred in 156 patients, a potentially harmful circumstance that in our sample was not associated with death in comparison with no therapy, in agreement with previous findings [34]; however, this our result should be considered with caution since it was based on a low sample size.

Our cohort included 2057 hypertensive COVID-19 patients, one of the largest collections of this kind of patients in which a null association of ACE-I or ARB with in-hospital mortality has been observed [35]. Finally, we could prove that the null association remains valid in several sensitivity and subgrouping analyses, including that by COVID-19 severity and drug treatment. Of interest, we found that use of ACE-I or ARB were associated with increased risk of death in patients not treated with hydroxychloroquine or other COVID-19 drugs. Since in our cohort the prevalence of patients untreated for COVID-19 was very low, the latter observation is highly uncertain.

Several epidemiologic studies have been conducted to test the association of RAAS inhibitors with severity of COVID-19, and fourteen articles provided data suitable for a quantitative meta-analysis that we conducted including findings of our project. All were published observational studies with some difference in patient catchment and/or data analysis. At variance with a previously published meta-analysis [36], we performed a set of meta-analyses according to type of COVID-19 patients, class and combination of RAAS inhibitors and type of outcomes and, whenever possible, we extracted and pooled odds ratio adjusted for confounders for each primary study. In addition, we also provided several subgroup analyses.

Our meta-analysis does not show any evidence to support the hypothesis that ACE-I or ARB use is associated with an increased risk of severe illness, or in-hospital death among patients with COVID-19, in agreement with another, more recent meta-analysis [37] and with the observation that RAAS inhibitors are not associated with the risk of COVID-19 [38].

We performed several subgroup analyses according to different drugs and/or different outcomes, and always failed to observe any association between the use of ACE-I or ARB and severity or mortality in COVID-19 patients, irrespective of their hypertensive status. As far as drug category is concerned, when ACE-I no and ARB suspended plus ACE-I suspended and ARB no plus both ACE-I and ARB suspended.

Table 4

Incidences, hazard ratios and odds ratios for death according to ACE-I and ARB use, in COVID-19 hypertensive patients.

Group	Hypertensive patients, multiple imputation analysis (N = 2057)	Hypertensive patients, case-complete analysis (N = 1926)					
	Death (N = 471)	Patient at risk (N = 2057)	Person-days	Death Rate*	Univariable	Multivariable	Multivariable
ACE-I no and ARB no	217 (14.4%)	882 (100%)	14,473	15.0	-1.	-1.	-1.
ACE-I yes and ARB no	106 (20.7%)	506 (100%)	7964	13.3	0.88 (0.70 to 1.11)	1.00 (0.78 to 1.26)	0.88 (0.65 to 1.20)
ACE-I no and ARB yes	110 (20.9%)	507 (100%)	8516	12.9	0.86 (0.68 to 1.08)	0.94 (0.74 to 1.18)	1.00 (0.73 to 1.35)
ACE-I yes and ARB yes	4 (26.7%)	14 (100%)	207	19.3	1.23 (0.46 to 3.32)	1.44 (0.53 to 3.91)	1.42 (0.31 to 6.47)
ACE-I or ARB suspended†	34 (23.3%)	148 (100%)	2800	12.1	0.83 (0.58 to 1.19)	0.73 (0.50 to 1.06)	0.80 (0.49 to 1.30)

Abbreviations: HR, hazard ratio; 95%CI, 95% confidence interval; OR, odds ratio. *x1000 person-days. †Controlling for age, sex, diabetes, history of ischemic heart disease, chronic pulmonary disease, chronic kidney disease, C-reactive protein, use of other anti-hypertensive drugs, use of hydroxychloroquine (yes/no/missing) and use of other COVID-19 treatments (lopinavir, darunavir, tocilizumab, sarilumab, corticosteroids or remdesivir considered as a single group-yes/no/missing) as fixed effects; and hospitals clustering as random effect. ‡ACE-I no and ARB suspended plus ACE-I suspended and ARB no plus both ACE-I and ARB suspended.
Statistical approaches were used to overcome possible biases due to the observational nature of the investigation.

One limitation of this study is represented by the population that pertains only to Italy thus the results might not be applicable to other populations with possibly different geographical and socio-economic conditions and COVID-19 natural history. Furthermore, due to the retrospective nature of our study, some parameters were not available in all patients, and not all in-hospital medications might have been fully recorded.

The meta-analysis has few limitations too. All primary studies are retrospective and subgroup analyses suffer of a high degree of heterogeneity. Moreover, it was not possible to investigate subgroups according to different geographic settings, because eight out of 14 studies were performed in China.

In conclusion, in a large cohort of unselected patients with COVID-19, hospitalized in 34 different clinical centers all over Italy and in an updated meta-analysis of 19 studies, no harm of ACE-I or ARB use in COVID-19 patients has been reported. These results should be considered with caution, because all the studies analyzed were observational and retrospective, and the possibility of confounding could not be completely excluded. However, at present, this is the best available result that can help physicians in managing anti-hypertensive therapy with these drugs in COVID-19 patients.

While we could reasonably exclude a harmful effect of RAAS inhibitors on COVID-19 severity, randomized controlled clinical trials are still necessary to reach a conclusion regarding a potential benefit of these drugs in patients with COVID-19.

5.1. Perspectives

This study, as well as a meta-analysis of all the available literature indicate no either favorable nor detrimental effects of ACE-I or ARB on mortality in COVID-19 hospitalized patients. Use of this drugs should continue as per previous indications in cardiovascular disease.

Fig. 1. Forest plot for association of ACE-I or ARB with COVID-19 severity and/or mortality in all patients (panel A) or in patients with hypertension (panel B).
6. What is new?

In a large observational study in Italy, use of angiotensin converting enzyme inhibitors or angiotensin receptor blockers was not associated with either increased or reduced mortality. This is confirmed by a meta-analysis of all published literature.

7. What is relevant?

- Use of angiotensin converting enzyme inhibitors or angiotensin receptor blockers is not associated with either increased or reduced mortality.
- There is no heterogeneity of results in patients reported to be hypertensive as compared to non-hypertensive.
- This is the largest data-set so far examining the association of angiotensin converting enzyme inhibitors or angiotensin receptor blockers with mortality in COVID-19 patients.

Summary of the conclusions of the study.

We here found no association of the use of angiotensin converting enzyme inhibitors or angiotensin receptor blockers with either mortality. Use of these drugs should continue according to current indications also in COVID-19 patients.

Acknowledgments

We thank the 34 participating clinical Centres included in this cohort. This Article is dedicated to all patients who suffered or died, often in solitude, due to COVID-19; their tragic fate gave us moral strength to acknowledge theinars also in COVID-19 patients.

Source of funding

None.

Declaration of Competing Interest

None by any of the coauthors.

Authors’ contributions

Prof. Iacoviello and Di Castelnuovo had full access to all data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: Di Castelnuovo, Costanzo, Iacoviello, De Caterina, Acquisition, analysis, or interpretation of data: All authors. Drafting of the manuscript: Iacoviello, Di Castelnuovo, Costanzo. Critical revision of the manuscript for important intellectual content: Iacoviello, Di Castelnuovo, De Caterina, de Gaetano Donati, Guarneri and all Authors. Statistical analysis: Di Castelnuovo, Costanzo, Arboretti, Stefani. Administrative, technical, or material support: All Authors. Supervision: Iacoviello, Di Castelnuovo, De Caterina. Novelty and Significance: written in a style that is understood by a general audience. This section, which should be about 100 words, comprises 3 subsections under the following headings:

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.vph.2020.106805.

References

[1] F. Wu, S. Zhao, B. Yu, Y.-M. Chen, W. Wang, Z.-G. Song, Y. Hu, Z.-W. Tao, J.-H. Tian, Y.-Y. Pei, M.-L. Yuan, Y.-L. Zhang, F.-H. Dai, Y. Liu, Q.-M. Wang, J.-J. Zheng, L. Xu, E.C. Holmes, Y.-Z. Zhang, A new coronavirus associated with human respiratory disease in China. Nature. 579 (2020) 265–269.
[2] M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T.S. Schiergens, G. Herrler, N.H. Wu, A. Nitsche, M.A. Müller, C. Drosten, S. Pöhlmann, Sars-cov-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor, Cell. 181 (2020) 271–280.e78.
[3] W. Li, M.J. Moore, N. Vasilieva, J. Sui, S.K. Wong, M.A. Berne, M. Somasundaran, J.L. Sullivan, K. Lurz, T. Greenough, H. Choe, M. Farzan, Angiotensin-converting enzyme 2 is a functional receptor for the sars coronavirus, Nature. 426 (2003) 450–454.
[4] N.E. Ingram, A.G. Barakat, R. Reikoff, T. Bezdicek, T. Schacker, J.G. Chipman, C.J. Tignanelli, M.A. Puskarich, Understanding the renin-angiotensin-aldosterone-sars-cov-axia: a comprehensive review, Eur. Respir. J. 56 (2020).
[5] M. Madjid, P. Safavi-Naeini, S.D. Solomon, O. Vardeny, Potential effects of coronaviruses on the cardiovascular system: a review, JAMA Cardiol. 5 (7) (2020) 831–840, https://doi.org/10.1001/jamacardio.2020.1286.
[6] M. Eiser, D. Eiser, Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic? J. Hypertens. 38 (2020) 781–782.
[7] J. Li, X. Wang, J. Chen, H. Zhang, A. Deng, Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for coronavirus disease 2019 (COVID-19) infection in Wuhan, China. JAMA Cardiol. 5 (2020) 1–4.
[8] P. Zhang, L. Zou, J. Cai, F. Lei, J.J. Qin, X. Jie, X.Y. Liu, Y.C. Zhao, X. Huang, L. Lin, M. Xia, M.M. Chen, X. Cheng, X. Zhang, D. Guo, Y. Peng, Y.X. Ji, J. Chen, Z.G. She, Y. Wang, Q. Xu, R. Tan, H. Wang, J. Lin, P. Luo, S. Fu, H. Cai, P. Ye, B. Xiao, W. Mao, L. Liu, Y. Yan, M. Tao, Liu, M. Chen, X.J. Zhang, X. Wang, R.M. Tomacruz, B.H. Zhang, X. Huang, Y. Yuan, L. Rohit, P.P. Liu, H. Li, Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin ii receptor blockers with mortality among patients with hypertension hospitalized with COVID-19, Circ. Res. 126 (2020) 1671–1681.
[9] J. Guo, Z. Huang, L. Lin, J. Lv, Coronavirus disease 2019 (COVID-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection, J. Am. Heart Assoc. 9 (2020) e016219.
[10] I. Imai, K. Kubo, S. Rao, Y. Huan, F. Guo, B. Guan, P. Yang, R. Sarao, T. Wada, H. Leong-Poi, M.A. Crackower, A. Fukumitsu, C.C. Hui, L. Hein, S. Uhlig, A.S. Slutsky, C. Jiang, J.M. Pennington, Angiotensin-converting enzyme 2 protects from severe acute lung failure, Nature. 436 (2005) 112–116.
[11] Y. Liu, Y. Yang, C. Zhang, F. Huang, F. Wang, J. Yuan, Z. Wang, J. Li, J. Li, C.F. Feng, Z. Zhang, L. Wang, L. Peng, L. Chen, Y. Qiao, D. Zhao, S. Tan, L. Yin, J. Xu, C. Zhou, C. Jiang, L. Liu, Clinical and biochemical indexes from 2019-ncov infected patients linked to viral loads and lung injury, Sci. China Life Sci. 63 (2020) 364–374.
[12] A. Di Castelnuovo, R. De Caterina, G. de Gaetano, L. Iacoviello, Controversial relationship between renin-angiotensin system inhibitors and severity of COVID-19, Hypertension. 76 (2020) 312–313.
[13] The COVID-19 RISK and Treatments (CORIST) Collaborators, Common cardiovascular risk factors and in-hospital mortality in 3,894 patients with COVID-19: survival analysis and machine learning-based findings from the multicentre Italian CORIST Study, Nutrition, Metabolism & Cardiovascular Diseases, 2020, https://doi.org/10.1016/j.numecd.2020.07.031.
[14] Clinical management of severe acute respiratory infection when novel coronavirus (2019-ncov) infection is suspected: Interim guidance, (28 january 2020) Available at https://apps.who.int/iris/bitstream/handle/10665/330893/WHO-nCoV-(2019-ncov)infection-is-suspected-20200128-eng.pdf?sequence=1&isAllow=y (accessed July, 2020).
[15] D. Rubin, Multiple Imputation for Nonresponse in Surveys, John Wiley, New York, 1987.
[16] D.V. Glidden, E. Vittinghoff, Modelling clustered survival data from multicentre clinical trials, Stat. Med. 20 (2001) 369–388.
[17] A. Conversano, F. Melillo, A. Napolano, E. Fominskiy, M. Spessot, F. Ciceri, J.A. Cominelli, M. Pedersen, P. Hjortkjer, P. Johansen, G. Nielsen, J.L. Sorensen, S. Brandslund, J. Pedersen, J. Christiansen, T. Prehn, J. Nyengaard, J. Mortensen, Study of interactions between renin-angiotensin system inhibitors and outcome in patients with sars-cov-2 pneumonia: a case series study, Hypertension. 76 (2) (May 2020) e10–e12, https://doi.org/10.1161/HYPERTENSIONAHA.120.153121.
[18] J. de Abajo, S. Rodríguez-Martín, V. Llerma, G. Mejía-Abril, M. Aguilar, A. García-Luque, L. Laredo, O. Laosoa, G. Centeno-Soto, M. Galvés, M. Puerro, E. González-Rojano, L. Pedraza, I. Pablo, F. Abd-Santos, L. Rodríguez-Matías, A. Tobías, A. Rodríguez Miguel, C. Elvira, Use of renin-angiotensin-aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study, Lancet 395 (2020).
[19] E.L. Fosbol, J.H. Butt, L. Ørstgaard, C. Andersson, C. Selmer, K. Kraghøj, M. Schou, M. Phelps, G.H. Pedersen, T.A. Gerds, L. Pober, Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with COVID-19 diagnosis and mortality, JAMA. 324 (2) (2020) 168–177, https://doi.org/10.1001/jama.2020.11301 PMID: 32558877.
[20] C. Gao, Y. Cai, K. Zhang, L. Zhou, Y. Zhang, X. Zhang, Q. Li, W. Li, Y. Yang, X. Zhao, Y. Zhao, H. Wang, Y. Liu, Z. Yin, R. Zhang, R. Wang, M. Yang, C. Hui, W. Wijes, J.W. McEvoy, O. Soliman, Y. Onuma, P.W. Serruys, T. Luo, F. Li, Association of hypertension and antihypertensive treatment with COVID-19 mortality: a
A. Di Castelnuovo, et al.
Vascular Pharmacology 135 (2020) 106805

retrospective observational study, Eur. Heart J. 41 (2020) 2058–2066.

[21] J. Geleirs, Y. Sun, J. Platt, J. Zucker, M. Baldwin, G. Hripcsak, A. Labelle, D.K. Manson, C. Kubin, R.G. Barr, M.E. Sobieszczyk, N.W. Schlager, Observational study of hydroxychloroquine in hospitalized patients with COVID-19, N. Engl. J. Med. 382 (2020) 2411–2418.

[22] T. Guo, Y. Fan, M. Chen, X. Wu, L. Zhang, T. He, H. Wang, J. Wan, X. Wang, Z. Lu, Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19), JAMA Cardiol. 5 (2020) 1–8.

[23] Z. Huang, J. Cao, Y. Yao, X. Jin, Z. Luo, Y. Xue, C. Zhu, Y. Song, Y. Wang, Y. Zou, J. Qian, K. Yu, H. Gong, J. Ge, The effect of ras blockers on the clinical characteristics of COVID-19 patients with hypertension, Ann Transl Med. 8 (2020) 430.

[24] G. Laccarino, G. Grassi, C. Borghi, C. Ferri, M. Salvetti, M. Volpe, A.F.G. Cicero, P. Minut, M.L. Muijesan, P. Muliero, G. Mule, G. Pucci, C. Savoia, L. Sechi, S. Carugo, F. Fallo, C. Giannattasio, D. Grassi, C. Letizia, S. Perlini, D. Rizzoni, R. Sarzani, G. Tocci, F. Veglio, C. Arosi, M. Bevilacqua, V. Bisogni, M. Bombelli, L. Bufore, F. Cannata, G. Carpani, M. Catanzaro, G. Chiari, F. Chiumiento, R. Cianci, F. Cipollini, A. Concistrè, A. Dalbeni, R.A.D. Blasi, C.D. Ciaciti, R. Dell’Oro, A.D. Guardo, S.D. Lorenzo, M.D. Norcia, R. Ervo, E. Eula, D. Fabbricatore, E. Fanelli, C. Fava, E. Grasso, A. Grimaldi, M. Iliar, C. Invernizzi, E. Iraca, F. Liegi, P. Malerba, M. Mancusi, G. Molinari, R. Mussinelli, A. Paini, P. Pellinmasi, O. Piazza, R. Pontremoli, F.Q. Tevano, F. Rabbia, M. Rocco, A. Sabena, F. Salinaro, P. Schiavi, M.C. Sgariglia, F. Spannella, S. Tedeschi, P. Viale, Age and multimorbidity predict death among COVID-19 patients, Hypertension. 76 (2020) 366–372.

[25] Lee H, Ahn J, Kang C, et al. Association of angiotensin ii receptor blockers and angiotensin-converting enzyme inhibitors on COVID-19-related outcome (4/1/ 2020). Available at SSRN: https://ssrn.com/abstract=3569837 or doi:https://doi.org/10.2139/ssrn.3569837.2020.

[26] N. Mehta, A. Kalar, A.S. Nowacki, S. Anjewierden, Z. Han, P. Bhat, A.E. Carmona-Rubio, M. Jacob, G.W. Procop, S. Harrington, A. Milinovich, L.G. Svensson, L. Jhih, J.B. Young, M.K. Chung, Association of use of angiotensin-converting enzyme inhibitors and angiotensin ii receptor blockers with testing positive for coronavirus disease 2019 (COVID-19), JAMA Cardiol. (2020) e201855, https://doi.org/10.1001/jamacardio.2020.1855.

[27] J. Meng, G. Xiao, J. Zhang, X. He, M. Ou, J. Bi, R. Yang, W. Di, Z. Wang, Z. Li, H. Gao, L. Liu, G. Zhang. Renin-angiotensin system inhibitors improve the clinical disease 2019 (COVID-19), JAMA Cardiol. (2020) e201855, https://doi.org/10.1001/jamacardio.2020.1855.

[28] H.R. Reynolds, S. Adhikari, C. Pulgarin, A.B. Troxel, E. Irrtate, S.B. Johnson, A. Hausvater, J.D. Newman, J.S. Berger, S. Bangalore, S.D. Katz, G.I. Fishman, D. Kunichoff, Y. Chen, G. Ogedegbe, J.S. Hochman, Continuation versus discontinuation of ace inhibitors and mortality, Eur Heart J Cardiovasc Pharmacother. (2020), https://doi.org/10.1093/ehjcvp/pva056 PMCID: PMC7314058.

[29] S. Richardson, J.S. Hirsch, M. Narasimhan, J.M. Crawford, T. McGinn, K.W. Davidson, D.P. Barnaby, L.B. Becker, J.D. Chelico, S.L. Cohen, J. Cockingham, K. Coppa, M.A. Diefenbach, A.J. Dominello, J. Duer-Hefele, L. Falzon, J. Gitlin, N. Hajizadeh, T.G. Harvin, D.A. Hirschwerk, E.J. Kim, Z.M. Kozel, L.M. Marrast, J.M. Mogavero, G.A. Osorio, M. Qiu, T.P. Zanots, Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the new York City area, JAMA. 323 (2020) 2052–2059.

[30] S. Tedeschi, M. Giannella, M. Bartolotti, F. Frapini, M. Tadolini, C. Borghi, P. Viale, Clinical impact of renin-angiotensin system inhibitors on in-hospital mortality of patients with hypertension hospitalized for COVID-19, Clin. Infect. Dis. (2020) ciaa492, https://doi.org/10.1093/cid/ciaa492.

[31] G. Yang, Z. Tan, L. Zhou, M. Yang, L. Peng, J. Liu, J. Cai, R. Yang, J. Han, Y. Huang, S. He, Effects of angiotensin ii receptor blockers and ace (angiotensin-converting enzyme) inhibitors on virus infection, inflammatory status, and clinical outcomes in patients with COVID-19 and hypertension: a single-center retrospective study, Hypertension. 75 (2020) 51–58.

[32] X. Zhou, J. Zhu, T. Xu, Clinical characteristics of coronavirus disease 2019 (COVID-19) patients with hypertension on renin-angiotensin system inhibitors, Clin. Exp. Hypertens. 42 (2020) 656–660.

[33] F.P. Cappuccio, A. Siani, COVID-19 and cardiovascular risk: susceptibility to infection to sars-cov-2, severity and prognosis of COVID-19 and blockade of the renin-angiotensin-aldosterone system. An evidence-based viewpoint, Nutr. Metab. Cardiovasc. Dis. 30 (2020) 1227–1235.

[34] F. Cannata, M. Chiarito, B. Reimers, E. Azzolini, G. Ferrante, I. My, G. Viggiani, C. Panico, D. Regazzoli, M. Ciccarelli, A. Voza, A. Aghemo, H. Li, Y. Wang, G. Condorelli, G.G. Stefanini, Continuation versus discontinuation of ace inhibitors or angiotensin ii receptor blockers in COVID-19: effects on blood pressure control and mortality, Eur Heart J Cardiovasc Pharmacother. (2020). https://doi.org/10.1093/ehjcvp/pva056 PMID: 32501480 PMCID: PMC7314058.

[35] P. Pan, Y. Zhang, J. Wang, M. Ye, J. Xu, Y. Shen, B. He, H. Wang, Z. Ye, D. Zhao, M. Luo, Z. Liu, M. Zhang, P. Gu, J. Liu, M. Li, D. Liu, J. Wan, J. Clinical features of COVID-19 in patients with essential hypertension and the impacts of renin-angiotensin-aldosterone system inhibitors on the prognosis of COVID-19 patients. Hypertension. 0:HYPERTENSIONAHA.120.15289.

[36] X. Guo, Y. Zha, Y. Hong, Decreased mortality of COVID-19 with renin-angiotensin-aldosterone system inhibitors therapy in patients with hypertension. A meta-analysis, Hypertension. 76 (2020) e13–e14.

[37] M.E. Flacco, C. Acuti Martellucci, F. Bravi, G. Parruti, R. Cappadona, A. Mascitelli, R. Manfredini, L.G. Mantovani, L. Manzoli, Treatment with ace inhibitors or arbs and mortality, Eur Heart J Cardiovasc Pharmacother. (2020), https://doi.org/10.1093/eu/ehjcvp/pva056 PMCID: PMC7314058.

[38] G. Mancia, F. Rea, M. Ludergnani, G. Apolone, G. Condorelli, et al., Renin-angiotensin-aldosterone system blockers and the risk of COVID-19, N. Engl. J. Med. 382 (2020) 2431–2448.