Surface Incommensurate Structure in an Anisotropic Model with competing interactions on Semiinfinite Triangular Lattice†

Pavol Pajerský and Anton Šurda

Institute of Physics, Slovak Academy of Science, Dúbravská cesta 9, 842 28 Bratislava, Slovakia

Abstract. An anisotropic spin model on a triangular semiinfinite lattice with ferromagnetic nearest-neighbour interactions and one antiferromagnetic next-nearest-neighbour interaction is investigated by the cluster transfer-matrix method. A phase diagram with ⟨2⟩ antiphase, ferromagnetic, incommensurate, and disordered phase is obtained. The bulk uniaxial incommensurate structure modulated in the direction of the competing interactions is found between the ⟨2⟩ antiphase and the disordered phase. The incommensurate structure near the surface with free and ⟨2⟩ boundary condition is studied at different temperatures. Paramagnetic damping at the surface and enhancement of the incommensurate structure in the subsurface region at high temperatures and a new subsurface incommensurate structure modulated in two directions at low temperatures are found.

† E-mail address: fyzisurd@savba.sk
1. Introduction

The cluster transfer-matrix method was found as a useful tool for description of commensurate and incommensurate structures in two dimensional and three-dimensional spin lattice models. It is able to describe floating incommensurate structures in two dimensions[1, 2, 3] as well as an infinite number of commensurate structures in three-dimensional models [4]. The method yields phase diagram of the model, free energy, correlation functions, and magnetization as a function of coordinates. As all the calculations are performed in real space, there is a possibility to study the properties of spatially inhomogeneous systems, e.g. a lattice with a surface, where the inhomogeneity is localized in one direction, and it is homogeneous in the others.

The cluster transfer-matrix method is a generalized mean field approximation – it uses auxiliary effective multisite fields that are not directly related to the magnetization or multisite correlation functions of the model, nevertheless, the correlation functions can be calculated from them. In two dimensions, the spatial dependence of the fields in one direction is obtained by simple iterating the effective fields from one lattice row perpendicular to it, to the following one. It is more difficult to get the spatial dependence inside the row, i.e. in the direction perpendicular to the direction of the iteration. Here, the correlation functions of a row of spins interacting by original interactions of the Hamiltonian plus by the spatially dependent effective multisite fields should be found. For that reason the iteration in the systems with uniaxial incommensurate structure is always performed in the direction of the incommensurate modulation.

The transfer matrix formalism is also used in derivation of the fermion Hamiltonian in the domain wall theory of commensurate-incommensurate (C-IC) transitions in 2D lattice models [5]. The domain walls in the incommensurate structure are described by world lines of fermions and therefore, the transfer matrices are defined on columns of sites in the direction of the incommensurate modulation, i.e. perpendicular to the transfer matrices used in our method.

It is simple to study surface or subsurface properties in the systems where the surface is perpendicular to the direction of the iteration. In fact, this is done always when the bulk properties of the system are calculated, as the starting values of the effective fields in the iteration procedure play a role of surface boundary conditions. In this case, the most conspicuous properties of the subsurface region appear for paramagnetic phase.
near the phase transition line with the incommensurate or ferromagnetic structure. In the first case, the surface effects attenuate with distance from the surface in an oscillatory way, in the latter case, monotonically.

In this paper we study surface and subsurface properties of a two dimensional system with the surface orientated parallel to the incommensurate modulation. Now, the effective fields used in the iteration procedure are functions of distance from the surface and all of them should be stored in the computer memory. Fortunately, far enough from the critical point the surface effects are confined to a relatively narrow region, outside which the effective fields acquire constant bulk values. Thus, the shortest possible distance from the critical point in the parameter space is limited by computer memory in our calculations.

The cluster transfer-matrix method is related to the mean field approximation of Jensen and Bak [6] were a nonlinear mapping of site magnetizations instead of effective fields is carried out. There, in distinction to our method, the physically stable solutions are mathematically unstable. The exact nonlinear mapping is possible on lattices without closed loops, like Cayley tree and Bethe lattice. These lattices are characterized by the site coordination number rather than the dimensionality. This nonlinear mapping technique were applied to various models including Potts [7] Ising [8] and ANNNI model [9]. It is difficult to relate the results for the hierarchical lattices to those for Bravais lattices. Nevertheless, the phase diagram of the ANNNI model on Cayley tree with infinite coordination number [9] bear similar features to that of the 3D ANNNI model.

The ANNNI model defined on the square lattice and anisotropic antiferromagnetic (AA) model on the triangular lattice are the most simple 2D models displaying an uniaxial incommensurate structure. There are two competing interactions in the both models: ferromagnetic nn and and antiferromagnetic third-nearest neighbour interactions in the ANNNI model and antiferromagnetic nn and ferromagnetic nnn in the AA model on the triangular lattice. Both models are anisotropic, i.e. two of the third-nearest neighbour interactions and one or two of the nnn interactions are missing. Both models were investigated by the cluster transfer-matrix approximation and the results were consistent with numerous other approaches like Monte Carlo calculations, series expansions, cluster variation method, domain wall theory, finite-size scaling [10, 11, 12, 13].

The phase diagrams of 2D models are more simple than those in the 3D case. They
consist of a small number of commensurate phases and a single region of a floating incommensurate phase. In the ANNNI model, the nn interactions are ferromagnetic and consequently, the rows are ordered ferromagnetically; in the AA model they have a commensurate structure with periodicity of three lattice constants.

Here, we study a natural generalization of the ANNNI model to the triangular lattice. The nn interactions are ferromagnetic and one nnn interaction instead of third-next nearest interaction is antiferromagnetic, i.e, the signs of the interactions are opposite to the above described AA model. The phase diagram and all other properties are similar to those in the ANNNI model. Hence, it can be expected that the surface effects in the ANNNI model on the square lattice are closely related to the ones described bellow.

2. Model and method

We consider an anisotropic ferromagnetic model of Ising spins ($\sigma = \pm 1$) on a triangular semiinfinite lattice interacting by nearest neighbour (nn) and one next-nearest-neighbour (nnn) interactions. All the nn interactions of the model are ferromagnetic. Two of the three possible nnn interactions are missing and the remaining one is antiferromagnetic. The triangular lattice with the spin interactions and the clusters used in further calculation are shown in Fig. 1, where $j = 0, \ldots, \infty$ and $i = -\infty, \ldots, \infty$. We shall calculate the free energy and the local magnetization by the cluster-matrix method developed by one of us [14].

The cluster-matrix method is based on a subsequent summation of the weight functions $\exp[\beta H(\sigma_i)]$ over the spin variables in the consecutive rows when calculating the partition function. For the computational reasons zigzag rows shown in Fig. 1 perpendicular to the nnn interaction are chosen. The lattice surface is perpendicular to the rows and the expected direction of the domain walls. It is put at the column $j = 0$.

Let us write the Hamiltonian of the model

$$H = \sum_{i,j} J_1 \sigma_{i,j} (\sigma_{i,j+1} + \sigma_{i,j-1} + \sigma_{i,j+2}) + J_2 \sigma_{i,j} \sigma_{i+1,j}$$

as a sum of energies of the 2×4 clusters

$$H = \sum_{i,j} [G_{i,2j} + G'_{i,2j+1}]$$
We use two types of the \(2 \times 4\) clusters, that are shifted by one lattice constant and can be transformed into each other by translation and rotation by an angle \(180^\circ\) in the plane of the lattice. They are shown in the inset of Fig. 1.

The energy of the bulk cluster of the first type is

\[
G_{i,2j} = J_1 \left[\sigma_{i,2j+1} \left(\frac{\sigma_{i,2j}}{6} + \frac{\sigma_{i,2j+2}}{6} + \frac{\sigma_{i,2j+3}}{3} + \frac{\sigma_{i+1,2j}}{3} + \frac{\sigma_{i+1,2j+2}}{3} \right) + \sigma_{i+1,2j+2} \left(\frac{\sigma_{i+1,2j+1}}{6} + \frac{\sigma_{i+1,2j+3}}{6} + \frac{\sigma_{i+1,2j}}{3} + \frac{\sigma_{i,2j+3}}{3} \right) + \frac{\sigma_{i,2j+2}\sigma_{i,2j+3}}{4} + \frac{\sigma_{i,2j+2}\sigma_{i+1,2j+1}}{4} + \frac{\sigma_{i,2j+2}\sigma_{i+1,2j+2}}{4} + \frac{\sigma_{i,2j+3}\sigma_{i+1,2j+3}}{4} \right],
\]

where \(J_1\) is the nearest-neighbor interaction and \(J_2\) is the next-nearest one and \(j = 1, 2, \ldots, \infty\). The terms in (1) are divided by the number of appearances of the particular bond in different overlapping clusters. The expression for the energy of the cluster of the second type denoted by \(G'_{i,2j+1}\) can be found by interchanging \(i \leftrightarrow i+1\) and \(2j \rightarrow 2j+1\) at the right hand side of (1). The denominators in (1) are different in the expressions for the energies \(G_{i,0}\) and \(G'_{i,1}\) of the surface clusters, because the translational symmetry is broken here.

The evaluation of the partition function

\[
Z = \sum_{\{\sigma\}} \exp[\beta H(\sigma)]
\]

can be transformed to the calculation of the numbers \(\lambda_i\) appearing as normalization factors in the iterative procedure for auxiliary functions \(\Psi_i\)

\[
\sum_{S_i} \Psi_i(S_i) T_i(S_i, S_{i+1}) = \lambda_i \Psi_{i+1}(S_{i+1})
\]

starting from an appropriate function \(\Psi_1(S_1)[1, 2, 3]\). \((C_i\) denotes a row variable \(S_i \equiv \{\sigma_{i,0}, \sigma_{i,2j}, \sigma_{i,2j+1}, \sigma_{i,2j+2}, \ldots\}\) and \(T_i(S_i, S_{i+1}) = \exp \left[\beta \sum_{j=0}^{+\infty} (G_{i,2j} + G'_{i,2j+1}) \right]\).

Unfortunately, each of the auxiliary functions \(\Psi_i(S_i)\) acquires an infinite number of values and an approximation should be done to perform the summation on the left hand side of (2).

Assuming an asymptotic behaviour of correlation functions already at distances exceeding the cluster size, we can try to factorize \(\Psi_i(S_i)\) in the same way as the function
\[T_i(S_i, S_{i+1}) = \prod_{j=0}^{\infty} \exp(G_{i,2j}) \exp(G'_{i,2j+1}) \]
i.e.
\[\Psi_i(S_i) \simeq \prod_{j=0}^{\infty} \Psi_{i,2j}(s^k_{i,j}) \Psi'_{i,2j+1}(s^k_{i,j+1}) \] (3)

where \(s^k_{i,j} \) denotes a set of site variables of a finite row cluster \(s^k_{i,l} = (\sigma_{i,l}, \ldots, \sigma_{i,l+k}) \) and \(\Psi_{i,2j}(s^k_{i,j}), \Psi'_{i,2j+1}(s^k_{i,j+1}) \) are the cluster auxiliary functions acquiring a finite number of values.

The number \(k \) characterizes the order of the approximation and was taken equal to 4 what is the width of the clusters in (1). (Fig. 1)

The logarithms of the values of the cluster auxiliary function for different cluster configuration represent the above mentioned multisite effective fields. As the functions are defined on finite clusters, only short-range effective interactions are taken into account in our approximation.

Substituting (3) into (2), we obtain a relation between the known functions \(\Psi_{i,2j}, \Psi'_{i,2j+1} \) found in the preceding iteration step and the new functions \(\Psi_{i+1,2j}, \Psi'_{i+1,2j+1} \). The expression for \(\Psi_{i+1,2j}, \Psi'_{i+1,2j+1} \) in terms of \(\Psi_{i,2j}, \Psi'_{i,2j+1} \) can be found by a partial summation of the both sides of (2). This problem is one-dimensional and the partial summation can be done exactly—again by the technique of auxiliary functions as shown in detail in previous papers [1, 2, 3, 14]. In contrast with the previous calculations on infinite lattices, the equation (2) has no translational symmetry in the row direction due to the presence of the surface and the equation should be solved for all \(\Psi_{i+1,2j}, \Psi'_{i+1,2j+1}, j = 0, \ldots, \infty \). In practice, the cluster auxiliary functions converge to their bulk values fast if we are far enough from the continuous incommensurate-commensurate (IC-C) phase transition. We confined ourselves to the distances from the IC-C phase transition line where the number of the cluster auxiliary functions taken into account did not exceed \(j = 400 \).

In the paramagnetic and ferromagnetic phase \(\Psi_{i,2j}, \Psi'_{i,2j+1} \), do not depend on \(i \), in the \(\langle 2 \rangle \) antiphase consisting of zig-zag rows with alternating magnetization, \(\Psi_{i,2j}, \Psi'_{i,2j+1} \) are periodic functions of \(i \) with period of two. In the incommensurate phase, their period is a continuous function of the interaction constants. The functions \(\Psi_{i,2j}, \Psi'_{i,2j+1} \) are \(j \) independent in the bulk, i.e. the row structure is ferromagnetic or paramagnetic in all phases. Nevertheless, they are strongly spatially modulated near the surface what leads even to the areas of reversed magnetization.
From the knowledge of the auxiliary functions Ψ and Ψ', it is possible to find the site magnetizations. We have

$$\langle \sigma_{i,l} \rangle = \sum_{s_i} \prod_j \Psi_{i,2j}(s_{i,2j}^k)\Psi'_{i,2j+1}(s_{i,2j+1}^k)\sigma_{i,l}\bar{\Psi}_{i,2j}(s_{i,2j}^k)\bar{\Psi}'_{i,2j+1}(s_{i,2j+1}^k).$$

(4)

where $\bar{\Psi}'$, $\bar{\Psi}'$ are the functions that are calculated by the same iteration procedure as in (2) but in the opposite direction.

3. Results and discussion

The calculations have shown that the anisotropy model with competing nn and nnn interactions on a triangular lattice can be found in one of the four phases: disordered paramagnetic, commensurate $\langle 2 \rangle$ antiphase, ferromagnetic, and the incommensurate one lying between them.

The phase diagram of the model, shown in Fig. 2, is similar to the phase diagram of the 2D ANNNI model on the square lattice [2, 10, 11]. Near the multiphase point $J_1/J_2 = 1$ the disordered phase should persist to $T = 0$ in the form of an extremely narrow strip. Unfortunately, by our method it is not possible to verify this fact at very low temperatures and the direct phase transition between the ferromagnetic and the incommensurate phase cannot be excluded. On the other hand, we found no signs confirming the opposite case. For $J_1/J_2 \to 0$ the incommensurate phase seems to be stable down to the point $T = 0$. The IC-disorder phase transition line seemingly tends to a Lifshitz point at the ferro-disorder phase transition line but at the close vicinity of it, it turns abruptly down and apparently meets it at $T = 0$. It is seen that a less careful numerical treatment of the problem could lead to an erroneous confirmation of the Lifshitz point in 2D ANNNI model.

When we put $J_2 = 0$, the exactly solvable ferromagnetic Ising model on the triangular lattice with the critical temperature $T_c = 3.732\ldots$ is restored. Our method yields $T_c = 3.64$. We believe that the comparison of this two values suggests the accuracy of the whole phase diagram shown in Fig. 2.

The interaction constants and temperature in all further presented results are localized in the areas denoted by two short bars in the incommensurate region of the phase diagram near the phase transition lines with the disordered paramagnetic phase and $\langle 2 \rangle$ antiphase, respectively. At the higher temperature the bulk magnetization is
of a sinusoidal shape. At the lower temperatures the structure consists of strip-like \(\langle 2 \rangle \) antiphase domains. Their width is growing to infinity with temperature approaching the IC-C phase transition line. The bulk structures can be seen in the depth more then 400 columns from the surface in the following figures.

We consider two different boundary conditions at the surface: the free boundary condition (FBC) and the \(\langle 2 \rangle \) antiphase boundary condition (ABC). In our approach the boundary condition is given by the starting values \(\Psi_{i,0} \) of the auxiliary function. For FBC all values of the auxiliary function on the surface are taken equal to unity. The ABC boundary conditions can be simulated by the values of the cluster auxiliary function deep in the bulk of the \(\langle 2 \rangle \) structure at low temperature. Actually, they have been taken as an output of calculation at \(J_1/J_2 = 0.5, T/J_2 = 0.1 \) for \(j = 600 \).

The site magnetizations at every second zig-zag row and at first 480 subsurface columns for \(T/J_2 = 1.47, 1.252, 1.247, 1.241 \) are shown in Fig. 3a-d. All these figures are calculated for the FBC. In Fig. 4., the magnetization along the rows of sites with maximum absolute value of magnetization as a function of distance from the surface is shown.

As expected, the amplitude of the sinusoidal magnetization at the surface is diminished by the absence of interactions for FBC at the temperature \(T/J_2 = 1.47 \), close to the paramagnetic structure. This suppression is replaced by an enhancement of the incommensurate waves of magnetization in the narrow subsurface region (Fig. 3a). The presence of the surface affects, approximately, only first 60 columns at this temperature. Similar increase of the magnetization profile near the surface was found for semi-infinite ferromagnetic Ising model [15].

The situation is different for temperatures near the IC-C phase transition where wide one-dimensional domains of \(\langle 2 \rangle \) structure bounded by domain walls perpendicular to the nnn \(J_2 \) interaction \(J_2 \) occur in the bulk. Two neighbouring domains differ by a phase shift of \(\pi \) (Fig. 3b–3d). Near the surface, the strip-like bulk domains become modulated, as well, and incommensurate domains are formed in the direction perpendicular of the nnn interaction. By approaching the IC-C phase transition line (lowering the temperature) the region of the biaxial incommensurate structure becomes wider and its depth changes linearly with temperature, as shown in Fig. 5. Extrapolating the linear plot to the temperature of the phase transition \(T_{IC-C} = 1.1876 \), the width of the biaxially modulated structure at the critical point is found approximately equal to 1300
Fig. 6 and 7 shows that the influence of the boundary condition is small. The change from FBC to ABC affects only first few subsurface columns. The phase of the ⟨2⟩ structure is fixed at the surface, but it does not influence the phase in the bulk that changes quite freely at the domain walls. The structure perpendicular to the surface is unaffected, as well.

The cluster auxiliary functions $\Psi_{i,2j}, \Psi'_{i,2j+1}$ are the direct output of the iteration procedure and in the bulk behave similarly to the magnetization shown in the previous figures. In the low-temperature incommensurate structure, they form one-dimensional strip-like domains possessing the symmetry of ⟨2⟩ phase. Near the surface the domains bend in the direction opposite to the direction of the iteration.

This situation is shown in Fig. 8, where one of the 64 values of the cluster auxiliary function $\Psi_{i,2j}$ at subsurface lattice sites is plotted. The direction of the iteration is from the left to the right, i.e. the domains a bended backwards. It looks like there is a friction between the auxiliary-function structures and the surface when the space evolution of the auxiliary function is calculated by the iteration procedure.

The domains are bended but near the surface they are again straight. The bending angle between the direction of the bulk and surface domain is increasing when approaching the critical line as shown in Fig 5. At the critical temperature, the angle tends to 45°.

The magnetization is calculated from eq. 4 which involves two auxiliary function which are iterated in opposite directions and therefore their surface parts are bended in the opposite sense. The surface incommensurate structure is in fact their interference pattern and the resulting modulation of the magnetization has a two-dimensional character.

As the the bending angle of the auxiliary-function domains is between 0° and 45° the 2D magnetization domains are oblong at higher temperatures and become square-like near the phase transition line. On the other hand, if the linear extrapolation is applicable up to the critical line, the width of the bulk domains becomes infinite while the width of the surface region remains finite. Thus, the subsurface structure should in fact disappear at the phase transition.

The width of subsurface structure was measured as a distance from surface to the point of the maximum curvature of the bended domain wall.
In conclusion, influence of the surface on the incommensurate structure of an anisotropic Ising model on a triangular lattice was investigated by the cluster transfer-matrix method. The uniaxial incommensurate structure in a finite region near the surface changes its character and becomes biaxial. The width of the biaxially modulated structure seems to be finite at critical temperature. Formation of the biaxial structure can be interpreted as an interference pattern of two auxiliary-function wave-like structures.

From a more physical point of view, it can be seen as a result of a misfit between the bulk structure with longer periodicity than that of the surface structure due to the absence of a part of interactions at the surface that is equivalent to an effective increase of temperature.
REFERENCES

[1] Šurda A 1991 Physica A **178** 332
[2] Karasová I. and Šurda A. 1993 J. Stat. Phys. **70** 675
[3] Pajerský P. and Šurda A. 1994 J. Stat. Phys. **76** 1467
[4] Šurda A 1996 Commensurate and incommensurate structures in 3D ANNNI model (to appear)
[5] den Nijs M 1992 Phase Transition and Critical Phenomena Vol 12 (New York: Academic Press)
[6] Jensen M H, Bak P 1983 Phys. Rev. B **27** 6853
[7] Monroe J L 1996 J. Phys. A: Math. Gen. **29** 5421
[8] Mélín R, Anglès d’Auriac J C, Chandra P and Douçot B 1996 J. Phys. A: Math. Gen. **29** 5773
[9] Yokoi C S O, de Oliveira M J and Salinas S R 1985 Phys. Rev. Lett. **54** 163
[10] Selke W 1988 Phys. Rep. **170** 587
[11] Selke W 1992 Phase Transition and Critical Phenomena Vol 15 (New York: Academic Press)
[12] de Queiroz S L A and Domany E 1995 Search for Kosterlitz-Thouless transition in a triangular Ising antiferromagnet with further-neighbour ferromagnetic interactions SISSA-preprint cond-mat 9507076
[13] Kitatani H and Oguchi T. 1988 J. Phys. Soc. Jpn. **1344**
[14] Šurda A 1991 Phys. Rev. B **43** 908
[15] Czerner P and Ritschel U 1996 Magnetization profile in the $d = 2$ semi-infinite Ising model and crossover between ordinary and normal transition SISSA-preprint cond-mat 969120
FIGURE CAPTIONS

Fig. 1. Anisotropic model on triangular half lattice with two competing interactions. Each spin interacts with 6 nn spins by J_1 interaction (thin lines) and 2 nnn spins by J_2 interaction (thick lines). The two types 2×4 clusters used in the calculation are in the inset. Our zig-zag row encompasses two ordinary rows of the triangular lattice.

Fig. 2. Phase diagram of the model. Two short bars (at $J_1/J_2 = 0.5$, $T/J_2 = 1.241, 1.47$) show the parameter regions of the calculations presented in Figs. 3–8.

Fig. 3a. Site magnetizations $m_{i,j} = \langle \sigma_{i,j} \rangle$ at the first 480 subsurface columns ($j = 1, \ldots, 480$) for $T/J_2 = 1.47, J_1/J_2 = 0.5$ and FBC.

Fig. 3b. Site magnetizations $m_{i,j}$ at the first 480 subsurface columns for $T/J_2 = 1.252, J_1/J_2 = 0.5$ and FBC.

Fig. 3c. Site magnetizations $m_{i,j}$ at the first 480 subsurface columns for $T/J_2 = 1.247, J_1/J_2 = 0.5$ and FBC.

Fig. 3d. Site magnetizations $m_{i,j}$ at the first 480 subsurface columns for $T/J_2 = 1.241, J_1/J_2 = 0.5$ and FBC.

Fig. 4. Site magnetizations $m_{i,j}$ in the direction perpendicular to the surface as a function of the column number j at $T/J_2 = 1.241$ (the thickest curve), 1.247, 1.252, 1.47 (the thinnest curve) and $J_1/J_2 = 0.5$ for FBC. The curves follow one of ridges of the structures in Figs. 3a–d.

Fig. 5. Width of the surface affected region (stars) and angle α between of the bulk auxiliary-function domain wall and the domain wall near the surface (triangles).

Fig. 6. Site magnetizations $m_{i,j}$ at the first 480 subsurface columns for $T/J_2 = 1.241, J_1/J_2 = 0.5$ and ABC.

Fig. 7. Site magnetizations $m_{i,j}$ in the direction perpendicular to the surface as a function of the column number j at $T/J_2 = 1.241$ (the thickest curve), 1.247, 1.252,
1.47 (the thinnest curve) and $J_1/J_2 = 0.5$ for ABC. The curves follow one of the ridges of the structure in Fig. 6.

Fig. 8. Cluster auxiliary function $\Psi_{i,j}$ at the first 480 subsurface columns for $T/J_2 = 1.247$, $J_1/J_2 = 0.5$ and FBC. Direction of iteration is from the left to the right.
The graph shows the phase diagram of a magnetic system with three phases: paramagnetic, incommensurate, and ferromagnetic. The y-axis represents the ratio of temperature to J_2, while the x-axis represents the ratio of J_1 to J_2. The phase boundaries are marked with curves, indicating the transition points between these phases.
\[T/J_2 = 1.252 \quad T/J_2 = 1.247 \quad T/J_2 = 1.241 \]

\[T/J_2 = 1.47 \]
\[\frac{T}{J_2} = 1.252 \quad \frac{T}{J_2} = 1.247 \quad \frac{T}{J_2} = 1.241 \]

\[\frac{T}{J_2} = 1.47 \]
