RELATIVE AND ORBIFOLD GROMOV–WITTEN INVARIANTS

DAN ABRAMOVICH, CHARLES CADMAN, AND JONATHAN WISE

Abstract. We prove that genus zero Gromov–Witten invariants of a smooth scheme relative to a smooth divisor coincide with genus zero orbifold Gromov–Witten invariants of an appropriate root stack construction along the divisor.

Contents
1. Introduction 1
2. Method of proof 6
3. Construction of the main diagram 8
4. Proof of the theorem 20
Appendix A. Constructions and compatibilities 29
Appendix B. Local complete intersections 40
Appendix C. Notation index 41
References 42

1. INTRODUCTION

Gromov–Witten invariants are deformation invariant numbers associated to a smooth variety over \mathbb{C} that are closely related to the numbers of curves in that variety with prescribed incidence to specified homology classes. They are defined by intersecting the homology classes in question with the virtual fundamental class on the moduli space of stable maps. There are thus two essential ingredients in Gromov–Witten theory: a proper moduli space on which to do intersection theory, and a virtual fundamental class of the expected dimension in the homology of that moduli space.

Date: April 8, 2010.
Research of D.A. partially supported by NSF grants DMS-0335501, DMS-0603284 and DMS-0901278.
Research of C.C. partially supported by NSF grant No. 0502170.
Research of J.W. partially supported by an NSF post-doctoral fellowship.
In this paper, we will be interested in counting rational curves in a smooth variety with prescribed incidence conditions, as well as prescribed tangencies along a divisor. The introduction of tangencies makes the definition of Gromov–Witten invariants more subtle. Since a tangency can degenerate to one of higher order, it is not obvious how to produce a proper moduli space, and since a tangency can be deformed to lower order, it is not obvious how to do the deformation theory necessary to produce a virtual fundamental class.

There are now several solutions to this problem. The first is the theory of relative stable maps, introduced by A. M. Li and Y. Ruan in [LR01], but also studied by Ionel–Parker [IP03, IP04], Gathmann [Gat02] and several others. In algebraic geometry it is due to J. Li ([Li01] and [Li02]). In this theory, tangencies are prevented from degenerating to higher order by allowing the target variety to expand, in close analogy to the way a Deligne–Mumford stable curve might expand to prevent a marked point from colliding with a node. The deformation theory of these curves still remains quite subtle, however.

A second solution [Cad07b] is to change the target variety by a root construction. The variety is replaced by a stack that is isomorphic to the original variety away from the divisor, but in which the divisor is replaced by a “stacky” version of itself with a cyclotomic stabilizer group. Provided that the stackiness of the divisor is taken to be large enough, the concept of tangency to the divisor in the original variety can be replaced with transversal contact to the stacky divisor in the root stack. In other words, the ordinary theory of twisted stable maps [AV02] applies to yield a proper moduli space and a virtual fundamental class via straightforward deformation theory. The disadvantage of this theory, as compared to relative stable maps, is that it may include extraneous information (in higher genus; see Section 1.3) and cannot be used in the degeneration formula [Li02], [AF].

Cadman and Chen applied Cadman’s method to enumerate rational curves tangent to a smooth plane cubic [CC08]. Some of these numbers were also computed by Gathmann using relative Gromov–Witten invariants [Gat05]. It is no surprise that these numbers agree when they are both enumerative: they count the same thing. Remarkably, however, one is enumerative if and only if the other is, and the invariants coincide even if they are not enumerative.

Our goal in this paper is to explain this coincidence by comparing the approaches of J. Li and Cadman in genus 0. Our comparison goes by way of a third theory that combines the advantages of both while avoiding the disadvantages [AF]. This “relative–orbifold” theory furnishes
a correspondence between the relative and orbifold moduli spaces.

\[
\begin{array}{ccc}
\overline{M}^\text{relorb}(\sqrt{X,D}) & \xrightarrow{\Phi} & \overline{M}^\text{orb}(\sqrt{X,D}) \\
\downarrow{\Psi} & & \downarrow{\Phi} \\
\overline{M}^\text{rel}(X,D) & & \overline{M}^\text{orb}(\sqrt{X,D})
\end{array}
\]

(The notation here is temporary and will be superseded in the body of the text.) It is shown in [AF] that \(\Psi\) is an isomorphism and identifies the virtual fundamental classes, so our task is primarily to study the map \(\Phi\). This map is not an isomorphism, even in genus zero and for large \(r\), but we will show that it nevertheless carries one virtual fundamental class to the other via push-forward, and therefore identifies the Gromov–Witten invariants.

There is a fourth theory of stable maps relative to a divisor called logarithmic stable maps, currently in development by several groups. We will not discuss logarithmic stable maps here, but see [Kim08] for some of the beginnings of this theory.

1.1. Statement of the theorem. Let \(X\) be a smooth projective variety, \(D \subset X\) a smooth divisor, and fix a curve class \(\beta \in H_2(X,\mathbb{Z})\). Consider a vector of nonnegative integers \(k = (k_1,\ldots,k_n)\), with \(\sum k_i = \beta \cdot D\), cohomology classes \(\gamma_1,\ldots,\gamma_n\) where \(\gamma_i \in H^*(X,\mathbb{Q})\) when \(k_i = 0\) and \(\gamma_i \in H^*(D,\mathbb{Q})\) when \(k_i > 0\), and nonnegative integers \(a_1,\ldots,a_n\). For \(r\) a positive integer, denote by \(\mathcal{X}_r = X_{D,r}\) the stack obtained by taking the \(r\)-th root of \(X\) along \(D\).

Theorem 1.1. Fix \(\beta \in H_2(X,\mathbb{Z})\). If \(r\) is any sufficiently large and divisible natural number then the following relative and orbifold invariants coincide.

\[
\left\langle \prod_{i=1}^{n} \tau_{a_i}(\gamma_i, k_i) \right\rangle_{0,\beta}^{(X,D)} = \left\langle \prod_{i=1}^{n} \tau_{a_i}(\gamma_i, k_i) \right\rangle_{0,\beta}^{\mathcal{X}_r}
\]

Our notation is explained in the following section. There is also a table of notation in Appendix C.

1.2. Conventions.

(1) Consider

\[
\overline{M}^\text{rel}(X,D) := \overline{M}_{g,(k_1,\ldots,k_n)}(X,D,\beta)
\]

the moduli space of relative stable maps to \((X,D)\), where

* the source curve has genus \(g\) and \(n\) marked points,
* the \(i\)-th marked point has contact order \(k_i\) with \(D\), and
• the homology class of the curve is β.

Let e_{i}^{rel} be the i-th evaluation map, where

$$e_{i}^{\text{rel}}: \overline{M}^{\text{el}}(X, D) \to X \quad \text{for } k_{i} = 0,$$

$$e_{i}^{\text{rel}}: \overline{M}^{\text{el}}(X, D) \to D \quad \text{for } k_{i} > 0.$$

Let $s_{i}: \overline{M}^{\text{el}}(X, D) \to C$ be the i-th section of the universal contracted curve mapping to X, and let $\psi_{i} = c_{1}s_{i}^{*}(\omega_{C}/\overline{M}^{\text{el}}(X, D))$.

The stack $\overline{M}^{\text{el}}(X, D)$ admits a virtual fundamental class $[\overline{M}^{\text{el}}(X, D)]^{\text{vir}}$ defined in [Li02].

With this notation we set

$$\int_{[\overline{M}^{\text{el}}(X, D)]^{\text{vir}}} \psi_{1}^{a_{1}} \cdots \psi_{n}^{a_{n}} e_{1}^{*} \gamma_{1} \cdots e_{n}^{*} \gamma_{n}.$$

(2) Consider

$$\overline{M}^{\text{orb}}(\mathcal{X}_{r}) := \overline{M}_{g,(k_{1},\ldots,k_{n})}(X_{r},\beta)$$

the moduli space of stable maps to \mathcal{X}_{r}, where

• the curve has genus g and n marked points,

• the coarse evaluation map at the i-th marked point (defined below)

$$e_{i}^{\text{orb}}: \overline{M}^{\text{orb}}(\mathcal{X}_{r}) \to \mathcal{I}(\mathcal{X}_{r})$$

lands in the twisted sector of age k_{i}/r (which is isomorphic to X if $k_{i} = 0$ and to D if $k_{i} > 0$), and

• the homology class of the curve is β.

We have used the notation $\mathcal{I}(\mathcal{X}_{r})$ for the coarse moduli space of the inertia stack of \mathcal{X}_{r}, which has r components:

$$\mathcal{I}(\mathcal{X}_{r}) \cong X \sqcup D \sqcup \cdots \sqcup D.$$

The components isomorphic to D are called twisted sectors, and are labeled by the ages $k_{i}/r \in (0, 1) \cap (1/r)\mathbb{Z}$.

Let $s_{i}: \overline{M}^{\text{orb}}(\mathcal{X}_{r}) \to C$ be the i-th section of the universal coarse curve mapping to X, and let $\psi_{i} = c_{1}s_{i}^{*}(\omega_{C}/\overline{M}^{\text{orb}}(\mathcal{X}_{r}))$. The stack $\overline{M}^{\text{orb}}(\mathcal{X}_{r})$ admits a virtual fundamental class $[\overline{M}^{\text{orb}}(\mathcal{X}_{r})]^{\text{vir}}$ defined in [AGV08].

With this notation we set

$$\int_{[\overline{M}^{\text{orb}}(\mathcal{X}_{r})]^{\text{vir}}} \psi_{1}^{a_{1}} \cdots \psi_{n}^{a_{n}} e_{1}^{*} \gamma_{1} \cdots e_{n}^{*} \gamma_{n}.$$
1.3. **Counterexample in genus 1.** Note that Theorem 1.1 applies only to genus zero invariants. The necessity of this restriction may be seen in the following example, which was shown to us by Davesh Maulik [Mau]. Let E be an elliptic curve and let $X = E \times \mathbb{P}^1$. Let $D = X_0 \cup X_\infty$, the union of the fibers of X over 0 and $\infty \in \mathbb{P}^1$. Let $f \in H_2(X)$ be the class of a fiber of $X \to \mathbb{P}^1$. Then the relative invariant with no insertions vanishes: $\langle \rangle^{(X,D)}_1 = 0$. A simple explanation for this is that the invariant remains the same when taking covering of \mathbb{P}^1 branched at 0, ∞, and at the same time it is multiplied by the degree of the cover. Note that the space of genus 1 relative maps to (X,D) of class f has expected dimension 0, even though the actual dimension is 1.

Let $\mathcal{X}_{r,s}$ be the stack obtained from X via an r-th root construction on X_0 and an s-th root construction on X_∞. The space $\overline{M}_{1,0}(\mathcal{X}_{r,s}, f)$ has a 1-dimensional component and $r^2 - 1 + s^2 - 1$ components of dimension 0. The 1-dimensional component is isomorphic to the stack $\mathcal{P}_{r,s}$, obtained from \mathbb{P}^1 by an r-th root at 0 and an s-th root at infinity. The remaining components exist because a morphism $E \to E \times B\mu_r$ which is the identity onto the first factor is determined by a μ_r-torsor over E. There are r^2 choices for the μ_r-torsor, but the trivial torsor already appears in the 1-dimensional component.

The obstruction bundle on the 1-dimensional component is the tangent bundle, which has degree $1/r + 1/s$. The 0-dimensional components count with precisely their degree, which takes into account the automorphism group of the torsor. We may therefore calculate

$$\langle \rangle^{X}_{1,f} = \frac{1}{r} + \frac{1}{s} + \frac{r^2 - 1}{r} + \frac{s^2 - 1}{s} = r + s.$$

We interpret this discrepancy between the relative and twisted Gromov–Witten invariants to be a result of the nontriviality of the Picard group of E. A more precise statement is postponed to a later investigation.

1.4. **Acknowledgements.** We gratefully acknowledge the help of Barbara Fantechi in understanding relative stable maps, Martin Olsson’s help with Hom-stack, Davesh Maulik for a crucial example in genus 1, and Angelo Vistoli with his insight on root stacks. In addition we thank Jarod Alper, Linda Chen, Alessio Corti, Johan de Jong, and Michael Thaddeus, for helpful discussions at various stages of this project. Much progress was made while Abramovich and Wise were visiting MSRI in Spring 2009. We thank MSRI and the Algebraic Geometry program organizers for the opportunity afforded us to use its exciting environment.
2. Method of proof

2.1. An intermediary moduli space. In order to prove the theorem, we want to relate the moduli spaces. It is natural to relate them through a third moduli space where both relative geometry and orbifold geometry are present:

Consider

$$M_{relorb}^{rel}(\mathcal{X}_r, D) := M_{g,(k_1,\ldots,k_n)}^{rel}(\mathcal{X}_r, D, \beta)$$

the moduli space of relative stable maps to $$(\mathcal{X}_r, D)$$, with

- genus g and n marked points,
- where the i-th marked point of the coarse curve has contact order k_i with D, and
- curve class β.

We denote by e_i the i-th evaluation map, where for $k_i = 0$ we have $e_i : M_{relorb}^{rel}(\mathcal{X}_r, D) \to \mathcal{X}_r$ and for $k_i > 0$ we have $e_i : M_{relorb}^{rel}(\mathcal{X}_r, D) \to D_r$.

Let $s_i : M_{relorb}^{rel}(\mathcal{X}_r, D) \to \mathcal{C}$ be the i-th section of the universal coarse contracted curve mapping to X, and let $\psi_i = c_1 s_i^*(\omega_{\mathcal{C}/M_{relorb}^{rel}(\mathcal{X}_r, D)})$.

The space $M_{relorb}^{rel}(\mathcal{X}_r, D)$ admits a virtual fundamental class $[M_{relorb}^{rel}(\mathcal{X}_r, D)]^{vir}$ defined in [AE].

With this notation we set

$$\left\langle \prod_{i=1}^n \tau_{a_i}(\gamma_i, k_i) \right\rangle_{0, \beta}^{(\mathcal{X}_r, D)} := \int_{[M_{relorb}^{rel}(\mathcal{X}_r, D)]^{vir}} \psi_1^{a_1} e_1^* \gamma_1^{k_1} \cdots \psi_n^{a_n} e_n^* \gamma_n.$$

2.2. Reduction of main theorem to properties of virtual fundamental classes. For any g, r we have a diagram of stabilization morphisms

$$\begin{array}{ccc}
M_{relorb}^{rel}(\mathcal{X}_r, D) & \xrightarrow{\Psi} & \overline{M}_{el}^{rel}(X,D) \\
\Phi & \xleftarrow{\Phi} & \overline{M}_{orb}^{rel}(\mathcal{X}_r).
\end{array}$$

We have defined the terms so that

- $e_i^{rel} \circ \Psi = e_i^{rel orb} = e_i^{rel} \circ \Phi$,
- $\Psi^* \omega_{el}^{rel} = \omega_{rel orb}^{el}$, therefore $\Psi^* \omega_{el}^{rel orb} = \Phi^* \omega_{el}^{rel orb}$, and finally $\Psi^* s_i^{rel orb} = s_i^{rel orb} = \Phi^* s_i^{rel orb}$.
Consequently, the projection formula gives us

\[
\left\langle \prod_{i=1}^{n} \tau_{a_{i}}(\gamma_{i}, k_{i}) \right\rangle_{X, D, 0, \beta} = \int_{\Psi^{*}(\overline{M}_{relorb, D}^{vir})} \psi_{1}^{a_{1}} e_{1}^{*} \gamma_{1} \cdots \psi_{n}^{a_{n}} e_{n}^{*} \gamma_{n}
\]

where the integrals are on \(\overline{M}_{rel}^{el} (X, D) \) and \(\overline{M}_{orb}^{rel} (\mathcal{D}_{r}) \), respectively. Theorem 1.1 is thus a consequence of the following two theorems.

Theorem 2.1.

1. For any \(g, r \) and any twisting choice \(r \) we have

\[
\Psi_{*}(\overline{M}_{relorb}^{rel} (\mathcal{D}_{r}, \mathcal{D}_{r}))^{vir} = \overline{M}_{rel}^{rel} (X, D))^{vir}
\]

where the obstruction theories are those defined in [AF].

2. The Gromov–Witten invariants defined using \(\overline{M}_{rel}^{rel} (X, D))^{vir} \) coincide with those defined in 1.2(1) using \(\overline{M}_{rel}^{el} (X, D))^{vir} \).

Theorem 2.2. If \(g = 0 \), then for any \(r \) sufficiently large and divisible depending on \(\beta \) we have

\[
\Phi_{*}(\overline{M}_{relorb}^{rel} (\mathcal{D}_{r}, \mathcal{D}_{r}))^{vir} = \overline{M}_{orb}^{rel} (\mathcal{D}_{r})^{vir}
\]

Proof of Theorem 2.1. Part (1) follows from [AF, Theorem 4.4.1]. Indeed given a twisting choice \(r \), the moduli spaces

- \(\overline{M}_{relorb}^{rel} (\mathcal{D}_{r}, \mathcal{D}_{r})^{r} \) of relative twisted stable maps with twisting choice \(r \) and
- \(\overline{M}_{rel}^{el} (X, D)^{r} \) of relative twisted stable maps with twisting choice \(r \cdot r \)

are identical with identical obstruction theories (as defined in [AF, Section 4.2, Lemma C.3.3]). The equality of invariants in Part (2) is proved in [AF, Section 4.7]. \(\square \)

Remark 2.2.3. We emphasize that we do not compare our virtual classes to those defined in [Li02]. See discussion in [AF, Section 4.7]. The third author has an argument for comparing these classes which goes beyond the scope of this paper.

We will prove Theorem 2.2 in Section 4 using a technique introduced by Costello.
2.3. Costello’s diagram. We restrict to genus 0 maps and construct a cartesian square

\[
\begin{array}{ccc}
\mathcal{M}^{\text{rel orb}}_r (\mathcal{X}_r, \mathcal{D}_r) & \xrightarrow{\Phi_X} & \mathcal{M}_r (\mathcal{X}_r) \\
\sigma^{\text{rel}} & \downarrow & \sigma \\
\mathcal{M}^{\text{rel orb}} (\mathcal{A}, \mathcal{B}_{\mathbb{G}_m})' & \xrightarrow{\Phi_{\mathcal{A}}} & \mathcal{M}^{\text{rel}} (\mathcal{A})'.
\end{array}
\]

Here \(\Phi_X \) is the morphism denoted \(\Phi \) above. We use \(\mathcal{A} \) to stand for the stack \(\mathcal{A} = [A^1/\mathbb{G}_m] \), which includes \(\mathcal{B}_{\mathbb{G}_m} = [{0}/\mathbb{G}_m] \) as a closed substack (of Artin type). We show below that the diagram has the following properties:

1. the virtual fundamental classes can be defined via perfect relative obstruction theories relative to the vertical arrows, and
2. the hypotheses of \cite[Theorem 5.0.1]{Cos06} are satisfied for these choices.

The stacks in the bottom row of this diagram require definition, which will be given explicitly in Section 3. For the moment, we note the following.

- We define \(\mathcal{M}(\mathcal{A}) \) to be the stack of triples \((C, L, s)\), where \(C \) is a twisted curve, \(L \) a line bundle on \(C \) and \(s \) a section of \(L \), such that the associated morphism \(C \to \mathcal{A} \) is representable. The stack \(\mathcal{M}(\mathcal{A})' \) is defined in Section 3.3.2 as an open substack of \(\mathcal{M}(\mathcal{A}) \).
- Let \(\mathcal{F} \) be Jun Li’s moduli space of expanded pairs (see Section 3.3.1 and \cite{ACFW}). We define \(\mathcal{M}(\mathcal{A}^{\text{rel}}/\mathcal{F}) \) to be the stack of maps over \(\mathcal{F} \) from twisted curves to expansions of \(\mathcal{A} \) relative to the divisor \(\mathcal{B}_{\mathbb{G}_m} \). The stack \(\mathcal{M}^{\text{rel}} (\mathcal{A}, \mathcal{B}_{\mathbb{G}_m})' \) is defined in Section 3.3.3, and it is shown there to be étale over \(\mathcal{M}(\mathcal{A}^{\text{rel}}/\mathcal{F}) \).

3. Construction of the main diagram

In this section we will construct the stacks appearing in Diagram (2.3.1). Our definitions require the notion of stable maps into the fibers of a morphism, which we summarize first. In Section 3.3.1 we describe our perspective on J. Li’s moduli space of expansions of a scheme with a divisor; this section summarizes material from \cite{ACFW}. Finally in Section 3.3.2 and 3.3.3 we construct the stacks in the bottom row of Diagram (2.3.1) and in Section 3.3.4 we show that they are algebraic.
3.1. Stable maps into the fibers of a morphism. We refer the reader to Appendix A for some of the details that are omitted from this section.

3.1.1. Definitions. Suppose that $X \to T$ is a morphism of stacks. We define $\mathcal{M}(X/T)$ to be the stack of commutative diagrams

\[
\begin{array}{ccc}
C & \xrightarrow{f} & X \\
\downarrow & & \downarrow \\
S & \xrightarrow{} & T
\end{array}
\]

where $C \to S$ is a family of twisted pre-stable curves with an ordered set of marked points (not illustrated in the diagram), and $f : C \to X \times_T S$ is representable. We will use the notation $\mathcal{M}_F(X/T)$ to refer to an open and closed substack of $\mathcal{M}(X/T)$ consisting of those diagrams as above having some fixed data; for example, $\mathcal{M}_{g,n}(X/T)$ will denote the substack parameterizing those diagrams where C has genus g and n marked (possibly twisted) points.

Let $\mathcal{M}(X/T)$ be the substack of points of $\mathcal{M}(X/T)$ where the (absolute) inertia group is unramified. Under mild conditions, $\mathcal{M}(X/T)$ is an algebraic stack and $\mathcal{M}(X/T)$ is its maximal Deligne–Mumford substack, see Proposition 3.3.2 for the cases relevant in this paper.

Remark 3.1.2. The stack of maps into the fibers of a morphism is frequently defined as the space of maps into the total space whose homology class is that of a fiber. We have not taken this approach for two reasons. The first is that we need a definition in the case where the morphism is of Artin type, so we don’t know how to talk about the homology class of a fiber. The second reason is more philosophical: the obstruction theory naturally associated to the space of maps with the homology class of a fiber is different from the obstruction theory on the space of maps into a fiber as defined above ([AF, Appendix C.2].

3.1.2. The Cartesian diagram. We will eventually need to study a commutative diagram of the following form, where the upper square is Cartesian and the lower square is not.

\[
\begin{array}{ccc}
X & \xrightarrow{} & X' \\
\downarrow & & \downarrow \\
Y & \xrightarrow{} & Y' \\
\downarrow & & \downarrow \\
T & \xrightarrow{} & T'
\end{array}
\]
In the application,

- T' will be a point,
- $Y' = \mathcal{A}$ will be the moduli space of line bundles with section,
- X' will be a smooth Deligne–Mumford stack with $X' \to Y'$ the morphism corresponding to a smooth divisor D' on X',
- T will be J. Li’s moduli space of expanded pairs,
- $Y = \mathcal{A}^{\exp}$ will be the universal expansion of \mathcal{A} along the divisor $B\mathbb{G}_m$, and
- $X = X^{\exp}$ will be the universal expansion of X' along the divisor D'.

This induces a Cartesian diagram

\[
\begin{array}{ccc}
\mathcal{M}(X/T) & \longrightarrow & \mathcal{M}(X'/T') \\
\downarrow & & \downarrow \\
\mathcal{M}(Y/T) & \longrightarrow & \mathcal{M}(Y'/T'),
\end{array}
\]

where all the maps are given by composition. However, the corresponding diagram with \mathcal{M} replaced by $\overline{\mathcal{M}}$ in the upper row is not even commutative. This is because a map

\[
\overline{\mathcal{M}}(X/T) \to \overline{\mathcal{M}}(X'/T')
\]

may require the contraction of some components that become unstable after composition with the map $X \to X'$ while the map $\mathcal{M}(Y/T) \to \mathcal{M}(Y'/T')$ involves no contraction at all.

If we do not modify the construction, this will prevent us from applying Costello’s theorem. Our solution is to replace $\mathcal{M}(Y/T)$ by a stack that keeps track of slightly more information: in addition to a family of curves in the fibers of $Y \to T$, this stack will also parameterize a contraction of this family in the fibers of $Y' \times_{T'} T$.

The technical device used to achieve this is a stack $\mathcal{M}(X/\overline{X}/T)$, associated to a sequence of morphisms

\[
X \to \overline{X} \to T
\]

with $X \to \overline{X}$ representable. This is the stack whose S-points are diagrams

(3.1.4)
where the stabilization of \(C \to \overline{C} \) is an isomorphism.

Given a morphism \(T \to T' \) and \(\overline{X} = X'_T \) for some stack \(X' \) over \(T' \), we define
\[
\overline{M}(X/X'_T/T) \subset \mathcal{M}(X/X'_T/T)
\]
to be the substack of points whose inertia relative to \(\mathcal{M}(X'/T') \) is unramified. (Note that we are abusing notation slightly, since \(\mathcal{M}(X/X'_T/T) \) does not depend only on \(X'_T \) but also on the map \(X'_T \to X' \).) Let \(\overline{M}(X/T)^* \) denote the subspace of \(\overline{M}(X/T) \) consisting of those diagrams (3.1.1) that can be stabilized in \(\mathcal{M}(X'/T') \) after composing with the map \(X \to X' \). Then we obtain the Cartesian diagram we need:

Proposition 3.1.5. Suppose that \(X' \to T' \) is a morphism of Deligne–Mumford type. The diagram
\[
\begin{array}{ccc}
\overline{M}(X/T)^* & \longrightarrow & \overline{M}(X'/T') \\
\downarrow & & \downarrow \\
\overline{M}(Y/Y'_T/T) & \longrightarrow & \overline{M}(Y'/T').
\end{array}
\]
is Cartesian.

The proof (which is straightforward from the construction) is deferred to Section 3.2

3.1.3. Comparison of \(\mathcal{M}(X/\overline{X}/T) \) and \(\mathcal{M}(X/T) \)

We have a morphism
\[
\tau : \mathcal{M}(X/\overline{X}/T) \to \mathcal{M}(X/T)
\]
which forgets the middle row of (3.1.4). We will need the following lemma.

Lemma 3.1.7. Suppose that \(C \to \overline{C} \) is a morphism of \(n \)-marked twisted curves over \(S \), the stabilization of which is an isomorphism. Then the canonical map \(\mathcal{O}_{\overline{C}} \to R\tau_* \mathcal{O}_C \) is a quasi-isomorphism.

Proof. We claim that the fibers of \(p : C \to \overline{C} \) over \(S \) are trees of genus zero curves. (Note that \(C \to \overline{C} \) is representable, so the fibers are schemes.) To see this, we can suppose that \(S \) is a point. Since \(\overline{C} \) is a curve, the fibers of \(C \to \overline{C} \) that are not points must each have at least one special point: the point at which the fiber is attached to the rest of \(\overline{C} \). Since the fibers that are not points are unstable curves, it follows that the these fibers must be connected curves of arithmetic genus zero.

Since the fibers of \(p \) have arithmetic genus zero, \(H^1(p^{-1}\overline{c}, \mathcal{O}_C|_{p^{-1}\overline{c}}) \) vanishes at each geometric point \(\overline{c} \) of \(\overline{C} \). Therefore, by cohomology and base change, \(R^1 p_* \mathcal{O}_C = 0 \). Likewise, the map \(\mathcal{O}_{\overline{C}} \to p_* \mathcal{O}_C \) is an
Lemma 3.1.8. The morphism τ of (3.1.6) is formally étale.

Proof. We shall show that the natural obstruction theory vanishes. It is easy to produce a direct proof of this fact, but it is somewhat faster to rely on Illusie’s relative cohomology.

For τ to be formally étale at the point corresponding to Diagram (3.1.4), it is equivalent to show that, for any square-zero extension $S \to S'$ with ideal J, any commutative diagram of solid arrows

\[
\begin{array}{ccc}
S & \rightarrow & \mathcal{M}(X/\overline{X}/T) \\
\downarrow & & \downarrow \\
S' & \rightarrow & \mathcal{M}(X/T)
\end{array}
\]

can be extended, uniquely up to unique isomorphism, to a commutative diagram including the dashed arrow. To show this, it is equivalent to show that the lifting problem

\[
\begin{array}{ccc}
C & \rightarrow & C' \\
\downarrow & \pi \downarrow & \downarrow \\
\overline{C} & \rightarrow & \overline{C} \\
\downarrow & \downarrow & \downarrow \\
X_S & \rightarrow & X_S
\end{array}
\]

admits a solution that is unique up to unique isomorphism. By [Ill71, Ch. III, p. 199, Prop. 2.3.2], obstructions, deformations, and infinitesimal automorphisms for such a problem are classified by

\[
\text{Ext}^i(\overline{C}/C; \mathbb{L}_{\overline{C}/X_S}(\log P), J), \quad i = 0, 1, 2
\]

where J is the pull-back of the ideal of S in S' and P is the divisor of marked points. It therefore suffices to show that the group $\text{Ext}^i(\overline{C}/C; \mathbb{L}_{\overline{C}/X_S}(\log P), J)$ vanishes for all i. There is an exact triangle [Ill71, Ch. III, p. 221, Equation (4.10.3)]

\[
R\text{Hom}(\overline{C}/C; \mathbb{L}_{\overline{C}/X_S}(\log P), J) \to R\text{Hom}(\mathbb{L}_{\overline{C}/X_S}(\log P), J) \\
\xi : R\text{Hom}(\mathbb{L}_{\overline{C}/X_S}(\log P), R\pi_*\mathbb{L}_{\pi^*}J).
\]

But $J \to R\pi_*\mathbb{L}_{\pi^*}J$ is a quasi-isomorphism by Lemma 3.1.7, so ξ is a quasi-isomorphism, and hence $\text{Ext}^i(\overline{C}/C; \mathbb{L}_{\overline{C}/X_S}(\log P), J)$ is zero for all i. \qed
Remark 3.1.9. In fact τ is étale: in addition to being formally étale, it is representable by algebraic spaces and locally of finite presentation. However, we will not need that fact in such generality in this paper.

3.1.4. Obstruction theory. If $X \to Y$ is a smooth morphism over T of Deligne–Mumford type it induces a natural obstruction theory for the morphism $\mathcal{M}(X/T) \to \mathcal{M}(Y/T)$. Let

![Diagram](https://example.com/diagram.png)

be the universal commutative diagram. There is a canonical map in the derived category of quasi-coherent sheaves on $\mathcal{C}(X/T)$,

$$f^*L_{X/Y} \to L_{\mathcal{C}(X/T)/\mathcal{C}(Y/T)} \simeq \pi^*L_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)}.$$

By adjunction, we obtain a morphism in the derived category of quasi-coherent sheaves on $\mathcal{M}(X/T)$,

$$\pi_!f^*L_{X/Y} \to L_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)}.$$

Here $\pi_!$ is the left adjoint to $L\pi^*$; it exists by Grothendieck duality and the invertibility of ω_π. We denote the complex $\pi_!f^*L_{X/Y}$ on the left by $\mathcal{E}_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)}$.

Proposition 3.1.10. The morphism

$$\mathcal{E}_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)} \to L_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)}$$

is a perfect relative obstruction theory of perfect amplitude in $[-1, 0]$.

Proof. To prove this, we can work locally on the base $\mathcal{M}(Y/T)$. Since $\mathcal{M}(X/T)$ is of Deligne–Mumford type over $\mathcal{M}(Y/T)$, this reduces the problem to the case of a Deligne–Mumford stack over a base scheme. The rest of the proof is then very similar to [BF97, Theorem 4.5 and Proposition 6.3]. We give details in Section A.2. □

Now we place ourselves in the situation of Diagram (3.1.3). The natural map

$$\tau : \mathcal{M}(Y/Y'_T/T) \to \mathcal{M}(Y/T)$$

is formally étale, so the obstruction theory for $\mathcal{M}(X/T)$ relative to $\mathcal{M}(Y/T)$ is also an obstruction theory relative to $\mathcal{M}(Y/Y'_T/T)$. We set

$$\mathcal{E}_{\mathcal{M}(X/T)/\mathcal{M}(Y/Y'_T/T)} = \mathcal{E}_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)}$$
to emphasize that we are working relative to \(\mathcal{M}(Y/Y'_T/T) \). This restricts to a perfect obstruction theory on any open substack \(U \) of \(\mathcal{M}(X/T) \), and we write \(E_{U/\mathcal{M}(Y/Y'_T/T)} \) for such a restriction; below we use this for \(U = \mathcal{M}(X/T)^* \).

Proposition 3.1.11. Let \(g: \mathcal{M}(X/T)^* \to \mathcal{M}(X'/T') \) be the canonical morphism. There is a commutative diagram

\[
\begin{array}{c}
g^*E_{\mathcal{M}(X'/T')/\mathcal{M}(Y'/T')} \ar[d] \ar[r] \sim & E_{\mathcal{M}(X/T)^*/\mathcal{M}(Y/Y'_T/T)} \ar[d] \\
g^*L_{\mathcal{M}(X'/T')/\mathcal{M}(Y'/T')} \ar[r] & L_{\mathcal{M}(X/T)^*/\mathcal{M}(Y/Y'_T/T)}
\end{array}
\]

in which the upper horizontal arrow is an isomorphism and the lower horizontal arrow is the canonical morphism of cotangent complexes.

Proof. The commutativity of the diagram is not difficult to check, but it is tedious to carry out in complete detail. We refer readers with the patience for these details to Appendix A.3.

To complete the proof, we must check that the map in the upper horizontal arrow of Diagram (3.1.12) is a quasi-isomorphism. Let \(C \) be the universal curve over \(\mathcal{M}(X/T) \), let \(C' \) be the universal curve over \(\mathcal{M}(X'/T') \), and let \(C \) be the pullback of \(C' \) to \(\mathcal{M}(X/T)^* \), so that the diagram

\[
\begin{array}{c}
\begin{array}{c}
\mathcal{M}_{g,n}(X/T)^*
\end{array}
\end{array}
\end{array}
\]

commutes and has a Cartesian square. Let \(f': C' \to X' \) and \(f: C \to X \) be the universal maps.

Note the following.

1. The map \(q^*T_{X'/Y'} \to T_{X/Y} \) is an isomorphism since \(X' \to Y' \) is smooth and \(X = X' \times_{Y'} Y \).
2. We have \(R\epsilon_*L\epsilon^* = id \) since \(R\epsilon_*\mathcal{O}_C = \mathcal{O}_{\mathcal{C}} \) by Lemma 3.1.7.
3. Dualization commutes with pullback for perfect complexes.
We have
\[
g^*E_{\overline{M}(X'/T')/\overline{M}_{g,n}(Y'/T')} = g^*R\pi'_*f'^*T_{X'/Y'}
= R\pi_*\hat{\rho}^*f'^*T_{X'/Y'}
= R\pi_*R\epsilon_*L\epsilon^*\hat{\rho}^*f'^*T_{X'/Y'}
= R\pi_*f^*T_{X/Y}
= R_{\overline{M}(X'/T')}^*/\overline{M}(Y/T').
\]

\[\square\]

3.2. Detailed proof of Proposition 3.1.5. In Section 3.1.2 we defined \(\overline{M}(X/X'/T)\) be the substack of points \(s : S \to \overline{M}(X/X'/T)\) such that

\[
\ker\left(\text{Aut}_{\overline{M}(X/X'/T)}(s) \to \text{Aut}_{\overline{M}(X'/T')}(s)\right)
\]

is unramified over \(S\). This is the maximal substack of \(\overline{M}(X/X'/T)\) with unramified inertia relative to \(\overline{M}(X'/T')\).

Proposition 3.2.1. (a) Suppose that we have a commutative diagram of algebraic stacks (3.1.3) with \(X = X' \times_{Y'} Y\). The natural map

\[
\overline{M}(X/X'/T) \to \overline{M}(Y/Y'_T/T) \times_{\overline{M}(Y'/T')} \overline{M}(X'/T')
\]

is an isomorphism.

(b) Let \(X'\) and \(Y'\) be algebraic stacks over \(T'\) and write \(X'_T := X' \times_{Y'} T\) and \(Y'_T = Y' \times_{Y'} T\). The natural map

\[
\overline{M}(X/X'_T/T) \to \overline{M}(Y/Y'_T/T) \times_{\overline{M}(Y'/T')} \overline{M}(X'/T')
\]

is an isomorphism of stacks.

Proof. (a) Set \(\overline{Y} = Y'_T\) and \(\overline{X} = X'_T\). By definition, an \(S\)-point of \(\overline{M}(Y/Y'_T/T) \times_{\overline{M}(Y'/T')} \overline{M}(X'/T')\) is a diagram

\[
\begin{array}{ccc}
C & \longrightarrow & Y \\
\downarrow & & \downarrow \\
C & \longrightarrow & X' & \longrightarrow & Y' \\
\downarrow & & \downarrow & & \downarrow \\
S & \longrightarrow & T & \longrightarrow & T'
\end{array}
\]

which clearly induces a unique map \(C \to X = X' \times_{Y'} Y\).
(b) If \(s \) is a point of \(\mathcal{M}(X/X'_T/T) \), then by (a) there is a cartesian diagram

\[
\begin{array}{ccc}
\text{Aut}_{\mathcal{M}(X/X'_T/T)}(s) & \longrightarrow & \text{Aut}_{\mathcal{M}(X'/T')}(s) \\
\downarrow & & \downarrow \\
\text{Aut}_{\mathcal{M}(Y/Y'_T/T)}(s) & \longrightarrow & \text{Aut}_{\mathcal{M}(Y'/T')}(s).
\end{array}
\]

The induced map between the kernels of the two horizontal arrows is an isomorphism; one is unramified if and only if the other is.

\[\square\]

For the rest of this section, we work in the setting of Proposition 3.2.1 (b), assuming in addition that \(X' \) is of Deligne–Mumford type and \(X \to X'_T \) is representable.

In Section 3.1, we defined \(\mathcal{M}(X/T) \) to be the locus of maps \(C \to X \) in \(\mathcal{M}(X/T) \) such that the composed map \(C \to X' \) admits a stabilization. More precisely, \(\mathcal{M}(X/T) \) is the locus of maps \(C \to X \) where either the homology class of the image of \(C \) in \(X' \) is non-zero or \(2g - 2 + n > 0 \) (with \(g \) denotes the genus of \(C \) and \(n \) its number of marked points).

Since the homology class of \(C \) in \(X' \) and the function \(2g - 2 + n \) are both locally constant, \(\mathcal{M}(X/T) \) is open and closed in \(\mathcal{M}(X/T) \).

Let \(\gamma : \mathcal{M}(X/T)^* \to \overline{\mathcal{M}(X'/T')} \) be the map which sends a map \(C \to X_S \) over \(S \) to the stabilization \(C' \) of the composed map \(C \to X' \). Since there is a projection \(C \to \overline{C} \) whose stabilization is an isomorphism, this also induces a section \(\sigma : \overline{\mathcal{M}(X/T)^*} \to \mathcal{M}(X/X'_T/T) \) of \(\tau \).

Proposition 3.2.2. Suppose \(X' \) is a Deligne–Mumford stack. Then the map

\[
(\sigma, \gamma) : \mathcal{M}(X/T)^* \to \mathcal{M}(X/X'_T/T) \times_{\mathcal{M}(X')} \overline{\mathcal{M}(X'/T')}
\]

is an isomorphism with inverse given by \(\tau p_1 \) and it induces an isomorphism

\[
(\sigma, \gamma) : \mathcal{M}(X/T)^* \to \mathcal{M}(X/X'_T/T) \times_{\mathcal{M}(X'/T')} \overline{\mathcal{M}(X'/T')}
\]

Proof. Since \(\sigma \) is a section of \(\tau \), it is clear that \(\tau p_1 \) is left inverse to \((\sigma, \gamma)\). In particular, \((\sigma, \gamma)\) is an isomorphism of \(\mathcal{M}(X/T)^* \) onto a substack of \(\mathcal{M}(X/X'_T/T) \times_{\mathcal{M}(X'/T')} \overline{\mathcal{M}(X'/T')} \). Note that this implies that, for any \(s : S \to \mathcal{M}(X/T)^* \), we have

\[
\text{Aut}_{\mathcal{M}(X/T)}(s) \to \text{Aut}_{\mathcal{M}(X/X'_T/T)}(s)
\]

is an isomorphism of group schemes over \(S \).
To see that \(\tau p_1 \) is also right inverse to \((\sigma, \gamma)\), we must show that, for any \(S \)-point \((3.1.4)\) of \(\mathcal{M}(X/X'_T/T) \) whose image in \(\mathcal{M}(X'/T') \) is contained in \(\overline{\mathcal{M}}(X'/T') \), the stabilization of \(C \to X' \) through stable maps, there is a map \(C'' \to \overline{C} \). On the other hand, \(C'' \to \overline{C} \) is also stable (its automorphism group being contained in that of \(C'' \) over \(X' \)) and \(\overline{C} \) is the stabilization of \(C \to \overline{C} \), so we obtain a section \(\overline{C} \to C'' \), which must be an isomorphism by the universal property. This proves the first claim.

To finish the proof, we must show that \(s : S \to \mathcal{M}(X/T)^* \) is in \(\overline{\mathcal{M}}(X/T)^* \) if and only if \(\sigma s \) is in \(\overline{\mathcal{M}}(X/X'_T/T) \). For \(s \) to lie in \(\overline{\mathcal{M}}(X/T)^* \), means that \(\text{Aut}_{\mathcal{M}(X/T)}(s) \) is unramified over \(S \); for \(\sigma s \) to lie in \(\overline{\mathcal{M}}(X/X'_T/T) \) means that the group \(K \) in the exact sequence

\[
0 \to K \to \text{Aut}_{\mathcal{M}(X/X'_T/T)}(s) \to \text{Aut}_{\mathcal{M}(X'/T')} (s)
\]

is unramified over \(S \). Since \(s \) is in \(\mathcal{M}(X/T)^* \), the group \(\text{Aut}_{\mathcal{M}(X'/T')} (s) \) is unramified. Thus, \(K \) is unramified if and only if \(\text{Aut}_{\mathcal{M}(X/X'_T/T)}(s) \) is. But we saw above that \(\text{Aut}_{\mathcal{M}(X/X'_T/T)}(s) \) is isomorphic to \(\text{Aut}_{\mathcal{M}(X'/T')} (s) \). Thus \(s \) is in \(\overline{\mathcal{M}}(X/T)^* \) if and only if it is in \(\overline{\mathcal{M}}(X/X'_T/T) \). \(\square \)

Combining Propositions 3.2.1 and 3.2.2 now yields Proposition 3.1.5.

3.3. Constructing the moduli stacks.

3.3.1. The moduli stack of expanded pairs. The moduli space of targets \(\mathcal{F} \) is defined in [Li01, Definition 4.4] (denoted there by \(Z \) and called the stack of expanded relative pairs); the notation \(\mathcal{F} \), as well as the name, come from [GV05]. We summarize some properties of \(\mathcal{F} \) that are proved in [ACFW].

The stack \(\mathcal{F} \) admits an étale cover by maps \(\mathcal{A}^n \to \mathcal{F} \), \(n = 0, 1, \ldots \) such that, for any monotonic injection \(u : [n] \to [m] \), there is a 2-isomorphism making the diagram

\[
\begin{array}{ccc}
\mathcal{A}^n & \to & \mathcal{A}^m \\
\downarrow & & \downarrow \\
\mathcal{F} & \to & \mathcal{F}
\end{array}
\]

commute, and these 2-isomorphisms are compatible in the obvious sense. It is also proved in [ACFW] that \(\mathcal{F} \) is the colimit of the \(\mathcal{A}^n \), but we will not use this fact here.

There is a universal expansion \(\mathcal{A}^\text{rel} \) of \(\mathcal{A} \) over \(\mathcal{F} \). Setting \(\mathcal{A}[n] = \mathcal{A}^\text{rel} \times_{\mathcal{F}} \mathcal{A}^n \), it is shown in [ACFW] that \(\mathcal{A}[n] \) may be identified with an open substack of \(\mathcal{A}^{2n+1} \).
3.3.2. Construction of \(\mathcal{M}(\mathcal{A})' \). Recall that a morphism \(C \to \mathcal{A} \) is equivalent to a line bundle with section on \(C \). Therefore an object of \(\mathcal{M}_{0,n}(\mathcal{A}) \) is equivalent to a triple \((C, L, s)\), where \(C \) is an \(n \)-marked genus 0 curve over \(S \), with a line bundle \(L \) on \(C \), and a section \(s \) of \(L \). Define the open substack \(\mathcal{M}_{0,n}(\mathcal{A})' \subseteq \mathcal{M}_{0,n}(\mathcal{A}) \) as follows.

An object \((C, L, s)\) of \(\mathcal{M}_{0,n}(\mathcal{A}) \) over a scheme \(S \) is an object of \(\mathcal{M}_{0,n}(\mathcal{A})' \) if for every geometric point \(\xi \to S \),

- \(MA1 \) \(\deg(L\xi) = \sum_{i=1}^{n} \text{age}_i(L\xi) \), where \(\text{age}_i \) denotes the age at the \(i \)-th marked point, and
- \(MA2 \) for any proper subcurve \(C' \subset C\xi \), we have \(-\frac{1}{2} < \deg(L|_{C'}) < \frac{1}{2} \).

If the geometric fiber \(C\xi \) is smooth, with coarse moduli space \(\overline{C} \), these imply that the push forward of \(L \) to \(\overline{C} \) is \(O_{\overline{C}} \). In particular, \(H^1(C\xi, L\xi) = 0 \) in this case.

These conditions are crucial for the key technical argument in Section 4.3.

3.3.3. Construction of \(\mathcal{M}_{\text{rel}}(\mathcal{A}, \mathcal{B}G_m)' \). We construct \(\mathcal{M}_{\text{rel}}(\mathcal{A}, \mathcal{B}G_m)' \) through a series of definitions as follows.

Let \(C \to \mathcal{A}_{\text{rel}} \quad \text{and} \quad S \to \mathcal{F} \)

describe an \(S \)-point of \(\mathcal{M}(\mathcal{A}_{\text{rel}}/\mathcal{F}) \). The distinguished divisor of \(\mathcal{A}_{\text{rel}} \) pulls back to a closed substack \(P \) on \(C \). We say that a diagram as above is in \(\mathcal{M}_{\text{tr}}(\mathcal{A}_{\text{rel}}/\mathcal{F}) \) if the map \(C \to \mathcal{A}_{\text{rel}} \) is smooth near the pre-image of the nodes and near \(P \). The point is that when \(C \to \mathcal{A}_{\text{rel}} \) lifts to an expanded pair \(C \to X_{\text{rel}} \) with \(X \) a scheme, then the map is an object of \(\mathcal{M}_{\text{tr}}(\mathcal{A}_{\text{rel}}/\mathcal{F}) \) if and only if \(C \to X_{\text{rel}} \) is transversal to the nodes and boundary divisor of \(X_{\text{rel}} \).

This definition makes \(\mathcal{M}_{\text{tr}}(\mathcal{A}_{\text{rel}}/\mathcal{F}) \) an open substack of \(\mathcal{M}(\mathcal{A}_{\text{rel}}/\mathcal{F}) \). We denote its pre-image in \(\mathcal{M}(\mathcal{A}_{\text{rel}}/\mathcal{F}) \) by \(\mathcal{M}_{\text{rel}}(\mathcal{A}_{\text{rel}}/\mathcal{F}) \). We define \(\mathcal{M}_{\text{rel}}(\mathcal{A}, \mathcal{B}G_m)' = \mathcal{M}_{\text{tr}}(\mathcal{A}_{\text{rel}}/\mathcal{F}) \) to be the intersection of \(\mathcal{M}_{\text{tr}}(\mathcal{A}_{\text{rel}}/\mathcal{F}) \) and \(\mathcal{M}(\mathcal{A}_{\text{rel}}/\mathcal{F}) \).

3.3.4. Algebraicity properties. We prove here that the stacks considered above are algebraic. We repeatedly use

Lemma 3.3.1 ([AOV07, Lemma C.5]). Suppose \(\mathcal{X} \) is a stack with a morphism to an algebraic stack \(\mathcal{Y} \). Assume there is a smooth cover \(\mathcal{U} \to \mathcal{Y} \) by an algebraic stack \(\mathcal{U} \) such that \(\mathcal{U} \times_\mathcal{Y} \mathcal{X} \) is an algebraic stack. Then \(\mathcal{X} \) is algebraic.
Proposition 3.3.2.

1. The stacks $\mathcal{M}(\mathcal{B}_m)$, $\mathcal{M}(\mathcal{A})$, as well as the stack $\mathcal{M}(\mathcal{A})'$ defined in Section 3.3.1 are algebraic.
2. The stack $\mathcal{M}(\mathcal{A}_{rel}/\mathcal{T})$ is algebraic.
3. The stack $\mathcal{M}(\mathcal{A}_{rel}/\mathcal{A}/\mathcal{T})$ is algebraic.
4. The stacks $\mathcal{M}(\mathcal{A}_{rel}/\mathcal{T})$, as well as $\mathcal{M}(\mathcal{A}, \mathcal{B}_m)'$ defined in Section 3.3.3 are algebraic.
5. Let \mathcal{X} be a Deligne–Mumford stack of finite type over \mathcal{C}. Then the stacks $\mathcal{M}(\mathcal{X}_{rel}/\mathcal{T})$ and $\mathcal{M}(\mathcal{X}_{rel}/\mathcal{T})$ are algebraic. Thus $\mathcal{M}(\mathcal{X}_{rel}/\mathcal{T})$ is a Deligne–Mumford stack.

Proof. (1) To prove the algebraicity of $\mathcal{M}(\mathcal{B}_m)$, it is sufficient to work locally in the moduli stack of Deligne–Mumford pre-stable curves \mathcal{M}. It is therefore sufficient to show that for any scheme S and family of orbifold pre-stable curves C over S, the S-stack $\text{Hom}_S(C, S \times \mathcal{B}_m)$ is algebraic. This follows from [Aok06, page 53] and [Bro09].

Now we may prove that $\mathcal{M}(\mathcal{A})$ is algebraic by working locally in $\mathcal{M}(\mathcal{B}_m)$. We must show that for any scheme S, any family of orbifold pre-stable curves C over S, and any line bundle L over C, the S-sheaf of sections of L is representable. This is just $\text{Hom}_S(C, L) \times_{\text{Hom}_S(C, C)} S$ where the map $S \to \text{Hom}_S(C, C)$ is the one associated to the identity map on C. This is representable by [Ols06b, Theorem 1.1], since both C and L are Deligne–Mumford stacks over S.

Finally, $\mathcal{M}(\mathcal{A})'$ is open in $\mathcal{M}(\mathcal{A})$, which completes the proof of (1).

(2) It is sufficient to prove this locally in \mathcal{T}. The collection of $\mathcal{A}^n \to \mathcal{F}$ defined in Section 3.3.1 forms an étale cover, so it is sufficient to prove that $\mathcal{M}(\mathcal{A}_{rel}/\mathcal{T}) \times \mathcal{F} \mathcal{A}^n$ is algebraic for each n. We have

$$\mathcal{M}(\mathcal{A}_{rel}/\mathcal{T}) \times \mathcal{F} \mathcal{A}^n \cong \mathcal{M}(\mathcal{A}_{rel} \times \mathcal{F} \mathcal{A}^n) \cong \mathcal{M}(\mathcal{A}_n \mathcal{A}^n) \mathcal{M}(\mathcal{A}^n),$$

and $\mathcal{M}(\mathcal{A}^n) \cong \mathcal{M}(\mathcal{A})^n$ is algebraic by (1). Since \mathcal{A}^n is also algebraic, it suffices to see that $\mathcal{M}(\mathcal{A}_n)$ is algebraic. But \mathcal{A}_n is an open substack of \mathcal{A}^{2n+1} so $\mathcal{M}(\mathcal{A}_n)$ is an open substack of the algebraic stack $\mathcal{M}(\mathcal{A}^{2n+1})$, hence is algebraic.

(3) We have a natural morphism $\mathcal{M}(\mathcal{A}_{rel}/\mathcal{A}/\mathcal{T}) \to \mathcal{M}(\mathcal{A}_{rel}/\mathcal{T}) \times \mathcal{M}(\mathcal{A}/\mathcal{T})$. We have shown above that the stack $\mathcal{M}(\mathcal{A}_{rel}/\mathcal{T})$ is algebraic, and the stack $\mathcal{M}(\mathcal{A}/\mathcal{T}) = \mathcal{M}(\mathcal{A}) \times \mathcal{T}$ is algebraic by (1). It remains to show that

$$\mathcal{M}_S := \mathcal{M}(\mathcal{A}_{rel}/\mathcal{A}/\mathcal{T}) \times \mathcal{M}(\mathcal{A}_{rel}/\mathcal{T}) \times \mathcal{M}(\mathcal{A}/\mathcal{T}) S$$

is algebraic.
is algebraic whenever S is a scheme. Denote by $C \to S$ and $\overline{C} \to S$ the resulting families of curves as in Diagram (3.1.4). The stack \mathcal{M}_S maps to the algebraic stack $\text{Hom}_S^{\text{rep}}(C, \overline{C})$ of representable maps. The locus where these maps have 0-dimensional image is closed, and in the open (and therefore algebraic) complement the stabilization $C \to C' \to \overline{C}$ of $C \to \overline{C}$ is well defined. The stack \mathcal{M}_S above factors through the open (and therefore algebraic) locus where $C' \to \overline{C}$ is an isomorphism. The stack \mathcal{M}_S itself is therefore the algebraic substack of $\text{Sect}_S(D/C)$ where $D = C \times_{\mathcal{A}} \mathcal{A}$, where the map on the right is the diagonal and the maps on the left are $C \to \mathcal{A} \to \mathcal{A}$ and $C \to \overline{C} \to \mathcal{A}$.

(4) The stack $\mathcal{M}_{\text{tr}}(\mathcal{A}_{\text{rel}}/\mathcal{I})$ is an open substack of $\mathcal{M}(\mathcal{A}_{\text{rel}}/\mathcal{I})$, which is algebraic by (2) above. The stack $\mathcal{M}_{\text{rel}}(\mathcal{A}_{\text{rel}}/\mathcal{I})'$ is an open substack of $\mathcal{M}(\mathcal{A}_{\text{rel}}/\mathcal{I})'$, which is algebraic by (3) above.

(5) Since $\mathcal{X}^{\text{rel}} = \mathcal{X} \times_{\mathcal{I}} \mathcal{A}_{\text{rel}}$ and the map $\mathcal{X}^{\text{rel}} \to \mathcal{I}$ is induced from $\mathcal{A}^{\text{rel}} \to \mathcal{I}$, we have an isomorphism

$$\mathcal{M}(\mathcal{X}^{\text{rel}}/\mathcal{I}) \sim \mathcal{M}(\mathcal{X}) \times_{\mathcal{M}(\mathcal{A})} \mathcal{M}(\mathcal{A}_{\text{rel}}/\mathcal{I}).$$

But $\mathcal{M}(\mathcal{X})$ is an algebraic stack by [AV02, Theorem 1.4.1 and Section 8] and both $\mathcal{M}(\mathcal{A})$ and $\mathcal{M}(\mathcal{A}_{\text{rel}}/\mathcal{I})$ are algebraic by (1) and (2), respectively.

By definition, $\overline{\mathcal{M}}_{\text{tr}}(\mathcal{X}^{\text{rel}}/\mathcal{I})$ is an open substack of the maximal Deligne–Mumford substack of the algebraic stack $\mathcal{M}(\mathcal{X}^{\text{rel}}/\mathcal{I})$. □

4. Proof of the theorem

In Section 4.1 we reduce the proof of Theorem 2.2 to an application of Costello’s theorem. The rest of Section 4 will be devoted to the verification of Costello’s hypotheses.

4.1. The main argument. Let X be a smooth scheme over \mathbb{C} with a smooth divisor D. Let \mathcal{X} be the r-th root stack of the line bundle and section $(\mathcal{O}_X(D), 1)$ (the value of r will be specified in Definition 4.1.2). Let \mathcal{I} be the r-th root divisor on \mathcal{X}.

Proposition 4.1.1. Let X be smooth and D a Cartier divisor, and let $\sigma : X \to \mathcal{A}$ be the corresponding morphism. Then σ is smooth if and only if D is smooth.

Proof. If σ is smooth then D is smooth as it is the inverse image of the smooth divisor $\mathcal{B}_{\mathcal{G}_m} \subset \mathcal{A}$.

Now we assume D smooth and prove that σ is smooth. The problem is étale local on X so we may assume D is defined by a local coordinate e_1. Completing this to a regular system of parameters (e_1, \ldots, e_n)
with \(n = \dim X \), we obtain a factorization of \(\sigma \) through the étale map \((e_1, \ldots, e_n): X \to \mathbb{A}^n\). The map \(\mathbb{A}^n \to \mathcal{A} \) factors through the smooth projection \(\mathbb{A}^n \to \mathbb{A}^1 \) on the first coordinate, and \(\mathbb{A}^1 \to \mathcal{A} \) is smooth by definition. \(\blacksquare \)

The proposition implies that the map \(X \to \mathcal{A} \) (determined by the line bundle and section \((\mathcal{O}_X(D), 1)\)) is smooth. Since \(\mathcal{D} \to \mathcal{A} \) is obtained from this by base change along the \(r \)-th power map, it is smooth as well. This implies, again by the proposition, that \(\mathcal{D} \) is smooth. Therefore, by Proposition 3.1.10, the morphism

\[
\overline{M}_{0,n}(\mathcal{D}) \to \mathfrak{M}_{0,n}(\mathcal{A})
\]

has a perfect relative obstruction theory of perfect amplitude in \([-1, 0]\).

We denote the relative virtual class by \([\overline{M}_{0,n}(\mathcal{D})/\mathfrak{M}_{0,n}(\mathcal{A})]^{\text{vir}} \).

Now we select the integer \(r \) determining the root stack \(\mathcal{D} \). Note that, as in the proof of Theorem 2.1, this choice in turn determines a twisting choice \(\tau \) in the sense of [AF, Definition 3.4.1] for relative stable maps to \(X \) of class \(\beta \), namely \(\tau(c_1, \ldots, c_k) = r \) for every multiset \(\{c_1, \ldots, c_k\} \) of contact orders occurring in the moduli space.

Definition 4.1.2. Let \(\beta \) be an effective class in \(H_2(X, \mathbb{Z}) \) and let \(d = D.\beta \). Set \(\kappa = \min_{0 \leq \gamma \leq \beta} D.\gamma \), the minimum taken over all classes \(\gamma \) such that both \(\gamma \) and \(\beta - \gamma \) are effective. Let \(r \) be an integer such that

1. \(r > 2d \),
2. \(r > -2\kappa \), and
3. if \(j \) is an integer such that \(1 \leq j \leq d - \kappa \) then \(j \) divides \(r \).

Remark 4.1.3. The integer \(r \) is chosen carefully for Proposition 4.3.4 to apply. Since the conditions on \(r \) only bound it from below and impose divisibility, it is clear that an integer \(r \) satisfying the conditions exists.

Let \(\Gamma \) stand for the numerical data \((g = 0, n, \beta)\). The assumptions on \(r \) made above guarantee that the universal curve over \(\overline{M}_\Gamma(\mathcal{D}) \) satisfies Properties MA1 and MA2 of Section 3.3.2, hence that the map \(\overline{M}_\Gamma(\mathcal{D}) \to \mathfrak{M}_{0,n}(\mathcal{A})' \) factors through \(\mathfrak{M}_{0,n}(\mathcal{A})' \). We therefore have a commutative diagram

\[
\begin{array}{ccc}
\overline{M}_\Gamma(\mathcal{D})^\text{tr}/\mathcal{T} & \xrightarrow{\Phi_\mathcal{D}} & \overline{M}_\Gamma(\mathcal{D}) \\
\downarrow & & \downarrow \\
\mathfrak{M}_{0,n}(\mathcal{A}, \mathcal{B}/\mathbb{G}_m)' & \xrightarrow{\Phi_\mathcal{A}} & \mathfrak{M}_{0,n}(\mathcal{A})',
\end{array}
\]

which is cartesian by Proposition 3.1.5. This is diagram 2.3.1 with a more specific notation that includes the relevant discrete data. We will
apply [Cos06, Theorem 5.0.1] to this diagram. The hypotheses of the theorem are the following (with numbers corresponding to the bullets in Costello’s statement):

1a) $\mathcal{M}^r_\Gamma(\mathcal{X}_{\text{rel}}/\mathcal{T})$ is a Deligne–Mumford stack by Proposition 3.3.2.

1b) $\mathcal{M}_{\Gamma}(\mathcal{X})$ is a Deligne–Mumford stack by [AV02, Theorem 1.4.1].

2,3) $\mathcal{M}^r_{0,n}(\mathcal{A}_{\text{rel}}/\mathcal{A}_{\mathcal{T}})$ and $\mathcal{M}_{0,n}(\mathcal{A})$ are Artin stacks of the same pure dimension. The morphism $\mathcal{A}_{\text{rel}} \to \mathcal{A}_{\mathcal{T}}$ is representable, so by [AV02, Section 8.3] the morphism $\mathcal{M}^r_{0,n}(\mathcal{A}_{\text{rel}}/\mathcal{A}_{\mathcal{T}}) \to \mathcal{M}_{0,n}(\mathcal{A})'$ is of relative Deligne–Mumford type. It is of pure degree 1 by Proposition 4.1.4.

4) $\Phi_{\mathcal{X}}$ is proper (checked below using [AF, Corollary 3.4.8]).

5) The obstruction theory for $\mathcal{M}^r_\Gamma(\mathcal{X}_{\text{rel}}/\mathcal{T}) \to \mathcal{M}^r_{0,n}(\mathcal{A}_{\text{rel}}/\mathcal{A}_{\mathcal{T}})$ on the left is equivalent to the one obtained by pulling back that of the morphism $\mathcal{M}_{\Gamma}(\mathcal{X}) \to \mathcal{M}_{0,n}(\mathcal{A})'$ on the right (Proposition 3.1.11).

Hypothesis (2,3) is implied by

Proposition 4.1.4. There are dense, unobstructed, open substacks

$$\mathcal{M}^r_{0,n}((\mathcal{A}_{\text{rel}})/\mathcal{T})'' \subset \mathcal{M}^r_{0,n}((\mathcal{A}_{\text{rel}})/\mathcal{T})''$$

(Section 4.2)

$$\mathcal{M}_{0,n}(\mathcal{A})'' \subset \mathcal{M}_{0,n}(\mathcal{A})'$$

(Section 4.3)

on which $\Phi_{\mathcal{A}}$ induces an isomorphism.

Proof. For $\mathcal{M}^r_{0,n}((\mathcal{A}_{\text{rel}})/\mathcal{T})''$ we take the fiber of $\mathcal{M}^r_{0,n}((\mathcal{A}_{\text{rel}})/\mathcal{T})''$ above the open point of \mathcal{T}. Since \mathcal{A}_{rel} and $\mathcal{A}_{\mathcal{T}}$ are isomorphic over the open point of \mathcal{T}, Diagram (3.1.4) simplifies to

$$\begin{array}{ccc}
C & \longrightarrow & \mathcal{A} \\
\downarrow & & \downarrow \\
\mathcal{C} & \longrightarrow & \mathcal{A} \\
\downarrow & & \downarrow \\
S
\end{array}$$

Since this point lies in $\mathcal{M}((\mathcal{A}_{\text{rel}})/\mathcal{T})$, it can have no continuous automorphisms fixing the map $C \to \mathcal{A}$. This means that $C \to \mathcal{C}$ is stable, hence an isomorphism, since \mathcal{C} is the stabilization of the map $C \to \mathcal{C}$. Thus the top line in the diagram above is determined from the rest of the diagram. This implies that $\Phi_{\mathcal{A}}$, which forgets the top line above, is an embedding on $\mathcal{M}^r((\mathcal{A}_{\text{rel}})/\mathcal{T})''$.
By the definition of $M_{\text{tr}}(A_{\text{rel}}/A_T/T)$, a map $C \to A$ lies in the image of Φ_A if and only if it is transverse to the divisor $BG_m \subset A$, i.e., if and only if the map $C \to A$ is smooth near the pre-image of BG_m. This is an open condition on $M(A)$', hence defines an open substack $M(A)'$ onto which Φ_A defines an isomorphism.

To complete the proof, we check in Section 4.2 that $M_{\text{tr}}(A_{\text{rel}}/A_T/T)'$ is dense in $M_{\text{tr}}(A_{\text{rel}}/A_T/T)$ and in Section 4.3 that $M(A)'$ is dense in $M(A)$. □

In order to check Hypothesis (4), we relate our notation to that of [AF]. Our stack $M_{\Gamma}(X_{\text{rel}}/T)$ is isomorphic to a union of open and closed substacks $K_r(\Gamma)(X,D)$ of [AF] where r is equal to our twisting choice (Definition 4.1.2) and the union is taken as Γ' ranges among all “data for a pair” ([AF, Convention 3.1.2]) compatible with Γ (effectively, over all partitions of $\{1,\ldots,n\}$ into two sets, denoted M and N in loc.cit.). By [AF, Corollary 3.4.8], each $K_r(\Gamma)(X,D)$ is proper; since $M_{\Gamma}(\mathcal{X})$ is separated ([AV02, Theorem 1.4.1]) this implies $\Phi_\mathcal{X}$ is proper, which is Hypothesis (4).

We deduce from Costello’s theorem that

$$\Phi_*\left[\overline{M}_{\Gamma}(\mathcal{X}_{\text{rel}}/\mathcal{T})/\mathcal{M}_{0,n}(\mathcal{A}_{\text{rel}}/\mathcal{T})\right]^{\text{vir}} = \left[\overline{M}_{\Gamma}(\mathcal{X})/\mathcal{M}_{0,n}(\mathcal{A})\right]^{\text{vir}}.$$

where here and later we omit the subscript X of Φ_X when no confusion is likely.

In Section 4.2 we show that $\mathcal{M}_{0,n}(\mathcal{A}_{\text{rel}}/\mathcal{T})'$ is smooth, which implies by a standard compatibility result reviewed in Proposition A.1.2 that

$$\left[\overline{M}_{\Gamma}(\mathcal{X}_{\text{rel}}/\mathcal{T})/\mathcal{M}_{0,n}(\mathcal{A}_{\text{rel}}/\mathcal{T})\right]^{\text{vir}} = \left[\overline{M}_{\Gamma}(\mathcal{X}_{\text{rel}}/\mathcal{T})\right]^{\text{vir}}.$$

Noting that $\mathcal{A} \to BG_m$ is smooth, we apply a similar compatibility result reviewed in Proposition A.2.8 to the sequence $\overline{M}_{\Gamma}(\mathcal{X}) \to \mathcal{M}_{0,n}(\mathcal{A}) \to \mathcal{M}_{0,n}(BG_m)$ to conclude

$$\left[\overline{M}_{\Gamma}(\mathcal{X})/\mathcal{M}_{0,n}(\mathcal{A})\right]^{\text{vir}} = \left[\overline{M}_{\Gamma}(\mathcal{X})/\mathcal{M}_{0,n}(BG_m)\right]^{\text{vir}}.$$

Lemma 4.1.5. The stack $\mathcal{M}(BG_m)$ is smooth and unobstructed.

Proof. The obstructions to deforming a line bundle on C lie in $H^2(C,\mathcal{O}_C)$, which vanishes if C is a curve. Hence $\mathcal{M}(BG_m)$ is smooth over \mathcal{M}, which is itself smooth. □

Lemma 4.1.5 permits us again to apply Proposition A.1.2 to the sequence $\overline{M}_{0,n}(\mathcal{X}) \to \mathcal{M}_{0,n}(BG_m) \to (\text{point})$ and find

$$\left[\overline{M}_{\Gamma}(\mathcal{X})/\mathcal{M}_{0,n}(BG_m)\right]^{\text{vir}} = \left[\overline{M}_{\Gamma}(\mathcal{X})\right]^{\text{vir}}.$$
Taken together, the equalities above imply
\[
\Phi [\etr{\mathcal{A}_{\text{rel}}/\mathcal{F}}] = \etr{\mathcal{A}/\mathcal{F}},
\]
which is the conclusion of Theorem 2.2.

Our remaining task is to complete the proof of Proposition 4.1.4.

4.2. A dense open substack of \(\mathcal{M}_{g,n}^{\text{tr}}(\mathcal{A}_{\text{rel}}/\mathcal{A}/\mathcal{F})\). We abbreviate \(\mathcal{M}_{g,n}^{\text{tr}}(\mathcal{A}_{\text{rel}}/\mathcal{A}/\mathcal{F})\) to \(\mathcal{M}\). Let \(f : C \to \mathcal{A}_{\text{rel}}\) be the universal morphism and write
\[
\mathbb{L} := \text{Cone} \left(f^*\mathcal{L}_{\mathcal{A}_{\text{rel}}/\mathcal{F}}(\log D) \to \mathcal{L}_{\mathcal{C}/\mathcal{M}}(\log P) \right)
\]
where \(D\) is the universal divisor on \(\mathcal{A}_{\text{rel}}\) and \(P\) is the divisor of marked points on \(\mathcal{C}\). If \(\pi : \mathcal{C} \to \mathcal{M}\) is the projection, then there is a natural map
\[
\pi_!\mathbb{L}[-1] \to \mathcal{L}_{\mathcal{C}/\mathcal{F}}.
\]

Lemma 4.2.1. This is a relative obstruction theory for \(\mathcal{M} \to \mathcal{F}\).

This is a standard generalization of [BF97, Proposition 6.3] in combination with [BL00, Proposition A.1]. See Appendix A.4 for more details.

Proposition 4.2.2. The morphism \(\mathcal{M}_{g,n}^{\text{tr}}(\mathcal{A}_{\text{rel}}/\mathcal{A}/\mathcal{F}) \to \mathcal{F}\) is smooth and unobstructed.

Proof. Let \(E = \pi_!\mathbb{L}[-1]\). We must show that \(E\) has perfect amplitude in \([0, 1]\). Since \(E\) is certainly perfect, it suffices to see that \(E^\vee[-1] = R\pi_* (\mathbb{L}^\vee)\) has perfect amplitude in \([0, 1]\). By semicontinuity, it is enough to see that, when \(S\) is a geometric point of \(\mathcal{M}\) and \(f : C \to \mathcal{A}_{\text{rel}} \times \mathcal{F} S\) is the corresponding morphism, we have
\[
\text{Ext}^p(\mathbb{L}|_C, \mathcal{O}_C) = 0
\]
for \(p \geq 2\) (where \(\mathbb{L}|_C\) denotes the pullback of \(\mathbb{L}\) to \(C\) via the canonical map \(C \to \mathcal{C}\)).

We use the local-to-global spectral sequence, which gives
\[
H^p(C, \text{Ext}^q(\mathbb{L}|_C, \mathcal{O}_C)) \Rightarrow \text{Ext}^{p+q}(\mathbb{L}|_C, \mathcal{O}_C).
\]
The proposition will follow once we show
\begin{itemize}
 \item[(1)] \(\text{Ext}^1(\mathbb{L}|_C, \mathcal{O}_C)\) is supported in dimension 0 (which implies that \(H^p(C, \text{Ext}^1(\mathbb{L}|_C, \mathcal{O}_C)) = 0\) for \(p > 0\)), and
 \item[(2)] \(\text{Ext}^q(\mathbb{L}|_C, \mathcal{O}_C) = 0\) for \(q > 1\).
\end{itemize}
Indeed, these properties show that the E_2 term of the spectral sequence is concentrated in positions $(p, q) \in \{(0, 0), (0, 1), (1, 0)\}$ which implies both that it degenerates at the E_2 term and that $\text{Ext}^p(\mathbb{L}|_C, \mathcal{O}_C) = 0$ for $p \geq 2$.

Let $U \subset \mathcal{A}^{\text{rel}}$ be the complement of D in the smooth locus of the map $\mathcal{A}^{\text{rel}} \to \mathcal{T}$. Since U is étale over \mathcal{T} we have $\mathbb{L}_{U/\mathcal{T}} = 0$ and hence

$$\mathbb{L}|_{f^{-1}U} \cong \Omega_C.$$

It is well-known that $\text{Ext}^q(\Omega_C, \mathcal{O}_C) = 0$ for $q > 1$ and is supported on the nodes for $q = 1$.

The map $C \to \mathcal{A}^{\text{rel}}$ is transverse to the singularities and to the distinguished divisor D. Therefore, if x is either a node or the distinguished divisor of \mathcal{A}^{rel} then there is an open neighborhood V_x of x such that $f^{-1}V_x \to \mathcal{A}^{\text{rel}} \times _{\mathcal{T}} S$ is smooth. Therefore $\mathbb{L}|_{f^{-1}V_x}$ is a vector bundle, and $\text{Ext}^q(\mathbb{L}|_{f^{-1}V_x}, \mathcal{O}_C|_{f^{-1}V_x}) = 0$ for $q > 0$.

Since $f^{-1}U$ and the $f^{-1}V_x$ cover C, this completes the proof. \qed

Definition 4.2.3. Let $\mathcal{M}_{0,n}^{\text{tr}}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})'' \subset \mathcal{M}_{0,n}^{\text{tr}}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})$ be the pre-image of the open point in \mathcal{T} and let $\mathcal{M}_{0,n}^{\text{tr}}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})''$ be its intersection with $\mathcal{M}_{0,n}^{\text{tr}}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})$.

Corollary 4.2.4. The open inclusions

$$\mathcal{M}_{0,n}^{\text{tr}}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})'' \subset \mathcal{M}_{0,n}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})$$

$$\mathcal{M}_{0,n}^{\text{tr}}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})'' \subset \mathcal{M}_{0,n}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})$$

are dense.

Proof. The claim for $\mathcal{M}_{0,n}^{\text{tr}}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})''$ follows immediately from that for $\mathcal{M}_{0,n}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})$. Let t be a point of $\mathcal{M}_{0,n}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})$ that is not in $\mathcal{M}_{0,n}^{\text{tr}}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})''$. Choose a scheme T, the spectrum of a complete Noetherian local ring, and a map $T \to \mathcal{T}$ whose restriction to the closed point is the image of t and whose open point maps to the open point of \mathcal{T}. By the proposition, there is a formal section of $\mathcal{M}_{0,n}^{\text{tr}}(\mathcal{A}^{\text{rel}}/\mathcal{A}/\mathcal{T})$ over T, coinciding with t on the closed point. It suffices to show this section can be algebraized.

Since $\mathcal{A}[n]$ is open in \mathcal{A}^{2n+1}, this is a question of algebraizing vector bundles and their sections. It therefore has an answer by Grothendieck’s existence theorem. \qed

4.3. A dense open substack of $\mathcal{M}(\mathcal{A})'$.

Lemma 4.3.1. Let (C, L, s) be a geometric point of $\mathcal{M}_{0,n}(\mathcal{A})'$. Assume C is smooth. Let C' be a square-zero thickening of C with ideal \mathcal{O}_C.

Let \(L' \) be an extension of \(L \) to \(C' \). Then \(s \) can be extended to a nonzero section of \(L' \) on \(C' \).

Proof. The obstruction for this deformation problem lies in \(H^1(C, L) \); when the obstruction vanishes, solutions form a torsor under \(H^0(C, L) \). To show that a deformation exists it suffices to show that \(H^1(C, L) = 0 \). To show that the section can be deformed to be non-zero, we must show in addition \(H^0(C, L) \neq 0 \). Our assumptions in Section 3.3.2 on \(\mathcal{M}_{0,n}(\mathcal{A})' \) imply that \(L \sim O_C \left(\sum_{y \in C} \text{age}_y(L)y \right) \).

Writing \(\pi : C \to \overline{C} \) for the projection on the coarse moduli space, this implies that \(\pi_*L = O_C \). But \(H^i(C, L) = H^i(C, \pi_*L) \) and \(C \) has genus zero, so the lemma follows. \(\square \)

Lemma 4.3.2. If \((C, L, s)\) is a point of \(\mathcal{M}_{0,n}(\mathcal{A})' \) then

1. if \(x \) is a node whose stabilizer group is non-trivial, then \(s \) vanishes on at least one of the components containing \(x \), and
2. if \(x \) is a node whose stabilizer group is trivial and \(s(x) = 0 \), then \(s \) vanishes identically on both components containing \(x \).

Proof. Let \((C, L, s)\) be a point of \(\mathcal{M}_{0,n}(\mathcal{A})' \). Suppose that \(C_1 \) and \(C_2 \) are two irreducible components of \(C \) meeting at an orbifold node \(x \). Since \(\text{age}_x L |_{C_1} + \text{age}_x L |_{C_2} = 1 \), one of these, say the first, must be at least \(\frac{1}{2} \). But then if \(s \) does not vanish on \(C_1 \), we have \(\deg L |_{C_1} \geq \text{age}_x L |_{C_1} \geq \frac{1}{2} \), contradicting Condition MA2 (Section 3.3.2).

Now let the notation be as above, but assume that \(x \) is a node with trivial stabilizer. If \(s \) vanishes at \(x \) but does not vanish identically on \(C_i \) then \(\deg L |_{C_1} \geq 1 \), once again contradicting Condition MA2. Thus if \(s \) is an ordinary node, \(s \) cannot vanish at \(x \) unless it vanishes identically on both components containing \(x \). \(\square \)

Definition 4.3.3. Let \(\mathcal{M}_{0,n}(\mathcal{A})'' \subseteq \mathcal{M}_{0,n}(\mathcal{A})' \) be the open substack consisting of triples \((C, L, s)\) such that \(C \) is smooth and \(s \) is not identically 0.

Proposition 4.3.4. The substack \(\mathcal{M}_{0,n}(\mathcal{A})'' \subseteq \mathcal{M}_{0,n}(\mathcal{A})' \) is dense.

Proof. **Step 1:** smoothing the vanishing locus of \(s \). We will write \(\mathcal{M}_{0,n}(\mathcal{A})_{\text{sm.zeros}} \) for the open substack consisting of those \((C, L, s)\) in \(\mathcal{M}_{0,n}(\mathcal{A})' \) for which the vanishing locus of \(s \) inside \(C \) is smooth (i.e., is a disjoint union of reduced stacky points and smooth curves). Equivalently, \(\mathcal{M}_{0,n}(\mathcal{A})_{\text{sm.zeros}} \) is the locus where \(s \) does not vanish on two adjacent irreducible components of \(C \).
By Lemma 4.1.5, a node joining two components of C on which s vanishes can be smoothed along with the line bundle. The section extends as the zero section on the resulting smoothed component. It follows that $\mathcal{M}_{0,n}(\mathcal{A}^{\text{sm.zeros}})$ is dense in $\mathcal{M}_{0,n}(\mathcal{A})'$. Thus, to prove Proposition 4.3.4 it remains only to prove that $\mathcal{M}_{0,n}(\mathcal{A})''$ is dense in $\mathcal{M}_{0,n}(\mathcal{A}^{\text{sm.zeros}})$.

Step 2: Smoothing the orbifold nodes: setup. Define the open substack $\mathcal{M}_{0,n}(\mathcal{A})^{\text{ord.nodes}} \subset \mathcal{M}_{0,n}(\mathcal{A})^{\text{sm.zeros}}$ to be the locus where C has trivial stack structure at all of its nodes. In Steps 2–7, we will show that $\mathcal{M}_{0,n}(\mathcal{A})^{\text{ord.nodes}}$ is dense in $\mathcal{M}_{0,n}(\mathcal{A})^{\text{sm.zeros}}$.

On an object (C, L, s) of $\mathcal{M}_{0,n}(\mathcal{A})^{\text{sm.zeros}}$ having an orbifold node, the section s vanishes identically on a component C_0 of C through the node. Let $C' \subset C$ be the locus where s does not vanish and let C_1, \ldots, C_k be the connected components of the closure of C' that meet C_0. Let p_i be the intersection of C_0 with C_i. We claim that the nodes p_i can be smoothed simultaneously.

Step 3: Isolating the relevant curve. To obtain this smoothing, it suffices to assume that C is the union of C_0, \ldots, C_k: any node connecting C_i to another component of $\{s = 0\}$ must be twisted, so if we can deform the section on this subcurve, the deformed section will automatically vanishes on such nodes. It follows that the deformation can be glued to a trivial deformation of the rest of the curve.

Step 4: Removing markings way from C_0. We further simplify the object: if there is a twisted marking $x \in C \setminus C_0$, then let $\pi : C \to C'$ be the morphism which forgets this twisted marking. We can recover L from $\pi^* L \otimes O_C(\text{age}_x(L)x)$.

This can be done in families, so it is equivalent to deform either (C, L, s) or $(C', \pi_* L, \pi_* s)$ (where the marked point remains on C', but is un-twisted). So we may assume that all twisted markings of C lie on C_0, though we may no longer assume that $-\frac{1}{2} < \deg L|_{C_i} < \frac{1}{2}$ for each $i \neq 0$.

Step 5: Reduction to positive degree on C_0. Choose a general point $x \in C_0$, and replace C_0 with the square root of C_0 at x, replacing L with $L \otimes O(x/2)$, and s with its image in $L \otimes O(x/2)$. By the same argument as before, it suffices to deform this new triple. Therefore, we can assume that the degree of L restricted to C_0 is positive, and that the total degree of L is less than 1.

Let m be the number of twisted marked points on C_0 and define a_1, \ldots, a_m to be the ages of L at these points. For $1 \leq i \leq k$, let b_i be the age of $L|_{C_i}$ at the node. Since $\deg(L|_{C_i}) < 1$ and $L|_{C_i}$ has a
nontrivial section, it follows that \(\deg(L|_{C_i}) = b_i \). Since \(\deg(L) = \sum a_i \), it follows that \(\deg(L|_{C_0}) = \sum a_i - \sum b_i \).

Step 6: Lifting to a weighted projective space. Although it is not essential to the argument, we now reduce the problem to one concerning maps to a weighted projective space. This will be convenient in Step 7 where it allows us to do our dimension estimates with Deligne–Mumford stacks instead of Artin stacks.

Choose a positive integer \(\bar{r} \) such that \(a_i \cdot \bar{r} \in \mathbb{Z} \) and \(b_i \cdot \bar{r} \in \mathbb{Z} \) for all \(i \). Then \(L^{\otimes \bar{r}} \) is pulled back from the coarse moduli space of \(C \) and has non-negative degree on each component. The complete linear system of \(L^{\otimes \bar{r}} \) together with the section \(s \) define a representable morphism \(C \to \mathbb{P}^N_{H,\bar{r}} \) of degree \(\bar{r}(\sum a_i) \), where \(H \subseteq \mathbb{P}^N \) is a hyperplane, and \(\mathbb{P}^N_{H,\bar{r}} = \sqrt[\bar{r}]{\mathbb{P}^N/H} \) is the \(\bar{r} \)-th root stack.

The moduli space of twisted stable maps to \(\mathbb{P}^N_{H,\bar{r}} \) of genus 0, degree \(\bar{r}(\sum a_i) \), having \(n \) marked points, \(m \) of which are twisted with contact types \(\bar{r} \cdot a_1, \ldots, \bar{r} \cdot a_m \), has expected dimension \(\bar{r}\sum a_i N + n + N - 3 \); see [Cad07a, 3.5.1].

Step 7: Dimension estimate. Now suppose the map \(C \to \mathbb{P}^N_{H,\bar{r}} \) could not be deformed to a map where \(C \) has fewer nodes. We calculate the dimension of the component of the space of stable maps in which it lies as follows:

1. for each \(i > 0 \), deformations of \(C_i \to \mathbb{P}^N_{H,\bar{r}} \) marked by \(p_i \) are unobstructed and therefore have dimension precisely \(\bar{r}b_i N + 1 + N - 3 \).
2. Deformations of \(C_0 \to \mathbb{P}^N_{H,\bar{r}} \) inside \(H \) marked by \(p_1, \ldots, p_k \) and the \(m \) twisted marked points are identical to deformations of \(C_0 \to \mathbb{P}^{N-1} \) with as many marked points, and have precisely dimension \(\bar{r}(\sum a_i - \sum b_i) N + m + k + N - 4 \).
3. We have \(n - m \) additional untwisted marked points, contributing as many dimensions to moduli.
4. The conditions for these maps to glue are independent by Kleiman’s Bertini argument [Kle74, Theorem 2]. We have \(N - 1 \) independent conditions for each \(p_i \).

We compute:
\[\tilde{r}(\sum a_i - \sum b_i)N + m + k + N - 4 + \sum_{i=1}^{k} (\tilde{r}b_i N + 1 + N - 3 - (N - 1)) + n - m \]

\[= \tilde{r} \sum a_i N + n + k + N - 4 + \sum_{i=1}^{k} (-1) \]

\[= \tilde{r} \sum a_i N + n + N - 4. \]

Since the dimension is greater than or equal to the expected dimension, it follows that the map \(C \to \mathbb{P}^N_{H, r} \) can be smoothed. We then get the required deformation of \((C, L, s)\) by pulling back \(\mathcal{O}(H^{1/2}) \) together with its tautological section.

It now remains to prove that \(\mathcal{M}_{0, n}(\mathcal{A})'' \) is dense in \(\mathcal{M}_{0, n}(\mathcal{A})^{\mathrm{ord, nodes}} \).

Step 8: Smoothing non-orbifold nodes. Now, we show that \(\mathcal{M}_{0, n}(\mathcal{A})^{\mathrm{sm}} \), the open substack of \(\mathcal{M}_{0, n}(\mathcal{A})' \) consisting of \((C, L, s)\) with \(C \) smooth, is dense in \(\mathcal{M}_{0, n}(\mathcal{A})^{\mathrm{ord, nodes}} \). By Lemma 4.1.5, there is no obstruction to deforming \(L \) as \(C \) is smoothed, and the obstruction to deforming \(s \) as \(C \) and \(L \) are deformed lies in \(H^1(C, L) \). But since \((C, L, s)\) is in \(\mathcal{M}_{0, n}(\mathcal{A})^{\mathrm{ord, nodes}} \) the vanishing locus of \(s \) must be discrete by Lemma 4.3.2. Therefore \(L \) must have non-negative degree on every component of \(C \), whence \(H^1(C, L) = 0 \). The obstruction to carrying \(s \) along with the deformation of \((C, L)\) therefore vanishes and \((C, L, s)\) can be deformed into \(\mathcal{M}_{0, n}(\mathcal{A})^{\mathrm{sm}} \).

Step 9: Deforming to a nonzero section. Lemma 4.3.1 implies that \(\mathcal{M}_{0, n}(\mathcal{A})'' \) is dense in \(\mathcal{M}_{0, n}(\mathcal{A})^{\mathrm{sm}} \), which completes the proof. \(\square \)

Appendix A. Constructions and compatibilities of obstruction theories

A.1. Obstruction theories.

Lemma A.1.1. Suppose \(E \to L \to F \) is an exact triangle in \(D_{\leq s}(A) \) for some abelian category \(A \). The following are equivalent.

(i) the map \(H^p(E) \to H^p(L) \) is an isomorphism for \(p > t \) and surjective for \(p = t \),

(ii) \(F \) is concentrated in degrees \(< t \),

(iii) for every \(J \in A \), the map \(\Ext^{-p}(L, J) \to \Ext^{-p}(E, J) \)
is an isomorphism for \(p > t \) and injective for \(p = t \),

(iv) \(\text{Ext}^{-p}(\mathcal{F}, J) = 0 \) for all \(p \geq t \) and all \(J \in A \).

Proof. (i) \(\Leftrightarrow \) (ii) follows immediately by considering the long exact sequence in cohomology

\[
\cdots \rightarrow H^{s-1}(\mathcal{F}) \rightarrow H^{s}(\mathcal{E}) \rightarrow H^{s}(\mathcal{L}) \rightarrow H^{s}(\mathcal{F}) \rightarrow 0.
\]

Likewise, (iii) \(\Leftrightarrow \) (iv) follows from the long exact sequence

\[
0 \rightarrow \text{Ext}^{-s}(\mathcal{F}, J) \rightarrow \text{Ext}^{-s}(\mathcal{L}, J) \rightarrow \text{Ext}^{-s}(\mathcal{E}, J) \rightarrow \text{Ext}^{-s+1}(\mathcal{F}, J) \rightarrow \cdots.
\]

It is obvious that (ii) implies (iii). For the converse, it is sufficient, by descending induction, to assume that \(\mathcal{F} \in D_{\leq t}(A) \). In that case, it follows by taking \(J = H^t(\mathcal{F}) \).

Let \(f : X \rightarrow Y \) be a morphism of algebraic stacks. Let \(\mathbb{L} = \mathbb{L}_{X/Y} \). An obstruction theory (cf. [BF97, Definition 4.1]) for \(f \) is a morphism \(\mathcal{E} \rightarrow \mathbb{L}_{X/Y} \) in the derived category of \(X \) that satisfies the equivalent conditions of Lemma A.1.1 with \(t = -1 \).

Let \(X \xrightarrow{f} Y \xrightarrow{g} Z \) be a sequence of morphisms of algebraic stacks. They are said to possess compatible obstruction (cf. [Man08, Construction 2]) theories if there is a commutative diagram in the derived category of \(X \)

\[
\begin{array}{ccc}
f^*\mathcal{E}_{Y/Z} & \rightarrow & \mathcal{E}_{X/Z} \\
\downarrow & & \downarrow \\
f^*\mathbb{L}_{Y/Z} & \rightarrow & \mathbb{L}_{X/Z}
\end{array}
\]

in which the rows are distinguished triangles, the lower row is the transitivity triangle of the cotangent complex, and the two vertical arrows on the right, as well as the map \(\mathcal{E}_{Y/Z} \rightarrow \mathbb{L}_{Y/Z} \), are obstruction theories. Note that a compatibility of obstruction theories includes the specification of the triangle above, so it is not a property of the obstruction theories by themselves.

If \(X \xrightarrow{f} Y \) is of Deligne–Mumford type, then a perfect obstruction theory for \(f \) determines a Gysin pullback morphism [Man08, Definition 4]

\[
p^! : A_*(Y) \rightarrow A_*(X).
\]

This morphism depends on the obstruction theory, of course. Manolache shows [Man08, Theorem 4] that if \(X \xrightarrow{p} Y \xrightarrow{q} Z \) is a sequence of morphisms of Deligne–Mumford type with compatible obstruction theories then \((qp)^! = p^! q^! \).

The following result is closely related to Manolache’s theorem (as well as to [BL00, Proposition A.1] and [KKP03, Theorem 1]). It may
be interpreted as saying that Manolache’s construction of $p^!$, which depends a priori on a smooth Artin stack W and a commutative diagram,

$$
\begin{array}{ccc}
X & \xrightarrow{p} & Y \\
& & \downarrow \\
& & W,
\end{array}
$$

is in fact independent of W.

Proposition A.1.2. Suppose $X \xrightarrow{p} Y \xrightarrow{q} Z$ is a sequence of morphisms of Artin stacks, p and qp are of Deligne–Mumford type, and q is smooth. Suppose that the morphisms have compatible obstruction theories and the obstruction theory of q coincides with the cotangent complex. Then $p^!q^! = (qp)^!$.

Remark A.1.3. The hypothesis that $Y \to Z$ be smooth and its obstruction theory be the canonical one should not really be necessary. The trouble is that we don’t know how to define $q^!$ except under these hypotheses (where it is just q^*).

Proof. We have a commutative diagram on X:

(A.1.4) $$
\begin{array}{ccc}
\mathcal{E}_{X/Y} & \xrightarrow{\mathcal{E}_{X/Z}} & \mathcal{E}_{X/Z} \\
\downarrow & & \downarrow \\
\mathcal{E}_{X/Y} & \xrightarrow{\mathcal{E}_{X/Z}} & \mathcal{E}_{X/Z}.
\end{array}
$$

It suffices to show that this diagram is Cartesian, for $[X/Y]^{\text{vir}} = 0^!_{\mathcal{E}_{X/Y}}[\mathcal{E}_{X/Y}]$ and $[X/Z]^{\text{vir}} = 0^!_{\mathcal{E}_{X/Z}}[\mathcal{E}_{X/Z}]$. By the compatibility of the obstruction theories with the canonical obstruction theory, the fiber of $\mathcal{E}_{X/Y} \to \mathcal{E}_{X/Z}$ is $p^*T_{Y/Z}$. This reduces the problem to showing that the above diagram is Cartesian with $\mathcal{E}_{X/Y}$ replaced by $\mathfrak{N}_{X/Y}$ and $\mathcal{E}_{X/Z}$ replaced by $\mathfrak{N}_{X/Z}$.

This is now a local problem, so we can assume that there is a commutative diagram

$$
\begin{array}{ccc}
\tilde{X} & \xrightarrow{i} & \tilde{Y} & \xrightarrow{j} & \tilde{Z} \\
\downarrow \quad p \quad \downarrow & & \downarrow & & \downarrow \\
X & \xrightarrow{Y} & \quad & \xrightarrow{Z} & \quad
\end{array}
$$

in which the horizontal arrows are closed embeddings and the vertical arrows are smooth. Since $Y \to Z$ is smooth, we can assume that $\tilde{Y} \to \tilde{Z}$ is an isomorphism. We can then identify the pullback of
Diagram [A.1.4] to X with

\[
\begin{array}{ccc}
[C \tilde{X}/\tilde{Y} /\tilde{i}^*T_{\tilde{Y}/Y}] & \longrightarrow & [C \tilde{X}/\tilde{Z} /\tilde{(ji)}^*T_{\tilde{Z}/Z}] \\
\downarrow & & \downarrow \\
[N \tilde{X}/\tilde{Y} /\tilde{i}^*T_{\tilde{Y}/Y}] & \longrightarrow & [N \tilde{X}/\tilde{Z} /\tilde{(ji)}^*T_{\tilde{Z}/Z}].
\end{array}
\]

But since $\tilde{Y} \to \tilde{Z}$ is an isomorphism, it is clear that this diagram is Cartesian. \qed

A.2. The relative obstruction theory for $\mathcal{M}(X/T)$ over $\mathcal{M}(Y/T)$.

We prove Proposition 3.1.10.

Proposition A.2.1. Suppose that $X \to Y$ is morphism of algebraic stacks. Then the morphism $E_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)} \to L_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)}$ constructed in Section 3.1.4 is an obstruction theory. If $X \to Y$ is smooth then it is of perfect amplitude in $[-1, 1]$. If in addition $X \to Y$ is of Deligne–Mumford type, it is of perfect amplitude in $[-1, 0]$.

For brevity, we shorten $E_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)}$ to E and $L_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)}$ to L. By the lemma above, it’s enough to prove that

\[\text{Ext}^p(L, J) \to \text{Ext}^p(E, J) \]

is injective for $p = 1$ and bijective for $p = -1, 0$ and that E is perfect in degrees $[-1, 1]$ if $X \to Y$ is smooth (and in $[-1, 0]$ if it is also of Deligne–Mumford type).

The last property is the easiest: assuming X is smooth over Y, we obtain E as the dual of the derived pushforward of the complex $f^*T_{X/Y}$, where $f : C \to X$ is the universal map. Since X is smooth over Y, the complex $f^*T_{X/Y}$ has perfect amplitude in $[-1, 0]$, so $R\pi_*f^*T_{X/Y}$ has perfect amplitude in $[-1, 1]$. Therefore its dual also has perfect amplitude in $[-1, 1]$. If in addition X is of Deligne–Mumford type over Y, then $f^*T_{X/Y}$ is a vector bundle and $(R\pi_*T_{X/Y})^\vee$ has perfect amplitude in $[-1, 0]$.

By the naturality of the local-to-global spectral sequence for Ext, it is sufficient to prove

Lemma A.2.2. The maps

(A.2.3) \[\text{Ext}^p(L, J) \to \text{Ext}^p(E, J) \]

are injective for $p = 1$ and isomorphisms for $p = -1$ and $p = 0$.

The rest of this section will be devoted to a proof of the lemma. We will interpret the map $E_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)} \to L_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)}$ in terms of infinitesimal obstructions, deformations, and automorphisms.
The injectivity of (A.2.3) when $p = 1$. If $u : S \to \mathcal{M}(X/T)$ is a smooth map corresponding to a family of curves $\pi : C \to S$ and a map $f : C \to X$, then we have a commutative diagram

\[
\begin{array}{c}
\text{Ext}^1_S(u^*\mathcal{L}_{2\mathcal{M}(X/T)/2\mathcal{M}(Y/T)}, J) \\
\downarrow \\
\text{Ext}^1_S(L_{S/2\mathcal{M}(Y/T)}, J) \\
\to \\
\text{Ext}^1_C(f^*\mathcal{L}_{X/Y}, J).
\end{array}
\]

It is therefore sufficient to show that the lower arrow is injective.

An element $\alpha \in \text{Ext}^1(S, \pi^*J)$ corresponds to a commutative diagram of solid arrows,

\[
\begin{array}{c}
S \\
\downarrow \\
S' \to \mathcal{M}(Y/T).
\end{array}
\]

Let $C' \to S'$ and $C' \to Y$ be the family of curves and map corresponding to the map $S' \to \mathcal{M}(Y/T)$. One may check using the definitions [III.7, III.2.1.2] that the image of α in $\text{Ext}^1(f^*\mathcal{L}_{X/Y}, \pi^*J)$ is Illusie’s obstruction to the existence of a lift of the diagram

\[
\begin{array}{c}
C \\
\downarrow \\
C' \to Y.
\end{array}
\]

If this obstruction vanishes then (A.2.5) has a lift by the modular definition of $\mathcal{M}(X/T)$. But since S is smooth over $\mathcal{M}(X/T)$, any square-zero extension of S over $\mathcal{M}(X/T)$ is locally trivial. Thus we find that, possibly after localizing in S, the class α is zero. This proves the injectivity of the lower arrow of (A.2.4).

The bijectivity of (A.2.3) when $p = -1$ or $p = 0$. Let $u : S \to \mathcal{M}(X/T)$ be a smooth map corresponding to a family of curves $\pi : C \to S$ and a map $f : C \to X$. When $p = 0$ (resp. $p = -1$) we can interpret a class $\alpha \in \text{Ext}^1_S(u^*\mathcal{L}_{2\mathcal{M}(X/T)/2\mathcal{M}(Y/T)}, J)$ as a lift (resp. an automorphism of a lift) of the diagram

\[
\begin{array}{c}
S \\
\downarrow \\
S[J] \to \mathcal{M}(Y/T).
\end{array}
\]

One may check that the map

\[
\text{Ext}^p(u^*\mathcal{L}_{2\mathcal{M}(X/T)/2\mathcal{M}(Y/T)}, J) \to \text{Ext}^p(u^*\mathcal{E}_{2\mathcal{M}(X/T)/2\mathcal{M}(Y/T)}, J) = \text{Ext}^p(f^*\mathcal{L}_{X/Y}, J)
\]
sends α to the class of the induced extension (resp. automorphism of the induced extension)

\[(A.2.7)\]

\[
\begin{array}{c}
 C \\
 \downarrow \\
 X_S \\
 \downarrow \\
 Y_S
\end{array} \xrightarrow{\gamma}
\begin{array}{c}
 C' \\
 \downarrow \\
 X_{S[J]} \\
 \downarrow \\
 Y_{S[J]}
\end{array}
\]

Since the functor from the category of lifts of Diagram \((A.2.6)\) to the category of extensions in Diagram \((A.2.7)\) is an equivalence (by the definitions of $M(X/T)$ and $M(Y/T)$ as moduli spaces), it induces an bijection on isomorphism classes (resp. automorphisms of objects). This proves the required bijections. \(\square\)

Proposition A.2.8. Suppose $X \xrightarrow{g} Y \rightarrow Z$ is a sequence of smooth morphisms over T. Then the obstruction theories constructed above for the maps in the sequence $M(X/T) \xrightarrow{g_\#} M(Y/T) \rightarrow M(Z/T)$ are compatible.

Proof. Let $\pi : C \rightarrow M(X/T)$. The commutative diagram

\[
\begin{array}{c}
 X_{\mathfrak{m}(X/T)} \\
 \downarrow \\
 M(X/T)
\end{array} \xrightarrow{\pi^*}
\begin{array}{c}
 Y_{\mathfrak{m}(X/T)} \\
 \downarrow \\
 M(Y/T)
\end{array} \xrightarrow{\pi^*}
\begin{array}{c}
 Z_{\mathfrak{m}(X/T)} \\
 \downarrow \\
 M(Z/T)
\end{array}
\]

gives rise to a commutative diagram

\[
\begin{array}{c}
 g^*\mathbb{L}_{Y/Z} \\
 \downarrow \\
 \pi^*\mathfrak{m}(g)^*\mathbb{L}_{\mathfrak{m}(Y/T)/\mathfrak{m}(Z/T)}
\end{array} \xrightarrow{\pi^*}
\begin{array}{c}
 \mathbb{L}_{X/Y} \\
 \downarrow \\
 \pi^*\mathbb{L}_{\mathfrak{m}(X/T)/\mathfrak{m}(Y/T)}
\end{array}
\]

whose rows are exact triangles. The adjunction $\left(\pi_*, \pi^*\right)$ now gives the required compatibility of the obstruction theories. \(\square\)

A.3. **Compatibility of the relative obstruction theory with base change.** We prove Proposition 3.1.11. We work in the situation of Diagram \((3.1.3)\). Consider the commutative diagram with Cartesian
in which the two horizontal arrows on the left side are formally étale (Lemma 3.1.8). Assume that all of the stacks appearing above are algebraic, hence have cotangent complexes. We wish to show that there is a commutative diagram

\[
\begin{array}{c}
\mathcal{M}(X/T) \xrightarrow{g} \mathcal{M}(X/X'_T/T) \xrightarrow{h} \mathcal{M}(X'/T') \\
\downarrow \quad \downarrow \\
\mathcal{M}(Y/T) \xleftarrow{g^{-1}} \mathcal{M}(Y/Y'_T/T) \xleftarrow{h^{-1}} \mathcal{M}(Y'/T')
\end{array}
\]

\[
\begin{array}{ccc}
g^* \mathbb{E}_{\mathcal{M}(X'/T')/\mathcal{M}(Y'/T')} & \sim & h^* \mathbb{E}_{\mathcal{M}(X'/T')/\mathcal{M}(Y'/T')} \\
\downarrow & & \downarrow \\
g^* \mathbb{L}_{\mathcal{M}(X'/T')/\mathcal{M}(Y'/T')} & \sim & h^* \mathbb{L}_{\mathcal{M}(X'/T')/\mathcal{M}(Y'/T')}
\end{array}
\]

in which the upper horizontal arrows are quasi-isomorphisms. In fact, there is nothing to show on the left side of the diagram: the lower horizontal arrow on the left side is a quasi-isomorphism because \(M(X/X'_T/T) \rightarrow M(X/T) \) and \(M(Y/Y'_T/T) \rightarrow M(Y/T) \) are formally étale, and we have taken the commutativity of the left square as the definition of \(\mathbb{E}_{\mathcal{M}(X'/T')/\mathcal{M}(Y'/T')} \). Nevertheless, the deformation theoretic interpretation of \(\mathbb{E}_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)} \) will be useful in the proof of the commutativity of the square on the right side.

We define the map

\[
h^* \mathbb{E}_{\mathcal{M}(X'/T')/\mathcal{M}(Y'/T')} \rightarrow \mathbb{E}_{\mathcal{M}(X/X'_T/T)/\mathcal{M}(Y/Y'_T/T)}
\]

as follows. If \(u \) is an \(S \)-point of \(\mathcal{M}(X/X'_T/T) \) corresponding to a diagram (3.1.4) in which

• \(\overline{X} = X'_T \),
• \(\epsilon : C \rightarrow \overline{C} \) denotes the projection, and
• \(f : C \rightarrow X \) and \(\overline{f} : \overline{C} \rightarrow X' \) are the two canonical maps,

then

\[
\epsilon \overline{f}^* \mathbb{L}_{X'/Y'} \rightarrow f^* \mathbb{L}_{X/Y}.
\]

By adjunction, we get a map \(\overline{f}^* \mathbb{L}_{X'/Y'} \rightarrow \epsilon \overline{f}^* \mathbb{L}_{X/Y} \) and therefore

\[
\begin{array}{cccc}
\pi \overline{f}^* \mathbb{L}_{X'/Y'} & \rightarrow & \pi (f^* \mathbb{L}_{X/Y}) \\
\downarrow & & \downarrow \\
u^* h^* \mathbb{E}_{\mathcal{M}(X'/T')/\mathcal{M}(Y'/T')} & \sim & u^* \mathbb{E}_{\mathcal{M}(X/X'_T/T)/\mathcal{M}(Y/Y'_T/T)}
\end{array}
\]

It was already shown in Section 3.1.4 that this map is an isomorphism, so the only thing to check here is the commutativity of the diagram.
We remark first of all that since all of the E complexes are of perfect amplitude in $[-1,0]$, we may demonstrate the commutativity by working locally with the dual diagrams

$$\text{Ext}^p(u^*\mathbb{L}_{\mathfrak{M}(X'/T')/\mathfrak{M}(Y'/T')}, J) \hookrightarrow \text{Ext}^p(u^*h^*\mathbb{L}_{\mathfrak{M}(X'/T')/\mathfrak{M}(Y'/T')}, J) \quad \text{for } p = 0, 1$$

for $u : S \to \mathfrak{M}(X/X'_T/T)$ a smooth map from a scheme to $\mathfrak{M}(X/X'_T/T)$. Let $f : C \to X$ and $f' : \overline{C} \to X'$ denote the curves and maps corresponding to u, and let $\pi : C \to S$ and $\pi' : \overline{C} \to S$ be the projections.

The commutativity when $p = 1$. Let α be an element of the group $\text{Ext}^1(u^*\mathbb{L}_{\mathfrak{M}(X'/T')/\mathfrak{M}(Y'/T')}, J)$. First we compute the image of α in $\text{Ext}^1(u^*h^*\mathbb{L}_{\mathfrak{M}(X'/T')/\mathfrak{M}(Y'/T')}, J)$ via the sequence

$$\text{Ext}^1(u^*\mathbb{L}_{\mathfrak{M}(X'/T')/\mathfrak{M}(Y'/T')}, J) \to \text{Ext}^1(u^*h^*\mathbb{L}_{\mathfrak{M}(X'/T')/\mathfrak{M}(Y'/T')}, J) \to \text{Ext}^1(u^*h^*\mathbb{E}_{\mathfrak{M}(X'/T')/\mathfrak{M}(Y'/T')}, J).$$

The image of α in $\text{Ext}^1(u^*h^*\mathbb{L}_{\mathfrak{M}(X'/T')/\mathfrak{M}(Y'/T')}, J)$ is the standard obstruction to lifting the diagram

$$S \quad \mathfrak{M}(X'/T') \quad S' \quad \mathfrak{M}(Y'/T').$$

We showed in Section A.2 that the image of this in

$$\text{Ext}^1_S(u^*h^*\mathbb{E}_{\mathfrak{M}(X'/T')/\mathfrak{M}(Y'/T')}, J) = \text{Ext}^1_S(f^!\mathbb{L}_{X/Y}, \pi^* J)$$

is the standard obstruction to lifting the diagram

$$\overline{C} \quad X' \quad \overline{C}' \quad Y'.$$

Now we check that the image of α under the maps

$$\text{Ext}^1(u^*\mathbb{L}_{\mathfrak{M}(X'/T')/\mathfrak{M}(Y'/T')}, J) \to \text{Ext}^1(u^*\mathbb{E}_{\mathfrak{M}(X'/T')/\mathfrak{M}(Y'/T')}, J) \to \text{Ext}^1(u^*h^*\mathbb{E}_{\mathfrak{M}(X'/T')/\mathfrak{M}(Y'/T')}, J)$$

agrees with the calculation above.
The image of α in $\text{Ext}^1(u^*g^*L_{\mathcal{M}(X/T)}/\mathcal{M}(Y/T), J)$ corresponds to an infinitesimal extension S' of S over $\mathcal{M}(X/T)$. As demonstrated in Section A.2, the image of α in $
abla \text{Ext}^1(u^*g^*E_{\mathcal{M}(X/T)}/\mathcal{M}(Y/T), J) = \text{Ext}^1(f^*L_{X/Y}, \pi^*J)$ is Illusie’s obstruction to finding a dashed arrow lifting the left square of the diagram

$$
\begin{array}{ccc}
C & \rightarrow & X \\
\downarrow & & \downarrow \\
C' & \rightarrow & Y \\
\end{array}
$$

where $C' \rightarrow Y$ is the morphism corresponding to $S' \rightarrow \mathcal{M}(Y/T)$. This corresponds, via the isomorphism

$$
\text{Ext}^1(f^*L_{X/Y}, \pi^*J) \sim \text{Ext}^1(\epsilon^*\mathcal{L}_{X'/Y'}, \pi^*J)
$$

to the obstruction to finding a dotted arrow lifting the outside rectangle in the same diagram.

On the other hand, we have the commutative diagram

(A.3.1) $$
\begin{array}{ccc}
C & \rightarrow & X \\
\downarrow & & \downarrow \\
C' & \rightarrow & Y \\
\end{array}
$$

The obstruction to finding a dashed lift of the rectangle on the right lies in $\text{Ext}^1(f^*\mathcal{L}_{X'/Y'}, \pi^*J)$ and its image under the isomorphism

$$
\text{Ext}^1(f^*\mathcal{L}_{X'/Y'}, \pi^*J) \rightarrow \text{Ext}^1(f^*\mathcal{L}_{X/Y}, \pi^*J)
$$

is the obstruction to lifting the outside rectangle [Ols06a, Lemma 4.12]. Thus the image of α in

$$
\text{Ext}^1(u^*E_{\mathcal{M}(X'/T')/\mathcal{M}(Y'/T')}, J) = \text{Ext}^1(\mathcal{F}^*\mathcal{L}_{X'/Y'}, \pi^*J)
$$

is the standard obstruction to producing a dashed lift in Diagram (A.3.1), which is what we wanted to prove.

The commutativity when $p = -1$ or $p = 0$. These are very similar to the $p = 1$ case, so we omit them.

A.4. **The relative obstruction theory for $\mathcal{M}(X/T)$ over T.** We prove Lemma 4.2.1.

Suppose $u : S \rightarrow \mathcal{M}(X/T)$ is a map from a scheme to $\mathcal{M}(X/T)$. Let $f : C \rightarrow X$ and $\pi : C \rightarrow S$ be the corresponding map and curve. Let P be the divisor of marked points on C. We have a commutative
diagram in the derived category $D(C)$ whose rows and columns are distinguished triangles:

\[\begin{array}{ccc}
 f^*\pi^*\mathbb{L}_T & \to & f^*\mathbb{L}_X \\
 \downarrow & & \downarrow \\
 \pi^*\mathbb{L}_S & \to & \mathbb{L}_C(\log P) \\
 \downarrow & & \downarrow \\
 \pi^*\mathbb{L}_{S/T} & \to & \mathbb{L}_{C/X}(\log P) \\
 \mathbb{L}_{C/S}(\log P) & \to & \mathbb{L}_{C/X}(\log P). \\
\end{array}\]

Shifting the exact triangle in the bottom row gives a map

\[\mathbb{L}_{C/X_S}(\log P)[-1] \to \pi^*\mathbb{L}_{S/T}.\]

Defining $\mathcal{E}(S) = \pi_!\mathbb{L}_{C/X_S}(\log P)[-1]$ we obtain a map

\[\mathcal{E}(S) \to \mathbb{L}_{S/T}\]

by adjunction. Applying this with $S = \mathcal{M}(X/T)$, we get the complex $\mathcal{E} := \mathcal{E}(\mathcal{M}(X/T))$. We show below that $\mathcal{E}(\mathcal{M}(X/T)) \to \mathbb{L}_{\mathcal{M}(X/T)/T}$ is an obstruction theory using charts by smooth maps $u : S \to \mathcal{M}(X/T)$. Note that since \mathbb{L}_{C/X_S} is the pullback of $\mathbb{L}_{C/X_M(X/T)}$, we have a canonical isomorphism $\mathcal{E}(S) = u^*\mathcal{E}(\mathcal{M}(X/T))$.

As in Section A.2, it is sufficient to show that

(A.4.1) \[\text{Ext}^p(u^*\mathbb{L}_{\mathcal{M}(X/T)/T}, J) \to \text{Ext}^p(u^*\mathcal{E}, J)\]

is bijective for $p = -1, 0$ and injective for $p = 1$.

The injectivity of (A.4.1) when $p = 1$. Note that the map (A.4.1) may be identified with the map

\[\text{Ext}^1(\mathbb{L}_{S/T}, J) \to \text{Ext}^1(\mathcal{E}(S), J)\]

when $p = 1$ and $u : S \to \mathcal{M}(X/T)$ is smooth, so it is equivalent to show that this latter map is injective.

One may check without difficulty that the map

\[\text{Ext}^1(\mathbb{L}_{S/T}, J) \to \text{Ext}^2(\mathbb{L}_{C/X_S}, \pi^*J) = \text{Ext}^1(\mathcal{E}(S), \pi^*J)\]

sends the class α of the extension $S \to S'$ over T in the diagram

(A.4.2) \[\begin{array}{ccc}
 S & \to & \mathcal{M}(X/T) \\
 \downarrow & & \downarrow \\
 S' & \to & T \\
\end{array}\]
to the obstruction to extension in the diagram

\[(A.4.3)\]
\[
\begin{array}{ccc}
C & \to & C' \\
\downarrow & & \downarrow \\
X_S & \to & X_{S'}
\end{array}
\]

(cf. [Ill71, Proposition 2.1.2.3]). If the image of \(\alpha\) in \(\text{Ext}^2(\mathcal{L}_{C/X_S}, \pi^*J)\) is zero, then Diagram \((A.4.2)\) must have a lift, by the definition of \(\mathcal{M}(X/T)\) as a moduli space. But \(S \to \mathcal{M}(X/T)\) was assumed to be smooth, so, at least after localizing in \(S\), the extension \(S \to S'\) over \(\mathcal{M}(X/T)\) can be split. That is, the class of \(\alpha\) in \(\Gamma(S, \text{Ext}^1(\mathcal{L}_{S/T}, J))\) is zero, which implies that

\[
\text{Ext}^1(\mathcal{L}_{S/T}, J) \to \text{Ext}^1(\mathcal{E}(S), J)
\]

is injective, as we wanted.

The bijectivity of \((A.4.1)\) when \(p = 0\) and \(p = -1\). Likewise, when \(p = 0\) (resp. \(p = -1\)), the map

\[
\text{Ext}^p(u^* \mathcal{L}_{\mathcal{M}(X/T)/T}, J) \to \text{Ext}^{p+1}(\mathcal{L}_{C/X_S}(\log P), \pi^*J)
\]

sends the class of a lift of the diagram (resp. an automorphism of the diagram)

\[
\begin{array}{ccc}
S & \to & \mathcal{M}(X/T) \\
\downarrow & & \downarrow \\
S[J] & \to & T
\end{array}
\]

to the class (resp. the induced automorphism) of the extension

\[
\begin{array}{ccc}
C & \to & C' \\
\downarrow & & \downarrow \\
X_S & \to & X_{S[J]}
\end{array}
\]

Since \(\mathcal{M}(X/T)\) is a moduli space, the functor from the category of lifts of the first diagram to the category of extensions in the second is an equivalence. It therefore induces bijections on isomorphism classes of objects (resp. automorphisms).

Proposition A.4.4. Suppose \(g : X \to Y\) is a smooth morphism of algebraic stacks. Then the obstruction theories in the sequence

\[
\mathcal{M}(X/T) \xrightarrow{\mathcal{M}(g)} \mathcal{M}(Y/T) \to T
\]

are compatible.
Proof. Let \(\pi : \mathcal{C} \to \mathcal{M}(X/T) \) be the universal curve and \(f : \mathcal{C} \to X \) the universal map. The commutative diagram

\[
\begin{array}{ccc}
\mathcal{C} & \longrightarrow & X_{\mathcal{M}(X/T)} \\
\downarrow & & \downarrow \\
\mathcal{M}(X/T) & \longrightarrow & \mathcal{M}(Y/T) \\
& & \downarrow \\
& & T
\end{array}
\]

gives rise to a commutative diagram

\[
\begin{align*}
& f^* \mathbb{L}_{X/Y} \longrightarrow \mathbb{L}_{\mathcal{C}/X_{\mathcal{M}(X/T)}} \longrightarrow \mathbb{L}_{\mathcal{C}/X_{\mathcal{M}(X/T)}} \\
& \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
& \pi^* \mathcal{M}(g)^* \mathbb{L}_{\mathcal{M}(Y/T)/T} \longrightarrow \pi^* \mathbb{L}_{\mathcal{M}(X/T)/T} \longrightarrow \mathbb{L}_{\mathcal{M}(X/T)/\mathcal{M}(Y/T)}
\end{align*}
\]

in the derived category of \(\mathcal{C} \). Applying the adjunction \((\pi_!, \pi^*)\) proves the proposition. \(\square \)

Appendix B. Obstruction theories and local complete intersections

Proposition B.1. The map \(\mathcal{M}(\mathcal{A})' \to \mathcal{M}(BG_m) \) is a local complete intersection morphism.

This proposition is not used in the proof of Theorem 2.2, but the lemma we use to prove it seems to be of independent interest.

Lemma B.2. Let \(\mathcal{M} \to \mathcal{N} \) be a representable, finite type morphism of locally Noetherian algebraic stacks and let \(E \to \mathbb{L}_{\mathcal{M}/\mathcal{N}} \) be a perfect relative obstruction theory. Suppose that \(\mathcal{N} \) is smooth and that generically, \(h^{-1}(E) = 0 \). Then \(E \to \mathbb{L}_{\mathcal{M}/\mathcal{N}} \) is an isomorphism, and in particular, \(\mathcal{M} \to \mathcal{N} \) is a local complete intersection morphism.

Proof. We begin by reducing to the case where \(\mathcal{M} \to \mathcal{N} \) is an embedding of affine schemes. It suffices to prove the lemma after a base change by a smooth presentation \(V \to \mathcal{N} \). Under such a base change, \(E \to \mathbb{L}_{\mathcal{M}/\mathcal{N}} \) pulls back to a perfect relative obstruction theory on \(\mathcal{M} \times_{\mathcal{N}} V \to V \). So we may assume that \(\mathcal{N} = \text{Spec } S \) is an affine noetherian scheme. Now it suffices to prove the lemma after an étale base change \(U \to \mathcal{M} \), where \(U \) is an affine scheme of finite type over \(S \).

Let \(\iota : U \to W \) be an embedding into an affine scheme \(W = \text{Spec } A \) which is smooth over \(\mathcal{N} \). Let \(I \) be the ideal of \(U \) in \(W \). Since \(\iota^* \mathbb{L}_{W/\mathcal{N}} \) is a vector bundle in degree 0 and \(h^0(E) \to h^0(\mathbb{L}_{U/\mathcal{N}}) \) is an isomorphism, \(\iota^* \mathbb{L}_{W/\mathcal{N}} \to \mathbb{L}_{U/\mathcal{N}} \) lifts uniquely to \(\iota^* \mathbb{L}_{W/\mathcal{N}} \to \mathbb{E} \). Let
\(\mathbb{F} = \text{Cone}(t^*\mathbb{L}_W/\mathcal{N} \to \mathbb{E}) \). Then we have a morphism of distinguished triangles:

\[
\begin{array}{cccc}
t^*\mathbb{L}_W/\mathcal{N} & \to & \mathbb{E} & \to & \mathbb{F} & \to & t^*\mathbb{L}_W/\mathcal{N}[1] \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
t^*\mathbb{L}_W/\mathcal{N} & \to & \mathbb{L}_{U/\mathcal{N}} & \to & \mathbb{L}_{U/W} & \to & t^*\mathbb{L}_W/\mathcal{N}[1].
\end{array}
\]

By taking long exact sequences, we see that \(\mathbb{F} \) is represented by a vector bundle in degree \(-1\) which surjects onto \(h^{-1}(\mathbb{L}_{U/W}) = I/I^2 \) . The assumption that \(h^{-1}(\mathbb{E}) \) is generically 0 implies that there is a dense open subset of \(U \) over which \(\mathbb{F}^{-1} \to I/I^2 \) is an isomorphism.

By restricting to a smaller open set, we may assume that \(\mathbb{F}^{-1} \) is free of rank \(d \). Then a basis of \(\mathbb{F} \) determines elements \(x_1, \ldots, x_d \in I \) which generate \(I \) modulo \(I^2 \). In other words \(I/(x_1, \ldots, x_d) \) is generated by the image of \(I^2 \). Thus \(I \cdot I/(x_1, \ldots, x_d) = I/(x_1, \ldots, x_d) \) and Nakayama’s lemma implies that there is an element \(a \in A \) such that \(a \equiv 1 \mod I \) and \(aI \subseteq (x_1, \ldots, x_d) \) [Mat89, 2.2]. Since \(a \) does not vanish on \(U \), we may invert \(a \) and assume that \(I = (x_1, \ldots, x_d) \). To show that \(x_1, \ldots, x_d \) is a regular sequence, it suffices to show that \(\text{depth}(I, A) = d \) [Mat89, p.131].

By assumption, \(U \) has a dense open set which is a local complete intersection. It follows that \(d \) is the codimension of \(U \) in \(W \). But any proper ideal \(I \) of a Cohen-Macaulay ring \(A \) has \(\text{depth}(I, A) = \text{ht}(I) \) [Mat89, 17.4], so \(U \) is a local complete intersection and \(I/I^2 \) is free with basis \(x_1, \ldots, x_d \). This shows that \(F^{-1} \to I/I^2 \) is an isomorphism, which implies that \(\mathbb{E} \to \mathbb{L}_{U/\mathcal{N}} \) is an isomorphism.

Proof of Proposition 2.1 By the lemma and the definition of \(\mathbb{E} \to \mathbb{L}_\mathcal{P} \), it suffices to show that \(H^1(C_{\varpi}, L_{\varpi}) = 0 \) for a general geometric point \(\varpi \to \mathfrak{M}(\mathcal{A})’ \). If \(C_{\varpi} \) is smooth, with coarse moduli space \(C \) then it follows from the definition of \(\mathfrak{M}(\mathcal{A})’ \) that the pushforward of \(L_{\varpi} \) to \(C \) is \(\mathcal{O}_C \). In particular, \(H^1(C_{\varpi}, L_{\varpi}) = 0 \) in this case. So it suffices to show that \(C_{\varpi} \) is smooth for general \(\varpi \), which is Proposition 1.3.4. \(\square \)

APPENDIX C. NOTATION INDEX

- \[\left\langle \prod_{i=1}^{n} \tau_{a_i}(\gamma_i, k_i) \right\rangle^{(X,D)}_{0,\beta} \] relative GW invariant 1.1, p.3
- \[\left\langle \prod_{i=1}^{n} \tau_{a_i}(\gamma_i, k_i) \right\rangle_{0,\beta}^{\mathcal{O}_{\mathfrak{M}}(X,D)} \] orbifold GW invariant 1.1, p.3
- \[\mathcal{M}^{\text{rel}}(X,D) \] moduli of relative stable maps 1.2, p.3
\(\overline{M}_{\text{orb}}(\mathcal{X}_r) \) moduli of orbifold stable maps 1.2, p.4

\(\mathcal{I}(\mathcal{X}_r) \) coarse mod. sp. of inertia stack 1.2, p.4

\(\overline{M}^{\text{relorb}}(\mathcal{X}_r, \mathcal{D}_r) \) relative orbifold moduli space 2.1, p.6

\[\langle \prod_{i=1}^{n} \tau_{\alpha_i}(\gamma_i, k_i) \rangle \] relative orbifold GW invariant 2.1, p.6

\(\overline{M}^{\text{rel}}(\mathcal{A}, \mathcal{B}_G/m) \) special open subset of \(\overline{M}(\mathcal{A}, \mathcal{B}_G/m) \) 2.3, p.8

\(\overline{M}(\mathcal{A})' \) moduli of line bundle with section 2.3, p.8

\(\overline{M}(\mathcal{A}) \) curves with line bundle and section 2.3, p.8

\(\overline{M}(\mathcal{A}^{\text{rel}}/\mathcal{T}) \) curves with line bundle, section, and expansion 2.3, p.8

\(\overline{M}(X/X'_T/T) \) substack of \(\overline{M}(X/X'_T/T) \) with unramified inertia relative to \(\overline{M}(X'/T') \) 3.2, p.15

\(\overline{M}(X/T)^* \) substack of curves \(\overline{M}(X/T) \) admitting a contraction 3.2, p.16

\(\mathcal{I} \) J. Li’s moduli space of targets 3.3, p.17

\(\overline{M}_{0,n}(\mathcal{A})' \) special open substack of \(\overline{M}_{0,n}(\mathcal{A})' \) 3.3, p.18

References

[ACFW] D. Abramovich, C. Cadman, B. Fantechi, and J. Wise, On the moduli stacks of expanded degenerations and pairs.

[AF] D. Abramovich and B. Fantechi, Orbifold techniques in degeneration formulas.

[AGV08] Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337–1398. MR MR2450211

[Aok06] Masao Aoki, Hom stacks, Manuscripta Math. 119 (2006), no. 1, 37–56.

[AOV07] Dan Abramovich, Martin Olsson, and Angelo Vistoli, Tame stacks in positive characteristic, 2007.

[AV02] Dan Abramovich and Angelo Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), no. 1, 27–75 (electronic).

[BF97] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88.

[BL00] Jim Bryan and Naichung Conan Leung, The enumerative geometry of K3 surfaces and modular forms, J. Amer. Math. Soc. 13 (2000), no. 2, 371–410 (electronic). MR MR1750955 (2001i:14071)

[Bro09] Sylvain Brochard, Fondeur de Picard d’un champ algébrique, Math. Ann. 343 (2009), no. 3, 541–602. MR MR2480703

[Cad07a] Charles Cadman, Gromov-Witten invariants of \(\mathbb{P}^2 \)-stacks, Compos. Math. 143 (2007), no. 2, 495–514.

[Cad07b] , Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007), no. 2, 405–427. MR MR2306040 (2008g:14016)
[CC08] Charles Cadman and Linda Chen, *Enumeration of rational plane curves tangent to a smooth cubic*, Adv. Math. 219 (2008), no. 1, 316–343. MR MR2435425 (2009g:14075)

[Cos06] Kevin Costello, *Higher genus Gromov-Witten invariants as genus zero invariants of symmetric products*, Ann. of Math. (2) 164 (2006), no. 2, 561–601.

[Gat02] Andreas Gathmann, *Absolute and relative Gromov-Witten invariants of very ample hypersurfaces*, Duke Math. J. 115 (2002), no. 2, 171–203. MR MR1944571 (2003k:14068)

[Gat05] ———, *The number of plane conics that are five-fold tangent to a given curve*, Compos. Math. 141 (2005), no. 2, 487–501. MR MR2134277 (2006b:14099)

[GV05] Tom Graber and Ravi Vakil, *Relative virtual localization and vanishing of tautological classes on moduli spaces of curves*, Duke Math. J. 130 (2005), no. 1, 1–37. MR MR2176546 (2006j:14035)

[Ill71] Luc Illusie, *Complexe cotangent et déformations. I*, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin, 1971. MR MR0491680 (58 #10886a)

[IP03] Eleny-Nicoleta Ionel and Thomas H. Parker, *Relative Gromov-Witten invariants*, Ann. of Math. (2) 157 (2003), no. 1, 45–96. MR MR1954264 (2004a:53112)

[IP04] ———, *The symplectic sum formula for Gromov-Witten invariants*, Ann. of Math. (2) 159 (2004), no. 3, 935–1025. MR MR2113018 (2006b:53110)

[Kim08] Bumsig Kim, *Logarithmic stable maps*, 2008.

[KKP03] Bumsig Kim, Andrew Kresch, and Tony Pantev, *Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee*, J. Pure Appl. Algebra 179 (2003), no. 1-2, 127–136. MR MR1958379 (2003m:14088)

[Kle74] Steven L. Kleiman, *The transversality of a general translate*, Compositio Math. 28 (1974), 287–297. MR MR0360616 (50 #13063)

[Li01] Jun Li, *Stable morphisms to singular schemes and relative stable morphisms*, J. Differential Geom. 57 (2001), no. 3, 509–578. MR MR1882667 (2003d:14066)

[Li02] ———, *A degeneration formula of GW-invariants*, J. Differential Geom. 60 (2002), no. 2, 199–293. MR MR1938113 (2004k:14096)

[LR01] An-Min Li and Yongbin Ruan, *Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds*, Invent. Math. 145 (2001), no. 1, 151–218. MR MR1839289 (2002g:53158)

[Man08] Cristina Manolache, *Virtual pull-backs*, 2008.

[Mat89] Hideyuki Matsumura, *Commutative ring theory*, second ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989, Translated from the Japanese by M. Reid.

[Mau] D. Maulik, personal communication.

[Ols06a] Martin C. Olsson, *Deformation theory of representable morphisms of algebraic stacks*, Math. Z. 253 (2006), no. 1, 25–62.

[Ols06b] ———, *Hom-stacks and restriction of scalars*, Duke Math. J. 134 (2006), no. 1, 139–164. MR MR2239345 (2007f:14002)
