New Antimalarial Hits from *Dacryodes edulis* (Burseraceae) - Part I: Isolation, *In Vitro* Activity, *In Silico* “drug-likeness” and Pharmacokinetic Profiles

Denis Zofou¹, Esther Laure Tematio², Fidele Ntie-Kang³,⁴, Mathieu Tene², Moses N. Ngemenya¹, Pierre Tane³, Vincent P. K. Titanji¹

¹ Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon, ² Laboratory of Natural Products Chemistry, University of Dschang, Dschang, Cameroon, ³ CEPAMOQ, University of Douala, Douala, Cameroon, ⁴ Chemical and Bioactivity Information Centre, Faculty of Science, University of Buea, Buea, Cameroon

Abstract

The aims of the present study were to identify the compounds responsible for the anti-malarial activity of *Dacryodes edulis* (Burseraceae) and to investigate their suitability as leads for the treatment of drug resistant malaria. Five compounds were isolated from ethyl acetate and hexane extracts of *D. edulis* stem bark and tested against 3D7 (chloroquine-susceptible) and Dd2 (multidrug-resistant) strains of *Plasmodium falciparum*, using the parasite lactate dehydrogenase method. Cytotoxicity studies were carried out on LLC-MK2 monkey kidney epithelial cell-line. *In silico* analysis was conducted by calculating molecular descriptors using the MOE software running on a Linux workstation. The “drug-likeness” of the isolated compounds was assessed using Lipinski criteria, from computed molecular properties of the geometry optimized structures. Computed descriptors often used to predict absorption, distribution, metabolism, elimination and toxicity (ADMET) were used to assess the pharmacokinetic profiles of the isolated compounds. Antiplasmodial activity was demonstrated for the first time in five major natural products previously identified in *D. edulis*, but not tested against malaria parasites. The most active compound identified was termed DES4. It had IC₅₀ values of 0.37 and 0.55 µg/mL, against 3D7 and Dd2 respectively. In addition, this compound was shown to act in synergy with quinine, satisfied all criteria of “Drug-likeness” and showed considerable probability of providing an antimalarial lead. The remaining four compounds also showed antiplasmodial activity, but were less effective than DES4. None of the tested compounds was cytotoxicity against LLC-MK2 cells, suggesting their selective activities on malaria parasites. Based on the high *in vitro* activity, low toxicity and predicted “Drug-likeness” DES4 merits further investigation as a possible drug lead for the treatment of malaria.

Citation: Zofou D, Tematio EL, Ntie-Kang F, Tene M, Ngemenya MN, et al. (2013) New Antimalarial Hits from *Dacryodes edulis* (Burseraceae) - Part I: Isolation, *In Vitro* Activity, *In Silico* “drug-likeness” and Pharmacokinetic Profiles. PLoS ONE 8(11): e79544. doi:10.1371/journal.pone.0079544

Editor: Takafumi Tsuboi, Ehime University, Japan

Received July 3, 2013; Accepted September 21, 2013; Published November 8, 2013

Copyright: © 2013 Zofou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was financially supported by a research grant awarded to Dr. Denis Zofou by the International Foundation for Science, Stockholm, Sweden / Organisation for the Prohibition of Chemical Weapons, The Hague, The Netherlands (IFS/OPCW) grant (number F/5122-1) (www.ifs.se). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: zofden@yahoo.com

Background

The emergence and spread of resistance to frontline antimalarials is a real challenge to malaria control, which can be addressed by expanding the arsenal of antimalarial products. Medicinal plants are well known sources of antimalarials [1,2].

Over a thousand plant species are commonly used across Africa for prevention and/or treatment of malaria symptoms, and some of these had been revealed as housing uniquely effective antimalarial. The examples of quinine and artemisinin isolated from *Cinchona* sp. and *Artemisia annua* are highly illustrative [2].

Dacryodes edulis (G Don) also known as *Pachylobus edulis* (G. Don), *Canarium edule* (G. Don) Hook.; *C. saphu* Engl., *Pachylobus edulis* G. Don or *P. saphu* (Engl.) Engl.; is an evergreen tree attaining a height of 18-40 m in the forest but not exceeding 12 m in plantations. The plant which can be cultivated widely (since it adapts well to differences in the duration of day light, temperature, rainfall, soils and altitude), is a multipurpose plant in African folk medicine. In traditional medicine, different preparations of parts of the plant are used variously in Nigeria and the Democratic Republic of Congo to treat several diseases including parasitic skin diseases, jigger, mouthwash, tonsilitis, sickle cells disease, arthritis, wounds and malaria [3–6]. It is taken in a powdered form with
maleguetta pepper (Aframomum melegueta) as an anti-
dysenteric, for anaemia and oral bleeding. With palm oil, it is
applied topically to relieve general pains and stiffness, and to
 treat skin diseases. A decoction of the root bark is drunk for
leprosy [3]. Leaf sap is instilled into the ear for ear problems,
and a leaf decoction is used to prepare a vapour bath for fevers
and headache [3]. In the West region of Cameroon, where this
plant is locally called Zo’o (Batcham), the leaves and the stem
bark of D. edulis are boiled with leaves of Cymbopogon citratus
and Mangifera indica in water to give a decoction against
malaria. In spite of its rich ethnopharmacology, there is data on
its antiplasmodial activity.

Previous investigations demonstrated the analgesic, anti-
-inflammatory, anti-allergic, anti-cancer and antimicrobial and
antimalarial activity of D. edulis [7-11], and significant
antiplasmodial activity had also been recorded for this plant,
with IC_{50} below 10 µg/mL on drug resistant malaria parasites
[7]. However the bioactive ingredients were yet to be identified.
Moreover, the stem bark which is preferably employed in
Cameroonian folk medicine is still to be fully investigated.

Encouraged by the results obtained from the primary
screening of extracts from this plant species, the present study
was undertaken with the following aims: to isolate, characterize
and analyse pure compounds from the stem bark of D. edulis,
with emphasis on their in vitro activities against drug resistant
P. falciparum as well as their computer-based “drug-likeness”
profiles.

Materials and Methods

Plant collection
The stem bark D. edulis was collected in the Batcham village
(Bamboutos Division, West Region, Cameroon). Dacryodes edulis
is widely cultivated in Cameroon for its food use. The plant
collection was carried out on a private land, following the
permission by the owner (Mr. Mathieu Tezekwe, resident of
Balena quarter, Batcham), to conduct the study on this site.
The plant species was identified by the Cameroon National
Herbarium in Yaoundé, where a voucher specimen (Number
18258/HNC) were deposited.

Preparation of crude extracts
The sample was then air-dried in the shade, and powdered.
The powder (7 Kg) was macerated in methylene chloride/
methanol (1:1) at room temperature for 72 hours, and the
filtrate concentrated to dryness using Rotavapor, to a viscous
residue stored at 4 °C.

Fractionation of extracts and isolation of bioactive
compounds
To optimize the isolation of constituents, the dried extract
was dissolved in 80% aqueous methanol then subjected to
liquid-liquid partition sequentially with hexane, ethyl acetate,
and n-butanol to separate constituents of varying polarity. The
fractionation, purification and characterization of isolated
compounds were done as previously described by Tane et al.
[12,13] with some modifications [14]. Only extracts or fractions
with significant antiplasmodial activity (IC_{50}<10 µg/mL) and low
or no cytotoxicity (CC_{50}>30 µg/mL on Monkey kidney epithelial
LLC-MK2 cell-line) were considered for further investigation.
Fractionation was performed as described with some
modification [15]. Briefly, 100 g of the hexane extract was
subjected to silica column chromatography, eluted with n-
hexane/Acetone gradient, to yield several fractions that were
further grouped into 8 main fractions according to their TLC
profiles. These fractions were then purified using silica gel
column chromatography yielding several mixtures of
inseparable compounds and one pure crystalline product
codified DES5 after re-crystallization of generated sub-fractions
the same product codified DES5. Seventy (70 g) of EIOAc
extract was similarly processed eluting with a petroleum ether/
EIOAc gradient. This yielded four products codified as follows:
DES1, DES2, DES3 and DES4.

The structures of isolated products were elucidated using
spectroscopic analysis as previously described [12]. The
analyses included, melting point, optical rotation, UV, IR,
proton- and carbon 13-NMR (Bruker instrument : 400 or 500
MHz), and mass spectra (GC-MS) were determined.

Plasmodium falciparum culture and maintenance
Parasite strains. The 3D7 (MRA-102), and Dd2 (MRA-615)
strains were kindly donated by BEI-Resources (MR4,
Manassas, VA, USA), and maintained in continuous culture,
with back up stored in liquid nitrogen.

Parasite culture. The laboratory strains of P. falciparum
were grown and maintained in culture using the method of
Trager and Jensen with some modifications [15,16]. All the
chemicals except Albumax II (Gibco; Invitrogen, USA), were
ordered from Sigma-Aldrich Inc (Germany). The cultures were
monitored and parasitemia assessed using both fluorescence
(acridine orange) and normal light (Giemsa stain) microscopes.

Determination of anti-plasmodial activity. The
antiplasmodial screen was carried out in 96-well microtiter
plates as described by Desjardins et al. [17] with some
modifications [14]. The different drug stock solutions were
prepared by predisolving the powder in DMSO (200 µL for a
final volume of 10 mL stock solution) and subsequently with the
culture medium. The parasitaemia was measured using the
parasite lactate dehydrogenase (pLDH) assay as previously
described [16].

As a preliminary study towards the understanding of the
mechanisms of action of the active drugs, the stage-specific
activity of the products was studied by investigation of the
variation in IC_{50} values with exposure time. To achieve this, a
sorbitol-synchronized culture with ring stage parasite was
exposed to different drugs and the IC_{50}s calculated after 24 and
48 hours.

The drug-interaction patterns of the most active compounds
were assessed as earlier described [18-21]. From the results
obtained with individual drugs, a stock solution of 32 x IC_{50}
of each drug was prepared and used in preparing a series of six
combinations (1–6) containing 5:0, 4:1, 3:2, 2:3, 1:4 and 0:5
proportions volume:volume of Drug A versus Drug B
respectively. Each of these formulations were then tested and
their different inhibitory concentrations determined separately.
IC\textsubscript{50} values obtained for the different drug mixtures were used to calculate the Fractional Inhibitory Concentration (FIC) for each drug as described previously. FIC\textsubscript{A} for example measures how much the presence of Drug B affects the activity of Drug A in the mixture, and visa versa. FIC\textgreater{}1 is an indication of reduction in activity as a result of the presence of Drug B, FIC\textless{}1 shows that there was no effect of Drug B on Drug A, and the FIC\textless{}1 reveals an increase in the activity of drug concerned by Drug B. Similarly the effect of Drug A on Drug B is analyzed using FIC-B.

\[
\text{FIC} - A = \frac{IC50 - A(\text{comb.})}{IC50 - A(\text{alone})}
\]

\[
\text{FIC} - B = \frac{IC50 - B(\text{comb.})}{IC50 - B(\text{alone})}
\]

Where FIC\textsubscript{A} was the Fractional Inhibitory Concentration of Drug A; IC\textsubscript{50\text{-}A(\text{comb.})}, the 50% inhibitory concentration of Drug A when used in combination with Drug B, and IC\textsubscript{50\text{-}A(\text{alone})}, the 50% inhibitory concentration of Drug A when tested alone.

Where FIC\textsubscript{B} was the Fractional Inhibitory Concentration of Drug B; IC\textsubscript{50\text{-}B(\text{comb.})}, the 50% inhibitory concentration of Drug B when used in combination with Drug A, and IC\textsubscript{50\text{-}B(\text{alone})}, the 50% inhibitory concentration of Drug B when tested alone.

The activity correlations between Drug A and Drug B were analyzed by non parametric correlation analysis (Spearman) using SPSS Statistics 17.0 (Chicago, USA). Statistical significance was defined as \(p<0.05\).

A graph was constructed with the axes representing the mean FIC of linear scales, with mean FIC\textsubscript{A} on the x-axis and FIC\textsubscript{B} on the y-axis. When the combination is additive, the isobole which is the line joining the points that represent all the \((x, y)\) points is straight. Synergistic combinations give concave isoboles, and antagonistic combinations give convex isoboles [19].

The sum of the fractional inhibitory concentrations (EFICs) also termed Combination Index \((CI)\) for a particular combination shows the interaction pattern between the two drugs:

\[
CI = \sum FIC = FIC - A + G + FIC - B
\]

CI values were therefore calculated separately for both the drugs present in combinations 2 through 5; combinations 1 and 6 containing Drug A and Drug B alone. In addition to analyzing the result obtained with each drug combination formula, an overall mean CI value for the four combinations was determined to conclude on the interaction patterns of the two drugs being tested. Synergy or antagonism was defined as a mean CI\textless{}1 or \textgreater{}1, respectively, and lack of interaction (also termed additivity) defined as CI = 1 [21].

Cytotoxicity study of active compounds. The cytotoxicity of the extracts and pure compounds were estimated on LLC-MK2 monkey kidney epithelial cells as previously described [22] with some modifications [14]. The cell line was ordered from the American Type Culture Collection (ATCC, Manassas, Virginia, USA) and maintained in continuous culture.

Statistical analysis

Analysis of data obtained from pLDH assay. Following the pLDH assay, the optical densities (ODs) of the microtiter plate wells were read and using the software HN-NonLin V1.1 [23] to generate log dose-response correlation coefficients and the 50%, 90%, 95% and 99% Inhibitory Concentrations (IC\textsubscript{50\text{-}a}, IC\textsubscript{50\text{-}b}, IC\textsubscript{95\text{-}a} and IC\textsubscript{95\text{-}b}, respectively) for the individual replicate tests [14,23]. Each product was tested in triplicate, in two to three separate experiments, giving a total of six to nine repeats per product and per concentration tested. The IC\textsubscript{50\text{-}a} and CC\textsubscript{50\text{-}a} values obtained from the replicates were pooled and expressed as geometric mean IC\textsubscript{50} and standard deviation. The different means were compared among themselves by independent samples t-test.

Analysis of the results of the drug-interaction study. IC\textsubscript{50} values were used to calculate the Fractional Inhibitory Concentration (FIC) for each drug as described previously [19-21]. FIC\textsubscript{A} measures how much the presence of a Drug B affects the activity of Drug-A in the mixture. FIC > 1 is an indication of reduction in activity as a result of the presence of Drug B, FIC = 1 shows that there was no effect of Drug B on A, and the FIC < 1 reveals an increase in the activity of drug concerned by Drug B. Similarly the effect of Drug A on Drug B is analysed using FIC-B. The activity correlations between Drug A and Drug B were analysed by non-parametric correlation analysis (Spearman) using SPSS Statistics 17.0 (Chicago, USA). Statistical significance was defined as \(p<0.05\).

A graph was constructed with the axes representing the mean FIC of linear scales, with mean FIC\textsubscript{A} on the x-axis and FIC\textsubscript{B} on the y-axis. When the combination is additive, the isobole which is the line joining the points that represent all the \((x, y)\) points is straight. Synergistic combinations give concave isoboles, and antagonistic combinations give convex isoboles [19].

The sum of the fractional inhibitory concentrations (\(\Sigma\text{FICs}\)) also termed Combination Index \((CI)\) for a particular combination shows the interaction pattern between the two drugs. The overall mean CI value for the four combinations formula was finally determined and synergy or antagonism between the two drugs in combination, defined as a mean CI\textless{}1 or \textgreater{}1, respectively, lack of interaction or additivity defined as CI = 1 [21].

In silico “drug-likeness” analysis and pharmacokinetic prediction. All 3D molecular structures were generated using the graphical user interface (GUI) of the MOE software [24] running on a Linux workstation with a 3.5GHz Intel Core2 Duo processor, and energy minimization was subsequently carried out using the AM1 semiempirical approach implemented in MOPAC\textsubscript{2000} until a gradient of 0.001 kcal/mol was reached. The 3D structures generated were then saved as mol2 files subsequently included into a MOE database (.mdb). The molar weight (MW), number of rotatable bonds (NRB), lipophilicity parameter \([\log P_{(ow)}]\), number of hydrogen bond acceptors (HBA), number of hydrogen bond donors (HBD), total polar surface area (TPSA) and Lipinski violations were calculated using the molecular descriptor calculator included in the QuSAR module of the MOE package [24]. Pharmacokinetic prediction was carried out using 24 essential descriptors.
related to the absorption, distribution, metabolism, elimination and toxicity (ADMET) of drugs, computed using the QikProp software distributed by Schrodinger Inc. [24-26].

Results

Characteristics of the isolated compounds

Table 1 summarizes the general characteristics of the five compounds isolated from *D. edulis* stem bark. In brief they were all known molecules comprising three flavonoids, one phenolic compound and one sterol. The 2D structures of the different compounds are shown in Figure 1.

In vitro antiplasmodial activity

The bioactivity profiles of the extracts and isolated compounds are presented in Table 2. The methylene chloride/methanol extract from the stem bark of *D. edulis* showed a significant activity against both Chloroquine-sensitive and resistant strains of *P. falciparum*. The fractionation of this extract yielded five compounds among which DES4 showed the highest activity against both parasite strains (IC₅₀ of 0.37 and 0.55 µg/mL, respectively). Figure 2 summarizes the variation of the activities of the most active compounds (DES1 & DES4, with IC₅₀<5µg/mL against drug-resistant strain) on the parasite growth at different exposure time. DES4 had only limited activity during the first 24 hours, unlike DES1 and Quinine which significantly affected the parasite growth all throughout the life cycle.

The criterion for cytotoxicity used was: CC₅₀<1.0 µg/mL (high cytotoxicity); CC₅₀ 1.0 -10.0 µg/mL (moderate); CC₅₀ 10.0-30.0 µg/mL (mild); and CC₅₀ > 30 µg/mL (non-toxic) [22]. The selectivity index defined as SI = CC₅₀/IC₅₀ was equally considered for compounds with mild cytotoxicity with SI<10 for toxic products [27]. Based on these cut-off values, all products isolated from *D. edulis* in the present study were non-toxic against the LLC-MK2 cell-line.

In silico “Drug-likeness” profile

The geometry optimized structures are shown in Figure 3, while the computed descriptors are provided in Table 3.
Our calculations showed that two of the isolated compounds (DES3 and DES4) have no Lipinski violations (LVs), while DES2 showed only one violation and two compounds (DES1 and DES5) showed two violations. Additionally, DES1 and DES2 had an exceptionally high total polar surface area (TPSA, measured in Å2), when compared to the other compounds. The TPSA of DES1 and DES2 were respectively double those of DES5 and DES4. Of the 24 pharmacokinetics-related descriptors, the most potent compound, DES4, showed that all computed descriptors fell within the correct range for > 95% of known drugs (#stars parameter = 0). Compounds DES2 and DES3 also showed compliance, while compounds DES1 and DES5 respectively showed 1 and 4 violations (Table 3).

Drug-interaction studies

Drug-interactions of DES4 with artemether and quinine respectively, are summarized in Figure 4. Combination Index between DES4 and artemether varied from 1.05 to 1.19 with an overall value of 1.10, indicating additivity between the two drugs. However, the graphical analysis showed a neat trend toward antagonism between the two drugs, illustrated by a concave curve (Figure 4A). For quinine all the combinations showed ΣFIC < 1, except for Combination 2 (CI=1.05), indicating a synergistic effect of DES4 – ART combination against Dd2; CI ranged from 0.52 to 1.03, with a mean value of 0.65 which is a clear indication of synergistic interaction between the two drugs. The isobologram (Figure 4B) showed a convex plot confirming the synergistic effects of the two drugs with regards to each other. Combination 4 (DES4:QN, 2:3) showed the lowest CI (0.52). With this formula, the IC50s of DES4 and QN were 310 and 31 ng/mL respectively. Considering both drugs in combination as a whole, the IC50 obtained was 330 ng/mL.

Table 2. Summary of in vitro activity of extracts and isolated compounds.

Extract / Compound	Activity against 3D7	Activity against Dd2	Cytotoxicity against LLC-MK2			
	IC50	IC95	IC50	IC95	CC50	Selectivity index/Dd2
CH$_2$Cl$_2$:MeOH	4.34±0.06	15.04±2.64	6.43±0.89	17.66±6.44	>1000	> 155
DES1	5.96±0.51	18.53±3.13	2.26±0.28	23.82±6.35	>100	> 44
DES2	4.59±0.21	13.64±0.48	19.34±1.56	35.03±3.52	>100	> 5
DES3	6.07±0.34	15.19±3.88	5.91±0.97	15.96±4.79	>100	> 17
DES4	0.37±0.07	2.58±2.04	0.55±0.06	5.89±0.95	>100	> 182
DES5	1.90±0.22	4.39±0.87	5.34±0.98	21.35±0.44	>100	> 18
ART	0.02±0.01	0.08±0.02	0.03±0.01	0.12±0.09	ND	ND
QN	0.13±0.01	0.48±0.10	0.12±0.01	0.38±0.08	ND	ND

CH$_2$Cl$_2$:MeOH- Methylene chloride:Methanol (1:1) extract; DES1-Quercitrin, DES2-Afzelin, DES3-Quercetin, DES4- methyl 3,4,5-trihydroxybenzoate ; DES5-sitosterol 3-O-β-D-glucopyranoside sterol; ART: artemether; QN: Quinine sulphate. IC50, IC95 and CC50 values are given in µg/mL.

doi: 10.1371/journal.pone.0079544.t002

Figure 2. Variation of IC$_{50}$ against Dd2 with exposure time. IC$_{50}$ after 24 hours in blue; IC50 after 48 hours in red. The IC50 values presented were obtained from two distinct experiments run in duplicate each.

doi: 10.1371/journal.pone.0079544.g002
Against 18 mg of Quercitrin), the hypothesis of this paper is to explore the potential of compounds isolated from the leaves of *Dacryodes edulis*.

The compounds isolated from the leaves of *Dacryodes edulis* were DES1-Quercitrin, DES2-Afzelin, DES3-Quercetin, DES4- methyl 3,4,5-trihydroxybenzoate, and DES5-3-O-β-D-glucopyranosyl sitosterol, respectively. These compounds were found to be significantly active against the early stages of the erythrocytic cycle, including rings and young trophozoites. The activity of these compounds was assessed using the in vitro assay system, and the results indicated that DES4 and DES1 showed the highest activity among the tested compounds.

The in silico "drug-likeness" properties of the isolated compounds were also evaluated. The calculated values of the compounds are as follows: log P, HBA, HBD, NRB, and TPSA (Å²).

Table 3. Summary of computed in silico "drug-likeness" properties of isolated compounds.

Compound	MW (Da)	log P_{o/w}	HBA	HBD	NRB	TPSA (Å²)	LV
DES1	448.38	0.603	11	7	3	186.37	2
DES2	432.38	1.076	10	6	3	166.14	1
DES3	302.24	2.032	7	5	1	127.45	0
DES4	184.15	0.993	3	5	3	86.99	0
DES5	578.86	6.157	6	4	9	99.38	2

The results showed that DES1, DES2, and DES3 were significantly active against the early stages of the erythrocytic cycle. However, DES4 and DES5 were found to be inactive against the early stages of the erythrocytic cycle.

The present study is a step towards identifying some of the molecules responsible for the antimalarial activity of *Dacryodes edulis*. Further investigations are needed to rationally identify the target(s) in the malaria parasite, as well as to elucidate its mechanism of action, in order to optimize the anti-malarial potential of the molecule.

The Lipinski "Rule of Five" (ro5) is often considered as a useful test for the evaluation of oral availability for compounds in the early stages of drug discovery protocols. Even though natural products (NPs) of plant origin often fail the famous Lipinski "drug-likeness" test, they are often rich in stereogenic centres and cover segments of chemical space which are typically not occupied by a majority of synthetic molecules and drugs. In summary, Lipinski's ro5 defines an orally available molecule as one for which the molar weight (MW) ≤ 500 Daltons (Da), the logarithm of the n-octanol/water partition coefficient [log P_{o/w}] ≤ 5, the number of
hydrogen bond acceptors (HBA) ≤ 10 and the number of hydrogen bond donors (HBD) ≤ 5. An additional rule for the number of rotatable bonds (NRB) is often added to this ro5, such that NRB ≤ 5. Additionally, the structural and hence physico-chemical properties of isolated phytochemicals are often fine-tuned by chemical synthesis, leading to “drug-like” molecules with desirable ADME/T (absorption, distribution, metabolism, excretion, and toxicity) properties. These are often referred to as natural product inspired drugs [39,40]. Thus, modern drug discovery programs often resort to natural sources to guide the careful design of “drug-like” leads from suitable scaffolds, often by synthetic modifications of the latter [38-41]. In this study, we have evaluated the “drug-likeness” of the compounds isolated from D. edulis by using Lipinski criteria, from computed molecular properties of the geometry optimized structures of the NPs. An evaluation of “lead-likeness”, with more stringent criteria (150 ≤ MW ≤ 350; log \(P_{(o/w)} \) ≤ 4; HBD ≤ 3; HBA ≤ 6) [42-44], and “fragment-likeness” (MW ≤ 250; -2 ≤ log \(P_{(o/w)} \) ≤ 3; HBD < 3; HBA < 6; NRB < 3) [45], demonstrated that only DES4 could be further developed into a lead compound for drug discovery against malaria. Additionally, it is important to note that the most active compound (DES4) showed Lipinski compliance, and also passed the “lead-likeness” and “fragment-likeness” tests, qualifying it as a potential candidate for antimalarial drug discovery. DES4 has a unique scaffold, unlike the flavonoids (DES1, DES2 and DES3) and the steroid (DES5), implying that the size is an important factor to consider when designing more active analogues of the active DES4. This further suggests that the receptor site to which the active compound (ligand) binds should be a pocket of restricted size, to which the larger (less active ligands) do not conveniently fit. The –OH groups at positions 3, 4 and 5 (Figure 1) could also play key roles as donors, since hydrogen bond formation at the receptor site appears to be the key binding interaction in ligand-receptor binding for this active DES4 Substitutions at positions 1, 3, 4 and 5 on the benzene ring could lead to the generation of a combinatorial library in the ligand optimization stage of drug discovery, suggesting that DES4 could be a good starting point for lead discovery against malaria. Many molecules and drugs fail at later stages of drug discovery because of poor absorption, distribution, metabolism, excretion and toxicity (ADMET) properties [46]. It has thus become imperative to predict such properties of drugs at early stages of drug discovery protocols using in silico methods. In this study, we have computed 24 most relevant ADMET-related molecular descriptors for each of the isolated compounds and used as predictors for assessing their drug metabolism and pharmacokinetic (DMPK) properties. If all predicted properties of the isolated molecule fall within the acceptable range for 95% of known drugs, a compliance score (#stars = 0) is attributed. Otherwise, #stars = x, where x represents the number of times the computed descriptors fall outside the given range. In addition to the ro5 (Table 3), a summary of 8 computed descriptors for all five isolated compounds is shown in Table 4. For DES2, DES3 and DES4, all 24 relevant descriptors related to DMPK fall within the acceptable range for 95% of known drugs. The geometry optimized 3D structures of the different compounds, designed using PyMOL software [47] are shown in Figure 3.

Equally investigated was the drug-interaction patterns of DES4 with Artemether and Quinine. Combining DES4 and quinine increased their activities by 3 and 6-fold respectively, revealing synergistic interactions between the two compounds. In contrast, only additive effects were observed between DES4 and artemether. The present study showed that DES4 is likely to serve as lead in the development of partner drugs in quinine-based combination therapies. Further studies including in vivo and toxicological testing of the combinations are essential to step forward in the exploration of these ground findings.

Conclusion

The findings from this work could serve as basis for further investigations towards developing new antimalarial leads from D. edulis compounds, especially DES4 (methyl 3,4,5-trihydroxybenzoate). This compound was Lipinski compliant and also respected the tests for “lead-likeness” and “fragment-likeness”. In addition, all computed descriptors related to drug metabolism and pharmacokinetics (DMPK) point to the fact that
these properties fall within the acceptable ranges for 95% of known drugs. A pharmacophore-based method could be used to virtually screen for potential hits with similar pharmacophore features as DES4, from suitable database like the recently developed CamMedNP library [48].

Acknowledgements

The 3D7 (MRA-102), and Dd2 (MRA-615) strains were kindly deposited by DJ Carucci and TE Wellems, respectively. We equally acknowledge the institutional and material support of IC

References

1. Zofou D, Ntie-Kang F, Stipp W, Efangue SNM (2013) Bioactive natural products derived from the Central African flora against Neglected Tropical Diseases and HIV. Nat Prod Rep 30: 1089–1120. doi: 10.1039/c3np00703e.

2. Wilcoxon ML, Bodeker G (2004) Traditional herbal medicines for malaria. BMJ 329: 2004: 1156-1159 PubMed: 15539672.

3. Aibesia KK (2011) Dacryodes edulis (G Don) HJ Lam: A Review on its Medicinal, Phytochemical and Economical Properties. Res. J Med Plants 5 (5): 32-41.

4. Walker AR, Slans R (1961) Les plantes Utiles du Gabon. Paul Lechevalier, Paris ISBN-13: 978-2907888721. pp. 19-132.

5. Mpiana PT, Shetonde OM, Ngbolua KN (2007) Antiplasmodial Activity and Cytotoxicity of Extracts of Selected Medicinal Plants Used by Traditional Healers of Western Cameroon. Phytomedicine 14: 192-195. doi: 10.1016/j.phymed.2006.05.008. PubMed: 17113273.

6. Omonhinmin AC (2012) Ethnobotany of Dacryodes edulis (G Don) H.J. Lam in Southern Nigeria 1: Practices and applications among the Yoruba speaking people. Ethnobotany Res Applications 10: 175-184.

7. Zofou D, Tene M, Ngemenya MN, Tane P, Titani JVPK (2011) In vitro Antiplasmodial Activity and Cytotoxicity of Extracts of Selected Medicinal Plants Used by Traditional Western Cameroon. Malaria Research and Treatment two thousand and eleven ID 561342.

8. Okwu DE (2004) Phytochemicals and vitamin content of indigenous spices of South Eastern Nigeria. J Sustainable Agriculture and Environment 6: 30–37.

9. Okwu DE (2005) Phytochemicals. Vitamins and mineral contents of two Nigeria Medicinal Plants. Int J Mol Med Adv SC 1: 375-381.

10. Okwu DE, Emenike IN (2006) Evaluation of the phytochemicals and vitamins contents of citrus fruits. Int J Mol Med Adv SC 2: 1-6.

11. Okwu DE, Nnamdi UF (2008) Evaluation of composition of Dacryodes edulis and Raphia hookeri mann and wendi exudates used in herbal medicine in south Eastern Nigeria. Afr J Trad Comp Altern Med 5: 194-200.

12. Tane P, Wabo H, Tchimene M, Okuni C, Iwu M et al. (2005) Lead antiplasmodial substances from some Cameroonian medicinal plants. Acta Trop 96S: 51-S506.

13. Tane P, Wabo HK, Connolly JD (2005) A new benzophenanthridine alkaloid from Zanthoxylum buesgenii. Fitoterapia. 6 (7-8): 656-660. PubMed: 16242267.

14. Zofou D, Kowa TK, Wabo HK, Ngemenya MN, Tane P et al. (2011) Hypericum lanceolatum (Hypericaceae) as a potential source of new anti-malarial agents: a bioassay-guided fractionation of the stem bark. Malar J 10: 167. doi: 10.1186/1475-2875-10-167. PubMed: 21682873.

15. Zofou D, Kenge ABO, Tene M, Ngemenya MN, Tane P et al. (2011) In vitro anti-plasmodial activity and cytotoxicity of crude extracts and compounds from the stem bark of Kigelia africana (Lam.) Benth (Bignoniaceae). Parasitol Res 108 (6): 1383-1390. doi: 10.1007/s00436-011-2363-y. PubMed: 21682873.

16. Trager W, Jensen JB (1976) Human malaria parasite in continuous culture. Science 193: 673-675. doi: 10.1126/science.781840. PubMed: 781840.

17. Desjardins RET, Canfield CJ, Haynes JD, Chulay JD (1978) Semiautomated Microdilution Technique. Antimicrob Agents Chemother 48: 367-675. doi: 10.1126/science.781840. PubMed: 781840.

18. Fivelman QL, Adagu IS, Warhurst DC (2004) Modified fixed-ratio isobologram method for studying in vitro interactions between atovaquone and Proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium falciparum. Antimicrob Agents Chemother 48: 4097-4102. doi: 10.1128/AAC.48.11.4097-4102.2004. PubMed: 15504827.
New Antimalarial Hits from Dacryodes edulis

19. Berenbaum MC (1979) A Method for testing for synergy with any number of Agents. J Infect Dis 137(2): 122-130. doi:10.1093/infdis/137.2.122. PubMed: 627734.

20. Vivas L, Rattray L, Robinson BL, Fogmann Bet al (2007) Anti-malarial efficacy and drug-interactions of the novel semi-synthetic endoperoxides artesione in vitro and in vivo. J Antimicrob Chemother 59: 658-665. doi:10.1093/jac/dkl563. PubMed: 17337512.

21. Bell A (2005) Antimalarial drug synergy and antagonism: mechanistic and clinical significance. FEMS Microbiol Lett 253: 171-184. doi: 10.1016/j.femsle.2005.09.035. PubMed: 16243458.

22. Malefo HM, Tanja W, Cal M, Swaleh SAM, Omolo MO et al. (2009) Anti-plasmodial, anti-trypanosomal, anti-leishmianal and cytotoxicity activity of selected Tanzanian medicinal plants. Tanzania J Health Res 11(4): 226-234.

23. Noed H (2002) HN-NonLin V1.1; Armed Forces Research Institute for Medical Sciences, Bangkok Thailand. Available: http://www.medunivien.ac.at/user/harald.noedl/malaria/download.html. Accessed 10/04/2013.

24. Chemical Computing Group Inc. Molecular Operating Environment Software. Montreal (2010).

25. Press Schrödinger (2011): Cik Prop 3.4. New York, NY: User Manual, LLC.

26. Stewar JEP (1993) MOPAC Manual, 7th Edition.

27. de Sarr SO, Perrotey S, Fall I, Ennahar S, Zhao M et al. (2011) Icacinaceae, traditionally used for the treatment of malaria, inhibits in vitro growth without host cell toxicity. Malar J 10: 85. doi:10.1186/1475-2875-10-85. PubMed: 21481272.

28. Watermann PG, Mahmoud EN (1987) Unusual Flavonoids from Lonchocarpus ornitrus seeds. Phytomchemistry 26: 1189-1193. doi: 10.1016/0269-902X(87)80236-6.

29. Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J et al. (2005) In vivo quercetin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappa B pathway. Eur J Immunol 35(2): 584-592. doi:10.1002/eji.200425778. PubMed: 15624098.

30. Lhuillier MA (2007) Contribution a l'étude phytochimique de quatre plantes malgaches: Agauraia salicifolia hook.f ex oliver, Agauria polyphylla baker (Eriaceae), Tambourissa trichophylla baker (Aphanthacées) et Embelia concinna baker (Myrsinaceae). Thèse de doctorat. Institut national polytechnique de Toulouse.

31. Atawodi SE, Atawodi JC, Idaekwo P, Pfundstein B, Haubner R et al. (2009) Evaluation of the polyphenol composition and antioxidant activity of African variety of Dacryodes edulis (GDon) HJ Lam Fruit. J Med Food 6: 1321-1325.

32. Ramiarantoa H, Koffi AB, Assi KM, Djakoure LA (2008) Le O-β-D-glucoside du β-sitostérolisôlé des feuilles de Ravenna madagascareniris. J Société Ouest Afr Chimie 26: 99-103.

33. Arthrogro EM, Expo KE, Aoninsie EO, Ibeh GO (2009) Effect of Aqueous Extract of Bitter Leaf (Vermonia amygdalina Del) on Carbon Tetrachloride (CCl4) Induced Liver Damage in Albino Wistar Rats. Eur J Sci Res 226 (1): 122-130.

34. Hanson I (2009) Toxocants and physicochemical characteristics of the seeds of African Pear (Dacryodes edulis). Afr J Food Agriculture Nutr Dev 9: 1561-1562.

35. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23: 3-25. doi:10.1016/S0169-409X(96)X0042-1. PubMed: 11259830.

36. Quinn RJ, Carroll AR, Pham MB, Baron P, Paltraman ME et al. (2008) Developing a drug-like natural product library. J Nat Prod 71: 464-468. doi:10.1021/np070526y. PubMed: 18257534.

37. Wetzel S, Schuffenhauer A, Rogg S, Ertl P et al. (2007) Chemoinformatic analysis of natural products and their chemical space. Chimaint. J Chem 61: 355-360.

38. Grabowski K, Baringhaus K-H, Schneider G (2008) Scaffold diversity of natural products: inspiration for combinatorial library design. Nat Prod Rep 25: 892-904. doi:10.1039/b715668b. PubMed: 18820757.

39. Efange SMN (2002) Natural products: a continuing source of inspiration for the medicinal chemist. In MM IwuJC Wootton, Advances in Natural products: inspiration for combinatorial library design. Amsterdam: Elsevier Science. pp. 61-69.

40. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13: 894-901. doi:10.1016/j.drudis.2008.07.004. PubMed: 18691670.

41. Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51: 2589-2599. doi:10.1021/jm0704090. PubMed: 18393402.

42. Teague SJ, Davis AM, Leeson PD, Opea TI (1999) The design of leadlike combinatorial libraries. Angew Chem Int Ed 38: 3743-3748 doi:10.1002/(SICI)1521-3773(19991216)38:24. PubMed: 10649345.

43. Oprea TI (2002) Current trends in lead discovery. Are Looking Appropriate Properties? J Comput-Aided Mol Des 16: 325-334.

44. Schneider G (2002) Trends in virtual computational library design. Curr Med Chem 9: 2095-2102. doi:10.2174/0929867023368755. PubMed: 12470249.

45. Verdonk ML, Cole JC, Hartshorn ML, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52: 609-623. doi:10.1002/pro.1465. PubMed: 12910460.

46. Donesh F, Kaseru G, Papp A, Dormán G, Urge L et al. (2002) In Silico and Ex silico ADME approaches for drug discovery. Top Med Chem 2: 1287-1304. doi:10.2174/15680262023932841. PubMed: 12470281.

47. DeLano WL (2002) The PyMOL Molecular Graphics System DeLano. San Carlos, CA, USA: Scientific Publishing House.

48. Nie-Kang F, Mbah JA, Mbaze LM, Lifongo LL, Scharfe M et al. (2013) CamMedNP: Building the Cameroonian 3D structural natural products database for virtual screening. BMC Comp Alt Med 13: 88