Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A method for assessing the COVID-19 infection risk of riding public transit

Qun Zhao, Yi Qi *, Mustafa M.Wali

Department of Transportation Studies, Texas Southern University, Houston, TX 77004-9986, USA

ABSTRACT

During the pandemic, to prevent the spread of the virus, countries all adopted various safety measures, including masking, social distancing, and vaccination. However, there is a lack of methods that can quantitively evaluate the effectiveness of these countermeasures. This research first develops a model to quantitively evaluate the infection risk of riding public transit. By utilizing the developed model, the effectiveness of different countermeasures could be evaluated and compared. For demonstration purposes, the developed model is applied to a particular bus route in the City of Houston, Texas. The modeling results show that masking, social distancing, and vaccination can all reduce the infection risk for passengers. And among all these countermeasures, face masking is the most effective one. In addition, model results approve that the COVID-19 infection risk is highly related to the exposure time and the risk can be controlled by reducing the exposure time. Thus, a new strategy named the “split route strategy” is proposed and compared with the “capacity reduction strategy” using the model developed. In addition, a cost-benefit analysis is performed to assess the feasibility of the proposed “split route strategy”. Furthermore, two interviews were conducted with practitioners at Houston Metro. Both interviewees believe that face masking could significantly prevent the spread of the virus, which validated the model results.

Introduction

COVID-19 has dramatically affected people’s travel behaviors and the public transit service. Riding public transit is one of the major causes helping the spread of the virus as current evidence suggests that the virus spreads mainly between people who are in close contact with each other at a conversational distance, especially in poorly ventilated and/or crowded indoor settings (WTO, 2021). Previous studies have revealed that due to the COVID-19 pandemic, public transit has experienced a sharp ridership decline worldwide due to the shutdown of the country and stay-at-home orders (EBP, 2020). Recently, with the availability and accessibility of the COVID-19 vaccines, more and more countries have reopened, and the demand for public transit started to bounce back. However, with the recent more infectious variant Omicron and its subvariants, the risk of getting infected remains high. According to Polzin (2021), Transportation planning after COVID-19 remains a great challenge for public transit agencies. During the pandemic, several countermeasures have been implemented by public transit agencies to mitigate the spread of the virus.
agencies, including face masking, social distancing, and disinfecting. In addition, the development of COVID-19 vaccines also helps to keep passengers safe while riding public transit. The effectiveness of these countermeasures has been assessed by some previous studies (Pradhan et al., 2020; Roy et al., 2020; Eikenberry et al., 2020; Celina et al., 2020). However, there is a lack of research methods that can quantitatively evaluate the effectiveness of these existing countermeasures.

In addition, some countermeasures are costly and consume a significant amount of resources. For example, during the pandemic, to keep social distance, most public transit agencies reduced vehicle capacity limitations from 25 % to 75 % to keep passengers at least 6 feet distance from each other. Due to the recovering transit demand, if we still use this countermeasure during the Post-COVID-19 era, it will require more vehicles and more drivers and will significantly increase the operational cost of the transit agencies. For a long-term operation, we cannot afford capacity reduction and we need to find more cost-effective solutions that can meet the recovering public transit demand while minimizing the infection risk for passengers in the post-COVID-19 era. To assess the effectiveness and feasibility of these new solutions before implementation, a quantitative method is also required.

To address this problem, this study develops a method that can quantitatively evaluate the infection risk of riding public transit. By using the developed method, the benefits of different countermeasures in terms of infection risk reduction can be assessed.

In the following parts, first, current research on the countermeasures to prevent the spread of COVID-19 in confined spaces, especially in public transit was introduced, as well as the methods to assess the effectiveness of these countermeasures. After that, the process to develop the “modified Wells-Riley model” was introduced. For demonstration purposes, the developed model is applied to a particular bus route in the City of Houston, Texas. In addition, interviews with a lead planner and a bus driver at Houston Metro are conducted to get feedback from the practitioners. Finally, conclusions and recommendations are provided.

Literature review

Since the outbreak of the COVID-19, many research works have been conducted to investigate the countermeasures for preventing the spread of the coronavirus. The most commonly used countermeasures are face masking, social distancing, disinfecting, and vaccination. Some of them have been investigated by previous studies. In this part, studies on countermeasures used by public transit agencies will be introduced first, followed by the research quantitatively assessing the transmission risk in confined spaces with or without safety countermeasures.

Countermeasures

Pradhan et al. (2020) reviewed the potential interventions to prevent the spread of the COVID-19 virus, including surface disinfecting, hand sanitization, and wearing personal protective equipment (PPE) and pointed out that the effectiveness of these measures completely relies on the strength of disinfectants, hand sanitizer and the material of the PPE. Roy et al. (2020) also highlighted the role of surface disinfection and hand disinfection during the COVID-19 pandemic in their paper. Authors stated that since coronavirus can be easily inactivated by chemical disinfectants, it’s very important to correctly use disinfectants. Disinfection with appropriate and recommended disinfectants will not only reduce the spread of the disease but also play a significant part in flattening the curve.

Eikenberry et al. (2020) investigated and confirmed the effectiveness of the use of face masks to prevent the virus. Authors found that even relatively ineffective face masks can reduce the spread of COVID-19 and decrease hospitalizations and deaths. In addition, masks are not only useful for preventing illness in healthy people, but also for preventing asymptomatic transmission.

Matrajt and Leung (2020) found that the new cases, hospitalizations, and deaths were reduced when social distancing interventions were taken place. However, if the social distancing ended, then the epidemic rebounded. Adeke et al. (2021) investigated the transmissibility of COVID-19 among passengers using public transport modes in Makurdi metropolis, Nigeria, and revealed that public transport modes operated safely when carrying capacities below normal at 50 % full.

Kamga and Eickemeyer (2021) comprehensively reviewed the literature to explore social distancing measures deployed by the public transportation industry in the United States and Canada during the COVID-19 pandemic. Authors concluded that social distancing is effective in containing the spread of disease, such as influenza and COVID-19, especially when there is no effective vaccines and treatments. Social distancing is particularly important in places where community transmission is substantial.

Lucchesi et al. (2022) conducted an online survey of public transportation users in a metropolitan area in southern Brazil and identified the immediate countermeasures which can increase the users’ perception of protection while riding public transport. These countermeasures include limiting the number of people in the vehicles, wearing masks, and vehicle hygiene. Tirachini and Cats (2020) recommended incorporating public health considerations into transportation service planning in the Post-COVID-19 era, including keeping physical distancing in public transportation, managing capacity, and crowding levels to reduce infection risk, and redesigning services. Kapatsila and Grise (2021) found that an individual is more likely to feel safe using public transit when better informed about the measures the transit agency is taking to ensure physical
distancing. It is recommended that transit agencies continuously communicate with riders regarding ongoing efforts to promote the health and safety of all users.

Quantitative assessment of the effectiveness of the countermeasures

Although the mechanism of COVID-19 is still under investigation, several studies have been conducted to assess the effectiveness of the safety countermeasures in public transit or other confined spaces. Different methods or mathematical models were developed by previous studies.

Chu et al. (2020) conducted a meta-analysis to investigate the optimum distance to avoid person-to-person virus transmission and to assess the effectiveness of face masks and eye protection. Key findings of this study include: 1) viruses transmission was lower with the physical distancing of 1 meter or more, compared with a distance of less than 1 meter; 2) face mask use could largely reduce the risk of infection; 3) eye protection was found to be associated with less infection. Worby and Chang (2020) studied the role of face masking in the general population to stop the spread of the virus using mathematical modeling. Their results show that face masking is an effective strategy in mitigating the transmission of COVID-19. In addition, the authors claimed that the use of face masks is more beneficial to people with higher contact rates, such as passengers, and recommended implementing it with other strategies.

Matrajt and Leung (2020) used a mathematical model to quantify the short-term effectiveness of social distancing to delay the curve of COVID-19 for different age groups. Four different social distancing intervention scenarios were designed by considering the population with different age distributions and different social contact distances. With the developed age-structured susceptible-exposed-infectious-removed model, the authors found that keeping social distance in all age groups significantly reduced the number of cases and flatten the curve of COVID-19 the best. Berg et al. (2021) further investigated the effectiveness of 3-feet social distancing versus 6-feet social distancing for mitigating the spread of COVID-19 among primary and secondary students and staff. Infection rate ratios for students and staff members were estimated using log-binomial regression. The authors found that student case rates and staff case rates were both similar for 3-feet and 6-feet social distancing, which indicated that the social distancing could be less effective in school settings with mandatory masking. Kwon et al. (2020) conducted prospective analyses with data collected from 198,077 participants in the U.S. and discovered that good social distancing can reduce the infection risk of COVID-19 by 31% compared to people living in communities with poor social distancing. In addition, for individuals living in communities with poor social distancing, wearing face masks could reduce the risk of COVID-19 by 63% compared with people not wearing face masks. Ku et al. (2021) analyzed the impacts of mandatorily wearing masks and practicing social distancing in public transit during the COVID-19 outbreaks in South Korea. First, to examine the effectiveness of wearing masks, a cough aerosol simulator was used to measure the formation of cough aerosols and their blockage by a mask. Experimental results showed that most of the particles were blocked by the mask, and most of the particles that passed through the mask were smaller than 576 nm. Next, it simulated how passengers encounter each other and get infected by tracking their movements. The probabilities of being exposed to an infected person with or without wearing face masks and practicing social distance were then estimated and compared. The authors concluded that both wearing masks and practicing social distancing would reduce the number of exposed passengers in public transit greatly.

Vecherin et al. (2022) assessed the COVID-19 infection risk at a workplace with a stochastic model. The model was derived from micro-exposure modeling, agent-based modeling, and probabilistic modeling. The developed model could be used as a decision-making model for risk assessment at a workplace and it needs the information on the daily routines of each employee and the workplace setting. Edwards et al. (2021) also conducted a study that captures aerosol dispersion patterns from a mechanical exhalation simulation. This research quantified the effectiveness of using onboard fans, the opening of different windows, the use of face masks, and the use of the transit bus AC system considering turbulent air and any effects of momentum inside a moving bus. Results show that wearing face masks reduced the overall particle count released into the bus by an average of 50% or more depending on mask quality and reduced the dispersion distance by several feet. In addition, it was indicated that ventilation significantly reduces passengers’ overall exposure time and concentration to potentially infectious aerosols on the bus. Note that, it is an experimental-based study and no analytical models have been developed in this study.

Several studies utilized or developed modified Wells-Riley models to assess the infection risk in public transit or other confined spaces. Sun and Zhai (2020) investigated the effectiveness of social distancing and ventilation in controlling COVID-19 transmission in confined spaces. The authors introduced the social distancing index and ventilation index into the Wells-Riley model. The model was validated with data collected from three real pandemic cases, including a bus outbreak in Hunan, China, a bus outbreak in Ningbo, China, and an airplane outbreak in Iran. With the validated model, the infection risks were projected for different scenarios, such as vehicles and building spaces. Their results showed that the infection risk could be reduced by increasing social distance or increasing the ventilation rate. Dai and Zhao (2020) estimated the infection rate of COVID-19 in a confined space considering the ventilation rate. To determine the quantum generation rate q of COVID-19, the authors first used the information of other similar airborne transmitted diseases to fit the curve and then estimated the q of COVID-19 based on the fitted equation. The model was applied to some typical scenarios, including offices, classrooms, buses, and aircraft cabins. In addition, the effectiveness of wearing a mask was also been evaluated. Results indicated that wearing an ordinary medical surgical mask in a confined space could significantly reduce the infection risk. Harrichandra et al. (2020) also assessed the COVID transmission risk in New York City nail salons with the Wells-Riley
equation. When not wearing masks, the risk of infection across all 12 selected salons and 5 exposure scenarios ranged from < 0.015 % to 99.25 %, with an average risk of 24.77 %. When wearing masks, the risk of infection ranged from < 0.01 % to 51.96 %, with an average of 7.3 %. The results show that increasing airflow rate and the use of face masks could reduce the COVID transmission in nail salons.

From the literature review, it can be seen that most of the existing studies only compared the effectiveness of 1 or 2 types of countermeasure under different conditions, such as different population groups, different social distance levels, and different communities. There is a lack of methods that can quantitatively estimate the infection risk of different countermeasures under different conditions. Also, no existing studies have considered the effects of vaccination on infection risk. This study is to fill these gaps.

Model development

Wells-Riley model

To assess the effectiveness of various countermeasures, in this research, a “modified Wells-Riley model” is developed to evaluate the association between the infection probability and the ventilation rate, social distancing, masking, and vaccination.

The Wells-Riley model is one of the most classic models for predicting the infection risk for airborne transmission diseases. It was developed by William F. Wells and Richard L. Riley for tuberculosis and measles (Riley et al., 1978; Riley, 2001), but has been widely used for other diseases transmitted in the air. Although it is very simple, the Wells-Riley model can predict the infection probability in a confined space with variables under control, such as room ventilation rate. Therefore, it was chosen to measure the infection risk of COVID-19 in public transit spaces.

The Wells-Riley model can be mathematically expressed by the following Equation (Riley et al., 1978).

\[
P = \frac{C}{S} = 1 - \frac{1}{C_0} e^{-\frac{1}{C_0} B q p t / Q}
\]

Where,
- \(P\) is the probability of infection risk;
- \(C\) is the number of cases that develop infection;
- \(S\) is the number of susceptible people;
- \(I\) is the number of source patients (infectors);
- \(q\) is the quantum generation rate produced by one infector (quantum/h);
- \(p\) is the pulmonary ventilation rate of each susceptible individual (m³/h);
- \(t\) is the exposure time (h);
- \(Q\) is the room ventilation rate (m³/h).

Modified Wells-Riley model by Sun and Zhai (2020)

In the original Wells-Riley model, room ventilation rate \(Q\) is the only factor considered. To consider the impacts of social distance and ventilation effectiveness on the infection risk, Sun and Zhai (2020) have modified the Wells–Riley model. For a confined space, different ventilation systems can cause different air distribution patterns and therefore affect ventilation efficiency. In addition, social distancing has been identified as an important countermeasure for preventing the spread of coronavirus. During the pandemic, public transit agencies reduced vehicle capacity from 25 % to 75 % to keep passengers at least 6 feet distance (Qi et al., 2021). In Sun and Zhai (2020), a relationship between the statistical probability of droplets in different sizes and their transmission distances was built by curve fitting. A social distance index \(P_d\) was developed. Basically, \(P_d\) increases with the decrease of transmission distance and it could be expressed as a function of distance \(d(m)\) as follows:

\[
P_d = (18.19 \ln (d) + 43.276)/100.
\]

Then, to consider the effects of ventilation effectiveness, an air distribution effectiveness factor (\(Ez\)) was incorporated into the model and the Wells-Riley model was modified as.

\[
P = \frac{C}{S} = 1 - e^{-\frac{B q p t}{Ez Q N}}
\]

Where,
- \(P_d\) is the social distance index (see Equation 2);
- \(B\) is the infection rate (the percentage of infectors);
- \(Ez\) is the air distribution effectiveness;
- \(N\) is the total number of passengers/occupants.

In Sun and Zhai (2020), the social distances for some typical public transportation scenarios were provided. Then, according to Equation (2), the \(P_d\) (social distance index) for these scenarios was calculated and listed in Table 1. In addition, the
ventilation rate (Q) and air distribution effectiveness (Ez) for some typical public transportation scenarios were also summarized in Table 1.

Besides social distancing, face masking and vaccination are also considered the countermeasures for preventing the spread of the coronavirus, which could also affect the infection risk for passengers. To assess the effectiveness of these countermeasures, the following adjustment factors were developed to further modify the Wells-Riley model:

- The adjustment factors for face masking
- The adjustment factors for vaccination

The adjustment factors for face masking

At the beginning of the pandemic, to stop the spread of the coronavirus, face masking is required at all public transit. For infected persons, wearing a mask can dilute the concentration of pathogens exhaled, and for susceptible persons, wearing a mask can dilute the concentration of pathogens inhaled. To justify the effect of face masking, Dai and Zhao (2020) proposed to add two adjustment factors \(g_1\) and \(g_2\) to the Wells-Riley equation as follows:

\[
P = \frac{C}{S} = 1 - e^{\frac{-Q}{F (1-g_1)(1-g_2)}}
\]

(4)

Where,

- \(\eta_1\) is the exhalation filtration efficiency.
- \(\eta_2\) is the inhalation respiration filtration efficiency.

In their study, if the face mask is worn, \(\eta_1\) and \(\eta_2\) were set to be 0.5 considering that the filtration efficiency of ordinary medical-surgical masks for virus-carrying aerosols is about 60% (Hui et al. 2012), and the existence of air leakage (Davies et al. 2013). \(\eta_1\) and \(\eta_2\) were set to be 0 if the face mask is not worn.

The adjustment factors for vaccination

To halt the rapid spread of the coronavirus, countries started to launch national COVID-19 vaccination campaigns. Several clinical trials have proved the effectiveness of vaccines to protect people against COVID-19. Currently, the vaccines are widely available in the US and 59.7% of the population have been fully vaccinated by the end of November 2021 (Mayo Clinic, 2021). This is a local-specific factor because the vaccination rates in different areas are different. For example, in Texas, about 54.7% of the population is fully vaccinated by the end of November 2021, which is lower than the national average. Therefore, when considering the impacts of the vaccination on the risk of riding public transit, both vaccine effectiveness and the vaccination rate should be considered. Thus, two vaccination-related adjustment factors, the effectiveness of the vaccine (\(\dot{E}_v\)) and the vaccination rate (\(\gamma\)) are also added to the model. In addition, since people are considered fully vaccinated two weeks after getting the second dose, the vaccination rate considered here should be the fully vaccinated rate. Finally, the modified Wells-Riley model can be expressed by Equation (5) when considering the social distance, face masking, and vaccination:

\[
P = \frac{C}{S} = \left(1 - e^{\frac{-Q}{F (1-g_1)(1-g_2)}}\right)(1 - \gamma \cdot \dot{E}_v)
\]

(5)

Where,

- \(\dot{E}_v\) is the effectiveness of the vaccine;
- \(\gamma\) is the vaccination rate;

Note that, the previous versions of Wells-Riley model cannot assess the effects of vaccination on infection risk. The proposed modified Wells-Riley model filled this gap.

Scenario	Length (m)	Width (m)	Social distance, d(m)	Distance index with 100% occupancy (\(P_d^{100\%}\))	Distance index with 50% occupancy (\(P_d^{50\%}\))	Distance index with 25% occupancy (\(P_d^{25\%}\))	Ventilation rate with clear air, Q/N(m³/hp)	Air distribution effectiveness (Ez)
Long bus	13.7	2.55	0.72	49.3%	36.7%	24.0%	20	1
Air cabin	-	-	0.78	48%	35.2%	22.5%	25	1
Subway	22	3	0.57	53.4%	40.8%	28.3%	20	0.8
High-speed train	25	3.3	0.99	43.5%	30.9%	18.2%	20	1

*Adopted from Sun and Zhai (2020).
Parameter	Notation	Value	Reference	Note
q	quantum generation rate produced by one infector	48 quantum/h	Dai & Zhao, 2020	
$\eta_1 = \eta_2$	η_1 is the exhalation filtration efficiency, and η_2 is the inhalation respiration filtration efficiency	0.5	Dai & Zhao, 2020	
p	pulmonary ventilation rate of each susceptible individual	0.3 m3/h	Duan, Zhao & Wang, 2013	$p = 0.3$ m3/h when people sits or conduct light indoor activities
Q/N	room ventilation rate	Table 1	Sun & Zhai, 2020	For long bus
P_1	social distance index	Table 1	Sun & Zhai, 2020	Ceiling supply, floor return
E_d	distribution effectiveness	Table 1	ASHRAE, 2019	
E_v	Effectiveness of the vaccine	35 %	Collins, 2021	Current estimation based on the vaccinations and the variants
γ	vaccination rate	local specific data		Based on the locally fully vaccinated rate (%) (people received their final dose two weeks ago)
B	Infection rate	local specific data		Based on the local confirmed COVID cases and population (See Equation (6))
Determine the parameters of the modified Wells-Riley model

In this study, the values of the model parameters were selected either based on our literature review or reasonable assumptions. The suggested values of the model parameters selection are listed in the following Table 2. Among these parameters, the vaccination rate \((c) \) and infection rate \((B) \) are local-specific factors and their values need to be determined according to the vaccination rate and infection rate of the study area. In this study, the infection rate was calculated by using the following equation.

\[
B = \frac{\text{Total # of confirmed COVID cases during the past 10 days}}{\text{Population}} * 100\%
\]

(6)

Note that, in Equation (6), we used the total number of confirmed COVID cases during the past 10 days because a person with COVID-19 is likely no longer contagious 10 days after testing positive for coronavirus (McCallum, 2021; CDC, 2021).

The effectiveness of the vaccine \(Ev \) is assumed to be 35 %. It is a conservative assumption according to the results of a recent study that considers the Omicron variant (Collins, 2021).

Model demonstration – case study

To demonstrate the application of the proposed modified Wells-Riley model, a case study is conducted for estimating the infection risk of COVID-19 of a particular bus route in the City of Houston, Texas. At first, the scenario design is introduced. Next, the modified Wells-Riley model is applied to estimate the infection risks of different scenarios.

Scenario design

Houston local bus route 4 was selected to conduct the case study. Bus 4 has 120 stops departing from Mission Bend Transit Center and ending in Eastwood Transit Center as shown in Fig. 1. Bus 4 operates every 10 min during peak hours (6:00 am–9:00 am and 4:00 pm–7:00 pm) and every 15 min during non-peak hours. The regular hours are from 4:51 am to 12:51 am every weekday, and the whole trip is 1.5 h one-way.

Metro Houston currently has 1236 active buses, with the majority of them being 40-foot with about 40 seats. According to Metro Ridership Report (2020), the average boardings for bus route 4 was about 7,872 on a weekday, 4,872 on Saturday, and 4,180 on Sunday in January 2020, which was before the COVID-19 pandemic. The ridership decreased about 50 % during the pandemic and started to recover with the reopening of the State.

To estimate the infection risk of riding bus route 4 under different situations, the three most commonly used countermeasures are considered, which are: 1) face masking or not (M or NM), 2) different levels of social distancing (100 % capacity, 50 % capacity or 25 % capacity), and 3) fully vaccinated or not (V or NV). Therefore, in total, the following 12 scenarios were designed.
1. 100 % capacity, no masking, no vaccination (100 %, NM, NV)
2. 100 % capacity, masking, no vaccination (100 %, M, NV)
3. 100 % capacity, no masking, vaccination with current vaccination rate (100 %, NM, V)
4. 100 % capacity, masking and vaccination with current vaccination rate (100 %, M, V)
5. 50 % capacity, no masking, no vaccination (50 %, NM, NV)
6. 50 % capacity, masking, no vaccination (50 %, M, NV)
7. 50 % capacity, no masking, vaccination with current vaccination rate (50 %, NM, V)
8. 50 % capacity, masking and vaccination with current vaccination rate (50 %, M, V)
9. 25 % capacity, no masking, no vaccination (25 %, NM, NV)
10. 25 % capacity, masking, no vaccination (25 %, M, NV)
11. 25 % capacity, no masking, vaccination with current vaccination rate (25 %, NM, V)
12. 25 % capacity, masking and vaccination with current vaccination rate (25 %, M, V)

Calculate infection risk for the designed scenarios

The infection risk of riding bus route 4 for different scenarios can be calculated by using the modified Wells-Riley model given in Equation (5). Most of the model parameters are provided in Table 2 except for the two local-specific factors, i.e. the vaccination rate (c) and infection rate (B). According to Harris County COVID-19 Data Hub, 58 % of the population in Houston are fully vaccinated by the end of November 2021. Therefore, the vaccination rate (c) is set to equal 58 %. In addition, to calculate the infection rate, the highest number of confirmed cases in history for 10 consecutive days is used and the estimated infection rate (B) is 0.51 %. Then, by inputting all estimated parameters to the modified Wells-Riley model given in Equation (5), the infection risk of riding bus route 4 for all 12 scenarios can be calculated. For example, for scenario 4 (100 % capacity, masking, and vaccination with current vaccination rate), the infection risk of riding bus route 4 can be estimated by the following equation:

Scenario 4: 100 % capacity, masking, and vaccination with current vaccination rate (100 %, M, V)

\[
P^{100\% \cdot M \cdot V} = \frac{C}{S} = \left(1 - e^{-\frac{2.51 \cdot 0.045 + 0.051 \cdot 1.05 \cdot 1.01^t}{204}} \right) \ast (1 - 58\% \ast 35\%) \\
= 0.203(1 - e^{-0.045t})
\]

Results and discussions

The estimated infection possibilities (P) for all the scenarios were presented in Fig. 2. It shows the relationship between infection possibility (P) and the exposure time (t). It can be seen that for all 12 scenarios, the infection risk increases rapidly with the increase of exposure time. When the other two factors (masking or not and vaccinating or not) are controlled, the risk of infection is highest when the bus capacity is 100 %. As the bus capacity reduces to 50 % and 25 %, the social distance increases, and the risk of infection decreases.

Masking and vaccination also reduce the infection risk for passengers. When passengers all wearing masks and vaccinated, the infection risk reduced to the lowest. The results approve that masking, social distancing, and vaccination, do reduce the infection risk for passengers. It was also found that the lines for the scenarios of vaccination but no masking (V, NM) is above the lines for the scenarios of no vaccination but masking (NV, M), which indicates that masking is more effective in reducing the infection risk than the vaccination. In addition, there is a big gap between the lines for the scenarios of no masking and the lines for the scenarios of masking), which indicates that masking can significantly reduce the infection risk. The result supports the CDC’s recommendation that people need to mask up in public indoor places regardless of vaccination status.

Interviews with a lead transit planner and a bus operator at Houston Metro

To add the practical value of this research, as well as to validate the model results, two interviews with practitioners at the Metropolitan Transit Authority of Harris County (Houston Metro) were conducted. The interview questionnaire contains four parts which are the interviewee's basic information, changes in transit operation during and post the pandemic, safety countermeasures and their effectiveness, and their opinions on the new strategy proposed by this research.

In this study, a lead transit planner and a bus operator at Houston Metro were invited for the interviews so the perspectives of both planner and frontline bus operator were gathered. Both interviews lasted around 40 min. The major findings from the interviews are summarized as follows:
1) The ridership of Houston Metro reduced sharply at the beginning of the pandemic, however, it has been gradually recovered and certain stations started to get congested now.

2) Houston Metro already took all the precautions to protect passengers and drivers, such as mask mandate, providing masks and hand sanitizers on the buses, and disinfecting buses and facilities at bus stations.

3) Both interviewees believe face masking is the best countermeasure to prevent the spread of COVID-19 in buses.

4) Although the mask mandate remains effective, there’s a large number of passengers do not comply with the policy. Some passengers refused to put on a mask even were offered one by the bus operator, and some passengers took off masks after being seated. Since the priority and responsibility of a bus operator are to safely transport the passengers from origin to destination, no further action was taken for passengers refusing to put on the mask.

5) Compared to before, the buses get disinfected more frequently during the pandemic. According to the information provided by interviewees, besides the daily disinfection, currently, all buses entering a transit center will get thoroughly disinfected.

6) Although there is a statistic about the total number of infected metro staff, it cannot tell the source of the infection. There is no statistic about the number of passengers who got infected from riding public transit since there is no contact tracing of passengers.

7) The new strategy proposed by this study was also discussed during the interview. It will be introduced in detail in the next section.

Propose a new strategy and evaluate its effectiveness

“Split route Strategy”

These results of the case study prove the effectiveness of face masking, social distancing, and vaccination. However, with the reopening of the country, face masking and social distancing are not required. In addition, upgrading the ventilation system also costs a lot to the transit agencies. Therefore, more cost-effective approaches that can reduce the infection risk are needed. According to the modeling results presented in Fig. 2, it can be seen that the infection risk is highly correlated to the exposure time. The shorter the time passengers expose to the virus in a confined public space, the less likely they will be infected by COVID-19. Therefore, we can control the infection risk by reducing the exposure time. According to this idea, a new strategy is proposed which is to cut the long route into short routes, and passengers will be transferred to a disinfected
bus in an existing station in the middle of their trips. In this way, the exposure time of passengers will be reduced and it will not reduce the bus capacity. Therefore, it could keep passengers safe while meeting the increasing demands for public transit. The new strategy is referred to as the “split route strategy” in this study.

Effectiveness of the proposed strategy

To evaluate the effectiveness of the proposed strategy, the same bus route that we selected in the case study was used for demonstrating the implementation of such a strategy. Since face masking is not required but encouraged during the Post-COVID-19, we assume that 50% of the passengers still wear masks. Also, we assume the vaccination rate can reach 70% in the Post-COVID-19 era. Then, the infection risks for different capacities can be calculated as:

\[
P_{100\% . 70\% . V} = 50\% \times P_{100\% . M . 70\% . V}^{100\% . M . 70\% . V} + 50\% \times P_{100\% . NM . 70\% . V}^{100\% . NM . 70\% . V}.
\]

\[
P_{50\% . 70\% . V} = 50\% \times P_{50\% . M . 70\% . V}^{50\% . M . 70\% . V} + 50\% \times P_{50\% . NM . 70\% . V}^{50\% . NM . 70\% . V}.
\]

\[
P_{25\% . 70\% . V} = 50\% \times P_{25\% . M . 70\% . V}^{25\% . M . 70\% . V} + 50\% \times P_{25\% . NM . 70\% . V}^{25\% . NM . 70\% . V}.
\]

The estimated infection risks were presented in Fig. 3. Since the whole trip is 1.5 h, it can be seen from Fig. 3 that the possibility of a passenger getting infected by COVID-19 is around 12% if the bus running at full capacity. If the bus is running at 50% capacity, the possibility of a passenger getting infected by COVID-19 is around 9%. If the bus is running at 25% capacity, then the possibility of a passenger getting infected is reduced to 7%.

Without reducing bus capacity, to keep the infection risk below 10%, the exposure time needs to be reduced. Since the whole trip is 1.5 h, if we split this route into two parts, and ask passengers to transfer to another disinfected bus in the middle of the trip, then the infection risk would be controlled at under 10%.

If without splitting the trip into two parts, another way to control the infection risk is to reduce the capacity. From Fig. 3, we can see that to keep the infection risk under 10%, the capacity has to be reduced to 50%. Next, a cost-benefit analysis will be conducted to compare these two strategies: 1) the 50% capacity reduction strategy, and 2) the proposed route split strategy. For comparison purposes, a typical weekday in 2019 (before the COVID-19 outbreak) was selected to calculate the operational cost and revenue of bus Route 4.

Benefit estimation

For Route 4, the average boardings on a weekday in 2019 are 8,067, so one typical weekday revenue from tickets is:

\[
1.25 \times 8,067 = 10,083.75 \text{/day}.
\]
Cost estimation

Current operational cost. According to Metro’s schedule, Bus route 4 provides frequent service every 10 min during peak times and 15-minutes during off-peak hours. For each direction, currently, there are 84 shifts on weekdays, 30 of which are during peak hours. In addition, the buses operate 20 h per day, from 4:51 am to 12:51 am, and the one-way trip duration is 1.5 h. Therefore, 30 buses are needed during peak hours and 20 buses are needed during non-peak hours for both directing on weekdays.

The median salary for a Metro bus driver is 16.71 per hour in Houston, the salary for cleaning staff is 12.13 per hour and the median average cost for a bus is 4.4 per hour calculated according to Federal Transit Administration’s report (FTA, 2007). We assume the cleaning staff is assigned to clean the bus at both terminals. According to Vitale (2020), the disinfecting supplier cost is 0.26 per gallon. It is also assumed one bus is around 1,600 square feet and the application rate gallon of the solution is 250 square feet, therefore, it costs 1.66 for the supplier to disinfect a bus. Therefore, the daily cost to operate this bus line is:

\[
30 \text{ buses} \times \frac{(16.71 + 4.4)}{\text{bus/hour}} \times 6 \text{ hours} \times 20 \text{ buses} \times \frac{(16.71 + 4.4)}{\text{bus/hour}} \times 14 \text{ hours} \\
+ 12.13/\text{hour/terminal} \times 20 \text{ hours} \times 2 \text{ terminals} + 1.66/\text{bus} \times (30 \text{ buses/hour} \times 6 \text{ hours}) \\
+ 20 \text{ buses/hour} \times 14 \text{ hours}) = 10,959.4/\text{day}. \tag{10}
\]

Additional cost for the capacity reduction strategy. If not implementing the proposed strategy, to minimize the infection risk, buses should be operated at 50% capacity. The original schedule may work during off-peak hours, but not during peak hours. To meet the travel demand during the peak hours, additional 30 more buses should be added during the peak hour if the bus running at 50% capacity. Note that, the one-way trip is 1.5 h and the round trip is 3 h. Therefore, 30 more buses and bus drivers are needed for 3 h during both morning and afternoon peak times (6 h). The associated costs include bus operation costs and salaries for bus drivers, extra costs for cleaning staff (6 more hours needed for each terminal), and disinfecting suppliers, which can be estimated as follows.

\[
(16.71 + 4.4)/\text{hour/bus} \times 6 \text{ hours} \times 30 \text{ bus} + 12.13/\text{hour/terminal} \times 6 \text{ hours} \times 2 \text{ terminals} \\
+ 1.66/\text{bus} \times (30 \text{ buses/hour} \times 6 \text{ hours}) = 4,244.16/\text{day}. \tag{11}
\]

Thus, the total cost for implementing capacity reduction strategy will be:

\[
10,959.4/\text{day} + 4,244.16/\text{day} = 15,203.56/\text{day}. \tag{12}
\]

Compared with the daily revenue calculated in Equation (9), it can be seen that the total cost of this strategy is much higher than the daily revenue. Thus, it is not feasible for transit agencies to implement such a strategy in the long run.

Additional operational costs for the proposed route split strategy. For the proposed split route strategy, the bus operates at full capacity, and passengers change to another disinfected bus in an existing station in the middle of the trip. Considering the full cycle of the bus route, two stations will be selected (one for each direction). Assuming one cleaning staff is needed to quickly disinfect the bus, the increased costs would include the operation cost for two additional buses and two cleaning staff. The reason for only adding the cost of two buses is that the disinfected bus can be used by the next bus and there is only one bus that will stop at each selected bus station for disinfection. In the Houston area, the salary for cleaning staff is 12.13 per hour and the average cost for operating a bus is 4.4 per hour calculated according to FTA’s estimation. In addition, more disinfecting suppliers are needed. Then, the total additional cost per weekday for the proposed route split strategy will be:

\[
12.13/\text{hour/person} \times 20 \text{ hours} \times 2 \text{ person} + 4.4/\text{hour/bus} \times 20 \text{ hours} \times 2 \text{ bus} + 1.66/\text{bus} \times (30 \text{ buses/hour} \\
\times 6 \text{ hours} + 20 \text{ buses/hour} \times 14 \text{ hours}) \\
= 1,424.8/\text{day}. \tag{13}
\]

Thus, the total cost for implementing the proposed strategy will be:

\[
10,959.4/\text{day} + 1,424.8/\text{day} = 12,384.2/\text{day}. \tag{14}
\]

By comparing with the daily revenue calculated in Equation (9), it can be seen that the total cost of this route split strategy is still higher than the daily revenue. However, it is much lower than the cost of the capacity reduction strategy. Thus, it may still be feasible for the public transit agencies that have some other funding sources in addition to the ticket revenue.

Feedback from the practitioners. During the interview with the lead transit planner and bus operator at Houston Metro, the feasibility of the proposed “split route strategy” was also discussed. Both interviewees believe it is a good idea, and possibly reduces the infection risk for passengers, especially for those who need to take a long bus ride. However, there are a few obstacles to implementing this strategy now. The first problem is the lack of manpower. Hiring more drivers or cleaning staff requires more funding and transit agencies have very limited sources of funding. Second, asking all passengers to change...
buses in the middle of their trip will cause delays and interrupt the normal bus operation. Finally, this strategy may not be well accepted by some passengers.

Note that, the proposed new strategy is mainly for demonstrating the application of the developed model for assessing the feasibility of different strategies. This new strategy has some disadvantages as pointed out by the two interviewees. Thus, the transit agencies need to carefully evaluate all the aspects when making their decisions on implementing this strategy.

Conclusions and recommendations

In this paper, a modified Wells-Riley model was developed for estimating the COVID-19 infection risk of riding public transit by considering the impacts of different factors, including social distancing, wearing masks, and vaccination. By using the developed model, the effectiveness of different countermeasures for preventing COVID-19 spread can be quantitatively assessed.

Key findings

To demonstrate the application of the proposed modified Wells-Riley model, a case study is conducted for estimating the infection risk of COVID-19 of a particular bus route in the City of Houston, Texas. To add the practical value of this research, interviews with a lead transit planer and a bus operator at Houston Metro were also conducted. Following are some key findings:

- Model results show that face masking, social distancing, and vaccination can all reduce the infection risk for passengers, and both interviewees agreed with this conclusion.
- Model results indicate that COVID-19 infection risk is highly correlated to the exposure time and the infection risk can be controlled by reducing the exposure time.
- Model results prove that face masking can significantly reduce the infection risk and is more effective than the current vaccination. Both interviewees also highlighted the importance of wearing masks on buses.

Policy implications

First, since face masking can significantly reduce the infection risk, many states and transportation agencies issued mask mandates. At the time this paper is written (December 2021), eight states (CA, HI, IL, NV, NW, NY, OR, and WA), Washington, D.C., and Puerto Rico require people over age 2 to wear face masks in indoor public places regardless of vaccination status. Five states (AZ, CT, DE, KY, NJ) have mask requirements for all people over age 2 to wear masks in public transit (AARP, 2021). CDC does not require wearing a mask in outdoor areas of transportation conveyances, however, while in indoor areas of conveyances or while indoors at transportation hubs, people are required to wear a mask except under certain circumstances (CDC, 2021). In addition, FTA extended the face mask requirement for all transportation networks, including public transportation through March 18, 2022 (FTA, 2021). The results of this research also prove the effectiveness of wearing face masks in reducing infection risks. Therefore, it is highly recommended that face masks should be required when riding public transit, especially in areas with a high number of COVID-19 cases. In addition, the interviewed bus operator pointed out that there’s still a compliance issue with the current mask mandate. Some passengers refused to wear masks and even they were offered a new mask by the operators, and some passengers took off their masks after being seated and couldn’t wear masks throughout their whole trips. Therefore, more public education or campaigns are needed to raise awareness of the importance of wearing a mask. Our results provide good support for such efforts.

Second, since COVID-19 infection risk is highly correlated to the exposure time, more strategies aimed at reducing the exposure time should be considered. For example, in this study, a “split route” strategy was proposed. The effectiveness of this proposed strategy was estimated by using the developed model and a cost-benefit analysis was conducted. The result shows that the proposed strategy can control the COVID-19 infection risk and has a much lower cost compared with the capacity reduction strategy that has been widely used by the transit agency during the pandemic. Besides, other strategies, such as providing express service to the passengers that need to take a long ride to reduce their exposure time can also be considered.

Finally, since the developed model considers various factors that affect the infection risk, including social distance, ventilation rate, air distribution effectiveness, masking, vaccination, and exposure time, it can be used for assessing the effectiveness of different countermeasures and operational strategies that aim at reducing the COVID-19 infection risk of riding public transit. Thus, it will help public transit agencies to maintain safe and effective public transit services during the Post-COVID-19 era.
Limitations and future study needs

Although the proposed model considers more countermeasures than other research, there are still some limitations. First, this study focuses on the countermeasures related to social distance, face masking, vaccination, and exposure time. In the future, more countermeasures related to ventilation rate and air distribution effectiveness also need to be investigated and their effectiveness needs to be assessed using the proposed model.

Second, because there is no contact tracing of passengers who got infected while riding public transit, necessary data is not available to validate the proposed model. In the future, a large-scale transit rider survey needs to be conducted to derive some risk indexes of using different public transit services in different areas to validate the model results. In this study, due to time and funding constraints, we only conducted interviews with a lead transit planner and a bus operator at Houston Metro. Our model results were supported by the interview results, which could validate the model to a certain extent.

Third, there are different types of vaccines, and each person reacts differently to the vaccines. In this study, we use 35% as the effectiveness of the vaccine (Ev). This is a conservative estimate here and we recommend adjusting it in the future based on the development of the COVID-19.

Fourth, the split route strategy may cause people to sit near other people when they switch buses. Thus, it may increase the likelihood of sitting near someone with COVID. As a result, it may increase the infection risk. Therefore, more research is needed on the mechanism of the transmission of coronavirus and the effectiveness of the proposed strategy.

Finally, the cost–benefit analysis in this study didn’t consider the cost of travel time for the proposed “split route” and “capacity reduction” strategies. The transfer of the bus will cause additional 5–10 min of delay to the passengers. However, currently, there are no data available on the number of passengers who need to switch buses because of the split route strategy, so we can not calculate the value of the delay. Since it does not affect the operational cost of the transit, the cost of this additional travel delay isn’t included in our cost–benefit analysis. However, public transportation agencies should be aware of this cost when choosing bus routes and stations to implement this strategy. In the future, other costs, including the social costs and traveler costs also need to be considered for a more comprehensive cost–benefit analysis.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research is supported in part by the United States Department of Transportation (USDOT) under grant #69A3551747133. The contents of this paper reflect the authors’ views, who are responsible for the facts and accuracy of the data presented.

References

Adeke, P., Gbagir, K., Tyogo, M., 2021. Passenger capacity and safety: Investigating the likelihood of COVID-19 transmission in public transport modes within Makurdi metropolis. FUOYE J. Eng. Technol. 6 (4), 408–413. https://doi.org/10.46792/fuoyej.v6i4.549.

Berg, J., Schecter-Pinsen, E., Jack, R., Epstein, I., Nelson, R., Oster, E., Branch-Elliman, W., 2021. Effectiveness of 3 Versus 6 ft of Physical Distancing for Controlling Spread of Coronavirus Disease 2019 Among Primary and Secondary Students and Staff: A Retrospective, Statewide Cohort Study. Clin. Infect. Dis. 73 (10), 1871–1878. https://doi.org/10.1093/cid/ciab230.

CDC. Ending Isolation and Precautions for People with COVID-19: Interim Guidance, September 14, 2021. https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html#anchor_1631308561375 Accessed on Nov. 2021.

CDC. Requirement for Face Masks on Public Transportation Conveyances and at Transportation Hubs. https://www.cdc.gov/coronavirus/2019-ncov/travelers/face-masks-public-transportation.html. Accessed on Dec. 2021.

Celina, M., Martinez, E., Omana, S., Sanchez, A., Wiemann, D., Tezak, M., Dargaville, T., 2020. Extended use of face masks during the COVID-19 pandemic – Thermal conditioning and spray-on surface disinfection. Polymer Degradation and Stability 179, 109251. https://doi.org/10.1016/j.polymerdegradationstabl.2020.109251. ISSN 0141-3910.

Chu, D.K., Aki, E.A., Duda, S., Solo, K., Yaacoub, S., Schünemann, H.J., Chu, D.K., Aki, E.A., El-Harakeh, A., Bognanni, A., Lotfi, T., Loeb, M., Hajizadeh, A., Bak, A., Izovich, A., Cuello-Garcia, C.A., Chen, C., Harris, D.J., Borowiack, E., Chamseeddine, F., Schünemann, F., Morgan, G.P., Muti Schünemann, G.E.U., Chen, G., Zhao, H., Neumann, I., Chan, J., Khabsa, J., Hneiny, L., Harrison, L., Smith, M., Rizk, N., Giorgi Rossi, P., AbiHanna, P., El-khoury, R., Stalteri, R., Baldeh, T., Piggott, T., Zhang, Y., Saad, Z., Khamis, A., Reinaip, M., Duda, S., Solo, K., Yaacoub, S., Schünemann, H.J., 2020. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. The Lancet 395 (10242), 1973–1987. https://doi.org/10.1016/S0140-6736(20)31142-9.

Collins F., Latest on Omicron Variant and COVID-19 Vaccine Protection, NIH director's blog, Dec. 14, 2021. https://directorsblog.nih.gov/2021/12/14/the-latest-on-omicron-variant-and-vaccine-protection/. Accessed on Dec. 2021.

Dai, H., Zhao, B., 2020. Association of the infection probability of COVID-19 with ventilation rates in confined spaces. BUILD SIMUL 2020 (13), 1321–1327.

Davies, A., Thompson, K.-A., Gir, K., Kafatos, G., Walker, J., Bennett, A., 2013. Testing the efficacy of homemade masks: would they protect in an influenza pandemic? Disaster Medicine and Public Health Preparedness 7 (4), 413–418.

Duan, X., Zhao, X., Wang, B., 2013. Exposure factors handbook of the Chinese population (adults) (In Chinese). China Environmental Science Press, Beijing. EBP (formerly Economic Development Research Group). The Impact of the COVID-19 Pandemic on Public Transit Funding Needs in the U.S. Prepared for the American Public Transportation Association. Accessed date: June 22, 2021.

Edwards, J.N., Widrick, R., Wilmes, J., Breisch, B., Gerschesfske, M., Sullivan, J., Potember, R., Espinoza-Calvio, A., 2021. Reducing COVID-19 airborne transmission risks on public transportation buses: an empirical study on aerosol dispersion and control. Aerosol Sci. Technol. 55 (12), 1378–1397. https://doi.org/10.1002/2021.1966376.
Eikenberry, S.E., Mancuso, M., Ibioi, E., Phan, T., Eikenberry, K., Kuang, Y., Kostelic, E., Gumel, A.B., 2020. To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infectious Disease Modelling. https://doi.org/10.1016/j.idm.2020.04.001.

Federal Transit Administration. 2007. Useful Life of Transit Buses and Vans. Report No. FTA VA-19-07-212.

Federal Transit Administration. 2021. Federal Mask Requirement for Transit. https://www.transit.dot.gov/TransitMaskUp.

Harrichandra, A., Ierardi, A., Pavilonis, B., 2020. An estimation of airborne SARS-CoV-2 infection transmission risk in New York City nail salons. Toxicol Ind Health 36 (9), 634–643.

Hui, D.S., Chow, B.K., Chu, L., Ng, S.S., Lee, N., et all. 2012. Exhaled air dispersion during coughing with and without wearing a surgical or N95 mask. PLoS ONE 7, e50845.

Kapatsila, B., Grise, E., 2021. Public transit riders’ perceptions and experience of safety: COVID-19 lessons from Edmonton. Findings. https://doi.org/10.32866/001c.19046.

Kama, C., Eickemeyer, P., 2021. Slowing the spread of COVID-19: Review of “Social distancing” interventions deployed by public transit in the United States and Canada. Transp Policy (Oxf). 106, 25–36. https://doi.org/10.1016/j.tranpol.2020.11.003.

Kapatsila, B., Grise, E., 2021. Public transit riders’ perceptions and experience of safety: COVID-19 lessons from Edmonton. Findings. https://doi.org/10.32866/001c.19046.

Kwon, S., Joshi, A.D., Lo, C.H., Drew, D.A., Nguyen, L.H., Guo, C.G., Ma, W., Mehta, R.S., Warner, E.T., Astley, C.M., Merino, J., Murray, B., Wolf, J., Ourselin, S., Stevens, C.J., Spector, T.D., Hart, J.E., Song, M., VoPham, T., Chan, A.T., 2020. Association of social distancing and masking with risk of COVID-19. medRxiv: the preprint server for health sciences. https://doi.org/10.1101/2020.11.11.20229500.

Qi, Y., Liu, J., Tao, Z., Zhao, Q., 2020. Impacts of COVID-19 on Public Transit Ridership. Internat. J. Transport. Sci. Technol. https://doi.org/10.1016/j.iitst.2020.11.003.

Lucchesi, S.T., Tavares, V.B., Rocha, M.K., Larranaga, A.M., 2022. Public transport COVID-19 safe: New barriers and policies to implement effective countermeasures under user’s safety perspective. Multidisciplinary Digital Publishing Institute 14 (5), 2945. https://doi.org/10.3390/su14052945.

Matrajt, L., Leung, T., 2020. Evaluating the Effectiveness of Social Distancing Interventions to Delay or Flatten the Epidemic Curve of Coronavirus Disease. Emerg Infect Dis. 26 (8), 1740–1748.

Mayo Clinic, 2021. U.S. COVID-19 vaccine tracker: See your state’s progress. https://www.mayoclinic.org/coronavirus-covid-19/vaccine-tracker.

McCallum, K., 3 Things to Know About Life After Recovering From COVID-19, Houston Methodist Dec. 1, 2021. https://www.houstonmethodist.org/blog/articles/2020/jul/3-things-to-know-about-life-after-recovering-from-covid-19/ Accessed on Nov. 2021.

Metro Ridership Report, 2020. https://www.ridemetro.org/pages/ridershipreport.aspx.

Pozlin, S.E., 2021. Post-COVID-19 transportation trends. ITE Journal.

Pradhan, D., Biswasroy, P., Kumar Naik, P., Ghosh, G., Rath, G., 2020. A Review of Current Interventions for COVID-19 Prevention. Arch. Med. Res. 51 (5), 363–374. https://doi.org/10.1016/j.arcmed.2020.04.020.

Riley, R., 2001. What nobody needs to know about airborne infection. Am. J. Respir. Crit. Care Med. 163 (1), 7–8. https://doi.org/10.1164/ajrccm.163.1.hh1-00. PMID 11208616.

Riley, E., Murphy, G., Riley, R., 1978. Airborne spread of measles in a suburban elementary school. Am. J. Epidemiol. 107 (5), 421–432.

Roy, S., Bhatia, V., 2020. Role of disinfection and hand hygiene: a COVID-19 perspective. Int. J. Commun. Med Public Health. 7 (7), 2845–2849.

Sun, C., Zhai, Z., 2020. The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission. Sustain. Cities Soc. 62, 2210–6707. https://doi.org/10.1016/j.scs.2020.102390.

Tirachini, A., Cats, O., 2020. COVID-19 and Public Transportation: Current Assessment, Prospects, and Research Needs. J. Public Transport. 22 (1). https://doi.org/10.5038/2375-0091.22.1.1.

Vecherin, S., Chang, D., Wells, E., et al. 2022. Assessment of the COVID-19 infection risk at a workplace through stochastic microexposure modeling. J. Expo. Sci. Environ. Epidemiol. https://doi.org/10.1038/s41370-022-00411-2.

Vitalie, R., 2020. How to Calculate Your Disinfecting Cost. https://blog.midwestind.com/disinfecting-cost-calculator/. Accessed on June 8, 2022.

WTO, 2021. Coronavirus disease (COVID-19): How is it transmitted? https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted.

Further Reading

Gkiotsalitis, K., Cats, O., 2021. Public transport planning adaption under the COVID-19 pandemic crisis: literature review of research needs and directions. Transport Rev. 41 (3), 374–392. https://doi.org/10.1080/01441647.2020.1857886.

Jenelius, E., Cebeauer, M., 2020. Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales and passenger counts. Transp. Res. Interdisciplin. Perspect. 8, 2590–11982. https://doi.org/10.1016/j.trip.2020.100242.

Liu, L., Miller, H., Scheff, J., 2020. The impacts of COVID-19 pandemic on public transit demand in the United States. PLoS ONE 15 (11), e0242476. https://doi.org/10.1371/journal.pone.0242476.

Riley, R., 2001. What nobody needs to know about airborne infection. Am. J. Respir. Crit. Care Med. 163 (1), 7–8. https://doi.org/10.1164/ajrccm.163.1.hh1-00. PMID 11208616.

Riley, E., Murphy, G., Riley, R., 1978. Airborne spread of measles in a suburban elementary school. Am. J. Epidemiol. 107 (5), 421–432.

Robert, S., Bhatia, V., 2020. Role of disinfection and hand hygiene: a COVID-19 perspective. Int. J. Commun. Med Public Health. 7 (7), 2845–2849.

Sun, C., Zhai, Z., 2020. The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission. Sustain. Cities Soc. 62, 2210–6707. https://doi.org/10.1016/j.scs.2020.102390.

Tirachini, A., Cats, O., 2020. COVID-19 and Public Transportation: Current Assessment, Prospects, and Research Needs. J. Public Transport. 22 (1). https://doi.org/10.5038/2375-0091.22.1.1.

Vecherin, S., Chang, D., Wells, E., et al. 2022. Assessment of the COVID-19 infection risk at a workplace through stochastic microexposure modeling. J. Expo. Sci. Environ. Epidemiol. https://doi.org/10.1038/s41370-022-00411-2.

Vitalie, R., 2020. How to Calculate Your Disinfecting Cost. https://blog.midwestind.com/disinfecting-cost-calculator/. Accessed on June 8, 2022.

Worby, C.J., Chang, H.-H., 2020. Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic. Nature Comm. 11 (1), https://doi.org/10.1038/s41467-020-17922-x.

WTW, 2021. Coronavirus disease (COVID-19): How is it transmitted? https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted.