Phylogenetic and Taxonomic Analyses of Three New Wood-Inhabiting Fungi of *Xylodon* (Basidiomycota) in a Forest Ecological System

Kai-Yue Luo 1,2,3, Zhuo-Yue Chen 3 and Chang-Lin Zhao 1,2,3,4,5,6,*

Abstract: Wood-inhabiting fungi are a cosmopolitan group and show a rich diversity, growing in the vegetation of boreal, temperate, subtropical, and tropical regions. *Xylodon grandineus*, *X. punctus*, and *X. wenshanensis* spp. nov. were found in the Yunnan–Guizhou Plateau, China, suggested here to be new fungal species in light of their morphology and phylogeny. *Xylodon grandineus* is characterized by a grandinioid hymenophore and ellipsoid basidiospores; *X. punctus* has a membranous hymenophore, a smooth hymenial surface with a speckled distribution, and absent cystidia; *X. wenshanensis* has a grandinioid hymenophore with a cream to slightly buff hymenial surface and cystidia of two types. Sequences of the ITS and nLSU rRNA markers of the studied samples were generated, and phylogenetic analyses were performed using the maximum likelihood, maximum parsimony, and Bayesian inference methods. After a series of phylogenetic studies, the ITS+nLSU analysis of the order Hymenochaetales indicated that, at the generic level, six genera (i.e., *Fasciodontia*, *Hastodontia*, *Hypodontia*, *Lyomyces*, *Kneiffiella*, and *Xylodon*) should be accepted to accommodate the members of *Hypodontia* sensu lato. According to a further analysis of the ITS dataset, *X. grandineus* was retrieved as a sister to *X. nesporii*; *X. punctus* formed a monophyletic lineage and then grouped with *X. filicinus*, *X. hastifer*, *X. hypodontinus*, and *X. tropicus*; and *X. wenshanensis* was a sister to *X. xinpingensis*.

Keywords: biodiversity; ecology; environment; molecular phylogeny; white rot fungi; Yunnan–Guizhou Plateau

1. Introduction

In forest ecosystems, fungi play essential ecological roles, driving carbon cycling in forest soils, mediating mineral nutrition of plants, and alleviating carbon limitations [1]. Wood-inhabiting fungi are a cosmopolitan group and have a rich diversity related to the high diversity of plants growing in boreal, temperate, subtropical, and tropical regions [2–9]. The order Hymenochaetales Oberw. comprises many representative wood-inhabiting fungal taxa, including hydnoid, corticioid, and polyporoid fungi possessing basidiomes with diverse hymenophoral and cystidial morphology [10–14]. Members of the family Schizoporaceae Jülich are widely found in different countries and areas. In addition, they cause white rot [15].

To accomplish the genome evolution and reconstruction of the phylogenetic relationships of fungi, an increasing number of taxa have been used for the fungal tree of life by using genome-scale data in the molecular systematics by mycologists [16], and both the
species diversity and the classification of fungi are still in great, flux mainly in the more basal branches of the tree topology. The true diversity will come to light from genomic analyses and more region surveys worldwide based on some unique fungal groups.

The wood-inhabiting fungal genus *Xylodon* (Pers.) Gray (Schizoporaceae, Hymenochaetales) is typified by *X. quercinus* (Pers.) Gray [4]. This genus is characterized by the resupinate or effuse basidiomata with a smooth, tuberculate, grandiniodi, odontioid, coralloid, irpicoid, or poroid hymenophore; a monomitic or dimitic hyphal system with clamped generative hyphae; the presence of different types of cystidia; utriform or suburniform basidia; and cylindrical to ellipsoid to globose basidiospores, in addition to causing white rot [4,17].

Based on the MycoBank database (http://www.mycobank.org, accessed on 20 March 2022) and the Index Fungorum (http://www.indexfungorum.org, accessed on 20 March 2022), the genus *Xylodon* has registered 218 specific and infraspecific names, but the actual number of the species has reached 92 [4,5,12,14,18–43].

These pioneering studies of the genus *Xylodon* were just the prelude to the molecular systematics period [16]. *Hyphodontia* s.l. was shown to be a polyphyletic genus, in which *Xylodon* and *Kneiffiella* P. Karst are the most species rich [10,12,14]. Due to a lack of rDNA sequences for many taxa, the molecular data were not enough to separate many genera clearly; therefore, a broad concept of *Hyphodontia* s.l. was employed by mycologists [10,12,14,32,34].

Yurchenko et al. described two clades: the *Xylodon-Lyomyces-Rogersella* clade and the *Xylodon-Schizopora-Palifer* clade, and they suggested to mix the species of *Xylodon*, *Schizopora*, *Palifer*, *Stalpers* and P.K. Buchanan, *Lyomyces*, P. Karst., and *Rogersella* Liberta and A.J. Navas within both clades. The research comprised the representative sequences and taxa of *Hyphodontia* s.l., such as *Xylodon*, *Schizopora*, *Palifer*, *Lyomyces*, and *Rogersella*, in which the result demonstrated that it was hard to distinguish the two genera *Xylodon* and *Schizopora* on the basis of the morphological and phylogenetic information; therefore, the authors proposed that *Xylodon* and *Schizopora* should be united into the genus *Xylodon* [12]. For the phylogenetic relationship of the *Xylodon* species, it was confirmed that the two genera *Lagarobasidiurn* Jülich and *Xylodon* should be synonymous based on molecular data from the ITS and nLSU regions, in which the three species *X. pumilus* (Gresl. and Rajchenb.) K.H. Larss., *X. magnificus* (Gresl. and Rajchenb.) K.H. Larss., and *X. rickii* (Gresl. and Rajchenb.) K.H. Larss. were combined into *Xylodon* [36]. All of the members of the genera *Odontipsis* Hjortstam and Ryvarden and *Palifer* were placed in the genus *Xylodon* based on the molecular analyses of 28S and ITS data, in which they proposed four new species of *Xylodon* as *X. exilis* Yurchenko, Riebesehl and Langer, *X. filicinus* Yurchenko and Riebesehl, *X. follis* Riebesehl, Yurchenko and Langer, and *X. pseudolamatus* Nakasone, Yurchenko and Riebesehl [14]. Based on the multiple loci in *Hyphodontia* s.l., *Fasciodontia* Yurchenko and Riebesehl, *Hastodontia* (Parmasto) Hjortstam and Ryvarden, *Hyphodontia* J. Erikss., *Lyomyces*, *Kneiffiella*, and *Xylodon* in the order Hymenochaetales, they were divided into four clades [41]. The phylogeny of the *Xylodon* species based on the ITS and nLSU sequences proposed three new taxa from China, in which *gossypinus* C.L. Zhao and K.Y. Luo and *X. brevisetus* (P. Karst.) Hjortstam and Ryvarden grouped together [40]. Based on the morphological descriptions and molecular analyses, three new species: *Xylodon angustisporus* Viner and Ryvarden, *X. distilens* Viner and Ryvarden, and *X. laxiusculus* Viner and Ryvarden, were described and placed in *Xylodon*, which were found in Africa [42]. A phylogenetic and taxonomic study on *Xylodon* (Hymenochaetales) described three new species of this genus from southern China, inferred from 61 fungal specimens representing 55 species, which enriched the fungal diversity of this areas [43].

During investigations on wood-inhabiting fungi in the Yunnan–Guizhou Plateau of China, three additional *Xylodon* species were collected. To clarify the placement and relationships of the three species, we study carried out a phylogenetic and taxonomic study on *Xylodon*, based on the ITS and nLSU sequences.
2. Materials and Methods

2.1. Sample Collection and Herbarium Specimen Preparation

The fresh fruiting bodies of the fungi growing on fallen angiosperm branches and fallen *Pinus armandii* branches were collected from Honghe, Wenshan, and Yuxi of Yunnan Province, China. The samples were photographed in situ, and fresh macroscopic details were recorded. Photographs were recorded by a Jianeng 80D camera. All of the photos were focus stacked and merged using Helicon Focus software. Macroscopic details were recorded and transported to a field station where the fruit body was dried on an electronic food dryer at 45 °C. Once dried, the specimens were sealed in an envelope and zip-lock plastic bags and labeled [43]. The dried specimens were deposited in the herbarium of the Southwest Forestry University (SWFC), Kunming, China.

2.2. Morphology

The macromorphological descriptions were based on field notes and photos captured in the field and lab. The color terminology follows that of Petersen [44]. The micromorphological data were obtained from the dried specimens after observation under a light microscope with a magnification of 10 × 100 oil [27]. The following abbreviations are used: KOH = 5% potassium hydroxide water solution, CB− = acyanophilous, IKI− = both inamyloid and indextrinoid, L = mean spore length (arithmetic average for all spores), W = mean spore width (arithmetic average for all spores), Q = variation in the L/W ratios between the specimens studied, and n = a/b (number of spores (a) measured from given number (b) of specimens).

2.3. Molecular Phylogeny

The CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd., Beijing, China) was used to obtain genomic DNA from the dried specimens according to the manufacturer’s instructions. The nuclear ribosomal ITS region was amplified with ITS5 and ITS4 primers [45]. The nuclear nLSU region was amplified with the LR0R and LR7 primer pair (http://lutzonilab.org/nuclear-ribosomal-dna/, accessed on 22 January 2022). The PCR procedure for ITS was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 58 °C for 45 s and 72 °C for 1 min, and a final extension of 72 °C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 48 °C for 1 min and 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR products were purified and sequenced at Kunming Tsingke Biological Technology Limited Company (Kunming, China). All of the newly generated sequences were deposited in NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/, accessed on 22 January 2022) (Table 1).

The sequences were aligned in MAFFT version 7 [56] using the G-INS-i strategy. The alignment was adjusted manually using AliView version 1.27 [57]. The dataset was aligned first, and then the sequences of ITS and nLSU were combined with Mesquite version 3.51. The alignment datasets were deposited in TreeBASE (submission ID 29411). ITS+nLSU sequences and ITS-only datasets were used to infer the position of the three new species in the genus *Xylodon* and related species. Sequences of *Hymenochaete cinnamomea* (Pers.) Bres. and *H. rubiginosa* (Dicks.) Lév. retrieved from GenBank were used as an outgroup in the ITS+nLSU analysis (Figure 1); sequences of *Lyomyces orientalis* Riebesehl, Yurch. and Langer, and *L. sambuca* (Pers.) P. Karst. retrieved from GenBank were used as an outgroup in the ITS analysis (Figure 2) [41].

Maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI) analyses were applied to the combined three datasets following a previous study [58], and the tree construction procedure was performed in PAUP* version 4.0b10 [59]. All of the characters were equally weighted, and gaps were treated as missing data. Using the heuristic search option with TBR branch swapping and 1000 random sequence additions, trees were inferred. Max trees were set to 5000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was assessed using bootstrap
Descriptive tree statistics, tree length (TL), the consistency index (CI), the retention index (RI), the rescaled consistency index (RC), and the homoplasy index (HI) were calculated for each maximum parsimonious tree generated. The multiple sequence alignment was also analyzed using maximum likelihood (ML) in RAxML-HPC2 [61]. Branch support (BS) for ML analysis was determined by 1000 bootstrap replicates.

Table 1. List of species, specimens, and GenBank accession numbers of sequences used in this study.

Species Name	Specimen No.	GenBank Accession No.	References	Country
Fasciodontia brasiliensis	MSKF 7245a	MK575201 MK598734	[46]	Brazil
F. bugellensis	KASPD 10705a	MK575203 MK598735	[46]	France
F. gymnemensis	CLZhao 6280	MK811275 MZ146327	[47]	China
Hastodontia halonata	HHH 17058	MK575207 MK598738	[46]	Mexico
Hymenochaete cinnamomea	He 2074	KL975460 KL975500	Unpublished	China
Hym. rubiginosa	He 1004	JQ716407 JQ279667	[48]	China
Hyphodontia alutaria	GEL 3183	DQ340318 DQ340373	Unpublished	Germany
Hym. angula	KHL 11938	EU118632 EU118633	[49]	Sweden
Hym. densispora	LWZ 20170908-5	MT319426 MT319160	[41]	China
Hym. pallidula	KASGEL 2097	DQ340317 DQ340372	Unpublished	Germany
Hym. rhizophila	LWZ 20180903-5	MT319423 MT319158	[41]	China
Kneiffiella barba-jovis	KHL 11730	DQ873609 DQ873610	[14]	Sweden
K. eucalyptica	LWZ 20180515-9	MT319411 MT319143	[41]	Australia
K. palaee	KASGEL 3456	DQ340333 DQ340369	[46]	China
K. subalutacea	GEL 2196	DQ340341 DQ340362	[46]	Norway
L. allantasporsor	FR 0249548	KY800397 KY795963	[13]	Réunion
L. bambusinus	CLZhao 4831	MN945968 MW264919	[50]	China
L. fimbriatus	Wu 911204-4	MK575210 MK598740	[46]	China
L. mascarenis	KASGEL 4833	KY800399 KY795964	[46]	Réunion
L. orientalis	LWZ 20170909-7	MT319436 MT319170	[41]	China
L. sambuci	KASJF 7	KY800402 KY795966	[13]	Germany
Xylodon acystidiatus	LWZ 20180514-9	MT319474 MT319211	[41]	Australia
X. apacheriensis	Wu 0910-58	KK857797	[11]	China
X. asper	KHL 8530	AY463427 AY586675	[51]	Sweden
X. astrocytidiatus	Wu 9211-71	JN129972	[26]	China
X. attenuatus	Spiritus 8775	MH324476	[36]	America
X. australis	LWZ 20180509-8	MT319503 MT319248	[41]	China
X. bambusinus	CLZhao 9174	MW394657	[52]	China
X. borealis	JS 26064	AY463429	[51]	Norway
X. brevisetus	JS 17863	AY463428 AY586676	[51]	Norway
X. cristalliger	LWZ 20170816-33	MT319521	[41]	China
X. cystidiatus	FR 0249200	MH880195 MH888496	[14]	Réunion
X. damansaraensis	LWZ 20180417-23	MT319499 MT319244	[41]	Malaysia
X. detriticus	Zbarová 30.10.17	MH320793 MH651372	[36]	Czech Republic
X. filicinus	MSKF 12869	MH880199 NG067836	[14]	China
X. flaviporus	FR 0249797	MH880201	[14]	Réunion
X. folis	FR 0249814	MH880204 MH884902	[14]	Réunion
X. grandines	CLZhao 6425 *	OM338090 OM338099	Present study	China
X. grandipes	CLZhao 16075	OM338091 OM338100	Present study	China
X. gossypinus	CLZhao 8375	MZ663804 MZ663813	[40]	China
X. hastiger	K(M) 172400	NR166558	[12]	USA
X. heterocytiatus	Wei 17-314	MT317554 MT31754	Unpublished	China
X. hypnodontinus	KASGEL 9222	MH880205 MH884903	[14]	Kenya
X. kunmingensis	TUBFO 42565	MH880198	[14]	China
X. laceratus	CLZhao 9892	OL619258	[43]	China
Species Name	Specimen No.	GenBank Accession No.	References	Country
---------------------------	----------------------	-------------------------------	------------	---------------
X. lagenicystidiatus	LWZ 20180513-16	MT319634	[41]	Australia
X. lenis	Wu 890714-3	KY081802	[12]	China
X. macrosporus	CLZhao 10226	MZ663809 MZ663817	[40]	China
X. mollissimus	LWZ 20160318-3	KY007517 MT319347	[41]	China
X. montanus	CLZhao 8179	OL619260	[43]	China
X. nesporii	LWZ 20180921-35	MT319655 MT319238	[41]	China
X. niemelaei	LWZ 20150707-13	MT319630	[41]	China
X. nongravis	GC 1412-22	KX857801 KX857818	[11]	China
X. nothofagi	ICMP 13842	AF145583	[53]	China
X. oviclorus	LWZ 20170815-31	MT319666	[41]	China
X. papillosus	CBS 114.71	MH860026	[54]	The Netherlands
X. paradoxus	Dai 14983	MT319519	[41]	China
X. pruinosus	Spisin 2877	MH332700	[36]	Estonia
X. pseudolanatus	FP 150922	MH880220	[14]	Belize
X. pseudotropicalis	Dai 1617	MT319509 MT319255	[41]	China
X. punctus	CLZhao 17691	OM338092 OM338101	Present study	China
X. punctus	CLZhao 17908	OM338093	Present study	China
X. punctus	CLZhao 17916	OM338094 OM338102	Present study	China
X. quercinus	KHL 11076	KT361633	[51]	Sweden
X. ramicida	Spisin 7664	NR138013 Unpublished	USA	
X. rhododendricola	LWZ 20180513-9	MT319621	[41]	Australia
X. rimosissimus	Ryberg 021031	DQ873627	[55]	Sweden
X. serpentiformis	LWZ 20170816-15	MT319673	[41]	China
X. sinensis	CLZhao 11120	MZ663811	[40]	China
X. spathulatus	LWZ 20180804-10	MT319646	[41]	China
X. subclavatus	TUBFO 42167	MH880232	[14]	China
X. subflaviporus	Wu 0809-76	KX857803	[11]	China
X. subserpentiformis	LWZ 20180512-16	MT319486	[41]	Australia
X. subtropicalis	LWZ 20180510-24	MT319541	[41]	China
X. taitianianus	CBS 125875	MH864080	[54]	The Netherlands
X. tropicus	CLZhao 3351	OL619261 OL619269	[43]	China
X. ussuriensis	KUN 1989	NR166241 Unpublished	USA	
X. verrucansus	KHL 12261	DQ873642	[55]	Sweden
X. victoriensis	LWZ 20180510-29	MT319487	[41]	Australia
X. wenshanensis	CLZhao 10790	OM338095 OM338103	Present study	China
X. wenshanensis	CLZhao 15718	OM338096	Present study	China
X. wenshanensis	CLZhao 15729	OM338097 OM338104	Present study	China
X. xinpingensis	CLZhao 11224	MW394662 MW394654	[52]	China
X. yarraensis	LWZ 20180510-5	MT319639	[41]	Australia
X. yunnanensis	LWZ 20180922-47	MT319660 MT319253	[41]	China

* is shown holotype.

MrModeltest 2.3 [62] was used to determine the best-fit evolution model for each dataset for Bayesian inference (BI), which was performed using MrBayes 3.2.7a with a GTR+I+G model of DNA substitution and a gamma distribution rate variation across sites [63]. A total of four Markov chains were run for two runs from random starting trees for 1.2 million generations for ITS+nLSU (Figure 1) and 9 million generations for ITS (Figure 2) with trees and parameters sampled every 1000 generations. The first one-fourth of all of the generations were discarded as burn-ins. The majority-rule consensus tree of all of the remaining trees was calculated. Branches were considered significantly supported if they received a maximum likelihood bootstrap value (BS) of >70%, a maximum parsimony bootstrap value (BT) of >70%, or Bayesian posterior probabilities (BPP) of >0.95.
Figure 1. Maximum parsimony strict consensus tree illustrating the phylogeny of *Xylodon* and related genera in the order Hymenochaetales based on ITS+nLSU sequences. The families and genera represented by each color are indicated in the upper left of the phylogenetic tree.

Figure 2. Maximum parsimony strict consensus tree illustrating the phylogeny of three new species in *Xylodon* based on ITS sequences. Branches are labeled with a maximum likelihood bootstrap value > 70%, a parsimony bootstrap value > 50%, and Bayesian posterior probabilities > 0.95, respectively. The new species are in bold. The red stars representative holotypes.
3. Results
3.1. Molecular Phylogeny

The ITS+nLSU (Figure 1) included sequences from 50 fungal samples representing 50 species. The dataset had an aligned length of 1919 characters, of which 1140 characters were constant, 206 were variable and parsimony uninformative, and 573 were parsimony informative. The maximum parsimony analysis yielded six equally parsimonious trees (TL = 3564, CI = 0.3533, HI = 0.6467, RI = 0.5235, and RC = 0.1849). The best model for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was GTR+I+G. The Bayesian and ML analyses showed a similar topology to that of the MP analysis with split frequencies = 0.008056 (BI), and the effective sample size (ESS) average ESS (avg ESS) = 418.5. The phylogram based on the ITS+nLSU rDNA gene regions (Figure 1) includes four families within Hymenochaetales, which comprises six genera: Fasciodontia, Hastodontia, Hyphodontia, Kneiffiella, Lyomyces, and Xylodon, which indicated that three genera (Fasciodontia, Lyomyces, and Xylodon) fell into the family Schizoporaceae.

The ITS-only dataset (Figure 2) included sequences from 67 fungal specimens representing 61 taxa. The dataset had an aligned length of 582 characters, of which 233 characters were constant, 59 were variable and parsimony uninformative, and 290 were parsimony informative. Maximum parsimony analysis yielded 5000 equally parsimonious trees (TL = 2191, CI = 0.2743, HI = 0.7257, RI = 0.4560, and RC = 0.1251). The best model for the ITS dataset estimated and applied in the Bayesian analysis was GTR+I+G. The Bayesian and ML analyses resulted in a similar topology to that of the MP analysis with split frequencies = 0.022072 (BI), and the effective sample size (ESS) of the average ESS (avg ESS) = 1670.5. The phylogram inferred from the ITS sequences analysis (Figure 2) indicated that three new species grouped into genus *Xylodon*: the new species *X. grandineus* was a sister to *X. nesporii* (Bres.) Hjortstam and Ryvarden; *X. punctus* formed a monophyletic lineage and then grouped with *X. filicinus* Yurchenko and Riebesehl, *X. hastifer* (Hjortstam and Ryvarden) Hjortstam and Ryvarden, *X. hyphodontinus* (Hjortstam and Ryvarden) Riebesehl, Yurchenko and G. Gruhn, and *X. tropicus*, while *X. wenshanensis* was retrieved as a sister of *X. xinpingensis* C.L. Zhao and X. Ma.

3.2. Taxonomy

Xylodon grandineus K.Y. Luo and C.L. Zhao, sp. nov. Figures 3 and 4.

MycoBank no.: 843054.

Holotype—China, Yunnan Province, Yuxi, Xinping County, Mopanshan National Forestry Park. GPS coordinates: 24°53′ N, 101°57′ E; altitude: 2000 m asl. On fallen *Pinus armandii* branches, leg. C.L. Zhao, 19 January 2018, CLZhao 6425 (SWFC).

Etymology—grandineus (Lat.): Referring to the hymenial surface grandinioid of the specimens.

Basidiomata—Annual, resupinate, adnate, soft coriaceous when fresh, coriaceous upon drying, up to 10 cm long, 1.5 cm wide, 100–200 µm thick. Hymenial surface grandinioid, without odor or taste when fresh, pale buff when fresh, pale buff to buff when dry. Sterile margin indistinct, cream to buff, 0.5–1 mm wide.

Hyphal system—Monomitic, generative hyphae with clamp connections, colorless, thick-walled, frequently branched, interwoven, 2–4 µm in diameter, IKI−, CB−; tissues unchanged in KOH; subhymenial hyphae densely covered by the crystals.

Hymenium—Cystidia subulate, colorless, thin-walled, smooth, 11–19 × 3–5 µm; basidia barreled, constricted, with four sterigmata and a basal clamp connection, 11–19 × 2.5–4 µm.

Spores—Basidiospores ellipsoid, colorless, thin-walled, smooth, with one oil drop inside, IKI−, CB−, 3.4(–5) × 2–3 µm, L = 3.69 µm, W = 2.46 µm, Q = 1.46−1.54 (n = 60/2).

Additional specimen examined (paratype)—China, Yunnan Province, Wenshan, Pingba Town, Wenshan National Nature Reserve. GPS coordinates: 23°15′ N, 104°06′ E; altitude: 1600 m asl. On fallen angiosperm branches, leg. C.L. Zhao, 25 July 2019, CLZhao 16075 (SWFC).

Xylodon punctus K.Y. Luo and C.L. Zhao, sp. nov. Figures 5 and 6.
Figure 3. Basidiomata of *Xylodon grandineus* (holotype): the front of the basidiomata (A), characteristic hymenophore (B). Bars: (A) = 1 cm and (B) = 1 mm.
Figure 4. Microscopic structures of *Xylodon grandineus* (holotype): basidiospores (A), basidia and basidioles (B), subulate cystidia (C), a section of the hymenium (D). Bars: (A) = 5 μm, (B–D) = 10 μm.

Figure 4. Microscopic structures of *Xylodon grandineus* (holotype): basidiospores (A), basidia and basidioles (B), subulate cystidia (C), a section of the hymenium (D). Bars: (A) = 5 μm, (B–D) = 10 μm.

Figure 5. Basidiomata of *Xylodon punctus* (holotype): the front of the basidiomata (A), characteristic hymenophore (B). Bars: (A) = 1 cm and (B) = 1 mm.
Figure 5. Basidiomata of *Xylodon punctus* (holotype): the front of the basidiomata (A), characteristic hymenophore (B). Bars: (A) = 1 cm and (B) = 1 mm.

Figure 6. Microscopic structures of *Xylodon punctus* (holotype): basidiospores (A), basidia and basidioles (B), a section of the hymenium (C). Bars: (A) = 5 µm, (B,C) = 10 µm.

MycoBank no.: 843055.

Holotype—China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve. GPS coordinates: 23°42′ N, 103°30′ E; altitude: 1500 m asl. On fallen angiosperm branches, leg. C.L. Zhao, 1 August 2019, CLZhao 17691 (SWFC).

Etymology—*punctus* (Lat.): Referring to the spotted hymenial surface of the specimens.
Basidiomata—Annual, resupinate, adnate, thin, membranous, very hard to separate from substrate, up to 12 cm long, 1.5 cm wide, 20–80 µm thick. Hymenial surface smooth, speckled distribution, white when fresh, white to slightly grey upon drying. Sterile margin indistinct, white, up to 1 mm wide.

Hyphal system—Monomitic, generative hyphae with clamp connections, colorless, thin- to thick-walled, occasionally branched, interwoven, 1–3 µm in diameter, IKI−, CB−; tissues unchanged in KOH.

Hymenium—Cystidia absent; basidia clavate, short and obtused, with four sterigmata and a basal clamp connection, 10–16 × 3.5–5.5 µm.

Spores—Basidiospores ellipsoid to broad ellipsoid, colorless, thin-walled, smooth, IKI−, CB−, (1.5–)2–4(−4.5) × 1.5–2.5(−3) µm, L = 2.71 µm, W = 1.98 µm, Q = 1.32–1.43 (n = 31/3).

Additional specimens examined (paratypes)—China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve. GPS coordinates: 23°42′ N, 103°30′ E; altitude: 1500 m asl. On fallen angiosperm branches, leg. C.L. Zhao, 1 August 2019, CLZhao 17908; CLZhao 17916 (SWFC).

Xylodon wenshanensis K.Y. Luo and C.L. Zhao, sp. nov. Figures 7 and 8.

Figure 7. Basidiomata of Xylodon wenshanensis (holotype): the front of the basidiomata (A), characteristic hymenophore (B). Bars: (A) = 1 cm and (B) = 1 mm.
Figure 8. Microscopic structures of *Xylodon wenshanensis* (holotype): basidiospores (A), basidia and basidioles (B), clavate cystidia in subiculum and hymenium (C), clavate cystidia (D), a section of the hymenium (E). Bars: (A) = 5 µm, (B–E) = 10 µm.

MycoBank no.: 843056.

Holotype—China, Yunnan Province, Wenshan, Xichou County, Jiguanshan Forestry Park. GPS coordinates: 23°15′ N, 104°40′ E; altitude: 1500 m asl. On fallen angiosperm branches, leg. C.L. Zhao, 22 July 2019, CLZhao 15729 (SWFC).

Etymology—wenshanensis (Lat.): Referring to the specimens’ provenance from the Wenshan locality.

Basidiomata—Annual, resupinate, thin, without odor and taste when fresh, coriaceous, up to 9 cm long, 2 cm wide, 50–100 µm thick. Hymenial surface grandinioid, cream when fresh, cream to slightly buff upon drying. Sterile margin indistinct, cream, about 1 mm wide.

Hyphal system—Monomitic, generative hyphae with clamp connections, colorless, thin- to thick-walled, frequently branched, interwoven, 2-3.5 µm in diameter; IKI−, CB−; tissues unchanged in KOH.

Hymenium—Cystidia of two types: (1) capitate cystidia in subiculum and hymenium, colorless, thin-walled, smooth, slightly constricted at the neck, with a globose head, 6–11 × 3–6.5 µm; (2) clavate cystidia, slightly sinuous, 10.5–20 × 2.5–5.5 µm; basidia clavate to subcylindrical, slightly sinuous, with four sterigmata and a basal clamped connection, 8–15.5 × 3–5 µm.

Spores—Basidiospores ellipsoid, colorless, thin-walled, smooth, IKI−, CB−, 3–5 × 2–3.5(=4) µm, L = 3.96 µm, W = 2.82 µm, Q = 1.35–1.47 (n = 120/4).

Additional specimens examined (paratypes)—China, Yunnan Province, Wenshan, Xichou County, Xiaoqiaogou, Wenshan National Nature Reserve. GPS coordinates: 23°22′ N, 104°43′ E; altitude: 1500 m asl. On fallen angiosperm branches, leg. C.L. Zhao, 14 January 2019, CLZhao 10790 (SWFC); Jiguanshan Forestry Park. GPS coordinates: 23°15′ N, 104°40′ E; altitude: 1500 m asl. On fallen angiosperm branches, leg. C.L. Zhao, 22 July 2019, CLZhao 15718, CLZhao 15782 (SWFC).
4. Discussion

Many recently described wood-inhabiting fungi taxa have been reported in the subtropics and tropics, including those of the genus *Xylodon* [64–70], which were collected on rotten trunks and stumps of conifers and angiosperms, bamboo, and ferns [2,3,6,15,23,25,40,41,43,52,71–83], and were analyzed by the ITS+nLSU data, which showed that the genus *Xylodon* differs from *Xylodon macrosporus* differes from *Xylodon tropicus* differs from *Xylodon follis* differs from *Xylodon hyphodontinus* can be delimited from *Xylodon nesporii* was retrieved as a sister to *Xylodon serpentiformis* (Langer) Hjortstam and Ryvarden; and *Xylodon wenshanensis* was a sister to *Xylodon xinpingensis* (Yurchenko, H.X. Xiong and Sheng H. Wu) Riebesehl, Yurchenko, H.S. Yuan, Nigrofomitaceae Jülich, Oxyporaceae Zmitr. and Malysheva, and Schizoporaceae—were monophyletic lineages, which nested in the order Hymenochaetales, in which some genera grouped into *Hyphodontia* s.l. as independent genera, including *Xylodon* [41]. In the present study (Figure 1), four families in the order Hymenochaetales were analyzed by the ITS+nLSU data, which showed that the genus *Xylodon* nested into the family Schizoporaceae.

The ITS-based evolution phylogram for *Xylodon* and related species revealed four species—*X. cystidiatus* (A. David and Rajchenb.) Riebesehl and Langer; *X. hyphodontinaceus*; *X. serpentiformis* (Langer) Hjortstam and Ryvarden; and *X. subclavatus* (Yurchenko, H.X. Xiong and Sheng H. Wu) Riebesehl, Yurch. and Langer—were in the genus *Xylodon* [14]. In the current study (Figure 2), the three new species also nested into the genus *Xylodon*, in which *X. grandineus* was a sister to *X. nesporii*; *X. punctus* formed a monophyletic lineage and then grouped with *X. filicinus*, *X. hastifer*, *X. hyphodontinus*, and *X. tropicus*, while *X. wenshanensis* was retrieved as a sister to *X. xinpingensis*. However, morphologically, *Xylodon nesporii* can be delimited from *X. grandineus* has an odontiodial hymenial surface and narrowly ellipsoidal to cylindrical basidiospores (4.5–6 × 2–2.5 μm) [70]. *Xylodon filicinus* differs from *X. punctus* by its odontiodial hymenial surface and larger, globose to subglobose basidiospores (4–5 × 4–4.5 μm) [14]. *Xylodon hastifer* could be delimited from *X. punctus* by its odontiodial hymenial surface and larger, subglobose basidiospores (4.5–5 × 4–4.5 μm) [15]. *Xylodon hyphodontinaceus* differs from *X. punctus* in its odontiodial hymenial surface and globose to subglobose basidiospores (4.5–5 μm in diameter) [64]. *Xylodon tropicus* differs from *X. punctus* in its coriaceous basidiomata with a grandinioid hymenial surface and subglobose basidiospores [43]. *Xylodon xinpingensis* can be delimited from *X. wenshanensis* by its soft-membranaceous basidiomata, a reticulate hymenial surface, fusiform cystidia (19.5–31 × 2–6 μm), and larger subglobose basidiospores (5–6.4 × 3.5–5 μm) [52].

Morphologically, *Xylodon grandineus* is similar to *X. follis* Riebesehl, Yurchenko and Langer; *X. laceratus* C.L. Zhao; *X. macrosporus* C.L. Zhao and K.Y. Luo; *X. tropicus*; and *X. sinensis* C.L. Zhao and K.Y. Luo due to its the grandinioid hymenial surface. However, *Xylodon follis* differs from *X. grandineus* in its effused basidiomata with a cream-colored hymenial surface, capitate cystidia (17–30 × 4.5–9 μm) [14]. *Xylodon laceratus* differs from *X. grandineus* in its capitate cystidia (15.4–24.7 × 3.8–4.7 μm) and fusiform cystidia (20.3–26.8 × 5.3–6.4 μm) [43]. *Xylodon macrosporus* differs from *X. grandineus* by having cystidia of three types: capitate cystidia (8–25.5 × 3–10 μm), cylindrical cystidia (44–79.5 × 3–6 μm), and cystidia (11–21 × 6–11 μm), as well as larger thick-walled basidiospores (8–10.5 × 7.5–9 μm) [40]. *Xylodon tropicus* can be delimited from *X. grandineus* by its buff to pale brown hymenial surface; absent cystidia; and subglobose, slightly thick-walled basidiospores [43]. *Xylodon sinensis* is distinguishable from *X. grandineus* by its buff to brown hymenial surface, fusiform cystidia, and subglobose basidiospores [40].

Xylodon grandineus resembles *X. attenuatus* Spirin and Viner; *X. borealis* (Kotir. and Saaren.) Hjortstam and Ryvarden; *X. breviskuiyi* (Langer) Hjortstam and Ryvarden; *X. dimiticus* (Jia J. Chen and L.W. Zhou) Riebesehl and E. Langer; and *X. vesiculicostus* Yurchenko, Nakasone and Riebesehl with its ellipsoid basidiospores. However, *Xylodon attenuatus* differs from *Xylodon* in its cream-colored, grandinioid to odontoid hymenial
surface with rather regularly arranged projections; cystidia of two types: subcapitate or capitate cystidia (13.5–25.1 × 3.5–5 μm) and hyphoid cystidia (16–38.3 × 2.8–4.5 μm); and wider basidiospores (4.1–5.5 × 3.4–4.5 μm) [36]. *Xylodon borealis* differs from *X. grandineus* by having effused basidiomata; cystidia of two types: capitate cystidia (20–50 × 4–6 μm) and slender hypha-like cystidia (40–70 × 3–5 μm); and larger basidiospores (4.5–5.5 × 3.5–4 μm) [4].

Xylodon brevinskii differs from *X. grandineus* in its poroid hymenial surface with rudimentary console shaping and larger basidiospores (4.5–5.5 × 3–3.5 μm) [84]. *Xylodon dimiticus* is distinguishable from *X. grandineus* by its poroid hymenial surface with angular pores (2–4 per mm) and absent cystidia [28]. *Xylodon vesiculosus* can be delimited from *X. grandineus* by its membranaceous basidiomata with an odontioid hymenial surface and larger basidiospores (5.3–6.3 × 3–4 μm) [14].

Xylodon punctus is similar to *X. acystidiatus* Xue W. Wang and L.W. Zhou, *X. gossypinus* C.L. Zhao and K.Y. Luo, *X. montanus* C.L. Zhao, and *X. nudisetus* (Warcup and P.H.B. Talbot) Hjortstam and Ryvarden in having a smooth hymenial surface. However, *Xylodon acystidiatus* differs from *X. punctus* by having brittle basidiomata with a cracked hymenial surface and larger basidiospores (4.7–5.3 × 2.7–3.7 μm) [41]. *Xylodon gossypinus* differs from *X. punctus* in its cotton hymenial surface and wider basidiospores (3.5–5.5 × 2.5–4 μm) [40].

Xylodon montanus can be delimited from *X. punctus* by its absence of a speckled distribution on the hymenial surface and wider basidiospores (3.9–5.3 × 3.2–4.3 μm) [43]. *Xylodon nudisetus* differs from *X. punctus* in having larger basidiospores (4.5–6 × 3–4.5 μm) [4].

Xylodon punctus resembles *X. bambusinus* C.L. Zhao and X. Ma; *X. mussooriensis* Samita, Sanyal and Dhingra ex L.W. Zhou and T.W. May; *X. rhododendricola* Xue W. Wang and L.W. Zhou; *X. pruinosus* (Bres.) Spiran and Viner; and *X. ussuriensis* Viner in having ellipsoid to broad ellipsoid basidiospores. However, *Xylodon bambusinus* is distinguished from *X. punctus* by its ceraceous basidiomata with a grandinoid hymenial surface and larger basidiospores (4–5 × 2.6–3.7 μm) [52]. *Xylodon ussuriensis* differs from *X. punctus* by the presence of an odontioid hymenial surface and larger basidiospores (5.2–5.8 × 3.1–3.5 μm) [41]. *Xylodon rhododendricola* differs from *X. punctus* in having an odontioid hymenial surface and larger basidiospores (4.8–6.5 × 3.8–5.1 μm) [41]. *Xylodon pruinosus* differs from *X. punctus* in having a grandinoid to odontioid hymenial surface with greyish-white or pale cream-colored and larger, clearly thick-walled basidiospores (4.5–5.9 × 3.7–4.8 μm) [36]. *Xylodon ussuriensis* is distinguished from *X. punctus* by its grandinoid to odontioid hymenial surface with larger, pale ochraceous, and clearly thick-walled basidiospores (5.1–6 × 3.8–4.6 μm) [36].

Xylodon wenshanensis is similar to *X. laceratus*, *X. macrosporus*, *X. sinensis*, *X. victoriensis* Xue W. Wang and L.W. Zhou, and *X. yarraensis* Xue W. Wang and L.W. Zhou in having a grandinoid hymenial surface. However, *Xylodon laceratus* is distinguished from *X. wenshanensis* by its capitate cystidia (15.4–24.7 × 3.8–4.7 μm) and fusiform cystidia (20.3–26.8 × 5.3–6.4 μm) [43]. *Xylodon macrosporus* is differentiated from *X. wenshanensis* in having three types cystidia and larger, thick-walled basidiospores (8–10.5 × 7.5–9 μm) [40]. *Xylodon sinensis* differs from *X. wenshanensis* in its fusiform cystidia (10–21 × 3–6 μm) and subglobose basidiospores (3–5 × 2.5–4 μm) [40]. *Xylodon victoriensis* can be delimited from *X. wenshanensis* by its brittle basidiomata with a cracked hymenophore, leptocystidia (30–40 × 4.5–5 μm), and globose to subglobose basidiospores (3.8–4.6 × 3.2–3.7 μm) [41]. *Xylodon yarraensis* is different from *X. wenshanensis* in its cracked and brittle basidiomata and capitate cystidia (25–30 × 2.5–3.5 μm) [41].

Xylodon wenshanensis resembles *X. asper* (Fr.) Hjortstam and Ryvarden; *X. flaviporus* (Berk. and M.A. Curtis ex Cooke) Riebesehl and Langer; *X. ovisporus* (Corner) Riebesehl and Langer; *X. pseudolanatus* Nakasone, Yurchenko and Riebesehl; and *X. rimosissimus* (Peck) Hjortstam and Ryvarden in having capitate cystidia. However, *Xylodon asper* is different from *X. wenshanensis* in having an odontioid hymenial surface with scattered aculei and larger basidiospores (5–6 × 3.5–4 μm) [4]. *Xylodon flaviporus* is distinguished from *X. wenshanensis* by its poroid hymenial surface with deep pores (up to 2 mm) and a pseudodimitic hyphal system [15]. *Xylodon ovisporus* is differentiated from *X. wenshanensis* by having a poroid hymenophore with pinkish-cream or buff hymenial surface [19]. *Xylodon
7. Dai, Y.C.; Cui, B.K.; Si, J.; He, S.H.; Hyde, K.D.; Yuan, H.S.; Liu, X.Y.; Zhou, L.W. Dynamics of the worldwide number of fungi

6. Ryvarden, L.; Melo, I. Poroid Fungi of Europe

Mycoscience

5. Dai, Y.C. Polypore diversity in China with an annotated checklist of Chinese polypores.

8. Wu, F.; Yuan, H.S.; Zhou, L.W.; Yuan, Y.; Cui, B.K.; Dai, Y.C. Polypore diversity in South China.

Mycosystema

4. Bernicchia, A.; Gorján, S.P.

3. N.2. Gilbertson, R.L.; Ryvarden, L.

North American Polypores 1–2

2. Gilbertson, R.L.; Ryvarden, L. North American Polypores 1–2; Fungiflora: Oslo, Norway, 1987; pp. 1–433.

1. Tedersoo, L.; Bahram, M.; Põlme, S.; Koljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [CrossRef]

2. Gilbertson, R.L.; Ryvarden, L. North American Polypores 1–2; Fungiflora: Oslo, Norway, 1987; pp. 1–433.

1. Tedersoo, L.; Bahram, M.; Põlme, S.; Koljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [CrossRef]

Yurchenko, E.; Riebesehl, J.; Langer, E. Hypodendron s.l. (Hymenochaetales, Basidiomycota): 35 new combinations and new keys to all 120 current species. Mycol. Prog. 2017, 16, 533–564. [CrossRef]

13. Yurchenko, E.; Riebesehl, J.; Langer, E. Clarification of Lyomyces sambuci complex with the descriptions of four new species. Mycol. Prog. 2017, 16, 865–876. [CrossRef]
14. Riebesehl, J.; Yurchenko, E.; Nakasone, K.K.; Langer, E. Phylogenetic and morphological studies in XyloDon (Hymenochaetales, Basidiomycota) with the addition of four new species. *MycoKeys* 2019, 47, 97–137. [CrossRef]

15. Langer, E. *Die Gattung Hyphodontia John Eriksson*; Bibliotheca Mycologica; Schweizerbart Science Publishers: Stuttgart, Germany, 1994; Volume 154, 286p.

16. James, T.Y.; Stajich, J.E.; Hittinger, C.T.; Rokas, A. Toward a fully resolved fungal tree of life. *Annu. Rev. Microbiol.* 2020, 74, 291–313. [CrossRef]

17. Gray, S.F. *A Natural Arrangement of British Plants*; Ferra Jeune: Paris, France, 1826; 674p.

18. Wu, S.H. *The Corticiaceae (Basidiomycetes) Subfamilies Phlebiaeidae, Phanerochaetaceae and Hyphodermaeidae in Taiwan*; Finnish Botanical Pub. Board.: Helsinki, Finland, 1990; Volume 142, 123p.

19. Wu, S.H. Studies on *Schizopora flavipora* s.l., with special emphasis on specimens from Taiwan. *Mycotaxon* 2000, 76, 51–66.

20. Wu, S.H. Three new species of *Hyphodontia* with poroid hymenial surface. *Mycologia* 2001, 93, 1019–1025. [CrossRef]

21. Wu, S.H. *Hyphodontia tabuliformis*, a new species from Taiwan. *Mycotaxon* 2006, 95, 185–188.

22. Xiong, H.X.; Dai, Y.C.; Wu, S.H. Three new species of *Hyphodontia* from Taiwan. *Mycol. Prog.* 2009, 8, 165–169. [CrossRef]

23. Xiong, H.X.; Dai, Y.C.; Wu, S.H. Two new species of *Hyphodontia* from China. *Mycolgia* 2010, 102, 918–922. [CrossRef]

24. Lee, I.S.; Langer, E. New records of *Hyphodontia* species from Taiwan. *Nova Hedwig.* 2012, 94, 239–244. [CrossRef]

25. Yurchenko, E.; Xiong, H.X.; Wu, S.H. Four new species of *Hyphodontia* (*XyloDon s.s.*). Hjortstam & Ryvarden, Basidiomycota) from Taiwan. *Nova Hedwig.* 2013, 96, 545–558. [CrossRef]

26. Yurchenko, E.; Wu, S.H. *Hyphoderma formosanum* sp. nov. (Meruliaceae, Basidiomycota) from Taiwan. *Sydowia* 2014, 66, 19–23.

27. Zhao, C.L.; Cui, B.K.; Dai, Y.C. Morphological and molecular identification of two new species of *Hyphodontia* (Schizoporaceae, Hymenochaetales) from southern China. *Cryptogam. Mycol.* 2014, 35, 87–97. [CrossRef]

28. Chen, J.J.; Zhou, L.W.; Ji, X.H.; Zhao, C.L. *Hyphodontia dimitica* and *H. subefibulata* spp. nov. (Schizoporaceae, Hymenochaetales) from southern China based on morphological and molecular characters. *Phytophata* 2016, 269, 1–13. [CrossRef]

29. Chen, C.C.; Wu, S.H.; Chen, C.Y. *XyloDon subflaviporus* sp. nov. (Hymenochaetales, Basidiomycota) from East Asia. *Mycoscience* 2018, 59, 343–352. [CrossRef]

30. Kan, Y.H.; Gafforov, Y.; Li, T.; Zhou, L.W. *Hyphodontia zhixianii* sp. nov. (Schizoporaceae, Basidiomycota) from Uzbekistan. *Phytophata* 2017, 299, 273–279. [CrossRef]

31. Kan, Y.H.; Qin, W.M.; Zhou, L.W. *Hyphodontia mollissima* sp. nov. (Schizoporaceae, Hymenochaetales) from Hainan, southern China. *Mycoscience* 2017, 58, 297–301. [CrossRef]

32. Wang, M.; Chen, Y.Y. Phylology and taxonomy of the genus *Hyphodontia* (Hymenochaetales, Basidiomycota) in China. *Phytophata* 2017, 309, 45–54. [CrossRef]

33. Shi, Z.W.; Wang, X.W.; Zhou, L.W.; Zhao, C.L. *XyloDon kunmingensis* sp. nov. (Hymenochaetales, Basidiomycota) from southern China. *Mycoscience* 2019, 60, 184–188. [CrossRef]

34. Hjortstam, K.; Ryvarden, L. A checklist of names in *Hyphodontia* sensu stricto sensu lato and *Schizopora* with new combinations in *Lagarobasidium, Lyomyces, Kneiffiella, Schizopora*, and *XyloDon*. *Syn. Fungorum* 2009, 26, 33–55.

35. Kuntze, O.I. *Revisio Generum Plantarum*; A. Felix: Leipzig, Germany, 1898; 576p.

36. Viner, I.; Spirin, V.; Zibarová, L.; Larsson, K.H. Additions to the taxonomy of *Lagarobasidium* and *XyloDon* (Hymenochaetales, Basidiomycota). *Mycokeys* 2018, 41, 65–90. [CrossRef]

37. Hjortstam, K.; Ryvarden, L. Studies in corticioid fungi from Venezuela III (Basidiomycotina, Aphylloraphalae). *Syn. Fungorum* 2007, 23, 56–107.

38. Chevallier, F.F. *Flore Générale des Environ de Paris*; Ferra Jeune: Paris, France, 1826; 674p.

39. Tura, D.A.; Zmitrovich, I.V.; Wasser, S.P.; Spirin, W.A.; Nevo, E. *Biodiversity of the Heterobasidiomycetes and Non-Gilled Hymenomycetes (Former Aphylloraphalae)* of Israel; ARA Gantner Verlag K-G: Ruggell, Liechtenstein, 2011; 566p.

40. Luo, K.Y.; Qu, M.H.; Zhao, C.L. Additions to the knowledge of corticioid *XyloDon* (Schizoporaceae, Hymenochaetales): Introducing three new *XyloDon* species from southern China. *Diversity* 2021, 13, 581. [CrossRef]

41. Wang, X.W.; May, T.W.; Liu, S.L.; Zhou, L.W. Towards a Natural Classification of *Hyphodontia* Sensu Lato and the Trait Evolution of Basidiocarps within Hymenochaetales (Basidiomycota). *J. Fungi* 2021, 7, 478. [PubMed]

42. Viner, I.; Bortnikov, F.; Ryvarden, L.; Miettinen, O. On six African species of *Lyomyces* and *XyloDon*. *Fungal Syst. Evol.* 2021, 8, 163–178. [CrossRef] [PubMed]

43. Qu, M.H.; Wang, D.Q.; Zhao, C.L. A phylogenetic and taxonomic study on *XyloDon* (Hymenochaetales): Focusing on three new *XyloDon* species from southern China. *J. Fungi* 2022, 8, 35. [CrossRef] [PubMed]

44. Petersen, J.H. Farvekort. In *The Danish Mycological Society’s Colour-Chart*; Foreningen til Svampekundskabens Fremme: Greve, Germany, 1996; pp. 1–6.

45. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR Protoc. A Guide Methods Appl.* 1990, 18, 315–322. [CrossRef]

46. Yurchenko, E.; Riebesehl, J.; Langer, E.J. *Fasciodontia* gen. nov. (Hymenochaetales, Basidiomycota) and the taxonomic status of *Devidontia*. *Mycol. Prog.* 2020, 19, 171–184. [CrossRef]

47. Luo, K.Y.; Zhao, C.L. *Fasciodontia yunnanensis* (Schizoporaceae, Hymenochaetales), a new species from southern China. *Ann. Bot. Fenn.* 2021, 58, 259–266. [CrossRef]
48. He, S.H.; Li, H.J. *Pseudochaete latesetosa* and *P. subrigidula* spp. nov. (Hymenochaetales, Basidiomycota) from China based on morphological and molecular characters. *Mycol. Prog.* 2013, 12, 331–339. [CrossRef]

49. Larsson, K.H. Re-thinking the classification of corticioid fungi. *Mycol. Res.* 2007, 111, 1040–1063. [CrossRef]

50. Chen, J.Z.; Zhao, C.L. Morphological and molecular identification of four new resupinate species of *Lysomyces* (Hymenochaetales) from southern China. *MycoKeys* 2020, 65, 101–118. [CrossRef]

51. Larsson, K.H.; Larsson, E.; Köljalg, U. High phylogenetic diversity among corticioid homobasidiomycetes. *Mycol. Res.* 2004, 108, 983–1002. [CrossRef] [PubMed]

52. Ma, X.; Zhao, C.L. *Xylodon bumbusinus* and *X. xinpingensis* spp. nov. (Hymenochaetales) from southern China. *Phytotaxa* 2021, 511, 231–247. [CrossRef]

53. Paulus, B.; Hallenberg, N.; Buchanan, P.K.; Chambers, G.K. A phylogenetic study of the genus *Schizopora* (Basidiomycota) based on ITS DNA sequences. *Mycol. Res.* 2000, 104, 1155–1163. [CrossRef]

54. Vu, D.; Groenewald, M.; de Vries, M.; Gehrmann, T.; de Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Nord, G.; Lopez-Moya, F.; Chuina, E.; Ibañez-Vea, M.; Garde, E.; Lindebrand, U.; Hjortstam, K.; Ryvarden, L.; Itturiaga, T. Studies in corticioid fungi from Venezuela II (Basidiomycotina, Aphyllophorales). *Stud. Mycol.* 2019, 1040–1063. [CrossRef] [PubMed]

55. Larsson, K.H.; Parmasto, E.; Fischer, M.; Langer, E.; Nakasone, K.K.; Redhead, S.A. Hymenochaetales: A molecular phylogeny for the hymenochaetoid clade. *Mycolologia* 2006, 98, 926–936. [CrossRef] [PubMed]

56. Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. *Briefings Bioinf.* 2019, 20, 1160–1166. [CrossRef] [PubMed]

57. Larsson, A. AllView: A fast and lightweight alignment viewer and editor for large data sets. *Bioinformatics* 2014, 30, 3276–3278. [CrossRef]

58. Zhao, C.L.; Wu, Z.Q. *Ceriporiopsis kunmingensis* sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. *Mycol. Prog.* 2017, 16, 93–100. [CrossRef]

59. Swofford, D.L. *PAUP* *+: Phylogenetic Analysis Using Parsimony (*and Other Methods)*; Version 4.0b10; Sinauer Associates: Sunderland, MA, USA, 2002.

60. Felsenstein, J. Confidence intervals on phylogenetics: An approach using bootstrap. *Evolution* 1985, 39, 783–791. [CrossRef]

61. Miller, M.A.; Pfeiffer, W.; Schwartz, T. The CIPRES science gateway. In Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the Extreme to the Campus and Beyond, Chicago, IL, USA, 16–20 July 2012; p. 39. [CrossRef]

62. Nylander, J.A.A. MrModeltest v2. *Program Distributed by the Author*; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004.

63. Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 2012, 61, 539–542. [CrossRef]

64. Hjortstam, K.; Ryvarden, L. Studies in tropical Corticiaceae (Basidiomycetes). II. *Mycotaxon* 1980, 12, 168–184.

65. Liu, S.L.; He, S.H.; Liu, D.M.; Zhou, L.W. Two new species of *Fibrodontia* (Trechisporales, Basidiomycota) with a key to worldwide species. *J. Fungi* 2021, 7, 982. [CrossRef] [PubMed]

66. Wu, F.; Tothiriap, A.; Fan, L.F.; Zhou, L.W.; Alvarenga, R.L.M.; Gibertoni, T.B.; Dai, Y.C. Global diversity and updated phylogeny of *Auricularia* (Auriculariales, Basidiomycota). *J. Fungi* 2021, 7, 933. [CrossRef] [PubMed]

67. Zhou, M.; Dai, Y.C.; Vlasák, J.; Yuan, Y. Molecular phylogeny and global diversity of the genus *Haploporus* (Polyporales, Basidiomycota). *J. Fungi* 2021, 7, 96. [CrossRef] [PubMed]

68. Pérez, G.; Lopez-Moya, F.; Chuina, E.; Ibañez-Vea, M.; Garde, E.; López-Llorca, L.V.; Pisanaro, A.G.; Ramirez, L. Strain degeneration in *Pleurotus ostreatus*: A genotype dependent oxidative stress process which triggers oxidative stress, cellular detoxifying and cell wallreshaping genes. *J. Fungi* 2021, 7, 862. [CrossRef] [PubMed]

69. Heeger, F.; Bourne, E.C.; Wurbacher, C.; Funke, E.; Lipzen, A.; He, G.; Ng, V.; Grigoriev, I.V.; Schlosser, D.; Monaghan, M.T. Evidence for lignocellulose-decomposing enzymes in the genome and transcriptome of the aquatic Hyphomycete *Clavariopsis aquatica*. *J. Fungi* 2021, 7, 854. [CrossRef]

70. Bresadola, G. Selecta mycologica. *Ann. Mycol.* 1920, 18, 26–70.

71. Greslebin, A.G.; Rajchenberg, M. The genus *Hyphodontia* in the Patagonian Andes forest of Argentina. *Mycolologia* 2000, 92, 1155–1165. [CrossRef]

72. Kotiranta, H.; Saarenkosna, R. Three new species of *Hyphodontia* (Corticiaceae). *Ann. Bot. Fenn.* 2000, 37, 255–278.

73. Boidin, J.; Gilles, G. Homobasidiomycètes Aphyllorophales non porés à basides dominantes à 2 (3) stérigmatiques. *Bull. Trimest. Soc. Mycol. Fr.* 2003, 119, 1–17.

74. Burdsall, H.H.; Nakasone, K.K.; Freeman, G.W. New species of *Gloeocystidiellum* (Corticiaceae) from the southeastern United-States. *Syst. Bot.* 1981, 6, 422–434. [CrossRef]

75. Nordén, B.; Appelquist, T.; Lindahl, B.; Henningson, M. Cubic rot fungi–corticioid fungi in highly brown rotted spruce stumps. *Mycol. Helv.* 1999, 10, 13–24.

76. Hjortstam, K.; Ryvarden, L.; Itturiaga, T. Studies in corticioid fungi from Venezuela II (Basidiomycotina, Aphyllorophales). *Synt. Fungorum* 2005, 20, 42–78.
77. Jo, J.W.; Kwag, Y.N.; Kim, N.K.; Oh, S.O.; Kim, C.S. A-33: Newly recorded macrofungal species (Xyloodon flaviporus) in Dokdo, Republic of Korea. KSM NewsL. 2018, 30, 83.

78. Yurkov, A.; Wehde, T.; Kahl, T.; Begerow, D. Aboveground deadwood deposition supports development of soil yeasts. Diversity 2012, 4, 453–474. [CrossRef]

79. Girometta, C.E.; Bernicchia, A.; Baiguera, R.M.; Bracco, F.; Buratti, S.; Cartabia, M.; Picco, A.M.; Savino, E. An italian research culture collection of wood decay fungi. Diversity 2020, 12, 58. [CrossRef]

80. Van Bael, S.A. Fungal diversity. Diversity 2020, 12, 437. [CrossRef]

81. Ogura-Tsujita, Y.; Tetsuka, K.; Tagane, S.; Kubota, M.; Anan, S.; Yamashita, Y.; Tone, K.; Yukawa, T. Differing life-history strategies of two mycoheterotrophic orchid species associated with leaf litter- and wood-decaying fungi. Diversity 2021, 13, 161. [CrossRef]

82. Miettinen, O.; Spirin, V.; Vlasik, J.; Rivoire, B.; Stenroos, S.; Hibbett, D. Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota). MycoKeys 2016, 17, 1–46. [CrossRef]

83. Gafforov, Y.; Riebesehl, J.; Ordynets, A.; Langer, E.; Yarasheva, M.; Ghobad-Nejhad, M.; Zhou, L.W.; Wang, X.W.; Gugliotta, A.D.M. Hyphodontia (Hymenochaetales, Basidiomycota) and similar taxa from Central Asia. Botany 2017, 95, 1041–1056. [CrossRef]

84. Langer, E. Bemerkenswerte Pilze aus dem Nationalpark Bayerischer Wald: Schizopora bresinskyi sp. nov. Hoppea 2000, 61, 229–235.