ARTICLE

Restriction of memory B cell differentiation at the germinal center B cell positive selection stage

Amparo Toboso-Navasa1, Arief Gunawan1*, Giulia Morlino1*, Rinako Nakagawa1, Andrea Taddei1, Djamil Damry1, Yash Patel2*, Probir Chakravarty3, Martin Janz2, George Kassiotis2, Robert Brink1*, Martin Eilers4, and Dinis Pedro Calado1,7

Memory B cells (MBCs) are key for protection from reinfection. However, it is mechanistically unclear how germinal center (GC) B cells differentiate into MBCs. MYC is transiently induced in cells fated for GC expansion and plasma cell (PC) formation, so-called positively selected GC B cells. We found that these cells coexpressed MYC and MIZ1 (MYC-interacting zinc-finger protein 1 [ZBTB17]). MYC and MIZ1 are transcriptional activators; however, they form a transcriptional repressor complex that represses MIZ1 target genes. Mice lacking MYC–MIZ1 complexes displayed impaired cell cycle entry of positively selected GC B cells and reduced GC B cell expansion and PC formation. Notably, absence of MYC–MIZ1 complexes in positively selected GC B cells led to a gene expression profile alike that of MBCs and increased MBC differentiation. Thus, at the GC positive selection stage, MYC–MIZ1 complexes are required for effective GC expansion and PC formation and to restrict MBC differentiation. We propose that MYC and MIZ1 form a module that regulates GC B cell fate.

Introduction

The germinal center (GC) is an antigen- and T cell-dependent reaction in which B cells undergo affinity maturation and differentiation (De Silva and Klein, 2015; Victora and Nussenzweig, 2012). In GCs, B cells cyclically migrate between an area called the dark zone (DZ), which is enriched for proliferating cells and where somatic hypermutation occurs, and an area called the light zone (LZ), in which B cells retrieve antigen from follicular (FO) dendritic cells (FDCs) through their B cell receptor (BCR) and present that antigen to T cells (Allen et al., 2004; Kepler and Perelson, 1993; Victora et al., 2010). T cell help, including CD40L–CD40 engagement, positively selects a fraction (~5–20%) of LZ B cells, and our work and that of others showed that positive selection critically involves induction of MYC to license cell cycle entry, after which cells migrate back to the DZ, leading to GC expansion (Calado et al., 2012; Dominguez-Sola et al., 2012; Finkin et al., 2019; Luo et al., 2018; Schwickert et al., 2011). More recently, it was shown that positively selected LZ B cells (LZ MYC+ cells) are further composed of plasma cell (PC) precursors and that these also express Myc (Ise et al., 2018). In addition to expansion in the GC and PC differentiation, LZ B cells also differentiate into memory B cells (MBCs). MBCs are key for long-term protection from reinfection, but how their fate is specified is poorly understood. MBC differentiation was thought to be an unregulated process (Inoue et al., 2018; Smith et al., 2000). Studies have shown, however, that MBCs have, in general, lower antigen affinity compared with LZ B cells fated for GC expansion and PC differentiation (De Silva and Klein, 2015; Shinnakasu et al., 2016; Weisel et al., 2016). Recently, it was found that LZ B cells expressing high levels of the gene encoding the transcription factor BACH2 are favored for MBC differentiation (Shinnakasu et al., 2016) and that quiescent LZ B cells are enriched for MBC precursors (Laidlaw et al., 2017; Suan et al., 2017; Wang et al., 2017). MYC is critically required for cell cycle entry of LZ MYC+ cells, and these cells are primarily fated for GC expansion and PC differentiation (Calado et al., 2012; Dominguez-Sola et al., 2012; Ise et al., 2018). We therefore raised the question whether MYC activity in LZ MYC+ cells restricts MBC differentiation.

In human cancers, MYC and the transcription activator MIZ1 (MYC-interacting zinc-finger protein 1 [ZBTB17]) can form a protein complex that represses the expression of MIZ1 target genes, most notably cyclin-dependent kinase inhibitor genes such as CDKNIA (Conacci-Sorrell et al., 2014; Peukert et al., 1997; Wiese et al., 2013). Mechanistically, MYC displaces MIZ1 complexes from these target genes and releases them from repression by MIZ1. However, the involvement of MYC and MIZ1 complexes in GC B cell differentiation at the positive selection stage is unknown; as such, revealing the functional differences between MYC and MIZ1 complexes in the GC B cell fate may provide new targets to inhibit MBC differentiation.

© 2020 The Francis Crick Institute. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
coactivators EP300 and NPM1, converting MIZ1 from a transcriptional activator to a transcriptional repressor (Staller et al., 2001; Walz et al., 2014; Wanzel et al., 2008). Currently, the functions of MYC–MIZ1 complexes in physiology remain undefined (Wiese et al., 2013). However, given that quiescent LZ B cells are enriched for MBC precursors (Laidlaw et al., 2017; Suan et al., 2017; Wang et al., 2017) and that MYC–MIZ1 complexes regulate cell cycle, we hypothesized that MYC–MIZ1 complex activity regulates MBC differentiation.

We found that at the positive selection stage GC B cells mostly coexpress MYC and MIZ1. The absence of MYC–MIZ1 complexes impaired cell cycle entry of LZ MYC+ cells, reducing GC expansion in a CDKN1A-independent manner, and interfered with PC formation. Notably, derepression of MIZ1 target genes led to a gene expression profile (GEP) alike that of MBCs, and mice lacking MYC–MIZ1 complexes had increased MBC differentiation. We propose that the transcription factors MYC and MIZ1 form a module that regulates the fate of positively selected GC B cells.

Results

Positively selected GC B cells mostly coexpress MYC and MIZ1

We first assessed the expression of MIZ1 in GC B cell subpopulations, including LZ MYC+ cells, using publicly available data (Chou et al., 2016). In contrast to Myc, which was strongly induced in LZ MYC+ cells, the expression of MIZ1 in these cells was similar to that of LZ B cells negative for MYC (LZ MYCneg cells; Fig. S1 A). Next, we performed immunofluorescence of spleens of wild-type mice at 10 d after immunization with sheep RBCs (SRBCs) and delineated GCs (IgDneg), DZ and LZ (FDC depleted and enriched, respectively), and MYC expression to identify positively selected GC B cells. We found MIZ1 to be mostly coexpressed with MYC (Fig. 1, A and B). Collectively, these data indicated that MIZ1 expression is primarily regulated at a postranscriptional level. MYC expression in GC B cells is synergistically induced by BCR and CD40 coengagement (Fig. S1 B; Luo et al., 2018). However, we found that BCR and CD40 coengagement was insufficient to induce MIZ1 expression in GC B cells stimulated in vitro (Fig. S1, C and D). Thus, although MYC and MIZ1 coexpression occurs in LZ MYC+ cells, the requirements for their induction are not identical.

MIZ1 target genes are up-regulated in the absence of MYC–MIZ1 complexes

To investigate if MIZ1 target genes are regulated by MYC–MIZ1 complexes in positively selected GC B cells, we used a genetically modified mouse strain (MycVD) that carries a MYC mutant encoded at the endogenous Myc locus (Herold et al., 2002; Saba et al., 2011). In these mice, replacement of a valine at position 394 by aspartic acid (V394D, MycVD) abrogates MYC–MIZ1 interaction without interfering with the binding of MYC to its obligatory partner, MAX, and hence MYC transcriptional activation (Fig. 2 A; Herold et al., 2002; Saba et al., 2011; Walz et al., 2014). We first investigated the expression of MYC in MycVD. We immunized MycVD and wild-type mice (MycWT) with SRBC and determined 10 d later the fraction of LZ MYC+ cells using intracellular staining and flow cytometry. MycVD contained a slight but significantly increased fraction of LZ MYC+ cells compared with MycWT (Fig. 2, B and C), whereas MYC expression levels were identical between genotypes (Fig. 2 D). Thus, the absence of MYC–MIZ1 complexes did not impair the induction of MYC nor its expression level.

To investigate if the absence of MYC–MIZ1 complexes altered gene expression we FACS-purified LZ B cells of MycVD and MycWT and performed RNA sequencing (RNA-seq) followed by bioinformatic analysis. We first asked whether the GEP of LZ MYC+ cells was altered in the absence of MYC–MIZ1 complexes. For that, we used publicly available RNA-seq datasets (Chou et al., 2016) and generated signatures of genes down-regulated (LZ MYC+ vs. LZ MYCneg DOWN) or up-regulated (LZ MYC+ vs. LZ MYCneg UP) in LZ MYC+ compared with LZ MYCneg cells. Using gene set enrichment analysis (GSEA), we found that the MycVD LZ GEP was significantly enriched for the “LZ MYC+ vs. LZ MYCneg DOWN” gene signature and that the MycWT LZ GEP was significantly enriched for the “LZ MYC+ vs. LZ MYCneg UP” gene signature (Fig. 2 E). These data indicated that the absence of MYC–MIZ1 complexes in LZ MYC+ cells profoundly altered their GEP, possibly due to the up-regulation of MIZ1 target genes repressed by MYC–MIZ1 complexes in those cells.

To identify differentially expressed genes between LZ MycVD and LZ MycWT that are direct targets of MYC–MIZ1 complexes, we generated and analyzed MYC and MIZ1 chromatin immunoprecipitation sequencing (ChIP-seq) in mouse B cells. In agreement with the absence of the repressive activity of MYC–MIZ1 complexes, the LZ MycVD GEP was significantly enriched for the expression of MIZ1 target genes that are bound by MYC compared with MycWT (Fig. 2 F). We found 60 MIZ1 target genes bound by MYC that were significantly up-regulated in the LZ of MycVD compared with that of MycWT (Fig. S1 E). A fraction of these genes (21 genes) enriched for the Gene Ontology (GO) biological processes related to signal transduction, response to stress, homeostasis, and gene expression (Fig. 2 G). These included genes encoding known tumor suppressors, namely *Arhaqt*, a RhoA-specific guanine nucleotide exchange factor frequently lost in GC B cell–derived lymphomas (Muppidi et al., 2014); the cytokine-regulated Gadd45g, required in hematopoietic stem cell differentiation and lineage selection (Lu et al., 2001; Thalheimer et al., 2014); and the U3 ubiquitin ligase Shzb3 that regulates JAK2 stability, which is frequently lost in acute lymphoblastic leukemia (Lv et al., 2017; Perez-Garcia et al., 2013). Genes involved in signal transduction included *Itpr1*, a Ca2+ channel required for normal B cell development and function (Tang et al., 2017); *Map2k7*, which directly activates c-JUN and is known to have an antiproliferative activity in B cells (Sasaki et al., 2001; Tournier et al., 1997); the AKT substrate Aktf1, which negatively regulates mTOR activity (Sancak et al., 2007); and Vav2, which is critical for humoral immune responses and B cell maturation (Doody et al., 2001). Genes involved in gene expression included *Myh9*, which regulates BCR-mediated antigen acquisition and B cell activation (Hoogeboom et al., 2018); and multiple transcription factors, including *Bcl11a*, which is essential for B cell development and repressed by BLIMP1 during PC differentiation (Minnich et al., 2016; Yu et al.,...
Rela, which was shown to be required for GC-derived PC formation and more recently also for MBC differentiation (Heise et al., 2014; Koike et al., 2019); and Mafk, which encodes for the transcription factor MAFK with which BACH2 heterodimerizes to bind target genes in B cells (Huang et al., 2014; Oyake et al., 1996). In summary, we found increased expression of multiple MIZ1 target genes in the absence of MYC–MIZ1 complexes. These data, together with the described expression pattern of MYC and MIZ1 (Fig. 1), supported a role for MYC–MIZ1 complexes in LZ MYC+ cells.

MYC–MIZ1 complexes are required for cell cycle entry of LZ B cells

We next tested whether MYC–MIZ1 complexes have a role in the GC reaction at the cell population level. MycVD had smaller spleens compared with MycWT; however, the proportion of mature B cells was identical between genotypes (Fig. S1 F). 10 d after SRBC immunization, we observed a significant reduction in the fraction and number of GC B cells in MycVD compared with MycWT (Fig. 3, A and B). Histological analysis showed a significant reduction in the size of GC clusters in MycVD compared with MycWT (Fig. 3, C and D). However, the number of GC foci was identical between genotypes (Fig. 3 D). We also observed a small but significant increase in the LZ/DZ proportion in MycVD compared with MycWT (Fig. 3, E and F), whereas the proportion of IgG1- and IgM-expressing GC B cells was similar between genotypes (Fig. S1 F). These data showed that MYC–MIZ1 complexes were required for GC expansion, but not GC formation. In agreement, analysis of an earlier time-point after SRBC immunization (day 5), when GC clusters are formed but before massive expansion (Calado et al., 2012), MycVD and MycWT displayed a similar fraction of GC B cells (Fig. 3 G). In accordance with the knowledge that LZ MYC+ cells contain PC precursors we found a reduced fraction and number of PCs in MycVD, which was proportional to the reduction observed for GC B cells (Fig. S1 G–I). These phenotypes did not seem to arise because of impaired T cell help. First, MYC expression levels, which are in part regulated by CD40 signaling (Luo et al., 2018), were similar between genotypes (Fig. 2, B–D). Second, the number of PD1high CXCR5high CD4+ T cells, which mostly represents GC T FO helper cells (Tfh cells), was proportional to that of GC B cells in MycVD and MycWT (Fig. S1, J and K). And third, genes up-regulated by CD40 signaling were found to be enriched in the MycVD LZ GEP compared with MycWT (Fig. S1 L).

We next tested whether absence of MYC–MIZ1 complexes had an impact on the survival of GC B cells. However, we did not observe statistically significant differences in apoptosis between genotypes, although a trend toward a reduced fraction of active caspase 3+ cells was noticeable in the LZ of MycVD compared with MycWT (Fig. 3 H). Suggesting an altered cell cycle profile, GSEA of the GO term “CELL_CYCLE_ARREST” gene signature revealed a significant enrichment in the MycVD LZ GEP compared with MycWT (Fig. 3 I). To determine whether the activity of MYC–MIZ1 complexes was required for the cell...
cycle of GC B cells, we performed 5-ethyl-2'-deoxyuridine (EdU) pulse experiments. We found impaired cell cycle engagement of MycVD LZ B cells compared with MycWT, whereas the fraction of DZ cells engaged in cell cycle was identical between genotypes (Fig. 3, J and K). The cell cycle defect was not evident for the fraction of DZ B cells engaged in cell cycle was identical between genotypes (Fig. 3, L and M). We also did not observe altered expression of cyclin genes Ccnd2 (a target of MYC; Bouchard et al., 1999; Calado et al., 2012) and Ccnd3 in the absence of MYC–MIZ1 complexes (Cato et al., 2011; Peled et al., 2010; Fig. S2 A). Notably, the expression of the MIZ1 target genes Cdkn1a, Cdkn2a, and Cdkn2b, known to be repressed by MYC–MIZ1 complexes in cancer cells (Walz et al., 2014), were also similar between the LZ of MycVD and MycWT (Fig. S2 B). In agreement, ablation of Cdkn1a was insufficient to rescue the MycVD phenotype (Fig. 4, A–D), including the cell cycle defect of LZ B cells (Fig. 4 E). The expression of Cdknb1 was, however, increased in the LZ of MycVD compared with that of MycWT (Fig. S2 C), but neither we (Fig. S1 E) nor others (Walz et al., 2014) identified Cdknb1 as a direct MIZ1 target.

We next asked if the absence of MYC–MIZ1 complexes similarly altered the cell cycle of non-GC B cells in vitro. We first tested whether stimulation of naive B cells, including BCR and CD40 coengagement, induced MIZ1. Whereas MYC expression was already increased at 4 h after stimuli (Luo et al., 2018), MIZ1 expression was only increased after 16 h (Fig. S2, D and E). The absence of MYC–MIZ1 complexes did not significantly impact cell proliferation of in vitro-activated naive cells (Fig. S2 F). We next determined the expression of MYC and MIZ1 at the very early stages of the (pre-)GC reaction. Contrary to positively selected B cells in mature GCs, coexpression of MYC and MIZ1 was seldom observed in (pre-)GC B cells (Fig. S2, G–I). Overall these data indicated that the requirements for MIZ1 induction varied according to B cell stage and that MYC–MIZ1 complexes played a function in GC B cell expansion rather than formation. Specifically, in LZ MYC+ cells the absence of MYC–MIZ1 complexes dissociated MYC expression from cell cycle engagement.

MIIZ1 target genes are enriched in MBCs

The impaired cell cycle engagement of LZ MYC+ cells of MycVD and the knowledge that MBC precursors are found within quiescent LZ B cells (Laidlaw et al., 2017; Suan et al., 2017; Wang et al., 2017) led us to investigated if the LZ MycVD GEP displayed a gene signature, whereas the LZ -MIZ1 complexes did not significantly impact cell proliferation of in vitro-activated naive cells (Fig. S2 F). We next determined the expression of MYC and MIZ1 at the very early stages of the (pre-)GC reaction. Contrary to positively selected B cells in mature GCs, coexpression of MYC and MIZ1 was seldom observed in (pre-)GC B cells (Fig. S2, G–I). Overall these data indicated that the requirements for MIZ1 induction varied according to B cell stage and that MYC–MIZ1 complexes played a function in GC B cell expansion rather than formation. Specifically, in LZ MYC+ cells the absence of MYC–MIZ1 complexes dissociated MYC expression from cell cycle engagement.

MIIZ1 target genes are enriched in MBCs

The impaired cell cycle engagement of LZ MYC+ cells of MycVD and the knowledge that MBC precursors are found within quiescent LZ B cells (Laidlaw et al., 2017; Suan et al., 2017; Wang et al., 2017) led us to investigated if the LZ MycVD GEP displayed a shift toward that of MBCs. We first generated an MBC GEP by performing RNA-seq of FACS-purified MBCs from day 10 SRBC-immunized wild-type mice. Using these data, we generated MBC signatures of genes up-regulated (MBC vs. LZ DOWN) or down-regulated (MBC vs. LZ DOWN) in MBCs compared with LZ B cells. We found that the LZ MycVD GEP was significantly enriched for the “MBC vs. LZ DOWN” gene signature, whereas the LZ MycWT GEP was significantly enriched for the “MBC vs. LZ UP” gene signature.
Figure 3. **MYC–MIZ1 complexes are required for cell cycle entry of LZ B cells.** (A) Representative flow cytometry of splenic GC B cells of MycWT and MycVD at day 10 after SRBC immunization (SRBCi). spl, spleen. (B) Cumulative data of MycWT and MycVD analyzed as in A before (day 0) and at day 10 after SRBC immunization. Left: Fraction of GC B cells within B cells. Right: Absolute cell number of GC B cells. (C) Representative histology of MycWT and MycVD at day 10 after SRBC immunization. PNA is used as GC marker, counterstained with hematoxylin. Scale bars, 500 µm. spl, spleen. (D) Top: Cumulative data of the area of each GC of MycWT and MycVD, analyzed as in C. Bottom: Number of GC foci per spleen section analyzed as in C. (E) Representative flow cytometry of splenic DZ and LZ distribution within GC B cells at day 10 after SRBC immunization. (F) Cumulative data analyzed as in E and presented as LZ/DZ ratio. (G) Kinetics of the GC reaction and cumulative data of FACS analyses of splenic GC B cells of MycWT and MycVD at day 5 and day 10 after SRBC immunization, gated as in A. (H) Cumulative data of active caspase 3* GC B cells within DZ (top) or LZ (bottom) of MycWT and MycVD at day 10 after SRBC immunization. (I) Bar graph displaying GSEA of gene signature “CELL_CYCLE_ARREST” and “G1_S_PHASE_TRANSITION” enrichment in the GEP of LZ B cells of MycWT and MycVD. FDR, false discovery rate; NES, normalized enrichment score. (J) Flow cytometry of MycWT and MycVD at day 10 after SRBC immunization for the analysis of EdU incorporation in the DZ (left) and LZ (right). (K) Cumulative data for EdU incorporation in DZ (left) and LZ (right). Analyzed as in J. (L) Intracellular staining for phospho-S6 kinase (pS6K) in splenic non-GC (N-GC) B cells and MYC+ and MYCneg GC B cells of MycWT and MycVD at day 10 after SRBC immunization. (M) Cumulative data of phospho-S6 kinase mean fluorescence intensity (MFI) in MYC+ GC B cells of MycWT and MycVD, analyzed as in L. Each symbol (B: day 0 MycWT n = 5, MycVD n = 5; day 10 MycWT n = 14, MycVD n = 14; F: MycWT n = 10, MycVD n = 10; H: MycWT n = 12, MycVD n = 12; K: MycWT n = 9, MycVD n = 9; M: MycWT n = 7, MycVD n = 7) represents an individual mouse; small horizontal lines show median, minimum, and maximum values. Each symbol represents an individual GC (D) or mean and SEM (G). *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001 (unpaired two-tailed Student’s t test). Data are representative of two (B: days 0; G: day 5; and M) or three (B: day 10; D, F, H, and K) independent experiments. ns, not significant.
for genes down-regulated in MBC vs. GC B cells (human MBC vs. GC_DOWN; Fig. 5 B; Luckey et al., 2006). To further validate our analysis, we used a publicly available RNA-seq dataset comparing LZ B cells expressing high Bach2 levels (LZ Bach2hi) that are enriched for MBC precursors and LZ B cells expressing low Bach2 levels (LZ Bach2low) that are enriched for cells fated for GC expansion and PC differentiation (Shimmakasu et al., 2016). We found that the MycWT LZ GEP was significantly enriched for the gene signature “LZ Bach2hi vs. LZ Bach2low DOWN” that is associated with GC expansion and PC fates (Fig. 5 A). In contrast, MycVD LZ GEP was significantly enriched for the gene signature “LZ Bach2hi vs. LZ Bach2low UP” that is associated with MBC precursors (Fig. 5 A). In agreement with Bach2 levels being down-regulated by T cell help (Shimmakasu et al., 2016), we found that the expression of Bach2 was significantly reduced in LZ MYC+ compared with LZ MYCneg cell subsets of wild-type mice (Fig. S3 C). However, Bach2 levels were not different between LZ B cells of MycVD and MycWT (Fig. S3 D), further suggesting that CD40 signaling is not impaired in MycVD compared with MycWT. Overall, these analyses indicate that the absence of MYC–MIZ1 complexes altered the GEP of LZ B cells in part through the enrichment of genes expressed in MBCs.

Next, we investigated whether the identified 60 MIZ1 target genes bound by MYC and significantly up-regulated in the LZ of MycVD compared with that of MycWT (Fig. 2 G and Fig. S1 E) were enriched in the MBC GEP. 41 out of the 60 MIZ1 target genes (68%) had increased expression in MBCs vs. LZ B cells (Fig. 5, C and D), and the majority of these 41 genes (30/41, 73%) had reduced expression in LZ MYC+ compared with LZ MYCneg cells (Fig. S3 D). These data reflected the repressive activity of MYC–MIZ1 complexes in LZ MYC+ cells and that these complexes directly repressed genes enriched in MBCs.

MYC–MIZ1 complexes restrict MBC differentiation

To assess whether MBC formation was altered in the absence of MYC–MIZ1 complexes, we initially immunized MycVD and MycWT with SRBC (Fig. 6 A). The fraction of IgM+ CD273+ MBCs within B cells was significantly increased in MycVD compared with MycWT at day 10 after SRBC immunization, albeit the absolute cell number not being statistically different between genotypes (Fig. 6 B). Nevertheless, considering that MycVD had reduced GC B cell numbers compared with MycWT, a significantly increased IgM+ CD273+ MBC to IgM+ GC B cell ratio was observed, indicating that MycVD produced more IgM+ CD273+ MBCs than MycWT (Fig. 6 B). The fraction of IgG1+ CD273+ MBCs within B cells was significantly increased at day 5 after immunization in MycVD compared with MycWT, but only a trend in terms of absolute cell numbers was observed (Fig. 6 C). However, at day 10 after SRBC immunization, the difference was clear, as both the fraction within B cells and the absolute number of IgG1+ CD273+ MBCs were significantly increased in MycVD compared with MycWT (Fig. 6 C). We concluded that the absence of MYC–MIZ1 complexes in LZ MYC+ cells increased MBC differentiation.

It is acknowledged that MBCs can be generated by both GC-dependent and GC-independent paths (Blink et al., 2005; Chan...
creased number of EdU+ IgM+ CD273+ MBCs and to a greater day 15 after SRBC immunization revealed a significantly in-
crease in MBC differentiation, and we concluded that the increase in MBC differentiation observed in the absence of MYC–MIZ1 complexes occurred primarily through a GC-dependent path. We therefore investi-
gated the distribution of known MBC surface marker combina-
tions (Anderson et al., 2007; Tomayko et al., 2010) within IgG1+ MBCs in MycVD compared with that of MycWT, as determined by ChIP-seq in mouse B cells.

Reduced affinity of the MBC pool in the absence of MYC–MIZ1 complexes

Following the analysis using SRBC immunization, we wanted to determine whether the absence of MYC–MIZ1 complexes im-
pacted antigen affinity maturation. To study BCR antigen af-
finity, we generated compound mutant MycVD and MycWT carrying the SWHEL allelic system, in which B cells express a
transgenic BCR recognizing hen egg lysozyme (HEL; Phan et al.,
2003). In this system, the BCR affinity to HEL is very high (2 ×
10^{-6} M−1), but affinity maturation can be studied by immunizing
mice with a mutant version of HEL called HELX7, for which
SWHEL BCR has much lower affinity (1.5 × 10^{-7} M−1; Paus et al.,
2006). According to established protocols (Paus et al., 2006), we

Figure 5. MIZ1 target genes are enriched in MBCs. (A) Bar graph displaying GSEA of gene signature "LZ Bach2hi vs. LZ Bach2low UP" and "LZ Bach2hi vs. LZ Bach2low DOWN", "MBC vs. LZ UP" and "MBC vs. LZ DOWN", "MBC vs. FO UP" and "MBC vs. FO DOWN" enrichment in the GEP of LZ B cells of MycWT and MycVD. FDR, false discovery rate; NES, normalized enrichment score. (B) GSEA of GEP of LZ B cells of MycWT and MycVD for "(human) MBC vs. GC_UP" gene signature (left) and "(human) MBC vs. GC_DOWN" (right). (C) GSEA of GEP of MBC and LZ B cells using a gene signature composed of genes bound in their promoters by MIZ1 and MYC "MIZ1+MYC" and up-regulated in LZ B cells of MycVD compared with that of MycWT, as determined by ChIP-seq in mouse B cells. (D) Graphical representation of enrichment of GO biological processes (GO_BP) within up-regulated genes in LZ B cells of MycVD compared with MycWT that are targets of MIZ1 bound by MYC and enriched in MBCs.
purified B cells from MycVD SWHEL and control MycWT SWHEL and transferred them into congenic CD45.1 mice, after which recipient mice were immunized with HEL3X (Fig. 7A). We found at all time points of analysis (days 8, 10, and 15) a reduction in GC B cells and an increase of CD273+ MBCs within B cells derived from MycVD SWHEL compared with MycWT SWHEL (Fig. 7, B–D). These data reproduced the phenotypes observed in MycVD (Fig. 3 and Fig. 6) and demonstrated that the reduced GC expansion and
increased MBC differentiation was due to the specific absence of MYC–MIZ1 complexes in B cells.

To determine the BCR somatic mutation pattern and affinity maturation to HEL3X, we FACS-purified GC cells and MBCs at day 8 and 15 after HEL3X immunization, followed by cloning and sequencing of the IgH variable region. The replacement of a tyrosine at position 53 to aspartic acid in SWHEL IgH (Y53D) leads to ∼100-fold increased affinity for HEL3X (Phan et al., 2003). At day 8 after HEL3X immunization, ∼9% of MycVDS-WHEL GC B cells had the Y53D amino acid change compared with ∼24% of MycWTSWHEL cells (Fig. 7 E and Fig. S4 A). The average number of amino acid substitutions was also reduced in MycVDSWHEL GC B cells (average, 1.6/sequence) compared with MycWTSWHEL (average, 2.1/sequence; Fig. S4, A–C). However, the number of nucleotide mutations in the SWHEL IgH of GC B cells was similar between genotypes (Fig. S4 D), suggesting that somatic hypermutation per se was not impaired. The observed differences in GC B cells at day 8 were nevertheless transient given that at day 15 after HEL3X immunization no significant differences were found between genotypes (Fig. 7, E–G; and Fig. S4, A–C). MBCs at day 8 after HEL3X immunization of either genotype did not display Y53D mutations (Fig. 7 H and Fig. S4 E). However, the average number of amino acid substitutions was lower in MycVDSWHEL MBCs (average, 1/sequence) compared with MycWTSWHEL (average, 1.4/sequence; Fig. S4, E–G). Still, only small differences were found with respect to nucleotide mutations, with ∼80% of MycVDSWHEL MBCs carrying a somatically mutated BCR compared with ∼85% of MycWTSWHEL MBCs (Fig. S4 H). At day 15 of analysis, the absence of MYC–MIZ1 complexes significantly impacted BCR antigen affinity of MBCs, with ∼60% of MycVDSWHEL MBCs carrying Y53D mutations compared with ∼87% of MycWTSWHEL cells (Fig. 7 H and Fig. S4 E). This was accompanied by a reduced number of amino acid substitutions in

Figure 7. Reduced affinity of the MBC pool in the absence of MYC–MIZ1 complexes. (A) Experimental design. (B) Kinetics of GC B cells within splenic CD45.2+ donor cells at days 8, 10, and 15 after HEL3X immunization. (C) Kinetics of CD273+ MBCs within splenic CD45.2+ donor cells at days 8, 10, and 15 after HEL3X immunization. (D) Ratio of CD273+ MBCs to GC B cells at days 8, 10, and 15 after HEL3X immunization. (E) Frequency of Y53D mutations within splenic IgG1+ GC B cells at day 8 (d8; left) and day 15 (right) after HEL3X immunization; the number of analyzed IgH sequences is shown inside the circle. (F) Frequency of splenic IgG1+ GC B cells carrying the specified number of amino acid substitutions, analyzed at day 15 after HEL3X immunization. (G) Frequency of nucleotide substitutions across the IgH V-region of SWHEL within splenic IgG1+ GC B cells at day 15 after HEL3X immunization. (H) Frequency of Y53D mutations within splenic IgG1+ CD273+ MBCs at day 8 (left) and day 15 (right) after HEL3X immunization; number of analyzed IgH sequences is shown inside the circle. (I) Frequency of splenic IgG1+ CD273+ MBCs cells carrying the specified number of amino acid substitutions, analyzed at day 15 after HEL3X immunization. (J) Frequency of nucleotide substitutions across the IgH V-region of SWHEL within splenic IgG1+ CD273+ MBCs at day 15 after HEL3X immunization. (B–D) Mean and SEM. *, P ≤ 0.05, **, P ≤ 0.01, ***, P ≤ 0.001 (unpaired two-tailed Student’s t test). Data are representative of three (B–D) independent experiments and cumulative analysis of five mice per genotype per time point (E–J). ns, not significant.

Toboso-Navasa et al. Journal of Experimental Medicine 9 of 17
Restriction of memory B cell differentiation https://doi.org/10.1084/jem.20191933
MycVDSWHEL MBCs (average, 2.3/sequence) compared with MycWTSWHEL control (average, 4.8/sequence; Fig. 7 I; and Fig. S4, E–G). Nevertheless, the vast majority of MycVDSWHEL MBCs (∼90%) displayed a somatically mutated BCR (Fig. 7 J), further demonstrating that the observed increase in MBC differentiation when MYC–MIZ1 complexes are absent occurs primarily through a GC-dependent path. To investigate if the absence of MYC–MIZ1 complexes altered antigen affinity of the PC pool, we evaluated the binding of IgG1 antibodies in the serum of mice to HEL3X at days 8 and 15 after immunization (Fig. S4 I). No significant differences were found between genotypes, indicating that the absence of MYC–MIZ1 complexes primarily impacts the antigen affinity of the MBC pool. In summary, the absence of MYC–MIZ1 complexes had a lasting impact in the MBC pool by increasing its size and decreasing its affinity for the antigen.

MYC–MIZ1 complexes restrict MBC differentiation when affinity-based selection is absent

LZ B cells bearing BCRs with lower antigen affinity are favored to differentiate into MBCs (Shinnakasu et al., 2016). Therefore, it was possible that increased MBC differentiation in MycVD was primarily the consequence of the transitory delay in GC B cell affinity maturation in these mice. To test this hypothesis, we used the SWHEL system and immunized recipient mice with HEL, for which BCR affinity is very high (2 × 1010 M−1; Paus et al., 2006), effectively curtailing antigen affinity–based selection (Fig. 8 A). Similar to the results using HEL3X immunization (Fig. 7, A–D), the fraction of GC B cells was reduced within MycVDSWHEL B cells, whereas the fraction of CD273+ MBCs was increased, compared with MycWTSWHEL at all time points of analysis (days 8 and 15; Fig. 8, B–D). We also performed an experiment using mice deficient for the enzyme Aicda that is critically required for somatic hypermutation and class-switch recombination (Muramatsu et al., 2000). Aicda-deficient MycVD, similarly to MycVD (Fig. 3), displayed a significant reduction in the fraction of GC B cells compared with mice with Aicda deficiency alone (Fig. S5, A and B). We also observed that LZ B cells of Aicda-deficient MycVD were impaired in cell cycle engagement compared with Aicda-deficient mice, whereas the fraction of DZ B cells engaged in cell cycle was not different between genotypes (Fig. S5 C). Lastly, Aicda-deficient MycVD displayed a significantly increased fraction of MBCs compared with mice with Aicda deficiency alone (Fig. S5, D and E). We concluded that MYC–MIZ1 complexes in LZ MYC+ cells restricted MBC differentiation even when affinity-based selection was absent.

Discussion

MBCs are key for long-term protection from reinfection. However, the mechanisms underlying MBC differentiation are unclear. Here, we found that LZ MYC+ cells mostly coexpressed the transcription activators MYC and MIZ1. Complexes formed by MYC and MIZ1 in these cells were required for repression of MIZ1 target genes, effective cell cycle engagement of LZ B cells, GC expansion, and PC formation. Notably, most of the MIZ1 target genes repressed by MYC–MIZ1 complexes were enriched in MBCs, and the absence of MYC–MIZ1 complexes increased MBC differentiation. Whether these events are interdependent or independent, the first suggesting that restriction of MBC differentiation in LZ MYC+ cells is required for effective GC expansion and PC formation, remains to be determined. The signals driving MIZ1 expression in LZ MYC+ cells also need further investigation, because in contrast to MYC (Luo et al., 2018), ex vivo BCR and CD40 coengagement was not sufficient to induce MIZ1 in GC B cells. Further, the discrepancy between MIZ1 gene and protein expression argues for a tight regulation at the posttranscriptional level. HUWE1 is an E3 ubiquitin ligase that ubiquitinates MIZ1, triggering its proteasomal degradation (Yang et al., 2010). However, previous analysis of HUWE1-deficient mice suggest a limited function for this E3 ubiquitin ligase in the GC reaction (Hao et al., 2012).

MYC–MIZ1 complexes were not equally required in all LZ MYC+ cells, given that apparently a fraction entered cell cycle normally. These data and of others (Jse et al., 2018) highlight the need to investigate populational diversity within LZ MYC+ cells.
We also observed that cellular proliferation of activated B cells in vitro was mostly unimpaired. Thus it is possible that MYC-MIZ1 complexes are primarily required at specific B cell stages and/or to counteract autocrine and/or paracrine (i.e., microenvironmental) antiproliferative signals (van Riggelen et al., 2010).

Most of the identified MIZ1 target genes up-regulated in the absence of MYC–MIZ1 complexes were enriched in MBCs. Although for many a function in B cells is unknown, for others (namely Arhgef1, Gadd45g, Sh2b3, and Map2k7), tumor-suppressive and/or antiproliferative activity was described (Lu et al., 2001; Lv et al., 2017; Muppidi et al., 2014; Perez-Garcia et al., 2013; Thalheimer et al., 2014). This knowledge is in agreement with work demonstrating that quiescent B cells in the LZ are enriched for MBC precursors (Laidlaw et al., 2017; Suan et al., 2017; Wang et al., 2017). Thus, MIZ1 transcriptional activity may promote a quiescent state, which in turn permits MBC differentiation. Such activity is restrained by MYC–MIZ1 complexes in LZ MYC+ cells. Whether MIZ1 transcriptional activity is itself required for MBC differentiation needs further investigation.

The finding that MIZ1 targets genes with B cell tumor suppressor and/or antiproliferative function may be relevant for GC B cell lymphomagenesis. It is tempting to speculate that interference with MBC differentiation could be oncogenic, similar to what we and others demonstrated for PC differentiation (Calado et al., 2010; Mandelbaum et al., 2010; Zhang et al., 2015).

In cancer, Cdki4a is a well-characterized target of MYC–MIZ1 complexes (Herold et al., 2002; Walz et al., 2014). However, Cdki4a expression was unchanged in LZ B cells in the absence of MYC–MIZ1 complexes. Previous work showed that BCL6 can form a transcriptional repressor complex with MIZ1 that represses CDKNIA expression in GC-derived lymphoma cell lines (Basso and Dalla-Favera, 2010; Phan et al., 2005). Also, others have also shown that EZH2 is required in GC B cells for repression of Cdki4a expression (Beguelin et al., 2017). Thus, it is possible that redundancy in the regulation of Cdki4a expression exists in GC B cells. In contrast, we found increased expression of Cdknb in the absence of MYC–MIZ1 complexes. However, and although our analysis and that of others have not identified Cdknb as a direct MIZ1 target (Walz et al., 2014), this has been suggested by other studies (Busu et al., 2009; Yang et al., 2001), urging further investigation.

LZ B cells with high Bach2 expression are favored to differentiate into MBCs (Shinnakasu et al., 2016). However, Bach2 expression was not altered in the absence of MYC–MIZ1 complexes. Bach2 expression is inversely correlated to the strength of T cell help (Shinnakasu et al., 2016). On the contrary, Myc is induced upon positive selection downstream of T cell help (Luo et al., 2018), and MYC levels were not altered by the absence of MYC–MIZ1 complexes, suggesting that T cell help was not affected. As a consequence, changes in Bach2 expression levels would not be expected in the absence of MYC–MIZ1 complexes. This does not contradict the role of Bach2 in the regulation of MBC differentiation (Shinnakasu et al., 2016). First, Bach2 may be required for MBC differentiation of a different LZ B cell subset; second, we found that MYC–MIZ1 complexes repressed the expression of the gene encoding the MAFK transcription factor, with which BACH2 is bound at most target genes (Huang et al., 2014; Oyake et al., 1996). Thus, given that strong T cell help reduces Bach2 expression but does not extinguish it (Shinnakasu et al., 2016), increased Mafk expression in the absence of MYC–MIZ1 complexes could favor MBC differentiation.

Increased MBC differentiation, together with impaired GC B cell expansion, was also found when LZ B cells cannot sense IL21 and when LZ to DZ migration is abrogated by impaired CXCR4 signaling (Bannard et al., 2013; Barinov et al., 2017; Linterman et al., 2010; Zotos et al., 2010). In both scenarios, antigen affinity was reduced, possibly favoring MBC differentiation (Shinnakasu et al., 2016; Weisel et al., 2016). The absence of MYC–MIZ1 complexes led only to a transient delay in GC B cell affinity. Thus, and although we cannot exclude a contribution of this phenomenon toward increased MBC differentiation, we found that MYC–MIZ1 complexes restricted MBC differentiation even when affinity-based selection was absent. The MBC phenotype in IL21/IL21R deficiency was attributed to a GC-independent path given that most MBCs had unmutated BCRs, whereas for CXCR4 deficiency, the involvement of GCs was suggested (Bannard et al., 2013; Linterman et al., 2010; Zotos et al., 2010). The latter conclusion was based on the detection of CD73 expression and MBC BrdU incorporation in pulse-chase experiments (Bannard et al., 2013). We found that increased MBC differentiation in the absence of MYC–MIZ1 complexes occurred primarily through a GC-dependent path: (1) MYC–MIZ1 complexes were required for GC expansion rather than formation; (2) an increased number of Edu+ MBCs was formed during critical time points of GC expansion; (3) the fraction of IgG1+ CD73+ MBCs and LZ MBC precursors (CCR6+ LZ B cells) was increased in Myc VD compared with MycWT; and (4) the vast majority (~90%) of MBCs in MycVD display somatically mutated BCRs.

Our work uncovered that MYC–MIZ1 complexes in LZ MYC+ cells are required for effective GC expansion and PC formation and to restrict MBC differentiation. Until now, a physiological function for MYC–MIZ1 complexes was unknown (Wiese et al., 2013). MIZ1, similarly to MYC, is required for early B and T cell development; however, these functions were shown to be independent of MYC–MIZ1 complexes (Douglas et al., 2001; Kosan et al., 2010; Saba et al., 2011; Vallespínos et al., 2011). MIZ1 homologues and the conservation of a valine in position 394 in MYC, critical for the interaction with MIZ1, are found only in vertebrates (Conacci-Sorrell et al., 2014). Thus, compared with other MYC network members, like MAX and MXD proteins, MYC–MIZ1 complexes are a late addition in evolution (Conacci-Sorrell et al., 2014). Interestingly, such evolutionary timeframe is similar to that of AICDA (Conticello et al., 2005).

MYC–MIZ1 complexes per se are not essential for life (Wiese et al., 2013). As a consequence, this protein complex is a viable candidate for intervention in cancer and vaccination. With respect to the latter, an increased MBC pool size with lower affinity for the primary immunizing antigen, as observed in the absence of MYC–MIZ1 complexes, may permit the recognition of similar but different antigens and further affinity maturation (Bannard and Oyster, 2017; Inoue et al., 2018; McHeyzer-Williams et al., 2015; Mesin et al., 2016; Takahashi and Kelsoe,
This could be important in vaccination for protection against pathogenic substrains and evolved mutants (Inoue et al., 2018; Victora and Wilson, 2015). Thus, interventions that modulate the activity of MYC–MIZ1 complexes may tailor the GC response to meet individual humoral memory requirements for infection control and prevention.

Materials and methods

Mice

MvCyp, Cdkn1a KO, Aid-Cre-ERT2, and the transgenic SWHEL allelic BCR system mouse strains have been previously described (Brugarolas et al., 1995; Calado et al., 2012; Casola et al., 2006; de Alboran et al., 2001; Dogan et al., 2009; Phan et al., 2003; Saba et al., 2011). Mice were maintained on the C57BL/6 background and bred at the Francis Crick Institute biological resources facility under specific pathogen–free conditions. Animal experiments were performed in accordance with national and institutional guidelines for animal care and approved by The Francis Crick Institute biological resources facility strategic oversight committee (incorporating the Animal Welfare and Ethical Review Body) and by the Home Office, UK.

Immunization, adoptive transfers, and in vivo treatments

For T cell–dependent immunization, 8- to 12-wk-old mice were injected i.v. with 10^9 defibrinated SRBCs (TCS Bioscience) in PBS. Edu (Invitrogen) was dissolved in sterile PBS (5 mg/ml) for proliferation studies, 1 mg in a volume of 200 µl was injected i.p. 3 h before analysis; for the assessment of the kinetics of the formation of MBCs, 1.5 mg in a volume of 300 µl was injected i.p. every 12 h for 3 d (protocol adapted from Weisel et al., 2016). Adoptive transfers were performed into CD45.1+ or CD45.1+/CD45.2+ congenic mice. Briefly, 3 × 10^4 HEL-binding B cells were injected i.v. into congenic recipients, followed by i.v. immunization the next day with 2 × 10^8 SRBCs conjugated to a specific recombinant HEL protein. SRBCs in Alsever’s (TCS Bioscience) were conjugated to recombinant HEL (Sigma) or HELXR (R. Brink) with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (Sigma) as previously described (Goodnow et al., 1988). CD45.2+ splenic B cells from SWHEL donor mice were purified by CD43 (Ly-48) MicroBeads (Miltenyi Biotec) depletion. For analyses and cell FACS sorting, CD45.2+ donor splenocytes were enriched by CD45.1-negative selection using anti-mouse biotinylated CD45.1 antibody (clone A20; ebioscience) and Anti-Biotin MicroBeads (Miltenyi Biotec).

Histology, immunohistochemistry, and immunofluorescence

Spleens were fixed with 10% neutral buffered formalin (Thermo Fisher) and embedded in paraffin. Sections were stained with hematoxylin (Sigma) and biotinylated peanut agglutinin (Vector). Images were acquired with Zeiss Axio Scan.Z1 Slide Scanner and visualized with Photoshop (v12.1; Adobe). ImageJ (v2.0.0) was used to quantify GC B cell area and number of GCs per spleen section. For immunofluorescence, spleens were embedded in optimum cutting temperature compound (Sakura) and flash frozen in liquid nitrogen. 8- to 30-µM tissue sections were cut on an OTF5000 cryostat (Bright Instruments), fixed in 4% paraformaldehyde (Thermo Fisher), permeabilized and blocked in PBS with 0.3% Triton X-100 (Sigma) and 10% normal goat serum (Sigma). Samples were stained with antibodies in PBS containing 0.3% Triton X-100 with 1% bovine serum albumin (Thermo Fisher). Every incubation was followed by three washes with PBS. To prevent cross-reactivity, samples were blocked with PBS containing 10% normal rabbit serum (Sigma). Images were acquired with a Leica Sp5 confocal microscope, using sequential acquisition between frames with 405-, 488-, 555-, and 647-nm laser excitations. Images were analyzed with Imaris software (Bitplane); cells were automatically identified by the software based on nuclear Hoechst 33342 staining.

Antibodies

The following antibodies were used: rabbit anti-mouse caspase 3, clone C92-605 (BD Biosciences); rat anti-mouse CD19, clone 6D5 (BioLegend); rat anti-mouse CD23, clone B3B4 (BioLegend); rat anti-mouse CD35, clone 8C12 (BD Biosciences); rat anti-mouse CD38, clone 90 (BioLegend); rat anti-mouse CD45R0/B220, clone RA3-6B2 (BioLegend); mouse anti-mouse CD45.1, clone A20 (ebioscience); mouse anti-mouse CD45.2, clone 104 (BD Biosciences); rat anti-mouse CD73, clone TY23 (BD Biosciences); rat anti-mouse CD86, clone GL1 (BioLegend); rat anti-mouse CD93 (AA.1), clone AA4.1 (ebioscience); Armenian hamster anti-mouse CD95 (FAS), clone j02 (BD Biosciences); rat anti-mouse CD138 (Syndecan-1), clone 2B8-2 (BioLegend); rat anti-mouse CD184 (CXCR4), clone 2B11 (ebioscience); rat anti-mouse CD273 (PD-L2), clone TY25 (BioLegend); rat anti-mouse IgD, clone 11-26c.2a (BD Biosciences); rat anti-mouse IgG1, clone A85-1 (BD Biosciences); rat anti-mouse IgM, clone II/41 (BD Biosciences); Armenian hamster anti-mouse PDI(CD29), clone J43 (ebioscience); rat anti-mouse CXCR5(CD185), clone (SPRCL5); rat anti-mouse CD4, Clone (GK1.5); Armenian hamster anti-mouse CD9, clone 145-2Cl1; Armenian hamster anti-mouse CD80(B7-1), clone (16-10A1); rat anti-mouse CD21/CD35(CR2/CR1), clone (7E9); mouse anti-HEL, clone HyHEL9 (R. Brink); rabbit anti-Myc N-262 (Santa Cruz); rabbit anti-Myc, clone Y69 (Abcam); rabbit anti-ZbB17 (Sigma); goat anti-rabbit IgG (H+L; Molecular Probes), fluorochrome-labeled Streptavidin (BioLegend, ebioscience, and BD Biosciences); biotinylated peanut agglutinin (Vector); and IgG from rabbit serum (Sigma).

In vitro cell stimulation and transduction

Spleenic naive B cells were purified by CD43 depletion (Miltenyi). GC B cells were purified as previously described (Luo et al., 2018). Naive and GC B cells were cultured in vitro in the presence of 10 µg/ml (anti-IgM + anti-IgG; Jackson ImmunoResearch) and/or 20 µg/ml anti-CD40 antibody (FGK45; Bio X Cell) with or without 25 ng/ml IL-4. For cell proliferation studies, naive B cells were transduced with a MIZ1-IRES-GFP expressing vector or GFP control (VectorBuilder) using Lipofectamine (Invitrogen). Cells were analyzed 48 h after transduction.

Flow cytometry and ELISA

Single-cell suspensions of spleen were prepared in FACS buffer (2% FBS and 2 mM EDTA, in PBS; Gibco) and treated with Gey’s...
solution for erythrocyte lysis. Single-cell suspensions were stained with antibodies. The use of biotinylated antibodies was followed by incubation with fluorochrome labeled streptavidin (1/200 dilution). For the analyses of SWHEL mice, HEL-binding cells were stained with 50 ng/ml HEL (Sigma) followed by HyHEL9-A647 (R. Brink). Dead cells were excluded using Zombie NIR Fixable Viability Kit (BioLegend). For detection of Edu incorporation, cells were fixed for 15 min at room temperature in 4% paraformaldehyde (Thermo Fisher) after surface marker and viability dye staining. Fixation was followed by Click-iT EdU A647 flow cytometry assay kit or Click-iT Plus Edu Alexa Fluor 647 flow cytometry assay kit (Life Technologies) as indicated by supplier. For the detection of cleaved caspase-3, samples were fixed for 15 min at room temperature in 4% paraformaldehyde (Thermo Fisher) after surface marker and viability dye staining, followed by intracellular staining with BD Cytofix/Cytoperm staining kit (BD Biosciences), as per manufacturer’s specifications. The detection of the transcription factor was performed after surface marker and viability dye staining with True-Nuclear Transcription Factor Buffer Set (BioLegend), following supplier’s instructions. To prevent cross-reactivity, samples were blocked with 10% normal rabbit serum. Samples were acquired on an LSR-Fortessa (BD Biosciences) with FACS-Diva software (BD Biosciences), and data were analyzed with Flowjo software (v10.3; Tree Star). MBCs were FACs purified using the following antibody panel: CD273+CD138− B220+ CD19+ CD38high IgDlow. Cell populations were defined by the following surface markers: L2 GC B cells (B220+ CD19+ CD38low CD95high CXCR4low CD86high), D2 GC B cells (B220+ CD19+ CD38low CD95high CXCR4high CD86low), PCs (CD19low CD138+), and IgM+ and IgG1+ MBCs (B220+ CD19+ CD38high IgDlow CD273+); FO B cells (AA4.1neg B220+, CD19+, CD38+, IgDneg, CD273+), and MycWT FO B cells (AA4.1neg, B220+, CD19+, CD38high, IgD+, CD21high, CD23high) were sorted by flow cytometry at day 10 after immunization with SRBCs using a FACSaria III or a FACSaria Fusion (BD Biosciences). Cells were sorted in RTL Buffer Plus (Qiagen) containing 1% β-mercaptoethanol (Sigma) and RNA purified using AllPrep DNA/RNA Mini and Micro Kits (Qiagen) following the manufacturer’s instructions. RNA-seq was performed at the Francis Crick Institute advanced sequencing facility. The RSEM package (v1.3.0; Li and Dewey, 2011) and STAR (v2.5.2a; Dobin et al., 2013) were used to align reads to the mouse mm10 transcriptome, taken from Ensembl (vGRCm38) and available at the University of California, Santa Cruz (https://genome.ucsc.edu). For RSEM, all parameters were run as default using the “-forward-prob 0” option for a strand-specific protocol. Differential expression analysis was performed with DESeq2 package (v1.12.4; Love et al., 2014) within R (v3.3.1; R Core Team, 2008; http://www.R-project.org). Genes were considered to be differentially expressed if FDR < 0.05. GSEA was performed using GSEA software (v2.2.3) from the Broad Institute (Subramanian et al., 2005). All analyses for RNA-seq-generated expression profiles were done with ranked gene lists using Wald statistics. For ChiP, splenic B cells from C57BL/6 mice were purified using anti-mouse CD43 (Ly-48) Microbeads (Miltenyi Biotec) depletion and treated with Gey’s solution for erythrocyte lysis. Cells (2 × 10^6 cells/ml) were cultured at 37°C (5% CO_2) in DMEM supplemented GlutaMAX, nonessential amino acids, penicillin-streptomycin, Heps (Gibco), β-mercaptoethanol (Sigma), and 10% fetal bovine serum (Thermo Fisher) containing anti-IgM (5 µg/ml), CD40 ligand (0.5 µg/ml), and IL-4 (10 ng/ml) and harvested after 16 h. ChiP protocol was adapted from Seitz et al. (2011). Briefly, cells in B cell media were fixed with formaldehyde (Sigma) at final concentration of 1% for 10 min at room temperature. Glycine (Thermo Fisher) was added at a final concentration of 0.125 M for 5 min at room temperature. Cells were washed, pelleted, and stored at -80°C. After cell lysis, the DNA of 35 × 10^6 cells/ml were fragmented using BIORUPTOR 200 immersion sonicator under the following conditions: high power, 30 s on, 30 s off (40 cycles). 100 µl of Pierce Protein A/G Magnetic Beads were coupled to 10 µg of antibody or control rabbit IgG antibody (Sigma). DNA was incubated with antibody-coupled beads, and after uncoupling, DNA was purified with NucleoSpin Gel and PCR Clean-up (Macherey-Nagel) following the manufacturer’s protocol for SDS-rich samples using Buffer NTB (Macherey-Nagel). Samples were sequenced on an Illumina HiSeq2500 generating 100bp single ended reads. ChiP-seq reads were aligned to the mouse mm10 genome assembly using BWA version 0.7.15 (Li and Durbin, 2010) with a maximum mismatch of two bases. Picard tools version 2.1.1 (http://www.
broadinstitute.github.io/picard) was used to sort, mark duplicates, and tdf files (for visualization purposes) were created using IGVTools version 2.3.75 software (http://www.broadinstitute.org/igv) by extending reads by 50 bp and normalizing to 10 million mapped reads per sample. Peaks were called using the standard parameters by comparing immunoprecipitated samples to their respective input and/or IgG controls using MACS version 2.1.1 (Zhang et al., 2008). Peaks called by MACS were annotated using the “annotatepeaks” function in the Homer version 4.8 software package (Heinz et al., 2010). Common and unique peaks across experiments were determined using a custom script. Datasets are available at the National Center for Biotechnology Information Gene Expression Omnibus under the following accession numbers: GSE129262, GSE80669, GSE77319, GSE4142, GSE76502, GSE11961, and GSE98419.

Quantification and statistical analysis
Data were analyzed with unpaired two-tailed Student’s t test; a P value of ≤ 0.05 was considered significant. Prism (v7 and v8, GraphPad) was used for statistical analysis. A single asterisk (*) in the graphs of figures represents a P value ≤ 0.05, double asterisks (**) a P value ≤ 0.01, triple asterisks (***) a P value ≤ 0.001, and quadruple asterisks (****) a P value ≤ 0.0001; “ns” stands for not statistically significant (i.e., a P value > 0.05). Data in text and figures are presented as median or mean ± SEM; each case is indicated in the figure legends.

Online supplemental material
Fig. S1 shows MYC and MIZ1 expression in GC B cell populations, the identified MYC–MIZ1 complex target genes, and PC and CD4+ CXCR5+ PD1+ T cell populations in the absence of MYC–MIZ1 complexes. Fig. S2 shows the gene expression of cell cycle–related genes in the absence of MYC–MIZ1 complexes, the characterization of MYC, MIZ1 in activated non-GC B cells, their cell proliferation in the absence of MYC–MIZ1 complexes, and MYC and MIZ1 expression in (pre)-GC B cells. Fig. S3 shows the enrichment for genes up-regulated in MBCs in the absence of MYC–MIZ1 complexes and MBC populations. Fig. S4 shows GC and MBC affinity in the absence of MYC–MIZ1 complexes. Fig. S5 shows that MYC–MIZ1 complexes restrict MBC differentiation in the absence of Alcda.

Acknowledgments
We thank the members of the Immunity and Cancer laboratory (Francis Crick Institute [FCI], London, UK); A. O’Garra, C. Reis e Sousa, and V. Tybulewicz (FCI, London, UK); S. Godinho and J. Fitzgibbon (Barts Cancer Institute, Queen Mary University of London, London, UK); and P. Vieira (Institut Pasteur, Paris, France) for critical discussions and review of the manuscript. We thank O. Bannard (University of Oxford, Oxford, UK) for a HEL2X–expressing cell line, R. D’Antuono for expert imaging analysis (FCI, London, UK), and the FCI scientific platforms (Biological Resource Facility, Flow Cytometry, Histopathology, Light Microscopy, and Advanced Sequencing) for expert advice and technical support.

This work was supported by the FCI, which receives its core funding from Cancer Research UK (grants FC001057 and FC001099), the UK Medical Research Council (grants FC001057 and FC001099), and the Wellcome Trust (grants FC001057 and FC001099) to D.P. Calado and G. Kassiotis, and Medical Research Council career development award MR/J008060/1 to D.P. Calado. M. Janz was supported by the Deutsche Forschungsgemeinschaft (grant JA 1847/2-1).

Author contributions: Conceptualization, A. Toboso-Navasa and D.P. Calado; methodology, A. Toboso-Navasa, A. Gunawan, G. Morlino, R. Nakagawa, A. Taddei, D. Damry, Y. Patel, P. Chakravarty, M. Janz, G. Kassiotis, and D.P. Calado; investigations, A. Toboso-Navasa, A. Gunawan, G. Morlino, R. Nakagawa, A. Taddei, D. Damry, Y. Patel, P. Chakravarty, M. Janz, and D.P. Calado; resources, G. Kassiotis, R. Brink, M. Eilers, and D.P. Calado; writing (original draft), A. Toboso-Navasa and D.P. Calado; writing (review and editing), A. Gunawan, G. Morlino, R. Nakagawa, A. Taddei, D. Damry, Y. Patel, P. Chakravarty, M. Janz, G. Kassiotis, R. Brink, and M. Eilers; supervision, D.P. Calado and G. Kassiotis; funding acquisition, D.P. Calado, G. Kassiotis, and M. Janz.

Disclosures: The authors declare no competing interests exist.

Submitted: 10 October 2019
Revised: 24 February 2020
Accepted: 3 April 2020

References
Allen, C.D., K.M. Ansel, C. Low, R. Lesley, H. Tamamura, N. Fujii, and J.G. Cyster. 2004. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 5:943–952. https://doi.org/10.1038/ni1101
Anderson, S.M., M.M. Tomayko, A. Ahuja, A.M. Haberman, and M.J. Shlomchik. 2007. New markers for murine memory B cells that define mutated and unmutated subsets. J. Exp. Med. 204:2103–2114. https://doi.org/10.1084/jem.20062571
Bannard, O., and J.G. Cyster. 2017. Germinal centers: programmed for affinity maturation and antibody diversification. Curr. Opin. Immunol. 45:21–30. https://doi.org/10.1016/j.coi.2016.12.004
Bannard, O., R.M. Horton, C.D. Allen, J. An, T. Nagasawa, and J.G. Cyster. 2013. Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity. 39:912–924. https://doi.org/10.1016/j.immuni.2013.08.038
Barinov, A., L. Luo, P. Gasse, V. Meas-Yedid, E. Donnadieu, F. Arozarena-Seisdedos, and P. Vieira. 2017. Essential role of immobilized chemokine CXCL12 in the regulation of the humoral immune response. Proc. Natl. Acad. Sci. USA. 114:2319–2324. https://doi.org/10.1073/pnas.1619581114
Basso, K., and R. Dalla-Favera. 2010. BCL6: master regulator of the germinal center reaction and key oncogene in B cell lymphomas. Adv. Immunol. 105:193–210. https://doi.org/10.1016/j.AdvImmunol.2010.05.007-B
Basu, S., Q. Liu, Y. Qiu, and F. Dong. 2009. GI1-1 represses CDKN2B encoding p15INK4B through interaction with Miz-1. Proc. Natl. Acad. Sci. USA. 106:1433–1438. https://doi.org/10.1073/pnas.0804863106
Béguerelin, W., M.A. Rivas, M.T. Calvo Fernández, M. Teater, A. Purwada, D. Redmond, H. Shen, M.F. Challman, O. Elemaneto, A. Singh, et al. 2017. EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop. Nat. Commun. 8:877. https://doi.org/10.1038/s41467-017-01029-x
Blink, E.J., A. Light, A. Kallies, S.L. Nutt, P.D. Hodgkin, and D.M. Tarlinton. 2005. Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201:545–554. https://doi.org/10.1084/jem.20042060
Bouchard, C., K. Thiele, A. Maier, R. Saffrich, J. Hanley-Hyde, W. Ansorge, S. Reed, P. Scicinski, J. Bartek, and M. Elmers. 1999. Direct induction of cyclin D2 by Myc leads to cell cycle progression compromised by p21 deficiency. Nature. 377:552–557. https://doi.org/10.1038/377552a0

Brugarolas, J., C. Chandrasekaran, J.I. Gordon, D. Beach, T. Jacks, and G.J. Hammond. 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature. 377:552–557. https://doi.org/10.1038/377552a0

Calado, D.P., B. Zhang, L. Srinivasan, Y. Sasaki, J. Seagal, C. Unitt, S. Rodig, J. Kutow, A. Tarakhovsky, M. Schmidt-Supprian, et al. 2010. Constitutive canonical NF-κB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B-cell-like diffuse large cell lymphoma. Cancer Cell. 18:580–592. https://doi.org/10.1016/j.ccr.2010.11.024

Heins, S., C. Benner, N. Spann, E. Bertolino, Y.C. Lin, P. Laslo, J.X. Cheng, C. Murre, H. Singh, and C.K. Glass. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 38:576–589. https://doi.org/10.1016/j.molcel.2010.05.004

Heise, N.S., De Silva, K., Silva, A. Carette, G. Simonetti, M. Pasparakis, and U. Klein. 2014. Germlinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits. J. Exp. Med. 211:2103–2118. https://doi.org/10.1084/jem.20132613

Herald, S., M. Wanzel, V. Beuger, C. Frohme, D. Beut, T. Hillukkala, J. Syväoja, H.P. Salu, F. Haenel, and M. Elmers. 2002. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell. 10:509–521. https://doi.org/10.1016/S1097-2765(02)00633-0

Hoogeboom, R., E.M. Natkanski, C.R. Nowosad, D. Malinova, R.P. Menon, A. Casal, and P. Tolar. 2018. Myosin IIA Promotes Antibody Responses by Regulating B Cell Activation, Acquisition of Antigen, and Proliferation. Cell Rep. 23:2342–2353. https://doi.org/10.1016/j.celrep.2018.04.087

Huang, C., H. Geng, I. Boss, L. Wang, and A. Melnick. 2014. Cooperative transcriptional repression by BCL6 and BACH2 in germinatal center B-cell differentiation. Blood. 123:1002–1020. https://doi.org/10.1182/blood-2013-07-516005

Inamine, A., Y. Takahashi, N. Baba, K. Miyake, T. Tokuhisa, T. Takemori, and R. Abe. 2005. Two waves of memory B-cell generation in the primary immune response. Int. Immunol. 17:581–589. https://doi.org/10.1093/intimm/dhi341

Inoue, T., I. Meek, R. Shinnaka, T.G. Phan, and T. Kurosaki. 2018. Generation of memory B cells and their reactivation. Immunol. Rev. 283:138–149. https://doi.org/10.1111/imr.12640

Ise, W., K. Fujii, K. Shiroguchi, A. Ito, K. Kometani, K. Takeda, E. Kawakami, K. Yamashita, K. Suzuki, T. Okada, et al. 2018. T Follicular Helper Cell-Germinatal Center B Cell Interaction Strength Regulates Entry INTO Plasma Cell or Recycling Germinatal Center Cell Fate. Immunity. 48:315–329. https://doi.org/10.1016/j.immuni.2018.03.027

Kaji, T., A. Ishige, M. Hikida, J. Taka, A. Hijikata, M. Kubo, T. Nagashima, Y. Takahashi, T. Kurosaki, M. Okada, et al. 2012. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. J. Exp. Med. 209:2079–2097. https://doi.org/10.1084/jem.20120127

Kepler, T.B., and A.S. Perelson. 1993. Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation. Immunity. Today. 14:421–415. https://doi.org/10.1016/0167-5699(93)90145-B

Koike, T., K. Harada, S. Horiiuchi, and D. Kitamura. 2019. The quantity of CD40 signaling determines the differentiation of B cells into functionally distinct memory cell subsets. eLife. 8. e44245. https://doi.org/10.7554/eLife.44245

Kosaka, N., T. Saha, M. Godmann, S. Herold, B. Herkert, M. Ellers, and T. Möröy. 2010. Transcription factor miz-1 is required to regulate interleukin-7 receptor signaling at early commitment stages of B cell differentiation. Immunity. 33:917–928. https://doi.org/10.1016/j.immuni.2010.11.028

Laidlaw, B.J., T.H. Schmidt, J.A. Green, D.C. Allen, T. Okada, and J.G. Cyster. 2017. The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. J. Exp. Med. 214:639–649. https://doi.org/10.1084/jem.20161860

Li, B., and C.N. Dewey. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12:323. https://doi.org/10.1186/1471-2105-12-323

Li, H., and R. Durbin. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 26:589–595. https://doi.org/10.1093/bioinformatics/btp698
Paus, D., T.G. Phan, T.D. Chan, S. Gardam, A. Basten, and R. Brink. 2006. High affinity germinal center B cells are actively selected into the plasma cell compartment. J. Exp. Med. 203:2419–2424. https://doi.org/10.1084/jem.20061254

R Core Team. 2008. R: A Language and Environment for Statistical Computing. Vienna, Austria.

Reuter, I., H.H. Althaus, R. Münch, and W. Müller. 2005. VBA2E2, an integrative V gene database. Nucleic Acids Res. 33:D671–D674. https://doi.org/10.1093/nar/gki088

Saha, I., C. Kosan, L. Vassen, and T. Möröy. 2011. IL-7R-dependent survival and differentiation of early T-lineage progenitors is regulated by the RORC–FOXO3 domain transcription factor Miz-1. Blood. 117:3370–3381. https://doi.org/10.1182/blood-2010-09-316860

Sancak, Y., C.C. Thoreen, T.R. Peterson, R.A. Lindquist, S.A. Kang, E. Spooner, S.A. Carr, and D.M. Sabatini. 2007. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell. 25:903–915. https://doi.org/10.1016/j.molcel.2007.03.003

Sasaki, T., T. Wada, H. Kishimoto, J. Irie-Sasaki, G. Masumoto, T. Goto, Z. Yao, A. Wakeham, T.W. Mak, A. Suzuki, et al. 2001. The stress kinase mitogen-activated protein kinase protein kinase (MK2) is a negative regulator of antigen receptor and growth factor receptor-induced proliferation in hematopoietic cells. J. Exp. Med. 194:757–768. https://doi.org/10.1084/jem.194.6.757

Schwickert, T.A., G.D. Victora, D.R. Fooksman, M.R. Mugnier, A.D. Gilden, M.L. Dustin, and M.C. Nussenzweig. 2011. A dynamic T cell–limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J. Exp. Med. 208:1243–1252. https://doi.org/10.1084/jem.20102477

Seitz, V., P. Butzhammer, B. Hirsch, J. Hecht, I. Gütgemann, A. Ehlers, D. Lenze, E. Oker, A. Sommerfeld, E. von der Wall, et al. 2011. Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. PLoS One. 6:e24324. https://doi.org/10.1371/journal.pone.0024324

Shinkunas, R., T. Inoue, K. Kometani, S. Moriyama, Y. Adachi, M. Nakayama, Y. Takahashi, H. Fukuyama, T. Okada, and T. Kurosaki. 2016. Regulated selection of germinal-center cells into the memory B cell compartment. Nat. Immunol. 17:861–869. https://doi.org/10.1038/ni.3460

Smith, K.G., A. Light, L.A. O’Reilly, S.M. Ang, A. Strasser, and D. Tarlinton. 2000. Bcl-2 transgene expression inhibits apoptosis in the germinal center and reveals differences in the selection of memory B cells and bone marrow antibody-forming cells. J. Exp. Med. 191:475–484. https://doi.org/10.1084/jem.191.3.475

Staller, P., K. Peukert, A. Kiemaier, J. Seoane, J. Lukas, H. Karsunky, M. Farkash, J. Möröy, B. Térent, J. Massagué, F. Hänzel, et al. 2001. Repression of p15INK4b expression by Myc through association with Miz-1. Nat. Cell Biol. 3:392–399. https://doi.org/10.1038/35070076

Suan, D., N.J. Kräutler, J.L.V. Maag, D. Butt, K. Bourne, J.R. Hermes, D.T. Avery, C. Young, A. Statham, M. Elliott, et al. 2017. CCR6 Defines Memory B Cell Precursors in Mouse and Human Germinal Centers, Revealing Light-Zone Location and Predominant Low Antigen Affinity. Immunity. 47:1142–1153.e4. https://doi.org/10.1016/j.immuni.2017.11.022

Subramanian, A., P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, et al. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

Takahashi, Y., and G. Kelsoe. 2017. Role of germinal centers for the induction of broadly-reactive memory B cells. Curr. Opin. Immunol. 45:119–125. https://doi.org/10.1016/j.coi.2016.03.002

Takemori, T., K. Kajiwara, Y. Takahashi, H. Fukuyama, T. Okada, and T. Kurosaki. 2014. Generation of memory B cells inside and outside germinal centers. Eur. J. Immunol. 44:1258–1264. https://doi.org/10.1002/eji.201343716

Tang, H., W. Wang, Q. Fan, F. Zhang, X. Peng, F. Fang, J. Liu, and K. Ouyang. 2017. Loss of IP3 Receptor-Mediated Ca2+ Release in Mouse B Cells Results in Absence of CD19+ B Cell Differentiation. Immunity. 46:199–209. https://doi.org/10.1016/j.immuni.2017.01.009

Tas, J.M., L. Meslin, G. Pasqual, S. Targ, J.T. Jacobsen, Y.M. Mano, C.S. Chen, J.C. Well, C.A. Reynaud, E.P. Browne, et al. 2016. Visualizing antibody affinity maturation in germinal centers. Science. 351:1048–1054. https://doi.org/10.1126/science.aad3439

Taylor, J., K.A. Pape, and M.K. Jenkins. 2012. A germinal center-independent pathway generates unscheduled memory B cells early in the primary
response. J. Exp. Med. 209:597–606. https://doi.org/10.1084/jem.20111696
Thalheimer, F.B., S. Wingert, P. De Giacomo, N. Haetscher, M. Rehage, B. Brill, F.J. Theis, L. Hennighausen, T. Schroeder, and M.A. Rieger. 2014. Cytokine-regulated GADD45G induces differentiation and lineage selection in hematopoietic stem cells. Stem Cell Reports. 3:34–43. https://doi.org/10.1016/j.stemcr.2014.05.010
Tomayko, M.M., N.C. Steinel, S.M. Anderson, and M.J. Shlomchik. 2010. Cutting edge: Hierarchy of maturity of murine memory B cell subsets. J. Immunol. 185:7146–7150. https://doi.org/10.4049/jimmunol.1002163
Tournier, C., A.J. Whitmarsh, J. Cavanagh, T. Barrett, and R.J. Davis. 1997. Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase. Proc. Natl. Acad. Sci. USA. 94:7337–7342. https://doi.org/10.1073/pnas.94.14.7337
Toyama, H., S. Okada, M. Hatano, Y. Takahashi, N. Takeda, H. Ichii, T. Tomayko, M.M., N.C. Steinel, S.M. Anderson, and M.J. Shlomchik. 2010. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells. Nat. Immunol. 18:921–930. https://doi.org/10.1038/ni.1978
Wanzel, M., A.C. Russ, D. Kleine-Kohlbrecher, E. Colombo, P.G. Pelicci, and M. Eilers. 2008. A ribosomal protein L23-nucleophosmin circuit coordinates Mizl function with cell growth. Nat. Cell Biol. 10:1051–1061. https://doi.org/10.1038/ncb1764
Weisel, F.J., G.V. Zuccarino-Gatania, M. Chikina, and M.J. Shlomchik. 2016. A Temporal Switch in the Germinal Center Determines Differential Output of Memory B and Plasma Cells. Immunity. 44:116–130. https://doi.org/10.1016/j.immuni.2015.12.004
Wiese, K.E., S. Walz, B. von Eyss, E. Wolf, D. Athineos, O. Sansom, and M. Eilers. 2013. The role of MIZ-1 in MYC-dependent tumorigenesis. Cold Spring Harb. Perspect. Med. 3. a014290. https://doi.org/10.1101/cshperspect.a014290
Yang, W., J. Shen, M. Wu, M. Arsura, M. FitzGerald, Z. Suldan, D.W. Kim, C.S. Hofmann, S. Pianetti, R. Romieu-Mourez, et al. 2001. Repression of transcription of the p27(Kip1) cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene. 20:1688–1702. https://doi.org/10.1038/sj.onc.1204245
Yang, Y., H. Do, X. Tian, C. Zhang, X. Liu, L.A. Dada, J.I. Szajjder, and J. Liu. 2010. E3 ubiquitin ligase Mule ubiquitinates Miz1 and is required for TNFalpha-induced JNK activation. Proc. Natl. Acad. Sci. USA. 107:13444–13449. https://doi.org/10.1073/pnas.0913690107
Yu, Y., J. Wang, W. Khaled, S. Burke, P. Li, X. Chen, W. Yang, N.A. Jenkins, N.G. Copeland, S. Zhang, et al. 2012. Bcl11a is essential for lymphoid development and negatively regulates p53. J. Exp. Med. 209:2467–2483. https://doi.org/10.1084/jem.20121846
Zhang, Y., T. Liu, C.A. Meyer, J. Eeckhoute, D.S. Johnson, B.E. Bernstein, C. Nusbaum, R.M. Myers, M. Brown, W. Li, et al. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9:R137. https://doi.org/10.1186/gb-2008-9-9-r137
Zhang, R., D.P. Calado, Z. Wang, S. Fröhler, K. Köchert, Y. Qian, S.B. Koralov, M. Schmidt-Supprian, Y. Sasaki, C. Unitt, et al. 2015. An oncogenic role for alternative NF-kB signaling in DLBCL revealed upon deregulated BCL6 expression. Cell Rep. 11:715–726. https://doi.org/10.1016/j.celrep.2015.03.059
Zotos, D., J.-M. Coquet, Y. Zhang, A. Light, K. D’Costa, A. Kallies, L.M. Corazza, J. Harrington, and J. Engert. 2006. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207:365–378. https://doi.org/10.1084/jem.20091777
Figure S1. Gene expression and cellular populations in the absence of MYC–MIZ1 complexes. (A) RNA expression of Myc (left) and Miz1 (right) in wild-type mice. DZ, DZ cells negative for Ap4; DZ Erly, DZ cells positive for Ap4; LZ MYCneg, LZ cells negative for MYC and Ap4; LZ MYC+, LZ cells positive for MYC and Ap4; (Chou et al., 2016). (B) Representative flow cytometry of intracellular staining for MYC in splenic GC B cells of wild-type mice isolated at day 10 after SRBC immunization (SRBCi) after 4 h (top), 12 h (middle), and 16 h (bottom) in vitro in media (Unst.) and in media in the presence of anti-Ig (anti-IgM + anti-IgG), anti-CD40, anti-Ig + anti-CD40, and anti-Ig + anti-CD40 + IL-4. (C) Testing of intracellular staining for MIZ1 in HEK293T nontransduced (mock) and transiently transduced with a plasmid expressing GFP (GFPpos and GFPneg) or a plasmid expressing MIZ1 and GFP as a bicistronic RNA (GFPpos MIZ1 and GFPneg MIZ1). (D) Representative flow cytometry of intracellular staining for MIZ1 as in B. (E) Heatmap representation of RNA expression in LZ MYCneg and LZ MYC+ of wild-type mice for genes bound in their promoters by MIZ1 and MYC

"MYC—MIZ1" as determined by ChIP-seq in mouse B cells. (F) Top left: Weight of the spleen of MycWT and MycVD at day 10 after SRBC immunization. Top right: Fraction of splenic B lymphocytes of MycWT and MycVD at day 10 after SRBC immunization. Bottom left: Absolute cell number of splenic B cells of MycWT and MycVD at day 10 after SRBC immunization. Bottom right: Ratio of IgG1+ GC B cells over IgM+ GC B at day 10 after SRBC immunization. (G) Representative flow cytometry gating strategy of PCs in MycWT and MycVD at day 10 after SRBC immunization. (H) Cumulative data for PCs, analyzed as in G at days 0, 5, and 10 after SRBC immunization. Top: Fraction within CD4+ T cells, analyzed as in J. Bottom: Fraction between CD4+ CXCR5+ PD1+ T cells over GC B cells. (I) Bar graph displaying GSEA of gene signature "BASSO_CD40_SIGNALING_UP" and "SIG_CD40_PATHWAY" enrichment in the GEP of LZ B cells of MycWT and MycVD. FDR, false discovery rate; NES, normalized enrichment score. Each symbol (F top left: MycWT n = 22, MycVD n = 20, F bottom left: MycWT n = 18, MycVD n = 17; F top right: MycWT n = 16, MycVD n = 16, F bottom right: MycWT n = 12, MycVD n = 10; H and I: day 0 MycWT n = 5, MycVD n = 4; day 5 MycWT n = 4, MycVD n = 4; day 10 MycWT n = 14, MycVD n = 13; K: MycWT n = 11, MycVD n = 10) represents an individual mouse; small horizontal lines show median, minimum, and maximum values. (A) ****, P ≤ 0.0001 (DEseq2). (F–K) *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001 (unpaired two-tailed Student’s t test). Data are representative of two (B–D, H, and I on days 0 and 5; and K) and three (F, H, and I on day 10) independent experiments. ns, not significant.
Figure S2. **Cell cycle genes and proliferation in the absence of MYC–MIZ1 complexes.** (A) Left: RNA expression of Ccnd2 (top) and Ccnd3 (bottom) derived from RNA-seq analysis of FACS purified MycVD and MycWT LZ B cells at day 10 after SRBC immunization. Right: RNA expression of Ccnd2 (top) and Ccnd3 (bottom) in wild-type mice. DZ, DZ cells negative for Ap4; DZ Erly, DZ cells positive for Ap4; LZ MYC+, LZ cells positive for MYC and Ap4; LZ MYC−, LZ cells negative for MYC and Ap4 (Chou et al., 2016). (B) Left: RNA expression of CDK inhibitor genes Cdkn1a (top), Cdkn2a (middle), and Cdkn2b (bottom) derived as in A. Right: RNA expression of CDK inhibitor genes Cdkn1a (top), Cdkn2a (middle), and Cdkn2b (bottom) in wild-type mice as described in A. (C) Left: RNA expression of Cdkn1b (top) derived as in A. Right: RNA expression of Cdkn1b (top) in wild-type mice as described in A. (D) Representative flow cytometry of intracellular staining for MYC in splenic naive B cells of wild-type mice after 4 h (top) and 16 h (bottom) in vitro in media (Unst.) and in media with the presence of anti-Ig (anti-IgM + anti-IgG), anti-CD40, anti-Ig + anti-CD40, and anti-Ig + anti-CD40 + IL4. (E) Representative flow cytometry of intracellular staining for MIZ1 as in D. (F) Analysis of CellTrace Violet (CTV) dilution as a proxy of cell division of MycWT and MycVD naive B cells cultured for 96 h in vitro in media in the presence of anti-Ig + anti-CD40 + IL4. Two of three experiments are shown. (G) Representative confocal immunofluorescence of an FDC area at day 4 after SRBC immunization (SRBCi) in a wild-type C57BL/6 mouse (MIZ1, red; MYC, green; and FDC/CD35, cyan). White lines delineate the center of the FDC area. Scale bar, 20 µm. Green stars identify MYC+MIZ1neg cells and orange stars identify a MIZ1+MYC+ cell. (H) Quantification of the fraction of MYC single positive (MYC+MIZ1neg) and MYC, MIZ1 double positive (MIZ1+MYC+) cells within MYC positive (pre) GC B cells in FDC areas of spleen of C57BL/6 mice at day 4 after SRBC immunization (O4 SRBCi). Each dot represents a mouse. (I) Analysis as in G. Each dot represents an FDC area. Each symbol (A–C: MycWT n = 3, MycVD n = 4) represents an individual mouse; small horizontal lines show median, minimum, and maximum values. (A–C) ***, P ≤ 0.001; ****, P ≤ 0.0001 (DEseq2). (H and I) * P ≤ 0.05; ***, P ≤ 0.001; ****, P ≤ 0.0001 (unpaired two-tailed Student’s t test). Data are representative of two (D and E) and three (F, H, and I) independent experiments. ns, not significant.
Figure S3. **MBC-associated genes and populations in mice lacking MYC–MIZ1 complexes.** (A) Bar graph displaying GSEA of GEP of LZ B cells of MycWT and MycVD, for gene signature "MBC vs. FO UP"; "GSE76502 MBC vs. FO UP"; "GSE11961 MBC vs. FO UP"; "MBC vs. FO DOWN"; "GSE76502 MBC vs. FO DOWN"; "GSE11961 MBC vs. FO DOWN". FDR, false discovery rate; NES, normalized enrichment score. (B) Left: GSEA of GEP of MBC and FO for "GSE11961 MBC vs. FO_UP" gene signature. Right: GSEA of GEP of MBC and FO for "GSE76502 MBC vs. FO_UP" gene signature. (C) Left: RNA expression of Bach2 in MycVD LZ B cells compared with MycWT LZ B cells, derived from RNA-seq analysis of FACS-purified cells at day 10 after SRBC immunization. Right: RNA expression of Bach2. DZ, DZ cells negative for AP4; DZ Erly, DZ cells positive for AP4; LZ MYCneg, LZ cells negative for both MYC and AP4; LZ MYC+, LZ cells positive for both MYC and AP4 (Chou et al., 2016). (D) Heatmap representation of RNA expression in LZ MYCneg and LZ MYC+ for genes bound in their promoters by MIZ1 and MYC "MIZ1 ↔ MYC" as determined by ChiP-seq in mouse B cells. Genes found significantly up-regulated in MBC vs. LZ B cells are presented within a red box. (E) Representative flow cytometry using Fluorescence Minus One (FMO) controls for CD35 (left), CD80 (middle), and CD73 (right). (F) Representative flow cytometry gating strategy for splenic IgG1+ MBCs of MycWT and MycVD at day 10 after SRBC immunization (SRBCi). spl, spleen. (G) Representative flow cytometry for surface marker staining of splenic IgG1+ MBCs of MycWT and MycVD at day 10 after SRBC immunization (SRBCi). spl, spleen. (H) Cumulative data for analysis as in G. Each symbol (C, left: MycWT n = 3, MycVD n = 4, H: MycWT n = 7, MycVD n = 5) represents an individual mouse. (C, right) mean and SEM. (H): * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001. Data are representative of two (H) independent experiments. ns, not significant.
Figure S4. **Affinity maturation in the absence of MYC–MIZ1 complexes.**

(A) Quantification of amino acid substitutions in the IgH V-region of SWHEL in IgG1+ GC B cells at day 8 (two left panels) and day 15 (two right panels) after HEL3X immunization of recipient mice transferred with MycWTSWHEL and MycVDSWHEL B cells.

(B) Frequency of GC B cells carrying the specified number of amino acid substitutions, analyzed at day 8 after HEL3X immunization.

(C) Average amino acid substitutions frequency across the IgH V-region of SWHEL in IgG1+ GC B cells at day 8 and day 15 after HEL3X immunization of recipient mice transfected with MycWTSWHEL and MycVDSWHEL B cells.

(D) Frequency of nucleotide substitutions across the IgH V-region of SWHEL within IgG1+ GC B cells at day 8 after HEL3X immunization.

(E) Quantification of the amino acid substitutions in the IgH V-region of SWHEL in IgG1+ CD273+ MBCs at day 8 (two left panels) and day 15 (two right panels) after HEL3X immunization of recipient mice transfected with MycWTSWHEL and MycVDSWHEL B cells.

(F) Frequency of nucleotide substitutions across the IgH V-region of SWHEL within IgG1+ CD273+ MBCs at day 8 after HEL3X immunization.

(G) ELISA of serum of recipient mice transferred with MycWTSWHEL and MycVDSWHEL B cells to determine affinity maturation of IgG1 antibody response to HEL3X at days 8 and 15 after HEL3X immunization. Each symbol (C and G) represents an individual sequence; small horizontal lines show the mean. Values represent mean and SEM (I). Cumulative analysis of five mice per genotype per time point. **, P ≤ 0.01; ****, P ≤ 0.0001 (unpaired two-tailed Student’s t test). Green, CDR1; red, CDR2; blue, CDR3. av, average amino acid substitution per sequence; n, number of analyzed sequences.
Figure S5. MYC–Miz1 complexes restrict MBC differentiation in the absence Aicda. (A) Representative flow cytometry of splenic GC B cells of Aicda KO and MycVD Aicda KO at day 10 after SRBC immunization (SRBCi). spl, spleen. (B) Cumulative data for fraction of splenic GC B cells in Aicda KO and MycVD Aicda KO at day 10 after SRBC immunization. (C) Cumulative data of EdU incorporation in splenic DZ B cells (top) and LZ B cells (bottom) in Aicda KO and MycVD Aicda KO at day 10 after SRBC immunization. (D) Representative flow cytometry gating strategy for splenic CD273+ MBCs of Aicda KO and MycVD Aicda KO at day 10 after SRBC immunization. spl, spleen. (E) Cumulative data of splenic CD273+ MBCs in Aicda KO and MycVD Aicda KO at day 10 after SRBC immunization. Top: Fraction of cells. Bottom: ratio of MBC to GC. Each symbol (B, C, and E: MycWT n = 9, MycVD n = 6) represents an individual mouse; small horizontal lines indicate mean. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001 (unpaired two-tailed Student’s t test). Data are representative of three independent experiments. ns, not significant.