Supporting Information for

Palladium-Catalyzed Benzylic C(sp³)‒H Carbonylative Arylation of Azaarylmethyl Amines with Aryl Bromides Under CO at Atmospheric Pressure

Haoqiang Zhao,^{a,b}† Bowen Hu,^a‡ Lijin Xu^b*, and Patrick J. Walsh^a*

^aRoy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States. E-mail: pwalsh@sas.upenn.edu
^bDepartment of Chemistry, Renmin University of China, Beijing 100872, China. E-mail: 20050062@ruc.edu.cn

Contents:

1. General information: .. S2
2. Optimization of the reaction conditions .. S2
3. General Procedure for DCCC of Azaarylmethyl Amines .. S5
4. The general procedure for synthetic applications .. S6
5. Reaction studies ... S9
6. Characterization data for products ... S11
7. References: .. S19
8. Copies of ¹H and ¹³C{¹H} NMR Spectra ... S20
1. General information:

Unless otherwise noted, all experiments were carried out in air and all commercially available chemicals, including organic solvents, were used as received from Aldrich, Acros or Strem without further purification. 1H NMR and 13C{1H} NMR spectra were recorded on a Bruker Model Advance DMX 400 Spectrometer (1H 400 MHz and 13C 101 MHz, respectively) or Bruker Model Advance DMX 500 Spectrometer (1H 500 MHz and 13C 125 MHz, respectively). Chemical shifts (δ) are given in ppm and are referenced to residual solvent peaks. Melting points were measured on X-4 melting point apparatus and are uncorrected. High resolution mass spectra (HRMS) were performed on a VG Autospec-3000 spectrometer. Column chromatography was performed with silica gel (200-300 mesh). Azaarylmethyl Amines were prepared according to the previous reports.1,2

2. Optimization of the reaction conditions

a) HTE (High Throughput Experimentation) micro-scale (0.01 mmol) screen

Table S1. Base and solvent screening.

Entry	Base	Solvent	AY (%)
1	LiOrBu	Toluene	0
2	NaOrBu	Toluene	0
3	KOrBu	Toluene	0
4	LiN(SiMe$_3$)$_2$	Toluene	9
5	NaN(SiMe$_3$)$_2$	Toluene	4
6	KN(SiMe$_3$)$_2$	Toluene	2
7	LiOrBu	1,4-dioxane	0
8	NaOrBu	1,4-dioxane	0
9	KOrBu	1,4-dioxane	0
10	LiN(SiMe$_3$)$_2$	1,4-dioxane	22
11	NaN(SiMe$_3$)$_2$	1,4-dioxane	6
12	KN(SiMe$_3$)$_2$	1,4-dioxane	3
13	LiOrBu	CPME	0
14	NaOrBu	CPME	0
15	KOrBu	CPME	0
16	LiN(SiMe$_3$)$_2$	CPME	4

6 Base: LiOrBu, NaOrBu, KOrBu, LiN(SiMe$_3$)$_2$, NaN(SiMe$_3$)$_2$, KN(SiMe$_3$)$_2$.
4 Solvent: Toluene, 1,4-dioxane, CMPE (cyclopentyl methyl ether), THF.
2:1 ratio relative to 1a for base and 1.2:1 ratio for aryl bromide 2a.
The lead hit from the screening was the combination of Pd(OAc)$_2$ (5 mol %), NIXANTPHOS (6 mol %), LiN(SiMe$_3$)$_2$ (2 equiv), 1,4-dioxane as solvent under 1 atm CO at 65 °C for 16 h giving 22% assay yield of the desired carbonylation product 3aa. A scale-up reaction on a 0.1 mmol scale using General Procedure for the Pd-Catalyzed Deprotonative Carbonylation of 1a proved successful with 27% assay yield of 3aa determined by 1H NMR spectroscopy of the crude reaction mixture.

b) Lab scale (0.1 mmol) reaction conditions optimization

Table S2. Optimization of reaction conditions.a

Entry	Pd source	Ligand	Solvent	Temp (°C)	1a:2a:base	Assay yield (%)b	
						3aa	3aa'
1	Pd(OAc)$_2$	NIXANTPHOS	Toluene	65	1:1.2:2	18	5
2	Pd(OAc)$_2$	NIXANTPHOS	DMSO	65	1:1.2:2	0	0
3	Pd(OAc)$_2$	NIXANTPHOS	THF	65	1:1.2:2	22	4
4	Pd(OAc)$_2$	NIXANTPHOS	CPME	65	1:1.2:2	21	9
5	Pd(OAc)$_2$	NIXANTPHOS	DME	65	1:1.2:2	10	6
6	Pd(OAc)$_2$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	27	8
7	Pd$_2$(dba)$_3$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	31	11
8	Pd(PPh$_3$)$_4$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	22	trace
9	[PdCl(allyl)]$_2$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	7	5
10	Pd G3 dimer	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	32	trace
11	Pd(dba)$_2$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	43	10
12	Pd G4 dimer	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	37	14
13	Ni(acac)$_2$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	0	0
14	Ni(COD)$_2$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	0	0
15	NiBr$_2$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	0	0
16e	Pd(dba)$_2$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	0	0
17d	Pd(dba)$_2$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	0	0
18e	Pd(dba)$_2$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	10	0
19f	Pd(dba)$_2$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	7	0
20f	Pd(dba)$_2$	NIXANTPHOS	1,4-dioxane	65	1:1.2:2	0	0
21	Pd(dba)$_2$	NIXANTPHOS	1,4-dioxane	65	1:1.2:3	89	7
Table S3. Substrates that failed under the reaction conditions.a

Pd source	Ligand	Solvent	Temp	Yield	Isolated Yield
Pd(dba)₂	dppf	1,4-dioxane	65	1:1.2:3	5
Pd(dba)₂	dppp	1,4-dioxane	65	1:1.2:3	7
Pd(dba)₂	dppb	1,4-dioxane	65	1:1.2:3	22
Pd(dba)₂	dppe	1,4-dioxane	65	1:1.2:3	4
Pd(dba)₂	Xantphos	1,4-dioxane	65	1:1.2:3	28
Pd(dba)₂	NIXANTPHOS	1,4-dioxane	65	1:1.2:3	81
Pd(dba)₂	NIXANTPHOS	1,4-dioxane	80	1:1.5:3	89
Pd(dba)₂	NIXANTPHOS	1,4-dioxane	100	1:1.5:3	93
Pd(dba)₂	/	1,4-dioxane	rt	1:1.2:3	0
Pd(dba)₂	NIXANTPHOS	1,4-dioxane	80	1:1.5:3	0
Pd(dba)₂	NIXANTPHOS	1,4-dioxane	80	1:1.5:3	65
Pd(dba)₂	NIXANTPHOS	1,4-dioxane	80	1:1.5:3	93
Pd(dba)₂	NIXANTPHOS	1,4-dioxane	80	1:1.5:3	4
Pd(dba)₂	NIXANTPHOS	1,4-dioxane	80	1:1.5:3	0
Pd(dba)₂	NIXANTPHOS	1,4-dioxane	80	1:1.5:3	0
Pd(dba)₂	NIXANTPHOS	1,4-dioxane	80	1:1.5:3	0

aReaction conditions: 1 (0.2 mmol), 2a (0.3 mmol), Pd(dba)₂ (5 mol%), NIXANTPHOS (6 mol%), LiN(SiMe₃)$_2$ (3 equiv), 1,4-dioxane (2.0 mL), 80°C, 16 h, under CO atmosphere (1 atm).
3. General Procedure for DCCC of Azaarylmethyl Amines

(a) General procedure under 1 atm CO.

An oven-dried 8 mL vial equipped with a stir bar was charged with Pd(dba)$_2$ (5 mol %) and NIXANTPHOS (6 mol %) under a nitrogen atmosphere in glove box. Next, 0.1M of 1,4-dioxane was taken up by syringe and added to the vial. The resulting solution stirred for 15 min at room temperature, during which time the mixture became red. This solution was used as the stock solution for this procedure. To an oven-dried 10 mL Schlenk tube with stir bar was added LiN(SiMe$_3$)$_2$ (100.5 mg, 0.6 mmol, 3 equiv). A pipette was used to take 2 mL of the Pd/NIXANTPHOS stock solution and add it to the Schlenk tube. The resulting (dark green) solution was then stirred for 10 min at room temperature. Azaarylmethyl amine 1 (0.2 mmol, 1 equiv) and aryl bromide 2 (0.3 mmol, 1.5 equiv) were added to the reaction mixture, sequentially. The Schlenk tube was capped with rubber stopper and removed from the glove box. The reaction mixture was then degassed with CO by using Schlenk line, and connected with a CO balloon, placed in an 80 °C oil bath and stirred for 16 h. After this time, the flask was rem and stirred for 16 h at 80 °C. After this time, the tube was removed from the oil bath, allowed to cool to room temperature, uncapped carefully in a fumehood and the reaction quenched with two drops of H$_2$O. After quench the color of the reaction mixture changed from brown to red. It was next diluted with 3.0 mL of ethyl acetate and filtered over a pad of MgSO$_4$ and Celite. The pad was rinsed with additional ethyl acetate (5.0 mL) and the resulting solution evaporated under vacuum to remove the volatile materials. The residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexanes to give the pureified product.

(b) General procedure at high CO pressure.

An oven-dried 8 mL vial equipped with a stir bar was sequentially added Pd(dba)$_2$ (5.8 mg, 0.01 mmol, 5 mol %) and NIXANTPHOS (6.6 mg, 0.012 mmol, 6 mol %) under a nitrogen atmosphere inside a glove box. Next, 2 mL of 1,4-dioxane was taken up by syringe and added to the flask at room temperature. The reaction mixture was stirred for 15 min at room temperature, until the mixture became red. Then LiN(SiMe$_3$)$_2$ (100.5 mg, 0.6 mmol, 3 equiv) was added and the reaction mixture was stirred for 10 min at room temperature. Azaarylmethyl amine 1 (0.2 mmol, 1 equiv) and aryl bromide 2 (0.3 mmol, 1.5 equiv) were added to the reaction mixture, sequentially. The solution was then transferred to a 30 mL Parr Instruments 5000 Multiple Reactor system vessel. The reactor was then sealed, removed from the glovebox. The reaction vessel was then pressurized with CO at 8.6 atm. Reaction was run for 16 hours at
80 °C. After this time, reactor was cooled room temperature. The CO pressure was slowly released in a fume hood. Then the reactor was uncapped, and the reaction mixture was quenched with two drops of H2O. The color of the reaction mixture changed from brown to red. It was next diluted with 3.0 mL of ethyl acetate and filtered over a pad of MgSO4 and Celite. The pad was rinsed with additional ethyl acetate (5.0 mL) and the resulting solution evaporated under vacuum to remove the volatile materials. The assay yield was determined based on 1H NMR analysis by integration (4% AY).

4. The general procedure for synthetic applications

a) Gram-scale synthesis

To an oven-dried 100 mL Schlenk flask with a stir bar were sequentially added Pd(dba)2 (143.8 mg, 0.25 mmol, 5 mol %) and NIXANTPHOS (165.5 mg, 0.3 mmol, 6 mol %) under a nitrogen atmosphere inside a glove box. Next, 50 mL of 1,4-dioxane was taken up by syringe and added to the flask at room temperature. The reaction mixture was stirred for 30 min at room temperature, until the mixture became red. Then added LiN(SiMe3)2 (2.5 g, 15 mmol, 3 equiv) and 4-tert-butyl-bromobenzen 2a (1.6 g, 7.5 mmol, 1.5 equiv) were added to the reaction mixture sequentially. The Schlenk flask was capped, removed from the glove box, the reaction mixture was degassed with CO by using Schlenk line (the Schlenk flask was evacuated by Schlenk line and then refiled with CO gas), then connected with a CO balloon, and placed in an 80 °C oil bath and stirred for 16 h. After this time, the flask was removed from the oil bath, allowed to cool to room temperature, then the cap was carefully removed in the fume hood, exposing the solution to the atmosphere, and the reaction quenched with H2O (1 mL). The color of the reaction mixture changed from dark brown to red. It was next diluted with 30 mL of ethyl acetate and filtered over a pad of MgSO4 and celite. The pad was rinsed with additional ethyl acetate (50 mL) and evaporated under vacuum to remove the volatile materials. The residue was purified by column chromatography on silica gel using a mixture of ethyl acetate/hexanes (1/2, v/v) to give the pure product 3aa (1.20 g, 71%) as yellow oil.

b) Oxidation of 3aa

i) Conditions 1. When m-CPBA was employed as an oxidant.

A 20 mL reaction vial was charged with a stir bar and solution of 1-(4-(tert-butyl)phenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one 3aa (67.7 mg, 0.2 mmol) in 3 mL CHCl3. To the
resulting clear solution was added \textit{m}-CPBA as a solid (138.1 mg, 4 equiv) at room temperature with stirring, resulting in a brown suspension. The reaction mixture was heated to 50 °C in an oil bath and stirred for 16 h at this temperature. The reaction mixture was then allowed to cool to room temperature, quenched with 3 mL a solution of K$_2$CO$_3$ (10\%w/w) and extracted with CH$_2$Cl$_2$ (3x5 mL). The combined organic layers were washed with brine, dried over Na$_2$SO$_4$, filtered and concentrated under reduced pressure to remove the volatile materials. The resulting brown crude oil was purified by flash chromatography on silica gel (eluted with hexanes/ethyl acetate = 1/1) to give the product 4 in 91\% yield as a light-yellow oil. Characterization of 4 is given below.

\begin{center}
\begin{align*}
\text{ii) Conditions 2. When placing 3aa directly under air atmosphere.}
\end{align*}
\end{center}

A 20 mL reaction vial was charged with a stir bar and a solution of 1-(4-(tert-butyl)phenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one 3aa (67.7 mg, 0.2 mmol) in 3 mL CHCl$_3$. The open vial was stirred under air atmosphere for 48 h at room temperature. The reaction mixture was concentrated under reduced pressure. The brown crude oil was purified by flash chromatography on silica gel (eluted with hexanes/ethyl acetate = 1/1) to give the product 4 in 86\% yield (33.1 mg) as a light-yellow oil.

\textbf{morpholino(pyridin-2-yl)methanone (4)}

Compound 4 was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:1, v/v), and isolated as a light yellow oil, 35.0 mg, 91\%, 1H NMR (400 MHz, CDCl$_3$) δ 8.65 – 8.52 (m, 1H), 7.80 (td, J = 7.7, 1.8 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.42 – 7.30 (m, 1H), 3.80 (s, 4H), 3.67 (hept, J = 3.6, 2.7 Hz, 4H). 13C\{}1H\} NMR (101 MHz, CDCl$_3$) δ 167.5, 153.6, 148.2, 137.2, 124.7, 124.2, 67.0, 66.8, 47.8, 42.8. HRMS (ESI) calcd. for C$_{10}$H$_{12}$N$_2$O$_2$ [M+H]$^+$: 193.0972, found:193.0979.

\begin{center}
\begin{align*}
\text{c) Reduction of 3aa to 1-(4-(tert-butyl)phenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-ol (5)}
\end{align*}
\end{center}

\begin{center}
\begin{align*}
\text{An 8 mL reaction vial was charged with a stir bar and a solution of 1-(4-(tert-butyl)phenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one 3aa (135.4 mg, 0.4 mmol) in 4 mL MeOH. The vial was placed in an ice water bath and stirred. To the clear solution cooled solution was added NaBH}_4 as a solid (45.4 mg, 3 equiv) at 0 °C, which generated a brown suspension. After the addition (or in 15 min) at 0 °C, the reaction mixture was removed from}
\end{align*}
\end{center}
the ice water bath, allowed to warm to room temperature and stirred for 16 h. The reaction mixture was then quenched with 1 mL of a solution of NH₄Cl (10% w/w) and extracted with CH₂Cl₂ (3x5 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to remove the volatile materials. The crude brown oil was purified by flash chromatography on silica gel (eluted with hexanes/ethyl acetate = 1/1) to give the product 5 (68% yield, 92.6 mg) as a light-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (ddd, J = 5.0, 1.8, 0.9 Hz, 1H), 7.48 (td, J = 7.7, 1.9 Hz, 1H), 7.19 – 7.13 (m, 3H), 7.04 – 6.95 (m, 2H), 6.91 (dt, J = 7.8, 1.1 Hz, 1H), 5.79 (s, 1H), 5.38 (d, J = 3.9 Hz, 1H), 3.71 (ddd, J = 6.0, 3.6, 2.6 Hz, 4H), 3.53 (d, J = 4.0 Hz, 1H), 2.67 (dt, J = 10.1, 4.8 Hz, 2H), 2.56 (ddd, J = 11.4, 5.4, 3.6 Hz, 2H), 1.23 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.2, 149.6, 148.3, 139.7, 136.2, 125.7, 125.6, 124.7, 122.6, 74.8, 72.8, 67.1, 51.5, 34.3, 31.3. HRMS (ESI) calcd. for C₂₁H₂₈N₂O₂ [M+H]+: 341.2224, found: 341.2219.

d) Synthesis of (E)-allyl (1-(4-(tert-butyl)phenyl)-2-morpholino-2-(pyridin-2-yl)vinyl) carbonate (6)⁴

To an oven-dried Schlenk tube with a stir bar was added LiN(SiMe₃)₂ (100.4 mg, 0.6 mmol) followed by toluene (1.0 mL) and N,N-dimethylethylamine (43 μL) in drybox. The resulting mixture stirred at 25 °C for 5 min. Next, a solution of ketone 3aa (0.3 mmol) in toluene (1.0 mL) was then added and the reaction mixture stirred at 25 °C for an additional 30 min generating a yellow solution. The tube was then placed in a room temperature water bath and allyl chloroformate (63.8 μL, 0.6 mmol) was added slowly over 5 min. The reaction was allowed to stir until no starting material remained by TLC (typically less than 1 h). The crude reaction mixture was diluted with Et₂O (5 mL) and then quenched with water. The color of the reaction mixture changed from red to light brown. The layers were separated, and the aqueous layer was extracted with Et₂O (5 mL) twice. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel flash chromatography (eluted with hexanes/ethyl acetate = 2/1) to afford the desired enol carbonate 6 in 87% yield as a yellow oil, 110.3 mg, 87%. ¹H NMR (400 MHz, CDCl₃) δ 8.67 – 8.58 (m, 1H), 7.68 (td, J = 7.7, 1.9 Hz, 1H), 7.54 (dt, J = 7.7, 1.1 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.42 – 7.34 (m, 2H), 7.19 (dd, J = 7.5, 4.8, 1.2 Hz, 1H), 5.91 – 5.70 (m, 1H), 5.27 – 5.13 (m, 2H), 4.52 (dt, J = 5.7, 1.5 Hz, 2H), 3.62 (t, J = 4.7 Hz, 4H), 2.72 (t, J = 4.6 Hz, 4H), 1.32 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 155.5, 154.1, 151.1, 149.5, 139.8, 136.8, 136.2, 132.4, 131.5, 127.8, 125.0, 124.2, 122.7, 118.5, 68.5, 67.4, 50.9, 34.7, 31.3. HRMS (ESI) calcd. for C₂₅H₃₀N₂O₄ [M+H]+: 423.2278, found: 423.2283.
5. Reaction studies

a) Detection of the enolate:

i) Deprotonation of 3aa:

An oven-dried 20 mL vial equipped with a stir bar was charged with 3aa (67.7 mg, 0.2 mmol) under a nitrogen atmosphere in the glove box. A solution of LiN(SiMe₃)₂ (100.5 mg, 0.6 mmol) in 2.0 mL of dry THF was added with stirring at room temperature. After stirring for 3 h at room temperature, the color had changed from colorless to yellow. The resulting solution was evaporated under vacuum to remove the volatile materials. The resulting oil was taken up in 0.5 mL dry d₈-THF. The suspension formed was filtered through dry celite and the filtrate was carefully transferred to J-Young NMR tube that was then sealed. NMR data was then collected and the ¹H NMR and ¹³C{¹H} NMR spectrum are shown below.

ii) Reaction monitoring:

An oven-dried 8 mL vial equipped with a stir bar under a nitrogen atmosphere in glove box was charged with Pd(dba)₂ (5 mol %), NIXANTPHOS (6 mol %) and 0.1 M of 1,4-dioxane was taken up by syringe and added to the vial. The resulting solution was stirred for 15 min at room temperature during which time the mixture became red. This solution was used as the stock solution. To an oven-dried 10 mL Schlenk tube in the glove box with stir bar was added LiN(SiMe₃)₂ (50.3 mg, 0.3 mmol, 3 equiv). Next, 1 mL of the stock solution was added by pipette and the resulting solution stirred for 10 min at room temperature. 2-Pyridylmethylmorpholine 1a (17.8 mg, 0.1 mmol, 1 equiv) and aryl bromide 2a (32 mg, 0.15 mmol, 1.5 equiv) were sequentially added to the reaction mixture. The Schlenk tube was capped, removed from the glove box and the reaction mixture was degassed with CO by using Schlenk line, and connected with a CO balloon stirred for 16 h at 80 °C. After this time, the tube was removed from the oil bath, allowed to cool to room temperature, connected to a Schlenk line and evaporated under reduced pressure. While under vacuum, the tube was brought back into the glove box, the cap was carefully removed, and 0.5 mL dry d₈-THF was added to the crude reaction mixture. The suspension was filtered through dry celite and the filtrate was carefully transferred to J-Young tube and NMR spectra acquired.

Supplementary Figure S1: ¹H NMR comparison of standard carbonylation product before aqueous workup, deprotonated 3aa, and product 3aa in d₈-THF. These spectra support the contention that the product formed in the carbonylation reaction before workup is the enolate.
Supplementary Figure S2: 13C-1H NMR comparison of standard carbonylation product before aqueous workup, deprotonated 3aa, and product 3aa in d^8-THF. These spectra support the contention that the product formed in the carbonylation reaction before workup is the enolate.
6. Characterization data for products

1-(4-(tert-butyl)phenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one (3aa)

Compound 3aa was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 62.3 mg, 92%. 1H NMR (400 MHz, CDCl$_3$) δ 8.57 (ddd, $J = 4.9, 1.8, 0.9$ Hz, 1H), 8.10 – 8.02 (m, 2H), 7.65 (td, $J = 7.7, 1.9$ Hz, 1H), 7.58 (dt, $J = 7.8, 1.1$ Hz, 1H), 7.45 – 7.39 (m, 2H), 7.17 (ddd, $J = 7.4, 4.9, 1.3$ Hz, 1H), 5.25 (s, 1H), 3.81 – 3.68 (m, 4H), 2.62 (ddd, $J = 9.9, 5.9, 3.4$ Hz, 2H), 2.46 (ddd, $J = 9.2, 4.5, 2.2$ Hz, 2H), 1.30 (s, 9H). 13C(1H) NMR (101 MHz, CDCl$_3$) δ 196.2, 157.1, 156.0, 149.5, 136.9, 133.8, 129.0, 125.5, 123.9, 123.0, 77.7, 66.9, 52.1, 35.1, 31.0. HRMS (ESI) calcd. for C$_{21}$H$_{26}$N$_2$O$_2$ [M+H]$^+$: 339.2067, found: 339.2061.

1-(4-(tert-butyl)phenyl)-2-(pyridin-2-yl)-2-thiomorpholinoethan-1-one (3ba)

Compound 3ba was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a brown oil, 61.6 mg, 87%. 1H NMR (400 MHz, CDCl$_3$) δ 8.55 (ddd, $J = 4.9, 1.8, 0.9$ Hz, 1H), 8.03 – 7.97 (m, 2H), 7.65 (td, $J = 7.7, 1.9$ Hz, 1H), 7.51 (dt, $J = 7.9, 1.1$ Hz, 1H), 7.43 – 7.37 (m, 2H), 7.17 (ddd, $J = 7.5, 4.9, 1.2$ Hz, 1H), 5.37 (s, 1H), 2.91 – 2.82 (m, 4H), 2.69 (t, $J = 4.6$ Hz, 4H), 1.29 (s, 9H). 13C(1H) NMR (101 MHz, CDCl$_3$) δ 197.0, 157.0, 156.2, 149.5, 136.7, 134.0, 128.9, 125.5, 124.0, 122.8, 77.0, 53.4, 35.1, 31.0, 28.0. HRMS (ESI) calcd. for C$_{21}$H$_{26}$N$_2$OS [M+H]$^+$: 355.1839, found: 355.1835.

1-(4-(tert-butyl)phenyl)-2-(4-methylpiperazin-1-yl)-2-(pyridin-2-yl)ethan-1-one (3ca)

Compound 3ca was prepared following the general procedure, purified by column chromatography using DCM/MeOH (10:1, v/v), and isolated as a brown oil, 48.5 mg, 69%. 1H NMR (400 MHz, CDCl$_3$) δ 8.53 (dd, $J = 4.9, 1.6$ Hz, 1H), 8.07 – 7.95 (m, 2H), 7.62 (td, $J = 7.7, 1.8$ Hz, 1H), 7.52 (d, $J = 7.8$ Hz, 1H), 7.38 (d, $J = 8.4$ Hz, 2H), 7.14 (ddd, $J = 7.5, 4.8, 1.2$ Hz, 1H), 5.27 (s, 1H), 2.70 (s, 5H), 2.61 (dd, $J = 10.4, 5.0$ Hz, 3H), 2.40 (s, 3H), 1.26 (s, 9H). 13C(1H) NMR (101 MHz, CDCl$_3$) δ 196.1, 157.0, 156.2, 149.6, 149.6, 136.7, 134.0, 128.9, 125.5, 124.0, 122.8, 77.0, 56.8, 54.6, 50.3, 45.2, 35.1, 31.0. HRMS (ESI) calcd. for C$_{22}$H$_{29}$N$_3$O [M+H]$^+$: 352.2383, found: 352.2377.

1-(4-(tert-butyl)phenyl)-2-(dimethylamino)-2-(pyridin-2-yl)ethan-1-one (3da)

Compound 3da was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:1, v/v), and isolated as a yellow oil, 43.3 mg, 73%. 1H NMR (400 MHz, CDCl$_3$) δ 8.56 (ddd, $J = 4.9, 1.9, 1.0$ Hz, 1H), 8.12 – 8.01 (m, 2H), 7.65 (td, $J = 7.7, 1.8$ Hz, 1H), 7.57 (dt, $J = 8.0, 1.2$ Hz, 1H), 7.43 – 7.39 (m, 2H), 7.17 (ddd, $J = 7.4, 4.9, 1.4$ Hz, 1H), 5.15 (s, 1H), 2.31 (s, 6H), 1.29 (s, 9H). 13C(1H) NMR (101 MHz, CDCl$_3$) δ 196.8, 157.0, 156.9, 149.4, 136.9, 133.7, 129.0, 125.5, 123.7, 122.9, 78.4, 43.9, 35.1, 31.0. HRMS (ESI) calcd. for C$_{19}$H$_{24}$N$_2$O [M+H]$^+$: 297.1961, found: 297.1965.
1-(4-(tert-butyl)phenyl)-2-(pyridin-2-yl)-2-(pyrrolidin-1-yl)ethan-one (3ea)

Compound 3ea was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 54.2 mg, 84%. \[^1\]H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.55 (dt, \(J = 4.9, 1.3\) Hz, 1H), 8.15 – 8.03 (m, 2H), 7.69 – 7.54 (m, 2H), 7.44 – 7.36 (m, 2H), 7.16 (ddd, \(J = 6.8, 4.9, 1.6\) Hz, 1H), 5.20 (s, 1H), 2.73 (dt, \(J = 8.4, 6.4\) Hz, 2H), 2.40 (dq, \(J = 8.4, 5.0, 4.0\) Hz, 2H), 1.87 – 1.76 (m, 4H), 1.29 (s, 9H). \[^1^3\]C\[^1\]H\ NMR (101 MHz, CDCl\(_3\)) \(\delta\) 196.1, 157.4, 156.9, 149.2, 136.9, 133.4, 129.1, 125.4, 123.5, 122.8, 77.7, 52.6, 35.1, 31.0, 23.3. HRMS (ESI) calcd. for C\(_{21}\)H\(_{20}\)N\(_2\)O [M+H]: 323.2118, found: 323.2112.

1-(4-(tert-butyl)phenyl)-2-(piperidin-1-yl)-2-(pyridin-2-yl)ethan-one (3fa)

Compound 3fa was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 43.1 mg, 64%. \[^1\]H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.54 (dt, \(J = 4.8, 1.4\) Hz, 1H), 8.13 – 8.03 (m, 2H), 7.67 – 7.59 (m, 2H), 7.43 – 7.39 (m, 2H), 7.15 (ddd, \(J = 6.8, 4.9, 1.9\) Hz, 1H), 5.23 (s, 1H), 2.52 (dt, \(J = 10.8, 5.3\) Hz, 2H), 2.42 (dq, \(J = 11.0, 5.5, 4.8\) Hz, 2H), 1.60 (q, \(J = 4.9\) Hz, 4H), 1.44 (q, \(J = 5.9\) Hz, 2H), 1.30 (s, 9H). \[^1^3\]C\[^1\]H\ NMR (101 MHz, CDCl\(_3\)) \(\delta\) 197.4, 157.0, 156.8, 149.2, 136.6, 134.2, 129.0, 125.4, 123.9, 122.6, 78.2, 52.9, 35.1, 31.0, 26.0, 24.4. HRMS (ESI) calcd. for C\(_{22}\)H\(_{20}\)N\(_2\)O [M+H]: 337.2274, found: 337.2269.

1-(4-(tert-butyl)phenyl)-2-(4-methoxy-3,5-dimethylpyridin-2-yl)-2-morpholinoethan-one (3ga)

Compound 3ga was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 41.2 mg, 52%. \[^1\]H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.15 (s, 1H), 7.90 – 7.82 (m, 2H), 7.37 – 7.31 (m, 2H), 5.34 (s, 1H), 3.75 (s, 3H), 3.68 (dt, \(J = 6.2, 3.4\) Hz, 4H), 2.70 (q, \(J = 4.3\) Hz, 4H), 2.46 (s, 3H), 2.19 (s, 3H), 1.27 (s, 9H). \[^1^3\]C\[^1\]H\ NMR (101 MHz, CDCl\(_3\)) \(\delta\) 196.5, 164.5, 156.2, 154.1, 149.3, 134.1, 128.5, 127.1, 125.6, 125.3, 74.8, 67.5, 59.9, 50.9, 35.0, 31.0, 13.3, 11.0. HRMS (ESI) calcd. for C\(_{24}\)H\(_{32}\)N\(_2\)O\(_3\) [M+H]: 397.2486, found: 397.2480.

1-(4-(tert-butyl)phenyl)-2-(pyridin-4-yl)-2-thiomorpholinoethan-one (3ha)

Compound 3ha was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a brown oil, 57.4 mg, 81%. \[^1\]H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.59 – 8.50 (m, 2H), 7.99 – 7.90 (m, 2H), 7.46 – 7.40 (m, 2H), 7.36 – 7.30 (m, 2H), 5.07 (s, 1H), 2.86 (dt, \(J = 11.6, 5.1\) Hz, 2H), 2.78 (dt, \(J = 11.7, 4.8\) Hz, 2H), 2.67 (t, \(J = 5.0\) Hz, 4H), 1.30 (s, 9H). \[^1^3\]C\[^1\]H\ NMR (101 MHz, CDCl\(_3\)) \(\delta\) 196.5, 157.6, 150.1, 144.6, 133.5, 128.7, 125.7, 124.4, 74.6, 53.3, 35.2, 31.0, 28.1. HRMS (ESI) calcd. for C\(_{21}\)H\(_{26}\)N\(_2\)S [M+H]: 355.1839, found: 355.1835.

1-(4-(tert-butyl)phenyl)-2-morpholino-2-(pyridin-4-yl)ethan-one (3ia)
Compound 3ia was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 59.6 mg, 88%. 1H NMR (400 MHz, CDCl$_3$) δ 8.63 (s, 2H), 8.05 – 7.92 (m, 2H), 7.51 – 7.38 (m, 4H), 4.92 (s, 1H), 3.73 (ddd, $J = 5.9, 3.8, 2.5$ Hz, 4H), 2.59 – 2.44 (m, 4H), 1.29 (s, 9H).

13C{$_1$H} NMR (101 MHz, CDCl$_3$) δ 195.8, 157.7, 150.1, 144.3, 133.4, 128.7, 128.3, 125.7, 125.5, 125.0, 124.0, 123.4, 121.6, 121.2, 120.9, 119.4, 72.4, 67.6, 66.8, 52.0, 51.5, 34.6, 31.0, 30.6.

HRMS (ESI) calcd. for C$_{21}$H$_{26}$N$_2$O$_2$ [M+H]$^+$: 339.2067, found: 339.2061.

1-(4-(tert-butyl)phenyl)-2-(dimethylamino)-2-(pyridin-4-yl)ethan-1-one (3ja)

Compound 3ja was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:1, v/v), and isolated as a yellow oil, 45.6 mg, 77%. 1H NMR (400 MHz, CDCl$_3$) δ 8.60 – 8.51 (m, 2H), 8.01 – 7.93 (m, 2H), 7.44 – 7.36 (m, 4H), 4.83 (s, 1H), 2.30 (s, 6H), 1.30 (s, 9H).

13C{$_1$H} NMR (101 MHz, CDCl$_3$) δ 196.4, 157.5, 150.1, 145.1, 133.3, 128.7, 125.7, 124.3, 75.7, 43.8, 35.2, 31.0.

HRMS (ESI) calcd. for C$_{19}$H$_{24}$N$_2$O [M+H]$^+$: 297.1961, found: 297.1965.

1-(4-(tert-butyl)phenyl)-2-(4-methylpiperazin-1-yl)-2-(pyridin-2-yl)ethan-1-one (3ka)

Compound 3ka was prepared following the general procedure, purified by column chromatography using DCM/MeOH (10:1, v/v), and isolated as a brown oil, 42.9 mg, 61%. 1H NMR (400 MHz, CDCl$_3$) δ 8.57 – 8.47 (m, 2H), 8.01 – 7.89 (m, 2H), 7.46 – 7.33 (m, 4H), 4.94 (s, 1H), 2.81 – 2.43 (m, 8H), 2.37 (s, 3H), 1.28 (s, 9H).

13C{$_1$H} NMR (101 MHz, CDCl$_3$) δ 195.8, 157.7, 150.2, 144.5, 133.3, 128.7, 125.7, 124.3, 75.7, 43.8, 35.2, 31.0. HRMS (ESI) calcd. for C$_{22}$H$_{29}$N$_3$O [M+H]$^+$: 352.2383, found: 352.2377.

2-(benzo[d]thiazol-2-yl)-1-(4-(tert-butyl)phenyl)-2-morphinoethan-1-one : (E)-2-(benzo[d]thiazol-2-yl)-1-(4-(tert-butyl)phenyl)-2-morphinoethen-1-ol = 3:1 (3la)

Compound 3la was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:4, v/v), and isolated as a white semi solid, 19 mg, 50%. 1H NMR (400 MHz, C$_6$D$_6$) δ 8.19 (d, $J = 8.0$ Hz, 2H, keto-phenacylCH), 8.00 (d, $J = 8.0$ Hz, 1H, keto-benzothiazoleC(7)H), 7.65 (d, $J = 8.0$ Hz, 2H, enol-phenacylCH), 7.64 (d, $J = 8.0$ Hz, 1H, enol-benzothiazoleC(7)H)), 7.51 (d, $J = 8.0$ Hz, 1H, enol-benzothiazoleC(4)H), 7.40 (d, $J = 8.0$ Hz, 1H, keto-benzothiazoleC(4)H), 7.34 (d, $J = 8.0$ Hz, 2H, keto-phenacylCH), 7.16 (d, 2H, keto-phenacylCH), 7.13 (t, $J = 8.0$ Hz, 1H, enol-benzothiazoleC(5)H), 7.07 (t, $J = 8.0$ Hz, 1H, keto-benzothiazoleC(5)H), 7.00 (t, $J = 8.0$ Hz, 1H, enol-benzothiazoleC(6)H), 6.96 (t, $J = 8.0$ Hz, 1H, keto-benzothiazoleC(6)H), 5.68 (s, 1H, keto-CHCOAr), 3.61 – 3.48 (m, 4H, keto-morpholineCH), 4H, enol-morpholineCH), 2.79 – 2.52 (m, 4H, keto-morpholineCH), 4H, enol-morpholineCH), 1.21 (s, 9H, enol-tertbutylCH), 1.07 (s, 9H, keto-tertbutylCH). 13C{$_1$H} NMR (101 MHz, C$_6$D$_6$) δ 193.6, 176.1, 167.4, 162.5, 156.9, 153.0, 152.8, 152.4, 136.3, 134.0, 133.3, 133.0, 129.1, 128.3, 126.1, 125.7, 125.5, 125.1, 125.0, 124.0, 123.4, 121.6, 121.2, 120.9, 119.4, 72.4, 67.6, 66.8, 52.0, 51.5, 34.6, 31.0, 30.6.
(several resonances is missing due to overlapping peaks). HRMS (ESI) calcd. For C_{23}H_{26}N_{2}O_{2}S [M+H]^+ : 395.1793, found: 395.1777.

1-(4-(tert-butyl)phenyl)-2-morpholino-2-(quinolin-2-yl)ethan-1-one (3ma)

Compound 3ma was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:1, v/v), and isolated as a brown oil, 57.5 mg, 74%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.19 – 8.14 (m, 2H), 8.14 – 8.09 (m, 2H), 7.78 – 7.73 (m, 2H), 7.68 (ddd, \(J = 8.5, 6.9, 1.5\) Hz, 1H), 7.50 (ddd, \(J = 8.1, 6.9, 1.2\) Hz, 1H), 7.43 – 7.38 (m, 2H), 5.46 (s, 1H), 3.83 – 3.71 (m, 4H), 2.70 (ddd, \(J = 10.0, 5.9, 3.4\) Hz, 2H), 2.48 – 2.38 (m, 2H). \(^{13}\)C\(^{\{\text{1H}\}\} NMR (101 MHz, CDCl\(_3\)) \(\delta 196.0, 157.2, 156.5, 147.9, 136.9, 133.9, 129.6, 129.4, 129.1, 127.6, 126.9, 125.5, 120.9, 78.4, 66.9, 52.2, 35.1, 31.0.\)

HRMS (ESI) calcd. for C_{25}H_{28}N_{2}O_{2}[M+H]^+ : 389.2224, found: 389.2230.

1-(4-(tert-butyl)phenyl)-2-(dimethylamino)-2-(quinolin-2-yl)ethan-1-one (3na)

Compound 3na was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:1, v/v), and isolated as a yellow oil, 49.9 mg, 72%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.21 – 8.14 (m, 2H), 8.14 – 8.07 (m, 2H), 7.77 – 7.65 (m, 3H), 7.49 (ddd, \(J = 8.1, 6.9, 1.3\) Hz, 1H), 7.42 – 7.35 (m, 2H), 5.33 (s, 1H), 2.34 (s, 6H), 1.26 (s, 9H). \(^{13}\)C\(^{\{\text{1H}\}\} NMR (101 MHz, CDCl\(_3\)) \(\delta 196.6, 157.4, 157.0, 147.8, 136.9, 133.8, 129.4, 129.2, 127.6, 126.7, 125.4, 120.8, 79.4, 44.1, 35.1, 31.0.\)

HRMS (ESI) calcd. for C_{23}H_{26}N_{2}O [M+H]^+ : 347.2118, found: 347.2113.

1-(4-(tert-butyl)phenyl)-2-(pyrimidin-2-yl)ethan-1-one (3oa)

Compound 3oa was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:1, v/v), and isolated as a yellow oil, 63.1 mg, 93%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.71 (d, \(J = 4.9\) Hz, 2H), 7.97 (d, \(J = 8.6\) Hz, 2H), 7.42 – 7.34 (m, 2H), 7.16 (t, \(J = 4.9\) Hz, 1H), 5.42 (s, 1H), 3.75 (t, \(J = 4.6\) Hz, 4H), 2.68 (q, \(J = 4.0\) Hz, 4H), 1.27 (s, 9H). \(^{13}\)C\(^{\{\text{1H}\}\} NMR (101 MHz, CDCl\(_3\)) \(\delta 194.6, 165.6, 157.4, 156.9, 133.8, 129.4, 129.2, 127.6, 126.7, 125.4, 120.8, 79.4, 44.1, 35.1, 31.0.\)

HRMS (ESI) calcd. for C_{20}H_{25}N_{3}O_{2}[M+H]^+ : 340.2020, found: 340.2016.

2-morpholino-1-phenyl-2-(pyridin-2-yl)ethan-1-one (3ab)

Compound 3ab was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 44.6 mg, 79%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.54 (dt, \(J = 4.9, 1.4\) Hz, 1H), 8.13 – 8.03 (m, 2H), 7.63 (td, \(J = 7.7, 1.8\) Hz, 1H), 7.55 (d, \(J = 7.9\) Hz, 1H), 7.51 – 7.44 (m, 1H), 7.38 (t, \(J = 7.8\) Hz, 2H), 7.15 (ddd, \(J = 7.4, 4.9, 1.3\) Hz, 1H), 5.26 (s, 1H), 3.81 – 3.68 (m, 4H), 2.61 (ddd, \(J = 10.1, 5.9, 3.4\) Hz, 2H), 2.48 (ddd, \(J = 10.7, 6.0, 3.3\) Hz, 2H). \(^{13}\)C\(^{\{\text{1H}\}\} NMR (101 MHz, CDCl\(_3\)) \(\delta 196.7, 155.7, 149.5, 136.9, 136.4, 133.3, 129.0, 128.5, 124.0, 123.0, 77.7, 66.9, 51.9.\)

HRMS (ESI) calcd. for C_{17}H_{18}N_{2}O_{2} [M+H]^+ : 283.1441, found: 283.1437.
2-morpholino-2-(pyridin-2-yl)-1-(p-tolyl)ethan-1-one (3ac)

Compound 3ac was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 53.4 mg, 90%. 1H NMR (500 MHz, CDCl$_3$) δ 8.54 (dt, $J = 4.9$, 1.4 Hz, 1H), 8.05 – 7.96 (m, 2H), 7.63 (td, $J = 7.7$, 1.8 Hz, 1H), 7.57 (d, $J = 7.8$ Hz, 1H), 7.22 – 7.12 (m, 3H), 5.24 (s, 1H), 3.79 – 3.69 (m, 4H), 2.67 – 2.58 (m, 2H), 2.48 (ddd, $J = 10.8$, 6.0, 3.4 Hz, 2H), 2.34 (s, 3H). 13C{1H} NMR (126 MHz, CDCl$_3$) δ 196.1, 155.8, 149.5, 144.2, 136.8, 133.9, 129.2, 129.1, 123.9, 123.0, 77.6, 66.9, 52.0, 21.6. HRMS (ESI) calcd. for C$_{18}$H$_{20}$N$_2$O$_2$ [M+H]$^+$: 297.1598, found: 297.1603.

1-(4-methoxyphenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one (3ad)

Compound 3ad was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:1, v/v), and isolated as a yellow oil, 53.1 mg, 85%. 1H NMR (400 MHz, CDCl$_3$) δ 8.65 – 8.40 (m, 1H), 8.22 – 8.00 (m, 2H), 7.68 – 7.51 (m, 2H), 7.15 (ddd, $J = 7.0$, 5.0, 1.4 Hz, 1H), 6.94 – 6.77 (m, 2H), 5.18 (s, 1H), 3.80 (s, 3H), 3.79 – 3.67 (m, 4H), 2.68 – 2.54 (m, 2H), 2.44 (ddd, $J = 10.7$, 6.0, 3.5 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl$_3$) δ 195.0, 163.7, 156.1, 149.4, 136.8, 131.4, 129.4, 123.8, 122.9, 113.7, 77.7, 66.9, 55.4, 52.1. HRMS (ESI) calcd. for C$_{18}$H$_{20}$N$_2$O$_3$ [M+H]$^+$: 313.1547, found: 313.1552.

1-(4-(methylthio)phenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one (3ae)

Compound 3ae was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:1, v/v), and isolated as a brown oil, 42.0 mg, 64%. 1H NMR (400 MHz, CDCl$_3$) δ 8.54 (ddd, $J = 5.0$, 1.8, 0.9 Hz, 1H), 8.11 – 7.96 (m, 2H), 7.64 (td, $J = 7.7$, 1.8 Hz, 1H), 7.55 (dt, $J = 7.9$, 1.1 Hz, 1H), 7.23 – 7.09 (m, 3H), 5.18 (s, 1H), 3.81 – 3.67 (m, 4H), 2.65 – 2.55 (m, 2H), 2.50 – 2.40 (m, 5H). 13C{1H} NMR (101 MHz, CDCl$_3$) δ 195.6, 155.8, 149.5, 146.4, 136.9, 132.5, 129.4, 124.8, 123.9, 123.0, 77.8, 66.9, 52.0, 14.6. HRMS (ESI) calcd. for C$_{18}$H$_{20}$N$_2$O$_2$S [M+H]$^+$: 329.1318, found: 329.1316.

1-(4-(dimethylamino)phenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one (3af)

Compound 3af was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:1, v/v), and isolated as a yellow oil, 48.8 mg, 75%. 1H NMR (400 MHz, CDCl$_3$) δ 8.52 (dt, $J = 4.8$, 1.4 Hz, 1H), 8.13 – 7.97 (m, 2H), 7.68 – 7.55 (m, 2H), 7.12 (td, $J = 5.1$, 3.2 Hz, 1H), 6.66 – 6.50 (m, 2H), 5.15 (s, 1H), 3.82 – 3.67 (m, 4H), 3.00 (s, 6H), 2.61 (ddd, $J = 10.2$, 5.9, 3.2 Hz, 2H), 2.41 (ddd, $J = 11.1$, 6.0, 3.2 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl$_3$) δ 194.1, 156.8, 153.5, 149.2, 136.7, 131.4, 124.4, 123.7, 122.7, 110.6, 77.3, 66.9, 52.2, 39.9. HRMS (ESI) calcd. for C$_{19}$H$_{23}$N$_3$O$_2$ [M+H]$^+$: 326.1863, found: 326.1869.

1-(4-fluorophenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one (3ag)
Compound **3ag** was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 41.4 mg, 69%. ^1H NMR (400 MHz, CDCl$_3$) δ 8.55 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 8.27 – 8.05 (m, 2H), 7.65 (td, J = 7.7, 1.8 Hz, 1H), 7.54 (dt, J = 7.9, 1.1 Hz, 1H), 7.17 (ddd, J = 7.5, 4.9, 1.3 Hz, 1H), 7.12 – 7.02 (m, 2H), 5.18 (s, 1H), 3.83 – 3.67 (m, 4H), 2.67 – 2.53 (m, 2H), 2.46 (ddddd, J = 11.1, 6.6, 3.7, 1.0 Hz, 2H). ^13C[^1H] NMR (101 MHz, CDCl$_3$) δ 195.1, 167.1 (d, $J_{C,F} = 256.5$ Hz), 155.6, 149.6, 136.9, 132.7 (d, $J_{C,F} = 9.1$ Hz), 123.9, 123.1, 115.7 (d, $J_{C,F} = 22.2$ Hz), 78.1, 66.9, 52.0. ^19F NMR (376 MHz, CDCl$_3$) δ -104.5. HRMS (ESI) calcd. for C$_{17}$H$_{17}$FN$_2$O$_2$ [M+H]$^+$: 301.1347, found: 301.1342.

1-(4-chlorophenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one (3ah)

Compound **3ah** was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 48.8 mg, 77%. ^1H NMR (500 MHz, CDCl$_3$) δ 8.55 (dd, J = 4.8, 2.0 Hz, 1H), 8.15 – 7.98 (m, 2H), 7.65 (td, J = 7.7, 2.1 Hz, 1H), 7.53 (d, J = 7.9 Hz, 1H), 7.36 (ddd, J = 8.9, 2.1 Hz, 2H), 7.18 (dd, J = 7.5, 4.9, 1.4 Hz, 1H), 5.18 (s, 1H), 3.82 – 3.71 (m, 4H), 2.68 – 2.55 (m, 2H), 2.48 (dt, J = 11.1, 4.3 Hz, 2H). ^13C[^1H] NMR (126 MHz, CDCl$_3$) δ 195.5, 155.4, 149.6, 139.8, 136.9, 134.6, 130.5, 128.8, 124.0, 123.1, 78.1, 66.9, 51.9. HRMS (ESI) calcd. for C$_{17}$H$_{17}$ClN$_2$O$_2$ [M+H]$^+$: 317.1051, found: 317.1057.

2-morpholino-2-(pyridin-2-yl)-1-(4-(trifluoromethoxy)phenyl)ethan-1-one (3ai)

Compound **3ai** was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a brown oil, 41.8 mg, 57%. ^1H NMR (400 MHz, CDCl$_3$) δ 8.56 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 8.21 – 8.17 (m, 2H), 7.67 (td, J = 7.7, 1.8 Hz, 1H), 7.54 (dt, J = 7.9, 1.1 Hz, 1H), 7.24 – 7.17 (m, 3H), 5.19 (s, 1H), 3.77 – 3.72 (m, 4H), 2.64 – 2.56 (m, 2H), 2.48 (dddt, J = 10.8, 4.0, 1.9 Hz, 2H). ^13C[^1H] NMR (101 MHz, CDCl$_3$) δ 195.2, 155.3, 149.6, 137.0, 134.4, 131.2, 129.6, 124.1 (q, $J_{C,F} = 262.6$ Hz), 124.0, 123.2, 120.1, 78.2, 66.9, 51.9. ^19F NMR (376 MHz, CDCl$_3$) δ -57.58. HRMS (ESI) calcd. for C$_{18}$H$_{17}$F$_3$N$_2$O$_2$ [M+H]$^+$: 367.1264, found: 367.1260.

2-morpholino-2-(pyridin-2-yl)-1-(4-(pyrrolidin-1-yl)phenyl)ethan-1-one (3aj)

Compound **3aj** was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:1, v/v), and isolated as a yellow oil, 49.2 mg, 70%. ^1H NMR (500 MHz, CDCl$_3$) δ 8.52 (d, J = 4.9 Hz, 1H), 8.05 (d, J = 8.6 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.12 (s, 1H), 6.44 (d, J = 8.6 Hz, 2H), 5.16 (s, 1H), 3.82 – 3.64 (m, 4H), 3.30 (d, J = 6.2 Hz, 4H), 2.62 (t, J = 9.3 Hz, 2H), 2.42 (t, J = 8.3 Hz, 2H), 1.97 (q, J = 3.6 Hz, 4H). ^13C[^1H] NMR (126 MHz, CDCl$_3$) δ 193.9, 156.8, 151.1, 149.2, 136.8, 131.5, 123.9, 123.7, 122.7, 110.7, 77.2, 66.9, 52.2, 47.5, 25.4. HRMS (ESI) calcd. for C$_{21}$H$_{25}$N$_3$O$_2$ [M+H]$^+$: 352.2020, found: 352.2023.
1-(4-(1H-pyrrol-1-yl)phenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one (3ak)

Compound 3ak was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a brown oil, 45.2 mg, 65%. 1H NMR (400 MHz, CDCl$_3$) δ 8.57 (ddd, $J = 4.9, 1.9, 0.9$ Hz, 1H), 8.27 – 8.16 (m, 2H), 7.67 (td, $J = 7.7, 1.9$ Hz, 1H), 7.58 (dt, $J = 7.9, 1.1$ Hz, 1H), 7.43 – 7.37 (m, 2H), 7.19 (ddd, $J = 7.4, 4.9, 1.3$ Hz, 1H), 7.14 – 7.10 (m, 2H), 6.36 (t, $J = 2.2$ Hz, 2H), 5.23 (s, 1H), 3.81 – 3.72 (m, 4H), 2.68 – 2.57 (m, 2H), 2.54 – 2.45 (m, 2H). 13C$^{[1]}$H NMR (101 MHz, CDCl$_3$) δ 195.3, 155.7, 149.6, 144.1, 137.0, 133.0, 131.0, 123.9, 123.1, 119.2, 118.9, 111.7, 78.0, 66.9, 52.0. HRMS (ESI) calcd. for C$_{21}$H$_{21}$N$_2$O$_2$ [M+H]$^+$: 348.1707, found: 348.1701.

2-morpholino-2-(pyridin-2-yl)-1-(m-tolyl)ethan-1-one (3al)

Compound 3al was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 49.8 mg, 84%. 1H NMR (400 MHz, CDCl$_3$) δ 8.56 (ddd, $J = 4.9, 1.7, 0.9$ Hz, 1H), 8.04 – 7.78 (m, 2H), 7.65 (td, $J = 7.7, 1.9$ Hz, 1H), 7.57 (dt, $J = 7.9, 1.2$ Hz, 1H), 7.30 (td, $J = 7.5, 3.6$ Hz, 2H), 7.17 (ddd, $J = 7.5, 4.9, 1.3$ Hz, 1H), 5.27 (s, 1H), 3.84 – 3.68 (m, 4H), 2.62 (ddd, $J = 10.0, 5.8, 3.5$ Hz, 2H), 2.55 – 2.44 (m, 2H), 2.36 (s), 3H). 13C$^{[1]}$H NMR (101 MHz, CDCl$_3$) δ 196.9, 155.8, 149.5, 138.4, 136.9, 136.5, 134.1, 129.3, 128.4, 126.3, 123.9, 123.0, 77.6, 66.9, 52.0, 21.3. HRMS (ESI) calcd. for C$_{18}$H$_{20}$N$_2$O$_2$ [M+H]$^+$: 297.1598, found: 297.1603.

1-(3-chlorophenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one (3am)

Compound 3am was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 48.8 mg, 77%. 1H NMR (400 MHz, CDCl$_3$) δ 8.54 (dt, $J = 5.0, 1.3$ Hz, 1H), 8.14 – 7.87 (m, 2H), 7.65 (td, $J = 7.7, 1.8$ Hz, 1H), 7.52 (dd, $J = 7.9, 1.2$ Hz, 1H), 7.44 (ddd, $J = 8.0, 2.2, 1.0$ Hz, 1H), 7.31 (t, $J = 7.9$ Hz, 1H), 7.17 (ddd, $J = 7.5, 4.9, 1.2$ Hz, 1H), 5.18 (s, 1H), 3.73 (dt, $J = 6.0, 3.1$ Hz, 4H), 2.63 – 2.53 (m, 2H), 2.53 – 2.43 (m, 2H). 13C$^{[1]}$H NMR (101 MHz, CDCl$_3$) δ 195.6, 155.2, 149.7, 137.8, 137.0, 134.9, 133.2, 129.8, 129.0, 127.1, 124.0, 123.2, 77.9, 66.9, 51.8. HRMS (ESI) calcd. for C$_{17}$H$_{17}$ClN$_2$O$_2$ [M+H]$^+$: 317.1051, found: 317.1057.

2-morpholino-2-(pyridin-2-yl)-1-(3-trifluoromethyl)phenyl)ethan-1-one (3an)

Compound 3an was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 42.7 mg, 61%. 1H NMR (400 MHz, CDCl$_3$) 8.56 (ddd, $J = 4.9, 1.8, 0.9$ Hz, 1H), 8.40 (d, $J = 1.9$ Hz, 1H), 8.33 (dt, $J = 8.1, 1.5$ Hz, 1H), 7.77 – 7.72 (m, 1H), 7.67 (td, $J = 7.7, 1.8$ Hz, 1H), 7.56 – 7.51 (m, 2H), 7.20 (ddd, $J = 7.5, 4.9, 1.2$ Hz, 1H), 5.22 (s, 1H), 3.75 (ddd, $J = 5.9, 3.6, 2.3$ Hz, 4H), 2.61 (ddd, $J = 9.5, 7.2, 4.0$ Hz, 2H), 2.55 – 2.47 (m, 2H). 13C$^{[1]}$H NMR (101 MHz, CDCl$_3$) δ 195.5, 155.1, 149.7, 137.0, 136.7, 132.3, 131.6 (q, $J_{C-F} = 33.3$ Hz), 129.6 (q, $J_{C-F} = 40.0$ Hz), 129.1, 127.7 (q, $J_{C-F} = 273.7$ Hz), 126.0 (q, $J_{C-F} = 40.0$ Hz), 124.0, 123.2, 78.3, 66.9, 51.8. 19F NMR (376 MHz, CDCl$_3$) δ -62.9. HRMS (ESI) calcd. for C$_{18}$H$_{17}$F$_3$N$_2$O$_2$ [M+H]$^+$: 351.1315, found: 351.1311.
1-(3,5-dimethylphenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one (3ao)

Compound 3ao was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 54.0 mg, 87%. 1H NMR (500 MHz, CDCl$_3$) δ 8.57 – 8.52 (m, 1H), 7.69 (s, 2H), 7.64 (td, J = 7.7, 1.8 Hz, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.19 – 7.10 (m, 2H), 5.26 (s, 1H), 3.79 – 3.69 (m, 4H), 2.70 – 2.56 (m, 2H), 2.46 (ddt, J = 8.3, 5.8, 2.7 Hz, 2H), 2.31 (s, 6H). 13C{1H} NMR (126 MHz, CDCl$_3$) δ 197.1, 155.9, 149.5, 138.2, 136.9, 136.7, 135.1, 126.7, 123.9, 123.0, 77.5, 66.9, 52.0, 21.2. HRMS (ESI) calcd. for C$_{19}$H$_{22}$N$_2$O$_2$ [M+H]$^+$: 311.1754, found: 311.1743.

1-(3,5-di-tert-butylphenyl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one (3ap)

Compound 3ap was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 67.9 mg, 86%. 1H NMR (400 MHz, CDCl$_3$) δ 8.57 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 8.00 (d, J = 1.9 Hz, 2H), 7.63 (td, J = 7.7, 1.8 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.16 (ddd, J = 7.4, 4.9, 1.3 Hz, 1H), 5.25 (s, 1H), 3.75 (dt, J = 5.8, 3.7 Hz, 4H), 2.70 – 2.60 (m, 2H), 2.49 (dd, J = 6.6, 4.0 Hz, 2H), 1.29 (s, 18H). 13C{1H} NMR (101 MHz, CDCl$_3$) δ 196.7, 156.0, 150.9, 149.4, 136.7, 135.6, 127.3, 123.8, 123.4, 122.8, 78.3, 66.9, 51.9, 34.9, 31.2. HRMS (ESI) calcd. for C$_{25}$H$_{34}$N$_2$O$_2$ [M+H]$^+$: 395.2693, found: 395.2687.

2-morpholino-1-(naphthalen-2-yl)-2-(pyridin-2-yl)ethan-1-one (3aq)

Compound 3aq was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a brown oil, 42.5 mg, 64%. 1H NMR (400 MHz, CDCl$_3$) δ 8.72 (d, J = 1.7 Hz, 1H), 8.56 (dt, J = 4.9, 1.4 Hz, 1H), 8.10 (dd, J = 8.7, 1.8 Hz, 1H), 7.95 (dd, J = 8.5, 1.6 Hz, 1H), 7.86 – 7.75 (m, 2H), 7.69 – 7.59 (m, 2H), 7.59 – 7.49 (m, 2H), 7.16 (ddd, J = 6.8, 4.9, 1.8 Hz, 1H), 5.43 (s, 1H), 3.85 – 3.71 (m, 4H), 2.67 (ddd, J = 9.9, 5.8, 3.4 Hz, 2H), 2.52 (ddd, J = 10.7, 6.0, 3.3 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl$_3$) δ 196.7, 155.8, 149.6, 136.9, 135.6, 133.7, 132.4, 131.1, 129.9, 128.7, 128.4, 127.7, 126.7, 124.4, 123.9, 123.0, 77.8, 67.0, 52.1. HRMS (ESI) calcd. for C$_{21}$H$_{20}$N$_2$O$_2$ [M+H]$^+$: 333.1598, found: 333.1603.

1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-morpholino-2-(pyridin-2-yl)ethan-1-one (3ar)

Compound 3ar was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 48.3 mg, 71%. 1H NMR (500 MHz, CDCl$_3$) δ 8.55 (dd, J = 5.0, 1.9 Hz, 1H), 7.75 – 7.51 (m, 4H), 7.20 – 7.12 (m, 1H), 6.82 (dd, J = 9.1, 2.5 Hz, 1H), 5.18 (s, 1H), 4.24 (ddd, J = 20.3, 6.0, 3.0 Hz, 4H), 3.83 – 3.62 (m, 4H), 2.69 – 2.32 (m, 4H). 13C{1H} NMR (126 MHz, CDCl$_3$) δ 194.9, 155.8, 149.5, 148.3, 143.3, 136.9, 130.1, 123.9, 123.3, 123.0, 118.5, 117.1, 77.4, 66.9, 64.7, 64.0, 52.0. HRMS (ESI) calcd. for C$_{19}$H$_{20}$N$_2$O$_4$ [M+H]$^+$: 341.1496, found: 341.1501
2-morpholino-2-(pyridin-2-yl)-1-(quinolin-6-yl)ethan-1-one (3as)

Compound 3as was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:1, v/v), and isolated as a brown oil, 33.3 mg, 50%. 1H NMR (400 MHz, CDCl$_3$) δ 8.96 (dd, $J = 4.2$, 1.8 Hz, 1H), 8.70 (d, $J = 1.9$ Hz, 1H), 8.55 (dt, $J = 5.0$, 1.3 Hz, 1H), 8.33 (dd, $J = 8.9$, 2.0 Hz, 1H), 8.26 (dd, $J = 8.3$, 1.7 Hz, 1H), 8.07 (d, $J = 8.9$ Hz, 1H), 7.67 – 7.56 (m, 2H), 7.43 (dd, $J = 8.4$, 4.3 Hz, 1H), 7.16 (ddd, $J = 7.4$, 4.9, 1.4 Hz, 1H), 5.39 (s, 1H), 3.76 (dt, $J = 5.7$, 3.7 Hz, 4H), 2.71 – 2.60 (m, 2H), 2.51 (ddd, $J = 10.8$, 5.9, 3.4 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl$_3$) δ 196.2, 155.5, 152.8, 150.1, 149.6, 137.8, 137.0, 134.1, 130.9, 129.9, 128.2, 127.4, 124.0, 123.2, 121.9, 78.0, 66.9, 52.0. HRMS (ESI) calcd. for C$_{20}$H$_{19}$N$_3$O$_2$ [M+H]$^+$: 334.1550, found: 334.1556.

2-morpholino-2-(pyridin-2-yl)-1-(quinolin-6-yl)ethan-1-one (3at)

Compound 3at was prepared following the general procedure, purified by column chromatography using EtOAc/hexanes (1:2, v/v), and isolated as a yellow oil, 31.7 mg, 55%. 1H NMR (400 MHz, CDCl$_3$) δ 8.56 (d, $J = 4.9$ Hz, 1H), 8.03 (d, $J = 3.8$ Hz, 1H), 7.73 – 7.58 (m, 3H), 7.23 – 7.16 (m, 1H), 7.10 (t, $J = 4.5$ Hz, 1H), 5.01 (s, 1H), 3.76 (p, $J = 3.0$ Hz, 4H), 2.63 (dt, $J = 9.9$, 4.5 Hz, 2H), 2.48 (dt, $J = 10.7$, 4.6 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl$_3$) δ 189.7, 155.6, 149.5, 143.0, 136.9, 132.7, 133.8, 128.2, 123.9, 123.1, 79.4, 66.8, 52.0. HRMS (ESI) calcd. for C$_{15}$H$_{16}$N$_2$O$_2$S [M+H]$^+$: 289.1005, found: 289.1012.

7. References:

1. B. S. Kim; J. Jimenez; F. Gao; P. J. Walsh, Palladium-Catalyzed Benzylic C–H Arylation of Azaarylalkylamines. Org. Lett. 2015, 17, 5788-5791.
2. G. Gao; Y. Fu; M. Li; B. Wang; B. Zheng; S. Hou; P. J. Walsh, Arylation of Azaarylalkylamines with Aryl Chlorides and a NiBr2/NIXANTPHOS-based Catalyst. Adv. Synth. Catal. 2017, 359, 2890-2894.
3. N. Trongsiriwat; Y. Pu; Y. Nieves-Quinones; R. A. Shelp; M. C. Kozlowski; P. J. Walsh, Reactions of 2-Aryl-1, 3-Dithianes and [1.1.1] Propellane. Angew. Chem., Int. Ed. 2019, 58, 13416-13420.
4. R. Lavernhe; E. J. Alexy; H. Zhang; B. M. Stoltz, Palladium-Catalyzed Enantioselective Decarboxylative Allylic Alklylation of Acyclic α-N-Pyrrolyl/Indolyl Ketones. Org. Lett. 2020, 22, 4272–4275.
8. Copies of ^1H and $^{13}\text{C}\{^1\text{H}\}$ NMR Spectra

^1H and $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of compound 3aa in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3ba in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3ca in CDCl$_3$
\[^1\text{H}\] and \[^{13}\text{C}(^1\text{H})\] NMR spectra of compound 3da in CDCl\(_3\)
1H and 13C(1H) NMR spectra of compound 3ea in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3fa in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3ga in CDCl$_3$
1H and 13C{1H} NMR spectra of compound 3ha in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3ia in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3ja in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3ka in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3la in C$_6$D$_6$
1H and 13C(1H) NMR spectra of compound 3ma in CDCl$_3$
1H and $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of compound 3na in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3oa in CDCl₃
1H and 13C(1H) NMR spectra of compound 3ab in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3ac in CDCl$_3$
^1H and $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of compound 3ad in CDCl$_3$
1H and 13C NMR spectra of compound $3ae$ in CDCl$_3$.
1H and 13C(1H) NMR spectra of compound 3af in CDCl$_3$
1H, 13C{1H} and 19F NMR spectra of compound 3ag in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3ah in CDCl$_3$
1H, 13C(1H) and 19F NMR spectra of compound 3ai in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3aj in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3ak in CDCl$_3$
1H and 13C{1H} NMR spectra of compound 3al in CDCl$_3$
^{1}H and $^{13}C\{^{1}H\}$ NMR spectra of compound 3am in CDCl$_3$
1H, 13C(1H) and 19F NMR spectra of compound 3an in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3ao in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3ap in CDCl$_3$
1H and $^{13}C(^1H)$ NMR spectra of compound 3aq in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3ar in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3as in CDCl$_3$
1H and 13C(1H) NMR spectra of compound 3at in CDCl$_3$
^1H and $^{13}\text{C}(^1\text{H})$ NMR spectra of compound 4 in CDCl$_3$

![NMR Spectra Diagram]

- ^1H NMR Spectra
 - Signals: 8.54, 8.56, 7.84, 7.40, 7.35, 7.23, 7.21, 7.17, 7.14, 7.12, 7.09, 7.07, 7.05, 7.03, 7.01, 6.99, 6.97, 6.95, 6.93, 6.91, 6.89, 6.87, 6.85, 6.83, 6.81, 6.79, 6.77, 6.75, 6.73, 6.71, 6.69, 6.67, 6.65, 6.63, 6.61, 6.59, 6.57, 6.55, 6.53, 6.51, 6.49, 6.47, 6.45, 6.43, 6.41, 6.39, 6.37, 6.35, 6.33, 6.31, 6.29, 6.27, 6.25, 6.23, 6.21, 6.19, 6.17, 6.15, 6.13, 6.11, 6.09, 6.07, 6.05, 6.03, 6.01, 5.99, 5.97, 5.95, 5.93, 5.91, 5.89, 5.87, 5.85, 5.83, 5.81, 5.79, 5.77, 5.75, 5.73, 5.71, 5.69, 5.67, 5.65, 5.63, 5.61, 5.59, 5.57, 5.55, 5.53, 5.51, 5.49, 5.47, 5.45, 5.43, 5.41, 5.39, 5.37, 5.35, 5.33, 5.31, 5.29, 5.27, 5.25, 5.23, 5.21, 5.19, 5.17, 5.15, 5.13, 5.11, 5.09, 5.07, 5.05, 5.03, 5.01, 4.99, 4.97, 4.95, 4.93, 4.91, 4.89, 4.87, 4.85, 4.83, 4.81, 4.79, 4.77, 4.75, 4.73, 4.71, 4.69, 4.67, 4.65, 4.63, 4.61, 4.59, 4.57, 4.55, 4.53, 4.51, 4.49, 4.47, 4.45, 4.43, 4.41, 4.39, 4.37, 4.35, 4.33, 4.31, 4.29, 4.27, 4.25, 4.23, 4.21, 4.19, 4.17, 4.15, 4.13, 4.11, 4.09, 4.07, 4.05, 4.03, 4.01, 3.99, 3.97, 3.95, 3.93, 3.91, 3.89, 3.87, 3.85, 3.83, 3.81, 3.79, 3.77, 3.75, 3.73, 3.71, 3.69, 3.67, 3.65, 3.63, 3.61, 3.59, 3.57, 3.55, 3.53, 3.51, 3.49, 3.47, 3.45, 3.43, 3.41, 3.39, 3.37, 3.35, 3.33, 3.31, 3.29, 3.27, 3.25, 3.23, 3.21, 3.19, 3.17, 3.15, 3.13, 3.11, 3.09, 3.07, 3.05, 3.03, 3.01, 2.99, 2.97, 2.95, 2.93, 2.91, 2.89, 2.87, 2.85, 2.83, 2.81, 2.79, 2.77, 2.75, 2.73, 2.71, 2.69, 2.67, 2.65, 2.63, 2.61, 2.59, 2.57, 2.55, 2.53, 2.51, 2.49, 2.47, 2.45, 2.43, 2.41, 2.39, 2.37, 2.35, 2.33, 2.31, 2.29, 2.27, 2.25, 2.23, 2.21, 2.19, 2.17, 2.15, 2.13, 2.11, 2.09, 2.07, 2.05, 2.03, 2.01, 1.99, 1.97, 1.95, 1.93, 1.91, 1.89, 1.87, 1.85, 1.83, 1.81, 1.79, 1.77, 1.75, 1.73, 1.71, 1.69, 1.67, 1.65, 1.63, 1.61, 1.59, 1.57, 1.55, 1.53, 1.51, 1.49, 1.47, 1.45, 1.43, 1.41, 1.39, 1.37, 1.35, 1.33, 1.31, 1.29, 1.27, 1.25, 1.23, 1.21, 1.19, 1.17, 1.15, 1.13, 1.11, 1.09, 1.07, 1.05, 1.03, 1.01, 0.99, 0.97, 0.95, 0.93, 0.91, 0.89, 0.87, 0.85, 0.83, 0.81, 0.79, 0.77, 0.75, 0.73, 0.71, 0.69, 0.67, 0.65, 0.63, 0.61, 0.59, 0.57, 0.55, 0.53, 0.51, 0.49, 0.47, 0.45, 0.43, 0.41, 0.39, 0.37, 0.35, 0.33, 0.31, 0.29, 0.27, 0.25, 0.23, 0.21, 0.19, 0.17, 0.15, 0.13, 0.11, 0.09, 0.07, 0.05, 0.03, 0.01, 0.00

- $^{13}\text{C}(^1\text{H})$ NMR Spectra
 - Signals: 187.44, 153.65, 148.24, 137.17, 124.44, 77.25, 77.24, 76.73, 67.05, 57.85, 47.75, 42.90

557
1H and 13C NMR spectra of compound 5 in CDCl$_3$
1H and 13C NMR spectra of compound 6 in CDCl$_3$
1D-NOESY 1H NMR spectra of compound 6 in CDCl$_3$
