PROGRAM SYNTHESIS FOR THE OEIS

Thibault Gauthier, Miroslav Olšák, Josef Urban

October 24, 2023
Discovering patterns in mathematical objects

- Discovery in 1995 of a more efficient formula for generating the digits of π by Simon Plouffe.
- In 2005, Hadi Kharaghani and Behruz Tayfeh-Rezaie published their construction of a Hadamard matrix of order 428.
- In 2012, Geoffrey Exoo has found an edge colorings of K_{35} that have no complete graphs of order 4 in the first color, and no complete graphs of order 6 in the second color proving that $R(4, 6) \geq 36$.
- Discovery in 2023 of a chiral aperiodic monotile by David Smith.
Search: **seq:2,3,5,7,11**

Displaying 1-10 of 1163 results found.

A000040	The prime numbers.
(Formerly M0652 N0241)	

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271

(list; graph; refs; listen; history; text; internal format)

OFFSET
1,1

COMMENTS
See [A065091](#) for comments, formulas etc. concerning only odd primes. For all information concerning prime powers, see [A000961](#). For contributions concerning "almost primes" see [A002808](#).

A number p is prime if (and only if) it is greater than 1 and has no positive divisors except 1 and p.

A natural number is prime if and only if it has exactly two (positive) divisors. A prime has exactly one proper positive divisor, 1.
A synthesize and test approach

OEIS sequence

\[0, 1, 3, 6, 10, 15, \ldots, 1431\]

Synthesized program

\[f(x) = (x \times x + x) \div 2\]

Test/Filter:

\[f(0) = 0, \ f(1) = 1, \ f(2) = 3, \ f(3) = 6, \ldots, \ f(53) = 1431\]
Test: criteria for selecting programs

OEIS sequence

0, 1, 3, 6, 10, 15, …, 1431

An undesirable large program

if \(x = 0 \) then 0 else
if \(x = 1 \) then 1 else
if \(x = 2 \) then 3 else
if \(x = 3 \) then 6 else ...
if \(x \geq 53 \) then 1431

Small program (Occam’s Razor)

\[
f(x) = \sum_{i=1}^{x} i
\]

Fast program (efficiency criterion)

\[
f(x) = (x \times x + x) \div 2
\]

Possible other criteria: usefulness criterion?
Synthesize: a Turing-complete language

- Constants: 0, 1, 2
- Variables: x, y
- Arithmetical operators: +, −, ×, div, mod
- Condition: if . . . ≤ 0 then . . . else . . .
- \(\text{loop}(f, a, b) := u_a\) where \(u_0 = b\),

\[u_n = f(u_{n-1}, n)\]

- Two other loop constructs: \(\text{loop2}\), a while loop

Example:

\[2^x = \prod_{y=1}^{x} 2 = \text{loop}(2 \times x, x, 1)\]
\[x! = \prod_{y=1}^{x} y = \text{loop}(y \times x, x, 1)\]
Synthesize: tokens by tokens

OEIS sequence

\[S = 0, 1, 3, 6, 10, 15, \ldots, 1431 \]

Synthesized program

(}
Synthesize: tokens by tokens

OEIS sequence

\[S = 0, 1, 3, 6, 10, 15, \ldots, 1431 \]

Synthesized program

\((x) \)
OEIS sequence

\[S = 0, 1, 3, 6, 10, 15, \ldots, 1431 \]

Synthesized program

\[(x \times)\]
Synthesize: tokens by tokens

OEIS sequence

\[S = 0, 1, 3, 6, 10, 15, \ldots, 1431 \]

Synthesized program

\((x \times x) \)
Synthesize: tokens by tokens

OEIS sequence

\[S = 0, 1, 3, 6, 10, 15, \ldots, 1431 \]

Synthesized program

\[\left(x \times x + \right. \]
OEIS sequence

\[S = 0, 1, 3, 6, 10, 15, \ldots, 1431 \]

Synthesized program

\[(x \times x + x)\]
OEIS sequence

\[S = 0, 1, 3, 6, 10, 15, \ldots, 1431 \]

Synthesized program

\[(x \times x + x) \]
Synthesize: tokens by tokens

OEIS sequence

\[S = 0, 1, 3, 6, 10, 15, \ldots, 1431 \]

Synthesized program

\[(x \times x + x) \div \]
Synthesize: tokens by tokens

OEIS sequence

\[S = 0, 1, 3, 6, 10, 15, \ldots, 1431 \]

Synthesized program

\[\left(x \times x + x \right) \div 2 \]
Synthesize: probabilistically

OEIS sequence

0, 1, 3, 6, 10, 15, ..., 1431

Synthesized program

\((0.2 \ldots) \)
Synthesize: probabilistically

OEIS sequence

\[0, 1, 3, 6, 10, 15, \ldots, 1431\]

Synthesized program

\[
\begin{pmatrix}
0.2 & x_{0.3}
\end{pmatrix}
\]
Synthesize: probabilistically

OEIS sequence

0, 1, 3, 6, 10, 15, …, 1431

Synthesized program

\((0.2 \times 0.3 \times 0.12) \)
Synthesize: probabilistically

OEIS sequence

\[0, 1, 3, 6, 10, 15, \ldots, 1431 \]

Synthesized program

\[
(0.2 \times 0.3 \times 0.12 \times 0.99)
\]
Synthesize: probabilistically

OEIS sequence

0, 1, 3, 6, 10, 15, …, 1431

Synthesized program

\((0.2 \times 0.3 \times 0.12 \times 0.99 + 0.1) \)
Synthesize: probabilistically

OEIS sequence

0, 1, 3, 6, 10, 15, ... , 1431

Synthesized program

\((0.2 \times 0.3 \times 0.12 \times 0.99 + 0.1 \times 0.25)\)
Synthesize: probabilistically

OEIS sequence

0, 1, 3, 6, 10, 15, …, 1431

Synthesized program

\((0.2 \times 0.3 \times 0.12 \times 0.99 + 0.1 \times 0.25)0.48\)
Synthesize: probabilistically

OEIS sequence

0, 1, 3, 6, 10, 15, … , 1431

Synthesized program

\((0.2 \times 0.3 \times 0.12 \times 0.99 + 0.1 \times 0.25) \div 0.02\)
Synthesize: probabilistically

OEIS sequence

0, 1, 3, 6, 10, 15, ..., 1431

Synthesized program

\((0.2 \times 0.3 \times 0.99 + 0.1 \times 0.25) \times 0.48 \div 0.02 \times 2^{0.09}\)
Synthesize: probabilistically

OEIS sequence

0, 1, 3, 6, 10, 15, \ldots, 1431

Synthesized program

\[(0.2 \times 0.3 \times 0.12 \times 0.99 + 0.1 \times 0.25) \times 0.48 \div 0.02 \times 2_{0.09} \]

The probability of generating this program is:

\[0.2 \times 0.3 \times 0.12 \times 0.99 \times 0.1 \times 0.25 \times 0.48 \times 0.02 \times 0.09 = 1.54\ldots \times 10^{-7} \]
Synthesize: probabilistically

OEIS sequence

\[0, 1, 3, 6, 10, 15, \ldots, 1431\]

Synthesized program

\[(0.2 \times 0.3 \times 0.12 \times 0.99 + 0.1 \times 0.25) \div 2 = 2.09\]

The probability of generating this program is:

\[0.2 \times 0.3 \times 0.12 \times 0.99 \times 0.1 \times 0.25 \times 0.48 \times 0.02 \times 0.09 = 1.54\ldots \times 10^{-7}\]

In general, we are given a probability function \(\mathcal{P}(S, P, T)\).

\[
\mathcal{P}([0, 1, 3, 6, \ldots] , \ [] , \ "(" ,) \ = \ 0.2
\]

\[
\mathcal{P}([0, 1, 3, 6, \ldots] , \ ["("] , \ x) \ = \ 0.3
\]

\[
\mathcal{P}([0, 1, 3, 6, \ldots] , \ ["(" , x] , \ \times) \ = \ 0.12
\]

\[
\mathcal{P}([0, 1, 3, 6, \ldots] , \ ["(" , x] , \ +) \ = \ 0.67
\]

\[
\mathcal{P}([2, 3, 5, 7, \ldots] , \ ["(" , x] , \ +) \ = \ 0.60
\]
Synthesize: updating a probabilistic function

Having synthesized the program (fastest so far) \((x \times x + x) \div 2\) generating

\[0, 1, 3, 6, 10, 15, \ldots, 1431\]

how do we update a probabilistic function \(P\)?

\[P_{desired}([0, 1, 3, 6, \ldots] \ , \ [] \ , \ "(" \) = 0.2 \rightarrow 1\]
\[P_{desired}([0, 1, 3, 6, \ldots] \ , \ ["("] \ , \ x) = 0.3 \rightarrow 1\]
\[P_{desired}([0, 1, 3, 6, \ldots] \ , \ ["(" , \ x) = 0.12 \rightarrow 1\]
\[P_{desired}([0, 1, 3, 6, \ldots] \ , \ ["(" , \ x) = 0.67 \rightarrow 0\]

A neural network finds a smooth curve approximating \(P_{desired}\). Then \(P'\) is used to sample new programs from OEIS sequences.
Figure: Number y of OEIS sequences (with at least one program) after x iterations

P_0 is a random probability distribution function.
P_x synthesizes/samples 240 programs for each OEIS sequence.
A program may be correct for an other OEIS sequence.
P_x is updated to P_{x+1}.

Self-learning: five different runs
Let's now see some examples of synthesized programs.
A10445: squares modulo 84

OEIS sequence

0, 1, 4, 9, 16, 21, 25, 28, 36, 37, 49, 57, 60, 64, 72, 81

Synthesized program

\[\{ x \mid (x^4 - x) \mod 84 = 0 \} \]

with 84 = 2 \times f^2(2) and \(f(x) = x \times x + x \)

Proof: Left to the listener.
Example: characteristic function of primes

OEIS sequence

0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, \ldots, 1, 0

Synthesized program

\[
(((x \times x!) \mod (1 + x)) \mod 2
\]

Proof: Left to the listener.
Example: prime numbers

OEIS sequence

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, …, 271

Synthesized program

\{ x \mid 2^x \equiv 2 \mod x \}

Proof: 341 is a counterexample
Example: A294082 by David Cerna

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 14, 9, 4, 1, 1, 184, 75, 16, 5, 1, 1, 33674, 5553, 244 . . .

OEIS description: Square array read by antidiagonals:
\[T(m, n) = T(m, n - 1)^2 - T(m, n - 2)^2 + T(m, n - 2) \text{ with } T(1, n) = 1, T(m, 0) = 1, \text{ and } T(m, 1) = m. \]

Program:

```
loop2(1 + (((x * x) - x) + y), y, 0 - (1 + loop(x - (if x <= 0 then 0 else y), x, x)),
1, loop(loop(y, x - y, x), x, x))
```

Proof: Left to the reader.
Selection of 123 Solved Sequences

Table: Samples of the solved sequences.

URL	Description
https://oeis.org/A317485	Number of Hamiltonian paths in the n-Bruhat graph.
https://oeis.org/A349073	$a(n) = U(2*n, n)$, where $U(n, x)$ is the Chebyshev polynomial of the second kind.
https://oeis.org/A293339	Greatest integer k such that $k/2^n < 1/e$.
https://oeis.org/A1848	Crystal ball sequence for 6-dimensional cubic lattice.
https://oeis.org/A8628	Molien series for A_5.
https://oeis.org/A259445	Multiplicative with $a(n) = n$ if n is odd and $a(2^s) = 2$.
https://oeis.org/A314106	Coordination sequence Gal.6.199.4 where G.u.t.v denotes the coordination sequence for a vertex of type v in tiling number t in the Galebach list of u-uniform tilings
https://oeis.org/A311889	Coordination sequence Gal.6.129.2 where G.u.t.v denotes the coordination sequence for a vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A315334	Coordination sequence Gal.6.623.2 where G.u.t.v denotes the coordination sequence for a vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A315742	Coordination sequence Gal.5.302.5 where G.u.t.v denotes the coordination sequence for a vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A004165	OEIS writing backward
https://oeis.org/A83186	Sum of first n primes whose indices are primes.
https://oeis.org/A88176	Primes such that the previous two primes are a twin prime pair.
https://oeis.org/A96282	Sums of successive twin primes of order 2.
https://oeis.org/A53176	Primes p such that $2p + 1$ is composite.
https://oeis.org/A267262	Total number of OFF (white) cells after n iterations of the "Rule 111" elementary cellular automaton starting with a single ON (black) cell.
Thank you for your attention!

https://github.com/Anon52MI4/oeis-alien