Borel hierarchies in infinite products of Polish spaces

RANA BARUA and ASHOK MAITRA∗

Stat-Math Division, Indian Statistical Institute, Kolkata 700 108, India
∗School of Statistics, University of Minnesota, Minneapolis, MN, USA
E-mail: rana@isical.ac.in; maitra@stat.umn.edu

MS received 22 August 2005; revised 28 August 2006

Abstract. Let \(H \) be a product of countably infinite number of copies of an uncountable Polish space \(X \). Let \(\Sigma_\xi \) be the class of Borel sets of additive class \(\xi \) for the product of copies of the discrete topology on \(X \) (the Polish topology on \(X \)), and let \(B = \bigcup_{\xi < \omega_1} \Sigma_\xi \). We prove in the Lévy–Solovay model that
\[
\Sigma_\xi = \Sigma_\xi \cap B
\]
for \(1 \leq \xi < \omega_1 \).

Keywords. Borel sets of additive classes; Baire property; Lévy–Solovay model; Gandy–Harrington topology.

1. Introduction

Suppose \(X \) is a Polish space and \(N \) the set of positive integers. We consider \(H = X^N \) with two product topologies: (i) the product of copies of the Polish topology on \(X \), so that \(H \) is again a Polish space and (ii) the product of copies of the discrete topology on \(X \). Define now the Borel hierarchy in the larger topology on \(H \). To do so, we need some notation. An element of \(H \) will be denoted by \(h = (x_1, x_2, \ldots, x_n, \ldots) \) and for \(m \in N \), \(p_m(h) \) will denote the first \(m \) coordinates, that is, \(p_m(h) = (x_1, x_2, \ldots, x_m) \). For \(n \in N \) and \(A \subseteq X^n \), cyl\((A)\) will denote the cylinder set with base \(A \), that is,
\[
cyl(A) = \{ h \in H: p_n(h) \in A \}.
\]
The Borel hierarchy for the larger topology on \(H \) can now be defined as follows:
\[
\Sigma_0 = \Pi_0 = \{ \text{cyl}(A): A \subseteq X^n, \quad n \geq 1 \}
\]
and for \(\xi > 0 \),
\[
\Sigma_\xi = \left(\bigcup_{\eta < \xi} \Pi_\eta \right), \quad \Pi_\xi = \neg \Sigma_\xi.
\]
The Borel hierarchy on \(H \) with respect to the smaller topology is defined in the usual way:
\[
\Sigma_1 = \{ V: V \text{ is open in } H \text{ in the smaller topology} \}, \quad \Pi_1 = \neg \Sigma_1
\]
and, for $\xi > 1$,

$$\Sigma_\xi^* = \left(\bigcup_{\eta < \xi} \Pi_\eta \right)_\sigma; \quad \Pi_\xi^* = \neg \Sigma_\xi.$$

Let

$$B = \bigcup_{\xi < \omega_1} \Sigma_\xi^* = \bigcup_{\xi < \omega_1} \Pi_\xi^*.$$

The problem we will address in this article is whether

$$\Sigma_\xi^* = \Sigma_\xi \cap B \quad \text{for } 1 \leq \xi < \omega_1.$$

To tackle the problem we will use the methods of effective descriptive set theory. We therefore have to formulate the lightface version of (*) . We refer the reader to [Mo] and [L1] for definitions of lightface concepts. We take X to be the recursively presentable Polish space ω^ω hereafter.

Define

$$\Sigma_0^* = \Pi_0^* = \{ \text{cyl}(A): A \text{ is } \Delta_1^1 \text{ in } (\omega^\omega)^n, \ n \geq 1 \},$$

and, for $1 \leq \xi < \omega_1^{ck}$,

$$\Sigma_\xi^* = \bigcup_1^1 \left(\bigcup_{\eta < \xi} \Pi_\eta^* \right)$$

and

$$\Pi_\xi^* = \neg \Sigma_\xi^*,$$

where $\cup_1^1 (\bigcup_{\eta < \xi} \Pi_\eta^*)$ is a Δ_1^1 union of members of $\cup_{\eta < \xi} \Pi_\eta^*$. The lightface analogue of (*) is then

$$\Sigma_\xi^* = \Delta_1^1 \cap \Sigma_\xi, \quad \text{for } 1 \leq \xi < \omega_1^{ck}.$$

In order to state the main result of the article, we equip ω^ω with the Gandy–Harrington topology, that is, the topology whose base is the pointclass of Σ_1^1 sets. The key property of this topology is that it satisfies the Baire category theorem (see [L1]). Consider now the following statement of set theory:

(O) Every subset of ω^ω has the Baire property with respect to the Gandy–Harrington topology.

The main result of the article can now be stated.

Theorem 1.1. Assume (O). Let $1 \leq \xi < \omega_1^{ck}$. If A and B are Σ_1^1 subsets of H such that A can be separated from B by a Σ_ξ set, then A can be separated from B by a Σ_ξ^* set.

An immediate consequence is

COROLLARY 1.2

(O) implies (**).
The above results will be established in ZF + DC. Maitra et al [Ma] proved (*) for $\xi = 1$ in ZF + DC by a boldface argument. We will provide a lightface argument in the Appendix for (***) when $\xi = 1$. Again this will be done in ZF + DC. Barua [Ba] proved Theorem 1.1 and Corollary 1.2. His proof was by induction on ξ. However, he left out the proof of the base step ($\xi = 1$). We will fill in the gap in this article. The proof of Theorem 1.1 presented here parallels very closely that of Louveau [L1], whereas the proof in [Ba] relies on the more abstract developments of [L2]. In consequence, the proof given here is somewhat simpler.

The paper is organized as follows. Section 2 is devoted to definitions and notation. Section 3 contains the detailed proof of Theorem 1.1 when $\xi = 1$, while §4 sketches how the proof of Theorem 1.1 can be completed by an inductive argument. In the concluding section, we will prove (*) under appropriate hypotheses and also mention open problems.

2. Definitions, notation and preliminaries

For $n \geq 1$, the Gandy–Harrington topology on (ω^n) will be denoted by T^n and the Gandy–Harrington topology on H will be denoted by T^∞. Following Louveau [L1], we define for each ξ such that $1 \leq \xi < \omega_1^\omega$ a topology T_ξ on H having for its base the pointclass $\Sigma_1^\xi \cap \bigcup_{\eta<\xi} \Pi_\eta$.

Let S be a second countable topology on (ω^n) (respectively, H). Let A be a subset of (ω^n) (respectively, H). By the cosurrogate of A we mean the largest S-open set B such that $A \cap B$ is T^n-meager (respectively, T^∞-meager). The surrogate of A is defined to be the complement of the cosurrogate of A. When S is the topology T^n, we denote the surrogate (respectively, cosurrogate) of A by $\text{sur}(A)$ (respectively, $\text{cosur}(A)$). If $A \subseteq H$ and S is the topology T_ξ, the surrogate (respectively, cosurrogate) of A will be denoted by $\text{sur}_\xi(A)$ (respectively, $\text{cosur}_\xi(A)$).

Lemma 2.1. Let $m \geq 1$. If $A \subseteq (\omega^n)$ is T^m-open, then $\text{sur}^m(A)$ is the T^m-closure of A. Consequently, $\text{sur}^m(A) - A$ is T^m-nowhere dense.

Proof. If B is Σ_1^m and $A \cap B$ is T^m-meager, then $A \cap B$ must be empty, because $A \cap B$ is T^m-open and the Baire category theorem holds for T^m. Consequently, $\text{cosur}^m(A)$ is the union of basic open sets of the T^m-topology which are disjoint with A. It follows that $\text{sur}^m(A)$ is the T^m-closure of A.

Lemma 2.2. Assume (O). Let $m \geq 1$. If $A \subseteq (\omega^n)$, then $A \Delta \text{sur}^m(A)$ is T^m-meager.

Proof. Observe that ω^n and $(\omega^n)^m$ are recursively isomorphic, so (ω^n, T^1) and $((\omega^n)^m, T^m)$ are homeomorphic. Hence it follows from (O) that there is a T^m-open set B such that $A \Delta B$ is T^m-meager. So, if D is a Σ_1^m subset of $(\omega^n)^m$, then $A \cap D$ is T^m-meager iff $B \cap D$ is T^m-meager, so that $\text{sur}^m(A) = \text{sur}^m(B)$. Since B is T^m-open, it follows from Lemma 2.1 that $\text{sur}^m(B) - B$ is T^m-nowhere dense, hence $B \Delta \text{sur}^m(B)$ is T^m-meager. Consequently, $A \Delta \text{sur}^m(A)$ is T^m-meager.

Note that the converse of Lemma 2.2 is true. Indeed, if $A \Delta \text{sur}^1(A)$ is T^1-meager for every $A \subseteq \omega^n$, then, as is easy to verify, A has the Baire property with respect to T^1 for every $A \subseteq \omega^n$, that is, (O) holds.

3. The case $\xi = 1$

In this section we will prove Theorem 1.1 when $\xi = 1$.

Following [L1], we fix a coding pair \((W, C)\) for the \(\Delta^1_1\) subsets of \(H\), that is,

(i) \(W\) is a \(\Pi^1_1\) subset of \(\omega\);
(ii) \(C\) is a \(\Pi^1_1\) subset of \(\omega \times H\);
(iii) the relations ’\(n \in W \& C(n, h)\)’ and ’\(n \in W \& \neg C(n, h)\)’ are both \(\Pi^1_1\);
(iv) for every \(\Delta^1_1\) subset \(A\) of \(H\), there is \(n \in W\) such that \(A = C_n \overset{\text{def}}{=} \{h \in H : C(n, h)\}\).

Define \(W_0\) as follows:

\[
m \in W_0 \iff m \in W \& (\exists n \geq 1)(\forall h)(\forall h')(C(n, h) \& p_n(h)
\implies p_n(h') \implies C(n, h')).
\]

Then \(W_0\) is \(\Pi^1_1\). Indeed, \(W_0\) is just the set of codes of \(\Delta^1_1\) cylinder subsets of \(H\).

Lemma 3.1. If \(A\) is a \(\Sigma^1_1\) subset of \(H\), then \(cl^1_1(A)\) is \(\Pi^1_1\) and \(\Sigma^1_1\), hence \(T_2\)-open, where \(cl^1_1(A)\) is the \(T_1\)-closure of \(A\).

Proof. Indeed, for any \(A, cl^1_1(A)\) is \(\Pi^1_1\), because it is a countable intersection of \(\Pi^1_1\) sets. Now suppose \(A \in \Sigma^1_1\). Then

\[
h \notin cl^1_1(A) \iff (\exists n \geq 1)(\exists B)(B \text{ is a } \Sigma^1_1 \text{ subset of } (\omega^\omega)^n \& h \in cyl(B)
\& A \cap cyl(B) = \phi)
\iff (\exists n \geq 1) (\exists B) (B \text{ is a } \Delta^1_1 \text{ subset of } (\omega^\omega)^n
\& h \in cyl(B) \& A \cap cyl(B) = \phi).
\]

To prove the previous implication \(\rightarrow\), let \(B\) be a \(\Sigma^1_1\) subset of \((\omega^\omega)^n\) such that \(h \in cyl(B)\) and \(A \cap cyl(B) = \phi\). But then \(p_n(A) \cap B = \phi\). Since \(p_n(A)\) is \(\Sigma^1_1\), it follows from Kleene’s separation theorem that there is a \(\Delta^1_1\) subset \(B'\) of \((\omega^\omega)^n\) such that \(B \subseteq B'\) and \(B' \cap p_n(A) = \phi\). Hence \(h \in cyl(B')\) and \(A \cap cyl(B') = \phi\), which establishes \(\rightarrow\).

Consequently,

\[
h \notin cl^1_1(A) \iff (\exists m)(m \in W_0 \& C(m, h) \& C_m \cap A = \phi).
\]

So \(\neg cl^1_1(A)\) is \(\Pi^1_1\). \(\square\)

Lemma 3.2. Assume (O). If \(A\) is a \(\Pi^1_1\) subset of \(H\), then \(A \Delta \text{sur}^1_1(A)\) is \(T^\infty\)-meager.

Proof. Choose subsets \(B_n\) of \((\omega^\omega)^n\), \(n \geq 1\), such that

\[
A = H - \cup_{n \geq 1} cyl(B_n).
\]

Then

\[
\text{sur}^1_1(A) - A = \text{sur}^1_1(A) \cap \cup_{n \geq 1} cyl(B_n)
\subseteq \cup_{n \geq 1} ([\text{sur}^1_1(A) \cap cyl(\text{sur}^\omega(B_n))]]
\cup [cyl(B_n) - cyl(\text{sur}^\omega(B_n))]).
\]
Now
\[\text{cyl}(B_n) - \text{cyl} \left(\text{sur}^\emptyset(B_n) \right) = \text{cyl}(B_n) - \text{sur}^\emptyset(B_n). \]
The set on the right of the above equality is T^∞-meager by virtue of Lemma 2.13 in [L2]. We will now prove that $\text{sur}_1(A) \cap \text{cyl} \left(\text{sur}^\emptyset(B_n) \right)$ is T^∞-nowhere dense. Note that $\text{sur}_1(A) \cap \text{cyl} \left(\text{sur}^\emptyset(B_n) \right)$ is T_1-closed, hence T^∞-closed. Now let A' be a Σ_1^1 set contained in $\text{sur}_1(A) \cap \text{cyl} \left(\text{sur}^\emptyset(B_n) \right)$. Then
\[\text{cyl}(p_n(A')) \subseteq \text{cyl} \left(\text{sur}^\emptyset(B_n) \right). \]
Hence
\[A \cap \text{cyl}(p_n(A')) \subseteq \text{cyl} \left(\text{sur}^\emptyset(B_n) \right) - \text{cyl}(B_n) \]
\[= \text{cyl} \left(\text{sur}^\emptyset(B_n) - B_n \right). \]
Consequently, by virtue of Lemma 2.2 and Lemma 2.13 in [L2], $A \cap \text{cyl}(p_n(A'))$ is T^∞-meager. Since $\text{cyl}(p_n(A'))$ is T_1-open, it follows that $\text{cyl}(p_n(A')) \subseteq \text{cosur}_1(A)$. Hence A' is empty because A' is also contained in $\text{sur}_1(A)$. Thus $\text{sur}_1(A) \cap \text{cyl} \left(\text{sur}^\emptyset(B_n) \right)$ is T^∞-nowhere dense. It follow from (1) that $\text{sur}_1(A) - A$ is T^∞-meager. Since $A - \text{sur}_1(A)$ is easily seen to be T^∞-meager, we are done. \hfill \Box

Lemma 3.3. If A and B are Σ_1^1 subsets of H such that A can be separated from B by a Σ_1^1 set, then $A \cap \text{cl}_1(B) = \emptyset$.

Proof. Suppose D is a Π_1^1 subset of H such that $A \cap D = \emptyset$ and $B \subseteq D$. Hence, by Lemma 3.2, $B - \text{sur}_1(D)$ is T^∞-meager. But $B - \text{sur}_1(D)$ is T^∞-open, so $B \subseteq \text{sur}_1(D)$.

Since $\text{sur}_1(D)$ is T_1-closed, $\text{cl}_1(B) \subseteq \text{sur}_1(D)$. Now $A \cap \text{sur}_1(D)$ is T^∞-meager, so $A \cap \text{cl}_1(B)$ is T^∞-meager. By Lemma 3.1, $A \cap \text{cl}_1(B)$ is Σ_1^1, hence $A \cap \text{cl}_1(B)$ must be empty. \hfill \Box

Lemma 3.4. If A and B are Σ_1^1 subsets of H such that $A \cap \text{cl}_1(B) = \emptyset$, then A can be separated from B by a Σ_1^1 set.

Proof. Define
\[P(h, n) \leftrightarrow h \notin A \lor (n \in W_0 \land C(n, h) \land C_n \cap B = \emptyset). \]
Then P is Π_1^1 and $(\forall h)(\exists n)P(h, n)$. By Kreisel’s selection theorem [Mo], there is a Δ_1^0-recursive function $f: H \rightarrow \omega$ such that $(\forall h)P(h, f(h))$. Let
\[D = \{ n \in \omega: n \in W_0 \land C_n \cap B = \emptyset \}. \]
Then D is Π_1^1 and $f(A) \subseteq D$. Since $f(A)$ is Σ_1^1, there is a Δ_1^1 set $E \subseteq \omega$ such that $f(A) \subseteq E \subseteq D$. Let
\[R(h, n) \leftrightarrow n \in E \land C(n, h), \]
then R is Δ_1^1, because if
\[R'(h, n) \leftrightarrow n \in E \land \neg C(n, h), \]
them both R and R' are Π_1^1, $R \cap R' = \emptyset$ and $R \cup R' = H \times E$. Set
\[G_n = \{ h: R(h, n) \}, \quad n \in \omega. \]
Then $\bigcup_{n \geq 0} G_n$ is a Σ_1^1 set which separates A from B. \hfill \Box

Lemmas 3.2, 3.3 and 3.4 establish Theorem 1.1 for $\xi = 1$.
4. Proof of Theorem 1.1

The proof of Theorem 1.1 is by induction on ξ. So we fix $\xi > 1$ and assume Theorem 1.1 is true for all $\eta < \xi$. Lemmas 3.1–3.4 can be formulated and proved at level ξ, thereby completing the proof of Theorem 1.1 at level ξ. We omit the proofs because they are exactly like the proofs of Lemmas 7, 8, 9 and Theorem B in [L1].

We observe that the inductive hypothesis that Theorem 1.1 hold at all levels $\eta < \xi$ is by itself not sufficiently strong to prove the analogue of Lemma 3.2 at level ξ and hence the theorem itself at that level. For this we need that analogues of Lemma 3.2 hold at all levels $\eta < \xi$. It is at this point in the proof that assumption (O) is needed to ensure that Lemma 3.2 hold at level $\xi = 1$, the higher levels of Lemma 3.2 then being proved by inducting up from the base level.

5. Concluding remarks

For $\alpha \in \omega^\omega$, we now consider the following statement of set theory:

\((\alpha)\) Every subset of ω^ω has the Baire property with respect to the topology whose base is the pointclass of $\Sigma^1_1(\alpha)$ sets.

It is straightforward to relativize Theorem 1.1 to α under the assumption that \((\alpha)\) holds. The next result is provable in $ZF + DC$.

Theorem 5.1. Let X be an uncountable Polish space and let $H = X^N$. Then, for $1 \leq \xi < \omega_1$, $\Sigma^\xi = \Sigma^\xi \cap B$.

Under the assumption that there is an inaccessible cardinal, Solovay [S] proved that $ZF + DC$ holds in the Lévy–Solovay model. Furthermore, it was observed by Louveau (p.43 of [L2]) that the statement $(\forall \alpha)((\alpha))$ holds as well in the model.

Whether Theorem 5.1 is provable in ZFC remains an open problem. Indeed, we do not have an answer to the problem even when $\xi = 2$.

It is not difficult to prove that the axiom of determinacy implies $(\forall \alpha)((\alpha))$ so that Theorem 5.1 is provable in $ZF + AD$ (see [Mo]). On the other hand, the axiom of choice implies $\neg(O)$ in ZF.

Appendix

We will now prove Theorem 1.1 for $\xi = 1$ without assuming (O). In view of Lemma 3.4, it will suffice to prove that $A \cap cl(B) = \emptyset$. Define $P(h, n) \leftrightarrow (n \geq 1) \& (\exists h')(p_n(h)h' \in B)$, where $p_n(h)h'$ is the catenation of $p_n(h)$ and h'. Note that P is Σ^1_1. Let $h \in \tilde{B} \leftrightarrow (\forall n \geq 1)P(h, n)$, so that \tilde{B} is the closure of B in the product of discrete topologies on H. Consequently, $\tilde{B} \subseteq H - A$. Define $Q(h, n) \leftrightarrow (n \geq 1) \& (\neg P(h, n) \vee h \notin A)$. Then Q is clearly Π^1_1 and $(\exists h)Q(h, n)$. So there is a Δ^1_1-recursive function $f : H \to \omega$ such that $(\forall h)Q(h, f(h))$. Let
Infinite products of Polish spaces

\[S(h, n) \leftrightarrow (n \geq 1) \land (f(h) \neq n \lor h \notin A). \]

Claim.

(i) \(S \) is \(\Pi^1_1 \),

(ii) \((\forall h)(\forall n \geq 1)(P(h, n) \rightarrow S(h, n)) \),

(iii) \(h \notin A \leftrightarrow (\forall n \geq 1)S(h, n) \).

To see (ii), assume \(P(h, n) \). Then we must have \(h \in A \rightarrow f(h) \neq n \). Hence \(S(h, n) \).

For (iii), suppose \(h \notin A \). Clearly, then \((\forall n \geq 1)S(h, n) \). Suppose now that \(h \in A \). Then there is \(n \) such that \(f(h) = n \), hence \(\neg S(h, n) \). (iii) now follows.

Now turn each \(S_n \) into a cylinder set as follows. Define

\[R(h, n) \leftrightarrow (\forall h')(S(p_n(h)h', n)), \]

so \(R \) is \(\Pi^1_1 \). Note that \(P_n \) and \(R_n \) are cylinder sets, that is,

\[P(h, n) \land p_n(h) = p_n(h') \rightarrow P(h', n) \]

and

\[R(h, n) \land p_n(h) = p_n(h') \rightarrow R(h', n). \]

Claim. \((\forall h)(\forall n)(P(h, n) \rightarrow R(h, n)) \).

So suppose \(P(h, n) \). Then, for every \(h' \), \(P(p_n(h)h', n) \), hence \(S(p_n(h)h', n) \), so \(R(h, n) \).

To complete the proof, let \(h \in A \). Then there is \(n \geq 1 \) such that \(\neg S(h, n) \), hence \(\neg R(h, n) \). Now \(\neg R_n \) is \(\Sigma^1_1 \) and \(\Pi_0 \) because \(R_n \) is a cylinder set. Moreover, \(\neg R_n \cap B = \emptyset \) because \(\neg R_n \subseteq \neg P_n \) and \(\neg P_n \cap B = \emptyset \). Hence \(\neg R_n \) is a \(T_1 \)-open set containing \(h \) and disjoint from \(B \). So \(h \notin c_1(B) \).

Acknowledgement

The authors would like to thank the referee for making a number of helpful suggestions.

References

[Ba] Barua R, On Borel hierarchies of countable products of Polish spaces, Real Analysis Exchange 16 (1990–91) 60–66

[L1] Louveau A, A separation theorem for \(\Sigma^1_1 \) sets, Trans. Am. Math. Soc. 260 (1980) 363–378

[L2] Louveau A, Ensembles analytiques et boréliens dans les espaces produits, Astérisque 78 (1980) 1–87

[Ma] Maitra A, Pestien V and Ramakrishnan S, Domination by Borel stopping times and some separation properties, Fund. Math. 135 (1990) 189–201

[Mo] Moschovakis Y N, Descriptive Set Theory (Amsterdam: North-Holland) (1980)

[S] Solovay R M, A model of set theory in which every set of reals is Lebesgue measurable, Ann. Math. 92 (1970) 1–56