Cubic and quadratic distortion products in vibrations of the mouse cochlear apex

James B. Dewey

Caruso Department of Otolaryngology—Head & Neck Surgery, University of Southern California, Los Angeles, California 90033, USA
jamesdew@usc.edu

Abstract: When the ear is stimulated by two tones presented at frequencies \(f_1 \) and \(f_2 \), nonlinearity in the cochlea’s vibratory response leads to the generation of distortion products (DPs), with the cubic 2\(f_1 \)–\(f_2 \) DP commonly viewed as the most prominent. While the quadratic 2\(f_1 \)–\(f_2 \) DP is also evident in numerous physiological and perceptual studies, its presence in the cochlea’s mechanical response has been less well documented. Here, examination of vibratory DPs within the mouse cochlea confirmed that 2\(f_1 \)–\(f_2 \) was a significant and sometimes dominant component, whether DPs were measured near their generation site, or after having propagated from more basal locations. © 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the mammalian cochlea, sound-evoked waves traveling along the basilar membrane (BM) are actively amplified by the outer hair cells (OHCs) within the organ of Corti [Fig. 1(a)]. The amplification process is highly nonlinear, resulting in phenomena like compression, suppression, and distortion in the cochlea’s mechanics (Robles and Ruggero, 2001). For instance, in response to two stimulus tones at frequencies \(f_1 \) and \(f_2 \) (\(f_2 > f_1 \)), the cochlea generates significant intermodulation distortion products (DPs) at frequencies such as the “cubic” difference tone 2\(f_1 \)–\(f_2 \) and the “quadratic” difference tone 2\(f_2 \)–\(f_1 \). These distortions shape the input to the inner hair cells, and thus, the responses of the afferent auditory nerve, and are ultimately perceived (Goldstein, 1967; Humes, 1980; Plomp, 1965). However, the precise nature of the underlying nonlinearity and how it influences the cochlea’s output remain incompletely understood.

Nonlinearity in cochlear mechanics is largely thought to be due to the saturating, sigmoidal relationship between deflection of the OHC’s stereociliary bundle and the currents that flow through mechanically gated channels located near the stereocilia’s tips (Avan et al., 2013) [Fig. 1(b)]. Transduction currents produce the variations in membrane potential (i.e., the receptor potential) that drive electromotile force generation by the OHCs (Brownell et al., 1985; Santos-Sacchi and Däger, 1988). The resting position of the bundle, or its operating point (OP), is of primary interest as it determines the amplificatory gain provided by the OHC, as well as the relative magnitudes of any even- and odd-order DPs (e.g., 2\(f_2 \)–\(f_1 \) and 2\(f_1 \)–\(f_2 \), respectively) in its motile response. If the OP is near the center of the function, where the gain is highest, two-tone stimulation elicits symmetric currents that primarily contain odd-order DPs [Fig. 1(c)]. Any bias away from the center results in asymmetric currents and the presence of even-order components.

Though 2\(f_2 \)–\(f_1 \) is the most readily perceived DP (Goldstein, 1967) and is generally the largest DP emitted to the ear canal, sizable responses at 2\(f_2 \)–\(f_1 \) have been observed in auditory nerve fiber recordings (Kim et al., 1980) and intracochlear or intracellular potentials (Cheatham and Dallos, 1997; Gibian and Kim, 1982; Nuttall and Dolan, 1993). However, the presence and relative magnitude of 2\(f_2 \)–\(f_1 \) in the cochlea’s mechanics have been less characterized. While 2\(f_2 \)–\(f_1 \) is small or absent in BM vibrations measured from the cochlear base in guinea pig and chinchilla (Nuttall and Dolan, 1993; Rhode, 2007; Robles et al., 1997), it has been observed in vibrations of the tectorial membrane (TM) in apical, low-frequency regions (Cooper and Rhode, 1997). Recent measurements from the gerbil base using low-coherence heterodyne interferometry (Ren and He, 2020) and optical coherence tomography (OCT; Vavakou et al., 2019) have also found 2\(f_2 \)–\(f_1 \) in vibrations of the OHC region—the presumed source of the DPs—although they appear to be smaller than 2\(f_1 \)–\(f_2 \) (Burwood et al., 2022).

Here, OCT was used to compare 2\(f_2 \)–\(f_1 \) and 2\(f_1 \)–\(f_2 \) DPs in vibrations from the 9 kHz location in the mouse cochlear apex. DPs were characterized both locally near where they are generated, including within the OHC region, and after having propagated from more basal generation sites.
Fig. 1. Dependence of even- and odd-order DPs on OHC nonlinearity. (a) Schematic cross section of the organ of Corti (DC, Deiters’ cell; IHC, inner hair cell; RM, Reissner’s membrane). (b) First-order Boltzmann function used to approximate the nonlinear relationship between OHC stereociliary bundle displacement and transduction current. For a given displacement \(x \), the output current \(I \) is given by \(I(x) = \frac{1}{a_1} \cdot x \). where \(a_1 \) determines the slope (here, \(a_1 = 0.28 \text{ nm}^{-1} \) and \(x_1 \) sets the OP. Waveforms for a two-tone input and the output when the OP is at the center of the function (\(x_1 = 0 \)) are shown. (c) Spectra of the function’s two-tone input and its output when the OP is centered (i), resulting in a symmetric output and only odd-order DPs (e.g., \(2f_1-f_2 \) and \(2f_2-f_1 \)), or uncentered (ii; \(x_1 = 2.6 \text{ nm} \)), resulting in an asymmetric output and additional even-order DPs (e.g., \(f_2-f_1 \)).

2. Methods

Measurements were obtained from 11 adult (4–7 week-old) CBA/CaJ mice (five female) using a custom-built, swept-source OCT system and methods largely described in Dewey et al. (2021). All procedures were approved by the University of Southern California’s Institutional Animal Care and Use Committee.

Mice were anesthetized (80–100 mg/kg ketamine; 5–10 mg/kg xylazine), placed on a heating pad (38°C), and fixed to a head-holder. An otoacoustic emission probe (ER-10X; Etymotic Research, Elk Grove, IL) was sealed over the resected ear canal to present acoustic stimuli. Stimulus levels were calibrated using the pressure measured by the probe, which was corrected for the probe’s frequency-dependent sensitivity.

After surgically accessing the left middle ear space, the OCT light source was scanned across the cochlea to obtain two-dimensional cross-sectional images of the apical turn. Vibratory responses to single- and two-tone stimuli were then obtained from the OHC region (close to the DCs), BM, and/or TM, with responses sampled at 100 kHz. Stimuli were 102 ms tones (with 1 ms ramps) presented 8–32 times with a ~6 Hz sinusoidal modulation, resulting in a symmetric output and only odd-order DPs (e.g., \(2f_1-f_2 \) and \(2f_2-f_1 \)), or uncentered (ii; \(x_1 = 2.6 \text{ nm} \)), resulting in an asymmetric output and additional even-order DPs (e.g., \(f_2-f_1 \)).

3. Results

OCT was used to image the mouse cochlear apex [Fig. 2(a)] and measure vibratory responses to single- and two-tone stimuli from the OHC region, BM, and TM. Responses to single tones were tuned to a CF of 9 kHz and exhibited increasing phase lags with frequency that are indicative of traveling wave propagation [Fig. 2(b) and 2(c)]. As shown previously (Dewey et al., 2021), the OHC region was more responsive to low frequencies compared to the BM and TM, which were more sharply tuned. The low-pass nature of the OHC region motion likely reflects the more direct influence of electromotility, which is thought to inherit a low-pass characteristic due to filtering of the receptor potential by the OHC’s electrical properties (Santos-Sacchi, 1989; Vavakou et al., 2019).

After determining the site’s CF, OHC region responses to two-tone stimuli were obtained with \(f_2 \) fixed at the CF and \(f_1 \) varied to achieve \(f_2/f_1 \) ratios of ~1.07–1.67 in 0.1 steps. As shown in Fig. 2(d), OHC region displacement spectra revealed numerous DPs, most prominent typically being \(f_2-f_1 \), followed by \(2f_1-f_2 \). The presence and relative magnitude of
Fig. 2. Single- and two-tone vibratory responses from the mouse cochlear apex. (a) OCT image of the apical turn with relevant anatomy indicated. Scale bar = 100 um. Magnitudes (b) and phases (c) of OHC region, BM, and TM displacement responses to 60 dB SPL tones varied from 1–15 kHz in an individual mouse. (d) Representative spectrum of the OHC region response to two 60 dB SPL tones ($f_1 = 9$ kHz, $f_2 = 7.09$ kHz), with responses at f_1, f_2, $2f_1-f_2$, and $2f_1$ indicated. (e) and (f) Magnitudes and phases of representative OHC region displacements as a function of L_1 (with $L_2 = 60$ dB SPL) for two f_2/f_1 ratios and $f_2 = 9$ kHz. Phases were referenced to the median phase of the f_2 response for $L_1 < 40$ dB SPL. Due to the higher measurement noise at low frequencies, lower-frequency DPs only became detectable when they were large (e.g., for $f_2/f_1 = 1.07$, $f_2-f_1 = 0.59$ kHz while $2f_1-f_2 = 7.82$ kHz; in contrast, for $f_2/f_1 = 1.57$, $f_2-f_1 = 3.27$ kHz and $2f_1-f_2 = 2.46$ kHz). (g) Modeled responses for $f_2/f_1 = 1.57$ using the Boltzmann function shown in Fig. 1(b) with uncentered OP (see main text).

f_2-f_1 were therefore consistent with the output of a Boltzmann function with an OP positioned away from the function’s center [e.g., Fig. 1(c)].

To better characterize the underlying nonlinearity, measurements were made with L_2 fixed at 60 dB SPL and L_1 varied from 20 to 85 dB SPL [Fig. 2(e) and 2(f)]. For both small and large f_2/f_1 ratios [Figs. 2(e) and 2(f), respectively], OHC region displacements at f_2-f_1 and $2f_1-f_2$ exhibited nonmonotonic growth patterns that were tied to the magnitudes of the responses at f_1 and f_2. For L_1 values where the response at f_1 remained smaller than the response to f_2, the f_2-f_1 DP was larger than $2f_1-f_2$ but grew less steeply with L_1 (at a rate of ~1 dB/db, compared to ~2 dB/db for $2f_1-f_2$). The different growth rates were consistent with the output of a power-law nonlinearity (e.g., Humes, 1980). For small ratios, the f_2-f_1 DP could even be as large as the f_1 response, despite f_2-f_1 being far below the CF (e.g., $f_2-f_1 = 0.59$ kHz when $f_2/f_1 = 1.07$). As L_1 was increased so that the response at f_1 approached and then exceeded that at f_2 (which became suppressed by the f_1 response), both f_2-f_1 and $2f_1-f_2$ DPs peaked and then rapidly declined. Because the $2f_1-f_2$ DP started to decline at slightly higher L_1 values, it typically became larger than the response at f_2-f_1 as L_1 was increased further. DP phases were relatively constant for $L_1 < 60$ dB SPL but could shift by up to 0.25 cycles at higher levels. The magnitude and direction of these shifts were predictable from changes in the phases of the f_1 and f_2 responses. Specifically, they were consistent with the phases of f_2-f_1 and $2f_1-f_2$ being $\phi_2-\phi_1$ and $2\phi_1-\phi_2$ (plus some constant), where ϕ_1 and ϕ_2 are the f_1 and f_2 response phases.

While these magnitude and phase patterns may appear complex, they were replicated by the output of the Boltzmann function shown in Fig. 1(b) when the OP was uncentered ($x_i = 2.6$ nm). Figure 2(g) shows the Boltzmann’s output for $f_2/f_1 = 1.57$ when using BM displacements at f_1 and f_2 as the function’s inputs (measured using the same stimulus paradigm and averaged from five mice). The Boltzmann’s output was low-pass filtered (first-order, corner frequency = 1.75 kHz) in order to approximate filtering of the OHC receptor potential. Such filtering was previously found necessary to account for the relative magnitudes of harmonic and tonic distortions in single-tone responses (Dewey et al., 2021), and can explain the large f_2-f_1 DP magnitude at small f_2/f_1 ratios, where f_2-f_1 falls below the corner frequency.
While DPs in the Boltzmann’s output also exhibited level-dependent phase shifts, the absolute phases of the modeled and measured DPs differed somewhat. This is not surprising, as vibratory phases change rapidly within the OHC region (Dewey et al., 2021) and are undoubtedly influenced by mechanical properties not included in the Boltzmann model.

The level-dependent growth of OHC region DPs was further explored using equal-level stimuli, as shown for small and large f_2/f_1 ratios in Fig. 3(a) and 3(b). With $L_1 = L_2$, DPs generally grew less steeply with increasing level compared to when L_2 was fixed and L_1 was varied. When averaged across all f_2/f_1 ratios and mice, and evaluated for $L_1 = 40–55$ dB SPL, growth rates for f_2/f_1 were an average (± standard error, SE) of $0.76 ± 0.06$ (n = 6) and $0.92 ± 0.02$ (n = 7) dB/dB for equal-level and fixed-L_2 paradigms, respectively. For $2f_2/f_2$, these rates were $0.96 ± 0.05$ and $1.89 ± 0.05$ dB/dB. The lower growth rates for the equal-level paradigm can be attributed to the compressive growth of responses at both f_1 and f_2 when L_1 and L_2 are covaried. The behavior of the DPs was otherwise similar between paradigms, with the $2f_1$ f_2 DP growing more steeply than f_2/f_1 and becoming larger only when the f_1 response exceeded the f_2 response.

Equal-level stimuli yielded measurable DPs over a wide range of stimulus levels and were therefore also used to examine DPs in vibrations of the BM and TM [Figs. 3(c)–3(f)]. DPs were measurable from both structures though were typically much smaller than the OHC region DPs (by ~10–20 dB and ~5–10 dB for the BM and TM, respectively). The relative magnitudes of f_2/f_1 and $2f_1/f_2$ DPs in BM and TM vibrations also depended strongly on the f_2/f_1 ratio, with f_2/f_1 being particularly reduced at small ratios [Figs. 3(c)–3(o)]. At these ratios, f_2/f_1 becomes very low in frequency while $2f_1/f_2$ approaches the CF. The relative DP magnitudes therefore appear to be shaped by the frequency responses of the BM and TM, which are both sharply tuned to the CF. For f_2/f_1 ratios > 1.5 [e.g., Figs. 3(d) and 3(f)], f_2/f_1 is higher in frequency than $2f_1/f_2$ and therefore does not suffer from this relative attenuation, explaining why it remained the dominant DP on the BM and TM.

Both DPs were also measurable at the 9 kHz location after having been generated at more basal sites and then propagated apically. Figure 4(a) shows TM responses obtained with f_2 varied from ~2–40 kHz, $f_2/f_1 = 1.57$, and $L_1 = L_2 = 70$ dB SPL, plotted vs the f_2 frequency. DP magnitudes peaked when f_2 was near the CF, where there was maximal interaction between the responses at f_1 and f_2, as well as when the DP frequency fell near the CF (see arrows). This occurred when there was little local interaction between the responses at f_1 and f_2, which peaked at more basal sites. The measured DPs therefore presumably originated at these sites and propagated to the 9 kHz location. When plotted vs their own frequency, DP magnitudes and phases for frequencies > 6 kHz resembled those of responses to single tones presented at 20 dB SPL [Figs. 4(b) and 4(c)]. Phases of lower-frequency DPs were more complex, possibly indicating the presence of both locally generated and apical- or basal-propagating components (Dong and Olson, 2008).

For large f_2/f_1 ratios, propagated f_2/f_1 DPs were often greater in magnitude than $2f_1/f_2$ DPs, particularly for lower-level stimuli. With $f_2/f_1 = 1.57$ and stimuli presented at 60 dB SPL, propagated f_2/f_1 and $2f_1/f_2$ DP magnitudes on the TM were on average (± SE) 0.36 ± 0.06 nm and 0.18 ± 0.05 nm, respectively (n = 5), equivalent to displacements...
elicited by a 9 kHz tone at ∼11 and 6 dB SPL. However, these comparisons are complicated by the fact that higher \(f_2 \) frequencies were required to generate \(2f_1-f_2 \) at 9 kHz. Cochlear sensitivity, nonlinearity, and responsiveness to force generation at 9 kHz may all vary with location, potentially contributing to the different DP magnitudes.

In an alternative paradigm, \(f_2 \) was varied from ∼10–32 kHz and \(f_1 \) set so that either \(f_2-f_1 \) or \(2f_1-f_2 \) was always equal to 9 kHz. Propagated \(f_2-f_1 \) and \(2f_1-f_2 \) DPs were therefore presumed to originate from a similar generation site as \(f_2 \) was varied. The two DPs were characterized in separate measurements, as they required different \(f_1 \) values. Figures 4(d)–4(e) show propagated DP magnitudes measured on the BM for two \(f_2 \) frequencies, with \(L_2 = 60 \) dB SPL and \(L_1 \) varied. Propagated DPs exhibited characteristics observed in the locally generated DPs, with \(f_2-f_1 \) being detectable at lower stimulus levels and growing more steeply compared to \(2f_1-f_2 \), which became dominant at high \(L_1 \) values. However, the growth of the propagated DPs tended to be less steep than that observed for locally generated DPs. For \(L_1 = 40–55 \) dB SPL, average (± SE) growth rates for \(f_2-f_1 \) and \(2f_1-f_2 \) were 0.59 ± 0.04 and 1.40 ± 0.02 dB/dB across all frequencies and mice (\(n = 5 \)). Response phases were usually stable for \(L_1 < 60 \) dB SPL, with phase shifts occurring at higher levels, sometimes accompanied by amplitude notches [Fig. 4(e)]. This behavior could be a feature of the nonlinearity at the more basal sites (Lukashkin et al., 2002), or else could arise from interference between DPs originating from different locations. Such interference may also explain the shallower growth rates of the propagated DPs.

Figure 4(f) shows the average maximum propagated DP amplitudes observed on the BM as a function of \(f_2 \), highlighting that, while \(f_2-f_1 \) emerged at lower stimulus levels, \(2f_1-f_2 \) always became dominant at higher levels for this measurement paradigm. Maximum \(f_2-f_1 \) and \(2f_1-f_2 \) DP magnitudes were equivalent to responses elicited by 9 kHz tones presented at ∼24 and 43 dB SPL, respectively. Though the dominance of the \(2f_1-f_2 \) DP at high stimulus levels could be partly due to its relative growth pattern at the generation site [e.g., Fig. 2], lower \(f_2-f_1 \) magnitudes may also be attributed to the much wider \(f_2/f_1 \) ratios required to elicit this DP (ranging from ∼10 to 1.4 with increasing \(f_2 \), compared to a range of 1.07 to 1.6 for \(2f_1/f_2 \)), and greater suppression by the \(f_1 \) tone, which more strongly stimulated the measurement site during recordings of \(f_2-f_1 \). The relative levels of the propagated DPs therefore strongly depend on the stimulus paradigm and are likely influenced by factors other than the nonlinearity at the generation site.

To assess the possible perceptual relevance of the propagated DPs, one must compare their magnitudes to the displacements elicited at the threshold of hearing. Behavioral hearing thresholds near 9 kHz in CBA/CaJ mice are ∼10–16 dB SPL (May et al., 2006; Radziwon et al., 2009), which would correspond to BM displacements of ∼0.14–0.3 nm (∼17 to −10 dB re 1 nm) and TM displacements of ∼0.3–0.7 nm (∼10 to −3 dB re 1 nm) at threshold. Thus, while differences in the presentation and calibration of acoustic stimuli in behavioral studies may complicate such comparisons, both \(f_2-f_1 \) and \(2f_1-f_2 \) DPs appear large enough to at least be detectable, if not perceptually salient, over a range of stimulus levels.
4. Discussion

The present work demonstrates that f_2-f_1 is a significant DP in vibratory responses of the mouse cochlea. The data confirm recent measurements of f_2-f_1 DPs in motions of the OHC region in the gerbil base (Ren and He, 2020; Vavakou et al., 2019), but further show that these DPs are locally transmitted to both the BM and TM, and are measurable on these structures as they propagate apically. Characteristics of local and propagated DPs were highly similar to those observed in electrical recordings from the cochlear fluids, inner hair cells, and auditory nerve in other species (Cheatham and Dallos, 1997; Gibian and Kim, 1982; Kim et al., 1980). Previous findings of f_2-f_1 DP being small or absent in BM vibrations in some of these species could be due to the choice of stimulus parameters, measurement sensitivity, or the relative lability of f_2-f_1 (Cooper and Rhode, 1997).

The presence of even-order DPs indicates that an asymmetric output is produced by the underlying nonlinearity, which, for OHCs, is commonly attributed to the mechanotransducer function. This suggests that the stereociliary bundle’s OP is not at the function’s center, where the transducer gain is maximal, as is often claimed (Jeng et al., 2021; Russell et al., 1986). However, the bias need not be extreme, as OHC region DPs could be approximated using a Boltzmann function with OP set so that ~33% of the maximum current is activated at rest. Of course, it is possible that the OHCs’ mechanical nonlinearity has sources other than mechanotransduction (Santos-Sacchi, 1989). Anesthesia may also affect OHC function such that the relative levels of even- and odd-order DPs are not the same as in the awake state (Schlenther et al., 2014). Nevertheless, the fact that a simple Boltzmann model reproduced behaviors of both low-frequency intermodulation DPs and high-frequency harmonics (Dewey et al., 2021) suggests that it is a reasonable starting point for understanding OHC nonlinearity in mice.

Though the $2f_1-f_2$ DP became quite large at high stimulus levels, the dominance of f_2-f_1 at low stimulus levels indicates that it may also impact perception. Indeed, its presence has been suggested to facilitate envelope encoding (Nuttall et al., 2018) and detection of high-frequency vocalizations in mice (Portfors et al., 2009). Interestingly, however, human psychophysical studies have typically found f_2-f_1 to become audible only at high stimulus levels (Goldstein, 1967; Humes, 1980). Though the underlying mechanical nonlinearity may be species dependent, there could be multiple sources of nonlinearity (e.g., inner hair cell) and other central factors that contribute to differences between mechanical and perceived DPs. The choice of stimulus paradigm also dramatically affects DP magnitudes, potentially complicating comparisons between studies. Whether DPs play a significant perceptual role, or if they are simply an inconsequential by-product of cochlear nonlinearity, requires further examination in humans and other species.

Acknowledgments

This work was supported by a Hearing Health Foundation Emerging Research Grant, NIH/NIDCD R21 Grant No. DC019209, and the University of Southern California’s Keck School of Medicine. The author thanks Dr. John Oghalai and Dr. Brian Applegate for providing the OCT system used here, as well as the two anonymous reviewers for their constructive feedback.

References and links

Individual data sets and supplementary plots of all average data are available at: https://github.com/jdewey/Dewey2022JASAEL.

Avan, P., Büki, B., and Petit, C. (2013). “Auditory distortions: Origins and functions,” Physiol. Rev. 93, 1563–1619.

Brownell, W. E., Bader, C. R., Bertrand, D., and Ribaupierre, Y. D. (1985). “Evoked mechanical responses of isolated cochlear outer hair cells,” Science 227, 194–196.

Burwood, G., He, W. X., Fridberger, A., Ren, T. Y., and Nuttall, A. L. (2022). “Outer hair cell driven reticular lamina mechanical distortion in living cochlea,” Hear. Res. 423, 108405.

Cheatham, M. A., and Dallos, P. (1997). “Intermodulation components in inner hair cell and organ of Corti responses,” J. Acoust. Soc. Am. 102, 1038–1048.

Cooper, N. P., and Rhode, W. S. (1997). “Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea,” J. Neurophysiol. 78, 261–270.

Dewey, J. B., Altoe, A., Sera, C. A., Applegate, B. E., and Oghalai, J. S. (2021). “Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo,” Proc. Natl. Acad. Sci. U.S.A. 118, e2025261118.

Dong, W., and Olson, E. S. (2008). “Supporting evidence for reverse cochlear traveling waves,” J. Acoust. Soc. Am. 123, 222–240.

Gibian, G. L., and Kim, D. O. (1982). “Cochlear microphonic evidence for mechanical propagation of distortion products (f_2-f_1) and ($2f_1-f_2$),” Hear. Res. 6, 35–59.

Goldstein, J. L. (1967). “Auditory nonlinearity,” J. Acoust. Soc. Am. 41, 676–699.

Humes, L. E. (1980). “On the nature of two-tone aural nonlinearity,” J. Acoust. Soc. Am. 67, 2073–2083.

Jeng, J. Y., Harasztosi, C., Carlton, A. J., Corns, L. F., Marchetta, P., Johnson, S. L., Goodyear, R. J., Legan, K. P., Rütiger, L., Richardson, G. P., and Marcocc, W. (2021). “MET currents and otoacoustic emissions from mice with a detached tectorial membrane indicate the extracellular matrix regulates Ca^{2+} near stereocilia,” J. Physiol. 599, 2015–2036.

Kim, D. O., Molnar, C. E., and Matthews, J. W. (1980). “Cochlear mechanics: Nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in ear-canal sound pressure,” J. Acoust. Soc. Am. 67, 1704–1721.

Lukashkin, A. N., Lukashkina, V. A., and Russell, I. J. (2002). “One source for distortion product otoacoustic emissions generated by low- and high-level primaries,” J. Acoust. Soc. Am. 111, 2740–2748.
May, B. J., Kimar, S., and Prosen, C. A. (2006). "Auditory filter shapes of CBA/CaJ mice: Behavioral assessments," J. Acoust. Soc. Am. 120, 321–330.

Nuttall, A. L., and Dolan, D. F. (1993). "Intermodulation distortion (F₂–F₁) in inner hair cell and basilar membrane responses," J. Acoust. Soc. Am. 93, 2061–2068.

Nuttall, A. L., Ricci, A. J., Burwood, G., Harte, J. M., Stenfelt, S., Cayé-Thomasen, P., Ren, T., Ramamoorthy, S., Zhang, Y., Wilson, T., Lunner, T., Moore, B. C. J., and Fridberger, A. (2018). "A mechanoelectrical mechanism for detection of sound envelopes in the hearing organ," Nat. Commun. 9, 4175.

Plomp, R. (1965). "Detectability threshold for combination tones," J. Acoust. Soc. Am. 37, 1110–1123.

Portfors, C. V., Roberts, P. D., and Jonson, K. (2009). "Over-representation of species-specific vocalizations in the awake mouse inferior colliculus," Neuroscience 162, 486–500.

Radziwon, K. E., June, K. M., Stolzberg, D. J., Xu-Friedman, M. A., Salvi, R. J., and Dent, M. L. (2009). "Behaviorally measured audiograms and gap detection thresholds in CBA/CaJ mice," J. Comp. Physiol. A. 195, 961–969.

Ren, T., and He, W. (2020). "Two-tone distortion in reticular lamina vibration of the living cochlea," Commun. Biol. 3, 35.

Rhode, W. S. (2007). "Distortion product otoacoustic emissions and basilar membrane vibration in the 6–9 kHz region of sensitive chinchilla cochleae," J. Acoust. Soc. Am. 122, 2725–2737.

Robles, L., and Ruggiero, M. A. (2001). "Mechanics of the mammalian cochlea," Physiol. Rev. 81, 1305–1352.

Robles, L., Ruggiero, M. A., and Rich, N. C. (1997). "Two-tone distortion on the basilar membrane of the chinchilla cochlea," J. Neurophysiol. 77, 2385–2399.

Russell, I. J., Cody, A. R., and Richardson, G. P. (1986). "The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro," Hear. Res. 22, 199–216.

Santos-Sacchi, J. (1989). "Asymmetry in voltage-dependent movements of isolated outer hair cells from the organ of Corti," J. Neurosci. 9, 2954–2962.

Santos-Sacchi, J., and Dülger, J. P. (1988). "Whole cell currents and mechanical responses of isolated outer hair cells," Hear. Res. 35, 143–150.

Schlenther, D., Voss, C., and Kössl, M. (2014). "Influence of ketamine-xylazine anaesthesia on cubic and quadratic high-frequency distortion-product otoacoustic emissions," J. Assoc. Res. Otolaryngol. 15, 695–705.

Vavakou, A., Cooper, N. P., and van der Heijden, M. (2019). "The frequency limit of outer hair cell motility measured in vivo," Elife 8, e47667.