Evaluation of mechanisms that may generate DNA lesions triggering antigenic variation in African trypanosomes

Marcelo Santos da Silva1,2*, Galadriel A. Hovel-Miner3, Emma M. Briggs2, Maria Carolina Elias1, Richard McCulloch2*

1 Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil, 2 The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom, 3 The George Washington University, Department of Microbiology Immunology, and Tropical Medicine, Washington, DC, United States of America

* marcelo.dsilva@butantan.gov.br (MSdS); richard.mcculloch@glasgow.ac.uk (RM)

Abstract

Antigenic variation by variant surface glycoprotein (VSG) coat switching in African trypanosomes is one of the most elaborate immune evasion strategies found among pathogens. Changes in the identity of the transcribed VSG gene, which is always flanked by 70-bp and telomeric repeats, can be achieved either by transcriptional or DNA recombination mechanisms. The major route of VSG switching is DNA recombination, which occurs in the bloodstream VSG expression site (ES), a multigenic site transcribed by RNA polymerase I. Recombinogenic VSG switching is frequently catalyzed by homologous recombination (HR), a reaction normally triggered by DNA breaks. However, a clear understanding of how such breaks arise—including whether there is a dedicated and ES-focused mechanism—is lacking. Here, we synthesize data emerging from recent studies that have proposed a range of mechanisms that could generate these breaks: action of a nuclease or nucleases; repetitive DNA, most notably the 70-bp repeats, providing an intra-ES source of instability; DNA breaks derived from the VSG-adjacent telomere; DNA breaks arising from high transcription levels at the active ES; and DNA lesions arising from replication–transcription conflicts in the ES. We discuss the evidence that underpins these switch-initiation models and consider what features and mechanisms might be shared or might allow the models to be tested further. Evaluation of all these models highlights that we still have much to learn about the earliest acting step in VSG switching, which may have the greatest potential for therapeutic intervention in order to undermine the key reaction used by trypanosomes for their survival and propagation in the mammalian host.

VSG switching in Trypanosoma brucei

African trypanosomes, including T. brucei spp., are unicellular parasites that cause chronic infections in humans and other mammals, often resulting in death if left untreated. These chronic infections (including African sleeping sickness in humans and nagana in livestock) are
potentiated by the parasites’ ability to undergo antigenic variation, which is common to many pathogens and involves switches in surface antigens to thwart effective adaptive-immunity-mediated eradication. In *T. brucei*, antigenic variation is carried out by switching expression of the variant surface glycoprotein (VSG) “coat” [1–5]. The expressed VSG coat is composed of a single variety of densely packed VSG that is highly immunogenic (eliciting a robust humoral response) while occluding immune detection of other antigens on the cell surface [6]. Though the precise number of VSG genes that can encode a coat are unknown, hundreds to thousands of VSG-encoding genes, most of which are pseudogenes or gene fragments, have been catalogued in the nuclear genomes of *T. brucei* and are housed in the subtelomeres of the parasite’s 11 megabase and approximately 100 intermediate and minichromosomes [7–9]. Only one VSG at a time is monoallelically transcribed from one of approximately 15 dedicated bloodstream expression sites (ESs) [10]. These ESs present a conserved organization of features: an RNA polymerase I (RNAP I) promoter, a variable series of ES-associated genes (ESAGs), a region of repetitive DNA termed the 70-bp repeats, and one functional VSG gene, which appears always to be adjacent to the telomeric repeats [10]. Survival of the *Trypanosoma* population in the mammal requires a switch from the expressed VSGs to antigenically distinct variants, maintaining the cell’s essential VSG coat and allowing a subpopulation to escape antibody-mediated killing—at least temporarily. In a single cell, this switching is achieved by changing the identity of the monoallelically ES-transcribed VSG [11–13].

The majority of VSG switching occurs by recombination events, which translocate a novel VSG into the ES, replacing the resident VSG and leading to its transcription. Recombinogenic VSG switching predominates over transcriptional switching because it is the mechanism that allows access to the full VSG repertoire, including VSG pseudogenes. In contrast, transcriptional switches that silence the actively transcribed ES and transcriptionally activate a silent ES, although frequently observed, can only access the approximately 15 VSGs housed in the ES transcription sites [14,15]. Translocation of a silent VSG into the ES by recombination can arise in three ways: from a crossover event that retains a copy of the previously active VSG, by way of a duplicative gene conversion event, in which activation of a new VSG is coupled with deletion of the resident ES VSG, and by segmental gene conversion events that act on multiple intact and pseudogenic VSGs to generate novel VSG “mosaics” [11,16,17]. This range of recombination pathways suggests considerable mechanistic flexibility, which is undoubtedly not fully explored. Nonetheless, available genetic analyses reveal two broad features of recombination-based VSG switching in *T. brucei*. First, the reaction can be activated by the targeted introduction of a double-stranded DNA break (DSB) in the active ES, suggesting that DNA lesion repair elicits a switch [18,19]. Second, mutation of a number of conserved proteins of homologous recombination (HR) impairs the activation of intact VSGs (reviewed in [20,21]). Taken together, these findings suggest that *T. brucei* has co-opted a general genome maintenance pathway—HR—to execute at least some forms of VSG switching, a conclusion that has parallels with targeted genome rearrangements in many other organisms [4]. Despite this, uncertainty remains about many aspects of VSG switching, including the nature and source of the DNA lesions that trigger recombination-based VSG switching. Below, we consider a number of proposals for this critical initiating event in *T. brucei* antigenic variation.

Targeting of a nuclease to the active ES?

One hypothesis that would allow the initiation of VSG switching through the direct generation of a DNA break would be the action of a nuclease (Fig 1). This idea was first proposed by J.D. Barry [22]; he suggested that a dedicated endonuclease could introduce a DSB in the 70-bp repeats in the active ES, perhaps in a comparable way to the homothallic switching (HO)
endonuclease reaction that catalyzes initiation of *Saccharomyces cerevisiae* mating-type switching [22–24]. Indeed, targeting of the DSB-generating yeast intron-encoded endonuclease I-SceI to the active ES does induce VSG recombinogenic switching [18]. Nonetheless, no such native endonuclease has been described to date, though of course this may only indicate that it is truly trypanosome specific and lacks homology with known nucleases [25]. Also, the target of such an enzyme is unknown, including how it might target (preferentially or only) the active ES or what sequences it might act on. In fact, it remains possible that such an enzyme might not act on a conserved sequence but could target secondary structures formed in the ES, perhaps on the 70-bp repeats. Moreover, if such an enzyme did not generate a DSB, but a distinct form of DNA lesion, the absence of a detectable role for meiotic recombination 11 (MRE11) in VSG switching might be explained [26]. For example, recent studies in different cell types and organisms have characterized junction endonucleases, such as the structure-specific endonuclease Mus81), which associate with different substrates and trigger DNA breaks during various processes, most of them involving HR [27–30]. Further work might be considered to ask if any other conserved nucleases, such as enzymes from the xeroderma pigmentosum (XP) family [31], could have dual roles in genome repair and VSG switching. Searching for a genuinely VSG-specific nuclease and determining whether it generates DSBs or other lesions (e.g., DNA single-strand breaks or nicks), is a greater challenge.

Rather than an endonuclease, topoisomerase and helicase activities have also been implicated in trypanosome VSG switching. TOPO3α has been proposed to remove undesirable recombination intermediates arising between active and silent ESs, thereby suppressing VSG switching and promoting the integrity of the ES during VSG recombination [32,33]. Indeed, VSG switching frequency increased not only in the absence of TOPO3α [32] but after mutation of RMI1 [32] and RECQ2 [34], which may act together. However, we do not currently know whether this complex, or the individual components, act directly to initiate VSG switching or follow from earlier-acting events.

Do the 70-bp repeats act in DNA break formation?

One of the first observed features of the VSG ES was the AT-rich 70-bp repeats upstream of the VSG, which serve as the 5′ limit of DNA recombination during some VSG switching events [35,36]. Three predominant predictions surfaced about the function of the 70-bp repeats in switching: a binding site for a specific endonuclease (see above), sites of inherent DNA instability, and conserved sequences to allow homologous alignment between highly sequence-diverged VSGs [36–38]. The endonuclease hypothesis fell out of favor when it was demonstrated that 70-bp repeats are not required for VSG switching by gene conversion [39]. However, the possibility yet remains that a 70-bp repeat-specific endonuclease operates under conditions that have not been identified. More broadly, it is clear that the 70-bp repeat’s
sequence composition can cause them to adopt unusual DNA conformations and to promote recombination, at least in plasmids [40,41].

Following the complete sequence of the *T. brucei* genome and the subtelomeric ES sites, it was established that the 70-bp repeat contains a highly conserved AT-rich sequence with anchoring GC regions and also contains a triplet repeat component whose function needs to be further investigated [40]. The 70-bp repeats are present in long arrays (3–20 kb) in the ES and in smaller iterations of between 1 and 3 repeats in the proximity of 90% of VSG genes throughout the genome [7,9,10,42]. Using genetic alterations of the 70-bp repeats in the active ES, it was shown that they are required (after exogenous DNA break formation) to guide homologous pairing between the ES and VSG genes throughout the genomic repertoire. Thus, the 70-bp repeats clearly provide roles in homologous pairing and perhaps more complex mechanisms of VSG selection [42]. Whether the 70-bp repeats also provide a long-predicted role in the formation of VSG switch–activating DNA breaks remains untested; if they do, this role is not crucial for switch initiation in all circumstances.

Repetitive DNA (including the 70-bp repeats) can present some specific DNA replication challenges that result in DNA break formation, such as strand slippage during replication and secondary structure formation [43,44] (Fig 2). All of these challenges can result in DSB or DNA lesion formation, often arising from replication fork collapse, including following collisions with transcriptional machinery [44–46], which will be discussed below. Early evidence for DNA break formation at the active ES was observed in the form of loss and replacement of the telomere, occurring at a higher frequency compared to silent ES [47,48]. In addition, naturally occurring subtelomeric DNA breaks have been observed in VSG ESs, though the available data do not settle the debate over whether they occur more in transcriptionally active or silent sites [18,19]. Together, these data suggest that DNA breaks arise naturally in the VSG ES, which could result in recombination-based switching. However, to date, the role of 70-bp repeats in such DNA break formation has not been firmly tested, nor have the mapped breaks been shown to be the triggers of VSG recombination. Nonetheless, presence or absence of the 70-bp repeats alters the cell cycle progression of *T. brucei* cells after induction of an ES DSB through I-SceI endonuclease-mediated cleavage [42].

Fig 2. Do the 70-bp repeats act in DNA break formation?. The presence of 70-bp repeats may result in DNA break formation, such as during DNA replication or transcription, due to strand slippage. Alternatively, the formation of secondary structures due to the repeats could also impair DNA replication or transcription, resulting in DNA breaks. The dashed light orange ellipse emphasizes the existence of several 70-bp repetitions in the region termed 70-bp. The square around a 70-bp repeat highlights the consensus sequence, shown as a sequence logo, from the repeats found in BES 1. Adapted from Hovel-Miner et al. (2016) [42]. BES 1, bloodstream expression site 1; ES, expression site; VSG, variant surface glycoprotein.

https://doi.org/10.1371/journal.ppat.1007321.g002
DNA breaks from the telomere?

Another proposal is that VSG switching is not directly initiated by events within the ES but indirectly through processes occurring in the telomere adjacent to the VSG. As in most eukaryotes, the T. brucei telomere is composed of tandem repeats of a G-rich sequence (in T. brucei this is 5’ TTAGGG 3’), which are elongated by telomerase [49]. It seems that most T. brucei telomere 3’ overhang ends have the sequence 5’ TTAGGG 3’, whereas a small part of the overhang has the sequence 5’ TAGGGT 3’, Telomerase activity is essential for the maintenance of 5’ TTAGGG 3’ ends but apparently does not affect the 5’ TAGGGT 3’ ends [50]. This finding suggests that the 5’ TAGGGT 3’ ends can be maintained and/or generated by a potentially telomerase-independent mechanism, such as telomerase-independent telomere lengthening, which involves telomeric recombination [51–53]. Several studies suggest that telomere recombination influences VSG switching, mainly because the VSGs in the ES are located within 2 kb of the telomere repeats [10], and both telomere proteins and telomere length influence the frequency of VSG switching [15,54–56].

A further unusual feature of T. brucei telomeres is that the repeats attached to the active ES grow more rapidly than inactive ES telomere and, furthermore, undergo more frequent breakage [57]. Dreesen and Cross (2007) proposed that such DNA break events, particularly when acting on short telomeres, might encroach into the upstream ES and initiate VSG switching [58]. Support for this proposal was found by examining T. brucei telomerase mutants, which undergo a progressive loss of telomere repeats [15]. Consistent with previous observations [59], telomerase mutants with short telomeres switched the expressed VSG by recombination more frequently than mutants with longer telomeres [15]. Further support may be found in analyses of mutants in components of the T. brucei shelterin complex, which binds telomere sequences: though the effects seen for different subunits show variation and are normally lethal, accumulation of subtelomeric DNA breaks and VSG recombination is sometimes seen [54,55,60]. Also, it is known that critically short telomeres are stabilized in T. brucei telomerase mutants by an uncharacterized mechanism [57]. Whether such a mechanism is similar to telomerase-independent telomere lengthening and relies on HR, using subtelomeric intra-ES sequences activated after prolonged growth of telomerase mutants, is unclear (Fig 3). Also, further studies are needed to determine whether such telomere-derived reactions are also seen at the shorter, slower-growing chromosome ends of inactive ES. Finally, it remains perplexing that targeted deletion of the telomere tract adjacent to the active ES does not elicit a VSG switch [19].

Instability derived from high levels of transcription?

High levels of transcription enhance HR, a phenomenon known as transcription-associated recombination (TAR) [61]. In S. cerevisiae, transcription and DSBs induce similar mitotic HR
It has been demonstrated that RNAP I transcription stimulates HR in bloodstream forms of *T. brucei* more than 3-fold [63,64], perhaps suggesting that one consequence of RNAP I ES transcription is elevated DNA breaks and HR in the active ES. RNAP can also generate DNA breaks on repetitive regions [62,65] by mechanisms that are not fully elucidated. One potential explanation is that RNAP passage over repeats allows the formation of DNA secondary structures, which can generate DNA breaks in a manner dependent on or independent from DNA repair processes [66,67] (Fig 4). Transcription across triplet repeats is a widespread cause of genetic instability [68,69], suggesting that further dissection of the *T. brucei* 70-bp repeat components is warranted. Transcription-associated genetic instability can also be driven by DNA:RNA hybrids, which can also mediate TAR [70]. Very recent studies have used genome-wide mapping and immunofluorescence to determine where DNA:RNA hybrids form in the *T. brucei* genome [71,72], as well as when they form during the parasite’s cell cycle [73].

Mismatch repair and nucleotide excision repair have both been implicated in repeat instability [67,74], but to date, only the former has been tested for a contribution to *T. brucei* VSG switching, without revealing any evidence [75]. In contrast, impaired repair of uracil in DNA increases VSG switching [76], though it is unclear whether this relates to ES transcription. Beyond these genetic analyses, no experiments have tested whether TAR or transcription rate during traversal of the ES, including the 70-bp repeats, is a driver of VSG switching.

Very recently, a protein called VSG exclusion-1 (VEX1) was described and has been suggested to coordinate VSG expression through a “winner-takes-all” strategy [77]. Put simply, it is proposed that VEX1 is recruited to a single ES by a positive feedback mechanism related to RNAP I, enhancing VSG transcription of the active ES, while VEX1 also aids homology-dependent silencing of the other ES [77,78]. Other studies point to a crucial role of ES chromatin in regulating VSG expression, including through a modified nucleotide called base J (β-D-glucosyl-hydroxymethyluracil) and a histone H3 variant (H3.V) [79,80]. To date, whether VEX1, RNAP I, and chromatin combine to not only influence ES transcription but also to generate DNA lesions is an open question, though elevated levels of RNA:DNA hybrids in the ES increase VSG switching and intra-ES damage [71].

Replication–transcription conflicts in the active ES?

Replication–transcription conflict is a phenomenon that occurs when there is an encounter between the replisome and the RNAP because both complexes use the same template to
synthesize DNA and RNA, respectively [81]. When a replisome and RNAP progress in the same direction, a co-directional collision can occur if the speeds of replication and transcription are different [82–84]. In bacteria, this type of collision usually preserves genome integrity [81,85,86], but in eukaryotes, this is still an open question. On the other hand, progression of the replisome and RNAP in opposite directions leads to head-on collisions, which frequently induce blockage and collapse of the replication fork, generating DNA lesions, especially DSBs [81]. Such collisions increase recombination frequency, as observed in S. cerevisiae [87].

A recent study carried out by Devlin and colleagues (2016) suggested an association between DNA replication and transcription of the active ES in T. brucei [34]. This study showed that the active ES is replicated early in S phase, whereas all the silent ESs are replicated late [34], which strongly suggests that high levels of transcription happen concurrently with DNA replication in the active site. The early replication of the active ES, in addition to providing the ideal scenario for collisions, also provides a fully replicated copy of the ES at the beginning of the S phase, i.e., the target and potential substrate for VSG switch HR events during S phase. This finding adds to genetic analysis of TOP3α, whose ablation elevates VSG switching by intra-ES crossovers, an effect suggested to be driven by replication–transcription collisions [32]. It also confirms a functional link between transcription initiation and DNA replication initiation throughout the T. brucei genome [88], consistent with a very recent study showing transcription and replication overlap in the T. brucei cell cycle [73].

The active ES is unique from all silent ESs in that it is highly transcribed, is chromatin depleted, and resides in a specialized subnuclear compartment known as the ES body [89]. It has long been understood in other eukaryotes that transcription, chromatin state, and subnuclear localization are all intimately associated with the timing of replication origin firing [90–92]. Therefore, at least one strong prediction can be made: the transcriptional state of the active ES supports its replication early in S phase. The outcome of these events is predicted to result in collisions between the replisome and RNAP I (Fig 5), which are widely known to result in DSB formation in other systems [93–95]. Therefore, it is possible that transcription alone does not lead to the described active ES fragility [19] or the generation of DNA breaks in these telomeric loci [18], but instead, the juxtaposition of transcription and DNA replication drives VSG switch initiation. Nonetheless, the site of DNA replication initiation in or around the active ES is currently unknown, as is the direction of replication through the ES, meaning the potential for intra-ES replication–transcription conflicts, including whether they are head-on or co-directional, requires experimental tests.

Conclusions and perspectives

Here, we have compiled the mechanisms so far suggested to act in the initiation of VSG switching, providing a nuanced molecular description of the potential sources and forms of

Fig 5. Replication–transcription conflicts in the active ES? Collisions between the replisome and RNAP I, especially head-to-head, could generate DNA breaks in the active ES. Of note, the DNA breaks in the scheme are represented as DSBs, though this is unknown. DSB, DNA double-strand break; ES, expression site; RNAP, RNA polymerase.

https://doi.org/10.1371/journal.ppat.1007321.g005
DNA breaks long suspected as initiating lesions. Of note, most of the evidence regarding initiation of VSG switching was suggested based on in vitro assays, which may not necessarily reflect the conditions found in vivo during mammal infections. For instance, no studies have examined VSG recombination in mutants of *T. brucei* cells capable of undergoing differentiation from replicative long slender forms to nonreplicative short stumpy forms, a developmental reaction critical for transmission [96]. Therefore, further investigation is needed to test all the mechanisms proposed and to ask whether one predominates or whether there is a joint action of some of them. For instance, could high ES transcription generate DNA:RNA hybrids within the 70-bp repeats, with the hybrids then processed by an endonuclease, generating DNA breaks and driving VSG switching?

Beyond the action of these mechanisms (individually or jointly) in the establishment of antigenic variation in African trypanosomes, it is worth considering whether these processes have wider parallels throughout the trypanosomatids, which emerged around 200 to 500 million years ago [97]. For instance, might similar HR strategies drive diversification of the hugely abundant gene families found in *T. cruzi* [98], and in what way do the known roles of HR factors in generating genome plasticity in *Leishmania* [99] correspond with exploitation of this general genome repair pathway during *T. brucei* antigenic variation? Uncovering the molecular mechanisms that initiate VSG switching may lead to the discovery of targets for the development of antiparasitic therapies. Moreover, this immune evasion mechanism is not only crucial in African trypanosomes but in all pathogens that use antigenic variation and perform gene expression control to ensure that only one antigen is expressed in a single cell, such as *Plasmodium, Giardia, Neisseria, Borrelia*, and others.

References

1. Barry JD, McCulloch R. Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol. 2001; 49: 1–70. https://doi.org/10.1016/S0065-308X(01)49037-3 PMID: 11461029

2. Pinger J, Chowdhury S, Papavasiliou FN. Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation. Nat Commun. 2017; 8. https://doi.org/10.1038/ncomms12060 PMID: 29018220

3. Ridewood S, Ooi CP, Hall B, Trenaman A, Wand NV, Sioutas G, et al. The role of genomic location and flanking 3′ UTR in the generation of functional levels of variant surface glycoprotein in Trypanosoma brucei. Mol Microbiol. 2017; 106: 614–634. https://doi.org/10.1111/mmi.13838 PMID: 28906055

4. Devlin R, Marques CA, McCulloch R. Does DNA replication direct locus-specific recombination during host immune evasion by antigenic variation in the African trypanosome? Current Genetics. 2017. pp. 441–449. https://doi.org/10.1007/s00294-016-0662-7 PMID: 27922899

5. Horn D. Antigenic variation in African trypanosomes. Mol Biochem Parasitol. Elsevier; 2014; 195: 123–9. https://doi.org/10.1016/j.molbiopara.2014.05.001 PMID: 24859277

6. Schwede A, Macleod OJS, MacGregor P, Carrington M. How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins? PLoS Pathog. 2015. https://doi.org/10.1371/journal.ppat.1005259 PMID: 26719972

7. Bertriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. The Genome of the African Trypanosome Trypanosoma brucei. Science (80-). 2005; 309: 416–422. https://doi.org/10.1126/science.1112642 PMID: 16020726

8. Cross GAM, Kim HS, Wickstead B. Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Mol Biochem Parasitol. 2014; 195: 59–73. https://doi.org/10.1016/j.molbiopara.2014.06.004 PMID: 24992042

9. Marcello L, Barry JD. Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure. Genome Res. 2007; 17: 1344–1352. https://doi.org/10.1101/gr.6421207 PMID: 17652423

10. Hertz-Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A, Bason N, et al. Telomeric Expression Sites Are Highly Conserved in Trypanosoma brucei. Hall N, editor. PLoS ONE. 2008; 3: e3527. https://doi.org/10.1371/journal.pone.0003527 PMID: 18953401
11. Hall JPJ, Wang H, David Barry J. Mosaic VSGs and the Scale of Trypanosoma brucei Antigenic Variation. PLoS Pathog. 2013; 9. https://doi.org/10.1371/journal.ppat.1003502 PMID: 23853603
12. Mugnier MR, Cross GAM, Papavasiliou FN. The in vivo dynamics of antigenic variation in Trypanosoma brucei. Science (80-.). 2015; 347: 1470–1473. https://doi.org/10.1126/science.aaa4502 PMID: 25814582
13. McCulloch R, Field MC. Quantitative sequencing confirms VSG diversity as central to immune evasion by Trypanosoma brucei. Trends in Parasitology. 2015. pp. 346–349. https://doi.org/10.1016/j.pt.2015.05.001 PMID: 25999027
14. Robinson NP, Burman N, Melville SE, Barry JD. Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. Mol Cell Biol. 1999; 19: 5839–46. https://doi.org/10.1128/MCB.19.9.5839 PMID: 10454531
15. Hovel-Miner GA, Boothroyd CE, Mugnier M, Dreesen O, Cross GAM, Papavasiliou FN. Telomere Length Affects the Frequency and Mechanism of Antigenic Variation in Trypanosoma brucei. PLoS Pathog. 2012; 8. https://doi.org/10.1371/journal.ppat.1002900 PMID: 22952449
16. Jackson AP, Berry A, Aslett M, Allison HC, Burton P, Vavrova-Anderson J, et al. Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosomes species. Proc Natl Acad Sci. 2012; 109: 3416–3421. https://doi.org/10.1073/pnas.1117313109 PMID: 22331916
17. McCulloch R, Barry JD. A role for RAD51 and homologous recombination in Trypanosoma brucei antigenic variation. Genes Dev. 1999; 13: 2875–2888. https://doi.org/10.1101/gad.13.21.2875 PMID: 10557214
18. Boothroyd CE, Dreesen O, Leonova T, Ly KI, Figueiredo LM, Cross GAM, et al. A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature. 2009; 459: 278–281. https://doi.org/10.1038/nature07982 PMID: 19369939
19. Glover L, Alsford S, Horn D. DNA break site at fragile subtelomeres determines probability and mechanism of antigenic variation in African trypanosomes. Hill KL, editor. PLoS Pathog. 2013; 9: e1003260. https://doi.org/10.1371/journal.ppat.1003260 PMID: 23555264
20. Horn D, McCulloch R. Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Current Opinion in Microbiology. 2010. pp. 700–705. https://doi.org/10.1016/j.mib.2010.08.009 PMID: 20848241
21. Morrison LJ, McCulloch R, Hall JPJ. DNA Recombination Strategies During Antigenic Variation in the African Trypanosome. Microbiol Spectr. 2015; 3: MDNA3-0016-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0016-2014 PMID: 26104717
22. Barry JD. The relative significance of mechanisms of antigenic variation in African trypanosomes. Parasitology Today. 1997. pp. 212–217. https://doi.org/10.1016/S0169-4758(97)01039-9 PMID: 15275073
23. Haber JE. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics. 2012; 191: 33–64. https://doi.org/10.1534/genetics.111.134577 PMID: 22555442
24. Kostriken R, Strathern JN, Klar AJS, Hicks JB, Heffron F. A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae. Cell. 1983; 35: 167–174. https://doi.org/10.1016/0092-8674(83)90219-2 PMID: 6313222
25. Govindan G, Ramalingam S. Programmable Site-Specific Nucleases for Targeted Genome Engineering in Higher Eukaryotes. J Cell Physiol. 2016; 231: 2380–2392. https://doi.org/10.1002/jcp.25367 PMID: 26945523
26. Robinson NP, McCulloch R, Conway C, Browitt A, David Barry J. Inactivation of Mre11 does not affect VSG gene duplication mediated by homologous recombination in Trypanosoma brucei. J Biol Chem. 2002; 277: 26185–26193. https://doi.org/10.1074/jbc.M203205200 PMID: 12011090
27. Boddy MN, Gaillard PHL, McDonald WH, Shanahan P, Yates JR, Russell P. Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell. 2001; 107: 537–548. https://doi.org/10.1016/S0092-8674(01)00536-0 PMID: 11719193
28. Gao H, Chen X-B, McGowan CH. Mus81 endonuclease localizes to nucleoli and to regions of DNA damage in human S-phase cells. Mol Biol Cell. 2003; 14: 4826–4834. https://doi.org/10.1091/mbc.E03-05-0276 PMID: 14638871
29. Pepe A, West SC. Substrate specificity of the MUS81-EME2 structure selective endonuclease. Nucleic Acids Res. Oxford University Press; 2014; 42: 3833–3845. https://doi.org/10.1093/nar/gkt1333 PMID: 24371268
30. Fu H, Martin MM, Regairaz M, Huang L, You Y, Lin CM, et al. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage. Nat Commun. 2015; 6. https://doi.org/10.1038/ncomms7746 PMID: 25879486
31. Machado CR, Vieira-da-Rocha JP, Mendes IC, Rajão MA, Marcello L, Bitar M, et al. Nucleotide excision repair in T. brucei: specialization of transcription-coupled repair due to multigene transcription. Mol Microbiol. 2014; 92: 756–776. https://doi.org/10.1111/mmi.12589 PMID: 24661334
32. Kim HS, Cross GAM. TOPO3α influences antigenic variation by monitoring expression-site-associated VSG switching in Trypanosoma brucei. PLoS Pathog. 2010; 6: 1–14. https://doi.org/10.1371/journal.ppat.1000992 PMID: 20628569

33. Kim HS, Cross GAM. Identification of trypanosoma brucei RMI1/B LAP75 homologue and its roles in antigenic variation. PLoS ONE. 2011; 6. https://doi.org/10.1371/journal.pone.0025313 PMID: 21980422

34. Devlin R, Marques CA, Paape D, Prorocic M, Zurita-Leal AC, Campbell SJ, et al. Mapping replication dynamics in Trypanosoma brucei reveals a link with telomere transcription and antigenic variation. Elife. 2016; 5. https://doi.org/10.7554/eLife.12765 PMID: 27228154

35. Glover L, Horn D. Locus-specific control of DNA resection and suppression of subtelomeric VSG recombination by HAT3 in the African trypanosome. Nucleic Acids Res. 2014; 42: 12600–12613. https://doi.org/10.1093/nar/gku900 PMID: 25300492

36. Campbell DA, van Bree MP, Boothroyd JC. The 5’-limit of transposition and upstream barren region of a trypanosome VSG gene: Tandem 76 base-pair repeats flanking (TAA)90. Nucleic Acids Res. 1984; 12: 2759–2774. https://doi.org/10.1093/nar/12.6.2759 PMID: 6324125

37. Liu AYC, Van der Ploeg LHT, Rijswijk FAM, Borst P, Chambon P. The transposition unit of variant surface glycoprotein gene 118 of Trypanosoma brucei. J Mol Biol. 1983; 167: 57–75. https://doi.org/10.1016/S0022-2836(83)80034-5 PMID: 6306255

38. Bzymek M, Lovett ST. Instability of repetitive DNA sequences: The role of replication in multiple mechanisms. Proc Natl Acad Sci. 2001; 98: 8319–8325. https://doi.org/10.1073/pnas.11459970

39. Spiro C, Pelletier R, Rolfsmeier ML, Dixon MJ, Lahue RS, Gupta G, et al. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol Cell. 1999; 4: 1079–1085. https://doi.org/10.1016/S1097-2765(00)80236-1 PMID: 10635332
53. Lundblad V. Telomere maintenance without telomerase. Oncogene. 2002. pp. 522–531. https://doi.org/10.1038/sj.onc.1205079 PMID: 11850777

54. Jehi SE, Wu F, Li B. Trypanosoma brucei TIF2 suppresses VSG switching by maintaining subtelomere integrity. Cell Res. 2014; 24: 870–885. https://doi.org/10.1038/cr.2014.60 PMID: 24810301

55. Jehi SE, Nanavaty V, Li B. Trypanosoma brucei TIF2 and TRF suppress VSG switching using overlapping and independent mechanisms. PLoS ONE. 2016; 11. https://doi.org/10.1371/journal.pone.0156746 PMID: 27258069

56. Nanavaty V, Sandhu R, Jehi SE, Pandya UM, Li B. Trypanosoma brucei RAP1 maintains telomere and subtelomere integrity by suppressing TERRA and telomeric RNA: DNA hybrids. Nucleic Acids Res. 2017; 45: 5785–5796. https://doi.org/10.1093/nar/gkx184 PMID: 28334836

57. Dreesen O, Cross GAM. Telomerase-Independent Stabilization of Short Telomeres in Trypanosoma brucei. Mol Cell Biol. 2006; 26: 4911–4919. https://doi.org/10.1128/MCB.00212-06 PMID: 16782879

58. Dreesen O, Cross GAM, Li B. Telomere structure and function in trypanosomes: A proposal. Nat Rev Microbiol. 2007; 5: 70–75. https://doi.org/10.1038/nrmicro1577 PMID: 17160000

59. Dreesen O, Cross GAM. Consequences of telomere shortening at an active VSG expression site in telomerase-deficient Trypanosoma brucei. Eukaryot Cell. 2006; 5: 2114–2119. https://doi.org/10.1128/EC.00059-06 PMID: 17071826

60. Li B. DNA double-strand breaks and telomeres play important roles in trypanosoma brucei antigenic variation. Eukaryot Cell. American Society for Microbiology; 2015; 14: 196–205. https://doi.org/10.1128/EC.00207-14 PMID: 25576484

61. Gottipati P, Cassel TN, Savolainen L, Helleday T. Transcription-Associated Recombination Is Dependent on Replication in Mammalian Cells. Mol Cell Biol. 2008; 28: 154–164. https://doi.org/10.1128/MCB.00816-07 PMID: 17967877

62. González-Barrer a S, García-Rubio M, Aguilera AA, González-Barrer a S, García-Rubio M, Aguilera AA. Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics. 2002; 162: 603–614. Available: http://www.ncbi.nlm.nih.gov/pubmed/12399375 PMID: 12399375

63. Alsford S, Horn D. RNA polymerase I transcription stimulates homologous recombination in Trypanosoma brucei. Mol Biochem Parasitol. 2007; 153: 77–79. https://doi.org/10.1016/j.molbiopara.2007.01.013 PMID: 17316839

64. Günl A, Bruderer T, Laufer G, Schimanski B, Tu LC, Chung HM, et al. RNA polymerase I transcribes procyclin genes and variant surface glycoprotein gene expression sites in Trypanosoma brucei. Eukaryot Cell. 2003; 2: 542–551. https://doi.org/10.1128/EC.2.3.542-551.2003 PMID: 12796299

65. Wierdl M, Greene CN, Datta A, Jinks-Robertson S, Petes TD. Destabilization of simple repetitive DNA sequences by transcription in yeast. Genetics. 1996; 143: 713–21. Available: http://www.ncbi.nlm.nih.gov/pubmed/8725221 PMID: 8725221

66. Lin YL, Pasero P. Caught in the Act: R-Loops Are Cleaved by Structure-Specific Endonucleases to Generate DSBs. Molecular Cell. 2014. pp. 721–722. https://doi.org/10.1016/j.molcel.2014.12.011 PMID: 25526530

67. Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA. Transcription-Coupled Nucleotide Excision Repair Factors Promote R-Loop-Induced Genome Instability. Mol Cell. 2014; 56: 777–785. https://doi.org/10.1016/j.molcel.2014.10.020 PMID: 25435140

68. Lin Y, Hubert L, Wilson JH. Transcription destabilizes triplet repeats. Mol Carcinog. 2009; 48: 350–361. https://doi.org/10.1002/mc.20488 PMID: 18973172

69. Galka-Marciniak P, Urbanek MO, Krzyzosiak WJ. Triplet repeats in transcripts: Structural insights into RNA toxicity. Biological Chemistry. 2012. pp. 1299–1315. https://doi.org/10.1515/hsz-2012-0218 PMID: 23052488

70. Huertas P, Aguilera A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell. 2003; 12: 711–721. https://doi.org/10.1016/j.molcel.2003.08.010 PMID: 14527416

71. Briggs E, Crouch K, Lengrubler L, Lapsley C, McCulloch R. RibonucleaseH1-targeted R-loops in surface antigen gene expression sites can direct trypanosome immune evasion. PLoS Genet. In press.

72. Briggs E, Hamilton G, Crouch K, Lapsley C, McCulloch R. Genome-wide mapping reveals conserved and diverged R-loop activities in the unusual genetic landscape of the African trypanosome genome. Nucleic Acids Res. In press.

73. da Silva MS, Cayres-Silva GR, Vitarelli MO, Marin PA, Hiraia PM, Araújo CB, et al. Transcription activity contributes to the activation of non-constitutive origins to maintain the robustness of S phase duration in African trypanosomes. BioRxiv. 2018; https://doi.org/10.1101/398016
74. Lujan SA, Clark AB, Kunkel TA. Differences in genome-wide repeat sequence instability conferred by proofreading and mismatch repair defects. Nucleic Acids Res. 2015; 43: 4067–4074. https://doi.org/10.1093/nar/gkv271 PMID: 25824945

75. Bell JS, McCulloch R. Mismatch Repair Regulates Homologous Recombination, but Has Little Influence on Antigenic Variation, in Trypanosoma brucei. J Biol Chem. 2003; 278: 45182–45188. https://doi.org/10.1074/jbc.M308123200 PMID: 12933800

76. Castillo-Acosta VM, Aguilar-Pereyra F, Bart JM, Navarro M, Ruiz-Pérez LM, Vidal AE, et al. Increased uracil insertion in DNA is cytotoxic and increases the frequency of mutation, double strand break formation and VSG switching in Trypanosoma brucei. DNA Repair (Amst). 2012; 11: 986–995. https://doi.org/10.1016/j.dnarep.2012.09.007 PMID: 23085192

77. Glover L, Hutchinson S, Alsford S, Horn D. VEX1 controls the allelic exclusion required for antigenic variation in trypanosomes. Proc Natl Acad Sci. 2016; https://doi.org/10.1073/pnas.1600344113 PMID: 27226299

78. Ooi C-P, Rudenko G. How to create coats for all seasons: elucidating antigenic variation in African trypanosomes. Emerg Top Life Sci. Portland Press Journals portal; 2017; 1: 593–600. https://doi.org/10.1042/ETLS20170105

79. Schulz D, Zaringhalam M, Papavasiliou FN, Kim HS. Base J and H3.V Regulate Transcriptional Termination in Trypanosoma brucei. PLoS Genet. 2016; https://doi.org/10.1371/journal.pgen.1005762 PMID: 26796638

80. Reynolds D, Hofmeister BT, Cliffe L, Alabady M, Siegel TN, Schmitz RJ, et al. Histone H3 Variant Regulates RNA Polymerase II Transcription Termination and Dual Strand Transcription of siRNA Loci in Trypanosoma brucei. PLoS Genet. 2016; https://doi.org/10.1371/journal.pgen.1005758 PMID: 26796527

81. García-Muse T, Aguilera A. Transcription–replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Biol. 2016; 17: 553–563. https://doi.org/10.1038/nrm.2016.88 PMID: 27435505

82. Mirkin E V, Mirkin SM. Mechanisms of transcription-replication collisions in bacteria. Mol Cell Biol. American Society for Microbiology (ASM); 2005; 25: 888–95. https://doi.org/10.1128/MCB.25.3.888-895.2005

83. Maiuri P, Knezevich A, De Marco A, Mazza D, Kula A, McNally JG, et al. Fast transcription rates of RNA polymerase II in human cells. EMBO Rep. 2011; 12: 1280–1285. https://doi.org/10.1038/embor.2011.196 PMID: 22015688

84. Pérez-Ortín JE, Medina DA, Chávez S, Moreno J. What do you mean by transcription rate? BioEssays. 2013; 35: 1056–1062. https://doi.org/10.1002/bies.201300057 PMID: 24105897

85. Pomerantz RT, O’Donnell M. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature. 2008; 456: 762–767. https://doi.org/10.1038/nature07527 PMID: 19020502

86. Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet. 2010; 6. https://doi.org/10.1371/journal.pgen.1000810 PMID: 20090829

87. Prado F, Aguilera A. Impairment of replication fork progression mediates RNA pol II transcription-associated recombination. EMBO J. 2005; 24: 1267–76. https://doi.org/10.1038/sj.emboj.7600602 PMID: 15775982

88. Tiengwe C, Marcello L, Farr H, Dickens N, Kelly S, Swiderski M, et al. Genome-wide Analysis Reveals Extensive Functional Interaction between DNA Replication Initiation and Transcription in the Genome of Trypanosoma brucei. Cell Rep. 2012; 2: 185–197. https://doi.org/10.1016/j.celrep.2012.06.007 PMID: 22840408

89. Landeira D, Navarro M. Nuclear repositioning of the VSG promoter during developmental silencing in Trypanosoma brucei. J Cell Biol. 2007; 176: 133–139. https://doi.org/10.1083/jcb.200607174 PMID: 17210949

90. Rhind N, Gilbert DM. DNA replication timing. Cold Spring Harb Perspect Biol. 2013; 5. https://doi.org/10.1101/cshperspect.a01032 PMID: 23838440

91. Smith OK, Aladjem MJ. Chromatin structure and replication origins: Determinants of chromosome replication and nuclear organization. Journal of Molecular Biology. 2014; pp. 3330–3341. https://doi.org/10.1016/j.jmb.2014.05.027 PMID: 24905010

92. Rivera-Mulia JC, Gilbert DM. Replication timing and transcriptional control: Beyond cause and effect—part III. Current Opinion in Cell Biology. 2016; pp. 168–178. https://doi.org/10.1016/jceb.2016.03.022 PMID: 27115331

93. Gaillard H, Herrera-Moyano E, Aguilera A. Transcription-associated genome instability. Chemical Reviews. 2013, pp. 8638–8661. https://doi.org/10.1021/cr400017y PMID: 23597121
94. Macheret M, Halazonetis TD. DNA Replication Stress as a Hallmark of Cancer. Annu Rev Pathol Mech Dis. 2015; 10: 425–448. https://doi.org/10.1146/annurev-pathol-012414-040424 PMID: 25621662
95. Gaillard H, Aguilera A. Transcription as a Threat to Genome Integrity. Annu Rev Biochem. 2016; 85: 291–317. https://doi.org/10.1146/annurev-biochem-060815-014908 PMID: 27023844
96. Matthews KR, McCulloch R, Morrison LJ. The within-host dynamics of African trypanosome infections. Philosophical Transactions of the Royal Society B: Biological Sciences. 2015. https://doi.org/10.1098/rstb.2014.0288 PMID: 26150654
97. da Silva MS, Pavani RS, Damasceno JD, Marques CA, McCulloch R, Tosi LRO, et al. Nuclear DNA Replication in Trypanosomatids: There Are No Easy Methods for Solving Difficult Problems. Trends Parasitol. 2017; https://doi.org/10.1016/j.pt.2017.08.002 PMID: 28844718
98. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran A-N, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005; 309: 409–15. https://doi.org/10.1126/science.1112631 PMID: 16020725
99. Genois MM, Mukherjee A, Ubeda JM, Buisson R, Paquet E, Roy G, et al. Interactions between BRCA2 and RAD51 for promoting homologous recombination in Leishmania infantum. Nucleic Acids Res. 2012; https://doi.org/10.1093/nar/gks306 PMID: 22505581