Characterization of Watermelon (Citrullus lanatus var. citroides) Germplasm for Resistance to Root-knot Nematodes

Judy A. Thies1,3 and Amnon Levi2
United States Vegetable Laboratory, USDA, ARS, 2700 Savannah Highway, Charleston, SC 29414-5334

Abstract. Root-knot nematodes (Meloidogyne spp.) cause extensive damage to watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus], and resistance to root-knot nematodes has not been identified in any watermelon cultivar. Twenty-six U.S. Plant Introductions (PIs) of Citrullus lanatus (Thunb.) Matsum. & Nakai var. citroides (L. H. Bailey) Mansf., one PI of C. lanatus var. lanatus, and three PIs of Citrullus colocynthis (L.) Schrad. were evaluated in greenhouse tests for resistances to Meloidogyne incognita (Kofoid & White) Chitwood race 3 and Meloidogyne arenaria (Neal) Chitwood race 2. Twenty-three of the C. lanatus var. citroides PIs and the C. lanatus var. lanatus PIs were previously identified as moderately resistant to M. arenaria race 1. Overall, the C. lanatus var. citroides PIs exhibited low to moderate resistance, and the C. lanatus var. lanatus and C. colocynthis PIs were susceptible to both M. incognita race 3 and M. arenaria race 2. The C. lanatus var. citroides PI 482303 was the most resistant PI with gall index (GI) = 2.88 and reproductive index (RI) = 0.34 for M. incognita race 3 and GI = 3.46 and RI = 0.38 for M. arenaria race 2 (1 = no galling; 5 = 26% to 38% root system galled; 9 = 81% to 100% root system galled). These results demonstrate that there is significant genetic variability within C. lanatus var. citroides for reaction to M. incognita and M. arenaria race 2, and several C. lanatus var. citroides PIs may provide sources of resistance to root-knot nematodes.

Watermelon (C. lanatus var. lanatus) is an important vegetable crop grown in the United States with an annual production of 2.1 million tons and a farm value of $435 million (U.S. Department of Agriculture [USDA], 2007). Root-knot nematodes (Meloidogyne spp.) cause extensive damage to watermelon throughout the southern United States (Sumner and Johnson, 1973; Thies, 1996; Thomason and McKinney, 1959; Winstead and Riggs, 1959) and increase the severity of Fusarium wilt in watermelon fields (Sumner and Johnson, 1973).

Root-knot nematodes are primarily controlled in watermelon by fumigation with methyl bromide. Approximately 6% of all methyl bromide treatments in vegetable crops throughout the world are for watermelon and melon (Cucumis melo L.) (USDA, 1993). However, use of methyl bromide is being phased out in the United States (U.S. Environmental Protection Agency, 2000). The loss of methyl bromide for preplant soil fumigation was predicted to result in annual yield losses of 15% to 20% for watermelon in Georgia and Florida (Lynch and Carpenter, 1999). The removal of methyl bromide from the U.S. market has raised great interest in developing an alternative approach for managing root-knot nematodes in vegetable crops. Host plant resistance would provide an economical and environmentally friendly alternative for managing root-knot nematodes in watermelon.

There are several reports describing the reactions of cultivated watermelon to root-knot nematodes. Seventy-eight watermelon cultivars and five breeding lines evaluated for response to root-knot nematode were all susceptible (Winstead and Riggs, 1959). Similarly, 10 watermelon cultivars evaluated in Puerto Rico were all susceptible to M. incognita (Montalvo and Esnard, 1994). Thomason and McKinney (1959) reported that the watermelon cultivar ‘Striped Klondike’ was susceptible to M. incognita acrita and M. javanica.

In a recent study, we optimized a procedure for evaluating U.S. PIs of Citrullus spp. for resistance to root-knot nematodes (Thies and Levi, 2003). In that study, moderate resistance to M. arenaria race 1 was identified among C. lanatus var. citroides PIs. The objective of this study was to evaluate the group of C. lanatus var. citroides PIs that showed moderate resistance to M. arenaria race 1 for resistances to M. incognita race 3 and M. arenaria race 2.

Materials and Methods

Inocula. Meloidogyne incognita race 3 and M. arenaria race 2 were cultured on ‘Kentucky Wonder 191’ pole bean (Phaseolus vulgaris L.) and Rutgers’ tomato (Lycopersicon esculentum Mill.) in the greenhouse. Egg inocula were extracted from bean and tomato roots using 0.5% sodium hypochlorite (Hussey and Barker, 1973).

Plant material. Twenty-six accessions of C. lanatus var. citroides, one accession of C. lanatus var. lanatus, and three accessions of C. colocynthis from the U.S. PI Citrullus germplasm collection were evaluated for resistance to M. incognita race 3 and M. arenaria race 2 in replicated greenhouse tests. The accessions were selected based on their reactions (both resistant and susceptible) to M. arenaria race 1 in previous greenhouse studies (Thies and Levi, 2003). ‘Charleston Gray’, ‘Crimson Sweet’, and ‘Dixie Lee’ (C. lanatus var. lanatus) were included as susceptible reference control cultivars in all tests.

Meloidogyne incognita tests 1 and 2. Thirty Citrullus spp. accessions and three watermelon control cultivars were evaluated for resistance to M. incognita in two greenhouse tests. The experimental design was a randomized complete block with 33 watermelon genotypes × four replicates × five plants per replicate (n = 20) in the first test and three replicates × five plants per replicate (n = 15) in the second test.

Meloidogyne arenaria race 2 tests 1 and 2. Thirty Citrullus spp. accessions and three watermelon control cultivars were evaluated for resistance to M. arenaria race 2 in two greenhouse tests. The experimental design, numbers of replicates, and numbers of plants per replicate for the M. arenaria race 2 tests were the same as for the M. incognita tests, previously described.

Greenhouse evaluation procedures. The seeds were sown in plastic trays containing 50 individual 0.2-L cells filled with Metro-Mix 360 (The Scotts Company, Marysville, OH) and placed in a greenhouse maintained between 26 °C and 31 °C. When seedlings were at the first true leaf stage, 3 mL distilled water containing ≈2500 eggs of either M. incognita race 3 or M. arenaria race 2 were pipetted into the rhizosphere soil of each plant at a 1-cm depth. Plants were fertilized 2 and 5 weeks after sowing with one-half strength 20N–20P–16K water-soluble fertilizer (Peter’s Fertilizer, United Industries Corp., St. Louis).

Eight weeks later, the shoots of all plants were harvested, dried at 60 °C for 24 h, and weighed. The shoots of all plants were analyzed for reaction to root-knot nematode in fresh weight. The shoots of all plants were analyzed for reaction to root-knot nematode in fresh weight. The shoots of all plants were analyzed for reaction to root-knot nematode in fresh weight.
Table 1. Gall indices, egg mass indices, numbers of Meloidogyne incognita race 3 eggs per gram fresh root, and reproductive indices for selected PIs of *Citrullus lanatus* var. *citroides*, *C. lanatus var. lanatus*, and *C. colocynthis* and control watermelon cultivars inoculated with *M. incognita* race 3 in replicated greenhouse tests.

Accession (PI no.)	Test 1	Test 2				
	Gall index^y	Egg mass index^y	Gall index^y	Egg mass index^y	Eggs/g fresh root^x	Reproductive index^x
Citrullus lanatus var. citroides						
482303	2.80 a[°]	2.20 a	2.97 a	2.11 a	1,535 a–c	0.34 ab
482307	3.90 a–e	2.75 ab	3.22 a	2.13 a	889 a	0.29 ab
270563	3.45 a–d	3.37 a–e	3.00 a	2.50 a	4,151 a–g	0.59 a–d
482379	3.48 a–d	1.98 a	3.28 a	2.52 a	5,577 b–f	1.08 b–f
482338	3.47 a–d	2.11 a	3.39 ab	2.11 a	1,221 b	0.24 a
532624	3.07 ab	2.20 a	3.53 ab	3.03 a	6,869 c–h	1.59 d–g
482326	3.40 a–d	2.00 a	3.40 ab	2.67 a	2,967 a–e	0.55 a–d
482319	4.07 b–f	2.27 a	3.47 ab	2.80 a	2,863 a–e	0.97 b–f
482324	3.36 a–c	2.53 ab	3.58 ab	2.61 a	3,963 a–g	0.55 a–d
189225	3.97 a–f	3.55 a–f	3.67 ab	2.80 a	16,508 a–h	2.17 d–g
255137	3.71 a–c	2.85 ab	3.67 a–c	3.00 a	3,145 a–c	0.82 b–g
482333	4.17 b–f	2.97 a–e	3.69 ab	2.88 a	3,607 a–g	0.75 a–g
482342	4.00 a–f	3.04 a–e	3.83 a–c	2.60 a	2,299 a–d	0.37 a–d
244019	4.60 d–g	3.50 a–e	3.87 a–c	3.07 a	3,954 a–e	0.69 a–f
500331	3.35 a–c	2.89 a	3.93 a–c	2.93 a	4,902 b–g	0.61 a–e
512854	4.26 b–f	3.16 a–d	3.90 a–c	3.40 ab	2,225 a–d	0.61 a–e
482259	3.15 ab	2.85 ab	4.00 a	3.40 ab	4,749 b–g	1.60 e–i
542119	3.68 a–e	3.35 a–e	4.07 a–c	3.80 a–c	6,191 b–h	1.46 e–i
440417	4.75 e–h	3.05 a–d	4.07 a–c	2.67 a	4,006 a–g	0.57 a–e
440418	4.58 b–g	3.00 a–c	4.11 a–c	2.70 a	12,873 e–h	1.96 f–i
485583	4.80 e–i	4.05 b–g	4.25 a–c	2.93 a	4,193 a–g	0.80 b–g
248774	5.67 g–i	3.93 b–g	4.50 a–d	3.78 a–c	6,343 b–g	1.12 d–i
542114	5.13 f–i	4.60 d–h	5.38 b–e	5.25 b–d	29,020 h–i	5.56 jk
532666	5.90 hi	5.43 g–j	6.52 e–g	5.12 b–d	18,789 g–h	3.15 i–k
288316	6.00 i	5.11 F	—	—	—	—

*Means of four replicates of five plants per replicate (n = 20) in test 1 and means of three replicates of five plants per replicate (n = 15) in test 2.

¹1 to 9 scale in which 1 = no galling or visible egg masses present, 2 = 1% to 3%, 3 = 4% to 10%, 4 = 11% to 25%, 5 = 26% to 35%, 6 = 36% to 50%, 7 = 51% to 65% = 66% to 80%, and 9 = 81% to 100% of root system galled or covered with egg masses, respectively.

²Data were log₁₀(x + 1) transformed before analysis. Nontransformed data are shown.

³Means of the protected least significant difference test, P ≤ 0.05.
unreplicated test (Thies and Levi, 2003), but was moderately susceptible to *M. incognita* in the present studies.

The PI 459074 was the only one of 156 *C. lanatus* var. *lanatus* PIs evaluated that exhibited any resistance to *M. arenaria* race 1 (Thies and Levi, 2003). However, in this study, PI 459074 was susceptible to *M. incognita* race 3 based on both root gall severity and nematode reproduction (Table 1). The three *C. lanatus* var. *lanatus* watermelon cultivars (’Crimson Sweet’, ‘Dixie Lee’, and ‘Charleston Gray’) were also susceptible to *M. incognita* race 3 (Table 1), like in a previous study (Thies and Levi, 2003). The GIs ranged from 7.85 to 8.37 in test 1 and 6.09 to 7.53 in test 2; numbers of eggs per gram fresh root ranged from 3497 to 9658 and RIs ranged from 0.57 to 5.37. Numbers of eggs per gram fresh root and RIs for ‘Crimson Sweet’ and ‘Dixie Lee’ were somewhat lower than expected as a result of a reduction in fibrous root systems associated with root-knot nematode damage.

The three *C. colocynthis* PIs were highly susceptible to *M. incognita* race 3 (Table 1), similar to their reactions to *M. arenaria* race 1 in prior tests (Thies and Levi, 2003). The root gall severity indices for the *C. colocynthis* accessions ranged from 8.80 to 9.00 in test 1 and from 5.75 to 8.42 in test 2; numbers of eggs per gram fresh root ranged from 4080 to 100,577 and RIs ranged from 1.18 to 8.45.

Meloidogyne arenaria race 2 tests 1 and 2. Ten *C. lanatus* var. *citroides* accessions (PI 482303, PI 482338, PI 482326, PI 482319, PI 255137, PI 482529, PI 542119, PI 542114, PI 532666, and PI 288316) exhibited low to moderate resistance to *M. arenaria* race 2 in both tests 1 and 2 (GI ranges: 3.70 to 4.98 in test 1 and 2.67 to 3.47 in test 2; numbers of *M. arenaria* race 2 eggs per gram fresh root ranged from 106 to 4320 and RIs ranged from 0.02 to 0.64) (Table 2).

The three *C. colocynthis* accessions exhibited low to moderate resistance to both *M. incognita* race 3 and *M. arenaria* race 2. The three *C. colocynthis* accessions were most resistant with average GIs of 2.88 and 3.46 for *M. incognita* and *M. arenaria* race 2, respectively; RIs were less than 0.40 for both *Meloidogyne* species. These results demonstrate that there is significant genetic
variability within C. lanatus var. citroides for reaction to M. incognita race 3 and M. arenaria race 2, and several C. lanatus var. citroides PIs may provide sources of resistance to root-knot nematodes for the development of resistant watermelon cultivars.

Literature Cited
Hussey, R.S. and K.R. Barker. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis. Rep. 57:1025–1028.

Lynch, L. and J. Carpenter. 1999. The economic impacts of banning methyl bromide: Where do we need more research? 1999 Annual Research Conference on Methyl Bromide Alternatives and Emissions Reductions. 19 Sept. 2007. <www.epa.gov/ozone/mbr/airc/1999/55lynchl.pdf>.

Montalvo, A.E. and J. Esnard. 1994. Reaction of ten cultivars of watermelon (Citrullus lanatus) to a Puerto Rican population of Meloidogyne incognita. J. Nematol. 26(suppl):640–643.

Sasser, J.N., C.C. Carter, and K.M. Hartman. 1984. Standardization of host suitability studies and reporting of resistance to root-knot nematodes. Crop Nematode Resistance Control Project, N.C. State Univ., U.S. Agency for Intl. Dev., Raleigh, NC.

Sumner, D.R. and A.W. Johnson. 1973. Effect of root-knot nematodes on Fusarium wilt of watermelon. Phytopathology 63:857–861.

Thies, J.A. 1996. Diseases caused by nematodes, p. 56–58. In: T.A. Zitter, D.L. Hopkins, and C.E. Thomas (eds.). Compendium of cucurbit diseases. APS Press, St. Paul, MN.

Thies, J.A. and R.L. Fery. 1998. Modified expression of the N gene for southern root-knot nematode resistance in pepper at high soil temperatures. J. Amer. Soc. Hort. Sci. 123:1012–1015.

Thies, J.A. and A. Levi. 2003. Resistance of watermelon germplasm to the peanut root-knot nematode. HortScience 38:1417–1421.

Thies, J.A., S.B. Merrill, and E.L. Corley, Jr. 2002. Red food coloring stain: New, safer procedures for staining nematodes in roots and egg masses on root surfaces. J. Nematol. 34:179–181.

Thomason, J.J. and H.E. McKinney. 1959. Reaction of some Cucurbitaceae to root-knot nematodes (Meloidogyne spp.). Plant Dis. Rep. 43:448–450.

U.S. Department of Agriculture. 1993. USDA workshop on alternatives for methyl bromide. 29 June–1 July 1993. Crystal City, VA.

U.S. Department of Agriculture. 2007. National Agricultural Statistics Service. Vegetables 2006 Summary. p. 33.

U.S. Environmental Protection Agency. 2000. Protection of stratospheric ozone: Incorporation of Clean Air Act amendments for reductions in Class I, Group VI controlled substances. Fed. Reg. 65:70795–70804.

Winstead, N.N. and R.D. Riggs. 1959. Reaction of watermelon varieties to root-knot nematodes. Plant Dis. Rep. 43:909–912.