On the nature of the cool component of MWC 560

M. Gromadzki¹, J. Mikolajewska¹, P.A. Whitelock²,³, and F. Marang²

¹ N. Copernicus Astronomical Center, Bartycka 18, PL-00-716 Warsaw, Poland
² South African Astronomical Observatory, P.O. Box 9, Observatory, 7935, South Africa
³ National Astrophysics and Space Science Programme, Department of Mathematics and Applied Mathematics, and the Department of Astronomy, University of Cape Town, South Africa

Received; accepted ??

ABSTRACT

Context. MWC 560 (V694 Mon) is one of the most enigmatic symbiotic system with a very active accretion-powered hot component. Such activity can be supported only by a luminous asymptotic giant branch star, i.e. a Mira or SR variable, with a high mass-loss rate. It is also a very unusual jet source because the jet axis lies practically parallel to the line of sight.

Aims. The aims of our study are the determination of the evolutionary status of the cool component of MWC 560.

Methods. Our methods involve analysis of near-IR $JHKL$ and optical light curves.

Results. The cool component of MWC 560 pulsates with a period of ~ 340 days, and it is probably a red SR variable on the thermally pulsing AGB. The high mass-loss rate expected for such a star is sufficient to power the observed activity of the hot companion.

Key words. stars: binaries: symbiotic – stars: long-period variables – stars: mass loss – stars: individual: MWC 560 = V694 Mon – infrared: stars

1. Introduction

Discovered by Merrill & Burwell (1943) as a star with strong emission lines, MWC 560 (V694 Mon) is an enigmatic symbiotic system with a very active hot component. Its optical spectrum is always characterized by highly variable absorption features, blue-shifted by 1000-6000 km s$^{-1}$. These originate from Hα, Heα, Caα and Feα, and are detached from the stationary, narrow emission lines. The blue-shifted absorption features can be explained by a jet outflow along the line of sight (Tomov et al. 1990). In 1990, MWC 560 underwent a 2 mag photometric outburst, accompanied by spectacular changes in these blue shifted absorption lines (e.g. Tomov et al. 1990; Schmid et al. 2001, and references therein). The hot component is also a permanent source of rapid flickering with amplitudes in the range 0.2-0.7 mag on time scales of 10-100 min (e.g. Gromadzki et al. 2006, and references therein).

Both the flickering and the 1990 outburst characteristics suggest that the hot component is predominantly powered by unstable accretion, and its luminosity $\sim 100-1000 L_\odot$ (Tomov et al. 1996; Mikolajewski et al. 1998) requires relatively high accretion rates of $M \gtrsim 10^{-7} M_\odot yr^{-1}$ (Schmid et al. 2001).

Doroshenko et al. (1992) found a 1930-day period in the n_{ph} historical light curve (Luthardt 1991) combined with more recent B-band photometry. They suggested an orbital origin of this period: if the orbit is eccentric, near periastron the accretion rate increases, and the hot component gets brighter.

We know rather little about the cool component of MWC 560. However, the high activity of its companion requires a high mass-loss rate, consistent with an evolved AGB star rather than a normal red giant. Absorption features in the optical spectrum suggest an M3–M4 spectral type (Sanduleak & Stephenson 1973; Allen 1978). Infrared spectral classification mainly based on TiO bands, and the CaII triplet indicates an M4–M5 giant (Szkody et al. 1990; Bopp 1990; Thakar & Wing 1992). Based on the lack of VO bands at 1.05 μm Meier et al. (1996) classified the cool component as an M5–M6 III giant. The most recent classification based on five TiO bands in the near infrared resulted in M5.5 and M6 (two different observations) (Mürset & Schmid 1999).

Fraeckowiak et al. (2003) found possible pulsations of red giant with $P = 161$ days, and concluded that it is an AGB star.

This paper contains an analysis of near infrared ($JHKL$) and visual (AVSO and ASAS) light curves with the objective of searching for periodic changes and establishing the nature of the cool giant.
near-IR data are listed in Table 1 and the light curves are presented in Fig. 1.

3. Period Analysis

We analysed the near-IR, ASAS, and combined AAVSO+ASAS magnitudes by means of the program PERIOD[1] ver. 5.0, which uses the modified Lomb-Scargle method (Press & Rybicki [1989]). To remove long-term trends from the optical data, a second order polynomial was subtracted from the combined AAVSO+ASAS light curve, and a third order spline function was subtracted from the ASAS light curve. The resulting power spectra are shown in the right panel of Fig. 2, and results of our period analysis are summarized in Table 2. The periods given in the table were derived from the maxima of the peaks in the periodograms (f_{max}), whereas their accuracy was estimated by calculating the half-size of a single frequency bin (Δf), centred on the peak (f_c) in a periodogram, and then converted to period units ($\Delta P = f_c^2 \cdot \Delta f$).

Power spectra of the composite AAVSO+ASAS light curve (Fig. 2, the uppermost, right panel) show a very pronounced peak at 1931d (P_{act}) very close to the period reported by Doroshenko et al. [1993]. The second and third harmonics, ~1931/2 and ~1931/3, respectively, are also present. We attribute this periodicity to repeated episodes of enhanced activity of the hot component following the ephemeris:

$$\text{JD}(\text{max}) = 2448080 + 1931 \times E$$

The light curve folded with this period is also show in Fig. 2 (the uppermost, left panel).

Power spectra corresponding to the $JHKL$ light curves are very similar to each other (Fig. 2). In all spectra the strongest peak corresponds to a 339-day period (P_{act}) which we take to be a real periodicity produced by pulsations of the cool component. There are also peaks around ~4500-5500 days (which is comparable to the time interval spanned by the data) connected with the long-term trend. Power spectra of the HK light curves show also peaks at ~1900d days and ~310d. The former is very close to P_{act} found in the optical light curve whereas the latter seems to be an annual alias of 1900-day peak rather than a real periodicity. In the power spectrum of the J light curve the ~1900-day and ~310-day periods are not seen because they are overwhelmed by the strong long term trend. These periods are absent in the power spectrum of the L light curve. The following ephemeris gives the phases of maxima in the $JHKL$ bands:

$$\text{JD}(\text{max}) = 2445960 + 339 \times E$$

and the light curves folded with this ephemeris are shown in Fig. 2 (left panel).

The power spectra of the visual photometry also show peaks at ~310d. These power spectra have poorer resolution that those for the near-IR data, so the peaks, especially that for the ASAS data, are relatively broad, and they may in fact be due to the 339d pulsation period combined with one year alias of the 1931d period. Such an interpretation is supported

Fig. 1. Light curves for MWC 560. From top to bottom: AAVSO+ASAS and $JHKL$ light curves, and $J-K$ colours, respectively.

2. Observations

$JHKL$ broad-band photometry (1.25, 1.65, 2.2, 3.45 μm) was obtained with the MkII infrared photometer on the 0.75 cm telescope at SAAO, Sutherland (see Carter [1990] for details about the system). The measurements are good to ±0.03 at JHK and ±0.05 at L. The optical light curve consists of visual magnitude estimates collected by the American Association of Variable Stars Observers (AAVSO), and V-band photometry obtained in the frame of All Sky Automated Survey (ASAS) [Pojmanski 2002]. The near-IR observations cover the period from November 1984 to February 2004 (92 points in J and K bands, 91 in H and 86 in L) whereas the optical photometry was collected between April 1990 and December 2001 - the AAVSO data (2051 points), and from November 2000 to February 2006 - the ASAS data (330 points), respectively. The

[1] source of program is available on http://www.starlink.rl.ac.uk/
by the presence in the ASAS power spectrum of another peak at $\sim 166^d$. This peak can be more accurately determined and it is due to the second harmonic of the pulsation period, which in this case would be 332^d. The ASAS light curve folded with this period is also shown in Fig. 2.

In the power spectrum of the AAVSO+ASAS data there is also a strong peak at 747^d connected with a quasi-periodic oscillation which is predominantly visible during JD 2 450 500-2 452 300 (1997-2002). However, we note that it is very close to 2 years, and it may be an artifact.

4. Discussion and conclusions

Our near-IR photometry began in 1984, with only a dozen measurements over a 1.5-year interval. The observations restarted in 1990, when MWC 560 underwent an outburst, reaching the brightest level in its whole photometric history, and ejected jets (Tomov et al. 1990). In the near-IR, it brightened by ~ 0.1 mag.

JD (day)	J (mag)	H (mag)	K (mag)	L (mag)
6024.55	5.60	5.49	5.12	
6026.45	5.50	5.14	4.74	
6034.53	5.49	5.12	4.79	
6043.57	5.48	5.13	4.79	
6082.46	5.52	5.16	4.84	
6108.39	5.53	5.18	4.84	
6113.33	5.56	5.19	4.86	
6136.30	5.52	5.16	4.85	
6184.24	5.44	5.10	4.90	
6338.57	5.60			
6380.61	5.45	5.12	4.73	
6440.46	5.54	5.20	4.90	
6454.48	5.53	5.17	4.89	
6465.35	5.50	5.16		
7958.39	5.45	5.11	4.76	
7961.37	5.44	5.11	4.80	
7964.33	5.43	5.10	4.75	
7989.26	5.42	5.09	4.78	
8023.22	5.41	5.06		
8028.19	5.42	5.08	4.71	
8197.59	5.49	5.16	4.84	
8227.56	5.49	5.16	4.79	
8252.56	5.49	5.15	4.82	
8280.49	5.44	5.11	4.71	
8294.38	5.45	5.11	4.74	
8320.40	5.44	5.10	4.80	
8326.41	5.45	5.11	4.79	
8390.20	5.43	5.08	4.74	
8617.53	5.44	5.02	4.77	
8670.41	5.41	5.07	4.69	
8705.33	5.41	5.05	4.70	
8731.29	5.37	5.03	4.69	
8768.20	5.44	5.09	4.74	
8899.63	5.48	5.14	4.82	
9532.56	5.45	5.15	4.85	
9860.52	5.43	5.10	4.73	
9868.44	5.41	5.06	4.71	
9869.52	5.43	5.09	4.79	
9911.41	5.40	5.06	4.70	
9024.42	5.43	5.06	4.77	
9292.54	5.43	5.09	4.79	
9379.36	5.36	5.01	4.67	
9503.19	5.50	5.17	4.80	
9643.62	5.52	5.15	4.83	
9667.53	5.49	5.15	4.82	
9728.50	5.44	5.10	4.72	
10035.54	5.47	5.13	4.81	
10053.60	5.44	5.10	4.73	
10086.47	5.48	5.13	4.81	
10126.45	5.50	5.15	4.87	
10181.29	5.46	5.11	4.74	
10221.22	5.43	5.09	4.72	
10437.54	5.44	5.10	4.78	
10464.46	5.45	5.11	4.79	
10478.37	5.46	5.12	4.81	
10498.39	5.47	5.14	4.86	
in all, $JHKL$, bands. Then during the following 12 years, it slowley faded to the pre-outburst magnitudes observed in 1984. In 2002–2004, the star brightened again. The point scatter of the near-IR light curves was always of ~ 0.1 mag in JHK bands, and ~ 0.2 mag in L band, respectively. In general, the near-IR light curves reflect the trend shown by the visual/V light curve, with additional maxima around JD 2450000 and JD 2452000. The $J - K$ colour becomes redder as the brightness declines (Fig. 1) due to a decreasing contribution from the hot component.

Our period analysis of the $JHKL$ light curves revealed a 339-day periodicity which can be attributed to radial pulsations of the M giant. Although this period is close to that of Mira itself, and of many other Galactic Mira variables, the amplitude of the pulsation, $\Delta K \sim 0.1$ mag, is much lower than $\Delta K \geq 0.4$ mag observed in Miras, including typical symbiotic Miras (Whitelock 1987). We therefore classify it as an SRa variable (using the definition in the GCVS4) rather than as a Mira. This pulsation is hardly detectable in the visual light because radiation in this range is dominated by the very active hot component. In fact, the scatter of points from the folded light curve in Fig. 2, $\Delta V \sim 0.3 \pm 0.6$ mag is comparable to the amplitude of the flickering (Gromadzki et al. 2006) which complicates the period analysis. The red giant pulsation period found in this study is more than twice the 161-day pulsation period reported by Frackowiak et al. (2003), and it is the only periodicity present in all bands.

The basic properties and evolutionary status of the semiregular variables (SRVs) of type SRa and SRb were discussed in detail by Kerschbaum & Hron (1992, 1994, 1996). In particular, they found that the SRAs appear as intermediate objects between Miras and SRBs in all aspects, including periods, amplitudes and mass-loss rates. They also concluded that the SRAs do not form a distinct class of variables, but are a mixture of ‘intrinsic’ Miras and SRBs. The SRBs split into a ‘red’ group with $P < 150$ days and no indication of circumstellar shells and a ‘red’ group with temperatures and mass-loss rates comparable to Miras, but periods about half as long. They suggested that the ‘red’ and ‘Mira’ SRBs are thermally pulsing AGB-stars (Kerschbaum & Hron 1992). The persistent and relatively long period places the cool component of MWC 560 among the ‘Mira’ SRVs. These differ from normal Miras.

Table 2. Peaks in power spectra

Frequency	Period	Power	Remarks	
J	2.9479×10^{-3}	339±4	20.8	P_{pul}
H	5.3276×10^{-4}	1877±126	7.0	P_{act}
K	5.3276×10^{-4}	1877±126	7.0	P_{act}
L	2.9487×10^{-3}	339±4	11.6	P_{pul}
ASAS	3.2708×10^{-3}	306±12	35.8	P_{ASAS}
	6.0183×10^{-3}	166±4	18.5	$P_{\text{pul}}/2$
AAVSO+ASAS	5.1789×10^{-4}	1931±162	285.6	P_{pul}
	9.4946×10^{-4}	1053±48	57.9	$P_{\text{pul}}/2$
	1.3370×10^{-3}	747±24	102.4	
	3.1397×10^{-3}	313±4	53.1	$P_{\text{ASAS, alias}}$

Fig. 2. Power spectra (right) and corresponding light curves folded with the strongest period (left). From the top to bottom: AAVSO+ASAS light curve folded with period P_{act}=1931 days, ASAS light curve folded with period P_{ASAS}=332 days, and $JHKL$ light curves all folded with period P_{pul}=339 days, respectively.
only in their smaller pulsation amplitudes. The IRAS [12 \mu m]-
[25 \mu m]=0.64 locates MWC 560 in the period–IRAS colour di-
gram of Kerschbaum & Hron (1992) in the region occupied by
86 % of the Miras, whereas most SRbs are outside this region.
The average, reddening corrected (E_B-V = 0.15; Schmid et al.
2001) near-IR colours <H-K>_0 = 0.30, <J-K>_0 = 1.00,
K-[12\mu m]=1.25, and the spectral type M5.5–6 are also con-
sistent with an O-rich SRV, although the colours are unlike
those of a Mira. Finally, if the 1931 day periodicity is orbital
then the two stars of this symbiotic system are close to each
other (see below), and the presence of a nearby companion
may influence the pulsation characteristics, possibly reducing
the pulsation amplitude. We suggest that the evidence supports
the view that the red component of MWC 560 is on the TP
AGB-phase.

The SRV component of MWC 560 could be the source of a
strong stellar wind and thus support the observed high activity
of the hot component. If we estimate the mass of the red giant
at 1 M⊙ and that of the white dwarf companion at 0.5 M⊙ then,
assuming that the 5.3 year period is orbital, the separation
of the two stars will be 3.55 AU and the radius of the Roche
lobe for the M giant in a circular orbit will be 1.5 AU. Schmid et al.
(2001) argued that an accretion rate up to a few 10^{-7} M⊙ yr^{-1}
is necessary to account for the observed hot component lum-
inosity which is comparable to the wind efficiency found for
typical Miras and SRVs. For example, Olofsson et al. (2002)
determined average mass loss rate of 2 10^{-7} M⊙ yr^{-1}, with
a maximum value of 8 10^{-7} M⊙ yr^{-1} for a sample of M-type
irregular and semi-regular variables. So, in the case of MWC
560, a significant fraction of the mass lost in the cool giant
wind must be accreted by the hot companion. This is possible
only if the binary components of MWC 560 interact via ‘wind
Roche lobe’ overflow occurs instead of a spherically symmetric wind (Podsiadlowski, 2007).

One of the most intriguing features of this hot component
activity is its highly periodic character. The 1931-day periodic-
ity found in the visual AAVSO+ASAS light curve is essen-
tially identical with the 1930-day periodicity detected in the
m_{pg}/B light curve by Doroshenko et al. (1993). We note that
this periodicity remained in-phase over a century, and the most
natural explanation would be an orbital motion. The only prob-
lem with the orbital interpretation is that the orbital inclination
of MWC 560 seems to be extremely low (as indicated by the jet
axis practically aligned with the line of sight, and the lack of or-
bitally related radial velocity changes) which excludes any
geometrical effects, such as eclipses, illumination, etc. Although
one can argue that the jet axis can be inclined with respect
to the binary orbital plane, the relatively large amplitude of
this variability, \Delta m_{pg} \sim 1 and \Delta V \sim 0.5 mag, respectively,
points to another mechanism(s). One possibility is an eccen-
ctric orbit and enhanced accretion rate near periastron passage
causing a brightening of the hot component (Doroshenko et al.
1993). Then we can even speculate that if the eccentricity is
high enough, \sim 0.5 or more, a Roche lobe overflow may occur
near the periastron.

Another possibility is enhanced mass loss due to periodic
changes in the SRV environment. We note that the 1931 day
period equals roughly six times the pulsation period. A peri-
odically enhanced mass loss might be caused by some kind
of interplay between the cool component pulsation and lay-
ered dust formation shells. Such effects have been shown by
time-dependent hydrodynamic simulation of C-rich Mira envi-
ronments [Winters et al. 1999; Winters & Le Bertre 2001]. In
particular, these simulations have been able to reproduce vari-
ations of the mass-loss rates on different time scales.

Acknowledgements: This study made use of the American
Association of Variable Star Observers (AAVSO) International
Database contributed by observers worldwide and the public domain
database of The All Sky Automated Survey (ASAS) which we
acknowledged. We also thank the following people for making IR
observations: Greg Roberts, Robin Catchpole, Brian Carter, Dave
Laney and Hartmut Winkler. This research was partly supported by
KBN grant IP03D 017 27.

References
Allen, D. A. 1978, MNRAS, 184, 601
Bopp, B. W. 1990, IAU Circ., 515
Carter, B. S. 1990, MNRAS, 242, 1
Doroshenko, V. T., Goranskij, V. P., & Efimov, Y. S. 1993,
IBVS, 3824
Frąckowiak, S. M., Mikołajewski, M., & Tomov, T. 2003, in
ASP Conf. Series, Vol. 303, Symbiotic Stars Probing Stellar
Evolution, ed. R. L. M. Corradi, J. Mikołajewska, & T. J.
Mahoney, 120
Gromadzki, M., Mikołajewski, M., Tomov, T., et al. 2006, Acta
Astron., 56, 97
Kerschbaum, F. & Hron, J. 1992, A&A, 263, 97
Kerschbaum, F. & Hron, J. 1994, A&AS, 106, 397
Kerschbaum, F. & Hron, J. 1996, A&A, 308, 489
Luthardt, R. 1991, IBVS, 3563
Meier, S. R., Rudy, R. J., Lynch, D. K., et al. 1996, AJ, 111,
476
Merrill, P. W. & Burwell, C. G. 1943, ApJ, 98, 153
Mikołajewski, M., Janowski, J. L., Tomov, T., et al. 1998,
IBVS, 4598
Müset, U. & Schmid, H. M. 1999, A&AS, 137, 473
Olofsson, H., González Delgado, D., Kerschbaum, F., &
Schöier, F. L. 2002, A&A, 391, 1053
Podsiadlowski, P. 2007, in Evolution and chemistry of sym-
biotic stars, binary post-AGB and related objects, ed.
J. Mikołajewska & R. Szczepańska, Baltic Astron. No. 16-1
Pojmański, G. 2002, Acta Astron., 52, 397
Press, W. H. & Rybicki, G. B. 1989, ApJ, 338, 277
Sanduleak, N. & Stephenson, C. B. 1973, ApJ, 185, 899
Schmid, H. M., Kaufer, A., Camenzind, M., et al. 2001, A&A,
377, 206
Szkody, P., Mateos, M., & Schmeer, P. 1990, IAU Circ.,
4987
Thakar, A. & Wing, R. E. 1992, BAAS, 24, 801
Tomov, T., Kolev, D., Georgiev, L., et al. 1990, Nature, 346,
637
Tomov, T., Kolev, D., Ivanov, M., et al. 1996, A&AS, 116, 1
Whiteock, P. A. 1987, PASP, 99, 573
Winters, J. M. & Le Bertre, T. 2001, in Astrophysics and Space
Science Library, Vol. 265, Post-AGB Objects as a Phase of
Stellar Evolution, ed. R. Szczerba & S. K. Górnny (Kluwer Academic Publishers), 93

Winters, J. M., Le Bertre, T., & Keady, J. J. 1999, in Asymptotic Giant Branch Stars, ed. T. Le Bertre, A. Lebre, & C. Waelkens, IAU Symp. No. 191, 261