INTRODUCTION

Locusts and grasshoppers are considered as the most destroying and a threat to pests agriculture worldwide and responsible for significant loss to the agricultural industry in grassland biomes of the world (Sumit et al., 2020 and wanxi et al., 2020). Threats of locusts and grasshoppers required the application of a huge number of chemical pesticides which rise the risk of environmental pollution, therefore entomopathogenic fungi may be suitable microbial control agents that infect their host through the cuticle with a possibility to mass-produce cheaply and are target specific (Lomer et al., 2000). M. acridum proved to be a good solution as an alternative agent for locust and grasshoppers' control in Egypt, (El-maghraby et al., 2009). Plant phytochemicals may also play important role in reducing pesticides programs, Neem tree one of the richest plants with toxic phytochemicals (Jacobson, 1989 and Abdulhadi and Kashere 2020).Azadirachtin (the most active compound of Neem tree) directly interferes with the endocrine system of insects and causes ecdysteroid and juvenile hormone titers imbalance (Subrahmanyam and Rembold., 1989). Trehalase and lactate dehydrogenase are very important enzymes for energy in haemolymph of locust and grasshoppers. Trihalase hydrolyse the trehalose sugar in irreversible action to produce 2 glucose units and energy, (Becker et al., 1996 and Wegener, 1996). While lactate dehydrogenase plays important role in carbohydrate metabolism it is activity indicates active energy metabolism (Diamantino et al., 2001 and Hamadah et al., 2010). The present study aims to investigate the joint action of Neem and fungi Metarhizium acridum on mortality
and their effect on two important energy enzymes of the haemolymph of immature adults of desert locust *S. gregaria*.

MATERIALS AND METHODS

Insect Tested:

Immature adults of the desert locust *S. gregaria* two days after final molting were used in the present experiments and taken from maintained culture for several generations at the Locust and Grasshoppers Research Department, Plant Protection Research Institute (PPRI), Agriculture Research Center (ARC), Dokki, Giza. Desert locust was reared in the laboratory according to Hunter-Jones (1961) and fortified with insects collected from the field whenever possible.

Metarhizium acridum:

The entomopathogenic fungus used during the present study was *M. acridum* isolate (IMI330189) from BASF Company, South Africa, under the commercial name Green Muscle®. The conidia of the fungus were suspended in sterilized water, then a trace of Tween (80) was added to be emulsified. The concentration was adjusted to 5×10^8 spores/ml., each nymph received 5μl, while the control nymphs were treated with 5μl of sterilized water and traces of Tween (80) (El-Dydamony, 2011).

Neem (Azaderachtin):

Tenth of the recommended dose from commercial product Safe oil was used (1 ml \ 1 litter). Each treated nymph received 5μl.

Neem, and Metarhizium acridum Mixture:

Neem Solution was prepared as previously then *M. acridum* spores were suspended in that solution with a trace of Tween 80 and the concentration was adjusted to 5×10^8 spores/ml., each nymph received 5μl.

Statistical Analyses:

Mortality was corrected according to Schneider-Orelli's formula (Püntener, 1981).

Biochemical Changes of Some Haemolymph Enzymes:

1- **Sample Collection**:

Samples of the haemolymph from the previous treatments and control were taken at 2, 4, and 6 days after treatment. The haemolymph was collected through a fine puncture in the hind leg and from beneath the dorsal pronotal shield membrane and transferred into dry centrifuge tubes (Metaweh *et al.*, 2001).

2- **Determination of Lactate Dehydrogenase Enzyme**:

The method described here is derived from the method recommended by the German Society for clinical chemistry (DGCK, 1972).

3- **Determination of Trehalase Enzyme**:

Trehalase was determined according to the method described by (Ishaaya and Swirski 1976) using trehalose as a substrate for trehalase.

RESULTS AND DISCUSSION

Figure (1) Show the accumulative mortality caused by *M. acridum* and Neem mixture of them against immature adult *S. gregaria*. *M. acridum* treatment affected mortality after 4 days from inoculation and the mortality reaches 76.6 % after 14 days, while total mortality in case of neem is 26.6 in the same period and the mortality started after 3 days only from treatment, total mortality increased in case of *M. acridum* and Neem mixture to reaches 96.6 % after 14 days.
Mortality after *M. acridum* treatment is due to toxins release which causes destruction of locust tissues or reduces nutrition, this results in parallel to (Lednevet al., 2008) who found that the mortality started after four days after treatment of *Locusta migratoria* with *M. anisopliae*. In case of neem the percentage of mortality was lower than *M. acridum* maybe because neems act as antifeedant which affects the amount of food. While mortality in *M. acridum* and Neem mixture may be accelerated due to stimulation of Neem to the ferocity of *M. anisopliae* this result compatible with (El-Dydamone, 2016) who found the mixture from *M. anisopliae* and neem makes the acceleration of mortality if compared with them alone, or maybe due to effect of Neem on the immune response of desert locust.

Fig 1: Accumulative mortality due to *M. acridum*, Neem and their mixture against immature adult *S. gregaria*, MA= *M. acridum*, NE= Neem.

The Activity of Lactate Dehydrogenase Enzyme (LDH):

The activity of LDH is decreased than control after 2,4 and 6 days when insect treated with *M. acridum* and neem this result is in parallel to (Soltan, 2009) which found a decrease in the activity of LDH rather than control after 1,2 and 3 days when treated *S. gregaria* with *M. acridum*. Such a decrease in LDH activity may be due to the increase in oxygen uptake. While in case of *M. acridum* and Neem mixture the level of LDH enzyme increase than control after 2 days may be due to the Neem increase efficacy of *M. acridum*, in which the insect wants to keep the cell living in important tissue by active energy metabolism, then the level of enzyme decreases than control after 4 and 6 days due to the fungus distribution in all cells (Fig. 2).

Fig. 2: Effect of *M. acridum*, Neem and their mixture on lactate dehydrogenase enzyme activity in haemolymph of *S. gregaria*.
The Activity of Trehalase Enzyme:
The Activity of trhalase enzyme in *M. acridum* and neem and their mixture on all days of the experiment are lower than control, this decrease due to the toxicity stress of the treatments, (Ishaaya and Swirkski, 1976) reported that trehalse could be used as a parameter for assessing the availability of nutrients. The level in the mixture is lower than *M. acridum* and Neem alone, due to the Neem increase the severity of *M. acridum* which effect on the activity of insect to degrade trehalose as foul for all biological activity (Fig.3).

![Bar chart](image)

Fig.3: Effect of *M. acridum*, Neem and their mixture on trehalase enzyme activity in haemolymph of *Schistocerca gregaria*.

REFERENCES

Abdulhadi Muhammad and Kashere, M. A (2020). Neem, Azadirachta indica L. (A. Juss): an eco-friendly botanical insecticide for managing farmers’ insects pest problems- a review. *FUDMA Journal of Sciences*, Vol 4, No. (4) 484-491.

Becker, A., P. Schlöder, J. E. Steele and G. Wegener (1996). The regulation of trehalose metabolism in insects. *Experientia*, 52: 433-439.

DGCK, (1972). Deutsche Gesellschaft für Klinische Chemie. Empfehlungen der deutschen Gesellschaft für Klinische Chemie. Standardisierung von Methoden zur Bestimmung von Enzymaktivitäten in biologischen Flüssigkeiten. (Recommendation of the German Society of Clinical Chemistry. Standardization of methods for measurement of enzymatic activities in biological fluids.). *Z. Klin. Chem. Klin. Biochem.*, 10:182-192.

Diamantino, T. C., E. Amadeu, M. V. M. Soaresa and L. Guilherminoc (2001). Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna Straus. *Chemosphere*, 45: 553–560.

El-Dydamony, M. Kh. (2011). Studies on the impact combind role of growth inhibitor and fungi on the desert locust. M.Sc. Thesis faculty of science (boys) Al-azhar University.

El-Dydamony, M. Kh. (2016). Safe strategy for controlling desert locust Ph.D. Thesis faculty of science (boys) Al-azhar University.

El-Maghraby, M. M. A, E. A. Gomaa, H. H. Metaweh, and G. M. Abdelatef., 2009. Susceptibility of *Schistocerca gregaria* (Forskal) and *Euprepocnemis plorans*
Joint Action of Neem and *Metarhizium acridum* on Immature Adults of Desert Locust (Charpentier). to *Metarhizium anisopliae* var. *acridum* (Metchnikoff) Soroken, *Beauveria bassiana* (Bals.) Vuill. and *Nosema locustae* Canning. *Egyptian Journal of Biological Pest Control*, 19 (1): 55-61.

Hamadah, Kh. Sh., A. L. Basiony and K. S. Ghoneim (2010). Alterations in the lactate dehydrogenase activity of the desert locust Schistocerca gregaria by the wild plant Fagonia bruguieri (Zygophyllaceae). *Egyptian Academic Journal of biological Sciences*, (A.Entomology), 3 (2): 1-9.

Hunter-Jones, P. (1961): Rearing and breeding locust in the laboratory. Bulletin Antilocusts Research Center. London. 12.

Ishaaya, I. and E. Swriski (1976) Trehalase, invertase and amylase activities in the black scale, Saissetia oleae, and their relation to host adaptability. *Journal of Insect Physiology*, 22: 1025–1029.

Jacobson, M. (1989). Botanical pesticides, past, present and future. In: "Insecticides of plant origin". (Arnason, J.T., ed.). Proc. Amr. Chemical Soc. Washington, D. C. 1-10.

Kaplan, L. A. and A. J. Pesce (1996). Clinical Chemistry-theory Analysis and Correlation. Mosby-Year Book, MO, pp. 609-610.

Lednev G. R., Kryukov V. Yu., Khodyrev V. P., Levchenko M. A., Duisembekov B. A., Sagitov A. O. and Glupov V. V. (2008). Dynamics of mortality of the migratory locust under synchronous infection with entomopathogenic fungi (Beauveria bassiana, *Metarhizium anisopliae*) and bacteria *Pseudomonas* sp. Contemporary Problems of Ecology volume 1, pages210–213

Lomer, C. J., R. P. Bateman, D. L. Johnson, J. Langewald, and M. Thomas. (2000): Biological control of locusts and grasshoppers. *Annual Review of Entomology*, 46:667–702.

Metaweh, H. H., E. A. A. Gomaa, R. M. Sherif and T. A. Abdelfattah (2001). Bio chemical changes of the haemolymph of the fifth nymphal instar of the grasshopper, Euprepocnemis plorans plorans after infection with three entomopathogenic fungi. *Egyptian Journal of Biological Pest Control*, 11(2): 177-182.

Püntener W., 1981 Manual for field trials in plant protection second edition. Agricultural Division, Ciba-Geigy Limited.

Soltan, E. (2009). The effect of entemopathogenic fungus *Metarhizium anisopliae* var. *acridum* on flight muscle in the desert locust *Schistocerca gregaria* (Forskal): Master Thesis, Faculty of Agriculture, Cairo University.

Subrahmanyam, B. and H. Rembold (1989). Effects of azadirachtin A on neuroendocrine activity in *Locusta migratoria*. *Cell Tissue Research*, 256: 513-517.

Sumit Moharana, Pallavi Khuntia, Sarthak Suvojit Das, Rituparna Das, Sanjita Panigrahi (2020). A Systematic Review of Behavioral Aspects & Management Techniques to Control Locusts. *International Journal for Science and Advance Research in Technology* (IJSART), Volume 6 Issue 7 –361-369.

Wanxi Peng, Nyuk Ling Ma, Dangquan Zhang, Quan Zhoua , Xiaochen Yuea , Shing Ching Khoo, Han Yang, Ruirui Guan ,Huiling Chen, Xiaofan Zhang ,Yacheng Wang, Zihan Wei, Chaofan Suo , Yuhao Peng , Yafeng Yang , Su Shiung Lam , Christian Sonne.(2020). A review of historical and recent locust outbreaks: Links to global warming, food security and mitigation strategies. *Environmental Research*, Volume 191, 110046.

Wegener, G. (1996). Flying insects: model systems in exercise physiology. *Experientia*, 52; 404-412.
الفعل المشترك للنيم و فطر Metarhizium acridum على الحشرات الكاملة غير الناضجة جنسيا للجراد Schistocerca gregaria

جمال محمد محمود عبداللطيف و محمد خيرى الديدامونى
قسم بحوث الجراد و النطاط – معهد بحوث وقاية النباتات – مركز البحوث الزراعية - مصر

تم اختبار فاعلية النيم و فطر M. acridum وكذا مخلوطهم على الحشرات الكاملة الغير ناضجة جنسيا. ادت المعامله بنيم بعشر الجرعه المقرره مخلوطه مع فطر M. acridum الى زيادة الفاعلية حيث وصلت نسبة الموت الى 96.6% بينما نسبة الموت في معاملة الفطر منفردا وصلت الى 76.6% و نسبة الموت في معاملة النيم منفرد كانت 26.6%. ادت المعامله بمخلوط النيم و الفطر الى تقليص معنوى في نشاط انزيم التريهاليز في اليوم الثانى و الرابع و السادس من المعامله. بينما ادت نفس المعامله الى زيادة ملحوظة في نشاط انزيم اللاكتات ديهيدروجينيز في اليوم الثاني من المعاملة بينما انخفض نشاط نفس الأنزيم معنوي بعد ذلك في الأيام الرابع و السادس من المعاملة.