Identifying critical edges in complex networks

En-Yu Yu1, Duan-Bing Chen1,2 & Jun-Yan Zhao3

The critical edges in complex networks are extraordinary edges which play more significant role than other edges on the structure and function of networks. The research on identifying critical edges in complex networks has attracted much attention because of its theoretical significance as well as wide range of applications. Considering the topological structure of networks and the ability to disseminate information, an edge ranking algorithm BCCMOD based on cliques and paths in networks is proposed in this report. The effectiveness of the proposed method is evaluated by SIR model, susceptibility index S and the size of giant component σ and compared with well-known existing metrics such as Jaccard coefficient, Bridgeness index, Betweenness centrality and Reachability index in nine real networks. Experimental results show that the proposed method outperforms these well-known methods in identifying critical edges both in network connectivity and spreading dynamic.

The structure and function of complex networks attracted a great deal of attention in many branches of science1. Networks mediate the spread of information, sometimes, a few initial seeds can affect large portions of networks. Such information cascade phenomena are observed in many situations, for example, cascading failures in power grids, diseases contagion between individuals, innovations and rumors propagating through social networks, and large grass-roots social movements in the absence of centralized control. How to find critical nodes and edges is an important and interesting issue. With the rapid development of internet media, the information interaction between individuals is becoming more and more frequent and the mechanism of information diffusion has become more and more complex. Many methods are used to measure the importance of nodes in networks. Degree centrality2, semi-local centrality3, k-shell4 and H-index5,6 are based on nodes' degrees. Closeness centrality7, betweenness centrality8 and eccentricity centrality9 are based on paths in networks. PageRank10, LeaderRank11 and HITs12 are based on eigenvector. Sleep scheduling13 is one of the approaches to save residual energy of wireless nodes in energy-constraint large-scale industrial wireless sensor networks while satisfying network connectivity and reliability. In comparison, critical edges also play a significant role in the process of information diffusion. In complex networks, sometimes it is impractical to forbid all communications of a node, so it is necessary to truncate some important communication links. Critical edges analysis will be beneficial to guide or control the information dissemination from a global perspective.

In order to explore the transmission of information, many researches have focused on the network topology to find the critical edges. Degree product14 supposes that edges connecting two nodes with high degrees are critical. Betweenness centrality of edges15,16 and betweenness centrality of a group of edges17 suppose that edges linking two connected components are important. Average node reachability and the maximum flow of a network can characterize the ability of information transmission in networks and critical edges have serious influence on average node reachability and maximum flow18,19. In Jaccard coefficient20, if node i and node j have a lot of common neighbors, even if they have no direct connection, information also can spread from node i to node j easily, so edges are more important if there are less common neighbors. Complex networks may have many cliques. In Bridgeness21, if an edge is removed, information can spread through other edges in the clique which contains the removed edge, so, intuitively, edges in smaller cliques are more important.

What's more, The ability to disseminate information is also an evaluation index to measure the importance of edges. In online social networks, the study finds three different spreading mechanisms: social spreading, self-promotion and broadcast22. An edge is important if most of the information is spreading through this edge23.

In this report, we only use the topology of networks to rank the importance of edges, considering not only the local characteristics (degrees of nodes, cliques) but also the global characteristics (betweenness centrality).

1Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China. 2The Center for Digitized Culture and Media, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China. 3Beijing Special Vehicle Institute, Beijing, 100072, P. R. China. Correspondence and requests for materials should be addressed to D.-B.C. (email: dbchen@uestc.edu.cn)
is defined as:

\[S = \sum_{i=1}^{s} \frac{n_i s_i^2}{n} \]

where \(n_i \) is the number of components whose size equals \(s \), \(s_{\text{max}} \) is the size of giant component, and \(n \) is the size of whole network. For details, sort edges in descending order according to their ranking score firstly, and then calculate the Susceptibility index \(S \) after removing the edges from network one by one from high to low ranking scores. In this report, parameter \(p \) is defined as:

\[p = \frac{m}{m_r} \]

where \(m \) is the number of all edges and \(m_r \) is the number of removing edges.

The results are shown in Table 2 and Fig. 1. From Table 2 and Fig. 1, it can be seen that BCCMOD has the minimum \(p \) when the largest \(S \) achieves in Lesmis, Highschool, Jazz, Train, Email and Oz. In Innovation, all methods have the same effect. In PowerGrid and Router, the largest \(S \) of BCCMOD is appeared the second earliest. So, the largest \(S \) of BCCMOD appeared the earliest in most cases comparing with other methods, this demonstrates that

Networks	\(n \)	\(m \)	\(\langle k \rangle \)	\(k_{\text{max}} \)	\(c \)	\(H \)
PowerGrid	4944	6596	2.6682	19	0.0800	1.4505
Lesmis	77	254	6.5974	36	0.5731	1.8272
Jazz	5022	6258	2.4922	106	0.0116	5.5031
Email	1133	5451	9.6222	71	0.2202	1.9421
Innovation	244	925	7.5819	28	0.3077	1.2764
Train	67	245	7.3134	29	0.5944	1.7100
Highschool	73	276	7.5616	19	0.4458	1.2242
Oz	217	1839	16.9493	56	0.3627	1.2094

Table 1. The basic topological features of nine real networks. \(n \) and \(m \) are the total number of nodes and edges, respectively. \(\langle k \rangle \) is the average degree for networks. \(k_{\text{max}} \) is the maximum degree for networks. \(c \) is the average clustering coefficient and \(H \) is the degree heterogeneity, defined as \(H = \frac{\langle k^2 \rangle}{\langle k \rangle^2} \).
BCC MOD can break down the network quickly. Moreover, the largest S of BCC MOD is the highest among all methods for all networks except Email and Router, which means BCC MOD has the greatest damage to networks. From these results, in the point of network connectivity, BCC MOD can quickly decompose networks and has the greatest damage to networks in most cases.

The size of giant component σ. Besides susceptibility index S, another metric, the size of giant component σ is used to evaluate the performance of methods. For details, sort edges descending order according to their score firstly, and then count the size of giant component σ after removing the edges from network one by one from high to low ranking scores.

The results are shown in Fig. 2. The faster the curve falls, the better the effect of method is. From Fig. 2(b,c,f,h,i), it can be found that the curve of BCC MOD falls the fastest, which means BCC MOD can break down the network quickly. And in Fig. 2(d,g), the falling speed of the BCC MOD is close to the best case among all methods. In Fig. 2(a), the size of giant component σ drops quickly although it drops relative slow at the beginning. These results demonstrate that BCC MOD can quickly decompose networks in most cases.

SIR model. In SIR model, there are three statuses: (1) $S(t)$ denotes the number of nodes which may be infected (not yet infected); (2) $I(t)$ denotes the number of nodes which have been infected and will spread the disease or information to susceptible nodes; (3) $R(t)$ denotes the number of nodes which have been recovered from the disease or boredom the information and will never be infected by infected nodes again. In a network, each infected node will infect all susceptible neighbors with a certain probability μ. Infected nodes recover with probability β (for simplicity, $\beta = 1$ in this report) at each step. The process stops when there is no infected node. We can set a node to be infected and the others to be susceptible to estimate the influence of a single node in the network. The normalized final effected scale is defined as

$$F(t, u) = \frac{n_{R(u, t)}}{n},$$

Table 2. The value of p corresponding to the largest S.

networks	B	Bc	J	R	BCCMOD
PowerGrid	0.2977	0.0597	0.2560	0.4974	0.0685
Lesmis	0.3216	0.5215	0.3960	0.8535	0.0784
Router	0.3737	0.1469	0.1002	0.0115	0.0137
Jazz	0.6070	0.5242	0.7036	0.9759	0.5148
Email	0.9325	0.8536	0.8169	0.9268	0.7467
Innovation	0.0011	0.0011	0.0011	0.0011	0.0011
Train	0.2213	0.3320	0.2049	0.7172	0.1844
Highschool	0.4693	0.4765	0.6065	0.7112	0.3357
Oz	0.7989	0.8940	0.9038	0.9288	0.5185

Figure 1. The susceptibility index S over different value of p.

$BCC MOD$ can break down the network quickly. Moreover, the largest S of $BCC MOD$ is the highest among all methods for all networks except Email and Router, which means $BCC MOD$ has the greatest damage to networks. From these results, in the point of network connectivity, $BCC MOD$ can quickly decompose networks and has the greatest damage to networks in most cases.

The size of giant component σ. Besides susceptibility index S, another metric, the size of giant component σ is used to evaluate the performance of methods. For details, sort edges descending order according to their score firstly, and then count the size of giant component σ after removing the edges from network one by one from high to low ranking scores.

The results are shown in Fig. 2. The faster the curve falls, the better the effect of method is. From Fig. 2(b,c,f,h,i), it can be found that the curve of $BCC MOD$ falls the fastest, which means $BCC MOD$ can break down the network quickly. And in Fig. 2(d,g), the falling speed of the $BCC MOD$ is close to the best case among all methods. In Fig. 2(a), the size of giant component σ drops quickly although it drops relative slow at the beginning. These results demonstrate that $BCC MOD$ can quickly decompose networks in most cases.

SIR model. In SIR model, there are three statuses: (1) $S(t)$ denotes the number of nodes which may be infected (not yet infected); (2) $I(t)$ denotes the number of nodes which have been infected and will spread the disease or information to susceptible nodes; (3) $R(t)$ denotes the number of nodes which have been recovered from the disease or boredom the information and will never be infected by infected nodes again. In a network, each infected node will infect all susceptible neighbors with a certain probability μ. Infected nodes recover with probability β (for simplicity, $\beta = 1$ in this report) at each step. The process stops when there is no infected node. We can set a node to be infected and the others to be susceptible to estimate the influence of a single node in the network. The normalized final effected scale is defined as

$$F(t, u) = \frac{n_{R(u, t)}}{n}.$$
where \(n_R(t_c, u) \) is the number of final effected nodes if node \(u \) is infected initially under SIR model and \(F(t_c, u) \) is the finally normalized scale. To estimate the influence of edges, we can calculate the average influence of all nodes when remove a certain fraction of edges. We have an index

\[
R_s = \frac{F^{(1)}(t_c) - F^{(2)}(t_c)}{F^{(1)}(t_c)},
\]

where \(F^{(1)}(t_c) \) is the average final infected scale of all nodes, i.e., \(F^{(1)}(t_c) = \frac{1}{n} \sum_{u \in V} F(t_c, u) \), and \(F^{(1)}(t_c) \) and \(F^{(2)}(t_c) \) are results of original network and the network after removing \(p \) of edges.

In Table 3, we show the spearman correlation coefficients between the ranking scores and the relative differences of real infected scale \(R_s \). All results are averaged over 200 independent implementations. Edges are descending order and divided into 50 parts. For each step only 1 part of edges (remaining other 49 parts) are removed and calculated the relative differences of real infected scale corresponding. Finally, two sequences (scores of the 2% edges and the relative differences of real infected scale) are obtained and the spearman correlation coefficients between them are obtained. From Table 3, it can be seen that \(\text{BCC\text{MOD}} \) has maximal spearman correlation in PowerGrid, Lesmis, Router, Jazz, Innovation, Train and Email. These results demonstrate that the edge which \(\text{BCC\text{MOD}} \) preferentially removed has a greater impact on the dissemination of real information.

![Figure 2. The size of giant component \(\sigma \) over different value of \(p \).](image)

![Table 3. Spearman correlation coefficients between the ranking scores and the relative differences of real infected scale \(R_s \). All results are averaged over 200 independent implementations under \(\mu/\mu_c = 2 \).](table)

networks	B	Be	J	R	\(\text{BCC\text{MOD}} \)
PowerGrid	0.3273	0.6425	0.1804	-0.2103	0.8406
Lesmis	0.3559	0.4416	0.1468	-0.1408	0.7024
router	0.5929	0.5914	-0.1241	-0.0561	0.8537
Jazz	0.1346	0.5526	0.4906	0.2034	0.7309
Email	0.3355	0.7077	0.5167	-0.1676	0.9232
Innovation	0.4767	0.7636	0.1284	0.1234	0.7523
Train	0.4832	0.5568	0.2256	-0.1013	0.7670
Highschool	0.7812	0.6267	0.4653	0.0613	0.7142
Oz	0.5650	0.8680	0.4653	0.1245	0.8324

Figure 3 shows the relative differences of real infected scale \(R_s \) after removing top 5% ranking edges under different infect rates. It can be seen that \(\text{BCC\text{MOD}} \) has higher \(R_s \) under different infect rates comparing with Jaccard, Bridgeness, Betweenness and Reachability methods. Generally, there is a significant impact on information spreading after removing top 5% ranking edges under \(\text{BCC\text{MOD}} \).

Figure 4 shows the relative differences of real infected scale \(R_s \) under different ratio of edges removing \(p \) with \(\mu/\mu_c = 2 \). From Fig. 4, it can be seen that \(\text{BCC\text{MOD}} \) has higher \(R_s \) under different ratio of edges removing comparing...
with other methods. These results demonstrate that BCC MOD has a greater impact on information spreading while removing a small part of edges than other methods.

Discussion

In this report, the results show that if there are many different cliques containing both two related nodes of an edge, then the edge is not important for the perspective of spreading. We propose a global structural index, called BCC MOD and compared with four well-known topological indices by susceptibility index S, the size of giant component σ and SIR model. The results show that BCC MOD performs good in identifying critical edges both in network connectivity and spreading dynamic. As indicated by the experiments on the SIR model, BCC MOD is effective in quantifying the spreading influences of edges. This will help us in some real-life applications such as controlling the spreading of diseases or rumors and withstanding targeted attacks on network infrastructures. What's more, formal definitions of cliques have generally assumed that the network links are undirected, in directed networks, the definition of cliques will be modified, correspondingly, the algorithm of mining critical edges also have subtle changes. Although the methods have a good performance, high computational

Figure 3. The relative differences of real infected scale R_s after removing top 5% ranking edges under different infect rates. All results are averaged over 100 independent implementations.

Figure 4. The relative differences of real infected scale R_s over each node as seed under different ratio of edges removing p. All results are averaged over 100 independent implementations under $\mu/\mu_c = 2$.
complexity make it can't be used in large-scale networks. In BCC MOD, all nodes' degrees should be determined (running time is $O(m)$) and the time complexity for calculating the betweenness centrality of all edges in undirected networks is $O(mn^3)$. The time complexity for finding all cliques in undirected networks is $O(M(n))$ where $M(n)$ is the cost of multiplying two $n \times n$ matrices (for sparse matrices, $M(n)$ is $O(n^2)$). So the computational complexity of BCC MOD is $O(mn + M(n))$ in undirected networks. BCC MOD is a global index with not too high computational load and expected to be applied in small and middle undirected networks. How to optimization of our algorithm in large-scale networks and directed networks will be part of our future work. Besides SIR model, there also have other well-known dynamical processes to measure the importance of edges, for example, the susceptible-infected-susceptible (SIS) spreading model can examine how much information through the edge over a period of time.

Methods

Betweenness centrality. We know that betweenness centrality of edges indicates that the more the shortest paths between node pairs pass through the edge $e(u,v)$, the more important the edge $e(u,v)$ is. The betweenness centrality of an edge $e(u,v)$ is defined as:

$$BC(u,v) = \sum_{s,t \in V} \frac{\delta_{st}(u,v)}{\delta_{st}}$$

where δ_{st} is the number of all the shortest paths between node s and node t, $\delta_{st}(u,v)$ is the number of all the shortest paths between node s and node t which pass through the edge $e(u,v)$, the larger the score BC is, the more important the edge is.

Critical edge identification method. Generally, from the perspective of information spreading, the more important the two related nodes are, the more important the edge is. On the other hand, if there are many different cliques containing $e(u,v)$, even $e(u,v)$ is removed, the information also can spread from u to v (or v to u) easily through other edges in these cliques. Based on above 2 points and combined betweenness centrality of edges, a new index BCC MOD (Betweenness Centrality and Clique Model)

Figure 5. Four toy networks.
is the number of reachable nodes from a node \((u, v)\). \(BCC_{M02}(u, v) = \frac{k_{eu} \cdot BC(u, v)}{\sum_{i=1}^{n} C(u, v_i)}\),

where \(u\) and \(v\) are two related nodes of the edge \((u, v)\) and \(\Gamma_u\) is the set of \(u\)'s neighbors. The Bridgeness index of an edge \((u, v)\) is defined as

\[
R_e(u, v) = \frac{\sqrt{S_v S_u}}{S_{(e(u,v))}},
\]

where \(S_v\) and \(S_{(e(u,v))}\) is the size of max clique which contains node \(u\), \(v\) and edge \((u, v)\), respectively.

The Reachability index of edge \((u, v)\) is defined as

\[
R_e(u, v) = \frac{1}{|V|} \sum_{s \in V} |R(s; G_e(u,v))|,
\]

where \(|V|\) is the number of nodes, \(G_s\) is the subnetwork by removing an edge \((u, v)\) from original network and \(|R(s; G_e(u,v))|\) is the number of reachable nodes from a node \(s\) over \(G_c\).

References
1. Newman, M. E. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).
2. Bonacich, P. Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2, 113–120 (1972).
3. Chen, D., Liu, L., Zhang, M.-S., Zhang, Y.-C. & Zhou, T. Identifying influential nodes in complex networks. Phys. A 391, 1777–1787 (2012).
4. Kitsak, M. et al. Identification of influential spreaders in complex networks. Nat. Phys. 6, 888 (2010).
5. Liu, L., Zhou, T., Zhang, Q.-M. & Stanley, H. E. The h-index of a network node and its relation to degree and coreness. Nat. Commun. 7, 10168 (2016).
6. Pastor-Satorras, R. & Castellano, C. Topological structure and the h index in complex networks. Phys. Rev. E 95, 022301 (2017).
7. Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978).
8. Freeman, L. C. A set of measures of centrality based on betweenness. Socio-1n. 35–41 (1977).
9. Hage, P. & Harary, F. Eccentricity and centrality in networks. Soc. Netw. 17, 57–63 (1995).
10. Brin, S. & Page, L. The anatomy of a large-scale hypertextual web search engine. Comput. Networks 30, 107–117 (1998).
11. Liu, L., Zhang, Y.-C., Yeung, C. H. & Zhou, T. Leaders in social networks, the delicious case. PLoS ONE 6, e21202 (2011).
12. Kleinberg, J. M. Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999).
13. Zhou, Y., Hao, J.-K. & Glover, F. Memetic search for identifying critical nodes in sparse graphs. arXiv preprint arXiv: 1705.04119 (2017).
14. Giuraniuc, C. et al. Trading interactions for topology in scale-free networks. Phys. Rev. Lett. 95, 098701 (2005).
15. Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002).
16. Wang, Z., He, J., Nechifor, A., Zhang, D. & Crossley, P. Identification of critical transmission lines in complex power networks. *Energies* **10**, 1294 (2017).
17. Zio, E. *et al*. Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms. *Reliab. Eng. Syst. Saf.* **99**, 172–177 (2012).
18. Saito, K., Kimura, M., Ohara, K. & Motoda, H. Detecting critical links in complex network to maintain information flow/reachability. In *Pacific Rim International Conference on Artificial Intelligence*, 419–432 (Springer, 2016).
19. Wong, P. *et al*. Finding k most influential edges on flow graphs. *Inf. Syst.* **65**, 93–105 (2017).
20. Hamers, L. *et al*. Similarity measures in scientometric research: The jaccard index versus salton's cosine formula. *Inf. Process. Manag.* **25**, 315–18 (1989).
21. Cheng, X.-Q., Ren, F.-X., Shen, H.-W., Zhang, Z.-K. & Zhou, T. Bridgeness: a local index on edge significance in maintaining global connectivity. *J. Stat. Mech: Theory Exp.* **2010**, P10011 (2010).
22. Pei, S., Muchnik, I., Tang, S., Zheng, Z. & Makse, H. A. Exploring the complex pattern of information spreading in online blog communities. *PLoS ONE* **10**, e0126894 (2015).
23. Zhu, H., Yin, X., Ma, J. & Hu, W. Identifying the main paths of information diffusion in online social networks. *Phys. A* **452**, 320–328 (2016).
24. Kimura, M., Saito, K. & Motoda, H. Blocking links to minimize contamination spread in a social network. *ACM Trans. Knowl. Discov. Data* **3**, 9 (2009).
25. Newman, M. E. Spread of epidemic disease on networks. *Phys. Rev. E* **66**, 016128 (2002).
26. Bunde, A. & Havlin, S. Fractals and disordered systems (Springer Science & Business Media, 2012).
27. Dereich, S. *et al*. Random networks with sublinear preferential attachment: the giant component. *The Annals Probab.* **41**, 329–384 (2013).
28. Chicago network dataset – KONECT, October (2016).
29. Seidman, S. B. Clique-like structures in directed networks. *J. Math. Sociol.* **3**, 43–54 (1980).
30. Palla, G., Farkas, I. J., Pollner, P., Derényi, I. & Vicsek, T. Directed network modules. *New J. Phys.* **9**, 186 (2007).
31. Brandes, U. A faster algorithm for betweenness centrality. *J. Math. Sociol.* **25**, 163–177 (2001).
32. Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks. *Phys. Rev. Lett.* **86**, 3200 (2001).

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grant Nos 61433014 and 61673085.

Author Contributions

E.-Y. Y. and D.-B. C. designed the research and prepared all figures. E.-Y. Y. performed the experiments and analyzed the data. All authors wrote the manuscript.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.