Comparative Study of Soil Tillage Practices Effects on Hydraulic Conductivity and Bulk Density of a Sandy Loam Soil in Tunisia

Roua Amami 1, Khaled Ibrahimi 1, Khaoula Abrougui 1, Amira Hmila 1, Sayed Chehaibi 1

1Higher Institute of Agricultural Sciences, Sousse University, 4042 Chott Meriem, TUNISIA
*Corresponding Author: roua.amami1991@gmail.com

Citation: Amami, R., Ibrahimi, K., Abrougui, K., Hmila, A., & Chehaibi, S. (2019). Comparative Study of Soil Tillage Practices Effects on Hydraulic Conductivity and Bulk Density of a Sandy Loam Soil in Tunisia. Aquadeemia, 3(1), ep19013. https://doi.org/10.21601/aquademia/9567

INTRODUCTION

Over the decades, reduction of tillage requirements has been the principal motivating force in agricultural mechanization (Osunbitan et al., 2005). Tillage is the most widely researched management practice affecting hydraulic conductivity and physical properties of the soil (Strudley et al., 2008). Many researchers examined the influence of tillage practices on soil bulk densities. According to Hammel et al. (1989) bulk density in the top 300 mm of silt loam soil were higher with zero tillage than with minimum or conventional tillage practices. Hoffman (1990) also observed that bulk densities of zero tillage and minimum tillage increased from the surface of the soil to a depth of 150 mm. Previous studies show that high BD, strong soil crust and low total porosity have a negative influence infiltration rates (Bhattacharyya et al., 2006; Gicheru et al., 2004). Bulk density is inversely related to total porosity (Carter & Ball, 1993), which gives us an idea of the porous space left in the soil for air and water movement. Than when tillage is reduced, soil porosity tends to increase (Voorhees & Linstrom, 1984), and often, surface sealing occurs, reducing the infiltration rate (Lindstrom & Onstad, 1984).

Previous investigations Messing et Jarvis (1993) and Nicolas B, 2010, have found that K(h) showed a large intra-annual variability, decreasing shortly after tillage under tilled treatments, followed by an increase in the spring and a decrease in the summer for the three tillage treatments.

Kamemickova et al. (2012) mentioned that the tillage practices of the top layer of the soil plays a key role in the changes of the hydro-physical properties, mainly saturated hydraulic conductivity of the upper layer, soil perforation through tillage enhances soil water catchment and increases the infiltration of water into the soil surface, raising the hydraulic conductivity sorptivity values (Abrisqueta et al., 2006).

There are no recorded experiences on the influence of different tillage systems on the soil bulk densities and hydraulic conductivity in semi arid region of eastern Tunisia. On this background, the objectives of this study were to evaluate the effects of tillage implements, on soil Bulk density and hydraulic conductivity in sandy loam soil in eastern Tunisia.
Table 1. Coordinates of the experimental site and Soil properties in the horizon (0±30 cm) of the experimental site before the commencement of the tillage treatments (clay, silt and sand content (US Department of Agriculture classification system))

Variable	Value
Coordinates	35°54’5.82”N-10°33’46.84”E
Clay (%)	11.12
Silt (%)	6.28
Sand (%)	77.96
Textural triangle	Sandy-loam
Bulk density ρb(g/cm³)	1.95
Particle density (g cm⁻³)	2.49
Soil-water content θ₀ (cm³/cm³)	10.53%

MATERIALS AND METHOD

Location and Climate

The experimental site was located in Sousse region in the Center East of Tunisia and belongs to the Higher Institute of Agronomic Science of Chott Mariem (35°54’5.82”N-10°33’46.84”E). The climate of the area is semi-arid Mediterranean; with a mean annual air temperature vary from 16 to 19 °C and a rainfall close to 400 mm. A brief description of the soil properties at the start of the experiment is shown in Table 1.

The area, is rectangular and fairly flat and extends for approximately 0.126 ha (63 × 20 m²). It was divided into 21 subplots (5m*15m) marked by iron stakes consisting of the following treatments: shallow (SM), medium (MM), deep (DM) moldboard plowing at depths of 10, 15 and 25 cm, respectively and shallow (SD), medium (MD), deep (DD) plowing with a disk plow at depths of 10, 15 and 25 cm, respectively (Figure 1). No-tillage (NT) was considered as control. Three replicates were laid out in randomized complete block design.

Soil Sampling and Analyses

Bulk density

The bulk density (BD) of the core sample was estimated from the ratio of dry weight to fresh volume taken with cylinder densimeter of 98.17cm³ volume (5 cm diameter and 5cm height) in all treatments from three soil cores taken by subplot from the upper 30 cm soil layer in 10 cm interval with three replications per treatment. We obtained the dry weight of the core sample after drying it in an oven at temperature of 105°C for 24 hours (Yoro and Godo,1990). The bulk density (BD) and the Water content can be calculated with the formula as follow:

\[
\text{Bulk density (BD)} = \frac{\text{weight of oven dried soil sample at 105°C}}{\text{total volume of fresh soil sample}}
\]

\[
\text{Moisture content (θ)(cm/cm)} = \frac{\text{weight fresh soil sample} - \text{weight of oven dried soil sample}}{\text{weight of oven dried soil sample}}
\]

A total of 65 disturbed soil samples were collected at 0-0.3 m depth to determine the soil textural characteristics. Three textural fractions according to the USDA standards, i.e., clay (0-2 μm), loam (2-50 μm) and sand (50-2000 μm), were used in the study to characterize the soil.

The Beekman Infiltration Method

A simplified method based on a Beekman infiltration run to determine the saturated soil hydraulic conductivity by only a transient infiltration process was developed.

The Beekman method used in this study is a simple three-dimensional infiltration test under positive head conditions, using a cylinder having an inner diameter of 0.30 m. In the field, a BEST infiltration test was carried out at each sampling point (N = 21) in April 2018. The procedure was carried out in consecutive steps as follows. The surface vegetation was removed over an area slightly larger than the cylinder diameter, while the roots remained in situ (Figure 2). Then, the cylinder is positioned at the soil surface and inserted to a depth of about 1 cm to avoid lateral loss of the pouded water at the soil surface. A fixed volume of water (250 ml) was poured into the cylinder at time zero, and the time required for infiltration of the known volume of water was measured. As soon as the first volume had completely infiltrated, another equal volume of water was added to the cylinder and the time for this volume to infiltrate (cumulative time) was recorded. The procedure was repeated until the test reached nearly steady-state conditions, three identical consecutive infiltration times. In this way, each cumulative infiltration was treated using the three BEST methods (Slope, Intercept and Steady-state), which were developed respectively by...
This is mainly because small air spaces are formed between soil particles (clumps) of different structures during tillage that water density is 1 g/cm³. A comparison of soil bulk density at different tillage practices and become lower in line with more intensive tillage. The results are in similarity with that (Dam et al., 2005) who reported that the bulk density in the upper soil layer (0-10 cm), in average bulk density densities varied due to tillage practices, the result presented in Figure 3 showed significant difference (p<0.05) between No tillage and tillage managements (disc plow and moldboard plow) for both BEST algorithms.

In this investigation, the BEST steady was considered to reduced tillage hydraulic conductivity as compared to reduced tillage.

RESULTS AND DISCUSSION

Effect of Tillage on Soil Bulk Density

Data related to soil bulk density after tillage operations are given in Table 2. Soil bulk densities are affected by tillage practices and become lower in line with more intensive tillage. This is mainly because small air spaces are formed between soil particles (clumps) of different structures during tillage (Sarauskis et al., 2018).

Statistical analysis indicated that both the tillage treatment had a significant effect on bulk density of soil (Osunbitan et al., 2005). A comparison of soil bulk density at 10 cm, 20 cm and 30 cm depths revealed the highest density to be found in No-tillage research plots (1.76; 1.86 and 1.81g/cm³) respectively, and the lowest mean value to be found using disc plow at the different tillage depth (SD; MD; DD). There was no significant (p<0.05) differences were found between moldboard plow and disk plow treatments when operating at the same tillage depth (i.e. SD/SM; MD/MM; DD/DM) (Alvarez et al., 2009).

In the upper soil layer (0-10 cm), in average bulk density increases under shallow tillage represent a densification of only 4.7% related to deep tillage density mean using disk plow and 3.5% using moldboard plow. The results are in similarity with that (Dam et al., 2005) who reported that the bulk density reduced more profoundly by conventional tillage as compared to reduced tillage.

Hydraulic Conductivity Changes using BEST Methods

Each cumulative infiltration was treated using the 3 best methods (slope; intercept and steady-state); which were developed respectively by Lassabatère et al. (2006), Yilmaz et al. (2010) and Bagarello et al. (2014). The hydraulic conductivity varied due to tillage practices, the result presented in Figure 3 showed significant difference (p<0.05) between No tillage and tillage managements (disc plow and moldboard plow) for both BEST algorithms.

In this investigation, the BEST steady was considered because according to Alagna et al. (2016) it allows a simple calculation of Ks. Saturated hydraulic conductivity (Ks) after tillage practices is presented in Figure 3, revealed that both the tillage methods significantly increased the hydraulic conductivity of soil as compared to No-tillage treatment, whereas their interactive effect was statistically non-significant. As regard tillage method practices, the maximum mean value of saturated hydraulic conductivity (56 x10-4 cm s⁻¹; 51 x10-4 cm s⁻¹) was observed in case of deep tillage with disc plow (DD) and moldboard plow (DM) respectively while the mean values for the other tillage methods were 23, 27, 29, 27 and 30 x10-4 cm s⁻¹ for NT, SM, MM, SD and MD which were statistically similar. The average Mean increase in saturated hydraulic conductivity observed was 17.4%, (26/30.4%) and (34.8/56.5%) in the shallow (SM/SD), medium (MM/MD) and deep tillage treatments (DM/DD), respectively compared to No tillage, indicating that deep tillage (DD, DM) increases the saturated hydraulic conductivity when compared to other tillage practices. These findings are in agreement with those Ikbal et al. (2005) who reported that tillage practices increased soil hydraulic conductivity.

Table 2. Soil bulk density (BD) under tillage treatments. Within columns, letters denote statistical significance at p < 0.05 for the compari son of tillage treatments for each soil layer separately (Standard deviations are indicated in parentheses)

Depths (cm)	NT	SD	MD	DD	SM	MM	DM
0.10	1.76 ± (0.05)	1.68 ± (0.09)	1.64 ± (0.06)	1.60 ± (0.05)	1.69 ± (0.05)	1.66 ± (0.08)	1.65 ± (0.05)
10-20	1.86 ± (0.08)	1.66 ± (0.06)	1.63 ± (0.06)	1.56 ± (0.09)	1.67 ± (0.04)	1.65 ± (0.09)	1.63 ± (0.05)
20-30	1.81 ± (0.08)	1.67 ± (0.05)	1.64 ± (0.03)	1.59 ± (0.07)	1.70 ± (0.11)	1.63 ± (0.04)	1.61 ± (0.05)

Lassabatere et al. (2006), Yilmaz et al. (2010) and Bagarello et al. (2014). At the end of the experiment, the saturated soil is sampled to determine the saturated gravimetric water content and thus the saturated volumetric water content from the bulk density (BD) and the gravimetric water content, considering that water density is 1 g/cm³.

Figure 2. Beerkan infiltration. Known volumes of water prepared in the bottles are successively poured through the ring and time is measured.

Figure 3. Beerkan infiltration. Known volumes of water prepared in the bottles are successively poured through the ring and time is measured.
CONCLUSION

In this study the effects of tillage practices on the soil physical properties and hydraulic conductivity were evaluated. We conclude that the effect of till with disc plow, compared to Moldboard plow, was more pronounced with changes in bulk density and hydraulic conductivity. The NT system resulted higher bulk density and lower hydraulic conductivity than disc and moldboard plow. Our results demonstrate that SD tillage is a more sustainable soil management practice than the other tillage practices with respect to soil structural stability and the higher mean value of hydraulic conductivity which can enhances better penetration of water into the plant root zone, enabling root absorption of soil moisture for better plant growth and development.

ACKNOWLEDGEMENT

This study was supported by the Research Unit 13AGRO. We are also grateful to the field staff of the Higher Agronomic Institute of Chott-Mariem for the assistance in our field work.

REFERENCES

Abrisqueta, J. M., Plana, V., Franco, J. A., & Ruiz-Sánchez, M. C. (2006). Effect of tillage and water pressure head on the hydraulic properties of a loamy soil surface. Spanish Journal of Agricultural Research, 4(2), 180-186. https://doi.org/10.5424/sjar/2006042-190

Aiello, R., et al. (2014). An assessment of the Beerkan method for determining the hydraulic properties of a sandy loam soil. Geoderma, 235-236, 300-307. https://doi.org/10.1016/j.geoderma.2014.07.024

Alagna, V., Bagarello, V., Di Prima, S., Giordano, G., & Iovino, M. (2016). Testing infiltration run effects on the estimated water transmission properties of a sandy-loam soil. Geoderma, 267, 24-33. https://doi.org/10.1016/j.geoderma.2015.12.029

Alvarez, R., & Steinbach, H. S. (2009). A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res, 104(1), 1-15. https://doi.org/10.1016/j.still.2009.02.005
Bagarello, V., Di Prima, S., & Iovino, M. (2014). Comparing alternative algorithms to analyze the beerkan infiltration experiment. *Soil Sci. Soc. Am. J.*, 78(3), 724-756. https://doi.org/10.2136/sssaj2013.06.0251

Carter, M. R., & Ball, B. C. (1993). Soil porosity. In: M. R. Carter (Ed.), *Soil sampling methods of soil analysis* (pp. 581-588). Lewis Publishers.

Christopher, O. A., Olanipo, A. F., Fidelis, O. A., & Toju, E. B. (2016). Impacts of varying tillage operations on infiltration capacity of agricultural soils. *Int. J. Soil Sci.*, 11, 29-35. https://doi.org/10.3923/ijss.2016.29.35

Gomez, J. A., Giraldez, J. V., Pastor, M., & Fereres, E. (1999). Effects of tillage method on soil physical properties, infiltration and yield in an olive orchard. *Soil Till. Res.*, 52(3-4), 167-175. https://doi.org/10.1016/S0167-1987(99)00078-1

Hammel, J. E. (1989). Long-term tillage and crop rotation effects on bulk density and soil impedance in Northern Idaho. *Soil Sci. Soc. Am. J.*, 53(5), 1515 -1519. https://doi.org/10.2136/sssaj1989.03615995005300050036x

Iqbal, M., Hassan, A. U., Ali, A., & Rizwanullah, M. (2005). Residual effect of tillage and farm manure on some soil physical properties and growth of wheat (Triticum aestivum L.). *International Journal of Agriculture and Biology*, 7(1), 54-57.

Kameníčková, I. L., Larišová and, A., & Stoklásková, A. (2012). The impact of different tillage treatments on hydraulic conductivity of loamy soil. *Acta Universitatis Agriculturae et Siiviculturae Mendelianae Brunensis*, 60(5), 109-115. https://doi.org/10.11118/actaun201260050109

Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J. M., Cuenca, R., Braud, I., & Haverkamp, R. (2006). Beerkan estimation of soil transfer parameters through in filtration experiments BEST. *Soil Science Society of America Journal*, 70(2), 521-532. https://doi.org/10.2136/sssaj2005.0026

Lindstrom, M. J., & Onstad, C. A. (1984). Influence of tillage systems on soil physical parameters and infiltration after planting. *J. Soil Water Conserv.*, 39(2), 149-152.

Osunbitan, J. A., Oyedele, D. J., & Adekalu, K. O. (2005). Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. *Soil Till. Res.*, 82(1), 57-64. https://doi.org/10.1016/j.still.2004.05.007

Strudley, W. M., Green, T. R., & Ascough II, J. C. (2008). Tillage effects on soil hydraulic properties in space and time: State of the science. *Soil and Tillage Research*, 99(1), 4-48. https://doi.org/10.1016/j.still.2008.01.007

Unger, P. W. (1984). Tillage effects on surface soil physical conditions and sorghum emergence. *Soil Sci. Soc. Am. J.*, 48(6), 1423-1432. https://doi.org/10.2136/sssaj1984.03615995004800060044x

Voorhees, W. B., & Linstrom, M. J. (1984). Long-term effects of tillage method on soil tilth independent of wheel traffic compaction. *Soil Sci. Soc. Am. J.*, 48(1), 152-156. https://doi.org/10.2136/sssaj1984.03615995004800010028x

Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., & Legret, M. (2010). Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. *Vadose Zone J.*, 9(1), 107. https://doi.org/10.2136/vzj2009.0039

Yoro, G., & Godo, G. (1990). Les méthodes de mesure de la densité apparente. Analyse de la dispersion des résultats dans un horizon donné. *Cah. Orstom, sér. Pédol.*, XXV(4), 423-429.