Household Expenditures on Dietary Supplements Sold for Weight Loss, Muscle Building, and Sexual Function: Disproportionate Burden by Gender and Income

Running Head: Household Expenditures on Dietary Supplements

S. Bryn Austina,b,*
Kimberly Yub
Selena Hua Liuc
Fan Dongd
Nathan Tefftd

Affiliations

a Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
b Division of Adolescent and Young Adult Medicine, Boston Children’s Hospital, Boston, MA
c Department of Nutrition, Simmons College, Boston, MA
d Department of Economics, Bates College, Lewiston, ME
*Corresponding Author:

S. Bryn Austin, ScD
Division of Adolescent and Young Adult Medicine
Boston Children's Hospital
333 Longwood Ave., Room 634
Boston, MA 02115 USA
Ph 617-355-8194 Fax 617-730-0185 Email: bryn.austin@childrens.harvard.edu

Abstract Word Count: 246 Text Word Count: 2,465 Tables and Figures: 2 tables and 1 figure References: 27

Author Information

S. Bryn Austin is with the Division of Adolescent and Young Adult Medicine at Boston Children’s Hospital, Boston, MA, and the Department of Social and Behavioral Sciences at Harvard T.H. Chan School of Public Health. Kimberly Yu is with the Division of Adolescent and Young Adult Medicine at Boston Children’s Hospital, Boston, MA. Selena H. Liu is with the Department of Nutrition, Simmons College, Boston, MA. Fan Dong and Nathan Tefft are with the Department of Economics, Bates College, Lewiston, ME. Austin, Yu, and Liu are with the Strategic Training Initiative for the Prevention of Eating Disorders, Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
Requests for reprints should be sent to S. Bryn Austin, ScD, Division of Adolescent and Young Adult Medicine, Children’s Hospital, 333 Longwood Ave., Room #634, Boston, MA 02115 (email: bryn.austin@childrens.harvard.edu)

Contributors
S.B. Austin and N. Tefft were responsible for study conception, database creation, analyses, interpretation of results, and manuscript preparation. K. Yu, S.H. Liu, and F. Dong were responsible for database creation, interpretation of results, and manuscript preparation.

Acknowledgments
Support for this work has been provided by the Ellen Feldberg Gordon Challenge Fund for Eating Disorders Prevention Research, the Strategic Training Initiative for the Prevention of Eating Disorders, and training grants T71-MC-00009 and T76-MC-00001 from the Maternal and Child Health Bureau, Health Resources and Services Administration, US Department of Health and Human Services. We would like to thank Rose Billeci, Jayme Holliday, Michael Varner, and Kathryn Webber for their help in database creation and preparation.

Human Participant Protection
The study database includes no identifiable information; therefore, this study is not human subjects research.

Conflict of Interest Statement
The authors have no conflicts of interest.
Household Expenditures on Dietary Supplements Sold for Weight Loss, Muscle Building, and Sexual Function: Disproportionate Burden by Gender and Income

ABSTRACT
Dietary supplements sold for weight loss (WL), muscle building (MB), and sexual function (SF) are not medically recommended. They have been shown to be ineffective in many cases and pose serious health risks to consumers due to adulteration with banned substances, prescription pharmaceuticals, and other dangerous chemicals. Yet no prior research has investigated how these products may disproportionately burden individuals and families by gender and socioeconomic position across households. We investigated household (HH) cost burden of dietary supplements sold for WL, MB, and SF in a cross-sectional study using data from 60,538 U.S. households (HH) in 2012 Nielsen/IRi National Consumer Panel, calculating annual HH expenditures on WL, MB, and SF supplements and expenditures as proportions of total annual HH income. We examined sociodemographic patterns in HH expenditures using Wald tests of mean differences across subgroups. Among HH with any expenditures on WL, MB, or SF supplements, annual HH first and ninth expenditure deciles were, respectively: WL $5.99, $145.36; MB $6.99, $141.93; and SF $4.98, $88.52. Conditional on any purchases of the products, female-male-headed HH spent more on WL supplements and male-headed HH spend more on MB and SF supplements compared to other HH types (p-values<0.01). High-income ($30,000<annual income<$100,000), compared to low-income (annual income<$30,000) HH, spent more on all three supplements types (p-values<0.01); however, proportional to income, low-income HH spent 2-4 times more than high-income HH on WL and MB supplements (p-
values<0.01). Dietary supplements sold for WL, MB, and SF disproportionately burden HH by income and gender.

Key Words: Dietary supplements; weight loss; muscle building; sexual function; disparities
INTRODUCTION

The dietary supplement industry in the United States is a growing, multi-billion dollar industry. Dietary supplements, which include vitamins, minerals, herbs, and amino acids, are widely used by adults and children of all ages. In fact, Americans spent an estimated $36.7 billion on dietary supplements in 2014.(1) Dietary supplements sold for weight loss, muscle building, and sexual function are commonly used. Americans spent $2 billion in 2015 on dietary supplements for weight loss,(2) which is among the most common reasons for dietary supplement use.(3) Americans spent $2.6 billion on muscle-building products in 2015.(4) There is also a substantial market for dietary supplements promising enhanced sexual function. Recently, one manufacturer was found to produce over one million capsules per month of a supplement sold for sexual functioning, netting more than $2 million dollars in three years. The global sexual-function supplement industry likely generates tens of millions, if not billions, of dollars yearly.(5-7)

Despite their widespread use, dietary supplements for weight loss, muscle building, and sexual function are not medically recommended and have been shown to be ineffective in many cases(8-10) and to pose serious health risks to consumers due to adulteration with banned substances, prescription pharmaceuticals, and other dangerous chemicals.(11-13) In fact, the U.S. Food and Drug Administration has been well aware of this heightened risk for many years, and in 2010 issued a special warning to consumers regarding supplements sold for weight loss, muscle building, and sexual function as being more likely than other supplements to be deceptively marketed and tainted with toxic ingredients.(12) Effects with adverse health consequences can include for weight-loss supplements: chronic diarrhea and constipation, dehydration, hypokalemia, metabolic acidosis, and other electrolyte imbalances, cardiac
arrhythmia, hemorrhagic and ischemic stroke, hepatic and renal failure;(8, 9, 14-17, 18) for muscle-building supplements: infertility, testicular cancer, stunted growth, coronary artery disease, pulmonary embolism;(19, 20) and for sexual-function supplements: changes in blood pressure, hypomania, insomnia, anxiety, irritability, nausea, headaches, loss of consciousness, seizures.(6, 21)

With the serious health risks of dietary supplements sold for weight loss, muscle building, and sexual function well-documented, there is concern that economic costs of these products may disproportionately burden individuals and families by gender and socioeconomic position. A recent national study found 21% of women and 10% of men had used weight-loss supplements at some point in their lives, with women ages 18-34 years having the highest rate of past year use at 17%, affecting many millions of Americans.(10) A different study assessing use of muscle-building products among adolescents found that 35% of boys had used protein powder in the past year and 11% had used other products including dietary supplements sold for muscle-building. On the other hand, 21% of girls had used protein powder in the past year and 6% had used other products including supplements sold for muscle-building.(22)

In the U.S. nationally representative National Health and Nutrition Examination Survey, Kakinami and colleagues found that compared to adults in high-income households, those in low-to-middle income households were more likely to use weight-loss strategies in the past year inconsistent with medical recommendations, such using as non-prescription diet pills, which are likely to include dietary supplements, as they comprise the vast majority of over-the-counter diet pills on the U.S. market.(23) In another nationally representative study of U.S. adults, Pillitteri and colleagues similarly found that among adults who had ever attempted to lose weight, those in low-to-middle income households were more likely than those in higher-income households to
use dietary supplements for weight loss (42% vs. 30%). They also found in this same sample that adults with high school or less education were more likely than those with at least some college education to use dietary supplements for weight loss (38% vs. 31%) and found higher use among African American (49%) and Latino (42%) adults compared to white adults (31%).

We are not aware of any studies assessing the association between income and dietary supplement use for muscle building or sexual function.

Given these gaps in the literature, the objectives of our study were to estimate the proportion of household income in the United States spent on dietary supplements sold for weight loss, muscle building, and sexual function as related to gender of household head and household annual income.

METHODS

The primary data source, from which information on U.S. household purchases of dietary supplements was aggregated, was the observational 2012 Nielsen/IRi National Consumer Panel (NCP). The dataset, administered by the Kilts Center at the University of Chicago, is a sample of more than 60,000 U.S. households that in 2012 were asked to provide complete information on household purchases labeled with a scannable universal product codes (UPC). The NCP draws from all U.S. states and major metropolitan areas, which allowed us to produce national-level projections using NCP-calculated projection factors. The NCP database includes no identifiable information; therefore, this study is not considered human subjects research.

To augment information on dietary supplements listed in the NCP as having been purchased by participating households, we collected data on products with packaging and advertising making claims in at least one of three categories: weight loss, muscle building, or
sexual function. To identify these characteristics, we conducted web searches by UPC, product brand, and product description, registering whether each product included each claim. The collected product claims data were merged into the NCP at the product level by matching collected UPCs with those recorded in the NCP database, at the product level. Then, all purchases for each household, as identified in the UPC merge, were aggregated according to the relevant measure, e.g., sum for total expenditure or an indicator value for any expenditure. This was done separately for each claim-type category. The analytic sample consisted of 60,538 households, which is all households included in the 2012 panel year.

The primary measure of interest is household-level expenditures within each product category during 2012. As described below, we also analyzed this measure across household types according to the gender(s) of the household head(s) and annual household income. There were 15,796 households reporting a female head only, 6,112 reporting a male head only, and 38,630 reporting a female and male head. In addition, 13,470 households reported earning less than $30,000 in the prior tax year and 47,068 households reported earning more than $30,000 in the prior tax year.

Household-level expenditures were summarized in two ways. Whether or not a household purchased a product in a particular category (e.g., weight loss, muscle building, or sexual function) were coded as 1 or 0, so the estimated means represent percent of households reporting any purchases. Statistics that report conditional expenditure are calculated as mean values, conditional on a household having made any purchases of a product in one of the three dietary supplement categories under study (i.e., weight loss, muscle building, or sexual function). Thus, conditional estimates were based on the subset of the household population that purchased at least one product in a category. In addition, household expenditure greater than or equal to $250
on weight-loss (N=659), muscle-building (N=362), or sexual-function (N=27) products were considered outliers and removed for relevant product type.

To prepare for estimates of a household’s income share that was spent on products in each category, household income was imputed as the midpoint of the reported household income category. Recorded income category increments ranged from $3,000 (for low income categories) to $20,000 (for high income categories), and the highest income category in the NCP database was $100,000 or more. Because the highest income category did not have a midpoint, households in this category (N = 9,039) were excluded from income share estimates.

All analyses were cross-sectional, and statistics are reported in both weighted and unweighted estimates. Weighted estimates were constructed using projection factors provided by NCP, where the primary sampling unit was the household-year, and the sample was stratified by markets and census regions. We examined differences in weighted estimates using Wald tests. Some of the difference estimates may not satisfy the normality assumption of the Wald test; therefore, we also report results using unweighted estimates and corresponding nonparametric Wilcoxon-Mann-Whitney tests that the samples are drawn from the same population. As sensitivity analyses, we compared findings from analytic sample when outliers were removed, as described above, to findings when outliers were retained. Associations were not qualitatively different; therefore, results presented are based on the analytic sample exclusive of outliers.

RESULTS

Table 1 presents estimates of the percent of households purchasing any products, and household expenditures conditional on any purchases, for each of the three supplement
categories and each household head type. Among households with any expenditures on weight-loss, muscle-building, or sexual-function supplements, annual households first and ninth expenditure deciles were: weight loss $5.99 and $145.36; muscle building $6.99 and $141.93; and sexual function $4.98 and $88.52. In the figure, panels A-C present the monthly expenditure of households on weight-loss, muscle-building, and sexual-function products, respectively, by household head type among households that purchased the products.

Households with a female head only were most likely to purchase weight-loss products, with 21.3% reporting any purchases compared with 16.2% (p-value<0.0001) for households with a male head only and 20.6% (p-value=0.25) for households with a female and male head. Conditional on any purchases, however, female-only households did not spend differently from other household types on weight-loss supplements. Unweighted estimates showed a similar pattern, although female-only households were significantly less likely to purchase (p-value=0.03) and, conditional on any purchases, spent significantly less on weight-loss products than female-male households (p-value=0.01).

Male-only households were generally more likely to purchase and spent conditionally more on muscle-building supplement products. The only exception to that pattern is that male-only households were slightly less likely to purchase muscle-building supplement products than female-male households. Male-only households spent a weighted average of $88.66 when purchasing any muscle-building supplement products, while female-only households spent $51.29 (p-value<0.0001) and female-male households spent $58.99 (p-value=0.0003).

A smaller percent of households purchased sexual-function supplements than purchased weight-loss or muscle-building supplements: male-only households were the most likely among household types with a weighted percent of 2.8% compared with female-only households at
0.9% (p-value<0.0001) and female-male households at 2.0% (p-value$=0.003$). A similar pattern emerged for conditional expenditures, in which male-only households spent a weighted average of $71.66, nearly twice that of each of the other household types.

Table 2 details purchase patterns across household types and product categories while also separately analyzing households reporting less than $30,000 in annual income vs. households reporting greater than or equal to $30,000 but less than $100,000 in annual income. In the figure, panels D-F present the income share of weight-loss, muscle-building, and sexual-function products, respectively, by household income among households that purchased the products.

When comparing across income categories, there were broadly similar qualitative patterns for weight-loss and muscle-building products. In general, higher income households (i.e., $30,000<\text{annual income}<100,000$) were more likely to make any purchase of weight-loss and muscle-building supplement products across all household-head types. We also calculated the conditional expenditure share of income for each subcategory, and we broadly identified that lower-income households spent more as a share of income, typically 2 to 4 times, than higher-income households. All comparisons for these subcategories yielded p-values<0.01.

Most comparisons across income categories for sexual-function products showed similar patterns in the point estimates as for weight-loss and muscle-building supplement products, but many of the comparison tests were not statistically significant. We were unable to calculate weighted conditional expenditure shares of income because of the presence of a stratum with a single sampling unit.

DISCUSSION
Dietary supplements sold for weight loss, muscle building, and sexual function have been flagged by the FDA as among the most likely of all supplement categories to be contaminated with dangerous ingredients and therefore among the most risky for consumers,(12) and yet they continue to be ubiquitously available in pharmacies, grocery stores, gyms, and many other brick-and-mortar and online retailers.(26, 27) Our study findings indicate that the financial burden of these industries borne by households is unevenly distributed by annual income and gender of head of household. While wealthier households spend more on these products in absolute dollars, it is low-income households that bear the heaviest financial burden for these products in terms of proportion of household income. In addition, conditional on any purchases of the products, female-male-headed households spent more on weight-loss supplements and male-headed households spend more on muscle-building and sexual-function supplements compared to other household types.

Prior research has similarly found evidence of social inequities in the burden these products pose, with two U.S. nationally representative studies finding lower-income adults more likely than their wealthier peers to use dietary supplements for weight loss(24) and diet pills without a prescription, which is likely to include use of dietary supplements.(23) Prior research has also found gender differences in the use of these products, with females more likely to use weight-loss supplements and males more likely to use muscle-building supplements.(10, 22, 24) Though we were not able to find epidemiologic studies estimating the prevalence by gender of use of sexual-function supplements, these products are primarily marketed to men.(13) As might be expected, we found male-only headed households were more likely to purchase these products than other household types.
This study has several limitations. Data were gathered on the household level, which is informative as to how household income is allocated to different types of product purchases, but does not provide insight into who is using the products. Also, while the database provides information on how much money was spent by any household on particular products, the database does not include a direct measure of product consumption, nor does it indicate whether the products were consumed by one person or shared among two or more household members. In addition, because annual household income and annual product spending data are highly skewed, we chose to exclude the top category of household income (annual income \(\geq \$100,000 \)) and the approximately top two percentiles, depending on product type, of highest spending households (expenditure \(\geq \$250 \)) from our analyses. For this reason, findings should not be interpreted to apply to the highest category groups in terms of household income or spending. Furthermore, in many cases we were unable to obtain precise estimates for sexual-function products, due in part to the relatively small sample of households with any purchases. Social desirability bias may have occurred if consumers chose not to scan some products they purchased in a way that was differential by gender of household head or household income.

CONCLUSIONS

Dietary supplements sold for weight loss, muscle building, and sexual function are purchased by a range of household types defined by gender of household head and annual household income. These products, which have been flagged by the FDA as particularly dangerous, disproportionately burden households by income and gender. Greater attention is urgently needed to improve regulation and protect consumers from these noxious products.
Table 1. Household expenditure on dietary supplements sold for weight loss, muscle building, and sexual function by household head.

	Female Head Only	Male Head Only	Female and Male Head
Weight Loss			
Any purchases (weighted)	21.3%	16.2%	20.6%
Wald p-value	0.000	0.254	
N	60,538	60,538	60,538
Any purchases (unweighted)	21.4%	15.7%	22.3%
Wilcoxon-Mann-Whitney p-value	0.000	0.030	
N	15,796	6,112	38,630
Conditional expenditure (weighted)	$58.06	$63.95	$62.18
Wald p-value	0.339	0.267	
N	12,962	12,962	12,962
Conditional expenditure (unweighted)	$65.59	$61.92	$66.56
Wilcoxon-Mann-Whitney p-value	0.986	0.012	
N	3,388	960	8,614
Muscle Building			
Any purchases (weighted)	11.4%	13.2%	13.4%
Wald p-value	0.005	0.685	
N	60,538	60,538	60,538
Any purchases (unweighted)	11.3%	12.4%	13.5%
Wilcoxon-Mann-Whitney p-value	0.028	0.023	
N	15,796	6,112	38,630
Conditional expenditure (weighted)	$51.49	$88.66	$58.99
Wald p-value	0.000	0.000	
N	7,751	7,751	7,751
Conditional expenditure (unweighted)	$54.41	$89.13	$63.54
Wilcoxon-Mann-Whitney p-value	0.000	0.042	
N	1,791	758	5,202
Sexual Function			
Any purchases (weighted)	0.9%	2.8%	2.0%
Wald p-value	0.000	0.003	
N	60,538	60,538	60,538
Any purchases (unweighted)	0.8%	2.8%	2.0%
Wilcoxon-Mann-Whitney p-value	0.000	0.000	
--------------------------------	-------	-------	----------
N	15,796	6,112	38,630
Conditional expenditure (weighted)	$33.35	$71.66	$38.17
Wald p-value	N/A*	N/A*	N/A*
N	1,073	1,073	1,073
Conditional expenditure (unweighted)	$30.87	$67.98	$41.21
Wilcoxon-Mann-Whitney p-value	0.000	0.012	
N	128	169	776

* Missing standard errors because of stratum with single sampling unit
Table 2. Household expenditure on dietary supplements sold for weight loss, muscle building, and sexual function by household income (<30k or >=30k).

	Weight Loss		Muscle Building		Sexual Function		
	HH Inc < 30k	HH Inc >= 30k	HH Inc < 30k	HH Inc >= 30k	HH Inc < 30k	HH Inc >= 30k	
Any purchases (weighted)	17.8%	20.8%	8.6%	14.5%	1.7%	1.9%	
Wald p-value	0.000	0.000					
All Households							
N	60,538	60,538	60,538	60,538	60,538	60,538	
Any purchases (unweighted)	18.6%	22.2%	9.1%	13.9%	1.7%	1.8%	
Wilcoxon-Mann-Whitney p-value	0.000	0.000					
N	13,470	47,068	13,470	47,068	13,470	47,068	
Conditional proportional expenditure (weighted)	0.4%	0.1%	0.3%	0.1%	0.4%	0.1%	
Wald p-value	0.000	0.000					
Female Head Only							
Any purchases (weighted)	19.7%	22.7%	8.4%	14.0%	0.8%	1.0%	
Wald p-value	0.002	0.000					
N	60,538	60,538	60,538	60,538	60,538	60,538	
Any purchases (unweighted)	19.5%	22.9%	8.9%	13.1%	0.8%	0.8%	
Wilcoxon-Mann-Whitney p-value	0.000	0.000					
N	10,818	9,128	1,222	4,948	227	700	
Conditional proportional expenditure (unweighted)	0.4%	0.1%	0.3%	0.1%	0.1%	0.1%	
Wilcoxon-Mann-Whitney p-value	0.000	0.000					
	N	1,297	1,897	596	1,069	53	71
--------------------------	------	-------	-------	------	-------	------	------
Male Head Only							
Any purchases (weighted)	12.7%	18.2%	8.5%	15.8%	2.9%	2.7%	
Wald p-value	0.000	0.000	0.648				
N	60,538	60,538	60,538	60,538	60,538	60,538	
Any purchases (unweighted)	12.8%	17.1%	8.7%	14.2%	2.8%	2.7%	
Wilcoxon-Mann-Whitney p-value	0.000	0.000	0.824				
N	2,013	4,099	2,013	4,099	2,013	4,099	
Conditional proportional expenditure (weighted)	0.3%	0.1%	0.4%	0.1%	0.7%	0.6%	
Wald p-value	0.000	0.000	N/A*				
N	10,818	10,818	6,170	6,170	927	927	
Conditional proportional expenditure (unweighted)	0.3%	0.1%	0.5%	0.1%	0.5%	0.2%	
Wilcoxon-Mann-Whitney p-value	0.000	0.000	0.000				
N	258	574	175	445	57	93	
Female and Male Head							
Any purchases (weighted)	19.3%	20.9%	9.1%	14.2%	1.9%	2.0%	
Wald p-value	0.122	0.000	0.940				
N	60,538	60,538	60,538	60,538	60,538	60,538	
Any purchases (unweighted)	19.8%	22.7%	9.4%	14.0%	2.4%	1.9%	
Wilcoxon-Mann-Whitney p-value	0.000	0.000	0.022				
N	4,789	33,841	4,789	33,841	4,789	33,841	
Conditional proportional expenditure (weighted)	0.4%	0.1%	0.4%	0.1%	0.2%	0.1%	
Wald p-value	0.001	0.000	N/A*				
N	10,818	10,818	6,170	6,170	927	927	
Conditional proportional expenditure (unweighted)	0.4%	0.1%	0.5%	0.1%	0.2%	0.1%	
Wilcoxon-Mann-Whitney p-value	0.000	0.000	0.000				
N	947	5,845	451	3,434	117	536	

* Missing standard errors because of stratum with single sampling unit.
Figure. Income share and monthly expenditure of weight-loss (WL), muscle-building (MB), and sexual-function (SF) products by household income and household head from 2012 Nielsen/IRi National Consumer Panel (N = 60,538 total households)*
Figure Legend

A. Income share of WL products by household income
B. Income share of MB products by household income
C. Income share of SF products by household income
D. Monthly expenditure of WL products by household head
E. Monthly expenditure of MB products by household head
F. Monthly expenditure of SF products by household head

Figure Footnote

* Household expenditure greater than or equal to $250 on WL, MB, or SF products considered outliers and removed for relevant product type.
References

1. Anonymous. NBJ's Supplement Business Report 2015. Nutrition Business Journal 2015.

2. Anonymous. Is sports nutrition its own worst enemy? Nutrition Business Journal 2014:XIX.

3. Bailey RL, Gahche JJ, Miller PE, Thomas PR, Dwyer JT. Why US adults use dietary supplements. JAMA Internal Medicine 2013;173(5):355-361

4. McKenna F. IBISWorld Industry Report. Health Stores in the US: Market Research Report: IBISWorld Industry Report; 2015.

5. Canham M. Feds plow new ground in spiked supplement case. Salt Lake City Tribune 2011 Oct. 1, 2011.

6. Cohen PA, Venhuis BJ. Adulterated sexual enhancement supplements more than just mojo. JAMA Internal Medicine 2013;173 (13):1169-1170.

7. Szalavitz M. The dangers lurking in male sexual supplements. Time Magazine 2013 May 16, 2013

8. Steffen KJ, Mitchell JE, Roerig JL, Lancaster KL. The eating disorders medicine cabinet revisited: A clinician's guide to ipecac and laxatives. International Journal of Eating Disorders 2007;40:360-368.

9. Roerig JL, Mitchell JE, de Zwaan M, Wonderlich SA, Kamran S, Engbloom S, et al. The eating disorders medicine cabinet revisited: A clinician's guid to appetite suppressants and diuretics. International Journal of Eating Disorders 2003;33:443-457.

10. Blanck HM, Serdula MK, Gillespie C, Galuska DA, Sharpe PA, Conway JM, et al. Use of nonprescription dietary supplements for weight loss is common among Americans. Journal of the American Dietetic Association 2007;107:441-447.
11. U.S. Food and Drug Administration. Tainted products marketed as dietary supplements_CDER; 2017. URL:
http://www.accessdata.fda.gov/scripts/sda/sdNavigation.cfm?filter=&sortColumn=1d&sd=tainted_supplements_cder&page=1. Date accessed: March 8, 2017.
12. U.S. Food and Drug Administration. Tainted products marketed as dietary supplements. 2010. URL: http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm236774.htm. Date accessed: March 8, 2017.
13. Cui T, Kovell RC, Brooks DC, Terlecki RP. A urologist's guide to ingredients found in top-selling nutraceuticals for men's sexual health. Journal of Sexual Medicine 2015;12(11):2105.
14. Schneider M. Bulimia nervosa and binge-eating disorder in adolescents. Adolescent Medicine: State of the Art Reviews 2003;14(1):119-131.
15. Copeland PM. Renal failure associated with laxative abuse. Psychotherapy and Psychosomatics 1994;62(3-4):200-202.
16. Tozzi T, Thornton LM, Mitchell J, Fichter MM, Klump KL, Lilenfeld LR, et al. Features associated with laxative abuse in individuals with eating disorders. Psychosomatic Medicine 2006;68(3):470-477.
17. Vanderperren B, Rizzo M, Angenot L, Haufroid V, Jadoul M, Hantson P. Acute liver failure with renal impairment related to the abuse of senna anthraquinone glycosides. Annals of Pharmacotherapy 2005;39(7-8):1353-1357.
18. Crow S. Medical complications of eating disorders. In: Wonderlich S, Mitchell J, de Zwaan M, Steiger H, editors. Eating Disorders Review, Part 1. Abingdon, U.K.: Radcliffe Publishing Ltd.; 2005. p. 127-136.
19. Liyanage CRDG, Kodali V. Bulk muscles, loose cables BMJ Case Reports 2014:1-2.
20. Li N, Hauser R, Holford T, Zhu Y, Zhang Y, Bassig BA, et al. Muscle-building supplement use and increased risk of testicular germ cell cancer in men from Connecticut and Massachusetts. British Journal of Cancer 2015;112(7):1247-1250.

21. Corazza O, Martinotti G, Santacroce R, Chillemi E, Di Giannantonio M, Schifano F, et al. Sexual enhancement products for sale online: Raising awareness of the psychoactive effects of yohimbine, maca, horny goit weed, and ginko biloba BioMed Research International 2014;2014:1-13.

22. Eisenberg ME, Wall M, Neumark-Sztainer D. Muscle-enhancing behaviors among adolescent girls and boys. Pediatrics 2012;130(6):1019-1026.

23. Kakinami L, Gauvin L, Barnett TA, Paradis G. Trying to lose weight: The association of income and age to weight-loss strategies in the U.S. American Journal of Preventive Medicine 2014;46(6):585-592

24. Pillitteri JL, Shiffman S, Rohay JM, Harkins AM, Burton SL, Wadden TA. Use of dietary supplements for weight loss in the United States: Results of a national survey. Obesity 2008;16:790-796.

25. Nielsen/IRi. National Consumer Panel. 2012. URL: http://www.ncppanel.com/content/ncp/ncphome.html. Date Accessed: March 8, 2017.

26. Cohen PA. Hazards of hindsight -- monitoring the safety of nutritional supplements. New England Journal of Medicine 2014;370(14):1277-1280.

27. Pomeranz JL, Barbosa G, Killian C, Austin SB. The dangerous mix of adolescents and dietary supplements for weight loss and muscle building: Legal strategies for state action. Journal of Public Health Management and Practice 2015;21(5):496-503.
