Light dark photon and fermionic dark radiation for the Hubble constant and the structure formation

P. Ko and Yong Tang
School of Physics, Korea Institute for Advanced Study, Seoul 02455, South Korea
(Dated: October 6, 2016)

Motivated by the tensions in the Hubble constant \(H_0 \) and the structure growth \(\sigma_8 \) between Planck results and other low redshift measurements, we discuss some cosmological effects of a dark sector model in which dark matter (DM) interacts with fermionic dark radiation (DR) through a light gauge boson (dark photon). Such kind of models are very generic in particle physics with a dark sector with dark gauge symmetries. The effective number of neutrinos is increased by \(\delta N_{\text{eff}} \sim 0.5 \) due to light dark photon and fermionic DR, thereby resolving the conflicts in \(H_0 \). The elastic scattering between DM and DR induces suppression for DM’s density perturbation, but without acoustic oscillations. For weakly-interacting DM around 100GeV, the new gauge coupling should be \(\sim 10^{-4} \) to have sizable effect on matter power spectrum in order to relax the tension in \(\sigma_8 \).

INTRODUCTION

It has been established that about 83\% of matter content (\(\Omega_m = 0.3065 \pm 0.0072 \)) [1] in our universe is composed of dark matter (DM). The standard cold DM (CDM) together with cosmological constant \(\Lambda \), \(\Lambda \)CDM model, is very compelling and convincing to explain our current observations. Despite of this remarkable success, we are still struggling to disentangle the particle identities of DM since all the confirmed evidence for DM come from gravitational interaction of DM. Any unexpected signatures in astrophysics, cosmology and particle physics may help us to better understand particle physics nature of DM.

Meanwhile, there are still some persistent tensions in the measurement of the Hubble constant \(H_0 \) and the structure growth rate \(\sigma_8 \) (the amplitude of matter fluctuations at scale around 8 Mpc). The latest analysis [2] of Hubble Space Telescope (HST) data gives \(H_0 = 73.24 \pm 1.74 \text{km s}^{-1}\text{Mpc}^{-1} \), which is about 3.4\(\sigma \) higher than the value given by Planck [1] within the \(\Lambda \)CDM model. Also, Planck data yields \(\sigma_8 = 0.815 \pm 0.009 \) which is relatively larger than the low redshift measurements, such as weak lensing survey CFHTLenS [3], \(\sigma_8(\Omega_m/0.27)^{0.46} = 0.774 \pm 0.040 \).

The above tensions could be due to systematic uncertainties, or they may indicate new physics model beyond the standard \(\Lambda \)CDM. For example, increasing the effective number of neutrinos by \(\delta N_{\text{eff}} \simeq 0.4 - 1 \) with dark radiation (DR) could resolve the conflict between Planck and HST data [2], which, however, unfortunately would give an even larger \(\sigma_8 \). Or it is possible to extend the six-parameter \(\Lambda \)CDM with varying dark energy, dark matter, neutrino mass, running spectral index, and so on [4–10], to relax these tensions in \(H_0 \) and \(\sigma_8 \).

In this letter, we shall explore a dark sector model in which DM interacts with DR through light dark photon and address the above issues. The interaction between DM and DR causes a suppression of the matter power spectrum through diffusion or collisional damping which can give a smaller \(\sigma_8 \). Also the natural presence of DR would relieve the tension between HST and Planck.

This paper is organized as following. Firstly, we shall introduce our model setup with the conventions and the relevant parameters. Then we discuss the corresponding phenomenologies, DM relic density, prediction of \(\delta N_{\text{eff}} \) and the DM-DR scattering with late kinetic decoupling. Later, we show some numerical results on the matter power spectrum. Finally, we give our summary.

THE MODEL

We introduce a dark sector with a new \(U(1) \) dark gauge symmetry and coupling \(g_X \), dark photon field \(V_\mu \), scalar \(\Phi \), massive fermion \(\chi \) (DM) and massless \(\psi \) (DR). All these new fields are living in the dark sector, thereby being SM gauge singlets. We assign \(U(1)- \)charged scalar with nonzero VEV. See Ref. [11] for constraints on kinetic mixing.

\[L = - \frac{1}{4} V_\mu V^{\mu\nu} + D_\mu \Phi D^\mu \Phi + \bar{\chi} (i D - m_\chi) \chi + \bar{\psi} i D \psi - \left(y_\chi \Phi^1 \bar{\chi} \chi + y_\psi \Phi \bar{\psi} N + h.c. \right) - V(\Phi, H), \]

where \(N \) is the singlet right-handed (RH) neutrino which couples to the left-handed (LH) neutrinos in the SM through usual Yukawa terms, the superscript ‘c’ stands for charge conjugate, the covariant derivative is defined as \(D_\mu \equiv (\partial_\mu - i q_g g^2 V_\mu) f \), \(D^\mu \equiv \gamma^\mu D_\mu \) and \(V^{\mu\nu} = D_\mu V_\nu - \partial_\nu V_\mu \). Note that \(\Phi \) does not develop a vacuum expectation value (VEV) and this new \(U(1) \) is a good symmetry. We could introduce a mass for \(V_\mu \) and possible gauge kinetic mixing term \(^1\), which however is not essential for our discussions, and which we shall come back to later.

\(^1\) This could be achieved by a nonzero VEV of \(\Phi \), or by introducing another \(U(1) \)-charged scalar with nonzero VEV. See Ref. [11] for constraints on kinetic mixing.
Except for the Higgs and Yukawa terms, our model is very similar to the structure in standard model. Some simple variants of this model is equally suited for our interests in the paper. For example, Φ can be a singlet and couples as $y_\chi \Phi \bar{\chi} + y_\psi \Phi \bar{\psi}$. In any case Φ is not stable and can decay into ψ, and ψ can be thermalized with χ, Φ and V_{μ} through the Yukawa couplings with Φ.

We note that a similar setup was discussed in Ref. [10], where the authors assumed $g_\chi = 1 \neq g_\psi$, but did not consider possible Yukawa interactions between ψ with the Φ. Yukawa interaction among ϕ and χ can lead to thermalization of ψ at high temperature, which is different from thermalization mechanism at lower temperature through dark gauge interactions considered in Ref. [10], and the resulting δN_{eff} would be different.

Finally, the connection to the SM sector can be established in a straightforward manner through the Higgs portal term, $V \supset \lambda_{\Phi H} \Phi \Phi H^* H$, where H is the SM Higgs doublet. Simple estimation shows that Φ and dark sector can be in thermal equilibrium with SM particles when the Universe is around TeV if $|\lambda_{\Phi H}| \gtrsim 10^{-6}$.

PHENOMENOLOGY

Now, let us discuss some relevant phenomenology and constraints, based on the Lagrangian of Eq. (1).

Relic density. For thermal DM χ and $m_\chi > m_\Phi$, its relic abundance is mostly determined by the annihilation process $\chi + \bar{\chi} \rightarrow \Phi + \Phi$. At tree-level approximation, we have the thermal cross section

$$
\langle \sigma v \rangle \sim \frac{y_\chi^4}{16\pi m_\chi^2},
$$

and the total relic density of χ and $\bar{\chi}$ would be

$$
\Omega h^2 \sim 0.1 \times \left(\frac{y_\chi}{0.7} \right)^4 \left(\frac{m_\chi}{\text{TeV}} \right)^2.
$$

The value of y_χ determined by Eq. (3) can be treated as the upper limit for y_χ, since if there were other annihilation processes contributing to the depletion of χ particles, then y_χ could be smaller. For instance, $\chi + \bar{\chi} \rightarrow \psi + \bar{\psi}$ can be important if $y_\psi > y_\chi$. However, for our interests in this paper, the qualitative relation above between y_χ and m_χ would be sufficient, which means that for TeV-scale χ it is expected to have $y_\chi \sim 0.7$ to get the correct relic density.

DM χ’s self-scattering through exchanging Φ can be sizable if the mass of Φ (m_Φ) is small, which is the central topics in recent self-interacting dark matter scenarios, (see Refs. [12–49] for examples). In general, for $\mathcal{O}(100\text{GeV})$ DM χ, Φ with $m_\Phi \sim \mathcal{O}(0.1\text{GeV})$ would be able to provide large self-interaction to alleviate the so-called small scale problems, namely “cusp-vs-core” and “too-big-to-fail” [50].

Dark radiation: V_{μ} and ψ in the thermal bath with temperature T_D will contribute as dark radiation by shifting the N_{eff} with

$$
\delta N_{\text{eff}} = \left(\frac{8}{7} + 2 \right) \left[\frac{g_{s*}^D(T_{\nu})}{g_{s*}^D(T_D)} \right]^2 \left[\frac{g_{s*}^D(T_D)}{g_{s*}^D(T_{\text{dec}})} \right]^2,
$$

where T_{ν} is neutrino’s temperature, T_{dec} for the temperature at which dark sector is kinetically decoupled from standard model thermal bath. g_{s*} counts the effective number of degrees of freedom (dof) for entropy density in standard model [51], or particles that are in kinetic equilibrium with neutrinos, g_{s*}^D denotes the effective number of dof that are in kinetic equilibrium with V_{μ}.

Note that ψ can be in thermal equilibrium with V_{μ} and Φ at high temperature due to the Yukawa interactions because it can leads to an interacting rate $\Gamma_\psi \propto g_\psi^2 T^5/m_\psi^4$. However, the gauge interaction gives rise to $\Gamma_{\psi^*} \propto g_X^2 T$ and g_X could be too small to keep ψ in equilibrium with V_{μ} and Φ at high temperature, which results in a smaller δN_{eff} as discussed in Ref. [10].

The above formula, Eq. 4, is valid in general contexts. In the literature, the factor $g_{s*}^D(T_{\text{dec}})/g_{s*}^D(T_D)$ in the bracket is usually ignored, which simply neglects the possible changes of dof in the dark sector. However, as shown above, this ignorance is valid only if $g_{s*}^D(T_{\text{dec}}) \approx g_{s*}^D(T_D)$ which is not always the case. For instance, when $T_{\text{dec}} \gg m_\chi \approx 173\text{GeV}$ for $|\lambda_{\Phi H}| \sim 10^{-6}$, we can estimate δN_{eff} at the BBN epoch as

$$
\delta N_{\text{eff}} = \left(\frac{22}{7} \right) \left[\frac{43/4}{427/4} \right] \frac{11}{9/2} \approx 0.53,
$$

which shows that $g_{s*}^D(T_{\text{dec}}) = \frac{22}{9} g_{s*}^D(T_D)$ in our case. The lower bound can be obtained $\delta N_{\text{eff}} \approx 0.21$ when $g_{s*}^D(T_{\text{dec}}) = g_{s*}^D(T_D)$.

We can also get the temperature ratio for V_{μ} to that of neutrino ν and photon γ,

$$
T_D \approx 0.64 T_{\nu} = 0.46 T_{\gamma},
$$

where we have used $T_{\nu} = (4/11)^{1/3} T_{\gamma}$.

Based on the above discussion, the total δN_{eff} in our model is predicted to be around 0.5, which lies in the preferred range for $\delta N_{\text{eff}} \approx 0.4-1$ to resolving the conflict between Planck and HST data [2]. One prediction of our model is that $\delta N_{\text{eff}} > 0.21$ which can be definitely either confirmed or excluded by next-generation CMB experiments.

χ-ψ (DM-DR) scattering: One of the key quantities for the structure formation is the elastic scattering cross section for $\chi + \psi \rightarrow \chi + \psi$, which would modify the cosmological evolutions for χ and ψ’s perturbations. More explicitly, similarly to the baryon-photon system [52], the Euler equations for χ and ψ would be approximately modified
structures (see also Refs. [47, 48] for general discussions). Ent temperature dependence and change even large scale acc tor can also be the scattered radiation for non-abelian spectrum at small scales. More interestingly, the medi-⟨ χ⟩ in the previous studies, only the cases for χ’s evolution has an impact on χ’s density perturbation through

\[\dot{\chi} = -\theta_\chi + 3\Phi, \]

where \(\Phi \) is the scalar perturbation in the metric within conformal Newtonian gauge. We shall show that the interaction between DM and DR cause suppression in the matter power spectrum through diffusion damping [55–57].

We illustrate the physical effect in Fig. 1. The upper panel shows the matter power spectrum \(P(k) \), solid (dashed) line for \(\Lambda \)CDM (interacting DM) case, and the lower panel shows the ratio. We have chosen \(m_\chi \simeq 100 \text{GeV} \) and \(g_\chi^2 \simeq 10^{-8} \). It can be clearly seen that the matter power spectrum is suppressed, therefore gives a smaller \(\sigma_8 \). For the parameters we used, the suppression is about 10% at \(k \mathbin{\sim} h/8 \text{Mpc} \), enough for relaxing the tension between Planck and weak lensing data. Unlike the scenarios [14–16, 58] where DM-DR scattering \(\langle \sigma \chi \rangle \) has positive-power dependence on the temperature, this model has negative-power dependence and predicts smooth suppression.

We take the central values of six parameters of \(\Lambda \)CDM from Planck [1].

\[\Omega_b h^2 = 0.02277, \Omega_c h^2 = 0.1184, \Omega_{\text{m}} = 1.04106, \]
\[\tau = 0.067, \ln (10^{10} A_s) = 3.064, n_s = 0.9681, \]

which gives \(\sigma_8 = 0.817 \) in vanilla \(\Lambda \)CDM cosmology. With the same input as above, now we take \(\delta N_{\text{eff}} \simeq 0.53, m_\chi \simeq 100 \text{GeV} \) and \(g_\chi^2 \simeq 10^{-8} \) in the interacting DM case, we have \(\sigma_8 \simeq 0.744 \) which is much closer to the value \(\sigma_8 \simeq 0.730 \) given by weak lensing survey CFHTLenS [3].

Dedicated analysis with Markov Chain Monte Carlo for statistical inference of the precise parameters is beyond our scope in this paper. However, we can understand the physics of collisional damping and roughly estimate the size of \(g_\chi \) by comparing \(\mathcal{H} \) and \(S^{-1}\dot{\mu} \) in Eq. (7),

\[\frac{S^{-1}\dot{\mu}}{\mathcal{H}} = \frac{S^{-1}n_\chi \langle \sigma \chi \nu \rangle}{\mathcal{H}/a} \sim \frac{T_D n_\psi \langle \sigma \chi \nu \rangle}{m_\chi H} \gtrsim 1, \]

where the Hubble parameter \(H \) is given by \(T^2/M_{\text{pl}} \) (\(M_{\text{pl}} \simeq 10^{18}\text{GeV} \)) in radiation-dominant era. Requiring the above inequality hold until matter-dominant time, we can obtain

\[g_\chi^2 \sim \left. \frac{T}{T_D} \left(\frac{m_\chi}{M_{\text{pl}}} \right)^{1/2} \right. \]

Since \(T/T_D \sim 2 \) as shown in Eq. (6), we would have \(g_\chi^2 \sim 10^{-8} \) for \(m_\chi \simeq 100 \text{GeV} \). It is also evident that

\[\langle \sigma \chi \nu \rangle \]

\[\mathcal{H} \]

\[S^{-1}\dot{\mu} \]

\[\mathcal{H}/a \]

\[\frac{T_D n_\psi \langle \sigma \chi \nu \rangle}{m_\chi H} \]

\[\gtrsim 1 \]

\[g_\chi^2 \]

\[\left. \frac{T}{T_D} \left(\frac{m_\chi}{M_{\text{pl}}} \right)^{1/2} \right. \]

\[T/T_D \sim 2 \]
increasing DM mass m_χ or deceasing DR temperature T_D would require large g_X.

From the above discussions, it is also clear that the new gauge boson V_μ does not have to be strictly massless. As long as its mass is much smaller than temperature T_D around radiation-matter equality time, say $m_V \ll 0.1\text{eV}$, our above discussions still hold. This can be easily achieved if the scalar Φ develops nonzero but tiny VEV, or if the dark photon gets massive by nonzero VEV of another $U(1)_X$-charged scalar with $U(1)_X$ charge different from Φ’s. There might be a slight change since V_μ then would decay into ψ pairs and modify the number of ψ in Eq. (12). Also the roles played by scalar and vector can be interchanged, namely scalar mediates DM-DR interaction and vector is responsible for the relic density.

Likewise the fermionic DR ψ needs not be strictly massless, and could get tiny mass $\lesssim 0.1\text{eV}$ to be still relativistic around the radiation-matter equality time. Then it would behave as a light sterile neutrino with dark interaction, which is still allowed by astrophysics or cosmology as long as the mixing with active neutrinos is small enough. DR can also be bosonic, see Refs. [10, 37, 59] for scalar and vector boson as examples.

The above mechanism can work for other DM-DR models as well. For example, dark matter can be a complex scalar X rather than a Dirac fermion. Here we present a local Z_3 scalar DM model originating from dark $U(1)_X$ gauge symmetry [13, 60], in which the dark Higgs ϕ_X has a dark charge 3 while DM X has a dark charge 1. Then the renormalizable Lagrangian involving these new fields is given by

$$\mathcal{L} = D_\mu X^\dagger D^\mu X + \bar{\psi} i \gamma \mu \psi - \frac{1}{4} V_{\mu
u} V^{\mu
u} + D_\mu \phi_X D^\mu \phi_X - V,$$

where the scalar potential V is given by

$$V = -\mu_\phi^2 \phi_X^\dagger \phi_X + \lambda_\phi \left(\phi_X^\dagger \phi_X \right)^2 + \mu_3^2 X^\dagger X + \lambda_X \left(X^\dagger X \right)^2 + \lambda_H X^\dagger X H^\dagger H + \left(\lambda_3 X^3 \phi_X^\dagger + H.c. \right),$$

where H is the SM Higgs doublet. After ϕ_X gets a small VEV, we have a cubic term X^3 with Z_3 symmetry which protects X’s stability even in the presence of nonrenormalizable higher dimensional operators. X-ψ’s scattering and other effects are similar to what we discussed above, except that now new Higgs-portal term can provide direct detection signals.

DISCUSSION

Besides the thermal history and δN_{eff}, let us know how to discuss some other differences from the $U(1)$ scenario sketched briefly in Ref. [10] which is actually mostly devoted to electroweak-charged DM with hidden non-Abelian gauge interaction. Based on what we understand from Ref. [10], we list some differences below:

1. The Dirac DM candidate in Ref. [10] is a chiral fermion, so it is necessary to introduce other chiral fermions to cancel the gauge anomalies. It then can be interpreted that the model presented in Ref. [10] is an effective theory. In our proposal, however, the DM candidate is vector-like, so the theory is automatically anomaly-free and therefore can be an ultraviolet complete model.

2. Due to the electroweak interaction of DM particle in Ref. [10], the indirect searches also actually put stringent constraints on the mass of DM $\gtrsim \mathcal{O}(\text{TeV})$ due to
the gamma-rays from the annihilation of DM into electroweak bosons. While in our model, the dominant channel is $\chi \chi \rightarrow \Phi + \Phi^*$, followed by Φ’s decay into dark radiation ψ and right-handed neutrino N. N can mix with and oscillate into left-handed neutrino ν_4. Since the current constraint from IceCube neutrino searches is much weaker than gamma-ray’s limit, the range of DM’s mass in our model can be significantly larger.

3. One more difference is about exotic decay of SM Higgs h. If the scalar ϕ’s mass in our model is less than $M_0/2 \approx 62.5$GeV, the SM Higgs boson h can decay into $\Phi + \Phi^*$ and give invisible decay channel of h. The current limit can actually constrain $\lambda_{hH} \lesssim 10^{-3}$. While in Ref. [10], no invisible decay channel is expected.

SUMMARY

In this paper, we have investigated a model for a dark sector where dark matter (DM) interacts with fermionic dark radiation (DR) through a light gauge boson (dark photon) in order to resolve some tensions in cosmological data. The new light gauge boson (dark photon) plays a key role both in the DM-DR elastic scattering and in the late kinetic decoupling. This simple model can provide the right amount of DR ($\delta N_{\text{eff}} \sim 0.5$), thereby relaxing the tension in Hubble constant H_0 between Planck and HST data. Also the elastic scattering between DM and DR causes the collisional damping and has impact on the structure growth rate, which leads to a smaller σ_8 and relaxes the conflicts between Planck and weak lensing measurement. Finally the light fermionic DR ψ can be interpreted as a sterile neutrino in some models. And all these niceties rely on the underlying local dark gauge symmetry.

This work is supported in part by National Research Foundation of Korea (NRF) Research Grant NRF-2015R1A2A1A05001869 (PK,YT), and by the NRF grant funded by the Korea government (MSIP) (No. 2009-0083526) through Korea Neutrino Research Center at Seoul National University (PK).

[1] Planck Collaboration, P. Ade et al., Planck 2015 results. XIII. Cosmological parameters, [arXiv:1502.01589].
[2] A. G. Riess et al., A 2.4% Determination of the Local Value of the Hubble Constant, [arXiv:1604.01424].
[3] C. Heymans et al., CFHTLenS: The Canada-France-Hawaii Telescope Lensing Survey, Mon. Not. Roy. Astron. Soc. 427 (2012) 146 [arXiv:1210.0032].
[4] A. Pourtsidou and T. Tram, Reconciling CMB and structure growth measurements with dark energy interactions, [arXiv:1604.04222].
[5] E. Di Valentino, A. Melchiorri, and J. Silk, Reconciling Planck with the local value of H_0 in extended parameter space, [arXiv:1606.00634].
[6] H. Qing-Guo and W. Ke, How the Dark Energy Can Reconcile Planck with Local Determination of the Hubble Constant, [arXiv:1606.05966].
[7] M. Archidiacono, S. Gariazzo, C. Giunti, S. Hannestad, R. Hansen, M. Lavender, and T. Tram, Pseudoscalar-sterile neutrino interactions: reconciling the cosmos with neutrino oscillations, [arXiv:1606.07673].
[8] M. Wyman, D. H. Rudd, R. A. Vanderveld, and W. Hu, Neutrinos Help Reconcile Planck Measurements with the Local Universe, Phys. Rev. Lett. 112 no. 5, (2014) 051302 [arXiv:1307.7715].
[9] J.-F. Zhang, Y.-H. Li, and X. Zhang, Measuring growth index in a universe with sterile neutrinos, Phys. Lett. B739 (2014) 102–105 [arXiv:1408.4603].
[10] J. Lesgourgues, G. Marques-Tavares, and M. Schmaltz, Evidence for dark matter interactions in cosmological precision data?, JCAP 1602 no. 02, (2016) 037 [arXiv:1507.04351]; M. A. Buen-Abad, G. Marques-Tavares and M. Schmaltz, Phys. Rev. D 92, no. 2, 023531 (2015) doi:10.1103/PhysRevD.92.023531 [arXiv:1505.03542 [hep-ph]].
[11] R. Essig et al., arXiv:1311.0029 [hep-ph].
[12] L. G. van den Aarssen, T. Bringmann, and C. Pifommer, Is dark matter with long-range interactions a solution to all small-scale problems of ΛCDM cosmology?, Phys. Rev. Lett. 109 (2012) 231301 [arXiv:1205.5809].
[13] P. Ko and Y. Tang, Self-interacting scalar dark matter with local Z_2 symmetry, JCAP 1405 (2014) 047 [arXiv:1402.6449].
[14] T. Bringmann, J. Hasenkamp, and J. Kersten, Tight bonds between sterile neutrinos and dark matter, JCAP 1407 (2014) 042 [arXiv:1312.4947].
[15] P. Ko and Y. Tang, νAMD M: A Model for Sterile Neutrino and Dark Matter Reconciles Cosmological and Neutrino Oscillation Data after BICEP2, Phys. Lett. B739 (2014) 62–67 [arXiv:1404.0236].
[16] X. Chu and B. Dasgupta, Dark Radiation Alleviates Problems with Dark Matter Halos, Phys. Rev. Lett. 113 no. 16, (2014) 161301 [arXiv:1404.6127].
[17] B. Bertoni, S. Ipek, D. McKeen, and A. E. Nelson, Constraints and consequences of reducing small scale structure via large dark matter-neutrino interactions, JHEP 04 (2015) 170 [arXiv:1412.3113].
[18] X. Chu, B. Dasgupta, and J. Kopp, Sterile neutrinos with secret interactionslasting friendship with cosmology, JCAP 1510 no. 10, (2015) 011 [arXiv:1505.02795].
[19] A. Arhrib, C. Bhm, E. Ma, and T.-C. Yuan, Radiative Model of Neutrino Mass with Neutrino Interacting MeV Dark Matter, JCAP 1604 no. 04, (2016) 049 [arXiv:1512.08796].
[20] Z. Kang, View FmP miracle (by scale invariance) la self-interaction, Phys. Lett. B751 (2015) 201–204 [arXiv:1505.06554].
[21] K. Kainulainen, K. Tuominen, and V. Vaskonen, Self-interacting dark matter and cosmology of a light scalar mediator, [arXiv:1507.04931].
[22] N. Bernal, C. García-Cely, and R. Rosenfeld, WIMP and SIMP Dark Matter from the Spontaneous Breaking of a Global Group, JCAP 1504 no. 04, (2015) 012 [arXiv:1501.01973].
[23] S.-M. Choi and H. M. Lee, SIMP dark matter with gauged Z_2 symmetry, JHEP 09 (2015) 063 [arXiv:1505.00960].
[24] E. Ma, Radiative Mixing of the One Higgs Boson and Emergent Self-Interacting Dark Matter, Phys. Lett. B754 (2016) 114 [arXiv:1506.06658].
[25] Z. Chacko, Y. Cui, S. Hong, and T. Okui, Hidden dark matter sector, dark radiation, and the CMB, Phys. Rev. D92 (2015) 055033 [arXiv:1505.04192].
[26] S. Baek, P. Ko, and W.-I. Park, Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, JCAP 1410 no. 10, (2014) 067 [arXiv:1311.1035].
[27] M. A. Buen-Abad, G. Marques-Tavares, and M. Schmitz, Non-Abelian dark matter and dark radiation, Phys. Rev. D92 no. 2, (2015) 023531 [arXiv:1506.03542].
[28] M. Heikinheimo, M. Raidal, C. Spethmann, and H. Veerome, Dark matter self-interactions via collisionless shocks in cluster mergers, Phys. Lett. B749 (2015) 236–241 [arXiv:1504.04371].
[29] W.-F. Chang and J. N. Ng, Renormalization Group Study of the Minimal Majoron Dark Radiation and Dark Matter Model, [arXiv:1604.02017].
[30] P. Ko and Y. Tang, AMS02 positron excess from decaying fermion DM with local dark gauge symmetry, Phys. Lett. B741 (2015) 284–289 [arXiv:1410.7657].
[31] P. Ko and Y. Tang, IceCube Events from Heavy DM decays through the Right-handed Neutrino Portal, Phys. Lett. B751 (2015) 81–88 [arXiv:1508.02600].
[32] T. M. Cline, Z. Liu, G. Moore, and W. Xue, Composite strongly interacting dark matter, Phys. Rev. D90 no. 1, (2014) 015023 [arXiv:1312.3325].
[33] R. Foot and R. R. Volkas, Spheroïdal galactic halos and mirror dark matter, Phys. Rev. D70 (2004) 123508 [astro-ph/0407522].
[34] P.-Y. Cyr-Racine and K. Sigurdson, Cosmology of atomic dark matter, Phys. Rev. D87 no. 10, (2013) 103515 [arXiv:1209.5752].
[35] K. K. Boddy, J. L. Feng, M. Kaplinghat, and T. M. P. Tait, Self-Interacting Dark Matter from a Non-Abelian Hidden Sector, Phys. Rev. D89 no. 11, (2014) 115017 [arXiv:1402.3629].
[36] H.-J. Kang and W. Wang, Extending the MSSM with singlet higgs and right handed neutrino for the self-interacting Dark Matter, [arXiv:1601.00373].
[37] Y. Tang, Interacting Scalar Radiation and Dark Matter in Cosmology, Phys. Lett. B757 (2016) 387–392 [arXiv:1603.00165].
[38] J. L. Feng, M. Kaplinghat, and H.-B. Yu, Halo Shape and Relic Density Exclusions of Sommerfeld-Enhanced Dark Matter Explanations of Cosmic Ray Excesses, Phys. Rev. Lett. 104 (2010) 151301 [arXiv:0911.0422].
[39] M. R. Buckley and P. J. Fox, Dark Matter Self-Interactions and Light Force Carriers, Phys. Rev. D81 (2010) 083522 [arXiv:0911.3898].
[40] A. Loeb and N. Weiner, Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential, Phys. Rev. Lett. 106 (2011) 171302 [arXiv:1011.6374].
[41] S. Tulin, H.-B. Yu, and K. M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure, Phys. Rev. D87 no. 11, (2013) 115007 [arXiv:1302.3898].
[42] K. Petraki, L. Pearce, and A. Kusenko, Self-interacting asymmetric dark matter coupled to a light massive dark photon, JCAP 1407 (2014) 039 [arXiv:1403.1077].
[43] M. R. Buckley, J. Zavala, F.-Y. Cyr-Racine, K. Sigurdson, and M. Vogelsberger, Scattering, Damping, and Acoustic Oscillations: Simulating the Structure of Dark Matter Halos with Relativistic Force Carriers, Phys. Rev. D90 no. 4, (2014) 043524 [arXiv:1405.2076].
[44] E. Del Nobile, M. Kaplinghat, and H.-B. Yu, Direct Detection Signatures of Self-Interacting Dark Matter with a Light Mediator, JCAP 1510 no. 10, (2015) 055 [arXiv:1507.04007].
[45] P.-Y. Cyr-Racine, K. Sigurdson, J. Zavala, T. Bringmann, M. Vogelsberger, and C. Pfrommer, ETHOS - An Effective Theory of Structure Formation: From dark particle physics to the matter distribution of the Universe, [arXiv:1512.05344].
[46] N. Bernal, X. Chu, C. Garcia-Cely, T. Hambly, and B. Zaldiviar, Production Regimes for Self-Interacting Dark Matter, [arXiv:1510.08063].
[47] T. Binder, L. Covi, A. Kamada, H. Murayama, T. Takahashi, and N. Yoshida, Matter Power Spectrum in Hidden Neutrino Interacting Dark Matter Models: A Closer Look at the Collission term, [arXiv:1602.07624].
[48] T. Bringmann, H. T. Ihle, J. Kersten, and P. Walia, Suppressing structure formation at dwarf galaxy scales and below: late kinetic decoupling as a compelling alternative to warm dark matter, [arXiv:1603.04886].
[49] C.-Q. Geng, L.-H. Tsai, and X. Zhang, Dark radiation from a unified dark fluid model, PTEP 2014 no. 6, (2014) 063E01 [arXiv:1306.1910].
[50] D. H. Weinberg, J. S. Bullock, F. Governato, R. K. de Naray, and A. H. G. Peter, Cold dark matter: controversies on small scales, [arXiv:1306.0913].
[51] Particle Data Group , K. A. Olive et al., Review of Particle Physics, Chin. Phys. C38 (2014) 090001.
[52] C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J. 455 (1995) 7–25 [astro-ph/9506072].
[53] R. J. Wilkinson, C. Boehm, and J. Lesgourgues, Constraining Dark Matter-Neutrino Interactions using the CMB and Large-Scale Structure, JCAP 1405 (2014) 011 [arXiv:1401.7597].
[54] D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP 1107 (2011) 034.
[55] C. Boehm and R. Schaeffer, Constraints on dark matter interactions from structure formation: Damping lengths, Astron. Astrophys. 438 (2005) 419–442.
[56] A. M. Green, S. Hofmann, and D. J. Schwarz, The First wimpy halos, JCAP 0508 (2005) 003.
[57] A. Loeb and M. Zaldarriaga, The Small-scale power spectrum of cold dark matter, Phys. Rev. D71 (2005) 103520 [astro-ph/0504112].
[58] P.-Y. Cyr-Racine, R. de Putter, A. Raccanelli, and K. Sigurdson, Constraints on Large-Scale Dark Acoustic Oscillations from Cosmology, Phys. Rev. D89 no. 6, (2014) 063517 [arXiv:1310.3278].
[59] K. S. Jeong and F. Takahashi, Phys. Lett. B 725, 134 (2013) [arXiv:1305.6521 [hep-ph]].
[60] P. Ko and Y. Tang, JCAP 1501, 023 (2015) [arXiv:1407.5492 [hep-ph]].