The flora of the Batumi landfill (Adjara, Georgia)

Irakli Sh. MIKELADZE¹, Aleksandre Sh. SHARABIDZE²

¹Institute of Phytopathology and Biodiversity, Shota Rustaveli State University of Batumi
6200 Kobuleti, Georgia
irakli.mikeladze@bsu.edu.ge

²Department of Biology, Shota Rustaveli State University of Batumi
6010 Batumi, Georgia
sharabidze.a@gmail.com

Abstract. Results of floristic research conducted within the territory of the Batumi landfill (Adjara, Georgia) are presented. The total area of the site is about 20 hectares, of which 10 hectares are active and the remaining part was closed in the beginning of the 21st century. In the closed area, the processes of formation of stabilized plant communities and spontaneous vegetation successions are going on. As a result of the survey, we revealed 244 species of vascular plants belonging to 163 genera of 59 families. Among them, 86 species are considered native and 158 species are alien. Among the listed species, 94 are representatives of the ruderal flora and others are species characteristic for various other habitats.

Keywords: Adjara, alien flora, Batumi, landfill, life forms, ruderal species

Supplementary Material. Electronic Supplement (Table E1, e1–e7) is available in the online version of this article at: https://ukrbotj.co.ua/archive/77/6/428

Submitted 03 September 2019. Published 24 December 2020

Introduction

There are no present-day local floras in the world that have not been exposed to at least some, direct or indirect, anthropogenic impact. The anthropogenic transformation of vegetation covers all territories where human activities are manifested even to a minimal extent. As a result of the global anthropogenic impact, technogenic ecotopes are formed; those ecotopes have no natural analogues and they are often results of urbanization and include urban landscapes inhabited by species of the urban flora, ruderal flora, etc.

The urbanization index in Georgia is currently 53%. Among the cities and towns of Georgia, the city of Batumi is characterized by the fast urban growth and development.

In the middle of the 20th century the population of Batumi, according to the official data, was only slightly more than 82 thousand inhabitants. However, at the beginning of the 21st century it reached 120 thousand, and by 2018 the current estimate is ca. 163 thousand people or, according to unofficial data, even more. With the increase of its population, the city area was growing as well.
From the beginning of the 21st century, various construction activities, settlement and urban development of new territories continued in the Adjara seaside, accompanied by establishment, reconstruction and/or development of parks, gardens, and recreational places. For construction of residential buildings, shore protection works, other infrastructural and development projects, the construction materials are usually transported from one to another district of the city; the materials and goods are also imported from foreign countries. Most of ornamental plants (including their seeds and other planting material) are imported from abroad, which often results in unintentional introduction of alien weedy species, many of which are potential invaders. All of this adds to import of plants by the horticulturalists and plant lovers or the entrepreneurs for ornamental or production purposes; those plants spread in natural, disturbed, and artificial habitats, such as abandoned construction areas, road sides, streams and canals, and so on.

The city of Batumi and its adjacent areas play an important role in the processes of immigration and spread of alien plants in the region. The city is an open gateway between the eastern and western countries. It is a trade and transportation hub between Europe and Asia, from where different goods are carried in and through Georgia. The famous Batumi Botanical Garden, established in the 1880s and officially opened in 1912, is the major horticultural and plant research center of the Caucasus; it also played and continues to play an exceptionally important role in both deliberate and unintentional plant introduction, acclimation and naturalization in the region.

Other areas contributing to the alien plants diversity in the Batumi area is the Batumi Boulevard stretching along the Black Sea shore; it is a green area with the century-long history and rich introduced flora; together with other parks and green areas it also contributes to immigration and alien plants.

All those factors mentioned above promote intentional or unintentional spread of alien plants in the city territory and beyond. Many of those plants eventually find their way to the Batumi landfill territory with its peculiar transformed plant communities. In this area alien species often survive, proliferate, and form stable populations, in turn enriching the surrounding areas with unwanted aliens. Thus, our objective for the present research was to study the vegetation in the inactive, closed landfill area and its adjacent territory.

Materials and methods

The study site is located in the southwestern part of Georgia, in the floristic region of Adjara, 10–12 km from Batumi, on the right bank of the Chorokhi River, mainly at elevations of 1–5 m above sea level, between 41° 36.022’N and 41° 35.298’E. The total area of the Batumi landfill is about 20 hectares, of which 10 hectares are occupied by the actively used area, while other areas are now closed for waste dumping; that results in ongoing processes of formation of stabilized plant communities (Fig. 1, 2).

The landfill has been operating since the last century (officially established in the study site in 1965). Initially, the waste was only from the territory of Batumi, but during recent years other municipalities of Adjara have been added as customers of the landfill services. Almost all types of waste are found in this area, including household, construction, industrial waste, etc.

The climate of the study area is characterized by specific features and spatial variability. Seaside Adjara in general has a humid subtropical climate. During most of the year, western humid winds are dominant and only in winter months inland winds occurrences increase. The average annual temperature is +13°–15° C, while the coldest month's average temperature being +5.9–7.5 °C. Absolute temperatures rarely drop below –8°.

In the warmest months (July–August), the average temperature is +22–23 °C, the highest temperature reaching +39–40 °C. The average air humidity is 80–87% (Javakhishvili, 1926; Kordzakhia, 1961; Maruashvili, 1964; Nijaradze, 1978).

Investigation of the landfill flora was conducted during the period of 2015–2018. The main research method was the traditional route survey, which included plant description, photography, plant sampling, and laboratory processing, identification and herbarium preparation and curation. Laboratory activities were conducted in the Shota Rustaveli State University of Batumi, the Institute of Phytopathology and Biodiversity in Kobuleti.

Various floras and plant identification manuals and other scientific literature were used for identification of species: the identification manual of the Adjara flora (Dmitrieva, 1990a), manuals of the Georgian flora (Field guide..., 1964, 1969; Fischer et al., 2018) and contributions on the alien flora of Adjara (Davitadze, 2001, 2002; Kikodze et al., 2010; Mikeladze, 2013, 2017; Sharabidze et al., 2018). Online resources and databases on invasive species worldwide were also used (Elpel, 2013; GBD, 2007–onward). The classification
Fig. 1. Geographical position of the study site (investigated area)

Fig. 2. Typical plant communities in the closed area of the Batumi landfill
was checked according to the online databases of world plants (POWO, 2020–onward; WFO, 2020–onward). Life forms of plants were determined according to the Raunkiæra system (Raunkiæer, 1934). The origin of plant species is given following the flora of the Caucasus and other published and Internet resources (Takhtajan, 2003, 2006; etc.).

The time of the initial collection (first records) of non-native plants in the Adjara floristic district was determined following the herbarium specimens deposited in the Batumi Botanical Garden (BATU) and from various publications (Davitadze, 2001, 2002; Kikodze et al., 2010; Mikeladze, 2013, 2017; Sharabidze et al., 2018).

Results and discussion

After identification of the plant samples collected in the Batumi landfill, we registered totally 244 species of vascular plants that represent 59 families and 163 genera (Table E1). Cryptogamic vascular plants are represented by three species of horsetails (*Equisetum arvense* L., *E. palustre* L., *E. ramosissimum* L.). Naturalized ferns and gymnosperms have not been observed during the study period. Among angiosperms, monocotyledons and gymnosperms have not been observed during the study period. Among angiosperms, monocotyledons are represented by five or more species each (totally 63.86%), while dicotyledonous plants are represented by 43 species (17.62%) belonging to eight families.

Among the 59 families reported, 11 families are represented by five or more species each (totally 63.86%, 156 species). These families are listed in Table 1.

The remaining 48 families are represented collectively by 88 species; these families are *Convolvulaceae, Euphorbiaceae, Juncaceae, Malvaceae, Plantaginaceae, Rubiaceae* – each with four species; *Apiaceae, Commelinaceae, Equisetaceae, Onagraceae, Plantaginaceae, Scrophulariaceae, Typhaceae* – each with three species; *Adoxaceae, Araliaceae, Boraginaceae, Gentianaceae, Juglandaceae, Moraceae, Ranunculaceae, Salicaceae, Simaroubaceae, Violaceae, Verbenaceae* – each with two species. The families *Araceae, Balsaminaceae, Betulaceae, Caprifoliaceae, Cleomaceae, Cornaceae, Elaeagnaceae, Gentianaceae, Geraniaceae, Hypericaceae, Iridaceae, Lythraceae, Nyctaginaceae, Orobanchaceae, Papaveraceae, Phytolaccaceae, Platanaceae, Portulacaceae, Primulaceae, Sapindaceae, Saxifragaceae, Smilacaceae, Urticaceae, Vitaceae* are represented each by one species.

The best represented genera by their species number are: *Persicaria Mill.* (7 species); *Amaranthus L.*, *Solanum L.*, *Trifolium L.* (each with 5 species); *Artemisia L.*, *Carex L.*, *Rubus L.* (each with 4 species); *Cyperus L.*, *Equisetum L.*, *Erigeron L.*, *Euphorbia L.*, *Galium L.*, *Juncus L.*, *Mentha L.*, *Poa L.*, *Rumex L.*, *Senecio L.*, *Stellaria L.*, *Veronica L.*, *Xanthium L.* (each with 3 species).

Of the species registered in the Batumi landfill, 86 species (35.25%) are considered native and 158 species (64.75%) are aliens (introduced). Among aliens, 48 species are of East Asian origin, 34 species originated in Europe, 1 species is Australian, 13 – South American, 29 – North American, and 33 are Mediterranean ones (Fig. 3).

Our phytogeographical analysis demonstrated the largest number of East Asian species, which is due to many factors. In particular, those factors include similar climatic conditions (including high humidity, precipitation, favorable temperatures during the whole year, fertile soils, etc.). Also, it reflects the history of introduction of taxa for cultivation, as well as their associated weeds. For example, it is known that East Asia was considered among highest geographical priorities for introduction of plants in the Batumi Botanical Garden since its establishment. The species of the Mediterranean and European origin follow by their number, which is also partly determined by the phytogeographic structure of the Adjara flora.

The analysis of life forms of the Batumi landfill flora demonstrated the predominance of therophytes and hemicryptophytes. Therophytes (herbaceous annuals) are represented by 108 (44.26%) species. The second

Table 1. Families represented in the area by more than five species each

No	Families	Number of species	Species, %
1	Asteraceae/Compositae	43	17.62
2	Poaceae/Gramineae	22	9.01
3	Fabaceae/Leguminosae	18	7.37
4	Lamiaceae/Labiatae	13	5.32
5	Polygonaceae	12	4.91
6	Rosaceae	10	4.09
7	Cyperaceae	10	4.09
8	Amaranthaceae	9	3.68
9	Solanaceae	7	2.86
10	Brassicaceae	7	2.86
11	Caryophyllaceae	5	2.05
	Total in 11 families	156 species	63.86

place is occupied by hemicryptophytes with 60 species (26.10%) of mainly biennial and perennial herbaceous plants (Table 2).

The dominant positions of therophytes and hemicryptophytes are related to the peculiarities of the species composition of the local ruderal flora. Phanerophytes are quite diverse, out of 33 species 14 are local and 19 are of alien origin.

In the study area, phanerophytes usually flower, bear fruit, establish seedlings normally, and thus they are characterized by a complete cycle of development; sometimes they dominate in local plant communities.

Besides the typical ruderal species recorded in the Batumi landfill (inactive or closed area) we came across the species characteristic for various habitats, such as – forests, moist meadows, low and high mountain zones, etc. Out of 244 species, 94 are representatives of the ruderal flora (Tabl. E1).

Furthermore, a number of sub-spontaneously distributed cultivated species (occasional escapes, such as maize, beans, tomato, pumpkin, watermelon, melon and other crop plants) were also found. Usually such garden escapes or agricultural crops are only of ephemeral occurrence, not forming stable populations.

Conclusions

Among 244 species of 163 genera and 59 families registered to date in the Batumi landfill area, we have met species which are characteristic for different habitat of the region of Adjara. 94 species of plants (38.52% of the total species list) are species characteristic for ruderal habitats.

Cryptogamic plants are represented by 3 species of horsetails. Dicotyledonous plants are represented by 198 species and monocotyledons – by 43 species. Families represented by more than 10 species each are Asteraceae/Compositae, Poaceae/Gramineae, Fabaceae/Leguminosae, Lamiaceae/Labiatae, Polygonaceae, and Rosaceae.

The analysis of plants life forms registered in the on Batumi landfill demonstrated that therophytes form the dominant group (44.26%), followed by hemicryptophytes (63 species or 26.10%). The dominant positions of therophytes and hemicryptophytes are in accordance with their position in other ruderal floras.

Among the species, 86 are considered native and 158 are aliens. Among aliens, the largest group (in terms of the number of species) is comprised by plants of East Asian origin (48 species). That is due to similar climatic

Fig. 3. Groups of Batumi landfill plants by their origin

Life Form	Number of species	Species, %
Therophytes	108	44.26
Hemicryptophytes	63	26.10
Phanerophytes	33	13.52
Cryptophytes	25	10.49
Chamaephytes	13	5.35
Total	244	100

Table 2. Life forms of plants in the Batumi landfill flora
conditions of Adjara and many East Asian regions (including high humidity and precipitation, favorable temperatures during the whole year, fertile soils, etc.).

We understand that the list of species reliably registered to date in the Batumi landfill area is not complete and additional species (both alien and native ones) will be registered there in the future. Because of that we are planning to continue our surveys of the landfill flora, especially for monitoring invasive and potentially invasive species. The species list presented here will serve as a reference checklist reflecting the present state of our knowledge of the local flora; it will be amended and improved during the future research.

References

Davitadze M. 2001. Adventive flora of Adjara. Batumi: Batumi University Press, 198 pp. [დავითაძე მ. 2001. მუდმივი სამხრეთ ადვენტური ფლორა. საქართველოს მცენარეების მეცნიერებათა აკადემია. თბილისი. 198 გვ.].

Davitadze M. 2002. Biomorphological analysis to the flora of Adjara. Batumi: Batumi University Press, 215 pp. [დავითაძე მ. 2002. ცხოვრობის თავისუფლებათა კლასიფიკაციის ანალიზი. საქართველოს მცენარეების მეცნიერება. თბილისი. 215 გვ.].

Dmitrieva A.A. 1990a. Opredelitel rasteniy Adzharyi, vol. 1. Tbilisi: Metsniereba, 325 pp. [Дмитриева А.А. 1990. Определитель растений Аджарии, т. 1. Тбилиси. Мецниереба, 325 с.].

Dmitrieva A.A. 1990b. Opredelitel rasteniy Adzharyi, vol. 2. Tbilisi: Metsniereba, 278 pp. [Дмитриева А.А. 1990. Определитель растений Аджарии, т. 2. Тбилиси. Мецниереба, 278 с.].

Field guide to the flora of Georgia, vol. 1. 1964. Tbilisi: Metsniereba, 462 pp. [საქართველოს მცენარეთა მრავალფეროვნების შენარჩუნება. I. თბილისი, 462 გვ.].

Field guide to the flora of Georgia, vol. 2. 1969. Tbilisi: Metsniereba, 505 pp. [საქართველოს მცენარეთა მრავალფეროვნების შენარჩუნება. II. თბილისი, 505 გვ.].

Fischer E., Groger A., Lobin W. 2018. Illustrated Field Guide to the flora of Georgia (South Caucasus). In: Koblenz Geographical Colloquia, Series Biogeographical Monographs, vol. 3. Koblenz: Universität Koblenz-Landau, 830 pp.

GBD. Georgian Biodiversity Database. 2007–onward. Available at: http://www.biodiversity-georgia.net (Accessed 25 November 2019).

Javakhishvili A. 1926. Geography of Georgia, vol. 1. Tbilisi: Tbilisi State University, 305 pp. [ჯავახიშვილი ა. 1926. საქართველოს ფიზიკური გეოგრაფია. თბილისი, 305 გვ.].

Kikodze D., Memiadze N., Kharazishvili D., Manvelidze Z., Mueller-Shaerer H. 2010. The alien flora of Georgia. 2nd ed. Joint SNSF SCOPES and FOEN publication, 36 pp. [წითელი ფს. დოკუმენტური, ნ. კხარაზიშვილი, ჰ. მანველიძე, ჰ. მუელერ-შაერერ. 2010. საქართველოს არაადგილობრივი ფლორა. თბილისი, 36 გვ.].

Kordzakhia M. 1961. The climate of Georgia. Tbilisi: Georgian Academy of Sciences, 249 pp. [კორძახია მ. 1961. საქართველოს კლიმატი. თბილისი, 249 გვ.].

Maruashvili L. 1964. Physical geography of Georgia. Tbilisi: Tsodna, 343 pp. [მარუაშვილი ლ. 1964. საქართველოს ფიზიკური გეოგრაფია. თბილისი, 343 გვ.].

Mikeladze I., Davitadze M., Bolkvadze G., Metreveli M., Chagalidze R. 2013. In: The role of botanical garden in conservation of plant diversity, part 2. Batumi, pp. 111–113. [Miქელაძე ი., დავითაძე მ., ბოლქვაძე გ., მეტრეველი მ., ჩაგალიძე რ. 2013. ბოთანიკური ბაღების გრძელვა. ბათუმი, 111–113 გვ.].

Mikeladze I., Bolkvadze G., Metreveli M., Chagalidze R., Davitadze M., Sharabidze A. 2017. Brasilian Vervain (Verbena brasiliensis) in Colkheti flora. Annals of Agrarian Science, 15(2): 198–200. https://doi.org/10.1016/j. aasci.2017.05.013

Nijaradze N., Djibuti N. 1978. Adzhara. Batumi: Soviet Adjara Publisher, 178 pp. [ნიჯარაძე ნ., ჯიბუტი ნ. 1978. აჯარია. თბილისი, 178 გვ.].

POWO. Plants of the World Online. 2020–onward. Facilitated by the Royal Botanic Gardens, Kew. Available at: http://www.plantsoftheworldonline.org (Accessed 18 July 2020).

Raunkiær Ch. 1934. The life-forms of plants and their bearing on geography. In: The Life Forms of Plants and Statistical Plant Geography, being the collected papers of C. Raunkiær [transl. from Danish]. Oxford: Clarendon Press, pp. 2–104.

Sharabidze A., Mikeladze I., Gvarishvili N., Davitadze M. 2018. Invasion of foreign origin (Alien) woody plants in Seaside Adjara. Biological Forum – An International Journal 10(2): 109–113.

Takhtajan A.L. (ed.). 2003. Caucasian Flora Conspectus, vol. 1. St.Petersburg: St.Petersburg University Press, 204 pp. [Тахтаджян А.Л. (ред.). 2003. Конспект флоры Кавказа, т. 1. Санкт-Петербург: Изд-во Санкт-Петербургского университета, 204 с.].

Takhtajan A.L. (ed.). 2006. Caucasian Flora Conspectus, vol. 2. St.Petersburg: St.Petersburg University Press, 467 pp. [Тахтаджян А.Л. (ред.). 2006. Конспект флоры Кавказа, т. 2. Санкт-Петербург: Изд-во Санкт-Петербургского университета, 467 с.].

Elpel T.J. 2013. Botany in a day. The patterns method of plant identification. Pony: HOPS Press, LLC, 235 pp.

WFO. World Flora Online. 2020–onward. Available at: http://www.worldfloraonline.org (Accessed 25 November 2020).

Recommended for publication by M.V. Shevera
Table E1. A checklist of the Batumi landfill flora

No	Species	Families	Class	Origin	Ecological group	Life form	FRT
1	Abutilon theophrasti Medik.	Malvaceae	Eu	Mediterranean	R	Th	1940
2	Acacia dealbata Link	Leguminosae	Eu	Australia	F	Ph	2010
3	Acalypha australis L.	Euphorbiaceae	Eu	East Asia	R	Th	1926
4	Acer negundo L.	Sapindaceae	Eu	North America	R	Ph	2007
5	Ailanthus altissima (Mill.) Swingle	Simaroubaceae	Eu	East Asia	P	Ph	1927
6	Airea elegans Wild. ex Gaudin / Molineriella laevis (Brot.) Rouy.	Poaceae	Mo	Mediterranean	F	Th	1917
7	Ajuga reptans L.	Lamiaceae	Eu	Native	P	He	-
8	Alnus glutinosa subsp. barbata (C.A.Mey.) Yalt. (Alnus barbata C.A.Mey.)	Betulaceae	Eu	Native	F	Ph	-
9	Alocasia macrorrhizos (L.) G.Don	Araceae	Eu	East Asia	G	Cr	2017
10	Amaranthus albus L.	Amaranthaceae	Eu	North America	R	Th	1941
11	Amaranthus caudatus L.	Amaranthaceae	Eu	South America	R	Th	1917
12	Amaranthus deflexus L.	Amaranthaceae	Eu	South America	R	Th	1941
13	Amaranthus blitum (A. lividus L.)	Amaranthaceae	Eu	South America	R	Th	1938
14	Amaranthus retroflexus L.	Amaranthaceae	Eu	North America	R	Th	1941
15	Ambrosia artemisiifolia L.	Compositae	Eu	North America	R	Th	1938
16	Ammi visnaga (L.) Lam. / Visnaga daucoides Gaertn.	Apiaceae	Eu	Mediterranean	F	Th	1969
17	Amorpha fruticosa L.	Leguminosae	Eu	North America	F	Ph	1955
18	Angelica sylvestris L.	Apiaceae	Eu	Native	F	Cr	-
19	Anthemis cotula L.	Compositae	Eu	Europe	R	Th	1917
20	Arabis nova Vill. (A. auriculata Lam.)	Brassicaceae	Eu	Native	R	Th	-
21	Arctium lappa L.	Compositae	Eu	Europe	R	Th	1952
22	Artemisia absinthium L.	Compositae	Eu	Native	R	He	1920
23	Artemisia annua L.	Compositae	Eu	Mediterranean	R	Th	1960
24	Artemisia verlotiorum Lamotte (A. vulgaris auct. p.p., non L.)	Compositae	Eu	East Asia	R	He	2010
25	Artemisia vulgaris L.	Compositae	Eu	Mediterranean	R	He	1945
26	Arthraxon hispidus (Thunb.) Makino	Poaceae	Mo	East Asia	R	Th	1926
27	Atriplex tatarica L.	Amaranthaceae	Eu	Native	R	Th	1939
28	Bidens cernua L.	Compositae	Eu	Native	R	Th	-
29	Bifora radians M.Bieb. (Coriandrum radians (M.Bieb.) Prantl)	Compositae	Eu	Native	R	Th	-
30	Bothriochloa ischaemum (L.) Keng	Poaceae	Mo	Mediterranean	F	He	1919
31	Buddleja davidii Franch.	Scrophulariaceae	Eu	East Asia	R	Ph	2010
32	Calystegia sepium (L.) R.Br.	Convolvulaceae	Eu	Native	H	He	-
33	Calystegia soldanella (L.) R.Br.	Convolvulaceae	Eu	Native	H	He	-
No	Species	Families	Class	Origin	Ecological group	Life form	FRT
----	---	-------------------	-------	------------	------------------	-----------	------
34	Capsella bursa-pastoris (L.) Medik.	Brassicaceae	Eu	Native	R	He	-
35	Cardamine hirsuta L.	Brassicaceae	Eu	Europe	R	Th	1938
36	Cardamine parviflora L.	Brassicaceae	Eu	Native	R	Th	-
37	Cardamine quinquefolia (M.Bieb.) Schmalh.	Brassicaceae	Eu	Native	P	Th	-
38	Carex divisa Stokes	Cyperaceae	Mo	Native	P	Ch	-
39	Carex hirta L.	Cyperaceae	Mo	Native	H	Ch	-
40	Carex leporina L.	Cyperaceae	Mo	Native	H	Ch	-
41	Carex pendula Huds.	Cyperaceae	Mo	Native	H	Ch	-
42	Carya cordiformis (Wangenhi.) K.Koch	Juglandaceae	Eu	East Asia	F	Ph	2000
43	Carum carvi L.	Compositae	Eu	Native	G	He	-
44	Centaurea oylepis (Wimm. & Grab.) Hayek	Compositae	Eu	Mediterranean	P	Th	1990
45	Centaurea triturfurum (Hoffmanns. & Link) Fritsch	Gentianaceae	Eu	Native	P	Th	-
46	Cerasium glomeratum Thuill.	Caryophyllaceae	Eu	Mediterranean	P	He	1939
47	Chelidonium majus L.	Papaveraceae	Eu	Native	R	He	-
48	Chenopodium album L.	Amaranthaceae	Eu	Europe	R	Th	1911
49	Chenopodium urbicum L. / Oxybasis urbico (L.) S.Fuentes, Uotila & Borsch	Amaranthaceae	Eu	Europe	R	Th	1950
50	Cichorium intybus L.	Compositae	Eu	Native	P-M	He	-
51	Cirsium arvense (L.) Scop.	Compositae	Eu	Europe	R	He	1917
52	Cirsium vulgare (Savi) Ten.	Compositae	Eu	Mediterranean	R	He	1937
53	Cleome houtteana Schltdl. / Tarenaya hassleriana (Chodat) Ilitis	Cleomaceae	Eu	South America	P	Th	2017
54	Commelina communis L.	Commelinaceae	Mo	East Asia	P R	Th	1944
55	Convolvulus arvensis L.	Convolvulaceae	Eu	Europe	R	Cr	1914
56	Coreopsis tinctoria Nutt. (Bidens tinctoria (Nutt.) Baill.)	Compositae	Eu	North America	P	Th	2016
57	Cornus sanguinea L. subsp. australis (C.A.Mey.) Žav. (C. australis C.A.Mey.)	Cornaceae	Eu	Native	F	Ph	-
58	Crocosphalum crepidioides (Benth.) S.Moore	Compositae	Eu	South America	R	Th	1934
59	Crepis setosa Haller f. (Aegosseris setosa (Haller f.) Fourr.)	Compositae	Eu	Mediterranean	P	Th	1939
60	Cuscuta australis R.Br.	Convolvulaceae	Eu	Native	R	Th	-
61	Cynoglossum craticum Mill.	Boraginaceae	Eu	Mediterranean	R	He	1916
62	Cyperus badius Poir.	Cyperaceae	Mo	Mediterranean	H	Cr	1940
63	Cyperus esculentus L.	Cyperaceae	Mo	Mediterranean	H	Cr	1917
64	Cyperus longus L.	Cyperaceae	Mo	Native	H	Cr	-
65	Datura stramonium L.	Solanaceae	Mo	Native	R	Th	1916
66	Daucus carota L.	Apiaceae	Eu	Europe	P	Cr	XX beg.
67	Digitaria violascens Link	Poaceae	Mo	East Asia	R	Th	1927
68	Dysphania ambrosioides (L.) Mosyakin & Clemants (Chenopodium ambrosioides L.)	Amaranthaceae	Eu	South America	R	He	1930
No	Species	Families	Class	Origin	Ecological group	Life form	FRT
----	---------	----------	-------	--------	------------------	-----------	------
69	*Echinochloa crus-galli* (L.) P.Beauv.	Poaceae	Mo	East Asia	P	Th	1916
70	*Eleusine indica* (L.) Gaertn.	Poaceae	Mo	East Asia	R	Th	AnT
71	*Elsholtzia ciliata* (Thunb.) Hyl.	Lamiaceae	Eu	East Asia	R	Th	1934
72	*Epilobium palustre* L.	Onagraceae	Eu	Native	H	He	-
73	*Equisetum arvense* L.	Equisetaceae	sp	Native	H	Cr	-
74	*Equisetum palustre* L.	Equisetaceae	sp	Native	H	Cr	-
75	*Equisetum ramosissimum* Desf.	Equisetaceae	sp	Native	H	Cr	-
76	*Erigeron annuus* (L.) Pers.	Compositae	Eu	North America	P	Th	1929
77	*Erigeron bonariensis* L. (Conyza bonariensis (L.) Cronquist)	Compositae	Eu	North America	R	He	1939
78	*Erigeron canadensis* L. (Conyza canadensis (L.) Cronquist)	Compositae	Eu	North America	R	Th	1900
79	*Eriobotrya japonica* (Thunb.) Lindl.	Rosaceae	Eu	East Asia	P	Ph	2009
80	*Euphorbia falcata* L.	Euphorbiaceae	Eu	Native	R	Th	-
81	*Euphorbia peplus* L.	Euphorbiaceae	Eu	Mediterranean	R	Th	1917
82	*Euphorbia stricta* L.	Euphorbiaceae	Eu	Mediterranean	R	Th	1938
83	*Fallopia dumetorum* (L.) Holub (Polygonum dumetorum L.)	Polygonaceae	Eu	Native	R	Th	-
84	*Ficus carica* L.	Moraceae	Eu	Native	S	Ph	-
85	*Filago arvensis* L.	Compositae	Eu	Native	M	Th	-
86	*Filago gallica* L. / *Logfia gallica* (L.) Coss. & Germ.	Compositae	Eu	Europe	P	Th	1932
87	*Fragaria vesca* L.	Rosaceae	Eu	Native	G	He	-
88	*Frangula alnus* Mill.	Rosaceae	Eu	Native	F	Ph	-
89	*Galinsoga ciliata* S.F.Blake / *Galinsoga quadriradiata* Ruiz & Pav.	Compositae	Eu	North America	R	Th	1914
90	*Galinsoga parviflora* Cav.	Compositae	Eu	North America	R	Th	1970
91	*Galium palustre* L.	Rubiaceae	Eu	Native	R	Th	-
92	*Galium spurium* L.	Rubiaceae	Eu	Europe	R	Th	1939
93	*Galium tricornutum* Dandy	Rubiaceae	Eu	Europe	R	Th	1939
94	*Geranium dissectum* L.	Geraniaceae	Eu	Mediterranean	G	Th	1916
95	*Geranium sibiricum* L.	Geraniaceae	Eu	Europe	G	He	1967
96	*Glechoma hederacea* L.	Lamiaceae	Eu	Native	P	Ph	-
97	*Gleditsia triacanthos* L.	Leguminosae	Eu	North America	F	Ph	1953
98	*Hibiscus syriacus* L.	Malvaceae	Eu	East Asia	R	Ph	1968
99	*Hippophae rhamnoides* L. (Elaeagnus rhamnoides (L.) A.Nelson.)	Elaeagnaceae	Eu	Native	G	Ph	-
100	*Hydrocotyle ramiflora* Maxim.	Araliaceae	Eu	East Asia	H	Ch	1920
101	*Hydrocotyle vulgaris* L.	Araliaceae	Eu	Europe	H	Ch	1920
102	*Hypericum androsaemum* L.	Hypericaceae	Eu	Native	F	Ch	-
103	*Hyperaeris radiata* Falk.	Compositae	Eu	Native	P	He	-
104	*Impatiens balsamina* L.	Balsaminaceae	Eu	East Asia	R	Th	2018
105	*Juglans ailanthifolia* Carrière	Juglandaceae	Eu	East Asia	F	Ph	2000
106	*Juncus bufonius* L.	Juncaceae	Mo	Native	H	Th	-
107	*Juncus effusus* L.	Juncaceae	Mo	Native	H	Cr	-
No	Species	Families	Class	Origin	Ecological group	Life form	FRT
-----	---	------------------	-------	----------	------------------	-----------	-------
108	*Juncus tenuis* Wild.	Juncaceae	Mo	Native	H	Cr	-
109	*Kummerowia striata* (Thunb.) Schindl. / *Lespedeza striata* (Thunb.)	Leguminosae	Eu	East Asia	R	Th	1968
110	*Kyllinga gracilimis* Miq. / *Cyperus brevifolius* Thieret & Delahouss.	Cyperaceae	Mo	East Asia	H	He	1927
111	*Lactuca serriola* L.	Compositae	Eu	Native	R	He	-
112	*Lamium purpureum* L. (Lamiopsis purpurea (L.) Opiz)	Lamiaceae	Eu	Europe	R	He	1938
113	*Laphangium affine* (D.Don) Tzvelev / *Pseudognaphalium affine* (D.Don) Anderb.	Compositae	Eu	East Asia	R	He	1916
114	*Laphangium luteoalbum* (L.) Tzvelev / *Helichrysum luteoalbum* (L.) Rehb.	Compositae	Eu	East Asia	R	He	1920
115	*Lathyrus aphaca* L.	Leguminosae	Eu	Europe	R	Th	1939
116	*Lathyrus hirsutus* L.	Leguminosae	Eu	Native	S	Th	-
117	*Leontodon hispidus* L.	Compositae	Eu	Native	S	Th	-
118	*Lepidium campestre* (L.) W.T.Aiton	Brassicaceae	Eu	Mediterranean	P	He	1942
119	*Lepidium coronopus* (L.) Al-Shehbaz (Coronopus squamatus (Forssk.) Asch.)	Brassicaceae	Eu	Mediterranean	R	He	1980
120	*Lespedeza bicolor* Turcz.	Leguminosae	Eu	East Asia	R	Ch	1968
121	*Lotium perenne* L.	Poaceae	Mo	Europe	R	Ch	1925
122	*Lotium rigidum* Gaudin	Poaceae	Mo	Mediterranean	R	Th	1944
123	*Lonicera japonica* Thunb.	Caprifoliaceae	Eu	East Asia	R	Ph	1929
124	*Lotus tenuis* Waldst. & Kit. ex Wild.	Leguminosae	Eu	Native	P	He	-
125	*Ludwigia palustris* (L.) Elliott	Onagraceae	Eu	North America	T	R	1938
126	*Luzula forsteri* (Sm.) DC.	Juncaceae	Mo	Native	G	He	-
127	*Lycopus europaeus* L.	Lamiaceae	Eu	Native	H	He	-
128	*Lythrum japonica* Thunb.	Primulaceae	Eu	East Asia	R	He	1938
129	*Lythrum salicaria* L.	Lythraceae	Eu	Native	H	Cr	-
130	*Malva ambigua* Guss.	Malvaceae	Mo	Europe	R	He	1939
131	*Malva neglecta* Wallr.	Malvaceae	Eu	Native	R	He	1938
132	*Marrubium vulgare* L.	Lamiaceae	Eu	Mediterranean	R	Ch	1970
133	*Melilotus albus* Medik.	Leguminosae	Eu	Native	P	Th	1966
134	*Melilotus officinalis* (L.) Lam.	Leguminosae	Eu	Native	P	Th	-
135	*Mentha aquatica* L.	Lamiaceae	Eu	Native	H	He	-
136	*Mentha pulegium* L.	Lamiaceae	Eu	Native	H	He	-
137	*Microstegium imberbe* (Ness) Tzvelev / *Microstegium vimenum* (Trin.) A.Camus	Poaceae	Mo	East Asia	R	Th	1917
138	*Microstegium japonicum* (Miq.) Koidz.	Poaceae	Mo	East Asia	R	He	1927
139	*Mirabilis jalapa* L.	Nyctaginaceae	Eu	South America	R	Cr	2012
140	*Miscanthus sinensis* Andersson	Poaceae	Mo	East Asia	R	Cr	1926
141	*Morus alba* L.	Moraceae	Eu	East Asia	G	Ph	AnT
142	*Myosotis palustris* (L.) Nathh. / *Myosotis scorpioides* L.	Boraginaceae	Eu	Native	H	He	-
143	*Oenothera biennis* L. s.l.	Onagraceae	Eu	North America	R	He	1927
144	*Oppilmenus burmanni* (Retz.) P.Beauv.	Poaceae	Mo	East Asia	R	He	1930
145	*Opilmenus undulatifolius* (Ar.d.) Beauv.	Poaceae	Mo	East Asia	F	He	AnT
No	Species	Families	Class	Origin	Ecological group	Life form	FRT
----	----------	----------	-------	-----------	------------------	-----------	------
146	Oxalis corniculata L.	Lamiaceae	Eu	North America	R	Th	1916
147	Oxalis violacea L.	Lamiaceae	Eu	North America	R	Cr	1946
148	Parentucellia latifolia Caruel.	Orobanchaceae	Eu	Europe	P	Th	2009
149	Parthenocissus quinquefolia (L.) Planch.	Vitaceae	Eu	North America	R	Ph	2015
150	Paspalum distichum L. (P. paspalodes (Michx.) Scribn.)	Poaceae	Mo	East Asia	R	Cr	XX-beg.
151	Paspalum thunbergii Kunth ex Steud.	Poaceae	Mo	East Asia	R	Cr	1920
152	Perilla nankinensis (Lour.) Decne / Perilla frutescens var. crispa (Thunb.) H.Deane	Lamiaceae	Eu	East Asia	R	Th	1910
153	Persicaria hydropiper (L.) Delarbre (Polygonum hydropiper L.)	Polygonaceae	Eu	Native	H	Th	-
154	Persicaria maculosa Gray (Polygonum persicaria L.)	Polygonaceae	Eu	Native	H	Th	-
155	Persicaria minor (Huds.) Opiz (Polygonum minus Huds.)	Polygonaceae	Eu	Europe	R	Th	1917
156	Persicaria orientalis (L.) Spach. (Polygonum orientale L.)	Polygonaceae	Eu	East Asia	R	Th	1924
157	Persicaria perfoliata (L.) H.Gross (Polygonum perfoliatum L.)	Polygonaceae	Eu	East Asia	R	Th	1924
158	Persicaria posumbu (Buch.-Ham. ex D.Don) H.Gross (Polygonum posumbu Buch.-Ham. ex D.Don)	Polygonaceae	Eu	East Asia	R	Th	1910
159	Persicaria thunbergii (Siebold & Zucc.) H.Gross (Polygonum thunbergii Siebold & Zucc.)	Polygonaceae	Eu	East Asia	H	Th	1927
160	Physalis ixocarpa Brot. ex Hornem.	Solanaceae	Eu	North America	P	Th	1935
161	Phytolacca americana L.	Phytolaccaceae	Eu	North America	R	Cr	XX-beg.
162	Plantago major L.	Plantaginaceae	Eu	Native	R	He	-
163	Platanus occidentalis L.	Platanaceae	Eu	North America	F	Ph	2008
164	Poa annua L.	Poaceae	Mo	Europe	H	Th	1917
165	Poa compressa L.	Poaceae	Mo	Europe	P	He	1925
166	Poa pratensis L.	Poaceae	Mo	Native	G	He	-
167	Polycarpon tetraphyllum (L.) L.	Caryophyllaceae	Eu	Mediterranean	P	Th	1939
168	Polygonum aviculare L.	Polygonaceae	Eu	Europe	R	Th	1917
169	Potentilla indica (Andrews) Th.Wolf. (Duchesnea indica (Andrews) Teschem.)	Rosaceae	Eu	East Asia	P	He	1924
170	Portulaca oleracea L. s.l.	Portulacaceae	Eu	Mediterranean	R	Th	1977
171	Prunella vulgaris L.	Lamiaceae	Eu	Native	F	Th	-
172	Pycreus flavescens (L.) P.Beauv. ex Rehb.	Cyperaceae	Mo	Native	H	Th	-
173	Ranunculus muricatus L.	Ranunculaceae	Eu	Mediterranean	R	Th	1917
174	Ranunculus sceleratus L.	Ranunculaceae	Eu	Europe	H	He	1939
175	Rhus javanica L.	Simaroubaceae	Eu	East Asia	R	Ph	1929
176	Robinia pseudoacacia L.	Leguminosae	Eu	North America	F	Ph	1965
177	Rosa multiflora Thunb.	Rosaceae	Eu	East Asia	P	Ph	2016
178	Rubus anatolicus Focke.	Rosaceae	Eu	Native	F	Ph	-
179	Rubus caesius L.	Rosaceae	Eu	Native	F	Ph	-
180	Rubus proiectus A.Beck (Rubus hirtus auct.)	Rosaceae	Eu	Native	F	Ph	-
No	Species	Families	Class	Origin	Ecological group	Life form	FRT
----	---------	----------	-------	--------	------------------	-----------	-----
181	*Rubus serpens* Weihe ex Lej. & Courtois	Rosaceae	Eu	Native	F	Ph	-
182	*Rudbeckia hirta* L.	Compositae	Eu	North America	R	He	1960
183	*Rumex acetosella* L.	Polygonaceae	Eu	Native	G	He	-
184	*Rumex acetosella* subsp. *acetoselloides* (Balansa) Den Nijs (*Rumex acetoselloides* Balansa)	Polygonaceae	Eu	Native	R	He	-
185	*Rumex pulcher* L.	Polygonaceae	Eu	Native	R	He	-
186	*Salix babylonica* L.	Salicaceae	Eu	East Asia	H	Ph	-
187	*Salix caprea* L.	Salicaceae	Eu	Native	H	Ph	-
188	*Sambucus ebulus* L.	Adoxaceae	Eu	Native	R	Ch	-
189	*Sambucus nigra* L.	Adoxaceae	Eu	Native	F	Ph	-
190	*Saxifraga stolonifera* Curtis	Saxifragaceae	Eu	East Asia	P	Cr	1960
191	*Scirpus sylvaticus* L.	Cyperaceae	Mo	Native	H	Cr	-
192	*Scrophularia nodosa* L.	Scrophulariaceae	Eu	Europe	H	He	1916
193	*Senecio sylvaticus* L.	Compositae	Eu	Native	P	Th	-
194	*Senecio vernalis* Waldst. & Kit.	Compositae	Eu	Mediterranean	R	Th	1918
195	*Senecio vulgaris* L.	Compositae	Eu	Europe	R	Th	1916
196	*Setaria faberi* R.A.W. Herrm.	Poaceae	Mo	Mediterranean	R	Th	1913
197	*Setaria intermedia* Roem. & Schult.	Poaceae	Mo	East Asia	R	Th	1930
198	*Sherardia arvensis* L.	Rubiaceae	Eu	Native	R	Th	-
199	*Sedgesbeckia orientalis* L.	Compositae	Eu	East Asia	R	Th	1917
200	*Sisymbrium officinale* (L.) Scop.	Brassicaceae	Eu	Mediterranean	R	Th	1939
201	*Sisyrinchium septentrionale* E.P.Bicknell	Iridaceae	Mo	North America	R	Th	2010
202	*Smilax excelsa* L.	Smilacaceae	Mo	Native	F	Ph	-
203	*Solanum carolinense* L.	Solanaceae	Eu	North America	R	Ch	1959
204	*Solanum decipiens* Opiz	Solanaceae	Eu	Europe	R	Th	1945
205	*Solanum luteum* Mill.	Solanaceae	Eu	South America	R	Th	1963
206	*Solanum nigrum* L.	Solanaceae	Eu	Europe	R	Th	1917
207	*Solanum pseudocapsicum* L.	Solanaceae	Eu	South America	R	Ph	1961
208	*Solidago canadensis* L.	Compositae	Eu	North America	R	He	2014
209	*Sorghum halepense* (L.) Pers.	Poaceae	Mo	Mediterranean	R	He	1920
210	*Spinagnum erectum* L. (incl. *S. erectum* subsp. *neglectum* (Bechy) K.Richt.)	Typhaceae	Mo	Native	H	Cr	-
211	*Spiraea japonica* L.f.	Rosaceae	Eu	East Asia	R	Ph	1900
212	*Sporobolus fertilis* (Steud.) Clayton	Poaceae	Mo	East Asia	R	He	1929
213	*Stachys annua* L.	Lamiaceae	Eu	Europe	R	Th	1960
214	*Stellaria graminea* L.	Caryophyllaceae	Eu	Europe	P	He	1938
215	*Stellaria holostea* L. / *Rabelera holostea* (L.) M.T.Sharples & E.A.Tripp	Caryophyllaceae	Eu	Native	P	He	-
216	*Stellaria media* (L.) Vill.	Caryophyllaceae	Eu	Europe	H	Th	1916
217	*Symphyotrichum graminifolium* (Spreng.) G.L. Nesom (*Conyzanthus graminifolius* (Spreng.) Tamansch.)	Compositae	Eu	South America	R	He	1927
218	*Tagetes minuta* L.	Compositae	Eu	South America	R	Th	1934
No	Species	Families	Class	Origin	Ecological group	Life form	FRT
----	---	----------------	-------	----------	------------------	-----------	------
219	*Taraxacum officinale* Wigg.	Compositae	Eu	Native	G	Cr	-
220	*Torilis arvensis* (Huds.) Link	Compositae	Eu	Europe	R	Th	1952
221	*Torilis japonica* (Houtt.) DC.	Compositae	Eu	East Asia	R	He	1916
222	*Tradescantia fluminensis* Vell.	Commelinaceae	Mo	South America	R	He	1960
223	*Tradescantia virginiana* L.	Commelinaceae	Mo	North America	R	He	1969
224	*Trifolium campestre* Schreb.	Leguminosae	Eu	Native	P	Th	-
225	*Trifolium diffusum* Ehrh.	Leguminosae	Eu	Mediterranean	P	Th	1948
226	*Trifolium echinatum* M.Bieb.	Leguminosae	Eu	Mediterranean	P	Th	1939
227	*Trifolium fragiferum* L.	Leguminosae	Eu	Native	P	Th	-
228	*Trifolium micranthum* Viv.	Leguminosae	Eu	Mediterranean	P	Th	1939
229	*Typha angustifolia* L.	Typhaceae	Mo	Native	H	Cr	-
230	*Typha latifolia* L.	Typhaceae	Mo	Native	H	Cr	-
231	*Urtica dioica* L.	Urticaceae	Eu	Atlantic Europe	R	He	AnT
232	*Verbascum blattaria* L.	Scrophulariaceae	Eu	Native	R	Ch	-
233	*Verbena brasiliensis* Vell.	Verbenaceae	Eu	South America	P	Ch	2015
234	*Verbena officinalis* L.	Verbenaceae	Eu	Europe	R	Ch	XX beg.
235	*Veronica anagallis-aquatica* L.	Plantaginaceae	Eu	Native	R	He	-
236	*Veronica persica* Poir.	Plantaginaceae	Eu	Mediterranean	R	Th	1914
237	*Veronica serpyllifolia* L.	Plantaginaceae	Eu	Native	R	He	-
238	*Vicia lathyroides* L.	Leguminosae	Eu	Mediterranean	R	Th	1939
239	*Vicia sativa* L.	Leguminosae	Eu	Europe	G	Th	1917
240	*Viola prionantha* Bunge	Violaceae	Eu	East Asia	R	Th	1926
241	*Viola reichenbachiana* Jord. ex Boreau	Violaceae	Eu	Native	F	Th	-
242	*Xanthium californicum* Greene (X. strumarium auct.)	Compositae	Eu	North America	R	Th	1934
243	*Xanthium spinosum* L.	Compositae	Eu	South America	R	Th	XX beg.
244	*Xanthium strumarium* L.	Compositae	Eu	North America	R	Th	XX beg.