Effects of Single Drug and Combined Short-term Administration of Sildenafil, Pimobendan, and Nicorandil on Right Ventricular Function in Rats With Monocrotaline-induced Pulmonary Hypertension

Telma M. Nakata, DVM, Ryou Tanaka, DVM, PhD, Rieko Yoshiyuki, DVM, Toshiharu Fukayama, DVM, Seijiro Goya, DVM, and Ryuji Fukushima, DVM, PhD

Abstract: This study was designed to assess the progression of pulmonary arterial hypertension (PAH) and the effectiveness of therapy using recently investigated echocardiographic parameters. PAH is characterized by the progressive elevation of pulmonary artery pressure and right ventricular hypertrophy and dysfunction, which ultimately results in right-sided heart failure and death. Echocardiography results and invasive measurements of right and left ventricular systolic pressures were compared after 3-week administrations of sildenafil (S group), pimobendan (P group), nicorandil (N group), and their combinations (SP and SPN groups) in male rats with monocrotaline (MCT)-induced pulmonary hypertension (M group) and without this condition (C group). The groups that received pimobendan alone and in combinations (SP and SPN groups) showed improvement in their echocardiographic parameters of systolic function. A significant improvement of diastolic function was achieved in the SP group. Invasive measurements showed the most significant decreases of right ventricular systolic pressure in the N and SPN groups, and the use of pimobendan resulted in a comparatively low risk of adverse hemodynamic effects (left ventricular systolic pressure). Although our results suggested the attenuation of PAH severity in all treatment groups, PAH could not be reversed.

Key Words: phosphodiesterase inhibitors, ATP-sensitive potassium channel, cardiac function

INTRODUCTION

Pulmonary arterial hypertension (PAH) is a multifactorial disease, characterized by the progressive elevation of pulmonary artery pressure (PAP) and pulmonary vascular resistance with subsequent right ventricle (RV) overload and hypertrophy, which ultimately leads to right ventricular dysfunction and right-sided heart failure. The reference standard method for the hemodynamic assessment of the right heart chambers is the invasive approach, which is unfeasible for continuously monitoring drug therapy. Transesophageal echocardiography is a noninvasive method that measures variables associated with the progression of PAH. Previous studies have shown that RV function is an important predictor of longevity in human patients. However, RV-pulmonary arterial coupling and the RV response to PAH therapy have not been widely investigated, although RV adaptation to the progressive increase in pulmonary vascular resistance and PAP has recently been shown to be related to functional capacity and survival.

Previous investigations have suggested that phosphodiesterase-3 (PDE-3) and phosphodiesterase-5 (PDE-5) activities are increased in the smooth muscle cells of pulmonary arteries (with the exception of resistance arterioles) in rats with hypoxia-induced pulmonary hypertension (PH), resulting in decreased levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) and increased vascular tone. Additionally, studies have shown that treatment with cAMP-specific PDE-3 inhibitors (PDE-3i) and cGMP-specific PDE-5 inhibitors (PDE-5i) improve pulmonary hemodynamics in animals with induced increases in PAP, suggesting that a combination of both enzyme inhibitor types may provide additional effects. Pimobendan is a PDE-3i and calcium sensitizer that reduces afterload and provides positive inotropy. Sildenafil is a PDE-5i used in standard protocols of PAH therapy and has also been investigated for cardioprotective effects. Parallel studies using adenosine 5'-triphosphate (ATP)-sensitive potassium (K_{ATP}) channel openers have shown that these compounds exert beneficial effects on pulmonary arterioles and myocardial hypertrophy attributable to vascular smooth muscle tone regulation. Nicorandil, a K_{ATP} channel opener with nitrate-like action, was included in this study due to its vasodilatory effects on the pulmonary resistance arterioles and main PA of rats.

The purpose of this study was to compare the effects of sildenafil, pimobendan, and nicorandil in single and combined administration on PAP and RVD in rats with...
MCT-induced PH by assessing cardiac function and hemodynamics through echocardiography and invasive intraventricular pressure measurements.

MATERIALS AND METHODS

Experimental Design and Animal Model

This study was approved by the Institutional Animal Care and Use Committee of the Tokyo University of Agriculture and Technology and conformed to the Guide for the Care and Use of Laboratory Animals published by the Institute for Laboratory Animal Research, National Research Council, Washington DC, and National Academy Press, 1996.

Seven groups of adult male Wistar rats (12 weeks old, weighing 330–405 g) were housed at 22°C with a 12:12-hour light–dark cycle and access to food and water ad libitum. PAH was induced by a single intraperitoneal injection of MCT (60 mg/kg, Sigma-Aldrich, St. Louis, MO) previously dissolved in 1 N hydrochloric acid and pH adjusted to 7.4 using 1 N sodium hydroxide, diluted in distilled water to obtain a concentration of 30 mg/mL. For comparison purposes, a normal control group (C) received a 100-μL saline injection (n = 6). Four weeks after MCT injection, echocardiographic evaluation showed evidence of PAH, including the presence of tricuspid regurgitation (TR), a midsystolic notch on pulmonary flow profile with an increased prejection period (PEP) and decreased ejection time (ET), systolic/diastolic flattening of the interventricular septum, an enlarged right atrium and ventricle, increased free-wall thickness (>0.9 mm), reduced RV systolic function, and pericardial effusion. After examination, the rats were randomly divided into 5 treatment groups (n = 6 for each group); one group remained untreated as a PAH model group (M). Three of the 6 rats in the M group developed severe PH and died between 3 and 4 weeks after MCT injection. Another group of 6 rats was given the MCT injection to provide substitutes for the deceased rats in the M group; only 2 rats of this group survived, leaving 5 rats to be examined at the end of the study (7 weeks). Two rats of the N group died between the second and third week of drug administration (n = 4).

Experimental Protocols

Nicorandil (N) at a dose of 1.0 mg/kg, sildenafil (S) at 1.0 mg/kg, pimobendan (P) at 0.15 mg/kg, a combination of sildenafil at 1.0 mg/kg and pimobendan at 0.15 mg/kg (SP), and combination of sildenafil at 1.0 mg/kg, pimobendan at 0.15 mg/kg, and nicorandil at 1.0 mg/kg (SPN) were orally administered twice daily. At the end of 3 weeks of therapy, echocardiography and invasive hemodynamic measurements were performed within 24 hours for all rats under general anesthesia achieved using isoflurane 1.5% in oxygen at 1 L/min administered through a mask.

Echocardiography

The thoraxes of the rats were shaved, and the rats were positioned in right and left lateral recumbency to obtain short-axis and apical imaging of the heart, respectively. Doppler tracings were recorded at a sweep speed of 200 mm/s and sample gate of 1 mm using a ProSounda7 (Hitachi-Aloka Medical, Tokyo, Japan) ultrasonographic system with a 7.5-MHz transducer and simultaneous electrocardiographic (ECG) (Fig. 1). All measurements represented the mean of 5 cardiac cycles.

Left parasternal apical 4-chamber view was used to assess RV systolic function through RV fractional area change (FAC), tricuspid annular plane systolic excursion (TAPSE), and tricuspid annular systolic velocity (Sm-TV) (Fig. 1A–C). FAC was estimated as [(end-diastolic surface – end-systolic surface) × 100]/end-diastolic surface. TAPSE was determined using the M-mode of contraction on the longitudinal plane. Pulsed-wave Doppler PW-TDI velocities during systole (Sm-Tv), early relaxation (E’), and atrial systole (A’) were processed from the middle of the basal segment of the RV-free wall. RV diastolic function was evaluated using the E/E’ peak velocity ratio, and RA area was measured at the end systole from the apical 4-chamber view (Fig. 1D, E). A modified Bernoulli equation (ΔP = 4v2) was used to estimate RVSP using the peak velocity of the tricuspid regurgitant jet (v). The gradient of the pressure RV-right atrium (ΔP) plus RAP represents an echocardiography-derived estimation of PAP during the systolic phase (SPAP = RVSP). RV global function was assessed through the myocardial performance index, which was obtained using the tricuspid valve closure–tricuspid valve opening time and PA ET measured from the PW-Doppler RV inflow and outflow signals of the tricuspid valve and pulmonic valve, respectively.

Progression of PAH was evaluated through measurements of RV wall thickness and RV end-diastolic diameter (RVEDD) using the M-mode of contraction on the short-axis plane. The PET/ET ratio was calculated using the PA PEP recorded from the onset of the Q wave on the ECG to the start of PA flow and the pulmonary valve flow period recorded using the pulsed-wave (PW) Doppler mode from the transverse short-axis view. Pericardial effusion was assessed using parasternal long- and short-axis views and graded according to the diastolic separation of the visceral and parietal pericardium as either small (<1.2 mm), moderate (1.2–2.4 mm), or large (>2.4 mm).

Statistical Analysis

Continuous variables were expressed as mean ± SD. Categorical data were expressed as percentages and ordinals. Comparison of the means among the groups was performed by a one-way analysis of variance followed by Fisher’s least
significant difference post hoc multiple comparison tests. Significant differences between the groups were analyzed with paired Mann–Whitney rank-sum tests. A treatment was considered to ameliorate cardiac function if 2 or more of its parameters were significantly different from those of the M group and to improve cardiac function if also showed no statistically significant differences from the C group. The strengths of the correlations between the invasive and non-invasive measurements were assessed by Pearson’s coefficients. Statistical significance was defined as \(P < 0.05 \).

RESULTS

Effects of Treatment on Measurements of Right Heart Structure and Function Evaluated by Echocardiography

The 2-dimensional, M-mode, and TDI data indicated improved cardiac morphology and function in all treatment groups compared with the M group. The results for each drug treatment and comparisons of parameters of systolic function between the groups are shown in Figure 2. Comparison between the groups showed that these values were not significantly different. The P, SP, and SPN groups showed significant improvements of RV-FAC and TAPSE (Fig. 2A, B), whereas only the P group showed improved Sm-TV (Fig. 2C). Although the PEP/ET ratios were ameliorated in all treatment groups, suggesting the attenuation of disease severity, all these values were significantly different from those of the normal C group (Fig. 3A). RVEDD and RV thickness showed reductions after treatment compared with those of the M group; however, these parameters also remained higher than those of the C group (Fig. 3B, C). Only the SPN group showed significant improvement of diastolic parameters (E/E' ratio and RAD); however, SP treatment ameliorated diastolic dysfunction compared with the M group (Fig. 4A, B). The MPI indicated that all treatment groups, except the N group, exhibited improved global RV function when compared with the M group, but this value did not differ among the treatment groups (Fig. 4C). Pericardial effusion was observed more frequently in the P and SP groups than in the other treatment groups at 7 weeks after MCT injection and 3 weeks of therapy (Table 1).

Hemodynamic Effects

Invasive measurements and echocardiography-derived RVSP were significantly correlated in the groups that had lower RVSP; ie, in the P group (\(r = 0.98, P = 0.001 \)), N group (\(r = 0.87, P = 0.006 \)), and SPN group (\(r = 0.95, P = 0.001 \)). Higher RVSP was associated with a modest correlation between invasive measurements and echocardiography-derived RVSP (\(r = 0.55, P < 0.01 \); data not shown). All observations of Doppler signal intensity and the velocity curve of TR flow showed fair or good quality for measuring RVSP. These results are similar to the findings described by Fisher et al\(^{29} \) and may happen if measurements are not taken simultaneously. The high correlations observed may be partly due to the small number of rats with lower RVSP in these groups.

Despite its amelioration, RVSP was significantly higher in all treatment groups at the end of 3 weeks of therapy than in the C group (Fig. 5A). No significant differences were observed between the treatments.

LVSP was lower in the M group (49 ± 5.1 mm Hg) than in the C group (84.5 ± 10.3 mm Hg), as was heart rate (HR) (290 ± 36 vs. 450 ± 33 beats per minute). These reductions in LVSP (Fig. 5B) and HR (Fig. 5C) were partially reversed in all treatment groups. The groups that received pimobendan alone and in combinations (SP and SPN groups) did not significantly differ from the C group in terms of LVSP.

DISCUSSION

We hypothesized that cAMP-specific PDE-3 and cGMP-specific PDE-5 play important roles in PH pathogenesis and
therefore that the combination of PDE-3 and PDE-5 inhibitors with an ATP-sensitive potassium channel opener would improve cardiopulmonary hemodynamics as measured by echocardiographic parameters. The pathological abnormalities caused by MCT injection in rats differ from those of PAH observed in humans due to presence of plexiform lesions in the latter; however, both sets of abnormalities may result in RV dysfunction.40-42 Initial myocardial hypertrophy is related to adaptation to the pressure overload, and progressive increases in afterload result in ventricular remodeling associated with chamber dilation, eventually decompensation and development of right-sided heart failure.7,8,43,44 RV hypertrophy is associated with decreased RV compliance, increased end-diastolic pressure, and subsequent RV diastolic dysfunction; furthermore, diastolic relaxation impairment is highly correlated with end-diastolic calcium levels, possibly due to the reduced production
of cAMP; nonetheless, systolic function may remain relatively normal for long periods of chronic afterload elevation before the development of overt systolic failure.19,43,44 Echocardiography is a useful method for evaluating right-sided heart morphology and function in rats with MCT-induced PH and has been shown to be accurate for assessing cardiac function.50,45–47 The echocardiographic parameters acquired from the M group were similar to those obtained by Boissiere et al and Hardziyenka et al in Wistar rats with MCT-induced PH.36,48 The aims of PAH therapy include the reduction of RV afterload, improvement of RV contractility, and aversion of systemic arterial hypotension.31,48

Our results suggested that the administration of sildenafil alone may provide comparable hemodynamic effects to the administration of pimobendan, either alone or in combination with sildenafil, without statistically significant differences in the analysis of parameters of systolic function between treatment groups. However, Lobato et al49 showed that the PDE-3 inhibitor milrinone, either alone or in combination with sildenafil, improved RV function to a greater extent than did sildenafil alone. Recent studies investigating the effects of PDE-5 inhibition, generally used for reducing PAP, on myocardium under overload have demonstrated significant reductions in necrosis and apoptosis.49 Other studies have shown that sildenafil improves cardiac function and reverses myocardial hypertrophy in a rodent model of chronic cardiac pressure overload.22,23 Additionally, increased PDE-5 expression has been demonstrated in the RV myocardium of patients with RV dysfunction.49 Guazzi et al51 suggested that sildenafil administration alone improves diastolic function. However, our results showed that sildenafil alone only generated statistically significant improvement in overall diastolic function when the treatment also included pimobendan and nicorandil (SPN group vs. single drug treatment groups); ie, the SPN group showed the most pronounced effects for the improvement of diastolic function. Nonetheless, a histopathological analysis was not performed, which could have confirmed a positive correlation between RV diastolic dysfunction improvement and the partial reversal of myocardial hypertrophy, as is suggested by echocardiographic parameters.22 Although our results showed that pimobendan alone may significantly reduce RVSP with effects comparable with those of sildenafil, the combination of pimobendan and sildenafil did not result in an additional reduction of RVSP, which suggests that the association of a PDE-3i and a PDE-5i has a limited effect on the cGMP-PDE pathway. Previous studies have demonstrated that the administration of a PDE-3 inhibitor milrinone resulted in significantly inferior reduction of lobar arterial pressure compared with that of zaprinast, a PDE-5 inhibitor, when administered to a cat model of increased pulmonary vascular tone or patients with severe PH.15,53 Discrepancies between the effects of milrinone and pimobendan may occur due to the calcium sensitizer property of pimobendan, which may improve cardiopulmonary hemodynamics.19,54,55 However, our previous study in rats with MCT-induced PAH (30 mg/kg of MCT subcutaneously) did not find differences between rats given 6 weeks of pimobendan at 1.25 mg per rat and those in the model group; these results may differ from those of the present results due to the different disease stage induced by the lower dose of MCT and higher dose of pimobendan administered.56 Administration of PDE-3 inhibitors for prolonged periods is related to development of myocardial hypertrophy.57–59 Although only a fixed dose was used in our investigation, a larger study is necessary to demonstrate the lowest effective dose, as has been suggested by successful individual treatments with single or combined administrations of pimobendan at lower than recommended doses.60–63 MPI is an important predictor of clinical status and survival in humans with PAH, and in this

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{Echocardiographic assessment of right ventricular diastolic (A and B) and global function (C) after 3 weeks of therapy with sildenafil, pimobendan, nicorandil, and their combinations. $^P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$, $^{****}P < 0.0001$ versus MCT control group; $^\#P < 0.05$, $^{###}P < 0.001$ versus model group; $^{####}P < 0.0001$ versus control group; $^\ast P < 0.05$, $^{$$$}P < 0.0001$ versus SPN group; $^{****}P < 0.0001$ versus control group; $^{####}P < 0.0001$ versus control group. Tick-up lines indicate all included groups. C, normal control (n = 6); M, MCT injection only (n = 5); S, sildenafil (n = 6); P, pimobendan (n = 6); N, nicorandil (n = 4); SP, sildenafil and pimobendan in combination (n = 6); SPN, sildenafil, pimobendan, and nicorandil in combination (n = 6).}
\end{figure}
study, MPI improved in all treatment groups except the N group.64 MPI assesses global cardiac function, and the lower performance of the N group reflects its systolic and diastolic function.65 Nicorandil increases potassium channel conductance in the membranes of cardiomyocytes and smooth muscles cells, resulting in negative inotropy and vasodilation.75 Therefore, the greater increase in RVEDD observed in the N group was associated with slightly improved RV function, which may explain the lower survival rate (67\%) in this group. A study using nicorandil at 7.5 mg/kg, in an MCT-induced PAH rat model, showed an increased survival rate in the treatment group (73\%) compared with that of the disease model group (39\%) and the cessation of progress (but not the reversal) of PAH.75 Sahara et al29 have demonstrated the reduction of RVSP using 2.5 mg/kg of nicorandil in the same PAH model. Our results showed that 1.0 mg/kg of nicorandil could also reduce RVSP to the same degree obtained using 2.5 mg/kg, although the lower survival rate observed may have hampered the strength of these results. The N group showed less improvement of systolic function than did the other treatment groups, and an additional effect of nicorandil in the SPN group could not be demonstrated. The mechanisms of action of these drugs have shown partial interaction in their pathways for the regulation of smooth muscle tone through the inhibition of cGMP and cAMP or mitochondrial ATP-potassium channel opener activity; this association may potentiate the development of adverse effects.31,66,67 However, even if sildenafil acts in the NO-cGMP pathway to release nitric oxide, the association between inhaled nitric oxide and sildenafil may have an additive beneficial effect in increasing and prolonging pulmonary vasodilation as has been suggested by previous studies.68,69

The neurohormonal activation induced by altered pulmonary arterial oxygen saturation aimed at overcoming severe hemodynamic dysfunction may hamper therapy effectiveness.44,70–72 Right-sided heart failure results in reduced \(\beta\)-adrenoceptor density and is associated with induced abnormalities of the LV (morphology and function), subsequently reducing HR and LVSP, as has been observed in the present and previous studies.44,73,74 Wang et al75 also suggested that \(\alpha\)-adrenoceptor stimulation may result in negative inotropy. The amelioration of RVSP induced by the vasodilator agents in this study may have decreased septal bowing to the left side and thus improved LVSP and HR compared with those of the M group; however, these parameters remained lower than those of the C group. Previous investigation has suggested that a good correlation exists between RVEDD and decreased PAP.77 Reductions in RVEDD were not accompanied by correlated reductions in RV wall thickness in this study, although both variables showed a certain degree of improvement. Indeed, although the short-term administration of pimobendan in patients with severe heart failure improves hemodynamics, its long-term administration is associated with loss of effectiveness or myocardium toxicity.20,57–59 Although only a short-term administration of a lower than recommended dose of pimobendan was evaluated in this study, this therapy effectively reduced RV dysfunction and improved PAH. However, Walter et al80 showed significant differences in PAP and RA pressure between patients with congestive heart failure who received 5 and 10 mg of pimobendan.

Echocardiography-derived RVSP was correlated with invasive measurements of RVSP under lower peak velocities of the TR jet. When higher flow velocities were present, the Doppler measurements overestimated RVSP and were poorly correlated with the invasive measurements. The discrepancies observed between the invasively measured and echocardiography-derived RVSP may occur due to the difficulty of aligning the Doppler beam with the regurgitant jet or impaired RV function, which reduces the accuracy of Doppler ultrasound measurements.76–78

An indirect assessment of the severity of PAP may be obtained by the PEP/ET ratio because PEP lengths and ET shortens as PAP increases.8 This ratio showed a good correlation with PAP and was significantly better in the SPN group than in the other groups.

The presence of pericardial effusion in PAH is associated with increased RA pressure and higher mortality rates; however, previous studies have reported that human patients with relatively small pericardial effusion have similar survival rates to those without effusion.4,79 According to these results, we speculated that therapy with nicorandil alone or the SPN combination may reduce the formation of pericardial effusion associated with elevated RA pressure, which may result from the significant reduction of RVSP.5,79

The present results suggest that the combination of PDE-3 and PDE-5 inhibitors with nicorandil may improve PAP and RVD in the clinical therapy of patients with PAH. However, the results obtained from rats with MCT-induced PH may not be directly extrapolated to a clinical setting without taking the criteria specific to humans arising from variable responses to vasodilator therapy into consideration. Case reports have indicated that the combination of pimobendan and sildenafil, with or without nicorandil, results in clinical improvement (exercise tolerance, hemodynamic, and

TABLE 1. Number of Rats Presenting Pericardial Effusion According to Grade of Effusion

Effusion	M (n = 5)	S (n = 6)	P (n = 6)	N (n = 4)	SP (n = 6)	SPN (n = 6)
Small (<1.2 mm)	0	2	2	0	1	1
Moderate (1.2–2.4 mm)	2	1	1	0	2	1
Large (>2.4 mm)	3	0	1	0	1	0
Total	5	3	4	2	3	2

M, model group (MCT injection); S, treatment with sildenafil; P, treatment with pimobendan; N, treatment with nicorandil; SP, treatment with sildenafil and pimobendan in combination; SPN, treatment with sildenafil, pimobendan, and nicorandil in combination.
In summary, the single or combined administration of sildenafil, pimobendan, and nicorandil showed similar effects without significant differences on RV systolic function between treatment groups of rats with MCT-induced PH. Sildenafil in combination with pimobendan, as well as a combination of sildenafil, pimobendan, and nicorandil, further ameliorated global function and cardiovascular hemodynamics in this model of PH. LVSP was also improved in the group treated with the 3-drug combination despite the hypotensive synergistic action of the association of sildenafil and nicorandil, which may have been counteracted by positive inotropic effect of pimobendan. Further studies on the combination of these 3 drugs at lower doses and over longer periods are necessary to establish the optimum therapeutic measures in the treatment of patients with severe PAH and RV dysfunction.

CONCLUSIONS

In summary, the single or combined administration of sildenafil, pimobendan, and nicorandil showed similar effects without significant differences on RV systolic function between treatment groups of rats with MCT-induced PH. Sildenafil in combination with pimobendan, as well as a combination of sildenafil, pimobendan, and nicorandil, further ameliorated global function and cardiovascular hemodynamics in this model of PH. LVSP was also improved in the group treated with the 3-drug combination despite the hypotensive synergistic action of the association of sildenafil and nicorandil, which may have been counteracted by positive inotropic effect of pimobendan. Further studies on the combination of these 3 drugs at lower doses and over longer periods are necessary to establish the optimum therapeutic measures in the treatment of patients with severe PAH and RV dysfunction.

REFERENCES

1. Galiè N, Torbicki A, Barst R, et al; Task Force. Guidelines on diagnosis and treatment of pulmonary arterial hypertension. The Task Force on Diagnosis and Treatment of Pulmonary Arterial Hypertension of the European Society of Cardiology. *Eur Heart J*. 2004;25:2243–2278.

2. Hoepf MM, Barberà JA, Channick RN, et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. *J Am Coll Cardiol*. 2009;54:S85–S96.

3. Gupta H, Ghimire G, Naeije R. The value of tools to assess pulmonary arterial hypertension. *Eur Respir Rev*. 2011;20:222–235.
4. Lee KS, Abbas AE, Khandheria BK, et al. Echocardiographic assessment of right heart hemodynamic parameters. J Am Soc Echocardiogr. 2007; 20:773–782.

5. Von Noordegraaf A, Galie N. The role of the right ventricle in pulmonary arterial hypertension. Eur Respir Rev. 2011;20:243–253.

6. Brierre G, Blot-Soulette N, Degano B, et al. New echocardiographic prognostic factors for mortality in pulmonary arterial hypertension. Eur J Echocardiogr. 2010;11:516–522.

7. Voelkel NF, Quaije RA, Leinwand LA, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114:1883–1891.

8. Bogda HJ, Abe K, Noordegraaf AV, et al. The right ventricle under pressure. Cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135:794–804.

9. Vanderpool RR, Pinsky MR, Naeije R, et al. RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension. Heart. 2014; pii: heartjnl-2014-306142.

10. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right-ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120:992–1007.

11. Van de Velde MC, Kind T, Marcus JT, et al. Progressive right ventricular dysfunction patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol. 2011;58:2511–2519.

12. Maclean MR, Johnston ED, McCulloch KM, et al. Phosphodiesterase isozymes in the pulmonary arterial circulation of the rat: changes in pulmonary hypertension. J Pharmacol Exp Ther. 1997;283:619–624.

13. Murray F, MacLean MR, Pyne NJ. Increased expression of the cGMP-phosphodiesterase-5 and phosphodiesterase-3 inhibitors. Br J Pharmacol. 2002;137:1187–1194.

14. Jeffery TK, Wanastall JC. Phosphodiesterase III and V inhibitors on pulmonary artery from pulmonary hypertension: rates differences between early and established pulmonary hypertension. J Cardiovasc Pharmacol. 1998;32:213–219.

15. Matot I, Gozal Y. Pulmonary responses to selective phosphodiesterase-5 and phosphodiesterase-3 inhibitors. Chest. 2004;125:644–651.

16. Lobato EB, Beaver T, Muchshleichel J, et al. Treatment with phosphodiesterase inhibitors type III and V: milrinone and sildenafil is an effective combination during thrombocytopenia-induced acute pulmonary hypertension. Br J Anaesth. 2006;96:317–322.

17. Rabe KF, Tenor H, Dent G, et al. Identification of PDE isozymes in human pulmonary artery and effect of selective PDE inhibitors. Am J Respir Crit Care Med. 2001;164:455–462.

18. Atkinson KJ, Fine DM, Thoms LA, et al. Evaluation of sildenafil and T-85 in the treatment of pulmonary hypertension secondary to degenerative mitral valve disease in dogs. J Vet Intern Med. 2009;23:1190–1196.

19. Böhm M, Morano I, Pieske B, et al. Contribution of cAMP-phosphodiesterase inhibition and sensitization of the contractile proteins for calcium to the inotropic effect of pimobendan in the failing human myocardium. Circ Res. 1991;68:689–701.

20. Von Der Leyen H, Mende U, Meyer W, et al. Mechanism underlying the reduced positive inotropic effects of the phosphodiesterase III inhibitors pimobendan, adibendan and saterinone in failing as compared to non-failing human cardiac muscle preparations. Naunyn Schmiedebergs Arch Pharmacol. 1991;344:90–100.

21. Wilkins MR, Wharton J, Grünninger F, et al. Phosphodiesterase inhibitors for the treatment of pulmonary hypertension. Eur Respir J. 2008;32:198–209.

22. Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;115:2349–2352.

23. Takimoto E, Champion HC, Li M, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11:214–222.

24. Fisher PW, Saloum F, Das A, et al. Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dys-function in a chronic model of doxorubicin cardiotoxicity. Circulation. 2005;111:1601–1610.

25. Taira N. Similarity and dissimilarity in the mode and mechanism of action between norecortil and classical nitrates: an overview. J Cardiovasc Pharmacol. 1987;10:S1–S9.

26. Blaise G, Langleben D, Hubert B. Pulmonary arterial hypertension: pathophysiology and anesthetic approach. Anesthesiology. 2003;99:1415–1432.

27. Li J, Long C, Cui W, et al. Iptakalim ameliorates monocrotaline-induced pulmonary arterial hypertension in rats. J Cardiovasc Pharmacol Ther. 2013;18:60–69.

28. Hongo M, Mawatari E, Sakai A, et al. Effects of nicorandil on monocrotaline-induced pulmonary arterial hypertension in rats. J Cardiovasc Pharmacol. 2005;46:452–458.

29. Sahara M, Sato M, Morita T, et al. Nicorandil attenuates monocrotaline-induced vascular endothelial damage and pulmonary arterial hypertension. PLoS One. 2012;7:e33367.

30. Zuo XR, Wang Q, Cao Q, et al. Nicorandil prevents right ventricular remodeling by inhibiting apoptosis and lowering pressure overload in rats with pulmonary arterial hypertension. PLoS One. 2012;7:e44485.

31. Balduzzi M, Goirand F, Marchand S, et al. Hypoxic vasoconstriction of the main pulmonary artery: role of endogenous nitric oxide, potassium channels, and phosphodiesterase inhibition. J Cardiovasc Pharmacol. 2001; 38:325–334.

32. Haddad F, Hunter SA, Rosenthal DN, et al. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–1448.

33. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.

34. Zaghbin WA, Enriquez-Sarano M, Foster E, et al. American Society of Echocardiography. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16:777–802.

35. Lindqvist P, Calcutte A, Henein M. Echocardiography in the assessment of right heart function. Eur J Echocardiogr. 2008;9:225–234.

36. Faul JL, Nishimura T, Berry GJ, et al. Triprolidine attenuates pulmonary arterial hypertension and neoinimal formation in rats. Am J Respir Crit Care Med. 2016;122:2255–2258.

37. Braun MU, Szalai P, Strasser RH, et al. Right ventricular hypertrophy and apoptosis after pulmonary artery banding: regulation of PKC isozymes. Cardiovasc Res. 2003;59:658–667.

38. Nishii Y, Gabaaza EC, Fujimoto H, et al. Protective role of protein C inhibitor in monocrotaline-induced pulmonary hypertension. J Thromb Haemost. 2006;4:2331–2337.

39. Fisher MR, Foria PR, Chamera E, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179:615–621.

40. Jones JE, Mendes L, Rudd MA, et al. Serial noninvasive assessment of progressive pulmonary hypertension in a rat model. Am J Physiol Heart Circ Physiol. 2002;283:H364–H371.

41. Stenmark KR, Meyrick B, Galie N, et al. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol. 2009;297:L1013–L1032.

42. Gomez-Arroyo JG, Farkas L, Alhussaini AA, et al. The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol. 2012;302:L363–L369.

43. Ferlinz J. Right ventricular diastolic performance: compliance characteristics with focus on pulmonary hypertension, right ventricular hypertrophy, and calcium channel blockade. Cathet Cardiovasc Diagn. 1998;43:206–243.

44. Haddad F, Doyle R, Murphy DJ, et al. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117:1717–1731.

45. Erdos G, Jauwiezer B, Kausch B, et al. Doppler tissue imaging in assessment of pulmonary hypertension-induced right ventricle dysfunction. Am J Physiol Heart Circ Physiol. 2005;289:H2450–H2455.

46. Hardziyena M, Campian ME, de Bruin-Bon HA, et al. Sequence of echocardiographic changes during development of right ventricular failure in rats. J Am Soc Echocardiogr. 2006;19:1272–1279.
56. Yoshiyuki R, Nakata TM, Fukayama T, et al. Pimobendan improves right pulmonary artery wall stiffness in patients with primary pulmonary hypertension. *Circul.* 2005;107:1271–1275.

57. Nishiyama K, Takenouchi K, Endo K, et al. Effects of pimobendan on bronchial smooth muscle relaxation in patients with primary pulmonary hypertension. *Respir. Med.* 2005;99:1517–1521.

58. Nakata et al.