States of matter that break time-reversal symmetry are invariably associated with magnetism or circulating currents. Recently, one of us proposed a phase, the directional scalar spin chiral order (DSSCO), as an exception: it breaks time-reversal symmetry via chiral ordering of spins along a particular direction, but is spin-rotation symmetric. In this work, we prove the existence of this state via state-of-the-art density matrix renormalization group (DMRG) analysis on a spin-1 chain with nearest-neighbor bilinear-biquadratic interactions and additional third-neighbor ferromagnetic Heisenberg exchange. Despite the large entanglement introduced by the third-neighbor coupling, we are able to access system sizes up to \(L = 918 \) sites. We find first order phase transitions from the DSSCO into the famous Haldane phase as well as a spin-quadrupolar phase where spin nematic correlations dominate. In the Haldane phase, we propose and demonstrate a method for detecting the topological edge states using DMRG that could be useful for other topological phases too.

I. INTRODUCTION

Equilibrium states of matter that break time-reversal symmetry (TRS) invariably contain a finite density of angular momentum, either spin or orbital. Common examples such as magnets contain local spin moments, while more complex ones include orbital moments, such as loop current phases \([1,2]\), anomalous Hall states \([3,4]\), and various chiral topological phases \([5–14]\). A property shared by these phases is that TRS is immediately restored when the moments melt. Thus, TRS-breaking is usually considered synonymous with the formation of local moments, even though the latter also violate spatial symmetries of the lattice.

On the other hand, one of the authors recently proposed an exception to this rule, namely, the directional scalar spin chiral order (DSSCO) \([15]\). In one-dimension, the DSSCO can be thought as a state in which quantum fluctuations have melted classical spin order in accordance with the Mermin-Wagner-Hohenberg-Coleman (MWHC) theorem \([16–18]\) and restored SU(2) spin-rotation symmetry (SRS), but a vestigal scalar spin-chiral order captured by the order parameter

\[
\chi = \frac{1}{L} \sum_i \langle S_i \cdot S_{i+1} \times S_{i+2} \rangle \tag{1}
\]

where \(S_i \) is the spin on the \(i^{th} \) site, has survived. Since \(S \rightarrow -S \) under time-reversal, \(\chi \) is an Ising order parameter that breaks TRS, but preserves SRS. It is reminiscent of some other phases that involve scalar spin chirality \([19–21]\). The key difference is that the chirally correlated spins in all these examples lie on the vertices of a triangle. Hence, they break enough spatial symmetries to permit a moment perpendicular to its face, even if the on-site moment vanishes. In contrast, the corresponding sites in the DSSCO are collinear, so no such current is possible. Higher dimensional versions of the DSSCO rely on thermal or disorder-driven fluctuations for the restoration of SRS, with the latter proposed to be pertinent to the long-standing problem of the pseudogap phase of the cuprate superconductors, which show TRS-breaking in Kerr effect measurements \([22,23]\) but no signs of magnetism in nuclear magnetic resonance \([24]\).

Ref. \([15]\) presented the DSSCO as a phase that is allowed by fundamental laws of quantum mechanics. However, it did not prove its existence in a realistic model. Through large-scale density matrix renormalization group (DMRG) analysis of a spin-1 chain, we fill this gap in knowledge by showing that the following spin-1 chain has the DSSCO as its ground state in a wide regime of parameters:

\[
H = \sum_i K \left[\cos \theta (S_i \cdot S_{i+1})^2 + \sin \theta S_i \cdot S_{i+1} \right] - JS_i S_{i+3} \tag{2}
\]

Here, \(J, K > 0 \) and \(\theta \in [0, \pi/2] \) parametrizes the relative strengths of the bilinear and the biquadratic nearest-neighbor couplings. When \(J = 0 \), \(H \) reduces to the bilinear-biquadratic model that was studied in Ref. \([27]\) and shown to realize a quasi-long-range ordered spin-quadrupolar (SQ) phase for \(0 < \theta < \pi/4 \) and the Haldane phase \(\theta > \pi/4 \), separated by a Berezinskii-Kosterlitz-Thouless type phase transition at \(\theta = \pi/4 \) \([28]\). We explore the effects of non-zero \(J \) on this model and find that the SQ is driven into the DSSCO, either directly or via intermediate Haldane and disordered phases, while the Haldane phase simply disorders at finite \(J \) for most values of \(\theta \). In the \(J \rightarrow \infty \) limit, \(H \) reduces to three copies of a Heisenberg ferromagnet, while finite \(J \) introduces quantum fluctuations that melt the ferromagnet in accordance with the MWHC theorem \([16–18]\). The full phase diagram is shown in Fig. \([1]\).

The emergence of the DSSCO as a ground state of \(H \) can be anticipated heuristically as follows. In the classical limit, \(S \rightarrow \infty \), the biquadratic term \(K \cos \theta \) dominates and forces adjacent spins to be mutually or-
thogonal. At $\theta = 0$, the remaining ferromagnetic coupling J favors parallel third neighbors, resulting in two degenerate ground state manifolds $R(x, y, z, x, y, z, \ldots)$ and $R(-x, -y, -z, -x, -y, -z, \ldots)$ that are related by time-reversal and have opposite expectation values of χ. Above, $\pm x$ at the i^{th} position in the ket denotes a state with spin at the i^{th} site maximally polarized along $\pm x$ and $R \in SU(2)$ represents an arbitrary global spin rotation. The classical ground state is then randomly chosen from these manifolds, thus breaking TRS and SRS spontaneously. For finite S, quantum fluctuations produce smooth deformations in the magnetization texture or gapless spin waves. In one dimension, these fluctuations are strong enough to melt the underlying spin order and restore SRS [16–18]. However, smooth deformations cannot change the chirality of the ground state, thus yielding the DSSCO. In this work, we find that the ground state at $\theta = 0$ is the boundary between ferromagnetic phase and DSSCO. A non-zero θ is needed to stabilize the DSSCO. However, a large θ again destabilizes it in favor of the Haldane or the disordered phase.

II. NUMERICAL PROCEDURE

We carry out state-of-the-art DMRG calculations using the ITensor library developed by Stoudenmire and White [29]. We perform up to 215 sweeps with a final maximum bond dimension of $m = 800$, which restricts the truncation error to below 10^{-6}. We are able to access system sizes up to $L = 918$ despite our model contains a third-nearest-neighbor interaction. In comparison, DMRG calculations on the simpler bilinear-biquadratic spin-1 chain which has only nearest-neighbor and next-nearest-neighbor interactions cannot reach $L = 300$ sites [30]. Such a dramatic improvement in the performance results from using a pinning field on open chains to diagnose the phases of interest. We elaborate on this technique below.

Naively, ordering is captured by the unbiased correlation function:

$$m = \lim_{L \to \infty} \frac{1}{L} \sum_i e^{iqi} \langle A_i \rangle_H$$

where A_i is an operator that corresponds to the order parameter on the i^{th} site and H is the Hamiltonian whose ground state the expectation value is computed in. In the current problem, we consider three choices of A_i: spin S_i^z, quadrupole Q_i^{zz} and $\chi_i = S_i \cdot S_{i+1} \times S_{i+2}$. A finite value of m signals long-ranged order and spontaneous breaking of symmetry. However, this approach requires very large system sizes and high precision to obtain reliable results, since it computes the square of the local order parameter, which can be a very small, especially close to a phase boundary. This issue can be circumvented by adding a training field with an appropriate Fourier component, $H' = h \sum_i e^{iqi} A_i$, to H and computing

$$m = \lim_{h \to 0} \lim_{L \to \infty} \frac{1}{L} \sum_i e^{iqi} \langle A_i \rangle_{H + h \sum_i e^{iqi} A_i}$$

The ordering of limits is crucial: one first has to take the thermodynamic limit and then the limit of vanishing training field $h \to 0$. Such an approach was used, for instance, in Ref. [31].

We go a step further and consider a local field $H'' = h_1 A_1$ localized on the first site (or first three sites when $A_i = \chi_i$). This trick lifts the burden of taking $h \to 0$ numerically. In fact, we can make h_1 strong enough to saturate the order at the first site [32]. Then, long-range order is captured by

$$m = \lim_{i \to \infty} \lim_{L \to \infty} e^{iqi} \langle A_i^2 \rangle_{H + h_1 A_1}$$

That is, one first has to take the thermodynamic limit and then take the distance from the pinning center to infinity. This approach has been shown to be less sensitive to finite-size effects of the order parameter than the other two methods [33]. In following sections, we will use this method to diagnose the spin and SQ orders. Applying it to the DSSCO, however, causes the code to get stuck in metastable states with fractionalized Ising domain wall excitations [34]. Therefore, we use Eq. (4) for DSSCO with $q = 0$ since a uniform field destabilizes the domain walls and helps find the true ground state.

Although the Hamiltonian has SRS and thus commutes with $S_{total}^z = \sum_i S_i^z$, we found that implementing DMRG separately within each S_i^z subspace resulted in significantly slower or sometimes, no convergence. We speculate that this may be because fixing S_i^z to a non-zero value N amounts to an interaction $H' = U(S_{total}^z - N)^2 = U \sum_{ij} S_i^z S_j^z + 2NU \sum_i S_i^z + \text{const.}, U \to \infty$. This contains coupling between spins that are far apart, which would tend to slow down the DMRG calculation. Luckily, ordinary gapped phases have short-ranged spin correlations, so the slowdown and the net effect of this fixing S_i^z is to speed up the procedure by reducing the size of the Hilbert space. In the current problem, however, the range of spin-spin correlations is only limited by the MWHC theorem and hence is extremely large (as we also show below). Consequently, the speed-up because of a smaller Hilbert space cannot offset the slowdown due to the long-range coupling in H'. Thus, in our implementation, we allow the program to explore different values of S_i^z while searching for the ground state.

III. RESULTS: PHASE DIAGRAM

Fig. 1 summarizes the phase diagram of the Hamiltonian obtained by DMRG. We reproduced known results on the bilinear-biquadratic model [37] for the SQ and the Haldane phases on the $J = 0$ axis. For small
negative θ and $J = 0$ the ground state is known to be ferromagnetic \cite{27}. Unsurprisingly, we found (but do not show in Fig. 1) that the ferromagnet survives non-zero J. Interestingly, all the phases share boundaries with the DSSCO, which is the primary focus of this work.

A. DSSCO Phase

The most exciting feature of the phase diagram is the DSSCO, which breaks TRS but preserves SRS. We show numerical evidence for this phase in Figs. 2 and 3.

Fig. 2 shows that pinning the chirality of the first three sites induces chiral ordering of $O(1)$ magnitude throughout the chain. Moreover, as shown in Fig. 2 it robustly survives finite size scaling to the thermodynamic limit, $L \to \infty$, even as the pinning field λ is tuned down. In contrast, Fig. 2 shows that spin and SQ orders decay to zero despite pinning their values on the first site. Note, $\langle S_i \rangle$ and $\langle \hat{Q}_i \rangle$ have been shown on every third site. This is because the classical magnetic order that the DSSCO emerges from induces $q = 2\pi/3$ oscillations in them that are not the subject of our interest; we are interested in the amplitude of these oscillations only. Thus, in accordance with the MWHC theorem \cite{16,18} which allows (forbids) discrete (continuous) symmetry breaking in one-dimension, the DSSCO breaks TRS and shows long-range order while spin and spin-quadrupoles only show short-range order, since their order parameters break continuous SRS. Outside the DSSCO, χ vanishes in the Haldane, SQ and disordered phases.

In the following, we will discuss spin order in the Haldane phase, where the bulk is naively disordered but a hidden order exists between the edges, as well as the SQ phase where either quasi-long range order or disorder exists, but SQ correlations dominate and have a large correlation length.

B. Pinning the Haldane Phase

The Haldane phase is one of the simplest examples of a symmetry-protected topological phase \cite{35,37}. Its simplest realization is in the antiferromagnetic Heisenberg model, which is the $\theta = \pi/2, J = 0$ limit of H, while the point $\theta = \tan^{-1} 3 \approx 71.5^\circ, J = 0$ is in the same phase
FIG. 4. Edge states in the Haldane phase. Two degenerate ground states for Haldane phases at \(\theta = 15^\circ, J/K = 0.3 \) and for AKLT point \(\theta = 71.5^\circ, J = 0 \) are shown and the spins on the edges are marked by dashed arrows. The moment at the first site is saturated by a local training field, and \(\langle S_z^i \rangle \) is measured at all the sites. For each set of parameters \((\theta, J/K) \), \(\langle S_z^i \rangle \) on the right edge is large while \(\langle S_z^i \rangle \) in the bulk is extremely small. Note, bulk sites between \(i \approx 100 \) and \(i \approx 820 \) are not shown to highlight the edge states.

and corresponds to the exactly soluble Affleck-Kennedy-Lieb-Tasaki (AKLT) point [38]. The Haldane phase has no local order parameter; instead, it can be characterized by a non-local string order parameter [39, 40] that captures entanglement between states on opposite ends of the chain. In particular, the ground state in the Haldane phase is fourfold degenerate on an infinite open chain. The degeneracy stems from the two effective spin-1/2s, one exponentially localized at each end [40]. For a finite chain, the states at opposite ends hybridize, resulting in a unique singlet ground state: \(\frac{1}{\sqrt{2}} (|\uparrow_1 \downarrow_L \rangle - |\downarrow_1 \uparrow_L \rangle) \), and a threefold-degenerate triplet of excited states: \(|\uparrow_1 \uparrow_L \rangle \), \(\frac{1}{\sqrt{2}} (|\uparrow_1 \downarrow_L \rangle + |\downarrow_1 \uparrow_L \rangle) \), and \(|\downarrow_1 \downarrow_L \rangle \). In the thermodynamic limit, the singlet and triplet sectors become exactly degenerate. Therefore, the edge states can be detected by directly computing spin-spin correlation function in the ground state using (3), which is equivalent to calculating the string order. The correlation is non-trivial between the opposite ends of the chain, but vanishes between an edge site and a bulk site.

We expect the Haldane phase to occur in our model as well in a region of phase space around the Heisenberg and AKLT points. However, the third-neighbor interactions increase the ground state entanglement, which drastically increases the cost of computing the nonlocal order. We therefore adopt an alternate strategy to detect the edge states that not only avoids measuring the non-local order but also reduces the entanglement of our ground state. We apply a spin-pinning field on the first site, which reduces the fourfold degenerate space to two doubly degenerate subspaces, \((|\uparrow_1 \uparrow_L \rangle, |\uparrow_1 \downarrow_L \rangle) \) and \((|\downarrow_1 \uparrow_L \rangle, |\downarrow_1 \downarrow_L \rangle) \), since the pinning field favors (disfavors) states with spin at the first site parallel (anti-parallel) to the field. Fig. 4 shows signatures of the edge states in the Haldane phase at \(\theta = 15^\circ, J/K = 0.3 \), and at the AKLT point [38]. The exactly soluble AKLT point shows sharp spin moments at the edges, whereas the moments elsewhere in the Haldane phase decay exponentially into the bulk.

C. Spin-Quadrupole phase

We apply pinning spin and SQ fields at the first site separately and measure spin and SQ orders respectively far away from pinning center and edges according to Eq. (5). Again, \(q = 2\pi/3 \) oscillations are removed by computing order parameters every three sites. The results are shown in Fig. 5. It shows that correlation length is extremely large and possibly diverges. Ref. [41] shows that the correlation length indeed diverges at \(J = 0 \), \(0 < \theta < \pi/4 \) and the dominant correlations are SQ. At the systems sizes we can access, we are unable to determine decisively whether non-zero \(J \) induces a gapped phase with exponentially decaying SQ correlations with a large correlation length or a critical phase like the \(J = 0 \) limit. The resolution of this issue is left for future work.
V. CONCLUSIONS

The DSSCO is a novel phase of matter that violates TRS but has no density of moments, unlike other TRS-breaking phases known in condensed matter. Using DMRG, we find that it appears when spin and quadrupolar orders melt, leaving behind residual broken TRS but unbroken continuous SRS. The chiral order is \(O(1) \) in the DSSCO, which is much larger than that in other existing chiral phases such as the chiral spin liquid, where \(\chi \sim O(10^{-1}) \) \[21\]. Besides, we propose a numerical method to study edge states by pinning one edge and observing the other. It would be interesting to study other one-dimensional topological phases using this method.

ACKNOWLEDGEMENTS

We would like to thank Miles Stoudenmire and Yixuan Huang for invaluable discussions. We acknowledge the Department of Physics and the College of Natural Sciences and Mathematics for financial support. We also acknowledge financial support from Chin-Sen Ting and Wu-Pei Su from the Texas Center for Superconductivity at the University of Houston.

\[\text{References}\]

[1] C. M. Varma, Phys. Rev. B 55, 14554 (1997).
[2] Y. He and C. M. Varma, Phys. Rev. B 86, 035124 (2012).
[3] F. D. M. Haldane, Phys. Rev. Lett. 61, 15 (1988).
[4] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
[5] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987).
[6] H. Yao and S. A. Kivelson, Phys. Rev. Lett. 99, 247203 (2007).
[7] X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989).
[8] A. Dhar, T. Mishra, M. Maji, R. V. Pai, S. Mukerjee, and A. Paramekanti, Phys. Rev. B 87, 174501 (2013).
[9] M. P. Zaletel, S. A. Parameswaran, A. Ruegg, and E. Altman, Phys. Rev. B 89, 155142 (2014).
[10] C. Kallin and A. J. Berlinsky, Journal of Physics: Condensed Matter 21, 164210 (2009).
[11] A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).
[12] D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 28, 885 (1972).
[13] D. D. Osheroff, W. J. Gully, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 29, 920 (1972).
[14] A. Tsuruta, S. Yukawa, and K. Miyake, Journal of the Physical Society of Japan 84, 094712 (2015).
[15] P. Hosur, arXiv e-prints, arXiv:1510.00975 (2015), arXiv:1510.00975 [cond-mat.str-el].
[16] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 11, 129 (1966).
[17] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[18] S. Coleman, Communications in Mathematical Physics 31, 259 (1973).
[19] D. Grohol, J.-H. Cho, S.-H. Lee, J. W. Lynn, D. G. Nocera, and Y. S. Lee, Nat Mater 4, 323 (2005).
[20] P. A. Lee and N. Nagaosa, Phys. Rev. B 87, 064423 (2013).
[21] S.-S. Gong, W. Zhu, J.-X. Zhu, D. N. Sheng, and K. Yang, Phys. Rev. B 96, 075116 (2017).
[22] J. Xia, E. Schemm, G. Deutschter, S. A. Kivelson, D. A. Bonn, W. N. Hardy, R. Liang, W. Siemens, G. Koster, M. M. Fejer, and A. Kapitulnik, Phys. Rev. Lett. 100, 127002 (2008).
[23] S. Spielman, J. S. Dodge, L. W. Lombardo, C. B. Eom, M. M. Fejer, T. Geballe, and A. Kapitulnik, Phys. Rev. Lett. 68, 3472 (1992).
[24] S. Spielman, K. Fesler, C. Eom, T. Geballe, M. M. Fejer, and A. Kapitulnik, Phys. Rev. Lett. 112, 047003 (2014).
[25] H. Karapetyan, J. Xia, M. H"ucker, G. D. Gu, J. M. Tranquada, M. M. Fejer, and A. Kapitulnik, Phys. Rev. Lett. 112, 047003 (2014).
[26] T. Wu, H. Mayaffre, S. Kramer, M. Horvatian, C. Berthier, W. Hardy, R. Liang, D. Bonn, and M.-H. Julien, Nat Commun 6, (2015).
[27] Y.-T. Oh, H. Katsura, H.-Y. Lee, and J. H. Han, Phys. Rev. B 96, 165126 (2017).
[28] C. Itoi and M.-H. Kato, Phys. Rev. B 55, 8295 (1997).
[29] E. M. Stoudenmire and S. R. W. White, "Itensor," http://itensor.org
[30] P. Corboz, A. M. L"auchli, K. Totsuka, and H. Tsunetsugu, Phys. Rev. B 76, 220404 (2007).
[31] M. V. Ulybyshev, P. V. Buividovich, M. I. Katsnelson, and M. I. Polikarpov, Phys. Rev. Lett. 111, 056801 (2013).
[32] S. R. White and A. L. Chernyshev, Phys. Rev. Lett. 99, 127004 (2007).
[33] F. F. Assaad and I. F. Herbut, Phys. Rev. X 3, 031010 (2013).
[34] P. Prelovšek and I. Sega, Physics Letters A 81, 407 (1981).
[35] F. D. M. Haldane, Physics Letters A 93, 464 (1983).
[36] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[37] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys. Rev. B 85, 075125 (2012), arXiv:0909.4059 [cond-mat.str-el].
[38] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987).
[39] H. Ueda, H. Nakano, and K. Kusakabe, Phys. Rev. B 78, 224402 (2008), arXiv:0811.1616 [cond-mat.str-el].
[40] S. R. White and D. A. Huse, Phys. Rev. B 48, 3844 (1993).
[41] A. L"auchli, G. Schmid, and S. Trebst, Phys. Rev. B 74, 144426 (2006).