IMGT, the international ImMunoGeneTics information system®: a standardized approach for immunogenetics and immunoinformatics

Marie-Paule Lefranc*

Address: IMGT, the international ImMunoGeneTics information system®, Université Montpellier II, Institut Universitaire de France, Laboratoire d’ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
Email: Marie-Paule Lefranc* - lefranc@ligm.igh.cnrs.fr
* Corresponding author

Published: 20 September 2005
Immunome Research 2005, 1:3 doi:10.1186/1745-7580-1-3
Received: 21 June 2005
Accepted: 20 September 2005

Abstract
IMGT, the international ImMunoGeneTics information system® http://imgt.cines.fr, was created in 1989 by the Laboratoire d’ImmunoGénétique Moléculaire (LIGM) (Université Montpellier II and CNRS) at Montpellier, France. IMGT is a high quality integrated knowledge resource specialized in immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC) of human and other vertebrates, and related proteins of the immune system (RPI) of any species which belong to the immunoglobulin superfamily (IgSF) and to the MHC superfamily (MhcSF). IMGT consists of five databases, ten on-line tools and more than 8,000 HTML pages of Web resources. IMGT provides a common access to standardized data from genome, genetics, proteome and three-dimensional structures. The accuracy and the consistency of IMGT data are based on IMGT-ONTOLOGY, a semantic specification of terms to be used in immunogenetics and immunoinformatics. IMGT-ONTOLOGY comprises six main concepts: IDENTIFICATION, CLASSIFICATION, DESCRIPTION, NUMEROTATION, ORIENTATION and OBTENTION. Based on these concepts, the controlled vocabulary and the annotation rules necessary for the immunogenetics data identification, classification, description and numbering and for the management of IMGT knowledge are defined in the IMGT Scientific chart. IMGT is the international reference in immunogenetics and immunoinformatics for medical research (repertoire analysis of the IG antibody sites and of the TR recognition sites in autoimmune and infectious diseases, AIDS, leukemias, lymphomas, myelomas), veterinary research (IG and TR repertoires in farm and wild life species), genome diversity and genome evolution studies of the adaptive immune responses, biotechnology related to antibody engineering (single chain Fragment variable (scFv), phage displays, combinatorial libraries, chimeric, humanized and human antibodies), diagnostics (detection and follow up of residual diseases) and therapeutical approaches (grafts, immunotherapy, vaccinology). IMGT is freely available at http://imgt.cines.fr.
Introduction

IMGT, the international ImMunoGeneTics information system[^1][^2], was created in 1989, by Marie-Paule Lefranc, at the Laboratoire d’Immunogénétique Moléculaire (LIGM) (Université Montpellier II and CNRS) at Montpellier, France, in order to standardize and manage the complexity of the immunogenetics data. Fifteen years later, IMGT is the international reference in immunogenetics and immunoinformatics, and provides a high quality integrated knowledge resource, specialized in the immunoglobulins (IG) and T cell receptors (TR), major histocompatibility complex (MHC) of human and other vertebrates, and related proteins of the immune systems (RPI) of any species which belong to the immunoglobulin superfamily (IgSF) and to the MHC superfamily (MhcSF)[3-13]. The number of potential protein forms of the antigen receptors, IG and TR, is almost unlimited. The potential repertoire of each individual is estimated to comprise about 10^{12} different IG (or antibodies) and TR, and the limiting factor is only the number of B and T cells that an organism is genetically programmed to produce. This huge diversity is inherent to the particularly complex and unique molecular synthesis and genetics of the antigen receptor chains. This includes biological mechanisms such as DNA molecular rearrangements in multiple loci (three for IG and four for TR in humans) located on different chromosomes (four in humans), nucleotide deletions and insertions at the rearrangement junctions (or N-diversity), and somatic hypermutations in the Ig loci (see FactsBooks[^3][^4] for review). Although IMGT was initially implemented for the IG, TR and MHC of human and other vertebrates [6], data and knowledge management standardization, based on the IMGT unique numbering[^14-19], has now been extended to the IgSF [15-17,20-22] and MhcSF [18,23,24] of any species. Thus, standardization in IMGT contributed to data enhancement of the system and new expertised data concepts were readily incorporated.

IMGT, the international ImMunoGeneTics information system[^8] consists of five databases, ten on-line tools and Web resources [1,2]. Databases include sequence databases (IMGT/LIGM-DB, IMGT/PRIMER-DB and IMGT/MHC-DB) and one three-dimensional (3D) structure database (IMGT/3Dstructure-DB) [1,2] (Figure 1). Tools are provided for sequence analysis (IMGT/V-QUEST, IMGT/JunctionAnalysis, IMGT/Allele-Align, IMGT/PhyloGene), genome analysis (IMGT/LocusView, IMGT/GeneView, IMGT/GeneSearch, IMGT/CloneSearch and IMGT/GenInfo) and 3D structure analysis (IMGT/StructuralQuery) [1,2] (Figure 1). Web resources (“IMGT Marie-Paule page”) comprise more than 8,000 HTML pages of synthesis [IMGT Repertoire (for IG and TR, MHC, RPI)], knowledge [IMGT Scientific chart, IMGT Education (IMGT Lexique, Aide-mémoire, Tutorials, Questions and answers), IMGT Medical page, IMGT Biotechnology page, IMGT Veterinary page, IMGT Immunoinformatics page, IMGT Bloc-notes (Interesting links, etc.) and IMGT other accesses (SRS, BLAST, etc.)] [2]. Despite the heterogeneity of these different components, all data in the IMGT information system are expertly annotated. The accuracy, the consistency and the integration of the IMGT data, as well as the coherence between the different IMGT components (databases, tools and Web resources) are based on IMGT-ONTOLOGY[^5], which provides a semantic specification of the terms to be used in immunogenetics and immunoinformatics. IMGT-ONTOLOGY, the first ontology in the domain, has allowed the management of knowledge in immunogenetics [2,25] and provided standardization for immunogenetics data from genome, genetics, proteome and 3D structures [3-13]. IMGT-ONTOLOGY concepts are available, for the biologists and IMGT users, in the IMGT Scientific chart[^2], and for the computing scientists, in IMGT-ML which uses XML (eXtensible Markup Language) Schema [26].

IMGT-ONTOLOGY concepts and IMGT Scientific chart rules

The IMGT Scientific chart[^2] comprises the controlled vocabulary and the annotation rules necessary for the immunogenetics data identification, description, classification and numbering and for knowledge management in the IMGT information system. Standardized keywords, labels and annotation rules, standardized IG and TR gene nomenclature, the IMGT unique numbering, and standardized origin/methodology were defined, respectively, based on the six main concepts of IMGT-ONTOLOGY: IDENTIFICATION, CLASSIFICATION, DESCRIPTION, NUMEROTATION, ORIENTATION and OBTEN-TION[^2,5] (Table 1). The IMGT Scientific chart is available as a section of the IMGT Web resources (IMGT Marie-Paule page). Examples of IMGT expertised data concepts derived from the IMGT Scientific chart rules are shown in Table 1.

The IMGT Scientific chart rules, based on the IMGT-ONTOLOGY concepts [5], are used in the three major IMGT biological approaches, genomics, genetics and structural approaches [2], and corresponding data (Genes, Sequences, 3D structures) are available in the IMGT components (databases, tools and Web resources) [1,7-13].

IMGT sequence databases, tools and Web resources

IMGT sequence databases, tools and Web resources correspond to the IMGT genetics approach that refers to the study of genes in relation with their polymorphisms, mutations, expression, specificity and evolution (Table 2). The IMGT sequence knowledge management and the
IMGT genetics approach heavily rely on the DESCRIPTION concept (and particularly on the V-REGION, D-REGION, J-REGION and C-REGION core concepts for the IG and TR), on the CLASSIFICATION concept (gene and allele concepts) and on the NUMEROTATION concept (IMGT unique numbering [14-18]).

IMGT sequence databases

IMGT/LIGM-DB

IMGT/LIGM-DB is the comprehensive IMGT database of IG and TR nucleotide sequences from human and other vertebrate species, with translation for fully annotated sequences [7]. It was created in 1989 by LIGM (Montpellier, France), and is on the Web since July 1995 [6]. In August 2005, IMGT/LIGM-DB contained more than 96,500 sequences of 150 vertebrate species [7]. The unique source of data for IMGT/LIGM-DB is EMBL, which shares data with the other two generalist databases GenBank and DNA DataBank of Japan (DDBJ). Based on expert analysis, specific detailed annotations are added to IMGT flat files. The annotation procedure includes the IDENTIFICATION of the sequences, the CLASSIFICATION of the IG and TR genes and alleles, and the DESCRIPTION of all IG and TR specific and constitutive motifs within the nucleotide sequences. The Web interface allows searches according to immunogenetic specific criteria and is easy to use without any knowledge in a computing language. Selection is displayed at the top of the resulting sequences pages, so the users can check their own queries. Users have the possibility to modify their
Table 1: IMGT-ONTOLOGY concepts, IMGT Scientific chart rules and examples of IMGT expertised data concepts.

IMGT-ONTOLOGY main concepts	IMGT Scientific chart rules [2]	Examples of IMGT expertised data concepts [2]
IDENTIFICATION	Standardized keywords [5]	Species, molecule type, receptor type, chain type, gene type, structure, functionality, specificity
CLASSIFICATION	Reference sequences	Nomenclature of the human IG and TR genes (entry in 1999 in GDB, HGNC [27] and LocusLink at NCBI) [3, 4]
	Standardized IG and TR gene nomenclature (group, subgroup, gene, allele) [5]	Alignment of alleles [3, 4]
		Nomenclature of the IG and TR genes of all vertebrate species
DESCRIPTION	Standardized labels and annotations [5]	Core (V-, D-, J-, C-REGION) Prototypes [5]
		Labels for sequences Labels for 2D and 3D structures
NUMEROTATION	IMGT unique numbering [14-18] for: V- and V-LIKE-DOMAINS [16]	Protein displays
	C- and C-LIKE-DOMAINS [17]	IMGT Colliers de Perles [19]
	G- and G-LIKE-DOMAINS [18]	FR-IMGT and CDR-IMGT delimitations [16]
		Structural loops and beta strands delimitations [16, 17]
ORIENTATION	Orientation of genomic instances relative to each other	Chromosome orientation
		Locus orientation
		Gene orientation
		DNA strand orientation
OBTENTION	Standardized origin	
	Standardized methodology [2]	

request or consult the results with a choice of nine possibilities. The IMGT/LIGM-DB annotations (gene and allele name assignment, labels) allow data retrieval not only from IMGT/LIGM-DB, but also from other IMGT databases. Thus, the IMGT/LIGM-DB accession numbers of the cDNA expressed sequences for each human and mouse IG and TR gene are available, with direct links to IMGT/LIGM-DB, in the IMGT/GENE-DB entries. IMGT/LIGM-DB data are also distributed by anonymous FTP servers at CINES ftp://ftp.cines.fr/IMGT/ and EBI ftp://ftp.ebi.ac.uk/pub/databases/imgt/ and from many Sequence Retrieval System (SRS) sites http://imgt.cines.fr/textes/IMGTotheraccesses.html. IMGT/LIGM-DB can be searched by BLAST or FASTA on different servers (EBI, IGH, INF/BI, Institut Pasteur, etc.).

Table 2: The IMGT sequence databases, sequence analysis tools and Web resources

IMGT sequence databases [1]	IMGT sequence analysis tools [1]	IMGT Repertoire“Proteins and alleles” section 2
IMGT/LIGM-DB [7]	IMGT/V-QUEST [10]	Alignments of alleles IG and TR [3, 4]
IMGT/PRIMER-DB [1]	IMGT/JunctionAnalysis [11]	Alignments of alleles RPI [22]
IMGT/MHC-DB [28]	IMGT/Allele-Align	Protein displays IG and TR [3, 4, 16, 17]
	IMGT/PhyloGene [12]	Protein displays MHC [18]
	IMGT/Automat [29, 30] (1)	Protein displays RPI [16-18, 21]
		Tables of alleles IG and TR
		Tables of alleles RPI [22, 24]
		Allotypes isotypes, etc.

(1) IMGT/Automat [29, 30] is an integrated internal IMGT Java tool which automatically performs the annotation of rearranged cDNA sequences that represent the half of the IMGT/LIGM-DB content. So far 7,418 human and mouse IG and TR cDNA sequences have been automatically annotated by the IMGT/Automat tool, with annotations being as reliable and accurate as those provided by a human annotator.

(2) IMGT publications from the IMGT Repertoire “Proteins and alleles” section are available as pdf in IMGT Locus in Focus http://imgt.cines.fr/textes/IMGTotheraccesses.html, in IMGT Index (see also [2]).
Table 3: The IMGT gene database, genome analysis tools and Web resources

IMGT genome database [1]	IMGT genome analysis tools [1]	IMGT Repertoire "Locus and genes" section [2] (1)
IMGT/GENE-DB [8]	IMGT/LocusView	Chromosomal localizations [3, 4]
IMGT/GeneView		Locus representations [3, 4]
IMGT/GeneSearch		Locus description
IMGT/CloneSearch		Gene exon/intron organization
IMGT/GenelInfo [13]		Gene exon/intron splicing sites
IMGT/MHC-DB		Gene tables
IMGT/JunctionAnalysis		Potential germline repertoires
IMGT/Allele-Align		Lists of genes
IMGT/PhyloGene		Correspondence between nomenclatures [3, 4]

(1) IMGT Web resources (IMGT Marie-Paule page) also include IMGT Index, IMGT Education (IMGT Lexique, Aide-mémoire, Tutorials, Questions and answers), The IMGT Medical page, The IMGT Veterinary page, The IMGT Biotechnology page, The IMGT Immunoinformatics page, IMGT Bloc-notes (Interesting links, etc.) [2] which are not detailed in this paper.

(2) IMGT publications from the IMGT Repertoire "Locus and genes" section are available as pdf in IMGT Locus in Focus http://imgt.cines.fr/textes/IMGTindex/imgtfocus.html, in IMGT Index (see also [2]).

IMGT/GENE-DB
IMGT/MHC-DB [28] comprises databases hosted at EBI and includes a database of human MHC allele sequences or IMGT/MHC-HLA, developed by Cancer Research UK and maintained by ANRI, London, UK, on the Web since December 1998, and a database of MHC sequences from non-human primates IMGT/MHC-NHP, curated by BPRC, The Netherlands, on the Web since April 2002.

IMGT sequence analysis tools
The IMGT sequence analysis tools comprise IMGT/V-QUEST [10], for the identification of the V, D and J genes and of their mutations, IMGT/JunctionAnalysis [11] for the analysis of the V-J and V-D-J junctions which confer the antigen receptor specificity, IMGT/Allele-Align for the detection of polymorphisms, and IMGT/PhyloGene [12] for gene evolution analyses.

IMGT/V-QUEST
IMGT/V-QUEST (V-QUEry and STandardization) is an integrated software for IG and TR [10]. This tool, easy to use, analyses an input IG or TR germline or rearranged variable nucleotide sequence. The IMGT/V-QUEST results comprise the identification of the V, D and J genes and alleles and the nucleotide alignments by comparison with sequences from the IMGT reference directory, the FR-IMGT and CDR-IMGT delimitations based on the IMGT unique numbering, the translation of the input sequence, the display of nucleotide and amino acid mutations compared to the closest IMGT reference sequence, the identification of the JUNCTION and results from IMGT/JunctionAnalysis (default option), and the two-dimensional (2D) IMGT Collier de Perles representation of the V-REGION [10] ("IMGT/V-QUEST output" in IMGT/V-QUEST Documentation).

IMGT/JunctionAnalysis
IMGT/JunctionAnalysis [11] is a tool, complementary to IMGT/V-QUEST, which provides a thorough analysis of the V-J and V-D-J junction of IG and TR rearranged genes. IMGT/JunctionAnalysis identifies the D-GENEs and alleles involved in the IGH, TRB and TRD V-D-J rearrangements by comparison with the IMGT reference directory, and delimits precisely the P, N and D regions [11] ("IMGT/JunctionAnalysis output results" in IMGT/JunctionAnalysis Documentation). Several hundreds of junction sequences can be analysed simultaneously.

IMGT/Allele-Align
IMGT/Allele-Align is used for the detection of polymorphisms. It allows the comparison of two alleles highlighting the nucleotide and amino acid differences.

IMGT/PhyloGene
IMGT/PhyloGene [12] is an easy to use tool for phylogenetic analysis of variable region (V-REGION) and constant domain (C-DOMAIN) sequences. This tool is particularly useful in developmental and comparative immunology. The users can analyse their own sequences by comparing with the IMGT standardized reference sequences for human and mouse IG and TR [12] (IMGT/PhyloGene Documentation).

IMGT sequence Web resources
The IMGT sequence Web resources are compiled in the IMGT Repertoire "Proteins and alleles" section that include Alignments of alleles, Proteins displays, Tables of alleles, Allotypes, Isotypes, etc. (Table 2). Standardized IMGT criteria for amino acid sequence analysis are described in [31].
IMGT gene databases, tools and Web resources

IMGT gene databases, tools and Web resources correspond to the IMGT genomics approach that refers to the studies of the genes within their loci and on their chromosome [2] (Table 3).

IMGT/GENE-DB, the IMGT gene database

Genomic data are managed in IMGT/GENE-DB, which is the comprehensive IMGT genome database [8]. IMGT/GENE-DB, created by LIGM (Montpellier, France) is on the Web since January 2003. In August 2005, IMGT/GENE-DB contained 1,377 genes and 2,207 alleles (673 IG and TR genes and 1,209 alleles from Homo sapiens, and 704 IG and TR genes and 998 alleles from Mus musculus, Mus cookii, Mus pahari, Mus spretus, Mus saxicola, Mus minutoides). All the human and mouse IG and TR genes are available in IMGT/GENE-DB. Based on the IMGT CLASSIFICATION concept, all the human IMGT gene names [3,4] were approved by the Human Genome Organisation (HUGO) Nomenclature Committee HGNC in 1999 [27], and entered in IMGT/GENE-DB [8], Genome DataBase GDB (Canada) [32], LocusLink and Entrez Gene at NCBI (USA) [33], and GeneCards [34]. Reciprocal links exist between IMGT/GENE-DB, and the generalist nomenclature (HGNC Genew) and genome databases (GDB, LocusLink and Entrez at NCBI, and GeneCards). All the mouse IG and TR gene names with IMGT reference sequences were provided by IMGT to HGNC and to the Mouse Genome Database (MGD) [35] in July 2002. Queries in IMGT/GENE-DB can be performed according to IG and TR gene classification criteria and IMGT reference sequences have been defined for each allele of each gene based on one or, whenever possible, several of the following criteria: germline sequence, first sequence published, longest sequence, mapped sequence [2]. IMGT/GENE-DB interacts dynamically with IMGT/LIGM-DB [7] to download and display gene-related sequence data. As an example ans as mentioned earlier, the IMGT/GENE-DB entries provide the IMGT/LIGM-DB accession numbers of the IG and TR cDNA sequences which contain a given V, D, J or C gene. This is the first example of an interaction between IMGT databases using the CLASSIFICATION concept.

Table 4: IMGT structure database, analysis tool and Web resources

IMGT structural database [1]	IMGT structural analysis tool [1]	IMGT Repertoire “2D and 3D structures” section [2]
IMGT/3D structure-DB [15]	IMGT/StructuralQuery [15]	2D Colliers de Perles IG and TR [3, 4, 16, 17, 19] (1)
		2D Colliers de Perles MHC [18, 36]
		2D Colliers de Perles RPI [16-18, 21, 22, 24, 37]
		IMGT classes for amino acid characteristics [31]
		IMGT Colliers de Perles reference profiles [31]
		3D representations (1)

Table 4 Notes:

(1) Cover of the Nucleic Acids Research 1999 database issue http://imgt.cines.fr/textes/IMGTinformation/Couv_NAR99.jpg

IMGT gene analysis tools

The IMGT gene analysis tools comprise IMGT/LocusView, IMGT/GeneView, IMGT/GeneSearch, IMGT/CloneSearch and IMGT/GeneInfo. IMGT/LocusView and IMGT/GeneView manage the locus organization and the gene location and provide the display of physical maps for the human IG, TR and MHC loci and for the mouse TR/TRA locus. IMGT/LocusView allows to view genes in a locus and to zoom on a given area. IMGT/GeneView allows to view a given gene in a locus. IMGT/GeneSearch allows to search for genes in a locus based on IMGT gene names, functionality or localization on the chromosome. IMGT/CloneSearch provides information on the clones that were used to build the locus contigs displayed in IMGT/LocusView (accession numbers are from IMGT/LIGM-DB, gene names from IMGT/GENE-DB, and clone position and orientation, and overlapping clones from IMGT/LocusView). IMGT/GeneInfo[13] provides and displays information on the potential TR rearrangements in human and mouse.

IMGT gene Web resources

The IMGT gene Web resources are compiled in the IMGT Repertoire “Locus and genes” section that includes Chromosomal localizations, Locus representations, Locus description, Gene exon/intron organization, Gene exon/intron splicing sites, Gene tables, Potential germline repertoires, the complete lists of human and mouse IG and TR genes, and the correspondences between nomenclatures [3,4] (Table 3). The IMGT Repertoire “Probes and RFLP” section provides additional data on gene insertion/deletion.

IMGT structure database, tool and Web resources

The IMGT structural approach refers to the study of the 2D and 3D structures of the IG, TR, MHC and RPI, and to the antigen or ligand binding characteristics in relation with the protein functions, polymorphisms and evolution (Table 4). The structural approach relies on the CLASSIFICATION concept (IMGT gene and allele names), DESCRIPTION concept (receptor and chain description, domain delimitations), and NUMEROTATION concept.
Figure 2
IMGT Colliers de Perles of a V-DOMAIN (A) and of a C-DOMAIN (B) (code PDB 1mcd in IMGT/3Dstructure-DB [9]). IMGT Colliers de Perles are shown on one layer (on the left hand side) and on two layers with hydrogen bonds (on the right hand side). (A) The IMGT Collier de Perles of a V-DOMAIN is based on the IMGT unique numbering for V-DOMAIN and V-LIKE-DOMAIN [16]. The CDR-IMGT are limited by amino acids shown in squares, which belong to the neighbouring FR-IMGT. The CDR3-IMGT extends from position 105 to position 117. CDR-IMGT regions are colored as follows on the IMGT site: CDR1-IMGT (blue), CDR2-IMGT (bright green), CDR3-IMGT (dark green) and hydrogen bonds are shown as green lines. (B) The IMGT Collier de Perles of a C-DOMAIN is based on the IMGT unique numbering for C-DOMAIN and C-LIKE-DOMAIN [17]. Amino acids are shown in the one-letter abbreviation. Arrows indicate the direction of the beta strands that form the two beta sheets of the immunoglobulin fold [3, 4]. Hatched circles correspond to missing positions according to the IMGT unique numbering [16, 17]. In the IMGT Collier de Perles on the IMGT Web site http://imgt.cines.fr hydrophobic amino acids (hydropathy index with positive value) and Tryptophan (W) found at a given position in more than 50% of analysed IG and TR sequences are shown in blue, and all Proline (P) are shown in yellow.
Structural and functional domains of the IG and TR chains comprise the variable domain or V-DOMAIN (9-strand beta-sandwich) which corresponds to the V-J-REGION or V-D-J-REGION and is encoded by two or three genes [3,4], the constant domain or C-DOMAIN (7-strand beta-sandwich), and, for the MHC chains, the groove domain or G-DOMAIN (4 beta-strand and one alpha-helix). A uniform numbering system for IG and TR V-DOMAINS of all vertebrate species has been established to facilitate sequence comparison and cross-referencing between experiments from different laboratories whatever the antigen receptor (IG or TR), the chain type, or the species [14-16]. In the IMGT unique numbering, conserved amino acids from frameworks always have the same number whatever the IG or TR variable sequence, and whatever the species they come from. As examples: Cysteine 23 (in FR1-IMGT), Tryptophan 41 (in FR2-IMGT), hydrophobic amino acid 89 and Cysteine 104 (in FR3-IMGT) (Figure 2). This numbering has been applied with success to all the sequences belonging to the V-set of the IgSF [20], including non-rearranging sequences in vertebrates (human CD4, Xenopus cIgG1, etc.) and in invertebrates (drosophila amalgam, drosophila fasciclin II, etc.) [15,16,21]. The IMGT unique numbering, initially defined for the V-DOMAINS of the IG and TR and for the V-LIKE-DOMAINS of IgSF proteins other than IG and TR, has been extended to the C-DOMAINs of the IG and TR (Figure 2B), and to the C-LIKE-DOMAINS of IgSF proteins other than IG and TR [17]. An IMGT unique numbering has also been implemented for the groove domain (G-DOMAIN) of the MHC class I and II chains (Figure 3), and for the G-LIKE-DOMAINS of MhcSF proteins other than MHC [18].

Figure 3

IMGT Colliers de Perles of the two G-DOMAINS of MHC class I (A) and of MHC class II (B) proteins (codes PDB 1bd2 and 1aqd, respectively, in IMGT/3Dstructure-DB [9]). The IMGT Collier de Perles of a G-DOMAIN is based on the IMGT unique numbering for G-DOMAIN and G-LIKE-DOMAIN [18]. (A) The two MHC-I G-DOMAINS, G-ALPHA1 (top) and G-ALPHA2 (bottom), form the groove of the MHC class I chain (I-ALPHA). (B) The two MHC-II G-DOMAINS, G-ALPHA (top) of the MHC class II alpha chain (II-ALPHA) and G-BETA (bottom) of the MHC class II beta chain (II-BETA), form the groove of the MHC class II protein [36]. Amino acids are shown in the one-letter abbreviation. Hatched circles correspond to missing positions according to the IMGT unique numbering [18]. Positions in colour correspond to the IMGT contact sites provided, for each peptide/MHC 3D structure, in IMGT/3Dstructure-DB [36].
IMGT Colliers de Perles [16-19]. The "Contact analysis" section provides contact types and categories between domains (in IMGT/3Dstructure-DB Domain contacts) and atom contacts at the residue and position level (in IMGT/3Dstructure-DB Residue@Position contacts) [37]. (IMGT/3Dstructure-DB Documentation). The "Renumbered file" section downloadable provides renumbered IMGT/3Dstructure-DB flat files.

IMGT/StructuralQuery tool
The IMGT/StructuralQuery tool [9] analyses the interactions of the residues of the antigen receptors IG and TR, MHC, RPI, antigens and ligands. The contacts are described per domain (intra- and inter-domain contacts) and annotated in term of IMGT labels (chains, domain), positions (IMGT unique numbering), backbone or side-chain implication [37]. IMGT/StructuralQuery allows to retrieve the IMGT/3Dstructure-DB entries, based on specific structural characteristics: phi and psi angles, accessible surface area (ASA), amino acid type, distance in angstrom between amino acids, CDR-IMGT lengths.

IMGT structure Web resources
The IMGT structure Web resources are compiled in the IMGT Repertoire "2D and 3D structures" section which includes 2D representations or IMGT Colliers de Perles [16-19], 3D representations, FR-IMGT and CDR-IMGT lengths [16], amino acid chemical characteristics profiles [31], etc. In order to appropriately analyse the amino acid resemblances and differences between IG, TR, MHC and RPI chains, eleven IMGT classes were defined for the 'chemical characteristics' amino acid properties and used to set up IMGT Colliers de Perles reference profiles [31]. The IMGT Colliers de Perles reference profiles allow to easily compare amino acid properties at each position whatever the domain, the chain, the receptor or the species. The IG and TR variable and constant domains represent a privileged situation for the analysis of amino acid properties in relation with 3D structures, by the conservation of their 3D structure despite divergent amino acid sequences, and by the considerable amount of genomic (IMGT Repertoire), structural (IMGT/3Dstructure-DB) and functional data available. These data are not only useful to study mutations and allele polymorphisms, but are also needed to establish correlations between amino acids in the protein sequences and 3D structures and to determine amino acids potentially involved in the immunogenicity.

Conclusion
In order to allow any IMGT component to be automatically queried and to achieve a higher level of interoperability inside the IMGT information system and with other information systems, our current objectives include the modelling of the three major IMGT biological approaches, genomics, genetics and structural approaches, the analysis of the IMGT components (databases, tools and Web resources) in relation with the concepts, and the development of Web services [http://www.w3.org/2002/ws/] [2]. They are the first steps towards the implementation of IMGT-Choreography [2], which corresponds to the process of complex immunogenetics knowledge [25] and to the connection of treatments performed by the IMGT component Web services. IMGT-Choreography has for goal to combine and join the IMGT database queries and analysis tools. In order to keep only significant approaches, a rigorous analysis of the scientific standards [3,4], of the biologist requests and of the clinician needs [39-42] has been undertaken in the three main biological approaches: genomics, genetics and structural approaches. The design of IMGT-Choreography and the creation of dynamic interactions between the IMGT databases and tools, using the Web services and IMGT-ML, represent novel and major developments of IMGT, the international reference in immunogenetics and immunoinformatics. IMGT-Choreography enhances the dynamic interactions between the IMGT components to answer complex biological and clinical requests.

Since July 1995, IMGT has been available on the Web at [http://imgt.cines.fr]. IMGT has an exceptional response with more than 140,000 requests a month. The information is of much value to clinicians and biological scientists in general. IMGT databases, tools and Web resources are extensively queried and used by scientists from both academic and industrial laboratories, from very diverse research domains: (i) fundamental and medical research (repertoire analysis of the IG antibody sites and of the TR recognition sites in normal and pathological situations such as autoimmune diseases, infectious diseases, AIDS, leukemias, lymphomas, myelomas), (ii) veterinary research (IG and TR repertoires in farm and wild life species), (iii) genome diversity and genome evolution studies of the adaptive immune responses, (iv) structural evolution of the IgSF and MhcSF proteins, (v) biotechnology related to antibody engineering (single chain Fragment variable scFv), phage displays, combinatorial libraries, chimeric, humanized and human antibodies, (vi) diagnostics (clonalities, detection and follow up of residual diseases) and (vii) therapeutic approaches (grafts, immunotherapy, vaccinology).

Citing IMGT
If you use IMGT databases, tools and/or Web resources, please cite [1] and this paper as references, and quote the IMGT Home page URL address, [http://imgt.cines.fr].

Acknowledgements
I am very grateful to Véronique Giudicelli, Chantal Ginestoux, Joumana Jabado-Michaloud, Géraldine Folch, Eldodie Duprat, Denys Chaume, Quentin Kaas, and Gérard Lefranc for their expertise, constant motivation and

References
1. Immunome Research 2005, 1:3
2. http://www.immunome-research.com/content/1/1/3
3. [http://www.w3.org/2002/ws/]
4. [2]
5. They are the first steps towards the implementation of IMGT-Choreography [2], which corresponds to the process of complex immunogenetics knowledge [25] and to the connection of treatments performed by the IMGT component Web services. IMGT-Choreography has for goal to combine and join the IMGT database queries and analysis tools. In order to keep only significant approaches, a rigorous analysis of the scientific standards [3,4], of the biologist requests and of the clinician needs [39-42] has been undertaken in the three main biological approaches: genomics, genetics and structural approaches. The design of IMGT-Choreography and the creation of dynamic interactions between the IMGT databases and tools, using the Web services and IMGT-ML, represent novel and major developments of IMGT, the international reference in immunogenetics and immunoinformatics. IMGT-Choreography enhances the dynamic interactions between the IMGT components to answer complex biological and clinical requests.

Since July 1995, IMGT has been available on the Web at [http://imgt.cines.fr]. IMGT has an exceptional response with more than 140,000 requests a month. The information is of much value to clinicians and biological scientists in general. IMGT databases, tools and Web resources are extensively queried and used by scientists from both academic and industrial laboratories, from very diverse research domains: (i) fundamental and medical research (repertoire analysis of the IG antibody sites and of the TR recognition sites in normal and pathological situations such as autoimmune diseases, infectious diseases, AIDS, leukemias, lymphomas, myelomas), (ii) veterinary research (IG and TR repertoires in farm and wild life species), (iii) genome diversity and genome evolution studies of the adaptive immune responses, (iv) structural evolution of the IgSF and MhcSF proteins, (v) biotechnology related to antibody engineering (single chain Fragment variable scFv), phage displays, combinatorial libraries, chimeric, humanized and human antibodies, (vi) diagnostics (clonalities, detection and follow up of residual diseases) and (vii) therapeutic approaches (grafts, immunotherapy, vaccinology).

Citing IMGT
If you use IMGT databases, tools and/or Web resources, please cite [1] and this paper as references, and quote the IMGT Home page URL address, [http://imgt.cines.fr].

Acknowledgements
I am very grateful to Véronique Giudicelli, Chantal Ginestoux, Joumana Jabado-Michaloud, Géraldine Folch, Eldodie Duprat, Denys Chaume, Quentin Kaas, and Gérard Lefranc for their expertise, constant motivation and
References

1. Lefranc M-P, Giudicelli V, Chaume D, Lefranc G: IMGT, the international ImMunoGeneTics information system®. Nucleic Acids Res 2005, 33:D593-D597. PMID: 15806289

2. Lefranc M-P, Clément O, Kaas Q, Duprat E, Chastellant P, Coelho I, Combres K, Ginestoux C, Giudicelli V, Chaume D, Lefranc G: IMGT-LIGM-DB: an integrated database of Ig and TcR, part of the Immunogenetics database. Volume 764. Annals of the New York Academy of Sciences; 1999:47-49. PMID: 97486568

3. Giudicelli V, Chaume D, Lefranc M-P: IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res 2005, 33:D256-D261. PMID: 15608191

4. Kaas Q, Ruiz M, Lefranc M-P: IMGT/3D structure-DB and IMGT/StructuralQuery, a database and a tool for immunoglobulin, T cell receptor and MHC structural data. Nucleic Acids Res 2004, 32:D208-D210. PMID: 14681396

5. Giudicelli V, Chaume D, Lefranc M-P: IMGT/V-QUEST, an integrated software program for immunoglobulin and T cell receptor V-j and V-D-J rearrangement analysis. Nucleic Acids Res 2004, 32:W435-W440. PMID: 15215425

6. Youssfi Monod M, Giudicelli V, Chaume D, Lefranc M-P: IMGT/GENE-DB: an integrated database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res 2004, 32:W435-W440. PMID: 15215425

7. Elemental O, Lefranc M-P: IMGT/PhyloGene: an on-line tool for comparative analysis of immunoglobulin and T cell receptor genes. Dev Comp Immunol 2003, 27:763-779. PMID: 12886234

8. Baum TP, Pasqual N, Thuderon F, Hievel E, Chaume D, Lefranc M-P: Jovin-Marche E, Marche PN, Demongeot J: IMGT/Genefnio: enhancing V(D)J recombination database accessibility. Nucleic Acids Res 2004, 32:D51-D54. PMID: 14681357

9. Lefranc M-P: Unique database numbering system for immunogenetic analysis. Immunol Today 1997, 18:509. PMID: 9386342

10. Lefranc M-P: The IMGT unique numbering for Immunoglobulins, T cell receptors and Ig-like domains. The Immunologist 1999, 7:122-136.

11. Lefranc M-P, Pommié C, Ruiz M, Giudicelli V, Fouliquier E, Truong L, Thouvenin-Contet V, Lefranc G: IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 2003, 27:55-77. PMID: 12477501

12. Lefranc M-P, Pommié C, Kaas Q, Duprat E, Bosc N, Guiraudou D, Jean C, Ruiz M, De Piedade I, Rouard M, Fouliquier E, Thouvenin V, Lefranc G: IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains. Dev Comp Immunol 2005, 29:185-203. PMID: 15572068

13. Lefranc M-P, Duprat E, Kaas Q, Tranne M, Thuderon F, Chaume D, Lefranc G: IMGT unique numbering for MHC groove G-DOMAIN and MHC superfamily (MHCf) G-LIKEDOMAIN. Dev Comp Immunol 2005, 29:917-938. PMID:15936075.

14. Williams AF, Barclay AN: The immunoglobulin family: domains for cell surface recognition. Annu Rev Immunol 1988, 6:381-405. PMID: 3289571

15. Duprat E, Kaas Q, Garelle V, Giudicelli V, Lefranc G, Lefranc M-P: IMGT standardization for alleles and mutations of the V-LIKE-DOMAINS and C-LIKE-DOMAINS of the immunoglobulin superfamily. Recent Res Dev Hum Genet 2004, 2:111-136.

16. Bennoiard G, Duprat E, Bosc N, Guiraudou D, Chaume D: Characterization of human FCGR3B*02 (HNA-1b, NA2) cDNAs and IMGT standardized description of FCGR3B alleles. Tissue Antigens 2004, 64:119-131. PMID: 15245367

17. Masenaka K, Jones EY: MHC superfamily structure and the immune system. Curr Opin Struct Biol 1999, 9:745-753. PMID: 10607669

18. Frigol A, Lefranc M-P: MICA: standardized IMGT allele nomenclature, polymorphisms and diseases. Recent Res Dev Hum Genet 2005, 3:45-53.

19. Chaume D, Giudicelli V, Combres K, Ginestoux C, Lefranc M-P: IMGT-Choreography: processing of complex immunogenetics knowledge. Computational Methods in Systems Biology: International Conference CMSB Paris, France. In Lecture Notes in Computer Science. Edited by: Danos V, Schachter V. Springer-Verlag GmbH Berlin Heidelberg; 2004:73-84.

20. Chaume D, Giudicelli V, Lefranc M-P: IMGT-ML: a language for IMGT-ONTOLGY and IMGT/LIGM-DB data. CORBA and XML: Towards a bioinformatics integrated network environment, Proceedings of NETTAB Network tools and applications in biology 2001:71-75.

21. Wain HM, Bruford EA, Lovering RC, Lush MJ, Wright MW, Povey S: Guidelines for human gene nomenclature. Genomics 2002, 79:464-470. PMID: 11949974

22. Robinson J, Waller MJ, Partam P, de Groot N, Bontrop R, Kennedy UJ, Smeek P, Marsh SG: IMGT/LHILA and IMGT/MHC sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 2003, 31:1313-1314. PMID: 12502010

23. Giudicelli V, Chaume D, Jabado-Pichaloud J, Lefranc M-P: Immunogenetics sequence annotation: the strategy of IMGT based on IMGT-ONTOLGY. In The XIXth International Congress of the European Federation for Medical Informatics, Geneva, Switzerland. Connecting Medical Informatics and Bio-informatics. Proceedings of the Medical Informatics Europe. MIE Volume I/6. Edited by: Engelbrecht R, Geissbuhler A, Louis C, Milahas T, IOS Press, Technology and Informatics; 2003:8.

24. Giudicelli V, Lefranc M-P: Interactive IMGT on-line tools for the analysis of immunoglobulin and T cell receptor repertoires. In New Research on Immunology Edited by: Veskler BA. Nova Science; 2005:77-105.

25. Pommié C, Sabatier S, Lefranc M-P: IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties. J Mol Recognit 2004, 17:17-32. PMID: 14872334

26. Letovsky SL, Cottingham RW, Porter CJ, Li PW: GDB: the Human Genome Database. Nucleic Acids Res 1998, 26:94-99. PMID: 9399808

27. Pruett KD, Maglott DR: RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res 2001, 29:137-140. PMID: 11125071

Page 10 of 11 (page number not for citation purposes)
34. Safran M, Chalifa-Caspi V, Shmueli O, Olender T, Lapidot M, Rosen N, Shmoish M, Peter Y, Glusman G, Feldmesser E, Adato A, Peter I, Khem M, Astarot T, Groner Y, Lancet D. Human Gene-Centric Databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE. *Nucleic Acids Res* 2003, 31:142-146. PMID: 12519968

35. Blake JA, Richardson JE, Bult CJ, Kadin JA, Eppig JT. Mouse Genome Database Group; MGD: the Mouse Genome Database. *Nucleic Acids Res* 2003, 31:193-195. PMID: 12519980

36. Kaas Q, Duptre E, Le Tourneur G, Lefranc M-P. IMGT standardization for molecular characterization of the T cell receptor/peptide/MHC complexes. Springer in press.

37. Kaas Q, Lefranc M-P. Interactive IMGT online database and tool for the structural analysis of immunoglobulins, T cell receptors, MHC and related proteins of the immune system. *Focus on Immunology Research, Nova Science* in press.

38. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. *Nucleic Acids Res* 2000, 28:235-242. PMID: 10592235

39. Chassagne S, Laffly E, Drouet E, Herodin F, Lefranc M-P, Thullier P. A high affinity macaque antibody Fab with human-like framework regions obtained from a small phage display immune library. *Mol Immunol* 2004, 41:539-546. PMID: 15189932

40. Laffly E, Danjou L, Condemine F, Vidal D, Drouet E, Lefranc M-P, Bontex C, Thullier P. Selection of a macaque Fab with human-like framework regions, high affinity, and that neutralizes the protective antigen (PA) of *Bacillus anthracis*. *Antimicrob Agents Chemother* 2005, 49:3414-3420. PMID: 16048955

41. Stamatopoulos K, Belessi C, Papadaki T, Kalajianou E, Stavroyianni N, Douka V, Afendaki S, Saloum R, Parasi A, Anagnostou D, Laoutaris N, Fassas A, Anagnostopoulous A. Immunoglobulin heavy- and light-chain repertoire in Splenic Marginal Zone Lymphoma. *Mol Med* 2005 in press. PMID: 15706403

42. Ghia P, Stamatopoulos K, Belessi C, Moreno C, Stella S, Guida G, Michel A, Crespo M, Laoutaris N, Montserrat E, Anagnostopoulous A, Dighiero G, Fassas A, Caligaris-Cappio F, Davi F. Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. *Blood* 2005, 105:1678-1685. PMID: 15466924