Secrecy of Multi-Antenna Transmission with Full-Duplex User in the Presence of Randomly Located Eavesdroppers

Ishnem Zabir, Student Member, IEEE, Ahmed Maksud, Student Member, IEEE, Gaojie Chen, Senior Member, IEEE, Brian M. Sadler, Fellow, IEEE, Yingbo Hua, Fellow, IEEE

Abstract—This paper considers the secrecy performance of several schemes for multi-antenna transmission to single-antenna users with full-duplex (FD) capability against randomly distributed single-antenna eavesdroppers (EDs). These schemes and related scenarios include transmit antenna selection (TAS), transmit antenna beamforming (TAB), artificial noise (AN) from the transmitter, user selection based their distances to the transmitter, and colluding and non-colluding EDs. The locations of randomly distributed EDs and users are assumed to be distributed as Poisson Point Process (PPP). We derive closed form expressions for the secrecy outage probabilities (SOP) of all these schemes and scenarios. The derived expressions are useful to reveal the impacts of various environmental parameters and user’s choices on the SOP, and hence useful for network design purposes. Examples of such numerical results are discussed.

Index Terms—Physical Layer Security, Beamforming, Artificial Noise, Stochastic Geometry, Full Duplex, Secrecy Connectivity, Power Allocation.

I. INTRODUCTION

Since Wyner’s work [1], physical layer security has been studied as an alternative or complementary approach to cryptography for information security. This trend of study has accelerated in recent years given its importance for 5G and future wireless networks [2].

Due to the broadcast nature of wireless communications, transmitted information in air is highly vulnerable to eavesdropping unless a positive secrecy rate at the physical layer is achieved. Many prior works for achieving a positive secrecy rate require that the locations and/or channel-state-information (CSI) of eavesdroppers (EDs or Eve) are known to the legitimate users (also referred to as users) [3]-[12]. This requirement is generally difficult to meet in practice.

One way to handle EDs whose locations and CSI are unknown to users is to assume a statistical model for EDs’ CSI where both the small-scale-fading and large-scale-fading of EDs’ CSI are statistically modelled. While the small-scale-fading is commonly modelled as Gaussian distributed, the large-scale-fading can be treated by assuming EDs to be randomly distributed according to a Poisson Point Process (PPP) [13]-[24]. This paper will also adopt the PPP model to investigate the impact of random EDs locations on secrecy performance which is useful over a time window within which the EDs’ locations change randomly.

The conventional radio is half-duplex (HD). But full-duplex (FD) radio promises to be available in the near future [25]-[30]. A user equipped with FD capability can receive a desired signal while transmitting an artificial noise (AN) to jam nearby EDs [7], [27]-[31]. We will also refer to this AN as Rx-AN which differs from the AN (along with information signal) transmitted by a multi-antenna transmitter. The latter will also be referred to as Tx-AN. Subject to randomly distributed EDs, schemes based on Tx-AN without Rx-AN have been studied in [16]-[20] for non-colluding EDs and in [21]-[24] for colluding EDs. In [16], authors investigated the design of multi-antenna Tx-AN to minimize the secrecy outage probability (SOP) by ignoring thermal noise at EDs. In [17] and [18], authors derived exact closed-form expressions for optimal Tx-AN allocation to minimize SOP. In [19], authors further investigated secrecy performance under imperfect CSI. The aforementioned studies reveal that Tx-AN (for HD receiver) improves secrecy performance against any EDs’ scenarios.

This paper will present statistical analyses of SOP for a range of downlink transmission schemes for pairs of multi-antenna base-station (BS) and single-antenna user equipment (UE) in the presence of randomly located EDs, which is illustrated in Fig. 1. These schemes include the following scenarios: the BS may or may not apply Tx-AN, the UE may or may not apply Rx-AN or equivalently operate in either FD or HD mode, and the EDs may or may not collude with each other to form a virtual antenna array. For randomly distributed UEs, the BS can have them ordered according to their distances to the BS before a downlink transmission may be applied. Furthermore, the BS may apply a transmit-antenna-selection (TAS) scheme or a transmit-antenna-beamforming (TAB) scheme. The TAB scheme requires full CSI knowledge at BS whereas the TAS scheme is a comparatively low-cost low-complexity method [32]. In particular, we will focus on the SOP for all the schemes listed above (with exception shown in Table 1). The organization of these analyses is shown in Table 1. Note that HD is a special case of FD, and using...
no Tx-AN is a special case of using Tx-AN. Much of the mathematical details is given in appendices. Section VIII shows numerical results to verify the analysis. Section IX summarizes the paper.

The key contributions of this paper (a substantial extension of [33]) include the following:

- We derive the closed form expressions of SOP for all the schemes/scenarios listed in Table I. In the context of randomly distributed EDs, the scheme with both Tx-AN and Rx-AN was not studied before, and none of the schemes listed under colluding EDs was before considered either.
- We focus on SOP conditional on user’s CSI, which results in a tight lower bound of SOP for both TAS and TAB schemes against randomly located colluding EDs. This is in contrast to [33] where TAS was analyzed based on unconditional SOP and zero thermal noise at EDs. The latter is only valid for scenarios of high jamming noise.
- We extend the analysis shown in [35] from TAS to TAB with Tx-AN for multiple HD users. Comparisons between TAS and TAB are shown analytically and numerically. (The low cost advantage of antenna selection has been exploited for network throughput as well as physical layer security [44]-[47]. But TAS shown in [33] and [35] is the most relevant to this paper.)
- We reveal the existence of a finite optimum Rx-AN power for both TAS and TAB schemes, which can be also computed based on our closed form SOP expressions.

The symbols used in this paper are shown in Table II.

II. SYSTEM MODEL

We consider a base station (BS or Alice) with multiple antennas located at the center of a circle of radius R, which transmits secret information to a single-antenna (omnidirectional) user equipment (UE or Bob). Without loss of generality, we first assume that Bob is located at a unit distance away from Alice. There are randomly located single-antenna (omnidirectional) eavesdroppers (EDs) in the circle, and the random locations of EDs (denoted by Φ) are modeled as a PPP with the intensity ρ_E.

The channel gain vector from Alice to Bob is denoted by $h \in \mathbb{C}^{M \times 1}$, which has been normalized to be a complex Gaussian random vector with zero mean and the identity covariance matrix, i.e., $CN(0, I)$. We assume Bob is equipped with full-duplex antennas (full-duplex can be implemented with either one Tx and one Rx antenna or even with single antenna via RF circulator [36]) where Bob can transmit and receive at the same time in the same frequency band. The normalized residual instantaneous self-interference channel gain at Bob is $\sqrt{\rho_B}$ with the distribution $CN(0, \rho)$ where ρ corresponds to a normalized gain factor (which is relative to the main/user channel gain and should be kept small in application although it can be larger than one if the actual distance between Alice and Bob is relatively large [29]). The channel vector from Alice to the eth ED is $\sqrt{\alpha_e} h_{AEe} \in \mathbb{C}^{M \times 1}$ and distributed as $CN(0, \alpha_e I)$, and the channel gain from Bob to the eth ED is $\sqrt{b_e} h_{BEe}$, and distributed as $CN(0, b_e)$. We also let $\alpha_e = \frac{1}{d_{AEe}^\alpha}$ with d_{AEe} being the normalized distance between Alice and Bob and $b_e = \frac{1}{d_{BEe}^\beta}$ with d_{BEe} being the normalized distance between Bob and the eth ED. Note that α_e and b_e are the large-scale fading parameters as they are dependent on the location of ED while h, g_B, h_{AEe} and h_{BEe} are the small-scale fading parameters. We assume that the channels are all quasi-static where the channel coefficients stay constant during transmission of any given packet.

The secrecy rate of the downlink transmission from Alice to Bob is

$$S_{AB} = [\log_2(1 + SNR_{AB}) - \log_2(1 + SNR_{AEe})]^+,$$

(1)
where $SNR_{AE} = F(SNR_{AB}^e)$. The operator $F(.)$ takes the location dependent Signal-to-Noise Ratios (SNRs) of EDs as argument. The form of $F(.)$ is dependent on whether EDs are acting independently or colluding with each other. In the case of non-colluding EDs, the strongest ED channel is considered and the form of $F(.)$ is defined as

$$F(.) = \max_{e \in \Phi}(.)$$

(2)

In the case of colluding EDs, we assume that all EDs can combine their own SNRs to jointly decode the information bearing signal. We consider passive (distributed) EDs. Since they do not have access to the full CSI between Alice and themselves, they are unable to form a virtual antenna array for colluding. This assumption is the same as in [13]-[24] and [33]-[35]. Thus,

$$F(.) = \sum_{e \in \Phi}(.)$$

(3)

For a target secrecy rate R_S, the SOP is defined as

$$P_{out} = P(S_{AB} \leq R_S) = P \left[1 + SNR_{AB}^e \leq 2^{R_S} \right],$$

(4)

where $P(\cdot)$ denotes the probability. We will also use $P_{con} = 1 - P_{out}$.

A. Transmit Antenna Selection

In the TAS scheme, Alice only transmits via the antenna corresponding to the element in h that has the largest amplitude. Let $\sqrt{P_T} x_A(k)$ of power P_T be the information signal transmitted from Alice, and h_i be the element selected from $h = [h_1, \ldots, h_M]^T$, i.e., $|h_i| = \max_i |h_i|$. Thus, Bob and Eve receive the following signals respectively:

$$y_B(k) = h_i^* \sqrt{P_T} x_A(k) + \sqrt{P_T} g_B w_B(k) + n_B(k),$$

$$y_E(k) = \sqrt{P_T} h_{A,E} x_A(k) + \sqrt{P_T} h_{BE} w_B(k) + n_E(k),$$

(5)

(6)

where $\sqrt{P_T} w_B(k)$ of power P_T is the jamming noise or Rx-AN from Bob, $n_B(k)$ and $n_E(k)$ are the background Gaussian noises at Bob and Eve each with the unit variance, and the second term of (5) denotes the residual self-interference. Then, the SNR at Bob is

$$SNR_{AB}^{TAS} = \frac{|h_i|^2 P_T}{1 + \rho|g_B|^2 P_T},$$

(7)

and the SNR at the eth Eve is

$$SNR_{AE}^{TAS} = \frac{a_e |h_{A,E}^e|^2 P_T}{1 + b_e |h_{BE}^e|^2 P_T}. $$

(8)

B. Transmit Antenna Beamforming

In the TAB scheme, Alice takes the advantage of the complete knowledge of h by transmitting the following signal:

$$s(k) = \sqrt{(1-\epsilon)P_T}x_A(k) + \sqrt{\frac{\epsilon P_T}{M-1}}Wv(k),$$

(9)

where $x_A(k)$ is the message signal of zero mean and unit variance, $t = \frac{h^*}{|h|}$, $W \in \mathbb{C}^M \times (M-1)$ has the orthonormal columns that span the left null space of t (hence $tt^H + WW^H = I$), $v \in \mathbb{C}^{(M-1)\times 1}$ is the Tx-AN $CN(0, I)$, and $\epsilon \in \{0, 1\}$ is the power fraction factor that splits the total power P_T between the Tx-AN term and the message term.

Consequently, the received signal at Bob and the eth Eve are:

$$y_B(k) = \sqrt{(1-\epsilon)P_T}h|x_A(k) + \sqrt{\rho P_T g_B w_B(k) + n_B(k)},$$

$$y_{E,e}(k) = \sqrt{\epsilon P_T}h_{A,E} x_A(k) + \sqrt{\rho P_T h_{BE} w_B(k)} + \sqrt{\frac{\epsilon P_T}{M-1}}Wv(k) + n_{E,e}(k),$$

respectively. Then the SNR at Bob is

$$SNR_{AB}^{TAB} = \frac{1 - \epsilon}{1 + \rho |g_B|^2} P_T,$$

(10)

and the SNR at the eth Eve is

$$SNR_{AE}^{TAB} = \frac{a_e (1-\epsilon)|h_{A,E}^e|^2 P_T}{1 + b_e |h_{BE}^e|^2 P_T} + a_e \frac{\rho P_T}{M-1} \mathbb{E}_v \{|h_{A,E}^e Wv|^2\}$$

$$= \frac{a_e (1-\epsilon)|h_{A,E}^e|^2 P_T}{1 + b_e |h_{BE}^e|^2 P_T} + a_e \frac{\rho P_T}{M-1} \mathbb{E}_{v} \{|h_{A,E}^e|^2 (1 - \frac{|h_{A,E}^e|^2}{|h_{BE}^e|^2})\}$$

$$= (1-\epsilon)X_1 \Theta + \epsilon P_T,$$

(11)

where \mathbb{E}_v denotes the expectation over $v \sim \mathcal{CN}(0, I)$ and $\mathbb{E}_v \{|h_{A,E}^e Wv|^2\} = \mathbb{E}_v \{|h_{A,E}^e W v v^H W^H h_{A,E}^e|^2\} = h_{A,E}^e (I - \epsilon t t^H) h_{A,E}^e, X_1 = |h_{A,E}^e|^2, X_2 = |h_{BE}^e|^2$ and $\Theta = \frac{|h_{A,E}^e|^2}{|h_{BE}^e|^2}$. Note that X_1, X_2 and Θ are independent of each other.

Furthermore, X_1 has a Chi-squared distribution with $2M$ degrees of freedom (DoF), i.e., its probability density function (PDF) is $f_{X_1}(x) = \frac{x^{M-1} e^{-x}}{(M-1)!}$; X_2 has a Chi-squared distribution with 2 DoF (also known as the exponential distribution of the unit mean); and Θ is known to have the beta distribution [40] with parameters $B(1, M - 1)$, i.e., $f_{\Theta}(x) = (M-1)(1-x)^{M-2}$. Note that Beta$(a, b)$ distributed random variable X the PDF $f_X(x) = x^{a-1}(1-x)^{b-1}$.

In order to maintain a data rate R_D from Alice to Bob, we must have $\log_2 (1 + SNR_{AB}^{TAB}) > R_D$, i.e., $1 - \epsilon > \frac{1 + \rho |g_B|^2 P_T}{P_T} (2^{R_D} - 1)$ for the non-negative ϵ.

C. TAB with User Selection (TAB-US)

In the TAB-US scheme, we assume that Alice (BS) serves multiple single-antenna HD Bobs (UES) (where $P_T = 0$) based on the user’s distance from Alice. The locations of Eves and Bobs are all modeled as spatial PPP, i.e., Φ_E with intensity ρ_E and Φ_U with intensity ρ_U respectively.

Let d_{AB_n} be the distance from Alice to the nth (nearest) Bob. Similar to [10], the SNR at the nth Bob is

$$SNR_{AB_n} = \frac{(1-\epsilon)P_T |h_{AB_n}|^2}{d_{AB_n}^2},$$

(12)

and, similar to [11], the SNR at the eth Eve is

$$SNR_{AE} = \frac{a_e (1-\epsilon)|h_{AE}^e|^2 |h_{AB_n}^e|^2 P_T}{1 + \rho |g_{BE}^e|^2 |h_{AB_n}^e|^2 (1 - \frac{|h_{AB_n}^e|^2}{|h_{BE}^e|^2})} + a_e \frac{\rho P_T}{M-1} \mathbb{E}_{v} \{|h_{AE}^e|^2 (1 - \frac{|h_{AE}^e|^2}{|h_{BE}^e|^2})\}$$

(13)
where $X_{2,n} = \| h_{AB,n} \|^2$ is independent from X_1 and both follow the Chi-squared distribution with $2M$ degrees of freedom, i.e., $f_{X_{2,n}}(x) = f_{X_1}(x) = \frac{e^{-\frac{x}{2}}}{\Gamma(M)}$. Also $\Theta = \| h_{AB,n} \|^2 / \| h_{AB} \|^2$ follows the $B(1, M - 1)$ distribution [30], and $X_4 = \Theta X_1$ is exponentially distributed with mean equal to one. Also, $X_{4,t} = (1 - \Theta)X_1$ follows $\Gamma(M - 1, 1)$ distribution and most importantly $X_{2,n}$, X_4 and $X_{4,t}$ are independent.

III. Secrecy Performance Against Non-colluding Eavesdroppers

Throughout this section, we study the secrecy performance of both the TAB and TAS schemes against independently acting EDs. Furthermore, we analyze the secrecy performance of the TAB scheme as a function of the ordering index of each Bob (among randomly distributed Bobs) with respect to his distance to Alice.

A. Secrecy performance of the TAS Scheme

The performance of the TAS scheme was analyzed in [33] by assuming that the noise at each node is dominated by the interference. A novelty of the following analysis is an insight that there is generally a nonzero optimal P_J. Such an analytical insight would not be possible if the noise is assumed to be negligible from the very beginning of the analysis. Moreover, authors of [33] derived the SOP expression averaged over the distribution of legitimate channels. Such analysis does not provide useful insights for a given/common realization of the legitimate channel. In this paper, we study the SOP expression conditioned on the legitimate channel CSI. For a large coherence period of the legitimate channel, the SOP averaged over EDs’ distribution can be minimized over the jamming power from FD Bob. Thus, this study enables us to find the optimum allocation at Bob. We will also show the overall averaged SOP considering the distribution of the legitimate channel.

We will use the following parameterizations: $\beta \triangleq g^{R_c}$, $m \triangleq \frac{P_J}{P_T}$ (“a transmit power ratio”), $Y \triangleq SNR_{TAS} = \frac{\| h_r \|^2}{\frac{1}{\rho} \| h_{AB} \|^2}$ and $Y_0 \triangleq \frac{Y}{\beta} + \frac{1}{\beta} - 1$. Note that for any given realization of h and g_B, Y is a given constant. Hence, $P[S_{TAS} > R_s | \Phi, h, g_B] = P[S_{TAS} > R_s | \Phi, Y]$.

Proposition 1: Conditioned on h and g_B, the probability of achieving a secrecy rate strictly larger than R_s using the TAB scheme is given by

$$P_{con,Y} = \exp \left[-\rho E \int_0^R \int_0^{2\pi} \Psi(Y, r, \theta) r d\theta dr \right],$$

where

$$\Psi(Y, r, \theta) = \frac{\exp(-\frac{d_{AE}^2}{\rho r_m (\rho g_m)^2})}{1 + m(\frac{d_{AE}^2}{\rho r_m (\rho g_m)^2}) Y_0},$$

and (r, θ) are the polar coordinates of the location of the ith Eve with the origin at the location of Alice. Also $d_{AE}\cos \theta = r e$ and $d_{BE}\cos \theta = \sqrt{r^2 + d^2 - 2r \cos \theta}$. The proof is shown in Appendix A.

Remark 1: It is obvious that $P_{con,Y}$ is a decreasing function of $\Psi(Y, r, \theta)$. One can verify the following statements subject to $PT > 0$:

- If $R_s = 0$, then $\Psi(Y, r, \theta)$ is invariant to PT.
- If $R_s = 0$ and the product ρP_J is a fixed constant, then as P_J increases to ∞, $\Psi(Y, r, \theta)$ decreases monotonically to zero and hence $P_{con,Y}$ increases monotonically to one.
- If $\rho \ll 1$, then in a region of small P_J, Y and hence Y_0 are approximately invariant to P_J. But in this case, $\Psi(Y, r, \theta)$ decreases as P_J increases (since $Y_0(\frac{4\Delta e}{\rho g_m})^i$ is not small) and hence $P_{con,Y}$ decreases as P_J increases.

The aforementioned statements are summarized in Table III where P_J^* is nonzero optimal value of P_J and α is an arbitrary constant. Here $P_J \to \infty$ implies that the jamming power from Bob is large or more precisely $P_J \gg \rho g_m \pi$. The expression (14) provides the relationship between the target secrecy rate R_s and different parameters in the network. To obtain $P_{con,Y}$ numerically, the double integrals shown there need to be computed for a given choice of the path loss exponent α. In general, experimentally estimated α results in difficulty for simplification of the double integrals. But for $R_s = 0$ (i.e. $Y_0 = Y$) and $\alpha = 2$, a simplification can be shown to be

$$P_{con,Y} = \exp \left[-\rho E \left(\frac{\pi P_T}{Y} (1 - \exp(-\frac{Y R_s^2}{P_T})) - \pi m Y \right) \right] \int_0^R \frac{\exp(-\frac{Y r}{P_T})}{\sqrt{((1 + m) Y r)^2 + d^2}} dr$$

which is shown in Appendix A.

Then, the unconditional $P_{con} = E_Y P_{con,Y}$ can be obtained by

$$P_{con} = P[S_{TAS} > R_s] = \int_{y=0}^{\infty} P_{con,Y} f_Y(y) dy,$$

where the distribution of Y due to the random $|h_r|^2$ and $|g_B|^2$ is given in the following lemma:

Lemma 1: The cumulative distribution function (CDF) of Y is

$$f_Y(y) = \sum_{i=0}^{M} C_i^M (-1)^i \frac{e^{-\frac{iy}{\rho g_m}}}{1 + iy\rho g_m}.$$

Hence the PDF of Y is

$$f_Y(y) = \sum_{i=0}^{M} C_i^M (-1)^i \frac{e^{-\frac{iy}{\rho g_m} - \frac{iy}{\rho g_m}}}{(1 + iy\rho g_m)^2}.$$

Next, we consider $P_{con,Y}$ in the two special cases: $P_J = 0$ and $P_J \to \infty$.

$P_{con,Y}$	$P_J \to \infty (\rho P_J = a)$	$P_J \uparrow (\rho P_J)$	$P_J \downarrow (\rho P_J)$
$\Psi(Y, r, \theta)$	$\to 0$	$\to 1$	$\to \frac{1}{\rho g_m}$
$P_{con,Y}$	$\to 1$	$\to 0$	$\to 0$

TABLE III

EFFECTS OF PARAMETERS ON $\Psi(Y, r, \theta)$

$P_{con,Y}$ WHEN $R_s = 0$,
WHERE $-, \uparrow$ AND \downarrow DENOTE INVARIANCE, INCREASING AND DECREASING, RESPECTIVELY.
1) The Case of $P_J = 0$: Now we consider the case of $P_J = 0$ thus $m = 0$ and assume that $P_T \gg \frac{1}{|h_i|^2}$. Thus $Y_0 \approx \frac{P_T h_i e^2}{\beta}$. It follows from (45) that $\Psi(Y; r, \theta) = \exp(-\frac{d_{\text{tr}}^{\text{Io}} Y_0}{P_T \beta})$. Hence

$$\ln \frac{P_{\text{con}, Y}}{\rho_E} = -\int_0^R \int_0^{2\pi} \Psi(Y; r, \theta) r d\theta dr$$

$$= -2\pi \int_0^R \exp\left(-\frac{d_{\text{tr}}^{\text{Io}} Y_0}{P_T \beta}\right) r dr$$

$$= -\frac{2\pi \beta \overline{\bar{\alpha}}}{\alpha |h_i|^2} \frac{\rho P}{\beta} \int_0^{\beta \overline{\bar{\alpha}} |h_i|^2 |d_{\text{tr}}^{\text{Io}} Y_0|}{\rho P} \exp(-z) \frac{z^{\overline{\bar{\alpha}} - 1}}{d_{\text{tr}}^{\text{Io}} Y_0} dz$$

$$= -\frac{2\pi \beta \overline{\bar{\alpha}}}{\alpha |h_i|^2} \frac{\rho P}{\beta} \gamma\left(\frac{2}{\alpha}, |h_i|^2 R^2\right), \quad (20)$$

where $z = \frac{\beta \overline{\bar{\alpha}} |h_i|^2 |d_{\text{tr}}^{\text{Io}} Y_0|}{\rho P}$ and $\gamma(x, y) = \int_0^y z^{-1} e^{-z} dz$ is the lower incomplete gamma function which increases monotonically with y. From (20), it is clear that $P_{\text{con}, Y}$ monotonically decreases as R increases. In particular,

$$\lim_{R \to \infty} \ln \frac{P_{\text{con}, Y}}{\rho_E} = -\pi \left(\frac{\beta \overline{\bar{\alpha}}}{|h_i|^2}\right)\frac{2}{\alpha} \Gamma\left(\frac{2}{\alpha}\right), \quad (21)$$

where $\Gamma(x) = \int_0^\infty z^{x-1} e^{-z} dz$. It is known that $x \Gamma(x) = \Gamma(x + 1)$ for positive x and $\Gamma(1 + x)$ decreases to one as x decreases to zero. Then, provided $\frac{\beta \overline{\bar{\alpha}}}{|h_i|^2} > 1$, the above limit increases as α increases. The result (21) serves as a benchmark corresponding to a HD Bob.

2) The case of $P_J = \infty$: We now consider the case of $P_J = \infty$ and also assume $R_s = 0$ and $\alpha = 2$. In this case, $Y_0 = Y = 0$ and $m Y = \frac{1}{|h_i|^2}$. Then, following a similar derivation as that in section 1 of the supplement, one can verify that

$$\ln \frac{P_{\text{con}, Y}}{\rho_E} = -2\pi \int_{r=0}^R \left(1 - \frac{1}{\sqrt{1 + \rho |\alpha| \beta |h_i|^2 (1 + \frac{d_{\text{tr}}^{\text{Io}} Y_0}{r})^2}}\right) r dr,$$

where the integrant converges to $\left(1 - \frac{1}{1 + \rho |\alpha| \beta |h_i|^2 (1 + \frac{d_{\text{tr}}^{\text{Io}} Y_0}{r})^2}\right) r$ as r becomes large and the integral goes to ∞. Hence $\lim_{R \to \infty} P_{\text{con}, Y} = 0$. This result suggests that P_J should not be too large. Combining this with a previous result for small P_J implies that there is generally a finite nonzero optimal P_J.

B. Secrecy performance of the TAB Scheme

Unlike the TAS scheme, Alice will now use all transmit antennas via beamforming to transmit each information symbol. We will assume that all the channel links from Alice to Bob are independent and identically distributed.

In addition to $m = \frac{P_T}{\rho}$ and $\beta = 2R_s$, we will use $Z = \frac{\text{SNR}_{\text{TAB}}}{(1-\epsilon)} = \frac{|h_i|^2}{\beta + \rho |g_{AB}|^2}$, $C = \frac{Z}{\beta P_T}$, $e_f = (\frac{d_{\text{tr}}^{\text{Io}}}{\text{tr}})^\alpha m$ (“a large scale receive power ratio”) and $G = \frac{1}{C P_T} = \frac{\beta + \rho |g_{AB}|^2}{\rho P_T |h_i|^2}$. The random variables Z, C and G are one-to-one related to each other. We will use z, c and g for the realizations of Z, C and G respectively. Unlike e_f, the variables z, c and g are invariant to the locations of Eves but dependent on the small scale fading parameters h and g_B. For given realization of h and g_B, z is given. For $m = 0$, $Z = \frac{P_T |h|^2}{\rho}$ has obviously a Chi-squared distribution with $2M$ DoF. For $m > 0$, one can prove the following lemma:

Lemma 2: If $m > 0$, the legitimate channel’s $SINR$ (which is Z) has the following PDF (shown in Appendix C)

$$f(z) = \frac{M_{\rho}(z \rho m)^{M-1}}{(1 + \rho m)^M} e^{\frac{M z}{\rho m}}. \quad (23)$$

Proposition 2: Conditioned on h and g_B, the probability of achieving a secrecy rate strictly larger than R_s using the TAB scheme is given by

$$P_{\text{con}, h, g_B} = P_{\text{con}, z} = \exp\left[-\rho_E \int_0^R \int_0^{2\pi} \frac{\Omega(1, \rho |g_{AB}|^2)}{g} r d\theta dr\right], \quad (24)$$

and hence $P_{\text{con}, h, g_B} = \int_0^\infty P_{\text{con}, z} f_Z(z) dz$ where

$$\frac{1}{g} (1 + \frac{\beta |g_{AB}|^2}{\rho}) \frac{e^{\frac{M z}{\rho m}}}{(1 + \frac{|h|^2}{\rho})} = \frac{\frac{d_{\text{tr}}^{\text{Io}}}{\text{tr}}}{\rho (1 + \frac{|h|^2}{\rho})^M} \cdot (\frac{\rho |h|^2}{\rho m})^{M-1}, \quad (25)$$

and all other variables are defined before.

The proof is shown in Appendix D.

Remark 2: From (24) and (25), one can also verify the following subject to $P_T > 0$:

- For $\epsilon > 0$, $P_{\text{con}, h, g_B} \to 1$ as $P_T \to \infty$, $(1 + \frac{\rho |g_{AB}|^2}{\rho m})^{M-1}$ converges to $e^{\epsilon \rho}$ as M increases. For large P_T, $(1 - \frac{1}{\epsilon})P_T \approx 0$ so $L = \frac{d_{\text{tr}}^{\text{Io}}}{\text{tr}} \frac{\gamma}{1 + \rho |g_{AB}|^2}$ which is invariant to P_T and $e = \frac{\rho |g_{AB}|^2}{\rho (1 + \frac{\rho |g_{AB}|^2}{\rho m})^M}$ which goes to ∞ as $P_T \to \infty$.

- P_{con, h, g_B} increases as ρ decreases. As ρ decreases, Z and c increase, and hence g and $\Omega(1, \rho |g_{AB}|^2)$ decrease, and hence P_{con, h, g_B} increases.

- If $\rho = 0$, then $P_{\text{con}, h, g_B} \to 1$ as $P_J \to \infty$.

- If $\epsilon = 0$, the optimal P_J is ∞. If $\epsilon = 0$ then it follows from (24) and (25) that

$$P_{\text{con}, h, g_B} = \exp\left[-\rho_E \int_0^R \int_0^{2\pi} \frac{\frac{d_{\text{tr}}^{\text{Io}}}{\text{tr}}}{1 + \frac{|h|^2}{\rho}} r d\theta dr\right], \quad (26)$$

which is independent of P_T and monotonically increases as P_J increases. Thus the optimum P_J is ∞.

- For $\epsilon > 0$ and $P_T > 0$, the optimal P_J is a finite positive number. For $\epsilon > 0$ and $P_T > 0$, $L = \frac{d_{\text{tr}}^{\text{Io}}}{\text{tr}} |g_{AB}|^2$ monotonically increases to $\frac{|h|^2}{\rho |g_{AB}|^2}$ as $P_J \to \infty$ and $1 + \frac{\rho |g_{AB}|^2}{\rho m}$ monotonically decreases to 1 as $P_J \to \infty$. So, $\frac{1}{1 + \frac{\rho |g_{AB}|^2}{\rho m}}$ monotonically decreases to $\frac{1}{(1 + \frac{|h|^2}{\rho})}$ for $P_J \to \infty$.

We can also observe that z monotonically decreases to 0 for $P_J \to \infty$, so $\frac{1}{(1 + \frac{|h|^2}{\rho})}$ monotonically increases to 1 as $P_J \to \infty$. So, we can conclude that there is a finite positive P_J at which P_{con, h, g_B} is maximized.
TABLE IV

$\Omega(z, r, \theta)$	$P_T \to \infty$	$P_T \to \infty$	$P_T \uparrow (\leq P_T^*)$	$P_T \uparrow (\geq P_T^*)$
$\Omega(z, r, \theta)$	$\rightarrow \infty$	$\rightarrow \infty$	$\uparrow \rightarrow \text{const.}$	$\uparrow \rightarrow \text{const.}$
$P_{\text{con}, z}$	$\rightarrow \text{const.}$	$\rightarrow \text{const.}$	$\rightarrow \text{const.}$	$\rightarrow \text{const.}$
$P_{\text{con}, z}$	$\rightarrow \text{const.}$	$\rightarrow \text{const.}$	$\rightarrow \text{const.}$	$\rightarrow \text{const.}$

- For $R_s = 0$, $\Omega(z, r, \theta)$ is a decreasing function of ϵ which makes the upper bound of ϵ optimal. Furthermore, $\Omega(z, r, \theta)$ is rather flat around the optimal P_T, which makes it easy to find a practically optimal P_T.

The aforementioned observations are summarized in Table IV.

As shown in Appendix H, the SOP $P[S_{AB} > R_s|d_{AB,n}]$ for any r and θ is a unimodal function with its minimum at a finite positive value of P_T. Therefore, $\int_0^R r \int_0^{2\pi} \Omega(z; r, \theta) d\theta dr$ must also have its minimum at a finite positive value of P_T, or equivalently $P_{\text{con}, z} = \exp(-\rho_E \int_0^R r \int_0^{2\pi} \Omega(z; r, \theta) d\theta dr)$ has its peak at that value of P_T.

Next, we consider two special cases for which the double integral in (24) can be simplified.

1) **Bob in Full Duplex Mode** with $\beta = 1$ and $\alpha = 2$: For $\beta = 1$ and $\alpha = 2$, it is shown in Appendix I that

$$\int_0^R r \int_0^{2\pi} \Omega(z; r, \theta) d\theta dr = \frac{2\pi}{(1 + \frac{2\pi}{\alpha})^{M-1}} \times \int_0^R \left(1 - \frac{1}{\sqrt{1 + \frac{(r - d)^2}{\pi z^2 M}}} \frac{1}{\sqrt{1 + \frac{(r + d)^2}{\pi z^2 M}}} \right) dr.$$ (27)

And $P_{\text{out}} = 1 - P_{\text{con}}$ versus P_T and ϵ will be illustrated in Fig. 3, from which we will see that for a given ϵ there is an optimal P_T and the optimal P_T is not very sensitive to ϵ.

Furthermore, if $P_T \to \infty$, then $z \to 0$, $zm \to \|h\|^2/\rho|g_B|^2$ and (27) yields

$$\int_0^R r \int_0^{2\pi} \Omega(z; r, \theta) d\theta dr = 2\pi \int_0^R \left(1 - \frac{1}{\sqrt{1 + \rho \|g_B\|^2 (1 + \frac{d}{z})^2 \sqrt{1 + \rho \|g_B\|^2 (1 - \frac{d}{z})^2}}} \right) dr.$$ (28)

Comparing (22) and (28), we see a similar structure of the two expressions. Since $\|h\|^2 \geq \max_{i \in M} |h_i|^2$, the TAB scheme always yields a lower SOP than the TAS scheme.

Also note that if $\epsilon > 0$ and $P_T \to \infty$, then (27) implies that the SOP of the TAB scheme becomes one (similar to the case for TAS).

2) **Bob in Half-Duplex Mode**: In this case, we have $P_T = 0$ and $z = P_T \|h\|^2$. Also assuming a large P_T, it is shown in Appendix I that

$$\int_0^R r \int_0^{2\pi} \Omega(z; r, \theta) d\theta dr = \frac{2\pi \beta^2}{\alpha \|h\|^2} (1 + \frac{e^{P_T \|h\|^2}}{\beta})^{2 - \frac{R_s \|h\|^2}{\beta}}.$$ (29)

Here $\gamma(\frac{2\pi}{\alpha} \frac{R_s \|h\|^2}{\beta})$ is the lower incomplete gamma function and increases monotonically as R increases. (29) is similar to (20) and is independent of P_T when $\epsilon = 0$. Since $\|h\|^2 \geq \max_{i \in M} |h_i|^2$, the HD-TAB (even without using AN) results in a better secrecy performance than the HD-TAS. Note that the secrecy performance of the HD-TAB depends on P_T when $\epsilon > 0$. Furthermore, the term $\int_0^R r \int_0^{2\pi} \Omega(z; r, \theta) d\theta dr$ is inversely proportional to the factor $(1 + \frac{e^{P_T \|h\|^2}}{\beta})^{M-1}$. Thus, the term $\int_0^R r \int_0^{2\pi} \Omega(z; r, \theta) d\theta dr$ and hence SOP decreases as the number of transmit antenna M increases.

C. Secrecy Performance of the TAB-US Scheme

In [35], a TAS based downlink transmission scheme for multiple ordered half-duplex receivers or “a TAS based User Selection (US) scheme” was considered. In this section, we consider a TAB based counter part of the above scheme, which will be referred to as the TAB-US scheme.

As shown in Appendix H, we have

Proposition 3: For $\epsilon \geq 0$, the probability of achieving a secrecy rate strictly larger than R_s conditional on the distance of a selected user is

$$P[S_{AB} > R_s|d_{AB,n}] = \exp \left(\frac{-2\pi \rho_E (\beta d_{AB,n})^2 B(M - \frac{2}{\alpha}, \frac{2}{\alpha})}{(\frac{\pi^2}{\alpha})^M - \frac{1}{\pi}} \right) \times \left(\frac{\left(M - \frac{(M - 1) \beta d_{AB,n}}{\pi \rho_E}\right)}{\alpha}\right)^2$$ (30)

where $d_{AB,n}$ is the distance between Alice and the nth closest user, and U denotes the confluent hypergeometric function of the second kind.

With $P(S_{AB} > R_s|d_{AB,n})$ and $f_{d_{AB,n}}(x)$ from lemma 4 in Appendix I one can readily compute the SOP $P(S_{AB} < R_s) = \int_0^\infty P(S_{AB} > R_s|x)f_{d_{AB,n}}(x)dx$ for any ϵ. We will show via simulation that the TAB-US scheme outperforms the TAS-US scheme.

As shown in Appendix I for the special case of $\epsilon = 0$, $P(S_{AB} < R_s)$ can be simplified into:

$$P[S_{AB} > R_s] = \frac{1}{\left(\frac{\pi^2}{\alpha} + \frac{\pi^2}{\alpha} \beta \|h\|^2 B(M - \frac{2}{\alpha}, \frac{2}{\alpha})\right)^\pi},$$ (31)

where $\frac{\pi^2}{\alpha} \beta \|h\|^2$ is the ratio of the density of EDs over that of the legitimate receivers.

Furthermore, for $n = 1$ (the nearest Bob), (31) reduces to

$$P[S_{AB} < R_s] = 1 - \frac{1}{\left(\frac{\pi^2}{\alpha} + \frac{\pi^2}{\alpha} \beta \|h\|^2 B(M - \frac{2}{\alpha}, \frac{2}{\alpha})\right)^\pi},$$ (32)

IV. Secrecy Performance Against Colluding Eavesdroppers

In this section, we consider the situation that EDs can share all information to decode the message. Since Alice knows the channel between Alice and Bob, the secrecy performance conditional on h and g_B is a useful measure. In one coherence period, h and g_B remains deterministic and study of closed form expression is important to find the optimal resource allocation strategy (i.e., how to choose ϵ and P_T). Considering h and g_B as deterministic makes the study completely different.
from that in [33] as the Laplace trick used there cannot be directly applied to derive the SOP closed form expression.

A. Full-Duplex Bob in the TAS scheme

The SOP against colluding EDs conditional on h and g_B is

$$P[S_{AB}^{TAS} < R_s | h, g_B] = P \left[\frac{1 + SNR_{AB}^{TAS}}{1 + \sum_{e \in \Phi} SNR_{Ae}^{TAS}} < 2^{R_s} | h, g_B \right]$$

$$= P \left[\sum_{e \in \Phi} \frac{|h_{A,e} |^2}{P_e} m_x^2 + \frac{|h_{Be} |^2}{P_B} m_x^2 \right] > y_0$$

$$= \int_{y_0}^{\infty} f_I(x) dx$$

(33)

where $I_e = \sum_{e \in \Phi} SNR_{Ae}^{TAS} = \sum_{e \in \Phi} \frac{|h_{A,e} |^2}{P_e} m_x^2$ which is the sum of SNRs at all EDs. It is shown in Appendix B that the Laplace transform of the PDF of I_e is

$$\mathcal{L}_{I_e}(s) = \exp \left[- \rho E \int_{y_0}^{R} \int_0^{2\pi} \frac{s}{f_e} E_1(K(s)) e^{K(s)} d\theta dr \right]$$

(34)

where $E_1(a) = \int_{y_0}^{\infty} e^{-ax} \frac{dx}{1+x}$ is the so-called exponential integral function of a and $K(s) = \frac{a+\frac{P_e}{P_B}}{s+\frac{P_e}{P_B}}$. Note that $E_1(a)$ is a strictly decreasing function of a, and $K(s)$ is a strictly increasing quantity. Later, we will discuss the relationship between $E_1(K(s))$ and SOP.

We know that

$$P[S_{AB}^{TAS} < R_s | h, g_B] \approx P[I_e > y_0]$$

$$\approx E \left[1 - \exp \left(-\frac{a I_e}{y_0} \right) \right]^N$$

$$= E \left[\prod_{n=0}^{N} \left(1 - \frac{a}{y_0} I_e \right) \right]$$

$$= \sum_{n=0}^{N} \binom{N}{n} \left(1 - \frac{a}{y_0} I_e \right)^n$$

(35)

where \approx denotes “less than and asymptotically equal to”, and l is a normalized gamma distributed random variable with the shape parameter N, and as $N \rightarrow \infty$, l approaches its upper bound equal to $E\Phi$. (Note that the left side of \approx is less than the right side if N is finite, or equals to the right side if $N \rightarrow \infty$.) Also $a = \frac{N}{(N+1)y_0}$. and y_0 is a realization of Y.

From (34) and (35), we have

Proposition 4: For the TAS scheme,

$$P[S_{AB}^{TAS} < R_s | h, g_B] \approx \sum_{n=0}^{N} \binom{N}{n} \left(1 - \frac{a}{y_0} I_e \right)^n \left[-\rho E \int_{y_0}^{R} \int_0^{2\pi} \frac{s}{f_e} E_1(K(s)) e^{K(s)} d\theta dr \right]$$

(36)

Table V

$\Psi(Y, r, \theta)$	$\Xi(s, r, \theta)$
$\Psi(Y, r, \theta)$	$\Xi(s, r, \theta)$
$\Xi(s, r, \theta)$	$\Xi(s, r, \theta)$

where $s = \frac{a+\frac{P_e}{P_B}}{y_0}$, $K(s) = K(s)|_{s = \frac{a+\frac{P_e}{P_B}}{y_0} = K(s)|_{s = \frac{a+\frac{P_e}{P_B}}{y_0}} = \frac{d\Theta_{BE}}{P_T} + \frac{s}{f_e}$. If $\beta = 1$, we have $y_0 = y$ and then $K(s) = \frac{d\Theta_{BE}}{P_T} + \frac{a}{f_e}$. $\frac{d\Theta_{BE}}{P_T}$, which is independent of P_T.

Remark 3: The secrecy performance is dependent on P_T throughout the term $\Xi(s, r, \theta)|_{s = \frac{a+\frac{P_e}{P_B}}{y_0}}$. One can verify that as P_T increases,

- $\Xi(s, r, \theta)|_{s = \frac{a+\frac{P_e}{P_B}}{y_0}}$ decreases monotonically and saturates to a lower bound.
- $\Xi(s, r, \theta)|_{s = \frac{a+\frac{P_e}{P_B}}{y_0}}$ increases monotonically and saturates to an upper bound.

These statements indicate that finding the optimal P_T to minimize $\Xi(s, r, \theta)|_{s = \frac{a+\frac{P_e}{P_B}}{y_0}}$ is similar to that of $\Psi(Y, r, \theta)$ for the non-colluding TAS scheme. A comparison between $\Psi(Y, r, \theta)$ and $\Xi(s, r, \theta)|_{s = \frac{a+\frac{P_e}{P_B}}{y_0}}$ is shown in Table V. Note that, optimum jamming power P_T^* is not necessarily the same for $\Psi(Y, r, \theta)$ and $\Xi(s, r, \theta)|_{s = \frac{a+\frac{P_e}{P_B}}{y_0}}$. Finally, simulation result shows that as P_T increases, the conditional SOP in (36) achieves its minimum at a finite nonzero P_T.

B. Half-Duplex Bob in TAS scheme

If Bob is in the HD mode, then the sum of ED’s SNR is $I_{HD} = \sum_{e \in \Phi} \frac{X_{i,e} P_T}{\alpha X_{i,e}}$, where $X_{i,e}$ is exponentially distributed with unit mean. One can verify that the Laplace transform of the PDF of I_{HD} is

$$\mathcal{L}_{I_{HD}}(s) = E \Phi \left[\prod_{e \in \Phi} \frac{1}{1 + \frac{s}{f_e}} \right]$$

$$= \exp \left[- \rho E \pi R^2 F(1, \frac{2}{\alpha} + \frac{1}{\alpha} + \frac{2}{\alpha} - \frac{R^2 s}{f_e}) \right]$$

(37)

where $F(1, \frac{2}{\alpha} + \frac{1}{\alpha} + \frac{2}{\alpha} - \frac{R^2 s}{f_e})$ is known as the Gaussian hyper-geometric function. Note that α is governed by the environment. So, only the last parameter $\frac{R^2 s}{f_e}$ in $F(1, \frac{2}{\alpha} + \frac{1}{\alpha} + \frac{2}{\alpha} - \frac{R^2 s}{f_e})$ is controllable via P_T, which takes real value between 0 to infinity. One can verify that $\frac{R^2 s}{f_e}$ is independent of P_T for $\beta = 1$, which is similar as non-colluding HD TAS scheme.

Replacing \mathcal{L}_{I_e} in (35) by $\mathcal{L}_{I_{HD}}$ in (37) yields

$$P[S_{AB}^{TAS} < R_s | h, g_B] \approx \sum_{n=0}^{N} \binom{N}{n} \left(1 - \frac{a}{y_0} I_{HD} \right)^n \left[-\rho E \pi R^2 F(1, \frac{2}{\alpha} + \frac{1}{\alpha} + \frac{2}{\alpha} - \frac{R^2 s}{f_e}) \right]$$

(38)
where \(s \approx \frac{an}{\rho_E} \). The result in (38) is that in (36) with \(P_J = 0 \) but the former is a much simplified form than the latter.

C. Full-Duplex Bob in TAB scheme without AN from Alice

Conditional on \(h \) and \(g_B \), the legitimate channel’s SNR is \(z \) as previously defined. For \(\epsilon = 0 \) (i.e., without AN from Alice), the SNR at the \(t \)th Eve is (from (11)):

\[
SNR_{E_e}^{TAB} = \frac{d_{e}X_{1}}{P_{T}} + m_{e}d_{e}X_{2} = \frac{d_{e}X_{1}}{P_{T}} + m_{e}d_{e}X_{2}.
\]

(39)

Similar to the analysis leading to (36), the SOP now is still given by (36) but with \(s = \frac{an}{\frac{2}{1-1/\pi}} \). Hence, we have:

Proposition 5: For the TAB scheme with \(\epsilon = 0 \),

\[
P[S_{AB}^{TAB} < R_s|h,g_B] \leq \sum_{n=0}^{N} \frac{\binom{N}{n}}{(n)} (-1)^n \exp \left[-\rho_E \int_{0}^{R} \int_{0}^{2\pi} sE(K(s))e^{K(s)}d\theta dr \right] = \sum_{n=0}^{N} \frac{\binom{N}{n}}{(n)} (-1)^n \exp \left[-\rho_E \pi R^2 \right]
\]

(40)

Since \(||h||^2 \geq \max_{i \in M} ||h_i||^2 \), the TAB scheme always outperforms the TAS scheme.

1) Bob in Half-Duplex Mode: In this case, we have \(P_J = 0 \) and \(z = P_T ||h||^2 \). The SOP expression is similar to (38) and can be expressed as

\[
P[S_{AB}^{TAB} < R_s|h,g_B] \leq \sum_{n=0}^{N} \frac{\binom{N}{n}}{(n)} (-1)^n \exp \left[-\rho_E \pi R^2 \right]
\]

(41)

D. Full-Duplex Bob in TAB scheme with AN from Alice

For the TAB scheme with \(\epsilon > 0 \), we have

\[
P[S_{AB}^{TAB} < R_s|h,g_B] = P[1 + \sum_{e \in \Phi} \frac{X_{e}}{M-1}X_{4,4} + f_{e}X_{2} > \frac{1}{\beta} - \frac{1}{1-\epsilon}]^{(a)} \leq \sum_{n=0}^{N} \frac{\binom{N}{n}}{(n)} (-1)^n \frac{\alpha n}{\beta + \frac{1}{1-1/\pi}}.
\]

(42)

where the parameters defined after (13) have been applied and \(f_{e} = \sum_{e \in \Phi} \frac{X_{e}}{M-1}X_{4,4} + f_{e}X_{2} \). Here, (a) is due to neglecting the background noise \(n_{A,E}(k) \) at Eve (but not the noise at Bob), and (b) is due to the application of the normalized gamma random variable as discussed before. Similar to that in Appendix [3] one can verify

\[
\mathcal{L}_{E}(s) = \exp \left[-\rho_E s \int_{0}^{R} \int_{0}^{2\pi} e^{-sx} \frac{1}{1+f_{e}x} \right] \times \frac{1}{(1+M^{-1}x)^{M-1}} dx \left[d\theta dr \right].
\]

(43)

V. Simulations

In this section, we illustrate the secrecy outage probabilities (SOP) of the TAS and TAB schemes against randomly located EDs. We consider both colluding and non-colluding cases. Most of our simulation results provide comparisons between TAS and TAB schemes. Moreover, we present the secrecy performance enhancement of the TAB scheme using AN.

Through the simulations, we will assume unit noise variance, \(\alpha = 2 \), \(P_T = 40 \) dB, \(R_D = 4 \) b/s/Hz, \(\rho_E = 1 \), \(M = 5 \), \(d = 1 \) and \(R = 5 \). Unless otherwise specified, we let \(P_J \), \(\rho \) and \(\epsilon \) be 40 dB, 0.01 and 0.01 respectively. Since Alice can estimate the legitimate channel and know the self interference channel of Bob, therefore, we will first study the SOP under conditional \(h \) and \(g_B \) for the TAB scheme. Considering \(R_D = 4 \), \(\epsilon \) can be set between 0 and 0.53 to maintain a nonzero desired data transmission for the above given \(\rho \) and \(P_J \).

![Fig. 2. Comparison of the TAS and TAB schemes in terms of P_{out} against non-colluding EDs.](image-url)
consistency between theory and simulation holds for all other results we have tested under a sufficiently large N_R.

Fig. 3. Comparison of theoretical results (“TR”) and simulation results (“MC”) of the TAB scheme in terms of P_{out} versus P_J.

Fig. 4. Illustration of $P_{out} = 1 - P_{con}$ versus P_J and ϵ for the TAB scheme.

Fig. 4 shows the SOP of the TAB scheme with $\epsilon > 0$. We see that the SOP decreases as ϵ increases, the optimal value of P_J is dependent on ϵ but the dependence is rather weak (or not very sensitive).

To illustrate the TAS and TAB schemes with user selection (i.e., TAS-US and TAB-US), we consider $P_T = 50$ dB, $\alpha = 2$, $\beta = 2$, $\epsilon = 0.00001$, $\rho_U = 0.5$ and $\rho_E = 0.1$ unless otherwise specified.

Fig. 5 shows the SOP of the TAS-US and TAB-US schemes for the nearest user. As the number M of transmit antennas increases, the performance gap between TAB-US and TAS-US increases rapidly for $\epsilon > 0$. More importantly, we see that only a small fraction (e.g., $\epsilon = 0.00001$ or $\epsilon P_T = 0$ dB which is at the same level as the noise variance) of the transmit power used for AN makes a huge difference.

Fig. 6 illustrates the effects of ED’s density ρ_E on the SOP of TAS-US and TAB-US for the nearest user. And Fig. 7 illustrates the effects of the users’ density ρ_U on the SOP of TAS-US and TAB-US for the nearest user. We see that SOP increases as ρ_E increases but decreases as ρ_U increases. The performance gap between TAS-US and TAB-US remains approximately the same as ρ_E increases but increases as ρ_U increases.

Fig. 5 shows the SOP of the TAS-US and TAB-US schemes as functions of the order index (n) of users (from nearest to farthest). We see that the SOP increases as n increases and the performance gap between TAB-US and TAS-US reduces as n increases.

Now, we consider the TAB and TAS schemes for colluding EDs. We assume that there are two circles of radii R_g and R around Alice, and EDs exist and collude within the two circles. In our experiment, we let $R_g = 0.1$ and $R = 5$. Although the closed form expressions of the SOP in this case are all in series expansions, choosing $N = 20$ (e.g., see (36)) provided good approximations.

Fig. 8 shows the SOP of the TAS-US and TAB-US schemes as functions of the order index (n) of users (from nearest to farthest). We see that the SOP increases as n increases and the performance gap between TAB-US and TAS-US reduces as n increases.

Finally, Fig. 10 illustrates the differences of SOP for colluding and non-colluding EDs. We see that the performance gap between colluding and non-colluding is large. But the TAB scheme is consistently better than the TAS scheme in terms of SOP.
VI. CONCLUSION

In this paper, we presented closed form expressions of secrecy outage probabilities (SOP) of several schemes for multi-antenna downlink transmissions against randomly located eavesdroppers (EDs). We considered both transmit antenna selection (TAS) and transmit antenna beamforming (TAB) schemes, full-duplex (FD) and half-duplex (HD) receivers/users, colluding and non-colluding EDs, the use of artificial noise (AN) from transmitter, and user selection based on their distances to the transmitter. For all these schemes and scenarios, we assume that EDs are distributed as the Poisson Point Process (PPP). For user selection, we also assume the PPP model for users’ locations. The closed-form expressions of SOP are useful for numerical computations needed for network design purposes. We provided numerical examples to illustrate the usefulness of these expressions, which also revealed important observations such as the optimal jamming power from FD users and the impacts of several other parameters on SOP.

APPENDIX A

Proof of (14)

It follows from (1), (7) and (8) that

$$ P_{con,\Phi,Y} = P[S_{TAS}^{AB} > R_s | \Phi, Y] $$

= $ P \left[\frac{1 + SNR_{TAS}^{AB}}{1 + \max_{e \in \Phi} SNR_{TAS}^{AE_e}} > 2R_S \right| \Phi, Y \right] $

= $ P \left[\max_{e \in \Phi} SNR_{TAS}^{AE_e} < Y_0 \right| \Phi, Y \right] $

= $ \prod_{e \in \Phi} P \left[\frac{|h_{AE_e}|^2}{d_{AE_e}^\alpha} \frac{|h_{BE_e}|^2}{d_{BE_e}^\alpha} < Y_0 \right| \Phi, Y \right] $

= $ \prod_{e \in \Phi} (1 - \Psi(Y, r_e, \theta_e)), \quad (44) $

where (due to the lemma shown next)

$$ \Psi(Y, r_e, \theta_e) = \frac{\exp\left(-\frac{d_{AE_e}^\alpha}{P_T} Y_0 \right)}{1 + \frac{m d_{AE_e}^\alpha}{d_{BE_e}^\alpha} Y_0} $$

We have applied the following lemma.

Lemma 3: If A and B (like $|h_{AE_e}|^2$ and $|h_{BE_e}|^2$) are two independent random variables with the exponential distribution of unit mean, then $P(A + B < c) = 1 - \frac{c}{1 + c}$.

Note that we are only interested in such \(R_s \) that \(\log_2(1 + SNR_{AB}) \geq R_s \), which implies \(Y_0 \geq 0 \).

Let \(P_{con,Y} \) be \(P_{con} \) conditional only on \(Y \). Applying the Campbell's theorem \([33] \) to \([44] \) yields:

\[
P_{con,Y} = \mathbb{E}_Y\{P[SNR_{AB}^{TAS} > R_s|\Phi, Y]\} = \exp\left[-\rho_E \int_0^R \int_0^{2\pi} \Psi(Y, r, \theta) r d\theta dr \right].
\]

APPENDIX B

A SIMPLIFICATION OF THE DOUBLE INTEGRAL IN \([14]\)

Assume \(R_s = 0 \) and \(\alpha = 2 \). Then, \(\beta = 1 \) and \(Y_0 = Y \).

Let the distance between Alice and Bob be \(d \). Then, \(\frac{d_{AE}}{\sigma_E} = \frac{d^2}{r^2 + d^2 - 2rd \cos \theta} \), and furthermore

\[
\int_0^R \int_0^{2\pi} \Psi(Y, r, \theta) r d\theta dr = \int_0^R \int_0^{2\pi} \frac{\exp(-Y r^2)}{1 + mY r^2 + d^2 - 2rd \cos \theta} r d\theta dr
\]

where the first term can be obviously reduced. The second term in \([45] \), can be simplified by applying \(\int_0^{2\pi} \frac{1}{a - b \cos \theta} d\theta = \frac{2\pi}{\sqrt{a^2 - b^2}} \) identity. Then, \([45] \) yields

\[
\int_0^R \int_0^{2\pi} \Psi(Y, r, \theta) r d\theta dr = \int_0^R \frac{\pi P_T}{Y} \left(1 - \exp\left(-\frac{Y R^2}{P_T} \right) \right) - 2\pi mY \int_0^R \frac{r^3 \exp(-Y r^2)}{r^2 \sqrt{1 + mY r^2 + d^2 - 2rd \cos \theta}} dr \]

which is a much simplified expression of the double integral in \([14] \).

APPENDIX C

PROOF OF \([22]\)

Here, \(Z = \frac{\|h\|^2}{\|g\|^2 P_r} \) and \(Y_2 = \frac{1}{P_T} + \rho m |g|^2 \). Note that \(f_{Y_2}(x) = \frac{1}{\Gamma(M)} x^{M-1} e^{-x} \) and \(f_{Z}(x) = \frac{1}{\rho m} e^{\exp(-\frac{x}{\rho m})}, x > \frac{1}{P_T} \).

\[
F_Z(z) = P[\frac{Y_2}{Y_1} < z] = P[|g_b|^2 > \frac{Y_3 - \frac{Y_2}{P_T}}{z \rho m}]
\]

\[
= \int_{y=0}^{\infty} f_{y_3}(y) dy \int_{x=0}^{\infty} e^{-\frac{x}{x_{\text{typ}}} \frac{y}{z \rho m}} dx
= \frac{1}{\Gamma(M)} \int_{y=0}^{\infty} y^{M-1} e^\left(-\frac{y}{z \rho m} \right) dy
\]

\[
= \frac{e^{\frac{\rho m}{z \rho m}}}{\Gamma(M) (1 + \frac{1}{z \rho m})^M} \int_{y=0}^{\infty} (y(1 + \frac{1}{z \rho m}))^{M-1} x e^{-\frac{y(1 + \frac{1}{z \rho m})}{z \rho m}} dy
= \frac{e^{\frac{\rho m}{z \rho m}}}{(1 + \frac{1}{z \rho m})^M}.
\]

(47)

If \(m > 0 \) then, \(f_z(z) = \frac{e^{\frac{\rho m}{z \rho m}}}{(1 + \frac{1}{z \rho m})^M} \). For \(m = 0 \), \(Z \) follows scaled CHI squared distribution.

APPENDIX D

PROOF OF \([37]\)

The secrecy of the TAB scheme can be analyzed as follows.

\[
P_{con, h, g B} \triangleq P[SAB > R_S|\Phi, h, g B] = P[SAB > R_S|\Phi, z]
\]

\[
= P\left[\max_{e \in \Phi} SNR_{AE} < \frac{SNR_{AB}}{\beta} - (1 - \frac{1}{\beta}) |\Phi, z] \right.
\]

\[
= P\left[\max_{e \in \Phi} \frac{d_{AE}^2}{d_{AE}^2 + \frac{P_T d_{AE}^2}{d_{AE}^2}} X_2 + \frac{e \rho m}{M-1} X_1(1 - \Theta) \right.
\]

\[
< \frac{\|h\|^2}{\beta(1 + \|g_b\|^2 P_T)} - \frac{1 - \frac{1}{\beta}}{\beta(1 - e)P_T} |\Phi, z] \right.
\]

\[
= \prod_{e \in \Phi} \left[X_1(1 - \Theta) \left(X_2 + \frac{d_{AE}^2}{d_{AE}^2 + \frac{P_T d_{AE}^2}{d_{AE}^2}} \right) + \frac{e \rho m}{M-1} X_1(1 - \Theta) < \frac{\|h\|^2}{\beta(1 + \|g_b\|^2 P_T)} - \frac{1 - \frac{1}{\beta}}{\beta(1 - e)P_T} \right] |\Phi, z] \right.
\]

\[
= \prod_{e \in \Phi} \left[\Theta < \frac{\|h\|^2}{\beta(1 + \|g_b\|^2 P_T)} + \frac{e \rho m}{M-1} + g \right] |\Phi, z],
\]

(48)

where \(X_3 = X_2 + \frac{d_{AE}^2}{d_{AE}^2 + \frac{P_T d_{AE}^2}{d_{AE}^2}} \), and \(X_1, X_2 \) and \(\Theta \) are independent variables as defined previously (after \([17]\)). It is easy to verify that \(f_{X_2}(x) = M(1 + x)^{-(M+1)} \) which is similar to the \(F(2, 2M) \) distribution \([37]\). When large scale channel gain of jamming signal at ED is higher than noise level, i.e., \(\frac{P_T}{\sigma_E^2} \gg 1 \), the shift between \(X_1 \) and \(X_2 \) becomes smaller. Furthermore, one can verify that \(f_{X_2}(x) \approx e^{\frac{\beta}{\rho m}} M(1 + x)^{-(M+1)} \). It follows from the PDF \(f_{\Theta}(x) \) shown earlier that the CDF of \(\Theta \) is \(F_\Theta(x) = 1 - (1 - X)^{M-1} \). Then, it is shown in Appendix \([10] \) that

\[
P[\Theta > \frac{\epsilon}{M} + f_{X_2}(x) |\Phi, z] = \frac{e^{\frac{\beta}{\rho m}}}{(1 + \frac{\beta}{\rho m})(1 + \frac{1}{(M-1)\rho m})^{M-1}}.
\]
where g is a function of Z as defined before. Averaging over the PPP distribution of the locations of the Eves, one can verify (using the Campbell’s theorem) that

$$P_{\text{con,h,GB}} = P_{\text{con,z}} = \mathbb{E}_\Phi \{ P[S_{AB} > R_B | \Phi, h, g_B] \}$$

$$= \mathbb{E}_\Phi \left(\prod_{x \in \Phi} \left(1 - P \left[\Theta > \frac{r_x}{x_T + f e x_1 x_1} \right] \right) \right)$$

$$= \mathbb{E}_\Phi \left(\prod_{x \in \Phi} \left(1 - \frac{e^{\frac{r_x}{x_T + g}}}{e^{-r_x}} \right) \right)$$

$$= \exp \left[-\rho_E \int_0^R r \int_0^{2\pi} \Omega \left(\frac{1}{g}; r, \theta \right) d\theta dr \right],$$

where z is a realization of Z, g is a function of z, and

$$\Omega \left(\frac{1}{g}; r, \theta \right) = \frac{e^{\frac{r}{x_T}}}{(1 + \frac{r}{g})(1 + \frac{\epsilon}{(M-1)g})^{M-1}}.$$

A. Proof of (49)

The complement of (49) is

$$P[\Theta < \frac{e^{\frac{r}{x_T}} + f e x_1 x_1}{x_T + g}]$$

$$= \int_0^{x_T} F_\Theta \left(\frac{e^{\frac{r}{x_T}} + f e x_1 x_1}{x_T + g} \right) f_{x_1}(x) dx$$

$$= \int_0^{x_T} F_\Theta \left(\frac{e^{\frac{r}{x_T}} + f e x_1 x_1}{x_T + g} \right) f_{x_1}(x) dx$$

$$+ \int_{x_T}^\infty F_\Theta \left(\frac{e^{\frac{r}{x_T}} + f e x_1 x_1}{x_T + g} \right) f_{x_1}(x) dx.$$

Here, $F_\Theta(y) = 1$ for $y \geq 1$, so $F_\Theta \left(\frac{e^{\frac{r}{x_T}} + f e x_1 x_1}{x_T + g} \right) = 1$ for $x \geq \frac{x_T}{f}$. Then (50) continues as follows:

$$\int_0^{x_T} F_\Theta \left(\frac{e^{\frac{r}{x_T}} + f e x_1 x_1}{x_T + g} \right) f_{x_1}(x) dx + \int_{x_T}^\infty F_\Theta \left(\frac{e^{\frac{r}{x_T}} + f e x_1 x_1}{x_T + g} \right) f_{x_1}(x) dx$$

$$= \int_0^{x_T} \left[1 - \left(1 - \frac{e^{\frac{r}{x_T}} + f e x_1 x_1}{x_T + g} \right)^{M-1} \right] f_{x_1}(x) dx$$

$$+ \int_{x_T}^\infty f_{x_1}(x) dx$$

$$= 1 - \int \frac{Me^{\frac{r}{x_T}}}{(x_T + g)^{M-1}} \int_0^{x_T} \left(1 - \frac{f e x_1 x_1}{x_T + g} \right)^{M-1} \frac{dx}{(1 + x)^2}. \tag{51}$$

Let $k = \frac{L_x}{1+e}$ and $z = \frac{1}{(1+e)^2}$. Then $(1 - \frac{k}{1+e})^{M-1} = k^{M-1} \left(1 + \frac{z}{k+1} \right)^{M-1}$. The above leads to

$$P[\Theta < \frac{e^{\frac{r}{x_T}} + f e x_1 x_1}{x_T + g}]$$

$$= 1 - \frac{Me^{\frac{r}{x_T}}}{(x_T + g)^{M-1}} \int_0^{x_T} \left[1 - \frac{z}{k+1} \right]^{M-1} dz. \tag{52}$$

Now, using $y = z \left(\frac{k+1}{k} \right) - 1$, we have

$$P[\Theta < \frac{e^{\frac{r}{x_T}} + f e x_1 x_1}{x_T + g}]$$

$$= 1 - \frac{Me^{\frac{r}{x_T}}}{(x_T + g)^{M-1}} \int_0^y y^{M-1} dy$$

$$= 1 - \frac{Me^{\frac{r}{x_T}}}{(x_T + g)^{M-1}} \left(1 + \frac{e^{\frac{r}{x_T}}}{(M-1)g} \right)^{M-1}. \tag{53}$$

Appendix E

Unimodality of Ω

From (25), we have

$$\Omega \left(\frac{1}{g}; r, \theta \right) = \frac{e^{\frac{r}{x_T}}}{(1 + \frac{r}{g})(1 + \frac{\epsilon}{(M-1)g})^{M-1}} \tag{54}$$

where $\Omega_1(P_j)$ and $\Omega_2(P_j)$ are shown below to be positive and strictly monotonically decreasing and increasing functions, respectively, w.r.t. P_j, i.e., $\Omega_1(P_j) < 0$ and $\Omega_2(P_j) > 0$ for any $P_j \geq 0$. We will apply $x = \frac{e}{k}\frac{1}{e}$ where $x \in (0, \infty)$ as $P_j \in (0, \infty)$. Now, recall $f_e = \frac{d_{EB}^\alpha}{d_{EB}^\beta}$ and $g = \frac{\beta (1 + \rho P_j |g_B|^2)}{P_j \|h\|^2}$ Then, it follows that

$$\Omega_1(x) = e^{x d_{EB}^\alpha} \left(1 - \frac{k_e}{x + k_e + \rho |g_B|^2} \right)$$

$$\Omega_1'(x) = \Omega_1(x) \left(\frac{d_{EB}^\alpha}{d_{EB}^\beta} + \frac{k_e}{(x + k_e + \rho |g_B|^2)(x + \rho |g_B|^2)} \right). \tag{55}$$

where $k_e = \frac{d_{EB}^\alpha}{d_{EB}^\beta} \frac{\|h\|^2}{\beta}$, and $\Omega_1(x)$ and $\Omega_1'(x)$ are strictly positive. Also,

$$\Omega_2(x) = \frac{1}{1 + \frac{\|h\|^2}{\beta}} \frac{M-1}{x + \rho |g_B|^2}$$

$$\Omega_2'(x) = -\Omega_2(x) \left(\frac{M-1}{x + \rho |g_B|^2} \right) \left(x + \rho |g_B|^2 \right)^{-1} \tag{56}$$

where $k = \frac{\|h\|^2}{\beta}$, and $\Omega_2(x)$ and $\Omega_2'(x)$ are strictly positive and negative, respectively.

Next, we will show that $\Omega(x) = \Omega_1(x) \Omega_2(x)$ is a unimodal function with minimum at a finite nonzero x. Consider the following stationary condition on x, $\Omega(x) = \Omega_1(x) \Omega_2(x) = 0$ or equivalently $\frac{\Omega_2(x)}{\Omega_1(x)} = -\frac{\Omega_1(x)}{\Omega_2(x)}$ which can be further reduced to

$$\frac{\Omega_2(x)}{\Omega_2(x)} = \frac{\Omega_1(x)}{\Omega_1(x)} \tag{57}$$

$$d_{EB}^\alpha + \frac{M-1}{x + \rho |g_B|^2} = \frac{1}{x + k_e + \rho |g_B|^2} + \frac{M - 1}{k+1}.$$
Using $y = x + \rho |gB|^2$ in (57) and after some algebraic manipulations, we get

$$\begin{align*}
\frac{y^3}{6} + \left(\frac{k_e - \frac{1}{k_e + 1}}{\kappa B_{E_e}} \right) y^2 + \left(\frac{k_e - \frac{1}{k_e + 1}}{\kappa B_{E_e}} \right) y - \left(\frac{k_e - \frac{1}{k_e + 1}}{\kappa B_{E_e}} \right) = 0,
\end{align*}$$

which is a cubic polynomial equation. Based on the characteristics of cubic polynomials, (58) has one, two or three roots and one inflection point. Furthermore, a cubic function is anti-symmetric around its inflection point. To show that (58) has only one positive solution, we just need to show that the inflection point is negative. The inflection point is where the second-order derivative of the cubic function is zero. That is, $6y - 2(k_e - \frac{1}{k_e + 1}) = 0$, or equivalently, $x = -\frac{2k_e + 3}{k_e + 1}|gB|^2 = \frac{k_e - 1}{k_e + 1}$, which illustrates the case is indeed negative.

Finally, it is easy to verify that $\Omega(z; r, \theta)$ is a decreasing function of P_J at $P_J = 0$. Therefore, we have shown that $\Omega(z; r, \theta)$ for any r and θ has its minimum at a positive finite P_J.

APPENDIX F

PROOF OF (27)

Assume $\alpha = 2$ and $\beta = 1$. Then, $g = 1/z$, and

$$\begin{align*}
\int_0^\infty \int_0^{2\pi} \Omega(z; r, \theta) \, d\theta \, dr &= \int_0^\infty \int_0^{2\pi} \frac{1}{(1 + \frac{M - 1}{M}) r^2 + 2r y \cos \theta} \, d\theta \, dr \\
&= \int_0^\infty \int_0^{2\pi} \frac{1}{(1 + \frac{M - 1}{M}) r^2 + 2r y \cos \theta} \, d\theta \, dr \\
&= \frac{1}{(1 + \frac{M - 1}{M}) r^2 + 2r y \cos \theta} \, d\theta \, dr,
\end{align*}$$

where

$$\begin{align*}
\int_0^{2\pi} \frac{1}{(1 + \frac{M - 1}{M}) r^2 + 2r y \cos \theta} \, d\theta &= 2\pi \left(1 - \frac{1}{\sqrt{1 + \frac{(r + d)^2}{r^2} + \frac{1}{z m}}},
\end{align*}$$

Combining (59) and (60) yields (27).

APPENDIX G

PROOF OF (29)

Assuming $P_J = 0$ and a large P_T, it follows that $E = \frac{1}{\beta} + \frac{1}{\beta} \approx \frac{1}{\beta}$ and $z = P_T |h|^2$. And from (48), we have

$$\begin{align*}
P[S_{AB} > R_a, d_{AB}, \Phi_E] &= \prod_{e \in \Phi} P[S_{AB} > R_{a1}] < c_1 |\Phi, h, gB| \\
&= \prod_{e \in \Phi} P[S_{AB} > R_{a1}] < c_1 |\Phi, h, gB|,
\end{align*}$$

where $X_4 = \Theta X_4$ is exponentially distributed with mean 1 and $X_{4,4} = (1 - \Theta) X_4$ is independent of X_4 and has the $\Gamma(M - 1, 1)$ distribution. Then,

$$\begin{align*}
P[X_{4,4} < R_{a1} d_{AB} e^{-P_T X_4} < \frac{\|h\|^2 |\Phi, h, gB|}{\beta} |\Phi, h, gB| \\
&= \int_0^\infty \int_0^\infty \exp \left\{- \left(\frac{\|h\|^2 |\Phi, h, gB|}{\beta} d_{AB} e^{-P_T X_4} \right) \right\} f_X(y) \, dy \\
&= \int_0^\infty \exp \left\{- \left(\frac{\|h\|^2 |\Phi, h, gB|}{\beta} d_{AB} e^{-P_T X_4} \right) \right\} \frac{y^{M - 2} e^{-y}}{\Gamma(M - 1)} \, dy \\
&= \frac{1}{\Gamma(M - 1)} \int_0^\infty e^{-y} \frac{y^{M - 2}}{(1 + \frac{\beta}{M - 1})^{M - 1}} \, dy \\
&= 1 - \Omega(z; r, \theta).
\end{align*}$$
And then
\[P_{\max}\left(\frac{X^n}{d_{AE,n}}\right) \frac{X_4}{d_{AE,n} + \frac{P_T}{M} X_4} < \frac{X_{2,n}}{\beta d_{AB,n}} \]
\[= \prod_{e \in \Phi_E} P_{\max}\left(\frac{X_4}{d_{AE,n} + \frac{P_T}{M} X_4} \right) \]
\[= \prod_{e \in \Phi_E} \int_0^\infty f_{X_4}(x) F_{\frac{X_4}{x}} \left(\frac{d_{AE,n} + \frac{P_T}{M} X_4}{\beta d_{AB,n}}\right) dx \]
\[= \prod_{e \in \Phi_E} \left(1 - \int_0^\infty f_{X_4}(x) \left(1 + \frac{d_{AE,n} + \frac{P_T}{M} x}{\beta d_{AB,n}}\right)^{-M} \right) dx \]
\[= \prod_{e \in \Phi_E} \left(1 - \frac{1}{\left(\frac{(M-1)\beta d_{AB,n}}{\epsilon P_T}\right)^M} U(M, 2, (M-1)\beta d_{AB,n}) \right) \]
\[+ \frac{(M-1)\beta d_{AB,n}}{\epsilon P_T} \right), \quad (65) \]
where \(U \) denotes the confluent hypergeometric function of the second kind [42].

After applying Campbell's theorem [38] and setting \(d_{AE,n} = r \), we have
\[P[S_{AB} > R_s | d_{AB,n}] = \exp \left(-2\pi \rho_E \frac{(M-1)\beta d_{AB,n}}{\epsilon P_T} \right)^M \]
\[\times \int_0^\infty U(M, 2, (M-1)\beta d_{AB,n}) \left(\frac{(M-1)\beta d_{AB,n}}{\epsilon P_T} \right)^r dr \] (66)

Further simplification can be done by using proof as shown in subsection [H-A]
\[\left(\frac{(M-1)\beta d_{AB,n}}{\epsilon P_T}\right)^M \int_0^\infty U(M, 2, (M-1)\beta d_{AB,n}) \]
\[+ \frac{(M-1)\beta d_{AB,n}}{\epsilon P_T} \right)^r dr \]
\[= \frac{1}{\alpha} \left(\frac{(M-1)\beta d_{AB,n}}{\epsilon P_T}\right)^M B(M - \frac{2}{\alpha}, 2) \]
\[\times U(M - \frac{2}{\alpha}, 2 - \frac{2}{\alpha}, (M-1)\beta d_{AB,n}) \] \(\quad \) (67)

A. Proof of (67)

Using the change of variables \(c = \frac{(M-1)\beta d_{AB,n}}{\epsilon P_T} \), we can write
\[\left(\frac{(M-1)\beta d_{AB,n}}{\epsilon P_T}\right)^M \int_0^\infty U(M, 2, (M-1)\beta d_{AB,n}) \]
\[+ \frac{(M-1)\beta d_{AB,n}}{\epsilon P_T} \right)^r dr \]
\[= \frac{c^M}{\Gamma(M)} \int_0^\infty \int_0^\infty e^{-(c + \frac{(M-1)\beta d_{AB,n}}{\epsilon P_T}) r} \frac{1}{t^M} (1 + t)^{2-M-1} dr dr \]
\[= \frac{c^M}{\Gamma(M)} \int_0^\infty (e^{-c t} t^{M-1} (1 + t)^{2-M-1} \int_0^\infty e^{-(M-1)\beta d_{AB,n} r} dr) dt. \]

Using another change of variables \(x = \frac{(M-1)\beta d_{AB,n}}{\epsilon P_T} t \), the above becomes
\[\left(\frac{\epsilon P_T}{M-1}\right)^\frac{2}{\alpha} B(M - \frac{2}{\alpha}, 2) \int_0^\infty e^{-ct} t^{\frac{M-2}{\alpha} - 1} \]
\[\times (1 + t)^{2-M-\frac{2}{\alpha} - 1} dt \]
\[= \left(\frac{\epsilon P_T}{M-1}\right)^\frac{2}{\alpha} B(M - \frac{2}{\alpha}, 2) \]
\[\times \int_0^\infty e^{-ct} t^{\frac{M-2}{\alpha} - 1} (1 + t)^{2-M-\frac{2}{\alpha} - 1} dt \]
\[= \left(\frac{\epsilon P_T}{M-1}\right)^\frac{2}{\alpha} B(M - \frac{2}{\alpha}, 2) \]
\[\times U(M - \frac{2}{\alpha}, 2 - \frac{2}{\alpha}, (M-1)\beta d_{AB,n}). \quad (68) \]

When \(\epsilon = 0 \), we have
\[P[S_{AB} > R_s | d_{AB,n}] \]
\[\approx \prod_{e \in \Phi_E} \left(1 - \frac{1}{\left(\frac{d_{AE,n}}{\epsilon P_T}\right)^M} \frac{X_{2,n}}{\beta d_{AB,n}} \right) \]
\[= \prod_{e \in \Phi_E} \left(1 - \frac{1}{\left(\frac{d_{AE,n}}{\epsilon P_T}\right)^M} \frac{X_{2,n}}{\beta d_{AB,n}} \right) \]
\[\text{(for large } P_T) \]
\[= \prod_{e \in \Phi_E} \left(1 - \frac{1}{\left(\frac{d_{AE,n}}{\epsilon P_T}\right)^M} \frac{X_{2,n}}{\beta d_{AB,n}} \right). \quad (69) \]

Further simplification can be done by using proof as shown in subsection [H-A]
\[\left(\frac{(M-1)\beta d_{AB,n}}{\epsilon P_T}\right)^M \int_0^\infty U(M, 2, (M-1)\beta d_{AB,n}) \]
\[+ \frac{(M-1)\beta d_{AB,n}}{\epsilon P_T} \right)^r dr \]
\[= \frac{1}{\alpha} \left(\frac{(M-1)\beta d_{AB,n}}{\epsilon P_T}\right)^M B(M - \frac{2}{\alpha}, 2) \]
\[\times U(M - \frac{2}{\alpha}, 2 - \frac{2}{\alpha}, (M-1)\beta d_{AB,n}) \] \(\quad \) (67)

The computation of averaged SOP requires the PDF of the distance of the \(n \)th nearest user. The following lemma is known [35].

Lemma 4: The PDF of \(d_{AB,n} \) is
\[f_{d_{AB,n}}(x) = \exp(-\rho U x^2) \int_{\frac{n}{2}}^\infty \frac{2\rho U x^{2n-1}}{\Gamma(n)} dx. \]
(72)

It now follows from this lemma and (71) that
\[P[S_{AB} > R_s] = \int_0^\infty \left(-\frac{2}{\alpha} \rho E \beta d_{AB,n} x^2 B(M - \frac{2}{\alpha}, 2) \right) \]
\[\times \exp(-\rho U x^2) \int_{\frac{n}{2}}^\infty \frac{2\rho U x^{2n-1}}{\Gamma(n)} dx \]
\[= \frac{1}{\left(1 + \frac{2\rho U}{\alpha} \beta d_{AB,n} x^2 B(M - \frac{2}{\alpha}, 2) \right)^n}. \]
By definition, we have
\[
\mathcal{L}_{e}(s) = E_{\Phi} E_{\psi} \left[\exp \left(-s \sum_{e \in \Phi} \frac{h_{\alpha e} X_{e}^{2}}{\alpha_{e}} \right) \right]
\]
\[
= E_{\Phi} \left[\prod_{e \in \Phi} E \left[\exp \left(-s H_{e} \right) \right] \right]
\]
where
\[
H_{e} = \frac{1}{P_{j} \sigma_{B e}^{2} + X_{e}^{2}} = \frac{1}{P_{j}} \chi_{e}.
\]
From Lemma I or [18] with \(M = 1 \), we know
\[
f_{\chi_{e}}(x) = e^{\frac{-x^{2}}{r_{e}}}
\]
Then,
\[
E \left[e^{-s\chi_{e}} \right] = \int_{0}^{\infty} e^{-s \chi_{e}} f_{\chi_{e}}(x) dx = \int_{0}^{\infty} e^{-\frac{s x^{2}}{r_{e}}} \frac{x}{1 + x^{2}} dx.
\]
\[
= \int_{0}^{\infty} e^{-\frac{s x^{2}}{r_{e}}} \frac{x}{1 + x^{2}} + \frac{d_{B e}^{2} r_{e}^{2}}{P_{j}} \frac{1}{1 + x^{2}} dx.
\]
\[
= \int_{0}^{\infty} e^{-K(s) x} \frac{1}{1 + x^{2}} + (K(s) - s) \frac{1}{1 + x^{2}} dx.
\]
\[
= \int_{0}^{\infty} e^{-K(s) x} dx + (K(s) - s) \int_{0}^{\infty} e^{-K(s) x} dx.
\]
\[
= 1 - e^{-K(s) K(s)} + (K(s) - s) e^{-K(s) K(s)}.
\]
\[
= 1 - \frac{s}{r_{e}} E_{1}(K(s)).
\]
where
\[
E_{1}(a) = \int_{0}^{\infty} e^{-ax} \frac{x}{1 + x^{2}} dx
\]
and
\[
K(s) = \frac{s^{2} r_{e}^{2}}{r_{e}^{2}}.
\]
So we get:
\[
\mathcal{L}_{e}(s) = E_{\Phi} \left[\prod_{e \in \Phi} E \left[\exp \left(-s H_{e} \right) \right] \right]
\]
\[
= E_{\Phi} \left[\prod_{e \in \Phi} 1 - \frac{s}{r_{e}} E_{1}(K(s)) e^{K(s)} \right]
\]
\[
= \exp \left[-\rho E_{\Phi} \int_{R} \int_{0}^{2\pi} \frac{s}{r_{e}} E_{1}(K(s)) e^{K(s)} d\theta dr \right].
\]
[32] M. Xie and T.-M. Lok, “Antenna Selection in RF-Chain-Limited MIMO Interference Networks Under Interference Alignment,” IEEE Trans. on Vehicular Technology, vol. 66, no. 5, pp. 3856-3870, May 2017.

[33] G. Chen, J. P. Coon and M. D. Renzo, “Secrecy Outage Analysis for Downlink Transmissions in the Presence of Randomly Located Eavesdroppers,” IEEE Trans. Information Forensics and Security, Vol. 12, PP. 1195 - 1206, May 2017.

[34] I. Zabir, A. Maksud, B. Sadler and Y. Hua, “Secure Downlink Transmission to Full-Duplex User against Randomly Located Eavesdroppers,” IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, Dec. 2019.

[35] G. Chen and J. P. Cohn, “Secrecy Outage Analysis in Random Wireless Networks With Antenna Selection and User Ordering,” IEEE Wireless Commun. Letters, Vol. 6, No., pp.334-337, June 2017.

[36] Y. Hua, P. Liang, Y. Ma, A. Cire and Q. Gao, “A method for broadband full-duplex MIMO radio,” IEEE Signal Processing Letters, Vol. 19, No. 12, pp. 793-796, Dec. 2012.

[37] P. B. Patnaik, “The non-central χ^2- and F-distribution and their applications,” Biometrika, vol. 36, no. 1/2, pp. 202-232, Jun. 1949.

[38] R. L. Streit, The Poisson Point Process, Springer, Boston, MA, 2010.

[39] Y. Ju, H. M. Wang, T. X. Zheng, Q. Yin, M. H. Lee, “Safeguarding Millimeter Wave Communications Against Randomly Located Eavesdroppers,” IEEE Trans. Wireless Commun., Vol. 17, Issue: 4, pp. 2675 - 2689, April 2018.

[40] C. Wang, H. M. Wang, “Physical Layer Security in Millimeter Wave Cellular Networks,” IEEE Trans. Wireless Commun., Vol. 15, Issue: 8, pp. 5569 - 5585, Aug. 2016.

[41] T. Bai, R. W. Heath, “Coverage and Rate Analysis for Millimeter-Wave Cellular Networks,” IEEE Trans. Wireless Commun., Vol. 14 Issue: 2, pp. 1100 - 1114, 2, Feb. 2015.

[42] L. C. Andrews, “Special Functions of Mathematics for Engineers,” SPIE Press, chapter 10, 1998.

[43] L. Bostock, S. Chandler, and F. S. Chandler, Pure Mathematics 2, Nelson Thornes, 1979.

[44] S. Sanayei and A. Nosratinia, “Antenna Selection in MIMO Systems,” IEEE Communications Magazine, October 2004.

[45] L. Dritsoula, Z. Wang, H. R. Sadajpour, J.J. Garcia-Luna-Aceves, “Antenna selection for opportunistic interference management in MIMO broadcast channels,” IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2010.

[46] Y. Gao, and T. Kaiser, “Antenna Selection in Massive MIMO Systems: Full-array Selection or Subarray Selection?” IEEE Workshop on Sensor Array and Multichannel Signal Processing Workshop, 2016.

[47] H. Alves, R. D. Souza, M. Debbah, and M. Bennis, “Performance of Transmit Antenna Selection Physical Layer Security Schemes,” IEEE Signal Processing Letters, June 2012.

Isham Zabir (Student Member, IEEE) received the B.Eng. Degree in electrical and electronics engineering from Bangladesh University of Engineering and Technology, Bangladesh, in 2015. He is currently working towards the PhD degree in electrical and computer engineering at university of California at Riverside, Riverside, CA, USA. His research interests include physical layer security in wireless network, full-duplex radio, resource allocation in distributed network and stochastic geometry.

Ahmed Maksud (Student Member, IEEE) received the B.Sc. degree in Electrical and Electronics Engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh in 2017. He is currently working towards the Ph.D. degree in Electrical and Computer Engineering at the University of California at Riverside, CA, USA. His research interests include Wireless Communication, Wireless Networks Security, and Full-duplex Radio.

Gaojie Chen (S’09 – M’12 – SM’18) received the B.Eng. and B.Ec. Degrees in electrical information engineering and international economics and trade from Northwest University, China, in 2006, and the M.Sc. (Hons.) and Ph.D. degrees in electrical and electronic engineering from Loughborough University, Loughborough, U.K., in 2008 and 2012, respectively. He is currently a Lecturer with the School of Engineering, University of Leicester, U.K. He serves as an Associate Editor for the IEEE Communications Letters, IEEE Wireless Communications Letters, IEEE Journal on Selected Areas in Communications - Machine Learning on Selected Areas in Communications and Networks and Electronics Letters (IET).

Brian M. Sadler (S’81–M’81–SM’02–F’07) received the B.S. and M.S. degrees from the University of Maryland, College Park, and the Ph.D. degree from the University of Virginia, Charlottesville, all in electrical engineering. He is the US Army Senior Scientist for Intelligent Systems, and a Fellow of the Army Research Laboratory (ARL) in Adelphi, MD. He is an IEEE Communications Society Distinguished Lecturer for 2020-2021, was an IEEE Signal Processing Society Distinguished Lecturer for 2017-2018, and general co-chair of IEEE GlobalSIP’16. He has been an Associate Editor of the IEEE Transactions on Signal Processing, IEEE Signal Processing Letters, and EURASIP Signal Processing, and a Guest Editor for several journals including the IEEE JSTSP, the IEEE JSAC, IEEE T-RO, the IEEE SP Magazine, Autonomous Robots, and the International Journal of Robotics Research. He received Best Paper Awards from the IEEE Signal Processing Society in 2006 and 2010, several ARL and Army R/D awards, and a 2008 Outstanding Invention of the Year Award from the University of Maryland. He has over 400 publications in these areas with 17,000 citations and h-index of 56. His research interests include information science, and networked collaborative autonomous intelligent systems.

Yingbo Hua (S’86–M’88–SM’92–F’02) received the B.S. degree in 1982 from Southeast University, Nanjing, China, and a Ph.D. degree in 1988 from Syracuse University, NY, USA. He joined the faculty of the University of Melbourne, Australia, in 1990, where he was promoted to Reader and Associate Professor in 1996. He moved to the University of California, Riverside, CA, as Full Professor in 2001, where he advanced to Senior Full Professor in 2009 and Professor IX in 2019. Dr. Hua has published over 340 articles in signal processing, wireless communications and sensor networks, with citations over 13520 and h-Index 55. Since 1994, he has served in a number of editorial and leadership roles for IEEE Transactions on Signal Processing, IEEE Signal Processing Letters, Signal Processing, IEEE Signal Processing Magazine, IEEE Journal of Selected Areas in Communications, IEEE Wireless Communications Letters, and IEEE Transactions on Signal and Information Processing over Networks. He was a General Co-Chair for IEEE ChinaSIP’2015, and Lead Chair for IEEE Globisip 2018 Symposium on Signal Processing for Wireless Network Security. He is currently Chair of the Steering Committee for IEEE Wireless Communications Letters. Dr. Hua is a Fellow of AAAS since 2011.