Materials Research Express

PAPER

Epitaxial synthesis of graphene on 4H-SiC by microwave plasma chemical vapor deposition

Xuemin Zhang1,2∗, Changling Yan1,2*, Chunhong Zeng1,2, Tianyu Sun1, Zheng Xing1, Wenhua Shi1, Yiqun Wang1, Chao Pang2 and Baoshun Zhang1

1 State Key Laboratory on High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China
2 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, CAS, Suzhou, 215123, People’s Republic of China
* Author to whom any correspondence should be addressed.

E-mail: changling_yan@126.com

Keywords: graphene, epitaxial growth, MPCVD, 4H-SiC, Hall mobility

Abstract

Epitaxial graphene (EG) on semi-insulating SiC prepared by a thermal decomposition method is the most promising strategy for graphene application in large-scale integrated circuits due to compatibility with current semiconductor processes. In this study, high-quality few-layer graphene (FLG) was epitaxially grown on the semi-insulating on-axis 4H-SiC by microwave plasma chemical vapor deposition (MPCVD). Both sides of the SiC substrate were etched with H2 plasma at ∼1000 °C to promote the nucleation and the growth of graphite before epitaxial growth. The surface morphology and properties of EG on SiC(0001) were measured by energy-dispersive x-ray (EDX), x-ray photoelectron spectrogram (XPS), and atomic force microscope (AFM). The qualities of EG grown on the two surfaces of SiC at various temperatures were checked by Raman spectroscopy. Furthermore, the EG growth was controlled by the effect of Ar plasma in the MPCVD and the few-layer (1–3 layers) high-quality EG films were formed on SiC(0001). The room temperature Hall mobility of EGs up to 2790 cm² V⁻¹ s⁻¹ on SiC(0001) was realized.

1. Introduction

Graphene is a 2D layered material that is composed of sp² hybridized carbon arranged in a regular hexagonal pattern [1]. Since graphene was effectively isolated in 2004, many remarkable properties have been reported, such as optical transparency up to 97%, electron mobility up to 27000 cm² V⁻¹ s⁻¹, a thermal conductivity greater than 5000 W mK⁻¹, and the room temperature anomalous quantum Hall effect [2–5]. Due to its unique characteristics, graphene has received great interest from fundamental research and device applications such as electronic devices, catalysts, energy storage, and gas sensors [6–9]. However, scalable synthesis up to the industrial level is still very challenging. Various strategies have been proposed to overcome this issue, such as chemical exfoliation, thermal chemical vapor deposition (TCVD), and thermal decomposition of silicon carbide (SiC) [10–12]. TCVD synthesis has been known as a method with great promise for large-area and uniform graphene preparation [13]. However, it heavily relies on transition metal as a catalyst [14, 15]. For large-scale graphene synthesis, the method of growing epitaxially graphene (EG) on SiC by thermal decomposition is particularly attractive [16, 17]. Si atoms are evaporated and separated selectively from the surface when the SiC substrate is annealed at a high temperature above 1200 °C, and the rest of the Cr atoms form graphene by naturally restructuring [18]. Due to the semi-insulating SiC substrate, the grown graphene can be fabricated into diverse electronic devices directly without substrate corrosion, film migration, and other complicated processes [19, 20]. It is one of the most effective ways to realize the application of graphene in microelectronics [21]. Generally, a high-temperature hot-wall CVD furnace reactor is usually employed in the epitaxial growth of graphene on the SiC [22]. However, it is expensive, high energy consumption, and inefficient for temperature increase. In recent years, microwave plasma chemical vapor deposition (MPCVD) has been shown successfully
in the synthesis of graphene. This deposition technique is being optimized for the synthesis of high-quality graphene at low temperature \[23, 24\]. Nevertheless, the investigations on the epitaxial growth of graphene on the SiC using MPCVD are still lacking so far. In this study, we have successfully synthesized high-quality few-layer graphene (FLG) on the 4H-SiC by MPCVD.

2. Experimental

2.1. Fabrication of epitaxial graphene film

Graphene film on the SiC was synthesized by the MPCVD system (DMT Technology Co., Ltd China). The microwave power was provided by a 2.45 GHz generator (MUEGGE Inc. Germany) with a maximum output power of 6 kW. A schematic diagram of the MPCVD chamber is shown in figure 1(a). The chamber consists mainly of the resonant cavity, stub tuner, quartz window, and cooling stage in addition to the generator. The working principle of MPCVD was described in detail in a previous report \[25\]. The semi-insulating 4H-SiC wafer (purchased from CREE Inc.) was used as the substrates were cut into square pieces with a dimension of 10 × 10 mm, and was chemically cleaned in acetone and methanol to remove the surface organic impurities. The cleaned substrate was placed into the MPCVD chamber with a Mo stage that directly contacted with the cooling stage. The chamber was evacuated to a base pressure of about 0.1 Torr before the process gases entered. Figure 1(b) illustrates the process of graphene MPCVD-synthesis on the SiC. First, the sample was heated up to 1000 °C by a plasma ball generated by the microwave generator. Then the annealing step was performed in 30 Torr of H\(_2\) for 30 min at 1000 °C to etch the SiC surface and broaden the width of the steep terraces. After this step, the temperature was immediately increased by stages to 1200 °C with the mixture gas of H\(_2\) and Ar. The SiC surface was treated to build a condition feasible for EG synthesis \[26\]. After that, the growth step was performed at 1300 °C–1500 °C under the pressure of 50 Torr with H\(_2\)/Ar mixture gas for 30–50 min. Finally, the sample was cooled down to room temperature.

2.2. Characterization and measurements

The surface morphology of H-etched SiC was observed by an AFM (Veeco Inc.), and the results were analysed by the Nanoscope analysis software. The images of the graphene on the SiC and the EDX spectra were obtained by field emission scanning electron microscopy (FE-SEM, FEI Inc.). High-resolution XPS spectrum measurement was performed on a Theta Probe spectrometer (Thermo Fisher Scientific). Raman spectroscopy and mapping image were carried out by a confocal Raman microscope (HORRIBA-JY) using a 532 nm excitation laser.

3. Results and discussion

3.1. Hydrogen etching treatment of SiC substrate

Although the SiC surface has been polished, there are still many mechanical scratches and disordered defects on the SiC substrate. Therefore, the substrate must be etched with hydrogen to facilitate the nucleation and growth of graphite before epitaxial growth \[27, 28\]. Figure 2(a) shows the AFM image of SiC (0001) etched with
Firstly, graphene was epitaxially grown on SiC by MPCVD. The etching conditions included the temperature of 1000 °C, the H2 flow rate of 300 sccm, and the etching time of 30 min. Under this etching condition, the terrace morphology with a width close to the micron level and height about the atom level was obtained. The H2-etched SiC surface has a similar scale but curved terrace morphology, as shown in figure 2(b). These step structures were beneficial to stable nucleation and large area growth of graphene. As shown in reaction equation (1), the specific mechanism of hydrogen etching is that SiC reacts with hydrogen plasma at a high temperature to generate gaseous C2H2 and SiH4. Owing to the existence of H2 plasma in MPCVD, Si atoms reacted with H2 plasma at a lower temperature to form SiH4 gas which was carried away from the SiC surface by H2 flow. Thus, the etching process at a low temperature can be successfully implemented.

\[
\text{SiC} (\text{solid}) + \text{H}_2 (\text{plasma}) \rightarrow \text{C}_2\text{H}_2 (\text{gas}) + \text{SiH}_4 (\text{gas})
\]

(1)

3.2. Basic epitaxial growth of graphene on SiC (0001)

Firstly, graphene was epitaxially grown on SiC (0001) at a temperature of 1300 °C. Figure 3(a) shows the carbon content which was measured by the energy spectra of EDX of the surface before and after the epitaxial growth. The electron beam energy was 10 kV. The atomic ratio of carbon content on the SiC surface before and after the epitaxial growth was 27.4% and 46.65%, respectively. Therefore, on the surface after growth, the carbon content was significantly higher than that of the original substrate. With the increase of beam energy, the atomic ratio of carbon content in the original SiC had no significant change, but it decreased gradually after the epitaxial growth, which indicates that there was a layer of carbon covering the surface of the SiC substrate. This also proved indirectly the existence of graphene. Figure 3(b) shows the Cls XPS spectrum fitted well by three peaks after epitaxial growth on SiC (0001). The peak of binding energy located at 283.5 eV was from the SiC substrate. The G peak (284.5 eV) at higher binding energy was close to the C-sp² bond position of graphite. This indicated that graphitization had occurred on the silicon face of SiC, which may form graphene by this experimental method. The binding energy position of the B peak (~284.9 eV) could be attributed to the buffer layer [29]. Figure 3(c) shows the AFM image of EG in the 1 μm × 1 μm region on SiC (0001). It can be seen that the grain boundary was obvious and the grain size of graphene was about 100 nm. The RMS roughness in the entire region was about 0.511 nm. The top of figure 3(d) shows the height along the white dotted line marked in figure 3(c). The height between region A and region B was ~0.25 nm, which was equivalent to the thickness of a Si–C diatomic layer. While the height between region B and region C was ~0.34 nm, which was exactly consistent with the thickness of the graphene monolayer. This can be explained by the schematic diagram shown at the bottom of figure 3(d). The epitaxial growth of graphene monolayer was realized in regions A and B on the buffer layer. Region B consumed one more Si–C bilayer than region A. On the contrary, due to the temperature or synthesis time was not sufficient, the buffer layer in region C had not enough energy to form the graphene layer. Figures 3(e) and (f) are the height and phase from AFM image of EG in the 1 μm × 1 μm region on SiC (0001) at 1300 °C, respectively, which show that the graphitic surface exhibits a meshwork of wrinkles. These wrinkles were frequently observed in FLG on SiC (0001) [30]. The origin of the wrinkle-like network with a ridge height of ~2.4 nm was attributed to the compressive stresses that develop upon cooling from the growth temperature [31].
3.3. Change temperature and Ar flow rate

For the graphene epitaxial growth on the SiC substrate, Raman spectra can not only be used to confirm the formation of the graphene but also to estimate the number of layers, doping, defects, stress and other properties of the graphene [32]. Figure 4(a) is the Raman spectra of graphene grown on SiC (0001) with various temperatures by MPCVD epitaxy, and the data have been normalized. The growth temperatures were set at 1200 °C, 1300 °C, 1400 °C, and 1500 °C, respectively. It can be seen clearly that there was no obvious G peak and 2D peak in the Raman spectrum of growth at 1200 °C (black line in figure 4(a)), indicating that there was no graphene formed on the substrate. When the temperature was set at 1300 °C, the G peak (1587 cm$^{-1}$) and 2D peak (2730 cm$^{-1}$) appeared in the Raman spectrum indicating the graphene formation on the substrate [33]. The full width at half maximum (FWHM) value of 2D peak at 1300 °C was ~62.8 cm$^{-1}$ which was close to monolayer graphene (59 cm$^{-1}$) [32]. The intensity of the G peak was lower than that of SiC substrate peaks,
which indicated that the graphene grain size was small and a continuous graphene film was not formed. According to equation (2) [34], the grain size of EG can be estimated:

\[
L_a = 2.4 \times 10^{-10} \lambda_{laser}^4 \left(\frac{I_D}{I_G} \right)^{-1}
\]

where \(L_a\) is the average grain size of graphene, \(\lambda_{laser}\) is the wavelength of the laser beam in Raman spectra, \(I_G\) and \(I_D\) are the intensities of \(G\) peak and \(D\) peak in Raman spectrum respectively. The average grain size of EG at 1300 °C was \(\sim 114\) nm, which was consistent with the observation of AFM.

The obvious \(D\) peak (\(\sim 1360\) cm\(^{-1}\)) in the Raman spectrum of growth at 1400 °C indicated that there were impurities or defects in the lattice structure of graphene. As the growth temperature increased to 1500 °C, the value of \(I_G/I_{SiC}\) became larger, indicating that the graphene fully covered the SiC substrate. The gradual increase of \(I_G/I_D\) indicated that high-quality graphene has been obtained at the growth temperature of 1500 °C. As shown in figure 4(a), the 2D peak in the blue curve is located at \(2713\) cm\(^{-1}\). A red-shift of \(17\) cm\(^{-1}\) was observed compared with that of growth at 1300 °C. The red-shift of the 2D peak in the Raman spectra of EG could be ascribed to the internal stress of the EG layer. When the temperature increases, the lattice mismatch between the substrate and the graphene was induced by the stress generated by thermal expansion. At the same time, the intensity of the 2D peak at 1500 °C was stronger which indicated a thicker graphene layer with an increase of temperature. Figure 4(b) shows the Raman spectra of graphene films grown at various temperatures on SiC (0001). Different from the silicon surface, the intensities of graphene characteristic peaks were highly strong which were almost unaffected by the SiC substrate peaks. As the growth temperature increases from 1300 °C to 1500 °C, the \(G\) and 2D peaks of the Raman spectra of EG on SiC (0001) were located at about \(1587\) cm\(^{-1}\) and \(2706\) cm\(^{-1}\), respectively. The intensities of \(D\) peaks were very small, indicating that the density of defects was low and the crystallization quality was high. As the growth temperature increased, the \(I_G/I_D\) and FWHM values of 2D peaks increased, indicating that the number of graphene layers increased gradually.

The sublimation rate of silicon atom plays an important role in the reconstruction of graphene. High argon pressure can effectively reduce the sublimation rate of silicon atom [35]. Figure 4(c) shows the Raman spectra of the graphene growth on SiC (0001) with Ar flow rates of 100 sccm and 200 sccm, respectively. When Ar flow was at a low level, \(D\) peak was obvious, and the \(I_G/I_{SiC}\) was \(\sim 1.23\). When Ar flux increased to 200 sccm, \(D\) peak was almost invisible, while \(I_G/I_{SiC}\) was \(\sim 0.68\). As the Ar flow rate increased, the intensities of the substrate peaks

![Figure 4. The Raman spectra of graphene grown on SiC: (a) On SiC (0001) at various temperatures by MPCVD epitaxy, (b) On SiC (0001) at various temperatures by MPCVD epitaxy, (c) On SiC (0001) at Ar flow rates of 100 sccm and 200 sccm, respectively, (d) On SiC (0001) at Ar flow rates of 100 sccm and 200 sccm, respectively.](image-url)
increased gradually, and the number of graphene layers and grain boundary size decreased. SiC (0001) graphene Raman spectra are shown in figure 4 (d). Similarly, the I_G/I_D was 12.8 and the I_{2D}/I_G was 0.63 as the Ar flow rate was 100 sccm. While the Ar flow rate increased to 200 sccm, I_G/I_D and I_{2D}/I_G values increased to 24.4 and 0.76, respectively, which suggested that the sublimation of Si atoms can be suppressed and the reconstruction rate of graphene can be better controlled by the Ar flow rate. The controllable growth rate can reduce the density of the dislocations and defects, thus the quality of graphene could be improved.

3.4. Controllable growth of graphene on the SiC (0001)

With the further improvement of the Ar flow rate in MPCVD, EG within 3 layers were obtained on the SiC (0001), as shown in figure 5(a). The I_{2D}/I_G was 5.5 and I_G/I_D was 17, which could be identified to be monolayer graphene. According to equation (2), The average grain size of EG was \sim326.4 nm for monolayer. For $I_{2D}/I_G = 1.07$ and $I_G/I_D = 86$, it was a bilayer graphene. The calculated average grain size was \sim1651.2 nm, which is larger than that of the monolayer. For $I_{2D}/I_G = 0.44$, the number of graphene layers was three or more. The calculated average grain size had little change because of $I_G/I_D = 82$. Figure 5(b) zooms in on the Raman 2D bands in figure 5(a). It can be seen that when the film was monolayer graphene, the 2D band had good symmetry and can be well fitted with a Lorentz single peak with an FWHM of 25 cm$^{-1}$. According to empirical equation (3) [36]:

$$FWHM(2D) = \left[-45 \left(\frac{1}{N} \right) + 88 \right] [cm^{-1}]$$

where N is the thickness of graphene and can be calculated to be about 1. This further verifies that EG was a monolayer. While the layer number of EG was greater than or equal to two, FWHM did not increase much. The calculated N was close to 1, and the 2D band can also be well fitted with a Lorentz single peak. This could be explained as that the interlayer of the FLG on the SiC (0001) was rotated by an angle. The interlayer coupling was
weak, and its Raman properties were similar to the monolayer. Because of buffer layer free, the sublimation rate and the formation rate of EG were much faster on the SiC (001) than those on SiC (0001). Therefore, it was quite difficult to control graphene layers by the general high-temperature hot-wall CVD system. In the H\textsubscript{2}/Ar plasma of MPCVD, radiative species such as Ar, H\textsubscript{2}, and H are mainly generated by electron collision, as shown below [37]:

$$\begin{align*}
(a) \quad e + Ar & \rightarrow e + Ar^+ , \\
(b) \quad e + H_2 & \rightarrow e + H_2^* , \\
(c) \quad e + H_2 & \rightarrow e + H + H^* , \\
(d) \quad e + H & \rightarrow e + H^* .
\end{align*}$$

The radiative species of atomic H can penetrate the substrate to form a layer with Si, C and H, which contributes to break the Si–C bond at a relatively low temperature [38]. This can generate SiH\textsubscript{x} gas with Si atoms [39] to form a C-rich layer to synthesize graphene. Ar radiative species can suppress the sublimation growth of SiC, and has a certain etching effect on the formed graphene, making the graphene layers more controllable [35, 40]. Our results show that the rate of SiC decomposition and graphene thickness can be controlled by Ar flow without changing the total pressure and substrate temperature, which is consistent with the reported results by D. Momeni Pakdehi et al [41].

Figure 5(c) shows the Raman 2D peak mapping of graphene grown on the SiC (001) under the above experimental conditions, with a range of 15 μm × 15 μm and a step of 0.5 μm × 0.5 μm. The map was reconstructed exactly at the frequency of 1, 2 and more than 3 layers graphene in figure 5(b). It can be seen that the color of the large area in mapping was consistent and identifies a bilayer graphene area.

The transport properties of EG were measured by the Van der Pauw structure device. The device structure is shown in the inset of figure 5(d). The area of graphene was 10 μm × 10 μm. The EG on SiC (0001) and SiC (0001) were measured at 8 points respectively. The maximum room-temperature Hall mobility of EG was 592 cm2 V−1 s−1 on SiC (0001) and 2790 cm2 V−1 s−1 on SiC (0001), which further confirmed that the decoupling of FLG layers on the SiC (0001) with weak interlayer coupling and high mobility have been obtained.

Based on our present results, the differences in the growth mechanisms of EG on SiC (0001) and SiC (0001) were further discussed. On the SiC (0001), graphene nucleated at the edge of the steps grows laterally on the surface layer by layer [12]. Conversely, several layers of graphene nucleated on the platform of SiC (0001) grow in all directions to keep the number of layers stable [35]. The temperature dependence of the surface coverage of graphene on the two faces is also different. In particular, at the temperature corresponding to the initial growth stage, the coverage on the C-face is significantly higher than the coverage on the Si-face. These differences are considered to stem from the reactivity of the faces. C-face is more reactive than Si face [42]. Therefore, on the highly reactive C-face, local decomposition occurs in various parts of the surface, resulting in faster nucleation of graphene.

4. Conclusions

In summary, we have developed a pretreatment process on the SiC substrate surfaces by H\textsubscript{2} plasma etching at comparatively low temperature (1000 °C) to promote the nucleation before epitaxial growth on two surfaces of the SiC. Moreover, we found that the Ar plasma in MPCVD can suppress the sublimation of Si atoms resulting in the control of the number of EG layers on SiC (0001). Excitingly, we successfully prepared layer-controllable, high-quality 1–3 layers EG films on SiC (0001) by Ar plasma-assisted MPCVD. The transport properties of EG films on SiC were measured by the Van der Pauw structure device. The EG films on SiC (0001) exhibit high room-temperature mobility up to 2790 cm2 V−1 s−1 which is much higher than that of growth on SiC (0001), which further confirmed the high-quality of EG films on SiC (0001). Furthermore, we also discussed the differences in the growth mechanisms of EG on SiC (0001) and SiC (0001). On the highly reactive C-face, local decomposition occurs in various parts of the surface, resulting in faster nucleation of graphene.

Acknowledgments

This work was supported by Changchun University of Science and Technology under Grant No. 6141B010328 and XJLLG201510. It was accomplished in Nano Fabrication Facility of Suzhou Institute ofNano-tech and Nano-Bionics, Chinese Academy of Sciences.
References

[1] Allen M J, Tung V C and Kaner R B 2009 Honeycomb carbon: a review of graphene Chem. Rev. 110 132–45
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–69
[3] Berger, C., Song, Z. M., Li, X. B., Wu, X. S. and Brown, N. 2006 Electronic confinement and coherence in patterned epitaxial graphene Science 312 1191–4
[4] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldeberhan D, Miao F and Lau C N 2008 Superior thermal conductivity of single-layer graphene Nano Lett. 8 902–7
[5] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Room-temperature quantum hall effect in graphene Science 315 1537
[6] Biwa C and Lee Y H 2011 Graphene versus carbon nanotubes in electronic devices Adv. Funct. Mater. 21 3806–26
[7] Machado B F and Serp P 2011 Graphene-based materials for catalysis Catal. Sci. Technol. 2 54–75
[8] Pumera M 2011 Graphene-based nanomaterials for energy storage Energy, Environ. Sci. 4 668–74
[9] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Detection of individual gas molecules adsorbed on graphene Nat. Mater. 6 652–5
[10] Lotya M, Hernández Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z and McGovern I T 2009 Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions J. Am. Chem. Soc. 131 3611–20
[11] Zhang Y, Zhang L and Zhou C 2013 Review of chemical vapor deposition of graphene and related applications Accounts Chem. Res. 46 3239–39
[12] Norimatsu W and Kusunoki M 2014 Epitaxial graphene on SiC[0001]: advances and perspectives Phys. Chem. Chem. Phys. 16 3501–11
[13] Akhtar F, Dubrowski J, Lisker M, Zaumseil P, Schulze S, Jourav' a A, Caban P, Mai A, Wenger C and Lukosius M 2019 Large-scale chemical vapor deposition of graphene on polycrystalline nickel films: effect of annealing conditions Thin Solid Films 690 137565
[14] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R D, Velamakanni A, Jung I and Tutuc E 2009 Large-area synthesis of high-quality and uniform graphene films on copper foils Science 324 1312–4
[15] Reina A, Jia X, Ho J, Neizich D, Son H, Bulovic V, Dresselhaus M S and Kong J 2009 Large-area, few-layer graphene films on arbitrary substrates by chemical vapor deposition Nano Lett. 9 30–5
[16] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, Mcchesney J L, Ohta T, Reshanov S A and Rohrl J 2009 Towards wafer-size graphene layers by atomic-layer deposition and characterization on silicon carbide Mater. Sci. Eng. R 63 1–23
[17] Wang Q, Zhang W, Wang L, He K, Ma X and Xue Q 2013 Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates J. Phys. Condens. Matter 25 955002
[18] Hass J, De Heer W A and Conrad E H 2008 The growth and morphology of epitaxial graphene J. Phys. Condens. Matter 20 323202
[19] Jakub K, Pei L H, Paul H, Peter W W, Craig L K, Mike S, Claire B and Walt A D H 2008 Epitaxial multilayer graphene transistors on SiC substrates IEEE T. Electron Dev. 55 2078–83
[20] Yang Y, Huang L, Fukuyama Y, Liu F, Real M A, Barbara P, Liang C, Newell D B and Elmiscuit R E 2015 Low carrier density epitaxial graphene devices on SiC Small 11 90–5
[21] Beshkova M, Hultman I and Yakimova R 2016 Device applications of epitaxial graphene on silicon carbide Vacuum 128 186–97
[22] Strupinski W, Grodecki K, Wysocke J, Stepniewski R, Szkopek T, Gaskell P E, Gru Neis A, Haberer D, Bozek R and Krupa J 2011 Graphene epitaxy by chemical vapor deposition on SiC Nano Lett. 11 1786–91
[23] Kim Y, Song W, Lee S Y, Jeon C O, Jung W, Kim M and Park C 2011 Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition Appl. Phys. Lett. 98 263106–63
[24] Vishwakarma R, Zhi R, Abuelwafa A A, Mabuchi Y, Adhikari S, Ichimura S, Soga T and Umeno M 2019 Direct synthesis of large-area graphene on insulating substrates at low temperature using microwave plasma CVD ACS Omega 4 41265–70
[25] Kumar A, Voevodin A A, Zemlyanov D, Zakharov D N and Fisher T S 2012 Rapid synthesis of few-layer graphene over Cu foil Carbon 50 1546–53
[26] Virojanadara C, Syvajärvi M, Yakimova R, Johansson I L, Zakharov A A and Balasubramanian T 2008 Homogeneous large-area graphene layer growth on 6H-SiC(0001) Phys. Rev. 87 245403
[27] Doğan S, Johnstone D, Yuen F, Sabuktagin S, Leach J, Biski A A, Morkoç H, Li G and Ganguly B 2004 The effect of hydrogen etching on SiC-based current-voltage and atomic force microscopy Phys. Appl. Lett. 85 1547–9
[28] Nie S, Lee C D, Chui A, Devaty R P, Choyke W J, Inoki C K, Kuan T S and Gu G 2008 Step formation on hydrogen-etched silicon carbide surfaces Surf. Sci. 602 2930–42
[29] Razadocolambo I, Avila J, Vignaud D, Goday S, Wallart X, Woodruff D P and Asensio M C 2018 Structural determination of bilayer graphene on SiC(0001) using synchrotron radiation photoelectron diffraction Sci. Rep. -UK 8 1–10
[30] Borysiuk J, Solsby J, Bozek R, Piechota J, Krukowski S, Strupinski W, Baranowski J M and Stepniewski R 2012 Role of structure of C-terminated 4H-SiC(0001) surface in growth of graphene layers: transmission electron microscopy and density functional theory study Phys. Rev. B 85 045426
[31] Prakash G, Capano M A, Bolen M L, Zemlyanov D and Reifenberger R G 2010 AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4H-SiC Carbon 48 2383–93
[32] Ni Z, Wang Y, Yu T and Shen Z 2008 Raman spectroscopy and imaging of graphene Nano Res. 1 273–91
[33] Ferrari A C et al 2006 Raman spectrum of graphene and graphene layers Phys. Rev. Lett. 97 187401
[34] Yazdi G R, Jakimov T and Yakimova R 2016 Epitaxial graphene on SiC: a review of growth and characterization Crystals 6 53–98
[35] Wataru N, Juji T and Michiko K 2011 Formation mechanism of graphene layers on SiC(0001) in a high–pressure argon atmosphere Phys. Rev. B 84 35424
[36] Lee D S, Riedl C, Krauss B, von Klitzing K, Starke U and Smet J H 2008 Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2 Nano Lett. 8 4320–5
[37] Monna V and Ricardo A 2001 Emission spectroscopy of Ar/H plasma Vacuum 61 409–12

ORCID iDs

Xuemin Zhang @ https://orcid.org/0000-0003-4247-4012
[38] Sun W, Liu H, Lin L, Zhao C, Lu X, He P and Gou F 2012 Molecular dynamics simulations of atomic H etching SiC surface Phys. Procedia 32 539–44

[39] Gates S M, Kunz R R and Greenlief C M 1989 Silicon hydride etch products from the reaction of atomic hydrogen with Si(100) Surf. Sci. 207 364–84

[40] Zhang L, Feng S, Shen G, Zhang X, Nan H, Gu X and Ostrikov K K 2018 Layer-controllable graphene by plasma thinning and post-annealing Appl. Surf. Sci. 441 639–46

[41] Momeni P D et al 2019 Homogeneous large-area quasi-free-standing monolayer and bilayer graphene on SiC ACS Appl. Nano Mater. 2 844–52

[42] Ray E A, Rozen J, Dhar S, Feldman L C and Williams J R 2008 Pressure dependence of SiO2 growth kinetics and electrical properties on SiC J. Appl. Phys. 103 23522