STATIONARY DISTRIBUTIONS OF THE ATLAS MODEL

LI-CHENG TSAI

ABSTRACT. In this article we study the Atlas model, which consists of Brownian particles on \(\mathbb{R} \), independent except that the Atlas (i.e., lowest ranked) particle \(X_{(1)}(t) \) receives drift \(\gamma dt, \gamma \in \mathbb{R} \). For any fixed shape parameter \(a > 2\gamma_- \), we show that, up to a shift \(\frac{\gamma}{a} t \), the entire particle system has an invariant distribution \(\nu_a \), written in terms an explicit Radon-Nikodym derivative with respect to the Poisson point process of density \(ae^{\alpha t} d\xi \). We further show that \(\nu_a \) indeed has the product-of-exponential gap distribution \(\pi_a \) derived in [ST17]. As a simple application, we establish a bound on the fluctuation of the Atlas particle \(X_{(1)}(t) \) uniformly in \(t \), with the gaps initiated from \(\pi_a \) and \(X_{(1)}(0) = 0 \).

1. Introduction

In this article we study the (infinite) Atlas model. Such a model consists of a semi-infinite collection of particles \(X_i(t), i = 1, 2, \ldots \), performing independent Brownian motions on \(\mathbb{R} \), except that the Atlas (i.e., lowest ranked) particle receives a drift of strength \(\gamma \in \mathbb{R} \). To rigorously define the model, we recall that \(x = (x_i)_{i=1}^{\infty} \in \mathbb{R}^\mathbb{N} \) is rankable if there exists a ranking permutation \(p : \mathbb{N} \to \mathbb{N} \) such that \(x_{p(i)} \leq x_{p(j)} \), for all \(i < j \in \mathbb{N} \). To ensure that such a ranking permutation is unique, we resolve ties in lexicographic order. That is, if \(x_{p(i)} = x_{p(j)} \) for \(i < j \), then \(p(i) < p(j) \). We then let \(p_x(\cdot) : \mathbb{N} \to \mathbb{N} \) denote the unique ranking permutation for a given, rankable \(x \). Fix independent standard Brownian motions \(W_1, W_2, \ldots \). For suitable initial conditions, the infinite Atlas model \(X(t) = (X_i(t))_{i=1}^{\infty} \) is given by the unique weak solution of the following system of Stochastic Differential Equations (SDEs)

\[
dX_i(t) = \gamma 1\{p_X(t)(i) = 1\} dt + dW_i(t), \quad i \in \mathbb{N}.
\]

To state the well-posedness results of (1.1), consider the following configuration space

\[
U = \left\{ x = (x_i)_{i=1}^{\infty} : \lim_{i \to \infty} x_i = \infty, \text{ and } \sum_{i=1}^{\infty} e^{-ax_i^2} < \infty, \forall a > 0 \right\}, \quad (1.2)
\]

and note that \(\lim_{i \to \infty} x_i = \infty \) necessarily implies that \(x \) is rankable. It is shown in [Sar17a, Theorem 3.2], for any fixed \(\gamma \in \mathbb{R} \) and any given \(x \in U \), the system (1.1) admits a unique weak solution \(X(t) \) starting from the initial condition \(x \), such that \(\mathbb{P}(X(t) \in U, \forall t \geq 0) = 1 \). See also [Shk11, IKS13].

The interest of the Atlas model originates from the study of diffusions with rank-based drifts [Fer02, FK09]. In particular, the Atlas model was first introduced, in finite dimensions, as a simple special case of rank-based diffusions [Fer02]. Due to their intriguing properties, rank-based diffusions have been intensively studied in various generality. See [BFK05, BFI+11, IKS13, Sar17b] and the references therein. The infinite-dimensional system (1.1) considered here was introduced by Pal and Pitman [PP08]. Parts of the motivation was to understand the effect of a drift exerted on a large (but finite) collection of Brownian
particles [Ald02, TT15]. In particular, it was shown in [PP08] that, for \(\gamma > 0 \), the system \((1.1) \) admits a stationary gap distribution of i.i.d. \(\text{Exp}(2\gamma) \), which indicates that the drift \(\gamma dt \) is balanced by the push-back of a crowd of particles of density \(2\gamma \). To state the previous result more precisely, given a rankable \(x = (x_i)_{i=1}^{\infty} \), we let \((x(i) \leq x(2) \leq \ldots) \) denote the corresponding ranked points, i.e., \(x(i) = x(p_i) - 1(i) \), and consider the corresponding gaps \(z_i := x(i+1) - x(i) \). It was shown in [PP08] that \(\pi := \bigotimes_{i=1}^{\infty} \text{Exp}(2\gamma) \) is a stationary distribution of the gap process \(Z(t) := (X(i+1)(t) - X(i)(t))_{i=1}^{\infty} \) of the Atlas model \((1.1) \).

In this case, it is well known that the Poisson point process \(\mu \) with density \(\gamma dt \) (related to the previous result more precisely, given a rankable \(x = (x_i)_{i=1}^{\infty} \), we let \(x(i) = x(p_i) - 1(i) \), and consider the corresponding gaps \(z_i := x(i+1) - x(i) \ ergo \). It was shown in [ST17] that the Atlas model has a different type of stationary gap distributions. That is, for each \(\gamma \), the distribution \(\pi \) has exponentially growing particle density away from the Atlas particle. In this article, we go one step further and show that, in fact, up to a deterministic shift \(\frac{at}{2} \) of each particle, the entire particle system \(\{X_i(t) + \frac{at}{2}\}_{i=1}^{\infty} \) has a stationary distribution. This extends the result of [ST17] on stationary gap distributions. In the following we use \(\{x_i\}_{i=1}^{\infty} \subset \mathbb{R} \) to denote a configuration of indistinguishable particles, in contrast with \(\{x_i\}_{i=1}^{\infty} \), which denotes labeled (named) particles. Let

\[
\mathcal{V} = \big\{ (x_i)_{i=1}^{\infty} : (x_i)_{i=1}^{\infty} \in \mathcal{U} \big\}
\]

denote the corresponding configuration space, and let \(\mu_a \) denote the Poisson point process on \(\mathbb{R} \) with density \(a e^{\xi} d\xi \). It is standard to show (e.g., using techniques from [Pan13, Section 2.2]) that \(\mu_a \) is supported on \(\mathcal{V} \). Let \(\Gamma(a) := \int_0^{\infty} \xi^{-a} e^{-\xi} d\xi \) denote the Gamma function, and let \(\text{Gamma}(\alpha, \beta) \sim \frac{1}{\Gamma(\alpha)} \beta^\alpha \xi^{-1-a} e^{-\beta \xi} 1_{\{\xi > 0\}} d\xi \) denote the Gamma distribution. The following is the main result.

Theorem 1.1.

(a) For any fixed \(\gamma \in \mathbb{R} \) and \(a > 2\gamma \), \(E_{\mu_a}(e^{2\gamma X(i)}) = \Gamma(\frac{2\gamma}{a} + 1) \in (0, \infty) \), so that

\[
\nu_a(\cdot) := \frac{1}{\Gamma(\frac{2\gamma}{a} + 1)} E_{\mu_a}(e^{2\gamma X(i)} \cdot)
\]

defines a probability distribution supported on \(\mathcal{V} \). Furthermore, under \(\nu_a \), we have that \(e^{\alpha X(i)} \sim \text{Gamma}(\frac{2\gamma}{a} + 1, 1) \), and that

\[
Z := (X(i+1) - X(i))_{i=1}^{\infty} \sim \pi_a = \bigotimes_{i=1}^{\infty} \text{Exp}(2\gamma + ia).
\]

(b) The distribution \(\nu_a \) is a stationary distribution of \(\{X_i(t) + \frac{at}{2}\}_{i=1}^{\infty} \), where \(\{X_i(t)\}_{i=1}^{\infty} \) evolves under \((1.1) \).

Remark 1.2. Under \(\nu_a \), the Atlas particle \(X(i) \) and the gap process \(Z = (Z_i)_{i=1}^{\infty} \) are not independent.

For the special case \(\gamma = 0 \), the Atlas model \((1.1) \) reduces to independent Brownian motions. In this case, it is well known that the Poisson point process \(\mu_a \) is quasi-stationary [Lig78], and the shift \(-\frac{at}{2} \) can be easily calculated from the motion of independent Brownian particles. Here we show that, with a drift \(\gamma dt \) exerted on the Atlas particle \(X(i)(t) \), a stationary distribution is obtained by taking \(V(x) := 2\gamma x(i) \) to be the potential. Indeed, under such a choice of \(V(x) \), we have that \(\gamma 1_{p_x(i) = 1} = \frac{1}{2} \partial_x e^{V(x)} \). This explains why we should expect the stationary distribution \(\nu_a \) as in \((1.3) \). The proof of Theorem 1.1 amounts to justifying the
aforementioned heuristic in the setting of infinite dimensional diffusions with discontinuous drift coefficients. We achieve this through finite-dimensional, smooth approximations, and using the explicit expressions of semigroups from Girsanov’s theorem to take limits.

Due to their simplicity, product-of-exponential stationary gap distributions have been intensively searched within competing Brownian particle systems, in both finite and infinite dimensions. See [Sar17a] and the references therein. To date, derivations of product-of-exponential stationary gap distributions have been relying on the theory of Semimartingale Reflecting Brownian Motions (SRBM), e.g., [Wil95]. On the other hand, given the expression (1.3) of \(\nu_a \), the gap distribution (1.4) follows straightforwardly from Rényi’s representation [Rén53]. Theorem 1.1 hence provides an alternative derivation of the product-of-exponential distribution \(\pi_a \) without going through SRBM.

Our methods should generalize to the case of competing Brownian particle systems with finitely many non-zero drift coefficients, i.e.,

\[
dX_i(t) = \sum_{j=1}^m \gamma_j 1\{p_X(t)(i) = j\} dt + dW_i(t), \quad i \in \mathbb{N},
\]

yielding the stationary distribution \(\nu_a(\cdot) := \frac{1}{J} \mathbb{E}_{\mu_a}(e^{\frac{1}{2} \sum_{i=1}^m \gamma_i X_{(i)}(\cdot)}) \), for some normalizing constant \(J < \infty \). Here we consider only the Atlas model for simplicity of notations.

A natural question, following the discovery a stationary gap distribution, is the longtime behavior of the Atlas particle \(X(1)(t) \) under such a gap distribution. For the i.i.d. \(\text{Exp}(2) \) gap distribution \(\pi \), this question was raised in [PP08] and answered in [DT17]. It was shown in [DT17] that \(X(1)(t) \) fluctuates at order \(t^{\frac{4}{7}} \) around its starting location, and scales to a \(\frac{1}{4} \)-fractional Brownian motion, as \(t \to \infty \). As a simple application of Theorem 1.1, under the stationary gap distribution \(\pi_a \) and \(X(1)(0) = 0 \), we establish an exponential tail bound, uniformly in \(t \), of the fluctuation Atlas particle around its expected location \(-\frac{a}{2} \). This shows that the fluctuation of \(X(1)(t) \) stays bounded under \(\pi_a \), in sharp contrast with the \(t^{\frac{4}{7}} \) fluctuation obtained in [DT17].

Corollary 1.3. Fix \(\gamma \in \mathbb{R} \) and \(a > 2\gamma_{-} \). Starting the Atlas model (1.1) from the initial distribution \(X(i)(0) = 0 \), \((X(i+1)(0) - X(i)(0))_{i=1}^{\infty} \sim \pi_a \), we have that

\[
P(|X(1)(t) + \frac{a}{2}| \geq \xi) \leq c e^{-\frac{1}{2}(2\gamma+a)\xi}, \quad \forall t, \xi \in \mathbb{R}_{+},
\]

for some constant \(c = c(a, \gamma) < \infty \) depending only on \(a, \gamma \).

Acknowledgements. I thank Amir Dembo, Ioannis Karatzas, Andrey Sarantsev and Ofer Zeitouni for enlightening discussions. I am grateful to Andrey Sarantsev for many useful comments on the presentation of this article. This work was partially supported by a Junior Fellow award from the Simons Foundation to Li-Cheng Tsai.

2. Proof

2.1. Theorem 1.1(a)

Fix \(\gamma \in \mathbb{R}, a > 2\gamma_{-} \), and let \(\{X_i\}_{i=1}^{\infty} \) denote a sample from the Poisson point process \(\mu_a \). Let \(N(\xi) := \#\{X_i \in (-\infty, \xi]\} \) denote the number of particles in \((-\infty, \xi] \), whereby \(N(\xi) \sim \text{Pois}(e^{\xi}) \). Indeed, \(\mathbb{P}_{\mu_a}(X(1) > \xi) = \mathbb{P}(N(\xi) = 0) = e^{-e^\xi} \). From this we calculate

\[
\mathbb{E}_{\mu_a}(e^{2\gamma X(1)} 1\{X(1) \leq \xi\}) = \int_{-\infty}^{\xi} e^{2\gamma \zeta} \frac{d}{d\zeta} (1 - e^{-e\zeta}) d\zeta.
\]
Performing the change of variable \(\zeta' := e^{\alpha \zeta} \), we see that
\[
E_{\mu_a}(e^{2\gamma X_1} \mathbb{1}\{e^{aX_1} \leq e^{\xi}\}) = \int_0^\xi \zeta' \frac{e^{-\zeta'}}{\sum_{i=0}^{\gamma N(\zeta')}} d\zeta'.
\]
From this it follows that \(E_{\mu_a}(e^{2\gamma X_1}) = \Gamma\left(\frac{2\gamma}{a} + 1\right) \) and that \(e^{aX_1} \sim \text{Gamma}\left(\frac{2\gamma}{a}, 1\right) \) under \(\mu_a \).

Turning to showing (1.4), we let \(\{X_i\}_{i=1}^{\infty} \) be sampled from \(\mu_a \) and let \((Z_k)_{k=1}^{\infty} = (X_{(i+1)} - X_{(i)})_{i=1}^{\infty} \) denote the gap process. Fix arbitrary \(m < \infty \). Our goal is to show that
\[
\frac{E_{\mu_a}(e^{2\gamma X_1} \prod_{i=1}^{m-1} \mathbb{1}\{Z_i \geq \xi_i\})}{E_{\mu_a}(e^{2\gamma X_1})} = \prod_{i=1}^{m-1} e^{-(2\gamma+ia)\xi_i} =: \eta. \tag{2.1}
\]
For any given threshold \(\xi \in \mathbb{R} \), we let \(\mu_a, \xi \) denote the restriction of the Poisson point process \(\mu_a \) onto \((-\infty, \xi] \). For the restricted process, we have \(\mu_{a,\xi} \sim \{\xi - Y_1, \ldots, \xi - Y_{N(\xi)}\} \), where \(Y_1, Y_2, \ldots \) are i.i.d. \(\text{Exp}(a) \) variables, independent of \(N(\xi) \). Let \(Y_{(1)} < Y_{(2)} < \ldots < Y_{(n)} \) denote the ranking of \((Y_1, \ldots, Y_n) \). We then have that, conditionally on \(N(\xi) \geq m, (X_{(1)}, \ldots, X_{(m)}) = (\xi - Y_{N(\xi)}, \ldots, \xi - Y_{N(\xi)-m+1}) \). Further, by Rényi’s representation [Rén53],
\[
(Y_{(k)})_{k=1}^{n} \stackrel{d}{=} \left(\sum_{i=k}^{n} G_i \right)_{k=1}^{n}, \quad \text{where} \quad (G_i)_{i=1}^{n} \sim \prod_{i=1}^{n} \text{Exp}(ia).
\]
Using this we calculate
\[
E_{\mu_a}\left(e^{2\gamma X_1} \prod_{i=1}^{m-1} \mathbb{1}\{Z_i \geq \xi_i\} \bigg| N(\xi) \geq m \right) = E\left(e^{2\gamma(N(\xi) - \sum_{i=m}^{N(\xi)} G_i)} \prod_{i=1}^{m-1} e^{-2\gamma G_i} \mathbb{1}\{G_i \geq \xi_i\} \bigg| N(\xi) \geq m \right)
\]
\[
= E\left(e^{2\gamma(N(\xi) - \sum_{i=m}^{N(\xi)} G_i)} \bigg| N(\xi) \geq m \right) \prod_{i=1}^{m-1} iae^{-(ai+2\gamma)\xi_i}. \]
Further use \(\frac{ia}{ai+2\gamma} = E e^{-2\gamma G_i} \) to write \(\prod_{i=1}^{m-1} \frac{iae^{-(ai+2\gamma)\xi_i}}{ai+2\gamma} = E(e^{-2\gamma(G_1 + \ldots + G_{m-1})}) \eta \). We then obtain
\[
E_{\mu_a}\left(e^{2\gamma X_1} \prod_{i=1}^{m-1} \mathbb{1}\{Z_i \geq \xi_i\} \bigg| N(\xi) \geq m \right) = E_{\mu_a}\left(e^{2\gamma X_1} \bigg| N(\xi) \geq m \right) \eta.
\]
Taking into account the case \(N(\xi) < m \), we write
\[
E_{\mu_a}\left(e^{2\gamma X_1} \prod_{i=1}^{m-1} \mathbb{1}\{Z_i \geq \xi_i\} \right) = E_{\mu_a}\left(e^{2\gamma X_1} \mathbb{1}\{N(\xi) \geq m\}\right) \eta + E_{\mu_a}\left(e^{2\gamma X_1} \prod_{i=1}^{m-1} \mathbb{1}\{Z_i \geq \xi_i\}\mathbb{1}\{N(\xi) < m\}\right). \tag{2.2}
\]
Since \(a > -2\gamma \), fixing \(q > 1 \) with \(|q - 1| \) small enough, we have
\[
E_{\mu_a}(e^{2\gamma X_1}) = E_{\mu_a}(|e^{2\gamma X_1}|^q) = \Gamma\left(\frac{2\gamma}{a} + 1\right) < \infty. \tag{2.3}
\]
That is, \(e^{2\gamma X_1} \) has bounded \(q \)-th moment with \(q > 1 \), so in particular \(\{e^{2\gamma X_1} \mathbb{1}\{N(\xi) \geq m\}\}_{\xi > 0} \) is uniformly integrable. For fixed \(m < \infty, \mathbb{1}\{N(\xi) < m\} \to_p 0 \), as \(\xi \to \infty \). Using this to take the limit \(\xi \to \infty \) in (2.2), we thus obtain \(E_{\mu_a}(e^{2\gamma X_1} \prod_{i=1}^{m-1} \mathbb{1}\{Z_i \geq \xi_i\}) = E_{\mu_a}(e^{2\gamma X_1}) \eta \). This concludes (2.1).
2.2. **Theorem 1.1(b).** Samples from μ_a have, almost surely, no repeated points, i.e., $X(1) < X(2) < X(3) < \ldots$. Fix arbitrary $m < \infty$ and $\phi \in C_c^\infty(W)$, where $W := \{(x_1 < x_2 < \ldots < x_m)\}$ denote the Weyl chamber. Let $\overline{X}_i(t) := X_i(t) + \frac{\xi_t}{2} t$, and $\overline{X}_n(t) := X_n(t) + \frac{\xi_t}{2} t$ denote the compensated particle locations. It then suffices to show that

$$
E_{\mu_a}(e^{2\gamma X(1)\xi_t}) \phi(\overline{X}(t), \ldots, \overline{X}_n(t)) = E_{\mu_a}(e^{2\gamma X(1)\xi_t}) \phi(\overline{X}(0), \ldots, \overline{X}_n(0)).
$$

(2.4)

As will be convenient for notations, for $n \geq m$, we consider the symmetric extension ϕ^s of ϕ, defined for $n \geq m$ as

$$
\phi^s : \mathbb{R}^n \rightarrow \mathbb{R}, \quad \phi^s(x) := \phi(x(1), \ldots, x(m)).
$$

(2.5)

We have slightly abused notations by using the same symbol ϕ^s to denote the function for all $n \in \mathbb{N}_{\geq m} \cup \{\infty\}$. Note that, by definition, the function ϕ vanishes near the boundary $\{(x_1 \leq \ldots \leq x_m) : i = 1, \ldots, n - 1\}$ of W, so, for $n < \infty$, $\phi^s \in C_c^\infty(\mathbb{R}^n)$.

The strategy of proving (2.4) is to approximate the infinite system $\overline{X}(t)$ by finite systems. Fixing $m \leq n < \infty$, we consider the following n-dimensional analog of $\overline{X}(t)$:

$$
\overline{X}_i^n(t) = x_i + \int_0^t (\gamma 1\{p_{\overline{X}}(s)(i) = 1\} + \frac{\alpha}{2}) ds + W_i(t), \quad i = 1, \ldots, n,
$$

(2.6)

where the ranking permutation $p_x(\cdot) : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ is defined similarly to the case of infinite particles. As the discontinuity of $x \mapsto 1\{p_x(i) = 1\}$ imposes unwanted complication in the subsequent analysis, we consider further the mollified system as follows. Fix a mollifier $r \in C_c^\infty(\mathbb{R}^n)$, i.e., $r \geq 0, \|r\|_{\infty} = 0$ and $\int_{\mathbb{R}^n} r(y) dy = 1$. Let $V(x) := 2\gamma x_1 = 2\gamma \min(x_1, \ldots, x_n)$. For $\varepsilon \in (0, 1)$, we define the mollified potential as $V^\varepsilon(x) := \int_{\mathbb{R}^n} V(y) r(\varepsilon^{-1}(x - y)) \varepsilon^{-n} dy$. Under these notations, we have that

$$
\frac{1}{2} \partial_i V^\varepsilon(x) = \gamma 1\{p_{\overline{X}}(s)(i) = 1\}, \quad \text{on } \Omega_\varepsilon := \{x \in \mathbb{R}^n : |x_i - x_j| > \varepsilon, \forall i < j\}.
$$

(2.7)

We then consider the following mollified system

$$
\overline{X}_i^{n, \varepsilon}(t) = x_i + \int_0^t (\frac{1}{2} \partial_i V^\varepsilon(\overline{X}_n^{n, \varepsilon}(s)) + \frac{\alpha}{2}) ds + W_i(t), \quad i = 1, \ldots, n.
$$

(2.8)

With $\partial_i V^\varepsilon$ being smooth and bounded, the well-posedness of (2.8) follows from standard theory, e.g., [SV07]. Furthermore, letting $u(t, x) := E_x(\phi^s(\overline{X}_i^{n, \varepsilon}(t)))$, we have that $u \in C^\infty(\mathbb{R}_+ \times \mathbb{R}^n)$, and that u solves the following PDE:

$$
\partial_t u = \sum_{i=1}^n \left(\frac{1}{2} \partial_i u + \frac{\alpha}{2} \partial_i + \frac{1}{2} \partial_i V^\varepsilon u \right), \quad u(0, x) = \phi^s(x).
$$

(2.9)

With $\partial_i V^\varepsilon$ being bounded and ϕ^s being compactly supported, applying the Feynman-Kac formula to the solution u of (2.9), we see that u decays exponentially as $|x| \rightarrow \infty$, i.e.,

$$
\sup_{s \leq t, x \in \mathbb{R}^n} \{ |u(t, x)| e^{\xi |x_1| + \ldots + |x_n|} \} < \infty, \quad \forall \xi, t < \infty.
$$

(2.10)

Such an exponential estimate (2.10) progresses to higher order derivatives of u. More precisely, with $\partial_i V^\varepsilon \in C_c^\infty(\mathbb{R}^n)$ and $u \in C^\infty(\mathbb{R}_+ \times \mathbb{R}^n)$, taking derivative ∂_i in (2.9), we see that $\partial_i u$ solves the following equation:

$$
\partial_t (\partial_i u) = \sum_{j=1}^n \left(\frac{1}{2} \partial_{jj} + \frac{\alpha}{2} \partial_j + \partial_j V^\varepsilon \right) (\partial_i u) + (\partial_{ij} V^\varepsilon) u,
$$

(2.11)
\[\partial_t u(0, x) = \partial_i \phi^\varepsilon(x) \in C_c^\infty(\mathbb{R}^n), \]

A similarly procedure applied to the solution \(\partial_i u \) of (2.11) yields
\[
\sup_{s \leq t, x \in \mathbb{R}^n, |i| = 1, \ldots, n} \{ |\partial_i u(t, x)| v^{\varepsilon(|x_1| + \ldots + |x_n|)} \} < \infty, \quad \forall \xi, t < \infty.
\]

Iterating this argument to higher order derivatives, we obtain
\[
\sup_{s \leq t, x \in \mathbb{R}^n, |\beta| \leq k} \{ |\partial_{\beta} u(t, x)| v^{\varepsilon(|x_1| + \ldots + |x_n|)} \} < \infty, \quad \forall \xi, t, k < \infty. \tag{2.12}
\]

The PDE (2.9) has stationary distribution \(e^{V^\varepsilon(x)} \prod_{i=1}^n e^{a_{x_i}} dx_i \) (not a probability distribution, since the total mass is infinite). More precisely, integrate \(u(t, x) \) against the aforementioned distribution to get
\[
v(t) := \int_{\mathbb{R}^n} u(t, x) e^{V^\varepsilon(x)} \prod_{i=1}^n e^{a_{x_i}} dx_i.
\]

Taking time derivative using (2.9) and (2.12), followed by integrations by parts
\[
\int_{\mathbb{R}^n} \frac{1}{2} (\partial_i u(t, x)) e^{V^\varepsilon(x)} \prod_{j=1}^n e^{a_{x_j}} dx_j = - \int_{\mathbb{R}^n} (\partial_i u(t, x))(\frac{1}{2} \partial_i V^\varepsilon(x) + a_{x_i}) e^{V^\varepsilon(x)} \prod_{j=1}^n e^{a_{x_j}} dx_j,
\]
we obtain that \(\frac{dv}{dt} = 0 \). Consequently,
\[
\int_{\mathbb{R}^n} E_x(\phi^\varepsilon(X^n^\varepsilon(t))) e^{V^\varepsilon(x)} \prod_{i=1}^n e^{a_{x_i}} dx_i = \int_{\mathbb{R}^n} \phi^\varepsilon(x) e^{V^\varepsilon(x)} \prod_{i=1}^n e^{a_{x_i}} dx_i. \tag{2.13}
\]

The next step is to take the limit \(\varepsilon \to 0 \) in (2.13), for fixed \(n \). This amounts to establishing the convergence of the term \(E_x(\phi^\varepsilon(X^n^\varepsilon(t))) \). To this end, we use Girsanov’s theorem to write
\[
E_x(\phi^\varepsilon(X^n^\varepsilon(t))) = E_x(\phi^\varepsilon(H(t)) F(t)), \tag{2.14}
\]
\[
E_x(\phi^\varepsilon(X^n^\varepsilon(t))) = E_x(\phi^\varepsilon(H(t)) F^\varepsilon(t)), \tag{2.15}
\]
where \(H(t) := (W_i(t) + \frac{a_{x_i}}{2} + x_i)^n_{i=1} \) consists of independent, drifted Brownian motions starting from \(x = (x_i)^n_{i=1} \), and the terms \(F(t) \) and \(F^\varepsilon(t) \) are stochastic exponentials given by
\[
F(t) := \exp \left(M(t) - \frac{1}{2} \langle M \rangle(t) \right), \quad M(t) := \int_0^t \sum_{i=1}^n \gamma_1 \{ p_{H(t)}(i) = 1 \} dW_i(s), \tag{2.16}
\]
\[
F^\varepsilon(t) := \exp \left(M^\varepsilon(t) - \frac{1}{2} \langle M^\varepsilon \rangle(t) \right), \quad M^\varepsilon(t) := \int_0^t \sum_{i=1}^n \frac{1}{2} \partial_i V^\varepsilon(H(s)) dW_i(s). \tag{2.17}
\]

Taking the difference of (2.14)–(2.15), followed by using the Cauchy–Schwarz inequality, we obtain
\[
|E_x(\phi^\varepsilon(X^t)) - E_x(\phi^\varepsilon(X^n^\varepsilon(t)))| = |E_x(\phi^\varepsilon(H(t)) F(t)(1 - F^\varepsilon(t)))| \leq \left(E_x(\phi^\varepsilon(H(t))^2 F(t)^2) \right)^{\frac{1}{2}} \left(E_x(1 - F^\varepsilon(t))^2 \right)^{\frac{1}{2}}. \tag{2.18}
\]
i) Recall that \(\phi^a \) is defined in terms of \(\phi \) through (2.5). We fix \(\lambda < \infty \), independently of \(n \), such that \(\text{supp}(\phi^a) \subset [-\lambda, \lambda]^n \). Under these notations,

\[
E_x(\phi^a(H(t))^2F(t)^2) \leq \|\phi\|_\infty^2 E_x(1_{\{H(t) \in [-\lambda, \lambda]^n \}} F(t)^2) \\
\leq \|\phi\|_\infty^2 \langle EF(t)^4 \rangle \mathbb{P}_x(H(t) \in [-\lambda, \lambda]^n)^{\frac{1}{2}}.
\] (2.19)

With \(F(t) \) defined in (2.16), and \(\langle M \rangle(t) = \gamma^2 t \), it follows that

\[
E_x(F(t)^4) = E_x(e^{4M(t)} e^{-2\langle M \rangle(t)}) = e^{\frac{1}{2}(16 - 4)\gamma^2 t} = c(\gamma, t).
\]

Let \(\Phi(x) := \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dy \) denote the Gaussian distribution function. With \(H_i(t) = x_i + \frac{a}{2} t + W_i(t) \), we have

\[
\mathbb{P}_x(H(t) \in [-\lambda, \lambda]^n) \leq \prod_{i=1}^{n} \Phi\left(\frac{\lambda - \frac{a}{2} t - x_i}{\sqrt{t}}\right).
\]

Inserting these bounds into (2.19), we obtain

\[
E_x(\phi^a(H(t))^2F(t)^2) \leq c(a, \gamma, \lambda, t) \prod_{i=1}^{n} \Phi\left(\frac{\lambda - \frac{a}{2} t - x_i}{\sqrt{t}}\right) \\
\leq c(a, \gamma, \lambda, t, n) \exp\left(-\frac{x_1^2 + \ldots + x_n^2}{4(t + 1)}\right).\] (2.20)

(ii) Expand the expression \(E_x\left(1 - \frac{F^\xi(t)}{F(t)}\right)^2 \) into

\[
E_x\left(1 - \frac{F^\xi(t)}{F(t)}\right)^2 = 1 + E_x\left(E^\xi(t) F(t)^2\right)^2 - 2E_x E^\xi(t) F(t).
\] (2.22)

From (2.16)–(2.17), we have

\[
\frac{E^\xi(t)}{F(t)} = \exp(M(t) - M^\xi(t)) \exp\left(\frac{1}{2} \langle M \rangle(t) - \frac{1}{2} \langle M^\xi \rangle(t)\right).\] (2.23)

Set \(b^\xi(s) := \frac{1}{4} \partial V^\xi(H(s)) \) to simplify notations. As \(V(x) \) is Lipschitz with Lipschitz seminorm \(2|\gamma| \), \(\langle V(x) - V(y) \rangle \leq 2|\gamma| |x - y|, \forall x, y \in \mathbb{R}^n \), we have \(|b^\xi(s)| \leq |\gamma| \). Consequently,

\[
\langle M \rangle(t) = \gamma^2 t, \quad \langle M^\xi \rangle(t) \leq n\gamma^2 t.\] (2.24)

To estimate the expression (2.23), we use (2.7) and \(|b^\xi(s)| \leq |\gamma| \) to write

\[
|\langle M - M^\xi \rangle(t) | = \int_0^t \int_{\mathbb{R}^n} \left(b^\xi(s) - \gamma 1_{\{p_H(s)(i) = 1\}} \right)^2 ds \leq 4n\gamma^2 \int_0^t 1_{\{H(s) \notin \Omega_\varepsilon\}} ds. \] (2.25)

Let \(L_{i,j}(s, \xi) \) denote the localtime process of \(H_i(s) - H_j(s) = W_i(s) - W_j(s) + (x_j - x_i) \) at a given level \(\xi \). We further bound the r.h.s. of (2.25) as

\[
\int_0^t 1_{\{H(s) \notin \Omega_\varepsilon\}} ds \leq \sum_{i < j} \int_0^t \int_{|\xi| \leq \varepsilon} L_{i,j}(s, \xi) d\xi ds \to_P 0, \quad \text{as} \ \varepsilon \to 0.
\]

Consequently, \(|\langle M - M^\xi \rangle(t)| \to_P 0 \). Since, by (2.24), \(\langle M \rangle(t) \) and \(\langle M^\xi \rangle(t) \) are bounded (for fixed \(t \)), it also follows that \(E_x|\langle M - M^\xi \rangle(t)| \to 0 \) and hence \(M(t) - M^\xi(t) \to_P 0 \). Referring back to the expression (2.23), we see that \(\frac{F^\xi(t)}{F(t)} \to_P 1 \). Using again the fact that \(\langle M \rangle(t) \)
and $\langle M^x(t) \rangle$ are bounded, (which implies the uniform integrability of $(\frac{F^x(t)}{F(t)})^k$, $k = 1, 2$), we obtain $E_x(\frac{F^x(t)}{F(t)})^2 \to 1$. Inserting these into (2.22) yields

$$E_x(1 - \frac{F^x(t)}{F(t)})^2 \to 0, \quad \text{as} \quad \varepsilon \to 0, \quad \text{for any fixed} \quad x \in \mathbb{R}^n. \quad (2.26)$$

Now, combine (2.21), (2.26) with (2.18), and insert the result into the l.h.s. of (2.13). After taking the $\varepsilon \to 0$ limit with $n < \infty$ being fixed, we obtain

$$\int_{\mathbb{R}^n} E_x(\phi^x(N^n(t))) e^{2\gamma x_i(1)} \prod_{i=1}^n e^{ax_i} dx_i = \int_{\mathbb{R}^n} \phi(x) e^{2\gamma x_i(1)} \prod_{i=1}^n e^{ax_i} dx_i. \quad (2.27)$$

Recall that $\mu_{a,\zeta}$ denote the restriction of the Poisson point process μ_a on $(-\infty, \zeta]$ and that $N(\zeta)$ denote the number of particles on $(-\infty, \zeta]$. As mentioned previously, $\mu_{a,\zeta} \sim \{\zeta - Y_1, \ldots, \zeta - Y_{N(\zeta)}\}$, where Y_1, Y_2, \ldots are i.i.d. Exp(a) variables, independent of $N(\zeta)$. Conditionally on $N(\zeta) = n$, the process $\{\zeta - Y_1, \ldots, \zeta - Y_{N(\zeta)}\}$ have joint distribution $\prod_{i=1}^n ae^{a(x_i - \zeta)} dx_i 1_{\{x_i \leq \zeta\}}$. With this, multiplying both sides of (2.27) by $a^n e^{-an\zeta}$, and averaging over $\{N(\zeta) \geq m\}$, we obtain that

$$E_{\mu_{a,\zeta}} \left(\phi^x(N^n(\zeta)(t)) e^{2\gamma x(1)(0)} \mathbf{1}\{N(\zeta) \geq m\} \right) + E(R_{N(\zeta)}(\zeta) \mathbf{1}\{N(\zeta) \geq m\})$$

$$= E_{\mu_{a,\zeta}} \left(\phi^x(N^n(\zeta)(0)) e^{2\gamma x(1)(0)} \mathbf{1}\{N(\zeta) \geq m\} \right) + E(S_{N(\zeta)}(\zeta) \mathbf{1}\{N(\zeta) \geq m\}), \quad (2.28)$$

where the terms $R_n(\zeta)$ and $S_n(\zeta)$ are given by

$$R_n(\zeta) := \int_{\cup_{i=1}^n \{x_i > \zeta\}} E_x(\phi^x(N^n(t))) e^{2\gamma x_i(1)} \prod_{i=1}^n ae^{a(x_i - \zeta)} dx_i, \quad (2.29)$$

$$S_n(\zeta) := \int_{\cup_{i=1}^n \{x_i \leq \zeta\}} E_x(\phi^x(x)) e^{2\gamma x_i(1)} \prod_{i=1}^n ae^{a(x_i - \zeta)} dx_i.$$

Recall that $\text{supp}(\phi^x) \subset [-\lambda, \lambda]^n$. Hence

$$S_n(\zeta) = 0, \quad \text{for all} \quad \zeta > \lambda. \quad (2.30)$$

As for $R_n(\zeta)$, inserting the bound (2.20) into (2.29) gives

$$\left| R_n(\zeta) \right| \leq c(a, \gamma, \lambda, t) \int_{\cup_{i=1}^n \{x_i > \zeta\}} e^{2\gamma x(1)} \prod_{i=1}^n \Phi \left(\frac{\lambda - \frac{\sqrt{2}t}{\zeta} - x_i}{\sqrt{t}} \right) ae^{a(x_i - \zeta)} dx_i. \quad \text{Indeed}, \quad x(1) \leq \zeta + \sum_{i=1}^n (x_i - \zeta)_+, \quad \text{so, after a change of variable} \quad x_i - \zeta \mapsto x_i, \quad \text{we obtain}$$

$$\left| R_n(\zeta) \right| \leq c(a, \gamma, \lambda, t)e^\zeta \int_{\cup_{i=1}^n \{x_i > 0\}} \prod_{i=1}^n \Phi \left(\frac{\lambda - \frac{\sqrt{2}t}{\zeta} - x_i - \zeta}{\sqrt{t}} \right) ae^{ax_i + a(x_i)_+} dx_i.$$

To bound the last integral, we split the integration over x_i into $\{x_i > 0\}$ and $\{x_i \leq 0\}$ for each x_i, and thereby express the integral as

$$\sum_{k=1}^n \sum_{i_1, \ldots, i_k} \left(\prod_{j \in \{i_1, \ldots, i_k\}} \int_{\{x_i > 0\}} (\cdots) dx_j \right) \left(\prod_{j \notin \{i_1, \ldots, i_k\}} \int_{\{x_i \leq 0\}} (\cdots) dx_j \right),$$
where \(\{i_1, \ldots, i_k\} \) ranges over all distinct \(k \)-indices from \(\{1, \ldots, n\} \). Further, for each integral over \(\{x > 0\} \) and over \(\{x \leq 0\} \), we have that
\[
\int_{\{x > 0\}} \Phi\left(\frac{\lambda - \frac{e}{2} t - x - \zeta}{\sqrt{t/2}}\right) e^{ax + a(x) + dx} \leq c(a, \lambda, \gamma, t) e^{-\frac{e^2}{2t}},
\]
\[
\int_{\{x \leq 0\}} \Phi\left(\frac{\lambda - \frac{e}{2} t - x - \zeta}{\sqrt{t/2}}\right) e^{ax + a(x) + dx} < \int_{\{x \leq 0\}} e^{ax} dx = 1.
\]
Consequently,
\[
|R_n(\zeta)| \leq c(a, \lambda, \gamma, t) e^\zeta \sum_{k=1}^{n} \left(\begin{array}{c} n \\ k \end{array}\right) c(a, \lambda, \gamma, t)^k e^{-\frac{k^2 e^2}{2n}}.
\]
Now, with \(N(\zeta) \sim \text{Pois}(e^a \zeta) \), we have \(\mathbb{E}\left(N(\zeta)\right) = \frac{1}{k!} \mathbb{E}(N(\zeta) \cdot (N(\zeta) - k + 1)) = \frac{1}{k!} e^a \zeta \).

Given this identity, setting \(n = N(\zeta) \) and taking expected value, we obtain
\[
\mathbb{E}|R_{N(\zeta)}(\zeta)| \leq c(a, \lambda, \gamma, t) e^\zeta \sum_{k=1}^{\infty} \frac{1}{k!} c(a, \lambda, t)^k e^{ka\zeta - \frac{k^2 e^2}{2n}},
\]
which converges to zero as \(\zeta \to \infty \).

Using (2.30)–(2.31) in (2.28), and taking the limit \(\zeta \to \infty \), we arrive at
\[
\lim_{\zeta \to \infty} \left(\mathbb{E}_{\nu_{a,\zeta}} \left(\phi^s(X^{(N(\zeta))}(t)) e^{2a_2 X^{(N(\zeta))}(0)} 1\{N(\zeta) \geq m\}\right) - \mathbb{E}_{\nu_{a,\zeta}} \left(\phi^s(X^{(N(\zeta))}(0)) e^{2a_2 X^{(N(\zeta))}(0)} 1\{N(\zeta) \geq m\}\right) \right) = 0.
\]
It remains to show that, under the limit \(\zeta \to \infty \), we can exchange the finite system \(X^{(N(\zeta))} \) for the infinite system \(\overline{X}^{(N(\zeta))} \) within the expressions in (2.32). As \(\zeta \to \infty \), we have that
\[
\overline{X}^{(N(\zeta))}(t) \to \overline{X}(t), \quad \text{as} \quad \zeta \to \infty, \quad i = 1, \ldots, m,
\]
where \(\overline{X}^{(N(\zeta))}(0) \sim \nu_{a,\zeta} \) and \(\overline{X}(0) \sim \nu_a \). Such a statement (2.33) can be proven by techniques from [Sar17a] and [ST17, Section 3(a)]. We omit repeating the standard arguments here. Combining (2.33) and (2.3), we obtain that
\[
\lim_{\zeta \to \infty} \mathbb{E}_{\nu_{a,\zeta}} \left(\phi^s(X^{(N(\zeta))}(t)) e^{2a_2 \overline{X}^{(N(\zeta))}(0)}\right) = \mathbb{E}_{\nu_a} \left(\phi^s(\overline{X}(t)) e^{2a_2 X(0)}\right),
\]
\[
\lim_{\zeta \to \infty} \mathbb{E}_{\nu_{a,\zeta}} \left(\phi^s(X^{(N(\zeta))}(0)) e^{2a_2 \overline{X}^{(N(\zeta))}(0)}\right) = \mathbb{E}_{\nu_a} \left(\phi^s(\overline{X}(0)) e^{2a_2 X(0)}\right).
\]
Combining (2.34)–(2.35) with (2.32), we thus obtain (2.4), and hence complete the proof.

2.3. **Corollary 1.3.** Fixing \(\gamma \in \mathbb{R} \) and \(a > 2\gamma_- \), we let \(c = c(a, \gamma) < \infty \) denote a generic finite constant that depends only on these two variables. Let \(Y(t) = (Y_i(t))_{i=1}^{\infty} \) be a solution to (1.1) starting from the distribution \(\{Y_i(0)\}_{i=1}^{\infty} \sim \nu_a \), so that \(\{Y_i(t) + \frac{a_1}{2}\}_{i=1}^{\infty} \sim \nu_a \), for all \(t \in \mathbb{R}_+ \). Since, by (1.4), the gap process \((Y_{i+1}(0) - Y_i(0))_{i=1}^{\infty} \) is distributed as \(\pi_a \), setting \(X_i(t) = Y_i(t) - Y_{i}(0) \), we have that \(X(t) \) is a solution to (1.1) with the designated initial distribution as Corollary 1.3. Under these notations, for any given \(\xi \geq 0 \),
\[
P(|X(1)(t)| \geq \xi) = P(|Y(1)(t) - Y_{(1)}(0)| \geq \xi)
\leq P(|Y_{(1)}(0)| \geq \frac{\xi}{2}) + P(|Y(1)(t)| \geq \frac{\xi}{2}) = 2P(|Y(1)(0)| \geq \frac{\xi}{2}).
\]
With $e^{aY(1)} \sim \text{Gamma}(\frac{2\gamma}{a}, 1)$, we have that

\[
P(Y(1)(0) \leq -\frac{\xi}{2}) = \frac{1}{\Gamma(\frac{2\gamma}{a})} \int_0^{e^{-\frac{a\gamma}{2}\xi}} \zeta^{\frac{2\gamma}{a}} e^{-\zeta} d\zeta \leq c \int_0^{e^{-\frac{a\gamma}{2}\xi}} \zeta^{\frac{2\gamma}{a}} d\zeta = ce^{-\frac{1}{2}(2\gamma+a)\xi},
\]

\[
P(Y(1)(0) \geq \frac{\xi}{2}) = \frac{1}{\Gamma(\frac{2\gamma}{a})} \int_{e^{\frac{a\gamma}{2}\xi}}^{\infty} \zeta^{\frac{2\gamma}{a}} e^{-\zeta} d\zeta \leq c \int_{e^{\frac{a\gamma}{2}\xi}}^{\infty} e^{-\frac{1}{2}\zeta^{\frac{2\gamma}{a}}} d\zeta = ce^{-\frac{1}{2}(2\gamma+a)\xi}.
\]

Combining these bounds with (2.36) yields the desired result.

References

[Ald02] D. Aldous. Unpublished, available at http://www.stat.berkeley.edu/~aldous/Research/OP/river.pdf. 2002.
[BFI+11] A. D. Banner, E. R. Fernholz, T. Ichiba, I. Karatzas, and V. Papathanakos. Hybrid Atlas models. Ann. Appl. Probab., 21(2):609–644, 2011.
[BFK05] A. D. Banner, R. Fernholz, and I. Karatzas. Atlas models of equity markets. Ann. Appl. Probab., 15(4):2296–2330, 2005.
[DT17] A. Dembo and L.-C. Tsai. Equilibrium fluctuation of the Atlas model. Ann Probab, 45(6b):4529–4560, 2017.
[Fer02] E. R. Fernholz. Stochastic portfolio theory. In Stochastic Portfolio Theory, pages 1–24. Springer, 2002.
[FK09] R. Fernholz and I. Karatzas. Stochastic portfolio theory: an overview. Handbook of numerical analysis, 15:89–167, 2009.
[IKS13] T. Ichiba, I. Karatzas, and M. Shkolnikov. Strong solutions of stochastic equations with rank-based coefficients. Probab Theory Related Fields, 156(1-2):229–248, 2013.
[Lig78] T. M. Liggett. Random invariant measures for Markov chains, and independent particle systems. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 45(4):297–313, 1978.
[Pan13] D. Panchenko. The Sherrington–Kirkpatrick model. Springer Science & Business Media, 2013.
[PP08] S. Pal and J. Pitman. One-dimensional Brownian particle systems with rank-dependent drifts. Ann. Appl. Probab., 2008.
[Rén53] A. Rényi. On the theory of order statistics. Acta Mathematica Academiae Scientiarum Hungarica, 4(3-4):191–231, 1953.
[Sar17a] A. Sarantsev. Infinite systems of competing Brownian particles. Ann Inst H Poincaré Probab Statist, 53(4):2279–2315, 2017.
[Sar17b] A. Sarantsev. Two-sided infinite systems of competing Brownian particles. ESAIM: Probability and Statistics, 21:317–349, 2017.
[Shk11] M. Shkolnikov. Competing particle systems evolving by interacting Lévy processes. Ann. Appl. Probab., 21(5):1911–1932, 2011.
[ST17] A. Sarantsev and L.-C. Tsai. Stationary gap distributions for infinite systems of competing Brownian particles. Electron J Probab, 22, 2017.
[SV07] D. W. Stroock and S. S. Varadhan. Multidimensional diffusion processes. Springer, 2007.
[TT15] W. Tang and L.-C. Tsai. Optimal surviving strategy for drifted Brownian motions with absorption. arXiv:1512.04493, to appear in Ann Probab, 2015.
[Wil95] R. J. Williams. Semimartingale reflecting Brownian motions in the orthant. IMA Volumes in Mathematics and its Applications, 71:125–125, 1995.