One-Loop Electron Vertex in Yennie Gauge

Michael I. Eides *
Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA
and Petersburg Nuclear Physics Institute, Gatchina, St.Petersburg 188350, Russia

Valery A. Shelyuto †
D. I. Mendeleev Institute of Metrology, St.Petersburg 198005, Russia
(February, 2001)

Abstract

We derive a compact Yennie gauge representation for the off-shell one-loop electron-photon vertex, and discuss its properties. This expression is explicitly infrared finite, and it has proved to be extremely useful in multiloop calculations in the QED bound state problem.

I. INTRODUCTION

As is well known the physical results in quantum electrodynamics (as in any gauge theory) are gauge invariant, but the calculations themselves are gauge dependent. A proper choice of gauge may greatly facilitate calculations of radiative corrections in a specific problem.

In quantum electrodynamics gauge freedom is described by the transformation of the photon propagator

\[D_{\alpha\beta}(q) \rightarrow D_{\alpha\beta}(q) + q_\alpha \chi_\beta + \chi_\alpha q_\beta , \]

(1)

where \(\chi_\alpha \) are arbitrary functions of momentum \(q \).

While the full gauge invariant sets of diagrams which describe the physical processes are gauge independent, the individual diagrams and the complexity of calculations strongly depend on the choice of gauge. The infrared safe Yennie gauge [1,2] defined by the photon propagator

\[D_{\alpha\beta}(q) = \frac{1}{q^2 + i\varepsilon} \left(g_{\alpha\beta} + \frac{2q_\alpha q_\beta}{q^2} \right) \]

(2)

*E-mail address: eides@pa.uky.edu, eides@thd.pnpi.spb.ru

†E-mail address: shelyuto@vniim.ru
is particularly well suited for the bound state problems, where it greatly alleviates the notorious infrared difficulties specific for such kind of problems (see, e.g., [3–7]).

There is no infrared photon radiation in the bound state problems, and all infrared divergences should cancel in the final results. The most useful technically feature of the Yennie gauge, which is shares with the noncovariant Coulomb gauge, is that the infrared behavior of the individual diagrams is greatly improved in comparison with the infrared behavior of the diagrams in other covariant gauges. In particular many diagrams, which are infrared divergent in other relativistic gauges (Feynman, Landau, etc.), are infrared finite in the Yennie gauge. This feature of the Yennie gauge allows to perform explicitly covariant calculations without introducing an intermediate infrared photon mass, which is inevitable in other common relativistic gauges. Thus the Yennie gauge combines the nice infrared properties of the noncovariant Coulomb gauge (see, e.g., [8,9]) with the advantages specific to the explicitly Lorentz covariant gauges.

The Yennie gauge is widely used in the bound state theory (see, e.g., [3–7], and references in [10]). In the framework of dimensional regularization one- and two-loop calculations in the Yennie gauge were discussed in [11–14]. The Yennie gauge was extensively used in our papers on the one- and two-loop radiative corrections to the bound state energy levels [6,7,15–18]. We have obtained a compact infrared soft integral representation for the renormalized one-loop vertex in the Yennie gauge, which turned out to be extremely useful in calculations. Below we will derive this representation for the Yennie gauge vertex, and discuss its main features.

II. INFRARED FINITE BARE VERTEX

General expression for the off-mass-shell one-loop vertex in the Yennie gauge (see Fig. 1) has the form

$$\Lambda_{\mu}(p, p-k) = \frac{\alpha}{4\pi} \int \frac{d^4 q}{\pi^2 i} \frac{\gamma^\alpha(\hat{p} + \hat{q} + m)\gamma_\mu(\hat{p} + \hat{q} - \hat{k} + m)\gamma^\beta}{D(p + q)D(p + q - k)} D_{\alpha\beta}(q) ,$$

where

$$D(p) = p^2 - m^2 + i\varepsilon .$$

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{vertex.png}
\caption{One-loop vertex}
\end{figure}

We would like to obtain an integral representation for the Yennie gauge vertex which is explicitly infrared finite. Ultraviolet divergences in the Yennie gauge should be subtracted as usual, and to this end it is convenient to have a simple expression for the ultraviolet divergent term. Let us first separate the ultraviolet divergent contributions. They are generated by
the large integration momenta \(q \to \infty \) in Eq.\((3)\) when the Feynman and longitudinal parts of the numerator may be written as

\[
\gamma^\alpha(\hat{p} + \hat{q} + m)\gamma^\mu(\hat{p} + \hat{q} - \hat{k} + m)\gamma_\alpha \approx q^2 \gamma_\mu \approx D(p + q - k)\gamma_\mu ,
\]

\[
\frac{2}{q^2} \hat{q}(\hat{p} + \hat{q} + m)\gamma^\mu(\hat{p} + \hat{q} - \hat{k} + m)\hat{q} \approx 2q^2 \gamma_\mu \approx 2D(p + q - k)\gamma_\mu .
\]

We have represented the large terms in the numerator as coefficients before the electron denominator \(D(p + q - k) \) in order to get rid of the \(k \) dependence in the ultraviolet divergent contributions.

The Yennie gauge vertex is infrared finite, and we are looking for such representation of the electron-photon vertex where all would be infrared divergences cancel already in the integrand. The most infrared singular terms in the integrand in Eq.\((3)\) correspond to the terms in the numerator which do not contain the integration momentum \(q \)

\[
\gamma^\alpha(\hat{p} + \hat{q} + m)\gamma^\mu(\hat{p} + \hat{q} - \hat{k} + m)\gamma^\beta \approx \gamma^\alpha(\hat{p} + m)\gamma^\mu(\hat{p} - \hat{k} + m)\gamma^\beta .
\]

Separating the ultraviolet and infrared divergent contributions we write the integral representation for the Yennie gauge vertex in Eq.\((3)\) in the form

\[
\Lambda_\mu(p, p - k) = \frac{\alpha}{4\pi} \int \frac{d^4q}{\pi^2i} \left\{ 3\gamma_\mu H(0, 1, 1) + N_1 H(1, 1, 1) \right. \]

\[
+ \gamma^\alpha(\hat{p} + m)\gamma^\mu(\hat{p} - \hat{k} + m)\gamma^\beta \left[g_{\alpha\beta} H(1, 1, 1) + 2q_\alpha q_\beta H(1, 1, 2) \right] \}
\]

where

\[
N_1 = 3q^2 \gamma_\mu - 3D(q + p - k)\gamma_\mu + \gamma_\alpha \hat{q}\gamma^\mu(\hat{p} - \hat{k} + m)\gamma^\alpha + \gamma_\alpha(\hat{p} + m)\gamma^\mu \hat{q}\gamma^\alpha
\]

\[
+ 2\gamma_\mu(\hat{p} - \hat{k} + m)\hat{q} + 2\hat{q}(\hat{p} + m)\gamma_\mu - (2\hat{q}\gamma^\mu \hat{q} + q^2\gamma_\mu) ,
\]

and

\[
H(m, 1, n) \equiv \{ D^m(q + p - k) D(q + p) q^{2n} \}^{-1} .
\]

All ultraviolet divergent contributions in Eq.\((7)\) correspond to the numerators in Eq.\((3)\), and are collected in the term with the denominator \(H(0, 1, 1) \), which is independent of the transferred momentum \(k \), and depends only on the external fermion momentum \(p \). All potentially infrared divergent contributions to the integral generated by the Feynman and the longitudinal terms in the virtual photon propagator correspond to the numerator in Eq.\((3)\), and are collected in the last term with the square brackets in the integrand in Eq.\((7)\). All other terms in this integrand are explicitly infrared finite since they either contain an extra power of the virtual momentum \(q \) in the numerator, or respective denominators are less singular at small \(q \).
The final integral representation will be written in terms of the combinations of external momenta which naturally arise when we combine the Feynman denominators. For example,

\[H(1, 1, 1) = \int_0^1 dx \int_0^1 dz \frac{2x}{[(q - xQ)^2 - x\Delta]^3}, \tag{10} \]

where

\[Q = -p + kz, \tag{11} \]

\[\Delta = m^2 - k^2 z(1 - xz) + 2pk(1 - x)z - p^2(1 - x). \tag{12} \]

The ultraviolet divergent contribution generated by the term with the denominator \(H(0, 1, 1) \) will be written in terms of the degenerate function \(\Delta_0 \)

\[\Delta_0 \equiv \Delta(z = 0) = m^2 x - D(p)(1 - x). \tag{13} \]

After the shift of the integration variable \(q \to q + xQ \) we obtain

\[
\Lambda_\mu(p, p - k) = \frac{\alpha}{4\pi} \int \frac{d^4q}{\pi^2i} \left\{ 3\gamma_\mu \bar{H}(0, 1, 1) + \bar{N}_1 \bar{H}(1, 1, 1) + 2x^2N_2\bar{H}(1, 1, 2) \right. \\
+ \gamma_\alpha(\hat{p} + m)\gamma_\mu(\hat{p} - \hat{k} + m)\gamma^\alpha \left[\bar{H}(1, 1, 1) + \left(\frac{q^2}{2} + 2x^2Q^2 \right)\bar{H}(1, 1, 2) \right] \} \\
= \frac{\alpha}{4\pi} \int_0^1 dx \int_0^1 dz \left\{ 3\gamma_\mu \left[\ln \frac{\Lambda^2}{x\Delta_0} - 1 \right] - \frac{\bar{N}_1}{\Delta} + 2N_2\frac{x(1 - x)}{\Delta^2} \right. \\
+ \gamma_\alpha(\hat{p} + m)\gamma_\mu(\hat{p} - \hat{k} + m)\gamma^\alpha \left[-\frac{1}{\Delta} - \frac{1 - x}{\Delta} + 2x(1 - x)Q^2 \right] \} \tag{14},
\]

where \(\Lambda \) is the ultraviolet cutoff,

\[\bar{N}_1 = -3D(p - k)\gamma_\mu + x\left[-6(p - k)Q\gamma_\mu + \gamma_\alpha \hat{Q}\gamma_\mu(\hat{p} - \hat{k} + m)\gamma^\alpha \right. \]

\[+ \gamma_\alpha(\hat{p} + m)\gamma_\mu\hat{Q}\gamma^\alpha + 2\gamma_\mu(\hat{p} - \hat{k} + m)\hat{Q} + 2\hat{Q}(\hat{p} + m)\gamma_\mu - x^2 \left(2\hat{Q}\gamma_\mu Q + Q^2\gamma_\mu \right), \tag{15} \]

\[N_2 = \hat{Q}(\hat{p} + m)\gamma_\mu(\hat{p} - \hat{k} + m)\hat{Q} - Q^2\gamma_\alpha(\hat{p} + m)\gamma_\mu(\hat{p} - \hat{k} + m)\gamma^\alpha, \tag{16} \]

and function \(H(m, 1, n) \) is just the function \(H(m, 1, n) \) after the shift of the integration momentum \(q \to q + xQ \).

The term with the numerator \(N_2 \) in Eq.(14) is the price we have to pay for the simple \(\gamma \)-matrix structure of the last term in the square brackets in Eq.(14). The point is that a more complicated matrix structure of the form \(\hat{Q}(\ldots)\hat{Q} \) arises naturally after the shift \(q \to q + xQ \).
However, the trivial structure proportional to Q^2 greatly facilitates consideration of the
would be infrared divergences, and we simply wrote infrared singular terms in the square
brackets in Eq. (14) in a convenient form, and collected the compensating infrared safe terms
in the numerator N_2.

The contributions generated by the terms $1/\Delta$ and x/Δ^2 in the last square brackets
in Eq. (14) are infrared divergent on the mass shell at zero momentum transfer. Really,
these terms behave as $1/x$ if $p^2 \to m^2$ and $k = 0$, and thus are infrared divergent. In
the Feynman gauge the vertex itself is also infrared divergent under these conditions but
in the Yennie gauge infrared divergent contributions corresponding to the Feynman and
longitudinal parts of the photon propagator cancel each other. In order to cancel these
apparent infrared divergences we use the identity

$$\int_0^1 dx \frac{\partial}{\partial x} \left\{ x(1-x) \right\} = \int_0^1 dx \left\{ \frac{1-2x}{\Delta} - \frac{x(1-x)Q^2}{\Delta^2} \right\} = 0 ,$$ \hspace{1cm} (17)

which may be easily proved with the help of the relation $\partial\Delta/\partial x = Q^2$. Applying this
identity we see that the infrared divergent contributions corresponding to the Feynman and
longitudinal terms in the photon propagator cancel each other.

After these transformations the Yennie gauge electron-photon vertex may be written in
a compact form

$$\Lambda_\mu(p, p - k) = \frac{\alpha}{4\pi} \int_0^1 dx \int_0^1 dz \left\{ 3\gamma_\mu \left[\ln \frac{\Lambda^2}{m^2x^2} - 1 + \frac{D(p)}{\Delta_0} \right] - \bar{N}_1 \Delta - 3\gamma_\alpha(\hat{p} + m)\gamma_\mu(\hat{p} - \hat{k} + m)\gamma^\alpha \frac{x}{\Delta} + 2N_2 \frac{x(1-x)}{\Delta^2} \right\}. \hspace{1cm} (18)$$

III. RENORMALIZATION

As usual in QED to obtain the renormalized one-loop vertex from the expression in
Eq. (18) we use mass shell subtraction at zero momentum transfer. However, due to absence
of the infrared regularization the infrared finiteness of the subtraction term is not guaranteed,
and we should first check that it is infrared finite. Consider asymptotic behavior of the
vertex in Eq. (18) at $\rho_1 \equiv 1 - p^2/m^2 \to 0$, $\rho_2 \equiv 1 - (p - k)^2/m^2 \to 0$ and small but nonzero
momentum transfer squared k^2. The largest contributions to the vertex in this regime have
the form $k^2 \ln \rho_i$, and they are generated by the term with N_2/Δ^2 in the integrand in Eq. (18).
Throwing away all contributions which are at least linear in the virtualities of the electron
lines, i.e., terms of the form $\rho_1, \rho_2, (\hat{p} - m) \simeq -m\rho_1/2$, and $(\hat{p} - \hat{k} - m) \simeq -m\rho_2/2$, we obtain

$$N_2 \simeq 4\gamma_\mu \left[pk(-p^2 + pkz) + (pk)^2z(-3 + z) + p^2k^2z(1 - z) \right]. \hspace{1cm} (19)$$

It is easy to see that $k^2 - 2pk \to 0$ at $\rho_1 \to 0$ and $\rho_2 \to 0$. Then we substitute $2pk \to k^2$ in
Eq. (18), and preserving only the leading in k^2 terms we have
\[N_2 \simeq 2[1 + 2z(1 - z)]m^2 k^2 \gamma_\mu \to \frac{8}{3} m^2 k^2 \gamma_\mu, \tag{20} \]

where we have effectively integrated over \(z \) on the right hand side. Integrating also over \(x \) we obtain
\[\frac{\alpha}{4\pi} \int_0^1 dx \int_0^1 dz \frac{2x(1-x)N_2}{\Delta^2} \simeq \frac{4\alpha k^2}{3\pi m^2 \gamma_\mu} \int_0^1 dz \ln \frac{1}{(1 - z)\rho_1 + z\rho_2} \tag{21} \]

This asymptotic behavior demonstrates that the Yennie gauge vertex admits subtraction on the mass shell without any additional infrared regularization. The only subtlety is that we first should put the momentum transfer squared to be zero, and only then go on the mass shell.

Let us calculate the subtraction constant. The numerator structures in Eq.(18) simplify at \(k = 0 \) and \(\hat{p} = m \):
\[- \hat{N}_1 \to 3x(2 + x)m^2 \gamma_\mu, \tag{22} \]
\[- 3x\gamma_\alpha(\hat{p} + m)\gamma_\mu(\hat{p} + m)\gamma^\alpha \to - 12xm^2 \gamma_\mu, \tag{23} \]
\[N_2 \to 0, \quad \Delta \to \Delta_0 \to m^2 x. \tag{24} \]

Then the infrared finite subtraction constant may be easily calculated
\[\Lambda_\mu(m, m) = \gamma_\mu \frac{3\alpha}{4\pi} \int_0^1 dx \left\{ \ln \frac{\Lambda^2}{m^2 x^2} - 1 + \frac{3x(2 + x)}{x} - \frac{12x}{x} \right\} \]
\[= \gamma_\mu \frac{3\alpha}{4\pi} \left(\ln \frac{\Lambda^2}{m^2} - \frac{1}{2} \right) \equiv \gamma_\mu(1 + Z^{-1}). \tag{25} \]

The final expression for the unrenormalized Yennie gauge vertex is
\[\Lambda_\mu(p, p - k) = \gamma_\mu(1 + Z^{-1}) + \Lambda_\mu^R(p, p - k). \tag{26} \]

The ultraviolet and infrared finite renormalized electron-photon vertex in the Yennie gauge has the form
\[\Lambda_\mu^R(p, p - k) = \frac{\alpha}{4\pi} \int_0^1 dx \int_0^1 dz \left\{ \frac{F^{(0)}}{\Delta_0} + \frac{F^{(1)}}{\Delta} + \frac{F^{(2)}}{\Delta^2} \right\}, \tag{27} \]

where
\[F^{(0)} = 3\gamma_\mu D(p), \tag{28} \]
\begin{align*}
F^{(1)}_\mu &= 3\gamma_\mu \left[D(p-k) + (2-x)\Delta \right] - x \left[3\gamma_\alpha (\hat{p} + m)\gamma_\mu (\hat{p} - \hat{k} + m)\gamma^\alpha \right. \\
&\quad - 6(p - k)Q\gamma_\mu + \gamma_\alpha \hat{Q}\gamma_\mu (\hat{p} - \hat{k} + m)\gamma^\alpha + \gamma_\alpha (\hat{p} + m)\gamma_\mu \hat{Q}\gamma^\alpha \\
&\quad + 2\gamma_\mu (\hat{p} - \hat{k} + m)\hat{Q} + 2\hat{Q}(\hat{p} + m)\gamma_\mu \right] + x^2 \left(2\hat{Q}\gamma_\mu \hat{Q} + Q^2\gamma_\mu \right), \\
F^{(2)}_\mu &= 2x(1-x)\left[\hat{Q}(\hat{p} + m)\gamma_\mu (\hat{p} - \hat{k} + m)\hat{Q} - Q^2\gamma_\alpha (\hat{p} + m)\gamma_\mu (\hat{p} - \hat{k} + m)\gamma^\alpha \right].
\end{align*}

It is not difficult to check cancellation of the infrared finite renormalization constants \(Z_1 \) and \(Z_2 \) in the Yennie gauge. The explicit expression for the one-loop self-energy operator in the Yennie gauge is well known (see, e.g., [3,6])

\begin{align*}
\Sigma(p) &= \delta m + (-1 + Z_2^{-1})(\hat{p} - m) + \Sigma^R(p),
\end{align*}

where the renormalized self-energy operator has the form

\begin{align*}
\Sigma^R(p) &= \frac{\alpha}{4\pi}(\hat{p} - m)^2 \int_0^1 dx \frac{-3\hat{p}x}{m^2x - D(p)(1-x)},
\end{align*}

the mass renormalization is given by the expression

\begin{align*}
\delta m &= \frac{3\alpha}{4\pi} \left(\ln \frac{\Lambda^2}{m^2} + \frac{1}{2} \right),
\end{align*}

and the wave function renormalization constant has the form

\begin{align*}
1 - Z_2^{-1} \equiv \Sigma'(m) &= - \frac{3\alpha}{4\pi} \left(\ln \frac{\Lambda^2}{m^2} - \frac{1}{2} \right).
\end{align*}

It is easy to see that the Ward identity is satisfied, and the infrared finite renormalization constants \(Z_1 \) and \(Z_2 \) coincide

\begin{align*}
\Lambda_\mu(m, m) &= - \Sigma'(m), \quad Z_1 = Z_2.
\end{align*}

\section*{IV. INFRARED AND ULTRAVIOLET ASYMPTOTIC BEHAVIOR OF THE YENNIE GAUGE VERTEX}

The integral representation for the Yennie gauge vertex in Eq.(27) is most convenient for calculations of radiative corrections, and the usual representation of the vertex in terms of the Lorentz invariant form factors is neither necessary nor calculationally useful. However, quite often in the bound state problems one needs to treat separately the terms in the vertex which have different asymptotic behavior at small momentum transfer (see, e.g., [3,6]). All terms in the Yennie gauge vertex besides the anomalous magnetic moment contribution vanish at least as momentum transfer squared when \(k^2 \to 0 \). The anomalous magnetic moment contribution is linear in the momentum transfer, and it determines the asymptotic behavior.
of the Yennie gauge vertex at small momentum transfer. It is not difficult to identify the
anomalous magnetic moment contribution in Eq. (27). All terms which contribute to the
anomalous magnetic moment may be extracted from the term with the numerator $-\bar{N}_1$ in
Eq. (14)

$$-x\gamma_\alpha \hat{Q} \gamma^\alpha (\hat{p} - \hat{k} + m) \gamma^\beta \rightarrow -2x(1 - z)m\sigma_{\mu\nu}k^\nu,$$

(36)

$$-x\gamma_\alpha (\hat{p} + m) \gamma^\alpha \hat{Q} \gamma^\beta \rightarrow -2xz m\sigma_{\mu\nu}k^\nu,$$

(37)

$$2x^2 \hat{Q} \gamma^\alpha \rightarrow 2x^2 m\sigma_{\mu\nu}k^\nu.$$

(38)

At small momentum transfer ($k \rightarrow 0$) on the mass shell ($p^2 = m^2$) the denominator $\Delta \rightarrow m^2 x$, and the sum of these terms generates the anomalous magnetic moment

$$-\frac{\alpha}{2\pi} \frac{\sigma_{\mu\nu}k^\nu}{2m}.$$

(39)

Separating the anomalous magnetic moment we write the renormalized one-loop vertex in
the form

$$\Lambda^R_\mu(p, p - k) = \tilde{\Lambda}^R_\mu(p, p - k) - \frac{\alpha}{2\pi} \frac{\sigma_{\mu\nu}k^\nu}{2m}.$$

(40)

The scalar factors before the tensor structures in $\tilde{\Lambda}^R_\mu(p, p - k)$ depend only on the momentum
transfer squared k^2 and the electron line virtuality $\rho = (m^2 - p^2)/m^2$. At small momenta
transfer and near the mass shell all entries in the expression for $\tilde{\Lambda}^R_\mu(p, p - k)$ are either linear
in k^2 and/or ρ, or are proportional to the projector $\hat{p} - m$ on the mass shell. At $k = 0$ we have

$$\tilde{\Lambda}^R_\mu(p, p) \simeq -\gamma_\mu \frac{3\alpha}{4\pi} \rho \simeq \gamma_\mu \frac{3\alpha}{2\pi} \frac{\hat{p} - m}{m}.$$

(41)

According to the Ward identity

$$\tilde{\Lambda}^R_\mu(p, p) = -\frac{\partial \Sigma^R(p)}{\partial p^\mu},$$

(42)

the small momentum transfer behavior of the vertex is connected with the behavior of the
self-energy operator near the mass shell. The mass operator in Eq. (32) near the mass shell
$\hat{p} \rightarrow m$ is

$$\Sigma^R(p) \simeq -\frac{3\alpha}{4\pi} \frac{(\hat{p} - m)^2}{m},$$

(43)

and it is easy to see that the Ward identity near the mass shell is satisfied.

We had used the Yennie gauge one-loop electron-photon vertex $\Lambda^R_\mu(p + q, p + q - k)$
from Eq. (27) as a subdiagram in two-loop calculations [16, 17]. In such calculations not only
the infrared but also the ultraviolet behavior of the one-loop vertex at $-q^2 \rightarrow \infty$ should
be under control. The dominant logarithmic contribution to $\Lambda_R^\mu(q, q)$ is generated in this regime exclusively by the first term in the braces in Eq.(27)

$$\Lambda_R^\mu(q, q) \simeq \frac{3\alpha}{4\pi \gamma_\mu} \ln \frac{-q^2}{m^2}. \quad (44)$$

All other contributions are nonlogarithmic. Ultraviolet behavior of the Yennie gauge vertex is no better than the ultraviolet behavior in the Feynman gauge, and really the contribution in Eq.(44) differs from the respective Feynman gauge expression only by a multiplicative factor 3. As is well known the ultraviolet vertex logarithm $\ln \left(\frac{-q^2}{m^2} \right)$ does not arise in the Landau gauge, which is the most convenient gauge for extracting the large ultraviolet logarithms.

Let us consider in more detail behavior of the different entries in the integrand in Eq.(27) at $-q^2 \to \infty$

$$F_\mu^{(1)} \simeq -3(1 - x)^2 q^2 \gamma_\mu + x(1 + x) \left[q^2 \gamma_\mu + 2\hat{q}\gamma_\mu\hat{q} \right], \quad (45)$$

$$F_\mu^{(2)} \simeq 2x(1 - x)q^2 \left[q^2 \gamma_\mu + 2\hat{q}\gamma_\mu\hat{q} \right], \quad (46)$$

$$\Delta \simeq -(1 - x)q^2. \quad (47)$$

It is easy to see that in this regime the finite integral

$$\int_0^1 dx \left\{ \frac{F_\mu^{(1)}}{\Delta} + \frac{F_\mu^{(2)}}{\Delta^2} \right\} \simeq \int_0^1 dx \left\{ \frac{2}{-(1 - x)q^2} + \frac{2(1 - x)q^2}{(1 - x)^2q^4} \right\} \left[q^2 \gamma_\mu + 2\hat{q}\gamma_\mu\hat{q} \right] \quad (48)$$

is a sum of two integrals over the Feynman parameter x each of which diverges at $x \to 1$. In calculations of the two-loop radiative corrections we need to integrate this expression over the momentum q. Then it is often convenient and even necessary to consider the two terms in Eq.(48) separately. Note first that the factor

$$\left[q^2 \gamma_\mu + 2\hat{q}\gamma_\mu\hat{q} \right] \simeq \left[q^2 \gamma_\mu + \frac{2(-2)}{4} q^2 \gamma_\mu \right] \quad (49)$$

vanishes after integration over q in the two-loop diagrams, if all other factors in the integrand depend only on q^2, but this is often not the case. Then one needs to avoid the spurious divergences at $x \to 1$ by rearranging different terms in Eq.(27) with the help of the identity in Eq.(17), which we already used to improve the infrared behavior. After transformations we obtain a slightly different representation for the renormalized vertex in the Yennie gauge

$$\Lambda_R^\mu(p, p - k) = \frac{\alpha}{4\pi} \int_0^1 dx \int_0^1 dz \left\{ \frac{F_\mu^{(0)}}{\Delta_0} + \frac{\tilde{F}_\mu^{(1)}}{\Delta} + \frac{\tilde{F}_\mu^{(2)}}{\Delta^2} \right\}, \quad (50)$$

where

$$\tilde{F}_\mu^{(1)} = F_\mu^{(1)} + 2(1 - 2x) \left[q^2 \gamma_\mu + 2\hat{q}\gamma_\mu\hat{q} \right]. \quad (51)$$
\[F^{(2)}_{\mu} = F^{(2)}_{\mu} - 2x(1-x)Q^2 \left[q^2 \gamma_\mu + 2q \gamma_\mu \gamma_5 \right]. \]

The transformation of the numerator structures in Eq.(51) does not change the infrared behavior of the vertex. Which of the representations Eq.(27) and Eq.(50) to use in calculations of the two-loop corrections depends on the nature of the two-loop diagram. For example, in calculation of the contributions of order \(\alpha^2 (Z\alpha)^5 \) generated by the diagrams with the vertex insertions in the ultraviolet divergent skeleton diagrams (see e.g., diagrams \((i, m, o)\) in [16,17]) the representation in Eq.(51) is more convenient. On the other hand, the representation in Eq.(27) is more convenient for calculation of the contributions generated by the diagrams with the vertex insertions in the ultraviolet finite skeleton diagrams (see, e.g., diagrams \((j, n)\) in [16,17]).

V. DISCUSSION OF RESULTS

In this paper we have described derivation and properties of a compact representation Eq.(27) for the off-shell one-loop electron-photon vertex in the Yennie gauge, which is convenient in multiloop calculations. In practice of such calculations one usually treats different terms in the integral representation of the electron-photon vertex separately. Hence, it is not sufficient to have a vertex with overall smooth asymptotic behavior but it is important to have well behaved individual terms in the integral representation for the vertex. We have specifically tailored these individual terms in such way that they are described by the well behaved finite integrals both in the infrared and ultraviolet regions. Respective integrals were briefly discussed above, because control of their behavior is absolutely crucial for successful applications when the one-loop vertex plays the role of a subdiagram in multiloop diagrams (see, e.g., [16,17]).

One- and two-loop renormalization in the Yennie gauge was considered earlier by G. Adkins [11-14]. In the framework of dimensional regularization he had obtained interesting integral representations for the Yennie gauge one-loop electron-photon vertex [11,13], which differ from the representations considered above. One-loop electron-photon vertex in an arbitrary gauge was also calculated in terms of elementary functions and dilogarithms in [19]. The vertex obtained in [13] was written as a sum of longitudinal and transverse parts which were further decomposed into sums of different spinor structures. However, due to singular nature of separate analytic terms in [13], this nice representation is hardly suitable for the kind of applications we have in mind and partially discussed above.

The integral representations for the Yennie gauge electron-photon vertex in Eq.(27) and Eq.(50) were extensively used in our calculations of radiative corrections of order \(\alpha^2 (Z\alpha)^5 \) to hyperfine splitting and Lamb shift [16,17], and in calculations of radiative-recoil corrections of order \(\alpha (Z\alpha)^5(m/M) \) to the Lamb shift [18]. Soft infrared behavior in the Yennie gauge greatly facilitates the calculations. For example, almost all of the nineteen diagrams with two radiative photon insertions in the electron line and two external photon lines in [16,17] are infrared divergent in the Feynman gauge. In the Feynman gauge calculations of the radiative corrections of order \(\alpha^2 (Z\alpha)^5 \) to hyperfine splitting and Lamb shift induced by these diagrams are greatly impeded by the infrared divergences though attainable [20-22]. Due to absence of the infrared divergences in the Yennie gauge and convenient form of the vertex in Eq.(27) and Eq.(50) the results of our calculations of the same contributions are...
about two orders of magnitude more accurate than the results in [20–23]. We hope that the Yennie gauge off-shell electron-photon vertex in Eq.(27) and Eq.(50) will find further useful applications.

ACKNOWLEDGMENTS

We are deeply grateful to H. Grotch for useful discussions and suggestions. This work was supported by the NSF grant PHY-0049059. Work of V. A. Shelyuto was also supported in part by the RFBR grant # 00-02-16718.
REFERENCES

[1] A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 30 (1956) 96 [Sov. Phys.-JETP 3 (1956) 71].
[2] H. M. Fried and D. R. Yennie, Phys. Rev. 112 (1958) 1391.
[3] Y. Tomozawa, Ann. Phys. (NY) 128 (1980) 491.
[4] J. R. Sapirstein, E. A. Terray, and D. R. Yennie, Phys. Rev. D29 (1984) 2290.
[5] S. G. Karshenboim, V. A. Shelyuto, and M. I. Eides, Yad. Fiz. 47 (1988) 454 [Sov. J. Nucl. Phys. 47 (1988) 287].
[6] M. I. Eides, S. G. Karshenboim, and V. A. Shelyuto, Ann. Phys. (NY) 205 (1991) 231.
[7] M. I. Eides, S. G. Karshenboim, and V. A. Shelyuto, Ann. Phys. (NY) 205 (1991) 291.
[8] G. S. Adkins, Phys. Rev. D27 (1983) 1814.
[9] G. S. Adkins, Phys. Rev. D34 (1986) 2489.
[10] M. I. Eides, H. Grotch, and V. A. Shelyuto, preprint PSU/TH/226, hep-ph/0002158, February 2000, Physics Reports 342 (2001) 63.
[11] G. S. Adkins, Phys. Rev. D39 (1989) 3798.
[12] G. S. Adkins, Phys. Rev. D47 (1993) 3647.
[13] G. S. Adkins, M. Lymberopoulos, and D. D. Velkov, Phys. Rev. D50 (1994) 4194.
[14] G. S. Adkins and Yu. Zhang, Can. J. Phys. 76 333 (1998).
[15] V. Yu. Brook, M. I. Eides, S. G. Karshenboim, and V. A. Shelyuto, Phys. Lett. 216B, 401 (1989).
[16] M. I. Eides and V. A. Shelyuto, Pis’ma Zh. Eksp. Teor. Fiz. 61 (1995) 465 [JETP Letters 61 (1995) 478].
[17] M. I. Eides and V. A. Shelyuto, Phys. Rev. A52 (1995) 954.
[18] M. I. Eides, H. Grotch, and V. A. Shelyuto, hep-ph/0012372 to be published in Phys. Rev. A.
[19] A. Kizilersü, M. Reenders, and M. R. Pennington, Phys. Rev. D52 (1995) 1242.
[20] T. Kinoshita and M. Nio, Phys. Rev. Lett. 72, 3803 (1994).
[21] T. Kinoshita and M. Nio, Phys. Rev. D 53, 4909 (1996).
[22] K. Pachucki, Phys. Rev. Lett. 72 (1994) 3154.
[23] K. Pachucki, D. Leibfried, M. Weitz, A. Huber, W. König, and T. W. Hänch, J. Phys. B29 (1996) 177; B29 (1996) 1573(E).