Enhancing human learning via spaced repetition optimization

Behzad Tabibiana,b,1, Utkarsh Upadhyaya, Abir Dea, Ali Zarezadea, Bernhard Schölkopfb, and Manuel Gomez-Rodriguezc

aNetworks Learning Group, Max Planck Institute for Software Systems, 67663 Kaiserslautern, Germany; and bEmpirical Inference Department, Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany

Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved December 14, 2018 (received for review September 3, 2018)

Spaced repetition is a technique for efficient memorization which uses repeated review of content following a schedule determined by a spaced repetition algorithm to improve long-term retention. However, current spaced repetition algorithms are simple rule-based heuristics with a few hard-coded parameters. Here, we introduce a flexible representation of spaced repetition using the framework of marked temporal point processes and then address the design of spaced repetition algorithms with provable guarantees as an optimal control problem for stochastic differential equations with jumps. For two well-known human memory models, we show that, if the learner aims to maximize recall probability of the content to be learned subject to a cost on the reviewing frequency, the optimal reviewing schedule is given by the recall probability itself. As a result, we can then develop a simple, scalable online spaced repetition algorithm, MEMORIZE, to determine the optimal reviewing times. We perform a large-scale natural experiment using data from Duolingo, a popular language-learning online platform, and show that learners who follow a reviewing schedule determined by our algorithm memorize more effectively than learners who follow alternative schedules determined by several heuristics.

Our ability to remember a piece of information depends critically on the number of times we have reviewed it, the temporal distribution of the reviews, and the time elapsed since the last review, as first shown by a seminal study by Ebbinghaus (1). The effect of these two factors has been extensively investigated in the experimental psychology literature (2, 3), particularly in second language acquisition research (4–7). Moreover, these empirical studies have motivated the use of flashcards, small pieces of information a learner repeatedly reviews following a schedule determined by a spaced repetition algorithm (8), whose goal is to ensure that learners spend more (less) time working on forgotten (recalled) information.

The task of designing spaced repetition algorithms has a rich history, starting with the Leitner system (9). More recently, several works (10, 11) have proposed heuristic algorithms that schedule reviews just as the learner is about to forget an item, i.e., when the probability of recall, as given by a memory model of choice (1, 12), falls below a threshold. An orthogonal line of research (7, 13) has pursued locally optimal scheduling by identifying which item would benefit the most from a review given a fixed reviewing time. In doing so, the researchers have also proposed heuristic algorithms that decide which item to review by greedily selecting the item which is closest to its maximum learning rate.

In recent years, spaced repetition software and online platforms such as Mnemosyne (mnemosyne-proj.org), Synap (www.synap.ac), and Duolingo (www.duolingo.com) have become increasingly popular, often replacing the use of physical flashcards. The promise of these pieces of software and online platforms is that automated fine-grained monitoring and greater degree of control will result in more effective spaced repetition algorithms. However, most of the above spaced repetition algorithms are simple rule-based heuristics with a few hard-coded parameters (8), which are unable to fulfill this promise—adaptive, data-driven algorithms with provable guarantees have been largely missing until very recently (14, 15). Among these recent notable exceptions, the work most closely related to ours is by Reddy et al. (15), who proposed a queueing network model for a particular spaced repetition method—the Leitner system (9) for reviewing flashcards—and then developed a heuristic approximation algorithm for scheduling reviews. However, their heuristic does not have provable guarantees, it does not adapt to the learner’s performance over time, and it is specifically designed for the Leitner systems.

In this work, we develop a computational framework to derive optimal spaced repetition algorithms, specially designed to adapt to the learner’s performance, as continuously monitored by modern spaced repetition software and online learning platforms. More specifically, we first introduce a flexible representation of spaced repetition using the framework of marked temporal point processes (16). For several well-known human memory models (1, 12, 17–19), we use this presentation to express the dynamics of a learner’s forgetting rates and recall probabilities for the content to be learned by means of a set of stochastic differential equations with jumps. For two well-known human memory models, we show that, if the learner aims to maximize recall probability of the content to be learned subject to a cost on the reviewing frequency, the optimal reviewing schedule is given by the recall probability itself. As a result, we can then develop a simple, scalable online spaced repetition algorithm, MEMORIZE, to determine the optimal reviewing times. We perform a large-scale natural experiment using data from Duolingo, a popular language-learning online platform, and show that learners who follow a reviewing schedule determined by our algorithm memorize more effectively than learners who follow alternative schedules determined by several heuristics.

Significance

Understanding human memory has been a long-standing problem in various scientific disciplines. Early works focused on characterizing human memory using small-scale controlled experiments and these empirical studies later motivated the design of spaced repetition algorithms for efficient memorization. However, current spaced repetition algorithms are rule-based heuristics with hard-coded parameters, which do not leverage the automated fine-grained monitoring and greater degree of control offered by modern online learning platforms. In this work, we develop a computational framework to derive optimal spaced repetition algorithms, specially designed to adapt to the learners’ performance. A large-scale natural experiment using data from a popular language-learning online platform provides empirical evidence that the spaced repetition algorithms derived using our framework are significantly superior to alternatives.

Author contributions: B.T., U.U., B.S., and M.G.-R. designed research; B.T., U.U., A.D., A.Z., and M.G.-R. performed research; B.T. and U.U. analyzed data; and B.T., U.U., and M.G.-R. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

Data deposition: The MEMORIZE algorithm has been deposited on GitHub (https://github.com/Networks-Learning/memorize).

See Commentary on page 3953.

1To whom correspondence should be addressed. Email: me@btabibian.com.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815156116/-/DCSupplemental.

Published online January 22, 2019.
differential equations (SDEs) with jumps. Then, we can find the optimal reviewing schedule for spaced repetition by solving a stochastic optimal control problem for SDEs with jumps (20–23). In doing so, we need to introduce a proof technique to find a solution to the so-called Hamilton–Jacobi–Bellman (HJB) equation (SI Appendix, sections 3 and 4), which is of independent interest.

For two well-known memory models, we show that, if the learner aims to maximize recall probability of the content to be learned subject to a cost on the reviewing frequency, the solution uncovers a linear relationship with a negative slope between the optimal rate of reviewing, or reviewing intensity, and the recall probability of the content to be learned. As a consequence, we can develop a simple, scalable online spaced repetition algorithm, which we name MEMORIZE, to determine the optimal reviewing times. Finally, we perform a large-scale natural experiment using data from Duolingo, a popular language-learning online platform, and show that learners who follow a reviewing schedule determined by our algorithm memorize more effectively than learners who follow alternative schedules determined by several heuristics. To facilitate research in this area, we are releasing an open-source implementation of our algorithm (24).

Modeling Framework of Spaced Repetition. Our framework is agnostic to the particular choice of memory model—it provides a set of techniques to find reviewing schedules that are optimal under a memory model. Here, for ease of exposition, we showcase our framework for one well-known memory model from the psychology literature, the exponential forgetting curve model with binary recalls (1, 17), and use (a variant of) a recent machine-learning method, half-life regression (25), to estimate the effect of the reviews on the parameters of such model. [In SI Appendix, sections 6 and 7, we apply our framework to other two popular memory models, the power-law forgetting curve model (18, 19) and the multiscale context model (MCM) (12).]

More specifically, given a learner who wants to memorize a set of items I using spaced repetition, i.e., repeated, spaced review of the items, we represent each reviewing event as a triplet
e := (t_i, r_i, t_{r_i}),

which means that the learner reviewed item i ∈ I at time t and either recalled it (r = 1) or forgot it (r = 0). Here, note that each reviewing event includes the outcome of a test (i.e., a recall) since, in most spaced repetition software and online platforms such as Mnemosyne, Synap, and Duolingo, the learner is tested in each review, following the seminal work of Reiderig and Karpicke (26).

Given the above representation, we model the probability that the learner recalls (forgets) item i at time t using the exponential forgetting curve model; i.e.,

\[m_i(t) := \mathbb{P}(r) = \exp(-n_i(t)(t-t_i)), \]

where \(t_i \) is the time of the last review and \(n_i(t) \in \mathbb{R}^+ \) is the forgetting rate at time \(t \), which may depend on many factors, e.g., item difficulty and/or number of previous (un)successful recalls of the item. [Previous work often uses the inverse of the forgetting rate, referred to as memory strength or half-life, \(s(t) = n^{-1}(t) \) (15, 25). However, it is more tractable for us to work in terms of forgetting rates.] Then, we keep track of the reviewing times using a multidimensional counting process \(N(t) \), in which the \(i \)th entry, \(N_i(t) \), counts the number of times the learner has reviewed item \(i \) up to time \(t \). Following the literature on temporal point processes (16), we characterize these counting processes using their corresponding intensities \(u(t) \), i.e., \(\mathbb{E}[dN_i(t)] = u(t)\, dt \), and think of the recall \(r \) as their binary marks. Moreover, every time that a learner reviews an item, the recall \(r \) has been experimentally shown to have an effect on the forgetting rate of the item (3, 15, 25). Here, we estimate such an effect using half-life regression (25), which implicitly assumes that recalls of an item \(i \) during a review have a multiplicative effect on the forgetting rate \(n_i(t) \)—a successful recall at time \(t \) changes the forgetting rate by \((1-\alpha_i) \), i.e., \(n_i(t) = (1-\alpha_i)n_i(t_r) \), \(\alpha_i \leq 1 \), while an unsuccessful recall changes the forgetting rate by \((1+\beta_i) \), i.e., \(n_i(t) = (1+\beta_i)n_i(t_r) \), \(\beta_i \geq 0 \). In this context, the initial forgetting rate, \(n_i(0) \), captures the difficulty of the item, with more difficult items having higher initial forgetting rates compared with easier items, and the parameters \(\alpha_i, \beta_i \), and \(n_i(0) \) are estimated using real data (refer to SI Appendix, section 8 for more details).

Before we proceed farther, we acknowledge that several laboratory studies (6, 27) have provided empirical evidence that the retention rate follows an inverted U shape, i.e., mass practice does not improve the forgetting rate—if an item is in a learner’s short-term memory when the review happens, the long-term retention does not improve. Thus, one could argue for time-varying parameters \(\alpha_i(t) \) and \(\beta_i(t) \) in our framework. However, there are several reasons that prevent us from that: (i) The derivation of an optimal reviewing schedule under time-varying parameters becomes very challenging; (ii) for the reviewing sequences in our Duolingo dataset, allowing for time-varying \(\alpha_i \) and \(\beta_i \) in our modeling framework does not lead to more accurate recall predictions (SI Appendix, section 9); and (iii) several popular spaced repetition heuristics, such as the Leitner system with exponential spacing and SuperMemo, have achieved reasonable success in practice despite implicitly assuming constant \(\alpha_i \) and \(\beta_i \). [The Leitner system with exponential spacing can be explicitly cast using our formulation with particular choices of \(\alpha_i \) and \(\beta_i \) and the same initial forgetting rate, \(n_i(0) = n_i(0) \), for all items (SI Appendix, section 11).] That being said, it would be an interesting venue for future work to derive optimal reviewing schedules under time-varying parameters.

Next, we express the dynamics of the forgetting rate \(n_i(t) \) and the recall probability \(m_i(t) \) for each item \(i \in I \) using SDEs with jumps. This is very useful for the design of our spaced repetition algorithm using stochastic optimal control. More specifically, the dynamics of the forgetting rate \(n_i(t) \) are readily given by

\[dN_i(t) = -\alpha_i n_i(t) r_i dM_i(t) + \beta_i n_i(t)(1 - r_i)\, dN_i(t), \]

where \(N_i(t) \) is the corresponding counting process and \(r_i(t) \in \{0, 1\} \) indicates whether item \(i \) has been successfully recalled at time \(t \). Similarly, the dynamics of the recall probability \(m_i(t) \) are given by Proposition 1 (proved in SI Appendix, section 1):

Proposition 1. Given an item \(i \in I \) with reviewing intensity \(u_i(t) \), the recall probability \(m_i(t) \), defined by Eq. 1, is a Markov process whose dynamics can be defined by the following SDE with jumps,

\[dm_i(t) = -n_i(t) m_i(t)\, dt + (1 - m_i(t))\, dN_i(t), \]

where \(N_i(t) \) is the counting process associated to the reviewing intensity \(u_i(t) \).

Finally, given a set of items \(I \), we cast the design of a spaced repetition algorithm as the search of the optimal item reviewing intensities \(u(t) = \{u_i(t)\}_{i \in I} \) that minimize the expected value of a particular (convex) loss function \(\mathbb{E}[\ell(m(t), u(t)) \mid u(t)] \) of the recall probability of the items, \(m(t) = \{m_i(t)\}_{i \in I} \); the forgetting rate

\[3 \text{To derive Eq. 3, we assume that the recall probability } m_i(t) \text{ is set to } 1 \text{ every time item } i \text{ is reviewed. Here, one may also account for item difficulty by considering that, for more difficult items, the recall probability is set to } \alpha_i \in [0, 1] \text{ every time item } i \text{ is reviewed.} \]

Tabibian et al.

PNAS | March 5, 2019 | vol. 116 | no. 10 | 3989

APPLIED MATHEMATICS
Then, to derive the HJB equation, we differentiate \(J \) with respect to time \(t \), \(m(t) \), and \(n(t) \) using **SI Appendix, section 2, Lemma 1**:

\[
0 = J_t(m, n, t) - nmJ_\alpha(m, n, t) + \min_{u(t, t+d)]} \left\{ J_t(m, n, u) + J_{\alpha}(m, n, u)b_t(m, n, u) \right\}
\]

To solve the above equation, we need to define the loss \(\ell \). Following the literature on stochastic optimal control (28), we consider the following quadratic form, which is nonincreasing (nondecreasing) with respect to the recall probabilities (intensities) so that it rewards learning while limiting the number of item reviews,

\[
\ell(m(t), n(t), u(t)) = \frac{1}{2}(1 - m(t))^2 + \frac{1}{2}qu^2(t),
\]

where \(q \) is a parameter, which trades off recall probability and number of item reviews—the higher its value, the lower the number of reviews. Note that this particular choice of loss function does not directly place a hard constraint on number of reviews; instead, it limits the number of reviews by penalizing high reviewing intensities. (Given a desired level of practice, the value of the parameter \(q \) can be easily found by simulation since the average number of reviews decreases monotonically with respect to \(q \).

Under these definitions, we can find the relationship between the optimal intensity and the optimal cost by taking the derivative with respect to \(u(t) \) in Eq. 7:

\[
u^*(t) = q^{-1}(J(m(t), n(t), u(t)) - J_1(m(t), n(t), t) + J((1 + b)\alpha n(t), t)(1 - m(t)))
\]

Finally, we plug the above equation into Eq. 7 and find that the optimal cost-to-go \(J \) needs to satisfy the following nonlinear differential equation:

\[
0 = J_t(m, n, t) - nmJ_\alpha(m, n, t) + \frac{1}{2}(1 - m(t))^2 - \frac{1}{2}q^{-1}(J(m(t), n(t), t) - J_1(m(t), n(t), t))
\]

To continue farther, we rely on a technical lemma (**SI Appendix, section 3, Lemma 2**), which derives the optimal cost-to-go \(J \) for a parameterized family of losses \(\ell \). Using **SI Appendix, section 3, Lemma 2**, the optimal reviewing intensity is readily given by **Theorem 3** (proved in **SI Appendix, section 4**):

\[
u^*(t) = q^{-1/2}(1 - m(t)).
\]
Algorithm 1 The MEMORIZE Algorithm

Input: Parameters η, α, β, last reviewing time s and forgetting rate $n(s)$

Output: Next reviewing time t' and forgetting rate $n(t')$

1. $\forall i > s$, $n(i) \leftarrow n(s) \implies$ compute forgetting rate
2. $\forall i > s$, $u(i) \leftarrow \exp(-\alpha(t-s)n(i)) \implies$ compute recall probability
3. $\forall i > s$, $m(i) \leftarrow q^{-1/2}(1-m)$ \implies compute reviewing intensity
4. $t' \leftarrow \text{Sample}(u(i)) \implies$ sample next reviewing time
5. $r \leftarrow \text{ReviewItem}(t') \implies$ review item, $r \in \{0, 1\}$
6. $n(t') \leftarrow (1-\alpha)n(t) + (1+\beta)n(t)(1-r) \implies$ update forgetting rate

Return $t', n(t')$

note that t denotes a (time) parameter, s and t' denote specific (time) values, and we sample from an inhomogeneous Poisson process using a standard thinning algorithm (29). [In some practical deployments, one may want to discretize the optimal intensity $u(t)$ and, e.g., “at top of each hour, decide whether to do a review or not.”]

Given a set of multiple items I with reviewing intensities $u(t)$ and associated counting processes $N(t)$, recall outcomes $r(t)$, recall probabilities $m(t)$, and forgetting rates $n(t)$, we can solve the spaced repetition problem defined by Eq. 4 similarly as in the case of a single item. More specifically, consider the following quadratic form for the loss ℓ,

$$\ell(m(t), n(t), u(t)) = \frac{1}{2} \sum_{i \in I} (1 - m_i(t))^2 + \frac{1}{2} \sum_{i \in I} q_i u_i(t)^2,$$

where $\{q_i\}_{i \in I}$ are given parameters, which trade off recall probability and number of item reviews and may favor the learning of one item over another. Then, one can exploit the independence among items assumption to derive the optimal reviewing intensity for each item, proceeding similarly as in the case of a single item:

Theorem 4. Given a set of items I, the optimal reviewing intensity for each item $i \in I$ in the spaced repetition problem, defined by Eq. 4, under quadratic loss is given by

$$u_i^*(t) = q_i^{-1/2}(1 - m_i(t)).$$

[10]

Finally, note that we can easily sample item reviewing times simply by running $|I|$ instances of MEMORIZE, one per item.

Experimental Design. We use data gathered from Duolingo, a popular language-learning online platform (the dataset is available at https://github.com/duolingo/halflife-regression), to validate our algorithm MEMORIZE. (Refer to SI Appendix, section 5 for an experimental validation of our algorithm using synthetic data, whose goal is analyzing it under a controlled setting using metrics and baselines that we cannot compute in the real data we have access to.) This dataset consists of ~12 million sessions of study, involving ~5.3 million unique (user, word) pairs, which we denote by D, collected over the period of 2 wk. In a single session, a user answers multiple questions, each of which contains multiple words. (Refer to SI Appendix, section 12 for additional details on the Duolingo dataset.) Each word maps to an item with a particular reviewing schedule during all reviews but the last in a reviewing sequence, i.e., e_1, \ldots, e_{n-1} in a sequence with n reviews, and (ii) a quality metric, empirical forgetting rate \hat{m}, which can be estimated using only the last review e_n (and the retention interval $t_n - t_{n-1}$) of each reviewing sequence and does not depend on the particular choice of memory model. Refer to Materials and Methods for more details on our evaluation procedure. [Note that our goal is to evaluate how well different reviewing schedule spaces the reviews—our objective is not to evaluate the predictive power of the underlying memory models; we are relying on previous work for that (18, 25).]
However, for completeness, we provide a series of benchmarks and evaluations for the memory models we used in this work in SI Appendix, section 8.

Results

We first group (user, item) pairs by their number of reviews n and their training period, i.e., $t_{n-1} - t_1$. Then, for each recall pattern, we create the treatment (MEMORIZE) and control (uniform and threshold) groups and, for every reviewing sequence in each group, compute its empirical forgetting rate. Fig. 2 summarizes the results for sequences with up to seven reviews since the beginning of the observation window for three distinct training periods. The results show that MEMORIZE offers a competitive advantage with respect to the uniform- and threshold-based baselines and, as the training period increases, the number of reviews under which MEMORIZE achieves the greatest competitive advantage increases. For each distinct number of reviews and training periods, * indicates a statistically significant difference (Mann–Whitney U test; P-value < 0.05) between MEMORIZE vs. threshold and MEMORIZE vs. uniform scheduling.

Next, we go a step farther and verify that, whenever a specific learner follows MEMORIZE more closely, her performance is superior. More specifically, for each learner with at least 70 reviewing sequences with a training period $T = 3 \pm 0.3$ days, we select the top and bottom 50% of reviewing sequences in terms of log-likelihood under MEMORIZE and compute the Pearson correlation coefficient between the empirical forgetting rate and log-likelihood values. Fig. 3 summarizes the results, which show that users, on average, achieve lower empirical forgetting rates whenever they follow MEMORIZE more closely.

Since the Leitner system (9), there have been a wealth of spaced repetition algorithms (7, 8, 10, 11, 13). However, there has been a paucity of work on designing adaptive data-driven spaced repetition algorithms with provable guarantees. In this work, we have introduced a principled modeling framework to design online spaced repetition algorithms with provable guarantees, which are specially designed to adapt to the learners’ performance, as monitored by modern spaced repetition software and online platforms. Our modeling framework represents spaced repetition using the framework of marked temporal point processes and SDEs with jumps and, exploiting this representation, it casts the design of spaced repetition algorithms as a stochastic optimal control problem of such jump SDEs. Since our framework is agnostic to the particular modeling choices, i.e., the memory model and the quadratic loss function, we believe it provides a powerful tool to find spaced repetition algorithms that are provably optimal under a given choice of memory model and loss.

There are many interesting directions for future work. For example, it would be interesting to perform large-scale intervention experiments to assess the performance of our algorithm in comparison with existing spaced repetition algorithms deployed by, e.g., Duolingo. Moreover, in our work, we consider a particular quadratic loss and soft constraints on the number of reviewing events; however, it would be useful to derive optimal reviewing intensities for other losses capturing particular learning goals and hard constraints on the number of events. We assumed that, by reviewing an item, one can influence only its recall probability and forgetting rate. However, items may be dependent and, by reviewing an item, one can influence the recall probabilities and forgetting rates of several items. The dataset we used spans only 2 wk and that places a limitation on the range of time intervals between reviews and retention intervals we can study. It would be very interesting to evaluate our framework in datasets spanning longer periods of time. Finally, we believe that the mathematical techniques underpinning our algorithm, i.e., stochastic optimal control of SDEs with jumps, have the potential to drive the design of control algorithms in a wide range of applications.

![Fig. 2.](image-url)

![Fig. 3.](image-url)
Materials and Methods

Evaluation Procedure. To evaluate performance of our proposed algorithm, we rely on the following evaluation procedure. For each (user, item) reviewing sequence, we first perform a likelihood-based comparison and determine how closely it follows a specific reviewing schedule (i.e., MEMORIZE, uniform, or threshold) during the first \(n - 1 \) reviews, the training reviews, where \(n \) is the number of reviews in the reviewing sequence.

Second, we compute a quality metric, empirical forgetting rate \(\hat{n}(\tau_i) \), using the last review, the \(n \)th review or test review, and the retention interval \(\tau_{i-1} - \tau_i \). Third, for each reviewing sequence, we record the value of the quality metric, the training period (i.e., \(T = \tau_{n-1} - \tau_n \)), and the likelihood under each reviewing schedule. Finally, we control for the training period and the number of reviewing events and create the treatment and control groups by picking the top 25% of pairs in terms of likelihood for each method, where we skip any sequence lying in the top 25% for more than one method. Refer to SI Appendix, section 13 for an additional analysis showing that our evaluation procedure satisfies the random assignment assumption for the item difficulties between treatment and control groups (31).

In the above procedure, to do the likelihood-based comparison, we first estimate the parameters \(\alpha \) and \(\beta \) and the initial forgetting rate \(n(0) \) using half-life regression on the Duolingo dataset. Here, note that we fit a single set of parameters \(\alpha \) and \(\beta \) for all items and a different initial forgetting rate \(n(0) \) per item, and we use the power-law forgetting curve model described in Section 8 of MAAE in our experiments (refer to SI Appendix, section 8 for more details). Then, for each user, we use maximum-likelihood estimation to fit the parameter \(q \) in MEMORIZE and the parameter \(\mu \) in the uniform reviewing schedule. For the threshold-based schedule, we fit one set of parameters \(c \) and \(\zeta \) for each sequence of reviewing events, using maximum-likelihood estimation for the parameter \(c \) and grid search for the parameter \(\zeta \), and we fit one parameter \(m(0) \) for each user using grid search. Finally, we compute the likelihood of the times of the \(n - 1 \) reviewing events for each (user, item) pair under the intensity given by MEMORIZE, i.e.,

\[
\hat{n}(\tau_i) = q^{-1/2} (1 - m(\tau_i));
\]

the intensity given by the uniform schedule, i.e.,

\[
\hat{n}(\tau_i) = \mu; \]

and the intensity given by the threshold-based schedule, i.e.,

\[
\hat{n}(\tau_i) = -c \exp((\tau_i - s)/\zeta).\]

The likelihood \(LL(\{\tau_i\}) \) of a set of reviewing events \(\{\tau_i\} \) given an intensity function \(\hat{n}(\tau_i) \) can be computed as follows (16):

\[
LL(\{\tau_i\}) = \sum \log \hat{n}(\tau_i) - \int_0^T \hat{n}(t) \, dt.
\]

More details on the empirical distribution of likelihood values under each reviewing schedule are provided in SI Appendix, section 10.

Quality Metric: Empirical Forgetting Rate. For each (user, item), the empirical forgetting rate is an empirical estimate of the forgetting rate by the time \(\tau_i \) of the last reviewing event, i.e.,

\[
\hat{n} = -\log(\hat{m}(\tau_i)) / (\tau_n - \tau_{i-1}),
\]

where \(\hat{m}(\tau_i) \) is the empirical recall probability, which consists of the fraction of correct recalls of sentences containing word \(\item \) in the session at time \(\tau_i \). Note that this empirical estimate does not depend on the particular choice of memory model and, given a sequence of reviews, the lower the empirical forgetting rate is, the more effective the reviewing schedule.

Moreover, for a more fair comparison across items, we normalize each empirical forgetting rate using the average empirical initial forgetting rate of the corresponding item at the beginning of the observation window \(\hat{n}_0 \); i.e., for an item \(i \),

\[
\hat{n}_0 = \frac{1}{|D_i|} \sum_{(u,i) \in D_i} \hat{n}(\tau_{u,i}),
\]

where \(D_i \subseteq D \) is the subset of (user, item) pairs in which item \(i \) was reviewed. Furthermore, \(\hat{n}_{0,\alpha} = -\log(\hat{m}(\tau_{0,\alpha})) / (\tau_{0,\alpha} - \tau_{0,0}) \) is the \(\alpha \)th review in the reviewing sequence associated to the \((u,0) \) pair. However, our results are not sensitive to this normalization step, as shown in SI Appendix, section 14.

1. Ebbinghaus H (1885); trams Ruger HA, Bussenius CE (1913) Memory: A Contribution to Experimental Psychology (Columbia Univ Teachers College, New York).
2. Melton AW (1976) The situation with respect to the spacing of repetitions and memory. J Verbal Learn Verbal Behav 5:936–606.
3. Dempster FN (1989) Spacing effects and their implications for theory and practice. Educ Psychol Rev 1:309–330.
4. Atkinson RC (1972) Optimizing the learning of a second-language vocabulary. J Exp Psychol 96:124–129.
5. Bloom KC, Shuell TJ (1981) Effects of massed and distributed practice on the learning and retention of second-language vocabulary. J Educ Psychol 74:245–248.
6. Cepeda NJ, Pashler H, Vul E, Wixted JT, Rohrer D (2006) Distributed practice in verbal memory. Psychol Bull 132:354–380.
7. Pavlik PI, Anderson JR (2008) Using a model to compute the optimal schedule of practice. J Exp Psychol Appl 14:101–117.
8. Brannon G (2016) Spaced repetition. Available at https://www.gwvren.net/SpacedRepetition. Accessed October 20, 2018.
9. Lettner S (1974) So Lernt Man Lernen (Herder, Freiburg, Germany).
10. Metzler-Baddeley DJ, Baddeley RJ (2010) Does adaptive training work? A stochastic optimal control point of view. Neurocomputing, eds Bengio Y, Schuurmans D, Lafferty J, Williams C, Culotta A (Neural Information Processing Systems Foundation, New York), pp 1321–1326.
11. Lindsay RV, Shroyer JD, Pashler H, Mozer MC (2014) Improving students’ long-term knowledge retention through personalized review. Psychol Sci 25:639–647.
12. Pashler H, Cepeda NJ, Lindsey RV, Vul E, Mozer MC (2009) Predicting the optimal spacing of study: A multiscale context model of memory. Advances in Neural Information Processing Systems, eds Bengio Y, Schuurmans D, Lafferty J, Williams C, Culotta A (Neural Information Processing Systems Foundation, New York), pp 1321–1329.
13. Mettler E, Massey CM, Kellman PJ (2016) A comparison of adaptive and fixed schedules of practice. J Exp Psychol Gen 145:897–917.
14. Novikoff TP, Kleinberg JM, Strogatz SH (2012) Education of a model student. Proc Natl Acad Sci USA 109:1868–1873.
15. Reddy S, Labutov I, Banerjee S, Joachims T (2016) Unbounded human learning: Optimal scheduling for spaced repetition. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, eds Snlma A, Agarwal C, Shen D, Rastogi R (ACM, San Francisco), pp 1815–1824.
16. Aaen O, Borgan O, Gjessing HK (2008) Survival and Event History Analysis: A Process Point of View (Springer, New York).
17. Loftus GR (1985) Evaluating forgetting curves. J Exp Psychol Learn Mem Cogn 11:397–406.
18. Wixted JT, Carpenter SK (2007) The Wickelgren power law and the Ebbinghaus savings function. Psychol Sci 18:133–134.
19. Averell L, Heathcote A (2011) The form of the forgetting curve and the fate of memories. J Math Psychol 55:25–35.
20. Hanson FB (2007) Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis, and Computation (SIAM, Philadelphia).
21. Zarezade A, De A, Upadhyay U, Rabiee HR, Gomez-Rodriguez M (2018) Steering social activity: A stochastic optimal control point of view. J Mach Learn Res 18:205.
22. Zarezade A, Upadhyay U, Rabiee H, Gomez-Rodriguez M (2017) Redqueen. An online algorithm for smart broadcasting in social networks. Proceedings of the 10th ACM International Conference on Web Search and Data Mining, eds Tomkins A, Zhang M (ACM, New York), pp 51–60.
23. Kim J, Tabibian B, Oh A, Schoellkopf B, Gomez-Rodriguez M (2018) Leveraging the crowd to detect and reduce the spread of fake news and misinformation. Proceedings of the 17th ACM International Conference on Web Search and Data Mining, eds Liu Y, Maarek Y (ACM, New York), pp 324–332.
24. Tabibian B, et al. (2019) Data from “Enhancing human learning via spaced repetition optimization.” Github. Available at https://github.com/Networks-Learning/remember. Deposited January 8, 2019.
25. Settles B, Meeder B (2016) A Trainable Spaced Repetition Model for Language and Learning (ACL, Berlin).
26. Roediger HL, III, Karpicke JD (2006) Test-enhanced learning: Taking memory tests improves long-term retention. Psychol Sci 17:249–255.
27. Cepeda NJ, Vul E, Rohrer D, Wixted JT, Pashler H (2008) Spacing effects in learning: A temporal ridgeine of optimal retention. Psychol Sci 19:1095–1102.
28. Bertsekas DP (1995) Dynamic Programming and Optimal Control (Athena Scientific, Belmont, MA).
29. Lewis PA, Shedler GS (1979) Simulation of nonhomogeneous Poisson processes by thinning. Naval Res Logistics Q 26:403–413.
30. Bjork EL, Bjork R (2011) Making things hard on yourself, but in a good way. Psychol in the Real World, eds Gernsbacher M, Pomerantz J (Worth Publishers, New York), pp 56–64.
31. Stuart EA (2010) Matching methods for causal inference: A review and a look forward. Stat Sci Rev Inst Math Stat 25:1–21.