Moonlighting proteins represent an intriguing area of cell biology, due to their ability to perform two or more unrelated functions in one or many cellular compartments. These proteins have been described in all kingdoms of life and are usually constitutively expressed and conserved proteins with housekeeping functions. Although widely studied in pathogenic bacteria, the information about these proteins in pathogenic fungi is scarce, but there are some reports of their functions in the etiological agents of the main human mycoses, such as *Candida* spp., *Paracoccidioides brasiliensis*, *Histoplasma capsulatum*, *Aspergillus fumigatus*, *Cryptococcus neoformans*, and *Sporothrix schenckii*. In these fungi, most of the described moonlighting proteins are metabolic enzymes, such as enolase and glyceraldehyde-3-phosphate dehydrogenase; chaperones, transcription factors, and redox response proteins, such as peroxiredoxin and catalase, which moonlight at the cell surface and perform virulence-related processes, contributing to immune evasion, adhesions, invasion, and dissemination to host cells and tissues.

All moonlighting proteins and their functions described in this review highlight the limited information about this biological aspect in pathogenic fungi, representing this a relevant opportunity area that will contribute to expanding our current knowledge of these organisms’ pathogenesis.
Henderson & Martin, 2011)), with alternative functions related to transcription regulation, intron splicing, DNA protection and repair, assembly of organelles, chaperones, adhesion, and cell surface receptors (Gancedo, Flores & Gancedo, 2016). These multitasking proteins may perform their alternative functions at the same time or may change from one to another, representing a switch point among functions that allows the cell to quickly respond to different environmental conditions at a low energetic cost (Jeffery, 2004; Karkowska-Kuleta & Kozik, 2014; Jeffery, 2018). Whether one function or the other is being performed is highly related to (i) the protein cellular localization and cell type, (ii) the available concentrations of the protein partners, (iii) the protein oligomeric state, (iv) post-translational modifications that the protein may undergo, or (v) a combination of these mechanisms (Jeffery, 2018).

A current working model trying to explain moonlighting functions indicates that these are dependent on the ability of the protein to perform them, developed after the canonical function and caused by a small number of mutations with little effect on this first function, which results in improved organism fitness, being therefore enhanced and selected during evolution (Aharoni et al., 2005; Gancedo & Flores, 2008; Huberts & van der Klei, 2010).

Even though many moonlighting proteins and their canonical functions are conserved among organisms, their alternative functions are not, for which it is not possible to predict these second functions using homology, since they do not depend on conserved motifs and domains (Huberts & van der Klei, 2010; Copley, 2012). However, it has been observed that many of these proteins, with cytoplasmic and extracellular functions, share certain structural and biophysical characteristics in their primary amino acid sequences and tertiary structures, such as the lack of signal peptide and anchors or motifs that attach them to the cell surface, high aliphatic indexes, high molecular weights, acidic isoelectric points, and negative hydropathic scores, features usually observed in cytosolic proteins (Amblee & Jeffery, 2015; Jeffery, 2018). An increasing number of moonlighting proteins have been identified as intrinsically disordered proteins or with intrinsically disordered domains or regions (IDDs) often related to the interaction of the protein with one or many partners, due to disorder-to-order transitions and alternative conformations that provide them with structural malleability (Jeffery, 2015; Liu & Jeffery, 2020; Tompa, Szász & Buday, 2005). Therefore, moonlighting functions can derive from modifications of the protein sequence, (i) which can be large conformational changes or transitions between IDDs and multiple distinct folded structures, so that different protein structure conformations can perform different functions, (ii) or can be subtle changes in small portions of amino acids in the protein sequence needed for the second function without altering the protein structure or affecting the region responsible for the canonical function (Copley, 2012; Jeffery, 2018).

Targeting of moonlighting proteins to the cell surface is still poorly understood, since they lack conventional secretion signals, such as the signal peptide, but it has been well proven that the finding of these proteins at the surface is due to secretion and not to cell leakage or adsorption from surrounding dead cells (Jeffery, 2018). Therefore, secretion systems in charge of targeting cytosolic moonlighting proteins to the surface are capable of distinguishing those that should stay inside the cell to perform their canonical functions from proteins that should be extracellularly located (Jeffery, 2018; Copley, 2012). Some
non-conventional secretory pathways have been suggested for the transport of these and other proteins that lack signal peptides, including (i) passive protein transfer through the plasma membrane, (ii) membrane flipping with the transfer of attached cytoplasmic proteins to the surface, (iii) translocation via soluble or membrane-bound transporters (Karkowska-Kuleta & Kozik, 2014), (iv) secretory vesicles or endosomal sub-compartments engaged in secretion (Karkowska-Kuleta & Kozik, 2014), (v) exosome-like vesicles (Rodrigues & Djordjevic, 2012), (vi) secretory lysosomes (Nickel & Rabouille, 2009), (vii) and post-translational translocation into the endoplasmic reticulum to enter the secretory pathway (Hernández-Chávez et al., 2014; Schmoll et al., 2016).

Over the last few years, moonlighting proteins have been shown to play important roles not only in the maintenance of basic cellular functions but also during the host-pathogen interaction, representing an important and wide set of virulence factors that enhance the pathogen’s ability to cause infection.

Moonlighting proteins as fungal virulence factors

Although the role of moonlighting proteins during the pathogen-host interaction is widely reported for bacteria (Henderson & Martin, 2011), this is a phenomenon less explored in fungi, probably due to the difficulty to study protein function in eukaryotic pathogens. However, some moonlighting proteins participating during fungal infection have been suggested and confirmed in pathogenic fungi, such as Candida spp., Paracoccidioides brasiliensis, Histoplasma capsulatum, Aspergillus fumigatus, Cryptococcus neoformans, and Sporothrix schenckii.

The fungal cell wall, and the capsule in capsulated fungal species, is the first structure that encounters the host cells and molecules during infection, and participates in the pathogen adherence to the host tissues and interaction with the host immune effectors. This structure is composed of polysaccharides, pigments, and proteins, which work as virulence determinants or factors during infection (Díaz-Jiménez et al., 2012; Mora-Montes et al., 2009; Teixeira et al., 2014; Tóth et al., 2019; Gómez-Gaviria & Mora-Montes, 2020; Navarro-Arias et al., 2019). Some of the cell wall proteins have been reported to be conserved intracellular proteins moonlighting at the cell surface, with housekeeping canonical functions related to the following (Satala et al., 2020a):

(a) Metabolic pathways, including (i) glycolysis and gluconeogenesis: fructose-bisphosphate aldolase (Fba), phosphoglycerate mutase (Gpm), glyceraldehyde-3-phosphate dehydrogenase (GAPDH or Tdhh3), phosphoglycerate kinase (Pgk), glucose-6-phosphate isomerase 1 (Gpi1), triosephosphate isomerase (Tpi), glycerol-3-phosphate dehydrogenase 2 (Gpd2), enolase (Eno), trehalose-6-phosphate phosphatase (Tsl), and fructose-1,6-bisphosphatase (Fbp); (ii) fermentation: alcohol dehydrogenase (Adh); (iii) pentose phosphate pathway: 6-phosphogluconate dehydrogenase (Gnd), transketolase, and transaldolase; and (iv) Krebs and glyoxylate cycles: malate synthase.
(b) Protein synthesis, that include (i) ribosomal proteins, (ii) elongation factors: elongation factor 2 (Eft2), transcription elongation factor (Tef1); and (iii) chaperones: Ssa1 protein, Ssa2 protein, and heat shock proteins 60 (Hsp60) and 70 (Hsp70).

(c) Redox homeostasis: peroxiredoxin (Tsa), and peroxisomal catalase (Cta).

Most of the moonlighting proteins reported in pathogenic fungi working as virulence factors have been found on the cell surface, associated with the cell wall, or secreted. Thus, discrimination between proteins that have been indeed transported to the cell surface unconventionally and those that come from cell lysis or experimental artifacts needs to be done, to confirm their moonlighting status. Several methods have been used for this, which include protein immunolocalization at the cell wall in intact cells by flow cytometry (Long et al., 2003; Stie, Bruni & Fox, 2009; Luo et al., 2013; Dasari et al., 2019; Gozalbo et al., 1998; Gil-Navarro et al., 1997), and electron and fluorescence microscopy (Gozalbo et al., 1998; Long et al., 2003; Barbosa et al., 2006; Nogueira et al., 2010; Silveira et al., 2013; da Silva Jde et al., 2013; Crowe et al., 2003; Angiolella et al., 1996); surface protein biotinylation and precipitation (López-Ribot et al., 1996; Long et al., 2003; Lopez et al., 2014; Karkowska-Kuleta et al., 2011; Kozik et al., 2015; Karkowska-Kuleta et al., 2016); isolation of the cell wall or cell wall components generating intact protoplasts (Gil-Navarro et al., 1997; Pitarch et al., 2002; Li et al., 2003; Castillo et al., 2008; Longo et al., 2014; García-Carnero et al., 2021); and isolation of extracellular vesicles (Vallejo et al., 2012).

As mentioned, the panorama of moonlighting proteins in fungi is limited when compared to bacteria, and a significant amount of information we currently have is on non-pathogenic fungal species, such as *Saccharomyces cerevisiae* (Gancedo, Flores & Gancedo, 2016; Flores & Gancedo, 2011; Gancedo & Flores, 2008; Rodríguez-Saavedra et al., 2021). The information about moonlighting proteins in fungal pathogens of medical relevance is currently limited and searches in bibliography repositories indicate that the newest review manuscript on this subject was published in 2014 (Karkowska-Kuleta & Kozik, 2014), with a broad vision of eukaryotic pathogens, and when considering particular pathogenic species, the most recent review report is from 2020, gathering information about moonlighting proteins in the *C. albicans* cell wall (Satala et al., 2020a). Thus, a focused bibliographic search for moonlighting proteins in medically relevant fungal species has not been reported previously, and this review manuscript offers a thorough bibliographic revision on this subject (Table 1). Because of the reason above mentioned, this information will be of interest to the audience specialized in fungal biology, medical mycology, and medical microbiology. In a broader scope, it will be also of interest to the audience working in the cell biology and biochemistry fields, where moonlighting proteins are relevant too.

SURVEY METHODOLOGY

The PubMed (https://pubmed.ncbi.nlm.nih.gov/) and Google Scholar (https://scholar.google.com/) repositories were used to search for the following terms together with relevant Boolean Operators and MeSH terms identified for individual databases: moonlighting protein, moonlighting protein and fungi, moonlighting protein and fung*,
Table 1 Moonlighting proteins in medically relevant fungal species.

Protein	Canonical function	Moonlighting function	References
GAPDH	Glycolysis and gluconeogenesis	Binding to fibronectin, laminin, and plasminogen	Gozalbo et al. (1998), Crowe et al. (2003)
Eno1	Glycolysis and gluconeogenesis	Binding to plasmin, plasminogen, fibronectin, vitronectin, laminin, and kininogen Binding to medical devices	Jong et al. (2003), Kozik et al. (2015)
Gpm1	Glycolysis and gluconeogenesis	Binding to plasminogen, vitronectin, FH, FHL-1, and kininogen	Poltermann et al. (2007), Lopez et al. (2014)
Gpd2	Glycolysis and gluconeogenesis	Binding to plasminogen, FH, and FHL-1	Luo et al. (2013)
Adh1	Fermentation	Binding to plasminogen	Crowe et al. (2003)
Cta1	Redox homeostasis	Binding to plasminogen	Crowe et al. (2003)
Tef1	Elongation factor	Binding to plasminogen	Crowe et al. (2003), Poltermann et al. (2007)
Fba1 and Pgk1	Glycolysis and gluconeogenesis	Binding to plasminogen Binding to medical devices	Crowe et al. (2003); Poltermann et al. (2007)
Tsa1	Redox homeostasis	Binding to plasminogen, and kininogen	Crowe et al. (2003)
Eft2	Elongation factor	Binding to kininogen	Seweryn et al. (2015), Kozik et al. (2015)
Tpi1	Glycolysis and gluconeogenesis	Bind to kininogen, vitronectin, fibronectin, collagen, laminin, and elastin	Seweryn et al. (2015), Satala et al. (2021)
Gpi1	Glycolysis and gluconeogenesis	Binding to kininogen, fibronectin, vitronectin, and laminin	Seweryn et al. (2015), Kozik et al. (2015)
Gnd1	Pentose phosphate pathway	Binding to kininogen, fibronectin, vitronectin, and laminin	Seweryn et al. (2015), Kozik et al. (2015)
Fbp	Glycolysis and gluconeogenesis	Bind to fibronectin, vitronectin, and laminin	Kozik et al. (2015)
Malate synthase	Krebs and glyoxylate cycles	Bind to fibronectin, vitronectin, and laminin	Kozik et al. (2015)
Transketolase and transaldolase	Pentose phosphate pathway	Bind to fibronectin, vitronectin, and laminin	Kozik et al. (2015)
Ssa1	Chaperone	Binding to endothelial N-cadherin, epithelial E-cadherin, and histatine 5	Sun et al. (2010), Li et al. (2003)
Ssa2	Chaperone	Binding to idem	Sun et al. (2008), Li et al. (2003)
Als3	Adhesin	Ferritin receptor	Almeida et al. (2008)
Paracoccidioides brasiliensis			
Eno	Glycolysis and gluconeogenesis	Binding to laminin, fibronectin, plasminogen, and collagen type I and IV	Donofrio et al., 2009, Nogueira et al. (2010)
Tpi	Glycolysis and gluconeogenesis	Binding to laminin	Pereira et al. (2007)
Malate synthase	Krebs and glyoxylate cycles	Binding to fibronectin, and collagen type I and IV Interaction with Eno and Tpi	da Silva Neto et al. (2009), de Oliveira et al. (2013)
GADPH	Glycolysis and gluconeogenesis	Binding to laminin, fibronectin, and collagen type I	Barbosa et al. (2006)
Fba	Glycolysis and gluconeogenesis	Binding to plasminogen Interaction with macrophages	Chaves et al. (2015)

(Continued)
fungal cell wall and moonlighting protein, cell wall and moonlighting, Candida and moonlighting, Paracoccidioides and moonlighting, Histoplasma and moonlighting, Aspergillus and moonlighting, Cryptococcus and moonlighting, Sporothrix and moonlighting, yeast and moonlighting protein, hypha and moonlighting protein, filament cell and moonlighting protein, atypical cell wall protein, multifunctional protein and fung⁶, multitasking protein and fung⁷, and noncanonical cell wall protein.

Candida spp

Candida species are opportunistic fungal pathogens that most frequently establish the infective process in immunocompromised individuals, causing superficial and systemic infections, and representing an important health threat worldwide (*Spampinato & Leonardi, 2013; Martínez-Duncker, Díaz-Jímenez & Mora-Montes, 2014*). The main reported species causing infection is *Candida albicans*, but recently, the incidence of other *Candida* species has increased, and these include *Candida glabrata*, *Candida tropicalis*, and *Candida parapsilosis*.

Table 1 (continued)

Protein	Canonical function	Moonlighting function	References
Candida spp.			
14-3-3 protein	Regulation of many vital processes	Binding to laminin, and fibronectin	*Andreotti et al. (2005), Marcos et al. (2016)*
Histoplasma capsulatum			
HIS-62	Chaperone	Binding to macrophage CR3 (CD11/CD18)	*Long et al. (2003)*
Aspergillus fumigatus			
Eno	Glycolysis and gluconeogenesis	Binding to plasminogen, FH, FHL-1, and C4BP Allergen	*Dasari et al. (2019)*
Tsl	Trehalose biosynthesis	Chitin synthase regulation	*Thammahong et al. (2017)*
Cryptococcus neoformans			
Hsp70	Chaperone	Macrophage and monocyte interaction and activation through the CD14 receptor Plasminogen binding	*Asea et al. (2000), Silveira et al. (2013)*
Pgk, Fba, and pyruvate kinase	Glycolysis and gluconeogenesis	Binding to plasminogen	*Stie, Bruni & Fox (2009)*
Hsp60	Chaperone	Binding to plasminogen	*Stie, Bruni & Fox (2009)*
Sporothrix schenckii			
Hsp60	Chaperone	Binding to laminin, elastin, fibrinogen, and fibronectin	*García-Cárdenas et al. (2021)*

Note:

GAPDH, glyceraldehyde-3-phosphate dehydrogenase; Eno, enolase; Gpm, phosphoglycerate mutase; Gpd2, glycerol-3-phosphate dehydrogenase 2; Adh, alcohol dehydrogenase; Cta, peroxisomal catalase; Tef1, transcription elongation factor; Fba, fructose-bisphosphate aldolase; Pgk, phosphoglycerate kinase; Tsa, peroxiredoxin; Efr2, elongation factor 2; Tpi, triosephosphate isomerase; Gpi1, glucose-6-phosphate isomerase 1; Gnd, 6-phosphogluconate dehydrogenase; Fbp, fructose-1,6-bisphosphatase; Ssa1 and Ssa2: Hsp70, Als3: cell wall agglutinin-like sequence protein 3, HIS-60: Hsp60, Tsl, trehalose-6-phosphate phosphatase.
Candida parapsilosis, Candida krusei, Candida guilliermondii, Candida auris, and Candida lusitaniae (Gómez-Gaviria & Mora-Montes, 2020; Tóth et al., 2019; Turner & Butler, 2014; Pappas et al., 2010). For the establishment of candidiasis, both pathogen and host-related factors are required and important. Many Candida virulence factors and determinants have been already described, including the expression of adhesins and secreted hydrolytic enzymes, dimorphism, and biofilm formation (Ciurea et al., 2020). The Candida cell wall contains canonical wall proteins found in other yeast-like organisms, but proteomic analyses have revealed the presence of cytosolic proteins in the cell wall (Pitarch et al., 2002; Castillo et al., 2008; Hernández et al., 2010; Gil-Bona et al., 2018), which can be classified according to their canonical functions into (i) enzymes involved in metabolic pathways, (ii) factors associated with protein synthesis, (iii) chaperones, (iv) and redox homeostasis enzymes (Satala et al., 2020a). Many of these proteins are still considered putative moonlighting proteins, but for some of them, the alternative function has been experimentally confirmed (Table 1 and Fig. 1).

In C. albicans, GAPDH protein found at the cell surface, especially on blastoconidia, participates in the adhesion to fibronectin, laminin, and plasminogen (Gozalbo et al., 1998; Crowe et al., 2003), contributing to fungal adhesion, dissemination, and damage to host tissue. The cell wall-associated GAPDH protein represents about 20–35% of the total amount of this protein in the cell and has been reported to be an important immunogenic antigen that elicits a humoral immune response (Gil-Navarro et al., 1997; Seidler, 2013). However, this protein does not seem to be a suitable therapeutic target against candidiasis, since active immunization with the recombinant protein, opsonization of yeasts with...

Figure 1 Schematic representation of fungal moonlight proteins localization and function. Fungal moonlight proteins related to virulence are mostly adhesins with their moonlight function in the cell surface and their canonical function in the cytosol. An asterisk (*) indicates that Als3 and Tsl are moonlight proteins that perform both functions, canonical and moonlight, in the same cellular compartment. DOI: 10.7717/peerj.14001/fig-1
anti-GAPDH antibodies, and passive transfer of polyclonal anti-GAPDH antibodies failed to generate a protective immune response in the host (Gil et al., 2006).

Eno1 has been characterized as a cell surface plasmin(ogen)-binding protein that enhances fibrinolysis and the fungal ability to cross the blood-brain barrier in vitro, participating in tissue invasion and dissemination (Jong et al., 2003). Deletion of its gene impairs C. albicans growth on glucose-containing media, alters hyphal formation, increases drug susceptibility, and eliminates the fungal ability to kill the host (Ko et al., 2013). This protein binds to the cell wall glucans, being tightly attached to the wall’s inner layer (Angiolella et al., 1996). Although Eno1 is an immunodominant antigen that stimulates cellular and humoral responses during infection (Sundstrom, Jensen & Balish, 1994), its recombinant version is only capable of providing modest protection against candidiasis (Montagnoli et al., 2004). Intracellularly, this protein has been reported to present two enzymatic activities given by two different catalytic sites, as enolase, which is essential for the glycolytic and gluconeogenesis pathways (Satala et al., 2020b), and as transglutaminase, participating in fungal growth and morphogenesis, cell division and osmotic regulation (Reyna-Beltrán et al., 2018). Blocking of Eno1 transglutaminase activity, alone or in combination with fluconazole, provided an antifungal activity against C. albicans in vitro and in vivo, proposing this protein as a putative therapeutic target (Li et al., 2019). In addition, human Eno has also been found anchored on the cell surface of human cells, where it binds to plasminogen and represents a local fibrinolysis regulator (Miles et al., 1991). This moonlight function seems to be conserved among organisms, and is has been proven, at least in humans and some pathogenic organisms, to be due to the presence of lysine residues on the C-terminal end of the protein, which appear to function as plasminogen and extracellular matrix (ECM) components binding sites (Miles et al., 1991; Bergmann et al., 2003; Derbise et al., 2004; Vanegas et al., 2007; Rahi et al., 2018; Satala et al., 2020a).

The C. albicans alcohol dehydrogenase 1 (Adh1) catalyzes the conversion of acetaldehyde to ethanol and is also involved in the NAD-dependent methylglyoxal dehydrogenase activity that generates pyruvate (Kwak, Ku & Kang, 2014). The adh1Δ null mutants showed an increment in the methylglyoxal levels, growth defects, and virulence attenuation (Kwak, Ku & Kang, 2014).

Gpm1 protein is found on the C. albicans yeast and hypha cell surface, where it binds to plasminogen, vitronectin, and the host complement regulators Factor H (FH) and Factor H-like binding protein (FHL-1), facilitating attachment to endothelial cells and keratinocytes, degradation of the host ECM, and promoting immune evasion (Poltermann et al., 2007; Lopez et al., 2014). GMP1 gene deletion decreased fungal binding to endothelial cells, confirming the importance of the encoded protein for C. albicans virulence (Lopez et al., 2014). Also, C. albicans secreted Gpd2 protein constitutes a plasminogen-, FH-, and FHL-1-binding protein (Luo et al., 2013).

Eno1 protein, GAPDH protein, and Gpm1 protein, along with the moonlighting proteins Adh1, Tsa1, and Cta1 represent the major plasminogen-binding proteins, contributing to 85% of the plasminogen binding in C. albicans cell wall protein extracts.
Tef1 protein, Pgk1 protein, and Fba1 protein also participate in plasminogen binding, though to a lesser extent (Crowe et al., 2003; Poltermann et al., 2007).

C. albicans Enol1 protein, Gmp1 protein, Gpi1 protein, Eft2 protein, Tpi1 protein, Tsas1 protein, and Gnd1 protein are atypical cell wall proteins and have all been identified as kininogen-binding proteins (Karkowska-Kuleta et al., 2011; Seweryn et al., 2015). Kininogen is an important protein in a proteolytic cascade of human plasma that participates in the host pro-inflammatory, antimicrobial, and anti-adhesive responses (Lalmanach et al., 2010). *C. albicans* and *C. glabrata* Tpi1 protein has also been proven to bind to vitronectin, fibronectin, collagen, laminin, and elastin, suggesting its contribution to fungal adhesion (Satala et al., 2021).

C. parapsilosis and *C. tropicalis* pseudohyphae also have cell surface moonlighting adhesins that include malate synthase, Gpi1 protein, Gnd1 protein, Enol1 protein, Fbp protein, transketolase, transaldolase, and Eft2 protein, which bind to fibronectin, vitronectin, and laminin (Kozik et al., 2015). In addition, *C. tropicalis* Enol1 protein and Gpm1 protein, and *C. parapsilosis* Gnd1 protein also bind to high-molecular-mass kininogen (Karkowska-Kuleta et al., 2016; Karkowska-Kuleta et al., 2017).

These moonlighting proteins not only mediate the binding of *Candida* spp. cells to host components but also to medical devices, which is an important trait during biofilm formation. Enol1 was found to participate in the adhesion of *C. albicans*, *C. glabrata*, *C. krusei*, and *C. parapsilosis* to plastic surfaces; Fba1 protein favors the adhesion of *C. albicans*, *C. glabrata*, and *C. krusei*; and Pgk1 protein is involved in the adhesion of *C. parapsilosis* to different components of medical devices (Núñez-Beltrán, López-Romero & Cuéllar-Cruz, 2017).

Ssa1, a member of the Hsp70 family, has been localized throughout the *C. albicans* cell wall (López-Ribot et al., 1996), where it binds to endothelial cells N-cadherin and epithelial cells E-cadherin, thus being essential for host cell endocytosis and invasion (Sun et al., 2010). SSA1 gene deletion decreased *C. albicans* adhesion, damage, and invasion of the epithelium and endothelium, resulting in lower virulence (Sun et al., 2010), confirming the important role of this protein during infection. However, Ssa1 and Ssa2 proteins, another Hsp70, are reported to also have a detrimental effect on the fungus, due to their ability to bind to histatine 5, a salivary histidine-rich antifungal peptide, that causes cell death when adsorbed to the cell surface (Sun et al., 2008; Li et al., 2003, 2006). Ssa1 and Ssa2 proteins are considered the main immunogenic antigens in the *C. albicans* cell wall and are capable of eliciting cell-mediated and humoral immune responses (Martínez et al., 1998; López-Ribot et al., 2004). However, vaccination with the recombinant proteins failed to protect against candidiasis, but instead enhanced the infection (Bromuro et al., 1998).

Als3 protein, a member of the *C. albicans* cell wall agglutinin-like sequence (Als) family (Hoyer et al., 1998), is an important multifunctional protein in the hyphae and pseudohyphae surface (Hoyer et al., 1998; Argimón et al., 2007). Als3 has a canonical function of adhesin and invasin that binds to gelatin, fibronectin, fibrinogen, type IV collagen, laminin, salivary pellicle, and E- and N-cadherin, thus mediating adherence and internalization to endothelial and epithelial cells (Sheppard et al., 2004; Phan et al., 2007; Nobbs, Vickerman & Jenkinson, 2010), and also plays an important role in biofilm formation.
form (Nobile et al., 2006; Zhao et al., 2006). However, Als3 protein has an additional function as a ferritin receptor in C. albicans hyphae, where it binds to purified ferritin and ferritin contained within epithelial cells, helping the fungus to obtain iron from the host (Almeida et al., 2008). ALS3 gene deletion decreased fungal adherence to endothelial and oral epithelial cells (Zhao et al., 2004), decreased endocytosis by oral epithelial cells and vascular endothelial cells in vitro, altered biofilm structures (Nobile et al., 2006; Zhao et al., 2006), and diminished iron acquisition in vitro (Almeida et al., 2008), demonstrating its multiple functions and their importance during infection. Als3 protein is also an immunodominant antigen, and vaccination with its recombinant version protected against vaginal and disseminated candidiasis (Spellberg et al., 2006).

Paracoccidioides brasiliensis

The thermomorphogenic fungi P. brasiliensis and Paracoccidioides lutzii are the etiological agents of paracoccidioidomycosis, an important human systemic disease with multiple clinical forms, endemic to Latin America (San-Blas, Niño-Vega & Iturriaga, 2002; Mendes et al., 2017). The interaction of these fungi with their host and their successful colonization depends on many regulatory mechanisms and virulence factors that allow them to cause infection, which include morphogenesis, changes in cell wall polysaccharide composition, adhesion, adaptation to environmental stresses, and production of extracellular vesicles (de Oliveira et al., 2015; Camacho & Niño-Vega, 2017).

Proteomic analyses of P. brasiliensis yeasts and mycelium cell walls, and vesicle and vesicle-free extracellular content have revealed the presence of many cytoplasmic proteins, mostly related to carbohydrate and protein metabolism, stress response, oxidation/reduction, translation, nucleic acid binding, and cellular architecture (Table 1) (Vallejo et al., 2012; Longo et al., 2014). Also, proteomic analysis of the Paracoccidioides secretome identified 15 plasminogen binding proteins, many of which are cytoplasmic proteins (Chaves et al., 2015). Out of these proteins, some have already been proven to be moonlighting proteins that participate as adhesins during infection (de Oliveira et al., 2015; Marcos et al., 2014). Eno protein, Fba protein, GADPH protein, Tpi protein, and malate synthase have been found in the Paracoccidioides cell wall and extracellular vesicles, mediating adhesion to the host tissues (Vallejo et al., 2012). Eno protein was found to be highly expressed when P. brasiliensis grows in the presence of blood and has the ability to bind to laminin, fibronectin, plasminogen, and type I and IV collagens (Donofrio et al., 2009; Nogueira et al., 2010; Marcos et al., 2012), representing 80% of fungal adhesion to epithelial cells (Donofrio et al., 2009), which demonstrates its essential role in fungal attachment, internalization, and invasion to the host tissues. Tpi protein is a yeast cytosolic and cell wall antigen that reacts with sera of patients with paracoccidioidomycosis and that participates in fungal binding to epithelial cells, with affinity to laminin (da Fonseca et al., 2001; Pereira et al., 2007). Malate synthase is also a P. brasiliensis cell wall and secreted protein that functions as an adhesin that binds to fibronectin and type I and IV collagens (da Silva Neto et al., 2009). In addition, this protein interacts with other cell wall adhesins, such as Eno protein and Tpi protein, enhancing the fungal adhesion (de Oliveira et al., 2013). GAPDH protein was found in P. brasiliensis extracellular vesicles and cell wall, with
increased expression in the yeast morphology and during the mycelium-yeast transition (Barbosa et al., 2006, 2004; Longo et al., 2014). On the cell surface, this protein binds to laminin, fibronectin, and type-I collagen, being involved in the fungal adhesion to pneumocytes during the early stages of infection (Barbosa et al., 2006). Fab protein binds to plasminogen and participates in the fungal interaction with macrophages, increasing fibrin degradation and internalization by phagocytes (Chaves et al., 2015).

A cytosolic 30 kDa glycoprotein, found highly expressed in the P. brasiliensis cell wall during infection and in high virulent strains, was identified as a member of the 14-3-3 protein family (da Silva Jde et al., 2013; Andreotti et al., 2005) of conserved regulatory eukaryotic proteins involved in transcription, signal transduction, protein localization and degradation, cell cycle, apoptosis, and many other processes (Sluchanko & Gusev, 2017). The cell surface 14-3-3 protein is an important Paracoccidioides adhesin that binds to laminin and fibronectin (Andreotti et al., 2005; Marcos et al., 2016), and the silencing of its gene affected the yeast morphology, impaired morphological switching, and decreased laminin binding, resulting in a significant virulence reduction (Marcos et al., 2016), underlining its importance to the P. brasiliensis virulence.

Histoplasma capsulatum

H. capsulatum is an environmental thermomorphogene fungus with two pathogenic varieties, *H. capsulatum var capsulatum*, and *H. capsulatum var duboissi*, that cause human histoplasmosis (Antinori, 2014), a worldwide distributed pulmonary and systemic disease with a mortality rate up to 7% (Kauffman, 2007; Armstrong et al., 2018). Disease development and severity depend on the host immune status, virulence of the fungal strain, and the fungal load inoculated (Knox & Hage, 2010). Only a handful of *H. capsulatum* virulence factors have been identified, and these include the presence of α-1,3-glucan at the cell surface, thermotolerance, melanin, and surface ligands for immune receptors (Mihu & Nosanchuk, 2012). Thus far, only one of these virulence factors has been proven to be a moonlighting protein (Table 1).

At the first stage of histoplasmosis infection, *H. capsulatum* gets recognized and internalized by alveolar macrophages through the integrin receptor CR3 (CD11/CD18). Once inside, this fungus impairs macrophage activation and phagolysosomal fusion, and replicates, killing the alveolar macrophages and invading neighboring and recruited macrophages, thus disseminating to other organs from the lungs (Bullock & Wright, 1987; Newman et al., 1990). This defective macrophage response against *H. capsulatum* depends, in part, on the receptor that the fungus uses to enter phagocytes, and Hsp60, also known as HIS-62, has been reported to be the major *H. capsulatum* surface protein that interacts with CD11/CD18 (Long et al., 2003). This intracellular chaperone has been found moonlighting on the outer surface of the *H. capsulatum* cell wall, and although HIS-62 protein lacks the classical secretion signal, it shows a unique leader sequence upstream of the amino terminus of the mature protein, with high homology to leader sequences of other pathogenic fungi (Long et al., 2003), which might be related to its secretion. Also, the cell wall-associated Hsp60 was found to be N-linked glycosylated, while the intracellular
protein is not, suggesting that the surface HIS-62 protein enters the secretory pathway (Long et al., 2003).

Hsp60 has been reported as an immunogenic antigen during histoplasmosis, and antibodies against this protein provided a protective immune response in the host, by reducing the fungal burden and increasing phagolysosomal fusion in vitro (Guimarães et al., 2009). Also, vaccination with the native and recombinant HIS-62 protected against pulmonary and systemic histoplasmosis, which suggests that this protein is an important target for the cellular and humoral immune response (Gomez, Gomez & Deepe, 1991; Gomez, Allendoerfer & Deepe, 1995).

Aspergillus fumigatus

Aspergillus species are environmental molds found worldwide (Hope, Walsh & Denning, 2005). *A. fumigatus* is the most common species associated with aspergillosis syndromes (Park & Mehrad, 2009), which range from allergic noninvasive clinical forms in immunocompetent patients to systemic disease under immunosuppression conditions, with mortality rates up to 100% if the diagnosis is missed or delayed (Brown et al., 2012; Latgé & Chamilos, 2019; Barnes & Marr, 2006). The *Aspergillus* spp. pathogenicity is dependent on the host immune response and pulmonary microbiome, and on the presence of fungal virulence factors that might be in part enhanced by some host effectors (Raksha, Singh & Urhekar, 2017; Kolwijck & van de Veerdonk, 2014). Different *A. fumigatus* virulence factors have been identified, which include adhesins, pigments, hydrolytic enzymes, catalases and superoxide dismutases, mycotoxins and non-protein metabolites, thermotolerance, allergens, and zinc acquisition (Raksha, Singh & Urhekar, 2017; Szalewski et al., 2018).

One of the main *A. fumigatus* adhesin and allergen is the moonlighting protein Eno (Table 1), expressed at the swollen conidia and hypha cell surface, where it binds to plasminogen and represents a ligand for FH, FHL-1, and C4BP (C4 binding protein) (Dasari et al., 2019). The affinity of this protein to the plasma complement regulators contributes to the fungal immune evasion, since its binding to FH and FHL-1, and C4PB inactivates C3b and C4b, respectively, while binding to plasminogen degrades C3 and C3b. Thus, Eno protein contributes to cell attachment and invasion, tissue damage, and immune evasion (Dasari et al., 2019). Eno protein is also an important *Aspergillus* allergen that causes a hypersensitive immune reaction in the host and is highly recognized by IgE (Lai et al., 2002; Gautam et al., 2007; Shah & Panjabi, 2014).

The *A. fumigatus* Tsl protein was identified as an important enzyme for trehalose biosynthesis and cell wall structure. This protein directly interacts with chitin synthase and regulates its activity and localization, as a moonlight function, affecting the cell wall integrity and structure (Thammahong et al., 2017). Deletion of its encoding gene reduced trehalose content in conidia and mycelium but also altered the cell wall integrity, by increasing chitin, β-glucan, and galactosaminogalactan content and exposure (Thammahong et al., 2017). Also, these mutants trigger a much stronger pro-inflammatory response in the host, probably due to the exposure of those cell wall components at the cell surface, but without affecting the fungal virulence (Thammahong et al., 2017).
Other pathogenic fungi

The encapsulated yeast *C. neoformans* is an opportunistic fungus that can cause cryptococcal meningoencephalitis in immunocompromised patients (Brown et al., 2012). Macrophages play an important role in fungal killing, but also in the replication and dissemination of *C. neoformans* (Garcia-Rodas & Zaragoza, 2012), for which fungal surface components that interact and attach to phagocytes are essential for *C. neoformans* pathogenesis. Hsp70 has been detected on the *C. neoformans* cell surface where it is involved in macrophage and monocyte interaction and activation, through the CD14 receptor (Table 1) (Asea et al., 2000; Silveira et al., 2013). *C. neoformans* Hsp70 inhibits macrophage activation, thus helping the fungus to evade killing by the phagolysosome oxidative response, and also promotes attachment to epithelial cells through a still unidentified receptor that might be shared with glucuronoxylomannan, the main capsular antigen (Silveira et al., 2013). In addition, many cytosolic proteins with plasminogen affinity have been identified on the *C. neoformans* cell surface, including Pgk protein, Fba protein, Hsp60, Hsp70, transaldolase, pyruvate kinase, ATP-synthase alpha and beta subunits, the response to stress-related protein, and glutamate dehydrogenase (Stie, Bruni & Fox, 2009).

The thermomorphic fungal species of the *Sporothrix* pathogenic clade are the causative agents of sporotrichosis, a human and animal subcutaneous mycosis that can disseminate and cause systemic infections (Lopes-Bezerra et al., 2018; Lopez-Romero et al., 2011; Mora-Montes et al., 2015; Nava-Pérez et al., 2022). *Sporothrix schenckii* and *Sporothrix brasiliensis* are the most commonly isolated species and also the most studied, but only a few of their virulence factors and determinants have been identified, which include adhesins, peptidorhamnomannan, morphological switching, and melanin (Tamez-Castrellon et al., 2020; García-Carnero & Martínez-Álvarez, 2022). Some intracellular proteins, such as Hsp60, Hsp70, Tef1 protein, mitochondrial peroxiredoxin, lipase 1, Eno1 protein, and pyruvate kinase, have been found in cell wall preparations from *S. schenckii* cells growing in the presence of different stressors (Ruiz-Baca et al., 2019), however, because the preparations were performed using whole-cell homogenates, it remains to be confirmed whether these are indeed proteins found on the *S. schenckii* surface with moonlighting functions. Proteomic analysis of the *S. schenckii* yeast-like cells’ peptidorhamnomannan revealed that it is composed of 325 possible proteins, many of which are intracellular proteins with housekeeping functions and without conventional signal sequences, that may be moonlighting proteins related to virulence on the cell surface (García-Carnero et al., 2021). One of the main peptidorhamnomannan proteins is Hsp60, which was proven to function as a cell surface adhesin with binding affinity to laminin, elastin, fibrinogen, and fibronectin, being essential for fungal virulence (Table 1) (García-Carnero et al., 2021). Also, this protein appears to be highly immunogenic, and immunization with its recombinant version or treatment with anti-Hsp60 antibodies can protect laboratory animals against a lethal infection with *S. schenckii* (García-Carnero et al., 2021).
The host perspective

It is widely known that the adherence of a pathogen to its host represents an essential step to invade, colonize, evade the immune response, and cause infection, as already mentioned. Most of the moonlighting proteins that participate in fungal virulence processes functions as adhesins that bind to important components of the host ECM and of homeostatic and immune cascades (Fig. 2).

The ECM is a dynamic network of macromolecules that provides structural support for cells and tissues, composed mainly of proteoglycans and glycosaminoglycans, elastin and elastic fibers, collagens, laminins, fibronectin, thrombospondin, and vitronectin (Karamanos et al., 2021). Through signal transduction, the ECM regulates many cellular functions, that include growth, proliferation, cell migration, and differentiation, playing an essential role in cell homeostasis (Karamanos et al., 2021). Therefore, disruption of any of the ECM components alters tissue function and regeneration, thus facilitating infection by pathogenic fungi (Tomlin & Piccinini, 2018). Disruption of the ECM during infection can be caused directly by the degradation of its components after attachment through the fungus proteases, elastases, or collagenases; or indirectly through the host catabolic machinery that gets altered upon infection or by the activity of activated macrophages that destroy the ECM (Tomlin & Piccinini, 2018). In addition, fungal binding to plasminogen causes its cleavage to plasmin, an important protease of the fibrinolytic system that degrades fibrin (Castellino & Ploplis, 2005), which participates in blood coagulation, cell
migration, and tissue repair; activates collagenases that degrade collagens and activates complement mediators; and degrades several ECM components, such as fibronectin, laminin, and thrombospondin, thus degrading the host cell barriers and ECM (Singh et al., 2012). Finally, the ECM also participates in the host immune response, by providing important signaling to the immune cells for their proliferation, differentiation, activation, and migration, which gets altered with the ECM disruption (Tomlin & Piccinini, 2018).

High molecular weight kininogen is a member of the human contact system, that upon activation cleaves kininogen and releases antimicrobial peptides and bradykinin, involved in the regulation of inflammatory processes, vascular permeability, and blood pressure (Ponczek, 2021). The binding of pathogenic fungi to kininogens through different ligands triggers inflammatory responses through bradykinin, resulting in vascular leakage, vasodilatation, and increased blood flow, enabling the inflow of plasma nutrients, and enhancing pathogen dissemination and invasion (Karkowska-Kuleta & Kozik, 2014; Oehmcke-Hecht & Köhler, 2018).

The complement system is an important effector of the innate immune response, that participates in the elimination of pathogenic organisms through proinflammatory responses, which include attraction and activation of phagocytes, and enhanced opsonization (Fries et al., 1999). The plasma proteins FH and FHL-1 are regulatory elements that control the alternative complement activation at the level of C3b, an active complement-derived product, and the binding of pathogenic fungi to these regulators mediates immune evasion and disruption of the complement activation (Behnsen et al., 2008), thus promoting invasion and dissemination.

CONCLUSIONS

Although long known, moonlighting proteins have received little attention when participating in virulence processes of pathogenic fungi. To date, many moonlighting proteins have been suggested to function as fungal virulence factors, but only a few have been experimentally confirmed, with very limited information about their alternative functions, the mechanisms they use to perform them, and their cellular localization and trafficking. The information that we know about these moonlighting functions during infection highlights the importance these proteins have in fungal pathogenesis, by enabling fungal attachment, invasion, and dissemination in the host, along with helping with the fungal immune evasion. Therefore, they are key factors for understanding fundamental and clinically relevant biological processes in these organisms. Even though their study should be a priority, it has been neglected. *C. albicans* is perhaps the most studied species in medical mycology, and therefore, most of the available information about moonlighting proteins has been generated on this organism. However, as we know, fungal infections are not reduced to only candidemia/candidiasis, other fungal pathogens are relevant in this field. As reported in this review article, the information about moonlighting proteins in other fungal species is limited when compared with that generated in *Candida* species, stressing that more efforts are required to understand the contribution of these proteins to fungal pathogenesis, in a broader sense.
These proteins represent an example of genetic economy and directed evolution, being a low-cost adaptation mechanism for the cell when facing stressful conditions, such as those generated in the host during infection, and at the same time, contributing to the fungal virulence. As reviewed in this text, a great percentage of the reported fungal moonlighting proteins are conserved metabolic enzymes and chaperones, with alternative functions related to adhesion, tissue damage, and immunoevasion. The moonlighting function may likely have an impact on other processes during the interaction with the host, such as cell wall remodeling, posttranscriptional regulatory events, apoptosis, and cancer development, as reported for bacterial moonlighting proteins (Podobnik et al., 2009; Banerjee et al., 2007; Lin et al., 2010; Basak et al., 2005). Thus, this represents an area of opportunity and a challenge in the years to come.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Consejo Nacional de Ciencia y Tecnología (FC 2015-02-834 and Ciencia de Frontera 2019-6380), and Red Temática Glicociencia en Salud (CONACYT-México). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Consejo Nacional de Ciencia y Tecnología: FC 2015-02-834.
Ciencia de Frontera: 2019-6380.
Red Temática Glicociencia en Salud (CONACYT-México).

Competing Interests
Héctor M. Mora-Montes is an Academic Editor for PeerJ.

Author Contributions
- Verania J. Arvizu-Rubio performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Laura C. García-Carnero conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Héctor Manuel Mora-Montes conceived and designed the experiments, analyzed the data, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
This is a review article.
REFERENCES

Aharoni A, Gaidukov L, Khersonsky O, Gould SMQ, Roodveldt C, Tawfik DS. 2005. The ‘evolvability’ of promiscuous protein functions. Nature Genetics 37(1):73–76 DOI 10.1038/ng1482.

Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, Edwards JE Jr., Filler SG, Hube B. 2008. The Hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLOS Pathogens 4(11):e1000217 DOI 10.1371/journal.ppat.1000217.

Amblee V, Jeffery CJ. 2015. Physical features of intracellular proteins that moonlight on the cell surface. PLOS ONE 10(6):e0130575 DOI 10.1371/journal.pone.0130575.

Andreotti PF, Monteiro da Silva JL, Bailão AM, Soares CM, Benard G, Soares CP, Mendes-Giannini MJ. 2005. Isolation and partial characterization of a 30 kDa adhesin from Paracoccidioides brasiliensis. Microbes and Infection 7(5–6):875–881 DOI 10.1016/j.micinf.2005.02.005.

Angiolella L, Facchin M, Stringaro A, Maras B, Simonetti N, Cassone A. 1996. Identification of a glucan-associated enolase as a main cell wall protein of Candida albicans and an indirect target of lipopeptide antimycotics. Journal of Infectious Diseases 173(3):684–690 DOI 10.1093/infdis/173.3.684.

Antinori S. 2014. Histoplasma capsulatum: more widespread than previously thought. American Journal of Tropical Medicine and Hygiene 90(6):982–983 DOI 10.4269/ajtmh.14-0175.

Argimón S, Wishart JA, Leng R, Macaskill S, Mavor A, Alexandris T, Nicholls S, Knight AW, Enjalbert B, Walmsley R, Odds FC, Gow NA, Brown AJ. 2007. Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryotic Cell 6(4):682–692 DOI 10.1128/ec.00340-06.

Armstrong PA, Jackson BR, Haselow D, Fields V, Ireland M, Austin C, Signs K, Fialkowski V, Patel R, Ellis P, Iwen PC, Pedati C, Gibbons-Burgener S, Anderson J, Dobbs T, Davidson S, McIntyre M, Warren K, Midla J, Luong N, Benedict K. 2018. Multistate epidemiology of histoplasmosis, United States, 2011–2014. Emerging Infectious Diseases 24(3):425–431 DOI 10.3201/eid2403.171258.

Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK. 2000. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Medicine 6(4):435–442 DOI 10.1038/74697.

Banerjee S, Nandyala AK, Raviprasad P, Ahmed N, Hasnain SE. 2007. Iron-dependent RNA-binding activity of Mycobacterium tuberculosis aconitase. Journal of Bacteriology 189(11):4046–4052 DOI 10.1128/jb.00026-07.

Barbosa MS, Bário SN, Andreotti PF, de Faria FP, Felipe MSS, dos Santos Feitosa L, Mendes-Giannini MJS, de Almeida Soares CM. 2006. Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infection and Immunity 74(1):382–389 DOI 10.1128/iai.74.1.382-389.2006.

Barbosa MS, Passos DAC, Felipe MSS, Jesuíno RSA, Pereira M, de Almeida Soares CM. 2004. The glyceraldehyde-3-phosphate dehydrogenase homologue is differentially regulated in phases of Paracoccidioides brasiliensis: molecular and phylogenetic analysis. Fungal Genetics and Biology 41(7):667–675 DOI 10.1016/j.fgb.2004.02.002.

Barnes PD, Marr KA. 2006. Aspergillosis: spectrum of disease, diagnosis, and treatment. Infectious Disease Clinics of North America 20(3):545–561 DOI 10.1016/j.idc.2006.06.001.
Basak C, Pathak SK, Bhattacharyya A, Pathak S, Basu J, Kundu M. 2005. The secreted peptidyl prolyl cis,trans-isomerase HP0175 of Helicobacter pylori induces apoptosis of gastric epithelial cells in a TLR4- and apoptosis signal-regulating kinase 1-dependent manner. *Journal of Immunology* 174(9):5672–5680 DOI 10.4049/jimmunol.174.9.5672.

Behnsen J, Hartmann A, Schmaler J, Gehrke A, Brakhage AA, Zipfel PF. 2008. The opportunistic human pathogenic fungus Aspergillus fumigatus evades the host complement system. *Infection and Immunity* 76(2):820–827 DOI 10.1128/iai.01037-07.

Bergmann S, Wild D, Diekmann O, Frank R, Bracht D, Chhatwal GS, Hammerschmidt S. 2003. Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. *Molecular Microbiology* 49(2):411–423 DOI 10.1046/j.1365-2958.2003.03557.x.

Bromuro C, La Valle R, Sandini S, Urbani F, Ausiello CM, Morelli L, d’Ostiani Fé C, Romani L, Cassone A. 1998. A 70-kilodalton recombinant heat shock protein of Candida albicans is highly immunogenic and enhances systemic murine candidiasis. *Infection and Immunity* 66(5):2154–2162 DOI 10.1128/iai.66.5.2154-2162.1998.

Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. *Science Translational Medicine* 4(165):165rv13 DOI 10.1126/scitranslmed.3004404.

Bullock WE, Wright SD. 1987. Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages. *Journal of Experimental Medicine* 165(1):195–210 DOI 10.1084/jem.165.1.195.

Camacho E, Niño-Vega GA. 2017. Paracoccidioides spp.: virulence factors and immune-evasion strategies. *Mediators Inflamm* 2017(6):5313691 DOI 10.1155/2017/5313691.

Castellino FJ, Ploplis VA. 2005. Structure and function of the plasminogen/plasmin system. *Thromb Haemost* 93(4):647–654 DOI 10.1160/th04-12-0842.

Castillo L, Calvo E, Martínez AI, Ruiz-Herrera J, Valentín E, Lopez J, Sentandreu R. 2008. A study of the Candida albicans cell wall proteome. *Proteomics* 8(18):3871–3881 DOI 10.1002/pmic.200800110.

Chaves EG, Weber SS, Bào SN, Pereira LA, Bailão AM, Borges CL, Soares CM. 2015. Analysis of Paracoccidioides secreted proteins reveals fructose 1, 6-bisphosphate aldolase as a plasminogen-binding protein. *BMC Microbiology* 15(1):53 DOI 10.1186/s12866-015-0393-9.

Chen C, Liu H, Zabad S, Rivera N, Rowin E, Hassan M, Gomez De Jesus SM, Llinás Santos PS, Kravchenko K, Mikhova M, Ketterer S, Shen A, Shen S, Navas E, Horan B, Raudsepp J, Jeffery C. 2021. MoonProt 3.0: an update of the moonlighting proteins database. *Nucleic Acids Research* 49(D1):D368–D372 DOI 10.1093/nar/gkaa1101.

Ciurea CN, Kosovski IB, Mare AD, Toma F, Pintea-Simon IA, Man A. 2020. Candida and candidiasis-opportunism versus pathogenicity: a review of the virulence traits. *Microorganisms* 8(6):857 DOI 10.3390/microorganisms8060857.

Copley SD. 2012. Moonlighting is mainstream: paradigm adjustment required. *Bioessays* 34(7):578–588 DOI 10.1002/bies.201100191.

Crowe JD, Sievwright IK, Auld GC, Moore NR, Gow NA, Booth NA. 2003. *Candida albicans* binds human plasminogen: identification of eight plasminogen-binding proteins. *Molecular Microbiology* 47(6):1637–1651 DOI 10.1046/j.1365-2958.2003.03390.x.

da Fonseca CA, Jesuino Rália SA, Felipe MSS, Cunha DA, Brito WA, Soares Célia MA. 2001. Two-dimensional electrophoresis and characterization of antigens from Paracoccidioides brasiliensis. *Microb Infect* 3(7):535–542 DOI 10.1016/S1286-4579(01)01409-5.
da Silva Jde F, de Oliveira HC, Marcos CM, da Silva RA, da Costa TA, Calich VL, Almeida AM, Mendes-Giannini MJ. 2013. *Paracoccidioides brasiliensis* 30 kDa adhesin: identification as a 14-3-3 protein, cloning and subcellular localization in infection models. *PLOS ONE* 8(4):e62533 DOI 10.1371/journal.pone.0062533.

da Silva Neto BR, de Fátima da Silva J, Mendes-Giannini MJ, Lenzi HL, de Almeida Soares CM, Pereira M. 2009. The malate synthase of *Paracoccidioides brasiliensis* is a linked surface protein that behaves as an anchorless adhesin. *BMC Microbiology* 9(1):272 DOI 10.1186/1471-2180-9-272.

Dasari P, Kolec N, Shopova IA, Wartenberg D, Beyersdorf N, Dietrich S, Sahagún-Ruiz A, Figge MT, Skerka C, Brakhage AA, Zipfel PF. 2019. Enolase from *Aspergillus fumigatus* is a moonlighting protein that binds the human plasma complement proteins factor H, FHL-1, C4BP, and plasminogen. *Frontiers in Immunology* 10:2573 DOI 10.3389/immu.2019.02573.

del Oliveira HC, Assato PA, Assato Patrícia A, Marcos CM, Scorzon L, de Paula E Silva ACA, De Fátima Da Silva J, de Lacorte Singulani J, Alarcon KM, Fusco-Almeida AM, Mendes-Giannini MJS. 2015. *Paracoccidioides*-host interaction: an overview on recent advances in the paracoccidioidomycosis. *Frontiers in Microbiology* 6(29):1319 DOI 10.3389/fmicb.2015.01319.

de Oliveira KM, da Silva Neto BR, Parente JA, da Silva RA, Quintino GO, Voltan AR, Mendes-Giannini MJ, de Almeida Soares CM, Pereira M. 2013. Intermolecular interactions of the malate synthase of *Paracoccidioides* spp. *BMC Microbiology* 13(1):107 DOI 10.1186/1471-2180-13-107.

Derbise A, Song YP, Parikh S, Fischetti VA, Pancholi V. 2004. Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. *Infection and Immunity* 72(1):94–105 DOI 10.1128/iai.72.1.94-105.2004.

Díaz-Jiménez DF, Pérez-García LA, Martínez-Álvarez JA, Mora-Montes HM. 2012. Role of the fungal cell wall in pathogenesis and antifungal resistance. *Current Fungal Infection Reports* 6(4):275–282 DOI 10.1007/s12281-012-0109-7.

Donofrio FC, Calil ACA, Miranda ET, Almeida AMF, Benard G, Soares CP, Veloso SN, Soares CMA, Mendes Giannini MJS. 2009. Enolase from *Paracoccidioides brasiliensis*: isolation and identification as a fibronectin-binding protein. *Journal of Medical Microbiology* 58(Pt 6):706–713 DOI 10.1099/jmm.0.003830-0.

Flores CL, Gancedo C. 2011. Unraveling moonlighting functions with yeasts. *IUBMB Life* 63(7):457–462 DOI 10.1002/iub.454.

Friese MA, Hellwage J, Jokiranta TS, Meri S, Peter HH, Eibel H, Zipfel PF. 1999. FHL-1/reconectin and factor H: two human complement regulators which are encoded by the same gene are differently expressed and regulated. *Molecular Immunology* 36(13–14):809–818 DOI 10.1016/s0161-5890(99)00101-7.

Gancedo C, Flores C. 2008. Moonlighting proteins in yeasts. *Microbiology and Molecular Biology Reviews* 72(1):197–210 DOI 10.1128/mmbr.00036-07.

Gancedo C, Flores C-L, Gancedo JM. 2016. The expanding landscape of moonlighting proteins in yeasts. *Microbiology and Molecular Biology Reviews* 80(3):765–777 DOI 10.1128/MMBR.00012-16.

García-Carnero LC, Martínez-Álvarez JA. 2022. Virulence factors of *Sporothrix schenckii*. *Journal of Fungi* 8(3):318 DOI 10.3390/jof8030318.

García-Carnero LC, Salinas-Marín R, Lozoya-Pérez NE, Wrobel K, Wrobel K, Martínez-Duncker I, Niño-Vega GA, Mora-Montes HM. 2021. The heat shock protein 60 and Pap1 participate in the *Sporothrix schenckii*-host interaction. *Journal of Fungi* 7(11):960 DOI 10.3390/jof7110960.
García-Rodas R, Zaragoza O. 2012. Catch me if you can: phagocytosis and killing avoidance by Cryptococcus neoformans. FEMS Immunology & Medical Microbiology 64(2):147–161 DOI 10.1111/j.1574-695X.2011.00871.x.

Gautam P, Sundaram CS, Madan T, Gade WN, Shah A, Sirdeshmukh R, Sarma PU. 2007. Identification of novel allergens of Aspergillus fumigatus using immunoproteomics approach. Clinical and Experimental Allergy 37(8):1239–1249 DOI 10.1111/j.1365-2222.2007.02765.x.

Gil-Bona A, Amador-García A, Gil C, Monteoliva L. 2018. The external face of Candida albicans: a proteomic view of the cell surface and the extracellular environment. Journal of Proteomics 180(1):70–79 DOI 10.1016/j.jprot.2017.12.002.

Gil-Navarro I, Gil ML, Casanova M, O’Connor JE, Martínez JP, Gozalbo D. 1997. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. Journal of Bacteriology 179(16):4992–4999 DOI 10.1128/jb.179.16.4992-4999.1997.

Gil ML, Dagan S, Eren R, Gozalbo D. 2006. Evaluation of the usefulness of anti-glyceraldehyde-3-phosphate dehydrogenase antibodies as a treatment for invasive candidiasis in a murine model. Antonie van Leeuwenhoek 89(3):345–350 DOI 10.1007/s10482-005-9037-7.

Gómez-Gaviria M, Mora-Montes HM. 2020. Current aspects in the biology, pathogeny, and treatment of Candida krusei, a neglected fungal pathogen. Infect Drug Resist 13:1673–1689 DOI 10.2147/idr.S247944.

Gomez FJ, Allendoerfer R, Deepe GS Jr. 1995. Vaccination with recombinant heat shock protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis. Infection and Immunity 63(7):2587–2595 DOI 10.1128/iai.63.7.2587-2595.1995.

Gomez FJ, Gomez AM, Deepe GS Jr. 1991. Protective efficacy of a 62-kilodalton antigen, HIS-62, from the cell wall and cell membrane of Histoplasma capsulatum yeast cells. Infection and Immunity 59(12):4459–4464 DOI 10.1128/iai.59.12.4459-4464.1991.

Gozalbo D, Gil-Navarro I, Azorín I, Renau-Piqueras J, Martínez JP, Gil ML. 1998. The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infection and Immunity 66(5):2052–2059 DOI 10.1128/iai.66.5.2052-2059.1998.

Guimarães AJ, Frases S, Gomez FJ, Zancopé-Oliveira RM, Nosanchuk JD. 2009. Monoclonal antibodies to heat shock protein 60 alter the pathogenesis of Histoplasma capsulatum. Infection and Immunity 77(4):1357–1367 DOI 10.1128/iai.01443-08.

Henderson B, Martin A. 2011. Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infection and Immunity 79(9):3476–3491 DOI 10.1128/iai.00179-11.

Hernández-Chávez MJ, González-Hernández RJ, Trujillo-Esquivel JE, Hernández-Cervantes A, Mora-Montes HM. 2014. Chapter 9-The secretory pathway in the filamentous fungus Trichoderma. In: Gupta VK, Schmoll M, Alfredo Herrera-Estrella RSU, Druzhinina I, Tuohy MG, eds. Biotechnology and Biology of Trichoderma. Amsterdam: Elsevier, 115–121.

Hope WW, Walsh TJ, Denning DW. 2005. Laboratory diagnosis of invasive aspergillosis. Lancet Infectious Diseases 5(10):609–622 DOI 10.1016/s1473-3099(05)70238-3.

Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S. 1998. Candida albicans ALS3 and insights into the nature of the ALS gene family. Current Genetics 33(6):451–459 DOI 10.1007/s002940050359.
Huberts DH, van der Klei IJ. 2010. Moonlighting proteins: an intriguing mode of multitasking. *Biochim Biophys Acta* 1803(4):520–525 DOI 10.1016/j.bbamcr.2010.01.022.

Jeffery CJ. 1999. Moonlighting proteins. *Trends in Biochemical Sciences* 24(1):8–11 DOI 10.1016/s0968-0004(98)01335-8.

Jeffery CJ. 2004. Molecular mechanisms for multitasking: recent crystal structures of moonlighting proteins. *Current Opinion in Structural Biology* 14(6):663–668 DOI 10.1016/j.sbi.2004.10.001.

Jeffery CJ. 2015. Why study moonlighting proteins? *Frontiers in Genetics* 6:211 DOI 10.3389/fgene.2015.00211.

Jeffery CJ. 2018. Protein moonlighting: what is it, and why is it important? *Philosophical Transactions of the Royal Society of London B: Biological Sciences* 373(1738):20160523 DOI 10.1098/rstb.2016.0523.

Jong AY, Chen SHM, Stins MF, Kim KS, Tuan TL, Huang SH. 2003. Binding of *Candida albicans* enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. *Journal of Medical Microbiology* 52(Pt 8):615–622 DOI 10.1099/jmm.0.05060-0.

Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troebeng L, Franchi M, Masola V, Onisto M. 2021. A guide to the composition and functions of the extracellular matrix. *The FEBS Journal* 288(24):6850–6912 DOI 10.1111/febs.15776.

Karkowska-Kuleta J, Kedracka-Krok S, Rapala-Kozik M, Kamysz W, Bielinska S, Karafova A, Kozik A. 2011. Molecular determinants of the interaction between human high molecular weight kininogen and *Candida albicans* cell wall: identification of kininogen-binding proteins on fungal cell wall and mapping the cell wall-binding regions on kininogen molecule. *Peptides* 32(12):2488–2496 DOI 10.1016/j.peptides.2011.10.021.

Karkowska-Kuleta J, Kozik A. 2014. Moonlighting proteins as virulence factors of pathogenic fungi, parasitic protozoa and multicellular parasites. *Molecular Oral Microbiology* 29(6):270–283 DOI 10.1111/omi.12078.

Karkowska-Kuleta J, Zajac D, Bras G, Bochenska O, Rapala-Kozik M, Kozik A. 2017. Binding of human plasminogen and high-molecular-mass kininogen by cell surface-exposed proteins of *Candida parapsilosis*. *Acta Biochimica Polonica* 64(3):391–400 DOI 10.18388/abp.2017_1609.

Karkowska-Kuleta J, Zajac D, Bras G, Bochenska O, Seweryn K, Kedracka-Krok S, Jankowska U, Rapala-Kozik M, Kozik A. 2016. Characterization of the interactions between human high-molecular-mass kininogen and cell wall proteins of pathogenic yeasts *Candida tropicalis*. *Acta Biochimica Polonica* 63(3):427–436 DOI 10.18388/abp.2016_1353.

Kauffman CA. 2007. Histoplasmosis: a clinical and laboratory update. *Clinical Microbiology Reviews* 20(1):115–132 DOI 10.1128/cmr.00027-06.

Knox KS, Hage CA. 2010. Histoplasmosis. *Proceedings of the American Thoracic Society* 7(3):169–172 DOI 10.1513/pats.200907-069AL.

Ko H-C, Hsiao T-Y, Chen C-T, Yang Y-L. 2013. *Candida albicans* ENO1 null mutants exhibit altered drug susceptibility, hyphal formation, and virulence. *Journal of Microbiology* 51(3):345–351 DOI 10.1007/s12275-013-2577-z.

Kolwijck E, van de Veerdonk FL. 2014. The potential impact of the pulmonary microbiome on immunopathogenesis of *Aspergillus*-related lung disease. *European Journal of Immunology* 44(11):3156–3165 DOI 10.1002/eji.201344404.

Kozik A, Karkowska-Kuleta J, Zajac D, Bochenska O, Kedracka-Krok S, Jankowska U, Rapala-Kozik M. 2015. Fibronectin-, vitronectin- and laminin-binding proteins at the cell walls
of Candida parapsilosis and Candida tropicalis pathogenic yeasts. BMC Microbiology 15(1):197 DOI 10.1186/s12866-015-0531-4.

Kwak MK, Ku M, Kang SO. 2014. NAD(+)-linked alcohol dehydrogenase 1 regulates methylglyoxal concentration in Candida albicans. FEBS Letters 588(7):1144–1153 DOI 10.1016/j.febslet.2014.02.042.

Lai HY, Tam MF, Tang RB, Chou H, Chang CY, Tsai JJ, Shen HD. 2002. cDNA cloning and immunological characterization of a newly identified enolase allergen from Penicillium citrinum and Aspergillus fumigatus. International Archives of Allergy and Immunology 127(3):181–190 DOI 10.1159/000053862.

Lalmanach G, Naudin C, Lecaille F, Fritz H. 2010. Kininogens: more than cysteine protease inhibitors and kinin precursors. Biochimie 92(11):1568–1579 DOI 10.1016/j.biochi.2010.03.011.

Latgé JP, Chamilos G. 2019. Aspergillus fumigatus and aspergillosis in 2019. Clinical Microbiology Reviews 33(1):e00140-18 DOI 10.1128/cmr.00140-18.

Li L, Zhang T, Xu J, Wu J, Wang Y, Qiu X, Zhang Y, Hou W, Yan L, An M, Jiang Y. 2019. The synergism of the small molecule ENOblock and fluconazole against fluconazole-resistant Candida albicans. Frontiers in Microbiology 10:2071 DOI 10.3389/fmicb.2019.02071.

Li XS, Reddy MS, Baev D, Edgerton M. 2003. Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. Journal of Biological Chemistry 278(31):28553–28561 DOI 10.1074/jbc.M300680200.

Li XS, Sun JN, Okamoto-Shibayama K, Edgerton M. 2006. Candida albicans cell wall ssa proteins bind and facilitate import of salivary histatin 5 required for toxicity. Journal of Biological Chemistry 281(32):22453–22463 DOI 10.1074/jbc.M604064200.

Lin CS, He PJ, Tsai NM, Li CH, Yang SC, Hsu WT, Wu MS, Wu CJ, Cheng TL, Liao KW. 2010. A potential role for Helicobacter pylori heat shock protein 60 in gastric tumorigenesis. Biochemical and Biophysical Research Communications 392(2):183–189 DOI 10.1016/j.bbrc.2010.01.010.

Liu H, Jeffery CJ. 2020. Moonlighting proteins in the fuzzy logic of cellular metabolism. Molecules 25(15):3440 DOI 10.3390/molecules25153440.

Long KH, Gomez FJ, Morris RE, Newman SL. 2003. Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages. Journal of Immunology 170(1):487–494 DOI 10.4049/jimmunol.170.1.487.

Longo LVG, da Cunha JPC, Sobreira TJP, Puccia R. 2014. Proteome of cell wall extracts from pathogenic Paracoccidioides brasiliensis: comparison among morphological phases, isolates, and reported fungal extracellular vesicle proteins. EuPA Open Proteomics 3:216–228 DOI 10.1016/j.euprot.2014.03.003.

Lopes-Bezerra LM, Mora-Montes HM, Zhang Y, Nino-Vega G, Rodrigues AM, de Camargo ZP, de Hoog S. 2018. Sporotrichosis between 1898 and 2017: the evolution of knowledge on a changeable disease and on emerging etiological agents. Medical Mycology 56(suppl_1):S126–S143 DOI 10.1093/mmy/myx103.

López-Ribot JL, Alloush HM, Masten BJ, Chaffin WL. 1996. Evidence for presence in the cell wall of Candida albicans of a protein related to the hsp70 family. Infection and Immunity 64(8):3333–3340 DOI 10.1128/iai.64.8.3333-3340.1996.

López-Ribot JL, Casanova M, Murgui A, Martinez JP. 2004. Antibody response to Candida albicans cell wall antigens. FEMS Immunology & Medical Microbiology 41(3):187–196 DOI 10.1016/j.femsim.2004.03.012.

Lopez-Romero E, Reyes-Montes Mdel R, Perez-Torres A, Ruiz-Baca E, Villagomez-Castro JC, Mora-Montes HM, Flores-Carreon A, Toriello C. 2011. Sporothrix schenckii complex and
sporotrichosis, an emerging health problem. *Future Microbiology* 6(1):85–102 DOI 10.2217/fmb.10.157.

Lopez CM, Wallich R, Riesbeck K, Skerka C, Zipfel PF. 2014. *Candida albicans* uses the surface protein Gpm1 to attach to human endothelial cells and to keratinocytes via the adhesive protein vitronectin. *PLOS ONE* 9(3):e90796 DOI 10.1371/journal.pone.0090796.

Luo S, Hoffmann R, Skerka C, Zipfel PF. 2013. Glycerol-3-phosphate dehydrogenase 2 is a novel factor H-, factor H-like protein 1-, and plasminogen-binding surface protein of *Candida albicans*. *Journal of Infectious Diseases* 207(4):594–603 DOI 10.1093/infdis/jis718.

Marcos CM, de Fátima da Silva J, de Oliveira HC, Moraes da Silva RA, Mendes-Giannini MJ, Fusco-Almeida AM. 2012. Surface-expressed enolase contributes to the adhesion of *Paracoccidioides brasiliensis* to host cells. *FEMS Yeast Research* 12(5):557–570 DOI 10.1111/j.1567-1364.2012.00806.x.

Marcos CM, Silva Jde F, Oliveira HC, Assato PA, Singulani Jde L, Lopez AM, Tamayo DP, Hernandez-Ruiz O, McEwen JG, Mendes-Giannini MJ, Fusco-Almeida AM. 2016. Decreased expression of 14-3-3 in *Paracoccidioides brasiliensis* confirms its involvement in fungal pathogenesis. *Virulence* 7(2):72–84 DOI 10.1080/21505594.2015.1122166.

Marcos CM, de Oliveira HC, da Silva JdF, Assato PA, Fusco-Almeida AM, Mendes-Giannini MJS. 2014. The multifaceted roles of metabolic enzymes in the *Paracoccidioides* species complex. *Frontiers in Microbiology* 5(29):719 DOI 10.3389/fmicb.2014.00719.

Martínez-Duncker I, Díaz-Jímenez DF, Mora-Montes HM. 2014. Comparative analysis of protein glycosylation pathways in humans and the fungal pathogen *Candida albicans*. *International Journal of Microbiology* 2014:267497 DOI 10.1155/2014/267497.2014.

Martínez JP, Gil ML, López-Ribot JL, Chafín WL. 1998. Serologic response to cell wall mannoproteins and proteins of *Candida albicans*. *Clinical Microbiology Reviews* 11(1):121–141 DOI 10.1128/cmr.11.1.121.

Mendes RP, Cavalcante RS, Marques SA, Marques MEA, Venturini J, Sylvestre TF, Paniago AMM, Pereira AC, da Silva JF, Fabro AT, Bosco SMG, Bagagli E, Hahn RC, Levorato AD. 2017. Paracoccidiodomycosis: current perspectives from Brazil. *The Open Microbiology Journal* 11(1):224–282 DOI 10.2174/1874285801711010224.

Mihu MR, Nosanchuk JD. 2012. Histoplasma virulence and host responses. *International Journal of Microbiology* 2012:268123 DOI 10.1155/2012/268123.2012.

Miles LA, Dahlberg CM, Plescia J, Felez J, Kato K, Plow EF. 1991. Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. *Biochemistry* 30(6):1682–1691 DOI 10.1021/bi00220a034.

Montagnoli C, Sandini S, Bacci A, Romani L, Valle RL. 2004. Immunogenicity and protective effect of recombinant enolase of *Candida albicans* in a murine model of systemic candidiasis. *Medical Mycology* 42(4):319–324 DOI 10.1080/13693780310001644653.

Mora-Montes HM, Dasnata Ada S, Trujillo-Esquível E, de Souza Baptista AR, Lopes-Bezerra LM. 2015. Current progress in the biology of members of the *Sporothrix schenckii* complex following the genomic era. *FEMS Yeast Research* 15(6):fov065 DOI 10.1093/femsyr/fov065.

Mora-Montes HM, Ponce-Noiyla P, Villagomez-Castro JC, Gow NA, Flores-Carreon A, Lopez-Romero E. 2009. Protein glycosylation in *Candida*. *Future Microbiology* 4(9):1167–1183 DOI 10.2217/fmb.09.88.
Nava-Pérez N, Neri-García LG, Romero-González OE, Terrones-Cruz JA, García-Carnero LC, Mora-Montes HM. 2022. Biological and clinical attributes of Sporothrix globosa, a causative agent of sporotrichosis. Infect Drug Resist 15:2067–2090 DOI 10.2147/idr.s362099.

Navarro-Arias MJ, Hernández-Chávez MJ, García-Carnero LC, Amezcua-Hernández DG, Lozoya-Pérez NE, Estrada-Mata E, Martínez-Dunker I, Franco B, Mora-Montes HM. 2019. Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect Drug Resist 12:783–794 DOI 10.2147/idr.S197531.

Newman SL, Bucher C, Rhodes J, Bullock WE. 1990. Phagocytosis of Histoplasma capsulatum yeasts and microconidia by human cultured macrophages and alveolar macrophages. Cellular cytoskeleton requirement for attachment and ingestion. Journal of Clinical Investigation 85(1):223–230 DOI 10.1172/jci114416.

Nickel W, Rabouille C. 2009. Mechanisms of regulated unconventional protein secretion. Nature Reviews Molecular Cell Biology 10(2):148–155 DOI 10.1038/nrm2617.

Nobbs AH, Vickerman MM, Jenkinson HF. 2010. Heterologous expression of Candida albicans cell wall-associated adhesins in Saccharomyces cerevisiae reveals differential specificities in adherence and biofilm formation and in binding oral Streptococcus gordonii. Eukaryotic Cell 9(10):1622–1634 DOI 10.1128/ec.00103-10.

Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG, Mitchell AP. 2006. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLOS Pathogens 2(7):e63 DOI 10.1371/journal.ppat.0020063.

Nogueira SV, Fonseca FL, Rodrigues ML, Mundodi V, Abi-Chacra EA, Winters MS, Alderete JF, de Almeida Soares CM. 2010. Paracoccidioides brasiliensis enolase is a surface protein that binds plasminogen and mediates interaction of yeast forms with host cells. Infection and Immunity 78(9):4040–4050 DOI 10.1128/iai.00221-10.

Núñez-Beltrán A, López-Romero E, Cuéllar-Cruz M. 2017. Identification of proteins involved in the adhesion of Candida species to different medical devices. Microb Pathog 107(9):293–303 DOI 10.1016/j.micpath.2017.04.009.

Oehmcke-Hecht S, Köhler J. 2018. Interaction of the human contact system with pathogens—an update. Frontiers in Immunology 9:3389 DOI 10.3389/fimmu.2018.00312.

Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, Anaissie EJ, Brumble LM, Herwaldt L, Ito J, Kontoyiannis DP, Lyon GM, Marr KA, Morrison VA, Park BJ, Patterson TF, Perl TM, Oster RA, Schuster MG, Walker R, Walsh TJ, Wannemuehler KA, Chiller TM. 2010. Invasive fungal infections among organ transplant recipients: results of the transplant-associated infection surveillance network (TRANSNET). Clinical Infectious Diseases 50(8):1101–1111 DOI 10.1086/651262.

Park SJ, Mehrad B. 2009. Innate immunity to Aspergillus species. Clinical Microbiology Reviews 22(4):535–551 DOI 10.1128/cmrr.00014-09.

Pereira LA, Bão SN, Barbosa MS, da Silva JL, Felipe MS, de Santana JM, Mendes-Giannini MJ, de Almeida Soares CM. 2007. Analysis of the Paracoccidioides brasiliensis triosephosphate isomerase suggests the potential for adhesin function. Fems Yeast Research 7(8):1381–1388 DOI 10.1111/j.1567-1364.2007.00292.x.

Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE, Filler SG. 2007. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLOS Biology 5(3):e64 DOI 10.1371/journal.pbio.0050064.
Pitarch A, Sánchez M, Nombela C, Gil C. 2002. Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. *Molecular & Cellular Proteomics* 1(12):967–982 DOI 10.1074/mcp.m200062-mcp200.

Podobnik M, Tyagi R, Matange N, Dermol U, Gupta AK, Mattoo R, Seshadri K, Visweswariah SS. 2009. A mycobacterial cyclic AMP phosphodiesterase that moonlights as a modifier of cell wall permeability. *Journal of Biological Chemistry* 284(47):32846–32857 DOI 10.1074/jbc.M109.049635.

Poltermann S, Kunert A, von der Heide M, Eck R, Hartmann A, Zipfel PF. 2007. Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. *Journal of Biological Chemistry* 282(52):37537–37544 DOI 10.1074/jbc.M707280200.

Ponczek MB. 2021. High molecular weight kininogen: a review of the structural literature. *International Journal of Molecular Sciences* 22(24):13370 DOI 10.3390/ijms222413370.

Rahi A, Dhiman A, Singh D, Lynn AM, Rehan M, Bhatnagar R. 2018. Exploring the interaction between Mycobacterium tuberculosis enolase and human plasminogen using computational methods and experimental techniques. *Journal of Cellular Biochemistry* 119(2):2408–2417 DOI 10.1002/jcb.26403.

Raksha, Singh G, Urhekar AD. 2017. Virulence factors detection in Aspergillus isolates from clinical and environmental samples. *Journal of Clinical and Diagnostic Research* 11(7):Dc13–Dc18 DOI 10.7860/jcdr/2017/24055.10211.

Reyna-Beltrán E, Iranzo M, Calderón-González KG, Mondragón-Flores R, Labra-Barrios ML, Mormeneo S, Luna-Arias JP. 2018. The Candida albicans ENO1 gene encodes a transglutaminase involved in growth, cell division, morphogenesis, and osmotic protection. *Journal of Biological Chemistry* 293(12):4304–4323 DOI 10.1074/jbc.M117.810440.

Rodrigues ML, Djordjevic JT. 2012. Unravelling secretion in Cryptococcus neoformans: more than one way to skin a cat. *Mycopathologia* 173(5–6):407–418 DOI 10.1007/s11046-011-9468-9.

Rodríguez-Saavedra C, Morgado-Martínez LE, Burgos-Palacios A, King-Díaz B, López-Coria M, Sánchez-Nieto S. 2021. Moonlighting proteins: the case of the hexokinases. *Frontiers in Molecular Biosciences* 8:701975 DOI 10.3389/fmolb.2021.701975.

Ruiz-Baca E, Leyva-Sánchez H, Calderón-Barraza B, Esquivel-Naranjo U, López-Romero E, López-Rodriguez A, Cuellar-Cruz M. 2019. Identification of proteins in Sporothrixschinensisstricito in response to oxidative stress induced by hydrogen peroxide. *Revista Iberoamericana de Micología* 36(1):17–23 DOI 10.1016/j.riam.2018.10.004.

San-Blas G, Niño-Vega G, Iturriaga T. 2002. Paracoccidioides brasiliensis and paracoccidioidomycosis: molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics. *Medical Mycology* 40(3):225–242 DOI 10.1080/mny.40.3.225.242.

Satala D, Karkowska-Kuleta J, Zelazna A, Rapala-Kozik M, Kozik A. 2020a. Moonlighting proteins at the candidal cell surface. *Microorganisms* 8(7):1046 DOI 10.3390/microorganisms8071046.

Satala D, Karkowska-Kuleta J, Bukowski M, Kluza A, Rapala-Kozik M, Kozik A. 2020b. Structural insights into the interactions of candidal enolase with human vitronectin, fibronectin and plasminogen. *International Journal of Molecular Sciences* 21(21):7843 DOI 10.3390/ijms21217843.

Satala D, Satala G, Zawrotniak M, Kozik A. 2021. Candida albicans and Candida glabrata triosephosphate isomerase—a moonlighting protein that can be exposed on the candidal cell surface and bind to human extracellular matrix proteins. *BMC Microbiology* 21(1):199 DOI 10.1186/s12866-021-02235-w.
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MT, Sánchez-Arregui JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. 2016. The genomes of three uneven siblings: footprints of the lifestyles of three Trichoderma species. Microbiology and Molecular Biology Reviews 80(1):205–327 DOI 10.1128/mmbr.00040-15.

Seidler NW. 2013. GAPDH, as a virulence factor. Advances in Experimental Medicine and Biology 985(Pt 4):149–178 DOI 10.1007/978-94-007-4716-6_5.

Seweryn K, Karkowska-Kuleta J, Wolak N, Bochenska O, Kedracka-Krok S, Kozik A, Rapala-Kozik M. 2015. Kinetic and thermodynamic characterization of the interactions between the components of human plasma kinin-forming system and isolated and purified cell wall proteins of Candida albicans. Acta Biochimica Polonica 62(4):825–835 DOI 10.18388/abp.2015_1142.

Shah A, Panjabi C. 2014. Allergic aspergillosis of the respiratory tract. European Respiratory Review 23(131):8–29 DOI 10.1183/09059180.2012.000530.

Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, Filler SG, Zhang M, Waring AJ, Edwards JE Jr. 2004. Functional and structural diversity in the Als protein family of Candida albicans. Journal of Biological Chemistry 279(29):30480–30489 DOI 10.1074/jbc.M401929200.

Silveira CP, Piffer AC, Kmetzsch L, Fonseca FL, Soares DA, Staats CC, Rodrigues ML, Schrank A, Vainstein MH. 2013. The heat shock protein (Hsp) 70 of Cryptococcus neoformans is associated with the fungal cell surface and influences the interaction between yeast and host cells. Fungal Genetics and Biology 60:53–63 DOI 10.1016/j.fgb.2013.08.005.

Singh B, Fleury C, Jalalvand F, Riesbeck K. 2012. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiology Reviews 36(6):1122–1180 DOI 10.1111/j.1574-6976.2012.00340.x.

Sluchanko NN, Gusev NB. 2017. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins. FEBS Journal 284(9):1279–1295 DOI 10.1111/febs.13986.

Spampinato C, Leonardi D. 2013. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Research International 2013(12):204237 DOI 10.1155/2013/204237.

Spellberg BJ, Ibrahim AS, Avanesian V, Fu Y, Myers C, Phan QT, Filler SG, Yeaman MR, Edwards JE Jr. 2006. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. Journal of Infectious Diseases 194(2):256–260 DOI 10.1086/504691.

Stie J, Bruni G, Fox D. 2009. Surface-associated plasminogen binding of Cryptococcus neoformans promotes extracellular matrix invasion. PLOS ONE 4(6):e5780 DOI 10.1371/journal.pone.0005780.

Sun JN, Li W, Jang WS, Nayyar N, Sutton MD, Edgerton M. 2008. Uptake of the antifungal cationic peptide Histatin 5 by Candida albicans Ssa2p requires binding to non-conventional sites within the ATPase domain. Molecular Microbiology 70(3):1246–1260 DOI 10.1111/j.1365-2958.2008.06480.x.

Sun JN, Solis NV, Phan QT, Baiwa JS, Kashleva H, Thompson A, Liu Y, Dongari-Bagtzoglou A, Edgerton M, Filler SG. 2010. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLOS Pathogens 6(11):e1001181 DOI 10.1371/journal.ppat.1001181.
Sundstrom P, Jensen J, Balish E. 1994. Humoral and cellular immune responses to enolase after alimentary tract colonization or intravenous immunization with Candida albicans. Journal of Infectious Diseases 170(2):390–395 DOI 10.1093/infdis/170.2.390.

Szalewski DA, Hinrichs VS, Zinniel DK, Barletta RG. 2018. The pathogenicity of Aspergillus fumigatus, drug resistance, and nanoparticle delivery. Canadian Journal of Microbiology 64(7):439–453 DOI 10.1139/cjm-2017-0749.

Tamez-Castrellon AK, Romeo O, García-Carnero LC, Lozoya-Perez NE, Mora-Montes HM. 2020. Virulence factors in Sporothrix schenckii, one of the causative agents of sporotrichosis. Current Protein & Peptide Science 21(3):295–312 DOI 10.2174/1389203720666191007103004.

Teixeira MM, de Almeida LG, Kubitschek-Barreira P, Alves FL, Kioshma ES, Abadio AK, Fernandes L, Derengowski LS, Souza RC, Ruiz JC, de Andrade NC, Paes HC, Nicola AM, Albuquerque P, Gerber AL, Martins VP, Peconick LD, Neto AV, Chaucanez CB, Silva PA, Cunha OL, de Oliveira FF, dos Santos TC, Barros AL, Soares MA, de Oliveira LM, Marini MM, Villalobos-Duno H, Cunha MM, de Hoog S, da Silveira JF, Henrisset B, Nino-Vega GA, Cisalpino PS, Mora-Montes HM, Almeida SR, Stajich JE, Lopes-Bezerra LM, Vasconcelos AT, Felipe MS. 2014. Comparative genomics of the major fungal agents of human and animal sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics 15(1):943 DOI 10.1186/1471-2164-15-943.

Thammahong A, Caffrey-Card AK, Dhingra S, Obar JJ, Cramer RA. 2017. Aspergillus fumigatus trehalose-regulatory subunit homolog moonlights to mediate cell wall homeostasis through modulation of chitin synthase activity. mBio 8(2):e00056-17 DOI 10.1128/mBio.00056-17.

Tomlin H, Piccinini AM. 2018. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology 155(2):186–201 DOI 10.1111/imm.12972.

Tompa P, Szász C, Buday L. 2005. Structural disorder throws new light on moonlighting. Trends in Biochemical Sciences 30(9):484–489 DOI 10.1016/j.tibs.2005.07.008.

Tóth R, Nosek J, Mora-Montes HM, Gabaldon T, Bliss JM, Nosanchuk JD, Turner SA, Butler G, Vágvölgyi C, Gácsér A. 2019. Candida parapsilosis: from Genes to the Bedside. Clinical Microbiology Reviews 32(2):e00111-18 DOI 10.1128/cmr.00111-18.

Turner SA, Butler G. 2014. The Candida pathogenic species complex. Cold Spring Harbor Perspectives in Medicine 4(9):a019778 DOI 10.1101/cshperspect.a019778.

Vallejo MC, Nakayasu ES, Matsuo AL, Sobreira TJ, Longo LV, Ganiko L, Almeida IC, Puccia R. 2012. Vesicle and vesicle-free extracellular proteome of Paracoccidioides brasiliensis: comparative analysis with other pathogenic fungi. Journal of Proteome Research 11(3):1676–1685 DOI 10.1021/pr200872s.

Vanegas G, Quiñones W, Carrasco-López C, Concepción JL, Albericio F, Avilán L. 2007. Enolase as a plasminogen binding protein in Leishmania mexicana. Parasitology Research 101(6):1511–1516 DOI 10.1007/s00436-007-0668-7.

Zhao X, Daniels KJ, Oh SH, Green CB, Yeater KM, Soll DR, Hoyer LL. 2006. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology (Reading) 152(Pt 8):2287–2299 DOI 10.1099/mic.0.28959-0.

Zhao X, Oh SH, Cheng G, Green CB, Nuessen JA, Yeater K, Leng RP, Brown AJP, Hoyer LL. 2004. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology (Reading) 150(Pt 7):2415–2428 DOI 10.1099/mic.0.26943-0.