Abstract. We establish exact sequences in KK-theory for graded relative Cuntz–Pimsner algebras associated to nondegenerate right-Hilbert bimodules. We use this to calculate the graded K-theory and K-homology of relative Cuntz–Krieger algebras of directed graphs for gradings induced by $\{0,1\}$–valued labellings of their edge sets.

Introduction

In the study of C^*-algebras, operator K-theory, which generalises topological K-theory via Gelfand duality, has long been a key invariant. Indeed, it is a knee-jerk reaction for C^*-algebraist these days, when presented with a new example, to try to compute its K-theory; and the K-theory frequently reflects key structural properties. For example, the ordered K-theory of an irrational rotation algebra recovers the angle of rotation up to a minus sign [11, 12], while the K-theory of a Cuntz–Krieger algebra recovers the Bowen–Franks group of the associated shift space [6, 7]. Cuntz proved that the K-theory groups of the C^*-algebra of a finite directed graph E with no sources and with $\{0,1\}$-valued adjacency matrix A_E are the cokernel and kernel of the matrix $1-A_E^t$ regarded as an endomorphism of the free abelian group $\mathbb{Z}E^0$ (see [7, Proposition 3.1]). This was generalised to row-finite directed graphs E with no sources in [24], to all row-finite directed graphs E in [28], and to arbitrary graphs (with appropriate adjustments made to the domain and the codomain of A_E^t) in [1, 10], see also [13, 36, 32, 33, 27].

Dual to K-theory is the K-homology theory that emerged in the pioneering work of Brown–Douglas–Fillmore [3, 4]. It is less of an automatic reaction to compute K-homology for C^*-algebras, but, for example, Cuntz and Krieger computed (in [6, Theorem 5.3]) the Ext-group (that is, the odd K-homology group) of the Cuntz–Krieger algebra O_A of $A \in M_n(\mathbb{Z}_+)$ as the cokernel of $1-A$ regarded as an endomorphism of \mathbb{Z}^n. The computation was later generalised to graph C^*-algebras in [35, 10] (see also [36, 5]).

Both K-theory and K-homology are unified in Kasparov’s KK-theory [18, 19]: the K-theory and K-homology groups of A are the Kasparov groups $KK_*(\mathbb{C},A)$ and $KK_*(A,\mathbb{C})$ respectively. So Kasparov’s theory provides a unified approach to calculating K-theory and K-homology. Pimsner exploited this in [26], developing two exact sequences in KK-theory for the C^*-algebra O_X associated to a right-Hilbert A–A-bimodule X, and using one of them to compute the K-theory of O_X in terms of that of A. Every graph determines an associated Hilbert module, and while the Pimsner algebra of this module only agrees with the graph C^*-algebra when the graph has no sources, Muhly and Tomforde developed...
a modified bimodule [23] whose Pimsner algebra always contains the graph C^*-algebra as a full corner. In particular, combining these results provides a new means of computing the K-theory and K-homology of graph C^*-algebras.

Kasparov’s KK-theory is most naturally a theory for graded C^*-algebras, and the results described above are obtained by endowing the C^*-algebras involved with the trivial grading. However, graph C^*-algebras admit many natural gradings: by the universal property of $C^*(E)$, every binary labelling $\delta : E^1 \rightarrow \{0, 1\}$ of the edges of E induces a grading automorphism that sends the generator s_e associated to an edge e to $(-1)^{\delta(e)}s_e$. More generally, every grading of a right-Hilbert bimodule induces a grading of the associated Pimsner algebra.

In [20], Kumjian, Pask and Sims investigated graded K-theory and K-homology, defined in terms of Kasparov theory (other approaches to graded K-theory are investigated in, for example, [8, 9, 16]) of graded graph C^*-algebras, extending earlier results of [14, 15] for the Cuntz algebras \mathcal{O}_n. By extending Pimsner’s arguments to C^*-algebras of graded Hilbert bimodules with injective left actions by compacts, they computed the graded K-theory of the C^*-algebras of row-finite graphs with no sources. They showed (in [20, Colloquary 8.3]) that if E is a row-finite directed graph with no sources, α_0 is the grading associated with a given function $\delta : E^1 \rightarrow \{0, 1\}$, and A_E^0 is the $E^0 \times E^0$ matrix with entries $A^0_E(v, w) = \sum_{e \in vE^1w} \delta(e)$, then the graded K-theory groups are isomorphic to the cokernel and kernel of $1 - (A^0_E)^t$ regarded as an endomorphism of $\mathbb{Z}E^0$.

In this paper we compute both the graded K-theory and the graded K-homology of relative Cuntz–Krieger algebras of arbitrary graphs: Let V be any subset of regular vertices E^0_{tg} (those which receive a nonzero finite set of edges). The relative Cuntz–Krieger algebra $C^*(E; V)$ is the universal C^*-algebra in which the Cuntz–Krieger relation is only imposed at vertices in V. In particular $C^*(E) = C^*(E; E^0_{tg})$ for directed graph E. Let A^0_V be the $V \times E^0$ matrix with entries given by the same formula as A^0_E, regarded as a homomorphism from $\mathbb{Z}E^0$ to $\mathbb{Z}V$. Write \tilde{A}^0_V for the dual homomorphism from $\mathbb{Z}E^0$ to $\mathbb{Z}V$. Let $\iota : \mathbb{Z}V \rightarrow \mathbb{Z}E^0$ be the inclusion map, and let $\pi : \mathbb{Z}E^0 \rightarrow \mathbb{Z}V$ be the projection map. Then the graded K-theory groups and K-homology groups of the relative Cuntz–Krieger algebra are given by

\begin{align*}
K^0_0(C^*(E; V), \alpha_0) &\cong \ker(\iota - A^0_V)^t, \\
K^0_1(C^*(E; V), \alpha_0) &\cong \ker(\pi - \tilde{A}^0_V), \\
K^0_0(C^*(E; V), \alpha_0) &\cong \ker(\iota - A^0_V)^t, \\
K^1_1(C^*(E; V), \alpha_0) &\cong \ker(\pi - \tilde{A}^0_V).
\end{align*}

To prove this, we use that $C^*(E; V)$ may be realised as a relative Cuntz–Pimsner algebra of a graph module $X(E)$. We verify that the two assumptions (namely injectivity and compactness) imposed on the left actions of A on a Hilbert module X in the arguments of [26, 20] are not needed. As a result we obtain exact sequences in KK-theory analogous to those of [20] for relative Cuntz–Pimsner algebras. By calculating the KK-groups and the maps between them in the situation where X is the graph module $X(E)$, we obtain the desired calculations of graded K-theory and K-homology for relative graph C^*-algebras, substantially generalising the results in [20].

We then present an alternative calculation using Muhly and Tomforde’s adding-tails construction. In this approach, Pimsner’s exact sequences are needed only for modules where the homomorphism implementing the left action is injective. Given an arbitrary nondegenerate bimodule X, we add an infinite direct sum of copies of the Katsura ideal J_X to both the coefficient algebra and the module X to obtain a new module Y over a new
algebra B which acts injectively on the left. We then recover the exact sequences for \mathcal{O}_Y from the ones we already have for \mathcal{O}_X using countable additivity in KK-theory. This is automatic in the first variable, so we obtain a complete generalisation of the contravariant exact sequence of [20] for \mathcal{O}_X. However, KK-theory is not in general countably additive in the second variable. However $KK_1(\mathbb{C}, \cdot)$ is countably additive for graded C^*-algebras (we could not find a reference, so we give the details) so we obtain an exact sequence describing the graded K-theory $KK_1(\mathbb{C}, \mathcal{O}_X)$.

We begin in Section 1 with some background on KK-theory, mostly to establish notation. More-detailed background on KK-theory can be found in [20], and of course in Blackadar’s book [2], which is our primary reference. We assume the reader is familiar with Hilbert modules and graph C^*-algebras. A convenient summary of the requisite background appears in [20], and more details can be found in [27, 29, 21, 26]. We also provide a little background on the relative Cuntz–Pimsner algebras of Muhly and Solel [22], of which Katsura’s Katsura–Pimsner algebras are a special case. In Section 2 we show how to generalise the results of [20] to relative Cuntz–Pimsner algebras of arbitrary essential graded Hilbert modules. In Section 3 we apply these results to compute the graded K-theory and K-homology of relative Cuntz–Krieger algebras of arbitrary graphs. In Section 4, we show how Muhly and Tomforde’s adding-tails construction for Hilbert modules can be adapted to graded modules, and reconcile this with our K-theory and K-homology results for the graded Katsura–Pimsner algebra of a nondegenerate Hilbert module.

1. Background material

In this section we provide some background on KK-theory, relative graph C^*-algebras and terminology used in the later sections.

1.1. Direct sums and products of groups. Let S be any countable set. We let Z^S denote the direct sum $\bigoplus_{s \in S} \mathbb{Z}$ of copies of \mathbb{Z} (the group of all finitely supported functions from S to \mathbb{Z}), and Z^S denotes the direct product $\prod_{s \in S} \mathbb{Z}$ of copies of \mathbb{Z} (the group of all functions from S to \mathbb{Z}). More generally we write $\prod_{n=1}^{\infty} G_n$ for the infinite product of groups G_n, and $\bigoplus_{n=1}^{\infty} G_n$ for the subgroup generated by the G_n.

1.2. Hilbert modules. Given a C^*-algebra B and a right Hilbert B-module X, we write $\mathcal{L}(X)$ for the adjointable operators on X, we write $\mathcal{K}(X)$ for the generalised compact operators on X, and given $\xi, \eta \in X$ we write $\Theta_{\xi, \eta}$ for the compact operator $\zeta \mapsto \xi \cdot \langle \eta, \zeta \rangle_B$. If $\phi : A \to \mathcal{L}(X)$ is a C^*-homomorphism so that X is an A–B-correspondence, we say that the left action is injective if ϕ is injective and that the left action is by compact operators if $\phi(A) \subseteq \mathcal{K}(X)$.

Let I be an ideal of a C^*-algebra A and X be a right Hilbert A-module X. Following [17], we define $XI := \{ x \in X : \langle x, x \rangle \in I \}$. This XI is a right Hilbert I-module under the same operations as Y, and $XI = X \cdot I := \{ x \cdot i : x \in X, i \in I \}$ justifying the notation.

1.3. Gradings. A grading of a C^*-algebra is a self-inverse automorphism α of A, and decomposes A into direct summands $A_0 = \{ a : \alpha(a) = a \}$ and $A_1 = \{ a : \alpha(a) = -a \}$. We write $\partial(a) = i$ if $a \in A_i$. If a, b are homogeneous, then their graded commutator is $[a, b]_{\partial} := ab - (-1)^{\partial(a)\partial(b)}ba$, and we extend this formula bilinearly to arbitrary $a, b \in A$. Elements of $A_0 \cup A_1$ are called homogeneous, elements of A_0 are even and elements of
A \textit{grading} of a \(C^*\)-correspondence \(X\) over a \(C^*\)-algebra \((A,\alpha_A)\) and \((B,\alpha_B)\) is a map \(\alpha_X : X \to X\) such that \(\alpha_X^2 = \text{id}, \alpha_X(a \cdot x \cdot b) = \alpha_A(a) \cdot \alpha_X(x) \cdot \alpha_B(b),\) and \(\alpha_B((x, y)_B) = \langle \alpha_X(x), \alpha_X(y) \rangle_B\). This induces a grading \(\hat{\alpha}_X\) on \(\mathcal{L}(X)\) given by \(\hat{\alpha}_X(T) = \alpha_X \circ T \circ \alpha_X\). Again, \(X\) decomposes as the direct sum of \(X_0 = \{\xi : \alpha_X(\xi) = \xi\}\) and \(X_1 = \{\xi : \alpha_X(\xi) = -\xi\}\), we call the elements of the \(X_i\) homogeneous, and odd and even as above.

For a graded \(C^*\)-algebra \(B\) set \(IB := C([0, 1]) \hat{\otimes} B\) with the trivial grading on \(C([0, 1])\). For each \(t \in [0, 1]\) the homomorphism \(\epsilon_t : IB \to B\) given by \(\epsilon_t(f \hat{\otimes} b) = f(t)b\) is graded. It follows that \(B\) may be regarded as a graded \(IB-B\)-correspondence \((\epsilon_t, B_B)\).

1.4. \textit{Graded tensor products.} The \textit{graded tensor product} of graded \(C^*\)-algebras \(A\) and \(B\) is the minimal \(C^*\)-completion of the algebraic tensor product \(A \otimes B\) with involution satisfying \((a \hat{\otimes} b)^* = (-1)^{\delta a-\delta b} a^* \hat{\otimes} b^*\) and multiplication satisfying \((a \hat{\otimes} b)(a' \hat{\otimes} b') = (-1)^{\delta a-\delta a'} ab' \hat{\otimes} a'b\) for homogeneous elements \(a, a' \in A\) and \(b, b' \in B\). There is a grading \(\alpha_A \hat{\otimes} \alpha_B\) on \(A \hat{\otimes} B\) such that \((\alpha_A \hat{\otimes} \alpha_B)(a \hat{\otimes} b) = \alpha_A(a) \hat{\otimes} \alpha_B(b)\). The balanced tensor product \(X \hat{\otimes}_B Y\) of graded \(C^*\)-correspondences admits a grading \(\alpha_X \hat{\otimes} \alpha_Y\) on \(X \hat{\otimes}_\psi Y\) such that \((\alpha_X \hat{\otimes} \alpha_Y)(x \hat{\otimes} y) = \alpha_X(x) \hat{\otimes} \alpha_Y(y)\).

1.5. \textit{Relative Cuntz–Pimsner algebras.} Let \(X\) be a graded \(A-A\)-correspondence, and write \(\varphi : A \to \mathcal{L}(X)\) for the homomorphism inducing the left action.

A \textit{representation} of \(X\) in a \(C^*\)-algebra \(B\) is a pair \((\pi, \psi)\) consisting of a homomorphism \(\pi : A \to B\) and a linear map \(\psi : X \to B\) such that \(\pi(a)\psi(\xi)\pi(b) = \psi(a \cdot x \cdot b)\) and \(\pi((\xi, \eta)_A) = \psi(\xi)^* \psi(\eta)\) for all \(a, b \in A\) and \(\xi, \eta \in X\). The \textit{Toeplitz algebra} \(T_X\) of \(X\) is the universal \(C^*\)-algebra generated by a representation of \(X\). Such a representation induces a homomorphism \(\psi^{(1)} : \mathcal{K}(X) \to B\) satisfying \(\psi^{(1)}(\Theta_{\xi, \eta}) = \psi(\xi)^* \psi(\eta)^*\) for all \(\xi, \eta\). The universal property of \(T_X\) gives a grading \(\alpha_T\) of \(T_X\) such that if \((\pi, \psi)\) is the universal representation of \(X\) in \(T_X\), then \(\alpha_T \circ \pi = \pi \circ \alpha_A\), and \(\alpha_T \circ \psi = \psi \circ \alpha_X\).

Let \(C := \varphi^{-1}(\mathcal{K}(X))\); observe that if \((\pi, \psi)\) is a representation of \(X\), then both \(\pi\) and \(\psi^{(1)} \circ \varphi\) are homomorphisms from \(C\) to \(T_X\). Given an ideal \(I \subseteq C\), the relative Cuntz–Pimsner algebra \(\mathcal{O}_{X,I}\) is defined to be the universal \(C^*\)-algebra generated by a representation \((\pi, \psi)\) that is \(I\)-\textit{covariant} in the sense that \(\pi|_I = (\psi^{(1)} \circ \varphi)|_I\). If \(I\) is invariant under the grading \(\alpha_A\) of \(A\), then the universal property of \(\mathcal{O}_{X,I}\) shows that the grading \(\alpha_T\) of \(T_X\) descends to a grading \(\alpha_O\) of \(\mathcal{O}_{X,I}\).

The \textit{Fock space} \(\mathcal{F}_X\) is the internal direct sum \(\mathcal{F}_X := \bigoplus_{n=0}^{\infty} X^{\hat{\otimes} n}\), with the convention that \(X^{\hat{\otimes} 0} = A A\). There is a representation \((\ell_0, \ell_1)\) of \(X\) in \(\mathcal{L}(\mathcal{F}_X)\) such that \(\ell_0(a)\xi = a \cdot \xi\) and such that \(\ell_1(\xi)\eta = \xi \hat{\otimes}_A \eta\). The induced homomorphism \(\pi_0 : T_X \to \mathcal{L}(\mathcal{F}_X)\) is injective.

The ideal \(C = \varphi^{-1}(\mathcal{K}(X))\) of \(A\) induces the submodule \(\mathcal{F}_{X,C} := \mathcal{F}_X C\). The subalgebra \(\mathcal{K}(\mathcal{F}_{X,C}) := \text{span} \{\Theta_{\xi, \eta} : \xi, \eta \in \mathcal{F}_{X,C}\} \subseteq \mathcal{L}(\mathcal{F}_X)\) is contained in \(\pi_0(\mathcal{T}_X)\) (see [22, Lemma 2.17]). Since \(\pi_0 : T_X \to \mathcal{L}(\mathcal{F}_X)\) is injective, it determines an inclusion \(j : \mathcal{K}(\mathcal{F}_{X,C}) \to T_X\). In particular, for any ideal \(I \subseteq C\), \(j\) restricts to a graded inclusion of \(\mathcal{K}(\mathcal{F}_{X,I})\) in \(T_X\). Theorem 2.19 in [22] and a routine application of universal properties show that the quotient map \(T_X \to \mathcal{O}_{X,I}\) induces an isomorphism \(T_X / j(\mathcal{K}(\mathcal{F}_{X,I})) \cong \mathcal{O}_{X,I}\).
1.6. Kasparov modules. If \((A, \alpha_A)\) and \((B, \alpha_B)\) are separable graded \(C^*\)-algebras, then a Kasparov \(A-B\)-module is a quadruple \((X, \phi, F, \alpha_X)\) where \((\phi, X)\) is a countably generated \(A-B\)-correspondence, \(\alpha_X\) is a grading of \(X\), and \(F \in \mathcal{L}(X)\) is an odd element with respect to the grading \(\hat{\alpha}_X\) on \(\mathcal{L}(X)\) such that for all \(a \in A\) the elements \((F-a')\phi(a), (F^2-1)\phi(a), \) and \([F, \phi(a)]^{gr}\) are compact. When these elements are all zero we call \((X, \phi, F, \alpha_X)\) for a degenerate Kasparov module.

Kasparov \(A-B\)-modules \((X_0, \phi_0, F_0, \alpha_{X_0})\) and \((X_1, \phi_1, F_1, \alpha_{X_1})\) are unitarily equivalent if there is a unitary \(U \in \mathcal{L}(X_0, X_1)\) that intertwines \(\phi_0\) and \(\phi_1\), \(F_0\) and \(F_1\), and \(\alpha_0\) and \(\alpha_1\). They are homotopy equivalent if there is Kasparov \(A-\mathbb{I}B\)-module \((X, \phi, F, \alpha_X)\) such that, \((X \hat{\otimes}_{\epsilon_i} B_B, \epsilon_i \circ \phi, \epsilon_i(F), \alpha_X \hat{\otimes} \alpha_B)\) is unitarily equivalent to \((X_i, \phi_i, F_i, \alpha_{X_i})\) for each \(i = 0, 1\). Homotopy equivalence is denoted \(\sim_h\), and is an equivalence relation. The Kasparov group \(KK(A, B)\) is the collection of all homotopy classes of Kasparov \(A-B\)-modules, which is a group under the operation induced by taking direct sums of Kasparov modules. Given a graded homomorphism \(\psi : A \to B\) of \(C^*\)-algebras, and a Kasparov \(B-C\)-module \((X, \phi, F, \alpha_X)\), we obtain a new Kasparov \(A-C\)-module \((X, \phi \circ \psi, F, \alpha_X)\), whose class we denote \(\psi[X]\). For a graded homomorphism \(\psi : B \to C \cong \mathcal{K}(C_C)\) we let \([\psi] := [C_C, \psi, 0, \alpha_C] \in KK(B, C)\). If \(\phi : A \to B\) is a graded homomorphism and \((Y, \psi, G, \alpha_Y)\) is a Kasparov \(C-A\)-module, then \((Y \hat{\otimes}_\phi B_B, \psi \hat{\otimes} 1, G \hat{\otimes} 1, \alpha_Y \hat{\otimes} \alpha_B)\) is a Kasparov \(C-B\)-module whose class we denote by \(\phi_*[Y, \psi, G, \alpha_Y]\).

We will need to use that graded Morita equivalence implies \(KK\)-equivalence. Suppose that \((A, \alpha_A)\) and \((B, \alpha_B)\) are graded \(C^*\)-algebras, and \((X, \alpha_X)\) is a graded imprimitivity \(A-B\)-module. Then in particular the left action of \(A\) on \(X\) is implemented by a homomorphism \(\varphi : A \to \mathcal{K}(X)\), and the right action of \(B\) on the dual module \(X^*\) is implemented by a homomorphism \(\psi : B \to \mathcal{K}(X^*)\). So we obtain \(KK\)-classes \([X] := [X, \varphi, 0, \alpha_X] \in KK(A, B)\) and \([X^*] := [X^*, \psi, 0, \alpha_{X^*}] \in KK(B, A)\). Since the Fredholm operators in both modules of these Kasparov modules are zero, we have \([X] \hat{\otimes}_B [X^*] = [X \hat{\otimes}_B X^*, \varphi \otimes 1, 0, \alpha_X \hat{\otimes} \alpha_{X^*}]\). Since \(X\) is an imprimitivity module, we have \(X \hat{\otimes} X^* \cong A\) via \(\xi \otimes \eta \mapsto A(\xi, \eta)\), and it is routine to check that this isomorphism intertwines the canonical left action \(\hat{\varphi}\) of \(A\) on \(X \otimes X^*\) with the left action \(L_A\) of \(A\) on itself by left multiplication, and intertwines \(\alpha_X \otimes \alpha_{X^*}\) with \(\alpha_A\). So \([X] \hat{\otimes}_B [X^*] = [A, L_A, 0, \alpha_A] = [id_A]\). Similarly \([X^*] \hat{\otimes}_A [X] = [id_B]\), and so \((A, \alpha_A)\) and \((B, \alpha_B)\) are \(KK\)-equivalent.

2. Graded \(K\)-theory of relative Cuntz–Pimsner algebras

In this section we generalise the main results in Section 4 of [20] establishing exact sequences in \(KK\)-theory for graded relative Cuntz–Pimsner algebras associated to an essential graded \(A-A\)-correspondence. We do not assume the action is injective, nor compact nor that \(X\) is full, but we do assume that \(X\) is essential (or nondegenerate) in the sense that \(\overline{\varphi(A)X} = X\).

Set-up. Throughout this section we fix a graded, separable, nuclear \(C^*\)-algebra \(A\) and a graded countably generated essential \(A-A\)-correspondence \(X\) with a left action \(\varphi\) and we fix an ideal \(I \subseteq \varphi^{-1}(\mathcal{K}(X))\).

For readers interested in the Katsura–Pimsner algebra \(O_X\) ([17, Definition 3.5]) we recall that it coincides with the relative Cuntz–Pimsner algebra \(O_{X,I}\) for \(I = \varphi^{-1}(\mathcal{K}(X)) \cap \ker \varphi^\perp\), where \(\ker \varphi^\perp = \{b \in A : b \ker \varphi = \{0\}\}\).

We present terminology of [20] relevant to Lemma 2.1. Let \(F_X\) be the Fock space of \(X\), let \(\alpha_X^\infty\) be the diagonal grading on \(F_X\), and let \(\varphi^\infty : A \to \mathcal{L}(F_X)\) be the diagonal left
action of \(A \) on \(\mathcal{F}_X \). Recall that \(\mathcal{T}_X \) is the Toeplitz algebra associated to \(X \), generated by \(i_A(a) = \varphi^\infty(a) \) and \(i_X(\xi) = T_\xi \), and \(\alpha_T \) is the restriction of \(\tilde{\alpha}_X^\infty \) to \(\mathcal{T}_X \). Let \(\pi_i : \mathcal{T}_X \to \mathcal{L}(\mathcal{F}_X) \) be the representations determined by

\[
\pi_0(T_\xi)\rho = \begin{cases}
\xi \otimes \rho, & \rho \in X^{\hat{n}}, n \geq 1, \\
\xi \cdot \rho, & \rho \in A,
\end{cases}
\pi_1(T_\xi)\rho = \begin{cases}
\xi \otimes \rho, & \rho \in X^{\hat{n}}, n \geq 1, \\
0, & \rho \in A.
\end{cases}
\]

As presented in [20, Section 4] there is a Kasparov \(\mathcal{T}_X-A \)-module given by

\[
M = \left(\mathcal{F}_X \oplus \mathcal{F}_X, \pi_0 \oplus \pi_1 \circ \alpha_T, (\begin{smallmatrix} 0 & \alpha_X^\infty \\
0 & -\alpha_X^\infty \end{smallmatrix}), \left(\begin{smallmatrix} 0 & 0 \\
-\alpha_X^\infty & \alpha_X^\infty \end{smallmatrix}\right) \right).
\]

Recall, for the canonical inclusion \(i_A : A \to \mathcal{T}_X \) and a graded \(C^* \)-algebra \(B \) we have

\[
[i_A] = [(\mathcal{T}_X, i_A, 0, \alpha_T)] \in KK(A, \mathcal{T}_X), \quad \text{and} \quad [\text{id}_B] = [B, \text{id}_B, 0, \alpha_B] \in KK(B, B).
\]

By [20, Theorem 4.2], if \(\varphi \) is injective and by compact operators, then the Kasparov classes \([i_A]\) and \([M]\) are mutually inverse in the sense that \([i_A] \otimesT_X [M] = [i_A]\) and \([M] \otimesA [i_A] = [\text{id}_{\mathcal{T}_X}]\). We prove the result is true without assuming \(\varphi \) is injective or by compact operators.

Lemma 2.1 (cf. [20, Theorem 4.2]). With notation as above, the pair \([i_A]\) and \([M]\) are mutually inverse. In particular, \((A, \alpha_A)\) and \((\mathcal{T}_X, \alpha_T)\) are \(KK \)-equivalent.

Proof. The argument in the proof of [20, Theorem 4.2] showing that \([i_A] \otimesT_X [M] = [i_A]\) does not require injectivity nor compactness of the left action \(\varphi \).

To show \([M] \otimesA [i_A] = [\text{id}_{\mathcal{T}_X}]\), we adjust the proof of [20, Theorem 4.2]. Let \(\pi_0' := \pi_0 \otimes 1_T \) and \(\pi_1' := (\pi_1 \circ \alpha_T) \otimes 1_T \). By [2, Proposition 18.7.2(a)], identifying \((\mathcal{F}_X \oplus \mathcal{F}_X) \otimesA \mathcal{T}_X \) with \((\mathcal{F}_X \otimesA \mathcal{T}_X) \oplus (\mathcal{F}_X \otimesA \mathcal{T}_X) \),

\[
[M] \otimesA [i_A] = (i_A)_* [M] = \left((\mathcal{F}_X \oplus \mathcal{F}_X) \otimesA \mathcal{T}_X, \pi_0' \oplus \pi_1', (\begin{smallmatrix} 0 & 0 \\
-\alpha_X^\infty & \alpha_X^\infty \end{smallmatrix}), \left(\begin{smallmatrix} 0 & 0 \\
-\alpha_X^\infty & \alpha_X^\infty \end{smallmatrix}\right) \right).
\]

Since \(X \) is essential we have \(A \otimesA \mathcal{T}_X \cong \mathcal{T}_X \) as graded \(A-\mathcal{T}_X \)-correspondences, and so \(\alpha_T \) defines a left action of \(\mathcal{T}_X \) on \(A \otimesA \mathcal{T}_X \). Extending by zero, we get an action \(\tau \) of \(\mathcal{T}_X \) on \(\mathcal{F}_X \otimesT \mathcal{T}_X \). The proof of [20, Theorem 4.2] shows that

\[
\left((\mathcal{F}_X \oplus \mathcal{F}_X) \otimesA \mathcal{T}_X, 0 \oplus \tau, (\begin{smallmatrix} 0 & 0 \\
0 & \alpha_X^\infty \otimesA \alpha_T \end{smallmatrix}), (\begin{smallmatrix} 0 & 0 \\
-\alpha_X^\infty & \alpha_X^\infty \end{smallmatrix}) \right) \]

and hence

(2.1) \((i_A)_* [M] - [\text{id}_{\mathcal{T}_X}] = \left((\mathcal{F}_X \oplus \mathcal{F}_X) \otimesA \mathcal{T}_X, \pi_0' \oplus (\pi_1' + \tau), (\begin{smallmatrix} 0 & 0 \\
0 & \alpha_X^\infty \otimesA \alpha_T \end{smallmatrix}), (\begin{smallmatrix} 0 & 0 \\
0 & -\alpha_X^\infty \otimesA \alpha_T \end{smallmatrix}) \right) \).

We claim (2.1) is the class of a degenerate Kasparov module. To show this, for each \(t \in [0, 1] \) define \(\psi_t : X \to \mathcal{L}(\mathcal{F}_X \otimes \mathcal{T}_X) \) by

\[
\psi_t(\xi) = \cos(t\pi/2)(\pi_0'(\alpha_T(T_\xi))) - \pi_1'(T_\xi) + \sin(t\pi/2)\tau(\xi) + \pi_1'(T_\xi).
\]

With \(\varphi^\infty := \varphi^\infty \otimes 1_{\mathcal{T}_X} : A \to \mathcal{L}(\mathcal{F}_X \otimes \mathcal{T}_X) \) we have a Toeplitz representation \((\varphi^\infty \circ \alpha_A, \psi_t) \) of \(X \). Hence for each \(t \in [0, 1] \) there is a homomorphism \(\pi_t' : \mathcal{T}_X \to \mathcal{L}(\mathcal{F}_X \otimes \mathcal{T}_X) \) such that \(\pi_t'(T_\xi) = \psi_t(\xi) \) and \(\pi_t'(a) = \varphi^\infty \circ \alpha_A(a) \) for all \(\xi \in X \) and \(a \in A \). We claim that \(K_{t, \xi} := (\pi_t' - \pi_1')(T_\xi) \) is compact for each \(\xi \in X \). To see this, note that \(K_{t, \xi} \) vanishes on \((\mathcal{F}_X \oplus A) \otimesA \mathcal{T}_X = (\mathcal{F}_X \otimesA \mathcal{T}_X) \oplus (A \otimesA \mathcal{T}_X) \), and has range contained in the subspace \(A \otimesA \mathcal{T}_X \), thus we need only need to show that \(K_{t, \xi} \) is compact on \(A \otimesA \mathcal{T}_X \). To show this recall that for an \(A-B \)-correspondence \(Y \) with an left action \(\psi : A \to \mathcal{L}(Y) \), putting \(J := \psi^{-1}(\mathcal{K}(Y)) \), for each \(k \in \mathcal{K}(A,J) \) the operator \(k \otimes \text{1}_Y \) is compact on \(A \otimes \psi Y \), see [21,
Proposition 4.7. With $Y := T_X$, $\psi := i_A = \varphi^\infty$ and $J := i_A^{-1}(\mathcal{K}(T_X)) = A$ it follows that each $\tilde{\varphi}^\infty(a)|_{A \otimes_A T_X}$ is compact (because $\varphi^\infty(a)|_A$ is compact). Use [29, Proposition 2.31] to express $\xi = y \cdot \langle y, y \rangle$. We compute

\[K_{\xi, \xi} = \pi'_1(T_{\xi}) - \pi'_1(T_{\xi}) = (\pi'_1(T_y) - \pi'_1(T_y)) \tilde{\varphi}^\infty(\langle y, y \rangle), \]

which is compact since $\tilde{\varphi}^\infty(\langle y, y \rangle)|_{A \otimes_A T_X}$ is compact. As in [20], $\psi_0(\xi) = \pi'_0 \circ \alpha_T(T_{\xi})$ and $\psi_1(\xi) = (\pi'_1 + \tau)(T_{\xi})$, so we can replace $\pi'_1 + \tau$ with $\pi'_0 \circ \alpha_T$ in the expression (2.1) for $(i_A)_* [M] - [\text{id}_{T_X}]$ without changing the class. The latter is the class of a degenerate Kasparov module, proving the claim. Thus $[M] \otimes_A [i_A] = [\text{id}_{T_X}]$. \qed

We introduce the notation used in Lemma 2.1. Let $I \subseteq \varphi^{-1}(\mathcal{K}(X))$ be the ideal of A consisting of elements that act as compact operators on the left of X. Let $\mathcal{F}_{X,I}$ denote the right Hilbert I-module $\mathcal{F}_{X,I} := \{ \xi \in \mathcal{F}_X : \langle \xi, \xi \rangle_A \in I \}$. Let $\iota_{F_1}: I \hookrightarrow A$ and $\iota_{F_1} : K(\mathcal{F}_{X,I}) \hookrightarrow \mathcal{L}(\mathcal{F}_X)$ be the inclusion maps. As discussed in Section 1, $\iota_{F_1}(K(\mathcal{F}_{X,I}))$ contained in the image of $\pi_0(\mathcal{T}_X) \subseteq \mathcal{L}(\mathcal{F}_X)$ of the Toeplitz algebra under its canonical representation on the Fock space. Thus there is a graded embedding $j : K(\mathcal{F}_{X,I}) \hookrightarrow \mathcal{T}_X$ such that $\pi_0 \circ j = \iota_{F_1}$. We have the induced Kasparov classes

\[[\iota_I] = [A_A, \iota_I, 0, \alpha_A] \in KK(I, A), \quad [j] = [\mathcal{T}_X, j, 0, \alpha_T] \in KK(K(\mathcal{F}_{X,I}), \mathcal{T}_X). \]

Writing $P : \mathcal{F}_X \to \mathcal{F}_X \ominus A = \bigoplus_{n=1}^{\infty} X^\otimes n$ for the projection onto the orthogonal complement of the 0th summand, we have

\[[M] = \left[F_X \oplus (F_X \ominus A), \pi_0 \oplus \pi_1 \circ \alpha_T, \left(\begin{array}{cc} 0 & 1 \\ \frac{1}{\pi} & 0 \end{array} \right), \left(\begin{array}{cc} \frac{1}{\alpha_X} & 0 \\ 0 & -\frac{1}{\alpha_X} \end{array} \right) \right] \in KK(\mathcal{T}_X, A). \]

We denote by $[j, X]$ the class $[X, \varphi|_I, 0, \alpha_X] \in KK(I, A)$ of the module X with the left action restricted to I. We note ι_{F_1} induces the Kasparov class $[\mathcal{F}_{X,I}, \iota_{F_1}, 0, \alpha_{\infty}^X] \in KK(K(\mathcal{F}_{X,I}), I)$, where α_{∞}^X and each image of ι_{F_1} are now considered as operators on $\mathcal{F}_{X,I} \subseteq \mathcal{F}_X$.

Lemma 2.2 (cf. [20, Lemma 4.3]). With notation as above we have

\[[j] \otimes_{\mathcal{T}_X} [M] = [\mathcal{F}_{X,I}, \iota_{F_1}, 0, \alpha_{\infty}^X] \otimes_I ([\iota_I] - [j, X]). \]

Proof. Using [2, Proposition 18.7.2(b)] we can express $[j] \otimes_{\mathcal{T}_X} [M]$ as

\[[j] \otimes_{\mathcal{T}_X} [M] = \left[F_X \oplus (F_X \ominus A), (\pi_0 \oplus (\pi_1 \circ \alpha_T)) \circ j, \left(\begin{array}{cc} 0 & 1 \\ \frac{1}{\pi} & 0 \end{array} \right), \left(\begin{array}{cc} \frac{1}{\alpha_X} & 0 \\ 0 & -\frac{1}{\alpha_X} \end{array} \right) \right]. \]

Let α_K be the restriction of α_{∞}^X to $K(F_{X,I})$. Since $\pi_0 \circ j = \iota_{F_1}$ and $\pi_1 \circ \alpha_T \circ j = \pi_1 \circ j \circ \alpha_K$ take values in $K(F_{X,I})$, the straight line path from $\left(\begin{array}{cc} 0 & 1 \\ \frac{1}{\pi} & 0 \end{array} \right)$ to 0 determines an operator homotopy of Kasparov modules. Hence we may write

\begin{align*}
[j] \otimes_{\mathcal{T}_X} [M] &= \left[F_X \oplus (F_X \ominus A), (\pi_0 \oplus (\pi_1 \circ \alpha_T)) \circ j, 0, \left(\begin{array}{cc} \frac{1}{\alpha_X} & 0 \\ 0 & -\frac{1}{\alpha_X} \end{array} \right) \right] \\
&= \left[F_X, \pi_0 \circ j, 0, \alpha_{\infty}^X \right] + \left[F_X \ominus A, \pi_1 \circ j \circ \alpha_K, 0, -\alpha_{\infty}^X \right] \\
&\quad + \left[F_X \ominus A, \pi_1 \circ j, 0, \alpha_X \right] - \left[F_X \ominus A, \pi_1 \circ j, 0, \alpha_X \right].
\end{align*}

(2.2)

Since $K(F_{X,I}) \mathcal{F}_X = F_{X,I}$ and $K(F_{X,I})(F_X \ominus A) = F_{X,I} \oplus A$ we may (see [2, Section 17.5]) replace each module in (2.2) with its essential submodule without changing the Kasparov classes, to obtain

\[[j] \otimes_{\mathcal{T}_X} [M] = \left[F_{X,I}, \iota_{F_1}, 0, \alpha_{\infty}^X \right] - \left[F_{X,I} \ominus A, \pi_1 \circ j, 0, \alpha_X \right]. \]

(2.3)
The map $(\xi \otimes a) \mapsto \xi \cdot a$ implements a unitary equivalence
\[(\mathcal{F}_{X,I} \hat{\otimes} I A_A, t_{\mathcal{F}I} \hat{\otimes} 1, 0, \alpha_{\mathcal{X},I} \hat{\otimes} \alpha_A) \cong (\mathcal{F}_{X,I}, t_{\mathcal{F}I}, 0, \alpha_{\mathcal{X},I}).\]
So, writing $[\mathcal{F}_{X,I}, t_{\mathcal{F}I}, 0, \alpha_{\mathcal{X},I}]_A$ for the class in $KK(\mathcal{T}_X, A)$ obtained by regarding $\mathcal{F}_{X,I}$ as a right A-module, and $[\mathcal{F}_{X,I}, t_{\mathcal{F}I}, 0, \alpha_{\mathcal{X},I}]_I$ for the class obtained by regarding it as a right I-module, and recalling that $[i_I] \in KK(I, A)$ is the class of the inclusion of I in A, we have
\[[\mathcal{F}_{X,I}, t_{\mathcal{F}I}, 0, \alpha_{\mathcal{X},I}]_I \hat{\otimes} I [i_I] = [\mathcal{F}_{X,I}, t_{\mathcal{F}I}, 0, \alpha_{\mathcal{X},I}]_A.\]
Since X is essential, the map that sends $i \cdot \xi$ to $i \otimes \xi$ for $i \in I$ and $\xi \in X$, and sends $\xi_1 \otimes \cdots \otimes \xi_n$ to $(\xi_1 \otimes \cdots \otimes \xi_{n-1}) \otimes \xi_n$ for $\xi_1, \ldots, \xi_n \in X$ is a unitary equivalence
\[(\mathcal{F}_{X,I} \hat{\otimes} I A, \pi_1 \circ j, 0, \alpha_{\mathcal{X},I}) \cong (\mathcal{F}_{X,I} \hat{\otimes} I X, (\pi_0 \circ j) \hat{\otimes} 1, 0, \alpha_{\mathcal{X},I} \hat{\otimes} \alpha_X).\]
By [2, Proposition 18.10.1], $[\mathcal{F}_{X,I}, t_{\mathcal{F}I}, 0, \alpha_{\mathcal{X},I}] \hat{\otimes} I [i_X] = [\mathcal{F}_{X,I} \hat{\otimes} I X, t_{\mathcal{F}I} \hat{\otimes} 1, 0, \alpha_{\mathcal{X},I} \hat{\otimes} \alpha_X]$ provided that $(t_{\mathcal{F}I} \hat{\otimes} 1)(\mathcal{K}(\mathcal{F}_{X,I})) \subseteq \mathcal{K}(\mathcal{F}_{X,I} \hat{\otimes} I X)$. This containment is a direct consequence of [21, Proposition 4.7] since I consists of elements that act as compact operators on the left of X. It follows that
\[[\mathcal{F}_{X,I} \hat{\otimes} A, \pi_1 \circ j, 0, \alpha_{\mathcal{X},I}] = [\mathcal{F}_{X,I}, t_{\mathcal{F}I}, 0, \alpha_{\mathcal{X},I}] \hat{\otimes} I [i_X].\]
Substituting both of these equalities into (2.3) and using distributivity of the Kasparov product gives
\[[j] \hat{\otimes} \mathcal{T}_X [M] = [\mathcal{F}_{X,I}, t_{\mathcal{F}I}, 0, \alpha_{\mathcal{X},I}] - [\mathcal{F}_{X,I} \hat{\otimes} A, \pi_1 \circ j, 0, \alpha_{\mathcal{X},I}] = [\mathcal{F}_{X,I}, t_{\mathcal{F}I}, 0, \alpha_{\mathcal{X},I}] \hat{\otimes} I [i_I] + [\mathcal{F}_{X,I}, t_{\mathcal{F}I}, 0, \alpha_{\mathcal{X},I}] \hat{\otimes} [i_X] = [\mathcal{F}_{X,I}, t_{\mathcal{F}I}, 0, \alpha_{\mathcal{X},I}] \hat{\otimes} I ([i_I] - [i_X]). \quad \Box
\]

Our next result appears in the first author’s honours thesis [25, Theorem 7.0.3] for $I = \varphi^{-1}(\mathcal{K}(X))$, in the context where φ is injective. For the definition of the relative Cuntz–Pimsner algebra $\mathcal{O}_{X,I}$ see Section 1.

Theorem 2.3. Let $(A, \alpha_A), (B, \alpha_B)$ be graded separable C^*-algebras and suppose that A is nuclear. Let X be a countably generated essential A–A-correspondence with left action φ, and let $I \subseteq \varphi^{-1}(\mathcal{K}(X))$ be a graded ideal of A. Let $i_I : I \to A$ be the inclusion map. Then we have six term exact sequences
\[
\begin{array}{c}
KK_0(B, I) \overset{i_*}{\to} KK_0(B, A) \overset{i_*}{\to} KK_0(B, O_{X,I}) \\
\downarrow \quad \quad \quad \quad \quad \downarrow \\
KK_1(B, O_{X,I}) \overset{i_*}{\leftarrow} KK_1(B, A) \overset{i_*}{\leftarrow} KK_1(B, I)
\end{array}
\]
and
\[
\begin{array}{c}
KK_0(I, B) \overset{i_*}{\leftarrow} KK_0(A, B) \overset{i_*}{\leftarrow} KK_0(O_{X,I}, B) \\
\downarrow \quad \quad \quad \quad \quad \downarrow \\
KK_1(O_{X,I}, B) \overset{i_*}{\leftarrow} KK_1(A, B) \overset{i_*}{\leftarrow} KK_1(I, B)
\end{array}
\]

Proof. As in [20, Theorem 4.4], we shall prove exactness of the first diagram. Exactness of the second follows from a similar argument. Since A is nuclear, so is \mathcal{T}_X by [30, Theorem 6.3]. Hence the quotient map $q : \mathcal{T}_X \to O_{X,I} \cong \mathcal{T}_X/j(\mathcal{K}(\mathcal{F}_{X,I}))$ admits a
completely positive splitting, see [2, Example 19.5.2]. Applying [31, Theorem 1.1] to the graded short exact sequence

$$0 \rightarrow \mathcal{K}(\mathcal{F}_{X,I}) \xrightarrow{j} \mathcal{T}_X \xrightarrow{q} \mathcal{O}_{X,I} \rightarrow 0$$

gives homomorphisms $\delta : KK_*(B, \mathcal{O}_{X,I}) \rightarrow KK_{*+1}(B, \mathcal{K}(\mathcal{F}_{X,I}))$ for which the following six term sequence is exact

$$KK_0(B, \mathcal{K}(\mathcal{F}_{X,I})) \xrightarrow{j_*} KK_0(B, \mathcal{T}_X) \xrightarrow{q_*} KK_0(B, \mathcal{O}_{X,I}) \xrightarrow{\delta}$$

Define $\delta' : KK_*(B, \mathcal{O}_{X,I}) \rightarrow KK_{*+1}(B, A)$ by $\delta' = (\cdot \hat{\otimes} [\mathcal{F}_{X,I}, \iota_{\mathcal{F}_{I}}, 0, \alpha_X^\infty]) \circ \delta$ and let $i : A \rightarrow \mathcal{O}_{X,I}$ be the canonical homomorphism. Consider the following diagram.

$$\begin{array}{ccc}
KK_0(B, I) & \xrightarrow{\hat{\otimes}([I_I]-[I_X])} & KK_0(B, A) & \xrightarrow{i_*} & KK_0(B, \mathcal{O}_{X,I}) \\
\downarrow \delta & & \downarrow \delta & & \downarrow \delta \\
KK_0(B, \mathcal{K}(\mathcal{F}_{X,I})) & \xrightarrow{j_*} & KK_0(B, \mathcal{T}_X) & \xrightarrow{q_*} & KK_0(B, \mathcal{O}_{X,I}) \\
\downarrow \delta & & \downarrow \delta & & \downarrow \delta \\
KK_1(B, \mathcal{O}_{X,I}) & \xrightarrow{q_*} & KK_1(B, \mathcal{T}_X) & \xrightarrow{j_*} & KK_1(B, \mathcal{K}(\mathcal{F}_{X,I})) \\
\downarrow \id & & \downarrow \id & & \downarrow \id \\
KK_1(B, \mathcal{O}_{X,I}) & \xrightarrow{i_*} & KK_1(B, A) & \xrightarrow{\hat{\otimes}([I_I]-[I_X])} & KK_1(B, I) \\
\end{array}$$

By definition of δ', the left and right squares commute. Lemma 2.2 shows that the top left and bottom right squares commute. By definition we have $i = q \circ i_A$ as homomorphisms, so $i_* = (q \circ i_A)_* = q_* \circ (i_A)_*$. This shows that the top right and bottom left squares commute.

Lemma 2.1 implies that $(i_A)_*$ and $\hat{\otimes}[M]$ are mutually inverse isomorphisms. Finally, the class of $[\mathcal{F}_{X,I}, \iota_{\mathcal{F}_{I}}, 0, \alpha_X^\infty]$ is induced by the graded Morita equivalence bimodule $\mathcal{F}_{X,I}$ (see [29]), and so induces an isomorphism of KK-groups, so exactness of the interior 6-term sequence gives the desired exactness of the exterior one.

\[\square \]

3. \textsc{Graded \textit{K}-theory and \textit{K}-homology for relative Cuntz–Krieger algebras}

In this section we use our results from the preceding section to calculate the graded K-theory and graded K-homology of a graded relative graph C^*-algebra.

We first recall the key elements of relative graph C^*-algebras that we will use here. Given a directed graph $E = (E^0, E^1, r, s)$, we denote by E^0_{rg} the set

$$E^0_{\text{rg}} := \{ v \in E^0 : vE^1 \text{ is finite and nonempty} \}$$

of regular vertices of E. Given a subset $V \subseteq E^0_{\text{rg}}$, the \textit{relative Cuntz–Krieger algebra} $C^*(E; V)$ of E is defined as the universal C^*-algebra generated by mutually orthogonal
projections \(\{p_v : v \in E^0\} \) and partial isometries \(\{s_e : e \in E^1\} \) such that \(s_es^*_e = p_{s(e)} \) for all \(e \in E^1 \), and such that \(p_v = \sum_{e \in vE^1} s_es^*_e \) for all \(v \in V \). So \(C^*(E; \emptyset) \) coincides with the usual Toeplitz algebra \(TC(E) \), and \(C^*(E; E^0_{rg}) \) coincides with the graph \(C^* \)-algebra \(C^*(E) \). Given a function \(\delta : E^1 \to \{0,1\} \), the universal property of \(C^*(E; V) \) yields a grading \(\alpha^\delta \) of \(C^*(E; V) \) satisfying \(\alpha^\delta(s_e) = (-1)^{\delta(e)} s_e \) for all \(e \in E^1 \), and \(\alpha^\delta(p_v) = p_v \) for all \(v \in E^0 \).

There is a \(C_0(E^0) \)-valued inner-product on \(C_c(E^1) \) given by

\[
\langle \xi, \eta \rangle_{C_0(E^0)}(w) = \sum_{e \in E^1 w} \xi(e)\eta(e).
\]

The completion \(X(E) \) of \(C_c(E^1) \) in the resulting norm is a \(C_0(E) - C_0(E) \)-correspondence with actions determined by \((a \cdot \xi \cdot b)(e) = a(r(e))\xi(b(s(e))). \) The ideal \(I \subseteq C_0(E^0) \) of elements that act by compact operators on this module is \(C_0(\{v : |vE^1| < \infty\}) \). A routine argument using universal properties shows that for \(V \subseteq E^0_{rg} \), we have \(\mathcal{O}_{X(E), C_0(V)} \cong C^*(E; V) \); in particular, \(\mathcal{T}_X(E) \cong C^*(E; \emptyset) = TC^*(E) \). Any map \(\delta : E^1 \to \{0,1\} \) determines a grading \(\alpha^\delta \) of \(X(E) \) satisfying \(\alpha^\delta(1_e) = (-1)^{\delta(e)} 1_e \) for all \(e \in E^1 \), and then the induced grading on \(\mathcal{O}_{X(E), C_0(V)} \) matches up with the grading \(\alpha^\delta \) on \(C^*(E; V) \).

Our main result for the section is the following.

Theorem 3.1. Let \(E \) be a directed graph. Fix a subset \(V \subseteq E^0_{rg} \) and a function \(\delta : E^1 \to \mathbb{Z}_2 \). Let \(\alpha \in \text{Aut}(C^*(E; V)) \) be the grading such that \(\alpha(s_e) = (-1)^{\delta(e)} s_e \) for all \(e \in E^1 \). Let \(A^\delta_V \) denote the \(V \times E^0 \) matrix such that \(A^\delta_V(v, w) = \sum_{e \in vE^1 w} \xi(e) \) for all \(v \in V \) and \(w \in E^0 \). Let \(\iota : \mathbb{Z}V \to \mathbb{Z}E^0 \) be the inclusion map. Regarding \((A^\delta_V)^t \) as a homomorphism from \(\mathbb{Z}V \) to \(\mathbb{Z}E^0 \), the graded \(K \)-theory (of \((C^*(E; V), \alpha) \) is given by

\[
K^0_{gr}(C^*(E; V), \alpha) \cong \ker(\iota - (A^\delta_V)^t) \quad \text{and} \quad K^1_{gr}(C^*(E; V), \alpha) \cong \ker(\iota - (A^\delta_V)^t).
\]

There is a homomorphism \(\tilde{A}^\delta_V : \mathbb{Z}E^0 \to \mathbb{Z} \) given by

\[
\tilde{A}^\delta_V(f)(v) = \sum_{e \in vE^1} A^\delta_V(v, w)f(w) \quad \text{for all } v \in V \text{ and } f \in \mathbb{Z}E^0.
\]

Let \(\pi : \mathbb{Z}E^0 \to \mathbb{Z}E \) be the projection map. Then

\[
K^0_{gr}(C^*(E; V), \alpha) \cong \ker(\pi - \tilde{A}^\delta_V) \quad \text{and} \quad K^1_{gr}(C^*(E; V), \alpha) \cong \ker(\pi - \tilde{A}^\delta_V).
\]

Before proving the theorem, we state an immediate corollary about the graded \(K \)-theory and \(K \)-homology of graph \(C^* \)-algebras.

Corollary 3.2. Let \(E \) be a directed graph. Fix a function \(\delta : E^1 \to \mathbb{Z}_2 \), and let \(\alpha \) be the associated grading of \(C^*(E) \). Let \(A^\delta_{rg} \) denote the \(E^0_{rg} \times E^0 \) matrix such that \(A^\delta_{rg}(v, w) = \sum_{e \in vE^1 w} (-1)^{\delta(e)} \) for all \(v \in V \) and \(w \in E^0 \) regarded as a homomorphism from \(\mathbb{Z}E^0_{rg} \) to \(\mathbb{Z}E^0 \) and write \(\tilde{A}^\delta_{rg} \) for the dual homomorphism \(\mathbb{Z}E^0 \to \mathbb{Z}E^0_{rg} \). Then

\[
K^0_{gr}(C^*(E), \alpha) \cong \ker(\iota - (A^\delta_{rg})^t), \quad K^1_{gr}(C^*(E), \alpha) \cong \ker(\iota - (A^\delta_{rg})^t),
\]

\[
K^0_{gr}(C^*(E), \alpha) \cong \ker(\pi - \tilde{A}^\delta_{rg}), \quad \text{and} \quad K^1_{gr}(C^*(E), \alpha) \cong \ker(\pi - \tilde{A}^\delta_{rg}).
\]

Proof. Apply Theorem 3.1 to \(V = E^0_{rg} \). \(\square \)

To prove the \(K \)-homology formulas in the theorem, we need some preliminary results; the corresponding results for \(K \)-theory are established in [20].
Proposition 3.3. Let E be a row-finite directed graph. For $n \in \mathbb{Z}^{E_0}$ and $f \in C_0(E^0)$ let $\ell(f) \in \mathcal{L}(\bigoplus_{v \in E^0} \mathbb{C}^{[n_v]})$ be given by
\[
(\ell(f)x)_w = f(w)x_w, \quad \text{for each } w \in E^0.
\]
Then there is an isomorphism $\mu : \mathbb{Z}^{E_0} \to KK_0(C_0(E^0), \mathbb{C})$ such that
\[
\mu(n) = \left[\bigoplus_{v \in E^0} \mathbb{C}^{[n_v]}, \ell, 0, \bigoplus_{v \in E^0} \text{sign}(n_v) \right].
\]

Proof. Since E^0 is discrete we can identify $C_0(E^0)$ with $\bigoplus_{v \in E^0} \mathbb{C}$. For each $w \in E^0$, let $g_w : C \to \bigoplus_{v \in E^0} \mathbb{C}$ be the coordinate inclusion. Then Theorem 19.7.1 of [2] implies that $\theta := \prod_{v \in E^0} g_w^* : KK(\bigoplus_{v \in E^0} \mathbb{C}, \mathbb{C}) \to \prod_{v \in E^0} KK(\mathbb{C}, \mathbb{C}) \simeq \mathbb{Z}^{E^0}$ is an isomorphism of groups, with inverse μ. \(\square\)

Lemma 3.4. Let E be a directed graph and let $\delta : E^1 \to \{0, 1\}$ be a function. Fix a subset $V \subseteq E^0$. Fix $v \in E^0$. For $f \in E^1 v$ and $a \in C_0(E^0)$, define $\psi^v(a) : \ell^2(E^1 v) \to \ell^2(E^1 v)$ on elementary basis vectors $\{e^f \} \subseteq \ell^2(E^1 v)$ by
\[
\psi^v(a)e^f = \begin{cases} a(r(f))e^f & \text{if } r(f) \in V \\ 0 & \text{otherwise.} \end{cases}
\]
Define $\beta : \ell^2(E^1 v) \to \ell^2(E^1 v)$ on basis elements by
\[
\beta(e^f) = (-1)^{\delta(f)} e^f.
\]
Let $\phi_V : C_0(V) \to \mathcal{K}(X(E))$ be the restriction of the left action. Then $(\ell^2(E^1 v), \psi^v, 0, \beta)$ is a Kasparov $C_0(E^0)$-\mathbb{C}-module, and for each $n_v \in \mathbb{Z}$ there is a unitary equivalence between the modules
\[
(\ell^2(E^1 v) \otimes \mathbb{C}^{[n_v]}, \psi^v, 0, \beta \otimes \text{sign}(n_v) \text{id})
\]
and
\[
(X(E) \otimes_{e^f} \mathbb{C}^{[n_v]}, \tilde{\phi}_V, 0, \alpha_X \otimes \text{sign}(n_v) \text{id}).
\]

Proof. Throughout the proof, we write ψ for ψ^v. For each $w \in V$, the operator $\psi(\delta_w) = \sum_{f \in w E^1} \Theta_{e^f, e^f}$ is compact, and for $w \in E^0 \setminus V$, we have $\psi(\delta_w) = 0$. So each $\psi(a) = \bigoplus_{w \in V} a(w)\psi(\delta_w)$ is compact.

It is immediate that β is a grading, and it preserves the grading of the left action since $C_0(E^0)$ carries the trivial grading. So $(\ell^2(E^1 v), \psi^v, 0, \beta)$ is a Kasparov $C_0(V)$-\mathbb{C}-module.

Recall that for an edge $f \in E^1 v$ the element $\delta_f \in X(E)$ denotes the point mass at f. Further for $j \leq |n_v|$ let e^j be an orthonormal basis for $\mathbb{C}^{[n_v]}$. We claim there is a unitary equivalence $U : \ell^2(E^1 v) \otimes \mathbb{C}^{[n_v]} \to X(E) \otimes_{e^v} \mathbb{C}^{[n_v]}$ that acts on elementary basis tensors $e^f \otimes e^j$ by the formula
\[
U(e^f \otimes e^j) = \delta_f \otimes e^j.
\]
An elementary calculation shows that this formula preserves inner-products, so extends to a well defined isometry. To see that U is surjective, note that any function $x \in X(E)$ that is zero on $E^1 v$ satisfies $x \otimes w = 0$ for any $w \in \mathbb{C}^{[n_v]}$. Thus it suffices to consider functions contained in the span of $\{\delta_f : f \in E^1 v\} = \overline{C_e(E^1 v)}$, and tensors $\delta^f \otimes e^j$ can be written in the form $U(e^f \otimes e^j)$ by construction.
The definitions of ϕ_V and ψ^v show that U intertwines the left actions. To see that it preserves gradings, fix $f \in E^1$ and $j \leq |n_v|$ and compute

$$U((\beta \otimes \text{sign}(n_v) \text{id})(e^f \otimes e^j)) = \text{sign}(n_v)(-1)^{\delta(f)}U(e^f \otimes e^j)$$

$$= \text{sign}(n_v)(-1)^{\delta(f)} \delta^f \otimes e^j$$

$$= (\alpha_X \otimes \text{sign}(n_v) \text{id})(\delta^f \otimes e^j).$$

Proposition 3.5. Let E be a directed graph. Fix a subset $V \subseteq E^0_{rg}$ and a function $\delta : E^1 \to \{0, 1\}$. Let A^0_δ denote the $V \times E^0$ matrix such that $A^0_\delta(v, w) = \sum_{e \in v E^1 w} (-1)^{\delta(e)}$ for all $v \in V$ and $w \in E^0$. Let $[X_{E,V}] = [X(E), \phi_{[C_0(V), 0, \alpha_X]}]$ be the Kasparov class of the graded graph module with left action restricted to $C_0(V)$. Let μ denote both the isomorphism $\text{KK}_0(C_0(E^0), \mathbb{C}) \to \mathbb{Z}^{E^0}$ and the isomorphism $\text{KK}_0(C_0(V), \mathbb{C}) \to \mathbb{Z}^{V}$ from Proposition 3.3. Let $[i] \in \text{KK}(J_X, A)$ be the class of the inclusion, and let $\pi : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}_{rg}$ be the projection map. Then the following diagrams commute.

\[
\begin{array}{c}
\mathbb{Z}^{V} & \xrightarrow{\mu} & \mathbb{Z}^{E^0} \\
\downarrow{\mu} & \quad & \downarrow{\mu} \\
\text{KK}_0(C_0(V), \mathbb{C}) & \xleftarrow{[X_{E,V}]} & \text{KK}_0(C_0(E^0), \mathbb{C}) \\
\end{array}
\begin{array}{c}
\mathbb{Z}^{V} & \xrightarrow{\pi} & \mathbb{Z}^{E^0} \\
\downarrow{\mu} & \quad & \downarrow{\mu} \\
\text{KK}_0(C_0(V), \mathbb{C}) & \xleftarrow{[i]} & \text{KK}_0(C_0(E^0), \mathbb{C}) \\
\end{array}
\]

Proof. By surjectivity of the isomorphism μ each element of $\text{KK}_0(C_0(E^0), \mathbb{C})$ is of the form

$$\mu(n) = \left[\bigoplus_{v \in E^0} \mathbb{C}^{[n_v]}, \ell, 0, \bigoplus_{v \in E^0} \text{sign}(n_v) \right]$$

for some $n \in \mathbb{Z}^{E^0}$. In what follows, we write ϕ_V for $\phi_{[C_0(V)]}$. We compute using Lemma 3.4

$$[X(E), \phi_V, 0, \alpha_X] \otimes \mu(n) = \left[\bigoplus_{v \in E^0} (X(E) \otimes \mathbb{C}^{[n_v]}), \bigoplus_{v \in E^0} \psi^v \otimes 1, 0, \bigoplus_{v \in E^0} (\alpha_X \otimes \text{sign}(n_v)) \right]$$

$$= \left[\bigoplus_{v \in E^0} \ell^2(E^1 v) \otimes \mathbb{C}^{[n_v]}, \bigoplus_{v \in E^0} \psi^v \otimes 1, 0, \bigoplus_{v \in E^0} (\beta \otimes \text{sign}(n_v)) \right].$$

Let $g_v : \mathbb{C} \to C_0(E^0)$ be the coordinate inclusion corresponding to the vertex $v \in E^0$. Theorem 19.7.1 of [2] gives an isomorphism $\theta := \prod_{v \in E^0} g^*_v : \text{KK}(C_0(E^0), \mathbb{C}) \to \prod_{v \in E^0} \text{KK}((C, \mathbb{C}) \cong \mathbb{Z}^{E^0}$. Applying θ to $[X_{E,V}] \otimes \mu(n)$ gives

$$\theta\left(\left[\bigoplus_{v \in E^0} \ell^2(E^1 v) \otimes \mathbb{C}^{[n_v]}, \bigoplus_{v \in E^0} \psi^v \otimes 1, 0, \bigoplus_{v \in E^0} (\beta \otimes \text{sign}(n_v)) \right] \right)$$

$$= \left(\left[\bigoplus_{v \in E^0} \ell^2(E^1 v) \otimes \mathbb{C}^{[n_v]}, \left(\bigoplus_{v \in E^0} \psi^v \otimes 1 \right) \circ g_v, 0, \bigoplus_{v \in E^0} (\beta \otimes \text{sign}(n_v)) \right] \right)_{w \in E^0}. $$
Since the action \((\psi \otimes 1) \circ g_w\) is zero on the submodule \(\ell^2(E^1v \setminus wE^1v) \otimes \mathbb{C}^{[n_v]}\) for each \(v, w \in E^0\), Equation (3.1) becomes
\[
\left(\bigoplus_{v \in E^0} \ell^2(E^1v) \otimes \mathbb{C}^{[n_v]}, \left(\bigoplus_{v \in E^0} \psi^\nu \otimes 1 \right) \circ g_w, 0, \bigoplus_{v \in E^0} (\beta \otimes \text{sign}(n_v)) \right)_{w \in E^0}
\]
\[
= \left(\bigoplus_{v \in E^0} \ell^2(wE^1v) \otimes \mathbb{C}^{[n_v]}, \left(\bigoplus_{v \in E^0} \psi^\nu \otimes 1 \right) \circ g_w, 0, \bigoplus_{v \in E^0} (\beta \otimes \text{sign}(n_v)) \right)_{w \in E^0}
\]
\[
= \left(\bigoplus_{v \in E^0} \mathcal{A}^\delta(w, v) \otimes \mathbb{C}^{[n_v]}, \left(\bigoplus_{v \in E^0} \psi^\nu \otimes 1 \right) \circ g_w, 0, \bigoplus_{v \in E^0} (\text{sign}(A^\delta(w, v)n_v)) \right)_{w \in E^0}.
\]
\[(3.2)\]

Since \(\psi^\nu(\delta_w)\) is zero when \(w \notin V\), we may pass to the essential submodule, so that (3.2) becomes
\[
\left(\bigoplus_{v \in E^0} \mathcal{A}^\delta(w, v) \otimes \mathbb{C}^{[n_v]}, \left(\bigoplus_{v \in E^0} \psi^\nu \otimes 1 \right) \circ g_w, 0, \bigoplus_{v \in E^0} (\text{sign}(A^\delta(w, v)n_v)) \right)_{w \in V}
\]
\[
= \left(\bigoplus_{v \in E^0} \mathcal{A}^\delta(w, v) \otimes \mathbb{C}^{[n_v]}, \left(\bigoplus_{v \in E^0} \psi^\nu \otimes 1 \right) \circ g_w, 0, \text{sign} \left(\sum_{v \in E^0} A^\delta(w, v)n_v \right) \right)_{w \in V}.
\]

This is exactly the representative of \(A^\delta_V n \in \mathbb{Z}E^0\) as a module in \(KK_0(\mathbb{C}, \mathbb{C})^V\). Hence \([X_{E, V}] \hat{\otimes} \mu(n) = \mu(A^\delta_V n)\) as required.

The final statement follows directly from the definition of \(\mu\). \(\square\)

\textbf{Proof of Theorem 3.1.} For the bimodule \(X(E)\), the coefficient algebra \(A\) is \(C_0(E^0) = \bigoplus_{v \in E^0} \mathbb{C}\) and the ideal \(I \subseteq C\) is \(C_0(V) = \bigoplus_{v \in V} \mathbb{C}\). Countable additivity of K-theory (or Proposition 4.1) shows that \(KK_0(\mathbb{C}, C_0(E^0)) \cong \mathbb{Z}E^0\) and \(KK_0(\mathbb{C}, I) \cong \mathbb{Z}V\). The argument of [20, Lemma 8.2] shows that these isomorphisms intertwine the map \(\cdot \hat{\otimes} [\cdot]X(E)\) from \(KK_0(\mathbb{C}, I)\) to \(KK(\mathbb{C}, A)\) with the map \((A^\delta_V)^t : \mathbb{Z}V \rightarrow \mathbb{Z}E^0\). Functoriality of \(KK(\mathbb{C}, \cdot)\) shows that these isomorphisms also intertwine \([\cdot]\) with the inclusion map \(\iota : \mathbb{Z}V \rightarrow \mathbb{Z}E^0\). So the exact sequence of Theorem 4.4 induces the exact sequence
\[
0 \rightarrow K^\text{gr}_1(C^*(E; V), \alpha) \rightarrow \mathbb{Z}V \stackrel{1-(A^\delta_V)^t}{\rightarrow} \mathbb{Z}E^0 \rightarrow K^\text{gr}_0(C^*(E; V), \alpha) \rightarrow 0,
\]
and the first part of the theorem follows.

For the second statement, first note that Proposition 3.3 and Theorem 19.7.1 of [2] give isomorphisms \(KK_0(A, \mathbb{C}) \cong \mathbb{Z}E^0\) and \(KK_0(I, \mathbb{C}) \cong \mathbb{Z}V\), and show that \(KK_1(A, \mathbb{C}) = KK(J_X, \mathbb{C}) = \{0\}\). Proposition 3.5 shows that these isomorphisms intertwine \((1 - [\iota X(E)]) \hat{\otimes} \cdot\) with \((1 - A^\delta_V)^t\). So the exact sequence of Theorem 4.6 gives the exact sequence
\[
0 \rightarrow K^\text{gr}_0(C^*(E; V), \alpha) \rightarrow \mathbb{Z}E^0 \stackrel{1-A^\delta_V}{\rightarrow} \mathbb{Z}V \rightarrow K^\text{gr}_1(C^*(E; V), \alpha) \rightarrow 0.
\]
\(\square\)

4. Adding tails to graded correspondences

Inspired by the technique of ‘adding tails’ to directed graphs which transforms a directed graph into a graph without sources with a Morita equivalent \(C^*-\) algebra, Muhly and Tomforde proved that given an \(A-A\) correspondence \(X\) with non-injective left action, there is a correspondence \(Y\) over a \(C^*-\) algebra \(B\) such that the left action of \(B\) on \(Y\) is implemented by an injective homomorphism, and \(O_X\) is a full corner of \(O_Y\). If \(A\) and \(X\) are graded, these gradings extend naturally to gradings on \(B\) and \(Y\), and the inclusion of \(O_X\) in \(O_Y\) is graded. In particular \((O_X, \alpha_X)\) and \((O_Y, \alpha_Y)\) are \(KK\)-equivalent, and in particular have isomorphic graded \(K\)-theory and \(K\)-homology.
In this section we show how adding tails to a correspondence has applications in KK-theory. More specifically we show how to recover Pimsner’s 6-term exact sequences for $KK(\cdot, B)$ and $KK(\mathbb{C}, \cdot)$ for any graded countably generated essential A–A-correspondence X using only the corresponding sequences for graded correspondences with an injective left action (these were established in the first author’s honours thesis [25]). This yields the calculations of graded K-theory and K-homology of C^*-algebras of arbitrary graphs that first appeared in the first author’s honours thesis [25] and the second author’s honours thesis [34] respectively (see Corollary 3.2). It also provides a useful reality check for our more general results in the preceding sections; we thank Ralf Meyer for pointing us to the direct proof of Pimsner’s sequences for modules with non-injective left actions employed there. To exploit the adding-tails technique, we need to know that graded K-theory and K-homology are each countably additive in the appropriate sense. We provide details below.

4.1. Countable additivity. In what follows, a direct sum of graded C^*-algebras is endowed with the natural direct-sum grading; so given a Kasparov class $[X] = [X, \phi, F, \alpha_X] \in KK(\bigoplus_i A_i, B)$, for each n, the inclusion map $\iota_{A_n} : A_n \hookrightarrow \bigoplus_i A_i$ is graded and induces the class $i_{A_n}^*[X] \in KK(A_n, B)$.

Theorem 19.7.1 of [2] shows that for separable B, $KK(\cdot, B)$ is countably additive in the following sense. If $A = \bigoplus_{n=1}^\infty A_n$ is a σ-direct sum of separable C^*-algebras A_n, then there is an isomorphism $\zeta : KK(A, B) \cong \prod_{n=1}^\infty KK(A_n, B)$ that carries the class of a Kasparov A–B-module (X, ϕ, F, α_X) to the sequence whose nth term is the class of $(X, \phi \circ \iota_{A_n}, F, \alpha_X)$; that is, in the notation of Section 1.6, writing $[X]$ for the class of (X, ϕ, F, α_X), we have

$$\zeta[X] = \left(\iota_{A_n}^*[X]\right)_{n=1}^\infty.$$

In particular, identifying $KK(A, \mathbb{C})$ with $K^0_{\mathbb{U}}(A)$, we obtain countable additivity of graded K-homology.

On the other hand, as discussed in [2, 19.7.2], the map $KK(B, \cdot)$ is typically not countably additive. There is a natural map ω from $\bigoplus_{i=1}^\infty KK(A_i, B_i)$ to $KK(A, \bigoplus_{i=1}^\infty B_i)$ such that

$$\omega([X_i, \phi_i, F_i, \alpha_i])_{i=1}^n = [\bigoplus_{i=1}^n X_i, \bigoplus_{i=1}^n \phi_i, \bigoplus_{i=1}^n F_i, \bigoplus_{i=1}^n \alpha_i].$$

This ω is always injective (see the proof of Proposition 4.1 below), but is typically not surjective. Since our focus is on graded K-theory and graded K-homology, we content ourselves with recording the presumably well-known fact that $KK(\mathbb{C}, \cdot)$ is countably additive. For ungraded C^*-algebras, this follows from countable additivity of K-theory since $KK(\mathbb{C}, A) \cong K_0(A)$.

Proposition 4.1. Let A_i, α_i be a sequence of σ-unital graded C^*-algebras. Then the map $\omega : \bigoplus_{i=1}^\infty KK(C, A_i) \to KK(C, \bigoplus_{i=1}^\infty A_i)$ defined at (4.1) is an isomorphism.

Proof. Write $A_{\infty} := \bigoplus A_i$. Let (X, ϕ, F, α_X) be a Kasparov \mathbb{C}–A_{∞}-module. Since each A_i is an ideal of A_{∞}, each $X_i := \{\xi : \langle \xi, \xi \rangle \in A_i\}$ is a right-Hilbert A_i-module. We identify X and $\bigoplus_i X_i$ as right-Hilbert A_{∞}-modules, so $X = \overline{\text{span}}\{x_i \in X_i : i \geq 1\}$ and $\langle x_i, x_j \rangle_A = 0$ for all $i \neq j$. Since F and $\phi(1)$ are adjointable, they leave each X_i invariant ($FX_i \subseteq X_i$ and $\phi(1)X_i \subseteq X_i$); so F and ϕ decompose as $F = \bigoplus F_i$ and $\phi = \bigoplus \phi_i$. Since the inclusion map $\iota_{A_i} : A_i \hookrightarrow A_{\infty}$ is graded and $X_i = X \cdot A_i$, the automorphism α_X also leaves each X_i invariant; so α_X decomposes as a direct sum $\alpha_X = \bigoplus \alpha_i$. Since each compact operator
on $X = \bigoplus X_i$ restricts to a compact operator on X_i, each $(X_i, \phi_i, F_i, \alpha_i)$ is a Kasparov $\mathbb{C} - A_i$-module.

Applying the preceding paragraph with A_∞ replaced by $C([0,1], A_\infty)$ shows that any homotopy of Kasparov $\mathbb{C} - A_\infty$ modules decomposes as a direct sum of homotopies of Kasparov $\mathbb{C} - A_i$-modules, and so ω is injective.

To show that ω is surjective, we claim that it suffices to show that if (X, ϕ, F, α) is a Kasparov $\mathbb{C} - A_\infty$-module, then there exists N such that $[X_i, \phi_i, F_i, \alpha_i] = 0_{KK(C, A_i)}$ for all $i \geq N$. To see why, suppose that $[X_i, \phi_i, F_i, \alpha_i] = 0_{KK(C, A_i)}$ for all $i \geq N$. Let

$$[X^\infty_N] := \left[0^{N-1} \oplus \bigoplus_{i=N}^{\infty} X_i, 0^{N-1} \oplus \bigoplus_{i=N}^{\infty} \phi_i, 0^{N-1} \oplus \bigoplus_{i=N}^{\infty} F_i, 0^{N-1} \oplus \bigoplus_{i=N}^{\infty} \alpha_i \right] \in K(K(C, A_\infty)).$$

We have

$$[X, \phi, F, \alpha] = \omega(\bigoplus_{i=1}^{N-1} [X_i, \phi_i, F_i, \alpha_i]) + [X^\infty_N].$$

Since, for each $i \geq N$, the module $(X_i, \phi_i, F_i, \alpha_i)$ is a degenerate Kasparov module, so is $(\bigoplus_{i=N}^{\infty} X_i, \bigoplus_{i=N}^{\infty} \phi_i, \bigoplus_{i=N}^{\infty} F_i, \bigoplus_{i=N}^{\infty} \alpha_i)$. So $[X^\infty_N] = 0_{KK(C, A_\infty)}$, and it follows that $[X, \phi, F, \alpha] = \omega(\bigoplus_{i=1}^{N-1} [X_i, \phi_i, F_i, \alpha_i])$ belongs to the range of ω.

To see that there exists N such that $[X_i, \phi_i, F_i, \alpha_i] = 0_{KK(C, A_i)}$ for all $i \geq N$, first note that by [2, Propositions 17.4.2 and 18.3.6], we may assume that $\phi(1) = 1_X$, that $F = F^*$ and that $\|F\| \leq 1$. Using that $K(X) = \text{span} \left\{ \Theta_{x,y} : x, y \in \bigoplus_{n=1}^{\infty} X_n \right\}$ it follows that if $T \in K(X)$, then $\|T|_{X_i}\| \to 0$. Since $\phi_i(1) = 1_X$, and $F^2 - 1 = (F - 1)(F + 1)$, we deduce that $\|F^2 - 1\| \to 0$. So there exists N large enough so that F^2_i is invertible for $i \geq N$. Fix $i \geq N$; we will show that $(X_i, \phi_i, F_i, \alpha_i)$ is degenerate. Since $F^2_i = F_i$ we see that F_i is normal, and so $\sigma(F_i^2) = \sigma(F_i)^2$, and in particular, F_i is invertible. Since $\|F_i\| \leq 1$, we have $\sigma(F_i) \subseteq [-1, 0] \cup [0, 1]$, so for $t \in [0, 1]$ there is a continuous function $f_t \in C(\sigma(F_i))$ given by

$$f_t(x) = \begin{cases} (1-t)x + t & \text{if } x > 0 \\ (1-t)x - t & \text{if } x < 0. \end{cases}$$

Now the path $(F_t)_{t \in [0,1]}$ is a continuous path from F_i to $f_1(F_i)$. Since $\sigma(f_1(F_i))) = f_1(\sigma(F_i)) = \{-1, 1\}$, we have $f_1(F_i)^2 = 1$.

We claim that for each t, the tuple $(X_i, \phi_i, f_t(F_i), \alpha_i)$ is a Kasparov module. To see this, first note that each $f_t(F_i)^* = f_t(F_i)$. Since $\phi_i(\mathbb{C}) = \text{span} 1_{X}$ is even-graded and central, we have $[\phi_i(a), f_t(F_i)]^\alpha = a[\phi_i(1), f_t(F_i)] = 0$ for all t, a. Since F_i is odd with respect to the grading on $\mathcal{L}(X_i)$, so is F_i^{2n+1} for every $n \geq 0$. So writing P_{odd} for the space $\{ z \mapsto \sum_{n=0}^{N} a_n z^{2n+1} | N \geq 0 \text{ and } a_n \in \mathbb{C} \}$ of odd polynomials, $f_t(F_i)$ is odd for each $f \in P_{\text{odd}}$. Since the f_t are all odd functions, they can be uniformly approximated by elements of P_{odd}, and we deduce that each $f_t(F_i)$ is odd with respect to α_i. So to prove the claim, it remains to show that each $f_t(F_i)^2 - 1 \in K(X_i)$. For this, observe that the functional-calculus isomorphism for F_i carries $F_i^{2} - 1$ to the function $z \mapsto z^2 - 1$. Since this function vanishes only at 1 and −1, the ideal of $C^*(F_i)$ generated by $F_i^{2} - 1$ is $\{ f(F_i) : f(1) = f(-1) = 0, f \in C(\sigma(F_i)) \}$. Since each $f_1^2(1) = 1 = f_2^2(-1)$, we deduce that each $f_t(F_i)^2 - 1$ belongs to the ideal generated by $F_i^{2} - 1$, and since $F_i^{2} - 1 \in \mathcal{K}(X_i)$ it follows that each $f_t(F_i)^2 - 1 \in \mathcal{K}(X_i)$. This proves the claim.

Hence $(X_i, \phi_i, f_t(F_i), \alpha_i)_{t \in [0,1]}$ is an operator homotopy, and it follows that

$$[X_i, \phi_i, F_i, \alpha_i] = [X_i, \phi_i, f_1(F_i), \alpha_i].$$
By construction, $f_1(F_i)^2 = 1$, and we already saw that $f_1(F_i)$ is odd, self-adjoint and commutes with $\phi_i(1)$. So $[X, \phi_i, f_1(F_i), \alpha_i] = 0_{KK(C, A)}$ as required.

Set-up. Throughout the remainder of this section we fix a graded, separable, nuclear C^*-algebra A and a graded countably generated essential A-A-correspondence X with left action implemented by $\varphi : A \to \mathcal{L}(X)$.

Recall that if I is an ideal of A, then I^\perp is the ideal $\{b \in A : bI = \{0\}\}$. Following Katsura, we define $J_X := \varphi^{-1}(\mathcal{K}(X)) \cap \ker \varphi^\perp \triangleleft A$. Since $ja = aj = 0$ for all $j \in J_X$ and $a \in \ker \varphi$, the ideal $J_X + \ker \varphi \subseteq A$ is the internal direct sum $J_X \oplus \ker \varphi$. We sometimes identify it with the external direct sum via the map $j + a \mapsto (j, a)$.

Since J_X acts compactly on X, the quadruple $(X, \varphi|_{J_X}, 0, \alpha_X)$ is a Kasparov module, and we write $[X]$ for the corresponding class in $KK(J_X, A)$.

We define $K^\infty \varphi := \bigoplus_{n=1}^{\infty} \ker \varphi$ as a graded C^*-algebra, and $T := (K^\infty \varphi)_{K^\infty \varphi}$ regarded as an $(A \oplus K^\infty \varphi)$-$K^\infty \varphi$-correspondence with left action $(a, f) \cdot g = (ag_1, f_1g_2, f_2g_3, \ldots)$.

We define $Y := X \oplus T$ as a right-Hilbert $A \oplus K^\infty \varphi$-module, so the right action of $A \oplus K^\infty \varphi$ is given by

$$(x, f) \cdot (a, g) = (xa, fg)$$

and the inner product is given by

$$\langle (x, f), (y, g) \rangle = \langle (x, f), (y, g) \rangle^*,$$

for $x, y \in X$, $a \in A$, and $f, g \in T$.

Viewing the left action of A on X as an action of $A \oplus K^\infty \varphi$ in which the second coordinate acts trivially, Y is an $(A \oplus K^\infty \varphi)$-$K^\infty \varphi$-correspondence with left action

$$\varphi^Y(a, f)(x, g) = (\varphi(a)x, ag_1, f_1g_2, \ldots, f_ng_{n+1}, \ldots).$$

The homomorphism φ^Y is injective (see [23, Lemma 4.2]).

Proposition 4.2. The ideal $(\varphi^Y)^{-1}(\mathcal{K}(Y))$ is equal to $J_X \oplus \ker \varphi \oplus K^\infty \varphi \subseteq A \oplus K^\infty \varphi$.

Proof. As discussed just before the statement of the lemma, we have $J_X + \ker \varphi = J_X \oplus \ker \varphi$, so it suffices to show that $(\varphi^Y)^{-1}(\mathcal{K}(Y)) = (J_X + \ker \varphi) \oplus K^\infty \varphi$.

To prove that $(J_X + \ker \varphi) \oplus K^\infty \varphi \subseteq (\varphi^Y)^{-1}(\mathcal{K}(Y))$, fix $j + a \in J_X + \ker \varphi$, and $f \in K^\infty \varphi$. For $x \in X, g \in T$, since $\varphi(a + j) = \varphi(j)$ and since $j \cdot T = 0$, we have

$$\varphi^Y(j + a, f)(x, g) = (\varphi(j)x, ag_1, f_1g_2, f_2g_3, \ldots).$$

Since $j \in J_X$ we have $\varphi(j) \in \mathcal{K}(X)$. Further, letting $F = (a, f_1, f_2, \ldots)$ and letting $L_F \in \mathcal{K}(T)$ denote the left multiplication operator by F we have

$$\varphi^Y(j + a, f)(x, g) = (\varphi(j)x, ag_1, f_1g_2, \ldots) = (\varphi(j)x, 0, 0, \ldots) + (0, L_Fg),$$

so $\varphi^Y(j + a, f) = (\varphi(j), L_F) \in \mathcal{K}(X) \oplus \mathcal{K}(T) \subset \mathcal{K}(X \oplus T)$.

To prove that $(\varphi^Y)^{-1}(\mathcal{K}(Y)) \subseteq J_X \oplus \ker \varphi \oplus K^\infty \varphi$, first note that φ^Y decomposes as an (internal) direct sum $\varphi^A \oplus \varphi^T$ of the homomorphisms φ^A and φ^T given by

$$\varphi^A(a, f)(x, g_1, g_2, \ldots) = (\varphi(a)x, ag_1, 0, 0, \ldots),$$

and $\varphi^T(a, f)(x, g) = (0, 0, f_1g_2, f_2g_3, \ldots)$.

Suppose that $(a, f) \in (\varphi^Y)^{-1}(\mathcal{K}(Y))$; that is, $\varphi^Y(a, f)$ is compact. Since $\varphi^T(a, f)$ is left multiplication by $(0, 0, f_1, f_2, \ldots)$, it is compact. Hence $\varphi^A = \varphi^Y - \varphi^T$ is also compact. In particular $\varphi(a)$ is compact as it is the restriction of $\varphi^A(a, f)$ to the first entry, and so $a \in \varphi^{-1}(\mathcal{K}(X))$. Since a also acts compactly on the first coordinate of T, which is the right-Hilbert module $(\ker \varphi)_{\ker \varphi}$, we see that the left-multiplication-by-a operator on $(\ker \varphi)_{\ker \varphi}$
agrees with left-multiplication by some \(a' \in \ker \varphi \). In particular, \(j := a - a' \in (\ker \varphi)_{+} \). Since \(\varphi(j) = \varphi(a) - \varphi(a') = \varphi(a) \), we have \(j \in \varphi^{-1}(\mathcal{K}(X)) \cap (\ker \varphi)_{+} = J_X \). Hence \(a = j + a' \in J_X + \ker \varphi \). \(\Box \)

Having identified \((\varphi^\ast)^{-1}(\mathcal{K}(Y))\) with \(I := J_X \oplus \ker \varphi \oplus K_{\varphi}^\infty \), since \(\varphi^\ast \) is injective, we can apply the graded version of Pimsner’s exact sequence \([25, \text{Theorem 7.0.3}] \) to the \((A \oplus K_{\varphi}^\infty) - (A \oplus K_{\varphi}^\infty)\)-correspondence \(Y \). To avoid overly heavy notation in the resulting sequences \((4.2) \) and \((4.3) \), we employ the following slight abuses of notation: In the following diagrams, although \(i : J_X \oplus \ker \varphi \to A \) is the inclusion map, we write \([u] \) for the class \([I, i \oplus \text{id}_{K_{\varphi}^\infty}, 0, \alpha_I] \in KK(I, A \oplus K_{\varphi}^\infty) \); moreover, in these diagrams we write \([X] \) and \([T] \) for the classes \([X, \varphi|_{J_X + \ker \varphi}, 0, \alpha_X] \) and \([T, \varphi_T|_I, 0, \alpha_T] \) respectively. Both are elements of \(KK(I, A \oplus K_{\varphi}^\infty) \) by letting \(K_{\varphi}^\infty \) act trivially on \(X \) (on the left and right) and letting \(A \) act trivially on \(T \) (on the right but not on the left). While this is slightly at odds with our usual use of, for example, the notation \([X] \) corresponding to a Hilbert module \(X \), the ambient \(KK \)-groups in the diagrams should provide enough context to avoid confusion.

\[
\begin{align*}
KK_0(B, J_X \oplus \ker \varphi \oplus K_{\varphi}^\infty) & \xrightarrow{\hat{\otimes}[I - \varphi]} KK_0(B, A \oplus K_{\varphi}^\infty) \xrightarrow{i_*} KK_0(B, O_X) \\
KK_1(B, O_Y) & \xleftarrow{i^*} KK_1(B, A \oplus K_{\varphi}^\infty) \xleftarrow{\hat{\otimes}[I - \varphi]} KK_1(B, J_X \oplus \ker \varphi \oplus K_{\varphi}^\infty)
\end{align*}
\]
\[(4.2)\]

\[
\begin{align*}
KK_0(J_X \oplus \ker \varphi \oplus K_{\varphi}^\infty, B) & \xrightarrow{[I - \varphi]} KK_0(A \oplus K_{\varphi}^\infty, B) \xleftarrow{i^*} KK_0(O_X, B) \\
KK_1(O_Y, B) & \xleftarrow{i^*} KK_1(A \oplus K_{\varphi}^\infty, B) \xrightarrow{[I - \varphi]} KK_1(J_X \oplus \ker \varphi \oplus K_{\varphi}^\infty, B)
\end{align*}
\]
\[(4.3)\]

4.2. The covariant exact sequence

In this section we will use \((4.2) \) to recover our exact sequence describing the graded \(KK \)-theory \(KK(\mathbb{C}, O_X) \).

Proposition 4.3. For any graded \(C^* \)-algebra \(B \), define the
\[
U : KK(B, J_X) \oplus KK(B, \ker \varphi) \oplus \bigoplus_{n=1}^{\infty} KK(B, \ker \varphi)
\arrow{\otimes T} KK(B, A \oplus K_{\varphi}^\infty)
\]
by \(U(j, a, (f_1, f_2, \ldots)) = (0, (a, f_1, f_2, \ldots)) \). Let \(\omega : \bigoplus_{n=1}^{\infty} KK(B, \ker \varphi) \to KK(B, K_{\varphi}^\infty) \) be the canonical homomorphism of \((4.1) \), and let \([T] = [T, \varphi^\ast, 0, \alpha_T] \) be the Kasparov class of \(T \). Then the following diagram commutes
\[
\begin{array}{ccc}
KK(B, J_X \oplus \ker \varphi \oplus K_{\varphi}^\infty) & \xrightarrow{\otimes[T]} & KK(B, A \oplus K_{\varphi}^\infty) \\
\downarrow{\omega} & & \uparrow{\omega} \\
KK(B, J_X) \oplus KK(B, \ker \varphi) \oplus \bigoplus_{n=1}^{\infty} KK(B, \ker \varphi) & \xrightarrow{U} & KK(B, A) \oplus \bigoplus_{n=1}^{\infty} KK(B, \ker \varphi)
\end{array}
\]

Proof. Denote the \(n \)th copy of \(\ker \varphi \) in \(K_{\varphi}^\infty \) by \(K_n \), and let \(K_0 \) be the copy of \(\ker \varphi \) in \(A \). Since classes of Kasparov \(B - J_X \)-modules and Kasparov \(B - K_n \)-modules generate \(KK(B, J_X \oplus K_0 \oplus K_{\varphi}^\infty) \) it suffices to show that the diagram commutes on such elements.
Let \([J, ψ_J, F_j, α_J]\) be a \(B-J_X\)-module. Since the Fredholm operator defining the Kasparov class \([T]\) is zero, there is a 0-connection \(F_j \otimes 1\) for \(J\) such that

\[
[J, ψ_J, F_j, α_J] \otimes [T, ϕ^Y, 0, α_T] = [J \otimes T, ψ_J \otimes 1, F_j \otimes 1, α_J \otimes α_T].
\]

We claim this is the zero module. To see this, fix \(j \in J\) and \(f \in T\), and use [29, Proposition 2.31] to write \(j = k \cdot ⟨k, k⟩\). Using that \(⟨k, k⟩ \in \ker ϕ^⊥\) at the last equality, we compute

\[
j \otimes f = k \cdot ⟨k, k⟩ \otimes f = k \otimes ϕ^Y(⟨k, k⟩)f = k \otimes (0, ⟨k, k⟩f_1, 0) = 0.
\]

Since simple tensors span \(J \otimes T\), it follows the tensor product is zero. Hence \(ω([J]) \otimes [T] = ω \circ U([J]) = 0\).

Now consider a Kasparov \(B-K_n\)-module \((Z, ψ_n, F_n, α_n)\). Since \(Z\) is a \(B-K_n\)-correspondence there exists \(a_z \in \ker ϕ\) such that \(⟨z, z⟩ = a_zδ_{i,n}\) for all \(z \in Z\). Hence for \(z \in Z\) and \(f \in T\) we have

\[
⟨z \otimes f, z \otimes f⟩ = ⟨f, ϕ^Y(⟨z, z⟩)f⟩ = f^∗(z, z)_{i−1}f_i = f^∗a_zδ_{i−1,n}f_i,
\]

which is non-zero only if \(i = n + 1\). Hence \(⟨z \otimes f, z \otimes f⟩ \in K_{n+1}\). Thus \(⟨y, y⟩ \in K_{n+1}\) for all \(y \in Z \otimes T\). With \(j_n : KK(B, K_n) → KK(B, J_X ∪ K_0 ∪ K_∞)\) denoting the canonical inclusion,

\[
ω \circ j_n([Z_n]) \otimes [T] = ω((0, \ldots, 0, [Z_n \otimes T], 0, \ldots)) = ω \circ j_{n+1}([Z_n \otimes T])
\]

There is an isomorphism \(Z_n \otimes T \cong Z_n\) that carries an elementary tensor \(z \otimes f\) to \(z \cdot f\). Thus, for \(f_n = j_n[Z_n]\),

\[
ω(U(f_n)) = ω(j_{n+1}[Z_n]) = ω(j_n([Z_n]) \otimes [T]) = ω(f_n) \otimes [T]. \quad \Box
\]

Theorem 4.4. Let \((A, α_A)\) be a graded separable nuclear \(C^∗\)-algebra. Let \(X\) be an essential graded \(A-A\)-correspondence with left action \(ϕ\). Let \(J_X = ϕ^{-1}(K(X)) \cap \ker ϕ^⊥\), and let \(ι_{J_X} : J_X → A\) be the inclusion map. Then there is an exact sequence

\[
KK_0(\mathbb{C}, J_X) \xrightarrow{⊗_A[ι_{J_X}]-[X]} KK_0(\mathbb{C}, A) \xrightarrow{i∗} KK_0(\mathbb{C}, O_X) \quad KK_1(\mathbb{C}, O_X) \xleftarrow{⊗_A[ι_{J_X}]-[X]} KK_1(\mathbb{C}, A) \xleftarrow{i∗} KK_1(\mathbb{C}, J_X)
\]

Proof. By [23, Lemma 4.2] the left action \(ϕ^Y\) on \(Y = X ⊕ T\) is injective. Let \(I := (ϕ^Y)^{-1}(K(Y))\) and let \(ι_I : I → A ⊕ K_∞\) be the inclusion map. Consider the resulting exact sequence (4.2). Let \(P : KK(C, (J_X + \ker ϕ) ⊕ K_∞) → KK(C, J_X)\) be the projection map given by \(P[Z, ψ, F, α_Z] = [Z \cdot J_X, ψ, F, α_Z]\), and let \(ℓ : KK(C, A) → KK(C, A ⊕ K_∞)\) be the inclusion map. Consider the following ten-term diagram with (4.2) as its central
6-term rectangle.

\[
\begin{array}{c}
\xymatrix{ KK_0(\mathbb{C}, J_X) & KK_0(\mathbb{C}, A) \\
KK_0(\mathbb{C}, J_X \oplus \ker \varphi \oplus K^\infty_\varphi) \ar[u]_{\partial} \ar[r]^{\widehat{\otimes}[|X| - |T|]} & KK_0(\mathbb{C}, A \oplus K^\infty_\varphi) \ar[d]^{\ell} \ar[r]^{i_*} & KK_0(\mathbb{C}, \mathcal{O}_Y) \\
KK_1(\mathbb{C}, \mathcal{O}_Y) \ar[u]_{\partial} & KK_1(\mathbb{C}, A \oplus K^\infty_\varphi) \ar[d]^{\ell} \ar[r]^{\widehat{\otimes}[|X| - |T|]} & KK_1(\mathbb{C}, J_X \oplus \ker \varphi \oplus K^\infty_\varphi) \\
KK_1(\mathbb{C}, A) \ar[u]_{\partial} & \widehat{\otimes}[|X|] \ar[u]_{\widehat{\otimes}[|X| - |T|]} \ar[r]^{i_* \circ \ell} & KK_1(\mathbb{C}, J_X) \ar[u]_{\partial}
}
\end{array}
\]

We show that the sequence

\[
(4.4) \quad \begin{array}{c}
KK_0(\mathbb{C}, J_X) \ar[r]^{\widehat{\otimes}[|X|]} & KK_0(\mathbb{C}, A) \ar[r]^{i_* \circ \ell} & KK_0(\mathbb{C}, \mathcal{O}_Y) \\
KK_1(\mathbb{C}, \mathcal{O}_Y) \ar[u]_{P \circ \partial} & KK_1(\mathbb{C}, A) \ar[r]^{\widehat{\otimes}[|X|]} & KK_1(\mathbb{C}, J_X) \ar[u]_{P \circ \partial}
\end{array}
\]

obtained by traversing the outside of the ten-term diagram is exact. First we show that (4.4) is exact at \(KK_* (\mathbb{C}, \mathcal{O}_Y)\). We claim that \(\ker(P \circ \partial) = \ker \partial\). To see this, observe that \(\operatorname{Img}(\partial) = \ker(\cdot \widehat{\otimes}([|X| - |T|]))\) by exactness of (4.2). Identifying direct sums as in Proposition 4.1, suppose that \((j, a, f) \widehat{\otimes}([|I|] - [|X| - |T|]) = 0\) for some \(j \in KK(\mathbb{C}, J_X), a \in KK(\mathbb{C}, \ker \varphi), \) and \(f = (f_1, f_2, \ldots) \in \bigoplus_{n=1}^\infty KK(\mathbb{C}, \ker \varphi)\). Since \(|I|\) is just the inclusion of \(I\) into \(A \oplus K^\infty_\varphi\), the map \((|I|)_* := \cdot \widehat{\otimes} [I] : KK(\mathbb{C}, I) \to KK(\mathbb{C}, A)\) is just the natural inclusion. Hence under the identification of Proposition 4.2, \(j \widehat{\otimes} [I], a \widehat{\otimes} [I], \) and \(f \widehat{\otimes} [I]\) are the natural images of \(j, a\) and \(f\) in \(KK(\mathbb{C}, A \oplus K^\infty_\varphi)\). Hence \((j, a, f) \widehat{\otimes} [I] = (j + a, f)\).

Since \(\ker \varphi\) acts trivially on \(X\), we have \(a \widehat{\otimes} [X] = f \widehat{\otimes} [X] = 0\). Hence \((j, a, f) \widehat{\otimes} [X] = (j \widehat{\otimes} [X], 0, 0)\). Using Proposition 4.3, \((j, a, (f_1, f_2, \ldots)) \widehat{\otimes} [T] = (0, (a, f_1, f_2, \ldots))\), so

\[
(4.5) \quad 0 = (j, a, f) \widehat{\otimes} ([|I|] - [|X| - |T|]) = (j + a - j \widehat{\otimes} [X], f_1 - a, f_2 - f_1, \ldots, f_n - f_{n-1}, \ldots).
\]

Proposition 4.1 shows that \(f = (f_1, f_2, \ldots) \in \bigoplus_{n=1}^\infty KK(\mathbb{C}, \ker \varphi), \) so there exists \(N \in \mathbb{N}\) such that \(f_n = 0\) for all \(n > N\). Hence (4.5) becomes

\[
0 = (j + a - j \widehat{\otimes} [X], f_1 - a, f_2 - f_1, \ldots, f_N - f_{N-1}, -f_N, 0, 0, \ldots)
\]

forcing \(f_N = 0\). Continuing recursively down the sequence we have \(f_k = 0\) for each \(k \leq N\), and \(a = 0\). Hence \((j, a, f) = (j, 0, 0)\). We conclude

\[
(4.6) \quad \operatorname{Img}(\partial) \subseteq KK(\mathbb{C}, J_X) \oplus 0 \oplus 0,
\]

so \(P|_{\ker \partial}\) is injective, and therefore \(\ker(P \circ \partial) = \ker(\partial)\).

To establish exactness of (4.4) at \(KK_*(\mathbb{C}, \mathcal{O}_Y)\), it now suffices to show that \(\operatorname{Img}(\iota_X \circ \ell) = \operatorname{Img}(\iota_X)\). For this, we first claim that

\[
(4.7) \quad \operatorname{Img}(\widehat{\otimes}[|X| - |T|])|_{KK(\mathbb{C}, \ker \varphi \oplus T)} = \left\{ - \sum f_j, f : f \in KK(\mathbb{C}, T) \right\}.
\]
For all \(a \in KK(\mathbb{C}, \ker \varphi) \) and \(f \in KK(\mathbb{C}, T) \), the product
\[(0, a, f) \otimes ([t] - [X] - [T])\]
is of the form
\[- \sum g_j, g\], where \(g_j = fj - fj_{j-1} \) for \(j > 1 \), and \(g_1 = f_1 - a \). Conversely, we have
\[\sum f_j, f = (0, a, g) \otimes ([t] - [X] - [T])\]
for \(g_j = - \sum_{k=0}^{n-j-1} f_{n-k} \) and \(a = - \sum_{k=1}^{n} f_k \), where \(n \) is the index of the last non-zero entry of \(f \). This proves (4.7). By exactness of the inner rectangle (4.2) of the ten-term diagram, we have \(\text{Img}(\otimes([t] - [X] - [T]))_{KK(\mathbb{C}, \ker \varphi \oplus T)} \subseteq \text{Img}(\otimes([t] - [X] - [T])) = \ker \iota \), so we deduce that \(\iota \left(- \sum f_j, f \right) = 0 \) for all \(f \in KK(\mathbb{C}, T) \).

Now suppose \(\iota \left(a, f \right) \in \text{Img}(\iota \ast) \). Then
\[\iota \ast (a, f) = \iota \ast (a + \sum f_j, 0) + \iota \ast (- \sum f_j, f) = \iota \ast (a + \sum f_j, 0) = \iota \ast \ell (a + \sum f_j).\]

Hence \(\text{Img}(\iota \ast \ell) = \text{Img}(\iota) = \ker(\partial) \) by exactness of (4.2). This completes the proof of exactness of (4.4) at \(KK_{s}(\mathbb{C}, O_{Y}). \)

We now establish exactness of (4.4) at \(KK_{s}(\mathbb{C}, J_{X}). \) We have already demonstrated in (4.6) that \(\ker(\otimes([t] - [X] - [T])) = \ker(\otimes([t] - [X] - [T]))_{KK(\mathbb{C}, J_{X})} \), and further by Proposition 4.3 we have that \(\cdot \otimes ([t] - [X] - [T])_{KK(B, J_{X})} = \cdot \otimes ([t]_{J_{X}} - [X]). \) Hence
\[\text{Img}(\iota \ast \ell) = \text{Img}(\iota) = \ker(\otimes([t] - [X] - [T])) = \ker(\otimes([t]_{J_{X}} - [X])),\]
giving exactness at \(KK_{s}(\mathbb{C}, J_{X}). \)

Next, we establish exactness of (4.4) at \(KK_{s}(\mathbb{C}, A). \) By definition we have
\[\ker(\iota \ast \ell) = \{ a \in KK(\mathbb{C}, A), \iota \ast (a, 0) = 0 \} = \ker(\iota) \cap (KK(\mathbb{C}, A) \oplus \{0\}).\]

Suppose that for \(j \in KK(\mathbb{C}, J_{X}), a \in KK(\mathbb{C}, \ker \varphi) \) and \(f \in \bigoplus_{n=1}^{\infty} KK(\mathbb{C}, \ker \varphi) \) we have
\[(j, a, f) \otimes ([t] - [X] - [T]) = (b, 0) \]
for some \(b \in KK(\mathbb{C}, A). \) Then
\[(j, a, f) \otimes ([t] - [X] - [T]) = (j + a - j \otimes [X], f_{1} - a, f_{2} - f_{1}, \ldots, -f_{N}, 0, \ldots)\]
where \(N \in \mathbb{N} \) is the index of the last non-zero component of \(f \). We have \(f_{N} = 0 \), and so recursively, \(f_{j} = 0 \) for each \(j > 0 \), and \(a = 0 \). Hence \((j, a, f) \otimes ([t] - [X] - [T]) = (j, 0) \otimes ([t]_{J_{X}} - [X]) \in \text{Img}(\otimes([t]_{J_{X}} - [X])). \) Thus \(\text{Img}(\otimes([t] - [X] - [T]))_{KK(\mathbb{C}, A) \oplus \{0\}} = \text{Img}([t]_{J_{X}} - [X]), \) and so by exactness of (4.2), we deduce that \(\text{Img}(\otimes([t]_{J_{X}} - [X])) = \ker(\iota \ast \ell). \) This proves exactness of (4.4).

The inclusion \(i : A \oplus K_{\mathbb{P}}^{\infty} \to O_{Y} \) is nondegenerate and so extends to a homomorphism \(\tilde{i} : \mathcal{M}(A \oplus K_{\mathbb{P}}^{\infty}) \to \mathcal{M}(O_{Y}). \) Theorem 4.3 of [23] shows that \(Q := \tilde{i}(1_{\mathcal{M}(A)}) \in \mathcal{M}(O_{Y}) \) is a full projection and that \(QO_{Y}Q \cong O_{X}. \) Since \(Q \) is trivially graded with respect to the grading on \(A \oplus K_{\mathbb{P}}^{\infty}, \) the space \(O_{Y}Q \) is a graded imprimitivity \(O_{Y} - O_{X} \)-module. So \((O_{Y}, \alpha_{O_{Y}}) \) and \((O_{X}, \alpha_{O_{X}}) \) are \(KK \)-equivalent as discussed in Section 1.6. In particular, \(KK_{s}(\mathbb{C}, O_{X}) \cong KK_{s}(\mathbb{C}, O_{Y}) \). Now \(\tilde{i} \ast \ell : KK(\mathbb{C}, A) \to KK(\mathbb{C}, O_{Y}) \) restricts to \(\iota \ast \ell : KK(\mathbb{C}, A) \to KK(\mathbb{C}, O_{X}), \) giving the desired sequence.

4.3. The contravariant exact sequence. We now use similar techniques to those used in the preceding subsection to obtain an exact sequence describing \(KK(O_{X}, B) \) using the contravariant exact sequence (4.3).
Proposition 4.5. Define

\[\overline{U} : KK(A, B) \oplus \left(\prod_{n=1}^{\infty} KK(\ker \varphi, B) \right) \to KK(J_X, B) \oplus KK(\ker \varphi, B) \oplus \left(\prod_{n=1}^{\infty} KK(\ker \varphi, B) \right) \]

by \(\overline{U}(a, f_1, f_2, \ldots) = (0, f_1, f_2, \ldots) \). Let \(\overline{\zeta} : KK(K^\infty_{\varphi}, B) \to \prod_{n=1}^{\infty} KK(\ker \varphi, B) \) be the isomorphism discussed at the beginning of Section 4.1, and let \([T] = [T, \varphi^Y, 0, \alpha_T] \) be the class of the module associated to \(T \). Then the following diagram commutes.

\[\begin{array}{ccc}
KK((J_X \oplus \ker \varphi) \oplus K^\infty_{\varphi}, B) & \xrightarrow{\overline{U}} & KK(A \oplus K^\infty_{\varphi}, B) \\
\zeta \downarrow & & \downarrow \overline{\zeta} \\
KK(J_X, B) \oplus KK(\ker \varphi, B) \oplus \prod_{n=1}^{\infty} KK(B, \ker \varphi) & \xrightarrow{\overline{U}} & KK(A, B) \oplus \prod_{n=1}^{\infty} KK(\ker \varphi, B)
\end{array} \]

Proof. As discussed at the beginning of Section 4.1, if \(\iota_i : \ker \varphi \to K^\infty_{\varphi} \) is the inclusion into the \(i \)th coordinate, then the right-hand map \(\zeta \) carries the class \([Z]\) of a Kasparov \((A \oplus K^\infty_{\varphi})\)-\(B\)-module to \(([A \cdot Z], (\iota_i(\ker \varphi) \cdot Z)_{i=1}^{\infty})\). Likewise, the right-hand map takes \([W]\) to \(([J_X \cdot W], [\ker \varphi \cdot W], (\iota_i(\ker \varphi) \cdot W)_{i=1}^{\infty})\).

Regard \(T \) as a right \((J_X \oplus K^\infty_{\varphi})\)-module, and take \(W = T \otimes Z \). The left action of \(K^\infty_{\varphi} \) on \(Z \) is given by the inclusion \(K^\infty_{\varphi} \hookrightarrow A \oplus K^\infty_{\varphi} \), and so \(T \otimes (A \oplus 0) \cdot Z = 0 \). For each \(i \geq 1 \), we have \(T \otimes (\iota_i(\ker \varphi)) \cdot Z \cong \ker \varphi \otimes_{\ker \varphi} (\iota_i(\ker \varphi)) \cdot Z \cong \iota_i(\ker \varphi) \cdot Z \) as a right module. The left action of \(J_X \oplus \ker \varphi \) on \(T \otimes (0 \oplus \iota_i(\ker \varphi)) \cdot Z \) restricts to the zero action of \(J_X \) because \(J_X \subseteq \ker \varphi \), and restricts to the standard action of \(\ker \varphi \). So we see that \(W \) is isomorphic to \(0 \oplus \bigoplus_{i=1}^{\infty} \iota_i(\ker \varphi) \cdot Z \) as a right-Hilbert \(J_X \oplus \ker \varphi \oplus K^\infty_{\varphi} \)-module. This isomorphism preserves gradings because \(\iota \) is a graded homomorphism.

In particular, \(\iota_{J_X} \cdot W = 0 \), each \(\iota_{K^\infty_{\varphi}}(\iota_i(\ker \varphi)) \cdot W \cong \iota_{i+1}(\ker \varphi) \cdot W \), and \(\iota_{\ker \varphi} \cdot W \cong \iota_1(\ker \varphi) \cdot Z \). Thus \(\zeta([W]) = (0, [\iota_1(\ker \varphi) \cdot Z], [\iota_2(\ker \varphi) \cdot Z], \ldots) \). Since \(\zeta([Z]) = ([A \cdot Z], [\iota_1(\ker \varphi) \cdot Z], [\iota_2(\ker \varphi) \cdot Z], \ldots) \), the result follows.

\[\square \]

Theorem 4.6. Let \((A, \alpha_A), (B, \alpha_B)\) be a graded separable \(C^* \)-algebras, and suppose \(A \) is nuclear. Let \(X \) be an essential graded \(A \)-\(A \)-correspondence with left action \(\varphi \). Let \(J_X = \varphi^{-1}(K(X)) \cap \ker \varphi \), and let \(\iota_{J_X} : J_X \to A \) be the inclusion map. Then there is an exact sequence

\[KK_0(J_X, B) \leftarrow \frac{([\iota_{J_X} \cdot -[X]])_{\otimes A}}{i^*} \xrightarrow{i^*} KK_0(A, B) \xrightarrow{i^*} KK_0(O_X, B) \]

\[KK_1(O_X, B) \xrightarrow{i^*} KK_1(A, B) \xrightarrow{([\iota_{J_X} \cdot -[X]])_{\otimes A}} KK_1(J_X, B) \]

Proof. The argument is similar to that of Theorem 4.4. Since the left action \(\varphi^{A \oplus K^\infty_{\varphi}} \) on \(Y \) is injective, if we write \(I := (\varphi^{A \oplus K^\infty_{\varphi}})^{-1}(K(Y)) \) and \(\iota_I : I \to A \oplus K^\infty_{\varphi} \) for the inclusion, then the exact sequence (4.3) fits as the central rectangle in the following diagram whose
top and bottom rectangles commute:

\[
\begin{array}{ccc}
KK_0(J_X, B) & \xrightarrow{(\iota_{J_X} - [X]) \otimes A} & KK_0(A, B) \\
\downarrow \iota & & \downarrow P \\
KK_0(J_X \oplus \ker \phi \oplus K^\infty, B) & \xleftarrow{(\iota_{J_X} - [X] - [T]) \otimes A} & KK_0(A \oplus K^\infty, B) & \leftarrow i^* & KK_0(O_Y, B) \\
\downarrow \partial & & \downarrow \partial \\
KK_1(O_Y, B) & \xrightarrow{i^*} & KK_1(A \oplus K^\infty, B) & \xrightarrow{(\iota_{J_X} - [X]) \otimes A} & KK_1(J_X \oplus \ker \phi \oplus K^\infty, B) \\
\downarrow P & & \downarrow \iota \\
KK_1(A, B) & \xrightarrow{(\iota_{J_X} - [X]) \otimes A} & KK_1(J_X, B)
\end{array}
\]

To prove the result, we show that the six-term sequence consisting of the six extreme points of this diagram is exact; the result will again follow from the graded Morita equivalence of \(O_X \) and \(O_Y \).

Throughout this proof, without further comment, we identify \(KK_*(J_X \oplus \ker \phi \oplus K^\infty, B) \) with \(KK_*(J_X, B) \oplus KK_*(\ker \phi, B) \oplus \prod_{i=1}^\infty KK_i(\ker \phi, B) \) and we identify \(KK_*(A \oplus K^\infty, B) \) with \(KK_*(A, B) \oplus \prod_{i=1}^\infty KK_i(\ker \phi, B) \) as discussed at the beginning of Section 4.1.

For exactness at \(KK_*(A, B) \), observe that \(\text{Img}(P \circ i^*) = P(\ker((\iota_{J_X} - [X] - [T]) \otimes \cdot)) \).

By Proposition 4.5, and using that \(\ker \phi \) annihilates \(X \), we see that for any \((a, j_1, j_2, \ldots) \in KK_*(A \oplus K^\infty, B)\), we have

\[
(\iota_{J_X} - [X] - [T]) \otimes A (a, j_1, j_2, \ldots) = ((\iota_{J_X} - [X]) \otimes a, [\ker \phi] \otimes a, j_1, j_2, \ldots).
\]

So \(\ker((\iota_{J_X} - [X] - [T]) \otimes \cdot) \) is the set of sequences \((a, j, j, j, \ldots)\) such that \((\iota_{J_X} - [X]) \otimes a = 0\) and \(j = [\ker \phi] \otimes a \). In particular, \(P(\ker((\iota_{J_X} - [X] - [T]) \otimes \cdot)) = \ker(\iota_{J_X} - [X]) \) as required.

For exactness at \(KK_*(J_X, B) \) first observe that \(\iota \) is given by \(\iota([j]) = ([j], 0, 0, \ldots) \). So \(\ker(\partial \circ \iota) = \{[j] : ([j], 0, 0, \ldots) \in \ker(\partial)\} = \{([j], 0, 0, \ldots) : [j] \in \text{Img}((\iota_{J_X} - [X] - [T]) \otimes_A \cdot)\} \).

By the description of the map \((\iota_{J_X} - [X] - [T]) \otimes \cdot\) in the preceding paragraph, we see that if \(([j], 0, 0, \ldots) = (\iota_{J_X} - [X] - [T]) \otimes_A (a, j_1, j_2, \ldots)\), then \([j] = (\iota_{J_X} - [X]) \otimes_A a\). Conversely, given \(a \in A \), since the rectangles involving \(P \) and \(\ell \) commute and since the maps \(P \) are surjective, \(\ell((\iota_{J_X} - [X]) \otimes_A a) \in \text{Img}((\iota_{J_X} - [X] - [T]) \otimes_A \cdot) = \ker(\partial) \), and so the image of \((\iota_{J_X} - [X]) \otimes_A \cdot\) is contained in the kernel of \(\partial \circ \ell\).

It remains to establish exactness at \(KK_*(O_Y, B) \). By exactness of (4.3), \(\text{Img}(i^*) = \ker((\iota_{J_X} - [X] - [T]) \otimes \cdot)\). As we saw earlier, this is the collection of sequences \((a, j, j, \ldots)\) such that \((\iota_{J_X} - [X]) \otimes A a = 0\) and \(j = [\ker \phi] \otimes a \). In particular, if \((P \circ i^*)(x) = 0\), then \(i^*(x) = (0, j, j, \ldots) \) with \(j = [\ker \phi] \otimes 0 = 0\), and hence \(i^*(x) = 0\). That is, \(\ker(P \circ i^*) = \ker(i^*)\). Since (4.3) is exact, it now suffices to show that \(\text{Img}(\partial \circ \ell) = \text{Img} \partial \).

We clearly have \(\text{Img}(\partial \circ \ell) = \text{Img} \partial\), so we must show the reverse containment. For this, fix \(\theta = (j_X, j_0, j_1, j_2, \ldots) \in KK_*(J_X \oplus \ker \phi \oplus K^\infty, B)\), so that \(\partial \theta \) is a typical element of \(\text{Img}(\partial) \).

Consider the element \(\eta := (0, -j_0, -j_0 - j_1, -j_0 - j_1 - j_2, \ldots) \in KK_*(A \oplus K^\infty, B)\). We have \((\iota_{J_X} - [X] - [T]) \otimes \eta = (0, j_0, j_1, j_2, \ldots)\). In particular, \(\theta = (\iota_{J_X} - [X] - [T]) \otimes \eta + (j_X, 0, 0, 0, \ldots) = (\iota_{J_X} - [X] - [T]) \otimes \eta + \ell(j_X)\). Since (4.3) is
exact, $\partial(\theta) = \partial((|I_1| - [X] - [T]) \hat{\otimes} \eta) + \partial(\ell(j_X)) = \partial \circ \ell(j_X)$. So $\partial(\theta) \in \text{Img}(\partial \circ \ell)$ as required.

References

[1] T. Bates, J. Hong, I. Raeburn, and W. Szymański, *The ideal structure of the C*-algebras of infinite graphs*, Illinois J. Math. **46** (2002), 1159–1176.

[2] B. Blackadar, *K-theory for operator algebras*. MSRI Publications vol. 5, *Cambridge University Press*, 1998.

[3] L. G. Brown, R. G. Douglas and P. A. Fillmore, *Extensions of C*-algebras, operators with compact self-commutators, and K-homology*, Bull. Amer. Math. Soc., **79** (1973), 973–978.

[4] L. G. Brown, R. G. Douglas, and P. A. Fillmore, *Unitary equivalence modulo the compact operators and extensions of C*-algebras*, in Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973), Berlin, 1973, Springer, 58–128. Lecture Notes in Math., Vol. 345.

[5] T. Crisp, *Fredholm Modules over Graph C*-Algebras*, Bull. Aust. Math. Soc. **92** (2015), 302–315.

[6] J. Cuntz and W. Krieger, *A class of C*-algebras and topological Markov chains*, Invent. Math., **56**(3) (1980), 251–268.

[7] J. Cuntz, *A class of C*-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for C*-algebras*, Invent. Math., **63**(1) (1981), 25–40.

[8] A. van Daele, *Graded K-theory for Banach algebras I*, Quart. J. Math. Oxford, **39** (1988), 185–199.

[9] A. van Daele, *Graded K-theory for Banach algebras II*, Pacific J. Math., **134** (1988), 377–392.

[10] D. Drinen and M. Tomforde, *Computing K-theory and Ext for graph C*-algebras*, Illinois J. Math., **46** (2002), 81–91.

[11] G.A. Elliott, *On the K-theory of the C*-algebra generated by a projective representation of a torsion-free discrete abelian group*, Monogr. Stud. Math., 17, Operator algebras and group representations, Vol. I (Neptun, 1980), 157–184, Pitman, Boston, MA, 1984.

[12] G. A. Elliott, *On the classification of C*-algebras of real rank zero*, J. reine angew. Math. **443** (1993), 179–219.

[13] R. Exel and M. Laca, *The K-theory of Cuntz-Krieger algebras for infinite matrices*, K-Theory **19**(3) (2000), 251–268.

[14] U. Haag, *On $\mathbb{Z}/2\mathbb{Z}$-graded KK-theory and its relation with the graded Ext-functor*, J. Operator Theory **42** (1999), 3–36.

[15] U. Haag, *Some algebraic features of \mathbb{Z}_2-graded KK-theory*, K-Theory **13** (1998), 81–108.

[16] M. Karoubi, *Algèbres de Clifford et K-théorie*, Ann. Sci. École Norm. Sup. (4) **1** (1968), 161–270.

[17] T. Katsura, *On C*-algebras associated with C*-correspondences*, J. Funct. Anal. **217** (2004), 366–401.

[18] G.G. Kasparov, *The Operator K-Functor and Extensions of C*-Algebras*, Math. USSR. Izv. **16** (1981), 513–572.

[19] G.G. Kasparov, *Equivariant KK-theory and the Novikov conjecture*, Invent. Math. **91** (1988), 147–201.

[20] A. Kumjian, D. Pask and A. Sims, *Graded C*-algebras, Graded K-theory, and Twisted P-graph C*-algebras*, J. Operator Theory, **80** (2017), 295–348.

[21] E.C. Lance, *Hilbert C*-modules, A toolkit for operator algebraists*, Cambridge University Press, Cambridge, 1995, x+130.

[22] P.S. Muhly and B. Solel, *Tensor algebras over C*-correspondences: representations, dilations, and C*-envelopes*, J. Funct. Anal. **158** (1998), 389–457.

[23] P. Muhly and M. Tomforde, *Adding tails to C*-correspondences*, Doc. Math, **9** (2004), 79–106.

[24] D. Pask and I. Raeburn, *On the K-theory of Cuntz–Krieger algebras*, Publ. RIMS Kyoto Univ., **32** (1996), 415–443.

[25] Q. Patterson, *Exact sequences in graded KK-theory for Cuntz-Pimsner algebras*, Honours thesis (2018), University of Wollongong (arXiv:2005.02187 [math.OA]).

[26] M. Pimsner, *A class of C*-algebras generalising both Cuntz–Krieger algebras and crossed products by \mathbb{Z}*, Fields Inst. Comm. **12**, (1997) 189–212.

[27] I. Raeburn, *Graph Algebras*, CBMS **103**, AMS, Providence, RI, 2005.
[28] I. Raeburn and W. Szymański, *Cuntz–Krieger algebras of infinite graphs and matrices*, Trans. Amer. Math. Soc. **356** (2004), 39–59.

[29] I. Raeburn and D.P. Williams, Morita equivalence and continuous-trace C*-algebras, American Mathematical Society, Providence, RI, 1998, xiv+327.

[30] A. Rennie, D. Robertson and A. Sims, *Groupoid Fell bundles for product systems over quasi-lattice ordered groups*, Math. Proc. Cambridge Philos. Soc., **163** (2017), 561–580.

[31] G. Skandalis, *Exact sequences for the Kasparov groups of graded algebras*, Canad. J. Math. **37** (1985), 193–216.

[32] W. Szymański, *Bimodules for Cuntz-Krieger algebras of infinite matrices*, Bull. Austral. Math. Soc. **62**(1) (2000), 87–94.

[33] W. Szymański, *On semiprojectivity of C*-algebras of directed graphs*, Proc. Amer. Math. Soc. **130** (2002), 1391–1399.

[34] J. Taylor, *(Up)Graded K-homology for graph algebras*, Honours thesis (2019), University of Wollongong.

[35] M. Tomforde, *Computing Ext for graph algebras*, J. Operator Theory **49**(2) (2003), 363–387.

[36] I. Yi, *K-theory and K-homology of C*-algebras for row-finite graphs*, Rocky Mountain J. Math. **37**(5) (2007), 1723–1742.

(Q. Patterson, A. Sierakowski, A. Sims and J. Taylor) SCHOOL OF MATHEMATICS AND APPLIED STATISTICS, UNIVERSITY OF WOLLONGONG, NSW 2522, AUSTRALIA

Email address: qrp844@uowmail.edu.au, asierako@uow.edu.au, asims@uow.edu.au, jpt812@uowmail.edu.au