ON THE EXISTENCE OF THE UNIVERSAL CLASSES
FOR ALGEBRAIC GROUPS

ANTOINE TOUZÉ

Abstract. In this note, we apply the ideas developed by M. Chalupnik in [3] to the framework of strict polynomial bifunctors. This allows us to get a new proof of the existence of the ‘universal classes’ originally constructed in [T1].

1. Introduction

Let \(k \) be a field of prime characteristic \(p \), and let \(GL_n, k \) denote the general linear group scheme over \(k \). In [T1], we exhibited a set of ‘universal classes’ \(c[i] \) \(i \in \mathbb{N} \) living in the cohomology of \(GL_n, k \). These classes’ existence was anticipated by van der Kallen [VdK], and they are one of the key ingredients to prove van der Kallen’s conjecture, which is now a theorem:

Theorem ([TVdK]). Let \(G \) be a reductive algebraic group scheme over a field \(k \), and let \(A \) be an finitely generated \(k \)-algebra acted on by \(G \) via algebra automorphisms. Then the cohomology \(H^*(G, A) \) is finitely generated as a graded \(k \)-algebra.

The purpose of this note is to give a new proof of the existence of the universal classes \(c[i] \). To be more specific, if \(V \) is a finite dimensional vector space and \(d \geq 1 \), the vector space \(V^\otimes d \) is acted on by the symmetric group \(S_d \). We denote by \(\Gamma^d(V) \) the ‘\(d \)-th divided power of \(V \)’, that is the subspace of invariants \((V^\otimes d)^{S_d} \). We also denote by \(\mathfrak{gl}_n \) the adjoint representation of \(GL_n, k \) and by \(\mathfrak{gl}_n^{(1)} \) the representation obtained by base change along the Frobenius twist. We give in section 4 a new proof of the following theorem, originally established in [T1] Thm 0.1.

Theorem 1.1. Let \(k \) be a field of positive characteristic and let \(n \geq p \) be an integer. There are cohomology classes \(c[d] \in H^{2d}(GL_n, k, \Gamma^d(\mathfrak{gl}_n^{(1)})) \) such that:

1. \(c[1] \in H^2(GL_n, k, \mathfrak{gl}_n^{(1)}) \) is non zero.
2. If \(d \geq 1 \) and \(\Delta_{(1, \ldots, 1)} : \Gamma^d(\mathfrak{gl}_n^{(1)}) \to (\mathfrak{gl}_n^{(1)})^\otimes d \) is the inclusion, then \(\Delta_{(1, \ldots, 1)} \ast c[d] = c[1]^\otimes d \).

In the ‘old proof’ we built the universal classes by computing explicit cycles, using explicit coresolutions of the representation \(\Gamma^d(\mathfrak{gl}_n^{(1)}) \). To achieve this construction, we used two main ingredients: the twist compatible category, constructed in [T1] Section 3, and a result on the combinatorics of tensor products of \(p \)-complexes [T1 Prop 2.4].

Date: July 1, 2011.
The author was partially supported by the ANR HGRT (Projet BLAN08-2 338236).
The new proof uses the ideas of the article [C] and involves rather different ingredients. It relies heavily on derived categories, a formality phenomenon discovered in [T3] and the adjunction argument used by M. Chalupnik to prove the collapsing conjecture [T3] Conjecture 8.1 (suitably adapted to the world of strict polynomial bifunctors).

As a common point, the two proofs rely on the very fundamental complexes constructed by Troesch in [Tr] (see also [T3] Section 9) for a slightly different presentation of these complexes).

2. Functors and bifunctors

Our proof of theorem [11] uses the category of strict polynomial bifunctors introduced in [FF]. In this section, we recall the main facts that we will need about this category. As a reference about functors, bifunctors and other generalizations, we refer the reader to [FS, Section 2], [SFB, Section 3], [FF, Section 1], [P, Section 4], [F, Section 3], [T2, Section 2], or [T4, Section 2].

2.1. Functors. Let us first begin with brief recollections of the simpler category of strict polynomial functors introduced by Friedlander and Suslin in [FS]. If \(k \) is a field of prime characteristic \(p \), we denote by \(P^d \) the abelian category of homogeneous strict polynomial functors of degree \(d \) over \(k \). The objects of \(P^d \) are nice endofunctors of the category \(\mathcal{V}_k \) of finite dimensional \(k \)-vector spaces, which naturally arise in representation theory of algebraic groups, and the morphisms of \(P^d \) are some natural transformations between these functors.

Examples of objects of \(P^d \) include the \(d \)-th tensor power \(\otimes^d : V \mapsto V \otimes^d \), the \(d \)-th symmetric power \(S^d : V \mapsto S^d(V) \), and the \(d \)-th divided power \(V \mapsto \Gamma^d(V) = (V \otimes^d)^{\mathbb{Z}_d} \). The \(r \)-th Frobenius twist \(I^{(r)} \in P^p \) is the subfunctor of \(S^p \) such that \(I^{(r)}(V) \) is generated by the elements of the form \(v^p \in S^p(V) \). As usual, if \(F \in P^d \), we denote by \(F^{\sharp} \) the dual of a functor \(F \), that is \(F^{\sharp}(V) := F(V^\vee)^{\vee} \), where the symbol ‘\(\vee \)’ stands for \(k \)-linear duality. We have

\[
\text{Hom}_{P^d}(F, G) = \text{Hom}_{P^d}(G^\sharp, F^\sharp).
\]

If \(F \in P^d \), and \(X \in \mathcal{V}_k \) we let \(F^X \) and \(F_X \) be the functors with parameter \(X \):

\[
F^X : V \mapsto F(\text{Hom}_k(X, V)) , \quad F^X : V \mapsto F(X \otimes V).
\]

The notation \(F^X \) reminds that \(F^X(V) \) is contravariant with respect to \(X \) (compare the usual notation for functional spaces), while \(F_X(V) \) is covariant with respect to \(X \). The \(S^d_X \), \(X \in \mathcal{V}_k \) form an injective cogenerator of \(P^d \) while the \(\Gamma^d_X := (\Gamma^d)^X = (S^d_X)^\mathbb{Z}_d \) form a projective generator of \(P^d \). We recall the isomorphisms, natural in \(F, X \):

\[
\text{Hom}_{P^d}(\Gamma^d_X, F) \simeq F(X) , \quad \text{Hom}_{P^d}(F, S^d_X) \simeq F^d(X).
\]

These isomorphisms are nothing but a disguised form of the Yoneda lemma (cf. [P, Section 4], or [T4, Section 2]) so we simply call them ‘the Yoneda isomorphisms’.
2.2. **Bifunctors.** If $F \in \mathcal{P}_d$, then the vector space $F(k^n)$ is canonically endowed with an action of the group scheme $GL_{n,k}$, and Friedlander and Suslin proved [FS] Cor 3.13 that the evaluation map

$$\text{Ext}^*_d(F, G) \to \text{Ext}^*_{GL_{n,k}}(F(k^n), G(k^n)) = H^*(GL_{n,k}, \text{Hom}_k(F(k^n), G(k^n)))$$

is an isomorphism if $n \geq d$. (This allows to perform Ext-computations in \mathcal{P}_d, where computations are surprisingly easier). Strict polynomial bifunctors were used in [FF] to generalize this formula to more general $GL_{n,k}$-representations than the ones of the somewhat restrictive form $\text{Hom}_k(F(k^n), G(k^n))$. If $d, e \geq 0$, we denote by \mathcal{P}^d_e the abelian category of strict polynomial bifunctors which are homogeneous of bidegree (d, e), contravariant with respect to their first variable and covariant with respect to the second variable.

Thus, objects of \mathcal{P}^d_e are nice bifunctors $B : (V, W) \mapsto B(V, W)$, with $V, W \in \mathcal{V}_k$, contravariant in V and covariant in W and taking values in \mathcal{V}_k. The vector spaces $B(k^n, k^m)$ are canonically endowed with a left action of $GL_{m,k}$ and a right action of $GL_{n,k}$ which commute. Using the inverse in $GL_{n,k}$, and taking $n = m$ and the diagonal action, we get an action of $GL_{n,k}$ on $B(k^n, k^n)$. For example, let $gl \in \mathcal{P}^1_1$ denote the bifunctor $(V, W) \mapsto \text{Hom}_k(V, W)$. Then $gl(k^n, k^n)$ is nothing but the adjoint representation gl_n of $GL_{n,k}$. There are several ways to construct bifunctors from functors. If $F \in \mathcal{P}_d$ and $G \in \mathcal{P}_e$, we denote by $\text{Hom}(F, G) \in \mathcal{P}^d_e$ the bifunctor:

$$\text{Hom}(F, G) : (V, W) \mapsto \text{Hom}_k(F(V), G(W)) \, .$$

We also denote by $Fgl \in \mathcal{P}^d_e$ the bifunctor:

$$Fgl : (V, W) \mapsto F(gl(V, W)) \, .$$

Franjou and Friedlander proved [FF] Thm 1.5] the following generalization of Friedlander and Suslin’s isomorphism. For all $n \geq 1$ there is a map

$$\text{Ext}^*_d(\Gamma^d_{gl}, B) \to H^*(GL_{n,k}, B(k^n, k^n)) \, ,$$

and this map is an isomorphism if $n \geq d$. For this reason, the extensions on the left hand side are called the ‘bifunctor cohomology of B’ and written under the more suggestive notation $H^*_B(B)$.

Let us recall some basic facts about the structure of \mathcal{P}^d_e. We define the dual B^d of a bifunctor by letting $B^d(V, W) := B(V^\vee, W^\vee)^\vee$, so that we have

$$\text{Hom}_{\mathcal{P}^d_e}(B, C) = \text{Hom}_{\mathcal{P}^d_e}(C^d, B^d) \, .$$

The functors $\text{Hom}(\Gamma^d_X, S^e_Y)$, $X, Y \in \mathcal{V}_k$ form an injective cogenerator of \mathcal{P}^d_e and their duals $\text{Hom}(S^d_X, \Gamma^e_Y)$, $X, Y \in \mathcal{V}_k$ form a projective generator. There are isomorphisms, natural in B, X, Y:

$$\text{Hom}_{\mathcal{P}^d_e}(\text{Hom}(S^d_X, \Gamma^e_Y), B) \simeq B(X, Y) \, ,$$

$$\text{Hom}_{\mathcal{P}^d_e}(B, \text{Hom}(\Gamma^d_X, S^e_Y)) \simeq B^d(X, Y) \, .$$

We shall call these isomorphisms ‘the Yoneda isomorphisms’, as in the case of ordinary functors. Finally, we recall two basic formulas relating morphisms
in \(\mathcal{P}_e^d \) to morphisms in \(\mathcal{P}_d \) and \(\mathcal{P}_e \), namely:

\[
\text{Hom}_{\mathcal{P}_d e}(\text{Hom}(E, F), \text{Hom}(G, H)) \simeq \text{Hom}_{\mathcal{P}_d}(G, E) \otimes \text{Hom}_{\mathcal{P}_e}(F, H),
\]

\[
\text{Hom}_{\mathcal{P}_e e}(\Gamma^dg, \text{Hom}(F, G)) \simeq \text{Hom}_{\mathcal{P}_d}(F, G).
\]

3. The cohomology of twisted bifunctors

In this section, we study the cohomology of twisted bifunctors. Our approach follows the ideas of [C].

3.1. The adjunction argument. In this paragraph, we adapt the adjunction argument of [C, Section 2] to the category of bifunctors. If \(B \in \mathcal{P}_d^d \), we denote by \(B^{(r)} \) its precomposition by the \(r \)-th Frobenius twist on both variables:

\[
B^{(r)} : (V, W) \mapsto B(V^{(r)}, W^{(r)}).
\]

So precomposition by the Frobenius twist induce an exact functor:

\[
\text{Tw}_r : \mathcal{P}_d^d \to \mathcal{P}_e^d.
\]

The following formula gives an explicit expression for its left adjoint \(\ell_r \). We define \(\ell_r(B) \) to be the dual of the bifunctor:

\[
(V, W) \mapsto \text{Hom}_{\mathcal{P}_e^d}(B, \text{Hom}(\Gamma^dg_{V}, S^e_{W})^{(r)}).
\]

Proposition 3.1. The functors \((\ell_r, \text{Tw}_r)\) form an adjoint pair.

Proof. We have to prove an isomorphism, natural in \(B, B' \):

\[
\text{Hom}_{\mathcal{P}_d d}(\ell_r(B), B') \simeq \text{Hom}_{\mathcal{P}_e^d}(B, (B')^{(r)}).
\]

Since the bifunctors \(\text{Hom}_{\mathcal{P}_d d}(-, -) \) and \(\text{Hom}_{\mathcal{P}_e^d}(-, -) \) are left exact with respect to both variables, it suffices to build isomorphism (\(* \)) when \(B \) is a projective generator and \(B' \) is an injective cogenerator (the general result follows by taking resolutions).

But if \(B = \text{Hom}(S^{dp_{V}}, \Gamma_{p^r_{V}, W}) \) and \(B' = \text{Hom}(\Gamma_{X}^{d_{Y}}, S_{Y}^{e}) \), we can identify the right hand side of formula (\(* \)) via the Yoneda isomorphism:

\[
\text{Hom}_{\mathcal{P}_e^d}(B, (B')^{(r)}) \simeq S^{d(r)}((X \otimes V)^{\vee}) \otimes S^{e(r)}(Y \otimes W).
\]

We can also identify the left hand side of the formula via the Yoneda isomorphism:

\[
\text{Hom}_{\mathcal{P}_d d}(\ell_r(B), B') \simeq \ell_r(B)^{d}(X, Y).
\]

Finally, we can compute \(\ell_r(B)^{d}(X, Y) = \text{Hom}_{\mathcal{P}_e^d}(B, \text{Hom}(\Gamma_{X}^{d_{Y}}, S_{Y}^{e})^{(r)}) \), once again thanks to a Yoneda isomorphism:

\[
\ell_r(B)^{d}(X, Y) \simeq S^{d(r)}((X \otimes V)^{\vee}) \otimes S^{e(r)}(Y \otimes W).
\]

Putting the isomorphisms (1), (2) and (3) together, we construct the isomorphism (\(* \)), natural in \(B, B' \) when \(B \) is a projective generator and \(B' \) is an injective cogenerator. This concludes the proof. \(\square \)
ON THE EXISTENCE OF THE UNIVERSAL CLASSES FOR ALGEBRAIC GROUPS 5

Now we work in the bounded above derived category $\mathbf{D}^{-}\mathcal{P}_{e}^{d}$ (see e.g. [W] Chapter 10 or [K]). Since Tw_{r} is exact, its right derived functor:

$$\mathbf{R}Tw_{r}: \mathbf{D}^{-}\mathcal{P}_{e}^{d} \to \mathbf{D}^{-}\mathcal{P}_{e}^{d}_{ep}$$

is simply defined by sending an object $C \in \mathbf{D}^{+}\mathcal{P}_{e}^{d}$ (that is, a bounded above complex C of bifunctors) to the complex $C^{(r)} = Tw_{r}(C)$. Since \mathcal{P}_{e}^{d} has enough projectives, the left derived functor of ℓ_{r} is defined on $\mathbf{D}^{-}\mathcal{P}_{e}^{d}_{ep}$

$$\mathbf{L}\ell_{r}: \mathbf{D}^{-}\mathcal{P}_{e}^{d}_{ep} \to \mathbf{D}^{-}\mathcal{P}_{e}^{d}.$$

The following lemma is an easy check from the definition of total derived functors.

Lemma 3.2. For all $C \in \mathbf{D}^{-}\mathcal{P}_{e}^{d}$ we have a natural isomorphism:

$$\mathbf{L}\ell_{r}(C)(V, W) \simeq \left(\mathbf{R}\mathbf{H}\mathbf{o}\mathbf{m}_{\mathcal{P}_{e}^{d}_{ep}}(C, \mathbf{H}\mathbf{o}\mathbf{m}(\Gamma_{d}^{d}(V), S_{W}^{r}(V)))\right)^{r}_{\mathbb{N}}$$

The following statement is a formal consequence of Proposition 3.1 (adapt the proof of [W] Thm 10.7.6 or see [K] Section 13)

Proposition 3.3. The functors $(\mathbf{L}\ell_{r}, \mathbf{R}Tw_{r})$ form an adjoint pair.

3.2. **The formality argument.** Now we use the formality phenomenon discovered in [T3, Section 4] to get an explicit computation (in the derived category) of the complex $L_{\ell_{r}}(\Gamma^{d}_{e}(gl))$.

We first need a few notations. If $B \in \mathcal{P}_{e}^{d}$ and $Z \in \mathcal{V}_{k}$, we denote by $B_{Z} \in \mathcal{P}_{e}^{d}$ the bifunctor:

$$B_{Z}: (V, W) \mapsto B(V, Z \otimes W).$$

If Z is a finite dimensional graded vector space, then the functor B_{Z} inherits a grading, defined similarly as in [T3, Section 2.5]. To be more specific, let the multiplicative group \mathbb{G}_{m} act on each Z^{i} with weight i, and trivially (i.e. with weight zero) on V and W. Then $B(V, Z \otimes W)$ inherits an action of \mathbb{G}_{m}. By definition, the elements of $B(V, Z \otimes W)$ of degree j are the elements of weight j under this action of \mathbb{G}_{m}.

Proposition 3.4. Let E_{r} denote the graded vector space with $(E_{r})_{2i} = \mathbb{R}$ if $0 \leq i < p^{r}$ and $(E_{r})_{j} = 0$ otherwise. Consider the graded functor $\Gamma^{d}_{e}(gl)_{E_{r}}$ as a complex with trivial differential. There is an isomorphism in $\mathbf{D}^{-}\mathcal{P}_{e}^{d}$:

$$\mathbf{L}\ell_{r}(\Gamma^{d}_{e}(gl)) \simeq \Gamma^{d}_{e}(gl)_{E_{r}}.$$

Proof. It suffices to show the isomorphism $\mathbf{D}^{-}\mathcal{P}_{e}^{d}$:

$$\mathbf{R}\mathbf{H}\mathbf{o}\mathbf{m}_{\mathcal{P}_{e}^{d}_{dp}}(\Gamma^{d}_{e}(gl), \mathbf{H}\mathbf{o}\mathbf{m}(\Gamma_{V}^{d}, S_{W}^{d}(r))) \simeq (\Gamma^{d}_{e}(gl)_{E_{r}})_{\mathbb{N}}(V, W) = S^{d}gl_{E_{r}}(V, W).$$

Let P denote a projective resolution of $\Gamma^{d}_{V}(r)$ and J denote an injective resolution of $S_{W}^{d}(r)$. Then the left hand side is isomorphic to the complex $\mathbf{H}\mathbf{o}\mathbf{m}_{\mathcal{P}_{e}^{d}_{dp}}(\Gamma^{d}_{e}(gl), \mathbf{H}\mathbf{o}\mathbf{m}(P, J))$. The latter is isomorphic to the complex $\mathbf{H}\mathbf{o}\mathbf{m}_{\mathcal{P}_{e}^{d}_{dp}}(P, J)$, hence to the complex $\mathbf{H}\mathbf{o}\mathbf{m}_{\mathcal{P}_{e}^{d}_{dp}}((\Gamma_{V}^{d})^{(r)}, J)$.

Now if we choose for J a direct sum of Troesch complexes, we know from [T3] Lemmas 4.1 and 4.4] an isomorphism in $\mathbf{D}^{-}\mathcal{P}_{e}^{d}$:

$$\mathbf{H}\mathbf{o}\mathbf{m}_{\mathcal{P}_{e}^{d}_{dp}}((\Gamma_{V}^{d})^{(r)}, J) \simeq \mathbf{H}\mathbf{o}\mathbf{m}_{\mathcal{P}_{e}^{d}}((\Gamma_{V}^{d})^{(r)}, (S_{W}^{d})_{E_{r}}).$$
To conclude the proof, we use the Yoneda isomorphism
\[\text{Hom}_{\mathcal{P}_d}(\Gamma_{r}^{d}, (S_{E_r})_{E_r}) \simeq S^{d}(V \otimes W \otimes E_r) \simeq S^{d}\text{gl}_{E_r}(V, W). \]

\[\square \]

3.3. **Cohomology of twisted bifunctors.** Now we turn to the study of the cohomology of twisted bifunctors, that is, the study of extensions of the form:
\[H^{*}_{\mathcal{P}}(B^{(r)}) := \text{Ext}^{*}_{P_{dp}}(\Gamma^{dp}, \text{gl}, B^{(r)}). \]
We first need a technical lemma on graded bifunctors.

Lemma 3.5. Let \(B, B' \in \mathcal{P}_{r}^{d} \), and let \(Z \) denote a finite dimensional graded vector space, and let \(Z^\vee \) denote its dual, graded so that \(Z^\vee \simeq Z \). There is an isomorphism of graded vector spaces, natural in \(B, B' \):
\[\text{Hom}_{\mathcal{P}_{d}}(B, B') \simeq \text{Hom}_{\mathcal{P}_{d}}(B, B'_{Z^\vee}). \]

Since the functor \(B \mapsto B_{Z} \) is exact, this isomorphism induces an isomorphism on the level of the derived category:
\[\text{Hom}_{\mathcal{D}_{-\mathcal{P}_{d}}}(B_{Z}, B'_{Z}) \simeq \text{Hom}_{\mathcal{D}_{-\mathcal{P}_{d}}}(B, B'_{Z^\vee}). \]

Proof. By left exactness of the bifunctor \(\text{Hom}_{\mathcal{P}_{d}}(-, -) \) with respect to both variables, it suffices to build isomorphism \((*)\) when \(B \) is a projective generator and \(B' \) is an injective cogenerator (the general result follows by taking resolutions).

But if \(B = \text{Hom}(S^{d,V}_{E}, \Gamma^{r,W}) \) and \(B' = \text{Hom}(\Gamma_{X}^{d}, S_{Y}^{e}) \) we may compose the two Yoneda isomorphisms:
\[\text{Hom}_{\mathcal{P}_{d}}(B_{Z}, B'_{Z}) \simeq S^{d}(X \otimes V^\vee) \otimes S^{e}(Y \otimes Z^\vee \otimes W), \]
\[\text{Hom}_{\mathcal{P}_{d}}(B, B'_{Z^\vee}) \simeq S^{d}(X \otimes V^\vee) \otimes S^{e}(Y \otimes Z^\vee \otimes W) \]
to obtain the result. \[\square \]

We are now ready to prove the generalization of the collapsing result \[C\] Cor 3.3] to the framework of bifunctors.

Theorem 3.6. Let \(r \) be a positive integer and let \(E_r \) denote the graded vector space with \((E_r)_{2i} = k \) if \(0 \leq i < p^r \) and \((E_r)_{2i} = 0 \) otherwise. There is an isomorphism of graded vector spaces, natural in \(B \in \mathcal{P}_{d} \) (take the total grading on the right hand side):
\[H^{*}_{\mathcal{P}}(B^{(r)}) \simeq H^{*}_{\mathcal{P}}(B_{E_r}). \]

Proof. Let \(C \) be an object of \(\mathcal{D}_{-\mathcal{P}_{d}} \). We have isomorphisms:
\[\text{Hom}_{\mathcal{D}_{-\mathcal{P}_{d}}}(\Gamma^{dp}_{E_r}, C^{(r)}) \simeq \text{Hom}_{\mathcal{D}_{-\mathcal{P}_{d}}}(\Gamma^{dp}_{E_r}, C) \]
\[\simeq \text{Hom}_{\mathcal{D}_{-\mathcal{P}_{d}}}(\Gamma^{dp}_{E_r}, C) \]
\[\simeq \text{Hom}_{\mathcal{D}_{-\mathcal{P}_{d}}}(\Gamma^{dp}_{E_r}, C_{E_r}). \]
The first isomorphism follows by adjunction (proposition \[3.1\]), the second isomorphism by formality (proposition \[3.4\]) and the last one from lemma \[3.5\] with the isomorphism \(E_{r}^{d} \simeq E_{r} \). If \(B \in \mathcal{P}_{d} \), we apply this isomorphism to \(C = B[i] \) and take homology to get the result. \[\square \]
4. Proof of theorem 1.1

In this section, we prove theorem 1.1. We first transpose the problem in the framework of strict polynomial functors as in [T1, Section 1.2]. Using the map

$$H^*_{\mathcal{P}}(B) \to H^*(GL_{n,k}, B(k^n, k^n)),$$

together with the fact that for $n \geq p$, it induces an isomorphism

$$H^2_{\mathcal{P}}(gl^{(1)}) \cong H^2(GL_{n,k}, gl^{(1)}_n),$$

we easily see that theorem 1.1 is implied by the following theorem.

Theorem 4.1. Let k be a field of positive characteristic p. There are cohomology classes $c[d] \in H^2_{\mathcal{P}}(\otimes^d(1)gl)$ satisfying the following conditions.

1. $c[1]$ is non zero.
2. If $d \geq 1$ and $\Delta_{(1,...,1)} : \Gamma^d(1)gl \to \otimes^d(1)gl$ is the inclusion, then

$$\Delta_{(1,...,1)} c[d] = c[1] \cup d.$$

So we are left with the problem of finding classes $c[d] \in H^2_{\mathcal{P}}(\otimes^d(1)gl)$.

Finding $c[1]$ is not a problem. Indeed, it is well-known that $H^2_{\mathcal{P}}(I^{(1)gl}) \cong k \neq 0$ (this results for example from theorem 3.6 but one can find much more elementary proofs of this computation). So we can choose for $c[1]$ a non zero cohomology class in $H^2_{\mathcal{P}}(I^{(1)gl})$.

Now we want to find the classes $c[d]$ for $d \geq 2$. The action of the symmetric group \mathfrak{S}_d on \otimes^d (by permuting the factors of the tensor product) induce an action on the graded vector space $H^*_{\mathcal{P}}(\otimes^d(1)gl)$.

Lemma 4.2. For all $d \geq 2$ the cup product $c[1] \cup d \in H^2_{\mathcal{P}}(\otimes^d(1)gl)$ is invariant under the action of the symmetric group.

Proof. Recall that the cup product:

$$H^*_{\mathcal{P}}(B) \otimes H^*_{\mathcal{P}}(B') \xrightarrow{\cup} H^{*+j}(B \otimes B')$$

is defined as the composite of the external product of extensions

$$\text{Ext}^i_{\mathcal{P}}(\Gamma^d gl, B) \otimes \text{Ext}^j_{\mathcal{P}}(\Gamma^d gl, B) \to \text{Ext}^{i+j}_{\mathcal{P}}(\Gamma^d gl \otimes \Gamma^d gl, B \otimes B')$$

and the map induced by the comultiplication $\Gamma^{d+e} gl \rightarrow \Gamma^d gl \otimes \Gamma^e gl$. Since $c[1]$ is in even degree and $\Gamma^* gl$ is a cocommutative coalgebra, one easily gets the result from the definition of the action of \mathfrak{S}_d and the definition of the cup product. □

In view of lemma 4.2, it suffices to prove that all the classes of $H^2_{\mathcal{P}}(\otimes^d(1)gl)_{\mathfrak{S}_d}$ are obtained from classes of $H^2_{\mathcal{P}}(I^{d(1)gl})$ through the map

$$\Delta_{(1,...,1)} : H^2_{\mathcal{P}}(I^{d(1)gl}) \to H^2_{\mathcal{P}}(\otimes^d(1)gl).$$

Actually, we can get a slightly more general statement from theorem 3.6.

Proposition 4.3. Let $d \geq 2$. Then the map $\Delta_{(1,...,1)}$ induces a surjection

$$H^*_{\mathcal{P}}(I^{d(1)gl}) \rightarrow H^*_{\mathcal{P}}(\otimes^d(1)gl)_{\mathfrak{S}_d}.$$
Proof. Let us first remark that \(I^{(1)} \mathfrak{gl} \simeq \mathfrak{gl}^{(1)} \), so theorem 3.6 yields a commutative diagram:

\[
\begin{array}{ccc}
H^*_P(\Gamma^d(1) \mathfrak{gl}) & \xrightarrow{\Delta_{(1,\ldots,1)}^*} & H^*_P(\otimes^d(1) \mathfrak{gl}) \\
\cong & & \cong \\
H^*_P(\Gamma^d \mathfrak{gl}_{E_1}) & \xrightarrow{\Delta_{(1,\ldots,1)}^*} & H^*_P(\otimes^d \mathfrak{gl}_{E_1})
\end{array}
\]

The image of the top horizontal arrow lives inside \(H^*_P(\otimes^d(1) \mathfrak{gl}) \mathbb{S}_d \), the image of the bottom horizontal arrow lives inside \(H^*_P(\otimes^d \mathfrak{gl}_{E_1}) \mathbb{S}_d \) and by naturality of the vertical arrow on the right, we have an isomorphism \(H^*_P(\otimes^d(1) \mathfrak{gl}) \mathbb{S}_d \simeq H^*_P(\otimes^d \mathfrak{gl}_{E_1}) \mathbb{S}_d \). Thus, to prove proposition 4.3, it suffices to prove that all the elements of \(H^*_P(\otimes^d \mathfrak{gl}_{E_1}) \mathbb{S}_d \) are hit by the bottom horizontal arrow.

But \(\otimes^d \mathfrak{gl} \) (hence the summands of \(\otimes^d \mathfrak{gl}_{E_1} \)) is injective in \(P^d \), whence an equality

\(H^*_P(\otimes^d \mathfrak{gl}_{E_1}) = H^0_P(\otimes^d \mathfrak{gl}_{E_1}) \).

Now the left exactness of the functor \(B \mapsto H^0_P(B_{E_1}) \) implies that the map

\(\Delta_{(1,\ldots,1)}^* : H^0_P(\Gamma^d \mathfrak{gl}_{E_1}) \to H^0_P(\otimes^d \mathfrak{gl}_{E_1}) \mathbb{S}_d = H^*_P(\otimes^d \mathfrak{gl}_{E_1}) \mathbb{S}_d \)

is surjective. This concludes the proof. \(\square \)

References

[C] M. Chalupnik, Derived Kan extension for strict polynomial functors, [arXiv:1106.3362](http://arxiv.org/abs/1106.3362).

[FF] V. Franjou, E. Friedlander, Cohomology of bifunctors. Proc. Lond. Math. Soc. (3) 97 (2008), no. 2, 514–544.

[F] E. Friedlander, Lectures on the cohomology of finite group schemes. Rational representations, the Steenrod algebra and functor homology, 27–53, Panor. Synth`eses, 16, Soc. Math. France, Paris, 2003.

[FS] E. Friedlander, A. Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), 209–270.

[K] B. Keller, Derived categories and their uses. Handbook of algebra, Vol. 1, 671–701, North-Holland, Amsterdam, 1996.

[P] T. Pirashvili, Introduction to functor homology. Rational representations, the Steenrod algebra and functor homology, 27–53, Panor. Synth`eses, 16, Soc. Math. France, Paris, 2003.

[SFB] A. Suslin, E. Friedlander, C. Bendel, Infinitesimal 1-parameter subgroups and cohomology. J. Amer. Math. Soc. 10 (1997), no. 3, 693–728.

[T1] A. Touzé, Universal classes for algebraic groups, Duke Math. J. 151 (2010), no. 2, 219–250.

[T2] A. Touzé, Cohomology of classical algebraic groups from the functorial viewpoint, Adv. Math. 225 (2010), no. 1, 33–68.

[T3] A. Touzé, Troesch complexes and extensions of strict polynomial functors, to appear in Ann. Sci. École Norm. Sup. 44 (2011).

[T4] A. Touzé, Koszul duality and derivatives of non-additive functors, [arXiv:1103.4830](http://arxiv.org/abs/1103.4830).

[TvDK] A. Touzé, W. van der Kallen, Bifunctor cohomology and cohomological finite generation for reductive groups, Duke Math. J. 151 (2010), no. 2, 251–278.

[Tr] A. Troesch, Une résolution injective des puissances symétriques tordues. (French) [Injective resolution of twisted symmetric powers] Ann. Inst. Fourier (Grenoble) 55 (2005), no. 5, 1587–1634.
[VdK] W. van der Kallen, Cohomology with Grosshans graded coefficients, In: Invariant Theory in All Characteristics, Edited by: H. E. A. Eddy Campbell and David L. Wehlau, CRM Proceedings and Lecture Notes, Volume 35 (2004) 127-138, Amer. Math. Soc., Providence, RI, 2004.

[W] C. Weibel, An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994. xiv+450 pp. ISBN: 0-521-43500-5; 0-521-55987-1