Violation of Heisenberg’s error-disturbance uncertainty relation in neutron spin measurements

Georg Sulyok\(^1\), Stephan Sponar\(^1\), Jacqueline Erhart\(^1\), Gerald Badurek\(^1\), Masanao Ozawa\(^2\), and Yuji Hasegawa\(^1\)

\(^1\)Institute of Atomic and Subatomic Physics, Vienna University of Technology, 1020 Vienna, Austria
\(^2\)Graduate School of Information Science, Nagoya University, Chikusa-ku, Nagoya, Japan

(Dated: June 3, 2013)

In its original formulation, Heisenberg’s uncertainty principle dealt with the relationship between the error of a quantum measurement and the thereby induced disturbance on the measured object. Meanwhile, Heisenberg’s heuristic arguments have turned out to be correct only for special cases. A new universally valid relation was derived by Ozawa in 2003. Here, we demonstrate that Ozawa’s predictions hold for projective neutron-spin measurements. The experimental inaccessibility of error and disturbance claimed elsewhere has been overcome using a tomographic method. By a systematic variation of experimental parameters in the entire configuration space, the physical behavior of error and disturbance for projective spin-$\frac{1}{2}$ measurements is illustrated comprehensively. The violation of Heisenberg’s original relation, as well as, the validity of Ozawa’s relation become manifest. In addition, our results conclude that the widespread assumption of a reciprocal relation between error and disturbance is not valid in general.

PACS numbers: 03.65.Ta, 03.75.Dg, 42.50.Xa, 03.67.-a

I. INTRODUCTION

The uncertainty principle, proposed by Heisenberg\(^1\) in 1927, ranks without doubt among the most famous statements of modern physics. The content of the principle is often explained by simply saying “The more precisely the position is determined, the less precisely the momentum is known, and conversely\(^1\).” It is usually understood that this leads to the impossibility of simultaneous measurements of the position and momentum of a particle and consequently to the rejection of determinism of the Newtonian mechanics in determining the future motion from the past state. However, the quantitative formulation of the uncertainty principle has been a target of debate for a long time (\(^2\)–\(^10\) and references therein).

Heisenberg’s original formulation\(^1\)\(^1\)\(^1\) can be read as the relation

$$\epsilon(Q)\eta(P) \geq \frac{\hbar}{2} \quad (1)$$

for the root-mean-square error $\epsilon(Q)$ of a measurement of the position observable Q and the root-mean-square disturbance $\eta(P)$ of the momentum observable P induced by the position measurement. However, modern textbooks usually explain the “uncertainty principle” as the relation

$$\sigma(Q)\sigma(P) \geq \frac{\hbar}{2}, \quad (2)$$

originally proved by Kennard\(^1\)\(^2\) in 1927, for the standard deviations $\sigma(Q)$ and $\sigma(P)$ of the position observable Q and the momentum observable P in an arbitrary state ψ where the standard deviation is defined by $\sigma(A)^2 = \langle \psi | A^2 | \psi \rangle - \langle \psi | A | \psi \rangle^2$ for an observable A and a state ψ. Experimental investigations of the above relation can be found in\(^13\)\(^19\).

Heisenberg actually derived Kennard’s relation Eq. (2) for Gaussian wave functions ψ, applied this relation to the state just after the Q measurement with error $\epsilon(Q)$ and disturbance $\eta(P)$, and concluded relation Eq. (1) from the additional, implicit assumptions $\epsilon(Q) \geq \sigma(Q)$ and $\eta(P) \geq \sigma(P)$. However, his assumption $\epsilon(Q) \geq \sigma(Q)$ holds only for a restricted class of measurements\(^17\). The assumption $\eta(P) \geq \sigma(P)$ holds if the initial state is the momentum eigenstate state\(^18\), but it does not hold generally. Thus, his argument did not establish the universal validity of Eq. (1).

In 1929, Robertson\(^19\) extended Kennard’s relation Eq. (2) to arbitrary pair of observables A and B as

$$\sigma(A)\sigma(B) \geq \frac{1}{2} \langle \psi | [A, B] | \psi \rangle. \quad (3)$$

The generalized form of Heisenberg’s original relation Eq. (1) would read

$$\epsilon(A)\eta(B) \geq \frac{1}{2} \langle \psi | [A, B] | \psi \rangle. \quad (4)$$

The validity of this relation is known to be limited to specific circumstances\(^2\)\(^23\)\(^24\). In 2003, Ozawa\(^17\)\(^23\)\(^25\), one of the authors of the present paper, thus proposed a new error-disturbance uncertainty relation

$$\epsilon(A)\eta(B) + \epsilon(A)\sigma(B) + \sigma(A)\eta(B) \geq \frac{1}{2} \langle \psi | [A, B] | \psi \rangle \quad (5)$$

and proved the universal validity in the general theory of quantum measurements, where $\epsilon(A)$ is the root-mean-square error of an arbitrary measurement for an observable A, $\eta(B)$ is the root-mean-square disturbance on another observable B induced by the measurement, $\sigma(A)$ and $\sigma(B)$ stands for the standard deviations of A and B in the state ψ just before the measurement.
There appeared questions on the accessibility of errors and disturbances in practical experiments, e.g. [26, 27]. This difficulty has been overcome in two ways: the “three state method” and the “weak measurement method.” The tomographic “three state method” is based on a formula to statistically determine error and disturbance, respectively, in a given initial state from the experimentally accessible data from three different auxiliary input states generated from the initial state [24]. The “three state method” has already been successfully implemented in our previous publication [28]. The “weak measurement method” is proposed [29] to quantify the error and disturbance exploiting the weak-measurement technique [30] based on the relation between mean-square differences and weak joint distributions [31]; an optical experiment was carried out recently [32].

In this paper, we report a general test of the validity of Ozawa's formulation in the framework of projective spin-$\frac{1}{2}$ measurements. Polarized neutrons experience successive spin-measurements A and B, where the former measurement is detuned on purpose thus causing the measurement error of the A measurement. Likewise, the disturbance on the observable B also changes when the A-measurement is detuned. In [25], we focused solely on a small subset of the possible configurations in parameter space where Heisenberg’s original relation Eq. (1) is always violated and the typical reciprocal trade-off between the error and the disturbance is maintained. Here, we give a more complete view on how systematic variations of the observables, the settings of the measurement apparatus, and the pre-measurement state influence error, disturbance, and pre-measurement standard deviations. By studying the whole configuration space the physical meaning of error and disturbance for projective spin-$\frac{1}{2}$ measurements can be illustrated quite comprehensively. Parameter regions where Heisenberg’s original formulation is violated as well as the behaviour of Ozawa’s relation become manifest: not only the validity but also the analytic dependence of two notions of inequalities, Eq. (1) and (2), on the experimental parameters is clearly seen. In addition, investigating error and disturbance in the whole configuration space shows the restricted validity of a reciprocal relation between these quantities in the spin-$\frac{1}{2}$ system.

II. THEORY

In order to derive the universally valid error-disturbance uncertainty relation it is convenient to discuss general models of measuring processes described in the quantum mechanical framework. For the detailed account, we refer the reader to [17, 23, 25]. Here, we will sketch the main results necessary for later discussions on our experimental work.

A. Indirect measurement models

In this paper, we consider only finite-type quantum measurements such that the measured system is described by a finite dimensional Hilbert space and that the apparatus has a finite number of possible outcomes. We assume that every measuring apparatus has its own output variable x. The apparatus $A(x)$ having the output variable x is assumed to determine the probability distribution $\Pr\{x = m||\rho\}$ of x on every input state ρ, and to determine the output state $\rho_{\{x=m\}}$ for every input state ρ conditional upon each possible output $x = m$.

An indirect measurement model of an apparatus $A(x)$ measuring a system S described by a Hilbert space \mathcal{H} is specified by a quadruple $(\mathcal{K}, |\xi\rangle, U, M)$ consisting of a Hilbert space \mathcal{K} describing the probe system P, a state vector $|\xi\rangle$ in \mathcal{K} describing the initial state of P, a unitary operator U on $\mathcal{H} \otimes \mathcal{K}$ describing the time evolution of the composite system $S + P$ during the measuring interaction, and an observable M, called the meter observable, of P describing the meter of the apparatus [33].

The class of indirect measurement models is a universal class of models of quantum measurement [24, 33] in the sense that for any apparatus $A(x)$ with the output variable x there is an indirect measurement model $(\mathcal{K}, |\xi\rangle, U, M)$ that determines the statistical properties of $A(x)$ by

$$\Pr\{x = m||\rho\} = \text{Tr}_\mathcal{K}[U^\dagger (1 \otimes E^M(m)) U (\rho \otimes |\xi\rangle \langle \xi|)],$$

(6)

where $\text{Tr}_\mathcal{K}$ stands for the partial trace over \mathcal{K} and $E^M(m)$ the spectral projection of M corresponding to the real number m. From Eq. (6) we have

$$\Pr\{x = m||\rho\} = \frac{\text{Tr}[U^\dagger (1 \otimes E^M(m)) U (\rho \otimes |\xi\rangle \langle \xi|)]}{\text{Tr}[U^\dagger (1 \otimes E^M(m)) U (\rho \otimes |\xi\rangle \langle \xi|)]} \text{,}$$

(7)

$$\rho_{\{x=m\}} = \frac{\text{Tr}_\mathcal{K}[U^\dagger (1 \otimes E^M(m)) U (\rho \otimes |\xi\rangle \langle \xi|)]}{\text{Tr}[U^\dagger (1 \otimes E^M(m)) U (\rho \otimes |\xi\rangle \langle \xi|)]} \text{.}$$

(8)

B. Measurement operators

In this paper, we treat only the case where the meter observable M has non-degenerate eigenvalues. In this case, M has a spectral decomposition $M = \sum_m m|m\rangle\langle m|$, where m varies over eigenvalues of M. Then, the apparatus $A(x)$ has a family $\{M_m\}$ of operators, called the measurement operators, defined by $M_m = \langle m|U|\xi\rangle$. We have

$$U|\psi\rangle|\xi\rangle = \sum_m M_m|\psi\rangle|m\rangle.$$

(9)

This means that on an input vector state $|\psi\rangle$ the apparatus $A(x)$ outputs the outcome $x = m$ with probability

$$\Pr\{x = m||\psi\rangle\} = ||M_m|\psi\rangle||^2,$$

where $||\cdot||$ denotes the Euclidean norm given by $||\phi|| = (\langle \phi|\phi\rangle)^\frac{1}{2}$, and leaves S in
the vector state

$$|\psi\rangle_{x=m} = \frac{M_m |\psi\rangle}{\|M_m |\psi\rangle\|} \tag{10}$$

The probability operator-valued measure (POVM) of $A(x)$ is the family $\{\Pi_m\}$ of operators defined by $\Pi_m = M_m^\dagger M_m$. Then, we have $Pr\{x = m||\psi\rangle\} = \|\Pi_m^\dagger |\psi\rangle\|^2 = \langle |\psi\rangle|\Pi_m |\psi\rangle\rangle$. The non-selective operation of $A(x)$ is a trace-preserving completely positive map T defined by

$$T\rho = \sum_m M_m\rho M_m^\dagger \tag{11}$$

for any state ρ; the state $T\rho$ is the state just after the measurement without post-selection for the input state ρ.

\section{Universal uncertainty principle}

Let A, B be observables of S. We consider the measurement of the observable A carried out by the apparatus $A(x)$ and the disturbance on B caused by this measurement. If the input state of S is $|\psi\rangle$, the root-mean-square (rms) error $\epsilon(A)$ of $A(x)$ for measuring an observable A of S and the rms disturbance $\eta(B)$ of $A(x)$ caused on an observable B of S are defined as

$$\epsilon(A) = \| (U^\dagger (I \otimes M)U - A \otimes I)|\psi\rangle|\xi\rangle\|, \tag{12}$$

$$\eta(B) = \| (U^\dagger (B \otimes I)U - B \otimes I)|\psi\rangle|\xi\rangle\|, \tag{13}$$

where I stands for the identity operator on the respective space. The error $\epsilon(A)$ is the root-mean-square of the difference between the meter observable M after the interaction and the observable A before the interaction. The disturbance $\eta(B)$ is the root-mean-square of the change in the observable B during the measuring interaction. Then, it is mathematically proved \cite{23, 24} that

$$\epsilon(A)\eta(B) + \epsilon(A)\sigma(B) + \sigma(A)\eta(B) \geq \frac{1}{2} \| (|\psi\rangle[B\otimes I]|\psi\rangle\|, \tag{14}$$

holds for any state $|\psi\rangle$ of S and any indirect measurement model $(K, |\xi\rangle, U, M)$.

We define the k-th moment output operator by

$$O_A^{(k)} = \sum_m m^k \Pi_m = \sum_m m^k M_m^\dagger M_m. \tag{15}$$

Then k-th moment of the output variable x of $A(x)$ on input $|\psi\rangle$ is given by

$$\text{Ex}\{x^k||\psi\rangle\} = \langle |\psi\rangle|O_A^{(k)}|\psi\rangle\rangle \tag{16}$$

where "Ex" abbreviates expectation value. We have \cite{24}

$$\epsilon(A)^2 = \langle |\psi\rangle|O_A^{(2)} - O_A^{(1)}A - AO_A^{(1)} + A^2|\psi\rangle\rangle. \tag{17}$$

We define the post-measurement k-th moment operator of the observable B by

$$O_B^{(k)} = \sum_m M_m^\dagger B^k M_m. \tag{18}$$

Then the k-th moment of the observable B in the state on output from the apparatus $A(x)$ on input $|\psi\rangle$ is given by

$$\text{Ex}\{B^k||\psi\rangle\rangle\} = \langle |\psi\rangle|O_B^{(k)}|\psi\rangle\rangle, \tag{19}$$

where T is the non-selective operation of $A(x)$ (see Eq. (11)). Then, we have \cite{24}

$$\eta(B)^2 = \langle |\psi\rangle|O_B^{(2)} - O_B^{(1)}B - BO_B^{(1)} + B^2|\psi\rangle\rangle. \tag{20}$$

Therefore, both error $\epsilon(A)$ and disturbance $\eta(B)$ are determined by the measurement operators of the apparatus $A(x)$.

With the help of $\{\Pi_m\}$ we can rewrite error and disturbance starting from their definitions Eqs. \cite{12} and \cite{13} to

$$\epsilon(A)^2 = \sum_m \| M_m (m - A)|\psi\rangle\|\|^2 \tag{21}$$

$$\eta(B)^2 = \sum_m \| [M_m, B]|\psi\rangle\|^2 \tag{22}$$

Details of the calculation can be found in Sec.4.4 of \cite{25}. If the M_m are mutually orthogonal projection operators the sum in Eq. (21) can by using the Pythagorean theorem be replaced by

$$\epsilon(A)^2 = \sum_m \| M_m (m - A)|\psi\rangle\|^2 = \| (O_A - A)|\psi\rangle\|^2 \tag{23}$$

where we used $\sum_m M_m = I$ and defined the output operator $O_A = \sum_m m M_m$ being just the 1st moment output operator $O_A^{(1)}$ in case of projective measurements. In analogous manner, we will often abbreviate $O_B^{(1)}$ as O_B.

\section{Three-state method for quantifying error and disturbance}

The error $\epsilon(A)$ and the disturbance $\eta(B)$ have been defined through the noise operator $N(A) = U^\dagger (I \otimes M)U - A \otimes I$ and the disturbance operator $D(B) = U^\dagger (B \otimes I)U - B \otimes I$, respectively. However, given an apparatus $A(x)$, those operators are usually unknown in practice. It is also impossible to measure $N(A)$ by measuring $A \otimes I$ and $U^\dagger (I \otimes M)U$ successively, since those two observables may not commute. Similarly, it is also impossible to measure $D(B)$ by successive measurement. The three-state method for quantifying error and disturbance is a method to measure $\epsilon(A)$ and $\eta(B)$ using the outcomes from the apparatus $A(x)$ but without know-
ing either the noise operator \(N(A) \) or the disturbance operator \(D(B) \).

From Eq. (17) the error \(\epsilon(A) \) can be written as [21]

\[
\epsilon(A)^2 = \langle \psi | A^2 | \psi \rangle + \langle \psi | O_A^{(2)} | \psi \rangle + \langle \psi | O_A^{(1)} | \psi \rangle + \langle A | \psi \rangle (A + \mathbb{1}) \langle \psi | \langle A + \mathbb{1} | \psi \rangle, \quad (24)
\]

where we use such abbreviations as \(|A\psi\rangle \equiv A|\psi\rangle \), etc. Thus, \(\epsilon(A) \) can be statistically estimated from the measurement outcomes from the apparatus \(A(x) \) in the three states \(|\psi\rangle, A|\psi\rangle/\|A|\psi\rangle \rangle, \) and \((A + \mathbb{1}) |\psi\rangle/\|(A + \mathbb{1})|\psi\rangle \rangle \) on input. Similarly, from Eq. (20) the disturbance \(\eta(B) \) can be written as

\[
\eta(B)^2 = \langle \psi | B^2 | \psi \rangle + \langle \psi | O_B^{(2)} | \psi \rangle + \langle \psi | O_B^{(1)} | \psi \rangle + \langle B | \psi \rangle (B + \mathbb{1}) \langle \psi | \langle B + \mathbb{1} | \psi \rangle, \quad (25)
\]

Thus, \(\eta(B) \) can be statistically estimated from the measurement outcomes of the \(B \)-measurement in the state just after passing through the the apparatus \(A(x) \) in the three states \(|\psi\rangle, B|\psi\rangle/\|B|\psi\rangle \rangle, \) and \((B + \mathbb{1}) |\psi\rangle/\|(B + \mathbb{1})|\psi\rangle \rangle \) on the input of \(A(x) \). According to the theory of operations [34], for a general observable \(X \) the state \(X |\psi\rangle \rangle \) can be prepared from the state \(|\psi\rangle \rangle \) with success probability \(\|X|\psi\rangle \rangle ^2/\|X\rangle \rangle ^2 \) even without knowing the state \(|\psi\rangle \rangle \). In fact, an apparatus \(A(x) \) with measurement operators \(\{M_0, M_1\} \) with \(M_0 = X/\|X\rangle \rangle \) and \(M_1 = \sqrt{1 - |M_0|^2} \) produces the state \(X |\psi\rangle \rangle /\|X|\psi\rangle \rangle \rangle \) on input state \(|\psi\rangle \rangle \) with probability \(\text{Pr}\{x = 0|\psi\rangle \rangle \rangle = \|X|\psi\rangle \rangle ^2/\|X\rangle \rangle ^2 \) .

III. THEORY FOR SPIN MEASUREMENTS

We will now apply the general results of the previous section to projective spin-\(\frac{1}{2} \) measurements. The observables under consideration are spins along two different directions \(\vec{a} \) and \(\vec{b} \), that is,

\[
A = \vec{a} \cdot \vec{\sigma}, \quad B = \vec{b} \cdot \vec{\sigma} \quad (26)
\]

where \(\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z) \) denotes the vector of the Pauli matrices. The apparatus is supposed to carry out a projective spin measurement along a distinct axis \(\vec{\sigma}_a \). The output operator \(O_A= O_A^{(1)} \)) and the family of measurement operators \(\{M_m\} \) are then given explicitly by

\[
O_A = \vec{\sigma}_a \cdot \vec{\sigma} = M_{+1} - M_{-1}, \quad M_{\pm 1} = \frac{1}{2} (\mathbb{1} \pm \vec{\sigma}_a \cdot \vec{\sigma}) \quad (27)
\]

Inserting these expressions into Eqs. (21) and (22) we get for error and disturbance

\[
\epsilon(A) = \sqrt{2 - 2 \vec{a} \cdot \vec{\sigma}_a} = 2 |\sin \frac{\alpha}{2}| \quad (28)
\]

\[
\eta(B) = \sqrt{2 - 2 (\vec{b} \cdot \vec{\sigma}_a)^2} = \sqrt{2} |\sin \beta| \quad (29)
\]

where \(\alpha \) denotes the angle between \(\vec{a} \) and \(\vec{\sigma}_a \), \(\beta \) the angle between \(\vec{b} \) and \(\vec{\sigma}_a \), and \(|.| \) the modulus. Both error and disturbance are thus independent of the initial system state, they are solely determined by the angle between the direction of the observable and the direction of the output operator, that is, the apparatus’ measurement axis. The error vanishes if \(O_A = A \) and reaches its maximal value (\(\epsilon = 2 \)) if \(A \) and \(O_A \) point in opposite directions. The whole expression can be illustrated on the Bloch sphere (see Fig. 1).

![Figure 1: (Color online) Error \(\epsilon(A) \) of the \(A \)-measurement: the direction \(\vec{a} \) of \(A \) (\(A \) represents the observable to be measured) is fixed to be \((1,0,0)^T \) and the points on the Bloch sphere indicate the direction of \(O_A \) (that is the observable actually measured by the apparatus). The value of corresponding error for this combination of vectors \(\vec{a} \) and \(\vec{\sigma}_a \) is color-encoded resulting in concentric circles around the axis defined by \(\vec{a} \).](image)

The disturbance induced on \(B \) by the prior measurement of \(O_A \) is zero if \(B \) and \(O_A \) point in the same direction, but also if \(O_A \) points exactly in the opposite direction, that is if \(\vec{\sigma}_a = -\vec{b} \). In both cases \(O_A \) and \(B \) have an identical set of eigenvectors leading to a vanishing disturbance (see Eq. (22)). That’s a notable difference between the physical concepts of error and disturbance. If the two endpoints of \(\vec{b} \) and \(-\vec{b} \) define the poles on the Bloch sphere, the disturbance reaches its maximal value (\(\eta = \sqrt{2} \)) if \(O_A \) lies on the corresponding equator (illustrated in Fig. 2 for \(B = \sigma_y \)).

Since error and disturbance are both independent from the initial system state their product \(\epsilon(A)\eta(B) \) also depends only on the relative orientation of \(\vec{a}, \vec{b}, \) and \(\vec{\sigma}_a \) and can be depicted on the Bloch sphere for fixed \(\vec{a} \) and \(\vec{b} \) (see Fig. 3). In order to test if a generalized Heisenberg-like relation (Eq. (4)) is obeyed we also have to evaluate the state-dependent limit. By assigning the vector \(\vec{r} \) to the initial spin state using the Bloch representation of its corresponding density matrix \(|\psi\rangle \langle \psi| = \frac{1}{2} (I + \vec{r} \cdot \vec{\sigma}) \) we get

\[
\frac{1}{2} |\psi| [A, B]|\psi\rangle = |\vec{r} \cdot (\vec{a} \times \vec{b})| \quad (30)
\]

The limit is thus given by the volume of the parallelepiped spanned by the three vectors \(\vec{a}, \vec{b}, \) and \(\vec{r} \) and ranges from 0 to 1. Therefore, except for the special cases where it vanishes, we can always find regions where the
product of error and disturbance is below the limit. This is an example for a general result (chap.6 in [25]) stating that projective measurements of A violate a Heisenberg-like error-disturbance uncertainty relation provided that B is bounded and $\langle [A, B]|\psi\rangle \neq 0$.

For a complete investigation of Ozawa's error-disturbance uncertainty relation (Eq. [5]) we additionally need the standard deviations of A and B for an arbitrary initial state $|\psi\rangle$ given by

$$\sigma(A) = \sqrt{1 - (\langle A \rangle)^2}, \quad \sigma(B) = \sqrt{1 - (\langle B \rangle)^2} \quad (31)$$

For a graphical representation of the left hand side of the Ozawa relation Eq. [5], we have to fix the observables A and B and the state $|\psi\rangle$ and can then vary O_A over the Bloch sphere and indicate the resulting values of the sum by different colors. While the Heisenberg-term $\epsilon(A)\eta(B)$ is independent from the initial state, the sum in Eq. [5] changes because of the standard deviations and always lies above the lower bound given by the commutator (see Fig. 4).

IV. MEASUREMENT CONCEPT

The expressions Eqs. (21) and (22) are very convenient to calculate the explicit formulas for error and disturbance in spin measurements (Eqs. (28), (29)), but they are not suitable for designing an experiment. The output operator O_A and the observable A can not be measured simultaneously and therefore their difference is no detectable quantity. The same is true for the the change of disturbance in spin measurements (Eqs. (28), (29)), but they can not be overcome by using the expressions Eqs. (21) and (22) which read in our case of a projective spin-$$\frac{1}{2}$$ measurement

$$\epsilon(A)^2 = 2 + \langle \psi|O_A|\psi\rangle + \langle A\psi|O_A|A\psi\rangle - \langle (A + \mathbb{1})\psi|O_A|(A + \mathbb{1})\psi\rangle$$

and

$$\eta(B)^2 = 2 + \langle \psi|O_B|\psi\rangle + \langle B\psi|O_B|B\psi\rangle - \langle (B + \mathbb{1})\psi|O_B|(B + \mathbb{1})\psi\rangle$$

since $A^2 = O_A^{(2)} = B^2 = O_B^{(2)} = \mathbb{1}$. Now, error and disturbance are solely determined by expectation values of experimentally accessible operators for various input states:
The expression for the error only contains the output operator O_A, that is the observable that’s actually measured by the apparatus. The desired observable O occurs solely in two of the necessary three input states $|\psi\rangle$, $|A\psi\rangle$, and $|(A + 1)\psi\rangle$. If we succeed in preparing all these known input states the error $\epsilon(A)$ of the A-measurement can be determined from the expectation values of O_A.

For determining the disturbance we need the input states $|\psi\rangle$, $|B\psi\rangle$, and $|(B + 1)\psi\rangle$ and the expectation values of O_B which is just a shorthand notation for $O^{(1)}_B$. From Eq. (18) it is given by $\sum_m M^\dagger_m B M_m$ where the M_m are the projection operators of the output operator O_A. Thus, if we measure B immediately after the measurement of O_A we actually perform the measurement of O_B.

After all, our experiment needs three connected components, a preparation stage for generating the input states $|\psi\rangle$, $|A\psi\rangle$, $|(A + 1)\psi\rangle$, $|B\psi\rangle$, and $|(B + 1)\psi\rangle$, a measurement apparatus A_1 carrying out the O_A measurement and a second apparatus A_2 performing the B measurement (see Fig. 5).

As indicated in the measurement scheme (Fig. 5) the two projective measurement of O_A and B result in four possible outcomes since every spin operator can be decomposed into two projectors belonging to the eigenvalues ± 1. Explicitly, these projectors are given by $\frac{1}{2} (\mathds{1} \pm \vec{\sigma}_a \cdot \hat{\sigma})$ for O_A and by $\frac{1}{2} (\mathds{1} \pm \vec{b} \cdot \hat{\sigma})$ for B. Equivalently, we can write the projector as ket-bra of the eigenvectors which we denote by $|+ \vec{a}\rangle$ and $|- \vec{a}\rangle$ for the operator O_A and by $|+ \vec{b}\rangle$ and $|- \vec{b}\rangle$ for the operator B respectively. We will use this kind of notation throughout the paper for all spin states. The vector inside the ket indicates the reference axis and the sign denotes the positive or negative spin component. For directions along the Cartesian axes we omit the arrow (for example $|-x\rangle$ stands for the negative spin component along the x-axis).

From the spectral theorem, the operators O_A and B can be decomposed into their projection operators via:

$$O_A = \hat{\sigma}_a \cdot \hat{\sigma} = |+ \vec{a}\rangle \langle + \vec{a}| - |- \vec{a}\rangle \langle - \vec{a}|$$ \hspace{1cm} (34)

$$B = \vec{b} \cdot \hat{\sigma} = |+ \vec{b}\rangle \langle + \vec{b}| - |- \vec{b}\rangle \langle - \vec{b}|$$ \hspace{1cm} (35)

The indices $(++, (--), (+-), and (--)$ of the output ports in Fig. 5 indicate which projections have been carried out. From the intensities at the four possible output ports, denoted by $I_{++}, I_{+-}, I_{-+},$ and I_{--}, the expectation value of O_A in a state $|\psi\rangle$ is obtained from:

$$\langle \psi|O_A|\psi\rangle = \frac{(I_{++} + I_{+-}) - (I_{-+} + I_{--})}{I_{++} + I_{+-} + I_{-+} + I_{--}}$$ \hspace{1cm} (36)

As already mentioned, the prior measurement of O_A modifies the measurement operator of A_2 from B to O_B.

The expectation values of O_B necessary for the determination of the disturbance are obtained from:

$$\langle \psi|O_B|\psi\rangle = \frac{(I_{++} + I_{+-}) - (I_{-+} + I_{--})}{I_{++} + I_{+-} + I_{-+} + I_{--}}$$ \hspace{1cm} (37)

All expectation values necessary for the determination of error ϵ and disturbance η can thus be derived from the output intensities when the input states $|\psi\rangle$, $|A\psi\rangle$, $|(A + 1)\psi\rangle$, $|B\psi\rangle$, and $|(B + 1)\psi\rangle$ are applied to the joint measurement apparatuses A_1 and A_2.

Ozawa’s relation (Eq. (5)) additionally contains the standard deviations of A and B in the state $|\psi\rangle$. For our measurement observables, the standard deviations reduce to:

$$\sigma(A)^2 = \langle \psi|A^2|\psi\rangle - \langle \psi|A|\psi\rangle^2 = 1 - \langle \psi|A|\psi\rangle^2$$ \hspace{1cm} (38)

and the corresponding expression for $\sigma(B)$. The expectation value of A can be obtained from our experimental setup by adjusting O_A to be equal to A and then use Eq. (36). For the expectation value of B, we have to turn off the measurement apparatus A_1 and apply $|\psi\rangle$ to A_2 which then projectively measures B (and not O_B). If we then denote the intensities of A_2’s two output ports by I_{++} and I_{--} the expectation value of B is according to Eq. (37) given by $(I_{++} - I_{--})/(I_{++} + I_{--})$. Obviously, for the expectation value of A we can also turn off A_2 and only use the two output ports of A_1 in the same manner. For the actual experiment we favor this method since increasing the number of involved components usually increases the experimental error.

A final remark concerns the principle aim of our experiment. We do not seek to minimize the measurement error $\epsilon(A)$ as one may assume at first sight. By the way, measuring the spin of a spin-$\frac{1}{2}$ particle along any direction is easily achievable with a high degree of precision. We are interested in a controlled variation of O_A and a sys-
A monochromatic, thermal neutron beam with a mean wavelength of 1.96 Å and a cross section of about 10 (vertical) × 5 (horizontal) mm² propagates in the y-direction. In the so-called preparation stage, it first crosses a bent Co-Ti supermirror resulting in an approximately 99% polarization in +z-direction. For the further manipulation of the spin state we use magnetic fields which interact with the neutron via the Zeeman Hamiltonian $\mu \sigma \vec{B}$. For thermal neutrons the effect of the magnetic fields on the spatial part of the wave function can be neglected [35] and the action of a static magnetic field pointing in direction \vec{n}_B on the spin state is described by a unitary transformation U_R

$$U_R = e^{i\alpha \vec{n}_B \cdot \vec{\sigma}}, \quad \alpha = \mu|B|T/h$$ (39)

where μ denotes the magnetic moment of the neutron, $|B|$ the modulus of the magnetic field strength, and T the time-of-flight through the field region. The magnetic field thus induces a rotation of the neutron polarization around the axis \vec{n}_B with an angle α, commonly referred to as Larmor precession. In order to obtain any arbitrary spin state we combine the action of a 10 Gauss guide field pointing in z-direction and so-called spin-flippers. The spin flipper produces a field in negative z-direction which compensates the guide field and a second field B_x that points in x-direction. When the z-polarized neutrons propagate through the spin flipper their polarization obtains a polar angle depending on the strength of B_x. In the guide field, Larmor precession around the z-axis is induced. Since the strength of the guide field is fixed, the azimuthal angle of the polarization is varied by changing the time-of-flight through the guide field. Thus, in order to get a certain azimuthal angle at the end of the preparation stage, we have to position the first spin flipper DC-1 properly between the polarizer and the end point of the preparation stage.

Carrying out the projective measurement of O_A consists of two steps. At first, we have to project the initially prepared state onto the eigenstates of O_A. To complete the measurement we then have to prepare the neutron spin in the eigenstates of O_A. For the projection, spin-flipper DC-2 has to be positioned in the guide field such that the spin-component along the axis to be measured is rotated into the +z-direction. For the eigenstate belonging to eigenvalue +1, we need the component along \vec{n}_a, for the eigenstate belonging to −1, we rotate the $-\vec{n}_a$ component in +z-direction. The supermirror (analyzer) then selects only the +z-component of the wave function. The projective measurement is completed by the preparation of the measured spin-component with spin-flipper DC-3. In analogous manner to the preparation of the initial state, this is accomplished by properly positioning spin flipper DC-3 in the guide field, so that the desired state is generated at the exit of apparatus A1.

Note that the magnetic guide field strength and the dimensions of our experiment are chosen such that any desired direction for the output operator O_A and any initial state can be realized.

On the state after the O_A measurement, the B-measurement is performed using the last spin-flipper (DC-4) and the analyzer. A subsequent preparation of the eigenstates of B is not necessary since the counting detector is insensitive to the spin state.

In contrast to an ideal measurement, in our setup the four possible outcomes of the two projective spin measurements along \vec{n}_a and \vec{n}_b are not measured at the same time, but one after the other. At first, we adjust apparatus to measure the projection onto the positive eigenstates $|+\alpha_a\rangle$ and $|+\alpha_b\rangle$ of O_A and B. The resulting intensity derived from the counts/600 sec is consequently denoted by I_{++}. Afterwards, we change apparatus A2 to constitute the projection operator $|-\alpha_a\rangle(-\alpha_b\rangle$ yielding I_{+-}. Then we change apparatus A1 to measure $|-\alpha_a\rangle(-\alpha_b\rangle$ and repeat the procedure for both eigenstates of B to get I_{-+} and I_{--}. From the four output intensities, we obtain the expectation values of O_A and O_B as given by Eqs. (30) and (37). The measured expectation values are normalized taking the limiting efficiency of the entire apparatus (~96%) into account, so that expectation values are bounded between ±1. In order to get results for error ϵ and disturbance η the expectation values have to be recorded for different states $|\psi\rangle$, $A|\psi\rangle$, $(A+I)|\psi\rangle$, $B|\psi\rangle$, and $(B+I)|\psi\rangle$. In Fig 7, we show an explicit example of related intensity sets.

For special configurations of A, B, and $|\psi\rangle$ some of these necessary states are equivalent since overall phase factors are irrelevant. For example if $A = \sigma_x$, $B = \sigma_y$ and $|\psi\rangle = |+z\rangle$ we have $|A\psi\rangle = |-z\rangle$ and $|B\psi\rangle = i|-z\rangle$.

For the measurement of the standard deviation $\sigma(A)$, we chose O_A to be A and then project the initial state $|\psi\rangle$ onto the eigenstates of A. A subsequent preparation of the eigenstates and the B-measurement are not necessary, that means the spin flippers DC-3 and DC-4 can be turned off. For the standard deviation $\sigma(B)$, we virtually remove apparatus A1 by turning off the spin flipper coils DC-1 and DC-2 and then use DC-3 (in combination with the guide field) to prepare the state $|\psi\rangle$ that is then applied to apparatus A2 that projectively measures the expectation value of B.

V. NEUTRON SPIN MEASUREMENT SETUP

In the previous section, we have outlined the idea behind the experiment. We now want to turn to the actually performed measurements on neutron spins. The experiment was carried out at the tangential beam port of the research reactor facility TRIGA Mark II of the Vienna University of Technology. The whole setup is depicted in Fig. 6.
Figure 6: (Color online) Illustration of the experimental apparatus. The set-up is designed for the demonstration of error and disturbance in neutron spin measurements. The neutron optical set-up consists of three stages: preparation (blue region), apparatus A1 measuring O_A (pink region) and apparatus A2 measuring B (green region). A monochromatic neutron beam is polarized in $+z$-direction by passing through a supermirror spin polarizer. By combining the action of four spin-flipper coils, the magnetic guide field and the analyzing supermirrors, the successive measurements of O_A and B are made for the required input states.

VI. EXPERIMENTAL RESULTS

A. Standard configuration

In the first experiment, we investigate the uncertainty relations in the so-called standard configuration where the Bloch vectors of the observables and the initial state (\vec{a}, \vec{b}, and \vec{r}) are orthogonal to each other

$$A = \sigma_x, \quad B = \sigma_y, \quad |\psi\rangle = |+z\rangle \quad (40)$$

Note that since all results only depend on the relative orientation of the involved quantities we can always fix one direction. Therefore, we will chose A to be σ_x in all experiments. For the standard configuration, the standard deviations and the expectation value of commutator between A and B become maximal (see Eqs. (31) and (30))

$$\sigma(A) = 1, \quad \sigma(B) = 1, \quad \frac{1}{2} \langle \psi | [A, B] | \psi \rangle = 1 \quad (41)$$

In sect. [III] ("Theory for spin measurements"), we have depicted $\epsilon(A)$ (Fig. 1), $\eta(B)$ (Fig. 2), their product $\epsilon(A)\eta(B)$ (Fig. 3), and the sum $\epsilon(A)\eta(B) + \epsilon(A)\sigma(B) + \sigma(A)\eta(B)$ (Fig. 4) for $A = \sigma_x$ and $B = \sigma_y$ for all possible directions of O_A on the Bloch sphere. In our first experimenal run, we vary O_A along the equator. O_A is thus parameterized by its azimuthal angle ϕ_{OA} yielding the direction $\vec{o}_a = (\cos \phi_{OA}, \sin \phi_{OA}, 0)$. The theory curves for $\epsilon(A)$ and $\eta(B)$ are then given by

$$\epsilon(A) = 2 \sin \frac{\phi_{OA}}{2}, \quad \eta(B) = \sqrt{2} | \cos \phi_{OA} | \quad (42)$$

which follows from Eqs. (28) and (29).

In the standard configuration, we have to prepare $|+z\rangle$, $|-z\rangle$, $|+x\rangle$, and $|+y\rangle$ as input states in order to obtain the necessary expectation values that determine error, disturbance and standard deviations. The errors of the measured values for $\epsilon(A)$ and $\eta(B)$ are calculated using error propagation from the standard deviation of the count rates and considering inaccuracies of the Larmor precession angles ($\sim 1.5^\circ$). The latter result mainly from inhomogeneity of the guide field along the beam.

In Fig. 8, we show the experimental outcomes for the three terms occurring in Ozawa’s relation plotted against the azimuthal angle of O_A which we call detuning angle since it also indicates the amount of deviation between
A and O_A. The standard deviations are independent of O_A and their measured values are practically equal to $\sigma(A) = \sigma(B) = 1$, that’s why we can also investigate the behaviour of $\epsilon(A)$ from the $\sigma(A)\eta(B)$-curve and likewise the behaviour of $\eta(B)$ from the $\sigma(A)\eta(B)$-curve.

Initially, for $\phi_{OA} = 0$, that is $O_A = A$, the measurement error $\epsilon(A)$ vanishes. When we move along the equator it increases and reaches its maximal value for $O_A = -A$ ($\phi_{OA} = \pi$). Then, O_A approaches A again and $\epsilon(A)$ decreases.

The disturbance is maximal for $\phi_{OA} = 0$ and vanishes when $O_A = B$ ($\phi_{OA} = \pi/2$). It has a second maximum for $O_A = -A$ because a $(-A)$-measurement disturbs B as much as an A-measurement. A and $-A$ have the same set of eigenstates and therefore the same set of projectors which leads already for the general formula Eq. (23) to an equal expression for the disturbance. We can also verify that the disturbance vanishes again for $O_A = -B$ ($\phi_{OA} = 3\pi/2$) which follows from similar arguments for B and $-B$.

The famous trade-off relation stating that when one observable is measured more precisely, the other is more disturbed has to be treated with care. This reciprocity between error and disturbance only holds for $-\pi/2 \leq \phi_{OA} \leq \pi/2$. When we move away from $\phi_{OA} = \pi/2$ where $\eta(B) = 0$ to increasing ϕ_{OA} we again disturb the B-measurement, but at the same time the error of the A-measurement increases as well since we tend towards $-A$. Then, for $\pi \leq \phi_{OA} \leq 3\pi/2$ both decrease.

The product of error and disturbance $\epsilon(A)\eta(B)$ lies below the limit given by the commutator for the majority of ϕ_{OA}-values revealing the violation of the generalized Heisenberg relation (Eq. (1)). Strongest violation occurs around the regions of error-free ($\phi_{OA} = 0$) or disturbance-free ($\phi_{OA} = \pi/2, 3\pi/2$) measurements.

Contrary to that, the sum $\epsilon(A)\eta(B) + \epsilon(A)\sigma(B) + \sigma(A)\eta(B)$ is always above the expectation value of the commutator showing the validity of the Ozawa’s relation (Eq. (6)).

B. Arbitrary direction of O_A

Though moving O_A along the equator of the Bloch sphere already reveals a lot of remarkable features about error, disturbance and the related inequalities a systematic investigation requires arbitrary variations of O_A. The direction of O_A is in general given by an az-
imuthal angle ϕ_{OA} and a polar angle θ_{OA}, so that $\vec{a}_x = (\cos \phi_{OA} \sin \theta_{OA}, \sin \phi_{OA} \sin \theta_{OA}, \sin \theta_{OA})^T$ which yields for error and disturbance if still $A = \sigma_x$ and $B = \sigma_y$

$$\epsilon(A) = \sqrt{2 - 2 \cos \phi_{OA} \sin \theta_{OA}}$$
$$\eta(B) = \sqrt{2 - 2 \sin^2 \phi_{OA} \sin^2 \theta_{OA}}$$

(43)

(44)

For the following experiments, we will fix the polar angle θ_{OA} and then vary the azimuthal angle ϕ_{OA} thereby realizing an evolution of O_A along circles of latitude on the Bloch sphere (see Fig. 9).

Neither error nor disturbance can then vanish completely since O_A never coincides with A, B or $-B$ along these paths. The ϵ- and η-curves are as a whole shrunken from below. Note that we can deduce the behaviour of $\epsilon(A)$ and $\eta(B)$ from Eq. (42) since $\sigma(A)$ and $\sigma(B)$ are still 1. The shrinking effect increases the more θ_{OA} differs from $\pi/2$ ending up in straight lines for the degenerate case $\theta_{OA} = 0$.

The trade-off effect between error and disturbance is weakened, but still valid for $-\pi/2 \leq \phi_{OA} \leq \pi/2$ if we move along the circles of latitude. If we move along meridians no trade-off exists at all since error and disturbance both increase. Thus, at least for spin measurements, the trade-off is not only restricted to certain regions but also to certain directions in the parameter space.

Since both error and disturbance increase their product increases as well and lies above the limit in larger and larger intervals. For $\theta_{OA} \leq \arcsin(0.75) \approx 48.6^\circ$ the Heisenberg relation is always fulfilled (see for example top right panel of Fig. 9).

Ozawa’s inequality is again always fulfilled, the sum $\epsilon(A)\eta(B) + \epsilon(A)\sigma(B) + \sigma(A)\eta(B)$ gets shifted far above the limit when O_A approaches the poles.

C. Varying the azimuthal angle of B

In the next step we quit the standard configuration and change the relative orientation of A and B by moving B along the equator (see Fig. 10).

$$A = \sigma_x, \quad B = \sigma_x \cos \phi_B + \sigma_y \sin \phi_B, \quad |\psi\rangle = |+z\rangle$$

(45)

which leads to

$$\sigma(A) = 1, \quad \sigma(B) = 1, \quad \frac{1}{2}\langle \psi| [A, B]|\psi\rangle = \langle \sin \phi_B \rangle$$

(46)

If we also vary O_A along the equator the error remains unaltered compared to the standard configuration but we expect the disturbance curve to be shifted an amount $\phi_B = \pi/2$

$$\epsilon(A) = 2 \sin \frac{\phi_{OA}}{2}, \quad \eta(B) = \sqrt{2}|\sin(\phi_{OA} - \phi_B)|$$

(47)

Note that in the standard configuration $\phi_B = \pi/2$ which turns the sine dependence into a cosine.

The error still vanishes for $O_A = A$ and has its maximum at $O_A = -A$, the disturbance vanishes for $O_A = B$ and $O_A = -B$ and has maxima in the middle between the two minima which do not correspond to the direction of A or $-A$ now.

Due to the loss of symmetry, the product $\epsilon(A)\eta(B)$ changes considerably. Since the commutator between A and B additionally decreases, compared to the standard configuration, the regions where the Heisenberg error-disturbance relation is violated become smaller.

The expression $\epsilon(A)\eta(B) + \epsilon(A)\sigma(B) + \sigma(A)\eta(B)$ is always above the limit again demonstrating the validity of Ozawa’s relation. However, in the standard configuration the sum never touched the limit whereas for shifted B it approaches the lower bound. Points associated with disturbance-free measurement come closest to the limit and finally touch it for the degenerate cases $B = A$ and $B = -A$.

In this context we want to mention an interesting aspect concerning the lower bound. For the pre-measurement standard deviations in the state $|\psi\rangle$, the lower bound derived by Robertson [19] and given by Eq. (3) was soon refined by Schrödinger [39] to be

$$\sigma(A)^2 \cdot \sigma(B)^2 \geq \frac{1}{2} \langle A - \langle A \rangle, B - \langle B \rangle \rangle^2 + \frac{1}{2\lambda} [A, B]^2$$

(48)

where $\langle .. \rangle$ abbreviates $\langle \psi| .. |\psi\rangle$ and $\{X,Y\} = XY + YX$ stands for the anti-commutator. For our observables $A = \vec{a} \cdot \vec{\sigma}$, $B = \vec{b} \cdot \vec{\sigma}$ and the initial state $|\psi\rangle\langle \psi| = \frac{1}{2}(1 + \vec{r} \cdot \vec{\sigma})$ the additional term explicitly reads

$$\frac{1}{2} \langle [A - \langle A \rangle, B - \langle B \rangle \rangle \rangle = \vec{a} \cdot \vec{b} - (\vec{a} \cdot \vec{r})(\vec{b} \cdot \vec{r})$$

(49)

It vanishes for the standard configuration, but for non-orthogonal A and B it contributes. The measured standard deviations in Fig. 10 of course obey the improved relation Eq. (48). But for the error-disturbance relations, the anti-commutator term can not be added to the lower bound. This shows explicitly that the three terms of Ozawa’s relation are not bounded from below by the product of the pre-measurement standard deviations as one could naively conclude from the results of the standard configuration.

When moving O_A along the equator we find out that the trade-off relation between error and disturbance is valid in unconnected intervals for ϕ_{OA} whose positions depend on the orientation of B.

D. Varying the polar angle of B

Now, we also introduce a polar angle for B while leaving its azimuthal angle to be $\pi/2$. The observable and the
The observables A and B, the initial state $|\psi\rangle$ and the chosen path for the output operator O_A are depicted on the Bloch sphere. The theoretically predicted values for $\sigma(A)$, $\sigma(B)$ and the lower limit are given by Eq. (41) and the theory curves for $\epsilon(A)$ and $\eta(B)$ by Eq. (43) and Eq. (44) respectively.

The initial state are then given by

\[A = \sigma_x, \quad B = \sigma_y \sin \theta_B + \sigma_z \cos \theta_B, \quad |\psi\rangle = |+z\rangle \] \hspace{1cm} (50)

which leads to

\[\sigma(A) = 1, \quad \sigma(B) = \sin \theta_B, \quad \frac{1}{2}\langle\psi|[A, B]|\psi\rangle = \sin \theta_B \] \hspace{1cm} (51)

We vary O_A along the equator and along a circle of latitude determined by $\theta_{OA} = \frac{\pi}{3}$. The error $\epsilon(A)$ remains
Figure 10: (Color online) Variations of the azimuthal angle ϕ_B of the observable B. The observables A and B, the initial state $\ket{\psi}$ and the chosen path for the output operator O_A are depicted on the Bloch sphere. The theoretically calculated values for $\sigma(A)$, $\sigma(B)$ and the lower limit are given by Eq. (46) and the theory curves for $\epsilon(A)$ and $\eta(B)$ by Eq. (47).

the same as in Eq. (43) whereas the expression for the disturbance written in spherical coordinates becomes rather lengthy and we refer to the general expression Eq. (29).

Note that we can obviously perform a coordinate transformation so that A and B lie in the xy-plane again (see Fig. 11). Then, the state $\ket{\psi}$ gets a polar angle and the path of O_A inclines likewise and consequently its parametrization becomes more elaborate. Nevertheless, one can also see the above experiments as a realization of this particular evolution of O_A for $A = \sigma_x$, $B = \sigma_y$.
and a declined initial state.

Figure 11: (Color online) Since only the relative orientations of A, B, $|\psi\rangle$, and O_A determine the results, the experiments involving the polar angle θ_B can be equivalently seen as configurations with a changed initial state and an evolution of O_A along an inclined plane.

For the O_A-variation along the equator, the error curve does not change compared to the standard configuration, the term $\epsilon(A)\sigma(B)$ in Fig. 12 becomes smaller due to smaller $\sigma(B)$. The disturbance never vanishes totally since O_A never coincides with B or $-B$. The curve is still symmetric because the enclosed angles between O_A and B for $0 \leq \phi_{OA} < \pi$ are the same as the angles between O_A and $-B$ for $\pi \leq \phi_{OA} < 2\pi$.

When O_A varies along the circle of latitude given by $\theta_{OA} = \theta_B$ the situation changes. The error can not become zero since $O_A \neq A$ holds everywhere. The disturbance vanishes for $\phi_{OA} = \frac{\pi}{2}$ where $O_A = B$ but the symmetry is lost. O_A does not approach $-B$ in the same manner as B and so the disturbance is hardly reduced for $\pi \leq \phi_{OA} < 2\pi$.

E. Varying the initial state

Until now, we have varied O_A along different paths and changed the direction of B. The next thing to investigate are alterations of the initial state $|\psi\rangle$ for an already examined choice of A and B which should, according to the theoretical predictions, not affect error and disturbance. The parameters are given by

$$A = \sigma_x, \quad B = \sigma_y, \quad |\psi\rangle = \cos \frac{\theta_\psi}{2} |+z\rangle + e^{i\phi_\psi} \sin \frac{\theta_\psi}{2} |-z\rangle \quad (52)$$

leading to

$$\sigma(A) = \sqrt{1 - \cos^2 \phi_\psi \sin^2 \theta_\psi} \quad (53)$$

$$\sigma(B) = \sqrt{1 - \sin^2 \phi_\psi \sin^2 \theta_\psi} \quad (54)$$

$$\frac{1}{2} \langle \psi| [A, B]|\psi\rangle = |\cos \theta_\psi| \quad (55)$$

Since O_A is varied along the equator no change for error and disturbance in comparison to the standard configuration is expected and their theory curves are thus given by Eq. (42). After dividing with the corresponding standard deviations this can be verified from the $\epsilon(A)\sigma(B)$- and $\sigma(A)\eta(B)$-curve in Fig. 13.

The plots show that the product of error and disturbance is indeed independent from the initial state. However, the lower limit changes and the regions where Heisenberg’s error-disturbance relation is fulfilled become larger when $|\psi\rangle$ approaches the xy-plane.

The left-hand-side of Ozawa’s relation also contains the standard deviations and therefore changes with the initial state and still lies above the limit.

VII. DISCUSSION

In our previous letter [25], we reported an experiment for the particular case where error and disturbance of a neutron’s spin-component measurements obey Ozawa’s new relation Eq. (4) but violate the old one Eq. (1) in the whole range of the experimental parameter. The old relation is extended from Heisenberg’s original relation Eq. (1) between the error of a position measurement and the induced disturbance on the momentum. Although mainly motivated by thought experiments and in its mathematical derivation based on unjustified assumptions, Heisenberg’s old relation for measurement error and disturbance prevailed and was regarded as a peculiarity of quantum mechanics for a long time. The important step for the test of error-disturbance uncertainty relations is to give clear and consistent definitions of error and disturbance for quantum measurements. This is done by Eqs. (12) and (13). Here, we again investigate these relations in the $\frac{1}{2}$-spin system, but enlarge our parameter range in comparison to [25]. For projective spin-$\frac{1}{2}$ measurements, error and disturbance are determined by three (Bloch) vectors \vec{a}, \vec{b} and \vec{c}, characterizing the spin observables A and B and the actual measurement operator O_A. In particular, the error (disturbance) only depends on the deviation angle between \vec{a} (\vec{b}) and \vec{c}, which is described in Eq. (28) (Eq. (29)) and depicted in Fig. 1 (Fig. 2). It is worth noting here that error and disturbance are independent from the initial quantum state which follows straight-forward from the properties of the Pauli-matrices.

Our measurement strategy is based on the expansion of error and disturbance in terms of expectation values of outcomes in three different input states given by Eqs. (24) and (25) reminding of a quantum process tomography [37, 38]. There is another experimental strategy based on weak values [29, 32, 39]. They insist that “if the system is weakly measured before the measurement apparatus the precision (error) and disturbance can be directly observed in the resulting weak values” [32] and claim our method to be indirect. Although it is not clear in what sense the measurements are direct and indirect, we consider here possible arguments: The determination of error and disturbance is done (i) whether by using a single incident state or a combination of some states and/or...
(ii) whether for single events or for an ensemble. For the point (i), we point out the fact that the incident state is affected by some operation before the measurements A and B in both cases. In the weak-value strategy, weak measurements actually demands interaction with the system, which inevitably makes backreaction on the system (however weak they may be), otherwise no information of the system will be derived: after interactions through needed weak-value measurements, the incident state is no more the same as it was. In contrast, the measurements of A and B are done just after the incident state goes through the operation of 1, A, B, A+1, or B+1 in the tomographic strategy. Only the difference between them is that the operation is weak or strong. For the point (ii), as is stated in one of the above papers, “Experimentally, the problem with weak values is that they cannot be confirmed by precise measurements on individual systems” [9]: experimental determination of the error and disturbance requires measurements on a set of an ensemble, which is a common feature of both approaches. This is a clear statement of abandonment of determining the error and disturbance for single events by using neither strategies. Another point is to be mentioned: in comparison of the two graphs in Fig. 5 of [28] (respectively, the corresponding part of Fig. 3 in this work) and Fig. 4 [32], the accuracy of the former is clearly much higher than the latter.

Conscientious readers may presume without difficulty that the new uncertainty relation could be reformulated as

\[(\epsilon(A) + \sigma(A)) \cdot (\eta(B) + \sigma(B)) \geq |\langle \psi | [A, B] | \psi \rangle|\]

(56)

by just adding Robertson’s and Ozawa’s inequality (Eqs. (3) and (5)). Although it seems appealing to consider the left hand side as the product of a newly defined “overall” error and “overall” disturbance, given by the sum of measurement-induced error for A [disturbance on B] and measurement-independent intrinsic fluctuation (standard deviation) of A [B], the “overall” lower bound is less tight than Eqs. (3) and (5) considered separately.

Finally, we are aware that a completely different quantification of uncertainty relations, viz, in terms of entropy, has been developed. For instance, a relation for position and momentum was derived first [40], followed by a generalization for arbitrary pairs of observables [41]. An improved version suggested in [4] and proven in [42] has the form

\[H(A) \cdot H(B) \geq - \log_2 \max_{j,k} ||(a_j | b_k)||\]

(57)

where \(H(A) [H(B)]\) denotes the Shannon entropy of
Figure 13: (Color online) Variations of the initial state $|\psi\rangle$. The observables A and B, the initial state $|\psi\rangle$ and the chosen path for the output operator O_A are depicted on the Bloch sphere. The theoretically predicted values for $\sigma(A)$, $\sigma(B)$ and the lower limit are given by Eqs. (53 - 55) and the theory curves for $\epsilon(A)$ and $\eta(B)$ by Eq. (42).

the probability distribution of the outcome and $|a_j\rangle$ [$|b_k\rangle$] represent non-degenerating eigenstates of A [B]. Recently, a stronger entropic uncertainty relation for an entangled system was presented [43] and studied in an optical setup [44]. The entropic uncertainty relations describe informational contents and do not refer to the interaction of quantum measurements. They rather represent a generalization of Robertson’s relation (Eq. 3) for probability distributions for which the standard deviation has little physical meaning. Though, it would be interesting if the universally valid uncertainty relation of Ozawa (Eq. 5) also has an entropic counterpart.
VIII. CONCLUSION

In Heisenberg’s original formulation, the uncertainty principle refers to a relation for the error in the measurement of a certain observable and the thereby induced disturbance on another observable. However, his famous relation has been based on thought experiments or a rather heuristic argument with unsupported assumptions. A recent development of rigorous treatments of quantum measurement has enabled us to reformulate the error-disturbance relation and lead to a universally valid relation.

In the experiment presented here, we have investigated this relation for projective neutron spin measurements. The two non-commuting observables under consideration are spins along different directions which are measured successively. By using a tomographic procedure, based on applying three different states generated from the initial system state on the joint measurement apparatuses, the error of the first measurement and the disturbance induced on the second observable can be determined from the output intensities. By detuning the measurement axis of the first apparatus we can study the variation of error and disturbance. Together with the Bloch vector of the initial system state, the directions of the two spin observables and of the measurement axis constitute the relevant parameters determining all quantities occurring in the uncertainty relations.

In our neutron-optical experimental runs, we have at first fixed the observables and the initial state, and then varied the detuned measurement axis along equidistance circles on the Bloch sphere. For various representative configurations, the measured values for error and disturbance are in excellent agreement with the theory curves. They are independent of the initial state and are solely determined by the enclosed angle between the measurement axis and the first or second spin axis, respectively. The results demonstrate that Heisenberg’s error-disturbance relation can always be violated for a non-vanishing lower limit. In contrast, Ozawa’s new inequality always holds. Furthermore, we conclude that increasing error does not always lead to decreasing disturbance and vice versa in spin measurements. Such a reciprocal behavior occurs only in certain areas and along certain directions. Thus, our results give an experimental demonstration that the generalized form of Heisenberg’s error-disturbance relation has to be abandoned.
[37] I. L. Chuang and M. A. Nielsen, Journal of Modern Optics 44, 2455 (1997).
[38] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 78, 390 (1997).
[39] H. F. Hofmann, ArXiv e-prints (2012), 1205.0073.
[40] I. Bialynicki-Birula and J. Mycielski, Communications in Mathematical Physics 44, 129 (1975).
[41] D. Deutsch, Phys. Rev. Lett. 50, 631 (1983).
[42] H. Maassen and J. B. M. Uffink, Phys. Rev. Lett. 60, 1103 (1988).
[43] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, Nature Physics 6, 659 (2010).
[44] C. F. Li, J. S. Xu, X. Y. Xu, K. Li, and G. C. Guo, Nature Physics 7, 752 (2011).