S1 Western blot of cortex samples grouped by age (A-C). Lamin A/C was used as a loading control. n>3 per group, with technical replicates of each set. 100µg of total protein extract load per sample. (D-F) Graphic representation of Polβ relative to WT protein levels., D-F. *= p<0.05, **=p<0.01.
Microarray analysis of 20 month cortex samples shows that of the BER genes only polβ gene expression is significantly decreased in all samples critically including 3xTgAD. All expression levels are relative to WT. Refer to material and methods and Figure 4.
A circular *in vitro* DNA repair substrate (A) was used to assess BER repair capacity of protein extracts from 20 month brain samples (B). The reduction in Polβ levels conferred reduced insertion activity leading to an overall decrease in repair capacity, B & C. n=3, p>0.05. Refer to materials and methods and Akbari *et al.* (2004) for further information.
A. 6 month cortex results

B. 14 month hippocampal results

S2 No change in APP or tau in the transgenic mice: Representative western blot analysis of human transgenic proteins was conducted on APP and Tau at time points 6 and 14 months respectively (A, B). No differences were seen between the transgenic groups therefore having a DNA repair deficiency does not influence expression of the human transgenes.
S2 (C) (left) Representative full hippocampal western blots of LC3I compared to β-Actin. Shows that the protein level of LC3I is significantly higher in 3xTg/Polβ compared to 3xTgAD. LC3II is not visible at this short exposure time (see figure 2(E)) (n>4). (right) LC3I is significantly higher in the 3xTg/Polβ mice.
S2 (D) The amygdala is associated with anxiety, this behavior is elevated in all 3xTg mouse groups at 6 and 24 months irrespective of polβ status. Polβ animals have elevated anxiety response at 24 months. All groups except WT lose exploratory behavior at 24 months. Error bars on the 6 month Polβ group are an accurate representation of all sets, (n=10-18 per group). (E) Polβ deficient mice spend less time in the open (Z)one compared to residual zone at 24 months. (insert) diagrammatic representation of the residual area (R) versus the zone (Z)
Elevated plus maze results also revealed an anxiety response in the 3xTgAD mouse groups at 6 and 14, but not 24 months. Polβ mice show a high level of anxiety at 24 months correlating with open field data.
S2 (G) Additional images of the of amyloid accumulation in the hippocampus of 14 and 24 month old mice. Refer to Figure 2(F) for further details.
S2 (H) Additional images of the amyloid accumulation in amygdala of the 14 month old mice. Refer to Figure 2(G) for further details.
S3 (A) Representative image of full hippocampus showing loss of hippocampal volume is not restricted to the dendate gyrus in 14 month old animals. Refer to Figure 3 for full details.
S3 (B) Morris water maze learning trials showed limited difference between the groups at 14 months of age. Also see Figure 3E.
S3 (C) Probe phase data for memory retention at 14 month shows very similar trends to that done at 20 months. The 3xTg/Polβ mice had poor retention of memory not being able to significantly recall platform location, 4 hours after final learning trial. Quadrant abbreviations: T= Target Quadrant, UR= Upper Right quadrant, LL= lower left, LR= lower right.
S3 (D) Directness of path analysis calculated using 20 month MWM data. Similar trends between mice are seen as in quadrant based analysis (Figure 3F). 72 hours after final training the 3xTgAD/Polβ but not 3xTgAD can only find the platform randomly, (p<0.05). Also see figure S3(C).
Electrophysiology results show no difference at input.

(E) Deficiency Without Affecting Basal Synaptic Transmission at CA1 Hippocampal Synapses. Histogram showing WT mice CA1 neurons exhibit normal basal synaptic transmission and was not altered by Polβ. The amplitude of the fiber volley is plotted against fEPSP slopes. The input/output curves for neurons in slices from WT (n = 10 slices, 4 mice) and Polβ(n = 10 slices, 4 mice) were not significantly different (mean ± SEM, p > 0.05, Student’s t-test).

(F) Paired Pulse Facilitation (PPF) was measured to determine if affects neurotransmitter release from presynaptic terminals at CA1 synapses. PPF is not effected by Pol Beta HT treatment on 3xTgAD. With inter-pulse intervals of 50 ms the values for slices from 3xTgAD and 3xTg/Polβ mice are 1.82 ± 0.05 vs., 1.78 ± 0.06, respectively. (n = 5-6 slices from four pair of mice). Collectively, these findings suggest that Pol Beta HT treatments does not play a major role in basal transmission at CA1 synapses.
S3, (G)

Kruskal-Wallis One Way Analysis of Variance on Ranks

Group	N	Missing	Median	25%	75%
WT	71	1	165.5	165	167.125
Polβ	71	1	130	128	130
3xTgAD	71	1	127.8	121.188	128.6
3xTgAD/Polβ	71	1	108	108	108

\[= 128.373 \text{ with 3 degrees of freedom. (} P = <0.001\)]

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference \((P = <0.001) \)

All pairwise Multiple Comparison Procedures (Tukey Test)

Comparison	Diff of Ranks	q	P<0.05
WT vs. 3xTgAD/Polβ	10645	10645	Yes
WT vs. 3xTgAD	6369	6369	Yes
WT vs. Polβ	4562	4562	Yes
Polβ vs. 3xTgAD/Polβ	6083	6083	Yes
Polβ vs. 3xTgAD	1807	1807	No
3xTgAD vs. 3xTgAD/Polβ	4276	4276	Yes

S3 (G) Statistical information to complement LTP results (Figure 3H).
S4 (A) Principle component analysis (PCA) of significant genes showed that groups segregated most strongly according to transgenic genotype and then the level of Polβ.
S4 (B) Venn diagram comparison of pathways significantly regulated in the frontal cortex of the groups relative to WT. The 3xTg/Polβ mouse is more similar to the 3xTgAD but is still different from both parental strains.
Gene	3xtg/Polβ	3xTgAD	Polβ
NDUFA1	-5.81	-2.652	-0.42
NDUFA10	-0.707	-0.324	-1.054
NDUFA2	-4.698	-1.647	-0.673
NDUFA3	-6.054	-2.533	-0.615
NDUFA4	-2.606	-0.117	-0.364
NDUFA5	-4.171	-2.204	-0.696
NDUFA6	-3.572	-0.583	0.085
NDUFA7	-4.89	-2.018	-0.568
NDUFA8	-1.958	-0.562	-0.242
NDUFA9	0.032	0.043	-0.435
NDUFA10	-0.59	0.239	0.124
NDUFAF1	1.457	-0.47	0.846
NDUFB2	-3.753	-1.972	2.486
NDUFB3	-4.261	-2.429	-0.297
NDUFB4	-2.075	-2.64	-1.445
NDUFB5	-1.016	-1.307	-0.093
NDUFB6	-2.106	-3.269	-0.734
NDUFB7	-3.726	-2.265	0.466
NDUFB8	-1.71	0.605	-0.484
NDUFB9	-0.665	-0.995	1.442
NDUFC1	-4.934	-1.769	0.128
NDUFC2	-2.107	0.283	0.05
NDUFS1	0.627	0.684	0.502
NDUFS2	0.647	0.393	0.266
NDUFS3	-0.825	-0.519	-0.276
NDUFS4	-1.918	-1.653	0.815
NDUFS6	-4.333	-0.833	-0.549
NDUFS7	-2.739	-1.365	-0.339
NDUFS8	-1.389	-0.241	0.354
NDUFV1	0.788	1.13	-0.601
NDUFV2	-0.757	-0.153	0.49

COMPLEX 1
COMPLEX 3

	3xTg/Polβ	3xTgAD	Polβ
UQCRH	-2.812	-0.42	-0.002
UQCRFS1	-0.036	-0.88	-0.706
UQCRC2	0.783	0.494	-0.401
UQCRC1	-0.349	0.067	-0.551
UQCRB	-3.665	-3.104	0.42
UQCR	-5.369	-1.811	-0.482

COMPLEX 4

	3xTg/Polβ	3xTgAD	Polβ
COX10	0.351	0.736	0.693
COX11	-0.092	-0.671	1.132
COX15	0.315	0.535	-0.456
COX17	-5.399	-1.934	-0.703
COX18	-0.791	-0.031	-1.075
COX4I1	-0.962	1.205	0.521
COX4I2	-0.14	0.29	-0.088
COX5A	-3.067	-0.667	-0.157
COX5B	-3.379	-0.476	-0.432
COX6A1	-3.419	-0.473	-0.486
COX6A2	-6.58	-3.731	-0.219
COX6B	-4.832	-1.597	-0.382
COX6C	-5.286	-5.038	-0.356
COX7A1	-5.248	-3.905	-1.513
COX7A2	-2.982	-2.521	0.12
COX7A2L	0.941	1.141	0.674
COX7B	-2.455	-2.044	-0.991
COX7C	-4.292	-1.91	0.016
COX8A	-2.65	0.753	-0.383
COX8B	-2.412	-1.141	1.344
COX8C	0.171	-0.334	0.079
S4 (C) Gene expression patterns of complex 1, 3, 4 and 5 show heavy down regulation of principle genes associated with energetic dysfunction. This decrease is most pronounced in the 3xTg/Polβ mice that have a synergistic reduction in these energetic components. Blue arrows correspond to the direction of the gene list compared to the graphs, with the top gene being located closest to the y-axis.
S4, (D)

Pathway	Polβ Z-score	3xTgAD Z-score	3xTg/Polβ Z-score	p value	p value	p value
REACTOME ELECTRON TRANSPORT CHAIN	0	-5.8538	-14.8033	0.191988	0.000107	8.76E-14
KEGG OXIDATIVE PHOSPHORYLATION	-2.3113	-4.73404	-14.4702	0.002568	0.001359	3.79E-12
MOOTHA VOXPHOS	0	-7.17609	-17.7486	0.124994	4.55E-07	3.03E-18
MOOTHA MITOCHONDRIA	0	-5.5478	-8.84446	0.068614	1.70E-06	7.45E-08
REACTOME ELECTRON TRANSPORT CHAIN	0	-5.8538	-14.8033	0.191988	0.000107	8.76E-14

S4(D) Table showing both the z score and p-values for pathways associated with oxidative phosphorylation. See Figure 4(D) for graphical representation and further details.
S4 (E) Metabolic studies confirm microarray results showing clear metabolic dysfunction and elevated RER. VO2 (ml/Kg/hour), VCO2 (ml/Kg/hour). Reserve respiratory capacity (RER) is VCO2/VO2 (F) 3xTg/Polβ did not show significant differences in other metabolic parameters with the exception of heat output. All transgenic mice had elevated heat output indicative of metabolic dysfunction, n=4.
We compared most down regulated pathways in the mice and human AD patient pathways and found that out of the 25 pathways in the 3xTg/Polβ (yellow), 20 were also significantly decreased in human AD (purple). When we compare the three mice groups, we clearly see there are different pathways down-regulated in the Polβ (red) and 3xTgAD (blue). These pathways are combined in the 3xTg/Polβ (yellow) making the mice more similar to the human patient array (purple).

Gene Ontology Term	Human MCI	Human AD	Mouse Polβ	3xTgAD	3xTg/Polβ
GO0003529 RIBONUCLEOPROTEIN COMPLEX	-9.051002288	-9.82325752	0	-9.302801913	-17.85645823
GO0003735 STRUCTURAL CONSTITUENT OF RIBOSOME	-9.27719923	-11.61301105	0	-7.581829802	-16.28906262
GO0005840 RIBOSOME	-9.28472801	-12.09250373	0	-6.908662537	-15.52512185
GO0008137 NADH DEHYDROGENASE (UBIQUINONE) ACTIVITY	-3.270447766	-3.710681966	0	-4.911071043	-12.57555182
GO0006412 TRANSLATION	-9.09074929	-8.51186712	0	-5.505080027	-10.93164686
GO0004129 CYTOCHROME C OXIDASE ACTIVITY	0	-3.29119567	0	-4.442712111	-10.5254276
GO0005739 MITOCHONDRIAN	-7.13964338	0	0	-4.959024352	-9.02710416
GO0003954 NADH DEHYDROGENASE ACTIVITY	-2.562746565	-3.73102555	0	-4.439252984	-7.093906555
GO0002254 RIBOSOME BIOGENESIS AND ASSEMBLY	-6.249189391	-6.929502666	0	-8.759042177	-16.28906262
GO0005743 MITOCHONDRIAL INNER MEMBRANE	-5.499601521	-2.529648974	0	-2.976078803	-6.654215644
GO0005830 CYTOSOLIC RIBOSOME	-6.819570261	-10.74301106	0	-6.60605106	-6.520484551
GO0005746 MITOCHONDRIAL RESPIRATORY CHAIN	-2.90541203	-2.453604208	0	-3.50811099	-6.520484551
GO0016071 MRNA METABOLIC PROCESS	-1.799058048	0	0	-4.3810772	-6.111818188
GO0045263 PROTON TRANSPORTING ATP SYNTHASE COMPLEX	-1.697789588	-2.08200626	0	-1.68779625	-5.913244367
GO0005843 CYTOSOLIC SMALL RIBOSOMAL SUBUNIT	-5.006286301	-6.487637493	0	-5.40329361	-6.520484551
GO004633 HYDROGEN ION TRANSPORTING ATP SYNTHASE A	0	-4.163160442	0	-2.217204934	-6.484846428
GO004691 HYDROGEN ION TRANSPORTING ATPASE ACTIVITY	0	-4.473630088	0	-2.135693035	-5.481804059
GO0016469 PROTON TRANSPORTING TWO SECTOR ATPASE COMPLEX	0	-3.872142191	0	-2.043714044	-4.68566032
GO0016491 OXIDOREDUCTASE ACTIVITY	-3.828604201	0	0	-4.251825686	-3.968041945
GO0015986 ATP SYNTHESIS COUPLED PROTON TRANSPORT	0	-3.760498973	0	-3.61794403	-3.47921232
GO0005389 PROTEASOME CORE COMPLEX	-1.636606682	0	0	-3.47921232	-3.47921232
GO0015078 HYDROGEN ION TRANSMEMBRANE TRANSPORTER ACTIVITY	-2.13019159	-4.966262403	0	-2.42706286	-3.103386036
GO0016272 PREFOLDIN COMPLEX	-1.583410188	0	0	-3.054517814	-2.85874025
GO0015992 PROTON TRANSPORT	-2.47751152	-4.120983703	0	-1.897674323	-1.874433232
GO0006364 RRNA PROCESSING	-1.690056284	2.423000173	0	-1.897674323	-1.874433232
GO0007017 MICROTUBULE BASED PROCESS	-2.089744515	-1.694204162	0	-1.897674323	-1.874433232
S4 (H) The 25 pathways from figure S4G were taken and compared, individual pathway z-scores were analyzed by one-way ANOVA with tukey multiple comparison test. The 3xTg/Polβ was not significantly different from Human AD in these pathways. The 3xTg/Polβ mouse was very different from both 3xTgAD and Polβ. * p<0.05, ** p<0.01, *** p<0.005, **** p<0.001.
S4, (H) Using a second human patient AD array data set (refer to results) derived from human AD fibroblasts we again show that the 3xTg/Polβ mouse have more pathway similar to this human AD data set than the 3xTgAD or Polβ alone.