Nephroprotective activity of ethanolic extract of *Cinnamomum zeylanicum* bark against acetaminophen induced nephrotoxicity in albino rats

Md Qyamuddin1*, Pawan Kumar2, Sokindra Kumar2, Md Rafiul Haque3

1School of Pharmacy and Medical Science, Singhania University, Jhunjhunu, Rajasthan, India
2Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, UP, 250005, India
3HIMT College of Pharmacy, Department of Pharmacognosy, Knowledge park 1, Gr. Noida (U.P.), India

ABSTRACT

Objective: To investigate the protective activity of ethanolic extract of *Cinnamomum zeylanicum* bark (EECZB) against acetaminophen induced nephrotoxicity in albino rats.

Methods: Wistar albino rats (150-200 g) were divided into six groups and toxicity was induced by acetaminophen (750 mg/kg) for 10 days. 100 and 200 mg/kg of ethanolic extract of *Cinnamomum zeylanicum* bark and 100 mg/kg of silymarin as a reference standard was treated to rats 2 h before acetaminophen administration. Various biochemical parameters like serum urea, serum creatinine, uric acid and total protein levels and antioxidant activity were determined. Histopathological analyses of kidney injury were also determined.

Result: Treatment with ethanolic extract of *Cinnamomum zeylanicum* bark (100, 200 mg/kg, bw) significantly (p<0.001, p<0.01) decreased serum urea and serum creatinine as compared with acetaminophen rats. Decreased levels of uric acid and total protein were also significantly restored with extract of *Cinnamomum zeylanicum* bark treatment. Silymarin significantly (p<0.001) decreased serum urea and serum creatinine as compared with acetaminophen rats. It is also significantly restored the altered levels of SOD, CAT, and GSH in kidney tissue. Apart from these, extract of *Cinnamomum zeylanicum* bark treatment also reduced histopathological alteration induced by acetaminophen in kidney.

Conclusion: It was observed that ethanolic extract of *Cinnamomum zeylanicum* bark has a significant nephroprotective activity against acetaminophen induced nephrotoxicity in albino rats.

Keywords: *Cinnamomum zeylanicum*, acetaminophen, nephroprotective activity.

INTRODUCTION

Acetaminophen (N-acetyl-p-aminophenol; APAP) is one of the safest and most frequently used, non-prescription, over the counter, analgesic & antipyretic drug1, 2, 3. A study conducted in USA stated that acetaminophen was found to be associated with more than 10, 00, 00 cases of poisoning, 56000 visited to emergency department, 26000 hospitalization and 450 deaths a year3. The drug is safe at therapeutic doses4. However over dose may result to potentially fatal hepatic and renal damage in human and experimental animals5, 6, 7. Initially APAP exerts its toxicity by forming a reactive intermediate N-acetyl-p-benzoquinonimine (NAPQI) by cytochrome P-450, which at therapeutic dose gets eliminated by conjugation with glutathione sulphydryl (GSH). Acetaminophen overdosing may result in the depletion of cellular GSH, leading to binding of NAPQI to cellular protein and thus initiating the lipid peroxidation, both of which can contribute to hepatic and renal damage8, 9. This cascade further provokes inflammatory signals and extends the injury, resulting in tubular cell death/ acute renal failure10. The presence of excess NAPQI also leads to oxidative stress leading to liver damage11. A similar mechanism was proposed to be nephrotoxicity of acetaminophen12, 13. Nephrotoxicity due to acetaminophen overdose is found to be relatively less common than hepatotoxicity. Also acute renal failure can be seen even in the absence of liver injury14. The acetaminophen induced kidney damage may include acute tubular necrosis, increase creatinine levels, and decrease in glomerular filtration rate (GFR). Tubular cell injury is found to one of the main feature in acetaminophen induced renal failure along with phosphaturia and low molecular-weight proteinuria.

Cite this article as: Qyamuddin M, Kumar P, Kumar S, Haque MR, Nephroprotective activity of ethanolic extract of *Cinnamomum zeylanicum* bark against acetaminophen induced nephrotoxicity in albino rats, Journal of Drug Delivery and Therapeutics. 2020; 10(4-s):80-86 http://dx.doi.org/10.22270/jddt.v10i4.s4292

Address for Correspondence: Md Qyamuddin, School of Pharmacy and Medical Science, Singhania University, Pacheribari, Jhunjhunu, Rajasthan-333515 India

ISSN: 2250-1177 **CODEN (USA):** JDDTAO
proteinuria is represented as the functional evidence of proximal tubular injury.15

Cinnamomum zeylanicum (family Lauraceae) bark is commonly known as cinnamon, widely used as spice, condiment and flavouring agent. It is a tropical evergreen tree, native to Srilanka East and Middle Asia called differently in different languages such as dalchini in Hindi, carnelle in French, kaneel in German, canela in Spanish and yook gway in Chinese.16, 17 The bark is bitter, sweet, aromatic, astringent, aphrodisiac, deodorant, stimulant, expectorant and diuretic and carminative.18 Cinnamon bark is a very common culinary spice and used in candy, toothpaste and perfumes. The cinnamon barks contains volatile oils (14%) of cinnamaldehyde (60%), eugenol (10%) and trans-cinnamic acid (51%), phenolic compounds, tannin, catechins and proanthocyanidins: monoterpines and trans-cinnamaldehyde 20. Traditional medicine reports its uses as antitussive, antiarthritic, antimicrobial, antifungal, antioxidant, anti-inflammatory and antidiabetic21, also as component of various compounds used in Indian Ayurvedic medicine.19 In the present study we investigate the protective activity of ethanolic extract of *Cinnamomum zeylanicum* bark on acetaminophen induced nephrotoxicity in albino rats.

MATERIAL AND METHODS

Chemical

Acetaminophen was obtained from gift sample from Arbro pharmaceutical company. Assay for kidney marker enzyme such as urea, creatinine, uric acid and total protein were purchase from Erba diagnostic Mannhein, Germany. All other reagents used in this experimental study were according to analytical grade.

Plant material

The *Cinnamomum zeylanicum* bark was procured from local market in old Delhi. The bark was identified and authenticated by Dr. Sunita Garg CSIR-NISCAIR-New Delhi. A voucher specimen (Ref. No. NISCAIR/RHMD/CONSULT/2018/3261-62) has been deposited in herbarium of CSIR-NISCAIR. New Delhi.

Preparation of extract

The *Cinnamomum zeylanicum* bark was first dried then powdered and the extract was obtained using ethanol in Soxhlet apparatus for 8 hours. The extract was then filtered and evaporated to dryness at 50°C in a water bath and the final dry extract was stored in dark at -20°C until used for the experiments. The percentage yield of extract was 43%.

Preliminary phytochemical study

Ethanolic extract of cinnamonum bark were analysed for their chemical constituents. A preliminary phytochemical analysis was carried out to determine the phytochemical constituents which were responsible for the nephroprotective activity. Some of these methods are as follow22,23

Animals

Adult albino wistar rats (150–200 g) of either sex were obtained from All India Institute of Medical Science (AIIMS), New Delhi, India. The animals were isolated in cages which was maintained at 24±2°C temperature and a relative humidity of 45-55% with 12:12 h light/dark cycle. The animals were provided with standard pellet feed with *ad libitum* drinking water. The experimental protocol was approved by the institutional animal ethical committee (IAEC) of HMIT College of Pharmacy (Reg. No. 1377/PO/Re/S1/10/CPCSEA), Gautam Budh Nagar, Uttar Pradesh, India and performed in accordance with the guideline of committee for the purpose of control and supervision of animals (CPCSEA), New Delhi.

Acute oral toxicity

An acute oral toxicity of Ethanolic extract of *Cinnamomum zeylanicum* bark was determined in albino rats according to OECD Guideline No. 423.24 The animals were provided with access to water but not food overnight, after which the ethanolic extract of *Cinnamomum zeylanicum* bark was administered orally in 1% carboxy methyl cellulose (CMC) at a dose of 500, 1000 and 2000 mg/kg body weight. Rats were observed for initially 4 h after the administration of drug after that once daily during the following day. The behavioural change observed for hyperactivity, ataxia, tremors, convulsion, salvation, diarrhoea, sleep and coma. The total observation period for eventually mortality was 14 days. No mortality was observed upto 2000 mg/kg. One tenth and one twentieth of the maximum tolerated dose (2000 mg/kg) of extract was selected for the study.

Acetaminophen induced toxicity and drug treatment schedule

The selection of dose of acetaminophen was based on studies carried out by previous25,26,27,28 Silymarin was administered to a rat orally at a dose of 100 mg/kg.29 Fasted rats were randomly divided into seven groups of six animals in each group. Group I served as control group and treated with 1% CMC (1ml/kg, p.o) daily for 10 days. Group II served as toxic and treated with acetaminophen (750 mg/kg, po) suspended in 1% CMC three alternative days for 10 days. Group III served as per se and was given only. *Cinnamomum zeylanicum* bark extract (100 mg/kg b.w) daily for 10 days. Group IV and Group V served as treatment group and were treated with *Cinnamomum zeylanicum* bark extract (100, 200, 400, mg/kg) for 10 days. Group VI served as standard group and was treated as silymarin (100 mg/kg) orally for 10 days. Group II, IV, V and VI was administered with acetaminophen suspension (750 mg/kg, po) after 2 h administered of *Cinnamomum zeylanicum* bark extract for three alternative days for 10 days.

After completion of treatment all the animals were kept fasted for 12 h, followed by collection of blood samples from retro orbital plexus under ether anaesthesia. The animals were then sacrificed and collection of their kidney was done precisely. The analysis for biochemical parameter was performed with blood samples whereas estimation of antioxidants and histopathological studies were done using the kidney samples.

Biochemical Analysis

Blood was drawn by puncturing the retro-orbital plexus under diethyl ether anaesthesia using heparin coated capillaries. Serum was separated by centrifugation at 3000 rpm for 15 min, stored at -20°C until analysis. Serum sample were used to determine urea, creatinine, uric acid, and total protein using commercially available assay kits (Erba diagnostic Mannheim, Germany).

Preparation of kidney homogenate

Kidney tissues were homogenized in 10% w/v 0.1 M phosphate buffer and centrifuged at 10000 rpm for 15 min in homogenizer. The supernatant was used to estimate superoxide dismutase, catalase and reduced glutathione.
Determination of superoxide dismutase (SOD, catalase (CAT)) and reduced glutathione (GSH).

The enzymatic antioxidant was determined by estimating superoxide dismutase 30, Catalase31 and non-enzymatic antioxidant by reduced glutathione 32.

Histopathological studies

After experimental period animals were sacrificed, kidney removed immediately, sliced and washed in saline and transfer into 10% formalin solution, after one week tissue were dehydrated with ethanol solutions, embedded in paraffin, cut into 5 µm section, stained with haematoxylin and eosin (H & E) and then observed under microscope.

Statistical analysis

All data is expressed as Mean Standard Error of the mean (SEM) and statistical analysis was performed using Graphpad prism-5 software (Graphpad Software). The statistical assessment was done using one-way analysis of variance (ANOVA) followed by Tukey multiple compare tests considering p<0.05 as statistically significant.

RESULTS

Preliminary Phytochemical analysis

Preliminary phytochemical studies revealed the presence of alkaloid, saponin, tannin, terpanoid, flavonoids and phenol

Acute oral toxicity

The ethanolic extract of *Cinnamomum zeylanicum* was subjected to acute toxicity testing in albino rats and was monitored for 24 h. The ethanolic extract of *Cinnamomum zeylanicum* bark has found to be not causing any mortality up to 2000 mg/kg and hence 1/10 and 1/20 of the maximum dose i.e 100 and 200 mg/kg were finalised for the present experiment.

Effect of Ethanolic extract of Cinnamomum zeylanicum bark (EECZB) on Serum Urea, Uric acid, creatinine, total protein, superoxide dismutase, catalase and reduced glutathione.

Treatment	Urea(mg/dl)	Creatinine(mg/dl)	Uric acid(mg/dl)	Total protein P(mg/dl)
Normal control	34.1±1.43	0.79±0.01	3.01±0.02	7.79±0.01
APAP Toxic	78.5±0.9655	1.88±0.0155	1.04±0.0255	5.87±0.0255
EECZB(100 mg/kg)	38.6±1.86	0.80±0.01	2.94±0.02	7.74±0.01
EECZB((100 mg/kg)+APAP	68±0.5***	1.77±0.02***	1.16±0.02***	5.75±0.02***
EECZB(200 mg/kg)+APAP	59.7±0.96***	1.44±0.01***	1.96±0.01***	6.31±0.02***
Silymarin((100)+APAP	51.1±1.04***	1.26±0.02***	2.34±0.02***	6.65±0.03***

All values were expressed as mean ± SEM for six rats in each group. $$p < 0.001$$ as compared to control groups, ***p < 0.001, *p < 0.05, **p < 0.01 as compared to APAP groups

Table 2: Effect of ethanolic extract of Cinnamomum zeylanicum bark (EECZB) on kidney antioxidan status.

Treatment	Superoxide dismutase (U/mg)	Catalase(U/mg)	Reduced glutathione (µg/mg protein)
Normal control	9.83±0.10	39±0.44	33.3±0.42
APAP Toxic	5.25±0.0555	20.2±0.4055	22.6±0.3455
EECZB(100 mg/kg)	10.2±1.15	39.6±0.42	33.7±0.45
EECZB((100 mg/kg)+APAP	6.03±0.07**	23.7±0.21***	24.7±0.23**
EECZB(200 mg/kg)+APAP	7.36±0.06**	28.9±0.31***	27.1±0.21***
Silymarin((100)+APAP	8.01±0.11**	35.2±0.30***	29.3±0.23***

All values were expressed as mean ± SEM for six rats in each group. $$p < 0.001$$ as compared to control groups, ***p < 0.001, *p < 0.05, **p < 0.01 as compared to APAP groups
Histopathological studies
The Histopathological examination revealed that the normal control rats and those treated with EECZB only showed normal renal tubule and glomeruli (figure: 1A, 1C). However, the rats treated with APAP only showed severe dilation of renal tubule, infiltration of bowman space and damage of podocyte (figure: 1B). In contrast, the rat treated with APAP and EECZB (100, 200 mg/kg b.w) showed less neutrophil infiltration in glomeruli and less bowman space (figure: 1D), mild dilation, very less infiltration in bowman space and mild podocyte damage (figure: 1E) compared to APAP treated rats. The rats treated with Silymarin show normal distal & proximal tubules, glomeruli and bowman space (figure: 1F).

DISCUSSION
Acetaminophen (APAP) is an effective, conventional, regularly used, universally accepted over the counter, analgesic and antipyretic alternative to aspirin, but consumption of large dose or chronic use may cause hepatotoxicity and nephrotoxicity. Drug induced nephrotoxicity can be assessed with alteration levels of serum urea and creatinine, also necrosis, thus the biochemical parameter serum creatinine and urea are used to explore and inspect nephrotoxicity caused by the drug in animals and man. Since creatinine is most derived endogenous source due to breakdown of tissue creatinine. Thus serum urea concentration is considered as a better,
stable and reliable renal function predictor than creatinine concentration in serum.

The possible protective role seen with EECZB regarding oxidative damage generated due to APAP induced nephrotoxicity were verified by histopathological examination of kidney. The substantial production of reactive NAPQI in presence of APAP over dose can cause covalent binding of macromolecules with cellular protein, leading to the interruption of homeostasis, apoptosis, tissue necrosis and finally organ dysfunction 36. In present study the treatment with APAP alone resulted in changes of serum urea, creatinine and uric acid levels that were indicative of decrease glomerular filtration and disrupted kidney function 37,38. In mild overdose of acetaminophen the serum urea and creatinine levels get increased while EECZB treatment decreased the level significantly (p˂0.001) increase in levels of urea and creatinine concentration whereas significant (p˂0.001) decrease of uric acid and total protein levels in APAP treated rats group as compared to the rats who were not treated. Administration of EECZB at different dose 100 mg/kg, 200 mg/kg, led to significantly (p˂0.001, p˂0.01) decline in levels of urea and creatinine levels whereas uric acid and total protein significantly (p˂0.001, p˂0.01) increased as compared to APAP treated group. Silymarin treated group showed significantly decrease in serum urea and creatinine levels but significantly increase in uric acid and total protein was seen in comparison to APAP treated group. However the urea, creatinine, uric acid and total protein did not differ significantly in normal as well as per se treated group (Table:1). As reported by Azami et al. elevation in urea and creatinine levels is due to potentially strong correlation between nephrotoxicity and oxidative stress. The increase in H2O2 and O2 production changes the filtration surface area and thus an altered filtration coefficient; both these factors may decrease the glomerular filtration ultimately leading to accumulation of urea and creatinine in blood 39. Thus oxidative stress and lipid oxidation are primilinary events leading to radicals generation during hepatic metabolism of APAP. A key mechanism of formation of reactive oxygen species has been proposed by which many chemical can induce nephrotoxicity 40. In hepatic conditions there is a decrease in total protein levels seen due to faulty protein biosynthesis in liver, similarly the acetaminophen induced nephrotoxic condition in rats also creates similar situations and that gets normalized after treated with EECZB, advocating its nephroprotective activity 41. Previous studies reported that overdose of acetaminophen may lead to increase in the lipid peroxidation and suppress the antioxidant defence mechanism in renal tissue 42. In current study show that the administration of APAP dose resulted in significant(p˂0.01, p˂0.001) decreased in superoxide dismutase, catalase and reduced glutathione activity when compared to normal control rats, due to inactivation of antioxidative enzymes. When rats were treated with EECZB (100 mg/kg) the reduction of superoxide dismutase, catalase and reduced glutathione activity were significantly(p˂0.01, p˂0.001, p˂0.01) increased when compared with APAP treated rats. When rats was treated with EECZB (200 mg/kg) the reduction of superoxide dismutase, catalase and reduced glutathione activity were also significantly (p˂0.001, p˂0.001, p˂0.001) increased when compared with APAP treated rats. When compared with APAP treated group the superoxide dismutase, catalase and reduced glutathione were significantly (p˂0.001) decrease in silymarin treated rats. However there was no significant difference in superoxide dismutase, catalase and reduced glutathione in normal as well as perse treated group (Table:2). Demirbag et al. has previously observed in their study a significant decreased in level of superoxide dismutase, catalase and reduced glutathione after acetaminophen overdose but increased lipid peroxidation and inactivation of the antioxidant enzymes 43. In addition kidney damage superoxide radicals are produced at site of damage and modulation of superoxide dismutase and catalase takes place resulting in loss of activity and accumulation of superoxide radical which causes kidney damage 44. In a previous study, it has been reported that acetaminophen overdose caused a significant decrease in serum glutathione concentration. Intracellular glutathione play a crucial role in detoxification of acetaminophen and prevention of acetaminophen induced toxicity in liver and kidney 45,46. Acetaminophen metabolism pathway during toxicity is dependent on cytochrome-450 due to saturation of glucuronidation and sulfation pathways thus forming an intermediate NAPQI in excess which leads to its conjugated with glutathione to detoxify this product with consequent exhaustion of cellular glutathione reserves. At sublethal doses glutathione is reduced leaving NAPQI free and bind covalently and irreversibly to critical cellular protein ultimately causing cellular necrosis 47. The histopathological findings were also in accordance with biochemical results demonstrating well preserved glomeruli, surrounded by Bowman capsule with mild swollen tubules (figure:1). Most of the drug induced renal injuries affect the proximal tubules, glomerulus and distal part of the nephron 48. The administration of APAP alone caused severe dilation of tubules, infiltration in bowman space, damage of podocytes, and infiltration of cells where as Ethanolic extract of Cinnamomum zeylanicum bark treatment at different dose 100 mg/kg, 200 mg/kg, result in dose dependent nephroprotective against APAP induced nephrotoxicity. The results of the present study summarizes that EECZB has the ability to protect kidney damage caused by acetaminophen and might have a potential therapeutic effect for acetaminophen induced nephrotoxicity. The previous phytochemical studies showed the presence of different phytochemicals such as alkaloid, flavonoids, sapogenin and triterpenoid which are supposed to be responsible for its protective activity 49,50.

CONCLUSION

In conclusion the administration of acetaminophen resulted in impairment of renal functional marker and histopathological alterations in rats kidney. Treatment with ethanolic extract of Cinnamomum zeylanicum bark (EECZB) lead to significant restoration of biochemical parameter in acetaminophen treated rats. This beneficial effects of Cinnamomum zeylanicum bark may be attributed to the amelioration of the renal function. The findings of the present study suggests that Cinnamomum zeylanicum bark might be a potential nephroprotective agent against renal toxicity caused by acetaminophen.

REFERENCES

1. Afroz, R. Tanvir EM, Hossain MF et al. Protective effect of Sundarban honey against acetaminophen-induced acute hepatonephrotoxicity in rats. Evidence-Based Complementary and Alternative Medicine 2014; 1:10.
2. Elkarib Abbas O. Impact of dehydroepiandrosterone in prevention of paracetamol induced nephrotoxicity in rats. American Medical Journal 2014; 5(1):16-27.
3. Sharma Anjali, Makwana Mukesh, Rathore HS. Will herbal paracetamol combination drug prevent both liver and kidney disease? Result and possibilities. Ethnobotanical Leaflets 2008; 12:286-298.
Nephrotoxicity in Adult Male Albino Rats. Life Science Journal 2011; 9(3):589-596

45. Palani, S, Raja S, Kumar NS, Kumar B Senthil. Nephroprotective and antioxidant activity of salacia oblonga on acetaminophen induced toxicity in rats. Natural product research 2011; 25(19):1876-1880

46. Roberts D and Buckley N. Pharmacokinetic considerations in clinical toxicology: Clinical Applications. Clinical Pharmacokinetic 2007; 46(11):897-939

47. James L, McCallough S, Lamps L and Hinson J. effect of N-acetylcysteine on acetaminophen toxicity in mice; relationship to reactive nitrogen and cytokine formation. Toxicological Science 2003; 75(2):458-467

48. Nashar K and Egan B. “Relation between chronic kidney disease and metabolic syndrome: current perspective.” Diabetes metabolic syndrome and obesity: Target and Therapy 2014; 7:421-435.

49. Balakumar P, Rohilla A, Thangathirupathi A. Gentamicin induced nephrotoxicity: Do we have a promising therapeutic approach to blunt it? Pharmacol Res 2010; 62:179–186.