Mycobacterium genavense Infections in Immunocompromised Patients Without HIV: Case Series of Solid Organ Transplant Patients and Literature Review

Aurélie Baldolli,1 Richard Chocron,2 Sylvie Dargère,1 Jocelyn Michon,1 Claire Daurel,2 Angélique Thuillier-Lecou,2 and Renaud Verdon1,3

1CHU de Caen, Infectious Diseases Department, Avenue de la Côte de Nacre, Caen, F-14000, France, 2Emergency department, European Georges Pompidou Hospital (AP-HP), 75015, Paris, France, 3CHU de Caen, Microbiology Department, Avenue de la Côte de Nacre, Caen, F-14000, France, 4CHU de Caen, Nephrology Department, Avenue de la Côte de Nacre, Caen, F-14000, France, and 5INSERM U1311 DynamoMicRe, Normandy University, UNICAEN, UNIROUEN, 14033 Caen, France

Background. Mycobacterium genavense infection is rare and can occur in immunocompromised patients without human immunodeficiency virus (HIV).

Methods. We describe 2 cases of M genavense infection in solid organ transplant (SOT) recipients, and we performed a literature review of immunocompromised patients without HIV.

Results. Fifty-two cases are reported. Predisposing factors were receipt of SOT (40.4%) and autoimmune disease (36.5%). Infection was disseminated in 86.5% of cases. Organs involved were lymph nodes (72.3%), gastrointestinal tract (56.5%), lung (35.5%), and bone marrow (28.8%). Most patients were treated with at least 3 antimycobacterial agents (98%), with a clinical cure achieved in 54.9%. In multivariate analysis, lack for cure was associated with age of the time infection (odds ratio [OR], 15.81 [95% confidence interval (CI), 2.92–152.93]; P = .011) and positive bone marrow culture (OR, 1.05 [95% CI, 1.01–1.12]; P = .042).

Conclusions. Mycobacterium genavense infection is a rare and generally disseminated disease with a poor prognosis. Optimal treatment regimen and its duration remain to be defined.

Keywords. HIV uninfected; immunocompromised; Mycobacterium genavense; solid organ transplant.

Mycobacterium genavense is an opportunistic nontuberculous mycobacterium first described by Böttger et al in 1992 in a patient infected with human immunodeficiency virus (HIV) [1]. This slow-growing mycobacterium has been isolated in tap water and in wild and domestic animals (birds, rabbits, cats, ferrets, snakes, etc) [2–7]. It has also been shown to colonize the gastrointestinal tract of healthy humans [8]. The pathogenesis of M genavense infection is not known, probably due to the lack of an animal model of infection and patients infected. According to most authors, transmission to humans occurs following oral ingestion from contaminated water or close contact with infected animals. It has been isolated from nonsterile sites, such as lung secretions or gastric fluid, and it is difficult to assess, especially in immunocompetent patients, when M genavense should be considered colonization or infection.

However, this mycobacterium mainly infects immunocompromised patients, particularly those with HIV infection, and might be responsible for 3.9%–12.8% of nontuberculous mycobacterial (NTM) infections in some cohorts of people living with HIV (PLWH) with a poor prognosis [9, 10]. Since the era of antiretroviral therapy (ART), M genavense infection is less frequently identified in PLWH. Following its description, it has been also described in immunocompromised patients without HIV, especially in solid organ transplant (SOT) recipients, patients on immunosuppressive therapy for autoimmune disease, patients who received allogeneic stem cell transplantation, patients with lymphoproliferative malignancies, and patients with a primary immunodeficiency [11–14]. Regardless of the immunodeficiency, symptoms of M genavense infections seem to be similar to those caused by the Mycobacterium avium complex (abdominal pain, lung involvement, diarrhea, lymphadenopathy, fever, pancytopenia, and hepatosplenomegaly) [9, 10, 15]. This organism is difficult to culture due to its slow growth in liquid media and failure to grow in solid media. Definitive identification requires mainly molecular techniques or, in a rare case, matrix-assisted laser desorption/ionization–time of flight mass spectrometry [11, 16–18]. The aim of this review was to assess the clinical, microbiological, and prognostic features of M genavense infection in immunocompromised patients without HIV and to determine risk factors associated with not being cured.
MATERIALS AND METHODS

Patient Selection
First, we report 2 cases of disseminated M genavense infection in renal transplant recipients occurring in our institution. Patients gave their informed consent to use their clinical and biological data for publication, and this case series was conducted in accordance with the 1964 Helsinki Declaration.

We then performed a systematic review of the literature from the first case of M genavense infection described in 1992 to December 2021 via an electronic search of PubMed, Science Direct, and the Cochrane Library using the keywords “Mycobacterium” AND “genavense” (Medical Subject Headings). We also reviewed reference lists of included papers to identify unpublished data and studies missed by our search. No language or age constraints were applied to the search.

Articles were selected for review if their titles or abstracts suggested that they reported individual or group data from immunocompromised patients without HIV with a diagnosis of M genavense infection. Articles were excluded if patients had HIV infection, they were not immunocompromised, or if the immunodeficiency was not identified. Conference papers, case reports, case series, and cohort studies were included. Special attention was paid to avoid the inclusion of duplicated cases within meeting abstracts, case reports, or articles.

Definition
A patient was included when a M genavense infection was confirmed by molecular identification or culture from a positive or negative sample for acid-fast bacilli (AFB) on direct examination. The disease was considered disseminated when signs or symptoms involving 2 or more organs or systems were detected and/or M genavense was isolated from blood, bone marrow (BM), or other organs. Pulmonary localization required the isolation of the organism from the respiratory tract (from at least 2 separate expectorated sputum samples or positive culture from at least 1 bronchial wash or lavage or transbronchial or lung biopsy) in association with imaging anomalies (nodules, infiltrate, cavitary opacities, etc) and pulmonary symptoms (cough, dyspnea, etc), as recommended by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA), the European Respiratory Society, and the European Society of Clinical Microbiology and Infectious Diseases [15, 19, 20]. For nonpulmonary infections analyzed in this review, a clinically relevant infection was defined as a positive AFB or culture or molecular detection of M genavense with clinical signs in accordance with the isolation site and, if applicable, consistent radiological findings. Patients were considered cured if they were asymptomatic, were not undergoing treatment, and were alive.

Data Extraction
For each included patient, the following information was extracted from the study: year of publication; demographic characteristics of the patient, type of immunodeficiency; treatment and duration of immunosuppression; clinical, laboratory, and radiologic features; method for identifying M genavense; antimycobacterial therapy and other therapeutic management strategies; presence of immune reconstitution inflammatory syndrome (IRIS); clinical outcome (cured, dead, alive with chronic symptoms, or improved but remained under treatment); and follow-up.

Statistical Analysis
Continuous variables are presented as median and interquartile range and categorical variables as frequency and percentage. For univariate and multivariate analyses, patients were classified into 2 categories, cured or not being cured, including dead patients, patients alive with chronic symptoms, or patients with an improvement of symptoms but still under treatment at the time of publication. In the univariate analysis, patients were compared for the risk of not being cured using Fisher exact test for categorical variables and the Mann-Whitney test for continuous variables. In the multivariate analysis, we used a logistic regression model to assess the association between the risk of not being cured and factors with a P value < .20 in the univariate analysis. All analyses were 2-sided, and P < .05 was considered statistically significant. Statistical analyses were performed using R studio software version 3.6.3 (R Development Core Team, 2019).

Literature Review
The search of the PubMed, Science Direct, and Cochrane Library databases provided 734 citations. After the exclusion of duplicates and articles with titles and abstracts that did not meet the inclusion criteria, 51 full-text articles were assessed for eligibility. Eighteen articles were excluded, and 33 were included, mostly case reports (Figure 1). Since the first case of M genavense infection in an immunocompromised patient without HIV was published in 1997 by Bogdan et al [21], 52 cases (including our 2 patients) of M genavense infection in immunocompromised patients without HIV have been described [11–14, 21–48] (Table 1). The majority of reports are case reports or case series, with the largest series including 9 cases in the study by Hoeffsloot et al [43].

Case 1
A 50-year-old man was admitted in September 2015 for fever, night sweats, fatigue, weight loss, and abdominal pain. He had undergone a preemptive renal transplant in 2007 for polycystic renal disease (PKD). Maintenance immunosuppressive treatment consisted of 150 mg of mycophenolate mofetil (MMF) per day, 1 g of ciclosporine per day, and 10 mg of prednisone per day. At admission, physical examination revealed a distended abdomen that was mildly tender to palpation and hepatomegaly due to PKD. No lymphadenopathy was found. Blood tests showed an increased C-reactive protein (CRP) level (135 mg/L) and a creatinine level of 175 µmol/L (stable for a few months). The CD4+
T-lymphocyte count (737 cells/µL) and BM examination with cellular immunophenotyping were normal. Viral (cytomegalovirus and Epstein-Barr virus polymerase chain reaction [PCR]) and bacterial (blood culture and urine culture) analyses were negative. The computed tomography (CT) scan revealed liver PKR and mesenteric and retroperitoneal lymph nodes (LNs). Gastroscopy and colonoscopy were normal. Fluorodesoxyglucose positron emission tomography (PET)/CT revealed hypermetabolic cervical, mediastinal, and subclavicular LNs in addition to abdominal LNs. Cervical LN biopsy showed numerous AFB. No argument for lymphoma was reported based on histology and flow cytometry immunophenotyping. The mycobacteriology laboratory performed 16S ribosomal RNA (rRNA) gene sequencing to identify *M. genavense*. The direct molecular test enabled immediate treatment of the patient in November 2015 with a combination of ethambutol, clarithromycin, and rifampicin. After 4 months of incubation, a mycobacterial culture (mycobacteria growth indicator tube [MGIT]) of the LN was also positive for *M. genavense* (identification with molecular hybridization DNA-STRIP, Hain Lifescience), but antibiotic susceptibility was not able to be performed due to insufficient growth in subculture. After 24 months of treatment, the clinical symptoms had partially resolved, CRP levels were still increased at approximately 50 mg/L, and PET/CT scans showed the persistence of hypermetabolic disseminated LNs. Rifampicin was discontinued, and clofazimine and bedaquiline were added in November 2017. MMF was stopped and the cyclosporine dose was decreased. Unfortunately, he developed side effects of treatment with a prolonged QT interval that was exacerbated by clarithromycin and bedaquiline and corneal deposits due to clofazimine, leading to a recurrent discontinuation periods of 2 weeks of the antituberculosis treatment. Five months later, the patient’s medical condition worsened, with a recurrence of night sweats and fever. Intestinal symptoms were also exacerbated with diarrhea and malabsorption syndrome and weight loss. Control CT showed that the sizes of most enlarged abdominal and mediastinal LNs had increased. In April 2018, treatment was changed to oral clarithromycin, ethambutol, moxifloxacin, and intravenous amikacin and rifampicin. Interferon gamma (IFN-γ) (85 µg 3 times a week) was added, and cyclosporine was stopped in April 2018. Amikacin was discontinued in June 2018 because of ototoxicity. Symptoms rapidly improved with normalization of CRP levels. One year later, PET/CT scans showed a partial response with the persistence of some hypermetabolic LNs, leading to the cessation of IFN-γ. Antituberculosis treatments were continued for an additional 12 months. No sign of *M. genavense* infection relapse was observed 2 years after the end of treatment. PET/CT scans showed mesenteric fibrotic LNs, considered as sequelae of the infection.

Figure 1. Flowchart of literature review from 1992 to 2021. Abbreviation: PLWH, people living with HIV.
Table 1. Literature Review of Reported Cases of *Mycobacterium genavense* in Immunocompromised Patients Without HIV, 1992–2021

Author, Publication Year [Reference]	Sex	Age	Organ(s) Involved	Immunosuppression Type (Duration of IS Treatment Before Infection)	Microbiologic Findings	Treatment	Outcome
Bogdan et al, 1997 [21]	M	72	Lung, spleen, kidney, BM disorder	B-cell CLL, CTX, AZA (7 mo)	AFB in BM, spleen, kidney, lung	Postmortem diagnosis	Death
Krebs et al, 2000 [22]	F	67	BM, LN (cervical, inguinal, mediastinal), and SPM	CTX, azathioprine (120 mo)	AFB on BM, Positive blood cultures at 43 d, positive BM cultures at 7 and 20 d	CLR, EMB, RFB (6 mo)	Cured
Léautez et al, 2000 [23]	F	38	Skin and soft tissue	Sarcoïdosis, No treatment	AFB on pus, Positive pus culture within 6 mo and positive PCR	CLR, EMB, CPX (12 mo)	Cured at 14 mo follow-up
Ndorimpa et al, 2003 [24]	M	18	LN, abdominal tumor	Primary T-cell quantitative and qualitative deficiency	AFB on LN	Postmortem diagnosis	Death
Le Berre et al, 2004 [25]	F	45	BM, LN, SPM, GI tract, urine	Renal transplant (42 mo)	AFB and positive PCR on BM and urine	CLR, EMB, LVX (22 mo)	Cured at 12 mo after treatment
Nurmohamed et al, 2007 [26]	M	67	Abdominal LN, lung, SPM, urine, GI tract	Renal transplant, CTX, MMF, cyclosporine (7 mo)	AFB and positive culture in BM, Positive PCR in BM, peritoneal fluid, sputum, and urine	RFB, EMB, CLR, OFX	Death
de Lastours et al, 2008 [27]	M	37	Digestive tract, abdominal LN	Heart transplant, CTX, MMF, tacrolimus (7 mo)	AFB and positive culture on intestinal biopsy, Positive PCR on intestinal biopsy and blood	CLR, AMK, EMB, MOX, clofazimine (18 mo)	Cured
Daum et al, 2008 [28]	F	28	Digestive tract, liver	SLE, MMF, AZA, cyclosporine (18 mo)	AFB and PCR positive on duodenal biopsy	Not available >15 mo	Cured
Dumouchel-Champagne et al, 2009 [29]	M	72	BM, abdominal LN, SPM	Sarcoïdosis, CTX (6 mo)	AFB and positive PCR on BM	RFB, AZM, CPX (5 mo)	Death
Lorenzen et al, 2009 [30]	M	52	BM, abdominal and supraclavicular LN	Myasthenia, CTX, AZA (48 mo)	AFB and positive culture and PCR on duodenal biopsy	RFB, AZM, EMB, MOX changed to IV MOX, SM, INH, EMB, AMK, and oral RFB and AZM	Improved but remains on treatment
Lu et al, 2009 [32]	M	56	GI tract, abdominal LN	Allogeneic HSCT, CTX, tacrolimus, budesonide (21 mo)	AFB and positive culture and PCR on duodenal biopsy	RFB, CLR, CIP (24 mo)	Cured
Sharifian et al, 2009 [33]	M	39	GI tract, abdominal LN	Myasthenia, CTX, AZA, cyclosporine	Positive PCR on duodenal biopsy	RIF, CLR, MOX, EMB	Cured
Escapa et al, 2010 [34]	M	67	GI tract, abdominal LN	Renal transplant, CTX, AZA (18 mo)	AFB on intestinal and positive culture on stool	CLR, EMB, LVX	Cured
Doggett & Strasfeld, 2011 [35]	M	64	Lung, mediastinal and abdominal LN, BM	Renal transplant, CTX, MMF, tacrolimus (36 mo)	AFB and positive PCR on LN, Positive blood culture on blood and BM and positive PCR on MB	AZM, RFB, MOX, EMB (12 mo)	Cured
Rammaert et al, 2011 [36]	M	44	Culture and positive PCR on sputum	Renal transplant, CTX, MMF, tacrolimus (36 mo)		CLR, RFB, MOX, EMB (>24 mo)	Cured
Charles et al, 2011 [37]	M	63	SPM, hepatomegaly, abdominal LN, lung, intestinal tract	Liver transplant, CTX, MMF, tacrolimus (24 mo)	AFB on LN and sputum, Positive PCR	RIF, CLR, EMB, INH	Died
	F	37	SPM, hepatomegaly, abdominal LN, intestinal tract	Heart transplant, CTX, MMF, tacrolimus (28 mo)	AFB on intestinal biopsy and abdominal LN, Positive PCR	CLR, AMK, EMB, MXF	Cured
	F	41	Intestinal tract, BM, urine, hepatomegaly, mediastinal and abdominal LN	Renal transplant, CTX, MMF, tacrolimus (39 mo)	AFB on urine, liver, jejunal, and BM biopsy, Positive PCR	CLR, AMK, EMB, CIP	Cured
	M	72	Urine, BM, SPM, pleural effusion	Sarcoïdosis, CTX (9 mo)	AFB on urine, BM and spleen, Positive PCR	RIF, EMB, INH	Died
Author, Publication Year	Patient Age/ Sex	Organ(s) Involved	Microbiologic Findings	Treatment	Outcome		
--------------------------	------------------	-------------------	------------------------	-----------	---------		
Santos et al, 2014 [37]	32/F	No treatment	Skin and soft tissue abscess	AFB on pus, Positive PCR	RIF, EMB, CLR	Cured	
Guitard et al, 2012 [37]	56/M	Heart transplant, MMF, cyclosporine (96 mo)	BM, abdominal and mediastinal LN, duodenum	AFB on BM, mediastinal LN and duodenal LN biopsy, PCR positive on duodenal and LN	RFB, CLR, AMK, EMB, MOX (12 mo), Reduced IS therapy, Stopped MMF	Improved, remained on treatment	
Lhuiller et al, 2012 [38]	43/F	Lung transplant, MMF, tacrolimus (84 mo)	Mediastinal LN, lung	AFB, culture, and PCR positive on sputum	CLR, EMB, AMK	Cured	
Lorensen et al, 2012 [39]	52/M	Lung transplant	Lung and pleural effusion, abdominal LN, intestinal tract	AFB on lung and colon and LN biopsy, Positive culture on stool	RIF, CLR, CIP	Unknown	
Potjewijd et al, 2012 [39]	43/F	IL-12/IL-23 receptor deficiency	BM, cervical and abdominal LN, hepatomegaly, SPM	AFB on LN and BM, Positive culture on blood and sputum, PCR positive on LN, BM, blood, and sputum	RIF, EMB, CLR (18 mo)	Cured	
Tassone et al, 2013 [40]	35/F	Heterozygous mutations of β1 subunit of IL-12 receptor gene, Autoimmune hepatitis	BM, liver, abdominal LN, duodenum, ascites	AFB on BM, liver, LN, and duodenal biopsy, Positive PCR on liver biopsy	RFB, CLR, MOX (27 mo), + INF-γ, Stopped IS therapy	Improved, remained on treatment	
Nambi et al, 2014 [41]	51/F	Seronegative arthritis	Mediastinal, cervical, supraclavicular, abdominal LN, lung, subcutaneous nodules	AFB and positive PCR on subcutaneous nodules and LN	RFB, AMK, MOX, AZM (24 mo)	Cured	
Santos et al, 2014 [42]	66/M	Renal transplant (48 mo)	Intestinal tract, lung	AFB, positive PCR and culture on stool	CLR, EMB, LVX	Cured	
28/F	HSCT (12 mo)	Intestinal tract, BM, lung	AFB on stool and BM, Positive culture on blood, stool, and BM	RIF, CLR, EMB (6 mo)	Died		
52/F	Heart transplant (72 mo)	Intestinal tract, BM, lung, and pleural effusion, splenomegaly, abdominal LN, liver	AFB on lung biopsy, Positive culture on blood and sputum, Positive PCR on stool, BM, spleen, and sputum	RIF, EMB, PZA, LVX (5 mo)	Died		
Hoeslloot et al, 2013 [43]	7/F	Hyper-IgE syndrome	Intestinal tract, lung	Positive PCR on stool	RIF, EMB, CLR, LVX	Cured	
55/M	Renal transplant (48 mo)	Skin and soft tissue abscess	AFB on pus, Positive PCR	RIF, EMB, CLR (18 mo)	Cured		
57/M	Sarcoïdosis	Lung	INNO-LIPA Mycobacteria v2 or 16S PCR positive on lung biopsy and sputum	RIF, CLR, MOX	Improved, remained on treatment		
63/M	Non-Hodgkin lymphoma, Chemotherapy with rituximab (3 mo)	Disseminated, BM	INNO-LIPA Mycobacteria v2 or 16S PCR positive on BM	RIF, EMB, CLR	Improved, remained on treatment		
73/F	Renal transplant	Disseminated, LN	INNO-LIPA Mycobacteria v2 or 16S PCR positive on LN	RIF, EMB, PZA, INH (1 mo)	Died		
54/F	Liver transplant, CTX, AZA (228 mo)	Disseminated, digestive tract, BM, mediastinal LN	INNO-LIPA Mycobacteria v2 or 16S PCR positive on blood, stool, BM	RIF, EMB, CLR (12 mo)	Chronic symptoms, remained on long-term treatment		
57/M	Interstitial nephritis with granuloma, CTX, cyclophosphamide	Disseminated, lung	INNO-LIPA Mycobacteria v2 or 16S PCR positive on sputum	RIF, EMB, CLR (14 mo)	Died		
42/M	Idiopathic CD4+ lymphopenia	Disseminated, BM	INNO-LIPA Mycobacteria v2 or 16S PCR positive on BM	RIF, EMB, CLR	Chronic symptoms, remained on long-term treatment		
72/M	Sarcoïdosis	CTX, AZA	Disseminated, BM	INNO-LIPA Mycobacteria v2 or 16S PCR positive on BM	RIF, EMB, CLR	Died	
43/M	IL-12 receptor deficiency	Disseminated, BM, cervical LN, lung	INNO-LIPA Mycobacteria v2 or 16S PCR positive on BM, sputum, cervical LN	RIF, EMB, CLR	Chronic symptoms, remained on long-term treatment		
Table 1. Continued

Author, Publication Year [Reference]	Patient Age/ Sex	Immunosuppression Type (Duration of IS Treatment Before Infection)	Organ(s) Involved	Microbiologic Findings	Treatment	Outcome
Renoult et al, 2013 [44]	48/M	Renal and pancreatic transplant	Lung, mediastinal and abdominal LN, ascites, duodenum	AFB and positive culture on duodenal biopsy	RFB, CLR, MXF (13 mo)	Died
Mahmood et al, 2018 [13]	51/M	Renal transplant	Right knee arthroplasty	Positive culture and PCR on knee arthroplasty	RFB, CLR, CIP, clofazimine (24 mo)	Cured
Asakura et al, 2017 [45]	66/F	Idiopathic CD4+ lymphopenia	Digestive tract, mediastinal and abdominal LN, renal mass	Positive culture and PCR on blood and LN	RFB, CLR, MOX (7 mo)	Died
Coelho et al, 2017 [12]	13/M	H SCT	Abdominal LN, lung, liver, kidney, digestive tract	AFB on LN and BAL	RFB, AZM, EMB, CIP (12 mo)	Cured
Ombelet et al, 2016 [46]	47/M	Renal and heart transplant	Supraclavicular, mediastinal, and abdominal LN	AFB and positive PCR on LN	RFB, CLR, AMK, EMB, MOX (13 mo)	Cured
Gonzalez-Granado et al, 2019 [14]	3/M	NF-kB1 deficiency	Digestive tract, BM	Positive PCR BM and gut	RIF, CLR, EMB, LVX (24 mo)	Cured
Grunebaum et al, 2020 [51]	22/F	Adenosine deaminase deficiency	Digestive tract	AFB on stool and intestinal biopsy	RIF, AZM, CIP (12 mo)	Cured
Hosoda et al, 2020 [47]	73/M	RA, CTX, MTX (72 mo)	Lung, mediastinal LN	AFB on sputum and BAL fluid	RIF, CLR, EMB (>12 mo)	Cured
Ito et al, 2020 [48]	53/M	EBV-positive LPD	Mediastial, abdominal, and inguinal LN	AFB and positive PCR on sputum	RIF, CLR, EMB (17 mo)	Cured
Case 1	50/M	Renal transplant CTX, MMF, cyclosporine (84 mo)	Digestive tract, disseminated LN,	AFB on supraclavicular LN	ETM, CLR, RIF (24 mo)	Chronic
				Positive culture and PCR on LN	changed to ETM, CLR, RIF, MOX (14 mo)	symptoms, on treatment
					INF-γ (12.0 mo 3 times per wk)	
					Stopped MMF and tacrolimus	
Case 2	37/F	Renal transplant	LN, digestive tract, ascites, pleural effusion, liver,	AFB on BM, sputum, urine, colon, duodenal and cutaneous	RIF, MOX, CLR, LNZ	Chronic
				biopsy	Stopped MMF and tacrolimus	symptoms, on treatment
				Positive culture and PCR on BM		

Abbreviations: AFB, acid-fast bacilli; AMK, amikacin; AZA, azathioprin; AZM, azithromycin; BAL, bronchoalveolar lavage; BM, bone marrow; CIP, ciprofloxacin; CLL, chronic lymphocytic leukemia; CLR, clarithromycin; CPX, ciprofloxacin; CTX, corticosteroid; EMB, ethambutol; EBV, Epstein-Barr virus; F, female; GI, gastrointestinal; H SCT, hemato poetic stem cell transplant; IFN-γ, interferon gamma; IL, interleukin; INH, isoniazid; IRIS, immune reconstitution inflammatory syndrome; IS, immunosuppressive; IV, intravenous; LN, lymph node; LNZ, linezolid; LPD, lymphoproliferative disease; LVX, levofloxacin; M, male; MMF, mycophenolate mofetil; MOX, moxifloxacin; MTX, methotrexate; OFX, ofloxacin; PCR, polymerase chain reaction; PZA, pyrazinamid; RA, rheumatoid arthritis; RFB, rifabutin; RIF, rifampicin; SLE, systemic lupus erythematosus; SM, spectinomycin; SPM, splenomegaly; TNF-α, tumor necrosis factor alpha.

Case 2

A 37-year-old woman was admitted in April 2020 for fever, night sweats, diarrhea, weight loss, abdominal pain, cough, and erythema nodosum. She had undergone 3 renal transplants (1987, 1990, and 2010) for Denys-Drash syndrome. Maintenance immunosuppressive treatment consisted of tacrolimus, MMF, and prednisone. Blood tests revealed anemia (6.6 g/dL), neutropenia (910 cells/µL), and inflammatory syndrome (CRP level of 109 mg/L). The CD4+ T-lymphocyte count was 174 cells/µL. An analysis of BM showed that sputum, urine, colon, duodenal, and cutaneous biopsies were positive for AFB. The BM culture was positive 5 months later, and *M. genavense* was identified with a molecular technique (hsp65 PCR). Gastroscopy revealed inflammation of the duodenum, and colonoscopy was normal except for the presence of a polypl in the sigmoid colon. A CT scan showed bilateral pleural effusion, mesenteric and retroperitoneal LNs, splenomegaly, hepatomegaly, ascites, and jejunoileitis. PET/CT scans confirmed
previous results with hypermetabolic abdominal LNs. The patient successively received (1) rifampicin, clarithromycin, and ethambutol (April to May 2020); (2) rifampicin, ethambutol, amikacin, and azithromycin because of digestive intolerance to clarithromycin (May 2020 to June 2020); (3) rifampicin, azithromycin, and clofazimine due to the ototoxicity of amikacin and visual alteration induced by ethambutol (June 2020 to July 2020); and (4) rifampicin, azithromycin, moxifloxacin, and linezolid (from July 2020), and MMF and tacrolimus were discontinued. Diarrhea rapidly resolved, but she still had a febrile peak several times a week. The PET/CT scan performed in October 2020 showed a worsening of the diseases with an increased number and size of LNs (mediastinal, mesenteric, and retroperitoneal), a new sigmoid colon hypermetabolic signal, stability of pleural effusion, and an increased hypermetabolic signal of the BM and spleen. A new colonoscopy revealed diffuse adenomatous polyposis and adenocarcinoma of the sigmoid. She underwent a left colectomy in April 2021. A diagnosis of IRIS was suspected based on the worsening condition after MMF and tacrolimus discontinuation. Corticosteroids were started, but she became dependent on this treatment. Because of corticosteroid-dependent IRIS, treatment with an anti–tumor necrosis factor alpha (TNF-α) antibody was initiated. After 2 injections, symptoms of IRIS were resolved. In March 2022 she was still receiving antimicobacterial treatment for the persistence of digestive chronic symptoms.

Patient Demographics and Characteristics of Infection

Patient Demographics

Patient characteristics are summarized in Supplementary Data 1 and 2. The median age of patients was 51 years (range, 3–80 years) with a male preponderance (sex ratio, 1.6). The most common underlying immunosuppressions were SOT (21/52 [40.4%]), autoimmune disease (19/52 [36.5%]), hematological disorder (6/52 [11.5%]), and primary immunodeficiency (PID) (6/52 [11.5%]). Five cases of PID and 1 case of autoimmune disease (neutralizing anti–IFN-γ autoantibodies) were revealed by this mycobacterial infection, whereas immunosuppression was already diagnosed in the other patients. Thirty-four patients received immunosuppressive (IS) therapy (34/46 [73.9%]) with a median duration before the diagnosis of mycobacterial infection of 39 months (range, 1–228 months). The most frequent IS treatments were corticosteroids (n = 31 [67.4%]), MMF (n = 15 [32.6%]), and tacrolimus (n = 10 [21.7%]). A total of 31 (67.4%) reported patients received >1 IS treatment.

Clinical Features

Infection was limited to the skin and soft tissue in 2 patients, lung in 3 patients, diffuse intestinal bowel in 1 patient, and bone and joint involvement in 1 patient [11, 13, 23, 43, 47, 51].

Mycobacterium genavense infection was mainly disseminated (45/52 [86.5%]). The main organs involved were LN (3/474 [72.3%]), gastrointestinal tract (26/46 [56.5%]), lung (16/45 [35.5%]), liver and spleen (17/47 [36.2%]), and BM (15/52 [28.8%]) (Supplementary Data 1). The median blood CD4+ count was 143 cells/µL (range, 2–285 cells/µL). Radiological examinations of pulmonary disease showed nodes (9/16) with cavitation in 3 patients, alveolar and interstitial infiltrates (2/16), pleural effusion (2/16), bronchiolar inflammation (1/16), and bronchial mass (1/16) [11, 12, 21, 31, 36, 38, 41–43, 47].

Diagnosis

Mycobacterium genavense grew in culture after the collection of samples from 23 patients (23/43 [53.4%]) with a median delay of 7 weeks (range, 1.5–30 weeks). The culture was positive in liquid media for 8 patients [23, 26, 32, 42] and in solid media for 3 patients [13, 23]. Data were not available for the other cases. Antibiotic susceptibilities were assessed for isolates from 3 patients [34, 42]. All isolates were susceptible to rifampicin and streptomycin; 1 isolate was susceptible to pyrazinamide, and 1 was susceptible to ethambutol. Two isolates were resistant to isoniazid. Mycobacterial growth in cultures was reported from different samples, including blood (n = 7), digestive tract (n = 8), BM (n = 6), sputum (n = 3), or LN (n = 2). AFB were mainly identified in stool/intestinal biopsy (n = 17), LN (n = 15), or BM (n = 15) samples. Histological findings of mycobacterial infection were reported in 11 patients [11/36 [30.5%]]. *Mycobacterium genavense* was identified with molecular techniques (16S rRNA, rpoB, or hsp65 gene analysis, gene sequencing, or reverse hybridization of amplicons of the inter-16S-23S rRNA polymorphic spacer region) in 51 of 52 (98%) patients (Supplementary Data 2).

Treatments and Outcomes

Most patients were treated with at least 3 antimycobacterial drugs (48/49 [98%]), with a clinical cure achieved in 54.9% of patients (28/51) (Supplementary Data 1). Clarithromycin or azithromycin was used in drug regimen therapy in 93.9% of patients (49/51), rifampicin or rifabutin in 79.6% of patients (39/49), ethambutol in 75.5% of patients (37/49), and fluoroquinolones in 65.2% of patients (32/49) (Supplementary Data 1). Two patients did not receive mycobacterial treatment because the diagnosis was postmortem, and treatment was not reported for 1 patient. Data for the treatment duration were available for 29 patients, which ranged from 1 to 48 months with a median duration of 13 months. Despite the use of different antimycobacterial strategies, the medical condition worsened for 3 patients, and IFN-γ was initiated, leading to an improvement of symptoms in all patients [25, 40]. One patient received IFN-γ therapy at doses up to 200 µg/m², 1 received a dose of 100 µg 3 times weekly, and our patient received a dose of 85 µg 3 times weekly for 1 year. Two patients developed IRIS due to a...
were systemic lupus erythematosus (SLE) and renal transplant. The CD4⁺ counts were 17 cells/µL and 174 cells/µL, respectively. The symptoms of 5 patients improved but they remained under treatment, and 4 patients experienced chronic symptoms and were not considered cured. Fourteen patients died (27.5%), and 2 patients had a recurrence of M genavense infection 21 months and 4 years after complete remission [22, 51].

Univariate and Multivariate Analyses of Risk Factors Associated With Not Being Cured

According to the univariate analysis, age, sex, underlying immunosuppressive conditions (SOT, hematological disorders, or autoimmune/PID disease), duration of IS treatment before infection, and number of antimycobacterial treatments were not associated with an increased risk of remission failure. In the multivariate analysis, BM involvement and age were associated with a risk of not being cured (odds ratio [OR], 15.81 [95% confidence interval {CI}, 2.92–152.93]; P = .005 and OR, 1.05 [95% CI, 1.01–1.12]; P = .042, respectively) (Table 2).

DISCUSSION

NTM consists of >190 distinct species of ubiquitous environmental organisms that are often found in soil and water [52]. Annual prevalence of NTM infection in the United States ranges from 1.4 to 13.9 per 100,000 persons and seems to increase from 2.5% to 8% per year [53]. In a snapshot of the NTM species distribution in 30 countries across 6 continents (n = 20,182 patients), M avium complex was the most frequent mycobacteria (47%), followed by Mycobacterium gordonae (11%) and Mycobacterium xenopi (8%), with important differences in geographical distribution [54]. Mycobacterium abscessus and Mycobacterium fortuitum were the most frequently isolated rapidly growing mycobacteria (RGM) worldwide with the highest prevalence in East Asia (up to 27% of NTM) [54]. However incidence of M abscessus, the most commonly identified NTM species responsible for severe respiratory and skin and mucosal infections, has increased during the last decade in Western Hemisphere countries, especially in patients with cystic fibrosis [53, 55].

Estimated prevalence of NTM infection in SOT is between 0.16% and 4.4% and the causative species varies by the type of organ transplant [56]. For example, RGM represents approximatively 40% of NTM infection of renal transplant recipients and 10% of heart and lung transplant recipients [56]. Mycobacterium genavense is a rare and slow-growing group III NTM leading to infection in immunocompromised hosts [1, 11, 43, 57]. The prevalence of M genavense infection in PLWH in a Swiss cohort, but before the introduction of ART, was 12.8% of NTM infections [9]. In this review, we focused on immunocompromised hosts without HIV. We reported 52 cases of M genavense infection in this population. As expected, SOT was the most frequent underlying immunocompromised condition (n = 21 [40.4%]), followed by autoimmune disease (n = 19 [36.5%]), but none of these immunodeficiencies were associated with an increased risk of not being cured. In this population, 73.9% of patients received at least 1 immunosuppressive therapy with a median time to infection of 39 months (range, 1–228 months). However, even in SOT or hematopoietic stem cell transplant (HSCT) recipients, M genavense is a rare cause of NTM infection [55, 56, 58]. Immunodeficiency was revealed by M genavense infection in 6 patients. Four patients were diagnosed with interleukin 12 (IL-12)/IFN-γ pathway disorders (1 with a neutralizing anti–IFN-γ autoantibody and 3 with IL-12 receptor deficiency) [39, 40, 43, 45]. Immunity against intracellular pathogens such as mycobacteria depends on an effective cell-mediated immune response. Susceptibility to mycobacterial disease is also associated with IL-12/interleukin 23/IFN-γ impairment [59–61]. Dendritic cells and macrophages phagocytize mycobacterial pathogens through innate pattern recognition receptors, especially Toll-like receptors (TLRs) 2 and 4. Activation of these TLRs induces the production of IL-12 and TNF-α. IL-12 stimulates IFN-γ production by natural

Characteristic	Not Cured (n = 23)	Cured (n = 28)	Value
Age, y, median (IQR)	56.00 (45.00–64.50)	44.50 (37.00–55.25)	.068
Female sex	10 (43.5)	10 (35.7)	.782
Immunodeficiency			.999
Solid organ transplant	8 (34.8)	12 (42.9)	
Hematological disorder	2 (8.7)	4 (14.3)	
Autoimmune disease and primary immunodeficiency	13 (56.5)	12 (42.9)	
Duration of IS treatment before infection, (months), median (IQR)	48.00 (8.75–102.00)	39.00 (28.00–60.00)	.871
Positive blood culture	3 (13.0)	5 (17.9)	.933
Digestive tract	10 (58.8)	15 (53.6)	.973
Lymph node	15 (83.3)	21 (75.0)	.762
Lung	4 (25.0)	9 (32.1)	.876
Bone marrow	13 (61.9)	7 (25.0)	.021
Antimycobacterial therapy, No. of treatments	2	3	.933
	15 (71.4)	14 (51.9)	
	4 (19.0)	10 (37.0)	.373
	1 (4.8)	2 (7.4)	
	1 (4.8)	0 (0.0)	
Fluoroquinolones	12 (57.1)	19 (70.4)	.518
Ethambutol	14 (66.7)	23 (89.2)	.243
Macrolide and rifampicin regimen	4 (19.0)	9 (33.3)	.437

Data are presented as No. (%) unless otherwise indicated. Abbreviations: IQR, interquartile range; IS, immunosuppressive.
killer cells and stimulates the differentiation of specific Th1 cells, which also produce IFN-γ. In synergy with TNF-α, IFN-γ activates infected macrophages, a major effector mechanism of cell-mediated immunity [39, 59, 62]. Some patients who seem apparently healthy may be predisposed to mycobacterial infections due to Mendelian susceptibility to mycobacterial disease or another inherited or acquired adult-onset immunodeficiency [60, 63]. Immune screening, especially of the IL-12/IFN-γ pathway, should be performed in these supposedly “healthy” patients.

This review reports that the infection was mainly disseminated (86.5%) and preferentially involved LNs, gastrointestinal tract, lung, and BM, which was associated with a worse prognosis in univariate and multivariate analyses. The median duration of IS therapy prior to M genavense infection was 39 months (range, 1–228 months), which is higher than other NTM infections reported in SOT recipients (ranging from 4.2 months in HSCT patients to 30 months in patients with heart transplants) [58]. The mean delay between SLE or rheumatoid arthritis (RA) diagnosis and NTM infection was 9.3 ± 5.8 years and 6.7 ± 4.3 years, respectively [64, 65]. Compared to this review, NTM infection in patients with autoimmune disease or SOT is more localized than disseminated. In patients with SLE, disseminated NTM infection occurs in 0.09% of patients and ranges from 0 to 18.2% in patients living with RA [64–67]. For SOT patients, disseminated NTM infection is common but is the second mode of presentation in renal transplant recipients and the third most common presentation in heart and lung transplant recipients [58].

Wetzstein et al performed a literature review of all cases of M genavense infection (PLWH and patients without HIV) [68]. They included 233 patients, most of them living with HIV (n = 171 [76.7%]). They did not perform subgroup analysis to compare PLWH versus immunocompromised patients without HIV regarding clinical or biological characteristics, treatment, and mortality. Our retrospective cohort only concerns immunocompromised patients without HIV and compared to their literature review, which mainly includes PLWH (76.7%), we found a different clinical presentation. Pulmonary involvement and LN infiltration seem to be more frequent in immunocompromised patients without HIV (35.5% vs 9.5%–12.6% and 72.3% vs 48.6%, respectively) as well as BM involvement, which is not reported in their literature review. Gastrointestinal tract involvement and hepatosplenomegaly seem to be similar between the 2 populations [68].

The diagnosis of M genavense infection remains a challenge for physicians because of the absence of specific symptoms and difficulties in culturing the organism [9–11, 17, 20, 69]. For all mycobacterial analyses, culture should include solid and broth (liquid) media for the detection and enhancement of growth. The system mainly used for liquid media is the nonradiometric MGIT, which contains a modified Middlebrook 7H9 broth in conjunction with a fluorescence quenching–based oxygen sensor to detect mycobacterial growth. Standard solid media such as Lowenstein-Jensen agar or Middlebrook 7H10 and 7H11 media fail to support M genavense growth. Solid media must be supplemented with Mucobactin J, and the incubation period should be at least 12 weeks for both culture media [10, 17, 20, 70]. A direct examination of samples showed AFB in 94.4% of cases (42/44), and despite adequate liquid and solid media culture, M genavense grew slowly after the collection of samples from 23 of 43 patients (53.4%) with a median delay of 7 weeks (range, 1.5–30 weeks). Culture was positive in liquid media for 8 patients and in solid media for 3 patients, but identification required molecular techniques in 98% of patients. These results are similar to previous studies on PLWH with a positive culture detected in 30%–50% of cases [10, 11, 70]. Molecular techniques, such as amplification and sequencing of the 16S rRNA, hsp65, or rpoB genes or reverse hybridization of amplicons of the inter-16S-23S rRNA polymorphic spacer region, are frequently used before the culture becomes positive, especially for immunocompromised patients with a positive AFB smear and negative PCR for Mycobacterium tuberculosis [16, 20, 69–73]. However, these techniques may be directly performed on samples (eg, blood, LN, intestinal biopsy, sputum, BM), regardless of the result of the AFB smear. Direct molecular biological methods might better identify M genavense infection and improve the prognosis.

Because of the extreme fastidiousness of M genavense to growth, the optimal regimen and duration for this infection have not been established. Available data regarding drug susceptibilities suggested that most isolates are susceptible to rifampicins, streptomycin, fluoroquinolones, amikacin, and macrolides [17, 19, 20, 34, 42, 69]. Most isolates are resistant to ethambutol and isoniazid, and one-third of isolates are resistant to clofazimine [42, 69]. In the literature review, most treatment regimens were based on at least a combination of 3 treatments, which often included macrolides (93.9%), rifampicins (79.6%), ethambutol (75.5%), and fluoroquinolones (62.5%). In the study by Charles et al [11], most patients (with or without HIV) were treated with a combination of rifabutin, clarithromycin, and ethambutol. However, the correlation between in vitro susceptibility and clinical outcomes has not been determined. Multidrug therapy (at least 3), including macrolides, seems to be more effective [15, 68]. Unfortunately because of its fastidious difficulty to grow and its rarity, no data are available regarding resistance mechanisms. Molecular methods (such as whole genome sequencing or multiplex PCR) could help to identify drug resistance and its mechanisms, such as for M tuberculosis [74]. However, there is no publication available for M genavense.

Wetzstein et al found, before and after the exclusion of PLWH before the ART era, that survival was significantly worse in patients without a macrolide-containing regimen [68].
In our cohort, a treatment regimen with macrolide was reported in 93.9% of patients (n = 46/49); therefore, in our analysis no antimicrobial regimen (number, duration, or combination) was associated with a better outcome. The ATS/IDSA, European Respiratory Society, and European Society of Clinical Microbiology and Infectious Diseases guidelines recommend a combination of azithromycin, rifampicin, and ethambutol and, in case of intolerance or drug resistance, moxifloxacin, amikacin, or clofazimine [15]. The optimal duration is also not established, but treatment should be continued until at least 12 months postconversion to culture negative to complete the treatment regimen [15, 20]. In this literature review, the median duration of treatment was 13 months (range, 1–48 months), but data were available for only 29 patients (range, 1–48 months), and an important part of the management of this infection is to reduce immunosuppression to restore immunity. Among patients receiving IS therapy, 44.3% stopped or reduced the treatment. Two patients developed IRIS. Physicians should be aware of this complication in patients who require an important reduction in immunosuppressive therapy, and a progressive reduction should be preferred. Despite the use of different multidrug therapies, the conditions of 3 patients worsened and they received IFN-γ in addition to antimycobacterial therapy. This therapy improved symptoms in all patients. As previously described, IL-12 and IFN-γ are necessary for clearing M genavense infection [61]. IFN-γ treatment might help to improve the immune response and symptoms, especially in patients with an IFN-γ deficiency. However, only limited data are available on the role of IFN-γ treatment in the treatment of tuberculosis or NTM infection. In a randomized, double-blind, placebo-controlled study, 32 patients were treated with either intramuscular IFN-γ and antimycobacterial therapy or antimycobacterial therapy and placebo for NTM pulmonary infection. The overall response in the IFN-γ group was significantly higher than that in the antimycobacterial therapy–alone group (72.2% vs 37.5% complete responders, respectively). A total of 11.1% of patients in the IFN-γ–treated group died compared with 35.7% of patients in the control group [75]. In a pilot study, 8 patients were treated with IFN-γ for multidrug-resistant tuberculosis in addition to antibiotics, leading to a reduction in lesion sizes and negative sputum smears and cultures [76]. Its prescription should be discussed with a reference center for mycobacterial infection to evaluate the benefit/risk balance of this treatment due to a risk of iatrogenic IRIS and should be limited to patients who are not responding well to therapy. In PLWH, a low CD4 count (< 500 cells/μL) is a major risk factor for IRIS, and IFN-γ is discussed as having an important pathogenic role [77]. In SOT recipients and other immunocompromised patients without HIV, the IRIS prevalence is not known, but posttransplant IRIS is rare and remains poorly studied. Thus, risk factors for IRIS in this population have not been established, and management is based on IRIS treatment in PLWH [49, 50].

Mycobacterium genavense infection has a poor prognosis in this population, with a mortality rate of approximately 30%. However, we are not always able to report whether death is a direct consequence of *M genavense* infection. In PLWH, before the era of ART, the median survival after *M genavense* infection ranged from 6.3 to 10.7 months and the mortality rate was estimated to be 89.9% after 24 months. In the most recent literature review, 5-year mortality for PLWH after the introduction of ART was 39.3%. Survival improved substantially because of the combination of ART and antimycobacterial therapy [68]. In Mahmood and colleagues’ systematic review in 2017 (n = 44), they found no correlation between mortality and age, underlying immunosuppressive disease, disseminate disease, or drug management in univariate analysis, and no multivariate analysis was performed [13]. However, in our updated review compared to Mahmood et al. (n = 52 [-18%]), age and BM involvement were associated with a failure of complete remission in the multivariate analysis. These results confirmed what we suspected: Elderly patients with BM involvement reflecting the importance of disseminated disease are difficult to treat and to cure.

Our study has several limitations. First, most patients were derived from case reports, and data were missing for some patients, especially the outcomes. Indeed, some patients experienced chronic symptoms or were still receiving treatment when the case report was published, and we do not know the final outcome. Consequently, for our analysis, we chose a composite criteria: complete remission versus nonremission, including death; chronic symptoms; and improved symptoms but remaining under treatment. This composite criteria might introduce bias, and some patients with chronic symptoms or with an improvement of symptoms could be in complete remission or die. The 2 patients with a postmortem diagnosis were included in the analysis to show the difficulty in diagnosing this disease. But it could also induce a bias because these 2 patients increased the rate of not being cured while they did not have “a chance” to receive an appropriate treatment. There is also risk of publication bias in this literature review mainly composed of case series/reports, where only complicated cases of *M genavense* or patients with poor outcomes/or positive outcomes with novel therapies are likely to be published. Furthermore, this literature review does not provide information on the prevalence of *M genavense* infection in patients without HIV, and thus we only conclude that infection is rare. Because of nonconsensual guidelines for treatment, the antimycobacterial regimen varied between patients, and we were unable to determine if one regimen or duration was associated with complete remission.

CONCLUSIONS

Mycobacterium genavense infection is a rare cause of mycobacterial infection in immunocompromised patients without HIV.
Compared to other NTM infections in this population, this disease is mainly disseminated with frequent involvement of the digestive tract and BM, with a poor prognosis. The optimal treatment regimen and its duration remain to be established, but IS therapy must be decreased. Mycobacterium genavense infection should be considered in the differential diagnosis of mycobacteria detected with AFB staining but not with culture, even in patients without known evidence of immunodeficiency. IFN-γ might be discussed for patients without an improvement despite treatment with antitycobacterial therapy.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors. A.B. and R.C. analyzed data and drafted the report. All authors read and approved the final report.

Potential conflicts of interest. The authors: No reported conflicts.

Notes

Author contributions. A.B., S.D., A.T.-L., C.D., and R.V. collected data. A.B. and R.C. analyzed data and drafted the report. All authors read and approved the final report.

References

1. Böttger EC, Teske A, Kirschner P, et al. Disseminated Mycobacterium genavense infection in patients with AIDS. Lancet 1992; 340:76–80.
2. Hillebrand-Haverkort ME, Kolk AH, Kox LF, Ten Velden JJ, Ten Veen JH. Generalized Mycobacterium genavense infection in HIV-infected patients: detection of the mycobacterium in hospital tap water. Scand J Infect Dis 1999; 31:63–8.
3. Schmitz A, Korbel R, Thiel S, Wörle B, Gohl C, Rinder M. High prevalence of Mycobacterium genavense within flocks of pet birds. Vet Microbiol 2018; 218: 40–4.
4. Ullmann LS, das Neves Dias-Neto R, Cagnini DQ, et al. Mycobacterium genavense infection in two species of captive snakes. J Venom Anim Toxins Trop Dis 2016; 22:27.
5. De Lorenzi G, Kamphuisen K, Biscontini G, Pacciarini M, Zanoni M, Luppi A. Localized Mycobacterium genavense infection in a domestic ferret (Mustela putorius furo). Top Companion Anim Med 2018; 33:119–21.
6. Ludewig E, Reischl U, Janik D, Hermanns W. Granulomatous pneumonia caused by Mycobacterium genavense in a dwarf rabbit (Oryctolagus cuniculus). Vet Pathol 2009; 46:100–2.
7. Kienh TE, Hoeter H, Böttger EC, et al. Mycobacterium genavense infections in pet animals. J Clin Microbiol 1996; 34:1840–2.
8. Dumonceau JM, Fonteyne PA, Reali M, Van Gossum A, Van Voren JP, Portaels F. Species-specific Mycobacterium genavense DNA in intestinal tissues of individuals not infected with human immunodeficiency virus. J Clin Microbiol 1995; 33: 2514–5.
9. Pechère M, Opravil M, Wald A, et al. Clinical and epidemiologic features of infection with Mycobacterium genavense. Swiss HIV Cohort Study. Arch Intern Med 1995; 155:400–4.
10. Tortoli E, Brunello F, Cagni AE, et al. Mycobacterium genavense in AIDS patients, report of 24 cases in Italy and review of the literature. Eur J Epidemiol 1998; 14: 219–24.
11. Charles P, Lortholary O, Dechard P, et al. Mycobacterium genavense infections: a retrospective multicenter study in France, 1996–2007. Medicine (Baltimore) 2011; 90:223–30.
12. Coelho R, Hanna R, Flagg A, et al. Mycobacterium genavense-induced spindle cell pseudotumor in a pediatric hematopoietic stem cell transplant recipient: case report and review of the literature. Transpl Infect Dis 2017; 19.
13. Mahmood M, Ajmal S, Abu Saleh OM, Bryson A, Marcellin IR, Wilson JW. Mycobacterium genavense infections in non-HIV immunocompromised hosts: a systematic review. Infect Dis (Lond) 2018; 50:329–39.
14. Gonzalez-Granado LL, Ruiz-Garcia R, Blao-Espada J, et al. Acquired and innate immunity impairment and severe disseminated Mycobacterium genavense infection in a patient with a NF-κB1 deficiency. Front Immunol 2019; 9:3148.
15. Lange C, Böttger EC, Cambau E, et al. Consensus management recommendations for less common non-tuberculous mycobacterial pulmonary diseases. Lancet Infect Dis 2022; 22:e178–90.
16. Leclerc MC, Haddad N, Moreau R, Thorel MF. Molecular characterization of environment Mycobacterium strains by PCR restriction fragment length polymorphism of hsp65 and by sequencing of hsp65, and of 16S and ITS1 rDNA. Res Microbiol 2000; 151:629–38.
17. Böttger EC. Mycobacterium genavense: an emerging pathogen. Eur J Clin Microbiol Infect Dis 1994; 13:932–6.
18. Girard V, Mailler S, Welker M, et al. Identification of Mycobacterium spp. and Nocardioid spp. from solid and liquid cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Diagn Microbiol Infect Dis 2016; 86:277–83.
19. Daléy CL, Jaccarino JM, Lange C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J 2020; 56:2000535.
20. Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175:367–416.
21. Böttger EC, Richter E, et al. Systemic infection with Mycobacterium genavense following immunosuppressive therapy in a patient who was seronegative for human immunodeficiency virus. Clin Infect Dis 1997; 24:1245–7.
22. Krebs T, Zimmerli S, Bodmer T, Lämmlle B. Mycobacterium genavense infection in a patient with long-standing chronic lymphocytic leukaemia. J Intern Med 2000; 248:343–8.
23. Léauté S, Boutouille D, Bemer-Melchior T, Ponge T, Raffi F. Localized Mycobacterium genavense soft tissue infection in an immunodeficient HIV-negative patient. Eur J Clin Microbiol 2000; 19:51–3.
24. Ndoricimpf J, Minet J, Genet N, Cormier M, Grosbois B. Diagnostic rétrospectif d’une infection Mycobacterium genavense. Rev Médicine Interne 2003; 24:454.
25. Le Berre R, Tonnelle J, Abalaj J, et al. Infection généralisée à Mycobacterium genavense chez une patient non VIH: traitement de sauvetage par interféron gamma. Médecine Mal Infect 2004; 34:S130–69.
26. Nurmohamed S, Wrennik A, Moeniralam H, Visser C, Bemelman F. Hyperimmunoglobulinemia in generalized Mycobacterium genavense infection after renal transplantation. Am J Transplant 2007; 7:722–3.
27. de Lastours V, Guillermant R, Mainard JL, et al. Early diagnosis of disseminated Mycobacterium genavense infection. Emerg InfecDis 2008; 14:346–7.
28. Daum S, Moos V, Loddenkemper C, et al. Immune reconstitution inflammatory syndrome (IRIS) of the small bowel in an immunocompromised patient suffering from systemic lupus erythematosus and non-tuberculous mycobacteriosis [in German]. Z Rheumatol 2008; 67:280–3.
29. Dumouchel-Champagne H, Charlier-Woerther C, Beibeux A, et al. Disseminated nontuberculous infections with Mycobacterium genavense during sarcoidosis. Eur Respir Rev 2009; 18:299–301.
30. Lorenzen J, Meyer-Olson D, Haubitz M, et al. Infection with Mycobacterium genavense in a patient with systemic lupus erythematosus. Clin Rheumatol 2009; 28: 539–41.
31. Lorenzen V, Obuhad S, Costard-Jaickle A, et al. Mycobacterium genavense infection in a lung transplant recipient: case report. Thorac Cardiovasc Surg 2012; 60:108.
32. Lu KJ, Grigg A, Leslie D, Finlay M, Saxadeusz J. Mycobacterium genavense duodenitis following allogeneic peripheral blood stem cell transplantation. Transpl Infect Dis 2009; 11:534–6.
33. Sharfian A, Humphris J, Leong RW, Jones DB. Education and imaging. Gastrointestinal: Mycobacterium genavense infections in an immunosuppressed patient. J Gastroenterol Hepatol 2009; 24:1474.
34. Escapa VM, Bellrán VP, Videsz LA, Durantez MS, Pastor VP, Felis TS. Intestinal involvement by Mycobacterium genavense in an immunodepressed patient. Gastrointest Endosc 2010; 72:1108–10.
35. Rammerta B, Couderc LJ, Rivaud E, et al. Mycobacterium genavense as a cause of subacute pneumonia in patients with severe cellular immunodeficiency. BMC Infect Dis 2011; 11:311.
36. Doggett J, Strasfeld L. Disseminated Mycobacterium genavense with pulmonary nodules in a kidney transplant recipient: case report and review of the literature. Transpl Infect Dis 2011; 13:38–43.
37. Guitard J, Edouard S, Lepidi H, et al. Identification of cause of posttransplant cachexia by PCR. Emerg Infect Dis 2012; 18:1386–8.
38. Lhuillier E, Bruguère O, Veziris N, et al. Relapsing Mycobacterium genavense infection as a cause of late death in a lung transplant recipient: case report and review of the literature. Eap Clin Transplant 2012; 10:618–20.
39. Potjewijd J, de Paus RA, van Wegen A, Damoiseaux J, Verboom A, van de Vosse E. Disseminated Mycobacterium genavense infection in a patient with a novel partial interleukin-12/23 receptor β1 deficiency. Clin Immunol 2012; 144:83–6.

40. Tassone L, Carvalho ACC, Calabresi A, et al. Disseminated Mycobacterium genavense infection after immunosuppressive therapy shows underlying new composite heterozygous mutations of β1 subunit of IL-12 receptor gene. J Allergy Clin Immunol 2013; 131:607–10.

41. Numbi N, Demeuve F, Van Bleyenbergh P, De Visscher N. Disseminated Mycobacterium genavense infection in a patient with immunosuppressive therapy and lymphoproliferative malignancy. Acta Clin Belg 2014; 69:142–5.

42. Santos M, Gil-Brusola A, Escandell A, Blanes M, Gobernado M. Mycobacterium genavense infections in a tertiary hospital and reviewed cases in non-HIV patients. Pathol Res Int 2014; 2014:371370.

43. Hoefloot W, van Ingen J, Peters EJG, et al. Mycobacterium genavense in the Netherlands: an opportunistic pathogen in HIV and non-HIV immunocompromised patients. An observational study in 14 cases. Clin Microbiol Infect 2013; 19: 432–7.

44. Renoult E, Fortin C, Dorais J, et al. Mycobacterium genavense and chronic intermittent diarrhea in a kidney and pancreas transplant recipient. Transplantation 2013; 96:e6–4.

45. Asakura T, Namkoong H, Hasegawa N, Ohkusu K, Nakamura A. Disseminated Mycobacterium genavense infection in patient with adult-onset immunodeficiency. Emerg Infect Dis 2017; 23:1208–10.

46. Ombelet S, Van Wijngaerden E, Lagrou K, et al. Mycobacterium genavense infection in a solid organ recipient: a diagnostic and therapeutic challenge. Transpl Infect Dis 2016; 18:125–31.

47. Hosoda C, Ishiguro T, Shimizu Y, Kanegane H, Takayanagi N. Mycobacterium genavense infection presenting as an endobronchial polyp and upper lobe atelectasis. Am J Respir Crit Care Med 2020; 202:e144–5.

48. Ito Y, Takaoka K, Toyama K, et al. The first case of concomitant Mycobacterium genavense lymphadenitis and EBV-positive lymphoproliferative disorder. Mediterr J Hematol Infect Dis 2016; 8:2020035.

49. Sun HY, Singh N. Immune reconstitution inflammatory syndrome in non-HIV immunocompromised patients. Curr Opin Infect Dis 2009; 22:394–402.

50. Sun HY, Singh N. Opportunistic infection–associated immune reconstitution syndrome in transplant recipients. Clin Infect Dis 2011; 53:168–76.

51. Grunebaum E, Reid B, Naqvi A, et al. Morbidity in an adenosine deaminase-deficient patient during 27 years of enzyme replacement therapy. Clin Immunol 2020; 211:108321.

52. Parrish N. An update on mycobacterial taxonomy, 2016–2017. J Clin Microbiol 2019; 57:e01408–18.

53. Adjemian J, Daniel-Wayman S, Ricotta E, Prevots DR. Epidemiology of nontuberculous mycobacteriosis. Semin Respir Crit Care Med 2018; 39:325–35.

54. Hoefloot W, van Ingen J, Andrejak C, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J 2013; 42:1604–13.

55. Anjan S, Morris ML. Nontuberculous mycobacteria in solid organ transplant. Curr Opin Organ Transplant 2019; 24:476–82.

56. Abad CL, Razonable RR. Non-tuberculous mycobacterial infections in solid organ transplant recipients: an update. J Clin Tuberc Mycobact Dis 2016; 4:1–8.

57. Koh WJ. Nontuberculous mycobacteria—overview. Microbiol Spectr 2017; 5.

58. Doucette K, Fishman JA. Nontuberculous mycobacterial infection in hematopoietic stem cell and solid organ transplant recipients. Clin Infect Dis 2004; 38: 1428–39.

59. Martínez-Barricarte R, Markle JG, Ma CS, et al. Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol 2018; 3:eaau6759.

60. Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol 2014; 26:454–70.

61. Ehlers S, Richter E. Gamma interferon is essential for clearing Mycobacterium genavense infection. Infect Immun 2000; 68:3720–3.

62. van de Vosse E, Hoeve MA, Ottenhoff THM. Human genetics of intracellular infectious diseases: molecular and cellular immunity against mycobacteria and salmonellae. Lancet Infect Dis 2004; 4:739–49.

63. Rosain J, Kong XF, Martínez-Barricarte R, et al. Mendelian susceptibility to mycobacterial disease: 2014–2018 update. Immunol Cell Biol 2019; 97:360–7.

64. Liao TL, Lin CF, Chen YM, Liu HI, Chen DY. Risk factors and outcomes of nontuberculous mycobacterial disease among rheumatoid arthritis patients: a case-control study in a TB endemic area. Sci Rep 2016; 6:29443.

65. Mok MY, Wong SY, Chan TM, Fong DYT, Wong WS, Lau CS. Non-tuberculous mycobacterial infection in patients with systemic lupus erythematosus. Rheumatology (Oxford) 2007; 46:280–4.

66. Lim DH, Kim YG, Shim TS, et al. Nontuberculous mycobacterial infection in rheumatoid arthritis patients: a single-center experience in South Korea. Korean J Intern Med 2017; 32:1090–7.

67. Liao TL, Lin CH, Chen GH, Chang CL, Lin CF, Chen DY. Risk for mycobacterial disease among patients with rheumatoid arthritis, Taiwan, 2001–2011. Emerg Infect Dis 2015; 21:1387–95.

68. Wetzstein N, Kessel J, Bingold TM, et al. High overall mortality of Mycobacterium genavense infections and impact of antimycobacterial therapy: systematic review and individual patient data meta-analysis. J Infect 2022; 84:8–16.

69. Thomsen VO, Dragsted UB, Bauer J, Fruursted K, Lundgren J. Disseminated infection with Mycobacterium genavense: a challenge to physicians and mycobacteriologists. J Clin Microbiol 1999; 37:3901–5.

70. Coyle MB, Carlsson LC, Wallis CK, et al. Laboratory aspects of Mycobacterium genavense, a proposed species isolated from AIDs patients. J Clin Microbiol 1992; 30:3206–12.

71. Trueba F, Fabre M, Saint-Blancard P. Rapid identification of Mycobacterium genavense with a new commercially available molecular test, INNO-LiPA Mycobacteria v2. J Clin Microbiol 2004; 42:4403–4.

72. Alcaide F, Amlerlová J, Bou G, et al. How to identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin Microbiol Rev 2018; 31:599–603.

73. Böttger EC, Hirschel B, Coyle MB. Mycobacterium genavense sp. nov. Int J Syst Bacteriol 1993; 43:841–3.

74. Papaventisis D, Casali N, Kontsevaya I, Drobniowski F, Cirillo DM, Nikolaevsky V. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a systematic review. Clin Microbiol Infect 2017; 23:61–8.

75. Milánés-Virelles MT, García-García I, Santos-Herrera Y, et al. Adjuvant interferon-γ in patients with pulmonary atypical mycobacteriosis: a randomized, double-blind, placebo-controlled study. BMC Infect Dis 2008; 8:17.

76. Suárez-Méndez R, García-García I, Fernández-Olivera N, et al. Adjuvant interferon-γ in patients with drug-resistant pulmonary tuberculosis: a pilot study. BMC Infect Dis 2004; 4:44.

77. Barber DL, Andrade BB, Sereti I, Sher A. Immune reconstitution inflammatory syndrome: the trouble with immunity when you had none. Nat Rev Microbiol 2012; 10:150–6.