Magnetically separable modified sulfuric acid (CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H): Preparation, characterization and catalytic application for the synthesis of 1, 8-dioxo-octahydroxanthenes

Ali Jalaeean-Hadad, Abolghasem Davoodnia*, Niloofar Tavakoli-Hoseini, Farzaneh Tajfirooz

Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Received: 4 February 2019, Accepted: 16 June 2019, Published: 1 November 2019

Abstract

A nanomagnetic acidic catalyst (CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H) was prepared by the chemical anchoring of sulfuric acid onto the surface of modified CuFe$_2$O$_4$ magnetic nanoparticles and characterized using FT-IR, SEM, EDX, and VSM techniques. The results confirmed that the sulfuric acid is well dispersed on the surface of the nanomagnetic support. The catalytic activity of CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H was evaluated in the synthesis of 1, 8-dioxo-octahydroxanthenes under solvent-free conditions. The reactions using this nanomagnetic acidic catalyst could be carried out in lower than 12 min with excellent yields. Also, the catalyst was easily isolated from the reaction mixture by an external magnet and used at least four times without significant loss of activity.

Keywords: Magnetic nanoparticles; CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H; 1, 8-Dioxo-octahydroxanthenes; heterogeneous catalyst; solvent-free conditions.

Introduction

Xanthene derivatives, in particular xanthenediones, have received significant attention because they are parent structures of great number of naturally occurring compounds. They include a number of biological properties such as antibacterial [1], antiviral [2], anti-inflammatory [3], phototoxicity [4], antiproliferative [5], and anticancer [6]. Furthermore, they are well-known as fluorescent and laser dyes [7-9]. Xanthenediones are generally synthesized by condensation of aromatic aldehydes with 1, 3-cyclohexanedione or 5, 5-dimethyl-1, 3-cyclohexanediene (dimedone) using various promoting agents such as sulfated zirconia [10], multiwalled carbon nanotube-supported butyl 1-sulfonic acid (MWCNT-BuSO$_3$H) [11], β-cyclodextrin grafted with butyl sulfonic acid (β-CD-BSA) [12], ceric ammonium nitrate supported HY-zeolite (CAN/HY-zeolite) [13], silica-supported Preyssler nano particles (Silica/Preyssler NPs) [14], L-proline [15], ZnO nanoparticles [16], SmCl$_3$ [17], nanosized MCM-41-SO$_3$H [18], trimethylsilyl chloride [19], H$_3$PW$_{12}$O$_{40}$/MCM-41 [20], and [Et$_3$NC$_4$SO$_3$H][HSO$_4$]/Al$_2$O$_3$ [21]. Some of these catalysts have disadvantages...
such as low yields, prolonged reaction times, harsh reaction conditions, requirement of excess of catalyst, and the use of toxic organic solvents. Thus, the development of an alternate clean procedure using efficient catalyst is highly demanding for the synthesis of 1,8-dioxo-octahydroxanthenes, which surpasses those limitations.

Catalysts and catalytic reactions have attracted great attention in industrial applications and basic researches [22-25]. With increasing environmental concerns, the development of clean synthetic procedures has been widely studied. Most of the homogeneous catalysts have high activity and selectivity [26,27], however, heterogeneous ones can be easily handled, separated and reused. The potential advantage of heterogeneous catalysts allows the development of environmentally benign processes in both academic and industrial environment [28, 29]. In recent years, among the various heterogeneous catalysts, magnetic nanoparticles (MNPs) with high surface area and their unique magnetic properties [30] have been widely applied in various chemical reactions [31-37]. They are separated from the reaction medium by an external permanent magnet. The MNPs containing acidic functional groups, especially SO$_3$H-functionalized, have become crucial and demanding researches and are suitable substitute catalysts for conventional acids such as H$_2$SO$_4$, HF and AlCl$_3$ in chemical processes [38-40].

In this view and in line with our interest in the application of reusable catalysts in organic reactions [41-47] and in continuation of our previous works in the synthesis of new MNPs [48,49], we report the preparation of SO$_3$H-functionalized magnetic core-shell nanoparticles, CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H, by coating a SiO$_2$ shell around CuFe$_2$O$_4$ MNPs followed by immobilization of sulfuric acid (Scheme 1). The catalytic activity of the prepared heterogeneous and green acidic magnetic nanocatalyst was tested in the synthesis of 1,8-dioxo-octahydroxanthenes 3a-j by the reaction of aromatic aldehydes 2a-j with dimeredone 1 under solvent-free conditions (Scheme 2).

Scheme 1. Preparation of CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs

Scheme 2. Synthesis of 1,8-dioxo-octahydroxanthenes in the presence of CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs
Experimental
All chemicals were purchased from Merck and Aldrich and used without further purification. Melting points were recorded with a Stuart SMP3 melting point apparatus. The 1H NMR (300 MHz) spectra were recorded on a Bruker 300 FT spectrometer, in CDCl$_3$ as the solvent using tetramethyl silane (TMS) as internal standard. Fourier transform infrared (FT-IR) spectra were obtained using a Tensor 27 Bruker spectrophotometer at KBr disks. Ultrasonication was performed using a Soltec sonicator at a frequency of 40 kHz and a nominal power of 260 W. Scanning electron microscopy (SEM) analysis was done using a MIRA3 TESCAN scanning electron microscope operated at an accelerating voltage of 30 kV. Energy-dispersive X-ray (EDX) analysis was performed using a SAMX model instrument. Magnetization curves were obtained with a MDKFT vibrating sample magnetometer (VSM).

Preparation of CuFe$_2$O$_4$ MNPs
CuFe$_2$O$_4$ MNPs were precipitated in water in the presence of sodium hydroxide solution of Cu(NO$_3$)$_2$ and Fe(NO$_3$)$_3$ [50]. Typically, Fe(NO$_3$)$_3$·9H$_2$O (2.02 g, 5 mmol) and Cu(NO$_3$)$_2$·3H$_2$O (0.60 g, 2.5 mmol) were dissolved in water (10 mL), and aqueous NaOH (4 M, 30 mmol, 7.5 mL) was added at room temperature over a period of 10 min to form a reddish-black precipitate. The reaction continued for 2 h at 90 °C. After cooling to room temperature, magnetic particles were collected by a magnetic separator, washed with water (3 × 10 mL) and kept in an air oven overnight at 80 °C. The resulting particles were finally ground with a pestle and mortar and kept in a furnace at 800 °C for 4 h and then slowly cooled to room temperature to form CuFe$_2$O$_4$ MNPs.

Preparation of silica-coated CuFe$_2$O$_4$ MNPs (CuFe$_2$O$_4$@SiO$_2$)
The core/shell CuFe$_2$O$_4$@SiO$_2$ was prepared according to the literature procedure [51]. The CuFe$_2$O$_4$ MNPs (2.0 g, 8.5 mmol) were ultrasonically dispersed in ethanol (25 mL) for 15 min at room temperature and then 25% aqueous ammonia (10 mL) was added to the mixture and stirred at 60 °C for 40 min followed by the addition of tetraethyl orthosilicate (TEOS, 1.0 mL) which was drop wise added to this mixture and stirring was continued at the same temperature for 24 h. The obtained CuFe$_2$O$_4$@SiO$_2$ MNPs were separated by a permanent magnet and washed repeatedly with methanol (3 × 5 mL) and dried in vacuum at 50 °C for 48 h. The resulting CuFe$_2$O$_4$@SiO$_2$ MNPs were then calcined at 800 °C for 4 h.

Preparation of silica sulfuric acid coated CuFe$_2$O$_4$ MNPs (CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H)
Chlorosulfonic acid (0.52 g, 4.5 mmol) was added in a drop-wise manner to a cooled (ice-bath) solution of CuFe$_2$O$_4$@SiO$_2$ (1 g) in n-hexane (5 mL) over a 2 h period. Upon completion of the addition, the mixture was stirred for a further 3 h until to allow for the complete dissipation of HCl from the reaction vessel. The resulted MNPs were separated using an external magnet and washed with methanol before being dried in an oven at 60 °C to give CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H as a brown powder. The amount of H$^+$ in the CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H determined by acid-base potentiometric titration using NaOH as titrant was 2.81 mmol/g.

General procedure for synthesis of 1,8-dioxo-octahydroxanthenes (3a-j) catalyzed by CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs
Preparation of 1, 8-dioxo-octahydroxanthenes was typically
performed according to the following procedure. The catalyst, CuFe₂O₄@SiO₂-OSO₃H, (0.04 g) was added to a mixture of dimedone 1 (2.0 mmol) and an aromatic aldehyde 2a-j (1.0 mmol). The mixture was heated in an oil bath at 110 °C for 8-12 min and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and hot acetone (15 mL) was added. The catalyst was separated by external magnet. The solvent was evaporated in vacuo and the residue was recrystallized from ethanol to afford compounds 3a-j in high yields.

9-(4-Chlorophenyl)-3, 3, 6, 6-tetramethyl-1, 8-dioxooctahydroxanthene (3a). ¹H NMR (δ, ppm): 1.13 (s, 6H, 2CH₃), 1.24 (s, 6H, 2CH₃), 2.30-2.55 (m, 8H, 4CH₂), 5.50 (s, 1H, CH), 7.04 (d, J = 8.1 Hz, 2H, arom-H), 7.25 (d, J = 8.1 Hz, 2H, arom-H), ¹³C NMR (δ, ppm): 27.3, 29.3, 31.5, 32.2, 40.8, 50.7, 115.3, 128.2, 129.8, 132.0, 142.7, 162.5, 196.4; FT-IR (υ, cm⁻¹): 2952, 1661, 1596, 1513, 1449, 1425, 1360, 1200, 1166, 1107, 1003, 839.

9-(4-Fluorophenyl)-3, 3, 6, 6-tetramethyl-1, 8-dioxooctahydroxanthene (3g). ¹H NMR (δ, ppm): 1.02 (s, 6H, 2CH₃), 1.13 (s, 6H, 2CH₃), 2.15-2.32 (m, 4H, 2CH₂), 2.49 (s, 4H, 2CH₂), 4.75 (s, 1H, CH), 6.92 (t, J = 8.7 Hz, 2H, arom-H), 7.25-7.32 (m, 2H, arom-H); ¹³C NMR (δ, ppm): 27.3, 29.3, 31.2, 32.2, 40.9, 50.7, 114.7, 115.0, 115.5, 129.9, 139.9, 162.3, 196.4; FT-IR (υ, cm⁻¹): 2959, 1661, 1628, 1604, 1508, 1467, 1364, 1223, 1199, 1164, 1142, 1005, 851.

Results and discussion
Preparation and characterization of CuFe₂O₄@SiO₂-OSO₃H MNPs

The preparation of a magnetically separable modified sulfuric acid (CuFe₂O₄@SiO₂-OSO₃H) has been delineated through initial synthesis of CuFe₂O₄ MNPs by a chemical co-precipitation of Fe(NO₃)₃. 9H₂O and Cu(NO₃)₂. 3H₂O in aqueous NaOH [50] followed by coating with a layer of silica using the sol-gel method by the ammonia-catalyzed hydrolysis of TEOS [51] and finally reaction with chlorosulfonic acid in n-hexane. The prepared CuFe₂O₄@SiO₂-OSO₃H catalyst was characterized using FT-IR, SEM, EDX and VSM.
The FT-IR analysis of CuFe₂O₄, CuFe₂O₄@SiO₂ and CuFe₂O₄@SiO₂-OSO₃H are shown in Figure 1. A strong band in the range of 565-593 cm⁻¹ appeared in the spectra of all MNPs (Figure 1, a-c) which can be assigned to the stretching vibration of Fe-O bond. The adsorption bands at 3417-3445 cm⁻¹ and also at 1632-1648 cm⁻¹ are assigned to OH groups and remaining H₂O in the samples. The additional peak in the range of 955-1091 cm⁻¹ recorded for MNPs having a SiO₂ layer (Figure 1, b and c) was due to Si-O-Si antisymmetric stretching vibrations. Finally, the successful immobilization of -SO₃H group on the surface of CuFe₂O₄@SiO₂ is confirmed by the appearance of the new characteristic peaks in the range of 796-1370 cm⁻¹ for the SO₂ stretching vibrations (Figure 1c, overlapped with Si-O-Si).

![Figure 1. FT-IR spectrum of (a) CuFe₂O₄ (b) CuFe₂O₄@SiO₂ and (c) CuFe₂O₄@SiO₂-OSO₃H](image)

To determine the morphology and size of the catalyst, SEM image of the CuFe₂O₄@SiO₂-OSO₃H MNPs was prepared and compared to CuFe₂O₄ MNPs (Figure 2). As shown in Figure 2(b), nanoparticles in the prepared catalyst have spherical shape with an average diameter of approximately 40-50 nm, indicating that the nanocatalyst has a large surface area. The slight agglomeration is due to magnetic dipole interactions between the particles.

![Figure 2. SEM images of (a) CuFe₂O₄ and (b) CuFe₂O₄@SiO₂-OSO₃H MNPs](image)
Furthermore, the TEM image of the nanocatalyst shown in Figure 3 confirms the almost spherical shape of the nanoparticles with diameters of less than 20 nm.

![TEM image of CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs](image)

Figure 3. TEM image of CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs

The appearance of S along with other elements containing Cu, Fe, Si, and O in EDX spectrum of the CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H catalyst shows the successful immobilization of SO$_3$H on CuFe$_2$O$_4$@SiO$_2$ MNPs (Figure 4). As can be seen in Figure 4, no additional peak related to other impurities was appeared in the spectrum.

![EDX analysis of CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs](image)

Figure 4. EDX analysis of CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs

Finally, the magnetic properties of CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H nanoparticles were studied using VSM at ambient temperature in an applied magnetic field, with the field sweeping from -10000 to +10,000 Oersted (Oe) (Figure 5). It could be seen that the hysteresis loop for the catalyst is relatively irreversible. This confirms the ferromagnetic nature of the catalyst [52]. Furthermore, the saturation magnetization (Ms) value of 27.12 emu g$^{-1}$ shows that the catalyst has still sufficient magnetization for easy magnetic separation from a reaction mixture with a permanent magnet.
Catalytic application of CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNP

The performance of CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H as an acidic nanocatalyst was tested in the synthesis of 1,8-dioxo-octahydroxanthene. In order to investigate the optimum amount of the catalyst, the effect of the solvent and influence of temperature, the reaction between dimedone 1 (1 mmol) and 4-chlorobenzaldehyde 2a (1 mmol) for the synthesis of compound 3a was selected as the test reaction. A summary of the optimization experiments is provided in Table 1. Because of the several advantages of solvent-free conditions in chemical reactions we firstly decided to investigate the model reaction under solvent-free conditions. As can be seen, the efficiency of the reaction is mainly affected by the amount of the CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H catalyst. No significant yield of the product was obtained in the absence of the catalyst (Table 1, Entry 1) indicating that the catalyst is necessary for the reaction. Raising the amount of the catalyst increased the yield of the product 3a. The best result was conducted in the presence of 0.04 g of the catalyst at 110 °C (Table 1, Entry 11). Higher amount of the catalyst and temperature did not improve the reaction time and yield of the product. Subsequently, the same model reaction in the presence of 0.04 g of catalyst was carried out in different solvents including H$_2$O, MeOH, EtOH, CHCl$_3$ and CH$_3$CN, to assess the effect of solvent on the reaction. As shown, among the solvents tested and also solvent-free conditions, the yields of the reaction under solvent-free conditions were greater and the reaction times were generally shorter than the solvents. Therefore, all subsequent reactions were carried out using 0.04 g of the catalyst at 110 °C under solvent-free conditions.
Table 1. Optimization of reaction parameters for synthesis of compound 3a catalyzed by CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPsa

Entry	Catalyst (g)	Solvent	T (°C)	Time (min)	Yield (%)
1	-----	-----	110	90	Trace
2	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.01)	-----	80	50	70
3	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.01)	-----	110	35	77
4	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.01)	-----	140	40	77
5	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.02)	-----	80	30	85
6	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.02)	-----	110	15	87
7	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.02)	-----	140	20	86
8	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.04)	-----	80	20	88
9	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.04)	-----	90	20	88
10	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.04)	-----	100	15	89
11	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.04)	-----	110	10	91
12	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.04)	-----	140	15	89
13	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.06)	-----	110	15	91
14	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.04)	H$_2$O	Reflux	30	76
15	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.04)	MeOH	Reflux	50	79
16	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.04)	EtOH	Reflux	40	81
17	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.04)	CHCl$_3$	Reflux	60	70
18	CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.04)	CH$_3$CN	Reflux	50	72
19	CuFe$_2$O$_4$ MNPs (0.04)	-----	110	40	36
20	CuFe$_2$O$_4$@SiO$_2$ MNPs (0.04)	-----	110	40	22

aReaction conditions: dimedone 1 (2 mmol), 4-chlorobenzaldehyde 2a (1 mmol).

Next, in order to evaluate the generality of this model reaction, the catalytic activity of the catalyst was tested using different aromatic aldehydes in the reaction with dimeone under optimized reaction conditions. As shown in Table 2, all the reactions on a wide range of aromatic aldehydes bearing both electron-donating (methyl, hydroxyl and methoxy) and electron-withdrawing (halogens and nitro) substituents afforded excellent yields of the corresponding product 3a-j.
Table 2. Synthesis of 1,8-dioxo-octahydroxanthenes 3a-j using CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs°

Entry	R	Product	Time (min)	Isolated Yield (%)	mp (°C)
1	4-Cl	3a	10	91	233-235
2	2-Cl	3b	10	94	228-230
3	4-Br	3c	8	91	235-237
4	4-NO$_2$	3d	8	93	225-227
5	3-NO$_2$	3e	12	94	176-178
6	4-OH	3f	12	90	250-253
7	4-F	3g	10	93	229-253
8	4-Me	3h	10	95	214-215
9	4-MeO	3i	12	92	241-243
10	H	3j	12	92	197-199

°Reaction conditions: dimedone 1 (2 mmol), an aromatic aldehyde 2a-j (1 mmol), CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H MNPs (0.04 g), 110 °C, solvent-free.

The obtained results using CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H as a heterogeneous catalyst were compared with those using other catalysts reported for the synthesis of 1,8-dioxo-octahydroxanthenes. This comparison is shown in Table 3. As can be seen, our reaction conditions showed a shorter reaction time than the other conditions and gave high yields of the desired products.

Table 3. Comparison of the efficiencies of different catalysts for the synthesis of 1,8-dioxo-octahydroxanthenes

Catalyst	Conditions	Time (min)	Yield (%)	Ref.
Sulfated zirconia	EtOH, 70, reflux	480	84-95	[10]
MWCNT-BuSO$_3$H	EtOH, r.t., reflux	25-40	91-96	[11]
β-CD-BSA	H$_2$O, reflux	15-60	88-97	[12]
CAN/HY-zeolite	H$_2$O, reflux	45-160	72-93	[13]
Silica/Preyssler NPs	H$_2$O, reflux	180	82-96	[14]
L-Proline	ClCH$_2$CH$_2$Cl, 60	360	59-90	[15]
ZnO nanoparticles	EtOH, reflux	30-150	78-98	[16]
SmCl$_3$	EtOH, reflux	480-1440	20-98	[17]
Nanosized MCM-41-SO$_3$H	H$_2$O, 60, Ultrasound	15-90	86-99	[18]
Trimethylsilyl chloride	CH$_3$CN, reflux	480-600	72-84	[19]
H$_3$PW$_{12}$O$_{40}$/MCM-41	EtOH, reflux	300	74-94	[20]
[Et$_3$NC$_2$SO$_3$H]H$_2$SO$_3$/Al$_2$O$_3$		30-40	78-97	[21]
CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H		8-12	90-95	This work

Page | 567
The reusability of the catalyst was also investigated. For this purpose, the same model reaction was again studied under optimized conditions. After the completion of the reaction, hot acetone was added to the reaction mixture to dissolve the product. With the aid of an external magnet, the catalyst was held on the sidewall of the reaction vessel, while the solution was decanted. The catalyst was washed with acetone and ethanol, dried at 100 °C under vacuum for 1 h, and reused for a similar reaction. The catalyst could be used at least four times with only a slight reduction in activity (91, 90, 88, and 87% yields for first to fourth use, respectively) which clearly demonstrates the practical reusability of this catalyst.

Conclusion
In summary, we report a new, simple and green catalytic method for the synthesis of 1,8-dioxo-octahydroxanthenes via the reaction of aromatic aldehydes with dimedone using sulfuric acid linked on silica-coated CuFe₂O₄ MNPs (CuFe₂O₄@SiO₂-SO₃H) at 110 °C under solvent-free conditions. The catalyst could simply be recovered with the aid of an external magnet, and used at least four times without significant loss of its catalytic activity. High yields, short reaction times, easy work-up, and the absence of any volatile and hazardous organic solvents are some advantages of this protocol.

Acknowledgements
This work was supported by Islamic Azad University, Mashhad Branch, Iran.

References
[1] S. Naseem, M. Khalid, M.N. Tahir, M.A. Halim, A.A.C. Braga, M.M. Naseer, Z. Shafiq, J. Mol. Struct., 2017, 1143, 235-244.
[2] K. Reddi Mohan Naidu, B. Satheesh Krishna, M. Anil Kumar, P. Arulselvan, S. Ibrahim Khalivulla, O. Lasekan, Molecules, 2012, 17, 7543-7555.
[3] H. Hafez, M. Hegab, I. Ahmed-Farag, A. El-Gazzar, Bioorg. Med. Chem. Lett., 2008, 18, 4538-4543.
[4] H. Wang, L. Lu, S. Zhu, Y. Li, W. Cai, Curr. Microbiol., 2006, 52, 1-5.
[5] C. Spatafora, V. Barresi, V.M. Bhusainahalli, S. Di Micco, N. Musso, R. Riccio, G. Bifulco, D. Condorelli, C. Tringali, Org. Biomol. Chem., 2014, 12, 2686-2701.
[6] Y. Song, Y. Yang, J. You, B. Liu, L. Wu, Y. Hou, W. Wang, J. Zhu, Chem. Pharm. Bull., 2013, 61, 167-175.
[7] K. Razmkhah, H. Little, S. Sandhu, T.R. Dafforn, A. Rodger, RSC Adv., 2014, 4, 37510-37515.
[8] L. Cerdán, V. Martínez-Martínez, I. García-Moreno, A. Costela, M.E. Pérez-Ojeda, I.L. Arbeloa, L. Wu, K. Burgess, Adv. Opt. Mater., 2013, 1, 984-990.
[9] N. Sekar, Colourage 2003, 50, 59-60.
[10] S.S. Kahandal, A.S. Burange, S.R. Kale, P. Prinsen, R. Luque, R.V. Jayaram, Catal. Commun., 2017, 97, 138-145.
[11] K.P. Boroujeni, Z. Heidari, R. Khalifeh, Acta Chim. Slov., 2016, 63, 602-608.
[12] K. Gong, H. Wang, S. Wang, Y. Wang, J. Chen, Chin. J. Catal., 2015, 36, 1249-1255.
[13] P. Sivaguru, A. Lalitha, Chin. Chem. Lett., 2014, 25, 321-323.
[14] A. Javid, M.M. Heravi, F.F. Bamoharram, J. Chem., 2011, 8, 910-916.
[15] B. Das, J. Kashanna, R.A. Kumar, P. Jangili, Synth. Commun., 2012, 42, 2876-2884.
[16] Z. Lasemi, E. Mehrasbi, Res. Chem. Intermed., 2015, 41, 2855-2866.
[17] A. Ilangoovan, S. Malayappasamy, S. Muralidharan, S.
Magnetically separable modified sulfuric acid (CuFe$_2$O$_4$@SiO$_2$-OSO$_3$H): ...
Khojastehnezhad, Appl. Organometal. Chem., 2018, 32, Art. No. e3930.
[49] N. Hosseininasab, A. Davoodnia, F. Rostami-Charati, A. Khojastehnezhad, Russ. J. Gen. Chem., 2017, 87, 2436-2443.

[50] A. Bazgir, G. Hosseini, R. Ghahremanzadeh, ACS Comb. Sci., 2013, 15, 530-534.
[51] S. Swami, A. Agarwala, R. Shrivastava, New J. Chem., 2016, 40, 9788-9794.
[52] D.C. Jiles, D.L. Atherton, J. Magn. Magn. Mater., 1986, 61, 48-60.

How to cite this manuscript: Ali Jalaeian-Hadad, Abolghasem Davoodnia, Niloofar Tavakoli-Hoseini, Farzaneh Tajfirooz. “Magnetically separable modified sulfuric acid (CuFe2O4@SiO2~OSO3H): Preparation, characterization and catalytic application for the synthesis of 1, 8-dioxo-octahydroxanthenes”. Eurasian Chemical Communications, 2019, 559-570.