Abstract
Eye redness can be taken as a sign of inflammation which may suggest severity and progression of a specific disease. In image processing, there is apportioning a digital image into relevant features in sets of pixels where is called image segmentation. The image that consists of numerous parts of different colors and textures need to be distinguished in this process. In each digital image, the transformation of images into edges was using edge detection techniques. It represents the contour of the image which could be helpful to recognize the image as an object with its detected edges. The Canny edge detector is a standard edge detection algorithm for many years among the present edge detection algorithms. This paper focuses on important canny edge detection for detecting a region of interest (ROI) in eye redness images. © 2019 Published under licence by IOP Publishing Ltd.

Index Keywords
Edge detection, Green computing, Object detection, Signal detection, Textures; Canny edge detection, Canny edge detectors, Digital image, Edge detection algorithms, Region of interest, Relevant features; Image segmentation

References

- Sánchez Brea, M.L., Barreira Rodríguez, N., Mosquera González, A., Evans, K., Pena-Verdeal, H.
 Defining the optimal region of interest for hyperemia grading in the bulbar conjunctiva
 (2016) Comp. and Math. Methods in Med., pp. 1-9.

- Brea, M.L.S., Rodríguez, N.B., Maroño, N.S., González, A.M., García-Resúa, C., Fernández, M.J.G.
 On the development of conjunctival hyperemia computer-assisted diagnosis tools: Influence of feature selection and class imbalance in automatic gradings
 (2016) Artif.l Intel. in Med., 71, pp. 30-42.

- Zhao, W.J., Duan, F., Li, Z.T., Yang, H.J., Huang, Q., Wu, K.L.
 Evaluation of regional bulbar redness using an image-based objective method
 (2014) Inter. J. of Ophthal., 7, pp. 71-76.

- Rosas-Romero, R., Martínez-Carballido, J., Hernández-Capistrán, J., Uribe-Valencia, L.J.
 A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images
 (2015) Comp. Med. Imaging and Graphics, 44, pp. 41-53.

- Hilmi, M.R., Che Azemin, M.Z., Mohd Kamal, K., Mohd Tamrin, M.I., Abdul Gaffur, N., Tengku Sembok, T.M.
 Prediction of changes in visual acuity and contrast sensitivity function by tissue redness after pterygium surgery
 (2017) Current Eye Research, 42 (6), pp. 852-856.

- Rodríguez, J.D., Johnston, P.R., Ousler, G.W., III, Smith, L.M., Abelson, M.B.
 Automated grading system for evaluation of ocular redness associated with dry eye
Yogamangalam, R., Karthikeyan, B.
Segmentation techniques comparison in image processing
(2013) *Inter. Journal of Eng. and Tech. (IJET)*, 5, pp. 307-313.

Azemin, M.Z.C., Tamrin, M.I.M., Hilmi, M.R., Kamal, K.M.
Inter-Grader Reliability of a Supervised Pterygium Redness Grading System
(2016) *Adv. Sci. Letters*, 22 (10), pp. 2885-2888.

Derakhshani, R., Tankasala, S.P., Crihalmeanu, S., Ross, A., Krishna, R.
A comparative analysis of wavelets for vascular similarity measurement
(2016) *Inter. Joint Conf. on Neural Networks (IJCNN)*, pp. 3870-3876.

Hajare, P.A., Tijare, P.A.
Edge detection techniques for image segmentation
(2011) *Inter. Journal of Comp. Sci. and App.*, 4, pp. 49-53.

Kabade, A.L., Sangam, D.V.
Canny edge detection algorithm
(2016) *Inter. Journal of Adv. Research in Electronics and Comm. Eng.*, 5, pp. 1292-1295.

Rong, W., Li, Z., Zhang, W., Sun, L.
An improved CANNY edge detection algorithm
(2014) *Inter. Conf. on Mech. and Automation (ICMA)*, pp. 577-582.

Romano, V., Steger, B., Brunner, M., Kaye, A., Zheng, Y., Willoughby, C.E., Kaye, S.B.
Detecting Change in Conjunctival Hyperemia Using a Pixel Densitometry Index
(2017) *Ocular Immunology and Inflammation*, pp. 1-6.

Kaur, E.K., Mutenja, V., Gill, E.I.S.
Fuzzy logic based image edge detection algorithm in MATLAB
(2010) *Inter. Journal of Comp. App.*, 1, pp. 55-58.

Park, I.K., Chun, Y.S., Kim, K.G., Yang, H.K., Hwang, J.M.
New clinical grading scales and objective measurement for conjunctival injection
(2013) *Investigative Ophthal. and Visual Sci.*, 54 (8), pp. 5249-5257.

Wolffsohn, J.S.
Incremental nature of anterior eye grading scales determined by objective image analysis
(2004) *British Journal of Ophthal.*, 88 (11), pp. 1434-1438.

Winder, R.J., Morrow, P.J., McRitchie, I.N., Bailie, J.R., Hart, P.M.
Algorithms for digital image processing in diabetic retinopathy
(2009) *Comp. Medical Imaging and Graphics*, 33 (8), pp. 608-622.

Astvatsatourov, A., Mösges, R.
Image-Based Assessment of Allergic Inflammation under Conjunctival Provocation
(2015) *ICIMTH*, pp. 15-18.

Esa, N.M., Zain, A.M., Bahari, M., Yusuf, S.M.
Comparative Study of Segmentation and Feature Extraction Method on Finger Movement
(2018) *Inter. Conf. of Reliable Inf. and Comm. Tech.*, pp. 117-127.

Editors: Abdullah M.M.A.-B., Saad M.N.M., Zain A.M., Talib M.S., Rahim S.Z.A., Rosli M.F.
Publisher: Institute of Physics Publishing

ISSN: 17578981
Language of Original Document: English
Abbreviated Source Title: IOP Conf. Ser. Mater. Sci. Eng.
