A systematic review and meta-analysis comparing arthroplasty and internal fixation in the treatment of elderly displaced femoral neck fractures

Junhao Deng, MD, PhD, Guoji Wang, MD, PhD, Jia Li, MD, PhD, Song Wang, MD, PhD, Miao Li, PhD, Xiaohong Yin, BS, Licheng Zhang, MD, PhD, Peifu Tang, MD, PhD, Junhao Deng, MD, PhD, Guoji Wang, MD, PhD, Jia Li, MD, PhD, Song Wang, MD, PhD, Miao Li, PhD, Xiaohong Yin, BS, Licheng Zhang, MD, PhD

Abstract

Background: Currently, there are 2 mainstream treatments for displaced femoral neck fracture, including internal fixation and arthroplasty. However, there are still some controversial problems as to which treatment should be primarily chosen.

Methods: The relevant studies comparing arthroplasty with internal fixation were searched in the databases of PubMed, Embase, and Cochrane Library. Finally, 31 relevant randomized controlled trials were included in this meta-analysis. The quality of studies was evaluated and meta-analyses were performed using RevMan 5.3 software. We also assessed the heterogeneity among studies and publication bias via the I-squared index and forest plots.

Results: There was no significant difference between arthroplasty and internal fixation groups in patient mortality at both short-term and long-term points. However, patients treated with arthroplasty showed significantly lowered risks of reoperation both at short-term (5.6% vs 31.5%; relative risks (RR) = 0.19, 95% CI, 0.13–0.28; P < .00001) and long-term follow-up (9.5% vs 45.9%; RR = 0.23, 95% CI, 0.17–0.33; P < .00001). Similarly, arthroplasty-treated patients demonstrated a significant decrease in the risk of postoperation complications at short-term (10.3% vs 34.4%; RR = 0.37, 95% CI, 0.24–0.57; P < .00001) and long-term follow-up (11.7% vs 42.5%; RR = 0.30, 95% CI, 0.16–0.57; P < .0002). Besides, patients in the arthroplasty group were associated with better alleviation of pain postoperation (18.3% vs 31.1%; RR = 0.50, 95% CI, 0.33–0.78; P = .002).

In trial sequence analyses, all cumulative Z curves except that of mortality crossed the trial sequential monitoring boundaries and conventional boundaries, and required information size has been reached.

Conclusions: Arthroplasty leads to a lower rate of reoperation, a reduced risk of complications, and a better alleviation of postoperation pain both at short-term and long-term follow-up. Most importantly, and according to trial sequence analyses, more than enough evidence has been achieved that arthroplasty does show better outcomes than internal fixation in terms of reoperation rate, complications, and postoperation pain.

Level of Evidence: Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.

Keywords: arthroplasty, femoral neck fracture, internal fixation

Source of funding: nil.

JD, GW, and JL should be considered co-first authors as they contributed equally to this paper.

The authors have no conflicts of interest to disclose.

* Department of Orthopaedics, † Department of Pediatrics, Chinese PLA General Hospital, Beijing, ¥ Medical College, NanKai University, Tianjin, ‡ Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, ∗ Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China.

Corresponding author. Address: General Hospital of Chinese People’s Liberation Army, Beijing, 100853 China. E-mail addresses: pftang301@163.com (P. Tang); zhanglcheng218@126.com (L. Zhang).

Copyright © 2020 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of the Orthopaedic Trauma Association. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

OTA (2020) e087
Received: 12 February 2020 / Accepted: 26 May 2020
Published online 22 December 2020
http://dx.doi.org/10.1097/OI9.0000000000000087

1. Introduction

With the growing number of the geriatric population and traffic accidents, patients with femoral neck fractures have been on the rise in the last 2 decades or 3. Every year, about 1,600,000 individuals worldwide suffer from this kind of fracture and this number will continue to rise to 6.26 million by 2050. Moreover, femoral neck fractures are usually characterized by the high incidence of nonunion and femoral head necrosis, which, therefore, result in a sharp increase in the morbidity and disability rate.

Although there is a wide range of treatments that are currently available for those patients with displaced femoral neck fractures, arthroplasty (AR), including total hip arthroplasty (THA) and hemiarthroplasty (HA), and internal fixation (IF) are still the 2 primary alternatives. As for those young patients with good bone quality and good health, treatment of reduction with IF would be strongly recommended in most cases. However, for the elderly patients, the best option is still far from definite, so both AR and IF have been widely used in the treatment of displaced neck fractures. On the one hand, AR is currently becoming increasingly popular amongst orthopaedists for its significantly lower incidence of reoperation rate and rapid functional...
2.5. Data synthesis

The primary outcome was the short-term (within 5 years) and long-term (over 5 years) mortality, reoperation risk, complication rate, and pain after the treatment, IF or AR. The secondary outcomes included the TSA results as well as the sensitivity analysis results.

2.6. Risk of bias and methodological quality assessment

We assess the methodological quality of each study based on The Cochrane Collaboration’s tool.[21] We primarily evaluated the following parts: randomization, allocation concealment, blinding, incomplete outcome data, and selective reporting. If there were any disagreement, we would discuss them again, and differences were resolved by a third reviewer. We also used GRADEpro to evaluate the quality of the eligible studies.[22]

2.7. Trial sequential analysis

It is widely accepted that a qualified meta-analysis should be at least as good as a high-quality RCT, so rigorous standards for a meta-analysis should not be neglected. We, therefore, used TSA, which is capable of controlling the risks of type I and type II errors and then calculated required information size (RIS) needed by systematic review and meta-analysis, to evaluate the reliability and conclusiveness of the acquired studies on the major results.[23–24] As previously described,[25] TSA would create a trial sequential monitoring boundary by adjusting the random errors before the implementation of TSA. Also, the horizontal line of Z = 1.96 acted as the traditional boundary of statistical significance in the process of TSA. See more details in supplementary file.

2.8. Statistical analysis

We conducted the meta-analysis by RevMan 5.3 software (The Nordic Cochrane Centre, Copenhagen, Denmark). We chose to compare the dichotomized results using RR and corresponding 95% CIs, and compare the continuous data using standard mean difference. Additionally, since both THA and HA were often seen being performed in the AR group, we made comparisons between the THA and IF, and between HA and IF, respectively. Chi-square and I² tests were used to check the heterogeneity among studies. If the heterogeneity was lower than 50%, a fixed-effects model was used; otherwise, a random-effects model would be used. Publication bias was evaluated by a funnel plot based on the outcomes.

3. Results

3.1. Included studies and characteristics

A total of 1,352 records were identified through database searching, but 31 studies were included at last for full review and meta-analysis (Fig. 1). Characteristics of the included studies were shown in Table 1.[18–10,12,13,15–19,26–46] Figure 2 showed the risk of bias in the included trials. The quality assessment analysis indicated that the quality of the primary outcomes was moderate.

3.2. Clinical outcomes

3.2.1. Mortality. Twenty studies, on a total of 2,354 patients in AR group and 1,914 patients in IF group, provided the short-term mortality rate, whereas 14 studies, on a total of 1,391
Table 1. Characteristics of included randomized controlled trials.

Study	Year	Interventions	Number of patients	Follow-up months
Soreide	1979	HA Olmed screws	53	14.5
Sikorski	1981	HA Garden screws	114	24
Svenningsen	1985	HA Compression screw/McLaughlin nail/plate	59	36
Skinner	1989	HA/THA Sliding compression screws	180	12
van Vuigt	1993	HA Dynamic hip screw	22	36
Jönsson	1996	THA Hansson hook pins	23	24
Neander	1997	THA Two parallel Olmed screws	43	18
Johansson	2000	HA/THA Two parallel Olmed screws	50	24
Ravikumar	2000	HA Two von Bahr screws	47	60
vanDortmont	2000	HA Dynamic hip screw	29	24
Davison	2001	HA Compression hip screw / two-hole plate	187	60
Pucakalje	2001	HA Three Ullevaal screws	15	24
Parker	2002	HA Three AO screws	229	12
Rogmark	2002	HA/THA Hansson hook pins or Olmed screws	192	24
Rodin	2003	HA Two von Bahr screws	47	60
Tidenmark	2003	THA Two cannulated screws	49	24
Blomfeldt	2005	THA Two cannulated screws	49	48
Bjorgul	2006	HA Olmed screws	455	72
Keating	2006	HA/THA Cancellous screws or sliding hip screw	180	24
Frihagen	2007	HA Two parallel cannulated screws	110	24
Hendtveit	2007	HA Screws	109	24
Mouzopoulus	2008	HA/THA Richards plate-screw	71	48
Leonardsoor	2010	HA/THA Hansson hook pins or Olmed screws	192	>60
Parker	2010	HA Screws	229	180
Charmmont	2012	THA Two cannulated screws	43	>60
Hedberg	2013	HA Two cannulated screws	29	24
Cao	2014	THA Three hollow compression screws	157	60
Johansson	2014	THA Screw	68	>120
Stoor	2014	HA Screws	110	>60
Parker	2015	HA Screw/plate	26	12
Lu	2017	HA Cannulated screws	37	36.8
In an effort to provide more details on the effect of different types of AR on mortality, we also compared the short-term and long-term mortality between HA and IF group [(14 studies of short-term mortality (labeled as A) and 5 studies of long-term mortality (labeled as B)], and between THA and IF group [(7 studies of short-term mortality (labeled as C) and 3 studies of long-term mortality (labeled as D)]. Similarly, the pooled analysis showed that there was no difference in comparison of the mortality of either THA or hip AR with IF at short-term and long-term follow-ups. Their statistical results were shown in sequence (Figs. 3 and 4): A (RR = 1.08; 95% CI, 0.95–1.23; P = 0.25); B (RR = 1.03; 95% CI, 0.90–1.16; P = 0.69); C (RR = 1.01; 95% CI, 0.97–1.05; P = 0.97); D (RR = 0.91; 95% CI, 0.75–1.11; P = 0.37). We used a fixed-effect model, as there was no significant heterogeneity (A: P = 0.06, I² = 41%; B: P = 0.68, I² = 0%; C: P = 0.07, I² = 38%; D: P = 0.71, I² = 0%). The TSA was conducted based on the rate of short-term mortality in HA group in control group of 20%, a relative risk increase in the experimental group of 10%, and diversity of 49%. The RIS was 25,260 participants, 12.5% of which were accrued in our meta-analysis. The cumulative Z curve (blue line) crossed neither the trial sequential monitoring boundaries (red inward slash) nor the conventional boundaries (black dotted line), and the RIS was far from being reached (Fig. S2, http://links.lww.com/OTAI/A11). The TSA-adjusted 95% CI of RR was from 0.63 to 1.82.

3.2.2. Reoperation rate. Twenty-three studies, on a total of 2,383 patients in the AR group and of 1,914 patients in the IF group, provided the short-term reoperation rate, whereas 7 studies, on a total of 933 patients in the AR group and of 849 patients in the IF group, provided the long-term reoperation rate. There were statistical heterogeneities between studies in 2 groups (P < 0.0001, I² = 74%; P = 0.03, I² = 62%), so we used a random-effect model instead. The pooled results showed that AR group was associated with a lower short-term reoperation rate (RR = 0.19; 95% CI, 0.13–0.28; P < 0.00001), and a lower long-term reoperation rate (RR = 0.23; 95% CI, 0.17–0.33; P < 0.00001) (Figs. 5 and 6).

The TSA was conducted based on the rate of short-term reoperation in the control group of 30%, a relative risk reduction in the experimental group of 20%, and diversity of 56%. The cumulative Z curve (blue line) crossed the trial sequential monitoring boundaries, and conventional boundaries and the RIS was reached (Fig. S3, http://links.lww.com/OTAI/A11). The TSA-adjusted 95% CI of RR was adjusted from 0.14 to 0.19.

Again, we conducted the subgroup analysis of reoperation rate between THA and IF and HA and IF. The heterogeneity tests between THA and IF showed that it was present in both short-term and long-term reoperation rate (P = 0.96, I² = 0%; P = 0.30, I² = 16%), whereas the heterogeneity tests between HA and IF showed that there was no significant heterogeneity in long-term
reoperation rate \((P=0.44, I^2=0\%) \), but it was obviously heterogeneous in short-term reoperation rate \((P<0.0001, I^2=74\%) \). Therefore, the random-effect model was used for comparing short-term reoperation rate between HA and IF, whereas the fixed-effect model was used for all other comparisons. The pooled RRs for short-term and long-term reoperation rate after HA was compared to IF were 0.21 (95% CI, 0.13–0.35; \(P<0.00001 \)) and 0.17 (95% CI, 0.12–0.24; \(P<0.00001 \)), respectively, (Figs. 5 and 6). And the pooled RRs for short-term and long-term reoperation rate after THA was compared to IF were 0.11 (95% CI, 0.06–0.21; \(P<0.00001 \)) and 0.35 (95% CI, 0.23–0.53; \(P<0.00001 \)), respectively, (Figs. 5 and 6). It was clear that patients treated by AR (either THA or HA) were more likely to have fewer reoperations at short-term and long-term than patients treated by IF \((P<0.00001) \).

The TSA was conducted based on the rate of short-term reoperation in HA group in the control group of 30%, a relative risk reduction in the experimental group of 50%, and diversity of 74%. The cumulative Z curve (blue line) crossed the trial sequential monitoring boundaries and the conventional boundaries, and the RIS was reached (Fig. S4, http://links.lww.com/OTAI/A11). The TSA-adjusted 95% CI of RR was from 0.16 to 0.25.

3.2.3. Complications

Twenty studies, on a total of 1,740 patients in the AR group and of 1,693 patients in the IF group, provided the data of surgical complications as a whole, including the short-term and long-term complications. Due to the high heterogeneity \((P<0.00001, I^2=83\% \); \(P<0.00001, I^2=89\%) \), we used the random-effect model to perform the analysis. The pooled

Table 1: Study or Subgroup

Study or Subgroup	Arthroplasty	Internal Fixation	Weight	Risk Ratio	M.H. Fixed, 95% CI	Year
1.1.1 Mortality-HA	1.1.2 Mortality-THA	1.1.3 Mortality-HA/THA				

Figure 3: Forest plot of comparison of mortality at short term including the subgroups of Mortality-HA, Mortality-THA, and Mortality-HA/THA. Experimental = Arthroplasty, Control = Internal Fixation, M-H = Mantel-Haenszel method.
analysis revealed a lower risk both at short-term (RR = 0.37, 95% CI, 0.24–0.57; P < .00001) (Fig. 7) and long-term (RR = 0.30, 95% CI, 0.16–0.57; P < .0002) (Fig. 8) of postoperative complications in the AR group when compared to that in the IF group, so we speculated that AR might be superior to IF regarding the postoperative complications.

Subgroup analysis showed that HA was also associated with a lower risk of complications both at short-term (RR = 0.48, 95% CI, 0.27–0.85; P = 0.01) and at long-term (RR = 0.17, 95% CI, 0.12–0.25; P < .00001) (Figs. 7 and 8) when compared to IF. As for THA, although it demonstrated a lower risk of complications at short-term (RR = 0.20, 95% CI, 0.12–0.34; P < .00001) (Fig. 7), it did not show a statistically significant difference at long-term (RR = 0.68, 95% CI, 0.23–1.97; P = .48) (Fig. 8). We used the random-effect model as well by virtue of their high heterogeneity (P < .00001, I² = 83% at short-term; P < .00001, I² = 89% at long-term). We particularly removed the feeling of pain from various complications for the comparison between AR and IF because the degree of pain is one of the most critical factors that determine a patient’s quality of life. Similarly, we used the random-effect model on account of its high heterogeneity (P < .00001, I² = 85%). Moreover, the pooled RRs for postoperative pain after AR compared to IF were 0.50 (95% CI, 0.33–0.78; P = .002) (Fig. 9), so it seemed that patients treated by AR felt less pain than those treated by IF.

The TSA was conducted in light of short-term complications, total complications, and pain in the control group of 30%, a relative risk reduction in the experimental group of 30%, and diversity of 85%, 81%, and 89%, respectively. The RIS was 4,808, 5,848, and 7,003 participants, respectively. The cumulative Z curve (blue line) crossed the trial sequential monitoring boundaries (red inward slash) before the RIS has been reached (Fig. S5, http://links.lww.com/OTAI/A11). The TSA-adjusted 95% CI of RR was adjusted from 0.25 to 0.37, 0.21 to 0.30, and 0.48 to 0.80.

3.3. Sensitivity analysis

For those tests with high heterogeneity, we also performed the sensitivity analysis. We removed 1 study at a time and analyzed the rest to evaluate whether the overall result could have been significantly affected by 1 single study. The results of sensitivity analysis found that no single study had a significant influence on pooled RRs (Figs. S6–10, http://links.lww.com/OTAI/A11).
3.4. Publication bias

In order to check for the underlying publication bias, we used the Begg funnel plot (standard error (SE) of the log RR). Also, the results showed no publication bias (Figs. S11–17, http://links.lww.com/OTAI/A11).

4. Discussion

Currently, the best treatment for patients with femoral neck fractures, particularly in elderly patients, is still undetermined. Previous evidence[7] had shown that patients treated with AR were superior to those treated with IF on the whole. However, most of the studies they collected were observational studies and lacked related quality control. Therefore, the reliability of their conclusions was limited. With the continuous advent of some new evidence of the comparison of AR and IF, we performed this meta-analysis of 31 RCTs in order to provide a latest and more reliable conclusion of the best treatment for patients with femoral neck fractures. The composite results revealed that compared to IF, AR was associated with fewer secondary operations and lower risk of postoperative complications, as well as no increased mortality. Additionally, AR was superior to IF with respect to the postoperative pain that patients suffered.

Mortality is one of the most essential clinical assessment criteria and possible crucial factors to determine whether patients should be treated with AR or IF. Patients treated by AR were

![Figure 5. Forest plot of comparison of reoperation at short term including the subgroups of Reoperation-HA, Reoperation-THA, and Reoperation-HA/THA. Experimental = Arthroplasty, Control = Internal Fixation, M-H = Mantzel-Haenzel method.](http://links.lww.com/OTAI/A11)
allegedly characterized by higher mortality when compared to those treated by IF. Some studies\cite{6,26} showed that there was an increasing trend in the RR of mortality within the early 4 months after AR compared to the same period after IF. However, Hudson et al\cite{47} reported higher mortality in patients treated by IF when they took into consideration the age, gender, and comorbidities in their study. Nonetheless, in our meta-analysis, it suggests similar mortality for AR and IF in the treatment of patients with femoral neck fractures either within 5 years or more than five years. Also, similar to the comparison of AR and IF in the mortality, the results of the comparison between THA and IF or between HA and IF show no difference in mortality. In other words, the application of AR, regardless of THA or HA, for treating femoral neck fractures will not increase the possibility of death at short-term and long-term follow-ups.

The reoperation rate is also a key factor for assessing AR and IF. It has been reported that the reoperation rate after IF was changed from 30% to 50%\cite{48} and was far higher than that after AR.\cite{49} In our meta-analysis, similar results for IF were observed. We reported that AR could effectively reduce the risk of reoperation at short-term and long-term periods. Furthermore, THA or HA did not change the overall pooled effect of AR compared to IF in the reoperation rate. This can be partly attributed to the high risk of complications after IF, which will be discussed in detail later.

As for the occurrence of major postoperative complications, such as fixation failure, dislocation, nonunion, peri-prosthetic fractures, femoral head necrosis, and infection, our meta-analysis revealed that compared to IF, AR was associated with a lower risk of complications either at short-term or at long-term follow-ups, or overall, which was likely to be attributed to lower risk of nonunion or femoral head necrosis.\cite{6,27}

Additionally, we compared AR and IF in the pain rate, which was significantly higher in the IF group. We believed that reasons behind this were that patients treated with IF, as reported by previous studies, \cite{7,9,13,28,29} were more likely to suffer from nonunion and femoral head necrosis, which would definitely increase the risk of pain.

Based on results from the sequential analysis, all the calculated RIS required to produce a reliable conclusion in mortality between AR (including THA and HA) and IF was far more than the number of patients we included. What’s more, neither did the results of the current trial on mortality cross the traditional threshold ($Z = 1.96$) nor the threshold of sequential analysis, meaning that, until now, we are still not sure which treatment, AR or IF, has higher mortality and further research is needed. However, unlike results from sequential analysis of mortality, results on reoperation rate, complications, and pain showed positive findings. Not only did they cross the traditional threshold ($Z = 1.96$), but they also crossed the threshold of sequential analysis. In other words, the cumulative evidence from the comparison of the risk of reoperation and complications between AR (including THA and HA) and IF were reliable and conclusive.

Therefore, there should be no need for further research on the
comparison between AR and IF in terms of reoperation rate and postoperative complication.

However, there are 3 limitations to our study. First, some of the trials included in this meta-analysis may have deficiencies in the methodologic quality. For instance, there are 4 studies\(^{30-33}\) that adopted quasi-random or nonrandom methods to conduct their research. One study\(^{34}\) failed to conceal random allocation, and only several studies\(^{12,28-30,34-36}\) made it clear that they had used blinding for the type of treatment. For another, although we conducted the subgroup analysis on THA or HA, the effects of different types of AR (THA or HA, cemented or un-cemented) and IF (screws, plates, etc.) on the treatment outcomes were unavoidable. Besides, we included a relatively massive number of studies from 1979 to 2018, in which there may be some unknown biases and high heterogeneity. In addition, although there were some similar meta-analyses\(^{50-52}\) published before, our study here had its own advantages. First of all, far more recent research and a considerable number of patients were included in our meta-analysis, which was more likely to offer reliable and convincing conclusions. Also, we applied many methods to evaluate the quality and heterogeneity of each RCT. Most importantly, when compared to other meta-analyses, this meta-analysis was highlighted by the application of TSA, that showed its outstanding advantages of evaluating the reliability and conclusiveness of the acquired studies on the major results. Under TSA, we could safely draw the conclusion that AR was indeed superior to IF concerning reoperation rate, complications, and post-operation pain in the treatment of the femoral neck fracture.

5. Conclusion

In summary, we recommend that the AR should be considered first in the treatment of elderly patients with displaced femoral neck fractures. And, as we have obtained sufficient evidence so far, more studies on the comparison of reoperation rate,
complications, and postoperation pain between AR and IF might only outlive their usefulness in the future. Still, more well-designed and high-quality research with long-term follow-ups are needed to determine the optimal treatment with lower mortality.

Acknowledgments

This research is supported by the projects of the international cooperation and exchanges of the National Natural Science Foundation of China (81520108017).

Study of Subgroup	Experimental	Control	Total	Total	Weight	Risk Ratio	Year	M.H.	Random	95% CI
3.2.1 Complication-HA										
Dawson 2001	8	187	32	93	15.3%	0.12 [0.06, 0.26]	2001			
Roden 2003	7	47	30	53	15.4%	0.26 [0.13, 0.54]	2003			
Parker 2010	16	229	100	226	17.1%	0.16 [0.10, 0.26]	2010			
Subtotal (95% CI)	463	372	162	47.7%	0.17 [0.12, 0.25]					
Total events	31									
Heterogeneity: Tau^2 = 0.01; Chi^2 = 2.19, df = 2 (P = 0.33); I^2 = 9%										
Test for overall effect: Z = 9.23 (P = 0.00001)										

3.2.2 Complication-THA										
Chammoud 2012	14	43	47	57	17.4%	0.39 [0.25, 0.62]	2012			
Cao 2014	33	157	23	128	17.2%	1.17 [0.72, 1.98]	2014			
Subtotal (95% CI)	200	185	70	34.7%	0.68 [0.23, 1.97]					
Total events	47									
Heterogeneity: Tau^2 = 0.54; Chi^2 = 10.70, df = 1 (P = 0.001); I^2 = 91%										
Test for overall effect: Z = 0.71 (P = 0.48)										

3.2.3 Complication-HA/THA										
Leonardsso 2010	22	192	97	217	17.6%	0.26 [0.17, 0.39]	2010			
Subtotal (95% CI)	192	217	97	17.6%	0.26 [0.17, 0.39]					
Total events	22									
Heterogeneity: Not applicable										
Test for overall effect: Z = 6.35 (P = 0.00001)										
Test for subgroups: Chi^2 = 8.59, df = 2 (P = 0.004); I^2 = 69.7%										

| Total (95% CI) | 855 | 774 | 100.0% | 0.30 [0.16, 0.57] |
| Total events | 100 | | | | | | | | | |
| Heterogeneity: Tau^2 = 0.57; Chi^2 = 45.34, df = 5 (P = 0.00001); I^2 = 69% |
| Test for overall effect: Z = 3.76 (P = 0.0002) |
| Test for subgroups: Chi^2 = 16.69, df = 2 (P = 0.004); I^2 = 56.9% |

Figure 8. Forest plot of comparison of complication at long term including the subgroups of Complication-HA, Complication-THA, and Complication-HA/THA. Experimental = Arthroplasty, Control = Internal Fixation, M-H = Mantzel-Haenzel method.

Study of Subgroup	Experimental	Control	Total	Total	Weight	Risk Ratio	Year	M.H.	Random	95% CI
3.2.1 Complication-HA										
Sikorski 1981	8	114	15	76	9.9%	0.36 [0.16, 0.80]	1981			
Jonsson 1996	5	23	9	24	8.9%	0.59 [0.23, 1.47]	1996			
Johansson 2000	2	50	12	50	5.6%	0.17 [0.04, 0.71]	2000			
Rawikumar 2000	25	180	60	91	13.4%	0.21 [0.14, 0.31]	2000			
Rogmark 2002	87	192	101	217	14.3%	0.75 [0.59, 0.95]	2002			
Parker 2002	91	229	102	226	14.5%	0.89 [0.71, 1.09]	2002			
Roden 2003	6	47	21	53	9.6%	0.32 [0.14, 0.73]	2003			
Keating 2006	4	180	6	116	6.7%	0.44 [0.13, 1.52]	2006			
Leonardsso 2010	2	192	6	217	4.8%	0.45 [0.09, 2.30]	2010			
Hedbeck 2012	16	29	12	30	12.1%	1.38 [0.80, 2.38]	2012			
Subtotal (95% CI)	1236	1102	100.0%	0.50 [0.33, 0.78]						
Total events	226									
Heterogeneity: Tau^2 = 0.32; Chi^2 = 50.27, df = 9 (P = 0.00001); I^2 = 65%										
Test for overall effect: Z = 3.10 (P = 0.002)										

Figure 9. Forest plot of comparison of postoperative pain. Experimental = Arthroplasty, Control = Internal Fixation, M-H = Mantzel-Haenzel method.
References

1. Johnell O, Kanis JA. An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int. 2004;11:897–902.

2. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–1733.

3. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359:1761–1767.

4. van Balen R, Steyerberg EW, Polder J, et al. Hip fracture in elderly patients: outcomes for function, quality of life, and type of residence. Clin Orthop Relat Res. 2001;390:232–243.

5. Murphy DK, Randell T, Brennan KL, et al. Treatment and displacement affect the reoperation rate for femoral neck fracture. Clin Orthop Relat Res. 2013;471:2691–2702.

6. Bhandari M, Devereaux PJ, Swiontkowski MF, et al. Fixation compared with arthroplasty for displaced fractures of the femoral neck. A meta-analysis. J Bone Joint Surg Am. 2003;85:1673–1681.

7. Ye CY, Liu A, Xu MY, et al. Arthroplasty versus internal fixation for displaced intracapsular femoral neck fracture in the elderly: systematic review and meta-analysis of short- and long-term effectiveness. Chin Med J (Engl). 2016;129:2630–2638.

8. van Breda AB, Oosterwegel WM, Goris RJ. Osteosynthesis versus endoprostheses in the treatment of unstable intracapsular hip fractures in the elderly. A randomised clinical trial. Arch Orthop Trauma Surg. 1993;113:49–53.

9. Ravikumar KJ, Marsh G. Internal fixation versus hemiarthroplasty versus total hip arthroplasty for displaced subcapital fractures of femur—13 year results of a prospective randomised study. Injury. 2000;31:793–797.

10. Sikorski JM, Barington R. Internal fixation versus hemiarthroplasty for the displaced subcapital fracture of the femur. A prospective randomised study. J Bone Joint Surg Br. 1981;63-B:357–361.

11. Parker MJ, Pryor GA. Internal fixation or arthroplasty for displaced cervical hip fractures in the elderly: a randomised controlled trial of 208 patients. Acta Orthop Scand. 2000;71:440–446.

12. Frihagen F, Nordsletten L, Madsen JE. Hemiarthroplasty or internal fixation for intracapsular displaced femoral neck fractures: randomised controlled trial. BMJ. 2007;335:1251–1254.

13. Parker MJ, Khan RJ, Crawford J, et al. Hemiarthroplasty versus internal fixation for displaced intracapsular hip fractures in the elderly. A randomised trial of 455 patients. J Bone Joint Surg Br. 2002;84:1150–1155.

14. Parker M, Johansen A. Hip fracture. BMJ. 2006;333:27–30.

15. Parkers MJ. Hemiarthroplasty versus internal fixation for displaced intracapsular fractures of the hip in elderly men: a pilot randomised study. Bone Joint J. 2015;97-B:992–996.

16. Lu Q, Tang G, Zhao X, et al. Hemiarthroplasty versus internal fixation in super-aggressive patients with undisplaced femoral neck fractures: a 5-year follow-up of randomized controlled trial. Arch Orthop Trauma Surg. 2017;137:27–35.

17. Cao L, Wang B, Li M, et al. Closed reduction and internal fixation versus total hip arthroplasty for displaced femoral neck fracture. Chin J Traumatol. 2010;17:63–68.

18. Stoen RO, Loftusum CM, Nordsletten L, et al. Randomized trial of hemiarthroplasty versus internal fixation for femoral neck fractures: no differences at 6 years. Clin Orthop Relat Res. 2014;472:360–367.

19. Johansson T. Internal fixation compared with total hip replacement for displaced femoral neck fracture: a prospective study. Acta Orthop Scand. 2010;81:459–466.

20. Muthesius MDF, Mohler D, Thomsen BD, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA. 2018;319:388–396.

21. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

22. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–926.

23. Brok J, Thorlund K, Gluud C, et al. Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. J Clin Epidemiol. 2008;61:763–769.

24. Wetterény J, Thorlund K, Brok J, et al. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008;61:64–73.

25. Wang G, Liu H, Wang C, et al. Cinacalcet versus Placebo for secondary hyperparathyroidism in chronic kidney disease patients: a meta-analysis of randomized controlled trials and trial sequential analysis. Sci Rep. 2018;8:3111.

26. Leonardsson O, Sernbo I, Carlsson A, et al. Long-term follow-up of replacement compared with internal fixation for displaced femoral neck fractures: results at ten years in a randomised study of 450 patients. J Bone Joint Surg Br. 2010;92:406–412.

27. Johansson T, Jacobsson SA, Ivarsson I, et al. Internal fixation versus total hip arthroplasty in the treatment of displaced femoral neck fracture: a prospective randomised study of 100 hips. Acta Orthop Scand. 2000;71:597–602.

28. Keating JF, Grant A, Masson M, et al. Randomized comparison of reduction and fixation, bipolar hemiarthroplasty, and total hip arthroplasty. Treatment of displaced intracapsular hip fractures in healthy older patients. J Bone Joint Surg Am. 2006;88:249–260.

29. Davison JN, Calder SJ, Anderson GH, et al. Treatment for displaced intracapsular fracture of the proximal femur. A prospective, randomised trial in patients aged 65 to 79 years. J Bone Joint Surg Br. 2001;83:206–212.

30. Heevel M, Pajunen ML, Moos J, et al. Femoral neck fractures: can physiologic status determine treatment choice? Clin Orthop Relat Res. 2007;461:203–212.

31. Soreide O, Moller A, Raagstad TS. Internal fixation versus primary prosthetic replacement in acute femoral neck fractures: a prospective, randomized clinical study. Br J Surg. 1979;66:56–60.

32. Skinner P, Riley D, Ellery J, et al. Displaced subcapital fractures of the femur: a prospective randomized comparison of internal fixation, hemiarthroplasty and total hip replacement. Injury. 1989;20:291–293.

33. Svenningsen S, Bøven P, Nesse O, et al. [Femoral neck fractures in the elderly—a comparison of 3 treatment methods]. Nord Med. 1985; 102:256–259.

34. Mouzopoulos G, Stamatakos M, Arabatzi H, et al. The four-year functional result after a displaced subcapital hip fracture treated with three different surgical options. Int Orthop. 2008;32:367–373.

35. Tidermark J, Ponzer S, Svensson O, et al. Internal fixation compared with total hip replacement for displaced femoral neck fractures in the elderly. A randomised, controlled trial. J Bone Joint Surg Br. 2003;85:380–388.

36. Blomfeldt R, Tornkvist H, Ponzer S, et al. Comparison of internal fixation with total hip replacement for displaced femoral neck fractures. Randomized, controlled trial performed at four years. J Bone Joint Surg Am. 2005;87:1680–1688.

37. Jonsson B, Sernbo I, Carlsson A, et al. Social function after cervical hip fracture. A comparison of hook-pins and total hip replacement in 47 patients. Acta Orthop Scand. 1996;67:431–444.

38. Neander G, Adolphson P, von Sivers K, et al. Bone and muscle mass after femoral neck fracture. A controlled quantitative computed tomography study of osteosynthesis versus primary total hip arthroplasty. Arch Orthop Trauma Surg. 1997;116:470–474.

39. van Dortmont LM, Douw CM, van Breukelen AM, et al. Canned screws versus hemiarthroplasty for displaced intracapsular femoral neck fractures in demented patients. Ann Chir Gynaecol. 2000;89:132–137.

40. Paalakka TJ, Laine HJ, Tarvainen T, et al. Thompson hemi-arthroplasty is superior to Ulleveaal screws in treating displaced femoral neck fractures in patients over 75 years. A prospective randomized study with two-year follow-up. Ann Chir Gynaecol. 2001;90:225–228.

41. Rogmark C, Carlsson A, Johnell O, et al. A prospective randomised trial of internal fixation versus arthroplasty for displaced fractures of the neck of the femur. Functional outcome for 450 patients at two years. J Bone Joint Surg Br. 2002;84:183–188.

42. Roden M, Schon M, Fredin H. Treatment of displaced femoral neck fractures: a randomized minimum 5-year follow-up study of screws and bipolar hemiprosthesis in 100 patients. Acta Orthop Scand. 2003;74:242–44.
46. Hedbeck CJ, Inngul C, Blomfeldt R, et al. Internal fixation versus cemented hemiarthroplasty for displaced femoral neck fractures in patients with severe cognitive dysfunction: a randomized controlled trial. J Orthop Trauma. 2013;27:690–695.
47. Hudson JI, Kenzora JF, Hebel JR, et al. Eight-year outcome associated with clinical options in the management of femoral neck fractures. Clin Orthop Relat Res. 1998;348:59–66.
48. Parker MJ, Raghavan R, Gurusamy K. Incidence of fracture-healing complications after femoral neck fractures. Clin Orthop Relat Res. 2007;458:175–179.
49. Parker MJ, Gurusamy K. Internal fixation versus arthroplasty for intracapsular proximal femoral fractures in adults. Cochrane Database Syst Rev. 2006;4:CD001708.
50. Gao H, Liu Z, Xing D, et al. Which is the best alternative for displaced femoral neck fractures in the elderly?: A meta-analysis. Clin Orthop Relat Res. 2012;470:1782–1791.
51. Jiang J, Yang GH, Liu Q, et al. Does arthroplasty provide better outcomes than internal fixation at mid- and long-term followup? A meta-analysis. Clin Orthop Relat Res. 2015;473:2672–2679.
52. Dai Z, Li Y, Jiang D. Meta-analysis comparing arthroplasty with internal fixation for displaced femoral neck fracture in the elderly. J Surg Res. 2011;165:68–74.