Review

Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries

By Kenichi HORISAWA*1 and Atsushi SUZUKI†

(Edited by Shinya YAMANAKA, M.J.A.)

Abstract: Cells of multicellular organisms have diverse characteristics despite having the same genetic identity. The distinctive phenotype of each cell is determined by molecular mechanisms such as epigenetic changes that occur throughout the lifetime of an individual. Recently, technologies that enable modification of the fate of somatic cells have been developed, and the number of studies using these technologies has increased drastically in the last decade. Various cell types, including neuronal cells, cardiomyocytes, and hepatocytes, have been generated using these technologies. Although most direct reprogramming methods employ forced transduction of a defined sets of transcription factors to reprogram cells in a manner similar to induced pluripotent cell technology, many other strategies, such as methods utilizing chemical compounds and microRNAs to change the fate of somatic cells, have also been developed. In this review, we summarize transcription factor-based reprogramming and various other reprogramming methods. Additionally, we describe the various industrial applications of direct reprogramming technologies.

Keywords: direct reprogramming, cell-fate conversion, regenerative medicine, cell transplantation therapy, transcription factor, industrial application

1. Introduction

All cell types in the bodies of higher multicellular animals have extremely diverse phenotypes despite their genetic identity. A single zygote can divide and differentiate into a considerable number and wide variety of cells with unique genome sequences during development. The differences in the phenotypic characteristics among cell types result in different transcriptome and epigenome variations. As Waddington predicted in the 1950s,1) the differentiation and identity of the cells are governed by a non-genetic system for the regulation of gene expression termed “epigenetics”. Although it has long been thought that terminally differentiated somatic cells cannot cross over the “epigenetic barrier” and trans-differentiate into other cell types, some somatic cells have plasticity for de- or re-differentiation, e.g., cardiomyocytes in zebrafish hearts2,3) and pigmented epithelial cells in newt eyes.4) These examples suggest that terminally differentiated animal cells can convert into other cell types.

In 2006, Takahashi and Yamanaka initialized the cell fate of fibroblasts from adult mammals and re-differentiated them into various cell lineages through the forced transduction of a defined set of transcription factors.5) Their study provided information regarding the nature of cell differentiation as well as the possibility of induced pluripotent stem cell (iPSC)-based regenerative therapies. Indeed, many basic and applied studies have been performed for the realization of iPSC-based regenerative medicine. The successful application of this type of medicine has been reported, including for clinical trials of cell transplantation therapy for age-related macular degeneration,6) Parkinson’s disease,7) and corneal epithelial stem cell deficiency.8) At present, clinical studies of other diseases, such as spinal cord injury, severe heart failure, and stroke, are being undertaken with regards to iPSC-based regenerative medicine. Furthermore, several drug discovery studies employ-
ing patient-derived iPSCs have identified a number of hopeful pharmaceutical candidates for treating fibrodysplasia ossificans progressiva,9) Pendred syndrome,10) Parkinson’s disease,11) Alzheimer’s disease,12) amyotrophic lateral sclerosis,13) and muscular dystrophy.14) In addition, the in vitro reconstruction of complicated and functional tissues and organs using iPSCs has also been reported, including in the brain,15) intestines,16) liver,17) and kidneys.18)

Although iPSCs are a promising technology for future medicine, alternative methods for cell fate conversion, termed “direct reprogramming”, have also been developed in the last decade. Direct reprogramming involves the trans-differentiation of somatic cells directly into other cell types without complete initialization. Before the first study regarding iPSCs, only a few types of direct reprogramming had been reported, including the reprogramming of fibroblasts into myoblast and pancreatic β cells. In recent studies, various cell types have been directly converted from other somatic cell types. Most of the direct reprogramming methods applied the forced transduction of defined sets of transcription factors to convert terminally differentiated cells into specific target cells artificially. Initially, only single-transcription factor-based direct reprogramming methods were reported.19)–24) However, most recent studies for direct reprogramming employ a combinatorial transduction strategy similar to that of the iPSC, especially in the conversion between embryologically divided cell types. Although the combinatorial expression strategy of transcription factors with viral vectors is a powerful and stable technique for direct reprogramming, alternative methods are increasing because genomic integration of the transgenes causes genomic damage, and might induce unexpected functional attenuation, abnormal proliferation, and transformation. As explained above, the major applications of the direct reprogramming technologies are bedside clinical uses, such as cell transplantation and regenerative medicine. Meanwhile, other medical, e.g., drug discovery and disease study, and non-medical, e.g., livestock and pet industry, applications of the direct reprogramming technology have been used increasingly in recent years. Therefore, direct reprogramming technology will play a crucial role in both medical and non-medical industry.

2. Transcription factor-based direct reprogramming technologies

Similar to iPSC technology, most direct reprogramming methods employ forced expression of the defined set of transcription factors for cell-fate conversion (Table 1). Many are tissue-specific or developmental process-related genes; thus, it is considered that these transcription factors act as a “kickstarter” to drive the cell type-specific transcription networks. Furthermore, almost all of the

Source cells	Target cells	Transgenes and/or Treatment	Species	Cell transplantation	Published year	PMID
Astrocytes	Glutamatergic neurons	Pax6, Mash1, or Gln2	Mouse	YES	2007	17687043(25)
Embryonic fibroblasts and Hepatocytes	Neuronal cells	Brn2, Ascl1, and Myt1l	Mouse	2010, 2011	20107439(26); 21962018(27)	
Astrocytes	GABAergic neurons	Dlx2; Dlx2 and Ascl1	Mouse	2010	20502524(23)	
Embryonic fibroblasts and Adult skin fibroblasts	Dopaminergic neurons	Ascl1, Lmx1a, and Nur1	Mouse & Human	YES	2011	21725324(27)
Fetal fibroblasts and Postnatal foreskin fibroblasts	Neuronal cells	BRN2, ASCL1, MYT1L, and NEUROD1	Human	2011	21617644(28)	
Embryonic fibroblasts and Postnatal fibroblasts	Neuronal cells	ASCL1, BRN2, MYT1L, LMX1A, and FOXA2	Human	2011	21646515(29)	
Embryonic fibroblasts	Neural stem cells	Brn4/Pou3f4, Sox2, Klf4, c-Myc, and E47/Tcf3	Mouse	YES	2012	22445517(30)

Continued on next page.
Continued.

Cell Type	Source Cells	Target Cells	Pluripotency	
Embryonic fibroblasts and Fetal foreskin fibroblasts	Neural stem cells, Sox2, Pax6, Ngn2, Hes1, Id1, Ascl1, Brn2, c-Myc, and Ki67	Mouse & Human, YES, 2012	22683203[31]	
Sertoli cells	Neural stem cells	Mouse	YES, 2012	2206470[32]
Fibroblasts (IMR90 cells)	Dopaminergic neurons, MASH1, NGN2, SOX2, NURR1, and PTFX3 + A dominant-negative P53	Human	YES, 2014	25129808[214]
Non-sensory cochlear epithelial cells	Neuronal cells, Ascl1, Ascl1 and Neurod	Mouse	2014	2492835[30]
Astrocytes	Neuronal cells, Brn4	Mouse	2014	24887289[185]
Skin fibroblasts	Dopaminergic precursors, Brn2, Sox2, and Foxa2	Mouse, YES	2015	26224135[215]
Adult skin fibroblasts	Motor neurons, NEUROG2, SOX11, ISL1, and LHX3	Human	2016	26725112[40]
Fibroblasts (3T6 cells)	Neuronal cells, Ascl1, Brn4, and Tc3	Mouse	YES, 2017	29137640[216]
Umbilical cord blood cells	Neural stem cells, SOX2 and HMGA2	Human	2017	28844127[43]
Fibroblasts (3T6 cells)	Neuronal cells, Ascl1, Brn2, and Foxa1	Mouse	2017	28855426[139]
Resident glial cells	Neuronal cells, Ascl1, Lmx1a, and Nurr1	Mouse	2017	28844658[41]
Fibroblast-like cells from retinal tissues	Neuronal cells, ASCL1 and PAX6	Human	2017	28697461[217]
Pharyngeal mesenchymal cells	Neuronal cells, Brn1, Ascl1, Myt1l, and Neurod	Mouse & Human, 2017	28327614[218]	
Fibroblasts	Motor neurons, ASCL1, ISL1, NEUROD1, BRN2, HB9, LHX3, MYT1L, and NGN2	Human	2017	28099929[219]
Fibroblasts	Neuronal cells, SOX2, GATA3, and NEUROD1	Human	2017	2858733[62]
Dermal fibroblasts	Neural precursor cells, SOX2 and PAX6	Human	2018	30450440[44]
Embryonic fibroblasts and Newborn foreskin fibroblasts	Neural stem cells, Ptf1a	Mouse & Human, YES, 2018	30030434[35]	
Adult fibroblasts	Neural precursor cells, SOX2, SOX2 and PAX6; SOX2, LMX1A, FOXA2	Human	2018	3001847[36]
Spiral ganglion non-neuronal cells	Neuronal cells, Ascl1 and Neurod	Mouse	2018	29492404[220]
Umbilical cord mesenchymal stem cells	Neuronal cells, SOX2, ASCL1, and NEUROG2	Human	2018	29937717[221]
Pericytes	Neuronal cells, ASCL1 and SOX2	Human	2018	29915193[183]
Cord blood CD133(+) cells	Neuronal cells, FOXM1, SOX2, MYC, SALL4, and STAT6	Human	2018	29653196[38]

Continued on next page.
Continued.

Cell Type	Associated Cells	Species	Year	PubMed ID	
Hepatocytes	Neuronal cells, Suz12, EzH2, Meis1, Sry, Smarca4, Esr1, Pparγ, and Stat3	Mouse	2018	29653196(38)	
Peripheral CD34(+) cells	Neuronal cells, AR, SOX2, SMAD3, MYC, JUN, WT1, TAL1, SPI1, and RUNX1	Human	2018	29653196(38)	
Urine epithelial-like cells	Neural stem cells, POU3F2, SOX2, BACH1, AR, PBX1, and NANOG	Human	2018	29653196(38)	
Muller glia cells	Neural stem cells, Bmi1, Spi1, Lmo2, and Cebpα	Mouse	2018	29653196(38)	
Astrocytes and Foreskin fibroblasts	Noradrenergic neurons, Ascl1, Phox2b, Ap-2α, Gata3, Hand2, Nurr1, and Phox2a	Mouse & Human	YES	2019	31315047(222)
Bone marrow-derived cells, Fibroblasts, and Keratinoocytes	Neural precursor cells, MSI1, NGN2, and MBD2	Human	YES	2019	31196173(37)
Microglial cells	Neuronal cells, Neurod1	Mouse	2019	30638745(44)	

Cardiomyocytes

Cell Type	Cardiomyocytes	Species	Year	PubMed ID
Cardiac fibroblasts	Gata4, Mef2c, and Tbx5	Mouse	YES	20691899(49)
Cardiac fibroblasts	Gata4, Mef2c, Tbx5, and Hand2	Mouse	2012	22660318(50)
Cardiac fibroblasts and Embryonic fibroblasts	Mef2c and Tbx5 + Myocd or Gata4	Mouse	2012	22575762(51)
Cardiac fibroblasts	GATA4, MEF2C, TBX5, MESP1, and MYOCD	Human	2013	23861494(52)
Embryonic stem cells-derived fibroblasts	GATA4, MEF2C, TBX5, ESRRG, MESP1, ZFPM2, and MYOCD	Human	YES	24319666(53)
Adult tail-tip fibroblasts and Cardiac fibroblasts	Me2c and Tbx5 + Bmi1 knockdown	Mouse	2016	26942853(175)
Adult fibroblasts	Gata4, Hand2, Mef2c, Tbx5, and Znf281	Mouse	2017	28082760(167)

Hepatocytes

Cell Type	Hepatocytes, Hnf4a and Foxa1, Foxa2, or Foxa3	Species	YES	21716291(55)
Caudal fibroblasts	Gata4, Hnf1a, and Foxa3 + p19knockdown	Mouse	YES	21562492(56)
Embryonic fibroblasts	HNF1A, HNF4A, HNF6, ATF5, PROX1, CEBPA, and MYC + TP53 knockdown	Human	YES	24582926(57)
Fetal and adult fibroblasts and Adipose tissue-derived mesenchymal stem cells	FOXA3, HNF1A, and HNF4A + SV40 large T antigen	Human	YES	24582927(58)

Continued on next page.
Continued.

Cell Type	Conversion Type	Factors	Species	Year	Reference
Fibroblasts (BJ and MRC-5 cells) Hepatocytes	Direct	HNF1A and Any two of the three factors: FOXA1, FOXA3, and HNF4A	Human	2014	24963715(59)
Liver cells in mouse models of chronic liver disease Hepatocytes	Direct	Foxa3, Gata4, Hnf1a, and Hnf4a	Mouse	2016	26923201(60)
Fetal lung fibroblasts Hepatocytes	Direct	ATF5, PROX1, FOXA2, FOXA3, and HNF4A	Human	2017	29192290(61)
Fibroblasts Hepatocytes	Direct	OCT4, FOXA2, HNF1A, and GATA3	Human	2017	28587331(62)
Embryonic fibroblasts Hepatocytes	Direct	Foxa3, Hnf1a, and Gata4	Mouse	YES	29959867(63)
Embryonic fibroblasts Hepatocytes	Direct	Hnf4a, Foxa3, Klf4, and c-Myc	Mouse	YES	30635054(64)

Islet-related cells

Cell Type	Conversion Type	Factors	Species	Year	Reference
Liver cells in vivo β cells Pdx1	Direct		Mouse	2000, 2003	10802714(20); 12775714(21)
Pancreatic exocrine cells in vivo β cells Ngn3, Pdx1, and Maf	Direct		Mouse	2008	18754011(65)
Hepatocytes Islet cells Ngn3	Direct		Mouse	2009	19793886(24)
Liver cells β cells PDX1, PAX4, and MAFA	Direct		Human	2014	24504462(66)
Cultured adult pancreatic duct cells β cells Pdx1, Ngn3, and Maf	Direct		Mouse	2015	25836667(67)
Gallbladder cells β cells Pdx1, Ngn, Maf, and Pax6	Direct		Mouse	YES	27833043(68)

Hematopoietic system-related cells

Cell Type	Conversion Type	Factors	Species	Year	Reference
T precursor cells Macrophages Cebpa or Cebpb	Direct		Mouse	2006	17088084(22)
T precursor cells Dendritic cells Pu.1	Direct		Mouse	2006	17088084(22)
B cells T cells Pax5 knockout	Direct		Mouse	YES	17851532(73)
Fibroblasts (3T3 cells), Embryonic fibroblasts, and Adult skin fibroblasts Macrophage-like cells Pu.1 and Cebpa or Cebpb	Direct		Mouse	2008	18424555(74)
B cells Erythroid cells Gata1, Scl, and Cebpa	Direct		Mouse	2012	22968040(223)
Fibroblasts (3T3 cells) and Adult dermal fibroblasts Megakaryocyte Nfe2, Mafg, and Mafk	Direct		Mouse & Human	YES	22855609(75)
Skin fibroblasts Monocytes Spl1, Cebpa, Mnda, and Irf8	Direct		Mouse	2012	22428058(76)
Embryonic fibroblasts and Adult ear skin fibroblasts Hematopoietic progenitor cells Erg, Gata2, Lmo2, Runx1c, and Scl	Direct		Mouse	YES	25466247(77)
Fibroblasts Antigen-presenting dendritic cells Pu.1, Irf8, and Baf3	Direct		Mouse & Human	YES	30530727(78)

Bone-related cells

Cell Type	Conversion Type	Factors	Species	Year	Reference
Neonatal foreskin fibroblasts Chondrogenic cells c-MYC, KLF4, and SOX9	Direct		Human	YES	24146084(224)

Continued on next page.
Cells/Progenitor Cells	Matched Cells	Matched Factors	Species	Year	PubMed ID
Dermal fibroblasts	Osteoblasts	OCT3/4 and OCT6 or OCT9 + L-MYC, c-MYC, or N-MYC	Human	2015	26499074⁷⁹
Fibroblasts	Osteoblasts	RUNX2, OCT4, OSTERIX, and L-MYC	Human	YES 2015	25918395⁸⁰
Gingival fibroblasts and Adult dermal fibroblasts	Osteoblasts	OCT4, OSTERIX, and L-MYC	Human	YES 2016	26990860⁸¹
Embryonic fibroblasts	Osteoblasts	c-Myc, Oct4, and hLMP3	Mouse	YES 2019	30453092⁸²

Skeletal muscle-related cells

Fibroblasts (C3H10T1/2 cells)	Myoblasts	Myod	Mouse	1987	3690668¹⁹
Dermal fibroblasts	Myoblasts	MYOD1 and MYCL	Human	YES 2017	28501623⁸³
Embryonic fibroblasts	Skeletal muscle progenitor cells	Mef2b and Pitx1 + Pax3 or Pax7	Mouse	YES 2018	28808339⁸⁴
Adult fibroblasts	Skeletal muscle progenitor cells	Pax7, Mef2b, and Myod	Mouse	YES 2018	28808339⁸⁵

Other cells

Embryonic fibroblasts and Newborn foreskin fibroblasts	Brown fat cells	Prdm16 and Cebp	Mouse & Human	YES 2009	19641492⁹⁵
Embryonic fibroblasts	Sertoli cells	Nr5a1, Wt1, Dmrt1, Gata4, and Sox9	Mouse	YES 2012	22958931⁹⁶
Iris-derived cells	Photoreceptor cells	CRX, RAX, and NEUROD	Human	2012	22558175⁸⁵
Embryonic fibroblasts and Adult tail-tip dermal fibroblasts	Melanocytes	Mitf, Sox10, and Pax3	Mouse & Human	YES 2014	25510211⁹⁷
Adipose tissue-derived stromal cells	Endothelial cells	SOX18	Human	2014	25290189⁹¹
Dermal fibroblasts	Photoreceptor cells	CRX, RAX, OTX2, and NEUROD	Human	2014	24456169⁹⁶
Embryonic fibroblasts	Thymic epithelial cells	Foxn1	Mouse	YES 2014	25150981⁹⁸
Fibroblasts	Sweat gland cells	NF-κB and LEF-1	Human	YES 2015	26566868⁹¹
Amniotic fluid stem cells	Pluripotent stem cells	OCT4	Human	2016	27019637²²⁵
Cardiac mesenchymal progenitors	Adipocytes	Klf4 and c-Myc	Mouse	2016	27077806⁷
Embryonic fibroblasts, Adult tail-tip dermal fibroblasts, Postnatal foreskin fibroblasts, and Fetal dermal fibroblasts	Renal tubular epithelial cells	Emx2, Hnf1b, Hnf4a, and Pax8	Mouse & Human	YES 2016	27820600⁹⁹
Endothelial progenitor cells	Smooth muscle cells	MYOCD	Human	2016	26874281⁸⁰

Continued on next page.
reprogramming factor gene sets contain at least one pioneer factor, which is a transcription factor capable of opening closed chromatin sections. These factors may play a pivotal role in the machinery of direct reprogramming. In this section, examples and applications for various types of transcription factor-based direct reprogramming are introduced.

2.1. Neuronal cells.

By the end of 2018, the most reported target cells for direct reprogramming were neuronal lineage cells, including neural stem/progenitor cells (Fig. 1). The first example of the direct lineage conversion to neuronal cells was the reprogramming of astrocytes toward glutamatergic neurons with the transduction of single transcription factors, as shown in Table 1.

![Fig. 1. The number of publications relating to direct reprogramming studies.](image)

Table 1. Examples of direct reprogramming studies.

Cell Type & Source	Factors	Target Cells	Species	Year	PMCID
Embryonic stem cells & Trophoblast stem cells	Cdx2, Arid3a, and Gata3	Mouse	2017	28973471	
Embryonic fibroblasts & Adult tail-tip dermal fibroblasts & Leydig cells	Dmrt1, Gata4, and Nr5a1	Mouse	2017	28017657	
Postnatal dermal fibroblasts & Endothelial cells	ER71/ETV2 (ETS variant 2)	Human	2017	28003219	
Dermal fibroblasts & Adipocytes	PPARG2	Human	2017	28982679	
Embryonic fibroblasts & Intestine progenitor cells	Hafla, Foxo, Gata6, and Cdx2	Mouse & Human	2017	28943092	
Embryonic fibroblasts & Adult dermal fibroblasts & Smooth muscle cells	Myocd, Gata6, and Mef2c	Mouse & Human	2018	30026272	
Epidermal cells & Sweat gland cells	Foxc1	Mouse	2019	30894517	
Renal proximal tubular epithelial (HK2) cells	SNAI2, EYA1, and SIX1	Human	2019	30827514	

Fig. 1. The number of publications relating to direct reprogramming studies. The publications relating to direct reprogramming studies of different target cell types are shown as a bar chart. Each different color refers to an individual target cell type. In order to survey the direct reprogramming studies published previously, original articles were searched on PubMed with the following search formula: "direct reprogramming" [All Fields].
factors in vitro: Pax6, Mash1, or Ngn2.25) However, the presynaptic output function of the astrocyte-derived neurons was insufficient, and the conversion was only achieved between closely related cells. In 2010, more successfully reprogrammed neuronal cells, termed induced neuronal (iN) cells, were reported. Combinatorial transduction of a set of transcription factors, Brn2, Ascl1, and Myt1l, induced functional neuron-like cells from mouse embryonic fibroblasts (MEFs) and hepatocytes in vitro.26) One year later, some studies generated iN cells from human fibroblasts.27–29) Although the combination and member of the transcription factors in each study were different, only one transcription factor, Ascl1, was employed in almost every iN cell conversion method. This indicated that Ascl1 may be a vital regulator of neuronal reprogramming but can also be compensated for by other related factors. In addition to terminally differentiated neuronal cells, the direct induction of neural stem/progenitor cells, which are expandable and differentiate to a wide variety of neuronal lineage cells, was also reported.30) The combinations of transcription factors for the induction of neural stem/progenitor cells were significantly different from those of the differentiated iN cells; thus, this might indicate that the transcription networks in the differentiated neuronal cells and the neural stem/progenitor cells are significantly different. In recent years, studies on the generation of multipotent neural stem/progenitor cells have increased because these cells can proliferate in vitro for use in cell transplantation therapies.30–38) On the other hand, in vivo direct reprogramming studies for terminally differentiated iN cells are also increasing. In these studies, endogenous cells in the brain, such as glial cells, are converted into functional neuron-like cells in situ with plasmid transfection or viral vector infection.39–44) Furthermore, iN cells have been applied for non-therapeutic applications; for example, direct neuronal reprogramming of cells from patients with severe nerve diseases, such as Huntington’s disease, amyotrophic lateral sclerosis, and myoclonus epilepsy associated with ragged red fibers, have been developed for pathological analysis and drug discovery studies.45–48)

2.2. Cardiomyocytes. Cardiomyocytes, striated muscle cells in the heart, are the second most frequently reported target cells in the field of direct reprogramming (Fig. 1). Cardiomyocytes are one of the most desirable cells for establishment in regenerative medicine because they are not expandable in vivo or in vitro. The first study of mouse-induced cardiomyocyte-like (iCM) cells was published in 2010,49) which was followed by other studies using different combinations of transcription factors.50,51) Human fibroblast-derived iCM cells were established in 2013.52,53) As well as iN cells, the combination of transcription factors for iCM cells shows wide variation, which might indicate redundancy of the transcription network of cardiomyocytes. However, only Tbx5 was included in all of the combinations of transcription factors for iCM cells. Therefore, it is considered that Tbx5 plays a central role in the transcription network of cardiomyocytes, similar to Ascl1 in neuronal cells. In previous studies, fibroblasts have frequently been employed as source cells for iCM cells because cardiac fibroblasts, which exist abundantly in the heart, are considered a potential candidate for source cells of in situ direct reprogramming. Some studies have achieved successful in vivo direct reprogramming of iCM cells in mouse hearts by using lentivirus vectors.50,54) This technology may benefit patients with heart injury, such as myocardial infarction.

2.3. Hepatocytes. Hepatocytes are parenchymal cells of the liver and have vital roles in this organ, i.e., lipid metabolism, glycogen accumulation, detoxification, and endocrine activities. As well as neuronal cells and cardiomyocytes, hepatocytes are also expected to be induced artificially for therapeutic uses because the specific functions of liver-derived hepatocytes cannot be maintained in canonical in vitro culture conditions and are unsuitable for cell transplantation therapy. Although iPSC-derived hepatocytes have been actively studied, the direct reprogramming of hepatocytes is also considered a promising alternative for regenerative treatments of the liver. The first studies of mouse-induced hepatocyte-like (iHep) cells were published by two independent groups simultaneously.55,56) Although these studies used different protocols to induce iHep cells from fibroblasts, the resulting iHep cells showed similar phenotypes to those of endogenous hepatocytes, i.e., secretion of albumin, uptake of low-density lipoprotein, and xenobiotic metabolism. Furthermore, studies were also conducted using human and mouse iHep cells in a wide variety of reprogramming factor combinations.55–64) The transcription network defining the cell fate of hepatocytes appears complex and may have redundancy. Among the transcription factors for iHep cell conversion, the Foxa family of transcription factors, i.e., Foxa1, Foxa2, and Foxa3, are considered primary factors for hepatic reprogramming because almost all iHep cell
induction methods employ this family proteins as well as Ascl1 and Tbx5 in other direct reprogramming methods. iHep cells are expected to have potential in cell transplantation therapies because the induced cells are expandable and maintain their hepatic functions, unlike the liver-derived hepatocytes. Nevertheless, the human iHep cells required unfavorable factors, such as a virus-derived gene, to be expandable cells; therefore, further improvements are necessary for the medical use of iHep cells. In vivo reprogramming of the iHep cells with an adeno-associated virus (AAV) vector is also studied to treat liver disorders, such as cirrhosis, because the fibrous liver contains a massive number of fibroblasts as source cells for the direct reprogramming and exclusion target cells.

2.4. Islet-related cells. Among the five types of endocrine cells in pancreatic islets, β cells are the most critical targets for regenerative medicine because they are the unique source of insulin and are destroyed in type 1 diabetes. Of note, all of the cells reported to be reprogrammed into β cells were endoderm-derived cells, e.g., hepatocytes, bile duct cells, pancreatic exocrine cells, and gallbladder cells, without exception. The fact that only cells of closely related lineages have been converted into β cells might indicate the peculiarity of β cells from other lineages and plasticity among endoderm-derived cells. Relatively large numbers of studies of the in vivo direct reprogramming of these cells have been reported, because the generation of insulin-secreting cells in digestive organs is an easy and effective solution for type 1 diabetes.

2.5. Hematopoietic system-related cells. Several terminally differentiated blood cells, e.g., dendritic cells, macrophages, and T cells, were easily converted from other blood cells by transducing with single transcription factors. Therefore, these studies were reported earlier the other direct reprogramming studies. On the other hand, the direct reprogramming of blood cells from fibroblasts requires much more complex sets of transcription factors. The long-distance lineage conversion appears to require a larger number of transcription factors than the short-distance lineage conversion to drastically change their transcription network. Toward practical use, the in vitro conversion of various types of blood cells has been studied vigorously to prepare cells for blood component transfusion.

2.6. Other types of cells. Since the first report of the direct reprogramming of somatic cells into myoblasts in 1987, a vast number of different direct reprogramming techniques have been reported; for example, osteoblasts, myoblasts, skeletal muscle progenitor cells, photoreceptor cells, adipocytes, smooth muscle cells, sweat gland cells, and endothelial cells have been induced with several combinations of transcription factors. In addition, the direct conversion of various types of cells, such as brown fat cells, Sertoli cells, melanocytes, thymic epithelial cells, renal tubular epithelial cells, intestine progenitor cells, Leydig cells, trophoblast stem cells, and nephron progenitor cells has been achieved successfully, and this method is expected to be applied in medical treatment, drug discovery, and pathological studies. Indeed, the researchers of some studies employed the directly reprogrammed cells from patient-derived somatic cells for their disease research.

2.7. Prediction of the combinations of transcription factors. Although most direct reprogramming studies select transcription factor combinations from factor lists developed in previous studies in genetics, genomics, and developmental biology, this type of screening is unreliable and inefficient. Therefore, several tools for the prediction of reprogramming factors have been developed. For these studies, a large amount of comprehensive biological data, e.g., transcriptome and topologically associating domains, with computer algorithms, e.g., machine learning and network analysis, were employed to develop the prediction model. These tools made the selection of transcription factor candidates and combinations easier. Therefore, the number and variation of direct reprogramming techniques using transcription factors will continue to increase.

3. Methods for direct cell fate conversion

Although the majority of direct reprogramming has been achieved through the forced transduction of transcription factors with viral vectors, these methods are expected to be replaced with alternative methods (Table 2). This is because frequently used viral vectors, retroviruses, and lentivirus vectors integrate the transgenes into the host genome and increase the risk of unexpected cell proliferation, transformation, and oncogenesis. Furthermore, although integration-free transduction methods, e.g., adenovirus vectors, AAV vectors, and plasmid vectors, are employed, the possibility of accidental genome integration of foreign DNA remains. Therefore, integration-free, DNA-free, and transgene-free methods are desired for medical applications. In this
Source cells	Target cells	Transgenes and/or Treatment	Species	Cell transplantation	Published year	PMID
Fibroblasts (BJ and MRC-5 cells)	Hepatocytes	HNF1A and Any two of the three factors: FOXA1, FOXA3, and HNF4A (mRNA transfection)	Human		2014	24963715(50)
Non-sensory cochlear epithelial cells	Neuronal cells	Ascl1; Ascl1 and Neurod (plasmid electroporation)	Mouse		2014	24928351(39)
Cardiac fibroblasts	Cardiomyocytes	Gata4, Me2c, and Tbx5 (peptide-enhanced mRNA transfection)	Mouse		2015	25834424(114)
Astrocytes	Neural stem cells	Sox2 (Leu3p-αIPM system)	Mouse		2016	27148066(121)
Fetal and embryonic fibroblasts and Brain cells in vivo	Neuronal cells	Ascl1, Brn2, and Myt11 (mRNA transfection with a GO-PEI-based reagent in vitro and in vivo)	Mouse & Human		2016	28145631(40)
Peripheral blood mononuclear cells	Photoreceptor cells	CRX, RAX1, and NEUROD1 (SeV infection)	Human		2016	27170256(112)
Gingival fibroblasts and Adult dermal fibroblasts	Osteoblasts	OCT4, OSTERIX, and L-MYC (plasmid transfection)	Human YES		2016	26990868(113)
Fibroblasts	Hepatocytes	OCT4, FOXA2, HNF1A, and GATA3 (protein transduction with HVJ-E)	Human		2017	28587331(42)
Fibroblasts	Neurocytes	SOX2, GATA3, and NEUROD1 (protein transduction with HVJ-E)	Human		2017	28587331(42)
Fibroblasts (3T6 cells)	Neuronal cells	Ascl1, Brn2, and Foxa1 (plasmid transfection with a polysaccharide-based reagent)	Mouse		2017	28855426(119)
Mesenchymal stem cells	Hepatocytes	Hnf4a and Foxa3 (PiggyBac transposon)	Mouse		2017	28295042(114)
Dermal fibroblasts	Endothelial progenitor cells	ETV2 (mRNA transfection)	Human YES		2017	27778229(117)
Fibroblasts (3T6 cells)	Neuronal cells	Ascl1, Brn4, and Tcf3 (plasmid transfection with a polysaccharide-based reagent)	Mouse		2017	29137640(120)
Mesenchymal stem cells and Dermal fibroblasts	Neural stem cells	SOX2 (mRNA transfection)	Human		2018	29909688(118)
Adult fibroblasts	Neural precursor cells	SOX2; SOX2 and PAX6; SOX2 and LMX1A; SOX2, LMX1A, and FOXA2 (plasmid transfection)	Human		2018	30018471(36)
Dermal fibroblasts	Neural precursor cells	SOX2 and PAX6 (chemically modified mRNA or plasmid transfection)	Human		2018	30450440(14)
Embryonic fibroblasts	Hepatocytes	Hnf4a and Foxa3 (modified mRNA transfection)	Mouse YES		2018	30327781(115)

Continued on next page.
Direct cell-fate conversion of somatic cells

Somatic cells	Neuronal lineages	Transcription factors or compounds	Species	Year	PubMed ID
Foreskin fibroblasts	Neuronal cells	ASCL1 + miR-124 + P53 knock-down (episomal plasmid transfection)	Human	2019	30539819
Bone marrow-derived cells, Fibroblasts, and Keratinocytes	Neural precursor cells	MS1, NGN2, and MBD2 (plasmid transfection)	Human	YES	31196173
Renal proximal tubular epithelial (HK2) cells	Nephron progenitor cells	SNAI2, EYA1, and SIX1 (PiggyBac transposon)	Human	2019	30827514
Chemical compounds (with or without transcription factors)					
Fibroblasts (IMR90 or MRC5 cells)	Cholinergic neurons	NGN2 + Forskolin and dorsomorphin treatment	Human	2013	23873306
Embryonic fibroblasts and Neonatal tail-tip fibroblasts	Cardiomyocytes	CHIR99021, RepSox, Forskolin, Valproic acid, Parnate, and TTNPB treatment	Mouse	2015	26292833
Embryonic fibroblasts and Adult tail-tip fibroblasts	Neural stem cells	Valproic acid, Bix01294, RG108, PD0325901, CHIR99021, Vitamin C, and A83-01 treatment	Mouse	YES	26788068
Fibroblasts	Neuronal cells	Valproic acid, CHIR99021, RepSox, Forskolin, SP600125, GO6983, and Y-27632 treatment	Human	2015	26253202
Fibroblasts	Neuronal cells	ISX9, SB431542, Forskolin, CHIR99021, and I-BET151 treatment	Mouse	2015	26253201
Embryonic fibroblasts	Neural stem cells	A83-01, Purmorphamine, Valproic acid, and Thiazovivin treatment	Mouse	2017	27207831
Urine-derived cells	Hepatocytes	FOXA3 and HNF1A or HNF4A + CHIR99021, RepSox, Valproic acid, Parnate, TTNPB, and Dznep treatment	Human	2018	36315254
Embryonic and adult fibroblasts	Skeletal muscle progenitor cells	Myod + CHIR99021, RepSox, and Forskolin treatment	Mouse	YES	29742392
Adult dermal fibroblasts, Fetal pancreas fibroblasts, and Peripheral blood mononuclear cells	Neural plate border stem cells	BRN2, KLF4, SOX2, and ZIC3 + CHIR99021, ALK5 inhibitor, Purmorphamine, Tranexycyprosine treatment	Human	YES	30581079
Striatal neurons	Dopaminergic neurons	Sox2, Nur1, Lmx1a, and Foxa2 + Valproic acid treatment (in vivo infection)	Mouse	2018	30318292
Glioblastoma cells (U87MG cells)	Neuronal cells	Forskolin, ISX9, CHIR99021, I-BET151, and DAPT treatment	Human	2018	30091580
Dermal fibroblasts	Neuronal cells	NGN2 and ASCL1 + Pyr integrin, ZM336372, AZ960, and KC7F2 treatment	Human	2019	31099332

Continued on next page.
Continued.

Culture condition and soluble factors (with transcription factors)
Liver cells in vivo
Adult dermal fibroblasts and Neonatal foreskin fibroblasts
Embryonic fibroblasts
Adult skin fibroblasts
Amniocytes
Embryonic stem cells-derived fibroblasts
Newborn fibroblasts
Dermal fibroblasts
Embryonic fibroblasts
Skin fibroblasts

miRNAs (with or without transcription factors)

Cardiac fibroblasts	Cardiomyocytes	miR-1, miR-133, miR-208, and miR-499	Mouse	2012	22539765¹⁴⁷	
Embryonic fibroblasts	Neuronal cells	Ptb knockdown	Mouse	2013	23313552¹⁴³	
Cardiac fibroblasts and Embryonic fibroblasts	Cardiomyocytes	Gata4, Mef2c, and Tbx5 + miR-133; Gata4, Mef2c, Tbx5, Mesp1, and Myocd + miR-133	Mouse & Human	2014	24920580¹⁴⁹	
Adult dermal fibroblasts, Umbilical cord blood cells, and Senescent somatic cells	Neural stem cells	SOX2 + HMGA2 expression or LET-7B inhibition	Human	YES	2015	25600877¹⁴⁴
Fibroblasts	Cardiomyocytes	GATA4, MEF2C, TBX5, ESRRG, MESP1, MYOCARDIN, ZFPM2, and HAND2 + miR-1	Human	2017	28796841¹⁴⁹	
Adult fibroblasts	Neuronal cells	miR-9/9* and miR-124	Human	2017	28886366¹⁴⁵	
Adult fibroblasts	Spinal cord motor neurons	ISL1 and LHX3 + miR-9/9* and miR-124	Human	2017	28886366¹⁴⁵	
Brain vascular pericytes	Cholinergic neuronal cells	ASCL1, MYT1L, BRN2, and TLX3 + miR-124	Human	YES	2018	29453933¹⁴⁶

Physical stimulation (with or without transcription factors)

| Embryonic fibroblasts | Neuronal cells | Ascl1, Brn2, and Myt1l + Substrate topography | Mouse | 2014 | 24709523¹⁵³ |
| Fibroblasts | Cardiomyocytes | Myocardin, Tbx5, and Mef2c + Microgroove | Mouse | 2015 | 26302234¹⁵⁴ |

Continued on next page.
Continued.

Cell Type	Gene Targets/Methods	Organism	Year	GenBank ID
Embryonic fibroblasts	Ascl1, Pitx3, Nurr1, and Lmx1a + Nanogroove	Mouse	2015	25662493
Dermal fibroblasts	ETV2 + Hypoxia	Human	2016	27488544
Neonatal tail-tip fibroblasts	Gata4, Mef2c, and Tbx5 + Microgroove	Mouse	2016	27376554
Fibroblasts	Gata4, Mef2c, and Tbx5 + Hypoxia	Mouse	2016	26757100
Dermal fibroblasts	Nanogroove	Mouse	2019	31005261
CRISPR/Cas9-based methods	Neuronal cells CRISPR/Cas9-based transcriptional activators + gRNAs for Brm2, Ascl1, and Myt1	Mouse	2016	27524438
Liver cells in vivo β cells	CRISPR/Cas9-based transcriptional activators + gRNA for Pdx1 (in vivo infection)	Mouse	YES	29224785
Protein engineering (with transcription factors)	Gata4, Tbx5, and Hand2 + Mef2c fused with M3 domain of Myod	Mouse	2013	23794713
Embryonic fibroblasts	Cardiomyocytes Gata4, Mef2c, and Tbx5 + TGFβ inhibitors or ROCK inhibitors	Mouse	2015	26354680
Pancreatic exocrine cells β cells	Pdx1, Ngn3, and Mafa (synthetic mRNA transfection) + 5-Aza treatment	Mouse	2016	27187823
Neonatal cardiac and tail-tip fibroblasts	miR-1, miR-133, miR-208, and miR-499 + three-dimensional culture	Mouse	2016	27941890
Neonatal cardiac and tail-tip fibroblasts	miR-1, miR-133, miR-208, and miR-499 + Reprogramming medium	Mouse	2016	26975336
Adipose-derived stem cells and Neonatal foreskin fibroblasts	iPSC induction followed by TRA-1-60-/SSEA4–selection	Human	YES	27569063
Fibroblasts	OCT4 and C/EBPB (protein transduction with HVJ-E) + Adipogenic differentiation medium	Human	2017	28587331
section, a wide variety of technologies used in direct reprogramming studies are introduced.

3.1. Genome integration-free gene transduction. Even now, transcription factors are one of the most powerful and useful tools for direct reprogramming. Therefore, several genome integration-free transduction methods have been applied for direct reprogramming instead of conventional viral vectors, such as retrovirus and lentivirus vectors. Sendai virus (SeV; hemagglutinating virus of Japan, HVJ) is an RNA virus that does not enter the nucleus and replicates in the cytoplasm. Therefore, vector systems using this virus are not at risk of genome integration of the transgenes. In addition to the induction of iPSCs, SeV vectors have been used for direct induction of photoreceptor cells from peripheral blood cells. Additionally, a method for in vivo cardiac reprogramming using SeV vectors achieved high reprogramming efficiency. These results suggested that the SeV vector system can be an alternative tool to induce cellular reprogramming based on the gene transduction method. Moreover, the envelope particle of the virus (HVJ-E) is a useful carrier of genes, siRNAs, proteins, and drugs. Human hepatocytes and neurocytes were induced from fibroblasts through the protein transduction technique with the HVJ-E carrier. The PiggyBac system is a transposon-based gene transduction technique. Although transgenes are integrated into the host genome, these sequences can be removed without any footprints with transposase. Some studies have employed this system and induced mouse hepatocytes and human nephron progenitor cells from somatic cells. mRNA transfection is an alternative gene transduction technique that is safer than previous methods. Since higher animals, including humans, do not have reverse transcriptase, there are no risks of integration of the transgenes mRNAs into their genome. Many studies using mRNA transfection have been reported, e.g., hepatocytes, cardiomyocytes, neuronal cells, endothelial progenitor cells, and neural stem/precursor cells. Nevertheless, several difficulties of this method, such as stability and transfection efficiency, remain. Solutions to these difficulties, such as the chemical modification of the mRNA and specific transfection reagents, have already been adopted in mRNA transfection studies. In addition to these methods, plasmid transfection has also been widely tested. Although there is a risk of genome integration and a problem of low transduction efficiency, novel tools, such as a polysaccharide-based gene co-delivery system, a Leu3p-αIPM system, or episomal vectors, might improve the plasmid-based transduction technologies.

3.2. Chemical compounds. Small chemical compounds that work as agonists or antagonists for various cellular reactions, such as signal transduction, the cell cycle, post-translational modification, apoptosis, epigenetics, and metabolism, have many advantages compared with gene transduction methods: 1) They are relatively more stable than biomolecules in vitro and in vivo. If they are not stable, chemical modifications can improve their stability. 2) Most can penetrate cells or organelles, unlike biopolymers. 3) There is no risk of genome integration of foreign sequences. 4) Suitable conditions for the chemicals are flexible and controllable.

Most chemicals used in the direct reprogramming studies have positive or negative effects for various signal transduction pathways, e.g., Wnt (CHIR99021), cAMP (Forskolin), TGFβ (RepSox), SB431542, Ca2+ (ISX9), Shh (Purmorphamine), Retinoic acid (TTNPB), JAK/STAT (AZ960, SP600125), Notch (DAPT), AMPK (dorsomorphin), PCK (GO6983), HIF (KC7F2), MAPK (PD0325901, ZM336372), Notch (DAPT), AMPK (dorsomorphin), PCK (GO6983), HIF (KC7F2), MAPK (PD0325901, ZM336372), β1-integrin (Pyrintegrin), and Rho/ROCK (Thiazovivin, Y-27632) signaling pathways, and epigenetic modifications, e.g., histone lysine deacetylation (Valproic acid), histone lysine acetylation recognition (I-BET151), histone lysine methylation (Bix01294, Dznep), DNA methylation (RG108), and DNA demethylation (Vitamin C). Although several types of cells, such as neuronal cells, hepatocytes, cardiomyocytes, and skeletal muscle progenitor cells, have been induced with chemicals, half of the reported studies used gene transduction in conjunction with the chemical treatments. Precise analysis of the functions of each transcription factor is required to compensate their functions with chemical compounds.

3.3. Partial reprogramming with specific culture conditions. Some studies have utilized gene transduction combinations and external signals from culture media. In particular, initializing factors of iPSCs have frequently been used in combination with external signals. A wide variety of cells, e.g., β cells, blood progenitor cells, cardiomyo-
cytes,136 neural stem cells,137,138 vascular endothelial cells,139 neural crest cells,140 hepatocytes,140 oligodendrocyte progenitor cells,141 and keratinocytes,142 were previously generated and transplanted into model animals. Although these protocols are time- and cost-effective compared with iPSC-employing methods, the risk of tumorigenesis caused by cell initialization remains to be elucidated.

3.4. MicroRNAs (miRNAs)

miRNAs regulate the expression of specific mRNAs post-transcriptionally. Therefore, miRNAs can be used for direct reprogramming instead of or in combination with gene transduction. In a previous study, somatic cells were converted into several types of neuronal cells,143–146 and cardiomyocytes,147–149 miRNA induction avoids the problem of transgene genome integration because the miRNA genes can be induced into cells as RNA. However, most of the reported studies employed gene transduction simultaneously for conversion. Complete miRNA-based reprogramming methods are expected to be developed in future.

3.5. Physical stimulations

Several physical stimulations have been used as additional stimulations for direct reprogramming. Hypoxia conditions have been frequently employed in stem cell biology and control stem cell functions through the HIF signaling pathway.150 In a study involving direct reprogramming, these conditions were also used to accelerate conversion.151,152 On the other hand, micro- or nano-imprinted patterns, \textit{e.g.}, microgrooves, of cultured cell substrates are known as enhancers of reprogramming in biomaterials science. Biochemical and molecular biology studies are required to understand the effect of imprinted patterns for reprogramming.153–156 Of note, the electrical stimulation-induced direct reprogramming of fibroblasts into chondrocytes without any soluble factors or transgenes was reported recently.157 Elucidating the molecular mechanism of the reprogramming phenomenon may aid in the development of direct reprogramming technology.

3.6. Other methods

Several other innovative approaches have been applied in direct reprogramming studies, such as a CRISPR/Cas9-based method. A modified Cas9 protein, which has a domain for transcriptional activation and guides RNAs for the endogenous transcription factor genes, is introduced into source cells to activate endogenous transcription factors.151,158 The genome integration-free protocols of the CRISPR/Cas9 system have already been established, thus, this method is also an integration-free method. Studies utilizing CRISPR-based direct reprogramming will increase because this method is straightforward and suitable for screening reprogramming factors.

Rational protein engineering of transcription factors is a unique approach translated from another field, \textit{i.e.}, biomolecular engineering. Functional protein domains, such as VP16 or M3 of Myod, are attached to transcription factors to improve their transcriptional activities. Neuronal cells and cardiomyocytes have been induced successfully by using artificial transcription factors.159,160

Additionally, the number of hybrid methods using the techniques above are increasing.161–166 In future, engineering-based approaches optimizing the reprogramming process will be considerably more important compared with previous stages.

4. Mechanism analyses and future applications of direct reprogramming

To make direct reprogramming technology more efficient and safer for medical and industrial applications, analyses of the molecular and cellular mechanisms of cell fate conversion, \textit{i.e.}, the transition of the transcriptome, the behavior of transcription factors, epigenetic remodeling, and the heterogeneity of cell populations, are essential (Fig. 2). In addition, applied research on direct reprogramming technology in medicine and industry has increased in recent years toward practical use (Table 3). Therefore, representatives of molecular and cellular mechanism analyses are introduced in this section. In addition, novel applications of direct reprogramming, including non-medical uses, are described.

4.1. Analyses of the molecular and cellular mechanisms of direct reprogramming

Regarding the mechanisms of direct cell fate conversion, the reprogramming processes of cardiomyocytes,148,149,165,167–179 neuronal cells,39,43,48,143,145,160,180–188 glial cells,195 photoreceptor cells,196 β cells,197 renal tubular epithelial cells,198 trophoblast stem cells,102 and mesodermal cells,199,200 have been reported.

Several methodologies have been employed for the molecular biological analysis of direct reprogramming. Comprehensive transcriptome analyses using RNA-seq have been performed frequently, and differential expression gene analysis between
Table 3. Applications of the directly reprogrammed cells

Source cells	Target cells	Transgenes and/or Treatment	Species	Published year	PMID
Liver cells	β cells	Pdx1 (an adenoviral vectors)	Mouse	2000, 2003	10802714, 12775714
Pancreatic exocrine cells	β cells	Ngn3, Pdx1, and Mafa (an adenoviral vector)	Mouse	2008	18754011
Cardiac fibroblasts	Cardiomyocytes	Gata4, Mef2c, Tbx5, and Hand2 (a retrovirus vector)	Mouse	2012	22660318
Cardiac fibroblasts	Cardiomyocytes	miR-1, miR-133, miR-208, and miR-499 (a lentiviral vector)	Mouse	2012	22539765
Non-sensory cochlear epithelial cells	Neuronal cells	Ascl1; Ascl1 and Neurod (in vivo plasmid electroporation)	Mouse	2014	24928351
Liver cells in mouse models of chronic liver disease	Hepatocytes	Foxa3, Gata4, Hnf1α, and Hnf4α (an AAV vector)	Mouse	2016	26923201
Brain cells in vivo	Neuronal cells	Ascl1, Brn2, and Myt11 (mRNA transfection with a GO-PEI-based reagent)	Mouse	2016	28145631
Bile duct cells	β cells	Pdx1, Ngn3, and Mafa (an adenoviral vector)	Mouse	2017	28363269
Hepatocytes	β cells	Pdx1, Ngn3, and Mafa (hydrodynamics tail vein injection)	Mouse	2017	28100951
Resident glial cells	Neuronal cells	Ascl1, Lmx1α, and Nur71 (an AAV vector)	Mouse	2017	28844656
Liver cells in vivo	β cells	CRISPR/Cas9-based transcriptional activators + gRNA for Pdx1 (an AAV vector)	Mouse	2017	29224783
Striatal neurons	Dopaminergic neurons	Sox2, Nur71, Lmx1α, and Foxa2 (a lentiviral vector) + Valproic acid treatment	Mouse	2018	30318292
Resident glial cells	Interneurons	Ascl1, Lmx1α, and Nur71 (an AAV vector)	Mouse	2019	31259901

Continued on next page.
source and target cells has provided a considerable amount of information regarding essential regulator genes and signaling pathways during conversion. Epigenetic remodeling studies during cell-fate conversions have also been performed in various reprogrammed cells. Histone modification and DNA methylation data clarified the drastic and rapid change in chromatin states in reprogrammed cells. In addition, detailed analysis of transduced and endogenously upregulated transcription factors was a critical task for understanding direct reprogramming. Several methods, such as loss-of-function, ChIP-seq, and mass spectrometry, have been used to analyze the function and behavior of transcription factors. Transcription factor studies indicated that almost all of the reprogramming-related transcription factors played vital roles during the reprogramming process, e.g., by remodeling histone and DNA modifications, initiating the target transcription network, and erasing the transcriptional signature of the source cells. Recently, the activities of specific transcription factors, termed pioneer factors, seem pivotal for remodeling the chromatin states of cell conversion. For example, Ascl1 was identified as a pioneer factor for the induction of iN cells, which

Disease model	Mouse	2019	30638745[43]
Microglial cells Neuronal cells Neurod1 (a lentiviral vector)			
Fibroblasts from Huntington’s disease patients			
Neuronal cells PTB1 knockdown	Human	2014	25275533[45]
Urine-derived cells from muscle diseases patients			
Skeletal muscle cells MYOD	Human	2016	27651888[104]
TSC2 gene-inactivated fibroblasts (CRISPR knockout)			
Neuronal cells ASCL1, LMX1A, and NURR1	Human	2016	27857203[207]
Adult skin fibroblasts from ALS patients			
Motor neurons NEUROG2, SOX11, ISL1, and LHX3	Human	2016	26725112[46]
Dermal fibroblasts from metabolic disease patients			
Adipocytes PPARG2	Human	2017	28982679[88]
Fibroblasts from BMD patients			
Skeletal muscle cells MYOD	Human	2018	30171539[105]
Fibroblasts from MERRF patients			
Neuronal cells ASCL1 and BRN2 + REST complex knockdown	Human	2019	30797798[47]

Other animals			
Embryonic fibroblasts			
Neuronal cells ASCL1, BRN2, MYT1L, and NEUROD1	Marmoset	2014	24694048[211]
Skin fibroblasts			
Cardiomyocytes GATA4, HAND2, TBX5, and MEF2C	Canine	2015	26681949[209]
Cardiac fibroblasts			
Cardiomyocytes Gata4, Mef2c, and Tbx5 + miR-590	Rat, Porcine, & Human	2016	27930352[208]
Fetal fibroblasts			
Cardiomyocytes, Neurocytes, Oocytes, and Cumulus granulosa cells	Goat	2017	27629151[210]

Drug discovery			
Embryonic stem cells			
Neuronal cells NGN2	Human	2019	31155484[48]
can preferentially bind to chromatin and allowed the binding of other reprogramming factors used for iN cell induction.\(^{202}\) Additionally, in the case of iHep cell induction, well-known pioneer factors from the Foxa protein family are indispensable.\(^{55,56,58,64,114,115,127,189}\) Therefore, understanding the roles of pioneer factors will improve direct reprogramming technology. Additionally, the function of miRNA in iCMs has been thoroughly analyzed, and, therefore, miRNA-based reprogramming technologies of iCMs have been developed.\(^{148,165,177}\) The analysis of miRNAs in other direct reprogramming methods may result in their improvement. Other molecular and cellular analyses, such as signal transduction,\(^{174,183,197}\) metabolic remodeling,\(^{198}\) time-lapse imaging,\(^{170}\) and cell morphological studies,\(^{181}\) have been performed. Recently, single-cell analyses, such as single-cell RNA sequencing (scRNA-seq), have been performed in many direct reprogramming studies.\(^{149,181,197,199}\) These studies have clarified many features of direct reprogramming processes. For example, a limiting step and an obstruction factor,\(^{187}\) a stem cell-like transition state,\(^{181}\) and multiple trajectories\(^{192}\) of the direct cell fate conversions were discovered using scRNA-seq data. In the near future, other single-cell analysis techniques, such as ATAC-seq,\(^{203}\) ChIL-seq,\(^{204}\) CUT\&RUN,\(^{205}\) and Hi-C\(^{206}\) will reveal the chromatin dynamics and epigenetic remodeling processes in single converting cells during direct reprogramming processes.

4.2. Medical and industrial applications of direct reprogramming. As described above, most applied research for direct reprogramming has focused on clinical medicine, \(i.e.,\) cell transplantation and \textit{in vitro} direct reprogramming therapies. Meanwhile, some non-medical applications have been reported in recent years (Table 3). Direct reprogramming studies of disease model cells, which are induced from patient-derived cells, are necessary for basic studies of different disorders, and these cells can be employed for \textit{in vitro} experiments for drug discovery. Indeed, a human iN cell type, instead of primary neuronal cells, was previously applied to \textit{in vitro} drug treatment experiments.\(^{45}\) Additionally, several directly induced neuronal and skeletal muscle cell types from patients with various diseases have been reported.\(^{45–47,104,105,207}\) Direct reprogramming technology has the potential to change the pharmaceutical industry. In direct reprogramming studies, cells from different species, \(e.g.,\) rats,\(^{208}\) pigs,\(^{208}\) dogs,\(^{209}\) goats,\(^{210}\) and marmosets,\(^{211}\) have been generated. Some of the animals studied were industrial animals, such as livestock or pets, since direct reprogramming technology might contribute to animal industries, such as veterinary medicine.

5. Summary

Direct reprogramming is a promising technology that can convert somatic cells into various terminally differentiated or somatic stem/progenitor cell types for medical and industrial applications. Therefore, the number of studies utilizing this technology has increased rapidly in the last decade. Artificial cell fate conversions can be achieved with targeted expression of defined sets of transcription factors, treatment with chemical compounds as agonists or antagonists for various bioreactions, culturing with soluble factors or specific culture conditions, the induction of miRNA sets, appropriate physical stimulations, among other methods. Various cell types have been induced from somatic cells through direct reprogramming. Among them, neuronal cells, cardiomyocytes, and hepatocytes have been well-studied and their reprogramming mechanisms have been thoroughly analyzed. These technologies are expected to be applied in a variety of industries such as agriculture, biomaterial, healthcare, and medical industries.

Acknowledgments

This work was supported in part by the JSPS KAKENHI (Grant Numbers: JP16H01850, JP16K08592, JP18H05102, JP19H01177, and JP19H05267), the Core Research for Evolutional Science and Technology (CREST) Program of the Japan Agency for Medical Research and Development (AMED), the Program for Basic and Clinical Research on Hepatitis of AMED, the Practical Research Project for Rare/Intractable Diseases of AMED, the Research Center Network for Realization of Regenerative Medicine of AMED, the Takeda Science Foundation, the Uehara Memorial Foundation, and the Japan Intractable Diseases Research Foundation.

References

1) Waddington, C.H. (1957) The Strategy of the Genes. George Allen & Unwin Ltd, London.
2) Poss, K.D., Wilson, L.G. and Keating, M.T. (2002) Heart regeneration in zebrafish. Science 298, 2188–2190.
3) Raya, A., Koth, C.M., Büscher, D., Kawakami, Y., Itoh, T., Raya, R.M. \textit{et al.} (2003) Activation of notch signaling pathway precedes heart regeneration in zebrafish. Proc. Natl. Acad. Sci. U.S.A.
100 (Suppl.), 11889–11895.

4) McGann, C.J., Odelberg, S.J. and Keating, M.T. (2001) Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc. Natl. Acad. Sci. U.S.A. 98, 13699–13704.

5) Takashiki, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.

6) Garber, K. (2015) RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat. Biotechnol. 33, 890–891.

7) Morizane, A. (2019) Cell therapy for Parkinson’s disease with induced pluripotent stem cells. Clin. Neurol. 59, 119–124.

8) Akabayashi, A., Nakazawa, E. and Jecker, N.S. (2019) The world’s first clinical trial using iPSC cell sheets for corneal epithelial stem cell deficiency. New Front. Ophthalmol. 5, 1–2.

9) Hino, K., Zhao, C., Horigome, K., Nishio, M., Okanishi, Y., Nagata, S. et al. (2018) An mTOR signaling modulator suppressed heterotopic ossification of fibrodysplasia ossificans progressiva. Stem Cell Rep. 11, 1106–1119.

10) Hosoya, M., Fujioka, M., Sone, T., Okamoto, S., Akamatsu, W., Ukai, H. et al. (2017) Cochlear cell modeling using disease-specific iPSCs unveils a degenerative phenotype and suggests treatments for congenital progressive hearing loss. Cell Rep. 18, 68–81.

11) Tabata, Y., Imazumi, Y., Sugawara, M., Andoh-Noda, T., Banno, S., Chai, M.C. et al. (2018) T-type calcium channels determine the vulnerability of dopaminergic neurons to mitochondrial stress in familial Parkinson disease. Stem Cell Rep. 11, 1171–1184.

12) Kondo, T., Imamura, K., Funayama, M., Tsukita, K., Miyake, M., Ohta, A. et al. (2017) iPSC-based compound screening and in vitro trials identify a synergistic anti-amyloid β combination for Alzheimer’s disease. Cell Rep. 21, 2304–2312.

13) Egawa, N., Kitaoka, S., Tsukita, K., Naitoh, M., Takahashi, K., Yamamoto, T. et al. (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 4, 145ra104.

14) Li, H.L., Fujimoto, N., Sasakawa, N., Shirai, S., Ohkame, T., Sakuma, T. et al. (2015) Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep. 4, 143–154.

15) Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E. et al. (2013) Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379.

16) Spence, J.R., Mayhew, C.N., Rankin, S.A., Kuhar, M.F., Vallance, J.E., Tolle, K. et al. (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–110.

17) Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T. et al. (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484.

18) Taguchi, A., Kaku, Y., Ohmori, T., Sharmin, S., Ogawa, M., Sasaki, H. et al. (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67.

19) Davis, R.L., Weintraub, H. and Lassar, A.B. (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000.

20) Ferber, S., Halkin, A., Cohen, H., Ber, I., Einav, Y., Goldberg, I. et al. (2000) Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. 6, 568–572.

21) Ber, I., Shternhall, K., Perl, S., Ohanuna, Z., Goldberg, I., Barshack, I. et al. (2003) Functional, persistent, and extended liver to pancreas transdifferentiation. J. Biol. Chem. 278, 31950–31957.

22) Laiosa, C.V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L. and Graf, T. (2006) Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU.1 transcription factors. Immunity 25, 731–744.

23) Cobaleda, C., Jochum, W. and Busslinger, M. (2007) Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449, 473–477.

24) Desgraz, R. and Herrera, P.L. (2009) Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development 136, 3567–3574.

25) Berninger, B., Costa, M.R., Koch, U., Schroeder, T., Sutor, B., Grotthe, B. et al. (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J. Neurosci. 27, 8654–8664.

26) Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Stidhoff, T.C. and Wernig, M. (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041.

27) Caiazzo, M., Dell’Anno, M.T., Dvoretzskova, E., Lazarevic, D., Taverna, S., Leo, D. et al. (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224–227.

28) Pang, Z.P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D.R., Yang, T.Q. et al. (2011) Induction of human neuronal cells by defined transcription factors. Nature 476, 220–223.

29) Pfisterer, U., Kirkeby, A., Torper, O., Wood, J., Nelandre, J., Dufour, A. et al. (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl. Acad. Sci. U.S.A. 108, 10343–10348.

30) Han, D.W., Tapia, N., Herrmann, A., Hemmer, K., Höing, S., Araúzo-Bravo, M.J. et al. (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10, 465–472.
31) Ring, K.L., Tong, L.M., Balestra, M.E., Javier, R., Andrews-Zwilling, Y., Li, G. et al. (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11, 100–109.

32) Sheng, C., Zheng, Q., Wu, J., Xu, Z., Wang, L., Li, W. et al. (2012) Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Res. 22, 208–218.

33) Kim, J.J., Shin, J.H., Yu, K.R., Lee, B.C., Kang, I., Sheng, C., Zheng, Q., Wu, J., Xu, Z., Wang, L., Li, W. et al. (2018) Direct conversion of human umbilical cord blood into induced neural stem cells with SOX2 and HMG2A. Int. J. Stem Cells 10, 227–234.

34) Connor, B., Firmin, E., McCaughhey-Chapman, A., Monk, R., Lee, K., Liot, S. et al. (2018) Conversion of adult human fibroblasts into neural precursor cells using chemically modified mRNA. Helinyon 4, e00918.

35) Xiao, D., Liu, X., Zhang, M., Zou, M., Deng, Q., Sun, D. et al. (2018) Direct reprogramming of fibroblasts into neural stem cells by single non-neuronal progenitor transcription factor Ptf1a. Nat. Commun. 9, 2865.

36) Playne, R., Jones, K.S. and Connor, B. (2018) Generation of dopamine neuronal-like cells from induced neural precursors derived from adult human cells by non-viral expression of lineage factors. J. Stem Cells Regen. Med. 14, 34–44.

37) Ahlfors, J.E., Azimi, A., El-Ayoubi, R., Vehmian, A., Vonderwulde, L., Boscher, C. et al. (2019) Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells. Stem Cell Res. Ther. 10, 1–17.

38) Omrani, M.R., Yaqubi, M. and Mohammadnia, A. (2018) Transcription factors in regulatory and protein subnetworks during generation of neural stem cells and neurons from direct reprogramming of non-fibroblastic cell sources. Neuroscience 380, 63–77.

39) Nishimura, K., Weichert, R.M., Liu, W., Davis, R.L. and Dabdoub, A. (2014) Generation of induced neurons by direct reprogramming in the mammalian cochlea. Neuroscience 275, 125–135.

40) Baek, S., Oh, J., Song, J., Choi, H., Yoo, J., Park, G.Y. et al. (2017) Generation of integration-free induced neurons using graphene oxide-polyethyleneimine. Small 13, 1–10.

41) Pereira, M., Birtele, M., Shrigley, S., Benitez, J.A., Hedlund, E., Parmar, M. et al. (2017) Direct reprogramming of resident NG2 glia into neurons with properties of fast-spiking parvalbumin-containing interneurons. Stem Cell Rep. 9, 742–751.

42) Niu, W., Zhang, T., Wang, L.L., Zou, Y. and Zhang, C.L. (2018) Phenotypic reprogramming of striatal neurons into dopaminergic neuron-like cells in the adult mouse brain. Stem Cell Rep. 11, 1156–1170.

43) Pereira, M., Birtele, M. and Ottosson, D.R. (2019) In vivo direct reprogramming of resident glial cells into interneurons by intracerebral injection of viral vectors. J. Vis. Exp. 148, e59465.
factors. Nature 475, 386–391.
57) Du, Y., Wang, J., Jia, J., Song, N., Xiang, C., Xu, J. et al. (2014) Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell 14, 394–403.
58) Huang, P., Zhang, L., Gao, Y., He, Z., Yao, D., Wu, Z. et al. (2014) Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14, 370–384.
59) Simeonov, K.P. and Uppal, H. (2014) Direct reprogramming of human fibroblasts to hepatocyte-like cells by synthetic modified mRNAs. PLoS One 9, e100134.
60) Song, G., Pacher, M., Balakrishnan, A., Yuan, Q., Tsay, H.C., Yang, D. et al. (2016) Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18, 797–808.
61) Nakamori, D., Akamine, H., Takayama, K., Sakurai, F. and Mizuguchi, H. (2017) Direct conversion of human fibroblasts into hepatocyte-like cells by ATF5, PROX1, FOXA2, FOXA3, and HNF4A transduction. Sci. Rep. 7, 1–9.
62) Wu, W., Jin, Y.Q. and Gao, Z. (2017) Directly reprogramming fibroblasts into adipogenic, neurogenic and hepatogenic differentiation lineages by defined factors. Exp. Ther. Med. 13, 2685–2690.
63) Chen, C., Pla-Palacin, I., Baptista, P.M., Shang, P., Osterhoff, L.A., van Wolferen, M.E. et al. (2018) Hepatocyte-like cells generated by direct reprogramming from murine somatic cells can repopulate decellularized livers. Biotechnol. Bioeng. 115, 2807–2816.
64) Park, S., Hwang, S.I., Kim, J., Hwang, S., Kang, S., Yang, S. et al. (2019) The therapeutic potential of induced hepatocyte-like cells generated by direct reprogramming on hepatic fibrosis. Stem Cell Res. Ther. 10, 1–11.
65) Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. and Melton, D.A. (2008) In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632.
66) Berneis-Zeitouni, D., Molakandov, K., Elgart, M., Mor, E., Fornoni, A., Domínguez, M.R. et al. (2014) The temporal and hierarchical control of transcription factors-induced liver to pancreas transdifferentiation. PLoS One 9, 1–11.
67) Yamada, T., Cavelti-Weder, C., Caballero, F., Lysy, P.A., Guo, L., Sharma, A. et al. (2015) Reprogramming mouse cells with a pancreatic duct phenotype to insulin-producing β-like cells. Endocrinology 156, 2029–2038.
68) Wang, Y., Galivo, F., Pelz, C., Haft, A., Lee, J., Kim, S.K. et al. (2016) Efficient generation of pancreatic β-like cells from the mouse gallbladder. Stem Cell Res. 17, 587–596.
69) Hill, C.M., Banga, A., Abrahante, J.E., Yuan, C., Mutch, L.A., Janecek, J. et al. (2017) Establishing a large-animal model for in vivo reprogramming of bile duct cells into insulin-secreting cells to treat diabetes. Hum. Gene Ther. Clin. Dev. 28, 87–95.
70) Yang, X.F., Ren, L.W., Yang, L., Deng, C.Y. and Li, F.R. (2017) In vivo direct reprogramming of liver cells to insulin producing cells by virus-free overexpression of defined factors. Endocr. J. 64, 291–302.
71) Liao, H.K., Hatanaka, F., Araoka, T., Reddy, P., Wu, M.Z., Sui, Y. et al. (2017) In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e15.
72) Laiosa, C.V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L. and Graf, T. (2006) Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU.1 transcription factors. Immunity 25, 731–744.
73) Cobaleda, C., Jochum, W. and Busuliger, M. (2007) Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449, 473–477.
74) Feng, R., Desbordes, S.C., Xie, H., Tillo, E.S., Pixley, F., Stanley, E.R. et al. (2008) PU.1 and C/EBPα/β convert fibroblasts into macrophage-like cells. Proc. Natl. Acad. Sci. U.S.A. 105, 6057–6062.
75) Ono, Y., Wang, Y., Suzuki, H., Okamoto, S., Ikeda, Y., Murata, M. et al. (2012) Induction of functional platelets from mouse and human fibroblasts by p45NF-E2/Maf. Blood 120, 3812–3821.
76) Suzuki, T., Nakano-Ikegaya, M., Yabukami-Okuda, H., de Hoon, M., Severin, J., Suga-Hatano, S. et al. (2012) Reconstruction of monocyte transcriptional regulatory network accompanies monocytic functions in human fibroblasts. PLoS One 7, e33474.
77) Battu, K., Florkowska, M., Kouskoff, V. and Lacaud, G. (2014) Direct reprogramming of murine fibroblasts to hematopoietic progenitor cells. Cell Rep. 9, 1871–1884.
78) Rosa, F.F., Pires, C.F., Kurochkin, I., Ferreira, A.G., Gomes, A.M., Palma, L.G. et al. (2018) Direct reprogramming of fibroblasts into antigen-presenting dendritic cells. Sci. Immunol. 3, 1–16.
79) Mizoshiri, N., Kishida, T., Yamamoto, K., Shirai, T., Terauchi, R. and Tsuji, H. (2015) Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts. Biochem. Biophys. Res. Commun. 467, 1110–1116.
80) Yamamoto, K., Kishida, T., Sato, Y., Nishioka, K., Ejima, A., Fujiiwara, H. et al. (2015) Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc. Natl. Acad. Sci. U.S.A. 112, 6152–6157.
81) Yamamoto, K., Sato, Y., Honjo, K., Ichikawa, H., Oseko, F., Sowa, Y. et al. (2016) Generation of directly converted human osteoblasts that are free of exogenous gene and xenogenic protein. J. Cell. Biochem. 25, 2538–2545.
82) Ahmed, M.F., El-Sayed, A.K., Chen, H., Zhao, R., Jin, K., Zuo, Q. et al. (2019) Direct conversion of mouse embryonic fibroblast to osteoblast cells using hLMP-3 with Yamanaka factors. Int. J.
Biochem. Cell Biol. **106**, 84–95.

83) Wakao, J., Kishida, T., Fumino, S., Kimura, K., Yamamoto, K., Kotani, S. et al. (2017) Efficient direct conversion of human fibroblasts into myogenic lineage induced by co-transduction with MYCL and MYOD1. Biochem. Biophys. Res. Commun. **488**, 368–373.

84) Ito, N., Kii, I., Shimizu, N., Tanaka, H. and Takeda, S. (2017) Direct reprogramming of fibroblasts into skeletal muscle progenitor cells by transcription factors enriched in undifferentiated subpopulation of satellite cells. Sci. Rep. **7**, 1–12.

85) Seko, Y., Azuma, N., Kameda, M., Nakatani, K., Miyagawa, Y., Noshiro, Y. et al. (2012) Derivation of human differential photoreceptor-like cells from the iris by defined combinations of CRX, RX and NEUROD. PLoS One **7**, e35611.

86) Kami, D., Kitani, T., Komuta, Y., Miyamoto, K., Miyagawa, Y. et al. (2014) Derivation of human differential photoreceptor cells from adult human dermal fibroblasts by defined combinations of CRX, RAX, OTX2 and NEUROD. Genes Cells **19**, 198–208.

87) Kam, D., Kitani, T., Kawasaki, T. and Gojo, S. (2016) Cardiac mesenchymal progenitors differentiate into adipocytes via KLF4 and c-Myc. Cell Death Dis. **7**, 1–12.

88) Chen, J.-H., Goh, K.J., Rocha, N., Groeneveld, M.P., Minic, M., Barrett, T.G. et al. (2017) Evaluation of human dermal fibroblasts directly reprogrammed to adipocyte-like cells as a metabolic disease model. Dis. Model. Mech. **10**, 1411–1420.

89) Ji, H.Y., Atchison, L., Chen, Z., Chakraborty, S., Jung, Y., Truskey, G.A. et al. (2016) Trans-differentiation of human endothelial progenitors into smooth muscle cells. Biomaterials **85**, 180–194.

90) Hirai, H., Yang, B., Garcia-Barrio, M.T., Rom, O., Ma, P.X., Zhang, J. et al. (2018) Direct reprogramming of fibroblasts into smooth muscle-like cells with defined transcription factors: brief report. Arterioscler. Thromb. Vasc. Biol. **38**, 2191–2197.

91) Zhao, Z., Xu, M., Wu, M., Ma, K., Sun, M., Tian, X. et al. (2015) Direct reprogramming of human fibroblasts into sweat gland-like cells. Cell Cycle **14**, 3498–3505.

92) Yao, B., Xie, J., Liu, N., Hu, T., Song, W., Huang, S. et al. (2019) Direct reprogramming of epidermal cells toward sweat gland-like cells by defined factors. Cell Death Dis. **10**, 272.

93) Fontijn, R.D., Favre, J., Naaijens, B.A., Meister, E., Pauw, N.J., Ragghoe, S.L. et al. (2014) Adipose tissue-derived stromal cells acquire endothe-lial-like features upon reprogramming with SOX18. Stem Cell Res. **13**, 367–378.

94) Lee, S., Park, C., Han, J.W., Kim, J.Y., Cho, K., Kim, E.J. et al. (2017) Direct reprogramming of human dermal fibroblasts into endothelial cells using ER71/ETV2. Circ. Res. **120**, 848–861.

95) Kajimura, S., Sago, K., Kubota, K., Lunsford, E., Frangioni, J.V., Gygi, S.P. et al. (2009) Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex. Nature **460**, 1154–1158.

96) Buganim, Y., Iskovich, E., Hu, Y.C., Cheng, A.W., Ganz, K., Sarkar, S. et al. (2012) Direct reprogramming of fibroblasts into embryonic sertoli-like cells with defined factors. Cell Stem Cell **11**, 373–386.

97) Yang, R., Zheng, Y., Li, L., Liu, S., Burrows, M., Wei, Z. et al. (2014) Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors. Nat. Commun. **5**, 5807.

98) Breidenkamp, N., Ulyanchenko, S., O’Neill, K.E., Manley, N.R., Vaidya, H.J. and Blackburn, C.C. (2014) An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat. Cell Biol. **16**, 902–908.

99) Kaminski, M.M., Tomic, J., Kresbach, C., Engel, H., Klockenbusch, J., Müller, A.L. et al. (2016) Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat. Cell Biol. **18**, 1269–1280.

100) Miura, S. and Suzuki, A. (2017) Generation of mouse and human organoid-forming intestinal progenitor cells by direct lineage reprogramming. Cell Stem Cell **21**, 466–471.e5.

101) Yang, Y., Li, Z., Wu, X., Chen, H., Xu, W., Xiang, Q. et al. (2017) Direct reprogramming of mouse fibroblasts toward Leydig-like cells by defined factors. Stem Cell Rep. **8**, 39–53.

102) Rhee, C., Lee, B.K., Beck, S., Le Blanc, L., Tucker, H.O. and Kim, J. (2017) Mechanisms of trans-differentiation factor-mediated direct reprogramming of mouse embryonic stem cells to trophoblast stem-like cells. Nucleic Acids Res. **45**, 10103–10114.

103) Vanslimbrouck, J.M., Woodard, L.E., Suhami, N., Williams, F.M., Howden, S.E., Wilson, S.B. et al. (2019) Direct reprogramming to human nephron progenitor-like cells using inducible piggyBac transposon expression of SNAI2-EYA1-SIX1. Kidney Int. **95**, 1153–1166.

104) Kim, E.Y., Page, P., Delleva-Castillo, L.M., McNally, E.M. and Wyatt, E.J. (2016) Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease. Skelet. Muscle **6**, 1–16.

105) Lee, J.J.A., Saito, T., Duddy, W., Takeda, S. and Yokota, T. (2018) Direct reprogramming of human DMD fibroblasts into myotubes for in vitro evaluation of antisense-mediated exon skipping and exons 45–55 skipping accompanied by rescue of dystrophin expression. Methods Mol. Biol. **1828**, 141–150.

106) Cahen, P., Li, H., Morris, S.A., Lummertz Da Rocha, E., Daley, G.Q. and Collins, J.J. (2014) CellNet: Network biology applied to stem cell engineering. Cell **158**, 903–915.

107) Tomaru, Y., Hasegawa, R., Suzuki, T., Sato, T., Kubosaki, A., Suzuki, M. et al. (2014) A transient disruption of fibroblastic transcriptional regulatory network facilitates trans-differentiation. Nu-
cleic Acids Res. 42, 8905–8913.

108) D’Alessio, A.C., Fan, Z.P., Wert, K.J., Baranov, P., Cohen, M.A., Saini, J.S. et al. (2015) A systematic approach to identify candidate transcription factors that control cell identity. Stem Cell Rep. 5, 763–775.

109) Rackham, O.J.L., Firas, J., Fang, H., Oates, M.E., Holmes, M.L., Knaupp, A.S. et al. (2016) A predictive computational framework for direct reprogramming between human cell types. Nat. Genet. 48, 331–335.

110) Ronquist, S., Patterson, G., Muir, L.A., Lindsly, S., Rackham, O.J.L., Firas, J., Fang, H., Oates, M.E., Ronquist, S., Patterson, G., Muir, L.A., Lindsly, S., D. et al. (2018) Nonintegrating episomal vectors. Neural Regen. Res. 14, 501–505.

111) Fusaki, N., Ban, H., Nishiyama, A.,Saeki, K. and Lee, K., Yu, P., Lingampalli, N., Kim, H.J., Tang, E.M., Yim, J.H. (2015) Generation of non-viral, transgene-free hepatocyte like cells. Biomed Res. Int. 2018, 1–8.

112) Han, Y.C., Lim, Y., Duffield, M.D., Li, H., Liu, J., Abdul Manaph, N.P. et al. (2016) Direct reprogramming of mouse fibroblasts to functional neurons. Cell Stem Cell 17, 204–212.

113) Li, X., Zuo, X., Jing, J., Ma, Y., Wang, J., Liu, D. et al. (2015) Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 17, 195–203.

114) Huang, C., Xu, Z., Gu, H., Ye, Y., Jiang, C. et al. (2019) Plasmid-based generation of neural cells from human bone marrow-derived cells with a single transcription factor. Acta Pharmacol. Sin. 40, 620–629.

115) Frimpong, M., Yu, J., et al. (2018) Direct reprogramming of glioblastoma cells into functional skeletal muscle progenitors. Stem Cell Rep. 10, 1505–1521.

116) Yu, Q., Chen, J., Deng, W., Cao, X., Adu-Frimpong, M., Yu, J. et al. (2017) Neural differentiation of fibroblasts induced by intracellular co-delivery of Asc11, Brn2 and FoxA1 via a non-viral vector of cationic polysaccharide. Biomed. Mater. 13, 015022.

117) Liu, M.L., Zang, T., Zou, Y., Chang, J.C., Gibson, J.R., Huber, K.M. et al. (2013) Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat. Commun. 4, 2183.
MicroRNAs induce a permissive chromatin environment that enables neuronal subtype-specific reprogramming of adult human fibroblasts. Cell Stem Cell 21, 332–348.e9.

Liang, X.G., Tan, C., Wang, C.K., Tao, R.R., Huang, Y.J., Ma, K.F. et al. (2018) Myt1l induced direct reprogramming of pericytes into cholinergic neurons. CNS Neurosci. Ther. 24, 801–809.

Jayawardena, T.M., Egennazarov, B., Finch, E.A., Zhang, L., Alan Payne, J., Pandya, K. et al. (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110, 1465–1473.

Muraoka, N., Yamakawa, H., Miyamoto, K., Sadahiro, T., Unei, T., Isomi, M. et al. (2014) MiR-133 promotes cardiac reprogramming by directly repressing Snail and silencing fibroblast signatures. EMBO J. 33, 1565–1581.

Bektik, E., Dennis, A., Prasanna, P., Madabhushi, A. and Fu, J.D. (2017) Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes. PLoS One 12, 1–16.

Huang, X., Trinh, T., Aljouni, A. and Broxmeyer, H.E. (2018) Hypoxia signaling pathway in stem cell regulation: Good and Evil. Curr. Stem Cell Res. Ther. 14, 149–157.

Van Pham, P., Vu, N.B., Nguyen, H.T., Huynh, O.T. and Truong, M.T.H. (2016) Significant improvement of direct reprogramming efficacy of fibroblasts into progenitor endothelial cells by ETV2 and hypoxia. Stem Cell Res. Ther. 7, 1–10.

Wang, Y., Shi, S., Liu, H. and Meng, L. (2016) Hypoxia enhances direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells. Cell. Reprogram. 18, 1–7.

Kulangara, K., Adler, A.F., Wang, H., Chellappan, M., Hamnett, E., Yasuda, R. et al. (2014) The effect of substrate topography on direct reprogramming of fibroblasts to induced neurons. Biomaterials 35, 5327–5336.

Morez, C., Noseda, M., Paiva, M.A., Belian, E., Schneider, M.D. and Stevens, M.M. (2015) Enhanced efficacy of genetic programming toward cardiomyocyte creation through topographical cues. Biomaterials 70, 94–104.

Yoo, J., Noh, M., Kim, H., Jeon, N.L., Kim, B.S. and Kim, J. (2015) Nanogrooved substrate promotes direct lineage reprogramming of fibroblasts to functional induced dopaminergic neurons. Biomaterials 45, 36–45.

Sia, J., Yu, P., Srivastava, D. and Li, S. (2016) Effect of biophysical cues on reprogramming to cardiomyocytes. Biomaterials 103, 1–11.

Lee, G.S., Kim, M.G. and Kwon, H.J. (2019) Electrical stimulation induces direct reprogramming of human dermal fibroblasts into hyaline chondrogenic cells. Biochem. Biophys. Res. Commun. 513, 990–996.

Black, J.B., Adler, A.F., Wang, H.G., D’Ippolito, A.M., Hutchinson, H.A., Redley, T.E. et al. (2016) Hypoxia enhances direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells. Cell. Reprogram. 18, 1–7.
Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19, 406–414.

Hirai, H., Katoku-Kikyo, N., Keirstead, S.A. and Kikyo, N. (2013) Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain. Cardiovasc. Res. 100, 105–113.

Gascón, S., Ortega, F. and Götz, M. (2017) Transient CREB-mediated transcription is key in direct neuronal reprogramming. Neurogenesis 4, e1285383.

Papadimou, E., Iatropoulos, P., Xinaris, L. and Sauder, F. (2016) Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MaA Transcription Factors. Mol. Ther. Nucleic Acids 5, e280.

Li, Y., Dal-Pra, S., Mirotson, M., Jayawardena, T.M., Hodgkinson, C.P., Bursac, N. et al. (2016) Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs. Sci. Rep. 6, 1–11.

Wang, X., Hodgkinson, C.P., Lu, K., Payne, A.J., Pratt, R.E. and Dzau, V.J. (2016) Selenium augments microRNA directed reprogramming of fibroblasts to cardiomyocytes via Nanog. Sci. Rep. 6, 1–10.

Cairns, D.M., Chowle, K., Moore, Y.E., Kelley, M.R., Abbott, R.D., Moss, S. et al. (2016) Expandable and rapidly differentiating human induced neural stem cell lines for multiple tissue engineering applications. Stem Cell Rep. 7, 557–570.

Zhou, H., Morales, M.G., Hashimoto, H., Dickson, M.E., Song, K., Ye, W. et al. (2017) ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression. Genes Dev. 31, 1770–1783.

Sutcliffe, M.D., Tan, P.M., Fernandez-Perez, A., Nam, Y.J., Munshi, N.V. and Saucerman, J.J. (2018) High content analysis identifies unique morphological features of reprogrammed cardiomyocytes. Sci. Rep. 8, 1–11.

Sauls, K., Greco, T.M., Wang, L., Zou, M., Villasmil, M., Qian, L. et al. (2018) Initiating events in direct cardiomyocyte reprogramming. Cell Rep. 22, 1913–1922.

Bektik, E., Dennis, A., Pawlowski, G., Zhou, C., Maleski, D., Takahashi, S. et al. (2018) S-phase synchronization facilitates the early progression of induced-cardiomyocyte reprogramming through enhanced cell-cycle exit. Int. J. Mol. Sci. 19, 1364.

Zhou, Y., Alamihamed, S., Wang, L., Liu, Z., Wall, J.B., Yin, C. et al. (2018) A loss of function screen of epigenetic modifiers and splicing factors during early stage of cardiac reprogramming. Stem Cells Int. 2018, 6–16.

Hashimoto, H., Wang, Z., Garry, G.A., Malladi, V.S., Botten, G.A., Ye, W. et al. (2019) Cardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancers. Cell Stem Cell 25, 69–86.e5.

Nam, Y.J., Lubczynski, C., Bhakta, M., Zang, T., Fernandez-Perez, A., McAnally, J. et al. (2014) Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. Development 141, 4267–4278.

Zhao, Y., Londono, P., Cao, Y., Sharpe, E.J., Proenza, C., O’Rourke, R. et al. (2015) High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat. Commun. 6, 8243.

Koblas, T., Leontyev, I., Loukotova, S., Kosinova, L. and Sauder, F. (2016) Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Nga3, and MaA Transcription Factors. Mol. Ther. Nucleic Acids 5, e280.

Dal-Pra, S., Mirotson, M., Kirsh, I. and Dzau, V.J. (2017) Bmi1 is a key epigenetic barrier to direct cardiac reprogramming. Cell Stem Cell 18, 382–395.

Rastegar-Pouyani, S., Khazaei, N., Wee, P., Yaqubi, M. and Mohammadnia, A. (2017) Meta-analysis of transcriptome regulation during induction to cardiac myocyte fate from mouse and human fibroblasts. J. Cell. Physiol. 232, 2053–2062.

Dal-Pra, S., Hodgkinson, C.P., Mirotson, M., Kirsh, I. and Dzau, V.J. (2017) Demethylation of H3K27 is essential for the induction of direct cardiac reprogramming by MIR combo. Circ. Res. 120, 1403–1413.

Fernandez-Perez, A. and Munshi, N.V. (2017) Assessing cardiomyocyte subtypes following transcription factor-mediated reprogramming of mouse embryonic fibroblasts. J. Vis. Exp. 121, e55456.

Talkhabi, M., Razavi, S.M. and Salari, A. (2017) Global transcriptomic analysis of induced cardiomyocytes predicts novel regulators for direct cardiac reprogramming. J. Cell Commun. Signal. 11, 193–204.

Khazaei, N., Rastegar-Pouyani, S., O’Toole, N., Wee, P., Mohammadnia, A. and Yaqubi, M. (2018) Regulating the transcriptionomes that mediate the conversion of fibroblasts to various nervous system neural cell types. J. Cell. Physiol. 233, 3603–3614.

Karow, M., Gray Camp, J., Falk, S., Gerber, T., Pataskar, A., Gac-Santel, M. et al. (2018) Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat. Neurosci. 21, 932–940.

Luo, C., Lee, Q.Y., Wapinski, O., Castanon, R., Nery, J.R., Mall, M. et al. (2019) Global DNA methylation remodeling during direct reprogram-
moming of fibroblasts to neurons. eLife 8, 1–19.

183) Hu, X., Qin, S., Huang, X., Yuan, Y., Tan, Z., Gu, Y. et al. (2019) Region-restrict astrocytes exhibit heterogeneous susceptibility to neuronal reprogramming. Stem Cell Rep. 12, 290–304.

184) Ruetz, T., Pfisterer, U., Di Stefano, B., Ashmore, J., Beniazza, M., Tian, T.V. et al. (2017) Constitutively active SMAD2/3 are broad-scope potentia tors of transcription-factor-mediated cellular reprogramming. Cell Stem Cell 21, 791–805.e9.

185) Potts, M.B., Sin, J.J., Price, J.D., Salinas, R.D., Cho, M.J., Ramos, A.D. et al. (2014) Analysis of MBl deficiency identifies neurogenic transcriptional modules and brn4 as a factor for direct astrocyte-to-neuron reprogramming. Neurosurgery 75, 472–482.

186) Rodríguez-Traver, E., Solís, O., Díaz-Guerra, E., Ortiz, O., Vergaño-Vera, E., Méndez-Gómez, H.R. et al. (2016) Role of Nurr1 in the generation and differentiation of dopaminergic neurons from stem cells. Neurotox. Res. 30, 14–31.

187) Treutlein, B., Lee, Q.Y., Camp, J.G., Mall, M., Koh, W., Shariati, S.A.M. et al. (2016) Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 534, 391–395.

188) Wapinski, O.L., Lee, Q.Y., Chen, A.C., Li, R., Corces, M.R., Ang, C.E. et al. (2017) Rapid chromatin switch in the direct reprogramming of fibroblasts to neurons. Cell Rep. 20, 3236–3247.

189) Wu, Z.T., Yao, D., Ji, S.Y., Ni, X., Gao, Y.M., Hui, L.J. et al. (2016) Optimized hepatocyte-like cells with functional drug transporters directly-reprogrammed from mouse fibroblasts and their potential in drug disposition and toxicology. Cell. Physiol. Biochem. 38, 1815–1830.

190) Serrano, F., García-Bravo, M., Blazquez, M., Torres, J., Castell, J.V., Segovia, J.C. et al. (2016) Silencing of hepatic fate-conversion factors induce tumorigenesis in reprogrammed hepatic progenitor-like cells. Stem Cell Res. Ther. 7, 1–15.

191) Rastegar-Fouyani, S., Khazaee, N., Wee, P., Mohammadnia, A. and Yaquibi, M. (2016) Role of hepatic-specific transcription factors and polycomb repressive complex 2 during induction of fibroblasts to hepatic fate. PLoS One 11, 1–20.

192) Biddy, B.A., Kong, W., Kamimoto, K., Guo, C., Waye, S.E., Sun, T. et al. (2018) Single-cell mapping of lineage and identity in direct reprogramming. Nature 564, 219–224.

193) Winiecka-Klinek, M., Smolarz, M., Walczak, M.P., Zieba, J., Hulas-Bigoszewskao, K., Kmiecik, B. et al. (2015) SOX2 and SOX2-MYC reprogramming process of fibroblasts to the neural stem cells compromised by senescence. PLoS One 10, e0141688.

194) Kim, S.M., Lim, K.T., Kwak, T.H., Lee, S.C., Im, J.H., Hali, S. et al. (2016) Induced neural stem cells from distinct genetic backgrounds exhibit different reprogramming status. Stem Cell Res. 16, 460–468.

195) Masserodotti, G., Gillotin, S., Sutor, B., Drechsel, D., Irmler, M., Jørgensen, H.F. et al. (2015) Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes. Cell Stem Cell 17, 74–88.

196) Fukuda, T., Ishizawa, Y., Donai, K., Sugano, E. and Tomita, H. (2018) The poly-cistronic expression of four transcriptional factors (CRX, RAX, NEURO-D, OTX2) in fibroblasts via retro- lentivirus causes partial reprogramming into photoreceptor cells. Cell Biol. Int. 42, 608–614.

197) Cohen, H., Barash, H., Meivar-Levy, I., Molakandov, K., Ben-Shimon, M., Gurevich, M. et al. (2018) The Wnt/β-catenin pathway determines the predisposition and efficiency of liver-to-pancreas reprogramming. Hepatology 68, 1589–1603.

198) Lagies, S., Pichler, R., Kaminski, M.M., Schlimpert, M., Walz, G., Lienkamp, S.S. et al. (2018) Metabolic characterization of directly reprogrammed renal tubular epithelial cells (iRECs). Sci. Rep. 8, 1–12.

199) Sadahiro, T., Isomi, M., Muraoka, N., Kojima, H., Haginiwa, S., Kurotsu, S. et al. (2018) Thox6 induces nascent mesoderm from pluripotent stem cells and temporally controls cardiac versus somite lineage diversification. Cell Stem Cell 23, 382–395.e5.

200) Akbari, B., Wee, P., Yaquibi, M. and Mohammadnia, A. (2017) Comprehensive transcriptome mining of the direct conversion of mesodermal cells. Sci. Rep. 7, 1–13.

201) Morris, S.A. (2016) Direct lineage reprogramming via pioneer factors; a detour through developmental gene regulatory networks. Development 143, 2696–2705.

202) Wapinski, O.L., Vierbuchen, T., Qu, K., Lee, Q.Y., Chanda, S., Fuentes, D.R. et al. (2013) Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155, 621–635.

203) Buenrostro, J.D., Wu, B., Litzenburger, U.M., Ruff, D., Gonzales, M.L., Snyder, M.P. et al. (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490.

204) Harada, A., Maehara, K., Handa, T., Arimura, Y., Nogami, J., Hayashi-Takanaka, Y. et al. (2019) A chromatin integration labelling method enables epigenomic profiling with lower input. Nat. Cell Biol. 21, 287–296.

205) Hainer, S.J., Bošković, A., McCannell, K.N., Rando, O.J. and Fazzio, T.G. (2019) Profiling of pluripotency factors in single cells and early embryos. Cell 177, 1319–1329.e11.

206) Nagano, T., Lubling, Y., Stevens, T.J., Schoenfelder, S., Yaffe, E., Dean, W. et al. (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64.

207) Rubio, A., Luoni, M., Giannelli, S.G., Radice, I., Iannielli, A., Cancellieri, C. et al. (2016) Rapid and efficient CRISPR/Cas9 gene inactivation in human neurons during human pluripotent stem cell differentiation and direct reprogramming. Sci. Rep. 6, 1–16.
Enhancing the efficiency of direct reprogramming of human primary fibroblasts into dopaminergic neuron-like cells through p53 suppression. Sci. Chin. Life Sci. 57, 867–875.

Tian, C., Li, Y., Huang, Y., Wang, Y., Chen, D., Liu, J. et al. (2015) Selective generation of dopaminergic precursors from mouse fibroblasts by direct lineage conversion. Sci. Rep. 5, 1–14.

Yu, Q., Chen, J., Deng, W., Cao, X., Adu-Frimpong, M., Yu, J. et al. (2017) Neural differentiation of fibroblasts induced by intracellular co-delivery of Ascl1, Brn2 and FoxA1 via a non-viral vector of cationic polysaccharide. Biomed. Mater. 13, 015022.

Hao, L., Xu, Z., Sun, H., Luo, W., Yan, Y., Wang, J. et al. (2017) Direct induction of functional neuronal cells from fibroblast-like cells derived from adult human retina. Stem Cell Res. 23, 61–72.
Profile

Kenichi Horisawa was born in Tochigi prefecture, Japan, and graduated from University of Tsukuba in 1997. After 2 years in a scientific publishing company, he entered the Graduate School of Science and Technology, Keio University, and received his Ph.D. degree under the supervision of Prof. Hiroshi Yanagawa in 2005. He worked as a postdoctoral fellow in Prof. Hiroshi Yanagawa’s laboratory from 2005 to 2010, and as an Assistant Professor in Prof. Nobuhide Doi’s laboratory from 2010 to 2013 in the Faculty of Science and Technology, Keio University. In 2013, he joined Prof. Atsushi Suzuki’s laboratory at the Medical Institute of Bioregulation, Kyushu University, as an Assistant Professor. His research interests are molecular mechanisms for the regeneration and direct reprogramming of hepatic cells, primarily on the molecular function and behavior of the master transcription factors for hepatic development.

Profile

Atsushi Suzuki was born in Gunma prefecture, Japan, in 1974 and graduated from Tohoku University in 1998. Then, he moved to University of Tsukuba with an aim to contribute to the development of innovative medicine using the knowledge and experience obtained from the study of basic biology. Subsequently, he succeeded in the prospective isolation of hepatic stem cells from the developing mouse liver and unraveled the mechanisms controlling the properties of hepatic stem cells during liver development. He made his Ph.D. thesis defense in the summer of 2002 and then spent time at the Salk Institute for Biological Studies, San Diego, U.S.A., to learn novel experimental techniques. After being awarded his Ph.D. from University of Tsukuba in March 2003, he continued his work at the Salk Institute until returning to RIKEN/CDB in Japan in 2005. Two and half years later, he moved to Kyushu University to join the tenure track program of “Kyushu University Research Superstar Program (SSP)” and became a principal investigator in his own laboratory. In that time, he decided to start new research projects, and finally succeeded in the induction of direct conversion of skin-derived fibroblasts to hepatocytes using defined transcription factors. He subsequently became an Associate Professor in 2011 and then Professor at Kyushu University in 2013. His ongoing studies are focused on not only liver development, regeneration, and diseases but also the determination and conversion of the fate of cells in various digestive organs, with the hope that these will provide new insights into therapies for diseases in organs of the digestive system.