Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The potential of JAK/STAT pathway inhibition by ruxolitinib in the treatment of COVID-19

Bakiye Goker Bagca*, Cigir Biray Avci

Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey

ARTICLE INFO

Keywords:
SARS-CoV-2
COVID-19
JAK/STAT pathway
Ruxolitinib
Cytokine storm

ABSTRACT

Ruxolitinib is the first approved JAK1 and JAK2 inhibitor, and is known to interfere with the JAK/STAT signaling pathway, one of the critical cellular signaling pathways involved in the inflammatory response. This review presents an overview of SARS-CoV-2 and the COVID-19 pandemic, and then focuses on the potential efficacy of ruxolitinib in this infection. The potential targets of ruxolitinib were determined by using genetic alterations that have been reported in COVID-19 patients. The potential effectiveness of ruxolitinib is suggested by evaluating the interactions of these potential targets with ruxolitinib or JAK/STAT pathway.

1. Introduction

In the final days of 2019, a pneumonia of unknown etiology with fever, breathing difficulties, and invasive lung lesions was reported in Wuhan China by the WHO. On January 7, 2020, Chinese scientists identified the etiologic agent as a new type of coronavirus, with the genome sequence available five days later [1]. WHO changed the status of the disease to a pandemic on March 11, 2020, because of the rapid increase in cases and worldwide spread [1]. As of June 17, 2020, the total number of Coronavirus disease 19 (COVID-19) cases worldwide was approximately 8 million and the total number of deaths was approximately 450,000, a death total ratio of 5.48 percent [2]. At present, there is no protective vaccine or approved treatments available.

2. Overview of the SARS-CoV-2

The virus, which is the cause of the COVID-19 was named as Severe Acute Respiratory Syndrome-related Coronavirus (SARS-CoV-2) by Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (Fig. 1a). SARS-CoV-2 is a betacoronavirus, in the Coronaviridae family along with two other species that infect humans, SARS-CoV, and MERS-CoV [3].

The genomic structure of the virus is a positive-sense, single-stranded RNA which is approximately 30 kb (29,903 nucleotides). The viral RNA is packaged by nucleocapsid proteins and this structure is surrounded by a bilayer lipid corona structure which includes membrane, envelope, and spike proteins (Fig. 1b). The transcriptome contains the open reading frame (ORF) 1ab, S, ORF3a, E, M, ORF6, ORF7a, ORF7b, ORF8, N, and ORF10 genes, respectively. ORF1ab is cleaved to nonstructural proteins (nsp). Among them, nsp12 has RNA-dependent RNA polymerase activity which performs replication and transcription of the viral genome using it as a template. The functions of other ORFs, which encode accessory proteins, are not yet clearly described [4]. The S gene encodes the Spike glycoprotein that binds to the human angiotensin-converting enzyme 2 (ACE2) receptor to infect the host cells [5]. While Envelope and Membrane proteins encoded by E and M genes, associate with the bilayer lipid envelope structure on the outer surface of the virus, N codes the Nucleocapsid protein that directly interacts with the viral genome [6].

The S protein of virion binds to the ACE2 receptor of the cell that will be infected by the virus (Fig. 1c). In the process following the binding, it is suggested that proteases especially TMPRSS2, on the surface of the host cell can strengthen binding and trigger receptor-mediated endocytosis by causing conformational changes in the S glycoprotein [5]. The early endosome carrying the virion matures towards the late endosome during vesicular traffic process and the gradual increase in the endosomal lumen acidity causes the release of the viral genome to the cytoplasm [7]. First, ORF1ab is translated using the viral RNA, and its cleavage forms the RNA-dependent RNA polymerase which is involved in both replication and transcription of structural proteins. Using these transcripts, cytoplasmic ribosomes
translate the nucleocapsid protein, and ER-bound ribosomes translate the spike, envelope, and membrane proteins into the ER lumen. Nucleocapsid packed viral RNA is encapsulated within the vesicle which carries spike, envelope, and membrane proteins on its membrane in the Endoplasmic Reticulum Golgi Intermediate Compartment (ERGIC). Finally, a complete virion is released to the extracellular region by exocytosis [8].

3. Overview of the COVID-19

3.1. Symptoms

SARS-CoV-2 is transmitted from human to human with droplets and from the mucosal surfaces of the nose, mouth, and eyes [9]. It is thought that the majority of the SARS-CoV-2 infected individuals are asymptomatic depending on their general health conditions and age. Fever, dry cough, fatigue or weakness, and dyspnea are the most common (> 50%); myalgia, chest oppression or pain, diarrhea, loss of or poor appetite, shortness of breath, expectoration, anorexia are common (< 50% and > 10%); headache, chest pain, sore throat, vomiting, loss of smell and taste are the less common (< 10%) symptoms of the diagnosed cases [10–20].

3.2. Diagnosis

In addition to general symptoms and laboratory findings, chest computed tomography (CT), rapid antibody-based methods, and molecular tests including Real-Time Reverse Transcriptase–PCR are utilized for diagnosis of COVID-19 [10]. SARS-CoV-2 was isolated from different clinical samples including upper and lower respiratory tract passages, blood, and stool. However the infectious nature of the live virus is not exactly defined, with the exception of the respiratory tract samples [21]. Based on Real-Time Reverse Transcriptase–PCR test results, the infectivity rate decreases in virus from bronchoalveolar lavage, sputum, throat, nasal and pharyngeal swabs, respectively [22]. Similarly, the infectivity rate appears to be higher in the early and progressive stages of the disease, compared to the recovery stage. The high viral load and infectious properties of the respiratory samples are thus suggestive evidence of respiratory transmission [23].

3.3. Risk factors

Advanced age (≥ 65 years) is defined as the most common risk factor. Comorbidities - hypertension, cardiovascular diseases, diabetes, chronic obstructive pulmonary diseases, malignancies, chronic kidney or hepatic diseases, asthma, or infectious diseases such as tuberculosis, and hepatitis - have been identified as other
risk groups [10,11,13,17,19,24]. Although smoking is the main risk factor for various diseases especially lung cancer, it is not classified as a risk factor of COVID-19 as yet [25]. Various genetic factors may also affect the prognosis of COVID-19; for example, the phenotypes of HLA-B*46:01 and HLA-B*15:03 affect the severity of infection by causing low and high binding affinity of SARS-CoV-2 to cells, respectively [26].

3.4. Complications

Complications triggered by COVID-19 are the main factors affecting disease severity and death. The most common complication of the COVID-19 is acute respiratory distress syndrome (ARDS). It is characterized by the appearance of ground-glass opacities in the lungs and results in serious respiratory failure and secondary complications, including multiple organ failure related to insufficient oxygenation levels [20,24,27]. Cytokine release syndrome or cytokine storm (See “4. Cytokine storm and COVID-19” section), hemophagocytic lymphohistiocytosis, and septic shock are frequently seen as complications from hyperactivation of the immune system [28–32]. Development of the autoimmune diseases including neurodegenerative disorders like Guillain Barre Syndrome, hematologic disorders like autoimmune hemolytic anemia is reported during COVID-19 treatment [33,34]. Acute cardiac, kidney, and liver injury are reported as common complications [20,24,27]. Although meningitis and encephalitis are also reported as less common complications of COVID-19, other bacterial or viral co-infections are quite frequent and they may result in deaths [18,35].

3.5. Current therapies

No treatment or drug has yet been approved, although different therapeutic approaches are currently being tested against the symptoms of COVID-19. Current treatment applications are separated into two subgroups: the first group of the treatment strategies includes antiviral drugs and immune-based therapies to overcome viral infection; the second group comprises antithrombotics, ventilation or oxygen therapies, used for secondary complications.

Remdesivir (GS-5734, Gilead Sciences) is an RNA-dependent RNA polymerase inhibitor, used against RNA viruses such as Ebolaviruses, although it has not yet been approved for any indication [36,37]. Chloroquine (or hydroxychloroquine) is an approved antimalarial drug that increases the pH of lysosomes and inhibits autophagy by suppressing lysosome-autophagosome fusion [38]. This autophagy inhibitor is a part of the current COVID-19 treatment protocol because it inhibits the endocytic pathway which allows virus entry into the cell and activation after binding to the ACE2 receptor [39]. Nevertheless, current indicated that chloroquine has no beneficial value in seriously ill patients. HIV protease inhibitors have been approved for use in treatment of HIV that function to inhibit proteolysis of viral proteins necessary to complete the HIV life cycle [40]. It is predicted that protease inhibition performed with agents such as Lopinavir/Ritonavir (Kaletra, Abbott Laboratories) may also be effective against SARS-CoV-2 [41].

The use of plasma (known as convalescent plasma therapy) or immune globulins from recovered individuals is being tested in clinical trials to help activate the immune system against SARS-CoV-2 in patients. Also, interferons (interferon alfa and interferon beta) are being tested for the same purpose [42]. Numerous clinical studies aimed to induce adaptive immunity are currently underway by different research teams [43,44]. It has been reported that the infection-related increase of coagulation parameters especially the D-dimer (normal range < 0.5μg/ml) is directly proportional to the severity of the disease. Coagulation abnormalities cause disseminated intravascular coagulation and triggers venous thromboembolism and pulmonary embolism which are among the main causes of COVID-19 related death. Antithrombotic and anticoagulant drugs including heparin, warfarin, direct-acting oral anticoagulants are used to protect against the development of coagulation and thromboembolism complications during the treatment process [45].

3.6. Genetic alterations in COVID-19

Various genetic alterations have been reported that could potentially be used as therapeutic targets during COVID-19 infection (Fig. 2). These variations especially include inflammation and immune response regulation [10,11,13–17,19,24,27,29,31,32,46–53]. Furthermore, increased expression of ACE2 and TMPRSS2 may contribute to complications in the heart, lungs, and different organs of the nervous system [47,54].

4. Cytokine storm and COVID-19

As a consequence of SARS-CoV-2 infection, a cytokine storm syndrome is triggered by dysregulated immune responses; the cytokine storm is characterized by a high inflammatory response, including elevated levels of cytokines and immune cells that infiltrate and destroy organs and cause lung lesions, respiratory dysfunction, multiple organ damage, and death [28]. Cytokines are a group of immunoregulatory cell-cell communication molecules including different subtypes named chemokine (chemotaxis cytokine), interleukin (leukocyte related cytokine), lymphokine (lymphocytes-related cytokine), monocyte (monocytes-related cytokine) and interferons. Although originally thought to be secreted by specific immune cells, it is now recognized that non-immune cells, fibroblasts or endothelial cells respond to inflammation or injury, as well as monocytes, macrophages, B- and T-lymphocytes. These cytokines are both cause and effect of the immune response and include both pro- and anti-inflammatory molecules [55].

4.1. The JAK/ STAT pathway

Cytokines regulate different cellular and immune processes and their activation is controlled by the JAK/STAT signalling pathway [56]. The Janus kinases (JAKs) and the signal transducers and activators of transcriptions (STATs) form one of the main regulatory cell signaling pathways (Fig. 3). The JAK non-receptor tyrosine kinase family includes Jak1, Jak2, Jak3, and Tyrosine kinase 2 (Tyk2) proteins. Their unique structure consists of seven JAK homology domains (JH1-7); at the carboxy-terminal, are two kinase domains (JH1 and JH2). This family is named for the mythological Janus god because of the two headed tandem kinase domains. The JH1 domain is a catalytic component and a second kinase domain is a pseudo-kinase JH2 that has an autoregulatory suppressor function. JH3 is a Src homology (SH2) domain and the activated SH2 generates a binding site for STAT transcription factors. At the amino terminal end is a receptor-interacting FERM domain comprising JH4-7 (Band 4.1, ezrin, radixin, moesin) [57]. The JAK non-receptor tyrosine kinases receive numerous different extracellular signals (growth factor, cytokine, and hormone) from host receptors and transfer these responses to the nucleus via the intracellular STATs. When extracellular signals are received by the specific JAK-associated receptor, a conformational change occurs that...
causes autophosphorylation on the tyrosines of the JAKs, and subsequent dimerization of the STATs. Dimerized STATs are directed into the nucleus and trigger transcription of the immune regulatory, apoptotic, cell cycle, and differentiation related genes. The STAT protein family includes STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6, and all contain an N-terminal, coiled-coil domain involved in protein-protein interactions, DNA-binding domain for sequence-specific DNA binding and nuclear localization, a linker region, an SH2 domain involved in dimerization and protein association, and a transactivation domain (TAD) that carries conserved tyrosine residues that are phosphorylation sites for host kinases [58]. Depending on the physiological signal, the JAK/STAT pathway regulates critical cellular homeostasis processes including immune response, proliferation, differentiation, migration, and apoptosis [59].

The IL6/JAK/STAT3 signaling pathway represents a specific branch of the JAK/STAT pathway that includes IL6, an essential pleiotropic cytokine produced by B cells, T cells, dendritic cells, and macrophages to generate an immune response or inflammation. Binding of IL6 to its specific receptor (IL6 receptor-subunit alpha IL6R) triggers a heterohexameric complex with IL6 receptor subunit-β (gp130, IL6ST) and activates the IL6/JAK/STAT3 pathway, that includes activation of inflammation-related downstream targets [58].

IL6 is one of the pivotal inflammatory cytokines upregulated in influenza, vaccinia, hepatitis B and C, Crimean-Congo hemorrhagic fever, and human immunodeficiency virus infections in humans [60]. In the context of COVID-19 cytokine storm, IL6 is likewise one of the most highly expressed cytokines; elevated serum levels of IL6 are considered one of the main indicators of poor prognosis in SARS-CoV-2 infection. The local inflammatory response, generated in part through IL6, also spreads throughout the body and contributes to cytokine release and acute respiratory distress syndromes, as well as organ damage. Different therapeutic strategies to overcome hyper-inflammation include the use of JAK/STAT pathway inhibitors and particularly anti-IL6 inhibitors [28].

5. Overview of the ruxolitinib and effect mechanisms

The first approved JAK inhibitor was ruxolitinib, followed by other JAK inhibitors including baricitinib, upadacitinib, tofacitinib, peficitinib, and fedratinib [61–63] that are under clinical investigation for the treatment of the cytokine storm. Among these, baricitinib (LY3009104, INCB028050, Olumiant, Eli Lilly) was the second JAK1 and JAK2 inhibitor, approved in 2018 for treatment of rheumatoid arthritis. In addition to its anti-inflammatory effects, baricitinib also inhibits virus endocytosis, indicating a dual specificity inhibitor [64]. And although clinical studies are underway, there is a caveat - baricitinib may increase patient vulnerability to co-infection, virus reactivation, lymphocytopenia, and neutropenia, thus indicating that it
Fig. 3. The schematic structures of the JAK and STAT proteins and overview of the JAK/STAT pathway.
Trial ID	Name	Sponsor	Dose	Design	Patients & Medical condition	Time Frame	Status
EUCTR2020-001662-11	RUXCOVID DE	Novartis Pharma AG	Once daily 5 mg	Phase 3 Double-blind Placebo-controlled Randomized	64 patient COVID-19 associated cytokine storm	29 days	Mortality
EUCTR2020-001459-42	Ruxolitinib Treatment in Patients with Severe COVID-19 Infection. A Danish Safety and Efficacy Study. Zealand University Hospital-Denmark	Once daily 10 to 40 mg	Phase 2 Non-randomized Open label	40 patients COVID-19 pneumonia	30 days	Mortality	
ChiCTR2000029580	Severe novel coronavirus pneumonia (COVID-19) patients treated with ruxolitinib in combination with mesenchymal stem cells: a prospective, single blind, randomized controlled trial. Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology- China	Twice daily	Randomized Single-blind	35 patients COVID-19 diagnosed Positive serum antibodies (IgM or IgG)	7 days	Mortality	
NCT04348071	Safety and Efficacy of Ruxolitinib for COVID-19 Patients with Defined Hyperinflammation (RuxCoFlam). University of Jena- Germany	Twice daily 5 mg and 10 mg	Phase 2 Randomized Double-blind Placebo-controlled Single-blind	200 patients COVID-19 stage II and stage III Hyper-inflammation Increased activation of the JAK/STAT pathway	7 days	Mortality	
NCT04338958	Ruxolitinib in Covid-19 Patients With Defined Hyperinflammation (RuxCoFlam). University of Jena- Germany	Twice daily 5 mg and 10 mg	Phase 2 Randomized Double-blind Placebo-controlled Single-blind	200 patients COVID-19 stage II and stage III Hyper-inflammation Increased activation of the JAK/STAT pathway	7 days	Mortality	
NCT04334044	Treatment of SARS caused by COVID-19 with Ruxolitinib. University of Sao Paulo- Brazil	Twice daily 5 mg	Phase 1 Phase 2 Randomized Controlled Placebo-controlled	20 patients COVID-19 diagnosed by PCR	9 month	Mortality	
NCT04331949	Assessment of Efficacy and Safety of Ruxolitinib in COVID-19 Patients. Center Hospitalier Intercommunal de Toulon La Seyne sur Mer-France	Twice daily 5 mg	Phase 2 Randomized Controlled Placebo-controlled	50 patients COVID-19 pneumonia Confirmed SARS-CoV-2 infection	29 days	Mortality	
NCT04329590	Study of the Efficacy and Safety of Ruxolitinib to Treat COVID-19 Pneumonia. University Health Network, Toronto- Canada	Twice daily 5 mg	Phase 1 Randomized Controlled Placebo-controlled	64 patient COVID-19 pneumonia	9 month	Mortality	
NCT04310749	Expanded Access Program of Ruxolitinib for the Emergency Treatment of Cytokine Storm From COVID-19 Infection. Incyte Corporation	Twice daily 5 mg starting dose	Phase 2 Randomized Controlled Placebo-controlled	50 patients COVID-19 pneumonia	29 days	Mortality	
Table 1 (continued)

Trial ID	Name	Sponsor	Design	Dose	Patients & Medical condition	Time frame	Status	
NCT04424056	An Open Randomized Therapeutic Trial Using Different combinations with anakinra, tocilizumab, and ruxolitinib in COVID-19	Assistance Publique Hopitaux De Marseille- France	Randomized Open label	Twice daily 5 mg; 7 days	216 patients	• Phase 3	A ongoing R recruiting	Withdrawn
NCT04403243	COLchicine Versus Ruxolitinib and Secukinumab In Open Prospective Randomized Trial (COLORIT)	Hospital Universitario Madrid	Randomized Open label	Twice daily 5 mg (7 days)	70 patients	• Phase 2	A available; NYR recruiting	Ongoing
NCT04348695	Study of Ruxolitinib Plus Simvastatin in the Prevention and Treatment of Respiratory Failure of SARS-Cov2 infection confirmed by PCR test; 28 days	Hospital Universitario Madrid	Randomized Open label	Twice daily 5 mg (7 days)	94 patients	• Phase 2	A available; NYR recruiting	Ongoing
NCT04361903	COVID-19: Ruxolitinib for the Treatment of cytokine release syndrome in severe patients COVID-19	Azienda USL Toscana Nord Ovest- Italy	Retrospective	Twice daily at least 20 mg (for the first 48 hours)	100 patients	• Observational	A available; NYR recruiting	Ongoing
NCT04414098	Ruxolitinib in the Treatment of Covid-19	Novartis Pharmaceuticals	Experimental Open label	Twice daily 5 mg	14 days NYR	• Phase 2	A available; NYR recruiting	Ongoing

3.2. Ruxolitinib and viral infections

The potential of ruxolitinib in the treatment of different inflammatory conditions is also being investigated.

3.2.1. Immunosuppression

Ruxolitinib is used in both acute and chronic graft versus host disease from allogeneic hematopoietic stem cell transplantation. [70]. Hemophagocytic lymphohistiocytosis, a rare secondary disease triggered by viral infection or autoimmune disease, in which a hyper-activated immune response may cause severe complications; ruxolitinib has been shown to suppress cytokine levels and the JAK/STAT pathway in Epstein-Barr Virus (EBV)-associated hemophagocytic lymphohistiocytosis [71].

3.2.2. Antiviral efficacy

The anti-viral properties of ruxolitinib may have activity against Human Immunodeficiency Virus (HIV) and EBV infections. Ruxolitinib has been shown to inhibit HIV-1 replication in lymphocytes and macrophages and to suppress HIV-1 reactivation [72], as well as to inhibit production of inflammatory cytokines such as IL1β, IL2, IL5, IL6, IL7, IL13, IL15, and IFNG [73–75]. Similarly, the anti-viral potential of ruxolitinib is also indicated in EBV infection where ruxolitinib inhibits EBV-infected PBMC proliferation and reduces elevated inflammatory cytokines by inhibition of STAT3 [76,77].

3.2.3. Opportunistic infections

Because the JAK/STAT pathway is a primary signal pathway, suppression of this pathway can also result in the emergence of opportunistic infections. The development of Polymavirus (JC-Virus and BK-Virus) related fatal encephalopathy and meningoencephalitis has been reported during ruxolitinib treatment [78,79]. Because the JAK/STAT pathway inhibits Zika Virus (ZIKV) and Hepatitis C Virus (HCV), members of the Flaviviridae family, it is suggested that ruxolitinib may actually increase viral replication [80,81]. Hepatitis B Virus (HBV) reactivation has also been reported due to ruxolitinib treatment [82]. Infections of different Herpesvirus family members which include Varicella-Zoster Virus (VZV), EBV, and Cytomegalovirus (CMV), have also been reported. Development of gastric ulcer and meningoencephalitis due to EBV and VZV infections has been reported in patients with myelofibrosis and polycythemia vera treated with ruxolitinib, respectively [83,84]. Ruxolitinib has also been associated with reactivation of CMV, EBV, and COVID-19 reactivation from allogeneic hematopoietic stem cell transplantation. [70]. Ruxolitinib is also indicated in EBV-infected PBMC proliferation and reduces elevated inflammatory cytokines by inhibition of STAT3 [76,77].
6. Potential interactions between ruxolitinib and COVID-19

Since ruxolitinib is well-tolerated and used in the elderly population at present, it is a powerful candidate to overcome the hyperimmune syndrome that arises in COVID-19 patients [68]. A number of clinical trials assessing the efficacy of ruxolitinib in COVID-19 related symptoms are ongoing (Table 1).

To determine the potential molecular efficacy of ruxolitinib in COVID-19 related symptoms, genetic alterations, molecular pathways that include altered genes were determined by the KEGG Pathway Database and the STRING Database Version 11 (Fig. 4). Ruxolitinib reduced the expression of inflammatory biomarkers at both the gene and protein levels in different cells (Table 2).

7. Conclusion

It is clear that ruxolitinib has an important potential in overcoming complications caused by immune hyperactivation related to the JAK/STAT signaling pathway. Since the JAK/STAT pathway is associated with the induction of multiple molecular immune pathways, inhibition of this pathway may result in the inhibition of several cellular responses. Considered together, ruxolitinib has potential in the treatment of COVID-19 infection; however, adverse effects such as opportunistic infections as a result of immune suppression must also be considered.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Genetic alterations are directly targeted by ruxolitinib in COVID-19.

Genes Regulation in COVID-19

Reference

Gene	Effect of ruxolitinib	Effect of ruxolitinib
CBL	Decreases secretion in macrophages	Decreases secretion in macrophages
CXCL10	Increases levels on T cells	Increases levels on T cells
IL2	Elevates blood level in severe patients	Elevates blood level in severe patients
IL2RB	Reduces PDCD1 levels in T cells	Reduces PDCD1 levels in T cells
CCL2	Upregulated in COVID-19 patients BALF (compared to normal BALF)	Upregulated in COVID-19 patients BALF (compared to normal BALF)
IL18	Upregulated in COVID-19 patients PBMC (compared to normal PBMC)	Upregulated in COVID-19 patients PBMC (compared to normal PBMC)
IL6	Upregulated in severe patients	Upregulated in severe patients
TNF	Upregulated in severe patients	Upregulated in severe patients
IL4	Downregulated in T cells	Downregulated in T cells
IL4	Downregulated in lymphoblasts	Downregulated in lymphoblasts
IL6	Downregulated in lymphoblasts	Downregulated in lymphoblasts
IL6	Downregulated IL6 expression levels in lymphoblasts	Downregulated IL6 expression levels in lymphoblasts

PBMC: peripheral blood mononuclear cells; BALF: bronchoalveolar lavage fluid cells.

Acknowledgment

Graphical abstract and Figure 1-3 were created by using BioRender.

References

[1] World Health Organization (WHO). Novel Coronavirus (2019-nCoV) Situation Report 1, (2020) (accessed July 17, 2020), https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=2ob98c10-4.

[2] World Health Organization (WHO). COVID-19 Situation Report 148, (2020) (accessed July 17, 2020), https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200616-covid-19-sitrep-148-draft.pdf?sfvrsn=98201569_2.

[3] E. Gaborvalya, S.C. Baker, R.S. Bose, R.J. de Groot, C. Drosten, A.A. Gulyaeva, B.L. Haagmans, C. Lauber, A.M. Leontovich, B.W. Neuman, D. Penzar, S. Perlman, L.L.M. Poon, D.V. Samborskiy, I.A. Sidevski, I. Sola, J. Ziehebur, The Species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nat. Microbiol. 5 (2020) 530-544, https://doi.org/10.1038/s41564-020-0695-z.

[4] D. Kim, J.Y. Lee, J.S. Yang, J.W. Kim, V.N. Kim, H. Chang, The architecture of SARS-CoV-2 transcriptome, Cell 181 (2020), https://doi.org/10.1016/j.cell.2020.04.011.

[5] A.C. Walls, Y.J. Park, M.A. Tortorici, A. Wall, A.T. McGuire, D. Veesler, The architecture of SARS-CoV-2 transcriptome, Cell 181 (2020), https://doi.org/10.1016/j.cell.2020.02.058.

[6] W. Zeng, G. Liu, H. Ma, D. Zhao, Y. Yang, M. Liu, A. Mohamed, C. Zhang, Y. Zhao, J. Xie, C. Ding, X. Ma, J. Weng, Y. Gao, H. He, T. Jin, Biochemical characterization of SARS-CoV-2 nucleocapsid protein, Biochem. Biophys. Res. Commun. 527 (2020) 618-623, https://doi.org/10.1016/j.bbrc.2020.04.136.

[7] N. Yang, H.M. Shen, Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19, Int. J. Biol. Sci. 16 (2020) 1724-1731, https://doi.org/10.7150/ijbs.45496.

[8] L. Alanspach, F. Altschmied, M. Atoms, Cytokine levels in the body fluids of a patient with COVID-19 and acute respiratory distress syndrome: a clinical retrospective study in Wuhan, China, J. Infect. 81 (2020) e51-e60, https://doi.org/10.1016/j.jinf.2020.04.012.

[9] J. Schneider, R. Ehmann, K. Zwirglmaier, C. Drosten, C. Wendtner, Virological assessment of hospitalized patients with COVID-2019, Nature 581 (2020) 465-469, https://doi.org/10.1038/s41586-020-2196-x.

[10] D.S. Tian, Dysregulation of immune response in patients with COVID-19 in Wuhan, China, Ann. Transl. Med. 8 (2020) 104370, https://doi.org/10.1016/j.jcv.2020.104370.

[11] X. Li, S. Xu, M. Yu, K. Wang, C. Qin, L. Zhou, Z. Hu, S. Zhang, S. Yang, Y. Tao, C. Xie, K. Ma, K. Zhang, Q. Miao, Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China, Adv. Biol. Sci. 16 (2020) 1678-1685, https://doi.org/10.7150/ijbs.45653.

[12] J. F. Gautier, Y. Ravussin, A new symptom of COVID-19: loss of taste and smell, Obesity 28 (2020) 848, https://doi.org/10.1093/oby/288.9.

[13] F. Liu, L. Li, M. Da Xu, J. Wu, D. Lu, Y.S. Zhu, B.X. Li, X.Y. Song, X. Zhou, Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19, J. Clin. Virol. 127 (2020) 104570, https://doi.org/10.1016/j.jcv.2020.104570.

[14] J. Yuan, R. Zou, L. Zeng, S. Kou, J. Lan, X. Li, Y. Liang, X. Ding, G. Tan, S. Tan, L. Liu, Y. Liu, Y. Pan, Z. Wang, The correlation between viral clearance and biochemical outcomes of 94 COVID-19 infected discharged patients, Inflammm. Res. 69 (2020) 599-606, https://doi.org/10.1007/s00024-019-01342-y.

[15] Y. Ouyang, J. Yin, W. Wang, H. Shi, Y. Shi, B. Xu, L. Qiao, Y. Feng, L. Pang, F. Wei, X. Guo, R. Jin, D. Chen, Down-regulated gene expression spectrum and immune responses changed during the disease progression in COVID-19 patients, Clin. Dis. (2020), https://doi.org/10.1093/cid/ciaa462 [published online ahead of print, 2020 Apr 20].

[16] L. Chen, H.G. Liu, W. Liu, J. Liu, K. Liu, J. Wang, Y. Deng, S. Wei, Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia, Zhonghua Jie He Hu Xi Za Zhi 43 (2020) E005, https://doi.org/10.3760/cma.j.issn.1001-0939.2020.01.012.

[17] B. Xu, C. Yu Fan, A. Lu Wang, Y. Long Zou, Y. Han Yu, C. He, W. Guang Xia, J. Xian Zhang, Q. Miao, Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China, J. Infect. 81 (2020) e51-660, https://doi.org/10.1016/j.jinf.2020.04.012.

[18] C. Wang, K. Kang, Y. Gao, M. Ye, X. Lan, X. Li, M. Zhao, K. Yu, Cytokine levels in the body fluids of a patient with COVID-19 and acute respiratory distress syndrome: a case report, Ann. Intern. Med. (2020), https://doi.org/10.7326/L2-6354 [published online ahead of print, 2020 May 12].

[19] R. Wolflé, V.M. Gorman, W. Guggemos, M. Seilmair, S. Zange, M.A. Müller, D. Niemeyer, T.C. Jones, P. Vollmar, C. Rothe, M. Hölscner, T. Bleicker, S. Brünink, J. Schneider, R. Ehmann, K. Zwirglmaier, C. Drosten, C. Wendtner, Viralogenetic assessment of hospitalized patients with COVID-2019, Nature 581 (2020) 465-469, https://doi.org/10.1038/s41586-020-2196-x.

[20] W. Wang, Y. Xu, R. Guo, R. Lu, K. Han, G. Wu, W. Tan, Detection of SARS-CoV-2 in different types of clinical specimens, JAMA 323 (2020) 1843-1844, https://doi.org/10.1001/jama.2020.3786.

[21] F. Yu, L. Yan, N. Wang, S. Yang, L. Wang, Y. Tang, G. Gao, S. Wang, C. Ma, R. Xie, F. Wang, C. Tan, L. Zhu, Y. Gao, F. Zhang, Quantitative detection and viral load

59
Cytokine and Growth Factor Reviews 54 (2020) 51–61

Bakeri Goker Bagca is a PhD student in Medical Biology Department at Ege University and she is a research assistant in this department. Her master thesis includes JAK/STAT pathway regulation and the effects of ruxolitinib in leukemic and healthy cells. She is taking roles in research projects including IL6 signaling regulation.

Gigir Biray Avci, Ph.D., is an Associate Professor in Medical Biology Department Ege University Medical School. She has numerous research and review papers including IL6 signaling, JAK/STAT signaling, and cross-talks about the other cellular signaling pathways. She is supervising various research projects about genetic and epigenetic regulation of molecular signaling.

inhibitor sensitivities of juvenile myelomonocytic leukemia revealed by induced pluripotent stem cells, Leukemia 33 (2019) 181–190, https://doi.org/10.1038/ s41375-018-0169-y.

M. Felvre-James, V. Lecureur, Y. Augagneur, A. Mayati, O. Fardel, Repression of interferon-β-regulated cytokines by the JAK1/2 inhibitor ruxolitinib in inflammatory human macrophages, Int. Immunopharmacol. 54 (2018) 354–365, https://doi.org/10.1016/j.intimp.2017.11.032.

M.J. Patterson, K.F. Mackenzie, J.S.C. Arber, Inhibition of JAKs in macrophages increases lipopolysaccharide-induced cytokine production by blocking IL-10-mediated feedback, J. Immunol. 189 (2012) 2784–2792, https://doi.org/10.4049/jimmunol.1200510.

K.G. Roberts, Y.-L. Yang, D. Payne-Turner, W. Lin, J.K. Files, K. Dickerhoff, Z. Gu, J. Taunton, L.J. Janke, T. Chen, M.L. Loh, S.P. Hunger, C.G. Mullighan, Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like AML, Blood Adv. 20 (2017) 1657–1671, https://doi.org/10.1182/bloodadvances.2017011196.

S. Ishida, H. Akiyama, Y. Umezawa, K. Okada, A. Nogami, G. Oshikawa, T. Nagao, O. Miura, Mechanisms for mTORC1 activation and synergistic induction of apoptosis by ruxolitinib and BE3 mimetics or autophagy inhibitors in JAK2-V617F-expressing leukemic cells including newly established PTVL-2, Onco Targets 9 (2018) 26834–26851, https://doi.org/10.18632/oncotarget.25151.

C. Lu, A. Talaladker, N.M. Savage, N. Singh, K. Liu, JAK-STAT-mediated chronic inflammation impairs cytotoxic T lymphocyte activation to decrease anti-PD-1 immunotherapy efficacy in pancreatic cancer, Oncology 6 (2017) e291106, https://doi.org/10.1111/1527-7751.12900.

D. Zhong, Ruxolitinib add-on in corticosteroid-refractory graft-vs-host disease after allogeneic stem cell transplantation, Biol. Blood Marrow Transplant. 26 (2020) 70 (2014) e59–e60, https://doi.org/10.1016/j.jaad.2013.09.035.

C. Gavegnano, L.C. Bassit, B.D. Cox, H.-M. Hsiao, E.L. Johnson, M. Suthar, B. Ballesta, H. González, V. Martín, J.J. Ballesta, Fatal ruxolitinib-related JC virus infection in a patient undergoing ruxolitinib treatment, J. Am. Acad. Dermatol. 70 (2019) 1931–1936, https://doi.org/10.1016/j.jaad.2019.03.047.

C. Gavegnano, J.H. Brehm, F.P. Ozates Ay, G. Saydam, C.B. Avci, Ruxolitinib regulates the autophagy machinery in multiple myeloma cells, Anticancer Agents Med. Chem. (2020), https://doi.org/10.2174/18716626666200181019159 [published online ahead of print, 2020-02-17].

M. González, Vicent, B. Molina, J. González de Pablo, A. Castillo, M.A. Díaz, Ruxolitinib treatment for steroid refractory acute and chronic graft vs host disease in childhood: clinical and immunological results, Ann. J. Hemat. 54 (2019) 319–326, https://doi.org/10.1016/j.anijhe.2019.05.009.

M. González, C. Gavegnano, M. Detorio, C. Montero, A. Bosque, V. Planelles, R.F. Schinazi, Ruxolitinib and tofacitinib are potent and selective inhibitors of HIV-1 replication and virus reactivation in vitro, Antimicrob. Agents Chemother. 58 (2014) 1977–1986, https://doi.org/10.1128/AAC.02966-13.

C. Gavegnano, J.H. Brehm, F.P. Dupuy, A. Talla, S.P. Ribeiro, D.A. Kulpa, C. Cameron, S. Santos, S.J. Hurwitz, V.C. Marconi, J.P. Routy, L. Sabbagh, R.F. Schinazi, R.P. Sékaly, Novel mechanism to inhibit HIV reservoir seeding using Jak inhibitors, PLoS Pathog. 13 (2017) e1006740, https://doi.org/10.1371/journal.ppat.1006740.

C. Gavegnano, P. Hong, M.M. Hernandez, D. Argyle, L.C.F. Mulder, U. Potla, F. Diaz-G. Meng, J. Wang, X. Wang, Y. Wang, Z. Wang, Ruxolitinib treatment for SR-aGVHD in patients with EBV-HEL undergoing allo-HSCT, Ann. Hematol. 99 (2020) 343–349, https://doi.org/10.1007/s00277-019-03647-5.