Deoxysphingolipids as candidate biomarkers for a novel SPTLC1 mutation associated with HSAN-I

Federica Boso, MD, Andrea Armirotti, PhD, Federica Taioli, MSc, Moreno Ferrarini, PhD, Lucilla Nobbio, BSc, PhD, Tiziana Cavallaro, MD, and Gian Maria Fabrizi, MD, PhD

Neurol Genet 2019;5:e365. doi:10.1212/NXG.0000000000000365

Hereditary sensory and autonomic neuropathy type 1 (HSAN-I)—an autosomal dominant, mainly sensory neuropathy—typically affects patients in their second and third decades, presenting with ulcerations and lancinating pain attacks. Diagnosis is heavily dependent on genetic analysis, focusing on 6 genes: serine palmitoyltransferase (SPT) long chain base subunits 1 and 2 (SPTLC1 and SPTLC2), atlastin 1 (ATL1) and 3 (ATL3), DNA methyltransferase 1, and Ras-related protein (RAB7). Most patients carry SPTLC1 mutations (OMIM*605712) that affect sphingolipid biosynthesis by modifying SPT substrate specificity to produce atypical neurotoxic deoxysphingoid bases (DSBs). Along with their accumulation in mutant cells, elevated DSBs were also found in plasma samples, thus becoming a candidate biomarker of disease.

We identified a novel SPTLC1 missense mutation in a 22-year-old white male patient with early onset of sensory loss. Pathologic and familiar anamnesis was negative, except for isoniazid/pyridoxine chemoprophylaxis, not reaching neurotoxic doses. Sensory alterations were initially subtle with gradual loss of tactile and thermo-dolorific sensation on lower limbs, resulting in repetitive foot ulcerations that required surgical treatment and evolved into *Pseudomonas osteomyelitis*; of interest, the subject reported neither pain or positive sensory symptoms nor difficulties in motor performances throughout adolescence.

On examination, the patient had pronounced deep and—primarily—superficial sensory disturbances up to his knees after receiving anesthesia in his toes. Muscle strength was preserved; deep tendon reflexes were normal for upper extremities, while he had sluggish patellar reflexes and no ankle jerks. He also had pronated feet with hammer toes and signs of cutaneous dystrophy with nail alterations.

Nerve conduction studies disclosed an axonal, sensory-motor, length-dependent neuropathy (see supplemental data, links.lww.com/NXG/A186). No laser evoked potentials were detected after lower and upper limb stimulation. Autonomic functions were also evaluated with sympathetic skin reflex, Sudoscan, and cardiovascular testing, reporting no significant alteration.

Sural nerve biopsy showed a chronic axonal process with almost complete loss of myelinated fibers and no evidence of active degeneration or clusters of regenerating fibers (figure, A). Ultrastructural study disclosed a severe loss of unmyelinated fibers, atrophic and denervated Schwann cell processes, and remarkable absence of collagen pockets (figure, B). Immunofluorescence microscopy of skin biopsy at distal calf also revealed rare intraepidermal nerve fibers.
Next-generation sequencing with an in-house panel targeted on 45 Charcot-Marie-Tooth disease (CMT) and sensory CMT-related genes disclosed a *SPTLC1* mutation that was absent in both healthy parents and the proband’s brother (wild-type allele). The heterozygous c.398G>T transversion caused a p.Cys133Phe substitution, not previously described.
in reference databases (Exome Aggregation Consortium, Exome Variant Server, and 1000 Genomes), nor in the Human Gene Mutation Database (figure, C). In silico analysis predicted its pathogenic relevance, as it involves a phylogenetically conserved amino acid in a mutational hot spot, and the substitution of a polar residue with a hydrophobic one may affect the enzyme structure by changing substrate specificity, in analogy to other previously described pathogenic variants at the same residue (Cys133Trp, Cys133Tyr, and Cys133Arg).

The mutation functional impact was also addressed with untargeted lipidomic analysis (see supplemental data, links. lww.com/NXG/A186), detecting abnormally high levels of 3 deoxyceramides (22:0, 23:0, and 24:0) in the proband’s plasma samples, compared with asymptomatic relatives (mother, father, and brother; figure, D). The aberrant m18:0 deoxysphingosine species were identified by their diagnostic MS/MS fragment ion (280.30 m/z,4), thus reinforcing the hypothesis of SPT incorporating alanine into sphingolipids. On the other hand, we did not observe any significant drop of glycerine use as an alternative substrate, as there were no corresponding m17:0 sphingoid bases (fragment ion 253.27 m/z).

In conclusion, we identified a novel SPTLC1 mutation associated with early-onset, fairly typical HSAN1, despite the absence of pain attacks. Besides neurophysiologic and pathologic data, genetic interpretation and biochemical evidence strengthen the hypothesis of p.Cys133Phe pathogenicity, reflecting the mutant enzyme’s ability to incorporate alanine instead of serine to generate atypical DSB. The pathologic mechanisms of their toxicity are still unanswered,5 but it is intriguing to note that high DSB levels have also been detected in patients with diabetic and paclitaxel induced neuropathy, suggesting a possible common neurotoxic effect to explain the clinical similarities of these neuropathies. Furthermore, DSB plasma measures could become a new diagnostic and prognostic marker, all the more so since HSAN1 might be a potentially treatable neuropathy through modulation of deoxysphingolipid formation by amino acid availability. In particular, l-serine supplementation could reduce disease severity and progression by limiting DSB accumulation (as already shown in mouse models6 and a recent clinical trial7), thus urging early diagnosis of HSAN1 from a genetic and biochemical point of view, especially for patients with atypical mutations.

Study funding
No targeted funding reported.

Disclosure
Disclosures available: Neurology.org/NG.

Publication history
Received by Neurology: Genetics March 29, 2019. Accepted in final form August 22, 2019.

Appendix Authors

Name	Location	Role	Contribution
Federica Besso, MD	Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy	Author	Data acquisition and drafting the manuscript
Andrea Armirrotti, PhD	Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genova, Italy	Author	Major role in the acquisition of LC-MS/MS data and revised the manuscript for intellectual content
Federica Taioli, MSc	Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy	Author	Major role in the acquisition and interpretation of genetic data
Moreno Ferrari, PhD	Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy	Author	Data acquisition and analysis
Lucilla Nobbio, BSc, PhD	Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences, University of Genoa & IRCCS Ospedale Policlinico San Martino, Genova, Italy	Author	Critical revision of the manuscript
Tiziana Cavallaro, MD	Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy	Author	Major role in the acquisition and interpretation of neuropathologic data and revised the manuscript for intellectual content
Gian Maria Fabrizi, MD, PhD	Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy	Author	Conceptualized the study, data acquisition and analysis, and writing of the manuscript

References
1. Auer-Grumbach M, De Jonghe P, Verhoeven K, et al. Autosomal dominant inherited neuropathies with prominent sensory loss and mutilations: a review. Arch Neurol 2003;60:329–334.
2. Houlden H, Bull K, Murphy SM, et al. Hereditary sensory and autonomic neuropathy type 1: correlation of severity and plasma atypical deoxy-sphingoid bases. J Neurol Neurosurg Psychiatry 2012;83(suppl 2):1042.
3. Houlden H, King R, Blake J, et al. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain 2006;129:411–425.
4. Zitomer NC, Mitchell T, Voss KA, et al. Ceramide synthase inhibition by fumonisin B1 causes accumulation of 1-deoxy sphinganine. A novel category of biomarker: 1-deoxysphingoid bases and 1-deoxydihydroceramides biosynthesized by mammalian cell lines and animals. J Biol Chem 2009;284:4786–4795.
5. Reilly MM, Greensmith L, Wilson ER, et al. Hereditary sensory neuropathy type I-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro. Neurofibrol Dis 2018;117:1–14.
6. Garofalo K, Penno A, Schmidt BP, et al. Oral l-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J Clin Invest 2011;121:14–16.
7. Fridman V, Suryanarayanan S, Novak P, et al. Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology 2019;92: e359–e370.