Suidae Transition at the Miocene-Pliocene Boundary: a Reassessment of the Taxonomy and Chronology of Propotamochoerus provincialis

Alessio Iannucci1 · Marco Cherin2 · Leonardo Sorbelli3 · Raffaele Sardella1

Accepted: 20 September 2020 / Published online: 6 October 2020 © The Author(s) 2020

Abstract
The Miocene-Pliocene (Turolian-Ruscinian) transition represents a fundamental interval in the evolution of Euro-Mediterranean paleocommunities. In fact, the paleoenvironmental changes connected with the end of the Messinian salinity crisis are reflected by a major renewal in mammal faunal assemblages. An important bioevent among terrestrial large mammals is the dispersal of the genus Sus, which replaced all other suid species during the Pliocene. Despite its possible paleoecological and biochronological relevance, correlations based on this bioevent are undermined by the supposed persistence of the late surviving late Miocene Propotamochoerus provincialis. However, a recent revision of the type material of this species revealed an admixture with remains of Sus strozzii, an early Pleistocene (Middle Villafranchian to Epivillafranchian) suid, questioning both the diagnosis and chronological range of P. provincialis. Here we review the late Miocene Suidae sample recovered from the Casino Basin (Tuscany, central Italy), whose taxonomic attribution has been controversial over the nearly 150 years since its discovery. Following a comparison with other Miocene, Pliocene, and Pleistocene Eurasian species, the Casino Suidae are assigned to P. provincialis and the species diagnosis is emended. Moreover, it is recognized that all the late Miocene (Turolian) European Propotamochoerus material belongs to P. provincialis and that there is no compelling evidence of the occurrence of this species beyond the Turolian-Ruscinian transition (MN13-MN14).

Keywords Large mammals · Faunal turnover · Euro-Mediterranean · Latest Miocene · Messinian · Ruscinian

Introduction
The late Miocene was a period of dramatic changes at a global scale (Cerling et al. 1997; Herbert et al. 2016), which also led to the physiographic separation of the Mediterranean Sea from the Atlantic Ocean (Krijgsman et al. 1999). At the Miocene-Pliocene boundary, the Messinian salinity crisis reached its acme and after that ended with an abrupt —if not properly catastrophic (Garcia-Castellanos et al. 2009)— restoration of the basin-ocean connection (Hsü et al. 1977; Meijer and Krijgsman 2005). Undoubtedly, the resulting environmental upheaval put strong pressure on continental ecosystems (Eronen et al. 2009; Carnevale et al. 2019). Indeed, this episode roughly corresponds with the Turolian-Ruscinian transition —zones MN13–14 of the European mammal biochronological scale (Mein 1975)— a significant reorganization of the mammalian paleocommunities (de Bruijn et al. 1992; Agustí et al. 2001; Hordijk and de Bruijn 2009; Hilgen et al. 2012).

The impact of this transition was particularly strong on the carnivoran guild, featuring the extinction of more than 90% of the species (Werdelin and Turner 1996), but was also significant among ungulates. For instance, the Pikermian fauna (Bernor et al. 1979), adapted to dry and open environmental conditions, disappeared (Fortelius et al. 2006; Eronen et al. 2009; Kaya et al. 2018). Sus arvernensis Croizet and Jobert, 1828, was one of the few species capable of taking advantage of the change. It represents the earliest member of a very successful genus that replaced all other suine species during the Pliocene (Frantz et al. 2016).
The role of *S. arvernensis* as a Pliocene (Ruscinian) biochronological marker has been recognized by several authors (van der Made 1990; Agustí et al. 2001). However, correlations based on the “Sus event” have been weakened by: 1) the supposed persistence of the last-surviving late Miocene *Propotamochoerus provincialis* (Blainville, 1847), and 2) the uncertain attribution of fossil Suidae close to the Miocene-Pliocene boundary. Controversy arose mainly from the heterogeneous nature of the type material of *P. provincialis* from Montpellier (Blainville 1847; Gervais 1850; Stehlin 1900). Indeed, early researchers described under the same name an ensemble constituted by different species, which has been only recently reassessed (Pickford 2013). In particular, some remains previously assigned to *P. provincialis* actually belong to *Sus strozzii* Forsyth Major, 1881, a large-sized early Pleistocene (Middle Villafranchian to Epivillafranchian) suid (Azzaroli 1952; Cherin et al. 2018, 2020; Iannucci et al. 2020a).

The occurrence of Suidae remains in the Casino Basin (Tuscany, central Italy) has been reported by Forsyth Major (1875), and briefly discussed by Pantanelli (1879) and Stehlin (1900). Subsequent studies have proposed various interpretations of the taxonomy of these fossils, but they did not provide a thorough revision of the sample (van der Made and Belinçon 1991; Montoya et al. 2006; Guérin and Tsoukala 2013; Pickford and Obada 2016).

In spite of their convoluted taxonomic history, the Casino Suidae are relatively abundant, well preserved, and chronologically well constrained. Herein, we offer a description, review, and an analysis of the biochronological framework of this material, in a comparative study with other Miocene, Pliocene, and Pleistocene Eurasian Suinae.

The Casino Basin Fossil Locality

The Casino fluvio-lacustrine (sub-)basin is located in the northern part of the Siena Basin, a NNW-SSE oriented tectonic depression with a complex internal architecture (Tuscany, central Italy; Fig. 1). The deposition of the Neogene sedimentary succession is related to an extensional tectonic phase started in the middle Miocene. The basin records two Miocene sedimentary cycles, respectively dated to the Tortonian-early Messinian and the end of the Messinian Miocene sedimentary cycles, respectively dated to the Miocene-Pliocene boundary. Controversy arose mainly from the heterogeneous nature of the type material of *P. provincialis* from Montpellier (Blainville 1847; Gervais 1850; Stehlin 1900). Indeed, early researchers described under the same name an ensemble constituted by different species, which has been only recently reassessed (Pickford 2013). In particular, some remains previously assigned to *P. provincialis* actually belong to *Sus strozzii* Forsyth Major, 1881, a large-sized early Pleistocene (Middle Villafranchian to Epivillafranchian) suid (Azzaroli 1952; Cherin et al. 2018, 2020; Iannucci et al. 2020a).

The assemblage is referred to MN13 and includes *Eucyon* sp., *Thalassictis* cf. *T. hipparionum*, *Mesopithecus pentelicus*, *Tapirus arvernensis*, an hipparionine (likely *Hipppotherium malpassii*; Rook and Bernor 2013). *Hexaprotodon? pantanellii, Parabos* sp., and *Dipoides problematicus* (Rook et al. 1999).

The taphonomic analysis of the remains has revealed an overall homogeneity and a short time-averaged accumulation of the fossil assemblage, with the exception of some allochthonous remains among which there are no Suidae (Gallai 2005).

Materials and Methods

The Suidae remains from the Casino Basin are housed in the Accademia dei Fisiocritici di Siena (AFS) and in the Natural History Museum of the University of Florence, Section of Geology and Paleontology (IGF). Measurements were taken to the nearest 0.1 mm with a digital calliper and are provided in Table 1. The studied sample was compared with other remains housed in the same institutions, in the Hungarian Natural History Museum, Budapest (HNHM), in the Museum of the Geological and Mineralogical Survey of Hungary, Budapest (MAFI), in the Natural History Museum, Mainz (NMM), and in the Department of Earth Sciences, Utrecht University (IVAU), as well as with data from the literature (Table 2). Upper and lower teeth are in upper and lower case, respectively (e.g., P2 = upper second premolar; m3 = lower third molar). “D” denotes deciduous teeth. Measurements and terminology mainly follow van der Made (1996).

Over the years, several of the species included in the analysis have been assigned to different genera and some of them have been considered synonyms. Here we accept the synonymy between *Propotamochoerus* Pilgrim, 1925, and *Korynochoerus* Schmidt-Kittler, 1971 (Fortelius et al. 1996), and between *Hippopotamodon* Lydekker, 1877, and *Microstonyx* Pilgrim, 1925 (Pickford 2015). In both cases the former genus has the priority. We conservatively treated them as separated *Hippopotamodon major* (Kaup, 1833) and *Hippopotamodon erymanthus* (Roth and Wagner, 1854), even though the two taxa overlap in size and may represent the same species. Finally, some authors resurrected the genus *Dasycnoeuros* Gray, 1873, to include extinct and extant verrucosic warty pigs (Berdondini 1992, as a subgenus; Pickford 2012). However, the monophyly of this group is not adequately supported (Frantz et al. 2016; Cherin et al. 2018) and therefore we refer these species to *Sus*.

We performed a Principal Component Analysis (PCA) on the variance-covariance matrix of tooth length and width values of the maxillaries bearing P3-M3 of several Suinae species (*Hippopotamodon sivalense, H. major,*
H. erymanthius, Propotamochoerus palaeochoerus, Propotamochoerus wui, P. provincialis, S. arvernensis, S. strozzii) in order to undertake a thorough comparison of the material from Casino and explore the variability of the fossil sample. Following previous studies (Geraads et al. 2008; Lazaridis 2015), we excluded M1 and M2 measurements because they may vary substantially due to the wear stage. To evaluate differences related to the effect of size, we conducted two analyses, one considering unstandardized variables and one considering standardized variables. The variables in the latter were calculated by dividing raw measurements by the geometric mean of all variables (Mosimann 1970). The software PAST (Hammer et al. 2001) was used for the analysis.

We further investigated the biometric variability of the fossil sample by using bivariate diagrams.

All data generated or analyzed during this study are included in this published article.

Statistical Analysis

The scatter diagram of the first two axes of the unstandardized PCA (97.4% of the total variance) reveals almost no overlap between the compared species, apart from H. erymanthius and H. major (Fig. 2a). The first component accounts for 94.4% of the total variance and all the variables positively contribute to it, with a major influence of M3 L (Fig. 2b). This axis evidences the size differences in the sample, allowing a separation between small-sized (Propotamochoerus and S. arvernensis) and large-sized (Hippopotamodon and

Table 1 Propotamochoerus provincialis from Casino Basin, measurements of the teeth (mm)

Specimen Id.	Side	Tooth	L	Wm	Wd	Wt
AFS 2840	Sn	I1	17	9.5		
AFS 2865	Sn	M1	18.6	17.1	17.1	
AFS 2865	Sn	M2	22.4			
AFS 2868	Dx	D4	15.9	13.2	13.3	
AFS 2868	Dx	M1	20.8	16.6	15.4	
AFS 2869a	Sn	m3	36.8	19.8	18.3	15.4
AFS 2869b	Sn	P3	14.8	11.7	13.6	
AFS 2869c	Dx	p4	16.1	10.1	11.3	
AFS 2869d	Sn	P2	17.4	8.3	10.6	
AFS 2869e	Sn	p3	17.4	9.1	9.9	
AFS 2869f	Sn	P2	16.3	8.1	8.3	
IGF 5913Va	Dx	P4	13.2	15.5		
IGF 5913Vb	Dx	M3	25.3			
IGF 5913Ve	Dx	P3	15.3	11.4	12.6	
IGF 5913Ve	Sn	P3	15.2	10.9	11.1	

Dx = right; Sn = left; L = length (mesiodistal diameter in incisors); Wm = mesial width (buccolingual diameter in incisors); Wd = distal width (second lobe in a molar); Wt = width of the third lobe in a molar.
S. strozzii) suids, and with less support even between each species. The second component explains 3.0% of the total variance and it is mainly influenced by the opposite contributions of M3 L and premolar measurements (Fig. 2c). The separation along the vertical axis is clear between species with relatively longer M3 (P. wui and S. strozzii) and P. palaeochoerus, showing relatively larger premolars, whereas the other species overlap, having similar proportions. The first two axes of the standardized PCA account for 85.6% of the total variance, of which 73.0% is explained by the first component and 12.6% by the second (Fig. 3a). Along the PC1 axis, M3 L is the most influential variable, separating the first component and 12.6% by the second (Fig. 3a). Along the vertical axis, M3 L is the most influential variable, separating the first component and 12.6% by the second (Fig. 3a). Along the horizontal axis, M3 L is the most influential variable, separating the first component and 12.6% by the second (Fig. 3a).
species with proportionally small (\textit{P. palaeochoerus}) and proportionally large (\textit{S. strozzii}) third molars. This is similar to the second component of the unstandardized PCA, but results differ in that both M3 measurements (length and width) contribute on the same direction and M3 L is relatively more important than premolar measurements (Fig. 3b). Along the PC2 axis, none of the species considered is clearly separated and only \textit{S. strozzii} occupies a relatively small area, mainly in the first quadrant. As the second component is influenced by the opposite contributions of width and length values (Fig. 3c), this indicates that only \textit{S. strozzii} possesses, on average, relatively wider teeth.

Systematic Paleontology

Order Artiodactyla Owen, 1848
Family Suidae Gray, 1821
Subfamily Suinae Gray, 1821

Tribe Dicoryphochoerini Schmidt-Kittler, 1971
Genus \textit{Propotamochoerus} Pilgrim, 1925
\textit{Propotamochoerus provincialis} (Blainville, 1847)

Selected Synonymy List

- \textit{Sus} different from \textit{Sus choeroides} and \textit{Sus strozzii} Forsyth Major, 1875
- \textit{Sus erymanthius} var. minor Pantanelli, 1879
- \textit{Sus cfr. S. palaeochoerus} Stehlin, 1900
- \textit{Sus minor} De Giuli et al., 1983
- \textit{Korynochoerus provincialis} van der Made and Belinchón, 1991
- \textit{Sus cfr. S. minor} Rook, 1992
- \textit{Korynochoerus cf. K. provincialis} Gallai, 2005
- \textit{Propotamochoerus provincialis} Gallai, 2006
- \textit{Propotamochoerus provincialis} Montoya et al., 2006
- \textit{Sus arvernensis} Guérin and Tsoukala, 2013
Emended Diagnosis

Propotamochoerus species larger than *S. arvernensis*, *P. wui*, and *P. palaeochoerus*; smaller than *S. strozzii* and *Hippopotamodon*. Parietal lines do not meet to form a sagittal crest. The angle enclosed between the maxilla and the zygoma ranges from 90° to 130°. P2 usually larger than P3. The mesial cingulum in m3 has a limited development. Modified and expanded after Pickford (2013).

Type Specimen

UM SM 460, right M3 from the “Sables marins” of Montpellier, designed as lectotype by Pickford (2013) after the description of Blainville (1847: 208, pl. 9; but not the m2-m3, which belong to *S. strozzii*).

Stratigraphic Range

Late Miocene (Turolian, MN11-MN13).

Referred Material from the Casino Basin

AFS 2840: two I1 of the same individual (Fig. 4b); AFS 2865: fragment of left maxilla with P3-M3 (Fig. 4a); AFS 2867: upper right female canine (Fig. 4c); AFS 2868: fragment of right maxilla with D4-M1 (Fig. 4l); AFS 2869a-f: six isolated teeth, left m3 associated with AFS 2865 (Fig. 4e), left P3 (Fig. 4k), right p4 (Fig. 4f), left P2 (Fig. 4n), left p3 (Fig. 4g), left P2 (Fig. 4m); IGF 5913Va-d: four isolated teeth: right P4 (Fig. 4h); fragment of right M3 (Fig. 4d); right P3 (Fig. 4i); left P3 (Fig. 4j).
Description

The studied sample is mainly composed of isolated, brown/dark-colored teeth, in good state of preservation and with no significant taphonomic modifications, except for the M1 of AFS 2868, which bears evident root-etching marks on its lingual side (Fig. 4i3). The specimen is also slightly deformed, displaying an artificial diastema between D4 and M1.

AFS 2865 preserves part of the malar bone of the zygomatic arch, which departs from the maxilla spanning an angle of ~110° (Fig. 4a3).

The I1 is represented by the two antimere elements that belong to a single individual (AFS 2840), as is revealed by the coinciding interstitial facets on the mesial tip of the incisors (Fig. 4b). The teeth are mesiodistally elongated, concave on the lingual side. Both are well preserved, but the moderate wear prevents description of the finer details of their morphology.

The fragment of upper canine (AFS 2867) has a triangular occlusal section (Fig. 4c), with a rounded development on the lingual side. Its reduced development allows us to hypothesize that it belonged to a female individual.

Fig. 4 Propotamochoerus provincialis from Casino: a - left maxillary with P3-M3 in occlusal (1), buccal (2), and dorsal (3) views (AFS 2865); b - left I1 in buccal (1), occlusal (2), and mesial (3) views (AFS 2840); c - right upper female canine in occlusal (1), lingual (2), and buccal (3) views (AFS 2867); d - right M3 fragment in mesial (1), lingual (2), buccal (3), and occlusal (4) views (IGF 5913Vb); e - left m3 in buccal (1), lingual (2), occlusal (3), and distal (4) views (AFS 2869a, associated with AFS 2865); f - right p4 in buccal (1) and occlusal (2) views (AFS 2869c); g - left p3 in buccal (1), lingual (2), and occlusal (3) views (AFS 2869e); h - right P4 in buccal (1), lingual (2), and occlusal (3) views (IGF 5913Va); i - right P3 in buccal (1), lingual (2), and occlusal (3) views (IGF 5913Vc); j - left P3 in buccal (1), lingual (2), and occlusal (3) views (IGF 5913Vd); k - left P3 in buccal (1), lingual (2), and occlusal (3) views (AFS 2869b); l - right maxillary with D4-M1 in occlusal (1) and buccal (2) views, and particular of the lingual view (3) (AFS 2868); m - left P2 in buccal (1), lingual (2), and occlusal (3) views (AFS 2869d); n - left P2 in buccal (1), lingual (2), and occlusal (3) views (AFS 2869d)
The two P2s in our sample (AFS 2869df) differ greatly in the development of the protocone. In AFS 2869d (Fig. 4n) the cusp is markedly pronounced, while it is very poorly developed in AFS 2869f (Fig. 4m).

The P3 is a stouter version of the P2, slightly shorter and with a major development of the protocone (Fig. 4a, i-k).

The P4 is a trapezoidal-shaped tooth, broader than it is long (Fig. 4a, h). It is the most molarized premolar of the series. The three main cusps have approximately the same dimensions, with the protocone slightly shifted distally. The sagittal valley (protofossa) is filled by accessory cusplets, which develop lingually to the labial main cusps.

Molars from Casino, and the D4, are bunodont teeth with two (D4, M1, M2) or three (M3, m3) lobes, each possessing a pair of main cusps/cuspid and accessory cusplets located along the mediolateral axis. In each pair, the buccal main cusp is higher in the upper molars, while the opposite condition occurs in the m3. There is a mesial cingulum bearing one of the accessory cusplets, which is perpendicular to the mediolateral axis of the teeth. Bilobated molars are hardly different from one another, except for their size.

In the upper molars the lingual cusps are translated distally in comparison to the buccal ones, especially in the M3 (AFS 2865; Fig. 4a). The tooth has an asymmetric talon with a slightly lingually placed pentacone.

In the preserved p3 (AFS 2869; Fig. 4g), the protoconid and metaconid are merged in a single dentine islet due to the moderately advanced wear stage, resembling a single massive cuspid.

The P4 (AFS 2869) is of the Dicoryphochoerini type (Schmidt-Kittler 1971), with the two main cusps not placed on the same mesiodistal axis, but shifted. The talonid is low. The three main cusps have approximately the same dimensions, with the protocone slightly shifted distally. The sagittal valley (protofossa) is filled by accessory cusplets, which is perpendicular to the mediolateral axis of the teeth. Bilobated molars are hardly different from one another, except for their size.

In the upper molars the lingual cusps are translated distally in comparison to the buccal ones, especially in the M3 (AFS 2865; Fig. 4a). The tooth has an asymmetric talon with a slightly lingually placed pentacone.

In the preserved p3 (AFS 2869; Fig. 4g), the protoconid and metaconid are merged in a single dentine islet due to the moderately advanced wear stage, resembling a single massive cuspid.

The p4 (AFS 2869) is of the Dicoryphochoerini type (Schmidt-Kittler 1971), with the two main cusps not placed on the same mesiodistal axis, but shifted. The talonid is low. In the preserved p3 (AFS 2869; Fig. 4g), the protoconid and metaconid are merged in a single dentine islet due to the moderately advanced wear stage, resembling a single massive cuspid.

The P4 is a trapezoidal-shaped tooth, broader than it is long (Fig. 4a, h). It is the most molarized premolar of the series. The three main cusps have approximately the same dimensions, with the protocone slightly shifted distally. The sagittal valley (protofossa) is filled by accessory cusplets, which develop lingually to the labial main cusps.

Molars from Casino, and the D4, are bunodont teeth with two (D4, M1, M2) or three (M3, m3) lobes, each possessing a pair of main cusps/cuspid and accessory cusplets located along the mediolateral axis. In each pair, the buccal main cusp is higher in the upper molars, while the opposite condition occurs in the m3. There is a mesial cingulum bearing one of the accessory cusplets, which is perpendicular to the mediolateral axis of the teeth. Bilobated molars are hardly different from one another, except for their size.

In the upper molars the lingual cusps are translated distally in comparison to the buccal ones, especially in the M3 (AFS 2865; Fig. 4a). The tooth has an asymmetric talon with a slightly lingually placed pentacone.

In the preserved p3 (AFS 2869; Fig. 4g), the protoconid and metaconid are merged in a single dentine islet due to the moderately advanced wear stage, resembling a single massive cuspid.

The P4 (AFS 2869) is of the Dicoryphochoerini type (Schmidt-Kittler 1971), with the two main cusps not placed on the same mesiodistal axis, but shifted. The talonid is low. The three main cusps have approximately the same dimensions, with the protocone slightly shifted distally. The sagittal valley (protofossa) is filled by accessory cusplets, which is perpendicular to the mediolateral axis of the teeth. Bilobated molars are hardly different from one another, except for their size.

In the upper molars the lingual cusps are translated distally in comparison to the buccal ones, especially in the M3 (AFS 2865; Fig. 4a). The tooth has an asymmetric talon with a slightly lingually placed pentacone.

In the preserved p3 (AFS 2869; Fig. 4g), the protoconid and metaconid are merged in a single dentine islet due to the moderately advanced wear stage, resembling a single massive cuspid.

The P4 (AFS 2869) is of the Dicoryphochoerini type (Schmidt-Kittler 1971), with the two main cusps not placed on the same mesiodistal axis, but shifted. The talonid is low. The three main cusps have approximately the same dimensions, with the protocone slightly shifted distally. The sagittal valley (protofossa) is filled by accessory cusplets, which is perpendicular to the mediolateral axis of the teeth. Bilobated molars are hardly different from one another, except for their size.

In the upper molars the lingual cusps are translated distally in comparison to the buccal ones, especially in the M3 (AFS 2865; Fig. 4a). The tooth has an asymmetric talon with a slightly lingually placed pentacone.

In the preserved p3 (AFS 2869; Fig. 4g), the protoconid and metaconid are merged in a single dentine islet due to the moderately advanced wear stage, resembling a single massive cuspid.

The P4 (AFS 2869) is of the Dicoryphochoerini type (Schmidt-Kittler 1971), with the two main cusps not placed on the same mesiodistal axis, but shifted. The talonid is low. The three main cusps have approximately the same dimensions, with the protocone slightly shifted distally. The sagittal valley (protofossa) is filled by accessory cusplets, which is perpendicular to the mediolateral axis of the teeth. Bilobated molars are hardly different from one another, except for their size.

In the upper molars the lingual cusps are translated distally in comparison to the buccal ones, especially in the M3 (AFS 2865; Fig. 4a). The tooth has an asymmetric talon with a slightly lingually placed pentacone.
including specimens actually referable to *S. strozzii*. Moreover, the type locality also yielded remains of *S. arvernensis* and an M3 similar to the form occurring in Kvabebi (Georgia) — an enigmatic suid biometrically close to *P. provincialis*, but morphologically closer to *Sus arvernensis* (Vekua 1972; Azzaroli 1975; see Pickford and Obada 2016 for a discussion).

In particular, FSL 40073, a snout of *S. strozzii* from Montpellier, has long been regarded as one of the few cranial remains of *P. provincialis* (Geraads et al. 2008). This specimen displays a single-rooted P1 and no diastemata in the tooth row, and it is the source of the incorrect attribution of these features to *P. provincialis* (Pickford 2013). Furthermore, once the *S. strozzii* material is excluded from the comparison, there are no significant size differences between Aegean and non-Aegean *P. provincialis* (Figs. 2a, 5). Indeed, the PCA and the bivariate diagrams reveal that the Aegean group clusters with the specimens from Casino, Venta del Moro (Spain; Morales 1984), and Maramena (Figs. 2a, 5). This group is characterized by a size intermediate between the smaller *S. arvernensis*, *P. palaeochoerus*, and *P. wui*, and the larger *Hippopotamodon* and *S. strozzii*. Moreover, the teeth in the cranium from Kryopigi are in advanced stage of wear (Lazaridis 2015: fig. 27), implying that the actual size of the specimens is even underestimated.

Measurements of p4 reveal a certain degree of separation between Aegean and non-Aegean *P. provincialis* (Fig. 5d), the latter group being slightly larger. However, these are trivial differences (~1.5 mm in length on average), which are also partly biased by the more advanced wear stage of several Aegean remains (Geraads et al. 2008; Lazaridis 2015). Moreover, size differences can also be related to ecomorphological adaptations occurring in the same species, as it is common in fossil and recent wild boar (Albarella et al. 2009; Lister et al. 2010; Iannucci et al. 2020b) and other
mammalian taxa (e.g., van Asperen 2010). In fact, the genus *Propotamochoerus* has typically been regarded as adapted to warm-temperate or subtropical environments (Bernor and Fessaha 2000), whereas several of the Balkan sites where it occurs were characterized by more open and drier conditions (Koufos 2003; Fortelius et al. 1996; Gallai and Rook 2011). This suggests that *P. provincialis* was endowed with a wider ecological tolerance than assumed, and hence it is conceivable that the species displayed morphological and biometric differences accordingly.

Biochronology

The Miocene-Pliocene transition (MN13-MN14) records a return to more humid conditions after the trend of increasing aridity that took place in the late Miocene (Zachos et al. 2001; Fortelius et al. 2006). This is reflected in a faunal impoverishment, which is related to the disappearance of the open-adapted Pikermian assemblages (Bernor et al. 1979; Eronen et al. 2009; Kay et al. 2018).

Propotamochoerus provincialis has long been considered the only species of the genus to survive beyond the Miocene-Pliocene boundary, usually regarded as a typical element of MN13 to MN15 faunal assemblages (van der Made and Moyà-Solà 1989; van der Made 1990; Fortelius et al. 1996; Gallai and Rook 2011). Guérin and Tsoukala (2013) even considered the species exclusively Ruscinian and placed it in the genus *Potamochoerus* Gray, 1854. However, this stratigraphic range is based on the supposed age of the type locality of the “Sables marins” of Montpellier (Faure and Guérin 1982; Guérin and Faure 1985), which is actually unknown (Pickford 2013). In fact, the historical collection from Montpellier is an artificial ensemble, including typical late Miocene (*P. provincialis*) to early Pleistocene (*S. strozzii*) suid taxa.

The other Pliocene remains tentatively ascribed to *P. provincialis* do not provide convincing evidence for this attribution. Suidae from the Ruscinian of Mălăsteni (Romania) have been assigned to *P. cf. P. provincialis* due to their relatively large size (Simionescu 1930; Radulescu et al. 2003), similar to those recovered from Kvabebi (Vekua 1972). Nevertheless, as discussed above, the attributions based only on differences in size should be treated with caution, especially taking into account the huge morphological variability of the extant species of Suinae (Albarella et al. 2009; Lister et al. 2010; Boissiere et al. 2014; Iannucci et al. 2020b). Indeed, at least for the Kvabebi sample, subsequent studies have pointed out that the morphology is not consistent with an attribution to *Propotamochoerus*. Azzaroli (1975) ascribed the Kvabebi Suidae to *Sus minor* (= *S. arvernensis*), remarking the similarities with the cranium NHMB Rss 70 from Perpignan (France), while Pickford and Obada (2016) considered it closely related to *Dasychoerus* (= *Sus*) *arvernensis*, but preferred not to stress the classification beyond genus level.

Finally, remains assigned to “*Propotamochoerus provincialis*” from the intramontane Florina-Ptolemais-Servia Basin in Greece were referred to MN15 (van der Made and Moyà-Solà 1989), but the specimens were collected from the locality of Kardia (van de Weerd 1979), which is now finely correlated with the earliest MN14 at 5.2 Ma (Hordijk and de Bruijn 2009). The most significant specimen is a crushed skull, extremely compressed mediolaterally, which does not allow a secure attribution. However, the cranium has a relatively short snout and high occipital region, with a small and not inflated anterior portion of the zygomatic arch, features that align it to the genus *Sus* and not to *Propotamochoerus*, although an in-depth study of this specimen is needed to clarify its taxonomy.

In brief, there is no compelling evidence of Ruscinian *P. provincialis* and the stratigraphic range of the species should be regarded as restricted to MN11-MN13 (Fig. 6). In turn, this strengthens the biochronological value of the *Sus* dispersal bioevent at the Miocene-Pliocene boundary.
Conclusions

The Suidae from the Casino Basin are attributed to *Propotamochoerus provincialis*. Differences within the European late Miocene (Turonian) *Propotamochoerus* sample are subtle and do not justify the identification of more than one species.

Early Pliocene (Ruscinian) assemblages are characterized by the occurrence of a newcomer from Asia, *Sus arvernensis*, which replaced *P. provincialis* at the Miocene-Pliocene transition. Therefore, the *Sus* dispersal bioevent is here confirmed to be a significant biochronological marker of the Ruscinian (MN 14).

We are confident that our results will prompt renewed studies on *Propotamochoerus* and related taxa. In particular, we expect our taxonomic revision of *P. provincialis* to serve as the basis for new phylogenetic reconstructions, in order to clarify relationships with other taxa from Eurasia (e.g., *Hippopotamodon*) and even Africa (e.g., *Metridiochoerus*), for which phylogenetic relationships with *Propotamochoerus* have been hypothesized by Pickford (2012), but should be carefully tested.

Acknowledgements

We are grateful to all the people that helped and supported us in the study of museum collections: A. Benocci (AFS), M. Gasparik (HNHM), E. Cioffi (IGF), W. Wessels (IVAU), L. Makadi (MAFI), M. Aiglstorfer, and T. Engel (NMM). We sincerely thank J. van der Made and A. van de Weerd for discussion and feedback. L. Rook kindly provided insightful suggestions on an earlier version of this paper. We thankfully acknowledge two anonymous reviewers for their comments and suggestions. This research was supported by Sapienza University of Rome "fondi di dotazione del Dottorato di Ricerca in Scienze della Terra" to AI.

Funding

Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-CARE Agreement.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbazzi L, Benvenuti M, Ceci ME, Esu D, Faranda C, Rook L, Tanguacci F (2008) The end of the Lago-Mare time in the SE Valdelsa Basin (central Italy): interference between local tectonism and regional sea-level rise. Geodiversitas 30:611–639

Agustí J, Cabrera L, García M, Krijgsman W, Orns O, Parés JM (2001) A calibrated mammal scale for the Neogene of Western Europe. State of the art. Earth-Sci Rev 52:247–260. doi: https://doi.org/10.1016/S0012-8252(00)00025-8

Albarella U, Dobney K, Rowley-Conwy P (2009) Size and shape of the Eurasian wild boar (*Sus scrofa*), with a view to the reconstruction of its Holocene history. Environ Archaeol 14:103–136. doi: https://doi.org/10.1179/1461410909X12481709928283

Arribas A, Garrido G (2008) Un nuevo jabalí del género *Potamochoerus* (Suidae, Artiodactyla, Mammalia) en el Plioceno superior terminal euroasiático (Fonelas P-1, Cuenca de Guadix, Granada). In: Arribas A (ed) Vertebrados del Plioceno superior terminal en el sureste de Europa: Fonelas P-1 y el Proyecto Fonelas. Instituto Geológico y Minero de España, serie Cuadernos del Museo Geominero 10, Madrid, pp 337–364

Azzaroli A (1952) Filogenesi e biologia di *Sus strozzii* e *Sus minor*. Palaeontogr Ital 48:41–76

Azzaroli A (1975) Remarks on the Pliocene Suidae of Europe. Z Säugetierkd 40:355–367

Berendini E (1992) Suids of the Early Villafranchian of Villafranca d’Asti and China. Rend Lincei 3:109–124. doi: https://doi.org/10.1007/BF03002969

Bernor RL, Andrew PJ, Solounias N, Van Couvering JAH (1979) The evolution of “Pontian” mammal faunas: some zoogeographic, palaeoecological and chronostratigraphic considerations. Ann Géologiques Pays Hell Tome Hors Série 1:81–89

Bernor RL, Fessaha N (2000) Evolution of late Miocene Hungarian Suidae (Artiodactyla, Suidae). Carologia 58:83–92

Blainville HMD de (1847) Ostéographie ou description iconographique comparée du squelette et du système dentaire des cinq classes d’animaux vertébrés récents et fossiles, pour servir de base à la Zoologie et à la Géologie. Vol. 4, AA, Sur les Hippopotames et les Cochons. Atlas 4, Bertrand, Paris

Boisserie J-R, Sournon A, Mackaye HT, Likius A, Vignaud P, Brunet M (2014) A new species of *Nyctarchusius* (Cetartiodactyla: Suidae) from the late Miocene Toros-Ménalla, Chad, Central Africa. PLoS ONE 9: e103221. doi: https://doi.org/10.1371/journal.pone.0103221

Bossio A, Mazzei R, Salvatorini G, Sandrelli F (2002) Geologia dell’area compresa tra Siena e Poggibonsi (“Bacino del Casino”). Atti Soc Toscana Scit Nat Mem A 107:69–85

Brogi A (2011) Bowl-shaped basin related to low-angle detachment during continental extension: the case of the controversial Neogene Siena Basin (central Italy, Northern Apennines). Tectonophysics 499:54–76. doi: https://doi.org/10.1016/j.tecto.2010.12.005

Carnevale G, Gennari R, Lozar F, Natalicchio M, Pellegrino L, Dela Pierre F (2019) Living in a deep desiccated Mediterranean Sea: an overview of the Italian fossil record of the Messinian salinity crisis. Boll Soc Paleontol Ital 58:109–140. https://doi.org/10.4435/BSPI.2019.04

Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158. doi: https://doi.org/10.1038/38229

Cherin M, Alba DM, Crotti M, Menconero S, Mouillé P, Sorbelli L, Madurell-Malapeira J (2020) The post-Jaramillo persistence of *Sus strozzii* (Suidae, Mammalia) from the early Pleistocene of Vallparadís Section (NE Iberian Peninsula) and other coeval sites. Quat Sci Rev 233:106234. doi: https://doi.org/10.1016/j.quascirev.2020.106234

Cherin M, Sorbelli L, Crotti M, Iurino DA, Sardella R, Sournon A (2018) New material of *Sus strozzii* (Suidae, Mammalia) from the early Pleistocene of Italy and a phylogenetic analysis of suines. Quat Sci Rev 194:94–115. doi: https://doi.org/10.1016/j.quascirev.2018.06.029

Croizet J-B, Jobert A-C-G (1828) Recherches sur les ossemens fossiles du département du Puy-de-Dôme. Clermont-Ferrand, Paris

de Bonis L, Bouvrand G (1996) Suidae du Miocène supérieur de Grèce. Bull Mus Nat Hist Nat C Sci Terre Paleontol Geol Mineral 18:107–132
