Control of object prediction using smart optimized water indication (sonic) algorithm for flood detection

Satryo Budi Utomo1*, Januar Fery Irawan2, Widhi Winata Sakti1, Fiqqih Faizah1

1Electrical Engineering Department, Jember University
Kalimantan No 37 Jember 68121 East Java Indonesia
Email: satryo@unej.ac.id

2Mining Engineering Department, Jember University
Kalimantan No 37 Jember 68121 East Java Indonesia

Abstract. This paper presents the development of a new algorithm in the field of image processing that enables the detection of flood disasters quickly and accurately, using the SONIC (Smart water indication optimizer) method. Concentrated detection in online real-time camera systems has been performed by several tests consisting of classifying camera objects, thermal cameras, and learning cameras. The introduction to the RTC web enables real-time and multiplatform data delivery systems on devices comprised of computers and android gadgets, on object classification using the SONIC algorithm. The object consists of humans, yellow balls, and green balls, with each sample having 50 points of view. The experiments showed test results up to 100\% per age with real-time camera capture speeds.

Keyword : flood; real-time; camera; algorithm, image; processing

1. Introduction

Flood is a natural phenomenon that originates from rainfall with high intensity and long duration in watersheds. Environmental damage, physical changes in the surface of the land cause a decrease in the capacity and storage capacity of rainwater so that most of the rainfall flows in high discharge potential as a flood disaster. The International Charter and global network for Earth observation-based major disaster emergencies created a regional network based on earth observation for better natural disasters in terms of management and damage assessment [1-5].

Digital image processing is the most informative data processor for the detection method [6-9]. The image processing using the Fuzzy C-Means (FCM) technique can identify flooding areas [10]. This Fuzzy C-Means (FCM) framework uses multimedia analysis from three training architectures. This method uses objects that are placed in the data three techniques, the initial data double data and the last data in the image processing process. Analysis of satellite images in Flood Detection in Satellite Imager (FDSI) assignments, using a convolutional neural network (CNN), and asking for a deep classification of Deep Learning to understand the path that can be
passed in satellite imagery [7]. The method of implementing CNN architecture for building detection can accommodate a compilation model of low training data numbers. On CNN architecture, this method is called Modular-CNN to improve the performance of building detectors using Histogram Oriented Gradient (HOG) and local binary patterns (LBP) in remote sensing datasets [11,12].

In urban mapping, the introduction of a two-level assessment framework to the DEM reconstruction method is necessary to obtain numerical and morphological accuracy [13,14]. Besides, CNN-based approaches has been developed as well. The technique produced superior results, providing innovative, cost-effective methods for obtaining high-resolution DEM on data applied to urbanization areas [15]. The process with a combination of CNN and ANN to detect informative tweets during a disaster was tested on real-time twitter datasets such as Hurricane Harvey 2017. The way outperformed existing methods regarding speed, memory, F1 scores, and accuracy [16].

Today, deep learning for classification and analysis of image processing by a neural network has been studied in mapping [17-21]. The ConvNet as a neural network in image processing, and prediction with SVM to exploit the data available from Geographic Information Systems (GIS) and technological advances have been made in Indonesia [23]. The automatic disaster detection system observed the occurrence of disasters in extent, with satellite images and finding each accident assisted with deep learning techniques reveals 80% ~ 90% accuracy for disaster detection. The results presented here can facilitate improvements in detecting natural disasters efficiently by building an automatic disaster detection system [24]. CrowdVAS-Net, which achieves 77.8% classification accuracy, outperforms advanced machine learning models. Moreover, this framework can reduce video processing and analysis time by up to 96.8% extracting the representation of motion and display features of a video frame that classifies behavior as abnormal or usual in crowd motion data [25].

Digital image processing is advantageous in dealing with flood problems. However, the accuracy side still needs to be improved. Therefore, designing an integrated system with a cloud-based web network with the speed of data interaction and collaboration of artificial intelligence algorithm needs to be studied, so that this system can be integrated and accessed by all parties.

2. **Material and method**

2.1 **Material**
The materials used in this study are AMD type E2 laptop webcam integrated with the Samsung J1 smartphone system based on a web server with a camera capture architecture scheme on a spherical object. Data sent by the camera via the WRTC (real-time web connection) stunt server is obtained with the firebase REST API with a web connection real-time data format, including time, object location, and data address from the web socket port.

2.2 **Method**
The method employed digital image processing methods. Digital image processing consists of arrangements of object detection, distance, and motion, as shown in figure 1. For object detection methods are used for segmentation methods. Data sent by the camera via the WRTC (real-time web connection) stunt server is captured with the REST API web formatting. The real-time data connection, including time, object location, and data address from the web socket port. This video streaming data will be tested, namely camera Heatmap, camera motion object, and object classification camera.
Figure 1. Experimental Setup

The segmentation is obtained from the distribution of image data in the form of object image arrays into three basic features, namely red, green and blue, to be obtained in the filter process in epoch and modeling. The data is modeled with CNN and classified using machine learning with the KNN method shown in Figure 2. The RGB image (Red, Green, Blue), which is 32x32 pixels in size, is a multidimensional array with a capacity of 32x32x3 (3 is the number of channels).

Figure 2. Process of object segmentation

At the classification stage, the information is extracted into 50 parts of the angle change. The images are divided into three primary classes, namely yellow balls, green balls, and humans using 50 layers of epochs 16 batch size and 0.001 learning rate as a reference for filtering data from web camera schema schemes are shown in Figure 3. The process is done by using the library of the
Tensorflow Framework to maximize GPU functionality. Besides that, the process of filtering is complex enough to get the best value from data taken directly from the camera.

3. Result and discussion
A new intelligence method, SONIC, is used to detect flooded areas. The system under study consists of CNN, K Nearest Neighbours (KNN), HOG, and WRTC classification bases for image processing and the development of IoT-based architecture as a web app control output.

3.1 Distance detection
Data using a distance heat map camera installed, it is to find the change in each point angle of the ball. With the accumulation of the length of the bouncing image in the line method captured by the camera has shown with a value of 20.63 cm, 19.23 cm and 35.80 cm on a rectangular hog frame showing the comparison of data suitability based on the value point capture as seen in Figure 4a, 4b and 4c.

![Figure 3](image.png)

Figure 3. Data classification technique

![Figure 4](image.png)

Figure 4. HOG Measurement a) Value of 20.63 cm b) Value of 19.23 cm c) Value of 35.80 cm
3.2 Object detection
The results of taking pictures with objects that are given water and leaf noise provide a precise measurement of motion detection by a camera-based detector system.

![Figure 5. Object detection with noises A) in the morning B) in the evening C) at night](image)

The experiment is done in the morning, evening, and night with a maximum light resolution on the ball in the measuring cup and given water up to 200 ml in the bounding box. The results of taking pictures show that the system can still detect objects with the classification by the name of yellow ball demonstrated in Figures 5a, 5b, and 5c.

3.3 Motion detection
Retrieval of heatmap camera data applied an SNI (Standard National Indonesia) measuring tube. In the initial experiments, water was put on the surface of the ball with a maximum capacity of 100 ml. Retrieval of data starts from the movement of the object measured by measuring the frame value on the processing camera. The amount of shifting data from the initial 0 ml to 100 ml is shown in Figures 6a, 6b, and 6c.

![Figure 6. Motion in a) dry condition b) small water c) 50 ml of water](image)

The highest frame load data shift when the ball is affected by the water shift to the resulting discharge value during the first 80 seconds and the final 140 seconds. This shifting shows the process of taking a significant object, as seen in Figure 7.
The results of image acquisition with objects for the classification of motion detectors using a static camera showed that objects have a probability value of 0.3, 0.6, and 1. The indicator indicates that the glass is predicted according to the dry conditions, 100 ml, and 200 ml on the camera shows the results of detecting the value of the measuring cup on the camera that significance is proportional to changes in the value of the measuring cup images 8a, 8b, and 8c. In the calculation of the dimension map features depicted by the comparison of the accumulated length or height of the input minus the number of filter heights in the image classified as given by equation 1.

\[
Output = \frac{W - N + 2P}{S} + 1
\]

Where:
- \(W \) = Length, Height of Input,
- \(N \) = epoch Filter Height,
- \(P \) = Zero Padding,
- \(S \) = Stride.

Data shows a high level of accuracy, namely 100% in each camera variable test. The classification algorithm predicts objects with accurate results, as seen in Figure 9a and 9b. The experiment of the programming algorithm has reached 100% accuracy, as shown in the data tested and the time the camera captures the object based on changes in the categorization of objects under each different condition, as seen in table 1.
4. Conclusion
The result of detection measurements shows that the SONIC algorithm has reached 100% accuracy shown in the data tested and the time the camera captures the object based on changes in the categorization of objects under each different condition. Collaboration using real-time web cameras can be gained data for implementing in the all platform gadget and computer.

5. Acknowledgment
Our thanks go to all supporters and organizers of this conference. We also acknowledge our alma mater, Jember University, for every support and contribution given in this research.

6. References
[1] Y. Kwak, S. Yun, Y Iwami, “New Approach for Rapid UrbanFlood Mapping Using ALOS-2/PALSAR-2 in 2015 Kinu River Flood, Japan,” IEEE IGARSS 2017, 1880-1883.
[2] Xiaojun P., Chongfu H., Chengyi P., “Comprehensive disposal plan design & polymerization disaster risk assessment based on information diffusion technology in Fujiang River basin in Sichuan,” Environmental Research, vol. 188September 2020Article 109744
[3] Liesbet J., Clovis K., Bosco B., Rose K., Matthieu K., “The geo-observer network: A proof of concept on participatory sensing of disasters in a remote setting,” Science of The Total Environment, Volume 67020 June 2019Pages 245-261
[4] Lu P., Jun X., Zhihui L. , “Chuanglin F., Xiangzheng D., Spatio-temporal dynamics of water-related disaster risk in the Yangtze River Economic Belt from 2000 to 2015,” Resources, Conservation and Recycling, Volume 161October 2020Article 104851
[5] Ananda Y. K. and Gunhak L., “Traditional social capital and socioeconomic networks in response to flood disaster: A case study of rural areas in Sri Lanka,” International Journal of Disaster Risk Reduction, Volume 41December 2019, Article 101279
[6] C.V. Angelino, L. Cicala, N. Fiscante, M. Focareta, “Estimated Post-flood effects through free, full and open satellite remote sensing data to support civil protection,” IEEE IGARSS 2016, 5090-3332.

[7] Sharma, V., A. Rathore, and G. Vyas, “Detection of sickle cell anaemia and thalassaemia causing abnormalities in thin smear of human blood sample using image processing,” in Inventive Computation Technologies (ICICT), International Conference on. 2016. IEEE.

[8] Singh V, Varsha, Misra AK, “Detection of unhealthy region of plant leaves using image processing and genetic algorithm,” In: 2015 international conference on advances in computer engineering and applications (ICACEA) IMS Engineering College, Ghaziabad, India.

[9] Salman A, Semwal A, Bhatt U, Thakkar VM, “Leaf classification and identification using canny edge detector and SVM classifier,” In: International conference on inventive systems and control (ICISC-2017)

[10] SINGH, Krishna Kant; SINGH, Akansha, “Identification of flooded area from satellite images using Hybrid Kohonen Fuzzy C-Means sigma classifier,” The Egyptian Journal of Remote Sensing and Space Science, 2017, vol. 20, pp.147-155.

[11] O.Rodriguez-Espindola, P. Albores, C. Brewster,”Disaster preparedness in humanitarian logistics: A collaborative approach for resource management in floods,” European Journal of Operational Research 10.1016/j.ejor.2017.01.021.

[12] KONSTANTINIDIS, Dimitrios; STATHAKI, Tania; ARGYRIOU, Vasileios,“Phase amplified correlation for improved sub-pixel motion estimation,” IEEE Transactions on Image Processing, 2019, 28.6: 3089-3101.

[13] Xia Q, Zhu H-D,”Gan Y, Shang L (2014) Plant leaf recognition using histograms of oriented gradients. In: Huang D-S et al (eds) ICIC 2014, LNAI 8589, pp 369–374, 2014. © Springer Internasional Publishing Switzerland 2014.

[14] Zeng, T., Liu, T., “Ding, Z., Zhang, Q., Wang, Z., & Long, T. (2017). A novel DEM reconstruction strategy based on multi-frequency InSAR in highly sloped terrain,” Science China Information Sciences, 60(8), 088301.

[15] Jun, S., Xiao-ling, Z., Shun-jun, W., Gao, X., & Jian-yu, Y.,“An optimal DEM reconstruction method for linear array synthetic aperture radar based on variational model. Journal of Radars, 4(1), 20-28, 2015.

[16] Jiang, L., Hu, Y., Xia, X., Liang, Q., Soltoggio, A., & Kabir, S. R.,“A multi-scale mapping approach based on a deep learning CNN model for reconstructing high-resolution urban DEMs. Water, 12(5), 1369.

[17] Madichetty, S., & Sridevi, M.,“ Detecting informative tweets during disaster using deep neural network,” In 2019 11th International Conference on Communication Systems & Networks (COMSNETS) (pp. 709-713). IEEE, 2019, January

[18] Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., ... & Song, D.,“ Robust physical-world attacks on deep learning visual classification,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition ,pp. 1625-1634, 2018.

[19] Kolosnjaji, B., Zarras, A., Webster, G., & Eckert, C.,“Deep learning for classification of malware system call sequences,” In Australasian Joint Conference on Artificial Intelligence (pp. 137-149). Springer, Cham, December 2016

[20] Qi, C. R., Su, H., Mo, K., & Guibas, L. J.,“Pointnet:Deep learning on point sets for 3d classification and segmentation,” In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652-660), 2017

[21] Chan, T. H., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y.,“PCANet: A simple deep learning baseline for image classification?,” IEEE transactions on image processing, 24(12), 5017-5032, 2015.
[22] Liu, P., Zhang, H., & Eom, K. B., “Active deep learning for classification of hyperspectral images,” *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10*(2), 712-724, 2016.

[23] OPELLA, Joe Marlou A.; HERNANDEZ, Alexander A. Developing a flood risk assessment using support vector machine and convolutional neural network: a conceptual framework,” In: 2019 *IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA).* IEEE, 2019. p. 260-265.

[24] Amit, S. N. K. B., Shiraishi, S., Inoshita, T., & Aoki, Y. (2016, July). Analysis of satellite images for disaster detection,” In *2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)* (pp. 5189-5192). IEEE.

[25] Gupta, T., Nunavath, V., & Roy, S. (2019, October). CrowdVAS-net: A deep-CNN based framework to detect abnormal crowd-motion behavior in videos for predicting crowd disaster,” In *2019 IEEE international conference on Systems, Man and Cybernetics (SMC)* (pp. 2877-2882). IEEE.