Hourly reference evapotranspiration by Moretti-Jerszurki-Silva method using data from alternative station

Estimativa da evapotranspiração de referência horária pelo método Moretti-Jerszurki-Silva usando dados de estação alternativa

Jorge L. M. de Souza, Sísara R. de Oliveira, Stefanie L. K. Rosa & Daniela Jerszurki

ABSTRACT: Reliable measures of climate variables and the availability of alternative and safe methods are fundamental in estimating reference evapotranspiration (ETo) under unfavorable technical and financial conditions. The objective of this study was to evaluate the performance of the reference evapotranspiration estimation, in hourly periodicity, using the Moretti-Jerszurki-Silva models (ETo MJS(ψair); EToMJS(ψair;Ra)), which considers air temperature (T) and relative air humidity (RH) data measured in an alternative station. The calibration and validation of the alternative station measurements were performed using data from automatic meteorological stations in Curitiba in Paraná (climate type Cfb) and Santa Rita de Cássia in Bahia (climate type Aw), Brazil. The use of the alternative station for hourly measurements of air temperature and relative air humidity in the analyzed climate types and locations were promising. The Moretti-Jerszurki-Silva models were robust in the analyzed locations, indicating satisfactory performance for the hourly periodicity. The Moretti-Jerszurki-Silva method that uses atmospheric water potential and solar radiation (EToMJS(ψair;Ra)) provided better adjustments and estimates of the hourly reference evapotranspiration, as opposed to the standard Penman-Monteith model.

Key words: water relations, water requirements, alternative methods, weather stations

HIGHLIGHTS:
Moretti-Jerszurki-Silva (MJS) models can estimate the hourly ETo.
Atmospheric water potential and solar radiation at the top of the atmosphere allows a reliable estimate of the hourly ETo.
The hourly ETo estimation over the hours of the day can be satisfactorily performed using alternative methods.

RESUMO: Medidas confiáveis de variáveis climáticas e a disponibilidade de métodos alternativos seguros são fundamentais para estimar a evapotranspiração de referência (ETo) em condições técnicas e financeiras desfavoráveis. Objetivou-se no presente estudo avaliar o desempenho da estimativa da evapotranspiração de referência, na periodicidade horária, com os modelos Moretti-Jerszurki-Silva (ETo MJS(ψair); EToMJS(ψair;Ra)), utilizando dados de temperatura (T) e umidade relativa (UR) do ar, medidos em estação alternativa. A calibração e validação das leituras da estação alternativa foram realizadas com dados de estações meteorológicas automáticas de Curitiba no Paraná (tipo climático Cfb), e Santa Rita de Cásia na Bahia (tipo climático Aw). O uso da estação alternativa para medições horárias da temperatura e umidade relativa do ar dos locais e tipos climáticos analisados foi promissor. Os modelos Moretti-Jerszurki-Silva foram robustos nos locais analisados, indicando desempenho satisfatório para a periodicidade horária. O modelo Moretti-Jerszurki-Silva que considera o uso do potencial hídrico atmosférico e radiação solar (EToMJS(ψair;Ra)) proporcionou melhores ajustes e estimativas da evapotranspiração de referência horária, considerando o modelo padrão Penman-Monteith.

Palavras-chave: relações hídricas, necessidades hídricas, métodos alternativos, estações meteorológicas

This is an open-access article distributed under the Creative Commons Attribution 4.0 International License.
Introduction

The quality of climate variable measurements obtained at meteorological stations are fundamental in estimating the reference evapotranspiration using the Penman-Monteith-ASCE (ETo_{PM-ASCE}) model. ETo_{PM-ASCE} estimates can be obtained in daily or hourly periodicity, where the hourly evapotranspiration (ETo) estimates have provided a better performance with regard to assessment of irrigation management (Yildirim et al., 2004). Models that predict ETo on an hourly scale aid in estimating crop water requirements (Tawegoum et al., 2015) and provide a better understanding of the dynamic processes in river basins (Debele et al., 2009).

Meteorological stations use equipment with a high level of accuracy to provide climatic data components that allow the characterization of local weather and climate. However, acquisition cost, maintenance, and operation may restrict their use (Bier & Ferraz, 2017; Vianna et al., 2017). The use of simplified ETo models, based on a few variables of easy measurement, holds significant potential in improving ETo estimates worldwide.

As a result of the lack in quantity and quality of available climate data for daily estimates of ETo_{PM-ASCE} and due to its high sensitivity to air temperature (T) and relative air humidity (RH; Jerszurki et al., 2019), simplified alternative ETo models have been developed (ETo_{MJJS}; Moretti-Jerszurki-Silva) and tested over different Brazilian climatic conditions (Jerszurki et al., 2017), resulting in reliable estimates. Similar results were also obtained for hourly ETo estimates in Brazil (Oliveira, 2018). The results obtained by Jerszurki et al. (2017) and Oliveira (2018) were promising; the input variables needed for ETo estimates were accurately obtained using psychrometers (Cunha, 2013; Cunha & Volpe, 2014) and electronic sensors (Carvalho & Amorim, 2014; Enokela & Othoigbe, 2016), which are inexpensive, easily calibrated, and easy to operate.

Alternative stations have been considered to obtain weather variables in areas where accurate weather-observed data are not available (Lorite et al., 2018). Mobile monitoring systems are being used more frequently because of their advantages such as fast data collection and the capability to forecast environmental conditions of a determined location (Morón et al., 2018).

Accordingly, the objective of this study is to evaluate the performance of the ETo estimation, in hourly periodicity, using the Moretti-Jerszurki-Silva models, based on “atmospheric water potential (ETo_{MJJS(\psi_{air};Ra)})” and “atmospheric water potential and solar radiation (ETo_{MJJS(\psi_{air};Ra)})” considering air temperature (T) and relative air humidity (RH) data measured at a low-cost alternative weather station, developed for this purpose.

Material and Methods

The analysis of the present study was performed at the Agricultural Systems Modeling Laboratory (LAMOSA), Federal University of Paraná (UFPR). The estimates of hourly ETo with alternative (Moretti-Jerszurki-Silva models) and standard (Penman-Monteith model) methods were performed in Curitiba, PR (25° 26’ 52.8” S latitude, 49º 13’ 12” W longitude and altitude 923 m) and Santa Rita de Cássia, BA (11º 0’ 7.2” S latitude, 44º 31’ 26.4” W longitude and altitude 450 m), Brazil.

The Moretti-Jerszurki-Silva methodology that considers only the atmospheric water potential (ETo_{MJJS(\psi_{air})}) was selected as linear (Eq. 1; Jerszurki et al., 2017) and quadratic (Eq. 2; Oliveira, 2018) functions to represent the associations of the calibration process:

\[
ETo_{MJJS(\psi_{air})} = a + b \, \psi_{air} \quad (1)
\]

\[
ETo_{MJJS(\psi_{air})} = a \, \psi_{air}^2 + b \, \psi_{air} + c \quad (2)
\]

where:

- \(ETo_{MJJS(\psi_{air})}\) - calibrated reference evapotranspiration estimated by atmospheric water potential at each i-hour, mm h^{-1};
- \(\psi_{air}\) - atmospheric water potential at each i-hour, MPa;
- a, b, and c - coefficients obtained in regression analysis of the relation between \(\psi_{air}\) versus ETo_{PM-ASCE} from calibration process (Eq. 1: coefficient a is in mm h^{-1} and b is in mm h^{-1} MPa^{-2}; Eq. 2: coefficient a is in mm h^{-1} MPa^{-2}, b is in mm h^{-1} MPa^{-1}, and c is in mm h^{-1}).

The Moretti-Jerszurki-Silva methodology that considers the atmospheric water potential and solar extraterrestrial radiation (ETo_{MJJS(\psi_{air};Ra)}) were also selected as linear (Eq. 3; Jerszurki et al., 2017) and quadratic (Eq. 4; Oliveira, 2018) functions to represent the associations of the calibration process, based on equivalent evaporation (Eq. 5) and coefficient of proportionality of the atmospheric water potential (Eq. 6):

\[
ETo_{MJJS(\psi_{air};Ra)} = a + b \, Ee_i \quad (3)
\]

\[
ETo_{MJJS(\psi_{air};Ra)} = a \, Ee_i^2 + b \, Ee_i + c \quad (4)
\]

\[
Ee_i = K_{\psi_{air}} \frac{Ra_i}{\lambda \cdot \rho_a} \quad (5)
\]

\[
K_{\psi_{air}} = \frac{\psi_{air} - \psi_{air\,min}}{\psi_{air\,max} - \psi_{air\,min}} \quad (6)
\]

where:

- \(ETo_{MJJS(\psi_{air};Ra)}\) - reference evapotranspiration estimated using the Moretti-Jerszurki-Silva method with \(\psi_{air}\) and \(Ra_i\) at each i-hour, mm h^{-1};
- a, b, and c - coefficients obtained in regression analysis of the relation between \(Ee\) versus ETo_{PM-ASCE} from calibration process (Eq. 3: coefficient a is in mm h^{-1} and b is dimensionless; Eq. 4: coefficient a is in (mm h^{-1}), b is dimensionless, and c is in mm h^{-1});
- \(Ee_i\) - equivalent evaporation at each i-hour, mm h^{-1};
- \(Ra_i\) - extraterrestrial radiation at each i-hour, MJ m^{-2} h^{-1};
- \(\lambda\) - latent heat of vaporization, 2.45 MJ kg^{-1};
The Moretti-Jerszurki-Silva methods estimate E_{To} based on atmospheric water potential (ψ_{ai}), which can be calculated for hourly periods according to the following equation (Jerszurki et al., 2017):

$$\psi_{ai} = \frac{R T_{i} \ln \left(\frac{e_{ai}}{e_{si}} \right)}{M_v}$$

(7)

where:

- ψ_{ai} - atmospheric water potential at each i-hour, MPa;
- R - gas constant, 8.314 J mol$^{-1}$ K$^{-1}$;
- T_{i} - absolute temperature at each i-hour, K;
- e_{ai} - actual vapor pressure at each i-hour, MPa; and,
- e_{si} - saturated vapor pressure at each i-hour, MPa.

The extraterrestrial radiation (Ra) was estimated according to the ASCE-EWRI (2005) methodology:

$$Ra = \frac{12}{\pi} G_{sc} \int \left[\left(\omega_2 - \omega_1 \right) \sin(\phi) \sin(\delta) + \cos(\phi) \cos(\delta) \left(\sin(\omega_2) - \sin(\omega_1) \right) \right]$$

(8)

where:

- Ra - extraterrestrial radiation, MJ m$^{-2}$ h$^{-1}$;
- G_{sc} - solar constant, 4.92 MJ m$^{-2}$ h$^{-1}$;
- ω_1 - hourly angle corresponding to period beginning, rad;
- ω_2 - hourly angle corresponding to the period end, rad;
- ϕ - latitude, rad; and,
- δ - sun inclination, rad.

The K_{urm} coefficients range from 0 to 1.0, establishing the proportionality between Ra (MJ m$^{-2}$ h$^{-1}$) and E_{ei} (mm h$^{-1}$). The standard unit conversion of solar radiation (Ra; MJ m$^{-2}$ day$^{-1}$) to equivalent evaporation (mm h$^{-1}$) was performed using the conversion factor (0.408) defined by the inverse of latent heat of vaporization $1/\lambda$ (Pereira et al., 1998) for daytime period; and, $Cd_{nighttime}$ - 0.96 s m$^{-1}$ for nighttime period).

Hourly wind speed was obtained at a height of 10 m using an anemometer (Vaisala WT521, and the wind speed was calculated using the wind profile relationship for a height of 2 m (Allen et al., 1998). Only daytime E_{To} was used in the analyses. Therefore, solar radiation data were considered for periods in which the sun was 17° above the horizon, by following the limits established for cloud cover function (f_{ck}) (ASCE-EWRI, 2005), to not cover nighttime values.

Analyses with the Moretti-Jerszurki-Silva method (Jerszurki et al., 2017) were carried out for an alternative meteorological station, located next to the two analyzed INMET stations (installed in the same tower with the automatic station), with hourly observations of T (°C) and RH (%), from spring to summer (October 2017 to January 2018).
assisting the user in verification. The sensors were placed in a closed structure that allowed air circulation and protected them from being exposed to sun and rain.

The calibration of the alternative station consisted of performing linear regression analysis between T and RH data obtained at the “alternative” and “INMET automatic” stations, representing each location (Table 1). With the regression parameters obtained in the calibration, the alternative station was validated using a data set different from those applied during the calibration. Hourly data from Curitiba, PR (between October 10, 2017, to October 31, 2017) and Santa Rita de Cássia, BA (between January 1, 2018, to January 31, 2018) were used for the calibration and validation (Table 1) of alternative station and tested methods (EToMJS(ψair) and EToMJS(ψair;Ra)).

After calibration and validation, the weather data (T and RH) obtained at the alternative station was analyzed using the Moretti-Jerszurki-Silva methods. The calibration and validation of Moretti-Jerszurki-Silva models were performed (Table 1) according to Jerszurki et al. (2017) and Oliveira (2018).

Hourly weather data (T and RH) obtained at the “alternative and INMET stations” and ETo estimates obtained using “Moretti-Jerszurki-Silva and standard PM-ASCE methods” were compared by regression analysis, root mean square error (RMSE), “d” (Willmott) and “c” (Camargo & Sentelhas) indexes (Souza, 2018).

The interpretation criteria in terms of performance “c” was classified as “excellent” (“c” > 0.85), “very good” (0.75 < “c” ≤ 0.85), “good” (0.65 < “c” ≤ 0.75), “medium” (0.60 < “c” 0.65), “tolerable” (0.50 < “c” 0.60), “bad” (0.40 < “c” ≤ 0.50), and “terrible” (“c” ≤ 0.40).

Results and Discussion

The calibration of the alternative station presented the coefficients of determination (R²) to be higher than 0.80, considered satisfactory (Table 2) for T and RH in the analyzed locations. T and RH records for Curitiba, PR, Cfb climate type, had angular coefficient (b) approximately 1. For Santa Rita de Cássia, BA, Aw climate type, the angular coefficient (b) were >1.

The literature reports calibration processes for sensors that measure climate variables for several purposes. The calibration of the alternative station (Table 2) presented similar coefficients of determination as the normal range. While evaluating different regression methods to calibrate particulate matter sensors in Poland, Baduda et al. (2019) observed that the addition of T and RH measurements in the models resulted in good adjustments (R² > 0.87). Munir et al. (2019) evaluated the concentrations of NO and NO₂ (ppb) measured by calibrated sensors, along with meteorological data (wind speed, T and RH) in England, obtained R² > 0.92 for NO₂ concentration. Hojajji et al. (2017) calibrated and validated T and RH sensors to monitor air quality and obtained values in the range of 0.45 ≤ R² ≤ 0.96. Good results were also achieved by Yamamoto et al. (2017) while calibrating temperature sensors in Japan, with mean absolute errors of 0.19. Despite the diversity in the use of sensors, few studies involve the measurement of climate data with alternative and low-cost stations focused on ETo estimation.

The alternative station was not able to provide a unique calibration function for the variables and climatic environments
studied (Cfb and Aw climates, Table 2). Notably, the alternative station was the same in the two locations evaluated; however, the INMET stations were different, and it is normal that the coefficients of the calibration equation were not the same. In addition, the variability and intrinsic characteristics of each climatic type have to be considered (Aw - tropical; Cfb - subtropical). However, evidently, the coefficients of determination (R^2) were higher in the Aw climate, indicating better adjustment of the model and the measurements obtained in the alternative station.

In Aw climate type (Santa Rita de Cássia, BA), the lowest differences in T between the alternative and automatic stations occurred between 0:00 and 8:00 a.m. When T was above 25 °C, underestimations were made up to 5 °C between 7:00 and 9:00 p.m. For RH, better results occurred between 2:00 and 6:00 a.m. (Figures 1C and D). In Cfb climate type (Curitiba, PR), the highest similarities between the values measured in the alternative and automatic stations occurred between 6:00 and 12:00 a.m. and between 7:00 and 11:00 a.m. for T and RH, respectively (Figures 1A and B). It was not possible to identify a consistent reason that explained the variations occurring in the two locations. However, it is considered that the highest variation in Santa Rita de Cássia was due to the higher temperatures in this location, affecting the humidity and temperature sensors used.

The measured T and RH obtained from the INMET stations were used as standard data series during the validation of the alternative station for both Aw and Cfb climate types. Notably, the INMET station in Curitiba, PR (A807), presented failures in the RH data series during the validation period (Figure 2B). Thus, failure periods were identified and omitted from the statistical analyses. The temporal trends of the data series from the alternative station followed the hourly variation of T and RH, which indicates satisfactory responses to abrupt changes in these variables (Figures 2 and 3).

Good associations were observed for T and RH measurements ($r > 0.9$) between alternative and automatic stations (Figure 3), which confirmed the promising use of the alternative station in the analyzed climatic types. During the analyzed period, the amplitude of air temperature variation was up to 14 °C and 19 °C in the Cfb and Aw climate type, respectively. Sousa et al. (2015) studied the DHT22 sensor in Aw climate (Barra do Garça City, Mato Grosso State, Brazil) and performed calibration with data measured in an official automatic station, and found a strong association between T ($r = 0.94$) and RH ($r = 0.93$). The RH amplitude ranged from 30 to 61% in the Cfb climate type. In Aw climate type, minimum RH of 16% that resulted in an amplitude of up to 75% for the analyzed period was verified. On an average, RH was overestimated by 0.15% in the Cfb climate and 2.40% in the Aw climate. The highest underestimations recorded in the alternative station were verified under the conditions of higher RH in Santa Rita de Cássia, BA.

The RMSE of the T measurements was 1.4 °C in the Cfb climate and 1.94 °C in the Aw climate (Figure 3). For RH, the RMSE was verified as 3.75% for the Cfb climate and 5.56% for the Aw climate. Largest errors generally occurred for the extreme values (minimum and maximum) verified for the

Data measured between October 10, 2017 and October 31, 2017, in Curitiba, PR; and between January 1, 2018 and January 31, 2018, in Santa Rita de Cássia, BA

Figure 1. Air temperature and relative air humidity during the calibration, measured in the alternative and automatic stations: (A) Air temperature in Curitiba, PR; (B) Relative air humidity in Curitiba, PR; (C) Air temperature in Santa Rita de Cássia, BA; and, (D) Relative air humidity in Santa Rita de Cássia, BA
Data measured between October 10, 2017, and October 31, 2017, in Curitiba, PR; and between January 1, 2018 and January 31, 2018, in Santa Rita de Cássia, BA

Figure 2. Air temperature and relative air humidity measures in the alternative and automatic stations: (A) Air temperature in Curitiba, PR; (B) Relative air humidity in Curitiba, PR; (C) Air temperature in Santa Rita de Cássia, BA; and, (D) Relative air humidity in Santa Rita de Cássia, BA

Figure 3. Correlation coefficient (r), root mean square error (RMSE) and "d" index, obtained in the validation of the mean air temperature and mean relative air humidity measured in the alternative and automatic stations: (A) "$T_{\text{alternative}}$ vs $T_{\text{INMET (A807)}}$", in Curitiba, PR; (B) "$RH_{\text{alternative}}$ vs $RH_{\text{INMET (A807)}}$", in Curitiba, PR; (C) "$T_{\text{alternative}}$ vs $T_{\text{INMET (A415)}}$", in Santa Rita de Cássia, BA; and, (D) "$RH_{\text{alternative}}$ vs $RH_{\text{INMET (A415)}}$", in Santa Rita de Cássia, BA
two variables (Figure 2). The RMSE obtained was promising because the sensitivity of the DHT11 sensor presented by sensor manufacturers is ±5% for RH and ±2°C for T. The differences between the observed data from conventional and alternative instruments in electronic equipment are as expected (Silva et al., 2007; Miranda & Pereira, 2011; Torres et al., 2015). Palmieri et al. (2014) reported that errors up to 2.23°C verified in electronic sensors for T can be considered irrelevant, and the results are reliable for physical process analyses in agricultural environments.

Several authors (Silva et al., 2007; Miranda & Pereira, 2011; Palmieri et al., 2014; Torres et al., 2015) consider that small variations between climatic data measured at different stations are normal. Thus, the use of low-cost alternative stations, such as the one tested in the present study, are appropriate for obtaining climatic data to estimate hourly ETo.

The results are considered satisfactory because of the simplicity and cost (US$ 150.00) of the alternative station for research, which could be used daily. The results obtained with r coefficient and “d” index indicate that the measurements obtained with the alternative station may be valid for use in hourly reference evapotranspiration estimation with Moretti-Jerszurki-Silva models (Figure 3).

Associations between “ψair versus ETo_PM-ASCE” and “Ee versus ETo_PM-ASCE” were established to verify the possibility of using T and RH values, measured in the alternative station. ψair and Ee were estimated with the same observed T and RH data measured at the alternative station. Climatic data obtained from the INMET automatic stations were used to estimate ETo_PM-ASCE.

The linear equation had a better adjustment for “Ee versus ETo_PM-ASCE” with a strong association (r = 0.89 in Cfb, and r = 0.94 in Aw climate type; Table 3). For “ψair versus ETo_PM-ASCE” association, the correlations were weak, and a better linear adjustment was observed in Cfb climate (r = 0.83) and quadratic adjustment in Aw climate type (r = 0.71). Oliveira (2018) also observed quadratic adjustment for some Brazilian locations for analyses considering hourly ETo. The result is interesting, and the adoption of a linear model provided small estimation errors in many validation situations.

In the validation of Moretti-Jerszurki-Silva models using data from the alternative station (Table 4 and Figure 4), the relation between “ETo_MJS(ψair) versus ETo_PM-ASCE” and “EToMJS(ψair;Ra) versus ETo_PM-ASCE” had smaller RMSE values, generally less than 0.021 mm h⁻¹. According to Zhang et al. (2017), RMSE < 0.186 mm h⁻¹ is considered acceptable. In Curitiba, PR (Cfb climatic type), the highest errors occurred in the late afternoon, starting at 4:00 p.m.

With the exception of the association between “ETo_MJS(ψair) versus ETo_PM-ASCE” in Aw climate (Figure 4C), the proximity of the points to line of best fit in the other regression analyzes performed indicates the quality of results obtained (Table 4 and Figure 4), mainly in the association between “EToMJS(ψair;Ra) vs ETo_PM-ASCE” in Curitiba, PR, which provided “good” to “excellent” association. The performances were very promising and partly reflected the same aspects of the calibration process. The “ETo_MJS(ψair) versus ETo_PM-ASCE” association in Aw climate type, with measurements from the alternative station, presented “bad” performance, which was related to the weak correlation coefficient (r = 0.42), indicating high dispersion in relation to the regression line.

The results of the MJS(ψair) model in Santa de Cásia, BA were unexpected, as a similar dispersion as the other analysis was expected (Figure 4). Jerszurki et al. (2019) evaluated the sensitivity of daily ASCE Penman-Monteith reference evapotranspiration and observed that Brazilian climatic types, including Aw and Cfb, have variations in vapor pressure deficit (VPD) as the most sensitive variable for estimating daily ETo. The same authors concluded that VPD, calculated from the measurements of RH and T, is essential for accurately predicting ETo across tropical and subtropical climates. Oliveira (2018) associated the estimated ETo with the MJS(ψair) and MJS(ψair;Ra) versus ASCE-PM models in hourly periodicity and obtained index “c” ≥ 0.6 (“Good” performance) for Cristalina, GO, Brazil (Aw climate type), in seasonal periods, using data from INMET. The results obtained in the present study (Table 4 and Figure 4) indicated that Ra improved the ETo estimate in Santa Rita de Cásia. It is generally considered that the better performance of the MJS(ψair) and MJS(ψair;Ra) models in Curitiba is related to the better association between T and RH data of the alternative station, obtained after calibration (Figure 2). In Santa Rita de Cásia, the amplitude of the hourly data readings was higher, mainly for RH (Figure 2). However, this aspect needs to be investigated in future by considering the main Brazilian climate types, more locations, and seasons of the year.

Table 3. Adjusted parameters of Moretti-Jerszurki-Silva (a, b, and c) models and correlation coefficient (r) obtained in calibration with the association between “ψair versus ETo_PM-ASCE” and “Ee versus ETo_PM-ASCE”.

Location	ETo_PM-ASCE association “ψair versus ETo_PM-ASCE”	ETo_PM-ASCE association “Ee versus ETo_PM-ASCE”								
	Equation	a	b	c	r	Equation	a	b	c	r
Curitiba, PR	Linear	-0.039	0.053	—	0.83	Linear	0.024	0.471	0.89	
Santa Rita de Cásia, BA	Quadratic	-3E-05	0.010	-0.175	0.71	Linear	0.108	0.607	0.94	

Table 4. Validation of ETo estimated with Moretti-Jerszurki-Silva models using data measured at the alternative station, for the associations between “ETo_MJS(ψair) versus ETo_PM-ASCE” and “EToMJS(ψair;Ra) versus ETo_PM-ASCE”.

Location	“ETo_MJS(ψair) vs ETo_PM-ASCE”	Performance	RMSE	“EToMJS(ψair;Ra) vs ETo_PM-ASCE”	Performance	RMSE
Curitiba, PR	0.011	0.75	0.90	0.68	good	0.009
Santa Rita de Cásia, BA	0.020	0.42	0.93	0.40	excellent	0.011

RMSE - Root mean square error (mm h⁻¹); r - Correlation coefficient (dimensionless); “d” - “d” index (dimensionless); “c” - Performance index (dimensionless)
Jerszurki et al. (2017) considered that methods based on solar radiation have performed better in relation to the Penman-Monteith method in humid environments, as solar radiation is the main factor contributing to evapotranspiration (Allen et al., 1998). Thus, a better performance of the MJS($\psi_{\text{air};Ra}$) model in the two locations analyzed (Table 4 and Figure 4) was expected.

Owing to the accuracy of “c” index, it is possible to affirm that the properly calibrated Moretti-Jerszurki-Silva models can provide acceptable estimates, even with the use of an alternative station designed to measure T and RH (Table 4). The methodologies tested (models and alternative station) can also be used in more sophisticated studies in the future, aiming to evaluate and quantify the dynamics and spatial variability of the reference evapotranspiration in fields or watersheds, with the assembly of sampling meshes for collecting data. Research of this nature will allow more detailed estimation of water movement in the soil-plant-atmosphere system.

Conclusions

1. The alternative station has performed exceptionally in obtaining hourly measurements of air temperature and relative air humidity in the subtropical Cfb (Curitiba, Paraná State) and tropical Aw (Santa Rita de Cássia, Bahia State) climate types.
2. With the exception of the model that considers only the atmospheric water potential in Santa Rita de Cássia, (MJS(ψ_{air})), the Moretti-Jerszurki-Silva models were robust in the analyzed locations, indicating satisfactory performance for the hourly periodicity. In particular, the use of atmospheric water potential and solar radiation in the simplified method MJS($\psi_{\text{air};Ra}$) provided better adjustments and improved the accuracy of ETo estimates.

Literature Cited

Allen, R. G.; Pereira, L. S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. Rome: Food and Agriculture Organization, 1998. 300p. Irrigation and Drainage Paper, 56

ASCE-EWRI. The ASCE standardized reference evapotranspiration equation. Report of the Task Committee on Standardization of Reference Evapotranspiration. Reston: American Society of Civil Engineers. 2005. 59p.

Baduda, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Regression methods in the calibration of low-cost sensors for ambient particulate matter measurements. SN Applied Sciences, v.1, p.1-11, 2019. https://doi.org/10.1007/s42452-019-0630-1

Bier, A. A.; Ferraz, S. E. T. Comparação de metodologias de preenchimento de falhas em dados meteorológicos para estações no Sul do Brasil. Revista Brasileira de Meteorologia, v.32, p.215-226, 2017. https://doi.org/10.1590/0102-77863220008

Carvalho, L. R. M. de; Amorim, H. L. de. Observando as marés atmosféricas: Uma aplicação da placa Arduino com sensores de pressão barométrica e temperatura. Revista Brasileira de Ensino de Física, v.36, p.3501-3507, 2014. https://doi.org/10.1590/S1806-11172014000300013
Hourly reference evapotranspiration by Moretti-Jerszurki-Silva method using data from alternative station

Cunha, A. R. da. Programação, conexão e avaliação de psicrômetro aspirado de termopar de baixo custo em microlooger para estudos agrometeorológicos. Revista Brasileira de Meteorologia, v.28, p.221-232, 2013. https://doi.org/10.1590/S0102-77862013000200011

Cunha, A. R. da; Volpe, C. A. Medidas automatizadas de psicrômetros de termopar aspirado versus não aspirado. Revista Brasileira de Meteorologia, v.29, p.271-280, 2014. https://doi.org/10.1590/S0102-77862014000200010

Debele, B.; Srinivasan, R.; Parlange, J. Hourly analyses of hydrological and water quality simulations using the ESWAT model. Water Resources Management, v.23, p.303-324, 2009. https://doi.org/10.1007/s11269-008-9276-2

Enokela, J. A.; Othoigbe, T. An automated greenhouse control system using Arduino prototyping platform. Australian Journal of Engineering Research, v.1, p.1-13, 2016.

Hojaji, H.; Kalantarian, K.; Bui, A. A. T.; King, C. E.; Sarrafzadeh, M. Temperature and humidity calibration of a low-cost wireless dust sensor for real-time monitoring. In: IEEE Sensors Applications Symposium (SAS). Glassboro, 2017. 17p. https://doi.org/10.1109/SAS.2017.7894056

Ierusalimschy, R. Programming in lua. 2.ed. Lua.org. 2006. 328p.

Jerszurki, D.; Souza, J. L. M. de. Fundamentos de matemática e estatística para ambientes. Chap.1, 2018. p.3-40. https://doi.org/10.1016/c2018-01-008

Jerszurki, D.; Souza, J. L. M. de; Silva, L. de C. R. Expanding the geography of ASCE-Penman-Monteith reference evapotranspiration under different climate types in Brazil. Climate Dynamics, v.53, p.943-956, 2019. https://doi.org/10.1007/s00382-019-04619-1

Lorite, I. J.; Ruiz-Ramos, M.; Gabaldón-Leal, C.; Cruz-Blanco, M. Portas, R.; Santos, C. Water scarcity and sustainable agriculture in semiarid environment. Tools, strategies, and challenges for woody crops. In: Water management and climate change in semiarid environments. Chap.1, 2018. p.3-40. https://doi.org/10.1016/B978-0-12-813164-0.00001-6

Miranda, R. A. C. de; Pereira, F. R. Desenvolvimento de plataforma para monitoramento "automatizado" de dados termo-pluviométricos. Geosul, v.26, p.129-144, 2011. https://doi.org/10.5007/2177-5230.2011v26n5p129

Morón, C.; Díaz, J. P.; Ferrández, D.; Saiz, P. Design, Development and implementation of a weather station prototype for renewable energy systems. Energies, v.11, p.1-13, 2018. https://doi.org/10.3390/en11092234

Munir, S.; Mayfield, M.; Coca, D.; Jubb, S. A.; Osammor, O. Analysing the performance of low-cost air quality sensors, their drivers, relative benefits and calibration in cities - a case study in Sheffield. Environmental Monitoring and Assessment, v.191, p.1-22, 2019. https://doi.org/10.1007/s10661-019-7231-8

Oliveira, S. R. Ajuste do método Moretti-Jerszurki-Silva para estimar a evapotranspiração de referência diária e horária dos tipos climáticos brasileiros. Curitiba: UFPR, 2018. 537p. Tese Doutorado

Palmieri, A. M.; Silveira, L. R. da; Miranda, J. H.; Miranda, K. O. da S. Sistema automatizado para coleta de dados de umidade relativa e temperatura do ar. Engenharia Agrícola, v.34, p.636-648, 2014. https://doi.org/10.1590/S0100-69162014004000004

Pereira, A. R.; Villanovan, N. A.; Sedyjama, G. C. Evapo(transpi)ração. Piracicaba: FEALQ, 183p. 1997.

Silva, K. O. da; Moraes, S. O.; Miranda, J. H.; Palmieiri, A. M. Sistema automatizado para aquisição de dados de umidade relativa do ar. Engenharia Agrícola, v.27, p.630-638, 2007. https://doi.org/10.1590/S0100-69162007000400005

Souza, J. L. M. de. Fundamentos de matemática e estatística para formulação de modelos e análise de dados: Aplicado às ciências agrárias. Curitiba: Plataforma Moretti/DSEA/SCA/ UFPR. 2018. Série Didática.

Tawegoum, R.; Leroy, F.; Sintes, G.; Chassériaux, G. Forecasting hourly evapotranspiration for triggering irrigation in nurseries. Biosystems Engineering, v.129, p.237-247, 2015. https://doi.org/10.1016/j.biosystemseng.2014.10.011

Torres, J. D.; Monteiro, I. O.; Santos, J. R. dos; Ortiz, M. S. Aquisição de dados meteorológicos através da plataforma Arduino: Construção de baixo custo e análise de dados. Scientia Plena, v.11, p.1-13, 2015.

Vianna, L. F. N.; Perin, E. B.; Ricce, W. S.; Massignan, A. M.; Pandolfo, C. Bancos de dados meteorológicos: Análise dos metadados das Estações Meteorológicas no Estado de Santa Catarina, Brasil. Revista Brasileira de Meteorologia, v.32, p.53-64, 2017. https://doi.org/10.1590/0102-778632120150119

Yamamoto, K.; Togami, T.; Yamaguchi, N.; Ninomiya, S. Machine learning-based calibration of low-cost air temperature sensors using environmental data. Sensors, v.17, p.1-16, 2017. https://doi.org/10.3390/s17061290