Mechanism of Peripheral Nerve Stimulation in Chronic Pain

Tiffany Lin, MD* Akshat Gargya, MD* Harmandeep Singh, MD,* Eellan Sivanesan, MD† and Amitabh Gulati, MD‡

*Department of Anesthesiology, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York; †Department of Anesthesiology, Johns Hopkins School of Medicine, Baltimore, Maryland; ‡Department of Anesthesiology and Critical Care, Memorial Sloan Kettering Cancer Center, New York, USA

Correspondence to: Amitabh Gulati, MD, Department of Anesthesiology and Critical Care, Memorial Sloan Kettering Cancer Center, 1275 York Ave M-308, New York, NY 10065, USA. Tel: 212-639-6851; Fax: 212-717-3206; E-mail: gulatia@mskcc.org.

Funding sources: This work was supported, in part, by the National Cancer Institute Cancer Center Support Grant P30CA008748.

Disclosure and conflicts of interest: Consultant, Medtronic; Advisory Board, AIS HealthCare; Consultant, Flowonix Medical Inc.; Consultant, Nalu Medical Inc.; Consultant, SPR Therapeutics.

Supplement sponsorship: This article appears as part of the supplement entitled “Peripheral Nerve Stimulation: Update for the 21st Century” sponsored by Bioness and by SPR Therapeutics, Inc.

Abstract

Introduction. With the advancement of technology, peripheral nerve stimulation (PNS) has been increasingly used to treat various chronic pain conditions. Its origin is based on the gate control theory postulated by Wall and Melzack in 1965. However, the exact mechanism behind PNS’ analgesic effect is largely unknown. In this article, we performed a comprehensive literature review to overview the PNS mechanism of action. Design. A comprehensive literature review on the mechanism of PNS in chronic pain. Methods. Comprehensive review of the available literature on the mechanism of PNS in chronic pain. Data were derived from database searches of PubMed, Scopus, and the Cochrane Library and manual searches of bibliographies and known primary or review articles. Results. Animal, human, and imaging studies have demonstrated the peripheral and central analgesic mechanisms of PNS by modulating the inflammatory pathways, the autonomic nervous system, the endogenous pain inhibition pathways, and involvement of the cortical and subcortical areas. Conclusions. Peripheral nerve stimulation exhibits its neuromodulatory effect both peripherally and centrally. Further understanding of the mechanism of PNS can help guide stimulation approaches and parameters to optimize the use of PNS.

Key Words: Peripheral Nerve Stimulation; Chronic Pain; Mechanism

Introduction

Electrical stimulation of peripheral nerves is widely used in various medical settings, ranging from testing of neuromuscular function and somatic nerve stimulation for treatment of paralysis to vagal nerve stimulation for treatment of intractable epilepsy and refractory depression [1–4]. Due to recent technological advancements, there has been an increasing interest in the utility of peripheral nerve stimulation (PNS) for pain control. While the neuromodulatory effect of PNS was first explored in 1965, its principles share similarities with acupuncture and transcutaneous electrical nerve stimulation (TENS), which have long been used for pain control before the invention of PNS. Its origin is based on the gate control theory postulated by Melzack and Wall in 1965, in which innocuous sensory input carried by large Aβ fibers disrupts transmission of nociceptive input from small pain fibers [5]. In 1967, Wall and Sweet then demonstrated that nonpainful electrical stimulation of a peripheral nerve does indeed suppress pain perception by delivering electrical stimulation to the infraorbital nerves via percutaneous needle electrodes [6]. Now, PNS is used in many chronic pain conditions including peripheral nerve injury, complex regional pain syndrome, phantom limb pain, and even fibromyalgia [7–10]. Miniaturized devices that are less invasive than previous generations have also brought this treatment modality into mainstream use.
Despite the increasingly common use of PNS, the exact mechanism behind its analgesic effect is largely unknown. In this article, we performed a comprehensive literature review to overview the PNS mechanism of action.

Methods

This review utilized the PubMed, Scopus, and Cochrane Library databases using the search terms “peripheral nerve stimulation,” “mechanism,” AND “pain.” One hundred fourteen references including original studies, case reports, and review articles were found. The references were then independently screened by two authors (TL and AG). Articles with literature related to the mechanism of PNS specifically were included. Only PNS modalities with extraspinal targets were included. Therefore, dorsal root ganglion and visceral peripheral targets for stimulation were excluded from our search criteria. After deliberation of those articles not in initial agreement, 55 consensus articles were identified for detailed review. Additional articles were derived from manual searches of bibliographies and known primary or review articles. Figure 1 shows a PRISMA flow chart of the review process.

Results

Foundation of Peripheral Nerve Stimulation

The following articles were obtained and referenced below, with a summary of findings in Table 1.

Electroacupuncture

Acupuncture has been practiced in China for >2,000 years to treat a variety of illnesses based on the meridian theory. Acupoints have been shown to overlie major neuronal bundles, which correlate with cutaneous branches of major nerves [11]. These nerves converge and interact with visceral nociceptive inputs at the spinal cord level. For example, spinal nerves that carry cutaneous branches to the thorax and abdomen stem from the same spinal segments that receive nociceptive afferent input from splanchnic organs [11]. This anatomical correlation provides the basis on which acupuncture applied to a specific region could treat a variety of conditions remote to the site of treatment.

On a molecular level, acupuncture needles, either manipulated manually or stimulated using a low current and frequency in the case of electroacupuncture (EA), have been documented to modulate the activity of peripheral and central neural pathways. Peripherally, EA activates the sympathetic nervous system (SNS), which increases adhesion of immune cells to the blood vessels, stimulates opioid release from adrenergic receptors and fibroblasts, upregulates cannabinoid CB2 receptors, and inhibits COX2 [12]. Increased adenosine-mediated activation of antinociceptive ascending pathways has been also demonstrated [13].

Centrally, EA interacts with neural transmission of analgesia via modulation of the SNS and the inflammatory pathway, effectively inhibiting central sensitization. Norepinephrine activation by EA stimulates α-2a receptors and the serotonergic pathway, which downregulates phosphorylation of GluN1 and thus the expression of NMDA receptors [12]. Levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) α are decreased in the spinal cord in setting of EA [12]. IL-1β enhances GluN1 phosphorylation, whereas TNFα promotes NMDA activity in neurons in the lamina II of the spinal cord. Furthermore, EA
has been demonstrated to decrease p38MAPK phosphorylation in the spinal dorsal horn, periaqueductal gray, and rostral ventromedial medulla [14]. p38MAPK is involved in intracellular signaling pathways that promote transcription of TNFa, IL-1, and COX-2. Lastly, EA has also been shown to increase expression of somatostatin and its precursor in the spinal cord [15].

Transcutaneous Electrical Nerve Stimulation
Transcutaneous electrical nerve stimulation (TENS) involves direct application of electrical current of various frequencies to the surface of the skin. The analgesic effect of TENS is mediated via different mechanisms depending on the type of stimulus applied. Conventional TENS at high frequency (10–200 Hz) and low intensity (5–10 mA) produces a strong and comfortable paresthesia sensation and stimulates the large myelinated Aβ fibers, modulating pain at a spinal cord level via the gate control theory [16,17]. It has also been shown to cause δ-opioidergic blockade of glutamate and aspartate and to increase serum and cerebrospinal fluid (CSF) enkephalins and β-endorphins [12,18]. Acupuncture-like TENS at low frequency (4-20Hz) and high intensity (15–60 mA) produces strong and uncomfortable muscle contractions and stimulates the Aδ fibers, modulating pain by inducing

Studies	Subjects	Targeted Nerves	Pathways Involved
EA	Goldman, 2010 [13]	Animal N/A	Adenosine A1 receptor
	Hu, 2017 [14]	Animal N/A	p38MAPK
	Dong, 2005 [15]	Animal N/A	Somatostatin
TENS	Sluka, 2005 [18]	Animal N/A	Delta-opioid receptors, glutamate, aspartate
	Maeda, 2007 [19]	Animal N/A	GABA
	Radhakrishnan, 2003 [20]	Animal N/A	5-HT2, 5-HT3 receptors
	Han, 1991 [21]	Human N/A	Met-enkephalin-Arg-Phe, dynorphin-A
	Gurgen, 2014 [22]	Animal N/A	TNFa, IL-1b, IL-6
	Silva, 2014 [23]	Human N/A	Parietal cortex
PNS	Torebjork, 1974 [25]	Human	Radial nerve, saphenous nerve
	Wall, 1974 [26]	Human	Sciatic nerve neuraoma
	Swett, 1983 [27]	Animal	Radial nerve
	Jeong, 1995 [28]	Animal	Common peroneal nerve, tibial nerve
	Meyer-Friebem, 2019 [29]	Human	Femoral, ulnar, median, radial nerves
	Sun, 2018 [30]	Animal	Sciatic nerve
	Yang, 2013 [31]	Animal	Tibial nerve
	Chung, 1984 [32]	Animal	Common peroneal nerve, tibial nerve
	Ristic, 2008 [34]	Human	Radial nerve
	Kupers, 2011 [35]	Human	Various
	Bandeira, 2019 [36]	Human	Accessory spinal nerve
ONS	Lyubashina, 2017 [37]	Animal	Greater occipital nerve
	Storer, 2004 [38]	Animal	Superior sagittal sinus
	Walling, 2017 [39]	Animal	Greater occipital nerve
	Matharu, 2004 [40]	Human	Greater occipital nerve
	Kovacs, 2009 [43]	Human	Greater occipital nerve
VNS	Henry, 1999 [46]	Human	Vagus nerve
	Henry, 2004 [47]	Human	Vagus nerve

EA = electroacupuncture; ONS = occipital nerve stimulation; PNS = peripheral nerve stimulation; TENS = transcutaneous electrical nerve stimulation; VNS = vagal nerve stimulation.
Peripheral Mechanism

Studies have demonstrated that PNS disrupts transmission of nociceptive afferent fibers at a peripheral level. A human study by Torebjork and Hallin demonstrated that repeated electrical stimulation of intact radial nerves and saphenous nerves resulted in excitation failure of A and C fibers [25]. In rat models, experimentally induced neuromas containing an abundance of hyperirritable small myelinated fibers also showed prolonged silent periods after a brief antidromic tetanus was applied to the ganglion of the neuroma containing the sciatic nerve [26]. However, in a human and animal study, Swett found that the analgesic effect of PNS occurred with stimulus intensities above the threshold of perception but below the threshold for pain, arguing against the theory that PNS exerts its effect by disrupting nociceptive afferent nerve conduction [27]. On a molecular level, PNS has been shown to modulate the biochemical of the local microenvironment by downregulating neurotransmitters, endorphins, and local inflammatory mediators [24].

Central Mechanism

In the spinal cord, animal research has demonstrated that the analgesic effects of PNS may involve the serotonergic (5HT2, 5HT3), GABAergic, and glycineric pathways [20,28]. PNS has also been shown to improve endogenous pain inhibition by interfering with the interaction of large nociceptive fibers and central pathways at the spinal dorsal level via increased inhibition of dorsal wide dynamic range neurons [29]. In a bone cancer rat model, PNS has been shown to induce Arc protein expression in the spinal cord dorsal horn, which inhibits AMPAR, a receptor that facilitates neuropathic, inflammatory, and bone cancer pain [30]. Furthermore, PNS decreases central sensitization and hyperalgesia by reducing excessive peripheral nociceptive activity in the spinal cord, inhibiting wide dynamic range neurons in the dorsal horn, and decreasing Aβ fiber–induced activity in the medial lemniscal pathway in the brain [29,31,32]. Repetitive PNS in high-intensity and low-frequency (30 Hz every 10 seconds) pulses inhibits the spinothalamic tract cells as well [33].

PNS most likely exhibits its analgesic effect in a combination of peripheral and central mechanisms. An experiment done by Ristic et al. on 23 volunteers demonstrated late cortical laser-evoked potential amplitude regardless of PNS location. However, N2 latency and laser ratings were increased exclusively with ipsilateral PNS [34]. The divergent and common effects of ipsilateral vs contralateral PNS suggest a combination of peripheral and central antinociceptive mechanisms [34].

Imaging Studies

In positron emission tomography (PET) studies, peripheral nerve stimulation has been demonstrated to increase cerebral blood flow in the contralateral primary somatosensory cortex and other pain-modulating areas including the anterior cingulate and insular cortices, anteroventral insula, and thalamus [35]. These findings further indicate that PNS modulates supraspinal areas beyond the dorsal columns. Other brain imaging studies have used functional near infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) to measure the effect of PNS on nerves such as the accessory spinal nerve [36]. These studies have shown that electrical stimulation to peripheral nerves activates critical cortical areas related to sensory–discriminative and affective–motivational pain dimensions, similar to noninvasive brain stimulation for pain [36].
Cervical VNS has been shown to reduce pain response by modulating peripheral and central nociceptive functions. Peripherally, it inhibits the inflammatory cascades, resulting in reduced TNFα, IL-1β, IL-18, HMGB1 protein, and other cytokines [12,43]. Centrally, imaging studies have demonstrated that chronic VNS decreases thalamic activity [44–46]. VNS has shown promising results in treating migraine, in which it decreases pain-induced activation of neurons in the trigeminal nucleus caudalis, reducing pain symptoms and trigeminal allodynia [47]. It has also shown benefit in other chronic inflammatory diseases including rheumatoid arthritis and Crohn’s disease [12].

Limitations
This is a literature review on the mechanism of peripheral nerve stimulation. Clinical studies were not included in this article. Most of the studies presented were animal studies. Further research on human models is required to investigate this correlation. Different waveforms of peripheral nerve stimulation and their differential mechanisms of action were not discussed.

Conclusions
Peripheral nerve stimulation is an established neuromodulatory approach for treatment of chronic pain. Its origin is based on the gate control theory by Wall and Melzack from 1965. However, further studies have demonstrated PNS’ peripheral and central analgesic mechanisms by modulating the inflammatory pathways, the autonomic nervous system, the endogenous pain inhibition pathways, and involvement of the cortical and subcortical areas. Further understanding of the mechanism of PNS can help guide stimulation approaches and parameters to optimize the use of PNS.

References
1. Slavin KV. History of peripheral nerve stimulation. In: Slavin KV, ed. Peripheral Nerve Stimulation. Basel: Karger; 2011:1–15.
2. Rozand V, Grosprêtre S, Stapley PJ, et al. Assessment of neuromuscular function using percutaneous electrical nerve stimulation. J Vis Exp 2015;(103):52974.
3. Carrico C, Chellette KC 2nd, Westgate PM, Salmon-Powell E, Nichols L, Sawaki L. Randomized trial of peripheral nerve stimulation to enhance modified constraint-induced therapy after stroke. Am J Phys Med Rehabil 2016;95(6):397–406.
4. Milby AH, Halpern CH, Baluch GH. Vagus nerve stimulation for epilepsy and depression. Neurotherapeutics 2008;5(1):75–85.
5. Melzack R, Wall PD. Pain mechanism: A new theory. Science 1965;150(3699):971–9.
6. Wall PD, Sweet WH. Temporary abolition of pain in man. Science 1967;155(3758):108–9.
Mechanism of PNS in Chronic Pain

7. Campbell JN, Taub A. Local analgesia from percutaneous electrical stimulation: A peripheral mechanism. Arch Neurol 1973; 28(5):347–50.

8. Fritz A, Ferreira-Dos-Santos G, Hurdle M, Clendenen S. Ultrasound-guided percutaneous peripheral nerve stimulation for the treatment of complex regional pain syndrome type 1 following a crush injury to the fifth digit: A rare case report. Cureus 2019;11(12):e6506.

9. Gilmore C, Ilfeld B, Rosenow J, et al. Percutaneous peripheral nerve stimulation for the treatment of chronic neuropathic post-amputation pain: A multicenter, randomized, placebo-controlled trial. Reg Anesth Pain Med 2019;44(6):637–45.

10. Plazier M, Vanneste S, Dekelver I, et al. Peripheral nerve stimulation for fibromyalgia. In: Slavin KV, ed. Peripheral Nerve Stimulation. Progress in Neurological Surgery. Basel: Karger 2011;24:133–46.

11. Zhou W, Benharash P. Effects and mechanisms of acupuncture based on the principle of meridians. J Acupunct Meridian Stud 2014;7(4):190–3.

12. Chakravarthy KV, Xing F, Bruno K, et al. A review of spinal and peripheral neuromodulation and neuroinflammation: Lessons learned thus far and future prospects of biotype development. Neuromodulation 2019;22(3):235–43.

13. Goldman N, Chen M, Fujita T, et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 2010;13(7):883–8.

14. Hu ML, Zhou FY, Liu JJ, et al. Electroacupuncture inhibits the activation of p38MAPK in the central descending facilitatory pathway in rats with inflammatory pain. Evid Based Complement Altern Med 2017;2017:7531060.

15. Dong Z, Xie H, Ma F, Li W, Wang Y, Wu G. Effects of electroacupuncture on expression of somatostatin and preprosomatostatin mRNA in dorsal root ganglions and spinal dorsal horn in neuropathic pain rats. Neurosci Lett 2005;385(3):189–94.

16. Coutaux A. Non-pharmacological treatments for pain relief: TENS and acupuncture. Joint Bone Spine 2017;84(6):657–61.

17. Claydon LS, Chesterton LS, Barlas P, Sim J. Dose-specific effects of transcutaneous electrical nerve stimulation (TENS) on experimental pain: A systematic review. Clin J Pain 2011;27(7):635–47.

18. Sluka K, Vance C, Lisi T. High-frequency, but not low-frequency, transcutaneous electrical nerve stimulation reduces aspartate and glutamate release in the spinal cord dorsal horn. J Neurochem 2003;95(6):1794–801.

19. Maeda Y, Lisi T, Vance C, Sluka K. Release of GABA and activation of GABAA in the spinal cord mediates the effects of TENS in rats. Brain Res 2007;1136:43–50.

20. Radhakrishnan R, King E, Dickman J, et al. Spinal 5-HT2 and 5-HT3 receptors mediate low, but not high, frequency TENS-induced antihyperalgesia in rats. Pain 2003;105(1):205–13.

21. Han JS, Chen XH, Sun SL, et al. Effect of low- and high-frequency TENS on Met-enkephalin-Arg-Phe and dynorphin A immunoactivity in human lumbar CSF. Pain 1991;47(3):295–8.

22. Gurgan SG, Sayin O, Cetin F, Tuc Yucel A. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines. Inflammation 2014;37:775–84.

23. Silva JG, Santana CG, Inocêncio KR, Orsini M, Machado S, Bergmann A. Electrocortical analysis of patients with intercostobrachial pain treated with TENS after breast cancer surgery. J Phys Ther Sci 2014;26(3):349–53.

24. Deer TR, Jain S, Hunter C, et al. Neurostimulation for intractable chronic pain. Brain Sci 2019;9(2).

25. Torebjörk HE, Hallin RG. Responses in human A and C fibres to repeated electrical intradermal stimulation. J Neurol Neurosurg Psychiatry 1974;37(6):653–64.

26. Wall PD, Gutnick M. Properties of afferent nerve impulses originating from a neuroma. Nature 1974;248(5451):740–3.

27. Swett JE, Law JD. Algesia with peripheral nerve stimulation: Absence of a peripheral mechanism. Pain 1983;15(1–4):55–70.

28. Jeong Y, Baik E, Nam T, Paik K. Effects of iontophoretically applied naloxone, picrotoxin and strychnine on dorsal horn neuron activities treated with high frequency conditioning stimulation in cats. Jpn J Med 1995;36(4):336–47.

29. Meyer-Friebel CH, Wiegand T, Eistert L, et al. Effects of spinal cord and peripheral nerve stimulation reflected in sensory profiles and endogenous pain modulation. Clin J Pain 2019;35(2):111–20.

30. Sun KF, Feng WW, Liu YP, et al. Electrical peripheral nerve stimulation relieves bone cancer pain by inducing Arc protein expression in the spinal cord dorsal horn. J Pain Res 2018;11:599–609.

31. Yang F, Zhang T, Tiwari V, et al. Effects of combined electrical stimulation of the dorsal column and dorsal roots on wide-dynamic-range neuronal activity in nerve-injured rats. Neuromodulation 2015;18(7):592–8.

32. Yang F, Xu Q, Cheong Y, et al. Comparison of intensity-dependent inhibition of spinal wide-dynamic range neurons by dorsal column and peripheral nerve stimulation in a rat model of neuropathic pain. Eur J Pain 2014;18(7):978–88.

33. Chung J, Fang Z, Hori Y, Lee K, Willis W. Prolonged inhibition of primate spinothalamic tract cells by peripheral nerve stimulation. Pain 1984;19(3):259–75.

34. Ristic D, Spangenberg P, Ellrich J. Algesic and antinociceptive effects of peripheral nerve neurostimulation in an advanced human experimental model. Eur J Pain 2008;12(4):480–90.

35. Kupers R, Laerel K, Calenbergh F, et al. Multimodal therapeutic assessment of peripheral nerve stimulation in neuropathic pain: Five case reports with a 20-year follow-up. Eur J Pain 2011;15(2):161.e1–9.

36. Bandeira J, Antunes L, Soldatelli M, Sato J, Fregni F, Caumo W. Functional spectroscopy mapping of pain processing cortical areas during non-painful peripheral electrical stimulation of the accessory spinal nerve. Front Hum Neurosci 2019;13:200.

37. Lyubashina OA, Panteleev SS, Sokolov A. Inhibitory effect of high-frequency greater occipital nerve electrical stimulation on trigeminovascular nociceptive processing in rats. J Neural Transm 2017;124(2):171–83.

38. Walling I, Smith H, Gee L, et al. Occipital nerve stimulation attenuates neuronal firing response to mechanical stimuli in the ventral postero medial thalamus of a rodent model of chronic migraine. Neurosurgery 2017;81(4):696–701.

39. Matharu M. Central neuromodulation in chronic migraine patients with suboccipital stimulators: A PET study. Brain 2004;127(1):220–30.

40. Magis D, Schoenen J. Neurostimulation in chronic cluster headache. Curr Pain Headache Rep 2008;12(2):145–53.

41. Magis D, Gerardy P, Remacle J, Schoenen J. Sustained effectiveness of occipital nerve stimulation in drug-resistant chronic cluster headache. Headache 2011;51(8):1191–201.

42. Kovacs S, Peeters R, De Ridder D, Plazier M, Menovsky T, Sunaert S. Central effects of occipital nerve electrical stimulation studied by functional magnetic resonance imaging. Neuromodulation 2011;14(1):46–57.

43. Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res 2018;11:203–13.

44. Bari A, Pouratian N. Brain imaging correlates of peripheral nerve stimulation. Surg Neurol Int 2012;3(5):5260–8.
45. Henry T, Votaw J, Pennell P, et al. Acute blood flow changes and efficacy of vagus nerve stimulation in partial epilepsy. Neurology 1999;52(6):1166–73.

46. Henry T, Bakay R, Pennell P, Epstein C, Votaw J. Brain blood-flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: II. Prolonged effects at high and low levels of stimulation. Epilepsia 2004;45(9):1064–1070.

47. Lendvai IS, Maier A, Scheele D, et al. Spotlight on cervical vagus nerve stimulation for the treatment of primary headache disorders: A review. J Pain Res 2018;11:1613–25.