Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Boareto, Marcelo, Mohit Kumar Jolly, Aaron Goldman, Mika Pietilä, Sendurai A. Mani, Shiladitya Sengupta, Eshel Ben-Jacob, Herbert Levine, and Jose’ N. Onuchic. 2016. “Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype.” Journal of the Royal Society Interface 13 (118): 20151106. doi:10.1098/rsif.2015.1106. http://dx.doi.org/10.1098/rsif.2015.1106.
Published Version	doi:10.1098/rsif.2015.1106
Accessed	September 22, 2017 1:57:39 AM EDT
Citable Link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:27662180
Terms of Use	This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

(Article begins on next page)
Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype

Marcelo Boareto1,7,‡, Mohit Kumar Jolly1,2, Aaron Goldman9,10,11, Mika Pietilä8,5, Sendurai A. Mani8,13, Shiladitya Sengupta9,10,11,12, Eshel Ben-Jacob1,6,†, Herbert Levine1,2,4,5 and Jose’ N. Onuchic1,3,4,5

1Center for Theoretical Biological Physics, 2Department of Bioengineering, 3Department of Physics and Astronomy, and 4Department of Biosciences, Rice University, Houston, TX 77005-1827, USA
5School of Physics and Astronomy and The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
6Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
7Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
8Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
9Dana Farber Cancer Institute, Boston, MA 02115, USA
10Metastasis Research Center, MD Anderson Cancer Center, Houston, TX 77025, USA

Metastasis can involve repeated cycles of epithelial-to-mesenchymal transition (EMT) and its reverse mesenchymal-to-epithelial transition. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that allows the migration of adhering cells to form a cluster of circulating tumour cells. These clusters can be apoptosis-resistant and possess an increased metastatic propensity as compared to the cells that undergo a complete EMT (mesenchymal cells). Hence, identifying the key players that can regulate the formation and maintenance of such clusters may inform anti-metastasis strategies. Here, we devise a mechanism-based theoretical model that links cell–cell communication via Notch-Delta-Jagged signalling with the regulation of EMT. We demonstrate that while both Notch-Delta and Notch-Jagged signalling can induce EMT in a population of cells, only Jagged-dominated Notch signalling, but not Delta-dominated signalling, can lead to the formation of clusters containing hybrid E/M cells. Our results offer possible mechanistic insights into the role of Jagged in tumour progression, and offer a framework to investigate the effects of other microenvironmental signals during metastasis.

1. Introduction
Metastasis, the cause of 90% of cancer-related deaths [1], often begins when primary tumour cells undergo an epithelial-to-mesenchymal transition (EMT), i.e. they lose adhesion with their neighbours partially or completely and gain migratory and invasive traits, eventually entering the bloodstream as circulating tumour cells (CTCs) [2,3]. CTCs can either stay together as a cluster or migrate individually, depending on whether they have undergone a partial EMT (i.e. have residual cell–cell adhesion that enables collective cell migration as a cluster) or a complete EMT [4,5]. Upon reaching a distant organ, these CTCs exit the bloodstream and undergo a mesenchymal-to-epithelial transition (MET) that is
Notch signalling is activated by the interaction of the transmembrane Notch receptor with the transmembrane ligand (Delta or Jagged) of a neighbouring cell. This trans-interaction cleaves Notch and causes the release of Notch intracellular domain (NICD) into the cytoplasm. NICD then enters the nucleus where it modulates the transcription of many target genes—it activates Notch, Jagged and Snail, and inhibits Delta. Glycosylation of Notch receptor by Fringe increases the affinity of Notch to bind to Delta and reduces that to Jagged. The EMT regulatory circuit consists of two mutual-inhibitory feedback circuits, each between an EMT-inhibiting micro-RNA (miR) and an EMT-inducing transcription factor (TF): miR-34/SNAIL and miR-200/ZEB. Both the microRNAs translationally inhibit proteins of the Notch pathway—miR-200 inhibits Jagged, and miR-34 inhibits both Notch and Delta. EMT-inducing signals (miR) such as Wnt and TGFβ can induce EMT by activating Snail. (b) Notch-Delta signalling creates an intercellular toggle switch leading neighbouring cells to adopt alternate fates—Sender cell (low Notch (receptor), high Delta (ligand)) and Receiver cell (high Notch (receptor), low Delta (ligand)), giving rise to a checkerboard-like pattern (lateral inhibition). (c) Notch-Jagged signalling creates an intercellular double positive feedback loop leading neighbouring cells to adopt similar fates (high Notch (receptor), high Jagged (ligand)), thereby propagating or inducing the same fate across the tissue (lateral induction).

Figure 1
Overview of the intracellular interplay between Notch signalling pathway and EMT circuit and Notch signalling tissue patterning outcomes. (a) Notch signalling is activated by the interaction of the transmembrane Notch receptor with the transmembrane ligand (Delta or Jagged) of a neighbouring cell. This trans-interaction cleaves Notch and causes the release of Notch intracellular domain (NICD) into the cytoplasm. NICD then enters the nucleus where it modulates the transcription of many target genes—it activates Notch, Jagged and Snail, and inhibits Delta. Glycosylation of Notch receptor by Fringe increases the affinity of Notch to bind to Delta and reduces that to Jagged. The EMT regulatory circuit consists of two mutual-inhibitory feedback circuits, each between an EMT-inhibiting micro-RNA (miR) and an EMT-inducing transcription factor (TF): miR-34/SNAIL and miR-200/ZEB. Both the microRNAs translationally inhibit proteins of the Notch pathway—miR-200 inhibits Jagged, and miR-34 inhibits both Notch and Delta. EMT-inducing signals (miR) such as Wnt and TGFβ can induce EMT by activating Snail. (b) Notch-Delta signalling creates an intercellular toggle switch leading neighbouring cells to adopt alternate fates—Sender cell (low Notch (receptor), high Delta (ligand)) and Receiver cell (high Notch (receptor), low Delta (ligand)), giving rise to a checkerboard-like pattern (lateral inhibition). (c) Notch-Jagged signalling creates an intercellular double positive feedback loop leading neighbouring cells to adopt similar fates (high Notch (receptor), high Jagged (ligand)), thereby propagating or inducing the same fate across the tissue (lateral induction).

Crucial for establishing a fully grown metastatic tumor. Such cycles of EMT and MET are a hallmark of metastatic colonization [2].

Within individual cells, the decision as to whether cells remain epithelial, undergo partial EMT or complete EMT is mediated by various signalling pathways [6,7]. These pathways tend to converge on a core EMT regulatory network consisting of two mutually inhibitory feedback loops—one between the microRNA family miR-34 and transcription factor family SNAIL; and the other between the microRNA family miR-200 and transcription factor family ZEB (figure 1a). Epithelial cells have high levels of miR-34 and miR-200, and low levels of ZEB and SNAIL; mesenchymal cells have low levels of miR-34 and miR-200, and high levels of ZEB and SNAIL [8–10]. These feedback loops are interconnected—SNAIL inhibits miR-200 [8] and activates ZEB [11], while ZEB inhibits miR-34 [12]. It has been proposed that the miR-34/SNAIL loop acts as a monostable noise-buffering integrator to prevent aberrant activation of EMT, whereas the miR-200/ZEB loop acts as a bistable decision-making switch that enables three phenotypes—epithelial (no EMT; high miR-200, low ZEB), mesenchymal (complete EMT: low miR-200, high ZEB) and hybrid epithelial/mesenchymal (E/M) (partial EMT: medium miR-200, medium ZEB) [13].

Importantly, the regulation of EMT/MET is influenced by many non-cell-autonomous factors such as extracellular matrix density and stiffness, stromal factors and cell-cell communication [14–16]. Among those various pathways, Notch signalling serves as a key regulator and mediates cell-cell communication both between cancer cells themselves, and between the tumour and stroma [15,17]. The Notch pathway gets activated when the receptor of one cell—Notch—interacts with the ligand of another cell—Delta or Jagged, leading to the cleavage of Notch and consequent releases of Notch intracellular domain (NICD). NICD then enters the nucleus and regulates the expression of many Notch target genes [18], including Delta and Jagged; it represses Delta [19] but activates Jagged [20]. Consequently, Notch-Delta (N-D) signalling gives rise to a double negative feedback loop between the two cells and drives them to adopt different fates—one cell becomes a Sender (high ligand (Delta), low receptor (Notch)) and the other a Receiver (low ligand (Delta), high receptor (Notch)). Conversely, Notch-Jagged (N-J) signalling forms a double positive feedback loop between the two cells and drives them to adopt a similar fate—hybrid Sender/Receiver (high ligand (Jagged), high receptor (Notch)) that allows neighbouring cells to both send and receive signals [21,22].

The Notch and EMT circuits are highly interconnected—NICD activates SNAIL [23,24], miR-200 inhibits Jagged [25] and miR-34 inhibits both Notch and Delta [26,27], thereby indicating how the regulation of EMT/MET can be highly dependent on cell-cell communication via Notch signalling. However, most experimental and theoretical studies for EMT have focused only on cell-autonomous decisions [8–10,13,28–33]; therefore, how cell-cell communication might affect EMT/MET regulation and consequently the spatial organization of E, E/M and M cells remain elusive.

Here, we devise a theoretical framework that couples Notch-Delta-Jagged (N-D-J) signalling with the EMT/MET regulation. We show that the epithelial cells usually behave as Senders (S) or Receivers (R) only, but not as hybrid Sender/Receiver (S/R). Activation of Notch signalling by either ligand—Delta or Jagged—can induce a cell to undergo a partial or complete EMT and these cells in a partial EMT (i.e. hybrid E/M cells) or a complete EMT (i.e. mesenchymal cells) usually behave as hybrid S/R, i.e. they can both send as well as receive signals via Notch signalling. Finally, our simulations demonstrate that Jagged-dominated signalling but not Delta-dominated signalling can induce as well as maintain a cluster of cells in the hybrid E/M phenotype, hence pointing out the possible role of Jagged in formation and maintenance of CTC clusters.
2. Results

2.1. Epithelial-to-mesenchymal transition-inducing signals can activate Notch signalling

As a first step towards elucidating the interplay between Notch signalling and the core EMT circuit, we evaluate how EMT-inducing signals such as Wnt and TGFβ affect the levels of the ligands Jagged and Delta. We initially simulated the case of an individual cell that is exposed to an EMT-inducing signal (I_{ext}); this cell is being treated in isolation, i.e. no coupling to Notch ligands from the neighbouring cells. High levels of I_{ext} decrease the EMT-inhibiting microRNAs miR-34 and miR-200 (electronic supplementary material, figure S1) and consequently induce a partial or complete EMT (hybrid E/M or M phenotype, respectively). Decreased levels of microRNAs relieve the repression on Delta and Jagged, respectively, on neighbouring cells. An increase in I_{ext} can enhance the levels of NICD and lead to a partial EMT and eventually a complete EMT by increasing SNAIL (figure 2a,b). Thus, induction of EMT in a given cell increases the levels of Notch ligands that can activate Notch signalling in the adjacent cells.

Next, we simulated a bidimensional layer of 2500 (=50 × 50) cells that interact among each other via Notch-Delta-Jagged signalling, and measured the levels of active Notch signalling (NICD) for different values of I_{ext}. Our simulations show that increased levels of the driving signal I_{ext} lead to increased levels in average of Notch signal (NICD) (figure 2c). To validate this prediction experimentally, we treated human breast epithelial MCF10A cells with TGFβ1, a well-known EMT inducer. The treated cells expressed higher levels of NICD as compared to the control (figure 2d), indicating that inducing EMT can activate Notch signalling in a population of cells.

2.2. Notch-Delta and Notch-Jagged signalling induces epithelial-to-mesenchymal transition

Next, to discern how activating Notch signalling affects the core EMT circuit in a single cell, we evaluate the dynamics of the coupled circuit as a function of fixed levels of external ligands—D_{ext} and I_{ext}—representing the concentration of Delta and Jagged, respectively, on neighbouring cells. An increase in I_{ext} can enhance the levels of NICD and lead to a partial EMT and eventually a complete EMT by increasing SNAIL (figure 3a). Interestingly, for low levels of I_{ext}, cells in the epithelial phenotype (E) can attain one of the two equilibrium states—(i) (high Delta, low Notch) and (ii) (low Delta, high Notch), i.e. the cell can act either as a Sender (S) or as a Receiver (R) of Notch signalling (figure 3a,b). However, when the cell undergoes a partial or complete EMT, it has (high Notch, high Jagged) and can act both as a Sender as well as Receiver of the Notch signalling, i.e. it adopts a hybrid Sender/Receiver (S/R) phenotype (electronic supplementary material, figure S2a,b). Because cells in the hybrid S/R state can induce the same fate as theirs in their neighbouring cells through lateral induction [21,34], we hypothesize that Notch-Jagged, but not Notch-Delta signalling is likely to form clusters of partial EMT (hybrid E/M) cells or complete EMT (M) cells.

Figure 2. Activation of Notch pathway via EMT inducer signal (I_{ext}). Bifurcation curves of the levels of (a) Delta and (b) Jagged as a function of EMT inducer levels (I_{ext}), for a one-cell system in the absence of external ligands (D_{ext} = I_{ext} = 0, I_{ext} = 5000). Increasing I_{ext} induces a partial or complete EMT and concomitant increase in levels of Jagged and Delta. The EMT phenotypes are defined based on the levels of miR200, miR34, Snail and Zeb, presented in electronic supplementary material, figure S1. (c) Relative average levels of NICD (I) for a simulated two-dimensional layer of 50 × 50 cells for different levels of I_{ext}. The cells were simulated in a hexagonal lattice, starting from random initial conditions and the levels of NICD were measured after 120 h. The values of all parameters are presented in electronic supplementary material, table S1. (d) Immunofluorescence images of NICD (green) and cell nuclei (blue) for MCF10A cells treated with 5 ng ml⁻¹ TGF-β1 for 6 days.
2.3. Jagged-dominated Notch signalling can give rise to clusters of hybrid epithelial/mesenchymal cells

To better characterize the different possible roles of inducing EMT via Notch-Delta versus Notch-Jagged signalling, we evaluate the dynamics of the Notch-EMT coupled circuit at the tissue level by simulating a two-dimensional layer of epithelial cells interacting via Notch signalling. The initial configuration of each cell was chosen randomly and the same initial condition was used for all simulations (electronic supplementary material, figure S3). These simulations were done at many different levels of production rates for Delta and Jagged in order to mimic situations of Delta-dominated and Jagged-dominated signalling prevalent in the population. At low production levels of both Delta and Jagged, all cells retain their epithelial phenotype after 120 h (figure 4a,b). Increasing the production levels of either of the ligands activates Notch signalling and consequently increases the number of cells that undergo a partial or complete EMT, i.e. number of cells in the E/M and M phenotypes (figure 4a,b). On investigating the spatial distribution of the E, E/M and M phenotypes in the two-dimensional layer, we observe that when Notch-Jagged signalling dominates, most cells in the hybrid E/M or M phenotype tend to form clusters among themselves; but when Notch-Delta signalling dominates, such cells are spatially segregated and few, if any, clusters are observed (figure 4c,d). These results suggest that the cells that undergo partial or complete EMT tend to aggregate forming clusters when Jagged-driven Notch signalling dominates over the Delta-driven one. However, in the absence of any external EMT inducer, those clusters are transient and the cells tend to lose their E/M or M phenotype and eventually become epithelial (electronic supplementary material, figure S4). As we show in the following sections, an external signal that either induces EMT or activates Notch signalling can stabilize these clusters of cells.
We further evaluate the stability of these clusters (presented in figure 4d) in the presence of two types of external signal: (i) an external EMT inducer (I_{ext}) that activates Snail and (ii) soluble ligands (Delta and Jagged) that bind to the Notch receptor and activate Notch signalling. Applying I_{ext} increases the number of cells undergoing a partial and complete EMT, irrespective of whether the intercellular signalling is dominated by Delta or Jagged (figure 5a; electronic supplementary material, S5A). Consistently, Jagged-dominated signalling predominantly leads to the clusters of non-epithelial cells; while Delta-dominated signalling results in ‘salt-and-pepper’ patterns of epithelial and mesenchymal cells (figure 5b; electronic supplementary material, S5B).

Notch signalling can also be activated in a paracrine way, i.e. via soluble ligands secreted by other cells [35]. Hence, we further evaluate the effect of paracrine activation of Notch on EMT induction and spatial patterns observed in the layer of cells. Higher levels of soluble Jagged leads to an increase in the population of hybrid E/M cells, but not mesenchymal cells (figure 5c), unlike the case when EMT is induced via activation of SNAIL by I_{ext} (figure 5b). Consequently, the clusters observed are mostly composed of hybrid E/M cells (figure 5d). Similar behaviour is observed in the presence of soluble Delta (electronic supplementary material, figure S6); again, clusters are more prominently observed in Jagged-dominated signalling (electronic supplementary material, figures S5C,D and S6).

Notch-Delta signalling and Notch-Jagged signalling canonically have different signalling feedbacks thereby leading to different patterns—lateral inhibition and lateral induction, respectively. However, we found that both soluble Delta and Jagged similarly affect the formation of cell clusters. These differences can be attributed to the different dynamics of juxtacrine versus paracrine signalling between Notch and its ligands. When the soluble ligands (both Delta and Jagged) bind to Notch receptor in a distant cell, they cause the release of NICD, and consequently activate SNAIL, Jagged and Notch, but repress Delta in that ‘target’ cell. Therefore, the ‘target’ cells—irrespective of whether they have been activated by soluble Jagged or soluble Delta—are likely to have (high Notch, high Jagged, low Delta) levels, a signature commensurate with the cells in a hybrid E/M phenotype. Consequently, ‘target’ cells of soluble ligands participate predominantly in Notch-Jagged signalling.

Overall, Jagged-dominated Notch signalling enables cluster formation of hybrid E/M cells, an effect that is mitigated by Fringe, a glycosyltransferase that increases the binding affinity of Notch for Delta, but decreases that for Jagged (electronic supplementary material, figure S7).

Next, we investigated how Delta-dominated and Jagged-dominated signalling affect the spatial patterning when most cells are in a partial or complete EMT phenotype to begin with. In the case of Delta-dominated signalling, many cells undergo MET to adopt an epithelial phenotype, and the epithelial and non-epithelial cells arrange largely into a ‘salt-and-pepper’ pattern (electronic supplementary material, figure S8). By contrast, for Jagged-dominated signalling, MET rarely happens; rather the initial random distribution patterns
of E/M and M self-organize to form clusters of E/M cells (figure 6a; electronic supplementary material, S9). These clusters can then be stabilized by Notch-Jagged signalling via lateral induction; therefore, Notch-Jagged signalling can not only induce but also maintain the cluster of hybrid E/M cells; or Notch-Jagged signalling can potentially act as a ‘phenotypic stability factor’ [36] for the hybrid E/M phenotype.

2.4. Implications of Jagged-dominated Notch signalling as a ‘phenotypic stability factor’

Previously, we demonstrated that ‘phenotypic stability factors’ maintain the ‘metastable’ hybrid E/M phenotype [33] which can also associate to higher tumour-initiating ability (also known as stemness) [37,38]. Cells co-expressing CD24 (epithelial marker) and CD44 (mesenchymal marker), CD24hi CD44hi, have been shown to correspond to a hybrid E/M phenotype [39] and possess higher tumour-initiation potential in vitro [39] and in vivo [40]. Here, we investigated the levels of Notch signalling in two distinct cell lines with different phenotypic basal states. Primarily, we determined that the mesenchymal-like breast cancer cell line, MDA-MB-231, which display a predominant CD44hiCD24lo phenotype, differentially express higher NICD levels in the E/M phenotype than the M phenotype (figure 7a). To support these evidences, we analysed the epithelial-like MDA-MB-468 cells, which are predominantly CD44loCD24hi, and determined that Jagged expression was clustered, confirming the association between these phenotypic states, as analysed by confocal microscopy (electronic supplementary material, figure S10).

The E/M, tumour-initiating phenotype has also been shown to be associated with drug resistance [41]. To test the role for Jagged-dominated Notch signalling in drug resistance, experimentally, we used an in vitro model in which cancer cells have an induced drug-tolerant hybrid E/M phenotype that displays high tumour-initiating capability [40]. As shown in figure 7b schematic, MDA-MB-231 cells were exposed to a high dose of docetaxel—a cytotoxic chemotherapy used in the first-line treatment of triple negative breast cancer (TNBC)—followed by substrate reattachment and acute population outgrowth, which results in a population of drug-tolerant cells (DTCs) [40] (figure 7b).

Consistent with earlier reports [40], we confirmed that DTCs have higher expression of CD24 (epithelial marker) and CD44 (mesenchymal marker) as compared to the parent population, indicating a shift towards the hybrid E/M phenotype, as determined by confocal microscopy (figure 7c). Interestingly, we observed that DTCs expressed higher NICD and Jagged, but less Delta, as compared to the parent population (figure 7c,d). These data support the hypothesis that Jagged-dominated Notch signalling may be crucial to maintain the hybrid E/M phenotype and also associates cells with a higher likelihood of gaining stemness, as defined by the traits of heightened drug resistance as well as tumour initiation.

3. Discussion

Notch signalling is an evolutionarily conserved cell–cell communication pathway that is involved in multiple hallmarks of
cancer. Recent studies have highlighted that the two ligand families—Delta and Jagged—can play different and sometimes opposing roles in mediating cell-fate determination via Notch signalling [42]. Ours, to the best of our knowledge, is the first study that elucidates the different roles of the ligands Delta and Jagged in epithelial plasticity (EMT/MET), a hallmark of cancer metastasis.

Our results suggest that Notch signalling can induce EMT via both Delta and Jagged, but inducing EMT through Jagged can specifically enable the formation of clusters of cells in a hybrid E/M phenotype. The formation of these clusters is enhanced and their stability is prolonged by EMT-inducing signals and/or soluble ligands of Notch signalling pathway. Notch-Jagged signalling is usually involved in lateral induction [20,34,43,44], i.e. inducing the neighbour to adopt the same cell fate as that of its own. Thus, a cluster of cells with Jagged-dominated Notch signalling can mutually stabilize their cell fate. Such a mutual stabilization among the cells in a ‘metastable’ partial EMT or hybrid E/M phenotype can lead to formation of clusters of CTCs and is hence of critical clinical relevance.
The CTCs displaying a hybrid E/M phenotype have been found in the bloodstream of lung, breast and prostate cancer patients [5,45–47], and they can lead to clusters of CTCs due to their ability to undergo collective migration. Such clusters are apoptosis-resistant, can exit the bloodstream relatively easily, can be up to 50 times more metastatic than individually migrating CTCs (in mesenchymal phenotype), and, therefore, pose a much higher metastatic risk in patients [5,48,49]. With an increasing appreciation of the notion that EMT is not an ‘all-or-none’ response and that cancer cells in vivo rarely undergo complete EMT [7,50,51], cancer cells might well prefer to stay in a hybrid E/M phenotype owing to the above-mentioned advantages. Therefore, maintaining the cells in a hybrid E/M phenotype, otherwise considered to be ‘metastable’ [52], can offer many key survival advantages to a cluster of CTCs. We predict that these advantages can be potentially mitigated by therapeutic targeting of Jagged1.

Therapeutic targeting of Jagged1 is not only expected to possibly ‘break’ these clusters to solitarily migrating CTCs, but also subdue their tumour-initiating potential. Recent studies show that the cells in a hybrid E/M phenotype (identified by CD24+/CD44–) can form much more tumours than those in a purely mesenchymal phenotype (identified by CD24–/CD44+), especially when the hybrid E/M phenotype is stabilized, for instance, by ‘phenotypic stability factor’ [36] such as OVOL [33,37–40]. Our experimental data showing that the drug-tolerant population of MDA-MB-231 is CD24+/CD44+ and has elevated levels of Jagged1 and Notch suggest that Notch-Jagged signalling also acts as an intercellular ‘phenotypic stability factor’ for the hybrid E/M phenotype; and is resonant with the emerging notion that carcinoma cancer stem cells (CSCs) lie mid-way on the ‘EMT axis’ [7,37,53–55], and that Notch-Jagged signalling is often implicated in maintaining CSC population and chemoresistance [15,35].

Furthermore, targeting Jagged1 can also mollify the effects of many tumour-promoting inflammatory cytokines that increase Notch-Jagged signalling by activating Jagged and/or inhibiting Delta [42,56,57]. Hence, Jagged1 can be a critical therapeutic target to halt aggressive tumour progression [58], and targeting Jagged1 specifically, as recently attempted [59], can mitigate the side effects of targeting the entire Notch pathway by inhibiting NICD [60]. However, Notch-Jagged (N-J) signalling is not specific to pathological situations such as cancer metastasis. For instance, N-J signalling can be crucial in spatial patterning during the development of inner ear [34], pancreas [61] and epidermal stem cell clusters [62]. Thus, the results presented here might also be applicable to elucidate the role of Jagged during epithelial organization and homeostasis in multiple biological contexts.

We note that the major goal of this work is the formulation of a new theoretical framework that allows us to consider the role of Notch signalling in spatially coordinating the EMT response. We have used limited experimental data to qualitatively validate some of our underlying assumptions related to the different roles of Delta and Jagged and to the ability of NICD to drive EMT. Future experimental work will provide more quantitative tests of our emerging picture, in particular with regard to the predicted spatial correlation. Also, a causal role of Notch-Jagged signalling in mediating tumour-initiation potential and/or drug resistance of the CD24+ CD44+ hybrid E/M cells remains to be directly tested.

To conclude, we show that Notch-Jagged signalling can induce and maintain a cluster of cells in a partial EMT phenotype, thereby suggesting the potential role of Jagged1 in stabilizing the clusters of CTCs, the primary ‘bad agents’ of metastasis [5,7]. To the best of our knowledge, ours is the first theoretical study elucidating how the intracellular regulation of EMT is affected by any form of intercellular communication. Our theoretical framework proposes a critical therapeutic target and can be further used to investigate the effect of external factors such as inflammation on the formation of such clusters [4], as well as to predict likely spatial positions of different types of CSCs in the tumour mass [63].

Finally, our cell–cell communication framework can be integrated with the population-level mathematical models of CSCs [64–67] to elucidate the collective or cooperative behaviour in cancer cell colonies [68,69].

4. Material and methods

4.1. Theoretical framework

The equations for the mathematical model are presented in electronic supplementary material, section S1. The values of the parameters used for the model are given in electronic supplementary material, section S2. The computational analysis was performed in Python and the source codes are freely available on Github (https://github.com/mboareto/Notch-EMT). Bifurcations for the one-cell system were evaluated using PyDSTool [70].

4.2. Cell culture

MCF10A cells were maintained in DMEM/F12 media (Sigma-Aldrich) supplemented with 5% horse serum, 20 ng ml−1 epithelial growth factor, 0.5 mg ml−1 hydrocortisone, 100 ng ml−1 cholera toxin, 10 μg ml−1 insulin and penicillin/streptomycin (1%). To induce EMT, they were treated with vehicle or 5 ng ml−1 of TGF-β1 (R&D systems) for 6 days. MDA-MB-231 and MDA-MB-468 cells (ATCC) were cultured in DMEM containing 10% fetal bovine serum at 37°C and 5% CO2. During treatments with chemotherapeutics, cells were grown to semi-confluence and treated with indicated concentrations of chemotherapy in serum-containing medium for indicated time points. For generation of DTCs, cells were treated for 48 h with docetaxel (100 nM). Following washes with phosphate-buffered saline (PBS), adherent cells were trypsinized and re-plated at a density of 1.5–2 × 105 cells ml−1 and cultured in serum-containing medium onto glass slides (BD, San Jose, CA, USA). After 24 h incubation, floating cells were removed and remaining cells were washed with 1× PBS and considered as chemotherapy-tolerant cells. Populations of drug naive parent cells were always cultured alongside DTC and fresh media was added at every interval that the experimental population (DTC) received fresh media.

Unless noted otherwise, all reagents and chemotherapies were of the highest grade purchased from Sigma-Aldrich (St Louis, MO, USA). All chemotherapeutics were dissolved in dimethylsulfoxide to a stock concentration of 10 mM and kept frozen before fresh preparation into working concentration in DMEM.

4.3. Confocal microscopy and immunofluorescence

Parent cells or DTCs were generated as described above and plated in four chamber glass slides (BD Biosciences, San Jose, CA, USA) at a concentration of 10 000 cells ml−1. Following treatments, cells were washed in PBS and fixed in 4% paraformaldehyde for 30 min. Permeabilization, when necessary, was
achieved with 10% (v/v) goat serum (Vector Laboratories, Burlingame, CA, USA) and 0.05% Saponin (w/v) in PBS for 90 min. Blocking was performed in 10% (v/v) goat serum in PBS. The cells were labelled with the indicated fluorescently conjugated primary antibodies CD44 (Clone IM7 from eBioscience) at 1: 500, CD24 (clone ML5 from eBioscience) at 1: 100, Jagged-1 (cat# 200-401-698S from Rockland, Limerick, PA, USA), Delta at 1:100 (clone H-265 from Santa Cruz Biotech, Dallas, TX, USA), cleaved notch 1 (NICD, Cell Signaling Technology) was diluted 1: 1000 in 4% BSA in PBS and incubated 1 h at RT. Nuclei were counterstained with 4′,6-diamidino-2-phenylindole (DAPI; Molecular Probes). The coverslips were mounted onto glass slides with DAKO fluorescent mounting medium (DAKO).

4.4. Statistics
Statistical analysis was performed using Prism software (GraphPad, La Jolla, CA, USA) determined by ANOVA followed by a Newman–Keuls post hoc test when values were represented between multiple groups and Student’s t-test used to identify statistical significance between individual groups. The data are expressed as a mean ± s.e.m.

Acknowledgement.
We have benefited from useful discussions with Mary C. Farach-Carson, Donald S. Coffey and Kenneth J. Pienta.

References
1. Gupta GP, Massagué J. 2006 Cancer metastasis: building a framework. Cell 127, 679 – 695. (doi:10.1016/j.cell.2006.11.001)
2. Tsai JH, Yang J. 2013 Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 27, 2192 – 2206. (doi:10.1101/gad.225334.113)
3. Yang J et al. 2004 Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927 – 939. (doi:10.1016/j.cell.2004.06.006)
4. Yu M et al. 2013 Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580 – 584. (doi:10.1126/science.1228522)
5. Aceto N et al. 2014 Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110 – 1122. (doi:10.1016/j.cell.2014.07.013)
6. De Craene B, Berx G. 2013 Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97 – 110. (doi:10.1038/nrc3447)
7. Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, Onuchic JN, Levine H. 2015 Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front. Oncol. 5, 155. (doi:10.3389/fonc.2015.00155)
8. Burk U, Schubert J, Wellner U, Schmalhofer O, Vican E, Spaderna S, Brablett B. 2008 A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582 – 589. (doi:10.1038/embor.2008.74)
9. Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, Götz U, Hermeking H. 2011 miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10, 4256 – 4271. (doi:10.4161/cc.10.24.18552)
10. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ. 2008 A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68, 7846 – 7854. (doi:10.1158/0008-5472.CAN-08-1942)
11. Guaita S et al. 2002 Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J. Biol. Chem. 277, 39 209 – 39 216. (doi:10.1074/jbc.M206400200)
12. Ahn Y-H et al. 2012 ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression. J. Clin. Invest. 122, 3170 – 3183. (doi:10.1172/JCI63608)
13. Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E. 2013 MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc. Natl. Acad. Sci. USA 110, 18 174 – 18 179. (doi:10.1073/pnas.1318921110)
14. Kumar S, Das A, Sen S. 2014 Extracellular matrix density promotes EMT by weakening cell-cell adhesions. Mol. Biol. 10, 838 – 850. (doi:10.1038/cmb.2014.79)
15. Espinoza I, Miele L. 2013 Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells. Cancer Lett. 341, 41 – 45. (doi:10.1016/j.canlet.2013.08.027)
16. Wei SC et al. 2015 Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17, 678 – 688. (doi:10.1038/nclb3157)
26. de Antonellis P et al.
27. Bu P
29. Steinway SN, Gomez Tejeda Zahuilo J, Ding W, Rountree CB, Feith DJ, Loughran TP, Albert A. 2014 Network modeling of TGFβ-induced epithelial to mesenchymal transition reveals joint Sonic hedgehog and Wnt pathway activation. Cancer Res. 74, 5963 – 5977. (doi:10.1158/0008-5472.CAN-14-0225)
30. Park S-MM, Gaur AB, Lengyel E, Peter ME. 2008 The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894 – 907. (doi:10.1101/gad.1640608)
31. Schiekelmann MJ et al. 2015 Molecular portraits of epithelial, mesenchymal and hybrid states in lung adenocarcinoma and their relevance to survival. Cancer Res. 75, 1789 – 1800. (doi:10.1158/0008-5472.CAN-14-2355)
32. Huang R-Y et al. 2013 An EMT spectrum defines an anoxi-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis. 4, e915. (doi:10.1038/cddis.2013.442)
33. Jia D, Jolly MK, Boareto M, Parsana P, Mooney SM, Pienta KJ, Levine H, Ben-Jacob E. 2015 OVL regulates the epithelial-hybrid-mesenchymal transition. Oncotarget 6, 15 436 – 15 448. (doi:10.18632/oncotarget.3623)
34. Petrovic J, Formosa-Jordan P, Luna-Escalante JC, Abello G, Ibañez M, Neves J, Giraldez F. 2014 Ligand-dependent Notch signalling stages orchestrate lateral induction and lateral inhibition in the developing inner ear. Development 141, 2313 – 2324. (doi:10.1242/dev.108100)
35. Lu J et al. 2013 Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged1. Cancer Cell 23, 171 – 185. (doi:10.1016/j.ccr.2012.12.021)
36. Yaswen P. 2015 Reinforcing targeted therapeutics with phenotypic stability factors. Cell Cycle 13, 3818 – 3822. (doi:10.1089/cc.2014.3985071)
37. Jolly MK, Jia D, Boareto M, Mani SA, Pienta KJ, Ben-Jacob E, Levine H. 2015 Coupling the modules of EMT and stemness: a tunable ‘stemness window’ model. Oncotarget 6, 25 161 – 25 174. (doi:10.18632/oncotarget.4629)
38. Jolly MK, Huang B, Lu M, Mani SA, Levine H, Ben-Jacob E. 2014 Towards elucidating the connection between epithelial – mesenchymal transitions and stemness. J. R. Soc. Interface 11, 20140962. (doi:10.1098/rsif.2014.0962)
39. Grosse-Wilde A, Fouquier d’Herouei A, McIntosh E, Zelenska PS, Gao CY, Zhu S. 2009 IL-6 triggers malignant transformation of neural stem/progenitor cells. Am. J. Pathol. 175, 1338 – 1348. (doi:10.1016/j.ajpath.2009.01.131)
40. Joosse SA, Gorges TM, Pantel K. 2015 Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol. Med. 7, 1 – 11. (doi:10.15222/emmm.20130369)
41. Liotta LA, Kleinerman J, Salcedo GM. 1976 The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 36, 889 – 894.
42. Benedito R, Roca C, Sörensen I, Adams S, Gossler A. 2015 Temporally sequenced anticancer drugs for the treatment of cancer. J. R. Soc. Interface 12, 20140962.
43. Saravanamuthu SS, Gao CY, Zelenska PS. 2009 Notch signaling is required for lateral induction of Jagged1 during FGF-induced lens fiber differentiation. Dev. Biol. 332, 166 – 176. (doi:10.1016/j.ydbio.2009.05.066)
44. Hartman BH, Reh TA, Bermingham-McDonogh O. 2010 Notch signaling specifies prospecyrom domains via lateral induction in the developing mammalian inner ear. Proc. Natl Acad. Sci. USA 107, 15 792 – 15 797. (doi:10.1073/pnas.1002287107)
45. Lecharpentier A, Vielh P, Perez-Moreno P, Planchar D, Soria JC, Farace F. 2011 Detection of circulating tumour cells with a hybrid (epithelial/ mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br. J. Cancer 105, 1383 – 1384. (doi:10.1038/bjc.2011.405)
46. Hong J-J et al. 2011 Circulating tumor cells as a window on metastasis biology in lung cancer. Am. J. Pathol. 178, 989 – 996. (doi:10.1016/j.ajpath.2010.12.003)
47. Armstrong AJ et al. 2011 Circulating tumour cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol. Cancer Res. 9, 997 – 1007. (doi:10.1158/1541-7786.MCR-10-0490)
48. Joosse SA, Gorges TM, Pantel K. 2015 Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol. Med. 7, 1 – 11. (doi:10.15222/emmm.20130369)
49. Liotta LA, Kleinerman J, Salcedo GM. 1976 The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 36, 889 – 894.
50. Nieto MA. 2013 Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342, 1234850. (doi:10.1126/science.1234850)
51. Voutsis A, Pintzas A. 2009 Epithelial-mesenchymal transition in cancer metastatic mechanisms, markers and strategies to overcome drug resistance. In The biochemistry of cancer. Biochem. Biophys. Acta Rev. Cancer 1796, 75 – 90. (doi:10.1016/j.bcan.2009.03.002)
52. Arnoux V, Gime C, Kusewitt DF, Hudson LG, Savagner P. 2005 Cutaneous wound reepithelialization. In Rise and fall of epithelial phenotype, pp. 111 – 134. New York, NY: Springer US.
53. Tam WL, Weinberg RA. 2013 The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 19, 1438 – 1449. (doi:10.1038/nm.3336)
54. Ombrazo I, Malanchi L. 2014 The EMT universe: space between cancer cell dissemination and metastasis initiation. Crit. Rev. Oncog. 19, 349 – 361. (doi:10.1615/CritRevOncog.2014011802)
55. Andrawi F et al. 2015 Conversion to stem-cell state in response to microenvironmental cues is regulated by balance between epithelial and mesenchymal features in lung cancer cells. Mol. Oncol. 10, 253 – 271. (doi:10.1016/j.molonc.2015.10.002)
56. Sansone P et al. 2007 IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland.
57. Johnston DA, Dong B, Hughes CCW. 2009 TNF induction of jagged-1 in endothelial cells is NFκB-dependent. *Gene* 435, 36–44. (doi:10.1016/j.gene.2009.01.003)

58. Li D, Masiero M, Banham AH, Harris AL. 2014 The notch ligand JAGGED1 as a target for anti-tumor therapy. *Front. Oncol.* 4, 254. (doi:10.3389/fonc.2014.00254)

59. Kangsamaksin T, Murtomaki A, Kofler NM, Cuervo H, Chaudhri RA, Tattersall IW, Shawber CJ, Kitajewski J. 2014 Notch decoys that selectively block Dll/Notch or Jag/Notch disrupt angiogenesis by unique mechanisms to inhibit tumor growth. *Cancer Discov.* 5, 182–197. (doi:10.1158/2159-8290.CD-14-0650)

60. Rizzo P, Osipo C, Foreman K, Golde T, Osborne B, Miele L. 2008 Rational targeting of Notch signaling in cancer. *Oncogene* 27, 5124–5131. (doi:10.1158/ AACR.EDB-08-8735)

61. De Back W, Zhou JX, Brush L. 2013 On the role of lateral stabilization during early patterning in the on the role of lateral stabilization during early patterning in the pancreas. *J. R. Soc. Interface* 10, 20120766. (doi:10.1098/rsif.2012.0766)

62. Swall NJ, Shematt JA. 2003 Control of epidermal stem cell clusters by Notch-mediated lateral induction. *Dev. Biol.* 258, 141–153. (doi:10.1016/S0012-1606(03)00107-6)

63. Liu S et al. 2014 Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. *Stem Cell Rep.* 2, 78–91. (doi:10.1016/j.stemcr.2013.11.009)

64. Enderling H. 2015 Cancer stem cells: small subpopulation or evolving fraction? *Integr. Biol. (Camb).* 7, 14–23. (doi:10.1039/c4ib00191e)

65. Poleszczuk J, Hahnfeldt P, Enderling H. 2015 Evolution and phenotypic selection of cancer stem cells. *PLoS Comput. Biol.* 11, e1004025. (doi:10.1371/journal.pcbi.1004025)

66. Dhawan A, Kohandel M, Hill R, Sivaloganathan S. 2014 Tumour control probability in cancer stem cells hypothesis. *PLoS ONE* 9, 5–10. (doi:10.1371/journal.pone.0096093)

67. Sehl ME, Shimada M, Landeros A, Lange K, Wicha MS. 2015 Modeling of cancer stem cell state transitions predicts therapeutic response. *PLoS ONE* 10, e0135797. (doi:10.1371/journal.pone.0135797)

68. Yang KR, Mooney SM, Zarif JC, Coffey DS, Taichman RS, Pienta KJ. 2014 Niche inheritance: a cooperative pathway to enhance cancer cell fitness though ecosystem engineering. *J. Cell. Biochem.* 115, 1478–1485. (doi:10.1002/jcb.24813)

69. Ben-Jacob E, Coffey DS, Levine H. 2012 Bacterial survival strategies suggest rethinking cancer cooperativity. *Trends Microbiol.* 20, 403–410. (doi:10.1016/j.tim.2012.06.001)

70. Clewley R. 2012 Hybrid models and biological model reduction with PyDSTool. *PLoS Comput. Biol.* 8, e1002628. (doi:10.1371/journal.pcbi.1002628)