The interferon gamma gene polymorphism +874 A/T is associated with severe acute respiratory syndrome

Wai Po Chong†1, WK Eddie Ip†1, Gloria Hoi Wan Tso1, Man Wai Ng1, Wilfred Hing Sang Wong1, Helen Ka Wai Law1, Raymond WH Yung2, Eudora Y Chow3, KL Au4, Eric YT Chan5, Wilina Lim6, JS Malik Peiris7 and Yu Lung Lau*1

Address: 1Department of Paediatrics and Adolescent Medicine, The Hong Kong Jockey Club Research Centre, The University of Hong Kong, Pokfulam, Hong Kong SAR, China, 2Department of Pathology, Pamela Nethersole Youde Hospital, Hong Kong SAR, China, 3Department of Pathology, United Christian Hospital, Hong Kong SAR, China, 4Princess Margaret Hospital, Hong Kong SAR, China, 5Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China, 6Government Virus Unit, Department of Health, Hong Kong SAR, China and 7Department of Microbiology, The Hong Kong Jockey Club Research Centre, Pokfulam, The University of Hong Kong, Hong Kong SAR, China

Email: Wai Po Chong - h9820905@graduate.hku.hk; WK Eddie Ip - WIP@partners.org; Gloria Hoi Wan Tso - h98083405@hkusua.hku.hk; Man Wai Ng - ivy_natsu@yahoo.com.hk; Wilfred Hing Sang Wong - whwong@hkucc.hku.hk; Helen Ka Wai Law - hkwlaw@hkucc.hku.hk; Raymond WH Yung - rwhyung@ha.org.hk; Eudora Y Chow - chowe@ha.org.hk; KL Au - klau@ha.org.hk; Eric YT Chan - eytchan@ha.org.hk; Wilina Lim - willim@pacific.net.hk; JS Malik Peiris - malik@hkucc.hku.hk; Yu Lung Lau* - lauylung@hkucc.hku.hk

* Corresponding author †Equal contributors

Abstract

Background: Cytokines play important roles in antiviral action. We examined whether polymorphisms of IFN-γ, TNF-α and IL-10 affect the susceptibility to and outcome of severe acute respiratory syndrome (SARS).

Methods: A case-control study was carried out in 476 Chinese SARS patients and 449 healthy controls. We tested the polymorphisms of IFN-γ, TNF-α and IL-10 for their associations with SARS.

Results: IFN-γ+874A allele was associated with susceptibility to SARS in a dose-dependent manner (P < 0.001). Individuals with IFN-γ +874 AA and AT genotype had a 5.19-fold (95% Confidence Interval [CI], 2.78-9.68) and 2.57-fold (95% CI, 1.35-4.88) increased risk of developing SARS respectively. The polymorphisms of IL-10 and TNF-α were not associated with SARS susceptibility.

Conclusion: IFN-γ +874A allele was shown to be a risk factor in SARS susceptibility.

Background

Severe acute respiratory syndrome (SARS) is an infectious disease caused by SARS coronavirus [1] with >8000 cases and 774 deaths reported in 2003 [2]. Much progress has been made in understanding SARS coronavirus but the pathogenesis is still unclear [3]. It was reported that old age, diabetes mellitus and heart disease were risk factors for adverse prognosis of SARS [4-6], however, little is known about the contribution of genetic factors. We have demonstrated that genetic haplotypes associated with low serum mannose-binding lectin (MBL) were associated with SARS [7] and our findings were recently replicated [8]. Recently, homozygotes for CLEC4M tandem repeats...
In this study, we hypothesized that the polymorphisms of various microbes and death [17-19] lead to increasing susceptibility of the host to high IL-10 level would result in suppression of innate host inflammatory processes. Various studies showed that a α counteracts the inflammatory response by inhibiting TNF-cytokines and chemokines [15]. In animal model, IL10 blocking the expression of a number of pro-inflammatory cells, monocytes, and macrophages [14]. IL-10 appears to that inhibits the activation and effector function of Th1 cytokines and chemokines, which recruit leukocytes to the site of infection [11-13]. Thus, IFN-γ and TNF-α play important role in antiviral response and inflammation.

Interleukin 10 (IL-10) is an antiinflammatory cytokine that inhibits the activation and effector function of Th1 cells, monocytes, and macrophages [14]. IL-10 appears to limit and ultimately terminate inflammatory responses by blocking the expression of a number of pro-inflammatory cytokines and chemokines [15]. In animal model, IL10 counteracts the inflammatory response by inhibiting TNF-α production and neutrophil activation, and leads to a reduction of the lung tissue injury [16]. Thus, IL-10 plays an important role in regulating many immune and inflammatory processes. Various studies showed that a high IL-10 level would result in suppression of innate host defense and lead to increasing susceptibility of the host to various microbes and death [17-19].

In this study, we hypothesized that the polymorphisms of the cytokine genes, i.e. IFN-γ +874A/T, TNF-α -308G/A, IL-10 -1082G/A and -592A/C, might be associated with SARS. These genes were chosen based on their functions in antiviral response and inflammation regulation that may be involved in SARS pathogenesis and their polymorphisms based on their potential regulation on gene expression (Table 1). We tested our hypotheses in 476 SARS patients and 449 healthy controls and found that polymorphism of IFN-γ +874A allele was associated with susceptibility to SARS in a dose-dependent manner.

Methods

Patient populations

The study was approved by the Clinical Research Ethics Committee of the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster and included 476 Chinese patients with SARS (201 male, mean age = 39.8 ± 15.2) and 449 ethnically matched healthy controls from Red Cross (273 male, mean age = 29.1 ± 10.4). At least 95% of the patients were documented with SARS-CoV antibody seroconversion and/or detectable SARS-CoV RNA in respiratory secretions by RT-PCR.

Genotyping

IFN-γ +874A/T, IL-10 -1082G/A and -592A/C were genotyped by TaqMan system (Applied Biosystems, Foster City, CA, USA) as described previously [20]. TNF-α -308 G/A was also genotyped by TaqMan system with same condition. The sequences of the primers were 5'-CCT CCA AAG AAA CTG-3' and 5'-TCT TCT GGG CCA CTG ACT GA-3' and the probes were 6-FAM-TGG ACG G-TAMRA and VIC-TTG AGG GGC ATG ACG G-TAMRA.

Statistical analysis

The frequencies of genotypes and alleles of the 4 single nucleotide polymorphisms (SNPs) were compared between the SARS patients and healthy controls by 3 × 2 and 2 × 2 chi square test respectively. In case of significance, logistic regression was used for calculating OR with 95% CI and corresponding P-values between groups by controlling age and sex as covariables. The genotypes of all SNPs were tested for Hardy-Weinberg equilibrium (HWE) by chi square test.

Results and discussion

Our case-control study genotyped the 4 SNPs IFN-γ +874A/T, TNF-α -308G/A, IL-10 -1082G/A and -592A/C in 476 Chinese patients with SARS and 449 healthy controls. The genotype distributions and allele frequencies of these 4 SNPs were shown in Table 2. The IFN-γ +874A allele was overrepresented in SARS patients (83.1%) when compared with the controls (66.3%) (P < 0.001). It was also significantly associated with susceptibility to SARS in a dose-dependent manner (P < 0.001), i.e. individuals with IFN-γ +874 AA and AT genotype had an odds ratio (OR) of 5.19 (95% CI, 2.78-9.68) and 2.57 (95% CI, 1.35-4.88) in developing SARS respectively. However, no significant correlation was observed in SNPs of IL-10 and TNF-α. All SNPs were in Hardy-Weinberg equilibrium (HWE) (P > 0.05) in SARS patients and controls by chi square test, except IL-10-592A/C.

IFN-γ +874A allele has been previously reported to be associated with infectious diseases such as tuberculosis, hepatitis B virus infection, and parvovirus infection [20-22], revealing its potential role of function in host defense against microbial infections. The mechanism by which the IFN-γ +874A/T allele influences the susceptibility to

Table 1: Polymorphisms of the genes genotyped

Genes	SNPs	rs number	References
IFN-γ	IFN-γ +874 A/T	rs2430561	[23]
IL-10	IL-10 -1082 A/G	rs1800896	[23,26-27]
	IL-10 -592 A/C	rs1800872	
TNF-α	TNF-α -308G/A	rs1800629	

In this study, we hypothesized that the polymorphisms of various microbes and death [17-19].
SARS may depend on its role in the regulation of IFN-γ production. The T allele of IFN-γ +874A/T provides a binding site for the transcription factor nuclear factor-κB (NF-κB), which is able to regulate IFN-γ expression [23]. It is possible that low IFN-γ production may impair their anti-viral response against SARS-CoV, rendering these individuals more susceptible to this virus infection. Our observation that IFN-γ +874A allele was significantly associated with SARS-CoV infection suggests a genetic risk factor for SARS. The role of IFN-γ in antiviral response against SARS-CoV has also been supported by recent studies showing that IFN-γ can inhibit the replication of SARS-CoV in combination with IFN-β in vitro [24,25].

IL-10 and TNF-α SNPs were also included in this study. They were chosen due to their potential regulation on protein expression level [26-28]. However, our present data did not show any significant association of these SNPs with SARS (Table 2). Nevertheless, we cannot exclude the role of IL-10 and TNF-α as the susceptibility genes for SARS, because other SNPs in these 2 genes may also be involved in gene expression regulation. Further association studies on other SNPs, which could alter the gene expression level are required to ascertain the relationship of IL-10 and TNF-α in SARS.

We have also compared the genotype and allele frequencies of all the polymorphisms between the death group and survival group of the SARS patients (Table 3). However, no significant association was established.

Conclusion

We demonstrated that IFN-γ +874A allele was significantly associated with SARS susceptibility in a dose dependent manner. Due to its role in regulating IFN-γ expression [15], this allele may be involved in the pathogenesis of SARS by altering the IFN-γ production.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

WPC and WKEI: Genotyping, data analyses, drafting the manuscript

GHWT: Genotyping

MWN and WHSW: Data analyses, drafting the manuscript

Table 2: Allele frequencies and genotype frequencies in SARS patients and controls

SNP	SARS (n = 476)	Control (n = 449)	OR (95% CI)	P
Genotype		Number (%)		
IFN-γ +874				
A/A	332 (69.8)	203 (45.2)	5.19 (2.78 – 9.66)	<0.001
A/T	127 (26.7)	189 (42.1)	2.57 (1.35 – 4.88)	
T/T	17 (3.6)	57 (12.7)	Reference	
IL-10 -1082				
A/A	439 (92.2)	411 (91.5)	..	NS
A/G	35 (7.4)	38 (8.5)	..	
G/G	2 (0.4)	0 (0)	..	
IL-10 -592				
A/A	244 (51.3)	209 (46.6)	..	NS
A/C	188 (39.5)	214 (47.7)	..	
C/C	44 (9.2)	26 (5.8)	..	
TNF-α -308				
G/G	403 (84.7)	377 (83.9)	..	NS
G/A	70 (14.7)	70 (15.6)	..	
A/A	3 (0.6)	2 (0.5)	..	

Allele				
IFN-γ +874				<0.001
A	791 (83.1)	595 (66.3)	2.23 (1.75 – 2.83)	
T	161 (16.9)	303 (33.7)	..	
IL-10 -1082				
A	913 (95.9)	860 (95.8)	..	NS
G	39 (4.1)	30 (4.2)	..	
IL-10 -592				
A	676 (71.0)	632 (70.4)	..	NS
C	276 (29.0)	266 (29.6)	..	
TNF-α -308				
G	876 (92.0)	824 (91.8)	..	NS
A	76 (8.0)	74 (8.2)	..	

Table 3: Genotype frequencies among survival and death SARS cases

SNP	Death (n = 57)	Survival (n = 415)	P
Genotype		Number (%)	
IFN-γ +874			
A/A	41 (71.9)	289 (69.6)	
A/T	13 (22.8)	112 (27.0)	
T/T	3 (5.3)	14 (3.4)	
IL-10 -1082			
A/A	52 (91.2)	383 (92.3)	
A/G	4 (7.0)	31 (7.5)	
G/G	1 (1.8)	1 (0.2)	
IL-10 -592			
A/A	28 (49.1)	214 (51.6)	
A/C	21 (36.8)	165 (39.8)	
C/C	8 (14.0)	36 (8.7)	
TNF-α -308			
G/G	46 (80.7)	353 (85.1)	
G/A	11 (19.3)	59 (14.2)	
A/A	0 (0)	3 (0.7)	

NS = not significant.

*P-value and OR (95% CI) were calculated with the use of logistic regression models, adjusted with sex and age.
Acknowledgements
This work is supported by the Outstanding Researcher Awards (YLL & JSMP), Postgraduate Studenships (WPC, GHWT, MWN) from the University of Hong Kong, the Research Fund for the Control of Infectious Diseases (03040302) from the Health, Welfare and Food Bureau of the Hong Kong SAR Government and Edward Sai Kim Hotung Paediatric Education and Research Fund.

References
1. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee LC, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh IE, Kitai I, Mederski BD, Shadowitz SB, Gold WL, Hawryluck LA, Rea E, Aylward GE, Osterholm MT, Foutzacidis D, Tegnell A, Hasselstrom T, Lane CL, Smith CW, Anderson DC, Ward PA: Role of endothelial-leukocyte adhesion molecule 1 (ELAM-1) in neutrophil-mediated lung injury in rats. J Clin Invest 1998, 101:1396-406.
2. Mulligan MS, Vaprociyan AA, Miyasaka M, Tamahatsu T, Ward PA: Tumor necrosis factor alpha regulates in vivo intrapulmonary expression of ICAM-1. J Am Pathol 1993, 142:1339-49.
3. Mulligan MS, Vaprociyan AA, Miyasaka M, Tamahatsu T, Ward PA: Tumor necrosis factor alpha regulates in vivo intrapulmonary expression of ICAM-1. J Am Pathol 1993, 142:1339-49.
4. ...tion by innate cytokines. J Infect Chemother 2000, 6:511-60.
5. Panuska JR, Merolla R, Bernt NA, Hoffmann SP, Tsivitse P, Cinirino NM, Silverman RH, Rankin JA: Respiratory syncytial virus induces interleukin-10 but not human alveolar macrophages. Suppression of early cytokine production and implications for incomplete immunity. J Clin Invest 1995, 95:2445-53.
6. Standford TJ, Strieder RM, Lukacs Nw, Kunkel SL: Neutralization of IL-10 increases lethality in endotoxemia. Cooperative effects of macrophage inflammatory protein-2 and tumor necrosis factor. J Immunol 1995, 155:2222-9.
7. Kalemahan Y, Gafter U, Gal R, Rushkin G, Yan D, Albeck M, Sredni B: Anti-IL-10 therapeutic strategy using the immunomodulator AS101 in protecting mice from sepsis-induced death: dependence on timing of immunomodulating intervention. J Immunol 2002, 169:384-92.
8. Tso HW, Ip WK, Chong WP, Tam CM, Chiang AKS, Lau YL: Association of interferon gamma and interleukin 10 genes with tuberculosis in Hong Kong Chinese. Genes Immun 2005, 6:638-63.
9. Ben-Ari Z, Mor E, Papo O, Kfir B, Sullkes J, Tambar AR, Tur-Kaspa R, Klein T: Cytokine gene polymorphisms in patients infected with hepatitis B virus. Am J Gastroenterol 2003, 98(1):144-50.
10. Kerr JR, McCoy M, Burke B, Mattey DL, Pravica V, Hutchinson IV: Cytokine gene polymorphisms associated with symptomatic parvovirus B19 infection. J Clin Pathol 2003, 56:725-7.
11. Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV: A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol 2000, 61:863-6.
12. Sgagnolari C, Vicenzi E, Bellomi F, Stiliattano MG, Pinna D, Poli G, Clementi M, Dianzani F, Antonelli G: Increased sensitivity of SARS-coronavirus to a combination of human type I and type II interferons. Antivir Ther 2004, 9:1003-11.
13. Sainz B Jr, Mossel EC, Peters CJ, Garry RF: Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virolology 2004, 329:1-7.
14. Turner DM, Williams DM, Sarkaran D, Lazarus M, Sinnott P, Hutchinson IV: An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 1997, 24:1-8.
15. Crawley E, Kay R, Stillbourne J, Patel P, Hutchinson I, Woo P: Polymorphic haplotypes of the interleukin-10 5' flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum 1999, 42:1101-8.
16. Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW: Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A 1997, 94:3195-9.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2334/6/82/prepub