AN EXPANSIVE HOMEOMORPHISM OF A 3-MANIFOLD WITH A LOCAL STABLE SET THAT IS NOT LOCALLY CONNECTED

Abstract. In this article we construct an expansive homeomorphism of a compact three-dimensional manifold with a fixed point whose local stable set is not locally connected. This homeomorphism is obtained as a topological perturbation of a quasi-Anosov diffeomorphism that is not Anosov.

Alfonso Artigue
Departamento de Matemática y Estadística del Litoral
Universidad de la República
Gral Rivera 1350, Salto, Uruguay

1. Introduction

A homeomorphism f of a metric space (M, dist) is expansive if there is $\eta > 0$ such that if $x, y \in M$ and $\text{dist}(f^n(x), f^n(y)) \leq \eta$ for all $n \in \mathbb{Z}$ then $x = y$. Expansivity is a well known property of Anosov diffeomorphisms and hyperbolic sets. Also, pseudo-Anosov [3, 4] and quasi-Anosov diffeomorphisms [2] are known to be expansive. In [3, 4], Hiraide and Lewowicz proved that on compact surfaces, expansive homeomorphisms are conjugate to pseudo-Anosov diffeomorphisms. In particular, if M is the two-torus then f is conjugate to an Anosov diffeomorphism and there are no expansive homeomorphisms on the two-sphere.

In [5] Vieitez proved that if f is an expansive diffeomorphism of a compact three-dimensional manifold and $\Omega(f) = M$ then f is conjugate to an Anosov diffeomorphism. We recall that $x \in M$ is a wandering point if there is an open set $U \subset M$ such that $x \in U$ and $f^n(U) \cap U = \emptyset$ for all $n \neq 0$. The set of non-wandering points is denoted as $\Omega(f)$. Given a homeomorphism $f : M \to M$ and $\varepsilon > 0$ small, the ε-stable set (local stable set) of a point $x \in M$ is defined as

$$W^s_\varepsilon(x) = \{ y \in M : \text{dist}(f^n(x), f^n(y)) \leq \varepsilon \text{ for all } n \geq 0 \}.$$

On three-dimensional manifolds there are several open problems. For instance, it is not known whether the three-sphere admits expansive homeomorphisms. In that article Vieitez asks: allowing wandering points, can we have points with local stable sets that are not manifolds for $f : M \to M$, an expansive diffeomorphism defined on a three-dimensional manifold M? We remark that in the papers by Hiraide and Lewowicz that we mentioned, before proving that stable and unstable sets form pseudo-Anosov singular foliations, they show that local stable sets are locally connected.

The purpose of this paper is to give a positive answer to Vieitez’ question for homeomorphisms. We will construct an expansive homeomorphism on a three-dimensional manifold with a point whose local stable set is not locally connected and $\Omega(f)$ consists of an attractor and a repeller. The construction follows the ideas

1991 Mathematics Subject Classification. Primary: 37B45; Secondary: 37B05.

Key words and phrases. topological dynamics, expansive homeomorphism, continuum theory.
in [1] where it is proved that the compact surface of genus two admits a continuum-wise expansive homeomorphism with a fixed point whose local stable set is not locally connected. The key point for the present construction is that on a three-dimensional manifold there is enough room to place two one-dimensional continua meeting in a singleton, even if one of these continua is not locally connected. In Remark 2.2 we explain why our example is not C^1.

2. The example

The example is a C^0 perturbation of the quasi-Anosov diffeomorphism of [2]. The perturbation will be obtained by a composition with a homeomorphism that is close to the identity. This homeomorphism will be defined in local charts around a fixed point and will be extended as the identity outside this chart. In §2.1 we construct this perturbation in \mathbb{R}^3 obtaining a homeomorphism such that the stable set of the origin $(0,0,0)$ is not locally connected. Then, in §2.2 we perform the perturbation of the quasi-Anosov diffeomorphism to obtain our example.

2.1. In local charts. Fix $r \in (0,1/2)$ and let $B \subset \mathbb{R}^3$ be the closed ball of radius r centered at $(\frac{r}{2},0,0)$. Let $T_2: \mathbb{R}^3 \to \mathbb{R}^3$ be defined as

$$T_2(x,y,z) = \frac{1}{2}(x,y,z).$$

Define $B_n = T^n_2(B)$ for $n \in \mathbb{Z}$. Let $E \subset B$ be the non-locally connected continuum given by the union of the following segments:

- a segment parallel to $(1,0,0)$: $[\frac{1}{2} - \frac{r}{2}, \frac{1}{2} + \frac{r}{2}] \times \{(0,0)\}$,
- a segment parallel to $(0,1,0)$: $[\frac{1}{2} - \frac{r}{2}, \frac{1}{2} + \frac{r}{2}] \times \{(0,\frac{r}{2})\}$,
- a countable family of segments parallel to $(0,1,0)$: $\left\{ \frac{3}{2} - \frac{r}{2k}, \frac{3}{2} + \frac{r}{2k} \right\} \times \{0, \frac{r}{2}\}$.

Consider $\rho: B \to [0,1]$ a smooth function such that $\rho^{-1}(1) = E$ and $\rho^{-1}(0) = \partial B$. Define a vector field $X: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$X(x,y,z) = \begin{cases}
(0,-\rho(T^{-n}_2(x,y,z))y \log 4,0) & \text{if } \exists n \in \mathbb{Z} \text{ s.t. } (x,y,z) \in B_n, \\
(0,0,0) & \text{otherwise}.
\end{cases}$$

Remark 2.1. The vector field X induces a flow $\phi: \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$. The proof is as follows. Notice that X is smooth on $\mathbb{R}^3 \setminus \{(0,0,0)\}$. Since the regular orbits (i.e., not fixed points) are contained in the compact balls B_n we have that these trajectories are defined for all $t \in \mathbb{R}$. At the origin we have a fixed point, and the continuity of X gives the continuity of the complete flow on \mathbb{R}^3.

Let ϕ_t be the flow on \mathbb{R}^3 induced by X. For $t = 1$ we obtain the so called time-one map ϕ_1. Let

$$E_k = T^{k}_2(E)$$

for all $k \in \mathbb{Z}$.

Remark 2.2. The homeomorphism ϕ_1 is not C^1. This is because the partial derivative $\frac{\partial \phi_1}{\partial y}(x_*,0,0) = (0,1/4,0)$ if $(x_*,0,0)$ is in one of the segments of E_k that is parallel to $(0,1,0)$. Since $\frac{\partial \phi_1}{\partial y}(0,0,0) = (0,1,0)$ and $x_* > 0$ can be taken arbitrarily small, we conclude that $\frac{\partial \phi_1}{\partial y}$ is not continuous at the origin.
Define the homeomorphisms $T_1, f : \mathbb{R}^3 \to \mathbb{R}^3$ as

\begin{equation}
T_1(x, y, z) = (x/2, 2y, 2z)
\end{equation}

and

\[f = T_1 \circ \phi_1. \]

Consider the set $\tilde{W} = \bigcup_{k \in \mathbb{Z}} T^k_2(E) \cup \{(x, 0, 0) : x \in \mathbb{R}\}$. The \textit{(global) stable set} of a point $a \in \mathbb{R}^3$ associated to the homeomorphism f is the set

\[W^s_f(a) = \{ b \in \mathbb{R}^3 : \text{dist}(f^n(a), f^n(b)) \to 0 \text{ as } n \to +\infty \}. \]

Proposition 2.3. It holds that $W^s_f(0, 0, 0) = \tilde{W}$.

Proof. We start proving the inclusion $\tilde{W} \subset W^s_f(0, 0, 0)$. We will show that $f(E_k) = E_{k+1}$. By the definition of the flow we have that

\[\phi_1(E_k) = \{(x, y/4, 0) : (x, y, 0) \in E_k\}. \]

Then $T_1(\phi_1(E_k)) = \{(x/2, y/2, 0) : (x, y, 0) \in E_k\}$ and this set is $T_2(E_k) = E_{k+1}$. Since $E_k \to (0, 0, 0)$ as $k \to +\infty$ we conclude that $E_k \subset W^s_f(0, 0, 0)$ for all $k \in \mathbb{Z}$. Also, $f(x, 0, 0) = (x/2, 0, 0)$ for all $x \in \mathbb{R}$. This proves that $\{(x, 0, 0) : x \in \mathbb{R}\} \subset W^s_f(0, 0, 0)$.

Take $p \notin \tilde{W}$. Note that if $p \notin B_n$ for all $n \in \mathbb{Z}$ then $f^n(p) = T^n_1(p)$ for all $n \geq 0$ and $p \notin W^s_f(0, 0, 0)$. Assume that $f^n(p) \in B_n$ for all $n \in \mathbb{Z}$ and define

\[(a_n, b_n, c_n) = f^n(p). \]

If $c_0 \neq 0$ then $c_n = 2^n c_0 \to \infty$. Thus, we assume that $c_0 = 0$. Suppose that $b_0 > 0$ (the case $b_0 < 0$ is analogous). Let $y_0 = \sup\{ s \geq 0 : (a_0, s, 0) \in \tilde{W}\}$. Define $l = \{(a_0, y, 0) : y \in \mathbb{R}\}$ and $g : l \to l$ by the equation

\[T^{-1}_2 \circ f(a_0, y, 0) = (a_0, g(y), 0). \]

In this paragraph we will show that $g(y) > y$ for all $y > y_0$. Let $\alpha : \mathbb{R} \to \mathbb{R}$ be such that $(a_0, \alpha(t), 0) = \phi_t(a_0, y, 0)$ for all $t \in \mathbb{R}$. That is, α satisfies $\alpha(0) = y$ and $\alpha(t) = -\rho(a_0, \alpha(t), 0)\alpha(t) \log 4$. Since $(a_0, y, 0) \notin \tilde{W}$ we have that

\[\rho(a_0, \alpha(0), 0) < 1. \]

Then

\[\int_0^1 \frac{\alpha(t)}{\alpha(0)} dt = - \int_0^1 \log 4 \rho(a_0, \alpha(t), 0) dt > - \log 4 \]

and $\log(\alpha(1)) - \log(\alpha(0)) > - \log 4$. Consequently, $\alpha(1) > \frac{1}{4}\alpha(0)$. Notice that

\[(a_0, g(y), 0) = T^{-1}_2 \circ f(a_0, y, 0) = T^{-1}_2 \circ T_1 \circ \phi_1(a_0, y, 0) = T^{-1}_2 \circ T_1(a_0, \alpha(1), 0) = T^{-1}_2(a_0/2, 2\alpha(1), 0) = (a_0, 4\alpha(1), 0). \]

Then $g(y) = 4\alpha(1)$ and $g(y) > y$.

Recall that X is the vector field that defines ϕ. Since $X \circ T_2 = T_2 \circ X$, as can be easily checked, we have that $f \circ T_2 = T_2 \circ f$. This implies that

\[(a_0, g^n(b_0), 0) = (T^{-1}_2 \circ f)^n(a_0, b_0, 0) = T^{-n}_2 \circ f^n(a_0, b_0, 0) = T^{-n}_2(a_n, b_n, 0). \]

and $g^n(b_0) = 2^{-n} b_n$. Since we are assuming that $f^n(p) \in B_n$ for all $n \in \mathbb{Z}$, we have that $2^{-n} b_n$ is bounded. But, as $b_0 > y_0$ and $g(y) > y$ for all $y > y_0$ we have that $g^n(b_0)$ is increasing and bounded. Then, if $b_* > y_0$ is the limit of $g^n(b_0)$ we have that $g(b_*) = b_*$, which contradicts that $g(y) > y$ for all $y > y_0$. This implies that
\(f^n(p) \) cannot be in \(B_n \) for all \(n \geq 0 \), and as we said, this shows that \(p \notin W^s_f(0,0,0) \). This proves the inclusion \(W^s_f(0,0,0) \subset \overline{W} \).

Remark 2.4. By the definition of the vector field \(X \) we see that \(\phi_1 \) preserves the horizontal planes (i.e., the planes perpendicular to \((0,0,1)\)). Also, \(\phi_1 \) leaves invariant the cube \([-2,2]^3 \) and is the identity in its boundary.

2.2. The local perturbation of the quasi-Anosov. To construct our example we start with a quasi-Anosov diffeomorphism as in [2]. A quasi-Anosov diffeomorphism is an axiom A diffeomorphism of \(M \) such that \(T_x W^s(x) \cap T_x W^u(x) = 0_z \) for all \(x \in M \), where \(T_x W^s(x), \sigma = s, u \), denotes the tangent space of the stable or unstable manifold \(W^s(x) \) at \(x \) and \(0_z \) is the null vector of \(T_x M \). The quasi-Anosov diffeomorphism of [2], that will be denoted as \(f_{FR} : M \to M \), has the following properties: it is defined on a three-dimensional manifold, it is not Anosov and its non-wandering set is the union of two basic sets. The basic sets are an expanding attractor and a shrinking repeller. Both sets are two-dimensional and locally they are homeomorphic to the product of \(\mathbb{R}^2 \) and a Cantor set.

On the attractor there is a hyperbolic fixed point \(p \). Take closed balls \(U, V \subset M \) and \(C^0 \) local charts \(\varphi : [-2,2]^3 \to U \subset M \) and \(\psi : [-1,1] \times [-4,4]^2 \to V \subset M \) satisfying the following conditions:

- **C0:** \(\varphi([-1,1] \times [-2,2]^2) = \psi([-1,1] \times [-2,2]^2) \),
- **C1:** \(f_{FR}|U| = \psi \circ T_1 \circ \varphi^{-1} \) where \(T_1 \) was defined in (1),
- **C2:** in the local charts stable sets of \(f_{FR} \), the leaves are lines parallel to \((1,0,0)\),
- **C3:** there is \(r \in (0,1/2) \) such that \(W^u_{f_{FR}}(q) \) in the local chart is transverse to the horizontal planes if \(\varphi^{-1}(q) \) is in a neighborhood of \(B \) where, as in §2.1, \(B \subset \mathbb{R}^3 \) is the ball of radius \(r \) centered at \((3/2,0,0)\),
- **C4:** if \(\tilde{B}_n = \varphi(B_n) \) for all \(n \geq 0 \), we assume that \(f_{FR}^k(\tilde{B}_0) \cap \tilde{B}_0 = \emptyset \) for all \(k \geq 1 \).

Let \(\tilde{\phi} : M \to M \) be the homeomorphism given by

\[
\tilde{\phi}(x) = \begin{cases}
\varphi \circ \phi_1 \circ \varphi^{-1}(x) & \text{if } x \in U, \\
\phi_1(x) & \text{if } x \notin U,
\end{cases}
\]

where \(\phi_1 \) is the time-one of the flow induced by the vector field \(X \) of §2.1. Define the homeomorphism \(\tilde{f} : M \to M \) as

\[
\tilde{f} = f_{FR} \circ \tilde{\phi}
\]

Notice that

\[
\tilde{\phi}(x) = x \text{ for all } x \notin \cup_{n \geq 0} B_n.
\]

Remark 2.5. This implies that if \(r \) is small then \(\tilde{f} \) is close to \(f_{FR} \) in the \(C^0 \) topology of homeomorphisms of \(M \).

Theorem 2.6. The homeomorphism \(\tilde{f} : M \to M \) is expansive and the local stable set of the fixed point \(p \) is connected but not locally connected.

Proof. By Proposition 2.3 and the condition C1 we have that the local stable set of \(p \) is \(\varphi(W) \). Since \(W \) is not locally connected and \(\varphi \) is a homeomorphism we conclude that the local stable set of \(p \) is not locally connected.

Let us show that \(\tilde{f} \) is expansive. By (2) we have that \(\tilde{f} \) and \(f_{FR} \) coincide on \(M \setminus \cup_{n \geq 0} \text{int}(B_n) \). Therefore, if \(\tilde{f}^n(x) \notin \cup_{k \geq 0} B_k \) for all \(n \in \mathbb{Z} \) then \(\tilde{f}^n(x) = f_{FR}^n(x) \) for all \(n \in \mathbb{Z} \). Let \(\eta_1 \) be an expansivity constant of \(f_{FR} \). Thus, if \(x, y \in M \) are such that \(\tilde{f}^n(x), \tilde{f}^n(y) \notin \cup_{k \geq 0} B_k \) for all \(n \in \mathbb{Z} \) then \(\sup_{n \in \mathbb{Z}} \text{dist}(\tilde{f}^n(x), \tilde{f}^n(y)) > \eta_1 \).
From our analysis on local charts of §2.1 we have that \(\tilde{B}_{n+1} \subset f_{FR}(\tilde{B}_n) = \tilde{f}(\tilde{B}_n) \) for all \(n \geq 0 \). This and condition C4 implies that if \(\tilde{f}^{n_0}(x) \in \tilde{B}_{k_0} \) for some \(n_0 \in \mathbb{Z} \) and \(k_0 \geq 0 \) then \(\tilde{f}^{n_0-k_0}(x) \in \tilde{B}_0 \). Let \(\eta \in (0, \eta_1) \) be such that if \(x \in \tilde{B}_0 \) and \(\text{dist}(y, x) < \eta \) then, in the local chart, \(W^s_\eta(x) \) is contained in a horizontal plane and \(W^u_\eta(y) \) is transverse to the horizontal planes. We have applied conditions C2 and C3. This implies that \(W^s_\eta(x) \cap W^u_\eta(y) \) contains at most one point. This proves that \(\eta \) is an expansivity constant of \(\tilde{f} \).

REFERENCES

[1] A. Artigue, Anomalous cw-expansive surface homeomorphisms, Disc. and Cont. Dyn. Sys., 36 (2016), 3511–3518.
[2] J. Franks and C. Robinson, A quasi-Anosov diffeomorphism that is not Anosov, Trans. of the AMS, 223 (1976), 267–278.
[3] K. Hiraide, Expansive homeomorphisms of compact surfaces are pseudo-Anosov, Osaka J. Math., 27 (1990), 117–162.
[4] J. Lewowicz, Expansive homeomorphisms of surfaces, Bol. Soc. Bras. Mat., 20 (1989), 113-133.
[5] J.L. Vieitez, Lyapunov functions and expansive diffeomorphisms on 3D-manifolds, Ergodic Theory Dynam. Systems, 22 (2002), 601–632.

E-mail address: artigue@unorte.edu.uy