Graph Embedding via Diffusion-Wavelets-Based Node Feature Distribution Characterization

Lili Wang
Dartmouth College
Hanover, New Hampshire, USA
lili.wang.gr@dartmouth.edu

Chenghan Huang
Millennium Management, LLC
New York, New York, USA
njhuangchenghan@gmail.com

Weicheng Ma
Dartmouth College
Hanover, New Hampshire, USA
weicheng.ma.gr@dartmouth.edu

Xinyuan Cao
Georgia Institute of Technology
Atlanta, Georgia, USA
xcao78@gatech.edu

Soroush Vosoughi
Dartmouth College
Hanover, New Hampshire, USA
soroush.vosoughi@dartmouth.edu

ABSTRACT
Recent years have seen a rise in the development of representation learning methods for graph data. Most of these methods, however, focus on node-level representation learning at various scales (e.g., microscopic, mesoscopic, and macroscopic node embedding). In comparison, methods for representation learning on whole graphs are currently relatively sparse. In this paper, we propose a novel unsupervised whole graph embedding method. Our method uses spectral graph wavelets to capture topological similarities on each k-hop sub-graph between nodes and uses them to learn embeddings for the whole graph. We evaluate our method against 12 well-known baselines on 4 real-world datasets and show that our method achieves the best performance across all experiments, outperforming the current state-of-the-art by a considerable margin.

CCS CONCEPTS
• Computing methodologies → Unsupervised learning.

KEYWORDS
Graph Embedding; Diffusion Wavelets; Representation Learning

ACM Reference Format:
Lili Wang, Chenghan Huang, Weicheng Ma, Xinyuan Cao, and Soroush Vosoughi. 2021. Graph Embedding via Diffusion-Wavelets-Based Node Feature Distribution Characterization. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3459637.3482115

1 INTRODUCTION
Network data has become a ubiquitous part of daily life and spans diverse areas; from social networks, emails, and online forums, to scientific citation networks and protein or chemistry interactions. Accordingly, there has been a recent push to develop methods for knowledge extraction and representation learning for networks. When it comes to representation learning for graphs, the main area of focus has been node-level representation learning at different scales with relatively sparse attention given to methods for analyzing whole networks.

For instance, a fundamental problem in analyzing whole networks is to determine whether two graphs (or networks) are identical; this is also called the graph isomorphism problem. Babai [1] has shown that this problem can be solved in quasipolynomial time. In real-world applications, however, instead of determining whether two graphs are identical, we care about the similarity between graphs. A typical application of this approach involves classifying graphs based on their similarity. Note that this is a generalization of the graph isomorphism problem as two graphs that are identical will be labeled the same. One approach to solving the graph classification problem is to learn a representation of the graph as a vector, called whole graph embedding, which is invariant under the graph isomorphism and then adopt down-streaming classifiers.

In this paper, we propose a whole graph embedding method that considers node features as random variables and examines the distribution of node features in sub-graphs. Intuitively, the correlation between node features is related to the role similarity [17] between them. For example, the nodes at centers of networks representing companies are likely to all be CEOs. Based on this, we calculate the characteristic functions in k-hop sub-graphs and aggregate and sample the characteristic functions to generate the graph-level embedding. To capture topological similarity, we propose a diffusion-wavelet-based method. We then use the minimum difference of pair assignments (MDPA) [3], a special case of earth mover’s distance (EMD) [20], to measure the distance between the energy distributions for two nodes.

Specifically, we make the following contributions in this paper:

• We present a framework for depicting the distribution of node features in sub-graphs based on diffusion wavelets and propose a graph-level embedding method based on the aggregation of characteristic functions.

• We mathematically prove that our embedding method produces identical embeddings for isomorphic graphs. We further provide theoretical proof of the robustness of our method to feature noise.
We evaluate our method on the task of graph classification using four real-world networks. Our experiments show that our framework outperforms existing methods in learning whole graph representations.

2 RELATED WORK

Many prior work have explored node representation learning [11, 16, 22, 25–29]. However, these methods do not work well on graph-level classification problems. The methods for graph classification can be grouped into several categories. A classic family of methods involve graph kernels with representative methods like the Weisfeiler-Lehman kernel [21], random walk kernel [10], shortest path kernel [2] and deep graph kernel [30]. Another family of methods relies on graph embedding to learn a vector to represent a graph as a whole. Some of these methods are built upon graph kernels. For example, Graph2Vec [15] first uses the Weisfeiler-Lehman kernel to extract rooted subgraph features which are then passed to a doc2vec [13] model to get embddings. GL2Vec [4] extends Graph2Vec by incorporating line graphs and in this way can deal with edge features. Other methods like SF [6], NetLSD [23], and FGSD [24] use the information from the Laplacian matrix and eigenvalues of graph to generate embeddings. Finally, Geo-Scatter [8] and FEATHER [19] utilize the power of normalized adjacency matrices to capture the probability distribution of neighborhoods.

3 FRAMEWORK

In this section, we formally introduce our framework. Let $G = (V, E, A)$ be an undirected and unweighted graph, where V is a set of vertices, and $E \subseteq V \times V$ is the set of unweighted edges between vertices in V, and $A \in \mathbb{R}^{N \times m}$ describes the attributes of each node in the network. We consider the problem of representing the whole graph as one d-dimensional vector $X \in \mathbb{R}^d$, with $d << |V|$. Our framework combines the unique advantages of GraphWave [7] and FEATHER [19], and consists of two parts: (1) topological wavelet similarity calculation and (2) sub-graph feature distribution characterization. We calculate node topological similarity based on diffusion wavelets, and we use that to capture the distribution of node features in sub-graphs. After aggregating the characteristic functions of k-hop sub-graphs, we pick representative sampling points and concatenate results to get the graph-level embedding. Below we describe these two parts in greater detail.

3.1 Topological Wavelet Similarity

3.1.1 Diffusion Wavelets [12]. The Laplacian matrix L is the difference between the adjacency matrix and the degree matrix of a graph. Assume $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$ are the eigenvalues of L, then L can be decomposed as $L = U \Lambda U^T$, where $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_N)$. These eigenvalues describe the temporal frequencies of a signal on the graph. In order to discount larger eigenvalues and smooth the signals, a filter kernel g_t with scaling parameter r is introduced. Here, we use the heat kernel $g_t = e^{-\lambda t}$. The spectral wavelet coefficient matrix Ψ is defined as:

$$\Psi = U \Lambda^{1/2} U^T$$

For a given node v_i, the element Ψ_{ji} represents how much energy comes from node v_j to node v_i. Therefore, the i-th column of the wavelet coefficient matrix Ψ describes a distribution of energy from the other nodes. It has been proved that nodes with similar energy distribution patterns have similar structural roles in the network [7]. Therefore, the difference between wavelet distributions of two nodes represents their topological distance.

3.1.2 Topological Similarity. The minimum difference of pair assignments (MDPA) can quickly measure the distance between two histograms[3]. It seeks the best one-to-one assignment between two lists to make the sum of the differences inside a pair to be minimized. Under certain conditions, the MDPA problem can be solved with linear time complexity.

Theorem 3.1. Given two sets of n elements $X = (x_1, \ldots, x_n)$ and $Y = (y_1, \ldots, y_n)$, with $\forall i < j, x_i < x_j$ and $y_i < y_j$. We must have the MDPA between X and Y as $\sum_{i=1}^{n} |x_i - y_i|$.

Proof. For any one-to-one assignment $((x_1, y_1), \ldots, (x_n, y_n))$ between the X and Y, if there exists s and t such that $x_s < x_t$ and $y_s > y_t$ (or $x_s > x_t$ and $y_s < y_t$), we can always decrease the sum of the differences by switching y_s and y_t. Therefore, the sum of differences achieves its minimum if and only if both $\{x_i\}$ and $\{y_i\}$ are ordered. \square

We use the notation Ψ_i for the spectral wavelet coefficients at a specific node v_i. In this way, to calculate the MDPA distance between Ψ_i and Ψ_j, we just need to order both Ψ_i and Ψ_j to be ascending and calculate the pairwise distance. At last, after calculating the MDPA distance between pair of nodes v_i and v_j, we define topological node similarity as follows:

$$s(v_i,v_j) = e^{-\text{MDPA}(\Psi_i, \Psi_j)}$$

3.2 Sub-graph Feature Distribution

We assume that the features of node v_i is a random vector $\hat{a}_i \in \mathbb{R}^m$, and a_i in the attribute matrix A can be considered as an observation. We are going to use the distribution of features in sub-graphs to recover the characteristic function of \hat{a}_i. Since the correlation between attributes are negatively related to the node distance [5], for a given node v_i, we consider the feature distribution in k-hop sub-graph $G_k(v_i)$. The characteristic function of \hat{a}_i in $G_k(v_i)$ is

$$\phi^{(k)}(\hat{a}_i)(t) = \mathbb{E}[e^{i\hat{a}_i} | G_k(v_i)] = \sum_{v_j \in G_k(v_i)} \Psi(v_j | v_i) e^{i\hat{a}_j}$$

The transition probability $\mathbb{P}(v_j | v_i)$ should be proportional to two factors: the similarity between nodes v_j and v_i and the influence of node v_i. We use normalized topological node similarity and normalized degree to calculate these values, respectively. The normalized topological node similarity is:

$$s(v_i, v_j) = \frac{\phi^{(k)}(\hat{a}_i, v_i)(v_j)}{\sum_{v_j \in G_k(v_i)} \phi^{(k)}(\hat{a}_i, v_i)}.$$

Based on equation 4 and Euler’s formula, we can expand equation 3 as:

$$\phi^{(k)}(\hat{a}_i)(t) = \sum_{v_j \in G_k} s(v_i, v_j) (\cos(t \hat{a}_j) + i \sin(t \hat{a}_j)).$$
By aggregating the characteristic function over all nodes, we are then able to represent the graph level characteristic as:

\[
\phi_G^{(k)}(t) = \frac{1}{|V|} \sum_{v \in G} \varphi_v^{(k)}(t).
\]

(6)

We can sample equation 6 at \(d\) evenly spaced points \(t_1, ..., t_d\) and concatenate them together to get the k-hop embedding:

\[
\chi_{G_k} = [\text{Re}(\phi_G^{(k)}(t_1)), \text{Im}(\phi_G^{(k)}(t_1))]|_{t_1, ..., t_d}
\]

(7)

Concatenating the k-hop embeddings, we can get the graph level embedding based on topological similarity as:

\[
\chi_G = [\chi_{G_1}, \chi_{G_2}, ..., \chi_{G_{\max}}]
\]

(8)

We can repeat this process to get the embedding with transition probability using normalized node influence. The final embedding \(X\) is constructed by concatenating the embeddings with transition probability using normalized topological similarity and the embedding with transition probability using normalized node influence.

3.3 Theoretical Properties

The following theorem shows that we can get the same embedding from isomorphic graphs by our method.

Theorem 3.2. Given two isomorphic graphs \(G\) and \(G'\), with the same sampling points \(t_1, t_2, ..., t_d\), we have

\[
\chi_G = \chi_{G'}
\]

(9)

Proof. According to the definition of \(\chi_G\), what we need to prove is \forall k,

\[
\phi_G^{(k)}(t) = \phi_{G'}^{(k)}(t).
\]

(10)

We introduce a matrix \(H^{(k)}\), where

\[
H^{(k)}_{ij} = \begin{cases} 1 & v_j \in G_k(v_i) \\ 0 & v_j \not\in G_k(v_i) \end{cases}
\]

(11)

Apparently, \(H^{(k)}\) is a symmetric matrix. We introduce another matrix \(S\) with entries \(S_{ij} = \tilde{s}(v_i, v_j)\). Based on equation 5 and equation 6,

\[
\phi_G^{(k)}(t) = \frac{1}{|V|} \sum_{v \in G} \varphi_v^{(k)}(t)
\]

\[
= \frac{1}{|V|} \sum_{v \in G} \sum_{v_j \in G} H^{(k)}_{ij} \tilde{s}(v_j, v) \cos(t a_j) + i \sin(t a_j))
\]

(12)

\(G\) and \(G'\) are isomorphic, which means that there exists bijection \(\Pi\) and \(\pi\) such that

\[
\Pi: G \rightarrow G', \quad v_i \mapsto v_i',
\]

\[
\pi: \{1, ..., N\} \rightarrow \{1, ..., N\}, \quad i \mapsto i'.
\]

(13)

We use \(H'\) and \(S'\) to denote the \(H\) and \(S\) matrices for \(G'\). In this way,

\[
\text{Re} \left(\phi_{G'}^{(k)}(t) \right) = \frac{1}{|V'\prime|} \sum_{v_j \in G'} \sum_{v_i' \in G'} H^{(k)}_{ij}' S'_{ij} \cos(t a_j')
\]

\[
= \frac{1}{|V|} \sum_{v \in G} \sum_{v_j \in G} H^{(k)}_{ij} \tilde{s}(v_j, v) \cos(t a_j + \theta)
\]

\[
= \frac{1}{|V|} \sum_{v \in G} \sum_{v_j \in G} H^{(k)}_{ij} \tilde{s}(v_j, v) \cos(t a_j + \theta)
\]

\[
= \text{Re} \left(\phi_G^{(k)}(t) \right)
\]

Similarly, \(\text{Im} \left(\phi_{G'}^{(k)}(t) \right) = \text{Im} \left(\phi_G^{(k)}(t) \right)\).

\[
\square
\]

In addition to preserving the embedding for isomorphic graphs, another advantage of our method is its robustness against noisy features. This property is very useful in real-world scenarios.

Theorem 3.3. Given undirected and attributed graph \(G = (V, E, A)\) and its variant \(G' = (V, E, A')\) with a noise in the features of \(v_{j_0}\), for fixed sampling points \(t_1, t_2, ..., t_d\), if \(\|a_{j_0} - a'_{j_0}\|_\infty < \frac{\epsilon}{t_d}\) and \(a_j = a'_j\) for any \(j \neq j_0\), we must have \(\|\chi_G - \chi_{G'}\|_2 < \epsilon\).

Proof. According to the definition of 2-norm, we have

\[
\|\chi_G - \chi_{G'}\|_2 \leq \max_p \left| |\chi_G^{(p)} - \chi_{G'}^{(p)}| \right|,
\]

(15)

where \(\chi_G^{(p)}\) denotes the p-th component of \(\chi_G\). We only have to prove that \(\forall k, \forall p \leq m\) (m is the dimension of attributes), \(\forall v_i \in V,\)

\[
|\text{Re} \left(\phi_{v_i}^{(k)}(t) \right) - \text{Re} \left(\phi_{v_i'}^{(k)}(t) \right)\|_p < \epsilon,
\]

(16)

\[
|\text{Im} \left(\phi_{v_i}^{(k)}(t) \right) - \text{Im} \left(\phi_{v_i'}^{(k)}(t) \right)\|_p < \epsilon
\]

(17)

Here, we just show the proof of equation 16, and the proof of equation 17 is similar. Plugging in equation 5, what we need to prove becomes

\[
| \sum_{v_j \in G_k} \bar{s}(v_i, v_j) \cos(t a_j^{(p)}) - \sum_{v_j' \in G_{k'}^{(p)}} \bar{s}(v_i', v_j') \cos(t a_j^{(p)})| < \epsilon,
\]

(18)

Note that \(G\) and \(G'\) share the same topological structure, \(\forall v_i, v_j \in V,\)

\[
\bar{s}(v_i, v_j) = \bar{s}(v_i', v_j'),
\]

(19)

where \(v_i'\) and \(v_j'\) are the corresponding nodes in \(G'\). We have

\[
LHS of (18) = | \bar{s}(v_i, v_{j_0}) \cos(t a_{j_0}^{(p)}) - \bar{s}(v_i', v_{j_0}') \cos(t a_{j_0}^{(p)}) |
\]

\[
= | \bar{s}(v_i, v_{j_0}) \cos(t a_{j_0}^{(p)}) - \cos(t a_{j_0}^{(p)}) |
\]

\[
= | \bar{s}(v_i, v_{j_0}) \sin(t a_{j_0}^{(p)} + \theta)t \cos(t a_{j_0}^{(p)}) |
\]

\[
\leq | \bar{s}(v_i, v_{j_0}) \sin(t a_{j_0}^{(p)} + \theta)t | \|a_{j_0} - a_{j_0}'\|_\infty < \epsilon
\]

(20)

The same idea can be easily applied to the embedding with transition probability using normalized node influence.

4 EXPERIMENT

In this section, we use the classic task of graph classification to evaluate our method. We first introduce the detail of each dataset used in our experiment, then compare our method to 12 well-known baselines (including the current state-of-the-art, “FEATHER” [19]), and finally provide a parameter sensitivity analysis.

4.1 Datasets

We use four publicly available social graph datasets to evaluate our method. These datasets are from the Karate Club GitHub [18]:
In this section, we study the sensitivity of our method to the choice of hyper-parameters. The hyper-parameters used in our model are:

- k_{max} (default: 5) The maximum scale of k-hop sub-graph to capture the topological similarity.
- d (default: 25) The number of sampling points.
- τ (default: 0.5) The scaling parameter of the filter kernel.

The parameter sensitivity analysis for the graph classification task on the GitHub Repos dataset is shown in Fig. 1. We tune each parameter separately while fixing the other parameters to the default value. Overall, our model is not parameter sensitive. The results are stable for all the different number of sampling points (d) and τ, and all the scales (k_{max}) larger than two.

Table 2: Average AUC scores (and standard errors) of our model vs all the baselines for the graph classification task. The baseline results are taken from Rozemberczki et al. [19].

Dataset	GitHub Repos	Reddit Threads	Twitch Egos	Deezer Egos
GL2Vec	.532±.002	.754±.001	.670±.001	.500±.001
Graph2Vec	.563±.002	.808±.001	.698±.001	.510±.001
SF	.535±.001	.819±.001	.642±.001	.503±.001
NetLSD	.614±.002	.817±.001	.630±.001	.525±.001
FGSD	.650±.002	.822±.001	.699±.001	.528±.001
Geo-Scatter	.532±.001	.800±.001	.695±.001	.524±.001
FEATHER	.728±.002	.823±.001	.719±.001	.526±.001
Mean Pool	.599±.003	.801±.002	.708±.001	.503±.001
Max Pool	.612±.013	.805±.001	.713±.001	.515±.001
Sort Pool	.614±.010	.807±.001	.712±.001	.528±.001
Top K Pool	.634±.001	.807±.001	.706±.002	.520±.003
SAG Pool	.620±.001	.804±.001	.705±.002	.518±.003
Our method	.772±.002	.835±.001	.722±.001	.538±.003

Figure 1: Parameter sensitivity for the graph classification task on the GitHub Repos dataset.

4.2 Graph classification

To better compare our model to prior work, we use the same settings specified by Rozemberczki et al. [19]: We run the graph classification task on each dataset with ten 80%/20% train-test split ratios from different random seeds (from 0 to 9) and use an off-the-shelf logistic regression model (using scikit-learn), with the default parameters and the SAGA optimizer for classification. The averaged AUC scores with corresponding standard errors are reported. For all the baselines – GL2Vec, Graph2Vec, SF, NetLSD, FGSD, Geo-Scatter, FEATHER, Mean Pool, Max Pool, Sort Pool [31], Top K Pool [9], and SAG Pool [14], we show the results reported by Rozemberczki et al. [19]. As shown in Table 2, our method outperforms all the baselines on all the datasets.

Table 1: Descriptive statistics of the four datasets used in the graph classification experiments. This table is taken from Rozemberczki et al. [19].

Dataset	Nodes	Graphs	Min	Max	Min	Max	Min	Max
GitHub Repos	12,725	10	957	0.003	0.561	2	18	
Reddit Threads	203,088	11	97	0.021	0.382	2	27	
Twitch Egos	127,994	14	52	0.038	0.967	1	2	
Deezer Egos	9,629	11	363	0.015	0.909	2	2	

4.3 Parameter Sensitivity Analysis

In this section, we study the sensitivity of our method to the choice of hyper-parameters. The hyper-parameters used in our model are:

- k_{max} (default: 5) The maximum scale of k-hop sub-graph to capture the topological similarity.
- d (default: 25) The number of sampling points.
- τ (default: 0.5) The scaling parameter of the filter kernel.

The code and data for this paper will be made available upon request.

5 CONCLUSION

In this paper, we introduced a novel framework to depict the distribution of node features in k-hop sub-graphs based on diffusion wavelets and proposed a graph-level embedding method based on the aggregation of the characteristic functions. We also provide theoretical proofs that our embedding method produces identical embeddings for isomorphic graphs and that it is robust to feature noise. We evaluated our method on the task of graph classification using four real-world networks and compared it against 12 baselines. Our method outperformed them all in all of our experiments, achieving the current state-of-the-art.

Code & Data Availability: The code and data for this paper will be made available upon request.
REFERENCES

[1] László Babai. 2016. Graph isomorphism in quasipolynomial time. In Proceedings of the fortieth annual ACM symposium on Theory of Computing. 684–697.

[2] Karsten M Borgwardt and Hans-Peter Kriegel. 2005. Shortest-path kernels on graphs. In Fifth IEEE International Conference on Data Mining (ICDM’05). IEEE, 8–pp.

[3] Sung-Hyuk Cha and Sargur N Srihari. 2002. On measuring the distance between histograms. Pattern Recognition 35, 6 (2002), 1355–1370.

[4] Hong Chen and Hisashi Koga. 2019. O2vec: Graph embedding enriched by line graphs with edge features. In International Conference on Neural Information Processing. Springer, 3–14.

[5] Edith Cohen, Daniel Delling, Thomas Fajtlowicz, and Renato F Werneck. 2014. Distance-based influence in networks. Computation and maximization. arXiv preprint arXiv:1410.6976 (2014).

[6] Nathan de Lara and Edouard Fineiu. 2018. A simple baseline algorithm for graph classification. arXiv preprint arXiv:1810.09155 (2018).

[7] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning structural node embeddings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1320–1329.

[8] Feng Gao, Guy Wolf, and Matthew Hirn. 2019. Geometric scattering for graph data analysis. In International Conference on Machine Learning, PMLR, 2122–2131.

[9] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 855–864.

[10] Thomas Gärtner, Peter Flach, and Stefan Wrobel. 2003. On graph kernels: Hardness results and efficient alternatives. In Learning theory and kernel machines. Springer, 129–150.

[11] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 855–864.

[12] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. 2011. Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis 30, 2 (2011), 129–150.

[13] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and representations of graphs. In International Conference on Machine Learning, PMLR, 1188–1196.

[14] Junhyun Lee, Jaewoo Kang. 2019. Self-attention graph pooling. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 701–710.

[15] László Babai. 2016. Graph isomorphism in quasipolynomial time. In Proceedings of the fortieth annual ACM symposium on Theory of Computing. 684–697.

[16] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 701–710.

[17] Lili Wang, Chenghan Huang, Weicheng Ma, Ying Lu, and Soroush Vosoughi. 2021. Hyperbolic node embedding for temporal networks. Data Mining and Knowledge Discovery (2021), 1–35.

[18] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20). ACM, 3125–3132.

[19] Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20). ACM, 1325–1334.

[20] Yossi Rubner, Carlo Tomasi, and Leonid J Guibas. 1998. A metric for distributions with applications to image databases. In Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271). IEEE, 59–66.

[21] Leonard FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 385–394.

[22] Saurabh Verma and Zhi-Li Zhang. 2017. Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, Vol. 32. 10147–10155.

[23] Lili Wang, Ying Lu, Weicheng Ma, Ruibo Liu, and Soroush Vosoughi. 2021. Dynamic Structural Role Node Embedding for User Modeling in Evolving Networks. ACM Trans. Inf. Syst. (2021).

[24] Lili Wang, Chenghan Huang, Weicheng Ma, Ying Lu, and Soroush Vosoughi. 2021. Hyperbolic node embedding for temporal networks. Data Mining and Knowledge Discovery (2021), 1–35.

[25] Lili Wang, Chengyan Gao, Chenhuan Huang, Ruibo Liu, Weicheng Ma, and Soroush Vosoughi. 2021. Embedding Heterogeneous Networks into Hyperbolic Space Without Meta-path. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 10147–10155.

[26] Lili Wang, Ying Lu, Weicheng Ma, Ruibo Liu, and Soroush Vosoughi. 2021. Dynamic Structural Role Node Embedding for User Modeling in Evolving Networks. ACM Trans. Inf. Syst. (2021).

[27] Lili Wang, Chenghan Huang, Weicheng Ma, Ruibo Liu, and Soroush Vosoughi. 2021. Hyperbolic node embedding for temporal networks. Data Mining and Knowledge Discovery (2021), 1–35.

[28] Lili Wang, Chenghan Huang, Weicheng Ma, Ying Lu, and Soroush Vosoughi. 2021. Embedding Node Structural Role Identity Using Stress Majorization. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[29] Lili Wang, Ying Lu, Chenghuan Huang, and Soroush Vosoughi. 2020. Embedding Node Structural Role Identity into Hyperbolic Space. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2255–2256.

[30] Pinaz Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1365–1374.

[31] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. End-to-end deep learning architecture for graph classification. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.