Physiological role of stalk lengthening in *Caulobacter crescentus*

Eric A Klein,1,7 Susan Schlimpert,2,3,† Velocity Hughes,4 Yves V Brun,4 Martin Thanbichler1,3,5,* and Zemer Gitai1,*

1Department of Molecular Biology; Princeton University; Princeton, NJ USA; 2Max Planck Institute for Terrestrial Microbiology; Marburg, Germany; 3Laboratory for Microbiology; Department of Biology; Philippus University; Marburg, Germany; 4Department of Biology; Indiana University; Bloomington, IN USA; 5LOEWE Center for Synthetic Microbiology; Marburg, Germany

†These authors contributed equally to this work.

Keywords: compartmentalization, diffusion barrier, stalk, phosphate scavenging, morphological adaptation, fitness

The Gram-negative bacterium *Caulobacter crescentus* forms a thin polar stalk, which mediates its attachment to solid surfaces. Whereas stalks remain short (1 μm) in nutrient-rich conditions, they lengthen dramatically (up to 30 μm) upon phosphate starvation. A long-standing hypothesis is that the *Caulobacter* stalk functions as a nutrient scavenging “antenna” that facilitates phosphate uptake and transport to the cell body. The mechanistic details of this model must be revisited, given our recent identification of a protein-mediated diffusion barrier, which prevents the exchange of both membrane and soluble proteins between the stalk extension and the cell body. In this report, we discuss the potential of stalks to facilitate nutrient uptake and propose additional physiological roles for stalk elongation in *Caulobacter* cells.

The Physiological Role of Stalk Diffusion Barriers

We have shown that diffusion barriers within the stalk of *Caulobacter* cells prevent exchange of proteins between the stalk and cell body as well as between intra-stalk compartments (Fig. 1B). Notably, these barriers do not segregate specific sets of proteins; rather, proteins present in the newly extruded stalk segment are coincidentally trapped behind the barrier. We therefore hypothesized that the barriers do not play a role in protein localization and instead have either a structural or physiological function. Our first hypothesis was that the Stp complexes function as bidirectional protein diffusion barriers in stalks, the propensity of disrupted membranes to reseal themselves appears to be sufficient to prevent the loss of cellular material. However, when cultivating *Caulobacter* cells in nutrient-poor media simulating their natural environment, Stp complexes emerged to provide a significant growth advantage by limiting the effective volume of the cell body once the stalk increases in length. While the discovery of intra-stalk barriers has revealed an efficient strategy for reducing the physiological cost of stalk lengthening, it does not further elucidate the role of stalk lengthening per se. In the following sections, we will discuss several potential advantages that elongation of the stalk could confer to *Caulobacter* cells in their native environment.

The Stalk as a Nutrient Antenna

A long-standing model has proposed that stalk elongation is an efficient method of increasing the cell surface available for phosphate uptake. In a purely diffusive environment, the uptake of nutrients by an attached bacterium scales with its length, rather than its surface area. Therefore, extruding a thin stalk appendage would allow for greater phosphate uptake while using far less resources than would be needed to lengthen the entire cell body. This model...
requires that the phosphate captured by the stalk ultimately ends up in the cell body where it is metabolically processed. Proteomic analysis, however, suggested that the stalk only contained the periplasmic high-affinity phosphate binding protein PstS, whereas it lacked key components of the corresponding inner-membrane phosphate transporter complex (PstCAB). Thus, the model was adapted to suggest that PstS shuttled phosphate from the stalk to the cell body, where it could be transported to the cytoplasm by PstCAB. However, this scenario is incompatible with our recent finding that PstS diffusion is restricted by the Stp diffusion barrier (Fig. 2A, red pathway). Based on calculations using published values for the periplasmic protein diffusion and PstS binding constants, we estimate that a PstS-phosphate complex can only diffuse ~0.7 μm before it dissociates (Fig. 2B). Even in the absence of protein diffusion barriers, individual PstS-phosphate complexes would thus be unlikely to deliver phosphate from the stalk to the cell body, given that stalks often measure tens of microns in phosphate-limited conditions. However, PstS may shuttle phosphate within the intra-stalk compartments and occasionally release its cargo in the vicinity of a Stp complex. Upon dissociation, phosphate could diffuse through the barrier structure into the adjacent stalk compartment where it would then be re-captured by PstS, provided that the barriers are permeable to small molecules. However, since free phosphate ions readily diffuse through the outer-membrane porins, they would probably be more likely to leave the cell rather than travel down the length of the stalk.

Although the presence of diffusion barriers rules out longitudinal shuttling of PstS-phosphate complexes as an efficient means of phosphate acquisition, it does not necessarily rule out the nutrient antenna model per se. It is possible that phosphate captured by PstS in the stalk periplasm is transported into the cytoplasmic core of the stalk, from where it could diffuse into the cell body (Fig. 2A, green pathway). A previous study disfavored this model because the PstCAB phosphate transporter complex was not detected in the stalk. However, proteomic analysis revealed that the stalk does contain PstB, the cytoplasmic ATPase of the transporter complex. Additionally, our experiments show that PstA can in fact be detected in the stalk (Fig. 2C). This discrepancy is likely due to differences in growth conditions, since PstA accumulates to higher levels under the phosphate-limiting conditions used in our analysis. Additional experiments will be required to determine whether the stalk contains fully assembled and functional PstCAB complexes. Importantly, the transport of phosphate to the stalk cytoplasm requires ATP, which would have to be (re-)generated in the stalk compartments or diffuse in from the cell body. Moreover, phosphate needs to be capable of traversing the StpABCD complex in order to reach the cell body. However, thus far, our studies have not been able to determine whether small molecules such as phosphate and ATP are compartmentalized by the StpABCD diffusion barriers. In addition, it remains to be clarified how long proteins encapsulated in the stalk remain functional, as degraded or denatured proteins cannot be replaced in intra-stalk compartments.

Stalks as Storage for Damaged Proteins

Recently, Baldi and Barral speculated that the generation of discrete stalk compartments might facilitate the asymmetric segregation of aging factors, thereby establishing a mechanism for cellular rejuvenation. Inspired by this idea, we used a fluorescently tagged version of the protein aggregate-processing small heat-shock protein IbpA, which associates with inclusion bodies, to identify the subcellular localization of damaged or misfolded proteins. In Caulobacter, IbpA (CCNA_03706) has previously been observed to form bright foci at variable positions in cells grown in high-phosphate medium. Our analyses showed that this localization pattern was unchanged after exposing wild-type or diffusion barrier-deficient cells to a heat-shock (Fig. 2D). In particular, we did not observe any aggregates in the stalk, suggesting that the stalk and its compartmentalization from the cell body are unlikely to participate in segregating inclusion bodies. However, we cannot exclude an effect on hypothetical aging factors that might not be incorporated into inclusion bodies.

Caulobacter as an Expert in Fluid Mechanics

The holdfast at the tip of the Caulobacter stalk promotes attachment to surfaces. One disadvantage for surface attached cells is the limited nutrient flux in that environment. Under laminar flow, the fluid velocity is zero at the surface (referred to as the no-slip boundary condition), which means that nutrients can only reach cells on the surface by passive diffusion, which is far less efficient than convective transport. As previously proposed, by
lengthening the stalk, *Caulobacter* cells may be distancing themselves from the surface in order to increase the mass flux of nutrients to the cell body. Indeed, within the boundary layer of fluid flow (roughly the first 1 mm from the surface) the fluid velocity increases linearly. While the velocity increases linearly, the flux of nutrients increases at an even faster rate, as shown in the seminal work by Berg and Percell.12 Conservative estimations allow us to calculate that stalk elongation from 1 μm to 10 μm would provide a ~10% increase in nutrient flux. Therefore, *Caulobacter* may use stalk elongation to gain a nutrient scavenging advantage (Fig. 2E).
The Tallest Tree in the Forest

The ecology of \textit{Caulobacter}’s freshwater environment is not well defined. We do not know which species, if any, co-colonize surfaces with \textit{Caulobacter}. The previous model relating elongated stalks to increased nutrient flux focused on the uptake by isolated cells. However, in an ecological environment where \textit{Caulobacter} cells may be competing with other surface-associated species, this height discrepancy may offer a significant growth advantage (Fig. 2F). Whether in the presence or absence of flow, the taller \textit{Caulobacter} cells would have greater access to environmental nutrients relative to the other co-colonizing organisms. Moreover, stalk elongation may help elevate \textit{Caulobacter} cells to the surface of a multi-species biofilm, thereby facilitating the release of motile swarmer cells into the surrounding aqueous environment. It is important to note that there are relatives of \textit{Caulobacter}, such as \textit{Asticacaecilium biprosthecum}, whose stalks elongate in nutrient-limiting conditions although they do not feature an adhesive holdfast at their tip. Because in these species stalk length does not affect the spacing between the cell body and the attached surface, their stalks must have a physiological role that is, at least in part, different from that in \textit{Caulobacter} cells. They may, for instance, function as nutrient scavenging antennae or help increase cell size in order to prevent ingestion by predatory protozoa.\(^{13}\)

Cell Shape as a Selective Advantage

Bacteria exist in an extraordinary variety of shapes and sizes,\(^{14}\) but very little is known about how particular shapes provide a selective advantage. Stalk formation is common among a variety of \(\alpha\)-proteobacteria and is also observed in evolutionary distant lineages such as planctomycetes and verrucomicrobia. For \textit{Caulobacter}, the relationship between phosphate availability and stalk length has been known for decades, yet the evolutionary advantage of stalk elongation has remained elusive. Our recent identification of an intra-stalk diffusion barrier has provided insight into the physiology of the \textit{Caulobacter} stalk. In the future, we hope to test the proposed hypotheses in order to clarify the physiological role of this peculiar structure and better understand the correlation between bacterial cell shape and fitness.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work was supported by the Max Planck Society, the Human Frontier Science Program (Investigator Grant RGY10069/2008-C to ZG and MT), the National Institutes of Health (Director’s New Innovator Award DP2OD004389 to ZG and grant GM51986 to YVB) and the National Institute of General Medical Sciences (NRSA postdoctoral fellowship F32GM906842 to EAK).

References

1. Curtis PD, Brun YV. Getting in the loop: regulation of development in \textit{Caulobacter crescentus}. Microbiol Mol Biol Rev 2010; 74:13-41; PMID:20197497; http://dx.doi.org/10.1128/MMBR.00040-09
2. England JC, Perchuk BS, Laub MT, Gober JW. Global regulation of gene expression and cell differentiation in \textit{Caulobacter crescentus} in response to nutrient availability. J Bacteriol 2010; 192:819-33; PMID:19948804; http://dx.doi.org/10.1128/JB.01240-09
3. Gonin M, Quadrus EM, O’Donnell D, Maddock J, Brun YV. Regulation of stalk elongation by phosphate in \textit{Caulobacter crescentus}. J Bacteriol 2000; 182:337-47; PMID:10629178; http://dx.doi.org/10.1128/JB.182.2.337-347.2000
4. Schmidt JM. Stalk elongation in mutants of \textit{Caulobacter crescentus}. J Gen Microbiol 1968; 53:291-8; http://dx.doi.org/10.1099/00221287-53-3-291
5. Schlimpert S, Klein EA, Biegel A, Hughes V, Kahnt J, Bolte K, et al. General protein diffusion barriers create compartments within bacterial cells. Cell 2012; 151:1270-82; PMID:23201141; http://dx.doi.org/10.1016/j.cell.2012.10.046
6. Wagner JK, Satyeshgur S, Sharin LA, Reilly JP, Brun YV. A nutrient uptake role for bacterial cell envelope extensions. Proc Natl Acad Sci USA 2008; 105:3076-81; PMID:18287048; http://dx.doi.org/10.1073/pnas.0708931105
7. Sochacki KA, Shkel IA, Record MT, Weisshaar JC. Protein diffusion under osmotic stress. Biophys J 2011; 100:22-31; PMID:21909653; http://dx.doi.org/10.1016/j.bpj.2010.11.044
8. Salins LL, Deo SK, Daunert S. Phosphate binding protein as the biorecognition element in a biosensor for phosphate. Sens Actuators B Chem 2004; 97:81-9; PMID:14997877; http://dx.doi.org/10.1016/j.snb.2003.07.019
9. Baldis S, Baral Y. Bacterial border fence. Cell 2012; 151:1159-60; PMID:23217701; http://dx.doi.org/10.1016/j.cell.2012.11.035
10. Lindner AR, Madden R, Demeure A, Stewart EJ, Taddei F. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci USA 2008; 105:3076-81; PMID:18287048; http://dx.doi.org/10.1073/pnas.0708931105
11. Werner JN, Chen EY, Guberman JM, Zippilli AR, Irgon JJ, Giza Z. Quantitative genome-scale analysis of protein localization in an asymmetric bacterium. Proc Natl Acad Sci USA 2009; 106:7858-63; PMID:19416866; http://dx.doi.org/10.1073/pnas.0901781106
12. Berg HC, Purcell EM. Physics of chemoreception. Biophys J 1977; 20:193-219; PMID:931982; http://dx.doi.org/10.1016/S0006-3495(77)85544-6
13. Bianchi M. Unusual bloom of star-like prosthecate bacteria and filaments as a consequence of grazing pressure. Microb Ecol 1989; 17:137-41; http://dx.doi.org/10.1007/BF02181848
14. Young KD. The selective value of bacterial shape. Microbiol Mol Biol Rev 2006; 70:660-703; PMID:16959965; http://dx.doi.org/10.1128/MMBR.00001-06
15. Pointdexter JS. Selection for nonbuoyant morphologically mutants of \textit{Caulobacter crescentus}. J Bacteriol 1978; 135:1141-5; PMID:690072
16. Ewing M, Agabian N. Envelope-associated nucleoid from \textit{Caulobacter crescentus} stalked and swarmer cells. J Bacteriol 1977; 132:294-301; PMID:334726

Disclosures and Potential Conflicts of Interest

No potential conflicts of interest were disclosed.