SOME RESULTS ON LOCAL COHOMOLOGY MODULES

AMIR MAFI

Abstract. Let R be a commutative Noetherian ring, a an ideal of R, and let M be a finitely generated R-module. For a non-negative integer t, we prove that $H^t_a(M)$ is a-cofinite whenever $H^t_a(M)$ is Artinian and $H^i_a(M)$ is a-cofinite for all $i < t$. This result, in particular, characterizes the a-cofiniteness property of local cohomology modules of certain regular local rings. Also, we show that for a local ring (R, m), $f - \text{depth}(a, M)$ is the least integer i such that $H^i_a(M) \cong H^i_m(M)$. This result in conjunction with the first one, yields some interesting consequences. Finally, we extend the non-vanishing Grothendieck’s Theorem to a-cofinite modules.

1. Introduction

Throughout this paper, we assume that R is a commutative Noetherian ring, a an ideal of R, and that M is an R-module. Let t be a non-negative integer. Grothendieck [4] introduced the local cohomology modules $H^t_a(M)$ of M with respect to a. He proved their basic properties. For example, for a finitely generated module M, he proved that $H^t_m(M)$ is Artinian for all t, whenever R is local with maximal ideal m. In particular, it is shown that $\text{Hom}_R(R/m, H^t_m(M))$ is finitely generated. Later Grothendieck asked in [5] whether a similar statement is valid if m is replaced by an arbitrary ideal. Hartshorne gave a counterexample in [6], where he also defined that an R-module M (not necessarily finitely generated) is a-cofinite, if $\text{Supp}_R(M) \subseteq V(a)$ and $\text{Ext}^t_R(R/a, M)$ is a finitely generated R-module for all t. He also asked when the local cohomology modules are a-cofinite. In this regard, the best known result is that when either a is principal or R is local and $\text{dim } R/a = 1$, then the modules $H^t_a(M)$ are a-cofinite. These results are proved in [8] and [3], respectively. Melkersson [15] characterized those Artinian modules which are a-cofinite. For a survey of recent developments on cofiniteness properties of local cohomology, see Melkersson’s interesting article [16]. One of the aim of this note is to show that,
for a finitely generated module M, the module $H^i_a(M)$ is a-cofinite whenever the modules $H^i_a(M)$ are a-cofinite for all $i < t$ and $H^t_a(M)$ is Artinian. This result, in particular, characterizes the a-cofiniteness property of local cohomology modules of certain regular local rings (see Remark 2.3(ii)). Next, we assume that R is local with maximal ideal m. We prove that $f - \text{depth}(a, M)$, which was introduced in [14], is the least integer i such that $H^i_a(M) \not\cong H^i_m(M)$. This result together with our first mentioned result, in turn yields some interesting consequences. Finally, we extend the non-vanishing Grothendieck’s Theorem for a-cofinite R-modules.

2. The results

The following theorem describes the behaviour of the cofiniteness and Artinian property on local cohomology modules.

Theorem 2.1. Let M be finitely generated such that $H^i_a(M)$ is Artinian and that $H^i_a(M)$ is a-cofinite for all $i < t$. Then $H^i_a(M)$ is a-cofinite.

Proof. In view of [16, Proposition 4.1], it is enough to prove that $\text{Hom}_R(R/a, H^j_a(M))$ is of finite length. To prove this, by [18, Theorem 11.38], we consider the Grothendieck spectral sequence

$$E_2^{i,j} = \text{Ext}^i_R(R/a, H^j_a(M)) \Rightarrow \text{Ext}^{i+j}(R/a, M).$$

Since $E_2^{0,t} \cong E_\infty^{0,t}$ for r sufficiently large, $E_\infty^{0,t}$ is isomorphic to a subquotient of $\text{Ext}^i_R(R/a, M)$ and, furthermore, $\ker d_{r-1}^{0,t} \cong E_\infty^{0,t}$ for all $r \geq 3$, where $\ker d_{r-1}^{0,t} = \ker(E_r^{0,t} \longrightarrow E_{r-1}^{r-1,t-r+2})$, we can deduce that $\ker d_{r-1}^{0,t}$ is finitely generated for r sufficiently large. Next, for all $r \geq 3$, we have the exact sequence

$$0 \longrightarrow \ker d_{r-1}^{0,t} \longrightarrow E_r^{0,t} \longrightarrow E_{r-1}^{r-1,t-r+2}.$$

Therefore, since $E_{r-1}^{r-1,t-r+2}$ is a subquotient of $E_2^{r-1,t-r+2}$, our hypothesis give us that $E_{r-1}^{0,t}$ is finitely generated for r sufficiently large. continuing in this fashion, we see that $E_2^{0,t}$ is finitely generated; and hence it is of finite length. □

The following corollary is immediate.

Corollary 2.2. Let M be finitely generated. Suppose that the local cohomology module $H^i_a(M)$ is a-cofinite for all $i < t$ and that it is Artinian for all $i \geq t$. Then $H^i_a(M)$ is a-cofinite for all i.

Remarks 2.3. (i) There is an example in [7, Example 3.4] which shows that $H^t_a(R)$ is not a-cofinite for $t = \text{grade}(a)$. However, by the above Theorem, $H^t_a(R)$ is a-cofinite, whenever it is Artinian.

(ii) Let (R, \mathfrak{m}) be a regular local ring of characteristic $p(>0)$ and of dimension n. Suppose that R/\mathfrak{a} is a generalized Cohen-Macaulay local ring of dimension $d(>0)$. Then, by [20, Corollary 1.7] and Theorem 2.1, the local cohomology modules $H^i_a(R)$ are a-cofinite if and only if $H^{n-d}_a(R)$ is a-cofinite.

Let R be a local ring with maximal ideal \mathfrak{m} and let M be a finitely generated. Following [9], a sequence x_1, \ldots, x_n of elements of R is said to be an M-filter regular sequence if, for all $p \in \text{Supp}(M) \setminus \{\mathfrak{m}\}$, the sequence $x_1/1, \ldots, x_n/1$ of elements of R_p is a poor M_p-regular sequence. For an ideal \mathfrak{a} of R, the $f -$ depth of \mathfrak{a} on M is defined as the length of any maximal M-filter regular sequence in \mathfrak{a}, denoted by $f -$ depth(\mathfrak{a}, M). Here, when a maximal M-filter regular sequence in \mathfrak{a} does not exist, we understand that the length is ∞. For some basic applications of these sequences see [2].

Lemma 2.4. Let (R, \mathfrak{m}) be a local ring and suppose that M is finitely generated. Then $f -$ depth$(\mathfrak{a}, M) = \min\{i \in \mathbb{N}_0 : \text{Supp}_R H^i_a(M) \not\subseteq \{\mathfrak{m}\}\}$.

Proof. Let x_1, \ldots, x_n be a maximal M-filter regular sequence in \mathfrak{a}. If there exists $p \in \text{Supp}_R(H^i_a(M)) \setminus \{\mathfrak{m}\}$ for some $0 \leq i \leq n-1$, then $x_1/1, \ldots, x_n/1$ is an M_p-regular sequence contained in $\mathfrak{a}R_p$. Hence $H^i_a(M)_p = 0$, which is a contradiction. It therefore follows that

$$f -$ depth$(\mathfrak{a}, M) \leq \min\{i \in \mathbb{N}_0 : \text{Supp}_R H^i_a(M) \not\subseteq \{\mathfrak{m}\}\}.$$

Next, by assumption on x_1, \ldots, x_n, there exists $p \in \text{Ass}_R(M/(x_1, \ldots, x_n)M) \setminus \{\mathfrak{m}\}$ with $\mathfrak{a} \subseteq p$. Now $p \in \text{Ass}_R(\text{Hom}_R(R/\mathfrak{a}, M/(x_1, \ldots, x_n)M))$; and hence $p \in \text{Ass}_R(\text{Ext}^n_R(R/\mathfrak{a}, M)) \setminus \{\mathfrak{m}\}$. Therefore, by [11, Proposition 1.1], $p \in \text{Supp}(H^n_a(M)) \setminus \{\mathfrak{m}\}$, and this completes the proof. □

Theorem 2.5. (see [9, Theorem 3.10] and [14, Theorem 3.1]) Let (R, \mathfrak{m}) be a local ring and suppose that M is finitely generated. Then $f -$ depth$(\mathfrak{a}, M) = \min\{i \in \mathbb{N}_0 : H^i_a(M) \not\cong H^i_m(M)\}$.
Proof. If $\text{Supp}_R(M/aM) \subseteq \{m\}$, then $\sqrt{a + \text{Ann}(M)} = m$; and hence $H^i_a(M) \cong H^i_m(M)$ for all $i \geq 0$. Therefore $\min\{i \in \mathbb{N}_0 : H^i_a(M) \not\cong H^i_m(M)\} = \infty = f - \text{depth}(a, M)$; and the result follows. So, we may assume that $\text{Supp}_R(M/aM) \not\subseteq \{m\}$. Let $t = f - \text{depth}(a, M)$ and let x_1, \ldots, x_t be an M-filter regular sequence in a. Then, by [19, Lemma 1.19], $H^i_a(M) \cong H^i_{(x_1, \ldots, x_t)}(M) \cong H^i_m(M)$, for all $i < t$. On the other hand, by Lemma 2.4, the R-module $H^t_m(M)$ is not isomorphic with $H^t_m(M)$. It therefore follows, by [9, Theorem 3.10].

Remarks 2.6. Let M be finitely generated. Then
(i) in view of Theorem 2.1 and Theorem 2.5, it is clear that if (R, m) is a local ring, then $H^i_a(M)$ is a-cofinite for all i less than $f - \text{depth}(a, M)$;
(ii) it follows immediately from [9, Theorem 3.10] and Theorem 2.5 that if (R, m) is local and $H^i_a(M)$ is Artinian for all $i < t$, then $H^i_a(M) \cong H^i_m(M)$ for all $i < t$.

The following lemma is needed in the proof of the next theorem. Note that if we replace a by the zero ideal in the lemma, then the Grothendieck’s Theorem [4, p.88] immediately follows.

Lemma 2.7. Let M be a-cofinite. Then for every maximal ideal m of R and for all t, $H^t_m(M)$ is Artinian.

Proof. Since $H^t_m(M)$ is an a-torsion module, by [13, Theorem 1.3], it is enough to prove $0 : H^t_m(M)$ a is Artinian. Let $\Phi(-)$ denote the composite functor $\text{Hom}_R(R/a, H^0_m(-))$. We get a spectral sequence arising from the composite functor as:

$$E^{i,j}_2 = \text{Ext}^i_R(R/a, H^j_m(M)) \Longrightarrow (R^{i+j}\Phi)(M).$$

Now, we use induction on j (with $0 \leq j \leq t$) to show that $E^{0,j}_2$ is Artinian. Let $0 \leq j < t$ and suppose that the result has been proved for smaller values of j. (Note that the case $j = 0$ was proved in [15, Corollary 1.8].) We can apply [15, Theorem 1.9] and use a similar argument as in the proof of Theorem 2.1, to see that $\ker d^{0,j+1}_{r-1}$ is Artinian for r sufficiently large. On the other hand, by induction, $E^{r-1,j-r+3}_{r-1}$ is
Artinian. It now follows that $E_{2}^{0,j+1}$ is Artinian. This complete the inductive step. In particular $E_{2}^{0,t}$ is Artinian. □

In the next result, we will use the concept of attached prime ideals. For more details in this subject the reader is referred to [10] or the appendix to §6 in [12].

Theorem 2.8. Let (R, \mathfrak{m}) be a local ring and let M be a module of dimension d. If $H_{\mathfrak{m}}^{d}(M)$ is an Artinian module, then if p is any of its attached prime ideals, one has $\dim R/p \geq d$.

Proof. From the right exactness of $H_{\mathfrak{m}}^{d}(-)$ on modules of dimension $\leq d$, we get $H_{\mathfrak{m}}^{d}(M/pM) \cong H_{\mathfrak{m}}^{d}(M)/pH_{\mathfrak{m}}^{d}(M)$, which is $\neq 0$, since p is an attached prime ideal of $H_{\mathfrak{m}}^{d}(M)$. But M/pM is a module over R/p. Therefore $\dim R/p \geq d$. □

In the following theorem, which establishes the non-vanishing Grothendieck Theorem for a-cofinite modules.

Theorem 2.9. Let (R, \mathfrak{m}) be a local ring and let M be a non-zero a-cofinite R-module of dimension n. Then $H_{\mathfrak{m}}^{n}(M) \neq 0$.

Proof. Firstly note that, in view of the hypotheses, $0 :_{M} a$ is a finitely generated R-module of dimension n. Now, we prove the theorem by induction on $n(\geq 0)$. If $n = 0$, then $0 :_{M} a$ is Artinian; and hence, by [13, Theorem 1.3], M is Artinian. Therefore $H_{\mathfrak{m}}^{0}(M) = M \neq 0$.

Suppose, inductively, that $n \geq 1$ and the result has been proved for $n - 1$. We may assume that M is \mathfrak{m}-torsion free. Also, by [15, Corollary 1.4], we may assume that $\text{Ass}(M)$ is a finite set. Then, there exists a non-zero divisor $x \in \mathfrak{m}$ on M. Suppose the contrary that $H_{\mathfrak{m}}^{n}(M) = 0$. Then, for any such x, we can consider the exact sequence $0 \rightarrow M \xrightarrow{x} M \rightarrow M/\mathfrak{m}M \rightarrow 0$ to see that $H_{\mathfrak{m}}^{n-1}(M)/xH_{\mathfrak{m}}^{n-1}(M) \cong H_{\mathfrak{m}}^{n-1}(M/\mathfrak{m}M)$,

$n - 1 = \dim(0 :_{M} a)/x(0 :_{M} a) \leq \dim(0 :_{M/\mathfrak{m}M} a) = \dim M/\mathfrak{m}M \leq n - 1$, and that, by [15, Remark(a)], $M/\mathfrak{m}M$ is a-cofinite. Therefore, by induction hypothesis, $H_{\mathfrak{m}}^{n-1}(M)/xH_{\mathfrak{m}}^{n-1}(M) \neq 0$. Note that, by Lemma 2.7, $H_{\mathfrak{m}}^{n-1}(M)$ is Artinian. If $\mathfrak{m} \notin \text{Att} H_{\mathfrak{m}}^{n-1}(M)$, then, for any $y \in \mathfrak{m} \setminus \bigcup_{p \in \text{Att} H_{\mathfrak{m}}^{n-1}(M)} p \bigcup_{q \in \text{Ass}(M)} q$,
we have $H^{n-1}_m(M) = yH^{n-1}_m(M)$, which is a contradiction. Thus $m \in \text{Att } H^{n-1}_m(M)$.

Let $\text{Att } H^{n-1}_m(M) = \{p_1, \ldots, p_t, m\}$ and let $z \in m \setminus \bigcup_{i=1}^t p_i \bigcup_{q \in \text{Ass}(M)} q$. Then, by the above argument, we have $H^{n-1}_m(M)/zH^{n-1}_m(M) \cong H^{n-1}_m(M/zM)$. Hence, by [17, Proposition 5.2], $\text{Att } H^{n-1}_m(M/zM) = \text{Supp}(R/(zR)) \cap \text{Att } H^{n-1}_m(M) = \{m\}$. Therefore, by [1, Corollary 7.2.12], $H^{n-1}_m(M/zM)$ has finite length. If we show that $H^{n-1}_m(M/zM) = 0$, then we achieved at the required contradiction. To this end, first let $n = 1$. Then we have the exact sequence

$$0 \to H^0_m(M) \stackrel{\cdot z}{\longrightarrow} H^0_m(M) \to H^0_m(M/zM) \to H^1_m(M).$$

By our hypothesis $H^0_m(M) = 0 = H^1_m(M)$; and so $H^0_m(M/zM) = 0$. Now, we assume that $n > 1$. Then, Theorem 2.8 implies that attached prime ideals of $H^{n-1}_m(M/zM)$ is empty; and so $H^{n-1}_m(M/zM) = 0$. □

Acknowledgment: The author is deeply grateful to the referee for his or her careful reading of the manuscript. The author also thank the referee for proposing Theorem 2.8.

References

[1] M. P. Brodmann and R. Y. Sharp, *Local cohomology-an algebraic introduction with geometric applications*, Cambridge University Press, Cambridge, 1998.
[2] N. T. Cuong, P. Schenzel and N. V. Trung, *Verallgemeinerte Cohen-Macaulay-Moduln*, Math. Nachr. 85(1978), 57-73.
[3] D. Delfino and T. Marley, *Cofinite modules and local cohomology*, J. Pure Appl. Alg. 121(1997), 45-52.
[4] A. Grothendieck, *Local cohomology*, Lecture Notes in Math., vol 41, Springer, Berlin, 1967.
[5] A. Grothendieck, *Cohomologie locale des faisceaux et théorèmes Lefshetz cohérents locaux et globaux*, Noth-Holland, Amsterdam, 1968.
[6] R. Hartshorne, *Affine duality and cofiniteness*, Inven. Math. 9(1970), 145-164.
[7] C. Huneke and J. Koh, *Cofiniteness and vanishing of local cohomology modules*, Math. Proc.Camb. Phil. Soc. 110(1991), 421-429.
[8] K. I. Kawasaki, *Cofiniteness of local cohomology modules for principle ideals*, Bull. London Math. Soc. 30(1998), 241-246.
[9] R. Lü and Z. Tang, *The f-depth of an ideal on a module*, Proc. Amer. Math. Soc. 130(7)(2001), 1905-1912.
[10] I. G. Macdonald, *Secondary representations of modules over a commutative ring*, Sympos. Math., vol. 11, Academic Press, London and New York, 1973, pp. 23-43.
[11] T. Marley, The associated primes of local cohomology modules over rings of small dimension, Manuscripta Math. 104(4)(2001), 519-525.

[12] H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986.

[13] L. Melkersson, On asymptotic stability for sets of prime ideals connected with the powers of an ideal, Math. Proc. Camb. Phil. Soc. 107(1990), 267-271.

[14] L. Melkersson, Some applications of a criterion for Artinianness of a module, J. Pure Appl. Alg. 101(3)(1995), 291-303.

[15] L. Melkersson, Properties of cofinite modules and applications to local cohomology, Math. Proc. Camb. Phil. Soc. 125(3)(1999), 417-423.

[16] L. Melkersson, Modules cofinite with respect to an ideal, J. Alg. 285(2)(2005), 649-668.

[17] L. Melkersson and P. Schenzel, The co-localization of an artinian module, Proc. Edinburgh Math. Soc. 38(2)(1995), 121-132.

[18] J. Rotman, An introduction to homological algebra, Academic Press, Orlando, 1979.

[19] P. Schenzel, On the use of local cohomology in algebra and geometry, Lectures at the summer school of commutative algebra and algebraic geometry, Ballaterra, 1996, Birkhäuser Verlag, 1998.

[20] R. Y. Sharp, The Frobenius homomorphism, and local cohomology in regular local rings of positive characteristic, J. Pure Appl. Alg. 71(1991), 313-317.

A. Mafi, Arak University, Beheshti St., P.O. Box:879, Arak, Iran
E-mail address: a-mafi@araku.ac.ir