High Dose Allicin with Vitamin C Improves EPCs Migration from the Patient with Coronary Artery Disease

Yudi Her Oktaviono1,*, Muhammad Rafdi Amadis1, Makhyan Jibril Al-Farabi1,2

ABSTRACT
Endothelial Progenitor Cells (EPCs) have an important role in endothelial dysfunction repairment through neovasculogenesis and cardiac myocytes regeneration. However, EPCs migration is greatly reduced in the patient with Coronary Artery Disease (CAD). Allicin and Vitamin C are hypothesized to improve EPCs migration due to its antioxidant properties. **Objective:** To investigate the effect of Allicin and its combination with Vitamin C in EPCs migration of CAD patients. **Material and Method:** Mononuclear cells were isolated from CAD patients and cultured on fibronectin-coated plates with colony-forming unit Hill medium. The cells were divided into untreated (control), Allicin treatment (dose 100 mcg/ml, 200 mcg/ml, 400 mcg/ml), and each dose of Allicin combined with 250 mcg/mL of Vitamin C. EPCs migration was assessed with Transwell Migration Assay Kit and evaluated by using statistical tests. **Results:** This research shows that EPC migration was significantly higher in the treatment. Allicin at all dose (dose 100 mcg/ml, 200 mcg/ml, 400 mcg/ml) and its combination with 250 mcg/mL of vitamin C compared to untreated group (p<0.05). Allicin increase EPCs migration in a dose-dependent manner. However, the only combination of 400 mcg/ml Allicin with 250 mcg/mL of vitamin C which has significantly higher EPCs migration compared to Allicin treatment alone. **Conclusion:** Allicin improves EPCs migration in a dose-dependent manner. Improvement of the migration only observed on the Allicin dose 400 mcg/ml with Vitamin C.

Key words: Allicin, Antioxidant, Endothelial Progenitor, Migration.

INTRODUCTION
Coronary Artery Disease is the leading cause of cardiovascular death worldwide and responsible for 17.3 million deaths in 2013.1,2 In 2030, it is projected that CAD in the United States reached 49.3%.3 In Indonesia, the Ministry of Health confirmed that CAD caused 12.9% of deaths from non-communicable disease.4 Early-stage of CAD is marked by endothelial injury which could progress to atherosclerosis.5 Endothelial injury repair requires colonization of EPCs derived from blood marrow-derived progenitor cells.6 Previous studies have shown the benefit of EPCs to repair damaged endothelial by differentiation into the mature endothelial cell to induce vasculogenesis. However, EPCs migration, proliferation rate, adherence capability and survival rate is greatly decreased in the patient with CAD.7,8 Several pathways were involved in the impairment of EPCs, including inflammation and oxidative stress.9 Emerging evidence showed that the decrease of EPCs number in patients with CAD is related to the long term exposure to pro-inflammatory cytokines and oxidative stress.10

Recently, antioxidants receive more attention as conjunctive therapy in cardiovascular diseases. Allicin is a volatile oil that commonly found in garlic, onion, and shallot which able to prevent platelet aggregation, cardiac hypertrophy, hyperlipidemia and hyperglycemia.11 Allicin also acts as an antioxidant which reduces circulating ROS and scavenging free radicals in cardiac myocyte by 50% compared with control both in vitro and in vivo.12 The previous study showed that antioxidant such as vitamin C has a beneficial effect as an antioxidant in CAD patient to prevent endothelial dysfunction and slow down the atherosclerosis progression through increasing glutathione level in the body which reduce free radicals.13,14 An antioxidant may increase EPCs proliferation through multiple pathways. Combination of several antioxidant such as Vitamin C and Vitamin E has been proven to synergically improve EPCs proliferation.14 Various research has studied natural sources as supplementary therapy for CAD, however, there is no study that evaluates the efficacy of Allicin and its combination vitamin C. Hence, this research evaluates the effect of Allicin and vitamin C in EPCs migration from CAD patients.

MATERIAL AND METHODS
Allicin and Vitamin C preparation
Garlic extract contains Allicin (ChemFaces ®) 98% was dissolved in dimethyl sulfoxide (DMSO). Vitamin C powder (Sigma Aldrich, USA) was dissolved in double-distilled water and diluted with culture medium to acquire the dose of 250 mcg/mL.

Sample criteria
The blood sample was acquired from eight CAD patients in Dr Soetomo General Hospital who fulfilled the inclusion criteria, which are: male, aged

Cite this article: Oktaviono YH, Amadis MR, Al-Farabi MJ. High Dose Allicin with Vitamin C Improves EPCs Migration from the Patient with Coronary Artery Disease. Pharmacog J. 2020;12(2): 232-5.
40-69, stable angina, and coronary angiography showed 50% stenosis of left main coronary artery or >70% of other coronary arteries. Patients with the history of percutaneous coronary intervention, coronary artery bypass grafting, acute myocardial infarct, diabetes, smoking and anemia were excluded. This research has been approved by the Health Research Ethics Committee of Dr Soetomo General Hospital, Surabaya with letter number 1117/KEPK/IV/2019. Written consent was obtained from the recruited patients and all personal details were omitted.

EPC isolation and culture

Human EPCs were acquired from Peripheral Blood Mononuclear Cells (PBMCs) isolation by using Ficoll Histopaque 1077. 5x10^5 cells/mL PBMCs were distributed into fibronectin-coated 6-well plate dish with basal stemline II hematopoietic stem cell expansion medium (Sigma-Aldrich, USA) supplemented with 15% fetal bovine serum and 40 ng/mL vascular endothelial growth factor. The culture was incubated at 37 °C and CO2 level at 5% for 48 hours. Then, the non-adherent cells were removed, and fresh medium was added. In order to confirm the EPCs, the cultured cells were stained with FITC-labeled anti-human CD34 antibody clone 581 (BioLegend, USA) within two weeks and documented with immunofluorescence microscopy.

EPC migration assay

EPC migration was calculated by using the Boyden chamber assay method. Isolated EPCs were detached by using Trypsin EDTA solution (Sigma-Aldrich, USA) and then seed it in the upper chamber with basal media. Meanwhile, the lower chamber was supplemented with basal media and chemoattractant. The culture was incubated at 37 °C for 24 hours. The non-migratory EPCs on the upper chamber were removed by PBS. Meanwhile, the migratory EPCs below the upper chamber were fixed with 3.7% paraformaldehyde and permeabilized with methanol. Then, migrated EPCs were stained with Giemsa and calculated.

Statistical analysis

Statistical analysis on the data was carried out using SPSS Statistic 25.0 program (IBM Corp, USA). Data were considered significantly different if p<0.05. Data were presented as mean ± SD and evaluated for distribution, and then being compared by using an appropriate test.

RESULTS

Research subjects demography

The blood samples were acquired from eight CAD patients on antihypertensive and statin treatment. Table 1 below shows the demography of the subjects.

Variable	Mean ± SD
Age (year)	54.5 ± 4.31
Height (cm)	168.0 ± 1.3
Body Mass Index (kg/m²)	25.39 ± 2.13
Systolic Blood Pressure (mmHg)	137.5 ± 24.35
Diastolic Blood Pressure (mmHg)	80.0 ± 7.56
Heart rate (beats/min)	86 ± 8.68
Total Cholesterol (mg/dL)	200.5 ± 74.75
Triglyceride (mg/dL)	97 ± 11.64
LDL (mg/dL)	145 ± 61.11
HDL (mg/dL)	35 ± 7.64
LVEF (%)	53.5 ± 4.11

LDL: Low-Density Lipoprotein, HDL: High-Density Lipoprotein, LVEF: Left Ventricle Ejection Fraction

Allicin and Vitamin C improved EPCs migration

EPCs were confirmed on the presence of the CD34 on immunofluorescence as seen below:

From Figure 1, it can be seen that EPCs presence was confirmed through the positive CD34 expression. Inverted microscope view showed spindle-shaped cells which also characterize EPCs.

As shown in Figure 2, EPCs migration was significantly higher treated with Allicin dose of 100 mcg/mL, 200 mcg/mL, and 400 mcg/mL compared to untreated EPCs (p<0.05, ANOVA). EPCs migration was improved in a dose-dependent manner on the treatment with Allicin.

As shown in Figure 3, EPCs migration was significantly higher treated with Allicin dose of 100 mcg/mL, 200 mcg/mL, and 400 mcg/mL in combination with 250 mcg vitamin C compared to untreated EPCs (p<0.05, ANOVA). It also can be seen that Allicin combined with vitamin C also shown to improve EPCs migration in a dose-dependent manner.

As shown in Figure 4, it can be seen that a significant difference was only observed on Allicin with the dose of 400 mcg/mL combined with vitamin C dose 250 μg/mL compared to Allicin dose 400 mg alone (p<0.05). No significant difference was found on the combination of Allicin at a lower dose (100 mcg/mL and 200 mcg/mL) with vitamin C dose 250 mcg/mL.

DISCUSSION

Patient with unstable coronary artery disease is known to have a 50% lower EPCs number than normal patient, which results in slower endothelial regeneration. Impaired activity of EPCs in the blood is associated with cardiovascular risk factors because it reflects impaired regenerative potential. In this research, Allicin at a dose of 100 mcg/mL, 200 mcg/mL, and 400 mcg/mL was shown to improve EPCs migration in a dose-dependent manner compared to the untreated group. Similarly, Allicin has been proven to enhance the proliferation and migration of cardiac microvascular endothelial cells. While the exact mechanism of the increasing of EPCs migration on Allicin treatment is yet to be investigated, it is suggested that antioxidant pathways may play significant roles. Allicin has been shown to have an antioxidant effect and have scavenging ability. Allicin with its antioxidant capability has been shown able to increase the availability of eNOS, NO, and trigger growth factor such VEGF, SDF-1 and IGF production which are required for EPCs proliferation. Increasing level of NO also increase the level of Vasodilator-stimulated phosphoprotein (VASP) which plays role in the actin elongation which improves EPCs migration. Allicin also act as H₂S donor which can interact with Cys1045 dan Cys1024.
Mitogen-Activated Protein Kinase (MAPK) activation. Increasing MAPK activation will be followed by improved EPCs proliferation and migration. This suggests that treatment with Allicin combined with vitamin C may have multiple mechanism to improve EPCs migration. However, in this research, the lower dose of Allicin (100 and 200 mcg/mL) was failed to synergically improve EPCs migration while the higher dose of Allicin of 400 mcg/mL shows significant benefit. This finding suggests that the combination of Allicin with vitamin C might not work synergically at the lower dose. It is speculated that low dose Allicin may have a similar mechanism with vitamin C to improve EPCs migration via antioxidant pathway, hence its combination shows no significant benefit. However, at higher dose, Allicin may act as H₂S donor that can activate VEGFR-2 which improve EPCs migration and synergically work with antioxidant capability of vitamin C which stimulate MAPK pathway to increase EPCs migration. It is speculated that EPCs migration can be significantly higher through this multiple mechanism compared to Allicin treatment alone with single mechanism. However, in this research, the lower dose of Allicin (100 and 200 mcg/mL) was failed to synergically improve EPCs migration while the higher dose of Allicin of 400 mcg/mL shows significant benefit.

CONCLUSION

Allicin has a dose-dependent effect to improve the EPCs migration. Combination of Allicin at the dose of 400 mcg/mL and vitamin C dose of 250 mcg/mL showed significantly higher EPCs migration compared to the lower dose of Allicin combined with vitamin C at dose of 250 mcg/mL.

REFERENCES

1. Shantsila E, Watson T, Lip GYH. Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol. 2007;49(7).
2. Townsend N, Wilson L, Bhagathar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;(May 2004):3232-45.
3. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update. 2015;133:38.
4. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;(May 2004):3232-45.
5. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update. 2015;133:38.
6. Central Agency on Statistics. Basic Healthcare Research. Jakarta, Indonesia: Central Agency on Statistics; 2013.
7. Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res. 2015;016960:1413-30.
8. Patel RS, Li Q, Ghassenzadeh N, Eapen DJ, Moss LD, Janjua AU, et al. Circulating CD34 + progenitor cells and risk of mortality in a population with coronary artery disease. Circ Res. 2014;289-97.
Oktaviono, et al.: High Dose Allicin with Vitamin C Improves EPCs Migration from the Patient with Coronary Artery Disease

7. Park KH, Park WJ. Endothelial dysfunction: Clinical implications in cardiovascular disease and therapeutic approaches. J Korean Med Sci. 2019;30(9):1213-25.

8. Urbich C, Dimmeler S. Endothelial progenitor cells: Characterization and role in vascular biology. Circ Res. 2004;94(4):343-53.

9. Andreou I, Tousoulis D, Tentolouris C, Antoniades C, Stefanadis C. Potential role of endothelial progenitor cells in the pathophysiology of heart failure: Clinical implications and perspectives. Atherosclerosis. 2006;189(2):247-54.

10. Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C. Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization: Therapeutic implications for cardiovascular diseases. Atherosclerosis. 2008;201(2):236-47.

11. Sun X, Ku DD. Allicin in garlic protects against coronary endothelial dysfunction and right heart hypertrophy in pulmonary hypertensive rats. Am J Physiol Circ Physiol. 2006;291(5):H2431-8.

12. Chan JYY, Yuen ACY, Chan RYK, Chan SW. A review of the cardiovascular benefits and antioxidant properties of Allicin. Phyther Res. 2013;27(8):637-46.

13. Zhang PY, Xu X, Li XC. Cardiovascular diseases: Oxidative damage and antioxidant protection. Eur Rev Med Pharmacol Sci. 2014;18(20):3091-6.

14. Fiorito C, Rienzo M, Crimi E, Rossiello R, Balestrieri ML, Casamassimi A, et al. Antioxidants increase number of progenitor endothelial cells through multiple gene expression pathways. Free Radic Res. 2008;42(8):754-62.

15. Libby P. Mechanisms of Acute Coronary Syndromes and Their Implications for Therapy. N Engl J Med. 2013;368(21):2004-13.

16. Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner ER. L-Ascorbic Acid Increases Intracellular Tetrahydrobiopterin Via A Chemical Stabilization and Potentiates Nitric Oxide Synthesis in Endothelial Cells. Chem Biol Pteridines Folates. 2002;276(1):265-70.

17. Shi P, Cao Y, Gao J, Fu B, Ren J, Ba L, et al. Allicin improves the function of cardiac microvascular endothelial cells by increasing PECAM-1 in rats with cardiac hypertrophy. Phytomedicine. 2018;51:241-54.

18. Prasad K, Lavdal VA, Yu M, Raney BL. Antioxidant activity of Allicin, an active principle in garlic. Mol Cell Biochem. 1995;148(2):183-9.

19. Putri JV, Pikir BS, Oktaviono YH. Effect of allicin extract treatment on endothelial progenitor cell proliferation in stable coronary heart disease patients. Unair Repos. 2017;5.

20. Denninger JW, Marfetta MA. Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta - Gen Rev. 1999;1411(2–3):334-50.

21. Krause M, Dent EW, Bear JE, Louriero JJ, Gertter FB. Ena/WASP Proteins: Regulators of the Actin Cytoskeleton and Cell Migration. Annu Rev Cell Dev Biol. 2003;19(1):541-64.

22. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, et al. Hydrogen sulfide mediates the vasoreactivity of garlic. Proc Natl Acad Sci U S A. 2007;104(46):17977-82.

23. Koch S, Claesson-welsh L. Signal Transduction by VEGFRs.pdf. Cold Spring Harbor Perspect Med. 2012;July(2):7.

24. Siri HH, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol. 2015;71:40-56.

25. Oktaviono YH, Al-farabi MJ, Oliva L, Suastika S. Preliminary study: Purple sweet potato extract seems to be superior to increase the migration of impaired endothelial progenitor cells compared to l-ascorbic acid. Sci Pharm. 2017;87(3):16.

Graphical Abstract

High Dose Allicin and Vitamin C Improves the Migration of Endothelial Progenitor Cells

About Authors

Yudi Her Oktaviono work as an interventional cardiologist in the Department of Cardiology and Vascular Medicine Soetomo General Hospital and Faculty of Medicine, University of Airlangga. Previously, He led the Indonesian Cardiologist association in Surabaya and currently he is the vice president of the Indonesian Cardiologist association. His research interests include complex interventional cardiology, endothelial progenitor stem cells, usage of natural compound for cardiac disease and detection of early cardiac markers.

Cite this article: Oktaviono YH, Amadis MR, Al-Farabi MJ. High Dose Allicin with Vitamin C Improves EPCs Migration from the Patient with Coronary Artery Disease. Pharmacog J. 2020;12(2): 232-5.