Инструменты оценки эколого-экономической эффективности проектных решений в жилищно-гражданском строительстве

И.П. Авилова, М.О. Крутилова, В.В. Науменко
Белгородский государственный технологический университет им. В.Г. Шухова (БГТУ им. В.Г. Шухова); г. Белгород, Россия

АННОТАЦИЯ
Введение. При реализации инвестиционно-строительных проектов в сфере жилищно-гражданского строительства большая часть проектных решений, влияющих на эколого-экономическую эффективность, принимается на начальных этапах реализации проекта. Существующие методики экологического аудита в строительстве, законодательно и методологически содержательные при анализе экологического воздействия объекта строительства на стадиях эксплуатации и утилизации, не нормируют и не регулируют экологический урон, ранее накопленный при производстве строительных материалов и изделий, а также наносимый в процессе производства строительно-монтажных работ. Предлагаемый принцип эколого-экономической эффективности заключается в анализе и количественном стоимостном учете экофакторов при подборе строительных материалов, а также строительных машин и механизмов уже на стадии проектирования объекта.

Материалы и методы. Информационной базой исследования является аналитическая и статистическая информация Федеральной службы государственной статистики России (Росстата), Федеральной государственной информационной системы ценообразования (ФГИС ЦС). Использованы результаты и методы теоретических и научно-практических исследований отечественных и зарубежных ученых в области государственного регулирования и стимулирования ресурсосбережения, устойчивого развития и зеленого строительства; эколого-экономического анализа стоимости строительной продукции.

Результаты. Предлагаемый принцип позволяет вносить изменения в конструктивные решения зданий с позиции экологичности и энергоэффективности, учитывая воздействие на окружающую среду на этапе строительства. Результатом исследования является проведен анализ натуральной ресурсоемкости строительной продукции в типовом жилищном строительстве, прикладная методика оценки экостоимости строительных ресурсов, используемых в жилищно-гражданском строительстве.

Выводы. Рассмотренный принцип даст возможность реализовать экоустойчивый подход в планировании и реализации инвестиционно-строительных проектов, что существенно сократит загрязнение окружающей среды с позиции минимизации угледового воздействия от строительной отрасли и будет способствовать улучшению эколого-экономической обстановки в России.

КЛЮЧЕВЫЕ СЛОВА: эколого-экономическая эффективность, зеленое строительство, ресурсоемкость, экопроектирование, экостоимость, ценообразование

ДЛЯ ЦИТИРОВАНИЯ: Авилова И.П., Крутилова М.О., Науменко В.В. Инструменты оценки эколого-экономической эффективности проектных решений в жилищно-гражданском строительстве // Строительство: наука и образование. 2019. Т. 9. Вып. 4. Ст. 8. URL: http://nso-journal.ru. DOI: 10.22227/2305-5502.2019.4.8

Assessment tools for environmental and economic efficiency of design decisions in civil engineering

Irina P. Avilova, Maria O. Krutilova, Vyacheslav V. Naumenko
Belgorod State Technological University named after V.G. Shukhov (BSTU after V.G. Shukhov); Belgorod, Russian Federation

ABSTRACT
Introduction. When implementing investment and construction projects in the field of civil engineering, most of the design decisions affecting the environmental and economic efficiency are taken at the initial stages of the project implementation. Existing methods of environmental audit in construction, legislatively and methodologically substantial at the analysis of environmental impact of construction site at the stages of operation and recycling, do not standardize and do not regulate ecological damage, earlier accumulated during production of building materials and products, and also caused during construction and assembly works. The offered principle of environmental and economic efficiency consists of the analysis and quantity and price accounting of environmental factors during the selection of building materials, and also building machines and mechanisms already at a stage of site design.
ВВЕДЕНИЕ

В настоящее время при реализации инвестиционно-строительных проектов (ИСП) в сфере жилищно-гражданского строительства около 80% проектных решений, влияющих на эколого-экономическую эффективность, принимаются проектировщиками и архитекторами на начальном этапе проектирования, а оставшиеся 20% решений — инженерами на последующих этапах [1]. Выбор строительных материалов и технологий возведения зданий на проектной стадии ИСП должен производиться с позиции устойчивого развития: снижение ресурсоемкости, минимизация энергоемкости от используемых строительных материалов и строительных машин и механизмов; увеличение степени рециклинга, а также корректировка стоимости строительства с учетом эколого-экономической составляющей. Принцип эколого-экономической эффективности заключается в анализе и количественном учете экозатрат при выборе строительных материалов, изделий и конструкций, а также строительных машин и механизмов на предпроектной и проектной стадиях строительства [2, 3]. Предлагаемый принцип позволяет вносить изменения в конструктив здания на ранних этапах планирования, что в конечном итоге даёт возможность существенно сократить уровень воздействия на окружающую среду на стадии строительства [4].

В этой связи крайне важно иметь инструменты быстрой и надежной количественной оценки эколого-экономической эффективности здания на начальном этапе реализации ИСП — этапе проектирования [5]. Многоэтажные дома являются основным типом жилищно-гражданского сектора в России, составляя около 55% жилого фонда. В последнее время в сфере жилищного строительства все большую популярность набирает монолитное строительство. Сегодня в структуре объектов жилого строительства около четверти зданий — это монолитные сооружения, которые занимают второе место после кирпичных зданий (рис. 1). Динамика роста объемов монолитного строительства, представленная на рис. 2, свидетельствует о том, что за последние 10 лет количество вводимых монолитных зданий увеличилось почти в три раза. Динамика же ввода кирпичных зданий с 2014 г. демонстрирует снижение темпов, что подтверждает перспективность монолитного строительства и определяет тенденцию превалирования монолитных зданий в строительстве. Конструкции таких сооружений содержат минимальное количество несущих элементов в виде колонн, капитальных стен и пилонов, что открывает широкие возможности для более рационального практического применения жилого пространства. Монолитные многоэтажные здания выигрывают в сравнении с классическими за счет лучшей теплоизоляции. Они имеют больший срок эксплуатации, лучшую сейсмическую устойчивость. Кроме того, строительство объекта при использовании монолитной технологии происходит быстрее, а архитекторы могут создавать более разнообразные планировочные и архитектурные решения, повышая эксплуатационные характеристики здания.

Materials and Methods. The information base of the research is analytical and statistical information of the Federal State Statistics Service of Russia (Rosstat), Federal State Information System of Pricing (FSI SP). Results and methods of theoretical and scientific and practical researches of domestic and foreign scientists in the field of state regulation and stimulation of resource saving, sustainable development and green building; environmental and economic analysis of construction products cost are used.

Results. The proposed principle makes it possible to make changes in the design of buildings from the point of view of environmental friendliness and energy consumption, taking into account the impact on the environment at the stage of construction. The result of the research is the analysis of natural resource intensity of construction products in the standard housing construction, applied methodology for evaluation of the eco-cost of construction resources used in civil engineering.

Conclusions. The considered principle will enable to implement a sustainable approach in planning and implementation of investment and construction projects, which will significantly reduce environmental pollution from the point of view of minimizing the carbon impact from the construction industry and will contribute to improving the environmental and economic situation in Russia.

KEYWORDS: environmental and economic efficiency, green building, resource intensity, environmentally sustainable design, eco-friendly pricing

FOR CITATION: Avilova I.P., Krutilova M.O., Naumenko V.V. Assessment tools for environmental and economic efficiency of design decisions in civil engineering. Stroitel'stvo: nauka i obrazovanie [Construction: Science and Education]. 2019; 9(4):8. URL: http://nso-journal.ru. DOI: 10.22227/2305-5502.2019.4.8 (rus.).
Цель исследования — создание достоверной, вариативной и масштабируемой технологии количественного анализа и стоимостной оценки экологического ущерба при реализации проектных решений в жилищно-гражданском строительстве [6]. Для достижения поставленной цели необходимо выявить наилучшие подходы к формированию механизма количественного анализа и стоимостной оценки экологического ущерба при реализации ИСП; усовершенствовать прикладную методику определения экостоимости строительных ресурсов и внедрить ее в практику деятельности органов сертификации объектов недвижимости, компаний, управляющих строительством и эксплуатацией объектов недвижимости, организующих подрядные торги в строительстве, ремонте, эксплуатации, включая возможность внедрения в систему государственных закупок в строительстве [7, 8].

Материалы и методы

На примере типового 16-этажного монолитного жилого дома рассмотрим принцип оценки эколого-экономической эффективности проектных решений. Для сравнения выбраны наиболее распространенные в жилищном строительстве конструктивные схемы каркасов: монолитный железобетонный (ЖБ) каркас с плоскими безбалочными перекрытиями (Конструктивная схема № 1); монолитный ЖБ каркас с кессонными перекрытиями (Конструктивная схема № 2) (рис. 3). Объемы работ и материалов определены с помощью информационной модели объекта, созданной в ПК ArchiCAD. На основе параметров созданных моделей с помощью штатного механизма составления ведомости объемов работ были рассчитаны потребности строительства в бетоне, арматуре, наружных стеновых конструкциях (табл. 1) [9].

Потребность в машинах и механизмах была определена с помощью государственных элементных сметных норм (ГЭСН, Приказ Минстроя России от 30 декабря 2016 г. № 1038/пр). Сметная стоимость строительства установлена базисно-индексным методом с использованием федеральных единичных расценок (Приказ Минстроя России от 30 декабря 2016 г. № 1039/пр) с применением индекса изменения сметной стоимости на текущий квартал 2019 г. для Белгородской области. Основ-

1 Федеральная служба государственной статистики (Росстат). URL: http://www.gks.ru (дата обращения: 20.07.19).
И.П. Авилова, М.О. Крутилова, В.В. Науменко

Рис. 3. Конструктивные схемы монолитного ЖБ каркаса

Табл. 1. Объемы основных ресурсо- и энергоемких строительных материалов

№ п/п	Материал	Конструктивная схема № 1	Конструктивная схема № 2		
		Общая площадь, м²	На единицу площади, м²	Общая площадь, м²	На единицу площади, м²
		на единицу площади, м²		на единицу площади, м²	
1	Бетон, м³				
	Колонны	544,37	0,041	544,37	0,041
	Диафрагмы жесткости	490,24	0,037	490,24	0,037
	Плиты перекрытия	2636,6	0,184	1988,92	0,178
	Всего	3671,21	0,262	3023,53	0,256
2	Арматура				
	Колонны	65,44	4,94	65,44	4,94
	Диафрагмы жесткости	48,64	3,67	48,64	3,67
	Плиты перекрытия	135,94	10,86	126,52	9,247
	Всего	250,02	19,47	240,6	17,857
3	Опалубка, м²				
	Колонны	5444,96	0,411	5444,96	0,411
	Диафрагмы жесткости	5603,84	0,423	5603,84	0,423
	Плиты перекрытия	10386,4	0,784	7882,56	0,595
	Всего	21435,2	1,618	18931,36	1,429
4	Кирпич, м³				
	Всего	2022,56	0,144	2022,56	0,144
5	Минераловатые плиты, м³				
	Всего	36,02	0,041	36,02	0,041
6	Машины и механизмы, маш.-ч				
	Краны башенные, грузоподъемность 8 т	4856,48	0,302	4475,04	0,318
	Краны на автомобильном ходу, грузоподъемность 10 т	35,52	0,003	41,44	0,003
	Погрузчик, грузоподъемность 5 т	7,84	0,001	7,68	0,001
nymи ресурсоемкими и энергозатратными материалами при гражданском монолитном строительстве являются бетон и арматура, стеновые материалы. Согласно ГОСТ Р ИСО 14042-2001 «Управление окружающей средой. Оценка жизненного цикла. Оценка воздействия жизненного цикла» энергозатраты строительного материала могут быть приняты как энергия, потребленная в течение его жизненного цикла (ЖЦ), включая добычу и переработку сырья, производство материала и его транспортировку, эксплуатацию и утилизацию [10]. При этом экологический ущерб в натуральных показателях эффективнее всего оценивать в приведенном объеме диоксида углерода СО₂, произведенного при изготовлении потребных строительству материалов и производстве строительно-монтажных и обслуживающих строительство работ [11].

Для оценки энергозатрат и приведенного объема выбросов парниковых газов (ПГ) были использованы следующие критерии:

1) соответствие утвержденным методологиям (стандартам): предпочтение было отдано источникам данных, которые соответствуют принятым методологиям (ISO 14040/44 «Международный стандарт по оценке жизненного цикла окружающей среды»);

2) системные границы: были приняты от начала до конца цикла производства, включая транспортировку на строительную площадку;

3) источники данных: в идеале данные о воплощенной энергии должны быть получены из исследований, в которых рассматриваются выбросы углерода в течение ЖЦ, но часто такая информация отсутствует. Поэтому значения воплощенной энергии и углерода оцениваются по использованию сжиженного топлива для производства и транспортировки материала;

4) актуальность источников данных: предпочтение было отдано современным источникам данных.

Показатели объемов ПГ были определены в соответствии с исследованием [12] по основным ресурсоемким материалам, используемым при монолитном строительстве (табл. 2). Основными энергозатратными машинами и механизмами при гражданском монолитном строительстве являются машины и механизмы с электрическим приводом и дизельными двигателями [13]. Сектор внедорожных дизельных двигателей в настоящее время потребляет примерно на 70 % больше дизельного топлива, чем автомобильный транспорт в национальном масштабе [14]. По оценке специалистов, дорожные автомобили (включая с бензиновыми двигателями) дают примерно 1 % национальных выбросов СО₂, а выбросы от внедорожных дизельных двигателей составляют более 1,4 % от общих национальных выбросов, что обязывает учитывать данный показатель при общем расчете выбросов углерода. Состав выбросов зависит от эксплуатационных параметров, таких как скорость, нагрузка двигателя и тип двигателя, состав топлива, температура окружающего воздуха [15]. Для строительных машин и механизмов с дизельными двигателями производится расчет прямых выбросов СО₂ по формуле:

$$ I = EF \cdot A \cdot L \cdot P \cdot N, $$

где I — выхлопные выбросы, г; EF — коэффициент выброса выхлопных газов, г/кВт·ч; A — активность оборудования, ч; L — коэффициент нагрузки (среднега-
ящая часть номинальной мощности, используемой во время работы, %; \(P \) — средняя номинальная мощность двигателя, кВт; \(N \) — количество машин/механизмов, ед.

Коэффициенты выброса выхлопных газов в зависимости от мощности дизельных двигателей представлены в табл. 3. Для строительных машин и механизмов с электрическим приводом, а также электросварочного оборудования рассчитывается выделяемый впрыскиенный углерод, который зависит от количества потребляемой электроэнергии, производство которой связано с выделением \(CO_2 \). Данные удельных значений вредных выбросов при производстве электроэнергии в зависимости от используемого вида топлива приведены в табл. 4. При расчете объемов выбросов углерода используется показатель — 790 г/кВт·ч потребленной электроэнергии. Сварочные процессы отличаются интенсивными тепловыделениями и газовыделениями, при проведении которых происходит загрязнение атмосферного воздуха сварочным аэрозолем, в состав которого в зависимости от вида сварки, марок электродов входят вредные для здоровья оксиды, основным из них является \(CO_2 \). Количество загрязняющих веществ, выделяющихся при сварке, характеризуется валовыми выделениями, отнесенными во времени эксплуатации сварочного оборудования в рабочем режиме. В результате экспериментальных исследований [16] выведены значения выделяемого \(CO_2 \) при эксплуатации сварочного оборудования в единицу времени. Стандартные ошибки составляли несколько процентов от средних значений проведенных испытаний сварки. Для ручной электродуговой сварки норматив выделения \(CO_2 \) на основе экспериментальных исследований составляет 325 мг/мин [17].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Для определения общих выбросов при возведении ЖБ каркаса монолитного жилого здания, предлагается использовать калькулятор выбросов парниковых газов.

\[
\text{ЭкоН} = \frac{C_{CPR_{\text{max}}} - C_{CPR_{\text{min}}}}{C_{CPR_{\text{max}}} - C_{CPR_{\text{min}}}} \cdot K \tag{2}
\]

Условное налогообложение, вводимое для оценки эколого-экономической эффективности проектных решений (ЭкоН) основывается на автоматизированной выборке проектов, реализуемых в конкретном регионе с учетом специфики объекта, и анализе сметной стоимости строительства (CСР) по отношению к общей эмиссии \(\text{ГП} \) от строительно-монтажных работ. Органы местной власти могут регулировать величину эконалога с помощью ежеквартального мультипликатора \(K \), который позволяет акцентировать внимание на составляющей эконалогобложения в строительстве.

Представленный в работе инструмент оценки эколого-экономической эффективности проектных решений при реализации ИСП основан на количественном учете и сравнительном анализе экофакторов при подборе конструктивных схем, строительных материалов, строительных машин и механизмов на стадии проектирования объекта строительства. При этом, кроме прямого анализа

Табл. 3. Выбросы в зависимости от мощности дизельных двигателей [18]

Мощность двигателя, кВт	Выбросы \(CO_2 \), г/кВт·ч
кВт < 8	8,0
8 ≤ кВт < 19	6,6
19 ≤ кВт < 37	5,5
37 ≤ кВт < 56	5,0
56 ≤ кВт < 75	5
75 ≤ кВт < 130	5
130 ≤ кВт < 225	3,5
225 ≤ кВт < 450	3,5
450 ≤ кВт < 560	3,5
560 ≤ кВт < 900	3,5
кВт > 900	3,5

Табл. 4. Значения вредных выбросов при производстве электроэнергии [19]

Вид загрязняющего вещества	Удельные значения при использовании топлива, г/кВт·ч
Нефть	738
Уголь	1142
Природный газ	547
Среднее значение	790
Диоксид серы (\(SO_2 \))	4,7
Окислы азота (\(NO_x \))	2,3

Среднее значение

ЭкоН = \(\frac{C_{CPR_{\text{max}}} - C_{CPR_{\text{min}}}}{C_{CPR_{\text{max}}} - C_{CPR_{\text{min}}}} \cdot K \)
Табл. 5. Калькулятор энергозатрат, выраженных в выбросах ПГ
Значения
Конструктивная схема № 1

Машины и Механизмы
1. Дизельные
1.1. Кран на автомобильном ходу (221 кВт, грузоподъемность 10 т)
Расчетное рабочее время, ч
Оценочная эмиссия CO₂, г/кВт·ч
Общее количество выбросов CO₂, т
1.2. Погрузчик (70 кВт, грузоподъемность 5 т)
Расчетное рабочее время, ч
Оценочная эмиссия CO₂, г/кВт·ч
Общее количество выбросов CO₂, т
1.3. Бортовой автомобиль (220 кВт, грузоподъемность 5 т)
Расчетное рабочее время, ч
Оценочная эмиссия CO₂, г/кВт·ч
Общее количество выбросов CO₂, т
2. Электрические
2.1. Кран башенный (67 кВт, грузоподъемность 8 т)
Расчетное рабочее время, ч
Оценочная эмиссия CO₂, г/кВт·ч
Общее количество выбросов CO₂, т
2.2. Вибратор глубинный (0,4 кВт)
Расчетное рабочее время, ч
Оценочная эмиссия CO₂, г/кВт·ч
Общее количество выбросов CO₂, т
2.3. Вибратор поверхностный (0,7 кВт)
Расчетное рабочее время, ч
Оценочная эмиссия CO₂, г/кВт·ч
Общее количество выбросов CO₂, т
2.4. Сварочный аппарат
Расчетное рабочее время, ч
Оценочная эмиссия CO₂, г/мин
Общее количество выбросов CO₂, т
Общая эмиссия CO₂ от строительных машин и механизмов, т
Материалы
1. Бетон
Оценочная эмиссия CO₂ для производства бетона, г/кг
Плотность бетона, кг/м³
Расчетный объем бетона, м³
Общее количество выбросов CO₂, т
2. Сталь конструциональная
Оценочная эмиссия CO₂ для производства стали, г/кг
Расчетный объем стали, кг
Общее количество выбросов CO₂, т
3. Кирпич
Оценочная эмиссия CO₂ для производства кирпича, г/кг
Плотность кирпича, кг/м³
Расчетный объем кирпича, м³
Общее количество выбросов CO₂, т
Окончание табл. 5

Значения	Конструктивная схема № 1	Конструктивная схема № 2	
Конструктивная схема № 1	1200	8,2	81 194
Конструктивная схема № 2	49,46	—	72 000
Расчетный объем минераловатных плит, м³	576,32	—	—
Общее количество выбросов CO₂, т	34,206	—	—
Общая эмиссия CO₂ от строительных материалов, т	1643,19	1507,15	
Общая эмиссия CO₂ от строительно-монтажных работ, т	1902,51	1746,57	

Табл. 6. Калькулятор энергозатрат, выраженных в выбросах ПГ

Варианты конструктивной схемы здания	Сметная стоимость каркаса, тыс. руб.	Общая эмиссия CO₂ от строительно-монтажных работ, т	Условный эконалог, %	Итого с учетом эконалога, тыс. руб.
1	65 600	1902,51	8,2	81 194
2	72 000	1746,57	—	72 000

ЗАКЛЮЧЕНИЕ И ОБСУЖДЕНИЕ

Инструмент оценки эколого-экономической эффективности проектных решений позволяет оптимизировать конструктивные и объемно-планировочные решения гражданских зданий на предпроектной и проектной стадиях с позиции минимизации произведенного в процессе будущего возведения зданий и овеществленного в строительных материалах приведенных выбросов ПГ как ключевого фактора, грозящих необратимостью глобальных негативных изменений окружающей среды. Предлагаемая методика дает возможность количественно обосновать рациональные подходы к проектированию строительных объектов для устойчивой среды обитания и будет являться эффективным дополнением сложившейся в стране и мире практики зеленого проектирования и сертификации недвижимости.

ЛИТЕРАТУРА

1. Avilova I.P., Krutilova M.O. Methodology of eco-oriented assessment of constructive schemes of cast in-situ RC framework in civil engineering // IOP Conference Series: Earth and Environmental Science. 2018. Vol. 107. P. 012127. DOI: 10.1088/1755-1315/107/1/012127
2. Benuzh A.A., Orenburova E.N. Standardization of green building technologies for environment design // MATEC Web of Conferences. 2016. Vol. 86. P. 05014. DOI: 10.1051/mateconf/20168605014
3. Roh S., Tae S. An integrated assessment system for managing life cycle CO2 emissions of a building // Renewable and Sustainable Energy Reviews. 2017. Vol. 73. Pp. 265–275. DOI: 10.1016/j.rser.2017.01.139
4. Avilova I.P., Naumov A.E., Krutilova M.O. Methodology of cost-effective eco-directed structural design // SGEM2017 17th International Multidisciplinary Scientific GeoConference. 2011. Vol. 53. Pp. 551–557. DOI: 10.5593/sgem2017/53/S21.069
5. Файзуллин И.Э., Крыгина А.М., Крыгина Н.М. Развитие экожилищного строительства как эффективный инструмент формирования инновационных стратегий развития предприятий инвестиционно-строительного комплекса // Жилищные
стратегии. 2017. T. 4. № 1. C. 9–22. DOI: 10.18334/zh.4.1.38052

6. Крутилова М.О. Направления совершенствования экономических механизмов минимизации выбросов парниковых газов в течение жизненного цикла здания // Экономика строительства и природопользования. 2018. № 1 (66). С. 63–71.

7. Avilova I.P., Naumov A.E., Krutilova M.O. Methodology of GHG emissions assessment caused at the construction of energy facilities. Case study: Hydropower // IOP Conference Series: Materials Science and Engineering. 2019. Vol. 552. P. 012018. DOI: 10.1088/1757-899x/552/1/012018

8. Теличенко В.И., Бенуж А.А. Состояние и развитие системы технического регулирования в области зеленых технологий // Academia. Архитектура и строительство. 2016. № 1. С. 118–121.

9. Avilova I.P., Krutilova M.O. Methodology of ecooriented assessment of constructive schemes of cast in-situ RC framework in civil engineering // IOP Conference Series: Earth and Environmental Science. 2018. Vol. 107. P. 012127. DOI: 10.1088/1755-1315/107/1/012127

10. Fu F., Sun J., Pasquire C. Carbon emission assessment for steel structure based on lean construction process // Journal of Intelligent & Robotic Systems. 2015. Vol. 79. Pp. 401–416. DOI: 10.1007/s10846-014-0106-x

11. Avilova I.P., Krutilova M.O., Peresypkina E.A. Economic incentives of green standards in civil and municipal engineering // SGEM2017 17th International Multidisciplinary Scientific GeoConference. 2011. C. 273–280. DOI: 10.5593/sgem2017/S3/S21.032

12. Hammond G.P., Jones C.I. Inventory of carbon and energy, Version 2.0 Sustainable Energy Research Team (SERT), Department of Mechanical Engineering. University of Bath, UK. 2011.

13. Sengupta N., Roy S., Guha H. Assessing embodied GHG emission reduction potential of cost-effective technologies for construction of residential buildings of Economically Weaker Section in India // Asian Journal of Civil Engineering. 2018. Vol. 19. Issue 2. Pp. 139–156. DOI: 10.1007/s42107-018-0013-8

14. Наумов А.Е., Щенятская М.А., Товстий В.П. Качественные показатели объекта недвижимости как фактор экономической оптимизации организационно-технологических решений инвестиционно-строительного проекта // Вестник БГТУ им. В.Г. Шухова. 2016. № 5. С. 202–206.

15. Грабовый П.Г., Манухина Л.А. Национальная стратегия внедрения энергоресурсов и экологически безопасных (зеленых) технологий и производств в строительство и ЖКХ // Недвижимость: экономика, управление. 2014. № 1–2. С. 6–8.

16. Keane M., Siert A., Stone S., Chen B.T. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace // Journal of Occupational and Environmental Hygiene. 2016. Vol. 13. Issue 1. Pp. 1–8. DOI: 10.1080/15459624.2015.1072634.

17. Keane M.J., Siert A., Chen B.T., Stone S.G. Profiling mild steel welding processes to reduce fume emissions and costs in the workplace // The Annals of Occupational Hygiene. 2014. Vol. 58. Issue 4. Pp. 403–412. DOI: 10.1093/annhyg/meu007

18. Ehrhard T., Widmann A. Exhaust emission legislation diesel and gas engines // Engines and systems. Verband Deutscher Maschinen — und Anlagenbau (VDMA), Mechanical Engineering Industry Association, DEU. 2017.

19. Безруких П.П. Эффективность возобновляемой энергетики. Миры и факты // Вестник аграрной науки Дона. 2015. № 1 (29). C. 5–17.
INTRODUCTION

Currently, when implementing investment and construction projects (ICP) in the field of civil engineering, about 80% of design decisions affecting the environmental and economic efficiency are taken by designers and architects at the initial stage of design, and the remaining 20% of decisions by engineers at subsequent stages [1]. Selection of building materials and construction technologies at the design stage of ICP shall be made from the position of sustainable development: reduction of resource intensity, minimization of energy consumption from used building materials and construction machines and mechanisms; increase in the recycling rate, as well as adjustment of construction costs taking into account the environmental and economic component. The principle of environmental and economic efficiency consists in the analysis and quantity accounting of eco factors during the selection of building materials, products and structures, and also building machines and mechanisms already at pre-project and project stages of construction [2, 3]. The proposed principle allows to make changes in the building design at early stages of planning, which will eventually make it possible to significantly reduce the level of environmental impact at the stage of construction [4]. In this regard, it is crucial to have tools to quickly and reliably quantify the environmental and economic efficiency of the building at the initial stage of ICP implementation — the design stage [5].

Multistorey houses are the main type of civil engineering sector in Russia, which is 55% of the residential stock. In recent years, monolithic construction has become increasingly popular in the field of housing construction. Today, about a quarter of the buildings in the structure of housing construction are monolithic structures that rank second after brick structures (Fig. 1). The dynamics of growth in the volume of monolithic construction (Fig. 2) shows that the number of commissioned monolithic buildings has increased by almost
3 times in the last 10 years. The dynamics of commissioning of brick buildings since 2014 shows a decrease in the rates, which confirms the prospects of monolithic construction and determines the trend of prevalence of monolithic buildings in construction. These structures contain the minimum quantity of bearing elements in the form of columns, bearing walls and piers that opens wide possibilities for more rational practical application of living space. Monolithic multi-storey buildings benefit from better sound and thermal insulation than classic buildings. They have a longer service life, better seismic stability. In addition, the construction of a site using monolithic technology is faster, and architects can create a more diverse planning and architectural solutions, improving the performance of the building.

The purpose of this research is creation of reliable, variable and scalable technology of quantitative analysis and value assessment of environmental damage in the implementation of design solutions in civil engineering [6]. To achieve this goal it is necessary to identify the best approaches to the formation of the mechanism of quantitative analysis and value assessment of environmental damage in the implementation of ICP; to improve the applied methodology for determining the eco-cost of construction resources and introduce it into the practice of real estate certification bodies, companies managing the construction and operation of real estate, which organize the contract bidding in construction, repair, operation, including the possibility of introduction into the system of public procurement in construction [7, 8].

MATERIALS AND METHODS

Using a typical 16-storey monolithic residential building as an example, we will consider the principle of assessment of environmental and economic efficiency of design solutions. For comparison, the most common structural layouts of frames in housing construction were selected: monolithic reinforced concrete (RC) frame with flat beamless slabs (Structural layout No. 1); monolithic reinforced concrete frame with pan floors (Structural layout No. 2) (Fig. 3). The scope of work and materials are determined by using the information model of the site, created in the ArchiCAD software. On the basis of parameters of the created models by means of the standard mechanism of drawing up of the schedule of volumes, requirements of building in concrete, reinforcement, external wall constructions have been calculated (Table 1) [9].

The need for machines and mechanisms was determined with the help of state elementary estimate standards (State Itemized Cost Estimate Standards, Order of the Ministry of Construction of the Russian Federation of 30.12.2016 No. 1038/pr). Estimated construction cost is established by the base and index method using the federal unit rates (Order of the Ministry of Construction of the Russian Federation of 30.12.2016 No. 1039/pr) with application of the index of change in the estimated cost for the current quarter of 2019 for the Belgorod Region. The main resource-intensive and energy-consuming materials for civil monolithic engineering are concrete and reinforcement, and wall materials.

![Fig. 3. Structural layouts of monolithic reinforced concrete frame](image-url)
According to GOST R ISO 14042-2001 “Environment management. Life cycle assessment. Life cycle impact assessment”, energy consumption of a building material can be accepted as energy consumed during its life cycle (LC), including extraction and processing of raw materials, production of material and its transportation, operation and recycling [10]. At the same time, environmental damage in physical terms is most effectively assessed in the given volume of carbon dioxide CO₂ produced during the manufacture of materials required for production of materials and construction and assembly works and service provision for the construction [11].

The following criteria were used to estimate the energy consumption and the given volume of greenhouse gas (GHG) emissions:

• compliance with approved methodologies (standards): preference has been given to data sources that comply with accepted methodologies (ISO 14040/44 “International Standard for Environmental Life Cycle Assessment”);

• system boundaries were adopted from the beginning to the end of the production cycle, including transportation to the construction site;

• data sources: ideally, embodied energy data shall be obtained from studies that address carbon emissions during LC, but often this information is not available. Therefore, the values of embodied energy and carbon are estimated based on the use of combustible fuel for material production and transportation;

• relevance of data sources: modern data sources were preferred.

Indicators of GHG volumes were determined in accordance with the research [12] on the main resource-intensive materials used in monolithic construction (Table 2). The main energy-consuming machines and mechanisms in civil monolithic construction are

Table 1. Volumes of main resource and energy-intensive building materials

Item No.	Material	Structural layout No. 1	Structural layout No. 2		
		Total area, m²	Per area unit, m²	Total area, m²	Per area unit, m²
1	Concrete, m³				
	Columns	544.37	0.041	544.37	0.041
	Stiffening diaphragms	490.24	0.037	490.24	0.037
	Floor slabs	2.636.6	0.184	1.988.92	0.178
	Total	3.671.21	0.262	3.023.53	0.256
2	Reinforcement	t	kg/m²	t	kg/m²
	Columns	65.44	4.94	65.44	4.94
	Stiffening diaphragms	48.64	3.67	48.64	3.67
	Floor slabs	135.94	10.86	126.52	9.247
	Total	250.02	19.47	240.6	17.857
3	Formwork, m²				
	Columns	5,444.96	0.411	5,444.96	0.411
	Stiffening diaphragms	5,603.84	0.423	5,603.84	0.423
	Floor slabs	10,386.4	0.784	7,882.56	0.595
	Total	21,435.2	1.618	18,941.36	1.429
4	Brick, m³				
	Total	2,022.56	0.144	2,022.56	0.144
5	Mineral wool slabs, m³				
	Total	36.02	0.041	36.02	0.041

Machines and mechanisms, machine hours

Item No.	Machine	Lifting capacity	Estimated cost, thous. rub.			
6	Tower cranes	8 t	4,856.48	0.302	4,475.04	0.318
7	Truck-mounted cranes	10 t	35.52	0.003	41.44	0.003
8	Forklift	5 t	7.84	0.001	7.68	0.001
9	Internal vibrator		948	0.067	948	0.067
10	External vibrator		1,169.12	0.083	1,824	0.130
11	Drop-side trucks	5 t	1,662.4	0.035	1,553.12	0.042
12	Manual arc welding machines		694.08	0.049	638.55	0.412
	TOTAL: Machines and mechanisms		9,373.44	0.54	9,487.83	0.973

Estimated cost, thous. rub. 65,600 4.65 72,000 5.11
machines and mechanisms with electric drive and diesel engines [13]. The off-road diesel engines sector currently consumes about 70% more diesel than road transport on a national scale [14]. Specialists estimate that road vehicles (including those with gasoline engines) account for approximately 1% of national CO\textsubscript{2} emissions and that emissions from off-road diesel engines account for more than 1.4% of total national emissions, which requires that this figure be taken into account in the overall carbon emissions calculation. The composition of emissions depends on operational parameters such as speed, engine load and engine type, fuel composition, ambient temperature [15]. For construction machines and mechanisms with diesel engines, direct CO\textsubscript{2} emissions are calculated using the following formula

\[I = EF \cdot A \cdot L \cdot P \cdot N, \]

where \(I \) — exhaust gas, g; \(EF \) — exhaust emission factor, g/kWh; \(A \) — equipment activity, h; \(L \) — load factor (average part of the rated power used during operation, %); \(P \) — average rated engine power, kW; \(N \) — number of machines/mechanisms, units.

The exhaust emission factors depending on the diesel engine power are shown in the Table 3. For electrically powered construction machines and mechanisms, as well as electric welding equipment, the embodied carbon is calculated, which depends on the amount of electricity consumed, the production of which is associated with the release of CO\textsubscript{2}. Specific values of pollutant emissions in power generation depending on the type of fuel used are shown in Table 4. When calculating carbon emissions, the figure of 790 g/kWh of electricity consumed is used. Welding processes are characterized by intensive heat generation and gas emission, during which atmospheric air is polluted by welding aerosol, which, depending on the type of welding, includes harmful oxides, the main one being CO\textsubscript{2}. The amount of pollutants emitted during welding is characterized by gross emissions related to the operating time of welding equipment. As a result of experimental studies [16] the values of CO\textsubscript{2} emitted during the operation of welding equipment in a unit of time are specified. Standard errors accounted for several percent of the average welding tests performed. For manual arc welding the standard CO\textsubscript{2} emission on the basis of experimental studies is 325 mg/min [17].

Table 2. Consumed energy and emissions for major resource-intensive materials

Material	Consumed energy, MJ/kg	GHG emissions, kg CO\textsubscript{2}/kg
Concrete, general	0.95	0.100
Steel, general	35.3	2.75
Brick	3.0	0.23
Mineral wool slabs	16.6	1.2

Table 3. Emissions depending on diesel engine power [18]

Engine power, kW	CO\textsubscript{2} emissions, g/kWh
kW < 8	8.0
8 ≤ kW < 19	6.6
19 ≤ kW < 37	5.5
37 ≤ kW < 56	5.0
56 ≤ kW < 75	5
75 ≤ kW < 130	5
130 ≤ kW < 225	3.5
225 ≤ kW < 450	3.5
450 ≤ kW < 560	3.5
560 ≤ kW < 900	3.5
kW > 900	3.5

Table 4. Values of pollutant emissions in electricity generation [19]

Type of pollutant	Specific values when using fuel, g/kWh			
	Oil	Coal	Natural gas	Average value
Carbon dioxide (CO\textsubscript{2})	738	1,142	547	790
Sulphur dioxide (SO\textsubscript{2})	4.7	1.4	—	4.1
Nitrogen oxides (NO\textsubscript{x})	2.3	4.0	1.8	3.5
RESEARCH RESULTS

To determine the total emissions when erecting the RC frame of a monolithic residential building, it is proposed to use a greenhouse gas emission calculator.

\[
\text{EcoN} = \frac{\text{CCP}_{\text{max}} - \text{CCP}_{\text{min}}}{\text{CO}_{2\text{max}} - \text{CO}_{2\text{min}}} \cdot K \tag{2}
\]

The conditional taxation introduced for an estimation of environmental and economic efficiency of design solutions (EcoN) is based on the automated sampling of the projects implemented in concrete region taking into account specific features of the site, and the analysis of estimated construction cost (ECC) in relation to the general emission of GHG from civil and assembly works. Local authorities can regulate the size of the eco-tax with the help of the K quarterly multiplier, which allows to focus on the component of eco-taxation in construction.

The estimation tool of environmental and economic efficiency of design solutions during the implementation of ICP presented in the paper, is based on the quantitative account and the comparative analysis of eco factors at selection of structural layouts, building materials, construction machines and mechanisms at a stage of construction site design. Thus, except for the direct analysis of volume of directly emitted CO₂, the principle of an estimation of environmental impact of the embodied carbon of the building materials released during their LC from extraction, processing of raw materials, manufacture before a construction stage, and also the carbon emitted in environment at energy power generation of used construction machines and equipment is used. In order to determine the most environmentally and economically efficient design solution, it is proposed to use an energy consumption calculator, expressed in GHG emissions (Table 5). Analyzing the emissions of the most energy consuming construction resources (materials, machines and mechanisms), it is proposed to take into account the eco-friendliness of the resources by converting the emissions into monetary equivalent by means of conditional eco-taxation (Table 6).

Table 5. Calculator of energy consumption expressed in GHG emissions

Machines and Mechanisms	Values	
	Structural layout No. 1	Structural layout No. 2
Diesel		
1.1. Truck-mounted cranes (221 kW, lifting capacity 10 t)		
Estimated operating time, h	35.52	41.44
Estimated CO₂ emissions, g/kWh		3.5
Total CO₂ emissions, t	0.028	0.032
1.2. Forklift (70 kW, lifting capacity 5 t)		
Estimated operating time, h	7.84	7.68
Estimated CO₂ emissions, g/kWh		5
Total CO₂ emissions, t	0.003	0.003
1.3. Drop-side truck (220 kW, lifting capacity 5 t)		
Estimated operating time, h	1662.40	1553.12
Estimated CO₂ emissions, g/kWh		3.5
Total CO₂ emissions, t	1.28	1.2
Electric		
2.1. Tower crane, (67 kW, lifting capacity 8 t)		
Estimated operating time, h	4856.48	4475.04
Estimated CO₂ emissions, g/kWh		790
Total CO₂ emissions, t	257.05	236.86
2.2. Internal vibrator (0.4 kW)		
Estimated operating time, h		948.48
Estimated CO₂ emissions, g/kWh		790
Total CO₂ emissions, t		0.300
2.3. External vibrator (0.7 kW)		
Estimated operating time, h	1.169.12	1.824
Estimated CO₂ emissions, g/kWh		790
Total CO₂ emissions, t	0.647	1.009
CONCLUSION AND DISCUSSION

The tool for assessment of environmental and economic efficiency of design solutions allows to optimize space planning solutions of civil buildings at the pre-project and project stages from the point of view of minimization of GHG emissions produced in the process of future erection of the building and materialized in construction materials as a key factor threatening irreversibility of global negative environmental changes. The proposed methodology provides an opportunity to quantitatively justify rational approaches to the design of construction sites for a sustainable environment and will be an effective complement to the existing practice of green design and certification of real estate in the country and the world.

Table 6. Calculator of energy consumption expressed in GHG emissions

Options of structural layout of building	Estimated frame cost, thous. rub.	Total CO2 emissions from construction and assembly works, t	Conditional eco-tax, %	Total including eco-tax, thous. rub.
1	65,600	1,902.51	8.2	81,194
2	72,000	1,746.57	–	72,000
REFERENCES

1. Avilova I.P., Krutilova M.O. Methodology of eco-oriented assessment of constructive schemes of cast in-situ RC framework in civil engineering. IOP Conference Series: Earth and Environmental Science. 2018; 107:012127. DOI: 10.1088/1755-1315/107/1/012127
2. Benuzh A.A., Orenburova E.N. Standardization of green building technologies for environment design. MATEC Web of Conferences. 2016; 86:05014. DOI: 10.1051/matecconf/20168605014
3. Roh S., Tae S. An integrated assessment system for managing life cycle CO2 emissions of a building. Renewable and Sustainable Energy Reviews. 2017; 73:265-275. DOI: 10.1016/j.rser.2017.01.139
4. Avilova I.P., Naumov A.E., Krutilova M.O. Methodology of cost-effective eco-directed structural design. SGEM2017 17th International Multidisciplinary Scientific GeoConference. 2011; 53:551-557. DOI: 10.5593/sgev2017/53/S21.069
5. Fayzullin I.E., Krygina A.M., Krygina N.M. The development of eco-housing construction as an effective tool for the formation of innovation strategies for the development of enterprises of investment and construction complex. Russian Journal of Housing Research. 2017; 4(1):9-22. DOI: 10.18334/zhs.4.1.38052 (rus.).
6. Krutilova M.O. The nexus of life cycle phases on embodied carbon of buildings: an economic review. Economics of Construction and Environmental Management. 2018; 1(66):63-71. (rus.).
7. Avilova I.P., Naumov A.E., Krutilova M.O. Methodology of GHG emissions assessment caused at the construction of energy facilities. Case study: Hydro-power. IOP Conference Series: Materials Science and Engineering. 2019; 552:012018. DOI: 10.1088/1757-899x/552/1/012018
8. Telichenko V.I., Benuzh A.A. Current state and development of technical regulation of the green technologies. Academia. Architecture and Construction. 2016; 1:118-121. (rus.).
9. Avilova I.P., Krutilova M.O. Methodology of eco-oriented assessment of constructive schemes of cast in-situ RC framework in civil engineering. IOP Conference Series: Earth and Environmental Science. 2018; 107:012127. DOI: 10.1088/1755-1315/107/1/012127
10. Fu F., Sun J., Pasquire C. Carbon emission assessment for steel structure based on lean construction process. Journal of Intelligent & Robotic Systems. 2015; 79:401-416. DOI: 10.1007/s10846-014-0106-x
11. Avilova I.P., Krutilova M.O., Peresypkina E.A. Economic incentives of green standards in civil and municipal engineering. SGEM2017 17th International Multidisciplinary Scientific GeoConference. 2011; 273-280. DOI: 10.5593/sgev2017/53/S21.032
12. Hammond G.P., Jones C.I. Inventory of Carbon and Energy. Version 2.0 Sustainable Energy Research Team (SERT), Department of Mechanical Engineering. University of Bath, UK. 2011.
13. Sengupta N., Roy S., Guha H. Assessing embodied GHG emission reduction potential of cost-effective technologies for construction of residential buildings of Economically Weaker Section in India. Asian Journal of Civil Engineering. 2018; 19(2):139-156. DOI: 10.1007/s42107-018-0013-8
14. Naumov A.E., Shchenyatskaya M.A., Tovstiy V.P. Qualitative indicators of the property as a factor in the economic optimization of organizational and technological decisions of the investment and construction project. Bulletin of BSTU named after V.G. Shukhov. 2016; 5:202-206. (rus.).
15. Grabovyv P.G., Manukhina L.A. National strategy of introduction of energy resources and ecologically safe (green) technologies and productions in construction and housing and communal services. Real Estate: Economics, Management. 2014; 1-2:6-8. (rus.).
16. Keane M., Siert A., Stone S., Chen B.T. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace. Journal of Occupational and Environmental Hygiene. 2016; 13(1):1-8. DOI: 10.1080/15459624.2015.1072634
17. Keane M.J., Siert A., Chen B.T., Stone S.G. Profiling mild steel welding processes to reduce fume emissions and costs in the workplace. The Annals of Occupational Hygiene. 2014; 58(4):403-412. DOI: 10.1093/annhyg/meu007
18. Ehrhard T., Widmann A. Exhaust emission legislation diesel and gas engines. Engines and systems. Verband Deutscher Maschinen — und Anlagenbau (VDMA), Mechanical Engineering Industry Association, DEU. 2017.
19. Bezrukikh P.P. Renewable energy efficiency. Myths and facts. Bulletin of Agricultural Science of the Don. 2015; 1(29):5-17. (rus.).

Irina P. Avilova — Candidate of Science (Econ.), Associate Professor, Professor of the Department of Assessment and Management in Real Estate; Belgorod State Technological University named after V.G. Shukhov (BSTU after V.G. Shukhov); 46 Kostyukov st., Belgorod, 308012, Russian Federation; kafeun@mail.ru;
Maria O. Krutilova — lecturer of the Department of Assessment and Management in Real Estate; Belgorod State Technological University named after V.G. Shukhov (BSTU after V.G. Shukhov); 46 Kostyukov st., Belgorod, 308012, Russian Federation; Scopus: 57196246833, ORCID: 0000-0001-7423-6866, ID RISC: 811292; marykrutilova@gmail.com;

Vyacheslav V. Naumenko — master student of the Department of Assessment and Management in Real Estate; Belgorod State Technological University named after V.G. Shukhov (BSTU after V.G. Shukhov); 46 Kostyukov st., Belgorod, 308012, Russian Federation; ORCID: 0000-0001-9970-418; slavanaum@mail.ru.