TOXOPLASMA GONDII INFECTION IN PATIENTS WITH MALIGNANT AND BENIGN BONE TUMOURS

M. Hajizadeh, R. Falak, M. Tavakoli-Yarak, R. Hosseinzadeh, M. Alipour, E. Ahmadpour, R. Rafiei-Sefiddashti

Abstract. *Toxoplasma gondii* (*T. gondii*) is an intracellular parasite that infects humans, and seroprevalence of its infection varies from about 10 to 80 percent in different countries with a higher prevalence in warmer and humid regions. In this study, the rate of acute and chronic toxoplasmosis in patients with benign or malignant bone tumours was investigated. Fifty-three patients who suffered from various bone tumours, as well as sixty-five healthy controls with an unknown serological profile for anti-*Toxoplasma* antibodies, were enrolled in this cross-sectional study. Anti-*Toxoplasma* antibodies were detected in serum samples using enzyme-linked immunosorbent assay (ELISA) and blood samples of them were used for real-time PCR. Thirty-two (60.32%) and twenty-one (39.63%) of patients had malignant tumours and benign tumours, respectively. The results showed a higher and significant seropositivity rate of IgM antibodies in primary bone tumour patients compared to the control group and *Toxoplasma* DNA became positive in 18.86% of patients with primary bone tumours and 6.15% of controls. Surprisingly, the high presence of parasite DNA was detected in patients with malignant tumours. The seroprevalence of *T. gondii* IgM antibodies and DNA positivity among the cancer patients were significantly higher than healthy individuals. Also, chronic toxoplasmosis (it was shown with IgG positive) appears to be more common in people with benign cancers than malignancies. The study showed a relatively high seroprevalence of anti-*T. gondii* antibodies in patients with primary bone cancer. However, the considerable rate of positive blood samples for the presence of parasite’s DNA should not be ignored. A key to the effective management of diseases in immunosuppressed individuals is prompt and accurate diagnosis of toxoplasmosis. Moreover, it seems that PCR tests may be more reliable than serological methods and it could be considered as a precise method for diagnosis of acute toxoplasmosis.

Key words: primary bone tumour, malignant tumour, benign tumour, toxoplasmosis, *Toxoplasma gondii*, real-time PCR.
ентов с доброкачественными или злокачественными опухолями костей. В данном поперечном исследовании приняли участие 53 пациента, страдающих различными новообразованиями костей, а также 65 здоровых людей с неизвестным серологическим профилем антител против токсоплазмы, составивших контрольную группу. Антитела против токсоплазмы были обнаружены в образцах сыворотки с помощью твердофазного иммуноферментного анализа (ELISA), а образцы крови были использованы для ПЦР в реальном времени. 32 (60,32%) и 21 (39,63%) пациент имели злокачественные и доброкачественные опухоли соответственно. Более высокий и значимый уровень IgM-антител отмечен у пациентов с первичной опухолью кости в сравнении с группой контроля, а ДНК Toxoplasma была обнаружена у 18,86% пациентов с первичными опухолями костей и у 6,15% пациентов из контрольной группы. Неожиданным оказалось высокое содержание ДНК паразита у пациентов со злокачественными опухолями. Распространенность антител IgM к T. gondii и обнаружение ее ДНК среди онкологических больных была значительно выше, чем у здоровых людей. Кроме того, хронический токсоплазмоз (диагностированный по положительному результату теста на IgG), по-видимому, чаще встречается у людей с доброкачественными формами рака, чем со злокачественными новообразованиями. Исследование показало относительно высокую распространенность анти-T. gondii у пациентов с первичным раком кости. Однако нельзя не учитывать значительный процент положительных образцов крови на наличие ДНК паразита. Ключом к эффективному лечению заболеваний у людей с ослабленным иммунитетом является своевременная и точная диагностика токсоплазмоза. Более того, по-видимому, тесты ПЦР могут быть более надежными, чем серологические методы, и их можно рассматривать как точный метод диагностики острого токсоплазмоза.

Ключевые слова: первичная опухоль кости, злокачественная опухоль, доброкачественная опухоль, токсоплазмоз, Toxoplasma gondii, ПЦР в реальном времени.

Introduction

Toxoplasma gondii (T. gondii) is an obligatory intracellular parasite that infects humans and many animal species and approximately one-third of the world’s population is at risk of infection with this protozoan [11, 25]. Seroprevalence of T. gondii infection varies from about 10 to 80 per cent in different countries with a higher prevalence in warmer and humid regions [8, 9, 26]. Host immune system plays the most important role in pathological symptoms of toxoplasmosis, for example, immunocompetent individuals rarely show considerable signs, however, this infection in immunocompromised persons may lead to severe diseases such as encephalitis, pneumonia, retinochoroiditis and even death [1, 31].

B lymphocytes produce various classes of antibodies in response to T. gondii infection which could be applied for serodiagnosis, like specific IgM which can be detected within 7–15 days in acute infection, however, class switching to IgG antibodies and production of a higher titer and avidity of this class of antibody is observed in chronic toxoplasmosis [12, 28]. Therefore, one of the easiest diagnostic tests for the routine detection of toxoplasmosis is a screening of specific IgG and IgM antibodies in serum, however, the application of molecular techniques may be more sensitive and appropriative methods for diagnosis of acute toxoplasmosis in high-risk patients especially in cancerous people with low traceable antibodies in consequence of radio or chemotherapy [2, 22, 25].

Cancer is one of the major causes of mortality worldwide and is the second leading one in developing countries [18]. Primary bone tumours impose a burden of mortality and morbidity with a wide range of clinical manifestations including pain, peripheral inflammation and bone fractures on the patients, worldwide. Various histological types of primary bone tumours include benign (osteochondroma, giant cell tumour, exostosis) and malignant (osteosarcoma, Ewing’s sarcoma, chondrosarcoma) tumours with nonspecific symptoms which make it difficult to be managed by clinicians [10, 30].

Toxoplasmosis can cause opportunistic life-threatening infection in cancer patients [4]. On the other hand, several studies hypothesized that T. gondii infection is responsible for the progression of malignant diseases due to inhibition of apoptosis and motility of macrophages [6]. Therefore, epidemiological studies are required to estimate the rate of infection in high-risk individuals, especially in immunocompromised patients with malignancies undergoing chemotherapy [1, 27]. A case-control study of 900 different cancer patients and 900 controls was conducted in China for evaluating the epidemiology of T. gondii infection and the results showed a high significant prevalence of anti T. gondii IgG in cancer patients but because of rare incidence of different bone tumours, this type of tumour hadn’t been mentioned [7], so in this study, we aimed to evaluate the serum levels of IgG and IgM using enzyme-linked immunosorbent assay (ELISA) and determine parasite-specific DNA by quantitative real-time polymerase chain reaction (qPCR) in aforementioned patients.

Materials and methods

Fifty-three patients who suffered from various bone tumours, as well as sixty-five healthy controls with an unknown serological profile for anti-Toxoplasma antibodies, were enrolled in this cross-sec-
performed at 95° for volume adjustment. Quantitative PCR (qPCR) was of each forward and reverse primers with a concentration of 1 μg of DNA template was added to SYBR Green in 20 μl volumes, as previously described [3]. Briefly, a higher and significant seropositivity rate of IgM antibodies in primary bone tumour patients compared to the control group (Table 2). All samples were tested by real-time PCR for Toxoplasma DNA which became positive in 18.86% of patients with primary bone tumours and 6.15% of controls. Surprisingly, the high presence of parasite DNA was detected in patients with malignant tumours (Table 2). We founded a higher IgG and IgM titer against T. gondii in patients with benign versus malignant bone tumours but PCR results in malignant patients had a higher percentage than benign patients and control group.

A p-value less than 0.05 was considered significant statistically and the seroprevalence of T. gondii IgM antibody and DNA positivity among the cancer patients were significantly higher than healthy individuals (p = < 0.001 and p = 0.005 respectively). Also, chronic toxoplasmosis (it was shown with IgG positive) appears to be more common in people with benign cancers than malignancies.

Discussion

One of the accepted hypothesis is a higher incidence of opportunistic infections such as toxoplasmosis in cancer patients as a group of immunocompromised individuals [20], for example, the seroprevalence rate of T. gondii infection in Iran

Table 1. Demographics data of bone cancer patients and healthy individuals

Characteristics	Number of patients (n = 53)	Number of healthy individuals (n = 65)
Gender		
Female	24 (45.28%)	51 (78/46%)
Male	29 (54.71%)	14 (21/53%)
Age		
< 20 years old	14 (26.14%)	4 (6/15%)
20–40 years old	26 (49%)	43 (66/15%)
40–60 years old	7 (13.2%)	14 (21.53%)
> 60 years old	6 (11.3%)	4 (6/15%)

Table 2. Seropositivity rates for anti-T. gondii antibodies and parasite DNA positivity in primary malignant, benign bone tumour patients and control group

Group	Subgroups	Number of samples	IgG positive	IgM positive	PCR positive						
		No.	%	No.	%	No.	%				
Cancer patients	Malignant bone tumours	32	14	43.75	0.44	14	12.50	< 0.001	7	21.87	0.001
	Benign bone tumours	21	11	52.38	0.06	19	19.04	< 0.001	3	14.28	0.06
	Total patients	53	25	47.16	0.23	15	15.09	< 0.001	10	18.86	0.005
Controls	Controls	65	25	38.46	0.00	0	0	0	4	6.15	

Results

The demographic data of the participants are presented in Table 1. Thirty-two (60.32%) and twenty-one (39.63%) of patients had malignant tumours and benign tumours, respectively. The results showed a higher and significant seropositivity rate of IgM antibodies in primary bone tumour patients compared to the control group (Table 2). All samples were tested by real-time PCR for Toxoplasma DNA which became positive in 18.86% of patients with primary bone tumours and 6.15% of controls. Surprisingly, the high presence of parasite DNA was detected in patients with malignant tumours (Table 2). We founded a higher IgG and IgM titer against T. gondii in patients with benign versus malignant bone tumours but PCR results in malignant patients had a higher percentage than benign patients and control group.

A p-value less than 0.05 was considered significant statistically and the seroprevalence of T. gondii IgM antibody and DNA positivity among the cancer patients were significantly higher than healthy individuals (p = < 0.001 and p = 0.005 respectively). Also, chronic toxoplasmosis (it was shown with IgG positive) appears to be more common in people with benign cancers than malignancies.
was 45–51% in cancer patients but 39% in healthy individuals [1, 8]. However, the geographical factors, eating habits and livestock farming practices can be effective in the prevalence of this infection. Khabaz et al. showed that anti-
T. gondii IgG was detected in 63.6% of patients with neoplasia and 58% of healthy controls, although, all of the participants (case and control groups) were negative for anti-
T. gondii IgM antibodies [19]. *T. gondii* seroprevalance was 60.3% in immunocompromised patients and 33.3% in healthy individuals in other provinces during 2014–2015 [17]. Otherwise, the higher rate of *T. gondii* infection in immunocompromised individuals, such as cancer patients could be due to many reasons such as a difference in genetic susceptibility and the source of *Toxoplasma* infection [1, 32]. So, it might be concluded that a high incidence of acute toxoplasmosis in bone cancer patients could be due to impaired genetic system or decreased immunity to encounter this protozoan. The high rate of PCR results obtained for *T. gondii* DNA in cancer patients (18.86% against 6.15% in a healthy individual) could be a witness of this hypothesis and the lower immunity in malignant patients may be explained with more incidence of this infection in patients with malignant tumours versus benign types (21.87% and 14.28%, respectively). On the other hand, this parasite could remain silent in tissue cysts that are commonly formed in different organs such as the central nervous system and the situations such as the immune suppression in cancer patients or the therapeutic process can cause reactivation of parasite and latent toxoplasmosis [24]. So, this can account as another reason for a high percentage of positive PCR and IgM results in cancer.

In the current study, the findings emphasize raising the possible role of cancer on *T. gondii* infection susceptibility, because the seroprevalence of anti-
Toxoplasma antibodies in patients was higher (47.16% versus 38.46%). The other hypothesis is the effect of persistent infection on the promotion of cancer due to rising mutation rates as a result of long-term host defence responses in inflammation situations [15]. Also, intercellular pathogens like *T. gondii* may disrupt cell barriers against oncogenic agents and might cause mutations after accumulating over time [14].

Interestingly, we observed that two PCR positive patients in the malignant group were negative for anti-
Toxoplasma IgM and IgG antibodies in ELISA which might be due to the recent infection or impaired immune response following immunosuppressive therapy. It was mentioned that serological tests could be sometimes inadequate for detecting active infection in immunosuppressed individuals, because the antibody titre may not rise enough to be detected [13, 23]. Overall, these patients are incapable of developing high titres of antibodies against *T. gondii*. Moreover, anti-neoplastic drug therapy could impair specific anti-*Toxoplasma* antibody production [16, 21].

Hence, serological methods alone have low reliability in both patients and healthy; it was strongly recommended that serologic tests should be combined with other diagnostic methods like gene amplification for accurate clinical diagnosis of active toxoplasmosis. Molecular methods are efficient techniques that allow specific amplification of DNA. The real-time qPCR could be successfully used to *T. gondii* diagnosis and is capable to detect low concentrations of target DNA [3, 22, 32]. Besides, to increase the specificity and sensitivity of immunological assays in immunocompromised patients, new antigenic targets should be designed the parasite to have a potential immunogenic antigen in immunodiagnostic tools of toxoplasmosis in patients with cancer [5].

Conclusion

The study showed a relatively high seroprevalence of anti-*T. gondii* antibodies in patients with primary bone cancer. However, the considerable rate of positive blood samples for the presence of parasite’s DNA should not be ignored. A key to the effective management of diseases in immunosuppressed individuals is prompt and accurate diagnosis of toxoplasmosis. Moreover, it seems that PCR tests may be more reliable than serological methods and it could be considered as a precise method for diagnosis of acute toxoplasmosis.

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this article. The sponsor or funding organization had no role in the design or conduct of this research.

References

1. Ahmadpour E., Daryani A., Sharif M., Sarvi S., Aarabi M., Mizani A., Rahimi M.T., Shokri A. Toxoplasmosis in immunocompromised patients in Iran: a systematic review and meta-analysis. *J. Infect. Dev. Ctries*, 2014, vol. 8, no. 12, pp. 1503–1510. doi: 10.3855/jidc.4796

2. Ahmadpour E., Pishkarie-Asl R., Spotin A., Samadi Kafil H., Didarlu H., Azadi Y., Barac A. Sero-molecular evaluation of *Toxoplasma gondii* infection among HIV-positive patients. *Trans. R. Soc. Trop. Med. Hyg.*, 2019, vol. 113, no. 12, pp. 771–775. doi: 10.1093/trstmh/trz082

3. Ahmadpour E., Zargami E., Mahami-Oskouei M., Spotin A., Shahbazi A., Kafil H.S., Rajabi S., Alizadeh P., Azadi Y., Bahaj R., Shahrivar F., Barac A. Diagnosis of *Toxoplasma gondii* infection in pregnant women using automated chemiluminescence and quantitative real time PCR. *Asian Pacific Asian Pac. J. Trop. Med.*, 2019, vol. 12, no. 1, pp. 26–31.
4. Anvari D., Sharif M., Sarvi S., Aghayan S.A., Gholami S., Pagheh A.S., Hosseini S.A., Saberi R., Chegeni T.N., Hosseininejad Z., Daryani A. Seroprevalence of Toxoplasma gondii infection in cancer patients: a systematic review and meta-analysis. Microb. Pathog., 2019, vol. 129, pp. 30–42. doi: 10.1016/j.micpath.2019.01.040

5. Arab-Mazar Z., Fallahi S., Koochaki A., Mighaghi A., Tabaei S.J.S. Immunodiagnosis and molecular validation of Toxoplasma gondii-recombinant dense granular (GRA) 7 protein for the detection of toxoplasmosis in patients with cancer. Microbiol. Res., 2016, vol. 183, pp. 53–59. doi: 10.1016/j.micres.2015.11.006

6. Carmen J.C., Sinai A.P. Suicide prevention: disruption of apoptotic pathways by protozoan parasites. J. Ind. Organ. Psychol., 2001, vol. 39, no. 2, pp. 18–19.

7. Cong W., Liu G.H., Meng Q.F., Dong W., Qin S.Y., Zhang F.K., Zhang X.Y., Wang X.Y., Qian A.D., Zhu X.Q. Toxoplasma gondii infection in cancer patients: prevalence, risk factors, genotypes and association with clinical diagnosis. Cancer Lett., 2015, vol. 359, no. 2, pp. 307–313. doi: 10.1016/j.canlet.2015.01.036

8. Daryani A., Sarvi S., Ararabi M., Mizani A., Ahmadpour E., Shokri A., Shokri A., Rahimi M.T., Sharif M. Seroprevalence of Toxoplasma gondii in the Iranian general population: a systematic review and meta-analysis. Acta Tropica, 2014, vol. 137, pp. 185–194. doi: 10.1016/j.actatropica.2014.05.01

9. De la Luz Galvan-Ramirez M., Troyo R., Roman S., Calvillo-Sanchez C., Bernal-Redondo R. A systematic review and meta-analysis of Toxoplasma gondii infection among the Mexican population. Parasites Vectors, 2012, vol. 5, no. 1: 271. doi: 10.1186/1756-3305-5-271

10. Dorfman H.D., Czerniak B. Bone cancers. Cancer, 1995, vol. 75, no. 1, pp. 203–210. doi: 10.1002/1097-0142(19950101)75:1<203::aid-cncr2280751308>3.0.co;2-p

11. Dubey J., Jones J. Toxoplasma gondii infection in humans and animals in the United States. Int. J. Parasitol., 2008, vol. 38, no. 11, pp. 1257–1278. doi: 10.1016/j.ijpara.2008.03.007

12. Dupont C.D., Christian D.A., Hunter C.A. Immune response and immunopathology during toxoplasmosis. Semin. Immunopathol., 2012, vol. 34, no. 6, pp. 793–813. doi: 10.1007/s00281-012-0339-3

13. Embil J., Covert A., Howes W., Tanner C., Staudt M. Visualization of Toxoplasma gondii in the cerebrospinal fluid of a child with a malignancy astrocytoma. Can. Med. Assoc. J., 1985, vol. 133, no. 5, pp. 213–214.

14. Ewald P.W. An evolutionary perspective on parasitism as a cause of cancer. Adv. Parasitol., 2009, vol. 68, pp. 21–43. doi: 10.1016/S0065-308X(08)00602-7

15. Fitzpatrick R. The strange case of the transfer of training estimate. Int. J. Ind. Organ. Psychol., 2001, vol. 39, no. 2, pp. 18–19.

16. Gleason T.H., Hamlin W.B. Disseminated toxoplasmosis in the compromised host: a report of five cases. N. Engl. J. Med., 1974, vol. 291, no. 2, pp. 1029–1062.

17. Hashanzadeh M., Rasti S., Hooshyhar H., Momen-Heravi M., Soleymani A., Mousavi S.G.A. Seroepidemiology of Toxoplasma gondii infection in immunodeficiency patients in Kashan and Qom during 2014–2015. FEYZ, 2017, vol. 21, no. 5, pp. 483–489.

18. Jemal A., Bray F., Center M.M., Ferlay J., Forman D. Global cancer statistics. FEBS Lett., 2011, vol. 583, no. 2, pp. 239–244. doi: 10.1016/j.febslet.2009.09.021

19. Khabaz M.N., Elkhateeb L., Al-Alami J. Reactivation of latent Toxoplasma gondii in immunocompromised cancer patients. Clin. Diagn. Lab. Immunol., 2000, vol. 7, no. 4, pp. 703–705. doi: 10.1128/CDLI.7.4.703-705.2000

20. Klastersky J., Aoun M. Opportunistic infections in patients with cancer Ann. Oncol., 2004, vol. 15, no. 4, pp. iv329–iv335. doi: 10.1093/annonc/mdh947

21. Kusne S., Dummer J.S., Ho M., Whiteside T., Rabin B.S., Makowka L., Esquivel C.O., Starzl T.E. Self-limited Toxoplasma parasitemia after liver transplantation. Transplantation, 1987, vol. 44, no. 3, pp. 457–458.

22. Liu Q., Wang Z.-D., Zhang X. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasites Vectors, 2015, vol. 8, no. 1: 292. doi: 10.1186/s13071-015-0092-6

23. Mechin B., Garin Y.J.F., Robert-Gangneux F., Dupouy-Camet J., Derouin F. Lack of utility of specific immunoglobulin G antibody avidity for serodiagnosis of reactivated toxoplasmosis in immunocompromised patients. Clin. Diagn. Lab. Immunol., 2000, vol. 7, no. 4, pp. 703–705. doi: 10.1128/CDLI.7.4.703-705.2000

24. Pradhan S., Yadav R., Mishra V.N. Toxoplasma meningoencephalitis in HIV-seronegative patients: clinical patterns, imaging features and treatment outcome. Trans. R. Soc. Trop. Med. Hyg., 2007, vol. 101, no. 1, pp. 25–33. doi: 10.1016/j.trstmh.2006.02.021

25. Roozbehani M., Falak R., Mohammadi M., Hemphill A., Razmjou E., Meamar A.R., Masoori L., Khoshmirsa M., Moradi M., Gharavi M.J. Characterization of a multi-epitope peptide with selective MHC-binding capabilities encapsulated in PLGA nanoparticles as a novel vaccine candidate against Toxoplasma gondii infection. Vaccine, 2018, vol. 36, no. 41, pp. 6124–1632. doi: 10.1016/j.vaccine.2018.08.068

26. Rouatbi M., Amauria S., Andouly Y., Boussadoun M.A., Ayadi O., Al-Hosary A.T., Reki M., Ben Abdallah R., Aoun K., Darghouth M.A., Wieland B., Gharbi M. Toxoplasma gondii infection and toxoplasmosis in North Africa: a review. Parasite, 2019, vol. 26. doi: 10.1051/parasite/2019006

27. Safarpour H., Cevik M., Zarean M., Barac A., Hatam-Nahavandi K., Rahimi M.T., Bannazadeh Baghi H., Koshki T.J., Pagheh A.S., Shahriver E., Ebrahimi M., Ahmadpour E. Global status of Toxoplasma gondii infection and associated risk factors in people living with HIV. AIDS, 2020, vol. 34, no. 3, pp. 469–474. doi: 10.1097/QAD.0000000000002424

28. Sasai M., Pradippta A., Yamamoto M. Host immune responses to Toxoplasma gondii. Int. Immunol., 2018, vol. 30, no. 3, pp. 113–139. doi: 10.1093/intimm/dxy004

29. Sharif M., Daryani A., Ebrahiminejad Z., Gholami S., Ahmadpour E., Borhani S., Lamsechi N. Seroprevalence of anti-Toxoplasma IgG and IgM among individuals who were referred to medical laboratories in Mazandaran province, northern Iran. J. Infect. Public Health, 2016, vol. 9, no. 1, pp. 75–80. doi: 10.1016/j.jiph.2015.06.006

30. Verma N., Tiagi A., Singh P., Tyagi M., Rathi M., Sharma S. Incidence of bone tumors and tumor like lesions at a tertiary centre — a study of 64 cases. J. Res. Med. Sci., 2018, vol. 6, no. 2, pp. 533. doi: 10.18203/2320-6012.ijrms20180293
31. Wang Z.-D., Liu H.-H., Ma Z.-X., Ma H.-Y., Li Z.-Y., Yang Z.-B., Zhu X.Q., Xu B., Wei F., Liu Q. Toxoplasma gondii infection in immunocompromised patients: a systematic review and meta-analysis. *Front. Microbiol.*, 2017, vol. 8: 389. doi: 10.3389/fmicb.2017.00389

32. Yuan Z., Gao S., Liu Q., Xia X., Liu X., Liu B., Hu R. Toxoplasma gondii antibodies in cancer patients. *Cancer Lett.*, 2007, vol. 254, no. 1, pp. 71–74. doi: 10.1016/j.canlet.2007.02.011