Case Report

Orbital Apex Syndrome in Herpes Zoster Ophthalmicus

Hatice Arda, Ertugrul Mirza, Koray Gumus, Ayse Oner, Sarper Karakucuk, and Ender Sirakaya

Department of Ophthalmology, Medical Faculty Erciyes University, 38039 Kayseri, Turkey

Correspondence should be addressed to Hatice Arda, ulusalhatis@gmail.com

Received 16 February 2012; Accepted 22 March 2012

Copyright © 2012 Hatice Arda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Orbital apex syndrome is a rare manifestation of Herpes Zoster Ophthalmicus. Herein we report on a case of orbital apex syndrome secondary to Herpes Zoster Ophthalmicus. A 75-year-old male complained of vision loss, conjunctival hyperemia and proptosis on the left eye, was referred to our clinic. Visual acuity was 5/10 Snellen lines and he had conjunctival hyperemia, chemosis, minimal nuclear cataract and proptosis on the left eye. A diagnosis of orbital pseudotumor was demonstrated firstly. The patient received oral and topical corticosteroids, antiinflammatory and antibiotic agents. On day 2, vesiculopustular lesions were observed, Herpes Zoster Ophthalmicus was diagnosed and corticosteroid treatment stopped, oral acyclovir treatment initiated. Two days later, total ophthalmoplegia, ptosis and significant visual loss were observed on the left. The diagnosis of orbital apex syndrome was considered and the patient commenced on an intravenous acyclovir treatment. After the improvement of acute symptoms, a tapering dose of oral cortisone treatment initiated to accelerate the recovery of ophthalmoplegia. At 5-month follow-up, ptosis and ocular motility showed improvement. VA did not significantly improve because of cataract and choroidal detachment on the left. We conclude that ophthalmoplegia secondary to Herpes Zoster Ophthalmicus responds favourably to intravenous acyclovir and steroids.

1. Introduction

Herpes zoster is a localized disease characterised by unilateral radicular pain and a vesicular eruption caused by varicella zoster virus which is a human neurotropic DNA virus [1, 2]. Orbital involvement with HZO includes keratoconjunctivitis, anterior uveitis, acute retinal necrosis, acute phthisis bulbi, central retinal artery occlusion, optic neuritis, orbital pseudotumor, and partial or complete paralysis of ocular motility [3–6]. The extraocular muscle palsies occur in 3.5–10.1% of patients with ophthalmic zoster; these are transient, self-limited, and usually seen in the elderly [4, 5, 7, 8]. The orbital apex syndrome (OAS) is defined by the association of visual loss, ophthalmoplegia, blepharoptosis, proptosis, and anesthesia of the upper eyelid and forehead. It is a rare manifestation of HZO [9]. In this study we report on a case of orbital apex syndrome secondary to HZO.

2. Case Report

A 75-year-old male referred to the eye clinic of Erciyes University Medical Faculty with the complaint of vision loss and conjunctival hyperemia of the left eye. He had a history of trauma to his left eye four days ago. Magnetic resonance imaging (MRI) of the orbits showed bilateral proptosis which was significant on the left as well as edema and inflammation at the anteroinferior part of the left bulbus oculi. He was referred to our clinic to investigate the etiology of the proptosis. The patient received oral flurbiprofen (100 mg, t.i.d) and ciprofloxacin
On the second day of the hospitalization, vesicular and pustular lesions occurred around the left eyelid and forehead, and the diagnosis of HZO was made (Figure 1). The visual acuity of the left eye rapidly decreased to counting fingers from 1.5 meters. Anterior segment examination showed an epithelial defect at the inferior half of the cornea, posterior synechiae at the pupillary area, fibrinoid reaction in the anterior chamber and mature cataract. The intraocular pressure of the left eye was 4 mmHg (applanation). The USG examination of the left eye revealed a choroidal detachment. The corneal sensation, ocular motility, and the ptosis showed partial improvement at the end of five months (Figure 5).

3. Discussion

HZO is a disease in which the ophthalmic division of the trigeminal nerve is affected by the varicella virus [10]. The common ocular manifestations of HZO include blepharoconjunctivitis, keratitis, and uveitis [11]. OAS is a rare and severe manifestation of HZO which was to the best of our knowledge reported in only five cases previously [9, 12–14]. We reported the sixth case of HZO which progressed to OAS in the literature. OAS is characterized by the involvement of the 2nd, 3rd, 4th, and 6th cranial nerves with the paralysis of ophthalmic branch of the 5th cranial nerve due to inflammatory, infectious, neoplastic, traumatic, vascular, and sometimes iatrogenic reasons along the ophthalmic canal region [15]. In our case there was a history of trauma and a viral infection but not any malignancy. The two of the previously reported cases had immunodeficiency; one had Hodgkin’s disease and in the other case, human immunodeficiency virus was positive [12, 14]. All of the cases which had orbital apex syndrome secondary to HZO in the literature were treated with systemic acyclovir and steroids. The treatment with intravenous acyclovir and steroids usually carries a good prognosis with the exception of the presence of immunosuppression. Superior orbital fissure syndrome (SOFS) has the same clinical findings with OAS. The clinical signs of SOFS include proptosis, ptosis, and total ophthalmoplegia similar to orbital apex syndrome. SOFS can be distinguished from the orbital apex syndrome by the absence of optic nerve involvement. The visual acuity of the left eye rapidly decreased in our patient. The appearance of the optic disc was normal during the initial fundus examination. After the development of anterior uveitis and secondary cataract, we examination showed an enlargement of the extraocular muscles and an increase in the amount of the soft tissues around the preseptal area; both of the cavernous sinuses were normal. Both of the superior orbital veins were dilated, which were more significant on the left. There was a choroidal detachment and an intraocular hemorrhage on the left eye. Diffusion MRI showed a deficiency of the diffusion on the right frontal and frontoparietal regions.

When the acute clinical signs of HZO were regressed, the patient was commenced on a tapering dose of oral prednisolone (1 mg/kg per day) to accelerate the recovery of the total ophthalmoplegia, proptosis, and ptosis. Topical cortisone treatment (dexamethasone) 8 times was added after the recovery of the corneal epithelial defects.

At the end of 5-month follow-up period, the visual acuity of the left eye was counting fingers from 1.5 meters. Anterior segment examination showed an epithelial defect at the inferior half of the cornea, posterior synechiae at the pupillary area, fibrinoid reaction in the anterior chamber and mature cataract. The intraocular pressure of the left eye was 4 mmHg (applanation). The USG examination of the left eye revealed a choroidal detachment. The corneal sensation, ocular motility, and the ptosis showed partial improvement at the end of five months (Figure 5).
were unable to evaluate the optic disc and retina to disclose an optic nerve atrophy.

The time interval for resolution of ophthalmoplegia secondary to HZO was found between 2 weeks to 1.5 years and a mean of 4.4 months in a previous review report [16]. At the end of the 5-month follow-up period, partial resolution of the ocular movements and ptosis was observed in the presented case. The follow-up period could have been longer to observe the complete resolution; however, our patient went abroad and we were unable to follow him up any longer. The frequency of complete or near complete resolution of ophthalmoplegia was reported to be 76.5% and the resolution in optic neuropathy was reported to be 75% in the literature [16]. Many pathogenic mechanisms are proposed as the cause of total ophthalmoplegia in zoster infection. These include direct viral cytopathic effect and a reactive immunologic response to the virus [17, 18]. Naumann et al. reported chronic inflammatory cell infiltration in the long posterior ciliary vessels and nerves of 21 enucleated eyes which were affected by HZO [18]. These findings can be suggested by microinfarction of the cranial nerves which was reported previously by Garg et al. [19]. On the other hand, orbital soft tissue edema may affect the third, fourth, and sixth cranial nerves by direct compression [8]. Direct spread of the HZV virus from the fifth cranial nerve to the third, fourth, and sixth in the region of the orbital apex may be one of the other possible mechanisms of total ophthalmoplegia [20]. In our case, we hypnotize that both the compressive effect of the orbital soft tissue edema and the direct spread of the virus caused the total ophthalmoplegia. Also the history of disorientation and syncope in our patient may be due to microinfarction of the brain.

Orbital apex syndrome is a very rare and severe complication of HZO. Although the effect of systemic steroids and antiviral therapy on HZO-associated ophthalmoplegia has not been studied with a randomised controlled clinical trial, the combination treatment of intravenous acyclovir and steroids usually carries good prognosis especially with normal immunity.
Disclosure
A part of the paper was published as a poster at 44. TOD National Congress, 2010, Antalya, Turkey.

References

[1] R. P. Kirwan, M. Abdalla, A. Hogan, N. Tubridy, P. Barry, and W. Power, “Superior orbital fissure syndrome in herpes zoster ophthalmicus,” Irish Journal of Medical Science, vol. 178, no. 3, pp. 355–358, 2009.

[2] M. K. Shin, C. P. Choi, and M. H. Lee, “A case of herpes zoster with abducens palsy,” Journal of Korean Medical Science, vol. 22, no. 5, pp. 905–907, 2007.

[3] P. Schoenlaub, F. Grange, X. Nasica, and J. C. Guillaume, “Oculomotor nerve paralysis with complete ptosis in herpes zoster ophthalmicus: 2 cases,” Ann Dermatol Venereol, vol. 124, pp. 401–403, 1997.

[4] R. J. Marsh and M. Cooper, “Ophthalmic herpes zoster,” Eye, vol. 7, no. 3, pp. 350–370, 1993.

[5] L. W. Womack and T. J. Liesegang, “Complications of herpes zoster ophthalmicus,” Archives of Ophthalmology, vol. 101, no. 1, pp. 42–45, 1983.

[6] D. Pavan-Langston, “Herpes zoster ophthalmicus,” Neurology, vol. 45, no. 12, pp. 50–51, 1995.

[7] J. S. Glaser, “Infranuclear disorders of eye movement,” in Duane’s Clinical Ophthalmology, W. Tasman and E. A. Jaeger, Eds., vol. 2, pp. 17–18, JB Lippincott, Philadelphia, Pa, USA, 1994.

[8] A. Chang-Godinich, A. G. Lee, P. W. Brazis, T. J. Liesegang, and D. B. Jones, “Complete ophthalmoplegia after zoster ophthalmicus,” Journal of Neuro-Ophthalmology, vol. 17, no. 4, pp. 262–265, 1997.

[9] T. Baha Ali, A. Moutaouakil, B. Ouaggag et al., “Orbital apex syndrome secondary to herpes zoster infection. A case report,” Bulletin of the Belgian Society of Ophthalmology, no. 307, pp. 39–43, 2008.

[10] S. E. Straus, K. E. Schmader, and M. N Oxman, “Varicella and herpes zoster,” in Dermatology in General Medicine, I. M. Freedberg, A. Z. Eisen, K. Wolff, K. F. Austen, L. A. Goldsmith, and S. I. Katz, Eds., Fitzpatrick’s Dermatology in General Medicine, pp. 2070–2079, McGraw-Hill, New York, NY, USA, 6th edition, 2003.

[11] V. K. Yong, C. C. Yip, and V. S. Yong, “Herpes zoster ophthalmicus and the superior orbital fissure syndrome,” Singapore Medical Journal, vol. 42, no. 10, pp. 485–486, 2001.

[12] J. C. Kattah and J. S. Kennerdell, “Orbital apex syndrome secondary to herpes zoster ophthalmicus,” American Journal of Ophthalmology, vol. 85, no. 3, pp. 378–382, 1978.

[13] R. D. Bourke and J. Pyle, “Herpes zoster ophthalmicus and the orbital apex syndrome,” Australian and New Zealand Journal of Ophthalmology, vol. 22, no. 1, pp. 77–80, 1994.

[14] R. Saxena, S. Phuljele, L. Aalok et al., “A rare case of orbital apex syndrome with herpes zoster ophthalmicus in a human immunodeficiency virus-positive patient,” Indian Journal of Ophthalmology, vol. 58, no. 6, pp. 527–530, 2010.

[15] S. Yeh and R. Foroozan, “Orbital apex syndrome,” Current Opinion in Ophthalmology, vol. 15, pp. 490–498, 2004.

[16] G. Naumann, J. D. Gass, and R. L. Font, “Histopathology of herpes zoster ophthalmicus,” American Journal of Ophthalmology, vol. 65, no. 4, pp. 533–541, 1968.

[17] R. K. Garg, A. M. Kar, and A. K. Jain, “Herpes zoster ophthalmicus with orbital pseudotumor syndrome complicated by optic nerve infarction and cerebral granulomatous angiitis: MR-pathologic correlation,” American Journal of Neuroradiology, vol. 14, no. 1, pp. 185–190, 1993.

[18] G. Naumann, J. D. Gass, and R. L. Font, “Histopathology of herpes zoster ophthalmicus,” American Journal of Ophthalmology, vol. 65, no. 4, pp. 533–541, 1968.

[19] R. K. Garg, A. M. Kar, and A. K. Jain, “Herpes zoster ophthalmicus with complete external ophthalmoplegia,” Journal of the Association of Physicians of India, vol. 40, no. 7, pp. 486–497, 1992.

[20] H. M. Shin, H. Lew, and Y. S. Yun, “A case of complete ophthalmoplegia in herpes zoster ophthalmicus,” Korean Journal of Ophthalmology, vol. 19, no. 4, pp. 302–304, 2005.