Coralligenous banks along the western and northern continental shelf of Sardinia Island (Mediterranean Sea)

Giovanni De Falco, a, Alessandro Conforti, a, Walter Brambilla, a, Francesca Budillon, b, Giulia Ceccherelli, c, Maria De Luca, c, Gabriella Di Martino, b, Ivan Guala, d, Sara Innangi, b, Vincenzo Pascucci, c, Luigi Piazzi, c, Laura Pireddu, c, Antonio Santonastaso, c, Renato Tonielli, b and Simone Simeone, a

aCNR-IAS - Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino Oristano, Italy; bCNR-ISMAR – Istituto di Scienze Marine, Napoli; cDADU-Dipartimento di Architettura, Design e Urbanistica Università di Sassari Palazzo del PouSalì, Alghero, Italy; dIMC - International Marine Centre, Oristano, Italy

ABSTRACT
Mapping of coralligenous banks was carried out along the continental shelf of the northern and western margin of Sardinia Island (Italy, western Mediterranean Sea) in the context of the European Marine Strategy Framework Directive (MSFD, 2008/56/EC). Coralligenous banks are bioconstructions produced by calcareous coralline algae. Seaﬂoor mapping was carried out through multibeam echosounder surveys and video transects, using a Remote Operating Vehicles (ROV), in areas not formerly explored. A high-resolution digital model of the seabed (DTM) was obtained from multibeam data. A total surface of 436 km2 of sparse patches of coralligenous banks was mapped in the depth range ~40-160 m. A final map of coralligenous habitat distributions along the western and northern continental shelf of Sardinia (scale 1:250,000) was produced. The base-map is formed by the shaded DTM of the seabed. Other mapped features include the edge of the continental shelf and the distribution of rocky seabed.

1. Introduction

The continental shelves of the Mediterranean Sea, from ~20 m down to 120 m depth, can be characterized by the presence of the ‘coralligenous habitat’, a biogenic concretion that thrives exclusively in Mediterranean waters (Ballesteros, 2006; Çinar et al., 2020; Piazzi et al., 2021). Coralligenous habitat is considered a hard substratum produced by the accumulation of calcareous coralline algae growing in low light conditions of 0.05% and 3% of the surface irradiance (Ballesteros, 1992; Ballesteros, 2006). Coralligenous growth is also influenced by nutrient concentration in the sea water (Piazzi et al., 2011), sedimentation (Piazzi et al., 2012) and temperature and salinity conditions (Ballesteros, 2006). Moreover, the coralligenous habitat is the result of interactions between the building activities of algal and animal constructors and biological and physical erosive processes (Martin et al., 2014). The coralligenous communities, as well as other marine communities such as the meadow of Posidonia oceanica, can be considered a carbonate-producing ecosystem, because of the presence of calcifying organisms (Canals & Ballesteros, 1997; Sartoretto et al., 1996).

Knowledge of the distribution of coralligenous habitats along the continental shelves of the Mediterranean Sea is crucial for the management and conservation of marine resources (Bracchi et al., 2017; Cogan et al., 2009; Çinar et al., 2020; Piazzi et al., 2021). Two main coralligenous types may be defined: coralligenous cliffs over littoral rocks, and coralligenous banks or platforms on continental shelves (Ballesteros, 2006; Montefalcone et al., 2021).

Martin et al. (2014) reviewed the available data of coralligenous habitat distribution in the whole Mediterranean Sea, highlighting that the mapped polygons of coralligenous outcrops amounted to 2763.4 km². They applied a probabilistic model of coralligenous occurrence, estimating that as much as 95% of coralligenous habitat had still to be mapped (Martin et al., 2014).

In recent years, the mapping effort of coralligenous habitat increased under the European Marine Strategy Framework Directive (MSFD; EC, 2008). The MSFD aims to improve the environmental status of the seas and coralligenous assemblages are considered ‘special habitat types’ that should be monitored.

Direct observations of coralligenous banks are often prevented by water depth. To avoid these
difficulties, geophysical acoustic data, coupled to ground truth data obtained with seabed sampling or video images of the seabed, have been more frequently used to map the seafloor (Brambilla et al., 2019; Costa & Battista, 2013; De Falco et al., 2010; Di Martino et al., 2021; Innangi et al., 2019a). Although new data of seabed mapping of the circlalitolz zone have been locally produced (e.g. Bracchi et al., 2015; Bracchi et al., 2017; Cánovas Molina et al., 2016; De Luca et al., 2018; Georgiadis et al., 2009), the knowledge of coralligenous habitats in the Mediterranean distribution is largely incomplete.

The aim of this work is to map the occurrence of coralligenous banks on the northern and western continental shelf of Sardinia in a depth range of ~40-200 m. The investigated area is the largest shelf sector of the Mediterranean Sea where extended mapping of coralligenous banks has been performed. Seabed maps were obtained from a multibeam echosounder survey. Video images of the seafloor were collected to validate the interpretation of geophysical data.

2. Study area

Sardinia is the second island of the Mediterranean Sea with an area of ~24,000 km² and ~2000 km of coastline length (Figure 1). The continental shelf of the western Sardinian margin is 5–40 km wide and is characterized by different morphological domains controlled by tectonic features (Carboni et al., 1989; Conforti et al., 2016; De Falco et al., 2015a; Geletti et al., 2014). A wide amphitheater facing the Gulf of Oristano occurs in the central-western sector with a smooth transition between the ~25 km wide, continental shelf and the deep basin, at a depth of 2850 m. The amphitheater is bordered to the north and south by a continental shelf which is ~40 km wide. In the northernwestern sector, the shelf is narrower (~5–10 km) and connected to the deep basin by a steep slope (Sage et al., 2005). In the northern sector of the island, the continental shelf is 20–30 km wide and is deeply incised by the canyon of Castelsardo (main map) (Kenyon et al., 2002).

The continental shelf is sediment-starved (Carboni et al., 1989; De Falco et al., 2011). The seabed is composed of an alternation of rocky outcrops, relict sedimentary deposits, and sands with a dominant carbonate composition (~60%) (Brambilla et al., 2019; Carboni et al., 1989; Conforti et al., 2016; De Falco et al., 2015b; De Luca et al., 2020; Lecca et al., 1983).

3. Methods

Multibeam echosounder (MBES) data were collected along the western and northern margin of the Sardinia Island (western Mediterranean Sea), from ~40 m down to ~500 m depth, covering a total area of 9930 km² (~25,000 km of total line length) (Table 1 and Figure 1). MBES data were acquired during several oceanographic cruises on the R/V Maria Grazia, R/V Urania and R/V Minerva Uno of the National Research Council. The MBES used were: (i) Kongsberg EM 3002D (293-307 kHz, resolution 1 cm) for shallow areas, and (ii) Kongsberg EM 710 (200 kHz) and SeaBatReson 7111 (100 kHz) for deeper ones. Shallower data (ranging from 30 m of depth) were collected along a limited sector facing the Sinis Peninsula (Figure 1) using the SeaBatReson 7125 (400 kHz). Multibeam data were processed using the software Caris Hips and Sips, and a Digital Terrain Model (DTM) at 2.5 m cell resolution was obtained for the whole investigated area. Backscatter data were also obtained by the multibeam data (Innangi et al., 2019b).

The processing sequence applied to geophysical data to obtain the final map is summarized in Figure 2. The analysis of seabed morphology coupled to backscatter data was used for a primary classification of the seabed to discriminate soft vs. hard substrates. A detailed analysis of seabed morphological features coupled with terrain analysis of the DTM was performed to identify the areas potentially covered by coralligenous banks. The terrain parameters used for the analysis were slope and roughness and were extracted using the software Quantum-Gis (www.qgis.org). The slope is the angle of inclination to the horizontal for any cell. Roughness is the degree of irregularity of the surface. It is calculated by the largest inter-cell difference of a central pixel and its surrounding cell (https://docs.qgis.org/). The patches of coralligenous banks were then manually mapped using the software Global Mapper and exported as shapefile areas at 1:25,000 scale.

Ground truth data were collected during two oceanographic cruises on the R/V Minerva Uno in 2013 and 2016. Video images of the seabed were recorded by using the Remote Operating Vehicle (ROV) Pollux 3, equipped with a high-resolution camera. The ROV was equipped with anacoustic positioning system for geo-localization of the video images. Seabed images were collected in 19 transects, distributed in six sectors (Figure 1) at 60-140 m depth. The transects were positioned over the coralligenous patches previously identified by the DTM analysis. The correspondence between seabed classification and ground truth data was tested using 88 snapshots randomly extracted from the video collected along the transects (4–5 images for each transect).

4. Results

4.1. Seabed mapping

The multibeam survey was processed at 2.5 m cell resolution producing a Digital Terrain Model of mid-outer continental shelf and upper continental slope of the
western and northern Sardinia margin (main map). The shelf edge is located at 200-230 m depth in the western margin and at ∼150 m depth in the northern margin. The head of the canyon of Castelsardo incises the shelf up to ∼ 80 m depth. Eastward of the canyon head, the shelf edge is not defined by any break in slope (main map).
The analysis of the DTM showed that large sectors of the shelf are characterized by the presence of an irregular seabed surface (Figure 3(a)). Backscatter data allowed us to distinguish three seabed types with different acoustic properties (Figure 3(b)): (I) high backscatter seabed (black-dark grey), (ii) intermediate backscatter seabed (grey), and (iii) low backscatter seabed (light grey). High backscatter is associated with an irregular seabed surface (Figure 3(a)) and mainly occurs at 40-160 m depth. Intermediate backscatter seabed is found on the outer shelf, and low backscatter values are found in the shallower sectors, between 60 and 100 m depth.

Analysis of the DTM highlights that distinct sectors of the seabed are characterized by the presence of groups of build-ups up to 4 m high. Those build-ups give a rough appearance to the seabed due to high relief and steep flanks (Figure 4). Lateral continuity can be assigned to two end-members according to Bracchi et al. (2017): (i) tabular build-ups and (ii) isolated build-ups. Tabular build-up is the dominant morphology which forms a continuous cover on the seafloor (Figure 4(a)) and extends up to 3 km in extent. Isolated build-ups are ten of meters in extent and are surrounded by a flat seabed (Figure 4(a)).

The terrain parameters slope and roughness are reported in Figure 4(c and d). The area characterized by the presence of the build-ups is clearly enhanced after the application of selected terrain parameters to the DTM. Based on the DTM and terrain parameters, the build-ups were manually enclosed in polygons delimiting mappable patches at the chosen scale, 1:25,000 (Figure 3). A total of 1406 polygons were traced, enclosing an area of 436 km².

4.2. Ground truth data

The video images collected over the seafloor reveal that the build-ups correspond to living coralligenous banks (Figure 5). Banks forming tabular build-ups are mainly built over more or less horizontal substrata and can have a very cavernous structure (Figure 5).

A good agreement between the seabed classification obtained from the DTM and terrain analysis and the occurrence of coralligenous banks in the ROV images was found. Each video transect confirms the presence of coralligenous living beds where the DTM and terrain analysis revealed the morphological features highlighted in Figure 4. The analysis of 88 random images revealed the presence of coralligenous banks in 80 cases, thus confirming the good agreement between the seabed classification and the ground truth data. The remanent eight images revealed the presence of rhodolite beds or sediment deposits in flat areas among isolated build-ups.

5. Discussion

The irregular seabed surface characterized by high backscatter values can be attributed to the rocky substrate which outcrops along the continental shelf. The

Surface – \(\text{km}^2 \)
Area covered by multibeam data
Continental shelf
Surveyed area of the continental shelf (≈40 m to shelf edge)
Area covered by sediments (≈40 m to shelf edge)
Rocky outcrops (≈40 m to shelf edge)
Coralligenous banks (≈40 m to shelf edge)

The terrain parameters slope and roughness are reported in Figure 4(c and d). The area characterized by the presence of the build-ups is clearly enhanced after the application of selected terrain parameters to the DTM. Based on the DTM and terrain parameters, the build-ups were manually enclosed in polygons delimiting mappable patches at the chosen scale, 1:25,000 (Figure 3). A total of 1406 polygons were traced, enclosing an area of 436 km².

4.2. Ground truth data

The video images collected over the seafloor reveal that the build-ups correspond to living coralligenous banks (Figure 5). Banks forming tabular build-ups are mainly built over more or less horizontal substrata and can have a very cavernous structure (Figure 5).

A good agreement between the seabed classification obtained from the DTM and terrain analysis and the occurrence of coralligenous banks in the ROV images was found. Each video transect confirms the presence of coralligenous living beds where the DTM and terrain analysis revealed the morphological features highlighted in Figure 4. The analysis of 88 random images revealed the presence of coralligenous banks in 80 cases, thus confirming the good agreement between the seabed classification and the ground truth data. The remanent eight images revealed the presence of rhodolite beds or sediment deposits in flat areas among isolated build-ups.

5. Discussion

The irregular seabed surface characterized by high backscatter values can be attributed to the rocky substrate which outcrops along the continental shelf. The

![Flow chart showing the methodological steps used to obtain the final map.](image-url)
rocky substrate covers a total area of 2090 km² mainly in the depth range of 40–160 m (main map), where it occupies 36% of the total surface encompassed within this bathymetric range (Figure 6). In the outer shelf, the rocky substrate is progressively blanketed by the prograding sedimentary wedge (Carboni et al., 1989), which is characterized by intermediate backscatter values (Figure 3 and main map). In the inner shelf, the rocky outcrop encompasses as characterized by a patchy distribution of coarse relict gravelly sands and medium-fine sands (Bracchi et al., 2017; De Falco et al., 2015b).

Coralligenous habitat extends over 436 km² in the depth range 40–160 m and it colonizes 8.8% of the surface of the continental shelf in this depth range (Figure 6). The survey was extended to shallow depth, up to 20 m deep, in the central-western sector (main map). In this area the upper limit of the coralligenous patches occurs at about -30 m and a coexistence with *Posidonia oceanica* meadows is observable, similarly to the Apulia region, Southern Italy (Bracchi et al., 2017).

Martin et al. (2014) reviewed the available data of coralligenous mapping, highlighting that only 2763.4 km² were mapped in the Mediterranean until 2014. The same authors reported that the major coralligenous occurrence are found in the depth range 10-50 m (Martin et al., 2014). Successively, Bracchi et al. (2015, 2017) reported the distribution of coralligenous habitat on a wide shelf sector of Apulia region. Coralligenous extents along the Apulia shelf encompassed a total surface of 388 km² in the depth range 10-100 m. In this study, the use of acoustic geophysical techniques (e.g. Multibeam echosounder), integrated with direct inspections of the seabed (Romagnoli et al., 2021), allows for understanding of the extent of coralligenous habitats in the Mediterranean Sea, which is still underestimated (Bracchi et al., 2017; Martin et al., 2014).

The depth distribution of the different types of seabed is shown in Figure 6. Coralligenous banks were mapped down to 160 m depth with a maximum occurrence at 80-100 m depth. The deepest occurrence was located at about 160 m with an extensive presence of the habitat in the 120-140 m depth range in the north-western sector, offshore Alghero bay (main map). The depth of 160 m largely exceeds the maximum depth of coralligenous occurrence reported in the literature sofar, which is 120 m (Ballesteros, 2006). In Apulia, the extent of the coralligenous habitat does not exceed 100 m depth (Bracchi et al., 2017). The anomalously-deep occurrence of coralligenous habitats in western and northern Sardinia platform can be accounted for by two main factors: the first is related to the environmental conditions of the water column, and the second to the peculiar morphology of the continental shelf. It is well acknowledged that the maximum depth compatible with the presence of coralligenous concretions depends on the penetration of light (Ballesteros, 2006), therefore in areas with turbid waters the coralligenous habitat does not extend beyond the shallow water environment (Sartoretto et al., 1996). Conversely, coralligenous habitats have been reported down to 120 m depths in areas with very clear waters, which are generally located far from the sedimentary input points (Ballesteros & Zabala, 1993; Laborel, 1987). This is the case in western and northern Sardinia, where the coastal areas
lack alluvial plains and fluvial sediment yields and the continental shelf shows the typical features of a sediment-starved environment. Moreover, the extensive rocky seabed down to 170-180 m, the occurrence of wide seagrass meadows in the infralittoral zone, the prevalence on the loose seabed of coarse sediments with a mainly carbonate composition (Brambilla et al., 2019; De Falco et al., 2011; De Falco et al., 2015a) favor the occurrence of clear waters and as a consequence, the development at depth of the coralligenous habitat (Ballesteros, 2006; Martorelli et al., 2014; Pérès & Picard, 1964). In western Sardinia the continental shelf extends with a very low gradient down to a depth of about 200 m, whereas most of the continental shelves in the Mediterranean have the edge located at a depth of 50-160 m (Acosta et al., 2002; Lobo et al., 2014; Martorelli et al., 2014). Moreover, a large part of the seabed in western Sardinia is characterized by outcrops of the rocky basement (Figure 6), which is an ideal substratum for coralligenous colonization (Got & Laubier, 1968; Laborel, 1987). These conditions favor the presence of extended coralligenous habitats (Ballesteros, 2006; Martorelli et al., 2014; Pérès & Picard, 1964).

There is not a general agreement on the substrate where coralligenous banks can develop. Coralligenous banks are sometimes surrounded by sedimentary substrata and Pérès and Picard (1952) argued that they developed from the coalescence of rhodolites or maërl, forming the so called ‘coralligène de plateau’. The same observation was reported by Bracchi et al. (2017), who supported the hypothesis of banks growing from a sedimentary substrate. Other authors maintain that coralligenous banks are grown upon rocky outcrops (Got & Laubier, 1968; Laborel, 1987). In our case coralligenous banks are clearly associated with rocky outcrops (Got & Laubier, 1968; Laborel, 1987). In this study the coralligenous banks occupy 21% of the rocky substrate. This percentage could be underestimated compared to the real coverage as it is based on the detection of the banks that

![Figure 4. (a) 3D view of the Digital Terrain Model (DTM) in a sector of the western Sardinia continental shelf (location in Figure 1), showing tabular and isolated build-ups; (b) planar view of the DTM (B), slope (c) and roughness index (d) of the same sector. The coordinates are expressed in meters (UTM-WGS 84-32N zone).](image-url)
show a morphological expression which is identifiable at the resolution used in this survey.

6. Conclusion

The map of coralligenous banks of the western and northern continental shelf of Sardinia was produced at a 1:250,000 scale. The map contains the digital terrain model of the seabed in the depth range 40-500 m, the position of the continental shelf edge, the polygons enclosing the rocky substratum on shelf, and the polygons enclosing the coralligenous banks.

The map provides new insights on the coralligenous habitat distribution in the Mediterranean Sea,
revealing its huge extent over the shelf, thus contributing to the knowledge of the habitat distribution requested by the European Marine Strategy framework directive.

The map provides new information on habitat characteristics. Specifically, (i) the maximum depth where the banks were detected was 160 m, that is among the greatest depth recorded for this habitat, and (ii) the coralligenous banks are associated with rocky outcrops which, in turn, are related to the morpho-tectonic features of the continental shelf.

Software
The following software were used for multibeam data processing, digital terrain model analysis and final map production: Caris Hips and Sips, Global Mapper 21, Golden Software Inc. Surfer 17, ArcGis 10, Quantum-GIS, Microsoft Office 365 – Publisher, Inkscape (1989, 1991 Free Software Foundation, Inc). All software were licensed to National Research Council.

Acknowledgments
Geophysical data and ROV images were collected during several oceanographic cruises using the R/V Maria Grazia R/VUrania and R/V Minerva UNO of the Consiglio Nazionale delleRicerche. We acknowledge the crews of the vessels.

Disclosure statement
No potential conflict of interest was reported by the author (s).

Funding details
The work was partially funded by the following projects: ‘Magic’ (MArineGeohazard along the Italian Coasts), funded by Italian Civil Protection Department and ‘Marine Strategy’ funded by Agenzia Regionale per la Protezione Ambientale della Sardegna (ARPAS). Additional funds are Base Research Project, L. R. 7 agosto 2007, Project: “Cambiantes climatici e neotettonica – la Sardegna un continente semi-stabile”, funded by Regione Autonoma della Sardegna, (RAS, Assessorato della Programmazione, Bilancio, Credito e Assetto del Territorio - Code RASSR14473 - Bando 2017, Resp. Vincenzo Pascucci).

Data availability statement
All the data used to realize the map of coralligenous property of Consiglio Nazionale delleRicerche.

Data repository
Data are available at http://marinedata.cnr.it/index.php/geo-habitat/

Geo-localisation information
The map provided area is located at following coordinates: - below left corner: 4342289 N; 412371 E - above right corner: 4575749 N; 514883 E (UTM WGS84 zone 32N)

References
Acosta, J., Canals, M., López-Martínez, J., Muñoz, A., Herranz, P., Urgeles, R., Palomo, C., & Casamor, J. L. (2002). The balearic promontory geomorphology (western Mediterranean): morpho-structure and active processes. Geomorphology, 49(3-4), 177–204. https://doi.org/10.1016/S0169-555X(02)00168-X
Ballesteros, E. (1992). Els vegetals i la zonacióitoral: espècies, comunitats i factors que influeixen la sevadistribució. ArxiusSeccióCiències, 101, 1–616. Barcelona: Institutd’Estudis Catalans. ISBN: 84-7283-210-4.
Ballesteros, E. (2006). Mediterranean coralligenous assemblages: A synthesis of present knowledge. Oceanography and Marine Biology: An Annual Review, 44, 123–195. https://doi.org/10.1201/9781420006391-7
Ballesteros, E., & Zubala, M. (1993). El bentos: El marc físic. In Història Natural de la Societatd’Història Natural de balears (2 pp. 663–685), CSIC-Ed. Moll.
Bracchi, V. A., Basso, D., Marchese, F., Corselli, C., & Savini, A. (2017). Coralligenous morphotypes on subhorizontal substrata: A new categorization. Continental Shelf Research, 144, 10–20. https://doi.org/10.1016/j.csr.2017.06.005
Bracchi, V. A., Savini, A., Basso, D., Marchese, F., & Corselli, C. (2015). Coralligenous habitat in the Mediterranean Sea: A geomorphological description from remote data. Italian Journal of Geoscience, 134(1), 32–40. https://doi.org/10.3301/IJG.2014.16
Chiocci, & A. R. Chivas (Eds.), Continental shelves of the world: Their evolution during the last glacio-eustatic cycle (pp. 147–170). Geological Society. https://doi.org/10.1144/M41.11

Martin, C. S., Giannoulaki, M., De Leo, F., Scardi, M., Salomidi, M., Knitweiss, L., Pace, M. L., Garofalo, G., Gristina, M., Ballesteros, E., Bavestrello, G., Belluscio, A., Cebrian, E., Gerakaris, V., Pergent, G., Pergent-Martini, C., Schembri, P. J., Terribile, K., Rizzo, L.,… Fraschetti, S. (2014). Coralligenous and maërl habitats: Predictive modelling to identify their spatial distributions across the Mediterranean Sea. Scientific Reports, 4(1), 1–9. https://doi.org/10.1038/srep05073

Martorelli, E., Falese, F., & Chiocci, F. L. (2014). Overview of the variability of late quaternary continental shelf deposits of the Italian peninsula. In F. L. Chiocci, & A. R. Chivas (Eds.), Continental shelves of the world: Their evolution during the last glacio-eustatic cycle (pp. 171–186). Geological Society. http://doi.org/10.1144/M41.12

Montefalcone, M., Tunesi, L., & Ouerghi, A. (2021). A review of the classification systems for marine benthic habitats and the new updated Barcelona convention classification for the Mediterranean. Marine Environmental Research, 169, 105387. https://doi.org/10.1016/j.marenvres.2021.105387

Pérès, J., & Picard, J. M. (1952). Les corniches calcaires d’origine biologique en Méditerranée occidentale. Recueil des Travaux de la Station Marine D’Endoume, 4, 2–33.

Pérès, J., & Picard, J. M. (1964). Nouveau manuel de bionomie benthique de la mer Méditerranée. RecueildesTravaux de la Station Marine D’Endoume, 31 (47), 1–131.

Piazzi, L., Gennaro, P., & Balata, D. (2011). Effects of nutrient-enrichment on macroalgal coralligenous assemblages. Marine Pollution Bulletin, 62(8), 1830–1835. https://doi.org/10.1016/j.marpolbul.2011.05.004

Piazzi, L., Gennaro, P., & Balata, D. (2012). Threats to macroalgal coralligenous assemblages in the Mediterranean Sea. Marine Pollution Bulletin, 64(12), 2623–2629. Doi 10.1016/j.marpolbul.2012.07.027

Piazzi, L., Gennaro, P., Cecchi, E., Bianchi, C. N., Cintia, M. F., Gatti, G., Guala, L., Morri, C., Sartoretto, F., Serena, F., & Montefalcone, M. (2021). Ecological status of coralligenous assemblages: Ten years of application of the ESCA index from local to wide scale validation. Ecological Indicators, 121, 107077. https://doi.org/10.1016/j.ecolind.2020.107077

Romagnoli, B., Grasselli, F., Costantini, F., Abbiati, M., Romagnoli, C., Innangi, S., Di Martino, G., & Tonielli, R. (2021). Evaluating the distribution of priority benthic habitats through a remotely operated vehicle to support conservation measures off Linosa Island (Sicily Channel, Mediterranean Sea). Aquatic Conservation: Marine and Freshwater Ecosystems, 31(7), 1686–1699. https://doi.org/10.1002/aqc.3554

Sage, F., Von Gronefeld, G., Déverchère, J., Gaullier, V., Maillard, A., & Gorini, C. (2005). Seismic evidence for Messinian detrital deposits at the western Sardinia margin, northwestern Mediterranean. Marine and Petroleum Geology, 22(6-7), 757–773. https://doi.org/10.1016/j.marpetgeo.2005.03.007

Sartoretto, S., Verlaque, M., & Laborel, J. (1996). Age of settlement and accumulation rate of submarine “coralligène” (~10 to ~60 m) of the northwestern Mediterranean Sea; relation to Holocene rise in sea level. Marine Geology, 130(3-4), 317–331. https://doi.org/10.1016/0025-3227(95)00175-1

Simeone, S., Molinaroli, E., Conforti, A., & De Falco, G. (2018). Impact of ocean acidification on the carbonate sediment budget of a temperate mixed beach. Climatic Change, 150(3–4), 227–242. https://doi.org/10.1007/s10584-018-2282-3