Light Spectrum and Decay Constants in Full QCD with Wilson Fermions

SESAM-Collaboration: U. Glässner, S. Güsken, H. Hoeber, Th. Lippert, G. Ritzenhöfer, K. Schilling, H. Hoeber, Th. Lippert, G. Siegert and A. Spitz.

Physics Department, University of Wuppertal, D-42097 Wuppertal, Germany, HLRZ c/o Forschungszentrum Jülich, D-52425 Jülich, and DESY, D-22603 Hamburg, Germany.

We present results from an analysis of the light spectrum and the decay constants f_π and f_{-1V} in Full QCD with $n_f = 2$ Wilson fermions at a coupling of $\beta = 5.6$ on a $16^3 \times 32$ lattice.

1. INTRODUCTION

This analysis was performed as part of the SESAM project [1] to investigate Sea quark Effects on Spectrum and Matrix-elements. Configurations were generated using the Hybrid-Monte-Carlo algorithm with the standard Wilson action at a coupling of $\beta = 5.6$ on a $16^3 \times 32$ lattice. We work at three different values of the dynamical quark mass: $\kappa_{\text{sea}} = 0.1560, 0.1570$ and 0.1575 corresponding to m_π/m_ρ-ratios of $0.83(1), 0.76(1)$ and $0.71(2)$ [2]. Our lightest quark-mass is approximately equal to the strange quark-mass. Up to now we generated about 8000 trajectories of unit-length with a time-step of $\Delta t = 0.01$. After measuring the integrated autocorrelation time for the plaquette and the pion-correlator at fixed timeslice [3,4] we decided to use configurations separated by 25 trajectories for the present spectrum analysis. Our sample consists of 100, 160 and 100 configurations for our 3 sea-quark values. Since we aim at a final sample of 3×200 configurations this talk should be considered as a half-time status report.

Quark propagators for the set of valence κ-values {0.1555, 0.1560, 0.1565, 0.1570, 0.1575} were computed using the standard over-relaxed Minimal Residual Algorithm with smeared sources and local as well as smeared sinks. We used the Wuppertal gauge-invariant gaussian smearing method with $N = 50$ iterations and $\alpha = 4$, fitting the hadron-correlators to single-exponential functions. Throughout this analysis we neglect correlations in time and in κ. We hope to present a stable correlated analysis on our final sample.

2. CHIRAL EXTRAPOLATIONS WITH FIXED SEA-QUARK MASS

To determine the critical hopping-parameter κ_c at a given value of κ_{sea} we fit the pseudoscalar masses according to

$$M_{PS}^2 = bm_q + cm_q^2$$ (1)

with $m_q = 1/2(1/\kappa - 1/\kappa_c)$ being proportional to the quark mass. We find c to be significantly different from zero: a linear fit leads to a decrease of κ_c by four standard deviations with respect to the quadratic fit. The resulting values of κ_c are shown in table 1 together with their statistical errors. To estimate systematic errors on κ_c, we exclude the largest quark-mass from our data and find a change in κ_c by four standard deviations with respect to the quadratic fit. The resulting values of κ_c are shown in table 1 together with their statistical errors. To estimate systematic errors on κ_c, we exclude the largest quark-mass from our data and find a change in κ_c of the order of one standard deviation.

For the chiral extrapolation of vector masses we use two different parametrizations

$$M_V = m_\rho + bm_q + cm_q^2$$ (2)

$$M_V = m_\rho + bm_q + cm_q^{3/2}$$ (3)

which are motivated by chiral perturbation theory. In contrast to the Π extrapolation we find that the values obtained from 2- and 3-parameter fits agree within errors; moreover eqs. 2 and 3 yield identical results. In table 1 we quote the values for the ρ-masses and the corresponding lattice-spacings as obtained from the

talk presented by U. Glässner
2-parameter-fits. The masses are calculated at κ_c because we find the mass-shifts induced by $\Delta \kappa = \kappa_c - \kappa_{\text{light}}$ to be negligible compared to the statistical errors. We will discuss the light quark masses estimated from $\Delta \kappa$ in detail in a forthcoming publication. Figure 1 illustrates the variation of m_ρ with m_q and κ_{sea}.

The nucleon data (see figure 2) cannot be fitted with $c = 0$, but ansätze eqs. 2 and 3 do equally well. The quadratic extrapolation to κ_c leads to the values M_N quoted in table 1 together with the values for M_Δ. With the present statistics we do not see any sea-quark dependence of the nucleon mass in physical units.

Table 1
Extrapolation results with fixed sea-quark mass. Errors quoted are purely statistical

κ_{sea}	κ_C	aM_ρ	a_ρ^{-1} [GeV]	M_N [GeV]	M_Δ [GeV]	f_π [MeV]	f_Δ^{-1}
0.1560	0.16065(8)	0.359(8)	2.14(5)	1.09(7)	1.30(9)	125(9)	0.33(3)
0.1570	0.15987(6)	0.341(8)	2.23(7)	1.14(6)	1.40(10)	101(8)	0.35(2)
0.1575	0.15963(11)	0.316(10)	2.44(8)	1.09(10)	1.22(8)	118(15)	0.30(3)

Figure 1. Meson extrapolations with fixed sea-quark mass.

Figure 2. Nucleon extrapolations with fixed sea-quark mass.

In fact κ_c and κ_{light} still agree within errors.
We now consider the decay-constants, f_π and f_V^{-1}, defined as

\begin{align*}
<0|A|\pi > Z_k Z_A &= f_\pi m_\pi \\
<0|V_i|\rho > Z_k Z_V &= \epsilon_i f_V^{-1} m_\rho,
\end{align*}

where A and V_i are the local axial and vector currents on the lattice and Z_k, Z_A and Z_V the renormalization constants which connect the expectation values of equation 4 and 5 to the continuum. We determine these renormalization constants using tadpole improved perturbation theory \[2,4\]. The m_q-dependence of the decay-constants is presented in figure 3. Obviously the statistical accuracy is not yet high enough to resolve a κ_{sea} dependence of f_π and f_V^{-1} at the chiral point (see also table 1).

3. EXTRAPOLATIONS IN κ_{sea}

A consistent method to extrapolate to zero sea-quark mass is to use only the data-points with $\kappa_{\text{sea}} = \kappa_{\text{val}}$ for the extrapolation. In the case of dimensionful observables one might argue about the impact of the varying scale along the trajectory. For this reason we consider only mass-ratios as shown in figure 4. We use linear fits only.

\begin{table}
\centering
\begin{tabular}{|c|c|}
\hline
M_N/M_ρ & 1.6(2) \\
M_A/M_ρ & 1.8(2) \\
f_π/M_ρ & 0.14(3) \\
f_V^{-1} & 0.32(6) \\
\hline
\end{tabular}
\caption{Results from extrapolations in κ_{sea}.}
\end{table}

The extrapolated values, quoted in table 2, agree (within large errorbars) with those obtained from extrapolations at fixed κ_{sea}.

4. CONCLUSIONS AND OUTLOOK

On our present statistics, uncorrelated data analyses of t- and κ_{val} distributions allow for stable chiral extrapolations in valence quark mass, m_q. We find the ρ-meson mass to be consistent with a linear chiral ansatz, while the remaining quantities considered exhibit non-linear behaviour in m_q. m_ρ varies on the level of 15 % across our range of sea quark masses. Baryon masses and decay constants so far indicate a trend but produce no compelling evidence for such variation.
Chiral extrapolations of our present data in κ_{sea} itself still carry too large uncertainties to be reliable. Better statistics and deeper penetration into the chiral regime are needed to improve on this situation.

REFERENCES

1. SESAM-Collaboration, Nucl. Phys. B (Proc. Suppl.) 47 (1996) 386.
2. SESAM-Collaboration, in preparation
3. SESAM-Collaboration, Preprint HLRZ 96-20 and WUB 96-17, to be published in Phys. Lett. B.
4. G.P. Lepage and P.B. Mackenzie, Phys. Rev. D 48 (1993) 2250.