Let K be a global field and let S be a finite set of primes of K containing the archimedean primes. We generalize the duality theorem established in [9] for the Néron S-class group of an abelian variety A over K by removing the hypothesis that the Tate-Shafarevich group of A is finite. We also derive an exact sequence that relates the indicated group associated to the Jacobian variety of a proper, smooth and geometrically connected curve X over K to a certain finite subquotient of the Brauer group of X.

0. Introduction

Let K be a global field and let S be a finite set of primes of K containing the archimedean primes. If $v \notin S$, we will write K_v for the completion of K at v, \mathcal{O}_v for the ring of integers of K_v, $k(v)$ for the corresponding residue field and K_v^{un} for the maximal unramified extension of K_v inside a fixed separable algebraic closure of K_v. Let A be an abelian variety over K. The Néron S-class group of A, introduced in [9], is the finite abelian group

\begin{equation}
C_{A,S} = \text{Coker} \left[A(K) \xrightarrow{\rho} \bigoplus_{v \notin S} \Phi_v(A)(k(v)) \right],
\end{equation}

where, for every prime $v \notin S$, $\Phi_v(A)$ is the étale $k(v)$-group scheme of connected components of the Néron model of A_{K_v} over \mathcal{O}_v and the v-component of the map ρ is the canonical reduction map $A(K) \to \Phi_v(A)(k(v))$. The first objective of this paper is to extend the duality theorem established in [9] for the group (0.1) by removing from [op.cit.] the hypothesis that the Tate-Shafarevich group $\Sha_1(A)$ of A is finite. To this end, we define in Section 2 a canonical map $\varphi_{A,S}: T \Sha_1(A)_{\text{div}} \to C_{A,S}$, where $T \Sha_1(A)_{\text{div}}$ is the total Tate module of the subgroup of divisible elements of $\Sha_1(A)$, and prove
Theorem 0.1. (=Corollary [2.5]) There exists a canonical perfect pairing of finite abelian groups

\[C_{A,S}/\varphi_{A,S}(T^{1}(A)_{\text{div}}) \times C_{A',S}^{1} \to \mathbb{Q}/\mathbb{Z}, \]

where \(C_{A',S}^{1} \) is the group (1.6) attached to the abelian variety \(A' \) dual to \(A \).

The proof of Theorem 0.1 is completely different from and substantially simpler than the proof of [9, Theorem 4.9]. Its main ingredient is the generalized Cassels-Tate dual exact sequence established in [6].

In order to explain the second objective of this paper, we introduce the following notation.

Let \(X \) be a proper, smooth and geometrically connected curve over \(K \). If \(v / \in S \), let \(\delta_{v}' \) denote the period of \(X_{K_{v}} \), i.e., the least positive degree of a divisor class on \(X_{K_{v}} \), and let \(\delta_{v}^{\text{nr}} \) denote the corresponding quantity associated to \(X_{K_{v}^{nr}} \). Set

\[d_{v} = \delta_{v}'/\delta_{v}^{\text{nr}} \]

and

\[d = \prod_{v \in S} d_{v}. \]

The structural morphism \(X_{K_{v}} \to \text{Spec} K_{v} \) induces a pullback homomorphism between the associated Brauer groups \(\text{Br} K_{v} \to \text{Br} X_{K_{v}} \) and we write

\[\text{Br}_{a} X_{K_{v}} = \text{Coker} \left[\text{Br} K_{v} \to \text{Br} X_{K_{v}} \right]. \]

Next, the canonical morphism \(X_{K_{v}^{nr}} \to X_{K_{v}} \) induces a pullback homomorphism \(\text{Br}_{a} X_{K_{v}} \to \text{Br}_{a} X_{K_{v}^{nr}} \) and we define

\[\text{Br}_{a}(X_{K_{v}^{nr}}/X_{K_{v}}) = \text{Ker} \left[\text{Br}_{a} X_{K_{v}} \to \text{Br}_{a} X_{K_{v}^{nr}} \right]. \]

It is shown in [3] that there exists a canonical exact sequence of finite abelian groups

\[0 \to \text{Hom}(\text{Br}_{a}(X_{K_{v}^{nr}}/X_{K_{v}}), \mathbb{Q}/\mathbb{Z}) \to \Phi_{v}(J(k(v))) \to \mathbb{Z}/d_{v} \mathbb{Z} \to 0, \]

where \(J \) is the Jacobian variety of \(X \) and \(d_{v} \) is the integer (0.2). In this paper we establish the following global analog of the above exact sequence.

Let

\[B_{nr}(S, X) = \text{Ker} \left[\text{Br}_{a} X \to \prod_{v \notin S} \text{Br}_{a} X_{K_{v}^{nr}} \times \prod_{v \in S} \text{Br}_{a} X_{K_{v}} \right], \]

where the \(v \)-component of the indicated map, for \(v \notin S \) (respectively, \(v \in S \)), is the pullback homomorphism \(\text{Br}_{a} X \to \text{Br}_{a} X_{K_{v}^{nr}} \) (respectively, \(\text{Br}_{a} X \to \text{Br}_{a} X_{K_{v}} \)) induced by the projection \(X_{K_{v}^{nr}} \to X \) (respectively, \(X_{K_{v}} \to X \)). Further, let

\[B(X) = \text{Ker} \left[\text{Br}_{a} X \to \prod_{\text{all } v} \text{Br}_{a} X_{K_{v}} \right]. \]

Then the following holds.
Theorem 0.2. (=Theorem 3.4) Assume that the local periods δ'_v of X are pairwise coprime. Then there exists a canonical exact sequence of finite abelian groups

$$0 \rightarrow \text{Hom}(B_{nr}(S,X)/B(X), \mathbb{Q}/\mathbb{Z}) \rightarrow C_{J,S}/\varphi_{J,S}(T\text{III}^1(J)_{\text{div}}) \rightarrow \mathbb{Z}/d\mathbb{Z} \rightarrow 0,$$

where the groups $B_{nr}(S,X)$ and $B(X)$ are given by (0.5) and (0.6), respectively, $C_{J,S}$ is the Néron S-class group of the Jacobian variety J of X (0.1), $\varphi_{J,S}$ is the map (2.12) attached to J and d is the integer (0.3).

1. Preliminaries

If B is a topological abelian group, its (Pontryagin) dual is the topological abelian group $B^* = \text{Hom}_{\text{cont.}}(B, \mathbb{Q}/\mathbb{Z})$ endowed with the compact-open topology, where \mathbb{Q}/\mathbb{Z} is given the discrete topology. The dual of a morphism of topological abelian groups $f: B \rightarrow C$ will be denoted by $f^*: C^* \rightarrow B^*$. If n is a positive integer, we will write B_n for the n-torsion subgroup of B, B/nB for B/nB and B_{div} for the subgroup of divisible elements of B. The total Tate module of B is the group $TB = \lim_{\leftarrow} B_n = TB_{\text{div}}$, where the inverse limit is taken over all positive integers ordered by divisibility.

Lemma 1.1. Let $A \xrightarrow{f} B \xrightarrow{g} C$ be morphisms in an abelian category \mathcal{A}. Then there exists a canonical exact sequence in \mathcal{A}

$$0 \rightarrow \text{Ker } f \rightarrow \text{Ker } (g \circ f) \rightarrow \text{Ker } g \rightarrow \text{Coker } f \rightarrow \text{Coker } (g \circ f) \rightarrow \text{Coker } g \rightarrow 0.$$

Proof. See, for example, [2, 1.2].

Recall from the Introduction the global field K and the finite set of primes S. Now let G be a commutative K-group scheme. If L is a field containing K, we define

$$H^1(L, G) = H^1(L, G \times_K L),$$

where the right-hand group is the first fppf cohomology group of the L-group scheme $G \times_K L$. For every prime v of K, let K_v be the completion of K at v. The image of a class $\xi \in H^1(K, G)$ under the restriction map $H^1(K, G) \rightarrow H^1(K_v, G)$ will be denoted by ξ_v. Now let K^s be a fixed separable algebraic closure of K. For every $v \notin S$, we fix a prime \mathfrak{v} of K^s lying above v and let K^s_v be the completion of K^s at \mathfrak{v}. Then K^s_v is a separable algebraic closure of K_v and we will write $K^s_{v, \text{nr}}$ for the maximal unramified extension of K_v inside K^s_v. Identifying $\text{Gal}(K^s_{v, \text{nr}}/K)$ with a subgroup of $\text{Gal}(K^s_v/K_v)$ in the standard way, we obtain a restriction map $H^1(K_v, G) \rightarrow H^1(K^s_{v, \text{nr}}, G)$ and define

$$H^1_{\text{nr}}(K_v, G) = \text{Ker}[H^1(K_v, G) \rightarrow H^1(K^s_{v, \text{nr}}, G)].$$
Next we define
\begin{align}
\Pi_{\text{nr}}^1(S, G) &= \text{Ker} \left[H^1(K, G) \to \prod_{v \not\in S} H^1(K_v^\text{nr}, G) \times \prod_{v \in S} H^1(K_v, G) \right], \\
\Pi_S^1(G) &= \text{Ker} \left[H^1(K, G) \to \prod_{v \in S} H^1(K_v, G) \right]
\end{align}

and let
\begin{equation}
\lambda_{G, S} : \Pi_S^1(G) \to \prod_{v \not\in S} H^1(K_v, G)
\end{equation}
be the map whose \(v\)-component, for \(v \not\in S\), is the restriction to \(\Pi_S^1(G) \subset H^1(K, G)\) of the restriction map \(H^1(K, G) \to H^1(K_v, G)\). Clearly \(\Pi_{\text{nr}}^1(S, G) \subset \Pi_S^1(G)\) and \(\text{Ker} \lambda_{G, S} = \Pi_1^1(G)\) is the Tate-Shafarevich group of \(G\). Next, set
\begin{equation}
C_{G, S}^1 = \left(\prod_{v \not\in S} H^1_{\text{nr}}(K_v, G) \right) \cap \text{Im} \lambda_{G, S} \subset \prod_{v \not\in S} H^1(K_v, G).
\end{equation}

Since, for every \(v \in S\), the restriction map \(H^1(K, G) \to H^1(K_v^\text{nr}, G)\) factors as \(H^1(K, G) \to H^1(K_v, G) \to H^1(K_v^\text{nr}, G)\), a class \(\xi \in \Pi_S^1(G)\) lies in \(\Pi_{\text{nr}}^1(S, G)\) if, and only if, \(\xi_v \in H^1_{\text{nr}}(K_v, G)\) for every \(v \in S\). Consequently, the restriction of \(\lambda_{G, S}\) to \(\Pi_{\text{nr}}^1(S, G)\) defines a surjection \(\Pi_{\text{nr}}^1(S, G) \to C_{G, S}^1\) whose kernel is \(\Pi_1^1(G)\). Consequently, the following holds

Lemma 1.2. The map \(\lambda_{G, S}\) \(\text{[1.5]}\) induces an isomorphism of abelian groups
\[\Pi_{\text{nr}}^1(S, G)/\Pi_1^1(G) \cong C_{G, S}^1, \]
where the groups \(\Pi_{\text{nr}}^1(S, G)\) and \(C_{G, S}^1\) are given by \(\text{[1.3]}\) and \(\text{[1.6]}\), respectively. \(\Box\)

2. The Generalized Duality Theorem

Recall from the Introduction the abelian variety \(A\). Now write
\begin{equation}
\Psi^1(A) = \text{Coker} \left[H^1(K, A) \to \bigoplus_{\text{all } v} H^1(K_v, A) \right]
\end{equation}
and let
\begin{equation}
\beta_{A, S} : \bigoplus_{v \not\in S} H^1_{\text{nr}}(K_v, A) \to \Psi^1(A)
\end{equation}
be the restriction to \(\bigoplus_{v \not\in S} H^1_{\text{nr}}(K_v, A) \subset \bigoplus_{\text{all } v} H^1(K_v, A)\) of the canonical projection \(\bigoplus_{\text{all } v} H^1(K_v, A) \to \Psi^1(A)\), where the groups \(H^1_{\text{nr}}(K_v, A)\) are defined by \(\text{[1.2]}\).

An application of Lemma \(\text{[1.1]}\) to the pair of maps
\[H^1(K, A) \to \bigoplus_{\text{all } v} H^1(K_v, A) \to \bigoplus_{v \not\in S} H^1(K_v^\text{nr}, A) \times \bigoplus_{v \in S} H^1(K_v, A) \]
yields an exact sequence of abelian groups

\[(2.3) \quad 0 \to \Sha^1(A) \to \Sha_{nr}^1(S, A) \to \bigoplus_{v \notin S} H^1_{nr}(K_v, A) \xrightarrow{\beta_{A,S}} \Phi^1(A). \]

Thus the following holds

Lemma 2.1. There exists a canonical isomorphism of abelian groups

\[\Sha_{nr}^1(S, A)/\Sha^1(A) \xrightarrow{\sim} \text{Ker} \left[\bigoplus_{v \notin S} H^1_{nr}(K_v, A) \xrightarrow{\beta_{A,S}} \Phi^1(A) \right], \]

where \(\Sha_{nr}^1(S, A) \) is the group \([1.3]\) and \(\beta_{A,S} \) is the map \([2.2]\).

Lemma 2.2. For every \(v \notin S \), there exists a canonical isomorphism of finite abelian groups

\[\Phi_v(A)(k(v)) \xrightarrow{\sim} H^1_{nr}(K_v, A^t)^*. \]

Proof. By \([11]\) Thm. 4.8, Grothendieck’s pairing \(\Phi_v(A)(k(v)^s) \times \Phi_v(A^t)(k(v)^s) \to \mathbb{Q}/\mathbb{Z} \) induces an isomorphism \(\Phi_v(A)(k(v)) \xrightarrow{\sim} H^1(k(v), \Phi_v(A^t))^* \). On the other hand, it is shown in \([14]\) proof of Proposition I.3.8, p. 47 that the reduction map \(A^t(K_v^{nr}) \to \Phi_v(A^t)(k(v)^s) \) induces an isomorphism \(H^1(\text{Gal}(K_v^{nr}/K_v), A^t(K_v^{nr})) \xrightarrow{\sim} H^1(k(v), \Phi_v(A^t)) \). The composition of the preceding map and the inverse of the isomorphism \(H^1(\text{Gal}(K_v^{nr}/K_v), A^t(K_v^{nr})) \xrightarrow{\sim} H^1_{nr}(K_v, A^t) \) induced by the inflation map \([1]\) Proposition 4, p. 100] is an isomorphism \(H^1_{nr}(K_v, A^t) \xrightarrow{\sim} H^1(k(v), \Phi_v(A^t)) \) whose dual is a map \(H^1(k(v), \Phi_v(A^t))^* \xrightarrow{\sim} H^1_{nr}(K_v, A^t)^* \). The isomorphism of the lemma is the composition \(\Phi_v(A)(k(v)) \xrightarrow{\sim} H^1(k(v), \Phi_v(A^t))^* \xrightarrow{\sim} H^1_{nr}(K_v, A^t)^* \). \(\square\)

Now let

\[(2.4) \quad A(K)^\wedge = \varprojlim_n A(K)/n \]

be the adic (equivalently, profinite \([16][12]\)) completion of \(A(K) \) and let

\[(2.5) \quad T\text{Sel}(A) = \varprojlim_n \text{Ker} \left[H^1(K, A_n) \to \prod_v H^1(K_v, A_n) \right] \]

be the pro-Selmer group of \(A \). By \([6]\) p. 298], there exists a canonical exact sequence of profinite abelian groups

\[(2.6) \quad 0 \to A(K)^\wedge \to T\text{Sel}(A) \to T\Sha_{nr}^1(A)_{\div} \to 0, \]

where the first nontrivial map is induced by the connecting homomorphisms \(A(K) \to H^1(K, A_n) \) in fppf cohomology induced by the exact sequence of abelian fppf sheaves \(0 \to A_n \to A \xrightarrow{n} A \to 0 \). Identifying \(A(K)^\wedge \) with its image in \(T\text{Sel}(A) \) under the first
nontrivial map in (2.6), the indicated sequence induces an isomorphism of profinite abelian groups

\[T \mathfrak{III}^1(A)_{\text{div}} \cong T \text{Sel}(A)/A(K)^\wedge. \]

Now, by [15, Proposition 3.2.5, p. 87], there exists a canonical isomorphism of finite abelian groups

\[C_{A,S} \cong \text{Coker} \left[A(K)^\wedge \xrightarrow{\beta_{A,S}} \bigoplus_{v \notin S} \Phi_v(A)(k(v)) \right], \]

where \(C_{A,S} \) is the group (0.1) and \(\hat{\rho} \) is the profinite completion of the map \(\rho \) in (0.1).

Next we define a map

\[\gamma_{A,S} : T \text{Sel}(A) \to \bigoplus_{v \notin S} \Phi_v(A)(k(v)) \]

as the composition of canonical maps

\[T \text{Sel}(A) \cong \mathfrak{U}^1(A^i)^* \xrightarrow{\beta_{A,S}} \prod_{v \notin S} H^1_{\text{nr}}(K_v, A^i)^* = \bigoplus_{v \notin S} H^1_{\text{nr}}(K_v, A^i)^* \cong \bigoplus_{v \notin S} \Phi_v(A)(k(v)), \]

where the first map \(T \text{Sel}(A) \cong \mathfrak{U}^1(A^i)^* \) is the composition

\[T \text{Sel}(A) \cong \text{Ker} \left[\prod_{v \notin S} H^0(K_v, A) \to H^1(K_v, A^i)^* \right] \cong \mathfrak{U}^1(A^i)^*, \]

where the first map is defined in [8, Remark 3.4] and shown to be an isomorphism in [6, Main Theorem] and the second map is induced by the Tate local duality isomorphisms \(H^0(K_v, A) \cong H^1(K_v, A^i)^* \). See also [7, Remark 1.2] and note that \(H^0(K_v, A) = H^0(K_v, A)^\wedge \) for every \(v \) since \(H^0(K_v, A) \) is profinite (if \(v \) is archimedean, \(H^0(K_v, A) \) denotes the group of connected components of \(A(K_v) \)).

The second map in (2.10) is the dual of the map \(\beta_{A,S} \) (2.2). The last map in (2.10) is the direct sum over \(v \notin S \) of the inverses of the isomorphisms \(\Phi_v(A)(k(v)) \cong H^1_{\text{nr}}(K_v, A^i)^* \) defined explicitly in the proof of Lemma 2.2. A laborious verification, using the explicit descriptions of all the maps involved, shows that the left-hand square in the diagram

\[\begin{array}{ccc}
A(K)^\wedge & \xrightarrow{\gamma_{A,S}} & T \text{Sel}(A) \\
\downarrow \gamma_{A,S} & & \downarrow \gamma_{A,S} \\
A(K)^\wedge & \xrightarrow{\hat{\rho}} & \bigoplus_{v \notin S} \Phi_v(A)(k(v)) \\
\downarrow \gamma_{A,S} & & \downarrow \gamma_{A,S} \\
& & \text{Coker} \hat{\rho} \\
& & \downarrow \gamma_{A,S} \\
& & 0 \\
\end{array} \]

commutes, where the first map on the top row of the above diagram is that appearing in (2.6). Consequently, there exists a canonical map \(\gamma_{A,S} : T \text{Sel}(A)/A(K)^\wedge \to \)
Coker $\hat{\rho}$ such that the full diagram (2.11) commutes. Further, as an immediate consequence of Lemma 2.1 (for A') and the definition of $\gamma_{A,S}$ (2.9), we have

Lemma 2.3. There exists a canonical isomorphism of finite abelian groups

$$\text{Coker} \left[T\text{Sel}(A) \xrightarrow{\gamma_{A,S}} \bigoplus_{v \notin S} \Phi_v(A)(k(v)) \right] \cong (\text{III}^1_{\text{nr}}(S, A')/\text{III}^1(A'))^*,$$

where $\text{III}^1_{\text{nr}}(S, A')$ is the group (1.3) and $\gamma_{A,S}$ is the map (2.9).

Next, let

$$\varphi_{A,S}: T\text{III}^1(A)_{\text{div}} \to C_{A,S}$$

be the composition

$$T\text{III}^1(A)_{\text{div}} \cong T\text{Sel}(A)/A(K)^\wedge \xrightarrow{\tau_{A,S}} \text{Coker} \hat{\rho} \cong C_{A,S},$$

where the first map is the isomorphism (2.7), the second map is the right-hand vertical map in diagram (2.11) and the last map is the inverse of the isomorphism (2.8). Further, let

$$\psi_{A,S}: C_{A,S} \to \text{Coker} \tau_{A,S},$$

be the composition

$$C_{A,S} \xrightarrow{\sim} \text{Coker} \hat{\rho} \to \text{Coker} \tau_{A,S},$$

where the first map is the isomorphism (2.3) and the second (canonical) map exists since $\text{Im} \hat{\rho} \subset \text{Im} \tau_{A,S}$ by the commutativity of the left-hand square in diagram (2.11). An application of Lemma 1.1 to the pair of maps

$$A(K)^\wedge \hookrightarrow T\text{Sel}(A) \xrightarrow{\tau_{A,S}} \bigoplus_{v \notin S} \Phi_v(A)(k(v)),$$

whose composition is the map $\hat{\rho}$ by the commutativity of the left-hand square in (2.11), yields an exact sequence of profinite abelian groups

$$T\text{III}^1(A)_{\text{div}} \cong T\text{Sel}(A)/A(K)^\wedge \xrightarrow{\tau_{A,S}} \text{Coker} \hat{\rho} \cong C_{A,S} \to 0,$$

where $\varphi_{A,S}$ and $\psi_{A,S}$ are the maps (2.12) and (2.13), respectively. Consequently, the map $\psi_{A,S}$ (2.13) induces an isomorphism of finite abelian groups

$$C_{A,S}/\varphi_{A,S}(T\text{III}^1(A)_{\text{div}}) \cong \text{Coker} \tau_{A,S}.$$

Composing the preceding map with the isomorphism of Lemma 2.3, we obtain an isomorphism of finite abelian groups

$$C_{A,S}/\varphi_{A,S}(T\text{III}^1(A)_{\text{div}}) \cong (\text{III}^1_{\text{nr}}(S, A')/\text{III}^1(A'))^*.$$

Thus the following holds.
Theorem 2.4. Let A be an abelian variety over K with dual abelian variety A^t. Then there exists a canonical perfect pairing of finite abelian groups
\[
C_{A,S}/\varphi_{A,S}(T\Theta^1(A)_{\text{div}}) \times \Theta^1_{\text{nr}}(S,A^t)/\Theta^1_{\text{nr}}(A^t) \rightarrow \mathbb{Q}/\mathbb{Z},
\]
where $C_{A,S}$ is the group (0.1), $\varphi_{A,S}$ is the map (2.12) and $\Theta^1_{\text{nr}}(S,A^t)$ is the group (1.3).

The following statement, which generalizes [9, Theorem 4.9], is an immediate consequence of the above theorem and Lemma 1.2.

Corollary 2.5. There exists a canonical perfect pairing of finite abelian groups
\[
C_{A,S}/\varphi_{A,S}(T\Theta^1(A)_{\text{div}}) \times C^1_{A^t,S} \rightarrow \mathbb{Q}/\mathbb{Z},
\]
where $C^1_{A^t,S}$ is the group (1.6) attached to A^t.

3. Jacobian Varieties

Recall from the Introduction the curve X over K. Let
\[
P = \text{Pic}_{X/K}
\]
be the Picard scheme of X over K. Then P is a smooth and commutative K-group scheme whose identity component
\[
J = \text{Pic}^0_{X/K}
\]
is an abelian variety over K [4, Proposition 3, p. 244]. There exists a canonical exact sequence of abelian sheaves for the étale topology on K
\[
0 \rightarrow J \rightarrow P^{\text{deg}} \rightarrow \mathbb{Z}_K \rightarrow 0. \tag{3.1}
\]
Now recall that the index of X over K is the least positive degree δ of a divisor on X. If L is a field containing K, then the index (respectively, period) of $X_L = X \times_K L$ divides the index (respectively, period) of X. Further, $\delta' | \delta$ and (3.1) induces an exact sequence of abelian groups
\[
0 \rightarrow \mathbb{Z}/\delta'\mathbb{Z} \rightarrow H^1(K,J) \rightarrow H^1(K,P) \rightarrow 0. \tag{3.2}
\]
For every prime v of K, we will write δ_v for the index of X_{K_v}. By [10, Remark 1.6, p. 249], $\delta_v = 1$ for all but finitely many primes v of K. If $v \notin S$, δ^nr_v will denote the index of $X_{K^\text{nr}_v}$. Note that $\delta_v | \delta$ and $\delta^\text{nr}_v | \delta'$ for every v. Further, $\delta^\text{nr}_v | \delta_v$ and $\delta^\text{nr}_v | \delta'_v$ for every $v \notin S$.

Next let
\[
D : \mathbb{Z}/\delta'\mathbb{Z} \rightarrow \prod_{v} \mathbb{Z}/\delta'_v\mathbb{Z} \tag{3.3}
\]
be the natural diagonal map and set
\[
\Delta' = \text{l.c.m.}\{\delta'_v\}. \tag{3.4}
\]
Then $\text{Ker } D = \Delta' \mathbb{Z}/\delta' \mathbb{Z}$ and $\text{Coker } D$ is a finite abelian group of order

$$|\text{Coker } D| = \left(\prod \delta_v' \right)/\Delta'.$$

An application of the snake lemma to the exact and commutative diagram

$$\begin{array}{ccccccccc}
0 & \to & \mathbb{Z}/\delta' \mathbb{Z} & \to & H^1(K, J) & \to & H^1(K, P) & \to & 0 \\
\downarrow D & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \prod_{v \not\in S} \mathbb{Z}/\delta_v' \mathbb{Z} & \to & \prod_{v \not\in S} H^1(K_v, J) & \to & \prod_{v \not\in S} H^1(K_v, P) & \to & 0,
\end{array}$$

whose rows are induced by (3.2), yields an exact sequence of abelian groups

$$0 \to \Delta' \mathbb{Z}/\delta' \mathbb{Z} \to \Pi^1(J) \to \Pi^1(P) \to \text{Coker } D.$$

Similarly, let

$$D_{\text{nr}}^S: \mathbb{Z}/\delta' \mathbb{Z} \to \prod_{v \not\in S} \mathbb{Z}/\delta_v^\text{nr} \mathbb{Z} \times \prod_{v \in S} \mathbb{Z}/\delta_v' \mathbb{Z}$$

be the natural diagonal map and let

$$\Delta'' = \text{l.c.m.}\{\delta_v^\text{nr}, v \not\in S, \delta_v', v \in S\}.$$

Then there exists a canonical exact sequence of abelian groups

$$0 \to \Delta'' \mathbb{Z}/\delta' \mathbb{Z} \to \Pi_{\text{nr}}^1(S, J) \to \Pi_{\text{nr}}^1(S, P) \to \text{Coker } D_{\text{nr}}^S,$$

where the groups $\Pi_{\text{nr}}^1(S, J)$ and $\Pi_{\text{nr}}^1(S, P)$ are given by (1.3).

The groups $\text{Coker } D$ and $\text{Coker } D_{\text{nr}}^S$ are related as follows.

Lemma 3.1. There exists a canonical exact sequence of finite abelian groups

$$0 \to \Delta'' \mathbb{Z}/\Delta' \mathbb{Z} \to \prod_{v \not\in S} \mathbb{Z}/d_v \mathbb{Z} \to \text{Coker } D \to \text{Coker } D_{\text{nr}}^S \to 0,$$

where the integers Δ'', Δ' and d_v are given by (3.4), (3.9) and (0.2), respectively, and the maps D and D_{nr}^S are given by (3.3) and (3.8), respectively.

Proof. This follows by applying Lemma 1.1 to the pair of maps

$$\mathbb{Z}/\delta' \mathbb{Z} \to \prod_{v \not\in S} \mathbb{Z}/\delta_v' \mathbb{Z} \to \prod_{v \not\in S} \mathbb{Z}/\delta_v^\text{nr} \mathbb{Z} \times \prod_{v \in S} \mathbb{Z}/\delta_v' \mathbb{Z}$$

whose composition is the map D_{nr}^S. \qed
Proposition 3.2. Assume that the integers δ'_v are pairwise coprime. Then there exists a canonical exact sequence of finite abelian groups

$$0 \to \mathbb{Z}/d\mathbb{Z} \to \Pi_{\text{nr}}^1(S, J)/\Pi_{\text{nr}}^1(J) \to \Pi_{\text{nr}}^1(S, P)/\Pi_{\text{nr}}^1(P) \to 0,$$

where d is the integer (0.3) and the groups $\Pi_{\text{nr}}^1(S, J)$ and $\Pi_{\text{nr}}^1(S, P)$ are given by (1.3).

Proof. The hypothesis and (3.5) show that $\text{Coker } D = 0$. Now Lemma 3.1 shows that $\text{Coker } D^S = 0$ as well. Thus there exists a canonical exact and commutative diagram of abelian groups

$$
\begin{array}{cccccc}
0 & \to & \Delta'\mathbb{Z}/\delta'\mathbb{Z} & \to & \Pi^1(J) & \to & \Pi^1(P) & \to & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \Delta''\mathbb{Z}/\delta''\mathbb{Z} & \to & \Pi_{\text{nr}}^1(S, J) & \to & \Pi_{\text{nr}}^1(S, P) & \to & 0 \\
\end{array}
$$

whose top and bottom rows are the sequences (3.7) and (3.10), respectively. An application of the snake lemma to the above diagram yields an exact sequence of finite abelian groups

$$0 \to \Delta''\mathbb{Z}/\Delta'\mathbb{Z} \to \Pi_{\text{nr}}^1(S, J)/\Pi^1(J) \to \Pi_{\text{nr}}^1(S, P)/\Pi^1(P) \to 0.$$

Now, since $\text{Coker } D = 0$, Lemma 3.1 shows that $\Delta''\mathbb{Z}/\Delta'\mathbb{Z}$ is canonically isomorphic to $\prod_{v\in S} \mathbb{Z}/d_v\mathbb{Z}$. Further, since the integers δ'_v are pairwise coprime, so also are the integers d_v (0.2). Thus the Chinese Remainder Theorem yields a canonical isomorphism $\prod_{v\in S} \mathbb{Z}/d_v\mathbb{Z} \simeq \mathbb{Z}/d\mathbb{Z}$, whence the proposition follows. \qed

Next, there exists a canonical exact sequence of abelian groups (see [5, pp. 400-401])

$$0 \to \text{Pic } X \to P(K) \to \text{Br } K \to \text{Br } X \to H^1(K, P) \to 0.$$

The above sequence induces a functorial isomorphism of abelian groups

(3.11) $\text{Br}_a X \xrightarrow{\sim} H^1(K, P),$

where $\text{Br}_a X$ is the group (0.4) over K. If $L = K_v$ or K_v^{nr}, where v is a prime of K, there exists a commutative diagram of abelian groups

(3.12) $\text{Br}_a X \xrightarrow{\sim} H^1(K, P) \xrightarrow{\text{Br}_a X_L} H^1(L, P),$

where the horizontal arrows are the maps (3.11) over K and over L, the left-hand vertical arrow is induced by the pullback homomorphisms $\text{Br } K \to \text{Br } L$ and $\text{Br } X \to \text{Br } X_L$ and the right-hand vertical map is the restriction map in Galois cohomology.
By the commutativity of diagram (3.12), the map (3.11) and its analogs over K_v for every v and over K_{nr}^v for every $v \notin S$ yield isomorphisms of abelian groups
\begin{align}
\mathfrak{B}_{nr}(S, X) &\xrightarrow{\sim} \Sha_1^{nr}(S, P) \\
\mathfrak{B}(X) &\xrightarrow{\sim} \Sha_1(P),
\end{align}
where the groups $\mathfrak{B}_{nr}(S, X)$ and $\mathfrak{B}(X)$ are given by (0.5) and (0.6), respectively, and the group $\Sha_1^{nr}(S, P)$ is defined by (1.3).

Proposition 3.3. Assume that the integers δ'_v are pairwise coprime. Then there exists a canonical exact sequence of finite abelian groups
$$0 \to \mathbb{Z}/d\mathbb{Z} \to \Sha_1^{nr}(S, J)/\Sha_1(J) \to \mathfrak{B}_{nr}(S, X)/\mathfrak{B}(X) \to 0,$$
where d is the integer (0.3), $\Sha_1^{nr}(S, J)$ is given by (1.3) and the groups $\mathfrak{B}_{nr}(S, X)$ and $\mathfrak{B}(X)$ are given by (0.5) and (0.6), respectively.

Proof. This is immediate from Proposition 3.2 using the isomorphisms (3.13) and (3.14). \qed

Via the autoduality of the Jacobian [13, Theorem 6.6], the preceding proposition and Theorem 2.4 yield the second main result of this paper.

Theorem 3.4. Assume that the integers δ'_v are pairwise coprime. Then there exists a canonical exact sequence of finite abelian groups
$$0 \to \text{Hom}(\mathfrak{B}_{nr}(S, X)/\mathfrak{B}(X), \mathbb{Q}/\mathbb{Z}) \to C_{J,S}/\varphi_{J,S}(T\Sha_1^{nr}(J)_{\text{div}}) \to \mathbb{Z}/d\mathbb{Z} \to 0,$$
where $C_{J,S}$ is the Néron S-class group of J (0.1), $\varphi_{J,S}$ is the map (2.12) and d is the integer (0.3).

References

[1] Atiyah, M. and Wall, C.T.C. *Cohomology of groups*. In: Algebraic Number Theory (J.W.S. Cassels and A. Fröhlich, Eds.), pp. 94-115. Academic Press, London, 1967.

[2] Beyl, R.: *The connecting morphism in the kernel-cokernel sequence*. Arch. der Math. 32 (1979), no. 4, 305–308.

[3] Biswas, S.: *Groups of components of Néron models of Jacobians and Brauer groups*. Int. J. Number Theory 11 (2015), no. 2, 621–629.

[4] Bosch, S., Lütkebohmert, W. and Raynaud, M.: Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete, 21. Springer-Verlag, Berlin, 1990.

[5] González-Avilés, Cristian D.: Brauer groups and Tate-Shafarevich groups. J. Math. Sci. Univ. Tokyo 10 (2003), 391-419.

[6] González-Avilés, C.D. and Tan, K.-S.: *A Generalization of the Cassels-Tate dual exact sequence*. Math. Res. Lett. 14, no. 2 (2007), 295-302.

[7] González-Avilés, C.D. and Tan, K.-S.: *The generalized Cassels-Tate dual exact sequence for 1-motives*. Math. Res. Lett. 16, no. 5 (2009), 827-839.

[8] González-Avilés, C.D. and Tan, K.-S.: *On the Hasse principle for finite group schemes over global function fields*. Math. Res. Lett. 19, no. 2 (2012), 453-460.

[9] González-Avilés, Cristian D.: On Néron class groups of abelian varieties. J. reine angew. Math. 664 (2012), 71-91.
[10] Lang, S. (Ed.): Number Theory III: Diophantine Geometry. Encyclopaedia of Mathematical Sciences 60 Springer Verlag, Berlin 1991.

[11] McCallum, W.: Duality theorems for Néron models. Duke Math. J. 53 (1986), 1093–1124.

[12] Milne, J.S: Congruence subgroups of abelian varieties. Bull. Sci. Math. (2) 96 (1972), 333–338.

[13] Milne, J.S.: Jacobian varieties. In: Arithmetic geometry (Storrs, Conn., 1984), 167–212, Springer, New York, 1986.

[14] Milne, J.S.: Arithmetic Duality Theorems. Second Edition (electronic version), 2006.

[15] Ribes, L. and Zalesskii, P.: Profinite groups. Ergebnisse de Mathematik Series, vol. 40, Springer, Berlin 2000.

[16] Serre, J.-P.: Sur les groupes de congruence des variétés abéliennes. II. Izv. Akad. Nauk SSSR Ser. Mat. 35 1971, 731–737.

Departamento de Matemáticas, Universidad de La Serena, Cisternas 1200, La Serena 1700000, Chile

E-mail address: cgonzalez@userena.cl