Four new members of the family *Cytophagaceae*: *Chryseosolibacter histidini* gen. nov., sp. nov., *Chryseosolibacter indicus* gen. nov., sp. nov., *Dawidia cretensis*, gen. nov., sp. nov., and *Dawidia soli*, gen. nov., sp. nov. isolated from diverse habitat

Senlie Octaviana · Stefan Lorenczyk · Frederike Ackert · Linda Fenske · Joachim Wink

Received: 30 December 2021 / Accepted: 28 May 2022 / Published online: 22 June 2022
© The Author(s) 2022

Abstract Four novel strains were isolated: PWU4^T and PWU20^T were both from soil in Germany, PWU5^T was isolated from soil in India and PWU37^T was obtained from sheep faeces collected on the Island of Crete. Cells of each were observed to be Gram-negative, strictly aerobic, rod shaped, and to grow optimally between 28 and 34 °C, between pH 7.0 and 8.0 and without the addition of NaCl. The strains were found to be catalase and oxidase-negative and able to grow on most mono- and disaccharides, a few polysaccharides and organic acids. Their predominant menaquinone was identified as MK-7. Their major fatty acids were identified as C_{16:1}ω7_c (PWU4^T and PWU20^T) and C_{16:1}ω5_c (PWU5^T and PWU37^T). The DNA G+C contents of strains PWU4^T, PWU20^T, PWU5^T and PWU37^T were determined to be 50.2 mol%, 51.6 mol %, 39.8 mol% and 53.8 mol%, respectively. The 16S rRNA gene sequence analysis revealed that the close relatives *Ohtaekwangia koreensis* 3B-2^T and *Ohtaekwangia kribbensis* 10AO^T share less than 93.8% sequence similarity. The strains were classified in two groups, where PWU4^T and PWU20^T share 93.0% sequence similarity, and PWU5^T and PWU37^T share 97.5% sequence similarity. However, the members of each group were concluded to represent different species based on the low average nucleotide identity (ANI) of their genomes, 69.7% and 83.8%, respectively. We propose that the four strains represent four novel species of two new genera in the family *Cytophagaceae*. The type species of the novel genus *Chryseosolibacter* is *Chryseosolibacter histidini* gen. nov., sp. nov. with the type strain PWU4^T (= DSM 111594^T = NCCB 100798^T), whilst strain PWU20^T (= DSM 111597^T = NCCB 100800^T) is the type strain of a second species, *Chryseosolibacter indicus* sp. nov. The type species of the novel genus *Dawidia* is *Dawidia cretensis* gen. nov., sp. nov. with the type strain PWU5^T (= DSM 111596^T = NCCB 100799^T),
whilst strain PWU37T (= DSM 111595T = NCCB 100801T) is the type stain of a second species, *Dawidia soli* sp. nov.

Keywords Cytophagaceae · Diverse habitat · Gliding bacteria

Abbreviations

Abbreviation	Description
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
GGDC	Genome to Genome Distance Calculator
G + C	Guanine + Cytosine
MEGA X	Molecular Evolutionary Genetics Analysis
NCBI	National Center for Biotechnology Information
PAUP*	Phylogenetic Analysis Using Parsimony
PCR	Polymerase Chain Reaction
RAxML	Randomized Accelerated Maximum Likelihood
RDP	Ribosomal Database Project
RNA	Ribonucleic Acid
rRNA	Ribosomal Ribonucleic Acid
TNT	Tree analysis using New Technology

Introduction

The family *Cytophagaceae* was originally introduced in 1940 by Stanier (Stanier 1940) and it is the largest family within the order *Cytophagales* (Albers and Siebers 2014). Isolates of the family *Cytophagaceae* are Gram-stain negative chemoorganotrophic aerobic bacteria, but also a few anaerobes (Nakagawa 2011). Furthermore, they are widely distributed in nature such as soil (Hirsch et al. 1998; Kim et al. 2013; Zhang et al. 2009), freshwater (Baik et al. 2006; Maejima et al. 2020), airborne (Buczolits et al. 2002), desert (Zhou et al. 2007) and a glacier field (Chaturvedi et al. 2005).

Since the ‘golden age’ of antibiotic discovery, members of the phylum *Bacteriodetes* including the classes *Flavobacteria* and *Cytophagia*, have contributed as producers of antimicrobial bioactive compounds (Ikemori et al. 1990; Katayama et al. 1985; Okanya et al. 2011a, b; Park et al. 2008; Singh et al. 1982). During the screening of antimicrobial activity from members of the Reichenbach culture collection held at the Helmholtz Center for Infection Research (HZI) Germany, four novel bacterial strains (designated PWU4T, PWU5T, PWU20T and PWU37T) were identified. The aim of the present study was to explore the taxonomic status of the four bacteria as novel species by using a polyphasic approach.

Material and methods

Isolation of bacterial strains and culture conditions

Strains PWU4T, PWU20T and PWU37T were isolated from soil samples collected in May 1990 at Braunschweig, Germany (52.22090N 10.50902E, PWU4T); in May 1989 at Lucknow, Uttar Pradesh, India (26.8684N 80.90979E, PWU20T); in September 1991 at Braunschweig (52.21501N 10.53329E, PWU37T); strain PWU5T was isolated from sheep faeces with plant residues collected in July 1988 at Crete Island (35.2463N 25.09705E). The strains were isolated using a dilution method on agar plates following the protocol of Reichenbach (Reichenbach 1992), maintained in E medium and kept in this medium at −80 °C for long-term preservation. *Ohtaekwangia koreensis* 3B-2T KCTC23018T and *Ohtaekwangia kribbensis* 10AOT KCTC23019T, which were isolated by Yoon et al. (2011a), were used as references strains and were grown under the same culture conditions.

Morphological, physiological and chemotaxonomy analysis

Phenotypic characterisation was performed following the protocols described previously (Kim et al. 2013; Maejima et al. 2020; Yoon et al. 2011a). Morphological characteristics of the strains were observed using light microscopy (Zeiss Axio Scope A1. Microscope) with Axio-Vision Rel. 4.8 software. For physiological and chemotaxonomic tests, the four strains were grown without NaCl in E broth medium at their optimum pH and temperature of pH 7 and 30 °C for strain PWU4T, pH 7 and 28 °C for strains PWU20T and PWU5T, pH 7.4–8.0 and 34 °C for strain PWU37T. Growth at various temperatures, pH and NaCl concentrations was carried out aerobically on E agar medium. To determine the optimal temperature and pH for growth, duplicate plates were incubated at 4–44 °C and also at pH 5.0–9.5 as described previously (Mohr et al. 2018). Anaerobic growth was
performed using E agar plates with Anaerocult P (Merck) in a candle jar (Jones 1981) for 3 weeks of incubation. Catalase and oxidase activities were performed according to Maejima et al. (2020) and the production of flexirubin-type pigments was tested according to Reichenbach (Reichenbach 1992). Carbon source utilisation assays were carried out in duplicate using E broth medium along with the Gen III MicroPlate system (Biolog) according to the manufacturer’s protocol. Enzyme activities was assayed using the API ZYM (Humble et al. 1977) and API CAMPY (Huysmans et al. 1995) systems (bioMérieux), according to the protocols of the manufacturer. Antibiotic resistances was tested on E agar medium using the disc-diffusion plate method (Bauer et al. 1966).

For chemotaxonomic analysis, strains PWU4T, PWU5T, PWU20T and PWU37T were grown on M broth medium. Freeze-dried cells were prepared for detection of the major isoprenoid quinones, the polar lipids and the cellular fatty acids of the strains. In brief, 200 ml well-grown cultures were centrifuged at 9000 rpm for 10 min and the pellet was washed three times followed by centrifugation 9000 rpm for 10 min, and then freeze-drying for two days. The isoprenoid quinone was extracted according to Komagata and Suzuki (1988) and analysed further using HPLC (Agilent 1260 Series; Agilent technology USA). The polar lipids were determined by two-dimensional TLC (Lechevalier et al. 1977; Minnikin et al. 1984). The Sherlock Microbial Identification System (MIDI) was used for identifying cellular fatty acids (Sasser 2009).

16S rRNA gene sequencing and phylogenetic analysis

The genomic DNA of each strain were extracted using an Invisorb Spin Plant mini kit (Stratec Molecular, Germany). After 5 days incubation at room temperature, cells were harvested from E broth medium and the pellet was further processed through DNA extraction following the manufacturer’s protocol. The 16S rRNA genes was amplified using the bacterial universal primer set 27F and 1492R following the protocol of Mohr et al. (2018). After the PCR products were confirmed on 0.8% agarose gel, they were purified using the NucleoSpin Gel and PCR Clean up Kit (Macherey–Nagel, Düren, Germany). The 16S rRNA gene sequences of strain PWU4T, PWU5T, PWU20T and PWU37T were determined and compared to sequences from the GenBank7EMBL/DDBJ public database. The Genome to Genome Distance Calculator (GGDC 2.1) web server (Meier-Kolthoff et al. 2013), available at http://ggdc.dsmz.de/ was used to infer the 16S rRNA phylogenetic relationships (Meier-Kolthoff et al. 2014). Briefly, after creating a multiple sequence alignment with MUSCLE (Edgar 2004), maximum likelihood and maximum parsimony trees were inferred with RAxML (Stamatakis 2014) and TNT (Goloboff et al. 2008), respectively. For maximum likelihood, rapid bootstrapping in conjunction with the autoMRE boot stopping criterion (Pattengale et al. 2010) and subsequent search for the best tree was used, while for maximum parsimony, 1000 bootstrapping replicates were used.

Genome sequence analysis

Draft genome sequences of each of the four strains were determined according to Mohr et al. (2018) and were submitted to the GenBank/EMBL/DDBJ public database. Automated genome annotation was performed using DFAST (Tanizawa et al. 2018). The average nucleotide identity (ANI) values between the genomes of the strains and their close relatives were calculated with the OrthoANIu algorithm using the EZ-Genome web services (Yoon et al. 2017). Digital DNA-DNA hybridization (dDDH) values were calculated using the GGDC 2.1 online service at http://ggdc.dsmz.de/distcalc2.php (Meier-Kolthoff et al. 2014). The phylogenomic analysis, matrix of AAI (Amino Acid Identity) and matrix of POCP (Percentage of Conserved Protein) were carried out using the EDGAR 3.0, a free bioinformatic platform available under https://edgar3.computational.bio.uni-giessen.de where the genome sequence data were uploaded and the output was visualized (Dieckmann et al. 2021).

Results and discussion

Morphological, physiological and biochemical analyses

The cells of strains PWU4T, PWU5T, PWU20T and PWU37T were observed to be straight rods, 2.32–7.62 μm in length, to stain Gram-negative and
to form yellow colonies on E medium (Okanya et al. 2011a, b).

Strains PWU4T and PWU20T were found to grow at 21–40 °C (optimum at 28–30 °C), while strains PWU5T and PWU37T grow at 21–34 °C (optimum at 28–34 °C). Moreover, strain PWU4T grows at pH 5.5–8.0 (optimum at pH 7), strain PWU5T grows at pH 6.5–8.5 (optimum at pH 7), strain PWU20T grows at pH 6.5–9.0 (optimum at pH 7) and strain PWU37T grows at pH 5.0–9.5 (optimum at pH 7.4–8.0). The reference strains Ohtaekwangia koreensis (3B-2T) and Ohtaekwangia kribbensis (10AOT) (Yoon et al. 2011a), optimally grow at 30 °C in a ranged of 10–39 °C and pH 6.5–7.5 (Table 1). Salt tolerance was tested over the range of 0.2–1.6% NaCl (w/v). Strains PWU4T, PWU5T, PWU20T and PWU37T can tolerate a concentration up to 0.4, 0.6, 0.8 and 1.0% (w/v), respectively. Reference strains such as members of the genus Ohtaekwangia, which were isolated from the marine environment, tolerate a concentration up to 0.1% of NaCl (w/v) (Maejima et al. 2020) and members of Cytophagaceae from the marine environment, tolerate up to 1.0% of NaCl (w/v), respectively. Reference strains such as members of the genus Cytophagaceae are microaerophilic, capnophilic (CO2-requiring) or facultatively anaerobic. No strains are microaerophilic, capnophiles of Cytophagaceae tolerate up to 0.1% of NaCl (w/v) (Kim et al. 2013; Maejima et al. 2020; Yoon et al. 2011b) except the family Flavobacteriaceae, which have menaquinones of type 6 (MK6) (Albers and Siebers 2014). The major polar lipids of strains PWU4T, PWU5T, PWU20T and PWU37T were identified as phosphatidylethanolamine and an unidentified polar lipid. The fatty acid profiles of the four strains are shown in Table 2, along with those of the reference strains used in this study. Saturated and mono-unsaturated fatty acids with iso C15:0 and C16:1ω7c were observed in all the strains including the reference strains. The major fatty acids of strains PWU4T, PWU5T, PWU20T and PWU37T were identified as C16:1ω7c (32.5%), C16:1ω5c (43.8%), iso C15:0 (43.6%) and C16:1ω5c (38.5%), respectively. In contrast to strain PWU4T where C16:1ω7c was found to be the major fatty acid, this fatty acid was much less abundant in strain PWU37T (9.0%). Moreover, C16:1ω5c was found to be the major fatty acid in strains PWU5T and PWU37T but not in strains PWU4T and PWU20T. Albers and Siebers (2014) highlighted that branched, unsaturated or hydroxyl fatty acids represented the predominant cellular fatty acids in most members of the family Cytophagaceae.

Phylogenetic and genome analysis

The phylogenetic tree showed that strains PWU4T, PWU5T, PWU20T and PWU37T belong to the family Cytophagaceae and that they are closely related but distinct from members of the genus Ohtaekwangia (Figs. 1, 2). The four strains shared 91.63 to 97.82% 16S rRNA gene sequence similarity with each other (Table 3). The current closest relatives of strain PWU4T are O. koreensis 3B-2T (92.1% 16S rRNA gene sequence similarity), O. kribbensis 10AO1T (92.0%) and Chryseolinea solis KIS68-18T (91.0%), whereas the current closest relatives of strain PWU5T are O. koreensis 3B-2T (93.6% 16S rRNA gene sequence similarity), O. kribbensis 10AO1T (93.1%), and Chryseolinea serpens RYG1T (92.3%). The current closest relatives of strain PWU20T are O. kribbensis 10AO1T (92.5% 16S rRNA gene sequence similarity), O. koreensis 3B-2T (92.0%), and C. solis KIS68-18T (90.6%). The current closest relatives of strain PWU37T are O. kribbensis 10AO1T (93.7% 16S rRNA gene sequence similarity), O. koreensis 3B-2T...
Table 1 Major phenotypic characteristics distinguishing strains PWU4T, PWU5T, PWU20T and PWU37T with members of the genus *Ohtaekwangia*. Strain: 1, PWU4T; 2, PWU5T; 3, PWU20T; 4, PWU37T; 5, *Ohtaekwangia koreensis* 3B-2T and 6, *Ohtaekwangia kribbensis* 10AO T. +, positive; w, weakly activities, − negative, *taken from Yoon et al. (2011b)

Characteristic	1	2	3	4	5	6
Cell morphology	Rod	Rod	Rod	Rod	Rod	Rod
Cell length (µm)	2.56–6.67	4.37–7.62	2.32–6.41	3.1–6.43	1.0–5.0	1.5–7.5
Temperature range of growth (°C)	21–40	21–34	21–40	21–34	10–39	10–39
Optimal temperature (°C)	30	28	28	34	30	30
pH range of growth	5.5–8.0	6.5–8.5	6.5–9.0	5.0–9.5	5.5–9.0	4.5–9.0
Optimal pH	7	7	7	7.4–8.0	6.5–7.5	6.5–7.5
NaCl tolerance (%NaCl, w/v)	0–0.4	0–0.6	0–0.8	0–1.0	0–0.2	0–0.2
Flexirubin type pigment	−	−	−	−	+	+
Catalase	−	−	−	−	+	+
Oxidase	−	−	−	−	+	+
Enzyme activity (Api®ZYM, Api®CAMPI)						
Esterase (C4)	+	w	w	w	−	−
Esterase lipase (C8)	+	w	w	w	−	−
Lipase (C14)	w	w	w	w	−	−
Valine arylamidase	+	+	+	+	+	+
Cystine arylamidase	+	+	+	+	−	−
Trypsin	+	−	w	−	+	−
Chymotrypsin	+	−	+	−	−	−
Phosphatase acid	+	+	+	+	+	+
Naphthol-AS-B1-phosphohydrolase	+	+	+	+	+	+
α-Galactosidase	+	+	+	+	+	+
β-Galactosidase	+	+	+	+	+	+
β-Glucuronidase	w	−	+	−	−	−
α-Glucosidase	+	+	+	+	+	+
β-Glucosidase	+	+	+	+	+	+
α-Mannosidase	+	−	+	−	−	−
α-Fucosidase	+	−	−	+	−	−
Urease	+	−	+	−	−	−
Hippurate	+	−	+	−	+	+
γ-Glutamyl transferase	+	+	+	−	−	−
Reduction of tetracyclium	+	+	+	−	−	−
Antibiotic resistance						
Gentamycin (50 µg/ml)	+	+	−	+	−	+
G+C contents (mol%)	50.2	51.6	39.8	53.8	42.8*	44.6*
Carbon sources utilization						
D-cellobiose	−	+	−	+	+	+
L-fucose	−	+	−	+	+	+
D-arabitol	−	+	−	+	−	−
D-gluconic acid	+	−	+	−	+	+
Methyl pyruvate	+	−	+	−	−	−
L-malic acid	−	+	−	+	−	+
α-Keto-butyric-acid	−	+	−	+	−	−
(93.2%) and \textit{C. soli} KIS68-18T (92.0%). Notably, all of these values are below the 94.5% 16S rRNA threshold suggested by Yarza et al. (2014) as being useful for delineating prokaryotic genera.

The phylogenomic tree (Fig. 2), AAI matrix (Fig. 3) and POCP matrix (Fig. 4) confirmed the close relationships of the four strains in the two different genera. Strain PWU5T and PWU37T are grouped in the same genus and strain PWU4T and PWU20T together in a second genus. However, it was noted that between strains PWU4T and PWU20T share only 93.2% 16S rRNA similarity (Table 3) and differed in fatty acid profiles and GC content. At this point we cautiously place these two strains in the same genus based on the 16S rRNA, phylogenomic, AAI and POCP analysis but we noted that further analyses should be conducted.

Characteristic	1	2	3	4	5	6
\textit{Straight-chain} \textit{C_{14:0}}	1.9	–	1.3	1.0	–	–
\textit{C_{15:0}}	1.8	2.3	–	1.6	–	2.1
\textit{C_{16:0}}	–	2.8	9.7	9.2	–	22.2
\textit{C_{17:0}}	–	1.3	–	–	–	–
\textit{C_{18:0}}	2.7	–	1.1	–	–	–
\textit{Branched} \textit{iso C_{13:0}}	–	–	–	–	–	–
\textit{iso C_{14:0}}	–	–	–	–	–	1.7
\textit{iso C_{15:0}}	22.0	26.9	43.6	38.2	20.4	30.2
\textit{iso C_{16:0}}	12.9	2.2	1.4	–	9.5	4.0
\textit{iso C_{17:0}}	–	–	1.2	1.0	–	7.4
\textit{Unsaturated} \textit{C_{15:1} \omega 7c}	1.4	2.8	0.8	–	–	–
\textit{C_{16:1} \omega 5c}	–	43.8	–	38.5	–	–
\textit{C_{16:1} \omega 7c}	32.5	16.6	32.0	9.0	55.2	27.4
\textit{C_{16:1} \omega 8c}	–	–	–	0.7	–	–
\textit{C_{17:1} \omega 7c}	–	–	1.0	–	–	–
\textit{C_{18:1} \omega 9c}	8.9	–	3.4	–	–	–
\textit{C_{18:2} \omega 6,9c}	13.6	–	4.5	–	–	–
\textit{Hydroxy} \textit{C_{14:0} 2-OH}	1.0	–	–	–	–	–
\textit{C_{16:0} 2-OH}	1.3	–	–	–	–	–
\textit{Unknown} \textit{ECL 11.864}	–	–	–	–	6.2	3.3
\textit{ECL 12.558}	–	1.2	–	–	–	–
\textit{ECL 16.089}	–	–	–	0.7	–	–
\textit{ECL 22.207}	–	–	–	–	8.7	1.7
to be 50.2 mol%, 51.6 mol%, 39.8 mol% and 53.8 mol%, respectively. The pairwise digital DNA-DNA hybridization (dDDH) revealed values of 13% to 50% and confirmed that all of strains represented distinct new species. Strains PWU4T, PWU5T, PWU20T, and PWU37T shared ANI values of 69.2%, 69.9%, 69.5% and 69.7% with O. koreensis 3B-2T, respectively (Table 4). The low ANI values below the threshold of 95.0–96.0% (Richter and Rosselló-Móra 2009) confirmed that all four of these strains represented different species to current members of the genus Ohtaekwangia.

Fig. 1 Neighbor-joining phylogenetic tree of partial 16S rRNA gene sequences of strains PWU4T, PWU5T, PWU20T and PWU37T in comparison with other representatives of the phylum Bacteroidetes. Bootstrap value (1000 resampling) at branch nodes (Maximum Parsimony/Maximum-Likelihood). Bar 0.09 substitutions per nucleotide position and Escherichia coli DSM 30083 was used as an outgroup

Taxonomic conclusions

Morphological, biochemical, physiological and phylogenetic characteristics of strains PWU4T, PWU5T, PWU20T and PWU37T confirmed their position within the family Cytophagaceae. However, the obtained genetic data between strains PWU4T, PWU5T, PWU20T, PWU37T and related genera differentiated them from known genera of the family Cytophagaceae. Therefore, strains PWU4T, PWU5T, PWU20T and PWU37T should be classified in two new genera within the family Cytophagaceae.
Description of *Chryseosolibacter* gen. nov.

Chryseosolibacter (Chry.se.o.so.li.bac.ter. Gr. masc. adj. chryseos, golden; L. gen. n. soli, soil; L. neut. n. bacter, bacteria; N.L. neut. n. *Chryseosolibacter*, the color of colony bacteria is something like golden soil.

Gram-stain negative, rod-shaped, asporogenous, non-motile, mesophilic, heterophilic and aerobic bacteria. Catalase and oxidase negative. Growth is observed on D-gluconic acid and methyl pyruvate.

The major cellular fatty acids are *iso*-C\textsubscript{15:0} and C\textsubscript{16:1} \(\omega7c\). The major respiratory quinone is menaquinone-7 (MK-7). The major identified polar lipid is phosphatidylethanolamine. Member of the family *Cytophagaceae*. The type species is *Chryseosolum histidini*.

Description of *Chryseosolibacter histidini* sp. nov.

Chryseosolibacter histidini (his.ti.di’ni. N.L. gen. n. histidini, of histidine, an amino acid, which can be utilised by this strain).

In addition to the characteristics listed in the genus description, the species has the following characteristics: cells are 2.56–6.67 \(\mu\)m long and appear as single cells. Colonies are irregular and yellow on E agar plates after 5 days of cultivation. Growth occurs between 21 and 40 °C (optimum 30 °C), between pH 5.5 and 8.0 (optimum pH 7) and NaCl tolerance 0.4% (w/v). Positive for phosphatase alkaline, esterase (C4), esterase lipase (C8), leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, chymotrypsin, phosphatase

Table 3 Matrix similarity of 16S rRNA gene sequence similarities of strains PWU4T, PWU5T, PWU20T and PWU37T compared with members of the genus *Ohtaekwangia*

Strain	PWU4T	PWU5T	PWU20T	PWU37T
PWU4T	100	91.63	93.21	91.98
PWU5T	91.63	100	97.82	92.93
PWU20T	93.21	97.82	100	93.13
PWU37T	91.98	92.93	93.13	100
O. kribbensis 10AOT	92	93.1	92.5	93.7
O. koreensis 3B-2T	92.1	93.6	92	93.2

Fig. 2 The phylogenomic inference of strains PWU4T, PWU5T, PWU20T and PWU37T within the EDGAR platform from genome sequences. The tree is built out of core of 309 genes per genome, 6180 in total. The core has 112,516 AA-residues/bp per genome, 2,250,320 in total. The numbers above branches are Shimodaira-Hasagawa (SH) branch support value. *Escherichia coli* DSM 30,083 was used as an outgroup
acid, naphthol-AS-B1-phosphohydrolase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, N-acetyl-β-glucosamidase, α-mannosidase, α-fucosidase, urease, esterase and alcaline phosphatase. Weak activities of lipase (C14) and β-glucoronidase. No growth is observed on dextrin, D-maltose, D-trehalose, D-cellobiose, gentiobiose, sucrose, D-turanose, stachyose, D-raffinose, α-D-lactose, D-melibiose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, α-D-glucose, D-mannose, L-fucose, D-arabitol, glycerol, gelatin, glycyl-L-proline, L-alanine, L-arginine, L-serine, pectin, D-galacturonic acid, L-galactonic acid lactone D-gluconic acid, glucuronic acid, gluconic acid, mucic acid, D-lactic acid methyl ester, citric acid, D-malic acid, L-malic acid, bromo-succinic acid, tween 40, γ-amino-butyric acid, α-ketobutyric acid, acetoacetic acid, and acetic acid. The DNA G+C content of the type strain is 50.2 mol%.

The type strain PWU4^T (= DSM 111594^T = NCCB 100798^T) was isolated from a soil sample collected in May 1990 at Braunschweig, Germany (52.22090N 10.50902E). The 16S rRNA gene and whole-genome sequences of PWU4^T have been deposited in GenBank/EMBL/DDBJ under accession numbers MW182516 and JAHESF000000000, respectively.

Description of Chryseosolibacter indicus sp. nov.

Chryseosolum indicus (in’di.cus. L. neut. adj. indicus, India, the origin of the soil sample from which the type strain was isolated).

In addition to the characteristics listed in the genus description, the species has the following characteristics: cells are 2.32–6.41 µm long and appear as single cells. Colonies are irregular and yellow on E agar plates after 5 days of cultivation. Growth occurs between 21 and 40 °C (optimum
28 °C), between pH 6.5 and 9.0 (optimum pH 7) and NaCl tolerance below 0.8% (w/v). Positive for phosphatase alkaline, leucine arylamidase, valine arylamidase, cystine arylamidase, chymotrypsin, phosphatase acid, naphthol-AS-B1-phosphohydrolase, α-galactosidase, β-galactosidase, β-glucoronidase, α-glucosidase, β-glucosidase, N-acetyl-β-glucosamidase, α-mannosidase, urease, esterase and alcaline phosphatase. Weak activities of esterase (C4), esterase lipase (C8), lipase (C14), trypsin and no activities for α-fucosidase. No growth is observed on dextrin, D-maltose, D-cellobiose, gentiobiose, N-acetyl-D-glucosamine, N-acetyl-β-D-galactosamine, D-fructose, D-fructose-6-PO₄, L-arginine, L-histidine, L-galactonic acid lactone D-gluconic acid, p-hydroxy-phenylacetic acid, L-malic acid, bromo-succinic acid, tween 40, α-keto-butyric-acid, propionic acid, and acetic acid. The DNA G + C content of the type strain is 39.8 mol %.

The type strain PWU20ᵀ (= DSM 111597ᵀ = NCCB 100800ᵀ) was isolated from a soil sample collected in May 1989 at Lucknow, Uttar Pradesh, India (26.8684N 80.90979E). The 16S rRNA gene and whole-genome sequences of strain PWU20ᵀ have been deposited in GenBank/EMBL/DDBJ under accession numbers MW182517 and JAHESD0000000000, respectively.

Table 4 Matrix of Average Nucleotide Identity (ANI) of strains PWU4ᵀ, PWU5ᵀ, PWU20ᵀ and PWU37ᵀ compared with Ohtaekwangia koreensis 3B-2ᵀ

Strain	PWU4ᵀ	PWU5ᵀ	PWU20ᵀ	PWU37ᵀ
PWU4ᵀ	100	70.22	69.37	70.77
PWU5ᵀ	70.22	100	67.9	83.85
PWU20ᵀ	69.37	67.9	100	68.04
PWU37ᵀ	70.77	83.85	68.04	100

O. koreensis 3B-2ᵀ 69.23 69.92 69.51 69.66

Fig. 4 Matrix of POCP (Percentage of Conserved Protein) of strains PWU4ᵀ, PWU5ᵀ, PWU20ᵀ and PWU37ᵀ in comparison with other representatives of the phylum Bacteriodetes. Results were obtained using the EDGAR 3.0 platform and Escherichia coli DSM 30,083 was used as an outgroup.
Description of *Dawidia* gen. nov.

Dawidia (Da.wi’di.a N.L. fem. n. Dawidia, named in honor of the German microbiologist Dr. Wolfgang Dawid, author of *Experimentelle Mikrobiologie.)*

Gram-stain negative, rod-shaped, asporogenous, non-motile, mesophilic, heterophilic and aerobic bacteria. Catalase and oxidase-negative. Growth is observed on D-cellobiose, L-fucose, D-arabitol, L-malic acid, and α-keto-butyric-acid. The major cellular fatty acids are iso-C15:0 and C16:1 ω5c. The major respiratory quinone is menaquinone-7 (MK-7). The major identified polar lipids is phosphatidylethanolamine (PE). Member of the family *Cytophagaceae*. The type species is *Dawidia cretensis*.

Description of *Dawidia cretensis* sp. nov.

Dawidia cretensis (cre.ten’sis. L. fem. adj. cretensis, Cretan, the source of the sample from the type strain was isolated).

In addition to the characteristics listed in the genus description, the species has the following characteristics: cells are 4.37–7.62 µm long and appear as single cells. Colonies are irregular and yellow on E agar plate after 5 days of cultivation. Growth occurs between 21 and 34 °C (optimum 34 °C), between pH 6.5 and 8.5 (optimum pH 7) and NaCl tolerance below 0.6% (w/v). Positive for phosphatase alkaline, leucine arylamidase, valine arylamidase, cystine arylamidase, phosphatase acid, naphthol-AS-B1-phosphohydrolase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-fucosidase, esterase and alkaline phosphatase. Weak activities of esterase (C4), esterase lipase (C8), lipase (C14) and no activities for trypsin, chymotrypsin, β-galactosidase, α-mannosidase, and urease. No growth is observed on dextrin, D-maltose, gentiobiase, D-turanose, D-raffinose, α-D-lactose, D-melibiose, D-salicin, N-acetyl-D-glucosamine, N-acetyl-β-D-galactosamine, N-acetyl-D-galactosamine, α-D-glucose, D-fructose, D-sorbitol, myo-inositol, D-glucose-6-PO4, D-fructose-6-PO4, D-aspartic acid, D-serine, gelatin, L-alanine, L-arginine, L-aspartic Acid, L-histidine, pectin, L-galactonic acid lactone D-gluconic acid, gluconic acid, glucuornamide, mucic acid, p-hydroxyphenylactic acid, methyl pyruvate, D-lactic acid methyl ester, L-lactic acid, citric acid, α-keto-glutaric acid, D-malic acid, bromo-succinic acid, tween 40, α-hydroxy-butyric acid, β-hydroxy-D,L-butyric acid, acetoacetic acid, propionic acid, acetic acid and formic acid. The DNA G+C content of the type strain is 53.8 mol %.

The type strain PWU37T (=DSM 111595T = NCCB 100801T) was isolated from a soil sample collected in September 1991 at Braunschweig (52.21501N 10.53329E). The 16S rRNA gene and whole-genome sequences of strain PWU37T have been deposited in GenBank/EMBL/DDBJ under accession numbers MW182518 and JAHESE00000000, respectively.

Description of *Dawidia soli* sp. nov.

Dawidia soli (so.li. L. gen. n. soli, of soil, the source of the type strain).

In addition to the characteristics listed in the genus description, the species has the following characteristics: cells are 3.1–6.43 µm long and appear as single cells. Colonies are irregular and yellow on E agar plate after 5 days of cultivation. Growth occurs between 21 and 34 °C (optimum 34 °C), between pH 5.0 and 9.5 (optimum pH 7.4 until 8.0) and NaCl tolerance below 1.0% (w/v). Positive for phosphatase alkaline, leucine arylamidase, valine arylamidase, cystine arylamidase, phosphatase acid, naphthol-AS-B1-phosphohydrolase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-fucosidase, esterase and alkaline phosphatase. Weak activities of esterase (C4), esterase lipase (C8), lipase (C14) and no activities for trypsin, chymotrypsin, β-galactosidase, α-mannosidase, and urease. No growth is observed on dextrin, D-maltose, gentiobiase, D-turanose, D-raffinose, α-D-lactose, D-melibiose, D-salicin, N-acetyl-D-glucosamine, N-acetyl-β-D-galactosamine, N-acetyl-D-galactosamine, α-D-glucose, D-fructose, D-sorbitol, myo-inositol, D-glucose-6-PO4, D-fructose-6-PO4, D-aspartic acid, D-serine, gelatin, L-alanine, L-arginine, L-aspartic Acid, L-histidine, pectin, L-galactonic acid lactone D-gluconic acid, gluconic acid, glucuornamide, mucic acid, p-hydroxyphenylactic acid, methyl pyruvate, D-lactic acid methyl ester, L-lactic acid, citric acid, α-keto-glutaric acid, D-malic acid, bromo-succinic acid, tween 40, α-hydroxy-butyric acid, β-hydroxy-D,L-butyric acid, acetoacetic acid, propionic acid, acetic acid and formic acid. The DNA G+C content of the type strain is 53.8 mol %.

The type strain PWU37T (=DSM 111595T = NCCB 100801T) was isolated from a soil sample collected in September 1991 at Braunschweig (52.21501N 10.53329E). The 16S rRNA gene and whole-genome sequences of strain PWU37T have been deposited in GenBank/EMBL/DDBJ under accession numbers MW182518 and JAHESE00000000, respectively.
DDBJ under accession numbers MW182519 and JAHESC000000000, respectively.

Acknowledgements We are thankful to Birte Trunkwalter for providing strains. We also thank Klaus Peter Conrad and Dr. Chandra Risdian for the quinone analysis. Stephanie Schulz for the analysis of polar lipids. Wera Collisin for the fatty acid methyl ester analysis. Ulrich Nübel and Vera Junker at DSMZ for genome sequencing.

Authors contributors Conceptualized: SO, JW. Supervised: JW. Performed the experiments except genome: SO, SL, FA. Analyzed the data: SO, SL, FA, LF. Wrote the paper-original JW. Draft preparation: SO, SL. -review and edited SO, SL, LF and FA. Performed the experiments for genome sequencing.

Funding This research has supported full funding by German Academic Exchange Service (DAAD)-GINAICO program number 57342738 (91654412) for the PhD scholarship. The EDGAR platform is financially supported by the BMBF grant FKZ 031A533 within the de.NBI network.

Conflict of interest The author declares that there are no conflicts of interest.

Ethical approval This research did not contain any studies with human or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a notice within the image or material. For anything not covered by this licence, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Albers SV, Siebers B (2014) The family sulfobacteraceae. In: The prokaryotes: other major lineages of bacteria and the archaea, vol 9783642389. https://doi.org/10.1007/978-3-642-38954-2_329

Baik KS, Seong CN, Moon EY, Park Y-D, Yi H, Chun J (2006) Hymenobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evolut Microbiol 56(Pt 9):2189–2192. https://doi.org/10.1099/ijs.0.64181-0

Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

Buczolits S, Denner EBM, Vybiral D, Wieser M, Kämpfer P, Busse H-J (2002) Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 52(Pt 2):445–456. https://doi.org/10.1099/00270713-52-2-445

Chaturvedi P, Reddy GSN, Shivaji S (2005) Dyadobacter hamtensis sp. nov., from Hamta glacier, located in the Himalayas, India. Int J Syst Evol Microbiol 55(Pt 5):2113–2117. https://doi.org/10.1099/ijs.0.63806-0

de la Haba RR, Minegishi H, Kamekura M, Shimane Y, Ventosa A (2021) Phylogenomics of haloarchaea: the controversy of the genera natrinema-haloterrigena. Front Microbiol. https://doi.org/10.3389/fmicb.2021.740909

Dieckmann MA, Beyvers S, Nkouamedjo-Fankep RC, Hanel PHG, Jelonek L, Blom J, Goessmann A (2021) EDGAR3.0: comparative genomics and phylogenomics on a scalable infrastructure. Nucleic Acids Res 49(W1):W185–W192. https://doi.org/10.1093/nar/gkb341

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24(5):774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x

Gupta RS (2019) Distinction between Borrelia and Borrellella is more robustly supported by molecular and phenotypic characteristics than all other neighbouring prokaryotic genera: Response to Margos’ et al. “The genus Borrelia reloaded” (PLoS ONE 13(12): E0208432). PLoS ONE 14(8):1–22. https://doi.org/10.1371/journal.pone.0221397

Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA (1998) Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 21(3):374–383. https://doi.org/10.1016/s0723-2020(98)80047-7

Humble MW, King A, Phillips I (1977) API ZYM: a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 30(3):275–277. https://doi.org/10.1136/jcp.30.3.275

Huysmans MB, Turmidge JD, Williams JH (1995) Evaluation of API Campy in comparison with conventional methods for identification of thermophilic campylobacters. J Clin Microbiol 33(12):3345–3346. https://doi.org/10.1128/jcm.33.12.3345-3346.1995

Ikegami Y, Takeuchi N, Hanada M, Hasegawa Y, Ishii K, Andoh T, Sato T, Suzuki K, Yamaguchi H, Miyazaki S (1990) Topostin, a novel inhibitor of mammalian DNA topoisomerase I from Flexibacter topostinus sp. nov. II. Purification and some properties of topostin. J Antibiot 43(2):158–162. https://doi.org/10.1093/antibiotics/43.5.158

Jones DM (1981) Manual of methods for general bacteriology. J Clin Pathol 34(9):1069

Katahara N, Ozaki Y, Konogi K, Ono H, Harada S, Okazaki H (1985) Formadinicin, a new monocyclic b-lactam antibiotic of bacterial origin. J Antibiott 39(9):1117–1127
Kim J-J, Alkawally M, Brady AL, Rijpstra WIC, Sinninghe Damsté JS, Dunfield PF (2013) Chrysteolina serpens gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from soil. Int J Syst Evol Microbiol 63(Pt 2):654–660. https://doi.org/10.1099/ijsem.0.039404-0

Komagata K, Suzuki K-I (1988) 4 Lipid and cell-wall analysis in bacterial systematics. In: Colwell RR, Grigorova R (eds) Current methods for classification and identification of microorganisms, vol 19. Academic Press, Cambridge, pp 161–207. https://doi.org/10.1006/S0580-9517(08)70410-0

Lechevalier MP, De Bievre C, Lechevalier H (1977) Chemotaxonomy of aerobic Actinomycetes: Phospholipid composition. Biochem Syst Ecol 5(4):249–260. https://doi.org/10.1016/0305-1978(77)90021-7

Maejima Y, Iino T, Muraguchi Y, Fukuda K, Ohkuma M, Suzuki T, Morriuchi R, Dohra H, Kimbarra K, Shintani M (2020) Chrysosetalae sanaruensis gen. nov., sp. nov., a Member of the Family Cytophagaceae, Isolated from a Brackish Lake in Hamamatsu Japan. Curr Microbiol 77(2):306–312. https://doi.org/10.1007/s00284-019-01823-4

Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioin 14(1):60. https://doi.org/10.1186/1471-2105-14-60

Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2014) Highly parallelized inference of large genome-based phylogenies. Concur Comput Pract Exp 26(10):1715–1729. https://doi.org/10.1002/cpe.3112

Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2(5):233–241. https://doi.org/10.1016/0167-7012(84)90018-6

Mohr KI, Wolf C, Nübel U, Szafranska AK, Steglich M, Hennessen F, Gemperlein K, Kümpfer P, Martin K, Müller R, Wink J (2018) A polyphasic approach leads to seven new species of the cellulose-decomposing genus Sorangium, Sorangium ambofaciens sp. nov., Sorangium arenace sp. nov., Sorangium bulgaricum sp. nov., Sorangium davidi sp. nov., Sorangium kenyense sp. nov., Sorangium or. Int J Syst Evol Microbiol 68(11):3576–3586. https://doi.org/10.1099/ijsem.0.03034

Nakagawa Y (2011) Family I. Cytophagaceae Stanier 1940, 630AL. Bergey’s Man Syst Bacteriol 4:371

Okanya PW, Mohr KI, Gerth K, Jansen R, Müller R (2011a) Isolation and structure elucidation of secondary metabolites from the gliding bacteria Ohtaekwangia kribbensis and Hyalangium minutum. J Nat Prod 74(7):603–608. https://doi.org/10.1021/nn100625a

Park JH, Kim R, Aslam Z, Jeon CO, Chung YR (2008) Lyso-bacter capsici sp nov, with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lyso bacter. Int J Syst Evol Microbiol 58(Pt 2):387–392. https://doi.org/10.1099/ijsem.0.05290-0

Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BM, Stamatakis A (2010) How many bootstrap replicates are necessary? J Comput Biol A J Comput Mol Cell Biol 17(3):337–354. https://doi.org/10.1089/cmb.2009.0179

Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, Oren A, Zhang YZ (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196(12):2210–2215. https://doi.org/10.1128/JB.01688-14

Reichenbach H (1992) The order cytophagales. The Prokaryotes. https://doi.org/10.1007/978-1-4757-2191-1_37

Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

Sasser M (2009) Technical note # 101 M icrobial identification by gas chromatograph ic analysis of fatty acid methyl esters (GC-FAME). Technical Note, May 1990, 1–6

Singh PD, Ward PC, Scott Wells J, Ricca CM, Trejo WH, Principe PA, Sykes RB (1982) Bacterial production of deacetoxycephalosporin C. J Antibiot 35(10):1397–1399. https://doi.org/10.7164/antibiotics.35.1397

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (oxford, England) 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Stanier RY (1940) Studies on the cytophagas. J Bacteriol 40(5):619–635. https://doi.org/10.1128/JB.40.5.619-635.1940

Tanizawa Y, Fujisawa T, Nakamura Y (2018) DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics (oxford, England) 34(6):1037–1039. https://doi.org/10.1093/bioinformatics/btx713

Wirth JS, Whitman WB (2018) Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautilia, Pelagibaca, Ruegeria, Thallassobius, Thioacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 68(7):2393–2411. https://doi.org/10.1099/ijsem.0.002833

Xu L, Sun C, Fang C, Oren A, Xu XW (2020) Genome-based taxonomic classification of the family erythrobacteraceae. Int J Syst Evol Microbiol 70(8):4470–4495. https://doi.org/10.1099/ijsem.0.004293

Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Richter M, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12(9):635–645. https://doi.org/10.1038/nrmicro.3033

Yoon JH, Kang SJ, Lee SY, Lee JS, Park S (2011a) Ohtaekwangia koreensis gen. nov., sp. nov. and Ohtaekwangia kribbensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 63(Pt 2):387–392. https://doi.org/10.1099/ijs.0.025874-0

Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome
assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755

Zhang J-Y, Liu X-Y, Liu S-J (2009) Adhaeribacter terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 59(Pt 7):1595–1598. https://doi.org/10.1099/ijs.0.004796-0

Zhou Y, Wang X, Liu H, Zhang K-Y, Zhang Y-Q, Lai R, Li W-J (2007) Pontibacter akesuensis sp. nov., isolated from a desert soil in China. Int J Syst Evol Microbiol 57(Pt 2):321–325. https://doi.org/10.1099/ijs.0.64716-0

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.