Synthesis and characterization of polypropylene glycol-graft-styrene

1El-Sayed Negim, 1Konysbay A.M., 2Irmukhametova G., 2Kalugin S.N.

1 School of Chemical Engineering, Kazakh-British Technical University, 106 Walikhanov Street, Almaty, 050010, Kazakhstan
2 Department of Chemistry & Technology of Organic Materials, Natural Compounds and Polymers, al Faraby Kazakh National University, 71, al-Faraby av., 050040, Almaty, Kazakhstan

* Corresponding author email: elashmaw5@yahoo.com

ABSTRACT

Grafting polymerization based on polypropylene glycol (PPG) and styrene (St) was synthesized with different composition of styrene using the free radical technique in the presence of potassium persulphate as an initiator. The grafted copolymers (PPG-g-St) used different styrene composition (65/15, 65/25, 65/35), respectively. The grafted copolymers were investigated through FTIR (Fourier-transform spectroscopy), Differential scanning calorimeter and thermogravimetric analyzer. FTIR showed new peaks at 1450 cm⁻¹ and 1135 cm⁻¹ due to the grafting process of St on PPG. Thermal stability of grafted copolymer increases by increasing the ratio of styrene, while T₅ decreases by increasing the ratio of styrene.

Keywords: Grafting, polymerization, styrene, copolymer, radical.

Introduction

Polypropylene glycol (PPG) is a polymer with a broad industrial application, including biomedical mucoadhesive. In addition, PPG provides high chemical stability; and is a safe, biodegradable, and biocompatible polymer. Several researchers have distinguished chemical modification of polypropylene glycol via graft copolymerization. They have used different techniques, including anionic, cationic, free radical, and condensation polymerizations based on monomers type and direct attachment with functional polymer [1-7]. A series of polypropylene glycol-grafted-polyethyleneimines were synthesized with the grafting rate ranging from 9% to 19% [8]. Song et al., [9] reported that polypropylene glycol-grafted multi-walled polyurethane was synthesized based on the hydroxyl functionalized polyurethane through a two-step reaction. The obtained grafted copolymer can improve the rheological behavior of the polyurethane.

Ayman et al., [10] prepared PPG and grafted it with different molar ratios of maleic anhydride in the presence of dibenzoyl peroxide as a radical initiator. The obtained grafts were esterified different weights of polyethylene glycol monomethyl ether to produce nonionic surfactants. Do et al., [11] reported that the PPG-grafted polyimide precursor, poly (amic acid-co-amic ester), was synthesized via partial esterification of poly (amic acid) derived from pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA) with bromo-terminated poly (propylene glycol) in the presence of K₂CO₃ in hexamethylphosphoramide and N-methyl pyrrolidone.

Maeda et al., [12] investigated the phase behaviour of graft copolymers in an aqueous
solution. The graft copolymers consist of PPG side chains and N, N-dimethylacrylamide, N-vinylimidazole, and N-isopropyl acrylamide as backbones. Phase transition temperatures of copolymers increased with increasing the content of N, N-dimethyl acrylamide, and N-vinyl imidazole and with an increase in the degree of ionization of the incorporated N-vinylimidazole units. Murat et al., [13] prepared thermoplastic amphiphilic grafted copolymers based on PPG and different molecular weight of polyethylene glycol (PEG) in the presence of a base via a “grafting to” technique. The hydrophilicity of the amphiphilic copolymers increases with the increasing PEG content in the copolymer while the mechanical properties decrease.

The present work was designed to study the preparation and characterization of polypropylene glycol-graft-styrene via FTIR (Fourier-transform spectroscopy), thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC).

**Experimental part**

**Materials**: polypropylene glycol (PPG), styrene (St), potassium persulphate (KPS) and polyvinyl alcohol (PVA) were purchased from Sigma Aldrich.

**Preparation of PPG-Graft-St**: Graft copolymerization was carried out in a 250 mL three-necked flask equipped with a thermometer, reflux condenser, and stirrer. The following procedure was used for the synthesis of grafting copolymers of polypropylene glycol (PPG) and styrene (St) with various ratios of St, i.e. [M1: (65: 15), M2: (65: 25), M3: (65: 35)]. PPG, PVA (0.1 gm) and water added to the flask and stirred continuously at a constant temperature of 60 °C. After the PPG was fully homogenous, the temperature of the system was strictly maintained at a required value. Freshly prepared potassium persulphate KPS solution about (5 mL) (0.74 mM) was added followed by dropwise addition of St. The reaction was conducted for two hours with stirring continued for another 20 min at room temperature.

**Measurements**: Infrared spectra were recorded on a Perkin Elmer 4000.0-400.0 cm⁻¹ FTIR spectrophotometer. Thermogravimetric analyzer (TGA) was recorded on TGA/SDTA851°, METTLER TOLEDO. Differential scanning calorimeter (DSC) were recorded on Pyris 1DSC, Perkin Elmer.

**Results and discussion**

**Characterization of grafted copolymers**

**FTIR Spectra**. FT-IR spectra of the PPG is shown in Figure 1a. Absorption peak at 3400 cm⁻¹ due to the stretch OH group, peak at 3000 cm⁻¹ for stretch C–H and 1100 cm⁻¹ is ascribed to O–C group. Figure 1b presents the FTIR spectrum of grafted copolymer PPG-Graft-St.). The results showed new peaks at 1500 cm⁻¹ and 2900 cm⁻¹ correspond to (C = C) and (C-H) aromatic. It peaks at 1036 cm⁻¹ which is attributed to stretch vibrations of C – O – C and confirm the point of grafting St unto PPG. Furthermore, the transmittance of the hydroxy group reduced more than 75% due to the grafting polymerization process as shown in Scheme 1.
TGA and DSC analysis

TGA in air at a heating rate of 10°C/min and DSC at about the same heating rate under nitrogen atmosphere is used to test the thermal activity of pure PPG and PPG-g-Styrene. Figure 2 – 5 show TGA and DSC analysis of pure PPG and PPG-g-Styrene. The thermal decomposition temperature of pure PPG and grafted PPG with a Styrene in different formulations is around 350 °C, as shown by TGA measurements.

Table 1 - Thermal properties of samples obtained from TGA curve

| Polymers   | Temperature (°C) | Weight loss % | Residual % |
|------------|------------------|---------------|------------|
| PPG        | 200 - 420        | 74.32         | 25.68      |
| M1(65/15)  | 182 - 448        | 87.25         | 12.75      |
| M2(65/25)  | 235 - 467        | 83.54         | 16.46      |
| M3(65/35)  | 246 - 481        | 76.26         | 23.74      |

In DSC curves, peak area and the area bounded by the experimental curve and the baseline, which are proportional to the heat of reaction. Decomposition of prepared samples follow exothermic reaction. Moreover, a decrease of the peak area with increasing styrene indicates that the grafted polymer retains heat. The thermal characteristic from DSC analysis in Table 2, shows that the influence of styrene on glass transition, crystallization and melting temperatures is not big, but it still decreases [14, 15, 16, 17].

Figure 1 - FTIR spectra of (a) PPG and (b) PPG-Graft-St}

Figure 2 - TGA and DSC analysis of pure PPG
Table 2 - Thermal properties as samples from DSC curve

| Polymer | $T_g$ (°C) | $T_c$ (°C) | $T_m$ (°C) |
|---------|------------|------------|------------|
| PPG     | 58         | 144        | 354        |
| M₁      | 58         | 112        | 354        |
| M₂      | 54         | 114        | 360        |
| M₃      | 51         | 90         | 364        |

$T_g$: Glass translation temperature  
$T_c$: Crystallization temperature  
$T_m$: Melting temperature

Figure 3. The TG and DSC analysis of PPG-graft-St (M1)

Figure 4. The TG and DSC analysis of PPG-graft-St (M2)

Figure 5. The TG and DSC analysis of PPG – graft-St (M3)

Conclusions

The grafted copolymers based on PPG and St were successfully prepared by grafting polymerization using free radical technique and potassium persulphate as an initiator. The grafted copolymer (PPG-Graft-St) showed an excellent thermal stability, however an increase in the ratio of styrene, thermal stability and $T_g$ increase.

Conflicts of interest. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Acknowledgments. The work was financially supported by Ministry of Science and Education of the Republic of Kazakhstan, program-targeted financing out of competitive procedures for 2021-2022. Project entitled “Development of new composite structural materials for the development of the innovative industry of the Republic of Kazakhstan”.

Cite this article as: El-Sayed Negim, Konysbay A.M., Irmukhametov G.S., Kalugin S.N. Synthesis and characterization of polypropylene glycol-graft-styrene. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’ya. = Complex Use of Mineral Resources = Mineral'dik Shikisattardy Keshendi Paidalanu. 2021, Volume 3, Issue 318, pp. 5-11. https://doi.org/10.31643/2021/6445.23

Стиро́лен байланы́сқан полипропиленгликолдің синтезі және сипаттамасы

3Эльсайд Негим, ¹Коньсбай А.М., ²Ирмухаметова Г.С., ²Калугин С.Н.

¹Химиялық инженерия мектебі, Қазақстан-Британия техникалық университеті, Үлықанов к. 106, Алматы, 050010, Қазақстан  
²Органикалық заттар, полимерлер және табиғи кошылымдар химиясы мен технологиясы кафедрасы, Әл-Фараби ұлттық университеті, 71, Әл-Фараби көш., 050040, Алматы, Қазақстан
Синтез и характеристика полипропиленгликола привитых стиролом

Эльсайд Негим, Конысбай А.М., Ирмухаметова Г.С., Калугин С.Н.

1Школа химической инженерии, Казахстанско-Британский технический университет, ул. Валиханова, 106, Алматы, 050010, Казахстан
2Кафедра химии и технологии органических веществ, природных соединений и полимеров, Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 050040, Алматы, Казахстан
3Школа химической инженерии, Казахстанско-Британский технический университет, ул. Валиханова, 106, Алматы, 050010, Казахстан
4Кафедра химии и технологии органических веществ, природных соединений и полимеров, Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 050040, Алматы, Казахстан

АННОТАЦИЯ
Привитая сополимеризация на основе полипропиленгликолия (ППГ) и стирола (Ст) была синтезирована с использованием стирола разного состава путем свободнорадикальной методики в присутствии персульфата калия в качестве инициатора. В привитых сополимерах (ППГ-Ст) было использовано стирол разного состава (65/25, 65/35, 75/25, 55/45). Привитые сополимеры исследовали с помощью FTIR, DSC и TGA. FTIR (Фурье-спектроскопия) показал новые пики при 1450 см⁻¹ и 1135 см⁻¹, которые доказывают процесс прививки Ст на ППГ. Термическая стабильность (DSC, TGA) привитого сополимера увеличивается с возрастанием доли стирола, в то же время Tg уменьшается за счет увеличения доли стирола в сополимере.

Ключевые слова: Привитая сополимеризация, полимеризация, стирол, полипропиленгликоль, сополимер, радикал.

| Авторы раздела | Информация об авторах |
|---------------|------------------------|
| Эльсайд Негим | Эл. почта: elashmawi5@yahoo.com |
| Конысбай А.М. | Эл. почта: konysbaiaiman@gmail.com |
| Ирмухаметова Г.С. | Эл. почта: galiya.irm@gmail.com |
| Калугин С.Н. | Эл. почта: kalugin_sn_org@mail.ru |
Литература

[1] Kong H., Gao C., Yan D.Y. Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization // J. Am. Chem. Soc., - 2004.-Vol. 126, P.412-413.

[2] Qin S.H., Qin D.Q., Ford W.T., Resasco D.E., Herrera J.E. Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods // Macromolecules, - 2004.- Vol. 37, Is. 3.- P. 752-757.

[3] Hong C.Y., You Y.Z., Wu D.C., Liu Y., Pan C.Y. Multiwalled Carbon Nanotubes Grafted with Hyperbranched Polymer Shell via SCVP // Macromolecules, - 2005.- Vol. 38, P. 2606-2611.

[4] Shaffer M.S.P., Kozioł K. Polystyrene grafted multi-walled carbon nanotubes // Chem. Commun., - 2002.- Vol.18, P. 2074-2075.

[5] Gao C., Jin Y.Z., Kong H., Whitby R.L.D., Acquah S.F.A., Chen G.Y., Qian H.H., Hartschuh A., Silva S.R.P., Henley S., Fearon P., Kroto H.W., Walon D.R.M. Polyurea-Functionalized Multiwalled Carbon Nanotubes: Synthesis, Morphology, and Raman Spectroscopy // J. Phys. Chem. B., - 2005.- Vol. 109, P. 11925-11932.

[6] Hu H., Ni Y.C., Mandal S.K., Montana V., Zhao N., Haddon R.C., Parpura V. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth // J. Phys. Chem. B. , - 2005.- Vol. 109, P. 4285-4289.

[7] Zhao B., Hu H., Yu A.P., Perea D., Haddon R.C. Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers // J. Am. Chem. Soc., - 2005.- Vol. 127, P. 8197-8203.

[8] Long Y., Sun F., Liu C., Xie X. A family of polypropylene glycol-grafted polyethyleneimines reversibly // Rsc Adv., - 2016.- Vol. 6, P. 23726-23736.

[9] Song, M., Xia H., Jin J., Chen L. Polypropylene glycol-grafted multi-walled carbon nanotube polyeurethane // Macromol. Chem. Phys., - 2006.- Vol. 207, P. 1945-1952.

[10] Ayman M.A., Ismail H.S., Elsadeed A.M., Fouad R.R., Fada A.A., Abdel-Rahman A.A.-H. Preparation and Application of Nonionic Polypropylene Oxide-Graft-Polyethylene Glycol Copolymer Surfactants as Demulsifier for Petroleum Crude Oil Emulsions // Journal of Dispersion Science and Technology., - 2013.- Vol. 34, P. 161-172.

[11] Do, J.-S., Zhu, B.; Han, S.H.; Nah, C.; Lee, M.-H. Synthesis of poly(propylene glycol)-grafted polyimide precursors and preparation of nanoporous polyimides // Polymer International, - 2004.- Vol. 53, P. 1040-1046.

[12] Maeda Y., Tsubota M., Ikeda I. Temperature-responsive graft copolymers with poly (propylene glycol) side chains. Macromolecules // Rapid Communications., - 2003.- Vol. 24, P. 242-245.

[13] Murat B., Abdulkadir A., Baki H., Olgun G., Kevin C., Mekerrem C. Synthesis and characterization of novel comb-type amphiphilic graft copolymers containing polypropylene oxide and polyethylene glycol // Polymer Bulletin., - 2010.- Vol. 64, P. 691-705.

[14] Bekbayeva L., El-Sayed Negim, Yeligbayeva G., Ganjian E. The effect of blend copolymers on physico-mechanical properties of mortar // Kompleksnoe ispol'zovanie Mineral'nogo Syr'a (Complex Use of Mineral Resources). 2019. 4 (311). Pages: 5–11. https://doi.org/10.31643/2019/6445.32

[15] Sabaa M.W., Mohamed N.A., Mohamed R.R., Khalil N.M., Abd El Latif SM. Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan // Carbohydr. Polym., - 2010.- 79, P. 998–1005.

[16] Khalil E.S., Saab B., Negim E.S.M., Saleh M.I. Novel water-soluble chitosan derivative prepared by graft polymerization of dicyandiamide: synthesis, characterization and its antibacterial property // Journal of Polymer Research., - 2015.- 22, P. 1-12.

[17] Negim E.S.M., Urkimbaiava P., Bekbayeva L., Muhammad B.H.O., Mohamad N. M., Mun G.A. Effect of acrylic acid on the mechanical properties of PVA/starch films // Egyptian Journal of Chemistry., - 2020.- 63, P. 1911-1919.

Reference

[1] Kong H., Gao C., Yan D.Y. Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization // J. Am. Chem. Soc., - 2004.-Vol. 126, P.412-413. (In Eng.).

[2] Qin S.H., Qin D.Q., Ford W.T., Resasco D.E., Herrera J.E. Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods // Macromolecules, - 2004.- Vol. 37, Is. 3.- P. 752-757. (In Eng.).

[3] Hong C.Y., You Y.Z., Wu D.C., Liu Y., Pan C.Y. Multiwalled Carbon Nanotubes Grafted with Hyperbranched Polymer Shell via SCVP // Macromolecules, - 2005.- Vol. 38, P. 2606-2611. (In Eng.).

[4] Shaffer M.S.P., Kozioł K. Polystyrene grafted multi-walled carbon nanotubes // Chem. Commun., - 2002.- Vol.18, P. 2074-2075.

[5] Gao C., Jin Y.Z., Kong H., Whitby R.L.D., Acquah S.F.A., Chen G.Y., Qian H.H., Hartschuh A., Silva S.R.P., Henley S., Fearon P., Kroto H.W., Walon D.R.M. Polyurea-Functionalized Multiwalled Carbon Nanotubes: Synthesis, Morphology, and Raman Spectroscopy // J. Phys. Chem. B., - 2005.- Vol. 109, P. 11925-11932. (In Eng.).

[6] Hu H., Ni Y.C., Mandal S.K., Montana V., Zhao N., Haddon R.C., Parpura V. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth // J. Phys. Chem. B., - 2005.- Vol. 109, P. 4285–4289. (In Eng.).

[7] Zhao B., Hu H., Yu A.P., Perea D., Haddon R.C. Synthesis and characterization of water soluble single-walled carbon
[8] Long Y., Sun F., Liu C., Xie X. A family of polypropylene glycol-grafted polyethyleneimines reversibly // Rsc Adv., - 2016.- Vol. 6, P. 23726-23736. (In Eng.).

[9] Song, M., Xia H., Jin J., Chen L. Polypropylene glycol-grafted multi-walled carbon nanotube polyurethane // Macromol. Chem. Phys., - 2006.- Vol. 207, P. 1945-1952. (In Eng.).

[10] Ayman M.A., Ismail H.S., Elsaeed A.M., Fouad R.R., Fada A.A., Abdel-Rahman A.A.-H. Preparation and Application of Nonionic Polypropylene Oxide-Graft-Polyethylene Glycol Copolymer Surfactants as Demulsifier for Petroleum Crude Oil Emulsions // Journal of Dispersion Science and Technology., - 2013.- Vol. 34, P. 161-172. (In Eng.).

[11] Do, J.-S., Zhu, B.; Han, S.H.; Nah, C.; Lee, M.-H. Synthesis of poly(propylene glycol)-grafted polyimide precursors and preparation of nanoporous polyimides // Polymer International., - 2004.- Vol. 53, P. 1040-1046. (In Eng.).

[12] Maeda Y., Tsubota M., Ikeda I. Temperature-responsive graft copolymers with poly (propylene glycol) side chains. Macromolecular // Rapid Communications., -2003.- Vol. 24, P. 242-245. (In Eng.).

[13] Murat B., Abdulkadir A., Baki H., Olgun G., Kevin C., Mukerrem C. Synthesis and characterization of novel comb-type amphiphilic graft copolymers containing polypropylene and polyethylene glycol // Polymer Bulletin., -2010.- Vol. 64, P. 691-705. (In Eng.).

[14] Bekbayeva L., El-Sayed Negim, Yeligbayeva G., Ganjian E. The effect of blend copolymers on physico-mechanical properties of mortar // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’ya (Complex Use of Mineral Resources). 2019. 4 (311). Pages: 5–11. https://doi.org/10.31643/2019/6445.32 (In Eng.).

[15] Sabaa M.W., Mohamed N.A., Mohamed R.R., Khalil N.M., Abd El Latif SM. Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan // Carbohydr Polym., - 2010.- 79, P. 998–1005. (In Eng.).

[16] Khalil E.S., Saad B., Negim E.S.M., Saleh M.I. Novel water-soluble chitosan derivative prepared by graft polymerization of dicyandiamide: synthesis, characterization and its antibacterial property // Journal of Polymer Research., -2015.- 22, P. 1-12. (In Eng.).

[17] Negim E.S.M., Urkimbaeva P.I., Bekbayeva L., Muhammad B.H.O., Mohamad N. M., Mun G.A. Effect of acrylic acid on the mechanical properties of PVA/starch films // Egyptian Journal of Chemistry., -2020.- 63, P. 1911-1919. (In Eng.).