THE STREHL RATIO IN ADAPTIVE OPTICS IMAGES: STATISTICS AND ESTIMATION

Rémi Soummer
Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024; rsoummer@amnh.org

AND

André Ferrari
Laboratoire Universitaire d’Astrophysique de Nice, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France; ferrari@unice.fr

Received 2007 February 9; accepted 2007 April 24; published 2007 June 12

ABSTRACT

Statistical properties of the intensity in adaptive optics images are usually modeled with a Rician distribution. We study the central point of the image, where this model is inappropriate for high to very high correction levels. The central point is an important problem because it gives the Strehl ratio distribution. We show that the central point distribution can be modeled using a noncentral Γ-distribution.

Subject heading: instrumentation: adaptive optics

Online material: color figures

1. INTRODUCTION

In this Letter, we study the statistics of the light intensity at the central point of adaptive optics (AO) images in the case of a high to very high AO correction. This problem corresponds to the statistical properties of the “instantaneous” Strehl ratio (SR; Fusco & Conan 2004). The regime that we consider is relevant to current or future AO systems.

Outside the central point, the statistical properties of the light intensity constrain the detection limits of faint companions to nearby stars. It can be described by a Rician distribution both in the focal plane corresponding to the perfect part of the wave, and is the zero mean complex error term:

$$I_p(x) = e^{-2|\psi|^2}$$

where ψ is the complex amplitude in the pupil plane.

2. STATISTICAL PROPERTIES OF THE INTENSITY

We briefly recall the derivation of the statistical properties of AO images. A detailed presentation is given by Aime & Soummer (2004) and Soummer et al. (2007) based on results known in the context of holography by Goodman (1975, 2007). In this section we use a one-dimensional formalism for clarity, but the results are valid in the general case. The complex amplitude in the focal plane is the Fourier transform of the pupil plane complex amplitude:

$$\psi(r) = \int P(x)(A + a(x))e^{-2\pi i r x} dx,$$

where $P(x)$ denotes the pupil function, normalized such as $\int |P(x)|^2 dx = 1$. A corresponds to the deterministic perfect part of the wave, and $a(x)$ is the zero mean complex error term: $A + a(x) = e^{i\phi(x)}$, with $A = E[e^{i\phi(x)}]; E$ denotes the expectation value, and $\phi(x)$ denotes the phase of the wave front in the pupil plane, assuming a zero mean Gaussian, with a constant variance σ^2. We use the classical definition of SR as the ratio between the central point intensities in the actual and the ideal case (Hardy 1998). Using the extended Maréchal approximation (SR $\approx e^{-2\sigma^2}$), A becomes $A = e^{-2\sigma^2/2}$, which is approximately the square root of SR.

Outside the central point of the image, the distribution of the complex amplitude can be approximated using known results from signal processing. Assuming that the complex amplitude $a(x)$ can be represented by discrete values and that the correlation between two points in the pupil plane decreases with their relative distance, the probability density function (PDF) of the complex amplitude in the focal plane for the random part of equation (1) is an asymptotically circular Gaussian (Brillinger 1981). We recall that for a scalar circular Gaussian distribution, i.e., $z \sim \mathcal{N}(0, \sigma^2)$, the real and imaginary parts are independent and have the same variance. We will consider that for $r \neq 0$, ψ follows a centered Gaussian distribution $\psi \sim \mathcal{N}(0, \sigma^2)$, where C is the complex amplitude in the focal plane corresponding to the perfect part of the wave A (see Fig. 2 of Aime & Soummer 2004). The corresponding intensity follows a Rician distribution:

$$p_i(i) = \frac{1}{I_c} \exp\left(-\frac{i+I_c}{I_c}\right) I_0\left(2\sqrt{\frac{I_c}{I}}\right), \quad i > 0,$$

where $I_c = |C|^2$ and I_c denotes the zero-order modified Bessel function of the first kind. This model has been verified outside the central point of the image in simulations (Soummer et al.
2007) and in real adaptive optics data (Fitzgerald & Graham 2006).

The central point of the image is a particular case, which gives a natural estimator of the SR. We tested the Rician distribution at this location with a numerical simulation, using PAOLA (Jolissaint et al. 2006) to generate independent instantaneous intensity values. We chose the parameters of the AO systems to generate several sets of data with SR ranging between 50% and 95%. We used a maximum likelihood (ML) estimation of the parameters \(I_c \) and \(I_s \), assuming equation (2). The likelihood is computed for the unbinned data and maximized using optimization routines of Mathematica. The starting parameters are obtained from the moments method. We performed both the \(\chi^2 \) test and the Kolomogorov-Smirnov (KS) test on these results, using 10 identical bins for the \(\chi^2 \) test and a Monte Carlo estimation of the KS distribution, since the parameters are estimated from the data (Wall & Jenkins 2003). Both tests conclude that the Rician model is incompatible with the data at the central point, with respective right tail values of \(3.8 \times 10^{-4} \) and \(1.6 \times 10^{-2} \). This is confirmed by reproducing these tests for a few independent sets of simulated data.

We illustrate the histogram of the simulation and the best fit obtained with the Rician model in Figure 1.

This result is not surprising since the skewness of the Rician distribution is \((2 + 3\lambda)(1 + \lambda)^{-3/2} \), which is positive, whereas the data histogram clearly exhibits a negative skewness. Observations based on real AO data, carried out at Lick Observatory (Gladysz et al. 2006) and Palomar Observatory (R. Soummer & J. P. Lloyd 2007, in preparation), also reported negatively skewed SR distributions.

3. CENTRAL POINT: STREHL RATIO DISTRIBUTION

At the center of the image, the Fourier phase term of equation (1) vanishes, and the complex amplitude is simply the integral of the pupil complex amplitude, \(\Psi(0) = \int P(x) e^{i \phi(x)} \, dx \). At low correction levels, the phase \(\phi(x) \) is large, and the vectors \(e^{i \phi(x)} \) take any orientation in the complex plane. The sum of a large number of these vectors over the aperture produces a random walk, and the corresponding complex amplitude distribution is asymptotically Gaussian, according to a central limit theorem. At high correction levels, the phase \(\phi(x) \) is small, and the vectors \(e^{i \phi(x)} \) are not oriented randomly in the complex plane. Their sum does not produce a random walk, and the corresponding distribution is not a circular Gaussian. This is the case that we study in this section. When moving outside of the center, however, the Fourier phasors rotate the vectors \(e^{i \phi(x)} \) in the complex plane, and the sum of the resulting vectors produces a random walk. This explains qualitatively why we obtain a circular Gaussian distribution outside the central point, for \(r > \lambda/D \), even at very high correction levels. Figure 2 shows the histogram of independent realizations of the complex amplitude, at the central point where it is clearly not circular Gaussian and in the transition region \((r \ll \lambda/D) \) where the circularization occurs.

This phenomenon can also be understood qualitatively by considering a Taylor expansion of the phase term \(e^{i \phi(x)} \) (Perrin et al. 2003). At a very high SR, the expansion is mainly dominated by the first-order term \(i \phi(x) \), and the resulting distribution is an approximately imaginary Gaussian (see Fig. 2, leftmost panel). Figure 3 illustrates the complex amplitude histogram for a SR of about 80% where the effect of higher order terms is clearly visible, when compared to the leftmost panel of Figure 2.

At a high or very high SR, we can limit the expansion of

![Figure 1](image1.png)

Fig. 1.—Histogram of the central point intensity (SR) for a numerical simulation of 1000 independent PAOLA phase screens with a SR of 85%. The error bars assume statistical Poisson noise. The best fit of a Rician PDF is obtained for \(I_c = 0.83, I_s = 3 \times 10^{-3} \) and is superimposed on the histogram. The Rician model fails to describe these data according to the \(\chi^2 \) and KS tests. [See the electronic edition of the Journal for a color version of this figure.]

![Figure 2](image2.png)

Fig. 2.—Histogram of independent realizations of the complex amplitude in the focal plane for a SR of approximately 95% at three locations indicated in each panel. Leftmost panel: The complex amplitude at the central point is not a circular Gaussian distribution. When moving away from the center, the distribution becomes progressively circular and is fully circularized for positions \(r > \lambda/D \) (not represented here). [See the electronic edition of the Journal for a color version of this figure.]
The second term corresponds to the mean of the phase residuals over the pupil. It seems reasonable to neglect this term compared to the first term, assuming the phase to be zero mean.\(^1\)

Given that \(1 > \int P(x) [\phi(x)^2/2] \, dx\), we can revert to the complex amplitude:

\[
\Psi(0) = \left(1 - \int P(x) \frac{\phi(x)^2}{2} \, dx \right) e^{i\varphi},
\]

by introducing a random phase term \(\varphi\). Note that \(\varphi\) is different from the pupil phase \(\phi\).

The integral \(U = \int P(x) \phi(x)^2 \, dx\) can be reasonably approximated by the discrete sum: \(U \approx \delta \sigma^2 \sum_{k=1}^{n} Q(x)\), where the number of discrete samples can be assumed as large as necessary and where \(\sigma^2 = \delta \sigma^2\), with \(\delta\) the uniform integration step. The variable \(\sum_{k=1}^{n} Q(x) \sim \chi^2\), where \(k\) denotes the degree of freedom of the \(\chi^2\) distribution (here corresponding to the number of discrete samples). The distribution of \(U\) is a Gamma distribution \(\Gamma(k/2, 2\sigma^2)\) (Johnson et al. 1994):

\[
p_c(u) = \frac{(2\sigma^2)^{-k/2}u^{k/2-1}e^{-u/2\sigma^2}}{\Gamma(k/2)}, \quad u > 0.
\]

\(^1\) Note that whereas this term can be neglected in the intensity, it cannot be neglected in the second-order approximation of the complex amplitude, because it corresponds to the imaginary part, which cannot be neglected compared to the real part.

The opposite of the modulus of the complex amplitude \(A = U/2 - 1\) defined as \(\Psi(0) = -Ae^{i\varphi}\) thus follows a three-parameter noncentral \(\Gamma\)-distribution \(\Gamma(k/2, \sigma^2, -1)\). The approximation of equation (4) sets an arbitrary constraint on the mean of the distribution: \(E(\Psi(0)) = 1 - \sigma^2/2\), which corresponds to the regime of Marechal’s approximation (Hardy 1998). The constraint on the mean can be released without changing the statistical model by relaxing the third parameter. Finally, we model \(A\) by the \(\Gamma(\alpha, \beta, \gamma)\) distribution defined as

\[
p_A(a) = \frac{(a - \gamma)^{\alpha-1} \exp \left[-(a - \gamma)/\beta\right]}{\beta^\alpha \Gamma(\alpha)}, \quad \alpha > 0, \beta > 0, \quad a > \gamma.
\]

The mean and variance of this distribution are

\[
E(A) = \alpha \beta + \gamma, \quad Var(A) = \alpha \beta^2.
\]

The skewness of the distribution is \(2/\sqrt{\alpha}\), which is indeed negative for \(\bar{\gamma} = -A\). Estimations of the three parameters can be obtained by a moments method (Johnson et al. 1994):

\[
\hat{\alpha} = 4 \frac{\mu_3}{\mu_2^3}, \quad \hat{\beta} = \frac{\mu_1}{2\mu_2}, \quad \hat{\gamma} = \mu_1 - \frac{2\mu_3}{\mu_2},
\]

where \(\mu_k\) is the classical empirical estimator of the \(k\)th centered moment. Johnson et al. (1994) give an algorithm for the computation of the ML estimation of \(\alpha, \beta, \gamma\) together with their asymptotic variance. The SR can be expressed directly using the mean and variance of the distribution (eq. [7]):

\[
SR = E(A^2) = \alpha \beta^2 + (\alpha \beta + \gamma)^2.
\]

We obtain a new estimator of the SR by substituting the parameters in equation (9) with their estimated values, using the moments method or the ML. Using the moments method, the estimation of the SR is \(SR = \mu_1^2 + 2\mu_3^2\). Figure 4 shows the results of numerical simulations for \(SR \approx 90\%\), including 2000 independent realizations of phase and amplitude screens, corresponding to the atmospheric-corrected wave fronts and to the atmospheric scintillation. We perform a ML estimation of the three parameters \(\alpha, \beta, \gamma\) using the moments method to set the initial values. The estimated SR (89.58\%) from equation (9) matches the simulation parameters very well (SR = 89.50\%).
We can derive an analytical expression for the PDF of the intensity $I = \mathcal{A}^2$ using $p_A(a)$ from equation (6):

$$p_I(i) = \frac{1}{2\sqrt{i}} [p_A(i) + p_A(-i)], \quad i > 0. \quad (10)$$

Figure 5 shows two typical PDFs for the intensity, where the parameters have been estimated from simulated data, using the Γ-distribution for the modulus.

4. CONCLUSION

The Rician distribution, which describes successfully the statistics of AO images outside of the central point, is not appropriate for the central point of the image at high correction levels. This specific location is particularly important as it corresponds to the SR. At high SR levels, the complex amplitude at the central point is not described by a circular Gaussian distribution, which can be explained by the role of Fourier phasors that vanish at the central point and circularize the distribution outside the center. Numerical simulations support this conclusion.

We propose an alternative approach, based on a model of the modulus of the complex amplitude, well described by a noncentral Γ-distribution. Our method enables the use of standard algorithms for the estimation of the parameters of this well-known distribution. When the parameters have been estimated from the PDF of the modulus, it is possible to revert to the PDF for the intensity by the appropriate transformation. Application to real data sets is under study. It would be interesting to compare the approach based on the seeing statistics (Gladysz et al. 2006) or on the model of the phase variance (Christou et al. 2006) with our results, which do not require fluctuations of the seeing.

R. S. is supported by a Michelson Postdoctoral Fellowship, under contract to the Jet Propulsion Laboratory funded by NASA and managed by the California Institute of Technology, and by an AMNH Kalbfleisch Fellowship. This work has been partially supported by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement AST 98-76783, and also by NSF grant 0628877. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. The authors thank S. Gladysz, J. C. Christou, and C. Aime for discussions and L. Jolissaint for PAOLA.

REFERENCES

Aime, C., & Soummer, R. 2004, ApJ, 612, L85
Brillinger, D. R. 1981, Time Series: Data Analysis and Theory (New York: McGraw-Hill)
Cagigal, M. P., & Canales, V. F. 1998, Opt. Lett., 23, 1072
———. 2001, Opt. Eng., 40, 2690
Canales, V. F., & Cagigal, M. P. 1999a, J. Opt. Soc. Am. A, 16, 2550
———. 1999b, Appl. Opt., 38, 766
Christou, J. C., Gladysz, S., Redfern, M., Bradford, L. W., & Roberts, L. C. J. 2006, in Proc. AMOS Tech. Conf. (Kiehi: Maui Economic Development Board, Inc.), 528
Fitzgerald, M. P., & Graham, J. R. 2006, ApJ, 637, 541
Fusco, T., & Conlan, J.-M. 2004, J. Opt. Soc. Am. A, 21, 1277
Gladysz, S. 2006, Ph.D. thesis, National Univ. Ireland, Galway
Gladysz, S., Christou, J. C., & Redfern, M. 2006, Proc. SPIE, 6272, 62720J
Goodman, J. 1975, in Laser Speckle and Related Phenomena, ed. J. C. Dainty (Berlin: Springer), 10
Goodman, J. 2007, Speckle Phenomena in Optics: Theory and Applications (Englewood: Roberts & Co.)
Hardy, J. W. 1998, Adaptive Optics for Astronomical Telescopes (New York: Oxford Univ. Press)
Wall, J. V., & Jenkins, C. R. 2003, Practical Statistics for Astronomers (New York: Cambridge Univ. Press)
Johnson, N. L., Kotz, S., & Balakrishnan, N. 1994, Continuous Univariate Distributions, Vol. 1 (New York: Wiley)
Jolissaint, L., Véran, J.-P., & Conlan, R. 2006, J. Opt. Soc. Am. A, 23, 382
Perrin, M. D., Sivaramakrishnan, A., Makidon, R., Oppenheimer, B. R., & Graham, J. R. 2003, ApJ, 596, 702
Sivaramakrishnan, A., Lloyd, J. P., Hodge, P. E., & Macintosh, B. A. 2002, ApJ, 581, L59
Soummer, R., Ferrari, A., Aime, C., & Jolissaint, L. 2007, ApJ, in press...