An Odd Variant of Euler Sums

Ce Xua,b,* Weiping Wangc,†

a Multiple Zeta Research Center, Kyushu University
Motooka, Nishi-ku, Fukuoka 819-0389, Japan
b School of Mathematical Sciences, Xiamen University
Xiamen 361005, P.R. China
c School of Science, Zhejiang Sci-Tech University,
Hangzhou 310018, P.R. China

Abstract For positive integers p_1, p_2, \ldots, p_k, q with $q > 1$, we define the Euler T-sum $T_{p_1 p_2 \cdots p_k, q}$ as the sum of those terms of the usual infinite series for the classical Euler sum $S_{p_1 p_2 \cdots p_k, q}$ with odd denominators. Like the Euler sums, the Euler T-sums can be evaluated according to the Contour integral and residue theorem. Using this fact, we obtain explicit formulas for Euler T-sums with repeated arguments analogous to those known for Euler sums. Euler T-sums can be written as rational linear combinations of the Hoffman t-values. Using known results for Hoffman t-values, we obtain some examples of Euler T-sums in terms of (alternating) multiple zeta values. Moreover, we prove an explicit formula of triple t-values in terms of zeta values, double zeta values and double t-values. We also define alternating Euler T-sums and prove some results about them by the Contour integral and residue theorem. Furthermore, we define another Euler type T-sums and find many interesting results. In particular, we give an explicit formulas of triple Kaneko-Tsumura T-values of even weight in terms of single and the double T-values. Finally, we prove a duality formula of Kaneko-Tsumura’s conjecture.

Keywords: Multiple zeta value; Hoffman t-value; Euler T-sum; Contour integral; Residue theorem; Kaneko-Tsumura T-zeta values.

AMS Subject Classifications (2010): 11A07; 11M32; 11B65.

Contents

1 Introduction and Notations 2

2 Evaluations of Euler T-sums 4

2.1 Linear Euler T-sums 6

2.2 Quadratic Euler T-sums 7

2.3 Cubic and Higher Order Euler T-sums 11

3 Evaluations of Alternating Euler T-sums 12

3.1 Linear Alternating Euler T-sums 13

3.2 Quadratic Alternating Euler T-sums 14

\textsuperscript{*Email: 19020170155420@stu.xmu.edu.cn; 9ma18001g@math.kyushu-u.ac.jp
\textsuperscript{†Email: wpingwang@yahoo.com, wpingwang@zstu.edu.cn

1
1 Introduction and Notations

For positive integers \(s_1, \ldots, s_k \) with \(s_1 > 1 \), the multiple zeta value (MZV for short) is defined by

\[
\zeta(s_1, s_2, \ldots, s_k) := \sum_{n_1 > \cdots > n_k \geq 1} \frac{1}{n_1^{s_1} n_2^{s_2} \cdots n_k^{s_k}}. \tag{1.1}
\]

The study of multiple zeta values began in the early 1990s with the works of Hoffman [14] and Zagier [25]. The study of multiple zeta values have attracted a lot of research in the area in the last two decades. For detailed history and applications, please see the book of Zhao [26].

In a recent paper [16], Hoffman introduced and studied a new kind of multiple zeta values

\[
t(s_1, s_2, \ldots, s_k) := \sum_{n_1 > \cdots > n_k \geq 1} \frac{1}{n_1^{s_1} n_2^{s_2} \cdots n_k^{s_k}} \tag{1.2}
\]

which is called multiple \(t \)-values. As its normalized version,

\[
\tilde{t}(s_1, s_2, \ldots, s_k) := 2^{s_1 + \cdots + s_k} t(s_1, s_2, \ldots, s_k) \tag{1.3}
\]

we call it multiple \(\tilde{t} \)-values. In both these definitions, we call \(k \) the “depth” and \(s_1 + \cdots + s_k \) the “weight”.

In this paper we consider the odd variant of Euler sums

\[
T_{p_1 p_2 \cdots p_k, q} := \sum_{n=1}^{\infty} h_{n-1}^{(p_1)} h_{n-2}^{(p_2)} \cdots h_{n-1}^{(p_k)} \frac{1}{(n-1/2)^q}, \tag{1.4}
\]

which we call Euler \(T \)-sums, where \(p_j \in \mathbb{N} \) (\(j = 1, 2, \ldots, k \)) and \(2 \leq q \in \mathbb{N} \) with \(p_1 \leq p_2 \leq \cdots \leq p_k \). Here \(h_n^{(p)} \) is defined for \(n \in \mathbb{N}_0, p \in \mathbb{N} \) by

\[
h_n^{(p)} := \sum_{k=1}^{n} \frac{1}{(k-1/2)^p}, \quad h_0^{(p)} := 0, \quad h_n := h_n^{(1)}. \tag{1.5}
\]

The classical Euler sum was introduced by Flajolet and Salvy [10], which is defined by

\[
S_{p_1 p_2 \cdots p_k, q} := \sum_{n=1}^{\infty} H_n^{(p_1)} H_n^{(p_2)} \cdots H_n^{(p_k)} \frac{1}{n^q}, \tag{1.6}
\]
where \(H^{(p)}_n \) is harmonic number of order \(p \) defined by

\[
H^{(p)}_n := \sum_{k=1}^{n} \frac{1}{n^p}, \quad H^{(p)}_0 := 0, \quad H_n := H^{(1)}_n. \tag{1.7}
\]

In the definitions of (1.4) and (1.6), the quantity \(s_1 + \cdots + s_k + q \) is called the “weight” of the sum, and the quantity \(k \) is called the “degree”. The linear sums \(S_{p,q} \) was the first considered by Euler in 1742 (see [3] for a discussion). Classical Euler sums may be studied through a profusion of methods: combinatorial, analytic and algebraic. There are many other researches on Euler sums and Euler type sums. Some related results for Euler sums may be seen in the works of [2, 5, 9, 11, 17, 22] and references therein.

Since repeated summands in partitions are indicated by powers, we denote, for instance, the sum

\[
T_{1225}^{15,q} := \sum_{n=1}^{\infty} \frac{n^2 h^2_{n-1} \left(h^2_{n-1}\right)^3}{(n-1/2)^q} h_{n-1}. \tag{5}
\]

As remarked by Flajolet and Salvy [10], every Euler sum of weight \(w \) and degree \(k \) is a \(\mathbb{Q} \)-linear combination of MZVs of weight \(w \) and depth at most \(k + 1 \) (explicit formula see our previous paper [24]). According to the definitions of Hoffman \(t \)-value and Euler \(T \)-sum, it is clear that every Euler \(T \)-sum of weight \(w \) and degree \(k \) is a \(\mathbb{Q} \)-linear combination of Hoffman \(t \)-value of weight \(w \) and depth at most \(k + 1 \). Because, by the methods of [15, 24], we may easily deduce the following relation

\[
T_{1i_2\cdots i_m,q} = \sum_{\xi \in C_m} \sum_{\sigma \in S_m} \ell(q, J_1(I^{(m)}_{\sigma}), J_2(I^{(m)}_{\sigma}), \ldots, J_p(I^{(m)}_{\sigma})),
\]

where \(\xi := (\xi_1, \xi_2, \ldots, \xi_p) \in C_m \) (\(C_m \) is a set of all compositions of \(m \)) and a permutation \(\sigma \in S_m \) (\(S_m \) is a symmetric group of all permutations on \(m \) symbols), \(I^{(m)}_{\sigma} = (i_{\sigma(1)}, \ldots, i_{\sigma(m)}) \), and

\[
J_c(I^{(m)}_{\sigma}) = i_{\sigma(1)} + \cdots + i_{\sigma(c)} \quad \text{for} \quad c = 1, 2, \ldots, p.
\]

The motivation for this paper arises from the results of Flajolet and Salvy. In [10], Flajolet and Salvy used the method of contour integral to evaluated the classical Euler sums \(S_{p_1p_2\cdots p_k,q} \). Contour integration is a classical technique for evaluating infinite sums by reducing them to a finite number of residue computations. They used the method to found many interesting results. In particular, they proved the famous result that a nonlinear Euler sum \(S_{p_1p_2\cdots p_k,q} \) reduces to a combination of sums of lower orders whenever the weight \(p_1 + p_2 + \cdots + p_k + q \) and the order \(k \) are of the same parity. In this paper, we will extend their method to Euler \(T \)-sums and find many similar results.

The main purpose of this paper is study the reducible formulas of Euler \(T \)-sums and type \(T \)-sums by the method of Contour integral. We will prove that a nonlinear Euler \(T \)-sum \(T_{p_1p_2\cdots p_k,q} \) reduces to a combination of \(\log(2) \), Euler \(T \)-sums with depth \(\leq k - 1 \), multiple zeta values with depth \(\leq k \) whenever the weight \(p_1 + p_2 + \cdots + p_k + q \) and the order \(k \) are of the same parity.

The remainder of this paper is organized as follows. In the second section we provide some asymptotic formulas of \(\Psi(1/2-s) \). Then we apply it and contour integral to evaluate the linear and nonlinear Euler \(T \)-sums. Specially, we establish the explicit formulas of linear \(T \)-sum \(T_{p,q} \).
with \(p+q \) odd, quadratic \(T \)-sums \(T_{p_1p_2,q} \) with \(p_1+p_2+q \) even and cubic \(T \)-sum \(T_{1,q} \) with \(q \) even. Further, we prove that all Euler \(T \)-sum \(T_{p_1p_2,\cdots,p_k,q} \) can be expressed in terms of a combination of \(\log(2) \), Euler \(T \)-sums with degree \(\leq k-1 \), multiple zeta values with depth \(\leq k \) whenever the weight \(p_1+p_2+\cdots+p_k+q \) if the weight \(p_1+p_2+\cdots+p_k+q \) and order \(k \) are of the same parity. In the third section, we define an alternating Euler \(T \)-sums and evaluate the linear and a quadratic alternating Euler \(T \)-sums. In the fourth section, we define an Euler type \(T \)-sums \(\tilde{S}_{p_1p_2,\cdots,p_k,q} \), which is defined by

\[
\tilde{S}_{p_1p_2,\cdots,p_k,q} := \sum_{n=1}^{\infty} \frac{h_{n_1}^{(p_1)} h_{n_2}^{(p_2)} \cdots h_{n_k}^{(p_k)}}{n^q}. \tag{1.8}
\]

Then, we establish many relations of the sum by using the Contour integral. In particular, we prove a general formula of quadratic sums \(\tilde{S}_{p_1p_2,q} \) with \(p_1+p_2+q \) even. According to the relation of \(\tilde{S}_{p_1p_2,q} \) and triple Kaneko-Tsumura \(T \)-value, we can obtain a formula of triple \(T \)-value with weight even. In the last section, we prove a duality identity of Kaneko-Tsumura’s conjecture, and establish a relation between the double \(T \)-values and the double \(t \)-values.

2 Evaluations of Euler \(T \)-sums

In [23], the second author defined a parametric digamma (or Psi) function \(\Psi(-s; a) \) by

\[
\Psi(-s; a) + \gamma := \frac{1}{s-a} + \sum_{k=1}^{\infty} \left(\frac{1}{k+a} - \frac{1}{k+a-s} \right), \quad (s \in \mathbb{C}, \ a \in \mathbb{C} \setminus \mathbb{N}^-). \tag{2.1}
\]

The function \(\Psi(-s; a) \) is meromorphic in the entire complex plane with a simple pole at \(s = n+a \) for each negative integer \(n \). In here, we let

\[
\Psi(-s) := \Psi(-s; -1/2) + \gamma = \frac{1}{s+1/2} + \sum_{k=1}^{\infty} \left(\frac{1}{k-1/2} - \frac{1}{k-1/2-s} \right).
\]

From Theorems 1.1-1.3 and Corollary 2.4 in [23], by direct calculations we can obtain the following identities (\(2 \leq p \in \mathbb{N} \))

\[
\Psi \left(\frac{1}{2} - s \right) \xrightarrow{s \rightarrow n} \frac{1}{s-n} + H_n + 2 \log(2) + \sum_{j=1}^{\infty} \left((-1)^j H_n^{(j+1)} - \zeta(j+1) \right) (s-n)^j \quad (n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}), \tag{2.2}
\]

\[
\Psi \left(\frac{1}{2} - s \right) \xrightarrow{s \rightarrow n-1/2} h_n + \sum_{j=1}^{\infty} \left((-1)^j h_n^{(j+1)} - \overline{\zeta}(j+1) \right) (s+1/2-n)^j \quad (n \in \mathbb{N}_0), \tag{2.3}
\]

\[
\Psi \left(\frac{1}{2} - s \right) \xrightarrow{s \rightarrow -(n-1/2)} h_{n-1} + \sum_{j=1}^{\infty} \left(h_{n-1}^{(j+1)} - \overline{\zeta}(j+1) \right) (s-1/2+n)^j \quad (n \in \mathbb{N}), \tag{2.4}
\]

\[
\Psi^{(p-1)} \left(\frac{1}{2} - s \right) \xrightarrow{(p-1)! \rightarrow n} \frac{1}{(s-n)^{p-1}} \left(1 + (-1)^p \sum_{j=p}^{\infty} \binom{j-1}{p-1} \left(\zeta(j) + (-1)^j H_n^{(j)} \right) (s-n)^j \right) \quad (n \in \mathbb{N}_0), \tag{2.5}
\]
\[
\frac{\Psi^{(p-1)} \left(\frac{1-s}{2} \right)}{(p-1)!} s \to -n \begin{pmatrix} -n-1/2 \end{pmatrix} (-1)^p \sum_{j=p}^{\infty} \left(\frac{j-1}{p-1} \right) \left(\bar{t}(j) + (-1)^j h_n^{(j)} \right) (s-n+1/2)^{j-p} \quad (n \in \mathbb{N}),
\]
(2.6)

\[
\frac{\Psi^{(p-1)} \left(\frac{1-s}{2} \right)}{(p-1)!} s \to -n \begin{pmatrix} -n-1/2 \end{pmatrix} (-1)^p \sum_{j=p}^{\infty} \left(\frac{j-1}{p-1} \right) \left(\bar{t}(j) - h_n^{(j)} \right) (s+n-1/2)^{j-p} \quad (n \in \mathbb{N}).
\]
(2.7)

We also deduce that from [23]

\[
\pi \tan(\pi s) s \to -n \begin{pmatrix} -n-1/2 \end{pmatrix} = \frac{1}{s - \frac{2n-1}{2}} + 2 \sum_{k=1}^{\infty} \zeta(2k) \left(s - \frac{2n-1}{2} \right)^{2k-1} \quad (n \in \mathbb{Z}).
\]
(2.8)

Lemma 2.1 ([10]) Let \(\xi(s) \) be a kernel function and let \(r(s) \) be a rational function which is \(O(s^{-2}) \) at infinity. Then

\[
\sum_{\alpha \in O} \text{Res}(r(s) \xi(s))_{s=\alpha} + \sum_{\beta \in S} \text{Res}(r(s) \xi(s))_{s=\beta} = 0,
\]
(2.9)

where \(S \) is the set of poles of \(r(s) \) and \(O \) is the set of poles of \(\xi(s) \) that are not poles of \(r(s) \). Here \(\text{Res}(r(s))_{s=\alpha} \) denotes the residue of \(r(s) \) at \(s = \alpha \). The kernel function \(\xi(s) \) is meromorphic in the whole complex plane and satisfies \(\xi(s) = o(s) \) over an infinite collection of circles \(|s| = \rho_k \) with \(\rho_k \to \infty \).

In below, we use the identities (2.2)-(2.8) and residue theorem to evaluate some Euler T-sums. We need the formula ([1, 13])

\[
\pi \tan(\pi s) = 2 \sum_{k=1}^{\infty} \bar{t}(2k)s^{2k-1} = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}2^{2k}(2^{2k} - 1)B_{2k} \pi^{2k}}{(2k)!} s^{2k-1},
\]
(2.10)

where \(B_{2k} \) is Bernoulli numbers. By (2.10), we have

\[
\lim_{s \to n} \frac{d^p}{ds^p} (\pi \tan(\pi s)) = \lim_{t \to 0} \frac{d^p}{dt^p} (\pi \tan(\pi t)) = \lim_{t \to 0} \frac{d^p}{dt^p} \left(2 \sum_{k=1}^{\infty} \bar{t}(2k)s^{2k-1} \right) = (1 - (-1)^p)p!\bar{t}(p+1).
\]
(2.11)

Next, let \(\text{Res}[f(s), s = \alpha] \) to denote the residue of \(f(s) \) at \(s = \alpha \).

Lemma 2.2 If a meromorphic function \(F(s) \) has pole of order \(m \) at \(s = \alpha \), then

\[
\text{Res}[F(s), s = \alpha] = \lim_{s \to \alpha} \frac{1}{(m-1)!} \frac{d^{m-1}}{ds^{m-1}} [(s - \alpha)^m F(s)] = \lim_{s \to \alpha} \frac{1}{m!} \frac{d^m}{ds^m} [(s - \alpha)^{m+1} F(s)].
\]

Proof. This proof is very simple, so we omitted. \(\square \)
2.1 Linear Euler T-sums

In this subsection, we will prove the linear T-sum $T_{p,q}$ can be expressed in terms of $\log(2)$, zeta values and \tilde{t}-values with $p + q$ odd ($q \geq 2$).

Theorem 2.3 For positive integer $q > 1$,
\[
(1 + (-1)^q)T_{1,q} = (-1)^{q+1}\tilde{t}(q + 1) + (1 - (-1)^q)2\log(2)\tilde{t}(q) - 2\sum_{2k_1 + k_2 = q, \ k_1, k_2 \geq 1} \tilde{t}(2k_1)\zeta(k_2 + 1). \tag{2.12}
\]

Theorem 2.4 For positive integers $p, q > 1$,
\[
(1 - (-1)^{p+q})T_{p,q} = (-1)^{p+q}\tilde{t}(p + q) - (-1)^p(1 + (-1)^q)\tilde{t}(p)\tilde{t}(q) - (-1)^p \sum_{k=0}^{p-1}((-1)^k - 1)\left(\frac{p + q - k - 2}{q - 1}\right)\tilde{t}(k + 1)\zeta(p + q - k - 1) + 2(-1)^p \sum_{2k_1 + k_2 = q + 1, \ k_1, k_2 \geq 1} \left(\frac{k_2 + p - 2}{p - 1}\right)\tilde{t}(2k_1)\zeta(k_2 + p - 1). \tag{2.13}
\]

Proof. In the context of this paper, these theorems results form applying the kernels
\[
\pi \tan(\pi s)\Psi(1/2 - s) \quad \text{and} \quad \frac{\pi \tan(\pi s)\Psi^{(p-1)}(1/2 - s)}{(p-1)!}
\]
to the base function $r(s) = s^{-q}$, respectively. Now, we only prove the formula (2.13). The identity (2.12) can be shown in a similar way. Let
\[
F_{p-1,q}(s) := \frac{\pi \tan(\pi s)\Psi^{(p-1)}(1/2 - s)}{s^q(p-1)!}.
\]
The function $F_{p-1,q}(s)$ only have poles at the $s = 0, \pm(n - 1/2), n (n \in \mathbb{N})$. At a positive integer n, the pole $\pm(n - 1/2)$ are simple and the residue is
\[
\text{Res}[F_{p-1,q}(s), s = n - 1/2] = -\lim_{s \rightarrow n - 1/2} \frac{\Psi^{(p-1)}(1/2 - s)}{s^q(p-1)!} = -(-1)^p\tilde{t}(p) + h_n^{(p)} \frac{(n-1/2)^q}{(n-1/2)^q},
\]
\[
\text{Res}[F_{p-1,q}(s), s = 1/2 - n] = -\lim_{s \rightarrow 1/2 - n} \frac{\Psi^{(p-1)}(1/2 - s)}{s^q(p-1)!} = -(-1)^{p+q}\tilde{t}(p) - h_{n-1}^{(p+q)} \frac{(n-1/2)^q}{(n-1/2)^q}.
\]
where we used the identities (2.6) and (2.7). For a positive integer n, the pole has order $p - 1$ (since $s = n$ is a zero of order one of $\tan(\pi s)$), by (2.5), (2.11) and Lemma 2.2, the residue is
\[
\text{Res}[F_{p-1,q}(s), s = n] = \frac{1}{(p-1)!} \lim_{s \rightarrow n} \frac{d^{p-1}}{ds^{p-1}} \pi \tan(\pi s) \frac{s^q}{s^q}
\]
\[
= (-1)^{p-1} \sum_{k=0}^{p-1}((-1)^k - 1)\left(\frac{p + q - k - 2}{q - 1}\right)\tilde{t}(k + 1) \frac{(p - 1)!}{(p - 1)!}.
\]
By (2.5) and (2.10) with $n = 0$, we know that if $s \to 0$, then
\[
F_{p-1,q}(s) = \frac{2}{s^{p+q-1}} \left\{ \sum_{k=1}^{\infty} \bar{t}(2k)s^{2k-2} + (-1)^p \sum_{k_1,k_2=1}^{\infty} \binom{k_2 + p - 2}{p - 1} \bar{t}(2k_1) \zeta(k_2 + p - 1) s^{2k_1 + k_2 + p - 3} \right\}.
\]
Hence, the residue of the pole of order $p + q - 1$ at 0 is found to be
\[
\text{Res}[F_{p-1,q}(s), s = 0] = (1 + (-1)^{p+q}) \bar{t}(p + q) + 2(-1)^p \sum_{2k_1 + k_2 = q + 1, k_1,k_2 \geq 1}^{\infty} \binom{k_2 + p - 2}{p - 1} \bar{t}(2k_1) \zeta(k_2 + p - 1).
\]
Summing these four contributions yields the statement of the theorem 2.4. □

Therefore, from Theorems 2.3 and 2.4, we arrive at the conclusions
\[
\bar{t}(q, 1) = T_{1,q} \in \mathbb{Q}[\log(2), \text{Zeta values}] \quad (q \text{ even}),
\]
\[
\bar{t}(q, p) = T_{p,q} \in \mathbb{Q}[\text{Zeta values}] \quad (p + q \text{ odd}),
\]
where we used the relation $\bar{t}(p) = (2^p - 1) \zeta(p)$. For even weights, a modified form of the identity holds, but without any linear Euler T-sum occurring. This gives back well-known nonlinear relations between \bar{t}-values at even arguments.

Example 2.1
\[
T_{1,2} = -\frac{7}{2} \zeta(3) + \pi^2 \log(2),
\]
\[
T_{2,3} = -\frac{31}{2} \zeta(5) + \frac{3}{2} \pi^2 \zeta(3),
\]
\[
T_{3,2} = -\frac{31}{2} \zeta(5) + 2\pi^2 \zeta(3),
\]
\[
T_{1,4} = -\frac{31}{2} \zeta(5) + \frac{1}{3} \pi^4 \log(2) - \frac{1}{2} \pi^2 \zeta(3).
\]

2.2 Quadratic Euler T-sums

Theorem 2.5 For positive integer $q > 1$,
\[
(1 + (-1)^q)T_{1^2,q} = \pi^2 \zeta(q) + (-1)^q \bar{t}(q + 2) + (1 - (-1)^q)4 \log(2) \bar{t}(q + 1) - 2\bar{t}(q + 1, 1)
\]
\[
= (1 + (-1)^q)4 \log(2) \bar{t}(q) - 4 \sum_{2k_1 + k_2 = q + 1, k_1,k_2 \geq 1}^{\infty} \bar{t}(2k_1) \zeta(k_2 + 1)
\]
\[
- 8 \log(2) \sum_{2k_1 + k_2 = q, k_1,k_2 \geq 1}^{\infty} \bar{t}(2k_1) \zeta(k_2 + 1)
\]
\[
+ 2 \sum_{2k_1 + k_2 + k_3 = q, k_1,k_2 \geq 1}^{\infty} \bar{t}(2k_1) \zeta(k_2 + 1) \zeta(k_3 + 1). \tag{2.14}
\]

Proof. The proof is based on the function
\[
F_{0^2,q}(s) := \frac{\pi \tan(\pi s) (\Psi(1/2 - s))^2}{s^q}
\]
Consider the function $F_{02,q}(s)$ only have poles at the $s = 0, \pm(n - 1/2), n (n \in \mathbb{N})$. By a similar argument as in the proof of (2.13), we deduce

$$
\text{Res}[F_{02,q}(s), s = n] = \frac{\pi^2}{n^q} \quad (n \in \mathbb{N}),
$$

$$
\text{Res}[F_{02,q}(s), s = n - 1/2] = -\frac{h_n^2}{(n - 1/2)^q} \quad (n \in \mathbb{N}),
$$

$$
\text{Res}[F_{02,q}(s), s = 1/2 - n] = -(1)^q\frac{h_{n-1}^2}{(n - 1/2)^q} \quad (n \in \mathbb{N})
$$

and

$$
\text{Res}[F_{02,q}(s), s = 0] = (1 + (-1)^q)\bar{\ell}(q + 2) + (1 - (-1)^q)4 \log(2)\bar{\ell}(q + 1) + (1 + (-1)^q)4 \log^2(2)\bar{\ell}(q) - 4 \sum_{2k_1 + k_2 = q + 1, k_1, k_2 \geq 1} \bar{\ell}(2k_1)\zeta(k_2 + 1) - 8 \log(2) \sum_{2k_1 + k_2 = q, k_1, k_2 \geq 1} \bar{\ell}(2k_1)\zeta(k_2 + 1)
$$

$$
- 2 \sum_{2k_1 + 1k_2 + k_3 = q, k_1, k_2, k_3 \geq 1} \bar{\ell}(2k_1)\zeta(k_2 + 1)\zeta(k_3 + 1).
$$

Thus, summing these four contributions yields the desired result. □

Hence, from (2.14),

$$
T_{12,q} + \bar{\ell}(q + 1, 1) \in \mathbb{Q}[\log(2), \text{Zeta values}] \quad (q \text{ even}).
$$

If $q = 2$, then

$$
T_{12,2} + \bar{\ell}(3, 1) = 2 \log^2(2)\pi^2.
$$

Note that $T_{12,q} = 2\bar{\ell}(q, 1, 1) + \bar{\ell}(q, 2)$.

Theorem 2.6 For positive integer $q > 1$,

\begin{align*}
(1 - (-1)^q)T_{12,q} &= \pi^2(\zeta(q, 1) + 2 \log(2)\zeta(q)) - (q - 1)\pi^2\zeta(q + 1) + ((-1)^q + 1)\bar{\ell}(2)\bar{\ell}(q, 1) \\
&- \bar{\ell}(2)\bar{\ell}(q + 1) - \bar{\ell}(q + 2, 1) - \bar{\ell}(q + 1, 2) - (-1)^q\bar{\ell}(q + 3) \\
&+ 2(1 + (-1)^q) \log(2)\bar{\ell}(q + 2) + 2 \sum_{2k_1 + k_2 = q + 2, k_1, k_2 \geq 1} (k_2 - 1)\bar{\ell}(2k_1)\zeta(k_2 + 1) \\
&+ 4 \log(2) \sum_{2k_1 + k_2 = q + 1, k_1, k_2 \geq 1} k_2\bar{\ell}(2k_1)\zeta(k_2 + 1) \\
&- 2 \sum_{2k_1 + k_2 = q + 1, k_1, k_2 \geq 1} k_3\bar{\ell}(2k_1)\zeta(k_2 + 1)\zeta(k_3 + 1) \\
&= (2.15)
\end{align*}

Proof. Consider the function

$$
F_{01,q}(s) := \frac{\pi \tan(\pi s)\Psi(1/2 - s)\Psi^{(1)}(1/2 - s)}{s^q}.
$$

Then, by a similar argument as in the proof of (2.14), we can prove the theorem. □

If $q = 3$, then

$$
2T_{12,3} + \bar{\ell}(5, 1) + \bar{\ell}(4, 2) = \frac{-\pi^6}{24} + 6\pi^2 \log(2)\zeta(3).
$$
Theorem 2.7 For positive integer $p, q > 1$,

\[(1 - (-1)^{p+q})T_{p,q} = -(-1)^q (1 + (-1)^q) \tilde{t}(p) T_{1,q} - (-1)^p \tilde{t}(p) \tilde{t}(q + 1) - T_{1,p+q} - T_{p,q+1} - (-1)^{p+q} \tilde{t}(p + q + 1)\]

\[+ (1 + (-1)^{p+q})2 \log(2) \tilde{t}(p + q) - 2 \sum_{2k_1 + 2k_2 = p+q, \ k_1, k_2 \geq 1} \tilde{t}(2k_1) \zeta(k_2 + 1)\]

\[+ (-1)^{p+2} \sum_{2k_1 + 2k_2 = q+1, \ k_1, k_2 \geq 1} \binom{k_2 + p - 2}{p-1} \tilde{t}(2k_1) \zeta(k_2 + p - 1)\]

\[+ (-1)^p 4 \log(2) \sum_{2k_1 + k_2 = q+1, \ k_1, k_2 \geq 1} \binom{k_2 + p - 2}{p-1} \tilde{t}(2k_1) \zeta(k_2 + p - 1)\]

\[- (-1)^p 4 \sum_{2k_1 + k_2 = q+1, \ k_1, k_2 \geq 1} \binom{k_3 + p - 2}{p-1} \tilde{t}(2k_1) \zeta(k_2 + 1) \zeta(k_3 + p - 1)\]

\[+ (-1)^p \sum_{l=0}^{p-1} (1 - (-1)^l) \binom{p + q - l - 1}{q - 1} \tilde{t}(l + 1) \zeta(p + q - l)\]

\[- (-1)^p \sum_{l=0}^{p-1} (1 - (-1)^l) \binom{p + q - l - 2}{q - 1} \tilde{t}(l + 1)\]

\[\times \left((S_{1,p+q-l-1} + 2 \log(2) \zeta(p + q - l - 1)) + (-1)^p \sum_{k=1}^{p-1} (-1)^{k+1} \sum_{l=0}^{p-k-1} (1 - (-1)^l) \binom{p + q - k - l - 2}{q - 1} \tilde{t}(l + 1)\]

\[\times \left((1 - (-1)^{k+1} S_{k+1,p+q-k-l-1} - \zeta(k + 1) \zeta(p + q - k - l - 1)) \right). \] (2.16)

Proof. By computing the residues of the function

\[F_{0(p-1),q}(s) := \frac{\pi \tan(\pi s) \Psi(1/2 - s) \Psi(p-1)(1/2 - s)}{s^q},\]

we may deduce the desired formula.

Putting $p = 3, q = 2$ in equation above gives

\[2T_{13,2} + T_{1,5} + T_{3,3} = 8 \log(2) \pi^2 \zeta(3) - \frac{7}{360} \pi^6.\]

A more general reduction results from the kernel

\[F_{(p_1-1)(p_2-1),q}(s) := \frac{\pi \tan(\pi s) \Psi(p_1-1)(1/2 - s) \Psi(p_2-1)(1/2 - s)}{(p_1-1)!(p_2-1)!},\]

but it involves a parity restriction on the weight because of its trigonometric factor.

Theorem 2.8 For positive integer $p_1, p_2, q > 1$,

\[(1 + (-1)^{p_1+p_2+q})T_{p_1,p_2,q} \in \mathbb{Q}[\text{zeta values, double zeta values, double } \tilde{t}-\text{values}].\]
We have

\[
(1 + (-1)^{p_1+p_2+q})T_{p_1,p_2,q} \\
= -T_{p_1+1,p_1+q} - T_{p_2+1,p_2+q} - (-1)^{p_1+p_2} (1 + (-1)^{p_1+q}) \bar{\ell}(p_1) \bar{\ell}(p_2) + (-1)^{p_1} ((-1)^{p_2+q} - 1) \bar{\ell}(p_1) T_{p_2,q} \\
+ (-1)^{p_2} ((-1)^{p_1+q} - 1) \bar{\ell}(p_2) T_{p_1,q} - (-1)^{p_1} \bar{\ell}(p_1) \bar{\ell}(p_2 + q) - (-1)^{p_2} \bar{\ell}(p_2) \bar{\ell}(p_1 + q) \\
- (-1)^{p_1+p_2} \sum_{l=0}^{p_1+p_2-1} ((-1)^{l - 1} \left(\frac{p_1 + p_2 + q - l - 2}{q - 1} \right) \bar{\ell}(l + 1) \zeta(p_1 + p_2 + q - l - 1) \\
+ (-1)^{p_1+p_2} \sum_{k=1}^{p_2}((-1)^{k(p_1+2)} \left(\frac{p_2 - k}{p_1 - 1} \right) \sum_{l=0}^{p_2-k}((-1)^{l - 1} \left(\frac{p_2 + q - k - l - 1}{q - 1} \right) \bar{\ell}(l + 1) \\
\times (\zeta(k + p_1 - 1) \zeta(p_2 + q - k - l) + (-1)^{k+p_1-1} S_{k+p_1-1,p_2+q-k-l}) \\
+ (-1)^{p_1+p_2} \sum_{k=1}^{p_1}((-1)^{k(p_2+2)} \left(\frac{p_2 - k}{p_1 - 1} \right) \sum_{l=0}^{p_1-k}((-1)^{l - 1} \left(\frac{p_1 + q - k - l - 1}{q - 1} \right) \bar{\ell}(l + 1) \\
\times (\zeta(k + p_2 - 1) \zeta(p_1 + q - k - l) + (-1)^{k+p_2-1} S_{k+p_2-1,p_1+q-k-l}) \\
+ (-1)^{p_1+p_2+q} \bar{\ell}(p_1 + p_2 + q) + (-1)^{p_1+2} \sum_{k_1+k_2=p_2+q+1, k_1,k_2 \geq 1} \left(\frac{p_1 + k_1 - 2}{p_1 - 1} \right) \zeta(p_1 + k_1 - 1) \bar{\ell}(2k_2) \\
+ (-1)^{p_1+2} \sum_{k_1+k_3=q+1, k_1,k_2,k_3 \geq 1} \left(\frac{p_2 + k_1 - 2}{p_2 - 1} \right) \zeta(p_2 + k_2 - 1) \bar{\ell}(2k_1) \\
+ (-1)^{p_1+p_2} \sum_{k_1+k_2+k_3=p_2+q+1, k_1,k_2,k_3 \geq 1} \left(\frac{p_1 + k_1 - 2}{p_1 - 1} \right) \left(\frac{p_2 + k_2 - 2}{p_2 - 1} \right) \zeta(p_1 + k_1 - 1) \zeta(p_2 + k_2 - 1) \bar{\ell}(2k_3).}
\]

Proof. Let

\[
F_{(p_1-1)(p_2-1),q}(s) := \frac{\pi \tan(\pi s) \Psi^{(p_1-1)}(1/2 - s) \Psi^{(p_2-1)}(1/2 - s)}{s^q(p_1 - 1)!(p_2 - 1)!}.
\]

By (2.5)-(2.8) and (2.10), we arrive at

\[
\text{Res}[F_{(p_1-1)(p_2-1),q}(s), s = n - 1/2] = -\frac{(-1)^{p_1+p_2} \bar{\ell}(p_1) \bar{\ell}(p_2) + (-1)^{p_1} \bar{\ell}(p_1) h_n^{(p_2)} + (-1)^{p_2} \bar{\ell}(p_2) h_n^{(p_1)}}{(n - 1/2)^q} \\
- \frac{h_n^{(p_1)} h_n^{(p_2)}}{(n - 1/2)^q}.
\]

\[
\text{Res}[F_{(p_1-1)(p_2-1),q}(s), s = 1/2 - n] = -\frac{(-1)^{p_1+p_2+q} \bar{\ell}(p_1) \bar{\ell}(p_2) - \bar{\ell}(p_1) h_n^{(p_2)} - \bar{\ell}(p_2) h_n^{(p_1)}}{(n - 1/2)^q} \\
- (-1)^{p_1+p_2+q} \frac{h_n^{(p_1)} h_n^{(p_2)}}{(n - 1/2)^q}.
\]

and

\[
\sum_{n=1}^{\infty} \text{Res}[F_{(p_1-1)(p_2-1),q}(s), s = n] \in \mathbb{Q}[\zeta \text{ values, double } \zeta \text{ values}],
\]

10
Res\left[F_{(p_1-1)(p_2-1),q}(s), s = 0\right] \in \mathbb{Q}[\text{zeta values}].

Hence, using Lemma 2.1 and combining the four identities gives the desired result. □

If \(p_1 = p_2 = q = 2 \), then
\[T_{2x,2} + T_{2,4} = \frac{7}{360} \pi^6. \]

By the definitions of \(\tilde{t} \)-values and \(T \)-sums, we have (\(p_1 \geq 1, p_2, q > 1 \))
\[
T_{p_1,p_2,q} = \tilde{t}(p_1,p_2) + \tilde{t}(q,p_2, p_1) + \tilde{t}(q, p_1 + p_2)
= \tilde{t}(p_2)\tilde{t}(q, p) + \sum_{n=1}^\infty \frac{h_n^{(p_1)}(\tilde{t}(p_2) - h_n^{(p_2)})}{(n-1/2)^q} - \tilde{t}(p_2 + q, p_1)
= \tilde{t}(p_2, q, p_1) + \tilde{t}(p_2)\tilde{t}(q, p_1) - \tilde{t}(p_2 + q, p_1).
\]

Hence, from Theorems 2.5-2.8, we obtain the conclusion that the Hoffman \(t \)-values of depth three can be expressed in terms of zeta values, double zeta values and double \(t \)-values.

2.3 Cubic and Higher Order Euler \(T \)-sums

For higher degree sums, like the cubic
\[
T_{1^3,q} := \sum_{n=1}^\infty \frac{h_n^3}{(n-1/2)^q}
\]
it is natural to consider the kernel \(\pi \tan(\pi s) (\Psi(1/2 - s))^3 \).

Theorem 2.9 For positive integer \(q > 1 \),
\[
(1 + \frac{1}{(-1)^q})T_{1^3,q} = 3\pi^2(\zeta(q, 1) + 2 \log(2)\zeta(q)) - (q - 3)\pi^2\zeta(q + 1) - 3T_{1^2,q+1} - 3\tilde{t}(q + 2, 1) - \tilde{t}(q + 3) + \text{Res}[F_{0^3,q}(s), s = 0],
\]
where \(F_{0^3,q}(s) \) defined by
\[
F_{0^3,q}(s) := \frac{\pi \tan(\pi s) (\Psi(1/2 - s))^3}{s^q},
\]
and
\[
\text{Res}[F_{0^3,q}(s), s = 0] = (1 - \frac{1}{(-1)^q})\tilde{t}(q + 3) + (1 + \frac{1}{(-1)^q})6 \log(2)\tilde{t}(q + 2)
+ (1 - \frac{1}{(-1)^q})12 \log^2(2)\tilde{t}(q + 1) + (1 + \frac{1}{(-1)^q})8 \log^3(2)\tilde{t}(q)
- 6 \sum_{2k_1 + k_2 = q + 2, k_1, k_2 \geq 1} \tilde{t}(2k_1)\zeta(k_2 + 1) - 24 \log(2) \sum_{2k_1 + k_2 = q + 1, k_1, k_2 \geq 1} \tilde{t}(2k_1)\zeta(k_2 + 1)
- 24 \log^2(2) \sum_{2k_1 + k_2 = q, k_1, k_2 \geq 1} \tilde{t}(2k_1)\zeta(k_2 + 1)
+ 6 \sum_{2k_1 + k_2 + k_3 = q + 1, k_1, k_2, k_3 \geq 1} \tilde{t}(2k_1)\zeta(k_2 + 1)\zeta(k_3 + 1)
+ 12 \log(2) \sum_{2k_1 + k_2 + k_3 = q, k_1, k_2, k_3 \geq 1} \tilde{t}(2k_1)\zeta(k_2 + 1)\zeta(k_3 + 1)
\]

11
We define alternating Euler T-sums with degree $\leq k - 1$, multiple zeta values with depth $\leq k$ whenever the weight $p_1 + p_2 + \cdots + p_k + q$ and the order k are of the same parity.
In (1.1)-(1.3), we put a bar on top of \(s_j \) (\(j = 1, \cdots k \)) if there is a sign \((-1)^{n_j}\) appearing in the denominator on the right, which are called the alternating MZVs, alternating multiple \(t \)-values and multiple \(\tilde{t} \)-values, respectively. For example,

\[
\zeta(s_1, s_2, s_3) = \sum_{n_1 > n_2 > n_3 \geq 1} (-1)^{n_1+n_3} n_1^{s_1} n_2^{s_2} n_3^{s_3}, \quad \tilde{t}(s_1, s_2) = \sum_{n_1 > n_2 \geq 1} (-1)^{n_1} (n_1 - 1/2)^{s_1} (n_2 - 1/2)^{s_2}.
\]

Some results of alternating MZVs, readers may consult [4,6–8,18] and references therein.

For convenience, we let

\[
\tilde{t}(s) := -\tilde{t}(\bar{s}) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n - 1/2)^s}.
\]

In this section, we will discuss the alternating Euler \(T \)-sums and find some evaluations of closed form of it. We need the formula (see [23])

\[
\frac{\pi}{\cos(\pi s)} \quad s \to n = 1/2 \quad (-1)^n \frac{1}{s - \frac{2n-1}{2}} - 2 \sum_{k=1}^{\infty} \zeta(2k) \left(s - \frac{2n-1}{2} \right)^{2k-1}.
\]

(3.2)

From [13],

\[
\frac{\pi}{\cos(\pi s)} = 2 \sum_{k=0}^{\infty} \tilde{t}(2k+1) s^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^k E_{2k} \pi^{2k+1}}{(2k)!} s^{2k},
\]

(3.3)

where \(E_{2k} \) is Euler number. Then, we compute

\[
\lim_{s \to n} \frac{d^p}{ds^p} \frac{\pi}{\cos(\pi s)} = (-1)^n (1 + (-1)^p) p! \tilde{t}(p+1).
\]

(3.4)

3.1 Linear Alternating Euler \(T \)-sums

Theorem 3.1 For positive integer \(q \),

\[
(1 + (-1)^{q+1}) \tilde{T}_{1,q} = \frac{(-1)^{q+1}}{q+1}(q+1) - \pi \zeta(q+1) + (-1)^q - 1)2 \log(2) \tilde{t}(q) + 2 \sum_{2k_1+k_2=q-2, k_1, k_2 \geq 1} \tilde{t}(2k_1 + 1) \zeta(k_2 + 2).
\]

(3.5)

Theorem 3.2 For positive integer \(p \) and \(q > 1 \),

\[
(1 + (-1)^{p+q}) \tilde{T}_{p,q} = \frac{(-1)^{p+q}}{p+q}(p+q) + (-1)^p(1 - (-1)^q) \tilde{t}(p) \tilde{t}(q) + (-1)^p \sum_{k=0}^{p-1} \frac{(-1)^k + 1}{q+1} \left(\frac{p+q-k-2}{q-1} \right) \tilde{t}(k+1) \zeta(p+q-k-1)
\]

\[
- 2(-1)^p \sum_{2k_1+k_2=q-1, k_1, k_2 \geq 0} \left(\frac{p+k_2-1}{p-1} \right) \tilde{t}(2k_1 + 1) \zeta(p+k_2).
\]

(3.6)
Proof. The proofs of Theorems 3.1-3.2 are similar as the proofs of Theorems 2.3-2.4. We only prove the Theorem 3.2. Consider the function

$$G_{p-1,q}(s) := \pi \Psi^{(p-1)}(1/2 - s)$$

By (2.5)-(2.7), (3.2)-(3.4), these residues are \((n \in \mathbb{N})\)

$$\text{Res}[G_{p-1,q}(s), s = n] = (-1)^{p-1} \sum_{k=0}^{p-1} \left((-1)^k + 1\right) \frac{p - q - k - 2}{q - 1} \tilde{t}(k + 1) \frac{(-1)^n}{n^{p+q-k-1}},$$

$$\text{Res}[G_{p-1,q}(s), s = n - 1/2] = \frac{(-1)^p \tilde{t}(p) + h_n(p)}{(n - 1/2)^q} (-1)^n,$$

$$\text{Res}[G_{p-1,q}(s), s = 1/2 - n] = -\frac{\tilde{t}(p) - h_n(p)}{(n - 1/2)^q} (-1)^{n+p+q},$$

$$\text{Res}[G_{p-1,q}(s), s = 0] = (1 - (-1)^{p+q}) \tilde{t}(p + q) + 2(-1)^p \sum_{2k_1+k_2=q-1, k_1,k_2 \geq 0} \left(p + k_2 - 1\right) \tilde{t}(2k_1 + 1) \zeta(p + k_2).$$

Thus, by Lemma 2.1 and summing these four contributions yields the desired result. \(\Box\)

Letting \(q = 1\) in (3.5) and \(p = q = 2\) in (3.6) give

$$\tilde{T}_{1,1} = \tilde{t}(1, 1) = 2G - \frac{1}{2} \pi \log(2),$$

$$\tilde{T}_{2,2} = \tilde{t}(2, 2) = \frac{1}{2} \tilde{t}(4) - \frac{7}{4} \pi \zeta(3),$$

where \(\tilde{t}(2) = 4G\), \(G\) is Catalan’s constant.

3.2 Quadratic Alternating Euler T-sums

Theorem 3.3
For positive integer \(q > 1\),

$$(1 + (-1)^{q+1}) \tilde{T}_{1,2,q} \equiv (q - 2) \pi \zeta(q + 1) - 2 \pi \zeta(q, 1) - 4 \pi \log(2) \zeta(q) - 2 \tilde{t}(q + 1, 1)$$

$$+ (-1)^q \tilde{t}(q + 2) - (1 + (-1)^q) 4 \log(2) \tilde{t}(q + 1) - (1 - (-1)^q) 4 \log^2(2) \tilde{t}(q) - 2 \sum_{2k_1+k_2+k_3=q+1, k_1,k_2,k_3 \geq 1} \tilde{t}(2k_1 - 1) \zeta(k_2 + 1) \zeta(k_3 + 1)$$

$$+ 4 \sum_{2k_1+k_2=q+2, k_2 \geq 2} \tilde{t}(2k_1 - 1) \zeta(k_2 + 1)$$

$$+ 8 \log(2) \sum_{2k_1+k_2=q+1, k_2 \geq 2} \tilde{t}(2k_1 - 1) \zeta(k_2 + 1). \quad (3.7)$$

Proof. The proof is based on the function

$$G_{0^2,q}(s) := \pi \Psi(1/2 - s)^2 \frac{1}{\cos(\pi s)^q}$$
and the usual residue computation. By a similar argument as in the proof of the above theorem, we may easily deduce the \((3.7)\).

If letting \(q = 1, 3\) in \((3.7)\), then
\[
T_{12,1} = \frac{\pi^3}{12} - \frac{\pi}{2} \log^2(2) - \tilde{t}(2, 1),
\]
\[
T_{12,3} = \frac{\pi^5}{90} + \frac{7}{2} \pi \log(2) - \log^2(2) \pi^3 - \pi \zeta(3, 1) - \tilde{t}(4, 1).
\]

Similarly, by considering the function
\[
G_{(p_1-1)(p_2-1)\ldots(p_k-1),q}(s) := \frac{\pi \Psi^{(p_1-1)}(1/2-s) \Psi^{(p_2-1)}(1/2-s) \ldots \Psi^{(p_k-1)}(1/2-s)}{\cos(\pi s)s^q(p_1-1)! (p_2-1)! \cdots (p_k-1)!}
\]
and using the residue computations, many other relations can be established.

4 Other Euler Type \(T\)-Sums

In this section, we define an Euler type \(T\)-sums
\[
\overline{S}_{p_1p_2\ldots p_k,q} := \sum_{n=1}^{\infty} \frac{h_{n}^{(p_1)} h_{n}^{(p_2)} \cdots h_{n}^{(p_k)}}{n^q}.
\]

Then, we apply the contour integral to establish many relations of \(\overline{S}_{p_1p_2\ldots p_k,q}\). Moreover, we can use the quadratic sum \(\overline{S}_{p_1p_2,q}\) to evaluate the triple Kaneko-Tsumura \(T\)-values with weight even.

The Kaneko-Tsumura \(T\)-zeta values are defined by [19, 20]
\[
T(k_1, k_2, \ldots, k_r) := 2^r \sum_{n_1 > n_2 > \cdots > n_r > 0} \frac{1}{(2n_1 - r)^{k_1}(2n_2 - r + 1)^{k_2} \cdots (2n_r - 1)^{k_r}}, \tag{4.1}
\]
where we used the opposite convention \((n_1 > n_2 > \cdots > n_r > 0)\) of the original definition \((0 < n_1 < \cdots < n_r)\) Kaneko-Tsumura \(T\)-zeta values \((k_j \in \mathbb{N}, k_1 > 1)\). Here \(k_1 + k_2 + \cdots + k_r\) and \(r\) are called the weight and depth of the sum, respectively.

Hence, from the definitions of \(S_{p_1p_2\ldots p_k,q}\) and \(T\)-values, we have
\[
T(k_1, k_2) = \frac{1}{2^{k_1+k_2-2}} \overline{S}_{k_2,k_1}, \tag{4.2}
\]
\[
T(k_1, k_2, k_3) = \frac{1}{2^{k_1+k_2+k_3-3}} \tilde{t}(k_1) \overline{S}_{k_3,k_2} - \frac{1}{2^{k_1+k_2+k_3-3}} \overline{S}_{k_1k_3,k_2}. \tag{4.3}
\]

On the other hand, according to the relation of double \(T\)-values and double zeta values,
\[
T(k_1, k_2) = \zeta(\tilde{k_1}, k_2) + \zeta(k_1, k_2) - \zeta(k_1, \tilde{k_2}) - \zeta(\tilde{k_1}, k_2)
\]
we obtain
\[
T(q, p) = \frac{1 - (-1)^p}{2} (\zeta(p) - \zeta(\tilde{p})) + (-1)^p \sum_{k=0}^{[p/2]} \binom{m - 2k - 1}{q - 1} (\zeta(2k) - \zeta(\tilde{2k}))(\zeta(m - 2k) - \zeta(m - 2k))
\]
where \(\zeta(1) \) should be interpreted as 0 wherever it occurs, and \(\zeta(0) = \zeta(\bar{0}) = -1/2 \), \(m = p + q \) odd.

From (4.2) and (4.4), we know that the linear sum \(\tilde{S}_{p,q} \) with \(p + q \) odd can be evaluated by zeta values. In fact, considering the function

\[
F_{p-1,q}(s) := \frac{\psi(p-1)(1/2 - s)}{s^q(p-1)!} \pi \tan(\pi s)
\]

and using the residue theorem, we can also obtain the result.

By harmonic product, we give (4.5)

\[
\sum_{n=1}^{\infty} \frac{H_{n-1}^{(k_1)}}{(n-1/2)^2} = -2^{k_1+k_2-2}T(k_1,k_2) + \zeta(k_1)\tilde{t}(k_2). \tag{4.5}
\]

In fact, from [23], we also obtain (p > 1)

\[
\sum_{n=1}^{\infty} \frac{H_{n-1}}{(n-1/2)^p} = \frac{p}{2}t(p+1) - \frac{1}{2} \sum_{j=1}^{p-2} \tilde{t}(p-j)\tilde{t}(j+1) - 2\log(2)\tilde{t}(p). \tag{4.6}
\]

For nonnegative integers \(n_1, \ldots, n_p \) and \(n \), let

\[
\left(\begin{array}{c} n \\ n_1, \ldots, n_p \end{array} \right) := \frac{n!}{n_1!n_2! \cdots n_p!}, \quad (0 \leq n_1 + \cdots + n_p \leq n).
\]

Theorem 4.1 For positive integers \(q > 1 \),

\[
(1 + (-1)^q)\tilde{S}_{1,p,q} = (-1)^{p-1} \sum_{l=0}^{p-1} ((-1)^l - 1) \left(\begin{array}{c} p + q - l - 2 \\ q - 1 \end{array} \right) \tilde{t}(l+1)\tilde{t}(p+q-l-1)
\]

\[
+ \sum_{k=1}^{p} \left(\begin{array}{c} p \\ k \end{array} \right) \sum_{|k|_{p-1}=k, \quad 0 \leq |k|_{p-1} \leq p-1.} \left(\begin{array}{c} k \\ k_1, \ldots, k_{p-1} \end{array} \right) (-1)^{p-1-|\tilde{k}|_{p-1}} \sum_{l=0}^{p-1-|\tilde{k}|_{p-1}} (-1)^{l-1}
\]

\[
\times \left(\begin{array}{c} p + q - |\tilde{k}|_{p-1} - l - 2 \\ q - 1 \end{array} \right) \tilde{t}(l+1) \sum_{n=1}^{\infty} \frac{\prod_{j=1}^{p-1} C_{n-1}^{k_j}(j)}{(n-1/2)^{p+q-|\tilde{k}|_{p-1}-l-1}}
\]

\[
+ (-1)^{p+1} \sum_{k_1+k_2+\cdots+k_p=q, \quad k_j \in \mathbb{N}} \tilde{t}(k_1+1)\tilde{t}(k_2+1) \cdots \tilde{t}(k_p+1)
\]

\[
- 2(-1)^{p+1} \sum_{2k_1+2k_2+\cdots+k_{p+1}=q, \quad k_j \in \mathbb{N}} \zeta(2k_1)\tilde{t}(k_2+1) \cdots \tilde{t}(k_{p+1}+1), \tag{4.7}
\]

where \(|k|_{p-1} := k_1 + k_2 + \cdots + k_{p-1} (k_j \in \mathbb{N}_0), \quad |\tilde{k}|_{p-1} = k_1 + 2k_2 + \cdots + (p-1)k_{p-1} (k_j \in \mathbb{N}_0) \)

and

\[
C_n(j) = \begin{cases}
H_n + 2\log(2), & j = 1 \\
(-1)^{j-1}H_n^{(j)} - \zeta(j), & j \geq 2.
\end{cases} \tag{4.8}
\]
For positive integers $p,q > 1$,

$$(1 + (-1)^q) \tilde{S}_{1,q} = \pi^2 \tilde{t}(q) - \sum_{k_1+k_2=q, k_1,k_2 \geq 1} \tilde{t}(k_1+1)\tilde{t}(k_2+1) + 2 \sum_{2k_1+k_2+k_3=q, k_1,k_2,k_3 \geq 1} \zeta(2k_1)\tilde{t}(k_2+1)\tilde{t}(k_3+1).$$ \hspace{1cm} (4.9)

Corollary 4.3 For positive integers $q > 1$,

$$(1 + (-1)^q) \tilde{S}_{1,q} = -2q\tilde{t}(2)\tilde{t}(q+1) + 6\tilde{t}(2)\sum_{n=1}^{\infty} \frac{H_{n-1}}{(n-1/2)^q} + 12\log(2)\tilde{t}(2)\tilde{t}(q) + \sum_{k_1+k_2+k_3=q, k_1,k_2,k_3 \geq 1} \tilde{t}(k_1+1)\tilde{t}(k_2+1)\tilde{t}(k_3+1) - 2 \sum_{2k_1+k_2+k_3+k_4=q, k_1,k_2,k_3,k_4 \geq 1} \zeta(2k_1)\tilde{t}(k_2+1)\tilde{t}(k_3+1)\tilde{t}(k_4+1).$$ \hspace{1cm} (4.10)

Setting q and 4 in (4.9) and (4.10) yield

$$\tilde{S}_{1,2} = \frac{\pi^4}{8}, \quad \tilde{S}_{1,4} = \frac{\pi^6}{24} - \frac{49}{2} \zeta^2(3),$$

$$\tilde{S}_{1,2} = \frac{7}{2} \pi^2 \zeta(3), \quad \tilde{S}_{1,4} = -\frac{21}{8} \pi^4 \zeta(3) + 31\pi^2 \zeta(5).$$

Theorem 4.4 For positive integers $p,q > 1$,

$$(1 - (-1)^{p+q})\tilde{S}_{1,p,q} = (-1)^{p-1}(1 + (-1)^q)\tilde{t}(p)\tilde{S}_{1,q} + (-1)^p \sum_{l=0}^{p} ((-1)^l - 1) \left(\frac{p+q-l-1}{q-1} \right) \tilde{t}(l+1)\tilde{t}(p+q-l) + (-1)^{p-1} \sum_{l=0}^{p-1} ((-1)^l - 1) \left(\frac{p+q-l-2}{q-1} \right) \tilde{t}(l+1) \times \left(\sum_{n=1}^{\infty} \frac{H_{n-1}}{(n-1/2)^{p+q-l-1}} + 2\log(2)\tilde{t}(p+q-l-1) \right) + (-1)^{p-1} \sum_{k=1}^{p-1} \sum_{l=0}^{p-k-1} ((-1)^l - 1) \left(\frac{p+q-k-l-2}{q-1} \right) \tilde{t}(l+1).$$
Proof. By considering the function
\[F_{0(p-1), q}(s) := \frac{\pi \tan(\pi s) \Psi(1/2 - s) \Psi^{(p-1)}(1/2 - s)}{(s + 1/2)^q(p-1)!}, \]
and using the direct residue computation. The desired formulas can be established.

If \(p = 2, q = 3 \), then
\[\tilde{S}_{12,3} = -\frac{\pi^6}{16} + 49\zeta^2(3). \]

Theorem 4.5 For positive integers \(p_1, p_2, q > 1 \),
\[
(1 + (-1)^{p_1+p_2+q})\tilde{S}_{p_1p_2,q}
= -(-1)^{p_1+p_2}(1 + (-1)^q)\tilde{t}(p_1)\tilde{t}(p_2)\zeta(q)
+ (-1)^{p_1}((-1)^{p_2+q}-1)\tilde{t}(p_1)\tilde{S}_{p_2,q} + (-1)^{p_2}((-1)^{p_1+q}-1)\tilde{t}(p_2)\tilde{S}_{p_1,q}
- (-1)^{p_1+p_2} \sum_{k_1+k_2=q+1, k_1,k_2\geq 1} \binom{k_1+p_1-2}{p_1-1} \binom{k_2+p_2-2}{p_2-1} \tilde{t}(k_1+p_1-1)\tilde{t}(k_2+p_2-1)
+ 2(-1)^{p_1+p_2} \sum_{k_1+k_2+2k_3=q+2, k_1,k_2,k_3\geq 1} \binom{k_1+p_1-2}{p_1-1} \binom{k_2+p_2-2}{p_2-1} \tilde{t}(k_1+p_1-1)\tilde{t}(k_2+p_2-1)\zeta(2k_3)
- (-1)^{p_1+p_2} \sum_{l=0}^{p_1+p_2-1} ((-1)^l-1) \binom{p_1+p_2+q-l-2}{q-1} \tilde{t}(l+1)\tilde{t}(p_1+p_2+q-l-1)
+ (-1)^{p_1+p_2} \sum_{k=1}^{p_2} (-1)^k \binom{k+p_1-2}{p_1-1} \sum_{l=0}^{p_2-k} ((-1)^l-1) \binom{p_2+q-k-l-1}{q-1} \tilde{t}(l+1)
\times \left(\zeta(k+p_1-1)\tilde{t}(p_2+q-k-l) + (-1)^{k+p_1-1} \sum_{n=1}^{\infty} \frac{H^{(k+p_1-1)}_{n-1}}{(n-1/2)^{p_2+q-k-l}} \right)
+ (-1)^{p_1+p_2} \sum_{k=1}^{p_1} (-1)^k \binom{k+p_2-2}{p_2-1} \sum_{l=0}^{p_1-k} ((-1)^l-1) \binom{p_1+q-k-l-1}{q-1} \tilde{t}(l+1)
\times \left(\zeta(k+p_2-1)\tilde{t}(p_1+q-k-l) + (-1)^{k+p_2-1} \sum_{n=1}^{\infty} \frac{H^{(k+p_2-1)}_{n-1}}{(n-1/2)^{p_1+q-k-l}} \right). \tag{4.12}
\]

Proof. By considering the function
\[F_{(p_1-1)(p_2-1), q}(s) := \frac{\pi \tan(\pi s) \Psi^{(p_1-1)}(1/2 - s) \Psi^{(p_2-1)}(1/2 - s)}{(s + 1/2)^q(p_1-1)!(p_2-1)!}, \]
then a direct residue computation gives the desired formula.

Hence, from the relations (4.2), (4.3) and Theorems 4.1, 4.4, 4.5, we obtain the formula of
the triple T-value $T(p, q, r)$ of even weight in terms of single and the double T-values. Tsumura
also proved an explicit formula of triple T-value, see [21] for the detail.

Setting $p_1 = p_2 = q = 2$ yields

$$\tilde{S}_{2^2, 2} = \tilde{t}(2)\tilde{t}(4) - 2\tilde{t}^2(3) + 2\tilde{t}^2(2)\zeta(2) + 2\tilde{t}(2) \sum_{n=1}^{\infty} \frac{H_{n-1}^{(2)}}{(n - 1/2)^2} \bigg|_{n=1} = 32\pi^2 \text{Li}_4 \left(\frac{1}{2}\right) - 98\pi^2(3) + 28\pi^2 \zeta(3) \log(2) - \frac{61\pi^6}{360} + \frac{2}{3} \pi^2 \log^4(2) - \frac{4}{3} \pi^4 \log^2(2).$$

In general, we can consider the function

$$F_{(p_1 - 1)(p_2 - 1)\cdots(p_k - 1), q}(s) := \frac{\pi \tan(\pi s) \Psi^{(p_1 - 1)}(1/2 - s) \Psi^{(p_2 - 1)}(1/2 - s) \cdots \Psi^{(p_k - 1)}(1/2 - s)}{(s + 1/2)^q(p_1 - 1)!(p_2 - 1)! \cdots (p_k - 1)!}$$

to establish more general formulas of $\tilde{S}_{p_1 p_2 \cdots p_k, q}$, but it is very difficult. Similarly, we can also consider the function

$$G_{(p_1 - 1)(p_2 - 1)\cdots(p_k - 1), q}(s) := \frac{\pi \Psi^{(p_1 - 1)}(1/2 - s) \Psi^{(p_2 - 1)}(1/2 - s) \cdots \Psi^{(p_k - 1)}(1/2 - s)}{\cos(\pi s)(s + 1/2)^q(p_1 - 1)!(p_2 - 1)! \cdots (p_k - 1)!}$$

to evaluate the alternating sum $\tilde{S}_{p_1 p_2 \cdots p_k, q}$ defined by

$$\tilde{S}_{p_1 p_2 \cdots p_k, q} := \sum_{n=1}^{\infty} \frac{h^{(p_1)}_n h^{(p_2)}_n \cdots h^{(p_k)}_n}{n^q} (-1)^n.$$

It is possible that of some other relations involving alternating Euler T-sums can be proved by
using the techniques of the present paper. For example, we can define an alternating $\Psi(-s)$
function

$$\Psi(-s) := \frac{1}{s + 1/2} + \sum_{k=1}^{\infty} \left(\frac{(-1)^k}{k - 1/2} - \frac{(-1)^k}{k - 1/2 - s} \right).$$

Then, consider the four functions

$$E_{(p_1 - 1)(p_2 - 1)\cdots(p_k - 1), q}(s) := \frac{\pi \tan(\pi s) \Psi^{(p_1 - 1)}(1/2 - s) \Psi^{(p_2 - 1)}(1/2 - s) \cdots \Psi^{(p_k - 1)}(1/2 - s)}{s^q(p_1 - 1)!(p_2 - 1)! \cdots (p_k - 1)!},$$

$$H_{(p_1 - 1)(p_2 - 1)\cdots(p_k - 1), q}(s) := \frac{\pi \Psi^{(p_1 - 1)}(1/2 - s) \Psi^{(p_2 - 1)}(1/2 - s) \cdots \Psi^{(p_k - 1)}(1/2 - s)}{\cos(\pi s)s^q(p_1 - 1)!(p_2 - 1)! \cdots (p_k - 1)!},$$

$$\tilde{E}_{(p_1 - 1)(p_2 - 1)\cdots(p_k - 1), q}(s) := \frac{\pi \tan(\pi s) \tilde{\Psi}^{(p_1 - 1)}(1/2 - s) \tilde{\Psi}^{(p_2 - 1)}(1/2 - s) \cdots \tilde{\Psi}^{(p_k - 1)}(1/2 - s)}{(s + 1/2)^q(p_1 - 1)!(p_2 - 1)! \cdots (p_k - 1)!},$$

$$\tilde{H}_{(p_1 - 1)(p_2 - 1)\cdots(p_k - 1), q}(s) := \frac{\pi \tilde{\Psi}^{(p_1 - 1)}(1/2 - s) \tilde{\Psi}^{(p_2 - 1)}(1/2 - s) \cdots \tilde{\Psi}^{(p_k - 1)}(1/2 - s)}{\cos(\pi s)(s + 1/2)^q(p_1 - 1)!(p_2 - 1)! \cdots (p_k - 1)!},$$

and use the contour integral to evaluate these sums

$$\sum_{n=1}^{\infty} \frac{\tilde{h}^{(p_1)}_n \tilde{h}^{(p_2)}_n \cdots \tilde{h}^{(p_k)}_n}{(n - 1/2)^q}, \quad \sum_{n=1}^{\infty} \frac{h^{(p_1)}_n h^{(p_2)}_n \cdots h^{(p_k)}_n}{(n - 1/2)^q} (-1)^n.$$
To prove the identity, we consider the function

\[
\sum_{n=1}^{\infty} \frac{\bar{h}_n^{(p_1)} \bar{h}_n^{(p_2)} \cdots \bar{h}_n^{(p_k)}}{n^q}, \quad \sum_{n=1}^{\infty} \frac{\bar{h}_n^{(p_1)} \bar{h}_n^{(p_2)} \cdots \bar{h}_n^{(p_k)}}{n^q} (-1)^n
\]

where \(\bar{h}_n^{(p)} \) is defined by

\[
\bar{h}_n^{(p)} := \sum_{k=1}^{n} \frac{(-1)^n}{(n-1/2)^p}, \quad \bar{h}_0^{(p)} := 0.
\]

5 Formulas of Kaneko-Tsumura’s Conjecture

In [20], Kaneko and Tsumura conjecture the following relation \((p \geq 2, m, q \geq 1)\)

\[
\sum_{i+j=m, \ i,j \geq 0} \binom{p+i-1}{i} \binom{q+j-1}{j} T(p+i, q+j) \in \mathcal{Z}
\]

where \(\mathcal{Z} \) is the space of usual multiple zeta values. Quite recently, T. Murakami proved the conjecture by using the motivic method employed in [12], but not gave explicit formula. In this section, we will give an explicit duality formula of the conjecture by using the residue theorem.

Theorem 5.1 For positive integers \(m, p \) and \(q > 1 \),

\[
(-1)^{m-1} \sum_{i+j=m-1, \ i,j \geq 0} \binom{p+i-1}{i} \binom{q+j-1}{j} \sum_{n=1}^{\infty} \frac{H_n^{(m+i)}}{(n-1/2)^q+j} + (-1)^{p-1} \sum_{i+j=p-1, \ i,j \geq 0} \binom{p+i-1}{i} \binom{q+j-1}{j} \sum_{n=1}^{\infty} \frac{H_n^{(p+i)}}{(n-1/2)^q+j} = \binom{p+q+m-2}{q-1} i(p+q+m-1)
\]

\[
+ \sum_{i+j=p-1, \ i,j \geq 0} \binom{m+i-1}{i} \binom{q+j-1}{j} (-1)^i \zeta(m+i) \tilde{\tau}(q+j)
\]

\[
+ \sum_{i+j=m-1, \ i,j \geq 0} \binom{p+i-1}{i} \binom{q+j-1}{j} (-1)^i \zeta(p+i) \tilde{\tau}(q+j)
\]

\[
- \sum_{i+j=q-1, \ i,j \geq 0} \binom{m+i-1}{i} \binom{p+j-1}{j} \tilde{\tau}(m+i) \tilde{\tau}(p+j),
\]

where \(\zeta(1) \) should be interpreted as \(-2 \log(2)\) wherever it occurs, and \(\tilde{\tau}(1) := 0 \).

Proof. To prove the identity, we consider the function

\[
F(s) := \frac{\Psi^{(m-1)}(1/2-s)\Psi^{(p-1)}(1/2-s)}{(s+1/2)^q(m-1)!(p-1)!}.
\]
It is obvious that the function $F(s)$ only have poles at the $s = -1/2$ and $s = n$ ($n \in \mathbb{N}_0$). At a non-negative integer n, by (2.2) and (2.5), we compute the residue

$$\text{Res}[F(s), s = n] = -(-1)^{m+p} \left(\frac{p + q + m - 2}{q - 1}\right) \frac{1}{(n + 1/2)^{p+q+m-1}}$$

$$- (-1)^{m+p} \sum_{i+j=p-1, i,j \geq 0} \left(\frac{m + i - 1}{i}\right) \left(\frac{q + j - 1}{j}\right) (-1)^i \zeta(m + i) + (-1)^m H_n^{(m+i)} \left(\frac{1}{n + 1/2} \right)^{q+j}$$

$$- (-1)^{m+p} \sum_{i+j=n-1, i,j \geq 0} \left(\frac{p + i - 1}{i}\right) \left(\frac{q + j - 1}{j}\right) (-1)^i \zeta(p + i) + (-1)^p H_n^{(m+i)} \left(\frac{1}{n + 1/2} \right)^{q+j}.$$

By (2.3) and (2.6), the residue of the pole of order q is found to be

$$\text{Res}[F(s), s = -1/2] = (-1)^{m+p} \sum_{i+j=q-1, i,j \geq 0} \left(\frac{m + i - 1}{i}\right) \left(\frac{p + j - 1}{j}\right) \tilde{t}(m + i) \tilde{t}(p + j).$$

Hence, summing these two contributions yields the desired formula. □

Letting $p = m = 2, q = 3$ in (5.1), we have

$$3 \sum_{n=1}^{\infty} \frac{H_{n-1}^{(2)}}{(n - 1/2)^4} + 2 \sum_{n=1}^{\infty} \frac{H_{n-1}^{(3)}}{(n - 1/2)^3} = 112\zeta^2(3) - \frac{\pi^6}{6}.$$

Similarly, by considering the function

$$F(s, a) := \frac{\Psi^{(m-1)}(1/2 - s; a) \Psi^{(p-1)}(1/2 - s; a)}{(s + 1/2)^q(m - 1)!(p - 1)!}$$

with the usual residue computation, we can get the following general result.

Theorem 5.2 For positive integers m, p and $q > 1$,

$$(-1)^{m-1} \sum_{i+j=p-1, i,j \geq 0} \left(\frac{m + i - 1}{i}\right) \left(\frac{q + j - 1}{j}\right) \sum_{n=1}^{\infty} \frac{H_n^{(m+i)}}{(n + a)^{q+j}}$$

$$+ (-1)^{p-1} \sum_{i+j=m-1, i,j \geq 0} \left(\frac{p + i - 1}{i}\right) \left(\frac{q + j - 1}{j}\right) \sum_{n=1}^{\infty} \frac{H_n^{(p+i)}}{(n + a)^{q+j}}$$

$$= \left(\frac{p + q + m - 2}{q - 1}\right) \zeta(p + q + m - 1; a + 1)$$

$$+ \sum_{i+j=p-1, i,j \geq 0} \left(\frac{m + i - 1}{i}\right) \left(\frac{q + j - 1}{j}\right) (-1)^i \zeta(m + i) \zeta(q + j; a + 1)$$

$$+ \sum_{i+j=m-1, i,j \geq 0} \left(\frac{p + i - 1}{i}\right) \left(\frac{q + j - 1}{j}\right) (-1)^i \zeta(p + i) \zeta(q + j; a + 1)$$

$$- \sum_{i+j=q-1, i,j \geq 0} \left(\frac{m + i - 1}{i}\right) \left(\frac{p + j - 1}{j}\right) \zeta(m + i; a + 1) \zeta(p + j; a + 1), \quad (5.2)$$
where \(\zeta(1) \) should be interpreted as \(-2\log(2)\) wherever it occurs, and \(\zeta(1; a + 1) := 0\). Here \(\zeta(s; a + 1) \) stands for Hurwitz zeta function, which is defined by

\[
\zeta(s; a + 1) := \sum_{n=1}^{\infty} \frac{1}{(n + a)^s} \quad (\Re(s) > 1, \ a \in \mathbb{C} \setminus \mathbb{N}^-).
\]

It is clear that Theorem 5.1 is immediate corollary of Theorem 5.2 with \(a = -1/2 \). Next, we give a duality formulas of Kaneko-Tsumura conjecture.

Theorem 5.3 For positive integers \(p, q, m \geq 2 \),

\[
(-1)^m \sum_{i+j=p-1, \ i,j \geq 0} \binom{m+i-1}{i} \binom{q+j-1}{j} T(m+i,q+j) \\
+(-1)^p \sum_{i+j=m-1, \ i,j \geq 0} \binom{p+i-1}{i} \binom{q+j-1}{j} T(p+i,q+j)
\]

\[
= \frac{1}{2^{p+q+m-3}} \left(\frac{p+q+m-2}{q-1} \right) \tilde{t}(p+q+m-1) + \frac{1}{2^{p+q+m-3}} \sum_{i+j=p-1, \ i,j \geq 0} \binom{m+i-1}{i} \binom{q+j-1}{j} \left((-1)^i + (-1)^m\right) \zeta(m+i) \tilde{t}(q+j) \\
+ \frac{1}{2^{p+q+m-3}} \sum_{i+j=m-1, \ i,j \geq 0} \binom{p+i-1}{i} \binom{q+j-1}{j} \left((-1)^i + (-1)^p\right) \zeta(p+i) \tilde{t}(q+j) \\
- \frac{1}{2^{p+q+m-3}} \sum_{i+j=q-1, \ i,j \geq 0} \binom{m+i-1}{i} \binom{p+j-1}{j} \tilde{t}(m+i) \tilde{t}(p+j). \tag{5.3}
\]

Proof. The result immediately follows from (4.5) and (5.1). \(\square \)

Taking \(m = p \) in (5.3), we can get the following corollary.

Corollary 5.4 For positive integers \(p, q \geq 2 \)

\[
\sum_{i+j=p-1, \ i,j \geq 0} \binom{p+i-1}{i} \binom{q+j-1}{j} T(p+i,q+j)
\]

\[
= \frac{1}{2^{2p+q-2}} \left(\frac{2p+q-2}{q-1} \right) \tilde{t}(2p+q-1) + \frac{1}{2^{2p+q-3}} \sum_{i+j=p-1, \ i,j \geq 0} \binom{p+i-1}{i} \binom{q+j-1}{j} \left(1 - (-1)^j\right) \zeta(p+i) \tilde{t}(q+j) \\
- \frac{(-1)^p}{2^{2p+q-2}} \sum_{i+j=q-1, \ i,j \geq 0} \binom{p+i-1}{i} \binom{p+j-1}{j} \tilde{t}(p+i) \tilde{t}(p+j). \tag{5.4}
\]

Setting \(p = 2, q = 3 \) in (5.4) gives

\[
3T(2,4) + 2T(3,3) = \frac{\pi^6}{64} - \frac{49}{8} \zeta^2(3).
\]
Theorem 5.5. For positive integers p, m and $q \geq 2$,

\[
(-1)^{p-1} \sum_{i+j=m-1, \ i,j \geq 0} \binom{p+i-1}{i} \binom{q+j-1}{j} \tilde{S}_{p+i,q+j} \\
+ (-1)^{m-1} \sum_{i+j=p-1, \ i,j \geq 0} \binom{m+i-1}{i} \binom{q+j-1}{j} T_{m+i,q+j} \\
= \sum_{i+j=m-1, \ i,j \geq 0} \binom{p+i-1}{i} \binom{q+j-1}{j} (-1)^i \tilde{t}(p+i) \zeta(q+j) \\
+ \sum_{i+j=p-1, \ i,j \geq 0} \binom{m+i-1}{i} \binom{q+j-1}{j} (-1)^i \tilde{t}(m+i) \tilde{t}(q+j) \\
- \sum_{i+j=q-1, \ i,j \geq 0} \binom{m+i-1}{i} \binom{p+j-1}{j} \zeta(m+i) \tilde{t}(p+j),
\]

(5.5)

where $\zeta(1) := -2 \log(2)$ and $\tilde{t}(1) := 0$.

Proof. The proof of Theorem 5.5 is similar as the proof of Theorem 5.1. We consider the function

\[G(s) := \frac{\Psi^{(m-1)}(1/2-s) \Psi^{(p-1)}(-s)}{(s+1)^{q}(m-1)!(p-1)!}, \]

then by a similar argument as in the proof (5.5), we deduce the desired result. \qed

Letting $(p, q, m) = (1, 2, 2)$ and $(2, 2, 2)$ yield

\[\tilde{S}_{2,2} + 2\tilde{S}_{1,3} = T_{2,2} = \frac{\pi^4}{12}, \]
\[\tilde{S}_{2,3} + \tilde{S}_{3,2} + T_{2,3} + T_{3,2} = 2\zeta(2)\tilde{t}(3). \]

Hence, by the relations

\[\tilde{S}_{p,q} = 2^{p+q-2} T(q,p) \quad \text{and} \quad T_{p,q} = 2^{p+q} t(q,p) \]

we can obtain a kind of relationship of the double Kaneko-Tsumura T-values and the double Hoffman t-values.

Acknowledgments. The author expresses his deep gratitude to Professor Masanobu Kaneko for valuable discussions and comments. The first author is supported by the China Scholarship Council (No. 201806310063). The second author is supported by the National Natural Science Foundation of China (under Grant 11671360) and the Zhejiang Provincial Natural Science Foundation of China (under Grant LQ17A010010).

References

[1] G.E. Andrews, R. Askey and R. Roy, Special functions, Cambridge University Press, 2000: 16, 146-149.
[2] D.H. Bailey, J.M. Borwein and R. Girgensohn, Experimental evaluation of Euler sums, Exp. Math., 1994, 3(1): 17-30.

[3] B.C. Berndt, Ramanujan’s notebooks, part II, Springer-Verlag, New York, 1989: 241-299.

[4] J. Blümlein, D.J. Broadhurst and J.A.M. Vermaseren, The multiple zeta value data mine, Comput. Phys. Commun., 2012, 181(3): 582-625.

[5] D. Borwein, J.M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math., 1995, 38: 277-294.

[6] J.M. Borwein, D.M. Bradley and D.J. Broadhurst, Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k, Electron. J. Combin., 1997, 4(2): 1-21.

[7] J.M. Borwein, D.M. Bradley, D.J. Broadhurst and Petr. Lisoněk, Special values of multiple polylogarithms, Trans. Amer. Math. Soc., 2001, 353(3): 907-941.

[8] D. Bowman and D.M. Bradley, Resolution of some open problems concerning multiple zeta evaluations of arbitrary depth, Compos. Math., 2003, 139: 85-100.

[9] J.M. Borwein, I.J. Zucker and J. Boersma, The evaluation of character Euler double sums, Ramanujan J., 2008, 15 (3): 377-405.

[10] P. Flajolet and B. Salvy, Euler sums and contour integral representations, Exp. Math., 1998, 7(1): 15-35.

[11] P. Freitas, Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums, Math. Comput., 2005, 74(251): 1425-1440.

[12] C. Glanois, Unramified Euler sums and Hoffman ★ basis, preprint, arXiv:1603.05178.

[13] D.R. Guo, Fu-Yu Tu and Z.X. Wang, Special functions, World Scientific Publishing Co Pte Ltd, 1989: 498-574.

[14] M.E. Hoffman, Multiple harmonic series, Pacific J. Math., 1992, 152: 275-290.

[15] M.E. Hoffman, Sums of products of Riemann zeta tails, Mediterr. J. Math., 2016, 13(5): 2771-2781.

[16] M.E. Hoffman, An odd variant of multiple zeta values, arXiv:1612.05232v4 [math.NT].

[17] I. Mezö, Nonlinear Euler sums, Pacific J. Math., 2014, 272: 201-226.

[18] H.N. Minh and M. Petitot, Lyndon words, polylogarithms and the Riemann ζ function, Discrete Math., 2000, 217: 273-292.

[19] M. Kaneko, H. Tsumura, Zeta functions connecting multiple zeta values and poly-Bernoulli numbers, arXiv: 1811.07736v1.

[20] M. Kaneko, H. Tsumura, On a variant of multiple zeta values of level two, arXiv: 1903.03747v2.

[21] H. Tsumura, A note on the parity result for multiple T-values, in preparation

[22] W.P. Wang and Y. Lyu, Euler sums and Stirling sums, J. Number Theory, 2018, 185: 160-193.

[23] C. Xu, Some evaluations of infinite series involving parametric harmonic numbers, Int. J. Number Theory, 2019, 15(7): 1531-1546.

[24] C. Xu, W.P. Wang, Explicit formulas of Euler sums via multiple zeta values, J. Symb. Comput., 2019, https://doi.org/10.1016/j.jsc.2019.06.009.

[25] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Volume II, Birkhauser, Boston, 120(1994) 497-512.

[26] J. Zhao, Multiple zeta functions, multiple polylogarithms and their special values, Series on Number Theory and its Applications, 12, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016.