6-14-2017

Long-Term Outcomes in Anterior Cruciate Ligament Reconstruction: A Systematic Review of Patellar Tendon Versus Hamstring Autografts.

Kirsten L. Poehling-Monaghan
Thomas Jefferson University

Hytham Salem
Thomas Jefferson University

Kirsten E. Ross
Thomas Jefferson University

Eric S Secrist
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/orthofp

Let us know how access to this document benefits you

Recommended Citation

Poehling-Monaghan, Kirsten L.; Salem, Hytham; Ross, Kirsten E.; Secrist, Eric S; Ciccotti, Michael C.; Tjoumakaris, Fotios; Ciccotti, Michael G.; and Freedman, Kevin B., "Long-Term Outcomes in Anterior Cruciate Ligament Reconstruction: A Systematic Review of Patellar Tendon Versus Hamstring Autografts." (2017). *Department of Orthopaedic Surgery Faculty Papers*. Paper 98. https://jdc.jefferson.edu/orthofp/98

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Orthopaedic Surgery Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Authors
Kirsten L. Poehling-Monaghan, Hytham Salem, Kirsten E. Ross, Eric S Secrist, Michael C. Ciccotti, Fotios Tjoumakaris, Michael G. Ciccotti, and Kevin B. Freedman
Anterior cruciate ligament (ACL) injury is a common occurrence, especially among young athletes. ACL reconstruction is therefore one of the most common orthopaedic procedures performed.16 Restoring knee stability is thought to benefit not only in the short term with knee stabilization and patient return to sport but also in the long term due to the purported increased risk of subsequent chondral or meniscal damage in the unstable knee.3 While this surgical procedure is generally accepted, there are a variety of specific techniques that remain widely debated. Perhaps most controversial is the question of graft choice, particularly in autograft reconstruction, where donor site morbidity and
long-term outcome is a concern. Two of the most common autografts used are bone–patellar tendon–bone (BPTB) and quadrupled hamstring (HS). Although numerous studies have been performed comparing these graft types, most focus on short-term outcomes with follow-up of 2 years or less, and thereby lack substantive evidence favoring one technique over another.

In 2011, Magnussen et al published the first and only systematic review on the topic with a minimum of 5 years of follow-up data. With the importance of evidence-based medicine on the rise in the past 20 years, an increasing number of studies with intermediate- and long-term follow-up have subsequently been published. A review of this more recent literature with longer follow-up may provide surgeons with a valuable tool in the decision-making process and may aid in discussions with patients regarding long-term clinical outcome and morbidity.

The purpose of this study was to conduct a systematic review of the current literature comparing BPTB autograft versus HS autograft for ACL reconstruction, with a minimum of 5-year follow-up. We sought to compare long-term outcomes with regard to knee stability or graft failure, complications, functional outcome, and radiographic evidence of osteoarthritis (OA). Our null hypothesis was that there is no difference between these 2 autograft types for ACL reconstruction.

METHODS

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed from the inception of the study. A literature search of 4 databases (PubMed, MEDLINE, Cochrane, and Scopus) was performed from inception through January 2016. Key search terms included “ACL,” “anterior cruciate ligament,” “reconstructive surgical procedures,” “patellar tendon,” “hamstring,” “gracilis,” “semitendinosus,” “semimembranosus,” “autologous,” and “long term” in different iterations. Included were comparative studies on BPTB autograft versus single-bundle HS autograft, level 1 and 2 evidence according to the American Academy of Orthopaedic Surgeons, and minimum 5-year follow-up. Excluded were non-English articles; allograft, in vitro, animal, or cadaveric studies; and systematic reviews and meta-analyses. When multiple studies existed utilizing the same patient population but reporting outcomes at different time points, the study with the longest follow-up was included in our review while the rest were excluded.

Data Extraction

A “Relevant Information Sought to Be Extracted From Individual Trials” list was used as a baseline template for data collection. All items in the PRISMA 2009 checklist for systematic reviews were included. Extracted data included study details (journal, study design, level of evidence, etc), key study statements, patient demographics (age, sex, etc), length of clinical follow-up, percentage lost to follow-up, description of surgical technique, associated

![Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram describing the inclusion process for studies in the systematic review.](image_url)
All studies had a minimum of 5 years of follow-up data. Follow-up ranged from 5 to 15.3 years (mean: 8.96 years). Clinical follow-up was reported in all 12 studies, with follow-up rates ranging from 34% to 100%. Radiographic data were reported at final follow-up in 5 studies. Four of the studies excluded patients with concomitant chondral or meniscal pathology. Of the remaining studies, only 1 reported a statistically significant difference in concomitant pathology between the 2 groups; Sajovic et al showed significant increase in the rate of subtotal meniscectomy at the time of ACL reconstruction in the HS group.

Modified Coleman scores were calculated for each study, which were graded from 0 to 90 based on a number of criteria, including study size, randomization, outcome criteria and reporting, and subject selection. Coleman methodology scores for the included studies ranged from 76 to 81 (Table 1).

Surgical Technique

All 12 studies included procedures performed by a single surgeon. Table 2 details the surgical techniques used for each, including whether they were performed transtibially or via an anteromedial portal. For BPTB procedures, nearly all studies used interference screw fixation for both tibial and femoral bone plugs, although most did not delineate whether these were metal, biocomposite, or bioabsorbable. Only 1 study used press fit, uninstrumented fixation for their femoral bone plugs, and sutures passed through an adjacent bone tunnel for their tibial fixation. HS fixation was slightly more variable, with femoral tunnels relying on interference screws in 5 studies, suspensory fixation in 4 studies, and staples to the lateral femoral condyle, crosspins, and “bottleneck effect into the femoral tunnel” in 2 studies. The tibial fixation of HS grafts included interference screws in 6 studies and washer/screw, staples, and “sutures through an adjacent bone bridge” in all others.

Manual and Instrumented Laxity

Eight studies reported the results of the Lachman test at most recent follow-up, and 5 reported on the pivot-shift test (Table 3). No significant difference in manual laxity was detected between the 2 groups among any study. Instrumented laxity testing was reported in 9 studies as mean side-to-side difference at maximum follow-up using maximum manual tension with either the KT-1000 or KT-2000 arthrometer (MEDmetric). No study demonstrated any difference between the BPTB and HS groups (Table 4).

Clinical Outcomes

A combination of IKDC scores, patient-reported Lysholm scores, and/or Tegner activity scores were reported in 10 of the 12 studies. IKDC results were reported as normal (A), nearly normal (B), abnormal (C), and severely abnormal (D). One study noted significantly better IKDC scores in the HS group (Table 5). The remainder of the studies showed no significant difference in reported clinical outcomes between BPTB and HS grafts.

Complications

Table 6 details the complications encountered in each group, as well as the number of contralateral graft tears at the time of most recent follow-up. The most common causes for reoperation were meniscal and cartilage debridement. One study showed a significant increase in reoperation for a number of reasons—including ACL revisions and subsequent chondral and meniscal pathology—in HS patients. Leys et al reported a significant increase in contralateral ACL tears with BPTB graft.

Seven studies reported on the presence of kneeling pain and 4 reported on anterior knee pain. Of those, 3 noted a statistically significant increase in kneeling pain in BPTB and 2 noted a significant increase in anterior knee pain among BPTB patients (Table 7). Finally, 2 studies noted a significant isolated meniscal tear among BPTB.

Radiographic Outcomes: Osteoarthritis

Weightbearing anteroposterior, lateral, and posteroanterior views at 30° of flexion were obtained at most recent follow-up and used to determine severity of OA in 5 of the 12 studies. Of those, 2 studies reported OA utilizing the IKDC grading system for joint space narrowing (A, normal; B, minimal; C, narrowing up to 50%; D, narrowing greater than 50%). One study used the Kellgren-Lawrence classification, and 2 others used surgeon-reported descriptions of OA (mild, moderate, or severe). In all, 3 studies found a significant increase in OA in the BPTB patients, as defined by IKDC grade B or greater, or “moderate to severe” joint space narrowing (Table 8). No studies showed an increased risk of OA with HS grafts. None of the studies commented on the presence of tunnel widening.

Failures

Failure was described as graft rupture, with other reasons for reoperation categorized as “complications.” All but 1 study reported the presence or absence of graft failures. All studies stated that failures were excluded from further analysis. Three studies reported zero failures. Table 9 details the number of failures per study and causes of failure, if reported. No studies showed any statistically significant difference in the rates of graft failure between the 2 groups.

DISCUSSION

A tremendous body of literature has explored the factors influencing outcome after ACL reconstruction, including
TABLE 1
Overview of Included Studies

Authors	Year	Journal	Procedure	Date Range	Level of Evidence	No. of Patients at Most Recent Follow-up	Study Design	Single or Multicenter	Country	Mean Length of Follow-up (Range)	% Follow-up	Coleman Score (Male %)	Age, y, Mean (Range)
Gifstad et al	2013	KSSTA	RCT	2001-2004	93	RCT Multicenter	Norway	7 y (63-94 mo)	90	81	72/42 (63%)	27 (18-49)	
Holm et al	2010	AJSM	RCT	2001-2004	93	RCT Single	Norway	10 y	34	81	33/24 (45%)	26 (15-50)	
Ibrahim	2005	Arthroscopy	RCT	1994-1996	93	RCT Single	Kuwait	6.75 y (60-96 mo)	100	78	85/0 (100%)	22.3 (17-34)	
Keays et al	2007	AJSM	Cohort	1994-1996	93	Cohort Single	Australia	6 y	90	81	39/17 (70%)	27	
Liden et al	2007	AJSM	RCT	1995-1997	93	RCT Single	Sweden	7 y (68-114 mo)	96	78	49/22 (69%)	BPTB: 28 (14-49), HS: 29 (15-50)	
Ahlden et al	2009	KSSTA	RS	1995-1998	93	RS Single	Sweden	89 mo (77-110 mo),	51	76	32/15 (68%)	BPTB: 26 (14-48), HS: 29 (15-40)	
O’Neill	2001	JBJS-A	RCT	1989-1994	93	RCT Single	United States	8.5 y (6-11 y)	100	78	NR	NR	
Leys et al	2012	AJSM	Cohort	1993-1994	93	Cohort Single	Australia	15 y	87	81	95/85 (52%)	BPTB: 25 (15-42), HS: 24 (13-52)	
Sajovic et al	2011	AJSM	RCT	1999-2000	93	RCT Single	Slovenia	11 y	82	78	30/22 (46%)	BPTB: 38 (27-58), HS: 36 (25-54)	
Webster et al	2016	AJSM	Single	1996-1998	93	Single	Australia	15.3 y (14-17)	72	86	36/11 (77%)	BPTB: 26.1, HS: 26.1	
Wippler	2011	Arthroscopy	RCT	1998-1999	93	RCT Single	Germany	8.8 y (7.41-10 y)	87	78	37/25 (59%)	BPTB: 29.87 (25-55), HS: 34.23 (26-64)	
Zaffagnini et al	2006	KSSTA	RS	1998	93	RS Single	Italy	5 y	100	81	34/26 (56%)	29.5 (15-49)	

Authors	No. of Surgeons	No. of BPTB (%)	No. of HS	Surgical Technique	Femoral Fixation	Tibial Fixation	Femoral Fixation	Tibial Fixation
Gifstad et al	NR	58 (51)	56	TT	IFS	IFS	Crosspin	Washer/Screw
Holm et al	1	35 (48)	37	TT	IFS	IFS	END	IFS
Ibrahim et al	1	40 (47)	45	TT	IFS	IFS	END	Washer/Screw
Keays et al	1	31 (50)	31	TT	IFS	IFS	IFS	IFS
Liden et al	1	34 (48)	37	TT	IFS	IFS	IFS	IFS
Ahlden et al	1	22 (47)	25	TT	IFS	IFS	IFS	IFS
O’Neill	NR	NR	NR	Group 1: 2-incision HS				
Leys et al	1	90 (50)	90	AM	IFS	IFS	IFS	IFS
Sajovic et al	1	32 (50)	32	AM	IFS	IFS	IFS	IFS
Webster et al	1	31 (48)	34	TT	END	IFS	END	Screw
Wippler et al	1	31 (50)	31	Press fit	IFS	IFS	Bottleneck effect in tunnel	
Zaffagnini	1	50 (50)	50	TT	IFS	IFS	Group II: END	IFS

Notes: AJSM, American Journal of Sports Medicine; BPTB, bone–patellar tendon–bone; HS, hamstring; JBJS-A, Journal of Bone and Joint Surgery, American Volume; KSSTA, Knee Surgery, Sports Traumatology, Arthroscopy; NR, not reported; RCT, randomized controlled trial; RS, randomized series.

aResults reported at time of selection not most recent follow-up.

TABLE 2
Overview of Surgical Details for Included Studies

Authors	No. of Surgeons	No. of BPTB (%)	No. of HS	Surgical Technique	Femoral Fixation	Tibial Fixation	Femoral Fixation	Tibial Fixation
Gifstad et al	NR	58 (51)	56	TT	IFS	IFS	Crosspin	Washer/Screw
Holm et al	1	35 (48)	37	TT	IFS	IFS	END	IFS
Ibrahim et al	1	40 (47)	45	TT	IFS	IFS	END	Washer/Screw
Keays et al	1	31 (50)	31	TT	IFS	IFS	IFS	IFS
Liden et al	1	34 (48)	37	TT	IFS	IFS	IFS	IFS
Ahlden et al	1	22 (47)	25	TT	IFS	IFS	IFS	IFS
O’Neill	NR	NR	NR	Group 1: 2-incision HS				
Leys et al	1	90 (50)	90	AM	IFS	IFS	IFS	IFS
Sajovic et al	1	32 (50)	32	AM	IFS	IFS	IFS	IFS
Webster et al	1	31 (48)	34	TT	END	IFS	END	Screw
Wippler et al	1	31 (50)	31	Press fit	IFS	IFS	Bottleneck effect in tunnel	
Zaffagnini	1	50 (50)	50	TT	IFS	IFS	Group II: END	IFS

Notes: AM, anteromedial; BPTB, bone–patellar tendon–bone; END, Endobutton fixation; HS, hamstring; IFS, interference screw fixation; LFC, lateral femoral condyle; NR, not reported; TT, transtibial.
There was no difference in manual or instrumented laxity in any of the studies we reviewed, contradicting the findings of more recent reviews of short-term-outcome studies. Xie et al23 recently published a meta-analysis of 22 level 1 and 2 studies with minimum 2-year follow-up, investigating BPTB versus quadrupled HS autograft ACL reconstruction. They found a decrease in pivot and rotational instability with BPTB. This echoed the findings of more recent reviews of short-term outcomes. Xie et al23 recently published a meta-analysis of 22 level 1 and 2 studies with minimum 2-year follow-up, thereby introducing surgical technique as a potential confounding variable in the remaining studies. Future studies will determine what percentage of OA risk, if any, is mitigated by the effects of more anatomic ACL reconstruction using BPTB versus HS autograft. While we found no difference between BPTB and HS autografts, particularly in terms of clinical outcomes scores, laxity, or graft failures, our study shows that there may be long-term outcome differences between BPTB and HS autografts. While a number of studies purport the superiority of one particular ACL autograft choice over another, confounding variables of such a complex surgery are often difficult to control, and may influence results. Our systematic review of level 1 and 2 studies published over the past decade focused exclusively on the direct comparison of BPTB autograft and HS autograft. While we found no difference between BPTB and HS methods in terms of clinical outcome scores, laxity, or graft failures, our study shows that there may be long-term outcome differences between patellar tendon and HS autografts, particularly in terms of risk of anterior knee pain and future OA. Moreover, the risk of OA was significantly higher in BPTB patients in the majority of studies reporting radiographic outcomes. This may be explained by the longer follow-up window of our studies, which mandates that index surgeries occurred utilizing techniques that may now have been succeeded by more modern anatomic drilling methods, thereby influencing future outcome. Indeed, only 1 study looked at tunnel positioning at the time of most recent follow-up, thereby introducing surgical technique as a potential confounding variable in the remaining studies. Future studies will determine what percentage of OA risk, if any, is mitigated by the effects of more anatomic ACL reconstruction.

Finally, we found no difference between BPTB and HS grafts with regard to graft failure in any of the studies reviewed. This contradicts the results of several recent meta-analyses, including those of Li et al9 who reported the results of their meta-analysis of 9 randomized controlled trials comparing BPTB and HS autograft reconstruction and found that BPTB portended an increased risk for a positive pivot shift. Finally, pooled data from a 2011 Cochrane Database systematic review of ACL reconstruction using BPTB versus HS autograft suggested that BPTB was actually protective against a positive pivot shift, but led to increased loss of extension and extension strength.15

Authors	No. of Patients at Follow-up	Lachman Grade	Lachman Grade	Pivot Grade	Pivot Grade
Gifstad et al3	45	97.8 (44)	2.3 (1)	97.8 (44)	2.3 (1)
Ibrahim et al16	40	87.5 (35)	14.3 (5)	87.5 (35)	14.3 (5)
Keays et al7	29	100 (29)	0 (0)	NR	NR
Liden et al10	30	96.7 (29)	3.4 (1)	NR	NR
Ahldén et al1	21	100 (21)	0 (0)	NR	NR
Leys et al8	43	100 (43)	0 (0)	100 (43)	0 (0)
Sajovic et al19	25	96 (24)	4.2 (1)	100 (25)	0 (0)
Zaffagnini et al24	25	100 (25)	0 (0)	100 (25)	0 (0)

aLachman and pivot-shift results are reported as \% (n). BPTB, bone–patellar tendon–bone; NR, not reported; ns, not significant.

Authors	Manual Laxitya	
	Side-to-Side Difference BPTB, mm	Side-to-Side Difference HS, mm
Gifstad et al3	1.4 ± 1.8	1.4 ± 1.4
Holm et al5	3.0 ± 3.2	2.0 ± 3.5
Keays et al7	1.36 ± 1	1.3 ± 1.4
Liden et al10	2.3	2.7
Ahldén et al1	1.4 ± 2.6	2.6 ± 3.3
Sajovic et al19	2.5 ± 1.7	1.5 ± 2.2
Webster et al21	0.6 ± 1.5	1.2 ± 1.3
Wipfler et al22	0.90 ± 0.271	0.64 ± 0.356
Zaffagnini et al24	0.4 ± 0.6	1.1 ± 1.9

aResults are reported as mean ± SD. BPTB, bone–patellar tendon–bone; HS, hamstring; ns, not significant.
database studies suggesting higher failure rates in HS autografts. Maletis et al15 looked at 17,436 ACL reconstructions from the Kaiser Permanente registry and found that, after adjusting for covariates, factors associated with the highest risk of rerupture included allograft or HS autograft. A similar study of the same registry assessed factors associated with the need for revision ACL reconstruction in approximately 21,000 patients, stratified by age group. These authors found that autograft ACL with HS was associated with higher risk of rerupture only in those patients younger than 21 years.12 Our level 1 and 2 studies may be more relevant for a meta-analysis in which pooled results are analyzed. We chose to present the results as a systematic review rather than combine the results in the form of a meta-analysis. We chose this method due to the heterogeneity of populations among individual studies, as well as differences in the reporting of outcomes. In addition, all studies involved a single surgeon performing both operations, all but 1 BPTB and 6 HS used interference screw fixation, and each study utilized the same approach for both grafts, thereby minimizing the potential influence of surgical technique.

We chose to include both level 1 and level 2 studies in order to have a more comprehensive list of studies comparing long-term outcome of BPTB and HS autografts. Since we did not combine the studies in the form of a meta-analysis, we did not feel that this inclusion criteria in any way compromised the presentation of the data for the reader. We believe it allows the reader to evaluate the results according to both levels of evidence. Accordingly, no sensitivity analysis was performed, since that would be more relevant for a meta-analysis in which pooled results are analyzed.

Several limitations also exist. A great variety of concomitant pathology was encountered at the time of index surgery, and the reporting and inclusion of this information
varied widely by study. This could certainly affect outcomes, particularly reoperation rates and subsequent joint space loss. Also, there was not enough consistency in the description of surgical technique in the included studies to allow detailed reporting on whether or not bone grafting was performed in BPTB patients, with only 3 of the studies including thorough or detailed surgical techniques. This could certainly affect outcomes such as anterior knee and kneeling pain. In addition, these studies did not uniformly address patient activity level or sport; nor did they address return to sport or preinjury activity level with any consistency, although these factors are known to influence retear rates in the literature.

Each individual series was also limited by the number of patients and rates of follow-up, both of which could affect the significance of the individual results. Finally, each study included a wide distribution of patient demographics, limiting the ability to comment on the effect of age or sex in the long-term outcomes of ACL reconstruction.

Ultimately, the definition of a “successful outcome” continues to flux and strongly depends on the time frame of reference. Some short-term studies define failure as the need for revision ACL reconstruction, while longer term follow-up emphasizes the avoidance of knee OA, pain, or subsequent surgery as a marker of success. Each of these factors should be considered when counseling the patient on graft choice, and the ultimate decision should incorporate individual expectations with both short- and long-term goals.

Authors	No. of Patients at Follow-up	Complications, % (n)	Description of Complications	Significance	BPTB Contralateral ACL	HS Contralateral ACL				
Gifstad et al^a	45	17.8 (8)	6 meniscal surgeries, 1 notchplasty, 1 irritation and debridement	48	33.3 (16)	9 meniscal surgeries, 3 debritions, 1 synovectomy, 1 cartilage surgery, 2 other surgeries	P = .048	1	3	ns
Holm et al^a	29	55.2 (16)	16 meniscal surgeries	28	42.9 (12)	12 meniscal surgeries	NR	3	4	NR
Ibrahim et al^a	40	15 (6)	3 meniscal injuries, 1 PCL rupture, 2 loose bodies	45	11.1 (5)	3 meniscal injuries, 2 loose bodies	ns	2	3	ns
Keays et al^a	29	20.7 (4)	3 meniscal surgeries, 1 loose body removal	27	14.8 (4)	3 meniscal surgeries, 1 loose body removal	2 (excluded from analysis)	3	NR	
Liden et al^{10,11}	36	16.7 (6)	1 septic arthritis, 1 meniscal tear, 1 symptomatic screw, 3 other	ns	NR	NR				
O'Neil et al¹⁷	75	NR	5 meniscecomies, 2 excisions of tibial screw, 1 excision of patellar tendon cyst, 1 excision of Achilles lesion, 1 arthroscopy	NR	NR	NR				
Leys et al^a	43	25.6 (11)	10 meniscecomies, 2 excisions of tibial screw, 2 excisions of meniscal lesion, 1 ORIF of tibial fracture	ns	23 (26%)	11 (12%)	P = .02			
Sajovic et al^{10,12,13}	25	0 (0)	NR	27	7.4 (2)	2 meniscal surgeries	NR	3 (9%) (excluded from analysis)	2 (6%) (excluded from analysis)	ns
Webster et al^{12,14}	22	NR	25	NR	4 (18%) (excluded from ROM and laxity analysis)	NR	2 (8%) (excluded from ROM and laxity analysis)	NR		
Wigfield et al¹³	25	0 (0)	NR	25	NR	NR	NR	NR		
Zaffagnini et al¹⁴	25	0 (0)	NR	50	0 (0)	NR	0	0	NR	

^aACL, anterior cruciate ligament; BPTB, bone–patellar tendon–bone; HS, hamstring; ORIF, open reduction internal fixation; NR, not reported; ns, not significant; PCL, posterior cruciate ligament; PT, patellar tendon; ROM, range of motion.

^aThe Gifstad trial calculated a P value for subsequent knee surgery, rather than complications. Subsequent knee surgery thus included revision ACL reconstruction.

“The Keays trial had a significant (P < .001) increase in tibiofemoral arthritis in the BPTB group as compared with the HS tendon group.”

“The Liden complication rate that was not statistically significant referred only to meniscus surgeries.”

“The Sajovic 5-year follow-up noted that there was no significant difference in overall complications; however, “In this study, significantly more subtalar meniscal resections were performed in the hamstring tendon group (P = .027); however, at 5-year follow-up, radiographic evidence of knee joint osteoarthritis was significantly elevated in patients from the patellar tendon group (P = .012).”

“The Sajovic 11-year follow-up noted that “Grade B and C abnormal radiographic findings were seen in 84% (11 of 27) of patients in the STG group (P = .008).”

“The Webster trial reported that a “higher proportion of patients in the PT group were participating in sport on a weekly basis (73% PT, 48% HS; P = .05). There was no difference in the degree of osteoarthritis between the groups.”
TABLE 7
Knee Pain

Authors	BPTB	HS						
	No. of Follow-up	Kneeling Pain, % (n)	Anterior Knee Pain, % (n)	No. of Follow-up	Kneeling Pain, % (n)	Anterior Knee Pain, % (n)	Significance	
------------------	------	-----	---------------------	---------------------	---------------------	---------------------	-------------	
Holm et al⁵	29	39 (11)	NR	28	29 (8)	NR	P < .05	
Ibrahim et al⁶	40	NR	25 (10)	45	NR	6.6 (3)	P < .05	
Liden et al¹⁰	32	48 (15)	NR	36	41 (15)	NR	ns	
Leys et al¹²	43	42 (18)	NR	51	26 (13)	NR	P = .04	
Sajovic et al¹⁵⁵	25	48 (12)	NR	27	30 (8)	ns		
Webster et al²¹	22	52 (11)	38 (8)	25	41 (10)	27 (7)	ns	
Wipfler et al²²	28	Kneeling test (1-4) mean: 1.48	NR	25	Kneeling test (1-4) mean: 1.09	NR	P = .002	
Zaffagnini et al²⁴	25	72 (18)	36 (9)	50	Group II: 44 (11)	Group III: 12 (3)	Group III: 8 (2)	P = .0001

*BPTB, bone–patellar tendon–bone; HS, hamstring; NR, not reported; ns, not significant.

*Results reported as “anterior knee or kneeling pain.”

TABLE 8
Radiographic Outcomes (Osteoarthritis)

Authors	BPTB	HS								
	No. of Patients at Follow-up	IKDC	K-L	Objective	No. of Patients at Follow-up	IKDC	K-L	Objective	Significance	
------------------	------	-----	-----	-----------	-----------------	-----	-----	-----------	-------------	
Ibrahim et al⁶	40	NR			47	NR			NR	
Keays et al⁴	29	NR			27	NR			Mild OA in 33% (9)	Non-PF OA: ns
Leys et al⁸	58	Grade A: 41% (24)	Grade B: 48% (28)	Grade C: 10% (6)	51	Grade A: 60% (31)	Grade B: 35% (18)	Grade C: 4% (2)	P < .04	
Sajovic et al¹²	25	Grade A: 16% (4)	Grade B: 40% (10)	Grade C: 44% (11)	27	Grade A: 37% (10)	Grade B: 52% (14)	Grade C: 7% (2)	Grade D: 4% (1)	P < .008
Webster et al²¹	19	Grade 0-1: 74% (14)	Grade 2-3: 28% (5)	19	Grade 0-1: 68% (13)	Grade 2-3: 32% (6)		ns		

*BPTB, bone–patellar tendon–bone; HS, hamstring; IKDC, International Knee Documentation Committee; K-L, Kellgren-Lawrence; NR, not reported; ns, not significant; OA, osteoarthritis; PF, patellofemoral.

TABLE 9
Failures

Authors	BPTB	HS					
	No. of Patients at Follow-up	No. of Failures, % (n)	Cause of Failure	No. of Patients at Follow-up	No. of Failures, % (n)	Cause of Failure	Significance
------------------	------	-----	---------------------	-----------------	-----------------	---------------------	-------------
Gifstad et al¹³	45	4 (2)	NR	48	6 (3)	NR	ns
Holm et al⁵	29	10 (3)	Traumatic	28	11 (3)	Traumatic	NR
Ibrahim et al⁶	40	0 (0)	NR	45	0 (0)	NR	NR
Keays et al⁷	29	0 (0)	NR	27	4 (1)	Atraumatic	NR
Liden et al¹⁰	32	3 (1)	NR	36	6 (2)	NR	NR
O’Neill¹⁷	150	5 (4) (group II)	7 (5) (group III)	75	8 (6) (all group I)	55 (6) (all group II)	ns
Leys et al⁸	43	8 (7)	NR	51	17 (15)	NR	ns
Sajovic et al¹⁹	25	12 (4)	NR	27	6 (2)	NR	ns
Webster et al²¹	22	5 (1)	Traumatic	25	12 (3)	NR	ns
Wipfler et al²²	28	11 (3)	NR	25	12 (3)	Atraumatic	NR
Zaffagnini et al²⁴	25	0 (0)	NR	50	0 (0)	NR	NR

*BPTB, bone–patellar tendon–bone; HS, hamstring; NR, not reported; ns, not significant.
CONCLUSION

This review of recent literature comparing the long-term follow-up of ACL reconstruction with either BPTB autograft or HS autograft suggests no significant differences in manual/instrumented laxity and graft failures between graft types. BPTB grafts are associated with an increase in anterior knee and kneeling pain, and a greater frequency of OA after 5 years. As the number of high-quality, randomized controlled trials comparing ACL techniques continues to increase, the need for studies that analyze confounding variables, specifically concomitant injury, patient demographics, and demand, persists. In the interim, consistently applied surgical techniques can offer excellent outcomes, regardless of graft choice.

REFERENCES

1. Ahldén M, Kartus J, Ejerhed L, Karlsson J, Sernert N. Knee laxity measurements after anterior cruciate ligament reconstruction, using either bone-patellar-tendon-bone or HS tendon autografts, with special emphasis on comparison over time. Knee Surg Sports Traumatol Arthros. 2009;17:1117-1124.
2. Coleman BD, Khan KM, Maffulli N, Cook JL, Wark JD. Studies of surgical outcome after patellar tendinopathy: clinical significance of methodological deficiencies and guidelines for future studies. Victorian Institute of Sport Tendon Study Group. Scand J Med Sci Sports. 2000;10:2-11.
3. Gifstad T, Sole A, Strand T, Uppehøg G, Grøntvedt T, Drogset JO. Long-term follow-up of patellar tendon grafts or hamstring tendon grafts in endoscopic ACL reconstructions. Knee Surg Sports Traumatol Arthros. 2013;21:576-583.
4. Harris JD, Quatman CE, Manning MM, Siston RA, Flanagan DC. How to write a systematic review. Am J Sports Med. 2014;42:2761-2768.
5. Holm I, Öestad BE, Risberg MA, Aune AK. No difference in knee function or prevalence of osteoarthritis after reconstruction of the anterior cruciate ligament with 4-strand hamstring autograft versus patellar tendon-bone autograft: a randomized study with 10-year follow-up. Am J Sports Med. 2010;38:448-454.
6. Ibrahim SA, Al-Kussary IM, Al-Misfer AR, Al-Mutairi HQ, Ghafari SA, El Noor TA. Clinical evaluation of arthroscopically assisted anterior cruciate ligament reconstruction: patellar tendon versus gracilis and semitendinosus autograft. Arthroscopy. 2005;21:412-417.
7. Keays SL, Bullock-Saxton JE, Keays AC, Newcombe PA, Bullock MI. A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: patellar tendon versus semitendinosus and gracilis tendon graft. Am J Sports Med. 2007;35:729-739.
8. Leys T, Salmon L, Waller A, Linklater J, Pinczewski L. Clinical results and risk factors for reinjury 15 years after anterior cruciate ligament reconstruction: a prospective study of hamstring and patellar tendon grafts. Am J Sports Med. 2012;40:595-605.
9. Li S, Chen Y, Lin Z, Cui W, Zhao J, Su W. A systematic review of controlled clinical trials comparing hamstring autografts versus bone-patellar tendon–bone autografts for the reconstruction of the anterior cruciate ligament. Arch Orthop Trauma Surg. 2012;132:1287-1297.
10. Lidén M, Ejerhed L, Sernert N, Laxdal G, Kartus J. Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction: a prospective, randomized study with a 7-year follow-up. Am J Sports Med. 2007;35:740-748.
11. Magnussen RA, Carey JL, Spindler KP. Does autograft choice determine intermediate-term outcome of ACL reconstruction? Knee Surg Sports Traumatol Arthrosoc. 2011;19:462-472.
12. Maletis GB, Chen J, Inacio MC, Funahashi TT. Age-related risk factors for revision anterior cruciate ligament reconstruction: a cohort study of 21,304 patients from the Kaiser Permanente Anterior Cruciate Ligament Registry. Am J Sports Med. 2016;44:331-336.
13. Maletis GB, Inacio MC, Funahashi TT. Risk factors associated with revision and contralateral anterior cruciate ligament reconstructions in the Kaiser Permanente ACLR registry. Am J Sports Med. 2015;43:641-647.
14. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8:336-341.
15. Mohtadi NG, Chan DS, Dainty KN, Whelan DB. Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev. 2011;9:CD005960.
16. Mountcastle SB, Posner M, Kragh JF Jr, Taylor DC. Gender differences in anterior cruciate ligament injury vary with activity: epidemiology of anterior cruciate ligament injuries in a young, athletic population. Am J Sports Med. 2007;35:1635-1642.
17. O’Neill DB. Arthroscopically assisted reconstruction of the anterior cruciate ligament. A follow-up report. J Bone Joint Surg Am. 2001;83-A:1329-1332.
18. Obremskey WT, Pappas N, Atallah-Wasif E, Tornetta P 3rd, Bhandari M. Level of evidence in orthopaedic journals. J Bone Joint Surg Am. 2005;87:2632-2638.
19. Sajovic M, Strahovnik A, Dernovsek MZ, Skaza K. Quality of life and clinical outcome comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: an 11-year follow-up of a randomized controlled trial. Am J Sports Med. 2011;39:2161-2169.
20. Sajovic M, Vengust V, Komadina R, Tavcar R, Skaza K. A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: five-year follow-up. Am J Sports Med. 2006;34:1933-1940.
21. Webster KE, Feller JA, Hartnett N, Leigh WB, Richmond AK. Comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction: a 15-year follow-up of a randomized controlled trial. Am J Sports Med. 2016;44:83-90.
22. Wippler F, Donner S, Zechmann CM, Springer J, Siebold R, Paessler HH. Anterior cruciate ligament reconstruction using patellar tendon versus hamstring tendon: a prospective comparative study with 9-year follow-up. Arthroscopy. 2011;27:653-665.
23. Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q. A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee. 2015;22:100-110.
24. Zaffagnini S, Maracchi M, Lo Presti M, Giordano G, Iacono F, Neri MP. Prospective and randomized evaluation of ACL reconstruction with three techniques: a clinical and radiographic evaluation at 5 years follow-up. Knee Surg Sports Traumatol Arthrosoc. 2006;14:1060-1069.