REVIEW

Advances in Understanding Hair Growth [version 1; referees: 2 approved]

Bruno A. Bernard
L’Oréal Research and Innovation, Asnières-sur-Seine, France

Abstract
In this short review, I introduce an integrated vision of human hair follicle behavior and describe opposing influences that control hair follicle homeostasis, from morphogenesis to hair cycling. The interdependence and complementary roles of these influences allow us to propose that the hair follicle is a true paradigm of a "Yin Yang" type, that is a cold/slow-hot/fast duality. Moreover, a new promising field is emerging, suggesting that glycans are key elements of hair follicle growth control.

This article is included in the F1000 Faculty Reviews channel.

Corresponding author: Bruno A. Bernard (bbernard@rd.loreal.com)

How to cite this article: Bernard BA. Advances in Understanding Hair Growth [version 1; referees: 2 approved] F1000Research 2016, 5 (F1000 Faculty Rev):147 (doi: 10.12688/f1000research.7520.1)

Copyright: © 2016 Bernard BA. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Competing interests: The author is an employee of L'Oréal company.

First published: 08 Feb 2016, 5(F1000 Faculty Rev):147 (doi: 10.12688/f1000research.7520.1)
Introduction

The hair follicle is a true paradigm of mesenchymal-epithelial interaction. From early morphogenesis to a fully formed organ, the hair follicle life-cycle is controlled by a dialog between mesenchymal and epithelial compartments. However, this dialog relies on a delicate balance between conflicting and/or opposing influences.

With respect to hair follicle morphogenesis, the reaction-diffusion model explains how slowly diffusing inducers and rapidly diffusing inhibitors orchestrate, through local activation and at distance inhibition, the hair follicle patterned formation. Indeed, the seminal work of A. Turing has been recently confirmed through a formal identification of morphogen activator-inhibitor couples, such as Wnt/DKK1 and EDAR/BMP.

Considering its dual mesenchymal and epithelial origin, the hair follicle can be considered a composite organ, with a concentric structure. Dermal and epithelial compartments interact with each other and are characterized by specific differentiation programs. Opposing signaling pathways concur to control the unique behavior of human hair follicle and maintain its unique intrinsic homeostasis. As the activity of diffusible factors, such as growth factors and morphogens, can be modulated by glycans, their possible role in hair growth control must be taken into account.

Hair follicle behavior

The hair follicle is the only organ in mammals that sequentially and repeatedly transits from a phase of active fiber production (anagen) to a resting phase (telogen), through rapid phases of tissue regression (catagen) and regeneration (neogen). A recently published comprehensive guide describes most of the morphological and immunohistological markers that characterize the different stages of the human hair follicle cycle and the intense tissue remodeling events which take place. Of note, hair follicle regeneration relies on the cyclical activation of stem cells. In the human hair follicle, these stem cells are harbored within two distinct reservoirs, one of them bathing in a hypoxic environment. Instead of a cyclical behavior with an intrinsic automaton, the human hair follicle exhibits a stochastic behavior, the probability of duration of each phase fitting with a lognormal equation. A new concept (Figure 2)

Figure 1. From reaction-diffusion to hair follicle patterning. (A) Wnt morphogen stimulates its own synthesis as well as that of Dkk1, its inhibitor. Wnt diffuses slowly while Dkk1 diffuses rapidly. (B) As a result, in a periodic way, Wnt concentration is higher than that of DKK1, and a hair placode can develop. (C) The reaction-diffusion process thus explains the patterned distribution of hair follicles at the surface of the scalp.

Figure 2. New representation of hair follicle behavior. An active steady state (ASS) of fiber production (anagen) and a dormant steady state (DSS) (telogen/kenogen) are interspaced by short-lasting phases of regression (catagen) and neomorphogenesis (neogen).
postulates the existence of a bi-stable equilibrium\(^\text{11}\) which controls human hair follicle dynamics, including an active steady state (the anagen stage) and a resting steady state (the telogen stage), the transition between these two steady states involving either a degradation phase (the catagen phase) or a neo-morphogenesis phase (the neogen phase). It is now believed that mesenchymal and epithelial oscillators control the stochastic autonomous switching between these two steady states\(^\text{12,13}\). The transition phases are both controlled by a complex and dynamic network of interacting activators and inhibitors, diffusible morphogens, and growth factors of opposite influences\(^\text{14}\). Of note, however, extrapolating from results only obtained in rodents must be approached with caution, since major differences exist between human and mouse hair follicles in terms of phase duration, synchronicity, tissue remodeling, stem cell reservoirs, and so on.

During the active steady state, hair fiber production results from a finely, timely, and spatially tuned choreography of gene expression, which is highly sensitive to stimulatory and inhibitory signals. A number of signaling pathways\(^\text{15}\), cytokines\(^\text{16,17}\), neuropeptides\(^\text{18}\), hormones\(^\text{19-22}\), prostaglandins\(^\text{19}\), and growth factors\(^\text{19}\) are known to modulate the duration of the active steady state of the hair follicle (Figure 3). For example, while insulin-like growth factor (IGF)-1 is required for anagen maintenance\(^\text{25,26}\), fibroblast growth factor (FGF)-5 appears to be a crucial regulator of hair length in humans\(^\text{27}\), as a strong inducer of the catagen phase. Moreover, the human hair follicle is endowed with an autonomous androgen metabolism\(^\text{28}\), a strict dependence on arginine\(^\text{29}\), polyamines\(^\text{30}\), and glucose\(^\text{31}\) for growth, and a specific immunological response\(^\text{32}\). The hair follicle is also endowed with a full prostaglandin metabolism and a complex network of prostaglandin (PG) receptors\(^\text{33,34}\). Recent data suggest that a delicate equilibrium between PGE2/PGF2a on the one hand and PGD2 on the other hand controls the duration of the active steady state. PGE2/PGF2a promotes hair growth maintenance, while PGD2 inhibits it and triggers anagen to catagen transition\(^\text{35}\). Finally, re-evaluating the mechanisms by which agents such as cyclosporine A\(^\text{36}\) or JAK-STAT inhibitors\(^\text{37}\) promote human hair growth might help to identify new key genes and pathways involved in the control of hair growth.

Besides the active steady state, new data demonstrate that the resting steady state is not as quiescent as suspected and can be divided into a refractory period and a permissive period. Indeed, during the telogen phase, the follicle is under the influence of factors that would repress the onset of the neogen phase and factors that would trigger it. Specifically, a strong expression of bone morphogenetic protein (BMP) and FGF-18 defines the refractory period, during which the neogen onset is prevented. The progressive increase in the production of BMP antagonist noggin, Wnt/Fz/fb-catenin pathway activators, and transforming growth factor (TGF)-β then reaches a critical threshold that shifts the telogen follicle to a competency status, receptive to FGF-7, secreted by the nearby dermal papilla, and, ultimately, triggers the onset of the neogen phase\(^\text{38}\).

Glyco-biology of the human hair follicle

It is clear from the above that the complex and rhythmic behavior of the human hair follicle is under the control of multiple, intricate pathways with opposing influences. In this respect, the interdependence and complementary roles of these influences allow us to propose that the hair follicle is a true paradigm of a “Yin Yang” type...
duality and harmony. However, in our opinion, the fine tuning of these influences cannot solely rely on the timely and spatially controlled gene expression, but also on glycans, “the third revolution in evolution”59. Glycans are endowed with such a huge molecular diversity that they can be considered the third language of life, after DNA and proteins.

Linear or branched oligosaccharides can be attached to a protein backbone via O-(serine/threonine) or N-(asparagine) linkages. They form the large class of N-Complex type glycans. Glycosaminoglycans are linear copolymers of 6-O-sulfated disaccharide units which define them as chondroitin, dermatan, keratin, or heparin sulfates. Proteoglycans have one or more glycosaminoglycan side chains attached to a core protein. Glycosaminoglycans, proteoglycans, and glycan moieties of glycoproteins have long been known to play important roles in the maintenance of protein conformation and solubility, protection against proteolytic degradation, mediation of biological activity, intracellular sorting and externalization, and embryonic development and differentiation50-54. The distribution of proteoglycans in the human hair follicle was originally described in the early 1990s, namely for chondroitin sulfate, dermatan sulfate, and heparin sulfate proteoglycans55, for syndecan 1, perlecan and decorin56, and for versican57. Thanks to the availability of new immunological tools, the distribution of proteoglycans in the human hair follicle has been further refined58 (Figure 4), highlighting a complex, dynamic, and regionalized network of proteoglycans. With respect to cell surface complex type N-glycans, the use of specific fluorescently labeled lectins (saccharide-binding proteins) revealed a differential N-glycan composition among the different hair follicle compartments59-62 (Figure 5).

Figure 4. Diagram of proteoglycan expression in the human hair follicle. Diagram shows the distribution of versican, perlecan, syndecan 1, aggregan, biglycan, and heparan sulfate proteoglycans in the different hair follicle compartments. BM, basement membrane; CTS, connective tissue sheath; IRS, inner root sheath; ORS, outer root sheath.

What could be the role of these glycans? It has been known for quite a long time that growth factor activation could be regulated by proteoglycans63,64 and that heparan sulfate proteoglycans were involved in fine-tuning mammalian physiology65 and in cell signaling during development66. With respect to key regulators of hair follicle growth and cycling, syndecans modulate Wnt signaling cascades67, the glycosaminoglycan chains of proteoglycans shape Hedgehog gradients and signal transduction68, and O-linked glycosylation controls Notch 1 interaction with its cognate Delta-like 4 receptor69. Decorin, a small leucine-rich proteoglycan, directly modulates TGF-β, epidermal growth factor (EGF), IGF-1 and hepatocyte growth factor (HGF) signaling, all known actors of hair follicle cycling69, and appears to act as an anagen inducer70. Altogether, these recent results designate glycans as long time ignored key players in hair growth control. But, on top of that, enzymes can further modulate the biological activity of these glycans. For example, fucosyl transferase is absolutely required for Notch activity, and disruption of fucosyl transferase expression in murine hair follicle lineages results in aberrant telogen morphology, a decrease of bulge stem cell markers, a delay in anagen re-entry, and dysregulation of proliferation and apoptosis during the hair cycle transition71. With respect to proteoglycans, heparanase (an endoglycosidase that cleaves heparin sulfate) was found expressed in the outer root sheath of murine hair follicles and identified as an important regulator of hair growth through its ability to release heparin-bound growth factors71. In the human hair follicle, however, heparanase was found located in the inner root sheath. Its inhibition provoked an immediate transition from anagen to catagen71. In this case, the HPSG/heparanase network appears to be a key controller of internal hair follicle homeostasis.

Finally, extracellular sulfatases appear to be critical regulators of heparin sulfate activities. Sulf1 and Sulf2, by removing glucosamine-6S groups from specific regions of heparan sulfate chain, modulate (a) Wnt interaction with its cognate receptor Frizzled, (b) BMP signaling by releasing BMP antagonist Noggin, and (c) FGF-2 ability to form the functional FGF-2-HS-FGFR ternary complex72. Of note, TGF-β1, by inducing Sulf1 expression73, might indirectly modulate Wnt, BMP, and FGF-2 activities, which could explain its inhibitory effect on hair growth. From a clinical point of view, alterations of glycosaminoglycan degradation provoke mucopolysaccharidoses and abnormalities in hair morphology74, which can be reversed by appropriate enzyme replacement therapy75.
Conclusion
The hair follicle is clearly endowed with a unique behavior. Its bi-stability and the intense remodeling processes that it provokes rely on the permanent dialog between opposing and complementary influences, impacting all follicle compartments. From this interdependent duality, one can easily understand that an optimal way to describe the complex equilibrium which controls hair follicle homeostasis is the concept of “Yin Yang”. Until recently, the understanding of hair growth mainly relied on deciphering the patterns of gene expression within the different hair follicle compartments throughout the hair cycle70,71. From now on, the fine-tuning of the activities of growth factors and morphogens by the modulating effects of glycans will also have to be taken into consideration.

From a prospective point of view, it is likely that a better understanding of hair diseases, and more specifically the role of inflammation and immune response in the development of alopecia areata72 and androgenetic alopecia73, will likely provide further insights into the role of the so-called immune privilege74 in hair growth control. Moreover, with the advent of mature metabolomics technologies75 coupled with in vitro human hair growth technology76, one can predict that this integrative approach will permit us to identify these key metabolic pathways sustaining normal hair growth.

Competing interests
The author is an employee of L’Oréal company.

Grant information
The author(s) declared that no grants were involved in supporting this work.

Acknowledgements
I thank Ms E. Debecker (L’Oréal R&I) for her expert assistance in lectin labeling experiments.

Figure 5. Diagram of proteoglycan expression in the human hair follicle. Distribution of N-glycans identified by their reactivity with fluorescently labelled *Pisum sativum* agglutinin (PSA), wheat germ agglutinin (WGA) and *Ulex europaeus* agglutinin (UEA) in both skin and hair follicles. PSA mainly decorates the dermal compartments of skin and hair follicles, while WGA decorates both dermal and epithelial compartments. UEA only decorates the epidermis stratum granulosum and the hair follicle IRS.
References

1. Bennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol. 2012; 23(8): 917–927. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

2. Turing A: The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci. 1952; 237: 37–72. Publisher Full Text

3. Schlake T, Sick S: Canonical WNT signalling controls hair follicle spacing. Cell Adh Migr. 2007; 1(3): 149–151. PubMed Abstract | Publisher Full Text | Free Full Text

4. Mou C, Jackson B, Schneider P, et al.: Generation of the primary hair follicle pattern. Proc Natl Acad Sci U S A. 2006; 103(24): 9075–9080. PubMed Abstract | Publisher Full Text | Free Full Text

5. Oh JW, Kliepeper J, Langan EA, et al.: A guide to Studying Human Hair Follicle Cycling in Vivo. J Invest Dermatol. 2015; 136(1): 34–44. PubMed Abstract | Publisher Full Text

6. Alonso L, Fuchs E: The hair cycle. J Cell Sci. 2006; 119(Pt 3): 391–393. PubMed Abstract

7. Commo S, Gaillard O, Bernard BA: Hair follicle stem cell reservoir? K19 positive compartments in the outer root sheath: a unifying hypothesis for human hair follicle as an excitable medium. J Invest Dermatol. 2013; 133(8): 2094–2097. PubMed Abstract | Publisher Full Text

8. Purba TS, Haslam IS, Poblet E, et al.: Estrogen leads to reversible hair cycle modulation of freshly isolated human hair follicles capable of elongation: a glaucomatous, aberrant glycogenic tissue. J Invest Dermatol. 1993; 100(6): 834–840. PubMed Abstract

9. Halloy J, Bernard BA, Loussonau G, et al.: Modeling the dynamics of human hair cycles by a follicular autonomic system. Proc Natl Acad Sci U S A. 2000; 97(15): 8328–8333. PubMed Abstract | Publisher Full Text | Free Full Text

10. Bernard BA: The human hair follicle, a bistable organ? Exp Dermatol. 2012; 21(6): 401–403. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

11. Al-Nuaimi Y, Goodfellow M, Paus R, et al.: A protoplastic mathematical model of the human hair cycle. J Theor Biol. 2012; 310: 143–159. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

12. Tasselli R, Bheda-Malga A, D’Cianandra T, et al.: Mouse hair cycle expression dynamics modeled as coupled mesenchymal and epithelial oscillators. PLoS Comput Biol. 2014; 10(8): e1004394. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

13. Murray PJ, Maini PK, Pikkus NV, et al.: Modelling hair follicle growth dynamics as an excitable medium. PLoS Comput Biol. 2012; 8(12): e1002804. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

14. Lee J, Turnbar T: Hairy tale of signaling in hair follicle development and cycling. Semin Cell Dev Biol. 2012; 23(8): 906–916. PubMed Abstract | Publisher Full Text | Free Full Text

15. Mahé YF, Buan B, Bilioni N, et al.: Pro-inflammatory cytokine cascade in human plucked hair. Skin Pharmacol. 1996; 9(6): 366–375. PubMed Abstract | Publisher Full Text

16. Kwack MH, Ahn JS, Kim MK, et al.: Dihydrotestosterone-inducible IL-6 inhibits elongation of human hair shafts by suppressing matrix cell proliferation and promotes regression of hair follicles in mice. J Invest Dermatol. 2012; 132(1): 43–49. PubMed Abstract | Publisher Full Text

17. Samuelov L, Kinori M, Bertolini M, et al.: Neural controls of human hair growth: calcitonin gene-related peptide (CGRP) induces catagen. J Decem Sci Biol. 2012; 67(2): 153–155. PubMed Abstract | Publisher Full Text

18. Bilioni N, Buan B, Gauthier B, et al.: Thyroid hormone receptor beta1 is expressed in the human hair follicle. J Invest Dermatol. 2005; 124(2): 645–652. PubMed Abstract | Publisher Full Text

19. Meier N, Langan D, Hilgbl H, et al.: Thymic peptides differentially modulate human hair follicle growth. J Invest Dermatol. 2012; 132(5): 1516–1519. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

20. Inoue J, Imai S: Molecular basis of androgenetic alopecia: From androgen to paracrine mediators through dermal papilla. J Dermatol Sci. 2011; 61(1): 1–6. PubMed Abstract | Publisher Full Text

21. Hu HM, Zhang SB, Lei XH, et al.: Estrogen leads to reversible hair cycle regeneration through inducing premature catagen and maintaining telogen. PLoS One. 2012; 7(7): e40124. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation | Publisher Full Text

22. Hu HM, Woodrow DF, Farjo NP, et al.: The prostates-related glaucoma therapy, bimatoprost, offers a novel approach for treating scalp alopecia. PASEB J 2013; 27(2): 557–567. PubMed Abstract | Publisher Full Text | Free Full Text

23. Imaura T: Physiological functions and underlying mechanisms of fibrobast growth factor (FGF) family members: recent findings and implications for their pharmacological application. Biol Pharm Bull. 2014; 37(7): 1081–1089. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

24. Philpott MP, Sanders DA, Kealey T: Effects of insulin and insulin-like growth factors on cultured human hair follicles: IGF-I at physiologic concentrations is an important regulator of hair follicle growth in vitro. J Invest Dermatol. 1994; 102(6): 867–871. PubMed Abstract

25. Ahn SY, PI LO, Hwang ST, et al.: Effect of IGF-I on Hair Growth Is Related to the Anti-Apoptotic Effect of IGF-I and Up-Regulation of PDGF-A and PDGF-B. Ann Dermatol. 2012; 24(1): 26–31. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

26. Higgin CA, Petukhova L, Hare, et al.: FGFS is a crucial regulator of hair length in humans. Proc Natl Acad Sci U S A. 2011; 108(29): 10648–10653. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

27. Germ C, Valko M, Pichard P, et al.: Type-1 steroid 5 alpha-reductase is functionally active in the hair follicle as evidenced by new selective inhibitors of either type-1 or type-2, 5 alpha-hydrogenase. Exp Dermatol. 2002; 11(1): 52–58. PubMed Abstract | Publisher Full Text

28. Paus R, Nickoloff BJ, Ito T: A ‘hairly’ privilege. Trends Immunol. 2005; 26(1): 32–40. PubMed Abstract | Publisher Full Text

29. Colombe L, Vindrios A, Michele JP, et al.: Prostaglandin metabolism in human hair follicle. Exp Dermatol. 2007; 16(9): 762–769. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

30. Hawkeshaw NJ, Haslam IS, Ansell DM, et al.: Re-Evaluating Cyclosporine A as a Hair Growth-Promoting Agent in Human Scalp Hair Follicles. J Invest Dermatol. 2015; 135(8): 2129–2132. PubMed Abstract | Publisher Full Text | Free Full Text

31. Harel S, Higgins CA, Cerise JE, et al.: Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv. 2015; 1(9): e1500973. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

32. Geyman M, Pikkus MV, Treflisen E, et al.: Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev Camb Philos Soc. 2015; 90(4): 1179–1196. PubMed Abstract | Publisher Full Text | Free Full Text

33. Lau G, Kridli J, Zoldok V: Glysans - the third revolution in evolution. Front Genet. 2014; 5: 145. PubMed Abstract | Publisher Full Text | Free Full Text

34. Bouquet JC, Bernard B, Aubery M, et al.: Concanavalin A binding to amphibian embryo and effect on morphogenesis. J Embryol Exp Morphol. 1979; 61: 63–72. PubMed Abstract

35. Bernard BA, Yamada KM, Olden K: Carbohydrates selectively protect a specific domain of fibronectin against proteases. J Biol Chem. 1982; 257(14): 8549–8554. PubMed Abstract

36. Codogno P, Bernard B, Font J, et al.: Changes in protein glycosylation during chick embryo development. Arch Biochem Biophys. 1983; 226(3): 265–275. PubMed Abstract | Publisher Full Text

37. Bernard BA, Newton SA, Olden K: Effect of size and location of the olsogasaccharide chain on protease degradation of bovine pancreatic ribonuclease. J Biol Chem. 1983; 258(20): 12198–12202. PubMed Abstract

38. Olden K, Bernard BA, Humphries M, et al.: Function of glycoprotein glycans. TBS. 1985; 10(2): 78–82. Publisher Full Text

39. Wang H, Zhou T, Peng J, et al.: Distinct roles of N-glycosylation at different sites of corin in cell membrane targeting and ectodomain shedding. J Biol Chem. 2015; 290(3): 1654–1663. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

40. Westgate GE, Messenger AG, Watson LP, et al.: Distribution of proteoglycans

Page 8 of 8
during the hair growth cycle in human skin. J Invest Dermatol. 1991; 96(2): 191–195. PubMed Abstract

47. Couchman JR. Hair follicle proteoglycans. J Invest Dermatol. 1993; 101(1 Suppl): 605-64. PubMed Abstract | Publisher Full Text

48. du Cros DL, LeBaron RG, Couchman JR. Association of versican with dermal matrices and its potential role in hair follicle development and cycling. J Invest Dermatol. 1995; 105(3): 426–431. PubMed Abstract | Publisher Full Text

49. Malgouries S, Thibaut S, Bernard BA. Proteoglycan expression patterns in human hair follicle. Br J Dermatol. 2008; 158(2): 234–242. PubMed Abstract | Publisher Full Text

50. Ohno J, Fukuyama K, Epstein WL. Glycoconjugate expression of cells of human anagen hair follicles during keratinization. Anat Rec. 1990; 228(1): 1–6. PubMed Abstract | Publisher Full Text

51. Tezuka M, Ito M, Ito K, et al. Differential analysis of the human anagen hair apparatus using lectin binding histochemistry. Arch Dermatol Res. 1991; 283(3): 180–185. PubMed Abstract | Publisher Full Text

52. Heng MC, Levine S, Fine H, et al. Expression of the L-fucose moiety on infrainfundibular follicular keratinocytes of terminal follicles, its decreased expression on vellus and indeterminate follicles of androgenetic alopecia, and re-expression in drug-induced hair regrowth. J Invest Dermatol. 1992; 98(1): 73–78. PubMed Abstract

53. Schlessinger J, Lax L, Lammont M. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell. 1995; 83(3): 357–360. PubMed Abstract | Publisher Full Text

54. Kresse H, Schönherr E. Proteoglycans of the extracellular matrix and growth control. J Cell Physiol. 2001; 189(3): 266–274. PubMed Abstract | Publisher Full Text

55. Bishop JR, Schuksz M, Eiko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007; 446(7139): 1030–1037. PubMed Abstract | Publisher Full Text

56. Lin X. Functions of heparan sulphate proteoglycans in cell signaling during development. Development. 2004; 131(24): 6009–6021. PubMed Abstract | Publisher Full Text | F1000 Recommendation

57. Patakí CA, Couchman JR, Brabek J. Wnt Signaling Cascades and the Roles of Syndecan Proteoglycans. J Histochim Cytochem. 2015; 63(7): 465–480. PubMed Abstract | Publisher Full Text | F1000 Recommendation

58. Whalen DM, Malinauskas T, Gilbert RJ, et al. Structural insights into proteoglycan-shaped Hedgehog signaling. Proc Natl Acad Sci U S A. 2013; 110(41): 16420–16425. PubMed Abstract | Publisher Full Text | F1000 Recommendation

59. Luca VC, Judge KM, Pierce NW, et al. Structural biology. Structural basis for Notch1 engagement of Delta-like 4. Science. 2016; 347(6224): 847–853. PubMed Abstract | Publisher Full Text | F1000 Recommendation

60. Inui S, Iitami S. A newly discovered linkage between proteoglycans and hair biology: decorin acts as an anagen inducer. Exp Dermatol. 2014; 23(8): 547–548. PubMed Abstract | Publisher Full Text | F1000 Recommendation

61. Jing J, Wu XJ, Li YL, et al. Expression of decorin throughout the murine hair follicle cycle: hair cycle dependence and anagen phase prolongation. Exp Dermatol. 2014; 23(7): 486–491. PubMed Abstract | Publisher Full Text | F1000 Recommendation

62. Lin HY, Kao CH, Lin KM, et al. Notch signaling regulates late-stage epidermal differentiation and maintains postnatal hair cycle homeostasis. PLoS One. 2011; 6(1): e15642. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

63. Zcharia E, Philip D, Edovitsky E, et al. Heparanase regulates murine hair growth. Am J Pathol. 2005; 166(4): 999–1008. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

64. Malgouries S, Donovan M, Thibaut S, et al. Heparanase 1: a key participant of inner root sheath differentiation program and hair follicle homeostasis. Exp Dermatol. 2008; 17(12): 1017–1023. PubMed Abstract | Publisher Full Text

65. Lamanna WC, Kalus I, Pavka M, et al. The heparanase—the enigma of encoding and decoding heparan sulfate sulfation. J Biotechnol. 2007; 129(2): 290–307. PubMed Abstract | Publisher Full Text

66. Seifert A, Milz F, Przybylski C, et al. HSulf sulfatases catalyze processive and oriented 6-O-desulfation of heparan sulfate that differentially regulates fibroblast growth factor activity. PASEJB J. 2013; 27(6): 2431–2439. PubMed Abstract | Publisher Full Text | F1000 Recommendation

67. Yue X, Li X, Nguyen HT, et al. Transforming growth factor-beta1 induces heparan sulfate 6-O-endo-sulfatase 1 expression in vitro and in vivo. J Biol Chem. 2008; 283(29): 20897–20407. PubMed Abstract | Publisher Full Text | Free Full Text

68. Malinowska M, Jakóbkiewicz-Banecka J, Kloska A, et al. Abnormalities in the hair morphology of patients with some but not all types of mucopolysaccharidoses. Eur J Pediatr. 2008; 167(2): 203–209. PubMed Abstract | Publisher Full Text | F1000 Recommendation

69. Kloska A, Bohdanowicz J, Konopa G, et al. Changes in hair morphology of mucopolysaccharidosis I patients treated with recombinant human alpha-L-iduronidase (idosidase, Aldaruzyme). Am J Med Genet A. 2005; 139(3): 193–203. PubMed Abstract | Publisher Full Text | F1000 Recommendation

70. Ohyama M, Kubaysashi T, Sasaki T, et al. Restoration of the intrinsic properties of human dermal papilla in vitro. J Cell Sci. 2012; 125(Pt 17): 4114–4125. PubMed Abstract | Publisher Full Text | Free Full Text

71. Sennett R, Wang Z, Rezza A, et al. An Integrated Transcriptome Atlas of Embryonic Hair Follicle Progenitors, Their Niche, and the Developing Skin. Dev Cell. 2015; 34(5): 577–591. PubMed Abstract | Publisher Full Text | F1000 Recommendation

72. Kang H, Wu WY, Lo BK, et al. Hair follicles from alopecia areata patients exhibit alterations in immune privilege-associated gene expression in advance of hair loss. J Invest Dermatol. 2010; 130(1): 267–270. PubMed Abstract | Publisher Full Text

73. Mahé YF, Michelet JF, Bilouin N, et al. Androgenetic alopecia and microinflammation. Int J Dermatol. 2000; 39(8): 576–584. PubMed Abstract | Publisher Full Text

74. Christoph T, Müller-Röver S, Audring H, et al. The human hair follicle immune system: cellular composition and immune privilege. Br J Dermatol. 2000; 142(5): 860–873. PubMed Abstract | Publisher Full Text

75. Menini C, Kastenmüller G, Petersen AK, et al. Metabolomic markers reveal novel pathways of ageing and early development in human populations. Int J Epidemiol. 2013; 42(4): 1111–1119. PubMed Abstract | Publisher Full Text | F1000 Recommendation

76. Langan EA, Philpot NP, Kleeper JE, et al. Human hair follicle organ culture: theory, application and perspectives. Exp Dermatol. 2015; 24(12): 903–911. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Referee Status: ✔ ✔

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Rodney Sinclair, Epworth Dermatology, Victoria, Australia
 Competing Interests: No competing interests were disclosed.

2 Gill Westgate, Centre for Skin Sciences, University of Bradford, Bradford, BD7 1DP, UK
 Competing Interests: No competing interests were disclosed.