Dear Editor,

After traumatic freshwater submersion, severe respiratory failure and destructive lung injury are dreaded complications [1]. If conventional treatment fails to provide adequate oxygenation, veno-venous extracorporeal membrane oxygenation (VV-ECMO) is the only remaining treatment modality [2]. Yet, in the presence of concomitant trauma, the need for anticoagulation in VV-ECMO poses a therapeutic dilemma [3]. Here, we report two trauma patients treated with mobile VV-ECMO after freshwater aspiration despite an increased trauma-related bleeding risk.

A 33-year-old healthy male fell off a tilted wagon, lost consciousness, and suffered from freshwater submersion, resulting in brain and lung contusion, and an injury severity score (ISS) of 26. Despite lung-protective ventilation and prone position, respiratory failure progressed (Murray score 3.0 [4]) and VV-ECMO was initiated within 24 h after admission. The further clinical course was uneventful and no additional pulmonary complications occurred. Successful weaning from ECMO was accomplished on day 11, followed by intensive care unit (ICU) discharge on day 13.

A 24-year-old healthy male experienced freshwater aspiration after a quad bike accident, resulting in bilateral brain contusion, lung contusion, rib fractures, bilateral pneumothoraces, and splenic rupture grade II/VI (ISS 29). On day 6, the respiratory condition deteriorated (Murray score 3.5 [4]), necessitating VV-ECMO. The subsequent clinical course was complicated by persistent pneumothoraces, multiple pulmonary abscesses, empyema, and parenchymal destruction (Fig. 1a–c), ultimately allowing successful weaning from VV-ECMO (day 54), mechanical ventilation (day 66) and ICU discharge (day 69).

In both patients, referral on mechanical ventilation from the primary hospital to a tertiary academic center was considered impossible because of respiratory instability. Therefore, our mobile team comprising two experienced senior intensivists, an ICU nurse, and a perfusionist initiated VV-ECMO equipment mounted on the transport trolley (d). Bi-caval dual lumen catheter (e) optimally positioned under echocardiographic guidance into the inferior vena cava (IVC) (f) with its single infusion port (e inset, f circle) overlying the right atrium (RA) and directed towards the tricuspid valve. L indicates liver.

Fig. 1 Serial chest CT scans on day 34 (a), 46 (b), and 58 (e) of VV-ECMO support in the 24-year-old male showing gradual improvement of pulmonary injury. Mobile VV-ECMO equipment mounted on the transport trolley (d). Bi-caval dual lumen catheter (e) optimally positioned under echocardiographic guidance into the inferior vena cava (IVC) (f) with its single infusion port (e inset, f circle) overlying the right atrium (RA) and directed towards the tricuspid valve. L indicates liver.
off-center before transport (Prolonged Life Support, Maquet®, Fig. 1d). One intensivist introduced a 27-French bicaval dual lumen catheter (Avalon Elite, Avalon Laboratories®, Fig. 1e) via the right internal jugular vein, resulting in a blood flow of 4 L/min. Optimal catheter positioning was guided echocardiographically by the second intensivist adhering to a protocolized combined transthoracic-transesophageal approach using our mobile equipment (Philips CX 50) (Fig. 1f) [5]. The use of a single insertion site minimized the risk of cannula displacement, introduction of site bleeding, and infection while facilitating patient handling. In both patients no VV-ECMO related complications occurred.

Considering the bleeding risk due to concomitant multitrauma, therapeutic anticoagulation was undesirable [3]. Consequently, the first patient received a half-therapeutic dose of unfractionated heparin intravenously (5,000 IU bolus), the second acetylsalicylic acid (100 mg) orally (300 mg bolus). In the absence of hemorrhagic complications, both patients switched to a therapeutic dosage of unfractionated heparin 48 h after the start of VV-ECMO.

Severe but potentially reversible pulmonary injury can successfully be treated with VV-ECMO in trauma-related freshwater submersion. The combined advantages of mobile, off-center VV-ECMO initiation using a bi-caval dual lumen catheter in trauma patients have, to the best of our knowledge, not been described before. As pointed out earlier, this approach should be considered as a valid therapeutic option in this category of patients despite the assumed increased bleeding risk associated with multitrauma.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Cordell-Smith J, Roberts N, Peek G, Firmin R (2006) Traumatic lung injury treated by extracorporeal membrane oxygenation (ECMO). Injury 37:29–32
2. Roch A, Lepaul-Ercole R, Grisoli D, Bessereau J, Brissy O, Castanier M, Dizier S, Forel JM, Guervilly C, Gariboldi V (2010) Extracorporeal membrane oxygenation for severe influenza A (H1N1) acute respiratory distress syndrome: a prospective observational comparative study. Intensive Care Med 36:1899–1905
3. Arlt M, Philipp A, Voelkel S, Rupprecht L, Mueller T, Hilkert M, Graf B, Schmid C (2010) Extracorporeal membrane oxygenation in severe trauma patients with bleeding shock. Resuscitation 81:804–809
4. Peek G, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany M, Hibbert C, Truesdale A, Clemens F, Cooper N (2009) CESAR trial collaboration. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374:1351–1363
5. Combes A, Pellegrino V (2011) Extracorporeal membrane oxygenation for 2009 influenza A (H1N1)-associated acute respiratory distress syndrome. Semin Respir Crit Care Med 32:188–194

C. C. Geelen · E. A. Bouman · P. M. Roekaerts · P. Breedveld · U. Strauch · D. W. Donker
Department of Intensive Care, Maastricht University Medical Center, Maastricht, The Netherlands

E. A. Bouman (✉)
Department of Anaesthesiology and Pain Treatment, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
e-mail: esther.bouman@mumc.nl
Tel.: +31-43-3875606
Fax: +31-43-3875457

P. Breedveld
Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands

L. Van Garsse · P. W. Weerwind
Department of Cardiothoracic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands

D. W. Donker
Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands