SHARP SPECTRAL MULTIPLIERS FOR HARDY SPACES ASSOCIATED TO NON-NEGATIVE SELF-ADJOINT OPERATORS SATISFYING DAVIES-GAFFNEY ESTIMATES

PENG CHEN

Abstract. We consider the abstract non-negative self-adjoint operator L acting on $L^2(X)$ which satisfies Davies-Gaffney estimates and the corresponding Hardy spaces $H^p_L(X)$. We assume that doubling condition holds for the metric measure space X. We show that a sharp Hörmander-type spectral multiplier theorem on $H^p_L(X)$ follows from restriction type estimates and the Davies-Gaffney estimates. We also describe the sharp result for the boundedness of Bochner-Riesz means on $H^p_L(X)$.

1. Introduction

Suppose that L is a non-negative self-adjoint operator acting on $L^2(X,\mu)$, where X is a measure space with measure μ. Then L admits a spectral resolution $E(\lambda)$ and for any bounded Borel function $F : [0, \infty) \to \mathbb{C}$, one can define the operator

$$F(L) = \int_0^\infty F(\lambda)dE(\lambda).$$

(1.1)

By the spectral theorem, this operator is bounded on $L^2(X)$. Spectral multiplier theorems give sufficient conditions on F and L which imply the boundedness of $F(L)$ on various functional spaces defined on X. This is one of active topics in harmonic analysis and has been studied extensively. We refer the reader to [1, 5, 7, 8, 10, 13, 15, 16, 19, 21, 29, 33] and the references therein.

Before we state our main result we describe our basic assumptions. We throughout assume that the considered metric measure space (X,d,μ) with a distance d and a non-negative Borel measure μ satisfies the volume doubling condition: there exists a constant $C > 0$ such that for all $x \in X$ and for all $r > 0$,

$$V(x,2r) \leq CV(x,r) < \infty,$$

(1.2)

where $V(x,r)$ is the volume of the ball $B(x,r)$ centered at x of radius r. In particular, X is a space of homogeneous type. See for example [11].

Note that the doubling condition (1.2) implies that there exist some constants $C,n > 0$ such that

$$V(x,\lambda r) \leq C\lambda^nV(x,r)$$

(1.3)

uniformly for all $\lambda \geq 1$ and $x \in X$. In the sequel, we shall consider n as small as possible. In the Euclidean space with Lebesgue measure, the parameter n is the dimension of the space.

2000 Mathematics Subject Classification. 42B15, 42B20, 47F05.

Key words and phrases. Spectral multipliers, Hardy spaces, non-negative self-adjoint operator, Davies-Gaffney estimate, restriction type estimate, Bochner-Riesz means.
In this paper, we consider the following two conditions corresponding to the operator L.

First, the operator L is a non-negative self-adjoint operator acting on $L^2(X)$ and the semigroup $\{e^{-tL}\}_{t>0}$ generated by L satisfies the Davies-Gaffney condition (See for example [12]). That is, there exist constants $C, c > 0$ such that for any open subsets $U_1, U_2 \subset X$,

$$\langle e^{-tL} f_1, f_2 \rangle = C \exp \left(-\frac{\text{dist}(U_1, U_2)^2}{ct} \right) \|f_1\|_{L^2(X)} \|f_2\|_{L^2(X)}, \quad \forall t > 0,$$

for every $f_i \in L^2(X)$ with $\text{supp} f_i \subset U_i, \ i = 1, 2$, where $\text{dist}(U_1, U_2) := \inf_{x \in U_1, y \in U_2} d(x, y)$.

Second, the operator L satisfies restriction type estimates. Given a subset $E \subseteq X$, we define the projection operator P_E by multiplying by the characteristic function of E, that is,

$$P_E f(x) = \chi_E(x) f(x).$$

For a function $F : \mathbb{R} \to \mathbb{C}$ and $R > 0$, we denote by $\delta_R F : \mathbb{R} \to \mathbb{C}$ the function $x \to F(Rx)$. Following [8], we say that a non-negative self-adjoint operator L satisfies restriction type estimates if for any $R > 0$ and all Borel functions F such that $\text{supp} \ F \subset [0, R]$, there exist some p_0 and q satisfying $1 \leq p_0 < 2$ and $1 \leq q \leq \infty$ such that

$$\|F(\sqrt{L}) P_{B(x,r)}\|_{p_0 \to 2} \leq CV(x,r)^{\frac{1}{2} - \frac{1}{p_0}} (Rr)^{n\left(\frac{1}{q_0} - \frac{1}{2}\right)} \|\delta_R F\|_{L^q}$$

for all $x \in X$ and $r \geq 1/R$, where n is the dimension entering doubling volume condition (1.3). When $L = -\Delta$ on \mathbb{R}^n, this estimate is equivalent to the classic $(p,2)$ restriction estimate of Stein-Tomas. See [8] or Proposition 2.4 below.

The aim of this paper is to obtain a sharp Hörmander-type spectral multiplier theorem for abstract operators which generate semigroups satisfying Davies-Gaffney condition. More precisely, our result shows that restriction type estimates imply sharp spectral multipliers on Hardy spaces $H^p_L(X)$ for $p > 0$, where $H^p_L(X)$ is a new class of Hardy spaces associated to L ([2, 3, 14, 17, 18, 19, 22, 23, 24, 26], see Section 2 below). The theorem is valid for abstract self-adjoint operators. However, before the result can be applied one has to verify conditions (GE) and (1.4). Usually proving restriction type condition (1.4) is difficult. See discussions in [8]. We discuss several examples of operators which satisfy required restriction type estimates in Section 4. On the other hand, condition (1.4) with $p_0 = 1$ and $q = \infty$ follows from Gaussian estimates (1.8) for the heat kernel corresponding to the operator. See discussions in [8] and [14].

Let ϕ be a nontrivial compact supported smooth function and define the Sobolev norm

$$\|F\|_{W^{s,q}} = \|(I - d^2/dx^2)^{s/2} F\|_{L^2}.$$

The following theorem is the main result of the paper.

Theorem 1.1. Consider the doubling metric measure space (X, d, μ) which satisfies (1.5) with dimension n. Assume that the operator L satisfies Davies-Gaffney estimate (GE) and the restriction type condition (1.4) for some p_0, q satisfying $1 \leq p_0 < 2$ and $1 \leq q \leq \infty$. Suppose that $0 < p \leq 1$ and for a bounded Borel function F, there exists some constant $s > n(1/p - 1/2)$ such that

$$\sup_{t > 0} \|\phi \delta_t F\|_{W^{s,q}} < \infty.$$

Then the operator $F(\sqrt{L})$ is bounded on $H^p_L(X)$, i.e., there exists a constant $C > 0$ such that

$$\|F(\sqrt{L}) f\|_{H^p_L(X)} \leq C \|f\|_{H^p_L(X)}.$$
Remarks:

i) Theorem 1.1 is sharp when $q = 2$ by considering Bochner-Riesz means on the spaces $H^p_L(X)$. See Corollary 1.2 below. When $L = -\Delta$ on \mathbb{R}^n, it satisfies (1.4) with $q = 2$ for all $1 \leq p_0 \leq (2n + 2)/(n + 3)$ and from this theorem we can obtain sharp results for the boundedness of classic Bochner-Riesz means on Hardy spaces $H^p(\mathbb{R}^n)$.

ii) In [19], Theorem 1.1 was obtained under the condition (1.5) with the norm $W^{s,\infty}$. Note that for fixed p_0 if condition (1.4) holds for some $q \in [1, \infty)$, then (1.4) holds for all $q' \geq q$ including the case $q' = \infty$ and also note that the smaller q is, the weaker condition (1.5) is. Although $q = 2$ leads to the sharp result, we have examples that the operator satisfies (1.4) with some $q > 2$ but it does not satisfy (1.4) with $q = 2$. For example, harmonic oscillator $L = -d^2/dx^2 + x^2$ acting on $L^2(\mathbb{R})$ satisfies (1.4) with $p_0 = 1$ and $q = 4$ other than $q = 2$. See [15, Section 7.5] for more discussion.

iii) We do not expect $q < 2$ for condition (1.4). If (1.4) holds for some $q < 2$, by Theorem 1.1, the classic Bochner-Riesz mean operator would be bounded for some $\delta > n(1/p - 1/2) - 1/2$ and this contradicts the well known result that $\delta > n(1/p - 1/2) - 1/2$ is necessary for the classic Bochner-Riesz summability. However, if we consider $p_0 \to r$ norm in (1.4) with some $r > 2$ instead of $p_0 \to 2$ norm, using analogous argument, we can get similar results for some $1 \leq q < 2$.

A standard application of spectral multiplier theorems is to consider the boundedness of Bochner-Riesz means. Let us recall that Bochner-Riesz means of order δ for a non-negative self-adjoint operator L are defined by the formula

\begin{equation}
S^\delta_R(L) = \left(I - \frac{L}{R^2}\right)^\delta, \quad R > 0.
\end{equation}

In Theorem 1.1 if one chooses $F(\lambda) = (1 - \lambda^2)^\delta_\lambda$ then $F \in W^{\beta,q}$ if and only if $\delta > \beta - 1/q$. We then have the following corollary, which generalizes the classical result due to Sjölin [32] and Stein-Tableleson-Weiss [34] on the Bochner-Riesz means, and this result is sharp for Laplacian on \mathbb{R}^n (see [32]).

Corollary 1.2. Assume that the operator L satisfies Davies-Gaffney estimate (GE) and the restriction type condition (1.4) for some p_0, q satisfying $1 \leq p_0 < 2$ and $1 \leq q \leq \infty$. Suppose that $0 < p \leq 1$. Then for all $\delta > n(1/p - 1/2) - 1/q$, we have

\begin{equation}
\left\| \left(I - \frac{L}{R^2}\right)^\delta \right\|_{H^p_{p_0} \to H^p_L} \leq C
\end{equation}

uniformly in $R > 0$.

Note that when the semigroup e^{-tL} generated by L has a kernel $p_t(x,y)$ satisfying a Gaussian upper bound, that is

\begin{equation}
|p_t(x,y)| \leq \frac{C}{V(x,\sqrt{t})} \exp \left(- \frac{d^2(x,y)}{ct} \right)
\end{equation}

for all $t > 0$, and $x, y \in X$, then the Hardy space $H^p_L(X)$ coincides with $L^p(X)$ for every $1 < p < \infty$ (see [2] [22]). Hence the following corollary is a consequence of Theorem 1.1.
Corollary 1.3. Assume that the heat kernel corresponding to the operator L satisfies (1.8) and the operator L satisfies the restriction type condition (1.4) for some p_0, q satisfying $1 < p_0 < 2$ and $1 \leq q \leq \infty$. Then for any even bounded Borel function F such that $\sup_{t>0} \|\phi t F\|_{W^{s,q}} < \infty$ for some $s > n(1/p_1 - 1/2)$ and $1 \leq p_1 \leq p_0$, the operator $F(\sqrt{L})$ is bounded on $L^p(X)$ for $p_1 < p < p_1'$, i.e., there exists a constant $C > 0$ such that

$$\|F(\sqrt{L})f\|_{L^p(X)} \leq C\|f\|_{L^{p_1}(X)}.$$

The paper is organized as follows. In Section 2, we recall some preliminary results about finite speed propagation property, restriction type estimates and Hardy space $H^p_L(X)$ associated to an operator L, and state a criterion for boundedness of spectral multipliers on $H^p_L(X)$. In Section 3, we will prove our main result, Theorem 1.1, by using some estimates for the operator $F(\sqrt{L})$ away from the diagonal and the restriction type estimates.

Throughout, the letter “C” and “c” will denote (possibly different) constants that are independent of the essential variables.

2. Preliminaries

To simplifying the notation, we shall often just use B instead of $B(x,r)$. Given $\lambda > 0$, we will write λB for the λ-dilated ball which is the ball with the same center as B and with radius λr. For $1 \leq p \leq \infty$, we denote the norm of a function $f \in L^p(X, d\mu)$ by $\|f\|_p$. If T is a bounded linear operator from $L^p(X, d\mu)$ to $L^q(X, d\mu)$, $1 \leq p, q \leq \infty$, we write $\|T\|_{p \rightarrow q}$ for the operator norm of T. Let ϕ be a non-negative C_c^∞-function such that

$$(1.1) \quad \text{supp}\phi \subseteq \left(\frac{1}{4}, 1\right) \quad \text{and} \quad \sum_{k \in \mathbb{Z}} \phi(2^{-k}\lambda) = 1 \quad \text{for all } \lambda > 0.$$

2.1. Finite speed propagation for the wave equation. Following [9], we set

$$D_\rho = \{(x, y) \in X \times X : d(x, y) \leq \rho\}.$$

Given an operator T from $L^p(X)$ to $L^q(X)$, we write

$$\text{(2.1)} \quad \text{supp} K_T \subseteq D_\rho$$

if $\langle Tf_1, f_2 \rangle = 0$ whenever f_k is in $C(X)$ and $\text{supp} f_k \subseteq B(x_k, \rho_k)$ when $k = 1, 2$, and $\rho_1 + \rho_2 + \rho < d(x_1, x_2)$. One says that $\cos(t\sqrt{L})$ satisfies finite speed propagation property if there holds

$$(\text{FS}) \quad \text{supp} K_{\cos(t\sqrt{L})} \subseteq D_t \quad \forall t \geq 0.$$

More precisely, we have the following result.

Proposition 2.1. Let L be a non-negative self-adjoint operator acting on $L^2(X)$. Then the finite speed propagation property (FS) and Davies-Gaffney estimate (GE) are equivalent.

Proof. For the proof, we refer the reader to Theorem 2 in [30] and Theorem 3.4 in [9]. See also [6].

The following lemma is a straightforward consequence of (FS).

Lemma 2.2. Assume that L satisfies (FS) and that F is an even bounded Borel function with Fourier transform \hat{F} satisfying $\text{supp} \hat{F} \subseteq [-\rho, \rho]$. Then

$$\text{supp} K_{F(\sqrt{L})} \subseteq D_\rho.$$
Proof. If F is an even function, then by the Fourier inversion formula,

$$F(\sqrt{L}) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{F}(t) \cos(t \sqrt{L}) \, dt.$$

But $\text{supp} \, \hat{F} \subset [-\rho, \rho]$ and Lemma 2.2 follows from (FS).

2.2. Restriction type estimates. The following result was obtained in [8, Proposition 2.3].

Proposition 2.3. Suppose that (X, d, μ) satisfies properties (1.3). Let $1 \leq p_0 < 2$ and $N > n(1/p - 1/2)$. Then condition (1.4) with $q = \infty$ is equivalent with each of the following conditions:

(a) For all $x > 0$ and $r \geq t > 0$ we have

$$(G_{p_0,2}) \quad \|e^{-t^2L} P_{B(x,r)}\|_{p_0 \to 2} \leq CV(x, r)^{\frac{1}{2} - \frac{1}{p_0}} \left(\frac{r}{t}\right)^{n(\frac{1}{p_0} - \frac{1}{2})}.$$

(b) For all $x \in X$ and $r \geq t > 0$ we have

$$(E_{p_0,2}) \quad \|(1 + t\sqrt{L})^{-N} P_{B(x,r)}\|_{p_0 \to 2} \leq CV(x, r)^{\frac{1}{2} - \frac{1}{p_0}} \left(\frac{r}{t}\right)^{n(\frac{1}{p_0} - \frac{1}{2})}.$$

Following [21], one says that L satisfies L^{p_0} to $L^{p_0'}$ restriction estimates if the spectral measure $dE_{\sqrt{T}}(\lambda)$ maps $L^{p_0}(X)$ to $L^{p_0'}(X)$ for some p_0 satisfying $1 \leq p_0 \leq 2n/(n + 1)$, with an operator norm estimate

$$(R_{p_0}) \quad \|dE_{\sqrt{T}}(\lambda)\|_{p_0 \to p_0'} \leq C\lambda^{n(\frac{1}{p_0} - \frac{1}{p_0'})^{-1}}$$

for all $\lambda > 0$.

Proposition 2.4. Suppose that there exist positive constants $0 < C_1 \leq C_2 < \infty$ such that $C_1 r^n \leq V(x, r) \leq C_2 r^n$ for every $x \in X$ and $r > 0$. Then conditions (R_{p_0}) and (1.4) with $q = 2$ are equivalent.

Proof. For the proof, we refer the reader to [8, Proposition 2.4].

2.3. Hardy spaces $H^p_L(X)$. The following definition of Hardy spaces $H^p_L(X)$ comes from [19] (see also [22]). Following [3], one can define the L^2 adapted Hardy space

(2.3)

$$H^2(X) := \overline{R(L)},$$

that is, the closure of the range of L in $L^2(X)$. Then $L^2(X)$ is the orthogonal sum of $H^2(X)$ and the null space $N(L)$.

Consider the following quadratic operators associated to L

(2.4)

$$S_{h,K} f(x) = \left(\int_0^\infty \int_{d(x,y) < t} |(t^2 L)^K e^{-t^2 L} f(y)|^2 \frac{d\mu(y)}{V(x,t)} \frac{dt}{t} \right)^{1/2}, \quad x \in X$$

where $f \in L^2(X)$. For each $K \geq 1$ and $1 \leq p < \infty$, we now define

$$D_{K,p} = \left\{ f \in H^2(X) : S_{h,K} f \in L^p(X) \right\}, \quad 0 < p < \infty.$$
Definition 2.5. Let \(L \) be a non-negative self-adjoint operator on \(L^2(X) \) satisfying the Davies-Gaffney condition \((GE)\).

(i) For each \(0 < p \leq 2 \), the Hardy space \(H^p_L(X) \) associated to \(L \) is the completion of the space \(D_{\lambda, p} \) in the norm
\[
\|f\|_{H^p_L(X)} = \|S_{\lambda, 1}f\|_{L^p(X)}.
\]

(ii) For each \(2 < p < \infty \), the Hardy space \(H^p_L(X) \) associated to \(L \) is the completion of the space \(D_{K_0, p} \) in the norm
\[
\|f\|_{H^p_L(X)} = \|S_{h, K_0}f\|_{L^p(X)}, \quad K_0 = \left[\frac{n}{4} \right] + 1.
\]

Under an assumption of Gaussian upper bounds \((1.8)\), it was proved in \([2]\) that \(H^p_L(X) = L^p(X) \) for all \(1 < p < \infty \). Note that, in this paper, we only assume the Davies-Gaffney estimates on the heat kernel of \(L \), and hence for \(1 < p < \infty \), \(p \neq 2 \), \(H^p_L(X) \) may or may not coincide with the space \(L^p(X) \). However, it can be verified that \(H^2_L(X) = H^2(X) \) and the dual of \(H^p_L(X) \) is \(H^{p'}_L(X) \), with \(1/p + 1/p' = 1 \) (see Proposition 9.4 of \([22]\)). We also recall that the \(H^p_L(X) \) spaces \((1 \leq p < +\infty) \) are a family of interpolation spaces for the complex interpolation method. See \([22\), Proposition 9.5]).

2.4. A criterion for boundedness of spectral multipliers on \(H^p_L(X) \). We now state a criterion from \([19]\) that allows us to derive estimates on Hardy spaces \(H^p_L(X) \). This generalizes the classical Calderón-Zygmund theory and we would like to emphasize that the conditions imposed involve the multiplier operator and its action on functions but not its kernel.

Lemma 2.6. Let \(L \) be a non-negative self-adjoint operator acting on \(L^2(X) \) satisfying the Davies-Gaffney estimate \((GE)\). Let \(m \) be a bounded Borel function. Suppose that \(0 < p \leq 1 \) and \(M > \frac{n}{2}(\frac{1}{p} - \frac{1}{2}) \). Assume that there exist constants \(s > n(\frac{1}{p} - \frac{1}{2}) \) and \(C > 0 \) such that for every \(j = 2, 3, \ldots \),
\[
\|F(L)(I - e^{-r_B^2L})^M f\|_{L^2(2^j B, 2^{j-1} B)} \leq C 2^{-js} \|f\|_{L^2(B)}
\]
for any ball \(B \) with radius \(r_B \) and for all \(f \in L^2(X) \) with supp \(f \subset B \). Then the operator \(F(L) \) extends to a bounded operator on \(H^p_L(X) \). More precisely, there exists a constant \(C > 0 \) such that for all \(f \in H^p_L(X) \)
\[
\|F(L)f\|_{H^p_L(X)} \leq C \|f\|_{H^p_L(X)}.
\]

Proof. For the proof, we refer the reader to \([19, Theorem 3.1]\).

3. Proof of Theorem 1.1

For \(s \in \mathbb{R} \) and \(p, q \) in \([1, \infty]\), we denote by \(B^p_q \) the usual Besov space (see, e.g., \([4]\)). In order to prove Theorem 1.1, let us first show the following useful auxiliary lemma.

Lemma 3.1. Assume that operator \(L \) satisfies the finite speed propagation property \((FS)\) and condition \((1.4)\) for some \(p_0, q \) satisfying \(1 \leq p_0 < 2 \) and \(1 \leq q \leq \infty \). Next assume that
function F is even and supported on $[-R, R]$. Then for any $s > \max\{n(1/p_0 - 1/2) - 1, 0\}$, there exists a constant C_s such that for any ball $B = B(x, r)$ and for every $j = 1, 2, \ldots$

$$\|P_{B(x, 2^jr)}F(\sqrt{L})P_{B(x, r)}\|_{p_0 \to 2} \leq \begin{cases} C_s V(x, r)^{\frac{3}{2} - \frac{1}{p_0}} (Rr)^{n(\frac{1}{p_0} - \frac{1}{2})} (2^j r R)^{-s} \|\delta_R F\|_{B_2^{1, 1}} & r R \geq 1; \\
C_s V(x, R^{-1})^{\frac{3}{2} - \frac{1}{p_0}} (2^j r R)^{-s} \|\delta_R F\|_{B_2^{1, 1}} & r R < 1.
\end{cases}$$

Proof. Our approach is inspired by the proof of Lemma 3.4 in [9]. Fix r, j and R such that $2^{j-5} r R > 1$. Otherwise, by condition (1.4) the proof of (3.1) is trivial. Note that ϕ_0 and ϕ_k are smooth even functions supported in $[-4, 4]$ and $[2^k, 2^{k+2}] \cup [-2^{k+2}, -2^k]$ respectively. Further, $\phi_0(\lambda) + \sum_{k \geq 1} \phi_k(\lambda) = 1$ for all λ and $\phi_0 = 1$ on $[-2, 2]$. We set $\psi(\lambda) = \phi_0(\lambda/(2^{j-3} r))$ and $\tilde{\psi}(\lambda) = \phi_0(\lambda/(2^{j-3} r))$. Define T_ψ as $T_\psi F = \phi \tilde{F}$. Since $\text{supp } \psi \subset [-2^{j-1} r, 2^{j-1} r]$, it follows by Lemma 2.2

$$\text{supp } K_{T_\psi F(\sqrt{L})} \subset \{(z, y) \in X \times X : d(z, y) \leq 2^{j-1} r\}.$$

Hence,

$$K_{F(\sqrt{L})}(z, y) = K_{[F - T_\psi F(\sqrt{L})]}(z, y)$$

for all z, y such that $d(z, y) > 2^{j-1} r$. We obtain

$$\|P_{B(x, 2^jr)}F(\sqrt{L})P_{B(x, r)}\|_{p_0 \to 2} \leq \|[F - T_\psi F(\sqrt{L})]P_{B(x, r)}\|_{p_0 \to 2}.$$

Now,

$$F - T_\psi F = \sum_{k \geq 0} \delta_{R^{-1}}(\phi_k)[F - T_\psi F] = \delta_{R^{-1}}(\phi_0)[F - T_\psi F] - \sum_{k \geq 1} \delta_{R^{-1}}(\phi_k)T_\psi F = \delta_{R^{-1}}(\phi_0)[F - T_\psi F] - (1 - \delta_{R^{-1}}(\phi_0))T_\psi F,$$

since $k \geq 1$, supp $\delta_{R^{-1}}(\phi_k) \subset [-2^{k+2} R, -2^k R] \cup [2^k R, 2^{k+2} R]$, and supp $F \subset [-R, R]$. It follows that

$$\|P_{B(x, 2^jr)}F(\sqrt{L})P_{B(x, r)}\|_{p_0 \to 2} \leq \|\delta_{R^{-1}}(\phi_0)[F - T_\psi F](\sqrt{L})P_{B(x, r)}\|_{p_0 \to 2} + \|[1 - \delta_{R^{-1}}(\phi_0)]T_\psi F(\sqrt{L})P_{B(x, r)}\|_{p_0 \to 2}.$$

(3.3)

Case 1: $r R \geq 1$.

Note that supp $\delta_{R^{-1}}(\phi_0) \subset [-4R, 4R]$. By condition (1.4),

$$\|\delta_{R^{-1}}(\phi_0)[F - T_\psi F](\sqrt{L})P_{B(x, r)}\|_{p_0 \to 2} \leq CV(x, r)^{\frac{3}{2} - \frac{1}{p_0}} (Rr)^{n(\frac{1}{p_0} - \frac{1}{2})} \|\phi_0 \delta_R[F - T_\psi F]\|_{L^q} \leq CV(x, r)^{\frac{3}{2} - \frac{1}{p_0}} (Rr)^{n(\frac{1}{p_0} - \frac{1}{2})} \|\delta_R F - T_\psi_0(\delta_R F)\|_{L^q} = CV(x, r)^{\frac{3}{2} - \frac{1}{p_0}} (Rr)^{n(\frac{1}{p_0} - \frac{1}{2})} \sum_{i \geq 0} T_{\phi_i}[I - T_\psi]\delta_R F\|_{L^q}.$$
Note that $\phi_\lambda(1-\psi_\lambda) = \phi_\lambda(1-\psi_\lambda)$ for all $\lambda \in \mathbb{R}$ unless $\lambda \geq 2^i \geq 2^{-4}rR$. Consequently, $T_{\phi_\lambda}[I - T_{\psi_\lambda}]\delta R F = 0$ unless $i \geq i_0$, where $i_0 = \log_2(2^{-4}rR)$, and
\[
\|\delta R^{-1}(\phi_\lambda)[F-T_{\psi} F](\sqrt{L})P_{B(x,r)}\|_{p_0 \to 2} \leq CV(x,r)^{\frac{1}{2} - \frac{1}{p_0}}(Rr)^{\frac{1}{2} - \frac{1}{p_0}} \sum_{i \geq i_0} \|T_{\phi_\lambda}[I - T_{\psi_\lambda}]\delta R F\|_{L^q}
\leq CV(x,r)^{\frac{1}{2} - \frac{1}{p_0}}(Rr)^{\frac{1}{2} - \frac{1}{p_0}} \sum_{i \geq i_0} \|T_{\phi_\lambda}\delta R F\|_{L^q}
\leq CV(x,r)^{\frac{1}{2} - \frac{1}{p_0}}(Rr)^{\frac{1}{2} - \frac{1}{p_0}}2^{-i_0} \sum_{i \geq i_0} 2^i \|T_{\phi_\lambda}\delta R F\|_{L^q}
\leq CV(x,r)^{\frac{1}{2} - \frac{1}{p_0}}(Rr)^{\frac{1}{2} - \frac{1}{p_0}}(2^j r R)^{-s} \|\delta R F\|_{L^q}.
\]
(3.4)

We now treat the remain term in formula (3.3). We claim that for any $s > 0$,
\[
\sup_\lambda (1 - \delta R^{-1}(\phi_\lambda))(\lambda)T_{\psi} F(\lambda)(1 + R^{-1} |\lambda|)^{s+1} \leq C(2^j r R)^{-s} \|\delta R F\|_{L^q}.
\]
(3.5)

Let \hat{f} denotes the inverse Fourier transform of function f. We observe that $|\lambda - y| \approx |\lambda|$ if $|\lambda| \geq 2R$ and $|y| \leq R$, and hence
\[
\sup_\lambda (1 - \delta R^{-1}(\phi_\lambda))(\lambda)T_{\psi} F(\lambda)(1 + R^{-1} |\lambda|)^{s+1}
\leq \sup_\lambda (1 - \phi_\lambda(\lambda/R))(\lambda)(1 + |\lambda|/R)^{s+1}
\leq \sup_\lambda (1 - \phi_\lambda(\lambda/R)) \left| \int_{-R}^R F(y)\hat{\psi}(\lambda - y)dy \right| (1 + |\lambda|/R)^{s+1}
\leq \sup_\lambda (1 - \phi_\lambda(\lambda/R))2^{j-3}r \int_{-R}^R |F(y)|(1 + 2^{j-3}r |\lambda - y|)^{-s-1}dy(1 + |\lambda|/R)^{s+1}
\leq C \sup_\lambda (1 - \phi_\lambda(\lambda/R))2^{j-3}r R(1 + 2^{j-3}r |\lambda|)^{-s-1}(1 + |\lambda|/R)^{s+1} \|\delta R F\|_{L^q}
\leq C(2^j r R)^{-s} \|\delta R F\|_{L^q}.
\]
From (3.3) and Proposition 2.3 it follows that for any $s > \max\{n(1/p_0 - 1/2) - 1, 0\}$,
\[
\|(1 - \delta R^{-1}(\phi_\lambda))T_{\psi} F(\sqrt{L})P_{B(x,r)}\|_{p_0 \to 2}
\leq \sup_\lambda \left| (1 - \delta R^{-1}(\phi_\lambda))(\lambda)T_{\psi} F(\lambda)(1 + R^{-1} |\lambda|)^{s+1} \right| \|(I + R^{-1}\sqrt{L})^{-s-1}P_{B(x,r)}\|_{p_0 \to 2}
\leq CV(x,r)^{\frac{1}{2} - \frac{1}{p_0}}(Rr)^{\frac{1}{2} - \frac{1}{p_0}}(2^j r R)^{-s} \|\delta R F\|_{L^q}.
\]
(3.6)

Then estimates of (3.3), (3.4) and (3.6) imply estimate (3.1) for any $s > \max\{n(1/p_0 - 1/2) - 1, 0\}$.

Case 2: $r R < 1$.

It follows from (3.3) that
\[
\|P_{B(x,2^j r R)} F(\sqrt{L})P_{B(x,r)}\|_{p_0 \to 2}
\leq \|\delta R^{-1}(\phi_\lambda)[F-T_{\psi} F](\sqrt{L})P_{B(x,R^{-1})}\|_{p_0 \to 2} + \|(1 - \delta R^{-1}(\phi_\lambda))T_{\psi} F(\sqrt{L})P_{B(x,R^{-1})}\|_{p_0 \to 2}.
\]
(3.7)

Replacing $B(x,r)$ by $B(x,R^{-1})$ in (3.4) and (3.6), a similar argument as in Case 1 shows (2.6), and we skip it here. The proof of Lemma 3.1 is complete. □
Proof of Theorem 1.1} To prove Theorem 1.1 by Lemma 2.6 it suffices to verify condition (2.3). Recall that \(\phi \) is a non-negative \(C_0^\infty \) function such that

\[
\text{supp } \phi \subseteq \left(\frac{1}{4}, 1 \right) \quad \text{and} \quad \sum_{\ell \in \mathbb{Z}} \phi(2^{-\ell} \lambda) = 1 \quad \text{for all } \lambda > 0.
\]

Then

\[
F(\lambda) = \sum_{\ell \in \mathbb{Z}} \phi(2^{-\ell} \lambda) F(\lambda) = \sum_{\ell \in \mathbb{Z}} F_\ell(\lambda) \quad \text{for all } \lambda > 0.
\]

For every \(\ell \in \mathbb{Z} \) and \(r > 0 \), set \(F^\ell_{r,M} = F_\ell(\lambda)(1 - e^{-r^2 \lambda^2})^M \). So for any ball \(B = B(x, r) \),

\[
\|F(\sqrt{L})(I - e^{-r^2 L})^M f\|_{L^2(2^{j-1} B, 2^j B)} \leq \sum_{\ell \in \mathbb{Z}} \|F^\ell_{r,M}(\sqrt{L}) f\|_{L^2(2^{j-1} B, 2^j B)}.
\]

Fix \(f \in L^2(X) \) with \(\text{supp } f \subseteq B \) and \(j \geq 2 \). Note that \(\text{supp } F^\ell_{r,M} \subseteq [-2^\ell, 2^\ell] \). So if \(r2^\ell < 1 \), it follows Lemma 3.1 that for any \(s > \max\{n(1/p_0 - 1/2) - 1, 0\} \)

\[
\|F^\ell_{r,M}(\sqrt{L}) f\|_{L^2(2^{j-1} B, 2^j B)} \leq \|P_{2^{j-1} B, 2^j B} F^\ell_{r,M}(\sqrt{L}) P_B\|_{p_0 \rightarrow 2} \|f\|_{L^{p_0}} \\
\leq CV(x, 2^{-\ell} \frac{1}{p_0} (2^j r^2)^{-s}) \|\delta_{2^\ell} F^\ell_{r,M}\|_{B^{s,1}} \|f\|_{L^{p_0}} \\
\leq CV(x, 2^{-\ell} \frac{1}{p_0} (2^j r^2)^{-s}) \|\delta_{2^\ell} F^\ell_{r,M}\|_{B^{0,1}} V(x, r) \|f\|_{L^2} \\
\leq C 2^{-js}(2^j r)^{2M-s} \|\phi\|_{B^{s,1}} \|f\|_{L^2}.
\]

(3.9)

Similarly if \(r2^\ell \geq 1 \), then

\[
\|F^\ell_{r,M}(\sqrt{L}) f\|_{L^2(2^{j-1} B, 2^j B)} \leq \|P_{2^{j-1} B, 2^j B} F^\ell_{r,M}(\sqrt{L}) P_B\|_{p_0 \rightarrow 2} \|f\|_{L^{p_0}} \\
\leq CV(x, r) \|\delta_{2^\ell} F^\ell_{r,M}\|_{B^{0,1}} \|f\|_{L^{p_0}} \\
\leq C(2^\ell)^{n(\frac{1}{p_0} - \frac{1}{2})} (2^j r^2)^{-s} \|\delta_{2^\ell} F^\ell_{r,M}\|_{B^{0,1}} \|f\|_{L^2} \\
\leq C 2^{-js}(2^j r)^{2M-s} \|\phi\|_{B^{0,1}} \|f\|_{L^2}.
\]

(3.10)

Note that for any \(\varepsilon > 0 \) \(\|f\|_{B^{s,1}} \leq C \|f\|_{W^{s,\varepsilon}} \) (see, e.g. [4]). Choosing \(s \) such that \(M > s > n(1/p_0 - 1/2) \), it follows from (1.5), (3.3), (3.9) and (3.10) that

\[
\|F(\sqrt{L})(I - e^{-r^2 L})^M f\|_{L^2(2^{j-1} B, 2^j B)} \leq C 2^{-js} \|f\|_{L^2}.
\]

This proves (2.5). Hence, by Lemma 2.6 \(F(\sqrt{L}) \) can be extended to be a bounded operator on \(H^p_{L_s}(X) \). The proof of Theorem 1.1 is complete. \(\square \)

Proof of Corollary 1.3} Firstly, we note that when \(p_1 = p_0 \), Corollary 1.3 follows from Theorem 4.1. Secondly, it follows by Theorem 1.1 that Corollary 1.3 holds for \(p_1 = 1 \). Now we follow an idea as in [29] to construct a family of spectral multipliers \(\{F_z : z \in \mathbb{C}, 0 \leq Re z \leq 1\} \) as follows:

\[
F_z(\lambda) = \sum_{j=-\infty}^{\infty} \eta(2^{-j} \lambda) \left(1 - 2^{2j} \frac{d}{d\lambda^2} \right)^{\frac{z-\theta}{2}\frac{n(1/p_0 - 1/2)}} \|F(\lambda)\phi(2^{-j} \lambda)\|
\]
where \(\theta = (1 - 1/p_1)/(1 - 1/p_0) \) and \(\eta \in C_c^\infty([1/4, 4]), \phi \in C_c^\infty([1/2, 2]), \eta = 1 \) on \([1/2, 2]\) and \(\sum_j \eta(2^{-j} \lambda) = \sum_j \phi(2^{-j} \lambda) = 1 \) for all \(\lambda > 0 \). Observe that if \(z = 1 + iy \), then
\[
\sup_{t>0} \| \phi \delta_tF_{1+iy} \|_{W^{s_1,q}} \leq C \sup_{t>0} \| \phi \delta_tF \|_{W^{s_0,q}} (1 + |y|)^{n/2}
\]
for some \(s_1 > n(1/p_0 - 1/2) \). On the other hand, if \(z = iy \), then
\[
\sup_{t>0} \| \phi \delta_tF_{iy} \|_{W^{s_2,q}} \leq C \sup_{t>0} \| \phi \delta_tF \|_{W^{s_0,q}} (1 + |y|)^{n/2}
\]
for some \(s_2 > n/2 \). It follows by [8, Theorem 4.1] that \(F_{1+iy}(\sqrt{L}) \) is bounded on \(H^p_L(X) \) for \(p_0 < p < p'_0 \) and by Theorem 1.1 that \(F_{iy}(\sqrt{L}) \) is bounded on \(H^1_L(X) \). Applying the three line theorem, we get \(F_0(\sqrt{L}) = F(\sqrt{L}) \) is bounded on \(H^p_L(X) \), that is, \(F(\sqrt{L}) \) is bounded on \(L^p(X) \) for \(p_1 < p < p'_1 \).

4. Applications

Theorem 1.1 is valid for abstract self-adjoint operators. However, before the result can be applied one has to verify conditions (GE) and (1.4). Usually proving restriction type condition (1.4) is difficult. See discussions in [8]. In this section, we discuss several examples of operators which satisfy required restriction type estimates and apply our main results to these operators.

4.1. Sub-Laplacians on homogeneous groups. Let \(G \) be a homogeneous Lie group of polynomial growth with homogeneous dimension \(n \) (see for examples, [7, 13, 20, 25]) and let \(X_1, \ldots, X_k \) be a system of left-invariant vector fields on \(G \) satisfying the Hörmander condition. We define the sub-Laplace operator \(L \) acting on \(L^2(G) \) by the formula
\[
L = -\sum_{i=1}^k X_i^2.
\]

Proposition 4.1. Let \(L \) be the homogeneous sub-Laplacian defined by the formula (4.1) acting on a homogeneous group \(G \). Then condition (1.4) holds for \(p_0 = 1 \) and \(q = 2 \), and hence results of Theorem 1.1 and Corollary 1.2 hold for \(q = 2 \).

Proof. It is well known that the heat kernel corresponding to the operator \(L \) satisfies Davies-Gaffney estimate (GE). It is also not difficult to check that for some constant \(C > 0 \)
\[
\|F(\sqrt{L})\|_{L^2(L^2(\mathbb{R}))} = C \int_0^\infty |F(t)|^2 t^{n-1} dt.
\]
See for example equation (7.1) of [15] or [7, Proposition 10]. It was proved that the above equality implies condition (1.4) with \(p_0 = 1 \) and \(q = 2 \) (see [8, Section 12]). Then Theorem 1.1 and Corollary 1.2 imply Proposition 4.1. \(\square \)

Proposition 4.1 can be extended to “quasi-homogeneous” operators acting on homogeneous groups, see [31] and [15].
4.2. Schrödinger operators on asymptotically conic manifolds. Asymptotically conic manifolds (see [28]) are defined as the interior of a compact manifold M with boundary, such that the metric g is smooth on the interior and in a collar neighbourhood of the boundary has the form

$$
g = \frac{dx^2}{x^4} + \frac{h(x)}{x^2}\$$

where x is a smooth boundary defining function and $h(x)$ is a smooth family of metrics on the boundary.

Proposition 4.2. Let (M, g) be a nontrapping asymptotically conic manifold of dimension $n \geq 3$, and let x be a smooth boundary defining function of ∂M. Let $L := -\Delta + V$ be a Schrödinger operator with $V \in \mathfrak{c}^\infty(M)$ and assume that L is a positive operator and 0 is neither an eigenvalue nor a resonance. Then condition (1.4) is true with $q = 2$ for all $1 \leq p_0 \leq (2n + 2)/(n + 3)$, and hence results of Theorem 1.1 and Corollary 1.2 hold for $q = 2$.

Proof. It was proved in [21, Theorem 1.3] that condition (R_{p_0}) is satisfied for L when $1 \leq p_0 \leq (2n + 2)/(n + 3)$. By Proposition 2.4 Theorem 1.1 and Corollary 1.2 Proposition 4.2 is proved. □

4.3. Schrödinger operators with the inverse-square potential. In this subsection, we consider Schrödinger operators $L = -\Delta + V$ on $L^2(\mathbb{R}^n, dx)$, where $V(x) = \frac{c}{|x|^2}$. We assume that $n > 2$ and $c > -(n - 2)^2/4$. The classical Hardy inequality

$$(4.2) \quad -\Delta \geq \frac{(n - 2)^2}{4}|x|^{-2},$$

shows that the self-adjoint operator L is non-negative if $c > -(n - 2)^2/4$. Set $p_c^* = n/\sigma$, $\sigma = \max\{(n - 2)/2 - \sqrt{(n - 2)^2/4 + c, 0}\}$. If $c \geq 0$ then the semigroup $\exp(-tL)$ is pointwise bounded by the Gaussian upper bound (1.8) and hence acts on all L^p spaces with $1 \leq p \leq \infty$. If $c < 0$, then $\exp(-tL)$ acts as a uniformly bounded semi-group on $L^p(\mathbb{R}^n)$ for $p \in ((p_c^*)', p_c^*)$ and the range $((p_c^*)', p_c^*)$ is optimal (see for example [27]).

For these Schrödinger operators, we have the following proposition.

Proposition 4.3. Assume that $n > 2$ and let $L = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^n, dx)$ where $V(x) = \frac{c}{|x|^2}$ and $c > -(n - 2)^2/4$. Suppose that $p_0 \in ((p_c^*)', 2n/(n + 2)]$ where $p_c^* = n/\sigma$ and $\sigma = \max\{(n - 2)/2 - \sqrt{(n - 2)^2/4 + c, 0}\}$ and $(p_c^*)' \sigma$ its dual exponent. Then condition (1.4) is true with $q = 2$, and hence results of Theorem 1.1 and Corollary 1.2 hold for $q = 2$.

Proof. It was proved in [8, Section 10] that L satisfies restriction estimate (R_{p_0}) for all $p_0 \in ((p_c^*)', \frac{2n}{n+2}]$. If $c \geq 0$, then $p = (p_c^*)' = 1$ is included. By Proposition 2.4 (R_{p_0}) and (1.3) with $q = 2$ are equivalent. Now Proposition 4.3 follows from Theorem 1.1 and Corollary 1.2. □

Acknowledgements: This project was supported by Australian Research Council Discovery Grant DP 110102488. The author would like to thank X.T. Duong, A. Sikora and L.X. Yan for fruitful discussions.
References

[1] G. Alexopoulos, Spectral multipliers on Lie groups of polynomial growth. *Proc. A.M.S.*, 46 (1994), 457-468.
[2] P. Auscher, X.T. Duong and A. McIntosh, Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished preprint (2005).
[3] P. Auscher, A. McIntosh and E. Russ, Hardy spaces of differential forms on Riemannian manifolds. *J. Geom. Anal.*, 18 (2008), 192-248.
[4] J. Bergh and J. Löfström, *Interpolation spaces*. Springer-Verlag, Berlin-New York, 1976.
[5] S. Blunck, A Hörmander-type spectral multiplier theorem for operators without heat kernel. *Ann. Sc. Norm. Super. Pisa Cl. Sci.*, 2 (2003), 449-459.
[6] J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplacian and the geometry of complete Riemannian manifolds. *J. Differential Geom.*, 17 (1982), 15-53.
[7] M. Christ, L^p bounds for spectral multipliers on nilpotent groups. *Trans. Amer. Math. Soc.*, 328 (1991), 73-81.
[8] P. Chen, E.M. Ouhabaz, A. Sikora and L.X. Yan, Endpoint estimates for Bochner-Riesz means and sharp spectral multipliers. Submitted (2011), arXiv:1202.4052v1.
[9] T. Coulhon and A. Sikora, Gaussian heat kernel upper bounds via Phragmén-Lindelöf theorem. *Proc. Lond. Math.*, 96 (2008), 507-544.
[10] M. Cowling and A. Sikora, A spectral multiplier theorem for a sublaplacian on SU(2). *Math. Z.*, 238 (2001), 1-36.
[11] R. Coifman and G. Weiss, *Analyse harmonique non-commutative sur certains espaces homogènes*. Lecture Notes in Mathematics, 242. Springer, Berlin-New York, 1971.
[12] E.B. Davies, Heat kernel bounds, conservation of probability and the Feller property. *J. Anal. Math.*, 58 (1992), 99C119. Festschrift on the occasion of the 70th birthday of Shmuel Agmon.
[13] L. De Michele and G. Mauceri, H^p multipliers on stratified groups. *Ann. Mat. Pura Appl.*, 148 (1987), 353-366.
[14] X.T. Duong and J. Li, Hardy spaces associated to operators satisfying bounded H^∞ functional calculus and Davies-Gaffney estimates. Preprint (2009).
[15] X.T. Duong, E.M. Ouhabaz and A. Sikora, Plancherel-type estimates and sharp spectral multipliers. *J. Funct. Anal.*, 196 (2002), 443-485.
[16] J. Dziubański and M. Preisner, Remarks on spectral multiplier theorems on Hardy spaces associated with semigroups of operators. *Rev. Un. Mat. Argentina* 50 (2009), 201-215.
[17] J. Dziubański and M. Preisner, On Riesz transforms characterization of H^1 spaces associated with some Schrödinger operators. *Potential Anal.* 35 (2011), 39-50.
[18] X.T. Duong and L.X. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. *J. Amer. Math. Soc.*, 18 (2005), 943-973.
[19] X.T. Duong, L.X. Yan, Spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. *J. Math. Soc. Japan* 63 (2011), 295-319.
[20] G. Folland and E.M. Stein, *Hardy spaces on Homogeneous Groups*, Princeton Univ. Press, 1982.
[21] C. Guillarmou, A. Hassell and A. Sikora, Restriction and spectral multiplier theorems on asymptotically conic manifolds. Preprint (2010).
[22] S. Hofmann, G.Z. Lu, D. Mitrea, M. Mitrea and L.X. Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. *Memoirs of the Amer. Math. Soc.* 214 (2011), no. 1007.
[23] S. Hofmann and S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, *Math. Ann.*, 344 (2009), 37-116.
[24] S. Hofmann, S. Mayboroda and A. McIntosh, Second order elliptic operators with complex bounded measurable coefficients in L^p, Sobolev and Hardy spaces, to appear in *Ann. Sci. École Norm. Sup.* (2011).
[25] A. Hulanicki and E.M. Stein, Marcinkiewicz multiplier theorem for stratified groups, unpublished manuscript.
[26] R. Jiang and D. Yang, Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates. *Communications in Contemporary Mathematics* **13** (2011), no. 2, 331-373.

[27] V. Liskevich, Z. Sobol and H. Vogt, On the L^p theory of C^0-semigroups associated with second-order elliptic operators II. *J. Funct. Anal.* **193** (2002), no. 1, 55–76.

[28] R.B. Melrose, Spectral and scattering theory for Laplacian on asymptotically Euclidian spaces, in *Spectral and scattering theory*, M. Ikawa, ed., Marcel Dekker, (1994).

[29] A. Miyachi, On some singular Fourier multipliers. *J. Fac. Sci. Univ. Tokyo*, **28** (1981), 267-315.

[30] A. Sikora, Riesz transform, Gaussian bounds and the method of wave equation. *Math. Z.*, **247** (2004), 643-662.

[31] A. Sikora, On the $L^2 \to L^\infty$ norms of spectral multipliers of “quasi-homogeneous” operators on homogeneous groups. *Trans. Amer. Math. Soc.*, **351** (9) (1999), 3743–3755.

[32] P. Sjölin, Convolution with oscillating kernels in H^p spaces, *J. London Math. Soc.*, **23** (1981), 442-454.

[33] E.M. Stein, *Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals*, Princeton Univ. Press, Princeton, NJ, (1993).

[34] E.M. Stein, M.H. Taibleson and G. Weiss, Weak type estimates for maximal operators on certain H^p spaces, *Rend. Circ. mat. Palermo Suppl.* **1** (1981), 81-97.

Peng Chen, Department of Mathematics, Macquarie University, NSW 2109, Australia

E-mail address: achenpeng1981@163.com