Dynamic Measurement of Physical Conditions in Daily Life by Body Area Network Sensing System

S Takayama, T Tanaka, N Takahashi, Y Matsuda, K Kariya
Department of Electrical and Electronics Engineering,
Faculty of Science and Engineering, Ritsumeikan Univ.
Noji, Kusatsu, Shiga 55-8577, JAPAN
E-mail: s-tkym@se.ritsumi.ac.jp

Abstract. This paper shows the measurement system to monitor physical conditions dynamically in dairy life. The measurement system for physical conditions in motion must be wearable and wireless connected. Body area network sensing system (BANSS) is a kind of the system to realize the conditions. BANSS is the system constructed with host system and plural sensing nodes. Sensing node is constructed with sensors, analogue/digital convertor(ADC), peripheral interface component(PIC), memory and near field communication device(NFCD). The NFCD in this system is Zigbee. Zigbee is the most suitable to construct wireless network system easily. BANSS is not only the system to measure physical parameters. BANSS informs current physical conditions and advises to keep suitable physical strength. As an application of BANSS, the system managing heart rate in walking is shown. By using this system, users can exercise in condition of a constant physical strength.

1. Introduction
To keep and enhance human quality of life (QOL), it is important to know physical condition well continuously. The condition is depended on physical activities in daily life. The state changes dynamically. Then, to know the state of physical condition in detail, it is necessary to measure it continuously in daily life. Wearable and wireless networked measurement system is the most suitable system to measure the physical condition dynamically and continuously. That system collects physical parameters on several measuring points on body. In this paper, that system is called Body area network sensing system(BANSS). Concerning to BANSS, there are several kinds of system [1-21]. The system does not only measure physical parameters but also informs the state of physical conditions and give advices to control physical strength adequately to user. Additionally, the system will transmit the measurement data and the objective information of physical condition to family or home doctor of user.

2. Body Area Network Sensing System (BANSS)
To measure physical conditions in motion like walking, running and various kinds of physical activities in daily life, there are several parameters which are heart rate(HR), SPO2(Oxygen density in blood), body temperature, skin temperature, accelerations at measuring points of body (waist and foots [ankles]), impact transmitting in bones and so on. As measuring points of these parameters are distributed on body area, the sensing system forms near field wireless network to communicate measuring data and commands. Fig.1 shows a conceptual system construction.
Sensing node is mainly constructed with some sensors, Analog-Digital Converter (8 channels, 10 bits resolution, 0 - 3.3V input), Peripheral Interface Controller (PIC)(30MHz, 256kB memory, 32ch Digital I/O), some kinds of memory (total 1MB) and near field communication device (NFCD ; Zigbee) (communication distance 80cm, 8 channels). The kinds of sensors are different each sensing node. The sensing node on ear includes the sensors for heart rate, SPO2 and body temperature. The sensing node on waist includes the sensors for acceleration and skin temperature. The sensing nodes on knees include the sensors for acceleration. And the sensing nodes on ankles include the sensors for acceleration and impact. Fig.2 shows an example of the sensing node on ear. The main role of sensing node is the detection, analysis and transmission of physiological parameters which express physical conditions in motions.

Host system is constructed with micro processor(SH3DSP), some kinds of memory, near field communication device (NFCD ; Zigbee), long distance communication device (LDCD) and sound/visual human interface (SVHI ; earphone, small size display[LCD]). The main role of host system is the objective estimation of physical conditions, the presentation of some advices to adjust physical conditions and the report of to family and home doctor. SVHI is the system for user to present current physical condition and advices for health condition. LDCD is the device to report the information of physical conditions of user to family and home doctor. The most suitable LDCD is handy phone using commercial telephone network. Fig.3 shows the host system attached on body of user.
3. Application : Realization of Constant Strength to Body by Monitoring Heart Rate

As an application of body area network sensing system (BANSS), we have tried to realize constant strength by monitoring heart rate. Fig.4 shows the time transition of heart rate (blue line) in a motion sequence of quiet, walking, quiet, running and quiet (Lab. student ; male, age:21). By using BANSS, dynamic situation of heart rate is observed on line like this.

It has been confirmed that the heart rate responses according to human motions. In walking, the heart rate increased gradually. In the second quiet, the heart rate decreased gradually. In running, his heart rate increased quickly. He felt so tired at finish to run. This means that his physical condition became hard. In the third quiet, the heart rate decreased quickly.

MET (Metabolic Equivalent) is well known as a unit to express strength of physical exercise. By using the heart rate, MET is calculated as follows,
\[MET = \frac{(HR - HR_{min})}{(HR_{max} - HR_{min})} \]
[Karvonen Formula]

\[HR_{min} : \text{heart rate in quiet}, \]
\[HR_{max} : \text{heart rate in the most heavy exercise} \]

The MET is defined according with the strength of physical exercise roughly. (Table 1)

MET	Physical Exercise
40-50	Light exercise (walking)
50-60	Medium exercise (slow running)
60-85	Stressed exercise
85-100	Heavy exercise (professional level)

By selection of MET, suitable heart rate (HR) is calculated as follows,

\[HR = (HR_{max} - HR_{min}) \times MET + HR_{min} \]
(2).

To keep a constant strength of physical exercise, BANSS supplies several advices to current exercise under conditions that are value and trend of HR. Table 2 and Table 3 show the selection of advices by these conditions.

Trend of HR	Value of HR	Even or Slow down	Rising up gradually	Rising up	
HR < HR_{by_min_MET}	Advice_1				
HR_{by_min_MET} < HR < HR_{Thr1}	Advice_1	Advice_2			Advice_3
HR_{Thr1} < HR < HR_{Thr2}			Advice_2		
HR_{Thr2} < HR < HR_{by_max_MET}	Advice_2	Advice_4	Advice_5		
HR_{by_max_MET} < HR				Advice_6	

where

\[HR_{by_min_MET} : \text{Heart rate at minimum MET}, \]
\[HR_{by_max_MET} : \text{Heart rate at maximum MET}, \]
\[HR_{Thr1} : \frac{1}{3} (HR_{by_max_MET} - HR_{by_min_MET}) + HR_{by_min_MET}, \]
\[HR_{Thr2} : \frac{2}{3} (HR_{by_max_MET} - HR_{by_min_MET}) + HR_{by_min_MET}. \]

Fig.5 shows the time transition (blue line) of heart rate kept medium exercise (MET : 40 - 60) controled by advices of BANSS. In this experiment, HR_{by_min_MET} is 114, HR_{Thr1} is 123, HR_{Thr2} is 132 and HR_{by_max_MET} is 142.
The heart rate (blue line) has increased gradually in the previous half. In the latter half, the heart rate has kept within 123 – 132 bpm. It has been confirmed that constant medium exercise (MET : 40 - 60) is realized well in the latter half.

4. Conclusions

Physical condition in quiet at hospital or home shows only an aspect of health at that time. Actual health monitoring must be done in activities of daily life like walking, running, sitting and so on. Physical conditions in daily life change dynamically. This paper shows the measurement system monitoring physical conditions in various motions in daily life by body area network sensing system (BANSS). BANSS is the wearable system which sensing nodes are connected by near field wireless communication. That does not become obstacle to various motions. BANSS will estimate qualitative physical conditions of body by the fusion of heterogeneous and homogeneous measuring data. In addition to them, by using SVHI, BANSS shows current physical conditions as quantitative and qualitative data, and gives advices to keep suitable MET. It is considered that BANSS realizes various kinds of applications. By reconstructing BANSS as small and robust system, the application fields will spread more and more.

5. References

[1] Mienkovic M., Jovanov E., Chapman J., Raskovic D. and Price J., “An Accelerometer-Based Physical Rehabilitation System”, ECE Dept., University of Huntsville, Alabama Department of Electrical Engineering & Comp. Eng. University of Alabama in Huntsville, Huntsville, AL 35899 USA. IEEE, pp.57 – 60, 2002.

[2] Gafurov D., Helkala K. and Šndrol T., “Gait Recognition Using Acceleration from MEMS”, First International Conference on Availability, Reliability and Security (ARES ‘06). IEEE, 2006

[3] Lee J. A., Cho S. H., Lee J. W., Lee K. H. and Yang H. K., “Wearable Accelerometer System for Measuring the Temporal Parameters of Gait”, Proceedings of the 29th Annual International Conference of the IEEE EMBS. France. pp.483 – 486, August, 2007.
[4] Han J., Jeon H. S., Jeon B. S. and Park K. S., “Gait detection from three dimensional acceleration signals of ankles for the patients with Parkinson’s disease”, June 28, 2006.

[5] Wertsch J. J., Webster J. G. and Tompkins W. J., “A portable insole plantar pressure measurement system”, Journal of Rehabilitation Research and Development, Vol.29, No. 1, pp. 13-18, 1992.

[6] Slyper R. and Hodgins J. K., “Action Capture with Accelerometers”, Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2008.

[7] Westerterp K. R., “Physical activity assessment with accelerometers”, International Journal of Obesity, Vol.23, pp. S45 – S49, 1999.

[8] Mathie M. J., Coster A. C. F., Lovel N. H. and Celler B. G., “Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement”, PHYSIOLOGICAL MEASUREMENT, Institute of physics publishing, Vol.25, pp. R1 – R20, 2004.

[9] Kim D. J., Pradhan G. and Prabhakaran B., “Analyzing Coordination of Upper and Lower Extremities in Human Gait”, BodyNets ’09, April 1-3, 2004.

[10] Jun D., Kang J., Kim J. and Kim D., “A Body Sensor Network Platform with Two-Level Communications”, Institute of Information Technology Advancement (ITTA), 2006.

[11] Rolian C., Lieberman D. E., Hamill J., Scott J. W. and Werbel W., “Walking, running and the evolution of short toes in humans”, The Journal of Experimental Biology, Vol.212, pp. 713 - 721, 2009.

[12] Hisashi Kawai, “Development of a System for Assessing Walking Ability of the Elderly”, Waseda University doctoral dissertation, 2006.

[13] Koyo Takenoshita, Taketo Nishiyama, Masahiro Kawagoe, Masaaki Makikawa, “Quantitative Assessment System for Gait of the Elderly Using a Portable Acceleration Monitor Device”, Medical Electronics and Biological Engineering, 2005.

[14] Hyuma Makizako, Tutomu Abe, Shinichi Fujii, Kumiko Sumiya, Tatsuaki Yoshimatsu, Rie Tokuhara, Shuji Kobayashi, Akira Kubo, “Examination of Gait Measurement in Home-Based Rehabilitation – Gait Ability Evaluation Using a 1.5 Meters Walking Test"”, The Society of Physiotherapy Science, 2005.

[15] Yosinori Nishijima, Tatuo Kato, Takahide Baba, Masatada, Yoshizawa, “Effect of Stride Frequency on EMG during Level Walking and Stair Ascending”, Walking Research No.7, 2003.

[16] Masuo Hanawaka, Masaharu Sawamura, Naoyuki Fujimoto, Akira Satoh, “Gait Measurement System and its Applications”, YOKOGAWA TECHNICAL Report Vol.51 No.3, 2007.

[17] Mitsutoshi Susumago, Yasuaki Ohtaki, Akihiro Suzuki, Koichi Sagawa, Tadashi Ishihara, Hikaru Inooka, “Estimation of consumed calorie applying moving behaviour and walking speed”, The Society of Instrument and Control Engineers Touhoku Branch The workshop 202 times 202-11, 2002.

[18] Akimitsu Akahori, Yosifumi Kisimoto, Koji Oguri, “A Study of estimation of actions using a three-axis acceleration sensor”, IEICE Technical Report MBE2005-104, 2005.

[19] Yoshihiro Matsumura, Matsuji Yamamoto, Tadaharu Kitado, Hideki Nakamura, Kazunori Kidera, Shigeo Fujimoto, “High-Accuracy Physical Activity Monitor Utilizing Three-Axis Accelerometer”, MATSUSHITA DENKO Technical Report vol. 56 No.2.

[20] Hisao Oka, Tomonori Inoue, “Monitoring of physical Activity by Accelerometer”, Technical Report of IEICE MBE98-50, 1998.

[21] Yoshiki Higa, Taketo Nishiyama, Masaaki Makikawa, “Monitoring and evaluation of long-term daily life activity using tri-axis accelerometer”, Japan Society of Mechanical Engineers NII Electronic Library Service, 2002.