Picard ranks of K3 surfaces over function fields and the Hecke orbit conjecture

Davesh Maulik1 · Ananth N. Shankar2 · Yunqing Tang3

Received: 30 November 2020 / Accepted: 23 December 2021 / Published online: 11 February 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract Let $X \to C$ be a non-isotrivial and generically ordinary family of K3 surfaces over a proper curve C in characteristic $p \geq 5$. We prove that the geometric Picard rank jumps at infinitely many closed points of C. More generally, suppose that we are given the canonical model of a Shimura variety S of orthogonal type, associated to a lattice of signature $(b, 2)$ that is self-dual at p. We prove that any generically ordinary proper curve C in $S_{\mathbb{F}_p}$ intersects special divisors of $S_{\mathbb{F}_p}$ at infinitely many points. As an application, we prove the ordinary Hecke orbit conjecture of Chai–Oort in this setting; that is, we show that ordinary points in $S_{\mathbb{F}_p}$ have Zariski-dense Hecke orbits. We also deduce the ordinary Hecke orbit conjecture for certain families of unitary Shimura varieties.

1 Department of mathematics, Massachusetts Institute of Technology, Cambridge, USA
2 Department of mathematics, University of Wisconsin, Madison, USA
3 Department of mathematics, Princeton University, Princeton, USA
1 Introduction

1.1 Families of K3 surfaces

Given a family of complex K3 surfaces, it is a well-known fact that the Picard ranks of the fibers will jump at infinitely many special points, so long as the family is not isotrivial. More precisely, let us recall the following Hodge-theoretic result, due to Green [49] and Oguiso [36]. Let Δ be the unit disc in \mathbb{C}, and let $\mathcal{X} \to \Delta$ be a non-isotrivial family of (compact) K3 surfaces. If ρ denotes the minimal Picard rank of \mathcal{X}_s, $s \in \Delta$, then the set of points $t \in \Delta$ for which the Picard rank of \mathcal{X}_t is greater than ρ is a countable, dense subset of Δ. In particular, there are infinitely many such points.

In positive characteristic, this question is more subtle. Suppose we are given $\mathcal{X} \to C$, where C/\mathbb{F}_p is a curve and \mathcal{X} is a non-isotrivial family of K3 surfaces. It is now no longer the case that the Picard rank has to jump at infinitely many points of C. For example, there exist families where every fiber X_t is a supersingular K3 surface, in which case the rank is always 22. By studying families of non-ordinary Kummer surfaces, one can produce families where the Picard rank jumps, but only at finitely many points (see 1.4 for an example).

In both of these examples, the generic fiber is not ordinary. The first main result of this paper shows that, under additional hypotheses, if the generic fiber is ordinary, then there will be infinitely many points where the Picard rank jumps. That is, we show the following:

Theorem 1.1 Let C/\mathbb{F}_p denote a smooth proper curve where $p \geq 5$ is a prime number, and let $\mathcal{X} \to C$ denote a generically ordinary non-isotrivial family of K3 surfaces. Suppose that the discriminant1 of the generic Picard lattice is

1 Note that the Picard lattice of a K3 surface is equipped with a non-degenerate quadratic form arising from the intersection pairing. The discriminant of the Picard lattice is defined to be the discriminant of this quadratic form.
prime to p. Then there exist infinitely many points $c \in C(\overline{\mathbb{F}}_p)$ such that the Picard rank of \mathcal{X}_c is greater than the generic Picard rank of \mathcal{X}.

Broadly speaking, Theorem 1.1 is proved by studying moduli spaces of K3 surfaces, viewed as (canonical integral models of) GSpin Shimura varieties S associated to quadratic \mathbb{Z}-lattices (L, Q) having signature $(b, 2)$ with $b \leq 19$. These Shimura varieties admit families of “special divisors”, which are themselves GSpin Shimura varieties associated to sublattices of (L, Q) having signature $(b - 1, 2)$, whose points parameterize K3 surfaces with Picard rank greater than those parameterized by “generic points” of the ambient Shimura variety.

The notion of special divisors makes sense in the more general setting of GSpin Shimura varieties S associated to quadratic lattices (L, Q) having signature $(b, 2)$ for all positive integers b. For every positive integer m, there exists a divisor $\mathcal{Z}(m) \subset S$ which, if not empty, is also (the integral model of) a GSpin Shimura variety. We prove the following theorem which directly implies Theorem 1.1.

Theorem 1.2 Let S denote the canonical integral model over \mathbb{Z}_p of the GSpin Shimura variety associated to a quadratic \mathbb{Z}-lattice (L, Q) of signature $(b, 2)$, such that p does not divide the discriminant of (L, Q). Assume that $b \geq 3$, $p \geq 5$. Let C be an irreducible smooth proper curve with a finite morphism $C \to \overline{S}_{\mathbb{F}_p}$ such that the generic point of C is ordinary and that the image of C does not lie in any special divisors $\mathcal{Z}(m) := \mathcal{Z}(m)_{\mathbb{F}_p}$, $m \in \mathbb{Z}_{>0}$. Then there exist infinitely many $\overline{\mathbb{F}}_p$-points on C which lie in $\bigcup_{m \in \mathbb{N}, p \nmid m} \mathcal{Z}(m)$.

In the case of S being a Hilbert modular surface or a Siegel modular threefold (with $b = 2, 3$ respectively), Theorem 1.2 follows from our earlier paper [33], but the general setting considered here requires additional techniques.

1.2 The Hecke orbit conjecture

The second goal of this paper is to apply Theorem 1.2 to the study of Hecke orbits in characteristic p. In general, Shimura varieties are naturally equipped with a set of correspondences, known as Hecke correspondences. Roughly speaking, these Hecke correspondences permute the set of special divisors. In characteristic zero, the dynamics of Hecke correspondences are well-understood. For example, work of Clozel–Oh–Ullmo [18] proves that the Hecke orbit of a point equidistributes in the analytic topology. However, in characteristic p, the behavior of the Hecke orbit of a point is still far from understood.

1 The special divisors $Z(d)$ and $Z(m^2d)$ are in the same Hecke orbit.
The first result along these lines is due to Chai [10], who proved that the prime-to-p Hecke orbit of an ordinary point is Zariski dense in A_{g,F_p}, the moduli space of principally polarized abelian varieties over F_p. Guided by this, Chai and Oort have the following more general conjecture for arbitrary Shimura varieties.

Conjecture 1.3 (Chai–Oort) Let S denote the canonical integral model of a Shimura variety of Hodge type (with hyperspecial level) and let S_{F_p} denotes its special fiber.\(^3\) Then the prime-to-p Hecke orbit of a μ-ordinary point is Zariski dense in S_{F_p}.\(^4\)

There is a further generalization to non-ordinary points, which we do not discuss here. For more about the Hecke orbit conjecture and generalizations, see [11–16]. Using Theorem 1.2 as our main input, we establish the ordinary Hecke orbit conjecture for GSpin Shimura varieties, as well as certain unitary Shimura varieties.

Theorem 1.4 Let S_{F_p} denote the mod p (where $p \geq 5$) fiber of the canonical integral Shimura variety associated to one of the following data:

- The orthogonal case. A quadratic \mathbb{Z}-lattice with signature $(b, 2)$ having discriminant prime to p with the associated Shimura variety defined in Sect. 2.1.
- The unitary case. An imaginary quadratic field K split at p, and an O_K-Hermitian lattice having signature $(n, 1)$, with discriminant prime to p with the associated Shimura variety defined in [41, §3, §4.1].\(^5\)

Then the prime-to-p Hecke orbit of an ordinary point is dense in S_{F_p}.

As far as we know, this result is the first of its kind towards settling the Hecke orbit conjecture in the setting of orthogonal Shimura varieties.

1.3 Outline of the proof of Theorem 1.2

There are two broad steps in our proof:

1. We use Borcherds theory to compute the asymptotic of the intersection numbers $(C.Z(m))$ as $m \to \infty$;

3 The conjecture was made in the PEL case, but is expect to hold for Hodge type Shimura varieties too, which includes the case of PEL Shimura varieties.

4 Being μ-ordinary means that this point lies in the open Newton stratum of S_{F_p} and it means ordinary if the ordinary locus in S_{F_p} is nonempty, which will be the case for us in the rest of the paper.

5 Here we only work with the special case when the CM field is an imaginary quadratic field; in the special case when the polarization is principle, see also [29, §2] or [46, §9.3].
(2) We then prove that given finitely many points $P_1, \ldots, P_n \in C(\overline{\mathbb{F}_p})$, the local contributions have the property $\sum_{\rho \mid m, 1 \leq m \leq X} \sum_{i=1}^n i_P(C.Z(m)) < \sum_{\rho \mid m, 1 \leq m \leq X} C.Z(m)$ for large enough $X \in \mathbb{Z}$.

These two steps together prove that as $X \to \infty$, more and more points $P \in C(\overline{\mathbb{F}_p})$ must contribute to the intersection $C.((\sum_{\rho \mid m, 1 \leq m \leq X} Z(m)))$, thereby yielding Theorem 1.2.

The second step involves both local and global techniques. We use the moduli interpretation of the special divisors $Z(m)$ to express the local contribution $i_P(C.Z(m))$ in terms of a lattice point count in an infinite nested sequence of lattices. This is another way in which the characteristic-p nature of this work complicates matters—the analogous expression in the characteristic 0 setting involved a lattice point count in a finite nested sequence of lattices, which makes matters far more tractable. The most technical part of the paper deals with controlling the main term of $i_P(C.Z(m))$ for supersingular points, which we do over Sects. 4, 5 and 6. This requires using Ogus’s and Kisin’s work to explicitly understand the equicharacteristic deformation theory of special endomorphisms at supersingular points in terms of crystalline theory.

One of the difficulties of this result compared to [33] is that, for $b \leq 3$, it is relatively easy to bound the error terms of $i_P(C.Z(m))$. However, in general, high levels of tangency between C and special divisors could in principle cause this term to grow uncontrollably. In order to control this, we use a global argument which first appeared in [46]. Note that $i_P(C.Z(m))$ is necessarily bounded above by the global intersection number $(C.Z(m))$. We use the fact that the global bound holds for every positive integer m (representable by (L, Q)) in order to obtain a sufficient control on the error term of the local contribution $i_P(C.Z(m))$ on average, as we average over all positive integers m. More precisely, we prove that if the error term of $i_P(C.Z(m))$ is too close to the global intersection number for several values of m, then there must exist a positive integer m_0 for which the local intersection number $i_P(C.Z(m_0))$ is greater than the global intersection number $(C.Z(m_0))$, which is a contradiction.

It is crucial to our proof of the local bound that the curve C is an algebraic curve. Given a formal curve having the form $\text{Spf} \overline{\mathbb{F}_p}[[t]] \subset S_{\overline{\mathbb{F}_p}}$ with closed point P, the term $i_P(\text{Spf} \overline{\mathbb{F}_p}[[t]].Z(m))$ is well defined. It is easy to construct examples of formal curves that have the property that $i_P(\text{Spf} \overline{\mathbb{F}_p}[[t]].Z(m_i))$ grows exponentially fast for appropriate sequences of integers m_i, as we discuss in Sect. 3.5. Indeed, the growth rate of $i_P(\text{Spf} \overline{\mathbb{F}_p}[[t]].Z(m))$ can be used as a necessary criterion to determine whether or not a formal curve contained in S is algebraizalbe.
1.4 Contributions from supersingular points

As stated in the outline, the most technical part of our paper is dealing with supersingular points. The main difficulty is caused by the fact that the local contribution $i_P(C.Z(m))$ from a supersingular point $P \in C(\overline{\mathbb{F}}_p)$ has the same order of magnitude as the global intersection number $(C.Z(m))$ as $m \to \infty$; indeed, the global intersection number $(C.Z(m))$ can be expressed in terms of the m-th Fourier coefficient of a non-cuspidal modular form of weight $1+b/2$, whose Eisenstein part is well understood (Lemma 7.5 and Theorem 7.4). The main term of the local contribution $i_P(C.Z(m))$ at a supersingular point P is controlled by the m-th Fourier coefficients of the theta series associated to a nested sequence of positive definite lattices each having rank $b+2$, and is therefore also asymptotic to the m-th Fourier coefficient of an Eisenstein series of weight $1+b/2$ (see Sect. 7.14).

Therefore, a more refined understanding of the constants involved in the global intersection number and the supersingular contribution is needed to prove our theorem. In fact, this is precisely what goes wrong when C is no longer generically ordinary. There are examples when finitely many supersingular points can indeed conspire to fully make up the entire global intersection number. We illustrate this with the following example.

Consider the setting of $X \to C$, where C/\mathbb{F}_p is a curve and X is a non-isotrivial family of Kummer surfaces. Indeed, let $E \to C$ denote a non-isotrivial family of elliptic curves, and let $E_0 \to C$ denote a supersingular elliptic curve pulled back to C. Consider the family $K(E \times_C E_0) \to C$, where $K(E \times_C E_0)$ denotes the Kummer surface associated to the abelian surface $E \times_C E_0$. The set of points $c \in C(\overline{\mathbb{F}}_p)$ such that the Picard rank of $K(E \times E_0)_c$ is greater than the generic Picard rank of $K(E \times E_0)$ is precisely the set of $c \in C(\overline{\mathbb{F}}_p)$ such that the fiber of E at c is supersingular, and therefore the total global intersection number is made up from the local contributions from these finitely many supersingular points.

1.5 Outline of proof of Theorem 1.4

We now survey the proof of the Hecke orbit conjecture, using Theorem 1.2 as input. We will focus on the orthogonal case, since the unitary case follows by a similar argument.

Let us first observe that Chai’s approach for A_g does not easily extend to this case. Chai’s argument involves several steps, some of which generalize to the case of all Shimura varieties of Hodge type, but there are many ideas in Chai’s work which don’t generalize to our setting. Indeed, a key step in his paper is the so-called Hilbert trick which states that every $\overline{\mathbb{F}}_p$-valued point of A_g is contained in a positive-dimensional Shimura subvariety of A_g, namely
a Hilbert modular variety. Unfortunately, this fact does not hold for most Shimura varieties. The case of Hilbert modular varieties is more tractable than A_g because the geometrically simple factors of the associated reductive groups have rank 1.

Instead, our idea is to use an inductive argument on the dimension of $S_{\mathbb{F}_p}$. Our argument consists of the following steps:

1. The setting of Shimura varieties associated to quadratic lattices having signature $(1, 2)$ follows because these Shimura varieties are one-dimensional, and it is well known that the Hecke orbit of an ordinary point is an infinite set. Now, inductively assume that the Hecke orbit conjecture has been proved for all Shimura varieties associated to quadratic lattices having signature $(b - 1, 2)$, with discriminant relatively prime to p, where $b > 1$.

2. Let $Z \subset S_{\mathbb{F}_p}$ denote a generically ordinary Hecke stable subvariety, where S is the canonical integral model of a Shimura variety associated to a quadratic lattice having signature $(b, 2)$ with discriminant relatively prime to p. Such a subvariety Z necessarily has to be positive dimensional, as the Hecke orbit of an ordinary point is necessarily infinite.

3. Suppose that Z contains a proper curve C that is generically ordinary. Then, Theorem 1.2 implies that C intersects the union of special divisors $\bigcup_{p|m} Z(m)$ at infinitely many points, and therefore at an ordinary point $x \in Z(m_0)$. The special divisor $Z(m_0)$ is the special fiber of a Shimura variety in its own right, associated to a quadratic lattice having signature $(b - 1, 2)$ and prime-to-p discriminant (because $p \nmid m_0$), and so the prime-to-p Hecke orbit of x contains a Zariski-dense subset of $Z(m_0)$ by the inductive hypothesis. Therefore, $Z(m_0) \subset Z$, and the result follows from the fact that the Hecke orbit of any special divisor is Zariski dense in $S_{\mathbb{F}_p}$.

4. To deal with the case when Z might not contain a proper curve, we directly prove that any generically ordinary Hecke stable subvariety that intersects the boundary of the Baily–Borel compactification of $S_{\mathbb{F}_p}$ (constructed in [32]) must be all of $S_{\mathbb{F}_p}$.

In other words, even though a “generic” \mathbb{F}_p-valued point of S may not lie in a smaller positive-dimensional Shimura variety, we are able to reduce to the case of a smaller Shimura variety using the intersection-theoretic input of Theorem 1.2.

1.6 Previous work

In addition to the ones mentioned above, we discuss here other related work in the literature.
Chai and Oort [14] proved Theorem 1.1 for Kummer surfaces associated to the product of two elliptic curves and Theorem 1.2 for $S = A_1 \times A_1$ without the assumption that C is proper. The number field analogs of Theorems 1.1 and 1.2 have been proved in [46], based on the previous work by Charles [17,47] for $A_1 \times A_1$ and Hilbert modular surfaces respectively. For characteristic zero families, Tayou [48] proved an equidistribution result on the the Noether–Lefschetz locus, which is a refinement of the theorem of Green.

For the results on Hecke orbits, Chai has also proved Conjecture 1.3 in the setting of Hilbert modular varieties, as well as for some PEL type C Shimura varieties. Building on work of Chai, the second named author [45] proved Conjecture 1.3 for the ordinary locus in Deligne’s modèles étranges.

There is also a generalization of Conjecture 1.3 to \tilde{F}_p-points in other Newton strata (see [13, Conj. 3.2]). In the case of A_g, there is extensive work of Chai and Oort studying the properties of Newton strata (see their survey paper [16] and the references there); in combination with work of Yu, this gives the full Hecke orbit conjecture for A_g and Hilbert modular varieties (see for instance [12] for the proofs). More recently, Zhou proved Conjecture 1.3 for (the μ-ordinary loci of) quaternionic Shimura varieties associated to quaternion algebras over some totally real fields ([52, Thm. 3.1.3, Rmk. 3.1.4]); and Xiao proved the generalized version for certain PEL Shimura varieties of type A and C and the points in those Newton strata which contain certain hypersymmetric points ([50, Thm. 7.1, Cors. 7.5, 7.6]).

1.7 Organization of paper

In Sect. 2, we recall the definitions of GSpin Shimura varieties, special endomorphisms, and special divisors. In Sect. 3, we formulate Theorems 3.2 and 3.3 which describe the decay of lattices of special endomorphisms at supersingular points. The proof of these statements occupies the next three sections, which may be skipped on a first reading. In Sect. 4, we recall from Ogus’s work [37] the explicit description of the lattices of special endomorphisms at supersingular points and we use Kisin’s work [27] to compute an F-crystal L_{cris}, which controls the deformation of special endomorphisms. In Sects. 5–6 we use this explicit description to prove the decay results. In Sect. 7, we prove Theorem 1.2 following the outline given above. In Sect. 8, we prove Theorem 1.4 using Theorem 1.2; we only use the statement (not the proof) of Theorem 1.2 and the reader who is interested in the Hecke orbit conjecture may directly proceed to Sect. 8 after Sect. 2.

Notation

Throughout the paper, $p \geq 5$ is a prime. We write $f \asymp g$ if $f = O(g)$ and $g = O(f)$.

 Springer
2 GSpin Shimura varieties and special divisors

In this section, we review basic definitions, terminology, and notation for GSpin Shimura varieties, special endomorphisms, and special divisors that we need in the rest of the paper.

Let (L, Q) be a quadratic \mathbb{Z}-lattice of signature $(b, 2)$, $b \geq 1$. We assume that (L, Q) is self-dual at p. We recall the canonical integral model of the GSpin Shimura variety associated to (L, Q) and the definition of special divisors. The main references are [31, §§3–5] and [2, §§4.1–4.3]; see also [46, §2] for a brief summary.

2.1 Let $V := L \otimes_{\mathbb{Z}} \mathbb{Q}$ and let $[-, -]$ denote the bilinear form on V given by $[x, y] = Q(x + y) - Q(x) - Q(y)$. Let $G := \text{GSpin}(L \otimes \mathbb{Z}_p, Q)$ be the group of spinor similitudes of $L \otimes \mathbb{Z}_p$, which is a reductive group over \mathbb{Z}_p and naturally a subgroup of $C(L \otimes \mathbb{Z}_p)^\times$, where $C(-)$ denotes the Clifford algebra. The group $G(\mathbb{R})$ acts on the Hermitian symmetric domain $D_L = \{ z \in V_\mathbb{C} \mid [z, z] = 0, [z, \bar{z}] < 0 \}/\mathbb{C}^\times$ via $G_Q \to \text{SO}(V)$. For $[z] \in D_L$ with $z \in V_\mathbb{C}$, let $h_{[z]} : \text{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \to G_\mathbb{R}$ denote the unique homomorphism which induces the Hodge decomposition on $V_\mathbb{C}$ given by $V_\mathbb{C}^{1,-1} = \mathbb{C}z$, $V_\mathbb{C}^{0,0} = (\mathbb{C}z \oplus \mathbb{C}\bar{z})^\perp$, $V_\mathbb{C}^{-1,1} = \mathbb{C}\bar{z}$. Thus (G_Q, D_L) is a Shimura datum with reflex field \mathbb{Q}.

Let $K \subset G(\mathbb{A}_f)$ be a compact open subgroup contained in $G(\mathbb{A}_f) \cap C(L \otimes \hat{\mathbb{Z}})^\times$, where $C(L \otimes \hat{\mathbb{Z}})$ is the Clifford algebra of $(L \otimes \hat{\mathbb{Z}}, Q)$ and we assume that $K_p = G(\mathbb{Z}_p)$. Then we have the GSpin Shimura variety $Sh := Sh(G_Q, D_L)_K$ over \mathbb{Q} with $Sh(G_Q, D_L)_K(\mathbb{C}) = G(\mathbb{Q}) \backslash D_L \times G(\mathbb{A}_f)/K$ and by [27, Theorem 2.3.8], Sh admits a canonical smooth integral model $\mathcal{S} := \mathcal{S}_K$ over \mathbb{Z}_p.

2.2 Let H denote the Clifford algebra $C(L)$ equipped with the right action by itself via right multiplication, and equip $H \otimes \mathbb{Z}_p$ with the action of G by left multiplication. By picking a suitable symplectic form on H, we have $G_Q \to \text{GSp}(H \otimes \mathbb{Q})$, which induces a morphism from (G_Q, D_L) to a Siegel Shimura datum. Thus there is a Kuga–Satake abelian scheme $A^{\text{univ}} \to Sh$ whose first \mathbb{Z}-coefficient Betti cohomology H_B is the local system induced by H (and its G_Q-action). This Kuga–Satake abelian scheme $A^{\text{univ}} \to Sh$ extends to an abelian scheme $A^{\text{univ}} \to \mathcal{S}$ equipped with a left $C(L)$-action. Let $H_{\text{dR}}, H_{\ell, \text{ ét}}$ denote the first relative de Rham cohomology and ℓ-adic étale cohomology with \mathbb{Z}_ℓ-coefficient of $A^{\text{univ}} \to \mathcal{S}$ for $\ell \neq p$, and let H_{cris} denote the first relative crystalline cohomology of $A^{\text{univ}}_p \to \mathcal{S}_p$.

The action of L on H via left multiplication induces a G_Q equivariant map $L \otimes \mathbb{Q} \to \text{End}_{C(L)}(H \otimes \mathbb{Q})$, and thus we have a \mathbb{Z}-local system L_B.

6 Since we work with the hyperspecial case, all the results listed here are in [31] and we follow the convention of using cohomology as in [31].
over Sh with a natural embedding $L_B \to \text{End}_{C(L)}(H_B)$. There are a filtered vector bundle with connection $L_{dR} \subset \text{End}_{C(L)}(H_{dR})$, a \mathbb{Z}_ℓ-lisse sheaf $L_{\ell, \text{et}} \subset \text{End}_{C(L)}(H_{\ell, \text{et}})$ and an F-crystal $L_{\text{cris}} \subset \text{End}_{C(L)}(H_{\text{cris}})$ such that these embeddings along with $L_B \to \text{End}_{C(L)}(H_B)$ are compatible under Betti-de Rham, Betti-étale, de Rham-crystalline comparison maps (see [31, Prop. 3.11, 3.12, Prop. 4.7]). By [2, §4.3], $L_?$, $? = B, dR, (\ell, \text{et}), \text{cris}$ are equipped with a natural quadratic form Q given by $f \circ f = Q(f) \cdot \text{Id}$ for a section f of $L_?$.

Definition 2.3 ([2, Def. 4.3.1]) Let T denote an S-scheme.

1. An endomorphism $v \in \text{End}_{C(L)}(A_T^{\text{univ}})$ is special if all cohomological realizations of v lie in the image of $L_? \to \text{End}_{C(L)}(H_?)$, where $? = B, dR, \text{cris, (} \ell, \text{et}),$ for all $\ell \neq p$.\(^7\)

2. Assume that $T \otimes \mathbb{F}_p \neq \emptyset$. Let $A_T^{\text{univ}}[p^{\infty}]$ denote the p-divisible group associated to A_T^{univ}. An endomorphism $v \in \text{End}_{C(L)}(A_T^{\text{univ}}[p^{\infty}])$ is special if its crystalline realization lies in L_{cris}.

Remark 2.4 For connected T, an endomorphism $v \in \text{End}_{C(L)}(A_T^{\text{univ}})$ or $\text{End}_{C(L)}(A_T^{\text{univ}}[p^{\infty}])$ is special if and only if there exists a geometric point $t \in T$ such that $v_t \in \text{End}_{C(L)}(A_t^{\text{univ}})$ or $\text{End}_{C(L)}(A_t^{\text{univ}}[p^{\infty}])$ is special (see [2, Prop. 4.3.4, Lem. 4.3.5] and their proofs). Moreover, if $T_{\mathbb{F}_p} \neq \emptyset$, then we may pick a geometric point $t \in T_{\mathbb{F}_p}$ and for such t, $v_t \in \text{End}_{C(L)}(A_t^{\text{univ}})$ is special if and only if the crystalline realization of v_t lies in L_{cris} (see [31, Cor. 5.22, §5.24]). In this paper, we will mainly work with T which is an $S_{\mathbb{F}_p}$-scheme and thus we will only use L_{cris} to verify special endomorphisms.

Remark 2.5 By [31, Lem. 5.2], for $v \in \text{End}_{C(L)}(A_T^{\text{univ}})$ special, we have $v \circ v = [Q(v)]$ for some $Q(v) \in \mathbb{Z}_{\geq 0}$ and $v \mapsto Q(v)$ is a positive definite quadratic form on the \mathbb{Z}-lattice of special endomorphisms of A_T^{univ}.

Definition 2.6 For $m \in \mathbb{Z}_{\geq 0}$, the special divisor $Z(m)$ is the Deligne–Mumford stack over S with functor of points $Z(m)(T) = \{ v \in \text{End}(A_T^{\text{univ}})$ special $| Q(v) = m \}$ for any S-scheme T. We use the same notation for the image of $Z(m)$ in S. By for instance [2, Prop. 4.5.8], $Z(m)$ is an effective Cartier divisor and is flat over $\mathbb{Z}_{(p)}$ and hence $Z(m)_{\overline{\mathbb{F}}_p}$ is still an effective Cartier divisor of $S_{\overline{\mathbb{F}}_p}$; we denote $Z(m)_{\overline{\mathbb{F}}_p}$ by $Z(m)$.

3 Lattice decay statements and heuristics

In this section, we formulate local intersection multiplicities in terms of counting points from a nested sequence of lattices. In the supersingular case, we

\(^7\) We drop the ones which do not make sense. For instance, if p is invertible in T, we drop cris; if $T_Q = \emptyset$, we drop B.

\(\copyright\) Springer
then state decay estimates for this nested sequence that will be crucial for controlling the local contributions. Proving these estimates will occupy Sects. 4, 5, and 6. We give a heuristic explanation for why these decay estimates suffice. Finally, at the end of the section, we construct a formal family where the local multiplicities behave wildly; as a consequence, in our argument, it is necessary to use the global geometry to control the local error terms.

Preliminaries and main statements

Let \(k \) denote \(\overline{\mathbb{F}}_p \) and recall from Theorem 1.2 that \(C \rightarrow S_k \) is a smooth proper curve whose generic point maps to the ordinary locus of \(S_k \). Given a perfect field \(k' \) of characteristic \(p \), and a point \(P' \in S(k') \), we say \(P' \) is ordinary if the slopes of the crystalline Frobenius \(\varphi \) on \(L_{\text{cris}, P'}(W(k')) \) are \(-1, 1 \) with multiplicity 1 and 0 with multiplicity \(b \). For \(P' \in S(k) \), we say \(P' \) is supersingular if the crystalline Frobenius \(\varphi \) on \(L_{\text{cris}, P'}(W(k)) \) is isoclinic of slope 0.\(^8\) Let \(P \in C(k) \), and let \(t \) be a local coordinate at \(P \) (i.e., \(\widehat{C}_P = \text{Spf} \ k[[t]] \)). Let \(\mathcal{A}/k[[t]] \) denote the pullback of the universal abelian scheme \(\mathcal{A}_{\text{univ}}/S \). Finally, let \(L_n \) denote the \(\mathbb{Z} \)-module of special endomorphisms of \(\mathcal{A} \) mod \(t^n \). The moduli-theoretic description of the special divisors yields the following expression:

\[
i_P(C.Z(m)) = \sum_{n=1}^{\infty} \#\{v \in L_n \mid Q(v) = m\}.
\] (3.1)

As discussed in the introduction, one of the main difficulties in comparing local and global intersections is the contribution of supersingular and especially superspecial points; these are the supersingular points for which the lattice of special endomorphisms is as large as possible (see Sect. 4.1 for a precise definition). We will therefore assume that the image of \(P \) in \(S_k \) is contained in the supersingular locus of \(S_k \).

We now define the Cartier divisor associated to the reduced locus of non-ordinary points of \(S_k \), as well as the Hasse invariant on \(S_k \) which defines this locus. This is implicitly done in [39] in the case when \(S_k \) parameterizes K3 surfaces—the more general case can also be deduced from loc. cit., because for the most part, Ogus’ constructions and proofs only require K3 crystals. However, for completeness, we include a more thorough definition.

Consider the filtered vector bundle with connection \(L_{\text{dR}} \) on \(S_k \). Define \(E_1 \subset L_{\text{dR}} \) to be the conjugate filtration \(F^1_{\text{con}} L_{\text{dR}} \), which in turn is defined as

\(^8\) By [24, Lem. 4.2.4], this definition of being supersingular is equivalent to that the corresponding Kuga–Satake abelian variety is supersingular.
follows\(^9\). At any closed point \(s \in S_k\), \(E_{1,s}\) can be defined as in [39, page 327]—Ogus’ definition only requires a K3 crystal (as defined in [37, Section 3]). To see that this definition globalizes to all of \(S_k\), we may use the conjugate filtration on \(H_{dR}\) (which is well defined as \(H_{dR}\) is the relative deRham cohomology of \(A/S_k\)) to induce a filtration (which we define to be \(F_{1,\text{con}}\)) on \(L_{dR}\), which agrees with \(E_{1,s}\) at any closed point \(s\) of \(S_k\). Having defined \(F_{1,\text{con}} \subset L_{dR}\) and therefore \(E_1\), we consider the locus \(F_2 \subset S_k\) defined in [39, Proposition 11], with \(h = 1\). By [39, Proposition 3], \(F_2\) is the same as the non-ordinary locus as defined by the slopes of \(L_{\text{cris}}\). Finally, by [39, Theorem 15], the equation defining the locus \(F_2\) is a section of \(\text{Fil}^1(L_{dR}) \otimes (p-1)\), and hence is a weight \(p-1\) modular form which we define to be the Hasse invariant \(H\) on \(S_k\).

We now return to the setting of \(P \in C \to S_k\), with \(P\) supersingular. See Lemma 4.9 for the description of \(H\) in a neighborhood of \(P \in S_k\). We have that \(A\) is generically ordinary and specializes to a supersingular point. Therefore, after restriction to \(k[[t]]\) the Hasse invariant \(H\) vanishes to some finite order at \(P\).

In order to control the number of points in the nested family of lattices \(L_n\), as \(n\) grows, we will prove that the covolumes of these lattices grow rapidly; note that the covolume of a lattice determines—to first order—the number of lattice points with bounded norm.

We define \(h_P\) to be \(v_t(H)\), namely the \(t\)-adic valuation of \(H\) restricted to \(\hat{C}_P\). Our bounds will be in terms of the quantity \(h_P\), and so we make the following definitions.

Definition 3.1 Let \(r \geq 0\) denote an integer, and let \(a = \frac{h_P}{2}\). Define \(h_r = [h_P(p^r + \ldots + p + 1 + 1/p)]\), \(h'_r = [h_P(p^r + \ldots + 1) + a/p]\) and \(h'_{r+1} = [a/p]\).

Suppose that the point \(P\) is supersingular, but not superspecial. Then we have:

Theorem 3.2 The index \(|L_1/L_n|\) of \(L_n\) inside \(L_1\) satisfies the inequality

\[
|L_1/L_n| \geq p^{2+2r}
\]

if \(h_r + 1 \leq n \leq h_{r+1}\).

We remind the reader that \(L_1\) contains the lattices \(L_n\) with index a power of \(p\) (see [33, Rmk. 7.2.2]). The content of the above result is that the for any \(n\) that is larger than \(h_P(1 + 1/p)\), the abelian scheme \(A \mod t^n\) has fewer special endomorphisms than \(A \mod t\), and that the index of \(L_n\) in \(L_1\) is at least \(p^2\). For \(n\) greater than \(h_P(p + 1 + 1/p)\), \(A \mod t^n\) has still fewer special

\(^9\) We note that our notation differs from Ogus’ by a Tate twist, so our \(F_{1,\text{con}}\) corresponds to Ogus’ \(F_{2,\text{con}}\).
endomorphisms than $A \mod t$, and in fact the index of L_n in L_1 is at least p^4, etc.

As the lattice of special endomorphisms at P is maximal when P is superspecial, we need better bounds in this case. In Sect. 6, we establish the following result:

Theorem 3.3 When P is superspecial, the index $|L_1/L_n|$ of L_n inside L_1 satisfies one of the following two inequalities:

1. $|L_1/L_n| \geq p^{1+2r} + ap'' + 1 \leq n \leq h'_r$ and $|L_1/L_n| \geq p^{2+2r}$ if $h'_r + 1 \leq n \leq h'_r + ap'' + 1$.
2. $|L_1/L_n| \geq p$ if $h'_{r-1} + a + 1 \leq n \leq h'_0$ and $|L_1/L_n| \geq p^{3+2r}$ if $h'_r + 1 \leq n \leq h'_{r+1}$.

The above results show that there is a dichotomy between the local behavior at superspecial points, and supersingular points that are not superspecial. This is because the vanishing locus of the Hasse invariant on S_k is singular precisely at superspecial points (see for instance [39, the proof of Cor. 16]). This singularity forces the covolume of L_n to increase faster than it otherwise would.

3.4 A heuristic

To motivate our approach, we give a heuristic argument here for the expectation that for $p \gg \epsilon$, the sum of local intersection multiplicities $i_P(C, Z(m))$ at supersingular points on C with $Z(m)$ is at most $(1/2 + \epsilon) C. Z(m)$ as $m \to \infty$ using Theorems 3.2 and 3.3. The proof of Theorem 7.18 verifies this expectation when we average over m. In particular, this heuristic explains why we need a stronger decay estimate for superspecial points and why such decay should exist. In order to just convey the basic idea, we will keep the argument presented here brief, even a little vague; more precise statements and proofs will come later in Sect. 7 and the reader may consult there for the precise statements and proofs.

Theorems 3.2 and 3.3 imply that for $p \gg \epsilon$, the major contribution in $i_P(C. Z(m))$ comes from the intersection of $k[t]/t^{h_P}$ and $Z(m)$ (as the covolumes of L_n increase). The intersection multiplicity of $k[t]/t^{h_P}$ and $Z(m)$ is at most h_P times the number $b(m, P)$ of branches of the formal completion $\widehat{Z(m)}_P \subset \widehat{S}_{k, P}$.

Indeed, $b(m, P) = \#\{v \in L_1 \mid Q(v) = m\}$. By studying the theta series associated to L_1, we have that $b(m, P)$ is roughly $|q_L(m)|/p^{t_P/2}$, where $q_L(m)$ denotes the m-th Fourier coefficient of the vector-valued Eisenstein series E_0 of weight $1 + b/2$ defined in Sect. 7.2 and t_P (which is an even positive integer) is the type of P defined in Sect. 4.2. In particular, this bound is the worst when $t_P = 2$, which by definition means that P is superspecial.
We now consider the extreme case when all non-ordinary points on C are superspecial. Since the Hasse invariant is a weight $p-1$ modular form on S_k, then we have

$$\sum_{P \in C(k) \text{ superspecial}} h_P = (p-1)C.\omega,$$

where ω is the line bundle of modular forms of weight one. Then without considering the first inequalities in each of (1) and (2) of Theorem 3.3, an initial estimate of $\sum_{P \text{ supersingular}} i_P(C.Z(m))$ is

$$\sum_{P \in C(k) \text{ superspecial}} h_P|q_L(m)|/p = \frac{p-1}{p}|q_L(m)|(C.\omega),$$

and a priori this should be a lower bound as we have ignored tangencies of order greater than h_P.

On the other hand, as we discuss in Lemma 7.5, based on Borcherds theory, this is roughly the same size as the global intersection $C.Z(m)$. Thus we need some extra input, which is exactly given by Theorem 3.3; this result lets us replace h_P by $h_P/2$ for the major term in $i_P(C.Z(m))$ and then obtain our expectation.

We can see how this works in the simplest situation, when C intersects all local formal branches of $\widehat{Z(m)}_P$ transversely. Then $i_P(C.Z(m)) = b(m, P)$. On the other hand, since the singular locus of the non-ordinary locus in S_k consists of the superspecial points, then $h_P \geq 2$ for all superspecial points and thus the total number of superspecial points on C is at most $\frac{p-1}{2}C.\omega$ and thus by the above estimate of $b(m, P)$, we see that $\sum_{P \text{ supersingular}} i_P(C.Z(m)) \leq (\frac{1}{2} + \epsilon)(C.Z(m))$.

3.5 An example of a formal curve. We will now construct a formal curve $\text{Spf } k[[t]] \subset S_k$ with closed point P where the local multiplicities $i_P(C.Z(m_i))$ grows exponentially fast for appropriate sequences of integers m_i. Our example will in fact be a case in which P is ordinary. For ease of exposition, we assume that the quadratic lattice has even rank, and consequently let $b = 2c$. There exist S_k, P such that L_1, the \mathbb{Z}-module of special endomorphisms at P, has rank $2c = b$, with the condition that the discriminant of L_1 is prime to p (for instance, we may always choose a GSpin Shimura variety which admits a map from the modular curve in characteristic 0, and then choose a CM point \tilde{P} in the modular curve, and finally choose p to be a large enough ordinary prime for \tilde{P}, and P to be $\tilde{P} \mod p$). Suppose that $e_1, f_1, e_2, f_2, \ldots, e_c, f_c$ is an orthogonal \mathbb{Z}-basis of L_1. Let $\mathcal{L}_n = L_n \otimes \mathbb{Z}_p$ denote the module of (formal) special endomorphisms $A[p^\infty] \mod t^n$.

\copyright Springer
Serre–Tate theory yields the existence of coordinates \(\{q_i, q_i' : 1 \leq i \leq c\}\) such that the formal neighborhood of \(S_k\) at \(P\) is given by \(\text{Spf } k[[q_i - 1, q_i' - 1]]\) where the coordinates \(q_i, q_i'\) canonically endow \(k[[q_i - 1, q_i' - 1]]\) with the structure of a formal torus—this follows by work of Noot [35, Thm. 2.8, §3]. The locus in the formal deformation space of an ordinary abelian variety to which a specific endomorphism extends is well known to be a (possibly non-smooth) formal subgroup. Work of Madapusi Pera [31, Cor. 5.17] implies that the deformation space of a formal special endomorphism is a divisor. Furthermore, Madapusi Pera [31, Cor. 5.17, Cor. 5.19] proves that if a \(\mathbb{Z}_p\)-linearly independent set of special endomorphisms of \(P\) spans an \(n\)-dimensional self-dual \(\mathbb{Z}_p\)-submodule of the special endomorphisms of the ordinary point \(A[p^\infty]\) mod \(t\), then the sub-locus of the formal neighborhood of \(S_k\) at \(P\) to which all endomorphisms in this module extend is a smooth formal subscheme of codimension \(n\), and therefore a formal subtorus of codimension \(n\). Therefore, we may assume that the coordinates \(q_i\) (respectively \(q_i'\)) satisfy the property that the local equation defining the locus where the formal special endomorphisms \(e_i\) (respectively \(f_i\)) deform is just \(q_i - 1\) (respectively \(q_i' - 1\)). It now follows that the local equation defining the locus where the formal special endomorphism \(\sum_{i=1}^c (\lambda_i e_i + \mu_i f_i) \in \mathcal{L}_1\), \(\lambda_i, \mu_i \in \mathbb{Z}_p\) deforms is just \(\prod_{i=1}^c q_i^{\lambda_i} q_i'^{\mu_i} - 1\). Note that this has following consequence: if \(f\) is the local equation defining the locus where some special endomorphism \(w\) deforms, then \(f^P\) is the equation for \(pw\).

We now choose \(\mu_i\) to be irrational \(p\)-adic integers which are “very well approximated” by actual integers. Specifically, choose \(\mu_i = \mu = \sum a_n p^n\) where \(0 \leq a_n \leq p - 1\) and \(a_0 = 1\). We will choose the precise values for \(a_n\), \(n \geq 1\) below.

We will now construct our formal curve to satisfy the property that \(A/\text{Spf } k[[t]]\) admits no non-zero special endomorphisms, but \(A[p^\infty]/\text{Spf } k[[t]]\) admits special endomorphisms by \(\text{Span}_{\mathbb{Z}_p}\{e_i + \mu_i f_i\}_{i=1}^c \subset \mathcal{L}_1\). Choosing \(\text{Spf } k[[t]] \subset S_k\) to be defined by the quotient map \(\rho : k[[q_i - 1, q_i' - 1]] \to k[[t]]\), with \(\rho(q_i) = (1 + \alpha_i t)^{-\mu}\) and \(\rho(q_i') = (1 + \alpha_i t)\), where \(\alpha_i \in k\) are linearly independent over \(\mathbb{F}_p\), is one such example and we will treat this example.

With this setup, we are now prepared to compute the lattices \(\mathcal{L}_N\), and therefore also \(L_N\) and \(i_P(\text{Spf } k[[t]].\mathbb{Z}(m_i))\). The assumption that the elements \(\alpha_i \in k\) are \(\mathbb{F}_p\)-linearly independent and \(\mu \in \mathbb{Z}_p^\times\) implies that the local equation defining the locus in \(\text{Spf } k[[t]]\) such that any primitive \(w \in \text{Span}\{e_1, \ldots, e_c\}\) deforms is just \(t\). As the endomorphisms \(e_i + \mu f_i, 1 \leq i \leq c\) extend to the whole of \(\text{Spf } k[[t]]\), we have \(\mathcal{L}_2, \ldots, \mathcal{L}_p = \text{Span}\{pe_1, \ldots, pe_c, e_1 + \mu f_1, \ldots, e_c + \mu f_c\}\); \(\mathcal{L}_{p+1}, \ldots, \mathcal{L}_{p^2} = \text{Span}\{p^2 e_1, \ldots, p^2 e_c, e_1 + \mu f_1, \ldots, e_c + \mu f_c\}\); and we finally have \(\mathcal{L}_{p^n-1+a} = \text{Span}\{p^n e_1, \ldots, p^n e_c, e_1 + \mu f_1, \ldots, e_c + \mu f_c\}\).
where $a \geq 1$ and $p^{n-1} + a \leq p^n$. Finally, we have that $L_N = L_1 \cap L_N$ (with the intersection in L_1).

The fact that $\mu = \sum_{n \geq 0} a_n p^n$ implies that $v_{1,0} = e_i + a_0 f_i \in L_p$, $v_{1,1} = e_i + (a_0 + a_1 p) f_i \in L_{p^2}$, \ldots, $v_{n, n} = e_i + (a_0 + a_1 p + \ldots + a_n p^n) f_i \in L_{p^{n+1}}$, etc. We finally choose our sequence of a_n—recall that we have already chosen $a_0 = 1$. To that end, define $n_0 = 0$, and recursively define $n_{j+1} = p^{2n_j}$. We define $a_{n_j} = 1$ and $a_n = 0$ if $n \neq n_j$, $\forall j \in \mathbb{Z}_{\geq 0}$. For any positive integer j_0, we see that $v_{n, n_{j_0}+1} = e_i + (\sum_{j=0}^{j_0} p^{n_j}) f_i \in L_{p^{n_{j_0}+1}}$. It is easy to see that $m_j := Q(v_{n, n_{j_0}+1}) \propto p^{2n_j}$. Therefore, we have that $i_P(\text{Spf } k[[t]]. Z(m_j)) \simeq p^{n_{j+1}}$, whose size is clearly exponential in m_j! We have therefore constructed an example of a formal curve, as well as a sequence of special divisors $Z(m_j)$, such that $i_P(\text{Spf } k[[t]]. Z(m_j))$ is exponential in m_j. In fact, $L_{p^{n_{j+1}}}$ contains a rank-c sublattice with discriminant $\simeq p^{2cn_j}$ (spanned by $\{v_{n, n_{j_0}+1} - 1\}_{i=1}^c$). Therefore, when $c > 2$, by choosing our initial values $Q(e_i), Q(f_i)$ carefully, we may even arrange for $i_P(\text{Spf } k[[t]]. Z(m))$ growing exponentially in m_j (and therefore growing faster than any polynomial in m) for a density one set of $m \in [m_j, m_{j+1}]$.

In [33], we are able to get around this difficulty because $c \leq 2$, and hence our lattices all have relatively small rank. Indeed, in that setting, the lattices $L_{p^{n_{j+1}}}$ may contain sublattices with discriminant logarithmic in $p^{n_{j+1}}$, but these sublattices necessarily have rank bounded above by 2, and the set of integers represented by rank two positive definite lattices has density zero.

4 The F-crystal L_{cris} on local deformation spaces of supersingular points

The goal of this section and Sects. 5 and 6 is to prove Theorems 3.2 and 3.3 by analyzing the deformation behavior of special endomorphisms at supersingular points.

To set up this analysis, in this section, we compute L_{cris} over the formal neighborhoods of supersingular points in $S_{\overline{F}_p}$. As in [33, §3], we first compute $L_{\text{cris}, p}(W)$ at a supersingular point P, which is a quadratic space over $W := W(\overline{F}_p)$ with a σ-linear Frobenius action φ, and then we use Kisin’s work [27] to obtain L_{cris} over the formal neighborhood of P. Here we use the work of Ogus [37, §3] to compute $L_{\text{cris}, p}(W)$ while we follow [24] in [33]; the extra input is [37, Thm. 3.21].

In [37], he uses the notion of supersingular K3 crystals [37, Def. 3.1], which are isoclinic of slope 1; these crystals differ by a Tate twist applied to our $L_{\text{cris}, p}(W)$ (which is isoclinic of slope 0). Our convention is the same as that in [24]. In particular, our Frobenius φ differs from the Frobenius in [37] by a factor of $1/p$. For the convenience of the reader, we give references to

 Springer
Picard ranks of K3 surfaces over function fields whenever possible in this paper and the reader may check [33] for the references to [24].

The F-crystal L_{cris} at a supersingular point

4.1 Set $k = \overline{\mathbb{F}}_p, W = W(k), K = W[1/p]$ and let σ denote the usual Frobenius action on K. Given a supersingular point P, $L := L_{\text{cris}, P}(W)$ is equipped with a quadratic form Q (see Sect. 2.2) and a σ-linear Frobenius action φ. We note that φ is not an endomorphism of L, but a σ-linear map $L_{\text{cris}, P}(W) \to \frac{1}{p}L_{\text{cris}, P}(W)$. Let $\langle -,- \rangle$ denote the bilinear form on L given by $\langle x, y \rangle = Q(x + y) - Q(x) - Q(y)$. By the definition of Q, we have $\langle \varphi(x), \varphi(y) \rangle = \sigma(\langle x, y \rangle)$.

Let L denote the \mathbb{Z}_p-lattice of special endomorphisms the p-divisible group $A_P[p^\infty]$, where $A_P := A_{P, \text{univ}}$. By Dieudonné theory, we have that $L = L_{\varphi=1}$. Since P is supersingular, we have that $\text{rk}_{\mathbb{Z}_p} L = \text{rk}_W L = \text{rk}_{\mathbb{Z}} L$ and $L \subset L \otimes_{\mathbb{Z}_p} K$.

By [38, Thm. 3.4], there is a decomposition of \mathbb{Z}_p-quadratic lattices $(L, \langle , \rangle) = (L_0, \langle , \rangle_0) \oplus (L_1, \langle , \rangle_1)$, where $p \mid \langle , \rangle_0$, both $\frac{1}{p} \langle , \rangle_0$ and \langle , \rangle_1 are perfect, and $2 \mid \text{rk}_{\mathbb{Z}_p} L_0$. Thus $p \langle , \rangle_0$ induces a perfect \mathbb{F}_p-valued quadratic form on the \mathbb{F}_p-vector space $\frac{1}{p}L_0/L_0$; we also denote this quadratic form by $p \langle , \rangle_0$. The type of P, denoted by t_P, is defined to be $\text{rk}_{\mathbb{Z}_p} L_0$, by [37, Cor. 3.11], $2 \mid t_P, 2 \leq t_P \leq \text{rk} L$. We say P is superspecial if $t_P = 2$; otherwise, we say P is non-superspecial.

4.2 The above decomposition of L induces a decomposition of L, which allows us to compute L explicitly. More precisely, by [37, Thms. 3.5,3.20], the W-quadratic lattice L with Frobenius action decomposes as $L_0 \oplus L_1$, where

$$L_0 \otimes W \subset L_0 \subset \frac{1}{p}L_0 \otimes W$$

and $L_0 \bmod L_0 \otimes W \subset (\frac{1}{p}L_0/L_0) \otimes k$ is a totally isotropic subspace with respect to \langle , \rangle_0 of dimension $t_P/2$ satisfying certain conditions and $L_1 = L_1 \otimes W$.

We first provide explicit descriptions of L_0 and L_0.

Lemma 4.3 (Ogus) Set $n = t_P/2$ and $\lambda \in \mathbb{Z}_p^\times$ such that $\lambda^2 \bmod p \in \mathbb{F}_p$ is a quadratic non-residue. There exists a \mathbb{Z}_p-basis $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$ of L_0 and the quadratic form \langle , \rangle_0 is given by $\langle e_i, f_i \rangle_0 = p$ for $i > 1$.

By [39, p. 327], $t_P/2$ is the Artin invariant if A_P is the Kuga–Satake abelian variety associated to a K3 surface.
\[\langle e_1, e_1 \rangle_0 = 2p, \langle f_1, f_1 \rangle_0 = -2\lambda^2 p, \text{ and } \langle v, w \rangle_0 = 0 \text{ for all } (v, w) \in \{e_1, \ldots, e_n, f_1, \ldots, f_n\}^2 \text{ such that } (v, w) \neq (e_i, f_i), (f_i, e_i), i > 1 \text{ or } (e_1, e_1), (f_1, f_1). \]

Proof The assertion follows from Theorem 3.4 and the proof of Lemma 3.15 in [37]. \qed

Lemma 4.4 (Ogus) Fix the \(\mathbb{Z}_p \)-quadratic space \(\mathbb{L}_0 \) as in Lemma 4.3. For each supersingular point \(P \) with \((\mathbb{L}_0)^{\varphi=1} = \mathbb{L}_0 \), there exists a vector \(v \in \frac{1}{p}(\mathcal{L}_0 \otimes_{\mathbb{Z}_p} \mathbb{W}) \) such that

\[\mathbb{L}_0 = \operatorname{Span}_\mathbb{W}\{v, \sigma(v), \ldots, \sigma^{n-1}(v)\} + \mathcal{L}_0 \otimes \mathbb{W} \]

and \(v \) satisfies the following conditions:

1. \(\operatorname{Span}_\mathbb{W}\{v, \sigma(v), \ldots, \sigma^{2n-1}(v)\} = \frac{1}{p}\mathcal{L}_0 \otimes_{\mathbb{Z}_p} \mathbb{W}. \)
2. \(\operatorname{Span}_\mathbb{W}\{v, \sigma(v), \ldots, \sigma^{n-1}(v)\} \) is isotropic for \((,)_0 \).
3. \(\langle v, \sigma^n(v) \rangle_0 = 1/p, \)

where we use \(\sigma \) to denote the action \(1 \otimes \sigma \) on \(\mathcal{L}_0 \otimes_{\mathbb{Z}_p} \mathcal{K} \). The quadratic form and \(\varphi \) action on \(\mathbb{L}_0 \) are induced by those on \(\mathcal{L}_0 \otimes_{\mathbb{Z}_p} \mathcal{K} \) via \(\mathbb{L}_0 \subset \mathcal{L}_0 \otimes_{\mathbb{Z}_p} \mathcal{K} \), where \(\varphi \) on \(\mathcal{L}_0 \otimes_{\mathbb{Z}_p} \mathcal{K} \) is given by \(1 \otimes \sigma \). Finally, the set of vectors \(\{v, \sigma(v), \ldots, \sigma^{n-1}(v), p\sigma^n(v), \ldots, p\sigma^{2n-1}(v)\} \) forms a \(\mathbb{W} \)-basis for \(\mathbb{L}_0 \).

Proof Consider the inclusion \(\mathcal{L}_0 \otimes \mathbb{W} \subset \mathbb{L}_0 \subset \frac{1}{p}\mathcal{L}_0 \otimes \mathbb{W} \). Recall from Sect. 4.1 that the quadratic form \(p^{-1}(,)_0 \) yields a perfect bilinear form on \(\mathcal{L}_0 \otimes \mathbb{W} \). By [37, Theorem 3.5], the data of \(\mathbb{L}_0 \) is in bijection with the data of an \(n \)-dimensional subspace \(\overline{H} \subset \mathcal{L}_0 \otimes \mathbb{K} \) which is isotropic for \(p^{-1}(,)_0 \), where \(\overline{H} \) satisfies conditions 3.5.2 and 3.5.3 of loc. cit.\(^{11}\) Let \(H \subset \mathcal{L}_0 \otimes \mathbb{W} \) denote any lift of \(\overline{H} \) and then the crystal \(\mathbb{L}_0 \) corresponding to \(\overline{H} \) is defined to be \(\frac{1}{p}\mathcal{H} + \mathcal{L}_0 \otimes \mathbb{W} \). Note that \(\mathbb{L}_0 \) only depends on \(\overline{H} \) and not on \(H \) itself, and that \(\overline{H} \) is indeed the kernel of the natural map \(\mathcal{L}_0 \otimes k \to \mathbb{L}_0 \otimes k \).

The discussion in the paragraph above Theorem 3.21 in [37] implies that there exists a vector \(e' \in \overline{H} \) such that \(\{e', \ldots, \sigma^{n-1}(e')\} \) yields a basis of \(\overline{H} \), and the set \(\{e', \ldots, \sigma^{2n-1}(e')\} \) is a basis of \(\mathcal{L}_0 \otimes \mathbb{K} \). Note that although the discussion in loc. cit. is in the context of \(\varphi^{-1}(\overline{H}) \subset \mathcal{L}_0 \otimes \mathbb{W} \) and not \(\overline{H} \), everything applies to our setting too, by defining \(e' \) to be \(\sigma(e) \), where \(e \) is as in [37, p. 33], and note that \(\varphi(\mathcal{L}_0) = \mathcal{L}_0 \).

A straightforward application of Hensel’s lemma yields a specific choice of an isotropic \(n \)-dimensional \(\mathcal{H}_0 \subset \mathcal{L}_0 \otimes \mathbb{W} \) along with a vector \(\tilde{e}' \), with

\(^{11}\) Ogus proved that the isomorphism classes of so-called K3 crystals ([37, Def. 3.1]) are in bijection with the data in [37, Thm. 3.5] described here; indeed, the isomorphism classes of K3 crystals in Ogus’s sense are isomorphism classes of \(\mathbb{L} \) for supersingular points by [24].
the property that H_0 and \bar{e}' reduce to \overline{H} and e' mod p such that H_0 is the W-span of \bar{e}', $\sigma(\bar{e}')$, ..., $\sigma^{n-1}(\bar{e}')$. It then follows that the W-span of \bar{e}', $\sigma(\bar{e}')$, ..., $\sigma^{2n-1}(\bar{e}')$ equals $\mathcal{L}_0 \otimes W$. By replacing \bar{e}' by an appropriate W^\times-multiple, we may also assume that $\frac{1}{p} \langle \bar{e}', \sigma^n(\bar{e}') \rangle_0 = 1$. The lemma follows by defining $v = \frac{1}{p} \bar{e}'$.

Lemma 4.5 Set $v_i = \sigma^{i-1}(v), i = 1, \ldots, 2n$ for the vector v in Lemma 4.4. Then there exist vectors $w_1, \ldots, w_n \in \mathbb{L}_0$ such that

1. $v_1, \ldots, v_n, w_1 \ldots, w_n$ form a W-basis of \mathbb{L}_0;
2. The Gram matrix of \langle, \rangle_0 with respect to this basis is $\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$;
3. The Frobenius φ on \mathbb{L}_0 with respect to this basis is of form $B_0 \sigma$, where

$$B_0 = \begin{bmatrix} 0 & p \\ 1 & PB_1 \\ \vdots & \vdots \\ 1 & pB_{n-1} \\ \frac{p}{b_1} & -b_1 \ldots -b_{n-1} \\ \frac{p}{1} & 0 \\ \ldots & \vdots \\ \frac{p}{1} & 0 \\ \frac{1}{1} & 0 \end{bmatrix} \quad \text{with } b_i \in W.$$

Proof By the final claim of Lemma 4.4, $\{v_1, \ldots, v_n, pv_{n+1}, \ldots, pv_{2n}\}$ is a basis of \mathbb{L}_0 over W. By Lemma 4.4(2)(3) and the fact that $\langle \varphi(x), \varphi(y) \rangle_0 = \sigma(\langle x, y \rangle_0)$, we have that $\langle v_i, pv_j \rangle_0 = 0$ for $j \leq i + n - 1$ and $\langle v_i, pv_{i+n} \rangle_0 = 1$; thus by modifying $pv_{n+1}, \ldots, pv_{2n}$ by an upper-unipotent matrix, we obtain w_1, \ldots, w_n satisfying condition (2). Moreover, the left half of B_0 in condition (3) also follows from the definition of v_i and that $w_1 = pv_{n+1}$.

We now consider the top-right block of B. To deduce that the first $n - 1$ columns of this block vanish, (2) shows that it suffices to prove $\langle \varphi(w_i), w_j \rangle_0 = 0$ for $1 \leq i \leq n - 1$ and $1 \leq j \leq n$. By definition, the $w_i, 1 \leq i \leq n - 1$ are W-linear combinations of $pv_{n+1} = p\varphi^n(v), \ldots, pv_{2n-1} = p\varphi^{n-2}(v)$ and thus $\varphi(w_i)$ is contained in $\text{Span}_W\{pv_{n+1}, \ldots, pv_{2n}\} = \text{Span}_W\{w_1, \ldots, w_n\}$. Since $\text{Span}_W\{w_1, \ldots, w_n\}$ is isotropic by Lemma 4.4(2), then $\langle \varphi(w_i), w_j \rangle_0$ for $1 \leq i \leq n - 1$ and $1 \leq j \leq n$ as required. In order to prove that the last column of this block is as claimed in the lemma, it suffices to prove that $\langle \varphi(w_n), w_1 \rangle_0 = \sigma(\langle w_n, \varphi^{-1}(w_1) \rangle_0) = p$ and p | $\langle \varphi(w_n), w_j \rangle_0 = \sigma(\langle w_n, \varphi^{-1}(w_j) \rangle_0)$ for $j \leq n$. Note that $\varphi^{-1}(w_1) = pv_n$ and then the first equality follows. For the

12 All empty entries in the matrix are 0.
rest, note that φ gives a σ-linear endomorphism of $L_0 \otimes W$ and $p \mid \langle \cdot, \cdot \rangle_0$ on L_0, thus $w_1 \ldots w_n, \varphi(w_n) \in L_0 \otimes W$ and $p \mid \langle \varphi(w_n), w_j \rangle_0$ for all $j \leq n$.

Similarly, for the bottom-right part of B, it suffices to show that $\langle \varphi(w_i) - w_{i+1}, v_j \rangle_0 = 0$, $p(\varphi(w_i), v_1)_0 = -\langle \varphi(w_n), w_{i+1} \rangle_0$, $\forall 1 \leq i \leq n-1, 2 \leq j \leq n$ and $\langle \varphi(w_n), v_j \rangle_0 = 0$, $\forall 1 \leq j \leq n$. Note that $\langle \varphi(w_i) - w_{i+1}, v_j \rangle_0 = \langle \varphi(w_i), v_j \rangle_0 - \langle w_{i+1}, v_j \rangle_0 = \langle w_i, v_j \rangle_0 - \langle w_{i+1}, v_j \rangle_0 = 0$ by condition (2). Then $\varphi(w_i) = w_{i+1} + a_i w_1$ for some $a_i \in W$. Thus $w_{i+1} = \varphi(w_i) - \sigma^{-1}(a_i)p v_n$ and then $\langle \varphi(w_n), w_{i+1} \rangle_0 = \sigma(\langle w_n, w_i - \sigma^{-1}(a_i)p v_n \rangle_0) = -p a_i$; in other words, $p(\varphi(w_i), v_1)_0 = -\langle \varphi(w_n), w_{i+1} \rangle_0$. Moreover, $\langle \varphi(w_n), v_j \rangle_0 = \sigma(\langle w_n, v_{j-1} \rangle_0) = 0$ for $j \geq 2$. For $\langle \varphi(w_n), v_1 \rangle_0 = c$, by the above discussion, $\varphi(w_n) = p v_1 + p b_1 v_2 + \cdots + p b_{n-1} v_n + c w_1$ and thus $\langle \varphi(w_n), \varphi(w_n) \rangle_0 = 2 p c$; on the other hand, $\langle \varphi(w_n), \varphi(w_n) \rangle_0 = \sigma(\langle w_n, w_n \rangle_0) = 0$ and then $c = 0$, which finishes the proof of the lemma. □

4.6 Let S_0 denote the change-of-basis matrix from $\{e_i, f_i\}_i^{n-1} \rightarrow \{v_i, w_i\}_i^n$ in Lemma 4.5. More precisely, $S_0 \in M_{2n}(K)$ whose first (resp. last) n columns are the coordinates of v_i (resp. w_i) in terms of the basis $\{e_i, f_i\}_i^{n-1}$. For the simplicity of computations in Sect. 5, let S'_0 the change-of-basis matrix from $\{e_i, f_i\}_i^{n-1} \rightarrow \{p v_i, w_i\}_i^n$. From the proof of Lemma 4.5, $\text{Span}_W\{e_i, f_i\}_i^{n-1} = \text{Span}_W\{p v_i, w_i\}_i^n$; thus $S'_0 \in \text{GL}_n(W)$. Moreover, by definition, $S_0 = S'_0 \begin{bmatrix} p^{-1} I & 0 \\ 0 & I \end{bmatrix}$.

4.7 We now describe L_1 and L_0 defined in Sect. 4.1, 4.2. Recall that $L_1 = L_1 \otimes W$, the Frobenius φ on L_1 is given by $1 \otimes \sigma$ and the quadratic form on L_1 is also induced by the one on L_1, so we only need to classify L_1. Unlike L_0, which is completely determined by t_φ (see Lemma 4.3), the \mathbb{Z}_p-quadratic lattice L_1 depends on dim L and disc L (see [37, Thm. 3.4] and [24, §4.3.1]). Since L_1 is self-dual, we have the following three cases:

1. dim$_{\mathbb{Z}_p} L_1 = 2m$ and there is an m-dimensional isotropic subspace of L_1 over \mathbb{Z}_p. We call this the split case.
2. dim$_{\mathbb{Z}_p} L_1 = 2m$ and there does not exist an m-dimensional isotropic subspace of L_1 over \mathbb{Z}_p.
3. dim$_{\mathbb{Z}_p} L_1$ is odd.

Note that for cases (2)(3), one may always embed L_1 into a twist \mathbb{Z}_p-quadratic lattice of larger dimension. Therefore, we deal exclusively with the split case and we will mark in the proofs of the decay lemmas in Sect. 5–6 that by the above embedding trick, the computation in the split case will also prove the

13 Comparing to [33, §3], §3.2.1 in loc. cit. is a special case of the split even dimensional case, §3.2.2 in loc. cit. is a special case of the non-split even dimensional case, and §3.3 in loc. cit. is a special case of the odd dimensional case.
decay lemmas in all other cases. We use \{e'_i, f'_i\}_{i=1}^m to denote a \(\mathbb{Z}_p\)-basis of \(L_1\) in the split case such that the Gram matrix with respect to this basis is \[
\begin{pmatrix}
0 & I \\
I & 0
\end{pmatrix}
\].

Description of \(L_{\text{cris}}\) at the formal neighborhood

4.8 Following [27, §§1.4–1.5], we will describe the formal neighborhood of the Shimura variety at the supersingular point \(P\), and also compute the \(F\)-crystal \(L_{\text{cris}}\) over this formal neighborhood (see also [33, §3.1.5, §3.2.1]). We first summarize Kisin’s description in abstract terms, before providing an explicit description of the \(F\)-crystal in terms of the coordinates provided earlier in this section.

Recall from Sect. 4.1 that the quadratic form \(Q\) on \(L\) is compatible with the Frobenius \(\varphi\) on \(L\); moreover, \(L_{\text{dR}}\) defined in Sect. 2.2 carries the Hodge filtration so, by the canonical de Rham-crystalline comparison, \(L \otimes W k\) also carries a filtration which we call the mod \(p\) Hodge filtration. Let \(\mu : G_{m,W} \to \text{SO}(L, Q)\) denote any co-character (which we shall refer to as “the Hodge cocharacter”) whose mod \(p\) reduction induces the above filtration. Let \(U\) denote the opposite unipotent in \(\text{SO}(L, Q)\) with respect to \(\mu\), and let \(\text{Spf} R = \hat{U}\) denote the completion of \(U\) at the identity section. Pick \(\sigma : R \to \hat{U}\) to be a lift of the Frobenius endomorphism on \(R\) mod \(p\). Let \(u\) be the tautological \(R\)-point of \(U\).

Then, by [27, §§1.4, 1.5], there exists an isomorphism between the complete local ring of the Shimura variety at \(P\) and \(\text{Spf} R\) such that the \(F\)-crystal \(L_{\text{cris}}(R)\) is isomorphic to \(L \otimes W R\) as an \(R\)-module, and the Frobenius action on \(L_{\text{cris}}(R)\), denoted by \(\text{Frob}\), is given by \(\text{Frob} = u \circ (\varphi \otimes \sigma)\) on \(L \otimes W R\) via the isomorphism \(L_{\text{cris}}(R) \cong L \otimes W R\). For the simplicity of notation, we will fix the above mentioned isomorphisms and write \(L_{\text{cris}}(R) = L \otimes W R\). By the canonical de Rham-crystalline comparison, the Hodge filtration on \(L_{\text{dR}}\) induces a filtration on \(L_{\text{cris}}(R \otimes W k)\) which we also call the Hodge filtration.

We will now provide an explicit description in terms of coordinates of the above objects. By Lemma 4.5(3) and Mazur’s theorem on determining the mod \(p\) Hodge filtration using \(\varphi\) (see for instance [38, p. 411]), the mod \(p\) Hodge filtration on \(L \otimes W k\) is given by

\[
\begin{align*}
\text{Fil}^1 L \otimes W k &= \text{Span}_k \{\bar{w}_n\}, \\
\text{Fil}^0 L \otimes W k &= \text{Span}_k \{\bar{v}_i, \bar{w}_j, \bar{e}'_l, \bar{f}'_l\}_{i=1,\ldots,n-1, j=1,\ldots,n, l=1,\ldots,m}, \\
\text{Fil}^{-1} L \otimes W k &= L \otimes W k,
\end{align*}
\]

where \(\bar{v}_i, \bar{w}_j, \bar{e}'_l, \bar{f}'_l\) denote the reduction of \(v_i, w_j, e'_l, f'_l\) mod \(p\). Thus, with respect to the basis \(\{v_i, w_j, e'_l, f'_l\}_{i=1,\ldots,n, j=1,\ldots,m}\), we choose the Hodge cocharacter \(\mu : G_{m,W} \to \text{SO}(L, Q)\) in the local Shimura datum to be...
\[
\mu(t) =
\begin{bmatrix}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{bmatrix}
\begin{bmatrix}
t-1 \\
1 \\
& \ddots \\
& & 1
\end{bmatrix},
\]

where the diagonal blocks have sizes \(n, n,\) and \(2m.\)

Moreover, there exist local coordinates \(\{x_i, y_i, x'_j, y'_j\}_{i=1,\ldots,n-1, j=1,\ldots,m}\) such that the complete local ring \(\widehat{O}_{S, P}\) of \(S\) at \(P\) is isomorphic to \(\text{Spf } R,\) where \(R = W[[x_i, y_i, x'_j, y'_j]]_{i=1,\ldots,n-1, j=1,\ldots,m}.\) We define \(\sigma : R \rightarrow R,\) the operator that restricts to the usual Frobenius element on \(W\) and which lifts the Frobenius endomorphism on \(R \mod p,\) to be \(\sigma(x_i) = x_i^p, \sigma(y_i) = y_i^p, \sigma(x'_j) = (x'_j)^p, \sigma(y'_j) = (y'_j)^p.\) The tautological point of the opposite unipotent in \(\text{SO}(\mathbb{L}, Q)\) with respect to \(\mu\) has the following description in terms of our coordinates:

\[
u = I +
\begin{bmatrix}
\begin{array}{ccc|ccc|ccc|ccc}
1 & & & & & & & & & & & \\
& 1 & & & & & & & & & & \\
& & \ddots & & & & & & & & & \\
& & & \ddots & & & & & & & & \\
& & & & \ddots & & & & & & & \\
& & & & & \ddots & & & & & & \\
& & & & & & \ddots & & & & & \\
& & & & & & & \ddots & & & & \\
& & & & & & & & \ddots & & & \\
& & & & & & & & & \ddots & \\
& & & & & & & & & & 1
\end{array}
\end{bmatrix}
\begin{bmatrix}
-1 \\
& \ddots \\
& & -1 \\
& & & \ddots \\
& & & & \ddots \\
& & & & & \ddots \\
& & & & & & \ddots \\
& & & & & & & \ddots \\
& & & & & & & & \ddots \\
& & & & & & & & & \ddots \\
& & & & & & & & & & Q
\end{bmatrix}
\begin{bmatrix}
x_1 \ldots x_{n-1} 0 \\
y_1 \ldots y_{n-1} \\
& \ddots \\
& & Q \\
& & & x'_1 \ldots x'_m \\
& & & & y'_1 \ldots y'_m
\end{bmatrix},
\]

where \(Q = -\sum_{i=1}^{n-1} x_i y_i - \sum_{j=1}^{m} x'_j y'_j.\)
The Frobenius action \(\text{Frob} \) on \(L_{\text{cris}}(R) = \mathbb{L} \otimes_W R \) is given by \(\text{Frob} = u \circ (\varphi \otimes \sigma) \). Thus, with respect to the \(R \)-basis \(\{v_i \otimes 1, w_i \otimes 1, e'_j \otimes 1, f'_j \otimes 1\} \), we have that \(\text{Frob} = (uB) \circ \sigma \), where \(B = \begin{bmatrix} B_0 & 0 \\ 0 & I \end{bmatrix} \), and \(B_0 \) is given in Lemma 4.5.

Equation of the non-ordinary locus

We now compute the local equation of the non-ordinary locus in a formal neighborhood of a supersingular point. Recall that we have the Hodge cocharacter \(\mu \), whose mod \(p \) reduction induces the mod \(p \) Hodge filtration on \(L_{\text{cris}}(k) = \mathbb{L} \otimes_W k \). By [34, §4.5], the Hodge filtration on \(L_{\text{cris}}(R \otimes_W k) = \mathbb{L} \otimes_W (R \otimes_W k) \) is given by

\[
\text{Fil}^i(L_{\text{cris}}(R \otimes_W k)) = \text{Fil}^i(\mathbb{L} \otimes_W k) \otimes_k (R \otimes_W k), i = -1, 0, 1.
\]

As in [33, §3.4], we note that \(p \text{Frob} \) induces a map \(\text{gr}_{-1} L_{\text{cris}}(R \otimes_W k) \to \text{gr}_{-1} L_{\text{cris}}(R \otimes_W k) \). Ogus proved the following result.

Lemma 4.9 (Ogus) *For a supersingular point \(P \), the non-ordinary locus (over \(k \) in the formal neighborhood of \(P \) is given by the equation

\[
p \text{Frob}\big|_{\text{gr}_{-1} L_{\text{cris}}(R \otimes_W k)} = 0.
\]

See [39][Prop. 11 and p 333–334] (or [33][Lemma 3.4.1] which elaborates on [39]).

Corollary 4.10 *For a supersingular point \(P \), the non-ordinary locus (over \(k \) in the formal neighborhood of \(P \) is given by the equation \(Q = 0 \) if \(P \) is superspecial; otherwise, the equation is given by \(y_1 = 0 \).

Proof In what follows, the number \(n \) is as in Lemma 4.5, i.e., \(2n = t_P = \dim_W \mathbb{L}_0 \) and we follow the notation in Sect. 4.8. The space \(\text{gr}_{-1} L_{\text{cris}}(R \otimes_W k) \) is spanned by \(\bar{v}_n \). We use the description of \(\text{Frob} = (uB) \circ \sigma \) (from Lemma 4.5 and the explicit description of \(u \) in Sect. 4.8) to see that the map \(p \text{Frob} : \text{gr}_{-1} L_{\text{cris}}(R \otimes_W k) \to \text{gr}_{-1} L_{\text{cris}}(R \otimes_W k) \) has the explicit description

\[
p \text{Frob}(\bar{v}_n) = Q \bar{v}_n \quad \text{if } n = 1; \quad p \text{Frob}(\bar{v}_n) = y_1 \bar{v}_n \quad \text{if } n > 1.
\]

The result now follows from the fact that \(P \) is superspecial if and only if \(t_P = 2 \) if and only if \(n = 1 \). \(\square \)
4.11 In order to compute the powers of Frob in the proofs of the decay lemmas later, we describe Frob with respect to the K-basis $\{e_i, f_i, e'_j, f'_j\}_{i=1,\ldots,n, j=1,\ldots,m}$ of $\mathbb{L} \otimes W K$. Let $S = \begin{bmatrix} S_0 & 0 \\ 0 & I \end{bmatrix}$, $S' = \begin{bmatrix} S'_0 & 0 \\ 0 & I \end{bmatrix}$, where S_0, S'_0 are defined in Sect. 4.6 and thus $S' \in \text{GL}_{2n+2m}(W)$. Then by definition, $B = S^{-1} \sigma(S)$.

We view $\{e_i, f_i, e'_j, f'_j\}_{i=1,\ldots,n, j=1,\ldots,m}$ as an $R[1/p]$-basis of $L_{\text{cris}}(R) \otimes R[1/p]$ and then Frob is given by $S(uB)\sigma(S^{-1}) \circ \sigma = SuS^{-1} \circ \sigma = S'u'(S')^{-1} \circ \sigma$, where

$$u' = I + \begin{bmatrix}
x_1 & \ldots & x_{n-1} & 0 \\
y_1/p & \ldots & y_{n-1}/p & \frac{Q}{p} \\
-x_1 & \ldots & -x_{n-1} & 0 \\
-y'_1 & \ldots & -y'_m & -x'_1 & \ldots & -x'_m
\end{bmatrix}.$$}

5 Decay for non-superspecial supersingular points

The goal of this and the next section is to prove that, at supersingular points, special endomorphisms “decay rapidly” in the sense of [33, Def. 5.1.1], which we will recall below.

Throughout these sections, $k = \overline{\mathbb{F}}_p$, $W = W(k)$, $K = W[1/p]$. We focus on the behavior of the curve C in Theorem 1.2 in a formal neighborhood of a supersingular point P, so we may let $C = \text{Spf } k[[t]]$ denote a generically ordinary formal curve in S_k which specializes to P. In this section, we will focus on the case when P is non-superspecial and we treat the superspecial case in Sect. 6.

Let $A/k[[t]]$ denote the pullback of the universal abelian scheme A^{univ} over the integral model S of the GSpin Shimura variety via $\text{Spf } k[[t]] \to S_k$ and let A denote $A \mod t$, and we will consider the p-divisible groups $A[p^\infty], A[p^\infty]$ associated to A, A. Let h denote the t-adic valuation of the local equation.
Picard ranks of K3 surfaces over function fields

1099

defining the non-ordinary locus given in Corollary 4.10. Recall from Sect. 4.1, \(\mathcal{L} \) is the lattice of special endomorphisms of \(A[p^\infty] \).

Definition 5.1 ([33, Def. 5.1.1]) We say that \(w \in \mathcal{L} \) decays rapidly if for every \(r \in \mathbb{Z}_{\geq 0} \), the special endomorphism \(p^r w \) does not lift to an endomorphism of \(A[p^\infty] \) modulo \(t^{h_r+1} \), where \(h_r := [h(p^r + \cdots + 1 + 1/p)] \). We say that a \(\mathbb{Z}_p \)-submodule of \(\mathcal{L} \) decays rapidly if every primitive vector in this submodule decays rapidly.

The main theorem of this section is the following:

Theorem 5.2 (The Decay Lemma) There exists a rank 2 saturated \(\mathbb{Z}_p \)-submodule of \(\mathcal{L} \) which decays rapidly.

Theorem 3.2 follows directly from the Decay Lemma:

Proof of Theorem 3.2 We first note that \(\mathcal{L}_n \), the lattice of special endomorphisms of \(A[p^\infty] \mod t^n \), is precisely \(L_n \otimes \mathbb{Z}_p \). Upon choosing a basis of \(\mathcal{L} \) that extends a basis of the submodule that decays rapidly (which we may do, as this submodule is saturated in \(\mathcal{L} \)), we see that the index \(|\mathcal{L}/\mathcal{L}_n| \) of \(\mathcal{L}_n \) in \(\mathcal{L} \) is at least \(p^{2r+2} \) if \(n \geq h_r + 1 \). The corresponding statements for \(\mathcal{L}_n \) now follow directly. \(\square \)

5.3 We first give an indication why the reader should expect a statement along these lines to hold. Note that in the mixed characteristic setting, namely while deforming from \(k \) to \(W(k) \), applying Grothendieck–Messing theory yields that if a special endomorphism \(\alpha \) lifts mod \(p^n \) but not mod \(p^{n+1} \), then the special endomorphism \(p \alpha \) would lift mod \(p^{n+1} \) but not \(p^{n+2} \) (see [47, Lemma 4.1.2]). However, Grothendieck–Messing theory is inherently limited in the equicharacteristic \(p \) setting, and the bounds it yields are worse than the bounds it yields in the mixed characteristic setting.

We illustrate this with the following example. Let \(\mathcal{G} \) denote a \(p \)-divisible group over Spec \(k[t]/(t^a) \), suppose that \(\alpha \) is any endomorphism of \(\mathcal{G} \), and suppose that \(\mathcal{G}' \) over Spec \(k[t]/(p t^a) \) is a \(p \)-divisible group that deforms \(\mathcal{G} \). We claim that the endomorphism \(p \alpha \) deforms to \(\mathcal{G}' \) regardless of how \(\alpha \) behaves. Indeed, let \(\mathbb{D} \) denote the Dieudonné crystal of \(\mathcal{G} / \text{Spec } k[t]/(t^a) \). As the map Spec \(k[t]/(t^a) \rightarrow \text{Spec } k[t]/(p t^a) \) is naturally equipped with a divided powers structure (and this is the key point in this observation), we may evaluate the Dieudonné crystal \(\mathbb{D} \) at Spec \(k[t]/(p t^a) \), and Grothendieck–Messing theory implies that the choice of deformation \(\mathcal{G}' \) is equivalent to the choice of a filtration of \(\mathbb{D}(\text{Spec } k[t]/(p t^a)) \) which is compatible with the filtration on \(\mathbb{D}(\text{Spec } k[t]/(t^a)) \) given by \(\mathcal{G} \). This corresponds to \(\text{Fil} \subset \mathbb{D}(\text{Spec } k[t]/(p t^a)) \), which is a free \(k[t]/(p t^a) \)-sub-module of \(\mathbb{D}(\text{Spec } k[t]/(p t^a)) \), which itself is a free \(k[t]/(p t^a) \)-module. Moreover, any endomorphism \(\beta \) of \(\mathcal{G} \) induces an endomorphism of the crystal \(\mathbb{D} \), and therefore induces an endomorphism of
\[\mathbb{D}(\text{Spec } k[[t]])/(t^{pa}) \]. Finally, \(\beta \) deforms to an endomorphism of \(\mathcal{G}' \) if and only if \(\beta(\text{Fil}) \subset \text{Fil} \). Given that \(\alpha \) induces an endomorphism of \(\mathbb{D}(\text{Spec } k[[t]])/(t^{pa}) \) (which need not preserve Fil), it follows that \(p\alpha \) induces the zero map on \(\mathbb{D}(\text{Spec } k[[t]])/(t^{pa}) \), and thus tautologically preserves Fil whether or not \(\alpha \) does. Therefore, it follows that if \(\alpha \) is an endomorphism of \(\mathcal{G} \) over \(k[[t]]/(t^a) \), then \(p\alpha \) lifts to any deformation of \(\mathcal{G} \) to \(\text{Spec } k[[t]]/(t^{pa}) \), which suggests that it is not possible to expect a much faster rate of decay than defined in Definition 5.1.

We now work in the setting of a \(p \)-divisible group \(\mathcal{A}[p^\infty]/k[[t]] \). Let \(\alpha \) denote an endomorphism of \(\mathcal{A}[p^\infty] \mod t \), that extends to an endomorphism of \(\mathcal{A}[p^\infty] \mod t^a \), but not \(t^{a+1} \). The example considered above implies that \(p\alpha \) extends to an endomorphism \(\mod t^{pa} \). However, Grothendieck–Messing theory cannot be naively applied to find an effective integer \(b \) (in terms of \(a \)) which has the property that \(p\alpha \) does not extend to an endomorphism of \(\mathcal{A}[p^\infty] \mod t^b \). Therefore, in order to prove Theorem 5.2, we use Kisin’s description of the \(F \)-crystal \(\mathcal{L}_{\text{cris}} \), which controls the \(t \)-adic deformation of the special endomorphisms of \(\mathcal{A}[p^\infty] \mod t \)—see Sect. 5.4 for a sketch of how we proceed.

On the other hand, we remark that in some special cases when the generic point has extra endomorphisms (e.g., when the Kuga–Satake family over \(C \) is isomorphic to self-product of a family of elliptic curves), the work of Keating, based on the formal cohomology theory of Lubin–Tate and Drinfeld, yields the desired decay (see [26, Thm. 1.1]),\(^{14}\) which gives another justification on the shape of \(h_r \).

5.4 We give a rough idea of the proof of Theorem 5.2 here (see Sect. 5.5–5.6 for details and references); we also provide a toy example of the explicit computation in this section. The reader should feel free to read this description and skip the details of our proof on a first reading. Consider a special endomorphism \(w \in \mathcal{L} \). We give a criterion for \(w \) to not extend to an endomorphism of \(\mathcal{A}[p^\infty] \mod t' \) in terms of the crystal \(\mathcal{L}_{\text{cris}} \). To that end, recall that \(R \) denotes the ring \(\mathcal{W}[\mathcal{X}_i, \mathcal{Y}_i, \mathcal{X}'_j, \mathcal{Y}'_j] \) (notation as in Sect. 4.8), and consider \(w \in \mathcal{L} \subset \mathcal{L} \) as an element of \(\mathbb{L} \otimes_{\mathcal{W}} R = \mathcal{L}_{\text{cris}}(R) \). Let \(\tilde{w} \in \mathbb{L} \otimes K[\mathcal{X}_i, \mathcal{Y}_i, \mathcal{X}'_j, \mathcal{Y}'_j] \) denote the unique horizontal continuation of \(w \) with respect to the connection on \(\mathcal{L}_{\text{cris}} \). The entries of the vector \(\tilde{w} \) are power series valued in \(K[\mathcal{X}_i, \mathcal{Y}_i, \mathcal{X}'_j, \mathcal{Y}'_j] \), and the \(p \)-adic valuation of the coefficients of these power series go to \(-\infty \). Loosely speaking, in order to understand whether \(w \) extends to a \(k[[t]]/(t') \)-point of \(R \) arising from a \(k[[t]] \)-point of \(R \), we just need to restrict \(\tilde{w} \) to \(\mathbb{L} \otimes_{\mathcal{W}} K[[t]] \). This yields a vector with entries in the power series ring \(K[[t]] \), and it suffices to understand the \(p \)-adic valuations of the coefficients of these power series.

\(^{14}\) We would like to thank the anonymous referee for pointing out this reference to us.
An explicit expression for \tilde{w} is given by $\lim_{n \to \infty} \text{Frob}^n(w)$, where as in Sect. 4.8, Frob is the σ-linear Frobenius action on L_{cris} (see [27, §1.5.5]).

We illustrate this computation (which we carry out in full detail in the following pages) with a toy model. Consider $\text{Frob} = (I + F) \circ \sigma$ with respect to a φ-invariant basis of \mathbb{L}, where $F = \begin{bmatrix} xy/p & x/p \\ y & 0 \end{bmatrix}$, $R = W[[x, y]]$, $\sigma(x) = x^p$, $\sigma(y) = y^p$ and when we restrict ourselves to C, we plug in x, y by certain power series $x(t), y(t) \in W[[t]]$, which are chosen based on $C \to \text{Spf} k[[x, y]]$. Thus $\prod_{i=1}^{\infty} (I + F) \circ \sigma$ is an infinite summation of products of $\text{Frob}^i = \sigma_i(F)$. Consider $w = [1, 0]^T$ (with respect to the chosen basis of \mathbb{L}), then a direct computation of matrix products implies that for the first coordinate of \tilde{w}, among all the terms with p-adic valuation $-(r + 1)$, the unique term with minimal t-adic valuation is $\prod_{i=1}^{r+1} \sigma_i(x y/p) = (x y)^{1 + p + \cdots + p'^{r+1}}$. This observation allows us to prove the Decay Lemma.

The setup

The setup and the first reduction steps in the proof of Theorem 5.2 is the same as that in the proof of [33, Thm. 5.1.2] in [33, §5.1]. We briefly introduce the notation for the proof of Theorem 5.2 here and the reader may see [33] for more details.

5.5 Recall from Sect. 4.8 that $\hat{O}_{S, P} = \text{Spf} W[[x_1, \ldots, x_{n-1}, y_1, \ldots, y_{n-1}, x'_1, \ldots, x'_m, y'_1, \ldots, y'_m]]$ when L_1 is split. Since P is non-superspecial, we have $n \geq 2$ through out this section.

The formal curve C gives rise to the tautological ring homomorphism

$$W[[x_1, \ldots, x_{n-1}, y_1, \ldots, y_{n-1}, x'_1, \ldots, x'_m, y'_1, \ldots, y'_m]] \to k[[t]],$$

and we denote by $x_i(t)$ (respectively $x'_i(t)$, $y_i(t)$, $y'_i(t)$) the images of x_i (respectively x'_i, y_i, y'_i) in $k[[t]]$. For each $x_i(t)$ (respectively $x'_i(t)$, $y_i(t)$, $y'_i(t)$), let $X_i(t)$ (respectively $X'_i(t)$, $Y_i(t)$, $Y'_i(t)$) denote the power series in $W[[t]]$ whose coefficients are the Teichmuller lifts of the coefficients of $x_i(t)$ (respectively $x'_i(t)$, $y_i(t)$, $y'_i(t)$). We define $Y_n(t) = - \sum_{i=1}^{n-1} X_i(t) Y_i(t) - \sum_{j=1}^{m} X'_j(t) Y'_j(t)$, and define $Y_{n+1}(t) = - \sum_{i=1}^{m} (X'_i(t) Y'_i(t))^p + (X'_i(t))^p Y'_i(t)$. Let $a_i = v_t(Y_i(t))$ for $1 \leq i \leq n + 1$, where v_t denotes the function of taking t-adic valuation. By Corollary 4.10, since P is a non-superspecial supersingular point, the local equation of the non-ordinary locus is given by $y_1(t) = 0$ and hence $h = v_t(y_1(t)) = v_t(Y_1(t)) = a_1$.

5.6 We now relate the lift of special endomorphisms to explicit computations of powers of the Frobenius matrix given in Sect. 4.11. For $s \in \mathbb{Z}_{\geq 0}$, let D_s denote the p-adic completion of the PD enveloping algebra of the ideal (t^s, p).
in $W[[t]]$ and let ι denote the map $\text{Spec } k[t]/(t^s) \rightarrow \text{Spf } k[[t]] \rightarrow \text{Spf } R \otimes_W k$. By de Jong’s theory [19, §2.3], if $w \in \mathcal{L}$ lifts to a special endomorphism of $A \mod t^s$, then it gives rise to a horizontal section in the Dieudonné module $(t_s^* L_{\text{cris}})(D_s)$. Thus, in order to find the largest s such that w lifts to $k[t]/(t^s)$, we first compute the horizontal section $\tilde{w}_s \in (t_s^* L_{\text{cris}})(D_s) \otimes_W K$ whose restriction to the fiber $t = 0$ equals w and then study the p-adic integrality of \tilde{w}_s.

Here we recall the construction of \tilde{w}_s following [27, §1.5.5] and the rest of this section is devoted to the study of the p-adic integrality. More precisely, Kisin constructed a Frobenius stable section \tilde{w} in $\mathbb{L} \otimes_W K[[x_i, y_i, x'_j, y'_j]]$ whose restriction to \mathbb{L} (the fiber at P) is a given ϕ-invariant vector $w \in \mathbb{L}$; moreover, since Frob is a horizontal morphism, he concluded that \tilde{w} is horizontal.

In our setting, since the connection on $\iota^s_! L_{\text{cris}}$ is the pullback of the connection on L_{cris}, the horizontal section \tilde{w}_s is the pullback via $R \rightarrow W[[t]] \rightarrow D_s$ of the horizontal section $\tilde{w} \in \mathbb{L} \otimes_W K[[x_i, y_i, x'_j, y'_j]]$.

Let F' denote the matrix $S'(u' - I)(S')^{-1}$ in Sect. 4.11; with respect to the basis $\{e_i, f_i, e'_j, f'_j\}$, $\text{Frob} = (I + F) \circ \sigma$, where σ is defined in Sect. 4.8.. Let $F'^{(i)}$ denote the i-th σ-twist of F; more precisely, $F'^{(i)}$ is given by $\sigma^i(S'(u' - I)(S')^{-1})$. Let

$$F'_\infty = \prod_{i=0}^{\infty} (I + F'^{(i)}) \in M_{2n+2m}(K[[x_i, y_i, x'_j, y'_j]]).$$

We define F_∞ by substituting $X_i(t)$ (resp. $X'_j(t)$, $Y_i(t)$, $Y'_j(t)$) for x_i (resp. x'_j, y_i, y'_j) in F'_∞. More explicitly, let $F^{(i)}$ be the matrix obtained by substituting $X_i(t)$ (resp. $X'_j(t)$, $Y_i(t)$, $Y'_j(t)$) for x_i (resp. x'_j, y_i, y'_j) in $F'^{(i)}$. In other words, we first compute the Frobenius twist of F', and only then substitute the power series in t for the variables x_i, y_i, x'_j, y'_j. So we obtain

$$F_\infty = \prod_{i=0}^{\infty} (I + F^{(i)}) \in M_{2n+2m}(K[[t]]).$$

This product is well-defined and the \mathbb{Q}_p-span of the columns of F_∞ are vectors in $\mathbb{L} \otimes_W K[[t]]$ which are Frob-invariant and horizontal. Let ι denote the map $\text{Spec } k[[t]] \rightarrow \text{Spf } R \otimes_W k$; thus $\iota^* \tilde{w} \in \mathbb{L} \otimes_W K[[t]] \cong K[[t]]^{2m+2n}$ is given by $F_\infty w$, where we write w as a column vector with respect to the basis $\{e_i, f_i, e'_j, f'_j\}$. The horizontal section \tilde{w}_s is $F_\infty w$, which indeed lies in $(\iota^s_! L_{\text{cris}})(D_s) \otimes_W K \subset \mathbb{L} \otimes_W K[[t]]$. One way to see this claim is that by Sect. 15. For more details, see [33, Proof of Thm. 5.1.2 assuming Prop. 5.1.3].
5.7, for each \(w \in \mathcal{L} \), there exists \(N \gg 1 \) (depending on \(s, w \)) such that \(p^N w \) extends to an endomorphism of \(A[p^\infty] \) mod \(t^s \) and thus by de Jong’s theory,
\[
p^N \tilde{w}_s \in (t_s^{*}L^{\mathrm{cris}})(D_s) \quad \text{and thus} \quad \tilde{w}_s \in (t_s^{*}L^{\mathrm{cris}})(D_s) \otimes_w K.
\]
In order to show that \(w \) decays rapidly, it suffices to show that for every \(r \), we have that \(p^r \tilde{w}_{h_r+1} \) does not lie in \(L^{\mathrm{cris}}(D_{h_r+1}) \). More precisely, since for every \(N < p(h_r + 1) \), we have \(t^N/p \not \in D_{h_r+1} \), it suffices to show that there exists an entry of \(t^w \tilde{w} \) (viewed as a power series in \(K[[t]] \)) which has a term of form \(ct^N/p^{r+2} \) with \(N < p(h_r + 1) \) and \(c \in W^\times \).\(^{16}\) Thus in what follows, we use the definition of \(F_\infty \) to expand \(F_\infty w \) into an infinite sum of vectors in \(K[[t]]^{2m+2n} \) whose entries are monomials in \(X_i(t), Y_i(t), X'_j(t), Y'_j(t) \) and will find the vector with minimal \(t \)-adic valuation in the expansion of \(F_\infty w \) among all vectors with \(p \)-adic valuation \(-r \). Note that by the \(t \)-adic and \(p \)-adic valuations of a vector, we mean the minimal \(t \)-adic/\(p \)-adic valuation of all entries.

The terms in \(F_\infty \) with minimal \(t \)-adic valuation among ones with fixed \(p \)-adic valuation

In order to prove Theorem 5.2, it suffices to work with \(F_\infty(1) \), the top-left \(2n \times 2n \) block of \(F_\infty \) (see the first paragraph of the proof of Theorem 5.2 right after Lemma 5.13 for details) and in what follows, we compute \(F_\infty(1) \) explicitly.

5.7 Let \(A \) (resp. \(C, D \)) denote the top-left \(2n \times 2n \) (resp. top-right \(2n \times m \) and bottom-left \(m \times 2n \)) block of \(u' - I \) in Sect. 4.11 with \(X_i(t) \) (resp. \(X'_j(t), Y_i(t), Y'_j(t) \)) substituted in place of \(x_i \) (resp. \(x'_j, y_i, y'_j \)). Thus
\[
F = \begin{bmatrix} S'_0 A S'_0^{-1} & S'_0 C \\ DS'_0^{-1} & 0 \end{bmatrix}.
\]
For \(i < n \), we let \(A_i \) denote the \(2n \times 2n \) matrix with the \(n, n+i \) entry equal to \(p^{-1} Y_i(t) \), the \(i, 2n \) entry equalling \(-p^{-1} Y_i(t) \) and all other entries equal to 0. We let \(A_n \) denote the matrix with zeros everywhere except for the \(n, 2n \) entry, which equals \(p^{-1} Y_n(t) \). Let \(K_i \) equal \(S'_0 A_i (S'_0)^{-1} \). Let \(A_{n+1} = CD(1) \) and \(K_{n+1} = S'_0 A_{n+1} ((S'_0)^{-1})^{(1)} \). Note that \(A_{n+1} \) is a \(2n \times 2n \) matrix with zeros everywhere except for the \(n, 2n \)-entry which equals \(p^{-1} Y_{n+1}(t) \).

For brevity, let \(F(1) \) denote the top-left \(2n \times 2n \) block of \(F \). We have
\[
F(1) = \sum_{i=1}^n K_i + B(x), \quad \text{where} \quad B(x) \text{ involves only the } X_i \text{ and has } p\text{-adically integral coefficients since } S'_0 \in \mathrm{GL}_{2n}(W). \text{ We further break } B(x) \text{ into}
\]

\(^{16}\) Here we have \(p^{r+2} \) instead of \(p^{r+1} \) is due to the fact that \(\text{Span}_W \{e_i, f_i, e'_j, f'_j \} \neq \mathbb{L} \) but we still have \(\text{Span}_W \{e_i, f_i, e'_j, f'_j \} \supset p\mathbb{L} \).
\[B(x) = B_1(x) + B_2(x) \], where the \((i, j)\) entry of \(S_0^{i-1}B_1(x)S_0'\) is zero unless \(i = n, j < n\), in which case the entry is \(x_j\), and the \((i, j)\) entry of \(S_0^{i-1}B_2(x)S_0'\) is zero unless \(j = 2n, n < i < 2n - 1\), in which case the entry is \(-x_{n-i}\). Moreover, we observe that \(F_\infty(1)\) is made up of sums of finite products of \(\sigma\)-twists of \(B_1(x), B_2(x)\) and \(K_i, i = 1, \ldots, n + 1\).

The following two lemmas identify the nonzero products of \(\sigma\)-twists of \(K_i, i = 1, \ldots, n + 1\). For brevity, let \(R_1 \ldots R_{2n}\) denote the rows of the matrix \((S_0^{i-1})^{-1}\). Since \((S_0^{i-1})^{-1} \in \text{GL}_{2n}(W)\), we have that \(\{\overline{R_i}\}_{i=1}^{2n}\) is a basis of \(k^{2n}\), where we use \(\overline{R_i}\) to denote \(R_i \mod p\).

Lemma 5.8 We have \(\sigma(R_i) = R_{i+1}\) for \(n + 1 \leq i \leq 2n - 1\); \(\sigma(R_{2n}) = R_1\). \(\sigma(R_i) = R_{i+1} - b_i R_1\) for \(1 \leq i \leq n - 1\), and \(\sigma(R_n) = R_{n+1} + \sum_{i=1}^{n-1} b_i R_{n+i+1}\), where \(b_i \in W\) in Lemma 4.5.

Proof Recall from Sect. 4.11 that \(B_0 = S_0^{−1}S_0\) and thus by Sect. 4.6, we have \(\sigma((S_0^{i-1})^{-1}) = (B_0^{i-1})^{-1}(S_0^{i-1})^{-1}\), where \(B_0' = \begin{bmatrix} p-1 & I \\ 0 & I \end{bmatrix} B_0 \begin{bmatrix} p & I \\ 0 & I \end{bmatrix}\). We then obtain the assertions by a direct computation using Lemma 4.5.3.

Lemma 5.9 Notation as in Sect. 5.5, 5.7. All Frobenius twists below are defined in the same way as \(F^{(i)}\): first applying \(\sigma^1\) to \(x_i, y_i, x'_j, y'_j\) and then substitute \(X_i(t), Y_i(t), X'_j(t), Y'_j(t)\) for \(x_i, y_i, x'_j, y'_j\). We also view \(v_1, w_i\) in Lemma 4.5 as vectors \(v_1 \otimes 1, w_i \otimes 1\) in \(K[[t]]^{2n} = \mathbb{L}_0 \otimes W K[[t]]\), where this identification uses the \(\varphi\)-invariant basis \(\{v_i, f_i\}_{i=1}^{2n}\) of \(\mathbb{L}_0 \otimes W K\) in Lemma 4.3.

1. For \(i, j, l \in \mathbb{Z}_{>0}\) such that \(i, j, l \leq n + 1\) and \(l \leq i\), the matrix \(K_i K_j^{(l)} = 0\) unless \(i = 1\). Moreover, the image of \(K_i K_j^{(l)}\) is \(\text{Span}_{K[[t]]}\{v_n\}\) and \(K_i K_j^{(l)} = S_0' M\) where \(M \in M_{2n}(K[[t]])\) is the matrix with its \(n\)th row being \(Y_i Y_j^{(l)} p^{-2i+j-1} (R_{n+1})\) and all other rows being 0.

2. For \(i_1, i_2, \ldots, i_l \in \mathbb{Z}_{\geq 1}\) such that \(i_1, i_2, \ldots, i_l \leq n + 1\), the image of the matrix \(\prod_{j=1}^{l} K_{i_j}^{(i_1 \ldots i_{j-1})}\) is \(\text{Span}_{K[[t]]}\{v_n\}\). Moreover, \(\prod_{j=1}^{l} K_{i_j}^{(i_1 \ldots i_{j-1})} = S_0' M\) where \(M \in M_{2n}(K[[t]])\) is the matrix with its \(n\)th row being \((\prod_{j=1}^{l} Y_i^{(i_1 \ldots i_{j-1})}) p^{-l} \sigma^{i_1+i_2+\cdots+i_{j-1}} (R_{n+1})\) and all other rows being 0.

Proof (1) By Sect. 5.7, \(\ker K_i = \text{Span}_{K[[t]]}\{v_1, \ldots, v_n, w_1, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{n-1}\}\) for \(1 \leq i < n\), and \(\ker K_n = \text{Span}_{K[[t]]}\{v_1, \ldots, v_n, w_1, \ldots, w_{n-1}\}\), \(\ker K_{n+1} = \text{Span}_{K[[t]]}\{\varphi(v_1), \ldots, \varphi(v_n), \varphi(w_1) \ldots \varphi(w_{n-1})\}\). Note that if we view \(v_i, w_i\) as vectors in \(K^{2n}\) by using the basis \(\{e_i, f_i\}_{i=1}^{n}\), then \(\varphi(v_i), \varphi(w_i)\) are just applying \(\sigma\) to all coordinates. On the other hand, im
\[K_j = \text{Span}_{K[[t]]}(v_j, v_n) \text{ for } 1 \leq j \leq n \text{ and } \text{im } K_{n+1} = \text{Span}_{K[[t]]}(v_n); \text{ hence by Lemma } 4.5(3), \text{ for } 1 \leq l \leq n, \]

\[\text{im } K_j^{(l)} = \varphi^l(\text{im } K_j) \subset \text{Span}_{K[[t]]}(v_1, \ldots, v_n, w_1, \ldots, w_l), \]

and \[K_j^{(n+1)} \subset \text{Span}_{K[[t]]}(\varphi(v_1), \ldots, \varphi(v_n), \varphi(w_1), \ldots, \varphi(w_n)). \] Therefore, \[K_i K_j^{(l)} = 0 \text{ if } l < i. \]

Suppose now that \[l = i. \] Then \[\text{im } K_i K_j^{(i)} = \text{Span}_{K[[t]]}(K_i w_i) = \text{Span}_{K[[t]]}(v_n) \text{ for } i \leq n \text{ and im } K_{n+1} K_j^{(n+1)} = \text{Span}_{K[[t]]}(K_{n+1} \varphi(w_n)) = \text{Span}_{K[[t]]}(v_n). \] Thus the matrix \(M \) has only its \(n \)th row non-zero. We now compute the \(n \)th row of \(M \). For \(i, j \leq n \), note that \[M = A_i (S_0' - (S_0')^i) A_j^{(i)} \]

\[((S_0')^{-1})^i; \text{ if } i = n + 1 \text{ or } j = n + 1, \text{ the matrix } M \text{ is given by the same formula once we replace the } (S_0')^{-1} \text{ after } A_i \text{ or } A_j \text{ by } ((S_0')^{-1})^i. \] For \(j \leq n \), the product \[A_j^{(i)} ((S_0')^{-1})^i \] has only its \(j \)th and \(n \)th rows non-zero (if \(j = n \), then only the \(n \)th row is non-zero), and these rows equal \(-Y_j^{(i)} p^{-1} \sigma^i (R_{2n})\) and \[Y_j^{(i)} p^{-1} \sigma^i (R_{n+j}) \text{ respectively (if } j = n, \text{ the row } Y_j^{(i)} p^{-1} \sigma^i (R_{2n});\text{ and } A_j^{(i)} ((S_0')^{-1})^i \text{ only has its } n \text{th row non-zero and its } n \text{th row is } Y_j^{(i)} p^{-1} R_n.\) Similarly, for \(i \leq n \), the \(n \)th row in the product \[A_i ((S_0')^{-1})^i \] equals \[Y_j^{(i)} p^{-1} R_n; \text{ the } n \text{th row in } A_n+1 (((S_0')^{-1})^i) \text{ equals } Y_n+1 p^{-1} \sigma (R_{2n}) = Y_n+1 p^{-1} R_1 \text{ by Lemma } 5.8. \]

For \(j < n \), by the above computation, we write \[A_j^{(i)} ((S_0')^{-1})^i \text{ as } (-Y_j^{(i)} p^{-1}) e_j \sigma^i (R_{2n}) + (Y_j^{(i)} p^{-1}) e_n \sigma^i (R_{n+j}), \] where \(e_j \) (resp. \(e_n \)) is the column vector with all coordinates \(0 \) expect the \(j \)th (resp. \(n \)th) coordinates being \(1 \). Then

\[(S_0')^i A_j^{(i)} ((S_0')^{-1})^i \]

\[= (-Y_j^{(i)} p^{-1}) \varphi^i (pv_j) \sigma^i (R_{2n}) + (Y_j^{(i)} p^{-1}) \varphi^i (pv_n) \sigma^i (R_{n+j}). \]

By definition of \(R_{n+i}, \) \(R_1 \), we have \(R_{n+i} v_j = 0 = R_1 w_j, R_{n+i} w_j = 0 \) for \(j \neq i, R_{n+i} u_i = 1, R_1 v_j = 0 \text{ for } j > 1, \) and \(R_1 (pv_1) = 1. \) For \(i \leq n \), the coefficient of \(w_i \) in \(\varphi^i (pv_j) \) (resp. \(\varphi^i (pv_n) \)) is \(0 \) (resp. \(1 \)) by Lemma 4.5(3) and thus the \(n \)th row of \(M \) is \[Y_j Y_j^{(i)} p^{-2} \sigma^i (R_{n+j}) = Y_j Y_j^{(i)} p^{-2} \sigma^{i+j-1} (R_{n+1}) \text{ by Lemma } 5.8. \] The cases when \(i = n + 1 \text{ or } j = n, n + 1 \text{ also follow from Lemma } 4.5 \text{ and Lemma } 5.8 \text{ by direct computations as above.}\]

(2) We prove by induction on \(l \). Indeed, we only need to verify the expression of \(M \). The base case is just (1). We assume that \(i_1 \leq n \) and the case \(i_1 = n + 1 \) follows by a similar computation. Note that
\[M = A_{i_1}(S'_0)^{-1}(\prod_{j=2}^{l} K_{i_j}^{(i_2+\cdots+i_{j-1})})^{(i_1)} \]

\[= A_{i_1}(S'_0)^{-1}(S'_0)^{(i_1)}(Y_{i_2}^{(i_1)} \cdots Y_{i_l}^{(i_1+\cdots+i_{l-1})}) p^{1-l} e_n \sigma^{i_1+\cdots+i_{l-1}}(R_{n+1}) \]

by the induction hypothesis. By the computation in (1), we have \(A_{i_1}(S'_0)^{-1} \) has only its \(i_1 \)th and \(n \)th rows non-zero (if \(i_1 = n \), then only the \(n \)th row is non-zero), and these rows equal \(-Y_{i_1} p^{-1} R_{2n} \) and \(Y_{i_1} p^{-1} R_{n+i_1} \) respectively; moreover, by Lemma 4.5 and the definition of \(S'_0 \), we have \((S'_0)^{(i_1)} e_n = p v_{n+i_1} \), which is a linear combination of \(w_1, \ldots, w_{i_1} \) with the coefficient of \(w_{n+i_1} \) being 1; then by the definition of \(R_{n+i_1} \) and \(R_{2n} \), we have \(R_{n+i_1}(p v_{n+i_1}) = R_{n+i_1}(w_{i_1}) = 1 \) and \(R_{2n}(p v_{n+i_1}) = 0 \). Therefore we have \(A_{i_1}(S'_0)^{-1}(S'_0)^{(i_1)} e_n = (Y_{i_1} p^{-1}) e_n \) and the assertion follows. \(\Box \)

Recall from Sect. 5.7 that \(F_{\infty}(1) \) is an infinite sum of finite products of \(\sigma \)-twists of \(B(x) \) and \(K_i, i = 1, \ldots, n + 1. \) The following lemma picks out which of these finite products have the minimal \(t \)-adic valuation among those with a fixed \(p \)-adic valuation. We observe that \(\sigma \)-twists of \(B_1(x), B_2(x) \) have non-negative \(p \)-adic valuation and positive \(t \)-adic valuation; therefore if we have a finite product of \(\sigma \)-twists of \(B_1(x), B_2(x) \) and \(K_i \) which shows up in \(F_{\infty}(1) \), then by removing all the \(\sigma \)-twists of \(B(x) \) and lowering the twist degrees for \(K_i \), we still obtain a product which shows up in \(F_{\infty}(1) \) and have smaller \(t \)-adic valuation.

We illustrate this with two examples. Consider the term \(K_1 B_1(x)^{(1)} K_2^{(2)} K_5^{(4)} \), and suppose that it is non-zero. Then, the term \(K_1 K_2^{(1)} K_5^{(3)} \) is non-zero (this follows as the image of \(B_1(x) \) is contained in the image of \(K_2 \), and in fact equals the image of \(K_2 K_5^{(2)} \)), and visibly has smaller \(t \)-adic valuation, while the \(p \)-adic valuation is the same. Indeed, this argument works for any sub-product that starts with a twist of \(B_1(x) \) and has exactly one occurrence of a twist of \(K_j \), which appears at the end of this sub-product—the term that replaces this sub-product will be an appropriate twist of \(K_j \).

Similarly, by considering row-spans instead of images, it follows that if a term that looks like \(K_2 B_2(x)^{(i)} K_3^{(j)} \) is non-zero, then so is \(K_2^{(i)} K_3^{(j)} \) as the row span of \(K_2 \) (in fact, of every \(K_j \) for every \(j \)) contains the row span of \(B_2 \). And so, in this case, we replace \(K_2 B(x)^{(i)} K_3^{(j)} \) with \(K_2 K_3^{(j-i)} \). As above, this argument works for any sub-product that ends with a twist of \(B_2(x) \), and has exactly one occurrence of some twist of some \(K_i \), which appears at the beginning of this sub-product. Thus, it suffices to exclusively consider products of \(\sigma \)-twists of the \(K_i \).

\[\text{Note that we also consider } B(x) \text{ and } K_i \text{ as the zeroth } \sigma \text{-twist of themselves.} \]
5.10 We introduce some notation for the lemmas. For \(r \in \mathbb{Z}_{>0} \), define \(\mathbb{I}_r = \{1, 2, \ldots, n + 1\}^r \). For \(I = (i_1, \ldots, i_r) \in \mathbb{I}_r \), define \(P_I = K_{i_1} \cdot K_{i_2}^{-1} \cdot \cdots \cdot K_{i_r}^{-1} \) and define the weight of \(I \), denoted by \(\mu_I \), to be \(\sum_{j=1}^r i_j \). By Lemma 5.9, we write \(P_I = S'_I M_I \) and note that all nonzero entries in \(P_I \) have the same \(t \)-adic valuation \(\sum_{j=1}^r p^{i_1+i_2+\cdots+i_r-1} a_{ij} =: \nu_I \) (recall that \(a_i = v_i(Y_i) \)).

Note that in the expansion of \(F_\infty(1) \) into an infinite sum of finite products of \(\sigma \)-twists of \(B(x) \) and \(K_i \), \(i = 1, \ldots, n+1 \), among all such finite products with a \(p \)-adic valuation \(-r \), the ones with the minimal \(t \)-adic valuation have to be of the form \(P_I \) with \(I \in \mathbb{I}_r \). Let \(\nu_r \) denote this minimal \(t \)-adic valuation. Define \(\mathbb{I}_{r}^{\min} = \{ I \in \mathbb{I}_r : \nu_r(P_I) = \nu_r \} \). In other words, among all finite products of \(\sigma \)-twists of \(B(x) \) and \(K_i \) with \(p \)-adic valuation \(-r \) in the expansion of \(F_\infty(1) \), the ones with minimal \(t \)-adic valuations are \(P_I \), \(I \in \mathbb{I}_r^{\min} \). The following lemma provides some information of the set \(\mathbb{I}_r^{\min} \).

Lemma 5.11 Notation as in Sect. 5.10 and let \(I = (i_1, \ldots, i_r) \in \mathbb{I}_r^{\min} \). Then:

1. \((i_2, \ldots, i_r) \in \mathbb{I}_r^{\min} \). Conversely, if \((j_2, \ldots, j_r) \in \mathbb{I}_r^{\min} \), then there exists \(j_1 \in \{1, \ldots, n + 1\} \) such that \((j_1, j_2, \ldots, j_r) \in \mathbb{I}_r^{\min} \).
2. \(i_1 \leq i_2 \leq \cdots \leq i_r \) and \(a_{i_1} \geq a_{i_2} \geq \cdots \geq a_{i_r} \).
3. Let \(J = (j_1, \ldots, j_r) \in \mathbb{I}_r^{\min} \). Then all \((l_1, \ldots, l_r) \in \mathbb{I}_r^{\min} \) must have each \(l_\alpha \) to be either \(i_\alpha \) or \(j_\alpha \) for \(1 \leq \alpha \leq r \).
4. Let \(J \) be as in (3). Then \(|\mu_J - \mu_I| < n + 1 \).
5. Suppose that \(|\mathbb{I}_r^{\min}| > 1 \). Then there exist two elements in \(\mathbb{I}_r^{\min} \) with different weights. Further, there is a unique \(I \in \mathbb{I}_r^{\min} \) with maximal weight, and a unique \(J \in \mathbb{I}_r^{\min} \) with minimal weight.

Proof (1) By Sect. 5.10, we have \(\nu_I = a_{i_1} + p^{i_1} v_{(i_2, \ldots, i_r)} \), and thus \(v_{(i_2, \ldots, i_r)} \) has to be minimized in \(P_I \) to be minimal. On the other hand, take \(j_1 = i_1 \) and then we have \(v_{(j_1, \ldots, j_r)} = a_{i_1} + p^{i_1} v_{(j_2, \ldots, j_r)} = a_{i_1} + p^{i_1} v_{(i_2, \ldots, i_r)} = v_r \).

(2) We prove the assertion by induction on \(r \). By the inductive hypothesis and (1), we may assume that \(i_2 \leq i_3 \leq \cdots \leq i_r \) and \(a_{i_2} \geq a_{i_3} \geq \cdots \geq a_{i_r} \).

Assume for contradiction that \(i_1 > i_2 \). If \(a_{i_2} \leq a_{i_1} \), then \(v_{(i_2, i_2, i_3, \ldots, i_r)} < v_I \), which contradicts with \(I \in \mathbb{I}_r^{\min} \). Therefore \(a_{i_1} < a_{i_2} \). Let \(I' = (i_2, i_1, i_3, \ldots, i_r) \). We have \(v_{I'} - v_I = v_{(i_2, i_1)} - v_{(i_1, i_2)} = a_{i_1}(p^{i_2 - 1} - 1) - a_{i_2}(p^{i_1 - 1} - 1) < 0 \). Thus we must have \(i_1 \leq i_2 \).

Now assume for contradiction that \(a_{i_1} < a_{i_2} \). Then \(v_{(i_1, i_1, i_3, \ldots, i_r)} < v_I \). Thus \(a_{i_1} \geq a_{i_2} \) as required.

(3) Suppose that \(J = (j_1, \ldots, j_r) \). By (1), it follows that \(v_{(j_2, \ldots, j_r)} = v_{(i_2, \ldots, i_r)} = v_{(i_2, \ldots, i_r)} = v_{(i_2, \ldots, i_r)} \), whence \(a_{i_1} + p^{i_1} v_{r-1} = a_{j_1} + p^{j_1} v_{r-1} \). It follows that \((l_1, j_2, j_3, \ldots, j_r) \in \mathbb{I}_r^{\min} \). (3) now follows by induction on \(r \).
consider the linear combination $\rho_1 - \rho_J = i_1 - (\sum_{\alpha=1}^{r-1}(j_\alpha - i_{\alpha+1})) - j_r$. By (2) and (3), $j_\alpha \leq i_{\alpha+1}$; since $j_r > 0$, then $\mu_1 - \mu_J < i_1 \leq n + 1$. Similarly, $\mu_J - \mu_1 < n + 1$; thus the result follows.

(5) For $1 \leq \alpha \leq r$, set $M_\alpha = \max_{j \in \mathbb{I}^\text{min}_r \{ j_\alpha \}}$ and $m_\alpha = \min_{j \in \mathbb{I}^\text{min}_r \{ j_\alpha \}}$. By applying (3) repeatedly the set of all $J \in \mathbb{I}^\text{min}_r$, it follows that $(M_1, \ldots, M_r), (m_1, \ldots, m_r) \in \mathbb{I}^\text{min}_r$. By definition, (M_1, \ldots, M_r) is the unique element of \mathbb{I}^min_r with maximal weight, and $(m_1, \ldots, m_r) \in \mathbb{I}^\text{min}_r$ is the unique element with minimal weight.

Other preparation lemmas

Recall that \overline{R}_i denote $R_i \mod p$.

Lemma 5.12 For any $0 \neq v \in \mathbb{F}_p^{2n}$, we have $\overline{R}_{n+1}v \neq 0$. Consequently, if $\{z_1, \ldots, z_{2n}\}$ is a basis of \mathbb{F}_p^{2n}, then $\overline{R}_{n+1}z_1, \ldots, \overline{R}_{n+1}z_{2n} \in k$ are linearly independent over \mathbb{F}_p.

Proof If $\overline{R}_{n+1}v = 0$, then $\sigma^i(\overline{R}_{n+1})v = 0$ for all $i \geq 0$. By Lemma 5.8, $\text{Span}_W \{ \sigma^i(\overline{R}_{n+1}) \}_{i=0}^{2n-1} = W^{2n}$; thus $\overline{R}_{n+1}, \sigma(S_{n+1}), \ldots, \sigma^{2n-1}(\overline{R}_{n+1})$ form a basis of k^{2n}. Therefore, if $\overline{R}_{n+1}v = 0$, then $v = 0$; this proves the first assertion.

For the second assertion, suppose there exists a non-trivial linear relation $\sum_{i=1}^{2n} a_i (\overline{R}_{n+1}z_i) = 0$ with $a_i \in \mathbb{F}_p$. Then, $\overline{R}_{n+1}(\sum_{i=1}^{2n} a_i z_i) = 0$, which contradicts the first assertion.

Lemma 5.13 Let $\alpha_0, \ldots, \alpha_n \in k$ such that $(\alpha_0, \ldots, \alpha_n) \neq (0, \ldots, 0)$. Consider the linear combination $\overline{R} = \sum_{i=0}^{n} \alpha_i \sigma^i(\overline{R}_{n+1})$. Then $\dim_{\mathbb{F}_p} \{ v \in \mathbb{F}_p^{2n} \mid \overline{R}v = 0 \} \leq n$.

Proof For any $z \in \mathbb{F}_p^{2n}$, note that $\overline{R}z = \alpha \beta(z)$, where

$$\alpha = (\alpha_0, \ldots, \alpha_n), \ \beta(z) = \begin{bmatrix} \overline{R}_{n+1}z \\ \overline{R}_{n+1}z^{(1)} \\ \vdots \\ \overline{R}_{n+1}z^{(n)} \end{bmatrix}.$$

Now assume for contradiction that there exist linearly independent vectors $z_1, z_2, \ldots, z_{n+1} \in \mathbb{F}_p^{2n}$ such that $\overline{R}z_j = 0$. This implies that $\alpha \beta(z_j) = 0$ for every $1 \leq j \leq n + 1$. In particular, this implies that the row vector α is in the (left) kernel of the $(n + 1) \times (n + 1)$ matrix $M(z)$ whose jth column is $\beta(z_j)$. This contradicts the assumption $\alpha \neq 0$ once we show that $M(z)$ is invertible. Indeed, note that the $(i + 1)$th row of $M(z)$ is the Frobenius twist of the ith
row, and hence $M(z)$ is a Moore matrix. The determinant of a Moore-matrix vanishes if and only if the entries of the first row are linearly independent over \mathbb{F}_p. However, the first row of $M(z)$ consists of the elements $(\overline{R}_{n+1}z_i)_{i=1}^{n+1}$, and by Lemma 5.12 these elements are linearly independent over \mathbb{F}_p. The lemma follows.

\end{proof}

Decay in the non-superspecial case

Proof of Theorem 5.2 We follow the argument in Sect. 5.6. Let w be a primitive vector (that is, not a multiple of p) in $\text{Span}_{\mathbb{Z}_p}\{e_1, \ldots, e_n, f_1, \ldots, f_n\} \subset \mathcal{L}$. With respect to the basis $\{e_i, f_i, e'_i, f'_i\}$, we view w as a vector in W^{2n+2m}, which has the last $2m$ coordinates being 0. Let w_0 denote the vector in W^{2n} whose coordinates are the first $2n$ coordinates of w (indeed, as vectors in \mathcal{L}, $w = w_0$). Then for any $r, s \in \mathbb{Z}_{\geq 0}$, if $p^r F_{\infty}(1)w_0$ is not integral in $\mathbb{L}_0 \otimes W D_s$, then neither is $p^r F_{\infty} w$ in $\mathbb{L}_0 \otimes W D_s \oplus \mathbb{L}_1 \otimes W D_s = \mathbb{L} \otimes W D_s = \mathcal{L}(\text{cris})(D_s)$. Thus to prove the Decay Lemma, it suffices to work with $F_{\infty}(1)$. Thus for a general \mathbb{L}_1, we may embed it into the split case as described in Sect. 4.7 to reduce the proof to the split case because such an embedding only changes \mathbb{L}_1 part and the \mathbb{L}_0 part remains the same; more precisely, the decay vectors that we choose lie in \mathbb{L}_0 and the computation only considers the projection of $F_{\infty} w$ into $\mathbb{L}_0 \otimes D_s$ and thus the same argument applies.

Notation as in Sect. 5.10; let M_{r+1} denote the matrix in $M_{2n}(K)$ such that

$$\sum_{T \in \mathcal{L}_{r+1}} P_T = S'_0 \sum_{T \in \mathcal{L}_{r+1}} M_T = t^{v_{r+1}} S'_0 M_{r+1} + t^{v_{r+1}+1} N_{r+1},$$

for some $N_{r+1} \in M_{2n}(K[[t]])$.

By definition, $p^{r+1} M_{r+1} \in M_{2n}(W)$. First we follow the reduction step as in the last paragraph of the proof of Thm. 5.1.2 assuming Prop. 5.1.3 in [33]. Note that, because $S'_0 \in \text{GL}_{2n}(W)$, we have $\ker(p^{r+2} M_{r+2} \text{ mod } p) = \ker(p^{r+2} S'_0 M_{r+2} \text{ mod } p)$. If $w_0 \text{ mod } p \notin \ker(p^{r+2} M_{r+2} \text{ mod } p) = \ker(p^{r+2} S'_0 M_{r+2} \text{ mod } p)$, then the coefficient of $t^{v_{r+2}}$ in $p^{r+2} F_{\infty}(1)w_0$ modulo $p \mathcal{L}_0 \otimes \mathbb{Z}_p W$ is given by $p^{r+2} S'_0 M_{r+2} w_0 \text{ mod } p \neq 0$. In other words, the coefficient of $t^{v_{r+2}}$ in $p^{r} F_{\infty}(1)w_0$ does not lie in $p^{-1} \mathcal{L}_0 \otimes \mathbb{Z}_p W$. Since $\mathbb{L}_0 \subset p^{-1} \mathcal{L}_0 \otimes \mathbb{Z}_p W$, then the coefficient of $t^{v_{r+2}}$ in $p^{r} F_{\infty}(1)w_0$ does not lie in \mathbb{L}_0. For $s > v_{r+2}/p$, by the definition of D_s, we have that $p^{-1} t^{v_{r+2}} \notin D_s$ and then $p^{r} F_{\infty} w_0 \notin \mathcal{L}(\text{cris})(D_s)$. Thus the following claim implies the Decay lemma.

Claim (1) There exists a saturated \mathbb{Z}_p-submodule $\Lambda \subset \mathcal{L}$ of rank at least n such that if $v \in \Lambda$ is a primitive vector, then $v \text{ mod } p \notin \ker(p^{r+2} M_{r+2} \text{ mod } p)$ for all $r \in \mathbb{Z}_{\geq 0}$.
(2) For all \(r \in \mathbb{Z}_{\geq 0} \), we have \(v_{r+2}/p < h_r + 1 \), where \(h_r \) is defined in Definition 5.1.

For (1), by Lemma 5.9(2), each \(p^{r+2}M_I \in M_{2n}(K[[t]]) \) with \(I \in \Imath_{r+2}^{\min} \) has only its \(n \)th row non-zero and its \(n \)th row has the form

\[c_I t^{v_{r+2}} \sigma^\mu_{\mu - 1}(R_{n+1}) + (\text{higher powers of } t) \in K[[t]]^{2n}, \]

where \(c_I \in W^\times \) as it is the product of twists of leading coefficients of \(Y_{ij} \) (these leading coefficients are all Teichmüller lifts of non-zero elements in \(k \)); therefore, summing over all \(I \in \Imath_{r+2}^{\min} \), we have that \(p^{r+2}M_{r+2} \) only has its \(n \)th row non-zero and its \(n \)th row is a \(W \)-linear combination of \(\{ \sigma^\mu_{\mu - 1}(R_{n+1}) \}_{I \in \Imath_{r+2}^{\min}} \). By Lemma 5.11(5), let \(J, J' \in \Imath_{r+2}^{\min} \) denote the unique elements such that \(\mu_J = \max_{I \in \Imath_{r+2}^{\min}} \mu_I \) and \(\mu_{J'} = \min_{I \in \Imath_{r+2}^{\min}} \mu_I \). Thus the \(n \)th row of \(p^{r+2}M_{r+2} \) mod \(p \) is a \(k \)-linear combination of \(\{ \sigma^\mu_{\mu - 1}(R_{n+1}) \}_{\mu_{J'} < \mu_{J} \leq \mu_J} \) and by Lemma 5.11(4), this set consists at most \(n+1 \) elements. Moreover since \(J, J' \) are unique, the coefficients of \(\sigma^\mu_{\mu - 1}(R_{n+1}) \) and \(\sigma^\mu_{\mu - 1}(R_{n+1}) \) are \(\sum_{I \in \Imath_{r+2}^{\min}, \mu_I = \mu_{J'}} \bar{c}_I = \bar{c}_{J'} \) and \(\sum_{I \in \Imath_{r+2}^{\min}, \mu_I = \mu_J} \bar{c}_I = \bar{c}_J \) respectively; and both are non-zero in \(k \) as \(c_J, c_{J'} \in W^\times \). Then by Lemma 5.13, \(\dim_{\mathbb{F}_p} S_{r+1} \leq n \), where \(S_{r+1} := \{ \bar{v} \in \mathbb{F}_p^{2n} \mid \bar{v} \in \ker(p^{r+1}M_{r+1} \bmod p) \} \). By Lemma 5.11(1)(3), \(\Imath_{r+2}^{\min} = \Imath' \times \Imath_{r+1}^{\min} \), where

\(\Imath' = \{ i \mid 1 \leq i \leq n+1, \exists J(i) \in \Imath_{r+1}^{\min} \text{ such that } (i, J(i)) \in \Imath_{r+2}^{\min} \}. \)

Then \(p^{r+2}M_{r+2} = \sum_{i \in \Imath'} A_i(p^{r+1}M_{r+1})^{(i)} \), where \(A_i \in M_{2n}(W) \). Therefore, \(S_{r+1} \subset S_{r+2} \). Thus \(S_{\infty} := \bigcup_{J=1}^{\infty} S_J \) is a subspace of \(\mathbb{F}_p^{2n} \) of dimension at most \(n \). Thus there exists a saturated \(\mathbb{Z}_p \)-submodule \(\Lambda \subset \mathcal{L} \) or rank at least \(n \) such that \(\Lambda \bmod p \cap S_{\infty} = \{0\} \) and any primitive vector \(v \in \Lambda \) satisfies the desired condition.

For (2), note that \(v_{r+2} \leq v(1, \ldots, 1) = h(1 + \cdots + p^{r+1}) \) since \(h = a_1 \); thus \(h_r + 1 > h(p^{r} + \cdots + p^{-1}) \geq v_{r+2}/p \). \(\square \)

5.14 Ogus [39, Lem. 2, Prop. 11] gives an explicit description of the local equation of Newton strata of \(S_k \) and by using the explicit coordinates in Sect. 5.5, in the formal neighborhood of a supersingular point \(P \) of type \(2n \), the Newton stratum of codimension \(s \) is cut out by the single equation \(\gamma_s = 0 \) in the Newton stratum of codimension \(s - 1 \) for \(s \leq n \).\(^{18}\) Let \(C \to S_k \)

\(^{18}\) Here and also in the statement of Theorem 5.15, by the Newton stratum associated to \(v \) in Kottwitz’s set, we mean the closed subscheme in the Shimura variety parametrizing points whose Newton points/polygons \(v' \leq v \) with respect to the partial order in Kottwitz’s set; equivalently, this closed subscheme is the Zariski closure of the locally closed subscheme parametrizing points whose Newton points/polygons are exactly \(v \). We refer to this locally closed subscheme as the open Newton stratum.
be a formal curve which specializes to P. Assume that the generic point of C lies in the open Newton stratum of codimension $s - 1 \leq n - 1$. We say a special endomorphism w of $A[p^{\infty}]$ decays rapidly if it satisfies the condition in Definition 5.1 with $h = v_r(y_s(t)) = a_s$. The only place in the proof of Theorem 5.2 where we used the generic ordinary assumption of C is Claim (2). Once we replace the computation there by $v_{r+2} \leq v_{(s,\ldots,s)} = a_s(1 + \cdots + p^r+1)$, we obtain the following general version of the Decay Lemma for non-superspecial supersingular points.

Theorem 5.15 (Generalized decay lemma in the generic case) **Suppose that** $C \to S_k$ **is a formal curve which specializes to a non-superspecial supersingular point of type $2n$ (i.e., Artin invariant n) and is generically in an open Newton stratum of codimension $\leq n - 1$. Then there exists a saturated rank n submodule of special endomorphisms which decays rapidly.**

6 Decay for superspecial points

The goal of this section is to prove a Decay Lemma for superspecial points (Theorem 6.2). The computations in the proof of Theorem 6.2 go along very similar lines to the calculations carried out in [33, §5]. We will therefore be brief and will refer to [33] whenever appropriate.

Throughout this section, we work in the setting of a formal curve $C = \text{Spf} \ k[[t]] \to S_k$ which is generically ordinary, and specializes to a superspecial point P. Recall that $A/k[[t]]$ denotes the pullback of A^{univ}, h denotes the t-adic valuation of the local equation of the non-ordinary locus given in Corollary 4.10, and L is the lattice of special endomorphisms of the p-divisible group at P.

In order to obtain sufficiently strong bounds to prove Theorem 1.2, we require a Decay Lemma which is slightly stronger than Theorem 5.2. In order to do this, we introduce the notion of very rapid decay; also the following definition for rapid decay in the superspecial case is stronger than Definition 5.1.

Definition 6.1 For a superspecial point P,

1. We say that $w \in L$ decays rapidly (resp. very rapidly) if for every $r \in \mathbb{Z}_{\geq 0}$, the special endomorphism $p^r w$ does not lift to an endomorphism of $A[p^{\infty}]$ modulo $t^{h'+1}$ (resp. $t^{h'-1+ap^a+1}$), for some $a \leq \frac{h}{2}$ independent of r; here $h' := [h(p^r + \cdots + 1 + a/p)]$ and $h' := [a/p]$.
2. We say that $w \in L$ decays rapidly (resp. very rapidly) to first order if w does not extend to an endomorphism modulo $t^{[h+a/p]+1}$ (resp. $t^{[a+a/p]+1}$) for some $a \leq \frac{h}{2}$.
3. A \mathbb{Z}_p-submodule of L decays rapidly if every primitive vector in this submodule decays rapidly. Given a submodule $\Lambda \subset L$ which decays
rapidly and a vector $w \in \mathcal{L}$ such that $w \notin \Lambda$, we say that the pair (L, w) decays very rapidly to first order if w decays very rapidly to first order, and every primitive vector in $\text{Span}_{\mathbb{Z}_p}(L, w)$ decays rapidly to first order.

The main theorem of this section is the following:

Theorem 6.2 (Decay Lemma in the superspecial case) There exists a saturated rank 2 \mathbb{Z}_p-submodule $\Lambda \subset \mathcal{L}$ which decays rapidly. Moreover, the submodule Λ may be chosen so that at least one of the following statements holds:

1. There exists a primitive $w \in \Lambda$ which decays very rapidly;
2. there exists a primitive vector $w \in \mathcal{L}$ such that $w \notin \Lambda$ and the pair (L, w) decays very rapidly to first order.

We expect that an analogous statement of [33, Thm. 5.1.2] holds; more precisely, we expect that there is a rank 3 submodule of \mathcal{L} which decays rapidly, and moreover, there exists a vector in this rank 3 submodule which decays very rapidly. In order to prove Theorem 1.2, the weaker statement Theorem 6.2 suffices.

Theorem 3.3 follows directly from Theorem 6.2:

Proof of Theorem 3.3 The argument used to deduce Theorem 3.2 from Theorem 5.2 works in this setting, with Theorem 3.3(1) following from Theorem 6.2(1), and Theorem 3.3(2) following from Theorem 6.2(2). □

The setup

Here we carry out all the computation for the split case described in Sect. 4.7 and we will explain in the proof how to deduce the general case from the split case.

6.3 Recall from Sect. 4.8 that $\widehat{O}_{S, P} = \text{Spf} \, W[[x_1, \ldots, x_m, y_1, \ldots, y_m]]$ (note that for P superspecial, we have $n = t_P/2 = 1$; and x_j, y_j here were denoted by x'_j, y'_j in Sect. 4.8); the formal curve C gives rise to the tautological map of local rings

$$W[[x_1, \ldots, x_m, y_1, \ldots, y_m]] \to k[[t]]$$

and we let $x_i(t)$ (respectively $y_i(t)$) denote the images of the x_i (respectively y_i) in $k[[t]]$. For each of the $x_i(t)$ (respectively $y_i(t)$), let $X_i(t) \in W[[t]]$ (respectively $Y_i(t) \in W[[t]]$) denote the power series whose coefficients are the Teichmüller lifts of those of $x_i(t)$ (respectively $y_i(t)$). Let $Q(t) = - \sum_{i=1}^m X_i(t)Y_i(t)$ (compare to Sect. 4.8, here we use Q to denote the lift of
itself), and let \(R(t) = -\sum_{i=1}^{m} \left(X_i(t)(Y_i(t))^p + (X_i(t))^pY_i(t) \right) \). By Corollary 4.10, \(Q(t) \mod p = 0 \) is the local equation for the non-ordinary locus, so \(h = v_t(Q(t)) \). Let \(h' = v_t(R(t)) \). Without loss of generality, we may assume that \(v_t(X_1(t)) \leq v_t(X_i(t)) \) and \(v_t(X_1(t)) \leq v_t(Y_i(t)) \) as everything is symmetric in the \(x_i, y_i \), and let \(a \) denote \(v_t(X_1(t)) \). By definition, we have that \(2a \leq h \) and \((p + 1)a \leq h'\).

6.4 Following the notation of Lemma 4.3 for \(n = 1 \), the vector \(v_1 \) in Lemma 4.5 must be \(\frac{1}{2p}(e_1 + f_1/\lambda) \) and \(w_1 = \frac{1}{2}(e_1 - f_1/\lambda) \). By Sect. 4.8, 4.11, we have that with respect to the basis \(\{ e_1, f_1, e'_i, f'_i \}_{i=1}^m \), the Frobenius on \(L_{\text{cris}}(W[[x_i, y_i]]) \) is given by

\[
\text{Frob} = (I + F) \circ \sigma, \quad \text{where } F = \begin{bmatrix}
\frac{Q}{2p} & -\frac{\lambda Q}{2p} & \frac{x_1}{2p} & \cdots & \frac{x_m}{2p} & \frac{y_1}{2p} & \cdots & \frac{y_m}{2p} \\
\frac{Q}{2p\lambda} & -\frac{\lambda Q}{2p\lambda} & \frac{x_1}{2p\lambda} & \cdots & \frac{x_m}{2p\lambda} & \frac{y_1}{2p\lambda} & \cdots & \frac{y_m}{2p\lambda} \\
-\frac{y_1}{\lambda} & \frac{\lambda y_1}{\lambda} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots \\
-\frac{y_m}{\lambda} & \frac{\lambda y_m}{\lambda} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-\frac{x_1}{\lambda} & \frac{\lambda x_1}{\lambda} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots \\
-\frac{x_m}{\lambda} & \frac{\lambda x_m}{\lambda}
\end{bmatrix}.
\]

Let \(F_t, F_r \) and \(F_l \) denote the top-left \(2 \times 2 \) block, the top-right \(2 \times 2m \) block and the bottom-left \(2m \times 2 \) block of \(F \) respectively. Let \(F_{r,i}, F_{l,i} \) denote the \(i \)th column of \(F_r \) and \(i \)th row of \(F_l \) respectively.

As in Sect. 5.6, in order to prove the Decay Lemma, we study the expansion of \(F_\infty = \prod_{i=0}^\infty (I + F^{(i)}) \). Let \(F_\infty(1), F_\infty(2) \) and \(F_\infty(1, 3) \) denote the top-left \(2 \times 2 \) block, the top-right \(2 \times 2m \) block, and the \((m + 1)\)th row of the bottom-left \(2m \times 2 \) block of \(F_\infty \) respectively. We denote by \(F_\infty(2)_i \) the \(i \)th column of \(F_\infty(2) \) and \(F_\infty(2, 3)_i \) the \(i \)th entry of the \((m + 1)\)th row of the bottom-right \(2m \times 2m \) block of \(F_\infty \).

Let

\[
M = \frac{1}{2} \left[\begin{array}{cc}
1 & -\lambda \\
\frac{1}{\lambda} & 1
\end{array} \right], \quad N = \frac{1}{2} \left[\begin{array}{cc}
1 & \lambda \\
\frac{1}{\lambda} & 1
\end{array} \right].
\]

There is another possible choice with \(\lambda \) replaced by \(-\lambda\); given the computation is the same for both cases, we will just work with the first case.
Preliminary lemmas

As in [33, §5.2], we expand the blocks $F_\infty(1, 3), F_\infty(2, 3)$ in F_∞ as an infinite sum of finite products of σ-twists of F_t, F_r and F_l. The following lemma follows directly from the shape of F and an elementary analysis on t-adic valuations.

Lemma 6.5 Fix $r \in \mathbb{Z}_{\geq 0}$

(1) Among all finite products of σ-twists of F_t, F_r and F_l in the expansion of $F_\infty(1, 3)$ with p-adic valuation $-(r+1)$, the terms which have the smallest t-adic valuation are contained in the set

\[
S_{1,r+1} = \left\{ F_{l,m+1}^{(\alpha)} \prod_{i=1}^{\alpha} F_t^{(i)} \prod_{j=1}^{\beta} F_r^{(\alpha+2j-1)} F_l^{(\alpha+2j)} \mid \alpha, \beta \in \mathbb{Z}_{\geq 0}, \alpha + \beta = r + 1 \right\}.
\]

(2) Among all finite products of σ-twists of F_t, F_r and F_l in the expansion of $F_\infty(2, 3)$ with p-adic valuation $-(r+1)$, the terms with the smallest t-adic valuation are contained in the set

\[
S_{2,s,r+1} = \left\{ F_{l,m+1}^{(\alpha)} \prod_{i=1}^{\alpha} F_t^{(i)} \prod_{j=1}^{\beta} F_r^{(\alpha+2j-1)} F_l^{(\alpha+2j)} \times F_{r,s}^{(\alpha+2\beta+1)} \mid \alpha, \beta \in \mathbb{Z}_{\geq 0}, \alpha + \beta = r \right\}.
\]

The following lemma follows from a direct computation similar to [33, Lem. 5.2.1, Lem. 5.2.3].

Lemma 6.6 Consider the product

\[
P_{\alpha, \beta} = \prod_{i=1}^{\alpha} F_t^{(i)} \cdot \prod_{j=1}^{\beta} F_r^{(\alpha+2j-1)} F_l^{(\alpha+2j)}.
\]

(1) If α is odd, the product equals $p^{-(\alpha+\beta)} \prod_{i=1}^{\alpha} Q^{(i)} \cdot \prod_{j=1}^{\beta} R^{(\alpha+2j-1)} M^{(1)}$.

(2) If α is even, the product equals $p^{-(\alpha+\beta)} \prod_{i=1}^{\alpha} Q^{(i)} \cdot \prod_{j=1}^{\beta} R^{(\alpha+2j-1)} N^{(1)}$.

In either case, the kernel of $F_{l,m+1} p^{\alpha+\beta} P_{\alpha, \beta}$ mod p does not contain any non-zero \mathbb{F}_p-rational vectors or any k^\times-multiple of $([1, \lambda^{-1}]^{(\alpha+1)})^T$.

Decay in the superspecial case

Proof of Theorem 6.2 We first prove the theorem in the split case. We continue the argument in Sect. 5.6.
Case 1: \(h < h' \). It follows from Lemmas 6.5 and 6.6 that there is a unique element of \(S_{1, r+1} \) (respectively \(S_{2,1,r+1} \)) with minimal \(t \)-adic valuation. This term is \(F_{l,m+1} P_{r+1,0} \) (respectively \(F_{l,m+1} P_{r+1,0} F_{r+1}^{(r+1)} \)), and has \(t \)-adic valuation \(a + h(p + \cdots + p^{r+1}) + ap^{r+1} \). By the last assertion of Lemma 6.6, we conclude that for any primitive vector \(w \in \text{Span}_{Z_p} \{ e_1, f_1 \} \), in the entry of the vector \(p^r F_{\infty} w \) corresponding to its \(f_1' \)-coordinate in \(K[[t]] \), the coefficient of \(t^{a + h(p + \cdots + p^{r+1})} \) does not lie in \(W \). Since \(\gamma_0 e_1 + \delta_0 f_1 + \sum_{i=1}^m \gamma_i e_i' + f_1' + \sum_{i=2}^n \delta_i f_i' \) is primitive in \(\mathbb{L} = \text{L}_{\text{cris}, p}(W) \) for any \(\gamma_i, \delta_i \in W \), we conclude that the horizontal section \(p^r F_{\infty} w \) is not integral in \(\text{span}_{\mathbb{L}}(D_s) \) if \(s > (a + h(p + \cdots + p^{r+1}))/p \) as for any \(N < sp \), we have \(t^N/p \notin D_s \). Thus \(\text{span}_{W} \{ e_1, f_1 \} \) decays rapidly. Similarly by Lemma 6.6, the special endomorphism \(e_1' \) decays very rapidly. The fact that \(\text{span}_{Z_p} \{ e_1, f_1, e_1' \} \) decays rapidly follows from an argument identical to that outlined in the last paragraph of [33, Proof of Prop. 5.1.3 Case 1 in §5.2]. For the convenience of the reader, we give a brief sketch of this argument. Let \(w \) be a primitive vector in \(\text{Span}_{Z_p} \{ e_1, f_1 \} \). As in loc. cit., it suffices to prove that the \(t \)-adic valuation of the term of \(F_{\infty} w \) with denominator \(p^{r_1} \) is different from the \(t \)-adic valuation of the term of \(F_{\infty} e_1' \) with denominator \(p^{r_2} \) for any \(r_1, r_2 \in \mathbb{Z}_{>0} \). The former quantity equals \(a + h(p + \cdots + p^{r_1}) \), and the latter quantity equals \(a + h(p + \cdots + p^{r_2-1}) + ap^{r_2} \). As 1 \(\leq a \leq h/2 \), it follows that these quantities can never be the same and the result follows.

Note that in this case, we have proved that a rank 3 submodule of \(\mathcal{L} \) must decay.

Case 2: \(h'(1 + p^{2e-1}) < h(1 + p) < h'(1 + p^{2e+1}) \), for some \(e \in \mathbb{Z}_{\geq 1} \). As in Case 1, by Lemma 6.5, \(F_{l,m+1} P_{r- e+1, e} \) is the unique element of \(S_{1, r+1} \) with minimal \(t \)-adic valuation (the argument is similar to that of [33, Lem. 5.2.6]); moreover \(v_t(F_{l,m+1} P_{r- e+1, e}) < v_t(F_{l,m+1} P_{r+1,0}) < p(h'_r + 1) \). Thus, by Lemma 6.6 and the same argument as in Case 1, \(\text{span}_{Z_p} \{ e_1, f_1 \} \) decays rapidly. On the other hand, \(|S_{2,1,1}| = 1 \) and the unique element has \(t \)-adic valuation \(a + pa \) and thus \(e_1' \) decays very rapidly to first order. The fact that the pair \((\text{span}_{Z_p} \{ e_1, f_1 \}, e_1') \) decays very rapidly to first order follows from an argument identical to the one outlined at the end of Case 1.

Case 3: \(h'(1 + p^{2e-1}) = h(1 + p) \) for some \(e \in \mathbb{Z}_{\geq 1} \). In this case, by Lemma 6.5 and a computation similar to [33, Lem. 5.2.7], we have that \(F_{l,m+1} P_{r- e+1, e-1} \cdot F_{r+1}^{(r-e)} \) is a unique element of \(S_{2,1, r+1} \) with the smallest \(t \)-adic valuation and

\[
\begin{align*}
v_t(F_{l,m+1} P_{r- e+1, e-1} \cdot F_{r+1}^{(r-e)}) & \leq v_t(F_{l,m+1} P_{r-0} \cdot F_{r+1}^{(r+1)}) < p(h'_r - 1 + ap^r + 1).
\end{align*}
\]

Then the last assertion of Lemma 6.6 implies that \(e_1' \) decays very rapidly.
Claim. At least one of \(e_1, f_1 \) decays rapidly.

Proof. When \(r < e - 1 \), there is a unique element of \(\mathbb{S}_{1,r+1} \) with minimal \(t \)-adic valuation, and thus the argument as in Case 1 shows that for any primitive vector \(w \in \text{Span}_{\mathbb{Z}_p} \{ e_1, f_1 \} \), we have that \(p^r w \) does not lift to an endomorphism modulo \(h'^{-1} e^{-1} \).

When \(r \geq e - 1 \), there are exactly two distinct elements of \(\mathbb{S}_{1,r+1} \) with minimal \(t \)-adic valuation, and they are \(P_{r-e+1,e} \) and \(P_{r-e+2,e-1} \). We first prove that at least one of \(p^{e-1} e_1 \) does not lift to an endomorphism modulo \(t h'^{-1} e^{-1} \). Indeed, by Lemma 6.6, we have that \(F_{l,m+1}(P_{r-e+1,e} + P_{r-e+2,e-1}) \) equals \(p^{e-1}(AF_{l,m+1}M^{(1)} + BF_{l,m+1}N^{(1)}) \), where \(A = \prod R^{(2i-1)} \), \(B = Q^{(1)} \cdot \prod R^{(2i)} \). Let \(\gamma, \delta \in W^x \) denote the leading coefficients of \(A, B \in W[[t]] \). As \(p > 2 \), we have that at most one of \(\gamma - \delta \) and \(\gamma + \delta \) lies in \(p W \). Suppose that \(\gamma + \delta \not\in p W \), then \([1,0]^T \) does not lie in \(\ker(\gamma[-1,\lambda]N^{(1)} + \delta[-1,\lambda]M^{(1)}) \) and thus the \(e' \)-coordinate of the horizontal section \(\tilde{e}_1 \), up to a scalar multiple in \(W^x \), is \(p^{-e}a + h'(p + p^3 + \cdots + p^{2e-1}) \) and \(\gamma + \delta \not\in p W \). Suppose that \(\gamma - \delta \not\in p W \), then \([0,1]^T \) does not lie in \(\ker(\gamma[-1,\lambda]M^{(1)} + \delta[-1,\lambda]N^{(1)}) \) and the same argument as above implies that \(p^{e-1} f_1 \) does not lift to \(\text{mod} h'^{-1} e^{-1} \).

Now we show that if \(\gamma + \delta \not\in p W \), then \(e_1 \) decays rapidly. A similar computation as above shows that for \(r \geq e \), we have that \(F_{l,m+1}(P_{r-e+1,e} + P_{r-e+2,e-1}) = p^{-(r+1)}X_1 \prod Q^{(i)}(A^{(r-e+1)}M^{(1)} + B^{(r-e+1)}N^{(1)}) \) when \(r - e \) is even and \(F_{l,m+1}(P_{r-e+1,e} + P_{r-e+2,e-1}) = p^{-(r+1)}X_1 \prod Q^{(i)}(A^{(r-e+1)}N^{(1)} + B^{(r-e+1)}M^{(1)}) \) when \(r - e \) is odd. Since \(\gamma + \delta \not\in p W \), then \(\gamma^{(r-e+1)} + \delta^{(r-e+1)} \not\in p W \). Thus \([1,0]^T \) does not lie in \(\ker(\gamma^{(r-e+1)}[-1,\lambda]N^{(1)} + \delta^{(r-e+1)}[-1,\lambda]M^{(1)}) \) and \(\ker(\gamma^{(r-e+1)}[-1,\lambda]M^{(1)} + \delta^{(r-e+1)}[-1,\lambda]N^{(1)}) \). Therefore, we conclude that \(e_1 \) decays rapidly by a direct computation of the \(t \)-adic valuation of \(F_{l,m+1}P_{r-e+1,e} \) as the \(r = e - 1 \). If \(\gamma - \delta \not\in p W \), then an identical argument as above implies that \(f_1 \) decays rapidly.

To finish the proof of Case 3, we notice that an argument identical to the one outlined at the end of Case 1 goes through to show that if \(e_1 \) (resp. \(f_1 \)) decays rapidly, then \(\text{Span}_{\mathbb{Z}_p} \{ e_1, e'_1 \} \) (resp. \(\text{Span}_{\mathbb{Z}_p} \{ f_1, e'_1 \} \)) decays rapidly.

6.7 It follows from [24, Prop. 4.2.5] that the lattice \(\mathcal{L}_1 \) is split if and only if the global lattice defining the Shimura variety (with signature \((b,2) \), and which is self-dual at \(p \) by assumption) is not split mod \(p \). Therefore, we have established the required decay whenever the Shimura variety is defined by
an even-dimensional orthogonal \(\mathbb{Z} \)-lattice (with signature \((b, 2)\), and which is self-dual at \(p \) by assumption) which is *not* split mod \(p \). Therefore, suppose that the global lattice is either odd-dimensional, or is even-dimensional but *is split* mod \(p \). We embed this lattice inside a higher-rank lattice, which is even-dimensional (and has signature \((b', 2)\), and is self-dual at \(p \), and which is *not* split mod \(p \)—after choosing level structure away from \(p \) appropriately, this induces an embedding of Shimura varieties, and we abuse notation by letting \(P \) (resp. \(\text{Spf} \ k[[t]] \)) denote the image of our original supersingular point (resp. of the formal curve) in the larger Shimura variety. Let \(\mathcal{L}' \) denote the \(\mathbb{Z}_p \)-module of special endomorphisms of the \(p \)-divisible group of \(P \) when we view it as in the bigger variety. That \(\text{Spf} \ k[[t]] \) actually lies in our original orthogonal Shimura variety implies that \(\mathcal{L}' = \mathcal{L} \oplus \mathcal{L}'' \), with every special endomorphism in \(\mathcal{L}'' \) extending to \(\text{Spf} \ k[[t]] \) (in fact, \(\mathcal{L}'' \) necessarily arises from actual endomorphisms of the abelian variety at \(P \), not just endomorphisms of the \(p \)-divisible group at \(P \)). Our computation applies to yield a \(\mathbb{Z}_p \)-sublattice of \(\mathcal{L}' \) that decays rapidly. Adding any special endomorphism contained in \(\mathcal{L}'' \) to a special endomorphism that decays rapidly doesn’t affect the rapidity of decay, because of the above remark. Therefore, we may assume that the lattice of special endomorphisms that decays rapidly is contained in \(\mathcal{L} \), thereby establishing the necessary decay even when \(\mathcal{L}_1 \) is odd-dimensional, or non-split.

7 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. As sketched in the introduction, our approach is to combine global bounds from Borcherds theory with bounds on the average local intersection multiplicities. At supersingular points, these are obtained using Sect. 3 (Theorems 3.2 and 3.3).

Note that Theorem 1.2 is independent of the choice of level structure of \(S \) and is equivalent for different \(S \) with the same quadratic space \((L \otimes \mathbb{Q}, Q)\) over \(\mathbb{Q} \); thus without loss of generality, we may assume that \(L \subset V = L \otimes \mathbb{Q} \) is maximal among all lattices over which \(Q \) is \(\mathbb{Z} \)-valued. Recall from Theorem 1.2 that we assume that \(C \) is not contained in any special divisors \(Z(m) \).

The global intersection number and its decomposition

7.1 Let \(S \subset \mathbb{Z}_{>0} \) be a set of positive density (i.e., \(\lim_{X \to \infty} \frac{1}{X} |\{m \in S \mid m \leq X\}| \) exists and \(> 0 \)) and we also assume that each \(m \in S \) is representable by \((L, Q)\) and for any \(m \in S \), we have \(p \nmid m \). By the theory of quadratic forms, such \(S \) exists.\(^{20}\) For \(X \in \mathbb{Z}_{>0} \), we use \(S_X \) to denote \(\{m \in S \mid X \leq m \leq 2X\} \).

\(^{20}\) Indeed, by [46, Lem. 4.7], every \(m \gg 1 \) is representable since \(L \) is maximal.
7.2 We use vector-valued modular forms to control the asymptotic of \(C.Z(m) \) as \(m \to \infty \). Let \(L^\vee \) denote the dual of \(L \) in \(V \) with respect to the bilinear form \([-,-]\) induced by \(Q \) and let \(\{e_\mu\}_{\mu \in L^\vee / L} \) denote the standard basis of \(\mathbb{C}[L^\vee / L] \). Let \(\rho_L \) denote the Weil representation on \(\mathbb{C}[L^\vee / L] \) of the metaplectic group \(\text{Mp}_2(\mathbb{Z}) \). As in [33, §4.1.4], we consider the Eisenstein series \(E_0(\tau), \tau \in \mathbb{H} \) defined by \(E_0(\tau) = \sum_{(g,\sigma) \in \Gamma^\prime_\infty \setminus \text{Mp}_2(\mathbb{Z})} \sigma(\tau)^{-2+b}(\rho_L(g, \sigma)^{-1}e_0) \), where \(\Gamma^\prime_\infty \subset \text{Mp}_2(\mathbb{Z}) \) is the stabilizer of \(\infty \). Note that the constant term of \(E_0 \) is \(e_0 \) and \(E_0(\tau) \) is a weight \(1 + \frac{b}{2} \) modular form with respect to \(\rho_L \).

The following theorem of Bruinier–Kuss [8] gives explicit formulae of the Fourier coefficients of \(E_0 \). As we are using different convention of the signature of \((V, Q)\) as in [8], we refer the reader to the formulae in [6, Thms. 2.3, 2.4].

7.3 We first introduce some notation for an arbitrary quadratic lattice \((L, Q)\) over \(\mathbb{Z} \). We write \(\det(L) \) for the determinant of its Gram matrix. For a rational prime \(\ell \), we use \(\delta(\ell, L, m) \) to denote the local density of \(L \) representing \(m \) over \(\mathbb{Z}_\ell \). More precisely, \(\delta(\ell, L, m) = \lim_{a \to \infty} \frac{e^{a(1-\text{rk } L)}}{\#\{v \in L/\ell^a L \mid Q(v) \equiv m \mod \ell^a\}} \). If \(m \) is representable by \((L \otimes \mathbb{Z}_\ell, Q)\), then \(\delta(\ell, L, m) \) is non-negative; moreover, when \(\text{rk } L \geq 5 \) (this is the case for our application), by for instance [25, pp. 198-199], for a fixed \(\ell \), we have that \(\delta(\ell, L, m) \asymp \frac{1}{m} \) for all \(m \) representable by \((L \otimes \mathbb{Z}_\ell, Q)\).

Given \(0 \neq D \in \mathbb{Z} \) such that \(D \equiv 0, 1 \mod 4 \), we use \(\chi_D \) to denote the Dirichlet character \(\chi_D(a) = \left(\frac{D}{a} \right) \), where \(\left(\cdot \right) \) is the Kronecker symbol. For a Dirichlet character \(\chi \), we set \(\sigma_\delta(m, \chi) = \sum_{d|m} \chi(d)d^\delta \).

Theorem 7.4 ([8, Thm. 11]) Recall that \((L, Q)\) is a quadratic lattice over \(\mathbb{Z} \) of signature \((b, 2)\) with \(b \geq 3 \). Let \(q_L(m) \) denote the coefficient of \(q^m e_0 \) in the \(q \)-expansion of \(E_0 \).

(1) For \(b \) even, the Fourier coefficient \(q_L(m) \) is

\[
-\frac{2^{1+b/2} \pi^{1+b/2} m^{b/2} \sigma_{-b/2}(m, \chi(-1)^{1+b/2} \det L)}{\sqrt{|L^\vee / L|} \Gamma(1+b/2) L(1+b/2, \chi(-1)^{1+b/2} \det L)} \prod_{\ell \mid 2 \det(L)} \delta(\ell, L, m).
\]

(2) For \(b \) odd, write \(m = m_0 f^2 \), where \(\gcd(f, 2 \det L) = 1 \) and \(v_\ell(m_0) \in \{0, 1\} \) for all \(\ell \nmid 2 \det L \). Then the Fourier coefficient \(q_L(m) \) is
\[
\frac{2^{1+b/2} \pi^{1+b/2} m^{b/2} L((b + 1)/2, \chi_D)}{\Gamma(1+b/2) \sqrt{|L/y/L| \zeta(b + 1)}} \\
\left(\sum_{d|f} \mu(d) \chi_D(d) d^{-(b+1)/2} \sigma_{-b}(f/d) \right) \\
\prod_{\ell|2 \det L} \left(\delta(\ell, L, m)/(1 - \ell^{1-b}) \right),
\]

where \(\mu \) is the Möbius function and \(D = (-1)^{(b-1)/2} 2m_0 \det L \).

In particular, \(|q_L(m)| \asymp m^{b/2} \) for all \(m \) representable by \((L, Q) \).

Here the last assertion is a direct consequence of the above explicit formulae and the fact \(\delta(\ell, L, m) \asymp 1 \) (see also [33, §4.3.1]).

Recall that \(C \to S_k \) is a smooth proper curve such that the generic point of \(C \) maps into the ordinary locus of \(S_k \).

Lemma 7.5 Let \(\omega \) denote the tautological line bundle on \(S_k \) corresponding to \(\text{Fil}^1 V \subset V \) (i.e., \(\omega \) is the line bundle of modular forms on \(S_k \) of weight 1). Then the intersection number \(Z(m) \cdot C = |q_L(m)|((\omega.C) + O(m^{(b+2)/4})). \)

In particular, \(\sum_{m \in S_X} Z(m) \cdot C \asymp (\omega.C) \sum_{m \in S_X} |q_L(m)| \asymp X^{1+b/2} \) for \(S_X \) defined in Sect. 7.1.

Proof By the modularity theorem of Borcherds [5] or its arithmetic version by Howard and Madapusi Pera [23], we have that \(-(\omega.C) + \sum_{m=1}^{\infty} Z(m) \cdot C \) is the \(\epsilon_0 \)-component of a vector-valued modular form with respect to \(\rho_L \) of weight \((1+b)/2 \) and its Eisenstein part is given by the \(\epsilon_0 \)-component of \(-(\omega.C)E_0 \) (see [33, Thm. 4.1.1, §4.1.4]). The difference of \(-(\omega.C) + \sum_{m=1}^{\infty} Z(m) \cdot C \) and the \(\epsilon_0 \)-component of \(-(\omega.C)E_0 \) is a cusp form, and thus the first assertion follows from the trivial bound on Fourier coefficients of cusp forms (see [43, Prop. 1.3.5]). We then obtain the last assertion by Theorem 7.4. \(\square \)

In order to compare \(C \cdot Z(m) \) with the local intersection number \(i_P(C \cdot Z(m)) \) for a point \(P \in (C \cap Z(m))(k) \), we introduce the notion of *global intersection number* \(g_P(m) \) as follows.

Definition 7.6 ([33, Def. 7.1.3]) Let \(H \) denote the Hasse-invariant on \(S_k \) (i.e., \(H = 0 \) cuts out the non-ordinary locus). Let \(t \) be the local coordinate at \(P \) (i.e., \(\hat{C}_P = \text{Spf} \ k[[t]] \)) and let \(h_P = v_t(H) \), the \(t \)-adic valuation of \(H \) restricted to \(\hat{C}_P \). We define

\[
g_P(m) = \frac{h_P}{p - 1} |q_L(m)|.
\]
In particular, \(g_P(m) = 0 \) for \(P \) ordinary and
\[
\sum_{P \in (C \cap Z(m))(k)} g_P(m) = |q_L(m)|(\omega.C)
\]
since \(H \) is a section of \(\omega^{p-1} \).

Local intersection number: preparation and non-supersingular points

We first introduce some notation and reformulate the calculation of local intersection number as a lattice counting problem.

7.7 Recall that \(P \in (C \cap Z(m))(k) \) for some \(m \). Let \(\mathcal{A}/k[[t]] \) denote the pullback of the universal abelian scheme \(\mathcal{A}_{\text{univ}} \) via \(\text{Spf} \ k[[t]] = \hat{C}_P \to S_k \). Let \(L_n \) denote the \(\mathbb{Z} \)-lattice of special endomorphisms of \(\mathcal{A} \) mod \(t^n \). By definition, \(L_{n+1} \subset L_n \) for every \(n \geq 1 \), and our assumption that \(C \) is not contained in any special divisor yields that \(\cap_n L_n = \{0\} \). By [33, Rmk. 7.2.2], all \(L_n \) have the same rank. Moreover, by [24, Lem. 4.2.4], \(P \) is supersingular if and only if \(\text{rk}_{\mathbb{Z}} L_1 = b + 2 \). Since the quadratic form \(\langle -, - \rangle \) on \(L_{\text{cris}, P}(W) \) satisfies that \(\langle \varphi(x), \varphi(y) \rangle = \sigma \langle (x, y) \rangle \), then the slope \(s \) part of \(L_{\text{cris}, P}(W) \) has the same dimension as the slope \(-s \) part and hence the slope non-zero part cannot have rank \(b + 1 \); thus if \(P \) is not supersingular, then \(\text{rk}_{\mathbb{Z}} L_1 \leq b \).

On the other hand, by Remark 2.4, we have a positive definite quadratic form \(Q \) on \(L_n \) given by \(v \circ v = [Q(v)] \) for \(v \in L_n \). By the moduli-theoretic description of the special divisors and the fact that \(C \) intersects \(Z(m) \) properly (due to the assumption that the image of \(C \) does not lie in any \(Z(m) \)), we have
\[
i_P(C.Z(m)) = \sum_{n=1}^{\infty} \# \{ v \in L_n \mid Q(v) = m \}. \tag{7.1}
\]

Note that although for a fixed \(m \), the set \(\{ v \in L_n \mid Q(v) = m \} \) is empty for \(n \gg 1 \), but this bound on \(n \) is in general dependent on \(m \). In the work of Chai and Oort [14], they use the canonical product structure in the setting \(S = \mathcal{A}_1 \times \mathcal{A}_1 \) and work with a sequence of divisors for which the local contributions from any one fixed point is *absolutely bounded*, independent of the special divisor.

By Lemma 7.5 and the last assertion of Theorem 7.4, there exists an absolute constant \(c_1 \) (which depends only on the curve \(C \)) such that
\[
i_P(C.Z(m)) \leq (C.Z(m)) < c_1 m^{b/2}. \tag{7.2}
\]

We now recall the definitions of the successive minima of the \(L_n \) from [20].
Definition 7.8 (1) For \(i \in \{1, \ldots, r = \text{rk}_\mathbb{Z} L_n\} \), the successive minima \(\mu_i(n) \) of \(L_n \) is defined as \(\inf\{y \in \mathbb{R}_{>0} \mid \exists v_1, \ldots, v_i \in L_n \text{ linearly independent, and } Q(v_j) \leq y^2, 1 \leq j \leq i\} \).

(2) For \(n \in \mathbb{Z}_{\geq 1}, 1 \leq i \leq r \), define \(a_i(n) = \prod_{j=1}^{i} \mu_j(n) \); define \(a_0(n) = 1 \).

The determinant of a quadratic lattice (which is approximately the product of all the successive minima) gives first order control on the number of lattice points with bounded norm—however, the error term does depend on the lattice in question. In our setting, we must count lattice points of bounded norm in an infinite family of lattices, and so considering the determinants alone doesn’t allow us sufficient control across this family of lattices. Indeed, in the example of a formal curve constructed in Sect. 3.5, the error terms involved can get very large, even on average. As seen in [20], the data of each individual successive-minima controls the error term in a way that is uniform across all lattices of a fixed rank, and hence we keep track of this more refined data in our setting of a nested family of lattices.

We have the following result establishing lower bounds for the \(a_i(n) \), which is similar to [46, Lem. 7.6].

Lemma 7.9 We have that \(a_i(n) \gg n^{i/b} \) for \(1 \leq i \leq \text{rk}_\mathbb{Z} L_n \).

Proof Let \(0 \neq v \in L_n \) be a vector that minimizes the quantity \(Q(v) \), and thus \(a_1(n) = Q(v)^{1/2} \). Note that \(v \in L_n \) implies \(v \in L_i \) for every \(i \leq n \). Take \(m = Q(v) \). Eq. (7.1) yields that \(i_{P}(C \cdot Z(m)) \geq n \), and then by Eq. (7.2), \(n < c_1 m^{b/2} \). As \(a_1(n)^2 = m \), it follows that \(c_1 a_1(n)^b > n \), whence \(a_1(n) \gg n^{1/b} \). The bounds for the other \(a_i(n) \) follow from the observation that \(\mu_i(n) \geq a_1(n) \), and hence \(a_i(n) \geq a_1(n)^i \). \(\square \)

Corollary 7.10 For \(S_X \) defined in Sect. 7.1, there exists a constant \(c_2 \) depending only on \(C \) such that

\[
\sum_{m \in S_X} i_{P}(C \cdot Z(m)) = \sum_{n=1}^{c_2 X^{b/2}} \sum_{m \in S_X} \#\{v \in L_n \mid Q(v) = m\}.
\]

Proof Lemma 7.9 implies that there exists a constant \(c_2 \) only depending on \(C \) such that for \(n > c_2 X^{b/2} \), we have \(a_1(n) > (2X)^{1/2} \). In other words, \(\min_{0 \neq v \in L_n} Q(v) > 2X \). Then the corollary follows from Eq. (7.1). \(\square \)

We are now ready to bound the local intersection number \(i_{P}(C \cdot Z(m)) \) on average over \(m \) for \(P \) not supersingular, which is the analogue of [46, Prop. 7.7].

Proposition 7.11 For \(P \) not supersingular, we have that

\[
\sum_{m=1}^{2X} i_{P}(C \cdot Z(m)) = O(X^{b/2} \log X),
\]

\(\square \)
where the implicit constant only depends on C. In particular,
\[\sum_{m \in S_X} i_P(C. Z(m)) = O(X^{b/2} \log X). \]

Proof By Sect. 7.7, we have that \(r := \text{rk}_L L_n \leq b. \) By [20, Lem. 2.4, Eqns (5)(6)] and Lemma 7.9, we have
\[\sum_{n=1}^{2X} \sum_{m \in S_X} \{v \in L_n \mid Q(v) = m\} \ll \sum_{n=1}^{2X} \frac{(2X)^{b/2}}{a_i(n)} \ll \sum_{n=1}^{2X} \frac{(2X)^{b/2}}{n^{1/b}}, \]
where the implicit constant in the first inequality is absolute and the implicit constant in the second inequality only depends on C. For any 1 \(\leq i < b, \) we see that
\[\sum_{n=1}^{2X} \frac{(2X)^{i/2}}{n^{1/b}} = \frac{c_2 X^{b/2}}{2^{b/2}} \sum_{n=1}^{2X} \frac{1}{n^{1/b}} = O(X^{b/2}), \]
as required. If \(i = b, \) the identical calculation yields a bound of \(O(X^{b/2} \log X). \) The result then follows directly by Corollary 7.10.

\[\square\]

Local intersection number at supersingular points

7.12 For a supersingular point \(P \in C, \) we break the local intersection number into two parts for a fixed \(T \in \mathbb{Z}_{>0}, \) to be chosen later, as follows:
\[\sum_{m \in S_X} i_P(C. Z(m)) = i_P(X, T)_{\text{err}} + i_P(X, T)_{\text{mt}}, \]
where
\[i_P(X, T)_{\text{err}} = \sum_{n=T}^{c_2 X^{b/2}} \sum_{m \in S_X} \{v \in L_n \mid Q(v) = m\}, \]
\[i_P(X, T)_{\text{mt}} = \sum_{n=1}^{T-1} \sum_{m \in S_X} \{v \in L_n \mid Q(v) = m\} \]
and the equality holds due to Corollary 7.10.

We first bound the error term \(i_P(X, T)_{\text{err}}. \)

Proposition 7.13 There exists an absolute constant \(c_3 > 0 \) (independent of \(X, T \)) such that
\[i_P(X, T)_{\text{err}} \leq \frac{c_3}{T^{2/b}} X^{b+2} + O(X^{(b+1)/2}). \]
Theorem 7.15 [Siegel mass formula] Given any $L' \subset L_1$ sublattice such that $L' \otimes \mathbb{Z}_\ell = L_1' \otimes \mathbb{Z}_\ell$ for all $\ell \neq p$, let $q_{L'}(m)$ be the m-th Fourier coefficient of the Eisenstein part of the theta series attached to L'.

Proof As in the proof of Proposition 7.11, by Lemma 7.9, we have

$$i_p(X, T)_{\text{err}} \leq \sum_{n=1}^{T} \sum_{m=1}^{2X} \#\{v \in L_n \mid Q(v) = m\} \ll \sum_{n=T}^{\infty} \sum_{i=0}^{c_2X^{b/2}b+2} (2X)^{i/2} \frac{1}{n^{i/b}}.$$

As in the proof of Proposition 7.11, we have that

$$\sum_{n=T}^{\infty} (2X)^{b+2} \frac{1}{n^{b+2/b}} = O(X^{\frac{b+1}{2}})$$

for all $1 \leq i \leq b + 1$. For $i = b + 2$, we have

$$\sum_{n=T}^{\infty} (2X)^{\frac{b+2}{n^{b+2/b}}} < \sum_{n=T}^{\infty} (2X)^{\frac{b+2}{2}} \leq \frac{c_3}{T^{2(b+2)}} X^{\frac{b+2}{2}}$$

for some absolute constant $c_3 > 0$ by a direct computation.

In order to bound $i_p(X, T)_{\text{mt}}$, we study the theta series attached to (certain lattices containing) L'_n.

7.14 Let $L'_n \subset L_n \otimes \mathbb{Q}$ be a \mathbb{Z}-lattice such that $L'_n \supset L_n$, L'_n is maximal at all primes $\ell \neq p$, and $L'_n \otimes \mathbb{Z}_p = L_n \otimes \mathbb{Z}_p$; we may choose $L'_n \subset L'_1$, and we will assume this for the rest of this section; the quadratic form Q restricts to a positive definite quadratic form on L'_n. Let θ_n denote the theta series attached to L'_n and we write its q-expansion as $\theta_n(q) = \sum_{m=0}^{\infty} r_n(m)q^m$. By definition, $r_n(m) \geq \#\{v \in L_n \mid Q(v) = m\}$ and hence $i_p(X, T)_{\text{mt}} \leq \sum_{n=1}^{T} \sum_{m \in S_X} r_n(m)$.

The theta series θ_n is a weight $1 + b/2$ modular form and we decompose $\theta_n(q) = E_{L'_n}(q) + G_n(q)$, where $E_{L'_n}$ is an Eisenstein series and G_n is a cusp form. Let $q_{L'_n}(m)$ and $a(m)$ denote the m-th Fourier coefficients of $E_{L'_n}$ and $\sum_{n=1}^{T} G_n$ respectively. By [43, Prop. 1.3.5], we have $a(m) = O_T(m^{(b+2)/4})$ and thus

$$i_p(X, T)_{\text{mt}} \leq \sum_{n=1}^{T} \sum_{m \in S_X} q_{L'_n}(m) + \sum_{m \in S_X} a(m) = \sum_{n=1}^{T} \sum_{m \in S_X} q_{L'_n}(m) + O_T(X^{1+(b+2)/4}).$$

The following theorem gives explicit formulae of $q_{L'_n}(m)$.
(1) For \(b \) even,

\[
q_{L'}(m) = \frac{2^{1+b/2} \pi^{1+b/2} m^{b/2} \sigma_{-b/2}(m, \chi_{(-1)^{1+b/2} \text{det } L_1'})}{\sqrt{|L'/L'| \Gamma(1 + b/2) L(1 + b/2, \chi_{(-1)^{1+b/2} \text{det } L_1'})}} \\
\times \prod_{\ell|2 \text{det } L_1'} \delta(\ell, L', m).
\]

(2) For \(b \) odd, \(q_{L'}(m) \) equals

\[
\frac{2^{1+b/2} \pi^{1+b/2} m^{b/2} L((b + 1)/2, \chi_{D'})}{\Gamma(1 + b/2) \sqrt{|L'/L'| \xi(b + 1)}} \\
\times \left(\sum_{d|f} \mu(d) \chi_{D}(d) d^{-(b+1)/2} \sigma_{-b(f/d)} \right) \\
\times \prod_{\ell|2 \text{det } L_1'} \left(\delta(\ell, L', m)/(1 - \ell^{-1-b}) \right),
\]

where we write \(m = m_0 f^2 \), where \(\gcd(f, \text{det } L_1') = 1 \) and \(v_\ell(m_0) \in \{0, 1\} \) for all \(\ell \nmid 2 \text{det } L_1' \), \(\mu \) is the Mobius function, and \(D' = (-1)^{(b-1)/2} 2 m_0 \text{det } L_1' \).

Proof This theorem is a direct consequence of the Siegel mass formula by the same proof in [33, Thm. 4.2.2]. \(\square \)

We may apply this theorem to \(L' = L_n' \) in Sect. 7.14 because all \(L_n' \) are maximal at \(\ell \neq p \) and thus \(L_n' \otimes \mathbb{Z}_\ell = L_1' \otimes \mathbb{Z}_\ell \).

Lemma 7.16 For \(p \nmid m \), we have that

\[
\frac{q_{L_n'}(m)}{|q_L(m)|} \leq \frac{2}{\sqrt{|(L_n' \otimes \mathbb{Z}_p)^\vee/L_n' \otimes \mathbb{Z}_p|}(1 - p^{-[(b+2)/2]})};
\]

Moreover, if \(P \) is superspecial, then

\[
\frac{q_{L_1'}(m)}{|q_L(m)|} \leq \frac{1 + p^{-1}}{p(1 - p^{-[(b+2)/2]})};
\]

Proof By [24, Rmk. 7.2.5], \(L \otimes \mathbb{Q}_\ell \cong L_n' \otimes \mathbb{Q}_\ell \) as quadratic spaces for all \(\ell \neq p \); since \(L, L_n' \) are both maximal at \(\ell \neq p \), then \(L \otimes \mathbb{Z}_\ell \cong L_n' \otimes \mathbb{Z}_\ell \) as
\mathbb{Z}_ℓ-quadratic lattices for all $\ell \neq p$ (see for instance [24, Thm. A.1.2]). Moreover, since $p \nmid m$, then by Theorems 7.4 and 7.15, we have that

$$\frac{q_{L_n}(m)}{|q_L(m)|} = \frac{\delta(p, L_n, m)}{\sqrt{|(L'_n \otimes \mathbb{Z}_p)^\vee / L'_n \otimes \mathbb{Z}_p|} |(1 - \chi_{(-1)^{1+b/2}} \det L(p)p^{-1-b/2})| \times \text{if } 2 | b;}$$

$$\frac{q_{L_n}(m)}{|q_L(m)|} = \frac{\delta(p, L', m)(1 - \chi_D(p)p^{-(b+1)/2})}{\sqrt{|(L'_n \otimes \mathbb{Z}_p)^\vee / L'_n \otimes \mathbb{Z}_p|} |1 - p^{-1-b}| \text{ if } 2 \nmid b.}$$

Therefore,

$$\frac{q_{L_n}(m)}{|q_L(m)|} \leq \frac{\delta(p, L_n, m)}{\sqrt{|(L'_n \otimes \mathbb{Z}_p)^\vee / L'_n \otimes \mathbb{Z}_p|} |(1 - p^{-(b+2)/2})|},$$

For the first assertion, it remains to show that $\delta(p, L_n, m) \leq 2$. Write the quadratic form Q on $L'_n \otimes \mathbb{Z}_p$ into the diagonal form $\sum_{i=1}^{b+2} a_i x_i^2$ with $a_i \in \mathbb{Z}_p$ and we may assume that there exists a_i such that $p \nmid a_i$; otherwise $\delta(p, L_n, m) = 0$ then we are done. Now let \tilde{L}_n denote the quadratic lattice over \mathbb{Z}_p with the quadratic form \tilde{Q} given by $\sum_{1 \leq i \leq b+2} a_i x_i^2$. By [21, Rmk. 3.4.1(a), Lem. 3.2], we have that

$$\delta(p, L_n, m) = p^{-b-1} \{ v \in L'_n / pL'_n \mid Q(v) \equiv m \mod p \} \leq p^{1 - \text{rk} \tilde{L}_n} \{ v \in \tilde{L}_n / p\tilde{L}_n \mid \tilde{Q}(v) \equiv m \mod p \},$$

where the last equality follows from definition. If $\text{rk} \tilde{L}_n \geq 3$, the \mathbb{F}_p-quadratic form \tilde{Q} mod p is isotropic, then we may write \tilde{Q} mod $p = xy + Q'(z)$. For $x \in \mathbb{F}_p^\times$, for any value of z, there is at least one $y \in \mathbb{F}_p$ such that $\tilde{Q} \equiv m \mod p$, this yields $(p - 1)p^{\text{rk} \tilde{L}_n - 2}$ solutions; for $x = 0$, there are at most $p^{\text{rk} \tilde{L}_n - 1}$ solutions. Therefore $p^{1 - \text{rk} \tilde{L}_n} \{ v \in \tilde{L}_n / p\tilde{L}_n \mid \tilde{Q}(v) \equiv m \mod p \} < 2$. If $\text{rk} \tilde{L}_n = 1, 2$, [21, Table 1] implies that $p^{1 - \text{rk} \tilde{L}_n} \{ v \in \tilde{L}_n / p\tilde{L}_n \mid \tilde{Q}(v) \equiv m \mod p \} \leq 2$. Thus we conclude that $\delta(p, L_n, m) \leq 2$.

For the second assertion, by definition, for a superspecial point, we have

$$\sqrt{|(L'_1 \otimes \mathbb{Z}_p)^\vee / L'_1 \otimes \mathbb{Z}_p|} = p^{p/2} = p$$

and thus it remains to show that $\delta(p, L_1, m) \leq 1 + p^{-1}$. As in the discussion for the first assertion, we have

$$\delta(p, L_1, m) = p^{1 - \text{rk} \tilde{L}_1} \{ v \in \tilde{L}_1 / p\tilde{L}_1 \mid \tilde{Q}(v) \equiv m \mod p \},$$

where $\tilde{L}_1 / p\tilde{L}_1$ is a \mathbb{F}_p-vector space equipped with a non-degenerate quadratic form. We will prove that for any non-degenerate \mathbb{F}_p-quadratic space (M, Q_M) with dim $M \geq 3$, we have

$$p^{1 - \dim M} \{ v \in M \mid Q_M(v) \equiv m \mod p \} \leq 1 + p^{-1}.$$
by induction on dim M. This is enough to prove the second assertion because $p^2 \| \text{disc } L_1'$ and $\text{rk } L_1' = b+2 \geq 5$, which implies $\text{rk } \tilde{L}_1' \geq 3$. If dim $M = 3, 4$, then the desired bound follows from [21, Table 1]. For dim $M \geq 5$, we note that M is isotropic and thus can be decomposed into an orthogonal direct sum of a hyperbolic plane and a non-degenerate \mathbb{F}_p-quadratic space $(M', Q_{M'})$; as in the discussion for the first assertion in the previous paragraph, we have

$$p^{1-\text{dim } M} \# \{ v \in M | Q_M(v) \equiv m \mod p \} = (1 - p^{-1}) + p^{-\text{dim } M'} \# \{ v \in M' | Q_{M'}(v) \equiv m \mod p \}.$$

Since dim $M' = \text{dim } M - 2$, then by the inductive hypothesis, we have

$$p^{1-\text{dim } M'} \# \{ v \in M' | Q_{M'}(v) \equiv m \mod p \} \leq 1 + p^{-1}$$

and

$$p^{1-\text{dim } M} \# \{ v \in M | Q_M(v) \equiv m \mod p \} = (1 - p^{-1}) + p^{-\text{dim } M'} (1 + p^{-1}) \leq 1 + p^{-1}. \tag*{\square}$$

Proposition 7.17 There exists an absolute constant $0 < \alpha < 1$ such that

$$i_P(X, T)_{\text{mt}} = \alpha \sum_{m \in S_X} g_P(m) + O_T(X^{1+(b+2)/4}).$$

Proof For brevity, we set $h = h_P$ in Definition 7.6; by §7.14, it suffices to show that

$$\sum_{n=1}^{T} \frac{q_{L_n'}(m)}{|q_L(m)|} \leq \alpha \frac{h}{p - 1}$$

for some constant $0 < \alpha < 1$ (recall from Definition 7.6 that $g_P(m) = \frac{h}{p-1} |q_L(m)|$). We will prove this claim using the decay statements from Sect. 3 by a similar computation as in [33, Cor. 7.2.4, Lem. 8.2.2]. We will apply these here using the fact that $L_n \otimes \mathbb{Z}_p = L_n' \otimes \mathbb{Z}_p$ and the identity

$$\sqrt{|(L_n' \otimes \mathbb{Z}_p)^\vee / L_n' \otimes \mathbb{Z}_p|} = \sqrt{|(L_1' \otimes \mathbb{Z}_p)^\vee / L_1' \otimes \mathbb{Z}_p|} \cdot |L_1' / L_n'|.$$

If P is a nonsuperspecial supersingular point, then by definition, $\sqrt{|(L_1' \otimes \mathbb{Z}_p)^\vee / L_1' \otimes \mathbb{Z}_p|} \geq p^2$. Moreover, by the above identity and Theorem 3.2, for $h_r + 1 \leq n \leq h_r+1, r \in \mathbb{Z}_{\geq 0}$, we have $\sqrt{|(L_n' \otimes \mathbb{Z}_p)^\vee / L_n' \otimes \mathbb{Z}_p|} \geq p^{4+2r}$. Thus by Lemma 7.16 (recall from Sect. 7.1 that $p \nmid m$ for all $m \in S_X$),
for all $p \geq 3$.

If P is superspecial and statement (1) in Theorem 3.3 holds for P, then for $h'_{r-1} + ap^r + 1 \leq n \leq h'_r$, $r \in \mathbb{Z}_{\geq 0}$ where $a = h/2$, we have $\sqrt{|(L'_n \otimes \mathbb{Z}_p)^\vee / L'_n \otimes \mathbb{Z}_p|} \geq p^{2+2r}$, and for $h'_{r-1} + 1 \leq n \leq h'_r + ap^{r+1}$, $r \in \mathbb{Z}_{\geq 0}$, we have $\sqrt{|(L'_n \otimes \mathbb{Z}_p)^\vee / L'_n \otimes \mathbb{Z}_p|} \geq p^{3+2r}$. Thus for $b \geq 4$, we have $1 - p^{-(b+2)/2} \geq 1 - p^{-3}$ and by Lemma 7.16,

$$\sum_{n=1}^{\infty} \frac{q_{L'_n}(m)}{|q_L(m)|} = \frac{1 + p^{-1}}{p(1 - p^{-3})} (a(1 + p^{-1})) + \frac{2(h - a)}{p^2(1 - p^{-3})} + \frac{2a p}{p^3(1 - p^{-3})} + \frac{2(h - a) p}{p^4(1 - p^{-3})} + \cdots$$

$$\leq \frac{h}{p - 1} \left(\frac{(p + 1)^2}{2(p^2 + p + 1)} + \frac{2p}{p^2 + p + 1} (1 + p^{-1} + p^{-2} + \cdots) \right)$$

$$\leq \frac{61}{62} \frac{h}{p - 1}$$

for all $p \geq 5$. For $b = 3$, we remark that the proof of [33, Thm. 5.1.2] applies to all (L, Q) with $b = 3$ and L self-dual at p, not just the one associated to principally polarized abelian surfaces. Thus in this case, there is a rank 3 submodule which decays rapidly in the sense of Definition 5.1. Thus the computation in [33, §9.2 small n’s] proves that $\sum_{n=1}^{\infty} \frac{q_{L'_n}(m)}{|q_L(m)|} \leq \frac{11}{12} \frac{h}{p - 1}$ for all $p \geq 5$.

If P is superspecial and statement (2) in Theorem 3.3 holds for P, then there exists a constant $a \leq h/2$ such that for $ap^{-1} + a + 1 \leq n \leq ap^{-1} + h$, we have $\sqrt{|(L'_n \otimes \mathbb{Z}_p)^\vee / L'_n \otimes \mathbb{Z}_p|} \geq p^2$, and for $h'_{r} + 1 \leq n \leq h'_{r+1}$, $r \in \mathbb{Z}_{\geq 0}$, we have $\sqrt{|(L'_n \otimes \mathbb{Z}_p)^\vee / L'_n \otimes \mathbb{Z}_p|} \geq p^{4+2r}$. Thus by Lemma 7.16.
\[
\sum_{n=1}^{\infty} \frac{q_{L'}(m)}{|q_L(m)|} \leq \frac{1 + p^{-1}}{p(1 - p^{-2})} (a(1 + p^{-1})) + \frac{2(h - a)}{p^2(1 - p^{-2})} + \frac{2hp}{p^4(1 - p^{-2})} + \frac{2hp^2}{p^6(1 - p^{-2})} + \ldots \\
\leq \frac{h}{p - 1} \left(\frac{1 + p^{-1}}{2} + (p + 1)^{-1} \right) \\
+ \frac{2}{p + 1} (p^{-1} + p^{-2} + p^{-3} + \ldots) \\
\leq \frac{17}{20} \frac{h}{p - 1}
\]
for all \(p \geq 5 \). \(\square\)

Theorem 7.18 There is an absolute constant \(0 < \alpha' < 1 \) such that for \(S_X \) defined in Sect. 7.1 and for any \(P \in C(k) \) supersingular, we have that

\[
\sum_{m \in S_X} i_P(C.Z(m)) = \alpha' \sum_{m \in S_X} g_P(m) + O(X^{(b+1)/2}).
\]

Indeed, we may state this theorem without assuming \(P \) is supersingular since the statement here for non-supersingular \(P \) is a weaker version of Proposition 7.11.

Proof We may take \(\alpha' \) to be any absolute constant such that \(1 > \alpha' > \alpha \), where \(\alpha \) is given in Proposition 7.17. Then we choose \(T \in \mathbb{Z}_{>0} \) such that

\[
\frac{c_1}{T^{1+b/2}} X^{1+b/2} \leq (\alpha' - \alpha) \sum_{m \in S_X} g_P(m);
\]

such \(T \) exists since \(\sum_{m \in S_X} g_P(m) \asymp X^{1+b/2} \) by Lemma 7.5. Once we fix such a \(T \), which may be chosen only depending on \(\alpha, \alpha', S \) (not \(S_X \)), the desired bound follows from Propositions 7.13 and 7.17. \(\square\)

Now we combine the previous results in this section to prove Theorem 1.2.

Proof of Theorem 1.2 If there were only finitely many points \(P \) in \(C \cap (\cup_{p|m} Z(m))(k) \), then by Proposition 7.11, Theorem 7.18, and Definition 7.6, we have that

\[
\sum_{m \in S_X} C.Z(m) = \sum_{m \in S_X} \sum_{P \in C \cap (\cup_{m \in S_X} Z(m))(k)} i_P(C.Z(m)) \\
= \alpha'(\omega.C) \sum_{m \in S_X} |q_L(m)| + O(X^{(b+1)/2}),
\]

which contradicts Lemma 7.5. \(\square\)
8 Application to the Hecke orbit problem

We prove Theorem 1.4 using Theorem 1.2 in this section. For \(x \in S_{\mathbb{F}_p}(k) \), where \(k = \mathbb{F}_p \), we use \(T_x \) to denote the set of all prime-to-\(p \) Hecke translates of \(x \) and let \(\overline{T}_x \) denote the Zariski closure of \(T_x \) in \(S_k \). We will prove that for \(x \) ordinary, \(\overline{T}_x = S_k \). Our proof will be by induction on \(b \), the dimension of \(S_{\mathbb{F}_p} \)—we will use Theorem 1.2 to reduce to the case of a smaller dimensional Shimura variety in the case that \(\overline{T}_x \) contains a proper generically ordinary curve, with the observation that the theorem is trivial when \(b = 1 \). In the case where we do not have this \textit{a priori} knowledge, we will deduce our result by studying compactifications of \(S_k \). We will prove the GSpin case first and in the end of this section, we will remark on how to adapt the same line of ideas to the unitary case (see Remark 8.12).

8.1 Recall from Sect. 2.1 that the quadratic lattice \((L, Q)\) is self-dual at \(p \) and the level we pick is hyperspecial at \(p \). By [32, Thm 3], the canonical integral model \(S \) of the Hodge type Shimura variety \(Sh \) admits a projective normal compactification \(S_{\mathbb{B}B}^{BB} \) over \(\mathbb{Z}_{(p)} \) such that \(S_{\mathbb{Q}}^{BB} \) is the Bailey–Borel/minimal compactification \(Sh_{BB} \) of \(Sh \); moreover, the classical stratification of \(Sh_{BB} \) by quotients by finite groups of Shimura varieties of Hodge type extends to a stratification of \(S_{BB}^{BB} \) by quotients by finite groups of integral models of these Shimura varieties; in particular, the stratification on \(S_{BB}^{BB} \) is flat. We use \(\overline{T}_{x_{BB}} \) to denote the Zariski closure of \(\overline{T}_x \) in \(S_k^{BB} \). In addition, the Hecke correspondences on \(S \) associated to \(G(\mathbb{A}_p^\infty) \) extend naturally to correspondences on \(S_{BB}^{BB} \). Since these are algebraic correspondences, we have that \(\overline{T}_x \) and \(\overline{T}_{x_{BB}} \) are stable under the Hecke correspondences associated to \(G(\mathbb{A}_p^\infty) \).

Once we choose an admissible complete smooth cone decomposition, by [32, Thms 1, 2, 4.1.5], the canonical integral model \(S \) admits a smooth toroidal compactification \(S_{tor}^{tor} \) such that \(S_{\mathbb{Q}}^{tor} \) is the toroidal compactification of \(Sh \) constructed in [3,40]. Moreover, the stratification of \(S_{\mathbb{Q}}^{tor} \) by quotients by finite groups of mixed Shimura varieties extends to a stratification of \(S_{tor}^{tor} \) with all boundary components being flat divisors and the formal completions of \(S_{tor}^{tor} \) along the boundary components of the same shape as that of \(S_{\mathbb{Q}}^{tor} \). There is also a natural map \(\pi : S_{tor}^{tor} \to S_{BB}^{BB} \) which extends the identity map on \(S \) and this map is compatible with the stratifications.

Thus for the rest of this section, we follow [9, §§3.2, 3.3] and [51, §4] for the explicit descriptions of \(S_{tor}^{tor}, S_{BB}^{BB} \) and use it for \(S_{F_p}^{tor} \) and \(S_{F_p}^{BB} \) by the work of Madapusi Pera summarized above. In particular, the boundary components (cusps) in \(S_{F_p}^{BB} \) are either 0-dimensional or 1-dimensional.
0-Dimensional cusps

We first prove Theorem 1.4 assuming that T^BB_x contains a 0-dimensional cusp in S^BB_{p}. The argument for this is essentially the same as in [10, §2], and we will follow the approach there closely, indicating the places where modifications are necessary. The idea of the argument in [10] is as follows. Given a 0-dimensional cusp, we study the Hecke-stabilizer of the cusp and its action on the formal neighborhood to argue that any invariant subscheme which is not S^BB_{p} is contained in the boundary.

8.2 Coordinates. To describe the action in coordinates, we follow the notation in [32] and refer to section 2 there for more details. Fix a prime $\ell \neq p$. We will work with level structure K_n given by embedding into GSp and restricting the full level ℓ^n structure there; let $S_{n,k}$ denote the corresponding special fiber over k of the canonical model of the Shimura variety. Given a zero-dimensional cusp x_n, we fix a cusp label representative Φ_1 describing the cusp, which includes the data of an admissible parabolic subgroup $P \subset G_Q$ which in this case is the stabilizer of an isotropic line in L_Q. As n varies, Φ defines a compatible system of cusps $\{x_n\}$ in the inverse system $\{S^\text{BB}_{n,k}\}$ and a point $x \in \varprojlim S^\text{BB}_{n,k}$.

Let U_P denote the unipotent radical of P and $W \subset U_P$ denote the center of U_P. By [32, §2.1.11, §2.1.16], we can associate to K_n a lattice $B_{K_n} \subset W(\mathbb{Q})$ with dual lattice $S_{K_n} \subset W(\mathbb{Q})^\vee$ and an arithmetic group Δ_{K_n} acting on B_{K_n}. We also have an open self-adjoint convex cone $H \subset W(\mathbb{R})$ preserved by Δ_K by [32, §2.1.6, §2.1.16]. In terms of this data, by [32, Cor. 5.1.8, Cor. 5.2.8], the complete local ring of $S^\text{BB}_{n,k}$ at x_n is given by the ring of invariants

$$R_{\ell^n} = k[[q^\lambda]]^{\Delta_{K_n}}_{\lambda \geq 0}$$

where $\lambda \geq 0$ denotes elements of S_{K_n} which have non-negative pairing with H. If we pass to the inverse limit, we get the ring

$$R_\ell = \bigcup_n R_{\ell^n}.$$

The Hecke correspondences at finite level are induced by an action of the group $G(\mathbb{Q}_\ell)$ on the inverse limit $\varprojlim S^\text{BB}_{n,k}$. In order to study Hecke-stable subvarieties, rather than study the full $G(\mathbb{Q}_\ell)$-action, it suffices to study the

21 Here we follow the convention in [32, §3.1] that we use an embedding into the group of symplectic similitudes of a symplectic space over \mathbb{Q} which admits a self-dual \mathbb{Z}-lattice; this embedding may be different from the one in Sect. 2.2, but can be constructed from the one in Sect. 2.2 using Zarhin’s trick as explained in [32, p. 442].

22 In [32] there is a twist by $2\pi i$ which we are suppressing.
action of $B_\ell := B_{K_n} \otimes \mathbb{Z}[1/\ell] \subset W(\mathbb{Q}_\ell)$ which fixes the point x in the inverse limit $\lim_{\leftarrow} S_{n,k}^{BB}$ and therefore acts on the ring R_ℓ. Given $T \in B_\ell$, its action on $f \in R_\ell$ is given by the formula

$$f = \sum_\lambda a_\lambda q^\lambda \mapsto T(f) = \sum_\lambda e((T, \lambda)) a_\lambda q^\lambda.$$

Here, $(T, \lambda) \in \mathbb{Z}[1/\ell]$ is the pairing of $T \in W(\mathbb{Q})$ and $\lambda \in W(\mathbb{Q})^\vee$ and $e: \mathbb{Z}[1/\ell] \to \mu_{\ell^\infty}(k)$ is the group homomorphism defined in [10, p. 452] as follows. The choice of cusp and the full level structure determines a compatible system (ξ_{ℓ^n}) of primitive ℓ^n-th roots of unity; given this, the map $e(\frac{a}{\ell^n}) = (\xi_{\ell^n})^a$ is a well-defined homomorphism.

Invariant ideals of the complete local ring

In terms of the above coordinates, the main proposition is the following, based on Proposition 2 of [10].

Proposition 8.3 Let $I_{\ell^n} \subset R_{\ell^n}$ be a nonzero ideal such that $I = I_{\ell^n}R_\ell$ is stable under the action of B_ℓ. Then $\text{Spf} R_{\ell^n}/I_{\ell^n}$ is contained in the formal completion of the boundary of $S_{n,k}^{BB}$.

Again, we merely summarize the argument from [10]. Rather than work directly with R_{ℓ^n}, it is more convenient to pass to a toroidal compactification $S_{n,k}^{\text{tor}}$. The choice of compactification in particular specifies a smooth cone decomposition of the rational closure of the cone H. By [32, §§5.1.5, 2.1.17, 2.1.18], the formal completion of $S_{n,k}^{\text{tor}}$ along the preimage of x_n is covered by affine formal subschemes S_σ parametrized by cones $\sigma \subset H$. For each such cone σ, the corresponding formal scheme has coordinate ring given by the completion R_{σ,ℓ^n} of the algebra

$$\bigoplus_{\lambda \in S_K \cap \sigma^\vee} k \cdot q^\lambda$$

along the ideal generated by the monomials q^λ with λ a non-invertible element in the monoid $S_K \cap \sigma^\vee$. Let I_σ denote the ideal of R_{σ,ℓ^n} generated by monomials q^λ where λ is strictly positive on σ. This ideal is principal, and corresponds to the reduced formal subscheme associated to the toroidal boundary.

Following Chai, let $J_\sigma \subset I_\sigma$ denote the ideal generated by q^λ where $\lambda > 0$ on $\sigma \cap H$. Given $f \in R_{\sigma,\ell^n}$, we say that f has a leading term with respect to J_σ if there exists $\lambda \in S_K \cap \sigma^\vee$ and $a \in k^\times$ such that $f \in aq^\lambda(1 + J_\sigma)$. This implies that the ideal generated by f is a monomial ideal, and contains a power

\[23\text{ Note that by definition in [32, §2.1.11], } B_{K_n} \otimes \mathbb{Z}[1/\ell] \text{ is independent of } n \text{ for our } K_n.\]

\[24\text{ Here we call } H^* \text{ in [32, §2.1.22] the rational closure of the cone } H.\]
of \(I_\sigma \), so the subscheme cut out by \(f \) is contained in the toroidal boundary. The main claim to be proven is that, given \(I \) as in Proposition 8.3, for each cone \(\sigma \) in the decomposition of \(H \), there exists \(f_\sigma \in I \) which has a leading term with respect to \(J_\sigma \). The proof of this in [10, pp. 455-456] is purely cone-theoretic, so applies identically in our setting. The key step ([10, Lem. 1]) is a cancellation algorithm: given \(f \in I \), and a finite collection \(S = \{\lambda_0, \ldots, \lambda_r\} \) for which \(f \) has nonzero coefficients, there exists \(g \in I \) given by a finite linear combination of translates \(T(f) \) for which the corresponding coefficients are all zero except for \(\lambda_0 \). This is proven using the explicit formula for \(T(f) \).

1-Dimensional cusps

We now treat the case when \(\overline{T_x}^{BB} \) contains at least one \(k \)-point in a 1-dimensional cusp. We choose an admissible complete smooth cone decomposition and let \(\overline{T_x}^{tor} \) denote the Zariski closure of \(T_x \) in \(S_k^{tor} \). We will show that either \(\overline{T_x}^{tor} = S_k^{tor} \) or \(\dim_k \overline{T_x}^{BB} \setminus \overline{T_x} = 0 \) and \(\dim \overline{T_x}^{BB} \geq 2 \).

8.4 By the first paragraph in [9, §3.3], there is a unique cone decomposition for a given 1-dimensional cusp and the boundary strata in \(S^{tor} \) over 1-dimensional cusps in \(S^{BB} \) are canonical. Thus by [32, Prop. 2.1.19, §4.1.12, Prop. 4.1.13], the Hecke correspondences associated to \(G(A_p^\pm) \) on \(Sh \) extend uniquely to \(\pi^{-1}(S^{BB} \setminus \{0\text{-dim cusps}\}) \) satisfying certain explicit description of these correspondences on formal completion along boundary components given in [32, §4.1.12]. Set \(\overline{T_x}^{tor,1} := \overline{T_x}^{tor} \cap \pi^{-1}(S^{BB} \setminus \{0\text{-dim cusps}\}) \). Then for any \(g \in G(A_p) \), we have \(g.\overline{T_x}^{tor,1} \supset g.\overline{T_x} = \overline{T_x} \) and thus \(g.\overline{T_x}^{tor,1} = \overline{T_x}^{tor,1} \).

In particular, for any \(y \in \overline{T_x}^{tor,1}(k) \), the Zariski closure of all prime-to-\(p \) Hecke orbits of \(y \) in \(S_k^{tor} \) is contained in \(\overline{T_x}^{tor} \). In particular, we will study the Hecke correspondences on a boundary point \(y \in (\overline{T_x}^{tor,1} \setminus \overline{T_x})(k) \) in order to deduce certain properties for \(\overline{T_x} \).

8.5 Let \(\Upsilon \) be a 1-dimensional cusp in \(S^{BB} \). We first follow [51, §4] to give an explicit description of \(\pi^{-1}(\Upsilon(\mathbb{C})) \). By [51, Prop. 4.3, Thm. 4.5] (see also [9, Lem. 3.18, Prop. 3.19]), up to quotient by a finite group, \(\pi^{-1}(\Upsilon(\mathbb{C})) \) is a torsor under an abelian scheme over the modular curve (with suitable level); moreover, let \(I \subset L \) be a (saturated) isotropic plane corresponding to \(\Upsilon \) (thus the admissible parabolic in this case is the stabilizer of \(I \)) and set \(\Lambda = I^\perp/I \), then the above mentioned abelian scheme is given by \(E \otimes_{\mathbb{Z}} \Lambda \), where \(E \) is the universal family of elliptic curves over the modular curve. Therefore, by [32, Thm. 4.1.5], \(\pi^{-1}(\Upsilon) \) is a quotient by a finite group of a \(E \otimes \Lambda \)-torsor over the modular curve.
Since the prime-to-p Hecke correspondences on $\pi^{-1}(\mathcal{Y})$ are the extensions of the Hecke correspondences on $\pi^{-1}(\mathcal{Y}(\mathbb{C}))$ obtained by taking the normalizations of the Zariski closures of the graphs of these correspondences in characteristic 0, we first study the Hecke orbits of $y \in \pi^{-1}(\mathcal{Y}(\mathbb{C}))$.

Proposition 8.6 Notation as in Sect. 8.5. For $y \in \pi^{-1}(\mathcal{Y}(\mathbb{C}))$, let $T_{y,\ell}$ denote the set of all ℓ-power Hecke translates of y. Then $T_{y,\ell}$ contains all the translates of y by ℓ-power torsion points in $\mathcal{E}_{\pi(y)} \otimes \Lambda$, where $\mathcal{E}_{\pi(y)}$ denotes the fiber of \mathcal{E} at $\pi(y)$ (in the modular curve) and recall that $\pi^{-1}(\pi(y))$ is an $\mathcal{E}_{\pi(y)} \otimes \Lambda$-torsor.

Proof Recall that $I \subset L$ denotes the (saturated) isotropic subspace corresponding to \mathcal{Y}; let $P \subset G_{\mathbb{Q}} = \text{GSpin}(L \otimes \mathbb{Q})$ denote the maximal parabolic which is the stabilizer of I, let U denote the unipotent radical of P, and let W denote the center of U; set $\mathcal{V} := U/W$. By [32, §2.1.10], $\mathcal{V}(\mathbb{Q})$ acts on the on the $\mathcal{E} \otimes \Lambda$-torsor $\pi^{-1}(\mathcal{Y}(\mathbb{C}))$ over $\mathcal{Y}(\mathbb{C})$ and the explicit form of this action is given by [9, Lem. 3.11].

More precisely, following [51, §4], we pick a \mathbb{Z}-basis $\{z, w\}$ of I; Using the bilinear form $[-,-]$ induced by the quadratic form Q, we naturally identify the dual $L^\vee \subset V = L \otimes \mathbb{Q}$. Let $\zeta, \omega \in L^\vee$ be a basis dual to (z, w).

Recall that \mathcal{Y} is the modular curve with suitable level and let τ be a lift of $\pi(y) \in \mathcal{Y}(\mathbb{C})$ to the upper half plane. Then by [51, Thm. 4.5, proof of Prop. 4.3, Eqns (25)(26)], $\pi^{-1}(\pi(y))$ is isomorphic to the quotient of $W_\mathbb{C}^{1,\tau} := \{\zeta' + \tau \omega' + e \mid e \in \Lambda \otimes \mathbb{Z}[\mathbb{C}]\} \subset V_\mathbb{C}/I \otimes \mathbb{Z}[\mathbb{C}]$ by the translation action of $(\Lambda \oplus \tau \Lambda)$. By [9, Lem. 3.11], $a + b \tau \in \mathcal{V}(\mathbb{Z}[1/\ell]) \cong \Lambda \otimes \mathbb{Z}[1/\ell] \oplus \tau \Lambda \otimes \mathbb{Z}[1/\ell]$ acts by sending $\zeta + \tau \omega + e$ to $\zeta + \tau \omega + (e + a + b \tau)$. Since U is the Heisenberg group described in [51, §1, Prop. 1.6, Cor. 1.9], then all elements in $\mathcal{V}(\mathbb{Z}[1/\ell])$ lift to elements in $U(\mathbb{Z}[1/\ell])$; thus the Hecke translates of y by elements in $U(\mathbb{Z}[1/\ell])$ contains all translates of y by ℓ-power torsion points in $\mathcal{E}_{\pi(y)} \otimes \Lambda$. \hfill \Box

Corollary 8.7 Let $y \in \pi^{-1}(\mathcal{Y}(k))$, where \mathcal{Y} is a 1-dimensional cusp of S^{BB}, and let $T_{y,\ell}$ denote the set of all ℓ-power Hecke translates of y. Then $T_{y,\ell} \cap \pi^{-1}(\pi(y))$ is Zariski dense in $\pi^{-1}(\pi(y))$.

Proof We first argue the Hecke action of $U(\mathbb{Z}[1/\ell])$ on y is given by translates of y by ℓ-power torsion points $\mathcal{E}_{\pi(y)} \otimes \Lambda$. Following the description in [32, §4.1.12, 4.1.1 - 4.1.3], the extension of Hecke correspondences from characteristic 0 to characteristic p is obtained by taking the normalizations in the sense of footnote (2) in [32]. In particular, if one picks a lift \tilde{y} of y to characteristic 0, then the Hecke translates of y are the mod p reductions of Hecke

25 This means that $[-,-]$ induces an isomorphism between Span$\mathbb{Z}[\zeta, \omega]$ and Hom(I, \mathbb{Z}) with ζ, ω mapping to the basis dual to (z, w); the existence of such a basis is given by [51, Def. 2.1, Lem. 2.2].
translates of \(\tilde{y} \). By Proposition 8.6 and its proof, the action on \(\tilde{y} \) is given by torsion translates, so the same holds for the reduction mod \(p \).

Note that \(\pi^{-1}(\pi(y)) \simeq E_{\pi(y)} \otimes \Lambda \) as varieties over \(k \) (this isomorphism is non-canonical) and thus the union of the translates of \(\ell \)-power torsion points is Zariski dense in \(\pi^{-1}(\pi(y)) \) since the set of \(\ell \)-power torsion points of an abelian variety over \(k \) is Zariski dense.

\[\Box \]

Corollary 8.8 Recall that \(x \in S_{\mathbb{F}_p}(k) \) ordinary and assume that \(b \geq 3 \). If \(\overline{T_x}^{BB} \) contains a \(k \)-point which lies on a 1-dimensional cusp of \(S_{\mathbb{F}_p}^{BB} \). Then either (1) \(\overline{T_x} = S_k \) or (2) \(\dim_k \overline{T_x}^{BB} \setminus \overline{T_x} = 0 \) and \(\dim \overline{T_x}^{BB} \geq 2 \).

Proof Since \(\overline{T_x}^{BB} \) is stable under Hecke correspondences, then for any 1-dimensional cusp \(\Upsilon \), we have that \(\overline{T_x}^{BB} \cap \Upsilon_k \) is stable under the Hecke correspondences associated to GL\(_2(\mathbb{A}_{f}) \) on \(\Upsilon_k \). Thus \(\overline{T_x}^{BB} \cap \Upsilon_k = \Upsilon_k \) or \(\dim_k \overline{T_x}^{BB} \cap \Upsilon_k = 0 \).

If there exists an \(\Upsilon \) such that \(\overline{T_x}^{BB} \cap \Upsilon_k = \Upsilon_k \), then \(\pi(\overline{T_x}^{tor}) = \overline{T_x}^{BB} \supset \Upsilon_k \). By Corollary 8.7 and Sect. 8.4, we have that \(\pi(\overline{T_x}^{tor}) = \overline{T_x}^{BB} \supset \Upsilon_k \) and \(\dim_k \pi^{-1}(\Upsilon_k) = 1 = \dim S_k \). Moreover, since \(G(\mathbb{A}_{f}) \) acts transitively on the \(\pi_0 \) of the inverse limit of the canonical models of \(Sh \) with varying levels away from \(p \) by [27, Lem. 2.2.5], then by the definition of canonical integral models, the only Hecke-stable subvariety of \(S_k \) of dimension \(\dim S_k \) must be the entire \(S_k \) and thus \(\overline{T_x} = S_k \).

If for any 1-dimensional cusp \(\Upsilon \), we have \(\dim_k \overline{T_x}^{BB} \cap \Upsilon_k = 0 \), then \(\dim_k \overline{T_x}^{BB} \setminus \overline{T_x} = 0 \). On the other hand, by the assumption, there exists \(y' \in \Upsilon(k) \) for some \(\Upsilon \) such that \(y' \in \overline{T_x}^{BB} \); then there exists \(y \in \pi^{-1}(\Upsilon)(k) \) such that \(y \in \overline{T_x}^{tor} \) and \(\pi(y) = y' \). By Corollary 8.7, we have \(\dim_k \overline{T_x} \geq 1 + \dim \overline{T_y,\ell} = b - 1 \geq 2 \). Thus we conclude that (2) holds.

Proposition 8.9 (Existence of a proper curve) Let \(x \in S_{\mathbb{F}_p}(k) \) be ordinary. Then, either \(\overline{T_x} = S_k \) or \(\overline{T_x} \) contains a proper curve which is generically ordinary.

Proof The prime-to-\(p \) Hecke orbit of an ordinary point is always infinite, and so \(\overline{T_x} \) has dimension at least 1. The case where \(S_k \) is one-dimensional follows.

Suppose that \(b = 2 \), i.e., \(S_k \) is two-dimensional. Then, \(S_{\mathbb{F}_p}^{BB} \) contains 1-dimensional cusps if and only if the reductive group defining \(S \) is \(\mathbb{Q} \)-split if and only if \(S \) is a product of two modular curves. In this case, the density of ordinary Hecke orbits follows from the product structure of \(S \) and thus \(\overline{T_x} = S_k \). Therefore, suppose that \(S_{\mathbb{F}_p}^{BB} \) does not contain any 1-dimensional cusps. Then, \(\overline{T_x} \) either equals \(S_k \) or \(\overline{T_x} \) is a proper curve (in which cases the
lemma follows), or $\overline{T_X^{BB}}$ intersects the boundary of S_k^{BB} non-trivially. We now have $\overline{T_X^{BB}} = S_k^{BB}$ by Proposition 8.3 and the lemma follows.

Therefore, we may assume that $b \geq 3$. If $\overline{T_X}$ is proper, the lemma follows. Otherwise, $\overline{T_X^{BB}}$ intersects the boundary non-trivially. Suppose that $\overline{T_X^{BB}}$ contains a zero-dimensional cusp. Then, the lemma follows from Proposition 8.3. Therefore, suppose that $\overline{T_X^{BB}}$ in S_k^{BB} contains a point in a 1-dimensional cusp. Then either (1) or (2) of Case 8.8 must hold. The lemma follows directly if Case (1) holds so we assume that we are in Case (2). But in this case, we have that \(\dim_k \overline{T_X^{BB}} \setminus T_X = 0 \) and $\dim \overline{T_X^{BB}} \geq 2$—the lemma follows in this case, because it is always possible to find a proper curve in the two dimensional projective\(^{26} \) variety $\overline{T_X^{BB}}$ passing through an ordinary point which avoids the finitely many boundary points $\overline{T_X^{BB}} \setminus T_X$. \hfill \Box

Proof of the Hecke orbit conjecture

We first recall some results on Hecke orbits which we will need. As the results and their proofs are standard, we will content ourselves with only a sketch of their proofs.

Lemma 8.10 Let $f : Sh_1 \to Sh_2$ be a morphism of Shimura varieties of Hodge type with hyperspecial level at p and let G_i, $i = 1, 2$ denote the reductive group of Sh_i. Let S_i denote the canonical integral model of Sh_i and we still use f to denote the unique extension $f : S_1 \to S_2$ (such an extension exists by the theory of canonical models; see [27, Thm. 2.3.8]). Let $X \subset S_{2,k}$ be a subvariety that intersects the ordinary locus (here we assume that the ordinary locus in $S_{2,k}$ is not empty), and let $\overline{T_X}$ denote the Zariski closure of the Hecke orbit T_X of X with respect to the Hecke correspondences associated to $G_2(\mathbb{A}_f^p)$. Then

(1) for any Shimura subvariety $Z \subset Sh_2$, we have that $\overline{T_X} \subset S_{2,k}$ is not contained in Z_k, where Z denotes the Zariski closure of Z in S_2;
(2) $f^{-1}(\overline{T_X})$ is stable under the Hecke correspondences associated to $G_1(\mathbb{A}_f^p)$ on $S_{1,k}$.

Proof (1) In order to discuss ℓ-adic monodromy, we fix a geometric point $x \in \overline{T_X}$ and let A_x denote the fiber of the universal abelian variety over S_2 at x; although in the statement of the lemma, we consider $\overline{T_X}$ over k, in the proof here, we choose a finite extension of \mathbb{F}_p over which $\overline{T_X}$ is defined as we will use the full arithmetic étale fundamental group (not just the

\(^{26} \) because S_2^{BB} is projective by [32, Thm. 3]
geometric part). By [27, §2.2] (see also [31, Prop. 3.11]) and [2, Remark 4.2.3], the \(\ell \)-adic lisse sheaf given by the relative \(H_{\ell, \text{ét}}^1 \) of the universal abelian variety is endowed with tensors (as global sections of the suitable tensor products of the sheaf and its dual) and these tensors restricted to the fiber \(H_{\ell, \text{ét}}^1(A_x) \) cut out a subgroup \(G_2(\mathbb{Q}_\ell) \subset \text{GL}(H_{\ell, \text{ét}}^1(A_x)) \). Moreover, at each point in \(\overline{T_X} \), the Galois group at the point fixes these tensors, by combining [27, Lemma 2.2.1] with the comparison map of étale cohomology groups between characteristic 0 and characteristic \(p \). Therefore, the \(\ell \)-adic monodromy representation \(\rho_{\ell, x}: \pi_{1}^{\text{ét}}(\overline{T_X}, x) \rightarrow \text{GL}(H_{\ell, \text{ét}}^1(A_x)) \) factors through \(G_2(\mathbb{Q}_\ell) \subset \text{GL}(H_{\ell, \text{ét}}^1(A_x)) \). (The same conclusion holds for any subvariety of \(S_{2,k} \) in place of \(T_X \).)

The image of the \(\ell \)-adic monodromy of the \(\ell \)-adic lisse sheaf given by the relative \(H_{\ell, \text{ét}}^1 \) of the universal abelian variety restricted to any Hecke-stable subvariety in \(S_{2,k} \) must be Zariski dense in \(G_{\text{ad}, 2}, \mathbb{Q}_\ell \) via the quotient map \(G_2(\mathbb{Q}_\ell) \rightarrow G_{\text{ad}, 2}, \mathbb{Q}_\ell \). Indeed, the Hecke correspondences associated to \(G_2(\mathbb{Q}_\ell) \) on the Hecke-stable subvariety induce the conjugation action of \(G_2(\mathbb{Q}_\ell) \) on \(\text{End}(H_{\ell, \text{ét}}^1) \) and thus the \(\ell \)-adic monodromy must be stable under the conjugation action and thus a normal subgroup of \(G_2(\mathbb{Q}_\ell) \).

Moreover, if we pick any ordinary point in the Hecke-stable subvariety, the Frobenius at this point must have non-identity component in each \(\mathbb{Q}_\ell \)-simple factor of \(G_{\text{ad}, 2}, \mathbb{Q}_\ell \). Indeed, since the Hodge cocharacter is non-trivial on each \(\mathbb{Q} \)-simple factor of \(G_{\text{ad}, 2}, \mathbb{Q}_\ell \), the Frobenius is non-trivial on each \(\mathbb{Q} \)-simple factor of \(G_{\text{ad}, 2}, \mathbb{Q}_\ell \); the claim on \(\mathbb{Q}_\ell \)-simple factor then follows from the fact [28, Cor. 2.3.1] that the Frobenius is conjugate to an element in \(G_{\text{ad}, 2}(\mathbb{Q}) \). Consequently, the image of the \(\ell \)-adic monodromy in \(G_{\text{ad}, 2}(\mathbb{Q}_\ell) \) is a normal subgroup which has nontrivial projection onto every \(\mathbb{Q}_\ell \)-simple factor of \(G_{\text{ad}, 2, \mathbb{Q}_\ell} \), and so must be Zariski dense in \(G_{\text{ad}, 2, \mathbb{Q}_\ell} \).

Note that since \(T_X \) is Hecke-stable, then \(\overline{T_X} \) is Hecke-stable as all Hecke correspondences are algebraic. It then follows that \(\overline{T_X} \) is not contained in any \(\mathbb{Z}_k \) since the \(\ell \)-adic monodromy of the family of abelian varieties over \(Z \) is contained in the reductive group associated to \(Z \), whose image is a proper algebraic subgroup of \(G_{\text{ad}, 2, \mathbb{Q}_\ell} \).

(2) Note that \(\overline{T_X} \) is stable under \(G_2(\mathbb{A}_f^0) \), then it suffices to prove that for any \(x \in S_1(k) \) and for any \(g \in G_1(\mathbb{A}_f^0) \), if \(x' \in g.x \), then there exists \(g' \in G_2(\mathbb{A}_f^0) \) such that \(f(x') \in g'.f(x) \). Indeed, we may take \(g' = f(g) \), where we view \(f: G_1 \rightarrow G_2 \), and the desired property follows from the definition of Hecke correspondences via the extension property of canonical integral models given in [27, Thm. 2.3.8]. \(\square \)
Lemma 8.11 Notation as in Proposition 8.9; the proper curve in $\overline{T_x}$ can be chosen such that it is not contained in any special divisor $Z(m)$.

Proof By the proof of Lemma 8.10(1), there exists at least one irreducible component of $\overline{T_x}$ whose ℓ-adic monodromy group is Zariski dense in $G^\text{ad}_{\mathbb{Q}_\ell}$ and we only need to show that there exists a curve $C' \subset \overline{T_x}$ which has the same ℓ-adic monodromy as this irreducible component of $\overline{T_x}$. (As we will not use any other property of $\overline{T_x}$ other than having large monodromy group, by abuse of notation, we will still use $\overline{T_x}$ to denote this irreducible component with large monodromy group so for the rest of the proof, $\overline{T_x}$ is irreducible.) More precisely, fix a geometric point $y \in C'$ and let A_y denote the Kuga–Satake abelian variety at y, then the image of the ℓ-adic monodromy representation $\rho_{\ell,C',y} : \pi^\text{ét}_1(C', y) \to \pi^\text{ét}_1(\overline{T_x}, y) \to \text{GL}(H^1_{\ell,\text{ét}}(A_y))$ coincides with the image of $\pi^\text{ét}_1(\overline{T_x}, y)$ (and indeed, we will see from the proof below that this restriction can be combined with the proof of Proposition 8.9 to construct a generically ordinary and proper curve C').

Since $\overline{T_x}$ is positive dimensional, we may pick a Zariski local coordinate and view an open part of $\overline{T_x}$ as a variety T of dimension $\dim_k \overline{T_x} - 1$ over $k(t)$. To find a curve C' in $\overline{T_x}$, it suffices to find a k'-point in T, where k' is some finite extension of $k(t)$. If we replace $k(t)$ by a number field, then the desired assertion (the existence of points in T over number fields with the same ℓ-adic monodromy group as the generic point) is exactly [1, Thm. 5.2 (3)], which not only proves the existence, but also shows that the set of points not having the largest possible monodromy is thin (mince in French) in the sense of [44, §9.1 Definition]; see for instance [44, p. 149] for a proof which reduces the claim to the Hilbert irreducibility theorem. Serre’s proof holds word-by-word in the global function field case once we replace the classical Hilbert irreducibility theorem by the analogous statement for global function fields, which is [4, Thm. 1.1]. Since [4, Cor. 3.5] gives a quantitative version of the comparison of Galois group which is more directly related to what we need, we will finish the proof using this corollary following Serre’s argument.

More precisely, the ℓ-adic monodromy map over T defines a Galois extension over the function field of T, i.e., the Galois group is isomorphic to the ℓ-adic monodromy group G_ℓ of T_x. We start from the simplified case: assume that this extension were finite and that there exists a non-empty Zariski open subset $U \subset T$ contained in $\mathbb{A}^{\dim_k(T)}_{k(t)}$. In this case, we refer the reader to [44, p. 123, first paragraph] or [4, paragraph after Rmk. 3.1] for the concrete definition of how to specialize the Galois extension from the generic point to k'-points. In our case, with the ℓ-adic Galois representation associated to T, the Galois group G_y of the specialization of the extension at a k'-point y is the image of $\text{Gal}(\overline{k'}/k)$ in the monodromy representation (well-defined up to conjugation). As the Galois extension of the function field of U, which is also the
function field of T, is assumed to be finite, we may find a monic, irreducible, and separable polynomial with coefficients in regular functions on $\mathbb{A}_{k(t)}^{\dim_k T}$ such that this Galois extension is the splitting field of this polynomial. By [4, Cor. 3.5] and the proof of [4, Thm. 3.6], the set \{ $y \in U(k(t)) \mid G_y \not\cong G_\ell$\} is of density 0.

In order to treat the profinite group G_ℓ, Serre proved that the Frattini subgroup $\Phi(G_\ell)$ of G_ℓ, which is defined to be the intersection of all maximal subgroups of G_ℓ, is open in G_ℓ (see [44, pp. 148–149]) and thus we reduce the question to study the finite Galois extension associated to $G_\ell/\Phi(G_\ell)$. More precisely, we conclude as above that there exists a density 1 set of y such that $G_y\Phi(G_\ell)/\Phi(G_\ell) = G_\ell/\Phi(G_\ell)$ and hence $G_y = G_\ell$ by the definition of the Frattini group. In general, there exists a non-empty Zariski open subset $U \subset T$ which admits a finite étale map to a Zariski open subset of $\mathbb{A}_{k(t)}^{\dim_k T}$; we may apply the above argument to the monodromy group of the pushforward of the local system $H^1_{\ell,\text{ét}}$ on U and the preimages in U of any $k(t)$-point not in the bad density 0 set in $\mathbb{A}_{k(t)}^{\dim_k T}$ give rise to k'-points with maximal possible monodromy group for some finite extension k' of $k(t)$.

Proof of Theorem 1.4 orthogonal case We will induct on $\dim_k S_k = b$. When $b = 1$, S_k is a curve; since the prime-to-p Hecke orbit of an ordinary point is infinite, its Zariski closure must be positive dimensional and thus the base case is verified.

Now assume that $b \geq 2$ and that Theorem 1.4 holds for all ordinary points in the special fiber of the canonical integral model of GSpin Shimura varieties of dimension $b - 1$ with hyperspecial level. Consider $x \in S(k)$ ordinary and $\overline{T_x}$, the Zariski closure of the prime-to-p Hecke orbit of x.

By Proposition 8.9, $\overline{T_x}$ is either equal to S_k (in which case we are done), or $\overline{T_x}$ contains a proper curve C' that is generically ordinary and we may assume that C' is not contained in any special divisor $Z(m)$ by Lemma 8.11. We now apply Theorem 1.2 to the normalization C of C' with the natural map $C \to C' \to S_k$; in the case of $b = 2$, we apply the proof of [33, Thm. 1(2)] instead. As a result, there exists an ordinary point x' on $C' \subset \overline{T_x}$ such that $x' \in Z(m)(k)$ for some $p \nmid m$ representable by (L, Q), as there are only finitely many non-ordinary points on C'.

Let $S'_k \subset Z(m)$ denote the canonical integral model of the Shimura subvariety of S which consists of some irreducible components of $Z(m)$ and $x' \in S'_k(k)$. Note that since $p \nmid m$, S'_k has hyperspecial level at p and $\dim_k S'_k = b - 1$.\footnote{More precisely, as explained on [2, p. 434] that $Z(m)_{\mathbb{Q}}$ is a finite disjoint union of GSpin Shimura varieties associated to quadratic spaces isomorphic to $(v^\perp, Q_{v^\perp}) \subset (V, Q)$, where $v \in L$ with $Q(v) = m$; since $p \nmid m$, then (v^\perp, Q_{v^\perp}) is self-dual at p and the embedding $v^\perp \subset V$ also induces a hyperspecial level for the Shimura variety associated to v^\perp.}
By Lemma 8.10(2), $\overline{T}_x \cap S'_k$ is a generically ordinary Hecke-stable subvariety of S'_k. Then by the inductive hypothesis, we have that $\overline{T}_x \cap S'_k = S'_k$, and thus $S'_k \subset \overline{T}_x$. In fact, an identical argument yields that $Z'(m) \subset \overline{T}_x$ for infinitely many m, where $Z'(m)$ is some irreducible component of $Z(m)$; indeed, if there were only finitely many such $Z'(m)$, they only intersect C at finitely many k-points and we may always pick x' different from these finitely many points when we apply Theorem 1.2. Since the Zariski closure of infinitely many distinct subvarieties of dimension $b - 1$ must be at least b-dimensional, we conclude that \overline{T}_x must contain at least one irreducible component of S_k.

Moreover, since the Hecke action $G(\mathbb{A}_f)$ on the inverse limit of S_k with varying levels away from p permutes all its irreducible/connected components, we conclude that $\overline{T}_x = S_k$.

\[\Box \]

Remark 8.12 Let S_k denote the mod p special fiber of the canonical integral model S over $\text{Spec } O_K, (p)$ of the PEL type unitary Shimura variety considered in [41, §3, §4.1] and [42, §3.4, §4.1] where $p | p$ and p splits in K/\mathbb{Q} and p does not divide the discriminant of the Hermitian form (we work with the special case of [41,42] that the CM field is imaginary quadratic; if we further restrict ourselves to the principally polarized case, see also [7, §2.1] and [29, §2.1, Notation 2.6]). The assumption that p is not ramified in K/\mathbb{Q} and p does not divide the discriminant implies that we can work with the hyperspecial level and the PEL Shimura variety has good reduction at p and the assumption that p splits in K/\mathbb{Q} implies that the ordinary locus in S_k is nonempty. More concretely, following [42, Def. 3.9, Def. 4.1], given a Hermitian lattice L self-dual at p, S is the moduli space of the moduli problem which associates to a locally noetherian $O_K, (p)$-scheme T the groupoid of $(A_0, A, \iota_0, \iota, \lambda)$, where

- A_0 is an elliptic curve over T,
- $\iota_0 : O_K \to \text{End}(A_0)$ such that O_K acts on $\text{Lie } A_0$ via the structure map $O_K \to O_K, (p) \to O_T$;
- A is an abelian scheme over T of relative dimension $(n + 1)$,
- $\iota : O_K \to \text{End}(A)$ satisfies the Kottwitz determinant condition $\text{det}(t - \iota(\alpha)| \text{Lie } A) = (t - \alpha)^n(t - \bar{\alpha}) \in O_T[t],$
- $\lambda : A \to A^\vee$ is a quasi-polarization such that
 - its Rosati involution satisfies $\iota(\alpha)^\dagger = \iota(\bar{\alpha})$ for all $\alpha \in O_K$,
 - λ induces a principal polarization on the p-divisible group $A[p^\infty]$.

Footnote 27 continued

By [2, Prop. 4.4.2] (or [31, Cor. 6.23]), $Z(m)$ is normal and flat and thus is the disjoint union of canonical integral models of the GSpin Shimura varieties associated to isomorphism classes of v^{\perp} with $Q(v) = m$.

\[\Box \] Springer
\(\text{Hom}_{\mathcal{O}_k}[\hat{T}^p(A_0), \hat{T}^p(A)] \) is isomorphic to \(L \otimes_{\mathcal{O}_k} \mathcal{O}_K^p \) as Hermitian spaces, where \(\hat{T}^p(A_0), \hat{T}^p(A) \) denote the product of prime-to-\(p \) Tate modules and \(\mathcal{O}_K^p \) denotes the product of completions \(\mathcal{O}_{K, \ell} \) away from \(p \) and the Hermitian form on \(\text{Hom}_{\mathcal{O}_k}[\hat{T}^p(A_0), \hat{T}^p(A)] \) is given by

\[
\begin{align*}
 x \mapsto x' \circ x \in \text{Hom}_{\mathcal{O}_k}[\hat{T}^p(A_0), \hat{T}^p(A_0)] \otimes \mathbb{A}^p_{K, \ell} \simeq \mathbb{A}^p_{K, \ell},
\end{align*}
\]

where \((-)^\vee\) is the dual map induced by the polarizations on \(A_0 \) and \(A \).

There are special divisors in \(S \) described in [41, §3.5] (see also [7, §2.5] and [29, §2.2, Def. 2.8]), parametrizing \((A_0, A, t_0, t, \ell, x)\) with \((A_0, A, t_0, t, \ell, x)\) as above and \(x \in \text{Hom}_{\mathcal{O}_K}(A_0, A) \).

By [46, §9.3], given \(C \to S_k \) such that the image of the generic point of \(C \) is ordinary, we can construct a morphism from (a finite étale cover of) \(C \) to the special fiber of the canonical integral model of a GSpin Shimura variety associated to a quadratic space of signature \((2n, 2)\) such that the image of generic point of \(C \) is ordinary; moreover, the construction also has the property that if \(P \in C(k) \) maps to a point in a special divisor in the GSpin special fiber, then \(P \) also maps to a point in a special divisor in the unitary special fiber. Thus, as a direct consequence of Theorem 1.2, we prove that there are infinitely many \(k \)-points on \(C \) which lie in the union of special divisors in \(S_k \); moreover, we may further assume that the special morphisms \(x \in \text{Hom}_{\mathcal{O}_K}(A_0, A) \) corresponding to points on the special divisors have the property that \(x' \circ x \in \text{Hom}_{\mathcal{O}_K}(A_0, A_0) \simeq \mathcal{O}_K \) is coprime to \(p \). This is the analogue of Theorem 1.2 in the unitary case. Note that similar to the orthogonal case, the smaller unitary Shimura varieties associated to the prime-to-\(p \) special divisors still have discriminants of the Hermitian spaces prime to \(p \).

In order to prove Theorem 1.4 unitary case, we use the above analogue of Theorem 1.2 in the unitary case and adapt the above inductive proof for the orthogonal case to the unitary case if \(\overline{T_x} \) is proper; thus to finish the proof, it remains to treat the case when \(\overline{T_x}^{BB} \) hits the boundary of \(\overline{S_k}^{BB} \).

The arithmetic compactifications of \(S \) are described in [7, §3].\(^{29}\) More precisely, by [7, Thm. 3.7.1, Prop. 3.4.4], the boundary components of \(S^{BB} \) are 0-dimensional (relative to Spec \(\mathcal{O}_{K,(p)} \)); the toroidal compactification \(S^{tor} \) is canonical and the fibers over the cusps of \(S^{tor} \to S^{BB} \) are abelian schemes and each of these abelian schemes, up to quotient by a finite group, is isomorphic (over some finite extension of \(\mathcal{O}_{K,(p)} \)) to \(E \otimes \mathcal{O}_K \Lambda_0 \), where \(E \) is an elliptic curve CM by \(\mathcal{O}_K \) and \(\Lambda_0 \) is an \(\mathcal{O}_K \)-lattice of rank \(n-1 \). Since \(S^{tor} \) is canonical, the Hecke correspondences associated to \(G(\mathbb{A}^p_f) \) (here \(G \) denotes the reductive group associated to \(S \)) extend to \(S^{tor} \). For each cusp in \(S^{BB} \), we may choose an isotropic line \(J \subset W \), where \(W \) is the Hermitian space over \(K \) of signature

\(^{29}\) Even though [7] works with principal polarization case, since we work with hyperspecial level at \(p \), the description also applies to our case here.
(n, 1) used to define S. The admissible parabolic associated to the cusp is the stabilizer of J and by [22, §3.3, p. 673], the $\mathbb{Z}[1/\ell]$-points of the unipotent part of this parabolic acts on $E \otimes_{\mathcal{O}_K} \Lambda_0$ by translations of ℓ-power torsion points and thus we prove the analogous statement of Proposition 8.6 for the unitary case. Therefore we prove the unitary case of Theorem 1.4 by the proof of Corollary 8.8.

Acknowledgements We thank George Boxer, Ching-Li Chai, Johan de Jong, Kai-Wen Lan, Keerthi Madapusi Pera, Frans Oort, Arul Shankar, Andrew Snowden, Salim Tayou, and Tonghai Yang for helpful discussions, as well as Arthur and D.W. Read for additional assistance. A.S. has been partially supported by the NSF Grant DMS-2100436 and Y.T. has been partially supported by the NSF Grant DMS-1801237. Y.T. was a chargée de recherche at CNRS and Université Paris-Saclay from February 2020 to June 2021. We would like to thank the referee for a careful and thorough reading, and for valuable suggestions which vastly improved the exposition of the paper.

References

1. André, Y.: Pour une théorie inconditionnelle des motifs. Inst. Hautes Études Sci. Publ. Math. 83, 5–49 (1996). (French)
2. Andreatta, F., Goren, E.Z., Howard, B., Madapusi Pera, K.: Faltings heights of abelian varieties with complex multiplication. Ann. Math. (2) 187(2), 391–531 (2018)
3. Ash, A., Mumford, D., Rapoport, M., Tai, Y.-S.: Smooth Compactifications of Symmetric Varieties, 2nd edn. Cambridge Mathematical Library, Cambridge University Press, Cambridge (2010). (with the collaboration of Peter Scholze)
4. Bary-Soroker, L., Entin, A.: Explicit Hilbert’s Irreducibility Theorem in Function Fields, Abelian Varieties and Number Theory, Contemp. Math., vol. 767, pp. 125–134. Amer Math Soc, Providence (2021)
5. Borchers, R.E.: The Gross–Kohnen–Zagier theorem in higher dimensions. Duke Math. J. 97(2), 219–233 (1999)
6. Bruinier, J.H.: Borcherds products with prescribed divisor. Bull. Lond. Math. Soc. 49(6), 979–987 (2017)
7. Bruinier, J.H., Howard, B., Kudla, S.S., Rapoport, M., Yang, T.: Modularity of generating series of divisors on unitary Shimura varieties, Astérisque 421, Diviseurs arithmétiques sur les variétés orthogonales et unitaires de Shimura, pp. 7-125 (2020)
8. Bruinier, J.H., Kuss, M.: Eisenstein series attached to lattices and modular forms on orthogonal groups. Manuscr. Math. 106(4), 443–459 (2001)
9. Bruinier, J.H., Zemel, S.: Special cycles on toroidal compactifications of orthogonal Shimura varieties. Math. Ann. (2021) (published online)
10. Chai, C.-L.: Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli. Invent. Math. 121(3), 439–479 (1995)
11. Chai, C.-L.: Families of ordinary abelian varieties: canonical coordinates, p-adic monodromy, Tate-linear subvarieties and Hecke orbits (2003). https://www.math.upenn.edu/chai
12. Chai, C.-L.: Hecke orbits on Siegel modular varieties, Geometric methods in algebra and number theory. Progr. Math., vol. 235, pp. 71–107. Birkhäuser Boston, Boston (2005)
13. Chai, C.-L.: Hecke orbits as Shimura varieties in positive characteristic. International Congress of Mathematicians, vol. II, pp. 295–312. Eur. Math. Soc, Zürich (2006)
14. Chai, C.-L., Oort, F.: Hypersymmetric abelian varieties. Pure Appl. Math. Q. 2, no. 1. Special Issue: In honor of John H. Coates., pp. 1–27 (2006)
15. Chai, C.-L., Oort, F.: Moduli of abelian varieties and p-divisible groups, Arithmetic geometry. Clay Math. Proc., vol. 8, pp. 441–536. Amer. Math. Soc., Providence (2009)
16. Chai, C.-L., Oort, F.: The Hecke orbit conjecture: a survey and outlook, Open problems in arithmetic algebraic geometry, Adv. Lect. Math. (ALM), vol. 46, pp. 235–262. Int. Press, Somerville (2019)
17. Charles, F.: Exceptional isogenies between reductions of pairs of elliptic curves. Duke Math. J. 167(11), 2039–2072 (2018)
18. Clozel, L., Hee, O., Ullmo, E.: Hecke operators and equidistribution of Hecke points. Invent. Math. 144(2), 327–351 (2001)
19. de Jong, A.J.: Crystalline Dieudonné module theory via formal and rigid geometry. Inst. Hautes Études Sci. Publ. Math. 82(1995), 5–96 (1996)
20. Eskin, A., Katznelson, Y.R.: Singular symmetric matrices. Duke Math. J. 79(2), 515–547 (1995). https://doi.org/10.1215/S0012-7094-95-07913-7
21. Hanke, J.: Local densities and explicit bounds for representability by a quadratic form. Duke Math. J. 124(2), 351–388 (2004)
22. Howard, B.: Complex multiplication cycles and Kudla–Rapoport divisors. II. Am. J. Math. 137(3), 639–698 (2015)
23. Howard, B., Pera, M.K.: Arithmetic of Borcherds products, Astérisque 421. Diviseurs arithmétiques sur les variétés orthogonales et unitaires de Shimura 187–297 (2020)
24. Howard, B., Pappas, G.: Rapoport–Zink spaces for spinor groups. Compos. Math. 153(5), 1050–1118 (2017)
25. Iwaniec, H.: Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, vol. 17. American Mathematical Society, Providence (1997)
26. Keating, K.: Lifting endomorphisms of formal A-modules. Compos. Math. 67(2), 211–239 (1988)
27. Kisin, M.: Integral models for Shimura varieties of abelian type. J. Am. Math. Soc. 23(4), 967–1012 (2010)
28. Kisin, M.: mod p points on Shimura varieties of abelian type. J. Am. Math. Soc. 30(3), 819–914 (2017)
29. Kudla, S., Rapoport, M.: Special cycles on unitary Shimura varieties II: global theory. J. Reine Angew. Math. 697, 91–157 (2014)
30. Li, C., Zhang, W.: Kudla–Rapoport cycles and derivatives of local densities. J. Am. Math. Soc. (2021) (published online)
31. Madapusi, K.: Integral canonical models for spin Shimura varieties. Compos. Math. 152(4), 769–824 (2016)
32. Madapusi Pera, K.: Toroidal compactifications of integral models of Shimura varieties of Hodge type. Ann. Sci. Éc. Norm. Supér. (2) 52(2), 393–514 (2019). (English, with English and French summaries)
33. Maulik, D., Shankar, A.N., Tang, Y.: Reductions of abelian surfaces over global function fields. Compos. Math. (to appear)
34. Moonen, B.: Models of Shimura varieties in mixed characteristics. Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996), London Math. Soc. Lecture Note Ser., vol. 254, pp. 267–350. Cambridge Univ. Press, Cambridge (1998)
35. Noot, R.: Models of Shimura varieties in mixed characteristic. J. Algebraic Geom. 5(1), 187–207 (1996)
36. Oguiso, K.: Local families of K3 surfaces and applications. J. Algebraic Geom. 12(3), 405–433 (2003)
37. Ogus, A.: Supersingular K3 crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Astérisque, vol. 64, pp. 3–86. Soc. Math. France, Paris (1979)
38. Ogus, A.: Hodge Cycles and Crystalline Cohomology, vol. 900, pp. 357–414. Springer, Berlin (1982)
39. Ogus, A.: Singularities of the height strata in the moduli of K3 surfaces. Moduli of Abelian Varieties (Texel Island, 1999). Progr. Math., vol. 195. Birkhäuser, Basel, pp. 325–343 (2001)
40. Pink, R.: Arithmetical compactification of mixed Shimura varieties, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 209, Universität Bonn, Mathematisches Institut, Bonn. Dissertation, p. 1989. Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn (1990)
41. Rapoport, M., Smithling, B., Zhang, W.: Arithmetic diagonal cycles on unitary Shimura varieties. Compos. Math. 156(9), 1745–1824 (2020)
42. Rapoport, M., Smithling, B., Zhang, W.: On Shimura varieties for unitary groups. Pure Appl. Math. Q. 17(2), 773–837 (2021)
43. Sarnak, P.: Some Applications of Modular Forms, Cambridge Tracts in Mathematics, vol. 99. Cambridge University Press, Cambridge (1990)
44. Serre, J.-P.: Lectures on the Mordell-Weil theorem, Aspects of Mathematics, E15, Friedr (translated from the French and edited by Martin Brown from notes by Michel Waldschmidt). Vieweg & Sohn, Braunschweig (1989)
45. Shankar, A.N.: The Hecke orbit conjecture for “modèles étranges” (preprint)
46. Shankar, A.N., Shankar, A., Tang, Y., Tayou, S.: Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields. arXiv: 1909.07473
47. Shankar, A.N., Tang, Y.: Exceptional splitting of reductions of abelian surfaces. Duke Math. J. 169(3), 397–434 (2020)
48. Tayou, S.: On the equidistribution of some Hodge loci. J. Reine Angew. Math. 762, 167–194 (2020)
49. Voisin, C.: Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés [Specialized Courses], vol. 10, p. viii+595. Société Mathématique de France, Paris (2002) (French)
50. Xiao, L.X.: On the Hecke orbit conjecture for PEL type Shimura varieties. arXiv:2006.06859
51. Zemel, S.: The structure of integral parabolic subgroups of orthogonal groups. J. Algebra 559, 95–128 (2020)
52. Zhou, R.: Motivic cohomology of quaternionic Shimura varieties and level raising. arXiv:1901.01954

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.