Floristic and dispersion syndromes of Cerrado species in the Chapada do Araripe,
Northeast of Brazil

Florística e síndrome de dispersão de espécies de Cerrado na Chapada do Araripe,
Nordeste do Brasil

Florística y síndrome de dispersión de especies de Cerrado en Chapada do Araripe,
Noreste de Brasil

Received: 08/27/2020 | Reviewed: 09/06/2020 | Accept: 09/09/2020 | Published: 09/11/2020

Janete de Souza Bezerra
ORCID: https://orcid.org/0000-0002-2674-0790
University Regional of Cariri, Brazil
E-mail: Janete.bezerra@urca.br

Karina Vieiralves Linhares
ORCID: https://orcid.org/0000-0001-6567-3271
University Regional of Cariri, Brazil
E-mail: karina_linhares@yahoo.com

João Tavares Calixto Júnior
ORCID: https://orcid.org/0000-0002-7491-6324
University Regional of Cariri, Brazil
joaojrbio@gmail.com

Antônia Eliene Duarte
ORCID: https://orcid.org/0000-0001-5889-0518
University Regional of Cariri, Brazil
E-mail: duarte105@yahoo.com.br

Ana Cleide Alcântara Morais Mendonça
ORCID: https://orcid.org/0000-0002-0199-177X
University Regional of Cariri, Brazil
E-mail: anninhamenininha@hotmail.com

Alana Ermília Paiva Pereira
ORCID: https://orcid.org/0000-0001-5797-3768
University Regional of Cariri, Brazil
E-mail: alana.paiva3@gmail.com
Abstract
Through this study, the objective was to contribute to the knowledge regarding floristic composition, classification and conservation status of the studied plant species as well as the dispersion syndromes of flora found in a disjoint Cerrado area in the Chapada do Araripe, Crato-CE. For the research development Rapid Survey method, applied in three walking lines (Line 1, Line 2 and Line 3) was adopted. Floriferous branches, fruits and seeds from species in the study area were collected in order to identify them and to characterize their diaspores, in view of fitting them into the corresponding dispersion syndromes. A total of 103 species were identified, the richest species taxa were: Fabaceae, Apocynaceae, Euphorbiaceae,
Malpighiaceae and Myrtaceae. The most abundant species in the studied area were: Cordiera myrciifolia (“bola”) Miconia albicans (“Candeiro-de-pelo”), Caryocar coriaceum (pequi) and Copaifera langsdorffii (“pau d'óleo”). Three new occurrences were also recorded for the state of Ceará: Eriope tumidicaulis, Myrciaria cf. tenella and Stachytapheta cf. crassifolia. The most frequent dispersion syndrome was zoochoria, followed by anemocoria. Considering that most of the species occurring in the study area have their dispersion diaspores transported by a fauna element, the importance of these species for the maintenance of the observed floristic richness is evident.

Keywords: Cerrado; Conservation; Rapid survey; Species abundance; Fruit types.

Resumo

Através deste estudo, objetivou-se contribuir para o conhecimento sobre a composição florística, classificação e estado de conservação das espécies vegetais estudadas, bem como as síndromes de dispersão da flora encontradas em uma área disjunta de Cerrado na Chapada do Araripe, Crato-CE. Para o desenvolvimento da pesquisa foi adotado o método Rapid Survey, aplicado em três linhas de caminhada (Linha 1, Linha 2 e Linha 3). Foram coletados ramos floríferos, frutos e sementes de espécies da área de estudo, a fim de identificá-los e caracterizar seus diásporos, visando adequá-los às síndromes de dispersão correspondentes. Foram identificadas 103 espécies, distribuídas em 84 gêneros e 40 famílias botânicas. Os taxa que apresentaram maior riqueza de espécies foram: Fabaceae, Apocynaceae, Euphorbiaceae, Malpighiaceae, Myrtaceae. As espécies mais abundantes na área estudada foram: Cordiera myrciifolia (bola/café bravo), Miconia albicans (candeiro-de-pelo), Caryocar coriaceum (pequi) e Copaifera langsdorffii (pau d’óleo). Foram registradas, também, três novas ocorrências para o estado do Ceará: Eriope tumidicaulis, Myrciaria cf. tenella e Stachytapheta cf. crassifolia. A síndrome de dispersão de maior ocorrência foi a zoocoria, seguida de anemocoria, autocoria e autocoria/zoocoria. Considerando que a maioria das espécies ocorrentes na área do estudo têm seus diásporos de dispersão transportados por algum elemento da fauna, comprova-se a importância destes para a manutenção da riqueza florística observada. Sendo assim, é evidente e necessário que ambos sejam conservados para manutenção dos processos ecológicos locais.

Palavras-chave: Cerrado; Conservação; Levantamento rápido; Abundância de espécies; Tipos de frutos.
Resumen
Con este estudio, nos propusimos contribuir al conocimiento sobre la composición florística, clasificación y estado de conservación de las especies vegetales estudiadas, así como los síndromes de dispersión de flora encontrados en un área disjunta del Cerrado en Chapada do Araripe, Crato-CE. Para el desarrollo de la investigación se adoptó el método Rapid Survey, aplicado en tres líneas de marcha (Línea 1, Línea 2 y Línea 3). Se recolectaron ramas florales, frutos y semillas de especies del área de estudio, con el fin de identificarlas y caracterizar sus diásporas, con el objetivo de adaptarlas a los correspondientes síndromes de dispersión. Se identificaron 103 especies, distribuidas en 84 géneros y 40 familias botánicas. Los taxones con mayor riqueza de especies fueron: Fabaceae, Apocynaceae, Euphorbiaceae, Malpighiaceae, Myrtaceae. Las especies más abundantes en el área de estudio fueron: Cordiera myrciifolia (bola / café silvestre), Miconia albicans (candeeiro-de-pelo), Caryocar coriaceum (pequi) y Copaifera langsdorffii (pau d’óleo). También se registraron tres nuevas ocurrencias para el estado de Ceará: Eriope tumidicaulis, Myrciaria cf. tenella y Stachytapheta cf. crassifolia. El síndrome de dispersión más común fue la zoocoria, seguido de la anemocoria, la autocoria y la autocoria / zoocoria. Considerando que la mayoría de las especies presentes en el área de estudio tienen sus diásporas de dispersión transportadas por algún elemento de la fauna, se comprueba su importancia para el mantenimiento de la riqueza florística observada. Por tanto, es evidente y necesario que ambos se conserven para mantener los procesos ecológicos locales.

Palabras clave: Cerrado; Conservación; Elevación rápida; Abundancia de especies; Tipos de frutas.

1. Introduction

The Cerrado (brazilian savannah) is considered the most diversified tropical savanna in the world regarding phytophysiognomies, possessing high biodiversity (Klink & Machado 2005; Lefebvre & Nascimento 2016) with vegetation that covers a true mosaic of environments sheltering diverse ecosystems, ranging from open formations, subdivided between rural and savanna formations, to forest physiognomies (Ribeiro & Walter 2008). It is, therefore, one of the global biodiversity hotspots due to its high degree of endemism (Myers et al. 2000; Ponciano 2015). According to Oliveira et al. (2014), this vegetation formation has phytophysiognomies delimited by the existence of an abundant partial or continuous herbaceous strip and a rich diversity of woody species.
In the Brazilian Northeast, the existence of Cerrado patches is attributed, mainly, to altitude, forming fragments resulting from the association with edaphic factors (Santos et al. 2014). In this region is the Chapada do Araripe which houses the Araripe National Forest - Apodi - FLONA Araripe, the first Brazilian National Forest, (Alves et al. 2011). The Cerrado present in this plateau occurs in the form of vegetative enclaves (Costa et al. 2004, Costa & Araújo 2007). Unfortunately, in recent years, due to the vast quantity of resources that it harbors, the Chapada do Araripe has been experiencing many forms of illegal exploitation, especially flora exploitation. Exploratory activities which have gathered attention for desolation, especially in Cerrado areas, are agricultural expansions, raising livestock and wood removal for industrial use (Andrade 2007), of which the latter, according to Barros et al. (2010), are usually extracted without management which according to Oliveira et al. 2014 can contribute to local extinction of fruit and seed dispersers affecting the interaction between species and successional dynamics, which may prevent or hinder the maintenance of certain species.

One of the main challenges for the conservation of the Cerrado is to demonstrate the importance that biodiversity plays in the functioning of ecosystems (Klink & Machado 2005). With this, the development of studies that lead to greater knowledge regarding flora and fauna and the interspecific relations that unites them is becoming more and more urgent and necessary, especially in Cerrado environments, since studies in this area are still scarce. It is hoped that research may lead to a better understanding of existing plant species’ distribution in the Cerrado in the Chapada do Araripe.

In order to fill some of this knowledge gap, this study aimed to determine the floristic composition, conservation state of the studied plant species and the dispersion syndromes of species occurring in a disjoint Cerrado area of the Chapada do Araripe, Crato-CE, Northeast of Brazil, contributing to the understanding of the ecological processes that work in this vegetative formation.

2. Materials and methods

For generating new knowledge, useful for the advancement of Science, a research was characterized as basic in nature (SILVEIRA; CÓRDOVA, 2009). As for the approach, it was configured as quasi-quantitative, since the numerical results of the survey were complemented by qualitative results (PEREIRA et al., 2018).
2.1 Study area

The Chapada do Araripe is a plateau located within the Caatinga (Seasonally Dry Tropical Forest) domain in the Brazilian Northeast, more precisely between the states of Ceará, Pernambuco and Piauí, and covers 38 municipalities, 15 in Ceará, 12 in Pernambuco and 11 in Piauí (Siebra et al. 2011; Novaes & Laurindo 2014). According to Loiola et al. 2015 the Cerrado occurs in the eastern area of the top of the plateau, being recognized as a semi-deciduous Savannah vegetation, with soils classified as aluminized leachate. It has a BSw`h’ type climate, characteristic of a Hot and semi-arid climate (kőeppen 1948) with annual average precipitation around 760 mm and average annual temperature of 24.1°C (Costa et al., 2004).

The study was developed between October 2016 and December 2017 in a Cerrado area, occurring in the Chapada do Araripe, in the municipality of Crato-CE, Ceará, Northeast of Brazil, located at coordinates 7°20’ S; 33º27’ W at 900 m of altitude. For the floristic survey, two trails were selected, one in the Minguiriba locality (7°17’20,76” S and 39°32’19,59” W) where Line 1 (L1) was allocated, and the other in the Barreiro Novo locality, where this was fragmented into two areas, the first termed as Barreiro Novo 1 (7°17’20,48” S and 39°32’18,53” W) and the second termed as Barreiro Novo 2 (7°17’20,48” S and 39°30’1.79” W), where Line 2 (L2) and Line (3) were allocated, respectively.

2.2 Floristic composition

2.2.1 Transect allocation, collection and identification of botanical material

For the species listing, the Rapid Survey (RS) method developed by Ratter et al. 2001 and improved by Walter and Guarino 2006 with a quantitative-qualitative approach was used.

The RS was applied in three walking lines, called "Line 1" (L1), "Line 2" (L2) and "Line 3" (L3) where new species were recorded at each five minutes interval. This process continued until no new species were found, with the aim of detailing a construction data of the species × time curve. The three walking lines were distanced roughly 400 m from each other. The field of vision for each side of the walking line was arbitrated as up to 5 m, allowing better species visualization. Since L1 and L2 were separated by the BR-122 (a motorway), 100 m either side of the border were taken into account of the inside fragment in
order to minimize its possible impacts (Figure 1). Whilst RS is a method of immediate data collection, bi-monthly and/or monthly visits to the field were necessary since it was not possible to allocate all transects in a single day and not all plant species were in the reproductive period at the same time (Schierolz 1991, Alves-junior et al. 2006).

Figure 1. Allocation of walking lines in a Cerrado area in the municipality of Crato-CE.

Legend: Line 1 (L1), Line 2 (L2), Line 3 (L3), *metres taken into account to minimise possible border effects. Source: Authors

All species were initially identified by their popular name with the help of a guide. As floristic studies carried out in the Cerrado are restricted to arboreal and shrub strata, with the herbaceous and sub-shrub being commonly neglected (Assert et al. 2011), this study chose to collect all species that presented reproductive material in the studied period, regardless of their habit. The collected species were structurally classified according to the Brazilian Institute of Geography and Statistics (2012) as herbaceous, sub-shrub, shrub, tree, hemiparasite, climbing liana and climbing herbaceous.

The collected plant species were herborized following procedures described by (Mori et al. 1989) and later identified by comparison with previously identified specimens, specialized bibliography and submission to specialists. Families were identified according to Angiosperm Phylogeny Group IV (2016). For the correct spelling of the scientific names the List of Species from the Brazil Flora (2018) and The plant List (2013) were consulted.

Authorization for botanical material collection was provided by the System of Authorization and Information on Biodiversity (SISBIO) of the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA), registered under number 57216-1.
All collected species were incorporated into the collection at the Caririense Dârdano de Andrade-Lima Herbarium (HCDAL) of the Regional University of Cariri (URCA).

2.2.2 Classification and conservation status of the studied plant species

Classification of species’ conservation status followed recommendations of the Brazilian Institute of Geography and Statistics (2012) and the criteria adopted by Morellato & Leitão-Filho 1992, with adaptations, where species found along the walking lines were categorized into: Rare (species rarely found on walking lines, restricted to a single line) (<5 individuals); Occasional (species sporadically found on walking lines) (>5 up to 20 individuals); Frequent (species often found on two or all walking lines) (>20 up to 100 individuals); and Abundant (predominant species in all walking lines) (>100 individuals).

To verify the conservation status of the species, two databases were consulted: the IUCN Red List of Threatened Species (2017) and the List of Species from the Brazil Flora 2020 (2018).

2.3 Fruit collection and characterization of dispersion syndromes

Five to ten fruits from each species were collected (immature and mature). These were analyzed morphologically and structurally, according to the methodology proposed by Domingues et al. (2013). The fruits were previously classified according to their characteristics in the categories: Artrocarpic; Follicular; Nucoid; Samaroid; Bacoid; Drupoid; Schizocarpic and Capsular, followed by their subtypes, as recommended by Barroso et al. (1999).

Diaspore dispersal syndromes were classified, taking into account the morphological analysis of fruits and seeds, specialized literature and direct observation in the field, and were grouped according to Pilj (1972) in the following categories: I - Anemocoria: when the diaspores present morphological adaptations for wind dispersal, such as wings, feathers or winged appendages; II- Zoocoria: when the diaspores present attractive structure and/or food source, allowing their dispersion by animals; III - Autocoria, when the diaspores did not fit into the anemocoria or zoocoria categories, spreading through diaspores with explosive dehiscence (ballistic) or by the action of gravity (barocoria).
2.4 Statistical analysis

Statistical analysis of the data and graphical representation of the results were performed using the Paleontontology Analysis Statistic 2.0 (PAST 2.0) and Microsoft Excel 2010 software.

Floristic similarity between the walking lines was performed using Sorensen's Similarity Index (Ss) (Muller-Dombois & Ellenberg 1994), Shannon-Wiener’s Diversity Index (H’) (Magurran 1988) and Pielou’s equability index (J’) to ascertain species distribution in the studied area.

3. Results and discussion

3.1 Structure and floristic sampling

5253 individuals belonging to 103 species, distributed across 84 genera and 40 botanical families were sampled. In relation to species richness, the families which stood out were Fabaceae (13 spp.), Apocynaceae (7 spp.), Euphorbiaceae (6 spp.), Malpighiaceae (6 spp.) and Myrtaceae (6 spp.), representing 38.83% of the total species sampled (Table 1). Among the families with the greatest representativiness, Fabaceae has been evidenced as one of the species with the highest number of species in the area, as shown by other studies carried out (Costa et al. 2004; Souza et al. 2007; Loiola et al. 2015; Silva et al. 2015).

According to Cordeiro (2002), species from the Fabaceae family present greater acclimatization in Cerrado regions, which can confer a greater adaptive advantage over other species. This family is also identified as the most naturally occurring in Cerrado areas of Central Brazil (Medeiros 2007; Paula et al. 2015; Aguiar 2018).

Of the 103 species found in the studied Cerrado area, 35 were present in all walking lines: Anacardium occidentale, Annona coriacea, Duguetia furfuracea, Secondatia floribunda, Himatanthus drasticus, Hancornia speciosa, Mandevilla scraba, Caryocar coriaceum, Hirtella racemosa, Erythroxylum barbatum, Erythroxylum rosuliferum, Erythroxylum loegrenii, Plathymenia reticulate, Stryphnodendron rotundifolium, Byrsonima sericea, Bowdichia virgilioides, Visnia guianensis, Mesosphaerum suaveolens, Ocotea cf. odorifera, Lafoensia pacari, Chamaecrista ramosa, Copaaifa langsorphii, Miconia albicans, Eugenia punicifolia, Guapira opposita, Ouratea castenifolia, Bredemeyera brevifolia, Roupala montana, Declieuxia fruticosa, Cordiera rígida, Cordiera myrciifolia, Zanthoxylum...
gardneri, Casearia grandiflora, Serjania lethalis and Matayba guianensis. Many of these species also presented a wide distribution in Central Plateau Cerrado areas, such as R. montana (Reis et al. 2012; Ferreira et al. 2017); A. occidentale and C. langsdorffii (Ferreira et al. 2017); C. brasiliense and M. albicans (Torres et al. 2017); A. coriacea and H. speciosa (Bordino et al. 2018); P. reticulata (Reis et al. 2012); B. virgilioides (Medeiros et al. 2007); L. pacari and M. guianensis (Lima et al. 2015). According to Ferreira et al. (2017), species with a wide distribution can be used in recovery plans in regions with similar characteristics.

The floristic similarity evaluated by Sorensen’s Index showed a greater similarity between Lines 2 - 3 (71.3) while Lines 1 - 2 and 1 - 3 obtained values of 66.2 and 67.6, respectively. According to Ritter & Moro (2007), both climatic elements and geographical proximity are determining elements for floristic similarity in Cerrado areas. The Shannon Diversity Index (H') obtained was 4.03 nats/individuals$^{-1}$, this value being higher than other studies performed in the disjoint Cerrado in the Brazilian Northeast (Table 2). Pielou’s equability obtained a value of 0.87, showing that species are relatively well distributed in the studied area. According to Rocha, Netto & Lozi (2005) the great species diversity found in the Cerrado is associated with a vast heterogeneity, since it includes several types of plant formations.
Table 1. Floristic survey and dispersion syndromes of a disjoint Cerrado area in the Chapada do Araripe, Crato-CE.

(To be Continued)

Family/specie	Popular name	H	FT	D	RS	AF	A	CS	V			
Anacardiaceae												
Anacardium occidentale L.	cajuí	Arb	Aquenius	Zoo	X	X	X	48	F	NE	13123	
Annonaceae												
Annona coriacea Mart.	araticum	Shr	Multiple strobiliform	Zoo	X	X	X	74	F	LC	12989	
Duguetia furfuracea (A.St.-Hill.) Saff.	pinha-brava	Shr	Sincarpo	Zoo	X	X	X	41	F	NE	13035	
Apocynaceae												
Blepharodon manicatum (Decne.) Fontella	orquídea do cerrado/urtiga	Clim/Herb	Folicario	Ane	X	4	R	LC	13052			
Hancornia speciosa Gomes.	mangaba	Arb	Berry	Zoo	X	X	X	31	F	NE	13013	
Himantanthus drasticus (Mart.) Plumer	januguba	Arb	Folicie	Ane	X	X	X	146	A	NE	13034	
Secondatia floribunda A. DC.	catuaba-de-cipó	Clim/Lia	Folicario	Ane	X	X	X	76	F	NE	13033	
Mandevilla scabra (Hoffmans ex Roem. Et. schult.) K. Schum	salsa-parreira-amarela	Clim/Lia	Folicario	Ane	X	X	X	22	F	NE	13241	
Temnadenia violacea (Vell.) Miers	salsa-parreira-roxa	Clim/Lia	Capsule septicide	Ane	X	X	10	O	LC	12998		
Asteraceae												
Baccharis cinera DC.	mufumbim	Subshr	Cipsela	Ane	X	5	R	NE	13168			
Dasyphyllum sprengelianum (Gardener) Cabreira	bico-de-garrinch	Shr	Cipsela	Ane	X	X	30	F	NE	13041		
Eremanthus arboresis (Gardener) Maedeish	candeia	Shr	Cipsela	Ane	X	X	6	O	NE	13110		
Lepidaploa remotiflora (Rich.) H.Rob.	balao de velho	Herb	Cipsela	Ane	X	X	20	O	NE	13042		
Myquiniastrum blanchetianum (DC.) G. Sancho	candeeiro-branco	Shr	Cipsela	Ane	X	92	F	NE	13109			
Boraginaceae												
Cordia rufescens A. DC.	uva-brava	Shr	Drupe	Zoo	X	X	9	O	NE	13104		
Myriopus salzmanii (DC.) Diane & Hilger	crista de galo do cerrado	Shr	Drupe	Zoo	X	4	R	NE	13379			
Varronia leucomalloides (Taroda) J.S. Mill.	moleque duro	Subshr	Drupe	Zoo	X	X	15	O	NE	13046		
Caryocaraceae												
Caryocar coriaceum Wittm.	pequi	Arb	Nuculanium	Aut/	Zoo	X	X	X	287	A	EN	13124
Table 1. (Continuation)

Family/specie	Popular name	H	FT	D	RS	AF	A	CS	V	
Chrysobalanaceae										
Hirtella ciliata Mart. & Zucc.	carrapateira	Arb	Drupe	Zoo	X	X	21	F	NE	12995
Hirtella glandulosa Spreng.	balaião-de velhodo cerrado	Herb	Drupe	Zoo	X	X	15	O	NE	13121
Hirtella racemosa Lam.	chorão	Arb	Drupe	Zoo	X	X	47	F	LC	13028
Convolvulaceae										
Ipomoea blanchetii Choisy	salsa-parreira-rosa	Clim/Lia	Capsule	Aut	X	3	R	NE	12992	
Jacquemontia velutina Choisy	flor de anjo	Clim/Lia	Capsule	Aut	X	3	R	NE	13030	
Cyperaceae										
Rhynchospora exaltata Kunth.	tiririca	Herb	Aquenius	Aut	X	X	61	F	NE	13014
Erythroxylaceae										
Erythroxylum barbatum O.E. Schulz	cururu	Shr	Drupe	Zoo	X	X	16	O	NE	13370
Erythroxylum cf. stipulatum Plowman	carrasquinho	Arb	Drupe	Zoo	X	X	11	O	NE	13377
Erythroxylum loefgrenii Diogo	carrasquinho	Subshr	Drupe	Zoo	X	X	169	A	NE	12997
Erythroxylum rosuliferum O.E.Schulz	bandeirinha	Arb	Drupe	Zoo	X	X	97	F	NE	13017
Euphorbiaceae										
Croton echioides Baill.	velame preto	Shr	Capsule	Zoo	X	7	O	NE	13022	
Croton heliotropifolius Kunth	velame branco	Shr	Capsule	Aut	X	42	F	NE	13024	
Croton limae A.P. Gomes, M.F. Sales P.E. Berry	marmeleiro-de-vara	Shr	Globe capsule	Zoo	X	78	F	NE	13049	
Croton sp.	marmelada	Subshr	Capsule	Aut	X	X	37	F	**	13376
Manihot caerulescens Pohl	manioc / mandioca	Shr	Lociulicidal capsule	Zoo	X	X	24	F	NE	13012
Maprounea guianensis Aubl.	cascudo	Arb	Drupe	Zoo	X	X	32	F	NE	13025
Fabaceae										
Bowdichia virgilioides Kunth	sucupira	Arb	Samarido legumen	Ane	X	X	31	F	NT	13374
Chamaecrista ramosa (Vogel) H.S.Irwin & Barneby.	orvalho de tatu	Shr	Legumen	Aut	X	X	12	O	NE	13115
Copaifera langsdorffii Desf.	pau-d’óleo/copaiba	Arb	Legumen	Zoo	X	X	266	A	LC	13047
Dalbergia miscolobium Benth.	violeta	Arb	Samarido legumen	Ane	X	X	9	O	NE	13228
Table 1. (Continuation)

Family/specie	Popular name	H	FT	D	RS	AF	A	CS	V	
Dimorphandra gardneriana Tul.	faveira	Arb	Nucoi legumen	Aut/Zoom	X	X	50	F NE	12990	
Dioclea cf. virgata (Rich.) Amshoff	mucuná-de-estalo	Clin/Lia	Legumen	Aut	X	X	11	O NE	12999	
Mimosa sensitiva L.	maliça	Subshr	Craspedio	Aut	X	4	R NE	13227		
Parkia platyczepala Benth.	visgueiro	Arb	Nucoi legumen	Aut/Zoom	X	X	135	A NE	13106	
Platymenia reticulata Benth. Lc/pp	amarelo	Arb	Legumen	Ane	X	X	18	O NE	13004	
Senna caearenis Afr. Fern.	quebra foice	Shr	Legumen	Aut	X	X	31	F NE	13380	
Senna rugosa (G.Don) H.S.Irwin & Barneby	lagarteiro	Shr	Legumen	Aut	X	X	64	F NE	13108	
Stryphnodendron rotundifolium Mart.	barbatimão	Arb	Nucoi legumen	Zoo	X	X	154	A NE	13002	
Swartzia cf. flaemingii Raddi.	banha de galinha	Arb	Nucoi legumen	Aut/Zoom	X	102	A LC	13005		
Hypericaceae										
Vismia guianensis (Aubl.) Choisy	lacre	Arb	Septifraga capsule	Zoo	X	X	46	F NE	13171	
Krameriacceae										
Krameria tomentosa A. St.-Hil.	carrapicho de boi	Subshr	Nucula	Zoo	X	5	R LC	13000		
Lamiaceae										
Amasonia campestris (Aubl.) Moldenke	anil	Subshr	Drupe	Zoo	X	X	9	O NE	13024	
Eriope tumidicaulis Harley	canela de ema	Herb	Schizocarpo	Aut	X	3	R NE	13050		
Hypenia salzmannii (Benth.) Harley	cidreira brava	Herb	Schizocarpo	Aut	X	X	21	F NE	13172	
Lauraceae										
Cassysphila filiformis L.	bolinha	Hemipar	Nucula	Zoo	X	5	R NE	13111		
Ocotea fasciculata (Nees) Mez	louro cheiroso	Arb	Berry	Zoo	X	X	166	A NE	13105	
Ocotea nitida (Meisn.) Rohwer	louro preto	Arb	Berry	Zoo	X	X	110	A NE	13001	
Loganiaceae										
Strychnos parvifolia A.DC.	buril	Arb	Berry	Zoo	X	9	O NE	13045		
Loranthaceae										
Struthanthus flexicaulis (Mart.) Mart.	estreico de passarinho	Hemipar	Berry	Zoo	X	7	O NE	13023		
Lythraceae										
Lafoensia pacari A. St. Hill	romã	Arb	Capsule	Ane	X	X	X	40	F LC	13225
Table 1. (Continuation)

Family/specie	Popular name	H	FT	D	RS	AF	A	CS	V	
Malpighiaceae										
Banisteriopsis malifolia (Ness & Mart.) B. Gates	orelha de rato	Clim/Lia	Samara	Ane	X	17	O	NE	13003	
Banisteriopsis muricata (Cav.) Cuatrec.	orelha de rato do cerrado	Subshr	Samara	Ane	X	20	O	NE	13051	
Banisteriopsis sp.	orelha de rato 2	Subshr	Samara	Ane	X	24	F	**	13051	
Byrsonima gardneriana A. Juss.	murici de carrasco	Arb	Drupe	Zoo	X	31	F	NE	13009	
Byrsonima sericea DC.	murici branco	Arb	Drupe	Zoo	X	19	O	NE	13027	
Byrsonima verbascifolia (L.) DC.	murici branco	Arb	Drupe	Zoo	X	10	O	NE	13117	
Malvaceae										
Melochia betonicifolia A.St.-Hil.	marmeleiro de carrasco	Subshr	Loculicidal capsule	Aut	X	10	O	NE	13007	
Melastomataceae										
Miconia albicans (Sw.)Triana	candeeiro-de-pelo	Shr	Berry	Zoo	X	X	296	A	NE	13122
Myrtaceae										
Eugenia punicifolia (Kunth) DC.	murta	Arb	Berry	Zoo	X	X	73	F	NE	13016
Eugenia sonderiana O. Berg.	batinga	Arb	Berry	Zoo	X	X	14	O	NE	13120
Myrcia sp.	murta	Arb	Berry	Zoo	X	X	23	F	**	13103
Myrciaria cf. tenella (DC.) O. Berg	cambuí verdadeiro	Arb	Drupe	Zoo	X	X	121	A	DD	13166
Psidium myrsinites O.Berg.	aracá de cerrado	Arb	Berry	Zoo	X	X	50	F	NE	12994
Psidium myrtoides O.Berg.	aracá	Arb	Berry	Zoo	X	X	41	F	NE	13043
Nyctaginaceae										
Guapira graciliflora (Mart. ex Schmidt) Lundell	pau-piranha	Arb	Nucula	Zoo	X	X	14	O	NE	13371
Ochnaceae										
Ouratea castaneifolia (DC.) Engl.	louro-amarelo	Shr	Multiply Free	Zoo	X	X	26	F	NE	13038
Olacaceae										
Ximenia americana L.	ameixa	Shr	Drupe	Zoo	X	64	F	NE	13375	
Passifloraceae										
Piriqueta sidifolia (Cambess.) Urb. var. *multiflora* Urb.	marmeleiro	Subshr	Capsule	Zoo	X	2	R	NE	13048	
Turnera melochioides Cambess.	vassourinha amarela	Herb	Capsule	Zoo	X	22	F	NE	13170	
Poaceae										
Aristida longifolia Trin.	capim agreste	Herb	Cariopse	Zoo	X	172	A	NE	13029	
Table 1. (Continuation)

Family/specie	Popular name	H	FT	D	RS L1	L2	L3	AF	A	CS	V
Axonopus polydactylus	capim touceira/mata fome	Herb	Cariopse	Zoo	X	X	90	F	NE		13031
(Steud.) Dedecca											
Streptostachys asperifolia	capim quinsé	Herb	Cariopse	Zoo	X	X	41	F	NE		13020
Desv.											
Polygalaceae	manacá	Arb	Loculicidal capsule	Zoo	X	X	45	F	NE		13101
Bredemeyera brevifolia	vick	Herb	Capsule	Aut	X		7	O	NE		13053
(Benth.) Klotzsch ex A.W.Benn.	caninana	Clim/Lia	Samara		X	X	42	F	NE		13116
Polygala paniculata L.											
Securidaca lanceolata A.St.-Hil. & Moq.	congonha	Arb	Follicle		X	X	51	F	NE		13373
Roupala montana Aubl.											
Rhamnaceae	vassourinha de botão	Herb	Capsule septicide	Berry	Zoo	X	X	352	A	NE	13102
Borreria verticillata (L.) G. Mey.	bola/ café bravo	Arb	Berry	Zoo	X	X	156	A	NE		12996
Cordiera myrcifolia (K. Schum.) C.H. Perss. & Delprete	bola	Shr	Berry	Zoo	X	X	11	O	NE		12993
Cordiera rigidia (K.Schum.) Kuntze	alicrim campestre	Shr	Drupe	Zoo	X	X					
Decleuxia fruticosa (Willd. ex Roem. & Schult)											
Kurtzete	jenipapinho	Arb	Berry	Zoo	X	X	19	O	NE		13011
Tocoyena formosa (Cham e Schltdl) K.S. Schum											
Rutaceae	laranjinha	Arb	Follicle	Zoo	X	X	42	F	NE		13119
Zanthoxylum gardneri Engl.											
Salicaceae	touceira	Arb	Capsule	Zoo	X	X	141	A	NE		13015
Casearia grandiflora Cambess.											
Casearia javitensis Kunth	mutamba brava	Arb	Capsule	Zoo	X		21	F	NE		13224
Sapindaceae	pitomba-brava	Arb	Loculicidal capsule	Zoo	X	X	112	A	NE		13008
Matayba guianensis Aubl.											
Serjania lethalis A.St.-Hil.	cipó-uva	Clim/Lia	Samara		X	X	16	O	NE		13037
Sapotaceae	grão-de-galo	Arb	Berry	Zoo	X	X	48	F	LC		13010
Chrysophyllum arenarium Allemão											

(Continued on next page)
Table 1. (Continuation)

Family/specie	Popular name	H	FT	D	RS L1	AF L1	A	CS	V	
Simaroubaceae	Simarouba amara Aubl.	Arb	Drupe	Zoo	X	X	F	NE	13036	
Similacaceae	Smilax japonica Griseb	Clim/Lia	Berry	Zoo	X	X	O	NT	13229	
Verbenaceae	Lippia grata Schauer	Subshr	Schizocarpo	Aut	X	X	11	O	NE	13032
	Lippia origanoides Kunth	Subshr	Schizocarpo	Aut	X	X	6	O	NE	13044
	Stachytarpheta cf. crassifolia Schrad.	Subshr	Schizocarpo	Aut	X	X	23	F	NE	13018
Verbenaceae	Stachytarpheta cf. crassifolia Schrad.	Subshr	Schizocarpo	Aut	X	X	15	O	NE	13100
Vochysiaceae	Vochysia parviflora Mart.	Arb	Loculicidal capsule	Ane	X	X	5253			

Legend: Habitat (H), Arboreal (Arb), Shrub (Shr), Subshrub (Subshr), Climber (Clim), Liana (Lia), Herbaceous (Herb), Hemiparasite (Hemipar), Rapid Survey (LR), Line 1 (L1), Line 2 (L2), Line 3 (L3), Absolute Frequency (FA), Abundance (A), Rare (R), Occasional (O), Frequent (F), Abundant (A), conservation state (CS), Not Evaluated (NE), Least Concern (LC) Data deficiency (DD), Danger of extinction (EN), Near threatened (NT), ** (Taxon at the genera level), Voucher (V), Fruit type (TF), Dispersion (D), Anemocoria (Ane), Zoocoria (Zoo), autocoria (Aut). Source: Authors.
Table 2. Comparison of the Shannon-Wiener diversity index in the disjoint Cerrado of the Chapada do Araripe with other disjoint Cerrado areas of the Brazilian Northeast.

Study/Location	Altitude	Annual or monthly* precipitation	Nº species	Shannon-Wiener
This study	900 m	760 mm	103	4.03
Mesquita and Castro (2007) /PE	200 m	7-22 mm*	92	3.42
Silva, Figueiredo and Andrade (2008)/MA	-	-	69	3.31
Moro, Castro and Araújo (2011)	16m	1338 mm	151	2.64
Costa; Araújo (2007)/CE	900 m	760 mm	43	2.88

Legend: Note that altitude, annual precipitation and number of species data were used to compare the Shannon-Wiener index with studies carried out in other areas of the Cerrado of Brazil. Source: Authors.

As for the vegetation structure, the arboreal component stood out with 42.72% of the species, followed by shrub (19.42%), subbranch (13.59%), herbaceous (10.68%), climbing liana (9.71%), climbing herbaceous (1.94%) and hemiparasites (1.94%). These results corroborate with the study by Silva, et al. (2015) carried out in the Chapada do Araripe and Andrella & José Neto (2017) in the nuclear Cerrado area where the arboreal habit was the most abundant, results which differ from those recorded by Costa & Araújo (2007) in a study carried out in a disjoint Cerrado area and of studies carried out in core Cerrado areas with a higher proportion of individuals belonging to the shrub stratum (Oliveira, Resende & Schleder 2014; Lima, Rando & Barreto 2015).

In L1 a significant increase in the accumulated species/time curve from the 1 - 5 min interval up to the 3 - 5 min interval was observed (Figure 1), with no new species being observed in the 8-5 min interval. It took 40 min and 736 m to find 72 species. L2 obtained a significant increase in new species during the 1 - 5 min interval up to the 5 - 5 min interval, with 65 min and 761 ms being necessary to find 73 species in that line, which represented the largest number of species among the three studied lines. It was also observed that L2 obtained a greater species dispersion along the intervals, a consequence attributed to a possible border effect, since the distance taken into account to soften this effect in the area may not have been sufficient (Figure 2). According to Laurance & Vasconcelos (2009) and Calegare et al. (2010) the closer you are to the forest fragment edge the greater the rate of species loss and the greater the change in floristic composition occurs. In this same line a greater variation in the
number of meters traveled per time interval was observed, this difference being possibly due to a narrowing of the trail, making it difficult to see and differentiate the species in the area. In L3, a gradual increase in the number of species was observed between the 1 - 5 min interval up to the 3 - 5 min interval, where in total 70 species were found in 40 min and 1030 m (Table 3).

Figure 2. Species x time curve obtained in the Rapid survey conducted in a Cerrado area, Chapada do Araripe, Crato-CE.

Legend: The top three lines show the accumulated number of species for each walking interval, while the bottom line shows the combination of new species accumulated in the three studied intervals. Source: Authors.

The sum of the three walking lines (L1+L2+L3) (Table 3) indicates the plant community is rather uniform in floristic composition. The species/time curve indicates sample adequacy since stability was achieved for all walking lines. The significance of the sampling is paramount for the real knowledge regarding plant richness of the studied area (Amaral et al. 2000). The species distribution by area was similar to Cerrado areas from the Federal District sampled by the same method (Walter & Guarino 2006).
Table 3. New species sampled using a Rapid Survey in a Cerrado area in the Chapada do Araripe, Crato-CE.

TI (min)	L1	L2	L3	L1 + L2 + L3				
	MT	NNS	MT	NNS	MT	NNS	AMT	NSA
5	68	39	28	13	66	33	54	60
10	61	12	30	9	78	20	56	19
15	64	11	31	7	97	9	64	5
20	89	5	25	8	149	3	88	4
25	100	2	24	7	143	3	89	4
30	102	2	31	5	164	1	99	4
35	118	1	27	7	153	1	99	1
40	134	0	35	5	180	0	116	2
45	-	-	38	5	-	-	13	1
50	-	-	89	4	-	-	30	2
55	-	-	91	2	-	-	30	0
60	-	-	159	1	-	-	53	1
65	-	-	153	0	-	-	51	0
Total	736	72	761	73	1030	70	842	103

Legend: Time Interval (TI), Metres Traveled (MT), Number of New Species (NNS), Average Metres Traveled (AMT) and New Species Accumulation (NSA). Source: Authors.

As registered in Flora do Brasil 2020 (2018) all sampled species are of native origin and 42 species are endemic to Brazil: Axonopus polydactylus, Baccharis cinera, Banisteriopsis malifolia, Blepharodon manicatum, Bredemeyera brevifolia, Byrsonima gardneriana, Caryocar coriaceum, Chrysophyllum arenarium, Colubrina cordifolia, Cordia rufescens, Cordiera rigida, Croton echioides, Croton limae, Dalbergia miscolobium, Dasyphyllum sprengelianum, Eremanthus arboreus, Eriope tumidicaulis, Erythroxylum barbatum, Erythroxylum cf. stipulosum, Erythroxylum loefgrenii, Erythroxylum rosuliferum, Eugenia punicifolia, Eugenia sonderiana, Guapira graciliflora, Himatanthus drasticus, Ipomoea blanchetii, Melochia betonicifolia, Moquiniastrum blanchetianum, Ocotea nitida, Parkia platycephala, Piriqueta sidifolia, Psidium myrsinoides, Psidium myrtoides, Securidaca lanceolata, Senna cearenses, Smilax japianga, Stachytarpheta cf. crassifolia, Strychnos parvifolia, Swartzia cf. flaemingii, Temnadenia violacea, Varronia leucomalloides, Zanthoxylum gardneri, of these Varronia leucomalloides, C. coriaceum, E. rosuliferum, C. limae, C. cordifolia and S. cearensis occur only in the Northeast states where E. arboreus displays a restricted distribution only for the state of Ceará.

Based on data from Flora do Brasil 2020 (2018), three new plant species occurrences were observed for the state of Ceará (Table 4).
Table 4. Relationship of species occurring in the Cerrado area in the Chapada do Araripe, Crato-CE municipality, which constitute new records for the List of Brazilian Flora Species (2018).

Family/ Scientific name	Species scope in Brazil (Flora do Brasil 2020 (2018))	Scope of new record
Lamiaceae		
Eriope tumidicaulis Harley	BA, MG	Crato-CE
Myrtaceae		
Myrciaria cf. tenella (DC.) O. Berg	BA, MA, MG, PA, RJ, SP and Southern region	Crato-CE
Verbenaceae		
Stachytarpheta cf. crassifolia Schrad.	BA, MG	Crato-CE

Legend: Bahia (BA), Ceará (CE), Maranhão (MA), Mato Grosso (MG), Minas Gerais (MG), Rio de Janeiro (RJ), São Paulo (SP). Source: Authors.

3.2 Species conservation status

With regards to the species abundance classification in the conservation status for the studied areas, 41.75% of the species were classified as frequent, 32.04% as occasional, 15.53% as abundant and 10.68% as rare. For the Cerrado area, *stricto sensu*, Oliveira et al. (2015) also recorded vegetation characterized by the presence of few dominant and rare species, results differing from Carvalho & Marques-Alves (2008), which among 46 species studied in a Cerrado area *stricto sensu*, 11 were classified as rare.

Among the most abundant species in the area *Cordiera myrcifolia*, *Miconia albicans*, *Caryocar coriaceum* and *Copaifera langsdorffii* are found with 352, 296, 287 and 266 individuals, respectively, representing 22.8% of the total inventoried species, differing from Souza et al. (2007) in a Cerrado area of the Chapada do Araripe which indicate *Andira laurifolia* Benth. (265) and *Parkia platycephala* Benth. (159) as the most abundant species.

As for the rare species found in the study area, *Blepharodon pictum*, *Jacquemontia velutina*, *Ipomoea blanchetii* and *Eriope tumidicaulis*, with three individuals each, as well as *Pirita sidifolia* with only two individuals, were found. According to Aquino & Miranda (2008); Sano et al. (2014) and Macêdo (2015), while several factors exist to consider a species as rare, in conservation biology the most commonly used criteria are associated with a low frequency and distribution of these in their area of occurrence.

Determinants for the conservation of rare species are the same which justify those for other species, however, the extinction of these species may possibly represent an ecological imbalance in the ecosystem, which would be associated with both the factors related to its evolutionary process and the perspective of representing a potential source for the discovery
of medicinal drugs or even constitute a food source for future generations (Oliveira et al. 2018).

Among the abundant, frequent and occasional species a greater predominance of species with zoocoric dispersion syndrome was observed, these being 11.65%, 24.27% and 15.53%, respectively. For the other conservation statuses, 2.91% of abundant species were found to have an autocratic/zoocoric dispersion and 0.97% anemocoric; 8.84% of species classified as frequent were found to be anemocoric, 6.80% autocratic and 1.94% autocratic/zoocoric; meanwhile 8.74% of species classified as occasional were anemocoric and 7.77% were autocratic. For the rare species, 3.88% presented a zoocoric dispersion, with the same percentage being observed for autocratic species, moreover it is worth mentioning that only 2.91% were classified as anemocoric. The large number of rare and occasional species with zoocoric dispersion, demonstrates the increasingly urgent need for local fauna preservation, since the elimination of frugivorous animals from the environment tends to compromise the reproduction and dynamics of several species (Almeida et al. 2008; Stefanello et al. 2010).

In the studied area, Bowdichia virgilioides and Smilax japicanga are classified as endangered while Caryocar coriaceum has an endangered status, which corroborates with data from IUCN (2017) and Flora do Brasil 2020 (2018). These species were classified in the studied area as frequent, occasional and abundant, respectively. It is believed the progressive disappearance of these species in nature can be attributed not only to their own evolutionary processes, but to anthropic factors since they have food value, medicinal properties, ornamental and timber potential, which have been affected by predatory extractivism, without the competent bodies having a future concern for their preservation (Ribeiro & Rodrigues 2006). In addition, Machado et al. (2004); Klink & Machado (2005) point out that other factors such as loss of habitat and poor soil management are preponderant for the extinction of plant species in the Cerrado.

3.3 Dispersion syndromes and fruit characterization

Of the 103 described species, 56.31% were classified as zoocoric, 21.35% as anemocoric, 17.45% as autocratic and 4.85% as autocratic/zoocoric. In studies carried out in nuclear Cerrado areas by Silva & Rodal (2009); Reis et al. (2012); Oliveira et al. (2015); Rios & Souza-Silva (2017), zoocoria was the most representative dispersion mode, followed by anemocoria, which corroborates with the present research. However, a discordance with
Costa, Araújo & Lima-Verde (2004) and Silva et al. (2015) exists in studies carried out in Cerrado areas in the Chapada do Araripe in the municipalities of Barbalha and Nova Olinda, which, despite having a relative proximity to the site of this study, registered zoocoria followed by autocoria and anemocoria as the prevailing dispersion methods.

The dispersal of diaspores by animals is of great adaptive advantage for several plant species since this relation allows them to be carried away from the mother plant, and the animals can deposit them in favorable places for their germination (Leal 2003). Dispersal by anemocoria is restricted to a few families, which confirms the advanced succession stage of the studied areas, since according to Liebsch & Acra (2007) this syndrome is associated with open areas with a predominance for pioneer species, as this structure favors the passage of the wind and consequent diaspore dispersion. Although the proportion of autocoric species has been shown to be low for the study, it has been characterized as one of the largest ever found in Cerrado areas, which may be related to a local pattern.

The zoocoria was predominant for the arboreal (32.35%), shrub (10.78%), subarbustive (6.96%) and hemiparasite (1.9%) components, however in the climbing and herbaceous components autocoria (10.78%) and anemocoria (7.84%) prevailed. Results which corroborate with studies carried out in central Cerrado areas by Asunción; Gugliere-Carporal; Sartori (2011); Oliveira; Resende; Schleder (2014); Oliveira et al. (2015); Ferreira et al. (2017); Rocha et al. (2017); Bonfim (2018) and in disjoint Cerrado areas in the Chapada do Araripe by Costa et al. (2004).

Harms et al. (2000) and Jordano & Godoy (2002) observed dispersal patterns by animals with seed accumulation at specific points, while much of the study area was not affected by dissemination, contrasting with generally more uniform anemocoric species patterns. Seed distribution is spatially heterogeneous due to animal behavior, which can cause deposits in preferred sites, such as burrows and nests, or in routine paths of passage (Schupp et al. 2002). For zoocoric species, the distance achieved should be more important than the possible advantages that could be provided by a spatially more uniform dispersion, since there would be less intraspecific competition.

For Silva, Assad & Evangelista (2008) the representative percentage of anemocoric species in Cerrado formations may be a consequence of the strong seasonality of this vegetation, which presents a well defined dry season, allowing the occurrence of abiotic dispersion.

As for fruit types, 23 were identified for the 103 sampled species. Those characterized as drupe obtained a greater number of occurrences (18.45%), followed by berry representing
14.56% and capsule (10.68%). The remaining fruit types obtained the following percentages: schizocarp and sambara (5.83%), legume, cipsela and loculative capsule (4.85%), follicle, leaflet and nucloid legume (3.88%), nucleus and cariopse (2.91%), septicidal capsule, samaroid and achene legume (1.94%), camponamesoid, globose capsule, craspedium, multiple strobiliform, free multiple, nuculanium and sincarpo (0.97%), together represented 53.41% of the total.

The drupa and loculative capsule types were identified as the most recurrent in a central Cerrado area by Stefanello, Fernandes-Bulhão & Martins (2009) and in the Perennial Seasonal Forest located in the municipality of Querência-MT by Stefanello et al. (2010). The large proportion of these fruit types in the studied area may be related to dispersion patterns in the studied Cerrado area.

4. Final Considerations

The Fabaceae, Euphorbiaceae, Malpighiaceae, Apocynaceae, Myrtaceae and Rubiaceae families showed a greater number of species richness in the Cerrado area studied. With regards to species dominance Cordiera myrciifolia (“bola”/“café bravo”), Miconia albicans (“candeeiro-de-pelo”), Caryocar coriaceum (pequi) and Copaifera langsdorffii (“pau d’óleo”) stand out.

The studied vegetation has a higher occurrence of arboreal and shrub species, respectively.

Most of the species occurring in the transects are considered frequent when they are classified according to their conservation status. Moreover, rare species highlighted due to their low density were: Blepharodon pictum, Jaccquemontia velutina, Ipomoea blanchetii, Eriope tumidicaulis, with three individuals each, and Piriqueta sidifolia with only two individuals. In this study the presence of three new species for the state of Ceará were verified: Eriope tumidicaulis, Myrciaria cf. tenella and Stachytarpheta cf. crassifolia.

The predominant dispersion syndrome among the studied species is zoocoria, followed by anemocoria and autocoria. Zoocoria was the most frequent among arboreal and shrub strata, which may be related to the drupa and berry fruits types, which were predominant among the identified species. In this way, the natural regeneration of forests is highly dependent on the fauna, evidencing that it must be protected for the maintenance of existing ecological processes, such as the propagation of propagules.

Considering the high number of endemic species that occur in the studied Cerrado
area and the species that are in danger of being extinct in nature, this study is hoped to serve as a subsidy for conservation programs in order to aid a greater local preservation.

Considering the high number of endemic species that occur in the studied Cerrado area and the species that are at risk of extinction in the wild, it is hoped that this study will serve as a subsidy for conservation programs in order to help greater local preservation.

Thus, it is necessary to carry out further studies that can identify as local fauna species responsible for the spread of propagules, a better end to the interspecific ecological processes occurring in the Araripe National Forest-Apodi.

Acknowledgements

The Regional University of Cariri-URCA (Universidade Regional do Cariri-URCA) for the support granted. The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) by this financed study whit the Finance Code 001.

References

Aguiar, B. A., Camargo, M. O., Ferreira, R. Q. S. F., Teixeira P. R., Silva, R. R. S., & Souza, P. B. (2018) Florística e estrutura do componente arbustivo-arbóreo de um remanescente de cerrado sensu stricto, Gurupi, Tocantins. Revista Verde, 13, 45-51.

Almeida, S. R., Watzlawick, L. F., Myszka, E., & Valerio, A. F. (2008) Florística e síndromes de dispersão de um remanescente de Floresta Ombrófila Mista em sistema faxinal. Ambiência, 4, 289-297.

Alves, C. C. E., Bezerra, L. M. A., & Matias, A. C. C. (2011) A importância da conservação/preservação ambiental da Floresta Nacional do Araripe para a Região do Cariri-Ceará/Brasil. Revista geográfica da América Central, 2, 1-10.

Alves-Junior, F. T., Brandão, C. F. L. S., Rocha, K. D., Marangon, L. C., & Ferreira, R. L. C. (2006) Efeito de borda na estrutura de espécies arbóreas em um fragmento de floresta ombrófila densa, Recife, PE. Revista Brasileira de Ciências Agrárias, 1, 49-56.

Amaral, I. L., Matos, F. D. A., & Lima, J. (2000) Composição florística e parâmetros
estruturais de um hectare de floresta densa de terra firme no Rio Uatumã, Amazônia, Brasil. Acta Amazonica, 30, 377-392.

Andrade, M. C. O. (2007) Pernambuco e o trópico. Ver. do IEB 45, 11-20.

Andrella, C. G., & José-Neto, M. (2017) Levantamento florístico dos arredores do Parque das Capivaras, Três Lagoas-MS. Revista Saúde e Meio Ambiente, 5, 70-77.

APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1–20.

Aquino, F. G., & Miranda, G. H. B. (2008) Consequências ambientais da fragmentação de habitats no Cerrado. In: Sano SM, Almeida SP, & Ribeiro JF (eds.) Cerrado: ecologia e flora. Ed. Brasília, 383-395.

Assunção, V. A., Guglieri-Caporal, A., & Sartori, Â. L. B. (2011) Florística do estrato herbáceo de um remanescente de cerradão em Campo Grande, Mato Grosso do Sul, Brasil. Revista Hoehnea, 38, 281-288.

Barros, B. C., Silva, J. A. A., Ferreira, R. L. C., & Rebouças, A. C. M. N. (2010) Volumetria e sobrevivência de espécies nativas e exóticas no pólo gesseiro do Araripe –PE. Revista Ciência Florestal 20, 641-647.

Barroso, G. M., Morim, M. P., Peixoto, A. L., & Ichaso, C. L. F. (1999) Frutos e sementes: Morfologia aplicada a sistemática de dicotiledôneas. Ed. UFV, Viçosa. 444 p.

Bonfim, E., Candido, J., Lima, D. P., Teixeira, P. R., Camargo, M. O, Ferreira, R. Q. S., & Souza, P. B. (2018) Síndromes de dispersão de espécies arbustivo-arbóreas de uma área de cerrado sensu stricto, Gurupi-To. Global Science and Technology, 11, 67-76.

Bordino, L. F., José-Neto, M., & Blini, R. C. B. (2018) Levantamento florístico de um fragmento de Cerrado em recuperação no distrito industrial de Três Lagoas-MS. Revista Saúde Meio Ambiente, 6, 45-55.
Calegari, L., Martins, S. V., Gleriani, J. M., Silva Busato, L. C. (2010) Análise da dinâmica de fragmentos florestais no município de Carandaí, MG, para fins de restauração florestal. Revista Árvore, 34, 871-880.

Carvalho, A. R., & Marques-Alves, S. (2008) Diversidade e índice sucessional de uma vegetação de Cerrado sensu stricto na Universidade Estadual de Goiás-UEG, campus de Anápolis. Revista Árvore, 32, 81-90.

Cordeiro, L. (2002) Fixação de nitrogênio em leguminosas ocorrentes no Cerrado. In: Klein AL (ed.). Eugen warming e o cerrado brasileiro: um século depois. Ed. UNESP, São Paulo. 131-145.

Costa, I. R., Araújo, F. S., & Lima-Verde, L. W. (2004) Flora e aspectos auto-ecológicos de um encrave de cerrado na chapada do Araripe, Nordeste do Brasil. Acta Botânica Brasílica, 18, 759-770.

Costa, I. R., & Araújo, F. S. (2007) Organização comunitária de um encrave de cerrado sensu stricto no bioma Caatinga, chapada do Araripe, Barbalha, Ceará. Acta Botânica Brasílica, 21, 281-291.

Domingues, C. A. J., Gomes, V. G. N., & Quirino, Z. G. M. (2013) Síndromes de dispersão na maior área de proteção da Mata Atlântica paraibana. Biotemas, 26, 99-108.

Ferreira, R. Q. S., Camargo, M. O., Teixeira, P. R., Souza, P. B., & Souza, D. J. (2017) Diversidade florística do estrato arbustivo arbóreo de três áreas de cerrado sensu stricto, Tocantins. Desafios, 4, 69-82.

Ferreira, R. Q. S., Camargo, M. O., Teixeira, P. R., Souza, P. B., & Viana, R. H. O. (2016) Uso potencial e síndromes de dispersão das espécies de três áreas de cerrado sensu stricto, Tocantins. Global Scince and Technology. 9, 73-86.

Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Recuperado de <http://floradobrasil.jbrj.gov.br/>.
Harms, K. E., Wright, S. J., Calderón, O., Hernández, A., & Herre, E. A. (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493-495.

Instituto Brasileiro de Geografia e Estatística (IBGE). Manual Técnico da Vegetação Brasileira. Rio de Janeiro: IBGE, Manuais Técnicos em Geociências, 2012. 271. Recuperado de <https://biblioteca.ibge.gov.br/visualizacao/livros/liv63011.pdf>.

International Union for Conservation of Nature (IUCN). The IUCN Red List of Threatened Species. Version 2017-3 <http://www.iucnredlist.org>.

Jordano, P., & Godoy, J. A. (2002) Frugivore-generated seed shadows: a landscape view of demographic and genetic effects. In: Levey, D. J., Silva, W. R., Galleti, M. (eds.). Seed dispersal and frugivory: ecology, evolution and conservation. Ed. CABI Publishing, New York. 305-321.

Klink, C. A., & Machado, R. B. A. (2005) Conservação do Cerrado brasileiro. Megadiversidade 1, 147-155.

Köeppen, W. (1948) Climatologia: con un estudio de los climas de la tierra. Mexico: FCE. 475p.

Laurance, W. F., & Vasconcelos, H. L. (2009) Consequências ecológicas da fragmentação Florestal na amazônia. Oecologia brasiliensis, 13, 434-451.

Laurance, W. F., Ferreira, L. V., Rankin-Merona, J. M., & Laurance, S. G. (1998) Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology, 79, 2032-2040.

Leal, I. R. (2003) Dispersão de sementes por formigas na caatinga In: Leal, I. R., Tabarelli, M., & Silva, J. M. C. (eds.). Ecologia e conservação da caatinga, Editora Universitária da UFPE. Recife 523-694.

Lefebvre, I. D., & Nascimento, A. T. (2016) Densidade e aspectos populacionais de Dalbergia miscolobium Benth. em um fragmento de cerrado sensu stricto, Uberlândia, Minas Gerais.
Iheringia, Série Botânica 71, 85-92.

Liebsch, D., & Acra, L. A. (2007) Síndromes de dispersão de diásforos de um fragmento de floresta ombrófila mista em Tijucas do Sul, PR. Ciência animal, 5, 167-175.

Lima, R. A. F., Rando, J. G., & Barreto, K. D. (2015) Composição e diversidade no Cerrado do leste de Mato Grosso do Sul, Brasil. Revista Árvore, 39, 9-24.

Loiola, M. I. B., et al. 2015. Flora da Chapada do Araripe. In: Albuquerque UP, Meiado MV. (eds.) Sociobiodiversidade na Chapada do Araripe Bauru, NUPEEA: Canal 6, 103-148.

Macedo, H. R., Macedo, J. A., Bernardi, C. M. M., & Moraes, M. L. T. (2015) Composição florística em formações de Cerrado com ação antrópica. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 9, 76-83.

Machado, R. B., Ramos-Neto, M. B., Pereira, P. G. P., Caldas, E. F., Gonçalves, D. A., Santos, N. S., Tabor, K., & Steininger, M. (2004) Estimativas de perda da área do Cerrado brasileiro. Relatório técnico não publicado. Conservação Internacional, Brasília/DF, 23p.

Magurran, A. E. (1988) Ecological diversity and its measurement. Princeton: Princeton University, 179p.

Medeiros, M. M., Felfili, J. M., & Libano, A. M. (2015) Floristic-structural comparison of the regeneration and adult layers in cerrado sensu stricto in Central Brazil. Cerne 13, 291-298.

Mesquita, M. R., & Castro, A. A. J. F. (2007) Florística e fitossociologia de uma área de cerrado marginal (cerrado baixo), Parque Nacional de Sete Cidades, Piauí. Publicações avulsas em conservação de ecossistemas, 15, 1-22.

Morellato, L. P. C., & Leitão-Filho, H. F. (1992) Padrões de frutificação e dispersão na Serra do Japi. In: História natural da Serra do Japi: ecologia e preservação de uma área florestal no Sudeste do Brasil. Morellato LPC (ed.). Editora da Unicamp/Fapesp, São Paulo: Campinas, 112-140.
Mori, S. A., Silva, L. A. M., Lisboa, G., & Coradin, L. (1989) *Manual de Manejo de Herbário Fanerogâmico*, 2ª ed., Ilhéus, Centro de Pesquisas do Cacau. 104 p.

Moro, M. F., Castro, A. S. F., & Araújo, F. S. (2011) Composição florística e estrutura de um fragmento de vegetação savânica sobre os tabuleiros pré-litorâneos na zona urbana de Fortaleza, Ceará. *Rodriguésia*, 62, 407-423.

Muller-Dombois, D. I., & Ellemberg, H. (1994) *Aims and methods of vegetation ecology*. New york: J. Wiley. 54.

Myers, N. R. A., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Kent, J. (2000) Biodiversity hotspots for conservation priorities. *Nature*, 403, 853-858.

Novaes, R. L. M., & Laurindo, R. S. (2014) Morcegos da Chapada do Araripe, nordeste do Brasil. *Papeis Avulsos de Zoologia*, 54, 315-328.

Oliveira, A. K. M., Resende, U. M., & Schleder, E. J. D. (2014) Espécies vegetais e suas síndromes de dispersão em um remanescente de cerrado (sentido restrito) do município de Campo Grande, Mato Grosso do Sul. *Ambiência*, 10, 565-580.

Oliveira, C. P., Francelino, M. R., Cysneiros, V. C., Andrade, F. C., & Booth, M. C. (2015) Composição florística e estrutura de um Cerrado *sensu stricto* no Oeste da Bahia. *Cerne*, 21, 545-552.

Oliveira, L. M., Sousa, R. M., Correa, N. E. R., Santos, A. F. S., & Giongo, M. (2018) Florística e síndromes de dispersão de um fragmento de cerrado ao sul do Estado do Tocantins. *Scientia Agrarria Paranaensis*, 17, 104-111.

Oliveira, L. C. S., *et al*. 2015. Levantamento florístico e fitossociológico da regeneração natural de uma mata de galeria localizada no município de Jataí -GO. *Global Science and Technology*, 8, 59 – 77.
Paula, A., Martins, F. Q., Batalha, M. A. P. L., Rodrigues, R., & Manhães, M. A. (2015) Riqueza, diversidade e composição florística em áreas de cerrado em regeneração e preservado na estação ecológica de Itirapina - SP. Ciência Florestal, 25, 231-238.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM, 119p.

Pijl, L. V. D. (1982) Principles of Dispersal in Higher Plants. V. 2Springer-Verlag, Berlim. 215p.

Ponciano, T. A., Faria, K. M. S., Siqueira, M. N., & Castro, S. S. (2015) Fragmentação da cobertura vegetal e estado das Áreas de Preservação Permanente de canais de drenagem no Município de Mineiros, Estado de Goiás. Ambiência, 11, 545-561.

Ratter, J. A., Bridgewater, S., & Ribeiro, J. F. (2003) Analysis of floristic composition of the Brazilian Cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany, 60, 57-109.

Ratter, J. A., Bridgewater, S., & Ribeiro, J. F. (2001) Espécies lenhosas da fitofisionomia cerrado sentido amplo em 170 localidades do bioma Cerrado. Boletim do Herbário Ezechias Paulo Heringer 7, 5-112.

Reis, S. M., Mohr, A., Gomes, L., Abreu, M. F., & Lenza, E. (2012) Síndromes de polinização e dispersão de espécies lenhosas em um fragmento de cerrado sentido restrito na transição Cerrado - Floresta Amazônica. Heringeriana, 6, 28-41.

Ribeiro, J. F., & Walter, B. M. T. (2008) As Principais Fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP & Ribeiro JF (eds.). Cerrado Ecologia e Flora Brasília: Embrapa. 151-199.

Ribeiro, R. A., & Rodrigues, F. M. (2006) Genética da conservação em espécies vegetais do Cerrado. Revista de Ciências Médicas e Biológicas, 5, 253-260.
Rios, M. N. S., & Sousa-Silva, J. C. (2017) Grupos funcionais em áreas com histórico de queimadas em Cerrado sentido restrito no Distrito Federal. *Pesquisa Florestal Brasileira*, 37: 285-298.

Ritter, L. M. O., & Moro, R. S. (2007) Similaridade florística entre as disjunções de cerrado na bacia do alto Tibagi. *Terr@ Plural*, 1, 185-98.

Rocha, G. O., Netto, M. C. B., & Lozi, L. R. P. *Diversidade, riqueza e abundância da entomofauna edáfica em área de cerrado do Brasil Central*. Universidade Estadual de Goiás, Anápolis, GO. 2005. Recuperado de <http://www.sebecologia.org.br/viiceb/resumos/1036a.pdf>.

Rocha, M. J. R., Cupertino-Eisenlohr, M. A., Leoni, L. S., Silva, A. G., & Nappo, M. E. (2017) Floristic and ecological attributes of a Seasonal Semideciduous Atlantic Forest in a key area for conservation of the Zona da Mata region of Minas Gerais State, Brazil. *Hoehnea*, 44, 29-43.

Sano, P. T., Trovó, M., Echternacht, L., Costa, F. N., Watanabe, M., & Giuliani, A. M. (2014) A importância da conservação de espécies raras no Brasil. *In*: Martinelli, G., Messina, T. & Santos Filho, L. (eds). *Livro vermelho da flora do Brasil*: plantas raras do Cerrado. (1ª ed.). Rio de Janeiro: Andrea Jakobsson: Instituto de Pesquisas Jardim Botânico do Rio de Janeiro: CNC Flora, (Cap.1).

Santos, L. S., Silva, H. P. B., & Pereira, E. C. G. (2014) Cerrado em Área Disjunta em Brejo de Altitude no Agreste Pernambucano, Brasil. *Boletim Goiano de Geografia*, 34, 337-353.

Schierolz, T. (1991) Dinâmica biológica de fragmentos florestais. Ciência Hoje 12, 22-29.

Schupp, E. W., Milleron, T., & Russo, S. (2002) Dissemination limitation and the origin and maintenance os species-rich tropical forests. *In*: Levey DJ, Silva WR & Galleti M (eds.). *Seed dispersal and frugivory: ecology, evolution and conservation* New York: CABI Publishing. 19-33.
Siebra, F. S. F., Bezerra, L. A., & Oliveira, M. T. A. (2011) Influência geoturística e ambiental do Geopark Araripe no geossítio colina do horto, Ceará/Brasil. *Revista geográfica de América Central*, 2, 1-14.

Silva, F. A. M., Assad, E. D., & Evangelista, B. A. (2008) Caracterização climática do bioma Cerrado. In: Sano, S.M., Almeida, S.P. & Ribeiro, J.F. (eds.). *Cerrado: ecologia e flora Brasilia*: Embrapa Cerrados, 61-88.

Silva, H. G., Figueiredo, N., & Andrade, G. V. (2008) Estrutura da vegetação de um cerradão e a heterogeneidade regional do cerrado no Maranhão, Brasil. *Revista Árvore*, 32, 921-930.

Silva, M. A. M., Ferreira, W. N., Macêdo, M. J. F., Silva, M. A. P., & Souza, M. M. A. (2015) Composição florística e características ecológicas de um Cerradão em Nova Olinda, CE. *Cadernos de Cultura e Ciência*, 14, 70-85.

Silva, M. C. N. A., & Rodal, M. J. N. (2009) Padrões das síndromes de dispersão de plantas em áreas com diferentes graus de pluviosidade, PE, Brasil. *Acta Botânica Brasílica*, 23: 1040-1047.

Silveira, D. T., Córdova, F. P. (2009) Unidade 2–A pesquisa científica. *Métodos de pesquisa*, 1, 31-42.

Souza, J. T., Silva, M. A. M., Mendes, P. G. A., Sousa, J. R., Lima, A. S., Mendonça, F. G. T., & Souza, M. M. A. (2007) Caracterização de uma vegetação de cerrado em uma área no município de Nova Olinda-CE. *Cadernos de Cultura e Ciência*, 2, 2-12.

Stefanello, D., Ivanauskas, N. M., Martins, S. V., Silva, E., & Kunz, S. H. (2010) Síndromes de dispersão de diásporos das espécies de trechos de vegetação ciliar do rio das Pacas, Querência – MT. *Acta Amazonica*, 40, 141-150.

Stefanello, D., Fernandes-Bulhão, C., & Sebastião, V. M. (2009) Síndromes de dispersão de sementes em três trechos dev egetação ciliar (nascente, meio e foz) ao longo do Rio Pindaíba, MT. *Revista Árvore*, 33, 1051-1061.
The Plant List. Version 1.1. Recuperado de http://www.theplantlist.org/.

Torres, D. M., Fontes, M. A. L. & Samsonas, H. P. (2017) Relações solo-vegetação na estruturação de comunidades de cerrado sensu stricto no sul de Minas Gerais, Brasil. Rodriguésia 68, 115-128.

Walter, B. M. T., & Guarino, E. S. G. (2006) Comparação do método de parcelas com o “levantamento rápido” para amostragem da vegetação arbórea do Cerrado sentido restrito. Acta Botânica Brasílica 20, 285-297.

Percentage of contribution of each author in the manuscript

Janete de Souza Bezerra – 35%
Karina Vieiralves Linhares – 8%
João Tavares Calixto Júnior – 5%
Antônia Eliene Duarte – 5%
Ana Cleide Alcântara Morais Mendonça – 5%
Alana Ermília Paiva Pereira – 5%
Maria Edenilce Peixoto Batista – 5%
José Weverton Almeida Bezerra – 5%
Nathalia Barbosa Campos – 5%
Kyhara Soares Pereira – 5%
Jeane Dantas Sousa – 5%
Maria Arlene Pessoa da Silva – 12%