Detection of Tick-Borne Bacterial and Protozoan Pathogens in Ticks from the Zambia–Angola Border

Yongjin Qiu 1,*, Martin Simuunza 2, Masahiro Kajihara 3, Joseph Ndebe 2, Ngonda Saasa 2, Penjani Kapila 2, Hayato Furumoto 4, Alice C. C. Lau 5, Ryo Nakao 6, Ayato Takada 3,7,8,9, and Hirofumi Sawa 1,7,8,9

Abstract: Tick-borne diseases (TBDs), including emerging and re-emerging zoonoses, are of public health importance worldwide; however, TBDs tend to be overlooked, especially in countries with fewer resources, such as Zambia and Angola. Here, we investigated Rickettsia, Anaplasma, and Apicomplexan pathogens in 59 and 96 adult ticks collected from dogs and cattle, respectively, in Shangombo, a town at the Zambia–Angola border. We detected Rickettsia africae and Rickettsia aeschlimannii in 15.6% of Hyalomma marginatum and 41.7% of Amblyomma variegatum ticks, respectively. Ehrlichia minasensis was detected in 18.8% of Rickettsia aeshlimannii, and Candidatus Midichloria mitochondrii was determined in Hyalomma marginatum. We also detected Babesia caballi and Theileria velifera in A. variegatum ticks with a 4.4% and 6.7% prevalence, respectively. In addition, Hepatozoon canis was detected in 6.5% of Rhipicephalus lunulatus and 4.3% of Rhipicephalus sanguineus. Coinfection of R. aeshlimannii and E. minasensis were observed in 4.2% of H. truncatum. This is the first report of Ca. M. mitochondrii and E. minasensis, and the second report of B. caballi, in the country. Rickettsia africae and R. aeshlimannii are pathogenic to humans, and E. minasensis, B. caballi, T. velifera, and H. canis are pathogenic to animals. Therefore, individuals, clinicians, veterinarians, and pet owners should be aware of the distribution of these pathogens in the area.

Keywords: Babesia caballi; Candidatus Midichloria mitochondrii; Ehrlichia; Hepatozoon canis; Rickettsia; Theileria velifera; Zambia–Angola border

1. Introduction

Ticks are important blood-sucking arthropods in medical and veterinary science, second to mosquitoes. They not only cause anemia in their hosts, but also carry and transmit
a broad range of viruses, bacteria, and protozoa. Some of these microorganisms cause tick-borne diseases (TBDs), which include emerging and re-emerging infectious diseases [1,2]. To date, TBDs have been considered a focal point for human and animal health worldwide. The identification of novel viral and bacterial TBD-causing agents has increased in recent times [3]. An example of emerging TBD agents is *Borrelia fainii*, which was first isolated from a febrile patient in Zambia in 2019 [4]. *Ornithodoros faini* ticks and *Rousettus aegyptiacus* bats are considered as a vector and natural reservoir of *Borrelia fainii*, respectively [4]; however, TBDs tend to be overlooked, especially in low-resource countries, because of limitations in diagnostic infrastructure.

Tick-borne bacterial pathogens include *Rickettsia*, *Anaplasma*, *Ehrlichia*, *Coxiella*, *Orientia*, and *Borrelia*. Among them, *Rickettsia* are obligate intracellular Gram-negative bacteria, and are recognized as the causative agents of important emerging TBDs [5,6]. The symptoms of human rickettsiosis include chills, high fever, headache, skin rash, and photophobia [7]. Species of the agents of human rickettsiosis differ region-wise. For example, *R. japonica* causes Japanese spotted fever prevalent in Asia, *R. parkeri* causes American Bourbonese Fever in the USA, and *R. africae* causes African tick bite fever in Africa [8–11]. Furthermore, *Anaplasma* and *Ehrlichia* are obligate intracellular bacteria belonging to the family *Anaplasmataceae*. Some of these bacteria cause TBDs in humans and animals. For example, *A. phagocytophilum* causes human granulocytic anaplasmosis and has been reported worldwide, including in Africa [12–14]. *Anaplasma platys* has primarily been isolated from dogs with cyclic thrombocytopenia; it has also been reported in Africa [15]. Importantly, human infection with *A. platys* has also been reported in Venezuela and South Africa [16,17].

The common tick-borne protozoan pathogens are members of the phylum Apicomplexa and belong to the genera *Babesia*, *Theileria*, and *Hepatozoon*. *Babesia microti*, *B. divergens*, *B. venatorum*, and *B. duncanii* are the major etiological agents of human babesiosis. Most human cases of babesiosis have been reported in the USA, but this disease has also been reported in Asia, Africa, Australia, Europe, and South America [18]. *Babesia gibsoni*, *B. canis*, *B. rossi*, and *B. vogeli* are widely known as causative agents of canine babesiosis [19]. *Babesia bigemina* and *B. bovis* are agents of bovine babesiosis [20,21]. *Theileria* species, particularly *T. annulata* and *T. parva*, have caused the most significant economic losses in livestock production worldwide. *Theileria annulata* causes tropical theileriosis in several tropical regions in southern Africa, northern Asia, and Africa [22]. Conversely, *T. parva* causes East Coast fever, which is distributed in the eastern, central, and southern parts of Africa [23]. *Hepatozoon canis* and *H. americanum* have been reported to cause canine and feline hepatozoonoses worldwide, which are the most common and important tick-borne hepatozoonoses [24].

Studies on tick-borne pathogens in Zambia, such as *Rickettsia*, *Anaplasmataceae*, and Apicomplexa, have primarily been conducted in the southern, central, and eastern parts of the country [15,25–31]. Angola is a neighboring country and shares borders with the western region of Zambia. A few studies on tick-borne pathogens have also been reported in Angola, primarily in the central and western regions [31,32]. Geographically, wildlife can easily pass through the Zambia–Angola border, and ticks might be attached to the bodies of animals during transit. Therefore, the investigation of ticks and tick-borne pathogens in the Zambia–Angola border may provide valuable information for a better understanding of the distribution of TBDs in western Zambia and eastern Angola. In this study, we performed the molecular-level screening and characterization of *Rickettsia*, *Anaplasmataceae*, and Apicomplexa detected from ticks in Shangombo at the Zambia–Angola border.

2. Results

2.1. Identification of Tick Species

Overall, we collected 59 and 96 adult ticks infesting dogs and cattle, respectively, in Shangombo, a town in the Zambia–Angola border region (Figure 1). Morphological identification revealed that 2 *Amblyomma variegatum* (males), 31 *Rhipicephalus lunulatus* (12 females and 19 males), 23 *R. sanguineus* (10 females and 13 males), and 3 *Rhipicephalus* spp. (males) ticks were collected from dogs, and 1 *A. pomposum* (male), 43 *A. variegatum* (7 females and
36 males), 1 *Hyalomma marginatum* (female), 48 *H. truncatum* (14 females and 34 males), and 3 *R. appendiculatus* (females) ticks were collected from cattle (Table 1).

![Map of the sampling site.](image)

Figure 1. Map of the sampling site. The red and black dots are sampling place and capital city, respectively.

Host Species	Tick Species	Female	Male
Dogs	*Amblyomma variegatum*	0	2
	Rhipicephalus lunulatus	12	19
	R. sanguineus	10	13
	Rhipicephalus spp.	0	3
Cattle	*A. pomposum*	0	1
	A. variegatum	7	36
	Hyalomma marginatum	1	0
	H. truncatum	14	34
	R. appendiculatus	3	0

2.2. Detection and Characterization of Rickettsia

Ticks infesting cattle were used for screening *Rickettsia* spp. using a polymerase chain reaction (PCR) targeting the *gltA* gene. As a result, *Amblyomma variegatum* (*n* = 7) and *Hyalomma truncatum* (*n* = 20) were positive for *Rickettsia* spp., representing three sequence variants. Sequence variants 1 and 2 identified from *A. variegatum* showed 100% identities to *Rickettsia africae* clones AT-11 and C10-F8-303, respectively, while sequence variant 3 identified from *H. truncatum* showed a 100% identity to *Rickettsia aeschlimannii* (Figure 2). Prevalence of *R. africae* in *A. variegatum* and *R. aeschlimannii* in *H. truncatum* were 15.6% and 41.7%, respectively.
Figure 2. Phylogenetic trees of detected *Rickettsia* spp. based on the sequences of five genes: (a) *gltA*; (b) *ompA*; (c) *ompB*; (d) *sca4*; and (e) *htrA*. The accession numbers for the nucleotide sequences are provided after the species names. The analyses were performed using the maximum likelihood method. Bootstrap values >70% based on 1000 replications are indicated on the interior branch nodes.
2.3. Detection and Characterization of Anaplasmataceae

For the screening of Anaplasmataceae, 59 ticks from dogs and 96 ticks from cattle were used. *Hyalomma truncatum* (*n* = 10) and *H. marginatum* (*n* = 1) were positive for Anaplasmataceae, representing three sequence variants. Sequence variants 1 and 2 identified from *H. truncatum* showed 100% identities to *Ehrlichia* sp. and *Ehrlichia minasensis*, respectively, while sequence variant 3 identified from *H. marginatum* showed a 100% identity to *Candidatus Midichloria* mitochondrii (Figure 3). The prevalence of *Ehrlichia* sp. and *E. minasensis* in *H. truncatum* were 2% and 18.8%, respectively, while the prevalence of *Ca. Midichloria* mitochondrii in *H. marginatum* was 100%.

![Phylogenetic tree of Anaplasmataceae](image-url)

Figure 3. Phylogenetic trees of Anaplasmataceae based on partial 16S ribosomal DNA sequences (305 bp). The analysis was performed using the maximum likelihood method. Bootstrap values >70% based on 1000 replications are shown on the interior branch nodes.

2.4. Detection and Characterization of Apicomplexa

The same ticks collected from dogs and cattle were used to screen Apicomplexa. As a result, *Rhipicephalus lunulatus* (*n* = 2), *R. sanguineus* (*n* = 1), and *Amblyomma variegatum* (*n* = 5) were positive for Apicomplexa, representing three sequence variants. Sequence variant 1 identified from *R. lunulatus* and *R. sanguineus* showed a 100% identity to *Hepatozoon canis*. Sequence variant 2 identified from three *A. variegatum* showed a 100% identity to *Theileria velifera*, while sequence variant 3 identified from two *A. variegatum* showed a 98.1% identity to *Babesia caballi* (Figure 4). The prevalence of *H. canis* in *R. lunulatus* and *R. sanguineus* was 6.5% and 4.3%, respectively, while the prevalence of *T. velifera* and *B. caballi* in *A. variegatum* was 6.7% and 4.4%, respectively.
2.5. Coinfection
Coinfections of *Rickettsia aeschlimannii* and *Ehrlichia minasensis* were observed from two *Hyalomma truncatum* ticks. None of the tick samples were coinfected with Apicomplexa and *Rickettsia* or *Anaplasmataceae*.

3. Discussion
We investigated the presence of *Rickettsia*, *Anaplasmataceae*, and Apicomplexa species in ticks collected from cattle and dogs in Shangombo, a town located at the border of Zambia and Angola. We identified *R. africae*, *R. aeschlimannii*, *E. minasensis*, *Ehrlichia* sp., *Ca. M. mitochondrii*, *H. canis*, *T. velifera*, and *B. caballi*. To the best of our knowledge, this is the first study to report *Ca. M. mitochondrii* and *E. minasensis*, and the second study to report *B. caballi*, in the country.

Rickettsia africae detected from *A. variegatum* in this study is widely known as a causative agent of African tick bite fever, which is one of the zoonotic tick-borne fevers from the spotted fever group of rickettsiae of emerging global health concern [33]. In addition, we also detected *Rickettsia aeschlimannii* from *H. truncatum*, which is a human pathogenic...
Pathogens 2022, 11, 566

rickettsia [34]. Previous epidemiological studies on rickettsia in Zambia were conducted in the central, eastern, and southern parts of the country [25,26,35–39]. Thus, this study is the first evidence of pathogenic rickettsiae in the western part of the country.

Ehrlichia minasensis was first isolated from cattle in midwestern Brazil in 2014, and it was experimentally confirmed to be an agent of clinical ehrlichiosis in calves [40]. To date, *E. minasensis* has been reported worldwide, including in South Africa, Kenya, and Ethiopia [41–43]. The primary vectors of *E. minasensis* are *Rhipicephalus microplus* and other *Rhipicephalus* ticks, but it has also been detected in *Amblyomma*, *Hyalomma*, and *Haemaphysalis* ticks [44–47]. In this study, *E. minasensis* was detected in nine *H. truncatum* ticks for the first time in Zambia. Our results expanded the distribution records of *E. minasensis*, suggesting the likelihood of bovine ehrlichiosis caused by *E. minasensis* occurring in Zambia. Further investigations of *E. minasensis* are warranted to evaluate the current situation in the country.

_Candidatus* Midichloria mitochondrii is an endosymbiont of ixodid ticks, such as *Ixodes ricinus*, *A. americanum*, *H. marginatum*, *R. turanicus*, and *H. wellingtoni*, and has been reported worldwide [48–52]. Recently, it was also reported in the argasid tick, *Ornithodoros turicata* [53]. The role of *Ca*. *M* mitochondrii in the host tick is speculated to enhance the host fitness and/or for ensuring its presence in the host population [54]. In this study, we provided the first evidence of *Ca*. *M* mitochondrii in *H. marginatum* ticks in Zambia.

We detected *Theileri velifera* and *Babesia caballi* in *A. variegatum*. *Theileria velifera* has been associated with low pathogenic or asymptomatic animal infections in cattle in Africa. Previous studies have reported the detection of *T. velifera* in impalas, buffalos, and cattle in Zambia, and it has been found to show a high prevalence in cattle [55,56], while, *B. caballi* is a pathogenic protozoan found in horses, donkeys, and zebras. Interestingly, *B. caballi* was detected in *A. variegatum* ticks infesting cattle in the Republic of Guinea [57] and was detected in 5.3% (16/299) of cattle blood samples by a reverse line blot hybridization assay in Zambia [55], even though *B. caballi* is known as an equine babesia. Thus, we speculated that a genotype of *B. caballi* is able to infect cattle and be carried by *A. variegatum*; however, further studies on the *B. caballi* in cattle in Zambia are required to evaluate this hypothesis.

Hepatozoon canis, an agent of canine hepatozoonosis [24,58], was detected in two *R. sanguineus* and one *R. lunulatus* ticks in the present study. In addition, a previous study in the same area showed a relatively high prevalence of *H. canis* in dogs [15]. Therefore, Shangombo might be an endemic area of *H. canis*. For better vigilance, veterinarians and dog owners residing in an around Shangombo should be aware of the symptoms of canine hepatozoonosis.

Amblyomma variegatum is a three-host tick that utilizes different hosts during each life stage. The larva and nymph ticks are generally present in great numbers on small mammals and birds, such as the mongoose and cattle egret. While adult ticks utilize larger mammals, such as camels and cattle. Evidence of cattle egret playing a role in transporting the larvae and nymphs of the tick, and that the dispersal of *A. variegatum* is associated with the migration patterns of the bird have been reported [59,60]. Given this, as well as the detection of *R. africae*, *T. velifera*, and *B. caballi* in *A. variegatum*, these pathogens might be crossing the Zambia–Angola border.

In this study, ticks were collected from dogs and cattle. Therefore, we cannot eliminate the possibility for detecting pathogens in blood meal in ticks, which is the limitation of this study. Further study in ticks collected from pasture in the study area is required to determine the vector ticks of the detected pathogens.

In conclusion, we studied tick-borne bacterial and protozoan pathogens in Shangombo, as there is relatively limited information on tick-borne pathogens in this area. This study provided information on the presence of *R. africae*, *R. aeschlimannii*, *E. minasensis*, Ca. *M* mitochondrii, *H. canis*, *T. velifera*, and *B. caballi* in the study region. The information may be helpful to researchers and individuals not only from Zambia but also from Angola for preventing TBDs. Further investigation of tick-borne pathogens in the area is necessary to evaluate the prevalence of TBDs in the area.
4. Materials and Methods

Ticks were removed using a tick twister (H3D, Lavancia, France) or forceps from dogs and cattle in Shangombo (16.32 S, 22.10 E) (Figure 1), Western province, Zambia, in January 2016. The tick species were identified based on morphological taxonomic keys using a stereomicroscope [61]. The total DNA was extracted from individual ticks using a TRIzol reagent (Invitrogen, Waltham, MA, USA) according to the manufacturer’s instructions.

For screening the rickettsial infections, DNA samples from tick-infested cattle were initially tested using gltA-PCR, as previously described [62]. The gltA-PCR was performed with the primers gltA_Fc and gltA_Rc, and the 20-µL reaction mixture contained 0.1 µL Ex Taq Hot Start version (Takara Bio Inc., Shiga, Japan), 2 µL 10 × Ex Taq buffer, 1.6 µL 2.5 mM dNTP mixture, 200 nM of each primer, and 2 µL template DNA. UltraPure™ distilled water (Invitrogen) was added as a negative control instead of template DNA. The PCR products were electrophoresed in a 1.2% agarose gel stained with Gel-Red™ (Biotium, Hayward, CA, USA), and visualized with a UV trans-illuminator. When the gltA-PCR yielded a positive result, the selected samples were used for further characterization based on the sequences of four additional genes: ompA, ompB, sca4, and htrA. The primers used in this study are listed in Table 2.

For the detection and characterization of Anaplasmataceae, PCR targeting the 16S rDNA of family Anaplasmataceae was performed using the primers EHR16SD and EHR16SR [63]. The universal primer set BTH-1F and BTH-1R, targeting the 18S rRNA gene of Babesia–Theileria–Hepatozoon, was used for the detection and characterization of tick-borne apicomplexans [64].

The PCR products were purified using ethanol precipitation or were cloned using the pGEM-T Easy Vector system (Promega, Southampton, Hampshire, UK) and DH5 alpha competent cells (TOYOBO, Osaka, Japan). Cycle sequencing for all amplicons was conducted using the BigDye Terminator version 3.1 chemistry (Applied Biosystems, Foster City, CA, USA). Sequencing products were run on a 3130xl Genetic Analyzer (Applied Biosystems). The DDBJ/EMBL/GenBank accession numbers obtained were LC683090 to LC683109 (See Supplementary Table S1).

Sanger sequencing data from amplified PCR products were analyzed using GENETYX version 9.1 (GENETYX Corporation, Tokyo, Japan). Phylogenetic analysis was conducted using MEGA version X [69]. The sequences were aligned with closely related sequences deposited in the databases (DDBJ/EMBL/GenBank) using ClustalW, and a maximum likelihood phylogram was applied to generate the phylogenetic trees.

Table 2. Primers used in this study.

Organisms	Gene	Primer Name	Expected Size (bp)	Sequence (5'-3')	Reference
Rickettsia	gltA	gltA_Fc	580	CGAACTTACCCTTATAAGAATG CTTTAAGGACGATACTTCAAG	[62]
		gltA_Rc			
	ompA	Rr.190.70p	530	ATGGCGAATATTCTCTCCAAAA AGTGCACCGATCCTCCCCT TACTTCCGGCTAGCAAAAGT	[65]
		Rr.190.602n			
	ompB	120_3599	816	AAACAAATACCAAGAGTCTGG TACCTTGCTGCCGATCTCCG	[66]
	sca4	D1f	928	TTGAATCAAAGCGGTAACTC AAGCTTGCCTGCTCCG	[67]
	htrA	17K_3	552	TGTCATCAATTCAACAATGTG GCCCTTACAAAATTTCTAAAACATATA	[68]
		17K_5			
Anaplasmataceae	16S rDNA	EHR16SD	345	GGTACCYACAGAAGAAGTCCT TAGACTATGCTGCTCATG	[63]
		EHR16SR			
Babesia-Theileria–Hepatozoon	18S rDNA	BTH-1F	690	CCTGMAARCAGGTCTACCACATCT TTGACCATACTCCCCCACA	[64]
		BTH-1R			
Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/pathogens11050566/s1, Table S1: Accession numbers obtained in this study.

Author Contributions: Conceptualization, Y.Q. and R.N.; methodology, Y.Q. and R.N.; formal analysis, Y.Q. and A.C.C.L.; investigation, Y.Q.; resources, Y.Q., M.S., M.K., J.N., N.S., P.K., H.F. and R.N.; writing—original draft preparation, Y.Q.; writing—review and editing, all authors; funding acquisition, Y.Q., R.N., A.T. and H.S. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)/Japan Society for the Promotion of Science (JSPS), KAKENHI grant numbers 19K15992 and 20KK0151, and the Japan Agency for Medical Research and Development (AMED), the Japan Program for Infectious Diseases Research and Infrastructure grant numbers JP21wm0125008 and JP21wm0225016. In addition, this research was also supported by the Science and Technology Research Partnership for Sustainable Development (SATREPS) (JP21jm0110019) through the Japanese International Cooperation Agency (JICA) and AMED. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data are provided in the manuscript.

Acknowledgments: We thank Sakae Kashihara for the logistical arrangements of the sampling trip. We would like to express our gratitude to the staff at the School of Veterinary Medicine at the University of Zambia, the International Institute for Zoonosis Control, and the regional veterinary officer in Shangombo, for the assistance in sampling and laboratory experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. de la Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008, 13, 6938–6946. [CrossRef] [PubMed]
2. Otranto, D.; Dantas-Torres, F.; Giannelli, A.; Latrofa, M.; Cascio, A.; Cazzin, S.; Ravagnan, S.; Montarsi, F.; Zanzani, S.; Manfredi, M.; et al. Ticks infesting humans in Italy and associated pathogens. Parasites Vectors 2014, 7, 328. [CrossRef] [PubMed]
3. Kernif, T.; Leulmi, H.; Raoult, D.; Parola, P. Emerging Tick-Borne Bacterial Pathogens. Microbiol. Spectr. 2016, 4, 295–310. [CrossRef] [PubMed]
4. Qiu, Y.; Nakao, R.; Hang’ombe, B.M.; Sato, K.; Kajihara, M.; Kanchela, S.; Changula, K.; Eto, Y.; Ndebe, J.; Sasaki, M.; et al. Human Borrellosis Caused by a New World Relapsing Fever Borrelia-like Organism in the Old World. Clin. Infect. Dis. 2019, 69, 107–112. [CrossRef] [PubMed]
5. Raoult, D.; Roux, V. Rickettsioses as paradigms of new or emerging infectious diseases. Clin. Microbiol. Rev. 1997, 10, 694–719. [CrossRef]
6. Parola, P.; Raoult, D. Ticks and tickborne bacterial diseases in humans: An emerging infectious threat. Clin. Infect. Dis. 2001, 32, 897–928. [CrossRef]
7. Renvoisé, A.; Mediannikov, O.; Raoult, D. Old and new tick-borne rickettsioses. Int. Health 2009, 1, 17–25. [CrossRef]
8. Uchida, T.; Uchiyama, T.; Kumano, K.; Walker, D.H. Rickettsia japonica sp. nov., the etiologic agent of spotted fever group rickettsiosis in Japan. Int. J. Syst. Bacteriol. 1992, 42, 303–305. [CrossRef] [PubMed]
9. Lu, Q.; Yu, J.; Yu, L.; Zhang, Y.; Chen, Y.; Lin, M.; Fang, X. Rickettsia japonica Infections in Humans, Zhejiang Province, China, 2015. Emerg. Infect. Dis. 2018, 24, 2077–2079. [CrossRef]
10. Paddock, C.D.; Sumner, J.W.; Comer, J.A.; Zaki, S.R.; Goldsmith, C.S.; Goddard, J.; McLellan, S.L.F.; Tamminga, C.L.; Ohl, C.A. Rickettsia parkeri: A newly recognized cause of spotted fever rickettsiosis in the United States. Clin. Infect. Dis. 2004, 38, 805–811. [CrossRef] [PubMed]
11. Kelly, P.J.; Beati, L.; Mason, P.R.; Matthewman, L.A.; Roux, V.; Raoult, D. Rickettsia africae sp. nov., the etiologic agent of African tick bite fever. Int. J. Syst. Bacteriol. 1996, 46, 611–614. [CrossRef] [PubMed]
12. Chen, S.M.; Dumler, J.S.; Bakken, J.S.; Walker, D.H. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J. Clin. Microbiol. 1994, 32, 589–595. [CrossRef] [PubMed]
13. Mshali, K.; Khumalo, Z.; Nakao, R.; Grab, D.J.; Sugimoto, C.; Thekiso, O. Molecular detection of zoonotic tick-borne pathogens from ticks collected from ruminants in four South African provinces. J. Vet. Med. Sci. 2016, 77, 1573–1579. [CrossRef] [PubMed]
14. Woldehiwet, Z. Anaplasma phagocytophphilum in ruminants in Europe. Ann. N. Y. Acad. Sci. 2006, 1078, 446–460. [CrossRef] [PubMed]
15. Qiu, Y.; Kaneko, C.; Kajihara, M.; Ngonda, S.; Simulundu, E.; Muleya, W.; Thu, M.J.; Hang’Ombe, M.B.; Katakura, K.; Takada, A.; et al. Tick-borne haemoparasites and Anaplasmataceae in domestic dogs in Zambia. *Ticks Tick Borne Dis.* **2018**, *9*, 988–995. [CrossRef]

16. Arraga-Alvarado, C.M.; Qurollo, B.A.; Parra, O.C.; Berrueta, M.A.; Hegarty, B.C.; Breitschwerdt, E.B. Molecular Evidence of *Anaplasma platys* Infection in Two Women from Venezuela. *Am. J. Trop. Med. Hyg.* **2014**, *91*, 1161–1165. [CrossRef]

17. Maggi, R.G.; Mascarelli, P.E.; Havenga, L.N.; Naidoo, V.; Breitschwerdt, E.B. Co-infection with *Anaplasma platys*, *Bartonella henselae* and *Candidatus Mycoplasma haemotaparvum* in a veterinarian. *Parasites Vectors* **2013**, *6*, 103. [CrossRef]

18. Vannier, E.G.; Diuk-Wasser, M.A.; Ben Mamoun, C.; Krause, P.J. Babesiosis. *Infect. Dis. Clin. N. Am.* **2015**, *29*, 357–370. [CrossRef]

19. Solano-Gallego, L.; Bannet, G. Babesiosis in domestic and cats—Expanding parasitological and clinical spectra. *Vet. Parasitol.* **2011**, *181*, 48–60. [CrossRef]

20. Alonso, M.; Arelano-Sota, C.; Cereser, V.H.; Cordoves, C.O.; Guglielmone, A.A.; Kessler, R.; Mangold, A.J.; Nari, A.; Patarroyo, J.H.; Solari, M.A.; et al. Epidemiology of bovine anaplasmosis and babesiosis in Latin America and the Caribbean. *Rev. Sci. Tech.* **1992**, *11*, 713–733. [CrossRef]

21. Chauvin, A.; Moreau, E.; Bonnet, S.; Plantard, O.; Malandrin, L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. *Vet. Res.* **2009**, *40*, 37. [CrossRef] [PubMed]

22. Bishop, R.; Musoke, A.; Morzaria, S.; Gardner, M.; Nene, V. *Theileria*: Intracellular protozoan parasites of wild and domestic ruminants transmitted by ixodid ticks. *Parasitology* **2004**, *129*, S271–S283. [CrossRef] [PubMed]

23. Bishop, R.P.; Odongo, D.; Ahmed, J.; Mwamuye, M.; Fry, L.M.; Knowles, D.P.; Nanteza, A.; Lubega, G.; Gwakisa, P.; Clausen, P.H.; et al. A review of recent research on *Theileria parva*: Implications for the infection and treatment vaccination method for control of East Coast fever. *Transbound. Emerg. Dis.* **2020**, *67*, 56–67. [CrossRef] [PubMed]

24. Baneth, G.; Barta, J.R.; Shkap, V.; Martin, D.S.; Macintire, D.K.; Vincent-Johnson, N. Genetic and Antigenic Evidence Supports the Genus *Babesia* for the Intracellular Protozoa *B. divergens* and *B. microti*. *Parasite Vectors* **2019**, *12*, 168. [CrossRef] [PubMed]

25. Moonga, L.C.; Hayashida, K.; Nakao, R.; Lisulo, M.; Kaneko, C.; Nakamura, I.; Eshita, Y.; Mweene, A.S.; Namangala, B.; Sugimoto, C.; et al. Molecular detection of *Rickettsia felis* in dogs, rodents and cat fleas in Zambia. *Parasites Vectors* **2019**, *12*, 168. [CrossRef] [PubMed]

26. Vannier, E.G.; Diuk-Wasser, M.A.; Ben Mamoun, C.; Krause, P.J. Babesiosis. *Infect. Dis. Clin. N. Am.* **2015**, *29*, 357–370. [CrossRef]

27. Solano-Gallego, L.; Bannet, G. Babesiosis in domestic and cats—Expanding parasitological and clinical spectra. *Vet. Parasitol.* **2011**, *181*, 48–60. [CrossRef]

28. Chauvin, A.; Moreau, E.; Bonnet, S.; Plantard, O.; Malandrin, L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. *Vet. Res.* **2009**, *40*, 37. [CrossRef] [PubMed]

29. Bishop, R.; Musoke, A.; Morzaria, S.; Gardner, M.; Nene, V. *Theileria*: Intracellular protozoan parasites of wild and domestic ruminants transmitted by ixodid ticks. *Parasitology* **2004**, *129*, S271–S283. [CrossRef] [PubMed]

30. Bishop, R.P.; Odongo, D.; Ahmed, J.; Mwamuye, M.; Fry, L.M.; Knowles, D.P.; Nanteza, A.; Lubega, G.; Gwakisa, P.; Clausen, P.H.; et al. A review of recent research on *Theileria parva*: Implications for the infection and treatment vaccination method for control of East Coast fever. *Transbound. Emerg. Dis.* **2020**, *67*, 56–67. [CrossRef] [PubMed]

31. Bishop, R.; Musoke, A.; Morzaria, S.; Gardner, M.; Nene, V. *Theileria*: Intracellular protozoan parasites of wild and domestic ruminants transmitted by ixodid ticks. *Parasitology* **2004**, *129*, S271–S283. [CrossRef] [PubMed]

32. Bishop, R.; Musoke, A.; Morzaria, S.; Gardner, M.; Nene, V. *Theileria*: Intracellular protozoan parasites of wild and domestic ruminants transmitted by ixodid ticks. *Parasitology* **2004**, *129*, S271–S283. [CrossRef] [PubMed]

33. Bishop, R.P.; Odongo, D.; Ahmed, J.; Mwamuye, M.; Fry, L.M.; Knowles, D.P.; Nanteza, A.; Lubega, G.; Gwakisa, P.; Clausen, P.H.; et al. A review of recent research on *Theileria parva*: Implications for the infection and treatment vaccination method for control of East Coast fever. *Transbound. Emerg. Dis.* **2020**, *67*, 56–67. [CrossRef] [PubMed]
39. Chitanga, S.; Chibesa, K.; Sichibalo, K.; Mubemba, B.; Nalubamba, K.S.; Muleya, W.; Changula, K.; Simulundu, E. Molecular Detection and Characterization of *Rickettsia* Species in Ixodid Ticks Collected from Cattle in Southern Zambia. *Front. Vet. Sci*. 2021, 8, 684487. [CrossRef]

40. Aguia, D.M.; Zilliani, T.F.; Zhang, X.; Melo, A.L.T.; Braga, I.A.; Witter, R.; Freitas, L.C.; Rondelli, A.L.H.; Luis, M.A.; Sorte, E.C.B.; et al. A novel *Ehrlichia* genotype strain distinguished by the TRP36 gene naturally infects cattle in Brazil and causes clinical manifestations associated with ehrlichiosis. *Ticks Tick Borne Dis*. 2014, 5, 537–544. [CrossRef]

41. Iweriebor, B.C.; Mmbaga, E.J.; Igwara, A.; Obi, L.C.; Okoh, A.I. Genetic profiling for *Anaplasma* and *Ehrlichia* species in ticks collected in the Eastern Cape Province of South Africa. *BMC Microbiol*. 2017, 17, 45. [CrossRef] [PubMed]

42. Peter, S.G.; Aboge, G.O.; Kariuki, H.W.; Kanduma, E.G.; Gakuya, D.W.; Maingi, N.; Mulei, C.M.; Mainga, C.M.; Mainga, A.O. Molecular prevalence of emerging *Anaplasma* and *Ehrlichia* pathogens in apparently healthy dairy cattle in peri-urban Nairobi, Kenya. *BMC Vet. Res*. 2020, 16, 364. [CrossRef] [PubMed]

43. Haillemariam, Z.; Kräcken, J.; Baumann, M.; Ahmed, J.S.; Clausen, P.-H.; Nijhof, A.M. Molecular detection of tick-borne pathogens in cattle from Southwestern Ethiopia. *PLoS ONE* 2017, 12, e0188248. [CrossRef] [PubMed]

44. Cabezas-Cruz, A.; Zweygarth, E.; Vancová, M.; Broniszewska, M.; Grubhoiffer, L.; Passos, L.M.F.; Ribeiro, M.F.B.; Alberdi, P.; de la Fuente, J. *Ehrlichia minasensis* sp. nov., isolated from the tick *Rhipicephalus microplus*. *Int. J. Evol. Microbiol*. 2016, 66, 1426–1430. [CrossRef] [PubMed]

45. Carvalho, I.T.S.; Melo, A.L.T.; Freitas, L.C.; Verçoza, R.V.; Alves, A.S.; Costa, J.S.; Chitarra, C.S.; Nakazato, L.; Dutra, V.; Pacheco, R.C.; et al. Minimum infection rate of *Ehrlichia minasensis* in *Rhipicephalus microplus* and *Amblyomma scapulatum* ticks in Brazil. *Ticks Tick Borne Dis*. 2016, 7, 849–852. [CrossRef] [PubMed]

46. Ciculli, V.; Masse, S.; Capai, L.; de Lamballerie, X.; Charrel, R.; Falchi, A. First detection of *Ehrlichia minasensis* in *Haemoloma marginatum* ticks collected in Corsica, France. *Vet. Med. Sci*. 2019, 5, 243–248. [CrossRef]

47. Li, J.; Liu, X.; Mu, J.; Yu, X.; Fei, Y.; Chang, J.; Bi, Y.; Zhou, Y.; Ding, Z.; Yin, R. Emergence of a Novel *Ehrlichia minasensis* Strain, Harboring the Major Immunogenic Glycoprotein trp36 with Unique Tandem Repeat and C-Terminal Region Sequences, in *Haemaphysalis hystricis* Ticks Removed from Free-Ranging Sheep in Hainan Province, China. *Microorganisms* 2019, 7, 369. [CrossRef]

48. Sassera, D.; Beninati, T.; Bandi, C.; Bouman, E.A.P.; Sacchi, L.; Fabbri, M.; Lo, N. ‘Candidatus *Midichloria mitochondrii*’, an endosymbiont of the tick *Ixodes ricinus* with a unique intramitochondrial lifestyle. *Int. J. Evol. Microbiol*. 2006, 56, 2353–2540. [CrossRef]

49. Williams-Newkirk, A.J.; Rowe, L.A.; Mixson-Hayden, T.R.; Dasch, G.A. Presence, genetic variability, and potential significance of “*Candidatus Midichloria mitochondrii*” in the lone star tick *Amblyomma americanum*. *Exp. Appl. Acarol*. 2012, 58, 291–300. [CrossRef]

50. Di Lecce, I.; Bazzocchi, C.; Cecere, J.G.; Epis, S.; Sassera, D.; Villani, B.M.; Bazzi, G.; Negri, A.; Saino, N.; Spina, F.; et al. Patterns of *Midichloria* infection in avian-borne African ticks and their trans-Saharan migratory hosts. *Parasites Vectors* 2018, 11, 106. [CrossRef]

51. Harrus, S.; Perlman-Avrahami, A.; Mumcuoglu, K.Y.; Morick, D.; Eyal, O.; Baneth, G. Molecular detection of *Ehrlichia canis, Anaplasma bovis, Anaplasma platys, Candidatus Midichloria mitochondrii* and *Babesia canis vogeli* in ticks from Israel. *Clin. Microbiol. Infect*. 2011, 17, 459–463. [CrossRef] [PubMed]

52. Khoo, J.J.; Husin, N.A.; Lim, F.S.; Oslan, S.N.H.; Mohd Azami, S.N.I.; To, S.W.; Abd Majid, M.A.; Lee, H.Y.; Loong, S.K.; Khor, C.S.; et al. Molecular detection of pathogens of ectoparasites recovered from peri-domestic animals, and the first description of a *Candidatus Midichloria* sp. from *Haemaphysalis wellingtoni* from rural communities in Malaysia. *Parasitol. Int*. 2021, 80, 102202. [CrossRef] [PubMed]

53. Barraza-Guerrero, S.I.; Meza-Herrera, C.A.; García-De La Peña, C.; González-Álvarez, V.H.; Vaca-Paniagua, F.; Díaz-Velásquez, C.E.; Sánchez-Tortosa, F.; Ávila-Rodríguez, V.; Valenzuela-Núñez, L.M.; Herrera-Salazar, J.C. General Microbiota of the Soft Tick *Ornithodoros turicata* Parasitizing the Bolson Tortoise (Gopherus flavomarginatus) in the Mapimi Biosphere Reserve, Mexico. *Biologia* 2020, 9, 275. [CrossRef] [PubMed]

54. Olivieri, E.; Epis, S.; Castelli, M.; Varotto Boccazzi, I.; Romeo, C.; Desiro, A.; Bazzocchi, C.; Bandi, C.; Sassera, D. Tissue tropism and metabolic pathways of *Midichloria* mitochondrii suggest tissue-specific functions in the symbiosis with *Ixodes ricinus*. *Ticks Tick Borne Dis*. 2019, 10, 1070–1077. [CrossRef] [PubMed]

55. Tembo, S.; Collins, N.E.; Sibeko-Matijila, K.P.; Troskie, M.; Vorster, I.; Byaruhanga, C.; Oosthuizen, M.C. Occurrence of tick-borne haemoparasites in cattle in the Mungwi District, Northern Province, Zambia. *Ticks Tick Borne Dis*. 2018, 9, 707–717. [CrossRef] [PubMed]

56. Square, D.; Nakamura, Y.; Hayashida, K.; Kawai, N.; Chambaro, H.; Namangala, B.; Sugimoto, C.; Yamagishi, J. Investigation of the piroplasm diversity circulating in wildlife and cattle of the greater Kafue ecosystem, Zambia. *Parasites Vectors* 2020, 13, 599. [CrossRef] [PubMed]

57. Tomassone, L.; Pagani, P.; De Meneghi, D. Detection of *Babesia caballi* in *Amblyomma variegatum* ticks (Acari: Ixodidae) collected from cattle in the Republic of Guinea. *Parasitol. 2005*, 47, 247–251. [CrossRef] [PubMed]

58. Deem, S.L. A review of heartwater and the threat of introduction of *Coquettia ruminantium* and *Amblyomma* spp. ticks to the American mainland. *J. Zoo Wildl. Med*. 1998, 29, 109–113.
59. Barre, N.; Garris, G.; Camus, E. Propagation of the tick *Amblyomma variegatum* in the Caribbean. *Rev. Sci. Tech.* **1995**, *14*, 841–855. [CrossRef]

60. Baneth, G.; Mathew, J.S.; Sbkap, V.; Macintire, D.K.; Barta, J.R.; Ewing, S.A. Canine hepatotoxoonosis: Two disease syndromes caused by separate *Hepatozoon* spp. *Trends Parasitol.* **2003**, *19*, 27–31. [CrossRef]

61. Walker, A.R.; Bouattour, A.; Camicas, J.L.; Estrada-Peña, A.; Horak, I.G.; Latif, A.A.; Pegram, R.G.; Preston, P.M. Ticks of Domestic Animals in Africa: A Guide to Identification of Species, 2nd ed.; Bioscience Reports: Edinburgh, UK, 2014.

62. Gaowa, N.O.; Minami Aochi, W.; Dongxing Wu, Y.Y.; Fumihiko Kawamori, T.H.; Hiromi Fujita, N.T.; Yosaburo Oikawa, H.K.; Shuji Ando, T.K. Rickettsiae in Ticks, Japan, 2007–2011. *Emerg. Infect. Dis.* **2013**, *19*, 338–340. [CrossRef]

63. Parola, P.; Roux, V.; Camicas, J.-L.; Baradji, I.; Brouqui, P.; Raoult, D. Detection of ehrlichiae in African ticks by polymerase chain reaction. *Trans. R. Soc. Trop. Med. Hyg.* **2000**, *94*, 707–708. [CrossRef]

64. Criado-Fornelio, A.; Martinez-Marcos, A.; Buling-Saraña, A.; Barba-Carretero, J.C. Molecular studies on *Babesia*, *Theileria* and *Hepatozoon* in southern Europe: Part I. Epizootiological aspects. *Vet. Parasitol.* **2003**, *113*, 189–201. [CrossRef]

65. Regnery, R.L.; Spruill, C.L.; Plikaytis, B.D. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. *J. Bacteriol.* **1991**, *173*, 1576–1589. [CrossRef]

66. Roux, V.; Raoult, D. Phylogenetic analysis of members of the genus *Rickettsia* using the gene encoding the outer-membrane protein rOmpB (ompB). *Int. J. Syst. Evol. Microbiol.* **2000**, *50*, 1449–1455. [CrossRef] [PubMed]

67. Sekeyova, Z.; Roux, V.; Raoult, D. Phylogeny of *Rickettsia* spp. inferred by comparing sequences of ‘gene D’, which encodes an intracytoplasmic protein. *Int. J. Syst. Evol. Microbiol.* **2001**, *51*, 1353–1360. [CrossRef] [PubMed]

68. Labruna, M.B.; Whitworth, T.; Bouyer, D.H.; McBride, J.; Camargo, L.M.A.; Camargo, E.P.; Popov, V.; Walker, D.H. *Rickettsia bellii* and *Rickettsia amblyommii* in *Amblyomma* Ticks from the State of Rondônia, Western Amazon, Brazil. *J. Med. Entomol.* **2004**, *41*, 1073–1081. [CrossRef]

69. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. *Mol. Biol. Evol.* **2018**, *35*, 1547–1549. [CrossRef]