Effects of aging on functional connectivity in a neurodegenerative risk cohort: resting state versus task measurement using near-infrared spectroscopy

Leonore Blum1,9, Anna Hofmann2,6,7,9, David Rosenbaum3, Morad Elshehabi8, Ulrike Suenkel7, Andreas J. Fallgatter1,2,4, Ann-Christine Ehlis1,4 & Florian G. Metzger1,3,5

Changes in functional brain organization are considered to be particularly sensitive to age-related effects and may precede structural cognitive decline. Recent research focuses on aging processes determined by resting state (RS) functional connectivity (FC), but little is known about differences in FC during RS and cognitive task conditions in elderly participants. The purpose of this study is to compare FC within and between the cognitive control (CCN) and dorsal attention network (DAN) at RS and during a cognitive task using functional near-infrared spectroscopy (fNIRS). In a matched, neurodegenerative high-risk cohort comprising early (n = 98; 50–65 y) and late (n = 98; 65–85 y) elder subjects, FC was measured at RS and during performance of the Trail Making Test (TMT) via fNIRS. Both, under RS and task conditions our results revealed a main effect for age, characterized by reduced FC for late elder subjects within the left inferior frontal gyrus. During performance of the TMT, negative correlations of age and FC were confirmed in various regions of the CCN and DAN. For the whole sample, FC of within-region connections was elevated, while FC between regions was decreased at RS. The results confirm a reorganization of functional brain connectivity with increasing age and cognitive demands.

It is well known that aging is associated with neurodegeneration. However, natural aging processes are still far from being comprehensively understood. A major challenge lies in the distinction between physiological and pathological aging, since the brain changes its structure and thus also its function during the entire lifetime1,2. At the cognitive level, aging is associated with a decrease in executive functions, e.g. processing speed, working memory and mental flexibility3. On a neuropathological level, tissue reduction of grey and white matter4–11, loss of synaptic connections12 and amyloid deposition in non-demented individuals13 have been observed in old age. Accordingly, an essential focus of research is the identification of correlations between cognitive and structural neuronal changes. In addition to anatomical remodeling, a shift of functional connections in old age has also been described, e.g. various patterns of hypo- or hyper-recruitment of brain regions have been observed during the senium14–17. It was even hypothesized that functional changes precede the structural reorganization of the brain18. Changes in functional brain organization are therefore considered to be particularly sensitive to early

1Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University Hospital of Tuebingen, Tuebingen, Germany. 2German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany. 3Geriatric Center, University Hospital of Tuebingen, Tuebingen, Germany. 4LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany. 5Vitos Hospital of Psychiatry and Psychotherapy Haina, Haina, Germany. 6Hertie Institute for Clinical Brain Research, Tuebingen, Germany. 7Department of Neurology and Neurodegenerative Diseases, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany. 8Department of Neurology, University Hospitals of Schleswig-Holstein, Campus-Kiel, Kiel, Germany. 9These authors contributed equally: Leonore Blum and Anna Hofmann. *email: anna.hofmann@med.uni-tuebingen.de
age-related effects. First described by Friston et al., functional connectivity (FC) is defined as the temporal relationship between spatially separated neurophysiological processes. These functional connections between different brain areas exist at rest and during task accomplishment and are considered as functional networks such as the cognitive control network (CCN), dorsal attention network (DAN), default mode network (DMN) and salience network (SN). In the past, it has already been shown that FC differs between subjects with mild cognitive impairment (MCI) or Alzheimer's disease (AD) and healthy controls. Within the clinical context, a malfunctioning of especially the CCN and DAN has been connected to psychiatric disorders such as depression as well as Alzheimer's Disease. In addition, there is evidence for changes in the FC pattern with increasing age. The consensus of aging studies indicates a decrease in FC within resting state (RS) networks such as the default mode network (DMN) or the salience network (SN) concomitant with an increase in FC between the different networks as well as a general association of aging with reduced global efficiency and modularity. Moreover, Esposito et al. described a reduction of the physiological anticorrelation activity between the DMN and the DAN in RS as part of a normal aging process and MCI as a status in which these changes are even more pronounced. Similar observations have on principle also been made during different tasks. However, in most studies on aging processes, FC has been determined by RS measurements as this is easier to implement in clinical experimental setups.

Indeed, we hypothesized that deficits associated with higher age as well as early stages of neurodegeneration, for which age actually is the main risk factor, would initially show up as reduced performance and/or altered neural functionality in the management of cognitive tasks. Therefore, we compared the measurement of FC via functional near-infrared spectroscopy (fNIRS) during resting state (rsFC) with a measurement during execution of the Trail Making Test (TMTFC), a neuropsychological task for the assessment of executive (i.e., frontal lobe) functions.

In particular the TMT-B subtest requires activation of frontal cortical structures such as the inferior and middle frontal cortex as well as the dorsolateral prefrontal cortex (DLPFC). Performing the TMT therefore induces an activation of the CCN as well as the DAN, as it activates the dorsal parts of the lateral prefrontal cortex (DLPFC), cingulate cortex (dACC = dorsal anterior cingulate cortex) and parietal cortex/somatosensory association cortex. We chose fNIRS as it not only exhibits the particular advantage of being applicable to participants sitting at a desk in an upright position to perform the task (including hand/arm movements) under natural conditions, but also because it is known to reliably reflect cortical activity in the above named areas in an elderly cohort.

The study at hand thus aims to improve our understanding of FC during task completion in contrast to RS measurements for the purpose of early detection of age-related changes indicative of incipient neurodegenerative processes. To this end, we investigated two groups of elderly participants, early (50 to 65 years of age) versus late elders (65 to 85 years of age) enriched with, but also matched for other neurodegenerative risk factors like REM sleep behavior disorder (RBD) or depression. The rationale behind the chosen cut-off at 65 years was the following. If an individual develops a neurodegenerative dementia earlier than 65 years of age, the particular diagnosis (e.g. AD) is indicated as early-onset and the etiological background (e.g. genetic factors) is rather complex in many cases. After the age of 65 years, the development of a neurodegenerative disorder like AD becomes more and more frequent and is therefore in most cases considered as senile. Even within the current version of the International Classification of Diseases by the World Health Organization (WHO), this diagnostic cut-off at the age of 65 years is used. Our first goal was to determine the performance of the late elder participants in comparison to the early elder group based on the number of items completed during TMT execution. Secondly, potential differences should be investigated between rsFC and TMTFC, again within the late compared to the early elder subgroup. In this regard, we were especially interested in the FC patterns during TMT-B execution in contrast to RS since this subtask is considered most demanding and therefore might serve as a sensitive marker for subtle cognitive decline. In general, we assumed the early elder subjects to perform worse in the TMT compared to the early elders. Irrespective of age, we presumed that FC would be higher during task completion than at rest.

Participants and methods
Study population. The participants originated from the Tuebinger evaluation of risk factors for early detection of neurodegeneration (TREND)-study database. This is a large-scale study from the Department of Neurology and the Department of Psychiatry and Psychotherapy of the University Hospital of Tuebingen, Germany, initiated in 2009, which aims at investigating possible prodromal markers for neurodegenerative diseases.

The study was approved by the Ethics Committee of the University of Tuebingen and is in accordance with the standards of the World Medical Association's Declaration of Helsinki. Informed consent was obtained from all participants included in this study. The TREND study is conducted via biennial assessments. Inclusion and exclusion criteria initially were as follows: age between 50 and 80 years, no neurodegenerative disease at baseline and—if applicable—at least one of the following prodromal markers for neurodegeneration: depression, hypomnesia and RBD, characterized by loss of physiological atonia during REM sleep. Especially individuals suffering from the latter have a risk of about 50% to develop Parkinson's Disease or dementia within ten years. Individuals who did not experience any of these symptoms were recruited as controls which concerns nearly half of the participants. The assessment battery includes medical history, neurological examination, transcranial sonography, olfactory, autonomic and cognitive testing with the CERADplus battery (Consortium to Establish a Registry for Alzheimer's Disease) and MOCA (Montreal Cognitive Assessment) as well as self-report questionnaires assessing RBD, mood (Beck Depression Inventory, version I) as well as quality of life (for more details visit: https://www.trend-studie.de/). Study data are collected and managed using REDCap electronic data capture tools hosted at the University of Tuebingen.
In the study at hand, a subsample from the TREND cohort of in total n = 196 participants (50–85 years of age) has been investigated, comprising n = 98 late (> 65 years of age) as well as n = 98 early elders (< 65 years of age), matched according to education, gender, and risk-factors for neurodegenerative diseases and/or cognitive decline (amnestic MCI (aMCI) and RBD). The early elder group consisted of 54% female participants, had a mean age of 60.23 years (SD = 2.98) and a mean education of 14.23 years (SD = 2.44). Within the late elder cohort, 43% of participants were female, the mean age was 70.27 years (SD = 4.46) with on average 13.96 years (SD = 2.69) of education. Due to the matching procedure, the early and late elder subgroup did not differ regarding the frequency of neurodegenerative risk factors (aMCI: \(\chi^2(1) = 1.71, p = 0.19\), RBD: \(\chi^2(1) = 0.02, p = 0.89\), years of education (\(t(194) = 0.75, p = 0.453, d = 0.11\)) or gender (\(\chi^2(1) = 2.47, p = 0.116\)). 87% of the participants were on medication, in particular blood pressure medication (41%), anticoagulants (20%) and antidepressants (11%). The early and late elder sample did not differ in terms of their medication status (\(\chi^2(1, n = 196) = 3.71, p = 0.054\)) (Table 1).

Characteristics	Early elders	Late elders	Statistics
Age (mean years)	60.23 (SD = 2.98)	70.27 (SD = 4.46)	-
Gender (% female)	54.10	42.90	\(p = 0.11\)
Education (mean years)	14.23 (SD = 2.44)	13.96 (SD = 2.69)	\(p = 0.45\)
aMCI (% diagnosed)	9.20	15.30	\(p = 0.19\)
RBD (% diagnosed)	46.90	48.00	\(p = 0.89\)
Medication (% intake)	82.70	91.80	\(p = 0.05\)
MMSE* (mean score)	28.47 (SD = 1.46)	28.25 (SD = 1.57)	\(p = 0.31\)
BDI** (mean score)	7.84 (SD = 9.39)	8.02 (SD = 8.80)	\(p = 0.88\)
Global cognition*** (WMS-IV, I/II percentile rank)	55.68/59.89	42.32/57.99	\(p = 0.003/p = 0.67\)

Table 1. Epidemiological data of the investigated cohort. aMCI, amnestic mild cognitive impairment; RBD, rapid eye movement sleep behavior disorder; SD, standard deviation. *Mini Mental State Examination (MMSE). **depressive characteristics according to Beck's Depression Inventory (BDI-I). ***Consortium to Establish a Registry for Alzheimer's Disease (CERAD) total score. ****Logical Memory (LM) subtest of the Wechsler Memory Scale-IV (WMS-IV), I = direct recall, II = delayed recall.

Trail Making Test. The TMT as a subtask of the CERAD-Plus test battery is a standardized neuropsychological test procedure for the detection of cognitive deficits, especially checking for executive functions, working memory and mental flexibility. The modified version of the TMT used in our study consists of three sub-tests: TMT-A, TMT-B and a so-called TMT-C. Each of the sheets contains 25 items. During the TMT-A, subjects are instructed to link randomly distributed numbers in an ascending order as quickly as possible. In the TMT-B, numbers and letters must be connected alternately according to the ascending number chain and alphabet. In addition to motor speed, visual search function and working memory, the TMT-B also tests the ability of task-switching. The TMT-C was developed as a control condition for functional imaging to simply assess the ability of task-switching. The TMT-C was developed as a control condition for functional imaging to simply assess the ability of task-switching. The TMT-C was developed as a control condition for functional imaging to simply assess the ability of task-switching.

fNIRS and preprocessing of data. The concentration of oxygenated hemoglobin (O2Hb) during brain activation was measured by a continuous wave, multichannel fNIRS system with a sampling rate of 10 Hz. A total of 38 channels were measured (24 fronto-temporal, 14 parietal; Fig. 1) with fixed inter-optode distances of 30 mm (no short-distance channels were included). Exact anatomical fixation was performed using an optode holder cap with reference points F3/F4 and Fp1/Fp2 (fronto-temporal) and C3/C4 (parietal). Corresponding brain areas of each channel were extrapolated from reference points as in the work by Singh et al. as well as by other colleagues. Based on the Colin 27 template. Data were recorded with a semiconductor laser and avalanche diodes at two wavelengths (695 ± 20 and 830 ± 20 nm) with 4.0 ± 0.2 mW for each wavelength at each optode. The acquisition and pre-processing of the measurement data was performed with the software of the ETG-4000 (ETG-4000 Optical Topography System; Hitachi Medical Co., Japan).

Data were assessed during the 5-min RS measurement and under subsequent TMT performance. We ensured proper time-locking between fNIRS acquisition and the TMT task by the investigator pressing a trigger button.
and simultaneously requesting the subject to start the task. The 30-s blocks for each condition were averaged with a 10-s baseline correction and a linear detrending. In more detail, we decided to average the different trials and then compute the FC of the hemodynamic courses, as this approach reduces the background noise.

Data analysis. For data analysis MATLAB R2016b (MathWorks Inc., Natick, USA) was used. We corrected for high-amplitude movement artifacts through TDDR correction and the method of bandpass filtering (0.01–0.1 Hz) to filter out very high or low frequency artifacts; furthermore, a correlation-based signal improvement was performed to reduce motion influences on O2Hb-levels. In further processing an independent component analysis (ICA)-based reduction of masticatory artifacts was performed. Artifact-loaded channels that outlasted preprocessing were visually detected and interpolated by surrounding channels. If more than 10% of the channels showed artifacts, the subject was excluded (in total n = 8 subjects). Finally, a global signal correction was performed by means of a PCA-based gaussian kernel filter. The preprocessing steps were based on the guidelines of Brigadoi et al.

For the computation of connectivity during task performance, data were averaged for each condition of the TMT. Furthermore, a baseline correction was performed where the activation during baseline measurement was subtracted from the activation during task completion. FC was calculated as Pearson correlation coefficients after the data of each channel pair was checked for multivariate outliers by mahalanobis distances. After FC indices were computed for each channel pair, FC between regions and within regions was computed by averaging the FC indices of the corresponding channels (e.g. all channels FCs of the left DLPFC to the right DLPFC).

Statistics. After preprocessing, we compared the FCs within and between pre-defined region-specific nodes within the CCN and DAN: the somatosensory association cortex (SAC), dorsolateral prefrontal cortex (DLPFC) and inferior frontal gyrus (IFG). We computed FC for “within” and “between” region connections, either short-distance (ipsilateral) or long-distance, i.e. connections to contralateral regions. Statistical data evaluation was performed with IBM SPSS Statistics Version 24.

We calculated repeated measures MANOVAs with the factors

(a) resting state and TMT (levels: RS, TMT-C, TMT-A, TMT-B; within-subjects),
(b) region of interest (ROI): 21 levels, each left (l), right (r):
 either between: IDLPFC_lIFG, IDLPFC_rIFG, IDLPFC_rDLPC, IDLPFC_lIFG, IDLPFC_rSAC, IDLPFC_lSAC, IDLPFC_lIFG, rDLPC_lIFG, rDLPC_rIFG, rDLPC_rSAC, rDLPC_lSAC, lIFG_rIFG, rIFG_lIFG, IIFG_rIFG, IIFG_lSAC, IIFG_lIFG, rIFG_lSAC, rIFG_rSAC, rSAC_lSAC, rSAC_rSAC
 or within: rSAC_within, lSAC_within, rDLPC_within, lDLPC_within, lIFG_within, rIFG_within and
(c) age (< 65 and > 65 years; between-subjects).

Moreover, we investigated each ROI separately by a mixed ANOVA with the factors “task condition” (levels: RS, TMT-C, TMT-A, TMT-B; within-subjects) and “age” (< 65 and > 65 years; between-subjects).

Post-hoc analysis included simple contrasts (RS versus TMT-C, RS versus TMT-A, RS versus TMT-B) corrected by the Benjamini–Hochberg procedure, and Helmert contrasts (average TMT-A and TMT-B [TMT-A/B] vs TMT-C; TMT-A vs TMT-B).
Results

Behavioral results. General performance and age. Post-hoc analysis of Helmert contrasts confirmed fewer processed items during TMT-A/-B in comparison to TMT-C (F(1, 194) = 1227.80, p < 0.001, η² = 0.86), fewer processed items during TMT-B in comparison to TMT-A (F(1, 194) = 1244.60, p < 0.001, η² = 0.87) and fewer processed items in the late compared to the early elder subjects (Table 2).

Interaction between age and task level. A two (age: early versus late elder subjects) by three (TMT: TMT-C versus TMT-A versus TMT-B) ANOVA showed a significant main effect of TMT (F(2, 388) = 1236.95, p < 0.001, η² = 0.86) and a main effect of age (F(1, 194) = 25.81, p < 0.001, η² = 0.12). Moreover, the interaction of age and TMT (F(2, 388) = 13.83, p < 0.001, η² = 0.07) reflected that the age groups showed significant differences during TMT-A/B in comparison to TMT-C (F(1, 194) = 28.72, p < 0.001, η² = 0.13) but not between TMT-A and TMT-B (F(1, 194) = 1.38, p = 0.241, η² = 0.01).

The sexes did not differ in terms of the number of processed items (TMT-A: t(194) = −1.25, p = 0.212, d = 0.20, TMT-B: t(194) = 0.16, p = 0.875, d = 0.02).

fNIRS. Interaction between task level and ROI. A repeated measures MANOVA revealed differences between the four measurement conditions (RS, TMT-C, TMT-A and TMT-B) concerning the ROI (F(63.00, 1678.40) = 8.24, Wilk’s Λ = 0.45, p < 0.001, partial η² = 0.24). Concerning the FC within and between individual ROIs of the CCN and DAN, we observed multiple effects for the TMT. Between-regions differences were characterized by lower FC in RS than during TMT-A, -B and -C. In contrast, within-region effects were characterized by significantly higher FC at rest than during the TMT-A, -B and -C (Table 3, Fig. 2). For corresponding correlation matrices, please see our supplemental Figure 1.

Table 2. Demographics and behavioral data: Number of processed items during TMT-A, TMT-B and TMT-C, depending on age. TMT, Trail Making Test; SD, standard deviation.

	Early elder Subjects (< 65 years)	Late elder Subjects (> 65 years)	Statistics		
	Mean	SD	Mean	SD	
Age	60.23	2.98	70.27	4.46	
TMT-A Processed items	22.31	3.16	19.49	4.68	p < 0.001
TMT-B Processed items	11.62	4.02	9.50	3.49	p < 0.001
TMT-C Processed items	23.85	0.94	23.87	0.60	p = 0.86
TMT-B/-A Processed items	0.53	0.18	0.51	0.26	p = 0.62

Table 3. Between- and within-region FC in RS versus TMT task conditions. FC, functional connectivity; DLPFC, dorsolateral prefrontal cortex; IFG, inferior frontal gyrus; SAC, sensory association cortex; l, left; r, right.

Statistics	Between-region FC			
	lDLPFC_lIFG	F(2.74, 531.03) = 10.40	p < 0.001, η² = 0.05	
	lDLPFC_rIFG	F(3, 582) = 11.06	p < 0.001, η² = 0.05	
	rDLPFC_lIFG	F(2.87, 556.89) = 9.21	p < 0.001, η² = 0.05	
	rDLPFC_rIFG	F(2.89, 560.38) = 13.56	p < 0.001, η² = 0.07	
	IFG_lSAC	F(3, 582) = 4.48	p < 0.001, η² = 0.02	
	IFG_rSAC	F(3, 582) = 4.31	p < 0.001, η² = 0.02	
	rIFG_lSAC	F(3, 582) = 7.86	p < 0.001, η² = 0.04	
	rIFG_rSAC	F(3, 582) = 9.26	p < 0.001, η² = 0.05	
	Within-region FC	lDLPFC	F(3, 582) = 13.08	p < 0.001, η² = 0.06
		lSAC	F(3, 582) = 7.23	p < 0.001, η² = 0.04
		ISAC	F(3, 582) = 7.23	p < 0.001, η² = 0.04
Interaction between age, task level and ROI. Between-subjects, a main effect for age indicated lower FC within the ROI of the left IFG for the late as compared to the early elder subjects (lIFG_within: $F(1, 194) = 10.17$, $p = 0.042$, $\eta^2 = 0.05$), independent of the corresponding condition (RS versus TMT). Moreover, we observed significant negative correlations of FC and age in various ROIs under the different TMT task conditions: During the TMT-A in the lIFG_within ($r = -0.22$, $p = 0.002$) as well as between lIFG_rIFG ($r = -0.15$, $p = 0.040$), during the TMT-B in the lIFG_within ($r = -0.16$, $p = 0.025$) (Fig. 3) and during the TMT-C in the lDLPFC_within ($r = -0.14$, $p = 0.046$).

Discussion
The study at hand aimed to explore the differences in FC during TMT task completion and RS measurements depending on age (early versus late elder subjects) within a cohort at high risk for neurodegeneration. In summary, our results emphasize age-related task performance decline to be associated with changes of brain network organization, as it has on principle been described before. Regarding the behavioral results, we generally confirmed fewer processed items during the TMT-A/B in comparison to the TMT-C and fewer processed items during the TMT-B in comparison to the TMT-A. As expected, we found a reduced working speed with fewer
rather than collaboration among different networks, which, again, somewhat contradicts our findings, where the successful performance of a certain task may be facilitated by an increased recruitment of related brain regions as well as between-network FC concomitant with an increased activity in particular networks. They suggested that during RS and performance of an auditory oddball task. Their results during task performance, however, showed as well as between-network connectivity to be increased during task performance compared with RS, which is an alternative view is provided by recent studies that suggest FC as a unique pattern that differs between individuals that would expect the participants to reflect during RS on their performance during the preceding task. Finally, an influence of the cognitive task domain on FC magnitude and organization seems obvious. Actually, this has been reported by other authors76–79. Another possible explanation for this phenomenon might be the suppression of spontaneous thoughts by the attention demanding task76. Nevertheless, the current state of research is divided. Since other authors agreed on higher FC during task performance in comparison to RS measurements80–82, an influence of the cognitive task domain on FC magnitude and organization seems obvious. Actually, this has been described repeatedly within the fMRI studies of Varangis et al. 30,61, e.g. in the sense of a higher age-related effect on FC measures during fluid reasoning compared to an episodic memory task. However, all these observations can serve to better classify the partly contradictory research results. Further, from a methodical point of view, one has to consider that the systematic performance of RS before the TMT task measurements may represent a confounding factor, even though the inverted order seems to be even more problematic, as in that case one would expect the participants to reflect during RS on their performance during the preceding task. Finally, an alternative view is provided by recent studies that suggest FC as a unique pattern that differs between individuals regardless of mental status including RS and task performance.

When the variable age was taken into account within our investigation, a negative correlation between age and FC became visible in several ROIs; on principle, this was the case during both RS and the different forms of TMT performance, even though more pronounced under the task condition, as hypothesized. In this regard, we mainly found within-networks effects, namely within the left hemisphere for the IFG and DLPFC. Furthermore, bilateral connectivity between the right and left IFG also was reduced. Hence, it seems that mainly reduced within-network FC, especially in the ROI of the left IFG, is associated with a reduced cognitive performance in advanced age. Interestingly, for the specific regions in which an age effect showed up within our investigation, other authors even described a regional hypometabolism in FDG-PET in the context of different forms of early dementia and subsequent especially executive deficits. We consciously selected our aging cohort on the whole to exhibit even other high-risk factors for neurodegeneration (e.g. RBD and/or depression). Importantly, the aim of this approach was not to investigate the influence of single neurodegenerative risk factors apart from age on FC. Instead, we intended to increase the probability of the overall study cohort to already present (age-related) neurodegenerative changes influencing FC measurements. Notably, only the FC between the left IFG and right SAC was positively correlated with age in our investigation. A generally increased cortical activity measured via fNIRS in older participants during performance of the TMT has already been described by us as well as discussed within the context of a possible compensation mechanism83. For instance, Respino et al. reported a positive correlation between an elevated regional homogeneity within the dACC as part of the CCN and executive performance in the context of late-life depression and suggested this to be a possible compensation mechanism, too. Some limitations of our study should also be mentioned. First, the used neuroimaging method of fNIRS has established itself as a reliable alternative to fMRI in FC studies because it combines an easy clinical integration with ecologically valid conditions (realistic environment, sitting position, task accomplishment, social interaction) as well as relatively high time resolution. But unlike MRI-based technology, fNIRS does not allow to put functional and structural information into relation; this is important to note as, on the one hand, it is well known...
that particularly at early stages of a neurodegenerative disease the correlation between cognitive dysfunction and structural gray or white matter changes can by no means be presumed\(^\text{24-26}\); on the other hand, a relevant cortical atrophy especially in fronto-temporal areas has been described even in elderly with low probability of AD\(^\text{1}\). Further, due to its shallow penetration depth of 2–3 cm into the cranial calotte\(^\text{8}\); only superficial cortical structures are measured, whereas deeper connections to and within white matter structures will not be captured; this might be a disadvantage within the context of dementia entities with relevant subcortical involvement of pathology, e.g. Parkinson’s Disease or vascular dementia. Finally, albeit the CCN and DAN have already been shown to be accessible for fNIRS\(^\text{26}\), subsequent analysis is also limited to the corresponding pre-defined ROIs. Besides, the spatial specificity of fNIRS compared to fMRI is reduced, which means that measuring FC within a region by correlation techniques can overestimate the real FC because the individual channels may access overlapping areas. Anyway, the combination of fNIRS with the TMT has already been shown to be suitable for the investigation of elderly as well as the detection of aging-related differences in resulting cortical activation patterns\(^\text{2,4,33,91}\). The TMT allows the integration into many clinical study settings because it is an easy-to-handle paper–pencil task that offers a natural testing situation and does not provoke any artifacts by activating the mimic musculature by speech.

Next, our subject sample shows an age range of 50 to 85 years as FC changes during later life as well as associated executive deficits were the main focus of the study at hand. So, one could argue that the omission of younger volunteers prevents a complete picture of FC changes over the lifespan, although previous studies have already shown that at least age-related cognitive deficits do not become apparent until about 50 years of age\(^\text{85-89}\). Accordingly, one might assume that even the concomitant FC changes during task performance are not expected to appear before that age, either. However, Hofmann et al.\(^\text{43}\) observed a significantly reduced neural activity in the right DLPFC also via fNIRS within prodromal Parkinson’s Disease patients completing the TMT-A and -B in contrast to the TMT-C, even before differences became evident on the behavioral level.

Finally, as described above, we investigated a sub-cohort of the TREND study collective, which is enriched for other neurodegenerative risk factors apart from age. This is why we matched the two groups of early and late elders, amongst others, for these factors (Table 1). Even though they should thus be equally present in both subgroups, this may bias our results, nevertheless. Therefore, within future studies, it will be important to potentially create a cohort of healthy agers explicitly free from other neurodegenerative risk factors or enriched for only single of these risk factors. Such an approach might help to selectively investigate the influence of other risk factors for neurodegenerative diseases, like RBD, on FC during the prodromal stage.

Conclusion

To the authors’ knowledge, this is the first study examining the influence of age on FC through a comparison of RS and task-related measurements (TMT) using fNIRS.

To sum up, only particular regions of the CCN and DAN were affected by an age-related FC decrease. This finding was observed for the RS measurement and was even more pronounced during execution of the TMT, and it might indicate a specific vulnerability of these areas to aging and/or early neurodegenerative processes. Further, with the aim of identifying age-related—either physiological or pathological—FC changes as early as possible, these results confirm our hypothesis that measuring these during task conditions is superior to the RS.

Therefore, it will be very important to confirm these promising findings within future studies, under special consideration of multiple task conditions on FC characteristics of the corresponding networks. Especially the application of a dual task situation might be a promising approach to further understand this dynamic and complex interplay. For instance, Beurskens et al.\(^\text{84}\) have already shown within their fNIRS study that especially the combination of a cognitive with a simultaneous motor task can have a relevant impact on neural functionality within older adults. Finally, the constant correlation with behavioral performance will maintain a key role for assessment of potentially successful, neural compensation mechanisms.

Data availability

The datasets generated and/or analyzed during this study are available by request.

Received: 10 November 2021; Accepted: 16 May 2022
Published online: 04 July 2022

References

1. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M. & Walhovd, K. B. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. *Prog. Neurobiol.* **117**, 20–40 (2014).
2. Hagen, K. *et al.* Activation during the Trail Making Test measured with functional near-infrared spectroscopy in healthy elderly subjects. *Neuroimage* **85**, 583–591 (2014).
3. Hedden, T. & Yoon, C. Individual differences in executive processing predict susceptibility to interference in verbal working memory. *Neuropsychologia* **20**, 511–528 (2006).
4. Bergfeld, K. L. *et al.* Age-related networks of regional covariance in MRI gray matter: Reproducible multivariate patterns in healthy aging. *Neuroimage* **49**, 1750–1759 (2010).
5. Buckner, R. L. Memory and executive function in aging and AD. *Neuron* **44**, 195–208 (2004).
6. Courchesne, E. *et al.* Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers. *Radiology* **216**, 672–682 (2000).
7. Giorgio, A. *et al.* Age-related changes in grey and white matter structure throughout adulthood. *Neuroimage* **51**, 943–951 (2010).
8. Good, C. D. *et al.* A voxel-based morphometric study of ageing in 465 normal adult human brains. *Neuroimage* **14**, 21–36 (2001).
9. Madden, D. J., Bennett, I. J. & Song, A. W. Cerebral white matter integrity and cognitive aging: Contributions from diffusion tensor imaging. *Neuropsychol. Rev.* **19**, 415–435 (2009).
10. Pfefferbaum, A. *et al.* A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. *Arch. Neurol.* **51**, 874–887 (1994).
11. Walhovd, K. B. et al. Effects of age on volumes of cortex, white matter and subcortical structures. *Neurobiol. Aging* **26**, 1261–1270 (2005).

12. Terry, R. D. & Katzman, R. Life span and synapses: Will there be a primary senile dementia?. *Neurobiol. Aging* **22**, 347–348 (2001).

13. Pike, K. E. et al. amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. *Brain* **130**, 2837–2844 (2007).

14. Cabeza, R. Hemispheric asymmetry reduction in older adults: The HAROLD model. *Psychol. Aging* **17**, 85–100 (2002).

15. Logan, J. M., Sanders, A. L., Snyder, A. Z., Morris, J. C. & Buckner, R. L. Under-recruitment and nonselective recruitment. *Neuron* **33**, 827–840 (2002).

16. Park, D. C. & Reuter-Lorenz, P. The adaptive brain: Aging and neurocognitive scaffolding. *Neurobiol. Aging* **33**, 2018–2028 (2012).

17. Dai, Z. et al. Identifying and mapping connectivity patterns of brain hubs in Alzheimer’s disease. *Cereb. Cortex* **25**, 3723–3742 (2015).

18. Sorg, C. et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 18760–18765 (2007).

19. Wang, M. et al. Disrupted functional brain connectivity networks in children with attention-deficit/hyperactivity disorder: evidence from resting-state functional near-infrared spectroscopy. *Neurophotonics* **7**, 1 (2020).

20. Respio, M. et al. Cognitive control network homogeneity and executive functions in late-life depression. *Biol. Psychiatry Cogn. Neuroimaging* **5**, 213–221 (2020).

21. Rosenbaum, D. et al. Cortical hemodynamic changes during the Trier Social Stress Test: An fNIRS study. *Neuroimage* **171**, 107–115 (2018).

22. Li, X. et al. Decreased resting-state brain signal complexity in patients with mild cognitive impairment and Alzheimer’s disease: A multi-scale entropy analysis. *Biomed. Opt. Express* **9**, 1916 (2018).

23. Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E. & Wig, G. S. Decreased segregation of brain systems across the healthy adult lifespan. *Proc. Natl. Acad. Sci. U.S.A.* **111**, E4997–E5006 (2014).

24. Ferrera, L. K. et al. Aging effects on whole-brain functional connectivity in adults free of cognitive and psychiatric disorders. *Cereb. Cortex* **26**, 3851–3865 (2016).

25. Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M. & Lorist, M. M. A Brain-wide study of age-related changes in functional connectivity. *Cereb. Cortex* **25**, 1987–1999 (2015).

26. Grady, C., Sarraf, S., Saverrino, C. & Campbell, K. Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. *Neurobiol. Aging* **41**, 159–172 (2016).

27. Ferreira, L. K. & Busatto, G. F. Resting-state functional connectivity in normal brain aging. *Neurosci. Biobehav. Rev.* **37**, 384–400 (2013).

28. Ng, K. K., Lo, J. C., Lim, J. K. W., Chee, M. W. L. & Zhou, J. Reduced functional segregation between the default mode network and the executive control network in healthy older adults: A longitudinal study. *Neuroimage* **133**, 321–330 (2016).

29. Varangis, E., Habeck, C. G. & Stern, Y. Task-based functional connectivity in aging: How task and connectivity methodology affect discovery of age effects. *Brain Behav.* **11**, 10 (2021).

30. Esposito, R. et al. Modifications in resting state functional anticorrelation between default mode network and dorsal attention network: comparison among young adults, healthy elders and mild cognitive impairment patients. *Brain Imaging Behav.* **12**, 127–141 (2018).

31. Spreng, R. N., Stevens, W. D., Viviano, J. D. & Schacter, D. L. Attenuated anticorrelation between the default and dorsal attention networks with aging: evidence from task and rest. *Neurobiol. Aging* **45**, 149–160 (2016).

32. Arbuthnot, K. & Frank, J. Trail Making Test, part B as a measure of executive control: Validation using a set-switching paradigm. *J. Clin. Exp. Neuropsychol.* **22**, 518–528 (2000).

33. Ehrin, A.-C., Schneider, S., Dresler, T. & Fallgatter, A. J. Application of functional near-infrared spectroscopy in psychiatry. *Neurophotonics* **85**, 478–488 (2014).

34. Jacobson, S. C., Blanchard, M., Connolly, C. C., Cannon, M. & Garavan, H. An fMRI investigation of a novel analogue to the Trail-Making Test. *Brain Cogn.* **77**, 207–211 (2010).

35. Breukelaar, I. A. et al. Cognitive control network anatomy correlates with neurocognitive behavior: A longitudinal study: Cognitive Control Network Development. *Hum. Brain Mapp.* **38**, 631–643 (2017).

36. Rosenbaum, D. et al. Neurophysiological correlates of the attention training technique: A component study. *Neuroimage Clin.* **19**, 1018–1024 (2018).

37. Wess, S., Eng, J. J. & Fink, G. R. Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. *Neurosci. Biobehav. Rev.* **37**, 10 (2021).

38. Hofmann, A. et al. Abnormally reduced frontal cortex activity during Trail-Making Test in prodromal Parkinson’s disease—a fNIRS study. *Neurobiol. Aging* **185**, 148–158 (2021).

39. Kurupp, D. K. & Matthews, B. R. Young-onset dementia. *Semin. Neurol.* **33**, 365–385 (2013).

40. World Health Organization. *Parkinsonism Relat. Disord.* **18**, e27831 (2011).

41. Morris, J. C., Mohs, R. C., Rogers, H., Fillenbaum, G. & Heyman, A. Consortium to establish a registry for Alzheimer’s disease (CERAD) clinical and neuropsychological assessment of Alzheimer’s disease. *Psychopharmacol. Bull.* **24**, 641–652 (1988).

42. Nasreddine, Z. S. et al. The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment: MOCA: A brief screening tool for MCI. *J. Am. Geriatr. Soc.* **53**, 695–699 (2005).

43. Harris, P. A. et al. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for provid- ing translational research informatics support. *J. Biomed. Inform.* **42**, 377–381 (2009).

44. Chandler, M. J. et al. A total score for the CERAD neuropsychological battery. *Neurology* **65**, 102–106 (2005).

45. Homan, R. W., Herman, J. & Purdy, P. Cerebral location of international 10–20 system electrode placement. *Electroencephalogr. Clin. Neurophysiol.* **66**, 376–382 (1987).

https://doi.org/10.1038/s41598-022-13326-7
55. Singh, A. K., Okamoto, M., Dan, H., Jurcak, V. & Dan, I. Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. Neuroimage 27, 842–851 (2005).
56. Tsuzuki, D. & Dan, I. Spatial registration for functional near-infrared spectroscopy: From channel position on the scalp to cortical location in individual and group analyses. Neuroimage 85, 92–103 (2014).
57. Tsuzuki, D. et al. Virtual spatial registration of stand-alone fNIRS data to MNI space. Neuroimage 34, 1506–1518 (2007).
58. Fishburn, E. A., Ludlum, R. S., Vaidya, C. J. & Medvedev, A. V. Temporal Derivative Distribution Repair (TDDR): A motion correction method for fNIRS. Neuroimage 184, 171–179. https://doi.org/10.1016/j.neuroimage.2018.09.025 (2018).
59. Cui, X., Bray, S. & Reiss, A. L. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. Neuroimage 49, 3039–3046 (2010).
60. Zhang, X., Noah, A., & Hirsch, J. Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering. Neurophotonics 3(1), 015004. https://doi.org/10.1177/2156-7571.3.1.015004 (2016).
61. Fishburn, F. A., Ludlum, R. S., Vaidya, C. J. & Medvedev, A. V. Temporal Derivative Distribution Repair (TDDR): A motion correction method for fNIRS. Neuroimage 184, 171–179. https://doi.org/10.1016/j.neuroimage.2018.09.025 (2018).
62. Brigadoi, S. et al. Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. Neuroimage 85, 181–191 (2014).
63. Zhu, H. et al. Decreased functional connectivity and disrupted neural network in the prefrontal cortex of affective disorders: A resting-state fNIRS study. J. Affect. Disord. 221, 132–144 (2017).
64. Varangis, E., Razlighi, Q., Habeck, C. G., Fisher, Z. & Stern, Y. Between-network functional connectivity is modified by age and cognitive task domain. J. Cogn. Neurosci. 31, 607–622 (2019).
65. Hamdan, A. C. & Hamdan, E. M. L. Effects of age and education level on the Trail Making Test in a healthy Brazilian sample. Psychol. Neurosci. 2, 199–203 (2009).
66. Rasmussen, X. D., Zonderman, A. B., Kawas, C. & Resnick, S. M. Effects of age and dementia on the trail making test. Clin. Neuroradiol. 12, 169–178 (1998).
67. Schlee, W., Leirer, V., Kolassa, I.-T., Weisz, N. & Elbert, T. Age-related changes in neural functional connectivity and its behavioral relevance. BMC Neurosci. 13, 16 (2012).
68. Siman-Tov, T. et al. Early age-related functional connectivity decline in high-order cognitive networks. Front. Aging Neurosci. 8, 15 (2017).
69. Zonneveld, H. I. et al. Patterns of functional connectivity in an aging population: The Rotterdam Study. Neuroimage 189, 432–444 (2019).
70. Bai, F. et al. Specifically progressive deficits of brain functional marker in amnestic type mild cognitive impairment. PLoS ONE 6, e24271 (2011).
71. Damoiseau, J. S., Prater, K. E., Müller, B. L. & Greicius, M. D. Functional connectivity tracks clinical deterioration in Alzheimer’s disease. Neurobiol. Aging 33(828), e19–e28.e30 (2012).
72. Di, X., Reynolds, R. C. & Biswal, B. B. Imperfect (de)convolution may introduce spurious psychophysiological interactions and how to avoid it. Hum Brain Mapp. 38, 1723–1740 (2017).
73. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human cortex in the absence of visual stimulation. Neuroimage 83, 238–251 (2014).
74. Arbabshirani, M. R., Havlicek, M., Kiehl, K. A., Pearlson, G. D. & Calhoun, V. D. Functional network connectivity during rest and task conditions: A comparative study: FNC During Rest and Task Conditions. Proc. Natl. Acad. Sci. 100, 253–258 (2003).
75. Hasson, U., Nasbaum, H. C. & Small, S. L. Task-dependent organization of brain regions active during rest. Proc. Natl. Acad. Sci. 106, 10841–10846 (2009).
76. Nir, Y., Hasson, U., Levy, I., Yeshurun, Y. & Malach, R. Widespread functional connectivity and fMRI fluctuations in human visual cortex. Neuroimage 30, 1313–1324 (2006).
77. Elton, A. & Gao, W. Task-positive functional connectivity of the default mode network transcends task domain. J. Cogn. Neurosci. 27, 2369–2381 (2015).
78. Harrison, B. J. et al. Consistency and functional specialization of the default mode network transcends task domain. J. Cogn. Neurosci. 27, 2369–2381 (2015).
79. Shiner, W. R., Ryali, S., Rykhlevskaia, E., Menon, V. & Greicius, M. D. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22, 158–165 (2012).
80. Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98, 439–452.e5 (2018).
81. Noble, S. et al. Multisite reliability of MR-based functional connectivity. Neuroimage 146, 959–970 (2017).
82. Schrooten, M. L. et al. Executive deficits are related to the inferior frontal junction in early dementia. Brain 135, 201–215 (2012).
83. Blum, L. et al. Age-related deterioration of performance and increase of cortex activity comparing time- versus item-controlled fNIRS measurement. Sci. Rep. 11, 6766 (2021).
84. Dalakas, T. O. et al. White matter hyperintensities do not impact cognitive function in patients with newly diagnosed Parkinson’s disease. Neuroimage 47, 2083–2089 (2009).
85. Dalakas, T. O. et al. Gray matter correlations of cognition in incident Parkinson’s disease: Gray Matter Atrophy and Cognition in PD. Mov. Disorder. 25, 629–633 (2010).
86. Haeussinger, F. B. et al. Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: Implications for optical neuroimaging. PLoS ONE 6, e26377 (2011).
87. Rosenbaum, D. et al. Comparison of speed versus complexity effects on the hemodynamic response of the trail making test in block designs. Neurophotonics 5, 1 (2018).
88. Rosenbaum, D. et al. State-dependent altered connectivity in late-life depression: A functional near-infrared spectroscopy study. Neurobiol. Aging 39, 57–68 (2016).
89. Oosterman, J. M. et al. Assessing mental flexibility: neuroanatomical and neuropsychological correlates of the trail making test in elderly people. Clin. Neurophysiol. 24, 203–219 (2010).
90. Saltouna, S. T. A. Influence of age on practice effects in longitudinal neurocognitive change. Neuropsychology 24, 563–572 (2010).
91. Singh-Manoux, A. et al. Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ 344, d7622–d7622 (2012).
92. Wecker, N. S., Kramer, J. H., Hallam, B. J. & Delis, D. C. Mental flexibility: Age effects on switching. Neuropsychology 19, 345–352 (2005).
93. Beurskens, R., Helmich, I., Rein, R. & Bock, O. Age-related changes in prefrontal activity during walking in dual-task situations: A fNIRS study. Int. J. Psychophysiol. 92, 122–128 (2014).
Acknowledgements
The authors thank Ramona Täglich for her skilful technical assistance as well as Dr. Thomas Dresler for his critical comments, that helped to improve the manuscript.

Author contributions
L.B.: Conceptualization, Formal analysis, Writing—original draft, Visualization. A.H.: Conceptualization, Writing—original draft, Visualization, Writing—review & editing. D.R.: Formal analysis, Methodology, Software, Writing—review & editing. M.E.: Writing—review & editing. U.S.: Project administration. A.J.F.: Writing—review & editing, Conceptualization, Project administration, Supervision.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-13326-7.

Correspondence and requests for materials should be addressed to A.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022