Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Risk factors for palatal and orbital involvement in mucormycosis epidemic–Report of a center in India

Vikram Kemmannu Bhat *, Kiran Ravindranath Bongale, Shriya Pramod Basti, Raveendra Parappa Gadag, Nikhila Kizhakkilottu, Eaiby Sebastian, Megha Kattayya Gopalegowda, Pavithra Thammaiah

Department of Otorhinolaryngology, Head and Neck Surgery, Karnataka Institute of Medical Sciences, Hubli, India

ARTICLE INFO

Keywords:
Mucormycosis
Palate
Orbit
Paranasal sinus
COVID-19

ABSTRACT

Background: Mucormycosis of the nose and paranasal sinuses has emerged as an epidemic following COVID-19 pandemic. The management involves surgical debridement, the extent of which depends on the bulk of the disease. Extension to the orbit and palate depends on the involvement of specific sites in the nose and paranasal sinuses. This study intended to identify those sites.

Materials and methods: This was a single-center case-control study. There were 3 groups according to the region involved (Palate, orbit and both). The fourth group with neither involvement was the control. Scoring system was used to estimate the bulk of disease according to the site involved in MRI scan. Odds ratio and chi-square tests were used to study risk and association respectively. ROC curve was obtained for the MRI scores of the cases and controls.

Results: 214 patients were studied in all; 44.39% and 61.68% had palate and orbit involvement, respectively. Maxillary sinus roof had significant association and the highest risk for spread of disease into the palate. The risk for the orbit to be involved was increased when there was disease in the cavernous and sphenoid sinus. For the orbit, the site with the significant association was the ethmoid sinus, infratemporal fossa and roof of the maxillary sinus.

Conclusion: Due attention should be given for clearance during surgical debridement to the high-risk sites to prevent recurrences and reduce morbidity and mortality. MRI scores were most helpful to identify the bulk of disease when both palate and orbit were involved.

1. Introduction

Rhino-orbital Mucormycosis cases have emerged as an epidemic within the pandemic of COVID-19 in India and a few other nations. The majority of the patients have involvement of palate, orbit or both adding to the bulk of the disease thereby increasing the morbidity and mortality. The surgeries are extensive and mutilating when they are involved; hence there is a need to determine what leads to palatal or orbital extensions from the nose and paranasal sinuses so that these critical structures might be addressed better during debridement. It is difficult to predict the progressive course of the disease and the extent of involvement of the vital structures in the vicinity of the primary disease that might finally decide the fate of the patient. This spread directly affects the debridement clearance required in the patients.

This study intended to identify the involvement of critical structures that may lead to the extension of disease into the palate/upper alveolus and orbit from the nose and paranasal sinuses and also the patterns of disease presentations of Mucormycosis [MCM].

2. Materials and methods

This was a single center study undertaken for 3 months, in a tertiary referral public hospital during the peak of the epidemic of MCM in South India that commenced during the second wave of the COVID-19 pandemic. Clearance was obtained from the institutional ethics review board. Written informed consent was taken from all the patients. The study included patients of diabetes mellitus and COVID 19 history with and without orbital and or palatal involvement due to MCM of the nose.
and paranasal sinuses who had undergone surgical debridement for the same and also received Amphotericin B therapy.

The primary outcome was to identify the critical structures responsible for the involvement of the palate/alveolus, orbit or both [Regions]. The patterns of involvement of the various sites in the nose and the paranasal sinus [PNS] were also studied. This was a case-control study with 4 groups:

a. Case group A [A]: Nose, PNS and palate involved cases [stage 2]
b. Case group B [B]: Nose, PNS and orbit involved cases [stage 3]
c. Case group C [C]: Nose, PNS, palate and orbit involved cases [Stage 3] with CNS involvement [Stage 4]
d. Control group [D]: Nose, PNS or both involved cases [Stage 1]

Every consecutive eligible patient was included in the study. Adult patients in stages 1, 2, 3, 4 of MCM of head and neck with diabetes mellitus and post COVID-19 infection (Based on magnetic resonance imaging [MRI], Diagnostic nasal endoscopy [DNE], biopsy and clinical findings) [1,2]. Orbital involvement was confirmed by restriction of movement, loss or reduction of vision, chemosis, edema of eyelid, proptosis and redness of the eye. Palatal involvement was established by the presence of ulcer, swelling or loose tooth. Diabetes mellitus included precoid type 1, 2 or covid induced diabetes. Inoperable cases, chronic sinusitis without evidence of MCM or pre-existing diabetic retinopathy were excluded. A Scoring system to assess the bulk of disease for every patient was prepared according to the sites involved on the MRI and the net score was calculated [3]. The scoring pattern for the sites was as follows: middle/inferior turbinate, osteomeatal complex, nasal septum, cribriform plate, lateral wall of the maxillary cavity, infratemporal fossa, frontal sinus [Score 1], ethmoids, the floor of the nasal cavity, floor of the maxillary sinus, sphenoid sinus, roof of the maxillary sinus [score 2], pterygopalatine fossa, cavernous sinus [score 3]. The score of cases and controls was compared and analyzed.

2 * 2 contingency tables were prepared separately for every suspected risk factor and the Odds ratio was calculated. Chi-square test was used for the study of the association at 95% confidence intervals. The sensitivity and specificity of the MRI scores in identifying the disease of group A, B, C was calculated. Standard error was calculated [95% confidence intervals] and the ROC curve was obtained by plotting sensitivity against 1-specificity. Stata version 21 was used for statistical analysis.

3. Results

Two hundred and fourteen patients were studied in all that included 170 males and 44 females. The youngest patient was aged 25 years and the oldest 80 years. The mean age was 50.29 ± 11.47. The distribution of the patients according to the age class interval is shown in Fig. 1. The percentages of the patients in the individual groups and the admission discharge statistics are given in Table 1. The percentages of the patients in the individual groups and the admission discharge statistics are given in Table 1. The most common symptom and sign were craniofacial pain [Table 2] and nasal discharge [Table 3], respectively. The findings of the MRI done are given in Table 4 and the commonest site involved was the ethmoid sinus [Table 4]. The risk factor for each site was calculated by odds ratio and then the strength of the association with the palate and orbit [Table 5]. The MRI scores of the patients in the various groups is given in class intervals in Table 6. The area under the ROC curves of groups A, B, C is shown in Figs. 2, 3, 4, respectively. It was found that group C had the maximum area under ROC and hence the MRI scores were the most useful to identify the bulk of disease.

4. Discussion

In the past, several authors have studied a series of cases of MCM over the years [3-14]. Also, many cases of MCM have been reported recently (2021) across India and the rest of the world after the COVID-19

Status of patient	A	B	C	D	Total
Undergoing treatment Palate	28	51	36	25	140 [65.42%]
Discharged from hospital on request	7	7	8	8	30
Discharge against medical advice	1	6	5	4	16
Expired	2 [5.26%]	11 [14.66%]	8 [14.03%]	7 [15.90%]	28 [13.08%]
Total	38 [17.75%]	75 [35.04%]	57 [26.63%]	44 [20.56%]	214
pandemic [15–31]. However, none has evaluated the risk factors for palatal and orbital involvement against a control. To the best of our knowledge, this is the first paper to assess and report the same. Just as the course of COVID-19 was unpredictable and could become serious in some, so was MCM in this study. Given the high morbidity and mortality of the disease, it is essential to identify the sites in and around the nose and the paranasal sinuses that get involved early and play a lead role in the further extension of the disease to vital organs. There were no apparent reasons or causes for the spread into the palate, orbit or the central nervous system in a few of them. The involvement of these regions additionally required the services of a maxillofacial surgeon, a prosthodontist, an oculoplastic surgeon and a neurosurgeon in our setup. Hence the number of surgeries that the patient had to undergo would increase, thereby increasing the duration of surgery and also the number of times the patient was subjected to general anesthesia.

Diagnosis is confirmed through biopsy and histological analysis of the affected tissues. On microscopy, broad-based ribbon-like non-septate hyphae with irregular right-angled branching are the key diagnostic microscopic features [32]. CT and MRI scans may suggest invasive MCM but they may often be nondiagnostic [11]. If angio-invasion is present, bone erosion may be absent even in the presence of progressive disease. Overall, CT and MRI may be most helpful in assisting surgical planning for, rather than the diagnosis of rhinocerebral MCM [11].

Periorbital cellulitis, extraocular muscle paresis, proptosis and chemosis frequently develop due to disease extension into orbit or cavernous

Table 2
Symptoms in the 4 groups.

Symptoms	A	B	C	D	Total
Nasal obstruction	15	23	20	21	79 (36.91%)
Nasal discharge	13	14	12	11	59 (23.36%)
Craniofacial pain	27	54	36	27	144 (67.28%)
Blurred vision	0	22	11	6	39 (18.22%)
Eye swelling	7	55	41	5	108 (50.46%)
Fever	2	9	4	3	18 (8.41%)
Loose tooth/toothache	23	16	23	7	69 (32.34%)
Disorientation	0	1	2	0	3 (1.40%)
Vomiting	0	1	0	0	1 (0.46%)

Table 3
Signs in the 4 groups.

Signs	A	B	C	D	Total
Nasal discharge	21	52	33	28	134 (62.61%)
Nasal eschar/slough	15	30	36	22	103 (48.13%)
Eyelid edema	3	57	37	4	101 (47.19%)
Eye congestion	1	27	23	0	51 (23.83%)
Diminished vision	0	26	15	0	41 (19.15%)
Restricted movements of eyeball	0	29	21	0	50 (23.36%)
Proptosis	0	21	15	0	36 (16.82%)
Palatal ulcer	30	0	41	0	71 (33.17%)
Loose or missing teeth	9	2	3	0	14 (6.54%)
Altered sensorium	0	0	6	0	6 (2.80%)

Table 4
MRI findings suggesting the involvement of various sites in the craniofacial region.

MRI findings of involvement [sites]	A	B	C	D	Total
Middle turbinate	6	20	12	14	52 (24.29%)
Inferior turbinate	7	17	15	10	42 (19.62%)
Septum	2	0	4	0	6 (2.80%)
Lateral wall of maxillary sinus	18	40	26	22	106 (49.53%)
Roof of maxillary sinus	31	48	58	21	158 (73.83%)
Floor of maxillary sinus	33	48	32	25	138 (64.48%)
Floor of nasal cavity	3	5	3	1	12 (5.56%)
Ethmoid sinus	28	66	48	34	176 (82.24%)
Sphenoid sinus	22	56	42	21	141 (65.88%)
Frontal sinus	16	40	31	21	108 (50.46%)
Pterygopalatine fossa	4	7	8	3	22 (10.26%)
Infratemporal fossa	8	24	12	5	49 (22.89%)
Cavernous sinus	0	3	4	0	7 (3.27%)

Table 5
The odds ratio and the strength of association found between the sites of the craniofacial region and the palate, orbit.

Site involved	Palate	Palate	Orbit	Orbit
	Odds ratio	p-Value	Odds ratio	p-Value
Lateral wall of nasal cavity	0.39	0.001	1.63	0.09
Floor of the maxillary sinus	1.3	0.28	0.63	0.13
Roof of the maxillary sinus	10.74	<0.001	2.35	0.007
Lateral wall of maxillary sinus	0.79	0.41	1.05	0.86
Floor of nasal cavity/septum	2.72	0.05	1.26	0.67
Ethmoid sinus	0.76	0.45	2.04	0.05
Sphenoid sinus	1.12	0.69	2.61	0.001
Frontal sinus	0.93	0.80	1.41	0.22
Pterygopalatine fossa	1.57	0.32	1.37	0.50
Infratemporal fossa	0.82	0.57	1.99	0.05
Cavernous sinus	1.7	0.52	9.86	0.02

Table 6
MRI scores of the patients in the 4 groups in class intervals.

MRI score	A	B	C	D	Total
	Palate	Orbit	Both	None	
1–3	3	2	0	7	12
4–6	9	15	7	14	45
7–9	14	29	26	19	88
10–12	8	21	18	3	50
13–15	4	4	5	1	14
16–18	0	4	1	0	5
Total cases	38	75	57	44	214

Fig. 2. Area under the ROC curve in palatal involvement only.
The authors wish to thank and acknowledge the support and the cooperation extended by the departments of ophthalmology, maxillofacial surgery, prosthodontics, pathology, microbiology, radiology, internal medicine and neurosurgery in patient care and the preparation of this paper.

Acknowledgments

The disease in the roof of the maxillary sinus had a significant association and the highest risk to spread into the upper alveolus and the palate. The other sites with increased risk for palatal involvement were the floor of the nasal cavity and the pterygopalatine fossa. Similarly, the risk of involvement in orbit was highest when there was disease in the sphenoid sinus and the cavernous sinus. The other sites with significant association and high risk were the roof of the maxillary sinus, infra-temporal fossa and ethmoid sinus. Due attention should be given to the clearance of disease in these high-risk sites during debridement surgery to prevent common recurrences and thus reduce morbidity and mortality. The contiguous spread was not always the rule and skip lesions were possible due to perineural and transvascular spread. MRI scores were most helpful to identify the bulk of disease when both the palate and orbit were involved and least beneficial when the palate alone was involved.

Fig. 3. Area under the ROC curve in orbital involvement only.

Fig. 4. Area under the ROC curve in both palatal and orbital involvement.

References

[1] Honavar SG. Rhino-orbito-cerebral mucormycosis: guidelines for diagnosis, staging and management. Indian J Ophthalmol 2021;69:1361–5. https://doi.org/10.4103/iJO.IJO_3165_21.

[2] Sen M, Honavar SG, Bansal R, Sengupta S, Rao R, Kim U, et al. Epidemiology, clinical profile, management and outcome of COVID-19 associated rhino-orbital-cerebral mucormycosis in 2826 patients in India – collaborative OPAI-IJO study on mucormycosis in COVID-19 (COSMIC), report 1. Indian J Ophthalmol 2021;69:1670–92. https://doi.org/10.4103/iJO.IJO_1565_21.

[3] Shah K, Dave V, Bradoo R, Shinde C, Pratibha M. Orbital exenteration in rhino-orbito-cerebral mucormycosis: a prospective analytical study with scoring system. Indian J Otolaryngol Head Neck Surg. 2019;71(2):259–65. https://doi.org/10.1007/s12070-018-1293-8.

[4] Balal E, Mummadi S, Jolly K, Darr A, Alderwari H. Rhinocerebral mucormycosis: a ten-year single centre case series. Cureus. 2020;12(11):e17776. https://doi.org/10.7759/cureus.17776.

[5] Kolekar JS. Rhinocerebral mucormycosis: a retrospective study. Indian J Otolaryngol Head Neck Surg 2015;67(1):93–6. https://doi.org/10.1007/s12070-014-0804-5.
[6] Bakshi SS, Das S, Ramesh S, Gopalakrishnan S. Nasal mucormycosis: our experience with 24 cases. Otolaryngol Pol 2020;74(4):37–40. https://doi.org/10.5664/otol.2020.0013.8593.

[7] Singh VP, Bansal C, Kaintrua M. Sinonasal mucormycosis: a to Z. Indian J Otolaryngol Head Neck Surg 2019;71(Suppl 3):1962–71. https://doi.org/10.1007/s12070-018-1384-6.

[8] Rangel-Guerra R, Martinez HR, Mucormycosis S. Report of 11 cases. Arch Neurol 1985;42(6):578–81. https://doi.org/10.1001/archneur.1985.04060006080013.

[9] Nussbaums RM, Hall WA. Rhinocerebral mucormycosis: changing patterns of disease. Surg Neurol 1994;42(2):152–6. https://doi.org/10.1097/00006123-199407000-00029.

[10] Sravani T, Uppin SG, Uppin MS, Sundaram C. Rhinocerebral mucormycosis: experience in 14 patients. J Laryngol Otol 2011;125(8):e3. https://doi.org/10.1017/S0022215111000843.

[11] Ketenci I, Ünlü Y, Kaya H, Somdas MA, Kontas O, Achnel M. Mucormycosis in a patient with COVID-19 with uncontrolled diabetes. BMJ Case Rep 2021;14(7):e245343. https://doi.org/10.1136/bcr-2021-245343.

[12] Veeravannavar SM, Samaga L, S.S. P.V. COVID-19 triggering mucormycosis in a susceptible patient: a new phenomenon in the developing world? BMJ Case Rep 2021;14(4):e241663. https://doi.org/10.1136/bcr-2021-241663.

[13] Chouhan M, Solanki B, Shakrawal N. Rhino-orbital-cerebral mucormycosis: fungal epidemic in a viral pandemic. J Laryngol Otol 2021;135(11):981–6. https://doi.org/10.1017/s0022215121000992.

[14] Sharma S, Grover M, Bhargava S, Samdani S, Kataria T. Post coronavirus disease mucormycosis: a deadly addition to the pandemic spectrum. J Laryngol Otol 2021;135:442–7. https://doi.org/10.1017/s0022215121000900.

[15] Bal RK, Alagoz S, Delhis V, Kuran G, Ozdas T, Yucel Ecik N. Did COVID-19 increase rhinorhinocerebral mucormycosis: 9 consecutive cases on pandemic days. B-ENT 2021;17(3):149–54. https://doi.org/10.5152/B-ENT.2021.20429.

[16] Mehta S, Pandey A. Rhino-orbital mucormycosis associated with COVID-19. Cureus 2020;12:e10726. https://doi.org/10.7759/cureus.10726.

[17] John TM, Jacob CN, Kontoyiannis DP. When uncontrolled diabetes mellitus and severe COVID-19 converge: the perfect storm for mucormycosis. J Fungi (Basel) 2021;7(4):298. https://doi.org/10.3390/jof7040298.

[18] Pippal SK, Kumar D, Ukwat L. Management challenge of rhino-orbital-cerebral mucormycosis in covid 19 era: a prospective observational study. Indian J Otolaryngol Head Neck Surg. 2021;1–7. https://doi.org/10.1007/s12070-021-02947-5. Epub ahead of print.

[19] Mitra S, Janweja M, Sengupta A. Post-COVID-19 rhino-orbital-cerebral mucormycosis: a new addition to challenges in current pandemic. J Otorhinolaryngol India 2021;1–6. https://doi.org/10.1007/s00405-021-07010-1.

[20] Avatet Fazeli M, Rezaei L, Javadirad E, Iranfar K, Khosravi A, Amini Saman J, et al. Increased incidence of rhino-orbital mucormycosis in an educational therapeutic hospital during the COVID-19 pandemic in western Iran: an observational study. Mycoses 2021;64:1366–77. https://doi.org/10.1111/myc.13351.

[21] Sen M, Lahane S, Lahane TP, Parak G, Honavar SG. Muco in a viral land: a tale of two pathogens. Indian J Ophthalmol 2021;69:244–52. https://doi.org/10.4103/ijo.IJO_297.21.

[22] Ravani SA, Agrawal GA, Leuva PA, Modi PH, Amin KD. Rise of the phoenix: mucormycosis in COVID-19 times. Indian J Ophthalmol 2021;69:1563–8. https://doi.org/10.4103/ijo.IJO_297.21.

[23] Dave TV, Nair AG, Hegde R, Vithalani N, Desai S, Adulkar N, et al. Clinical presentations, management and outcomes of rhino-orbital-cerebral mucormycosis (ROCM) following COVID-19: a multi-centric study. Ophthalmic Plast Reconstr Surg. 2021;37(5):488–95. https://doi.org/10.1097/OPX.0000000000002200.

[24] Bayram N, Ozsaygci C, Sav H, Tekin Y, Gundogan M, Pangal E, et al. Susceptibility of severe COVID-19 patients to rhino-orbital mucormycosis fungal infection in different clinical manifestations. Jpn J Ophthalmol 2021;65(4):515–25. https://doi.org/10.1007/s10384-021-00845-5.

[25] Gupta S, Ahuja P. Risk factors for proourece of mucormycosis and its manifestations post covid-19: a single arm retrospective unicentric clinical study. Indian J Otolaryngol Head Neck Surg 2021;Sept 181:1–8. https://doi.org/10.1007/s12070-021-02950-4.

[26] Sinha A, Jain S, Sharma S, Kottiyayam V, Chandelawal G. A multicentric observational study of imaging findings in COVID-19-related rhino-orbital-cerebral mucormycosis: a new pandemic’s box. Egypt J Radiol Nucl Med 2021;52:258. https://doi.org/10.1016/j.ejrn.2021.05.021.

[27] Patel A, Agarwal R, Radumruth SM, Shekmani M, Xess I, Sharma R, et al. Multicenter epidemiologic study of coronavirus disease-associated mucormycosis. Emerg Infect Dis 2021;27(9):2349–59. https://doi.org/10.3201/eid2709.210934.

[28] Walsh TJ, Gamaletous MN, McGinnir MR, Hayden RT, Kontoyiannis DP. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary and disseminated mucormycosis. Clin Infect Dis 2012;54(Suppl 1):S55–60. https://doi.org/10.1093/cid/cir766.

[29] Harril WC, Stewart MG, Lee AG, Cemoch P. Chronic rhinocerebral mucormycosis. Laryngoscope 1996;106(10):1292–7. https://doi.org/10.1288/00005537-199610000-00029.

[30] Sangvidi D, Kale H. Imaging of COVID-19-associated craniofacial mucormycosis: a black and white review of the "black fungus". Clin Radiol 2021;76(11):812–9. https://doi.org/10.1016/j.crad.2021.07.004.

[31] Orguc S, Yucerzturk AV, Demir MA, Goktan C. Rhinocerebral mucormycosis: perineural spread via the trigeminal nerve. J Clin Neurosci 2005;12(4):484–6. https://doi.org/10.1016/j.jocn.2004.07.015.

[32] Frater JL, Hall GS, Procop GW. Histologic features of zygomycosis: emphasis on perineural invasion and fungal pathologic. Arch Pathol Lab Med 2001;125(3):375–8. https://doi.org/10.1097/00000557-199610000-00029.

[33] Pal P, Singh B, Singla S, Kaur R. Mucormycosis in COVID-19 pandemic and its neurovascular spread. Eur Arch Otorhinolaryngol. 2021:1–8. https://doi.org/10.1007/s00405-021-07106-8. Epub ahead of print.

[34] Petrikos KS, Skadia A, Lorhalory O, Roilides E, Walsh TJ, Kontoyiannis DP. Epidemiology and clinical manifestations of mucormycosis. Clin Infect Dis 2012;54(Suppl 1):S53–63. https://doi.org/10.1093/cid/cir666.

[35] Chikley A, Ben-Ami R, Kontoyiannis DP. Mucormycosis of the central nervous system. J Fungi 2019;5:59. https://doi.org/10.3390/jof5030059.

[36] Walli U, Balkhair A, Al-Mujaini A. Cerebro-rhino-orbital mucormycosis: an update. J Infect Public Health 2012;5(2):116–26. https://doi.org/10.1016/j.jiph.2012.01.003.