The density of very massive evolved galaxies to $z \simeq 1.7^*$

P. Saracco1†, M. Longhetti1, P. Severgnini1, R. Della Ceca1, V. Braito1, F. Mannucci2, R. Bender3, R. Della Ceca5, G. Feulner3, U. Hopp3, C. Maraston4

1INAF - Osservatorio Astronomico di Brera, Via Brera 28, 20121 Milano
2IRA-CNR, Firenze, Italy
3Universitäts-Sternwarte München, Scheiner Str. 1, 81679 München, Germany
4Max-Plank-Institut fuer extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany
5University of Texas at Austin, Austin, Texas 78712

Accepted ***. Received 2004; in original form 2004

ABSTRACT

We spectroscopically identified 7 massive evolved galaxies with magnitudes $17.8 < K < 18.4$ at $1.3 < z < 1.7$ over an area of ~ 160 arcmin2 of the MUNICS survey. Their rest-frame K-band absolute magnitudes are $-26.8 < M_K < -26.1$ ($5L^* < L_K < 10L^*$) and the resulting stellar masses are in the range $3 \pm 6.5 \times 10^{11} M_\odot$. The analysis we performed unambiguously shows the early-type nature of their spectra. The 7 massive evolved galaxies account for a comoving density of $(5.5 \pm 2) \times 10^{-5}$ Mpc$^{-3}$ at $z \simeq 1.5$, a factor 1.5 lower than the density ($(8.4 \pm 1) \times 10^{-5}$ Mpc$^{-3}$) of early-types with comparable masses at $z = 0$. The incompleteness ($\sim 30\%$) of our spectroscopic observations accounts for this discrepancy. Thus, our data do not support a decrease of the comoving density of early-type galaxies with masses comparable to the most massive ones in the local Universe up to $z \simeq 1.7$. This suggests that massive evolved galaxies do not play an important role in the evolution of the mass density outlined by recent surveys in this redshift range, evolution which instead has to be ascribed to the accretion of the stellar mass in late-type galaxies. Finally, the presence of such massive evolved galaxies at these redshifts suggests that the assembly of massive spheroids has taken place at $z > 2$ supporting a high efficiency in the accretion of the stellar mass in massive halos in the early Universe.

Key words: Galaxies: evolution – Galaxies: elliptical and lenticular, cD – Galaxies: formation.

1 INTRODUCTION

The epoch of formation of high-mass ($M_{\text{star}} > 10^{11} M_\odot$) early-type galaxies is one of the open questions relevant to the whole picture of galaxy formation and evolution. The uniform properties shown by the local ellipticals suggested the simple monolithic collapse scenario of galaxy formation (Eggen et al. 1962; Arimoto & Yoshii 1987). On the other hand, the recent picture outlined by hierarchical models (White & Frank 1991; Kauffmann 1996; Somerville & Primack 1999) depicts the formation of local ellipticals through subsequent mergers: the higher the final stellar mass of the galaxy, the later it has been assembled. The most massive of them ($10^{11} - 10^{12} M_\odot$) populating the brightest end ($L \gg L^*$) of the luminosity function of galaxies are those reaching their final mass most recently in this scenario, possibly at $z < 1$. Therefore, looking for $z > 1$ early-types with stellar masses comparable to those of the most massive local ones is one of the most direct ways to address the question of galaxy formation. This is what we are doing through a near-IR spectroscopic survey of early-type galaxy candidates selected to be at $z > 1$ and to have stellar masses well in excess to $10^{11} M_\odot$ (Saracco et al. 2003a,b). The candidates consist of a complete sample of 31 bright ($K' < 18.5$) Extremely Red Objects (EROs) with colours $R-K' \geq 5.3$ selected over two fields (~320 arcmin2) of the Munich Near-IR Cluster Survey (MUNICS; Drory et al. 2001). Here, we report the spectroscopic confirmation for a sample of 7 high-mass ($M_{\text{star}} > 3 \times 10^{11} M_\odot$) field early-type galaxies identified at $1.3 < z < 1.7$. Throughout this paper we assume $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_0 = 0.3$ and $\Lambda_0 = 0.7$.

* Based on observations made at the Italian Telescopio Nazionale (TNG, www.tng.iac.es) operated on the island of La Palma by the Centro Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica).
† E-mail: saracco@brera.mi.astro.it
2 SAMPLE SELECTION, OBSERVATIONS AND SPECTROSCOPIC CLASSIFICATION

2.1 Sample selection

The main aim of our spectroscopic survey is to identify early-type galaxies at $z > 1.2$ having stellar masses comparable to the most massive early-types in the local Universe ($10^{11} - 10^{12} \, M_\odot$). The red optical-to-near-IR colour (R-Ks 5.3) favors the selection of $z > 1$ passively evolved galaxies while the magnitude K< 18.5 assures the selection of systems with stellar masses well in excess of $M_{\star} > 10^{11} \, M_\odot$. Instead, pushing back in time a local massive elliptical (L=2.5L*; 2–3×10^{11} M_\odot) it would be observed with a magnitude brighter than K=18.5 up to $z \simeq 1.5$. This is shown in Fig. 1 where the expected K-band apparent magnitude of local bright ellipticals is plotted as a function of redshift (we considered $M_K = -24.3$, Kochanek et al. 2001) in case of pure passive evolution. We modeled the elliptical by assuming a Simple Stellar Population (SSP) model (Maraston 1998, 2004) 2 Gyr old (Z=Z_\odot) and for a L=2.5L* (thick line) elliptical as a function of redshift. The elliptical has been modeled by assuming a SSP model based on the evolutionary population synthesis of Maraston (1998, 2004). The elliptical is 2 Gyr old at $z \simeq 1.5$ and evolves passively down to $z = 0$. The dashed line marks the selection criterion K<18.5.

2.2 Observations

The spectroscopic observations, with typical exposure of about 4 hours for each source, were carried out in October 2002 and November 2003 at the Italian 3.6 m Telescopio Nazionale Galileo (TNG). The prism disperser Amici mounted at the near-IR camera NICS of the TNG was adopted to carry out the observations. This prism provides the spectrum from 0.85 µm to 2.4 µm in a single shot at a nearly constant resolution of $\lambda/\Delta \lambda \simeq 35$ (1.5” slit width). This resolution is best suited to describe the spectral shape of sources over a wavelength range of ~15000 Å and to detect strong continuum features such as the 4000 Å break in old stellar systems at $z > 1.2$. On the other hand, the extremely low resolution makes unfeasible the detection of emission/absorption lines for sources as faint as our galaxies. Until now, we carried out spectroscopic observations for ~60% of the whole sample identifying 10 early-types. The analysis of the spectral properties of the whole sample of early-types is presented in a forthcoming paper (Longhetti et al. 2004). Seven of the 10 early-types fall on one of the two selected fields, the S2F1 field (~160 arcmin²), where we collected 13 spectra out of the 19 EROs satisfying the selection criteria. In Tab. 1 we report the broad-band photometry of the 7 early-types in this field.

2.3 Spectral Classification

In Fig. 2 the (smoothed) near-IR spectra (black thick histogram) of the 7 galaxies are shown. The spectra drop very rapidly at $\sim 0.9 – 1 \, \mu m$ concurrent with the 4000Å break placing the galaxies at $z > 1.3$ and suggesting an early-type spectral nature. We searched for the best-fitting template by comparing the observed SED of each galaxy, constituted by the broad band photometry (B, V, R, I, J and K) and by the observed near-IR continuum (from 0.9 µm to 2.3 µm), with a set of spectrophotometric templates (Z–Z_\odot and Salpeter IMF) based on the Bruzual & Charlot (2003) models and on the library of Simple Stellar Population (SSP) of Maraston (1998, 2004). The best-fitting templates have been obtained through a χ^2 minimization applied over the whole wavelength range. Besides the SSPs, models with declining star formation with time scales τ in the range 0.1-4 Gyr has been considered. All the observed SEDs are best-fitted by SFHs with very short time scales ($\tau \lesssim 0.3$) Gyr and extinctions E(B-V) $\lesssim 0.15$ (with the Calzetti et al. (2000) extinction law), providing ages in the range 1.5-4 Gyr. A comprehensive study of the properties of the stellar populations in our massive early-types and of their dependence on different IMFs and metallicity is presented in Longhetti et al. (2004). In Table 1, the spectroscopic redshift and the best-fitting SFHs are summarized. It is worth of noting that a set of SSPs with ages in the range 1-3.5 Gyr provides a good fit as well to all the observed SEDs. To rule out the possibility that some (or all) of the observed SEDs can be fitted by a young dusty starburst, we forced the fitting procedure to search for an acceptable fit among a set of templates made up by the 6 starburst templates (SB1-SB6) of Kinney et al. (1996) and a starburst model described by a constant star formation rate (cst). Extinction has been allowed to vary in the range 0<E(B-V)<2 in the fitting procedure. We did not obtain an acceptable fit for any of the 7 galaxies. In particular, we fail in simultaneously fitting the red part of the spectrum at $\lambda > 1.4$ µm and the blue part at $\lambda < 0.9$ µm. This is shown in Fig. 2, where we plot the best-fitting starburst template (dotted line) to the
The density of massive early-types to \(z \simeq 1.7 \)

Figure 2. Near-IR spectra (black histogram) of 4 out of the 7 early-type galaxies. The mean observed spectrum of local ellipticals (thin grey line) of Mannucci et al. (2001) and of Coleman et al. (1980) are superimposed on the observed spectrum of S2F1\,357 and of S2F1\,633 and on the observed spectrum of S2F1\,443 respectively. A SSP 1 Gyr old at solar metallicity is superimposed on the observed spectrum of S2F1\,511. For the other galaxies, we superimposed on the Amici spectra the best-fitting template (see Tab.1). In the case of S2F1\,527, the best-fitting starburst template is also shown (dotted line). The horizontal errorbars represent the atmospheric windows with an opacity larger than 80%. The filled symbols are the photometric data in the B, V, R, I, J and K’ bands from the MUNICS catalog (Drory et al. 2001).

most favorable case represented by S2F1\,527. Thus, dusty starbursts do not reproduce the sharp and deep drop seen in the continuum at \(0.85 < \lambda_{\text{obs}} < 1.0 \ \mu \text{m} \). This confirms the early-type spectral nature of the 7 galaxies. For comparison, in Fig. 2, the mean observed spectrum of local ellipticals of Mannucci et al. (2001) (thin grey line) is superimposed on the Amici spectrum of S2F1\,357 and of S2F1\,663, while that of Coleman et al. (1980) is superimposed on the spectrum of S2F1\,443. For the other galaxies, the best-fitting template is superimposed on the observed spectrum. It is worth of noting that, the highest redshift evolved galaxy of our sample (S2F1\,443) is also one of the X-ray emitting EROs we detect on the S2F1 field (Severgnini et al. 2004).

3 LUMINOSITIES AND STELLAR MASSES

The bright K’-band magnitudes (17.8<K’< 18.4) of our ellipticals and their redshift imply luminosities \(L > L^* \). Since local \(L^* \) galaxies have stellar masses of the order of \(10^{11} \, \text{M}_\odot \), we expect all the 7 early-types more massive than \(10^{11} \, \text{M}_\odot \) leaving aside any model assumption. In order to derive the rest-frame K-band luminosity, the proper k-correction of each galaxy has been computed by means of the relevant best-fitting template. Each best-fitting template has been multiplied with the transmission curve of the K filter to derive the k-corrections. In Tab. 1 we report the K-band absolute magnitudes thus obtained. As expected, the 7 early-types have rest-frame near-IR luminosities \(5L^* < L_K < 10L^* \). The stellar mass \(M_{\text{star}} \) of each galaxy has been derived by the K-band luminosity through the mass-to-K-band light ratio relevant to the best-fitting template (Z=Z_\odot and Salpeter IMF) and by the scale factor applied to the flux of the redshifted template to fit the observed fluxes. This latter estimate does not consider a certain band but takes into account the whole observed SED. The two estimates provides similar values (within few percent) since most of our data are in the near-IR and the uncertainty on them are lower than the uncertainty affecting the optical data. Consequently, the fitting procedure weights mostly the near-IR data. An analysis of the dependence of the stellar mass of the 7 evolved galaxies on the IMF and on the metallicity is discussed in Longhetti et al. (2004). In Tab.1 we report for each galaxy the rest-frame K-band luminosity, the \(M/L_K \) and the relevant stellar mass. As expected, all the galaxies have stellar masses in the range \(3 \div 6.5 \times 10^{11} \, \text{M}_\odot \).

4 THE DENSITY OF VERY MASSIVE EARLY-TYPE GALAXIES

We estimated the co-moving spatial density of the 7 massive early-type galaxies and its statistical uncertainty as:

\[
\rho = \sum \frac{1}{V_{\text{max}}} \quad \sigma(\rho) = \left[\sum \left(\frac{1}{V_{\text{max}}} \right)^2 \right]^{1/2} \tag{1}
\]

where

\[
V_{\text{max}} = \frac{\omega}{4\pi} \int_{z_1}^{z_{\text{max}}} \frac{dV}{dz} dz \tag{2}
\]

is the comoving volume. The solid angle \(\omega \) subtended by the S2F1 field is \(\sim 1.3 \cdot 10^{-5} \) strd and \(z_{\text{max}} \) is the maximum redshift at which each galaxy would be still included in the sample. In the derivation of the \(z_{\text{max}} \) of each galaxy
we computed the k-correction by using the relevant best-fitting template. The lower bound in the integration is set to $z_1 = 1.2$. It is imposed by the adopted spectroscopic wavelength range which does not allow us to detect the Balmer break of galaxies at $z < 1.2$. We find that, at the average redshift $(z_{max}) \simeq 1.55$, the 7 massive early-types account for a co-moving density $\rho = (5.5 \pm 2) \times 10^{-5} \text{ Mpc}^{-3}$ over a volume of about $1.5 \times 10^5 \text{ Mpc}^3$. Given the stellar masses of the 7 early-types the resulting mass density is $\rho_{\text{star}} = (2.3 \pm 0.9) \times 10^7 \text{ M}_\odot \text{ Mpc}^{-3}$. Such densities are likely to be lower limits because of the incompleteness of our spectroscopic observations (13 spectra collected out of the 19 EROs in the field). In order to compare these densities with the local values we integrated the K-band LF of local early-type galaxies derived by Kochanek et al. (2004) described by $M_K = -24.3 \pm 0.06$ and $\Phi = 1.5 \pm 0.2 \times 10^{-3} \text{ Mpc}^{-3}$. The lower bound to the integration has been derived in two independent ways. The first one lies in deriving the lowest luminosity that our galaxies would have at $z = 0$. This has been obtained by assuming a pure passive evolution from z_{spec} to $z = 0$. The luminosities thus obtained are reported in Tab. 1 and place the lower limit at $1.9 L^*$. It is worth of noting that other IMFs would produce lower values of $M/L_K \simeq 1.6$, given by a SSP 11 Gyr old with Salpeter IMF. Also in this case we obtained a luminosity of about $1.9 L^*$. It is worth of noting that other IMFs would produce lower values of M/L_K (e.g. $M/L_K = 1.3$ with Kroupa IMF and $M/L_K = 1.1$ with Miller-Scalo) and, correspondingly, higher luminosities ($2.3 L^*$ and $2.7 L^*$ respectively). By integrating the local LF of early-type galaxies at luminosities brighter than $1.9 L^*$ we obtained a density of $(8.4 \pm 1) \times 10^{-5} \text{ Mpc}^{-3}$. We summarized our results in Fig. 3 where we report also the comoving density we derived for the 3 early-types with $L_{z = 0} > 3 L^*$. The density we estimated at $z \simeq 1.5$ represents 65% of the density of their counterparts at $z = 0$. Even if this difference is not statistically significant, this suggests that three more massive early-types should be expected over the 160 arcmin2 in case of no density evolution. On the other hand, our estimate is affected by a spectroscopic redshift incompleteness of about 30%. When this incompleteness is taken into account the observed difference tends to vanish. Thus, we conclude that the number density of early-types with stellar masses comparable to the most massive early-types populating the local Universe does not show evidences of decrease up to $z \simeq 1.7$.

In Fig. 3 we also report the density relevant to the four old spheroidal galaxies (empty circle) spectroscopically identified at $z > 1.6$ by Cimatti et al. (2004), the density of massive $(10^{11} \text{ M}_\odot)$ evolved galaxy candidates at $z > 2$ (open triangle) found by Saracco et al. (2004) on the HDF-S and the density found by Caputi et al. (2004) on the GOODS/CFD-S area (crosses), both on the basis of photometric analysis. Finally, the upper limit to the number density of galaxies with masses larger than $2 \times 10^{11} \text{ M}_\odot$ (open squares) by Drory et al. (2004) is shown.

5 CONCLUSIONS

We spectroscopically identified 7 bright $(17.8 < K < 18.4)$ massive evolved galaxies at $0 < z < 1.7$ over an area of about 160 arcmin2 of the MUNICS survey. These galaxies turned out to have rest-frame K-band luminosities $5.5L < L_K < 11L^*$ and stellar masses in the range $3 - 6.5 \times 10^{11} \text{ M}_\odot$. At the mean redshift of $z \simeq 1.5$ these 7 early-types sample a volume of about $1.5 \times 10^5 \text{ Mpc}^3$ and account for a comoving number density $\rho = (5.5 \pm 2) \times 10^{-5} \text{ Mpc}^{-3}$ and a stellar mass density $\rho_{\text{star}} = (2.3 \pm 0.9) \times 10^7 \text{ M}_\odot \text{ Mpc}^{-3}$. These densities represent 65% of the values at $z = 0$ for early-types with comparable mass. The incompleteness of our spectroscopic observations (30%) accounts for this deficiency. Thus, our results show that the number density of the most massive early-types in the present-day Universe keeps essentially constant down to $z \simeq 1.7$. This suggests that, massive early-types do not take part in the evolution of the stellar mass density in the redshift range $0 < z < 1.7$ and that the decrease of the stellar mass density detected in this redshift range by recent surveys (e.g. Rudnick et al. 2003; Drory et al. 2004; Fontana et al. 2004) has to be ascribed to the accretion of the stellar mass in massive late-type galaxies. This qualitatively agrees with the concurrent increase of the cosmic star formation rate due to late-type galaxies seen in the same redshift range (e.g. Madau et al. 1998). The high stellar masses and the number density of the 7 massive evolved galaxies imply that they were fully assembled at the observed redshift pushing their formation at $z > 2$, as also suggested by the recent discovery of an evolved spheroidal galaxy at $z \simeq 1.9$ (Cimatti et al. 2004). This is in agreement with the results based on the spectral analysis of the stellar populations in our sample of massive early-types at $z \simeq 1.5$

\begin{table}[h]
\centering
\caption{Properties of the 7 early-type galaxies. Magnitudes are in the Vega system. The SFHs, the stellar masses and the mass-to-K-band light ratio refer to $Z=Z_\odot$ models with Salpeter IMF.}
\begin{tabular}{cccccccc}
\hline
ID & K & R-K & z_{spec} & M_K & SFH & M_{star} & M/L_K & $(L_{z=0}/L^*)$
\hline
S2FI537 & 17.84\pm0.08 & 6.0 & 1.34\pm0.05 & -26.6\pm0.12 & SSP & 5.0 & 0.5 & 3.0
S2FI527 & 18.30\pm0.15 & > 5.7 & 1.35\pm0.05 & -26.3\pm0.20 & $\tau = 0.1$ & 3.0 & 0.4 & 2.3
S2FI489 & 18.23\pm0.12 & 5.5 & 1.40\pm0.05 & -26.5\pm0.15 & $\tau = 0.3$ & 3.5 & 0.4 & 2.7
S2FI511 & 18.14\pm0.15 & 6.1 & 1.40\pm0.05 & -26.2\pm0.20 & $\tau = 0.1$ & 3.0 & 0.4 & 2.1
S2FI442 & 17.84\pm0.07 & 6.0 & 1.43\pm0.05 & -26.6\pm0.12 & $\tau = 0.3$ & 6.5 & 0.6 & 3.0
S2FI633 & 18.20\pm0.12 & > 5.7 & 1.45\pm0.05 & -26.1\pm0.15 & $\tau = 0.1$ & 4.0 & 0.6 & 1.9
S2FI443 & 18.40\pm0.15 & > 5.6 & 1.70\pm0.05 & -26.8\pm0.20 & $\tau = 0.1$ & 5.0 & 0.4 & 3.6
\hline
\end{tabular}
\end{table}
The density of massive early-types to $z \simeq 1.7$

Figure 3. Number density of galaxies as a function of redshift. The large filled symbols represent the densities we derived at $z \simeq 1.5$ for the 7 early-types with $L_z > 2L^*$ (circle) and for the 3 with $L_z > 3L^*$ (square). The small filled symbols at $z = 0$ represent the number density of E/S0 galaxies brighter than $2L^*$ (circle) and $3L^*$ (square) respectively obtained by integrating the local LF of galaxies of Kochanek et al. (2001). The open circle is the density of spheroidal galaxies by Cimatti et al. (2004), the open triangle and the crosses are the density of $M > 10^{11} M_\odot$ evolved galaxy candidates by Saracco et al. (2004) and by Caputi et al. (2004) respectively and, finally, the open squares are the upper limit to the number density of galaxies with $M > 2 \times 10^{11} M_\odot$ by Drory et al. (2004).

which suggest a formation redshift $z_f > 2$ (Longhetti et al. 2004). It is worth of noting that similar results are also derived by the analysis of the absorption lines indices of local samples (Thomas et al. 2002, 2004) which suggest short timescales (~ 0.4 Gyr) and high-z of formation for massive early-types. Thus, at variance with the expectations of hierarchical models, the most massive early-types in the local Universe do not seem to be the last galaxies to complete their assembly. The high formation redshift suggests an high efficiency in the accretion of the stellar mass of early-types in the early Universe and an high star formation preferentially in massive haloes.

ACKNOWLEDGMENTS

We thank the staff of the TNG for the very good support during the observations. PS acknowledges financial support by the Istituto Nazionale di Astrofisica (INAF). This work has received partial financial support from ASI (I/R/037/01, I/R/062/02) and from the Italian Ministry of University and the Scientific and Technological Research (MIUR) through grant Cofin-03-02-23. The MUNICS project is supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 375, Astroteilchenphysik

REFERENCES

Arimoto N., Yoshii Y., 1987, A&A, 173, 23
Bruzual A., G. & Charlot S. 2003, MNRAS, 344, 1000
Calzetti D., Armus L., Bohlin R. C., et al. 2000, ApJ, 533, 68
Caputi K. I., Dunlop J. S., McLure R. J., Roche N. D. 2004, MNRAS, 353, 30
Cimatti A., Daddi E., Renzini A., et al. 2004, Nature, 430, 184
Cole S., Norberg P., Baugh C. M., et al. 2001, MNRAS, 326, 255
Coleman G. D., Wu C.-C., Weedman D. W. 1980, ApJS, 43, 393
Daddi E., Cimatti A., Pozzetti L., et al. 2000, A&A, 361, 535
Drory N., Feulner G., Bender R., et al. 2001, MNRAS, 325, 550
Drory N., Bender R., Feulner G., Hopp U., Maraston C., Snigula J., Hill G. J. 2004, ApJ, 608, 742
Eggen O., Lynden-Bell D., Sandage A., 1962, ApJ, 136, 748
Fontana A., Pozzetti L., Donnarumma L., et al. 2004, A&A 424, 23
Genzel R., Baker A. J., Tacconi L. J., et al. 2003, ApJ, 584, 633
Kauffmann G. 1996, MNRAS, 281, 475
Kinney A. L., Calzetti D., Bohlin R. C., McQuade K., Storchi-Bergmann T., Schmitt H. R., 1996, ApJ, 467, 38
Kochanek C. S., Pahre M. A., Falco E. E., et al. 2001, ApJ, 560, 566
Longhetti M., Saracco P., Severgnini P., et al. 2004, MNRAS, in preparation
Madau P., Pozzetti L., Dickinson M. 1998, ApJ, 498, 106
Mannucci F., Basile F., Poggianti B. M., et al. 2001, MNRAS, 326 745
Maraston C. 1998, MNRAS, 300, 872
Maraston C. 2004, MNRAS, (submitted), astro-ph/0410207
Martin P. 2001, AJ, 121, 2301
Pozzetti L., Mannucci F. 2000, MNRAS, 317, L17
Rudnick G., Rix H.-W., Franx M., et al. 2003, ApJ, 599, 847
Saracco P., Longhetti M., Severgnini P., et al. 2003a, A&A, 398, 127
Saracco P., Longhetti M., Severgnini P., et al. 2003b, proc. of Multiwavelength Mapping of Galaxy Formation and Evolution, astro-ph/0312097
Saracco P., Longhetti M., Galliano E., et al. 2004, A&A, 420, 125
Severgnini P., Della Ceca R., Baito V., et al. 2004, A&A, (in press), astro-ph/0410434
Somerville R. S., Primack J. R. 1999, MNRAS, 310, 1087
Thomas D., Maraston C., Bender R. 2002, Reviews in Modern Astronomy: Vol. 15, p. 219 astro-ph/0202166
Thomas D., Maraston C., Bender R., Mendes de Oliveira C. 2004, ApJ (in press), astro-ph/0410209
White S. D. M., Frenk C. S. 1991, ApJ, 379, 52