Cerro Quema (Azuero Peninsula, Panama): Geology, Alteration, Mineralization, and Geochronology of a Volcanic Dome-Hosted High Sulfidation Au-Cu Deposit

Isaac Corral,1,2,† Esteve Cardellach,1 Mercè Corbella,1 Àngels Canals,3 David Gómez-Gras,1 Albert Griera,1 and Michael A. Cosca4

1 Departament de Geologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
2 Economic Geology Research Centre (EGRU), College of Science, Technology and Engineering, James Cook University, Townsville, QLD 4811, Australia
3 Facultat de Geologia, Universitat de Barcelona, 08028 Barcelona, Spain
4 U.S. Geological Survey, Denver, CO 80225

Abstract

Cerro Quema (Azuero Peninsula, southwest Panama) is a high sulfidation epithermal Au-Cu deposit hosted by a dacite dome complex of the Río Quema Formation (late Campanian to Maastrichtian), a fore-arc basin sequence. Mineral resource estimates (indicated + inferred) are 30.86 Mt at 0.73 g/t Au, containing 728,000 oz Au (including 76,900 oz Au equiv of Cu ore). Hydrothermal alteration and mineralization are controlled by an E-trending regional fault system. Hydrothermal alteration consists of an inner zone of vuggy quartz with locally developed advanced argillic alteration, enclosed by a well-developed zone of argillic alteration, grading to an external halo of propylitic alteration. Mineralization produced disseminations and microveinlets of pyrite and minor chalcopyrite, enargite, and tennantite, with traces of sphalerite, crosscut by late-stage base metal veins. New 40Ar/39Ar data of igneous rocks combined with biostratigraphic ages of the volcanic sequence indicate a maximum age of lower Eocene (~55–49 Ma) for the Cerro Quema deposit. It was probably triggered by the emplacement of an underlying porphyry-like intrusion associated with the Valle Rico batholith. The geologic model suggests that in the Azuero Peninsula high sulfidation epithermal mineralization occurs in the Cretaceous-Paleogene forearc. This consideration should be taken into account when exploring for this deposit type in similar geologic terranes.

Introduction

South Central America is a region characterized by a long-lived intraoceanic subduction zone with a volcanic arc active since the Late Cretaceous (e.g., Lissiina, 2005; Buchs et al., 2010, 2011a). It displays many characteristics of zones where epithermal, porphyry copper, and volcanogenic massive sulfide (VMS) deposits are found around convergent plate boundaries (e.g., Roberts and Irving, 1957; Levy, 1970; Ferencie, 1971; Weyl, 1980; Nelson, 2007).

High sulfidation epithermal deposits (Hedenquist et al., 2000) are commonly hosted by subaerial, calc-alkaline volcanic rocks that formed at convergent margins, generally within island or continental arcs as a direct result of plate subduction (Sillitoe, 1993, 2010; Arribas and Tosdal, 1994; Cooke and Simmons, 2000). Mineralization styles related to high sulfidation deposits display a wide variety, including veins, hydrothermal breccia bodies, stockworks, and dissemination or replacements (Arribas, 1995). A distinguishing feature of this deposit type is the presence of alteration halos (grading from the fluid conduit outward) characterized by quartz ± alunite ± pyrophyllite ± dickite ± kaolinite ± illite, and montmorillonite ± chlorite (Steven and Ratté, 1960; Stoffregen, 1987; Arribas, 1995; Hedenquist et al., 2000). The most common geologic setting documented for this deposit type is a volcanic dome complex; however, they may also occur in a central-vent volcanoclastic setting and in a spatial association with maar-diatremes or calderas (Sillitoe et al., 1984; Arribas, 1995; Sillitoe, 1999; Hedenquist et al., 2000). Furthermore, submarine high sulfidation epithermal Au-Cu deposits have been reported in the Izu-Bonin-Mariana arc, the Tonga-Kermadec arc, and the Bismark archipelago (e.g., Binns and Scott, 1993; Hannington and Herzog, 1993; de Ronde et al., 2003; Embey et al., 2004).

In Panama, gold and copper are the most economically important metals, and they are mainly hosted by epithermal (e.g., Cana, Santa Rosa, and Cerro Quema deposits; Woakes, 1923; Wlekloki, 1969; White, 1993; Nelson, 1995, 2007; Corral et al., 2011a) and porphyry copper deposits (e.g., Petaquilla and Cerro Colorado, Kesler et al., 1977; Kesler, 1978; Nelson, 1995; Speidel, 2001). The present study focuses on the Cerro Quema deposit, located in the Azuero Peninsula,
southwest Panama (Fig. 1A). This region hosts several epithermal deposits and prospects (e.g., Juan Díaz, Pitaloza, Las Minas, Cerro Viejo, Fig. 1B). Cerro Quema, considered one of the most promising Au-Cu prospects in the country, is a structurally and lithologically controlled high sulfidation epithermal deposit, hosted by dacite domes, in a calc-alkaline volcanic arc environment (Corral et al., 2011a). Mineral resource estimates (indicated + inferred) are 30.86 Mt at 0.73 g/t Au, containing 728,000 oz Au, including 76.900 oz (Au equiv) of Cu ore (Valiant et al., 2011; Puritch et al., 2012).

Hydrogen sulfides at Cerro Quema deposit include pyrite, enargite, and tennantite. The associated hydrothermal alteration minerals include alunite, kaolinite-dickite, and propyllyte. All of these are diagnostic of a high sulfidation state and acidic hydrothermal conditions (Arribas, 1995). Although Cerro Quema shows characteristics of high sulfidation epithermal deposits, its age and geodynamic setting are not well understood. It has been interpreted to be a volcanic dome-hosted high sulfidation deposit related to fore-arc magmatism (Corral et al., 2011a; Corral, 2013), in contrast to the classical high sulfidation epithermal models (e.g., Hedenquist, 1987; Sillitoe, 1989, 1999; White, 1991; Hedenquist and Lowenstern, 1994; Arribas, 1995). Cerro Quema is hosted by fore-arc basin volcanosedimentary rocks that have been intruded by different plutonic rocks through time (Corral et al., 2011a).
We document the geologic setting, mineralogy, geochemistry, and \({}^{40}\text{Ar}^{39}\text{Ar}\) geochronology of Cerro Quema. A geological model is developed from these data that contributes to the understanding and exploration of high sulfidation Au-Cu deposits in ancient and modern terranes, with similar geologic features.

Geologic Setting

Regional geology

Panama, located in south Central America, is the youngest segment of the land bridge between the North and South American plates. It is a tectonic block that lies at the junction of the Caribbean, South American, Cocos, and Nazca plates (e.g., Duque-Caro, 1990; Kellogg et al., 1995; Harmon, 2005). A volcanic arc developed during the Late Cretaceous as a result of the subduction of the ancient Farallon plate (nowadays Cocos and Nazca plates) beneath the Caribbean plate. Volcanic arc magmatism continued until the Miocene (~23 Ma; Barchhausen et al., 2001; Werner et al., 2003; Lonsdale, 2005; Buchs et al., 2009, 2010; Pindell and Kennan, 2009; Wörner et al., 2009). The accretion and obduction of seamounts and oceanic plateaus (middle Eocene; Buchs et al., 2010) and the collision of the Panamanian volcanic arc with Colombia during the middle to late Miocene (e.g., Keigwin, 1978; Trenkamp et al., 2002; Coates et al., 2004; Barat et al., 2012, 2014) produced a change in the subduction direction and the migration of the volcanic arc toward the north (Lissinna et al., 2002; Lissinna, 2005). The Cordillera Central in north Panama is the present-day expression of the active Panamanian volcanic arc.

Geology of the Azuero Peninsula and the Cerro Quema deposit

The Azuero Peninsula is composed of igneous basement overlain by fore-arc sediments (Buchs et al., 2011). This region contains volcanic, plutonic, sedimentary, and volcaniclastic rocks ranging in age from ~98 to ~40 Ma (Del Giudice and Recchi, 1969; Bourgeois et al., 1982; Kolarsky et al., 1995; Lissinna, 2005; Wörner et al., 2009; Buchs et al., 2010; Wegner et al., 2011; Corral et al., 2013).

Five distinct rock associations have been recognized in the Azuero Peninsula (Fig. 1B):

1. The Azuero igneous basement is composed of Late Cretaceous (Aptian to Santonian) basalts and pillow basalts with geochemical affinities similar to the Caribbean large igneous province, interpreted as the arc basement (Del Giudice and Recchi, 1969; Kolarsky et al., 1995; Hauff et al., 2000; Hoernle et al., 2002, 2004; Lissinna, 2005; Buchs et al., 2009; Corral et al., 2011a).

2. The Azuero primitive volcanic arc, a mappable unit at regional scale, consists of tholeiitic basalts and volcanioclastic rocks, locally interbedded with late Campanian-Maastrichtian hemipelagic limestones, which are equivalent to the proto-arc defined by Buchs et al. (2010). It corresponds to the initial stages of arc volcanism.

3. The Azuero Arc Group consists of volcanosedimentary, volcanic, and arc-related intrusive rocks with calc-alkaline character, representing the Cretaceous and Paleogene volcanic arcs (Lissinna, 2005; Wörner et al., 2009; Buchs et al., 2010, 2011a; Wegner et al., 2011; Corral et al., 2011a, 2013).

4. The Tonosi Formation, middle Eocene to early Miocene sedimentary sequence, unconformably overlies the older units (Recchi and Miranda, 1977; Kolarsky et al., 1995; Krawinkel and Seyfried, 1994; Krawinkel et al., 1999).

5. The Azuero accretionary complex consists of Paleocene to middle Eocene seamounts, oceanic plateaus, and mélanges accreted along the ancient subduction trench (Hoernle et al., 2002; Lissinna, 2005; Hoernle and Hauff, 2007; Buchs et al., 2011b).

The Azuero Peninsula is transected by several regional-scale subvertical faults (Fig. 1B). These include the NW-trending Soná-Azuero fault zone, the E-trending Ocú-Parita fault, and the Río Joaquín fault zone (Kolarsky et al., 1995; Buchs, 2008; Corral et al., 2011a, 2013). The Río Joaquín fault zone is 30 km in length, shows evidence for reverse dip-slip motion, and juxtaposed the Azuero igneous basement against the Azuero Arc Group (e.g., Río Quema Formation). Secondary NW-trending regional structures such as the Pedasí fault zone and the Punta Mala fault, both with a sinistral strike-slip motion, have disrupted the eastern Azuero Peninsula (Fig. 2). In the central Azuero Peninsula mesoscale open folds with SW-plunging fold axes and moderate limb dips indicate dextral transpression with dominant reverse dip-slip motion (Corral et al., 2011a, 2013).

The local stratigraphy was initially defined by two units (C.F. Horlacher, pers. comm., 1993): (1) the Ocú Formation, composed of limestones and volcanosedimentary rocks, and (2) the Quema Formation, composed of dacites and massive andesites. Corral et al. (2011a, 2013) used new field, geochemical, and biostratigraphic data to define a new lithostratigraphic unit, the Río Quema Formation (Fig. 3). This newly defined unit, which hosts the Cerro Quema deposit, is a volcanosedimentary sequence enclosed within the Azuero Arc Group. It is interpreted as the volcanioclastic apron of the Panamanian Cretaceous volcanic arc. The volcanic sequence is exposed from the central to southeastern Azuero Peninsula and represents the fore-arc basin, the region between the subduction trench and the magmatic arc (e.g., Stern et al., 2012). On the basis of biostratigraphic data, the volcanosedimentary sequence is late Campanian to Maastrichtian in age (Corral et al., 2013). The Río Quema Formation is subdivided into three units (Fig. 3). The lower unit contains andesitic lava flows and well-bedded crystal-rich sandstone to siltstone turbidites, interbedded with hemipelagic thin limestone beds. The limestone unit is a thick, light gray biomicritic hemipelagic limestone, interlayered with well-bedded cherts, thin-bedded turbidites, and fine ash layers. The upper unit consists of volcanioclastic sediments interlayered with massive to laminar andesitic lava flows, dacite domes, dacite hyaloclastites (Fig. 3B), and polynytic conglomerates. Dacites are characterized by quartz and hornblende phenocrysts (up to 5 cm in hornblende) and smaller plagioclase crystals in a microcrystalline quartz-feldspar groundmass. The total thickness of the Río Quema Formation is approximately 1,700 m. It overlies both the Azuero igneous basement (Fig. 3A) and the Azuero primitive volcanic arc, and is discordantly overlain by the Tonosi Formation (Fig. 3C).
The Cerro Quema deposit is located in the center of the Azuero Peninsula. It covers an area of ~20 km² (Figs. 1B, 2) and is associated with an E-trending regional fault system, parallel to the Río Joaquín fault zone (Corral et al., 2011a). The deposit is hosted by the dacite dome complex of the Río Quema Formation and contains several orebodies. From east to west, these are Cerro Quema, Cerro Quemita, and La Pava (Fig. 4). Although mineralization and hydrothermal alteration persist to the east (e.g., Cerro Idaida, Pelona, and Peloncita), the economic potential of this zone is poorly known. Data from Cerro Idaida are presented below in order to complement the geologic characterization of Cerro Quema.

Hydrothermal Alteration

Wall-rock alteration at Cerro Quema was initially described by T. M. Leach (pers. comm., 1992) and, subsequently, by Corral et al. (2011a). We provide new data on hydrothermal alteration mineralogy and zoning based on field mapping and core
Fig. 3. Stratigraphic section of the Río Quema Formation indicating emplacement of the Cerro Quema Au-Cu deposit and biostratigraphic and geochronological data (after Corral et al., 2011a, 2013; Corral, 2013). A. Pillow basalts of the Azuero igneous basement at Los Ciruelos beach. B. Hyaloclastites of the dacite dome complex at Quema River. C. Calcarenites of the Tonosí Formation at Guerita River.

Fig. 4. Overview of Cerro Quema including La Pava, Cerro Quemita, Cerro Quema, and Cerro Idaida ore zones.
logging, and on analysis of surface and drill core samples by petrographic microscope, X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray (SEM-EDX), and electron microprobe analysis (EMPA). Hydrothermal alteration at Cerro Quema appears mainly restricted to the dacite domes of the Río Quema Formation (Fig. 5) due to the difference in permeability and porosity with respect to other rock types of the volcanosedimentary sequence (Corral, 2013).

Hydrothermal alteration follows an easterly trend that is parallel to secondary faults of the Río Joaquín fault zone.

Fig. 5. Cerro Quema hydrothermal alteration maps. A) La Pava orebody and Chontal Edge. B) Cerro Quemita and Cerro Quema orebodies (modified from Corral et al., 2011). Topographic map has been extracted from a 90-m Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM).
Volcaniclastic sedimentary rocks and andesite lava flows affected by the E-trending faults to the east and west of Cerro Quema have also been weakly affected by hydrothermal alteration. Dacites are easily distinguished, due to their characteristic porphyritic texture, even when hydrothermally altered (Figs. 5, 6A, 7A). Although hydrothermal alteration had a strong structural control, a lithological control is also evident in the mushroom-shaped alteration domains at shallow levels (e.g., La Pava).

The Cerro Quema alteration pattern consists of an inner zone of vuggy quartz (30–230 m wide), with local quartz-alunite and pyrophyllite (advanced argillic alteration, 30–200 m wide), enclosed by a kaolinite, illite, and illite/smectite-bearing widespread alteration zone (argillic alteration, 100–400 m wide; Fig. 5). Propylitic alteration has only been observed in some drill core samples, and forms a halo surrounding the argillic alteration zone.

Vuggy quartz

This innermost alteration zone (Fig. 5) occurs as irregular, generally vertical, funnel- and tabular-shaped bodies, and is commonly found on top of mineralized zones. Patches of massive quartz and silicified breccias are also present in this zone.

Vuggy quartz is made up of a groundmass of microcrystalline anhedral quartz grains, disseminated pyrite, barite, and minor rutile, with traces of sphalerite. At depth, vuggy quartz contains disseminated pyrite, chalcopyrite, enargite, and tennantite. Vuggy quartz texture is characterized by voids preserving the crystal morphology of hornblende and plagioclase (Figs. 6B, 7B). Drusy quartz, pyrite, and rutile have partially filled some void spaces. Quartz phenocrysts preserved within dacite contain secondary two-phase (liquid rich) fluid inclusions, possibly recording the fluids responsible for hydrothermal alteration and mineralization.

Advanced argillic

The advanced argillic alteration zone is an irregular halo developed around the vuggy quartz alteration zone (Fig. 5). The advanced argillic alteration zone has different mineralogical expressions depending on its occurrence (surface/subsurface).

Quartz-alunite alteration associated with a massive quartz-cemented breccia zone is exposed at surface at La Pava (Fig. 6C). Alunite is a very fine-grained minor component that is only identifiable by XRD and is associated with the breccia cement. A more representative association of the advanced argillic alteration at surface is characterized by quartz, dickite, pyrophyllite, barite, illite, and minor diaspore (at La Pava, Chontal Edge, and Cerro Quema). These minerals altered the massive and brecciated dacites (Fig. 6D) to quartz. Clay minerals (dickite, pyrophyllite, and illite) replaced hornblende and plagioclase, and also occur in the breccia as cement (Fig. 7C). Barite occurs along fractures and as part of breccia cement. Disseminated pyrite is characteristic of the advanced argillic alteration zone.

At depth, the advanced argillic alteration assemblage consists of quartz, alunite-natroalunite, aluminum phosphate-sulfate (APS) minerals, dickite, pyrophyllite, barite, and rutile. This assemblage has only been observed in drill core samples, associated with hydraulic breccias (Fig. 7D).

Argillic

The argillic alteration zone defines a halo surrounding the vuggy quartz and advanced argillic alteration zones (Fig. 5). The argillic envelope generally bounds the vuggy quartz zone with a sharp contact, whereas the contact with the advanced argillic zone is gradational. The whitish-gray, hydrothermally altered rock typically preserves the original volcanic textures (Fig. 6E). Argillic alteration produced quartz, kaolinite, illite, and illite/smectite with minor chlorite, which replaced hornblende and plagioclase crystals (Fig. 7E). Disseminated pyrite is found locally.

Minerals within the argillic alteration zone are zoned outward from the mineralized centers. Kaolinite is dominant proximal to ore, and the assemblage grades to kaolinite + illite, and then to illite-smectite. Kaolinite ± smectite ± chlorite-smectite and chlorite have been recognized in distal locations. At La Pava, there are subvertical pipe-like structures where dacites with hornblende and plagioclase phenocrysts have been replaced by quartz, dickite, barite, and pyrite alteration (advanced argillic alteration; Fig. 6F). These pipes have crosscut the argillic altered rocks (Fig. 6F).

Propylitic

A propylitic assemblage constitutes the most distal alteration halo, affecting dacites, andesites, and volcaniclastic sedimentary rocks (e.g., turbidites and debris flows; Fig. 6C). It is characterized by chlorite, epidote, carbonate, rutile, pyrite, and chalcopyrite, with minor hematite and magnetite. Hornblende has been partially to completely replaced by chlorite and epidote, and plagioclase by carbonate (Fig. 7F). Carbonates also occur as patches and veinlets. Minor amounts of pyrite, chalcopyrite, rutile, magnetite, and hematite have replaced hornblende, and also occur as disseminated grains. The propylitic zone has a transitional contact with the argillic alteration zone, where clay minerals have partially overprinted propylitic alteration minerals.

Mineralization

Gold occurs as disseminated submicroscopic grains and as invisible gold within pyrite (Corral et al., 2011a). Copper is associated with hypogene chalcopyrite, enargite, bornite and tennantite, and supergene covellite and chalcocite. Mineralization (gold and copper) is mainly associated with the vuggy quartz and advanced argillic alteration zones. However, minor gold and copper occurrences have been found in the argillic and propylitic alteration zones.

Hyypogene mineralization

Hypogene mineralization is generally developed below the oxidized zone, even though small (meter scale) outcrops are found at surface. Pyrite is the most abundant sulfide at the Cerro Quema deposit; however, there is a group of accompanying sulfides also associated with the Au-Cu mineralization.

Hypogene mineralization is divided into five stages (Fig. 8), where stages 3 and 4 are the main ore-forming stages. Stage 1 consists of disseminated, fine-grained, idiomorphic and subidiomorphic pyrite, accompanied by rutile and barite in voids and groundmass (Fig. 9A), with minor enargite, tennantite, and chalcopyrite at depth. Sphalerite is a trace mineral that
Fig. 6. Field examples of host rocks and hydrothermal alteration assemblages at Cerro Quema. A) Unaltered porphyritic texture of dacites (Río Quema Formation). B) Dacite altered to vuggy quartz at Cerro Quemita, preserving the original volcanic rock texture. Voids corresponding to hornblende and plagioclase crystals are now filled by Fe oxides. C) Quartz-aluminate-altered breccia zone at La Pava. D) Quartz-, dickite-, pyrophyllite-, barite-, and illite-altered breccia, composed by dacite clasts with argillic alteration in a matrix of advanced argillic alteration (Cerro Quema). E) Kaolinite-, illite-, and illite/smectite-altered dacite preserving the original volcanic rock texture (Cerro Quemita). F) Pipe-like structures (dashed-line circles) composed of quartz, dickite, barite, and pyrite crosscutting the argillic alteration zone at La Pava. Image width ~20 m. G) Drill core sample showing a chlorite, epidote, pyrite, and carbonate alteration in a sedimentary breccia or microconglomerate, crosscut by carbonate veins. H) Oxidation boundary developed on the advanced argillic alteration zone at Chontal edge.
occurs disseminated in the groundmass. Stage 2 is constituted by disseminated pyrite in the cement of a hydraulic breccia, associated with alunite-natroalunite, dickite, and traces of chalcopyrite. Stage 3 consists of pyrite, chalcopyrite, enargite, and tennantite veinlets crosscutting stages 1 and 2 (Fig. 9B). Replacement textures of pyrite by enargite, enargite by tennantite, and tennantite by chalcopyrite are observed in the veinlets. Bornite occurs as a trace mineral. Stage 4 occurs as breccia bands ~5 cm thick, composed of pyrite, chalcopyrite, and minor enargite. Breccia bands crosscut all the previous stages (Fig. 9C). Stage 5 reflects intermediate sulfidation mineralization. These 5- to 10-cm-thick base metal sulfide-rich veins are composed of pyrite, quartz, and barite together with minor chalcopyrite, sphalerite, and galena (Fig. 9D).

Supergene mineralization and alteration

Intense weathering typical of tropical latitudes has affected fresh and hydrothermally altered rocks in the Cerro Quema area to depths of 150 m. Sulfide oxidation in high sulfidation systems is largely controlled by rock permeability (Sillitoe,
At Cerro Quema, high permeability was provided by the vuggy quartz, hydrothermal breccias, fracture zones, and hyaloclastites (Fig. 6H).

Weathering of the high sulfidation ores has produced a thick quartz- and iron oxide-rich zone that overprinted the primary sulfide-bearing zone. This zone developed in the upper part of mineral bodies, and is characterized by vuggy quartz containing abundant hematite and goethite within the groundmass, replacing the cement of hydrothermal breccias, and filling voids in the vuggy quartz zone (Fig. 9E). Supergene jarosite, kaolinite, halloysite, and gypsum are also found in fractures, vugs, and breccia matrix. Hypogene pyrite, barite, and rutile remain as trace minerals in the oxidation zone.

Below the oxidation zone, supergene enrichment has caused deposition of secondary Cu-bearing minerals such as chalcocite and minor covellite. The secondary Cu sulfides are found replacing chalcopyrite, tennantite, and enargite as well as filling small fractures (Fig. 9F).

The enrichment factor of the oxide zone with respect to the sulfide zone in terms of gold and copper is 2.41 and 0.61, respectively (Corral, 2013). At Cerro Quema, the oxidation zone has higher gold grades (up to 2,400 ppb Au), and the enrichment zone has higher copper grades (up to 1% Cu).

Trace Element Geochemistry

Trace element data from high sulfidation epithermal deposit are not abundant (e.g., Nansatsu, Japan—Hedenquist et al., 1994; Rodalquilar, Spain—Hernandez et al., 1989; Pueblo Viejo, Dominican Republic—Kesler et al., 2003). Co/Ni and S/Se ratios in pyrite have been used as empirical indicators of the depositional environment (e.g., Edwards and Carlos, 1954; Goldschmidt, 1954; Lofter-Hills and Solomon, 1967; Bralia et al., 1979). Pyrite compositions combined with major and trace element contents of alunite and APS group minerals may provide significant information for understanding their origin. Chemical composition of enargite, alunite, and APS minerals can be used as an ore guide in mineral exploration as they can be related in time and space to epithermal and porphyry mineralization (e.g., Bove, 1990; Dill, 2003; Chang et al., 2009, 2011; Deyell and Hedenquist, 2011).

Analyses of S, Fe, Co, Ni, Cu, As, Se, Ag, Cd, Sb, Au, and Hg have been performed by EMPA for 55 pyrites from six drill hole samples of the vuggy quartz and advanced argillic alteration. The contents of Al, Fe, Ca, Na, K, P, F, S, Cu, As, Sr, Ba, Ce, and Pb of 20 alunites and 21 APS minerals were analyzed by EMPA from two drill core samples of the advanced argillic alteration. All the analyses were performed at the Serveis Científics i Tecnològics of the University of Barcelona.

Pyrite

Several pyrite types have been analyzed (e.g., idiomorphic, subidiomorphic, zoned, massive, frambooidal, and brecciated; Fig. 10A, B). The aim was to determine the chemical composition of the different pyrite types. However, they have similar Ag, Cd, Sb, and Se concentrations, but some differences exist in Co and Ni concentrations (Table 1; Appendix 1). The Co/Ni ratios (N = 11) range from 0.58 to 5.50 (Fig. 11A), and S/Se ratios (N = 21) are between 1,050 and 2,694. Pyrites are generally Cu rich, varying from 0.03 to 3.67 wt % Cu. The Au, Hg, and As concentrations of pyrite are below detection limits.

Alunite and APS minerals

At Cerro Quema, alunite and APS minerals occur as cement in the hydraulic breccias associated with pyrite and dickite, filling voids in the vuggy quartz zone, and replacing plagioclase crystals (Fig. 10C, D). In general, alunite is zoned (~1–7 µm wide), which is mainly due to the variation in Na, K, and Ca contents. Alunites have typical flaky shapes, indicating a hypogene origin (e.g., Arribas et al., 1995a; Itaya et al., 1996), and commonly have a core of APS minerals (e.g., svanbergite; Fig. 10C). Representative chemical data for alunite and APS minerals from Cerro Quema are shown in Table 2 and Appendix 2. Alunite is Na rich, exhibiting a compositional range within the alunite-natroalunite solid solution (Fig. 11B). P is generally absent as a trace, excepting few alunite crystals that show P enrichment, which is also correlated with an enrichment in...
Sr and Ba. In contrast, APS minerals show irregular element content (e.g., Na, Ca, Sr, Ba, and Fe), typically with enrichment in Sr, and locally in Ca and Ba (Fig. 11C), which is characteristic of the svanbergite-woodhouseite solid solution.

40Ar/39Ar Geochronology

The first geochronological studies of arc rocks in the Azuero Peninsula were conducted by Del Giudice and Recchi (1969) and Kesler et al. (1977). Recent studies have focused on dating igneous rocks such as those at El Montuoso, Valle Rico, and Parita batholiths, as well as quartz-diorites from the Punta Mala area, northeast Azuero basalts, and Central Azuero arc rocks (Fig. 1; Lissinna, 2005; Wegner et al., 2011; Montes et al., 2012). Results of the previous geochronological studies are summarized in Table 3.

Ar/Ar step-heating dating has been conducted in this study in order to complete the existing radiometric and biostratigraphic ages of the volcanic, volcaniclastic, sedimentary, and plutonic rocks of the Azuero Peninsula, and to constrain the age of the Cerro Quema deposit. Mineral separates of eight hornblende phenocrysts were prepared by crushing 1 kg of rock, sieving, washing, and handpicking to obtain 100 mg of...
The 40Ar/39Ar step-heating analyses were performed at the U.S. Geological Survey on samples irradiated at the U.S. Geological Survey TRIGA reactor in Denver, Colorado (Dalrymple et al., 1981). Dated samples are from the El Montuoso, Valle Rico, and Parita batholiths, the Cerro Quema host rock (dacite dome complex), and volcanoclastic andesite (Fig. 1). Results and sample locations are shown in Table 4 and in Figure 12.

El Montuoso

Two hornblendes from the El Montuoso batholith yielded 40Ar/39Ar plateau ages of 65.7 ± 1.0 and 67.5 ± 1.1 Ma (Fig. 12; Table 4), consistent with previous hornblende K/Ar ages (69 ± 10 and 64.87 ± 1.34 Ma; Del Giudice and Recchi, 1969; Kesler, 1977), and also with the zircon U/Pb ages (67.7 ± 1.4, 66.0 ± 1.0, and 67.6 ± 1.0 Ma) of Montes et al. (2012). Kesler (1977) also obtained a younger plagioclase K/Ar age (52.58 ± 0.63 Ma), interpreted to reflect partial postcrystallization argon loss from the plagioclase.

Valle Rico

40Ar/39Ar dating of a sample of the Valle Rico quartz-diorite (Fig. 12; Table 4) provided an integrated age of 54.8 ± 1.2 Ma, which is consistent with the hornblende K/Ar age of 53 ± 3 Ma (Del Giudice and Recchi, 1969). However, our age is considerably older than plagioclase 40Ar/39Ar ages of 49.5 ± 0.2 and 50.6 ± 0.3 Ma for the same batholith reported by Lissima (2005). A recent zircon U/Pb age of 49.2 ± 0.9 Ma (Montes et al., 2012) suggests that this is the true age of this quartz diorite. The Valle Rico hornblende 40Ar/39Ar date is therefore interpreted to have been compromised by the presence of excess argon.

Parita

A hornblende from the Parita batholith yielded a small plateau-like segment at 40.9 ± 1.3 Ma, in agreement with previous zircon U/Pb ages of 48.1 ± 1.2 and 41.1 ± 0.7 Ma (Montes et al., 2012) of the Parita batholith. However, the 40Ar/39Ar spectra show evidence for excess argon (Fig. 12; Table 4).

Río Quema Formation

Four hornblendes separated from the dacite dome complex of the Río Quema Formation yielded 40Ar/39Ar plateau ages of 67.9 ± 1.1, 66.0 ± 1.0, and 65.6 ± 1.3 Ma and an integrated age of 69.7 ± 1.2 Ma (Fig. 12; Table 4). Wegner et al. (2011) reported hornblende 40Ar/39Ar ages of 71.0 ± 2.0 and 67.5 ± 1.9 Ma for two dacite samples found in the Tonosí River (central Azuero Peninsula), probably corresponding to boulders coming from the erosion of the dacite dome complex of the Río Quema Formation.

An attempt to date the volcanoclastic rocks of the Río Quema Formation was made. Unfortunately, the integrated age of 143 ± 11 Ma and the plateau age of 105 ± 3 Ma (Fig. 12; Table 4) have no geologic sense within the geologic framework of the Azuero Peninsula (the 143 ± 11 Ma age indicates that the rock is older than the Azuero igneous basement).
Hydrothermal alteration and mineralization

Geochronologic dating of the Cerro Quema hydrothermal alteration-mineralization was attempted by the performance of 40Ar/39Ar step-heating analysis on alunite (advanced argillic alteration). Unfortunately, we had no success due to the fine-grained size of the alunite crystals and their intergrowths with kaolinite, which prevented the preparation of a pure alunite sample.

Discussion

Deposit type

Classification of Cerro Quema has been a matter of debate since the first studies were carried out in the area. T. M. Leach (pers. comm., 1992) and Nelson (1995) considered the deposit to be a high sulfidation epithermal deposit potentially related to an underlying porphyry-style intrusion. In contrast, Nelson and Nietzen (2000) and Nelson (2007) proposed that Cerro Quema could be an oxidized Au-Cu deposit transitional between epithermal deposits and volcanogenic massive sulfide deposits, similar to the Pueblo Viejo deposit, Dominican Republic.

The spatial distribution of hydrothermal alteration assemblage at Cerro Quema (e.g., vuggy quartz grading outward to advanced argillic, argillic, and propylitic assemblages) and the alteration mineralogy (e.g., alunite, APS minerals, barite, kaolinite, dickite, pyrophyllite), together with the mineralization style (e.g., dissemination and veinlets of pyrite, enargite,
Corral et al., show that Cerro Quema fits well within the classical high sulfidation epithermal model (e.g., Hedenquist, 1987; Berger and Henley, 1989; White, 1991; Hedenquist and Lowenstern, 1994; Arribas et al., 1995a). Therefore, it can be also considered as a mineralized lithocap, possibly overlying a porphyry copper system, in the sense of Sillitoe (1995) and Corbett and Leach (1998). Consequently, in agreement with T. M. Leach (pers. comm., 1992), hydrothermal alteration and high sulfidation epithermal mineralization at Cerro Quema is inferred to be related to the circulation of acidic fluids derived from an underlying porphyry-like intrusion.

Pyrite origin

No relationships between trace element content and pyrite textures (idiomorphic, zoned, or framboidal; Fig. 10) were observed. Pyrites do not show significant differences in terms of major and trace elements, except for their Cu, Co, and Ni content (Table 1). Co/Ni ratios in pyrites have been

Table 2. Representative Analyses of Alunites and APS Minerals from Cerro Quema

Sample no.	1	2	3	4	5
Description	Natroalunite	Natroalunite	Natroalunite	APS	APS
Al₂O₃	35.86	33.43	33.60	32.53	31.83
FeO total	0.05	0.14	2.16	0.00	0.26
CaO	0.02	0.17	0.23	0.77	2.49
Na₂O	4.22	3.77	4.62	0.92	0.52
K₂O	4.31	3.56	1.98	0.52	0.41
P₂O₅	0.25	2.42	3.20	12.33	17.53
F	0.33	0.06	0.55	0.45	0.62
SO₃	38.43	35.85	34.34	20.14	16.65
CuO	0.10	0.08	0.00	0.29	0.00
As₂O₅	0.04	0.00	0.02	0.05	0.04
SrO	0.51	3.39	3.28	16.44	15.81
BaO	0.42	0.38	1.73	0.41	0.22
CeO	0.00	0.27	0.59	0.29	0.22
PbO	0.10	0.16	0.26	0.14	0.25

Cations based on 14 oxygen atoms

Al	2.83	2.65	2.78	2.81	2.80
Fe	0.00	0.01	0.13	0.00	0.02
Ca	0.00	0.01	0.02	0.06	0.20
Na	0.55	0.49	0.63	0.13	0.08
K	0.37	0.31	0.18	0.05	0.04
P	0.07	0.01	0.12	0.10	0.15
S	1.93	1.81	1.81	1.11	0.93
Cu	0.01	0.00	0.00	0.02	0.00
As	0.00	0.00	0.00	0.00	0.00
Sr	0.02	0.13	0.13	0.70	0.68
Ba	0.01	0.01	0.05	0.01	0.01
Ce	0.00	0.01	0.02	0.01	0.01
Pb	0.00	0.00	0.00	0.00	0.01
Calculated H	6.86	7.32	6.30	7.28	6.54
Total cations	12.66	12.91	12.36	13.05	12.55

Oxide content is expressed in wt %; 1 = Na-rich alunite (natroalunite), 2 = Sr-rich natroalunite, 3 = Sr-, P-, and Ba-rich natroalunite (natroalunite-svanbergite), 4 = Sr-rich APS (svanbergite), 5 = Sr- and Ca-rich APS (svanbergite-woodhouseite)

1 Calculated by difference
2 Assume 100% sum

Fig. 11. Chemical composition of pyrite, alunite, and APS minerals from Cerro Quema. A) Co-Ni content of pyrites and their average composition. B) Normalized K-Na-Ba compositions of alunite. Data points are recalculated EMPA compositions (20 analyses). C) Normalized K + Na-Sr + Ba + Pb-Ca compositions of APS minerals. Data points are recalculated EMPA compositions (21 analyses).
used to distinguish between magmatic-hydrothermal and sedimentary origin. Ratios from ~1 to 5 have usually been assigned to hydrothermal pyrites, whereas Co/Ni ratio values of <1 are typical of pyrites of sedimentary or digenetic origin (e.g., Loftus-Hills and Solomon, 1967; Price, 1972; Bralia et al., 1979; Bajwah et al., 1987; Brill, 1989; Raymond, 1996; Fintor et al., 2011). Cerro Quema pyrites have Co/Ni ratios ranging from 0.58 to 5.50 (Fig. 11A), with an average of 1.96, suggesting a hydrothermal origin, irrespective of their textures.

S/Se ratios have also been used to discriminate between sedimentary and magmatic-hydrothermal origins of pyrites (e.g., Edwards and Carlos, 1954; Hawley and Nichol, 1972; Huston et al., 1995; Fitzpatrick, 2008). S/Se values of <15,000 correspond to magmatic-hydrothermal origin whereas those of sedimentary origin have values larger than 30,000. S/Se ratio values of pyrites from Cerro Quema range from 1,050 to 2,694, pointing to a magmatic-hydrothermal origin.

All these results are in agreement with pyrite sulfur isotopes (–4.8 to –12.7‰) and bulk sulfur isotope composition (–0.5‰), suggesting a sulfide-dominant hydrothermal fluid of magmatic origin (Corral et al., 2011b; Corral, 2013).

Alunite and APS origin

Analyzed alunite crystals have a flaky shape and are Na rich, covering a wide range of the alunite-natroalunite solid

Table 3. Summary of Geochronological Studies Carried Out in the Azuero Peninsula

Dating method	Rock	Mineral	El Montuoso	Valle Rico	Punta Mala	NE Azuero	Dacite	Parita	
K/Ar	Qd	Hornblende	69 ± 10 Ma						
K/Ar	Qd	Hornblende	53 ± 3 Ma						
K/Ar	Qd	Feldspar	64.87 ± 1.34 Ma						
K/Ar	Qd	Feldspar	52.58 ± 0.63 Ma						
Ar/Ar	Gr	Plagioclase	49.5 ± 0.2 Ma						
Ar/Ar	Gr	Plagioclase	50.6 ± 0.3 Ma						
Ar/Ar	B	Matrix	52.0 ± 0.2 Ma			60.9 ± 0.5 Ma			
Ar/Ar	B	Matrix	50.7 ± 0.1 Ma						
Ar/Ar	Dac	Hornblende					67.5 ± 1.9 Ma		
Ar/Ar	Dac	Hornblende					71.0 ± 2.0 Ma		
U/Pb	Gd	Zircon	67.6 ± 1.4 Ma						
U/Pb	Gd	Zircon	66.0 ± 1.0 Ma						
U/Pb	Gd	Zircon	67.6 ± 1.0 Ma						
U/Pb	Gd	Zircon	49.2 ± 0.9 Ma						
U/Pb	Ton	Zircon	41.1 ± 0.7 Ma						
U/Pb	Ton	Zircon	48.1 ± 1.2 Ma						

Table 4. Summary of 39Ar/40Ar Incremental-Heating Experiments

Coordinates (°WGS84)	Plateau	Sample no.	Rock	Mineral	Age (Ma) ± σ	N
El Montuoso batholith		PIT 01	7.643911	–80.646462	65.7 ± 1.4	4 of 8
			7.643911	–80.646462	65.3 ± 0.7	9 of 9
Dacite (Río Quema Fm)		LP 204	7.544964	–80.542382	67.9 ± 1.3	5 of 9
			7.544964	–80.542382	69.7 ± 1.2	7 of 7
			7.544964	–80.542382	66.0 ± 1.1	5 of 7
			7.544964	–80.542382	65.6 ± 1.3	3 of 6
Volcaniclastic rocks (Río Quema Fm)		LP 111	7.532564	–80.552439	143 ± 11	10 of 10
			7.532564	–80.552439	105 ± 3	4 of 13
Valle Rico batholith		TR 01	7.620795	–80.300616	54.8 ± 1.2	11 of 11
			7.620795	–80.300616	54.8 ± 1.2	11 of 11
Parita batholith		PA 01	7.994204	–80.527150	40.8 ± 1.4	4 of 12

1 Integrated age
Fig. 12. Hornblende argon age spectra of rocks from Cerro Quema.

Arrows indicate the steps used for plateau age calculation. A, B) El Montuoso batholith, C-F) Dacite dome complex (Río Quema Formation), G) Valle Rico batholith, H) Parita batholith, I, J) Volcaniclastic sediments of the Río Quema Formation.

Plateau ages and integrated ages

- **El Montuoso**
 - A) Plateau age: 65.7 ± 1.0 Ma (2σ) including J-error
 - MSWD: 2.4, probability = 0.067
 - Includes 64.2% of the 39Ar
 - B) Plateau age: 67.4 ± 1.1 Ma (2σ) including J-error
 - MSWD: 1.9, probability = 0.15
 - Includes 38.5% of the 39Ar

- **Dacite (RQF)**
 - C) Plateau age: 67.9 ± 1.1 Ma (2σ) including J-error
 - MSWD: 1.3, probability = 0.25
 - Includes 76.8% of the 39Ar
 - D) Plateau age: 66.0 ± 1.0 Ma (2σ) including J-error
 - MSWD: 1.4, probability = 0.24
 - Includes 85.6% of the 39Ar
 - E) Plateau age: 65.6 ± 1.3 Ma (2σ) including J-error
 - MSWD: 0.23, probability = 0.79
 - Includes 57.2% of the 39Ar

- **Valle Rico**
 - G) Integrated age: 54.8 ± 1.2 Ma (2σ) including J-error
 - MSWD: 12.3, probability = 0.00
 - Includes 100% of the 39Ar

- **Parita**
 - H) Plateau age: 40.9 ± 1.3 Ma (2σ) including J-error
 - MSWD: 1.0, probability = 0.40
 - Includes 33% of the 39Ar

- **Volcaniclastic rock (RQF)**
 - I) Integrated age: 143 ± 11 Ma (2σ) including J-error
 - MSWD: 11.6, probability = 0.00
 - Includes 100% of the 39Ar
 - J) Plateau age: 105 ± 3 Ma (2σ) including J-error
 - MSWD: 1.2, probability = 0.29
 - Includes 53.5% of the 39Ar

*J ± 1σ = 0.004349 ± 0.002
solution (Fig. 11B; Table 2; Appendix 2). APS minerals in the core of alunite and occurring as single crystals are mainly Sr rich, locally showing Ca enrichment (Fig. 11C; Table 2; Appendix 2), characteristic of the svanbergite-woodhouseite solid solution.

Studies focused on the alunite geochemistry (e.g., Stoffregen and Alpers, 1987; Arribas et al., 1995b; Deyell et al., 2005a, b; Chang et al., 2011) showed that supergene alunite and low-temperature alunite are generally K rich in comparison with higher-temperature occurrences, which are Na rich. Aoki et al. (1993) suggested that the core of hypogene alunite is commonly enriched in PO₄ and multivalent cations such as Ca (crandallite, woodhouseite), Sr (svanbergite), and Ba (groceixite). These inclusions are typically rimmed by mimanite and rhythmic bands of alunite and natroalunite (Stoffregen and Alpers, 1987; Aoki et al., 1993). According to the aforementioned studies, texture and chemical composition of alunite (Na-rich, flaky shapes and with inner core of APS) and svanbergite-woodhouseite (Sr- and Ca-rich APS mineral, occurring as an alunite core as well as single crystals) from Cerro Quema (see Figs. 10, 11; Table 2) present all of the characteristics indicating a magmatic-hydrothermal origin related to an intrusion-driven hydrothermal system, such as a porphyry copper intrusion.

Geologic Evolution and Epithermal Mineralization

This section summarizes the events from Late Cretaceous to present times that constrained the geologic evolution of the Azuero Peninsula and the formation of Cerro Quema (Fig. 13).

Arc development

The late Campanian (~55–49 Ma) marked the initiation of Farallon plate subduction beneath the Caribbean plate (Buchs et al., 2010). The initial stages of an intracratonic subduction are characterized by extension of the overriding plate (Stern and Bloomer, 1992; Stern, 2010). In the Azuero Peninsula, this extension controlled the morphology and evolution of the volcanic arc and fore arc. From late Campanian to Maastrichtian (~55–66 Ma), the first stage of magmatism occurred within the Caribbean plate. This stage is characterized by the intrusion of El Montuoso batholith and the development of the arc and fore-arc basin. The Río Quema Formation, of late Campanian to Maastrichtian age, represents the fore-arc basin. Contemporaneous intrusions of dacite domes (~71–66 Ma) into the Río Quema Formation resulted in the interstratified volcanic and sedimentary sequences of the fore-arc basin (Fig. 13A).

Arc maturation and emplacement of the Cerro Quema deposit

During the lower Eocene (~55–49 Ma), a second stage of magmatism occurred (Fig. 13B), where the Paleogene volcanic arc developed on top of the Cretaceous volcanic arc. Valle Rico-like batholiths intruded along E-trending regional faults to the north of the Cretaceous fore-arc basin. However, some Valle Rico-like intrusions (quartz-diorites, diorites, and trachyandesites) also occurred in the central and southern limit of the fore-arc basin. Emplacement of Valle Rico intrusions in the fore-arc led to the formation of Cerro Quema.

Age of the Cerro Quema deposit

The age of Cerro Quema has been constrained from field evidence coupled with biostratigraphic data of sedimentary rocks of the Río Quema Formation and geochronological data of the igneous rocks of the Azuero Peninsula. The age of the deposit is estimated to be ~55 to 49 Ma (lower Eocene), based on the following observations:

1. Crystal-rich sandstones and turbidites of the Río Quema Formation, a volcanosedimentary sequence of Campanian-Maastrichtian age, do not contain altered clasts derived from hydrothermally altered rocks. Dacite clasts in conglomerates derived from the erosion of the dacite dome complex that hosts Cerro Quema (~71–66 Ma; Wegner et al., 2011) show no signs of hydrothermal alteration. Therefore, hydrothermal alteration and mineralization should be younger than the age of the dacite dome complex (~71–66 Ma).

2. As a high sulfidation deposit, Cerro Quema will have been related to a magmatic event. In the Azuero Peninsula, the first recorded post-Cretaceous magmatic event occurred during the lower Eocene (~55–49 Ma; Del Giudice and Recchi, 1969; Kesler et al., 1977; Lissimna, 2005; Montes et al., 2012), corresponding to Valle Rico-like batholith intrusions. Based on correlations with this second magmatic event, the maximum age of Cerro Quema is lower Eocene (~55–49 Ma).

Arc migration

During the middle Eocene (~45 Ma), the Azuero Peninsula was an area of accreted intraoceanic island arcs, such as la Hoya and Punta Blanca islands (Buchs et al., 2011b). Subduction erosion and possible slab flattening induced the migration of the arc front toward the Caribbean. The emplacement of the Parita batholith (~48–41 Ma) to the north of the Ocú-Parita fault (Fig. 1) supports arc migration toward the north during middle Eocene times. This migration is in agreement with geodynamic reconstructions of Buchs et al. (2010) and geochronological data of Lissimna et al. (2002).

In the Azuero Peninsula, volcanism was less intense in the Cerro Quema and Tonosí area due to arc migration (Fig. 1). It allowed development of an overlapping sedimentary sequence (e.g., Tonosí Formation). This unit overlaps all older units, and is composed of reefal limestones, calcarenites, sandstones, conglomerates, and coal seams (Recchi and Miranda, 1977; Krawinkel and Seyfried, 1994; Kolarsky et al., 1995; Krawinkel et al., 1999).

Erosion and supergene enrichment

Some time before the emplacement of the Cerro Quema deposit (~55–49 Ma) and present day, erosion and supergene enrichment affected the Cerro Quema deposit (Fig. 13C). Consequently, oxidation and intense weathering generated a thick Au-bearing, silica- and iron-rich zone of up to 150-m depth, below which a Cu-rich zone was developed.

Conclusions

Cerro Quema is a high sulfidation epithermal deposit hosted by the dacite dome complex of the Río Quema Formation, and was emplaced into a Cretaceous fore-arc sequence.
Weathering and supergene oxidation processes at Cerro Quema produced two mineralized zones, an upper quartz and iron oxide zone enriched in Au and a lower supergene enrichment zone where Cu is concentrated.

Field observations as well as geochronologic and biostratigraphic data support a maximum lower Eocene (~55–49 Ma) age for Cerro Quema. The deposit is interpreted to be related to the emplacement of a porphyry-like intrusion associated with the Valle Rico batholith.

The formation of Cerro Quema in the lower Eocene fore arc has important implications for exploration in the Panamanian volcanic arc and elsewhere. Our results suggest that high sulfidation deposits can form in a fore-arc environment if acidic intrusions are emplaced between the volcanic arc front and the sea level.

Fig. 13. Geologic model of Cerro Quema and the Azuero Peninsula from Late Cretaceous to present. AIB = Azuero igneous basement, APVA = Azuero primitive volcanic arc, RQF = Río Quema Formation.
the trench. Exploration for high sulfidation epithermal deposits in the Azuero Peninsula should therefore be focused in the Cretaceous fore-arc sequence, especially in the Río Quema Formation dacite domes, targeting E-trending regional faults (parallel to the Río Joaquín fault zone) and lower Eocene acidic intrusions (Valle Rico-like intrusions). This implies a potential zone about ~70 × 10 km for hosting porphyry-related high sulfidation epithermal deposits (Fig. 14). These findings should also be considered when exploring for high sulfidation deposits in geologically similar terranes globally.

Acknowledgments

This study is part of the first author’s Ph.D., performed within the framework of the Ph.D. program in geology of the Universitat Autònoma de Barcelona. The research was supported through the research project CGL2007-62690/BTE (Spanish Ministry of Science and Education), and a by a predoctoral grant from the Departament d’Universitats, Recerca i Societat de la Informació (Generalitat de Catalunya). The corresponding author would like to express his gratitude to the SEG Foundation and the SEG Canada Foundation for the Big Cadia iron-copper deposit, New South Wales, Australia: Mineralium Deposita, v. 22, p. 292–300. Barat, F., Maurin, T., Aussiette, J.-L., Mercier de Lépinay, B., Salmon, F., and Soisson, M., 2012, Cenozoic tectonic evolution leading to the Choco-South America collision (Panama-Colombia), from seismic profiles interpretations: American Geophysical Union, AGU Fall Meeting, San Francisco, CA, December 3–7, 2012, Poster T41A-2577.

REFERENCES

Aoki, M., Comsti, E.C., Lazo, F.B., and Matsuhisa, Y., 1993, Advanced argillic alteration and geochemistry of alunite in an evolving hydrothermal system at Baguio, northern Luzon, Philippines: Resource Geology, v. 43, p. 155–164.

Arribas, A., 1995, Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid: Mineralogical Association of Canada Short Course, v. 23, p. 419–454.

Arribas, A., and Tosdal, R.M., 1994, Isotopic composition of Pb in ore deposits of the Betic Cordillera, Spain: origin and relationship to other European deposits: Economic Geology, v. 89, p. 1074–1093.

Arribas, A., Cunningham, C.G., Rytuba, J.J., Rye, R.O., Kelly, W.C., Pad- woszko, M.H., Mckee, E.H., and Tosdal, R.M., 1995a, Geology, geochemistry, fluid inclusions, and isootope geochemistry of the Rodalquilar gold alunite deposit, Spain; Economic Geology, v. 90, p. 795–822.

Arribas, A., Hedenquist, J.W., Itaya, T., Okada, T., Concepcion, R.A., and García, F., J.S., 1995b, Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon, Philippines: Geology, v. 23, p. 337–340.

Bajyah, Z.U., Seccombe, P.K., and Offler, B., 1987, Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia: Mineralium Deposita, v. 22, p. 145–167.

Barat, F., Mercier de Lépinay, B., Salmon, F., and Soisson, M., 2012, Cenozoic tectonic evolution leading to the Choco-South America collision (Panama-Colombia), from seismic profiles interpretations: American Geophysical Union, AGU Fall Meeting, San Francisco, CA, December 3–7, 2012, Poster T41A-2577.

Binns, R.A., and Scott, S.D., 1993, Activly forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea: Economic Geology, v. 88, p. 2226–2236.

Bourgeois, J., Azema, J., Tournon, J., Bellon, H., Calle, B., Parra, E., Toussaint, J.-F., Gla(Barat, 2014 #355)/Barat, 2014 #355/Coen, G., Feinberg, H., De Wever, P., and Orliga, I., 1982, Age et structures des complexes basiques et ultrabasiques de la façade pacifique entre 3°N et 12°N (Colombie, Panama et Costa Rica): Bulletin de la Société Géologique de France, v. 24, p. 545–554.

Bove, D.J., Rye, R.O., and Hon, K., 1990, Evolution of the Red Mountain alunite deposit, Lake City, Colorado: U. S. Geological Survey, Open File Report 90-0235, 29 p.

Braila, A., Sabatini, G., and Troja, F., 1979, A revaluation of the Co:Ni ratio in pyrite as geochemical tool in ore genesis problems: evidences from the southern Tuscan pyritic deposits: Mineralium Deposita, v. 14, p. 353–374.

Brill, B.A., 1989, Trace-element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit, Australia, and implications for ore genesis: Canadian Mineralogist, v. 27, p. 263–274.

Buchs, D.M., 2008, Late Cretaceous to Eocene geology of the South Central American forearc area (southern Costa Rica and western Panama): Initiation and evolution of an intra-oceanic convergent margin: Unpublished Ph.D. thesis, Lausanne, Switzerland, Université de Lausanne, 230 p.

Buchs, D.M., Baungartner, P.O., Baungartner Mora, C., Bandini, A.N., JACKETT, S.-J., Dierens, M.-O., and Stucki, J., 2009, Late Cretaceous to
Kesler, S.E., 1978, Metallogenesis of the Caribbean region, Panama: Journal of the Geological Society, v. 135, p. 429–441.
Kesler, S.E., Sutter, J.F., Issigoni, M.J., Jones, L.M., and Walker, R.L., 1977, Evolution of porphyry copper mineralization in an oceanic island arc: Panam-a: Economic Geology, v. 72, p. 1142–1153.
Kesler, S.E., Russell, N., and McCurdy, K., 2003, Trace-metal content of the Pueblo Viejo precious-metal deposits and their relation to other high-sul-fidation epithermal systems: Mineralium Deposita, v. 38, p. 665–682.
Kolasky, R.A., Mann, P., Monetchi, S., Meyerhoff-Hill, D., and Pessagno, E.A., 1995, Stratigraphic development of southwestern Panama as deter-mined from integration of marine seismic data and onshore geology: Geologi-cal Society of America Special Paper, v. 295, p. 159–200.
Krawinkel, H., Wozazeck, S., Krawinkel, J., and Hellmann, W., 1999, Heavy-mineral analysis and clinopyroxene geochemistry applied to provenance analysis of lithic sandstones from the Azuero-Sona Complex (NW Panama): Sedimentary Geology, v. 124, p. 149–168.
Krawinkel, J., and Seyfried, H., 1994, Struktur und kinematisch im fore-arc der sudrlicken zentralamerikanischen landbruecke: Bonn, Terra Nostra, v. 2, p. 47–49.
Levy, E., 1970, La metallogenesis en America Central: Instituto Centroamer-icano de Investigación y Tecnología Industrial, v. 3, p. 17–57.
Lissimba, B., 2005, A profile through the Central American land bridge in western Panama: 115 Ma interplay between the Galapagos hotspot and the Central American subduction zone: Unpublished Ph.D. thesis, Germany, Fakultät der Christian-Albrechts-Universität zu Kiel, 102 p.
Lissimba, B., Hoernele, K., and van den Bogaard, P., 2002, Northern migration of arc volcanism in western Panama: evidence for subduction erosion?: Eos, v. 83, p. 1463–1464.
Lofthus-Hills, G., and Solomon, M., 1967, Cobalt, nickel and selenium in sul-phides as indicators of ore genesis: Mineralium Deposita, v. 2, p. 228–242.
Loudsadle, P., 2005, Creation of the Cocos and Nazca plates by fission of the Farallon plate: Tectonophysics, v. 404, p. 237–264.
Montes, C., Bayona, G.A., Cardona, A., Buchs, D.M., Silva, C.A., Morón, S.E., Hoyos, N., Ramírez, D.A., Jaramillo, C.A., and Valencia, V., 2012, Arc-continent collision and orocline formation: Closing of the Central American seaway: Journal of Geophysical Research, v. 117, B04105, 25 p.
Nelson, C.E., 1985, Porphyry copper deposits of southern Central America: Arizona Geological Society Digest, v. 20, p. 533–565.
——2007, Metallic mineral resources, in Bundschuh, J., and Alvarado, G.E., eds., Central America: geology, resources and hazards: The Netherlands, Taylor and Francis, p. 885–915.
Nelson, C.E., and Nietzen, F., 2000, Metallogenia del oro y cobre en América Central: Revista Geológica de América Central, v. 23, p. 25–41.
Pinell, J.L., and Kenan, L., 2009, Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update: Geological Society Special Publications, v. 328, p. 1–55.
Price, B.J., 1972, Minor elements in pyrites from the Smithers map area, British Columbia: Geology, v. 13, p. 32–33.
Puritch, E.J., Sutcliffe, R.H., Wu, Y., Armstrong, T., and Yassa, A., 2012, NI 43-101 technical and mineral resource estimate on the Cerro Quema Project, Los Santos province, Panama: Prepared for Freshimco Resources Inc., by Scott Wilson Roscoe Postle Associates Inc., 109 p., www.sedar.com/GetFile.do?lang=EN&docClass=24&issuerNo=00011899&fileName=/csfsprod/mco%5CPERSHIMCOrapporttechupdate.pdf.
——1993, Exploration of porphyry copper lithocap: Australasian Institute of Mining and Metallurgy, v. 905, p. 527–532.
——1999, Styles of high-sulphidation gold, silver and copper mineralisation in porphyry and epithermal environments: Australasian Institute of Mining and Metallurgy, v. 4:99, p. 29–44.
——2010, Porphyry copper systems: Economic Geology, v. 105, p. 3–41.
——2010, Anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
——2010, The anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
——2010, The anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
Ratté, J.C., 1960, Geology and ore deposits of the Summitville district, San Juan Mountains, Colorado: U.S. Geological Survey Professional Paper 345, p. 70.
Sillitoe, R.H., 1984, Gold deposits and hydro-thermal eruption breccias associated with a maar volcano at Wau, Papua New Guinea: Economic Geology, v. 79, p. 638–655.
Spedel, F., Fauve, S., Smith, M.T., and McArthur, G.F., 2001, Exploration and discovery at the Petapulla copper-gold concession, Panama: Society of Economic Geologists, Special Publication S. 8, p. 349–362.
Stern, R.J., 1998, Metallogenesis of the Caribbean region: Journal of the Geologi-cal Society of America Memoir 204, p. 183–196.
——2010, Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs: Geologi-cal Society of America Bulletin, v. 104, p. 1621–1636.
——2010, The anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
——2010, The anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
——2010, The anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
——2010, The anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
——2010, The anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
——2010, The anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
——2010, The anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
——2010, The anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
——2010, The anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
——2010, The anatomy and ontology of modern intra-oceanic arc systems: Geological Society Special Publication, v. 338, p. 7–34.
APPENDIX 1

Location and Quantitative Analyses of Pyrites from Cerro Quema

Sample no.	Alteration	Location	Elevation (masl)	Coordinates (°WGS84)	S	Fe	Co	Ni	Cu	Se	Ag	Cd	Sb	Total
9107-11.55	Vuggy quartz	La Pava	504 m	7.553503 –80.549597	52.52	43.68	1.78	0.43	1.12	0.05	bdl	bdl	bdl	99.58
9107-11.55-1a	I	52.52	43.68	1.78	0.43	1.14	0.05	bdl	0.03	bdl	99.63			
9107-11.55-1b	I	53.32	46.63	bdl	bdl	bdl	0.03	0.04	bdl	100.02				
9107-11.55-1c	I	53.38	45.68	0.05	0.07	bdl	0.02	bdl	0.03	0.05	99.28			
9316-173.2	Vuggy quartz	La Pava	374 m	7.554086 –80.549231	53.25	45.5	0.08	0.07	0.13	0.02	bdl	bdl	bdl	99.08
9316-173.2-8a	Z	53.34	46.72	bdl	bdl	0.09	bdl	bdl	bdl	100.15				
9316-173.2-8b	Z	53.93	45.90	bdl	bdl	0.17	0.02	bdl	bdl	100.07				
9316-173.2-8c	Z	53.72	45.76	bdl	bdl	0.24	bdl	bdl	bdl	100.34				
9316-173.2-8d	Z	53.28	45.77	bdl	bdl	0.29	bdl	bdl	bdl	100.26				
9316-173.2-8e	Z	53.69	44.98	bdl	bdl	1.56	bdl	0.03	bdl	0.05	100.31			
9316-173.2-8f	Z	54.13	44.80	bdl	bdl	0.18	bdl	0.03	bdl	0.06	99.20			
9316-173.2-8g	Z	53.40	46.39	bdl	bdl	0.07	bdl	bdl	bdl	99.96				
9316-173.2-8h	Z	53.37	46	bdl	bdl	0.10	bdl	0.03	bdl	0.07	99.52			
9316-173.2-8i	Z	52.68	44.10	bdl	bdl	3.67	0.02	0.03	bdl	0.05	100.33			
9316-173.2-8j	Z	54.14	44.9	bdl	bdl	0.59	bdl	bdl	bdl	99.99				
9316-173.2-8k	Z	53.49	45.63	bdl	bdl	0.35	0.02	bdl	bdl	99.49				
9316-173.2-8l	Z	53.48	45.48	bdl	bdl	0.64	bdl	bdl	bdl	99.56				
9316-173.2-8m	Z	53.36	45.96	bdl	bdl	0.30	bdl	0.03	0.03	0.07	99.75			
9316-173.2-8n	Z	53.77	46.34	0.02	0.02	0.06	bdl	bdl	bdl	100.23				
9316-236	Vuggy quartz	La Pava	312 m	7.554086 –80.549231	53.35	45.44	bdl	bdl	0.57	0.02	bdl	bdl	0.05	99.46
9316-236-28	B	53.35	45.44	bdl	bdl	0.57	0.02	bdl	bdl	99.46				
9316-236-29	F	52.85	44.63	0.02	0.03	2.21	bdl	0.03	bdl	99.77				
9316-236-30	I	53.35	46.58	bdl	bdl	bdl	0.02	bdl	bdl	99.95				
9316-236-31	I	53.25	45.60	bdl	bdl	0.57	0.02	0.03	bdl	99.47				
9316-236-32	B	53.52	45.20	0.04	0.06	1.44	bdl	0.04	bdl	0.05	100.35			
9316-236-33	M	53.54	45.44	0.04	0.05	1.35	bdl	0.03	bdl	100.53				
9316-236-34	B	53.15	44.7	0.04	0.02	1.20	bdl	0.02	0.04	bdl	99.29			
Appendix 1. (Cont.)

Sample no.	Alteration type	Location	Elevation (masl)	Latitude	Longitude	S	Fe	Co	Ni	Cu	Se	Ag	Cd	Sb	Total
0308-51.8	Advanced argillic	Chontal edge	370 m	7.555115	~80.534655										
0308-51.8-3	I			53.46	45.53	0.03	0.03	0.05	bdl	bdl	bdl	bdl	bdl	bdl	99.13
0308-51.8-14	I			54.02	44.88	1.12	0.03	0.04	bdl	bdl	bdl	bdl	bdl	bdl	100.11
0308-51.8-1	SI			53.61	46.06	0.24	0.02	bdl	bdl	bdl	bdl	bdl	bdl	99.93	
0308-51.8-32a	SI			53.35	44.6	1.72	0.03	0.03	0.1	bdl	bdl	bdl	bdl	99.82	
0308-51.8-1	SI			53.51	46.51	0.19	0.02	bdl	bdl	bdl	bdl	bdl	bdl	100.27	
0308-51.8-21	SI			53.74	46.16	0.02	bdl	100.02							
0308-51.8-23	SI			53.62	45.51	0.44	0.02	bdl	bdl	bdl	bdl	bdl	bdl	99.66	
0308-73.6	Advanced argillic	Chontal edge	349 m	7.555115	~80.534655										
0308-73.6-1	M			53.20	43.59	3.16	bdl	99.99							
0308-73.6-3b	M			53.27	46.3	0.44	0.02	bdl	bdl	bdl	bdl	bdl	bdl	100.06	
0308-73.6-4	M			53.20	46.23	0.12	bdl	99.62							
0308-73.6-5	SI			53.36	46.2	0.19	0.03	bdl	bdl	bdl	bdl	bdl	bdl	99.84	
0308-73.6-13	SI			53.08	46.21	0.02	bdl	99.35							
0308-73.6-16c	F			53.67	46.11	0.02	bdl	99.84							
0308-73.6-18	SI			53.70	46.53	0.02	bdl	100.28							
0308-73.6-12	SI			54.06	45.47	0.11	0.05	bdl	bdl	bdl	bdl	bdl	bdl	100.46	
0308-73.6-8	M			53.56	45.95	0.12	bdl	99.69							
9343-66	Vuggy quartz	Cero Idaida	660 m	7.555226	~80.507060										
9343-66-01	I			53.49	45.43	0.37	bdl	99.32							
9343-66-02	I			53.67	44.92	0.50	bdl	99.12							
9343-66-03	I			53.10	46.09	0.24	bdl	99.46							
9343-66-03b	I			53.35	46.16	0.08	bdl	99.87							
9343-66-09	I			53.51	46.84	0.03	bdl	100.38							
9343-66-04b	M			53.32	45.2	1.40	bdl	100.47							
9343-66-04c	M			53.66	44.5	2.12	bdl	100.29							
9343-66-13b	M			53.55	45.3	0.03	1.40	bdl	bdl	bdl	bdl	bdl	bdl	100.60	
9343-66-23	M			53.44	46.3	0.44	bdl	100.22							

Element content is expressed in wt %; B = brecciated, bdl = below detection limit, F = framboidal, I = idiomorphic, M = massive, SI = subidiomorphic, Z = zoned
APPENDIX 2

Location and Quantitative Analyses of Pyrites and APS Minerals from Cerro Quema

Sample no.	Alteration zone/mineral	Location	Elevation (masl)	Latitude	Longitude	Al₂O₃	Total Fe₂O₃	CaO	Na₂O	K₂O	P₂O₅	F	SO₃	CuO	As₂O₅	SrO	BaO	CeO	PbO (H₂O)₁ Total
0308-51.8	Advanced argillic	Chontal edge	370 m	7.555115	~80.534565														
0308-73.6	APS	Chontal edge	349 m	7.555115	~80.534565														

Oxide content is expressed in wt %

¹ Calculated by difference