GENOME NOTE

The complete mitogenome sequence of clam (*Corbicula fluminea*) [version 1; peer review: 1 approved, 1 approved with reservations]

Qing Luo,1,2 Jie Pi,1 Yangxin Tang,1 Cong Zeng,3 Deliang Li

1Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
2Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
3School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China

First published: 24 Feb 2022, 11:226
https://doi.org/10.12688/f1000research.108415.1
Latest published: 24 Feb 2022, 11:226
https://doi.org/10.12688/f1000research.108415.1

Abstract
The global invasion of the genus *Corbicula* has caused serious ecological and economic problems. The species of *Corbicula fluminea* stands out amongst the greater part of freshwater invaders around the world. Here, we sequenced the entire mitogenome of the *Corbicula fluminea*, which were gathered from Dongting Lake, in the Hunan province of central China. The circular genome is 17,073 bp long. The raw reads were obtained from the platform of Illumina HiSeq 2500, and assembled by the MITObim method followed by alignments to related species. The entire dataset was deposited at the NCBI Short Read Archive via accession number SRR14692229 and NCBI GenBank with accession number MZ231034.1.

Keywords
Corbicula fluminea; mitochondrial genome; phylogenetic analysis

This article is included in the Genome Sequencing gateway.
Introduction

Clams of the genus *Corbicula* are currently spread worldwide, and they cause great ecological threats and tremendous impacts in the ecological system (Counts 1981; Gomes et al. 2016; Peñarrubia et al. 2017; Hünicken et al. 2019; Douglass et al. 2020). However, their taxonomic status and systematic status are still unclear (Wang et al. 2018; Haponski 2019; Bodon et al. 2020; Ramli et al. 2020). *Corbicula fluminea* is an important component of Asian freshwater macrobiota and has always been consumed as food in East Asia (Wang et al. 2014; López-Soriano et al. 2018; Zhang et al. 2019; Sano et al. 2020). In this work, the complete mitochondrial genome of *Corbicula fluminea* from Dongting Lake was sequenced, and the phylogenetic relationships among Venerida were investigated. These results could contribute to distinguishing the taxonomic placement and systematic status of genus *Corbicula* in further studies.

Methods

The specimens (*Corbicula fluminea*) used in this work was collected from Dongting Lake (geographic location: 28°46′45″N, 112°41′22″E), in Hunan province, China in August 2018.

After sampling, the living specimens were stored in College of Animal Science and Technology, Hunan Agricultural University, the voucher number is DT1808-118.

![Figure 1](image.png)

Corbicula fluminea-Dongting Lake

The complete genome

17073 bp

Figure 1. Circular maps of the mitochondrial genome of *Corbicula fluminea* from Dongting Lake, including genes encoding proteins, ribosomes and transporters.
To obtain the total genomic DNA, the 40mg frozen muscle of the foot was derived from the specimen. DNA was obtained by DNeasy™ Blood & Tissue extraction kit (Qiagen, Hilden, Germany). The library was conducted by Berry Genomics Co. Ltd (Beijing, China) according to the Illumina TruSeq Nano DNA library Prep Kit and the manufacturer’s recommendations. DNA fragments were selectively enriched using Illumina PCR Primer (F: 5'-AATGATACGGCGACCACCGAGA-3' and R: 5'-CAAGCAGAAGACCGTATGAGT-3') Cocktail in a PCR reaction with the following cycling conditions: 95°C for 3 minutes, followed by 8 cycles of 98°C for 20 seconds, 60°C for 15 seconds and 72°C for 30 seconds, with a final extension step at 72°C for 5 minutes. The raw reads of the mitogenome sequence were obtained from the platform of Illumina HiSeq 2500. The adaptors and low sequencing qualities reads (N bases exceeding 10% and more than 50% of phred quality score \(\leq 5 \)) were trimmed and reduced using the program Trimmomatic v 0.38.0 (Bolger et al. 2014).

The sequence reads of untrimmed high-quality were assembled by the program MITObim (Hahn et al. 2013). The annotation was performed using MITOS WebServer (Bernt et al. 2013) for the entire mitogenome of Corbicula fluminea from Dongting Lake, and adjusted manually in Geneious Prime v2020.2.2 based on the published mitogenomes of Venerida species.

To validate our data, the CDS sequences of 19 Venerida species (GenBank accession numbers are shown in Figure 2) were aligned. The phylogenetic analysis among Venerida was investigated using maximum-likelihood (ML) and Bayesian inference (BI) approaches. The ML tree was estimated by RAxML version 8.2.12 (Stamatakis 2014) and the BI tree was estimated by MrBayes version 3.2.7 (Ronquist et al. 2012), with GTR-GAMMA model. RAxML was analyzed with 1,000 bootstrap replicates (-m GTRGAMMAI -f a -x 1 -p 1 -N 1000), 1 million generations Markov chain Monte Carlo iterations (nCats=4) were analysed and every 1,000 generations were sampled with the initial 10% of samples removed as “burn-in” in MrBayes. The average standard deviation of split frequencies (<0.01) was used to assess the convergence.

A phylogenetic relationship was estimated based on 13 protein-coding genes sequences from the mitogenome sequences of Corbicula fluminea from Dongting Lake and other 19 Venerida species (Figure 2). The study has provided a complete mitochondrial genome of Corbicula fluminea from Dongting Lake. As a phylogenetic tool, it could contribute to systematic and comparative analysis for resolving evolutionary relationships.

Figure 2. Phylogenetic relationships based on 13 mitochondrial protein-coding genes sequences inferred from RAxML and Mrbayes. The nodal numbers indicate the bootstrap support values (left) and the posterior probability (right). Genbank accession numbers for the sequences are indicated next to the species names.
Results
The complete circular mitogenome of Corbicula fluminea from Dongting Lake (GenBank accession no. MZ231034.1) is 17,073 bp in total length. As other Venerida mitogenomes, 37 mitochondrial structural genes were found in the mitogenome of Corbicula fluminea from Dongting Lake, including 13 protein-coding genes, two ribosomal RNA genes (12S and 16S rRNA) and 22 transfer RNA genes (Figure 1). Both are encoded on the positive strand.

Data Availability
Underlying data
NCBI Gene: Complete mitochondrial genome of Corbicula sp. DT118, SRA
Accession number: SRR14692229
Accession number URL: https://www.ncbi.nlm.nih.gov/sra/SRR14692229
NCBI Gene: Corbicula sp. QL-2021 mitochondrion, complete genome
Accession number: MZ231034.1
Accession number URL: https://www.ncbi.nlm.nih.gov/nuccore/MZ231034.1

Ethical approval
All the clams and experimental protocols involving experiments of this study were approved by the Animal Ethics Committee of Hunan Agricultural University, Hunan, China.

References
Bernt M, Donath A, Jühling F, et al.: MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013; 69(2): 313–319. PubMed Abstract | Publisher Full Text
Bodn M, López-Soria J, Quinonero-Salgado S, et al.: Unraveling the complexity of Corbicula clams invasion in Italy (Bivalvia: Cyrenidae). Bollettino Malacologico. 2020; 56: 127–171. PubMed Abstract | Publisher Full Text
Bolger AM, Lohse M, Usadel B: Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15): 2114–2120. PubMed Abstract | Publisher Full Text
Counts CL: Corbicula fluminea (Bivalvia: Sphaeriacea) in British Columbia. Nautilus. 1981; 95: 12–13.
Douglas S, Reasor E, Tiemann J, et al.: Recent evaluation of Corbicula form D distribution in the Midwest, USA. Am. Midl. Nat. 2020; 183(1): 136–142.
Hahn C, Bachmann L, Chevreux B: Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 2013; 41 (13): e129–e129. PubMed Abstract | Publisher Full Text
Haponski AE, Foighil D: Phylogenomic analyses confirm a novel invasive North American Corbicula (Bivalvia: Cyrenidae) lineage. PeerJ. 2019; 7: e7484. PubMed Abstract | Publisher Full Text
Hünicken LA, Abrameto M, Bonel N: Corbicula at its southernmost invasion front in Patagonia: unusual low density and asymmetric trait responses to varying environmental conditions. J. Molluscan Stud. 2019; 85(1): 143–153. Publisher Full Text
López-Soria J, Quinonero-Salgado S, Cappelletti C, et al.: Unraveling the complexity of Corbicula clams invasion in Lake Garda (Italy). Adv. Oceanogr. Limnol. 2018; 90. Publisher Full Text
Gomes C, Sousa R, Mendes T, et al.: Low genetic diversity and high invasion success of Corbicula fluminea (Bivalvia, Corbiculidae) (Müller, 1774) in Portugal. PLoS One. 2016; 11(7): e0158108. PubMed Abstract | Publisher Full Text
Petiarriuia L, Aragauas RM, Vidal O, et al.: Genetic characterization of the Asian clam species complex (Corbicula) invasion in the Iberian Peninsula. Hydrobiologia. 2017; 784(1): 349–365. PubMed Abstract | Publisher Full Text
Ramí MZ, Ayyapan V, Yusoff A, et al.: Phenotype and Genotype Characterisation of the Asian Clam of the Genus Corbicula Megerle von Mikléfeld, 1811 (Venerida, Cyrenidae) from the East Coast of Peninsular Malaysia. Borneo Journal of Resource Science and Technology. 2020; 10(1): 24–36. Publisher Full Text
Ronquist F, Teslenko M, van der Mark P, et al.: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012; 61: 539–542. PubMed Abstract | Publisher Full Text
Sano N, Houki S, Kodan A, et al.: Genetic confirmation of “egg parasitism” in androgenetic freshwater Corbicula clams by paternity testing using microsatellite DNA markers. Plankton and Benthos Research. 2020; 15(1): 58–62. Publisher Full Text
Stamatakis A: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30(9): 1312–1313. PubMed Abstract | Publisher Full Text
Wang GP, Zhang T, Zhang J, et al.: Morphological and molecular differentiation of genus Corbicula suggests that two species are sympatrically distributed in Datong Lake in the Central Yangtze River Basin. Zool. Stud. 2014; 53(1): 1–8. Publisher Full Text
Wang JP, Li DL, Ze C, et al.: Genetic diversity and reproductive characteristics of Corbicula fluminea from the Laodao River in Liuyang city. Acta Hydrobiologica Sinica. 2018; 42(5): 913–918.
Zhang T, Yin J, Tang S, et al.: The complete mitogenome of clam Corbicula fluminea determined using next-generation and PacBio sequencing. Mitochondrial DNA Part B. 2019; 4(1): 1660–1661. Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔️ ❏

Version 1

Reviewer Report 18 July 2022

https://doi.org/10.5256/f1000research.119781.r140845

© 2022 Emami-Khoyi A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Arsalan Emami-Khoyi
Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa

In my opinion, the paper contributes significantly to the knowledge base of this species. No major flaws in the analysis were noticed.

The authors need to better justify why this particular clam has been chosen for sequencing.

The authors need to clarify in which mode Mitobim has been used. Has a conserved template sequence from a closely related species been used as a starting seed?

a) The title needs to be changed to "Asian" clam (Corbicula fluminea).

b) Please note that ribosomal RNA are not genes.

c) Great "ecological threats" and "tremendous impacts" need to be clarified.

d) How were the Bayesian runs trace files evaluated for convergence? Why was the Effective Sample Size not reported?

Are the rationale for sequencing the genome and the species significance clearly described?
Partly

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of the sequencing and extraction, software used, and materials provided to allow replication by others?
Partly
Are the datasets clearly presented in a usable and accessible format, and the assembly and annotation available in an appropriate subject-specific repository?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 24 March 2022

https://doi.org/10.5256/f1000research.119781.r125320

© 2022 Wang X. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Xiaotong Wang
School of Agriculture, Ludong University, Yantai, China

This paper describes the assembly and annotation of a clam mitogenome. It's a brief note that provides some useful background about the species, *Corbicula fluminea*, and these data can contribute to distinguish the taxonomy and systematic status on the genus *Corbicula* in further studies.

The details of the analysis and the data is clear. I have 2 minor revisions:

1. Include version number of MITObim and MITOS.
2. The name of the species should be unified in the manuscript and the NCBI GenBank.

Are the rationale for sequencing the genome and the species significance clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of the sequencing and extraction, software used, and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a usable and accessible format, and the assembly and annotation available in an appropriate subject-specific repository?
Yes
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Mollusc physiology and molecular biology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com