Abstract

Inflammation often induces regeneration to repair the tissue damage. However, chronic inflammation can transform temporary hyperplasia into a fertile ground for tumorigenesis. Here, we demonstrate that the microRNA miR-34a acts as a central safeguard to protect the inflammatory stem cell niche and reparative regeneration. Although playing little role in regular homeostasis, miR-34a deficiency leads to colon tumorigenesis after *Citrobacter rodentium* infection. miR-34a targets both immune and epithelial cells to restrain inflammation-induced stem cell proliferation. miR-34a targets Interleukin six receptor (IL-6R) and Interleukin 23 receptor (IL-23R) to suppress T helper 17 (Th17) cell differentiation and expansion, targets chemokine CCL22 to hinder Th17 cell recruitment to the colon epithelium, and targets an orphan receptor Interleukin 17 receptor D (IL-17RD) to inhibit IL-17-induced stem cell proliferation. Our study highlights the importance of microRNAs in protecting the stem cell niche during inflammation despite their lack of function in regular tissue homeostasis.

DOI: https://doi.org/10.7554/eLife.39479.001
regeneration and hyperplasia in intestinal and colonic epithelia (Ashton et al., 2010; Miyoshi et al., 2012).

Inflammation triggers intestinal and colonic epithelial reparative regeneration via inflammatory cytokines, including TNF-α, IL-6, IL-17, and IL-22. These cytokines upregulate downstream pathways such as MAPK, JAK-STAT3, and NF-κB, which control processes including cell proliferation and differentiation (Karina and Clevers, 2016; Chen et al., 2003; Taniguchi et al., 2015; Sugimoto et al., 2008; Song et al., 2011). Deficiency in IL-22 or IL-17 Receptor E (IL-17RE) led to enhanced mucosal damage after infection by pathogenic bacteria such as Citrobacter rodentium (Song et al., 2011; Zheng et al., 2008).

On the other hand, chronic inflammation causes excessive regeneration, and the resulting hyperplasia could eventually lead to cancer. TNF-α is associated with CRC progression (Al Obeed et al., 2014; Zins et al., 2007), and blocking TNF-α reduces the likelihood of colorectal carcinogenesis associated with chronic colitis (Popivanova et al., 2008). IL-17 have also been shown to promote colitis-associated early colorectal carcinogenesis (Grivennikov et al., 2009; Wang et al., 2014), and IL-22 stimulates stem cell growth after injury and promotes CRC stemness (Lindemans et al., 2015; Kryczek et al., 2014). Infiltration of T helper 1 (Th1) cells in CRC tumor specimens is associated with prolonged disease-free survival. However, infiltration of T helper 17 (Th17) cells, which secrete IL-17 and IL-22, is predictive of poor prognosis for CRC patients (Tosolini et al., 2011).

The microRNA miR-34a is an important tumor suppressor that targets pro-growth genes (He et al., 2007; Chang et al., 2007), and its mimics are among the first microRNA mimics to reach clinical trial for cancer therapy (Bouchie, 2013; Bader, 2012). miR-34a also limits self-renewal of cancer stem cells (Bu et al., 2013; Bu et al., 2016; Liu et al., 2011). miR-34a expression is often silenced in various cancer types (Lodygin et al., 2008; Kong et al., 2012; Corney et al., 2010), and methylation of the miR-34a promoter is correlated with CRC progression (Siemens et al., 2013; Wang et al., 2016). Nevertheless, miR-34a deficiency alone does not increase susceptibility to spontaneous tumorigenesis (Cheng et al., 2014; Jiang and Hermeking, 2017; Concepcion et al., 2012), raising many questions about the role of miR-34a in tissue homeostasis.

In this study, we demonstrate that miR-34a acts as a safeguard to protect the stem cell niche during inflammation-induced reparative regeneration. miR-34a deficiency led to colon tumorigenesis after C. rodentium infection, where Th17 cell infiltration and epithelial stem cell proliferation were observed. During the pro-inflammatory response, miR-34a suppressed Th17 cell differentiation and expansion by targeting IL-23R, Th17 cell recruitment to the colon epithelium by targeting CCL22, and IL-17 induced stem cell proliferation by targeting IL-17RD. Loss of miR-34a results in a reparative regeneration process that goes awry.

Results

C. rodentium infection promotes colon carcinogenesis and stem cell enrichment in miR-34a/-/- mice

Microbial dysbiosis causes chronic inflammation associated with CRC (Sobhani et al., 2013; Candela et al., 2011; Plottel and Blaser, 2011; Tjalsma et al., 2012). C. Rodentium is a mouse mucosal pathogen that shares pathogenic mechanisms and 67% of its genes with enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC), which are two clinically important human gastrointestinal pathogens (Schauer and Falkow, 1993a; Schauer and Falkow, 1993b; Papapietro et al., 2013; Borenstein et al., 2008; Borenstein et al., 2007; Gibson et al., 2008). C. Rodentium has been used as a model to study mucosal immunology, including intestinal inflammatory responses during bacteria-induced colitis and colon tumorigenesis (Collins et al., 2014; Chandrakesan et al., 2014; Higgins et al., 1999). C. rodentium infection increases the number of colonic adenomas in ApcMin mice but does not cause adenoma formation in wild-type mice (Newman et al., 2001).

After C. rodentium (2 × 10⁶ CFU) infection, both wild-type and miR-34a/-/- mice developed diarrhea and weight loss within 2 weeks. Elongation of crypts and loss of goblet cells were observed (Figure 1A). Histopathological changes of pre-neoplasia and neoplasia were limited to the miR-34a/-/- genotype and were first noted at the four-month time point. Microscopic sections from wild type control mice were free of dysplastic and neoplastic changes at four-month and six-month time points.
Figure 1. C. rodentium infection induces colonic tumor formation and stem cell enrichment in miR-34a-/- mice. (A) Representative H and E staining of colon tissues from infected and uninfected wildtype (WT) and miR-34a-/- mice. Scale bar, 100 μm. (B) Representative images of mouse colons uninfected or infected with C. rodentium. The arrows indicate the visible colon tumors. 2 × 10⁹ CFU C. rodentium were used to infect the mice orally. Six months after the infection, the mice were euthanized and the colons were imaged. Scale bar, 5 mm. (C) Frequencies of colonic tumor formation in miR-34a knockout (miR-34a-/-) mice and WT mice. (D) Lgr5/DAPI staining of WT uninfected and infected and miR-34a-/- uninfected and infected mice. (E) Ascl2/DAPI staining of infected and uninfected WT and miR-34a-/- mice. (F) Relative organoid-forming efficiency in WT uninfected, miR-34a-/- uninfected, WT infected, and miR-34a-/- infected mice. (G) Surface area of organoids in WT uninfected, miR-34a-/- uninfected, WT infected, and miR-34a-/- infected mice.
points following infection (Boivin et al., 2003). In miR-34a-/- mice, no dysplasia or early neoplasia was present at a two-month time point (0/4), whereas at four months half the animals (2/4) had dysplastic change microscopically. At the six-month time point, 11 out of 20 miR 34a-/- mice had microscopic changes ranging from dysplasia (2/20), to adenoma (7/20), to adenocarcinoma (2/20) (Figure 1A–C, Figure 1—figure supplement 1A). All tumors in this model were relatively well differentiated. One animal with a colonic adenocarcinoma in the section of distal colon also had a squamous cell carcinoma of the rectum. Dysplastic and neoplastic changes were characterized by strong intracytoplasmic β-catenin staining and occasional cells with nuclear staining (Figure 1A). The earliest dysplastic changes are noted in deep reaches of crypts that are within inflamed ulcerated colonic mucosa in several of the sections where the diffuse inflammation of the C. rodentium has subsided and focal long-standing inflammation has set up due to ulceration of the surface. (Figure 1—figure supplement 1A). No APC mutations were detected in the tumors from the infected miR-34a-/- mice (Figure 1—figure supplement 2). No liver or lung metastasis was found in the C. rodentium-infected mice (Figure 1—figure supplement 1B,C).

The colon stem cells, marked by the Wnt signaling enhancers Lgr5 and Ascl2 (Schuijers et al., 2015), are usually confined at the base of the crypt in wild-type and miR-34a-/- mice but became enriched in C. rodentium-induced colon tumors in miR-34a-/- mice (Figure 1D). Enrichment of Lgr5 and Ascl2 expression in the colon tumors of infected miR-34a-/- mice was further confirmed by western blot (Figure 1E). Colonic epithelial cells from infected miR-34a-/- mice (2 months post infection) had significantly higher organoid-forming efficiency and growth rates that the other groups (Sato et al., 2011a; Sato et al., 2011b) (Figure 1F–H).

Th17 cells are enriched in number and in close proximity to stem cells in miR-34a-/- colon tumors

CD4 +T helper (Th) cells are known to infiltrate and accumulate in the inflammatory environment, which can either promote or suppress tissue malignancy (Terzić et al., 2010; Kim and Bae, 2016). We isolated CD4 +Th cells from the colon epithelium of C. rodentium-infected wild-type and miR-34a-/- mice and analyzed the relative abundance of Th1, Th2, Th17, and Treg subpopulations according to their associated expression of IFN-γ, IL-4, IL-17, and FoxP3, respectively. IFN-γ, IL-4, and FoxP3 levels were similar between wild-type and miR-34a-/- tissue, but IL-17 was significantly upregulated in miR-34a-/- tissue (Figure 2A). miR-34a deletion increased the number of CD4 +IL17 +Th17 in the colon 2 and 6 months post C. rodentium infection (Figure 2B,C). Immunofluorescence suggested that many of the enriched CD4 +IL-17 + Th17 cells were in proximity to Ascl2 +colon stem cells (Figure 2D,E).

In the infected colon, miR-34a deletion did not significantly increase the number or IL-17 expression level of lineage(CD3e/Ly-6G/Ly-6C/CD11b/CD45R/B220/TER-119)-/CD117+/CD45 +cells, which contain a subset of ILC3 cells that may express IL-17 (Dong, 2008) (Figure 2—figure supplement 1A,B). Nevertheless, more markers will be needed to distinguish ILC3 and its subtypes specifically. Similarly, the macrophage and neutrophil populations were only slightly affected (Figure 2—figure supplement 1C,D).
miR-34a suppresses Th17 differentiation and expansion by targeting IL6R and IL-23R

We then aimed to understand how miR-34a deletion led to accumulation of Th17 cells in the C. rodentium-induced colon tumors. IL-6 is critical for initiating the differentiation of native CD4+ T cells into Th17 cells, and IL-23 is essential for the final step of Th17 cell differentiation, its proliferation, and IL-17 expression (Dong, 2008; Acosta-Rodriguez et al., 2007; Toussirot, 2012). We found that protein levels of IL-6R and IL-23R, the receptors for IL-6 and IL-23, were upregulated in CD4+ T cells isolated from the miR-34a-/- colon compared to the wild-type control (Figure 3A, Figure 3—
Figure 3. miR-34a targets IL-6R, IL-23R and CCL22. (A) Western blot showing IL-6R and IL-23R expression levels in CD4+T cells isolated from C. rodentium infected colon of wild-type and miR-34a-/- mice. (B and C) Schematic representation of mouse IL-6R (B) and IL-23R (C) 3'UTRs containing the putative miR-34a binding sites. (D and E) Luciferase reporter assays confirming the miR-34a binding sites. 3'UTRs of mouse IL-6r (D) and IL-23r (E) containing wild-type (Wt) or mutated (Mut) putative miR-34a binding sites were cloned into the 3'UTR of firefly luciferase (Fluc). Ectopic miR-34a expression in CT26 cells downregulated luciferase in Wt cells, but not in Mut cells. Fluc signals were normalized by a simultaneously delivered Renilla luciferase (Rluc) expression plasmid. (F) FACS showing knockdown of IL-6r or IL-23r in CD4+ T cells largely offsets the effect of miR-34a loss on Th17 cell differentiation. (G) Western blot showing increase of CCL22 expression in miR-34a-/- colon crypts. (H) Schematic representation of miR-34a binding site on the mouse CCL22 3’UTR. (I) Luciferase reporter assays confirming the miR-34a binding sites in mouse CCL22 3'UTR. (J) Chemotaxis assay showing knockdown of CCL22 in colon tumor organoid cells or neutralization of CCL22 with anti-CCL22 antibody suppresses Th17 cell migration to colon tumor organoid conditioned medium. Error bars denote s.d. of triplicates. **p<0.01; ***p<0.001. p-value was calculated based on Student’s t-test.

DOI: https://doi.org/10.7554/eLife.39479.007

The following figure supplements are available for figure 3:

Figure supplement 1. miR-34a loss upregulates target genes in uninfected mice.

DOI: https://doi.org/10.7554/eLife.39479.008

Figure supplement 2. Validation of gene knockdown efficiency.

DOI: https://doi.org/10.7554/eLife.39479.009

Figure supplement 3. Loss of miR-34a enhances CCL22 expression in colon epithelium.

DOI: https://doi.org/10.7554/eLife.39479.010

Figure supplement 4. Global gene expression in colon epithelial and CD4+ T cells from wildtype vs. miR-34a-/- mice.

DOI: https://doi.org/10.7554/eLife.39479.011
The RNA22 algorithm identified putative miR-34a binding sites in the IL-6R and IL-23r 3'UTRs (Figure 3B,C), which were then confirmed by the luciferase reporter assay (Figure 3D,E).

To evaluate the miR-34a/IL-6R and miR-34a/IL-23R axes for Th17 cell differentiation, we performed an in vitro Th17 differentiation assay (Esplugues et al., 2011) using CD4 +T cells isolated from the wild-type and miR-34a/− mice. Loss of miR-34a significantly enhanced CD4 +T cell differentiation into Th17 cells, which was largely abrogated by knockdown of either IL-6R or IL-23r (Figure 3F, Figure 3—figure supplement 2). Therefore, miR-34a suppresses Th17 cell differentiation by targeting IL-6R and IL-23R.

miR-34a suppresses Th17 recruitment by targeting CCL22

Th17 cells express chemokine receptors CCR6 and CCR4 (Antonic et al., 2013), and the CCR6/CCL20 and CCR4/CCL22 axes play important roles in Th17 cell migration (Borenshtein et al., 2008). Loss of miR-34a did not affect CCR6 or CCR4 expression in CD4 +T cells (Figure 3—figure supplement 3A). However, CCL22 expression in the colon epithelium was significantly upregulated in the miR-34a/− mice compared to the wild-type, while CCL20 expression remained unchanged (Figure 3G, Figure 3—figure supplement 3B). It has been previously reported that a TGF-β-miR-34a-CCL22 axis promotes venous metastases of HBV-positive liver cancer (Yang et al., 2012). Our western blot and luciferase reporter assays confirmed that miR-34a suppressed CCL22 by directly targeting its 3'UTR in colon epithelial cells (Figure 3G–I).

Conditioned medium collected from miR-34a/− colon tumor organoids enhanced the migration of in vitro-differentiated Th17 cells in comparison to medium from the wild-type colon organoids (Figure 3J). The addition of anti-CCL22 neutralizing antibody in the medium or knockdown of CCL22 in miR-34a/− colon tumor organoids reduced Th17 migration back to the wild-type level (Figure 3J, Figure 3—figure supplement 2). Therefore, miR-34a suppresses recruitment of Th17 cells by targeting CCL22 production in colon epithelial cells.

Th17 cells promote colon organoid growth via IL-17

We then tested whether Th17 cells, which were enriched by loss of miR-34a and were located in proximity to Ascl2 + colon stem cells (Figure 2B–D), regulated colon epithelial cell proliferation. Mouse CD4 +T cells were induced to differentiate into Th17 cells and co-cultured with colon organoids. The presence of Th17 cells significantly increased the organoid sizes. Accordingly, the addition of anti-IL-17 neutralizing antibody suppressed this growth, suggesting that the growth effect was caused by Th17-secreted IL-17 (Figure 4A). In the absence of Th17 cells, recombinant IL-17 in the medium increased organoid growth (Figure 4B,C) and also upregulated Lgr5 and Ascl2 (stem cell marker) expression (Figure 4D).

IL-17 activates STAT3 signaling via NF-κB

It has been reported that STAT3 activation is involved in Enterotoxigenic E. coli-induced colon carcinogenesis in ApcMin mice (Kopan and Ilagan, 2009). We treated mouse colon organoids with recombinant IL-17 and measured STAT3 phosphorylation by western blot. IL-17 activated STAT3, which was abrogated by the STAT3 inhibitor, Statistic (Figure 4E, Figure 4—figure supplement 1A). Inhibition of STAT3 by Static suppressed colon organoid growth (Figure 4F–G, Figure 4—figure supplement 1B). IL-17 activates NF-κB in addition to STAT3 (Figure 4H). Treatment of colon organoids with an NF-κB inhibitor, BAY 11–7082, suppressed IL-17-induced STAT3 phosphorylation and organoid growth (Figure 4H–J). Hence, IL-17 seems to activate STAT3 through NF-κB, which promotes colon organoids growth.

miR-34a targets IL-17RD to suppress stem cell proliferation

The IL-17 receptor, IL-17RA, is essential for IL-17-mediated signaling (Bility et al., 2014). IL-17RD, an orphan IL-17 receptor, has been reported to interact with IL-17RA to mediate IL-17 signaling (Li et al., 2009). RT-qPCR showed that the IL-17ra transcript levels were similar between C. Rodentium-induced miR-34a/− colon tumors and the wild-type colon, whereas the IL-17rd transcript levels were significantly increased in miR-34a/− colon tumors (Figure 5A). Western blot confirmed that the
IL-17RD protein level was upregulated in the miR-34a-/- colon epithelial cells and tumor (Figure 5B, Figure 3—figure supplement 1D).

RNA22 predicted a miR-34a binding site in the IL-17rd 3'UTR (Figure 5C). The luciferase reporter assay confirmed that miR-34a directly targets the 3'UTR of IL-17rd and suppresses IL-17RD expression (Figure 5D). Mutation of the endogenous miR-34a binding site in the IL-17rd 3'UTR by CRISPR/CAS9 increased IL-17RD expression in wildtype mouse organoids but not in miR-34a-/- organoids (Figure 5—figure supplement 1). Co-immunoprecipitation confirmed interaction between IL-17RA and IL-17RD in mouse colon crypts (Figure 5E). Knockdown of either IL-17ra or IL-17ra inhibited IL-17-mediated STAT3 activation (phosphorylation) and colon organoid growth (Figure 5F–H, Figure 3—figure supplement 2). Furthermore, colon organoid growth spurred by loss of miR-34a was largely offset by IL-17rd knockdown (Figure 5I).

Consistent with its safeguard role, miR-34a levels were higher in Lgr5-GFP + colon stem cells than in Lgr5-GFP- cells (Figure 5—figure supplement 2A). On the other hand, miR-34b and miR-
miR-34a targets orphan receptor IL-17RD in colon stem cells to suppress IL-17-induced growth. (A) RT-qPCR showing relative expression of IL-17ra and IL-17rd in C. rodentium infected miR-34a/- colonic tumors and wildtype controls. (B) Western blot showing increase of IL-17RD expression in miR-34a/- colonic tumors. (C) Schematic representation of mouse IL-17rd 3’UTR and the putative miR-34a binding site. (D) Luciferase reporter assay confirming the miR-34a binding sites in mouse IL-17rd 3’UTR. (E) Immunoprecipitation showing the IL-17RA and IL-17RD complex in the colon crypt. (F) Western blot showing IL-17RA and IL-17RD is required for IL-17 mediated STAT3 activation. (G and H) IL-17RA and IL-17RD knockdown suppresses IL-17 mediated colon organoids growth as shown by representative organoids images (G) and quantitative organoids surface area (H). (I) IL-17RD knockdown reduces miR-34a deficiency-induced colon organoids growth. Error bars denote s.d. of triplicates. **p<0.01; ***p<0.001. p-value was calculated based on Student’s t-test.

DOI: https://doi.org/10.7554/eLife.39479.014

The following figure supplements are available for figure 5:

Figure 5 continued on next page
34c, the other two miR-34 family members, were barely detectable in colon epithelial cells (Figure 5—figure supplement 2B). Furthermore, miR-34a expression levels in both CD4 +T cells and colon epithelial cells were upregulated during C. rodentium-induced inflammation (Figure 5—figure supplement 2C,D). This is consistent with the dual role miR-34a plays in both CD4 +T cells and colon epithelial cells.

Both epithelial and immune miR-34a deficiencies contribute to tumorigenesis

Given that miR-34a regulates both the immune and epithelial cells, we assessed their individual contributions to C. rodentium-induced colon tumorigenesis. We generated a miR-34a conditional knockout mice strain Lgr5-EGFP-CreERT2/miR-34a flox/flox by crossing miR-34a flox/flox mice with Lgr5-EGFP-IRES-CreERT2 mice (Bu et al., 2016). In this strain, intraperitoneal injection of Tamoxifen deletes miR-34a in Lgr5-EGFP + stem cells and their progeny (Figure 6A, Figure 6—figure supplement 1). The miR-34a conditional knockout did not affect IL6R and IL23R expression in CD4 +T cells, but increased CCL22 and IL17RD expression in the colon epithelium (Figure 3—figure supplement 1E–H). As in the uninfected miR-34a-/- mice, Lgr5-EGFP-CreERT2/miR-34a flox/flox mice did not develop colon tumors spontaneously. When infected with C. rodentium, 1 out of 7 mice developed colon tumors at the end of our 9 month observation period (Figure 6B). The number of CD4 +IL17+Th17 cells increased in the infected colons of Lgr5-EGFP-CreERT2/miR-34a flox/flox mice relative to wild-type mice (Figure 6C, Figure 6—figure supplement 2), but not to the degree of miR-34a-/- mice as shown in Figure 2B.

We then performed bone marrow transplantation by replacing the bone marrow in irradiated wildtype C57BL/6J mice with the bone marrow from miR-34a-/- mice, which resulted in mice with wildtype epithelial cells but miR-34a-/- immune cells (Figure 6D). The transplantation efficiency was validated to be above 90% by flow analysis (Figure 6—figure supplement 3). 6 months after C. rodentium infection, 3 out of the 12 mice with transplanted miR-34a-/- bone marrow developed colon tumors, whereas none of the wildtype mice developed tumors (Figure 6E). CD4 +IL17+Th17 cells were enriched in the infected colons of the mice with miR-34a-/- bone marrow transplants (Figure 6F). Caveats of this transplantation experiment include the potential confounding effects of radiation on the intestinal cells (e.g., LGR5 +cells are sensitive to radiation) and radiation-resistant cells, which can only be addressed by additional control groups with bone marrow transplantation from wild-type to wild-type and from miR-34a-/- to miR-34a-/-.

IL-17 neutralizing antibody abrogates C. rodentium-induced colon stem cell proliferation and tumorigenesis

To validate the role of IL-17 in C. rodentium-infection-induced colon stem cell proliferation, we infected the mice with C. rodentium on day 0, then intraperitoneally injected the mice with IL-17 neutralizing antibody on days 1, 5, and 10, and sacrificed them on either day 15 or day 30 to harvest the colon (Figure 6G). Injection of the IL-17 antibody suppressed Ascl2 +stem cells proliferation in the infected colonic crypts according to immunofluorescence (Figure 6H) and decreased Ascl2 and Lgr5 expression according to western blot (Figure 6I).

We then intraperitoneally injected miR-34a-/- mice with IL-17 neutralizing antibody on day 1, 5, 10 after C. rodentium infection, and then every 15 days up to 2 months. 7 out of 13 miR-34a-/- mice developed colon tumors in the isotype control group, whereas only 1 out of 12 miR-34a-/- mice...
Figure 6. Conditional miR-34a knockout in LGR5-EGFP + stem cells and in bone marrow transplanted immune cells contribute to tumorigenesis and Th17 cell accumulation while IL-17 neutralizing antibody blocks stem cell proliferation and tumorigenesis. (A) Schematic of the C. rodentium-infected Lgr5-GFP-CreERT2/miR-34a^{flox/fox} mouse model. (B) Frequencies of colon tumor formation in C. rodentium-infected and uninfected Lgr5-GFP-CreERT2/miR-34a^{flox/fox} mice model. (C) FACS analyses of Th17 cells (CD4+/IL-17+) in C. rodentium-infected and uninfected Lgr5-GFP-CreERT2/miR-34a^{flox/fox} mice colon. (D) Schematic of the C. rodentium-infected miR-34a^{-/-} bone marrow transplant mouse model. (E) Frequencies of colonic tumor formation in C. rodentium-infected and uninfected miR-34a^{-/-} bone marrow transplant mice. (F) FACS analyses of Th17 cells (CD4+/IL-17+) in C. rodentium-infected and uninfected miR-34a^{-/-} bone marrow transplant mice colon. (G) Schematic of the IL-17 neutralizing antibody treatment. 500 µg isotype control or IL-17 antibody were intraperitoneally injected at the indicated days. (H) Immunofluorescence of Ascl2 showing IL-17 antibody largely abrogated C. rodentium-infection-induced colon cancer stem cell proliferation. Scale bar, 40 µm. (I) Western blot of Ascl2 and Lgr5 showing IL-17 antibody-abrogated C. rodentium-infection-induced colon stem cell marker expression. (J) Schematic of the IL-17 neutralizing antibody treatment. 500 µg isotype control or IL-17 antibody were intraperitoneally injected at the indicated days. (K) Representative H and E staining of colon tissues from IL-17 antibody or isotype control treated mice. Scale bar, 50 µm. (L) Frequencies of colonic tumor formation in IL-17 antibody or isotype control treated mice. DOI: https://doi.org/10.7554/eLife.39479.017

The following figure supplements are available for figure 6:

Figure 6 continued on next page
developed colon tumors in the antibody treated group (Figure 6J–L). Hence IL-17 antibody treatment inhibited C. rodentium infection induced colon tumorigenesis.

IL-17 and miR-34a levels are associated with human CRC

To investigate whether IL-17 regulates human colon epithelial growth, we grew organoid cultures from human colon tissue using an established protocol (Sato et al., 2011a) and added recombinant human IL-17 into the culture medium. Consistent with mouse organoids, addition of human IL-17 into the medium increased the sizes of human colon organoids (Figure 7A,B). RT-qPCR

![Figure 7](https://doi.org/10.7554/eLife.39479.021)

The following source data and figure supplement are available for figure 7:

Source data 1. Source data for Figure 7.
DOI: https://doi.org/10.7554/eLife.39479.023

Source data 2. Source data for Figure 7.
DOI: https://doi.org/10.7554/eLife.39479.024

Figure supplement 1. miR-34a targets human IL-6R, IL-17RD and CCL22.
DOI: https://doi.org/10.7554/eLife.39479.022
measurements of matched tumor and normal colon samples from 17 CRC patients (Figure 7—source data 1) suggested that the expression levels of the two Th17 cell markers IL-17 and RORC as well as miR-34a target IL-17rd were higher in tumor tissues than that in normal colon tissues, while miR-34a expression levels were downregulated (Figure 7C–F).

We then validated whether miR-34a suppresses IL-6R, IL-23R, CCL22, and IL-17RD in human cells. We ectopically expressed miR-34a in Jurkat cells, a human T lymphocyte cell line, and SW480 cells, a human colon epithelial cancer cell line. Western blots indicated that miR-34a suppressed IL-6R expression in Jurkat cells as well as CCL22 and IL-17RD expression in SW480 cells. However, miR-34a did not seem to suppress IL-23R expression (Figure 7—figure supplement 1).

We then checked the miR-34a binding sequences in the 3'UTRs of the human genes using miRanda and RNA22. Luciferase reporter assays containing the 3'UTRs with wild-type or mutated binding sequences confirmed that miR-34a directly binds to these putative binding sites in IL-17rd, CCL22 and IL-6r 3'UTRs and regulates their expression (Figure 7—figure supplement 1). On the other hand, miR-34a did not seem to regulate IL-23R.

Discussion

miR-34a is a known tumor suppressor that targets cell proliferation and apoptosis genes. In fact, RNA-seq performed on splenic CD4 +T cells and colon epithelial cells isolated from miR-34a/- and wildtype mice revealed various changes in gene expression (Figure 3—figure supplement 4), including well-known miR-34a target genes such as Notch1, Sna2, BCL2, and c-Met (Figure 8—source data 1 and 2). However, miR-34a deficiency alone does not lead to tumorigenesis, suggesting that mere upregulation of these genes by miR-34a loss is not sufficient to cause cancer. Our study indicates that miR-34a acts as a safeguard for the inflammatory stem cell niche and reparative regeneration by modulating both the immune and epithelial responses to infection and inflammation (Figure 8). First, miR-34a suppresses Th17 cell differentiation and expansion by targeting IL-6R and IL-23R. Second, miR-34a limits Th17 cell recruitment to the epithelium by targeting CCL22. Lastly, miR-34a hinders IL-17-induced stem cell proliferation by targeting IL-17RD. These miR-34a targeting mechanisms are largely conserved between murine and human, although miR-34a does not seem to target IL-23R in human T cells.

Colon stem cells reside at the base of the crypt, relying on the niche to provide necessary signaling cues for self-renewal. The mesenchyme beneath the niche provides many essential factors (Degirmenci et al., 2018). In addition, cKit+/Reg4 +colonic crypt base secretory cells interdigitate with Lgr5 +stem cells, providing the latter with Notch ligands DLL1 and DLL4, and epidermal growth factor (Rothenberg et al., 2012; Sasaki et al., 2016). Normally, stem cells are constrained to this spatial niche and are forced to differentiate when they leave the niche. However, in human colon adenoma and carcinoma samples, Lgr5 +stem like cells are highly upregulated and are not confined to the spatial niche as in normal crypts (Baker et al., 2015). Similarly, we have observed this enrichment and expanded distribution of stem cells in C. rodentium-induced colon tumors in miR-34a-/mice. Inflammatory cytokines such as IL-17 potentially provide an enlarged ‘inflammatory niche’ by stimulating receptors such as IL-17RD on the stem cells, enabling them to ignore the constraints of the crypt base and proliferate away from the crypt base mesenchyme and secretory cells. Interestingly, IL-17RD amplifies IL-17RA signaling in a way analogous to Lgr5 receptor amplification of Wnt signaling for self-renewal.

Non-coding RNAs occupy the majority of the mammalian genome (Kung et al., 2013; Mattick and Rinn, 2015). Evolutionarily, the percentage of genome devoted to the non-coding region is consistently associated with the complexity of the organism, rising from less than 25% in prokaryotes, 25–50% in simple eukaryotes, more than 50% in fungi, plants and animals, to approximately 98.5% in humans—which have a genome size that is three orders of magnitude larger than prokaryotes (Mattick, 2004). Compared to microRNA, the role of long non-coding RNA (IncRNA) in regulating tumors has just started to be appreciated (Huarte, 2015; Prensner and Chinnaiyan, 2011; Schmitt and Chang, 2016). In fact, IncRNA has been shown to regulate miR-34a in human CRC, especially in cancer stem cells (Wang et al., 2016). Similar to miR-34a, many of the IncRNAs with strong functions in tumors are largely dispensable for normal development and tissue homeostasis (Zhang et al., 2012; Nakagawa et al., 2014). It is possible that the abundance of non-coding RNAs in mammals may provide extra surveillance to protect tissue integrity during stress conditions.
such as inflammation, which are often not captured by laboratory animal models raised in well-controlled circumstances.

The miR-34a mimic was the first microRNA mimic to reach clinical trial for cancer therapy (Bouchie, 2013; Bader, 2012). Previous studies largely focused on the role of miR-34a to induce cell cycle arrest, senescence, and apoptosis. This study suggests that enhancing miR-34a levels may have additional benefits of suppressing Th17 cells and IL-17 stimulation of cancer stem cells in the tumor microenvironment. Furthermore, inflammatory cytokines such as IL-6 can suppress miR-34a to increase epithelial-mesenchymal transition (EMT) (Rokavec et al., 2014), so boosting miR-34a may mitigate inflammation-induced CRC invasion and migration. It might be worth paying extra attention to CRC with Th17 cell enrichment and evaluating therapeutics effects based on CRC classification, especially on the inflammatory and stem cell-like subtypes (Sadanandam et al., 2013).

Figure 8. with two source data miR-34a regulates Th17 cell-mediated proliferation. A schematic illustration of the central role of miR-34a in Th17 cell-mediated colon stem cell proliferation. miR-34a suppresses Th17 cell differentiation and expansion by targeting IL-6R and IL-23R in immune cells. miR-34a further inhibits Th17 cells recruitment by targeting CCL22 in the colon epithelium. miR-34a also inhibits IL-17RD expression to suppress IL-17-IL-17RD/IL17-RA-mediated colon stem cell proliferation.

DOI: https://doi.org/10.7554/eLife.39479.025

The following source data is available for figure 8:

Source data 1. Transcriptomic profiling of epithelial cells.
DOI: https://doi.org/10.7554/eLife.39479.026

Source data 2. Transcriptomic profiling of CD4+ T cells.
DOI: https://doi.org/10.7554/eLife.39479.027

Materials and methods

Transgenic mice and bacterial infection

C57BL/6J and B6(Cg)-Mir34atm1Lhe/J mice (Choi et al., 2011) were ordered from the Jackson Laboratory. Lgr5-EGFP-creER²²/miR-34a^{flx/flx} mice were generated as described previously (Bu et al., 2016). Cre recombinase was induced by intraperitoneal injection of tamoxifen (Sigma) dissolved in sterile corn oil at a dose of 75 mg/kg before infection with <i>C. rodentium</i>. Mouse maintenance and procedures were approved by Duke University DLAR and followed the protocol (A286-15-10). <i>C. rodentium</i> strain DBS100 was purchased from ATCC and cultured according to previously described methods (Shui et al., 2012). 2 × 10⁹ C.F.U <i>C. rodentium</i> were infected into 8 weeks old mice by oral gavage.
Bone marrow transplantation
The bone marrow transplantation procedures were performed as previously described (Alpdogan et al., 2003). Male C57BL/6J.SJL mice (Ly5.1) with the Ptprcb leukocyte marker CD45.1/Ly5.1 obtained from the Jackson Laboratory were used as recipients for transplantation at the age of 8–10 weeks. The recipient mice received 1000 Rad (1Gy, filter 4) whole body lethal irradiation on XRad320. After 6 hr, the irradiated mice received bone marrow cells from male C57BL/6J miR34a-/- donor mice with Ptprcb leukocyte marker CD45.2/Ly5.2. The donor femurs were collected aseptically, and the bone marrow canals were washed out with sterile media. 6 million cells per mouse were transplanted into lethally irradiated recipients via tail vein injection. Mice were housed and received sulfamethoxazole trimethoprim medicated, acidified water for 4 weeks. 6 weeks after reconstitution, blood was collected from the recipient mice, and the reconstituted blood cell lineages were analyzed by flow cytometry using CD45.1-PE (Biolegend) and CD45.2-FITC (Biolegend).

Clinical specimen and colon organoid culture
Frozen CRC specimens and paired controls were acquired from Weill Cornell Medical College (WCMC) Colon Cancer Biobank for evaluation of Th17 cell-related gene expression. Surgically resected fresh normal human colon tissues were obtained from Duke University hospital. The study was approved by the ethical committee of Duke University hospital, Duke University, and WCMC. All samples were obtained with informed consent.

Mouse and human colon crypt isolation and organoid culturing were performed as described previously (Sato et al., 2011a). To investigate CCL22 regulation on Th17 cell migration and IL-17RA and IL-17RD regulation on organoids growth, lentiviral vector carrying shRNA against CCL22, IL-17ra or IL-17rd were purchased from Sigma and infected into organoids according to previously described protocols (Koo et al., 2011).

CD4 + T cell isolation and Th17 cell differentiation
To investigate Th17 cell enrichment in C. rodentium-infected colons, CD4 + T cells were first isolated from mouse colon as described previously (Weigmann et al., 2007). Briefly, after washing with cold PBS, the mouse colon was cut into 0.5–1 cm pieces and incubated in Ca\(^{2+}\) and Mg\(^{2+}\) free PBS containing 0.37 mg/ml EDTA and 0.145 mg/ml DTT in a shaking incubator at 37°C for 15 min. The supernatant was decanted, and the remaining tissue was further incubated in RPMI-1640 containing 5% fetal calf serum, 20 mM HEPES, 100 U/ml each of penicillin and streptomycin, and 0.1 mg/ml collagenase dispase (Sigma) while shaking at 37°C for 90 min. After filtering through 70 \(\mu\)m cell strainers, the cells were collected by centrifugation, and the pellet was suspended in 35% percoll solution (Sigma). The cells were then collected by centrifugation at 2000 rpm for 20 min. CD4 + T cells were isolated using a mouse CD4 + T cell isolation kit (StemCell Technology). Isolated CD4 + T cells were cultured in 24-well plate coated with anti-CD3e and anti-CD28 antibodies in 1640 RPMI medium with 10% FCS and recombinant mouse IL-2 (mIL2, 20 ng/ml) at 1 \(\times\) 10\(^6\)/ml according to the previous protocol (Zhong et al., 2010). Lentiviral vectors carrying shRNA against IL-23r were purchased from Sigma and infected into CD4 + T cells following previously described protocols (Bao et al., 2006). After selection by antibiotics, the cells were induced to differentiate into Th17 cells using the FlowCellect Mouse Th17 Differentiation Kit according to the protocol (EMD Millipore). Th17 cell differentiation efficiency was measured by flow cytometry by CD4 and IL-17 staining.
Co-culture Th17 cells with organoids
After differentiation from CD4+ T cells, Th17 cells were co-cultured with colonic crypts at a 10:1 ratio in Matrigel. To activate and maintain Th17 cells, rmIL-2 (20 ng/ml; Pepro-tech), mIL-6 (50 ng/ml; Pepro-tech), TGF-β (10 ng/ml; Pepro-tech), mIL-23 (30 ng/ml; Pepro-tech) were added into the ENR organoids culture medium. A neutralizing monoclonal antibody against IL-17 (Abcam) was used to abrogate IL-17 specific effects of Th17 cells.

Histochemical staining
Selected colon tissues from wildtype and miR-34a−/− mice euthanized at 2 days, 2, 4, and 6 months after C. rodentium infection were fixed in 10% neutral buffered formalin, processed routinely and embedded in paraffin, sectioned at five microns, and stained with hematoxylin and eosin. Glass slides were scanned via high resolution virtual slide imaging at 40x (Aperio, Leica Biosystems) and then reviewed by a board-certified veterinary pathologist with experience in mouse tumor biology (JE) without knowledge of genotype. Lesions were scored according to established murine pathology (Boivin et al., 2003). Representative proliferative colonic lesions were selected for recuts and β-catenin immunohistochemistry (IHC) was performed. IHC was conducted with a rabbit monoclonal antibody against β-catenin (1:400, Abcam) after epitope retrieval. The secondary detection system was a labelled polymer-HRP anti-rabbit (Dako).

Chemotaxis assays
The chemotaxis assay was performed as described previously (Huang et al., 2008). Briefly, 1 × 10^5 Th17 cells were applied to the upper well of the ChemoTex chambers (96-well, 5 μm pore size; NeuroProbe). Conditional medium from miR-34a−/− colon organoids or control organoids was added in the lower chamber. To evaluate the effect of CCL22 on Th17 migration, a neutralizing monoclonal antibody against CCL22 (R and D) was included in the conditional medium. After a 2 hr incubation, the cells in the upper wells were removed, and the migrated cells were collected by centrifugation. Migrated cells were counted using a hemocytometer.

Immunofluorescence
Immunofluorescence was performed on paraffin-embedded colon sections. After rehydration and antigen retrieval, the sections were blocked by 2% horse serum in PBS for 2 hr at RT and incubated with anti-Ascl2 (1:200, Santa Cruz), anti-IL17 (1:200, Abcam), anti-CD4 (1:50, R and D Systems) or anti-GFP (1:500, Abcam) primary antibodies in antibody diluent buffer (DAKO) overnight at 4°C. After washing, the sections were then incubated with Rhodamine Red or Alexa fluor 488 labeled secondary antibodies (Invitrogen) for 1 hr at room temperature. After counterstaining with DAPI (Invitrogen), the slides were observed on an Axio Imager upright microscope (Zeiss).

Flow cytometry analysis
Th17 cells were analyzed by CD4 and IL-17 staining. Briefly, single cells were fixed with 4% formaldehyde and further permeabilized by methanol. The cells were then incubated with anti-IL-17 (1:200, Abcam) and anti-CD4 (1:100, R and D Systems) antibodies, followed by incubation with APC or FITC labeled secondary antibody (Invitrogen). The samples were analyzed using a Beckman Coulter flow cytometer. The raw FACS data were analyzed with the FlowJo software.

Quantitative real-time PCR
Total RNA was extracted from the tissue using the RNeasy mini kit (Qiagen). cDNA was synthesized from 500 ng of total RNA in 20 μl of reaction volume using the High Capacity cDNA Archive Kit (Applied Biosystems). Quantitative PCR was carried out using TaqMan assays (Applied Biosystems) to detect miR-34a and hIL-17, and the SYBR Green System (Applied Biosystems) for all other gene expression measurements. miR-34a primers were purchased from Applied Biosystems, and hIL-17 primers were purchased from Thermo Fisher. Other qPCR primers were synthesized by IDT, and the sequences are listed in Figure 7—source data 2. All relative gene expression measurements utilized at least three biological replicates for both the wild-type and miR34a deficient experimental groups with three technical replicates per biological replicate. The expression of each gene was defined.
using the threshold cycle (Ct), and the relative expression levels were calculated using the 2-△△Ct method after normalization to the β-actin expression level.

Western blot
Whole cell lysate was prepared in a RIPA lysis buffer (Millipore) with protein inhibitor (Roche). Proteins were first separated by 10% SDS-PAGE and then transferred to a Hybond membrane (Amer sham). The membranes were incubated with primary antibodies for anti-lgr5 (1:500, Santa Cruz), anti-ASCL2 (1:1000, Bioss), anti-IL23R (1:500, R and D Systems), anti-CCL22(1:500, R and D Systems), anti-IL17RD (1:500, R and D Systems), anti-IL17RA (1:500, Cell Signaling) or anti-actin (1:2000, Cell Signaling) in 5% milk/TBST buffer (25 mM Tris pH 7.4, 150 mM NaCl, 2.5 mM KCl, 0.1% Triton-X100) overnight and then probed for 2 hr with secondary horseradish peroxidase (HRP)-conjugated anti-goat or anti-rabbit IgG (Santa Cruz). After an extensive wash with PBST, the target proteins were detected on membrane by enhanced chemiluminescence (Pierce).

Sequence mutation and gene knockdown gRNA:CAGAATGATGGCGGTGGCAG-TGG was designed for mutation of sequence complementary to *miR-34a* binding site in the mouse *IL-17rd* 3UTR. The gRNA was then vector pLentiCRISPR v2, and transfected into mouse single colon stem cells. DNA sequencing of single colonies confirmed successful deletion of *miR-34a* binding in mouse *IL-17rd* 3UTR. Mutagenesis for luciferase reporter assay was performed using QuickChange Site-Directed Mutagenesis Kit (Stratagene). shRNAs for knockdown of *IL-6R, IL-23R, IL-17RA, IL-17RD* and *CCL22* were purchased from Sigma. PCR were performed using primers to amply three most APC mutation regions in mouse colon cancer. Primers: ‘GCCATCCCTTCACGTAG’ and ‘TTCCACTTGGCATAAGGC’ for DNA sequence contains mutation 1; Primers: ‘TGACAGCACAGAATCCAGTG’ and ‘TACCAAGCATGTGGAG’ for DNA sequence contains mutation 2 (B); Primers: ‘TAGGCATGAGCATAAGGGC’ and ‘GTAACTGTCAAGAATCAATGG’ for DNA sequence contains mutation 3.

Statistical analysis
Data were expressed as mean ± standard deviation (s.d.) of three biological replicates. Student T-tests were used for comparisons, with p<0.05 considered significant. Patient data were expressed as mean ± standard error of the mean (s.e.m.). Paired T-tests were used for comparison of the 17 matched patient normal colon and CRC samples.

Acknowledgements
This work was supported in part by NIH R35GM122465, NIH R01GM114254, NIH R21CA201963, NSF 1350659, NSF 1137269, NSF 1511357, NSF GRFP 1644868, National Natural Science Foundation of China (31771513), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB29040000), CAS Pioneer Hundred Talents Program, Chinese Ministry of Science and Technology (2017YFA0504103), Thousand Young Talents Program of China. We have no conflict of interest.

Additional information

Funding	Grant reference number	Author
National Natural Science Foundation of China	31771513	Pengcheng Bu
Chinese Academy of Sciences	XDB29040000	Pengcheng Bu
Chinese Academy of Sciences	Pioneer Hundred Talents Program	Pengcheng Bu
Chinese Ministry of Science and Technology	2017YFA0504103	Pengcheng Bu
National Institute of General Medical Sciences	R35GM122465	Xiling Shen
National Cancer Institute	U01CA214300	Xiling Shen

Wang et al. eLife 2018;7:e39479. DOI: https://doi.org/10.7554/eLife.39479
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions
Lihua Wang, Conceptualization, Validation, Investigation, Visualization, Methodology, Writing—original draft, Conceived of the concept, Designed and performed the experiments, Co-wrote the manuscript; Ergang Wang, Validation, Investigation, Visualization, Methodology, Helped with computational analysis and other experiments; Yi Wang, Validation, Investigation, Visualization, Methodology, Helped with animal experiment and some other experiments; Robert Mines, Validation, Investigation, Visualization, Methodology, Helped with animal experiment and some other experiments; Kun Xiang, Investigation, Visualization, Helped with western blot; Zhiguo Sun, Investigation, Methodology, Helped with organoids culture; Gaiting Zhou, Investigation, Visualization, Helped with immunostaining; Kai-Yuan Chen, Methodology, Helped with CRISP technology and data analysis; Nikolai Rakhilin, Investigation, Helped with animal experiments; Shanshan Chao, Validation, Investigation, Helped with western blot; Gaoqi Ye, Investigation, Validated RT-qPCR results; Zhenzhen Wu, Validation, Investigation, Performed some RT-qPCR; Huiwen Yan, Investigation, Performed some RT-qPCR; Hong Shen, Methodology, Validated the histology results; Jeffrey Everitt, Validation, Visualization, Analyzed and validated the histology results; Pengcheng Bu, Conceptualization, Supervision, Funding acquisition, Methodology, Project administration, Writing—review and editing, Conceived of the concept, Designed the experiments, Co-wrote the manuscript; Xiling Shen, Conceptualization, Resources, Supervision, Visualization, Project administration, Writing—review and editing, Conceived of the concept, Designed the experiments, Co-wrote the manuscript

Author ORCIDs
Ergang Wang [http://orcid.org/0000-0003-2550-3686]
Pengcheng Bu [http://orcid.org/0000-0002-3208-0354]
Xiling Shen [http://orcid.org/0000-0002-4978-3531]

Ethics
Animal experimentation: Mouse maintenance and procedures were approved by Duke University DLAR and followed the protocol (A286-15-10).

Decision letter and Author response
Decision letter [https://doi.org/10.7554/eLife.39479.032]
Author response [https://doi.org/10.7554/eLife.39479.033]

Additional files
Supplementary files
- Transparent reporting form
DOI: [https://doi.org/10.7554/eLife.39479.028]

Data availability
The RNA-seq data have been included as Figure 8-source data 1 and 2. They have also been deposited to GEO under the accession number GSE123628.
The following dataset was generated:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier
L Wang, E Wang, Y Wang, R Mines, K Xiang, Z Sun, G Zhou, K Chen, S Chao, G Ye, H Yan, H Shan, J Everitt, P Bu, X Shen, N Rakhlín	2018	RNA-seq of Splenic CD4+ T cells and epithelial cells from miR-34a-/- and wildtype mice	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123628	Gene Expression Omnibus (GEO), GSE123628

References

Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. 2007. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. *Nature Immunology* 8:942–949. DOI: https://doi.org/10.1038/ni1496, PMID: 17676045

AI Obeed OA, Alkhayal KA, Al Sheikh A, Zubaidi AM, Vaali-Mohammed MA, Busshey R, Mckerrow JH, Abdulla MH. 2014. Increased expression of tumor necrosis factor-α is associated with advanced colorectal cancer stages. *World Journal of Gastroenterology* 20:18390–18396. DOI: https://doi.org/10.3748/wjg.v20.i48.18390, PMID: 25561807

Alpdogan O, Muriglan SJ, Eng JM, Willis LM, Greenberg AS, Kappel BJ, van den Brink MR. 2003. IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. *Journal of Clinical Investigation* 112:1095–1107. DOI: https://doi.org/10.1172/JCI200317865, PMID: 14523046

Antonic V, Stojačinovic A, Kester KE, Weina PJ, Brücher BL, Protic M, Avital I, Izadjoo M. 2013. Significance of infectious agents in colorectal cancer development. *Journal of Cancer* 4:227–240. DOI: https://doi.org/10.7554/eLife.39479

Ashton GH, Morton JP, Myant K, Phesse TJ, Ridgway RA, Marsh V, Wilkins JA, Athineos D, Muncan V, Kemp R, Neufeld K, Clevers H, Brunton V, Winton DJ, Wang X, Sears RC, Clarke AR, Frame MC, Sansom OJ. 2010. Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling. *Developmental Cell* 19:259–269. DOI: https://doi.org/10.1016/j.devcel.2010.07.015, PMID: 20708588

Bader AG. 2012. miR-34 - a microRNA replacement therapy is headed to the clinic. *Frontiers in genetics* 3:120. DOI: https://doi.org/10.3389/fgene.2012.00120, PMID: 22783274

Baker AM, Graham TA, Elia G, Wright NA, Rodriguez-Justo M. 2015. Characterization of LGR5 stem cells in colorectal adenomas and carcinomas. *Scientific Reports* 5:8654. DOI: https://doi.org/10.1038/srep08654, PMID: 25728748

Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN. 2006. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. *Cancer research* 66:7843–7848. DOI: https://doi.org/10.1158/0008-5472.CAN-06-1010, PMID: 16912155

Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi Li, Zhang L, Tu Z, Gao Y, Fu Y, Niu J, Wang F, Su L. 2014. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. *PloS pathogens* 10:e1004032. DOI: https://doi.org/10.1371/journal.ppat.1004032, PMID: 24651854

Boivin GP, Washington K, Yang K, Ward JM, Pretlow TP, Russell R, Besselsen DG, Godfrey VL, Doetschman T, Dove WF, Pitot HC, Halberg RB, Itzkowitz SH, Groden J, Coffey RJ. 2003. Pathology of mouse models of intestinal cancer: consensus report and recommendations. *Gastroenterology* 124:762–777. DOI: https://doi.org/10.1053/gast.2003.50094, PMID: 12612914

Borenstein D, Nambar PR, Groff EB, Fox JG, Schauer DB. 2007. Development of fatal colitis in FVB mice infected with Citrobacter rodentium. *Infection and immunity* 75:3271–3281. DOI: https://doi.org/10.1128/IAI.01810-06, PMID: 17470543

Borenstein D, McBee ME, Schauer DB. 2008. Utility of the Citrobacter rodentium infection model in laboratory mice. *Current Opinion in Gastroenterology* 24:32–37. DOI: https://doi.org/10.1097/MOG.0b013e3282f2b0fb, PMID: 18043230

Bouchie A. 2013. First microRNA mimic enters clinic. *Nature biotechnology* 31:577. DOI: https://doi.org/10.1038/nbt.6757, PMID: 23839128

Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, Goerger JP, Sun J, Witherspoon M, Rakhlín N, Li J, Yang H, Milsom J, Lee S, Zipfel W, Jin MM, Gümüş ZH, Lipkin SM, Shen X. 2013. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. *Cell Stem Cell* 12:602–615. DOI: https://doi.org/10.1016/j.stem.2013.03.002, PMID: 23642368

Bu P, Wang L, Chen KY, Srinivasan T, Murthy PK, Tung KL, Varanko AK, Chen HJ, Ai Y, King S, Lipkin SM, Shen X. 2016. A miR-34a-Numb Feedforward Loop Triggered by Inflammation Regulates Asymmetric Stem Cell Division in Intestine and Colon Cancer. *Cell stem cell* 18:189–202. DOI: https://doi.org/10.1016/j.stem.2016.01.006, PMID: 26849305
Candela M, Guidotti M, Fabbri A, Brigidi P, Franceschi C, Fiorentini C. 2011. Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer. Critical Reviews in Microbiology 37:1–14. DOI: https://doi.org/10.3109/1040841X.2010.501760, PMID: 20874522

Chandrasekaran P, Roy B, Jakkula LU, Ahmed I, Ramamoorthy P, Tawfik O, Papineni R, Houchen C, Anant S, Umar S. 2014. Utility of a bacterial infection model to study epithelial-mesenchymal transition, mesenchymal-epithelial transition or tumorigenesis. Oncogene 33:2639–2654. DOI: https://doi.org/10.1038/onc.2013.210, PMID: 23752178

Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT. 2007. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell 26:745–752. DOI: https://doi.org/10.1016/j.molcel.2007.05.010, PMID: 17540599

Chen LW, Egan L, Li ZW, Greten FR, Kagnoff MF, Karin M. 2003. The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nature Medicine 9:575–581. DOI: https://doi.org/10.1038/nm849, PMID: 12692538

Cheng CY, Huang CI, Corney DC, Flesken-Nikitin A, Jiang L, Öner GM, Munroe RJ, Schimenti JC, Hermeking H, Nikitin AY. 2014. miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Reports 6:1000–1007. DOI: https://doi.org/10.1016/j.celrep.2014.02.023, PMID: 24630988

Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, Zhong Y, Kim SY, Bennett MJ, Chen C, Ozturk A, Hicks GG, Hannon GJ, He L. 2011. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature Cell Biology 13:1353–1360. DOI: https://doi.org/10.1038/ncb2366, PMID: 22020437

Collins D, Hogan AM, Winter DC. 2011. Microbial and viral pathogens in colorectal cancer. The Lancet Oncology 12:504–512. DOI: https://doi.org/10.1016/S1470-2045(10)70186-8, PMID: 21067973

Collins JW, Keeney KM, Crepin VF, Rathinam VA, Fitzgerald KA, Finlay BB, Frankel G. 2014. Citrobacter rodentium: infection, inflammation and the microbiota. Nature Reviews Microbiology 12:62–63. DOI: https://doi.org/10.1038/nrmmicro3315, PMID: 25088150

Concepcion CP, Han CY, Mu P, Bonetti C, Yao E, D’Andrea A, Vidigal JA, Maughan WP, Ogrodowski P, Ventura A. 2012. Intact p53-dependent responses in miR-34-deficient mice. PLoS Genetics 8:e1002797. DOI: https://doi.org/10.1371/journal.pgen.1002797, PMID: 22844244

Corney DC, Huang CI, Matosso A, Vogt M, Flesken-Nikitin A, Godwin AK, Kamat AA, Sood AK, Ellenson LH, Hermeking H, Nikitin AY. 2010. Frequent downregulation of miR-34 family in human ovarian cancers. Clinical Cancer Research 16:1119–1128. DOI: https://doi.org/10.1158/1078-0432.CCR-09-2642, PMID: 20145172

Degirmenci B, Valenta T, Dimitrieva S, Hausmann G, Basler K. 2018. GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. Nature 558:449–453. DOI: https://doi.org/10.1038/s41586-018-0190-3, PMID: 29875413

Dong C. 2008. Regulation and pro-inflammatory function of interleukin-17 family cytokines. Immunological Reviews 226:80–86. DOI: https://doi.org/10.1111/j.1600-065X.2008.00709.x, PMID: 19161417

Espľugues E, Huber S, Gagliani N, Hauser AE, Town T, Wan YY, O’Connor W, Rongvaux A, Van Roojen N, Haberman AM, Iwakura Y, Kuchroo VK, Kolls JK, Bluestone JA, Herold KC, Flavell RA. 2011. Control of TH17 cells occurs in the small intestine. Nature 475:514–518. DOI: https://doi.org/10.1038/nature10228, PMID: 21766430

Gagnière J, Raisch J, Veizant J, Barnich N, Bonnet R, Buec E, Bringer MA, Pezet D, Bonnet M. 2016. Gut microbiota imbalance and colorectal cancer. World Journal of Gastroenterology 22:501–518. DOI: https://doi.org/10.3748/wjg.v22.i2.501, PMID: 26811603

Gibson DL, Ma C, Bergstrom KS, Huang JT, Man C, Vallance BA. 2008. MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis. Cellular Microbiology 10:618–631. DOI: https://doi.org/10.1111/j.1462-5822.2007.00710.x, PMID: 17979981

Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L, Karin M. 2009. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113. DOI: https://doi.org/10.1016/j.ccr.2009.01.001, PMID: 19185845

He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ. 2007. A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134. DOI: https://doi.org/10.1038/nature05939, PMID: 17554337

Higgins LM, Frankel G, Douc G, Dougan G, MacDonald TT. 1999. Citrobacter rodentium infection in mice elicits a mucosal Th1 cytokine response and lesions similar to those in murine inflammatory bowel disease. Infection and Immunity 67:3031–3039. PMID: 10338516

Huang Y, Comiskey EO, Dupree RS, Li S, Koleske AJ, Burkhart JD. 2008. The c-Abl tyrosine kinase regulates actin remodeling at the immune synapse. Blood 112:111–119. DOI: https://doi.org/10.1182/blood-2007-10-118232, PMID: 18305217

Huarte M. 2015. The emerging role of IncRNAs in cancer. Nature Medicine 21:1253–1261. DOI: https://doi.org/10.1038/nm.3981, PMID: 26540387

Humphries A, Wright NA. 2008. Colonic crypt organization and tumorigenesis. Nature Reviews Cancer 8:415–424. DOI: https://doi.org/10.1038/nrc2392, PMID: 18480839

Jiang L, Hermeking H. 2017. miR-34a and miR-34b/c Suppress Intestinal Tumorigenesis. Cancer Research 77:2746–2758. DOI: https://doi.org/10.1158/0008-5472.CAN-16-2183, PMID: 28363996
Karin M, Clevers H. 2016. Reparative inflammation takes charge of tissue regeneration. Nature 529:307–315. DOI: https://doi.org/10.1038/nature17039, PMID: 26791721

Kim J, Bae J-S. 2016. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment. Mediators of Inflammation 2016:1–11. DOI: https://doi.org/10.1155/2016/6058147

Kong D, Heath E, Chen W, Cher M, Powell I, Heilbrun L, Li Y, Ali S, Sethi S, Hassan O, Hwang C, Gupta N, Chitale D, Sakr WA, Menon M, Sarkar FH. 2012. Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. American Journal of Translational Research 4:14–23. PMID: 22347519

Koo BK, Stange DE, Sato T, Karthaus W, Farin HF, Huch M, van Es JH, Clevers H. 2011. Controlled gene expression in primary Lgr5 organoid cultures. Nature Methods 9:81–83. DOI: https://doi.org/10.1038/nmeth.1802, PMID: 22138822

Kopan R, Ilagan MX. 2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233. DOI: https://doi.org/10.1016/j.cell.2009.03.045, PMID: 19379690

Kryczek I, Lin Y, Nagarseth N, Peng D, Zhao L, Zhao E, Vatan L, Szeliga W, Dou Y, Owens S, Zgodzinski W, Majewski M, Wallner G, Fang J, Huang E, Zou W. 2014. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DTL1L. Immunity 40:772–784. DOI: https://doi.org/10.1016/j.immuni.2014.03.010, PMID: 24816405

Kung JT, Colognori D, Lee JT. 2013. Long noncoding RNAs: past, present, and future. Genetics 193:651–669. DOI: https://doi.org/10.1534/genetics.112.146704, PMID: 23463798

Li Y, Guissous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, Lopez B, Schiff D, Purow B, Abouard S. 2009. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Research 69:7569–7576. DOI: https://doi.org/10.1158/0008-5472.CAN-09-0529, PMID: 19773441

Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA, Jenq RR, Velardi E, Young LF, Smith OM, Lawrence G, Ivanov JA, Fu YY, Takashima S, Hua G, Martin ML, O'Rourke KP, Lo YH, Mokry M, Romera-Hernandez M, Cudoped T, et al. 2015. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528:560–564. DOI: https://doi.org/10.1038/nature16460, PMID: 26649819

Liu C, Kelkar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG. 2011. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine 17:211–215. DOI: https://doi.org/10.1038/nm.2284, PMID: 21402622

Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H, Knyazev P, Diebold J, Hermeking H. 2008. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–2600. DOI: https://doi.org/10.4161/cc.7.16.6533, PMID: 18719384

Mattick JS. 2004. RNA regulation: a new genetics? Nature Reviews Genetics 5:316–323. DOI: https://doi.org/10.1038/nrg1321, PMID: 15131654

Mattick JS, Rinn JL. 2015. Discovery and annotation of long noncoding RNAs. Nature Structural & Molecular Biology 22:5–7. DOI: https://doi.org/10.1038/nsmb.2942, PMID: 25560266

Miyoshi H, Ajima R, Luo CT, Yamauchi TP, Stappenbeck TS. 2012. Wnt5a potentiates TGFB signaling to promote colonic crypt regeneration after tissue injury. Science 338:108–113. DOI: https://doi.org/10.1126/science.1223821, PMID: 22956684

Nakagawa S, Shimada M, Yanaka K, Mito M, Arai T, Takahashi E, Fujita Y, Fujimori T, Standaert L, Marine JC, Hirose T. 2014. The IncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development 141:4618–4627. DOI: https://doi.org/10.1242/dev.110544, PMID: 25359727

Newman JV, Kosaka T, Sheppard BJ, Fox JG, Schauer DB. 2001. Bacterial infection promotes colon tumorigenesis in ApcMin/+ mice. The Journal of Infectious Diseases 184:227–230. DOI: https://doi.org/10.1086/s219985, PMID: 11424022

Papapetrou E, Teatero S, Thanabalasurui A, Yuki KE, Diez E, Zhu L, Kang E, Dhillon S, Muise AM, Durocher Y, Marcinkiewicz MM, Malo D, Gruenheid S. 2013. R-spondin 2 signalling mediates susceptibility to fatal infectious diarrhoea. Nature Communications 4:1898. DOI: https://doi.org/10.1038/ncomms2816, PMID: 23495692

Plotell CS, Blaser MJ. 2011. Microbiome and malignancy. Cell Host & Microbe 10:324–335. DOI: https://doi.org/10.1016/j.chom.2011.10.003, PMID: 22018233

Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko M, Oshima M, Fujii C, Mukaida N. 2008. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. The Journal of Clinical Investigation 118:560–570. DOI: https://doi.org/10.1172/JCI32453, PMID: 18219394

Prensner JR, Chinnaiyan AM. 2011. The emergence of IncRNAs in cancer biology. Cancer Discovery 1:391–407. DOI: https://doi.org/10.1158/2159-8290.CD-11-0209, PMID: 20096659

Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, Slotta-Dengler R, Ilagan MX. 2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233. DOI: https://doi.org/10.1016/j.cell.2009.03.045, PMID: 19379690

Rothenberg ME, Nusse Y, Kalsky T, Lee JJ, Dalerba P, Scheeren F, Lobo N, Kulkarni S, Sim S, Qian D, Beachy PA, Pasricha PJ, Quake SR, Clarke MF. 2012. Identification of a cKIT(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice. Gastroenterology 142:e1196. DOI: https://doi.org/10.1053/j.gastro.2012.02.006, PMID: 22339525
Sadanandam A, Lyssiotis CA, Homiccko K, Collisson EA, Gibb JW, Wullschleger S, Ostos LC, Lannon WA, Grotzinger C, Del Rio M, Humerite B, Olshen AB, Wiedenmann B, Cantley LC, Gray JW, Hanahan D. 2013. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nature Medicine 19:619–625. DOI: https://doi.org/10.1038/nm.3175, PMID: 23584089

Sasaki N, Sachs N, Wiebrenrs K, Ellenbroek SI, Fumagalli A, Lyubimova A, Begthel H, van den Born M, van Es JH, Karthaus WR, Li VS, Lopez-Iglesias C, Peters PJ, van Rheenen J, van Oudenaarden A, Clevers H. 2016. R-spondin 1-induced deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. PNAS 113:5399–5407. DOI: https://doi.org/10.1073/pnas.1607322113

Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Vlind HWT, Prongk A, Van Gorp J, Siersema PD, Clevers H. 2011a. Long-term expansion of epithelial organoids from human colon, adenoma, adenoacarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–1772. DOI: https://doi.org/10.1053/j.gastro.2011.07.050, PMID: 21889923

Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. 2011b. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418. DOI: https://doi.org/10.1038/nature09637, PMID: 21113151

Schauer DB, Falkow S. 1993a. The eae gene of Citrobacter freundii biotype 4280 is necessary for colonization in transmissible murine colonic hyperplasia. Infection and Immunity 61:4654–4661. PMID: 8406884

Schauer DB, Falkow S. 1993b. Attaching and effacing locus of a Citrobacter freundii biotype that causes transmissible murine colonic hyperplasia. Infection and Immunity 61:2486–2492. PMID: 8500884

Schmitt AM, Chang HY. 2016. Long noncoding RNAs in cancer pathways. Cancer Cell 29:452–463. DOI: https://doi.org/10.1016/j.ccell.2016.03.010, PMID: 27070700

Schuijers J, Junker JP, Mokry M, Hatzis P, Koo BK, Sasselli V, van der Flier LG, Cuppen E, van Oudenaarden A, Clevers H. 2015. Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts. Cell stem cell 16:158–170. DOI: https://doi.org/10.1016/j.stem.2014.12.006, PMID: 25620640

Shui JW, Larange A, Kim G, Vela JL, Zahner S, Cheroultre H, Kronenberg M. 2012. HVEM signalling at mucosal barriers provides host defence against pathogenic bacteria. Nature 488:222–225. DOI: https://doi.org/10.1038/nature11242, PMID: 22801499

Siemens H, Neumann J, Jackstadt R, Mansmann U, Horst D, Kirkner T, Hermeking H. 2013. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and β-catenin predicts distant metastasis of colon cancer. Clinical Cancer Research 19:710–720. DOI: https://doi.org/10.1158/1158-0432.CCR-12-1703, PMID: 23243217

Sohbani I, Amiot A, Le Baleur Y, Levy M, Auriault ML, Van Nhieu JT, Delchier JC. 2013. Microbial dysbiosis and colon carcinogenesis: could colon cancer be considered a bacteria-related disease? Therapeutic Advances in Gastroenterology 6:215–229. DOI: https://doi.org/10.1177/1756283X12473674, PMID: 23634186

Song X, Zhu S, Shi P, Liu Y, Shi Y, Levin SD, Qian Y. 2011. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nature Immunology 12:1151–1158. DOI: https://doi.org/10.1038/ni.2281, PMID: 21993849

Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, Blumberg RS, Xavier RJ, Mizoguchi A. 2008. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. Journal of Clinical Investigation 118:534–544. DOI: https://doi.org/10.1172/JCI33194, PMID: 18172556

Tanguchi K, Wu LW, Gruenewnik SI, de Jong PR, Lian I, Yu FX, Wang K, Ho SB, Boland BS, Chang JT, Sandborn WJ, Hardiman G, Rak E, Maehara Y, Yoshimura A, Zucman-Rossi J, Guan KL, Karin M. 2015. A gpl30-Src-YAP module links inflammation to epithelial regeneration. Nature 519:57–62. DOI: https://doi.org/10.1038/nature14228, PMID: 25731159

Terzić J, Gruenewnik S, Karin E, Karin M. 2010. Inflammation and colon cancer. Gastroenterology 138:2101–2114. DOI: https://doi.org/10.1053/j.gastro.2010.01.058, PMID: 20420949

Tjalsma H, Boleij A, Marchesi JR, Duthie BE. 2012. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nature Reviews Microbiology 10:575–582. DOI: https://doi.org/10.1038/nrmicro2819, PMID: 22728587

Tosolini M, Krolkovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Page F, Galon J. 2011. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Research 71:1263–1271. DOI: https://doi.org/10.1158/0008-5472.CAN-10-2907, PMID: 21303976

Toussirot E. 2012. The IL23/Th17 pathway as a therapeutic target in chronic inflammatory diseases. Inflammation & Allergy Drug Targets 11:159–168. PMID: 22280236

Wang K, Kim MK, Di Caro G, Wong J, Shalapour S, Wan J, Zhang W, Zhong S, Sanchez-Lopez E, Wu LW, Taniguchi K, Feng Y, Fearon E, Gruenewik SI, Karin M. 2014. Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 41:1052–1063. DOI: https://doi.org/10.1016/j.immuni.2014.10.009, PMID: 25526314

Wang K, Karin M. 2015. Tumor-Elicited Inflammation and Colorectal Cancer. Advances in Cancer Research 128:173–196. DOI: https://doi.org/10.1016/bcr.2015.04.014, PMID: 26216633

Wang L, Bu P, Ai Y, Srinivasan T, Chen HJ, Xiang K, Lipkin SM, Shen X. 2016. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division. eLife 5:e14620. DOI: https://doi.org/10.7554/eLife.14620, PMID: 27077950

Weigmann B, Tubbe I, Seidel D, Nicolaev A, Becker C, Neurath MF. 2007. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nature Protocols 2:2307–2311. DOI: https://doi.org/10.1038/nprot.2007.315, PMID: 17947970
Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S, Deng Y, Zhao J, Jiang S, Yuan Y, Wang HY, Cheng SQ, Xie D, Wang XF. 2012. TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer cell 22:291–303. DOI: https://doi.org/10.1016/j. ccr.2012.07.023, PMID: 22975373

Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao X, Booth CJ, Wu J, Zhang C, Spector DL. 2012. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Reports 2:111–123. DOI: https://doi.org/10.1016/j.celrep.2012.06.003, PMID: 22840402

Zheng Y, Valdez PA, Danielenko DM, Hu Y, Sa SM, Gong Q, Abbas AR, Modrusan Z, Ghilardi N, de Sauvage FJ, Ouyang W. 2008. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Medicine 14:282–289. DOI: https://doi.org/10.1038/nm1720, PMID: 18264109

Zhong S, Malecek K, Perez-Garcia A, Krogsgaard M. 2010. Retroviral transduction of T-cell receptors in mouse T-cells. Journal of Visualized Experiments. DOI: https://doi.org/10.3791/2307, PMID: 21048669

Zins K, Abraham D, Sioud M, Aharinejad S. 2007. Colon cancer cell-derived tumor necrosis factor-alpha mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Research 67:1038–1045. DOI: https://doi.org/10.1158/0008-5472.CAN-06-2295, PMID: 17283136

Zur Hausen H. 2009. The search for infectious causes of human cancers: where and why. Virology 392:1–10. DOI: https://doi.org/10.1016/j.virol.2009.06.001, PMID: 19720205