B, N-dual Doped Sisal-based Multiscale Porous Carbon for High-rate Supercapacitors†

Heng Wu,a Wenyu Yuan,a Yingxin Zhao,a Daoyang Han,a Xiaowen Yuan,a,b Laifei Cheng*a

a Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072, Xi’an, China.
b School of Engineering and Advanced Technology, Massey University, Private Bag 102904, Auckland 0745, New Zealand

Fig. S1. (a-c) SEM images of the sisal fiber carbonized at 800 °C.

Fig. S2. SEM image of the BN-SC.
Fig. S3. TEM images of the BN-SAC-3, BN-SAC-2 and BN-SAC-1.

Table S1 Density of BN-SAC-n series.

Samples	BN-SAC-3	BN-SAC-2	BN-SAC-1
Density (g cm\(^{-3}\))	0.43	0.49	0.53

Table S2 Relative surface content (%) of nitrogen, boron, oxygen and carbon obtained by XPS survey spectra.

Samples	N at. (%)	B at. (%)	O at. (%)	C at. (%)
BN-SAC-1	2.6	0.8	6.5	90.1
BN-SAC-2	4.0	2.4	6.7	86.9
BN-SAC-3	4.5	3.8	7.8	83.9
Fig. S4. Galvanostatic charge-discharge curves of the BN-SAC-3 at current densities of 10-40 A g$^{-1}$

Fig. S5. Assembled SSCs in various voltage windows at a scan rate of 200 mV s$^{-1}$
Fig. S6. Galvanostatic charge-discharge curves of SCCs using (a) 6 M KOH and (b) 1 M TEABF$_4$/AN electrolytes at current densities of 5 and 10 A g$^{-1}$.

Fig. S7. Cycling performance of SCCs using different electrolytes at current density of 10 A g$^{-1}$.
Table S3. Electrochemical properties reported in literature for biomass-derived and heteroatomic doping carbon-based EDLC electrodes.

Samples	S_{BET} (m^2g^{-1})	Electrolyte (testing method)	SC (F g$^{-1}$)	Rate Capability	Ref.
Honeycomb-shaped carbon network	1313	6M KOH (3-electrode)	275 (20 A g$^{-1}$)	58 % (0.5 A g$^{-1}$ - 20 A g$^{-1}$)	[S1]
Graphene/N-doped carbon composite	1569	1 M H$_2$SO$_4$ (3-electrode)	259 (20 A g$^{-1}$)	69 % (0.2 A g$^{-1}$ - 20 A g$^{-1}$)	[S2]
Bagasse-derived carbon	2296	6M KOH (3-electrode)	227 (50 A g$^{-1}$)	71 % (0.5 A g$^{-1}$ - 50 A g$^{-1}$)	[S3]
Boron and nitrogen-doped porous graphitic	1567	6M KOH (3-electrode)	200 (40 A g$^{-1}$)	64 % (1 A g$^{-1}$ - 40 A g$^{-1}$)	[S4]
carbon					
PAN-based activated carbon fibers	843	6M KOH (3-electrode)	208 (0.05 A g$^{-1}$)	62 % (1 A g$^{-1}$ - 10 A g$^{-1}$)	[S5]
B,N co-doped porous carbon	710	1 M H$_2$SO$_4$ (3-electrode)	176 (3 A g$^{-1}$)	76 % (1 A g$^{-1}$ - 3 A g$^{-1}$)	[S6]
N-doped hierarchical porous carbon framework	1056	1 M H$_2$SO$_4$ (3-electrode)	190 (20 A g$^{-1}$)	76 % (2 A g$^{-1}$ - 20 A g$^{-1}$)	[S7]
Cornstalk derived carbon nanosheets	540	6M KOH (3-electrode)	213 (1 A g$^{-1}$)	75 % (1 A g$^{-1}$ - 20 A g$^{-1}$)	[S8]
Polyaniline derived carbon nanosheets	1957	1 M H$_2$SO$_4$ (3-electrode)	315 (1 A g$^{-1}$)	46 % (1 A g$^{-1}$ - 30 A g$^{-1}$)	[S9]
Nitrogen enriched PAN-based activated carbon fibers	705	6M KOH (3-electrode)	210 (1 A g$^{-1}$)	71 % (1 A g$^{-1}$ - 30 A g$^{-1}$)	[S10]
References

S1. X. Wu, L. Jiang, C. Long and Z. Fan, Nano Energy, 2015, 13, 527-536.
S2. Y. Song, J. Yang, K. Wang, S. Haller, Y. Wang, C. Wang and Y. Xia, Carbon, 2016, 96, 955-964.
S3. H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, Y. Liu and M. Zheng, Journal of Power Sources, 2016, 302, 164-173.
S4. L. Sun, Y. Fu, C. Tian, Y. Yang, L. Wang, J. Yin, J. Ma, R. Wang and H. Fu, ChemSusChem, 2014, 7, 1637-1646.
S5. B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao and Y. Yang, Electrochimica Acta, 2007, 52, 4595-4598.
S6. Z. Ling, G. Wang, M. Zhang, X. Fan, C. Yu, J. Yang, N. Xiao and J. Qiu, Nanoscale, 2015, 7, 5120-5125.
S7. J. Zhou, Z. Zhang, W. Xing, J. Yu, G. Han, W. Si and S. Zhuo, Electrochimica Acta, 2015, 153, 68-75.
S8. L. Wang, G. Mu, C. Tian, L. Sun, W. Zhou, P. Yu, J. Yin and H. Fu, ChemSusChem, 2013, 6, 880-889.
S9. W. Chen, R. Rakhi, M. N. Hedhili and H. N. Alshareef, Journal of Materials Chemistry A, 2014, 2, 5236-5243.
S10. E. J. Ra, E. Raymundo-Piñero, Y. H. Lee and F. Béguin, Carbon, 2009, 47, 2984-2992.