Opportunistic Candida species often have to cope with inhibitory concentrations of acetic acid, in the acidic environment of the vaginal mucosa. Given that the ability of these yeast species to tolerate stress induced by weak acids and antifungal drugs appears to be a key factor in their persistence and virulence, it is crucial to understand the underlying mechanisms. In this study, the drug:H⁺ antiporter CgAqr1 (ORF CAGL0J09944g), from Candida glabrata, was identified as a determinant of resistance to acetic acid, and also to the antifungal agents flucytosine and, less significantly, clotrimazole. These antifungals were found to act synergistically with acetic acid against this pathogen. The action of CgAqr1 in this phenomenon was analyzed. Using a green fluorescent protein fusion, CgAqr1 was found to localize to the plasma membrane and to membrane vesicles when expressed in C. glabrata or, heterologously, in Saccharomyces cerevisiae. Given its ability to complement the susceptibility phenotype of its S. cerevisiae homolog, ScAqr1, CgAqr1 was proposed to play a similar role in mediating the extrusion of chemical compounds. Significantly, the expression of this gene was found to reduce the intracellular accumulation of ³H-flucytosine and, to a moderate extent, of ³H-clotrimazole, consistent with a direct role in antifungal drug efflux. Interestingly, no effect of CgAQR1 deletion could be found on the intracellular accumulation of ¹⁴C-acetic acid, suggesting that its role in acetic acid resistance may be indirect, presumably through the transport of a still unidentified physiological substrate. Although neither of the tested chemicals induces changes in CgAQR1 expression, pre-exposure to flucytosine or clotrimazole was found to make C. glabrata cells more sensitive to acetic acid stress. Results from this study show that CgAqr1 is an antifungal drug resistance determinant and raise the hypothesis that it may play a role in C. glabrata persistent colonization and multidrug resistance.

Keywords: Candida glabrata, multidrug resistance, drug:H⁺ antiporters, acetic acid, flucytosine
acidification, is much stronger than that exerted by low extracellular pH per se (Mira et al., 2010). Furthermore, the presence of inhibitory or close-to-inhibitory concentrations of these weak acids is likely to interfere with the action of antifungal therapy and, presumably, could also play a role in the induction of multidrug resistance acquisition. For example, fluconazole has been shown to act synergistically with acetic acid in its antifungal action against C. albicans. Indeed, its fungicidal activity in vaginal fungal infections appears to be due specifically to the natural existence of weak organic acids in this niche (Moosa et al., 2004).

Within the context of factors conferring resistance to weak acids and drugs, it is interesting to point out that some of the multidrug resistance efflux pumps from the major facilitator superfamily (MFS) characterized in S. cerevisiae play a role in weak acid stress resistance (Sá-Gorrea et al., 2009; Mira et al., 2010). This is the case of the drug\′H\′ antipoters Aqrl (Tenreiro et al., 2002), Aqr1 (Tenreiro et al., 2000), Tpo2, and Tpo3 (Fernandes et al., 2003), which have been shown to confer resistance to short chain monocarbonylic acids such as acetic and propionic acids. Among these, Aqr1 stands out as conferring resistance to weak acids, but also to chemical stress inducers such as the antimicrobial/antihypertensive drug quinidine, the cationic dye crystal violet, or, less clearly, the antifungal drug ketoconazole (Tenreiro et al., 2002). SchAqr1 was further shown to be involved in the excretion of amino acids, particularly homoserine, threonine, alanine, aspartate, and glutamate (Velasco et al., 2004).

This paper describes the functional analysis of the C. glabrata CgAqr1 gene (ORF CAGL0J09944g), sharing a high degree of homology with S. cerevisiae Aqrl gene, with emphasis on its dual role in acetic acid and antifungal drug resistance. The possible synergy of acetic acid and the antifungal drugs to which CgAqr1 confers resistance to and the ability of acetic acid to induce cross-resistance against antifungal drugs was examined. The sub-cellular localization of this transporter was assessed in C. glabrata cells. This study provides an insight into the host yeast cells. Agarized solid media contained, besides the above-indicated ingredients, 20 g/l agar (Begerag).

CLONING OF THE C. glabrata CgAQR1 GENE (ORF CAGL0J09944g)

The pGREG576 plasmid from the Drag&Drop collection (Iansen et al., 2005) was used to clone and express the C. glabrata ORF CAGL0J09944g in S. cerevisiae, as described before for other homologous genes (Cabrito et al., 2009). pGREG576 was acquired from Euroscarf and contains a galactose inducible promoter (GALI), the yeast selectable marker URA3 and the GFP gene, encoding a green fluorescent protein (GFPSET5), which allows monitoring of the expression and sub-cellular localization of the cloned fusion protein. CAGL0J09944g DNA was generated by PCR, using genomic DNA extracted from the sequenced CBS138 C. glabrata strain, and the following specific primers: 5′-GAATTCGATATATACGATACCCTGGACCGGTTGGA-3′ and 5′-CGGTGAGAATACGCTACTTACGCACGATGCTGGCTGACAG-3′. The designed primers contain, besides a region with homology to the first 19 and the last 22 nucleotides of the CgAQR1 promoter only, a new construct was obtained. The amplified fragment was co-transformed into the parental S. cerevisiae strain BY4741 with the pGREG576 vector, previously cut with the restriction enzyme SalI, to obtain the pGREG576 CgAQR1 plasmid. Since the GALI promoter only allows a slight expression of downstream genes in C. glabrata, to visualize by fluorescence microscopy the sub-cellular localization of the CgAQR1 gene in C. glabrata, a new construct was obtained. The GALI promoter present in the pGREG576 CgAQR1 plasmid was replaced by the copper-inducible MTJ reporter (Willins et al., 2002), giving rise to the pGREG576 MTJ CgAQR1 plasmid. The MTJ promoter DNA was generated by PCR, using genomic DNA extracted from the sequenced CBS138 C. glabrata strain, and the following specific primers: 5′-TEAACCTCATACAAAGGACATAAACAGGCTCTGTAGC ACAACGATTATGTGCAACCG-3′ and 5′-CAGAACGTTCCTCTCCTGAATTACTATACATAC-3′. The designed primers contain, besides a region with homology to the first and last 19 nucleotides of the first 1000 bp of the MTJ promoter region (italic), nucleotide sequences with homology to the cloning site flanking regions of the pGREG576 vector (underlined). The amplified fragment was first cultured at 30°C, with orbital agitation (250 rpm) in yeast extract peptone dextrose (YPD) growth media, with the following composition: 20 g glucose (Merck), 20 g yeast extract (Difco), and 10 g peptone (Difco). For some of the experiments, minimal medium was used, resulting from different amino acid supplementation of the basal medium (BM) with the following composition (per liter): 1.7 g yeast nitrogen base without amino acids or NH4+ (Difco), 20 g glucose (Merck), and 2.65 g (NH4)2SO4 (Merck). S. cerevisiae wild-type and derived BY4741 strains were grown in MM4 medium that resulted from BM supplementation with 20 mg/l methionine, 20 mg/l histidine, 60 mg/l leucine, and 20 mg/l uracil (all from Sigma). C. glabrata strains derived from CBS138 and KUE100 or L5U1 were cultured in BM medium without supplementation or with the supplementation of 20 mg/l uracil and 60 mg/l leucine, respectively. To maintain selective pressure over the recombinant strains, the addition of uracil to this medium was only carried out to grow the host yeast cells. Agarized solid media contained, besides the above-indicated ingredients, 20 g/l agar (Begerag).

MATERIALS AND METHODS

STRAINS, PLASMIDS, AND GROWTH MEDIA

Saccharomyces cerevisiae strain BY4741 (MATa, ura3Δ0, leu2Δ0, his3Δ1, met15Δ0) and the derived single deletion mutant BY4741 Δaqr1Δ0 were obtained from the Euroscarf collection. The CBS138 C. glabrata strain, whose genome sequence was released in 2004, and KUE100 (Ucero et al., 2007) were used in this study. C. glabrata strain LSU1 (cga3a Δ0, cgl2a Δ0) was kindly provided by John Bennett (Chen et al., 2007), from the National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA. The plasmid pGREG576 was obtained from the Drag&Drop collection (Iansen et al., 2005).

Cells were batch-cultured at 30°C, with orbital agitation (250 rpm) in yeast extract peptone dextrose (YPD) growth media, with the following composition: 20 g glucose (Merck), 20 g yeast extract (Difco), and 10 g peptone (Difco). For some of the experiments, minimal medium was used, resulting from different amino acid supplementation of the basal medium (BM) with the following composition (per liter): 1.7 g yeast nitrogen base without amino acids or NH4+ (Difco), 20 g glucose (Merck), and 2.65 g (NH4)2SO4 (Merck). S. cerevisiae wild-type and derived BY4741 strains were grown in MM4 medium that resulted from BM supplementation with 20 mg/l methionine, 20 mg/l histidine, 60 mg/l leucine, and 20 mg/l uracil (all from Sigma). C. glabrata strains derived from CBS138 and KUE100 or L5U1 were cultured in BM medium without supplementation or with the supplementation of 20 mg/l uracil and 60 mg/l leucine, respectively. To maintain selective pressure over the recombinant strains, the addition of uracil to this medium was only carried out to grow the host yeast cells. Agarized solid media contained, besides the above-indicated ingredients, 20 g/l agar (Begerag).
was co-transformed into the parental strain BY4741 with the pGREG576, CgAQR1 plasmid, previously cut with SacI and NotI restriction enzymes to remove the GAL1 promoter, to generate the pGREG576_MTI_CgAQR1 plasmid. The recombinant plasmids pGREG576_CgAQR1 and pGREG576_MTI_CgAQR1 were obtained through homologous recombination in S. cerevisiae and verified by DNA sequencing.

DISRUPTION OF THE C. glabrata CgAQR1 GENE (ORF CAGL0009946g)

The deletion of the CgAQR1 gene was carried out in the parental strain KUE100, using the method described by Ueno et al. (2011). The target gene CAGL0009946g (CgAQR1) was replaced by a DNA cassette including the CgHS3 gene, through homologous recombination. The replacement cassette was prepared by PCR using the following primers: 5'-CGGTACCATGGGCACGCGTTATATATAGGTTCTTCTTTTTTATTGGAATTGCTCAAGAATGTAAC-3' and 5'-CCAGCGCTACGATGTAACGAACTTACAAA TTAAGCGAAAATCCAAAAATGCCAAA TTAAGCGAAAATCCAAAATA-3'. The pHIS906 plasmid including CgHS3 was used as a template and transformation was performed as described previously (Ueno et al., 2007). Recombination locus and gene deletion were verified by PCR using the following pair of primers: 5'-CTCGGCGTCAGATGTCGATGAG-3' and 5'-AGAATACACGCGGTCTCGATGATG-3'.

SUSCEPTIBILITY ASSAYS IN C. glabrata

The susceptibility of the parental strain KUE100 toward toxic concentrations of the selected drugs and acetic acid was compared to that of the deletion mutant KUE100_Δcgaqr1 by spot assays or cultivation in liquid growth medium. The ability of CgAQR1 gene expression to increase wild-type resistance to the tested chemical stresses was also examined through spot assays in the URA3 strain LS11, using the pGREG576_CgAQR1 centromeric plasmid.

KUE100 C. glabrata cell suspensions used to inoculate the agar plates were mid-exponential cells grown in basal BM medium until culture OD600 nm = 0.4 ± 0.02 was reached and then diluted in sterile water to obtain suspensions with OD600 nm = 0.05 ± 0.005. These cell suspensions and subsequent dilutions (1:5; 1:25) were applied as 4 μl spots onto the surface of agarized MM4-U medium, containing 0.1% glucose and 1% galactose, supplemented with adequate chemical stress concentrations. The tested drugs and other xenobiotics included the following compounds, used in the specified concentration ranges: the azole antifungal drugs fluconazole (50–200 mg/l), itraconazole (40–80 mg/l), clotrimazole (1–20 mg/l), tioconazole (0.05–0.5 mg/l), the fluoropyrimidine 5-flucytosine (0.02–5 mg/l), and the weak organic monocarboxylic acid acetic acid (30–60 mM) (all from Sigma).

CgAqr1 SUB-CELLULAR LOCALIZATION ASSESSMENT

The sub-cellular localization of the CgAqr1 protein was determined based on the observation of BY4741 S. cerevisiae or LS11 C. glabrata cells transformed with the pGREG576_CgAQR1 or pGREG576-MTI_CgAQR1 plasmids, respectively. These cells express the CgAqr1_GFP fusion protein, whose localization may be applied as 4 μl spots onto the surface of agarized BM medium without uracil, containing 0.1% glucose and 1% galactose, supplemented with adequate chemical stress concentrations, within the above described ranges.

KUE100 C. glabrata cell suspensions used for susceptibility assays in liquid medium were grown to mid-exponential phase (OD600 nm = 0.4 ± 0.02) in basal BM medium, harvested by filtration and re-suspended in fresh BM medium, supplemented or not with the specified concentrations of acetic acid, clotrimazole, or 5-flucytosine, with an initial OD600 nm = 0.05 ± 0.005. Growth, taking place in Erlenmeyer flasks, at 37°C, 250 rpm, was followed by measuring the optical density of the cell suspension at 600 nm.

SUSCEPTIBILITY ASSAYS IN S. cerevisiae

The susceptibility of the parental strain BY4741 toward toxic concentrations of the selected drugs and acetic acid was compared to that of the deletion mutant BY4741_Δcgaqr1 by spot assays. The ability of CgAQR1 gene expression to increase wild-type resistance to the tested chemical stresses and to complement the susceptibility phenotype exhibited by the BY4741_Δcgaqr1 single deletion mutants was also examined, using the pGREG576_CgAQR1 centromeric plasmid in which CgAQR1 is expressed under the GAL1 promoter.

Saccharomyces cerevisiae cell suspensions used to inoculate the agar plates were mid-exponential cells grown in basal MM4-U medium, containing 0.5% glucose and 0.1% galactose, until culture OD600 nm = 0.4 ± 0.02 was reached and then diluted in sterile water to obtain suspensions with OD600 nm = 0.05 ± 0.005. These cell suspensions and subsequent dilutions (1:5; 1:25) were applied as 4 μl spots onto the surface of agarized MM4-U medium, containing 0.1% glucose and 1% galactose, supplemented with adequate chemical stress concentrations. The tested drugs and other xenobiotics included the following compounds, used in the specified concentration ranges: the azole antifungal drug fluconazole (50–200 mg/l), itraconazole (40–80 mg/l), clotrimazole (1–20 mg/l), tioconazole (0.05–0.2 mg/l), and miconazole (0.05–0.2 mg/l), the polyene antifungal drug amphotericin B (0.05–0.5 mg/l), the fluoropyrimidine 5-flucytosine (0.02–5 mg/l), and the weak organic monocarboxylic acid acetic acid (30–60 mM) (all from Sigma).
induce protein over-expression. After 5 h of incubation, the distribution of CgAqr1_GFP fusion protein in S. cerevisiae or in C. glabrata living cells was detected by fluorescence microscopy in a Zeiss Axioplan microscope (Carl Zeiss Micromaging), using excitation and emission wavelength of 395 and 509 nm, respectively. Fluorescence images were captured using a cooled CCD camera (Cool SNAPFX, Roper Scientific Photometrics).

TRANSPORT ASSAYS USING RADIO-LABELLED COMPOUNDS

\[^{3}H \]-flucytosine, \[^{3}H\]-clotrimazole, and \[^{14}C\]-acetate accumulation assays were carried out as described before (Vargas et al., 2004). To estimate the accumulation of each radiolabeled compound (intracellular/extracellular) in yeast cells, the parental strain KUE100 and the mutant strain KUE100_Aqr1 were grown in BM medium till mid-exponential phase and harvested by filtration. Cells were washed and re-suspended in BM medium, to obtain dense cell suspensions \([OD_{600} = 5.0 \pm 0.1, \text{ equivalent}] \) to approximately 2.2 mg (dry weight)/ml. After 5 min incubation at 30°C, with agitation (150 rpm), the radiolabeled compound was added to the cell suspensions \([1 \mu M \text{ of } ^{3}H\text{-flucytosine (American Radiolabeled Chemicals; 1 mCi/ml)}] \) and 3 mg/l of unlabeled flucytosine; or \(0.1 \mu M \text{ of } ^{3}H\text{-clotrimazole (American Radiolabeled Chemicals; 1 mCi/ml)} \) and 3.5 mg/l of unlabeled clotrimazole; or \(1 \mu M \text{ of } ^{14}C\text{-acetate (American Radiolabeled Chemicals; 0.1 mCi/ml)} \) and 100 mM of unlabeled acetate. The accumulation of each radiolabeled compound was followed, in individual assays, for an additional period of 30 min until equilibrium was reached. In all cases, the intracellular accumulation and emission wavelength of 395 and 509 nm, respectively.

RESULTS

CgAqr1 EXPRESSION CONFRS RESISTANCE TO ACETIC ACID

Given the previously observed effect of S. cerevisiae AQR1 gene in weak acid stress tolerance (Terreno et al., 2002), the action of CgAqr1 in acetic acid tolerance was inspected. The deletion of CgAqr1 gene in C. glabrata clearly decreases its tolerance to an inhibitory concentration of acetic acid (Figure 1). This is visible both in spot assays (Figure 1A) and in liquid medium cultivation (Figure 1B). Sudden exposure of un-adapted wild-type C. glabrata cells to 60 mM acetic acid leads to 5 h of lag-phase followed by growth resumption with reduced kinetics, while cells devoid of CgAqr1 enter a lag phase that lasts for around 18 h, before growth resumption. Apparently, the absence of the Aqr1 gene affects only slightly the growth rate at which cells are able to reasume exponential growth in the presence of acetic acid, suggesting that its role is mainly played during the adaptation to this stress (Table 1). The introduction of a recombinant plasmid expressing CgAqr1 further increases C. glabrata natural resistance toward acetic acid, when compared to the same strain harboring the corresponding cloning vector (Figure 1C), reinforcing the finding that CgAqr1 is a determinant of acetic acid resistance in C. glabrata.

CgAqr1 EXPRESSION CONFRS RESISTANCE TO FLUCYTOSINE AND AZOLE ANTI FUNGAL DRUGS

The deletion of the CgAqr1 gene in C. glabrata was found, based on spot assays, to increase the susceptibility of this pathogen against the antifungal fluoropyrimidine analog flucytosine, and the imidazole antifungal drugs miconazole, clotrimazole, and itraconazole (Figure 2A). The introduction of a recombinant plasmid expressing CgAqr1 increases C. glabrata natural resistance toward flucytosine, but only very mildly against clotrimazole and itraconazole, when compared to the same strain harboring the corresponding cloning vector (Figure 2B), reinforcing the finding that CgAqr1 is a strong determinant of flucytosine resistance in C. glabrata. No effect of CgAqr1 expression could be clearly detected in C. glabrata susceptibility to miconazole, itraconazole, or amphotericin B. The comparison of the growth curves of wild-type and derived Aqr1 cells in liquid medium show that the deletion of CgAqr1 clearly impairs C. glabrata growth in the presence of clotrimazole and, particularly, flucytosine (Figure 3). Indeed, although the growth curves of both strains are nearly
indistinguishable in control conditions, upon sudden exposure to the presence of 3 mg/mL of flucytosine the wild-type cells experience a period of around 18 h of lag-phase, followed by exponential growth with a reduced rate, while the \(\text{cgaqr1} \) deletion mutant cells enter a period of lag-phase that last for around 35 h prior to growth resumption with even more inhibited growth kinetics (Table 1, Figure 3A). A less striking, but still clear, effect of \(\text{CgAqr1} \) deletion can also be seen in the presence of 50 mg/mL of clotrimazole. \(\text{CgAqr1} \) deletion mutant cells exhibit a period of lag-phase of around 18 h prior to growth resumption, while the effect of this concentration of clotrimazole in wild-type cells appears to be felt mostly at the level of growth rate inhibition (Table 1, Figure 3B).

Using \(\text{S. cerevisiae} \) as a heterologous expression system, the effect of \(\text{cgaqr1} \) expression in yeast resistance to antifungal drugs was further tested, in order to verify whether or not \(\text{cgaqr1} \) is able to functionally complement its \(\text{S. cerevisiae} \) homolog. The \(\text{S. cerevisiae} \) \(\text{AQR1} \) gene was found to increase the levels of final biomass when compared to control cells (Figure 4). A less prominent, but still clear, effect of \(\text{CgAqr1} \) expression on yeast susceptibility toward flucytosine, clotrimazole and, as observed previously (Tenreiro et al., 2002), acetic acid exhibited by the corresponding parental strain (Figure 4). When expressed in the \(\text{S. cerevisiae} \) \(\text{S}^{\text{AQR1}} \) background, the \(\text{cgaqr1} \) gene was able to rescue all the observed susceptibility phenotypes, further confirming its role in flucytosine and imidazole drug resistance (Figure 4).**

ACETIC ACID ACTS SYNERGISTICALLY WITH ClOTRIMAZOLE AND FLUCYTOSINE

In order to evaluate the eventual effect of acetic acid, present in some of the natural niches of \(\text{C. glabrata} \) infection, in antifungal therapy, the effect of co-exposure of \(\text{C. glabrata} \) cells to acetic acid and to the antifungals clotrimazole and flucytosine was examined. \(\text{C. glabrata} \) wild-type cells were exposed to concentrations of acetic acid, clotrimazole, and flucytosine that, individually, do not affect growth: 45 mM, 30 and 0.2 mg/mL, respectively (Figure 5). However, when in combination, the same “innocuous” concentrations of acetic acid and clotrimazole or acetic acid and flucytosine, were found to lead to severe growth impairment. Indeed, when grown in the presence of 30 mg/mL clotrimazole plus 45 mM of acetic acid, the \(\text{C. glabrata} \) population enters a period of 40 h of lag-phase, followed by a drastically reduced growth rate and reaching lower levels of final biomass when compared to control cells (Figure 5).

Sudden exposure to 0.2 mg/mL flucytosine plus 45 mM of acetic acid leads to an even longer period of lag-phase (50 h), upon which the population enters a period of around 40 h of lag-phase, followed by exponential growth with a reduced rate, while the \(\text{cgaqr1} \) deletion mutant cells exhibit a period of lag-phase of around 18 h prior to growth resumption, while the effect of this concentration of clotrimazole in wild-type cells appears to be felt mostly at the level of growth rate inhibition (Table 1, Figure 3B).

Table 1 Comparison of the susceptibility to inhibitory concentrations of acetic acid, clotrimazole, or flucytosine of the \(\text{C. glabrata} \) \(\text{KUE100} \) and \(\text{KUE100} _\text{cgaqr1} \) strains, based on the growth parameters lag-phase duration, exponential growth rate, and final biomass.

Growth conditions	Strain	Lag-phase (h)	Growth rate/h	Final biomass (OD\(_{600} \) nm)
Control	Wildtype nd	1.32 ± 0.08	9.76 ± 0.39	
	\(\text{cgaqr1} \) nd	1.23 ± 0.09	6.64 ± 0.96	
Clotrimazole	Wildtype	6.25 ± 2.71	0.20 ± 0.04	6.06 ± 0.09
50 mg/L	\(\text{cgaqr1} \)	17.96 ± 0.27	0.19 ± 0.01	3.00 ± 0.17
Flucytosine	Wildtype	18.76 ± 0.13	0.30 ± 0.02	9.28 ± 0.51
3 mg/L	\(\text{cgaqr1} \)	35.14 ± 3.60	0.21 ± 0.07	4.06 ± 0.37
Acetic acid	Wildtype	5.31 ± 2.86	0.19 ± 0.02	7.76 ± 0.46
60 mM	\(\text{cgaqr1} \)	18.28 ± 1.08	0.14 ± 0.001	2.36 ± 0.01

Values are the average of at least three independent experiments ± standard deviation. Nd, not detected.
which growth resumption is achieved (Figure 5). It is clear that the inhibitory effect of C. glabrata exposure to acetic acid plus flucytosine or acetic acid plus clotrimazole is much stronger than the sum of their individual inhibitory effects, suggesting that acetic acid acts synergistically with flucytosine and clotrimazole. In the absence of CgAqr1, this effect seems to be even more pronounced. Given the fact that flucytosine is used mostly in combination with fluconazole, we further verified experimentally that flucytosine and fluconazole do exhibit a synergistic effect. However, and as expected based on the fact that CgAqr1 does not confer resistance to fluconazole, no increased role of CgAqr1 in the presence of this combination of drugs was observed (results not shown).

CgAqr1 is Localized to the Plasma Membrane and Membrane Vesicles in C. glabrata and in S. cerevisiae

Candida glabrata cells harboring the pGREG576_MTL_CgAQR1 plasmid were grown to mid-exponential phase in minimal medium, and then transferred to the same medium containing 30 µM CaSO₄₂⁻ to promote protein expression in moderate controlled levels. At a standard OD₆₀₀ nm of 0.5 ± 0.05, obtained after around 5 h of incubation, cells were inspected through fluorescence microscopy. This period of incubation was found to allow detectable protein expression levels, but not a high degree of over-expression that may lead to mis-localization. In C. glabrata cells, the CgAqr1-GFP fusion was found to be localized to the cell periphery, and also to a punctuate distribution throughout the cell (Figure 1A). Control cells, on the other hand, harboring the pGREG576 cloning vector, displayed a slight and uniform distribution of fluorescence (Figure 6A), similar to what can be observed as the host cells auto-fluorescence. Since CgAqr1 is predicted to be an integral membrane protein (Gbelska et al., 2006), these results strongly suggest a plasma membrane and, eventually, membrane vesicle localization, similar to what was observed for its S. cerevisiae homolog Aqr1 (Tenreiro et al., 2002; Velasco et al., 2004). S. cerevisiae cells harboring the pGREG576_CgAqr1 plasmid were also tested for the sub-cellular localization of CgAqr1, to verify that...
Costa et al. CgAqr1 determines fluconazole/acetate resistance

FIGURE 3 | Comparison of the growth curves of C. glabrata KUE100 (♦, ♦) and KUE100 Δcgaqr1 (▲, ▲) strains, in liquid BM medium, in the absence (♦, ▲) or presence of 3 mg/l fluconazole (♦) or 50 mg/l clotrimazole (▲). The inocula were prepared as described in Section "Materials and Methods." The displayed growth curves are representative of at least three independent experiments.

FIGURE 4 | Comparison of the susceptibility to antifungal drugs and acetic acid, at the indicated concentrations, of the S. cerevisiae BY4741 and BY4741 Δdaqr1 strains, harboring the cloning vector pGREG576 (v) or the derived cgaqr1 expression plasmid pGREG_cgaqr1, in MM4 agar plates by spot assays. Cell suspensions used to prepare the spots were 1:5 (b) and 1:25 (c) dilutions of the cell suspension used in (a). The inocula were prepared as described in Section "Materials and Methods." Images are representative of at least three independent experiments.

in these cells, the C. glabrata transporter was similarly localized to the plasma membrane and membrane vesicles. Cells were grown to mid-exponential phase in minimal medium containing 0.5% glucose and 0.1% galactose, and then transferred to the same medium containing 0.1% glucose and 1% galactose, to promote protein over-expression. At a standard OD600 nm of 0.5 ± 0.05, obtained after around 5 h of incubation, cells were inspected through fluorescence microscopy and plasma membrane and membrane vesicle localization was verified (Figure 6B).

CgAqr1 plays a role in reducing the intracellular accumulation of [3H]-fluconazole, but not of [3H]-clotrimazole or 14C-acetic acid in C. glabrata

Since the C. glabrata gene CgAqr1, was found herein to encode a drug resistance transporter of the plasma membrane, and of what appears to be the membrane of exocytic vesicles, and to act as a determinant of resistance to fluconazole, acetic acid, and less significantly, clotrimazole, its possible involvement in reducing the accumulation of these compounds in challenged yeast cells was examined. The accumulation of radiolabeled fluconazole was seen to be four times higher in cells devoid of CgAqr1 than in wild-type cells (Figure 7A), correlating with the strong effect of CgAQR1 deletion in fluconazole resistance (Figure 3). The accumulation of [3H]-labeled clotrimazole in non-adapted C. glabrata cells suddenly exposed to the presence of 30 mg/l cold clotrimazole was also tested and found to be slightly higher than in cells devoid of CgAqr1 than in parental KUE100 cells (Figure 7B), which appears to be consistent with the relatively small difference in growth inhibition exhibited by wild-type and Δcgaqr1 cells. Surprisingly, no clear difference in 14C-acetic acid accumulation could be found in wild-type and Δcgaqr1 strains (Figure 7C). These results strongly suggests that CgAqr1 activity increases yeast resistance
toward flucytosine by reducing its accumulation within yeast cells, presumably by catalyzing the direct extrusion of this antifungal drug, while its action in acetic acid stress tolerance may be indirect.

CgAqr1 Transcript Levels Are Not Up-Regulated Under Acetic Acid, Clotrimazole, or Flucytosine Stress

The effect of *C. glabrata* cell exposure to inhibitory concentrations of acetic acid, clotrimazole, or flucytosine, to which CgAqr1 confers resistance, on CgAqr1 transcription was evaluated. The transcript levels of CgAqr1 gene were seen to suffer no significant change upon 1 h of exposure of an un-adapted *C. glabrata* population to inhibitory concentrations of acetic acid, clotrimazole or flucytosine (Figure 8).

Acetic Acid Does Not Provide Cross-Protection Against Clotrimazole and Flucytosine

Given that CgAqr1 provides *C. glabrata* protection against acetic acid, flucytosine, and clotrimazole, the possibility that exposure to each of these stress agents might confer cross-protection against the remaining was hypothesized. To evaluate this possibility, *C. glabrata* cells were pre-exposed to 60 mM of acetic acid, 50 mg/l of clotrimazole, and 0.5 mg/l of flucytosine and cultivated until mid-exponential phase was reached (OD600 nm = 1.5 ± 0.05). These cells, growing exponentially in the presence of each of these stress agents were then harvested, washed, and exposed to the three growth inhibitors as secondary stress agents. Pre-exposure to acetic acid made *C. glabrata* cells able to growth at maximal exponential rate upon re-exposure to the same concentration of the acid, but did not increase yeast resistance to clotrimazole or flucytosine (Figure 9). On the other hand, pre-exposure to clotrimazole appears to have no protective effect against flucytosine or, not even, to re-exposure to clotrimazole itself, and to induce a sensitization against post-exposure to acetic acid (Figure 9). Finally, pre-exposure to flucytosine, while making *C. glabrata* cells tolerant to re-exposure to flucytosine did actually make the cells more susceptible to acetic acid and clotrimazole (Figure 9).
DISCUSSION

In this study, the functional characterization of the *C. glabrata* CgAqr1 drug\(\text{H}^+\) antiporter was carried out. CgAqr1 was identified as the first of its family to confer resistance in this species to the antifungal drug flucytosine, but also to acetic acid.

To the best of our knowledge, no multidrug resistance transporter had ever been linked to flucytosine resistance. This is quite surprising, considering that it has been known for some time that the acquisition of flucytosine resistance among clinical isolates occurs very fast, which appears to be compatible with the action of drug efflux pumps (Thompson et al., 2009). In most cases, flucytosine resistance has been associated to point mutations or changes in the expression of the genes involved in the uptake (e.g., carried out by cytosine permeases, such as Fcy2) and catabolism (the first step carried out by cytosine deaminase Fcy1) of this antifungal pro-drug (Hope et al., 2004). Significantly, results from this study point out to a direct role of CgAqr1 in flucytosine efflux. Indeed, the increased flucytosine resistance observed in cells expressing the CgAQR1 gene, when compared to *A. auris* deletion mutant cells, appears to correlate with the observation that the accumulation of this antifungal drug is twofold higher in the deletion mutant, when compared to the corresponding parental strain. The results displayed herein further highlight the unexplored role of drug efflux pumps in the context of flucytosine resistance.

CgAqr1 was also found to confer, to a lower level, resistance to azole drugs, including the imidazoles miconazole, tioconazole, and clotrimazole, used in the treatment of fungal skin infections and vaginal or oral candidemia. In *C. glabrata*, resistance to azole drugs in clinical isolates has been shown to depend on the action of the ABC drug efflux pumps encoded by CgCDR1, CgCDR2, and CgAUS1 (Cannon et al., 2009). Very recently, the *C. glabrata* CgQdr2 drug\(\text{H}^+\) antiporter was identified as the first of its family to confer imidazole drug resistance, playing a direct role in the extrusion of clotrimazole (Costa et al., 2013). In this study, CgAqr1 is added to the number of characterized *Candida* transporters involved in azole drug resistance. However, the deletion of CgAQR1 was found to have only a slight effect on \(\text{H}^+\)-clotrimazole accumulation in *C. glabrata* cells, consistent with the moderate increase in susceptibility registered upon CgAQR1 deletion.

Based on its high degree of homology and functional similarity to the *S. cerevisiae* AQR1 gene, a possible physiological role for CgAqr1 linked to yeast survival in the presence of inhibitory concentrations of acetic acid (Tenreiro et al., 2002) was also
 Costa et al. CgAqr1 determines flucytosine/acetate resistance

FIGURE 7 | Time course accumulation ratio of [3H]-flucytosine (A), [3H]-clotrimazole (B), and [14C]-acetate (C) in non-adapted cells of KUE100 (♦) or KUE100_cgaqr1 (▲) strains, during cultivation in BM liquid medium in the presence of 3 mg/l, 30 mg/l, or 100 mM of unlabeled flucytosine, clotrimazole, or acetic acid, respectively. The accumulation ratio values are averages of at least three independent experiments. Error bars represent the corresponding standard deviations.

FIGURE 8 | Comparison of the variation of the CgAQR1 transcript levels in wild-type C. glabrata cells before (control) and after 1h of exposure to acetic acid-, clotrimazole-, or flucytosine-induced stress, at the indicated concentrations. The presented transcript levels were obtained by quantitative RT-PCR, as described in Section “Materials and Methods,” and are relative CgAQR1/CgACT1 mRNA values, considering the value registered in control conditions, equal to 1. The obtained values are the average of at least three independent experiments. Error bars represent the corresponding standard deviations.

inspected. Indeed, CgAqr1 expression did improve C. glabrata and S. cerevisiae fitness under inhibitory concentrations of this weak carboxylic acid, and complemented the S. cerevisiae D_aqr1 susceptibility phenotype observed in these conditions. ScAqr1 and CgAqr1 were further found to confer flucytosine resistance in S. cerevisiae, CgAqr1 being able to complement the absence of its S. cerevisiae counterpart under flucytosine stress. The notion that ScAqr1 and CgAqr1 may have overlapping functions is reinforced by the finding that their sub-cellular localization is also quite similar, while different from that of the remaining members of their family (Sá-Correia et al., 2009). Indeed, similar to what had been registered for ScAqr1 (Teneiro et al., 2002; Velasco et al., 2004), CgAqr1 was found to be localized to both the plasma membrane and membrane vesicles, being proposed to catalyze the extrusion of its substrates across the plasma membrane or through exocytic vesicles. The possibility that CgAqr1 displays as physiological role the catalysis of acetate excretion was further investigated, but no effect of CgAQR1 expression on 14C-acetate accumulation could be detected. Significantly, the expression of the S. cerevisiae Aqr1 transporter had also been found to have no effect on acetate transport (Teneiro et al., 2002). Although the exact role of CgAqr1 in acetic acid resistance remains to be perceived, it may be indirectly due to the transport of a still unidentified physiological substrate. Since ScAqr1 was seen to be involved in the excretion of amino acids, particularly homoserine, threonine, alanine, aspartate, and glutamate (Velasco et al., 2004), it is reasonable to hypothesize that a similar trait may be exhibited by its ortholog in C. glabrata. Although it appears difficult to foresee how exactly amino acid excretion may contribute to acetic acid and azole drug resistance, the truth is that the molecular mechanisms behind the apparent promiscuity exhibited by MDR transporters of the ABC and MFS superfamilies remain elusive and controversial (Roepe et al., 1996; Prasad et al., 2002; Sá-Correia and Teneiro, 2002; Paulsen, 2003; Jungwirth and Kuchler, 2006; Sá-Correia et al., 2009). Furthermore, the fact that some of the compounds to which multidrug transporters confer resistance do not extrude through their direct action has been observed for the majority of the ABC and MFS–MDR transporters characterized in S. cerevisiae (Jungwirth and Kuchler, 2006; Sá-Correia et al., 2009), whereas they have been found to be involved in the transport of physiological substrates, including membrane lipids and ions.
Costa et al. CgAqr1 determines flucytosine/acetate resistance

FIGURE 9 | Comparison of the growth curves of *C. glabrata* KUE100 strain, in liquid BM medium, in the absence (♦) or presence of acetic acid, clotrimazole, or flucytosine (♦♦♦), as indicated on the left. The inocula were prepared as described in Section “Materials and Methods,” from exponentially growing cells that were growing in control conditions (♦), or that were pre-adapted (•) to the stress inducer indicated on the top. The displayed growth curves are representative of at least three independent experiments.

that in turn affect the plasma membrane partition, permeability or toxicity of drugs, and xenobiotics (Vargas et al., 2007; Cabrito et al., 2011; Teixeira et al., 2011, 2012). Such a possible scenario can also be envisaged to explain how CgAqr1 may confer acetic acid resistance, without affecting its intracellular accumulation.

Tolerance against weak acids is an important feature for *Candida* species to thrive in the acidic environment (pH ~ 4) of the vaginal tract, where significant concentrations of acetic and lactic acids can be found (Davis, 2009). Furthermore, *C. glabrata* is able to survive inside the phagolysosome, where it has to deal with hydrolytic enzymes and an acidic environment. Results from this study point out to the existence of a synergistic action between both flucytosine and clotrimazole and acetic acid, a phenomenon observed previously between acetic acid and fluconazole in *C. albicans* (Moosa et al., 2004), reinforcing the importance of weak acid resistance mechanisms in the context of antifungal therapy. This effect, coupled with the dual role of CgAqr1 in acetic acid and anti-fungal drug resistance led us to hypothesise that pre-exposure of *C. glabrata* cells to acetic acid concentrations similar to those found in the vaginal tract might contribute to make them more tolerant to antifungal drugs. However, the predicted cross-resistance effect was not observed. Indeed, pre-exposure to acetic acid had no effect on the susceptibility of *C. glabrata* cells to flucytosine or clotrimazole, whereas pre-exposure to clotrimazole and flucytosine sensitises these cells toward acetic acid stress. Interestingly,
CgAqr1 transcript levels in C. glabrata were seen to be irrespon-
sive to chemical stress exposure, either that induced by acetic
acid, fluconazole, or clotrimazole, suggesting that other genes
or post-transcriptional regulatory effects may underlie the antifun-
gal drug-induced sensitization of C. glabrata. The fact that
CgAqr1 confers resistance to both antifungal drugs and acetic
acid strongly suggests that this transporter may play an impor-
tant role in the persistence of C. glabrata infections in acidic
loci.

Interestingly, the deletion of CgAqr1 was found to play a
major role in increasing stress-induced lag-phase duration, while
having only a moderate effect in C. glabrata maximal growth
rate in the presence of fluconazole, acetic acid, or clotrimazole.
A similar phenomenon was observed for most of the CgAqr1
homologs in S. cerevisiae (Sá-Correia et al., 2009). The current
model to explain this phenotype proposes that drug efflux pumps
are mostly required to deal with chemical stress. Additional mechanisms leading to the impermeabilization of
the cell envelope are reported to be activated upon chemi-
cal stress exposure, preventing drug re-entrance, and relieving
the requirement for the energy expensive process of extruding
drugs (Simões et al., 2003; Viegas et al., 2005). This model justi-
fies the fact that drug efflux pumps appear to be required to a
lower extent during exponential growth in the presence of stress,
even when the stress agent is not degraded or neutralized. Indeed,
no catabolism of clotrimazole or acetic acid, in the presence of
glucose, is registered in yeast cells (Prasad et al., 2002; Guerreiro
et al., 2003). The model further suggests that these transporters, that remain so far mostly uncharacterized,
may play a significant role in multidrug resistance in C. glabrata.

ACKNOWLEDGMENTS

This work was supported by “Fundação para a Ciência e a Tec-
nologia” (FCT; Contract PTDC/CEB-BIO/119536/2010 and Ph.D.
grant to Catarina Costa). We acknowledge John Bennett from the
Clinical Mycology Section, Laboratory of Clinical Infectious Dis-
eses, National Institute of Allergy and Infectious Diseases, NIH,
Bethesda, USA, for kindly providing the L5U1 derived strains.

REFERENCES

Caldas, T. R., Teixeira, M. C., Duarte, A. A., Duque, P., and Sá-Correia, I. (2000). Heterologous expression of a Ypt1 homolog from Arabidop-
sis thaliana confers resistance to the herbicide 2,4-D and other chemi-
ical stresses in yeast. Appl. Micro-
biochem. 34, 2743–2754. doi: 10.1128/AAC.42.11.5170-
5175.2004

Chen, K. H., Miyazaki, T., Toy, H. F., and Bennett, I. E. J. (2007). The
bipotent efflux transporter CgAqr1 is involved in multidrug resistance
and required for activation of mul-
drug transporter genes in C. glabrata. Genes 39, 63–72. doi: 10.1016/j.jge.
nes.2006.08.010

Costa, C., Pires, C., Cabrito, T. R., Teixeira, M. C., and Sá-Correia, I. (2013). A novel multidrug efflux transporter gene of Candida
bailii superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology 159, 2743–2754.

Cannon, D. A., Lamping, E., Holmes, A. R., Nimi, K., Baret, F. V., Kenna, M. V., et al. (2009). Efflux-mediated antifungal drug resistance. Clin.
Microbiol. Rev. 22, 395–422. doi: 10.1128/CMR.00051-08

Chaudry, A. N., Travers, P. J., Yuenger, J., Cabrot, L., Evans, P., Zenil-
man, J. M., et al. (2004). Analysis of vaginal acetic acid in patients undergo-
ing treatment for bacterial vagi-
nitis. J. Clin. Microbiol. 42, 5170-
5175. doi: 10.1128/JCM.42.11.5170-
5175.2004

Costa, C., Teixeira, M. C., Duarte, A. A., Duque, P., and Sá-Correia, I. (2009). Heterologous expression of a Ypt1 homolog from Arabidop-
sis thaliana confers resistance to the herbicide 2,4-D and other chemi-

cal stresses in yeast. Appl. Micro-
biochem. 34, 2743–2754. doi: 10.1128/AAC.42.11.5170-
5175.2004

Dutta, D. A. (2009). How human pathogenic fungal sense and adapt
pH to the environment. Curr. Opin. Microbiol. 12, 505–510. doi: 10.1016/j.micm.2009.05.006

Fernandes, A. R., Mira, N. P., Vargas, R. C., Canedo, I., and Sá-Correia, I. (2005). Saccharomyces cerevisiae adaption to weak acids involves the transcription factor Har1p and Har1p-regulated genes. Biochim. Biophys. Acta Gen. 1687, 95–103. doi: 10.1016/j.bbadis.2005.09.013

Godbula, Y., Krige, J. J., and Bre-
uning, K. D. (2006). Evolution of gene families: the multidrug resis-
tance transporter genes in five related yeast species. Gene 355, 71–78. doi: 10.1016/j.gene.2004.10.016

Hope, W. W., Taberner, L., Den-
nin, D. W., and Anderson, M. J. (2004). Molecular mechanisms of primary resistance to fluconazole in Candida albicans. Antonievan
Gruyters Agrotech 65, 4577–4936. doi: 10.1002/pmic.201100457

Hope, W. W., Taberner, L., Den-
nin, D. W., and Anderson, M. J. (2004). Molecular mechanisms of primary resistance to fluconazole in Candida albicans. Antonievan
Gruyters Agrotech 65, 4577–4936. doi: 10.1002/pmic.201100457

Ivens, A. G., Wodak, S. J., and Whiteway, M. (2005). Drug/Drug closing in yeast. Gene 344, 43–51. doi: 10.1016/j.gene.2004.10.016

Jarvis, W. R. (1995). Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin.
Infect. Dis. 20, 1526–1536. doi: 10.1093/clinids/20.6.1526

Jiang, C., Oppenheim, A. B., and Koltin, Y. (1995). Multidrug resistance in Can-
dida albicans: disruption of the BDR2 gene. Antimicrob. Agents Chemother.
39, 422–426. doi: 10.1128/AAC.39.3.422

Kolber, M., Tsf, D., Schmid, R., Oppenheim, A. B., and Koltin, Y. (1995). Multidrug resistance in Can-
dida albicans: disruption of the BDR2 gene. Antimicrob. Agents Chemother.
39, 422–426. doi: 10.1128/AAC.39.3.422

Kolber, M., Tsf, D., Schmid, R., Oppenheim, A. B., and Koltin, Y. (1995). Multidrug resistance in Can-
dida albicans: disruption of the BDR2 gene. Antimicrob. Agents Chemother.
39, 422–426. doi: 10.1128/AAC.39.3.422

Kolber, M., Tsf, D., Schmid, R., Oppenheim, A. B., and Koltin, Y. (1995). Multidrug resistance in Can-
dida albicans: disruption of the BDR2 gene. Antimicrob. Agents Chemother.
39, 422–426. doi: 10.1128/AAC.39.3.422

Lee, Y. B., and Whiteway, M. (2005). Drug/Drug closing in yeast. Gene 344, 43–51. doi: 10.1016/j.gene.2004.10.016
and tolerance to weak acids in Saccharomyces cerevisiae a genome-wide view. Genomics 14, 525–544. doi: 10.1089/com.2010.0072

Miozzo, M. Y., Sobel, J. D., Elhalis, H., Da, W., and Akino, H. A. (2014). Fungal activity of fluconazole against Candida albicans in a synthetic yagura-simulative medium. Antonie Van Leeuwenhoek 68, 161–167. doi: 10.1007/s10482-004-00019-8

Paulino, I. T. (2003). Multidrug efflux pumps and resistance regulation and evolution. Curr. Opin. Microbiol. 6, 446–451. doi: 10.1016/S1350-4487(03)00057-3

Prasad, R., Panwar, S. L., and Smriti. (2012). Drug resistance in yeasts – an emerging scenario. Adv. Microb. Physiol. 46, 155–201.

Roepe, P. D., Wié, L. Y., Hoffman, M. M., and Fritz, F. (1996). Altered drug translocation mediated by the MDR protein: direct, indirect, or both? J. Bacteriol. Biotechnol. 28, 741–755. doi: 10.1007/BF02211044

Rosas, M. A., and Sá-Correia, I. (1996). Intracellular acidification does not account for inhibition of Saccharomyces cerevisiae growth in the presence of ethanol. FEMS Microbiol. Lett. 135, 271–274.

Sá-Correia, I. Santos, S. C., Teixeira, M. C., Cabral, T. R., and Mira, N. M. (2000). Drug:H\(^+\) antiporters in chemical stress response in yeast. Trends Microbiol. 17, 22–31. doi: 10.1016/S0966-842X(00)01505-6

Sá-Correia, I., and Teixeira, M. C., and Tenreiro. (2012). The dual role of Candida glabrata drug:H\(^+\) antiporter Qdr2 is implicated in potassium uptake, providing a physiological advantage to quinolinic-stressed cells. Environ. Microbiol. 14, 129–127. doi: 10.1111/j.1462-2920.2011.02757.x

Simões, T., Tenreiro, M. C., Fernandes, A. R., and Sá-Correia, I. (2005). Adaptation of Saccharomyces cerevisiae to the herbicide 2,4-dichlorophenoxyacetic acid, mediated by Mdr2p- and Mdr1p-regulated genes: important role of Sple. Appl. Environ. Microbiol. 69, 4019–4028. doi: 10.1128/AEM.69.7.4019-4028.2003

Sillanpää, D. J., Moraes, G. P., Pinjon, E., Al-Mousa, A., Stoklos, C., Vaughan, C., et al. (2004). Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS Yeast Res. 4, 595–576. doi: 10.1016/S1567-1356(03)00240-X

Teixeira, M. C., Cabrito, T. R., Hanif, Z., Varghese, R. C., Tenreiro, S., and Sá-Correia, I. (2011). Yeast response and tolerance to polyamine toxicity involving the drug:H\(^+\) antiporter Qdr2p and the transcription factors Yap1 and Gcn4. Microbiology 157, 945–958. doi: 10.1099/mic.0.04660-0

Teixeira, M. C., Godinho, C. P., Cabral, T. R., Mira, N. P., and Sá-Correia, I. (2012). Increased expression of the yeast multidrug resistance ABC transporter PaK1p leads to increased ethanol tolerance and ethanol production in high-gravity alcoholic fermentation. Microb. Cell Fact. 11, 98. doi: 10.1186/1475-2891-11-98

Tenreiro, S., Nunes, P. A., Vargas, C. A., Neves, M. S., Tenreiro, M. C., Cabral, M. G., et al. (2002). AZR1 gene (ORF ENO1086c) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinoline in Saccharomyces cerevisiae. Cell. Physiol. Biochem. 12, 741–748. doi: 10.1159/000066222

Tenreiro, S., Roepe, P. D., Vié, J. C., and Sá-Correia, I. (2000). Expression of the Aze1 gene (ORF YGR226w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast 16, 1409–1418. doi: 10.1002/1097-0061(200012)16:14<1409::AID-YEST882>3.0.CO;2-3

Thompson, G. R. III, Cadena, J., and Patterson, T. F. (2009). Overview of antifungal agents. Clin. Chest Med. 30, 205–213. doi: 10.1016/j.ccm.2009.02.001

Ueno, K., Matsunoto, Y., Uno, J., Sasaoka, K., Koyanagi, Y., et al. (2011). Intestinal yeast Candida glabrata requires CgYhr-mediated lactose assimilation to adapt in mouse intestine. PLoS ONE 6:e24779. doi: 10.1371/journal.pone.0024779

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 05 March 2013; accepted: 04 June 2013; published online: 20 June 2013.

Costa C, Henriques A, Pires C, Nunes J, Ohno M, Chibana H, Sá-Correia I and Tenreiro MC (2013) The dual role of Candida glabrata drug:H\(^+\) antiporter Qdr2p (YIF1086c) in fungal drug and acetic acid resistance. PLoS Microbiol. 4:170. doi: 10.1371/journal.pmi.2013.06.0070

This article was submitted to Frontiers in Microbial Physiology and Metabolism, a specialty of Frontiers in Microbiology. Copyright © 2013 Costa, Henriques, Pires, Nunes, Ohno, Chibana, Sá-Correia and Tenreiro. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.