Oral therapy with colonization factor antigen I prevents development of type 1 diabetes in Non-obese Diabetic mice

Andrew S. Nelson¹, Department of Infectious Diseases & Immunology, University of Florida, asnelson6034@ufl.edu
Massimo Maddaloni¹, Department of Infectious Diseases & Immunology, University of Florida, maddalonim@ufl.edu
Jeffrey R. Abbott², Department of Comparative, Diagnostic & Population Medicine, University of Florida, abbottj@ufl.edu
Carol Hoffman¹, Department of Infectious Diseases & Immunology, University of Florida, riccardic@ufl.edu
Ali Akgul¹, Department of Infectious Diseases & Immunology, University of Florida, aliakgul@ufl.edu
Christina Ohland³, Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Christina.Ohland@medicine.ufl.edu
Raad Z. Gharaibeh, Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, raad.gharaibeh@medicine.ufl.edu
Christian Jobin¹,³, Department of Infectious Diseases & Immunology; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Christian.Jobin@ufl.edu
Todd M. Brusko⁴, Department of Pathology, Immunology, & Laboratory Medicine, University of Florida Diabetes Institute, tbrusko@ufl.edu
David W. Pascual¹*, Department of Infectious Diseases & Immunology, University of Florida, pascuald@ufl.edu

*Correspondence: Address inquiries and requests to D.W.P. (email: pascuald@ufl.edu)

¹Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
²Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL, United States
³Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL, United States
⁴Department of Pathology, Immunology, & Laboratory Medicine, University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
Supplemental Table 1. Antibodies used for Flow Cytometry in LL-CFA/I Treg Studies.

Antibody specificity	Clone	Source	Dilution
CD19	EBio1D3	eBioscience	1/600
CD25	PC61.5	Biolegend	1/500
CD39	24DMS1	eBioscience	1/500
CD4	RM4-5	Biolegend	1/500
CD49B	HMa2	BD	1/400
CD8α	53-6.7	eBioscience	1/500
CTLA-4	UC10-4F10-11	BD	1/500
Foxp3	FJK-16s	eBioscience	1/250
IFN-γ	XMG1.2	BD	1/250
IL-10	JES5-16E3	eBioscience	1/250
Lag-3	C9B7W	Biolegend	1/400
PD-1	RMPI-30	eBioscience	1/500
Tbet	4B10	Biolegend	1/250
TCR-β	H57-597	Biolegend	1/500
TGF-β (Lap)	TW7-16B4	Biolegend	1/400
TIGIT	1G9	Biolegend	1/400
TNF-α	MP6-XT22	Biolegend	1/250

Summary of specificity, clone, and source of antibodies used in flow cytometry analysis.
Supplemental Table 2. Primer sequences for detection of cytokine-specific mRNA.

Gene Name	Primer	Size	Sequence (5'→3')
IL-6	F	23	TAGTCCTTCTACCCCAATTTC
	R	21	TTGGTCCTTGGCCTCTTC
TNF-α	F	23	CCCTCACACTCATCATCTCT
	R	19	GCTACGACGTGGGCTACAG
IL-10	F	21	GCTCTTACTGACTGACGAG
	R	20	CGCAGCTCTAGGAGCATGTG
IL-33	F	21	ACAGATATATGACTTACGGCG
	R	23	AAATGGACCCCTCTAAGCAAA
GAPDH	F	20	ACCACAGTCCATGCCATCAC
	R	19	TCCACCACCGGCTGTGCTGA
β-actin	F	22	ATCTACGAGGCTATGCTCTCC
	R	21	AGCCTCGGTCAGATCTCAT
Supplemental Figure 1. Negative controls for tetramer staining. Four wk-old NOD females were orally dosed with 5×10^7 CFUs of LL-CFA/I, LL vector, or PBS (n=5/group). Additional doses were given every 2 wks. At 11 wks of age, lymphocytes from the PaLNs were isolated and labeled with tetramers specific for (A) human CLIP or (B) TUM peptide.
Supplemental Figure 2. LL-CFA/I does not Induce Negative Regulators in NOD Mice

Four wk-old NOD females were orally dosed with 5x10^7 CFUs of LL-CFA/I, LL vector, or PBS (n=5/group). Additional doses were given every 2 wks. At 11 wks of age, Foxp3^+CD4^+ Tregs from the (A) spleens and (B) MLNs were examined for expression of PD-1, CTLA-4 and Tigit.

Supplemental Figure 2. LL-CFA/I does not induce negative regulators in NOD mice. Four wk-old NOD females were orally dosed with 5x10^7 CFUs of LL-CFA/I, LL vector, or PBS (n=5/group). Additional doses were given every 2 wks. At 11 wks of age, Foxp3^+CD4^+ Tregs from the (A) spleens and (B) MLNs were examined for expression of PD-1, CTLA-4 and Tigit.
Supplemental Figure 3. LL-CFA/I promotes regulatory environment in the gut. Eight week old BALB/c mice (n=9-14/group) were orally dosed with 2×10^9 CFUs of LL-CFA/I, LL-vector or PBS. After 1.5 hours, small intestines and Peyer’s Patches were collected. Expression of cytokines was analyzed as fold change against the PBS control group. *$p<0.05$, **$p<0.005$, and ***$p<0.0001$ for LL-CFA/I vs LL-vector.
Supplemental Figure 4. Mouse Microbiota are not Significantly Different Between Groups Before LL Treatments Begin. (A) Pair-wise comparisons of beta diversity post-treatment (11 weeks old). (B) Alpha diversity of pre-treatment samples at 4 weeks old. (C) PCoA plots of beta diversity in pre-treatment samples. NS, not significant.
Supplemental Figure 5. LL-CFA/I does not Induce Splenic IFN-γ⁺IL-10⁺ Foxp3⁺CD4⁺ Tr1 cells at 17 weeks

Supplemental Figure 5. LL-CFA/I does not Induce Splenic IFN-γ⁺IL-10⁺ Foxp3⁺CD4⁺ Tr1 cells at 17 weeks. Four wk-old NOD females were orally dosed with 5x10⁷ CFUs of LL-CFA/I, LL vector, or PBS (n=5/group). Additional doses were given every 2 wks from 6 to 16 weeks of age. (A) Splenocytes were stimulated with anti-CD3 and anti-CD28 mAbs and CD25⁺Foxp3⁺CD4⁺Tregs analyzed for expression of IFN-γ and IL-10.