Energy Efficiency and Sum Rate when Massive MIMO meets Device-to-Device Communication

Serveh Shalmashi*, Emil Björnson†, Marios Kountouris‡, Ki Won Sung*, and Mérouane Debbah†
*Dept. of Communication Systems, KTH Royal Institute of Technology, Stockholm, Sweden
†Dept. of Electrical Engineering (ISY), Linköping University, Linköping, Sweden
‡Mathematical and Algorithmic Sciences Lab, France Research Center, Huawei Technologies Co. Ltd.
Emails: {serveh,sungkw}@kth.se, emil.bjornson@liu.se, {marios.kountouris,merouane.debbah}@huawei.com

Abstract—This paper considers a scenario of short-range communication, known as device-to-device (D2D) communication, where D2D users reuse the downlink resources of a cellular network to transmit directly to their corresponding receivers. In addition, multiple antennas at the base station (BS) are used in order to simultaneously support multiple cellular users using multiuser or massive MIMO. The network model considers a fixed number of cellular users and that D2D users are distributed according to a homogeneous Poisson point process (PPP). Two metrics are studied, namely, average sum rate (ASR) and energy efficiency (EE). We derive tractable expressions and study the trade-offs between the ASR and EE as functions of the number of BS antennas and density of D2D users for a given coverage area.

I. INTRODUCTION

The research on future mobile broadband networks, referred to as the fifth generation (5G), has started in the past few years. In particular, stringent key performance indicators (KPIs) and tight requirements have been introduced in order to handle higher mobile data volumes, reduce latency, increase connectivity and at the same time increase energy efficiency (EE) [1], [2]. The current network and infrastructure cannot cope with 5G requirements—fundamental changes are needed to handle future non-homogeneous networks as well as new trends in user behavior such as high quality video streaming and future applications like augmented reality. 5G technology is supposed to evolve existing networks and at the same time integrate new dedicated solutions to meet the KPIs [2], [3]. The motivation behind our work is to study how the additional degrees of freedom resulting from high number of antennas in the BS can affect the ASR and EE of a multi-tier network where a D2D tier is bypassing the BS. We focus on the downlink since majority of the payload data and network energy consumption are coupled to the downlink [9]. We assume that each D2D pair is transmitting simultaneously with the BS in an underlay fashion. In addition, we assume that the communication mode of each user (i.e., D2D or cellular mode) has already been decided by higher layers.

A. Related Work

The relation between the number of BS antennas, ASR and EE in cellular networks has been studied in [6], [7], [11], [12] among others. The tradeoff between ASR and EE was described in [6] for massive MIMO systems with negligible circuit power consumption. This work was continued in [11] where radiated power and circuit power were considered. In [7], joint downlink and uplink design of a network is studied in order to maximize EE for a given coverage area. The maximal EE was achieved by having a hundred BS antennas and serving tens of users in parallel, which matches well with the massive MIMO concept. Furthermore, the study [12] considered a downlink scenario in which a cellular network has been overlaid by small cells. It was shown that by increasing the number of BS antennas, the array gain allows for decreasing the radiated signal energy while maintaining the same ASR. However, the energy consumed by circuits...
increases. Maximizing the EE is thus a complicated problem where several counteracting factors need to be balanced. This stands in contrast to maximization of the ASR, which is rather straightforward since the sum capacity is the fundamental upper bound.

There are only a few works in the D2D communication literature where the base stations have multiple antennas [13–17]. In [13], uplink MU-MIMO with one D2D pair was considered. Cellular user equipments (CUEs) were scheduled if they are not in the interference-limited zone of the D2D user. The study [14] compared different multi-antenna transmission schemes. In [15], two power control schemes were derived in a MIMO network. Two works that are more related to our work are [16] and [17]. The former investigates the mode selection problem in the uplink of a network with potentially many antennas at the BS. The impact of the number of antennas on the quality-of-service and transmit power was studied while users need to decide their mode of operation (i.e., D2D or cellular). The latter study, [17], only employs extra antennas in the network to protect the CUEs in the uplink.

The ASR in D2D communications is mostly studied in the context of interference and radio resource management [18], [19]. There are a few works that consider EE in D2D communications, but only for single antenna BSs, e.g., [20], [21], and [22], where the first one proposed a coalition formation method, the second one designed a resource allocation scheme, and the third one aimed at optimizing the battery life of user devices.

The degrees of freedom offered by having multiple antennas at BSs are very useful in the design of future mobile networks, because the spatial precoding enables dense multiplexing of users with little inter-user interference. In particular, the performance for cell edge users, which have almost equal SNR to several BSs, can be greatly improved since only the potential interference from other BSs and leave the multicell case for future work. We assume equal power allocation for both CUEs and D2D users. Let P_c denote the total transmit power of the BS, then the transmit power per CUE is $\frac{P_c}{U_c}$. The transmit power of the D2D Tx is denoted by P_d.

Let $h_{j} \in \mathbb{C}^{T_c \times 1}$ be the normalized channel response between the BS and the j-th CUE, for $j \in \{0, \ldots, U_c - 1\}$. These channels are modeled as Rayleigh fading such that $h_{j} \sim \mathcal{CN}(0, I)$, where $\mathcal{CN}(\cdot, \cdot)$ denotes a circularly symmetric complex Gaussian distribution. Linear downlink precoding is considered at the BS, based on the zero-forcing (ZF) scheme that mitigates interference between the CUEs [27]. The precoding matrix is denoted by $V = [v_0, \ldots, v_{U_c-1}] \in \mathbb{C}^{T_c \times U_c}$ in which each column v_j is a normalized precoding vector that is assigned to the CUE j in the downlink. Let $f_{0,BS} \in \mathbb{C}^{T_c \times 1}$ be the channel response from the BS to D2D Rx and let it be Rayleigh fading as $f_{0,BS} \sim \mathcal{CN}(0, I)$. Moreover, let $r_j \in \mathbb{C}$ and $s \in \mathbb{C}^{U_c \times 1}$ denote the transmitted data signals intended for a D2D Rx and the CUEs, respectively. Since each user requests a different data, the transmitted signals can be modeled as zero-mean and uncorrelated with $\mathbb{E}[|r_j|^2] = P_d$ and $\mathbb{E}[|s|^2] = P_c$. The fading channel response between the j-th D2D Tx and the k-th D2D Rx is denoted by $g_{k,j} \in \mathbb{C}$ where $g_{k,j} \sim \mathcal{CN}(0, 1)$. Moreover, $R_{0,BS}$ denotes the random distance between the typical D2D Rx and the BS. The pathloss is modeled as $A_0,d^{-\alpha_d}$ with $i \in \{c, d\}$, where index c indicates the pathloss between a user and the BS and index d corresponds to the pathloss between any two users. A_0 and α_i are pathloss coefficient and exponent, respectively. Perfect

![System model](image)
instantaneous channel state information (CSI) is assumed in this work for analytic tractability, but imperfect CSI is a relevant extension. The received signal at the typical D2D Rx is

\[
y_{d,0} = \sqrt{A_{0,d} R_{0,0}^{-\alpha_d/2}} g_{0,0} r_{0,0} + \sqrt{A_{0,c} R_{0,BS}^{-\alpha_c/2} P_H^{0,BS}} v_s + \sqrt{A_{0,d} \sum_{j \neq 0} R_{0,j}^{-\alpha_d/2}} g_{0,j} r_j + \eta_{d,0},
\]

where \(\eta_{d,0} \) is zero-mean additive white Gaussian noise with power \(N_0 = N_0 B_w \), \(N_0 \) is the power spectral density of the white Gaussian noise, and \(B_w \) is the channel bandwidth. Therefore, the signal-to-interference-plus-noise ratio (SINR) at the typical D2D Rx is

\[
\text{SINR}_{d,0} = \frac{P_d R_{0,0}^{-\alpha_d}}{I_{BS,0} + I_{d,0} + N_{0,d}}.
\]

in which both numerator and denominator have been normalized by \(A_{0,d} \), and

\[
I_{BS,0} = A_{0,c} P_c A_{0,d}^{-1} R_{0,BS}^{-\alpha_c} ||f_h^{0,BS} V||^2,
\]

\[
I_{d,0} = \sum_{j \neq 0} P_d R_{0,j}^{-\alpha_d} ||g_{0,j}||^2,
\]

where \(I_{BS,0} \) is the received interference power from the BS and \(I_{d,0} \) is the received interference power from other D2D users that transmit simultaneously.

Let \(D_{0,k} \) and \(e_{0,k} \in \mathbb{C} \) with \(e_{0,k} \sim \mathcal{CN}(0, 1) \) be the distance and fading channel response between a typical CUE and the \(k \)-th D2D Tx, respectively, and let \(D_{0,BS} \) denote the distance between a typical CUE and the BS. Then, the received signal at the typical CUE is

\[
y_{c,0} = \sqrt{A_{0,c} D_{0,BS}^{-\alpha_c/2}} f_h^{0,BS} V + \sqrt{A_{0,d} \sum_{j} D_{0,j}^{-\alpha_d/2}} e_{0,j} r_j + \eta_{c,0},
\]

where \(\eta_{c,0} \) is zero-mean additive white Gaussian noise with power \(N_0 \). Using the notation \(\zeta = A_{0,c} P_c A_{0,d}^{-1} \), the corresponding SINR for the typical CUE is

\[
\text{SINR}_{c,0} = \frac{||h^H_{0} v_0||^2}{A_{0,c} D_{0,BS}^{-\alpha_c/2} (I_{d,c} + N_0 \zeta)},
\]

where

\[
I_{d,c} = \sum_{j} P_d D_{0,j}^{-\alpha_d} ||e_{0,j}||^2
\]

is the received interference power from all D2D users.

III. PERFORMANCE ANALYSIS

A. Metrics

In this paper, two main performance metrics for the network are considered: the average sum rate (ASR) and energy efficiency (EE). The ASR is obtained from total rates of both D2D and cellular users as

\[
\text{ASR} = U_c \bar{R}_c + \pi R^2 \lambda_d \bar{R}_{d},
\]

where \(\pi R^2 \lambda_d \) is the average number of D2D users in the cell and \(\bar{R}_t \) with \(t \in \{c, d\} \) denotes the average rates of the CUEs and D2D users, respectively. To compute the ASR, we use the following lower bound on the average rate for both cellular and D2D users [29 Corollary 2]

\[
\bar{R}_t = \sup_{\beta_t \geq 0} B_w \log_2 (1 + \beta_t) \Pr \{|\text{SINR}_t | \geq \beta_t \},
\]

which corresponds to the successful transmission rate, and

\[
\text{P}_{\text{succ}} = \Pr \{|\text{SINR}_t | \geq \beta_t \}
\]

is the probability of coverage when the received SINR is higher than a specified threshold \(\beta_t \) needed for successful reception. Note that SINR contains random fading and random user locations. Finding the supremum guarantees the best rate for the D2D user or CUE. If we know the probability of coverage, the expression in [9] can easily be computed by using line search for each user type independently.

The EE is defined as the ratio between the ASR and the total consumed power, i.e.,

\[
\text{EE} = \frac{\text{ASR}}{\text{Total power}}.
\]

For the total power consumption, we consider a detailed model described in [7] as

\[
\text{Total power} = \frac{1}{\eta} \left(P_e + \lambda_d \pi R^2 P_d + C_0 + T_c C_1 + (U_c + 2 \lambda d \pi R^2) C_2 \right),
\]

where \(P_e + \lambda_d \pi R^2 P_d \) is the total transmission power, \(\eta \) is the amplifier efficiency (0 < \(\eta \leq 1 \)), \(C_0 \) is the load independent power consumption at the BS, \(C_1 \) is the power consumption per BS antennas, \(C_2 \) is the power consumption per handset, and \(U_c + 2 \lambda d \pi R^2 \) is the number of active users.

B. Probability of Coverage

In order to calculate the ASR and EE, we derive the probability of coverage for both cellular and D2D users. This is one of the main contributions of the paper. Due to the page limit, we only provide outlines of the proofs.

Proposition 1. The probability of coverage for a typical D2D user is given by

\[
\Pr_{\text{succ}}^{d2d} = \kappa(x)^{2/\alpha_c} \frac{\gamma^U_c + \frac{2}{\alpha_c} - 1}{2} \left[y^{U_c + \frac{2}{\alpha_c} - 1} - \frac{\gamma^U_c}{R^2} \right]
\]

\[
- \left(U_c + \frac{2}{\alpha_c} - 1 \right) \left(y^{U_c + \frac{2}{\alpha_c} - 1} - 1 - \frac{2}{\alpha_c} \right)
\]

\[
\cdot \exp \left(- \frac{\pi \lambda_d R^2 0,0 \beta_d^2}{\sin^2 \left(\frac{\beta_d}{\alpha_d} \right)} \right) \exp \left(- \beta_d \frac{N_0}{A_{0,d}} \right),
\]

where

- \(\gamma^U_c \) is the load independent power consumption at the BS.
- \(\kappa(x) \) is a function of the load independent power consumption at the BS.
- \(\alpha_c \) is the load independent power consumption per BS antennas.
- \(\alpha_d \) is the load independent power consumption per handset.
where $x \equiv \frac{R_0^{d_a}}{P_c}, \quad \kappa(x) \equiv \beta d x A_{0,d} P_c, \quad y \equiv \frac{1}{\kappa(x)R_{A,d} + 1} \quad \text{and} \quad B(y; a, b) \text{is the incomplete Beta function.}$

Proof: This result follows by substituting the definition of SINR$_d, 0$ from (2) into (10) where we obtain

$$
p_{d, 0}^{suc} = \Pr \left[|y_0|^2 \geq \frac{R_0^{d_a}}{P_c} \beta d \left(I_{B, 0} + I_{d, 0} + \frac{N_0}{A_{0, d}} \right) \right]$$

$$
\equiv E_{I_{B, 0}, I_{d, 0}, 0} \left\{ e^{-x(I_{B, 0} + I_{d, 0} + \frac{N_0}{A_{0, d}})} \right\},$$

$$
L_{I_{B, 0}, 0} (\beta_d x) e^{-\beta_d x \frac{N_0}{A_{0, d}}} \quad \text{and} \quad \mathbb{E}[e^{-gs}].$$

Proposition 2. The probability of coverage for a typical cellular user is given by

$$
P_{c}^{suc} = E_{D_{0, BS}} \left\{ e^{-s \frac{N_0}{A_{0, d}}} \sum_{k=0}^{T_c - U_c} \sum_{i=0}^{k} \frac{k!}{i!} \left(\frac{N_0}{A_{0, d}} \right)^{k-i} \right\}$$

$$
\cdot (-1)^i \frac{d^i}{ds^i} \exp \left\{ -\frac{\pi \lambda_d}{\sinh(\frac{\pi \lambda_d}{2})} (sP_d)^{\alpha_d} \right\},$$

where $s \equiv \frac{\lambda_d}{A_{0, d}^{\alpha_d}}$ and $\frac{d^i}{ds^i}$ stands for the i^{th} derivative.

Proof: Substituting SINR$_c, 0$ into (10), we get

$$
P_{suc}^{c} = \Pr \left\{ |h_0^H v_0|^2 \geq \frac{\beta_c}{\kappa} A_{0, d}^{\alpha_d} I_{d,c} + \frac{N_0}{A_{0, d}} \right\}$$

$$
\equiv E_{D_{0, BS}, I_{d,c}} \left\{ e^{-s(I_{d,c} + \frac{N_0}{A_{0, d}})} \sum_{k=0}^{T_c - U_c} \frac{k!}{i!} I_{d,c} + \frac{N_0}{A_{0, d}} \right\}$$

where (a) follows from the CCDF of $|h_0^H v_0|^2$ with $2|h_0^H v_0|^2 \sim \chi^2_{2(T_c-U_c+1)}$ given $D_{0, BS}$ and $I_{d,c}$. Taking the expectation with regard to the interference $I_{d,c}$ gives (15). \blacksquare

The expectation in (15) with respect to $D_{0, BS}$ can be computed numerically. The analytical results of Proposition 1 and Proposition 2 have been verified by Monte-Carlo simulations. A main benefit of the analytic expressions is that they can be computed efficiently, which basically is a prerequisite for the multi-variable system analysis carried out in Section IV.

Using the results from Proposition 1 and Proposition 2 we proceed to evaluate the network performance in terms of the ASR and EE from (8) and (11), respectively.

Description	Parameter	Value
D2D TX power	P_d	13 dBm
BS TX power	P_c	41 dBm
Number of CUE	U_c	4
Cell radius	R	500 m
Bandwidth	B_{ra}	20 MHz
Thermal noise power	N_0	-131 dBm
Noise figure in UE	F	5 dB
Carrier frequency	f_c	2 GHz
D2D pair distance	d_{D2D}	50 m
Pathloss exponent between devices	α_d	3
Pathloss exponent between BS-device	α_c	3.67
Pathloss coefficient between devices	A_d	38.84 dB
Pathloss coefficient between BS-device	A_c	30.55 dB
Amplifier efficiency	η	0.3
Load-independent power in BS	C_0	5 W
Power per BS antenna	C_1	0.5 W
Power per UE handset	C_2	0.1 W

IV. Numerical Results

In this section, we assess the performance of the setup in Fig. 1 in terms of ASR and EE using numerical evaluations. Both EE and ASR are functions of three key parameters, namely, the number of BS antennas T_c, the density of D2D users λ_d, and the number of cellular users U_c. Due to space limitations, we cannot show the individual effect of all parameters. Therefore, we fix the number of CUEs to $U_c = 4$ and study the tradeoffs among other parameters. The system and simulation parameters are given in Table I.

In Fig. 2, the behavior of ASR is shown with respect to different number of antennas T_c and the density of D2D users λ_d. It is observed that increasing the number of antennas always seems to increase the ASR. In contrast, for the ASR, there is an optimal value of the D2D density λ_d, which results in the maximum ASR for each number of antennas. However, there is a difference in the shape of the ASR in lower T_c values and higher T_c values. In order to clarify this effect, we plot the ASR versus λ_d in a 2-D plot with $T_c = \{4, 70\}$ in Fig. 3.

For $T_c = 4$, the rate contributed from CUEs to the sum rate is low and adding D2D users to the network (i.e. increasing λ_d), even though they create interference, leads to increasing ASR until a certain density. This increase in the ASR continues until a point where the cross-tier interference between D2D users limits per link data rate and results in decreasing ASR. By increasing the number of antennas to $T_c = 70$, the rates of the cellular users becomes higher. However, by introducing small number of D2D users, the effect of the initial interference from D2D users becomes visible, i.e. the decrease in the CUEs’ rates is not compensated in the ASR by the contribution of the D2D users’ rate. However, if we keep increasing the number of D2D users, even though the rate per link decreases for both CUE and D2D users, the resulting aggregate D2D rate becomes higher and the ASR starts to increase, which is the reason behind the local minima. The second turning point follows from the same reasoning as with $T_c = 4$, i.e. in higher D2D densities, the interference from D2D users are the limiting factor for the ASR. This effect can also be observed in...
Fig. 2. ASR [Mbit/s] as a function of D2D user density λ_d and BS antennas T_c.

Fig. 3 where the ASR performance is depicted versus different number of antennas for two D2D densities. At lower densities, increasing the number of antennas is beneficial in terms of ASR, however, in the interference-limited regime (higher λ_d), increasing the number of antennas does not impact the total network performance.

Fig. 4 shows the network performance in terms of EE versus the parameters λ_d and T_c. To study this results further, similar to the ASR, we first plot the EE versus λ_d for $T_c = \{4, 70\}$ in Fig. 5. We can see that the pattern for both lower and higher number of antenna is similar to Fig. 3. However, if we plot the EE versus T_c, we see a different behavior for low- and high-density D2D scenario. From Fig. 5, it is observed that indeed the low-density scenario benefits in terms of the number of antennas until the sum of the circuit powers for all antennas dominates the performance and leads to a gradual decrease in EE. As the figure implies, there exists an optimal number of antennas (T_c) for maximal EE in the low-density scenario. However, in high-density D2D scenario, which is an interference-limited scenario, the EE decreases almost linearly with T_c, as depicted in Fig. 3. Increasing the number of antennas in this region cannot improve the ASR much as shown in Fig. 4. Then, at the same time the circuit power resulting from higher number of antennas increases which in turn leads to poor network EE.

V. CONCLUSIONS

We studied the coexistence of two key 5G concepts: device-to-device (D2D) communication and massive MIMO. We considered two performance metrics, namely, average sum rate (ASR) in bit/s and energy efficiency (EE) in bit/Joule. We assumed that there is a fixed number of randomly distributed cellular user equipments (CUEs) in the network, while the number of D2D transmitters are distributed according to a Poisson point process (PPP). We derived tractable expressions for ASR and EE, and studied the tradeoff between the number of base station antennas and the density of D2D users with a fixed number of CUE for a given coverage area in the downlink. Our results showed that both ASR and EE have different behaviors in scenarios with low and high density of D2D users. By increasing the number of antennas in the low D2D density regime, the ASR improves, however, EE increases until the circuit power from many antennas becomes dominant. In the high D2D density regime, there is small gain in terms of the ASR from adding many antennas to the detriment of EE which decreases tremendously.

REFERENCES

[1] A. Osseiran et al., “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Trans. Commun., vol. 52, no. 5, pp. 26–35, May 2014.
[2] E. Björnson, E. Jorswieck, M. Debbah, and B. Ottersten, “Multi-objective signal processing optimization: The way to balance conflicting metrics in 5G systems,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 14–23, Nov. 2014.
[3] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.
[4] F. Rusek et al., “Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.
[5] E. Björnson, E. G. Larsson, and M. Debbah, “Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated?” submitted to IEEE Trans. Wireless Commun., 2014. [Online]. Available: [http://arxiv.org/abs/1412.7102](http://arxiv.org/abs/1412.7102]
[6] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1436–1449, Apr. 2013.
form optimality characterization of network-assisted device-to-device communications,” in Proc. IEEE Wireless Commun. Network. Conf. (WCNC), Istanbul, Turkey, Apr. 2014.

[17] L. Xingjin, R. W. Heath Jr., and J. G. Andrews, “The interplay between massive MIMO and underlaid D2D networking,” submitted to IEEE Trans. Wireless Commun., 2014. [Online]. Available: http://arxiv.org/abs/1409.2792

[18] S. Shalmashi, G. Xiao, and S. B. Slimane, “Interference management for multiple device-to-device communications underlaying cellular networks,” in Proc. IEEE Int. Symp. on Personal, Indoor, Mobile Radio Commun. (PIMRC), London, UK, Sep. 2013.

[19] M. Zulhasnine, S. Changcheng, and A. Srinivasan, “Efficient resource allocation for device-to-device communication underlaying LTE network,” in Proc. IEEE Int. Conf. on Wireless and Mobile Computing, Networking, and Commun. (WiMob), Niagara Falls, ON, Canada, Oct. 2010.

[20] E. Yaacoub and O. Kubbar, “Energy-efficient device-to-device communications in LTE public safety networks,” in Proc. IEEE Global Telecommun. Conf. Workshops, Piscataway, NJ, Oct. 2013.

[21] D. Gesbert, M. Kountouris, R. W. Heath, C. B. Chae, and T. Salzer, “Optimal resource allocation in coordinated multi-cell systems,” Foundations and Trends in Communications and Information Theory, vol. 9, no. 2-3, pp. 113-381, 2013.

[22] F. Wang, C. Xu, L. Song, Q. Zhao, X. Wang, and Z. Han, “Energy-efficient interference-aware resource allocation in LTE-D2D communication,” in Proc. IEEE Int. Conf. on Comm. (ICC), Budapest, Hungary, June 2013.

[23] R. Balderman et al., “Evolving wireless communications: Addressing the challenges and expectations of the future,” IEEE Veh. Technol. Mag., vol. 8, no. 1, pp. 24–30, Mar. 2013.

[24] E. Björnson and E. Jorswieck, “Optimal resource allocation in coordinated multi-cell systems,” Foundations and Trends in Communications and Information Theory, vol. 9, no. 2-3, pp. 113-381, 2013.

[25] D. Gesbert, M. Kountouris, R. W. Heath, C. B. Chae, and T. Salzer, “Shifting the MIMO paradigm,” IEEE Signal Process. Mag., vol. 24, no. 5, pp. 36-46, Sep. 2007.

[26] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge University Press, 2013.

[27] E. Björnson, M. Bengtsson, and B. Ottersten, “Optimal multistage transmit beamforming: A difficult problem with a simple solution structure [lecture notes],” IEEE Signal Process. Mag., vol. 31, no. 4, pp. 142–148, Jul. 2014.

[28] N. Lee, X. Lin, J. G. Andrews, and R. W. Heath Jr., “Power control for D2D underlaid cellular networks: Modeling, algorithms and analysis,” IEEE J. Sel. Areas Commun., 2014.

[29] Q. Ye, M. Al-Shalash, C. Caramanis, and J. G. Andrews, “A tractable model for optimizing device-to-device communications in downlink cellular networks,” in Proc. IEEE Int. Conf. on Comm. (ICC), Sydney, Australia, June 2014.

[30] H. S. Dhillon, M. Kountouris, and J. G. Andrews, “Downlink MIMO HetNets: Modelling, ordering results and performance analysis,” IEEE Trans. Wireless Commun., vol. 12, no. 10, pp. 5208–5222, Oct. 2013.

Fig. 6. EE [Mbit/Joule] as a function of D2D user density λ_d for $T_c = \{4, 70\}$.

Fig. 7. EE [Mbit/Joule] as a function of BS antennas T_c for $\lambda_d = \{10^{-6}, 10^{-4}\}$.