How to Increase the Efficacy of Immunotherapy in NSCLC and HNSCC: Role of Radiation Therapy, Chemotherapy, and Other Strategies

Valerio Nardone 1, Pierpaolo Pastina 1, Rocco Giannicola 2, Rita Agostino 3, Stefania Croci 1, Paolo Tini 1,3, Luigi Pirtoli 4, Antonio Giordano 4,5, Pierosandro Tagliaferri 6,7 and Pierpaolo Correale 2,8

1 Radiation Oncology Unit, University Hospital of Siena, Siena, Italy, 2 Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi Melacrinio Morelli”, Reggio Calabria, Italy, 3 Sbarro Health Research Organization, Temple University, Philadelphia, PA, United States, 4 Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States, 5 Department of Medicine, Surgery and Neurosciences University of Siena, Siena, Italy, 6 Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy, 7 Medical Oncology Unit, Azienda Ospedaliero – Universitaria “Mater Domini”, Catanzaro, Italy

Keywords: NSCLC, radiation therapy, immunotherapy, HNSCC, chemotherapy

An extraordinary large amount of strategies potentially able to elicit and empower an efficient anti-tumor immune-response in cancer patients, has already been described (1). However, a number of hurdles have delayed the translation of these results in efficacious treatments for many years leaving the immunological treatments confined to malignant melanoma and renal cell carcinoma (2, 3). In the latter few years, the discovery of priming (CTLA-4/B7.1) and effector (PD-1/PDL-1) immune-checkpoints and the availability of highly specific blocking mAbs has lead to a terrific clinical development of the immune-oncology approaches. Some of these mAbs, especially those directed to PD-1 (Nivolumab and Pembrolizumab) expressed on activated CTLs, or PDL-1 (Atezolizumab, Durvalumab, and Avelumab) expressed on inflammatory and cancer cells, have in fact, gained a stable role in the treatment of very common malignancies such as non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma (HNSCC), and urological malignancies, where they are capable of producing significant benefit to many patients and prolonging their survival in about a quarter of the cases (4). Even though this kind of strategy is considered quite successful, it is however, hampered by the fact that its efficacy is unpredictable and is associated to immune-related adverse events (irAEs) and unsustainable costs. At the present, the identification of reliable biomarkers of response to immune-oncology treatments as well as the design of combined strategies to enhance their efficacy and field of action represent one of the mainstream immune-oncology research lines. PD-1/PDL-1 is a peripheral immune-checkpointaimed to attenuate the cytotoxic response of tumor-specific infiltrating lymphocytes. Thus, its blockade by anti PD-1 (Nivolumab and Pembrolizumab) or anti PDL-1 mAbs (Atezolizumab, Durvalumab, and Avelumab) rescues these CTLs and triggers a fast cytolytic effect in the tumor tissue (5). This effect may trigger a rapid antitumor effect; nevertheless this renewed CTL reaction is not sufficient alone to prolong patients’ survival. In fact the antitumor activity of these reactivated cells, is more or less rapidly extinguished if a continuous and self-sustained supply of fresh tumor-specific immune-effectors does not occur (immunoprimer) (6). Experimental evidence suggests in fact, the achievement of a prolonged patient survival requires a continuous immune-priming, in order to avoid CTL exhaustion in the tumor and to prevent an adaptive response by the tumor cells (7, 8). In this context, CTLA-4/B7.1 immune-check point, acts by attenuating the proliferative activity of antigen specific CTL clones, expressing CTLA-4 and by stimulating the immune-suppressive activity of immune-regulatory
The figure describes the critical mechanisms involved in three phases of the immune-response against cancer and available drugs and strategies which may improve its efficacy. **Upper row**: Specific cell lineages, molecular structures and immune-checkpoints involved in immunopriming process (A), T cell Homing (B), and modulation of CTL mediated Tumor cell killing (C). **Bottom row**: Strategies (AKA radiation therapy), cytotoxic Drugs, cytokines and Immuno-checkpoint inhibitors (Continued)
T cells (T\(_{reg}\)). Its blockade by Ipilimumab and Tremelimumab, two mAbs to CTLA-4, represents a valid therapeutic option for both metastatic malignant melanoma and renal cell carcinoma and is under clinical investigation in combination with effector PD1/PDL-1 immunocheckpoint blockade (9–12). An efficient Immune-priming however, requires the expression of multiple tumor associate (TAAs) and tumor specific antigens (TSAs) by cancer cells, released as consequence of cancer-associated inflammation, necrosis, previous use of cytotoxic drugs or radiation therapy (13). A number of studies have shown that the efficacy of both immune-effectors and antigen cross-priming may be hardened by cancer vaccines, specific anticancer treatments (radiotherapy, chemotherapy, steroid hormones, and immune-adjuvant agents), hypoxic response and/or tumor associated inflammation (14, 15) (Figure 1).

Radiation therapy in particular, together with its direct cytoreductive activity on tumor burden is also capable of eliciting radio-induced DNA damage on target cells and triggering specific immunological effects (16) which are believed to be responsible for the “abscopal effects” observed in those rare cases, where tumor irradiation is paralleled by regression of non-irradiated tumor sites (17, 18). This hypothesis is in line with the results of a large number of studies showing that tumor irradiation may really influence all the phases of the immune-response. Tumor irradiation may in fact, trigger immunogenic cell death, and significant release of TAAs and TSAs in a context of immunological danger signal. The latter is consequent to DNA damage by radiation which is able to activate of Damage-Associated-Molecularbiochemical Patterns (DAMP) which in turn are able of enhancing tumor antigens presentation to CTL precursors and their proliferation in the draining lymph-nodes (19). Furthermore, the irradiated-tumor cells release inflammatory cytokines, chemokines (such as CXCL16) and tumor vessel associated adhesion molecules (VCAM-I and ICAM-I) able to reinforce the presence of activated CTLs in tumor sites (19–21). Finally, strong evidence does exists concerning the ability of radiation therapy to induce up-regulation of class I MHC, multiple death receptors (e.g., FAS, NKG2DL) in the target cells thus enhancing their susceptibility to recognition and killing by tumor specific CTLs (19). Clinical

TABLE 1 | Ongoing trials testing immunotherapy (IT) in combination with radiation therapy (RT) in patients with NSCLC or HNSCC.

NCT number	Study phase	Disease stage	Trial design (Experimental arm)	Estimated primary completion date
NCT03391869	Phase 3	Metastatic NSCLC	Local Consolidation Therapy (RT or surgery) after Nivolumab and Ipilimumab (LONESTAR)	December, 2022
NCT03523702	Phase 2	Locally Advanced NSCLC	Selective Personalized Radio-Immunotherapy for Locally Advanced NSCLC Trial (SPRINT)	August, 2020
NCT03176173	Phase 2	Metastatic NSCLC	Radical-Dose Image Guided Radiation Therapy in Treating Patients with Metastatic NSCLC undergoing IT	June, 2020
NCT03110978	Phase 2	Stage I, selected IIa or isolated recurrent NSCLC	Immunotherapy Plus Stereotactic Ablative Radiotherapy (I-SABR) vs. SABR Alone	June, 2022
NCT03164772	Phase 2	Metastatic NSCLC	Safety and preliminary efficacy of the addition of a vaccine therapy to 1 or 2 checkpoint inhibitors for NSCLC	March, 2021
NCT03313804	Phase 2	HNSCC and NSCLC undergoing IT	Short-course radiation to a single systemic (non-CNS) site within 14 days of the beginning of IT	June, 2018
NCT02999087	Phase 3	Locally advanced HNSCC front-line	Avelumab and Cetuximab plus RT vs Cetuximab-RT and Cisplatin-RT	October, 2019
NCT03085719	Phase 2	Advanced HNSCC after first line therapy	Immunotherapy (Pembrolizumab) in combination with high dose and low dose radiation therapy	October, 2020
NCT03317327	Phase 1/2	Recurrent HNSCC	Re-irradiation and Nivolumab in loco-regionally recurrent HNSCC	November, 2023
NCT03247309	Phase 1	Recurrent HNSCC and NSCLC	TOR-engineered T Cells In Solid Tumors With Emphasis on NSCLC and HNSCC (ACT engine)	December, 2019
NCT02892201	Phase 2	HNSCC with residual disease	Pembrolizumab after RT in patients with residual disease (biopsy proven)	December, 2018
NCT03247712	Phase 1/2	HNSCC before surgery	Test the safety of neoadjuvant immune-radiotherapy to down-staging HNSCC prior to surgical resection	December, 2025
evidences in line with these preclinical results have also been reported.

An ablational response to radiation was recorded in metastatic NSCLC patients who were receiving immunological treatment with ipilimumab (22). We recently carried out a retrospective analysis in advanced NSCLC patients enrolled in the BEVA2017, who had received an immune-modulating treatment with metronomic chemotherapy (mPE) /– bevacizumab (mPEBev) reporting that that the use of radiotherapy given on palliative setting, was associated to a prolonged survival and that this effect was indeed correlated to a significant treatment-related increase in activated DCs and effector memory CTLs (23). Similarly, in a retrospective analysis of the KEYNOTE-001 phase I study aimed to investigate Pembrolizumab in a cohort of 495 patients advanced NSCLC patients, it has been detected a much longer PFS and OS in a group of 97 patients who had received radiation therapy prior immunotherapy (24). Finally, a perspective randomized phase III study in un-resectable lung stage III cancer patients aimed to receive chemoradiation followed by Durvalumab or placebo for 12 months (PACIFIC) reported a significant advantage in PFS in the experimental arm, which was unrelated to PDL-1 expression in the tumor (25).

In HNSCC, the immune system is known to have a pivotal role, as high density of tumor-infiltrating lymphocytes (TILs) is associated with improved outcome of patients (26, 27) while tumor tissues and draining lymph-nodes respectively, present a high density of CTLs expressing PD-1 and regulatory T_{reg} over-expressing CTLA-4; a finding that clearly suggests a high suppressive activity of either peripheral and central immune-checkpoints in these patients (28).

Based on this solid rationale, PD-1 blockade with Nivolumab, Pembrolizumab, and Durvalumab represented a concrete option for the treatment of recurrent or metastatic HNSCC to be investigated. At the present, the results of three large trials in HNSCC patients on or after frontline platinum-based chemotherapy, concur to show a median overall response rate of 11.3–18%, with a median time to progression of 9.7 months and a 32% reduced risk of death at 1 year of (29–33). These encouraging results led to the design of a number of clinical trials which are currently ongoing with the specific aim of combining tumor irradiation with immunological agents and/or immune-checkpoint blockade in patients with advanced HNSCC (see Table 1).

On these premises, a rationale use of radiation therapy may be included among the various strategies that could potentially increase the efficacy of immunotherapy at different disease settings. We believe that more successful immune-oncological trials should take in consideration this knowledge to improve their benefit NSCLC and HNSCC patients.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

REFERENCES

1. Correale P, Cusi MG, Micheli L, Nencini C, Del Vecchio MT, Torino F, et al. Chemo-immunotherapy of colorectal carcinoma: preclinical rationale and clinical experience. *Invest New Drugs* (2006) 24:99–110. doi: 10.1007/s10637-006-9932-7

2. Bukowsi RM. Natural history and therapy of metastatic renal cell carcinoma: the role of interleukin-2. *Cancer* (1997) 80:1189–220.

3. Sanlorenzo M, Vujic I, Carnevale-Schianca F, Quaglino P, Gammaitoni L, Fierro MT, et al. Role of interferon in melanoma: old hopes and new perspectives. *Expert Opin Biol Ther.* (2017) 17:475–83. doi: 10.1080/14712598.2017.1289169

4. Rosenberg SA. Decade in review—cancer immunotherapy: entering the mainstream of cancer treatment. *JAMA Oncol* (2015) 1:1325–32. doi: 10.1001/jamaoncol.2015.1744

5. Disis ML. Mechanism of action of immunotherapy. *Semin Oncol* (2014) 41 (Suppl. 5):S3–13. doi: 10.1053/j.seminoncol.2014.09.004

6. Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer. *Annu Rev Immunol* (2015) 33:445–74. doi: 10.1146/annurev-immunol-032414-112043

7. Shahabi V, Postow MA, Tuck D, Wolchok JD. Immune-priming of the tumor microenvironment by radiotherapy: rationale for combination with immunotherapy to improve anticancer efficacy. *Am J Clin Oncol* (2015) 38:90–7. doi: 10.1097/COC.0b013e318286e48

8. Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. *JAMA Oncol* (2015) 1:1325–32. doi: 10.1001/jamaoncol.2015.2766

9. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. *N Engl J Med.* (2015) 372:2006–17. doi: 10.1056/NEJMoa1414428

10. Antonia SJ, LÓpez-Martín JA, Bendell J, Ott PA, Taylor M, Eder J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. *Lancet Oncol.* (2016) 17:883–95. doi: 10.1016/s1470-2045(16)30098-5

11. Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, et al. Safety and Efficacy of Nivolumab in Combination With Ipilimumab in Metastatic Renal Cell Carcinoma: The CheckMate 016 Study. *J Clin Oncol.* (2017) 35:3851–8. doi: 10.1200/JCO.2016.72.1985

12. Planchard D, Yokoi T, McCleod MJ, Fischer JR, Kim YC, Ballard M, et al. A phase III study of durvalumab (MEDI4736) with or without tremelimumab for previously treated patients with advanced NSCLC: rationale and protocol design of the ARCTIC study. *Clin Lung Cancer.* (2016) 17:232–236.e11. doi: 10.1016/j.cllc.2016.03.003

13. Barker CA, Postow MA. Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes. *Int J Radiat Oncol Biol Phys.* (2014) 88:986–97. doi: 10.1016/j.ijrobp.2013.08.035

14. Ladoire S, Hannani D, Vetizou M, Lachter C, Aymeric L, Apeotho L, et al. Cell-death-associated molecular patterns as determinants of cancer immunogenicity. *Antioxid Redox Signal.* (2014) 20:1098–116. doi: 10.1089/ars.2012.5133

15. Correale P, Botta C, Basile A, Pagliuchi M, Licchetta A, Martellucci L, et al. Phase II trial of bevacizumab and dose/dense chemotherapy with cisplatin and metronomicdailylivoraletesiposide in advanced non-small-cell-lung-carcinoma patients. *Cancer Biol Ther.* (2011) 12:112–8. doi: 10.4161/cbt.12.2.15722

16. Obeid M, Tesniere A, Ghiringhelli F, Finiia GM, Apeotho L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. *Nat Med.* (2007) 13:54–61. doi: 10.1038/nm1523

17. Mole RH. Whole body irradiation: radiobiology or medicine? *Br J Radiol.* (1953) 26:234–41. doi: 10.1259/0007-1285-26-302-234

18. Demaria S, Ng R, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect)
is immune mediated. *Int J Radiat Oncol Biol Phys.* (2004) 58:862–70. doi: 10.1016/j.ijrobp.2003.09.012

19. Levy A, Chargari C, Marabelle A, Perfettini JL, Magéné N, Deutsch E. Can immunostimulatory agents enhance the abscopal effect of radiotherapy? *Eur J Cancer* (2016) 62:36–45. doi: 10.1016/j.ejca.2016.03.067

20. Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect. *Curr Prob Cancer.* (2016) 40:25–37. doi: 10.1016/j.currproblcancer.2015.10.001

21. Baird JR, Monjazeb AM, Shah O, McGee H, Murphy WJ, Crittenden MR, et al. Stimulating innate immunity to enhance radiation therapy-induced tumor control. *Int J Radiat Oncol Biol Phys.* (2017) 99:362–73. doi: 10.1016/j.ijrobp.2017.04.014

22. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. *Cancer Immunol Res.* (2013) 1:365–72. doi: 10.1158/2326-6066.CIR-13-0115

23. Pastina P, Nardone V, Botta C, Croci S, Tini P, Battaglia G, et al. Radiotherapy prolongs the survival of advanced non-small-cell lung cancer patients undergone to an immune-modulating treatment with dose-fractioned cisplatin and metronomic etoposide and bevacizumab (mPEBev). *Oncotarget* (2017) 8:75904–13. doi: 10.18632/oncotarget.20411

24. Shaverdian N, Lisberg AE, Bornazyan K, Veruttipong D, Goldman JW, Formenti SC, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. *Lancet Oncol.* (2017) 18:895–903. doi: 10.1016/S1470-2045(17)30380-7

25. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. *N Engl J Med.* (2017) 377:1919–29. doi: 10.1056/NEJMoai 709937

26. Shaverdian N, Lisberg AE, Bornazyan K, Veruttipong D, Goldman JW, Formenti SC, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. *Lancet Oncol.* (2017) 18:895–903. doi: 10.1016/S1470-2045(17)30380-7

27. Ward MJ, Thirdorough SM, MelloWS, T, Riley C, Harris S, Suchak K, et al. Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer. *Br J Cancer* (2014) 110:489–500. doi: 10.1038/bjc.2013.639

28. Zandberg DP, Strom SE. The role of the PD-L1:PD-1 pathway in squamous cell carcinoma of the head and neck. *Oral Oncol.* (2014) 50:627–32. doi: 10.1016/j.oraloncology.2014.04.003

29. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. *N Engl J Med.* (2016) 375:1856–67. doi: 10.1056/NEJMoa1602252

30. Seiwert TY, Burtner S, Mehrer R, Weiss J, Berger R, Eder JP, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase Ib trial. *Lancet Oncol.* (2016) 17:956–65. doi: 10.1016/S1470-2045(16)30066-3

31. Chow LQM, Haddad R, Gupta S, Mahipal A, Mehrer S, Tahara M, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. *J Clin Oncol.* (2016) 34:3838–45. doi: 10.1200/JCO.2016.68.1478

32. Baum L, Seiwert TY, Pfister DG, Worden F, Liu SV, Gilbert J, et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. *J Clin Oncol.* (2017) 35:1542–9. doi: 10.1200/JCO.2016.70.1524

33. Segal NH, Ou SI, Balmanoukian AS, Massarelli E, Brahmer JR, Weiss J, et al. Updated safety and efficacy of durvalumab (MEDI4736), an anti-PD-L1 antibody, in patients from a squamous cell carcinoma of the head and neck (SOCCHN) expansion cohort. *Ann Oncol.* (2016) 27(Suppl. 6):949. doi: 10.1093/annonc/mdw376.01

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.