Estimating methane emission from solid waste landfill using various different methods

R Mahful and S Managi
Kyushu University, Japan

rmahful@gmail.com

Abstract. Solid waste management is one of biggest problems for big cities in Indonesia. Currently, open dumping method is applied for managing the waste generated and produces methane emission as one of potential global warming gases. This paper examined the methane that generated by Benowo landfill in Surabaya and Antang landfill in Makassar. Four methods were applied, namely IPCC default method, zero order, landGEM, and Order decay method. The result showed that methane emission quantity generated by these two landfills was significantly influenced by two local climate parameters: temperature and rainfall intensity. In addition, the analysis method used was also contributing to the volume of methane emission emitted.

1. Introduction
As a developing country, Indonesia has a main problem in waste management particularly municipal organic waste. This typical waste is predicted to increase in yearly basis align with the population growth. The Indonesian Statistical Bureau (2015) revealed that Surabaya city with 2,870,200 inhabitants generated 539,342.25 tons of waste while Makassar city with 1,369,606 populations generated 1,632,045 tons of waste. These figures indicate that the ratio between waste and residents in Surabaya and Makassar cities were 0.19 ton/person and 1.19 ton/person respectively and it increases every year. The waste management issues can be found globally particularly in Southeast Asia [1]. In addition, [2] and [3] noted that the waste management study is the most crucial issue that should be considered.

Methane (CH₄), Hydrogen Sulphide (H₂S), and Carbon dioxide (CO₂) are three main gasses that generated from organic waste landfill. These gasses contribute to the global warming and should be managed properly. There are three tools that can be used to calculate those gasses emissions from landfill operations, namely IPCC, CLEEN Model, and Land GEM [4, 5]. Zero and order-decay method are used as the basic reference.

The aim of this study is to calculate the Greenhouse Gasses (GHG) emission that generated by two landfills in Indonesia, namely Benowo landfill in Surabaya and Antang landfill in Makassar. Four methods that used are as follows: zero order, IPCC method and First Order, LandGEM Software.

2. Materials and methodology

2.1. The landfill site
Two landfills in Indonesia were investigated in this paper. One is located in Surabaya and another one
is located in Makassar. Both of the landfills are managed the huge amount of municipal waste. Therefore, these two landfills are suitable to be used as a case study to determine and evaluate the feasibility of landfill energy projects.

2.1.1. Benowo Landfill (LF 1). LF 1 is ± 37.4 hectares in size and its final height will be between 5 – 12 m. The Benowo landfill has been operating since November 2001 and manages all wastes generated by Surabaya city. The LF1 closure plan is predicted on 2030. The total municipal waste that managed by LF1 is approximately 539 thousand tons per year as shown in table 1.

Year	Quantity (ton/year)
2003	204,000.00
2004	335,618.50
2005	467,237.00
2006	598,855.50
2007	540,200.00
2008	459,425.50
2009	448,741.95
2010	463,779.05
2011	478,816.14
2012	493,853.24
2013	508,890.33
2014	531,403.50
2015	539,342.25

Source: central bureau of statistic, Indonesia

Table 1. Quantity of solid waste disposed into Benowo landfill.

2.1.2. Antang Landfill (LF 2). LF 2 is ± 14.3 hectares in size and its final height will be between 5 – 12 m. Most of the areas have been capped and almost reach its final design capacity. Antang landfill was operated in 1993 and covers all wastes generated by Makassar city. The LF2 closure stage is planned on 2032 with total wastes disposed on 2015 were 1.6 million tons as shown in table 2.

Year	Quantity (ton)
2003	1,027,495
2004	1,077,874
2005	1,128,254
2006	1,178,633
2007	1,229,012
2008	1,279,391
2009	1,329,770
2010	1,380,149
2011	1,432,085
2012	1,480,907
2013	1,531,287
2014	1,581,666
2015	1,632,045

Source: central bureau of statistic, Indonesia

Table 2. Quantity of solid waste disposed into Antang Landfill.

2.2. Landfill gas generation model

Two methods were used in this study for estimating the emission rates of total landfill gas generated by municipal solid waste landfill. These methods are Landfill Gas Emission Model (LandGEM)
software and Default Model that developed by The United State Environmental Protection Agency (US EPA) and IPCC respectively. The model determines the mass of methane generated by using the methane generation capacity and the mass of dumped waste. Table 3 shows the comparison of CHG emission estimation methods.

Table 3. Comparison of CHG emission estimation methods.

Features	Methodology	
Reaction Kinetics	Default method zero order	LandGEM first order
Model equation	\(Q_{CH_4} = \left(\frac{MSW_i \times MSW_f \times MCF \times DOC \times DOC_f \times F \times 16}{12 - R} \times (1 - 0.5) \right) \)	\(Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0.1}^{n} K_{Lo} \left(\frac{M_i}{10} \right) e^{-KT_{ij}} \)

Where \(Q_{CH_4} \): annual \(CH_4 \) generation (Gg/yr.); MSWT: total MSW generated (Gg/yr); MSW\(_c\): Fraction of MSW disposed at SWDS (generally 80%); MCF: \(CH_4 \) correction factor (fraction); DOC: Degradable organic carbon\((CGgMSW) \); DOC\(_c\): Fraction DOC dissimilated; F: Fraction by volume of \(CH_4 \) in Landfill gas; R: recovered \(CH_4 \) (Gg/yr.); OX: oxidation factor (fraction).

The study initiated by EPA defines the electricity generation potential from landfill between 75-85% of the total methane produced. With the calorific value of methane is 4.5 kWh/year then the formula to estimate the potential electricity as shown in equation (1).

\[
Electricity \ per \ year = \frac{CH_4 \, generation}{year} \times 75\% \times 4.5kWh
\] (1)

The \(CH_4 \) generation rate constant (K) is the rate of waste decay and It can be calculated by using the equation (2).

\[
K = 3.2 \times 10^{-5} (R) + 0.01
\] (2)

Where \(R \) is an average annual precipitation in mm. Value of \(K \) for Benowo and Antang landfills are presented in table 4 and some assumptions made for Benowo and Antang landfills are shown in table 5.

Table 4. K values for Benowo and Antang landfills.

Location	Average precipitation (mm/year)	K (year\(^{-1}\))
Benowo	141.1 mm	0.01
Antang	22,186.0 mm	0.08

Table 5. Assumption made for Benowo and Antang landfills.

Model parameter	Benowo Landfill	Antang Landfill		
	IPCC Default Method	LandGEM Method	IPCC Default Method	LandGEM Method
Methane Correction factor (MCF)	0.4	-	0.4	-
Fraction of CH4 in landfill gas (F)	0.5	0.5	0.5	0.5
3. Result and discussion

Based on the characteristics, Benowo landfill is located in arid area with the low annual precipitation and high temperature as presented in table 6. These two parameters resulted in the L_0 difference of Antang and Benowo landfills. Therefore, the data analysis used different reference LandGEM where Antang landfill use CAA Conventional and Benowo landfill uses CAA Arid Area.

Table 6. Operational parameters of Benowo and Antang Landfills, Indonesia.

Features	Detail
Location: Latitude	7°13’9.70” S
	112°37’52.18 T
Longitude	
Year of start	2001
Year of closure	2032
Area (Ha)	37.4
Annual precipitation	141.1 mm
Temperature (c)	35
	5°10’36.02” S
	119°29’25.35” T
	2030
	14.3
	2186 mm
	27

In this study, the CH_4 emission calculation for Antang and Benowo Landfills showed the differences result between IPCC Default method and LandGEM. The result generated by IPCC was 20 times higher than LandGEM. The similar result was also shown in [1], when the author calculated CH_4 emission from open dump site in Kapur, India. The author found that the difference due to the elimination of temperature and rainfall fall parameters from the analysis. However, this study was considering use the higher result of CH_4 Produced to manage the risks that might occurred properly.

CH_4 emission generated by Benowo Landfill using LandGEM showed that it increased in yearly bases until the landfill closure period. In addition, the analysis indicated that the estimation was two times higher compared to IPCC calculation. The result also showed that methane emission generated by landfill in arid area was higher compared to landfill in other areas. The calculation of methane emission using various methods is presented in table 7 and figure 1 and figure 2.

Table 7. CH_4 emission from Benowo and Antang Landfills using various models.

Year	Waste quantity (mg/year)	Benowo IPCC(Default Method)	Antang IPCC(Default Method)	Benowo LandGEM	Antang LandGEM				
2004	305,108	9,021.12	318,996.40	458.6	5,180				
2005	424,761	12,558.91	304,215.70	1,135.0	10,360				
2006	544,414	16,914.97	318,434.40	2,068.0	15,540				
2007	491,091	15,573.15	332,653.20	3,251.0	20,730				
Year	Waste quantity (mg/year)	Benowo	Antang	IPCC(Default Method)	IPCC(Default Method)	Benowo	Antang	Land GEM	Land GEM
-------	--------------------------	--------	--------	----------------------	-----------------------	--------	--------	----------	----------
2008	417,660	1,163,083	13,244.54	346,872.30	4,290.0	25,910			
2009	407,947	1,208,882	12,936.55	361,091.10	5,144.0	31,100			
2010	421,617	1,254,681	12,150.29	29,815.42	6789.0	41,470			
2011	435,287	1,301,895	12,544.24	31,365.01	7,633.0	51,860			
2012	448,957	1,346,279	12,938.19	32,777.35	8,491.0	57,050			
2013	462,628	1,392,079	13,332.13	74,907.72	9,363.0	62,240			
2014	483,094	1,437,878	13,921.94	74,907.72	10,260.0	67,430			
2015	490,311	1,483,677	14,129.93	80,004.33	11,160.0	72,210			
2016	489,784	1,454,126	14,114.73	82,552.62	11,160.0	67,430			
2017	493,163	1,470,557	14,212.12	242,725.10	12,040.0	72,210			
2018	496,566	1,487,175	14,310.18	409,113.10	12,910.0	76,840			
2019	499,992	1,503,980	14,408.93	579,230.70	13,770.0	81,340			
2020	503,442	1,520,975	14,508.35	753,140.60	14,620.0	85,710			
2021	506,916	1,538,162	14,608.45	930,906.90	15,470.0	89,960			
2022	510,414	1,555,544	14,709.25	1,112,595.00	16,300.0	94,110			
2023	513,936	1,573,121	14,810.75	1,298,270.00	17,130.0	98,140			
2024	517,482	1,590,897	14,912.94	1,487,999.00	17,940.0	102,100			
2025	521,052	1,608,875	15,015.84	1,681,850.00	18,750.0	105,900			
2026	524,648	1,627,055	15,119.45	1,879,893.00	19,550.0	109,700			
2027	528,268	1,645,440	15,223.77	2,082,196.00	20,340.0	113,400			
2028	531,913	1,664,034	15,328.82	2,288,830.00	21,130.0	116,900			
2029	535,583	1,682,837	15,434.59	2,499,870.00	21,900.0	120,500			
2030	539,279	1,701,854	15,541.08	2,715,386.00	22,670.0	123,900			
2031	543,000	-	15,648.32	-	23,440.0	-			
2032	546,746	-	15,756.29	-	24,190.0	-			

Figure 1. CH₄ emission calculation at Benowo landfill.
Figure 2. CH₄ emission calculation at Antang landfill.

Waste management is required to minimize the CH₄ emission environmental impact. Application of proper waste management system including sanitary landfill method would assist the CH₄ emission reduction from landfill area.

4. Conclusions
The study shows that temperature and rainfall intensity are two main parameters for estimating CH₄ emission from landfill. These two parameters resulted in high methane emission emitted by Antang and Benowo landfill. In addition, the calculation method used is also contributing to the analysis results. IPCC and LandGEM method generate different results in estimating CH₄ emission from Benowo and Antang landfill. The difference occurred due to temperature and rainfall intensity variation.

Acknowledgement
The author is thankful to Lembaga Pengelolaan Dana Pendidikan (LPDP) for providing financial during my master of urban and environmental engineering in Kyushu University.

References
[1] Kaushal A and Sharma M P 2016 Methane Emission from Panki Open Dump Site of Kanpur, India Procedia Environmental Sciences vol 35 pp 337-47
[2] Meidiana C and Gamse T 2010 Development of waste management practices in Indonesia European journal of scientific research vol 40 no 2 pp 199-210
[3] Kawai M, Purwanti I F, Nagao N, Slamet A, Hermana J and Toda T 2012 Seasonal variation in chemical properties and degradability by anaerobic digestion of landfill leachate at Benowo in Surabaya, Indonesia Journal of environmental management vol 110 pp 267-75
[4] Kumar S, Gaikwad S A, Shekdar A V, Kshirsagar P S and Singh R N 2004 Estimation method for national methane emission from solid waste landfills Atmospheric Environment vol 38 no 21 pp 3481-7
[5] Kalantarifard A and Yang G S 2012 Estimation of methane production by LANDGEM simulation model from Tanjung Langsat municipal solid waste landfill, Malaysia Int. J. Sci.