BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open’s open peer review process please email info.bmjopen@bmj.com
Prevalence and Risk Factors Associated with Chronic Kidney Disease in Nepal: Evidence from a Nationally Representative Population Based Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057509
Article Type:	Original research
Date Submitted by the Author:	17-Sep-2021
Complete List of Authors:	Poudyal, Anil; Nepal Health Research Council (NHRC)
Karki, Khem; Department of Community Medicine, Maharajgunj Medical Campus, Kathmandu, Nepal; Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany	
Shrestha, Namuna; Public Health Promotion and Development Organization;	
Aryal, KK; MOMENTUM Country and Global Leadership, Save the Children Nepal, Kathmandu, Nepal; Research Section	
Mahato, Namra; Nepal Health Research Council	
Bista, Bihungum; Nepal Health Research Council, Research	
Ghimire, Laxmi; Sanjeevani College of Medical Sciences	
K.C., Dirghayu; Public Health Promotion and Development Organization.	
Kathmandu, Nepal, Research	
Gyanwali, Pradip; Nepal Health Research Council (NHRC), Ramshah Path, Kathmandu, Nepal	
Jha, Anjani; Nepal Health Research Council (NHRC), Ramshah Path, Kathmandu, Nepal	
Garcia Larsen, Vanessa; Johns Hopkins University Bloomberg School of Public Health, International Health	
Kuch, Ulrich; Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany, Social and Environmental Medicine	
Groneberg, David; Goethe-Universität, Institut of Occupational Medicine, Social Medicine and Environmental Medicine	
Sharma, Sanjib Kumar; BP Koirala Institute of Health Sciences, Department of Internal Medicine	
Dhimal, Meghnath; Nepal Health Research Council (NHRC); Goethe University, Social and Environmental Medicine	
Keywords:	Chronic renal failure < Nephrology, Dialysis < Nephrology, Glomerulonephritis < Nephrology, Renal transplantation < Nephrology
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Prevalence and Risk Factors Associated with Chronic Kidney Disease in Nepal: Evidence from a Nationally Representative Population Based Study

Anil Poudyal¹#, Khem Bahadur Karki¹,²,³#, Namuna Shrestha⁴, Krishna Kumar Aryal⁵, Namra Kumar Mahato¹, Bihungum Bista¹, Laxmi Ghimire⁶, Dirghayu KC⁴, Pradip Gyanwali¹, Anjani Kumar Jha¹, Vanessa Garcia-Larsen⁷, Ulrich Kuch³, David A, Groneberg³, Sanjib Kumar Sharma⁸, Meghnath Dhimal¹,³*

Equal contributors

1 Nepal Health Research Council (NHRC), Ramshah Path, Kathmandu, Nepal
2 Department of Community Medicine, Maharajgunj Medical Campus, Kathmandu, Nepal
3 Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
4 Public Health Promotion and Development Organization, Kathmandu, Nepal
5 MOMENTUM Country and Global Leadership, Save the Children Nepal, Kathmandu, Nepal
6 Sanjeevani College of Medical Sciences, Rupandehi, Nepal
7 Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
8 Department of Internal Medicine, BP Koirala Institute of Health Sciences, Dharan, Nepal

*Corresponding Author: Anil poudyal (Email: poudyalanil123@gmail.com)

*Co-corresponding Author: Meghnath Dhimal (Email: meghdhimal@gmail.com)
Abstract

Objective: This study aimed to determine population based prevalence of Chronic Kidney Disease (CKD) and its associated factors in Nepal.

Study Design: The study was a nationwide population-based cross sectional study

Setting & Participants: nationally representative sample of 12109 adults aged 20 years and above between 2016 and 2018 in Nepal.

Primary and secondary outcome measures: Primary outcome in this study was population based prevalence of CKD in Nepal. Presence of CKD defined by using Kidney Disease Outcomes Quality Initiative (KDOQI) clinical practice guideline criteria. A participant was considered to have CKD if the Urine Albumin-to-Creatinine Ratio (uACR) was greater than or equal to 30 mg/g and/or estimated Glomerular Filtration Rate (e-GFR) is less than 60 mL/min/1.73 m2 at baseline and in follow up. The secondary outcome measure was factors associated with CKD in Nepal. The co-variate adjusted association of risk factors and CKD was calculated using weighted multivariable binary logistic regression.

Results: The overall weighted prevalence of CKD was 6.0%. (95% CI: 5.5-6.6), and was similar across provinces. The prevalence of CKD was higher among male, participants with no formal education, urban residents and religious minority group. Other factors independently associated with CKD included older age, hypertension, diabetes, raised total cholesterol and increased waist-to-hip ratio.

Conclusion: This nationally representative study shows that the prevalence of CKD in the adult population of Nepal is substantial, and it is independently associated with several
cardiometabolic traits. These findings warrant longitudinal studies to identify the causes of CKD in Nepal and effective strategies to prevent it.

Keywords: Chronic Kidney Disease, Nepal, adults, prevalence, eGFR, serum creatinine

Strengths and limitations of this study

- This is the first large scale nationwide population-based prevalence of CKD in Nepal.
- Strict training processes and vigorous quality assurance programs were used to ensure the quality of data collection.
- The use of standardized definitions of CKD as per Kidney Disease Outcomes Quality Initiative (KDOQI) clinical practice guideline facilitates international comparisons of CKD prevalence and risk factors.
- High overall response rate
- Causal inference is unknown
Background

Chronic Kidney Disease (CKD) is one of the most rapidly growing non-communicable diseases (NCDs) worldwide. According to the Global Burden of Disease (GBD) study, CKD was the 11th leading cause of death in 2019, up from 19th in 1990 accounting for 2.53% of total deaths. CKD is also associated with substantial morbidity, mortality, and healthcare costs. Although it is largely preventable, over 9% of the population worldwide is estimated to be affected by the condition, particularly developing countries, and it is associated with diabetes type II, hypertension and obesity, which are also growing at an alarming rate. The rapid increase of CKD is likely to impose a great socioeconomic and public health burden in resource-poor setting.

The evidence on the prevalence of CKD in South East Asia is relatively limited, but it consistently shows a high prevalence of CKD, however data remain poorly characterized due to inconsistent assessment of kidney function and nonstandard approaches which might distort the true estimates of CKD prevalence. There are few studies in Nepal already warned the higher prevalence of CKD and reported data largely depends on the population studied (rural/urban/or general/at high risk group) methods and the lack of representativeness from the general population. Nepal has overcome many of the critical health challenges to survive the first five years of life, and that NCDs and burden of potential underlying risk factors such as obesity, hypertension, and diabetes and unhealthy lifestyle habits including poor diets are highly prevalent.

Understanding the burden and risk factors associated with CKD is important for making health care planning, designing screening strategies, and prevention of these diseases in this resource...
constrains setting, where access to renal replacement therapy is costly. Therefore, this study aimed to determine the population based prevalence of CKD and its associated factors in Nepal.

Methods

Study design and subjects

The Nepal Health Research Council designed and implemented the “National Population based Prevalence Survey of Selected NCDs in Nepal”. This was a population-based survey to investigate the prevalence of NCDs including CKD, chronic obstructive pulmonary disease carried out between 2016 and 2018 in adult's ≥20 years old from seven provinces of the country. Full details of the design and protocols of the survey are available elsewhere13.

The sample size for the survey was calculated taking as reference the prevalence of raised blood glucose (p=4%) from NCD risk factors: STEPwise approach to Surveillance(STEPS) survey 201314, Z value of 1.96 at 95% confidence level and margin of error (d) of 20%, design effect of 2, adjusting the sample across three domains of the Terai, hills and mountains and adding a non-response rate of 20% yielded a sample size of 12,965. With a plan to enroll 33 participants in each cluster (400), the final sample size was 13,200. A ward (lowest administrative unit of the then Village Development Committees (VDCs) and Municipalities) was considered as a cluster-Primary Sampling Unit (PSU) of the study design. With the support from Central Bureau of Statistics, a total of 400 clusters were sampled. The survey team members in the field used official or socially mapped household list to select 33 households (Secondary Sampling Units – SSUs) from each cluster using systematic random sampling. One participant out of the eligible candidates (≥20 years and above, resident in the study area at least 6 months and able to provide informed consent) was selected to take part in the survey using the KISH method. Of 13,200 participants who were approached for interview, 12,557 responded to the invitation in Day 1,
Among 12,557 who accepted the invitation, only 12,148 participants responded in day 2 of clinical setting. For the present study, data from 12,109 subjects were available for analyses, as 39 (0.32%) were excluded, because they refused providing blood and urine samples to evaluate renal function in day 2.

Data collection and measurements

Data collection was performed in 400 clusters within 72 districts of Nepal. Data collection teams at each site consisted of five member having academic background of nursing, general medicine, Bachelor in medical laboratory technology or public health.

Participants' appointment for face to face personal interview at convenient and accessible site or at home on two occasions (Day 1 and Day 2): Following written informed consent, from the participants in Day 1, a structured questionnaire was administered to collect information about participants’ general health and socio-demographic characteristics. Participants self-reported their health and socio-demographic status, personal and family medical histories and history of medicine used. Information concerning their lifestyle factors (cigarette smoking, alcohol intake) was collected, and then physical and clinical measurements were performed. The clinical examination included measurements of height, weight, waist hip ratio and blood pressure (BP) following standard protocols. Height was measured in centimeters with a portable Bioplus® stature meter and weight with a portable digital seca® 874 weighing scale (Seca, Germany) and recorded in kilograms ensuring that the participant was wearing light clothes and was without footwear. Waist circumference was measured using Seca tape in cm at the level midway between the twelfth rib and the uppermost lateral border of the iliac crest during normal expiration. Blood pressure was measured at least three times with a minimum 3 min, and then averaged to be recorded by using an Omron digital automatic blood pressure monitor model HEM-8712 (Omron
Health Care Co., Ltd, Japan) with appropriate sized cuffs. Participants were classified as hypertensive when the Raised BP is defined as having systolic BP ≥140 mm of Hg and/or diastolic BP ≥90 mm of Hg during the study, or being previously diagnosed as having hypertension.

We used fasting, at least an 8-hour fast, and two hour post prandial (PP) blood sample to test various biochemical parameters. Following aseptic technique, blood samples were drawn by a trained enumerators using vacutainers to test laboratory parameters such as fasting blood glucose level, PP blood glucose level, serum creatinine, total cholesterol (TC), triglyceride (TG), high density lipoprotein (HDL) cholesterol, and serum creatinine. The well trained enumerators collected around 10 ml of blood sample at the fasting state and provided 82 grams of glucose monohydrate (equivalent to 75 grams of anhydrous glucose) in 250 ml water to drink. Second blood sample was collected at 2 hours of glucose intake. Fasting blood glucose, TC, TG, HDL cholesterol and serum creatinine were measured with the fasting sample and two hours PP sample was used for measuring PP blood glucose only. We carried out biochemical analysis with Biolyzer® 100 Clinical Chemistry Analyzer (Semi-automatic biochemistry analyzer, Analyticon, Germany) and used glucose oxidase-peroxidase (GOD-POD) method for blood glucose, cholesterol oxidase/phenol aminophenazone (CHOD-PAP) for TC, glycerol-3-phosphate oxidase/phenol aminophenazone (GPO-PAP) for TG, HDL cholesterol by poly ethylene glycol/ cholesterol oxidase/ phenol aminophenazone (PEG/CHOD-PAP) and serum creatinine measured by Jaffe Reaction method. The laboratory supervisors calculated the low-density lipoprotein (LDL) cholesterol by Freidewald's Formula using TC, TG, and HDL cholesterol.
Outcome measurements

A spot urine sample was collected from single voided specimen to measure urine albumin and creatinine using the same semi-automatic biochemistry analyzer (Analyticon Biolyzer® 100 Clinical Chemistry Analyzer, Germany). Laboratory supervisors measured urine albumin concentration by Turbidimetric tests and urine creatinine concentration by Jaffe Reaction method and finally albumin-creatinine ration (ACR) was calculated and expressed in mg/g. Renal function was evaluated by using estimated GFR (eGFR), based on the widely used 4-variable Modification of Diet in Renal Disease Study (MDRD) equation. To confirm CKD, we carried out a follow up test after three months of initial data collection of the participants with albumin creatinine ratio ≥ 30 mg/g. Initially the enumerators took written informed consent from the participants. Then they collected 5 ml blood and random urine samples from the participants using similar procedures as mentioned above.

A participant was considered to have CKD if the Urine Albumin-to-Creatinine Ratio (uACR) was greater than or equal to 30 mg/g and/or estimated Glomerular Filtration Rate (e-GFR) is less than 60 mL/min/1.73 m² at baseline and in follow up. The secondary outcome measure was factors associated with CKD in Nepal.

Data management and analysis

We used android mobile phones inbuilt with data collection software (REMO) to collect data digitally. Data cleaning including correction of inconsistencies was performed in SPSS version 20.0. We then exported the dataset to STATA version 13 for analysis. To adjust for unequal distribution of selection and to produce estimates that are representative of the general (national) population, all the estimation was based on sampling weight. Results are expressed as a percentage and odds ratio with 95% CI. Bivariate analysis was conducted to analyze the
unconditional association between each explanatory variable and CKD status. To be included in multivariable modeling, the level of significance $\alpha=0.25$ was used during bivariate analysis (i.e., P-value 0.25 was not statistically significant). Independent variables included demographics (age, gender, ethnicity, education, province and place of residence), existing comorbidities (hypertension, diabetes, raised total cholesterol, increased waist hip ratio), any hypertension, any diabetes (self-reported or physician diagnosed [fasting blood glucose \geq126 mg/dl]), lifestyles (smoking and alcohol consumption), overweight or obesity (Body Mass Index [BMI] \geq25 kg/m2).

Multicollinearity, the variance inflation factor (VIF) was assessed for all the independent variables found to be statistically significant from the bivariate analysis. Multivariable logistic regression modeling was conducted with CKD as a dependent variable using the independent variables identified as being statistically significant from the bivariate analysis.

Results

A total of 12,109 subjects aged 20-60 years were included in the analyses. Among them 61.1% were female, two fifth were adults in the age group 20-59 years (41.6%), one third was from upper caste ethnic group (34.2%), and just above half of them were either illiterate or had no formal schooling (54.6%). Detailed demographic characteristics of the study population weighted to be representative of the Nepalese adult population are presented in Table 1.

Table 1: Socio-demographic characteristics of the study participants (N=12,109)

Characteristics	n	%
Age		
---------------------	---------	-------
20-39 years	4336	35.8
40-59 years	5034	41.6
60 years and above	2739	22.6

Sex		
Male	4708	38.9
Female	7401	61.1

Ethnicity		
Upper caste group	4144	34.2
Disadvantaged janajati	2546	21.0
Relatively advantaged janajati	2018	16.7
Disadvantaged non-dalit terai caste	1836	15.2
Dalit	1225	10.1
Religious minorities	340	2.8

Education		
Illiterate/No formal schooling	6607	54.6
Education Level	Count	Percentage
---------------------------------	-------	------------
Below secondary (<10 years)	2742	22.6
Secondary and above (≥10 years)	2760	22.8

Province	Count	Percentage
Province 1	2049	16.9
Province 2	2003	16.5
Bagmati Province	3096	25.6
Gandaki Province	1315	10.9
Lumbini Province	2030	16.8
Karnali Province	588	4.9
Sudurpashchim Province	1028	8.5

Place of residence	Count	Percentage
Rural	6107	50.4
Urban	6002	49.6
Table 2: Bivariate and multivariable analysis of sociodemographic risk factors for CKD among the study participants (N=12,109)

Characteristics	N	n (%)	COR (95% CI)	AOR (95% CI)	p-value
Age					
20-39 years	4336	118 (2.6)	1 (ref)	1	
40-59 years	5034	294 (5.8)	2.3 (1.8-3.0)***	1.4 (1.0-1.8)**	0.021
60 years and above	2739	316 (11.5)	4.9 (3.8-6.3)***	2.6 (1.9-3.6)***	0.001
Sex					
Female	7401	415 (5.7)	1 (ref)		
Male	4708	313 (6.5)	1.2 (1.0-1.4)	1.2 (0.8-1.6)	0.425
Ethnicity					
Upper caste	4144	212 (5.1)	1 (ref)		
Disadvantaged Janajati	2546	138 (5.4)	1.1 (0.8-1.4)	1.1 (0.9-1.5)	0.339
Dalit	1225	84 (7.1)	1.4 (1.0-1.9)*	1.6 (1.1-2.3)	0.011
Disadvantaged non-Dalit	1836	116 (6.4)	1.3 (0.9-1.7)	1.4 (0.9-2.1)	0.114
Caste	N	df	OR (95% CI)	p-value	
---------------------------	-------	----	-------------	---------	
Religious minorities	340	24	1.6 (1.0-2.7)	0.174	
Relatively advanced	2018	16	1.5 (1.1-2.0)	0.046	
Janajati			1.7 (1.0-2.9)	0.060	
Education					
Illiterate/No formal	6607	54	1 (ref)		
schooling					
Below secondary (<10 years)	2742	21	0.8 (0.6-0.9)	0.367	
Secondary and above (≥10 years)	2760	21	0.6 (0.5-0.8)	0.894	
Province					
Karnali Province	588	46	1 (ref)		
Province 1	2049	17	1.1 (0.7-1.8)	0.728	
Province 2	2003	17	1.4 (0.9-2.3)	0.578	
Bagmati Province	3096	23	1.4 (0.9-2.2)	0.706	
Gandaki Province	1315	11	1.5 (0.9-2.3)	0.575	
Lumbini Province	2030	20	1.2 (0.7-2.2)	0.705	
Place of residence	N	Mean (SD)	Mean (95% CI)	Mean (95% CI)	p-value
--------------------	-----	-----------	---------------	---------------	---------
Rural	6107	341 (5.8)	1.2 (1.0-1.4)	1.0 (0.8-1.3)	0.894
Urban	6002	387 (6.5)	1.4 (0.7-2.2)	1.4 (0.7-2.6)	0.309
Table 3 Bivariate and multivariate analysis of Behavioral and biological characteristics for CKD among the study participants (N=12,109)

Characteristics	Chronic Kidney Disease	p-value			
	N	n (%)	COR (95%CI)	AOR (95%CI)	
Smoking habit					
Non smoker	8305	443 (5.3)	1(ref)	1(ref)	
Smokers	3804	285 (7.6)	1.5(1.2-1.7)***	1.2(1.0-1.5)	0.104
Alcohol consumption					
No	9131	537 (6.0)	1(ref)		
Yes	2978	191 (6.2)	1.0(0.9-1.2)		
Blood pressure					
Normal	7754	256 (3.3)	1(ref)	1(ref)	
Raised	4355	472 (10.8)	3.6 (3.0-4.3)***	2.4 (2.0-3.0)***	0.001
Body mass index	(N=12108)				
Normal	6896	377 (5.5)	1 (ref)	1(ref)	
Underweight	1494	88 (6.2)	1.1(0.9-1.5) *	1.1(0.8-1.6)	0.531
Factors associated with CKD

The multivariable analyses to investigate the association of independent factors and CKD are shown in Table 3.

In the bivariate analysis, age, smoking, BMI, ethnicity, education, having diabetes mellitus (DM), being hypertensive and having raised cholesterol were found to be statistically significantly associated with CKD. Therefore, those 8 factors including place of residence and sex of participants (P-value ≤ 0.25) were considered in the multiple logistic models. After
adjustment, only six variables: age, ethnicity, diabetes, hypertension, raised TC, and increased waist hip ratio, were found to be significant predictors of CKD. There was a strong positive association between age and CKD, i.e. the odds of having CKD were about 1.4 (95% CI = 1.0-1.8) and 2.6 (95% CI = 1.9-3.6) times higher for people aged 40–59 years and ≥60 years respectively, compared with people aged 20-39 years. Participants with DM had about 3.2 (95% CI = 2.5-4.1) times higher odds of occurrence of CKD than non-diabetic participants. Similarly, participants with raised BP had 2.4 (95% CI = 2.0-3.0) higher odds of having CKD than non-hypertensive/normal participants.

Participants with raised total cholesterol had 1.3 (95% CI = 1.0-1.6) times higher odds of having CKD relative to participants who had normal cholesterol level, whereas those with raised waist hip ratio had 1.6 (95% CI: 1.2-2.3) times higher odds than normal participants to have CKD. Individuals who were classified as Dalit by ethnicity were 1.6 (95% CI: 1.1-2.3) times or relatively advantaged janajati had 1.4 (OR = 95% CI: 1.0-1.9) times higher odds of having CKD when compared to individuals with an upper caste.

Discussion

This is the first large scale nationwide population based representative study to report prevalence of and factors associated with CKD in Nepal among population aged 20 years and above. CKD was prevalent among 6% of the population. Moreover, increased age, diabetes, hypertension, raised TC, increased waist hip ratio, and education were independently associated to it.

The findings show that approximately one every sixteen adults in Nepal is affected by CKD. This value is higher than the 4.7% found in Ghana, similar to 6.8% in South Korea, but much lower than the prevalence of many south Asian countries with 29.9% in Pakistan, 26.2%
in Bangladesh 19 and 17.2 \% in India 20. However, a comparison between studies depends on the CKD diagnostic criteria, study design, and methodology. It is also lower than the prevalence reported by a community-based study in eastern part of Nepal 11. We hypothesized some reasons for the lower prevalence of CKD noted in our study compared to studies from India, Pakistan and eastern Nepal. Most of these previous studies were restricted to more of urban centric, specific setting (e.g. hospital), occupations and age where prevalence of risk factors are higher 6,19,21–23.

CKD was not found to be associated with gender in our targeted participants. Earlier literature in this regard has shown different findings. The association between CKD and gender has been reported in some other studies24–26.

We also could not find significant association between CKD and alcohol consumption, place of residence, and provinces. Compared to rural settings, CKD seems to be more prevalent in urban areas despite the lack of statistical difference as rapid and unplanned urbanization, has contributed to the rise of kidney disease and other NCDs in Nepal which has led to lifestyles characterized by unhealthy nutrition, reduced physical activity and tobacco and alcohol consumption. However, the prevalence of CKD was not much different among provinces of Nepal.

In our study, CKD was more common in participants having lower education level and those from Relatively Advantaged Janajati and Dalit; however, the association was not found to be statistically significant. The association between smoking and CKD was supported by evidence of a dose-response relationship27,28. The association between smoking and CKD was reported in bivariate analysis only in our study and remained marginally significant in multivariable
Our multivariable analysis found that CKD was independently associated with older age, hypertension, diabetes, raised TC and increased waist hip ratio (p < 0.05 for each) which are all major NCDs risk factors and consistent with previous findings.

Age is a well-established risk factor for development of CKD. As expected, age was found to be the most strongly associated risk factor in our study, we observed nearly three times higher odds of occurrence of CKD among people aged 60 years or older compared to people aged 20 to 39 years. Generally, as a part of the normal physiologic process, renal function (GFR) starts to decline even in a healthy individual by 1 mL/min/1.73 m² per year after the age of 30 years. A similar steep increase in CKD prevalence by age has also been reported by others.

The number of patients with kidney failure treated by dialysis and transplantation has increased dramatically in Nepal. Because of the costs, limited ability to afford dialysis and the complexity of its treatment, very few patients are able to obtain adequate treatment, and CKD places a heavy financial burden on any individual and society. Furthermore, there are many challenges concerning prevention and management kidney diseases in Nepal, firstly we currently lack population –based epidemiological data and national registry of kidney diseases. In order to reduce the frequency of disease occurrence, project the management needs of those who would acquire the disease, there is need of a data of its prevalence and associated factors to the extent possible and such knowledge only be obtained from population-based epidemiological studies.

The increase in prevalence of CKD and its progression to end-stage renal failure worldwide are mainly a result of the rising global diabetes and hypertension pandemic. In line with other surveys in South East Asia, our findings show that the odds of CKD occurrence was significantly and independently higher by around 2-fold with the presence of hypertension; this supports
previous reports indicating the importance of early detection and treatment of hypertension in Nepal. In our study people with diabetes mellitus had more than three times higher odds of occurrence of CKD than people without diabetes. Almost one fifth of people with diabetes had CKD as well. Supporting findings from our research, studies around the world indicate diabetes is independently associated with development of CKD. A survey across 10 Asian countries showed that the most common cause of End Stage Renal Disease (ESRD) in 9 out of 10 countries was diabetic nephropathy. In addition; elevated total cholesterol was substantially associated with higher odds for CKD.

Despite finding an association between CKD and several known established risk factors including waist hip ratio, no association was found between CKD and BMI. The correlation between CKD and waist hip ratio and not BMI is plausible since this ratio is a more sensitive marker for central obesity, metabolic syndrome and potentially less influenced by muscle mass than BMI, this is in agreement with earlier studies.

Evidence suggested that the adverse outcomes of CKD can be prevented or altered through therapeutic interventions during early stages, including regular BP control, blood glucose control in diabetic patient, treatment with angiotensin-receptor blockers and angiotensin-converting enzyme inhibitors and, dietary protein restriction. Given the double burden of disease and the early onset of NCDs in the country – at age 40 people are already having CKD and other comorbidities, as shown in this manuscript, these findings have important medical and public-health implications, in targeting these “high-risk” population subgroup of the population, to reduce progression and delay the onset of cardiovascular complications and ESRD.
Our study poses several strengths. To the best of our knowledge, no national survey of CKD has been done in the context of Nepal as per Kidney Disease Outcomes Quality Initiative (KDOQI) clinical practice guideline; using (eGFR <60mL/min/1.73m², presence of albuminuria≥30mg/g and chronicity confirmed by repeated testing after three months) to confirm presence of CKD. This is the first study to report prevalence of CKD using a validated standardized estimation of the glomerular filtration rate by the MDRD study equation which is carried out in a large representative population-based sample of the adult population in Nepal following the strict guideline and protocols, strict training processes and vigorous quality assurance programs were used to ensure the quality of data collection. Additional strengths of the study include a high overall response rate and analyses based on survey weights which ensure geographic representativeness of the study. Thus, our findings would be generalizable to the general population. However, the limitations of our analysis definitely deserve comment; potential limitations include dependency on estimation of GFR, rather than direct measurement using injection of an exogenous marker factors as well as cross-sectional design of the study which does not permit inferences regarding causal relationships.

Conclusions
This is the first population-based epidemiological survey of CKD using the protocols recommended by KDOQI in Nepal. The prevalence of CKD was found to be 6.0%. CKD was independently associated with older age, hypertension, diabetes mellitus, increased waist hip ratio and raised total cholesterol. Our findings highlight the need for early preventive measures to manage predisposing conditions such as diabetes and hypertension which could ultimately lead to CKD and to reduce the prevalence and mortality arising from the associated comorbidities in Nepal.
Declarations

Acknowledgements: The authors would like to thank all the individuals and organizations that provided technical support for the design and implementation of the main survey. The authors are grateful Dr. Shiva raj Mishra, Research Fellow in Epidemiology and Intervention Melbourne School of Population and Global Health, for reviewing the manuscript for language and grammar.

Funding: The authors have not received specific grant from any agency for this research.

Competing interests: The authors declare no conflict of interest.

Data sharing statement: The datasets used and/or analyzed will be made from the corresponding author on reasonable request.

Author’s contributions: KBK, KKA and MD conceived the study. LG and DKC helped in data entry and management. AP, BB and NS was involved in conducting data analysis. AP wrote the manuscript. AKJ supported in monitoring overall data quality. PG, VGL, UK, DAG and SKS revised and edited the manuscript. Each author provided intellectual content during manuscript drafting and revision, accepts accountability for their contributions.

Ethics statement: The study protocol was approved by the Ethical Review Board (ERB) of Nepal Health Research Council, Government of Nepal (Reg.no.110/2016). Written informed consent was taken from all participants before proceeding for data collection.

Patient and public involvement: Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.
Patient consent for publication: Not required.
1. Xie Y, Bowe B, Mokdad AH, et al. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. *Kidney Int*. 2018;94(3):567-581.

2. Institute for Health Metrics and Evaluation (IHME). *GBD Compare Data.*; 2019.

3. Bikbov B, Purell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet*. 2020;395(10225):709-733.

4. Stanifer JW, Muiru A, Jafar TH, Patel UD. Chronic kidney disease in low-and middle-income countries. *Nephrol Dial Transplant*. 2016;31(6):868-874.

5. Nugent RA, Fathima SF, Feigl AB, Chyung D. The burden of chronic kidney disease on developing nations: a 21st century challenge in global health. *Nephron Clin Pract*. 2011;118(3):c269--c277.

6. Agarwal SK, Dash SC, Irshad M, Raju S, Singh R, Pandey RM. Prevalence of chronic renal failure in adults in Delhi, India. *Nephrol Dial Transplant*. 2005;20(8):1638-1642.

7. Singh NP, Ingle GK, Saini VK, et al. Prevalence of low glomerular filtration rate, proteinuria and associated risk factors in North India using Cockcroft-Gault and Modification of Diet in Renal Disease equation: an observational, cross-sectional study. *BMC Nephrol*. 2009;10(1):1-13.

8. Jafar TH, Schmid CH, Levey AS. Serum creatinine as marker of kidney function in South Asians: a study of reduced GFR in adults in Pakistan. *J Am Soc Nephrol*.
9. Sharma SK, Zou H, Togtokh A, et al. Burden of CKD, proteinuria, and cardiovascular risk among Chinese, Mongolian, and Nepalese participants in the International Society of Nephrology screening programs. *Am J kidney Dis*. 2010;56(5):915-927.

10. Ene-Iordache B, Perico N, Bikbov B, et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): a cross-sectional study. *Lancet Glob Heal*. 2016;4(5):e307--e319.

11. Sharma SK, Dhakal S, Thapa L, et al. Community-based screening for chronic kidney disease, hypertension and diabetes in Dharan. Published online 2013.

12. Dhimal M, Bista B, Bhattarai S, Dixit LP, Hyder MKA, Agrawal N, Rani M JA. *Non Communicable Disease Risk Factors: STEPS Survey Nepal 2019.*

13. Nepal Health Research Council. *Population Based Prevalence of Selected Non-Communicable Disease in Nepal.*; 2019. http://nhrc.gov.np/publication/population-based-prevalence-of-selected-non-communicable-diseases-in-nepal/

14. Aryal KK, Neupane S, Mehata S, et al. Non communicable diseases risk factors: STEPS Survey Nepal 2013 Kathmandu. *Nepal Nepal Heal Res Counc Sch.* Published online 2014.

15. Chobanian A V, Bakris GL, Black HR, et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. *Hypertension*. 2003;42(6):1206-1252.

16. Levey AS, Eckardt K-U, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes
17. Eastwood JB, Kerry SM, Plange-Rhule J, et al. Assessment of GFR by four methods in adults in Ashanti, Ghana: the need for an eGFR equation for lean African populations. *Nephrol Dial Transplant*. 2010;25(7):2178-2187.

18. Jang SY, Kim I-H, Ju EY, Ahn SJ, Kim D-K, Lee SW. Chronic kidney disease and metabolic syndrome in a general Korean population: the Third Korea National Health and Nutrition Examination Survey (KNHANES III) Study. *J Public Health (Bangkok)*. 2010;32(4):538-546.

19. Anand S, Khanam MA, Saquib J, et al. High prevalence of chronic kidney disease in a community survey of urban Bangladeshis: a cross-sectional study. *Global Health*. 2014;10(1):1-7.

20. Singh AK, Farag YMK, Mittal B V, et al. Epidemiology and risk factors of chronic kidney disease in India--results from the SEEK (Screening and Early Evaluation of Kidney Disease) study. *BMC Nephrol*. 2013;14(1):1-10.

21. Anand S, Shivashankar R, Ali MK, et al. Prevalence of chronic kidney disease in two major Indian cities and projections for associated cardiovascular disease. *Kidney Int*. 2015;88(1):178-185.

22. O’Donnell JK, Tobey M, Weiner DE, et al. Prevalence of and risk factors for chronic kidney disease in rural Nicaragua. *Nephrol Dial Transplant*. 2011;26(9):2798-2805.

23. Perkovic V, Cass A, Patel AA, et al. High prevalence of chronic kidney disease in Thailand. *Kidney Int*. 2008;73(4):473-479.
24. Chadban SJ, Briganti EM, Kerr PG, et al. Prevalence of kidney damage in Australian adults: The AusDiab kidney study. *J Am Soc Nephrol*. 2003;14(suppl 2):S131--S138.

25. Viktorsdottir O, Palsson R, Andresdottir MB, Aspelund T, Gudnason V, Indridason OS. Prevalence of chronic kidney disease based on estimated glomerular filtration rate and proteinuria in Icelandic adults. *Nephrol Dial Transplant*. 2005;20(9):1799-1807.

26. Tomlinson LA, Clase CM. Sex and the incidence and prevalence of kidney disease. Published online 2019.

27. Briganti EM, Branley P, Chadban SJ, et al. Smoking is associated with renal impairment and proteinuria in the normal population: The AusDiab kidney study. *Am J Kidney Dis*. 2002;40(4):704-712.

28. Shankar A, Klein R, Klein BEK. The association among smoking, heavy drinking, and chronic kidney disease. *Am J Epidemiol*. 2006;164(3):263-271.

29. Ping H, Zhang X, Xing N. Prevalence of chronic kidney disease in China. *Lancet*. 2012;380(9838):216.

30. Jessani S, Bux R, Jafar TH. Prevalence, determinants, and management of chronic kidney disease in Karachi, Pakistan-a community based cross-sectional study. *BMC Nephrol*. 2014;15(1):1-9.

31. Okwuonu CG, Chukwuonye II, Adejumo OA, Agaba EI, Ojogwu LI, others. Prevalence of chronic kidney disease and its risk factors among adults in a semi-urban community of South-East Nigeria. *Niger Postgrad Med J*. 2017;24(2):81.

32. Alkerwi A, Sauvageot N, El Bahi I, et al. Prevalence and related risk factors of chronic kidney disease in Morocco. *BMJ Open*. 2020;10(3):e035529.
kidney disease among adults in Luxembourg: evidence from the observation of cardiovascular risk factors (ORISCAV-LUX) study. *BMC Nephrol.* 2017;18(1):1-10.

33. Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease--a systematic review and meta-analysis. *PLoS One.* 2016;11(7):e0158765.

34. O’Hare AM, Choi AI, Bertenthal D, et al. Age affects outcomes in chronic kidney disease. *J Am Soc Nephrol.* 2007;18(10):2758-2765.

35. Price CP, Finney H. Developments in the assessment of glomerular filtration rate. *Clin Chim acta.* 2000;297(1-2):55-66.

36. Garg AX, Papaioannou A, Ferko N, Campbell G, Clarke J-A, Ray JG. Estimating the prevalence of renal insufficiency in seniors requiring long-term care. *Kidney Int.* 2004;65(2):649-653.

37. Wasen E, Isoaho R, Mattila K, Vahlberg T, Kivelä S-L, Irjala K. Estimation of glomerular filtration rate in the elderly: a comparison of creatinine-based formulae with serum cystatin *C.* *J Intern Med.* 2004;256(1):70-78.

38. Hemmelgarn BR, Zhang J, Manns BJ, et al. Progression of kidney dysfunction in the community-dwelling elderly. *Kidney Int.* 2006;69(12):2155-2161.

39. Mishra D, Koirala P. Status of chronic kidney disease patients registered in National Kidney Center, Banasthali, Kathmandu. *J Manmohan Meml Inst Heal Sci.* 2015;1(4):19-23.

40. Tang SCW, Yu X, Chen HC, et al. Dialysis care and dialysis funding in Asia. *Am J Kidney Dis.* 2020;75(5):772-781.
431 41. Li Z-Y, Xu G-B, Xia T-A, Wang H-Y. Prevalence of chronic kidney disease in a middle and old-aged population of Beijing. *Clin Chim Acta*. 2006;366(1-2):209-215.

433 42. Safarinejad MR, others. The epidemiology of adult chronic kidney disease in a population-based study in Iran: prevalence and associated risk factors. *JN J Nephrol*. 2009;22(1):99.

436 43. Fiseha T, Kassim M, Yemane T. Prevalence of chronic kidney disease and associated risk factors among diabetic patients in southern Ethiopia. *Am J Heal Res*. 2014;2(4):216-221.

438 44. Damtie S, Biadgo B, Baynes HW, et al. Chronic kidney disease and associated risk factors assessment among diabetes mellitus patients at a tertiary hospital, Northwest Ethiopia. *Ethiop J Health Sci*. 2018;28(6).

441 45. Duan J, Wang C, Liu D, et al. Prevalence and risk factors of chronic kidney disease and diabetic kidney disease in Chinese rural residents: a cross-sectional survey. *Sci Rep*. 2019;9(1):1-11.

444 46. Lee G. End-stage renal disease in the Asian-Pacific region. In: *Seminars in Nephrology journal*. Vol 23. ; 2003:107-114.

446 47. Elsayed EF, Tighiouart H, Weiner DE, et al. Waist-to-hip ratio and body mass index as risk factors for cardiovascular events in CKD. *Am J Kidney Dis*. 2008;52(1):49-57.

448 48. He Y, Li F, Wang F, Ma X, Zhao X, Zeng Q. The association of chronic kidney disease and waist circumference and waist-to-height ratio in Chinese urban adults. *Medicine (Baltimore)*. 2016;95(25).

451 49. Silva MIB, da Silva Lemos CC, Torres MRSG, Bregman R. Waist-to-height ratio: an
accurate anthropometric index of abdominal adiposity and a predictor of high HOMA-IR values in nondialyzed chronic kidney disease patients. *Nutrition.* 2014;30(3):279-285.

50. Hallan SI, Dahl K, Oien CM, et al. Screening strategies for chronic kidney disease in the general population: follow-up of cross sectional health survey. *Bmj.* 2006;333(7577):1047.
| STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies* |
|---|
| **Item No** | **Recommendation** | **Page No** |
|---------------------|---------------------|-------------|
| **Title and abstract** | (a) Indicate the study’s design with a commonly used term in the title or the abstract | 2 |
| | (b) Provide in the abstract an informative and balanced summary of what was done and what was found | 2-3 |
| **Introduction** | Explain the scientific background and rationale for the investigation being reported | 4-5 |
| **Objectives** | State specific objectives, including any prespecified hypotheses | 5 |
| **Methods** | Present key elements of study design early in the paper | 5-6 |
| **Setting** | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection | 5-7 |
| **Participants** | (a) Give the eligibility criteria, and the sources and methods of selection of participants | 5-6 |
| **Variables** | Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable | 8 |
| **Data sources/measurement** | For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group | 8-9 |
| **Bias** | Describe any efforts to address potential sources of bias | 8-9 |
| **Study size** | Explain how the study size was arrived at | 5-6 |
| **Quantitative variables** | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why | 8-9 |
| **Statistical methods** | (a) Describe all statistical methods, including those used to control for confounding | 8-9 |
| | (b) Describe any methods used to examine subgroups and interactions | 8-9 |
| | (c) Explain how missing data were addressed | 10 |
| | (d) If applicable, describe analytical methods taking account of sampling strategy | 5 |
| | (e) Describe any sensitivity analyses | na |
| **Results** | (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed | 5-6 |
| | (b) Give reasons for non-participation at each stage | 5-7 |
| | (c) Consider use of a flow diagram | na |
| **Descriptive data** | (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders | 10-17 |
| | (b) Indicate number of participants with missing data for each variable of interest | 10-17 |
| **Outcome data** | Report numbers of outcome events or summary measures | 10-17 |
| **Main results** | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear | 10-17 |
which confounders were adjusted for and why they were included

(b) Report category boundaries when continuous variables were categorized

10-17

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period

na

| Other analyses | 17 | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses | 10-17 |

Discussion

Key results	18	Summarise key results with reference to study objectives	17
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	21
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17-21
Generalisability	21	Discuss the generalisability (external validity) of the study results	21

Other information

| Funding | 22 | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based | 22 |

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.
Prevalence and Risk Factors Associated with Chronic Kidney Disease in Nepal: Evidence from a Nationally Representative Population Based Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057509.R1
Article Type:	Original research
Date Submitted by the Author:	10-Dec-2021
Complete List of Authors:	Poudyal, Anil; Nepal Health Research Council
	Karki, Khem; Goethe University Frankfurt Institute of Occupational Social and Environmental Medicine; Department of Community Medicine, Maharajgunj Medical Campus, Kathmandu, Nepal
	Shrestha, Namuna; Public Health Promotion and Development Organization;
	Aryal, KK; MOMENTUM Country and Global Leadership, Save the Children Nepal, Kathmandu, Nepal, Research Section
	Mahato, Namra; Nepal Health Research Council
	Bista, Bihungum; Nepal Health Research Council, Research
	Ghimire, Laxmi; Sanjeevani College of Medical Sciences
	K.C., Dirghayu; Public Health Promotion and Development Organization. Kathmandu, Nepal, Research
	Gyanwali, Pradip; Nepal Health Research Council
	Jha, Anjani; Nepal Health Research Council
	Garcia Larsen, Vanessa; Johns Hopkins University Bloomberg School of Public Health, International Health
	Kuch, Ulrich; Goethe University Frankfurt Institute of Occupational Social and Environmental Medicine, Social and Environmental Medicine
	Groneberg, David; Goethe University Frankfurt Institute of Occupational Social and Environmental Medicine
	Sharma, Sanjib Kumar; BP Koirala Institute of Health Sciences, Department of Internal Medicine
	Dhimal, Meghnath; Nepal Health Research Council; Goethe University Frankfurt Institute of Occupational Social and Environmental Medicine
Primary Subject Heading:	Renal medicine
Secondary Subject Heading:	Urology
Keywords:	Chronic renal failure < NEPHROLOGY, Dialysis < NEPHROLOGY, Glomerulonephritis < NEPHROLOGY, Renal transplantation < NEPHROLOGY
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Prevalence and Risk Factors Associated with Chronic Kidney Disease in Nepal: Evidence from a Nationally Representative Population Based Cross sectional Study

Anil Poudyal1#, Khem Bahadur Karki1,2,3#, Namuna Shrestha4, Krishna Kumar Aryal5, Namra Kumar Mahato1, Bihungum Bista1, Laxmi Ghimire6, Dirghayu KC4, Pradip Gyanwali1, Anjani Kumar Jha1, Vanessa Garcia-Larsen7, Ulrich Kuch3, David A, Groneberg3, Sanjib Kumar Sharma8, Meghnath Dhimal1,3*

Equal contributors

1 Nepal Health Research Council (NHRC), Ramshah Path, Kathmandu, Nepal
2 Department of Community Medicine, Maharajgunj Medical Campus, Kathmandu, Nepal
3 Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
4 Public Health Promotion and Development Organization, Kathmandu, Nepal
5 MOMENTUM Country and Global Leadership, Save the Children Nepal, Kathmandu, Nepal
6 Sanjeevani College of Medical Sciences, Rupandehi, Nepal
7 Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
8 Department of Internal Medicine, BP Koirala Institute of Health Sciences, Dharan, Nepal

*Corresponding Author: Anil poudyal(Email: poudyalanil123@gmail.com)
Abstract

Objective: This study aimed to determine population based prevalence of Chronic Kidney Disease (CKD) and its associated factors in Nepal.

Study Design: The study was a nationwide population-based cross sectional study

Setting & Participants: Cross-sectional survey conducted in a nationally representative sample of 12109 Nepalese adult from 2016 to 2018 on selected chronic non-communicable diseases were examined. Multistage cluster sampling with a mix of probability proportionate to size (PPS) and systematic random sampling was used for the selection of individuals aged 20 years and above.

Primary and secondary outcome measures: Primary outcome in this study was population based prevalence of CKD in Nepal. A participant was considered to have CKD if the Urine Albumin-to-Creatinine Ratio (uACR) was greater than or equal to 30 mg/g and/or estimated Glomerular Filtration Rate (e-GFR) is less than 60 mL/min/1.73 m² at baseline and in follow up using modification of diet in renal disease study (MDRD) equations. The secondary outcome measure was factors associated with CKD in Nepal. The co-variate adjusted association of risk factors and CKD was calculated using multivariable binary logistic regression.

Results: The overall prevalence of CKD in Nepal was 6.0% (95% CI: 5.5-6.6). Factors independently associated with CKD included older age, (adjusted OR (AOR) 2.6, 95% CI: 1.9 to 3.6), Dalit caste (AOR 1.6, 95% CI: 1.1 to 2.3), hypertension, (AOR 2.4, 95% CI: 2.0 to 3.0) diabetes mellitus (AOR 3.2, 95% CI: 2.5 to 4.1), raised total cholesterol (AOR 1.3, 95% CI: 1.0 to 1.6) and increased waist-to-hip ratio (AOR 1.6, 95% CI: 1.2 to 2.3).

Conclusion: This nationally representative study shows that the prevalence of CKD in the adult population of Nepal is substantial, and it is independently associated with several cardiometabolic...
traits. These findings warrant longitudinal studies to identify the causes of CKD in Nepal and effective strategies to prevent it.

Keywords: Chronic Kidney Disease, Nepal, adults, prevalence, eGFR, serum creatinine

Strengths and limitations of this study

- This is the first large scale nationwide population-based prevalence of CKD in Nepal.
- Strict training processes and vigorous quality assurance programs were used to ensure the quality of data collection.
- The use of standardized definitions of CKD facilitates international comparisons of CKD prevalence and risk factors.
- High overall response rate of 91.7% in first visit and 86.9% in follow up visit.
- Causal inference is unknown.
Background

Chronic Kidney Disease (CKD) is one of the most rapidly growing non-communicable diseases (NCDs) worldwide. According to the Global Burden of Disease (GBD) study, CKD was the 11th leading cause of death in 2019, up from 19th in 1990 accounting for 2.53% of total deaths. CKD is also associated with substantial morbidity, mortality, and healthcare costs. Although it is largely preventable, over 9% of the population worldwide is estimated to be affected by the condition, particularly developing countries, and it is associated with diabetes type II, hypertension and obesity, which are also growing at an alarming rate. The rapid increase of CKD is likely to impose a great socioeconomic and public health burden in resource-poor settings.

The evidence on the prevalence of CKD in South East Asia is relatively limited, but it consistently shows a high prevalence of CKD, however data remain poorly characterized due to inconsistent assessment of kidney function and nonstandard approaches which might distort the true estimates of CKD prevalence. There are few studies in Nepal already warned the higher prevalence of CKD and reported data largely depends on the population studied (rural/urban/or general/at high risk group) methods and the lack of representativeness from the general population. Nepal has overcome many of the critical health challenges to survive the first five years of life, and that NCDs and burden of potential underlying risk factors such as obesity, hypertension, and diabetes and unhealthy lifestyle habits including poor diets are highly prevalent.

Understanding the burden and risk factors associated with CKD is important for making health care planning, designing screening strategies, and prevention of these diseases in this resource constrains setting, where access to renal replacement therapy is costly. Therefore, this study aimed to determine the population based prevalence of CKD and its associated factors in Nepal.
Methods

Study design and subjects

The Nepal Health Research Council designed and implemented the “National Population based Prevalence Survey of Selected NCDs in Nepal”. This was a population-based survey to investigate the prevalence of NCDs including CKD, chronic obstructive pulmonary disease carried out between 2016 and 2018 in adult’s ≥20 years old from seven provinces of the country. Full details of the design and protocols of the survey are available elsewhere.

Participants, sample size, and study setting

The sample size for the survey was calculated taking as reference the prevalence of raised blood glucose (p=4%) from NCD risk factors: STEPwise approach to Surveillance(STEPS) survey 2013, Z value of 1.96 at 95% confidence level and margin of error (d) of 20%, design effect of 2, adjusting the sample across three domains of the Terai, hills and mountains and adding a non-response rate of 20% yielded a sample size of 12,965. With a plan to enroll 33 participants in each cluster (400), the final sample size was 13,200. A ward (lowest administrative unit of the -then Village Development Committees (VDCs) and Municipalities) was considered as a cluster- Primary Sampling Unit (PSU) of the study design. With the support from Central Bureau of Statistics, a total of 400 clusters were sampled. To select a representative sample of cluster; the rural and urban areas within each region were identified as the main sampling strata and the sample was selected in two stages in which ecological belts (Terai, Hill and Mountains) and five development region (Central, Eastern, Mid-Western, Western and Far western), stratification was taken into account.
The survey team members in the field used official or socially mapped household list to select 33 households (Secondary Sampling Units – SSUs) from each cluster using systematic random sampling. One participant out of the eligible candidates (≥20 years and above, resident in the study area at least 6 months and able to provide informed consent) was selected to take part in the survey using the KISH method. Of 13,200 participants who were approached for interview, 12,557 responded to the invitation in Day 1. Among 12,557 who accepted the invitation, only 12,148 participants responded in day 2 of clinical setting. For the present study, data from 12,109 subjects were available for analyses with a response rate of 91.7%, 39 (0.32%) were excluded, because they refused providing blood and urine samples to evaluate renal function in day 2.

Data weighting was carried out to make the sampled population comparable to the national population. Data weighting was done using sampling weight. Sample weighting was carried out for probabilities of selection of Primary sampling unit (Ward/cluster), selection of households, and selection of an individual in a household using 2011 population for Nepal with the support from Central Bureau of Statistics.

Data collection and measurements

Data collection was performed in 400 clusters (figure 1) within 72 districts of Nepal. Data collection teams at each site consisted of five member having academic background of nursing, general medicine, Bachelor in medical laboratory technology or public health.

Participants' appointment for face to face personal interview at convenient and accessible site or at home on two occasions (Day 1 and Day 2): Following written informed consent, from the participants in Day 1, a structured questionnaire was administered to collect information about participants' general health and socio-demographic characteristics. Participants self-reported their
health and socio-demographic status, personal and family medical histories and history of medicine used. Information concerning their lifestyle factors (cigarette smoking, alcohol intake) was collected, and then physical and clinical measurements were performed. The clinical examination included measurements of height, weight, waist hip ratio and blood pressure (BP) following standard protocols. Height was measured in centimeters with a portable Bioplus® stature meter and weight with a portable digital seca® 874 weighing scale (Seca, Germany) and recorded in kilograms ensuring that the participant was wearing light clothes and was without footwear. Waist circumference was measured using Seca tape in cm at the level midway between the twelfth rib and the uppermost lateral border of the iliac crest during normal expiration. Blood pressure was measured at least three times with a minimum 3 min, and then averaged to be recorded by using an Omron digital automatic blood pressure monitor model HEM-8712 (Omron Health Care Co., Ltd, Japan) with appropriate sized cuffs. Participants were classified as hypertensive when the Raised BP is defined as having systolic BP \geq140 mm of Hg and/or diastolic BP \geq90 mm of Hg during the study, or being previously diagnosed as having hypertension.

We used fasting, at least an 8-hour fast, and two hour post prandial (PP) blood sample to test various biochemical parameters. Following aseptic technique, blood samples were drawn by a trained enumerators using vacutainers to test laboratory parameters such as fasting blood glucose level, PP blood glucose level, serum creatinine, total cholesterol (TC), triglyceride (TG), high density lipoprotein (HDL) cholesterol, and serum creatinine. The well trained enumerators collected around 10 ml of blood sample at the fasting state and provided 82 grams of glucose monohydrate (equivalent to 75 grams of anhydrous glucose) in 250 ml water to drink. Second blood sample was collected at 2 hours of glucose intake. Fasting blood glucose, TC, TG, HDL cholesterol and serum creatinine were measured with the fasting sample and two hours PP sample
was used for measuring PP blood glucose only. We carried out biochemical analysis with Biolyzer® 100 Clinical Chemistry Analyzer (Semi-automatic biochemistry analyzer, Analyticon, Germany) and used glucose oxidase-peroxidase (GOD-POD) method for blood glucose, cholesterol oxidase/phenol aminophenazone (CHOD-PAP) for TC, glycerol-3-phosphate oxidase/phenol aminophenazone (GPO-PAP) for TG, HDL cholesterol by poly ethylene glycol/cholesterol oxidase/phenol aminophenazone (PEG/CHOD-PAP) and serum creatinine measured by Jaffé Reaction method. The laboratory supervisors calculated the low-density lipoprotein (LDL) cholesterol by Freidewald's Formula using TC, TG, and HDL cholesterol.

Outcome measurements

A spot urine sample was collected from single voided specimen to measure urine albumin and creatinine using the same semi-automatic biochemistry analyzer (AnalyticonBiolyzer® 100 Clinical Chemistry Analyzer, Germany). Laboratory supervisors measured urine albumin concentration by Turbidimetric tests and urine creatinine concentration by Jaffé Reaction method and finally albumin-creatinine ration (ACR) was calculated and expressed in mg/g. Renal function was evaluated by using estimated GFR (eGFR), based on the widely used 4-variable Modification of Diet in Renal Disease Study (MDRD) equation. A participant was considered to have CKD if the Urine Albumin-to-Creatinine Ratio (uACR) was greater than or equal to 30 mg/g and/or estimated Glomerular Filtration Rate (e-GFR) was less than 60 mL/min/1.73 m² at baseline and in follow up. The secondary outcome measure was factors associated with CKD in Nepal.

Follow up of study participants to determine CKD

Participants having albumin-creatinine ratio (ACR) greater than or equal to 30 mg/g in the baseline were revisited again after 3 months in their place of residence to ensure the chronicity of the renal
disease. Written consent was taken prior to blood and urine sample collection using similar procedures as mentioned above. Out of 1382 participants having a high ACR ratio in the baseline, 1202 gave consent. However, data of ACR was missing for 8 participants making the availability of complete data for 1194 participants for analysis, with a response rate of 86.9%.

Data management and analysis

We used android mobile phones inbuilt with data collection software (REMO) to collect data digitally. Data cleaning including correction of inconsistencies was performed in SPSS version 20.0. We then exported the dataset to STATA version 13 for analysis. To adjust for unequal probability of selection, appropriate sampling weights with complex sampling analysis were used to provide valid estimates for the relevant Nepalese population which is based on 2011 national population and housing census data. Results are expressed as a percentage and odds ratio with 95% CI. Bivariate analysis was conducted to analyze the unconditional association between each explanatory variable and CKD status. To be included in multivariable modeling, the level of significance $\alpha=0.25$ was used during bivariate analysis (i.e., P-value 0.25 was not statistically significant). Independent variables included demographics (age, gender, ethnicity, education, province and place of residence), existing comorbidities (hypertension, diabetes, raised total cholesterol, increased waist hip ratio), any hypertension, any diabetes (self-reported or physician diagnosed [fasting blood glucose ≥126 mg/dl]), lifestyles (smoking and alcohol consumption), overweight or obesity (Body Mass Index [BMI] ≥25 kg/m²).

Ethnicity/ caste data were self-reported and categorized into six major groups based on the caste coding by government of Nepal and STEPS survey Nepal, 2013 categorization. (1) Upper Caste Groups (population with relatively higher socio economic and education status, mostly Brahmins, Chhetris, Thakuri and Sanyasi);(2) Disadvantaged Janajatis (disadvantaged group of people and...
also indigenous, with relatively lower socio-economic and education status); (3) Dalit (untouchables, most disadvantaged marginalized group of people, with relatively lower socio-economic and education status); (4) Disadvantaged non Dalit Terai Caste Groups (disadvantaged group of people from the Terai, the lowlands, with relatively lower socio-economic and education status but not the dalit groups); (5) Religious Minorities (Muslim, Christian, etc.); (6) Relatively advantaged Janajatis (indigenous group of people with relatively higher socio-economic status, such as Gurung, Newar and Thakali).

Multicollinearity, the variance inflation factor (VIF) was assessed for all the independent variables found to be statistically significant from the bivariate analysis. Multivariable logistic regression modeling was conducted with CKD as a dependent variable using the independent variables identified as being statistically significant from the bivariate analysis.

Results

A total of 12,109 subjects aged 20 years and above were included in the analyses. Among them 61.1% were female, two fifth were adults in the age group 20-59 years (41.6%), one third was from upper caste ethnic group (34.2%), and just above half of them were either illiterate or had no formal schooling (54.6%). Table 1 presents the unweighted numbers and proportions of different demographic characteristics of the study population as measured in the study.
Table 1: Socio-demographic characteristics of the study participants (N=12,109)

Characteristics	n	%		
Age				
20-39 years	4336	35.8		
40-59 years	5034	41.6		
60 years and above	2739	22.6		
Sex				
Male	4708	38.9		
Female	7401	61.1		
Ethnicity				
Upper caste group	4144	34.2		
Disadvantaged janajati	2546	21.0		
Relatively advantaged janajati	2018	16.7		
Disadvantaged non-dalit terai caste	1836	15.2		
Dalit	1225	10.1		
Religious minorities	340	2.8		
Education Level	Count	Percentage		
---------------------------------	-------	------------		
Illiterate/No formal schooling	6607	54.6		
Below secondary (<10 years)	2742	22.6		
Secondary and above (≥10 years)	2760	22.8		
Province				
Province 1	2049	16.9		
Province 2	2003	16.5		
Bagmati Province	3096	25.6		
Gandaki Province	1315	10.9		
Lumbini Province	2030	16.8		
Karnali Province	588	4.9		
Sudurpaschim Province	1028	8.5		
Place of residence				
Rural	6107	50.4		
Urban	6002	49.6		
Characteristics	Count	Chronic Kidney Diseases (CKD)		
--------------------------	-------	------------------------------		
	N	CKD prevalence (n %)	COR (95% CI)	AOR (95% CI)
Age				
20-39 years	4336	118 (2.6)	1	1
40-59 years	5034	294 (5.8)	2.3 (1.8-3.0)***	1.4 (1.0-1.8)*
60 years and above	2739	316 (11.5)	4.9 (3.8-6.3)***	2.6 (1.9-3.6)***
Sex				
Female	7401	415 (5.7)	1	1
Male	4708	313 (6.5)	1.2 (1.0-1.4)	1.2 (0.8-1.6)
Ethnicity				
Upper caste	4144	212 (5.1)	1	1
Disadvantaged Janajati	2546	138 (5.4)	1.1 (0.8-1.4)	1.1 (0.9-1.5)
Dalit	1225	84 (7.1)	1.4 (1.0-1.9)*	1.6 (1.1-2.3) **
Disadvantaged non-Dalit	1836	116 (6.4)	1.3 (0.9-1.7)	1.4 (0.9-2.1)
Religious minorities	340	25 (8.0)	1.6 (1.0-2.7)	1.7 (1.0-2.9)
Relative advantage	Janajati	Education	Province	Place of residence
-------------------	----------	-----------	----------	-------------------
	2018	153 (7.4)		
1.5(1.1-2.0)*				
1.4(1.0-1.9)*				
Education				
Illiterate/No formal schooling	6607	459 (7.0)	1	1
Below secondary (<10 years)	2742	146 (5.4)	0.8(0.6-0.9)**	1.1 (0.9-1.5)
Secondary and above (≥10 years)	2760	123 (4.5)	0.6(0.5-0.8)***	1.1 (0.7-1.4)
Province				
Karnali Province	588	30 (4.7)	1	1
Province 1	2049	100 (5.2)	1.1 (0.7-1.8)	1.1 (0.6-2.0)
Province 2	2003	133 (6.6)	1.4(0.9-2.3)	1.2 (0.6-2.2)
Bagmati Province	3096	196 (6.5)	1.4(0.9-2.2)	1.1 (0.6-1.9)
Gandaki Province	1315	93 (6.8)	1.5 (0.9-2.3)	1.2 (0.7-2.0)
Lumbini Province	2030	118 (5.7)	1.2(0.7-2.2)	0.9 (0.5-1.6)
Sudurpashchim Province	1028	58(5.9)	1.3(0.7-2.2)	1.4 (0.7-2.6)
Place of residence				
Rural	6107	341 (5.8)	1	1
--------------------------	-------	-------	-------	-------
Urban	6002	387	1.2	1.0
Smoking habit				
Non smoker	8305	443	1	1
Smokers	3804	285	1.5	1.2
Alcohol consumption				
No	9131	537	1	1
Yes	2978	191	1.0	1
Blood pressure				
Normal	7754	256	1	1
Raised	4355	472	3.6	2.4
Body mass index				
(N=12108)#				
Normal	6896	377	1	1
Underweight	1494	88	1.1	1.1
Overweight and obese	3718	263	1.3	0.9
Total cholesterol				
(N=10861)#				
Normal	7741	398	1	1
	Raised	Waist Hip Ratio	Diabetes Mellitus	
----------------	--------	-----------------	-------------------	
	3120	254 (8.2)		
Waist Hip Ratio (N=11979)*#				
Normal	5095	282 (5.4)		
Increased	6884	440 (6.6)	1.2(1.0-1.5) *	
Diabetes Mellitus (N=11271)*#				
No	10393	506 (4.8)	1	
Yes	878	172 (19.8)	4.9(3.8-6.2) ***	
Total	12109	6.0 (95% CI: 5.5 -6.6)		

Definition of chronic kidney disease status: Urinary albumin to creatinine ratio of ≥30 mg/g and/or glomerular filtration rate <60 ml/min/1.73 m² both at baseline and follow up)

OR: odds ratio; CI: Confidence interval; COR: Crude odds ratio; AOR: Adjusted odds ratio. Adjusted OR estimated from the stepwise multivariate logistic regression model with all the above variables added except alcohol consumption.

1 Reference group.

* Indicated the corresponding variable had significant impact on the occurrence of CKD.

* p value≤0.05 **p value≤0.01***p value≤0.0001

Missing value; refusal for blood sample collection led to variation in the sample size
Prevalence of CKD

The overall prevalence of CKD based on the eGFR MDRD equation, (urinary albumin to creatinine ratio of ≥ 30 mg/g and/or glomerular filtration rate <60 both at baseline and follow up) was 6.0% (95% CI: 5.5-6.6). The prevalence was higher in males compared to female (6.5 vs 5.7) though not statistically significant. Prevalence increased with increasing age (11.5% among 60 years and above and 2.6 % among 20-39 years age group). (Table 2). The mean (±SD) eGFR in baseline was 92.6 (± 22.1) mL/min/1.73 m2 for male and 88.2 (± 20.5) mL/min/1.73 m2 for female (figure 2). The mean (± SD) eGFR was 88.0 (± 25.7) mL/min/1.73 m2 for male and 81.1 (± 23.4) mL/min/1.73 m2 for female in follow up(figure 3).
Factors associated with CKD

The multivariable analyses to investigate the association of independent factors and CKD are shown in Table 2. In the bivariate analysis, age, smoking, BMI, ethnicity, education, having diabetes mellitus (DM), being hypertensive, increased waist hip ratio, and having raised total cholesterol were found to be statistically significantly associated with CKD. Therefore, those 9 factors including place of residence, province, and sex of participants (P-value ≤0.25) were considered in the multiple logistic models. After adjustment, only six variables: age, ethnicity, diabetes, hypertension, raised TC, and increased waist hip ratio, were found to be significant predictors of CKD. There was a strong positive association between age and CKD, i.e. the odds of having CKD were about 1.4 (95% CI : 1.0-1.8) and 2.6 (95% CI : 1.9-3.6) times higher for people aged 40–59 years and ≥60 years respectively, compared with people aged 20-39 years. Participants with DM had about 3.2 (95% CI : 2.5-4.1) times higher odds of occurrence of CKD than non-diabetic participants. Similarly, participants with raised BP had 2.4 (95% CI : 2.0-3.0) higher odds of having CKD than non-hypertensive/normal participants.

Participants with raised total cholesterol had 1.3 (95% CI : 1.0-1.6) times higher odds of having CKD relative to participants who had normal cholesterol level, whereas those with raised waist hip ratio had 1.6 (95% CI : 1.2-2.3) times higher odds than normal participants to have CKD. Individuals who were classified as Dalit by ethnicity were 1.6 (95% CI : 1.1-2.3) times or relatively advantaged janajati had 1.4 (95% CI : 1.0-1.9) times higher odds of having CKD when compared to individuals with an upper caste.
Discussion

This is the first large scale nationwide population based representative study to report prevalence of and factors associated with CKD in Nepal among population aged 20 years and above. In the absence of population validated e-GFR equation for our population, MDRD equation as done in previous studies was chosen over the CKD-EPI equation to facilitate comparison of results, CKD was prevalent among 6% of the population. The findings show that approximately one every sixteen adults in Nepal is affected by CKD. This value is higher than the population based study conducted in Morocco 5.1% and Vietnam 3.1%, almost similar to 6.8% in South Korea, east African countries including Uganda and Kenya but much lower than the prevalence of many Asian countries with 10.2% in China, 17.5% in Thailand, 18.9% in Iran and 17.2% in India. Prevalence of CKD in Nepal is lower than the global burden of disease study estimated prevalence of 8%–10% globally. However, these differences in the prevalence of CKD may be in part due to the differences in CKD diagnostic criteria, study design, laboratory methods and lack of validated measures for eGFR for Nepalese population.

Our multivariable analysis found that CKD was independently associated with age, hypertension, diabetes, raised TC, ethnicity and increased waist hip ratio (p < 0.05 for each) which are all major NCDs risk factors and consistent with previous findings. Age is a well-established risk factor for development of CKD. As expected, age was found to be the most strongly associated risk factor in our study, we observed nearly three times higher odds of occurrence of CKD among people aged 60 years or older compared to people aged 20 to 39 years. Generally, as a part of the normal physiologic process, renal function (GFR) starts to decline even in a healthy individual by 1 mL/min/1.73 m² per year after the age of 30 years. A similar steep increase in CKD prevalence by age has also been reported by others.
In line with other surveys in South East Asia, our findings show that the odds of CKD occurrence was significantly and independently higher by around 2-fold with the presence of hypertension; this supports previous reports32,36–38 indicating the importance of early detection and treatment of hypertension in Nepal. In our study people with diabetes mellitus had more than three times higher odds of occurrence of CKD than people without diabetes. Almost one fifth of people with diabetes had CKD as well. Supporting findings from our research, studies around the world indicate diabetes is independently associated with development of CKD39,40. A survey across 10 Asian countries showed that the most common cause of End Stage Renal Disease (ESRD) in 9 out of 10 countries was diabetic nephropathy41. In addition; elevated total cholesterol was substantially associated with higher odds for CKD. Given the double burden of disease and the early onset of NCDs in the country – at age 40 people are already having CKD and other co-morbidities, as shown in this manuscript, these findings have important medical and public-health implications, in targeting these “high-risk” population subgroup of the population, to reduce progression and delay the onset of cardiovascular complications and ESRD42.

Nepal is an ethnically diverse country with more than 125 castes/ethnic groups. Interestingly ethnicity/ caste was another factor contributing to CKD in our study. Compared with upper caste participants, Dalit participants had a significantly higher prevalence of CKD. The mechanism underlying these differences might be multifactorial, including cultural differences such as smoking and drinking habit, lifestyle and genetic factors. By ethnicity, Dalit group of people are considered as one of the most marginalized in terms of socioeconomic, education, political and health indicators, resulting in decreased access to resources and higher vulnerability to poor health outcomes. This calls for future studies regarding CKD on ethnic differences.
Despite finding an association between CKD and several known established risk factors including waist hip ratio, no association was found between CKD and BMI. The correlation between CKD and waist hip ratio and not BMI is plausible since this ratio is a more sensitive marker for central obesity, metabolic syndrome and potentially less influenced by muscle mass than BMI, this is in agreement with earlier studies28,43,44. The association between smoking and CKD was reported in bivariate analysis only in our study.

In general, the prevalence of CKD was higher among women compared to men, and this difference has been demonstrated in the past by several population based cross sectional studies45 However in the present study, though not statistically significant, we found slightly higher prevalence of CKD among male participants. These discrepancies in the prevalence may be due to the traditional risk factors such as hypertension and hyperglycemia being prevalent among male participant in our study. We also could not find significant association between CKD and alcohol consumption, place of residence, and provinces.

Traditional risk factors such as diabetes and hypertension are the major cause of CKD in most developed and developing countries46,47, and several other nontraditional and environmental risk factors such as infectious diseases, analgesic abuse, exposure to heavy metal (Lead, Arsenic, Mercury and Uranium), pesticides, herbal medications, and environmental pollution, impose an additionally threat worsening CKD especially in developing countries48 including Nepal. However, we lack information about environmental and some of the nontraditional risk factor, which could be used to quantify the effects of these factors on CKD.

Our study poses several strengths. To the best of our knowledge, no national survey of CKD has been done in the context of Nepal as per Kidney Disease Outcomes Quality Initiative (KDOQI)
clinical practice guideline; using (eGFR <60mL/min/1.73m², presence of albuminuria≥30mg/g and chronicity confirmed by repeated testing after three months) to confirm presence of CKD. This is the first study to report prevalence of CKD using a validated standardized estimation of the glomerular filtration rate by the MDRD study equation which is carried out in a large representative population-based sample of the adult population in Nepal following the strict guideline and protocols, strict training processes and vigorous quality assurance programs were used to ensure the quality of data collection. Additional strengths of the study include a high overall response rate and analyses based on survey weights which ensure geographic representativeness of the study. Thus, our findings would be generalizable to the general population. However, the limitations of our analysis definitely deserve comment; potential limitations include dependency on estimation of GFR, rather than direct measurement using injection of an exogenous marker factors as well as cross-sectional design of the study which does not permit inferences regarding causal relationships.

Conclusions

This is the first population-based epidemiological survey of CKD using the protocols recommended by KDOQI in Nepal. The prevalence of CKD was found to be 6.0%. The prevalence of CKD was higher among male, participants with no formal education, urban residents, smokers and participants with overweight and obese. CKD was independently associated with older age, hypertension, diabetes mellitus, increased waist hip ratio, raised total cholesterol and individual belonging to the Dalit caste by ethnicity. Our findings highlight the need for early preventive measures to manage predisposing conditions such as diabetes and hypertension which could ultimately lead to CKD and to reduce the prevalence and mortality arising from the associated comorbidities in Nepal.
Declarations

Acknowledgements: The authors would like to thank all the individuals and organizations that provided technical support for the design and implementation of the main survey. The authors are grateful Dr. Shiva raj Mishra, Research Fellow in Epidemiology and Intervention Melbourne School of Population and Global Health, for reviewing the manuscript.

Funding: The authors have not received specific grant from any agency for this research.

Competing interests: The authors declare no conflict of interest.

Data sharing statement: The datasets used and/or analyzed will be made from the corresponding author on reasonable request

Author’s contributions: KBK, KKA and MD conceived the study. LG and DKC helped in data entry and management. AP, BB and NS was involved in conducting data analysis. AP wrote the manuscript. AKJ supported in monitoring overall data quality. PG, VGL, UK, DAG and SKS revised and edited the manuscript. Each author provided intellectual content during manuscript drafting and revision, accepts accountability for their contributions.

Ethics statement: The study protocol was approved by the Ethical Review Board (ERB) of Nepal Health Research Council, Government of Nepal (Reg.no.110/2016). Written informed consent was taken from all participants before proceeding for data collection.

Patient and public involvement: Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication: Not required.
References

1. Xie Y, Bowe B, Mokdad AH, et al. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. *Kidney Int.* 2018;94(3):567-581.

2. Institute for Health Metrics and Evaluation (IHME). *GBD Compare Data.*; 2019.

3. Bikbov B, Purell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet.* 2020;395(10225):709-733.

4. Stanifer JW, Muiru A, Jafar TH, Patel UD. Chronic kidney disease in low-and middle-income countries. *Nephrol Dial Transplant.* 2016;31(6):868-874.

5. Nugent RA, Fathima SF, Feigl AB, Chyung D. The burden of chronic kidney disease on developing nations: a 21st century challenge in global health. *Nephron Clin Pract.* 2011;118(3):c269--c277.

6. Agarwal SK, Dash SC, Irshad M, Raju S, Singh R, Pandey RM. Prevalence of chronic renal failure in adults in Delhi, India. *Nephrol Dial Transplant.* 2005;20(8):1638-1642.

7. Singh NP, Ingle GK, Saini VK, et al. Prevalence of low glomerular filtration rate, proteinuria and associated risk factors in North India using Cockcroft-Gault and Modification of Diet in Renal Disease equation: an observational, cross-sectional study. *BMC Nephrol.* 2009;10(1):1-13.

8. Jafar TH, Schmid CH, Levey AS. Serum creatinine as marker of kidney function in South Asians: a study of reduced GFR in adults in Pakistan. *J Am Soc Nephrol.*
9. Sharma SK, Zou H, Togtokh A, et al. Burden of CKD, proteinuria, and cardiovascular risk among Chinese, Mongolian, and Nepalese participants in the International Society of Nephrology screening programs. *Am J Kidney Dis*. 2010;56(5):915-927.

10. Ene-Iordache B, Perico N, Bikbov B, et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): a cross-sectional study. *Lancet Glob Heal*. 2016;4(5):e307--e319.

11. Sharma SK, Dhakal S, Thapa L, et al. Community-based screening for chronic kidney disease, hypertension and diabetes in Dharan. Published online 2013.

12. Dhimal M, Bista B, Bhattarai S, Dixit LP, Hyder MKA, Agrawal N, Rani M JA. *Non Communicable Disease Risk Factors: STEPS Survey Nepal 2019*.

13. Nepal Health Research Council. *Population Based Prevalence of Selected Non-Communicable Disease in Nepal*; 2019. http://nhrc.gov.np/publication/population-based-prevalence-of-selected-non-communicable-diseases-in-nepal/

14. Aryal KK, Neupane S, Mehta S, et al. Non communicable diseases risk factors: STEPS Survey Nepal 2013 Kathmandu. *Nepal Nepal Heal Res Counc Sch*. Published online 2014.

15. Chobanian A V, Bakris GL, Black HR, et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. *Hypertension*. 2003;42(6):1206-1252.

16. Levey AS, Eckardt K-U, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes.
17. STEP I. Non communicable diseases risk factors: steps survey Nepal. 2013.

18. Gharbi MB, Elseviers M, Zamd M, et al. Chronic kidney disease, hypertension, diabetes, and obesity in the adult population of Morocco: how to avoid “over”-and “under”-diagnosis of CKD. *Kidney Int*. 2016;89(6):1363-1371.

19. Ito J, Dung DTK, Vuong MT, et al. Impact and perspective on chronic kidney disease in an Asian developing country: a large-scale survey in North Vietnam. *Nephron Clin Pract*. 2008;109(1):c25--c32.

20. Jang SY, Kim I-H, Ju EY, Ahn SI, Kim D-K, Lee SW. Chronic kidney disease and metabolic syndrome in a general Korean population: the Third Korea National Health and Nutrition Examination Survey (KNHANES III) Study. *J Public Health (Bangkok)*. 2010;32(4):538-546.

21. Muiru AN, Charlebois ED, Balzer LB, et al. The epidemiology of chronic kidney disease (CKD) in rural East Africa: a population-based study. *PLoS One*. 2020;15(3):e0229649.

22. Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. *Lancet*. 2012;379(9818):815-822.

23. Ingsathit A, Thakkinstian A, Chaiprasert A, et al. Prevalence and risk factors of chronic kidney disease in the Thai adult population: Thai SEEK study. *Nephrol Dial Transplant*. 2010;25(5):1567-1575.

24. Hosseinpanah F, Kasraei F, Nassiri AA, Azizi F. High prevalence of chronic kidney disease in Iran: a large population-based study. *BMC Public Health*. 2009;9(1):1-8.
25. Singh AK, Farag YMK, Mittal B V, et al. Epidemiology and risk factors of chronic kidney disease in India--results from the SEEK (Screening and Early Evaluation of Kidney Disease) study. *BMC Nephrol*. 2013;14(1):1-10.

26. Hannan M, Ansari S, Meza N, et al. Risk factors for CKD progression: overview of findings from the CRIC study. *Clin J Am Soc Nephrol*. 2021;16(4):648-659.

27. Tsuruya K, Yoshida H, Nagata M, et al. Association of the triglycerides to high-density lipoprotein cholesterol ratio with the risk of chronic kidney disease: analysis in a large Japanese population. *Atherosclerosis*. 2014;233(1):260-267.

28. He Y, Li F, Wang F, Ma X, Zhao X, Zeng Q. The association of chronic kidney disease and waist circumference and waist-to-height ratio in Chinese urban adults. *Medicine (Baltimore)*. 2016;95(25).

29. Alkerwi A, Sauvageot N, El Bahi I, et al. Prevalence and related risk factors of chronic kidney disease among adults in Luxembourg: evidence from the observation of cardiovascular risk factors (ORISCAV-LUX) study. *BMC Nephrol*. 2017;18(1):1-10.

30. Ping H, Zhang X, Xing N. Prevalence of chronic kidney disease in China. *Lancet*. 2012;380(9838):216.

31. O’Hare AM, Choi AI, Bertenthal D, et al. Age affects outcomes in chronic kidney disease. *J Am Soc Nephrol*. 2007;18(10):2758-2765.

32. Price CP, Finney H. Developments in the assessment of glomerular filtration rate. *Clin Chim acta*. 2000;297(1-2):55-66.

33. Garg AX, Papaioannou A, Ferko N, Campbell G, Clarke J-A, Ray JG. Estimating the
prevalence of renal insufficiency in seniors requiring long-term care. *Kidney Int.* 2004;65(2):649-653.

34. Wasen E, Isoaho R, Mattila K, Vahlberg T, Kivelä S-L, Irjala K. Estimation of glomerular filtration rate in the elderly: a comparison of creatinine-based formulae with serum cystatin C. *J Intern Med.* 2004;256(1):70-78.

35. Hemmelgarn BR, Zhang J, Manns BJ, et al. Progression of kidney dysfunction in the community-dwelling elderly. *Kidney Int.* 2006;69(12):2155-2161.

36. Li Z-Y, Xu G-B, Xia T-A, Wang H-Y. Prevalence of chronic kidney disease in a middle and old-aged population of Beijing. *Clin Chim acta.* 2006;366(1-2):209-215.

37. Safarinejad MR, others. The epidemiology of adult chronic kidney disease in a population-based study in Iran: prevalence and associated risk factors. *JN J Nephrol.* 2009;22(1):99.

38. Fiseha T, Kassim M, Yemane T. Prevalence of chronic kidney disease and associated risk factors among diabetic patients in southern Ethiopia. *Am J Heal Res.* 2014;2(4):216-221.

39. Damtie S, Biadgo B, Baynes HW, et al. Chronic kidney disease and associated risk factors assessment among diabetes mellitus patients at a tertiary hospital, Northwest Ethiopia. *Ethiop J Health Sci.* 2018;28(6).

40. Duan J, Wang C, Liu D, et al. Prevalence and risk factors of chronic kidney disease and diabetic kidney disease in Chinese rural residents: a cross-sectional survey. *Sci Rep.* 2019;9(1):1-11.

41. Lee G. End-stage renal disease in the Asian-Pacific region. In: *Seminars in*
456 Nephrology. Vol 23.; 2003:107-114.

457 42. Hallan SI, Dahl K, Oien CM, et al. Screening strategies for chronic kidney disease in the
general population: follow-up of cross sectional health survey. Bmj. 2006;333(7577):1047.

459 43. Elsayed EF, Tighiouart H, Weiner DE, et al. Waist-to-hip ratio and body mass index as
risk factors for cardiovascular events in CKD. Am J Kidney Dis. 2008;52(1):49-57.

461 44. Silva MIB, da Silva Lemos CC, Torres MRSG, Bregman R. Waist-to-height ratio: an
accurate anthropometric index of abdominal adiposity and a predictor of high HOMA-IR
values in nondialyzed chronic kidney disease patients. Nutrition. 2014;30(3):279-285.

464 45. Bikbov B, Perico N, Remuzzi G. on behalf of the GBD Genitourinary Diseases Expert
Group. Disparities in chronic kidney disease prevalence among males and females in 195
countries: analysis of the Global Burden of Disease 2016 study. Nephron. 2018;139(4):313-318.

468 46. Koye DN, Shaw JE, Reid CM, Atkins RC, Reutens AT, Magliano DJ. Incidence of
chronic kidney disease among people with diabetes: a systematic review of observational
studies. Diabet Med. 2017;34(7):887-901.

471 47. Garofalo C, Borrelli S, Pacilio M, et al. Hypertension and Prehypertension and Prediction
of Development of Decreased Estimated GFR in the General Population: A Meta-analysis
of Cohort Studies. Am J Kidney Dis. 2016;67(1):89-97. doi:10.1053/j.ajkd.2015.08.027

474 48. Xu X, Nie S, Ding H, Hou FF. Environmental pollution and kidney diseases. Nat Rev
Nephrol. 2018;14(5):313-324.
Figure legend

Figure 1: Map of Nepal showing the study clusters (400 clusters)

Figure 2: Histogram of estimated glomerular filtration rate (eGFR) distribution among 12097 participants in baseline by sex

Figure 3: Histogram of estimated glomerular filtration rate (eGFR) distribution among 1194 participants in follow up by sex
Figure 1: Map of Nepal showing the study clusters (400 clusters)

56x38mm (300 x 300 DPI)
Figure 2: Histogram of estimated glomerular filtration rate (eGFR) distribution among 12097 participants in the baseline by sex

24x16mm (600 x 600 DPI)
Figure 3: Histogram of estimated glomerular filtration rate (eGFR) distribution among 1194 participants in follow up by sex

24x17mm (600 x 600 DPI)
STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies*

Item No	Recommendation	Page No
Title and abstract 1	*(a) Indicate the study’s design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was done and what was found*	2-3
Introduction 2	**Background/rationale** Explain the scientific background and rationale for the investigation being reported	4-5
3	**Objectives** State specific objectives, including any prespecified hypotheses	5
Methods	**Study design** Present key elements of study design early in the paper	5-6
5	**Setting** Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-7
6	**Participants** *(a) Give the eligibility criteria, and the sources and methods of selection of participants*	5-6
7	**Variables** Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
8*	**Data sources/measurement** For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	8-9
9	**Bias** Describe any efforts to address potential sources of bias	8-9
10	**Study size** Explain how the study size was arrived at	5-6
11	**Quantitative variables** Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8-9
12	**Statistical methods** *(a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses*	8-9
Results 13*	**Participants** *(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram*	5-6
14*	**Descriptive data** *(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders (b) Indicate number of participants with missing data for each variable of interest*	10-17
15*	**Outcome data** Report numbers of outcome events or summary measures	10-17
16	**Main results** *(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear*	10-17
which confounders were adjusted for and why they were included

(b) Report category boundaries when continuous variables were categorized 10-17

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 10-17

| Other analyses | 17 | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 10-17 |

Discussion

Key results	18	Summarise key results with reference to study objectives 17
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias 21
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 17-21
Generalisability	21	Discuss the generalisability (external validity) of the study results 21

Other information

| Funding | 22 | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 22 |

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.
Prevalence and Risk Factors Associated with Chronic Kidney Disease in Nepal: Evidence from a Nationally Representative Population-Based cross-sectional Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057509.R2
Article Type:	Original research
Date Submitted by the Author:	24-Jan-2022
Complete List of Authors:	Poudyal, Anil; Nepal Health Research Council
Karki, Khem; Goethe University Frankfurt Institute of Occupational Social and Environmental Medicine; Department of Community Medicine, Maharajgunj Medical Campus, Kathmandu, Nepal	
Shrestha, Namuna; Public Health Promotion and Development Organization;	
Aryal, KK; MOMENTUM Country and Global Leadership, Save the Children Nepal, Kathmandu, Nepal, Research Section	
Mahato, Namra; Nepal Health Research Council	
Bista, Bihunqum; Nepal Health Research Council, Research	
Ghimire, Laxmi; Sanjeevani College of Medical Sciences	
K.C., Dirghayu; Public Health Promotion and Development Organization. Kathmandu, Nepal, Research	
Gyanwali, Pradip; Nepal Health Research Council	
Jha, Anjani; Nepal Health Research Council	
Garcia Larsen, Vanessa; Johns Hopkins University Bloomberg School of Public Health, International Health	
Kuch, Ulrich; Goethe University Frankfurt Institute of Occupational Social and Environmental Medicine, Social and Environmental Medicine	
Groneberg, David; Goethe University Frankfurt Institute of Occupational Social and Environmental Medicine	
Sharma, Sanjib Kumar; BP Koirala Institute of Health Sciences, Department of Internal Medicine	
Dhimal, Meghnath; Nepal Health Research Council; Goethe University Frankfurt Institute of Occupational Social and Environmental Medicine	
Primary Subject Heading:	Renal medicine
Secondary Subject Heading:	Urology
Keywords:	Chronic renal failure < NPHROLOGY, Dialysis < NPHROLOGY,
Glomerulonephritis < NPHROLOGY, Renal transplantation < NPHROLOGY |
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Prevalence and Risk Factors Associated with Chronic Kidney Disease in Nepal: Evidence from a Nationally Representative Population Based Cross-sectional Study

Anil Poudyal1*, Khem Bahadur Karki1,2,3*, Namuna Shrestha4, Krishna Kumar Aryal5, Namra Kumar Mahato1, Bihungum Bista1, Laxmi Ghimire6, Dirghayu KC4, Pradip Gyanwali1, Anjani Kumar Jha1, Vanessa Garcia-Larsen7, Ulrich Kuch3, David A, Groneberg3, Sanjib Kumar Sharma8, Meghnath Dhimal1,3*

Equal contributors

1 Nepal Health Research Council (NHRC), Ramshah Path, Kathmandu, Nepal
2 Department of Community Medicine, Maharajgunj Medical Campus, Kathmandu, Nepal
3 Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
4 Public Health Promotion and Development Organization, Kathmandu, Nepal
5 MOMENTUM Country and Global Leadership, Save the Children Nepal, Kathmandu, Nepal
6 Sanjeevani College of Medical Sciences, Rupandehi, Nepal
7 Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
8 Department of Internal Medicine, BP Koirala Institute of Health Sciences, Dharan, Nepal

*Corresponding Author: Anil poudyal(Email: poudyalanil123@gmail.com)
Abstract

Objective: This study aimed to determine population based prevalence of Chronic Kidney Disease (CKD) and its associated factors in Nepal.

Study Design: The study was a nationwide population-based cross sectional study

Setting & Participants: Cross-sectional survey conducted in a nationally representative sample of 12109 Nepalese adult from 2016 to 2018 on selected chronic non-communicable diseases were examined. Multistage cluster sampling with a mix of probability proportionate to size (PPS) and systematic random sampling was used for the selection of individuals aged 20 years and above. Primary and secondary outcome measures: Primary outcome in this study was population based prevalence of CKD in Nepal. A participant was considered to have CKD if the Urine Albumin-to-Creatinine Ratio (uACR) was greater than or equal to 30 mg/g and/or estimated Glomerular Filtration Rate (e-GFR) is less than 60 mL/min/1.73 m² at baseline and in follow up using modification of diet in renal disease study (MDRD) equations. The secondary outcome measure was factors associated with CKD in Nepal. The co-variate adjusted association of risk factors and CKD was calculated using multivariable binary logistic regression.

Results: The overall prevalence of CKD in Nepal was 6.0% (95% CI: 5.5-6.6). Factors independently associated with CKD included older age, (adjusted OR (AOR) 2.6, 95% CI: 1.9 to 3.6), Dalit caste (AOR 1.6, 95% CI: 1.1 to 2.3), hypertension, (AOR 2.4, 95% CI: 2.0 to 3.0) diabetes mellitus (AOR 3.2, 95% CI: 2.5 to 4.1), raised total cholesterol (AOR 1.3, 95% CI: 1.0 to 1.6) and increased waist-to-hip ratio (AOR 1.6, 95% CI: 1.2 to 2.3).

Conclusion: This nationally representative study shows that the prevalence of CKD in the adult population of Nepal is substantial, and it is independently associated with several
cardiometabolic traits. These findings warrant longitudinal studies to identify the causes of CKD in Nepal and effective strategies to prevent it.

Keywords: Chronic Kidney Disease, Nepal, adults, prevalence, eGFR, serum creatinine

Strengths and limitations of this study

- This is the first large scale nationwide population-based prevalence of CKD in Nepal.
- Strict training processes and vigorous quality assurance programs were used to ensure the quality of data collection.
- The use of standardized definitions of CKD facilitates international comparisons of CKD prevalence and risk factors.
- High overall response rate of 91.7% in first visit and 86.9% in follow up visit.
- Causal inference is unknown.
Background

Chronic Kidney Disease (CKD) is one of the most rapidly growing non-communicable diseases (NCDs) worldwide. According to the Global Burden of Disease (GBD) study, CKD was the 11th leading cause of death in 2019, up from 19th in 1990 accounting for 2.53% of total deaths. CKD is also associated with substantial morbidity, mortality, and healthcare costs. Although it is largely preventable, over 9% of the population worldwide is estimated to be affected by the condition, particularly developing countries, and it is associated with diabetes type II, hypertension and obesity, which are also growing at an alarming rate. The rapid increase of CKD is likely to impose a great socioeconomic and public health burden in resource-poor setting.

The evidence on the prevalence of CKD in South East Asia is relatively limited, but it consistently shows a high prevalence of CKD, however data remain poorly characterized due to inconsistent assessment of kidney function and nonstandard approaches which might distort the true estimates of CKD prevalence. There are few studies in Nepal already warned the higher prevalence of CKD and reported data largely depends on the population studied (rural/urban/or general/at high risk group) methods and the lack of representativeness from the general population. Nepal has overcome many of the critical health challenges to survive the first five years of life, and that NCDs and burden of potential underlying risk factors such as obesity, hypertension, and diabetes and unhealthy lifestyle habits including poor diets are highly prevalent.

Understanding the burden and risk factors associated with CKD is important for making health care planning, designing screening strategies, and prevention of these diseases in this resource...
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

constrains setting, where access to renal replacement therapy is costly. Therefore, this study
aimed to determine the population based prevalence of CKD and its associated factors in Nepal.

Methods

Study design and subjects

The Nepal Health Research Council designed and implemented the “National Population based
Prevalence Survey of Selected NCDs in Nepal”. This was a population-based survey to
investigate the prevalence of NCDs including CKD, chronic obstructive pulmonary disease
carried out between 2016 and 2018 in adult's ≥20 years old from seven provinces of the country.

Full details of the design and protocols of the survey are available elsewhere13.

Participants, sample size, and study setting

The sample size for the survey was calculated taking as reference the prevalence of raised blood
glucose (p=4%) from NCD risk factors: STEPwise approach to Surveillance(STEPS) survey
201314, Z value of 1.96 at 95% confidence level and margin of error (d) of 20%, design effect of
2, adjusting the sample across three domains of the Terai, hills and mountains and adding a non-
response rate of 20% yielded a sample size of 12,965. With a plan to enroll 33 participants in
each cluster (400), the final sample size was 13,200. A ward (lowest administrative unit of the -
then Village Development Committees (VDCs) and Municipalities) was considered as a cluster-
Primary Sampling Unit (PSU) of the study design. With the support from Central Bureau of
Statistics, a total of 400 clusters were sampled. To select a representative sample of cluster; the
rural and urban areas within each region were identified as the main sampling strata and the
sample was selected in two stages in which ecological belts (Terai, Hill and Mountains) and five
development region (Central, Eastern, Mid-Western, Western and Far western, stratification was taken into account.

The survey team members in the field used official or socially mapped household list to select 33 households (Secondary Sampling Units – SSUs) from each cluster using systematic random sampling. One participant out of the eligible candidates (≥20 years and above, resident in the study area at least 6 months and able to provide informed consent) was selected to take part in the survey using the KISH method. Of 13,200 participants who were approached for interview, 12,557 responded to the invitation in Day 1, Among 12,557 who accepted the invitation, only 12,148 participants responded in day 2 of clinical setting. For the present study, data from 12,109 subjects were available for analyses with a response rate of 91.7%, 39 (0.32%) were excluded, because they refused providing blood and urine samples to evaluate renal function in day 2.

Data weighting was carried out to make the sampled population comparable to the national population. Data weighting was done using sampling weight. Sample weighting was carried out for probabilities of selection of Primary sampling unit (Ward/cluster), selection of households, and selection of an individual in a household using 2011 population for Nepal with the support from Central Bureau of Statistics.

Data collection and measurements

Data collection was performed in 400 clusters (figure 1) within 72 districts of Nepal. Data collection teams at each site consisted of five member having academic background of nursing, general medicine, Bachelor in medical laboratory technology or public health.

Participants' appointment for face to face personal interview at convenient and accessible site or at home on two occasions (Day 1 and Day 2): Following written informed consent, from the
participants in Day 1, a structured questionnaire was administered to collect information about participants’ general health and socio-demographic characteristics. Participants self-reported their health and socio-demographic status, personal and family medical histories and history of medicine used. Information concerning their lifestyle factors (cigarette smoking, alcohol intake) was collected, and then physical and clinical measurements were performed. The clinical examination included measurements of height, weight, waist hip ratio and blood pressure (BP) following standard protocols. Height was measured in centimeters with a portable Bioplus® stature meter and weight with a portable digital seca® 874 weighing scale (Seca, Germany) and recorded in kilograms ensuring that the participant was wearing light clothes and was without footwear. Waist circumference was measured using Seca tape in cm at the level midway between the twelfth rib and the uppermost lateral border of the iliac crest during normal expiration. Blood pressure was measured at least three times with a minimum 3 min, and then averaged to be recorded by using an Omron digital automatic blood pressure monitor model HEM-8712 (Omron Health Care Co., Ltd, Japan) with appropriate sized cuffs. Participants were classified as hypertensive when the Raised BP is defined as having systolic BP ≥140 mm of Hg and/or diastolic BP ≥90 mm of Hg during the study, or being previously diagnosed as having hypertension.

We used fasting, at least an 8-hour fast, and two hour post prandial (PP) blood sample to test various biochemical parameters. Following aseptic technique, blood samples were drawn by a trained enumerators using vacutainers to test laboratory parameters such as fasting blood glucose level, PP blood glucose level, serum creatinine, total cholesterol (TC), triglyceride (TG), high density lipoprotein (HDL) cholesterol, and serum creatinine. The well trained enumerators collected around 10 ml of blood sample at the fasting state and provided 82 grams of glucose
monohydrate (equivalent to 75 grams of anhydrous glucose) in 250 ml water to drink. Second
blood sample was collected at 2 hours of glucose intake. Fasting blood glucose, TC, TG, HDL
cholesterol and serum creatinine were measured with the fasting sample and two hours PP
sample was used for measuring PP blood glucose only. We carried out biochemical analysis with
Biolyzer® 100 Clinical Chemistry Analyzer (Semi-automatic biochemistry analyzer, Analyticon,
Germany) and used glucose oxidase-peroxidase (GOD-POD) method for blood glucose,
cholesterol oxidase/phenol aminophenazone (CHOD-PAP) for TC, glycerol-3-phosphate
oxidase/phenol aminophenazone (GPO-PAP) for TG, HDL cholesterol by poly ethylene glycol/
cholesterol oxidase/ phenol aminophenazone (PEG/CHOD-PAP) and serum creatinine measured
by Jaffe Reaction method. The laboratory supervisors calculated the low-density lipoprotein
(LDL) cholesterol by Freidewald's Formula using TC, TG, and HDL cholesterol.

Outcome measurements

A spot urine sample was collected from single voided specimen to measure urine albumin and
creatinine using the same semi-automatic biochemistry analyzer (AnalyticonBiolyzer® 100
Clinical Chemistry Analyzer, Germany). Laboratory supervisors measured urine albumin
concentration by Turbidimetric tests and urine creatinine concentration by Jaffe Reaction method
and finally albumin-creatinine ration (ACR) was calculated and expressed in mg/g. Renal
function was evaluated by using estimated GFR (eGFR), based on the widely used 4-variable
Modification of Diet in Renal Disease Study (MDRD) equation. A participant was considered to
have CKD if the Urine Albumin-to-Creatinine Ratio (uACR) was greater than or equal to 30
mg/g and/or estimated Glomerular Filtration Rate (e-GFR) was less than 60 mL/min/1.73 m² at
baseline and in follow up\(^ {16}\). The secondary outcome measure was factors associated with CKD in
Nepal.
Follow up of study participants to determine CKD

Participants having either albumin-creatinine ratio (ACR) greater than or equal to 30 mg/g in the baseline and/or decreased eGFR (<60 mL/min/1.73 m²) were revisited again after 3 months in their place of residence to ensure the chronicity of the renal disease. Written consent was taken prior to blood and urine sample collection using similar procedures as mentioned above. Out of 1382 participants having a high ACR ratio and/or decreased eGFR, 1202 gave consent. However, data of ACR was missing for 8 participants making the availability of complete data for 1194 participants for analysis, with a response rate of 86.9%.

Data management and analysis

We used android mobile phones inbuilt with data collection software (REMO) to collect data digitally. Data cleaning including correction of inconsistencies was performed in SPSS version 20.0. We then exported the dataset to STATA version 13 for analysis. To adjust for unequal probability of selection, appropriate sampling weights with complex sampling analysis were used to provide valid estimates for the relevant Nepalese population which is based on 2011 national population and housing census data. Results are expressed as a percentage and odds ratio with 95% CI. Bivariate analysis was conducted to analyze the unconditional association between each explanatory variable and CKD status. To be included in multivariable modeling, the level of significance $\alpha=0.25$ was used during bivariate analysis (i.e., P-value 0.25 was not statistically significant). Independent variables included demographics (age, gender, ethnicity, education, province and place of residence), existing comorbidities (hypertension, diabetes, raised total cholesterol, increased waist hip ratio), any hypertension, any diabetes (self-reported or physician diagnosed [fasting blood glucose ≥ 126 mg/dl]), lifestyles (smoking and alcohol consumption), overweight or obesity (Body Mass Index [BMI] ≥ 25 kg/m²).
Ethnicity/caste data were self-reported and categorized into six major groups based on the caste coding by government of Nepal and STEPS survey Nepal, 2013 categorization. (1) Upper Caste Groups (population with relatively higher socio-economic and education status, mostly Brahmins, Chhetris, Thakuri and Sanyasi); (2) Disadvantaged Janajatis (disadvantaged group of people and also indigenous, with relatively lower socio-economic and education status); (3) Dalit (untouchables, most disadvantaged marginalized group of people, with relatively lower socio-economic and education status); (4) Disadvantaged non Dalit Terai Caste Groups (disadvantaged group of people from the Terai, the lowlands, with relatively lower socio-economic and education status but not the dalit groups); (5) Religious Minorities (Muslim, Christian, etc.); (6) Relatively advantaged Janajatis (indigenous group of people with relatively higher socio-economic status, such as Gurung, Newar and Thakali).

Multicollinearity, the variance inflation factor (VIF) was assessed for all the independent variables found to be statistically significant from the bivariate analysis. Multivariable logistic regression modeling was conducted with CKD as a dependent variable using the independent variables identified as being statistically significant from the bivariate analysis.

Results

A total of 12,109 subjects aged 20 years and above were included in the analyses. Among them 61.1% were female, two fifth were adults in the age group 20-59 years (41.6%), one third was from upper caste ethnic group (34.2%), and just above half of them were either illiterate or had no formal schooling (54.6%). Table 1 presents the unweighted numbers and proportions of different demographic characteristics of the study population as measured in the study.
Table 1: Socio-demographic characteristics of the study participants (N=12,109)

Characteristics	n	%
Age		
20-39 years	4336	35.8
40-59 years	5034	41.6
60 years and above	2739	22.6
Sex		
Male	4708	38.9
Female	7401	61.1
Ethnicity		
Upper caste group	4144	34.2
Disadvantaged janajati	2546	21.0
Relatively advantaged janajati	2018	16.7
Disadvantaged non-dalit terai caste	1836	15.2
Dalit	1225	10.1
Religious minorities	340	2.8

Education
Education Level	Number	Percentage
Illiterate/No formal schooling	6607	54.6
Below secondary (<10 years)	2742	22.6
Secondary and above (≥10 years)	2760	22.8

Province	Number	Percentage
Province 1	2049	16.9
Province 2	2003	16.5
Bagmati Province	3096	25.6
Gandaki Province	1315	10.9
Lumbini Province	2030	16.8
Karnali Province	588	4.9
Sudurpaschim Province	1028	8.5

Place of residence	Number	Percentage
Rural	6107	50.4
Urban	6002	49.6
Table 2 Factors associated with chronic kidney disease by univariate and multivariate analysis (N = 12109)

Characteristics	Count	Chronic Kidney Diseases(CKD)			
		N	CKD prevalence (n %)	COR (95% CI)	AOR(95% CI)
Age					
20-39 years	4336	118 (2.6)	1	1	
40-59 years	5034	294 (5.8)	2.3(1.8-3.0)***	1.4(1.0-1.8)*	
60 years and above	2739	316 (11.5)	4.9 (3.8-6.3)***	2.6(1.9-3.6)***	
Sex					
Female	7401	415 (5.7)	1	1	
Male	4708	313 (6.5)	1.2(1.0-1.4)	1.2 (0.8-1.6)	
Ethnicity					
Upper caste	4144	212 (5.1)	1	1	
Disadvantaged Janajati	2546	138 (5.4)	1.1(0.8-1.4)	1.1(0.9-1.5)	
Dalit	1225	84 (7.1)	1.4 (1.0-1.9)*	1.6 (1.1-2.3) **	
Disadvantaged non-Dalitterai caste	1836	116 (6.4)	1.3(0.9-1.7)	1.4 (0.9-2.1)	
Religious minorities	340	25 (8.0)	1.6 (1.0-2.7)	1.7(1.0-2.9)	
Relatively	2018	153 (7.4)	1.5(1.1-2.0)*	1.4(1.0-1.9)*	
Education	Education Level	Frequency	Percentage	OR (95% CI) 1	OR (95% CI) 2
-------------------------	----------------------------------	-----------	------------	----------------	----------------
Illiterate/No formal schooling	6607	459 (7.0)	1	1	1
Below secondary (<10 years)	2742	146 (5.4)	0.8 (0.6-0.9)**	1.1 (0.9-1.5)	
Secondary and above (≥10 years)	2760	123 (4.5)	0.6 (0.5-0.8)***	1.1 (0.7-1.4)	

Province					
Karnali Province	588	30 (4.7)	1	1	
Province 1	2049	100 (5.2)	1.1 (0.7-1.8)	1.1 (0.6-2.0)	
Province 2	2003	133 (6.6)	1.4 (0.9-2.3)	1.2 (0.6-2.2)	
Bagmati Province	3096	196 (6.5)	1.4 (0.9-2.2)	1.1 (0.6-1.9)	
Gandaki Province	1315	93 (6.8)	1.5 (0.9-2.3)	1.2 (0.7-2.0)	
Lumbini Province	2030	118 (5.7)	1.2 (0.7-2.2)	0.9 (0.5-1.6)	
Sudurpashchim Province	1028	58 (5.9)	1.3 (0.7-2.2)	1.4 (0.7-2.6)	

Place of residence					
Rural	6107	341 (5.8)	1	1	
Urban	6002	387 (6.5)	1.2 (1.0-1.4)	1.0 (0.8-1.3)	
	Count	Mean (SD)	Odds Ratio (95% CI)	P-value	
-----------------------------	-------	-----------	---------------------	---------	
Smoking habit					
Non smoker	8305	443 (5.3)	1	1	
Smokers	3804	285 (7.6)	1.5 (1.2-1.7)***	1.2 (1.0-1.5)	
Alcohol consumption					
No	9131	537 (6.0)	1	1	
Yes	2978	191 (6.2)	1.0 (0.9-1.2)		
Blood pressure					
Normal	7754	256 (3.3)	1	1	
Raised	4355	472 (10.8)	3.6 (3.0-4.3)***	2.4 (2.0-3.0)***	
Body mass index	(N=12108)#				
Normal	6896	377 (5.5)	1	1	
Underweight	1494	88 (6.2)	1.1 (0.9-1.5)	1.1 (0.8-1.6)	
Overweight and obese	3718	263 (6.9)	1.3 (1.1-1.5)**	0.9 (0.7-1.1)	
Total cholesterol	(N=10861)#				
Normal	7741	398 (5.2)	1	1	
Raised	3120	254 (8.2)	1.6 (1.3-2.0)***	1.3 (1.0-1.6)*	
Waist hip ratio

(N=11979)\

Normal	5095	282 (5.4)	1	1
Increased	6884	440 (6.6)	1.2(1.0-1.5) *	1.6(1.2-2.3) *

Diabetes Mellitus

(N=11271)\

No	10393	506 (4.8)	1	1
Yes	878	172 (19.8)	4.9(3.8-6.2) ***	3.2(2.5-4.1) ***

Total 12109 6.0 (95% CI: 5.5 -6.6)

Definition of chronic kidney disease status: Urinary albumin to creatinine ratio of ≥30 mg/g and/or glomerular filtration rate <60 ml/min/1.73 m² both at baseline and follow up

OR: odds ratio; CI: Confidence interval; COR: Crude odds ratio; AOR: Adjusted odds ratio. Adjusted OR estimated from the stepwise multivariate logistic regression model with all the above variables added except alcohol consumption.

1 Reference group.

* Indicated the corresponding variable had significant impact on the occurrence of CKD.

*p value≤0.05 **p value≤0.01 ***p value≤0.0001

Missing value; refusal for blood sample collection led to variation in the sample size
Prevalence of CKD

The overall prevalence of CKD based on the eGFR MDRD equation, (urinary albumin to creatinine ratio of ≥30 mg/g and/or glomerular filtration rate <60 both at baseline and follow up) was 6.0% (95% CI: 5.5-6.6). The prevalence was higher in males compared to female (6.5 vs 5.7) though not statistically significant. Prevalence increased with increasing age (11.5% among 60 years and above and 2.6 % among 20-39 years age group). (Table 2). The mean (±SD) eGFR in baseline was 92.6 (± 22.1) mL/min/1.73 m² for male and 88.2 (± 20.5) mL/min/1.73 m² for female (figure 2). The mean (± SD) eGFR was 88.0 (± 25.7) mL/min/1.73 m² for male and 81.1 (± 23.4) mL/min/1.73 m² for female in follow up(figure 3).
Factors associated with CKD

The multivariable analyses to investigate the association of independent factors and CKD are shown in Table 2. In the bivariate analysis, age, smoking, BMI, ethnicity, education, having diabetes mellitus (DM), being hypertensive, increased waist hip ratio, and having raised total cholesterol were found to be statistically significantly associated with CKD. Therefore, those 9 factors including place of residence, province, and sex of participants (P-value ≤0.25) were considered in the multiple logistic models. After adjustment, only six variables: age, ethnicity, diabetes, hypertension, raised TC, and increased waist hip ratio, were found to be significant predictors of CKD. There was a strong positive association between age and CKD, i.e. the odds of having CKD were about 1.4 (95% CI: 1.0-1.8) and 2.6 (95% CI: 1.9-3.6) times higher for people aged 40–59 years and ≥60 years respectively, compared with people aged 20–39 years.

Participants with DM had about 3.2 (95% CI: 2.5-4.1) times higher odds of occurrence of CKD than non-diabetic participants. Similarly, participants with raised BP had 2.4 (95% CI: 2.0-3.0) higher odds of having CKD than non-hypertensive/normal participants.

Participants with raised total cholesterol had 1.3 (95% CI: 1.0-1.6) times higher odds of having CKD relative to participants who had normal cholesterol level, whereas those with raised waist hip ratio had 1.6 (95% CI: 1.2-2.3) times higher odds than normal participants to have CKD. Individuals who were classified as Dalit by ethnicity were 1.6 (95% CI: 1.1-2.3) times or relatively advantaged Janajati had 1.4 (95% CI: 1.0-1.9) times higher odds of having CKD when compared to individuals with an upper caste.
Discussion

This is the first large scale nationwide population based representative study to report prevalence of and factors associated with CKD in Nepal among population aged 20 years and above. In the absence of population validated e-GFR equation for our population, MDRD equation as done in previous studies was chosen over the CKD-EPI equation to facilitate comparison of results. The findings show that approximately one in every sixteen adults (6%) is affected by CKD in Nepal. This value is higher than the population based study conducted in Morocco 5.1%\(^{18}\) and Vietnam 3.1%\(^{19}\), almost similar to 6.8% in South Korea \(^{20}\), east African countries including Uganda and Kenya\(^{21}\) but much lower than the prevalence of many Asian countries with 10.2% in China\(^{22}\), 17.5% in Thailand\(^{23}\), 18.9% in Iran\(^{24}\) and 17.2 % in India \(^{25}\). Prevalence of CKD in Nepal is lower than the global burden of disease study estimated prevalence of 8%–10%\(^{3}\) globally. However, these differences in the prevalence of CKD may be in part due to the differences in CKD diagnostic criteria, study design, laboratory methods and lack of validated measures for eGFR for Nepalese population.

Our multivariable analysis found that CKD was independently associated with older age, hypertension, diabetes, raised TC, dalit and relatively advantaged janajati ethnicity and increased waist hip ratio (p < 0.05 for each) which are all major NCDs risk factors and consistent with previous findings\(^{26–30}\). Age is a well-established risk factor for development of CKD\(^{31}\). As expected, age was found to be the most strongly associated risk factor in our study, we observed nearly three times higher odds of occurrence of CKD among people aged 60 years or older compared to people aged 20 to 39 years.

In line with other surveys in South East Asia, our findings show that the odds of CKD occurrence was significantly and independently higher by around 2-fold with the presence of
hypertension; this supports previous reports32–35 indicating the importance of early detection and
treatment of hypertension in Nepal. Similarly, people with diabetes mellitus had more than three
times higher odds of occurrence of CKD. Studies around the world show diabetes to be
independently associated with development of CKD36,37. A survey across 10 Asian countries
showed that the most common cause of End Stage Renal Disease (ESRD) in 9 out of 10
countries was diabetic nephropathy38. In addition; elevated total cholesterol though marginal was
associated with higher odds of CKD.

Nepal is an ethnically diverse country with more than 125 castes/ethnic groups. Interestingly
ethnicity/caste was another factor associated with CKD in our study. Compared with upper caste
participants, Dalit participants had a significantly higher prevalence of CKD. The mechanism
underlying these differences might be multifactorial, including cultural differences such as
smoking and drinking habit, lifestyle and genetic factors. By ethnicity, Dalit group of people are
considered as one of the most marginalized in terms of socioeconomic, education, political and
health indicators, resulting in decreased access to resources and higher vulnerability to poor
health outcomes. This calls for future studies regarding CKD on ethnic differences.

Despite finding an association between CKD and several known established risk factors
including waist hip ratio, no association was found between CKD and BMI. The correlation
between CKD and waist hip ratio and not BMI is plausible since this ratio is a more sensitive
marker for central obesity, metabolic syndrome and potentially less influenced by muscle mass
than BMI, this is in agreement with earlier studies28,39,40. The association between smoking and
CKD was reported in bivariate analysis only in our study.
In general, the prevalence of CKD was higher among women compared to men, and this
difference has been demonstrated in the past by several population based cross sectional
studies. However in the present study, though not statistically significant, we found slightly
higher prevalence of CKD among male participants. These discrepancies in the prevalence may
be due to the traditional risk factors such as hypertension and hyperglycemia being prevalent
among male participant in our study. We also could not find significant association between
CKD and alcohol consumption, place of residence, and provinces.

Traditional risk factors such as diabetes and hypertension are the major cause of CKD in most
developed and developing countries, and several other nontraditional and environmental risk
factors such as infectious diseases, analgesic abuse, exposure to heavy metal (Lead, Arsenic,
Mercury and Uranium), pesticides, herbal medications, and environmental pollution, impose an
additionally threat worsening CKD especially in developing countries including Nepal. However, we lack information about environmental and some of the nontraditional risk factor,
which could be used to quantify the effects of these factors on CKD.

Our study poses several strengths. To the best of our knowledge, this is the first national survey
with a large representative population-based sample of the adult population to report prevalence
of CKD in Nepal as per Kidney Disease Outcomes Quality Initiative (KDOQI) clinical practice
guideline; using (eGFR <60mL/min/1.73m², presence of albuminuria≥30mg/g and chronicity
confirmed by repeated testing after three months) to confirm presence of CKD. The study has
used a validated standardized estimation of the glomerular filtration rate by the MDRD equation
and all necessary protocols, standard operating procedures and quality assurance mechanism
were followed to ensure the quality of data collection. Additional strengths of the study include a
high overall response rate and analyses based on survey weights which ensure geographic
representativeness of the study making the study findings generalizable to the general population. At the same time, potential limitations include dependency on estimation of GFR, rather than direct measurement using injection of an exogenous marker factors as well as cross-sectional design of the study which does not permit inferences regarding causal relationships.

Conclusions

This is the first population-based epidemiological survey of CKD using the protocols recommended by KDOQI in Nepal. The prevalence of CKD was found to be 6.0% with higher prevalence among male, participants with no formal education, urban residents, smokers and participants with overweight and obese. CKD was independently associated with older age, hypertension, diabetes mellitus, increased waist hip ratio, raised total cholesterol and individual belonging to the Dalit caste by ethnicity. Our findings highlight the need for early preventive measures to manage predisposing conditions such as diabetes and hypertension which could ultimately lead to CKD and to reduce the prevalence and mortality arising from the associated comorbidities in Nepal.

Declarations

Acknowledgements: The authors would like to thank all the individuals and organizations that provided technical support for the design and implementation of the main survey. The authors are grateful Dr. Shiva raj Mishra, Research Fellow in Epidemiology and Intervention Melbourne School of Population and Global Health, for reviewing the manuscript.

Funding: The authors have not received specific grant from any agency for this research.

Competing interests: The authors declare no conflict of interest.
Data sharing statement: The datasets used and/or analyzed will be made from the corresponding author on reasonable request.

Author’s contributions: KBK, MD, KKA and AKJ were involved with conception, design and implemented the study. AP, NS and NKM, implemented the study on the field, completed data collection, overall supervision of the study. AP drafted the manuscript and conducted data analysis with input from NS, BB, LG, NKM and DK. SKS, PG, VGL, UK, DAG all contributed to critical revision of the manuscript, provided feedback on the initial draft and approved the final version. SKS, KKA, NS, PG, and MD were also involved responding to the comments raised by BMJ Open Journal reviewers; each authors reviewed the reversed manuscript critically and provided improvements, accepts accountability for their contributions. The corresponding author attests that all listed authors meet the authorship criteria.

Ethics statement: The study protocol was approved by the Ethical Review Board (ERB) of Nepal Health Research Council, Government of Nepal (Reg.no.110/2016). Written informed consent was taken from all participants before proceeding for data collection.

Patient and public involvement: Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication: Not required.
References

1. Xie Y, Bowe B, Mokdad AH, et al. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int. 2018;94(3):567-581.

2. Institute for Health Metrics and Evaluation (IHME). GBD Compare Data.; 2019.

3. Bikbov B, Purell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990--2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709-733.

4. Stanifer JW, Muiru A, Jafar TH, Patel UD. Chronic kidney disease in low-and middle-income countries. Nephrol Dial Transplant. 2016;31(6):868-874.

5. Nugent RA, Fathima SF, Feigl AB, Chyung D. The burden of chronic kidney disease on developing nations: a 21st century challenge in global health. Nephron Clin Pract. 2011;118(3):c269--c277.

6. Agarwal SK, Dash SC, Irshad M, Raju S, Singh R, Pandey RM. Prevalence of chronic renal failure in adults in Delhi, India. Nephrol Dial Transplant. 2005;20(8):1638-1642.

7. Singh NP, Ingle GK, Saini VK, et al. Prevalence of low glomerular filtration rate, proteinuria and associated risk factors in North India using Cockcroft-Gault and Modification of Diet in Renal Disease equation: an observational, cross-sectional study. BMC Nephrol. 2009;10(1):1-13.

8. Jafar TH, Schmid CH, Levey AS. Serum creatinine as marker of kidney function in South Asians: a study of reduced GFR in adults in Pakistan. J Am Soc Nephrol.
9. Sharma SK, Zou H, Togtokh A, et al. Burden of CKD, proteinuria, and cardiovascular risk among Chinese, Mongolian, and Nepalese participants in the International Society of Nephrology screening programs. *Am J Kidney Dis.* 2010;56(5):915-927.

10. Ene-Iordache B, Perico N, Bikbov B, et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): a cross-sectional study. *Lancet Glob Heal.* 2016;4(5):e307--e319.

11. Sharma SK, Dhakal S, Thapa L, et al. Community-based screening for chronic kidney disease, hypertension and diabetes in Dharan. Published online 2013.

12. Dhimal M, Bista B, Bhattarai S, Dixit LP, Hyder MKA, Agrawal N, Rani M JA. *Non Communicable Disease Risk Factors: STEPS Survey Nepal 2019.*

13. Nepal Health Research Council. *Population Based Prevalence of Selected Non-Communicable Disease in Nepal.* ; 2019. http://nhrc.gov.np/publication/population-based-prevalence-of-selected-non-communicable-diseases-in-nepal/

14. Aryal KK, Neupane S, Mehata S, et al. Non communicable diseases risk factors: STEPS Survey Nepal 2013 Kathmandu. *Nepal Nepal Heal Res Counc Sch.* Published online 2014.

15. Chobanian A V, Bakris GL, Black HR, et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. *Hypertension.* 2003;42(6):1206-1252.

16. Levey AS, Eckardt K-U, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes
(KDIGO). Kidney Int. 2005;67(6):2089-2100.

STEP I. Non communicable diseases risk factors: steps survey Nepal. 2013.

Gharbi MB, Elseviers M, Zamd M, et al. Chronic kidney disease, hypertension, diabetes, and obesity in the adult population of Morocco: how to avoid “over”-and “under”-diagnosis of CKD. Kidney Int. 2016;89(6):1363-1371.

Ito J, Dung DTK, Vuong MT, et al. Impact and perspective on chronic kidney disease in an Asian developing country: a large-scale survey in North Vietnam. Nephron Clin Pract. 2008;109(1):c25--c32.

Jang SY, Kim I-H, Ju EY, Ahn SJ, Kim D-K, Lee SW. Chronic kidney disease and metabolic syndrome in a general Korean population: the Third Korea National Health and Nutrition Examination Survey (KNHANES III) Study. J Public Health (Bangkok). 2010;32(4):538-546.

Muiru AN, Charlebois ED, Balzer LB, et al. The epidemiology of chronic kidney disease (CKD) in rural East Africa: a population-based study. PLoS One. 2020;15(3):e0229649.

Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815-822.

Ingsathit A, Thakkinstian A, Chaiprasert A, et al. Prevalence and risk factors of chronic kidney disease in the Thai adult population: Thai SEEK study. Nephrol Dial Transplant. 2010;25(5):1567-1575.

Hosseinpanah F, Kasraei F, Nassiri AA, Azizi F. High prevalence of chronic kidney disease in Iran: a large population-based study. BMC Public Health. 2009;9(1):1-8.
25. Singh AK, Farag YMK, Mittal B V, et al. Epidemiology and risk factors of chronic kidney disease in India--results from the SEEK (Screening and Early Evaluation of Kidney Disease) study. *BMC Nephrol.* 2013;14(1):1-10.

26. Hannan M, Ansari S, Meza N, et al. Risk factors for CKD progression: overview of findings from the CRIC study. *Clin J Am Soc Nephrol.* 2021;16(4):648-659.

27. Tsuruya K, Yoshida H, Nagata M, et al. Association of the triglycerides to high-density lipoprotein cholesterol ratio with the risk of chronic kidney disease: analysis in a large Japanese population. *Atherosclerosis.* 2014;233(1):260-267.

28. He Y, Li F, Wang F, Ma X, Zhao X, Zeng Q. The association of chronic kidney disease and waist circumference and waist-to-height ratio in Chinese urban adults. *Medicine (Baltimore).* 2016;95(25).

29. Alkerwi A, Sauvageot N, El Bahi I, et al. Prevalence and related risk factors of chronic kidney disease among adults in Luxembourg: evidence from the observation of cardiovascular risk factors (ORISCAV-LUX) study. *BMC Nephrol.* 2017;18(1):1-10.

30. Ping H, Zhang X, Xing N. Prevalence of chronic kidney disease in China. *Lancet.* 2012;380(9838):216.

31. O’Hare AM, Choi AI, Bertenthal D, et al. Age affects outcomes in chronic kidney disease. *J Am Soc Nephrol.* 2007;18(10):2758-2765.

32. Li Z-Y, Xu G-B, Xia T-A, Wang H-Y. Prevalence of chronic kidney disease in a middle and old-aged population of Beijing. *Clin Chim acta.* 2006;366(1-2):209-215.

33. Safarinejad MR, others. The epidemiology of adult chronic kidney disease in a
population-based study in Iran: prevalence and associated risk factors. *JN J Nephrol.* 2009;22(1):99.

34. Fiseha T, Kassim M, Yemane T. Prevalence of chronic kidney disease and associated risk factors among diabetic patients in southern Ethiopia. *Am J Heal Res.* 2014;2(4):216-221.

35. Price CP, Finney H. Developments in the assessment of glomerular filtration rate. *Clin Chim acta.* 2000;297(1-2):55-66.

36. Damtie S, Biadgo B, Baynes HW, et al. Chronic kidney disease and associated risk factors assessment among diabetes mellitus patients at a tertiary hospital, Northwest Ethiopia. *Ethiop J Health Sci.* 2018;28(6).

37. Duan J, Wang C, Liu D, et al. Prevalence and risk factors of chronic kidney disease and diabetic kidney disease in Chinese rural residents: a cross-sectional survey. *Sci Rep.* 2019;9(1):1-11.

38. Lee G. End-stage renal disease in the Asian-Pacific region. In: *Seminars in Nephrology* journa. Vol 23. ; 2003:107-114.

39. Elsayed EF, Tighiouart H, Weiner DE, et al. Waist-to-hip ratio and body mass index as risk factors for cardiovascular events in CKD. *Am J Kidney Dis.* 2008;52(1):49-57.

40. Silva MIB, da Silva Lemos CC, Torres MRSG, Bregman R. Waist-to-height ratio: an accurate anthropometric index of abdominal adiposity and a predictor of high HOMA-IR values in nondialyzed chronic kidney disease patients. *Nutrition.* 2014;30(3):279-285.

41. Bikbov B, Perico N, Remuzzi G. on behalf of the GBD Genitourinary Diseases Expert Group. Disparities in chronic kidney disease prevalence among males and females in 195
455 countries: analysis of the Global Burden of Disease 2016 study. *Nephron*. 2018;139(4):313-318.

456 42. Koye DN, Shaw JE, Reid CM, Atkins RC, Reutens AT, Magliano DJ. Incidence of chronic kidney disease among people with diabetes: a systematic review of observational studies. *Diabet Med.* 2017;34(7):887-901.

457 43. Garofalo C, Borrelli S, Pacilio M, et al. Hypertension and Prehypertension and Prediction of Development of Decreased Estimated GFR in the General Population: A Meta-analysis of Cohort Studies. *Am J Kidney Dis.* 2016;67(1):89-97. doi:10.1053/j.ajkd.2015.08.027

458 44. Xu X, Nie S, Ding H, Hou FF. Environmental pollution and kidney diseases. *Nat Rev Nephrol.* 2018;14(5):313-324.

459

460 Figure legend

461 **Figure 1:** Map of Nepal showing the study clusters (400 clusters)

462 **Figure 2:** Histogram of estimated glomerular filtration rate (eGFR) distribution among 12097 participants in baseline by sex

463 **Figure 3:** Histogram of estimated glomerular filtration rate (eGFR) distribution among 1194 participants in follow up by sex
Figure 1: Map of Nepal showing the study clusters (400 clusters)

56x38mm (600 x 600 DPI)
Figure 2: Histogram of estimated glomerular filtration rate (eGFR) distribution among 12097 participants in the baseline by sex
Figure 3: Histogram of estimated glomerular filtration rate (eGFR) distribution among 1194 participants in follow up by sex
STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies*

Item No	Recommendation
Title and abstract	
1	*(a)* Indicate the study’s design with a commonly used term in the title or the abstract
	(b) Provide in the abstract an informative and balanced summary of what was done and what was found
Introduction	
2	Explain the scientific background and rationale for the investigation being reported
Objectives	
3	State specific objectives, including any prespecified hypotheses
Methods	
4	Present key elements of study design early in the paper
5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection
6	*(a)* Give the eligibility criteria, and the sources and methods of selection of participants
7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable
8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group
9	Describe any efforts to address potential sources of bias
10	Explain how the study size was arrived at
11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why
12	*(a)* Describe all statistical methods, including those used to control for confounding
	(b) Describe any methods used to examine subgroups and interactions
	(c) Explain how missing data were addressed
	(d) If applicable, describe analytical methods taking account of sampling strategy
	(e) Describe any sensitivity analyses
Results	
13*	*(a)* Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed
	(b) Give reasons for non-participation at each stage
	(c) Consider use of a flow diagram
14*	*(a)* Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders
	(b) Indicate number of participants with missing data for each variable of interest
15*	Report numbers of outcome events or summary measures
16	*(a)* Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear
which confounders were adjusted for and why they were included

(b) Report category boundaries when continuous variables were categorized 10-
17

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period na

Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 10-
17

Discussion

Key results 18 Summarise key results with reference to study objectives 17

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias 21

Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 17-
21

Generalisability 21 Discuss the generalisability (external validity) of the study results 21

Other information

Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 22

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.