A new third-order cosmic shear statistics: Separating E/B-mode correlations on a finite interval

Elisabeth Krause¹, Peter Schneider² & Tim Eifler³

¹California Institute of Technology, MC 249-17, Pasadena, CA, 91125, USA, ekrause@tapir.caltech.edu
²Argelander Institut für Astrophysik, Universität Bonn, Auf dem Hügel 71, 53121, Bonn, Germany
³Center for Cosmology and Astro-Particle Physics, The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210, USA

ABSTRACT

Decomposing the shear signal into E and B-modes properly, i.e. without leakage of B-modes into the E-mode signal and vice versa, has been a long-standing problem in weak gravitational lensing. At the two-point level this problem was resolved by developing the so-called ring statistics, and later the COSEBIs; however, extending these concepts to the three-point level is far from trivial. Currently used methods to decompose three-point shear correlation functions (3PCFs) into E- and B-modes require knowledge of the 3PCF down to arbitrary small scales. This implies that the 3PCF needs to be modeled on scales smaller than the minimum separation of 2 galaxies and subsequently will be biased towards the model, or, in the absence of a model, the statistics is affected by E/B-mode leakage (or mixing).

In this paper we derive a new third-order E/B-mode statistic that performs the decomposition using the 3PCF only on a finite interval, and thereby is free of any E/B-mode leakage while at the same time relying solely on information from the data. In addition, we relate this third-order ring statistics to the convergence field, thereby enabling a fast and convenient calculation of this statistic from numerical simulations. We note that our new statistics should be applicable to corresponding E/B-mode separation problems in the CMB polarization field.

Key words: cosmology: theory, large-scale structure of Universe

1 INTRODUCTION

Cosmic shear, the distortion of light from distant galaxies by the tidal gravitational field of the intervening large-scale structure, is an excellent tool to probe the matter distribution in the universe. The statistics of the image distortions are related to the statistical properties of the large-scale matter distribution and the geometry of the universe, and can thereby be used to constrain cosmology. Current results already demonstrate the power of cosmic shear observations at constraining the clustering amplitude σ_8 and the matter density Ω_m (e.g., Fu et al. 2008; Schrabback et al. 2010; Huff et al. 2011). Furthermore, cosmic shear provides an ideal tool to study dark energy through measuring the growth of structure with large future surveys like KIDS¹, DES², LSST³ (Ivezic et al. 2008), or Euclid⁴ (Laureijs et al. 2011). The large volume probed by these surveys will enable us to measure not only the power spectrum, but also higher-order statistics with unprecedented precision. As the evolved density field is non-Gaussian, the three-point correlation function and its Fourier space equivalent, the bispectrum, contain significant cosmological information complementary to the more commonly used two-point statistics and are a powerful tool for breaking parameter degeneracies (Takada & Jain 2004).

The upcoming weak lensing experiments will limit the statistical uncertainties to the percent level. In order to extract cosmological information from these cosmic shear experiments, the increased data quality needs to be accompanied by a thorough treatment of a wide range of systematic errors, from photometric redshifts and galaxy shape measurements to the removal of astrophysical contaminants.

If the shear estimated from observed galaxy shapes is solely caused by gravitational lensing, then it should consist only of a “gradient component”, the so-called E-mode shear. B-modes (or curl components) cannot be generated by gravitational light deflection to leading order, and higher-order corrections are expected to be very small. Hence observing any B-mode pattern indicates remaining systematics in the shear

¹ http://www.astro-wise.org/projects/KIDS
² http://www.darkenergysurvey.org/
³ http://www.lsst.org/lsst/
⁴ http://sci.esa.int/euclid
2 Shear Three-Point Correlation Functions

We first introduce the shear three-point correlation function (3PCF): Consider a triangle in the complex plane with vertices X_i and let $\gamma_i(X_i)$, $\mu = 1, 2$ be the Cartesian components of the shear at point X_i. Unless otherwise noted, we will assume that the triangle is oriented such that X_1, X_2, X_3 are ordered counterclockwise around the triangle. We define $x_1 = X_1 - X_2$ and $x_2 = X_2 - X_3$ to be the sides of this triangle (c.f. Fig. 1). We will use x_i to refer to complex numbers or vectors interchangeably, and denote their magnitude as x_i^μ.

The Cartesian components of the shear 3PCF are defined as

$$\gamma_{\mu
u\lambda}(x_1, x_2) = \langle \gamma_\mu(x_1) \gamma_\nu(x_2) \gamma_\lambda(x_3) \rangle,$$

where we have assumed that the shear field is statistically homogeneous so that $\gamma_{\mu
u\lambda}$ depends only on the side vectors x_i. Since one cannot form a tri-linear scalar from the product of three shears, the behavior of the Cartesian components of the shear 3PCF under rotations is complicated. In order to write the 3PCF in terms of tangential (γ_t) and cross components (γ_c) of the shear which are parity eigenstates and have relatively simple transformation properties, one can project the complex Cartesian shear $\gamma' = \gamma_1 + i\gamma_2$ into tangential and cross component with respect to a chosen direction a, with polar angle a_i,

$$\gamma(X_i; a_i) = i\gamma_t(X_i) + \gamma_c(X_i),$$

$$\gamma(X_i; a_i) = -\gamma_t(X_i) + i\gamma_c(X_i).$$

If the directions of projection a_i are defined in terms of the vertices X_i and thus do not depend on an external coordinate system, then the tangential and cross shear are invariant under rotations of the triangle (Schneider & Lombardi 2003; Takada & Jain 2003; Zaldarriaga & Scoccimarro 2003), and the 3PCF of these shear projections will only depend on the side lengths x_i and the orientation of the triangle (clockwise or counterclockwise). In the following we will use the centroid projection, where the shear at vertex X_i is projected along the direction q_i, connecting X_i with the centroid $X = (x_1 + x_2 + x_3)/3$, and α_i is the polar angle of this projection direction (see Fig. 1 for an illustration). Following Schneider & Lombardi (2003) we define the (complex) natural components of the 3PCF which have relatively simple transformation properties

$$\Gamma^{(0)}(x_1, x_2, x_3) = \langle \gamma'(X_1) \gamma'(X_2) \gamma'(X_3) \rangle \equiv \langle \gamma(X_1; a_1) \gamma(X_2; a_2) \gamma(X_3; a_3) \rangle = -\langle \gamma(X_1) \gamma(X_2) \gamma(X_3) \rangle e^{-2i(a_1+a_2+a_3)}$$

$$\Gamma^{(1)}(x_1, x_2, x_3) = \langle \gamma'(X_1) \gamma'(X_2) \gamma(X_3; a_3) \rangle = -\langle \gamma(X_1) \gamma(X_2) \gamma(X_3) \rangle e^{-2i(a_1+a_2)}$$

$$\Gamma^{(2)}(x_1, x_2, x_3) = \langle \gamma'(X_1) \gamma(X_2; a_2) \gamma(X_3; a_3) \rangle, \quad \Gamma^{(3)}(x_1, x_2, x_3) = \langle \gamma(X_1; a_1) \gamma(X_2; a_2) \gamma(X_3; a_3) \rangle. \quad (3)$$

$\Gamma^{(0)}$ is invariant under cyclic permutations of arguments; the other three components transform into each other: $\Gamma^{(1)}(x_1, x_2, x_3) = \Gamma^{(2)}(x_3, x_1, x_2) = \Gamma^{(3)}(x_2, x_3, x_1)$, etc. A different parameterization of oriented triangles is in terms of two sides and their inner angle, e.g. x_1, x_2, and ϕ (c.f. Fig. 1). We choose the convention $\phi \in [-\pi, \pi]$, such that $\phi > 0$ corresponds to X_1, X_2, X_3 being ordered counter clockwise (“positive orientation”) and $\phi < 0$ corresponds to clockwise ordering (“negative orientation”).
3 E/B-MODE SEPARATION

To construct integrals which separate third-order E- and B-mode correlations we start from the circle statistics $C(\theta)$ (Crittenden et al. 2002; Schneider et al. 2002) which geometrically separates E- and B-modes by measuring the mean tangential and cross component of the shear on a circle of radius θ around the origin

$$C(\theta) = \mathcal{C}_e(\theta) + i\mathcal{C}_b(\theta) = \frac{1}{2\pi} \int_0^{2\pi} d\phi \ (\gamma_1 + i\gamma_2)(\theta, \phi; \psi) = -\frac{1}{2\pi} \int_0^{2\pi} d\phi \ e^{-2i\phi\gamma}\ (\theta, \psi),$$

where ψ is the polar angle on the circle, and in the last step we have rotated the tangential and radial shear into the cartesian components. Following Schneider & Kilbinger (2007) we now consider the shear inside an annulus $\theta_1 < \theta < \theta_2$ and define the ring statistics R

$$R = R_e + iR_b = \int_{\theta_1}^{\theta_2} d\theta \ W(\theta; \theta_1, \theta_2) C(\theta),$$

which is a function of two radii θ_1 and θ_2, and where $W(\theta; \theta_1, \theta_2)$ is a normalized weight function

$$\int_{\theta_1}^{\theta_2} d\theta \ W(\theta; \theta_1, \theta_2) = 1,$$

and $W = 0$ outside the annulus, i.e. if $\theta < \theta_1$ or $\theta > \theta_2$. From this definition we construct the third-order ring statistics as the correlation of the weighted mean shear in three concentric annuli with radii $\theta_1 < \theta_2 < \theta_3 < \theta_4 < \theta_5 < \theta_6$ (cf. Fig. 1),

$$\langle RRR(\theta) \rangle = \int_{\theta_1}^{\theta_2} d\theta_1 W(\theta_1; \theta_1, \theta_2) \int_{\theta_2}^{\theta_3} d\theta_2 W(\theta_2; \theta_2, \theta_3) \int_{\theta_3}^{\theta_4} d\theta_3 W(\theta_3; \theta_3, \theta_4) \ (C(\theta_1) C(\theta_2) C(\theta_3))$$

(7)

$$\langle R'R'R'(\theta) \rangle = \int_{\theta_1}^{\theta_2} d\theta_1 W(\theta_1; \theta_1, \theta_2) \int_{\theta_2}^{\theta_3} d\theta_2 W(\theta_2; \theta_2, \theta_3) \int_{\theta_3}^{\theta_4} d\theta_3 W(\theta_3; \theta_3, \theta_4) \ (C'(\theta_1) C'(\theta_2) C'(\theta_3))$$

(8)

where we have used $\theta = (\theta_1, ..., \theta_6)$ to denote a six-tuple of radii. Expanding these correlators in terms of the mean tangential and cross shear yields

$$\langle RRR(\theta) \rangle = \left[\langle RRR \rangle - \langle R, R, R \rangle - \langle R, R, R \rangle - \langle R, R, R \rangle - i(\langle R, R, R \rangle + \langle R, R, R \rangle + \langle R, R, R \rangle + \langle R, R, R \rangle) \right](\theta)$$

(9)

$$\langle R'R'R'(\theta) \rangle = \left[\langle R'R'R' \rangle + \langle R, R, R \rangle + \langle R, R, R \rangle - \langle R, R, R \rangle + i(\langle R, R, R \rangle - \langle R, R, R \rangle + \langle R, R, R \rangle + \langle R, R, R \rangle) \right](\theta)$$

(10)

Note that the imaginary parts of (9, 10) vanish in the absence of parity-violating modes.

We analogously define the correlators $\langle R'R'R \rangle$ and $\langle R'R'R'R \rangle$ and separate E- and B-modes via

$$\langle R'_e R'_e R'_e \rangle(\theta) = \frac{1}{4} \text{Re} \left[\langle RRR \rangle + \langle R'R'R \rangle + \langle R'R'R \rangle + \langle R'R'R \rangle \right](\theta)$$

(11)

$$\langle R_b R'_b R'_b \rangle(\theta) = \frac{1}{4} \text{Re} \left[-3 \langle RRR \rangle + \langle R'R'R \rangle + \langle R'R'R \rangle + \langle R'R'R \rangle \right](\theta)$$

(12)

$$\langle R'_e R'_b R'_b \rangle(\theta) = \frac{1}{4} \text{Im} \left[3 \langle RRR \rangle + \langle R'R'R \rangle + \langle R'R'R \rangle + \langle R'R'R \rangle \right](\theta)$$

(13)

$$\langle R'_b R'_e R'_e \rangle(\theta) = \frac{1}{4} \text{Im} \left[-3 \langle RRR \rangle + \langle R'R'R \rangle + \langle R'R'R \rangle + \langle R'R'R \rangle \right](\theta),$$

(14)

where Eq. (11) corresponds to pure E-mode correlations, and Eq. (14) to parity violating third-order B-mode correlations. Equation (12) is a parity invariant correlation between E- and B-modes, and Eq. (13) is a parity violating correlation between E- and B-modes.

For brevity, the mixed terms (12,13) are generalized expressions which are sensitive to B-modes in any of the annuli, i.e $\langle R_e R'_b R'_b \rangle(\theta) = \langle R, R, R, R \rangle + \langle R, R, R, R \rangle + \langle R, R, R, R \rangle + \langle R, R, R, R \rangle / 3$, etc.. Instead one can also consider more localized B-mode measures like

$$\langle R, R, R, R \rangle(\theta) = \frac{1}{4} \text{Re} \left[-3 \langle RRR \rangle + \langle R'R'R \rangle + \langle R'R'R \rangle - \langle R'R'R \rangle \right](\theta),$$

(15)

which picks up correlations with B modes in the innermost and middle annulus, but is insensitive to B-modes in the outer annulus.

4 THIRD-ORDER RING STATISTICS

In this section we derive computationally advantageous expressions for the third-order ring statistics in terms of the shear 3PCF, and show their relation to the convergence bispectrum.

4.1 Relation to the shear three-point functions

We rewrite the third-order ring statistics in terms of the shear 3PCF by starting from the definition Eq. (7)

$$\langle RRR(\theta) \rangle = -\int_{\theta_1}^{\theta_2} d\theta_1 W(\theta_1; \theta_1, \theta_2) \int_{\theta_2}^{\theta_3} d\theta_2 W(\theta_2; \theta_2, \theta_3) \int_{\theta_3}^{\theta_4} d\theta_3 W(\theta_3; \theta_3, \theta_4)$$

$$\times \int_0^{2\pi} \frac{d\psi_1}{2\pi} \int_0^{2\pi} \frac{d\psi_2}{2\pi} \int_0^{2\pi} \frac{d\psi_3}{2\pi} e^{-2i(\phi_1 + \phi_2 + \phi_3)} (\gamma' (\theta_1, \psi_1) \gamma' (\theta_2, \psi_2) \gamma' (\theta_3, \psi_3)) .$$

(16)
where we have defined the complex filter function ψ_i. Finally, ϕ is the inner angle of the triangle at X_3 which we will use when parameterizing a triangle in terms of two side lengths x_1, x_2 and angle ϕ.

Noting that $X_j = \theta_j \exp(i\psi_j)$ and using Eq. (3), this can be rewritten as

$$\langle RRR \rangle(\theta) = \int \frac{d^2X_1}{2\pi|X_1|} W(|X_1|; \theta, \theta_2) \int \frac{d^2X_2}{2\pi|X_2|} W(|X_2|; \theta_3, \theta_4) \int \frac{d^2X_3}{2\pi|X_3|} W(|X_3|; \theta_5, \theta_6) \times \exp\left(2i(\alpha_1 + \alpha_2 + \alpha_3 - \psi_1 - \psi_2 - \psi_3)\right) \Gamma^{(0)}(X_1 - X_3, X_2 - X_3),$$

(17)

where $\Gamma^{(0)}$ is the shear 3PCF measured relative to the centroid, so that the α_i are the directions of the point X_i to the centroid $\bar{X} = (X_1 + X_2 + X_3)/3$. Owing to circular symmetry, we can set $\psi_3 = 0$; equivalently, one can use relative polar angles $\Delta\psi_j = \psi_j - \psi_3$ and show that the integrand depends only on these relative angles.

As Γ is measured within discrete angular bins, while the weight functions and geometric factors in Eq. (17) can be evaluated continuously, it is numerically more stable to rewrite the third-order ring statistics such that only the three outermost integrals contain the shear 3PCF and the inner integrals can be evaluated numerically to arbitrary precision. With $x_j = X_j - \bar{X}$, $e^{i\phi_j} = \theta_j e^{i\psi_j}$, for $j = 1, 2$,

$$\langle RRR \rangle(\theta) = \int \frac{d^2x_1}{(2\pi)^2} \int \frac{d^2x_2}{(2\pi)^2} \Gamma^{(0)}(x_1, x_2) \int d\theta_1 W(|\theta_1|; \theta_3, \theta_4) W(|x_1 + x_2|; \theta_1, \theta_2) W(|x_2 + x_3|; \theta_3, \theta_4) \times \frac{1}{|x_1 + \theta_3||x_2 + \theta_3|} \exp\left(2i(\alpha_1 + \alpha_2 + \alpha_3 - \psi_1 - \psi_2)\right),$$

(18)

where we have used θ_i to denote a complex number with zero imaginary part for consistency. We have $e^{i\phi_j} = q_j/q_*$ with $q_1 = (2x_1 - x_2)/3$, $q_2 = (2x_2 - x_1)/3$, $q_3 = -(x_1 + x_2)/3$, and $e^{i\theta_i} = (x_1 + \theta_3)/\theta_3$, so that

$$e^{-i\phi_j} = \frac{x_j + \theta_j}{x_j + \theta_j}.$$

(19)

Thus,

$$\langle RRR \rangle(\theta) = \int \frac{d^2x_1}{(2\pi)^2} \int \frac{d^2x_2}{(2\pi)^2} \Gamma^{(0)}(x_1, x_2) \int d\theta_1 W(|\theta_1|; \theta_3, \theta_4) W(|x_1 + x_2|; \theta_1, \theta_2) W(|x_2 + x_3|; \theta_3, \theta_4) \times \frac{1}{|x_1 + \theta_3||x_2 + \theta_3|} q_1 q_2 q_3 q_1^* q_2^* q_3^* \frac{x_1 + \theta_1 x_2 + \theta_2 x_3 + \theta_3}{x_1 + \theta_3 x_2 + \theta_3 x_3 + \theta_3},$$

(20)

Finally, if φ_j is the polar angle of x_j, and $\phi = \varphi_2 - \varphi_1$ is the angle between x_2 and x_1, we obtain

$$\langle RRR \rangle(\theta) = \frac{1}{(2\pi)^2} \int dx_1 x_1 \int dx_2 x_2 \int d\phi \Gamma^{(0)}(x_1, x_2, \phi) \times \int d\theta_1 W(|\theta_1|; \theta_3, \theta_4) \int d\varphi_1 W(|x_1 e^{i\phi_1}|; \theta_1, \theta_2) W(|x_2 e^{i(\phi_1 + \phi)}|; \theta_3, \theta_4) \int d\theta_3 W(|\theta_3|; \theta_3) \frac{1}{|x_1 + \theta_3 x_2 + \theta_3|} q_1 q_2 q_3 q_1^* q_2^* q_3^* x_1 + \theta_1 x_2 + \theta_2 x_3 + \theta_3,$$

(21)

where we have defined the complex filter function Z_0 of the ring statistics in the last step. Note that the ratio of the q’s does not depend on θ_3.

Figure 1. Left: Concept of the third-order ring statistics $\langle RRR \rangle(\theta_1, \theta_2, \ldots, \theta_6)$. E/B-modes are separated on a finite interval by correlating the shear of galaxy triplets located within three concentric annuli, as illustrated by the thick black triangle. The minimum separation between galaxies in the above geometry is $\min(\theta_3 - \theta_2, \theta_3 - \theta_1)$ and the maximum separation is $\theta_3 + \theta_2$. Right: Geometry of a triangle in the third-order ring statistics. The triangle vertices X_j are located on three concentric circles of radius θ_j and have polar angles ψ_j. The triangle centroid is \bar{X}. In the centroid projection the shear at each X_j is projected onto the centroid along direction q_j, the line connecting X_j with the centroid. φ_j is the orientation angle of vector q_j. Finally, ϕ is the inner angle of the triangle at X_3 which we will use when parameterizing a triangle in terms of two side lengths x_1, x_2 and angle ϕ.

Krause, Schneider & Eifler
and thus the evaluation of the filter function can be further simplified by reversing the order of integration and moving this factor to the outer \((\varphi_1,\cdot)\) integral.

Expressions for the other correlations required for \(E\)-/B-mode separation, which contain a complex conjugate ring statistic \(\mathcal{R}'\), are derived analogously. For the correlation involving the complex conjugate shear at vertex \(x_j\), the resulting expression analogous to Eq. (21) contains \(\Gamma^{(0)}\) instead of \(\Gamma^{(0)}\), \(q_i/q_j^*\) is replaced by its complex conjugate (corresponding to \(\alpha_j \rightarrow -\alpha_j\) in Eq. (3)), and for \(j = 1, 2\) the factor \(x_j/x_j^*\) is also replaced by its complex conjugate (corresponding to \(\psi_j \rightarrow -\psi_j\) in the equivalent of Eq. (16)), e.g.

\[
\langle \mathcal{R}'\mathcal{R}\rangle (\vartheta) = \frac{1}{(2\pi)^2} \int dx_1 \int dx_2 dx_3 \int d\varphi \Gamma^{(1)}(x_1, x_2, \varphi) Z_1(x_1, x_2, \varphi, \vartheta),
\]

with

\[
Z_1(x_1, x_2, \varphi, \vartheta) = \int d\theta_1 W(\theta_1; \theta_1, \theta_3) \int d\varphi_1 W(x_1 e^{i\varphi_1} + \theta_1; \theta_1, \theta_2) W(x_2 e^{i\varphi}) + \theta_3; \theta_3, \theta_4) \frac{q_i^* q_j^* x_i^\prime x_j^\prime + \theta_3}{|x_i^\prime + \theta_3||x_j^\prime + \theta_3|}.
\]

In the computation of the ring statistics one can choose any (normalized) radial weight function \(W\) that fulfills \(W(0; \theta_1, \theta_2) = 0\) even if \(\theta_1 = 0\) (as the separation in tangential/cross shear is ill-defined on circle of radius \(\theta = 0\)). To be specific, we choose

\[
W(\theta; \theta_1, \theta_2) = 30(\theta - \theta_1)^2(\theta - \theta_2)^2/(\theta_1 - \theta_2)^3.
\]

as in the computation of the second-order ring statistics (Schneider & Kilbinger 2007). The shape of the third-order ring statistics filter functions \(Z_{0,1}\) based on this choice for \(W\) is illustrated in Fig. 2.

4.2 Relation to the bispectrum

In order to rewrite the third-order ring statistics in terms of the bispectrum we first relate it to the lensing convergence field \(\kappa\), which is easier to express in terms of the convergence bispectrum than the shear 3PCF (see Schneider et al. 2005, for details) as it contains fewer oscillatory phase factors. Expressing the ring statistics in terms of the convergence field also speeds up the measurement of \(\langle \mathcal{R}_{ij}^0 \rangle\) in simulations considerably, as described below.
that meet the quality of the data. We have introduced the third-order ring statistics, which separates the shear 3PCF into third-order E-mode correlations on a finite interval [0, \theta_\text{max}]. Thus, unlike the third-order aperture mass statistics, it is not a thermore, in Sect. 4.2 we give convenient expressions for computing the E-mode ring statistics from numerical simulations, and from the corresponding Fourier transform \(\tilde{U}_{0,\theta,j}(l) \).

Consider the convergence field smoothed with a radially symmetric filter \(U_\theta(\theta) \) with characteristic scale \(\theta \). If \(U_\theta(\theta) \) is a compensated filter \(\int d\theta' U_\theta(\theta') = 0 \), this convolution can be expressed in terms of the shear field as

\[
\int d^2 \theta' U_\theta(\theta') \kappa(\theta') = \int d^2 \theta Q_\theta(\theta') \gamma(\theta'),
\]

(25)

where \(U \) and \(Q \) are related by (Kaiser et al. 1995; Schneider 1996; Schneider & Kilbinger 2007)

\[
Q_\theta(\theta) = \frac{2}{\theta^2} \int_0^\infty d\theta' U_\theta(\theta') - U_\theta(\theta) \quad \text{and} \quad U_\theta(\theta) = \int_0^{\infty} 2d\theta' \theta Q_\theta(\theta') - Q_\theta(\theta).
\]

(26)

As shown in Schneider & Kilbinger (2007) the definition of the ring statistics \(R \) (Eq. (5)) is equivalent to an aperture mass \(M_{Ap}(\theta_i, \theta_j) \) with two characteristic scales if

\[
Q_{\theta_i, \theta_j}(\theta) = \frac{W(\theta; \theta_i, \theta_j)}{2\pi \theta}.
\]

(27)

As the relation between the filter \(Q \) and \(U \) does not depend on the shape of \(Q \), we can calculate the corresponding compensated filter \(U_{0,\theta,j}(\theta) \) as in Eq. (26). The left and middle panel of Fig. 3 show the ring statistics filter \(W(\theta; \theta_i, \theta_j) \) and the corresponding aperture mass filter \(U_{0,\theta,j}(\theta) \) for different choices of ring radii \((\theta_i, \theta_j)\). As expected from Eq. (26), \(U \) is constant for \(\theta < \theta_i \), then becomes negative, and is zero for \(\theta > \theta_i \).

Based on Eqs. (25, 26, 27), the third-order ring statistics of a pure E-mode field can be computed directly from simulated convergence maps by convolving the convergence field with different filters \(U_{0,\theta,j} \) and correlating three filtered maps. With this approach one does not need to calculate the shear 3PCF, which are computationally expensive (e.g. Jarvis et al. 2004).

Expressing \(R_\theta \) as the convolution of \(\kappa \) and \(U_{0,\theta,j} \), also enables us to write down the third-order ring statistics of a pure E-mode field in terms of the convergence bispectrum \(B_{\theta_i, \theta_j, \theta_k}(l_1, l_2, l_3) \) (c.f. Schneider et al. 2005)

\[
\langle R_{\theta_i} \rangle(\theta) = \frac{1}{(2\pi)^3} \int dl_1 l_1 \int dl_2 l_2 \int d\phi B_{\theta_i, \theta_j, \theta_k}(l_1, l_2, \phi) \hat{U}_{\theta_i, \theta_j, \theta_k}(l_1) \hat{U}_{\theta_i, \theta_j, \theta_k}(l_2) \hat{U}_{\theta_i, \theta_j, \theta_k}(l_3) \theta_{\text{min}}^2 - 2l_1 l_2 \cos \phi,
\]

(28)

with the Fourier transformed filter function \(\hat{U}(l) = \int d\theta \theta J_0(\theta l) U(\theta) \). The bispectrum filter functions for the third-order ring statistics are illustrated in the right panel of Fig. 3.

5 CONCLUSION

Upcoming lensing surveys will provide data of unprecedented quality and enable us to conduct robust measurements of cosmic shear beyond the two-point level. These higher-order statistics contribute substantial information to cosmological constraints by breaking parameter degeneracies when combined with second-order shear statistics. Furthermore, three-pt statistics have the potential to improve our understanding of systematics effects in the data, e.g. a detection of third-order B-modes can be an additional indicator for unsolved problems in the data analysis.

When extracting third-order information from a high-quality data set it is therefore essential to use robust and unbiased theoretical methods that meet the quality of the data. We have introduced the third-order ring statistics, which separates the shear 3PCF into third-order E/B-mode correlations on a finite interval \([\theta_{\text{min}}, \theta_{\text{max}}]\). Hence this statistic does not require knowledge of the 3PCF down to zero lag, where it is impossible to measure. Thus, unlike the third-order aperture mass statistics, it is not affected by apparent E/B-mode mixing (Kilbinger et al. 2006).

Our main results are Eqs. (21, 22, 23), which give compact expressions for the third-order ring statistics in terms of the shear 3PCF. Furthermore, in Sect. 4.2 we give convenient expressions for computing the E-mode ring statistics from numerical simulations, and from the
The third-order ring statistics

The third-order ring statistics which facilitate the comparison with theoretical models for weak lensing three-point statistics (e.g. Valageas et al. 2011).

In addition to the cosmological information contained in the E-mode signal, our expression for third-order B-mode correlations opens a new window to detect remaining systematics in the data. For example, the various permutations of $\langle R_R R_E R_B \rangle$ allow for an association of B-modes with a specific angular scales.

For the analysis of future shear 3PCF measurements, we recommend using Eq. (11) to obtain a clean third-order E-mode signal, and Eqs. (12, 15) to test for remaining B-mode correlations.

ACKNOWLEDGEMENTS

We thank Bhuvnesh Jain, Chris Hirata, and Mike Jarvis for useful discussions.

This work was supported by the Deutsche Forschungsgemeinschaft under the Transregional Collaborative Research Center TR-33 ‘The Dark Universe’. EK is supported by the US National Science Foundation (AST-0807337), the US Department of Energy (DE-FG03-02-ER40701), and the David and Lucile Packard Foundation.

REFERENCES

Bunn E. F., Zaldarriaga M., Tegmark M., de Oliveira-Costa A., 2003, Phys. Rev. D, 67, 023501
Crittenden R. G., Natarajan P., Pen U., Theuns T., 2002, ApJ, 568, 20
Eifler T., Schneider P., Krause E., 2010, A&A, 510, A7
Fu L., Semboloni E., Hoekstra H., Kilbinger M., van Waerbeke L., Tereno I. e. a., 2008, A&A, 479, 9
Huff E. M., Eifler T., Hirata C. M., Mandelbaum R., Schlegel D., Seljak U., 2011, ArXiv e-print 1112.3143
Ivezic Z., Tyson J. A., Acosta E., Allsman R., Anderson S. F., et al. 2008, ArXiv e-print 0805.2366
Jarvis M., Bernstein G., Jain B., 2004, MNRAS, 352, 338
Kaiser N., Squires G., Broadhurst T., 1995, ApJ, 449, 460
Kilbinger M., Schneider P., Eifler T., 2006, A&A, 457, 15
Laureijs R., Amiaux J., Arduini S., Auguères J., Brinchmann J., et al. 2011, ArXiv e-print 1110.3193
Schneider P., 1996, MNRAS, 283, 837
Schneider P., Eifler T., Krause E., 2010, A&A, 520, A116
Schneider P., Kilbinger M., 2007, A&A, 462, 841
Schneider P., Kilbinger M., Lombardi M., 2005, A&A, 431, 9
Schneider P., Lombardi M., 2003, A&A, 397, 809
Schneider P., van Waerbeke L., Jain B., Kruse G., 1998, MNRAS, 296, 873
Schneider P., van Waerbeke L., Mellier Y., 2002, A&A, 389, 729
Schrabback T., Hartlap J., Joachimi B., Kilbinger M., Simon P. e. a., 2010, A&A, 516, A63
Shi X., Schneider P., Joachimi B., 2011, A&A, 533, A48
Takada M., Jain B., 2003, ApJL, 583, L49
Takada M., Jain B., 2004, MNRAS, 348, 897
Valageas P., Sato M., Nishimichi T., 2011, ArXiv e-print 1111.7156
Zaldarriaga M., Scoccimarro R., 2003, ApJ, 584, 559