A molecular framework for the systematics of the Mediterranean spindle-shells (Gastropoda, Neogastropoda, Fasciolariidae, Fusininae)

GIULIA FASSIO, PAOLO RUSSO, GIUSEPPE BONOMOLO, ALEXANDER E. FEDOSOV, MARIA VITTORIA MODICA, ELISA NOCELLA, MARCO OLIVERIO

doi: 10.12681/mms.29935

To cite this article:

Fassio, G., Russo, P., Bonomolo, G., Fedosov, A. E., Modica, M. V., Nocella, E., & OLIVERIO, M. (2022). A molecular framework for the systematics of the Mediterranean spindle-shells (Gastropoda, Neogastropoda, Fasciolariidae, Fusininae). Mediterranean Marine Science, 23(3), 623–636. https://doi.org/10.12681/mms.29935
A molecular framework for the systematics of the Mediterranean spindle-shells (Gastropoda, Neogastropoda, Fasciolariidae, Fusininae)

Giulia FASSIO1, Paolo RUSSO2, Giuseppe BONOMOLO3, Alexander E. FEDOSOV4,5, Maria Vittoria MODICA6, Elisa NOCELLA1,6 and Marco OLIVERIO1

1 Department of Biology and Biotechnologies “Charles Darwin”, Zoology, Sapienza University of Rome, Viale dell’Università 32, I-00185 Roma, Italy
2 Santa Croce 421, 30135 Venezia
3 Via Giuseppe Mazzini 9 - 61022 Vallefoglia, Pesaro-Urbino
4 A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninski prospect 33, Moscow 119071, Russia
5 Institut de Systématique, Évolution, Biodiversité, ISYEB, UMR7205 (CNRS, EPHE, MNHN, UPMC), Muséum national d’histoire naturelle, Sorbonne Universités, 55 Rue Buffon, 75005 Paris Cedex 05
6 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121, Naples, Italy

Corresponding author: Marco Oliverio; marco.oliverio@uniroma1.it

Contributing Editor: Serge GOFAS

Received: 18 March 2022; Accepted: 20 April 2022; Published online: 24 June 2022

Abstract

A remarkably high diversity of native small spindle-shells (Gastropoda, Fasciolariidae, Fusininae) has been recently inventoried in the Mediterranean Sea, with 23 species identified based on shell morphology. They have almost invariably been classified in the genus Fusinus, and a few of them recently moved to other genera (Aptyxis Troschel 1868, Aegeofusinus Russo, 2017 and Gracilipurpura Jousseaume, 1880), mostly based on the sole shell features. We have reconstructed a molecular phylogenetic framework for the Mediterranean Fusininae, focusing on native species representative of the genus-level taxa. Our results confirmed that Fusinus s.s. (type species Murex colus Linnaeus, 1758) should be restricted to a group of large-shelled species from the Indo-West Pacific and does not fit any of the small-shelled Mediterranean fusinines. We confirm that Murex syracusanus Linnaeus, 1758 represents a distinct lineage, and show that for all the remaining species the pattern is suggestive of a single monophyletic radiation of small Mediterranean fusinines, for which the name Pseudofusus Monterosato, 1884 must be used.

Keywords: Fasciolariidae; Molecular phylogeny; Systematics; Aegeofusinus; Aptyxis; Fusinus; Gracilipurpura; Hadriania; Pseudofusus.

Introduction

Spindle-shells, along with tulip shells and horseconchs, belong to the neogastropod family Fasciolariidae Gray, 1853. This large lineage of predatory marine snails probably appeared during the Albian (Bandel, 1993), and includes over 500 extant species in c. 63 currently accepted extant genera worldwide (MolluscaBase, 2022). Fasciolariids feed on sedentary polychaetes, bivalves, cirripedes and other gastropods (Taylor et al., 1980), and a large majority of species undergo a non-planktotrophic intracapsular development (Leal, 1991).

A recent molecular phylogenetic study (Couto et al., 2016) provided support to recognize three major lineages within the family Fasciolariidae [excluding the unsta-
ascribed to *Pseudolatirus* Bellardi, 1884 (previously in *Peristerniinae*) split among *Granulifusus* and *Chryseofusus*.

Kantor *et al.* (2018) revised *Pseudolatirus* restricting its use to fossil species only. Adding new sequences, they provided a framework including the newly introduced genera *Okutanius* Kantor, Fedosov, Snyder & Bouchet, 2018 (preoccupied name, replaced by *Takashius* Kantor, Fedosov, Snyder & Bouchet, 2022, type species *Fusolatirus kuroeansus* Okutani, 1975) and *Vermeijius* Kantor, Fedosov, Snyder & Bouchet, 2018 (type species *Pseudolatirus pallidus* Kuroda & Habe, 1961).

Subsequently, Vermeij & Snyder (2018:71), in a morphology-based revision, proposed groupings of extant and fossil ‘large’ fusinines in genera largely but not completely in agreement with the molecular phylogenetic schemes of Couto *et al.* (2016) and Kantor *et al.* (2018).

The currently accepted fusinine systematics (MolluscaBase, 2022) is largely based on Vermeij & Snyder (2018) and recognises 46 genera, of which 15 exclusively fossil.

In the Mediterranean Sea, beside the recently immigrated alien species *Marmorofusus verrucosus* (Gmelin, 1791), a remarkably high diversity of native small spindleshells has been inventoried, with 23 species identified based on shell morphology (Buzzurro & Russo, 2007; Prkić & Russo, 2008; Russo, 2013, 2017; Russo & Germanà, 2014; Russo & Angelidis, 2016; Russo & Calascibetta, 2018; Russo & Pagli, 2019). All those species have been almost invariably placed in *Fusinus*, until Russo (2015) proposed to resurrect the genus *Aptyxis* Troschel, 1868 for *Murex syracusanus* Linnaeus, 1758; then, Russo (2017) introduced the new genus *Agegeofusinus* Russo, 2017 to include some small species endemic to the Aegean Sea; and eventually, Vermeij & Snyder (2018) proposed to place *Murex rostratus* Olivi, 1792 in the genus *Gracilipurpura* Jousseaume, 1880 (Table 1), together with a group of related fossil species.

In this work, we aimed at drawing a molecular phylogenetic framework for the Mediterranean Fusininae, by expanding the molecular dataset of Couto *et al.* (2016) and Kantor *et al.* (2018) with the inclusion of additional samples representative of the native Mediterranean genus-level taxa. This work will provide a systematic scheme for a future revision of the diversity of the spindleshells of the north-eastern Atlantic and the Mediterranean, in an integrative taxonomy framework.

Material and Methods

Specimen collection

We have used sequences derived from Couto *et al.* (2016) and Kantor *et al.* (2018) relative to 58 specimens. Additionally, DNA sequences were obtained from 10 specimens belonging to 5 Mediterranean species, currently classified as: *Gracilipurpura rostrata*, *Fusinus pulchellus*, *F. parvulus*, *Agegeofusinus rolani*, *A. eviae*.

Two buccinoidean species, corresponding to the vouchers MNHN-IM-2013-19891 (*Manaria* sp.; *Eosiphonidae*), were used as outgroups (sequences derived after Kantor *et al.*, 2022b). Voucher ID, collecting localities, sequence details and GenBank accession numbers are reported in Table 2.

Molecular analyses and sequence alignment

Specimens were either directly fixed in alcohol upon collection, or pre-treated with microwave to separate the animal from the shell (Galindo *et al.*, 2014). For each specimen, whole genomic DNA was extracted from a ~1 mm³ clip of foot tissue by using a ‘salting out’ protocol (Aljanabi & Martínez, 1997), or a proteinase K/phenol–chloroform extraction protocol (Oliverio & Mariotti, 2001), with a final elution volume of 50 µL.

Four molecular markers were amplified: the 658-bp barcode region of the mitochondrial COI gene, using the primers LCO1490 and HCO2198 (Folmer *et al.*, 1994); a 800-bp region of the mitochondrial 16S rDNA, with the primers 16SA (Palumbi, 1996) and CGLEuR (Hayashi, 2003); a 777-bp region of the nuclear 28S rDNA with the primers C1 and D2 (Jovelin & Justine, 2001); and a 328-bp region of the H3 nuclear gene, with the primers H3F and H3R (Colgan *et al.*, 2000).

PCR reactions were performed with 1 µL of undiluted DNA template in 25 µL reactions. Reaction volumes consisted of 2.5 µL of 10x NH4 Reaction Buffer, 2.5 µL of 50 mM MgCl2 Solution, 0.15 µL of BIOTQAQ DNA Polymerase, 0.4 µL of each 25 PM primer solution, 1 µL of 10% BSA solution, 0.5 µL of 10 mM nucleotide mix solution. PCR conditions were as follows: initial denaturation (94 °C/5'); 35 cycles of denaturation (94 °C/30”), annealing (48°C for COI, 52°C for 16S, 56°C for 28S, 57°C for H3/40’’), and extension (72 °C/1’'); final extension (72 °C/10’). PCR products were purified using ExoSAP-IT (USB Corporation) and both strands were sequenced at Macrogen, Inc. COI and H3 sequences were aligned using the alignment algorithm of Geneious v. 11 [Biomatters, 2022. https://www.geneious.com (20 June 2022)] and checked for stop codons, while 16S rRNA and 28S rRNA sequences were aligned with the E-INS-i algorithm in MAFFT v. 7 (Katoh & Standley, 2013; Katoh *et al.*, 2019). Sequences were deposited in GenBank (accession numbers: COI, ON166814-ON166823; 16S, ON178680-ON178689; 28S, ON178690-ON178697; H3, ON214773-ON214782).

Phylogenetic analyses

In our phylogenetic analyses we used several distinct datasets.

Each single-gene dataset (COI; 16S rRNA; 28S rRNA; H3) was employed to derive single-gene trees that were used to check for phylogenetic consistency of the placement of each single sequence. Two concatenated datasets were also produced including only those specimens for which three out of four genes (G3) and all four genes
Table 1. Currently accepted species of Fusininae from the Mediterranean and the Ibero-Moroccan Gulf, with their classification (MolluscaBase, 2021) and known distribution (according to: Buzzurro & Russo, 2007; Prkić & Russo, 2008; Gofas, 2011; Russo, 2013, 2017; Russo & Germanà, 2014; Russo & Angelidis, 2016; Russo & Calascibetta, 2018; Russo & Pagli, 2019).

Genus species	Distribution	Sequenced
Aegeoacusinus Russo, 2017		
Aegeoacusinus angeli (Russo & Angelidis, 2016)	Aegean Sea (Chalki Is.)	
Aegeoacusinus eviae (Buzzurro & Russo, 2007)	Aegean Sea (Astypalea Is.)	✓
Aegeoacusinus margaritae (Buzzurro & Russo, 2007)	Aegean Sea (Karpathos Is.)	
Aegeoacusinus patriciae (Russo & Olivieri, 2013)	Aegean Sea (Crete Is.)	
Aegeoacusinus profetai (Nofroni, 1982)	Aegean Sea (Karpathos Is.)	
Aegeoacusinus rolani (Buzzurro & Ovalis, 2005)	Aegean Sea (Saronikós Gulf; Cyclades)	✓
Aptyxis Troschel, 1868		
Aptyxis syracusana (Linnaeus, 1758)	Mediterranean Sea (excluding Alboran Sea)	✓
Gracilipurpura Jousseaume, 1880		
Gracilipurpura rostrata (Olivi, 1792)	Entire Mediterranean Sea and neighbouring Atlantic	✓
Fusinus Rafinesque, 1815		
Fusinus albacarinoides Hadorn, Afonso & Rolán, 2009	Ibero-Moroccan Gulf	
Fusinus alternatus Buzzurro & Russo, 2007	Tyrrhenian Sea; Sicily Channel; Aegean Sea	
Fusinus buzzurroi Prkić & Russo, 2008	Adriatic (Croatia)	
Fusinus clarae Russo & Renda in Russo, 2013	Messina Strait and southern Sardinia	
Fusinus corallinus Russo & Germanà, 2014	Jonian Sea (eastern Sicily)	
Fusinus cretella Buzzurro & Russo, 2008	Alboran Sea and Ibero-Moroccan Gulf	
Fusinus dimassai Buzzurro & Russo, 2007	Messina Strait and Lampedusa Is.	
Fusinus dimritii Buzzurro & Ovalis in Buzzurro & Russo, 2007	Aegean Sea (Limnos Is.)	
Fusinus floritai Russo & Pagli, 2019	Jonian Sea	
Fusinus insularis Russo & Calascibetta, 2018	Southern Tyrrhenian Sea (N Sicily)	
Fusinus labronicus (Monterosato, 1884)	Central Mediterranean (N Tyrrhenian; Sardinia; southern France)	
Fusinus parvulus (Monterosato, 1884)	Mediterranean Sea (excluding Alboran Sea)	✓
Fusinus pulchellus (Philippi, 1840)	Entire Mediterranean Sea and neighbouring Atlantic	✓
Fusinus raricostatus (Del Prete, 1883)	Southern Tyrrhenian Sea; Sicily Channel; Sardinia (Adriatic?)	
Fusinus rusticulus (Monterosato, 1880)	Gulf of Gabès	
Fusinus ventrimigliai Russo & Renda in Russo, 2013	Messina Strait	
Marmorofusus Snyder & Lyons, 2014		
Marmorofusus verrucosus (Gmelin, 1791)	Alien from Western Indian Ocean: Levant basin	
Table 2. List of material used in this study along with voucher registration numbers, collection localities, GenBank accession numbers for sequences.

Taxon	Voucher ID	Locality	COI	16S rRNA	28S	H3	References
Raphitomidae							
Hemipolygona macgintyi	MZSP-36166	USA, Florida	KT754023	-	KT753792	KT754152	Couto et al. 2016
Peristernia marquesana	MNHN-IM-2013-15306	Papua New Guinea, Kranket I., 5°12'27" S, 145°49'11" E	KT753914	-	KT753681	KT754045	Couto et al. 2016
Fusolatirus pearsoni	MNHN-IM-2007-32495	Philippines, W Pamilacan I., 9°30'6" N, 123°50'24" E	KT753921	KT753814	KT753688	KT754052	Couto et al. 2016
Peristernia nassatula	MNHN-IM-2013-18061	Papua New Guinea, Tab I., 1–8 m	KT753957	KT753845	KT753724	KT754088	Couto et al. 2016
Fusolatirus rikae	MNHN-IM-2007-32498	Vanuatu, E Aoré I., 15°33’21" S, 167°12’43" E	KT753976	KT753864	KT753743	KT754106	Couto et al. 2016
Turrilatirus turritus	MNHN-IM-2013-17100	Papua New Guinea, Tab I., 5°10’6" S, 145°50’15" E	KT753981	KT753869	KT753748	KT754111	Couto et al. 2016
Leucozonia nassa	MNHN-IM-2013-20181	Guadeloupe, Point of Saline, 16°12’10" N, 61°26’41" W	KT753902	KT753797	KT753668	KT754032	Couto et al. 2016
Lamellilatirus lamyi	MNHN-IM-2013-56511	French Guiana, 6°31’6" N, 52°27’15" W, 102–104 m	KT754007	KT753884	KT753775	KT754136	Couto et al. 2016
Benimakia lanceolata	MNHN-IM-2013-11873	Papua New Guinea, BilBil I., 5°17’54" S, 145°49’11" E	KT753959	KT753847	KT753726	KT754090	Couto et al. 2016
Hemipoligona armata	MNHN-IM-2013-42511	Senegal, sector of Dakar, 14°40’12" N, 17°23’48" W	KT753974	KT753862	KT753741	KT754104	Couto et al. 2016
Fasciolaria tulipa	MNHN-IM-2013-19559	Guadeloupe, 16°11’58" N, 61°34’17"W	KT753954	KT753842	KT753721	KT754085	Couto et al. 2016
Pleurolopa trapezium	MNHN-IM-2007-32591	Vanuatu	KT753962	KT753850	KT753729	KT754093	Couto et al. 2016
Granulifusus williami	MNHN-IM-2007-39389	Society Islands, 16°43’ S, 151°26’ W, 350–360 m	MG838150	-	MG936641	MG838017	Kantor et al. 2018
Granulifusus williami	MNHN-IM-2009-15090	South Madagascar, 24°53’ S, 47°28’ E, 184–203 m	MG838148	-	MG936640	MG838016	Kantor et al. 2018
Granulifusus annae	MNHN-IM-2013-42520	New Caledonia, 21°55’24" S, 166°55’24" E, 246–255 m	KT753899	-	KT753664	KT754028	Couto et al. 2016
Granulifusus annae	MNHN-IM-2013-14709	Papua New Guinea, Rempi Area, 05°03’ S, 145°49’ E, 120 m	KT753937	KT753827	KT753704	KT754068	Couto et al. 2016

Continued
Taxon	Voucher ID	Locality	COI	16S rRNA	28S	H3	References
Granulifusus jeanpierrevezzaroi	MNHN-IM-2007-36886	New Caledonia, 22°1'52" S, 167°6'22" E, 320–380 m	MG838147	-	MG936663	MG838015	Kantor et al. 2018
Granulifusus jeanpierrevezzaroi	MNHN-IM-2007-35083	New Caledonia, Grand Passage, 20°17'7" S, 163°50'8" E, 590–809 m	MG838127	-	MG936630	MG838006	Kantor et al. 2018
Granulifusus norfolkensis	MNHN-IM-2013-68811	New Caledonia, Ile des Pins, 22°28' S, 167°29' E, 404–405 m	MG838155	-	MG936643	MG838019	Kantor et al. 2018
Granulifusus staminatus	MNHN-IM-2007-32750	Philippines, W Pamilaracan L, 9°29'18" N, 123°51'30" E, 95–128 m	KT753973	KT753861	KT753740	KT754103	Couto et al. 2016
Granulifusus aff. kiranus	MNHN-IM-2013-19037	Bismarck Sea, NE Sissano, 2°54'40" S, 142°10'46" E, 535–540 m	KT753966	KT753854	KT753733	KT754096	Couto et al. 2016
Granulifusus sp.	MNHN-IM-2009-6658	Solomon Islands	KT753927	KT753820	KT753694	KT754058	Couto et al. 2016
Granulifusus hayashii	MNHN-IM-2013-19210	Bismarck Sea, Dogreto Bay, 3°17'42" S, 143°2'22" E	KT753955	KT753843	KT753722	KT754086	Couto et al. 2016
Granulifusus discrepans	MNHN-IM-2007-34604	Philippines, 16°01'N, 121°51'E, 342–358 m	KT753928	KT753821	KT753695	KT754059	Couto et al. 2016
Takeshius kuroseanus	MNHN-IM-2013-59070	Papua New Guinea, New Ireland, 2°30'19" S, 150°44'2" E, 191–290 m	MG838142	-	MG936636	MG838012	Kantor et al. 2018
Takeshius ellenae	MNHN-IM-2013-68819	New Caledonia, S Ile des Pins, 22°53' S, 167°35' E, 376–390 m	MG838143	-	MG936637	MG838013	Kantor et al. 2018
Angulofusus nedae	MNHN-IM-2007-32574	Vanuatu, 15°32'28" S, 167°16'51" E, 100–105 m	KT753984	-	KT753751	KT754114	Couto et al. 2016
Vermeijius pallidus	MNHN-IM-2007-35093	New Caledonia, Grand Passage, 18°58'33" S, 163°8'7" E, 580–647 m	MG838126	-	MG936629	MG838005	Kantor et al. 2018
Vermeijius pallidus	MNHN-IM-2007-32537	Solomon Islands, Tetepare, 8°39'58" S, 157°31'40" E, 384–418 m	KT753910	KT753806	KT753677	KT754041	Kantor et al. 2018
Vermeijius virginiae	MNHN-IM-2009-15084	South Madagascar, SE Point Barrow, 25°39'9" S, 43°58'28" E, 400–402 m	MG838134	-	MG936632	MG838008	Kantor et al. 2018
Vermeijius sp.	MNHN-IM-2007-32913	Philippines, Bohol Sea, 9°36'12" N, 123°43'48" E, 382–434 m	KT753952	KT753841	KT753719	KT754083	Couto et al. 2016
Vermeijius sp.	MNHN-IM-2007-32510	New Caledonia	KT753931	KT753823	KT753698	KT754062	Couto et al. 2016
Vermeijius retiarius	MNHN-IM-2009-15087	South Madagascar, South Point Barrow, 25°35'28" S, 44°15'25" E, 821–910 m	MG838129	-	MG936631	MG838007	Kantor et al. 2018

Continued
Table 2 continued

Taxon	Voucher ID	Locality	COI	16S rRNA	28S	H3	References
Chryseofusus acherusius	MNHN-IM-2013-44302	China seas, off Taiping Island, 10°25'37" N, 114°14'21" E, 1707–1799 m	KT753956	KT753844	KT753723	KT754087	Couto et al. 2016
Chryseofusus bradneri	MNHN-IM-2007-32977	New Caledonia	KT753943	KT753833	KT753710	KT754074	Couto et al. 2016
Chryseofusus graciliformis	MNHN-IM-2013-19938	Solomon Sea, Dampier Strait, 5°36'18" S, 148°12'38" E, 500–640 m	KT753963	KT753851	KT753730	KT754094	Couto et al. 2016
Chryseofusus graciliformis	MNHN-IM-2007-32797	Solomon Islands	KT753948	KT753838	KT753715	KT754079	Couto et al. 2016
Amiantofusus sebalis	MNHN-IM-2013-44196	China seas, V bis (seamount), 15°5'22" N, 116°29'40" E	KT753958	KT753846	KT753725	KT754089	Couto et al. 2016
Amiantofusus candoris	MNHN-IM-2013-19759	Bismarck Sea	KT753912	KT753807	KT753679	KT754043	Couto et al. 2016
Amiantofusus pacificus	MNHN-IM-2013-44400	China seas, An-Da Chiao, 10°24'52" N, 114°46'9" E, 464–1076 m	KT753947	KT753837	KT753714	KT754078	Couto et al. 2016
Aptyxis syracusana	BAU_2384_1	Croatia, Sabunike	ON166818	ON178684	ON178693	ON214777	This work
'Cyrtulus' serotinus_	MNHN-IM-2013-42532	Marquesas Islands, Eiao, 7°58'46" S, 140°42'42" W	KT753969	KT753857	KT753736	KT754099	Couto et al. 2016
'Cyrtulus' mauiensis_	FMNH-413989	Hawaii	KT753987	KT753873	KT753754	KT754117	Couto et al. 2016
Fusinus forceps	MNHN-IM-2007-38235	Madagascar, between Majunga and Cap Saint-André, 15°29'44" S, 46°5'31" E, 22–27 m	KT753940	KT753830	KT753707	KT754071	Couto et al. 2016
Fusinus crassiplicatus	MNHN-IM-2007-34663	New Caledonia, Grand Passage, 19°73" S, 163°28'26" E, 199–215 m	KT753917	KT753811	KT753684	KT754048	Couto et al. 2016
Fusinus sp.	MNHN-IM-2007-36654	Madagascar	KT753944	KT753834	KT753711	KT754075	Couto et al. 2016
Fusinus sandwichensis	FMNH-414020	Hawaii	KT754009	KT753886	KT753777	KT754138	Couto et al. 2016
Fusinus similis	ANSP-A20012-411168	Japan, Wakayama Prefecture, Honshu, off Cape Kirime, 70 m	KT754016	KT753890	KT753785	KT754146	Couto et al. 2016
Fusinus colus	MNHN-IM-2007-32560	New Caledonia, N Banc Nova, 22°16'5" S, 159°25'53" E, 335–338 m	KT753901	KT753796	KT753666	KT754030	Couto et al. 2016
Fusinus salisbury	MNHN-IM-2007-32588	New Caledonia, Banc Kelso, 24°7'38" S, 159°40'55" E, 310–463 m	KT753975	KT753863	KT753742	KT754105	Couto et al. 2016
Fusinus brasiliensis	MZSP-108889	Southeast Brazil	KT754005	KT753882	KT753773	KT754134	Couto et al. 2016

Continued
Taxon	Voucher ID	Locality	GenBank accession numbers	References
Fusinus brasiliensis	MZSP-117595	Southeast Brazil	KT753986	Kutcho et al. 2016
Propfusus australis	MNHN-IM-2013-42512	Western Australia, Albany, 35°3′52" S, 117°56′30" E	KT753923	Kutcho et al. 2016
Aristofusus excavatus	ANSP-A21957	Barbados	KT754000	Kutcho et al. 2016
Pseudofusus rolandi	BAU-3615.4	Greece, Attica, Anavayssos	ON166821	This work
Pseudofusus rolandi	BAU-3615.5	Anavayssos Greece, Attica, Anavayssos	ON166822	This work
Pseudofusus parvulus	BAU-3788.1	Italy, Marettimo Island, 37°58′03.1″N, 12°04′40.6″E, 35 m	ON166823	This work
Pseudofusus eviae	BAU-3558.1	Greece, Astypalea Island, 80 m	ON166820	This work
Pseudofusus rostratus	BAU-2022.6	Italy, Venezia Lagoon	ON166814	This work
Pseudofusus rostratus	BAU-2023.2	Italy, off Chioggia, 25–28 m	ON166815	This work
Pseudofusus pulchellus	BAU-2367.1	Italy, Capo Linaro, 45 m	ON166817	This work
Pseudofusus pulchellus	BAU-2024.1	Italy, Sapri, 40 m	ON166816	This work
Pseudofusus pulchellus	BAU-2475.1	Spain, Fuengirola	ON166819	This work
Pseudofusus pulchellus	MCZ-378473	France, Banyuls sur Mer	KT753996	Kutcho et al. 2016

Buccinoidea

Taxon	Voucher ID	Locality	GenBank accession numbers	References
Manaria sp.	MNHN-IM-2013-19891	Solomon Islands, Huon Golf	MW077004	Kantor et al. 2022
Buccinidae Gen. sp.	MNHN-IM-2013-60365	Guadeloupe, Grande Terre	MW077040	Kantor et al. 2022
Fascicolaria bullisi	FMNH UF-351146	USA, Florida	KT753988	Couto et al. 2016
Peristernia Gen. sp.	MNHN-IM-2013-17660	Papua New Guinea	KT753926	Couto et al. 2016

Institutional abbreviations are as follows: BAU, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome; MNHN, Musée national d'Histoire naturelle, Paris; ANSP, Academy of Natural Sciences of Philadelphia; FMNH, Florida Museum of Natural History; MCZ, Museum of Comparative Zoology, Harvard University, Cambridge, MA; MZSP, Museum of Zoology, University of São Paulo.
Analyses were performed on large datasets including selected sequences from all fasciolariid subfamilies (using the two bucinoideans as outgroup), or on reduced datasets focusing only on the Fusininae (using a fasciolarine, Fasciolaria bullisi Lyons, 1972, and a peristernine, Peristernia sp., as outgroups). The Bayesian information criterion implemented in jModelTest v. 2.1.7 (Darriba & Posada, 2012) was used to identify the best substitution models and parameters for each gene partition; the substitution models selected for each partition were the following: GTR+I (COI 1st codon position), HKY (COI 2nd codon position), GTR+G (COI 3rd codon position), HKY+I+G (16S), GTR+I+G (28S), and HKY+I+G (H3).

Phylogenetic analyses were performed using maximum likelihood (ML) and Bayesian approaches. ML analyses were run on the IQ-TREE web server using W-IQ-TREE v. 1 (Trifinopoulos et al., 2016; with 1000 ultrafast bootstrap replicates). Bayesian analyses were performed using MrBayes v. 3.2.3 (Ronquist et al., 2012; 10^7 generations, trees sampled every 1,000 generations, 25% burn-in) on the CIPRES Science Gateway (Miller et al., 2010). Convergence of MCMC was assumed to have occurred when the effective sample size was >200 and the potential scale reduction factor was approximately 1, as calculated with Tracer v. 1.7 (Rambaut et al., 2018). Only nodes with ultrafast bootstrap values (UB) ≥0.95 or posterior probabilities (PP) values ≥0.95 were considered to be highly supported.

Abbreviations

MNHN: Muséum National d’Histoire Naturelle, Paris.
MHNG: Muséum d’Histoire Naturelle, Genève.
P.R.: private collection Paolo Russo, Venezia.
UB: ultrafast bootstrap values in Maximum Likelihood analyses.
PP: posterior probabilities of nodes in Bayesian Analyses.

Results

All single-gene trees are reported in Supplementary materials (Figs S1-S8). In our multilocus G3 and G4 trees (Figs 1, 2) the included fasciolariids always formed three
distinct clades – as in Couto et al. (2016) and Kantor et al. (2018) – corresponding to the three subfamilies Fasciolariinae, Peristerniinae and Fusiniinae, highly supported by both, PP and UfB.

Within the Fusininae we retrieved almost all recognised genera as monophyletic, with high UfB and PP supports, in all G3 and G4 analyses. We could not unambiguously resolve the relationships among most of the genera. However, in the G3 analyses we recovered a clade (UfB 82%, PP 1) with Amiantofusus as the sister to a maximally supported clade, including species ascribed to Fusinus s.s., Aristofusus, Propefusus, Cyrtulus and the Mediterranean native fusinines; recognition of Cyrtulus as a distinct genus would make Fusinus as currently recognised polyphyletic. This pattern was also strongly supported in the G4 analysis, with the clade Aptyxis syracusana + Aristofusus + Propefusus + Fusinus s.s. as sister to the remaining Mediterranean fusinines. The latter formed a maximally supported monophyletic group including Aegeofusinus eviae, A. rolandi, Gracilipurpura rostrata, Fusinus pulchellus and F. parvulus (with the two Aegeofusinus never forming a monophyletic unit in any analysis).

Discussion

All our analyses confirmed the monophyly of the Fusininae as previously reported by Couto et al. (2016) and Kantor et al. (2018). The inclusion of the additional Mediterranean taxa did not alter the internal phylogenetic pattern of the Fusininae, where at least nine lineages worthy of genus level classification were identified. Six of them corresponded to the genera Amiantofusus, Angulofusus, Chryseofusus, Granulifusus, Takashius and Vermeijius as delimited by Kantor et al. (2018).

Our results are in agreement with the view of Vermeij & Snyder (2018) that Fusinus s.s. (type species Murex colus) should be restricted to the group of large-shelled species from the Indo-West Pacific (Fig. 3); however, it should also include – as shown by Couto et al. (2016) and Kantor et al. (2018) – the morphologically divergent ‘Cyrtulus’ serotinus Hinds, 1843 (from Marquesas) and ‘Cyrtulus’ mauiensis (Callomon & Snyder, 2006) (from Hawaii). Conversely, Aristofusus excavatus (G. B. Sowerby II, 1880) and Propefusus australis (Quoy & Gaimard, 1833) may be kept as representing distinct genera (with five and three species, respectively) as suggested by their morphology (Vermeij & Snyder, 2018). In this framework, Fusinus s.s. is quite evidently not the appropriate genus for the small-shelled Mediterranean fusinines. The Mediterranean species here analysed split into two distinct lineages: one represented by Aptyxis syracusana (thus justifying the use of Aptyxis for this species, which is also supported by radular differences; see below) and the other including the remaining assayed species. For the latter, the pattern is suggestive of a single radiation of the small fusinines of the Mediterranean Sea currently ascribed to Fusinus and Aegeofusinus. In fact, the two Aegean species assayed here, which are among those
recently (Russo, 2017) ascribed to the genus Aegeofusinus (A. eviae and A. rolani, the latter very similar morphologically to the type species A. margaritae), belong in this radiation but do not represent a distinct lineage. Concerning all these species, we show herein (see below) that the name Gracilipurpura was not introduced for
Murex rostratus; however, there is a genus name available, Pseudofusus Monterosato, 1884, which can be used.

Therefore, we propose the following arrangement for the systematics of the Mediterranean Fusininae. The scheme is derived from the present results, is extended to the non-assayed nominal species by inference on morphological similarity, and will serve as a framework for a future revision of the Mediterranean fusinine fauna.

Systematics

Class Gastropoda Cuvier, 1795

Order Neogastropoda Wenz, 1938

Family Fasciolariidae Gray, 1853

Subfamily Fusininae Wrigley, 1927

Genus Aptyxis Troschel, 1868

Aptyxis Troschel, 1868: 61, 64. Type species by monotypy: *Murex syracusanus* Linnaeus, 1758

Remarks

Russo (2015), based on shell and radular morphology (see also Bouche & Warén, 1985:160, fig. 381; Russo, 2016), resurrected this genus for the type species, *Murex syracusanus* Linnaeus, 1758, and for *Fusus luteopicus* Dall, 1877. For the latter species, Snyder & Vermeij (2016) established the new genus *Hesperaptyxis* that should be tested for validity by molecular data. Landsau et al. (2013) included in the genus *Aptyxis* the fossil *Fusus palatinus* Straus, 1954, from the Middle Miocene of Turkey, which would serve in future studies to calibrate...
the age of this lineage.

Genus Pseudofusus Monterosato, 1884

Pseudofusus Monterosato, 1884: 117. Type species by subsequent designation (Crosse, 1885): *Murex rostratus* Olivi, 1792

Ageofusinus, Russo, 2017 (type species by original designation: *Fusinus margaritae* Buzzurro & Russo, 2007) *Gracilipurpura* sensu Vermeij & Snyder (2018:71) not Jousseaume, 1880: 335

Carinofusus Ceulemans, Landau & Van Dingen, 2014 (type species by original designation: *Clavella neogenica* Coissmann, 1901)

Remarks

Monterosato (1884: 117) explicitly considered *Fusus* Lamarck as unfit to host the small Mediterranean spindle shells, which he suggested to place in “*Aptyxis*” (sic! lapsus calami for *Aptyxis*) and in another “section” to be called *Pseudofusus*, with the following resulting classification: *Aptyxis syracusana*, *Pseudofusus rostratus*, *P. pulchellus*, *P. rusticulus*, *P. labronicus*, *P. lauronicus*. *Pseudofusus* Monterosato, 1884

Monterosato 1884 is the first available name certain applied to the clade of *Murex rostratus*. Monterosato has repeatedly used *Pseudofusus* (Monterosato 1890; 1891; 1917) as also did Carus (1889: 405-406), Pallary (1900: 267; 1904: 225; 1914), Praus Franceschini (1906: 58), Coen (1914: 7, 24; 1917: 318; 1933: 173; 1937: scheda), Bellini (1902: 97; 1929: 31), Franchini & Zanca (1977:8). Others (Malatesta, 1960; Bouchet & Warén, 1985; Snyder, 2003; Buzzurro & Russo, 2007) regarded *Pseudofusus* as a junior synonym of *Fusinus*.

Vermeij & Snyder (2018:71), proposed to classify *Murex rostratus* (and a group of related fossil species) *Gracilipurpura* Jousseaume, 1880, not *Fusus strigosus* Lin., extending it also to the remaining species of this clade; however, it would be completely disrespectful of the evident original intention of Jousseaume to introduce a genus name for an ocenebrine muricid lineage. The second option makes *Gracilipurpura* an objective senior synonym of *Hadriania* Bucquoy & Dautzenberg, 1882; it is noteworthy that the affected species, *Hadriania craticulata* Bucquoy & Dautzenberg, 1882, has already one of the most troubled nomenclatural histories of the Mediterranean fauna. Therefore, respecting the original intention of Jousseaume, we select and fix as type species of *Gracilipurpura* Jousseaume, 1880 (according to the ICZN, 1999) the taxonomic species actually involved in the misidentification, i.e. *Hadriania craticulata* Bucquoy & Dautzenberg, 1882 (= *Fusus strigosus* sensu Jousseaume, 1880, not *Fusus strigosus* Lamarck, 1822).

We include the following nominal taxa from the Mediterranean and the Ibero-Moroccan Gulf in *Pseudofusus*:

Pseudofusus rostratus (Olivi, 1792)

Pseudofusus albacarinoides (Hadorn, Afonso & Rolán, 2009)

Pseudofusus alternatus (Buzzurro & Russo, 2007)

Pseudofusus angeli (Russo & Angelidis, 2016)

Pseudofusus buzzuroi (Prici & Russo, 2008)

Pseudofusus clarae (Russo & Renda in Russo, 2013)

Pseudofusus corallinus (Russo & Germanà, 2014)

Pseudofusus cretei (Buzzurro & Russo, 2008)

Pseudofusus dimassai (Buzzurro & Russo, 2007)

Pseudofusus dimitrii (Buzzurro & Ovalis in Buzzurro & Russo, 2007)

Pseudofusus eviae (Buzzurro & Russo, 2007)

Pseudofusus fioritai (Russo & Pagli, 2019)

Pseudofusus insularis (Russo & Calascibetta, 2018)

Pseudofusus labronicus Monterosato, 1884

Pseudofusus margaritae (Buzzurro & Russo, 2007)

Pseudofusus parvulus (Monterosato, 1884)

Pseudofusus patriciae (Russo & Olivieri, 2013)

Pseudofusus profetai (Nofroni, 1982)

Pseudofusus pulchellus (Philippi, 1840)

Pseudofusus raricosatus (Del Prete, 1883)

Pseudofusus rolanii (Buzzurro & Ovalis, 2005)
Pseudofusus rusticulus (Monterosato, 1880)
Pseudofusus ventimigliai (Russo & Renda in Russo, 2013)

A few species have wide ranges (P. rostratus, P. pulchellus, P. parvulus) whereas most taxa have restricted to very restricted ranges. All species have a paucispiral protoconch, indicating a non-planktotrophic larval development (probably entirely intracapsular), which may be related to the geographic pattern. Two of the involved species, P. rostratus and P. pulchellus, are very hard or impossible to separate morphologically in the area of the Alboran Sea (Gofas, 2011). Present results did not unequivocally nor consistently resolve the assayed specimens morphologically assigned to either species, suggesting that they represent either a single species, or a pair of species that have diverged very recently. It is hoped that enlarging the sampling will help clarifying this issue.

Acknowledgements

We thank Costas Kontadakis (Athens) and Angelo Fiorita (Porto Cesareo), who provided specimens for this study. Domenico Pacifici and Flavia Scoccia (Sapienza University of Rome) are acknowledged for the help with the laboratory work. Samples used in this study were collected during expeditions organized by the MNHN, Paris; among others: CONCALIS (doi: 10.17600/8100010), EXBODI (doi: 10.17600/11100080), EBISCO (doi: 10.17600/5100080), KANACONO (doi: 10.17600/16003900), KARUBENTHOS 2 (doi: 10.17600/15005400), KAVIENG 2014 (doi: 10.17600/14004400), PAPUA NIUGINI (doi: 10.17600/7100070), TARASOC (doi: 10.17600/9100040), TERRASSES (doi: 10.17600/8100100). Work partly supported by a Sapienza grant (“InvEvo”: RM11916B-804DEA4F).

References

Aljanabi, S.M., Martinez, I., 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25 (22), 4692-4693.
Bandel, K., 1993. Caenogastropoda during Mesozoic times. Scripta Geologica, Special Issue 2, 7-56.
Bellini, R., 1902. Contribuzione alla conoscenza della fauna dei molluschi marini dell’isola di Capri. Bollettino della Societá dei Naturalisti in Napoli, (1) 15, 85-121.
Bellini R., 1929. I Molluschi del Golfo di Napoli (studi precedenti, l’ambiente, enumerazione e sinonimie). Annuario del Museo Zoologico della R. Universitá di Napoli, (n.s.), 6, 1-87.
Blainville, H.M.D de [Henri Marie Ducrotay], 1828 [1828-1830]. Malacozoaires ou animaux mollusques. Faune française ou histoire naturelle, générale et particulière des animaux que se trouvent en France. Chez F.G. Levrault, Paris, 320 pp (31 pls).
Bouchet, P., Warén, A., 1985. Revision of the Northeast Atlantic bathyal and abyssal Neogastropoda excluding Turridae (Mollusca, Gastropoda). Bollettino Malacologico. Supplement 1, 121-296.
Buzzurro, G., Russo, P., 2007. Fusinus del Mediterraneo. Published by the authors, 280 pp.
Carus, J.V., 1889 [1889-1893]. Prodromus Faunae Mediterraneae sive Descriptio Animalium Maris Mediterranei Incolarum quam comparatia silva rerum quatenus innotuit adiectis locis et nominibus vulgaribus eorumque auctoribus in commodum Zoologorum. Vol. 2. E. Schweizerbart’sche Verlagshandlung, Stuttgart, 854 pp.
Coen, G.S., 1914. Contributo allo studio della Fauna malacologica Adriatica. Regio Comitato Talassografico Italiano, Memoria 46, 3-34, pls 1-7.
Coen, G.S., 1917. Di un nuovo Fusus Adriatico. Atti della Società Italiana di Scienze Naturali, 56, 317-319.
Coen, G., 1933. Saggio di una Sylloge Molluscorum Adriaticorum. Regio Comitato Talassografico Italiano, Memoria 192, VII+1-186, 10 pls.
Coen, G.S., 1937. Nuovo saggio di una Sylloge Molluscorum Adriaticorum. Regio Comitato Talassografico Italiano, Memoria 240, 1-173, pls 1-10.
Colgan, D.J., Ponder, W.F., Eggler, P.E., 2000. Gastropod evolutionary rates and phylogenetic relationships assessed using partial 28S rDNA and histone H3 sequences. Zoologica Scripta, 29, 29-63.
Couto, D.R., Bouchet, P., Kantor, Y.I., Simone, L.R.L., Giribet, G., 2016. A multilocus molecular phylogeny of Fasciolariidae (Neogastropoda: Buccinoidea). Molecular Phylogenetics and Evolution, 99, 309-322.
Crosse, H., 1885. Nomenclatura generica e specifica di alcune conchiglie mediterrane, pel Marchese di Monterosato [book review]. Journal de Conchyliologie, 33, 139-142.
Darriba, D., Posada, D., 2012. jModelTest 2.0 manual. Nature Methods, 9, 772.
Finet, Y., Snyder, M.A., 2012. Illustrations and taxonomic placement of the Recent Fusus and Fasciolaria in the Lamarck collection of the Museum d’Histoire Naturelle, Geneva (Caenogastropoda, Buccinoidea, Gastropoda). Zootaxa, 3507 (1), 1-37.
Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
Franchini, D.A., Zanca, M., 1977. The Genus Fusinus in the Mediterranean Sea. La Conchiglia, 9 (99-100), 16-19.
Galindo, L.A., Puillandre, N., Strong, E.E., Bouchet, P., 2014. Using microwave to prepare gastropods for DNA barcoding. Molecular Ecology Resources, 14, 700-705.
Gofas, S., 2011. Familia Fasciolariidae. p. 287-289. In: Moluscos marinos de Andalucia. Vol. 1. Gofas S., Moreno D., Salas C. (Eds). Servicio de Publicaciones e Intercambio Científico, Universidad de Málaga.
Hayashi, S., 2003. The molecular phylogeny of the Buccinidae (Caenogastropoda: Neogastropoda) as inferred from the complete mitochondrial 16S rRNA gene sequences of selected representatives. Molluscan Research, 25, 85-98.
ICZN (International Commission on Zoological Nomenclature), 1999. International code of zoological nomenclature. Art 70.3. Edn 4. International Trust for Zoological Nomenclature, London, 106 pp.

Joussauwe, F.P., 1880. Division méthodique de la famille des purpuridiés. Le Naturaliste, 1 (1), 335-336.

Joussauwe, F.P., 1881. Etude de Purpuridae et description des espèces nouvelles. Revue et Magasin de Zoologie pure et appliquée, 3rd serie T.7, 314-347 (“1879”).

Jovelin, R., Justine, J., 2001. Phylogenetic relationships within the polyplacophoraylate monogeneans (Platyhelminthes) inferred from partial 28S rDNA sequences. International Journal for Parasitology, 31, 393-401.

Kantor, Y., Fedosov, A.E., Snyder, M.A., Bouchet, P., 2018. Pseudolatirus Bellardi, 1884 revisited, with description of two new genera and five new species (Neogastropoda: Fasciolariidae). European Journal of Taxonomy, 433, 1-57.

Kantor, Y., Fedosov, A., Snyder, M.A., Bouchet, P., 2022a. Takashius nom. nov. (Neogastropoda: Buccinoidea: Fasciolariidae), a replacement name for Okatius Kantor et al., 2018 non D.R. Smith, 1981. R. Thechnica, 32 (2), 60.

Kantor, Y.I., Fedosov, A.E., Kosyan, A.R., Puillandre, N., Sorokin, P.A. et al., 2022b. Molecular phylogeny and revised classification of the Buccinoidea (Neogastropoda). Zoological Journal of the Linnean Society, 194, 789-857.

Katoh, K., Rozewicki, J., Yamada, K. D., 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20, 1160-1166.

Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780.

Lamarck, M. de, 1822. Histoire Naturelle des Animaux sans Vertèbres. Tome septième. Paris chez l’Auteur, 462 pp.

Landau, B.M., Harzhauser, M., Islamoglu, Y., da Silva, C.M., 2013. Systematics and palaeobiogeography of the gastropods of the middle Miocene (Serravallian) Karaman Basin, Turkey. Cenozoic Research, 11-13, 1-584.

Leal, J.H.L., 1991. Marine Prosobranch Gastropods from Oceanic Islands Off Brazil: Species Composition and Biogeography. Universal Book Services/Dr. W. Backhuys, 418 pp.

Malatesta, A., 1960. Malacofoa pleistocenica di Grammichele. Memorie per servire alla descrizione della Carta Geologica d’Italia, 12, 1-392, 19 pls.

Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE 2010) New Orleans, LA, 1-8.

MolluscaBase (Eds.), 2022. MolluscaBase. https://www.molluscabase.org (Accessed 20 June 2022).

Monterosato, T., 1884. Nomenclatura generica e specifica di alcune conchiglie mediterranee. Stabilimento Tipografico Virzi, Palermo, 152 pp.

Monterosato, T., 1890. Conchiglie di profondità del mare di Palermo. Naturalista Siciliano, 9 (8), 181-191.

Monterosato, T., 1891. Molluschi fossili queratiani si S. Flavia. Naturalista Siciliano, 10 (5), 96-104.

Monterosato, T., 1917. Molluschi delle coste Cirenaiche raccolti dall’Ing. Camillo Crema. Memorie del Comitato Talas-sografico Italiano, Memoria 106, 1-14.

Oliviero, M., Mariottini, P., 2001. A molecular framework for the phylogeny of Coralliophila and related muricoids. Journal of Molluscan Studies, 67, 215-224.

Pallary, P., 1900. Coquilles marines du littoral du Département d’Oran. Journal de Conchyliologie, 48 (3), 211-422.

Pallary, P., 1904. Addition a la faune malacologique du Golfe de Gabès. Journal de Conchyliologie, 52, 212-248.

Pallary, P., 1914. Liste de mollusques du Golfe de Tunis. Bulletin de la Société d’Histoire Naturelle de l’Afrique du Nord, 1, 12-27.

Palumbi, S.R., 1996. Nucleic acids II: the polymerase chain reaction. Molecular Systematics, 2, 205-247.

Paus Francescini, C., 1906. Elenco delle conchiglie del Golfo di Napoli e del Mediterraneo. Annuario del Museo Zoologico della R. Università di Napoli (N.S.), 2, 1-68.

Ptikić, J., Russo, P., 2008. Fusinus buzzerroii (Gastropoda: Fasciolariidae), a new species from Croatian coasts. Iberus, 26 (2), 177-183.

Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901-904.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A. et al., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-542.

Russo, P., 2013. Tre nuove specie di Fusinus (Gastropoda: Fasciolariidae) per il Mare Mediterraneo. Bollettino Malacologico, 49 (1), 1-11.

Russo, P., 2015. On the systematic position of Murex syracusanus Linnaeus, 1758 (Gastropoda, Fasciolariidae) with revaluation of the genus Aptyxis. Bollettino Malacologico, 51 (2), 79-86.

Russo, P., 2016. On the grammatical gender of Aptyxis Troesch, 1884 (Gastropoda, Fasciolariidae). Bollettino Malacologico, 52, 76.

Russo, P., 2017. New genus Aegeofusinus (Gastropoda: Fasciolariidae) to include small endemic species of the Aegean sea. Bollettino Malacologico, 53, 63-68.

Russo, P., Angelidis, A., 2016. A new species of Fusinus (Gastropoda, Fasciolariidae) from the Aegean Sea. Bollettino Malacologico, 52 (1), 68-73.

Russo, P., Calascibetta, S., 2018. Fusinus insularis (Gastropoda: Fasciolariidae), new species of the South West Tyrrenhian Sea. Bollettino Malacologico, 54 (2), 134-138.

Russo, P., Germană, A., 2014. Una nuova specie mediterranea di Fusinus (Gastropoda, Fasciolariidae). Bollettino Malacologico, 50, 54-58.

Russo, P., Pagli, A., 2019. Fusinus Fioritae n. sp. (Gastropoda: Fasciolariidae) from the central Apulia, Gulf of Taranto, Ionian Sea, Mediterranean Sea. Bollettino Malacologico, 55 (1), 39-44.

Snyder, M.A., 2003. Catalogue of the marine gastropod family Fasciolariidae. Academy of Natural Sciences of Philadelphia, Special Publication, 21iii + 1-431.

Snyder, M.A., Vermeij, G.J., 2016. Hesperaptyxis, a new genus for some western American Fasciolariidae (Gastropoda), with the description of a new species. The Nautilus, 130 (3), 122-126.
tion and the evolution of predatory prosobranch gastropods. *Palaeontology, 23*, 375-409.
Trifinopoulos, J., Nguyen, L.-T., Von Haeseler, A., Minh, B.Q., 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Research*, 44, W232-W235.
Troschel, F.H., 1868. *Das Gebiss der Schnecken zur Begründung einer natürlichen Classification*. Vol. 2. Nicolaische Verlagsbuchhandlung, Berlin, 409 pp.
Vermeij, G.J., Snyder, M.A., 2018. Proposed genus-level classification of large species of Fusininae (Gastropoda, Fasciolariidae). *Basteria*, 82 (4-6), 57-82.
Weinkauff, H.C., 1868. *Die Conchylien des Mittelmeeres, ihre geographische und geologisches Verbreitung*. Vol. 2. T. Fischer, Cassel, VI + 512 pp.

Supplementary Data

The following supplementary information is available online for the article:

Fig. S1: Phylogenetic relationships among fasciolariids as illustrated by the Bayesian majority consensus tree of the 16S alignment. The tree is rooted on two buccinoideans (the Eosiphonidae *Manaria* sp., voucher MNHN-IM-2013-19891, and an undetermined Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as posterior probabilities for the Bayesian analysis based on 107 generations, 25% burnin (only values ≥0.95 are shown).

Fig. S2: Phylogenetic relationships among fasciolariids as illustrated by the Bayesian majority consensus tree of the 28S alignment. The tree is rooted on two buccinoideans (the Eosiphonidae *Manaria* sp., voucher MNHN-IM-2013-19891, and an undetermined Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as posterior probabilities for the Bayesian analysis based on 107 generations, 25% burnin (only values ≥0.95 are shown).

Fig. S3: Phylogenetic relationships among fasciolariids as illustrated by the Bayesian majority consensus tree of the COI alignment. The tree is rooted on two buccinoideans (the Eosiphonidae *Manaria* sp., voucher MNHN-IM-2013-19891, and an undetermined Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as posterior probabilities for the Bayesian analysis based on 107 generations, 25% burnin (only values ≥0.95 are shown).

Fig. S4: Phylogenetic relationships among fasciolariids as illustrated by the Bayesian majority consensus tree of the H3 alignment. The tree is rooted on two buccinoideans (the Eosiphonidae *Manaria* sp., voucher MNHN-IM-2013-19891, and an undetermined Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as posterior probabilities for the Bayesian analysis based on 107 generations, 25% burnin (only values ≥0.95 are shown).

Fig. S5: Phylogenetic relationships among conoideans as illustrated by the ML majority consensus tree of the 16S alignment. The tree is rooted on two buccinoideans (the Eosiphonidae *Manaria* sp., voucher MNHN-IM-2013-19891, and an undetermined Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as ultrafast bootstrap support after ML analysis of 1000 pseudoreplicates (only values ≥95% are shown).

Fig. S6: Phylogenetic relationships among conoideans as illustrated by the ML majority consensus tree of the 28S alignment. The tree is rooted on two buccinoideans (the Eosiphonidae *Manaria* sp., voucher MNHN-IM-2013-19891, and an undetermined Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as ultrafast bootstrap support after ML analysis of 1000 pseudoreplicates (only values ≥95% are shown).

Fig. S7: Phylogenetic relationships among conoideans as illustrated by the ML majority consensus tree of the COI alignment. The tree is rooted on two buccinoideans (the Eosiphonidae *Manaria* sp., voucher MNHN-IM-2013-19891, and an undetermined Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as ultrafast bootstrap support after ML analysis of 1000 pseudoreplicates (only values ≥95% are shown).

Fig. S8: Phylogenetic relationships among conoideans as illustrated by the ML majority consensus tree of the H3 alignment. The tree is rooted on two buccinoideans (the Eosiphonidae *Manaria* sp., voucher MNHN-IM-2013-19891, and an undetermined Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as ultrafast bootstrap support after ML analysis of 1000 pseudoreplicates (only values ≥95% are shown).