GRB Observations with the MAGIC Telescopes

M. Garczarczyk‡, M. Gaug†, A. Antonelli‡, D. Bastieri‡, J. Becerra-Gonzalez‡, S. Covino§, A. La Barbera‡, A. Carosi‡, N. Galante∥, F. Longo∗∗, V. Scapin††, S. Spiro§
for the MAGIC collaboration

††Instituto de Astrofisica de Canarias, via Láctea s/n, 38205 La Laguna, Tenerife, Spain
‡‡Universitá di Padova and Istituto Nazionale di Fisica Nucleare (INFN), 35131, Padova, Italy
∗∗Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany
∥∥IFAE, Edifici Cn., Campus UAB, 08193 Bellaterra, Spain
§§INAF / Rome Astronomical Observatory, Via Frascati 33, 00044, Monte Porzio (Roma), Italy
∗∗∗INAF / Brera Astronomical Observatory, Via Bianchi 46, 23807, Merate (LC), Italy
¶¶Dipartimento Fisica and INFN Trieste, 34127 Trieste, Italy
∥∥∥Università di Udine, and INFN Trieste, 33100 Udine, Italy

Abstract. MAGIC is currently the most suitable instrument to perform observations of the prompt and early afterglow emission from Gamma Ray Bursts (GRBs) at energies above 25 GeV. The instrument is designed to have the lowest possible energy threshold and fastest reaction time to GRB Coordinates Network (GCN) alerts. The MAGIC-I telescope has started to follow-up GCN alerts beginning of 2005. Since then more than 50 GRB candidates were observed. Just now MAGIC-II, the second telescope, started to operate. Both telescopes together will have a factor of three better sensitivity. MAGIC is the only ground based facility fast and sensitive enough to simultaneously detect any putative Very High Energy (VHE) γ-ray radiation from GRBs, while the prompt emission is still ongoing.

Keywords: GRB, IACT, VHE

I. VHE EMISSION FROM GRBS

GRBs are the most luminous explosions in the universe. Since their accidental discovery, which is now almost half a century ago, thousands of GRBs were detected by satellites such as EGRET, HETE-2, Konus-Wind, INTEGRAL, Swift, AGILE and Fermi. The prompt localization by these satellites and distribution of the coordinates over the GCN allows to observe the explosions by ground based experiments and helped to discover the afterglow phase at lower energies. Theoretical models describing the afterglow phase profited from these large sample of observations at different energy bands. The short duration (up to few hundreds of seconds) of the prompt emission phase makes their simultaneous observation with ground based telescopes very difficult. The energy release during the prompt emission phase peaks in the keV-MeV regime. Since low energy emission was only observed during the decaying afterglow phase, the extension of the observation of the prompt emission towards the VHE regime and the measurement of the cutoff energy is mandatory to allow further studies of the GRB origin.

Because GRBs are so powerful, they can be observed from large distances, in fact most of the GRBs have redshift $z > 1$. The redshift of GRB090423 was $z = 8.1$ [1], the most distant source ever observed up to now. Observations of the cutoff energy caused by the interaction of the VHE γ-rays with photons of the Extragalactic Background Light (EBL) will help to study the interstellar medium and its evolution with time.

Satellite detectors have large fields of view, however, they are limited in size and have therefore poor sensitivity in the VHE regime. The LAT detector onboard the Fermi satellite is currently the best space-born detector sensitive in the energy range between 20 MeV and 300 GeV. In the first eight months six GRBs were detected by LAT: GRB080825C [2], GRB080916C [3], GRB081024B [4], GRB090217 [5], GRB090323 [6] and GRB090328 [7]. In all these observations the emission was extended up to few GeV. In the case of GRB080916C, 14 events with energies > 1 GeV were detected [8]. In this particular burst the high energy (HE) emission extended up to 1400 s after the burst onset T_0, when reaching the detector sensitivity. The photon with the highest energy was detected at 13.22 GeV. It should be mentioned that the redshift of this burst was $z \sim 4.35$, for which VHE γ-rays are strongly absorbed by the EBL. All these observations indicate that VHE photons may be delayed with respect to the keV-MeV emission.

Two mechanisms can describe the measured spectra extended to HE, as observed from GRBs so far:

1) In the case of GRB080916C the HE flux follows a constant power-law decay, consistent with the Band function [9], suggesting that only synchrotron emission mechanism dominates.

2) In the case of GRB91017 and GRB970417 [10] the delayed HE component shows a distinct origin and is best described by the Self Synchrotron Compton (SSC) scattering mechanism.
In order to unravel the true nature of the prompt emission as well as to constrain important physical quantities such as the bulk Lorentz factor and the magnetic fields in the outflow, more observations at VHE are thus mandatory.

II. THE PERFORMANCE OF THE MAGIC-I TELESCOPE

The MAGIC-I telescope [11] has a mirror area of 234 m² and is currently the largest Imaging Atmospheric Cherenkov Telescope (IACT) in the world. Its camera is equipped with photomultipliers whose photon sensitivity was enhanced with a special lacquer that provides a peak Quantum Efficiency (QE) above 30% around 400 nm, the highest photon detection efficiency among all currently operating IACTs. The parabolic mirror of MAGIC makes parallel photons arrive synchronously at the camera and allows for very fast coincidence triggers rejecting thus fake triggers from the night sky background. Other mirror systems deteriorate timing on the advantage of having a better point spread function. The trigger and readout system [12] has been optimized to fully exploit the profiles of the Cherenkov photon arrival times. The large mirror area, high QE photomultipliers and sophisticated trigger and readout logic provides MAGIC-I with an energy threshold well below 100 GeV.

The capabilities of MAGIC-I were demonstrated with the detection of the most distant object emitting γ-rays above 50 GeV, the Quasar 3C 279 at a redshift of $z = 0.536$ [13]. The break-through for the experiment came more recently with the implementation of a new sum trigger, which lowered the energy threshold to 25 GeV and lead to the first detection of the Crab Pulsar at VHE [14]. After this proof of principle, the new sum trigger system is used during most GRB follow-up observations by the MAGIC-I telescope.

The lightweight design of its supporting cradle together with the optimized steering system [15] allows MAGIC-I to slew very fast to any position in the sky. During the design phase of the second MAGIC-II [16] telescope improvements of the drive system were done. The new steering electronics and optimization of the control loop parameters made the system more robust and allowed to increase the repositioning speed. Consequently, also the MAGIC-I drive system was recently upgraded. In the past MAGIC-I needed 54 s to reach the opposite location of the sky (180° movement in Azimuth), while now it is only 20 s.

Compared to γ-ray satellites, IACTs have a very limited field of view (3.5° as in the case of MAGIC) and therefore rely on external GRB triggers, as the ones provided by the GCN. The GCN information is sent directly over a TCP/IP internet socket connection to the MAGIC GRB alert program. The program validates the alert with the predefined observability criteria. The alert is accepted and sent directly to the telescope central control if:

- The Sun is below the astronomical horizon (zenith $> 103^\circ$).
- The angular distance from the GRB to the Moon is $> 30^\circ$.
- The zenith angle for the GRB observation is $< 60^\circ$.
- In case of moon shine the maximal zenith angle is reduced to 55°.
- If the uncertainty of the GRB coordinates is larger than 1.5$^\circ$, the telescope observes 15 minutes and aborts observation unless a more precise position update arrives.

Nominal observation durations are from the start of observability until $T_0 + 4$ hours. As the redshift of the source is normally only known a few hours to days later, one is obliged to observe all candidates, although a later redshift measurement can classify the observation as useless. As the energy threshold of an IACT depends sensitively on the observation zenith angle, most GRBs are observed with higher thresholds than the lowest possible.

III. GRBS OBSERVED BY MAGIC-I

For the first years of operation the majority of the GRB observations by MAGIC-I were triggered by the Swift BAT detector. Since the end of 2008 the Fermi GBM detector started to dominate the alert frequency. Within the last observation cycle of MAGIC (May 2008 till June 2009) in total 251 Fermi, 155 Swift, 12 INTEGRAL and 6 AGILE GCN alerts were received by MAGIC. Out of these, 14 Swift, 12 GLAST and one INTEGRAL alerts fulfilled the observation criteria described above.

Due to technical tasks and bad weather conditions not all alerts could be followed-up. Table I summarizes some of the technical details of the latest MAGIC observations. Past observation results can be found in [17], [18], [19], [20], [21].

The GBM detector on board of the Fermi satellite provides different types of alerts. The information is updated sequently within the first tens of seconds, updating the coordinates and reducing their errors with the more advanced analysis. Figure 1 shows the final localization errors from all GBM triggers up to May 2009. Due to the large uncertainty most of the GBM alerts do not have any counterpart from follow-up observations.

MAGIC-I follows all these alerts and updates its orientation as more accurate coordinates are available. If the final update is not more precise than 1.5$^\circ$, the observation is stopped automatically after 15 min, otherwise the burst location is observed for four hours counting from the burst onset time T_0.

The MAGIC GRB group members are assigned as burst advocates for the upcoming observations. The data is analyzed by the burst advocate within two days and, depending on the data quality, the result and importance

\footnote{For up-to-date information see http://mojorojo.magic.iac.es/grb}
of the observation, preliminary results may be published as GCN circulars.

In none of the 51 MAGIC-I GRB follow-up observations up to now, significant emission of VHE γ-rays could be detected. For the bursts GRB080319A [22], GRB080330 [23], GRB090102 [24] and GRB090113 [25] preliminary results were published via GCN circulars. These and in addition the results from GRB080315, GRB080430 and GRB080603B are summarized in table II.

GRB080315 is one of the candidates, which results were not published as GCN circular. The burst was triggered by BAT detector, however, due to the marginal detection it is not clear if it was a real event. No counterparts at other wavelengths were detected. MAGIC-I started the follow-up observation at $T_0 + 214$ s, short after the end of the prompt emission phase $T_{90} = 65$ s. The sensitivity of the observation was reduced due to moonlight.

Two more publications are included in these proceedings. In [26] we present the results of the GRB080430 observation. The MAGIC-I observation window overlapped with the afterglow observation of various experiments. Due to the well sampled data set and the relatively close redshift $z = 0.758$ of this burst we were able to predict the afterglow emission of an SSC model, which fits the optical and X-ray data. Due to the late observation start (GRB080430 exploded while the Sun was still shining on the MAGIC site), our upper limits at the threshold energy of $E_{\text{thr}} = 80$ GeV are well above the predicted emission of this model.

Generally, all observations in 2009 were carried out with the new sum trigger. However, only GRB090102 had precise coordinates and a measured redshift such that meaningful upper limits could be obtained, with an analysis threshold energy of only $E_{\text{thr}} = 32$ GeV. A more precise treatment of this burst is shown in [27].

All data sets listed in table I, which results are not included in table II, were rejected due to bad quality, either of the pointing accuracy or the weather conditions. All GBM alerts have generally too large errors to allow physical interpretation of the observation. In the case of GRB090932, the burst was also detected by LAT at energies reaching few GeV. The HE emission commences several seconds after the GBM trigger time, and lasts with some evidence for up to a couple of kilo-seconds, coinciding with the MAGIC-I observation window. The LAT detector is able to pinpoint the GRB sky coordinates with much higher precision. However, in this case the more precise coordinates were sent after the end of the MAGIC-I observation and lay outside the field of view of the MAGIC-I camera during the observation.

IV. CONCLUSIONS AND OUTLOOK

The MAGIC collaboration is making many efforts to improve the experiment in order to lower the threshold energy, increase the sensitivity and reposition the telescope even faster for GRB follow-up observation. Right now the MAGIC-I telescope has undergone an upgrade of the steering system. The repositioning speed of the telescope has finally reached the design value of 20 s for 180° movement in azimuth. The second MAGIC-II telescope is in the commissioning phase and will become operational very soon. Both telescopes together will have a considerably higher sensitivity at comparably low energy threshold.

REFERENCES

[1] Fernandez-Soto A., et al., GCN Circular 9222 (2009)
[2] Bauvier A., et al., GCN Circular 8183 (2008)
[3] Tajima H., et al., GCN Circular 8246 (2008)
[4] Omodei N., GCN Circular 8407 (2008)
[5] Ohno M., et al., GCN Circular 8903 (2009)
[6] Ohno M., et al., GCN Circular 9021 (2009)
[7] McEnery J., et al., GCN Circular 9044 (2009)
[8] Abdo A.A., et al., Science, 323, 5922, 1688 (2009).
[9] Band D., et al., ApJ, 413, 281 (1993)
[10] Gonzalez M.M., et al., Nature, 424, 749 (2003)
[11] Baixeras, C., et al., NIM A, 518, 188 (2004)
[12] Aliu E., et al., Astroparticle Physics, 30, 6, 293 (2009)
[13] Albert J., et al., Science, 320, 5884, 1752 (2008)
[14] Albert J., et al., Science, 322, 5905, 1221 (2008)
[15] Breit T., et al., Astroparticle Physics, 31, 2, 92 (2009)
[16] Cortina J., Goebel F., Schweizer T., these proceedings
[17] Albert J., et al., ApJ, 667, 1, 358 (2007)
[18] Albert J., et al., ApJ, 641, 1, L9 (2006)
[19] Garczarczyk M., et al., AIP conf. proc., 1065, 342 (2008)
[20] Galante N., et al., AIP conf. proc., 1000, 125 (2008)
[21] Bastieri D., et al., Proc. 29th ICRC, 4, 435 (2005)
[22] Garczarczyk M., et al., GCN Circular 7635 (2008)
[23] Gaug M., et al., GCN Circular 7585 (2008)
[24] Gaug M., et al., GCN Circular 8816 (2009)
[25] Becerra Gonzalez J., et al., GCN Circular 8867 (2009)
[26] Convino S., et al., these proceedings
[27] Gaug M., et al., these proceedings
GRB	trigger	accuracy	z	T_{00} [s]	ΔA [deg]	rep. time [s]	Z_{d} [deg]	start obs. [s]	obs. time [s]	
1. 070920	BAT	0.05	–	56	–	–	–	53	350	2161
2. 07112C	BAT	0.05	0.8	15	48	17	60	4327	10236	
3. 080129	BAT	0.05	–	48	–	–	–	–	–	
4. 080315	BAT	0.05	–	65	251	69	32	214	3262	
5. 080319A	BAT	0.05	–	64	27	27	35	290	1736	
6. 080330	BAT	0.05	1.51	61	129	–	48	91	1754	
7. 080430	BAT	0.05	0.767	16	–	–	23	4753	13215	
8. 08063B	BAT	0.05	2.7	60	–	–	41	5578	6816	
9. 080605	BAT	0.05	1.6	20	167	48	37	66	14155	
10. 080903	BAT	0.05	1.6	50	–	–	55	8430	6135	
11. 081028	BAT	0.05	3.0	260	–	–	60	9605	4711	
12. 081130A	GBM	24.7	–	12	18	313	39	501	5553	
13. 081206A	GBM	9.6	–	24	104	137	43	192	1251	
14. 081206C	GBM	28.5	–	20	96	77	54	95	1442	
15. 081229	GBM	8	–	0.5	241	191	50	194	13471	
16. 090102	GBM	4	1.55	–	262	235	10	255	1161	
17. 090112B	GBM	0.05	1.55	27	–	–	8	1161	13149	
18. 090113	BAT	0.05	–	9.1	–	5	4603	9405		
19. 090126B	GBM	9.7	–	10.8	152	123	12	143	1458	
20. 090203	GBM	35.0	–	–	42	30	45	201	601	
21. 090320B	GBM	9.6	–	–	52	–	–	5010	480	
22. 090323	GBM	5.8	3.75	150	106	85	20	127	1028	
23. 090330	GBM	90	–	–	19	17	39	82	1230	
24. 090401	GBM	90	–	–	–	–	52	108	59	

TABLE I: Update of the GRBs observed by MAGIC. The columns from left: burst number, trigger detector, burst coordinates accuracy (detector dependent), redshift z (if measured), burst duration T_{00} (if published), repositioning distance of MAGIC in azimuth direction, required repositioning time, zenith distance at the beginning of the observation, begin of the MAGIC observation in respect to the burst onset T_{00} and the total observation time with MAGIC.

observation time [s]	Energy bin [GeV]	\(80-125\)	\(125-175\)	\(175-300\)	\(300-1000\)	
$T_{0} + 160 \rightarrow T_{0} + 1716$	$T_{0} + 1761 \rightarrow T_{0} + 5061$	–	–	0.16	0.18	0.05
$T_{0} + 259 \rightarrow T_{0} + 1736$	–	0.57	0.11	0.06		
$T_{0} + 91 \rightarrow T_{0} + 974$	$T_{0} + 974 \rightarrow T_{0} + 1754$	–	–	0.76	0.49	
$T_{0} + 4753 \rightarrow T_{0} + 11011$	$T_{0} + 16912 \rightarrow T_{0} + 17968$	0.55	0.77	0.30	0.05	
$T_{0} + 5578 \rightarrow T_{0} + 7317$	$T_{0} + 7497 \rightarrow T_{0} + 12357$	–	0.16	0.06	0.01	
$T_{0} + 1161 \rightarrow T_{0} + 5181$	$T_{0} + 5181 \rightarrow T_{0} + 9381$	2.30	1.61	0.34	0.04	
$T_{0} + 9861 \rightarrow T_{0} + 11241$	$T_{0} + 11241 \rightarrow T_{0} + 12621$	1.12	0.50	0.20	0.07	
$T_{0} + 12621 \rightarrow T_{0} + 14841$	–	1.02	0.30	0.20		

TABLE II: Upper limits from MAGIC-I GRB observations using the standard analysis approach. Results for different energy bins are given in units of 10^{-10} erg cm$^{-2}$ s$^{-1}$.