Coexistence of different electronic phases in the K$_{0.8}$Fe$_{1.6}$Se$_2$ superconductor: a bulk-sensitive hard x-rays spectroscopy study.

L. Simonelli,¹ N.L. Saini,² M. Moretti Sala,¹ Y. Mizuguchi,³ Y. Takano,³ H. Takeya,³ T. Mizokawa,⁴ and G. Monaco¹

¹European Synchrotron Radiation Facility, BP220, F-38043 Grenoble Cedex, France
²Dipartimento di Fisica, Università di Roma “La Sapienza” - P. le Aldo Moro 2, 00185 Roma, Italy, EU
³National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan and JST-TRIP, 1-2-1 Sengen, Tsukuba 305-0047, Japan
⁴Department of Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan and Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

(Dated: May 5, 2014)

We have studied electronic and magnetic properties of the K$_{0.8}$Fe$_{1.6}$Se$_2$ superconductor by x-ray absorption and emission spectroscopy. Detailed temperature dependent measurements along with a direct comparison with the binary FeSe system have revealed coexisting electronic phases: a majority phase with high spin $^{2+}$Fe state and a minority phase with intermediate spin $^{2+}$Fe state. The effect of high temperature annealing suggests that the compressed phase with lower spin $^{2+}$Fe state is directly related with the high Tc superconductivity in the title system. The results clearly underline the glassy nature of superconductivity in the electronically inhomogeneous K$_{0.8}$Fe$_{1.6}$Se$_2$, similar to the superconductivity in granular phases.

PACS numbers: 74.25.Jb, 74.70.Xa, 74.81.Bd

1. INTRODUCTION

The discovery of superconductivity in binary FeSe (11-type) chalcogenide has been an important finding to progress in the understanding of iron-based superconductors. The 11-type chalcogenides have been regarded as model systems to explore the fundamental electronic structure of the iron-based superconductors since, unlike the more common RFeAsO ($R = $ La, Nd, Pr, Sm, Gd) and (Ba,Sr)Fe$_2$As$_2$ pnictides, they lack the spacer layers and hence the central role played by the Fe-Fe plane with interacting anions (pnictogen/chalcogen) can be distinctly identified.

Very recently, FeSe layers have been successfully intercalated by alkaline atoms, with intercalated A$_2$Fe$_{2-y}$Se$_2$ ($A = $ K, Rb, Cs) system showing superconductivity up to 32 K6,9,10, unlike the binary FeSe with a maximum T$_c$ \sim 8 K. This new A$_2$Fe$_{2-y}$Se$_2$ (122)-type superconductor displays a large magnetic moment per Fe site, intrinsic Fe vacancy order in the ab-plane and an antiferromagnetic order in the c-direction. Several experiments have indicated that the superconductivity occurs only in Fe-deficient samples6,8,9,10,11,12,13 and the ordering of Fe vacancies, important for their electronic and magnetic properties, can be controlled by heat treatments6,8,9,10,11,13,12. In addition, the system is structurally phase separated at the nanoscale containing iron-vacancy ordered phase with an expanded in-plane lattice and a coexisting minority phase with compressed in-plane lattice8. Considering the complexity of the system it is of vital importance to investigate the coexisting phases for their electronic and magnetic properties.

In this work, we have exploited bulk-sensitive high energy spectroscopies to probe the coexisting electronic phases in the K$_{0.8}$Fe$_{1.6}$Se$_2$ superconductor. We have used x-ray emission (XES) and high resolution x-ray absorption (XAS) spectroscopy to study the electronic and magnetic properties as a function of thermal cycling. Starting from room temperature (RT), where the system shows a nanoscale phase separation, we have cooled the sample across the superconducting transition, and the temperature evolution of the electronic and magnetic properties is monitored while warming up to RT. Later, we have annealed the sample up to 606 K and quenched it down to 10 K for a direct comparison between as-grown and annealed samples. The results are discussed along with the electronic and magnetic properties of binary FeSe to distinctly identify the effect of K-intercalation on the electronic properties of these superconductors.

2. EXPERIMENTAL DETAILS

Measurements of XES and high resolution XAS were carried out on a well characterized as-grown single crystal of K$_{0.8}$Fe$_{1.6}$Se$_2$. The experiments were performed at the beamline ID16 of the European Synchrotron Radiation Facility. The experimental setup consists of a spectrometer based on the simultaneous use of a bent analyzer Ge(260) crystal (bending radius R=1 m) and a pixelated position-sensitive Timepix detector15 in Rowland circle geometry. The scattering plane was horizontal and parallel to the linear polarization vector of the incident x-rays beam. The measurements were carried out fixing the sample surface (the ab-plane of the K$_{0.8}$Fe$_{1.6}$Se$_2$ single crystal) at \sim 45° from the incoming beam direction and the scattering angle 2θ at \sim 90°. The total energy resolution was about 1.1 eV full width at half maximum. The samples were placed in a cryogenic environment and the temperature was controlled with an accuracy of \pm1 K.
the spectra show strong pre-peak features due to direct resonant yield (PFY) absorption spectra of K

collected at different temperatures, obtained by collecting K-edge absorption process is mainly estimated by a linear fit far away from the absorption edge. The spectra giving a zoom over the pre-peak). The large width and asymmetry of the FeSe pre-peak feature indicates that this system may not be a simple low spin $^{2+}$Fe complex, rather it should contain both low spin (LS) and high spin (HS) $^{2+}$Fe states. Indeed, as shown in Fig. 1(b), the FeSe pre-peak can be deconvoluted in two components due to LS and HS $^{2+}$Fe states. FeSe shows then an intermediate spin $^{2+}$Fe state, consistent with the local Fe-moment of about 2 μ_B. On the other hand, the PFY spectra of K$_{0.8}$Fe$_{1.6}$Se$_2$ apparently show a pre-peak with two features A and B, appearing at $E_A\approx 7111.4$ eV and $E_B\approx 7112.9$ eV. Since the system displays a large local Fe-moment of about 3.3 μ_B, we expect a doubled absorption pre-peak to mainly represent the HS $^{2+}$Fe state (however, with the more intense feature at lower energy as expected theoretically). The fact that the spectral weight is higher at the higher energy, means that HS $^{3+}$Fe state should coexist with HS $^{2+}$Fe state (see, e.g., inset of Fig. 1(f) showing calculated pre-peaks for tetrahedral HS $^{2+}$Fe and $^{3+}$Fe complexes). This constructs a direct evidence of coexisting electronic phases with different spin states in the K$_{0.8}$Fe$_{1.6}$Se$_2$ system.

Several experiments have revealed an intrinsic phase separation in the K$_{0.8}$Fe$_{1.6}$Se$_2$ system below ≈ 580 K where iron vacancy-ordered structure is associated to the magnetic order below ≈ 420 K. Alongwith the majority phase, a minority phase with slightly compressed in-plane lattice appears. It is likely that the two phases have different electronic properties due to local change of the Fe valence in different sublattices due to the high K mobility and distribution. In fact, the PFY spectra provide a clear evidence of electronic phase separation, consistent with the structural nematicity of the system. The in-plane compressed (out-of-plane expanded) minority phase most likely corresponds to a $^{2+}$Fe oxidation state, while the in-plane expanded (out-of-plane compressed) phase with vacancy ordering to a $^{3+}$Fe state. Despite the fact that the phase separation affects both in-plane and out-of-plane axes, the variation of the c-axis is 50% larger than that along the a, b directions. Consistently, the shift of the absorption edge reflects the fact that a c-axis expanded (compressed) phase corresponds to a lower (higher) energy.

In order to investigate the temperature evolution of the electronic phase separation, we have deconvoluted the pre-peak of K$_{0.8}$Fe$_{1.6}$Se$_2$ in two Gaussian features, A and B, with fixed energy positions (Fig. 1(c)-(e)). A pseudo-Voigt function was used to describe the background due to the rising edge (dotted curve). The width of A has been kept fixed while that of B was variable to compensate the effect of the background subtraction. Fig.

3. RESULTS AND DISCUSSIONS

Figure 1(a) shows normalized Fe K-edge partial fluorescence yield (PFY) absorption spectra of K$_{0.8}$Fe$_{1.6}$Se$_2$, collected at different temperatures, obtained by collecting the Fe K$\beta_{1,3}$ emission intensity and scanning the incident energy across the absorption edge. The spectra are normalized with respect to the atomic absorption estimated by a linear fit far away from the absorption edge. The K-edge absorption process is mainly governed by the $1s \rightarrow \epsilon p$ dipole transition. In addition, the spectra show strong pre-peak features due to direct $1s \rightarrow 3d$ quadrupole transitions to the unoccupied Fe $3d$ hybridized with Se $4p$ states. In the crystal-field picture the pre-peak is sensitive to the electronic structure and its energy position, splitting, and intensity distribution change systematically with spin state, oxidation state, and local geometry. The differences between the FeSe and the K$_{0.8}$Fe$_{1.6}$Se$_2$ are evident. The FeSe exhibits a broad and asymmetric single pre-peak feature C at $E_C\approx 7111.1$ eV (typical of $^{2+}$Fe complexes), unlike K$_{0.8}$Fe$_{1.6}$Se$_2$, for which the pre-peak is composed by a doublet feature (see, e.g., the inset of Fig. 1(a) showing a zoom over the pre-peak). The large width and asymmetry of the FeSe pre-peak feature indicates that this system may not be a simple low spin $^{2+}$Fe complex, rather it should contain both low spin (LS) and high spin (HS) $^{2+}$Fe states. Indeed, as shown in Fig. 1(b), the FeSe pre-peak can be deconvoluted in two components due to LS and HS $^{2+}$Fe states. FeSe shows then an intermediate spin $^{2+}$Fe state, consistent with the local Fe-moment of about 2 μ_B. On the other hand, the PFY spectra of K$_{0.8}$Fe$_{1.6}$Se$_2$ apparently show a pre-peak with two features A and B, appearing at $E_A\approx 7111.4$ eV and $E_B\approx 7112.9$ eV. Since the system displays a large local Fe-moment of about 3.3 μ_B, we expect a doubled absorption pre-peak to mainly represent the HS $^{2+}$Fe state (however, with the more intense feature at lower energy as expected theoretically). The fact that the spectral weight is higher at the higher energy, means that HS $^{3+}$Fe state should coexist with HS $^{2+}$Fe state (see, e.g., inset of Fig. 1(f) showing calculated pre-peaks for tetrahedral HS $^{2+}$Fe and $^{3+}$Fe complexes). This constructs a direct evidence of coexisting electronic phases with different spin states in the K$_{0.8}$Fe$_{1.6}$Se$_2$ system.

Several experiments have revealed an intrinsic phase separation in the K$_{0.8}$Fe$_{1.6}$Se$_2$ system below ≈ 580 K where iron vacancy-ordered structure is associated to the magnetic order. Alongwith the majority phase, a minority phase with slightly compressed in-plane lattice appears. It is likely that the two phases have different electronic properties due to local change of the Fe valence in different sublattices due to the high K mobility and distribution. In fact, the PFY spectra provide a clear evidence of electronic phase separation, consistent with the structural nematicity of the system. The in-plane compressed (out-of-plane expanded) minority phase most likely corresponds to a $^{2+}$Fe oxidation state, while the in-plane expanded (out-of-plane compressed) phase with vacancy ordering to a $^{3+}$Fe state. Despite the fact that the phase separation affects both in-plane and out-of-plane axes, the variation of the c-axis is 50% larger than that along the a, b directions. Consistently, the shift of the absorption edge reflects the fact that a c-axis expanded (compressed) phase corresponds to a lower (higher) energy.

In order to investigate the temperature evolution of the electronic phase separation, we have deconvoluted the pre-peak of K$_{0.8}$Fe$_{1.6}$Se$_2$ in two Gaussian features, A and B, with fixed energy positions (Fig. 1(c)-(e)). A pseudo-Voigt function was used to describe the background due to the rising edge (dotted curve). The width of A has been kept fixed while that of B was variable to compensate the effect of the background subtraction. Fig.

FIG. 1: (a) Partial fluorescence yield (PFY) spectra measured at the Fe K-edge of K$_{0.8}$Fe$_{1.6}$Se$_2$ at RT, 10K, and RT after cooling, compared with the PFY spectrum of binary FeSe. The inset shows a zoom over the pre-peak region. (b) The pre-peak of FeSe is shown deconvoluted in two components representing the low (dot-dashed line) and high (solid line) spin $^{2+}$Fe states. (c) - (e) The pre-peak of K$_{0.8}$Fe$_{1.6}$Se$_2$ is deconvoluted in two Gaussian features, A and B. (f) Temperature cycle of the relative intensities of the two features, $(I_L-I_D)/(I_D+I_L)$, while cooling down (I) followed by warming up to RT again (II). The inset represents theoretical simulation of the pre-edge region for tetrahedral high spin (HS) $^{2+}$Fe (solid line) and $^{3+}$Fe (dashed line) complexes.
FIG. 2: (a) Fe Kβ emission spectra of K0.8Fe1.6Se2 at different temperatures, compared with the spectra measured on the FeSe and SmFeAsO. The spectra are normalized to the integrated area. The inset shows a zoom over the main Kβ1.3 emission line. (b) and (c) Resonant x-ray emission maps at RT and 10 K respectively, measured at the Kβ emission line with the incoming energy around the absorption pre-peak. The arrows indicate the two features resonating at E_A and E_B. (d) IDA as a function of temperature. Open squares represent the data while cooling down the sample (I) and the filled circles represent warming up from 10 K (II). The scale on the right hand side shows local magnetic moment (µ) determined following H. Gretarsson et al.21. (e) Energy position of the Kβ1.3 main line as a function of temperature. The uncertainties are of the order of the symbols size.

Figure 1 (f) displays relative intensity, (I_B − I_A)/(I_B + I_A), representing the qualitative evolution of the coexisting electronic phases. Starting from RT and cooling down to 10 K, B loses and A gains intensity. This may be due to a reorganization between nanoscale phases while the sample is cooled. Warming up again to RT, differently from B, the feature A approximately recovers its appearance, however the distribution of the phases appears different. The temperature dependence of the relative intensity also reveals a small discontinuity across T_c. Moreover, a dome like anomaly is evident between 100 K to 220 K, similar to the resistivity anomaly seen in this system.22,23 It should be noticed that the Fe-Se bondlength does not shows any change with temperature.24,25 This implies negligible change in the Fe 3d - Se 4p hybridization.26 Therefore the absorption pre-peak, consisting HS $^{2+}$Fe and HS $^{3+}$Fe components, get redistributed without any appreciable effect of structural changes with temperature.

Independent and complementary information on the electronic and magnetic properties of the Fe 3d levels can be obtained from XES. Figure 2 (a) shows Fe Kβ emission line measured on K0.8Fe1.6Se2 at different temperatures alongwith the RT XES spectra of FeSe and SmFeAsO systems. In the crystal-field picture the overall spectral shape is dominated by the (3p,3d) exchange interactions.27 In particular, the presence (absence) of a pronounced feature at lower energy (Kβ') is an indication of a HS (LS) state of Fe3+.28 Also, the energy position of the Kβ1.3 provides information on the spin state reflecting the effective number of unpaired 3d electrons.29,30 Differences between the XES of K0.8Fe1.6Se2, FeSe and SmFeAsO are evident.

In Fig. 2 (b) and (c) we have displayed the resonant x-ray emission maps collected at the Fe Kβ emission with the incoming energy around the absorption pre-peak. The RT map in panel (b) shows a main feature and a shoulder, resonating at E_B and E_A respectively. The map measured at 10 K instead (panel (c)) reveals a clear enhancement of the shoulder intensity, appearing as a distinct feature at a lower emitted energy. This is a clear indication that the pre-peak feature A should be related to a lower spin state than feature B, in agreement with the hypothesis that features A and B correspond to HS $^{2+}$Fe and $^{3+}$Fe phases respectively. Therefore, the minority phase has reduced local Fe-moment with respect to the Fe-vacancy ordered phase. The observation further underlines the correlation between the Fe-vacancy order and local Fe-moment in the title system.

It is possible to quantify the local Fe-moment from the integrated area of absolute XES difference with respect to a LS reference.21 Since SmFeAsO is almost non-magnetic,21 we have taken SmFeAsO as a reference to obtain the integrated absolute difference (IDA), that is approximately proportional to the spin magnetic moment. In order to determine the relative variation in the magnetic moment, we have used the RT value of µ for K0.8Fe1.6Se2 (3.3 µB)21,22 and for FeSe (2 µB).21 Figure 2 (d) and (e) shows temperature dependence of the IDA and the energy position of the Kβ1.3 main line. Since the two quantities provide the same information, qualitatively similar trends are observed. The changes
In conclusion, we have investigated the evolution of the electronic and magnetic properties of K$_{0.8}$Fe$_{1.6}$Se$_2$ by XAS and XES measurements as a function of temperature in a close thermal cycle, providing a clear evidence of coexisting electronic phases characterized by different Fe valence and local magnetic moment. Using resonant XES we have found that the Fe-vacancy ordered (disordered compressed) phase corresponds to HS $^{+3}$Fe (intermediate spin $^{2+}$Fe). The presence of the HS $^{+3}$Fe phase means that the minority superconducting phase is heavily electron doped, consistent with the absence of the hole pockets on the Fermi surface. We also find that the local Fe-moment sustains a substantial reduction under high temperature annealing due to disordering of the Fe vacancies. A comparative study with respect to the FeSe suggests that high T$_c$ in the title system has a clear analogy with the increased T$_c$ of binary FeSe under hydrostatic pressure. It looks like that the coexistence of different phases is the key, and since by annealing the disorder increases with a simultaneous decrease of the local Fe moment, it is likely that a fraction of different metallic compressed disordered phase in lower spin configuration exists. These filamentary phases get superconducting as happens in the granular superconductors.
Phys. Rev. Lett. 106, 187001 (2011).