Extending Virial Black Hole Mass Estimates to Low-Luminosity or Obscured AGN: the cases of NGC 4395 and MCG -01-24-012

F. La Franca,1* F. Onori,1 F. Ricci,1 E. Sani,2 M. Brusa,3,4 R. Maiolino,5 S. Bianchi,1 A. Bongiorno,6 F. Fiore,6 A. Marconi7 and C. Vignali3,4
1Dipartimento di Matematica e Fisica, Università Roma Tre, via della Vasca Navale 84, 00146 Roma, Italy
2INAF - Osservatorio Astrofisico di Arcetri, largo E. Fermi 2, 50125 Firenze, Italy
3Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 62, 40127 Bologna, Italy
4INAF - Osservatorio Astrofisico di Bologna, via Ranzani 1, 40127 Bologna, Italy
5Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Ave., Cambridge CB3 0HE, UK
6INAF - Osservatorio Astronomico di Roma, via Frascati 33, 00044 Monte Porzio Catone, Italy
7Dipartimento di Fisica e Astronomia, Università di Firenze, largo E. Fermi 2, 50125 Firenze, Italy

Accepted 2015 February 19. Received 2015 February 17; in original form 2014 July 11

ABSTRACT
In the last decade, using single epoch (SE) virial based spectroscopic optical observations, it has been possible to measure the black hole (BH) mass on large type 1 Active Galactic Nuclei (AGN) samples. However this kind of measurements can not be applied on those obscured type 2 and/or low luminosity AGN where the nuclear component does not dominate in the optical. We have derived new SE relationships, based on the FWHM and luminosity of the broad line region component of the Paβ emission line and/or the hard X-ray luminosity in the 14-195 keV band, which have the prospect of better working with low luminosity or obscured AGN. The SE relationships have been calibrated in the 10^5 -- 10^9 M_\odot mass range, using a sample of AGN whose BH masses have been previously measured using reverberation mapping techniques. Our tightest relationship between the reverberation-based BH mass and the SE virial product has an intrinsic spread of 0.20 dex.

Thanks to these SE relations, in agreement with previous estimates, we have measured a BH mass of $M_{BH}=1.7^{+1.3}_{-0.5} \times 10^5$ M_\odot for the low luminosity, type 1, AGN NGC 4395 (one of the smallest active galactic BH known). We also measured, for the first time, a BH mass of $M_{BH}=1.5^{+1.1}_{-0.6} \times 10^7$ M_\odot for the Seyfert 2 galaxy MCG -01-24-012.

Key words: galaxies: active – galaxies: nuclei – infrared: galaxies – galaxies: individual (NGC 4395) – galaxies: individual (MCG -01-24-012)

1 INTRODUCTION
Nowadays there is robust evidence that almost every galaxy host a super massive black hole (BH; $M_{BH}=10^5$-10^9 M_\odot) and that many correlations exist between the BH mass and some of the host galaxy properties (e.g. bulge mass, luminosity and stellar dispersion; Ferrarese & Merritt 2000; Gebhardt et al. 2000; Marconi & Hunt 2003; Sani et al. 2011). Then, it has been argued that the existence of these scaling relationships implies that the evolution of galaxies and the growth of the super massive BHs (SMBH) are tied together (the AGN/galaxy co-evolution scenario).

In the last decade, using virial based techniques in the optical band, it has been possible to measure the BH mass on large type 1 AGN (AGN1) samples and therefore derive the super massive BH mass function (Greene & Ho 2007a; Kelly et al. 2009, 2010; Merloni et al. 2010; Bongiorno et al. 2014). Many of these measures are based on the Single Epoch (SE) BH mass estimates. By combining the velocity of the Broad Line Region (BLR) clouds (assuming Keplerian orbits) along with their distance R it is possible to determine the total mass contained within the BLR (which is dominated by the BH) in a simple way using

$$M_{BH} = \frac{f \Delta V^2 R}{G},$$

where G is the gravitational constant and f is a factor that depends on the geometric and kinematic structure of the BLR (e.g., Kaspi et al. 2000). These techniques derive the AGN BH mass using SE spectra to measure ΔV from the FWHM of some of the BLR lines (typically: Hβ or MgII λ2798 or CIV λ1549) and R from either the continuum or the line luminosities, L, which have been proved to be proportional to R^2 (i.e. $R \propto L^{0.3}$; Bentz et al. 2006). Therefore, the SE estimates are based on relations of the type

$$\log M_{BH} = \log(FWHM^2 \cdot L^2) + \gamma,$$
where $\alpha \sim 2$, $\beta \sim 0.5$ (e.g. Wandel et al. 1999; Vestergaard 2002, 2004; Vestergaard & Osmer 2009; McLure & Jarvis 2002) but see also Dietrich & Hamann 2004. These relationships have typical spreads of ~ 0.5 dex.

However these measurements can not be applied on those obscured or partially obscured sources where the AGN component does not dominate in the optical: type 2 AGN (AGN2), intermediate class AGN (AGN1.8 and AGN1.9) or even AGN1 having low luminosities and low mass BH ($M_{\text{BH}} \leq 10^5 M_\odot$). Indeed, in these cases, the (rest frame) optical band, either the broad line component is not visible or, in any case, the AGN continuum and line luminosities are affected by severe obscuration and galaxy contamination thus preventing a reliable estimate of the BH mass.

There are, in summary, indications that the SE techniques do not allow to obtain an unbiased estimate of the density of the low-luminosity (and, therefore, low-mass; $M_{\text{BH}} \leq 10^5 M_\odot$) class of AGN. Such a bias could have strong implications on our understanding on the AGN/galaxy evolution.

Indeed, the density of low mass BHs in the local universe provide unique tests for studies of BH formation and growth, galaxy formation and evolution. In current models of galaxy evolution in a hierarchical cosmology, SMBHs must have been built up from accretion onto much smaller seeds, in conjunction with merging with other BHs. These models also predict that smaller scale structures form at later times (cosmic downsizing), and one might expect that seeds BHs in these smaller systems may not have had enough time to be fully grown. This means that low-mass BHs likely contain clues about the formation of the first black holes, therefore α_{BH} does not dominate in the optical: type 2 AGN (AGN2), intermediate class AGN (AGN1.8 and AGN1.9) or even AGN1 having low luminosities and low mass BH ($M_{\text{BH}} \leq 10^5 M_\odot$). Indeed, these cases, the (rest frame) optical band, either the broad line component is not visible or, in any case, the AGN continuum and line luminosities are affected by severe obscuration and galaxy contamination thus preventing a reliable estimate of the BH mass.

In the last few years Landt et al. (2008, 2011, 2013) have studied quasi-simultaneous near-IR (NIR) and optical spectra of a sample of well-known broad-emission line AGN, whose BH masses were already determined. These studies have allowed the calibration of a NIR relationship for estimating AGN BH masses based on the widths of the Paschen hydrogen broad emission lines and the total 1μm continuum luminosity (Landt et al. 2011, 2013). However the virial relationship developed in Landt et al. (2011, 2013) makes use of the 1μm continuum luminosity, which has to be derived by a Spectral Energy Distribution (SED) fitting method and can suffer from galaxy contamination especially for intrinsic low-luminosity AGNs.

Following previous studies in which either a correlation between the BLR radius and the absorption corrected X-ray luminosity was found (Greene & Ho 2005) or the luminosity of the BLR emission lines can be used as a proxy of the BLR radius (Greene & Ho 2005), we have decided to calibrate new virial relationships based on the Paγ broad emission line FWHM combined with either the hard X-ray or the broad emission line luminosities (see also Kim et al. 2010) for similar SE methods based on the Paγ and Paβ emission-line luminosities. Such relations are potentially able to be applied on both the low-luminosity and the optically more obscured AGN. The method has been successfully tested on one of the lowest BH mass Seyfert 1 known, NGC 4395, and on a Seyfert 2 galaxy, MCG -01-24-012; both spectroscopically observed in the NIR in the framework of a large programme aimed at measuring the BH mass of low-luminosity or type 2 AGN (Onori et al., in preparation), included in the 22 month Swift/Burst Alert Telescope (BAT) catalogue (Tueller et al. 2010).

Unless otherwise stated, all quoted errors are at the 68% (1 σ) confidence level. We assume $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.3$ and $\Omega_{\Lambda} = 0.7$.

2 NGC 4395 AND MCG -01-24-012 AND THEIR PREVIOUS BH MASS MEASURES

2.1 NGC 4395

NGC 4395 ($\alpha = 12^h 52^m 48.8^s$, $\delta = 33^\circ 32' 49''$; J2000) is a small bulgeless (Sd) galaxy hosting one of the smallest, low luminosity, active super massive BH ($10^4 - 10^5 M_\odot$) ever found. Its 14-195 keV X-ray luminosity is $L_X = 10^{37.79}$ erg s$^{-1}$ (Baumgartner et al. 2013). The optical spectrum (Figure 1) reveals very strong narrow emission lines showing weak broad wings in the Hα and Hβ emission lines. Based on the relative intensities of the narrow and broad components, Filippenko & Sargent (1989) originally classified the nucleus of NGC 4395 as a type 1.8 or type 1.9 Seyfert. Later, using HST spectroscopy, the nucleus of NGC 4395 has been classified as a type 1 Seyfert (Filippenko et al. 1993). According to Ho et al. (1997), the BLR component of the Hα line has a FWHM $= 442$ km s$^{-1}$.

Different methods have been employed in the last years to derive the central BH mass of NGC 4395. From photoionization modeling of the narrow-line region and BLR; Kraemer et al. (1999) found that the broad Hβ line originates from a region with radius $R = 3 \times 10^4$ pc. Assuming that the line emitting gas is gravitationally bound, and using the width of the Hβ BLR component, FWHM $= 1500$ km s$^{-1}$ (Kraemer et al. 1999), they found $M_{\text{BH}} = 1.2 \times 10^4 M_\odot$. A result similar to Peterson et al. (2005), who obtained $M_{\text{BH}} = (3.6 \pm 1.1) \times 10^4 M_\odot$, through reverberation mapping of the CIV line. This last estimate has been halved to $(1.8 \pm 0.6) \times 10^4 M_\odot$ due to the updated virial f-factor ($f = 4.31$) in Graham et al. (2011). The last up to date broadband photometric reverberation, made by Edrini et al. (2012) using the Hβ line, has found an even lower mass of $M_{\text{BH}} = (4.9 \pm 2.6) \times 10^4 M_\odot$; this is essentially only due to the much smaller geometrical f-factor used ($f = 0.75$ instead of $f = 5.5$ used by Peterson et al. 2005). Indeed, if a common geometrical factor $f = 4.31$ is used (see next section), all the above measures agree to a BH mass of $M_{\text{BH}} \sim 2.7 \times 10^4 M_\odot$.

The lack in this galaxy of a significant bulge and the stringent upper limit of 30 km s$^{-1}$ on its velocity dispersion confirm a value of the order of $10^4 - 10^5 M_\odot$ on its BH mass (Filippenko & Ho 2003).

As the Hα line shows a FWHM $= 442$ km s$^{-1}$ and a luminosity of $10^{40.08}$ erg s$^{-1}$ (Ho et al. 1997), in principle, a SE relationship, based on the two above quantities could be used to derive the BH mass. We used eq. A1 in Greene & Ho (2007a), but converted to a geometrical virial factor $f = 4.31$. In this case it results a mass of $5.5 \times 10^4 M_\odot$, which is smaller than previously measured. This lower value could be caused by extinction and dilution effects from the hosting galaxy, which are more relevant in small mass and low luminosity AGNs, such as NGC 4395. Nonetheless, the observed extinction is not able to correct the Hα luminosity in order to obtain a BH mass in agreement with the previous described measures. In fact, from the He II $\lambda 1640/\lambda 4686$ ratio a reddening of $E_{B-V} = 0.05$

1 One other small active BH, of similar size, is that of POX 52: an AGN1 in a dwarf elliptical galaxy, whose BH mass, according to the extrapolation of the M_{BH}-σ relation (Tremaine et al. 2002) and to the SE, Hβ based, relationship is expected to have $M_{\text{BH}} \sim 1.5 - 1.6 \times 10^4 M_\odot$ (Kunth et al. 1987; Barth et al. 2004, 2005).

© 2014 RAS, MNRAS 000, 1-10
mag is found (Kraemer et al. 1999), while from to the observed Balmer decrement of the narrow line component (see Table 1 in Kraemer et al. 1999), a reddening $E_{B-V} = 0.08$ mag is measured. Assuming a Galactic extinction law $(R_V = 3.1)$, these values correspond to an extinction of ~ 0.09 and ~ 0.14 mag, respectively, at the Hα wavelength. In this case, once the Hα luminosity has been corrected for this small extinction, a BH mass of $\sim 5.7 \times 10^4$ M$_\odot$ is obtained. This low value could be due to an under-estimate of the extinction, which in the inner regions of the galaxy, could be larger than measured from the narrow line region. These results support our project of deriving new BH mass virial relationships based on NIR and/or hard X-ray luminosities which have the prospect of being less affected by extinction and host galaxy contaminations.

2.2 MCG -01-24-012

MCG -01-24-012 ($\alpha = 9^h 20^m 46.2^s$, $\delta = -8^\circ 3^\prime 22^\prime\prime$; J2000) is a nearby spiral galaxy, at redshift $z = 0.0196$, which hosts a Seyfert 2 nucleus (de Grijp et al. 1992). Using BeppoSAX/PDS telescope observations it was identified by Malizia et al. (2002) as the counterpart of the X-ray source H0917-074, detected by HEAO1/A2 (Piccinotti et al. 1982). The 2-10 keV flux, measured by BeppoSAX, is $\sim 1 \times 10^{-11}$ erg s$^{-1}$ cm$^{-2}$, while the X-ray spectrum shows the presence of iron Kα emission lines, together with an absorption feature at ~ 8.7 keV which cannot be explained by the presence of warm material around the source. It turned out to be Compton-thin, having $N_H \sim 7 \times 10^{22}$ cm$^{-2}$. Its 14-195 keV luminosity is $L_X = 10^{42.55}$ erg s$^{-1}$ (Baumgartner et al. 2013) and the [O III] image shows an extended ($1.15^{\prime\prime} \times 2.3^{\prime\prime}$; 460 pc \times 910 pc) emission, with the major axis along PA = 75 deg, interpreted as an extended NLR (Schmitt et al. 2003). MCG -01-24-12 has also been observed by Spitzer/IRS. The corresponding low resolution staring-mode spectrum exhibits high silicate absorption at 10 μm and weak PAH emission (Mullally et al. 2011).

Using K-band stellar luminosity of the bulge, Winter et al. (2009) derived a black hole mass $\log(M_{BH}/M_\odot) = 7.16$. The optical spectrum (Figure 1), obtained by the 6dF Galaxy Survey (Jones et al. 2009), shows narrow Hβ and Hα emission lines (but see also discussion in sect. 3 about a possible presence of a faint broad Hα component).

3 SINGLE EPOCH MASS RELATIONS IN THE NEAR-INFRARED

3.1 Calibration sample

As previously discussed, we are interested in deriving new BH mass virial relationships based on the measure of the width of the BLR major axis along PA = 75 deg, interpreted as an extended NLR (Schmitt et al. 2003). MCG -01-24-12 has also been observed by Spitzer/IRS. The corresponding low resolution staring-mode spectrum exhibits high silicate absorption at 10 μm and weak PAH emission (Mullally et al. 2011).

Using K-band stellar luminosity of the bulge, Winter et al. (2009) derived a black hole mass $\log(M_{BH}/M_\odot) = 7.16$. The optical spectrum (Figure 1), obtained by the 6dF Galaxy Survey (Jones et al. 2009), shows narrow Hβ and Hα emission lines (but see also discussion in sect. 3 about a possible presence of a faint broad Hα component).

As previously discussed, we are interested in deriving new BH mass virial relationships based on the measure of the width of the BLR component in the Paβ emission line. In order not to suffer from problems related to the galaxy contamination, we have tried to substitute the 1 μm continuum luminosity used by Landt et al. (2013) as the BLR size indicator, with either the hard X-ray 14-195 keV band luminosity, L_X, such as measured by the 70 months Swift/BAT survey by integrating within the years 2005 and 2010 (Baumgartner et al. 2013), or the luminosity of the Paβ, $L_{Pa\beta}$, itself (see Kim et al. 2010), for a similar study based on the Paα and Paβ emission-line luminosities.

The calibration sample contains those 20 AGN whose broad Paβ line fits have been published by Landt et al. (2008, 2013) and whose BH mass have been measured by the reverberation mapping techniques. When available, we have used the BH mass values listed in Grier et al. (2013) where the new estimate of the geometrical factor $f = 4.31$ was adopted. All the remaining BH masses, which were originally published using $f = 5.5$, have then been converted to $f = 4.31$. All but one the sources are listed in the 70 months Swift/BAT catalogue (Baumgartner et al. 2013) from which the 14-195 keV hard X-ray luminosities have been taken. In Table 1 we present the main characteristics of our calibration sample, such as: redshift, optical spectroscopic classification, BH mass and the relative reference, 14-195 keV hard X-ray luminosity and the FWHM of the broad component of the Paβ. The FWHMs have been corrected for instrumental resolution using the values reported in Landt et al. (2008, 2013). In particular the source 3C 120 has been observed with an average spectral resolution of FWHM ~ 180 km s$^{-1}$, while Mrk 279, NGC 3516, NGC 4051 and PG 0844+349 spectra have a resolution of FWHM ~ 400 km s$^{-1}$ (Landt et al. 2013). The instrumental resolution for the remainder of the sources is FWHM ~ 350 km s$^{-1}$ (Landt et al. 2008).

3.2 Fit of the virial relationship using L_X

We have performed a linear fit of the form

$$\log \left(\frac{M_{BH}}{M_\odot} \right) = a \cdot \log \left(\frac{\text{FWHM}_{Pa\beta}}{10^2 \text{ km s}^{-1}} \right) \cdot \left(\frac{L_X}{10^{42} \text{ erg s}^{-1}} \right)^{0.5} + b, \quad (3)$$

where M_{BH} is the BH mass, FWHM$_{Pa\beta}$ is the measure of the width of the broad component of the Paβ emission line, corrected for instrumental broadening, and L_X is the 14-195 keV intrinsic luminosity. The fit was carried out on a sample of 19 AGN as one galaxy misses the L_X measurement (see Table 1). We have solved the least-squares problem using the fitting routine FITEXY (Press et al. 2007) that can incorporate errors on both variables and allows
Table 1. Calibration Sample.

Object Name	z	class	M_{BH} [M_{☉}]	ref	log L_{X} [erg s^{-1}]	FWHM_{Paβ} [km s^{-1}]	log L_{Paβ} [erg s^{-1}]
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
3C 120	0.0330	S1.0	5.26±0.52·10^7	G13	44.38±0.01	2727	...
3C 273	0.1583	S1.0	6.94±1.47·10^7	G13	44.23±0.02	5102	42.12
Ark 120	0.0323	S1.0	101±27·10^7	G13	44.22±0.02	1886	41.60
Mrk 79	0.0222	S1.2	8.28±3.86·10^7	G13	43.72±0.02	3546	...
Mrk 110	0.0353	S1n	2.24±0.91·10^7	G13	44.22±0.02	3506	41.28
Mrk 279	0.0304	S1.0	3.10±0.47·10^7	G13	43.92±0.02	4228	41.46
Mrk 290	0.0296	S1.5	1.90±0.29·10^7	G13	43.67±0.04	2285	41.37
Mrk 335	0.0258	S1n	1.11±0.29·10^7	G13	43.45±0.05	1825	41.37
Mrk 509	0.0344	S1.5	9.57±0.43·10^7	G13	44.22±0.01	3057	42.12
Mrk 590	0.0264	S1.0	3.15±0.52·10^7	G13	43.42±0.07	3949	40.33
Mrk 817	0.0314	S1.5	6.29±0.95·10^7	G13	43.77±0.03	5519	41.47
Mrk 876	0.1290	S1.0	2.19±1.01·10^8	P04	44.73±0.07	6010	42.50
NGC 3227	0.0039	S1.5	2.24±0.91·10^7	G13	42.56±0.01	2934	40.03
NGC 3516	0.0088	S1.5	3.10±0.30·10^7	G13	43.31±0.01	4451	...
NGC 4051	0.0023	S1.0	2.2±0.30·10^6	G13	41.67±0.02	1633	...
NGC 4151	0.0033	S1.5	3.62±0.39·10^7	G13	43.12±0.01	4654	40.43
NGC 4593	0.0090	S1.5	9.1±1.01·10^7	G13	43.20±0.01	3775	40.68
NGC 5548	0.0172	S1.0	5.95±0.86·10^7	G13	43.72±0.01	6516	41.37
NGC 7469	0.0163	S1.5	2.70±0.60·10^7	G13	43.60±0.02	1758	40.98
PG 0844+349	0.0640	S1.0	7.24±2.99·10^7	P04	...	2377	41.99

Notes: (1) AGN names; (2) redshift from [Baumgartner et al. 2013]; (3) source classification from [Landt et al. 2008] or NED (where S1.0 = Seyfert 1, S1.2-S1.5 = intermediate Seyfert 1, S1n = narrow-line Seyfert 1); (4) BH mass (in solar masses) from reverberation mapping campaigns; (5) reference for the BH mass, where D10: Denney et al. 2010; but adopting f = 4.31, G11: Graham et al. 2011, G13: Grier et al. 2013, P04: Peterson et al. 2004 but adopting f = 4.31; (6) log of the intrinsic 14-195 keV intrinsic luminosity (from Baumgartner et al. 2013); (7) FWHM of the broad emission line component of Paβ (corrected for instrumental resolution) from [Landt et al. 2008, 2013]. A 10% uncertainty has been assumed (see text); (8) log of the luminosity of the Paβ BLR component from [Landt et al. 2008, 2013]. A 10% uncertainty has been assumed (see text).

Figure 2. Black Hole masses determined from optical reverberation campaigns (adopting a geometrical f-factor f = 4.31) versus the virial product between the hard X-ray luminosity L_{X} in the 14-195 keV band and the FWHM of the broad component of the Paβ emission line. The dashed line shows our best fit using the calibration sample shown in Table 1, while the continuous line is our best fit (eq. [6]) including also NGC 4395 as measured by Peterson et al. (2005), but adopting f = 4.31 instead of f = 5.5.

The best fit relationship is given by

\[\log M_{BH} = (2.58 \pm 0.12) \log L_{X} + (5.39 \pm 0.11) \]

with a correlation coefficient \(r = 0.90 \). This fits well to the data with a probability as low as \(9.1 \times 10^{-7} \).
NIR Virial Black Hole mass estimates

4 OBSERVATIONS AND LINE FIT MEASUREMENTS

4.1 NGC 4395

We have observed NGC 4395 on December 5 2012, at the LBT with the LBT NIR Spectroscopy Utility with Camera and Integral-Field Unit for Extragalactic Research (LUCI) in the zJ band using the grating 200 H+K in combination with the zSpec filter. A $1'' \times 2.8'$ wide slit was used, corresponding to a $\sim 220 \ $km s$^{-1}$ spectral resolution. All the observations have been carried out by rotating the slit in order to observe also a bright star that was later used to correct for OH absorptions, which are known to vary across the night. We acquired 8 images with exposures of 350 s each, using the nodding technique A B B A. The night was clear, the seeing was 0.54$''$ and the airmass was ~ 1.2.

Flats and arcs were taken within one day from the observations. The data reduction steps included preparation of calibration and science frames, processing and extraction of spectra from science frames, wavelength calibration, telluric correction and flux calibration. The wavelength calibration made use of the arcs and of a constant correction offset measured on the OH emission lines. The flux-calibration took into account the correction on the telluric flux fraction lost for the seeing. The atmospheric extinction correction has been taken into account automatically during the flux-calibration with the telluric standard star by using a not extincted stellar model. The spectrum was eventually corrected for Galactic extinction using an extinction value of 0.012 mag in the J band.

4.1.1 The Paβ line fit

We tried to fit the Paβ profile by de-blending a broad emission from the narrow one (see Figure 4). Although the redshift of NGC 4395 is quite low, the spectrum has been converted to the rest frame. The continuum has been estimated with a power law, while the contribution from the Narrow Line Region (NLR) has been fitted with a Gaussian model whose width has been fixed to that measured for the forbidden emission line [FeII] $\lambda 12570$ (FWHM = 211 km s$^{-1}$). Then, following the NIR transitions listed in [Landt et al. 2008] (see their Table 4), we have added a Gaussian to measure the...
whereas the red solid line is the broad component of Paβ FWHM of 786 Paλ contamination of the [FeII] is shown by a blue dashed line.

Figure 4. Rest frame, flux calibrated, LUCI@LBT NIR spectrum of NGC 4395 in proximity of Paβ emission line. The magenta dashed lines show the narrow component of the Paβ and the [FeII] 12791 blended with the Paβ, whereas the red solid line is the broad component of Paβ. The complete fit is shown by a blue dashed line.

The ISAAC MR spectrum of MCG -01-24-012 shows the [FeII] 12570 and the Paβ lines (in Figure 5 we show only the region near the Paβ line). As usual we converted the wavelength calibration to the rest frame before carrying out the emission line profile fitting. The [FeII] 12570 Å line profile was modeled using two components of different widths: a narrow one having center at \(\lambda_c = 12570.6 \) Å and FWHM = 244 km s\(^{-1}\), and a broader component with center at \(\lambda_c = 12572.4 \) Å and FWHM = 557 km s\(^{-1}\), which appears to be redshifted of \(\sim 2 \) Â with respect to the narrow line. The Paβ profile has been modelled with two Gaussian components, a narrow one, with center at \(\lambda_c = 12823.1 \) Å, having the FWHM tied to the narrow [FeII] 12570 line (in order to take into account of the NLR contribution), and a broad component which, although weak, it is clearly detectable, and results to have the center at \(\lambda_c = 12813.0 \) Å, FWHM = 2167±180 km s\(^{-1}\) (i.e. a 8% uncertainty) and a flux of 1.74±0.35 \times 10\(^{-15}\) erg s\(^{-1}\) cm\(^{-2}\), corresponding to a luminosity of 10\(^{39.18+0.09}\) erg s\(^{-1}\). As discussed in section 3.2 and assumed for NGC 4395 (sect. 4.1.1), in order to later derive the BH mass, we used an uncertainty on the FWHM measure of 10%. After correcting for the very small instrumental broadening it results a FWHM of 2166 km s\(^{-1}\). We have also tried to add a [FeII] 12791 component in blending with the Paβ, but its contribution resulted to be negligible. We identified the 2166 km s\(^{-1}\) wide component of the Paβ line as a measure of the motion of the BLR gas under the gravitational potential of the central BH.

5 THE BH MASS OF NGC 4395

The two above virial relationships can be used to measure the BH mass of NGC 4395. Thanks to our NIR observations, it results \(M_{BH} = 1.7_{-0.7}^{+1.3} \times 10^7 \) M\(_{\odot}\) and \(M_{BH} = 1.9_{-1.0}^{+2.2} \times 10^7 \) M\(_{\odot}\) if the equations based on \(L_X \) (for NGC 4395 \(L_X = 10^{39.79}\) erg s\(^{-1}\), with a 1σ uncertainty of 9%; Baumgartner et al. 2013) and \(L_{Pa\beta} \) are used, respectively. Because of the spreads of the previous fits, as expected,
the mass derived using the X-ray luminosity dependent equation is more accurate than that measured using the relation dependent from the Paβ luminosity. The two estimates are in statistical agreement at less than 1σ confidence level, but are not independent from each other, as they both depend from the same FWHM at less than 1σ.

The resulting observed spread is 0.30 dex, while the intrinsic spread results to be 0.27 dex.

As discussed in section 2, the BH mass of NGC 4395 has already been estimated by other authors (Peterson et al. 2003; Graham et al. 2011; Edri et al. 2012). Our measure is close, and agrees well within the uncertainties, with the above previous measures (once the same geometrical factor \(f = 4.31 \) is adopted). The BH mass measure by Graham et al. (2011) is based on the same reverberation mapping analysis of the CIV line by Peterson et al. (2005), then, once \(f = 4.31 \) is used, both agree on the value \(M_{\text{BH}} = 2.81 \pm 0.66 \times 10^5 \, M_\odot \) (see Figures 2 and 3 where our Paβ measures and the SWIFT/BAT 14-195 keV luminosity have been plotted to measure the relation by Peterson et al. (2005)). The BH mass by Edri et al. (2012) is based on the reverberation mapping analysis of the Hβ line and, once \(f = 4.31 \) is assumed, it corresponds to \(M_{\text{BH}} = (2.69 \pm 1.42) \times 10^5 \, M_\odot \). If, instead, our Paβ emission-line measures are used together with the relation by Kim et al. (2010) their eq. 10. See discussion in the next section), a BH mass for NGC 4395 of \(M_{\text{BH}} = 1.8^{+0.8}_{-0.5} \times 10^5 \, M_\odot \) is obtained. A result very close to our measure.

According to Vasudevan & Fabian (2007) and Shankar et al. (2013) the 14-195 keV luminosity \(L_{\text{X}} = 10^{45.05} \, \text{erg s}^{-1} \) of NGC 4395 corresponds to a bolometric luminosity \(L_{\text{bol}} = 10^{42.1} \, \text{erg s}^{-1} \) (assuming \(\Gamma = 1.8 \)).

The resulting observed spread is 0.23 dex, while the intrinsic spread results to be 0.20 dex. If the relationship based on \(L_{\text{Paβ}} \) is used, the best fit provides (see Figure 2)

\[
\log(M_{\text{BH}}/M_\odot) = 0.796(\pm 0.031)\log \left(\frac{\text{FWHM}_{\text{Paβ}}}{10^4 \text{ km s}^{-1}} \right)^2 \left(\frac{L_{\text{14-195 keV}}}{10^{45} \text{ erg s}^{-1}} \right)^{0.5} + 7.611(\pm 0.023) \quad (\pm 0.20)
\]

\[
\log(M_{\text{BH}}/M_\odot) = 0.872(\pm 0.040)\log \left(\frac{\text{FWHM}_{\text{Paβ}}}{10^4 \text{ km s}^{-1}} \right)^2 \left(\frac{L_{\text{Paβ}}}{10^{40} \text{ erg s}^{-1}} \right)^{0.5} + 7.830(\pm 0.030) \quad (\pm 0.27)
\]

As discussed in section 2, the BH mass of NGC 4395 has already been estimated by other authors (Peterson et al. 2003; Graham et al. 2011; Edri et al. 2012). Our measure is close, and agrees well within the uncertainties, with the above previous measures (once the same geometrical factor \(f = 4.31 \) is adopted). The BH mass measure by Graham et al. (2011) is based on the same reverberation mapping analysis of the CIV line by Peterson et al. (2005), then, once \(f = 4.31 \) is used, both agree on the value \(M_{\text{BH}} = 2.81 \pm 0.66 \times 10^5 \, M_\odot \) (see Figures 2 and 3 where our Paβ measures and the SWIFT/BAT 14-195 keV luminosity have been plotted to measure the relation by Peterson et al. (2005)). The BH mass by Edri et al. (2012) is based on the reverberation mapping analysis of the Hβ line and, once \(f = 4.31 \) is assumed, it corresponds to \(M_{\text{BH}} = (2.69 \pm 1.42) \times 10^5 \, M_\odot \). If, instead, our Paβ emission-line measures are used together with the relation by Kim et al. (2010) their eq. 10. See discussion in the next section), a BH mass for NGC 4395 of \(M_{\text{BH}} = 1.8^{+0.8}_{-0.5} \times 10^5 \, M_\odot \) is obtained. A result very close to our measure.

According to Vasudevan & Fabian (2007) and Shankar et al. (2013) the 14-195 keV luminosity \(L_{\text{X}} = 10^{45.05} \, \text{erg s}^{-1} \) of NGC 4395 corresponds to a bolometric luminosity \(L_{\text{bol}} = 10^{42.1} \, \text{erg s}^{-1} \) (assuming \(\Gamma = 1.8 \)).

The resulting observed spread is 0.23 dex, while the intrinsic spread results to be 0.20 dex. If the relationship based on \(L_{\text{Paβ}} \) is used, the best fit provides (see Figure 2)

\[
\log(M_{\text{BH}}/M_\odot) = 0.796(\pm 0.031)\log \left(\frac{\text{FWHM}_{\text{Paβ}}}{10^4 \text{ km s}^{-1}} \right)^2 \left(\frac{L_{\text{14-195 keV}}}{10^{45} \text{ erg s}^{-1}} \right)^{0.5} + 7.611(\pm 0.023) \quad (\pm 0.20)
\]

\[
\log(M_{\text{BH}}/M_\odot) = 0.872(\pm 0.040)\log \left(\frac{\text{FWHM}_{\text{Paβ}}}{10^4 \text{ km s}^{-1}} \right)^2 \left(\frac{L_{\text{Paβ}}}{10^{40} \text{ erg s}^{-1}} \right)^{0.5} + 7.830(\pm 0.030) \quad (\pm 0.27)
\]
logL\text{bolometric} \approx 10^{44.8} \text{ erg s}^{-1}. Therefore our BH mass measure implies that the Eddington ratio of MCG -01-24-012 is \(\lambda = \log(\text{L}_{\text{bol}}/\text{L}_{\text{Edd}}) = -0.5 \). A value which is, also in this case, quite typical for local AGN (Shankar et al. 2013).

8 LUMINOSITY OF THE PAβ AS A FUNCTION OF THE 14-195 KEV LUMINOSITY

The two above discussed virial relationships (eqs. 6 and 7) imply that a significant correlation should exist between the Paβ emission line luminosity (the BLR component), L_{Paβ}, and the 14-195 keV luminosity, L_X. Similar kinds of relationships have been already studied and derived by other authors. For example, Panessa et al. (2006) studied the correlation between the Hα luminosity and the 2-10 keV luminosity on a sample of 87 Seyfert galaxies and low-z QSOs, finding

$$\log L_{2-10keV} = 1.06(\pm0.04) \cdot \log L_{H\alpha} - 1.14(\pm1.78).$$

Using our calibration sample (with NGC 4395 included) we performed a free slope fit of the relation

$$\log L_{\text{Paβ}} = a \cdot \log L_{14-195keV} + b.$$ \(\text{(9)} \)

The data (logL_{Paβ} and logL_X) have a correlation coefficient \(r = 0.97 \) which corresponds to a probability of \(\sim 10^{-10} \) of being drawn from an un-correlated population, while the fit provides a slope \(a = 0.963 \pm 0.011 \) and a y-intercept \(b = -0.500 \pm 0.013 \) (dashed line in Figure 7), with an intrinsic spread of 0.26 dex. If a unitary slope is assumed, then our fit provides:

$$\log L_{\text{Paβ}} = \log L_{14-195keV} - 0.492(\pm0.013) \pm 0.26(10)$$

(see the black continuous line in Figure 7). If we assume a photon index \(\Gamma = 1.8 \) and a ratio of log(Paβ/Hα) = -1.2 (case B recombination), our fit is in partial agreement with eq. 8 (from Panessa et al. 2006). Their eq. 8 should read logL_{Paβ} = 0.943 \cdot \log L_{14-195keV} - 0.5, which predicts, in the range 42 \(\leq \) \log L_{14-195keV} \(\leq \) 46, BLR Paβ luminosities \sim 0.4 dex lower than on average observed in our data. This discrepancy could be attributed to the assumption of a case B recombination ratio between the Paβ and Hα lines. There is indeed evidence that, in AGN, the Paschen line ratios rule out case B recombination (Souer et al. 2004; Glikman et al. 2006).

9 CONCLUSIONS

As discussed in the introduction, the measure of local, low mass, BHs, such as those in the Seyfert 1 galaxy NGC 4395 and the Seyfert 2 galaxy MCG -01-24-012, is of great importance as these BHs give important informations on the AGN galaxy formation and evolution. NGC 4395 hosts one of the local, smallest, BH of AGN origin ever found. Previous measures (if \(f = 4.31 \) is used) obtained \(M_{\text{BH}} = 2.81^{+0.86}_{-0.66} \times 10^5 M_\odot \) from a reverberation mapping analysis of the CIV emission line (Peterson et al. 2005) and \(M_{\text{BH}} = (2.69 \pm 1.42) \times 10^5 M_\odot \) from a reverberation mapping analysis of the Hβ emission line (Edri et al. 2012).

We have derived two new SE BH mass relationships based on the FWHM and luminosity of the BLR component of the Paβ emission line and on the hard X-ray luminosity in the 14-195 keV band. These relationships have been initially calibrated in the 10^7 – 10^9 M_\odot mass range and have then been used to obtain a new independent BH mass measure of NGC 4395. We obtained \(M_{\text{BH}} = 1.7^{+1.3}_{-0.7} \times 10^5 M_\odot \), which resulted in agreement (<1 \sigma) with the two previous existing estimates, therefore confirming the very small mass of its BH.

Thanks to our new measure of the Paβ line and then mass of NGC 4395 we were able to extend in the 10^7 – 10^9 M_\odot mass range our SE relationships. These relations are able to reliably measure the BH mass on those obscured or low luminosity AGN where the nuclear component is less visible and/or contaminated by the host-ing galaxy. Our method has been indeed also successfully applied to the Seyfert 2 galaxy MCG -01-24-012, whose BH mass has been measured for the first time to be \(M_{\text{BH}} = 1.5^{+1.1}_{-0.6} \times 10^7 M_\odot \).

These results were already implicitly suggested by the study of La Franca et al. (2014) where it is discussed how the observed uncertainties...
correlation between the AGN X-ray variability and the BH mass (e.g. [Ponti et al. 2012] and Kelly et al. 2013) is equivalent to a correlation between the X-ray variability and the virial product (\sqrt{LV}) computed using the same P_{α} and the hard X-ray luminosity measures utilised in this work.

We can conclude that our new derived NIR and hard X-ray based SE relationships could be of great help in measuring the BH mass in low luminosity and absorbed AGN and therefore better measuring the complete (AGN1+AGN2) super massive BH mass function. In this respect, in the future, a similar technique could also be applied at larger redshift. For example, at redshift $\sim 2-3$ the P_{α} line could be observed in the 1-5 μm wavelength range with NIRSPEC on the James Webb Space Telescope. While, after a recalibration, the rest frame 14-195 keV X-ray luminosity could substitute by the 10-40 keV hard X-ray band (which is as well not so much affected by obscuration for mildly absorbed, Compton-thin, AGN). At redshift $\sim 2-3$, in the observed frame, the 10-40 keV hard band roughly corresponds to the 2-10 keV energy range which is typically observed with the Chandra and XMM-Newton telescopes.

ACKNOWLEDGMENTS

We thank the referee for her/his very useful comments which improved the manuscript. Based on observations made with ESO telescopes at the Paranal Observatory and the Large Binocular Telescope (LBT) at Mt. Graham, Arizona. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University; and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

We thank for the very efficient service observing mode operation management at LBT and the ESO staff at Paranal and Garching for their support during the preparation and execution of the observations. MB acknowledges support from the FP7 Career Integration Grant “eEASy” (CIG 321913). We acknowledge funding from PRIN-MIUR 2010 award 2010HBSBE and from PRIN-INAf 2011 “BH growth and AGN feedback through the cosmic time”.

REFERENCES

Barth A. J., Greene J. E., Ho L. C., 2005, ApJ, 619, L151
Barth A. J., Ho L. C., Rutledge R. E., Sargent W. L. W., 2004, ApJ, 607, 90
Baumgartner W. H., Tueller J., Markwardt C. B., Skinner G. K., Barthelmy S., Mushotzky R. F., Evans P. A., Gehrels N., 2013, ApJ, 707, 19
Bentz M. C., Peterson B. M., Pogge R. W., Vestergaard M., Onken C. A., 2006, ApJ, 644, 133
Bongiorno A., Maiolino R., Brusa M., Marconi A., Piconcelli E., Lamastra A., Cano-Diaz M., Schulze A., Magnelli B., Vignali C., Fiore F., Menci N., Cresci G., La Franca F., Merloni A., 2014, MNRAS, 443, 2077

2 See http://www.stsci.edu/jwst/instruments/nirspec

Burlon D., Ajello M., Greiner J., Comastri A., Merloni A., Gehrels N., 2011, ApJ, 728, 58
Cristiani S., Trentini S., La Franca F., Andreani P., 1997, A&A, 321, 123
de Grijs M. H. K., Keel W. C., Miley G. K., Goudvooijj P., Lub J., 1992, A&A, 246
Denney K. D., Peterson B. M., Dietrich M., Vestergaard M., Bentz M. C., 2009, ApJ, 692, 426
Denney K. D., Peterson B. M., Pogge R. W., Adair A., Atlee D. W., Au-Yong K., Bentz M. C., Bird J. C., Brokofsky D. J., Chisholm E., Comins M. L., Dietrich M., Doroshenko V. T., 2010, ApJ, 721, 715
Dietrich M., Hamann F., 2004, ApJ, 611, 761
Dong R., Greene J. E., Ho L. C., 2012, ApJ, 761, 73
Dong X. Y., De Robertis M. M., 2006, AJ, 131, 1236
Edri H., Raifer S. E., Chelouche D., Kaspi S., Behar E., 2012, ApJ, 756, 73
Ferrarese L., Merritt D., 2000, ApJ, 539, L9
Filippenko A. V., Ho L. C., 2003, ApJ, 588, L13
Filippenko A. V., Ho L. C., Sargent W. L. W., 1993, ApJ, 410, L75
Filippenko A. V., Sargent W. L. W., 1989, ApJ, 342, L11
Gebhardt K., Kormendy J., Ho L. C., Bender R., Bower G., Dressler A., Faber S. M., Filippenko A. V., Green R., Grillmair C., Lauer T. R., Magorrian J., Pinkney J., Richstone D., Tremaine S., 2000, ApJ, 543, L5
Glikman E., Helfand D. J., White R. L., 2006, ApJ, 640, 579
Graham A. W., Onken C. A., Athanassoula E., Combes F., 2011, MNRAS, 412, 2211
Graham A. W., Scott N., 2013, ApJ, 764, 151
Greene J. E., 2012, Nature Communications, 3
Greene J. E., Ho L. C., 2005, ApJ, 630, 122
Greene J. E., Ho L. C., 2007a, ApJ, 670, 92
Greene J. E., Ho L. C., 2007b, ApJ, 667, 131
Greene J. E., Hood C. E., Barth A. J., Bennert V. N., Bentz M. C., Filippenko A. V., Gates E., Malkan M. A., Treu T., Walsh J. L., Woo J.-H., 2010, ApJ, 723, 409
Grier C. J., Martini P., Watson L. C., Peterson B. M., Bentz M. C., Dasyra K. M., Dietrich M., Ferrarese L., Pogge R. W., Zu Y., 2013, ApJ, 773, 90
Grupe D., Wills B. J., Leightly K. M., Meusinger H., 2004, AJ, 127, 156
Ho L. C., Filippenko A. V., Sargent W. L., 1995, ApJS, 98, 477
Ho L. C., Filippenko A. V., Sargent W. L. W., Peng C. Y., 2009, ApJS, 112, 391
Jones D. H., Read M. A., Saunders W., Colless M., Jarrett T., Parker Q. A., Fairall A. P., Mauch T., Sadler E. M., Watson F. G., Burton D., Campbell L. A., Cass P., Croom S. M., Dawe J., Fiegert K., Frankcombe L., et al. 2009, MNRAS, 399, 683
Kelly B. C., Sobolewska M., Siemiginowska A., 2011, ApJ, 730, 52
Kelly B. C., Treu T., Malkan M., Pancoast A., Woo J.-H., 2013, ApJ, 779, 187
Kelly B. C., Vestergaard M., Fan X., 2009, ApJ, 692, 1388
Kelly B. C., Vestergaard M., Fan X., Hopkins P., Hernquist L., Siemiginowska A., 2010, ApJ, 719, 1315
Kim D., Im M., Kim M., 2010, ApJ, 724, 386
Kraemer S. B., Ho L. C., Crenshaw D. M., Shields J. C., Filippenko A. V., 1999, ApJ, 520, 564
Kunth D., Sargent W. L. W., Bothun G. D., 1987, AJ, 93, 29
La Franca F., Bianchi S., Ponti G., Branchini E., Matt G., 2014, ApJ, 787, L12

NIR Virial Black Hole mass estimates 9

© 2014 RAS, MNRAS 000
Landt H., Bentz M. C., Ward M. J., Elvis M., Peterson B. M., Korista K. T., Karovska M., 2008, ApJS, 174, 282
Landt H., Elvis M., Ward M. J., Bentz M. C., Karovska M., 2011, MNRAS, 414, 218
Landt H., Ward M. J., Peterson B. M., Bentz M. C., Elvis M., Korista K. T., Karovska M., 2013, MNRAS, 432, 113
Maiolino R., Shemmer O., Imanishi M., Netzer H., Oliva E., Lutz D., Sturm E., 2007, A&A, 468, 979
Malizia A., Malaguti G., Bassani L., Cappi M., Comastri A., Di Cocco G., Palazzi E., Vignali C., 2002, A&A, 394, 801
Marconi A., Hunt L. K., 2003, ApJ, 589, L21
McLure R. J., Jarvis M. J., 2002, MNRAS, 337, 109
Merloni A., Bongiorno A., Bolzonella M., Brusa M., Civano F., Comastri A., Elvis M., Fiore F., et al., 2010, ApJ, 708, 137
Mullaney J. R., Alexander D. M., Goulding A. D., Hickox R. C., 2011, MNRAS, 414, 1082
Panessa F., Bassani L., Cappi M., Dadina M., Barcons X., Carrera F. J., Ho L. C., Iwasawa K., 2006, A&A, 455, 173
Papadakis I. E., 2004, MNRAS, 348, 207
Peterson B. M., Bentz M. C., Desroches L.-B., Filippenko A. V., Ho L. C., Kaspi S., Laor A., Maoz D., Moran E. C., Quillen A. C., 2005, ApJ, 632, 799
Peterson B. M., Ferrarese L., Gilbert K. M., Kaspi S., Malkan M. A., Maoz D., Merritt D., Netzer H., Onken C. A., Pogge R. W., Vestergaard M., Wandel A., 2004, ApJ, 613, 682
Piccioni G., Mushotzky R. F., Boldt E. A., Holt S. S., Marshall F. E., Serlemitsos P. J., Shafer R. A., 1982, ApJ, 253, 485
Ponti G., Papadakis I., Bianchi S., Guainazzi M., Matt G., Uttley P., Bonilla N. F., 2012, A&A, 542, A83
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 2007, Numerical recipes: the art of scientific computing, 3rd edn., Cambridge Univ. Press, Cambridge
Sani E., Marconi A., Hunt L. K., Risaliti G., 2011, MNRAS, 413, 1479
Schmitt H. R., Donley J. L., Antonucci R. R. J., Hutchings J. B., Kinney A. L., 2003, ApJS, 148, 327
Shankar F., Weinberg D. H., Miralda-Escudé J., 2013, MNRAS, 428, 421
Soifer B. T., Charmandaris V., Brandl B. R., Armus L., Appleton P. N., Burgdorf M. J., Devost D., Herter T., Higdon S. J. U., Higdon J. L., Houck J. R., Lawrence C. R., Morris P. W., Teplitz H. I., Uchida K. I., van Cleve J., Weedman D., 2004, ApJS, 154, 151
Tremaine S., Gebhardt K., Bender R., Bower G., Dressler A., Faber S. M., Filippenko A. V., Green R., Grillmair C., Ho L. C., Kormendy J., Lauer T. R., Magorrian J., Pinkney J., Richstone D., 2002, ApJ, 574, 740
Tueller J., Baumgartner W. H., Markwardt C. B., Skinner G. K., Mushotzky R. F., Ajello M., Barthelmy S., Bearden A., Brink W. N., Burrows D., Chincarini G., Cummings J., Cutri A., Evans P., Fenimore E., et al., 2010, ApJS, 186, 378
Vasudevan R. V., Fabian A. C., 2007, MNRAS, 381, 1235
Vestergaard M., 2002, ApJ, 571, 733
Vestergaard M., 2004, ApJ, 601, 676
Vestergaard M., Osmer P. S., 2009, ApJ, 699, 800
Vestergaard M., Peterson B. M., 2006, ApJ, 641, 689
Wandel A., Peterson B. M., Malkan M. A., 1999, ApJ, 526, 579