The impact of *Lactobacillus acidophilus* on hepatic and colonic fibrosis induced by ethephon in a rat model

Hoda I Bahr 1*, Rania Hamad 2, Shima A A Ismail 3

1 Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
2 Pathology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
3 Clinical Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt

ABSTRACT

Objective(s): The study is aimed to elucidate the impact of antioxidant, anti-inflammatory and antifibrosis properties of *Lactobacillus acidophilus* (*L. acidophilus*) on liver and colon in ethephon treated rats through measuring Pro-inflammatory cytokines, oxidative stress index, lysosomal cathepsin-D enzyme activity and fibrosis markers.

Materials and Methods: Rats divided into three groups; Group 1: distilled water control, Group 2: rats at day 16 from experiment beginning were orally received ethephon 50 mg/kg BW in distilled water once daily for 60 days. Group 3: rats were orally received *L. acidophilus* enriched diet 1% (w/w) for 15 days as prophylactic, then received both *L. acidophilus* enriched diet 1% (w/w) and ethephon 50 mg/kg BW for 60 days.

Results: Ethephon exerts hepatic and colonic oxidative stress, inflammatory response and fibrosis through NF-κB activation. *L. acidophilus* supplementation evokes hepatoprotective properties as revealed by decreased serum AST, ALT, γ-GT and increased IGF-1. *L. acidophilus* exerts antioxidant and anti-inflammatory properties as indicated by decreased TOS, OSI, TNF-α, IL-1β, cathepsin D activity, NF-κB expression and increased TAC, lysosomal membrane stability. *L. acidophilus* shows antibacterial activity as demonstrated by down-regulation of TGF-β1, α-SMA, collagen expression.

Conclusion: *L. acidophilus* possess antioxidant, anti-inflammatory and antifibrotic activity through inhibition of NF-κB.

Introduction

Hepatic and colonic fibrosis is the wound response to acute or chronic injury and characterized by excessive production of collagen (1,2). Ethephon [2-Chloroethylethylenephosphonic acid (C₁₂H₁₀ClO₃P)] is organophosphorus compound widely used at low doses for pre-harvest ripening in mango, pineapple, coffee, tomato, cucumber, groundnut and used as herbicide at high doses (3, 4). Consumption of ethephon-treated fruits and vegetables may lead to liver, kidney diseases, cardiac disturbances, central nervous system depression, skin and gastrointestinal irritation specially in children (5-7). Previous investigations about ethephon recorded oxidative stress and reproductive toxicity in albino rat (8), mutagenic influence in albino mice (9) and hematological toxic effect in rats (10). Previous study investigated the involvement of gut-liver axis in fibrosis pathogenesis (11). Lactic acid bacteria (LAB) are vital for humans and animals (12). Many studies demonstrate antioxidant and anti-inflammatory properties of probiotic (13) reported antiadipic impacts of probiotic dahi containing *Lactobacillus acidophilus* and *Lactobacillus casei* in rats fed on high fructose. Additionally, *L. acidophilus* and/or prebiotic inulin inhibit intestinal NF-κB and Smad 7 signaling versus exposure to *Citrobacter rodentium* (14). *L. acidophilus* R0052 and *L. rhamnosus* R001 down-regulated toll-like receptor 4 expression in alcohol- induced liver disease in mice (15). Since studies on ethephon is still limited, although it represents a hazard. Thereby, this work aimed to investigate the impact of antioxidant, anti-inflammatory and antifibrosis properties of *L. acidophilus* on liver and colon in ethephon treated rats through measuring Pro-inflammatory cytokines, oxidative stress index, lysosomal cathepsin-D enzyme activity and fibrosis markers.

Materials and Methods

Ethephon (Ethrel) supplied by Bayer Crop Science, Egypt.

Probiotic (Lacteol forte). Sachet form: *L. acidophilus*, killed and lyophilized bacteria, 10 billion (10^10) cfu, Spent culture medium 160 mg purchased from Rameda-pharmaceuticals Company, Egypt.

Animals and experimental approach

Male Sprague–Dawley rats weighing 150-180 g purchased from Animal House in Faculty of Vet. Medicine, Zagazig University, Egypt. They were fed standard balanced ration. Feed and water supplied ad libitum and kept under appropriate conditions of housing and handling. The rats acclimatized to the laboratory conditions for two weeks. All rats were treated in accordance with the guideline for care and use of animals which approved by Research Ethics
Committee in Faculty of Vet. Medicine, Suez Canal University.

Experimental grouping

Twenty-four rats randomly allocated to three groups of eight rats each as follow:

Group 1: rats were served as a negative control, then, at day 16 of the experiment beginning orally received distilled water 5 ml/kg BW once daily for 60 days.

Group 2: rats received ethephon 50 mg/kg BW per-os in distilled water once daily (16) for 60 days.

Group 3: rats were orally received *L. acidophilus* enriched diet 1% (w/w) for 15 days as prophylactic. Then, at day 16, rats were served ethephon 50 mg/kg BW per-os in distilled water once daily (16) for 60 days.

At the end of the experimental period, blood samples were collected from the inferior vena cava of each rat and serum was separated for biochemical analysis. Rats were sacrificed by cervical decapitation. Part of liver and colon was used for determination of biochemical markers. Another part was used for histopathological investigation and immunohistochemistry staining.

Serum biochemical analysis

Serum AST, ALT and γ-GT activity was analyzed according to the manufacturer's instructions (Biodiagnostic, Egypt). Pro-inflammatory cytokines (TNF-α, IL-1β) and IGF-1 were estimated by ELISA kit of BD Pharmingen, San Diego, California, USA. TGF-β1 was estimated by aid of ELISA using TGF-B1 ELISA of Kamiya Biomedical Company, USA.

Tissue biochemical assay

Assessment of oxidant/antioxidant status

Liver and colon total antioxidant capacity (TAC) was carried following the manufacturer's instructions (Biodiagnostic, Egypt). Total oxidant status (TOS) was analyzed using the methods described by Erel (18). Oxidative stress index (OSI) was calculated as follows:

\[
\text{OSI (arbitrary unit)} = \frac{\text{TOS} (\mu \text{mol H}_2\text{O}_2 \text{ equivalent/g tissue})}{\text{TAC (mM H}_2\text{O}_2 \text{equivalent/g tissue}) \times 100}.
\]

Determination of lysosomal cathepsin-D enzyme activity

Total, free cathepsin-D activity and lysosomal membrane integrity estimation were determined (19, 20). The ratio of total activity/free activity is taken as the index of lysosomal membrane integrity. Enzyme activity in all cases considered as μg-released tyrosine/mg substrate protein. Total protein was determined (21).

Histopathological examination

Liver and colon specimen were processed and stained with H&E and Masson's trichrome (22, 23). Collagen tissue score were analyzed using image J 1.51 p software (magnification ×40).

Immunohistochemistry and image analysis

Liver and colon sections were stained (24), then incubated with primary rabbit polyclonal-NF-κB p65 antibody (1: 100) against NF-kB/p65 and mouse monoclonal α-SMA antibody (1:800) against α-SMA (Thermo fisher scientific, USA) for 30 min at room temperature. Markers were visualized using biotin-streptavidin system (25). Diaminobenzidine used as a chromogen. Slides were counter stained by hematoxylin and examined using Zeiss Axioplan microscope (Carl Zeiss Microimaging, Thornwood, NY). NF-kB/p65 and α-SMA positive cells were analyzed using image J 1.51 p software (magnification ×40).

Statistical analysis

Data performed using SPSS version 22 for Windows and expressed as means ± SEM. and statistical analysis done using one-way analysis of variance (ANOVA) followed by the Duncan analysis to assess significant differences among groups. The criterion for statistical significance was set at *P* < 0.05.

Results

Effect of ethephon and *L. acidophilus* treatments on some serum biomarkers

Ethephon exerted elevation (*P* < 0.05) in γ-GT, AST, ALT activities and TNF-α, IL-1β, TGF-β1 levels with reduction in IGF-1 level comparing to control group. *L. acidophilus* treatment imparts hepatoprotective and anti-inflammatory properties and able to restore these markers to normal values (Table 1).

Effect of ethephon and *L. acidophilus* treatments on liver and colon oxidant/antioxidant parameters

Ethephon significantly *P* < 0.05 decreased TAC along with significant increase in TOS, OSI comparing to control group. *L. acidophilus* administration evoked antioxidant properties (Figure 1).

Parameters	Control	Ethephon	Ethephon + *L. acidophilus*
ALT (units/ml)	52.13± 1.68	92 ± 2.29*	71.25 ± 1.69
AST (units/ml)	61.19± 1.64	101.38 ± 2.28*	85.88 ± 2.43
γ-GT (U/L)	42.62± 2.41	98 ± 3.32*	74.88 ± 3.35
TNF-α (Pg/ml)	39.07± 1.78	82.63 ± 2.84*	61.62 ± 1.98
IL-1β (Pg/ml)	30.87± 1.44	73.07 ± 2.63*	46.75 ± 2.15
TGF-β1 (Pg/ml)	15.31± 0.24	23.92 ± 0.45*	18.49 ± 0.34
IGF-1 (pg/ml)	155.63± 3.61	102.50 ± 3.48	133.13 ± 2.44*

Values are expressed as mean±SEM and analyzed using one-way ANOVA followed by the Duncan analysis. Data having different superscript are significant at *P* < 0.05. *P* Compared to control group, ≠P Compared to ethephon group.
Effect of ethephon and *L. acidophilus* treatments on liver and colon lysosomal cathepsin-D enzyme activity

Ethephon induced marked elevation in cathepsin D (free, total) activities along with reduction in lysosomal membrane stability. These alterations alleviated toward normal by oral *L. acidophilus* administration (Figure 2).

Histopathological Results

Ethephon treatment induced hepatic toxicity as indicated by diffuse hepatic vacuolation, central vein congestion, severe fibroblast proliferation and lymphocytic infiltration (Figure 3B) comparing to control (Figure 3A). While, *L. acidophilus* supplementation...
improved hepatocytes architecture (Figure 3C). Regarding colon, ethephon induced degeneration of crypts of Lieberkühn with loss of goblet cells, severe mononuclear cell infiltrations and severe proliferation of fibroblasts (Figure 3E) comparing to control (Figure 3D). In contrast, colonic architecture is preserved by *L. acidophilus* (Figure 3F).

Ethephon exerted severe fibroblasts proliferation comparing to control (Figure 4A) and collagen deposition in liver and colon (Figure 4B). While, *L. acidophilus* enriched diet supplementation significantly reduced collagen score in liver and colon (Figure 4B). Data are expressed as mean±SEM and analyzed using one-way ANOVA followed by the Duncan analysis at *P*<0.05. *P* compared to control, *aP* compared to ethephon- treated group.
administration revealed antifibrotic properties.

α-SMA and NF-κB/ p65 immunostaining

Ethephon up-regulated hepatic and colonic α-SMA expression. In contrast *L. acidophilus* supplementation down-regulated α-SMA expression (Figure 5A, 5B).

Ethephon induced hepatic and colonic NF-κB/ p65 overexpression, particularly in the nuclei of macrophages and epithelial cells. *L. acidophilus* treatment down-regulated NF-κB/ p65 expression (Figure 6A, 6B).

Discussion

Our data revealed that ethephon induced hepatic and colonic toxicity, oxidative stress and inflammatory response as indicated by increased serum liver enzyme leakage, TNF-α, IL-1β and TGF-β1. As well as, ethephon reduced serum IGF-1 levels that agree with the finding of Conchillo *et al.* who reported marked reduction in
the levels of IGF-1 in liver cirrhosis (26). Additionally, reduction in hepatic and colonic TAC and increased TOS and OSI are reported that may attribute to free radical production by ethephon (27). ROS can oxidize sulfhydryl group of antioxidants and/or affecting hepatic antioxidant expression (28). Moreover, ethephon elevated cathepsin D (free, total) activities with reduction in lysosomal membrane integrity that may relate to lysosomal membrane damage by free radicals. This causes membrane instability and cathepsins leakage.

Previous data implied the link between oxidative stress, inflammation and fibrosis (29). That confirmed with our findings that reveal overexpression of hepatic and colonic collagen, α-SMA and NF-κB/p65 in ethephon treated rats. Additionally, ROS can stimulate NF-κB that induced expression of IL-6 TGF-β, and COX-2 in CCl4 treated- rats (30). Moreover, TNF-α and IL-1β expression are closely related to NF-κB as transcription factor (31). Interestingly, oxidative stress and cytokines can activate hepatic stellate cells (HSCs) that express α-SMA and collagen (32, 33). Hence, in accordance with our findings Liu et al. (34) reported lower cathepsins B and cathepsins D levels in quiescent HSCs while higher values are detected with α-SMA and TGF-β1 overproduction during HSC activation that confirming our results. Collectively, ethephon induced hepatic and colonic toxicity through NF-κB activation.

On contrary, L. acidophilus administration induced hepatoprotective properties as expressed by restoring liver function enzyme and IGF-1 to normal values. These results may relate to antioxidant and anti-inflammatory properties of L. acidophilus that confirmed by decreased TOS, OSI, TNF-α and IL-1β levels. As well as, increased TAC is associated with reduced cathepsins D activity and restored lysosomal membrane stability. Our results agree with many studies that highlighted the antioxidant and anti-inflammatory activities of L. acidophilus. It down-regulates leukotriene B4, INOS production and MPO activity in TNBS model of rat colitis (35) and down-regulated COX-2 expression in cat typhus macrophages (36). Also, Supplementation of yogurt containing L. acidophilus La5 and Bifidobacterium lactis Bb12 increased erythrocyte GSH-Px, SOD activities, total antioxidant status in diabetic patients (37). Additionally, L. acidophilus decreased TNF-α, IFN-γ in weaned piglets challenged with Escherichia coli LPS (38). Moreover, our data showed anti-fibrotic activity of L. acidophilus as indicated by decreased serum TGF-β1 level and collagen, α-SMA and NF-κB/p65 expression. These findings are confirmed with researchers (39) who noted that VSL#3 Probiotic containing L. acidophilus inhibited collagen expression and TGF-β1 in mice fed on methionine choline deficient diet induced liver fibrosis. Moreover, L. acidophilus inhibited TRL4 and NF-κB expression in peripheral blood mononuclear cells after LPS challenge (40). Many studies revealed the antioxidant efficacy of L. acidophilus comparing to other products. Soluble polysaccharide fraction from L. acidophilus 606 may consider a novel anticanter and antioxidant agent (41). Probiotic (L. acidophilus, L. casei, Bifidobacterium bifidum) induced hypoglycemic and hypolipidemic effect better than placebo in pregnant diabetic women (42). L. acidophilus alone is more efficient hepatoprotective than insulin or in conjunction with insulin in a murine model of Salmonella typhimurium caused liver damage (43). L. acidophilus ameliorated reproductive organs oxidative stress in arthritis rat model comparing to NSAIDS (44). Comparing to other probiotics, L. acidophilus strain is better than other bacterial strains in reduction of TC and LDL-C levels (45). Recently, L. casei/acidophilus possess the highest antioxidant potential among other strains (46). Collectively, L. acidophilus can possess antioxidant, anti-inflammatory and antifibrotic activity through inhibition of NF-κB.

Conclusion

The current work highlighted that, oral consumption of L. acidophilus ameliorated ethephon-induced liver and colon fibrosis as indicated by down-regulation of TGF-β1, α-SMA, collagen expression through inhibition of NF-κB. Hence, L. acidophilus can be used a promising candidate against fibrosis.

Conflicts of interest

The authors declare that there are no potential conflicts of interest.

Financial support

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

1. Baiocchini A, Montaldo C, Conigliaro A, Grimaldi A, Correani V, Mura F, et al. Extracellular matrix molecular remodeling in human liver fibrosis evolution. PLoS One 2016; 11:e0151736-0151750.
2. Burke JP, Mulswor JJ, O’Keane C, Docherty NG, Watson RW, O’Connell PR. Fibrogenesis in crohn’s disease. Am J Gastroenterol 2007; 102:439–448.
3. Segall Y, Grendell RL, Toia RF, Casida JE. Composition of technical ethephon (2-chloroethylphosphonic acid) and some analogs relate to their reactivity and biological activity. J Agric Food Chem 1991; 39:380–385.
4. Kader AA. Post-harvest technology of horticultural crops. 3rd ed. University of California, Agriculture and Natural Resources Publication; 2002.p. 535.
5. Per S, Kurtoglu F, Yagmur H, Gümüs K S, Poyrazoglu M. Calcium carbide poisoning via food in childhood. J Emerg Med 2007; 32:179–180.
6. Hassan MK, Chowdhury BLD, Akhtar N. Post-harvest loss assessment: a study to formulate policy for loss reduction of fruits and vegetables and socioeconomic uplift of the stakeholders. Final Rep 2010; 16:166–167.
7. Hakim MDA, Obidul HAK, Alam M, Khatib A, Saha BK, Formuzul HKM, et al. Role of health hazardous ethephone in nutritive values of selected pineapple, banana and tomato. J Food Agric Environ 2012; 10:247–251.
8. Dutta U. Evaluation of ethephon induced oxidative stress to gonalad disorder and its amelioration by ethanolic extract of shoot of Bambusa balcooa Roxb. in Albino rat. Toxicol Lett 2015; 239:269–270.
9. Nada HAA. Mutagenic effects of ethephon on albino mice. J Biol Sci 2006; 6:1041-1046.
10. Tudor M, Cucureanu M, Cucureanu R, Slencu BG. Experimental evaluation of the action of ethephon and sodium selenite on some hematological parameters in rats. Med Surg J 2017; 121:806-814.
11. De Jong WH, Van Loveren H. Screening of xenobiotics for direct immunotoxicity in an animal study. Method 2007; 41:3–8.
12. Fuller R. Probiotics in man and animal. J Appl Bacteriol 1989; 66:365–378.
13. Yadav H, Jain S, Sinha PR. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 2007; 23:62-68.
14. Foye TO, Huang IF, Chiou CC, Walker AW, Shi NH. Early administration of probiotic Lactobacillus acidophilus and/or probiotic inulin attenuates pathogen-mediated intestinal inflammation and Smad 7 cell signaling. FEMS Immunol Med Microbiol 2012; 65:467–480.
15. Hong M, Kim SW, Han SH, Kim DJ, Suk KT, Kim YS. Probiotics (Lactobacillus rhamnosus R0011 and acidophilus R0052) reduce the expression of toll-like receptor 4 in mice with alcoholic liver disease. PLoS One 2015; 10:0117451-0117468.
16. Yazar S, Baydan E. The subchronic toxic effects of plant growth promoters in mice. Ankarla Univ Vet Fak Derg 2008; 55:17-21.
17. Le Leu RK, Brown IL, Hu Y, Bird AR, Jackson M, Esterman A, et al. A symbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic detachment of carcinoma cells in rat colon. J Nutr Cancer 2005; 135:996-1001.
18. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005; 38:1103-1111.
19. Barret AJ, Heath MF. Lysosomal enzymes, in Lysosome: Laboratory Handbook, J. T. Dingle, Ed., 1977. pp. 12-32.
20. Acharya MM, Khamesra SH, Katyare, SS. Effect of repeated intraperitoneal exposure to picrotoxin on rat liver lysosomal function. Indian J Exp Biol 2004; 42:808–811.
21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193:265–275.
22. Bancroft JD, Stevens A. Theory and practice of histological techniques.1990.
23. Jones ML, Bancroft JD, Gamble M. Connective tissues and stains. In: Theory and Practice of Histological Techniques 2008.pp. 135-160.
24. Eissa S, Shoman S. Markers of invasion and metastasis and markers of tumor proliferation and apoptosis. In: Tumors Markers. Chapman and Hall, LippincottRaven Publisher Inc, London, UK, 1998 pp. 131-153.
25. Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 1980; 29:577-580.
26. Conchillo M, De Knecht RJ, Payeras M, Quirina J, Sangro B, Herrero J, et al. Insulin-like growth factor I (IGF-I) replacement therapy increases albumin concentration in liver cirrhosis: results of a pilot randomized controlled clinical trial. J Hepatol 2005; 43:630-636.
27. Chen HJ, Wu SD, Huang GJ, Shen CY, Alijani M, Li WJ, et al. Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. J Plant Pysiol 2012; 169:86-97.
28. Cerdas A. Toxicology of butyrate and short-chain fatty acids. In: Hill MJ, ed. Role of Gut Bacteria in Human Toxicology and Pharmacology. London: Taylor and Francis 1995.pp. 105–127.
29. Sartor AD, Candelaresi C, Omnetti A, Benedetti A. Vitamin E in chronic liver diseases and liver fibrosis. Vitam Horm 2007; 76:551–573.
30. Chen X, Ying X, Chen L, Zhang W, Zhang Y. Protective effects of sesamin on liver fibrosis through antioxidative and anti-inflammatory activities in rats. Immunopharmacol Immunotoxicol 2015; 37:465–472.
31. Moles A, Tarrats N, Fernandez-Checa JC, Mari M. Cathepsins B and D drive hepatic stellate cell proliferation and promote their fibrogenic potential. Hepatol 2009; 49:1297–1308.
32. El-Sweidy S, Hassanen SI. Improvement of hepatic fibrosis by leukotriene inhibition in cholestatic rats. Ann Hepatol 2009; 8:41–49.
33. Gasull X, Bataller R, Gines P, Sancho-Bru P, Nicolas JLM, Gorbing MN, et al. Human myofibroblastic hepatic stellate cells express Ca2+–activated K+ channels that modulate the effects of endothelin-1 and nitric oxide. J Hepatol 2001; 35:739–748.
34. Liu T, Zhang L, Joo D, Sun S. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2:17023.
35. Peran L, Camuesco D, Comalada M, Bailon E, Henriksen A, Xaus J, et al. A comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis, Lactobacillus casei and Lactobacillus acidophilus, in the TNBS model of rat colitis. J Appl Microbiol 2007; 103:836–844.
36. Patel B, Kumar P, Banerjee R, Basu M, Pal A, Samanta M, et al. Lactobacillus acidophilus attenuates Aeromonas hydrophila induced cytotoxicity in catla thymus macrophages by modulating oxidative stress and inflammation. Mol Immunol 2016; 75:69–83.
37. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Agharai-Jafarabadi M, Mofid, V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutr 2012; 28:539–543.
38. Qiao J, Li H, Wang Z, Wang W. Effects of Lactobacillus acidophilus dietary supplementation on the performance, intestinal barrier function, rectal micromora and serum immune function in weaned piglets challenged with Escherichia coli lipopolysaccharide. Antonie van Leuwenhoek 2015; 107:883–891.
39. Velayudham A, Dolganicu A, Ellis M, Petrasek J, Kodyks K, Mandrekar P, et al. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatol 2009; 49:989-997.
40. Lee SI, Kim HS, Koo JM, Kim IH. Lactobacillus acidophilus modulates inflammatory activity by regulating the TLR4 and NF-κB expression in porcine peripheral blood mononuclear cells after lipopolysaccharide challenge. Br J Nutr 2016; 115:567–575.
41. Choi SS, Kim Y, Han KS, You S, Oh S, Kim SH. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett Appl Microbiol 2006; 42:452-458.
42. Karamali M, Dadkhah F, Sadrkhanlou M, Jamilian M, Ahmadi S, Tajabadi-Ebrahimi M, et al. Effects of probiotic supplementation on glycaemia control and lipid profiles in gestational diabetes: a randomized, double-blind, placebo-controlled trial. Diabetes Metab 2016; 42:234-241.
43. Rishi P, Mavi SK, Bharrhan S, Shukla G, Tewari R. Protective efficacy of probiotic alone or in conjunction with a probiotic in Salmonella-induced liver damage. FEBS Microbiol Ecol 2009; 69:222–230.
44. Amdekar S, Singh V. Lactobacillus acidophilus maintained oxidative stress from reproductive organs in collagen-induced arthritic rats. J Hum Reprod Sci 2016; 9:41–46.
45. Shimizu M, Hashiguchi M, Shiga T, Tamura H, Mochizuki M. Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS ONE 2015; 10:0139931.