Study of Bc+ decays to the K+K-- final state and evidence for the decay Bc+ c0+
LHCb Collaboration

DOI:
10.1103/PhysRevD.94.091102
License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
LHCb Collaboration 2016, 'Study of Bc+ decays to the K+K-- final state and evidence for the decay Bc+ c0+', Physical Review D, vol. 94, no. 9, 091102. https://doi.org/10.1103/PhysRevD.94.091102

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
checked 15/1/19

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?).
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 10. Mar. 2020
Heavy-flavor physics involves studying the decays of hadrons containing at least one b or c valence quark, and offers the possibility of making precision measurements of Standard Model (SM) parameters and detecting effects of new physics. The B_c^+ meson (bc), the only currently established hadron having two different heavy-flavor quarks, has the particularity of decaying weakly through either of its flavors.\(^1\) In the SM, the B_c^+ decays with no charm and beauty particles in the final or intermediate states can proceed only via $\bar{b}c \to W^+ \to u\bar{q} \; (q = d, s)$ annihilation, with an amplitude proportional to the product of Cabibbo-Kobayashi-Maskawa matrix elements $V_{cb}V_{uq}$. Calculations predict branching fractions in the range $10^{-8} - 10^{-6}$ [1–3]. Any significant enhancement could indicate the presence of $\bar{b}c$ annihilations involving particles beyond the SM, such as a mediatised charged Higgs boson (see, e.g., Ref. [4,5]).

Experimentally, the decays of B_c^+ mesons to three light charged hadrons provide a good way to study such processes. These decay modes have a large available phase space and can include other processes such as $B_c^+ \to D^0(\to K\pi)h^+(h = \pi, K)$ [6] mediated by $\bar{b} \to \bar{u}$ and $\bar{b} \to \bar{d}$, s transitions, $B_c^+ \to B_d^0(\to h_1^+ h_2^-)h_3^+$ decays [7] mediated by $c \to q$ transitions, or charmonium modes $B_c^+ \to [c\bar{c}](\to h_1^+ h_1^-)h_2^+$ [8] mediated by the $b \to c$ transition [9]. In this study, special consideration is given to decays leading to a $K^+ K^- \pi^+$ final state in the region well below the D^0 mass, taken to be $m(K^+ K^-) < 1.834$ GeV/c^2, where, after removing possible contributions from $([c\bar{c}], B_c^0) \to K^+ K^-$, only the annihilation process remains. The other contributions listed above are also examined. The decay $B^+ \to \bar{D}^0(\to K^+ K^-)\pi^+$ is used as a normalization mode to derive

$$R_f \equiv \frac{\sigma(B_c^+)}{\sigma(B^+)} \times B(B_c^+ \to f),$$

where B is the branching fraction, and $\sigma(B_c^+)$ and $\sigma(B^+)$ are the production cross sections of the B_c^+ and B^+ mesons. The quantity R_f is measured in the fiducial region $p_T(B) < 20$ GeV/c and $2.0 < y(B) < 4.5$, where p_T is the component of the momentum transverse to the proton beam and y denotes the rapidity. The data sample used corresponds to integrated luminosities of 1.0 and 2.0 fb$^{-1}$ collected by the LHCb experiment at 7 and 8 TeV center-of-mass energies in pp collisions, respectively. Since the kinematics of B meson production is very similar at the two energies, the ratio $\sigma(B_c^+)/\sigma(B^+)$ is assumed to be the same for all the measurements discussed in this paper.

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, described in detail in Refs. [10,11]. The detector allows the reconstruction of both charged and neutral particles. For this analysis, the ring-imaging Cherenkov detectors [12], distinguishing pions, kaons and protons, are particularly important. Simulated events are produced using the software described in Refs. [13–19].

The $B_c^+(c) \to K^+ K^- \pi^+$ decay candidates are reconstructed applying the same selection procedure as in Ref. [20]. A similar multivariate analysis is implemented, using a boosted decision tree (BDT) classifier [21]. Particle identification (PID) requirements are then applied to reduce the combinatorial background and suppress the cross feed from pions misidentified as kaons. The BDT and PID requirements are optimized to maximize the sensitivity to small event yields.
The B^+_c signal yield is determined from a simultaneous fit in three bins of the BDT output O_{BDT}, 0.04 < O_{BDT} < 0.12, 0.12 < O_{BDT} < 0.18 and O_{BDT} > 0.18, each having similar expected yield but different levels of background [20]. The normalization channel $B^+ \rightarrow \bar{D}^0(\rightarrow K^+K^-)\pi^+$ uses the same BDT classifier, with tighter PID requirements to suppress the abundant background from $B^+ \rightarrow K^+\pi^-\pi^+$ decays. Its yield is determined requiring O_{BDT} > 0.04, and demanding $1.834 < m(K^+K^-) < 1.894\text{ GeV}/c^2$ to remove charmless $B^+ \rightarrow K^+K^-\pi^+$ candidates.

Signal and background yields are obtained from extended unbinned maximum likelihood fits to the distribution of the invariant mass of the $K^+K^-\pi^+$ combinations. The $B^+_c \rightarrow K^+K^-\pi^+$ and $B^+ \rightarrow K^+K^-\pi^+$ signals are each modelled by the sum of two Crystal Ball functions [22] with a common mean. For $B^+_c \rightarrow K^+K^-\pi^+$ all the shape parameters and the relative yields in each bin of O_{BDT} are fixed to the values obtained in the simulation, while for $B^+ \rightarrow K^+K^-\pi^+$ the mean and the core width are allowed to vary freely in the fit. A Fermi-Dirac function is used to model a possible partially reconstructed component from decays with $K^+K^-\pi^+\pi^0$ final states where the neutral pion is not reconstructed, resulting in a $K^+K^-\pi^+$ invariant mass below the nominal B^+_c or B^+ mass. All shape parameters of these background components are fixed to the values obtained from simulation. The combinatorial background is modeled by an exponential function. Figure 1 shows the result of the fit to determine the yield of the $B^+ \rightarrow \bar{D}^0(\rightarrow K^+K^-)\pi^+$ channel, $N_s = 8577 \pm 109$.

In the B^+_c region $6.0 < m(K^+K^-) < 6.5\text{ GeV}/c^2$, the signals are fitted separately for regions of the phase space corresponding to the different expected contributions: the annihilation region ($m(K^+\pi^-) < 1.834\text{ GeV}/c^2$), the $D^0 \rightarrow K^-\pi^+$ region ($1.834 < m(K^-\pi^+) < 1.894\text{ GeV}/c^2$) and the $B^0 \rightarrow K^-K^+$ region ($5.3 < m(K^+K^-) < 5.4\text{ GeV}/c^2$). For the first two regions, the ranges $3.38 < m(K^+K^-) < 3.46\text{ GeV}/c^2$ and $5.2 < m(K^+K^-) < 5.5\text{ GeV}/c^2$ are vetoed to remove contributions from χ_{c0} (as discussed below) and $B^{(0)}_s \rightarrow h^+_s h^-_s$ decays. A possible signal is seen in the annihilation region, as shown in Fig. 2. The corresponding yield is $N_s = 20.8^{+11.4}_{-9.9}$, with a statistical significance of 2.5 standard deviations (σ), inferred from the difference in the logarithm of the likelihood for fits with and without the signal component.

The distribution of events in the $m^2(K^-\pi^+)$ vs $m^2(K^+K^-)$ plane, for the B^+_c signal region $6.2 < m(K^+K^-) < 6.35\text{ GeV}/c^2$, is shown in Fig. 3. A concentration of events is observed around $m^2(K^+K^-) \sim 11\text{ GeV}^2/c^4$. A one-dimensional projection of $m(K^+K^-)$ shows clustering near $3.41\text{ GeV}/c^2$, close to the mass of the charmion state χ_{c0}. Among all the charmonia, χ_{c0} has the highest branching fraction into the K^+K^- final state [23]. The accumulation of events near

![FIG. 1. Fit to the $K^+K^-\pi^+$ invariant mass for the B^+ candidates, with $1.834 < m(K^+K^-) < 1.894\text{ GeV}/c^2$. The contributions from the signal $B^+ \rightarrow \bar{D}^0(\rightarrow K^+K^-)\pi^+$, combinatorial background (Comb.) and partially reconstructed background (Part.) obtained from the fit are shown.](image)

![FIG. 2. Projection of the fit to the $K^+K^-\pi^+$ invariant mass in the B^+_c region, in the bins of BDT output used in the analysis: (top) 0.04 < O_{BDT} < 0.12, (middle) 0.12 < O_{BDT} < 0.18 and (bottom) O_{BDT} > 0.18, for $m(K^-\pi^+) < 1.834\text{ GeV}/c^2$, including the vetoes in $m(K^+K^-)$ (see text). Apart from the signal type, which is given by $B^+_c \rightarrow K^+K^-\pi^+$, the contributions are indicated according to the same scheme as in Fig. 1.](image)

R. AAJI et al.

PHYSICAL REVIEW D 94, 091102(R) (2016)
FIG. 3. Distribution of events for the signal region $6.2 < m(K^+K^-\pi^+) < 6.35$ GeV/c^2 in the $m^2(K^-\pi^+)$ vs $m^2(K^+K^-)$ plane for (left) $O_{\text{BDT}} > 0.12$ and (right) $O_{\text{BDT}} > 0.18$. The vertical red dashed lines represent a band of width ± 60 MeV/c^2 around the χ_{c0} mass. The horizontal blue dot-dashed line indicates the upper bound of the annihilation region at $m(K^+\pi^+) = 1.834$ GeV/c^2, representing 17% of the available phase space area.

$m^2(K^+K^-) \sim 29$ GeV2/c4 for the loose O_{BDT} cut appears to be mainly caused by $B_0^\pm \to K^+K^- \pi^- \pi^+$ decays combined with random pions since no peak is seen in $m(K^+K^-\pi^+\pi^-)$ at the B_0^+ mass [9].

To determine the $B_c^+ \to \chi_{c0}(\to K^+K^-)\pi^+$ signal yield, the two-dimensional $m(K^+K^-\pi^+)$ vs $m(K^+K^-)$ distributions are fitted simultaneously for each of the three BDT bins. The $m(K^+K^-\pi^+)$ distribution is modeled in the same way as described above. The $m(K^+K^-)$ distribution is fitted in the range $3.20 < m(K^+K^-) < 3.55$ GeV/c^2. The $\chi_{c0} \to K^+K^-$ shape is modeled by a Breit-Wigner function, with mean and width fixed to their known values [23], convolved with a Gaussian resolution function, while a first-order polynomial is used to represent the K^+K^- background. Figure 4 shows the projections of the fit result. The yield obtained is $N_{\chi_{c0}} = 20.8^{+5.2}_{-6.4}$, with a
For each region of phase space considered, the efficiencies for the signals, ϵ_s, and normalization channel, ϵ_n, are inferred from simulated samples and are corrected using data-driven methods as described in Ref. [20]. They include the effects of reconstruction, selection and detector acceptance. An efficiency map defined in the $m^2(K^−π^+)\, versus \, m^2(K^+K^-)$ plane is computed. Because of limited statistics, the distribution of the signal events in the annihilation region is not well known. Therefore, the efficiency for the annihilation region is estimated in two ways: first, by taking the simple average efficiency from the map for $m(K^−π^+) < 1.834$ GeV/c^2 and, alternatively, by taking the efficiency weighted according to the distribution of candidates in data in the $m^2(K^−π^+) \, versus \, m^2(K^+K^-)$ plane. The average of the two values is taken as the efficiency and the difference is treated as a systematic uncertainty (labeled as “event distribution” in Table I). A correction accounting for the vetoed $m(K^+K^-)$ regions described above is included. The values ϵ_n/ϵ_s are required. The values obtained are 1.968 ± 0.015 for the annihilation region and 1.241 ± 0.012 for the $B_c^+ \to \chi_{c0}(K^+K^-)\pi^+$ mode. The uncertainties are due to the limited sizes of the simulated samples. The differences between the B^+ and B_c^+ efficiencies are caused by the different lifetimes and masses of the two mesons.

The measured quantities are determined as

$$R_{in, K\pi} \times \frac{e_u}{e_n(\text{an, } K\pi)} \times B(D^0 \to K^+K^-)$$

for the annihilation region and

TABLE I. Relative systematic uncertainties (in %) of the measurements of $R_{in, K\pi}$ and $R_{x, R}$.

Source	$R_{in, K\pi}$	$R_{x, R}$
Normalization yield	1.3	1.3
Event distribution	1.6	...
Fit model	2.4	2.3
BDT shape	5.0	2.9
PID	1.0	1.0
Simulation	0.8	0.8
Detector acceptance	0.4	0.3
B_c^+ lifetime	2.0	2.0
Hardware trigger	1.5	1.4
Fiducial cut	0.1	0.1
Branching fractions	3.6	6.2
Total	7.5	7.8

The uncertainties are due to the limited sizes of the simulated samples, the effect of the detector acceptance, the B_c^+ lifetime, and fiducial cut corrections.

The results obtained are $R_{in, K\pi} = (8.0^{+4.4}_{-4.2} \text{ (stat) ± 0.6 (syst)}) \times 10^{-8}$ and $R_{x, R} = (9.8^{+3.4}_{-3.0} \text{ (stat) ± 0.8 (syst)}) \times 10^{-6}$. Accounting for the systematic uncertainties related to the signal extraction, the significances of these measurements are 2.4σ and 4.0σ, respectively. For the annihilation region, a 90(95)% confidence level (C.L.) upper limit, $R_{in, K\pi} < 15(17) \times 10^{-8}$, is estimated by making a scan of $R_{in, K\pi}$, comparing profile likelihood ratios for the “signal + background” and “background-only” hypotheses [9,25].

For the modes $B_c^+ \to B_s^0(\to K^+K^-)\pi^+$ and $B_c^+ \to D^0(\to K^-\pi^+)K^+$, no significant deviation from the background-only hypothesis is observed. Using $B(B_c^+ \to K^+K^-) = (2.50 \pm 0.17) \times 10^{-5}$ and $B(D^0 \to K^-\pi^+) = (3.93 \pm 0.04)%$ [23], the following 90(95)% C.L. upper limits are obtained:

$R_{B_s^0} = (4.5(5.4) \times 10^{-3}$ and $R_{D^0 K} = (1.3(1.6) \times 10^{-6}$.

In summary, a study of B_c^+ meson decays to the $K^+K^-\pi^+$ final state has been performed in the fiducial region $p_T(B) < 20$ GeV/c and $2.0 < y(B) < 4.5$. Evidence for the decay $B_c^+ \to \chi_{c0}\pi^+$ is found at 4.0σ significance. This result can be compared to the measurement involving another charmonium mode, $\sigma(B_c^+) / \sigma(B^+) = (7.0 \pm 0.3) \times 10^{-6}$, obtained from Refs. [23,29].

A indication of $b\bar{c}$ weak annihilation with a significance of 2.4σ is reported in the region $m(K^-\pi^+) < 1.834$ GeV/c^2. The branching fraction of $B_c^+ \to K^{\ast}(892)K^+$ has been recently predicted to be $(10.0^{+13.8}_{-3.4}) \times 10^{-7}$ [3]. The contribution of the mode
$B_c^+ \rightarrow \bar{K}^0(892)(\rightarrow K^- \pi^+)K^+$ to $R_{\text{un},KK\pi}$ could be prominent, for which an estimate is made as follows. Using the predictions listed in Ref. [30] for $B(B_c^+ \rightarrow J/\psi \pi^+)$, which span the range $[0.34,2.9] \times 10^{-3}$, and the value of $\frac{\sigma(B_c^+)}{\sigma(B_c^+→\bar{K}^0(892)(→K^-\pi^+)K^+)}$ based on Ref. [29] quoted above, $\frac{\sigma(B_c^+)}{\sigma(B_c^+→\bar{K}^0(892)(→K^-\pi^+)K^+)} \sim [0.23,2.1]\%$ is obtained. Combined with the prediction of Ref. [3], a value of $\frac{\sigma(B_c^+)}{\sigma(B_c^+→\bar{K}^0(892)(→K^-\pi^+)K^+)} \sim [0.1,1.7] \times 10^{-8}$ is obtained, including the theoretical uncertainties and the $\bar{K}^0(892) \rightarrow K^-\pi^+$ branching fraction. This estimate is lower than the $R_{\text{un},KK\pi}$ measurement. The statistical uncertainty, however, is at present too large to make a definite statement. The data being accumulated in the current run of the LHC will allow LHCb to clarify whether the weak annihilation process of B_c^+ meson decays involves significant contributions from heavier $K^-\pi^+$ states, or is enhanced by other sources.

ACKNOWLEDGMENTS

We express our gratitude to our colleagues in the CERN (European Laboratory for Particle Physics) accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the following national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme Trust (United Kingdom).

[1] S. Descotes-Genon, J. He, E. Kou, and P. Robbe, Nonleptonic charmless B_c decays and their search at LHCb, Phys. Rev. D 80, 114031 (2009).
[2] X. Liu, Z.-J. Xiao, and C.-D. Lu, Pure annihilation type $B_c \rightarrow M_1M_2$ decays in the perturbative QCD approach, Phys. Rev. D 81, 014022 (2010).
[3] Z.-J. Xiao and X. Liu, The two-body hadronic decays of B_c meson in the perturbative QCD approach: A short review, Chin. Sci. Bull. 59, 3748 (2014).
[4] W.-S. Hou, Enhanced charged Higgs boson effects in $B^- \rightarrow \bar{\tau}\bar{\nu}, \mu\bar{\nu}$ and $b \rightarrow \bar{\tau}\bar{\nu} + X$, Phys. Rev. D 48, 2342 (1993).
[5] S. Kanemura, M. Kikuchi, and K. Yagyu, Fingerprinting the extended Higgs sector using one-loop corrected Higgs boson couplings and future precision measurements, Nucl. Phys. B896, 80 (2015).
[6] Z. Rui, Z.-T. Zou, and C.-D. Lu, The two-body $B_t \rightarrow D_{(s)}^{(*)}P$, $D_{(s)}^{(*)}V$ decays in the perturbative QCD approach, Phys. Rev. D 86, 074008 (2012).
[7] J. Sun, Y. Yang, Q. Chang, and G. Lu, Phenomenological study of the $B_c \rightarrow BP, BV$ decays with perturbative QCD approach, Phys. Rev. D 89, 114019 (2014).
[8] C.-F. Qiao, P. Sun, D. Yang, and R.-L. Zhu, B_c exclusive decays to charmonium and a light meson at next-to-leading order accuracy, Phys. Rev. D 89, 034008 (2014).
[9] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevD.94.091102 for Feynman diagrams of the processes intervening in this study, simultaneous mass fits of unobserved processes reported in the paper, and p-value scans of the measured observables.
[10] A.A. Alves, Jr. et al. (LHCb Collaboration), The LHCb detector at the LHC, J. Instrum. 3, S08005 (2008).
[11] R. Aaij et al. (LHCb Collaboration), LHCb detector performance, Int. J. Mod. Phys. A 30, 1530022 (2015).
[12] M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73, 2431 (2013).
[13] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026; A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852 (2008).
[14] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331, 032047 (2011).
[15] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[16] J. Allison et al. (Geant4 Collaboration), Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53, 270 (2006); S. Agostinelli et al. (Geant4 Collaboration), Geant4: A simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
C.-H. Chang, J.-X. Wang, and X.-G. Wu, BCVEGPY2.0: An event generator for hadronic production of the B_c meson, Comput. Phys. Commun. 159, 192 (2004).

C.-H. Chang, J.-X. Wang, and X.-G. Wu, BCVEGPY2.0: A upgrade version of the generator BCVEGPY with an addendum about hadroproduction of the P-wave B_c states, Comput. Phys. Commun. 174, 241 (2006).

R. Aaij et al. (LHCb Collaboration), Search for B_c decays to the $p\bar{p}\pi$ final state, Phys. Lett. B 759, 313 (2016).

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees (Wadsworth International Group, Belmont, 1984).

T. Skwarnicki, Ph.D. thesis, Institute of Nuclear Physics (Report No. DESY-F31-83-06, 1986).

K. A. Olive et al. (Particle Data Group), Review of particle physics, Chin. Phys. C 38, 090001 (2014), and 2015 update.

R. Aaij, 40 B. Adeva, 39 M. Adinolfi, 48 Z. Ajaltouni, 5 S. Akar, 6 J. Albrecht, 10 F. Alessio, 40 M. Alexander, 53 S. Ali, 43 G. Alkhazov, 54 P. Alvarez Cartelle, 55 A. A. Alves Jr, 59 S. Amato, 47 S. Amerio, 75 Y. Amhis, 5 L. An, 31 L. Anderlini, 18 G. Andreassi, 41 M. Andreotti, 17, a J. E. Andrews, 60 R. B. Appleby, 56 F. Archilli, 43 P. d'Argent, 12 J. A. Arnan Romeu, 49 A. Artamonov, 37 M. Artuso, 61 E. Aslanyan, 6 G. Auriemma, 26 M. Baalouch, 5 I. Babuschkin, 56 S. Bachmann, 12 J. J. Back, 50 R. Aaij, 40 B. Adeva, 39 M. Adinolfi, 48 Z. Ajaltouni, 5 S. Akar, 6 J. Albrecht, 10 F. Alessio, 40 M. Alexander, 53 S. Ali, 43 G. Alkhazov, 54 P. Alvarez Cartelle, 55 A. A. Alves Jr, 59 S. Amato, 47 S. Amerio, 75 Y. Amhis, 5 L. An, 31 L. Anderlini, 18 G. Andreassi, 41 M. Andreotti, 17, a J. E. Andrews, 60 R. B. Appleby, 56 F. Archilli, 43 P. d'Argent, 12 J. A. Arnan Romeu, 49 A. Artamonov, 37 M. Artuso, 61 E. Aslanyan, 6 G. Auriemma, 26 M. Baalouch, 5 I. Babuschkin, 56 S. Bachmann, 12 J. J. Back, 50 R. Aaij, 40 B. Adeva, 39 M. Adinolfi, 48 Z. Ajaltouni, 5 S. Akar, 6 J. Albrecht, 10 F. Alessio, 40 M. Alexander, 53 S. Ali, 43 G. Alkhazov, 54 P. Alvarez Cartelle, 55 A. A. Alves Jr, 59 S. Amato, 47 S. Amerio, 75 Y. Amhis, 5 L. An, 31 L. Anderlini, 18 G. Andreassi, 41 M. Andreotti, 17, a J. E. Andrews, 60 R. B. Appleby, 56 F. Archilli, 43 P. d'Argent, 12 J. A. Arnan Romeu, 49 A. Artamonov, 37 M. Artuso, 61 E. Aslanyan, 6 G. Auriemma, 26 M. Baalouch, 5 I. Babuschkin, 56 S. Bachmann, 12 J. J. Back, 50 R. Aaij, 40 B. Adeva, 39 M. Adinolfi, 48 Z. Ajaltouni, 5 S. Akar, 6 J. Albrecht, 10 F. Alessio, 40 M. Alexander, 53 S. Ali, 43 G. Alkhazov, 54 P. Alvarez Cartelle, 55 A. A. Alves Jr, 59 S. Amato, 47 S. Amerio, 75 Y. Amhis, 5 L. An, 31 L. Anderlini, 18 G. Andreassi, 41 M. Andreotti, 17, a J. E. Andrews, 60 R. B. Appleby, 56 F. Archilli, 43 P. d'Argent, 12 J. A. Arnan Romeu, 49 A. Artamonov, 37 M. Artuso, 61 E. Aslanyan, 6 G. Auriemma, 26 M. Baalouch, 5 I. Babuschkin, 56 S. Bachmann, 12 J. J. Back, 50 R. Aaij, 40 B. Adeva, 39 M. Adinolfi, 48 Z. Ajaltouni, 5 S. Akar, 6 J. Albrecht, 10 F. Alessio, 40 M. Alexander, 53 S. Ali, 43 G. Alkhazov, 54 P. Alvarez Cartelle, 55 A. A. Alves Jr, 59 S. Amato, 47 S. Amerio, 75 Y. Amhis, 5 L. An, 31 L. Anderlini, 18 Q. et al.
STUDY OF $B^0 \to K^+ K^- \pi^+ \ldots$ PHYSICAL REVIEW D 94, 091102(R) (2016)
L. Sestini,23 P. Seyfert,21 M. Shapkin,37 I. Shapoval,17,45,a Y. Shcheglov,31 T. Shears,54 L. Sheikhman,36,d V. Shevchenko,67 A. Shires,10 B. G. Siddi,17 R. Silva Coutinho,32 L. Silva de Oliveira,2 G. Simi,23,k S. Simone,14,l M. Sirendi,49 N. Skidmore,48 B. Souza De Paula,2 B. Spaan,10 P. Spradlin,53 S. Srídharan,40 F. Stagni,40 M. Stahl,12 S. Stahl,40 P. Stefko,41 S. Stefkova,55 O. Steinkamp,42 O. Stenyakin,37 J. Stenzel Martins,5 S. Stevenson,57 S. Stone,61 B. Storaci,42 S. Stracka,24,t M. Straticiuc,30 U. Straumann,42 L. Sun,59 W. Sutcliffe,55 I. T. Smith,52 J. Smith,49 M. Smith,56 H. Snoek,43 M. D. Sokoloff,59 F. J. P. Soler,53 D. Souza,48 B. Souza De Paula,2 B. Spaan,10 P. Spradlin,53 S. Srídharan,40 F. Stagni,40 M. Stahl,12 S. Stahl,40 P. Stefko,41 S. Stefkova,55 O. Steinkamp,42 O. Stenyakin,37 J. Stenzel Martins,5 S. Stevenson,57 S. Stone,61 B. Storaci,42 S. Stracka,24,t M. Straticiuc,30 U. Straumann,42 L. Sun,59 W. Sutcliffe,55 I. T. Smith,52 J. Smith,49 M. Smith,56 H. Snoek,43 M. D. Sokoloff,59 F. J. P. Soler,53 D. Souza,48 B. Souza De Paula,2 B. Spaan,10 P. Spradlin,53 S. Srídharan,40 F. Stagni,40 M. Stahl,12 S. Stahl,40 P. Stefko,41 S. Stefkova,55 O. Steinkamp,42 O. Stenyakin,37 J. Stenzel Martins,5 S. Stevenson,57 S. Stone,61 B. Storaci,42 S. Stracka,24,t M. Straticiuc,30 U. Straumann,42 L. Sun,59 W. Sutcliffe,55 I. T. Smith,52 J. Smith,49 M. Smith,56 H. Snoek,43 M. D. Sokoloff,59 F. J. P. Soler,53 D. Souza,48 B. Souza De Paula,2 B. Spaan,10 P. Spradlin,53 S. Srídharan,40 F. Stagni,40 M. Stahl,12 S. Stahl,40 P. Stefko,41 S. Stefkova,55 O. Steinkamp,42 O. Stenyakin,37 J. Stenzel Martins,5 S. Stevenson,57 S. Stone,61 B. Storaci,42 S. Stracka,24,t M. Straticiuc,30 U. Straumann,42 L. Sun,59 W. Sutcliffe,55 I. T. Smith,52 J. Smith,49 M. Smith,56 H. Snoek,43 M. D. Sokoloff,59 F. J. P. Soler,53 D. Souza,48

(1)Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil

(2)Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

(3)Center for High Energy Physics, Tsinghua University, Beijing, China

(4)LAPP, Université Savoie Mont-Blanc, CNRS/IN2P3, Annecy-Le-Vieux, France

(5)Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France

(6)CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

(7)LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France

(8)LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France

(9)I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany

(10)Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany

(11)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

(12)School of Physics, University College Dublin, Dublin, Ireland

(13)Sezione INFN di Bari, Bari, Italy

(14)Sezione INFN di Bologna, Bologna, Italy

(15)Sezione INFN di Cagliari, Cagliari, Italy

(16)Sezione INFN di Ferrara, Ferrara, Italy

(17)Sezione INFN di Firenze, Firenze, Italy

(18)Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy

(19)Sezione INFN di Genoa, Genova, Italy

(20)Sezione INFN di Milano Bicocca, Milano, Italy

(21)Sezione INFN di Milano, Milano, Italy

(22)Sezione INFN di Padova, Padova, Italy

(23)Sezione INFN di Pisa, Pisa, Italy

(24)Sezione INFN di Roma Tor Vergata, Roma, Italy

(25)Sezione INFN di Roma La Sapienza, Roma, Italy

(26)Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland

(27)AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland

(28)National Center for Nuclear Research (NCBJ), Warsaw, Poland

(29)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

(30)Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia

R. AAJI et al.

PHYSICAL REVIEW D 94, 091102(R) (2016)

RAPID COMMUNICATIONS

091102-8
STUDY OF B_s^0 DECAYS TO THE $K^+ K^- \pi^+$ …

PHYSICAL REVIEW D 94, 091102(R) (2016)

32Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
33Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
34Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
35Yandex School of Data Analysis, Moscow, Russia
36Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
37Institute for High Energy Physics (IHEP), Protvino, Russia
38ICCUB, Universitat de Barcelona, Barcelona, Spain
39Universidad de Santiago de Compostela, Santiago de Compostela, Spain
40European Organization for Nuclear Research (CERN), Geneva, Switzerland
41Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
42Physik-Institut, Universität Zürich, Zürich, Switzerland
43Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
44Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
45NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
46Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
47University of Birmingham, Birmingham, United Kingdom
48H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
49Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
50Department of Physics, University of Warwick, Coventry, United Kingdom
51STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
52School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
53School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
55Imperial College London, London, United Kingdom
56School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
57Department of Physics, University of Oxford, Oxford, United Kingdom
58Massachusetts Institute of Technology, Cambridge, MA, United States
59University of Cincinnati, Cincinnati, OH, United States
60University of Maryland, College Park, MD, United States
61Syracuse University, Syracuse, NY, United States
62Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil (associated with Universidade Federal do Rio de Janeiro (UFRJ))
63University of Chinese Academy of Sciences, Beijing, China (associated with Tsinghua University)
64Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China (associated with Tsinghua University)
65Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia (associated with Universidad Pierre et Marie Curie)
66Institut für Physik, Universität Rostock, Rostock, Germany (associated with Physikalisches Institut)
67National Research Centre Kurchatov Institute, Moscow, Russia (associated with Institute of Theoretical and Experimental Physics (ITEP))
68Instituto de Física Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain (associated with Universitat de Barcelona)
69Van Swinderen Institute, University of Groningen, Groningen, The Netherlands (associated with Nikhef National Institute for Subatomic Physics)

a Also at Università di Ferrara, Ferrara, Italy
b Also at Università di Milano Bicocca, Milano, Italy
c Also at Università di Modena e Reggio Emilia, Modena, Italy
d Also at Novosibirsk State University, Novosibirsk, Russia
e Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
f Also at Università di Bologna, Bologna, Italy
g Also at Università di Roma Tor Vergata, Roma, Italy
h Also at Università di Genova, Genova, Italy
i Also at Scuola Normale Superiore, Pisa, Italy
j Also at Université di Cagliari, Cagliari, Italy
k Also at Università di Padova, Padova, Italy
l Also at Université di Bari, Bari, Italy
m Also at Laboratoire Leprince-Ringuet, Palaiseau, France
Also at Università degli Studi di Milano, Milano, Italy
Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
Also at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
Also at Iligan Institute of Technology (IIT), Iligan, Philippines
Also at Hanoi University of Science, Hanoi, Viet Nam
Also at Università di Roma La Sapienza, Roma, Italy
Also at Università di Pisa, Pisa, Italy
Also at Università della Basilicata, Potenza, Italy
Also at Università di Urbino, Urbino, Italy
Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia