One-Step Hydrothermal Synthesis of W-Doped VO₂ (M) Nanorods with a Tunable Phase-Transition Temperature for Infrared Smart Windows

Shan Liang, Qiwu Shi,* Hongfu Zhu, Bo Peng, and Wanxia Huang*

College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, China

ABSTRACT: Vanadium dioxide (VO₂), with reversible metal–semiconductor transition near room temperature, is a compelling candidate for thermochromic windows. Nano-composite coatings derived from VO₂ nanoparticles are particularly superior to VO₂ films due to their advantages in large-scale preparation, flexible shaping, and regulation of optical properties. In this work, we developed a novel method for one-step hydrothermal synthesis of W-doped VO₂ (M) nanorods and studied their application in large-scale infrared smart windows. On introducing tartaric acid as a new reductant, VO₂ underwent a two-stage phase evolution from the pure phase comprising VO₂ (A) nanobelts to VO₂ (M) nanorods, instead of the conventional three-stage B–A–M phase evolution during hydrothermal synthesis. This transition is very favorable for the large-scale hydrothermal synthesis of VO₂ (M). The phase-transition temperature of VO₂ (M) nanoparticles can be regulated systematically by W doping, with a reduction efficiency of about 24.52 °C/atom % W. Moreover, VO₂ (M) composite films were fabricated using a convenient roller coating method, which exhibited significant midinfrared transmission switching up to 31%, with a phase-transition temperature of about 37.3 °C. This work demonstrates the significant progress in the one-step hydrothermal synthesis of VO₂ (M) nanorods and provides significant insights into their applications in infrared smart windows.

1. INTRODUCTION

Vanadium dioxide (VO₂) is an excellent tunable functional material with complex polymorphs. Until now, more than 10 kinds of crystalline phases of VO₂ (phases B, M, R, A, C, and so on) have been reported.¹ However, among all of these polymorphs, VO₂ (M) is the most meaningful one because only VO₂ (M) undergoes a fully reversible first-order metal–semiconductor transition (MST) near room temperature (RT) (Tc = 68 °C).² This transition is accompanied by dramatic changes in the electrical and optical properties from a low-temperature monoclinic semiconductor phase (M phase) to a high-temperature tetragonal rutile metallic phase (R-phase).³ Meanwhile, the Tc of VO₂ (M) can be regulated by doping or stress.⁴ As a consequence, VO₂ (M) has been attracting increasing attention for its potential applications in infrared smart windows, switches, sensors, data storage devices, field-effect transitions, and so forth.⁵⁶⁷⁸ Because of these attractive properties and applications, various kinds of approaches were explored to fabricate VO₂ (M). However, it should be noted that most of the reported methods are focused on the preparation of VO₂ films. By contrast, VO₂ (M) nanoparticles can significantly lessen the stress for phase transformation, satisfy the need for a large area, flexible and special shape substrates coating by adding appropriate organics, and improve both ΔT lum and ΔT sol by dispersing in a dielectric host.¹⁰ Therefore, seeking a suitable method to prepare VO₂ (M) nanoparticles is highly desired and urgently needed.

Nowadays, several approaches have been developed for preparing VO₂ (M) nanoparticles, such as pyrolysis of vanadium-containing precursors, microemulsion-based methods, the solution combustion process, the vapor transport approach, hydrothermal synthesis, and so forth.¹¹⁻¹⁶ Among all of the above methods, the hydrothermal synthetic process is the most commonly used method to synthesize VO₂ (M) nanoparticles due to its simple route of synthesis, low cost, lower required temperature, and comparatively environmentally friendly reaction conditions. Normally, the metastable phase, VO₂ (B), acts as the final product in the hydrothermal reaction, which can then be transformed to VO₂ (M) by the postheating treatment.¹⁷⁻¹⁸ However, postheating annealing might lead to serious aggregation; thus, the corresponding thermochromic properties were seriously deteriorated. Encouragingly, there have been several reports on synthesizing VO₂ (M) through a one-step hydrothermal reaction. For instance, Son et al. synthesized asterisk-shaped VO₂ (M) nanocrystals using VO(SO₄)₂ hydrazine, and NaOH, but the secondary phase, VO₂ (B), always exists.¹⁷ Cao et al. fabricated W-doped VO₂
(R) snowflakes by hydrothermal treatment with V_2O_5 and oxalic acid at 240 °C over a reaction time of 7 days.1 Hollow microspheres of VO2 (M) were also obtained by the reaction of V_2O_5, PVP, and oxalic acid at 300 °C for 6 h.18 It is obvious that the high temperature and long reaction time will result in energy consumption. Furthermore, some researchers have confirmed that introducing doping additives, such as W, Mo, Sb atoms, would promote the generation of pure phase of VO2 (M) through the hydrothermal reduction of V_2O_5 by oxalic acid.1,19−21 Unfortunately, as far as we know, the synthesized pure VO2 (M) particles easily develop a snowflake morphology and the amount of product formed is always small, which limits their dispersion and transparency and makes them unsuitable for large-scale production.19 Recently, Li et al. fabricated asterisk-shaped Mo-doped VO2 (M), with a Mo doping concentration higher than 5.62 atom % and a change in the infrared transmittance of Mo-doped VO2 (M) of only about 10%.20 Chen et al. reported a one-step hydrothermal method for the growth of VO2 (M/R) nanorods, using V_2O_5, oxalic acid, and ammonium tungstate as raw materials. They indicated that the W dopant was a crucial parameter for the shape-controlled hydrothermal synthesis of VO2 (M/R), but it was noted that most of the products were still in the shape of a snowflake at a low doping concentration.21

Another metastable polymorph, VO2 (A), was reported as an intermediate phase during the transformation from VO2 (B) to VO2 (M) by Théobald.22 This polymorph also exhibited a similar reversible phase-transition property from low-temperature tetragonal VO2 (A) to high-temperature body-centered tetragonal VO2 (A$_{14}$) at 162 °C.23 VO2 (A) is a thermodynamically stable phase compared with VO2 (B), which may be beneficial in the generation of VO2 (M). However, this metastable phase has not been studied widely until now because the growth conditions of VO2 (A) are so harsh that this metastable phase is usually missed during the preparation of the VO2 polymorph.24−27

In this study, we introduced a new reductant, tartaric acid (TA), instead of the conventional reductant, oxalic acid, in the hydrothermal synthesis of VO2 nanoparticles. TA is a typical α-hydroxycarboxylic acid, which has been successfully applied to the hydrothermal synthesis of TiO2, Fe3O4, In2O3, Sb2S3, WO3, Bi2S3, and so forth.28−33 The hydroxyl and carboxyl groups in TA endow it with suitable hydrophilic characteristics and can promote the reduction of vanadium oxides and formation of VO2 eventually during the hydrothermal process in the present system. In our study, we developed a novel one-step TA-assisted hydrothermal synthesis method to prepare VO2 (A) nanobelts and then transformed them to VO2 (M) nanorods through W doping. It was inspiring to discover that the VO2 (M) nanoparticles possessed high purity, good crystallinity, and a stable morphology, and the T_c of VO2 (M) could be simply tuned to a comfortable temperature by adjusting the doping concentrations of ammonium tungstate. Composite films obtained by mixing these nanoparticles with a polymer matrix and then roller coating this mixture onto a polyethylene terephthalate (PET) substrate exhibited significant midinfrared transmission switching properties and demonstrated great application potential in infrared smart windows.

Figure 1. (a) XRD patterns of hydrothermal reaction products with different V_2O_5/TA molar ratios; (b) DSC curve of VO2 (A); (c, d) SEM images of VO2 (A) at low and high magnifications, respectively; the inset is the TEM image.
absence of any other phase or impurities illustrates that the as-obtained VO₂ (A) has a high purity. Upon further increasing the amount of TA, V₂O₅ is further reduced to V₅O₉. This indicates that there is a reduction process: V₂O₅ → V₃O₇·H₂O → VO₂ (A) → V₅O₉ → V₂O₃, with TA as the reducing reagent during this reaction. According to the above results, a V₂O₅/TA molar ratio of 5:1 is optimal for the synthesis of pure-phase VO₂ (A). The morphology of pure-phase VO₂ (A) was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) (inset of Figure 1d). Obviously, it can be seen from Figure 1c,d that the product exhibits a clear beltlike morphology, with a width of 200–300 nm and a length of up to several tens of micrometers. Differential scanning calorimetry (DSC) analysis of the VO₂ (A) nanobelts clearly shows a noticeable endothermic peak at 169 °C, as shown in Figure 1b, which can be assigned to the phase transition of low-temperature tetragonal VO₂ (A) to high-temperature body-centered tetragonal VO₂ (A₉).

Generally, hydrothermal reduction of V₂O₅ to VO₂ follows the following phase evolution: VO₂ (B) → VO₂ (A) → VO₂ (M/R).

The formation energy of the VO₂ (A) phase has been demonstrated to be higher than that of VO₂ (B). This indicates that VO₂ (A) is a more thermodynamically stable phase compared with metastable VO₂ (B). In this regard, VO₂ (A) is more beneficial for the generation of VO₂ (M) than VO₂ (B) during hydrothermal synthesis. To analyze the relative stabilities of VO₂ (B) and VO₂ (A) more visually, the crystal structures of VO₂ (B) and VO₂ (A) were compared. As displayed in Figure 2, both of them are layered structures and are composed of VO₆ octahedra basic units. In the structure of VO₂ (B), vanadium atoms are no longer in the center of the VO₆ octahedra, causing the VO₆ octahedra to get slightly distorted. For VO₂ (A), the VO₆ octahedra are less deformed. In addition, the V–O–V bond angle in the structure of VO₂ (B) is nearly vertical, which leads to the generation of intense structural tension and electronic repulsion. By contrast, the structure of VO₂ (A) shows less electronic repulsion, thus reducing the structural tension. Overall, it can be indicated that VO₂ (A) has a more thermodynamically stable structure than VO₂ (B). In this work, TA was employed to be the reductant instead of the conventionally used oxalic acid, and VO₂ (A) but not VO₂ (B) was formed indirectly. So, we state that the yield of VO₂ (M) was 4 times higher than that obtained by the other research groups.
It has been reported that introducing doping additives could promote the generation of VO₂ (M). In this work, we choose ammonium tungstate to support the synthesis of VO₂ (M). Figure 3a shows the XRD patterns of W-doped VO₂ nanoparticles, with a doping content from 0.5 to 2 atom %. It is worth noting that W doping has a significant influence on the preparation of pure-phase VO₂ (M). For the sample with the addition of 0.5 and 1 atom % W, the product is a mixture of VO₂ (A) and the main phase, monoclinic VO₂ (M) (JCPDS no. 43-1051, space group P2₁/c, a = 5.752 Å, b = 4.538 Å, c = 5.383 Å). On increasing the amount of W to 1.5 atom %, the diffraction peaks of VO₂ (A) vanish and all peaks can be indexed to VO₂ (M), illustrating that pure-phase VO₂ (M) (T₀ ∼ RT) is successfully synthesized. However, Cao et al. reported that pure-phase W-doped VO₂ (M) could only be obtained when the reaction time reached 7 days and the W-doping content was 4 atom %. Upon continuously increasing the W-doping content to 2 atom %, pure-phase VO₂ (M) (JCPDS no. 76-0675, space group P4₂/mmm, a = 4.556 Å, b = 4.556 Å, c = 2.860 Å) is obtained at RT (T₀ ≤ RT). No peaks of any other phase are observed, revealing that the products are well crystallized, with high purities. In addition, there are no peaks related to ammonium tungstate or its derivatives, suggesting that the W atoms are incorporated into the crystal lattice of VO₂ (M), forming a substitutional solid solution. Magnifications of the (011) peak for VO₂ (M) and (110) peak for VO₂ (R) are displayed in Figure 3b. Significant shifting of the M (011) peaks to smaller angles is detected, which indicates a slight increase in the interplanar spacing. This can be attributed to the substitution of V atoms with W atoms of a larger atomic radius. Moreover, more V atoms would be substituted on increasing the W-doping content. This result could further confirm that W was successfully captured into the crystal lattice of VO₂ (M). In addition, it could be concluded that W doping can promote the transformation from VO₂ (A) to VO₂ (M). As we know, VO₂ (M) is more thermodynamically stable than VO₂ (A), which makes the synthesis of VO₂ (M) require more energy. On doping with W, the VO₆ octahedron is distorted by the partial substitution of V atoms with W atoms, which makes the interconnections between different VO₆ octahedra break more easily, as the atomic radius of W atoms is larger than that of V atoms. This mechanism offers not only oxygen vacancies but also the energy required for the formation of pure-phase VO₂ (M). Therefore, VO₂ (A) transforms to VO₂ (M) completely when the W-doping content reaches a certain value.

X-ray photoelectron spectroscopy (XPS) was performed to investigate the composition and chemical state of the W-doped VO₂ sample. Figure 4a shows a wide-range survey spectrum of 2 atom % W-doped VO₂ (M). It reveals that the sample consists of vanadium, oxygen, carbon, and tungsten, where the peak of carbon is attributed to the hydrocarbon contamination on the sample surface. In Figure 4b, the O1s and V2p peaks were fitted with a Shirley function. The peak located at 530.3 eV can be assigned to O²⁻ in V−O, which is in good accordance with the structural information on the VO₂ (M) structure. Additionally, the V2p3/2 peak is separated into two peaks, meaning two valence states of vanadium (+4 valence and +5 valence) exist in the sample. The binding energy of 516.5 eV corresponds to V⁴⁺, which is slightly higher than 515.8 eV for pure VO₂ but is consistent with the value for W-doped VO₂ (M) obtained in previous reports, suggesting that the binding energy of the +4 valence state of V₂P₃/₂ increases slightly after W-dopant introduction. In addition, the binding energy of 517.7 eV is assigned to V⁵⁺ due to oxidation at the surface of the sample when exposed to air. The difference between the binding energies of O1s and V2P₃/₂ is 13.8 eV, consistent with
the value of 14.2 eV reported in the literature. Figure 4c shows binding energies of 35.22 and 37.38 eV for W 4f7/2 and W 4f5/2, respectively, revealing that the existing form of W ions in this sample is W6+ instead of the other valence form. This result confirmed that the W atom was actually doped into the VO2 nanoparticles.

Typical SEM and TEM images of VO2 powders with different W-doping contents are presented in Figure 5. Both beltlike and rodlike morphologies are observed for 0.5 atom % doping in this work (Figure 5a). With 1 atom % doping (Figure 5b), the nanorod particles in the sample increase obviously. For the sample with 1.5 atom % W doping (Figure 5c), the former belt crystals disappear and all of the particles show a rodlike shape, with a typical width of 100−200 nm and an uneven length. Subsequently, as the W-doping content is increased to 2 atom % (Figure 5d and its inset), the powders exhibit uniform nanorods and the length increases up to several micrometers. The aspect ratio of the nanorods increases noticeably. This result suggests that increasing the W-doping content could promote not only the generation of VO2 (M) but also the growth of nanorods.

As far as we know, VO2 (M) particles synthesized by a one-step hydrothermal reaction with oxalic acid as a reductant always show a snowflake shape.1,19,21 By contrast, one-dimensional (1D) nanostructures, such as nanorods, nanobelts, and nanowires, have raised great interest because they present novel characteristics, owing to their small radial dimensions, while retaining their longitudinal connectivity. As a kind of 1D nanostructure, nanorods can be used for investigating specialized applications and in fundamental research, such as assessment of the phase-transition temperature and phase-transition mechanism of VO2 (M).46 Normally, W-doped VO2 (M) nanorods were fabricated through a two-step hydrothermal method. There are a few studies on the preparation of W-doped VO2 (M) nanorods via a one-step hydrothermal method.21,47,48 For instance, Chen et al. reported that W doping plays a crucial role in the growth of W-doped VO2 (M) nanorods.21 In our study, TA is not only a reductant but also a
kind of alternative template reagent. The presence of TA was crucial in obtaining nanorods, owing to the capping effect. A probable mechanism for the evolution of nanorods is presented in Figure 6. The VO₂ grains grow, with the reaction proceeding continuously. Simultaneously, TA may play a certain role as a capping agent, which is adsorbed onto the surface of VO₂ and controls the overall growth kinetics. The lateral growth of VO₂ is restricted due to hindrance of the capping agent. These result in the growth of the products only to specific facets and in obtaining nanorods eventually.

Figure 7 shows the Fourier transform infrared (FTIR) spectra of the as-synthesized VO₂ powders. The characteristic broad absorption bands that appeared in all samples at 3436 and 1631 cm⁻¹ are assigned to the stretching and bending vibrations of the hydroxyl group (−OH), respectively, resulting from the absorbed H₂O molecules on the surface of VO₂. The absorption band at 2380 cm⁻¹ is due to the asymmetric stretching vibrations of CO₂. In particular, we can clearly see differences among the three phases of VO₂, with a range of 400–1000 cm⁻¹, which can be ascribed to the different vibration modes of the V−O type. For VO₂ (A), the band at 941 cm⁻¹ is assigned to the stretching of short V=O bands and the two peaks at 594 and 557 cm⁻¹ are attributed to the delocalization of the electrons involved in V⁴⁺−V⁴⁺ bonds between VO₆ octahedra, which are characteristic of VO₂ (A). In the typical FTIR spectrum of a monoclinic VO₂ (M) sample, the absorption band at 530 cm⁻¹ could be attributed to the bending vibrations of V−O−V bridges and the broad band at 684 cm⁻¹ is characteristic of the first “rutile packing” of VO₂ octahedra. Additionally, there is no vibrational absorption peak corresponding to rutile VO₂ (R). For VO₂ (M), the electrons involved in the V−V bonds between VO₆ octahedra are localized. However, these electrons are delocalized for VO₂ (R); this delocalization involves a screening effect for the incident photons. Under this circumstance, no vibration absorption band for VO₂ (R) can be observed, which implies a drastic decrease in the transmittance. Therefore, FTIR can be used as a characterization method to distinguish the three phases of vanadium dioxide.

The Tₙ’s of VO₂ nanoparticles with different doping contents were characterized by DSC, as shown in Figure 8a. It can be seen that the Tₙ of VO₂ (M) decreases with an increase in the W-doping content. An increase in the W content from 0.5 to 2 atom % significantly reduces Tₙ from 60.6 to 21.3 °C, which is lower than RT, providing auxiliary evidence for the formation of pure-phase VO₂ (R) at RT with 2 atom % W doping. Moreover, the intensity of the DSC peaks decreases with an increase in the W-doping content. The explanation could be as follows: The low-temperature monoclinic structure of VO₂ (M) demonstrates alternative V−V intervals (2.65 and 3.12 Å), whereas the high-temperature rutile structure of VO₂ (R) has a very symmetric structure, with equidistant V−V intervals (2.87 Å). Partial substitution of the V atoms with large W atoms causes the V−V interval to shrink, leading to a decrease in the structural differences between VO₂ (M) and VO₂ (R) and reducing the MST activation energy accordingly. Figure 8b shows the linear relationship between Tₙ and W concentration (from 0.5 to 2 atom %). The least-squares approximation gives a Tₙ reduction efficiency of 24.52 °C/atom %, which is slightly higher than that obtained by other research groups that synthesized VO₂ (M) by a one-step hydrothermal method but is consistent with that previously reported, revealing that the Tₙ of VO₂ (M) could be easily tuned by adjusting the W-doping content. These results suggest effective W doping in VO₂ and also further confirm the formation of VO₂ (M), which is in accordance with the XRD results.

The 1.5 atom % W-doped VO₂ (M) nanorods were mixed with a polymer matrix and then processed to form a composite film on the PET substrate using a convenient roller coating method, as shown in Figure 9. The film is highly transparent,
flexible, homogeneous, smooth, and light gray-blue in color. Although the infrared spectrum extends across a wide range (0.77–1000 μm), there are only two wavelength ranges that show high infrared transmittance in the atmosphere (3–5 and 8–12 μm). So, we study the phase-transition properties of VO2 films in the infrared region. The optical properties of the VO2 composite film were investigated from variable-temperature infrared spectra (Figure 10). Figure 10a represents the infrared transmittance of the VO2 composite film during the heating process. It can be seen that the transmittance decreases significantly with an increase in temperature, corresponding to the semiconductor–metal phase transition of VO2. Figure 10b displays the hysteresis loop of the normalized transmittance–temperature plot at a fixed wavelength of 9 μm. A significant change in the transmittance up to 31% across the phase transition is observed, suggesting that 1D W-doped VO2 (M) has a good infrared-switching property. The corresponding first-order derivative curves are shown in the inset of Figure 10b. It is worth noting that the phase-transition temperatures of the heating transition and cooling transition are 45.2 °C (T1) and 29.4 °C (T2), respectively. According to the calculated results, the Tc of the film is 37.3 °C (Tc = (T1 + T2)/2); this result is in agreement with that of the DSC analysis shown in Figure 8, and the hysteresis width (ΔT) of the film is 15.8 °C (ΔT = T1 − T2).

Figure 10c–e shows that the VO2 composite film displays three switching windows in the middle-infrared region: window I, 3.5–5.5 μm; window II, 8.5–12.5 μm; and window III, 14.5–25 μm. This means that the VO2 hybrid film can achieve middle-infrared switching in multiple regions, and the switching region could be regulated by choosing different polymer matrices. It is worth noting that infrared switching of the composite film at around 37.3 °C is useful for limiting the infrared thermal radiation and thus can be used to regulate RT. Moreover, the employed roller coating method is useful for large-scale fabrication of VO2 composite films. So, we believe that the present work is significant for the practical application of VO2 (M) in infrared smart windows.
3. EXPERIMENTAL SECTION

3.1. Synthesis of W-Doped VO$_2$ (M). A certain amount of TA (C$_{6}$H$_{7}$O$_{7}$ purchased from Pangang Group Steel Vanadium & Titanium Co., Ltd.) was dissolved in 80 mL of deionized water. Then, 1.092 g of vanadium pentoxide and the requisite quantity of ammonium tungstate were added to the solution, with constant magnetic stirring for 1 h. Thereafter, the mixture was transferred to a 100 mL Teflon-lined stainless steel autoclave, sealed, maintained at 240 °C for 48 h, and cooled to RT naturally. The resulting black precipitate was collected by centrifugation and washed two times with deionized water and ethanol, respectively, before drying in a thermostatic drying oven at 60 °C for 12 h.

3.2. Fabrication of VO$_2$ (M) Composite Films. As-prepared W-doped VO$_2$ (M) (5 wt %) was dispersed in tetraethyl orthosilicate with continuous stirring. Then, 2 wt % silane coupling agent and 2 wt % dispersant were added, with constant magnetic stirring for 10 min. Thereafter, an appropriate quantity of poly(ethyl methacrylate) was added gradually into the above solution, which was stirred for another 10 min. Finally, the slurry was uniformly cast onto a PET substrate using a stainless steel coating bar and dried at 80 °C for 1 min.

3.3. Characterization. The crystalline structures of the products were determined by DX2000 X-ray powder diffraction with Cu Kα1, 2 radiation (λ = 0.154056 nm). The morphologies of products were investigated by SEM (S-4800; Hitachi) and TEM (Tecnai G2 F20 S-TWIN; FEI), with an accelerating voltage of 200 kV. The vanadium valence states and chemical composition of W-doped VO$_2$ were detected by XPS (Kratos, England) using an Al Kα ($h\nu = 1486.6$ eV) exciting source. The FTIR spectrum from 400–4000 cm$^{-1}$ was measured on a Tensor 27 (Buker, Germany) spectrometer, using pressed KBr tablets. The phase-transition behavior of the products was analyzed by DSC (DSC1; Mettler toledo) in the temperature range from 0 to 100 or 200 °C, at a heating rate of 10 °C/min using a liquid-nitrogen cooling unit. The optical properties of the films were also investigated by FTIR attached an adapted heating controlled unit, and then the hysteresis loops of W-doped VO$_2$ film was received by collecting the transmittance of films at a fixed wavelength (9 μm).

4. CONCLUSIONS

In summary, the A, M, and R controlled phases of VO$_2$ were prepared for the first time by the one-step hydrothermal synthesis method. TA was used as a new reductant, and W doping was performed to facilitate the formation of VO$_2$ (M) and regulate its phase-transition temperature. The VO$_2$ underwent a two-stage phase evolution from pure-phase VO$_2$ (A) nanobelts to VO$_2$ (M) nanorods, instead of the conventional three-stage B–A–M phase evolution. Furthermore, the T$_c$'s of the VO$_2$ (M) nanorods were regulated systematically, with a reduction efficiency of about 24.52 °C/atom % W. A flexible W-doped VO$_2$ (M) composite film on PET was fabricated using the convenient roller coating method. This composite film exhibited significant middle-infrared transmission switching of up to 31%, with a phase-transition temperature of about 37.3 °C. Moreover, the VO$_2$ composite film can achieve middle-infrared switching in multiple regions. In this work, we developed a one-step hydrothermal method for the synthesis of VO$_2$ (M) nanorods and provided significant insights into their applications in large-scale infrared smart windows.

■ AUTHOR INFORMATION

Corresponding Authors
E-mail: shiqiwu@scu.edu.cn (Q.S.).
E-mail: huangwanxia@scu.edu.cn. Tel: +86-28-8540-5781 (W.H.).

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (Grants 61271075, 11404226) and Scientific Research Funds for Introduced Talent of Sichuan University (Grant 2082204194234).

■ REFERENCES

(1) Cao, C.; Gao, Y.; Luo, H. Pure Single-Crystal Rutile Vanadium Dioxide Powders: Synthesis, Mechanism and Phase-Transformation Property. J. Phys. Chem. C 2008, 112, 18810–18814.
(2) Yang, Z.; Ko, C.; Ramanathan, S. Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions. Annu. Rev. Mater. Res. 2011, 41, 337–367.
(3) Qazilbash, M. M.; Brehm, M.; Chae, B. G.; Ho, P. C.; Andreev, G. O.; Kim, B. J.; Yun, S. J.; Balatsky, A. V.; Maple, M. B.; Keilmann, F.; Kim, H. T.; Basov, D. N. Mott Transition in VO$_2$: Revealed by Infrared Spectroscopy and Nano-Imaging. Science 2007, 318, 1750–1753.
(4) Whittaker, L.; Patridge, C. J.; Banerjee, S. Microscopic and Nanoscale Perspective of the Metal–Insulator Phase Transitions of VO$_2$: Some New Twists to an Old Tale. J. Phys. Chem. Lett. 2011, 2, 745–758.
(5) Powell, M. J.; Quesada-Cabrera, R.; Taylor, A.; Teixeira, D.; Papakonstantinou, I.; Palgrave, R. G.; Sankar, G.; Parkin, I. P. Intelligent Multifunctional VO$_2$/SiO$_2$/TiO$_2$ Coatings for Self-Cleaning, Energy-Saving Window Panels. Chem. Mater. 2016, 28, 1369–1376.
(6) Yajima, T.; Nishimura, T.; Toriumi, A. Positive-Bias Gate-Controlled Metal-Insulator Transition in Ultrathin VO$_2$ Channels with TiO$_2$ Gate Dielectrics. Nat. Commun. 2015, 6, 10104.
(7) Li, M.; Wu, H.; Zhong, L.; Wang, H.; Luo, Y. Y.; Li, G. H. Active and Dynamic Infrared Switching of VO$_2$ (M) Nanoparticle Film on ITO Glass. J. Mater. Chem. C 2016, 4, 1579.
(8) Liu, K.; Cheng, C.; Sub, J.; Tang-Kong, R.; Fu, D. Y.; Lee, S.; Zhou, J.; Chua, L. O.; Wu, J. Q. Powerful, Multifunctional Torsional Micromuscles Activated by Phase Transition. Adv. Mater. 2014, 26, 1746–1750.
(9) Nakano, M.; Shibuya, K.; Okuyama, D.; Hatano, T.; Ono, S.; Kawasaki, M.; Iwasa, T.; Tokura, Y. Collective Bulk Carrier Delocalization Driven by Electrostatic Surface Charge Accumulation. Nature 2012, 487, 459–62.
(10) Li, S. Y.; Niklasson, G. A.; Granqvist, C. G. Nanothermochromics: Calculations for VO$_2$ Nanoparticles in Dielectric Hosts Show Much Improved Luminous Transmittance and Solar Energy Transmittance Modulation. J. Appl. Phys. 2010, 108, No. 063525.
(11) Shi, J.; Zhou, S.; You, B.; Wu, L. Preparation and Thermochromic Property of Tungsten-Doped Vanadium Dioxide Particles. Sol. Energy Mater. Sol. Cells 2007, 91, 1856–1862.
(12) Zhou, Y.; Huang, A.; Li, Y.; Ji, S.; Gao, Y.; Jin, P. Surface Plasmon Resonance Induced Excellent Solar Control for VO$_2$/SiO$_2$ Nanorod-Based Thermochromic Foils. Nanoscale 2013, 5, 9208–13.
(13) Nagabhushana, G. P.; Chandrappa, G. T. Facile Solution Combustion Synthesis of Monoclinic VO$_2$: A Unique and Versatile Approach. J. Mater. Chem. A 2013, 1, 11539.
(14) Cheng, C.; Guo, H.; Amini, A.; Liu, K.; Fu, D.; Zou, J.; Song, H. Self-Assembly and Horizontal Orientation Growth of VO₂ Nanowires. Sci. Rep. 2014, 4, No. 5456.

(15) Wang, Y.; Zhu, J.; Yang, W.; Wen, T.; Pravica, M.; Liu, Z.; Hou, M.; Fei, Y.; Kang, L.; Lin, Z.; Jin, C.; Zhao, Y. Reversible Switching Between Pressure-Induced Amorphization and Thermal-Driven Recrystallization in VO₂ (B) Nanosheets. Nat. Commun. 2016, 7, 12214.

(16) Powell, M. J.; Marchand, P.; Denis, C. J.; Bear, J. C.; Dann, J. A.; Parkin, S. P. Direct and Continuous Synthesis of VO₂ Nanoparticles. Nanoscale 2015, 7, 18686–93.

(17) Son, J.-H.; Wei, J.; Cobden, D.; Cao, G.; Xia, Y. Hydrothermal Synthesis of Monodinic VO₂ Micro- and Nanocrystals in One Step and Their Use in Fabricating Inverse Opals. Chem. Mater. 2010, 22, 3043–3050.

(18) Cao, C.; Gao, Y.; Kang, L.; Luo, H. Self-Assembly and Synthesis Mechanism of Vanadium Dioxide Hollow Microspheres. CrystEngComm 2010, 12, 4048.

(19) Gao, Y.; Cao, C.; Dai, L.; Luo, H.; Kannehia, M.; Ding, Y.; Wang, Z. L. Phase and Shape Control of VO₂ Nanocrystals by Antimony Doping. Energy Environ. Sci. 2012, 5, 8708.

(20) Li, D.; Li, M.; Pan, J.; Luo, Y.; Wu, H.; Zhang, Y.; Li, G. Hydrothermal Synthesis of Mo-Doped VO₂/TiO₂ Composite Nanocrystals with Enhanced Thermochromic Performance. ACS Appl. Mater. Interfaces 2014, 6, 6555–61.

(21) Chen, R.; Miao, L.; Liu, C.; Zhou, J.; Cheng, H.; Asaka, T.; Iwamoto, Y.; Tanemura, S. Shape-Controlled Synthesis and Influence of W Doping and Oxygen Nonstoichiometry on the Phase Transition of VO₂. Sci. Rep. 2015, 5, No. 14087.

(22) Théobald, F. Étude Hydrothermale du Système VO₂·H₂O. J. Less-Common Met. 1977, 53, 55–71.

(23) Wang, C.; Q.; Shao, J.; Liu, X. L.; Chen, Y.; Xiong, W. M.; Zhang, X. Y.; Zheng, Y. Phase Transition Characteristics in the Conductivity of VO₂ (A) Nanowires: Size and Surface Effects. Phys. Chem. Chem. Phys. 2016, 18, 10262–9.

(24) Liu, P.; Zhu, K.; Gao, Y.; Wu, Q.; Liu, J.; Qin, J.; Gu, Q.; Zheng, H. Ultra-Long VO₂ (A) Nanorods Using the High-Temperature Mixing Method Under Hydrothermal Conditions: Synthesis, Evolution and Thermochromic Properties. CrystEngComm 2013, 15, 2753.

(25) Zhang, L.; Xia, F.; Song, Z.; Webster, N. A.; Luo, H.; Gao, Y. Synthesis and Formation Mechanism of VO₂ (B) Nanoplatelets with Intrinsic Peroxide-Like Activity. RSC Adv. 2015, 5, 61371–61379.

(26) Xu, H. F.; Li, Y.; Wei, N.; Jin, S. W. From VO₂ (B) to VO₂ (A) Nanorods: Hydrothermal Synthesis, Evolution and Optical properties in VO₂·H₂C₂O₄·H₂O System. Optik 2014, 125, 6078–6081.

(27) Ji, S.; Zhang, F.; Jin, P. Formation Mechanisms and Crystallographic Characteristics of Metastable VO₂ (A) Nanofiber Hydrothermally Synthesised in VO₂·H₂C₂O₄·H₂O system. J. Phys. Chem. Solids 2012, 73, 762–769.

(28) Liu, Y.; Liu, C.-y.; Zhang, Z.-y. Effects of Carboxylic acids on the Microstructure and Performance of Titania Nanocrystals. Chem. Eng. J. 2008, 138, 596–601.

(29) Hadian-Dehkordi, L.; Hosseini-Monfared, H. Enantioselective Aerobic Oxidation of Olefins by Magnette Nanoparticles at Room Temperature: a chiral carboxylic acid strategy. Green Chem. 2016, 18, 497–507.

(30) Yan, J.; Mo, S.; Nie, J.; Chen, W.; Shen, X.; Hu, J.; Hao, G.; Tong, H. Hydrothermal Synthesis of Monodisperse Fe₃O₄ Nanoparticles Based on Modulation of Tartaric Acid. Colloids Surf., A 2009, 340, 109–114.

(31) Yang, H.; Liu, L.; Liang, H.; Wei, J.; Yang, Y. Phase-Controlled Synthesis of Monodisperse Porous In₂O₃ Nanospheres via an Organic Acid-Assisted Hydrothermal Process. CrystEngComm 2011, 13, 5011.

(32) Su, X.; Xiao, F.; Li, Y.; Jian, J.; Sun, Q.; Wang, J. Synthesis of Uniform WO₃ Square Nanoplates via an Organic Acid-Assisted Hydrothermal Process. Mater. Lett. 2010, 64, 1232–1234.

(33) Ota, J.; Srivastava, S. K. Polypyrrole Coating of Tartaric Acid-Assisted Synthesized Bi₂SO₃ Nanorods. J. Phys. Chem. C 2007, 111, 12260–12264.

(34) Yu, W.; Li, S.; Huang, C. Phase Evolution and Crystal Growth of VO₂ Nanostuctures under Hydrothermal Reactions. RSC Adv. 2016, 6, 7113–7120.

(35) Wu, C.; Feng, F.; Feng, J.; Dai, J.; Yang, J.; Xie, Y. Ultrafast Solid-State Transformation Pathway from New-Phased Goethite VOÖH to Paramontroseite VO₂ to Rutile VO₂ (R). J. Phys. Chem. C 2011, 115, 791–799.

(36) Zhang, S.; Shang, B.; Yang, J.; Yan, W.; Wei, S.; Xie, Y. From VO₂ (B) to VO₂ (A) Nanobelts: First Hydrothermal Transformation, Spectroscopic Study and First Principles Calculation. Phys. Chem. Chem. Phys. 2011, 13, 15873–81.

(37) Chen, S.; Liu, J.; Wang, L.; Luo, H.; Gao, Y. Unraveling Mechanism on Reducing Thermal Hysteresis Width of VO₂ by Ti Doping: A Joint Experimental and Theoretical Study. J. Phys. Chem. C 2014, 118, 18938–18944.

(38) Chen, S.; Dai, L.; Liu, J.; Gao, Y.; Liu, X.; Chen, Z.; Zhou, J.; Cao, C.; Han, P.; Luo, H.; Kanahira, M. The Visible Transmittance and Solar Modulation Ability of VO₂ Flexible Foils Simultaneously Improved by Ti doping: An Optimization and First Principle Study. Phys. Chem. Chem. Phys. 2013, 15, 17537–43.

(39) Shen, N.; Chen, S.; Chen, Z.; Liu, X.; Cao, C.; Dong, B.; Luo, H.; Gao, Y. The Synthesis and Performance of Zr-Doped and W-Zr-Codoped VO₂ Nanoparticles and Derived Flexible Foils. J. Mater. Chem. A 2014, 2, 15087.

(40) Dai, L.; Chen, S.; Liu, J.; Gao, Y.; Zhou, J.; Chen, Z.; Cao, C.; Luo, H.; Kanehira, M. F-doped VO₂ Nanoparticles for Thermochromic Energy-Saving Foils with Modified Color and Enhanced Solar-Heat Shielding Ability. Phys. Chem. Chem. Phys. 2013, 15, 11723–11729.

(41) Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; De Gryse, R. Determination of the V₂p XPS Binding Energies for Different Vanadium Oxidation States (V⁴⁺ to V⁵⁺). J. Electron Spectrosc. Relat. Phenom. 2004, 135, 167–175.

(42) Li, L.; Wang, X.; Shao, C.; Tan, R.; Liu, Y. W Doped Vanadium Oxide Nanotubes: Synthesis and Characterization. Mater. Lett. 2007, 61, 1328–1332.

(43) Ji, S.; Zhang, F.; Jin, P. Preparation of High Performance Pure Single Phase VO₂ Nanopower by Hydrothermally Reducing the VO₂ Clusters. Sol. Energy Mater. Sol. Cells 2011, 95, 3520–3526.

(44) Kang, L.; Gao, Y.; Luo, H. A Novel Solution Process for the Synthesis of VO₂ Thin Films with Excellent Thermochromic Properties. ACS Appl. Mater. Interfaces 2009, 1, 2211–8.

(45) Peng, Z.; Jiang, W.; Liu, H. Synthesis and Electrical Properties of Tungsten-Doped Vanadium Dioxide Nanopowders by Thermolysis. J. Phys. Chem. C 2007, 111, 1119–1122.

(46) Alvisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933.
of Vanadium Dioxide VO₂: Electrical and Infrared Properties. *J. Phys. Chem. Solids* 2001, 62, 1229–1238.

52. Li, W.; Ji, S.; Li, Y.; Huang, A.; Luo, H.; Jin, P. Synthesis of VO₂ Nanoparticles by a Hydrothermal-Assisted Homogeneous Precipitation Approach For Thermochromic Applications. *RSC Adv.* 2014, 4, 13026–13033.

53. Manning, T. D.; Parkin, I. P.; Pemble, M. E.; Sheel, D.; Vernardou, D. Intelligent Window Coatings: Atmospheric Pressure Chemical Vapor Deposition of Tungsten-Doped Vanadium Dioxide. *Chem. Mater.* 2004, 16, 744–749.

54. Burkhardt, W.; Christmann, T.; Franke, S.; Kriegseis, W.; Meister, D.; Meyer, B. K.; Niessner, W.; Schalch, D.; Scharmann, A. Tungsten and Fluorine Co-Doping of VO₂ Films. *Thin Solid Films* 2002, 402, 226–231.

55. Blackman, C. S.; Piccirillo, C.; Binions, R.; Parkin, I. P. Atmospheric Pressure Chemical Vapour Deposition of Thermochromic Tungsten Doped Vanadium Dioxide Thin Films for Use in Architectural Glazing. *Thin Solid Films* 2009, 517, 4565–4570.

56. Piccirillo, C.; Binions, R.; Parkin, I. P. Synthesis and Characterisation of W-Doped VO₂ by Aerosol Assisted Chemical Vapour Deposition. *Thin Solid Films* 2008, 516, 1992–1997.

57. Voti, R. L.; Larciprete, M. C.; Leahu, G.; Sibilia, C.; Bertolotti, M. Optimization of Thermochromic VO₂ Based Structures with Tunable Thermal Emissivity. *J. Appl. Phys.* 2012, 112, No. 034305.