Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

Ji-Sen Li1,2,*, Yu Wang1,*, Chun-Hui Liu1, Shun-Li Li1, Yu-Guang Wang2, Long-Zhang Dong1, Zhi-Hui Dai1, Ya-Fei Li1 & Ya-Qian Lan1

Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites.
To address the energy crisis and ameliorate environmental contamination, researchers have devoted considerable attention to hydrogen as promising alternative to fossil fuels. Electrochemical water splitting to produce hydrogen, or the hydrogen evolution reaction (HER), is the most economical and sustainable method for large-scale hydrogen production. Achieving this goal requires inexpensive electrocatalysts with high efficiency for the HER. Although the best electrocatalysts are Pt or Pt-based materials, their high cost and low abundance substantially hamper their large-scale utilization. Thus, the development of low-cost and earth-abundant non-noble-metal catalysts to replace Pt is an important and urgently needed for practical applications.

Because of their Pt-like catalytic behaviours, Mo-based compounds, such as Mo₂C⁷⁻¹⁰, Mo₅N¹¹⁻¹³, MoS₂ (refs 14–17), and others¹⁸⁻²⁰ have attracted substantial interest as a new class of electrocatalysts. To further enhance the HER activity, Mo-based compounds have been anchored onto conductive supports, such as carbon nanosheets (NSs)²¹⁻²³ and carbon nanotubes (CNTs)¹¹,²²,²⁴, which not only prevent Mo-based compounds from aggregating but also increase the dispersion of active sites. Among these conductive supports, reduced graphene oxide (RGO), particularly nitrogen (N)-doped RGO, has garnered much attention because of its excellent electron transport properties and chemical stability.²⁶,²⁷ Therefore, RGO-supported Mo-based compounds appear to be highly active and stable electrocatalysts. However, carbonization at high-reaction temperature during synthesis procedures leads to the sintering and aggregation of Mo-based-compound nanoparticles (NPs), thus reducing their number of exposed active sites and their specific surface area. In addition, due to its strong π-stacking and hydrophobic interactions, RGO NSs usually aggregate, which hinders their practical application. Preventing the RGO from re-stacking and the Mo-based compound NPs from aggregating during the synthesis of a porous uniform thin layer RGO-supported Mo-based electrocatalysts is critical to enhancing their catalytic performance.

We developed a new approach to integrate polyoxometalates (POMs) and pyrrole (Py) on graphene substrates via a “one-pot” method to obtain ternary POMs–polypyrrole/RGO (POMs–PPy/RGO) nanohybrid sheets with a uniform distribution. As an important family of transition-metal oxide clusters with excellent redox features, POMs provided an essential oxidizing medium for the oxidative polymerization of Py and the POMs finally were converted into “heteropoly blue”. Heteropoly blue can be used as a highly localized reducing agent and can further react with graphene oxide (GO) to restore the original POMs. With the polymerization of the Py monomers, POMs were dispersed into the PPy framework. Meanwhile, RGO was homogeneously dispersed and segregated by both the POMs and PPy during the synthesis of POMs–PPy/RGO. Thus, RGO-supported Mo-based catalysts prepared with POMs–PPy/RGO as a precursor may efficiently hinder the Mo sources and graphene from aggregating during the process of forming the RGO-supported NPs. To the best of our knowledge, reports on POMs, PPy and RGO ternary hybrids by a green and one-pot redox relay reaction are rare. More importantly, the coupled hybrid with both Mo₂C and RGO has not been previously prepared with a ternary hybrid as the precursor.

In this work, we carefully design and fabricate a two-dimensional (2D) coupled hybrid consisting of Mo₂C encapsulated by N, phosphorus (P)-codoped carbon shells and N, P-codoped RGO (denoted as Mo₂C@NPC/NPRGO) using a PMo₁₂ (H₃PMo₁₂O₄₀)–PPy/RGO nanocomposite as the precursor. Notably, the entire polymerization and the reductive reactions are triggered by PMo₁₂ without any additional oxidants or reductants, leading to a synthetic process that is green, efficient and economical. PPy was used as both the carbon and nitrogen sources as well as the reducing agent for GO. Three main advantages of this method are attributed to the Mo₂C@NPC/NPRGO hybrid: (1) due to the unique structure of PMo₁₂–PPy/RGO, the Mo₂C NPs are nanosized and uniformly embedded in the carbon matrix without aggregation; (2) the Mo₂C NPs are coated with carbon shells, which effectively prevent Mo₂C NPs from aggregating or oxidizing and impart them with fast electron transfer ability; and (3) owing to the heteroatom dopants (N, P), a large number of active sites are exposed. Overall, taking advantage of the synergistic catalytic effects, the Mo₂C@NPC/NPRGO catalyst exhibits excellent electrocatalytic activity for the HER, with a low onset overpotential of 0 mV (vs reversible hydrogen electrode (RHE)), a small Tafel slope of 33.6 mV dec⁻¹, and excellent stability in acidic media. Its HER catalytic activity, which is comparable to that of commercial Pt–C catalyst, even superior to those of the best reported non-noble-metal catalysts. In addition, we further investigate the nature of catalytically active sites for the HER using density functional theory (DFT). This approach provides a perspective for designing 2D nanohybrids with transition-metal carbides and RGO as HER catalysts.

Results

Catalyst synthesis and characterization. Mo₂C@NPC/NPRGO was synthesized as follows: (1) the PMo₁₂–PPy/RGO nanocomposite was synthesized via a green one-pot redox relay reaction. The nanocomposite was then carbonized under a flow of ultrapure N₂ at 900 °C for 2 h at a heating rate of 5 °C min⁻¹. Finally, the obtained samples were acid etched in 0.5 M H₂SO₄ for 24 h with continuous agitation at 80 °C to remove unstable and inactive species. The etched samples were thoroughly washed until the pH of the wash water was neutral (Fig. 1).

Figure 2a shows a scanning electron microscopy (SEM) image of PMo₁₂–PPy/RGO. The rough surfaces and wrinkled edges on the sheet-like structures were due to the intercalation and

![Figure 1 | Schematic illustration of the synthetic process of Mo₂C@NPC/NPRGO. (a) Synthesis of PMo₁₂–PPy/RGO via a green one-pot redox relay reaction. (b) Formation of Mo₂C@NPC/NPRGO after carbonizing at 900 °C.](image-url)
polymerization of Py. A transmission electron microscopy (TEM) image of PMoO₁₂–PPy/RGO revealed that a large amount of PPy/PMoO₁₂ NPs were homogeneously coated onto the RGO NSs and that voids were present (Fig. 2b). As evident in Fig. 2c and d, the morphologies of Mo₂C@NPC/NPRGO were similar to that of PMoO₁₂–PPy/RGO after carbonization. The nanosized Mo₂C NPs with diameters of ~2–5 nm were uniformly decorated on the RGO sheets at a high density, which was attributed to the distinct porous structure of PMoO₁₂–PPy/RGO. The high-resolution TEM (HRTEM) image exhibited clear lattice fringes with an interplanar distance of 0.238 nm, corresponding to the (111) planes of Mo₂C (Fig. 2e)³⁷. Notably, the Mo₂C NPs were embedded in the carbon shells, which can efficiently prevent the aggregation and/or excessive growth of Mo₂C NPs²². Figure 2f shows the scanning TEM (STEM) and corresponding energy dispersive X-ray spectroscopy (EDX) elemental mapping images, which confirmed that C, Mo, N, and P were distributed on the Mo₂C@NPC/NPRGO surface, consistent with the EDX spectrum (Supplementary Fig. 1). These results confirm the successful synthesis of the Mo₂C@NPC/NPRGO nanocomposite.

For comparison, the nanohybrid of Mo₂C encapsulated by N, P-codoped carbon (defined as Mo₂C@NPC) was also synthesized through a similar preparation procedure without GO. Supplementary Fig. 2a shows aggregation of PPy/PMoO₁₂ NPs. Supplementary Fig. 2b and c reveals that Mo₂C NPs tended to agglomerate during the heat treatment to form large NPs, which decreased the exposed active surface. Supplementary Fig. 2d demonstrates the STEM and EDX elemental mapping images of Mo₂C@NPC. These data verified that the Mo₂C@NPC material contained C, N, P, and Mo elements, consistent with the EDX results (Supplementary Fig. 1b). Hence, these results sufficiently confirm that the presence of GO plays an important role in the generation of highly dispersed and nanosized Mo₂C NPs.

Supplementary Fig. 3 shows the powder X-ray diffraction patterns of Mo₂C@NPC and Mo₂C@NPC/NPRGO. The broad peak at ~25° was ascribed to carbon²⁸,³⁹. The other peaks located at 37.9, 43.7, 61.6 and 75.6° were indexed to the (111), (200), (220) and (311) planes of Mo₂C (JCPDS, No. 15-0457), respectively; these peaks were broad and exhibited low intensity because of the smaller crystallites of Mo₂C or Mo₂C coated with amorphous carbon²¹,⁴⁰,⁴¹. Beside, the degrees of graphitization of the two catalysts were analyzed by Raman spectra (Supplementary Fig. 4). As is well-known, the ratio between the D (1,350 cm⁻¹) and G band (1,580 cm⁻¹) intensities (I_D/I_G) is an important criterion to judge the degree of the graphitization²°. Compared to Mo₂C@NPC, the I_D/I_G of Mo₂C@NPC/NPRGO is higher, implying that more defects formed on the RGO sheets, thus favoring the accessibility of more active sites and enhancing the electrocatalytic performance. The Brunauer–Emmett–Teller (BET) surface areas of Mo₂C@NPC and Mo₂C@NPC/NPRGO calculated by the N₂ sorption isotherms were 55 and 190 m² g⁻¹, respectively (Supplementary Fig. 5a). Mo₂C@NPC showed a microporous structure, with pore sizes mainly in the range from 1 to 2 nm (Supplementary Fig. 5b), whereas the corresponding pore size distribution of Mo₂C@NPC/NPRGO was mainly concentrated in the range from 1 to 10 nm, which was characteristic of a microporous and mesoporous structure (Supplementary Fig. 5c).

Overall, the large surface area and enriched porous structures efficiently facilitate electrolyte penetration and charge transfer⁹.

X-ray photoelectron spectroscopy (XPS) analyses of Mo₂C@NPC/NPRGO catalysts were carried out to elucidate their valence states and compositions. As observed, the XPS spectrum of Mo₂C@NPC/NPRGO (Supplementary Fig. 6) indicated the presence of C, N, O, P and Mo in the catalyst. The deconvoluted XPS spectrum is shown in Fig. 3a, and the main peak at 284.6 eV implies that the graphite carbon is the majority species²². The deconvolution of N1s energy level signals for Mo₂C@NPC/NPRGO revealed the peaks at 398.6 and 401.3 eV, which were assigned to pyridinic and graphitic N (Fig. 3b), respectively,²¹,²⁷. From Fig. 3c, it can be seen that the P2p peaks at about 133.5, and 134.8 eV were attributed to P–C and P–O bonding, respectively¹⁸,²⁸. Besides, the high-resolution Mo 3d XPS revealed that the peak at 228.8 eV was attributable to Mo2⁺, stemming from Mo₂C. In parallel, as a consequence of surface oxidation, the peaks at 232.05 and 235.2 were attributable to MoO₃ and that at 232.7 eV was assignable to MoO₂ (refs 8,21); both of these species are inactive toward the HER (Fig. 3d). For comparison, Mo₂C@NPC is shown in Supplementary Fig. 7. All of these data were similar to those for Mo₂C@NPC/NPRGO. The corresponding atomic percentages of the different catalysts measured by XPS are listed in Supplementary Table 1.

Electrocatalytic HER performance. A three-electrode system was adopted to evaluate the electrocatalytic activities of Mo₂C@NPC/NPRGO toward the HER in 0.5 M H₂SO₄ at 100 mV s⁻¹. For comparison, Mo₂C@NPC and commercial Pt–C (20 wt% Pt on carbon black from Johnson Matthey) were also assessed. The corresponding polarization curves without IR compensation are shown in Fig. 4a. All potentials in this work are reported vs RHE. As expected, the commercial Pt–C displayed the highest
electrocatalytic activity, with an onset overpotential of nearly zero30. The Mo\textsubscript{2}C@NPC catalyst exhibited far inferior HER activity. Impressively, Mo\textsubscript{2}C@NPC/NPRGO exhibited the lowest onset overpotential of 0 mV, approaching the performance of commercial Pt–C. Moreover, it was clearly observed that the cathodic current rose sharply with more negative potentials. Generally, the potential value for a current density of 10 mA cm–2 is an important reference because solar-light-

Figure 3 | Compositional characterization of the Mo\textsubscript{2}C@NPC/NPRGO. XPS high-resolution scans of (a) C 1s, (b) N 1s, (c) P 2p and (d) Mo 3d electrons of Mo\textsubscript{2}C@NPC/NPRGO.

Figure 4 | HER activity characterization. (a,b) Polarization curves and Tafel plots of Mo\textsubscript{2}C@NPC, Mo\textsubscript{2}C@NPC/NPRGO and Pt–C. (inset: the production of H\textsubscript{2} bubbles on the surface of Mo\textsubscript{2}C@NPC/NPRGO). (c) CVs of Mo\textsubscript{2}C@NPC/NPRGO with different rates from 20 to 200 mV s–1. Inset: The capacitive current at 0.32 V as a function of scan rate for Mo\textsubscript{2}C@NPC/NPRGO. (d) Polarization curves of Mo\textsubscript{2}C@NPC/NPRGO initially and after 1,000 CV cycles. Inset: Time-dependent current density curve of Mo\textsubscript{2}C@NPC/NPRGO under a static overpotential of 48 mV for 10 h.
coupled HER apparatuses usually operate at 10–20 mA cm\(^{-2}\) under standard conditions (1 sun, AM 1.5)\(^4\). To achieve this current density, Mo\(_2\)C@NPC requires an overpotential of 260 mV. Strikingly, Mo\(_2\)C@NPC/NPRGO required only \(\sim 34\) mV to achieve a 10 mA cm\(^{-2}\) current density, even superior to commercial Pt–C (40 mV) (Table 1). To the best of our knowledge, this overpotential is superior to those of all previously reported non-noble-metal electrocatalysts for the HER, such as Mo\(_2\)S\(_2/\)CoSe\(_2\) (ref. 15), Mo\(_2\)O\(_2\) (ref. 18), Mo\(_2\)C/CNT\(^{24}\) and CoNi@NC\(^{40}\) (Supplementary Table 2).

To elucidate the HER mechanism, Tafel Plots were fitted to Tafel equation (that is, \(\eta = \beta \log (j/j_0) + a\), where \(\beta\) is the Tafel slope, and \(j_0\) is the current density), as shown Fig. 4b. The Tafel slope of commercial Pt–C was \(\sim 30\) mV dec\(^{-1}\), which was in agreement with the reported value, thus supporting the validity of our electrochemical measurements\(^30\). The Tafel slope of Mo\(_2\)C@NPC/NPRGO was 33.6 mV dec\(^{-1}\), which indicated higher performance than that of Mo\(_2\)C@NPC (126.4 mV dec\(^{-1}\)). Meanwhile, the Tafel slope of Mo\(_2\)C@NPC/NPRGO suggested that hydrogen evolution on the Mo\(_2\)C@NPC/NPRGO electrode probably proceeds via a Volmer–Tafel mechanism, where the recombination is the rate-limiting step\(^17\). The exchange current density (\(j_0\)) was extrapolated from the Tafel plots. Notably, Mo\(_2\)C@NPC/NPRGO displayed the largest \(j_0\) of \(1.9 \times 10^{-3}\) A cm\(^{-2}\), which was nearly three times larger than the \(j_0\) of Pt–C (0.39 \(\times 10^{-3}\) A cm\(^{-2}\) (Table 1) and was substantially greater than those of other recently reported non-noble-metal catalysts (Supplementary Table 2). This performance of Mo\(_2\)C@NPC/NPRGO demonstrates favourable HER kinetics at the Mo\(_2\)C@NPC/NPRGO/electrolyte interface.

The electrochemical double-layer capacitance (EDLC, \(C_{\text{dl}}\)) was measured to investigate the electrochemically active surface area. Cyclic voltammetry (CV) was performed in the region from 0.27 to 0.37 V at rates varying from 20 to 200 mV s\(^{-1}\) (Fig. 4c and Supplementary Fig. 8). The \(C_{\text{dl}}\) of Mo\(_2\)C@NPC/NPRGO (17.9 mF cm\(^{-2}\)) was \(\sim 195\) times larger than that of Mo\(_2\)C@NPC (0.092 mF cm\(^{-2}\)). Thus, the large \(j_0\) value of Mo\(_2\)C@NPC/NPRGO may benefit from both its large BET surface area and its large EDLC.

To gain further insight into the electrocatalytic activity of Mo\(_2\)C@NPC/NPRGO for the HER, we performed electrochemical impedance spectroscopy (EIS). The Nyquist plots of the EIS responses are shown in Supplementary Fig. 9. Compared with the Nyquist plot of Mo\(_2\)C@NPC, that of Mo\(_2\)C@NPC/NPRGO showed a much smaller semicircle, suggesting that Mo\(_2\)C@NPC/NPRGO has lower impedance. This result proves that the catalyst affords markedly faster HER kinetics due to the presence of the RGO support.

Long-term stability is also critical for HER catalysts. To probe the durability of the Mo\(_2\)C@NPC/NPRGO catalyst, continuous CV was performed between -0.2 and 0.2 V at a 100 mV s\(^{-1}\) scan rate in 0.5 M H\(_2\)SO\(_4\) solution (Fig. 4d). As observed, the polarization curve for Mo\(_2\)C@NPC/NPRGO remained almost the same after 1,000 cycles. In addition, the durability of Mo\(_2\)C@NPC/NPRGO was also examined by electrolysis at a static overpotential of 48 mV. The inset of Fig. 4d shows that the current density experienced a negligible loss at \(\sim 20\) mA cm\(^{-2}\) for 10 h. For comparison, the durability of the Mo\(_2\)C@NPC catalyst was examined by the same methods (Supplementary Fig. 10). This is reconfirming that Mo\(_2\)C@NPC and Mo\(_2\)C@NPC/NPRGO are stable electrocatalysts in acidic solutions.

In control experiments, we investigated the effect of the PMO\(_{12}\) content on electrocatalytic performance. Two other catalysts with different PMO\(_{12}\) contents (1.1 and 3.3 g) were synthesized (denoted as Mo\(_2\)C@NPC/NPRGO-1.1 and Mo\(_2\)C@NPC/NPRGO-3.3). The morphology, structure and composition of these two catalysts were studied by SEM, TEM, HRTEM, STEM, EDX, elemental mapping, powder X-ray diffraction patterns and XPS in detail (Supplementary Figs 11–16). The HER activities of Mo\(_2\)C@NPC/NPRGO-1.1 and -3.3 were also evaluated using the same measurements. As seen from Fig. 5a,b, Mo\(_2\)C@NPC/NPRGO showed the lowest onset overpotential and the smallest Tafel slope among the three samples. We speculate that these results are likely related to the amount and distribution of active sites. Because of the lower amount of Mo\(_2\)C NPs in Mo\(_2\)C@NPC/NPRGO-1.1, the corresponding electrocatalytic activity was poorer than that of Mo\(_2\)C@NPC/NPRGO. In contrast, a larger number of Mo\(_2\)C NPs in Mo\(_2\)C@NPC/NPRGO-3.3 aggregated together, which is also unfavourable for the HER. These results demonstrate that the amount of PMO\(_{12}\) substantially influences the HER performance.

We subsequently studied the influence of carbonization temperature under the given conditions. Supplementary Figs 17–22 show the morphology, structure and composition of the two samples carbonized at 700 and 1,100 °C (defined as PMO\(_{12}\)-PPy/RGO-700 and Mo\(_2\)C@NPC/NPRGO-1100), respectively. The onset overpotentials of PMO\(_{12}\)-PPy/RGO-700 and Mo\(_2\)C@NPC/NPRGO-1100 were 20 and 27 mV, respectively, and the Tafel slopes were 48.4 and 70.1 mV dec\(^{-1}\), respectively (Fig. 5c and d). Among these catalysts, the Mo\(_2\)C@NPC/NPRGO catalyst exhibited the optimal HER activity, possibly because active sites of Mo\(_2\)C were not produced when PMO\(_{12}\)-PPy/RGO is carbonized at 700 °C; the high–carbonization temperature led to substantial sintering and aggregation of Mo\(_2\)C NPs, which further reduced the density of highly active sites. Meanwhile, the N content decreased with increasing carbonization temperature (Supplementary Table 1). All of these results were consistent with the SEM, TEM, XRD, thermogravimetric analysis and XPS results (Supplementary Figs 17–22). Therefore, in this work, the selection of the correct PMO\(_{12}\) content and carbonization temperature was critical to forming high-HER active sites.

Theoretical investigation. The aforementioned experimental results demonstrated that the Mo\(_2\)C@NPC/NPRGO composite exhibits excellent electrocatalytic activity toward the HER because of the synergistic effects of Mo\(_2\)C and NPC/NPRGO. To elucidate the mechanism underlying the superior HER activity of the Mo\(_2\)C@NPC/NPRGO composite, we performed a series of DFT calculations (Supplementary Fig. 23 and Supplementary Table 3). Theoretically, the HER pathway can be depicted as a three-state

Catalyst	Onset potential (mV vs RHE)	Overpotential at 10 mA cm\(^{-2}\) (mV vs RHE)	\(j_0\) (mA cm\(^{-2}\))	Tafel slope (mV dec\(^{-1}\))
Mo\(_2\)C@NPC	137	260	\(3.16 \times 10^{-3}\)	126.4
Mo\(_2\)C@NPC/NPRGO	0	34	1.09	33.6
Pt–C	0	40	0.39	30

HER, \(H_2\) evolution reaction; Pt–C, 20 wt% Pt on carbon black from Johnson–Matthey; RHE, reversible hydrogen electrode. \(j_0\) represents exchange current density that was calculated from Tafel curves using extrapolation method.

Table 1 | Comparison of catalytic parameters of different HER catalysts.
different mass of PMo12 (1.1, 2.2 and 3.3 g). Therefore, the active sites for the HER should be composed mainly of pyridinic N atoms and C atoms of graphene rather than D release. Moreover, N-doped graphene exhibited low catalytic performance because of the foreseeable difficulty of hydrogen evolution catalyst should have a free energy of adsorbed H of approximately zero ($\Delta G_{H^*} \approx 0$), which can provide a fast proton/electron-transfer step as well as a fast hydrogen release process. Because only trace amounts of P were present in the Mo2C@NPC/NPRGO hybrid compared to the N content, we investigated only the effect of N doping (graphitic N and pyridinic N) on the catalytic effect of the hybrids. Figure 6 shows the calculated free energy diagram for the HER in various studied systems.

According to our computational results, pristine graphene had an endothermic ΔG_{H^*} of 1.82 eV, implying an energetically unfavourable interaction with hydrogen. Therefore, the HER can barely proceed on pristine graphene because of the slow proton/electron transfer. On the other hand, the (001) surface of Mo2C had a strong interaction with H, as indicated by the exothermic ΔG_{H^*} of -0.82 eV, which would subsequently lead to poor HER performance because of the foreseeable difficulty of hydrogen release. Moreover, N-doped graphene exhibited low catalytic activity toward the HER. Specifically, the ΔG_{H^*} values for graphitic-N- and pyridinic-N-doped graphene were 0.89 and -2.04 eV, respectively.

However, the catalytic activity of graphene and N-doped graphene were substantially improved when they were anchored to the surface of Mo2C. For example, the ΔG_{H^*} values for Mo2C@C and Mo2C@C-graphitic N were 0.41 and 0.69 eV, respectively, which were much lower than those of suspended graphene (1.82 eV) and N-doped graphene (0.89 eV). The ΔG_{H^*} of Mo2C@C (0.41 eV) indicated that the graphene C atoms in the hybrid also play an important role in the HER activity. In particular, the synergistic effect between Mo2C and C-pyridinic N, Mo2C@C-pyridinic N had a favourable ΔG_{H^*} (-0.22 eV) for the adsorption and desorption of hydrogen. Therefore, the active sites for the HER should be composed mainly of pyridinic N atoms and C atoms of graphene rather than graphitic N atoms. We note here that, according to the results of XPS analysis, the major type of N in Mo2C@NPC/NPRGO was pyridinic N, which means that Mo2C@NPC/NPRGO would manifest a high density of active sites and would consequently present a high-current density at a low overpotential for the HER. Overall, the experimental and theoretical results verified that as-synthesized Mo2C@NPC/NPRGO is an unexpected and highly efficient HER electrocatalyst.

Discussion

In view of the aforementioned considerations, the amazing HER activities of the Mo2C@NPC/NPRGO are postulated to originate from the following reasons: (1) the small size of Mo2C NPs favors the exposure of an abundance of available active sites, which may enhance the catalytic activity for the HER; (2) the introduction of heteroatoms (N, P) into the carbon.
structure results in charge density distribution and asymmetry spin, thus enhancing the interaction with H+ (refs 18,27). Especially, pyridinic N is favourable for highly efficient catalytic performance3,4,41; (3) as an advanced support, RGO can increase the dispersion of PMo12 to further obtain highly dispersed Mo2C during the carbonization process. Meanwhile, the outstanding electrical conductivity of RGO facilitates charge transfer in the catalyst12,25; (4) the robust conjugation between Mo2C and NPC/NPRGO provides a resistance-less path favourable for fast electron transfer. The carbon shells may hamper the aggregation of Mo2C NPs11 and promote electron penetration from Mo2C to RGO22. Furthermore, the geometric confinement of Mo2C inside the carbon shells can also enhance the catalytic activity for the HER40 and (5) the unique structure of Mo2C@NPC/NPRGO catalyst exhibits potent HER activity. Mo2C@NPC/NPRGO nanocomposite exhibits the best HER to the excellent HER activity of the Mo2C@NPC/NPRGO catalysts prepared with PMo12–PPy/RGO as the precursor may efficiently hinder Mo sources and graphene from aggregating during the formation of Mo2C NPs. The obtained Mo2C@NPC/NPRGO nanocomposite exhibits the best HER performance and high stability as an electrocatalyst in an acidic electrolyte reported to date. Theoretical studies demonstrated that the synergistic effect between Mo2C and C-pyridinic N contributes to the excellent HER activity of the Mo2C@NPC/NPRGO nanocomposite, in accordance with the experimental results. This proof-of-concept study not only offers novel hydrogen-evolving electrocatalysts with excellent activity but also opens new avenues for the development of other 2D coupled nanohybrids with transition-metal carbides and RGO using POMs/conducting polymer/RGO as a precursor. These catalysts can also be explored as highly efficient electrocatalysts for oxygen reduction reaction (ORR), HER and lithium batteries.

Methods

Synthesis of PMo12–PPy/RGO and Mo2C@NPC/NPRGO hybrids. In a typical synthesis, GO NSs were pre-synthesized by chemical oxidation exfoliation of natural graphite flakes using a modified Hummers method45. The obtained GO NSs were dispersed in de-ionized water by ultrasonication to form a suspension with the concentration of 1 mg ml−1. Around 12.5 ml of such GO suspension and 150 ml of 2 mM PMo12 solution were added into a clean three-necked flask, respectively, and mixed uniformly under a strong ultrasonication bath. Subsequently, Py monomer solution by dispersing 230 m of 2 mM Py in 15 ml of de-ionized water, was slowly dropped into the above mixed PMo12/GO suspension. With the addition of Py monomer solution, the reaction system gradually turned from yellow-brown to dark blue and a black precipitate began to generate after about 5 min. Finally, the reactor was transferred to an oil bath and allowed to react for 30 h at 50 °C under vigorous magnetic stirring. After separated centrifugation and washed with deionized water and anhydrous ethanol for several times, the black PMo12–PPy/RGO ternary nanohybrids were obtained, which were dried in vacuum at 50 °C. The XRD patterns were recorded on a D/max 2500VL/PC diffractometer (Japan) equipped with graphite monochromated Cu Kα radiation (λ = 1.54056 Å). The Raman spectra of dried samples were obtained using a Renishaw Raman microscope (SERS 3000). SEM and TEM images of the catalysts were recorded on JSM-5160LV-Vantage-typed energy spectrometer. XPS was used to determine the surface chemistry of the catalysts. XPS measurements were performed using a Kratos Axis Ultra DLD spectrometer. The XPS photoelectron spectra were obtained by incident monochromatized Al Kα radiation and the C 1s peak at 284.8 eV as internal standard.

Synthesis of PMo12–PPy and Mo2C@NPC composites. The synthetic procedure is very similar to PMo12–PPy/RGO without GO. Likewise, the preparation of Mo2C@NPC nanocomposite is identical with that of Mo2C@NPC/NPRGO. Thereafter, 150 ml of 2 mM PMo12 solution were added into a clean three-necked flask, respectively, and mixed uniformly under a strong ultrasonication bath. Subsequently, Py monomer solution by dispersing 230 m of 2 mM Py in 15 ml of de-ionized water, was slowly dropped into the above mixed PMo12/GO suspension. With the addition of Py monomer solution, the reaction system gradually turned from yellow-brown to dark blue and a black precipitate began to generate after about 5 min. Finally, the reactor was transferred to an oil bath and allowed to react for 30 h at 50 °C under vigorous magnetic stirring. After separated centrifugation and washed with deionized water and anhydrous ethanol for several times, the black PMo12–PPy/RGO ternary nanohybrids were obtained, which were dried in vacuum at 50 °C. The XRD patterns were recorded on a D/max 2500VL/PC diffractometer (Japan) equipped with graphite monochromated Cu Kα radiation (λ = 1.54056 Å). The Raman spectra of dried samples were obtained using a Renishaw Raman microscope (SERS 3000). SEM and TEM images of the catalysts were recorded on JSM-5160LV-Vantage-typed energy spectrometer. XPS was used to determine the surface chemistry of the catalysts. XPS measurements were performed using a Kratos Axis Ultra DLD spectrometer. The XPS photoelectron spectra were obtained by incident monochromatized Al Kα radiation and the C 1s peak at 284.8 eV as internal standard.

Electrochemical measurements. All electrochemical experiments were conducted on a CHI 760D electrochemical station (Shanghai Chenhua Co., China) in a standard three electrode cell in 0.5 M H2SO4 at room temperature. A glassy carbon pseudo-reference electrode47–48. The generalized gradient approximation parameterized by Perdew–Burke–Ernzerhof functional49 and a plane-wave cutoff energy of 360 eV were used in all computations. The electronic structure calculations were performed with a Fermi-level smearing of 0.1 eV for all surface calculations and 0.01 eV for all gas-phase species. The Brillouin zone was sampled with 3 × 3 × 1 k-points. The convergence of energy and forces were set to 1 × 10−5 eV and 0.05 eV Å−1, respectively. A vacuum region of around 12 Å was set along the z direction to avoid the interaction between periodic images. More computational details are provided in Supplementary Note 1.

References

1. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).
2. Wang, J. et al. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28, 215–230 (2016).
3. Semenov, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007).
4. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).
5. Zheng, Y. et al. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014).
6. Levy, R. B & Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547–549 (1973).
7. Wu, H. B., Xia, B. Y., Yu, L., Yu, X. Y. & Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carbonization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 6, 6512 (2015).
8. Zhao, Y., Kamiya, K., Hashimoto, K. & Nakanishi, S. In situ CO2-emission assisted synthesis of molybdenum carbide nanomaterial as hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137, 110–113 (2015).
9. Ma, F. X., Wu, H. B., Xia, B. Y., Xu, C. Y. & Lou, X. W. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem. Int. Ed. 54, 15395–15399 (2015).
10. Liao, L. et al. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7, 387–392 (2014).
11. Youn, D. H. et al. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube–graphene hybrid support. ACS Nano 8, 5164–5173 (2014).
12. Chen, W. F. et al. Biomass-derived electrocatalytic composites for hydrogen evolution. Energy Environ. Sci. 6, 1818–1826 (2013).
13. Ma, L., Ting, L. R. L., Molinari, V., Giordano, C. & Yeo, B. S. Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A 3, 4851–4858 (2015).
14. Wang, H. et al. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 8, 566–575 (2015).
15. Gao, M. R. et al. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 6, 5982 (2015).
16. Merki, D. & Hu, X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878–3888 (2011).
17. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).
18. Tang, Y. J. et al. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 54, 12928–12932 (2015).
19. Vrudel, H. & Hu, X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Int. Ed. 51, 12703–12706 (2012).
20. Faber, M. S. & Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519–3542 (2014).
21. Ma, R. et al. Ultrafine molybdenum carbide nanoparticles composites with carbon as a highly active hydrogen evolution electrocatalyst. Angew. Chem. Int. Ed. 54, 14723–14727 (2015).
22. Liu, Y. et al. Coupling MoC with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew. Chem. Int. Ed. 54, 10752–10757 (2015).
23. Cui, W. et al. MoC nanoparticles decorated graphic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal. 4, 2658–2661 (2014).
24. Chen, W. F. et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 6, 943–951 (2013).
25. Seeb, M. M. Doping of Si/Ge-CNT/graphene composites as efficient catalytic electrodes for quantum-dot-sensitized solar cells. Adv. Energy Mater. 4, 1300775 (2014).
26. Duan, J., Chen, S., Chambers, B. A., Andersson, G. G. & Qiao, S. Z. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv. Mater. 27, 4234–4241 (2015).
27. Duan, J., Chen, S., Jaromiec, M. & Qiao, S. Z. Porous CuN4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9, 931–940 (2015).
28. Yan, H. et al. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 6325–6329 (2015).
29. He, C. & Tao, J. Synthesis of nanostuctured clean surface molybdenum carbides on graphene sheets as efficient and stable hydrogen evolution reaction catalysts. Chem. Commun. 51, 8323–8325 (2015).
30. Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).
31. Kamat, P. V. Graphene-based nanorarchitectures. anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 1, 520–527 (2009).
32. Huang, C., Li, C. & Shi, G. Graphene based catalysts. Energy Environ. Sci. 5, 8848–8868 (2012).
33. Du, D. Y., Qin, J. S., Li, S. L., Su, Z. M. & Lan, Y. Q. Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem. Soc. Rev. 43, 4615–4632 (2014).
34. Cronin, L. & Müller, A. From serendipity to design of polynoxometalates at the nanoscale, aesthetic beauty and applications. Chem. Soc. Rev. 41, 7333–7334 (2012).
35. Wang, T. et al. Electrochemically fabricated polypyrrole and MoS2 copolymer films as a highly active hydrogen evolution electrocatalyst. Adv. Mater. 26, 3761–3766 (2014).
36. Zhou, D. & Han, B. H. Graphene-based nanoporous materials assembled by mediation of polynoxometalate nanoparticles. Adv. Funct. Mater. 20, 2717–2722 (2010).
37. Ma, R., Hao, W., Ma, X., Tian, Y. & Li, Y. Catalytic exfoliation of kraft lignin into high-value small-molecular chemicals over a nanostructured 2D unsupported molybdenum carbide catalyst. Chem. Soc. Rev. 53, 7310–7315 (2014).
38. Zhou, W. et al. N-doped carbon-wrapped cobalt nanoparticles on N-doped graphene nanosheets for high-efficiency hydrogen production. Chem. Mater. 27, 2026–2032 (2015).
39. Wu, R., Zhang, J., Shi, Y., Liu, D. & Zhang, B. Metallic WO2–carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 3, 6983–6986 (2015).
40. Deng, J., Ren, P., Deng, D. & Bao, X. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 2100–2104 (2015).
41. Zheng, W. et al. Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition. J. Am. Chem. Soc. 135, 3458–3464 (2013).
42. Himmernann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).
43. Lai, L. et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5, 7936–7942 (2012).
44. Rao, C. V., Cabrera, C. R. & Ishikawa, Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction. J. Phys. Chem. Lett. 1, 2622–2627 (2010).
45. Lee, J. H. et al. Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7, 9386–9374 (2013).
46. Kresse, G. & Hafner, J. A. initio molecular dynamics for liquid metals. Phys. Rev. B 47, 556–561 (1993).
47. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 19793–19799 (1994).
48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21371099, 21522305 and 21471080), the NSF of Jiangsu Province of China (No. BK20130043 and BK20141445), the Natural Science Foundation of Shandong Province (No. ZR2014BQ037), the Youshe Science Foundation of Jining University (No. 2014QNJK08), the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials.

Author contributions

Y.-Q.L. and J.-S.L. conceived the idea. J.-S.L., C.-H.L., Y.-G.W. and L.-Z.D. designed the experiments and characterizations. Y.-Q.L. and J.-S.L. conceived the idea. J.-S.L., C.-H.L., Y.-G.W. and L.-Z.D. designed the experiments and characterizations. Y.-Q.L. and J.-S.L. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Li, J.-S. et al. Coupled Molybdenum Carbide and Reduced Graphene Oxide Electro catalysts for Efficient Hydrogen Evolution. Nat. Commun. 7:11204 doi: 10.1038/ncomms11204 (2016)