Continuous variable versus EIT-based quantum memories

Z. Kurucz\(^1\,\,^2\) and M. Fleischhauer\(^1\)

\(^1\)Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
\(^2\)Department of Nonlinear and Quantum Optics, Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49 H-1525 Budapest, Hungary

(Dated: Dec. 14, 2007)

We discuss a general model of a quantum memory for a single light mode in a collective mode of atomic oscillators. The model includes interaction Hamiltonians that are of second order in the canonical position and momentum operators of the light- and atomic oscillator modes. We also consider the possibility of measurement and feedback. We identify an interaction Hamiltonian that leads to an ideal mapping by pure unitary evolution and compare several schemes which realize this mapping using a common continuous-variable description. In particular we discuss schemes based on the off-resonant Faraday effect supplemented by measurement and feedback and proper preparation of the atoms in a squeezed state and schemes based on off-resonant Raman coupling as well as electromagnetically induced transparency (EIT).

I. INTRODUCTION

One of the key elements of quantum communication schemes \(^1\) and network quantum computers \(^3\,\,^4\) is a high-fidelity, reversible quantum memory. In recent years substantial progress has been made in the design \(^5\,\,^6\,\,^7\,\,^8\,\,^9\,\,^10\,\,^11\,\,^12\,\,^13\,\,^14\,\,^15\,\,^16\,\,^17\,\,^18\) and experimental realization \(^19\,\,^20\,\,^21\,\,^22\,\,^23\,\,^24\,\,^25\,\,^26\,\,^27\,\,^28\,\,^29\) of such memories based on ensemble of atoms or other quantum radiators as storage unit and photons as information carrier. In particular two distinct approaches to a quantum light-matter interface have been put forward: one making use of the off-resonant Faraday effect to transfer a qubit encoded in the polarization state of a light field to a macroscopic atomic spin of the atomic ensemble \(^2\,\,^3\,\,^4\,\,^5\,\,^6\,\,^7\,\,^8\,\,^9\,\,^10\,\,^11\,\,^12\,\,^13\,\,^14\,\,^15\,\,^16\,\,^17\,\,^18\) and another one using Raman interactions and electromagnetically induced transparency (EIT) \(^11\,\,^12\,\,^13\,\,^14\,\,^15\,\,^16\,\,^17\,\,^18\,\,^19\,\,^20\,\,^21\,\,^22\,\,^23\,\,^24\,\,^25\,\,^26\,\,^27\,\,^28\,\,^29\). Currently substantial work is devoted to the optimization of these schemes which is crucial for potential large-scale implementations. An obstacle in this effort is the rather different theoretical frameworks used to describe these approaches. We here put forward a common description of the Faraday and Raman schemes, which can be used to compare their advantages and drawbacks.

We begin with a review of general properties of a single-mode quantum memory in terms of continuous light and matter variables recovering ideal Hamiltonians for a purely unitary realization of the map. We then discuss the possibility to realize an ideal one-way map from light to atoms using Hamiltonians that are not equivalent to the ideal one, such as the Faraday interaction Hamiltonian, by means of measurement and feedback techniques as well as proper state preparation of the atomic ensemble \(^6\,\,^20\). It is shown that the rather demanding conditions on measurement and state preparation can be substantially reduced in double-pass configurations \(^10\) and can be totally eliminated in a triple-pass scheme.

We then discuss physical implementations of the different mapping approaches starting from the \(J = -1/2 \leftrightarrow J = +1/2\) scheme of Ref. \(^20\) realizing a Faraday coupling. We then show that an off-resonant Raman coupling in a \(J = n \leftrightarrow J = m\) configuration allows to implement both the Faraday coupling Hamiltonian and the ideal mapping Hamiltonian. Finally we discuss the quantum memory based on EIT \(^15\) and show that this scheme corresponds to an ideal mapping Hamiltonian when a proper spin polarized (but not squeezed) initial state of the atomic ensemble is considered.

The paper is organized as follows. In Sec. III we consider a simple model for quantum memories in terms of atomic and light field quadrature variables. In Sec. \(\text{III}\) we discuss physical systems that can be used to realize Faraday-type, off-resonant Raman-type, and EIT interaction Hamiltonians. Sec. \(\text{IV}\) summarizes our results.

II. REALIZATIONS OF THE IDEAL MAP USING UNITARY EVOLUTION, MEASUREMENT, AND FEEDBACK

We consider an abstract model of a reversible memory for the quantum state of a light mode in an ensemble of atoms. The light mode (system \(L\)) is described in terms of the canonical quadrature variables \(\hat{X}_L\) and \(\hat{P}_L\). We assume that the quantum memory (system \(A\)) to which we intend to transfer the quantum state can be described by a similar set of continuous variables \(\hat{X}_A\) and \(\hat{P}_A\) with \([\hat{X}_A, \hat{P}_A] = i\), \(\hbar = 1\). The latter is the case, e.g., for a large ensemble of initially polarized spins, if the excitation probability of each individual spin is small. The time evolution of the two quantum systems can be described in the Heisenberg picture by a map that connects the dynamical variables of the systems at some initial time to those at a final time \(t\): \((\hat{X}_A(0), \hat{P}_A(0), \hat{X}_L(0), \hat{P}_L(0)) \rightarrow (\hat{X}_A(t), \hat{P}_A(t), \hat{X}_L(t), \hat{P}_L(t))\). For an ideal quantum memory, we require the mapping to be linear in the quadrature variables and complete in the sense that the variables of one subsystem are mapped only to those of the other.
That is, employing the vector notation
\[\mathbf{\dot{y}} = (\hat{X}_A, \hat{P}_A, \hat{X}_L, \hat{P}_L)^T, \] (1)
the map has the compact form
\[\mathbf{\dot{y}}_{\text{out}} = \mathbf{M} \mathbf{y}_{\text{in}} \quad \text{with} \quad \mathbf{M} = \begin{pmatrix} 0 & M_1 \\ M_2 & 0 \end{pmatrix}, \] (2)
with \(M_i \) being 2 \times 2 symplectic, real matrices. The matrices need to be symplectic in order to conserve commutation relations.

To implement this map we consider a Hamiltonian evolution that may be supplemented by measurement and feedback processes. To ensure the linearity of the map, the Hamiltonian should be of at most second order in the quadrature variables (or in the corresponding annihilation and creation operators). Specifically, we consider pure harmonic oscillators with quadratic interaction between them:
\[\hat{H} = \hat{H}_A + \hat{H}_L + \hat{H}_{\text{int}}, \] (3)
\[\hat{H}_A = \frac{\omega_A}{2} \left(\hat{X}_A^2 + \hat{P}_A^2 \right) = \omega_A \left(\hat{a}_A^\dagger \hat{a}_A + \frac{1}{2} \right), \] (4)
\[\hat{H}_L = \frac{\omega_L}{2} \left(\hat{X}_L^2 + \hat{P}_L^2 \right) = \omega_L \left(\hat{a}_L^\dagger \hat{a}_L + \frac{1}{2} \right), \] (5)
\[\hat{H}_{\text{int}} = p \hat{X}_A \hat{X}_L + q \hat{X}_A \hat{P}_L + r \hat{P}_A \hat{X}_L + s \hat{P}_A \hat{P}_L, \] (6)
where \(\omega_A \) and \(\omega_L \) are the oscillator frequencies and the real parameters \(p, q, r, \) and \(s \) characterize the interaction. These parameters may have explicit time dependence.

A. Purely unitary evolution

Let us first consider the question under what conditions an ideal quantum memory map can be realized by pure unitary evolution \[30, 31\]. For this we assume that the free Hamiltonian \(\hat{H}_0 = \hat{H}_A + \hat{H}_L \) commutes with the interaction Hamiltonian,
\[[\hat{H}_0(t), \hat{H}_{\text{int}}(t)] = 0. \] (7)
With this restriction, the free Hamiltonian can be eliminated from the equations of motion. Indeed, let us express operators of the Heisenberg picture \((\hat{A}_H(t)) \) in the frame rotating according to the free Hamiltonian: \(\hat{A}(t) = \hat{U}_0(t) \hat{A}_H(t) \hat{U}_0^\dagger(t) \), where \(\hat{U}_0(t) \) denotes the unitary operator of the interaction-free time evolution. Thus, the equation of motion for operators in the rotating frame reads
\[\frac{d}{dt} \hat{A}(t) = i[\hat{H}_{\text{int}}(t), \hat{A}(t)]. \] (8)
If we further assume that the interaction Hamiltonian commutes at different times, \([\hat{H}_{\text{int}}(t), \hat{H}_{\text{int}}(t')] = 0 \), then the time evolution operator corresponding to the interaction can be written in an exponential form with no time ordering necessary. This assumption together with (7) necessarily implies exact resonance between the atomic and light systems \((\omega_A = \omega_L = \omega) \) and that the interaction Hamiltonian is of the form \(\hat{H}_{\text{int}}(t) = \alpha(t) \hat{H}_1 \) with
\[\hat{H}_1 = \sin \xi (\hat{X}_A \hat{X}_L + \hat{P}_A \hat{P}_L) + \cos \xi (\hat{P}_A \hat{X}_L - \hat{X}_A \hat{P}_L), \] (9)
that is, \(\hat{H}_{\text{int}} \) can have explicit time dependence only through \(\alpha(t) \). Then Eq. (5) can formally be solved using the Baker-Campbell-Hausdorff formula
\[\hat{A}(t) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\int_0^t d\tau \alpha(\tau) \right)^n \hat{A}_n, \] (10)
where \(\hat{A}_n = (-i)^n[[[\hat{A}(0), \hat{H}_1], \hat{H}_1], \ldots] \) is proportional to the \(n \)-fold commutator of \(\hat{A}(0) \) with \(\hat{H}_1 \). It is easy to see that the commutators of the quadrature variables \(\mathbf{y} \) with the interaction Hamiltonian (9) are linear in the same set of quadratures, namely, we have
\[[\mathbf{y}, \hat{H}_1] = i \mathbf{C} \mathbf{y} \quad \text{and} \quad \dot{\mathbf{y}}_n = \mathbf{C} \dot{\mathbf{y}}_{n-1} = \mathbf{C}^n \mathbf{y}, \] (11)
where
\[\mathbf{C} = \begin{pmatrix} 0 & -\mathbf{R}^{-1} \\ \mathbf{R} & 0 \end{pmatrix} \quad \text{and} \quad \mathbf{R} = \begin{pmatrix} \cos \xi & -\sin \xi \\ \sin \xi & \cos \xi \end{pmatrix}. \] (12)
Using the series (11) and recognizing that \(\mathbf{C}^2 = -\mathbf{1} \), we find the linear relation between the quadratures at time \(t \) and the initial time
\[\mathbf{y}(t) = \begin{pmatrix} \cos \Phi(t) \mathbf{1} + \sin \Phi(t) \begin{pmatrix} 0 & -\mathbf{R}^{-1} \\ \mathbf{R} & 0 \end{pmatrix} \end{pmatrix} \mathbf{y}(0), \] (13)
with
\[\Phi(t) = \int_0^t d\tau \alpha(\tau). \] (14)
We see that perfect quantum memory mapping is achieved after an interaction time \(T \) such that the area of coupling is \(\Phi(T) = (2n + 1)\pi/2 \), (with \(n \in \mathbb{Z} \)). In this case one has
\[\mathbf{y}(T) = \pm \begin{pmatrix} 0 & -\mathbf{R}^{-1} \\ \mathbf{R} & 0 \end{pmatrix} \mathbf{y}(0). \] (15)

Regarding the possibility of physical realizations of the interaction Hamiltonian (9), two different values of \(\xi \) are of particular importance. For \(\xi = 0 \), we have
\[\hat{H}_{\text{int}}(t) = \alpha(t) \left(\hat{P}_A \hat{X}_L - \hat{X}_A \hat{P}_L \right). \] (16)
If the envelope \(\alpha(t) \) is chosen such that \(\Phi(T) = \pi/2 \) then we arrive at an ideal quantum memory map
\[\hat{X}_A(T) = \hat{X}_L, \quad \hat{P}_A(T) = \hat{P}_L, \quad \hat{X}_L(T) = -\hat{X}_A, \quad \hat{P}_L(T) = -\hat{P}_A. \] (17)
We can also consider the storing process in which the \hat{X} and P quadratures of the memory system are interchanged with respect to the previous transformation. This corresponds to $\xi = \pi/2$ and the interaction Hamiltonian

$$\hat{H}_{\text{int}}(t) = \alpha(t) \left(\hat{X}_A \hat{X}_L + \hat{P}_A \hat{P}_L \right)$$

(18)

leads to the map

$$\hat{X}_A(T) = \hat{P}_L, \quad \hat{P}_A(T) = -\hat{X}_L, \quad \hat{X}_L(T) = \hat{P}_A, \quad \hat{P}_L(T) = -\hat{X}_A,$$

(19)

which is again the map of an ideal quantum memory.

B. Single-pass scheme with feedback and initial spin squeezing

A quantum memory for light, which is not based entirely on unitary evolution but is rather an approximate simulation of the Hamiltonian (13), was proposed and experimentally demonstrated in [20]. The light-matter interaction there is due to the Faraday effect and is described by the Hamiltonian

$$\hat{H}_0 = \text{const.}, \quad \hat{H}_1 = \hat{P}_A \hat{P}_L.$$

(20)

See Sec. III A for a possible derivation of (20). In this case the matrix C cannot be represented in the form (12) and the unitary evolution will simply shift the position operators by an amount proportional to the momentum of the other system as well as to interaction time t, while the momenta are constants of motion:

$$\hat{X}_A(t) = \hat{X}_A + t \hat{P}_L, \quad \hat{P}_A(t) = \hat{P}_A, \quad \hat{X}_L(t) = \hat{X}_L + t \hat{P}_A, \quad \hat{P}_L(t) = \hat{P}_L.$$

(21)

One recognizes that only the momentum quadrature of the light mode is transferred to the atomic ensemble. To also map the position quadrature to the ensemble the unitary evolution was complemented in Ref. [20] by a homodyne measurement of the outgoing light quadrature \hat{X}_L and the measurement result x was fed back by applying a momentum displacement of $-x/t$ on system A. As a consequence of the measurement, one can formally write the c-number x in place of $\hat{X}_L(t)$ and rearrange (21) to conclude that after measurement and feed-back:

$$\hat{X}_A^{\text{mem}} = \hat{X}_A + t \hat{P}_L, \quad \hat{P}_A^{\text{mem}} = -\frac{1}{t} \hat{X}_L.$$

(22)

If the atomic ensemble were initially prepared in a position eigenstate, i.e., in an infinitely squeezed state, the operator \hat{X}_A in (22) could be replaced by a c-number. The resulting map would in this case ideally transfer the complete state of light to the atomic ensemble.

To verify these statements in a more rigorous way, we calculate the state of the quantum memory after the storage and the storage fidelity in terms of Wigner functions. The atomic and light systems are initially disentangled, so the two-particle Wigner function is of the product form

$$W_0(x_A, p_A; x_L, p_L) = W_A(x_A, p_A) W^\text{in}(x_L, p_L),$$

(23)

After the transformation (21), the new state is given by

$$W'(x_A, p_A; x_L, p_L) = W_0(x_A - t p_L, p_A; x_L - t p_A, p_L).$$

(24)

Then the quadrature \hat{X}_L' of the outgoing light is measured. For an ideal measurement, the projection corresponding to the outcome x is $\Pi_x \otimes \Pi_x$, where $\Pi_x = \bra{x}\otimes LL\ket\bra{x}\otimes LL$ and its Wigner function is $\Pi_x(x'_L, p'_L) = \delta(x'_L - x)$. The (unnormalized) conditional atomic state can be obtained by a von Neumann projection. The feedback is described by a shift in the atomic momentum $p'_A = p_A' + x/t$ and thus the state of the memory conditioned on the measurement result x and after feedback reads:

$$W^\text{mem}_x(x', p_A') = \int dx_L' dp_L' W_A(x_A' - tp_L', p_A' + x/t) \times W^\text{in}(x_L' - tp_A' - x, p_L')\Pi_x(x'_L, p'_L).$$

(25)

The norm of (25) gives the probability distribution $P(x)$ of the measurement outcome x. In general, $P(x)$ has explicit dependence on the unknown input state $W^\text{in}(x_L, p_L)$. This means that the measurement yields information about the input state of the light which is, therefore, distorted. However, in the special case of an infinitely squeezed initial atomic state $W_A(x_A, p_A) = \delta(x_A - x_0)$, we have a uniform probability distribution $P(x) = 1/t$ and no information about the initial light state is obtained by the measurement. In this ideal case, the final state is

$$W^\text{mem}_x(x, p) = W^\text{in}(-tp, (x - x_0)/t)$$

(26)

that corresponds to an ideal quantum memory mapping regardless of the outcome x.

In reality, however, it is impossible to prepare the atomic ensemble in a position eigenstate, i.e., in an infinitely squeezed state. Furthermore, the measurement will be imperfect in general. In the followings, we discuss the effects of finite initial squeezing and finite detection efficiency. For this we replace the Wigner function Π_x used above with the corresponding expression for a finite detection efficiency [32]

$$\hat{\Pi}_{x,\sigma_y} = \left(2\pi\sigma_y^2\right)^{-1/2} \int dy \exp{-\frac{(y-x)^2}{2\sigma_y^2}} \ket{y}_{LL}\bra{y},$$

$$\Pi_{x,\sigma_y}(x'_L, p'_L) = \left(2\pi\sigma_y^2\right)^{-1/2} \exp{-\frac{(x'_L - x)^2}{2\sigma_y^2}}.$$

(27)

Here σ_y characterizes the resolution of the position measurement, with $\sigma_y = 0$ corresponding to a noiseless, perfect measurement, while a typical experimental value is in the order of $\sigma_y^2 = 2.5 \times 10^{-3}$. Averaging over the
measurement outcome \(x \) gives the memory state

\[
W^\text{mem}(x, p) = \int dx' dp' dx'' W_A(x', p') \times W^\text{in}(-tp + \sigma_x x'', (x - x')/t) \Pi_{0,1}(x'', 0). \tag{28}
\]

Let us consider as the initial atomic state a Gaussian spin squeezed state

\[
W_A(x, p) = \frac{1}{2\pi\sigma_{X,A}\sigma_{P,A}} e^{-\frac{(x-x_0)^2}{2\sigma_{X,A}^2} - \frac{(p-p_0)^2}{2\sigma_{P,A}^2}}. \tag{29}
\]

In the experiment of \cite{20}, it was actually a coherent spin state with \(\sigma_{X,A}^2 = \sigma_{P,A}^2 = \frac{1}{2} \). The imperfect measurement \cite{27} then results the state

\[
W^\text{mem}(x, p) = \frac{1}{2\pi\sigma_{X,A}\sigma_{P,A}} \int dx' dp' e^{-\frac{(x-x_0)^2}{2\sigma_{X,A}^2} - \frac{(p-p_0)^2}{2\sigma_{P,A}^2}} \times W^\text{in}(-tp + x', (x - x_0)/t + p') \tag{30}
\]

for the atomic quantum memory. Compared to the ideal memory state \cite{20}, we have higher uncertainties both in the \(X \) and \(P \) quadratures due to the noisy measurement and the imperfect initial state preparation, respectively. The average fidelity of the storage process can be calculated from the overlap of the ideal \cite{20} and real \cite{30} output states,

\[
F = 2\pi \int dx dp W^\text{in}(-tp, (x - x_0)/t) W^\text{mem}(x, p). \tag{31}
\]

For a Gaussian state of the input light field

\[
W^\text{in}(x, p) = \frac{1}{2\pi\sigma_{X,L}\sigma_{P,L}} e^{-\frac{(x-x_0)^2}{2\sigma_{X,L}^2} - \frac{(p-p_0)^2}{2\sigma_{P,L}^2}}, \tag{32}
\]

the fidelity reads

\[
F = [\sigma_{X,A}^2/t^2 + 2\sigma_{P,L}^2](\sigma_{X,L}^2 + 2\sigma_{X,L}^2)^{-1/2}, \tag{33}
\]

which is about 82% for a coherent spin state and coherent light input (\(\sigma_{X,A}^2 = \sigma_{X,L}^2 = \sigma_{P,L}^2 = 1/2, \sigma_{X} = 0, \) and \(t = 1 \)), as in Ref. \cite{20}. However, direct calculation shows that the fidelity of storage quickly decreases for highly nonclassical states like Schrödinger cat states (see Fig. 1).

We conclude that the single-pass feedback technique provides the perfect quantum memory mapping if and only if the atomic ensemble is initially prepared in an infinitely squeezed spin state \(W_A(x, p_A) = \delta(x - x_0) \) and if the measurement is noiseless.

C. Double-pass schemes

The necessity of preparing the atomic ensemble in a highly squeezed state or performing a measurement with feedback can be avoided in a double-pass scheme with two successive, different unitary evolution \cite{10}. In this scheme, an interaction Hamiltonian identical to \cite{20} is applied first. After a time \(t \), the interaction is suddenly changed to \(H_2 \), so we have

\[
\hat{H}_1 = \hat{P}_A \hat{P}_L, \quad \hat{H}_2 = \hat{X}_A \hat{X}_L, \tag{34}
\]

\[
\hat{X}_A(t + t') = \hat{X}_A(t) + t' \hat{P}_L, \tag{35}
\]

\[
\hat{P}_A(t + t') = (1 - tt') \hat{P}_A - t' \hat{X}_L, \tag{35}
\]

\[
\hat{X}_L(t + t') = \hat{X}_L(t) + t \hat{P}_A, \tag{35}
\]

\[
\hat{P}_L(t + t') = (1 - tt') \hat{P}_L - t' \hat{X}_A. \tag{35}
\]

If the interaction times are adjusted such that \(tt' = 1 \), we directly obtain a mapping like \cite{22}, however, without measurement and feedback,

\[
\hat{X}'_A = \hat{X}_A + t \hat{P}_L, \quad \hat{P}'_A = -\frac{1}{t} \hat{X}_L, \tag{36}
\]

\[
\hat{X}'_L = \hat{X}_L + t \hat{P}_A, \quad \hat{P}'_L = -\frac{1}{t} \hat{X}_A. \tag{36}
\]

Perfect mapping can thus be achieved if the atomic ensemble is initially prepared in an infinitely squeezed state. In such a scheme there is no need for measurement and feedback, and the fidelity of the memory is \(F = (\sigma_{X,A}^2/t^2 + 1)^{-1/2} \) for coherent input light.

Alternatively, as will be shown in the following, the necessity of an initial atomic squeezing can be avoided by using measurement and feedback. Indeed, a measurement of the quadrature \(\hat{P}'_L \) can project the initial atomic state to a squeezed state—thus appropriately performing the atomic state preparation after the interaction \cite{21}. If the measurement of \(\hat{P}'_L \) gives a value \(p \), we can replace \(\hat{X}_A \) by \(-tp \). Applying a position displacement of \(tp \) of
the atomic position, \(\hat{X}_A^{\text{mem}} = \hat{X}_A^t + tp \), we obtain an ideal quantum memory map
\[
\hat{X}_A^{\text{mem}} = t\hat{P}_L, \quad \hat{P}_A^{\text{mem}} = -\frac{1}{t}\hat{X}_L.
\]
Note that an imperfect measurement similar to [27] also introduces noise in the position quadrature,
\[
W^{\text{mem}}(x, p) = \frac{1}{\sqrt{2\pi \sigma_N^2}} \int dx' W^{\text{in}}(-tp, x/t + x') e^{-\frac{x'^2}{2\sigma_N^2}},
\]
(38)
However, light measurement can be performed with far much higher accuracy than spin squeezing.
Thus in the double-pass scheme one can get rid of either the measurement and feedback or the preparation of the atomic ensemble in a squeezed state.

D. Triple-pass scheme

Finally, we mention that the ideal unitary evolution given in Sec. [11] can be equivalently achieved in a three-pass scheme without measurement and with no initial atomic squeezing. As it was pointed out in [31], a beam splitter like interaction Hamiltonian can be simulated by successively applying the above two kinds of Hamiltonians three times. In fact if we reapply \(\hat{H}_1 \) for a third time, we obtain
\[
\hat{H}_1 = \hat{P}_A\hat{P}_L, \quad \hat{H}_2 = \hat{X}_A\hat{X}_L, \quad \hat{H}_3 = \hat{P}_A\hat{P}_L, \quad \hat{X}_A(t + t' + t'') = (1 - t'(1 - tt'))\hat{X}_A + [t + t''(1 - tt')]\hat{P}_L, \\
\hat{P}_A(t + t' + t'') = (1 - t't'')\hat{P}_A - t'\hat{X}_L, \\
\hat{X}_L(t + t' + t'') = (1 - t't'')\hat{X}_L + [t + t''(1 - tt')]\hat{P}_A, \\
\hat{P}_L(t + t' + t'') = (1 - tt')\hat{P}_L - t'\hat{X}_A.
\]
(40)
Setting \(t = t' = t'' = 1 \) we arrive at the ideal mapping [19]. Let us denote with \(\hat{U} \) the unitary operator describing the time evolution due to the consecutive actions of \(\hat{H}_1, \hat{H}_2, \) and \(\hat{H}_3 \) over periods of time \(t = 1, t' = 1, \) and \(t'' = 1 \), respectively,
\[
\hat{U} = e^{-i\hat{P}_A\hat{P}_L} e^{-i\hat{X}_A\hat{X}_L} e^{-i\hat{P}_A\hat{P}_L},
\]
(41)
and let us denote with \(\hat{U}_{\text{ideal}} \) the unitary evolution corresponding to the Hamiltonian of the ideal quantum memory [18] with \(\alpha(t) = 1 \) over a period of \(T = \pi/2 \),
\[
\hat{U}_{\text{ideal}} = e^{-i\frac{\pi}{2}(\hat{X}_A\hat{X}_L + \hat{P}_A\hat{P}_L)}.
\]
(42)
The two unitary operators have the same effect on the quadrature variables and \(\hat{U} \) and \(\hat{U}_{\text{ideal}} \) are in fact identical,
\[
e^{-i\hat{P}_A\hat{P}_L} e^{-i\hat{X}_A\hat{X}_L} e^{-i\hat{P}_A\hat{P}_L} = e^{-i\frac{\pi}{2}(\hat{X}_A\hat{X}_L + \hat{P}_A\hat{P}_L)}.
\]
(43)

III. PHYSICAL SYSTEMS REALIZING ATOMIC QUANTUM MEMORY

In this section, we analyze three kinds of configurations that can serve as collective atomic quantum memory for light. The first of them is experimentally carried out by Julsgaard et al. [28]. Then we discuss a scheme based on off-resonant Raman scattering that realizes the ideal interaction Hamiltonian [18] directly. Finally, we show that electromagnetically induced transparency (EIT) gives rise to an effective interaction Hamiltonian of type [16].

A. Quantum memory based on Faraday rotation

Let us analyze first a scheme in which the light-matter interaction originates in the paramagnetic Faraday effect [28]: given an ensemble of atoms with macroscopic magnetic moment and shined by a linearly polarized light beam propagating in the direction of the magnetic moment, the plane of light polarization is rotated.

To describe this atom-light interaction, consider an atomic level structure depicted in the inset of Fig. 2 where the two ground levels are off-resonantly coupled to the upper ones by the right and left circularly polarized electromagnetic field modes of the same frequencies \(\omega_R = \omega_L = \omega \). In the experiment of Julsgaard et al. [28], levels (1) and (2) correspond to the Zeeman sublevels \(M_F = \pm 4 \) of the ground state \(6^2S_{1/2} (F = 4) \) of cesium, while the light pulses are detuned to the blue by 700 MHz from the \(6^2S_{1/2} (F = 4) \rightarrow 6^2P_{3/2} (F = 5) \) transition (\(\lambda = 852 \text{ nm} \)).
If the detuning Δ from the atomic transitions is large enough \((g(\hat{a}_R^\dagger \hat{a}_L) \ll \Delta)\), we can adiabatically eliminate the off-resonant excited levels so that the system reduces to an effective two-level atom. The dynamics is then governed by the following effective Hamiltonian,

\[
\hat{H}_0 = \omega (\hat{a}_R^\dagger \hat{a}_L + \hat{a}_L^\dagger \hat{a}_R) + E_0 \sum_{i=1}^{N_A} (|1\rangle_i i\langle 1| + |2\rangle_i i\langle 2|),
\]

where \(N_A\) is the number of atoms and the electric dipole coupling constant for the single-photon transitions is

\[
g = \sqrt{\frac{\omega}{2V}} |\langle 1| \hat{d}_{RL} |4\rangle| = \sqrt{\frac{\omega}{2V}} |\langle 2| \hat{d}_{RL} |3\rangle|.
\]

Note that \((44\text{a})\) is nothing more than the dynamic Stark shift (light shift) of the energy of the lower levels caused by virtual transitions to the off-resonant upper levels.

Let us introduce the quantum mechanical Stokes parameters to describe the polarization state of light,

\[
\hat{S}_x \equiv (\hat{a}_R^\dagger \hat{a}_L + \hat{a}_L^\dagger \hat{a}_R)/2 = (\hat{a}_x^\dagger \hat{a}_x - \hat{a}_y^\dagger \hat{a}_y)/2,
\]

\[
\hat{S}_y \equiv (\hat{a}_R^\dagger \hat{a}_L - \hat{a}_L^\dagger \hat{a}_R)/(2i) = (\hat{a}_x^\dagger \hat{a}_y + \hat{a}_y^\dagger \hat{a}_x)/2,
\]

\[
\hat{S}_z \equiv (\hat{a}_L^\dagger \hat{a}_R - \hat{a}_L^\dagger \hat{a}_L)/2 = (\hat{a}_y^\dagger \hat{a}_x - \hat{a}_x^\dagger \hat{a}_y)/(2i),
\]

\[
\hat{N}_S \equiv (\hat{a}_R^\dagger \hat{a}_R + \hat{a}_L^\dagger \hat{a}_L)/2 = (\hat{a}_x^\dagger \hat{a}_x + \hat{a}_y^\dagger \hat{a}_y)/2.
\]

\(\hat{S}_x\) is the photon number (intensity) difference of the \(x\) and \(y\) linearly polarized light components, \(\hat{S}_y\) is that of the diagonally polarized ones, \(\hat{S}_z\) corresponds to the difference in the right and left circularly polarized components, while \(\hat{N}_S\) is half of the total photon number in the two modes. It is easy to see that they satisfy the standard angular momentum commutation relations \([\hat{S}_x, \hat{S}_y] = i\epsilon_{\alpha\beta\gamma} \hat{S}_\gamma\) and \([\hat{N}_S, \hat{S}_\alpha] = 0\). The annihilation operators \(\hat{a}_x = (\hat{a}_R + \hat{a}_L)/\sqrt{2}\) and \(\hat{a}_y = (\hat{a}_R - \hat{a}_L)/(i\sqrt{2})\) correspond to the linearly polarized components of the light beam. Note that \(\hat{S}\) is not a vector operator, i.e., it does not transform as a vector under rotations.

For the atomic magnetic moment, we can use Schwinger’s representation and introduce the collective atomic quasi-spin variables,

\[
\hat{\sigma}_x \equiv \sum_i (|2\rangle_i i\langle 1| + |1\rangle_i i\langle 2|)/2,
\]

\[
\hat{\sigma}_y \equiv \sum_i (|2\rangle_i i\langle 1| - |1\rangle_i i\langle 2|)/2i,
\]

\[
\hat{\sigma}_z \equiv \sum_i (|2\rangle_i i\langle 2| - |1\rangle_i i\langle 1|)/2,
\]

\[
\hat{N}_\sigma \equiv \sum_i (|2\rangle_i i\langle 2| + |1\rangle_i i\langle 1|)/2,
\]

where \(2\hat{N}_\sigma\) is equal to the number of atoms in the subspace spanned by \(|1\rangle\) and \(|2\rangle\), i.e., \(N_\sigma\) counts the atoms contributing to the phenomenon. Note that unless we have a real spin system, the quasi-spin vector is not a vector operator either because \([\hat{\sigma}_\alpha, \hat{F}_\beta] \neq i\epsilon_{\alpha\beta\gamma} \hat{\sigma}_\gamma\), with \(\hat{F}\) being the total angular momentum. By definition, the components satisfy the commutation relations

\[
[\hat{\sigma}_\alpha, \hat{\sigma}_\beta] = i\epsilon_{\alpha\beta\gamma} \hat{\sigma}_\gamma.
\]

We are now ready to express the effective interaction Hamiltonian \((44\text{b})\) in terms of the Stokes and quasi-spin vectors,

\[
\hat{H}_0 = \omega (2\hat{N}_S + 1) + 2E_0\hat{N}_\sigma,
\]

\[
\hat{H}_{\text{int}} = \frac{2g^2}{\Delta} (\hat{N}_S \hat{N}_\sigma - \hat{S}_z \hat{\sigma}_z).
\]

The operators \(\hat{N}_S, \hat{N}_\sigma,\) and \(\hat{N}_S \hat{N}_\sigma\) all commute with both \(\hat{S}\) and \(\hat{\sigma}\) (and thus, also with \(\hat{S}_x, \hat{S}_y,\) and \(\hat{S}_z\)) and they have nothing to do with the dynamics. Therefore, we can safely omit them and write

\[
\hat{H}_0 = \text{const.}, \quad \hat{H}_{\text{int}} = -\frac{2g^2}{\Delta} \hat{S}_z \hat{\sigma}_z.
\]

The remaining term explains paramagnetic Faraday rotation \((33)\). If the \(z\) component of the collective atomic quasi-spin has a macroscopic expectation value, it results in an interaction Hamiltonian proportional to \(\hat{S}_z\) which in turn introduces rotation of the Stokes vector along the \(z\) axis—thus turning the linear polarization in the \(xy\) plane. Reversely, as a back-action of light on atoms, if the \(z\) component of the Stokes vector has a macroscopic expectation value, it will rotate coherently each atomic spin along the \(z\) axis.

Now we show—following Ref. [20]—that Eq. \((50)\) gives rise to a Hamiltonian of the form \((20)\). Consider an atomic ensemble in which all atoms are initially prepared in the superposition state \(|\langle 1| + |2\rangle\rangle)/\sqrt{2}\). In this coherent spin state (CSS), the \(x\) component of the quasi-spin vector has a macroscopic expectation value \((\hat{\sigma}_x)_0 = N_\sigma/2\). This state is actually a quasi-spin-\(\frac{1}{2}\) state, i.e., an eigenstate of \(\hat{\sigma}_z^2\) with eigenvalue \(N_\sigma/2\). Since the Hamiltonian \((49)\) commutes with \(\hat{\sigma}_z^2\), the atomic state will always remain a quasi-spin-\(\frac{1}{2}\) state. Moreover, as long as the interaction introduces small perturbation to \(\hat{\sigma}\), the \(y\) and \(z\) components of \(\hat{\sigma}\) stay small with respect to the \(x\) component. Therefore, we can use the Holstein-Primakoff approximation \((34)\) and introduce the position and momentum-like quadrature operators

\[
\hat{X}_A = \hat{\sigma}_y/\sqrt{(\hat{\sigma}_x)_0}, \quad \hat{P}_A = \hat{\sigma}_z/\sqrt{(\hat{\sigma}_x)_0}.
\]

As long as the number of atomic excitations \(\hat{n}_A = \frac{1}{2}(\hat{X}_A^2 + \hat{P}_A^2 - 1)\) is small compared to the number of atoms, the deviation of the quasi-spin vector from the CSS stays in the tangent plane of the spin sphere. Then
Eq. (15) ensures that we have the approximately correct commutation relation
\[[\hat{X}_A, \hat{P}_A] = i - \frac{2i}{N_A}\hat{n}_A \approx i. \] (52)

In the experiment of [20], the quantum information is represented in the \(y\)-polarized weak signal beam propagating in the \(z\) direction and it is mixed with the copropagating \(x\)-polarized strong classical control field having coherent amplitude \(\alpha\) (Fig. 2). Writing the \(n\)-component \(n\) in place of \(\hat{a}_y\), we find that the \(x\) component of the Stokes vector [46] has a macroscopic expectation value, \(\langle \hat{S}_x \rangle = |\alpha|^2/2\) in first order. Therefore, we can introduce the light quadrature variables as
\[
\hat{X}_L \equiv \frac{\hat{S}_y}{\sqrt{\langle \hat{S}_y \rangle}} = (e^{-i\varphi}\hat{a}_y + e^{i\varphi}\hat{a}^\dagger_y)/\sqrt{2},
\]
\[
\hat{P}_L \equiv \frac{\hat{S}_z}{\sqrt{\langle \hat{S}_z \rangle}} = (e^{-i\varphi}\hat{a}_y - e^{i\varphi}\hat{a}^\dagger_y)/i\sqrt{2},
\] (53)
where \(\varphi = \text{arg}(\alpha)\) is the complex phase of \(\alpha\).

In summary we express the Stokes and quasi-spin vectors in terms of the quadrature operators [cf. Eqs. (46) and (47)],
\[
\hat{S}_x = |\alpha|^2/2 - \hat{n}_L, \quad \hat{S}_y = \hat{X}_L\sqrt{|\langle \hat{S}_y \rangle|/2}, \quad \hat{S}_z = \hat{P}_L\sqrt{|\langle \hat{S}_z \rangle|/2}, \quad \hat{N}_S = |\alpha|^2/2, \quad \hat{N}_\sigma = N_A/2.
\] (54)

Note that these operators exactly satisfy the angular momentum-like commutation relations \([\hat{N}_\sigma, \hat{S} \sigma] = 0, [\hat{S} \alpha, \hat{S} \beta] = i\epsilon_{\alpha\beta\gamma}\hat{S} \gamma, [\hat{N}_\sigma, \hat{S} \alpha] = 0\), and \([\hat{N}_\sigma, \hat{S} \beta] = i\epsilon_{\alpha\beta\gamma}\hat{S} \gamma\), despite the fact that we used an oscillator approximation for the atomic system and a classical model for the \(x\)-polarized light.

Putting (51) and (53) into (50) we arrive at the interaction Hamiltonian in terms of the atomic and light quadrature operators,
\[
\hat{H}_{\text{int}} = -\frac{g^2|\alpha|\sqrt{N_A}}{\Delta} \hat{P}_L \hat{P}_A.
\] (55)

We recover the non-ideal interaction Hamiltonian (20). As a consequence, the atomic position quadrature \(\hat{X}_A\) is displaced by an amount proportional to \(\hat{P}_L\) [c.f. Eq. (24)], thus rotating the quasi-spin vector towards the \(y\) axis.

B. Off-resonant Raman scheme

Now we discuss another physical system which directly realizes the ideal interaction Hamiltonian (18). Our quantum memory scheme is based on off-resonant Raman scattering by \(\Lambda\)-type atoms [11].

Consider an ensemble of \(N_A\) atoms depicted in Fig. 3 that is shined by a monochromatic light beam consisting of copropagating phase-locked right and left circularly polarized components. Levels \(|1\rangle\) and \(|2\rangle\) can be, for example, the \(m_F = \pm 1\) Zeeman sublevels of the \(2S_{1/2} (F = 1)\) ground state of sodium or rubidium (with nuclear spin \(I = 3/2\)), while levels \(|3\rangle\) and \(|4\rangle\) are the \(m_F = 0\) Zeeman sublevels of the hyperfine levels \(2P_{1/2} (F = 1)\) and \(2P_{21/2} (F = 2)\). Although the Zeeman sublevels \(M_F = \pm 2\) of the uppermost level \(2P_{3/2} (F = 2)\) also contributes to the light shifts, the principle of the model is not changed.

If the atomic transitions are far off-resonant, the four-level atom is reduced to an effective two-level one. After adiabatic elimination of the upper levels, the dynamics is governed by an effective interaction Hamiltonian that consists of dynamic Stark shifts and two-photon processes between the ground states,
\[
\hat{H}_{\text{int}} = \sum_{i=1}^{N_A} \left\{ \left(\frac{|g^3_{1R}|^2}{\Delta} + \frac{|g^3_{1L}|^2}{\Delta'} \right) \hat{a}^\dagger_R \hat{a}_R |1\rangle_i \langle 1| \\
+ \left(\frac{|g^3_{1L}|^2}{\Delta} + \frac{|g^3_{1R}|^2}{\Delta'} \right) \hat{a}^\dagger_L \hat{a}_L |2\rangle_i \langle 2| \\
+ \left[\frac{(g^3_{3R}g^3_{1L})^*}{\Delta} + \frac{(g^3_{3L}g^3_{1R})^*}{\Delta'} \right] \hat{a}^\dagger_L \hat{a}_R |1\rangle_i \langle 1| + \text{H.c.} \right\},
\] (56)

where the electric dipole coupling constants for the single-photon transitions are
\[
g^3_{1R} = \sqrt{\frac{\omega_R}{2\hbar}} \langle 1|d \cdot \epsilon_R|3\rangle e^{i(k_R r_i + \phi_R)},
\] (57)
and similarly for \(g^3_{3L}, g^3_{4L}, \) and \(g^3_{4R}\), with \(r_i\) being the
position of the ith atom. For symmetry reasons, we have $|g^{i}_{R}\rangle = |g^{i}_{M}\rangle = g$ and $|g^{i}_{L}\rangle = |g^{i}_{L}'\rangle = g'$. Furthermore, since the frequencies and propagation directions of the two polarized light beams coincide, we can choose the relative phase $\phi_{R} - \phi_{L}$ of the mode functions of the light modes so that $g^{i}_{RR}g^{i}_{ML} = g^{2}$ is real and positive. However, in our example of sodium or rubidium, g^{i}_{R} and g^{i}_{L} have opposite signs for this choice of phases, so $g^{i}_{RR}g^{i}_{ML} = -g^{2}$.

We can introduce the photonic Stokes vector \hat{S} and the collective atomic quasi-spin vector $\hat{\sigma}$ [47]. If the ground states are $F = 1$ hyperfine sublevels, the components of the quasi-spin expressed by the total angular momentum F are

$$
\hat{\sigma}_x = \sum_i \frac{1}{2}(\hat{F}_i^{(2)} - \hat{F}_i^{(1)}),
$$

$$
\hat{\sigma}_y = \sum_i \frac{1}{2}(\hat{F}_i^{(1)} + \hat{F}_i^{(2)}) (\hat{F}_i^{(1)})
$$

$$
\hat{\sigma}_z = \hat{F}_z/2.
$$

We are now ready to simplify the interaction Hamiltonian [50]. We realize that the first two terms therein are proportional to $N_S N_x - \hat{S}_z \hat{\sigma}_z$ and they are responsible for paramagnetic Faraday rotation. Since $N_S N_x$ commutes with both S and $\hat{\sigma}$ and has nothing to do with the dynamics, we will omit it in the following. The last term in [50] is proportional to $\hat{S}_z \hat{\sigma}_x + \hat{S}_y \hat{\sigma}_y$. All in all, we have

$$
\hat{H}_{\text{int}} = -2 \left(\frac{g^2}{\Delta} + \frac{g'^2}{\Delta'} \right) \hat{S}_z \hat{\sigma}_z + 2 \left(\frac{g^2}{\Delta} - \frac{g'^2}{\Delta'} \right) \left(\hat{S}_z \hat{\sigma}_x + \hat{S}_y \hat{\sigma}_y \right).
$$

We note that the effective Hamiltonian is essentially of the same form even for more general configurations involving multiple atomic levels [33]. The meaning of the first term is explained in Sec. IIIA. By tuning the laser fields right between the two upper levels so that $g^2/\Delta' = -g'^2/\Delta$, we can cancel the first term. The remaining term then describes the two-photon processes of the atoms making transitions between the two ground states. However, this term can also be interpreted as Faraday rotation. Suppose, for example, that the y component of the Stokes vector has a macroscopic expectation value, that is, the atomic ensemble is irradiated by a single 45° linear polarized classical beam. Then the interaction Hamiltonian [50] reduces to a term proportional to $\hat{\sigma}_y$ corresponding to a coherent rotation of the quasi-spin along the y axis. Indeed, if we choose y as the quantization axis, such a diagonally polarized light will induce virtual atomic transitions from the superposition state $|1\rangle + |2\rangle)/\sqrt{2}$ to the off-resonant upper levels, thus shifting the energy level of this superposition state with respect to the orthogonal state $|1\rangle - i|2\rangle)/\sqrt{2}$. As a consequence, all the atomic quasi-spins are rotated along the y axis. Appropriately choosing the polarization and detuning of a single classical light field, one can realize rotation of the quasi-spin vector along arbitrary axis.

To use the present configuration as a quantum memory, the polarizations of the control and signal fields and the initial atomic state should be chosen differently from that of Sec. IIIA. Let us represent the quantum information in the weak left circularly polarized light beam (signal) and let the right circularly polarized light be the strong classical field (control) with coherent amplitude α (though not too strong so that it remains off-resonant, $|\alpha| \ll |\Delta/g|, |\Delta'/g'|$). We can write the c-number α instead of the right circularly polarized annihilation operator \hat{a}_R and we find that the z component of the Stokes vector is a classical variable $\langle \hat{S}_z \rangle_0 = |\alpha|^2/2$. This enables us to introduce the light quadrature variables as

$$
\hat{X}_L \equiv \hat{S}_x/\sqrt{|\alpha|^2/2} = (e^{-i\varphi} \hat{a}_L + e^{i\varphi} \hat{a}_L^\dagger)/\sqrt{2},
$$

$$
\hat{P}_L \equiv \hat{S}_y/\sqrt{|\alpha|^2/2} = (e^{-i\varphi} \hat{a}_L - e^{i\varphi} \hat{a}_L^\dagger)/i\sqrt{2},
$$

(60) where $\varphi = \text{arg}(\alpha)$ is the phase of α. Similarly we can introduce quadratures for the atomic ensemble if the collective atomic state stays close to the coherent spin state (CSS) in which all atoms are in level $|2\rangle$. The z component of the quasi-spin has a macroscopic expectation value, $\langle \hat{\sigma}_z \rangle_0 = N_A/2$ in zeroth order, and we can approximate it with $\hat{\sigma}_z = N_A/2 - \hat{n}_A$. Then we can write the atomic quadrature variables as

$$
\hat{X}_A \equiv \frac{\hat{\sigma}_x}{\sqrt{N_A/2}}, \quad \hat{P}_A \equiv \frac{\hat{\sigma}_y}{\sqrt{N_A/2}}.
$$

(61)

In order to keep the correct angular momentum commutation relations of the Stokes and quasi-spin vectors, we write

$$
\hat{S}_x = \hat{X}_L \sqrt{|\alpha|^2/2}, \quad \hat{\sigma}_x = \hat{X}_A \sqrt{N_A/2},
$$

$$
\hat{S}_y = \hat{P}_L \sqrt{|\alpha|^2/2}, \quad \hat{\sigma}_y = \hat{P}_A \sqrt{N_A/2},
$$

$$
\hat{S}_z = |\alpha|^2/2 - \hat{n}_L, \quad \hat{\sigma}_z = N_A/2 - \hat{n}_A,
$$

$$
\hat{N}_S = |\alpha|^2/2, \quad \hat{N}_\sigma = N_A/2.
$$

(62)

Note that the number of atomic excitations $n_A = \frac{1}{2}(\hat{X}_A^2 + \hat{P}_A^2 - 1)$ equals to the population of level $|1\rangle$, $n_A = \sum_i |\langle 1_i || 1 \rangle|^2/4$. Putting all together while canceling the term $\hat{S}_z \hat{\sigma}_z$ in [59], we obtain the interaction Hamiltonian

$$
\hat{H}_{\text{int}} = \frac{2g^2|\alpha|\sqrt{N_A}}{\Delta} (\hat{X}_L \hat{X}_A + \hat{P}_L \hat{P}_A).
$$

(63)

The Hamiltonian [63] results in an oscillation of the excitations between modes A and L. Indeed, with the creation and annihilation operators of systems A and L we recognize the beam splitter Hamiltonian

$$
\hat{X}_L \hat{X}_A + \hat{P}_L \hat{P}_A = \hat{a}_A \hat{a}_L + \hat{a}_L^\dagger \hat{a}_A.
$$

(64)

Absorption of a left polarized photon makes an atomic transition from level $|2\rangle$ to level $|1\rangle$, and reversely, emission of such a photon causes a decrease in the population n_A of level $|1\rangle$.

The state of the two systems can be exchanged completely by appropriately adjusting the amplitude $\alpha(t)$ of the classical right circularly polarized control field, so that we have a $\pi/2$ pulse:

\[
2g^2\sqrt{N_A} \frac{\Delta}{\hbar} \int |\alpha(t)| \, dt = \pi/2.
\]

This leads to the ideal quantum memory mapping (19).

C. Resonant EIT scheme

In quantum memories based on EIT [15], an intense classical radiation field (control) and a weak quantum field to be stored (signal) are adjusted on or near resonance with the transitions of the Λ-type atoms (see Fig. 4). In this subsection we show how to adiabatically eliminate the resonant excited level and we derive a beam splitter-like effective Hamiltonian between the signal light field and the collective coherences of the lower atomic levels. In order to simplify the discussion, we will restrict ourselves to single-mode radiation fields for the control and signal with exact two-photon resonance and standing polariton wave. The Hamiltonian in the rotating frame then reads

\[
\hat{H} = \sum_{i=1}^{N_A} \left[-\Delta |3\rangle_i \langle 3| + (g_i \hat{a}_L |3\rangle_i \langle 2| + \Omega_i |3\rangle_i \langle 1| + \text{H.c.}) \right],
\]

where \hat{a}_L is the bosonic operator of the signal field, Δ is the one-photon detuning for both transitions. Furthermore, we disregard atomic motion and assume that the coupling constants g_i are real and the same for all atoms, and so are the Rabi frequencies Ω_i. This allows us to introduce collective spin operators

\[
\hat{\sigma}_{ab} \equiv \sum_i |a\rangle_i \langle b| \quad (a, b = 1, 2, 3).
\]

Due to the symmetry of the Hamiltonian (66), only the totally symmetric Dicke states are coupled to the light fields. The totally symmetric state containing n atoms on level $|1\rangle$, m atoms on level $|2\rangle$, and l on level $|3\rangle$ is defined as

\[
|n_1, m_2, l_3\rangle \equiv \left[n! m! l! (n + m + l)! \right]^{-1/2} \times \sum [1: i_1, \ldots, i_n; 2: j_1, \ldots, j_m; 3: k_1, \ldots, k_l],
\]

where the summation is over the $N_A = n + m + l$ mutually different variables $i_1, \ldots, i_n, j_1, \ldots, j_m, k_1, \ldots, k_l$ going from 1 to N_A. The ket vector at the right of (68) represents the atomic product state in which atoms indexed by i_1, \ldots, i_n are in state $|1\rangle$, etc. It is easy to verify that the spin-flip operators (67) keep the symmetry of these states,

\[
\hat{\sigma}_{ab}|n_a, m_b, l_c\rangle = \sqrt{(n + 1)!m!(n + 1)!}(m + 1)!_a, (m - 1)!_b, l_c\rangle,
\]

\[
\hat{\sigma}_{aa}|n_a, m_b, l_c\rangle = n|n_a, m_b, l_c\rangle,
\]

\[
(69)
\]

with $\{a, b, c\} = \{1, 2, 3\}$. We can see that for each value of $n = 0, \ldots, N_A$, the set

\[
\mathcal{S}_n \equiv \text{Span}\{|(k-1)_1, (N_A - k)_2, l_3| \otimes |n - k\rangle_L\ |
\]

\[
k = 0, \ldots, \min(n, N_A) \text{ and } l = 0, \ldots, k \}
\]

(70)

is an invariant subspace of the Hamiltonian (68), and so (69) is block diagonal. (The subscript L means that the corresponding Fock state refers to the signal light mode.)

Now we make use of the fact that only the atomic level $|2\rangle$ is macroscopically populated, so $\hat{\sigma}_{22}$ can be substituted by the c-number N_A. We observe that only the coherences $\hat{\sigma}_{21}$ and $\hat{\sigma}_{23}$ are important, as we can express the other spin operators as $\hat{\sigma}_{11} = \hat{\sigma}_{12}\hat{\sigma}_{21}/N_A$, $\hat{\sigma}_{31} = \hat{\sigma}_{32}\hat{\sigma}_{23}/N_A$, and $\hat{\sigma}_{13} = \hat{\sigma}_{12}\hat{\sigma}_{23}/N_A$. Compared to the single atomic oscillator in the off-resonant Raman process investigated in Sec. III B, now we have two atomic oscillator modes with annihilation operators $\hat{\sigma}_{21}/\sqrt{N_A}$ and $\hat{\sigma}_{23}/\sqrt{N_A}$, respectively. Within the subspace $\mathcal{S} \equiv \bigoplus_{n \leq N_A} \mathcal{S}_n$ of photonic and totally symmetric atomic states with arbitrary but small number of excitations n, the Hamiltonian can be written in the matrix form (37)

\[
\hat{H} = \hat{z}^\dagger \mathbf{H} \hat{z}, \quad \mathbf{H} \equiv \begin{pmatrix}
0 & 0 & g\sqrt{N_A} \\
0 & 0 & \Omega \\
g\sqrt{N_A} & \Omega & -\Delta
\end{pmatrix}.
\]

Here we have introduced the vector notation $\hat{z}^\dagger \equiv \langle 3\rangle_1, \hat{\sigma}_{12}/\sqrt{N_A}, \hat{\sigma}_{32}/\sqrt{N_A} \rangle$ for the creation operators of the photonic mode and the two atomic oscillator modes. Note that in the limit of small atomic excitation, components of \hat{z} and \hat{z}^\dagger approximately satisfy bosonic commutation relations. The matrix \mathbf{H} can be brought to a block diagonal form. The corresponding transformation matrix \mathbf{R} defines the quantum field variables (annihilation operators) of the so-called dark- and bright-state polaritons [14, 15, 36],

\[
\hat{\Psi} \equiv \begin{pmatrix}
\hat{\Psi}_1 \\
\hat{\Psi}_2 \\
\hat{\Psi}_3
\end{pmatrix} \equiv \mathbf{R} \hat{z}, \quad \mathbf{R} = \begin{pmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix},
\]

(72)
where \(\hat{\psi} \), \(\hat{\Phi} \), and \(\hat{\Xi} \) stand for the dark-polariton, the bright-polariton, and excited-state modes, respectively. The mixing angle \(\theta \) is defined as

\[
\tan \theta \equiv \frac{g\sqrt{NA}}{\Omega}.
\] (73)

Note that in the limit of small atomic excitations, the polariton operators also satisfy the bosonic commutation relations,

\[
[\hat{\psi}, \hat{\Phi}^\dagger] \approx [\hat{\Phi}, \hat{\Phi}^\dagger] \approx [\hat{\Xi}, \hat{\Xi}^\dagger] \approx 1,
\]

\[
[\hat{\psi}, \hat{\Phi}^\dagger] \approx [\hat{\psi}, \hat{\Xi}^\dagger] \approx [\hat{\Phi}, \hat{\Xi}^\dagger] \approx 0,
\]

\[
[\hat{\psi}, \hat{\Phi}] = [\hat{\psi}, \hat{\Xi}] = [\hat{\Phi}, \hat{\Xi}] = 0.
\] (74)

Actually, the rotation (72) corresponds to switching from Heisenberg picture to a rotating axes representation. The generator of the unitary transformation is the Hermitian operator

\[
\hat{K} \equiv i(\hat{\psi}^\dagger \hat{\Phi} - \hat{\Phi}^\dagger \hat{\psi}) = i(\hat{a}_L \hat{\sigma}_{21} - \hat{a}_L \hat{\sigma}_{12})/\sqrt{NA}.
\] (75)

Operators in the rotating axes representation are obtained from those in the Heisenberg picture in the following way,

\[
\hat{z}' \equiv e^{-i\theta \hat{K}} \hat{z} e^{i\theta \hat{K}}.
\] (76)

The equations of motion for the rotating polariton variables are

\[
\frac{d}{dt} \hat{z}' = \frac{d}{dt} (\hat{R} \hat{z}) = i[\hat{H}, \hat{R} \hat{z}] + \left(\frac{d}{dt} \hat{R} \right) \hat{z} = i[\hat{\tilde{H}}, \hat{z}'],
\] (77)

with \(\hat{\tilde{H}} \equiv \hat{z}'^\dagger \hat{H} \hat{z}' \),

\[
\hat{\tilde{H}} = -\Delta \hat{\Xi}^\dagger \hat{\Xi} + W(\hat{\hat{\Phi}}^\dagger \hat{\Xi} + \hat{\Xi}^\dagger \hat{\Phi}) - i\theta (\hat{\psi}^\dagger \hat{\Phi} - \hat{\Phi}^\dagger \hat{\psi}),
\]

\[
\hat{\tilde{H}} = \hat{R}^\dagger \hat{H} \hat{R}^{-1} + i\hat{R} \hat{R}^{-1} = \begin{pmatrix} 0 & -i\theta & 0 \\ i\theta & 0 & W \\ 0 & W & -\Delta \end{pmatrix},
\] (78)

where \(W \equiv \sqrt{g^2 NA + \Omega^2} \).

We immediately recognize that in the adiabatic limit \(\theta \ll W \), the dark-state polaritons are decoupled from the dynamics. Moreover, they do not involve the excited atomic state (3) and hence are immune to spontaneous emission. Therefore, if the initial state of the system consists of dark-state polaritons only and the mixing angle \(\theta \) varies slowly enough, then the quantum state of the system adiabatically follows the smoothly changing dark eigenstates of the Hamiltonian, so the system stays in the same superposition of dark states as it was initially in. (Note that the zero eigenvalue is nondegenerate in each invariant subspace \(\mathcal{S}_0 \), so there is no level crossing.) Thus, adiabatic rotation of the mixing angle \(\theta \) from 0 to \(\pi/2 \) leads to a complete transfer of the photonic state to collective atomic excitations between levels \(|1 \rangle \) and \(|2 \rangle \).

Indeed, for \(\theta = 0 \), the dark-state polariton mode \(\hat{\Psi}(\theta) \) coincides with the signal mode \(\hat{a}_L \), while it solely corresponds to the collective spin excitation \(\hat{\sigma}_{21}/\sqrt{NA} \) for \(\theta = \pi/2 \). This is the standard way of interpreting the adiabatic EIT storage process [13, 14].

The bright-state polaritons are coupled to the excited-state mode that decays by spontaneous emission with rate \(\Gamma \). If this relaxation process is fast enough (\(W \ll \Gamma \)) or the one-photon resonance is far detuned (\(W \ll \Delta \)), we can eliminate the excited mode. Then we find an effective decay \(\gamma_B \) of the bright-state polaritons and a shift \(\omega_B \) in their energy,

\[
\omega_B = \frac{W^2 \Delta}{\Gamma^2/4 + \Delta^2}, \quad \gamma_B = \frac{W^2 \Gamma}{\Gamma^2/4 + \Delta^2}.
\] (79)

1. Far off-resonant regime

Now we identify two important limiting cases. In the first, the one-photon resonance is far detuned with respect to the Rabi frequency \(\Omega \) of the control field, to the ensemble-enhanced vacuum Rabi frequency \(g\sqrt{NA} \) of the signal field, and also to the decay rate \(\Gamma \) of the excited states. In this case \((W \ll \Delta \) and \(\Gamma \ll \Delta \)), the bright energy shift \(\omega_B \) dominates over the decay,

\[
\gamma_B = \omega_B \frac{\Gamma}{\Delta} \ll \omega_B = \frac{W^2}{\Delta}.
\] (80)

Switching back to Heisenberg picture with non-rotating light and atomic variables, we obtain the following Hamiltonian operator,

\[
\hat{H} = \frac{g^2 NA}{\Delta} \hat{a}_L^\dagger \hat{a}_L + \frac{\Omega^2}{\Delta} \frac{\hat{\sigma}_{21}}{\sqrt{NA}} + \frac{g\sqrt{NA}\Omega}{\Delta} \left(\hat{a}_L^\dagger \frac{\hat{\sigma}_{21}}{\sqrt{NA}} + \hat{\sigma}_{12} \hat{a}_L^\dagger \frac{\hat{\sigma}_{12}}{\sqrt{NA}} \right).
\] (81)

The first two terms are AC Stark shifts for the signal mode interacting with the atoms in level \(|2 \rangle \) and tuning the laser fields to a point where their AC Stark contributions exactly compensate. Finally, the one-photon resonance is far detuned (\(\Delta \ll \omega_B \)) or the decay rate \(\Gamma \) is fast enough (\(\Gamma \ll \Delta \)). This is the standard way of interpreting the adiabatic EIT storage process [13, 14].

2. Resonant regime

The decay of bright-state polaritons cannot be neglected near one-photon resonance. Instead, we obtain
an effective Liouvillian for the rotating density operator \(\hat{\rho}' \) of the dark and bright polariton modes,

\[
\frac{d}{dt} \hat{\rho}' = -i [\hat{H}_{\text{eff}}', \hat{\rho}'] + \mathcal{L}_{\text{diss}} \hat{\rho}'.
\]

(82)

Here the effective Hamiltonian in the rotating axes representation is given by

\[
\hat{H}_{\text{eff}} = \omega_B \hat{\Phi}^\dagger \hat{\Phi} - i \theta (\hat{\Phi}^\dagger \hat{\Phi} + \hat{\Phi}^\dagger \hat{\Phi}),
\]

(83)

and the dissipative Lindblad superoperator is

\[
\mathcal{L}_{\text{diss}} \hat{\rho} = \frac{\gamma_B}{2} (2 \hat{\Phi} \rho \hat{\Phi}^\dagger - \hat{\Phi}^\dagger \hat{\Phi} \rho - \rho \hat{\Phi}^\dagger \hat{\Phi}).
\]

(84)

If the adiabatic condition \(\dot{\theta} \ll \gamma_B \) is satisfied, terms with \(\dot{\theta} \) can be neglected, so the dark and bright polaritons become adiabatically decoupled. This means that the rotating axes representation, both the dark and bright polaritons can be considered as free quasi-particles (except that the latter have finite lifetime). If the initial state contains no bright polaritons at all—that is, the atomic ensemble is totally polarized at \(\theta = 0 \) in the beginning of the write process (or the signal light mode is in the vacuum state at \(\theta = \frac{\pi}{2} \) in the beginning of the read-out process)—the Lindblad term does not play a role. As a consequence, the dynamics is entirely described by the Hamiltonian \[83\] that can be considered zero for exact one-photon resonance (\(\Delta = 0 \)). However, when we change from the rotating axes representation back to Heisenberg picture, the term neglected in the adiabatic approximation reappears. In the original basis of light and matter operators, this translates to

\[
\hat{H}_{\text{eff}} = \hat{R}^{-1} \hat{H}_{\text{eff}} \hat{R} - i \dot{\hat{R}} \hat{R}^{-1} = \begin{pmatrix} 0 & i \theta \\ -i \theta & 0 \end{pmatrix},
\]

and thus to

\[
\hat{H}_{\text{eff}} = i \theta (\hat{a}_L^\dagger \hat{a}_21 - \hat{a}_L \hat{a}_12)/\sqrt{N_A}.
\]

(85)

Introducing the atomic and light quadrature variables as

\[
\hat{X}_A \equiv (\hat{a}_{21} + \hat{a}_{12})/\sqrt{2N_A}, \quad \hat{X}_L \equiv (\hat{a}_L + \hat{a}_L^\dagger)/\sqrt{2},
\]

\[
\hat{P}_A \equiv (\hat{a}_{21} - \hat{a}_{12})/i \sqrt{2N_A}, \quad \hat{P}_L \equiv (\hat{a}_L - \hat{a}_L^\dagger)/i \sqrt{2},
\]

(86)

we find that the effective Hamiltonian is

\[
\hat{H}_{\text{eff}} = \theta (\hat{X}_A \hat{P}_L - \hat{P}_A \hat{X}_L),
\]

(87)

and we recover the ideal mapping Hamiltonian \[10\]. Complete mapping from light to atoms or vice versa is achieved if the time dependence of the mixing angle is adjusted such that

\[
\pm \frac{\pi}{2} = \int_0^T d\tau \dot{\theta}(\tau) = \theta(T) - \theta(0).
\]

(88)

Finally we mention that non-adiabatic losses of dark-state polaritons are characterized by the decay rate

\[
\gamma_D = \frac{\dot{\theta}^2}{\gamma_B} \ll \dot{\theta},
\]

(89)

where we applied the adiabatic condition \(\dot{\theta} \ll \gamma_B \). As the characteristic time \(T \) of the write/read-out process is of the order \(T \sim 1/\dot{\theta} \), the accumulated losses are of the order \(T \gamma_D \sim \gamma_B/\dot{\theta} \ll 1 \).

IV. CONCLUSIONS

In the present paper we have investigated quantum memory for light in atomic ensemble using a continuous variable description, i.e., position and momentum variables for light and matter degrees of freedom. In particular we have studied in detail two types of off-resonant quantum memories: one based on the quantum Faraday effect supplemented by measurement and feedback, and another involving A-type atoms and Raman scattering. For the first scheme we analyzed the effect of inefficiencies in the initial atomic state preparation and imperfections in the light measurement. We found that the fidelity of the one-pass memory scheme for storing superpositions of light states with very different momenta is rather low unless atomic state preparation can be performed with very high accuracy. In a two-pass scheme the necessity of an initial atomic spin squeezing can be avoided by light measurement and feedback. In a triple-pass configuration, atomic state preparation as well as feedback can be avoided altogether. Secondly, we have investigated an off-resonant Raman scheme and proposed a configuration in which unwanted light shifts can be cancelled. Finally we have discussed near resonant quantum memories based on electromagnetically induced transparency in terms of position and momentum operators of light and matter. We have shown that this memory can be described by a Hamiltonian corresponding to an ideal map provided that before the write and read-out processes the atomic ensemble or, respectively, the radiation mode are in the appropriate initial vacuum state. In contrast to the common approach involving wave equations for the propagating polaritons, we have developed a Hamiltonian formalism for the atomic and photonic quadrature variables similar to the formalism of the first two families. Our results allow a straightforward comparison of the various continuous variable quantum memory schemes in the same framework.

Acknowledgments

The financial support from the EMALI network of the European Commission (Contract No. MRTN-CT-2006-035369) is gratefully acknowledged.
[1] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81, 5932–5935 (1998).

[2] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics, Nature 414, 413–418 (2001).

[3] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett. 78, 3221–3224 (1997).

[4] L. K. Grover, Quantum communication (1997), quant-ph/9704012v2.

[5] L.-M. Duan, J. I. Cirac, P. Zoller, and E. S. Polzik, Quantum communication between atomic ensembles using coherent light, Phys. Rev. Lett. 85, 5643–5646 (2000).

[6] A. Kuzmich and E. S. Polzik, Atomic continuous variable processing and light-atoms quantum interface, in Quantum Information with Continuous Variables, edited by S. L. Braunstein and A. K. Pati (Springer, 2003), pp. 231–265, ISBN 978-1-4020-1195-5.

[7] T. Opatrný and J. Fiurášek, Enhancing the capacity and performance of collective atomic quantum memory, Phys. Rev. Lett. 95, 053602 (2005).

[8] J. Fiurášek, J. Sherson, T. Opatrný, and E. S. Polzik, Single-passage readout of atomic quantum memory, Phys. Rev. A 73, 022331 (2006).

[9] C. A. Muschik, K. Hammerer, E. S. Polzik, and J. I. Cirac, Efficient quantum memory and entanglement between light and an atomic ensemble using magnetic fields, Phys. Rev. A 73, 062329 (2006).

[10] J. Sherson, A. S. Sørensen, J. Fiurášek, K. Mølmer, and E. Polzik, Light qubit storage and retrieval using macroscopic atomic ensembles, Phys. Rev. A 74, 011802 (2005), quant-ph/0505170.

[11] A. E. Kozhelnik, K. Mølmer, and E. Polzik, Quantum memory for light, Phys. Rev. A 62, 033809 (2000).

[12] A. Dantan and M. Pinard, Quantum-state transfer between fields and atoms in electromagnetically induced transparency, Phys. Rev. A 69, 043810 (2004).

[13] A. Dantan, A. Bramati, and M. Pinard, Atomic quantum memory: Cavity versus single-pass schemes, Phys. Rev. A 71, 043801 (2005).

[14] M. D. Lukin, S. F. Yelin, and M. Fleischhauer, Entanglement of atomic ensembles by trapping correlated photon states, Phys. Rev. Lett. 84, 4232–4235 (2000).

[15] M. Fleischhauer and M. D. Lukin, Dark-state polaritons in electromagnetically induced transparency, Phys. Rev. Lett. 84, 5094–5097 (2000).

[16] M. Fleischhauer and M. D. Lukin, Quantum memory for photons: Dark-state polaritons, Phys. Rev. A 65, 022314 (2002).

[17] C. Mewes and M. Fleischhauer, Decoherence in collective quantum memories for photons, Phys. Rev. A 72, 022327 (2005).

[18] A. V. Gorshkov, A. A. and Mikhail D. Lukin, and A. S. Sørensen, Photon storage in lambda-type optically dense atomic media. i. cavity model, Phys. Rev. A 76, 033804 (2007).

[19] C. Schori, B. Julsgaard, J. L. Sørensen, and E. S. Polzik, Recording quantum properties of light in a long-lived atomic spin state: Towards quantum memory, Phys. Rev. Lett. 89, 057903 (2002).

[20] B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, Experimental demonstration of quantum memory for light, Nature 432, 482–486 (2004).

[21] J. Geremia, J. K. Stockton, and H. Mabuchi, Real-time quantum feedback control of atomic spin-squeezing, Science 304, 270–273 (2004).

[22] C. H. van der Wal, M. D. Eisaman, A. André, R. L. W. D. F. Phillips, A. S. Zibrov, and M. D. Lukin, Atomic memory for correlated photon states, Science 301, 196–200 (2003).

[23] D. N. Matsukevich and A. Kuzmich, Quantum state transfer between matter and light, Science 306, 663–666 (2004).

[24] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses, Nature 409, 490–493 (2001).

[25] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Storage of light in atomic vapor, Phys. Rev. Lett. 86, 783–786 (2001).

[26] A. Kuhn, M. Heinrich, and G. Rempe, Deterministic single-photon source for distributed quantum networking, Phys. Rev. Lett. 89, 067901 (2002).

[27] M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Stationary pulses of light in an atomic medium, Nature 426, 638–641 (2003).

[28] D. Akamatsu, K. Akiba, and M. Kozuma, Electromagnetically induced transparency with squeezed vacuum, Phys. Rev. Lett. 92, 203602 (2004).

[29] M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, Electromagnetically induced transparency with tunable single-photon pulses, Nature 438, 837–841 (2005).

[30] B. Kraus, K. Hammerer, G. Giedke, and J. I. Cirac, Entanglement generation and Hamiltonian simulation in continuous-variable systems, Phys. Rev. A 67, 042314 (2003).

[31] J. Fiurášek, Unitary-gate synthesis for continuous-variable systems, Phys. Rev. A 68, 022304 (2003).

[32] U. Leonhardt and H. Paul, Realistic optical homodyne measurements and quasiprobability distributions, Phys. Rev. A 48, 4598–460 (1993).

[33] Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki, Quantum nondemolition measurement of spin via the paramagnetic Faraday rotation, Phys. Rev. A 60, 4974–4979 (1999).

[34] T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58, 1098–1113 (1940).

[35] D. V. Kupriyanov, O. S. Mishina, I. M. Sokolov, B. Julsgaard, and E. S. Polzik, Multimode entanglement of light and atomic ensembles via off-resonant coherent forward scattering, Phys. Rev. A 71, 032348 (2005).

[36] E. Arimondo, Prog. Opt. 35, 257 (1996).

[37] We note that S_1, the complementer subspace of S, consists of non-symmetric excitations that are uncoupled to the polaritons and do not influence the behavior of the quantum memory [17].