Aluthge transforms of 2-variable weighted shifts

Raúl E. Curto

Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242

Jasang Yoon

School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas 78539

Abstract

We introduce two natural notions of multivariable Aluthge transforms (toral and spherical), and study their basic properties. In the case of 2-variable weighted shifts, we first prove that the toral Aluthge transform does not preserve (joint) hyponormality, in sharp contrast with the 1-variable case. Second, we identify a large class of 2-variable weighted shifts for which hyponormality is preserved under both transforms. Third, we consider whether these Aluthge transforms are norm-continuous. Fourth, we study how the Taylor and Taylor essential spectra of 2-variable weighted shifts behave under the toral and spherical Aluthge transforms; as a special case, we consider the Aluthge transforms of the Drury-Arveson 2-shift. Finally, we briefly discuss the class of spherically quasinormal 2-variable weighted shifts, which are the fixed points for the spherical Aluthge transform.

Keywords: toral and spherical Aluthge transforms, hyponormal, 2-variable weighted shifts, Taylor spectrum

2010 Mathematics Subject Classification. Primary 47B20, 47B37, 47A13, 47B49; Secondary 47-04, 47A20, 47A60, 44A60

Contents

1 Introduction

2 Notation and Preliminaries

2.1 Subnormality and \(k \)-hyponormality

2.2 Unilateral weighted shifts

Email addresses: raul-curto@uiowa.edu (Raúl E. Curto), jasang.yoon@utrgv.edu (Jasang Yoon)

The first-named author was partially supported by NSF Grants DMS-0801168 and DMS-1302666.
1. Introduction

Over the last two decades, the Aluthge transform for bounded operators on Hilbert space has attracted considerable attention. In this note, we set out to extend the Aluthge transform to commuting n-tuples of bounded operators. We identify two natural notions (toral and spherical) and study their basic properties. We then focus on 2-variable weighted shifts, for which much can be said.

Let \mathcal{H} be a complex Hilbert space and let $B(\mathcal{H})$ denote the algebra of bounded linear operators on \mathcal{H}. For $T \in B(\mathcal{H})$, the polar decomposition of T is $T = V|T|$, where V is a partial isometry with $\ker V = \ker T$ and $|T| := \sqrt{T^*T}$. The Aluthge transform of T is the operator $\tilde{T} := |T|^1/2 V|T|^1/2$. This transform was first considered by A. Aluthge, in an effort to study p-hyponormal and log-hyponormal operators. Roughly speaking, the idea behind the Aluthge transform is to convert an operator into another operator which shares with the first one many spectral properties, but which is closer to being a normal operator.

In recent years, the Aluthge transform has received substantial attention. I.B. Jung, E. Ko and C. Pearcy proved in [40] that T has a nontrivial invariant subspace if and only if \tilde{T} does. Since every normal operator has nontrivial invariant subspaces, the Aluthge transform has a natural connection with the

Section	Title	Page
2.3	2-variable weighted shifts	6
2.4	Moments and subnormality	7
2.5	Taylor spectra	7
3	The Toral Aluthge Transform	8
3.1	Commutativity of the toral Aluthge transform	8
3.2	Hyponormality is not preserved under the toral Aluthge transform	10
4	The spherical Aluthge Transform	13
5	2-variable Weighted Shifts with Identical Aluthge Transforms	15
6	When is Hyponormality Invariant Under the Toral and Spherical Aluthge Transforms?	17
6.1	Preservation of hyponormality	17
7	Continuity Properties of the Aluthge Transforms	21
8	Spectral Properties of the Aluthge Transforms	22
9	Aluthge Transforms of the Drury-Arveson Shift	27
10	Fixed Points of the Spherical Aluthge Transform: Spherically Quasinormal Pairs	30
10.1	Construction of spherical isometries	32
invariant subspace problem.) In [41], I.B. Jung, E. Ko and C. Pearcy also proved that T and \widetilde{T} have the same spectrum. Moreover, in [43] (resp. [44]) M.K. Kim and E. Ko (resp. F. Kimura) proved that T has property (β) if and only if \widetilde{T} has property (β). Finally, T. Ando proved in [2] that $\| (T - \lambda)^{-1} \| \geq \| (\widetilde{T} - \lambda)^{-1} \|$ ($\lambda \notin \sigma(T)$). (For additional results, see [9] and [50].)

For a unilateral weighted shift $W_\alpha \equiv \text{shift}(\alpha_0, \alpha_1, \cdots)$, the Aluthge transform \widetilde{W}_α is also a unilateral weighted shift, given by

$$\widetilde{W}_\alpha \equiv \text{shift}(\sqrt{\alpha_0\alpha_1}, \sqrt{\alpha_1\alpha_2}, \cdots) \quad (1.1)$$

It is easy to see that W_α is hyponormal if and only if $0 \leq \alpha_0 \leq \alpha_1 \leq \cdots$. Thus, by (1.1), if W_α is hyponormal, then the Aluthge transform \widetilde{W}_α of W_α is also hyponormal. However, the converse is not true in general. For example, if $W_\alpha \equiv \text{shift}(\frac{1}{2}, 2, \frac{1}{2}, 2, \frac{1}{2}, 2, \cdots)$, then W_α is clearly not hyponormal but the Aluthge transform $\widetilde{W}_\alpha \equiv U_+$ is subnormal. (Here and in what follows, U_+ denotes the (unweighted) unilateral shift.) In [43], S.H. Lee, W.Y. Lee and the second-named author showed that for $k \geq 2$, the Aluthge transform, when acting on weighted shifts, need not preserve k-hyponormality. Finally, G. Exner proved in [34] that the Aluthge transform of a subnormal weighted shift need not be subnormal.

In this article, we introduce two Aluthge transforms of commuting pairs of Hilbert space operators, with special emphasis on 2-variable weighted shifts $W_{(\alpha, \beta)} \equiv (T_1, T_2)$. Since a priori there are several possible notions, we discuss two plausible definitions and their basic properties in Sections 3 and 4. Our research will allow us to compare both definitions in terms of how well they generalize the 1-variable notion. After discussing some basic properties of each Aluthge transform, we proceed to study both transforms in the case of 2-variable weighted shifts. We consider topics such as preservation of joint hyponormality, norm continuity, and Taylor spectral behavior.

For $i = 1, 2$, we consider the polar decomposition $T_i \equiv V_i |T_i|$, and we let

$$\overline{T}_i := |T_i|^{\frac{1}{2}} V_i |T_i|^{\frac{1}{2}} \quad (i = 1, 2) \quad (1.2)$$

denote the classical (1-variable) Aluthge transform. The toral Aluthge transform of the pair (T_1, T_2) is $(\overline{T}_1, \overline{T}_2) := (\overline{T}_1, \overline{T}_2)$. For a 2-variable weighted shift $W_{(\alpha, \beta)} \equiv (T_1, T_2)$, we denote the toral Aluthge transform of $W_{(\alpha, \beta)}$ by $\widetilde{W}_{(\alpha, \beta)}$.

As we will see in Proposition 3.2, the commutativity of $\widetilde{W}_{(\alpha, \beta)}$ does not automatically follow from the commutativity of $W_{(\alpha, \beta)}$; in fact, the necessary and sufficient condition to preserve commutativity is

$$\alpha_{(k_1, k_2 + 1)} \alpha_{(k_1 + 1, k_2 + 2)} = \alpha_{(k_1 + 1, k_2 + 2)} \alpha_{(k_1, k_2 + 2)} \quad (\text{for all } k_1, k_2 \geq 0). \quad (1.3)$$

Under this assumption, and in sharp contrast with the 1-variable situation, it is possible to exhibit a commuting subnormal pair $W_{(\alpha, \beta)}$ such that $\widetilde{W}_{(\alpha, \beta)}$ is commuting and not hyponormal. As a matter of fact, in Theorem 3.11 we construct a class of subnormal 2-variable weighted shifts $W_{(\alpha, \beta)}$ whose cores are of
tensor form, and for which the hyponormality of $\tilde{W}(\alpha, \beta)$ can be described entirely by two parameters. As a result, we obtain a rather large class of subnormal 2-variable weighted shifts with non-hyponormal toral Aluthge transforms.

There is a second plausible definition of Aluthge transform, which uses a joint polar decomposition. Assume that we have a decomposition of the form

$$(T_1, T_2) \equiv (V_1 P, V_2 P),$$

where $P := \sqrt{T_1^* T_1 + T_2^* T_2}$. Now, let

$$(\tilde{T}_1, \tilde{T}_2) := \left(\sqrt{P} V_1 \sqrt{P}, \sqrt{P} V_2 \sqrt{P}\right), \quad (1.4)$$

We refer to \tilde{T} as the spherical Aluthge transform of T. Even though $\tilde{T}_1 = \sqrt{P} V_1 \sqrt{P}$ is not the Aluthge transform of T_1, we observe in Section 4 that $Q := \sqrt{V_1^* V_1 + V_2^* V_2}$ is a (joint) partial isometry; for, $PQ^2 P = P^2$, from which it follows that Q is isometric on the range of P. We will prove in Section 4 that this particular definition of the Aluthge transform preserves commutativity.

There is another useful aspect of the spherical Aluthge transform, which we now mention. If we consider the fixed points of this transform acting on 2-variable weighted shifts, then we obtain an appropriate generalization of the concept of quasinormality. Recall that a Hilbert space operator T is said to be quasinormal if T commutes with the positive factor P in the polar decomposition $T \equiv VP$; equivalently, if V commutes with P. It follows easily that T is quasinormal if and only if $T = \tilde{T}$, that is, if and only if T is a fixed point for the Aluthge transform. In Section 4 we prove that if a 2-variable weighted shift $W(\alpha, \beta) = (T_1, T_2)$ satisfies $W(\alpha, \beta) = (\tilde{T}_1, \tilde{T}_2)$, then $T_1^* T_1 + T_2^* T_2$ is, up to scalar multiple, a spherical isometry. It follows that we can then study some properties of the spherical Aluthge transform using well known results about spherical isometries.

In this paper, we also focus on the following three basic problems.

Problem 1.1. Let $k \geq 1$ and assume that $W(\alpha, \beta)$ is k-hyponormal. Does it follow that the toral Aluthge transform $\tilde{W}(\alpha, \beta)$ is k-hyponormal? What about the case of the spherical Aluthge transform $\hat{W}(\alpha, \beta)$?

Problem 1.2. Is the toral Aluthge transform $(S, T) \rightarrow (\tilde{S}, \tilde{T})$ continuous in the uniform topology? Similarly, does continuity hold for the spherical Aluthge transform $\hat{W}(\alpha, \beta)$?

Problem 1.3. Does the Taylor spectrum (resp. Taylor essential spectrum) of $\tilde{W}(\alpha, \beta)$ equal to that of $W(\alpha, \beta)$? What about the case of the spherical Aluthge transform $\hat{W}(\alpha, \beta)$?

2. Notation and Preliminaries

2.1. Subnormality and k-hyponormality

We say that $T \in B(H)$ is normal if $T^* T = TT^*$, quasinormal if T commutes with $T^* T$, subnormal if $T = N|_H$, where N is normal and $N(H) \subseteq H$, and
hyponormal if $T^*T \geq TT^*$. For $S, T \in \mathcal{B}(\mathcal{H})$, let $[S, T] := ST - TS$. We say that an n-tuple $T \equiv (T_1, \cdots, T_n)$ of operators on \mathcal{H} is (jointly) hyponormal if the operator matrix

$$[T^*, T] := \begin{pmatrix} [T_1^*, T_1] & [T_2^*, T_1] & \cdots & [T_n^*, T_1] \\ [T_1^*, T_2] & [T_2^*, T_2] & \cdots & [T_n^*, T_2] \\ \vdots & \vdots & \ddots & \vdots \\ [T_1^*, T_n] & [T_2^*, T_n] & \cdots & [T_n^*, T_n] \end{pmatrix}$$

is positive on the direct sum of n copies of \mathcal{H} (cf. [4], [24]). For instance, if $n = 2$,

$$[T^*, T] = \begin{pmatrix} [T_1^*, T_1] & [T_2^*, T_1] \\ [T_1^*, T_2] & [T_2^*, T_2] \end{pmatrix}.$$

For $k \geq 1$ T is k-hyponormal if (I, T, \cdots, T^k) is (jointly) hyponormal. The Bram-Halmos characterization of subnormality ([10, III.1.9]) can be paraphrased as follows: T is subnormal if and only if T is k-hyponormal for every $k \geq 1$ ([24, Proposition 1.9]). The n-tuple $T \equiv (T_1, T_2, \cdots, T_n)$ is said to be normal if T is commuting and each T_i is normal, and T is subnormal if T is the restriction of a normal n-tuple to a common invariant subspace. In particular, a commuting pair $\equiv (T_1, T_2)$ is said to be k-hyponormal $(k \geq 1)$ if

$$T(k) := (T_1, T_2, T_1^2, T_2T_1, T_2^2, \cdots, T_1^k, T_2T_1^{k-1}, \cdots, T_2^k)$$

is hyponormal, or equivalently

$$[T(k)^*, T(k)] = \{(T_2^*T_1^p)^*, T_2^mT_1^n \} \bigl\{ i \leq n \leq m \leq k \geq 0 \bigr\}.$$

Clearly, for $T \in \mathcal{B}(\mathcal{H})$ we have

normal \Rightarrow quasinormal \Rightarrow subnormal \Rightarrow k-hyponormal \Rightarrow hyponormal.

As one might expect, there is a version of the Bram-Halmos Theorem in several variables, proved in [17]: a commuting pair which is k-hyponormal for every $k \geq 1$ is necessarily subnormal.

2.2. Unilateral weighted shifts

For $\alpha \equiv \{\alpha_n\}_{n=0}^{\infty}$ a bounded sequence of positive real numbers (called weights), let $W_\alpha : \ell^2(\mathbb{Z}_+) \to \ell^2(\mathbb{Z}_+)$ be the associated unilateral weighted shift, defined by $W_\alpha e_n := \alpha_n e_{n+1}$ (all $n \geq 0$), where $\{e_n\}_{n=0}^{\infty}$ is the canonical orthonormal basis in $\ell^2(\mathbb{Z}_+)$. We will often write shift$(\alpha_0, \alpha_1, \cdots)$ to denote the weighted shift W_α with a weight sequence $\{\alpha_n\}_{n=0}^{\infty}$. As usual, the (unweighted) unilateral shift will be denoted by $U_+ := \text{shift}(1, 1, \cdots)$. The moments of W_α are given by

$$\gamma_k := \gamma_k(W_\alpha) := \begin{cases} 1 & \text{if } k = 0 \\ \alpha_0^2 \alpha_1^2 \cdots \alpha_{k-1}^2 & \text{if } k > 0. \end{cases}$$
2.3. 2-variable weighted shifts

Similarly, consider double-indexed positive bounded sequences $\alpha_k, \beta_k \in \ell^\infty(\mathbb{Z}^2_+)$, $k \equiv (k_1, k_2) \in \mathbb{Z}^2_+ := \mathbb{Z} \times \mathbb{Z}_+$, and let $\ell^2(\mathbb{Z}^2_+) = \ell^2(\mathbb{Z}_+ \times \mathbb{Z}_+)$ be the Hilbert space of square-summable complex sequences indexed by \mathbb{Z}^2_+.

We define the 2-variable weighted shift $W_{(\alpha, \beta)} \equiv (T_1, T_2)$ by

$$T_1 e_k := \alpha_k e_k + \epsilon_1$$
$$T_2 e_k := \beta_k e_k + \epsilon_2,$$

where $\epsilon_1 := (1, 0)$ and $\epsilon_2 := (0, 1)$ (see Figure 1(i)). Clearly,

$$T_1 T_2 = T_2 T_1 \iff \alpha_k + \epsilon_2 \beta_k = \beta_k + \epsilon_1 \alpha_k \ (\text{all} \ k \in \mathbb{Z}^2_+).$$

(2.1)

In an entirely similar way, one can define multivariable weighted shifts. Trivially, a pair of unilateral weighted shifts W_{σ} and W_{τ} gives rise to a 2-variable weighted shift $W_{(\alpha, \beta)} \equiv (T_1, T_2)$, if we let $\alpha(k_1, k_2) := \sigma_{k_1}$ and $\beta(k_1, k_2) := \tau_{k_2}$ (all $k_1, k_2 \in \mathbb{Z}_+$). In this case, $W_{(\alpha, \beta)}$ is subnormal (resp. hyponormal) if and only if T_1 and T_2 are as well; in fact, under the canonical identification of $\ell^2(\mathbb{Z}^2_+)$ with $\ell^2(\mathbb{Z}_+ \times \mathbb{Z}_+)$, we have $T_1 \sim I \otimes W_{\sigma}$ and $T_2 \sim W_{\tau} \otimes I$, and $W_{(\alpha, \beta)}$ is also doubly commuting. For this reason, we do not focus attention on shifts of this type, and use them only when the above mentioned triviality is desirable or needed.

Figure 1: Weight diagram of a commutative 2-variable weighted shift $W_{(\alpha, \beta)} \equiv (T_1, T_2)$ and weight diagram of its toral Aluthge transform $\tilde{W}_{(\alpha, \beta)} \equiv (\tilde{T}_1, \tilde{T}_2)$, respectively. Observe that the commutativity of $\tilde{W}_{(\alpha, \beta)}$ requires (1.3).
2.4. Moments and subnormality

Given \(k \in \mathbb{Z}^2_+ \), the moments of \(W_{(\alpha,\beta)} \) are

\[
\gamma_k \equiv \gamma_k(W_{(\alpha,\beta)}) = \begin{cases}
1, & \text{if } k_1 = 0 \text{ and } k_2 = 0 \\
\alpha^2_{(0,0)} \cdots \alpha^2_{(k_1-1,0)} & \text{if } k_1 \geq 1 \text{ and } k_2 = 0 \\
\beta^2_{(0,0)} \cdots \beta^2_{(k_2-1,0)} & \text{if } k_1 = 0 \text{ and } k_2 \geq 1 \\
\alpha^2_{(0,0)} \cdots \alpha^2_{(k_1-1,0)} \beta^2_{(k_1,0)} \cdots \beta^2_{(k_2-1,0)} & \text{if } k_1 \geq 1 \text{ and } k_2 \geq 1.
\end{cases}
\]

We remark that, due to the commutativity condition \(\mathbf{2.4} \), \(\gamma_k \) can be computed using any nondecreasing path from \((0,0)\) to \((k_1,k_2)\).

We now recall a well known characterization of subnormality for multivariable weighted shifts \([39] \), due to C. Berger (cf. \([10, III.8.16] \)) and independently established by Gellar and Wallen \([36] \) in the 1-variable case: \(W_{(\alpha,\beta)} \equiv (T_1,T_2) \) admits a commuting normal extension if and only if there is a probability measure \(\mu \) (which we call the Berger measure of \(W_{(\alpha,\beta)} \)) defined on the 2-dimensional rectangle \(R = [0,a_1] \times [0,a_2] \) (where \(a_i := \|T_i\|^2 \) such that

\[
\gamma_k(W_{(\alpha,\beta)}) = \int_R t^k dp(s,t) := \int_R s^{k_1} t^{k_2} d\mu(s,t), \text{ for all } k \in \mathbb{Z}^2_+.
\]

For \(i \geq 1 \), we let \(L_i := \{e_{k_1} : k_1 \geq i\} \) denote the invariant subspace obtained by removing the first \(i \) vectors in the canonical orthonormal basis of \(\ell^2(\mathbb{Z}_+) \); we also let \(L := L_1 \). In the 1-variable case, if \(W_\alpha \) is subnormal with Berger measure \(\varepsilon_\alpha \), then the Berger measure of \(W_\alpha|L_i \) is \(d\varepsilon_\alpha|L_i(s) = \frac{\delta_{\varepsilon_\alpha}^{'}(s)}{\gamma_1(W_\alpha)} d\varepsilon_\alpha(s) \), where \(W_\alpha|L_i \) means the restriction of \(W_\alpha \) to \(L_i \). As above, \(U_\perp \) is the (unweighted) unilateral shift, and for \(0 < a < 1 \) we let \(S_a := \text{shift}(a,1,1,\cdots) \). Let \(\delta_a \) denote the point-mass probability measure with support the singleton set \(\{p\} \). Observe that \(U_\perp \) and \(S_a \) are subnormal, with Berger measures \(\delta_1 \) and \((1-a^2)\delta_0 + a^2\delta_1 \), respectively.

2.5. Taylor spectra

We conclude this section with some terminology needed to describe the Taylor and Taylor essential spectra of commuting \(n \)-tuples of operators on a Hilbert space. Let \(\Lambda \equiv \Lambda_n[e] \) be the complex exterior algebra on \(n \) generators \(e_1, \ldots, e_n \) with identity \(e_0 \equiv 1 \), multiplication denoted by \(\wedge \) (wedge product) and complex coefficients, subject to the collapsing property \(e_i \wedge e_j + e_j \wedge e_i = 0 \) \((1 \leq i, j \leq 1) \). If one declares \(\{e_I \equiv e_{i_1} \wedge \cdots \wedge e_{i_n} : I \in \{1,\ldots,n\}\} \) to be an orthonormal basis, the exterior algebra becomes a Hilbert space with the canonical inner product, i.e., \(\langle e_I, e_J \rangle := 0 \) if \(I \neq J \), \(\langle e_I, e_J \rangle := 1 \) if \(I = J \). It also admits an orthogonal decomposition \(\Lambda = \bigoplus_{i=0}^n \Lambda^i \) with \(\Lambda^i \wedge \Lambda^j \subset \Lambda^{i+j} \). Moreover, \(\dim \Lambda^k = \binom{n}{k} \). Let \(E_i : \Lambda \to \Lambda \) denote the creation operator, given by \(\xi \mapsto e_i \wedge \xi \). We recall that \(E_i^* E_j + E_j E_i^* = \delta_{ij} \) and \(E_i \) is a partial isometry (all \(i, j = 1, \ldots, n \)). Consider a Hilbert space \(\mathcal{H} \) and set
\[\Lambda (\mathcal{H}) := \bigoplus_{i=0}^{\infty} \mathcal{H} \otimes_{\mathbb{C}} \Lambda^i. \] For a commuting \(n \)-tuple \(T \equiv (T_1, \ldots, T_n) \) of bounded operators on \(\mathcal{H} \), define

\[D_T : \Lambda (\mathcal{H}) \to \Lambda (\mathcal{H}) \] by

\[D_T (x \otimes \xi) = \sum_{i=1}^{n} T_i x \otimes e_i \wedge \xi. \]

Then \(D_T \circ D_T = 0 \), so \(\text{Ran} D_T \subseteq \text{Ker} D_T \). This naturally leads to a cochain complex, called the Koszul complex \(K (T, \mathcal{H}) \) associated to \(T \) on \(\mathcal{H} \), as follows:

\[K (T, \mathcal{H}) : 0 \to \mathcal{H} \otimes \Lambda^0 \to \mathcal{H} \otimes \Lambda^1 \to \cdots \to \mathcal{H} \otimes \Lambda^n \to 0, \]

where \(D_k^T \) denotes the restriction of \(D_T \) to the subspace \(\mathcal{H} \otimes \Lambda^k \). We define \(T \) to be invertible in case its associated Koszul complex \(K (T, \mathcal{H}) \) is exact. Thus, we can define the Taylor spectrum \(\sigma_T (T) \) of \(T \) as follows:

\[\sigma_T (T) := \{ (\lambda_1, \cdots, \lambda_n) \in \mathbb{C}^n : K ((T_1 - \lambda_1, \ldots, T_n - \lambda_n), \mathcal{H}) \text{ is not invertible} \}. \]

J. L. Taylor showed that, if \(\mathcal{H} \neq \{0\} \), then \(\sigma_T (T) \) is a nonempty, compact subset of the polydisc of multiradius \(r(T) := (r(T_1), \cdots, r(T_n)) \), where \(r(T_i) \) is the spectral radius of \(T_i \) (\(i = 1, \cdots, n \)) [47, 48]. For additional facts about this notion of joint spectrum, the reader is referred to [11], [12] and [15].

3. The Toral Aluthge Transform

We will now gather several well known auxiliary results which are needed for the proofs of the main results of this section. We begin with a criterion for the \(k \)-hyponormality (\(k \geq 1 \)) of 2-variable weighted shifts. But first we need to describe concretely the toral Aluthge transform of a 2-variable weighted shift, and the necessary and sufficient condition to guarantee its commutativity.

Lemma 3.1. Let \(W_{(\alpha, \beta)} \equiv (T_1, T_2) \) be a 2-variable weighted shift. Then

\[\tilde{T}_1 e_k = \sqrt{\alpha_k \alpha_{k+\varepsilon_1}} e_{k+\varepsilon_1} \]

and

\[\tilde{T}_2 e_k = \sqrt{\beta_k \beta_{k+\varepsilon_2}} e_{k+\varepsilon_2} \]

for all \(k \in \mathbb{Z}_+^2 \).

Proof. Straightforward from [12].

In the following result we prove that the commutativity of \((\tilde{T}_1, \tilde{T}_2)\) requires a condition on the weight sequences.
3.1. Commutativity of the toral Aluthge transform

Proposition 3.2. Let $W_{(\alpha,\beta)}$ be a commuting 2-variable weighted shift, with weight diagram given by Figure 1(i). Then

$$\tilde{W}_{(\alpha,\beta)} = (\tilde{T}_1, \tilde{T}_2)$$

is commuting if and only if

$$\alpha_{k+\varepsilon_2,\alpha_{k+\varepsilon_1+\varepsilon_2}} = \alpha_{k+\varepsilon_1,\alpha_{k+2\varepsilon_2}}$$

(3.1)

for all $k \in \mathbb{Z}_+^2$.

Proof. Let $k \in \mathbb{Z}_+^2$; by Lemma 3.1,

$$\tilde{T}_2 \tilde{T}_1 e_k = \sqrt{\alpha_{k+\varepsilon_1,\beta_{k+\varepsilon_1,\beta_{k+\varepsilon_1+\varepsilon_2}}} e_{k+\varepsilon_1+\varepsilon_2}$$

$$\tilde{T}_2 \tilde{T}_1 e_k = \sqrt{\alpha_{k+\varepsilon_1,\beta_{k+\varepsilon_1,\beta_{k+\varepsilon_1+\varepsilon_2}}} e_{k+\varepsilon_1+\varepsilon_2}$$

$$\tilde{T}_2 \tilde{T}_1 e_k = \sqrt{\alpha_{k+\varepsilon_1,\beta_{k+\varepsilon_1,\beta_{k+\varepsilon_1+\varepsilon_2}}} e_{k+\varepsilon_1+\varepsilon_2}$$

(3.2)

On the other hand,

$$\tilde{T}_1 \tilde{T}_2 e_k = \sqrt{\beta_{k+\varepsilon_2,\alpha_{k+\varepsilon_2,\alpha_{k+\varepsilon_1+\varepsilon_2}}} e_{k+\varepsilon_1+\varepsilon_2}$$

(3.3)

From (3.2) and (3.3) it follows that $\tilde{T}_1 \tilde{T}_2 = \tilde{T}_2 \tilde{T}_1$ if and only if

$$\alpha_{k+\varepsilon_2,\alpha_{k+\varepsilon_1+\varepsilon_2}} = \alpha_{k+\varepsilon_1,\alpha_{k+2\varepsilon_2}},$$

as desired. \qed

Remark 3.3. By Proposition 3.2 and the commutativity condition for $W_{(\alpha,\beta)}$, it is straightforward to prove that (3.1) is equivalent to

$$\beta_{k+\varepsilon_1,\beta_{k+\varepsilon_1+\varepsilon_2}} = \beta_{k+\varepsilon_2,\beta_{k+2\varepsilon_2}}$$

(3.4)

for all $k \in \mathbb{Z}_+^2$. \qed

Lemma 3.4. (13) Let $W_{(\alpha,\beta)}$ be a commuting 2-variable weighted shift. Then the following are equivalent:

(i) $W_{(\alpha,\beta)}$ is k-hyponormal;

(ii) $M_n(k)(W_{(\alpha,\beta)}) := \left\{ \gamma_{u+(n,m)+\langle p,q \rangle} \left(W_{(\alpha,\beta)} \right) \right\} \geq 0$ for all $u \in \mathbb{Z}_+^2$.

We recall that M_1 (resp. N_1) is the subspace of $\ell^2(\mathbb{Z}_+^2)$ spanned by the canonical orthonormal basis associated to indices $k = (k_1, k_2)$ with $k_1 \geq 0$ and $k_2 \geq 0$ (resp. $k_1 \geq j$ and $k_2 \geq 0$). For simplicity, we write $M = M_1$ and $N = N_1$. The **core** $c(W_{(\alpha,\beta)})$ of $W_{(\alpha,\beta)}$ is the restriction of $W_{(\alpha,\beta)}$ to the invariant subspace $M \cap N$. A 2-variable weighted shift $W_{(\alpha,\beta)}$ is said to be of **tensor form** if it is of the form $(I \otimes W_\sigma, W_\tau \otimes I)$ for suitable 1-variable weight sequences σ and τ. We also let $\mathcal{T} := \{ W_{(\alpha,\beta)} : c(W_{(\alpha,\beta)}) \text{ is of tensor form} \}$.

9
3.2. Hyponormality is not preserved under the toral Aluthge transform

As we observed in the Introduction, the 1-variable Aluthge transform leaves the class of hyponormal weighted shifts invariant. In this Subsection we will show that the same is not true of the toral Aluthge transform acting on 2-variable weighted shifts. To see this, consider the commuting 2-variable weighted shift $W(\alpha, \beta)$ given by Figure 2(i). That is, $W(\alpha, \beta)$ has a symmetric weight diagram, has a core of tensor form (with Berger measure $\xi \times \xi$), and with zero-th and first rows given by backward extensions of a weighted shift whose Berger measure is ξ; we will denote those backward extensions by $[x_0, \xi]$ and $[a, \xi]$, respectively. Also, we denote by $\omega_0, \omega_1, \cdots$ the weight sequence associated with ξ. Since we wish to characterize the subnormality of $W(\alpha, \beta)$, we assume that $[x_0, \xi]$ and $[a, \xi]$ are subnormal, which requires that $\frac{1}{t} \in L^1(\xi)$. Let $\rho := \int \frac{1}{t} d\xi(t) < \infty$. We recall the following result from [26].

Proposition 3.5. (cf. [26]) Let $W(\alpha, \beta) \equiv (T_1, T_2)$ be a commuting 2-variable weighted shift. Then, for $a, b > 0$ and $k \geq 1$ we have

$$(T_1, T_2) \text{ is } k\text{-hyponormal} \iff (aT_1, bT_2) \text{ is } k\text{-hyponormal}.$$
Lemma 3.7. (cf. [23])

(i) Let μ and ν be two positive measures on a set X. We say that $\mu \leq \nu$ on X, if $\mu(E) \leq \nu(E)$ for all Borel subset $E \subseteq X$; equivalently, $\mu \leq \nu$ if and only if $\int f \, d\mu \leq \int f \, d\nu$ for all $f \in C(X)$ such that $f \geq 0$ on X.

(ii) Let μ be a probability measure on $X \times Y$, and assume that $\frac{1}{t} \in L^1(\mu)$. The extremal measure μ_{ext} (which is also a probability measure) on $X \times Y$ is given by $d\mu_{\text{ext}}(s, t) := (1 - \delta_0(t)) \frac{1}{t} \| \frac{1}{t} \|_{L^1(\mu)} d\mu(s, t)$.

(iii) Given a measure μ on $X \times Y$, the marginal measure μ^X is given by $\mu^X := \mu \circ \pi^{-1}_X$, where $\pi_X : X \times Y \to X$ is the canonical projection onto X. Thus, $\mu^X(E) = \mu(E \times Y)$, for every $E \subseteq X$.

Lemma 3.8. ([24, Proposition 3.10]) (Subnormal backward extension of a 2-variable weighted shift) Assume that $W_{(\alpha, \beta)}$ is a commuting pair of hyponormal operators, and that $W_{(\alpha, \beta)}|_\mathcal{M}$ is subnormal with associated measure $\mu|_\mathcal{M}$. Then, $W_{(\alpha, \beta)}$ is subnormal if and only if the following conditions hold:

(i) $\frac{1}{t} \in L^1(\mu|_\mathcal{M})$;

(ii) $\beta_0^2 \| \frac{1}{t} \|_{L^1(\mu|_\mathcal{M})} (\mu|_\mathcal{M})_{\text{ext}} \leq \xi_0$.

Moreover, if $\beta_0^2 \| \frac{1}{t} \|_{L^1(\mu|_\mathcal{M})} = 1$, then $(\mu|_\mathcal{M})_{\text{ext}} = \xi_0$. In the case when μ^X is subnormal, the Berger measure μ of $W_{(\alpha, \beta)}$ is given by

$$d\mu(s, t) = \beta_0^2 \| \frac{1}{t} \|_{L^1(\mu|_\mathcal{M})} d(\mu|_\mathcal{M})_{\text{ext}}(s, t)$$

$$+ (d\xi_0(s) - \beta_0^2 \| \frac{1}{t} \|_{L^1(\mu|_\mathcal{M})} d(\mu|_\mathcal{M})_{\text{ext}}(s))d\delta_0(t).$$

Lemma 3.9. Let $W_{(\alpha, \beta)}$ be a 2-variable weighted shift, let $\rho := \frac{1}{t} d\xi(s) < \infty$, and assume that $x_0^2 \rho \leq 1$ and $a^2 \rho \leq 1$. Then, $W_{(\alpha, \beta)}$ is subnormal if and only if $x_0^2 \rho(2 - a^2 \rho) \leq 1$.

Proof. Observe that the Berger measure of $[x_0, \xi]$ is $\xi_{x_0} = \frac{x_0^2}{2} + (1 - x_0^2 \rho) \delta_0$ and similarly the Berger measure of $[a, \xi]$ is $\xi_a = \frac{a^2}{2} + (1 - a^2 \rho) \delta_0$. The restriction of $W_{(\alpha, \beta)}$ to the subspace \mathcal{M} is then $\mu_{\mathcal{M}} = \xi_a \times \xi$, from which it follows at once that $(\mu_{\mathcal{M}})_{\text{ext}} = \xi_a$. Therefore, for the subnormality of $W_{(\alpha, \beta)}$ we will need $x_0^2 \rho \xi_a \leq \xi_{x_0}$ and this naturally leads to the condition $x_0^2 \rho(2 - a^2 \rho) \leq 1$, as desired.

Lemma 3.10. The 2-variable weighted shift $\tilde{W}_{(\alpha, \beta)}$ is hyponormal if and only if $|a - x_0| \leq \omega_1 - x_0$.

Proof. Since the restrictions of $\tilde{W}_{(\alpha, \beta)}$ to the subspaces \mathcal{M} and \mathcal{N} are subnormal, Lemma 3.4 says that $\tilde{W}_{(\alpha, \beta)}$ is hyponormal if and only if $M_{0,0}(1) \equiv$
\(M_{(0,0)}(1)(\tilde{W}_{(\alpha,\beta)}) \geq 0 \). Since
\[
M_{(0,0)}(1) = \begin{pmatrix}
\omega_0 \omega_1 - x_0 \omega_0 & \omega_0 - x_0 \omega_0 \\
\omega_0 - x_0 \omega_0 & \omega_0 \omega_1 - x_0 \omega_0
\end{pmatrix},
\]
it follows that \(\tilde{W}_{(\alpha,\beta)} \) is hyponormal if and only if \(|a - x_0| \leq \omega_1 - x_0\), as desired.

We observe that if \(a \geq x_0 \), then \(|a - x_0| \leq \omega_1 - x_0\) becomes \(a \leq \omega_1 \), which is always true. Thus, to build an example where the hyponormality of \(\tilde{W}_{(\alpha,\beta)} \) is violated, we must necessarily assume that \(a < x_0 \). Incidentally, this assumption automatically leads to \(a^2 \rho \leq x_0^2 \rho \), so that the subnormality of \(W_{(\alpha,\beta)} \) is now determined by the conditions \(x_0^2 \rho \leq 1 \) and \(x_0^2 \rho (2 - a^2 \rho) \leq 1 \). In short, an example with the desired properties can be constructed once we guarantee the following three conditions:

\[
\begin{align*}
x_0^2 \rho & \leq 1 \quad \text{(3.6)} \\
x_0^2 \rho (2 - a^2 \rho) & \leq 1 \quad \text{(3.7)} \\
x_0 & > \frac{\omega_1 + a}{2}. \quad \text{(3.8)}
\end{align*}
\]

Notice that \(2 - a^2 \rho < 2 \), so if we were to assume that \(x_0^2 \rho \leq \frac{1}{2} \) then both conditions (3.6) and (3.7) would be simultaneously satisfied. Moreover, if we were to assume that \(x_0 > \frac{\omega_1 + a}{2} \), then we could always find \(a < x_0 \) such that \(x_0 > \frac{\omega_1 + a}{2} \). We can then focus on the following question:

Can we simultaneously guarantee \(x_0^2 \rho \leq \frac{1}{2} \) and \(x_0^2 > \frac{\omega_1^2}{4} \)?

Alternatively, we need
\[
\frac{\omega_1^2}{4} < x_0^2 \leq \frac{1}{2 \rho}. \quad \text{(3.9)}
\]

Now, if \(\frac{\omega_1^2}{4} < x_0^2 \leq \frac{1}{2 \rho} \), then it would be possible to select \(x_0 \) such that (3.9) is satisfied. We have thus established the following result.

Theorem 3.11. Let \(W_{(\alpha,\beta)} \) be as above, and assume that
\[
\omega_1^2 \rho < 2.
\]
Then: (i) \(W_{(\alpha,\beta)} \) is subnormal; and (ii) \(\tilde{W}_{(\alpha,\beta)} \) is not hyponormal.

We will now show that the condition in Theorem 3.11 holds for a large class of 2-variable weighted shifts.

Example 3.12. Consider the case when the measure \(\xi \) is 2-atomic, that is, \(\xi \equiv r \delta_p + s \delta_q \), with \(r, s > 0 \), \(r + s = 1 \) and \(0 < p < q \). (Recall that 0 cannot be in the support of \(\xi \), because otherwise \(\frac{1}{p} \notin L^1(\xi) \).) We compute
\[
\omega_1^2 \rho = \frac{r p^2 + s q^2}{r p + s q} \left(\frac{r + s}{p} \right)^2 = \frac{r + s \left(\frac{2}{p} \right)^2}{r + s \left(\frac{2}{q} \right)} \left(r + s \frac{2}{p} \right)^2.
\]
Thus, without loss of generality we can always assume that \(p = 1 \), that is,

\[
\omega^2 \rho = \frac{r + sq^2}{r + sq} (r + \frac{s}{q}).
\]

A calculation using Mathematica \[49\] reveals that for \(1 < q \leq \tilde{q} := 1/2 + \sqrt{2} + 1/2(\sqrt{5} + 4\sqrt{2}) \approx 3.546 \), we have \(\frac{r + sq^2}{r + sq} (r + \frac{s}{q}) < 2 \) for all \(r, s > 0 \) with \(r + s = 1 \).

As a matter of fact, there is a region \(R \) in the \((s, q)\)-plane bounded by the graph \(q = f(s) \) of a positive convex function \(f \), such that \(\omega^2 \rho < 2 \) precisely when \(1 < q < f(s) \); \(R \) contains the rectangle \([0, 1] \times (1, \tilde{q}]\).

We have thus established the existence of subnormal 2-variable weighted shifts \(W_{(\alpha, \beta)} \) with non-hyponormal toral Aluthge transforms.

4. The spherical Aluthge Transform

In this section, we study the second plausible definition of the multivariable Aluthge transform, which we will denote, to avoid confusion, by \((\hat{T}_1, \hat{T}_2)\); this corresponds to \([1,4]\). We begin with the following elementary result.

Proposition 4.1. Assume that \((T_1, T_2) \equiv (V_1P, V_2P)\), where \(P = (T_1^*T_1 + T_2^*T_2)^{1/2} \), and let \((\hat{T}_1, \hat{T}_2) \equiv (\tilde{T}_1, \tilde{T}_2) := (\sqrt{\mathcal{P}}V_1\sqrt{\mathcal{P}}, \sqrt{\mathcal{P}}V_2\sqrt{\mathcal{P}})\). Assume also that \((T_1, T_2)\) is commutative. Then

(i) \((V_1, V_2)\) is a (joint) partial isometry; more precisely, \(V_1^*V_1 + V_2^*V_2\) is the projection onto \(\text{ran } P\);

(ii) \((T_1, T_2)\) is commutative on \(\text{ran } P\), so in particular \((\hat{T}_1, \hat{T}_2)\) is commutative whenever \(P \) is injective.

Proof. (i) An easy computation reveals that

\[P^2 = T_1^*T_1 + T_2^*T_2 = (V_1^*P)(V_1P) + (V_2^*P)(V_2P) = P(V_1^*V_1 + V_2^*V_2)P, \]

and therefore \((V_1^*V_1 + V_2^*V_2)|_{\text{ran } P}\) is the identity operator on \(\text{ran } P\), as desired.

To prove (ii), consider the product

\[\hat{T}_1\hat{T}_2 = \sqrt{\mathcal{P}}V_1\sqrt{\mathcal{P}}\sqrt{\mathcal{P}}V_2\sqrt{\mathcal{P}} = \sqrt{\mathcal{P}}V_1PV_2\sqrt{\mathcal{P}}. \]

Then

\[
\begin{align*}
\hat{T}_1\hat{T}_2\sqrt{\mathcal{P}} &= \sqrt{\mathcal{P}}T_1T_2 = \sqrt{\mathcal{P}}T_2T_1 = (\sqrt{\mathcal{P}}V_2\sqrt{\mathcal{P}}V_1\sqrt{\mathcal{P}})\sqrt{\mathcal{P}} \\
&= (\sqrt{\mathcal{P}}V_2\sqrt{\mathcal{P}})(\sqrt{\mathcal{P}}V_1\sqrt{\mathcal{P}})\sqrt{\mathcal{P}} = \hat{T}_2\hat{T}_1\sqrt{\mathcal{P}}.
\end{align*}
\]

It follows at once that \(\hat{T}_1\hat{T}_2 - \hat{T}_2\hat{T}_1\) vanishes on \(\text{ran } P\), as desired. \(\Box\)

We now prove:

Proposition 4.2. Given a 2-variable weighted shift \(W_{(\alpha, \beta)} \equiv (T_1, T_2)\), let \(\hat{W}_{(\alpha, \beta)}\) be given by \([1,4]\). Assume that \(W_{(\alpha, \beta)}\) is commutative. Then \(\hat{W}_{(\alpha, \beta)}\) is commutative.
Proof. Straightforward from Proposition 4.1.

We briefly pause to describe how $\hat{W}(\alpha, \beta)$ acts on the canonical orthonormal basis vectors.

Lemma 4.3. Let $W(\alpha, \beta) \equiv (T_1, T_2)$ be a 2-variable weighted shift. Then

$$\hat{T}_1 e_k = \alpha_k \frac{(\alpha_{k+\epsilon_1}^2 + \beta_{k+\epsilon_1}^2)^{1/4}}{(\alpha_k^2 + \beta_k^2)^{1/4}} e_{k+\epsilon_1}$$

and

$$\hat{T}_2 e_k = \beta_k \frac{(\alpha_{k+\epsilon_2}^2 + \beta_{k+\epsilon_2}^2)^{1/4}}{(\alpha_k^2 + \beta_k^2)^{1/4}} e_{k+\epsilon_2}$$

for all $k \in \mathbb{Z}_2^2$.

Proof. Straightforward from (1.3).

Figure 3: Weight diagram of the 2-variable weighted shift in Proposition 4.4 and weight diagram of a commuting 2-variable weighted shift for which the toral and spherical Aluthge transforms coincide, respectively.

We next have:

Proposition 4.4. Consider a 2-variable weighted shift $W(\alpha, \beta) \equiv (T_1, T_2)$, and assume that $W(\alpha, \beta)$ is a commuting pair of hyponormal operators. Then so is $\hat{W}(\alpha, \beta)$.

Proof. We will establish that \hat{T}_2 is hyponormal. Fix a lattice point (k_1, k_2); we would like to prove that $\hat{\beta}(k_1, k_2) \leq \hat{\beta}(k_1, k_2+1)$. Since the hyponormality of a Hilbert space operator is invariant under multiplication by a nonzero scalar, we can, without loss of generality, assume that $\alpha(k_1, k_2) = \beta(k_1, k_2) = 1$. To simplify the calculation, let $a := \alpha(k_1, k_2+1)$, $b := \beta(k_1, k_2+1)$, $c := \alpha(k_1, k_2+2)$ and
\[d := \beta(k_1, k_2 + 2). \] Thus, the weight diagram of \((T_1, T_2) \) is now given as in Figure 3(i). Since \(T_2 \) is hyponormal, we must necessarily have
\[a \leq \frac{bc}{a} \tag{4.1} \]
in the first column of the weight diagram in Figure 3(i). Recall also the Cauchy-Schwarz inequality \(a^2 b^2 \leq \frac{a^4 + b^4}{2} \). Then
\[\hat{\beta}^4_{(k_1, k_2)} = \frac{a^2 + b^2}{2} = \frac{(a^2 + b^2)^2}{2(a^2 + b^2)} = \frac{a^4 + 2a^2b^2 + b^4}{2(a^2 + b^2)} \leq \frac{a^4 + b^4}{a^2 + b^2} \leq \frac{b^2c^2 + b^2d^2}{a^2 + b^2} \] (by (4.1) and the fact that \(b \leq d \))
\[= b^2 \cdot \frac{c^2 + d^2}{a^2 + b^2} \leq b^4 \cdot \frac{c^2 + d^2}{a^2 + b^2} = \hat{\beta}^4_{(k_1, k_2 + 1)}, \]
as desired.

We now present an example of a hyponormal 2-variable weighted shift \(W_{(\alpha, \beta)} \) for which \(\hat{W}_{(\alpha, \beta)} \) is not hyponormal. While we have already encountered this behavior (cf. Theorem 3.11), the simplicity of the following example warrants special mention (aware as we are that the result is weaker than Theorem 3.11). Moreover, this example shows that the spherical Aluthge transform \(\hat{W}_{(\alpha, \beta)} \) may be hyponormal even if \(W_{(\alpha, \beta)} \) is not.

Example 4.5. For \(0 < x, y < 1 \), let \(W_{(\alpha, \beta)} \) be the 2-variable weighted shift in Figure 2(ii), where \(\omega_0 = \omega_1 = \omega_2 = \cdots := 1, x_0 := x, a := y \). Then
(i) \(W_{(\alpha, \beta)} \) is subnormal \(\iff x \leq s(y) := \sqrt{\frac{1}{2} - y^2}; \)
(ii) \(W_{(\alpha, \beta)} \) is hyponormal \(\iff x \leq h(y) := \sqrt{\frac{1+y^2}{2}}; \)
(iii) \(\hat{W}_{(\alpha, \beta)} \) is hyponormal \(\iff x \leq CA(y) := \frac{1+y}{2}; \)
(iv) \(\hat{W}_{(\alpha, \beta)} \) is hyponormal \(\iff x \leq PA(y) := \frac{2(1+y^2-y^4)}{(1+\sqrt{2})(1+y^2)(\sqrt{1+y^2-y^4})}. \]

Clearly, \(s(y) \leq h(y) \leq PA(y) \) and \(CA(y) < h(y) \) for all \(0 < y < 1 \), while \(CA(y) < s(y) \) on \((0, q)\) and \(CA(y) > s(y) \) on \((q, 1)\), where \(q \approx 0.52138 \). Then \(W_{(\alpha, \beta)} \) is hyponormal but \(\hat{W}_{(\alpha, \beta)} \) is not hyponormal if \(0 < CA(y) \leq h(y) \), and \(\hat{W}_{(\alpha, \beta)} \) is hyponormal but \(W_{(\alpha, \beta)} \) is not hyponormal if \(0 < h(y) \leq PA(y) \).

5. 2-variable Weighted Shifts with Identical Aluthge Transforms

We shall now characterize the class \(\mathcal{A}_{TS} \) of commuting 2-variable weighted shifts \(W_{(\alpha, \beta)} \) for which the toral and spherical Aluthge transforms agree, that is, \(\hat{W}_{(\alpha, \beta)} = \hat{W}_{(\alpha, \beta)} \). Using Lemmas 3.1 and 4.3 it suffices to restrict attention to the equalities
transforms agree on this class. it is true when restricted to A for all k

Let α be its polar decomposition. Let

Remark 5.2. By Lemma 5.1, to study the toral Aluthge transform of $W_{(\alpha, \beta)} = (T_1, T_2) \in A_{TS}$ we can multiply T_2 by the factor $\frac{\alpha_{(0,0)}}{\beta_{(0,0)}}$. This results in a new 2-variable weighted shift for which $\alpha_k = \beta_k$ for all $k \in \mathbb{Z}_+^2$. This subclass of A_{TS} is the central subject of the next section. Observe that, while the natural generalization of Lemma 5.1 is not true for the spherical Aluthge transform, it is true when restricted to A_{TS}, since both the toral and spherical Aluthge transforms agree on this class.
6. When is Hyponormality Invariant Under the Toral and Spherical Aluthge Transforms?

In this section we identify a large class of 2-variable weighted shifts for which the toral ans spherical Aluthge transforms do preserve hyponormality. This is in some sense optimal, since we know that \(k \)-hyponormality \((k \geq 2)\) is not preserved by the 1-variable Aluthge transform \([45]\), as mentioned in the Introduction. Since this class is actually a subclass of \(A_{TS} \) (introduced in Section 5), it follows at once that all the results we establish for the toral Aluthge transform are also true for the spherical Aluthge transform.

We start with some definitions. Recall that the core \(c(W_{(\alpha,\beta)}) \) of \(W_{(\alpha,\beta)} \) is the restriction of \(W_{(\alpha,\beta)} \) to the invariant subspace \(M \cap N \). \(W_{(\alpha,\beta)} \) is said to be of tensor form if it is of the form \((I \otimes W_\sigma, W_\tau \otimes I)\) for some unilateral weighted shifts \(W_\sigma \) and \(W_\tau \). Consider \(\Theta(W_\omega) \equiv W_{(\alpha,\beta)} \) on \(\ell^2(\mathbb{Z}^2_+) \) given by the double-indexed weight sequences \(\alpha(k_1,k_2) = \beta(k_1,k_2) := \omega_{k_1+k_2} \) for \(k_1, k_2 \geq 0 \). It is clear that \(\Theta(W_\omega) \) is a commuting pair, and we refer to it as a 2-variable weighted shift with diagonal core \([23]\). This 2-variable weighted shift can be represented by the weight diagram in Figure 4(i)). It is straightforward to observe that the class of shifts of the form \(\Theta(W_\omega) \) is simply \(A_{TS} \) with the extra condition \(\beta(0,0) = \alpha(0,0) \). (For more on these shifts the reader is referred to \([23]\).)

Now, we show that the \(k \)-hyponormality of \(W_\omega \) implies the \(k \)-hyponormality of \(\Theta(W_\omega) \). For this, we present a simple criterion to detect the \(k \)-hyponormality of weighted shifts.

Lemma 6.1. \([14]\) Let \(W_\alpha e_i = \alpha_i e_{i+1} \) \((i \geq 0)\) be a hyponormal weighted shift, and let \(k \geq 1 \). The following statements are equivalent:

(i) \(W_\alpha \) is \(k \)-hyponormal;

(ii) The matrix

\[
\left(([W_\alpha^*, W_\alpha^i]e_{u+j}, e_{u+i}) \right)_{i,j=1}^k
\]

is positive semi-definite for all \(u \geq -1 \);

(iii) The Hankel matrix

\[
H(k; u) (W_\alpha) := (\gamma_{u+i+j-2}^{k+1})_{i,j=1}^{k+1}
\]

is positive semi-definite for all \(u \geq 0 \).

6.1. Preservation of hyponormality

We then have:

Proposition 6.2. Consider \(\Theta(W_\omega) \equiv (T_1, T_2) \) given by Figure 4(i)). Then for \(k \geq 1 \)

\(W_\omega \) is \(k \)-hyponormal if and only if \(\Theta(W_\omega) \) is \(k \)-hyponormal.
Figure 4: Weight diagram of a generic 2-variable weighted shift \(\Theta (W_\omega) \equiv (T_1, T_2) \) and weight diagram of the toral Aluthge transform \(\tilde{\Theta} (W_\omega) \equiv (\tilde{T}_1, \tilde{T}_2) \) of \(\Theta (W_\omega) \), respectively.

Proof. \((\Longleftarrow) \) This is clear from the construction of \(\Theta (W_\omega) \) and Figure (i).

\((\Rightarrow) \) For \(k \geq 1 \), we suppose that \(W_\omega \) is a \(k \)-hyponormal weighted shift. Then, by Lemma 6.1, for all \(k_1 \geq 0 \), we have that the Hankel matrix

\[
H(k; u) (W_\omega) := (\gamma_{u+i+j-2} (W_\omega))_{i,j=1}^{k+1} \geq 0.
\]

By Lemma 3.4, we can see that a 2-variable weighted shift \(W_{(\alpha, \beta)} \) is \(k \)-hyponormal if and only if

\[
M_u(k) (W_{(\alpha, \beta)}) = (\gamma_{u+(m,n)+(p,q)})_{0 \leq m,n,p,q \leq k} \geq 0,
\]

for all \(u \equiv (u_1, u_2) \in \mathbb{Z}_2^+ \). Thus, for \(\Theta (W_\omega) \) \(k \)-hyponormal, it is enough to show that \(M_u(k) \geq 0 \) for all \(u \in \mathbb{Z}_2^+ \). Observe that the moments associated with \(\Theta (W_\omega) \) are

\[
\gamma_u(\Theta (W_\omega)) = \gamma_{u_1+u_2} (W_\omega) \equiv \gamma_{u_1+u_2} (\text{all } u \in \mathbb{Z}_2^+).
\]
By a direct computation, we have
\[M_{u_i}(k) (\Theta (W_\omega)) = \]
\[
\begin{pmatrix}
\gamma u & \gamma u + c_1 & \gamma u + c_2 & \cdots & \gamma u + k c_1 & \cdots & \gamma u + k c_2 \\
\gamma u + c_1 & \gamma u + 2 c_1 & \gamma u + c_1 + c_2 & \cdots & \gamma u + (k+1) c_1 & \cdots & \gamma u + (k+1) c_2 \\
\gamma u + c_2 & \gamma u + c_1 + c_2 & \gamma u + 2 c_2 & \cdots & \gamma u + k c_1 + c_2 & \cdots & \gamma u + (k+1) c_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\gamma u + k c_1 & \gamma u + (k+1) c_1 & \gamma u + k c_1 + c_2 & \cdots & \gamma u + 2 k c_1 & \cdots & \gamma u + k c_1 + k c_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\gamma u + k c_2 & \gamma u + c_1 + k c_2 & \gamma u + (k+1) c_2 & \cdots & \gamma u + k c_1 + k c_2 & \cdots & \gamma u + 2 k c_2
\end{pmatrix},
\]
which by \((6.2)\) equals
\[J_{u_i}(k) := \]
\[
\begin{pmatrix}
\gamma u_1 + u_2 & \gamma u_1 + u_2 + 1 & \cdots & \gamma u_1 + u_2 + k & \cdots & \gamma u_1 + u_2 + k \\
\gamma u_1 + u_2 + 1 & \gamma u_1 + u_2 + 2 & \cdots & \gamma u_1 + u_2 + k + 1 & \cdots & \gamma u_1 + u_2 + k + 1 \\
\gamma u_1 + u_2 + 2 & \gamma u_1 + u_2 + k + 1 & \cdots & \gamma u_1 + u_2 + 2k & \cdots & \gamma u_1 + u_2 + 2k \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\gamma u_1 + u_2 + k & \gamma u_1 + u_2 + 2k & \cdots & \gamma u_1 + u_2 + 2k & \cdots & \gamma u_1 + u_2 + 2k \\
\gamma u_1 + u_2 + k & \gamma u_1 + u_2 + 2k & \cdots & \gamma u_1 + u_2 + 2k & \cdots & \gamma u_1 + u_2 + 2k
\end{pmatrix}.
\]
For \(1 \leq i \leq k + 1\), we can observe that the
\[
(i(i + 1) + 1) \cdot (i(i + 1) + 2) \cdots (i(i + 1) + (i + 1))
\]
rows and columns of \(J_{u_i}(k)\) are equal. Thus, a direct calculation (i.e., discarding some redundant rows and columns in the matrix \(J_{u_i}(k)\)) shows that
\[
J_{u_i}(k) \geq 0 \iff L_{u_i}(k) \geq 0,
\]
where
\[
L_{u_i}(k) := \]
\[
\begin{pmatrix}
\gamma u_1 + u_2 (W_\omega) & \gamma u_1 + u_2 + 1 (W_\omega) & \cdots & \gamma u_1 + u_2 + k (W_\omega) \\
\gamma u_1 + u_2 + 1 (W_\omega) & \gamma u_1 + u_2 + 2 (W_\omega) & \cdots & \gamma u_1 + u_2 + k + 1 (W_\omega) \\
\gamma u_1 + u_2 + 2 (W_\omega) & \gamma u_1 + u_2 + k + 1 (W_\omega) & \cdots & \gamma u_1 + u_2 + 2k (W_\omega) \\
\gamma u_1 + u_2 + k (W_\omega) & \gamma u_1 + u_2 + 2k (W_\omega) & \cdots & \gamma u_1 + u_2 + 2k (W_\omega)
\end{pmatrix}.
\]
Note that
\[
L_{(u_1, u_2)}(k) \geq 0 \iff H(k; u_1 + u_2) (W_\omega) \geq 0.
\]
Thus, if W_ω is k-hyponormal then $H(k; u) (W_\omega) \geq 0$ for all $(u \geq 0)$, which a fortiori implies that $M_u(k) (W_{(\alpha, \beta)}) \geq 0$ for all $u \in \mathbb{Z}_+^2$, as desired. The proof is now complete.

Now we have the following result.

Theorem 6.3. Consider the 2-variable weighted shift $\Theta (W_\omega) \equiv (T_1, T_2)$ given by Figure 4(i). Suppose that $\Theta (W_\omega)$ is hyponormal. Then, the toral Aluthge transform $\tilde{\Theta} (W_\omega) \equiv \Theta (\tilde{W}_\omega)$ is also hyponormal.

In view of Lemma 5.1, we immediately get

Corollary 6.4. The conclusion of Theorem 6.3 holds in the class A_{TS}.

Proof of Theorem 6.3. Since $\Theta (W_\omega)$ is hyponormal, by Proposition 6.2, W_ω is hyponormal. Thus, we have that for any integer $n \geq 0$, $\omega_n \leq \omega_{n+1} \implies \sqrt{\omega_n \omega_{n+1}} \leq \sqrt{\omega_{n+1} \omega_{n+2}}$, which implies that \tilde{W}_ω is also hyponormal. By Proposition 6.2, $\tilde{\Theta} (W_\omega)$ is hyponormal, as desired.

Remark 6.5. (i) We construct an example $\Theta (W_\omega)$ such that $\Theta (W_\omega)$ is not hyponormal, but the Aluthge transform $\tilde{\Theta} (W_\omega)$ of $\Theta (W_\omega)$ is hyponormal. Consider the unilateral weighted shift introduced in Section 1, that is, $W_\omega \equiv \text{shift}(\sqrt{x}, \sqrt{y}, 1, \cdots)$. W_ω is not hyponormal, but the Aluthge transform $\tilde{W}_\omega = U_+$ is subnormal. Thus, by Proposition 6.2 we have that $\Theta (W_\omega)$ is not hyponormal, but $\tilde{\Theta} (W_\omega)$ is hyponormal, as desired.

(ii) Using an argument entirely similar to that in (i) above, one can show that 2-hyponormality is not preserved by the toral or spherical Aluthge transform (as in the single variable case).

We can easily observe that if $W_{(\alpha, \beta)}$ is of tensor form, that is, $(I \otimes W_\sigma, W_\tau \otimes I)$, then its toral Aluthge transform $\tilde{W}_{(\alpha, \beta)}$ is also of tensor form; however, the spherical Aluthge transform $\tilde{W}_{(\alpha, \beta)}$ is in general not of tensor form. In any event, hyponormality is invariant under both Aluthge transforms when $W_{(\alpha, \beta)}$ is of tensor form. That the toral Aluthge transform preserves hyponormality for these 2-variable weighted shifts is clear; we now establish invariance of hyponormality for the spherical Aluthge transform. Recall first that, by Proposition 4.4, the spherical Aluthge transform is commuting.

Proposition 6.6. Let $W_{(\alpha, \beta)}$ be a 2-variable weighted shift of tensor form $(I \otimes W_\sigma, W_\tau \otimes I)$, and assume that W_σ and W_τ are hyponormal. Then $\tilde{W}_{(\alpha, \beta)}$ is hyponormal.

Proof. Without loss of generality, we can assume that

$W_\sigma \equiv \text{shift}(\sqrt{x}, \sqrt{y}, 1, \cdots)$ and $W_\tau \equiv \text{shift}(\sqrt{a}, \sqrt{b}, 1, \cdots)$,

with $0 < x < y < 1$ and $0 < a < b < 1$. Also, it is enough to focus on the Six-Point Test at $(0, 0)$ (cf. 13 Theorem 6.1], 26 Theorem 1.3); that is, we will check that $M_{(0,0)}(1) \left(\tilde{W}_{(\alpha, \beta)} \right) \geq 0$.

20
Observe that
\[
M_{(0,0)}(1) \left(\hat{W}_{(\alpha,\beta)} \right) = \begin{pmatrix}
1 & x\sqrt{\frac{a+y}{a+x}} & a\sqrt{\frac{b+x}{a+x}} \\
\frac{x}{\sqrt{a+x}} & xy\sqrt{\frac{a+y}{a+x}} & ax\sqrt{\frac{b+y}{a+x}} \\
\frac{a}{\sqrt{a+x}} & ax\sqrt{\frac{b+y}{a+x}} & ab\sqrt{\frac{x+1}{a+x}}
\end{pmatrix}.
\]
Thus, we obtain
\[
M_{(0,0)}(1) \left(\hat{W}_{(\alpha,\beta)} \right) \geq 0 \iff A \geq 0,
\]
where
\[
A := \begin{pmatrix}
\sqrt{a+x} & x\sqrt{a+y} & a\sqrt{b+x} \\
x\sqrt{a+y} & xy\sqrt{a+1} & ax\sqrt{b+y} \\
ax\sqrt{a+x} & ax\sqrt{b+y} & ab\sqrt{x+1}
\end{pmatrix}.
\]
Now modify the (2,2) and (3,3) entries of \(A \) and let
\[
B := \begin{pmatrix}
\sqrt{a+x} & x\sqrt{a+y} & a\sqrt{b+x} \\
x\sqrt{a+y} & xy\sqrt{a+x} & ax\sqrt{b+y} \\
ax\sqrt{b+x} & ax\sqrt{b+y} & ab\sqrt{a+x}
\end{pmatrix}.
\]
A direct calculation using the Nested Determinant Test shows that \(A \geq B \) and that \(B \geq 0 \). Thus, we have
\[
M_{(0,0)}(1) \left(\hat{W}_{(\alpha,\beta)} \right) \geq 0,
\]
so that \(\hat{W}_{(\alpha,\beta)} \) is hyponormal, as desired.

Remark 6.7. One might be tempted to claim that subnormality is also preserved by the toral and spherical Aluthge transforms, within the class of 2-variable weighted shifts of tensor form. However, this is not the case. Indeed, in [34] and [35], G. Exner considered the weighted shift \(W_\sigma \) with 3-atomic Berger measure \(\frac{1}{3}(\delta_0 + \delta_1 + \delta_1) \) (studied in [25]) and proved that the Aluthge transform of \(W_\sigma \) is not subnormal.

7. Continuity Properties of the Aluthge Transforms

We turn our attention to the continuity properties of the Aluthge transforms of a commuting pair. The following result is well known. For a single operator \(T \in B(H) \), the Aluthge transform map \(T \to \tilde{T} \) is \((\|\cdot\|, \|\cdot\|) \) - continuous on \(B(H) \) ([32]). We want to extend the result to multivariable case. First, we define the operator norm of \(T \equiv (T_1, T_2) \) as
\[
\|T\| := \max \{ \|T_1\|, \|T_2\| \}.
\]

Theorem 7.1. The toral Aluthge transform map \(T \to \tilde{T} \) is \((\|\cdot\|, \|\cdot\|) \) - continuous on \(B(H) \).
Proof. Straightforward from the definition of \(\|T\|\).

We turn our attention to the continuity properties in \(\mathcal{B}(\mathcal{H})\) for the spherical Aluthge transform of a commuting pair. For this, we need a couple of auxiliary results, which can be proved by suitable adaptations of the results in [32, Lemmas 2.1 and 2.2].

Lemma 7.2. Let \(T \equiv (T_1, T_2) \equiv (V_1 P, V_2 P)\) be a pair of commuting operators, written in joint polar decomposition form, where \(P = \sqrt{T_1^* T_1 + T_2^* T_2}\). For \(n \in \mathbb{N}\) and \(t > 0\), let \(f_n(t) := \sqrt{\max\left(\frac{1}{n}, t\right)}\) and let \(A_n := f_n(T)\). Then:

(i) \(\|A_n\| \leq \max\left(n^{-\frac{1}{2}}, \|P\|^{-\frac{1}{2}}\right)\);

(ii) \(\|PA_n^{-1}\| \leq \|P\|^{-\frac{1}{2}}\);

(iii) \(\|A_n - P\| \leq n^{-\frac{1}{2}}\);

(iv) \(\|PA_n^{-1} - P\| \leq \frac{1}{4} n^{-\frac{1}{2}}\);

(v) For \(i = 1, 2\), \(\|A_n T_i A_n^{-1} - P V_i P\| \leq \frac{5}{4} n^{-\frac{1}{2}} \|T_i\|^{-\frac{1}{2}}\).

Lemma 7.3. Given \(R \geq 1\) and \(\epsilon > 0\), there are real polynomials \(p\) and \(q\) such that for every commuting pair \(T \equiv (T_1, T_2)\) with \(\|T_i\| \leq R\) \((i = 1, 2)\), we have

\[
\left\|P V_i P - p(T_1^* T_1 + T_2^* T_2) T_i q(T_1^* T_1 + T_2^* T_2)\right\| < \epsilon.
\]

In the statement below, \(\|\cdot\|\) refers to the operator norm topology on \(\mathcal{B}(\mathcal{H})\).

Theorem 7.4. The spherical Aluthge transform

\[
(T_1, T_2) \rightarrow (\hat{T}_1, \hat{T}_2)
\]

is \((\|\cdot\|, \|\cdot\|)\) – continuous on \(\mathcal{B}(\mathcal{H})\).

*Proof.** Observe first that \(\|V_i\| \leq 1\) for \(i = 1, 2\), as follows from the inequality

\[
\|V_i P x\|^2 = \|T_i x\|^2 = \langle T_i^* T_i x, x \rangle = \langle P^2 x, x \rangle = \|P x\|^2.
\]

The proof is now an easy consequence of the Proof of [32, Theorem 2.3], when one uses Lemma 7.3 instead of [32, Lemma 2.2].

8. Spectral Properties of the Aluthge Transforms

In this section, we study whether the multivariable Aluthge transforms preserve the Taylor spectrum and Taylor essential spectrum, when \(W_{(\alpha, \beta)}\) is in the class \(\mathcal{T}C\) of 2-variable weighted shifts with core of tensor form; this is a large nontrivial class, which has been previously studied in [15–20], [24–28] and [47–49].
We begin by looking at the toral Aluthge transform. By Proposition 8.2 and Remark 8.3, we note that the weight diagram of \(W_{(\alpha, \beta)} \) is as in Figure 2(i), provided the toral Aluthge transform is commutative. We first address the Taylor spectrum.

Lemma 8.1. (i) \([11], [12]\) Let \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) be Hilbert spaces, and let \(A_i \in \mathcal{B}(\mathcal{H}_1) \), \(C_i \in \mathcal{B}(\mathcal{H}_2) \) and \(B_i \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2) \), \((i = 1, \cdots, n) \) be such that

\[
\begin{pmatrix}
A & 0 \\
B & C
\end{pmatrix} := \begin{pmatrix}
A_1 & 0 \\
B_1 & C_1
\end{pmatrix}, \cdots, \begin{pmatrix}
A_n & 0 \\
B_n & C_n
\end{pmatrix}
\]

is commuting. Assume that \(A \) and \(\begin{pmatrix}
A & 0 \\
B & C
\end{pmatrix} \) are Taylor invertible. Then, \(C \) is Taylor invertible. Furthermore, if \(A \) and \(C \) are Taylor invertible, then \(\begin{pmatrix}
A & 0 \\
B & C
\end{pmatrix} \) is Taylor invertible.

(ii) \([13]\) For \(A \) and \(B \) two commuting \(n \)-tuples of bounded operators on Hilbert space, we have:

\[
\sigma_T(I \otimes A, B \otimes I) = \sigma_T(A) \times \sigma_T(B)
\]

and

\[
\sigma_{Te}(I \otimes A, B \otimes I) = \sigma_{Te}(A) \times \sigma_{Te}(B) \cup \sigma_T(A) \times \sigma_{Te}(B).
\]

To apply Lemma 8.1, we first let

\[
W_\omega := \text{shift} (\omega_0, \omega_1, \cdots), \ W_\tau := \text{shift} (\tau_0, \tau_1, \cdots), \ W_{\omega(0)} := \text{shift} (x_0, x_1, \omega_1, \omega_2, \cdots), \ W_{\omega(2)} := \text{shift} (a, \omega_0, \omega_1, \cdots), \ I := \text{diag} (1, 1, \cdots),
\]

\[
D_1 := \text{diag} (\frac{y_0}{\omega_0}, a \frac{\omega_0}{\omega_1}, a \frac{\omega_0 \omega_2}{\omega_1}, \cdots), \text{ and } D_2 := \text{diag} (\frac{y_0}{\omega_0}, \tau_0, \tau_0, \cdots),
\]

where \(I \) is the identity matrix.

Theorem 8.2. Consider a commuting 2-variable weighted shift \(W_{(\alpha, \beta)} \equiv (T_1, T_2) \) with weight diagram given by Figure 2(i). Assume also that \(T_1 \) and \(T_2 \) are hyponormal. Then

\[
\sigma_T (W_{(\alpha, \beta)}) = (\|W_\omega\| \cdot \overline{\mathbb{D}} \times \|W_\tau\| \cdot \overline{\mathbb{D}}) \text{ and } \sigma_{Te} (W_{(\alpha, \beta)}) = (\|W_\omega\| \cdot \overline{T} \times \|W_\tau\| \cdot \overline{\mathbb{D}}) \cup (\|W_\omega\| \cdot \overline{\mathbb{D}} \times \|W_\tau\| \cdot \overline{T}).
\]

Here \(\overline{\mathbb{D}} \) denotes the closure of the open unit disk \(\mathbb{D} \) and \(\overline{T} \) the unit circle.

Proof. We represent \(W_{(\alpha, \beta)} \equiv (T_1, T_2) \) by block matrices relative to the decomposition

\[
\ell^2 (\mathbb{Z}_+^2) \cong \ell^2 (\mathbb{Z}_+) \otimes \ell^2 (\mathbb{Z}_+) \cong (\ell^2 (\mathbb{Z}_+) \oplus \ell^2 (\mathbb{Z}_+)) \oplus (\ell^2 (\mathbb{Z}_+) \oplus \cdots).
\]

Then, we obtain

\[
T_1 \equiv \begin{pmatrix}
W_{\omega(0)} & \vdots \\
\vdots & W_{\omega(1)} & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
& & \cdots & R_1
\end{pmatrix} \text{ and } T_2 \equiv \begin{pmatrix}
0 & \vdots \\
D_1 & 0 & \vdots \\
\vdots & \cdots & \ddots & \vdots \\
D_2 & \vdots & \cdots & R_2
\end{pmatrix},
\]

23
where \(R_1 := \begin{pmatrix} W_{\omega(2)} & \vdots \\ \vdots & W_{\omega(2)} \end{pmatrix} \) and \(R_2 := \begin{pmatrix} 0 & \tau_1 I & 0 \\ \tau_1 I & 0 & \vdots \\ \vdots & \cdots & \vdots \end{pmatrix} \).

We first consider \(\sigma_T(W_{(\alpha,\beta)}) = (T_1, T_2) \). Note the following:

\[
\|W_\omega\| = \|W_{\omega(0)}\| = \|W_{\omega(1)}\| = \|W_{\omega(2)}\| \quad \text{and} \\
\|W_\tau\| = \|\text{shift} (\tau_1, \tau_2, \cdots)\| = \|\text{shift} \left(\frac{\omega_{xy}}{\tau_0}, \tau_0, \tau_1, \cdots \right)\|. \tag{8.3}
\]

Thus, by Lemma 8.1(ii) and (8.3), we have

\[
\begin{align*}
\sigma_T(T_1, T_2) & \subseteq \sigma_T \left(\begin{pmatrix} W_{\omega(0)} & 0 \\ 0 & W_{\omega(1)} \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & D_1 \end{pmatrix} \right) \cup \sigma_T (I \otimes W_{\omega(2)}, W_\tau \otimes I) \\
& \subseteq \sigma_T \left(W_{\omega(0)}, 0 \right) \cup \sigma_T \left(W_{\omega(1)}, 0 \right) \cup \sigma_T (I \otimes W_{\omega(2)}, W_\tau \otimes I) \\
& = (\|W_\omega\| \cdot T \times \{0\}) \cup (\|W_\omega\| \cdot T \times \|W_\tau\| \cdot T) = \|W_\omega\| \cdot T \times \|W_\tau\| \cdot T. \tag{8.4}
\end{align*}
\]

By Lemma 8.1(ii) and (8.3), we have

\[
\begin{align*}
\sigma_T (I \otimes W_{\omega(2)}, W_\tau \otimes I) & \subseteq \sigma_T \left(\begin{pmatrix} W_{\omega(0)} & 0 \\ 0 & W_{\omega(1)} \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & D_1 \end{pmatrix} \right) \cup \sigma_T (I \otimes W_{\omega(2)}, W_\tau \otimes I) \\
& \Rightarrow \sigma_T (I \otimes W_{\omega(2)}, W_\tau \otimes I) \\
& \subseteq \sigma_T (W_{\omega(0)}, 0) \cup \sigma_T (W_{\omega(1)}, 0) \cup \sigma_T (I \otimes W_{\omega(2)}, W_\tau \otimes I) \\
& \Rightarrow \|W_\omega\| \cdot T \times \|W_\tau\| \cdot T \subseteq \|W_\omega\| \cdot T \times \{0\} \cup \sigma_T (T_1, T_2) \\
& \Rightarrow (\|W_\omega\| \cdot T \times \|W_\tau\| \cdot T) \cap (\|W_\omega\| \cdot T \times \{0\}) \subseteq \sigma_T (T_1, T_2).
\end{align*}
\]

Since the Taylor spectrum \(\sigma_T(T_1, T_2) \) is a closed set in \(\mathbb{C} \times \mathbb{C} \), by (10.1) and (10.2), we can get

\[
\sigma_T \left(W_{(\alpha,\beta)} \right) = (\|W_\omega\| \cdot T \times \|W_\tau\| \cdot T). \tag{8.6}
\]

We next consider the Taylor essential spectrum \(\sigma_{Te}(T_1, T_2) \) of \(W_{(\alpha,\beta)} \equiv (T_1, T_2) \). Observe that \(W_{\omega(2)} \) is a compact perturbation of \(W_{\omega(1)} \) and \(W_{\omega(0)} \). Also, \(\frac{\omega_{xy}}{\tau_0} I \) and \(\tau_0 I \) are compact perturbations of \(D_1 \) and \(D_2 \), respectively. Thus, we have

\[
\sigma_{Te}(T_1, T_2) = \sigma_{Te} \left(I \otimes W_{\omega(2)}, \text{shift} \left(\frac{\omega_{xy}}{\tau_0}, \tau_0, \tau_1, \cdots \right) \otimes I \right). \tag{8.7}
\]

By Lemma 8.1(ii) and (8.3), we note

\[
\begin{align*}
\sigma_{Te} \left(I \otimes W_{\omega(2)}, \text{shift} \left(\frac{\omega_{xy}}{\tau_0}, \tau_0, \tau_1, \cdots \right) \otimes I \right) & = \sigma_{Te} \left(W_{\omega(2)} \times \sigma_T (W_\omega) \right) \times \sigma_{Te} (W_\tau) \\
& = \left(\|W_\omega\| \cdot T \times \|W_\tau\| \cdot T \right) \cup (\|W_\omega\| \cdot T \times \|W_\tau\| \cdot T).
\end{align*}
\]

Therefore, our proof is now complete.
Theorem 8.3. (Case of toral Aluthge Transform) Consider a commuting 2-variable weighted shift $W_{(\alpha, \beta)} \equiv (T_1, T_2)$ with weight diagram given by Figure 2(i). Assume also that T_1 and T_2 are hyponormal. Then

$$\sigma_T \left(\tilde{W}_{(\alpha, \beta)} \right) = (\|W_\omega\| \cdot T \times \|W_\tau\| \cdot T)$$

and

$$\sigma_{Te} \left(\tilde{W}_{(\alpha, \beta)} \right) = (\|W_\omega\| \cdot T \times \|W_\tau\| \cdot T) \cup (\|W_\omega\| \cdot T \times \|W_\tau\| \cdot T).$$

Proof. Since the structure of the weight diagram for $\tilde{W}_{(\alpha, \beta)} \equiv \left(\tilde{T}_1, \tilde{T}_2 \right)$ is entirely similar to that of $W_{(\alpha, \beta)} \equiv (T_1, T_2)$, the result follows by imitating the Proof of Theorem 8.2.

By the results of Theorems 8.2 and 8.3, we easily obtain the following result.

Corollary 8.4. Consider a commuting 2-variable weighted shift $W_{(\alpha, \beta)} \equiv (T_1, T_2)$ with weight diagram given by Figure 2(i). Assume also that T_1 and T_2 are hyponormal. Then

$$\sigma_T \left(\tilde{W}_{(\alpha, \beta)} \right) = \sigma_T (W_{(\alpha, \beta)})$$

and

$$\sigma_{Te} \left(\tilde{W}_{(\alpha, \beta)} \right) = \sigma_{Te} (W_{(\alpha, \beta)}).$$

Remark 8.5. We note that the commutativity property is required to check the Taylor spectrum (resp. Taylor essential spectrum) of $\tilde{W}_{(\alpha, \beta)}$. Thus, if $W_{(\alpha, \beta)} \in \mathcal{TC}$, then $\tilde{W}_{(\alpha, \beta)}$ is commuting.

(ii) By Corollary 8.4 we can see that the Taylor spectrum (resp. Taylor essential spectrum) of $\tilde{W}_{(\alpha, \beta)}$ equals that of $W_{(\alpha, \beta)}$ when $W_{(\alpha, \beta)}$ is commuting and T_1 and T_2 are hyponormal. Thus, Corollary 8.4 gives a partial solution to Problem 1.3.

We now turn our attention to the case of the spherical Aluthge Transform. We need a preliminary result.

Proposition 8.6. Let $W_{(\alpha, \beta)} \in \mathcal{TC}$, with core $c(W_{(\alpha, \beta)}) = (I \otimes W_\sigma, W_\tau \otimes I)$. Then $\hat{W}_{(\alpha, \beta)} \in \mathcal{TC}$ if and only if $c(W_{(\alpha, \beta)}) = (rI \otimes U_+, W_\tau \otimes I) \lor c(W_{(\alpha, \beta)}) = (I \otimes W_\sigma, U_+ \otimes sI)$ for some $r, s > 0$.

Proof. By Lemma 4.3 we recall that

$$\hat{T}_1 c_k = \alpha_k \left(\frac{\alpha^2_k + \beta^2_{k+\epsilon_1}}{(\alpha^2_k + \beta^2_{k+\epsilon_1})^{1/4}} \right)^1 c_{k+\epsilon_1} \text{ and } \hat{T}_2 c_k = \beta_k \left(\frac{\alpha^2_k + \beta^2_{k+\epsilon_2}}{(\alpha^2_k + \beta^2_{k+\epsilon_2})^{1/4}} \right)^1 c_{k+\epsilon_2}$$

(8.9)

Since $W_{(\alpha, \beta)} \in \mathcal{TC}$, and since $\hat{W}_{(\alpha, \beta)}$ leaves the subspace $\mathcal{M} \cap \mathcal{N}$ invariant, it readily follows that the spherical Aluthge transform of $c(W_{(\alpha, \beta)})$ is $c(\hat{W}_{(\alpha, \beta)})$. As a result, we may assume, without loss of generality, that $W_{(\alpha, \beta)} \equiv (I \otimes
By Proposition 8.6, without loss of generality we may assume

\[\sigma_T \left(\hat{W}_{(\alpha,\beta)} \right) = \sigma_T \left(W_{(\alpha,\beta)} \right) \quad \text{and} \quad \sigma_{T_c} \left(\hat{W}_{(\alpha,\beta)} \right) = \sigma_{T_c} \left(W_{(\alpha,\beta)} \right). \]

Proof. By Proposition 8.6, without loss of generality we may assume

\[c \left(W_{(\alpha,\beta)} \right) \equiv (r I \otimes U_+ , W_\sigma \otimes I), \]

for some \(r > 0 \). Recall that

\[\hat{T}_1 e_k = \alpha_k \left(\alpha_{k+\epsilon_1} + \beta_{k+\epsilon_1} \right)^{1/4} e_{k+\epsilon_1} \quad \text{and} \quad \hat{T}_2 e_k = \beta_k \left(\alpha_{k+\epsilon_2} + \beta_{k+\epsilon_2} \right)^{1/4} e_{k+\epsilon_2}. \]

By (8.10), we obtain

\[c \left(\hat{W}_{(\alpha,\beta)} \right) \equiv (r I \otimes U_+ , W_\sigma \otimes I) \circ (I \otimes U_+ , W_\rho \otimes I), \]

where \(W_\rho \equiv \text{shift} \left(\left(\frac{r^2 + \tau^2}{r^2 + \tau^2} \right)^{1/4} , \left(\frac{r^2 + \tau^2}{r^2 + \tau^2} \right)^{1/4} , \left(\frac{r^2 + \tau^2}{r^2 + \tau^2} \right)^{1/4} , \cdots \right) \) with \(\|W_\sigma\| = 1 \) and \(\circ \) denotes Schur product. Note that

\[\text{shift} \left(\hat{\alpha}_{(0,0)} , \hat{\alpha}_{(1,0)} , \cdots \right) \]

is shift \(\left(\alpha_{(0,0)} , \alpha_{(1,0)} , \cdots \right) \) of shift \(\left(\frac{\alpha_{(0,0)} + \beta_{(0,0)}}{\alpha_{(0,0)} + \beta_{(0,0)}} \right)^{1/4} , \left(\frac{\alpha_{(0,1)} + \beta_{(0,1)}}{\alpha_{(0,1)} + \beta_{(0,1)}} \right)^{1/4} , \cdots \)

and

\[\text{shift} \left(\hat{\beta}_{(0,0)} , \hat{\beta}_{(1,0)} , \cdots \right) \]

is shift \(\left(\beta_{(0,0)} , \beta_{(1,0)} , \cdots \right) \) of shift \(\left(\frac{\alpha_{(0,0)} + \beta_{(0,0)}}{\alpha_{(0,0)} + \beta_{(0,0)}} \right)^{1/4} , \left(\frac{\alpha_{(0,1)} + \beta_{(0,0)}}{\alpha_{(0,1)} + \beta_{(0,1)}} \right)^{1/4} , \cdots \).
Since
\[\left\| \text{shift} \left(\frac{\alpha_{(0,0)}^2 + \beta_{(0,0)}^2}{\alpha_{(0,0)} + \beta_{(0,0)}}, \frac{\alpha_{(1,0)}^2 + \beta_{(1,0)}^2}{\alpha_{(1,0)} + \beta_{(1,0)}}, \frac{\alpha_{(2,0)}^2 + \beta_{(2,0)}^2}{\alpha_{(2,0)} + \beta_{(2,0)}}, \ldots \right) \right\| = 1, \]
we have
\[\| \text{shift} (\hat{\alpha}_{(0,0)}, \hat{\alpha}_{(1,0)}, \hat{\alpha}_{(2,0)}, \ldots) \| = \| \text{shift} (\alpha_{(0,0)}, \alpha_{(1,0)}, \alpha_{(2,0)}, \ldots) \| \] (8.11)
and
\[\| \text{shift} (\hat{\beta}_{(0,0)}, \hat{\beta}_{(1,0)}, \hat{\beta}_{(2,0)}, \ldots) \| = \| \text{shift} (\beta_{(0,0)}, \beta_{(1,0)}, \beta_{(2,0)}, \ldots) \|. \] (8.12)

Thus, by the method used in the Proof of Theorem 8.2 we have
\[\sigma_T (\hat{W}_{(\alpha,\beta)}) = \sigma_T (W_{(\alpha,\beta)}). \]

Observe now that (8.11) and (8.12) also show that the weighted shifts associated with 0-th row and the 0-th column of \(\hat{W}_{(\alpha,\beta)} \) are compact perturbations of the corresponding weighted shifts for \(W_{(\alpha,\beta)} \). As a result, it is straightforward to conclude that
\[\sigma_{T_e} (\hat{W}_{(\alpha,\beta)}) = \sigma_{T_e} (W_{(\alpha,\beta)}). \]

This completes the proof of the theorem. \(\square \)

In view of Corollary 8.4, Remark 8.5 and Theorem 8.7, it is natural to formulate the following

Conjecture 8.8. Let \(W_{(\alpha,\beta)} \) be a commuting 2-variable weighted shift, whose toral and spherical Aluthge transforms are also commuting. Then \(W_{(\alpha,\beta)}, \hat{W}_{(\alpha,\beta)} \) and \(\hat{W}_{(\alpha,\beta)} \) all have the same Taylor spectrum and the same Taylor essential spectrum.

9. Aluthge Transforms of the Drury-Arveson Shift

In this section we consider the Drury-Arveson 2-variable weighted shift \(DA \), whose weight sequences are given by
\[
\alpha(k_1,k_2) := \sqrt{\frac{k_1 + 1}{k_1 + k_2 + 1}} \quad \text{(for all } k_1, k_2 \geq 0) \quad (9.1)
\]
\[
\beta(k_1,k_2) := \alpha(k_2,k_1) \quad \text{(for all } k_1, k_2 \geq 0). \quad (9.2)
\]

If we denote the successive rows of the weight diagram of \(DA \) by \(R_1, R_2, \ldots \), it is easy to see that \(R_1 = A_1 \), the (unweighted) unilateral shift, \(R_2 = A_2 \), the
Bergman shift and, more generally, $R_j = A_j$, the Agler j-th shift $(j \geq 2)$; in particular, all rows and columns are subnormal weighted shifts. For $j \geq 2$, the Berger measure of A_j is $(j - 1)s^{j-2}ds$ on the closed interval $[0,1]$, and therefore all the Berger measures associated with rows $1, 2, 3, \cdots$ are mutually absolutely continuous, a necessary condition for the subnormality of DA. However, the Berger measure of the first row $(ds$ on $[0,1])$ is not absolutely continuous with respect to δ_1 (which is the Berger measure of U_+, the zeroth-row, and therefore DA cannot be subnormal (by [27]). In fact, a stronger result is true: DA is not jointly hyponormal, as a simple application of the Six-Point Test at $(0,0)$ reveals.

It is also known that $DA \equiv (T_1, T_2)$ is essentially normal; in fact, the commutators $[T_i^*, T_j]$ $(i, j = 1, 2)$ are in the Schatten p-class for $p > 2$, as shown by W.A. Arveson [3]. In the sequel, we prove compactness of the commutators using the homogeneous decomposition of $L^2(\mathbb{Z}_+^2)$; this will eventually help us prove that the Aluthge transforms of DA are compact perturbations of DA. Let \mathcal{P}_n denote the finite dimensional vector space generated by the orthonormal basis vectors $e_{(n,0)}, e_{(n-1,1)}, \cdots, e_{(0,n)}$, it is easy to see that \mathcal{P}_n is invariant under the action of the self-commutators $[T_i^*, T_i]$ and the cross-commutators $[T_j^*, T_i]$ $(i, j = 1, 2)$. A simple calculation reveals that

$$[T_i^*, T_j]e_{(0,k_2)} = \frac{1}{k_2 + 1}e_{(0,k_2)}$$

$$[T_i^*, T_j]e_{(k_1,k_2)} = \frac{k_2}{(k_1 + k_2)(k_1 + k_2 + 1)}e_{(k_1,k_2)},$$

so that in \mathcal{P}_n we have

$$\|[T_i^*, T_j]e_{(k_1,n-k_1)}\| = \frac{n - k_1}{n(n+1)}.$$

It follows that the norm of $[T_i^*, T_j]$ restricted to \mathcal{P}_n is bounded by $\frac{1}{n+1}$. Since $[T_1^*, T_1]$ is unitarily equivalent to the orthogonal direct sum of its restrictions to the subspaces \mathcal{P}_n, we easily conclude that $[T_1^*, T_1]$ is compact. The calculation for $[T_2^*, T_2]$ is identical.

In terms of $[T_2^*, T_1]$, one again computes first the action on a generic basis vector in \mathcal{P}_n, that is,

$$[T_2^*, T_1]e_{(n,0)} = 0$$

$$[T_2^*, T_1]e_{(k_1,n-k_1)} = -\frac{1}{n(n+1)}\sqrt{(k_1 + 1)(n-k_1)}e_{(k_1+1,n-k_1-1)} \quad (k_1 \geq 1).$$

It follows that

$$\|[T_2^*, T_1]e_{(k_1,n-k_1)}\| \leq \frac{1}{n(n+1)}\sqrt{(k_1 + 1)(n-k_1)} \leq \frac{1}{2n} \quad (0 \leq k_1 \leq n).$$

As before, $[T_2^*, T_1]$ is an orthogonal direct sum of its restrictions to the subspaces \mathcal{P}_n, so the previous estimate proves that $[T_2^*, T_1]$ is compact. As a result, we know that DA is essentially normal.

We will now study how much the Aluthge transforms of DA differ from DA.

28
Theorem 9.1. (i) \(\tilde{DA}\) is a compact perturbation of \(DA\).

(ii) \(\tilde{DA}\) is a compact perturbation of \(DA\).

Proof. (i) We first note that the weight sequences \(\alpha\) and \(\beta\) of \(DA\) satisfy (3.2); that is, \(\tilde{DA}\) is commuting. Next, we observe that \(\tilde{DA}\) maps \(P_n\) into \(P_{n+1}\) (cf. Lemma 3.1), just as \(DA\) does. As a result the compactness of \(DA - DA\) will be established once we prove that \(\| (DA - \tilde{DA})|_{P_n} \|\) tends to zero as \(n \to \infty\). Toward this end, we calculate

\[
(T_1 - \tilde{T}_1)e_{(k_1,n-k_1)} = (\alpha(k_1,n-k_1) - \sqrt{\alpha(k_1,n-k_1)\alpha(k_1+1,n-k_1)})e_{(k_1+1,n-k_1)}.
\]

Without loss of generality, we focus instead on the expression

\[
\Delta_{\text{toral}} := (\alpha(k_1,n-k_1))^4 - (\sqrt{\alpha(k_1,n-k_1)\alpha(k_1+1,n-k_1)})^4;
\]

With the aid of Mathematica \(49\), we obtain

\[
|\Delta_{\text{toral}}| = \left| (\alpha(k_1,n-k_1))^4 - (\sqrt{\alpha(k_1,n-k_1)\alpha(k_1+1,n-k_1)})^4 \right| = \frac{(k_1 + 1)(n - k_1)}{(n + 1)^2(n + 2)} \leq \frac{1}{4(n + 2)}.
\]

Thus, \(\lim_{n \to \infty} \| (DA - \tilde{DA})|_{P_n} \| = 0\), and therefore \(DA - \tilde{DA}\) is compact.

(ii) As in (i) above, it suffices to prove that \(\| (DA - \tilde{DA})|_{P_n} \|\) tends to zero as \(n \to \infty\). Since

\[
(T_1 - \tilde{T}_1)e_{(k_1,n-k_1)} = (\alpha(k_1,n-k_1) - \alpha(k_1,n-k_1)\left(\frac{\alpha^2(k_1+1,n-k_1) + \beta^2(k_1+1,n-k_1)}{\alpha^2(k_1,n-k_1) + \beta^2(k_1,n-k_1)}\right)^{1/4})e_{(k_1+1,n-k_1)},
\]

we can again focus on the expression

\[
\Delta_{\text{spherical}} := (\alpha(k_1,n-k_1))^4 - (\alpha(k_1,n-k_1)\left(\frac{\alpha^2(k_1+1,n-k_1) + \beta^2(k_1+1,n-k_1)}{\alpha^2(k_1,n-k_1) + \beta^2(k_1,n-k_1)}\right)^{1/4})^4.
\]

A computation using Mathematica \(49\) shows that

\[
|\Delta_{\text{spherical}}| = \frac{k_1 + 1)(n - k_1)(2n + 1)}{n^2(n + 1)^2} \leq \frac{2n + 1}{4n^2}.
\]

We thus conclude, as before, that \(DA - \tilde{DA}\) is compact. \(\square\)

Corollary 9.2. The 2-variable weighted shifts \(DA\), \(\tilde{DA}\) and \(\tilde{DA}\) all share the same Taylor spectral picture.

Proof. Since the Taylor essential spectrum and the Fredholm index are invariant under compact perturbations (cf. [12], the result follows from the well know spectral picture of \(DA\); that is, \(\sigma_T(DA) = \mathbb{B}^2\), \(\sigma_{Tc}(DA) = \partial \mathbb{B}^2\), and index \(DA = \text{index} \ \tilde{DA} = \text{index} \ \tilde{DA}\). (Here \(\mathbb{B}^2\) denotes the unit ball in \(\mathbb{C}^2\), and \(\partial \mathbb{B}^2\) its topological boundary.) \(\square\)
Remark 9.3. It is an easy application of the Six-Point Test that neither \tilde{DA} nor DA is jointly hyponormal.

10. Fixed Points of the Spherical Aluthge Transform: Spherically Quasinormal Pairs

In this section we discuss the structure of 2-variable weighted shifts which are fixed points for the spherical Aluthge transform. We believe this notion provides the proper generalization of quasinormality to several variables. As we noted in the Introduction, a Hilbert space operator T is quasinormal if and only if $T = \tilde{T}$. We use this as our point of departure for the 2-variable case.

Definition 10.1. A commuting pair $T \equiv (T_1, T_2)$ is *spherically quasinormal* if $\hat{T} = T$.

We now recall the class of spherically isometric commuting pairs of operators ([5], [6], [7], [33], [37], [38]).

Definition 10.2. A commuting n-tuple $T \equiv (T_1, \cdots, T_n)$ is a spherical isometry if $T_1^*T_1 + \cdots + T_n^*T_n = I$.

In the literature, spherical quasinormality of a commuting n-tuple $T \equiv (T_1, \cdots, T_n)$ is associated with the commutativity of each T_i with P^2. It is not hard to prove that, for 2-variable weighted shifts, this is equivalent to requiring that $W(\alpha, \beta) \equiv (T_1, T_2)$ be a fixed point of the spherical Aluthge transform, that is, $\hat{W}(\alpha, \beta) = W(\alpha, \beta)$. A straightforward calculation shows that this is equivalent to requiring that each U_i commutes with P. In particular, (U_1, U_2) is commuting whenever (T_1, T_2) is commuting. Also, recall from Section 1 that a commuting pair T is a spherical isometry if $P^2 = I$. Thus, in the case of spherically quasinormal 2-variable weighted shifts, we always have $U_1^*U_1 + U_2^*U_2 = I$. In the following result, the key new ingredient is the equivalence of (i) and (ii).

As we noted in the Introduction, the operator $Q := \sqrt{V_1^*V_1 + V_2^*V_2}$ is a (joint) partial isometry; for, $PQ^2P = P^2$, from which it follows that Q is isometric on the range of P. In the case when P is injective, we see that a commuting pair $T \equiv (T_1, T_2) \equiv (V_1P, V_2P)$ is spherically quasinormal if and only if each T_i commutes with P^2, and if and only if each V_i commutes with P^2 $(i = 1, 2)$; in particular, (V_1, V_2) is commuting whenever (T_1, T_2) is commuting. Observe also that when P is injective, we always have $V_1^*V_1 + V_2^*V_2 = I$.

The proof of the following result is a straightforward application of Definition 10.2.

Lemma 10.3. A 2-variable weighted shift $W(\alpha, \beta)$ is a spherical isometry if and only if

$$\alpha_k^2 + \beta_k^2 = 1$$

for all $k \in \mathbb{Z}_+^2$.
Lemma 10.4. A 2-variable weighted shift T is spherically quasinormal if and only if there exists $C > 0$ such that $\frac{1}{C}T$ is a spherical isometry, that is, $T_1^*T_1 + T_2^*T_2 = I$.

Proof. Assume that $T \equiv (T_1, T_2)$ is commuting and spherically quasinormal. Then T_1 and T_2 commute with P. We now consider the following

Claim: For all $k \equiv (k_1, k_2) \in \mathbb{Z}_+^2$, $\alpha_k^2 + \beta_k^2$ is constant.

For the proof of Claim, if we fix an orthonormal basis vector e_k, then

$$T_1 e_k = \alpha_k e_k + \varepsilon_1$$

and

$$T_2 e_k = \beta_k e_k + \varepsilon_2,$$

where $\varepsilon_1 := (1, 0)$ and $\varepsilon_2 := (0, 1)$. We thus obtain

$$PT_1 e_k = \alpha_{(k_1, k_2)} \sqrt{\alpha_{(k_1+1, k_2)}^2 + \beta_{(k_1+1, k_2)}^2}$$

and

$$T_1 Pe_k = \sqrt{\alpha_{(k_1, k_2)}^2 + \beta_{(k_1, k_2)}^2} \alpha_{(k_1, k_2)}.$$

It follows that

$$\sqrt{\alpha_{(k_1+1, k_2)}^2 + \beta_{(k_1+1, k_2)}^2} = \sqrt{\alpha_{(k_1, k_2)}^2 + \beta_{(k_1, k_2)}^2}.$$ \hspace{1cm} (10.1)

We also have

$$PT_2 e_k = \beta_{(k_1, k_2)} \sqrt{\alpha_{(k_1, k_2+1)}^2 + \beta_{(k_1, k_2+1)}^2}$$

and

$$T_2 Pe_k = \sqrt{\alpha_{(k_1, k_2)}^2 + \beta_{(k_1, k_2)}^2} \beta_{(k_1, k_2)}.$$

Hence, we have

$$\sqrt{\alpha_{(k_1, k_2+1)}^2 + \beta_{(k_1, k_2+1)}^2} = \sqrt{\alpha_{(k_1, k_2)}^2 + \beta_{(k_1, k_2)}^2}.$$ \hspace{1cm} (10.2)

Therefore, by (10.1) and (10.2), for all $k \equiv (k_1, k_2) \in \mathbb{Z}_+^2$, we obtain

$$\sqrt{\alpha_{(k_1, k_2)}^2 + \beta_{(k_1, k_2)}^2} = \sqrt{\alpha_{(k_1+1, k_2)}^2 + \beta_{(k_1+1, k_2)}^2} = \sqrt{\alpha_{(k_1, k_2+1)}^2 + \beta_{(k_1, k_2+1)}^2}.$$ \hspace{1cm} (10.3)

We have thus established the Claim.

It follows that $C := \sqrt{\alpha_{(k_1, k_2)}^2 + \beta_{(k_1, k_2)}^2}$ is independent of k. As a result, $\frac{1}{C}T$ is a spherical isometry, as desired. \

By the proof of Lemma 10.4, we remark that once the zero-th row of T_1, call it W_0, is given, then the entire 2-variable weighted shift is fully determined. We shall return to this in Subsection 10.1.

We now recall a result of A. Athavale.

Theorem 10.5. (12) A spherical isometry is always subnormal.

By Lemma 10.4, we immediately obtain
Corollary 10.6. A spherically quasinormal 2-variable weighted shift is subnormal.

We mention in passing two more significant features of spherical isometries.

Theorem 10.7. (41) Spherical isometries are hyporeflexive.

Theorem 10.8. (33) For every \(n \geq 3 \) there exists a non-normal spherical isometry \(T \) such that the polynomially convex hull of \(\sigma_T(T) \) is contained in the unit sphere.

Remark 10.9. (i) A. Athavale and S. Poddar have recently proved that a commuting spherically quasinormal pair is always subnormal [3, Proposition2.1]; this provides a different proof of Corollary 10.6.

(ii) In a different direction, let \(Q_T(X) := T_1^*XT_1 + T_2^*XT_2 \). By induction, it is easy to prove that if \(T \) is spherically quasinormal, then \(Q^n_T(I) = (Q_T(I))^n (n \geq 0) \); by [8, Remark 4.6], \(T \) is subnormal.

10.1. Construction of spherical isometries

In the class of 2-variable weighted shifts, there is a simple description of spherical isometries, in terms of the weight sequences \(\alpha \) and \(\beta \), which we now present. Since spherical isometries are (jointly) subnormal, we know that the zeroth-row must be subnormal. Start then with a subnormal unilateral weighted shift, and denote its weights by \((\alpha(k,0))_{k=0,1,2,\ldots} \). Using the identity

\[
\alpha^2_k + \beta^2_k = 1 \quad (k \in \mathbb{Z}^2_+),
\]

and the above mentioned zeroth-row, we can compute \(\beta(k,0) \) for \(k = 0, 1, 2, \ldots \). With these new values available, we can use the commutativity property (2.1) to generate the values of \(\alpha \) in the first row (see Figure 1); that is,

\[
\alpha(k,1) := \alpha(k,0) \beta(k+1,0)/\beta(k,0).
\]

We can now repeat the algorithm, and calculate the weights \(\beta(k,1) \) for \(k = 0, 1, 2, \ldots \), again using the identity (10.4). This in turn leads to the \(\alpha \) weights for the second row, and so on.

This simple construction of spherically isometric 2-variable weighted shifts will allow us to study properties like recursiveness (tied to the existence of finitely atomic Berger measures) and propagation of recursive relations. We pursue these ideas in an upcoming manuscript.

Acknowledgments. Preliminary versions of some of the results in this paper have been announced in [31]. Some of the calculations in this paper were obtained using the software tool Mathematica [49].
References

[1] A. Aluthge, On p-hyponormal Operators for $0 < p < 1$, Integral Equations Operator Theory 13(1990), 307–315.

[2] T. Ando, Aluthge transforms and the convex hull of the spectrum of a Hilbert space operator, in Recent advances in operator theory and its applications, Oper. Theory Adv. Appl. 160(2005), 21–39.

[3] W.A. Arveson, Subalgebras of C^*-algebras. III. Multivariable operator theory, Acta Math. 181(1998), 159–228.

[4] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103(1988), 417–423.

[5] A. Athavale, On the intertwining of joint isometries, J. Operator Theory 23(1990), 339–350.

[6] A. Athavale and S. Poddar, On the reflexivity of certain operator tuples, Acta Math. Sci. (Szeged) 81(2015), 285–291.

[7] K.R.M. Attele and A.R. Lubin, Commutant lifting for jointly isometric operators - a geometrical approach, J. Funct. Anal. 140(1996), 300–311.

[8] S. Chavan and V. Sholapurkar, Rigidity theorems for spherical hyperexpansions, Complex Anal. Oper. Theory 7(2013), 1545-1568.

[9] M. Cho, I. B. Jung and W. Y. Lee, On Aluthge Transforms of p-hyponormal Operators, Integral Equations Operator Theory 53(2005), 321–329.

[10] J. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs, vol. 36, Amer. Math. Soc., Providence, 1991.

[11] R. Curto, On the connectedness of invertible n-tuple, Indiana Univ. Math. J. 29(1980), 393–406.

[12] R. Curto, Applications of several complex variables to multi-parameter spectral theory, in Surveys of Recent Results in Operator Theory, Vol. II, J.B. Conway and B.B. Morrel, editors, Longman Publishing Co., London, 1988, 25–90.

[13] R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Proc. Symposia Pure Math. 51(1990), 69–91.

[14] R. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13(1990), 49–66.

[15] R. Curto, Spectral theory of elementary operators, in Elementary Operators and Applications, M. Mathieu, ed., World Sci. Publishing, River Edge, NJ, 1992; pp. 3–52.
[16] R.E. Curto and L.A. Fialkow, The spectral picture of \((L_A, R_B)\), \textit{J. Funct. Anal.} 71(1987), 371–392.

[17] R. Curto, S.H. Lee and J. Yoon, \(k\)-hyponormality of multivariable weighted shifts, \textit{J. Funct. Anal.} 229(2005), 462–480.

[18] R. Curto, S.H. Lee and J. Yoon, Hyponormality and subnormality for powers of commuting pairs of subnormal operators, \textit{J. Funct. Anal.} 245(2007), 390–412.

[19] R. Curto, S.H. Lee and J. Yoon, Reconstruction of the Berger measure when the core is of tensor form, \textit{Actas del XVI Coloquio Latinoamericano de Álgebra, Bibl. Rev. Mat. Iberoamericana} (2007), 317–331.

[20] R. Curto, S.H. Lee and J. Yoon, Which 2-hyponormal 2-variable weighted shifts are subnormal?; \textit{Linear Algebra Appl.} 429(2008), 2227–2238.

[21] R. Curto, S.H. Lee and J. Yoon, A new approach to the 2-variable subnormal completion problem, \textit{J. Math. Anal. Appl.} 370(2010), 270–283.

[22] R. Curto, S.H. Lee and J. Yoon, Subnormality of arbitrary powers of 2-variable weighted shifts whose restrictions to a large invariant subspace are tensor products \textit{J. Funct. Anal.} 262(2012), 569–583.

[23] R. Curto, S.H. Lee and J. Yoon, Subnormality of 2-variable weighted shifts with diagonal core, \textit{C. R. Acad. Sci. Paris} 351(2013), 203–207.

[24] R. Curto, P. Muhly and J. Xia, Hyponormal pairs of commuting operators, \textit{Operator Theory: Adv. Appl.} 35(1988), 1–22.

[25] R. Curto, Y.T. Poon and J. Yoon, Subnormality of Bergman-like weighted shifts, \textit{J. Math. Anal. Appl.} 308(2005), 334–342.

[26] R. Curto and J. Yoon, Jointly hyponormal pairs of subnormal operators need not be jointly subnormal, \textit{Trans. Amer. Math. Soc.} 358(2006), 5139–5159.

[27] R. Curto and J. Yoon, Disintegration-of-measure techniques for multivariable weighted shifts, \textit{Proc. London Math. Soc.} 93(2006), 381–402.

[28] R. Curto and J. Yoon, Propagation phenomena for hyponormal 2-variable weighted shifts, \textit{J. Operator Theory} 58(2007), 101–130.

[29] R. Curto and J. Yoon, Spectral picture of 2-variable weighted shifts, \textit{C. R. Acad. Sci. Paris} 343(2006), 579–584.

[30] R. Curto and J. Yoon, When is hyponormality for 2-variable weighted shifts invariant under powers?, \textit{Indiana Univ. Math. J.} 60(2011), 997–1032.

[31] R. Curto and J. Yoon, Toral and spherical Aluthge transforms of 2-variable weighted shifts, \textit{C. R. Acad. Sci. Paris} 354(2016), 1200–1204.
[32] K. Dykema and H. Schultz, Brown measure and iterates of the Aluthge transform for some operators arising from measurable actions, *Trans. Amer. Math. Soc.* 361(2009), 6583–6593.

[33] J. Eschmeier and M. Putinar, Some remarks on spherical isometries, *Operator Theory: Adv. Appl.* 129(2001), 271–291.

[34] G. Exner, Subnormality of transformations of Bergman-like weighted shifts, Special Session on Recent Advances in Hilbert Space Operators, International Workshop on Operator Theory and Applications (IWOTA), Seoul, Korea, July 31 - August 3, 2006.

[35] G.R. Exner, Aluthge transforms and n-contractivity of weighted shifts, *J. Operator Theory* 61(2009), 419-438.

[36] R. Gellar and L.J. Wallen, Subnormal weighted shifts and the Halmos-Bram criterion, *Proc. Japan Acad.* 46(1970), 375–378.

[37] J. Gleason, Quasinormality of Toeplitz tuples with analytic symbols, *Houston J. Math.* 32(2006), 293–298.

[38] J. Gleason, Quasinormality and commuting tuples, preprint 2004.

[39] N.P. Jewell and A.R. Lubin, Commuting weighted shifts and analytic function theory in several variables, *J. Operator Theory* 1(1979), 207–223.

[40] I.B. Jung, E. Ko and C. Pearcy, Aluthge transform of operators, *Integral Equations Operator Theory* 37(2000), 437–448.

[41] I.B. Jung, E. Ko and C. Pearcy, Spectral pictures of Aluthge transforms of operators, *Integral Equations Operator Theory* 40(2001), 52–60.

[42] J. Kim and J. Yoon, Schur product techniques for the subnormality of commuting 2-variable weighted shifts, *Linear Algebra Appl.* 453(2014), 174–191.

[43] M.K. Kim and E. Ko, Some connections between an operator and its Aluthge transform. *Glasg. Math. J.* 47(2005), 167–175.

[44] F. Kimura, Analysis of non-normal operators via Aluthge transformation, *Integral Equations Operator Theory* 50(2004), 375–384.

[45] S.H. Lee, W.Y. Lee and J. Yoon, Subnormality of Aluthge transform of weighted shifts, *Integral Equations Operator Theory* 72(2012), 241–251.

[46] V. Müller and M. Ptak, Spherical isometries are hyporeflexive, *Rocky Mount. J. Math.* 29(1999), 677–683.

[47] J.L. Taylor, A joint spectrum for several commuting operators, *J. Funct. Anal.* 6(1970), 172–191.
[48] J. L. Taylor, The analytic functional calculus for several commuting operators, *Acta Math.* 125(1970), 1–48.

[49] Wolfram Research, Inc., *Mathematica*, Version 9.0, Champaign, IL, 2013.

[50] T. Yamazaki, An expression of spectral radius via Aluthge transformation, *Proc. Amer. Math. Soc.* 130(2002), 1131–1137.

[51] J. Yoon, Disintegration of measures and contractive 2-variable weighted shifts, *Integral Equations Operator Theory* 59(2007), 281–298.

[52] J. Yoon, Schur product techniques for commuting multivariable weighted shifts, *J. Math. Anal. Appl.* 333(2007), 626–641.

[53] J. Yoon, When does the k-hyponormality for a 2-variable weighted shift become subnormality?, *J. Math. Anal. Appl.* 379(2011), 487–498.