NEAR-FIELD MICROLENSING AND ITS EFFECTS ON STELLAR TRANSIT OBSERVATIONS BY KEPLER

KAILASH C. SAHU AND RONALD L. GILLILAND
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218; ksahu@stsci.edu, gillil@stsci.edu

Received 2002 July 5; accepted 2002 October 25

ABSTRACT

In this paper, we explore the astrophysical implications of near-field microlensing and its effects on stellar transit observations, with a special emphasis on the Kepler mission. Kepler is a NASA-approved mission whose goal is to detect a large number of extrasolar, Earth-like planets by obtaining nearly continuous photometry of more than 100,000 F, G, and K dwarfs for 4 years. The expected photometric precision of Kepler is 90 μmag (achieved in 15 minute samples), at which the effect of microlensing by a transiting companion can be significant. For example, for a solar-type primary transited by a white dwarf secondary, the maximum depth of the transit is 0.01%, which is almost entirely compensated for by the microlensing amplification when the white dwarf is at ~0.05 AU. The combined effect of microlensing and transit increases to a net amplification of 150 μmag at an orbital separation of 0.1 AU and 2.4 mmag at an orbital separation of 1 AU. Thus, the effect of microlensing can be used to break the degeneracy between a planetary-mass object for which the microlensing effect is negligible and a more massive object of the same size. For brown dwarfs at orbital separations of a few AU, the effect of microlensing is several percent of the transit depth, and hence the microlensing effect must be taken into account in deriving the physical parameters of the brown dwarf. The microlensing signal caused by a neutron star or a black hole in a binary can be several millimagnitudes, far exceeding the transit depth and potentially detectable even from ground-based observations. Kepler will be sensitive to white dwarfs, neutron stars, and black holes in binaries through their microlensing signatures. These observations can be used to derive the frequency of such compact objects in binaries and to determine their masses.

Subject headings: binaries: eclipsing — gravitational lensing — planetary systems — stars: low-mass, brown dwarfs — stars: neutron — techniques: photometric — white dwarfs

1. INTRODUCTION

In a transit experiment, in which the goal is to look for obscuration of light caused by the transiting body, the effect of microlensing by the transiting body is generally thought to be negligible. The main reason is the following: for orbital separations of a few AU, the Einstein ring due to a stellar companion (the lens) is typically much smaller than the size of the primary (the source), so that the maximum amplification caused by the lens is small. In addition, the lens has a finite size, which may cause one or more of the rays to be occulted, making the effect of microlensing small compared to the obscuration caused by the lens. In principle, however, the effect of microlensing can be important, and this effect becomes more important when the binary companion is a degenerate star (i.e., massive but small) or the orbital separation is large. Gould (1995) argued that self-lensing in binaries in which at least one member is an ordinary (non-compact) star (assuming ≥0.3 mag amplification) would be exceedingly rare. Marsh (2001) argued for better prospects in finding microlensing signatures in main-sequence, white dwarf binaries, but also concluded that finding microlensing in binaries containing neutron stars or black holes is unlikely. At high photometric precision, however, microlensing effects at much lower amplitude can be important, and this effect must be taken into account in interpreting the observed light curves.

The Discovery-class mission Kepler: A Search for Habitable Planets, with an expected launch in 2007, is a high-precision photometric mission whose main goal is to detect a statistically large number of extrasolar, Earth-like planets, if such planets are common around stars in the extended solar neighborhood. Kepler will provide such detections by obtaining extensive (4 yr), nearly continuous photometry on the same set of over 100,000 stars at typical transit depth precisions of 90 parts per million on the 15 minute sampling rate for V ∼ 12 stars. An Earth-analog transit will typically last ~10 hr and be detected at ~6 σ per event, which repeats once per year.1 At such precision, the effect of microlensing by a transiting compact and massive body can often be significant. For example, when the lens is a compact object, such as a white dwarf or a neutron star, the effect of microlensing can far exceed the transit signal, causing a net positive amplification. The microlensing contribution due to a brown dwarf at 1 AU would be several percent of the transit depth. In this paper, we explore the astrophysical implications of such microlensing in the near-field limit of a lens orbiting the source, with particular emphasis on the upcoming Kepler mission.

2. MICROLENSING VERSUS TRANSIT

Gravitational microlensing studies over the past decade have revealed large numbers of events toward the Magellanic Clouds and the Galactic bulge (Alcock et al. 2000; Udalski 200; Lasserre et al. 2000). With near–real-time

1 More details on Kepler, a NASA-approved Discovery-class mission, can be found at http://www.kepler.arc.nasa.gov.
analysis of the photometry, many of the microlensing events are detected early enough to provide alerts allowing for close and intense follow-up monitoring of potentially interesting events. Such intense monitoring has been carried out for several purposes, such as looking for planets associated with the lens (Albrow et al. 2001a; Gaudi et al. 2002), determining limb-darkening parameters of the source (Albrow et al. 2001b), measuring lens masses through parallax effects and orbital motions of binary lenses (An et al. 2002), and determining the caustic crossing timescales to determine the lens location (Afonso et al. 2000). The literature on microlensing from both observational and theoretical perspectives is now quite large and mature (see, e.g., Schneider, Ehlers, &Falco 1992; Paczyński 1996; Gould 2001).

By contrast, the much simpler effect of geometric obscuration resulting in transits as one object passes between a source and the observer has received much less attention than microlensing (unless one includes binary star eclipses in this context), although there has been a surge of interest on this topic recently. In the case of classical microlensing the events are rare; thus, the successful projects monitor very dense stellar fields with large-format detectors. However, the microlensing signal can be quite large, so these projects require only modest precision. Transits of planets generally provide much smaller signals: Jupiter transiting the Sun, for example, would yield an event of 1% depth. Furthermore, the inclinations are expected to be random, so for planets with orbital radii of $\gtrsim 1$ AU, more than 99% of the existing systems would not exhibit transits, because of the small chance of having the required alignment. For terrestrial planets the transit depth is even smaller: about one part in 10,000. Hence, although seeking evidence of Earth-like extrasolar planets (i.e., having a size comparable to the Earth at a distance of about an AU from a solar-analog host star) via transits has long been advocated as a means to search for terrestrial planets (Borucki & Summers 1984), this is a challenging experiment. With the stable observing conditions provided by observations from space and the ability to mosaic a significant number of CCDs, it has become feasible to detect true Earth-like extrasolar planets with a modest, dedicated mission, such as Kepler.

In a mission with such unprecedented photometric accuracy, it is obviously important to make sure that the signature of an Earth-like planet is unique. Since a white dwarf has a radius comparable to that of the Earth, a white dwarf in a 1 yr orbit transiting a Sun-like star could in principle mimic the signature of a terrestrial planet (although this can be easily eliminated in most cases by follow-up radial velocity measurements). This study is motivated by asking if the photometric signal due to microlensing by the white dwarf, even though it is only at 1 AU from its host star, might itself be detectable. Indeed, for the case of a white dwarf in a 1 yr orbit, the geometric obscuration effect is at the level of one part in 10^4, but the microlensing effect is much larger, amounting to a few parts in 10^3. As we show below, the light curve caused by the microlensing has a form very similar to the transit light curve with a change of sign. Taking into account the effect of gravitational microlensing, we show that white dwarfs transiting main-sequence stars with orbital periods of $\gtrsim 3$ days would produce positive intensity signals and hence will not be a source of confusion with terrestrial planets for Kepler. The purpose of this paper is to establish the framework for calculating microlensing in this near-field regime, to establish domains in source and lens characteristics where the effect is measurable, and to explore whether the near-field microlensing signal can be exploited to return astrophysical information, such as the lens mass. In §3, we discuss the amplification in the near-field regime, present a generalized formalism for generating light curves, taking the finite source size, the finite lens size, the inclination of the orbit, and the limb-darkening parameters into account, and discuss how the simpler cases, e.g., point sources, can be considered as special cases of this generalized case. In §4, we discuss the amplifications caused by various types of degenerate and nondegenerate secondaries at different orbital separations for different types of sources and discuss the interesting cases in which the gravitational light amplification and geometric obscuration effects are similar in amplitude. Section 5 is devoted to a more detailed discussion of special cases, such as Earth-mass planets, Jupiters, brown dwarfs, white dwarfs, neutron stars, and black holes as secondaries in orbit around main-sequence stars. We conclude in §6 with a summary of earlier sections and further discussion on the prospects of such observations with the upcoming Kepler mission and the possible astrophysical returns from such observations.

3. MICROLENSING WITH FINITE SOURCE AND FINITE LENS

Some early theoretical work involving a finite source (and a point lens) was carried out by Bontz (1979). A mathematical description leading to an analytical solution for such a case can be found in Schneider et al. (1992) and Witt &Mao (1994). Dominik (1998) and Gould & Gaucherel (1997) have independently developed efficient schemes for calculating the finite source effects, using Green’s theorem and line integrals instead of following the conventional approach of two-dimensional integration over the source. The numerical recipe developed by Sahu (1994a, 1994b), which is followed here, uses a polar coordinate system centered on the source, which is particularly useful in considering radially symmetric effects, such as the limb darkening.

The effect due to a finite lens has received much less attention; nevertheless, this has been discussed in some detail by Bromley (1996), Marsh (2001), and, more recently, Agol (2002) and Beskin & Tuntsov (2002). The literature dealing with the combined effect of both a finite source and a finite lens is generally lacking. Gould (1995) considered the effect of microlensing in binaries and concluded that only pairs of pulsars would be interesting. However, his analysis was done in the framework of the “standard” microlensing, where the source lies within the Einstein ring radius of the lens, in which case the amplification may be more than 34%. Marsh (2001) has generated light curves for compact, degenerate binaries with small orbital separations, assuming that the source is uniformly bright and that the fainter of the two images is occulted by the lens. In order to ensure that the results are valid for all cases observed by Kepler, our calculations take appropriate limb-darkening parameters into account and do not assume a priori that the fainter image is occulted.

In the following section, we discuss in detail the approach adopted here in determining the effect of finite sizes of the source and the lens simultaneously. Our light-curve simulations are valid for low-mass, as well as high-mass, binaries at any orbital separation and also include an appropriate limb darkening for the source and different inclinations of sources.
the orbital plane. We note that in the extreme case in which the lens is a point lens, the net effect would be the same as that of pure microlensing. In the extreme case in which the lens mass is zero, the effect would be the same as that of a pure transit.

3.1. Formalism for Light-Curve Simulation

Let us first consider the source to be a point source. Let D_L be the distance to the lens (L), D_{LS} be the distance from the lens to the source (S), and D_S be the distance from the observer to the source, as shown in Figure 1. Let R_s represent the distance between the center of the lens and the source projected onto the lens plane. The radius of the Einstein ring at the lens plane, R_E, can be written as

$$R_E^2 = \frac{4GM_LD}{c^2}, \quad D = \frac{D_{LS}D_L}{D_S},$$

(1)

where M_L is the mass of the lens.

The lens produces two images of the source, S' and S'', as shown in Figure 1. At the lens plane, these two images are situated on the line joining the source and the center of the lens, one inside and the other outside the Einstein ring. The distance between the lens and the two images can be expressed as

$$R_{+-} = 0.5\left[R_s \pm (R_s^2 + 4R_E^2)^{1/2}\right]$$

(2)

(see, e.g., Paczynski 1996 for details). The amplification of these two images is given by

$$A^{+-} = \frac{u^2 + 2}{2u(u^2 + 4)^{1/2}} \pm 0.5, \quad u \equiv \frac{R_s}{R_E}.$$

(3)

Thus, we see that the image outside the Einstein ring is the brighter of the two images and is at least as bright as the source itself. The combined amplification A_p for a point source is given by

$$A_p = A^{+-}_p = \frac{u^2 + 2}{u(u^2 + 4)^{1/2}}.$$

(4)

If u is replaced by u_0, the impact parameter in units of Einstein ring radius, we get the maximum amplification A_p^0.

Let us now discuss the case of an extended source, which can be treated as an ensemble of point sources. We assume the lens to be extended, opaque, and spherically symmetric. For an extended source, it is convenient to work in the lens plane, and Figure 2 schematically shows such a case, in which the source is larger than the Einstein ring itself. The two circles A and B represent two parts of the source, whose images (A', A'') and (B', B''), respectively. The brighter images (A', B') are outside the Einstein ring, and neither of them is occulted by the lens. The fainter images (A'', B'') are inside the Einstein ring, and one (B'') is occulted by the lens. It is worth noting that the images of all the parts of the source are displaced with respect to the original positions so that no two images overlap. Microlensing preserves the surface brightness, and any amplification caused by microlensing is caused by a proportional increase in the size of the image with respect to the original size.

The amplification of an extended source would then be given by

$$A = \frac{\int d^2y I(y) A_p(y)}{\int d^2y I(y)}$$

(5)

![Fig. 1.—Schematic diagram of the geometry of the gravitational lensing. The observer, the lens, and the source are located at positions O, L, and S, respectively. D_L is the distance to the lens, D_S is the distance to the source, and D_{LS} is the distance from the lens to the source. The lens (L) produces two images of the source, at positions S' and S''. At the lens plane, the lens, the source, and the two images lie on a straight line. S' corresponds to the brighter image that is formed outside the Einstein ring and is at least as bright as the source itself. S'' corresponds to the fainter image that is formed inside the Einstein ring.](image1)

![Fig. 2.—Schematic diagram of the positions of the lens, the source, and the images in the lens plane. The shaded circle represents the lens, the dashed circle the Einstein ring, and the dotted circle the source. Circle A represents a part of the source whose images are A' and A''. Neither of these two images is occulted by the lens. Circle B represents a part of the source farther away from the lens, whose images are B' and B''. Note that the fainter image corresponding to B'' is occulted by the lens, whereas the brighter image corresponding to B' is not occulted.](image2)
(eq. [6.81] of Schneider et al. 1992), where \(I(y) \) is the surface brightness profile of the source, \(A_y(y) \) is the amplification of a point source at position \(y \), and the integration is carried out over the entire surface of the source. For a lens with finite size, equation (5) must be rewritten as

\[
A = \frac{\int d^2y I(y) [A_y(y) + A_{\gamma}(y)]}{\int d^2y I(y)},
\]

where the integration is carried out over all the points in the image plane that are not occulted by the lens. Note that for a finite-sized, uniformly bright source, the maximum amplification (corresponding to a point lens that is perfectly aligned with the source) is given by

\[
A_{\text{max}} = \left(1 + \frac{4R_s^2}{r_S^2}\right)^{1/2},
\]

where \(r_S \) is the radius of the source scaled to the lens plane.

In order to carry out the integration given by equation (6), let us follow Figure 3, where \(R_s \) is the distance between the lens and the center of the source projected onto the lens plane and \(f = u_0 R_s \) is the impact parameter (the minimum distance between the center of the lens and the center of the source at the lens plane as the lens traces the path shown in the figure). Let us choose a circular coordinate system and let \((r, \theta) \) be the representative point that is at a distance \(y \) from the lens. From Figure 3, we see that

\[
y = \sqrt{R_s^2 + r^2 - 2R_s r \cos \gamma},
\]

where

\[
R_s = \sqrt{x_0^2 + P^2}, \quad \gamma = \pi - \theta - \alpha, \quad \alpha = \sin^{-1}\left(\frac{f}{R_s}\right),
\]

i.e.,

\[
y = \sqrt{R_s^2 + r^2 + 2R_s r \cos(\alpha + \theta)}.
\]

The two images of the point \((r, \theta) \) are formed at distances \(y_+ \) and \(y_- \) from the center of the lens along the line joining the lens and the point \((r, \theta) \), such that

\[
y_{\pm} = 0.5 \left[y \pm \sqrt{y^2 + 4R_s^2}\right].
\]

The image is not occulted if

\[
y_{\pm} > r_l,
\]

where \(r_l \) is the radius of the lens.

The amplification corresponding to these two images can be written as

\[
A_{\pm}(y) = \frac{(y/R_s)^2 + 2}{2(y/R_s)\left[(y/R_s)^2 + 4\right]^{1/2}} \pm 0.5.
\]

In calculating the combined amplification \(A(y) = A_+(y) + A_-(y) \), we consider only the images that satisfy equation (12), to ensure that the image is not occulted by the lens. Using equation (6), the total amplification can be calculated by integrating over the source using

\[
A = \frac{\int_0^{\pi} \int_0^\infty A(y) y \, dy \, d\theta}{\int_0^{\pi} \int_0^\infty y \, dy \, d\theta}.
\]

This is an expression suitable for numerical integration, which will take the finite size of both the lens and the source into account. The light curve can be reproduced as a function of time \(t \), which is related to \(x_0 \) through the relation \(x_0 = (R_s / l_0) t \), where \(l_0 \) is the timescale of microlensing (which is the time taken by the lens to cross its own Einstein ring). In turn, \(y \) is related to \(x_0 \) through equations (8) and (9).

Since we are mostly interested in the effect caused by the secondary in a binary, we need to include the effect of the inclination, which can be incorporated through a suitable choice of the minimum impact parameter. The light curves can then be calculated with the amplification as a function of the phase (see Fig. 3).

3.2. Determination of the Lens Mass

We also provide here the equations that allow the mass of the lens to be derived from photometry in the limit where microlensing amplification dominates the light curve as, for example, would be the case for a white dwarf orbiting a main-sequence star at 1 AU. If multiple, periodically repeating events have been observed, Kepler’s law provides a relation between the orbital period \((P) \), semimajor axis \((a) \), and the sum of the masses:

\[
P^2 = \frac{4\pi^2 a^3}{(M_S + M_L)G},
\]

where \(M_S \) is the mass of the source, which may be constrained from independent observations (such as spectroscopy and spectral classification), and \(M_L \) is the lens mass for which an estimate is desired.

Assuming \(D_{LS} \sim d \ll D_L \), equation (7) can be rewritten as

\[
M_L = \frac{(A_0^2 - 1)C^2}{16G}\left(\frac{r_s}{c}\right),
\]

where \(r_s \) is the radius of the source star scaled to the lens plane and \(c \) is the velocity of light. The quantity \(A_0 \) is the maximum amplification during the microlensing event,
which we have assumed to be \(\sim A_{\text{max}} \). Note that for source sizes much larger than the Einstein ring radius, the maximum amplification during the microlensing event \((A_0) \) is nearly equal to \(A_{\text{max}} \) given by equation (7), regardless of the impact parameter, provided that the lens actually transits the source. This is demonstrated by the flat-topped nature of the numerically simulated light curves (Figs. 10, 14, and 15) and is consistent with discussions in several other papers (see, e.g., Agol 2002). Thus, \(A_0 \sim A_{\text{max}} \) is generally a good approximation. If independent observations provide constraints on the source radius, then equation (16) can be used to solve for orbital separation, \(a \), and \(M_L \).

An additional constraint comes from the duration of the transit \((T_i) \), which, for a circular orbit and \(90^\circ \) inclination, can be written as

\[
T_i = \frac{2r_s P}{2\pi a} = \frac{2a^{1/2}r_s}{| (M_L + M_S) G |^{1/2}}.
\]

Combining equations (16) and (17) to eliminate \(r_S \),

\[
(A_0 - 1) T_i^2 = \frac{64 M_L a^2}{(M_L + M_S) c^2}.
\]

After a little algebra, this can be rewritten as

\[
M_L = \frac{M_S (A_0 - 1) T_i^2 c^2}{64 a^2 - (A_0 - 1) T_i^2 c^2}.
\]

This equation can be used to derive the mass of the lens if \(M_S \) and \(a \) are known. We can also combine equations (16) and (17) to eliminate \(a \) and write

\[
A_0^2 - 1 = \frac{4 G^2 M_L (M_L + M_S) T_i^2}{c^2 r_S^3}.
\]

This equation can be solved to express the lens mass,

\[
M_L = \left[\frac{G^2 M_S^2 T_i^2 + (A_0 - 1) c^2 r_S^3}{2 G T_i} \right]^{1/2} - GM_S T_i.
\]

This equation can be used to derive the mass of the lens if \(M_S \) and \(r_S \) are known. We return to a discussion of lens mass determination with an example in §5.2.

3.3. Generalization to a Limb-darkened Source

Since the polar coordinate system we have chosen is centered on the source (Fig. 3; eq. [8]), it is easy to incorporate limb darkening for the source that has an azimuthal symmetry. Recently, the limb-darkening parameters were derived for HD 209458 using the high signal-to-noise ratio observations obtained with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope in the wavelength region 582–638 nm (Brown et al. 2001). Based on these observations, a limb darkening of the form

\[
I(\mu) = 1.0 - u_1 (1 - \mu) - u_2 (1 - \mu)^2
\]

was used, where \(\mu \) is the cosine of the angle between the line of sight and the normal to the local stellar surface (Claret & Giménez 1990). We have used \(u_1 = 0.3 \) and \(u_2 = 0.35 \), as applicable to HD 209458 in the wavelength region 582–638 nm, in generating all the light curves here. We should note, however, that the formalism discussed in this paper can be used to take any other specific form of the limb darkening as well.

3.4. Special Cases: Point Lens and Zero-Mass Lens

In the limiting case of a point lens, the results should be identical to the results obtained from other standard treatments of microlensing involving a finite source and a point lens. In particular, equation (7) can be directly used to calculate the amplification for the special case in which the lens and the source are perfectly aligned. This provides a direct test (although only for the special case of a point lens), which was used to check the algorithm discussed above. The previous results obtained by Sahu (1994b) and confirmed by Dominik & Hirshfeld (1996) also served as a test case for a point lens, to check the correctness of the simulated light curves. We have also checked our calculations with a few special cases calculated by Marsh (2001) and obtained consistent results.

In the limiting hypothetical case in which the mass of the lens is zero (but the size is finite), the results obtained here should be identical to the results obtained for pure transit. The transit light curve simulated by Brown et al. (2001) for HD 209458 serves as a test case for this purpose. Our algorithm was used to simulate a light curve for HD 209458 using the same limb-darkening parameters suggested by Brown et al. (2001). The resultant light curve was found to be identical to the one published by Brown et al. (2001), which provided a further check on the validity of the algorithm used here.

The treatment for a zero-mass lens is equivalent to assuming that the images are not deflected, that the amplification corresponding to the brighter image is 1, and that the amplification corresponding to the fainter image is zero. This, in turn, is equivalent to a restricted version of the algorithm, in which all deflections and amplifications are ignored. The light curves were simulated using both these approaches, and the resultant light curves were identical, as expected.

4. NET AMPLIFICATIONS FOR VARIOUS SECONDARIES

The maximum net amplification caused by a secondary companion (after taking the finite sizes for the source and the lens into account) generally corresponds to the configuration in which the lens and the source are perfectly aligned (except in a few special cases in which the maximum amplification occurs just after the ingress or just before the egress, as explained below). This configuration corresponds to \(R_e = 0 \) (eq. [8]), which can be used in equations (8)–(14) to calculate the amplification. An analytical solution for such a configuration was derived by Marsh (2001).

The maximum amplifications thus calculated for a variety of secondaries (Jupiter, brown dwarf, white dwarf, neutron star, and black hole) at various orbital separations are shown in Figures 2–7, assuming \(D_L \gg D_{LS} \). Figures 4–8 assume the source to be a solar-type star with radius \(7 \times 10^{10} \) cm. The radii and the masses assumed for the different secondaries are given in Table 1.

In most cases that we consider, the secondary (lens) will provide an amount of light in the system that is small compared to that from the primary (source). We therefore do not provide explicit corrections to light curves from the luminosity of the lens itself. We also note the obvious, yet
subtle, point that the light from the lens is constantly present before, during, and after an occultation/microlensing event. Therefore, during the transit the only effect from the light from the secondary is a dilution of the light-curve changes by the same proportion as the secondary contributes to the total light away from the transit. For a canonical case of a white dwarf orbiting a solar-type star in which the surface brightnesses of the two components are similar, the white dwarf will have a flux about 10^{-4} that of the primary, implying a 0.01% dilution effect. (*Kepler* might be able to detect the secondary eclipse, and this would be interesting, but correcting for the minor change of interfered microlensing amplitude is not relevant.) Exceptions to this rule can arise, e.g., when the primary is intrinsically small, such as a brown dwarf, the amplifications of which are shown in Figure 9. In the case of a white dwarf lensing a brown dwarf, this dilution effect could be a dominant effect, which can be accounted for in a trivial manner using the expected luminosities of the two objects in the observational bandpass.

Figure 4 shows the effects of different secondaries for orbital separations of 0–1 AU, and Figure 5 shows the same for orbital separations of 0–5 AU. Note that the radii of a Jupiter and a brown dwarf are identical. However, while the microlensing contribution due to a Jupiter is negligible, that due to a brown dwarf is appreciable at *Kepler’s* sensitivity, even at 1 AU. As a result, the Δmag caused by these two types of secondaries are different at *Kepler’s* sensitivity at 1 AU, as shown in Figure 4. This effect must be taken into account in deriving the radius of a brown dwarf (more details on such a case are given below).

For white dwarfs, neutron stars, and black holes, the net effect is dominated by the microlensing at any orbital separation, and the transit contribution is negligible (Figs. 4 and 5). In order to show the *Kepler* sensitivity, it had to be multiplied by factors of 10 and 100 in Figures 4 and 5, respectively. The net effects caused by the neutron star and the black hole at 1 AU, 5 and 30 mmag, respectively, are large enough in principle to be detectable even from ground-based observations.

Enlarged views of the effects of the brown dwarf and Jupiter are shown in Figures 6 and 7, for orbital separations of 0–5 and 0–100 AU, respectively. As seen from Figure 6, the microlensing contribution due to a brown dwarf is significant even for small orbital separations and must be taken into account in estimating its radius from the observed light curves. Even for a Jupiter-mass secondary, the microlensing contribution starts to become relevant at orbital separations of 5 AU or more at *Kepler’s* sensitivity. From Figure 7, we see that the microlensing contribution from a brown dwarf almost exactly cancels out the transit contribution at an orbital separation of ~55 AU, beyond which the net amplification is positive.

Secondary	Radius (R_\odot)	Mass (M_\odot)
Jupiter	0.1	0.001
Brown dwarf	0.1	0.05
White dwarf	0.01	0.6
Neutron star	2.8×10^{-5}	1.4
Black hole	$<1 \times 10^{-5}$	8.0

Fig. 4.— Net amplification caused by different types of secondaries as a function of orbital separation, after both the transit and the microlensing contributions are taken into account. See Table 1 for details on the radii and the masses used for the different types of companions. The source is assumed to be a solar-type star, and the inclination is assumed to be 90°. The errors expected from the *Kepler* mission are too small to be shown in this scale, so the error bar shows 10σKepler, where σKepler refers to the expected photometric error per 15 minute sample at $V = 12$. Note that at 1 AU, the amplification caused by a black hole secondary is ~2.5%, which is within reach of ground-based observations and could be detectable in ground-based survey programs, such as OGLE III or PLANET II.

Fig. 5.— Same as Fig. 4, but for a larger range of orbital separations (0–5 AU). The error bar shown here corresponds to 100σKepler. At an orbital separation of 5 AU, the amplification caused by a white dwarf is more than 10 mmag. The amplifications caused by neutron star and black hole binaries at 5 AU would be well within the reach of ground-based survey programs.
An enlarged view of the effects of the white dwarf, neutron star, and black hole is shown in Figure 8 for small orbital separations of 0–0.1 AU. For neutron star and black hole secondaries, the net amplification is positive at any orbital separation. For a white dwarf, the microlensing contribution almost exactly cancels out the transit contribution at \(R < 0.05 \) AU, beyond which the net amplification is positive.

The effect of microlensing is more dramatic if the size of the source is smaller, as is the case for a brown dwarf. Figure 9 shows such a case, in which we assume the size of the source to be \(7 \times 10^9 \) cm, as applicable for a brown dwarf or a Jupiter. The amplification, which is the ratio of the amplified luminosity and the original luminosity, is typically much larger compared to the earlier case of a solar-type source.

The expected amplification is a function of inclination, as shown in Figure 10. The solid curve shows the expected maximum transit depth, and the dotted curve shows the expected amplification at the midpoint, taking both the transit and the microlensing into account. Here the source (primary) is assumed to be a solar-type star and the lens (secondary) is a white dwarf at an orbital separation of 1 AU.

To show the relative importance of microlensing and transit for various kinds of secondaries at different orbital separations, we have plotted in Figure 11 the orbital radius at which the microlensing signal equals the transit signal as a function of the mass of the secondary. For example, for a white dwarf secondary, the expected transit depth, given by \(r_T L / r_S^2 \), where \(r_T L \) and \(r_S \) are the radii of the secondary (lens) and the primary (source), respectively, is 0.0001 and the mass of the lens is 0.6 \(M_\odot \). The corresponding orbital separation at which the microlensing signal equals the transit signal is 0.046 AU. For an Earth-mass object, the corresponding orbital radius is \(\sim 2300 \) AU.

5. SPECIAL CASES

5.1. Jupiters and Brown Dwarfs

The radii of brown dwarfs are similar to the radii of Jupiters, so the expected light curves due to their transits would be similar. Thus, a brown dwarf is indistinguishable from a Jupiter from its transit signal alone. However, since...
the mass of a brown dwarf is considerably larger (15–80 M_J, where M_J refers to the mass of Jupiter), the microlensing signal from a brown dwarf would be much larger. For example, Figure 12 shows the light curves as expected from a Jupiter and a 50 M_J brown dwarf at 1 AU. The dashed curve shows the pure transit for both objects, and the solid curve shows the combined effect of the transit and microlensing for a brown dwarf. For a Jupiter, the combined effect of transit and microlensing is indistinguishable from a pure transit curve. For a brown dwarf, the combined light curve is different from the transit curve. Note that the expected depth in the observed light curve is smaller for a brown dwarf than for a Jupiter, but the shapes of the light curves for both

and microlensing is indistinguishable from a pure transit curve. For a brown dwarf, the combined light curve is different from the transit curve. Note that the expected depth in the observed light curve is smaller for a brown dwarf than for a Jupiter, but the shapes of the light curves for both
objects are very similar. Thus, there is a degeneracy between the light curves due to a Jupiter and a brown dwarf. It is clear that the contribution due to microlensing must be taken into account in the interpretation of the observed light curves, particularly in estimating the mass/radius of the secondary. Figure 13 shows the light curves for a brown dwarf at 55 AU, which, if observed, would be easy to interpret as due to a brown dwarf, since the light curve due to a Jupiter is close to the transit curve itself. Note that there is a slight positive amplification at the ingress (egress), since the microlensing begins before (ends after) the transit contribution begins (ends). This curve corresponds to an orbital period of 405 yr and is hence mostly of pedagogical interest.

5.2. Earths and White Dwarfs

Interestingly, white dwarfs have radii similar to those of Earth-mass planets. As mentioned above, one of the prime objectives of *Kepler* is to detect Earth-mass planets from their transit signals. There has been some concern that the Earth-mass planets would be confused with white dwarfs, since their transit signals would be similar. (The secondary eclipse may provide a clear test to distinguish between a white dwarf and an Earth-mass planet, but the secondary eclipse may not be seen in some cases when the orbital eccentricity is high or the timescale is such that only the primary eclipse is observed.) However, as we explained in §4, in the case of a white dwarf the effect of microlensing will dominate the signal. Figure 14 shows the light curves due to a white dwarf secondary at 0.03, 0.0463, and 0.1 AU, with corresponding periods of 1.50, 2.88, and 9.13 days. The dashed curves show the light curves expected from pure transit, and the dotted, solid, and dot-dashed curves show the corresponding light curves after taking the microlensing contribution into account. Only at orbital separations smaller than 0.0463 AU would the expected Δmag be negative, with the shape of the observed light curve similar to that of the transit curves. We note that at an orbital separation of less than 0.01 AU, the primary is likely to fill its Roche lobe (Eggleton 1983). This will cause mass transfer from the primary, which may cause light variations much larger than the transit or the microlensing effect. Also, the primary will be tidally distorted, producing distinct ellipsoidal variations. Thus, the transit effect may be difficult to observe for separations below 0.05 AU, beyond which the Δmag is expected to be positive.

The expected light curve when the white dwarf is at 1 AU is shown in Figure 15. In such a case, the white dwarf would be detectable through its positive amplification at a greater than 100σ level in observations averaged over a single event with *Kepler*!

It is of interest to consider how accurately *Kepler* observations of a white dwarf transiting a solar-type star in a 1 AU orbit would constrain the lens mass. For such a canonical case (shown in Fig. 15), the maximum amplification is 0.0024 mag. The precision per 15 minute sample for an assumed $V = 12$ star observed with *Kepler* is 90 μmag. Hence, with 40 samples during the 10 hr lensing event, the maximum amplification will be determined to about 15 μmag, resulting in a relative error on M_L of 0.6%. Given that the mass of the lens scales as the square of the amplification (eqs. [15] and [16]) and assuming that four events are available for averaging, the relative error contribution for the
amplification at a greater than 100% level in observations averaged over a practical purposes. In the treatment of microlensing, we have compact objects orbiting within 0.25–2.0 AU, which is the region of prime interest for Kepler) will not provide a source of false alarms for extrasolar planet detection, since the resulting signal will be a significant brightening rather than a small diminution in light.

Compact objects like white dwarfs, neutron stars, and black holes are now easily found when they reside in close orbits (≤0.1 AU) around a main-sequence companion, since they induce ellipsoidal variations in the companion. Furthermore, such systems often become X-ray and radio sources through emissions associated with mass transfer (even when the mass transfer occurs at low levels). While the microlensing signal may be detectable even for an orbital separation as small as ∼0.1 AU, other variations (such as ellipsoidal variations caused by the distortion of the companion and variations from star spots for induced rapid rotation) clearly call attention to the presence of a degenerate object in such systems. As an example, we note that KPD 1930+2752 is one such interesting case of an sdB binary in which the unseen companion is likely to be a white dwarf with an orbital period of 0.095 days (Maxted, Marsh, & North 2000; Bille`res, Fontaine, & Brassard 2000).

The microlensing signal for compact objects with orbital separations of ≳1 AU will be easily seen by Kepler. In such cases, old white dwarfs, neutron stars, and black holes would not already have signaled their presence, since the wide separation would not induce the canonical signatures discussed above. However, as with extrasolar planet transits, microlensing from orbiting compact objects will only be observed in a very small fraction of cases in which the inclinations happen to be ideal so that transits can be observed. The probability of transits is r_s/a, where r_s is the radius of the primary and a is the orbital separation. For a solar-type star and an object at 1 AU, this probability is about 0.005. Thus, if all 100,000 stars in the Kepler sample have compact objects orbiting within 0.25–2.0 AU, some 500 would be detected through their microlensing signal.

6. DISCUSSION AND SUMMARY

We have shown that near-field microlensing of main-sequence stars by orbiting compact companions provides signals that would be easily detected by a space mission, such as Kepler, dedicated to the detection of extrasolar terrestrial planets via transits. For terrestrial planets with orbital periods up to a few years of which Kepler has sensitivity to transits, the microlensing contribution to the signal will always be entirely negligible. Jovian class planets in orbits of a few AU provide a microlensing contribution that just starts to be relevant, albeit still small compared to the inherent transit signal. White dwarfs, neutron stars, or black holes transiting a main-sequence star in a ∼1 AU orbit would provide easily detectable microlensing signatures that swamp any underlying transit signal. Therefore, although the radius of a white dwarf is similar to that of a terrestrial planet, a transiting white dwarf (with an orbital separation of 0.25–2.0 AU, which is the region of prime interest for Kepler) will not provide a source of false alarms for extrasolar planet detection, since the resulting signal will be a significant brightening rather than a small diminution in light.

Anomalies in the light curve may also be derived from the light curve itself, since some subtle details will depend in unique ways on the generally degenerate effect of r_s and M_L in fixing the light curve. Equation (21) provides a further constraint on the lens mass if an estimate of the mass of the primary is available. Note that the orbital inclination and limb-darkening parameters can also be estimated from the observed light curve (as was done for HD 209458), and a detailed treatment of the errors would be required in determining the uncertainties in different physical parameters. Fitting the entire light curve would take all the constraints in a self-consistent manner, providing the best determination of the various parameters, including the lens mass, to an estimated accuracy of 1%–5%.

5.3. Neutron Stars and Black Holes

The expected transit signals from a neutron star and a black hole are of the order of nanomagnitudes and smaller. So the transit signal in these cases can be neglected for all practical purposes. In the treatment of microlensing, we note that the deflection corresponding to the fainter image (i.e., the smaller of the two deflections) is larger than the size of the lens even for small orbital separations. So the finite size of the lens can also be ignored. Thus, the expected light curve is the same as what is expected from the pure microlensing of an extended source and a point lens, e.g., as in Figure 15, with amplitude scaled approximately linearly by the lens mass. Note that the expected Amag from a neutron star and a black hole at an orbital radius of 1 AU are 5 and 28 mmag, respectively, which may be detectable from ground-based observations.

Fig. 15.—Light curves caused by a 0.6 M_\odot white dwarf at 1 AU from a solar-type star. The dashed curve corresponds to pure transit. The dotted curve is the same as what is expected from the pure microlensing of an extended source and a point lens, e.g., as in Figure 15, with amplitude scaled approximately linearly by the lens mass. Note that the expected Amag from a neutron star and a black hole at an orbital radius of 1 AU are 5 and 28 mmag, respectively, which may be detectable from ground-based observations.
signatures. If a more physically reasonable fraction of 1% of stars surveyed contain such compact, massive objects, then the number detected by Kepler would be 5. What, then, are the prospects for observing compact objects via microlensing signatures by Kepler? Duquennoy & Mayor (1991) and Heacox & Gathright (1994) show that about \(\frac{2}{3} \) of G-type stars are binaries and that about 20% of them have periods between 0.25 and 2.0 yr. Thus, for the Kepler mission to detect a statistically modest total of five systems with microlensing in such circumstances, \(\sim 7.5\% \) of binary systems must contain a compact object (most likely a white dwarf). By comparison, the observed white dwarf fraction in the solar-age open cluster M67 is about 9% by mass (Richer et al. 1998), and since incompleteness may still be important in this case, this is a lower limit to the detected cluster white dwarfs. This suggests that the overall fraction of white dwarfs is sufficient to yield several detections during the Kepler mission. Estimates of the fraction of baryonic mass in compact objects in the local disk typically span values of 10%–30% (see, e.g., Weidemann 1990). This, in turn, implies that the detected number of such microlensing systems will be able to place interesting constraints on the fraction of stars having compact companions.

For microlensing detections from systems of which the orbital period is known from repeated events, it will be possible to determine the mass of the compact object directly from the amplitude of the microlensing signal (assuming that independent information on the primary main-sequence star is available). For the case of white dwarfs, information on the compact object may also be available if the secondary eclipse is observed, and radial velocity follow-up observations will be able to determine independent mass estimates.

We thank Meena Sahu and Mario Livio for useful discussions. We wish to thank the referee, Scott Gaudi, for useful suggestions.

REFERENCES

Afonso, C., et al. 2000, ApJ, 532, 340
Agol, E. 2002, ApJ, 579, 430
Albrow, M. D., et al. 2001a, ApJ, 556, L113
———. 2001b, ApJ, 549, 759
Alcock, C., et al. 2000, ApJ, 542, 281
An, J. H., et al. 2002, ApJ, 572, 521
Beskin, G. M., & Tuntsov, A. V. 2002, A&A, 394, 489
Billères, M., Fontaine, G., & Brassard, P. 2000, ApJ, 530, 441
Bontez, R. J. 1979, ApJ, 233, 402
Borucki, W. J., & Summers, A. L. 1984, Icarus, 58, 121
Bromley, B. C. 1996, ApJ, 467, 537
Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W., & Burrows, A. 2001, ApJ, 552, 699
Claret, A., & Giménez, A. 1990, A&A, 230, 412
Dominik, M. 1998, A&A, 333, L79
Dominik, M., & Hirshfeld, A. C. 1996, A&A, 313, 841
Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485
Eggleton, P. P. 1983, ApJ, 268, 368
Gaudi, B. S., et al. 2002, ApJ, 566, 463
Gould, A. 1995, ApJ, 446, 541
———. 2001, PASP, 113, 903
Gould, A., & GauchereL, C. 1997, ApJ, 477, 580
Heacox, W. D., & Gathright, J. 1994, AJ, 108, 1101
Lasserre, T., et al. (The EROS Collaboration) 2000, A&A, 355, L39
Marsh, T. R. 2001, MNRAS, 324, 547
Maxted, P. F. L., Marsh, T. R., & North, R. C. 2000, MNRAS, 317, L41
Paczynski, B. 1996, ARA&A, 34, 419
Richer, H. B., Fahlman, G. G., Rosvick, J., & Ibata, R. 1998, ApJ, 504, L91
Sahu, K. C. 1994a, Nature, 370, 275
———. 1994b, PASP, 106, 942
Schneider, P., Ehlers, J., & Falco, E. E. 1992, Gravitational Lenses (Berlin: Springer)
Udalski, A. 2000, Acta Astron., 50, 279
Weidemann, V. 1990, in Baryonic Dark Matter, ed. D. Lynden-Bell & G. Gilmore (Dordrecht: Kluwer), 87
Witt, H. J., & Mao, S. 1994, ApJ, 430, 505