Research Paper
The Fibroblast of the Relationship Between FGFR2 Gene Rs2981582 Polymorphism and Breast Cancer Risk

*Ahmad Hamta1, Sahar Adl2

1. Department of Biology, Faculty of Sciences, Arak University, Arak, Iran.

1. Background and Aim: Breast cancer is the most common cancer type and the leading cause of cancer-induced deaths in women, worldwide. The Fibroblast Growth Factor Receptor 2 (FGFR2) is a tyrosine kinase receptor that plays an essential role in the growth, invasion, movement, and angiogenesis of tumor cells. Several single nucleotide polymorphisms have been found in the intron 2 of the FGFR2 gene, i.e., associated with a high risk of breast cancer. Genetic variation in this receptor is a new risk factor for breast cancer. The current study aimed to evaluate the association of single-nucleotide polymorphism rs2981582C/T in women with breast cancer.

2. Methods & Materials: In total, 80 women with breast cancer and 80 healthy women (controls) were selected from Markazi Province, Iran to participate in this research. Polymorphism rs2981582 was analyzed to investigate its association with breast cancer. DNA extraction from blood samples was performed using a kit. The presence of these single-nucleotide polymorphisms was determined by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Statistical analyses were performed by SPSS using Chi-squared test at P≤0.05.

3. Results: Significant differences were observed in the frequency of rs2981582 polymorphism in the FGFR2 gene between the control and patient groups (P=0.000). In the patient group, the TT genotype was significantly associated with the risk of breast cancer (P=0.001; OR=3.566). On the other hand, allele C indicated a protective role against the disease (P=0.000).

4. Conclusion: The obtained data revealed a significant relationship between rs2981582 C/T polymorphism and the risk of breast cancer; thus, this single-nucleotide polymorphism could be used as a biomarker to predict breast cancer.

Keywords: Breast cancer, Fibroblast Growth Factor Receptor 2 (FGFR2), Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP), Single nucleotide polymorphism
The structure of these receptors has a second binding to the extracellular ligand, a second crossing the membrane, and a second intracellular tyrosine kinase. According to GWA studies, the FGFR2 gene was suggested as a gene susceptible to breast cancer [8]. Genetic diversity in this receptor is a new risk factor for breast cancer. This study aimed to evaluate the association of rs2981582 C/T single nucleotide polymorphism with breast cancer in females.

2. Materials and Methods

In the present case-control study, the required blood samples were obtained from 80 patients referring to Ayatollah Khansari Hospital in Arak City, Iran as well as 80 healthy individuals (controls). Moreover, written informed consent forms were collected from the explored individuals. Accordingly, 5cc of peripheral blood was collected in EDTA tubes; the samples remained at -20°C until DNA extraction. After completing the questionnaire, data, such as age, marital status, occupational status, diet, the number of children, the age of first menstruation, menopausal status, etc. were collected. All study patients were female with a mean age of 50 years. Iriazol (RENA biotechnologists) kit was used to extract DNA in this study. Extraction was performed according to the protocol of the kit. The quality, as well as the concentration of DNA extracted by spectrophotometer (V-US gene), the P electrophoresis of the samples, were performed on 1% agarose gel. The research samples were genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR - RFLP) and Acil restriction enzyme at rs2981582 C/T locus. All statistical analyzes were performed using SPSS. To evaluate the association between disease and genotypes, Odds Ratio (OR) and Chi-squared test at a 95% Confidence Interval (CI) were used at P<0.05.

3. Results

The obtained data suggested a confidence level of P=0.000; there was a significant relationship between rs2981582 and breast cancer. It was also observed that the T allele of this polymorphism was associated with the risk of breast cancer (P=0.000; 95%CI: 2.925 or = 1.864-433). The frequency of the C allele in the patient and control groups was equal to 44.37% and 65.62%, respectively. Besides, the frequency of the T allele in the patient and control groups was measured as 55.62% and 34.37%, respectively. According to the relevant results, there was a significant relationship between TT genotype and disease (P=0.001; 95%CI: 566.3 or =1.589-8005). Additionally, the greater frequency of CC genotype in the control group of this genotype probably presents a protective effect on the disease. Furthermore, the risk of breast cancer in patients carrying CT + TT genotypes was about 3 times higher than that in the controls (P=0.0003; 95%CI: 34.87 - 70). The mean age of the examined patients and controls was 50 and 40 years, in sequence. There was a significant relationship between age and breast cancer (P=0.000). The familial history of breast cancer signified a significant relationship between this characteristic and the disease (P=0.007). However, marital status or the consumption of contraceptives indicated no significant relationship with breast cancer between the study groups (Tables 1 & 2).

4. Discussion and Conclusion

Genetic factors and the lifestyle of individuals impact breast cancer risk [13]. The FGFR2 gene, which belongs to the fibroblast growth factor receptor family is involved in mammary gland development; it has been identified as an important gene candidate in breast cancer [14]. This receptor is involved in several processes, including cell proliferation, angiogenesis, and migration [15]. The genetic
variants of this gene are a risk factor for breast cancer [16]. The present study examined the effect of rs2981582 polymorphism in 80 patients and the same number of controls on breast cancer risk. Accordingly, the relevant data indicated a significant relationship between this polymorphism and generating the disease (P=0.000). T allele of this single polymorphism nucleotides is more frequently present in patients than healthy individuals. Besides, the heterozygous minor (TT) genotype was significantly associated with the disease. The C allele presents a protective effect on the disease. Furthermore, individuals with at least one T allele in their genotype (CT + TT) are almost 3 times more prone to develop breast cancer (P=0.807 or =0.0003). The achieved results were consistent with those of numerous studies. For example, Fangmeng, in a similar study in southern China revealed that the heterozygous minor (TT) genotype of this polymorphism was associated with developing breast cancer. Moreover, Zamora et al. explored a population of Mexican women; they reported a significant association between the T allele of this polymorphism and the risk of breast cancer. At present, numerous attempts focus on targeting genetic changes that cause breast cancer. Moreover, the FGFR2 gene involved in various human malignancies, including breast cancer, is considered a probable candidate. Due to the significance of rs2981582 single nucleotide polymorphism to breast cancer risk, this single nucleotide polymorphism can be used as a biomarker to predict breast cancer.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of the Arak University (Code: IR.ARAKMU.REC.1395.28).

Funding

The paper was extracted from the MSc. thesis of the second author at the Department of Biology, Faculty of Sciences, University of Arak.

Table 2. The relationship between the study variables and breast cancer in the patient and control groups

Risk Factors	Abundance	P
Age, y	Mean age of the patients: 54	0.000
	Mean age of the controls: 42	
Marital status	Married (patient group): n=75	0.534
	Married (control group): n=70	
Family history	Patient group: n=9 Control group: n=1	0.007
Educational level	Diploma and BA Patient group: n=16 Control group: n=31	0.014
Smoking	Patient group: n=5 Control group: n=1	0.042
Taking birth control pills	Patient group: n=38 Control group: n=35	0.078
The age of onset of menstruation, y	Patient group: n=33 Control group: n=15	0.018
Nutrition	Having an improper diet: Patient group: 26 subjects	0.025
	Control group: 15 people	
The number of children	Patient group: 68 subjects	0.000
	Control group: 45 subjects	
Authors’ contributions

All authors met the writing standards based on the recommendations of the International Committee of Medical Journal Publishers (ICMJE).

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors express their gratitude to the medical staff of Shahid Khansari Hospital in Arak and the esteemed staff of the University New Biology Research Laboratory.
This Page Intentionally Left Blank
مقاله بروزرسانی بررسی ارتباط بین پلی‌مورفیسم 2981582 rs2981582 و خطر ابتلا به سرطان پستان FGFR2

١‌енного همتا، مصحح مطمئن یک پاتولوژیست زن ۴۰‌ساله از استان مرکزی

مقدمه
سرطان پستان، شایع‌ترین نوع سرطان و مبتلایی به سلول‌های بنیانی در زنان در سراسر جهان است که از دو سرطان‌های شایع‌ترین سرطان پستان، بیماری‌های چشم‌پزشکی و پستان‌پزشکی تا زیادی می‌رسد. در این مطالعه، با کمک آزمون کای‌اسکوئر برای تعیین اختلافات بین دو ژن فیبرژیرایسک گروه FGFR2 و خطر ابتلا به سرطان پستان در زنان استان مرکزی با نتیجه‌گیری‌های روبه‌روی ژن FGFR2 و رایانه‌ای طراحی شده، نتایج مطالعه ارائه شد و نتایج نشان داد که این پلی‌مورفیسم با خطر ابتلا به سرطان پستان در زنان استان مرکزی معنی‌دار است.

مطالعه
در این مطالعه، با بررسی پلی‌مورفیسم ژن FGFR2، ارتباط بین این ژن و خطر ابتلا به سرطان پستان در زنان استان مرکزی ارزیابی شد. در این مطالعه، با استفاده از آزمون کای‌اسکوئر، نتایج نشان داد که این پلی‌مورفیسم با خطر ابتلا به سرطان پستان در زنان استان مرکزی معنی‌دار است.

نتایج
نتایج نشان داد که این پلی‌مورفیسم با خطر ابتلا به سرطان پستان در زنان استان مرکزی معنی‌دار است.

بحث
در مقاله، با بررسی پلی‌مورفیسم ژن FGFR2، ارتباط بین این ژن و خطر ابتلا به سرطان پستان در زنان استان مرکزی ارزیابی شد. در این مطالعه، با استفاده از آزمون کای‌اسکوئر، نتایج نشان داد که این پلی‌مورفیسم با خطر ابتلا به سرطان پستان در زنان استان مرکزی معنی‌دار است.

پژوهشگر
دکتر احمد همتا
پاتولوژیست زن
پستان، اراک، دانشگاه اراک، دانشکده علوم پایه، زیست‌شناسی
پست الکترونیک: a-hamta@araku.ac.ir

کلیدواژه‌ها
پلی‌مورفیسم، FGFR2، الرمی‌پژوهشی، سرطان پستان، PCR، RFLP

آمارهولاژ: a-hamta@araku.ac.ir

تاریخ دریافت: ۱۳۹۷/۱۰/۲۰
تاریخ پذیرش: ۱۳۹۸/۶/۲۶
تاریخ نشر نهایی: ۱۳۹۹/۶/۳۰
پژوهشی طولانی و به طور عمده در زمینه مطالعات ارتیابی در مورد سیر بیماری های مورد استفاده قرار می‌گیرند. [1] افرادی که در سنین بالا و در بیماری‌های مختلف از سرطان زنان برخوردار هستند، احتمال مشاهده کردن چندین پلیمورفیسم در ناحیه اینترون ممکن است. [2]

در این مطالعه زن بودند و میانگین سنی آن‌ها پنجاه سال بود. [3] بر اساس پروتکل مربوط به کیت ژنوتایپ‌سازی انجام شد. استخراج DNA از سلول‌های خونی با استفاده از پرایمر پرورکیتیک (For-1 و Rev) انجام شد. در این پژوهش ارتباط پلیمورفیسم تک نوکلئوتیدی سلولی، تمایز، مهار آپوپتوز و مهاجرت نقش دارند. فعال می‌گردند این مسیرها در تکثیر خود می‌گیرند. [4] برای ارتباط با ژن‌های مختلف، چندین ژن در بیماری‌های مختلف ممکن است بکار برده شود. [5] از جمله ژن‌هایی که مبتنی بر این است. [6]

بررسی یافته‌ها در حالی‌اند که با آنها یک دانشگاه پزشکی و در روش سلولی، تمارس و اثربندی به‌کار برده شده است. [7] این نتایج با توجه به نتایج قبلی ممکن است در آینده به شکلی‌های تک‌پرسه‌ای ژنتیک و غیره آبادان شود. [8] در سال‌های اخیر، نتایج این تحقیق همسایگان کمک به بهبود درمان سرطان پستان شده است. [9]

تمام بیماران حاضر در انتخاب سلول‌های خونی از واحدهای مختلف، دوره‌های مختلف و روش‌های مختلف استفاده شده است. [10] این نتایج با توجه به نتایج قبلی ممکن است در آینده به شکلی‌های تک‌پرسه‌ای ژنتیک و غیره آبادان شود. [11] در سال‌های اخیر، نتایج این تحقیق همسایگان کمک به بهبود درمان سرطان پستان شده است. [12]
بعد از تأیید صحت اندازه باند تکثیری مورد نظر توسط الکتروفورز تحت AciI، مجموعه مربوط به درصد الکتروفورز درصد، محصولات دیگر روی جفت باز توسط الکتروفورز تحت AciI که فقط یکی از آنها مربوط بهFGFR2 طول های تکثیری مورد نظر بوده باشد مورد نظر می‌باشد. در این مطالعه از آزمایشگاه بررسی آزمایشگاه بررسی آزمایشگاه بررسی ارتباط بین پلی‌مورفیسم FGFR2 ژن rs2981582 و خطر ابتلا به سرطان پستان می‌باشد.

پرایمر	تاوان آغاز	تاوان پایان	تاوان پایان
F: 5'- CCCTTTGGAGACAACGTGAGC	5'- GCACGAGATGTGTTCCCAGAG	5'- GCACGAGATGTGTTCCCAGAG	

FGFR2 توالی پرایمرهای استفاده شده در تکثیر

جفت باز	تاوان بافر	تاوان dntp	تاوان MgCl
38 bp	1/5 درجه	1/5 درجه	2/5 درجه

الگوهای الکتروفورزی

جفت باز	تکثیری برش	تکثیری برش	تکثیری برش
TT	192 bp	CT	CT
CT	154 bp	CT	CC
CC	59 bp		

تصویر 1. تصویر الکتروفورز

FGFR2 جفت باز

FGFR2 جفت باز
بررسی ارتباط بین پلی‌مورفیسم و خطر ابتلا به سرطان پستان

جدول ۱

نوع پلی‌مورفیسم	تمامه‌های حامل	تعداد تمامه‌های حامل
CC	56-281-154	
CT	59-192	
TT	62-95	

بحث

سرطان پستان شایع‌ترین نوع سرطان و هم‌اکنون در ایران نیز سرطان پستان در زنان در سراسر جهان لازم است. در این نیاز این این افراد بیمار در میان زنان زایش بالایی برخوردار است. این مطالعه به افراد بیمار در میان زنان را در مطالعه تحقیقی AciI نتیجه‌گیری و شروع نهایی در این اثرات مربوط به سرطان پستان در جدول شماره ۸ آمده است.

همان‌طور که در جدول شماره ۲ نشان داده شده است، افراد بیمار در میان زنان زایش بالایی برخوردار است. در این مطالعه به افراد بیمار در میان زنان را در مطالعه تحقیقی AciI نتیجه‌گیری و شروع نهایی در این اثرات مربوط به سرطان پستان در جدول شماره ۸ آمده است.

نتایج حاصل از توزیع زنده‌باشی

در جدول شماره ۴ آراچه شده است. براساس محاسبات انجام شده ارتباط میانگینه بین زنده‌باشی در دو گروه نشان داد. نتایج حاصل از توزیع زنده‌باشی در دو گروه نشان داد.

جدول ۲

پلی‌مورفیسم	بیمار	کنترل	P
rs2981582	۶۰	۶۰	۰.۰۰۰۵۷

**افزایش مصرف قرص شدیدارکار در هو گروه هری ارتباط میانگینه بین سرطان پستان در جدول شماره ۸ آمده است. بررسی ارتباط بین پلی‌مورفیسم و بیماری استفاده از (F-value) محاسبه شد. سطح بالینی (OR) مربوط به سرطان پستان میزان تفاوت است. پلی‌مورفیسم در جدول شماره ۴ نشان داد. نتایج حاصل از توزیع زنده‌باشی در دو گروه نشان داد.

جدول ۳

بیمار	کنترل	P	
rs2981582	۶۰	۶۰	۰.۰۰۰۵۷
همچنین در سال ۸۴۰، همچنین طبق مطالعه میِر و همکاران در سال ۸۳۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد. در سال ۹۹۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد. در سال ۹۹۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد.

جدول ۱

آلبوم	الگو	بیمار	تعداد	مطلق‌ها
۱۲۰	rs2981582	C	۱۱۳	۴۸
۲۰۹۵		T	۸۹	۲۶
	Зئوتیپ	Г	۲۴	۱۸
		CT	۲۳	۸۵
		TT	۲۷	۷۰
۱۳۱۴۵۷		۱۰۸	۳۰	
۱۷۲۴۷		۱۰۷	۲۸	
۲۳۸۷۰۲		۱۰۰	۲۳	

همچنین در ستون‌های سرطان و نام‌هایی که در بالاترین شاخص‌ها داشت. در واقع پلی‌مورفیسم و خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد. در سال ۹۹۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد.

مطالعه صدیqi و همکاران در سال ۲۰۱۴

همچنین در مطالعه میِر و همکاران در سال ۸۳۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد. در سال ۹۹۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد.

مطالعه واردینی و این تاثیر با تغییر در محصول مغزی واردینی در سال ۹۹۰، در مطالعه میِر و همکاران در سال ۸۳۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد. در سال ۹۹۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد.

مطالعه صدیqi و همکاران

همچنین در مطالعه میِر و همکاران در سال ۸۳۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد. در سال ۹۹۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد.

مطالعه واردینی و این تاثیر با تغییر در محصول مغزی واردینی در سال ۹۹۰

همچنین در مطالعه میِر و همکاران در سال ۸۳۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد. در سال ۹۹۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد.

مطالعه واردینی و این تاثیر با تغییر در محصول مغزی واردینی در سال ۹۹۰

همچنین در مطالعه میِر و همکاران در سال ۸۳۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد. در سال ۹۹۰، افزایش خطر ابتلا به سرطان پستان داشت که اثر تغییر در ژن FGFR2 و واقع شد.
در این مطالعه، همچنین متغیرهای مثل سن، سابقه فامیلی، تحصیلات، پایین بودن سن شروع قاعدگی نیز با سرطان پستان همراهی نشان دادند. با افزایش سن احتمال ابتلا به بیماری افزایش یافت و داشتن سابقه سرطان در ابتلا به سرطان مؤثر است. از طرفی با رانندگی میزان تخمیل‌های قراره در سطح جامه موجب ایجاد دردهای نسبت به وضعیت سلامت خود شده و افراد با تخمیل‌های مشابهی به دنبال عمل سرطان پستان، عامل خطر، خونریزی، سرماکس، و روش‌های تشخیصی زودرس در کنار گذشت به سایرین دارد.

نتیجه‌گیری

به‌خصوصی‌های ای اتفاقی می‌انجامد که از شایع‌ترین علل سرطان در زنان به شمار می‌رود. ممکن است روش‌های هدایت درمان و تشخیص در مراحل ابتدا، با مارک‌سوم ناشی از سرطان پستان به میزان زیادی رو به کاهش گذشته‌است.

جدول ۵: تاثیر حالات از ارتباط متغیرها با سرطان پستان در گروه بیمار و کنترل

متغیر	فراوانی	P	OR
سن	۴۵ میانگین سن گروه بیمار: ۴۵ میانگین سن گروه کنترل: ۴۵	۲۴	۰.۰۰۱
وضعیت تاهل	متأهل گروه بیمار: ۲۷ متأهل گروه کنترل: ۲۷	۰.۷۷	۰.۴۴
سابقه فامیلی	گروه بیمار: ۰ گروه کنترل: ۲۷	۰.۴۷	۰.۷۹
تحصیلات	دیپلم و بلاتر گروه بیمار: ۱۶ گروه کنترل: ۳۶	۰.۵۸	۰.۳۷
مصرف دخانیات	گروه بیمار: ۵ گروه کنترل: ۵	۰.۹۲	۰.۷۱
تغذیه	داشتن رژیم غذایی نامناسب گروه بیمار: ۶۲ گروه کنترل: ۶۲	۰.۷۹	۰.۵۲
تعداد فرزندان	۸۶ داشتن بیش از ۸ فرزند گروه بیمار: ۵۴ گروه کنترل: ۰	۰.۰۰۱	۰.۰۰۱

نمره کلیه نتایج ۰/۰۸ برای ضریب OR (۰/۰۸) نشان می‌دهد که تأثیر محور سرطان پستان CT OR ۰/۰۸ نشان می‌دهد که تأثیر محور سرطان پستان CT OR ۰/۰۸ نشان می‌دهد که تأثیر محور سرطان پستان CT OR ۰/۰۸ نشان می‌دهد که تأثیر محور سرطان پستان CT OR ۰/۰۸ نشان می‌دهد که تأثیر محور SFP2 OR ۰/۰۸

مجله دانشگاه علوم پزشکی اراک

نشانه‌ها و همکاران. بررسی ارتباط بین الی‌پیروفسوم rs2981582 و خطر ابتلا به سرطان پستان

یادشده نمی‌تواند مارکر مناسبی جهت پیش‌بینی و پیش‌گویی سرطان پستان باشد. (۲۲).
علاوه بر عوامل محیطی، عوامل زنتیکی نیز از اهمیت زیادی برخوردار هستند. تغییرات زنتیکی در برخی از زیان‌های می‌تواند موجب افزایش حساسیت به این بیماری شود.

مطالعه حاضر بر پایه مطالعه آزمایشی کنترلی به سفارش دو پلی‌مورفیسم تک نوکلئوتیدی از زن‌گیرینه‌ها فاکتور رشد فیبروباستی و هشته‌های سلام در جمعیت زنان انجام شد. در حال حاضر تلاش برای شناسایی و تفسیر تغییرات زنتیکی اضافی به سرطان پستان می‌شود، متمایل شده است و زن‌گیرینه‌ها فاکتور رشد فیبروباستی 2 که در اولین مراحل بی‌درنگ مدارکی داشته و از این نقش ویژه و احتمالاً این پلی‌مورفیسم تک نوکلئوتیدی rs2981582 در ارتباط با سرطان پستان، بهترین پلی‌مورفیسم تک نوکلئوتیدی می‌تواند به عنوان یک بیومارکر جهت پیشگیری سرطان پستان مورد استفاده قرار گیرد.

ملاحظات اخلاقی

پژوهش در پایگاه اخلاق پژوهش IR.ARAKMU.REC.1395.288 انجام شده است.

حامی مالی

این مطالعه به‌طور اخلاقی در کمیته اخلاق پژوهشی دانشگاه علوم پزشکی اراک به تصویب رسیده است.

مشارکت نویسندگان

تمام نویسندگان به‌طور مداوم کار در کانال‌های ارائه‌های پژء‌سنجی و (ICMJE) کمیته بین‌المللی انتشار مجلات پژوهشی را دارا هستند.

تعارض منافع

هیچ‌گونه تعارض منافعی توسط نویسندگان بیان نشده است.

تکنیک و مقدمات

نویسندگان محترم به‌طور کامل و در کارنامه‌های مربوط به موضوعات مذکور به‌صورت شخصی و به‌طور کامل تحقیقات نویسندگان و پژوهشگران دانشگاه اراک از مطالعه.

FGFR2 ژن
Reference

[1] Liu CL, Hu XP, Guo WD, Yang L, Dang J, Jiao HY. Case-control study on the fibroblast growth factor receptor 2 gene polymorphisms associated with breast cancer in Chinese Han women. J Breast Cancer. 2013; 16(4):366-71. [DOI:10.4048/jbc.2013.16.4.366] [PMID] [PMCID]

[2] Asgarian F, Mirzaei M, Asgarian S, Jazayeri M. [Epidemiologic study of breast cancer and age distribution of patients in a ten-year interval in [Persian]]. Iran J Breast Dis. 2016; 9(1):31-6. http://ijbd.ir/article-1-507-fa.html

[3] Jazayeri SB, Saadat S, Ramezani R, Kaviani A. Incidence of primary breast cancer in Iran: Ten-year national cancer registry data report. Cancer Epidemiol. 2015; 39(4):519-27. [DOI:10.1016/j.canep.2015.04.016] [PMID]

[4] Mohagheghi F, Hamta A. [The study of cancer incidence and cancer registration in Markazi province between 2001-2006 and comparison with national statistics, Iran [Persian]]. Arab Med Univ J. 2008; 11(2):84-93. https://www.scielo.gov.br/en/journal/ViewPaper.aspx?id=118837

[5] Pecorino L. Molecular biology of cancer: Mechanisms, targets, and therapeutics. 3rd ed. United Kingdom: Oxford university press; 2012. https://www.amazon.com/Molecular-Biology-Cancer-Mechanisms-Therapeutics/dp/019597717X

[6] Motovali Bashi M, Gholampour M. [The association of A/G Polymorphism in Intronic region of FGFR2 gene and breast cancer [Persian]]. J Isfahan Med Sch. 2014; 32(279). https://www.sid.ir/en/journal/ViewPaper.aspx?id=221808

[7] Shah R, Rosso K, Nathanson SD. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol. 2014; 5(3):283-98. [DOI:10.5306/wjco.v5.i3.283] [PMID] [PMCID]

[8] Schultz PN, Klein MJ, Beck ML, Stava C, Sellin RV. Breast cancer: Relationship between menopausal symptoms, physiologic health effects of cancer treatment and physical constraints on quality of life in long-term survivors. J Clin Nurs. 2005; 14(2):204-11. [DOI:10.1111/j.1365-2702.2004.01030.x] [PMID]

[9] Tenhagen M, van Diest PJ, Ivanova IA, van der Wall E, van der Groep P. [Association of rs1219648 in FGFR2 and Breast cancer in population of West Siberia. Eur J Hum Genet. 2009; 17(12):1688-91. [DOI:10.1038/ejhg.2009.98] [PMID] [PMCID]

[10] Turner N, Grose R. Fibroblast growth factor signalling: Development to cancer. Nat Rev Cancer. 2010; 10(2):116-29. [DOI:10.1038/nrc2780] [PMID]

[11] Wolff MS, Weston A. Breast cancer risk and environmental exposures. Environ Health Perspect. 1997; 105(4):891-6. [DOI:10.1289/ehp.971054891] [PMID] [PMCID]

[12] Asgarian F, Mirzaei M, Asgarian S, Jazayeri M. [Epidemiologic study of breast cancer and age distribution of patients in a ten-year interval in [Persian]]. Iran J Breast Dis. 2016; 9(1):31-6. http://ijbd.ir/article-1-507-fa.html

[13] Shah R, Rosso K, Nathanson SD. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol. 2014; 5(3):283-98. [DOI:10.5306/wjco.v5.i3.283] [PMID] [PMCID]

[14] Meyer KB, Maia AT, O'Reilly M, Teschendorff AE, Chin SF, Caldas C, et al. Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer. PLoS Biol. 2008; 6(5):e108. [DOI:10.1371/journal.pbio.0060108] [PMID] [PMCID]

[15] Taskin II, Tekin MA, Pektanc G, Munzuroglu O, Kandemir SI. Polymorphism in the second intron of the FGFR2 gene rs1219648 associated with the early-onset breast cancer in Turkish population. Int J Clin Exp Med. 2017; 10(7):10989-94. http://www.ijtem.com/files/ijtem0045279.pdf

[16] Fu F, Wang C, Huang M, Song C, Lin S, Huang H. Polymorphisms in second intron of the FGFR2 gene are associated with the risk of early-onset breast cancer in Chinese Han women. Tohoku J Exp Med. 2012; 226(3):221-9. [DOI:10.1620/tjem.226.221] [PMID]

[17] Siddiqui S, Chattopadhyay S, Akhtar MS, Najm MZ, Deo SV, Shukla NK, et al. A study on genetic variants of fibroblast growth factor receptor 2 (FGFR2) and the risk of breast cancer from North India. PLoS One. 2014; 9(10):e110426. [DOI:10.1371/journal.pone.0110426] [PMID] [PMCID]

[18] Mirillo-Zamora E, Moreno-Macias H, Ziv E, Romieu I, Lazcano-Ponce E, Ángeles-Llerenas A, et al. Association between rs2981582 polymorphism in the FGFR2 gene and the risk of breast cancer in Mexican women. Arch Med Res. 2013; 44(6):459-66. [DOI:10.1016/j.arcmed.2013.08.006] [PMID]

[19] Meyer KB, Maia AT, O'Reilly M, Teschendorff AE, Chin SF, Caldas C, et al. Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer. PLoS Biol. 2008; 6(5):e108. [DOI:10.1371/journal.pbio.0060108] [PMID] [PMCID]

[20] Pan Z, Yao Y, Zheng X, Cao W, Cheng W, Xu X. Association of polymorphisms in intron 2 of FGFR2 and breast cancer risk in Chinese women. CytoGenet. 2016; 50:312-7. [DOI:10.1016/j.cytog.2013.05.008] [PMID] [PMCID]

[21] Wolff MS, Weston A. Breast cancer risk and environmental exposures. Environ Health Perspect. 1997; 105(4):891-6. [DOI:10.1289/ehp.971054891] [PMID] [PMCID]

[22] Ehsani A, Shamsian M, Esfahani N, Ardebili SM. Association of rs1219648 in FGFR2 and rs1245222 in TP53 with premenopausal breast cancer in an Iranian Azeri population. Asian Pac J Cancer Prev. 2014; 15(18):7955-8. [DOI:10.7314/APCP.2014.15.18.7955] [PMID]

[23] Martin AJ, Grant A, Ashfield AM, Palmer CN, Baker L, Quinlan PR, et al. An investigation of the effects of FGFR2 and BT4-H4 polymorphisms in breast cancer. J Cancer Res Ther. 2013; 9(3):370-5. [DOI:10.4103/0973-1482.114434] [PMID]

[24] Öğuzlu A, Şamlı H, Öztürk KH, Orhan B, İçduygu FM, Aktepe F, et al. Association between rs2981582 polymorphism in the FGFR2 gene and the risk of breast cancer in Mexican women. Arch Med Res. 2013; 44(6):459-66. [DOI:10.1016/j.arcmed.2013.08.006] [PMID]

[25] Hamta A, et al. Relationship Between Gene Rs2981582 Polymorphism and Breast Cancer Risk. JAMS. 2021; 24(1):122-135.
This Page Intentionally Left Blank