Fibrosis is characterized by the excessive extracellular matrix deposition due to dysregulated wound and connective tissue repair response. Multiple organs can develop fibrosis, including the liver, kidney, heart, and lung. Fibrosis such as liver cirrhosis, idiopathic pulmonary fibrosis, and cystic fibrosis caused substantial disease burden. Persistent abnormal activation of myofibroblasts mediated by various signals, such as transforming growth factor, platelet-derived growth factor, and fibroblast growth factor, has been recognized as a major event in the occurrence and progression of fibrosis. Although the mechanisms driving organ-specific fibrosis have not been fully elucidated, drugs targeting these identified aberrant signals have achieved potent anti-fibrotic efficacy in clinical trials. In this review, we briefly introduce the aetiology and epidemiology of several fibrosis diseases, including liver fibrosis, kidney fibrosis, cardiac fibrosis, and pulmonary fibrosis. Then, we summarise the abnormal cells (epithelial cells, endothelial cells, immune cells, and fibroblasts) and their interactions in fibrosis. In addition, we also focus on the aberrant signaling pathways and therapeutic targets that regulate myofibroblast activation, extracellular matrix cross-linking, metabolism, and inflammation in fibrosis. Finally, we discuss the anti-fibrotic drugs based on their targets and clinical trials. This review provides reference for further research on fibrosis mechanism, drug development, and clinical trials.

INTRODUCTION
Fibrosis is an important cause of global morbidity and mortality. Common diseases associated with fibrosis include hepatitis virus, nonalcoholic fatty liver disease (NAFLD), chronic kidney diseases, idiopathic pulmonary fibrosis (IPF), pneumoconiosis, and cystic fibrosis. The annual combined incidence of major fibrosis-related diseases is approximately 4968 per 100,000 person-years, causing huge disease burden. Fibrosis-related diseases accounted for a large proportion of global disability-adjusted life-years (DALYs) in 2019. Therefore, fibrosis is increasingly recognized as a major health challenge.

The normal wound healing process and the pathogenesis of fibrotic diseases share many mechanisms in common. Various factors, such as infectious agents, alcohol, environmental particles, and gene mutation, can cause damage to normal tissue structures, triggering a wound-healing response. The tissue repair response often starts with inflammation. Activated inflammation contributes to the upregulation of inflammatory mediators and promotes the migration of neutrophils, eosinophils, and macrophages to the injured site to clear debris and necrotic areas. Fibroblasts and other mesenchymal cells are then transformed to myofibroblasts via the upregulation of fibrotic cytokines such as fibroblast growth factors (FGFs) and platelet-derived growth factor (PDGFs), which secrete extracellular matrix (ECM) components. In normal wound healing response, activated myofibroblasts would be cleared from wound site via apoptosis after injury repair. However, in fibrotic process, myofibroblasts fail to undergo apoptosis and are continuously activated, eventually leading to excessive ECM deposition. The progressive accumulation of ECM leads to increased stiffness of injured tissue and hinders oxygen diffusion, and further promotes cell damage. In addition, dysfunction of other parenchymal cells and dysregulated cell-cell interaction caused by injury are also the important causes of fibrosis, such as vascular proliferation induced by abnormal function of vascular endothelial cells. The fibrotic process can occur in many organs, with fibrosis of liver, lung, kidney, and heart accounting for a large proportion of all fibrotic diseases. The different characteristics of tissue structure and microenvironment between these organs lead to differences in the fibrotic process. Despite increasing in-depth research on fibrosis, the mechanisms have not been fully explained, thus hindering the advancement of targeted drug research for fibrosis.

In this review, we briefly introduce the aetiology and epidemiology of several fibrosis-related diseases, including liver fibrosis, renal fibrosis, heart fibrosis, lung fibrosis, cystic fibrosis, and myelofibrosis. We then focus on the abnormal cells, aberrant signaling pathways, and anti-fibrotic drugs in fibrosis, providing reference for the mechanism and drugs research of fibrosis.

AETIOLOGY AND EPIDEMIOLOGY
Liver fibrosis
Liver fibrosis, as a pathophysiological result of chronic liver injury, is the leading cause of mortality from chronic liver diseases (CLDs)
worldwide. CLDs mainly include chronic infection with hepatitis virus, NAFLD, alcoholic liver diseases, and autoimmune liver diseases. CLDs could progress to advanced liver fibrosis and eventually to cirrhosis, which is the 11th cause of global death. Hepatitis B virus (HBV), hepatitis C virus (HCV), and alcohol are the most common causes of DALYs from cirrhosis. Alcoholic-related liver cirrhosis and other chronic liver diseases resulted in 332,300 all-age deaths and 9,785,400 years of life lost (YLLs) in 2017. The prevalence of NAFLD is around 25% worldwide, and its advance can progress to nonalcoholic steatohepatitis (NASH). NASH-related cirrhosis caused 118,000 all-age deaths and 3,285,500 YLLs in 2017.

Renal fibrosis
Renal fibrosis is caused by the damage to normal renal tubules, which eventually leads to glomerulosclerosis, tubulointerstitial fibrosis, and angiosclerosis. Renal fibrosis is not a direct clinical diagnosis but a progressive and irreversible pathological feature of all chronic kidney diseases (CKDs). In 2017, CKDs caused 35.8 million DALYs, nearly a third of which were diabetic nephropathy.

Cardiac fibrosis
Cardiac fibrosis manifests as either reactive interstitial fibrosis and replacement fibrosis. Reactive interstitial fibrosis refers to the expansion of interstitial and perivascular spaces without significant loss of cardiomyocytes and fundamental changes in muscle bundle structure. Replacement fibrosis replaces dead cardiomyocytes with extracellular matrix tissue and fibroblasts, disrupting the continuous pattern of muscle bundles but maintaining tissue integrity. Replacement fibrosis mainly occurs in response to ischaemia, ischaemia/reperfusion, inflammation, and toxic injury. Cardiac fibrosis is a common pathophysiological manifestation of most cardiovascular diseases, which are the leading cause of death, morbidity, and disability in most countries.

Lung fibrosis
The causes of chronic respiratory diseases are varied, including allergens, chemicals, radiation, microbial agents, and environmental particles. Lung fibrosis is the main clinical outcome of most chronic respiratory diseases, such as pneumoconiosis and IPF. IPF is the most common interstitial lung fibrosis with unknown aetiology. The prevalence of IPF varies widely across regions, ranging from 0.33 to 2.51 in Europe, 0.57 to 4.51 in Asia-Pacific countries, and 2.40 to 2.98 in North America. IPF mainly occurs in elderly individuals, with high mortality and morbidity. Pneumoconiosis is a major occupational diseases caused by the prolonged inhalation of inorganic particles at work. In 2017, all-age deaths of pneumoconiosis was 21,600 and 426,900 YLLs.

Cystic fibrosis
Cystic fibrosis is an autosomal recessive disorder mainly caused by mutations in the cystic fibrosis transmembrane conductance regulatory protein (CFTR) gene. Compared with the high
incidence rate of cystic fibrosis in Caucasians, cystic fibrosis was much less common in Asia, and the incidence rate varied from 1:10,000 to 1:40,750 among countries40-42.

Myelofibrosis
Myelofibrosis, a myeloproliferative tumour with collagen deposition in bone marrow and splenomegaly, has low morbidity and shortened life expectancy43-45. Aberrant activity of the Janus kinase (JAK) /signal transducer and activator of transcription (STAT) pathway contributes to myelofibrosis46,47.

ABNORMAL CELLS INVOLVED IN FIBROSIS
Fibrosis is the result of the interaction between a variety of cells. Cell maps of fibrosis such as IPF, liver fibrosis, renal fibrosis, and systemic sclerosis have been well studied via single-cell sequencing47-50. These studies confirmed the key role of epithelial cells, endotheliocytes, immunocytes, and fibroblasts in fibrosis, and identified some new cell types involved in the pathological progress. This section will review the major cell types in fibrotic diseases.

Epithelial cells
Epithelial cells, including basal cells, secretory cells, club cells, ciliated cells, and goblet cells, are essential cells to maintain tissue homeostasis in many organs51. In fibrotic process, chronic injury resulted in the apoptosis of epithelial cells, thus destroying the epithelial structure, promoting dysfunctional repair and pathogenic activation of fibroblasts52. Moreover, the epithelial-mesenchymal transition (EMT) is recognized as an important source of myofibroblasts. EMT under pathological conditions can lead to the reduction of normal epithelial cells, destroy the normal structure of the tissue, and promote the production of collagen fibers53.

Studies have shown that epithelial cells, such as alveolar epithelial cells, goblet cells, ciliated cells, and club cells, are crucial for the development of lung fibrosis54,55. Alveolar epithelial cells, including alveolar type 1 epithelial (AT1) and AT2 cells, are one of the main epithelial cells in lung tissue and maintain the integrity of the alveolar wall. When the injury leads to the death of AT1 cells, AT2 cells proliferate and differentiate into AT1 cells, so that the normal structural of the alveoli is maintained56. A new epithelial cell subset Aixin2. AT2 cells with both progenitor and epithelial properties was found in lung and regulate alveolar regeneration57,58. AT2-transdifferentiated plastic keratin 5 basal epithelial cells were co-located with pathological transforming growth factor (TGF) -β159 collagen triple helix repeat containing 1 (CTHRC1)60 fibroblasts and have a synergistic effect in the progress of fibrosis59.

A new group of epithelial cells with high expression of CFTR, named ionocytes, was found in airway epithelium61. One of the most important functions of CFTR is to regulate chloride channels62. Therefore, the mutations of CFTR gene of epithelial cells results in chloride channel defects in airway epithelium, initiating the occurrence of cystic fibrosis62. Moreover, the lack of CFTR in airway increased Na+ channel activity and Na+ hyperabsorption, suggesting that CFTR might be involved in Na+ transport63. The functional change of epithelial cells in the pancreas and liver is also affected by CFTR mutation64. In the normal liver, CFTR cooperates with the chloride channel at the top of cholangiocytes to provide a driving force for bile hydration64. Impaired CFTR function lead to mucosal hyperplasia and obstruction of the bile duct. Subsequent bile salt accumulation contributed to hepatocyte damage, inflammation, and fibrosis in the portal vein64,65.

Endothelial cell
Endothelial cells are main components of blood vessels. Damage to endothelial cells cause abnormal substances exchange between blood and tissues, resulting in metabolic disorders. Furthermore, in fibrotic tissues, abnormal angiogenesis may be induced due to the massive proliferation of fibroblasts requiring more blood nutrients. Studies showed that endothelial cells of different fibrotic tissues may also have specific functions. Two new endothelial cell subtypes, plasmalemma vesicle associated protein (PLVAP)+ endothelial cells and atypical chemokine receptor 1 (ACKR1)+ endothelial cells, were found in liver tissues of patients with liver cirrhosis and could promote the migration of leukocytes66. In lung tissues, five endothelial cell groups were identified by single-cell sequencing, including capillary endothelial cells A and B, venous endothelial cells, and arterial endothelial cells. The fifth kind of endothelial cells recognized by high expression of Collagen 15a1 (COL15A1) gene, located in the bronchioles and fibrous foci, was involved in the production of extracellular matrix67.

Immune cells
Abnormality of immune system might be an early event of fibrosis68. Immunocytes, such as T lymphocytes, macrophages, dendritic cells, granulocytes, and mast cells, are involved in the fibrosis progress69,70. These activated immune cells highly express factors that regulate inflammation and fibrosis, promoting the activation of fibroblasts. T lymphocytes, including CD4+ T cells, CD8+ T cells, and CD8+ effector cells, were increased in IPF patients71. The interferon-γ signal transduction in T lymphocytes in IPF was significantly changed72, while interleukin (IL) -6 signal in T lymphocytes was mainly up-regulated in patients with systemic sclerosis73. In liver tissues, the expression of cytotoxic T cells increased and the inactivation of CD4+ T cells could induce fibrosis74.

Macrophages are key cells that mediate inflammation and fibrosis in fibrotic diseases. Seven macrophage subsets were identified in the tissues of patients with liver cirrhosis, including Kupffer cells (resident macrophages in liver) and CD9+ triggering receptor expressed on myeloid cells 2 (TREM2)+ macrophages. Pseudo-time sequence analysis showed that TREM2+CD9+ macrophages were derived from monocytes and increased collagen expression in hepatic stellate cells (HSCs)74. In the lung fibrosis, 18 types of immune cells were found, and the phenotypes of tissue resident macrophages, fibrogenic macrophages and inflammatory macrophages were identified75,76. Resident macrophages in lung are mainly alveolar macrophages (AMs). AMs adheres closely to alveolar epithelium and are exposed to the outside environment. Available part and other factors directly led to the death of AMs74. Activated AMs secreted inflammatory mediators to activate the inflammatory response, and elevated pro-fibrotic factors expression to promote lung fibrosis75,76. The sialic acid binding Ig-like lectin F (SiglecF)+ C-X3-C motif chemokine receptor 1 (C3CR1)+ macrophages were also identified in pulmonary fibrosis mouse model, which were adjacent to fibroblasts and promoted fibrosis by releasing PDGFs to drive the proliferation and activation of fibroblasts77.

Fibroblasts
Differentiation of fibroblasts to myofibroblasts with secretory, contractile, and extracellular matrix-producing properties is a key cellular event in many fibrotic conditions. Single-cell sequencing has demonstrated that myofibroblasts have different gene expression profiles with dynamic changes in fibrosis of different organs78,79. In lung tissue, the differentiation pathways of fibroblasts differ between normal and fibrotic pathological states. Mesenchymal progenitor cells differentiate into lipofibroblasts and COL14A1+ matrix fibroblasts, and the latter then differentiate into myofibroblasts and COL13A1+ matrix fibroblasts. In lung fibrosis, mesenchymal progenitors differentiate into lipofibroblasts, PDGFRα+ subtypes, COL14A1+ matrix fibroblasts, myofibroblasts, and COL13A1+ matrix fibroblasts80. The dominant cell type of fibroblasts in liver are HSCs, which are characterized by their...
star-like morphology. The differentiation of HSCs may undergo four processes: loss of quiescent properties, promoting inflammation, migration, and ECM production. Increasing number and activation of myofibroblasts induced by immune cells, EMT, and endothelial-mesenchymal transition (EndMT) are considered major contributors to the process of fibrogenesis. Inhibiting the proliferation and activation of myofibroblasts has been a critical issue for the treatment of most fibrosis. However, in the fibrotic process, myofibroblast cells could obtain apoptosis resistance during differentiation, which hinders the implementation of programmed death mechanisms. Therefore, the therapeutic method for reducing the number of myofibroblasts has limited efficacy. Moreover, the hyper-activation of myofibroblasts is usually a compensatory result of the death of parenchymal cells such as epithelial cells, cardiomyocytes, and endotheliocytes. Therefore, it might be a more effective treatment method to decrease the death or modulate the activity of parenchymal cells and other related cells, so as to indirectly inhibit myofibroblast activation.

In liver fibrosis, the interaction mechanism of HSCs with other cells is complex. Maintenance of liver sinusoidal endothelial cells (LSECs) differentiation leads to HSCs quiescence and fibrosis regression in normal liver. However, in fibrotic process, apoptotic hepatocytes increase the inflammatory response and activate macrophages. Extracellular events from Kupffer cells (liver-resident macrophages), hepatocytes, B lymphocytes, and T lymphocytes further modulate the activation of HSCs. NK cells could kill activated HSCs via regulating retinoic acid-induced 1/ natural killer group 2D (NKG2D) -dependent and TNF-related apoptosis-inducing ligands. Chronic liver injury leads to continuous HSCs activation, which promotes ECM accumulation and tissue structure remodeling, and then results in progressive liver fibrosis (Fig. 2). In the lung, acute injury of alveolar epithelial cells can cause the reduction of epithelial cells, the destruction of alveolar structure, and the release of pro-inflammatory mediators, thus activating immune cells. These activated inflammatory cells and injured epithelial cells increase the upregulation of cytokines, including TNF-α, IL-1β, IL-6, and TGF-β. After the initial inflammatory events, pulmonary fibroblasts are activated into myofibroblasts by upregulating fibrotic cytokines such as PDGFs, FGFs, and vascular endothelial growth factor (VEGF). The transition of epithelial cells by the EMT process could also increase the population of myofibroblasts. Chronic activated myofibroblasts produce ECM components (collagens, fibronectin, proteoglycan), leading to lung fibrosis.

IMPORTANT SIGNALING PATHWAYS IN FIBROSION

An overwhelming number of mediators have been implicated in fibrosis, regulating myofibroblast activation, metabolism, inflammation, and ECM cross-linking. This part mainly focuses on the important signaling pathways involved in fibrotic diseases based on the research intensity and drug efficacy of drug targets in clinical trials.

Growth factors and associated signaling pathways

The growth factors and associated signaling pathways have been reported to promote fibrosis by regulating fibroblasts activation, epithelial cells apoptosis, EMT, and EndMT. Growth factors mainly include TGF-β, PDGFs, FGFs, and connective tissue growth factor (CTGF). Pathways, such as phosphatidylinositol 3-kinase (PI3K) / protein kinase B (AKT), JAK/STAT, and WNT/β-catenin, are the common downstream signals of these growth factors involved in fibrosis. The interactions between these signaling pathways in fibrosis are depicted in Fig. 4.
TGF-β signaling pathway

TGF-β activation: TGF-βs are the key cytokines in most fibrosis. There are three isoforms of TGF-βs, namely, TGF-β1, TGF-β2, and TGF-β3. The pro-TGF-β monomer synthesized in ribosome, folds in the lumen of the endoplasmic reticulum (ER) and dimerizes via a disulfide linkage. Then, the latency-associated peptide (LAP) binds to mature TGF-β and attaches to latent TGF-β binding protein (LTBP) 100. This TGF-β/LAP/LTBP complex binds to the ECM in the extracellular space and activates TGF-β 101. The complex can be cleaved by various proteases to release active TGF-β 102. Activated TGF-β bind to TGFβR2 and TGFβR1 103. Upon ligand binding, phosphorylated TGFβR2 then phosphorylates and activates TGFβR1. Factors, such as epidermal growth factor (EGF), IL-1, and TNF-α promote TGF-β expression in different types of cells 103,104. Moreover, the precursors of TGF-β contain an arginine-glycine-aspartate (RGD) motif, which can be recognized by integrin αv/β6 105,106, suggesting that the activation of TGF-β gene could be regulated by integrin αv/β6. Partial inhibition of TGF-β with an integrin αv/β6 antibody effectively prevented pulmonary fibrosis in mice without aggravating inflammation 107,108.

Canonical and non-canonical signaling: TGF-βs can regulate fibrosis via both canonical and non-canonical signaling pathways. Smad proteins are the canonical intracellular effector of TGF-β/TGFβR. Activated TGFβR1 subsequently induces phosphorylation of Smad2 and Smad3, which interact with Smad4 and enter the nucleus to activate the expression of target genes 102. Smad7 is a negative regulator of TGF-β/Smad signaling 109 (Fig. 5). TGF-β could also activate non-canonical (non-Smad) signaling pathways, such as PI3K/AKT, mitogen-activated protein kinase (MAPK) pathways, and JAK/STAT 10. Macrophages, epithelial cells, and fibroblasts were the main sources of TGF-β in fibrosis 111,112. TGF-β promotes fibrosis through diverse mechanisms, including activation of resident fibroblasts, promotion of cell apoptosis, and induction of EMT.

Fibroblast activation induced by TGF-β: Activated TGF-β1/Smad3 signaling pathway promoted the recruitment of fibroblasts to injury sites and mediated fibroblast-to-myofibroblast differentiation, thus stimulating the secretion of ECM components 113-115. Reactive oxygen species (ROS) has been reported to mediate TGF-β-induced activation of fibroblasts. NADPH oxidase (Nox) enzymes are important mediators of electron transport from NADPH to oxygen to form ROS 116. Once produced, ROS could induce the activation of TGF-β. Nox4 is a member of Nox enzyme family and its expression could be induced by TGF-β in a variety of cells 117. TGF-β1 treatment increased the level of Nox4 and alpha-smooth muscle actin (α-SMA), a myofibroblast marker, in primary human cardiac fibroblasts, whereas depletion of Nox4 decreased TGF-β1-stimulated α-SMA expression, indicating that ROS mediated TGF-β1-induced activation of cardiac fibroblasts to myofibroblasts 118. Recent studies have suggested that TGF-β1-driven activation of fibroblasts might involve metabolic reprogramming in fibroblasts and enhancement of glycolytic pathways 119.

Cell apoptosis induced by TGF-β: TGF-β1-induced apoptosis is important in various fibrosis and the mechanisms might differ between different cell types. ROS plays a key role in endothelial cell apoptosis induced by TGF-β. TGF-β1 caused ROS-dependent p38 activation, while p38 inhibition decreased TGF-β1-induced apoptosis 120. TGF-β1 could also induce apoptosis of mesangial cells in kidney via p53 phosphorylation and Bcl-2 Associated protein X (Bax) up-regulation 121.

EMT regulated by TGF-β: In fibrosis, the most common type of EMT is the type 2 EMT process. Type 2 EMT, mainly caused by inflammation, is closely related to tissue damage repair response and increases myofibroblasts population 122. TGF-β is a crucial mediator in regulating type 2 EMT process in fibrosis and its interaction with various signals regulates the occurrence of EMT. Oxidative stress induced by TGF-β is an important event in the

Fig. 3 The interactions among cells involved in lung fibrosis. Injured alveolar epithelial cells activate macrophages, neutrophils, and eosinophils, resulting in the secretion of cytokines, such as TGF-β, IL-1β, and TNF-α. These cytokines mediate the differentiation of fibroblasts into myofibroblasts and the epithelial-mesenchymal transition, which result in the ECM deposition at the injury site.
EMT process. TGF-β increased the level of ROS by upregulating the expression of Nox4, and then activated ERK and mTOR signaling molecules to promote EMT and fibrosis. PI3K/AKT signals also mediated TGF-β-induced EMT.

PDGFs/PDGFRs. PDGFs are stimulators of cell division that are required for cell growth and proliferation. They are disulfide-bonded homodimers and heterodimers composed of five different polypeptide chains (subunits), termed AA, AB, BB, CC, and DD. PDGF ligands bind to PDGFRα, PDGFRβ, and PDGFRδ. PDGF-A and -C subunits mainly bind to the α chain, B subunit to both α and β chains, and D subunit to the β chain only. Upon ligand binding, PDGFRs phosphorylate and activate downstream signals (RAS/MAPK, PI3K/AKT, and JAK/STAT pathways).

PDGFs are increased in fibrosis. Macrophages, endothelial cells, and fibroblasts have been identified as the main sources of PDGFs. Both PDGF-B and PDGF-D were potent factors for HSCs proliferation and migration, therefore potentiating extracellular matrix deposition in liver fibrogenesis, which could be mediated by PDGFRβ. However, deficiency of PDGF-C failed to inhibit liver fibrosis or functional liver impairment, but alleviated kidney fibrotic changes in experimental murine kidney fibrosis. In addition to kidney and liver, studies demonstrated that PDGFs contributed to the formation of heart and lung fibrosis via stimulating activation of fibroblasts.

FGFs/FGFRs. There are 18 members of the FGF superfamily, which are divided into 6 groups according to sequence homology and differences in biological properties: aFGF and bFGF; INT2, KGF, FGF10, and FGF22; FGF4, FGF5, and FGF6; FGF8, FGF17, and FGF18; FGF9, FGF16, and FGF20; FGF19, FGF21, and FGF23. FGF receptors (FGFR1-FGFR4) are mainly composed of a transmembrane domain, a cytoplasmic tyrosine kinase domain, and an extracellular immunoglobulin domain (D1-D3). FGFs induce the dimerization, activation, and autophosphorylation of FGFRs and activate the RAS-extracellular signal-regulated kinase (ERK), PI3K/AKT, and JAK/STAT pathways. The role of FGFs family in liver fibrosis is not clear. FGF19 deficiency protected mice from liver fibrosis progress in animal models. However, direct stimulation of FGF19 decreased pro-fibrotic and pro-inflammatory cytokines expression on HSCs. FGF21 has attracted much attention due to its important role in liver lipid metabolism. FGF21 acts in an endocrine, paracrine, and autocrine-like manner via FGFR1/3-β-Klotho (KLB). FGF21-knockout mice decreased β oxidation and increased the level of free fatty acids in mice fed methionine- and choline-deficient (MCD) diets, promoting lipotoxicity and steatosis. Increasing expression of FGF21 inhibited inflammation in NASH, and synergistically alleviated obesity and insulin resistance. For pulmonary fibrosis, the FGF family is a therapeutic target that promotes fibroblast proliferation and migration but inhibits myofibroblast differentiation. Inhibition of FGF/FGFR signaling has achieved reduction of pulmonary fibrosis in IPF.

VEGFs/VEGFRs. The VEGF family has 6 members: VEGF-A, -B, -C, -D, -E, and placental growth factor (PIGF). VEGFs, which are similar to PDGF family proteins in structure, regulates vasculogenesis, angiogenesis and immunity. VEGF-A is widely studied in regulating angiogenesis during homeostasis and disease. VEGF-A exerts its biological functions by binding to VEGFR1 and VEGFR2. VEGF-A were decreased in IPF patients, and lung-specific overexpression of VEGF-A attenuated the lung injury and fibrosis in lung fibrosis mouse model. However, studies have shown the important role of VEGF in promoting pulmonary fibrosis. The selective splicing of exons contributes to the existence of various subtypes of VEGF-A, including VEGF-A162.
G proteins. The common downstream of receptor-mediated PI3K activation is AKT, which can phosphorylate many substrates related to cell proliferation, autophagy, and motility. Activated PI3K/AKT negatively regulates the activity of mammalian target of rapamycin (mTOR). The PI3K/AKT/mTOR is a pivotal signaling involved in cell proliferation and differentiation, and was activated in fibrotic foci. The activated PI3K/AKT participated in the TGF-β-induced myofibroblasts activation. PI3K/AKT could also regulate angiogenesis by increasing VEGF/VEGFR signaling and enhanced VEGFA/VEGFR2 signaling in liver fibrosis and angiogenesis.

JAK/STAT. The JAKs has four members, JAK1, 2, 3, and TYK2. Upon ligand binding, JAKs are activated and subsequently phosphorylate downstream signaling molecules, such as STAT, which in turn migrates to the nucleus regulating targeted gene expression. STAT has seven subtypes: STAT1, 2, 3, 4, 5 A, 5B, and 6. JAK signal-mediated transduction depends on the activation of PI3K/akt/mTOR signaling. Inhibition of JAK2/akt/mTOR enhanced the effect of JAK2 inhibitors on primary human myeloproliferative neoplasm cells. JAK/STAT could also be regulated by PDGFs. JAK2 and STAT3 was upregulated in left atrial and left ventricular fibroblasts treated with PDGF-AB. Inhibition of JAK2 and STAT3 reversed PDGF-AB-induced collagen production in fibroblasts, suggesting that JAK2/STAT3 signaling was involved in PDGF-AB-induced fibrosis. Furthermore, the activation of JAK/STAT signaling is required for TGF-β-mediated CTGF production in primary mouse HSCs. JAK/STAT signals together with TGF-β1/Smad signals promote the EMT process in liver fibrosis.

WNT/β-catenin. β-catenin is a transcription factor and its expression is mainly regulated by WNT proteins. WNT/β-catenin activate and synergize with TGF-β to mediate the activation of myofibroblasts in lung fibrosis. WNT/β-catenin signal was upregulated in TGF-β stimulated human lung fibroblasts. Blocking β-catenin induced by TGF-β in vivo and in vitro can alleviate BLM-induced lung fibrosis. In liver fibrosis, WNT/β-catenin also regulated the vimentin, collagen 1, and fibronectin in HSCs induced by TGF-β. Apart from TGF-β, WNT/β-catenin can be regulated by CTGF via binding to the WNT coreceptor LDL receptor-related protein 6 (LRP6).

Apoptosis signal-regulating kinase 1 (ASK1) signaling pathway. ASK1 is involved in regulating glucose metabolism and maintaining energy homeostasis, which could activate the p38/cJun NH2-Apoptosis signal-regulating kinase 1 (ASK1) signaling pathway. ASK1 is involved in regulating glucose metabolism and maintaining energy homeostasis, which could activate the p38/cJun NH2-kinase activity, small RAS-related GTPases, and heterotrimeric

PI3K/AKT. PI3Ks can be activated by receptor-coupled tyrosine kinase activity, small RAS-related GTPases, and heterotrimeric
inflammation-related pathways modulate myofibroblasts activation. Signaling molecules that regulate metabolism may provide an interesting avenue for slowing the progression of fibrosis. As most of these signaling pathways regulating metabolism and inflammation are essential for NASH development, the interactions between these signaling pathways in NASH are shown in Fig. 6.

Peroxisome proliferator-activated receptors (PPARs) signaling pathway. PPARs are the nuclear receptors dependent on ligand binding and activate targeted genes related to lipid and glucose metabolism and adipogenesis. There are three PPARs: PPARα, PPARγ, and PPARβ (also called δ). PPARα is most expressed in brown adipose tissue and liver. The correlation of PPARs with liver fibrosis, especially NASH, is well-elaborated. PPARα is important for fatty acid metabolism. Increased oxidative stress and hepatocyte apoptosis with higher NASH scores were observed in Pparα-null mice fed a high-fat diet. Treatment with PPARα ligands attenuated liver fibrosis in rat thioacetamide models of liver cirrhosis. Fasting-induced PPARα−/− mice showed low levels of FGF21, whereas FGF21 reduced hepatic triglycerides and cholesterol esters only in WT mice, suggesting that the effect of FGF21 on lipid metabolism might be partially dependent on PPARα.

The function of PPARα in NASH is more dependent on its role in inflammation. PPARγ activation inhibited inflammatory responses by inactivating nuclear factor-κB (NF-κB) signaling and reducing TNF-α and IL-1β expression in monocytes and macrophages. Dual activation of PPARβ and PPARγ has a favourable effect in ameliorating NASH by reducing inflammation, steatosis, and fibrosis. PPAR-α and PPAR-γ activators have achieved efficacy in cardiac fibrosis, renal fibrosis, and pulmonary fibrosis animal models.

PPARβ/δ is mainly expressed in hepatocytes, Kupffer cells, and HSCs in liver. PPARβ/δ-null mice exhibited aggravated hepatotoxicity in carbon tetrachloride (CCL4)-treated mice. However, the contradictory effects of PPARβ/δ agonists on HSCs proliferation and liver fibrosis hindered PPARβ/δ agonists from entering clinical trials, which might be due to discrepancies in the ligands, dosage, and in vivo pharmacological properties of compounds.

Farnesoid X receptor (FXR) signaling pathway. FXR, as a nuclear receptor mainly located in enterohepatic tissues, can be activated by bile acids and regulate lipid and glucose metabolism. FXR forms a heterodimer with the 9-cis-retinoic acid receptor and binds to farnesoid X response elements (FXREs), thus regulating target gene expression. The roles of FXR vary in different organs. FXR expression was upregulated in lung fibrosis, and inhibition of FXR inhibited the bile acid-induced EMT and activation of lung fibroblasts. However, FXR was reported to exert anti-fibrotic effect on kidney fibrosis and liver fibrosis. Treatment with FXR-activating ligand ameliorated triglyceride accumulation, improved proteinuria, and decreased ECM deposition in kidney disease experimental models. FXR activation also protected hepatocytes from liver injury by inhibiting the activation of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome. The interaction of FXR with other molecules is involved in bile acids circulation and plays an important role in NASH. PPARα activation was required for the mRNA expression of FXR in the liver of fasted mice. FXR directly regulated the expression of FGF19, thereby regulating hepatic protein and glycogen metabolism. FXR/FGF19 axis increased FGF21 secretion. FXR might also directly activate the expression of FGF21 by interacting with the FXRE in the 5'-flanking region of the FGF21 gene.

Toll-like receptor 4 (TLR4) signaling pathway. TLR4, a member of the TLR family, functions as a crucial regulator in the immune system and inflammatory response. Fibroblast-specific deletion of TLR4 protected from mice lung and skin fibrosis. In liver fibrosis, HSCs are the main effector cells of TLR4. TLR4 could sensitize HSCs

Fig. 6 Molecular signaling pathways of NASH and a summary of related target drugs. FFA, free fatty acid; TG, triglycerides.
Pirfenidone (PFD) is one of two FDA-approved drugs for IPF. Activation of the TLR4/NF-κB signaling pathway induced hepatic inflammation. However, TLR4 is an important receptor for AT2 proliferation and deletion of TLR4 in surfactant-protein-C-positive AT2 cells leads to impaired renewal capacity, severe fibrosis and mortality in IPF.

GIP/GIPR and GLP-1/GLP-1R. Gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two major incretin hormones produced by the intestine that regulate insulin and glucagon secretion and food ingestion. GIP is secreted by K cells in the upper part of the small intestine, while GLP-1 is mainly released by intestinal endocrine cells. GIP exerts biological functions via binding to its receptor, GIPR, and was related to the activation of macrophages. GLP-1 is expressed in various cells and binds to GLP-1R. GLP-1 could downregulate collagen expression and TGF-β1 expression via regulating FGF21 in NASH mouse models. GLP-1R and GIPR agonists improved NASH steatosis, lobular inflammation, hepatocyte ballooning, and fibrosis.

ANTI-FIBROTIC DRUGS AND CLINICAL TRIALS

Numerous small clinical data on these compounds were listed in Table 1, and we categorized these drugs by targets and then ranked each target drug by clinical trial grade (marketed, phase 3, phase 2, and phase 1). Accordingly, antifibrotic drugs that have published clinical data and are in Phase 2, Phase 3 clinical trials or marketed are summarized in this part based on the ranking results.

Antifibrotic drugs targeting TGF-β

Most ant-TGF-β therapeutic drugs fall into five groups: (1) nucleic acid drugs that blocking TGF-β synthesis. (2) TGF-β receptor kinases inhibitors, which block ATG binding to TGFβR, thus inhibiting Smad2 and Smad3 activation. (3) monoclonal antibodies preventing TGF-β from binding to its receptors. (4) high-affinity ligand traps prevent TGF-β from binding to its receptor. These inhibitors contain TβRII extracellular domains that could prevent TGF-β1 and TGF-β3 binding to TβRII receptors. (5) Some antibodies or molecules inhibiting the TGF-β activation, for example, drugs targeting av/β integrins. Anti-fibrotic drugs targeting TGF-β now in clinical trials are mainly used in two diseases, IPF and myelofibrosis. Selected drugs targeting TGF-β are described in detail.

Pirfenidone

Pirfenidone (PFD) is one of two FDA-approved drugs for IPF, which inhibits both the synthesis and activation of TGF-β. The action mechanism of PFD in IPF has not been fully elaborated. Studies showed that PFD could inhibit the fibroblasts activation, reducing of the synthesis of type 1 and type 3 collagen and the deposition of ECM. Clinical trials demonstrated that PFD reduced lung function decline, decreased mortality, and improved overall survival of IPF patients. Anorexia, rash, and gastrointestinal disorders are reported to be common side effects of PFD. Based on the effect of PFD on improving inflammation and fibrosis in IPF, clinical studies on PFD for other types of pulmonary fibrosis are in progress. HEC-585 is a pyrimidine compound that is structurally related to PFD. Two phase I clinical trials were carried out to evaluate the safety, tolerability, and pharmacokinetics of HEC-585 in healthy subjects.

Hydronidone

Hydronidone is a derivative of PFD with potential therapeutic efficacy for hepatic fibrosis. The results of an open-label, randomized, dose-escalating study showed that hydronidone was well tolerated and effectively absorbed in healthy Chinese subjects. Currently, a phase III study on the efficacy of hydronidone in HBV-induced liver fibrosis is in progress.

Luspatercept is a recombinant fusion protein that binds TGF-β ligands to reduce Smad2/3 signaling. Luspatercept has been evaluated in myelofibrosis-associated anemia with 33 patients received concomitant ruxolitinib. Among transfusion-independent patients, 2 patients who did not receive ruxolitinib (10%) and 3 patients who received ruxolitinib (21%) experienced an increase of hemoglobin about 1.5 g/dL over 12 weeks. In the transfusion dependent cohort, 2 patients who did not receive ruxolitinib and 6 patients who received ruxolitinib were transfusion independent for at least 12 weeks.

AVID-200

AVID-200 contains soluble, dimerized, Fc-linked TβRII ectodomains and can be a high-affinity ligand trap preventing TGF-β from binding to its receptor. Treatment of myelofibrosis mononuclear cells with AVID-200 increased numbers of progenitor cells with wild type JAK2 but not mutated JAK2V617F. Phase 1 clinical study in 12 myelofibrosis patients with ruxolitinib resistant showed that eight patients with grade 3/4 adverse reactions did not have dose-limiting toxicity and had improved platelet counts, with an average increase of 48%.

Anti-fibrotic drugs targeting RTKs

Nintedanib. Nintedanib is a receptor tyrosine kinase inhibitor (RTKs: FGFRs, VEGFRs, and PDGFRs) that targets growth factor pathways, including FGFRs, VEGFRs, and PDGFRs. In BLM-treated and silica-induced fibrosis mouse models, nintedanib reduced lung inflammation and fibrosis by decreasing total collagen, inflammatory chemokines, and pro-fibrotic factors both in therapeutic and preventive regimens. Clinical trials have shown that nintedanib decreased the decline in FVC and reduced disease progression in IPF patients. Nintedanib had acceptable safety and tolerability, of which nausea and diarrhea were the common side effects in the treatment of IPF. The combination of PFD and nintedanib might produce synergistic effects and provide new prospects for the treatment of IPF. However, both nintedanib and PFD have some problems such as high liver toxicity, high dosage, and photoallergic reaction, thus their long-term drug tolerance needs to be further determined.

ZSP1603. ZSP1603 (also known as WXFL-152), identified from a series of 4-hydroxyquinoline derivatives, targets VEGFR2, FGFRs, and PDGFRβ. Our previous study showed the ability of ZSP1603 to reduce pulmonary injury, inflammation, and fibrosis in BLM-treated mice and rats. ZSP1603 could inhibit the proliferation of primary human pulmonary fibroblasts (pHPFs) by blocking the PDGFRβ/ERK signaling pathway and decrease the differentiation of pHPFs by reducing TGF-β1, tissue inhibitor of metalloproteinase -1, and COL1A1. The clinical study of ZSP1603 is expected to provide a new choice for IPF therapy.

Anti-fibrotic drugs targeting CTGF

Pamrevlumab. Pamrevlumab is a recombinant antibody that targets CTGF and inactivates its downstream inflammatory signals. In a phase II, randomized, double-blind, placebo-controlled PRAISE trial involving 7 countries, pamrevlumab decreased the decline in FVC and inhibited the disease progression of IPF. More therapeutic effects of pamrevlumab is expected to be investigated in phase III clinical trials.

Anti-fibrotic drugs targeting PI3K

PI3K/AKT pathway plays an important role in fibrotic processes and represents a critical target for the development of novel anti-fibrotic drugs.
Table 1. Drug targets and NCT number of clinical trials

Target	Drug Name	Conditions	Highest Status (phase)	NCT Number	Status	Sample size
TGF-β/TGFβR	TGF-βs	Pirfenidone	IPF	NCT00662038	Completed	1058
p38 MAPK,				NCT05115942	Recruiting	248
TGFβ1, FGF1						
TGFβ1	HEC-585	IPF	II	NCT05060822	Recruiting	270
αV/β1, αV/β3	PLN-74809	IPF	II	NCT04396756	Recruiting	112
αV/β6, TGFβ	BG00011	IPF	II	NCT03573505	Terminated	109
αV/β1, αV/β3	IDL-2965	IPF	I	NCT03949530	Terminated	6
TGFβ1	TRK-250	IPF	I	NCT03727802	Completed	34
TGFβ	Luspaterecept	Myelofibrosis	III	NCT04717414	Recruiting	
TGFβ, BMPRII	Sotatercept	Myelofibrosis	II	NCT03727802	Completed	63
TGFβ-1 and TGFβ3	AVID200	Myelofibrosis	I	NCT03895112	Active, not recruiting	22
TGFβ						
FGF	FGF21	BIO89-100	NASH	NCT04048135	Active, not recruiting	101
FGF21	Efruxifermin	NASH	II	NCT03976401	Completed	110
FGF21	Pegbelfermin	NASH	II	NCT02413372	Completed	184
FGF19	Aldafermin	NASH	II	NCT03912532	Completed	171
RTKs	PDGFRs, FGFRs, VEGFRs	Nintedanib	IPF, Marketed	NCT02598193	Completed	89
PDGFRs, β, FGFR1-4, and VEGFR1-3	ZSP1603	IPF	II	NCT05119972	Recruiting	36
β-Klotho/FGFR1c receptor complex	MK-3655	NASH	II	NCT03573505	Terminated	60
CTGF	CTGF	Pancreolubam	IPF	NCT03955146	Recruiting	340
PI3K	PI3Kδ	Parsaclisib	Myelofibrosis	NCT04551053	Recruiting	212
PI3K/mTOR	Omipalisib	IPF	I	NCT01725139	Completed	17
PI3K/mTOR	HEC-68498	IPF	I	NCT03502902	Completed	55
PI3K p110α/β/δ/γ	Buparlisib	Myelofibrosis	I	NCT01730248	Terminated	63
PI3Kδ, CK1-epsilon	Umbralisib	Myelofibrosis	I	NCT02493530	Active, not recruiting	60
JAK	JAK1/2	Ruxolitinib	Myelofibrosis	NCT02386800	Recruiting	356
JAK2, FLT3	Fedatinib	Myelofibrosis	III	NCT03755158	Recruiting	110
JAK1/2, TBK1, ACVR1/ALK2	Momelotinib	Myelofibrosis	III	NCT04173494	Active, not recruiting	195
JAK2, FLT3, IRAK1	Pacritinib	Myelofibrosis	III	NCT03165734	Recruiting	348
JAK1/2/3	Jaktinib	Myelofibrosis	III	NCT04617028	Recruiting	105
JAK1	Itacitinib	Myelofibrosis	II	NCT04660025	Recruiting	100
JAK2	Ilginatinib	Myelofibrosis	II	NCT01423851	Completed	77
WNT/β-catenin	WNT	SM04646	IPF	NCT03591926	Under recruitment	0
β-catenin	PRI-724	Liver cirrhosis	II	NCT03620474	Completed	27
ASK, MAPK	ASK1, MAPKK5	Selonsertib	NASH	NCT03053050	Terminated	808
JNK1, MAPK8	CC-90001	NASH	II	NCT04048876	Terminated	56
MAP3K19	MG-5-2525	IPF	I	NCT03650075	Completed	81
LOXL	LOXL2, LTD4 receptor, PDE3 /4	Epeleuton	NAFLD	NCT02941549	Completed	96
LOXL2, LTD4 receptor, PDE3 /4	Tipelukast	IPF	II	NCT02503657	Completed	15
LOXL2	PAT-1251	Myelofibrosis	II	NCT04054245	Withdrawn	0
LOXL2	PXS-5382A	IPF, NASH	I	NCT04183517	Completed	18
PPAR	PPARαδ	Elafibranor	NASH	NCT02704403	Terminated	2157
PPAR	PPARαγ	Saroglitazar	NASH	NCT04193982	Recruiting	250
PPAR	PPARαδ/γ	Lanifibranor	NASH	NCT04849728	Recruiting	2000
PPAR	PPARα	Pamafibrate	NASH	NCT03350165	Completed	118
PPARαδ	ZSP0678	NASH	I	NCT04137055	Completed	104
Target	Drug Name	Conditions	Highest Status (phase)	NCT	Status	Sample size
--------	-----------	------------	------------------------	-----	--------	-------------
FXR	FXR	Obeticholic Acid	NASH III	NCT02548351	Active, not recruiting	2480
FXR	FXR	Cilofexor	Liver fibrosis, NASH II	NCT02854605	completed	140
FXR	FXR	Nidufexor	NASH II	NCT02913105	Terminated	122
FXR	FXR	TERN-101	NASH II	NCT04328077	Completed	101
FXR	FXR	Vonafexor	NASH II	NCT03812029	Completed	120
FXR	FXR	EDP-305	NASH II	NCT04378010	Recruiting	336
FXR	FXR	Tropifexor	NASH II	NCT04147195	Terminated	41
TLR	TLR4	JKB-121	NASH II	NCT02442687	Completed	65
TLR	TLR4	JKB-122	NASH II	NCT04255069	Active, not recruiting	300
GLP/GIP	GLP-1 receptor	Semaglutide	NASH III	NCT04822181	Recruiting	1200
GLP/GIP	GLP-1/GIP receptor	Tirzepatide	NASH II	NCT04166773	Recruiting	196
GLP/GIP	GLP-1/Glucagon receptor	Cotadutide	NASH II	NCT05364931	Active, not recruiting	1860
GLP/GIP	GLP-1/GIP/Glucagon	HM-15211	NASH II	NCT04505436	Recruiting	217
CFTR	CFTR	Elexacaftor	Cystic fibrosis III	NCT03525444	Completed	405
CFTR	CFTR	Ivcacafitor	Cystic fibrosis III	NCT01707290	Completed	125
CFTR	CFTR	GLPG1837	Cystic fibrosis II	NCT02707562	Completed	26
CFTR	CFTR	FD169	Cystic fibrosis II	NCT02767297	Completed	46
CFTR	CFTR	Olacaftor	Cystic fibrosis II	NCT02951182	Completed	74
CFTR	CFTR	VX-152	Cystic fibrosis II	NCT02951195	Completed	80
CFTR	CFTR	MRT5005	Cystic fibrosis II	NCT03375047	Recruiting	40
CFTR	CFTR	GLPG2737	Cystic fibrosis II	NCT03474042	Completed	22
CFTR	CFTR	Nesolicaftor	Cystic fibrosis II	NCT03591094	Completed	40
CFTR	CFTR	VX-121	Cystic fibrosis II	NCT03912233	Completed	87
CFTR	CFTR	ABBV-3067	Cystic fibrosis II	NCT03969888	Active, not recruiting	189
HDAC	HDAC	Panobinostat	Myelofibrosis Marketed	NCT02386800	Recruiting	356
HDAC	HDAC	Pracinostat	Myelofibrosis	NCT01200498	Completed	23
THRβ	THRβ	Resmetirom	NASH III	NCT03900429	Recruiting	2000
THRβ	THRβ	VK2809	NASH II	NCT04173065	Recruiting	337
CCR	CCR2/CCR5	Cenicriviroc	NASH III	NCT03028740	Terminated	1778
Galectin	Galectin-3	Belapacetin	NASH III	NCT04365868	Recruiting	1010
Galectin	Galectin-3	GB1211	NASH II	NCT04607655	Withdrawn	0
Galectin	Galectin-3	GB0139	IPF II	NCT03832946	Active, not recruiting	426
MPC	MPC	Azemigлитazone potassium	NASH III	NCT03970031	Active, not recruiting	1800
MPC	MPC	Deuterium-Stabilized (R)-Pioglitazone	NASH II	NCT04321343	Active, not recruiting	123
SCD	SCD-1	Aramchol	NASH III	NCT04104321	Recruiting	2000
ATX	ATX	Ziritaxestat	IPF III	NCT03711162	Terminated	526
FATP5	FATP5	Ursodiol	Cystic Fibrosis II	NCT00004315	Unkown	20
ACC	ACC1/2	PF-05221304	NASH II	NCT03248882	Completed	305
ACC	ACC	Firscocostat	NASH II	NCT03449446	Completed	395
Target	Drug Name	Conditions	Highest Status (phase)	NCT	Status	Sample size
--------	-----------	------------	------------------------	-----	--------	-------------
PDE	ZSP1601	NASH	II	NCT04140123	Completed	37
LOXL2, LTD4 receptor, PDE3 /4	Epeleuton	NAFLD	II	NCT02941549	Completed	96
LOXL2, LTD4 receptor, PDE3 /4	Tipelukast	IPF	II	NCT02503657	Completed	15
PDE 3/4	PDEs (mainly PDE2)	Cystic fibrosis	II	NCT02919995	Completed	10
AMPK	AMPK	NAFLD	II	NCT03763877	Completed	121
MMP	MMP2, MMP9, VEGF-A	ALS-L1023	NASH	NCT04342793	Unknown	60
A3AR	A3AR	Namodenoson	NASH	NCT02927314	Completed	60
FASN	FASN	TVB-2640	NASH	NCT03938246	Completed	142
Bioidentical testosterone	Bioidentical testosterone	LPCN 1144	NASH	NCT04134091	Completed	56
Stem cell	Stem cell	HepaStem	NASH	NCT03963921	Completed	23
HSP	HSP 47	BMS-986263	NASH	NCT04267393	Recruiting	270
HSP 90	PU-H71	Myelofibrosis	I	NCT03935555	Recruiting	24
CD	CD3	Foralumab	NASH	NCT02391249	Withdrawn	0
CD123	Tagraxofusp	Myelofibrosis	II	NCT02628523	Recruiting	130
ileal bile acid transport	ileal bile acid transport	Aparanenone	NASH	NCT02923154	Completed	48
GPR	GPR-35	RVT1601	IPF	NCT03864328	Terminated	108
GPR-84	GLPG-1205	IPF	II	NCT02752852	Completed	68
ROCK2	ROCK2	Belumosudil	IPF	NCT02688647	Completed	76
BAFFR	BAFFR	lanalumab	IPF	NCT03287414	Terminated	30
LPA1	LPA1	BMS-986278	IPF	NCT03408681	Recruiting	360
Telomerase	Telomerase	Imetelstat	Myelofibrosis	NCT02721222	Terminated	20
KHK	KHK	PF-06835919	NASH	NCT0969719	Completed	164
calpain	calpain 1, 2, and 9	BLD-2660	IPF	NCT04244825	Withdrawn	0
P selectin	P selectin	Crizanlizumab	Myelofibrosis	NCT02923415	Completed	168
SMO	SMO	Sonidegib	Myelofibrosis	NCT01787552	Completed	50
Blc-2	Blc-2	Navitoclax	Myelofibrosis	NCT03222609	Active, not recruiting	191
BET family	BET family	Pelabresib	Myelofibrosis	NCT02158858	Recruiting	341
ENaC	ENaC	Bi-1265162	Cystic fibrosis	NCT04059094	Terminated	52
ENaC	P-1037	Cystic fibrosis	II	NCT02343445	Completed	142
ENaC	QBW276	Cystic fibrosis	II	NCT02566044	Completed	16
ENaC	IONIS-ENaC	Cystic fibrosis	I	NCT03647228	Completed	98
ENaC	AZD5634	Cystic fibrosis	I	NCT02950805	Completed	9
ENaC	BI 443651	Cystic fibrosis	I	NCT02976519	Completed	64
ENaC	Idelalisib	Myelofibrosis	I	NCT02436135	Terminated	10
DNase I	DNase I	AIR DNase	Cystic fibrosis	NCT02721222	Terminated	20
AA/DHA imbalance	AA/DHA imbalance	Fenretinide	Cystic fibrosis	NCT03265288	Completed	166
Neutrophil elastase	Neutrophil Elastase	Lonedefasat	Cystic fibrosis	NCT03748199	Completed	32
Neutrophil elastase	Neutrophil Elastase	CHF-6333	Cystic fibrosis	NCT04010799	Completed	68
leukotriene B4	leukotriene B4	Acbilustat	Cystic fibrosis	NCT02443688	Completed	200
CDK	CDK1, CDK2/E, CDK2/A, CDK5, 7, 9	Seliciclib	Cystic fibrosis	NCT02649751	Terminated	49
CDK4/6	Ribociclib	Myelofibrosis	I	NCT02370706	Completed	15
LSD	LSD1	Bomedematstat bis-toysiato	Myelofibrosis	NCT03136185	Completed	89
MDM2	MDM2	KRT-232	Myelofibrosis	NCT03662126	Recruiting	385
PLK1	PLK1	Rigosertib	Myelofibrosis	NCT02730884	Terminated	3
IL-1α	IL-1α	Bermekimab(MABp1)	Systemic Sclerosis	NCT04045743	Active, not recruiting	20
fibrotic strategies. PI3K/AKT inhibitors are currently in clinical evaluation in IPF and myofibrosis.

Parsacilib. Parsacilib is a potent PI3Kδ inhibitor and exerts antitumour effects in models of B-cell malignancy. Single-dose parsacilib alone or combination with itraconazole or rifampin achieved safety and tolerability in healthy subjects. Two clinical trials in phase III studies were launched to test the efficacy and safety of parsacilib and ruxolitinib in myofibrosis.

Omiпалisib. Omiпалisib (GSK-2126458) is a dual inhibitor of PI3K/mtTOR. Omiпалisib inhibited the proliferation of pHPFs and decreased collagen accumulation induced by TGF-β1 in pHPFs. Omiпалisib was well absorbed and reached the lung in a randomised, placebo-controlled, double-blind phase I study in subjects with IPF (NCT01725139). Diarrhoea was the most commonly reported side effect of omipalisib.

Anti-fibrotic drugs targeting JAKs

Since JAKs are essential for the occurrence and development of myofibrosis, JAK inhibitors have achieved improvements in quality of life in patients with myofibrosis. However, most drugs targeting JAK/STAT did not seem to prevent myofibrosis patients from progressing to acute myeloid leukemia.

Ruxolitinib. Ruxolitinib, a JAK1/JAK2 inhibitor, is approved by the FDA for patients with intermediate- and high-risk myofibrosis. The effect of ruxolitinib in anemic myofibrosis patients was evaluated in a phase 2 study (NCT02966353), who received ruxolitinib at 10 mg for the first 12 weeks, followed by escalating doses to 25 mg. During the study, palpable spleen length was reduced at least 50% in 70% patients receiving ruxolitinib, but 11.8% of patients needed platelet transfusion. The results also showed that the platelet counts and hemoglobin level of patients receiving increased dose were similar to those of patients who did not receive a dose increase.

Momelotinib. Momelotinib (also known as CYT387, a JAK1/2 inhibitor) showed favorable therapeutic effects on myofibrosis in preclinical trials by reducing multiple myeloma proliferation, inducing apoptosis of JAK2-dependent haematopoietic cells, and regulating inflammatory cytokines. In a phase 3 study (NCT02101268), 156 patients with myeloid fibrosis were assigned to receive momelotinib (104) or standard care (52, 89% of whom received ruxolitinib). Encountered with the standard intervention group had at least a 35% reduction in spleen volume. 11% of patients experienced peripheral neuropathy in the momelotinib group, compared with none in the standard intervention group. Moreover, compared with ruxolitinib, the blood transfusion requirements and drug dependence of momelotinib were markedly reduced.

Fedratinib. Fedratinib is a JAK2 inhibitor and has been used in treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. After 24 weeks, patients in the 400 mg fedratinib group had a 47% spleen volume response rate compared with 1% of patients with myelofibrosis in the placebo group. In this study, the two most common adverse reactions in patients taking fedratinib were anemia and diarrhea.

Pacritinib. Pacritinib is an inhibitor of JAK2 and FMS-like tyrosine kinase 3. Pacritinib has good tolerance and clinical activity in myelofibrosis. Twice daily pacritinib resulted in a significant reduction in spleen volume and improvements in the total symptom score over the best available therapy for myelofibrosis.

Itacitinib. Itacitinib (INCBO39110), a selective JAK1 inhibitor, has demonstrated favourable safety and anticancer effects. Itacitinib exerts its anti-inflammatory effects by reducing pro-inflammatory cytokines and regulating the polarization of macrophages. Administration of itacitinib at 200 mg twice daily and 600 mg once daily reduced the total symptom score in patients.
with myelofibrosis, and decreased the requirement of red blood cell units transfused in patients who needed transfusions during the 12 weeks prior to itacitinib treatment (NCT01633372)313.

Anti-fibrotic drugs targeting \(\beta\)-catenin PRI-724. PRI-724 (also known as ICG-001) is a small molecule drug that modulate \(\beta\)-catenin/\(\beta\)-catenin/CBP transcription314,315. Preclinical studies demonstrated the efficacy of PRI-724 in decreasing ECM deposition and hepatic inflammation in a mouse model of CCL\(_4\)-induced acute liver injury316 and a mouse model of HCV-infection316. In a dose escalation phase 1 trial, PRI-724 was well-tolerated in patients with HCV-induced cirrhosis at the dose of 10 or 40 mg/m\(^2\)/(2) daily for 12 weeks317. However, PRI-724 did not effectively reduce liver fibrosis in patients with HCV- and HBV-induced cirrhosis, either by sequential scoring or by measuring proportional area of collagen for 12 weeks, but significantly improved liver stiffness (NCT03620474)318.

Anti-fibrotic drugs targeting ASK-1 Selonsertib. Selonsertib (GS-4997), a small molecule inhibitor of ASK1, showed efficacy in reducing collagen deposition, fibrosis stage, steatosis, and inflammation in a phase 2 study319. However, the phase III clinical trial (NCT03053050) of selonsertib was terminated in NASH patients with bridging fibrosis or compensated cirrhosis because its effect in alleviating fibrosis was not obvious320.

Anti-fibrotic drugs targeting PPARs Since PPARs are involved in glucose and lipid metabolism, PPARs ligands are expected to be promising therapeutic agents for NAFLD/NASH. However, PPAR ligands (Clofibrate and Fenofibrate) showed no effect in inflammation and fibrosis in NAFLD231. PPAR\(\beta/\delta\) agonist (GW501516) reduced inflammatory cells migration, insulin resistance and lipid levels, and increased ALT concentration in NASH experimental mode321, but GW501516 has been terminated due to safety concerns. PPAR\(\gamma\) agonists alleviated steatosis and inflammation yet with little effect fibrosis, and long time of administration is a major concern322. The effect of dual or pan agonists of PPARs in NASH are summarized below.

Elaflinibron. The targets of elafibron (GFT505) are PPAR\(\alpha\) and PPAR\(\gamma\)229. Our previous results showed that GFT505 could inhibit steatosis, inflammation, and fibrosis in a NASH mouse model, and reduce the expression of lipid metabolism, inflammation, and fibrosis-related signaling molecules323. Treatment with 120 mg/d elafibron for 1 year reduced NASH progression and liver fibrosis stage324. However, a phase III study of elafibron in NASH patients was terminated because it did not achieve the predicted efficacy without safety issues (NCT02704403).

Saroglitazar. Saroglitazar is a novel dual PPAR\(\alpha/\gamma\) agonist that regulates glucose metabolism and improve insulin resistance. NAFLD/NASH patients were given placebo or 1 mg, 2 mg, or 4 mg saroglitazar. After the week 16, the ALT changes in the group taking 1 mg, 2 mg and 4 mg saroglitazine were -25.5%, 27.7%, and -45.8%, respectively, while the ALT changes in the group taking placebo were 3.4%. Administration of saroglitazar 4 mg decreased -45.8%, respectively, while the ALT changes in the group taking 1 mg, 2 mg and 4 mg saroglitazine were -25.5%, 27.7%, and -25.5%. Administration of saroglitazar 4 mg decreased ALT level were reduced in patients with high-risk NAFLD who received 0.2 mg pemafibrate twice daily for 72 weeks in a phase 2 trial (NCT03350165)330.

Anti-fibrotic drugs targeting FXR FXR has emerged as a promising therapeutic target for NAFLD/NASH due to its diverse functions that modulate bile acid metabolism, inflammation, and immune responses. FXR agonists could be divided into steroidal and nonsteroidal, and pruritus is the most common side effect of these targeted drugs.

Obeticholic acid. Obeticholic acid, a steroidal FXR agonist, has been shown to improve NASH symptoms. In a phase 3 trial (NCT02548351), NASH patients were given placebo, or 10 mg or 25 mg of obeticholic acid daily. Improvement in fibrosis was achieved in 23% of patients in the obeticholic acid 25 mg group compared with 18% of patients in the 10-mg obeticholic acid group and 12% of patients in the placebo group. However, there was no difference of NASH resolution endpoint between the three groups \((P = 0.13)\)331. Patients taking obeticholic acid usually stop or reduce their dosage because of severe pruritus.

Cilofexor. Cilofexor (GS-9674) is a potent and selective FXR nonsteroidal agonist which activates FXR in the intestine and does not experience enterohepatic circulation. Twenty-four weeks of cilofexor improved serum bile acids metabolism and decreased hepatic steatosis in patients with NASH, but there was no significant change in fibrosis (NCT02854605)332.

EDP-305. EDP-305 is an effective FXR agonist showing little cross reaction with other nuclear receptors. EDP-305 inhibited HSCs activation in vitro and reduced MCD-induced steatohepatitis and liver fibrosis331. Liver fat and ALT level were reduced in NASH patients receiving 2.5 mg of EDP-305 compared with placebo group336. Pruritus was also one of the most common adverse events of EDP-305334.

Tropifexor. Tropifexor is a non-steroidal FXR agonist and significantly reduced steatohepatitis and fibrosis in NASH preclinical model335. Tropifexor was well tolerated up to 3000 µg and 100 µg in the single- and multiple-ascending doses (SAD/MAD) studies, respectively336, and is currently in phase 2 development for NASH.

Anti-fibrotic drug targeting TLR4 JKB-121. JKB-121 is a nonselective opioid TLR4 antagonist that has been proved to reduce LPS-induced liver inflammation in a MCD-induced model of NAFLD and inhibit the activation of HSCs337.

Anti-fibrotic drugs targeting GIP and GLP-1 FXR mainly negatively regulates liver gluconeogenesis, lipogenesis, and steatosis, while GIP and GLP-1 regulates glucose and lipid metabolism by reducing appetite, regulating liver fat content and inflammation. The dual receptor agonist of GIP and GLP-1 has been considered as an important therapeutic target for NASH.

Tirzepatide. Tirzepatide (LY3298176), a dual GIP and GLP-1 receptor agonist, has been used to explore its efficacy in clinical
Ivacaftor every 12 hours was effective in reducing chloride ion levels in a clinical study, daily intake of 100 mg tezacaftor and 150 mg ivacaftor was approved by the FDA to be utilized in combination with ivacaftor. In a phase 2 clinical study, patients with a FEV1 > 70% in four single ascending dose cohorts and four MAD cohorts received eluforsen three times weekly for 4 weeks. CFX-R Respiratory Symptom Score was improved in subjects of three groups in the MAD study.

CONCLUSIONS

The high mortality and complex pathogenesis of fibrotic diseases pose great challenges in clinical therapy. Various cells and signaling pathways are involved in the progression of fibrosis. Drugs targeting these abnormal pathways are constantly being developed, and most of them demonstrate good anti-fibrotic properties in clinical trials. However, the side effects of these drugs often lead to drug discontinuation. Therefore, reducing adverse effects is also a great challenge for drug development. In addition, due to the complicated interaction of these signaling pathways in fibrosis, multitarget drug regimens would be beneficial for fibrosis therapy. In conclusion, this review provides reference for further mechanism and drug study of fibrosis.

ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation of China (No. 81773375) and the National Major Scientific and Technological Special Project (No. 2019Z2092021001). The authors thank the Research Center for Prevention and Therapy of Occupational Diseases, West China-PUMC C.C.Chen Institute of Health, Sichuan University.

AUTHOR CONTRIBUTIONS

Y.Y. and J.Y. designed the research. M.Z. and Y.Y. prepared the manuscript. M.Z. and Y.Y. searched and analyzed the papers. M.Z. and L.W. wrote the initial manuscript. M.Z. and Y.Y. prepared the figures. A.C.R. L.Z., B.D., T.Y., H.C., and B.Z. critically reviewed and revised the final manuscript. All the authors have read and approved the manuscript.

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

REFERENCES

1. Zhao, X. et al. Targeting metabolic dysregulation for fibrosis therapy. Nat. Rev. Drug Discov. 19, 57–75 (2020).
2. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 396, 1204–1222 (2020).
3. Shu, D. Y. & Lovicu, F. J. Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis. Prog. Retin Eye Res 60, 44–65 (2017).
4. Rockey, D. C., Bell, P. D. & Hill, J. A. Fibrosis-a common pathway to organ injury and failure. N. Engl. J. Med 372, 1138–1149 (2015).
5. Tomasek, J. J. et al. Myofibroblasts and mechano-regulation of connective tissue remodeling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).
6. Desmoulière, A., Redard, M., Darby, I. & Gabbiani, G. Apatosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am. J. Pathol. 146, 56–66 (1995).
7. Mascharak, S. et al. Multicolor analysis reveals divergent molecular events in scar formation and regenerative wound healing. Cell Stem Cell 29, 315–327.e316 (2022).
8. Hinz, B. & Lagares, D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat. Rev. Rheumatol. 16, 11–31 (2020).
9. Beyer, C. et al. Hyoxia. Hyoxia in the pathogenesis of systemic sclerosis. Arthritis Res. Ther. 11, 220 (2009).
10. Tsu, P. S. et al. Inhibition of EZH2 prevents fibrosis and restores normal angiogenesis in scleroderma. Proc. Natl Acad. Sci. USA 116, 3695–3702 (2019).
11. Nanthakumar, C. B. et al. Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat. Rev. Drug Discov. 14, 693–720 (2015).
12. Parola, M. & Pinzani, M. Liver fibrosis: Pathophysiology, pathogenic targets and clinical issues. Mol. Asp. Med 65, 37–55 (2019).
13. Dhar, D., Baglieri, J., Kisseleva, T. & Brenner, D. A. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med (Maywood) 245, 96–108 (2020).
14. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017.
104. Villiger, P. M. & Lotz, M. Differential expression of TGF β isoforms by human
107. Horan, G. S. et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary
105. Shi, M. et al. Latent TGF-beta structure and activation.
102. Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-beta: the master regulator of
Signal Transduction and Targeted Therapy (2022) 7:206
82. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to car-
86. Seki, E. & Schwabe, R. F. Hepatic in
78. Farbehi, N. et al. Single-cell expression pro
79. Tabib, T. et al. SFRP2/DPP4 and FMO1/LSP1 De
99. Distler, J. H. W. et al. Shared and distinct mechanisms of
92. Ramachandran, P., Iredale, J. P. & Fallow
97. Kolb, M. et al. Transient expression of IL-1beta induces acute lung injury and
95. Frangogiannis, N. G. The in
94. Chen, G. et al. IL-1
96. Fan, D., Takawale, A., Lee, J. & Kassiri, Z. Cardiac
122. Marconi, G. D. et al. Epithelial-Mesenchymal Transition (EMT): The Type-2 EMT in
127. Kazlauskas, A. PDGFs and their receptors.
123. Kim, S. J. et al. Activation of ERK1/2-mTORC1-NOX4 mediates TGF-
121. Negulescu, O. et al. Estradiol reverses TGF-beta1-induced mesangial cell apop-
tosis by a casein kinase 2-dependent mechanism. Kidney Int 62, 1989–1998 (1999).
120. Marconi, G. D. et al. Epithelial-Mesenchymal Transition (EMT): The Type-2 EMT in
111. Coker, R. K. et al. Localisation of transforming growth factor beta1 and beta3
110. Yan, X. & Chen, Y. G. Smad7: not only a regulator, but also a cross-talk mediator
109. Yan, X. & Chen, Y. G. Smad7: not only a regulator, but also a cross-talk mediator
108. Koivisto, L., Bi, J., Häkkinnen, L. & Larjava, H. Integron ov6β: Structure, function and
role in health and disease. Int J Biochem Cell Biol. 99, 186–196 (2018).
107. Yan, X. & Chen, Y. G. Smad7: not only a regulator, but also a cross-talk mediator of TGF-beta signalling. Biochem J. 434, 1–10 (2011).
106. Finnson, K. W., Almadani, Y. & Philip, A. Non-canonical (non-SMAD2/3) TGF-β
signaling in fibrosis: Mechanisms and targets. Semin Cell Dev. Biol. 101, 115–122 (2020).
105. Shi, M. et al. Latent TGF-beta structure and activation.
102. Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-beta: the master regulator of
101. Coker, R. K. et al. Localisation of transforming growth factor beta1 and beta3 mRNAs transcripts in normal and fibrotic human lung. Thorax 56, 549–556 (2001).
104. Villiger, P. M. & Lotz, M. Differential expression of TGF β isoforms by human
107. Horan, G. S. et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary
105. Shi, M. et al. Latent TGF-beta structure and activation.
Targeting fibrosis: mechanisms and clinical trials
Zhao et al.

137. Eitner, F. et al. PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis. J. Am. Soc. Nephrol. 19, 281–289 (2008).

138. Nishioka, Y., Azuma, M., Kishi, M. & Aono, Y. Targeting platelet-derived growth factor as a therapeutic approach in pulmonary fibrosis. J. Med Invest 60, 175–183 (2013).

139. Tuuminen, R. et al. PDGF-A, -C, and -D but not PDGF-B increase TGF-beta1 and chronic rejection in rat cardiac allografts. Arterioscler Thromb. Vasc. Biol. 29, 691–698 (2009).

140. Gellini, R. et al. PDGF-A and PDGF-B induces cardiac fibrosis in transgenic mice. Exp. Cell Res. 349, 282–290 (2016).

141. Mohammadi, M., Olsen, S. K. & Ibrahimi, O. A. Structural basis for asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases. Mol. Cells 29, 443–448 (2010).

142. Koo, H. Y. et al. Fibroblast growth factor 2 decreases bleomycin-induced pulmonary fibrosis. J. Cell Mol. Med. 23, 691–702 (2019).

143. Bae, J. H. & Schlessinger, J. Asymmetric activation or autophosphorylation of receptor tyrosine kinases. Am. J. Respir. Cell Mol. Biol. 691 (2017).

144. Gallini, R. et al. PDGF-A and PDGF-B induces cardiac fibrosis in transgenic mice. Exp. Cell Res. 349, 282–290 (2016).

145. Uriarte, I. et al. Ileal FGF15 contributes to hepatic fatty acid activation in mice on methionine and choline-deficient diets. Trends Endocrinol. Metab. 30, 491–504 (2019).

146. Tao, N. et al. Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF. Thorax 71, 701–711 (2016).

147. Wang, Y. et al. Neurophilin-1 aggravates liver cirrhosis by promoting angiogenesis via VEGFR2-dependent PI3K/Akt pathway in hepatic sinusoidal endothelial cells. EBioMedicine 43, 525–536 (2019).

148. Chen, H. et al. IGF1 receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm Mol Biol Clin Invest. 30 (2017).

149. Fisher, F. M. et al. Fibroblast growth factor 21 promotes survival and migration and inhibits myofibroblast differentiation of human lung fibroblasts in vitro. Am. J. Physiol. Lung Cell Mol. Physiol. 310, L615–L629 (2016).

150. Shimbori, C. et al. Fibroblast growth factor-1 attenuates TGF-beta1-mediated connective tissue disease. Am. J. Respir. Cell Mol. Biol. 691 (2017).

151. Koo, H. Y. et al. Fibroblast growth factor 2 decreases bleomycin-induced pulmonary fibrosis and inhibits fibroblast collagen production and myofibroblast differentiation. J. Pathol. 246, 54–66 (2018).

152. Yang, L. et al. FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor Rev. 62, 94–104 (2021).}

153. Azuma, M. et al. Inhibition of PDGF, VEGF and FGF signalling attenuates TGF-beta1 and modulates its signaling. FEBS Lett. 586, 4270–4275 (2012).

154. Toda, N., Mukoyama, M., Yanagita, M. & Yokoi, H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm. Regen. 38, 14 (2018).

155. Lipson, R. E., Wong, C., Teng, Y. & Spong, S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Tissue Repair 5, 524 (2012).

156. Mao, L. et al. MKL1 mediates TGF-beta induced CTGF transcription to promote renal fibrosis. J. Cell Physiol. 235, 4790–4803 (2020).

157. Wollin, L. et al. Mechanistic insights from structural studies of beta-catenin. Nat. Rev. Urol. 12, 577–588 (2015).

158. Liu, Y. et al. Transforming growth factor-beta (TGF-beta)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires TIA3 signaling activation. J. Biol. Chem. 288, 30708–30719 (2013).

159. Yang, Y. et al. Magnesium isocitrinate ameliorates high fructose-induced liver fibrosis in rat by increasing miR-25-3p to suppress JAK2/STAT3 pathway and TGF-beta1/Smad signaling. Acta Pharmacol. Sin. 40, 879–894 (2019).

160. Xu, W. & Kimelman, D. Mechanistic insights from structural studies of beta-catenin and its binding partners. J. Cell Sci. 120, 3337–3344 (2007).

161. Maruotti, N. & Corrado, A. Janus kinase inhibitors role in bone remodeling. J. Cell Physiol. 235, 1915–1920 (2020).

162. Villarino, A. V., Kanno, Y. & O'Shea, J. J. Jakas and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).

163. Galina, M. et al. Janus kinases: from basic insights to clinical practice. Rheumatol. (Oxf.) 58, 146–119 (2019).

164. Maruotti, N. & Corrado, A. Janus kinase inhibitors role in bone remodeling. J. Cell Physiol. 235, 1915–1920 (2020).

165. Pastore, S. et al. Targeting platelet-derived growth factor receptor 2 and modulates its signaling. FEBS Lett. 586, 4270–4275 (2012).

166. Toda, N., Mukoyama, M., Yanagita, M. & Yokoi, H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm. Regen. 38, 14 (2018).

167. Lipson, R. E., Wong, C., Teng, Y. & Spong, S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Tissue Repair 5, 524 (2012).

168. Mao, L. et al. MKL1 mediates TGF-beta induced CTGF transcription to promote renal fibrosis. J. Cell Physiol. 235, 4790–4803 (2020).

169. Wollin, L. et al. Mechanistic insights from structural studies of beta-catenin. Nat. Rev. Urol. 12, 577–588 (2015).

170. Liu, Y. et al. Transforming growth factor-beta (TGF-beta)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires TIA3 signaling activation. J. Biol. Chem. 288, 30708–30719 (2013).

171. Yang, Y. et al. Magnesium isocitrinate ameliorates high fructose-induced liver fibrosis in rat by increasing miR-25-3p to suppress JAK2/STAT3 pathway and TGF-beta1/Smad signaling. Acta Pharmacol. Sin. 40, 879–894 (2019).

172. Xu, W. & Kimelman, D. Mechanistic insights from structural studies of beta-catenin and its binding partners. J. Cell Sci. 120, 3337–3344 (2007).

173. Murillo-Garzon, V. & Kypura, R. WNT signalling in prostate cancer. Nat. Rev. Urol. 14, 683–696 (2017).

174. Zhou, B. et al. Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J. Biol. Chem. 287, 7026–7038 (2012).

175. Newman, D. R. et al. Expression of WNT5A in Idiopathic Pulmonary Fibrosis and Its Control by TGF-beta and WNT7B in Human Lung Fibroblasts. J. Histochem Cytochem 64, 99–111 (2016).

176. Ng-Bischfeld, J. P. et al. TGF-beta activation impairs fibroblast ability to support adult lung epithelial progenitor cell organization. Am. J. Physiol. Lung Cell Mol. Physiol. 317, L114–L128 (2019).
Gabe, M. B. N. et al. Molecular interactions of full-length and truncated GIP peptides with the GIP receptor - A comprehensive review. Peptides 125, 170224 (2020).

Adriaenssens, A. E. et al. Glucose-Dependent Insulinotropic Polypeptide Receptor-Expressing Cells in the Hypothalamus Regulate Food Intake. Cell Metab. 30, 987–996.e96 (2019).

Kolb, M. et al. GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS One 7, e40156 (2012).

Chen, S., Okahara, F., Osaki, N. & Shimotoyodome, A. Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin sensitivity in mice. Am. J. Physiol. Endocrinol. Metab. 308, E414–E425 (2015).

Drucker, D. J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 27, 740–756 (2018).

Valdecantos, M. et al. Glucagon-like peptide 1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G762–G772 (2012).

Liu, J. et al. Glucagon-like peptide-1 (GLP-1) improved diabetic lung fibrosis via AMPK and microRNA-27a (miR-27a). Ann. Transl. Med. 9, 492 (2021).

Kolb, M., Richeldi, L., Behr, J. & Maher, T. M. Nintedanib in patients with idiopathic pulmonary fibrosis: results from the open-label extension study, INPULSIONS-ON. Lancet Respir. Med. 7, 60–68 (2019).

Kato, M. et al. Gastrointestinal adverse effects of nintedanib and pirfenidone: results from the open-label extension study, INPULSIONS-ON. Lancet Respir. Med. 7, 60–68 (2019).

Shin, N. et al. Parasilsib is a Next-Generation Phosphoinositide 3-Kinase δ Inhibitor with Reduced Hepatotoxicity and Potent Antitumor and Immuno-modulatory Activities in Models of B-Cell Malignancy. J. Pharm. Exp. Ther. 374, 211–222 (2020).

Li, J. et al. An Open-Label Study to Assess the Efficacy of Itacanozole and Rifampin on Parasilsib Pharmacokinetics When Administered Orally in Healthy Participants. J. Clin. Pharmacol. 60, 1519–1526 (2020).

Lucy, P. T. et al. A randomised, placebo-controlled study of omipalisib (PI3K/mTOR) in idiopathic pulmonary fibrosis. Eur. Respir. J. 53, 1801992 (2019).

Mylonas, E. et al. Single-cell analysis based dissection of clonality in myelofibrosis. Nat. Commun. 11, 73 (2020).

Cervantes, F. et al. Efficacy and safety of a novel dosing strategy for ruxolitinib in the treatment of patients with myelofibrosis and anemia: the REALISE phase 2 study. Leukemia 35, 3455–3465 (2021).

Tyner, J. W. et al. CTIT387, a novel JK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood 137, e295–e306 (2021).
312. Lecoat, A. et al. Combined anti-fibrotic and anti-inflammatory properties of JAK-inhibitors on macrophages in vitro and in vivo: Perspectives for scleroderma-associated intestinal lung disease. Biochem Pharmac. 178, 114103 (2020).

313. Mascarenhas, J. O. et al. Primary analysis of a phase II open-label trial of INC309110, a selective JAK1 inhibitor, in patients with myofibrosis. Hematologica 102, 327–335 (2017).

314. Eguchi, M., Nguyen, C., Lee, S. C. & Kahn, M. KEG-001, a novel small molecule regulator of TGF-beta/catenin transcription. Med Chem. 1, 467–472 (2005).

315. Akcora, B. O., Storm, G. & Bansal, R. Inhibition of canonical WNT signaling pathway by beta-catenin/CBP inhibitor ICG-001 ameliorates liver fibrosis in vivo through suppression of stromal CXCL12. Biochim Biophys. Acta Mol. Basis Dis. 1864, 804–818 (2018).

316. Tokunaga, Y. et al. Selective inhibitor of Wnt/beta-Catenin/CBP signaling ameliorates hepatocellular carcinoma in mouse model. Sci. Rep. 7, 325 (2017).

317. Kimura, K. et al. Safety, Tolerability, and Preliminary Efficacy of the Anti-Fibrotic Small Molecule PRI-724, a CBP/beta-Catenin Inhibitor, in Patients with Hepatitis C Virus-related Cirrhosis: A Single-Center, Open-Label, Dose Escalation Phase 1 Trial. EBioMedicine 23, 79–87 (2017).

318. Kimura, K. et al. Safety, tolerability, and anti-fibrotic efficacy of the CBP/β-catenin inhibitor PRI-724 in patients with hepatitis C and B virus-induced liver cirrhosis: An investigator-initiated, open-label, non-randomised, multicentre, phase 1/2a study. EBioMedicine 80, 104069 (2022).

319. Loomba, R. et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial. Hepatology 67, 549–559 (2018).

320. Harrison, S. A. et al. Selonsertib in patients with bridging fibrosis or compensated cirrhosis due to NASH: Results from randomized phase III STELLAR trials. J. Hepatol. 73, 26–39 (2020).

321. Li, X. et al. Treatment with PPARα agonist alleviates non-alcoholic fatty liver disease by modulating glucose and fatty acid metabolic enzymes in a rat model. Int. J. Mol. Med. 36, 767–775 (2015).

322. Westerouwen Van Meeteren, M. J., Drenth, J. P. H. & Tjwa, E. Elafibranor: a potential drug for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin. Investig. Drugs 29, 117–123 (2020).

323. Liu, L. et al. The pharmacodynamic and differential gene expression analysis of PPARα/δ agonist GFT005 in CDAHFD-induced NASH model. PLoS One 15, e0243911 (2020).

324. Ratzik, V. et al. Elafibranor, an Agonist of the Peroxisome Proliferator-Activated Receptor-α and -δ, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening. Gastroenterology 150, 1147–1159.e1145 (2016).

325. Gawrieh, S. et al. Saroglitazar, a PPAR-δ agonist, in patients with type 2 diabetes: a randomized, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 392, 2180–2193 (2018).

326. Newsome, P. N. et al. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N. Engl. J. Med 384, 1113–1124 (2021).

327. Ambery, P. D. et al. MEDI0382, a GLP-1/glucagon receptor dual agonist, meets safety and tolerability endpoints in a single-dose, healthy-subject, randomized, Phase 1 study. Br. J. Clin. Pharm. 84, 2325–2335 (2018).

328. Boland, M. L. et al. Resolution of NASH and hepatic fibrosis by the GLP-1R-PPAR dual-agonist Cotadutide via modulating mitochondrial function and lipogenesis. Nat. Metab. 2, 413–431 (2020).

329. Goor, F. V., Hadida, S. & Grootenhuis, P. Pharmacological Rescue of Mutant CFTR Function for the Treatment of Cystic Fibrosis. (Ion Channels, 2008).

330. Jih, K. Y., Lin, W. Y., Sohma, Y. & Hwang, T. C. CFTR potentiators: from bench to bedside. Curr. Opin. Pharm. 34, 98–104 (2017).

331. Rowe, S. M. et al. Tezacaftor-Ivacaftor in Residual-Function Heterozygotes with Cystic Fibrosis. N. Engl. J. Med. 377, 2024–2035 (2017).

332. Donaldson, S. H. et al. Tezacaftor/Ivacaftor in Subjects with Cystic Fibrosis and F508del/F508del-CTFR or F508del/G551D-CTFR. Am. J. Respir. Crit. Care Med 197, 214–224 (2018).

333. Connnett, G. J. Lumacaftor-ivacaftor in the treatment of cystic fibrosis: design, development and place in therapy. Drug Des. Devel. Ther. 13, 2405–2419 (2019).

334. Millia, C. E. et al. Lumacaftor/ivacaftor in Patients Aged 6–11 Years with Cystic Fibrosis and Homozygous for F508del-CTFR. Am. J. Respir. Crit. Care Med 195, 912–920 (2017).

335. Wainwright, C. E. et al. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CTFR. N. Engl. J. Med. 373, 220–231 (2015).

336. Wang, X. et al. Discovery of 4-(2(R,4R)-4-[[1-(2,2-Difluoro-1,3-benzodioxol-5-yl) cyclopropyl]carbonylamino]-7-[(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl] benzoic Acid (ABBV/GLP-2222), a Potent Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Corrector for the Treatment of Cystic Fibrosis. J. Med. Chem. 61, 1436–1449 (2018).

337. Bell, S. C. et al. CFTR activity is enhanced by the novel corrector GLPG2222, given with and without ivacaftor in two randomized trials. J. Cyst. Fibros. 18, 700–707 (2019).

338. Kim, J. et al. Metabolite Profiling of the Antisense Oligonucleotide Eulfluron Using Liquid Chromatography-Mass Spectrometry. Mol. Ther. Nucleic Acids 17, 672–725 (2019).

339. Drevinek, P. et al. Antisense oligonucleotide eulfluron is safe and improves respiratory symptoms in F508DEL cystic fibrosis. J. Cyst. Fibros. 19, 99–107 (2020).