Adaptively selecting occupations to detect skill shortages from online job ads

Nik Dawson†‡, Marian-Andrei Rizoiu§, Benjamin Johnston†, Mary-Anne Williams†
†Centre of Artificial Intelligence, University of Technology Sydney,
‡Faculty of Engineering & IT, University of Technology Sydney, §CSIRO’s Data61, Sydney, Australia
Email: nikolas.j.dawson@student.uts.edu.au *Corresponding author.

Abstract—Labour demand and skill shortages have historically been difficult to assess given the high costs of conducting representative surveys and the inherent delays of these indicators. This is particularly consequential for fast developing skills and occupations, such as those relating to Data Science and Analytics (DSA). This paper develops a data-driven solution to detecting skill shortages from online job advertisements (ads) data. We first propose a method to generate sets of highly similar skills based on a set of seed skills from job ads. This provides researchers with a novel method to adaptively select occupations based on granular skills data. Next, we apply this adaptive skills similarity technique to a dataset of over 6.7 million Australian job ads in order to identify occupations with the highest proportions of DSA skills. This uncovers 306,577 DSA job ads across 23 occupational classes from 2012-2019. Finally, we propose five variables for detecting skill shortages from online job ads: (1) posting frequency; (2) salary levels; (3) education requirements; (4) experience demands; and (5) job ad posting predictability. This contributes further evidence to the goal of detecting skill shortages in real-time. In conducting this analysis, we also find strong evidence of skills shortages in Australia for highly technical DSA skills and occupations. These results provide insights to Data Science researchers, educators, and policy-makers from other advanced economies about the types of skills that should be cultivated to meet growing DSA labour demands in the future.

Index Terms—Big Data, Data Science, Skill Shortages, Online Job Advertisements, Labour Demand

I. INTRODUCTION

The Internet has become the primary channel for disseminating information in many areas of society. This is the case for job advertisements (ads), where approximately 60% of Australian job ads are posted online [14]. At aggregate levels, online job ads can provide valuable indicators of relative labour demands. Rather than relying solely on lagging indicators from labour market surveys, online job ads data can reveal shifting labour demands as they occur. This can provide policy-makers, researchers, and businesses with additional data points to assess the health and dynamics of labour markets.

Real-time labour demand data is essential for Data Science and Analytics (DSA) occupations because of how rapidly DSA skills are evolving and diffusing into other occupational classes. In this research, DSA skills refer to the use of scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data, which can be used to make data-driven decisions and actions [15].

DSA skills are multi-disciplinary, adopting methods from fields such as statistics, mathematics, and computer science. A distinction can also be made between skills, knowledge, abilities, and occupations. ‘Skills’ are the proficiencies developed through training and/or experience [28]; ‘knowledge’ is the theoretical and/or practical understanding of an area; ‘ability’ is the competency to achieve a task [17]; and ‘occupations’ are the amalgamation of skills, knowledge, and abilities that are used by an individual to perform a set of tasks that are required by their vocation. For simplicity, throughout this paper the term ‘skill’ will include ‘knowledge’ and ‘ability’.

There are several challenges when analysing the labour demands of occupations and assessing the extent of skills shortages. The first challenge concerns accurately identifying occupations based on their evolving skill demands. Occupations are organised into standardised hierarchical classifications, which vary across national jurisdictions. Most often, these are static, rarely updated classifications, which fail to capture the changing skill demands, or to detect the creation of new occupations. For instance, ‘Data Scientists’, ‘Data Engineers’ and ‘Data Analysts’ do not exist in the Australian and New Zealand Standard Classification of Occupations (ANZSCO); rather, they are all grouped as ‘ICT Business Analysts’. Furthermore, even when occupations are analysed based on their skill frequencies [17], biases emerge from the difference in their relative frequency. For example, ‘Communication Skills’ occur in around one-quarter of all job ads used in this work. However, just because some skills are common does not mean that they are more or less important than other skills that are also required in an individual job. This leads to two related questions: (1) how to adaptively identify relevant skills from labour market data while minimising biases that emerge from ad hoc aggregations? And (2) how to identify relevant occupations based on this generated set of skills?

The second challenge is detecting evidence of skills shortages from (near) real-time data. Skill shortages are mostly measured via labour market surveys [29]. This involves surveying employers about their abilities to access workers who possess the skills their firms demand. A major shortcoming of this approach is that surveys are difficult to scale, and that they are rarely conducted on statistically valid samples [13]. Another significant issue is that labour market surveys are lagging indicators, i.e. the publication of results can be many months after the data was collected. Lastly, due to scaling limitations, prominent labour market surveys on skills shortages (or mismatches) fail to measure all standardised
occupations [28]. Therefore, the questions are can we detect evidence of skill shortages from real-time labour market data? If so, what are the key variables for assessing skill shortages from such data?

This paper addresses the above challenges using a large dataset of over 6.7 million Australian online job ads spanning between 2012-01-01 and 2019-02-28, which has been generously provided by Burning Glass Technologies (BGT). The data has been collected via web scraping and systematically processed into structured formats. The dataset consists of detailed information on individual job ads, such as location, salary, employer, educational requirements, experience demands, and more. The skill requirements have also been extracted (totalling > 11,000 unique skills) and each job ad is classified into its relevant occupational and industry classes.

To address the first challenge, we first adapt an established similarity measure originating from Trade Economics [20] to measure the pairwise similarity between unique skills in job ads. Next, we develop a novel data-driven method to generate sets of skills highly similar to a set of seed skills. Finally, we uncover the relevant occupations for which at least 15% of all skills required in their associated ads are from the target set of skills. We apply this method to uncover the set of DSA skills and DSA occupations, starting from a seed set of common DSA skills.

We address the second challenge by identifying five key variables from online job ads data which are critical for detecting skill shortages in real-time: (1) job ad posting frequency; (2) median salary levels; (3) educational requirements; (4) experience demands; and (5) job posting predictability. We then analyse the DSA occupations according to each of these five variables and find compelling evidence for how these features are predictive of skill shortages.

The main contributions of this work include:

- We develop a data-driven methodology to construct skills sets for specific occupational areas, and to select occupations based on granular skills-level data;
- We identify five key variables for detecting skill shortages from online job ads data;
- We apply the aforementioned methods to a unique dataset of online job ads to analyse the changing labour demands of DSA skills and occupations in the advanced economy of Australia. We also construct and share the list of top DSA skills generated from this dataset.

II. Related Work & Limitations

Job ads data as a proxy for labour demand. During 2001-2003, Lee [21] gathered job ads data from the websites of Fortune 500 companies in order to analyse the skill requirements of ‘Systems Analysts’. Lee was able to determine that these positions demanded their candidates to have ‘all-round’ capabilities, beyond just technical skills. More recently, Gardiner et al. [17] procured 1,216 job ads with ‘Big Data’ in the job title from the indeed.com API. The authors then conducted content analyses to investigate how ‘Big Data’ skills have manifested in labour demand. Their research reiterated that employers are demanding technical skills in conjunction with ‘softer’ skills, such as communication and team-work.

DSA skill shortages. While the capacity to collect, store, and process information may have sharply risen, it is argued that these advances have far outstripped present capacities to analyse and make productive use of such information [19]. Claims of DSA skill shortages are being made in labour markets around the world [7], [22], [24], including in Australia [2]. Most similar to this research, however, are two studies conducted using BGT data to assess DSA labour demands.

The first was an industry research collaboration between BGT, IBM, and the Business-Higher Education Forum in the US [25]. The research found that in 2017 DSA jobs earned a wage premium of more than US$8,700 and DSA job postings were projected to grow 15% by 2020, which is significantly higher than average. In another study commissioned by the The Royal Society UK [7], BGT data were analysed for DSA jobs in the UK. The results also showed high levels of demand for DSA skills, particularly ‘technically rigorous’ DSA skills.

Limitations of using online job ads data. It is argued that job ads data are an incomplete representation of labour demand. Some employers continue to use traditional forms of advertising for vacancies, such as newspaper classifieds, their own hiring platforms, or recruitment agency procurement. Job ads data also over-represent occupations with higher-skill requirements and higher wages, colloquially referred to as ‘white collar’ jobs [2], [10].

Occupational classifications. There are significant shortcomings in online job ads data that are classified according to official occupational standards. Official occupational classifications, like ANZSCO, are often static taxonomies and are rarely updated. We therefore use the BGT occupational classifications because of its adaptive taxonomies that update with changing labour demands. For example, a job ad title of ‘Senior Data Scientist’ is classified as a ‘Data Scientist’ in the BGT occupational classification but is classified as an ‘ICT Business & Systems Analyst’ by ANZSCO. For more details, please review the online appendix [2].

III. Skill Similarity and Sets of Related Skills

Intuition. Skills provide the means for workers to perform labour tasks in order to fulfill their occupational demands. Therefore, the assortment of skills required for a job, and their pairwise interconnections uniquely identify occupations. In this section, we propose a methodology to capture the ‘similarity’ between skill-pairs that co-occur in job ads. Intuitively, two skills are similar when the two are related and complementary, i.e. the skills-pair supports each other. For example, ‘Python’ and ‘TensorFlow’ have a high similarity score because together they enable higher productivity for the worker, and because the difficulty to acquire either skill when one is already possessed by a worker is relatively low.
The Revealed Comparative Advantage of a skill. We develop a data-driven methodology to measure the pairwise similarity between pairs of skills that co-occur in job ads. One difficulty we encounter is that some skills are ubiquitous, occurring across many job ads and occupations. We address this issue by adapting the methodology proposed by Abdulkareem et al. [1] to maximise the amount of skill-level information obtained from each job ad, while minimising the biases introduced by over-expressed skills in job ads. We use the Revealed Comparative Advantage (RCA) to measure the relevance of a skill s for a particular job ad j, computed as:

$$RCA(j, s) = \frac{\sum_{j' \in J} x(j', s) / \sum_{s' \in S} x(j', s')}{\sum_{j \in J} x(j, s) / \sum_{s \in S} x(j, s)}$$

where $x(j, s) = 1$ when the skill s is required for job j, and $x(j, s) = 0$ otherwise; S is the set of all distinct skills, and J is the set of all job ads in our dataset. $RCA(j, s) \in [0, \sum_{j \in J, s \in S} x(j', s')]$, $\forall j, s$, and the higher $RCA(j, s)$ the higher is the comparative advantage that s is considered to have for j. Visibly, $RCA(j, s)$ decreases when the skill s is more ubiquitous (i.e. when $\sum_{j' \in J} x(j', s)$ increases), or when many other skills are required for the job j (i.e. when $\sum_{s' \in S} x(j, s')$ increases).

RCA provides a method to measure the importance of a skill in a job ad, relative to the total share of demand for that skill in all job ads. It has been applied across a range of disciplines, such as trade economics [20] [33], identifying key industries in nations [30], and detecting the labour polarisation of workplace skills [1].

Measure skill similarity. The next step is measuring the complementarity of skill-pairs that co-occur in job ads. First we introduce the ‘effective use of skills’ $e(j, s)$ defined as $e(j, s) = 1$ when $RCA(j, s) > 1$ and $e(j, s) = 0$ otherwise. Finally, we introduce the skill complementarity (denoted θ) as the minimum of the conditional probabilities of a skills-pair being effectively used within the same job ad. Skills s and s' are considered as highly complementary if they tend to commonly co-occur within individual job ads, for whatever reason. Formally:

$$\theta(s, s') = \frac{\sum_{j \in J} e(j, s) \cdot e(j, s')}{\max \left(\sum_{j \in J} e(j, s), \sum_{j \in J} e(j, s') \right)}$$

Note that $\theta(s, s') \in [0, 1]$, a larger value indicates that s and s' are more similar, and it reaches the maximum value when s and s' always co-occur (i.e. they never appear separately).

Top DSA skills. We use the θ function to create a list of DSA skills. First, we qualitatively select 5 common DSA skills as seed inputs: ‘Artificial Intelligence’, ‘Big Data’, ‘Data Mining’, ‘Data Science’, and ‘Machine Learning’. Next, for each of these 5 DSA skills, we calculate the top 300 skills with the highest similarity scores. Finally, we merge the five lists, we calculate the average similarity scores for each unique skill, and rank in descending order. This results in a ranked list of 589 skills, which we qualitatively assess and decide keep the top 150 skills. While some skills outside of the top 150 could be considered DSA skills, it was at this point that the relevance to DSA skills began to deteriorate and merge into other domains. For example, skills such as ‘Design Thinking’, ‘Front-end Development’, and ‘Atlassian JIRA’ – which are technical, but not DSA specific – were just outside of the top 150 skills.

The purpose of this top DSA skills list is to capture DSA labour trends rather than represent a complete taxonomy of DSA skills. The list of top 150 DSA skills can viewed in the online appendix [2].

IV. DSA OCCUPATIONS AND CATEGORIES

Compute the skill intensity. In this section, we present an adaptative technique to uncover DSA occupations from job data. First, we compute η the ‘DSA skill intensity’ for each standardised BGT occupation, defined as percentage of DSA skills relative to the total skill count for the job ads related to an occupation o. Formally:

$$\eta(o, D) = \frac{\sum_{j \in O, s \in S} x(j, s)}{\sum_{j \in O} x(j, s)}$$

where D is the set of DSA skills, and O is the set of job ads associated with the occupation o.

Select the top DSA occupations. We qualitatively assessed the occupational list ordered by η, and decided to establish a cutoff at $\eta > 15\%$. The rationale for this threshold level was that occupations just below this cutoff are questionably considered DSA occupations – take for example, ‘Web Developer’ and ‘UI / UX Designer / Developer’. Occupations just above this threshold appeared more consistent with the definition of DSA skills given in Section I. Moreover, the occupations with a DSA skill intensity level just above the 15% threshold represented occupations where the authors considered DSA skills to likely become more prevalent. For example, the demands for DSA skills are expected to increase for ‘Economists’ due to the growing amounts of economic data that are being made available [16]. Therefore, this list represents occupations where DSA skills are already important, or have reached a minimum threshold of DSA skill intensity and where DSA skills are likely to become more important for the occupation. [Table I] shows the 23 occupational classes that satisfy these DSA threshold requirements. Occupations are categorised to compare labour dynamics within the DSA occupational set. The occupational categories are adapted from previous BGT research completed in the US [25] and UK [7]. Here, BGT grouped DSA occupations into categories based on skill similarities and sorted categories according to ‘analytical rigour’ of their skill sets [7]. We have applied their categorical framework here because (1) we are using the equivalent BGT dataset for the Australian labour market and (2) many of the DSA
TABLE I: Selected DSA Occupations and their job ad counts.

DSA Category and Advanced Analysts	DSA Occupation	#Ads
Data Scientists and Advanced	Biostatistician	270
Analysts	Computer Scientist	38
Data Engineer	Data Engineer	71
Data Scientist	Data Scientist	2,388
Economist	Financial Quantitative	947
Analyst	Mathematician	105
Physicist	Statistician	2,535
Robotics Engineer	Statistician	18
Data Analyst	Business Intelligence	3,166
Architect / Developer	Data / Data Mining Analyst	34,520
Data Systems Developers	Computer Programmer	16,311
	Computer Systems Engineer	73,437
	Database Administrator	17,937
	Database Architect	7,489
	Mobile Applications Developer	4,357
	Software Developer / Engineer	113,247
Functional Analysts	Business Intelligence	23,547
	Analyst	482
	Test Technician	1,592
TOTALS	23 DSA Occupations	306,577

Fig. 1: Defining DSA Categories

occupations uncovered in this research are also present and categorised in their studies. Fig. 1 illustrates the categorical framework, giving a brief definition of each category and places them on a comparative scale of ‘analytical rigour’.

V. DETECTING SKILL SHORTAGES FROM JOB ADS

In this section, we propose five labour demand variables for detecting skill shortages from job ads data. These include: (1) job ad posting frequency growth; (2) median salary levels; (3) educational requirements; (4) experience demands; and (5) job posting predictability. We argue that these variables taken together provide explanatory insight for identifying skill shortages of occupations.

A. Variables for detecting skill shortages

This research has found evidence of DSA skill shortages for the ‘Data Scientists and Advanced Analysts’ (‘Data Scientists’, henceforth) and ‘Data Analysts’ categories. A combination of factors have led to these conclusions.

Job ads posting frequency. Both categories have experienced high relative growth in terms of posting frequencies (shown in Fig. 2a). High posting frequency growth can be indicative of increasing employer demands for workers that possess specific occupational skills [27]. Both ‘Data Scientists’ and ‘Data Analysts’ have averaged higher than average year-on-year growth rates (28% and 13%, respectively) than the other DSA categories and the market average (10%) (see Fig. 2b).

Salaries. ‘Data Scientists’ and ‘Data Analysts’ command high, and growing, wage premiums (Fig. 2c). High and growing wages indicate that employers are willing to pay a premium to attract workers with specific skills [9]. That is, when labour supply is constrained and labour demand increases, then wages should increase, as is the case for ‘Data Scientists’ and ‘Data Analysts’.

Education levels. High relative educational requirements can constrain the supply of skilled labour by creating barriers to entry [9]. In Fig. 2d, this is especially evident for ‘Data Scientists’, where the years of education required by employers is significantly higher than average and other categories.

Experience demands. The minimum years of experience demanded by employers can vary according to the accessibility of skilled labour. If employers have difficulty hiring the labour they demand, then they may reduce their experience-level requirements as part of their recruitment efforts [18]. As Fig. 2e shows, this is again the case for ‘Data Scientists’ and to a lesser extent ‘Data Analysts’, where experience levels have remained relatively low. For ‘Data Scientists’, the minimum experience requirements have decreased by almost one year since 2012 and sit just above the market average. For ‘Data Analysts’, the average years of minimum experience have been below the market average since after 2016.

Job ad posting predictability. Lastly, we assert that the predictability of job ad posting frequency should be considered as an explanatory variable for detecting skill shortages. We have observed the difficulties of predicting occupations (and skills) that have high-growth in terms of job ad postings. As seen in Fig. 2f, the forecast predictions for ‘Data Scientists’ job ads perform relatively poorly compared to the lower growth categories. We contend that this is due to the rapidly changing labour dynamics of ‘Data Scientists’ and that this lack of predictability tends to highlight the patterns of high-growth occupations, reflecting another measure of rising labour demands. In the next section (Section V-B) we detail how we quantify the predictability variable.

Taken collectively, these factors form a strong case that the Australian labour market has been experiencing a shortage of ‘Data Scientists’ and ‘Data Analysts’. These variables form a framework of features to detect skill shortages from job ads.
B. Predict job ad posting

Forecast ad postings. In this section, we propose a ‘predictability’ feature by building a time series model to predict job ad posting frequencies for each of the categories [2]. We use the Prophet time series forecasting tool developed by Facebook Research [32]. Prophet is an auto-regressive tool that fits non-linear time series trends with the effects from daily, weekly, and yearly seasonality, and also holidays. The three main model components are represented in the following equation:

$$y(t) = g(t) + s(t) + h(t) + \epsilon_t$$ \hspace{1cm} (1)

where $g(t)$ refers to the trend function that models non-periodic changes over time; $s(t)$ represents periodic changes, such as seasonality; $h(t)$ denotes holiday effects; and ϵ_t is the error term and represents all other idiosyncratic changes. For more details on Prophet and its hyper-parameter choices, please refer to the online appendix [2].

Prediction error measure. Using Eq. (1), one can run forward time and forecast job ad posting frequency. We measure the accuracy of the forecast using the Symmetric Mean Absolute Percentage Error (SMAPE) [23], [29]. SMAPE is formally defined as:

$$SMAPE(A_t, F_t) = \frac{100}{T} \sum_{t=1}^{T} \frac{|F_t - A_t|}{(|A_t| + |F_t|)}$$

where A_t denotes the actual value of jobs posted on day t, and F_t is the predicted value of job ads on day t. SMAPE ranges from 0 to 200, with 0 indicating a perfect prediction and 200 the largest possible error. When actual and predicted values are both 0, we define SMAPE to be 0. We selected SMAPE as an alternative to MAPE because it is (1) scale-independent and (2) can handle actual or predicted zero values. For a discussion on alternate error metrics, please consult the online appendix [2].

Evaluation protocol. The forecasts made using Prophet are deterministic (i.e., given the same input, we will obtain the same output). We evaluate the uncertainty of predicted future job ad volumes using a ‘sliding window’ approach. As shown in Fig. 3, we use a constant number of training days (here 1,186 days) to train the model, and we test the forecasting performance on the next 365 days. We shift both the training and the testing periods right by one day, and we repeat the process. We iterate this process 365 times, denoted in Fig. 3 using *Train start* for the starting point of the train period, *Test start* for the starting point of the test period, and using *Window start* for the starting point of the unused period. Consequently, we train and test the model 365 times, and we obtain 365 SMAPE performance values, which are presented aggregated as a boxplot in Fig. 2f. The advantage of this approach is that it provides a distribution of SMAPE scores across a range of testing periods, which allows for a more robust evaluation of the modelling performance.

Fig. 2: Labour demand variables for detecting skill shortages from job ads data: posting frequency (a) and its annual growth (b); median salary (Australian $) (c); education level (years of formal education) (d); experience (years) (e) and job ad posting predictability in terms of SMAPE error scores (f).

Fig. 3: Sliding window setup for evaluating job ads forecasting performance.
VI. Discussion

Job ad posting trends \(g(t) \) in Eq. (1) have grown for all DSA categories since 2012. This is shown in Fig. 4, which isolates \(g(t) \) for each category to highlight the non-periodic changes of daily job ad posts. Here, Fig. 4 shows that the more technically rigorous categories of ‘Data Scientists’ and ‘Data Analysts’ have experienced the highest growth trends. There are three distinct change point periods observed in Fig. 4. Firstly, from January 2012 to April 2014, where the frequency of all job ads are growing. Over this period, only ‘Data Scientists’ grew at a faster rate than the total market for ‘All Australian Job’ Ads (using the simple growth formula). This period can perhaps be explained by (1) the higher levels of job openings being posted online earlier in the dataset and (2) the early stages of DSA skills demanded by occupations, particularly for the more technically rigorous occupations.

The second period, from approximately May 2014 to November 2017, was generally one of slowing growth for online job ads. A possible explanation for this period is Australia’s increasing underemployment rate [4]. Underemployment rose relatively steeply from just above 7% in 2014, diverging from a lowering unemployment rate, before reaching a peak just below 9% around the beginning of 2017. Underemployment then began to slightly decrease until the end of 2018. The sharp rise in underemployment could be indicative of employers being less willing or able to hire due to softening labour market conditions, which would presumably affect the frequency of job ad postings. While the more analytically rigorous categories of ‘Data Scientists’ and ‘Data Analysts’ also experienced slowing growth, they both grew at higher rates relative to other categories. The fact that these categories maintained strong upward trends, despite dampening labour market forces, highlights the high levels of labour demand for these occupational categories.

The final period from October 2017 until February 2019 (the end of this dataset), was generally one of stagnation or slight growth. Again, ‘Data Scientists’ and ‘Data Analysts’ continued upward trajectories, albeit at slower growth rates than previous periods. All DSA categories had higher trend growth rates than ‘All Australian Job Postings’ during this period. This final change point period highlights some possible conclusions. Firstly, the frequency of online job ads have potentially reached a saturation point. This means that the maximum proportion of job postings captured via online aggregators might have reached its upper limits. If this is the case, then any posting frequency growth for specific occupational classes above the total market rate could indicate high (or relatively high) labour demand. From this perspective, all DSA jobs continue to experience higher labour demands relative to all Australian job ads postings in the dataset since 2014.

The strong relative growth of ‘Data Scientists’ and ‘Data Analysts’ also provides insight. One interpretation is that Australian firms and employers have started to increasingly adopt AI technologies. A recent report by McKinsey & Co suggests that this is the case [31]. The accelerating rate of AI adoption requires highly skilled labour to make productive use of these technologies. These are the same analytically rigorous skills that are demanded from ‘Data Scientists’ and ‘Data Analysts’. As a result, some portion of this growing labour demand for DSA skills, particularly the highly technical DSA skills, could be explained by accelerating AI adoption by Australian firms. Another related perspective is that Australian firms have increasing access to data with potentially meaningful insights. Therefore, workers with DSA skills that are able to productively use and draw insights from such data would logically be in high demand.

VII. Conclusions and Future Research

In this research, we firstly developed a data-driven methodology to construct an adaptive set of skills highly similar to a set of seed skills. We then applied this method to identify the DSA skills set and DSA occupations, organising these occupations into common DSA categories. Secondly, we proposed five variables from online job ads data which are critical for the real-time detection of skill shortages. We then analysed the DSA categories according to each of these five variables. Here, we find strong evidence for how these features are collectively predictive of skill shortages. From this analysis, we find evidence that Australia is experiencing skills shortages for ‘Data Scientists’ and ‘Data Analysts’
A combination of indicators points to these conclusions. Firstly, both categories have experienced high relative growth in terms of job ad posting frequencies. Secondly, both categories command high, and growing, wage premiums. Thirdly, both categories demand higher than average education requirements, which constrains the supply of skilled labour pursuing these vocations. This is especially the case for ‘Data Scientists’. Fourthly, the average minimum years of experience required by employers for these categories are low. For ‘Data Scientists’, the minimum experience requirements have decreased by almost one year since 2012 and sit just above the market average. For ‘Data Analysts’, the average years of minimum experience have been below the market average since 2017. Lastly, these occupational categories are relatively difficult to predict, especially for occupations in the ‘Data Scientists’ category. Taken collectively, these factors form a strong case that the Australian labour market has been experiencing a shortage of ‘Data Scientists’ and ‘Data Analysts’.

Limitations and future work. A limitation of this work is that it only consists of labour demand data, and estimates labour supply via the proxy of the five proposed variables. Future work will corroborate these findings according to official labour shortage lists published by governments (i.e. a labour supply ‘ground truth’). This could be achieved by developing a multivariate logistic classifier where the five proposed variables are used as features to predict whether an occupation is experiencing shortage. Conducting equivalent analyses on other markets and occupational groups could also provide insights into the predictive performance of these explanatory variables.

ACKNOWLEDGMENTS

Marian-Andrei Rizoiu was partially funded by the Science and Industry Endowment Fund, under project no. D61 Challenge: E06. Mary-Anne Williams was partially funded by the Australian Research Council Discovery under Discovery Project no. DP160102693. We would like to thank Burning Glass Technologies for generously providing the data for this research.

REFERENCES

[1] Ahmad Alabdulkareem, Morgan R Frank, Lijun Sun, Bedoor AlShebli, César Hidalgo, and Iyad Rahwan. Unpacking the polarization of workplace skills. *Sci Adv*, 4(7):eaao6030, July 2018.

[2] Online Appendix. Appendix: Adaptively selecting occupations to detect skill shortages from online job ads, 2019.
https://arxiv.org/pdf/1911.02302.pdf

[3] Australian Bureau of Statistics. 6302.0 - average weekly earnings, Australia, nov 2018. https://www.abs.gov.au/ausstats/abs@.nsf/mf/6302.0
Accessed: 2019-8-1.

[4] Australian Bureau of Statistics. Underemployment in australia: 6302.0 - labour force, australia, september 2018. https://www.abs.gov.au/ausstats/abs@.nsf/Lookup/63020hmain+features103September%202018
October 2018. Accessed: 2019-8-13.

[5] Australian Bureau of Statistics. 6291.0.55.003 - labour force, australia, detailed, quarterly, may 2019, June 2019.

[6] Australian Federal Department of Education and Training. ucube: Higher education statistics, 2018. Title of the publication associated with this dataset: Completions.

[7] Andrew Blake. Dynamics of data science skills. Technical report, The Royal Society, May 2019.

[8] Peter J Brockwell, Richard A Davis, and Matthew V Calder. *Introduction to time series and forecasting*, volume 2. Springer, 2002.

[9] Peter H Cappelli. Skill gaps, skill shortages, and skill mismatches: Evidence and arguments for the united states. *ILR Review*, 68(2):251–290, March 2015.

[10] Anthony Carnevale, Tamara Jayasundera, and Dmitri Repnikov. Understanding online job ads data. Technical report, Georgetown University, 2014.

[11] Ian G De Gooijer and Rob J Hyndman. 25 years of time series forecasting. *International journal of forecasting*, 22(3):443–473, 2006.

[12] Deloitte Access Economics. ACS australia’s digital pulse 2018: Driving australia’s international ICT competitiveness and digital growth. Technical report, Australian Computer Society, 2018.

[13] Department of Employment, Skills, Small, Family Business, and Australian Government. Skill shortages. https://www.employment.gov.au/skillshortages, Accessed: 2019-11-1.

[14] Department of Employment, Skills, Small and Family Business. Sixty per cent of job vacancies in australia are advertised online. https://www.employment.gov.au/newsroom/sixty-cent-job-vacancies-australia-are-advertised-online, Accessed: 2019-7-7.

[15] Vasant Dhar. Data science and prediction. *Commun. ACM*, 56(12):64–73, December 2013.

[16] Liran Einav and Jonathan Levin. Economics in the age of big data. *Science*, 346(6210):1243089, November 2014.

[17] Adrian Gardiner, Cheryl Aasheim, Paige Rutner, and Susan Williams. Skill requirements in big data: A content analysis of job advertisements. *Journal of Computer Information Systems*, 58(4):374–384, October 2018.

[18] Elhanan Helpman and Antonio Rangel. Adjusting to a new technology: Experience and training. *J. Econ. Growth*, 4(4):359–383, December 1999.

[19] Tony Hey, Stewart Tansley, and Kristin Tolle, editors. *The Fourth Paradigm: Data-Intensive Scientific Discovery*. Microsoft Research, 1 edition edition, October 2009.

[20] C A Hidalgo, B Klinger, A-L Barabási, and Réka Albert. The product space conditions the development of nations. *science*, 317(5837):482–487, July 2007.

[21] Choong Kwon Lee. Analysis of skill requirements for systems analysts in fortune 500 organizations. *Journal of Computer Information Systems*, 45(4):84–92, 2005.

[22] LinkedIn Economic Graph Team. LinkedIn workforce report — united states. Technical report, LinkedIn, 2018.

[23] Spyros Makridakis. Accuracy measures: theoretical and practical concerns. *International Journal of Forecasting*, 9(4):527–529, 1993.

[24] J Manyika, M Chui, B Jughin, R Dobbs, C Roxburgh, and A H Byers. Big data: The next frontier for innovation, competition, and productivity. Technical report, McKinsey Global Institute, 2011.

[25] Will Markow, Soubya Braganza, Bledi Taska, Steven M Miller, and Debbie Hughes. The quant crunch: How the demand for data science skills is disrupting the job market. Technical report, Burning Glass Technologies, 2017.

[26] Ljubica Nedelkoska, Frank Nelfke, and Simon Wiederhold. Skill mismatch and the costs of job displacement. *Annual Meeting of the American Economic Association*., cesifo-group.de, 2015.

[27] S. Nomura, S. Imaizumi, A. C. Areias, and F. Yamauchi. *A H Byers. Big data: The next frontier for innovation, competition, and cerns.*. *World Bank*, February 2017.

[28] OECD. OECD skills strategy 2019 - skills to shape a better future. OECD, 2 edition edition, December 2016.

[29] Shade T Shutters, Rachata Muneepeerakul, and Jos ´e Lobo. Constrained Long-Range Forecasting: From Crystal Ball to *Computer Science* 290, March 2015.

[30] Elhanan Helpman and Antonio Rangel. Adjusting to a new technology: Experience and training. *J. Econ. Growth*, 4(4):359–383, December 1999.

[31] Tony Hey, Stewart Tansley, and Kristin Tolle, editors. *The Fourth Paradigm: Data-Intensive Scientific Discovery*. Microsoft Research, 1 edition edition, October 2009.

[32] C A Hidalgo, B Klinger, A-L Barabási, and Réka Albert. The product space conditions the development of nations. *science*, 317(5837):482–487, July 2007.

[33] Choong Kwon Lee. Analysis of skill requirements for systems analysts in fortune 500 organizations. *Journal of Computer Information Systems*, 45(4):84–92, 2005.

[34] LinkedIn Economic Graph Team. LinkedIn workforce report — united states. Technical report, LinkedIn, 2018.

[35] Spyros Makridakis. Accuracy measures: theoretical and practical concerns. *International Journal of Forecasting*, 9(4):527–529, 1993.

[36] J Manyika, M Chui, B Jughin, R Dobbs, C Roxburgh, and A H Byers. Big data: The next frontier for innovation, competition, and productivity. Technical report, McKinsey Global Institute, 2011.

[37] Will Markow, Soubya Braganza, Bledi Taska, Steven M Miller, and Debbie Hughes. The quant crunch: How the demand for data science skills is disrupting the job market. Technical report, Burning Glass Technologies, 2017.

[38] Ljubica Nedelkoska, Frank Nelfke, and Simon Wiederhold. Skill mismatch and the costs of job displacement. *Annual Meeting of the American Economic Association*., cesifo-group.de, 2015.

[39] S. Nomura, S. Imaizumi, A. C. Areias, and F. Yamauchi. Toward Labor Market Policy 2.0: The Potential for Using Online Job-Portal Big Data to Inform Labor Market Policies in India. Policy Research Working Papers. The World Bank, February 2017.

[40] OECD. OECD skills strategy 2019 - skills to shape a better future. Technical report, OECD, May 2019.

[41] J Scott Armstrong. *Long-Range Forecasting: From Crystal Ball to Computer*. Wiley-Interscience, 2 edition edition, July 1985.

[42] Shade T Shutters, Rachata Muneepeerakul, and Jose Lobo. Constrained pathways to a creative urban economy. *Urban Stud.*, 53(16):3439–3454, December 2016.

[43] Charlie Taylor, Julies Carrigan, Hassan Noura, Seckin Ungur, Jasper van Halder, and Gurneet Singh Dandona. Australia’s automation opportunity: Reinventing productivity and inclusive income growth. Technical report, McKinsey & Company, 2019.

[44] Sean J Taylor and Benjamin Letham. Forecasting at scale. *The American Statistician*, 72(1):37–45, 2018.

[45] Thomas L. Vorrath. A theoretical evaluation of alternative trade intensity measures of revealed comparative advantage. *Weltwirtschafts. Arch.*, 127(2):265–280, June 1991.
APPENDIX

CONTENTS (APPENDIX)

A Australia’s looming DSA Shortfall . . . 8
B Limitations of Online Job Ads Data . . 8
C Challenges with Classifying Occupations 8
D DSA Skill Demands 8
E Time Series Forecasting with Prophet .
F Evaluating performance 9
G DSA Skills List 9

This document is accompanying the submission Adaptively selecting occupations to detect skill shortages from online job ads. The information in this document complements the submission, and it is presented here for completeness reasons. It is not required for understanding the main paper, nor for reproducing the results.

A. Australia’s looming DSA Shortfall

The Australian Computer Society (ACS), Australia’s peak body group for Information and Communication Technologies (ICTs), forecasts that Australia will need almost 100,000 additional ICT professionals just to keep up with demand by 2023 [12]. Approximately half of these ICT professionals will require highly technical or digital management skills. However, domestic completions of ICT degrees were just 5,502 in 2016 [6]. This current level of labour supply is insufficient to meet the future demands for ICT professionals generally, and DSA occupations specifically.

B. Limitations of Online Job Ads Data

The biases discussed in Section II are present in the dataset used for this research. For example, 52.8% of Australian job ads in the dataset were classified as ‘Professionals’ or ‘Managers’ in 2018 (39.5% and 13.3%, respectively), according to the official Australian and New Zealand Standard Classification for Occupations (ANZSCO). These are typically ‘white collar’ occupations. In comparison, employment data from the Australian Bureau of Statistics (ABS) indicates that ‘Professionals’ and ‘Managers’ collectively represent just 36.2% of employment in Australia (23.7% and 12.5%, respectively) [5]. The traditionally ‘blue collar’ workers from categories such as ‘Machinery Operators and Drivers’ and ‘Labourers’ appear to be underrepresented in the BGT dataset.

Similarly, the 2018 average salary range for all online job ads in Australia was AUD$89,028 - $98,904. This is higher than the average full-time wage in Australia, which was $83,408 in November 2018 [3]. Therefore, as online job ads fail to cover the universe of employment vacancies, they should be interpreted as trends rather than ‘ground truth for labour demand. However, these biases do not impede this research too significantly, as a major component of this research is comparing different classes of DSA jobs, which are all considered in the ‘Professionals’ or ‘Managers’ classes.

C. Challenges with Classifying Occupations

A general challenge with classifying job ads is that job titles are not uniform. A ‘Senior Machine Learning Engineer’ and a ‘Deep Learning Specialist’ have different job titles but may require the same skills. Therefore, they should be measured in the same occupational class. An issue with ANZSCO, however, is that classifications are rarely updated; the last review was in 2013. So, emerging skills are not always properly captured or can be missed entirely leading to inaccurate classifications. So, the two example occupations above may be classified into different occupational classes despite having consistent skill requirements. Misclassified occupations can distort true representations of labour markets. Additionally, emerging skills, such as many DSA skills, complicate static and rarely updated occupational classifications.

These challenges have led BGT to develop their own taxonomies of labour skills and occupational classifications. BGT currently maintain a dictionary of over 11 thousand job skills. When processing job ads, BGT extract the skill requirements for each job. Typically there are multiple skill requirements for a unique job. For example, a ‘Data Science’ job could consist of the following skills: ‘Python’, ‘SQL’, ‘Data Warehousing’, ‘Communication Skills’, and ‘Team Work / Collaboration’. These job skills build the foundation of BGT’s adaptive occupational classification system.

D. DSA Skill Demands

Comparing relative DSA skill demands involved counting the frequency of each DSA skill that occurs in unique DSA job ads. As seen in Fig. 5, Structured Query Language (‘SQL’) has consistently been the DSA skill in the highest demand.

Fig. 5: Top 10 DSA Skills for each year from 2012-2019

The Compound Annual Growth Rate (CAGR) was calculated for each DSA skill based on their first available posting in a DSA job, which is shown in Table II. ‘Blockchain’ has unequivocally been the fastest growing DSA skill. However, this growth has been over a short period of time, with its first recording in 2016. The other fastest growing DSA skills have generally been analytical tools used either to manage...
‘Big Data’ or ‘Artificial Intelligence’ (AI) related techniques. For instance, ‘Apache’ Spark’, ‘Apache Kafka’, and [Apache] ‘PIG’ are all open source software tools used to assist with ‘Big Data’ management and processing. Additionally, skills such as ‘TensorFlow’, ‘Deep Learning’, and ‘Random Forests’ are all skills that generally pertain to AI.

Rank	DSA Skill	CAGR
1	Blockchain	616%
2	TensorFlow	283%
3	Apache Spark	271%
4	Deep Learning	201%
5	Apache Kafka	188%
6	Internet of Things (IoT)	182%
7	Microsoft Power BI	175%
8	Data Lakes / Reservoirs	169%
9	Qlik	157%
10	Random Forests	151%
11	Apache Hive	145%
12	PIG	136%
13	Pipeline (Computing)	134%
14	Supervised Learning (Machine Learning)	131%
15	Boosting (Machine Learning)	129%
16	Alteryx	128%
17	Sqoop	119%
18	Apache Flume	109%
19	DevOps	107%
20	Unsupervised Learning	102%

E. Time Series Forecasting with Prophet

Time series analysis provides a set of techniques to draw inferences from a sequence of observations stored in time order [8]. The development of accurate time series models can offer insights into the principal components that have affected historical growth trajectory patterns. They also facilitate a means for making predictions into the future.

This paper applies a relatively new and high-performing time series forecasting tool developed by Facebook, called Prophet [32]. The forecasting tool is applied to Australian online job ads data to uncover growth trends of DSA jobs.

In 2017, Facebook Research released Prophet as an open source forecasting procedure implemented in the Python and R programming languages. When benchmarked against ARIMA, ETS (error, trend, seasonality) forecasting, seasonal naïve forecasting, and the TBATS model, Prophet forecasts had significantly lower Mean Absolute Percentage Errors (MAPE) [32].

The default hyperparameters of Prophet were applied for this analysis. This included an uncertainty interval of 80%, the automatic detection of trend change points, and the estimations of seasonality using a partial Fourier sum. For seasonality, Prophet uses a Fourier order of 3 for weekly seasonality and 10 for yearly seasonality. Experimentation steps were conducted by specifying a custom holidays dataframe, adjusting smoothing parameters, and fitting the model with a multiplicative seasonality setting. However, all of these specifications led to a slight deterioration of performance metrics. Therefore, the default hyperparameters were restored, which the authors state “are appropriate for most forecasting problems” [32].

F. Evaluating performance

The Prophet library includes a method for calculating a range of evaluation metrics [32]. However, these metrics are not ideal for measuring prediction performance of online job ads for two reasons.

Firstly, analyses in this paper are comparing DSA categories with different scales of job posting frequencies. Therefore, most metrics calculated by Prophet’s diagnostics method, such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE), are not suitable for comparisons because such measurements are scale-dependent [11].

Secondly, an appropriate performance metric for this dataset must not be distorted by zero values. This is important for job posts, where some DSA categories recorded zero daily postings, particularly earlier in the dataset. Subsequently, this rules out the last meaningful performance metric calculated by Prophets diagnostics, namely MAPE. As the dataset contains zero values for posting frequencies, MAPE values can be infinite as it involves division by zero.

Therefore, accommodating for these two criterion points, the selected prediction performance metric is the Symmetric Mean Absolute Percentage Error (SMAPE). SMAPE is an alternative to MAPE that is (1) scale-independent and (2) can handle actual or predicted zero values. SMAPE, first proposed by Armstrong [29] and then by Makridakis [23].

G. DSA Skills List

Table III shows the selected DSA skills, i.e. the top 150 skills selected using the methodology described in Section III.
Rank	Skill	Theta	Rank	Skill	Theta
1	Machine Learning	0.3751	76	Computer Vision	0.0165
2	Data Science	0.3396	77	Ruby	0.0165
3	Big Data	0.2813	78	Microsoft Sql Server Integration Services (SSIS)	0.0162
4	Data Mining	0.2757	79	PostgreSQL	0.0157
5	Artificial Intelligence	0.2689	80	Informatica	0.0157
6	Apache Hadoop	0.1602	81	Applied Statistics	0.0149
7	R	0.1205	82	SQL Server Reporting Services (SSRS)	0.0146
8	Big Data Analytics	0.1168	83	Data Management	0.0144
9	Predictive Models	0.0872	84	Data Lakes / Reservoirs	0.0144
10	Scala	0.0781	85	Metadata	0.0144
11	Tableau	0.0711	86	Quantitative Analysis	0.0142
12	Apache Hive	0.0685	87	Qlik	0.0138
13	Python	0.0678	88	ElasticSearch	0.0138
14	SAS	0.0583	89	Information Retrieval	0.0136
15	NoSQL	0.0541	90	Scalability Design	0.0135
16	Teradata	0.0532	91	Database Design	0.0134
17	SPSS	0.0522	92	Apache Flume	0.0132
18	Natural Language Processing	0.0515	93	Supervised Learning (Machine Learning)	0.0132
19	MATLAB	0.0499	94	Regression Algorithms	0.0130
20	Data Visualisation	0.0491	95	Model Building	0.0129
21	Data Transformation	0.0437	96	Visual Basic for Applications (VBA)	0.0129
22	MapReduce	0.0420	97	PL/SQL Scripting Language	0.0128
23	Data Modelling	0.0412	98	Cognos Impromptu	0.0128
24	Statistical Analysis	0.0409	99	SAP BusinessObjects	0.0126
25	Predictive Analytics	0.0407	100	Oracle Business Intelligence Enterprise Edition (OBIEE)	0.0122
26	Statistics	0.0406	101	Prototyping	0.0121
27	Deep Learning	0.0400	102	Node.js	0.0120
28	Internet of Things (IoT)	0.0388	103	Experimental Design	0.0120
29	PIG	0.0383	104	MySQL	0.0120
30	Extraction Transformation and Loading (ETL)	0.0373	105	Classification Algorithms	0.0118
31	Data Architecture	0.0373	106	Logistic Regression	0.0118
32	Data Warehousing	0.0371	107	Relational DataBase Management System (RDBMS)	0.0118
33	Microsoft Power BI	0.0369	108	Statistical Methods	0.0118
34	Apache Kafka	0.0347	109	Splunk	0.0118
35	Neural Networks	0.0345	110	Sqoop	0.0116
36	Data Engineering	0.0338	111	GitHub	0.0116
37	Econometrics	0.0336	112	Unsupervised Learning	0.0114
38	Data Integration	0.0314	113	Apache Impala	0.0114
39	Data Structures	0.0295	114	Web Analytics	0.0114
40	Decision Trees	0.0295	115	Git	0.0112
41	Business Intelligence	0.0289	116	Amazon Web Services (AWS)	0.0118
42	C++	0.0289	117	Datastage	0.0112
43	Pipeline (Computing)	0.0275	118	Optimisation	0.0110
44	Consumer Behaviour	0.0273	119	Simulation	0.0108
45	Hadoop Cloudera	0.0272	120	LINUX	0.0107
46	Data Quality	0.0264	121	Software Development	0.0107
47	Clustering	0.0260	122	Continuous Integration (CI)	0.0106
48	Apache Webserver	0.0260	123	Business Intelligence Reporting	0.0103
49	Qlikview	0.0259	124	Agile Development	0.0102
50	Cassandra	0.0250	125	Solution Architecture	0.0102
51	Consumer Research	0.0249	126	AWS Elastic Compute Cloud (EC2)	0.0102
52	Apache Spark	0.0240	127	Data Strategy	0.0102
53	AWS Redshift	0.0238	128	Marketing Analytics	0.0100
54	Data Manipulation	0.0232	129	Bash	0.0093
55	Cluster Analysis	0.0227	130	Alteryx	0.0098
56	Microsoft Azure	0.0226	131	SQL Server	0.0098
57	Experiments	0.0225	132	Shell Scripting	0.0096
58	Physics	0.0219	133	Credit Risk	0.0095
59	Software Engineering	0.0206	134	Image Processing	0.0094
60	Cloud Computing	0.0202	135	Boosting (Machine Learning)	0.0094
61	MongoDB	0.0202	136	Platform as a Service (PaaS)	0.0093
62	Consumer Segmentation	0.0202	137	Transact-SQL	0.0093
63	DevOps	0.0201	138	Version Control	0.0091
64	Relational Databases	0.0197	139	Support Vector Machines (SVM)	0.0091
65	Data Analysis	0.0196	140	Data Warehouse Processing	0.0090
66	Blockchain	0.0195	141	Customer Acquisition	0.0090
67	Data Governance	0.0193	142	Linear Regression	0.0089
68	SQL	0.0191	143	Software Architecture	0.0089
69	SQL Server Analysis Services (SSAS)	0.0188	144	Google Analytics	0.0089
70	Java	0.0185	145	AWS Simple Storage Service (S3)	0.0089
71	TensorFlow	0.0182	146	Dimensional and Relational Modelling	0.0087
72	Text Mining	0.0175	147	Microsoft SQL	0.0087
73	Random Forests	0.0173	148	Functional Programming	0.0087
74	Robotics	0.0166	149	Scrum	0.0087
75	Distributed Computing	0.0165	150	Economics	0.0085

TABLE III: Selected 150 Data Science and Analytics skills.