Dynamic changes of secondary metabolites and tyrosinase activity of *Malus pumila* flowers

Lili Cui¹ ²†, Xingzi Hou¹ ²†, Wenjing Li¹ ², Yuchun Leng¹, Yang Zhang¹, Xinjuan Li¹, Yangyang Hou¹, Zhenhua Liu¹ ²* and Wenyi Kang¹ ²*

Abstract

The dynamic changes of secondary metabolites and tyrosinase activity of *Malus pumila* flowers were investigated during blooming for full use of *M. pumila* flowers. Phlorizin, astragalin and afzelin were selected as the indicators to determine the optimum extraction conditions of *M. pumila* flowers by HPLC analysis and three-factor and three-level orthogonal design experiments. When the smashing mesh number was 40 mesh, the ultrasonic time was 30 min, the solid–liquid ratio was 1:120, and the centrifugal speed was 10,000 r/min, the total content of the three compounds was the highest. The total content of phlorizin, astragalin and afzelin increased firstly and then decreased, and the highest was on the third day (176.74 mg/g). At the same time, the tyrosinase activity of *M. pumila* flowers showed that it had an activation effect on tyrosinase during early blooming period, however it exhibited inhibitory effect during late blooming period.

Keywords: *Malus pumila* flowers, Content change, Tyrosinase

Introduction

Malus pumila Mill has a long history of cultivation and is widely cultivated in temperate regions of the world [1]. The chemical constituents of *M. pumila* include flavonoids, terpenoids and organic acids [2–4], Which have been reported to excrete several pharmacological activities such as being antioxidant, anti-aging [5], anti-cancer [6], anti-bacterial [7], hypoglycemic [8], liver protective. *M. pumila* flowers can be used as tea [9]. Its main chemical components are dihydrochalcone such as phlorizin, phloretin, and other flavonoids such as quercetin, kaempferol and rutin [10]. In our previous study, nine compounds were isolated from *M. pumila* flowers, which exhibited activation or inhibition of tyrosinase [11]. In addition, we summarized the chemical compositions of different parts from *M. pumila* [12–14] as shown in Table 1.

Zhao et al. [15] reported that the content change of phlorizin was different in branches and leaves of *M. pumila*, phloretin was exclusively detected in the leaves. Tang [16] found that the main polyphenols in mature apples included catechins, proanthocyanidins and chlorogenic acids, while immature apples had mainly dihydrochalcone and flavonols. Renard et al. [17] reported that the content of proanthocyanidins increased continuously during the whole growth period of apples. Polyphenols began to synthesize 40 days after flowering. The content of flavonoids decreased significantly in the range of 35–100 days after flowering.

At present, the dynamic change of *M. pumila* is mainly focused on fruits, leaves and branches. However, there are fewer investigations on the dynamic change of *M. pumila* flowers, except for the dynamic changes of amino acids and protein [18]. In order to make full use of *M. pumila* resources, the dynamic changes of secondary metabolites and tyrosinase activity were investigated during *M. pumila* flowers blooming.

Methods

Chemicals and materials

Methanol was purchased from Tianjin DaMao Chemical Reagent Factory (Tianjin, China). Acetic acid was obtained from Tianjin FuChen Chemical Reagent Factory (Tianjin, China). Astragalin with purity greater than...
98% was purchased from Chengdu Pufei De Biotech Co., Ltd. (Chengdu, China). Phlorizin and afzelin with purity greater than 98% were isolated in our previous research.

The LC-20AT high performance liquid chromatography system (Shimadzu, Kyoto, Japan) equipped with a degasser, a quaternary gradient low pressure pump, the CTO-20A column oven, a SPD-M20AUV-detector, an SIL-20A auto sampler was used. Chromatographic separation was performed on an Agilent ZORBAX SB-C18 column (4.6 mm × 5 mm, 5 μm) and extraction was carried out with KQ-500DB ultrasonic cleaner (Jiangsu Kunshan Ultrasonic Instrument Co., Ltd. Jiangsu, China). TGL-16 type high speed centrifuge was obtained from Jiangsu Jintan Zhongda instrument factory (Jiangsu, China). AB135-S 1/10 million electronic balance was purchased from Mettler Toledo Instruments Co., Ltd (Shanghai, China).

Table 1 Compounds from different parts of *M. pumila*

Different parts	Chemical compounds	Literatures
Fruit	Proanthocyanidin B1, catechin, chlorogenic acid, proanthocyanidin B2, epicatechin,	[12, 13]
	phlorizin, hyperoside, quercetin, quercitrin, isoquercitrin	
Peel	Gallic acid, protocatechuic acid, cianidanol, chlorogenic acid, caffeic acid,	[13]
	epicatechin, syringic acid, taxifolin, ferulic acid, quercetin, phlorizin,	
	quercetin	[14, 15]
Branches	Phlorizin, phloretin	[15]
Leave	Phlorizin, phloretin, quercetin-3-O-glucoside, phloretin, phlorizin, quercetin,	[16]
	quercetin-3-O-xylopyranoside	
Flower	Kaempferol-3-O-β-D-glucopyranoside, kaempferol-7-O-β-D-glucopyranoside,	[11]
	kaempferol-3-O-α-L-arabinofuranoside, phlorizin, kaempferol, phloretin, β-sitosterol,	
	lupeol, pyraneanthoside	

Table 2 Chromatographic conditions for *M. pumila* flowers samples analysis

Chromatographic conditions	Parameter
Column	Inertsil ODS-SP column (4.6 mm × 250 mm, 5 μm)
Mobile phase	Methanol (A)-0.1% phosphoric acid aqueous solution (B)
	0–10 min, 5–50%A, 95–50%B
	10–30 min, 50–50%A, 50–50%B
	30–40 min, 50–100%A, 50–0%B
	40–55 min, 100–100%A, 0–9%
Flow rate	0.8 mL/min
Column temperature	30 °C
Detection wavelength	270 nm
Sample volume	10 μL
Results and discussion

Linear relationship

The peak area (X) is the vertical axis, and the sample quality (Y, μg) the abscissa, respectively. In Table 3, phloretin, astragalin and afzelin exhibited good linearity in the ranges of 0.4080–14.28 (μg/mL), 0.3920–13.72 (μg/mL) and 0.3980–13.93 (μg/mL), respectively.

Optimization extraction process of flavonoids in *M. pumila* flowers

Single factor test

Types of extract solvent Five solvents, 70% ethanol, 95% ethanol, methanol, acetonitrile and water were selected. Samples were prepared according to the conditions in “Preparation of test sample solution” section above and injected into the HPLC analysis by above chromatographic conditions (Table 2). The results showed that acetonitrile could only extract two kinds of flavonoids from *M. pumila* flowers (Fig. 2), whereas methanol was the best solvent.

Selection of mesh number In Fig. 3, the extract rate of target analytes was the highest when the number of smashing mesh was 40 meshes, but the extract rate was lower when the number of smashing mesh was larger. So, 40 meshes were selected.

Effect of ultrasonic time The ultrasonic time of 10, 20, 30, 40, 50 and 60 min were chosen respectively. According to the above experimental conditions, results were showed in Fig. 4. When the ultrasonic time was 20 min, the extract rate of the target analytes reached the maximum. With the increase of time, the target analytes extraction rate showed a downward trend, which might be the decomposition of effective components due to ultrasonic overheating [20, 21]. Hence, 20 min was selected.

Table 3 Linear regression equation of phloretin, astragalin and afzelin (Additional file 1: Table S1–S3)

Compound	Regression equation	r	Linear range (μg)
Phloretin	$Y = 643736X + 158998$	0.9987	0.4080–14.28
Astragalin	$Y = 518051X + 145776$	0.9979	0.3920–13.72
Afzelin	$Y = 835408X - 359973$	0.9942	0.3980–13.93

Fig. 1 HPLC chromatograms of the test sample solution (1) and the standard solution (2): a. Phloretin, b. Astragalin, c. Afzelin

Fig. 2 Influence of different extract solvents ($n = 3$) (Additional file 1: Table S4)
Selection of centrifugal speed

Under the optimal conditions, five different centrifugal speeds (2000, 4000, 6000, 8000 and 10,000 r/min) were chosen to evaluate the effect of centrifugal speed on the extract yield. In Fig. 5, the extract rate reached the maximum at 8000 r/min. Thus, in the experiments, 8000 r/min was chosen as the center point of the orthogonal factors.

Sample-solvent ratio

The solid–liquid ratios were 1:20, 1:40, 1:60, 1:80, 1:100 and 1:120, which were used to evaluate the extract rate of the target analytes. In Fig. 6, when the solid–liquid ratio was 1:100, the maximum extract rate was reached. Continuing to increase the ratio, the extract rate was decreased. It indicated that the increase of solvent amount can increase the contact area between the active ingredients and the solvent, and the dissolution probability of the active ingredients will also increase accordingly in a certain range and the yield will be improved continuously. However, when the ratio of solid–liquid reaches a certain value, the degree of assistant effect of ultrasonic cavitation on plant cell rupture decreases, and the dissolution of effective components is close to saturation, the extract rate decreases [22, 23].

Orthogonal test (Additional file 1: Table S9)

A 3-factor 3-level orthogonal experiment was designed and statistically analyzed by SPSS 19.0 [24]. The investigated levels of each factor were selected depending on the above experiment results of the single-factor. Independent variables with three variation levels were shown in Table 4.

Through the orthogonal test of ultrasonic time (min), solid–liquid ratio (times) and centrifugal speed (r/min), the variance analysis was carried out by SPSS 19.0 software. The results were presented in Tables 5 and 6. The ultrasonic time had the greatest influence, followed by the solid–liquid ratio. The primary and secondary sequence of experimental factors were: (B) ultrasonic time > (A) solid–liquid ratio > (C) centrifugal speed. A1B3C3 was the optimal extraction process, namely: the solid–liquid ratio was 1:120, the ultrasonic time was 30 min, and the centrifugal speed was 10,000 r/min.

Determination of content in different periods

In Fig. 7, the total content of phlorizin, astragalin and afzelin reached the highest level on the third day (176.74 mg/g) during blooming of *M. pumila* flowers. The contents of astragalin and afzelin decreased after 1st April, while the contents of phlorizin increased after 2nd April. It indicated that the phlorizin was transferred and enriched in fruits, resulting in the fruit containing a large amount of phlorizin [25]. Moreover, light intensity, soil acidity and alkalinity and external temperature also affect the formation of secondary metabolites [26].

Method validation

Repeatability (Additional file 1: Table S11)

Six *M. pumila* flowers samples were prepared by “Preparation of test sample solution” method, and the contents of phlorizin, astragalin and afzelin were determined under “Chromatographic conditions” section. The results
showed that RSDs of phlorizin, astragalin and afzelin were 0.92%, 1.88% and 2.17% respectively, which indicated that the method had good repeatability.

Precision (Additional file 1: Table S12)
The mixed standard solution of phlorizin, astragalin and afzelin was prepared under “Preparation of the standard solution” conditions. According to “Chromatographic conditions” section, mixed standard solution was injected continuously for 6 times. The results showed that RSDs of phlorizin, astragalin and afzelin were 0.8%, 1.02% and 0.75% respectively, indicating that the instrument had good precision.

Stability (Additional file 1: Table S13)
Six *M. pumila* flowers samples were prepared by “Preparation of test sample solution” conditions. According to “Chromatographic conditions” section, samples were injected at 0, 4, 8, 12, 16, 20 and 24 h, respectively. The results showed that RSDs of phlorizin, astragalin and afzelin were 0.35%, 0.95% and 0.84% respectively, which indicated that phlorizin, astragalin and afzelin in the samples were basically stable within 24 h.

Recovery (Additional file 1: Table S14)
Six samples of *M. pumila* flowers were prepared according to 3.2 conditions. The contents of phlorizin, astragalin and afzelin were determined. Then the standard solution equivalent to 80% of the three target components in the sample was added. The average recoveries of phlorizin, astragalin and afzelin were 98.20%, 98.96% and 101.03% respectively, and their RSDs values were 0.20%, 0.24% and 0.13%, respectively.

Tyrosinase activity assay
The response of tyrosinase activity was determined by tyrosinase and dopa rate oxidation trace method in vitro. In Table 7 and Fig. 8, *M. pumila* flowers could stimulate the activity of tyrosinase in the early stage of blooming. Meanwhile, inhibition in the activity of tyrosinase occurred in the late stage of blooming, which was gradually decreased. The reason may be that in the late stage of blooming, the content of secondary metabolites which inhibit the activity of tyrosinase increased, so the total extracts of *M. pumila* flowers showed inhibition activity of tyrosinase.

Tyrosinase is a key enzyme in melanin synthesis, and its activity is positively correlated with the amount of melanin [27, 28]. It is well known that melanin protects the skin from UV damage but its excessive production causes freckles, melasma, skin cancer, and age spots [29, 30]. Xie et al. [31] studied the inhibition kinetics of flavonoids on mushroom tyrosinase and suggested that flavonoids could induce reversible inhibition of enzyme activity through copper ions in the active center of chelating enzyme. Beside the effect of flavonoids, there might be other tyrosinase inhibitors, which could bind to free enzymes as well. It can bind with enzyme–substrate complex, resulting in reversible inhibition of enzyme activity. Several studies have shown that many flower extracts had good tyrosinase activity, such as orchid...
extract [32], lavender essential oil [33], areca nut boiling water extracts [34], and can be used as effective tyrosinase inhibitors. At present, there were few reports about the effect of M. pumila flowers on tyrosinase activity. The obtained results indicated that the content of three flavonoids reached the highest on 28th March during blooming of M. pumila flowers. The methanol extracts of the flowers picked on 30th March had a higher inhibitory effect on tyrosinase, which may advocated that tyrosinase activity not only related to flavonoids, but also related to the types of secondary metabolites extracted as well as the mechanism of action.

Conclusion

Under optimum extraction conditions (smashing mesh number: 40 meshes, ultrasonic time: 30 min, solid–liquid ratio: 1:120, centrifugal speed: 10,000 r/min), the total contents of phlorizin, astragalin and afzelin from M. pumila flowers reached the maximum (176.74 mg/g) on the third day of blooming, which could be the best time for harvest. Meanwhile, the tyrosinase activity of M. pumila flowers showed that it had an activation effect on tyrosinase during early blooming period, however it expressed inhibitory effect during late blooming period.

Collecting time	Inhibition rate %
26th March	−9.21 ± 2.68
27th March	−10.91 ± 7.73
28th March	−10.63 ± 7.75
29th March	−9.47 ± 3.40
30th March	94.33 ± 0.72
31th March	54.47 ± 4.57
1st April	13.08 ± 1.89
2nd April	18.36 ± 2.52
3rd April	−4.01 ± 7.13

Table 6 Variance analysis of factors

Sum of squares of III	df	Mean square	F	Sig.	
Model	85,064.737a	7	12,152.105	81.537	0.012
A	95.303	2	47.651	0.32	0.758
B	143.1	2	71.555	0.48	0.676
C	64.1	2	32.05	0.215	0.823
Error	298.075	2	149.037		
Total	85,362.812	9			

* R² = 0.9970 (adjust R² = 0.9840)

Table 7 Changes of tyrosinase activity in M. pumila flowers during blooming (X ± s)

Fig. 7 Changes of three secondary metabolites in M. pumila flowers (Additional file 1: Table S10)

Fig. 8 Changes of tyrosinase activity in M. pumila flowers during blooming (different growth stages)
23. Li JH (2005) Study on extraction, purification and function evaluation of active composition in pilose antler and function food development. China Agricultural University, Beijing.

24. Shi MJ, Zhang Y, Song MM, Sun Y, Li CQ, Kang WY (2018) Screening the marker components in *Poria* *corylifera* L. with the aids of spectrum-effect relationship and component knock-out by UPLC-MS2. Int J Mol Sci. https://doi.org/10.3390/ijms19113439

25. McCann MJ, Gill CIR, Brien G, Rao JR, McRoberts WC, Hughes P, McEntee R, Rowland IR (2007) Anti-cancer properties of phenolics from apple waste on colon carcinogenesis in vitro. Food Chem Toxicol 45:1224–1230. https://doi.org/10.1016/j.fct.2007.01.003

26. Wu H, Chen M, Fan Y, Elsebaei F, Zhu Y (2012) Determination of rutin and quercetin in Chinese herbal medicine by ionic liquid-based pressurized liquid extraction-liquid chromatography-chemiluminescence detection. Talanta 88:222–229. https://doi.org/10.1016/j.talanta.2011.10.036

27. Abu Tahir M, Pramod K, Ansari SH et al (2010) Current remedies for vitiligo. Autoimmun Rev 9(7):516. https://doi.org/10.1016/j.autrev.2010.02.013

28. Qing Li, Ai XU (2015) Modern research of traditional Chinese Medicine Treatment of Vitiligo. Med Recapitul 21:1

29. Nguyen H, Nguyen N, Nguyen M, Lee T, Do T, Hung T, Nguyen M (2016) Tyrosinase inhibitory activity of flavonoids from *Artocarpus heterophyllus*. Chem Cent J 10:1–6. https://doi.org/10.1186/s13065-016-0150-7

30. Zhang L, Zhao X, Tao G, Chen J, Zheng Z (2017) Investigating the inhibitory activity and mechanism differences between norartocarpetion and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis. Food Chem 223:40–48. https://doi.org/10.1016/j.foodchem.2016.12.017

31. Xie LP, Chen QX, Huang H et al (2003) Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochemistry 68(04):487–491. https://doi.org/10.1023/a:1023620501702

32. Bonte F, Cauchard JH, Achambault JC et al (2010) New orchid extract based technology for skin whitening. J Dis Control Prev 14(04):353–356

33. Jing HF, Liu BH, Liu XT et al (2010) Study on inhibition of lavender essential oil on the activity of tyrosinase. Chin Wild Plant Resour 29(05):29–31

34. Cheng FF, Hai H, Hyang YL et al (2011) Inhibitory effect of areca inflorescence boiling water extracts on tyrosinase-catalyzing reaction. Chin J Trop Crops 11:1932–1936. https://doi.org/10.1080/00949651003724790

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.