New results from fluctuation analysis in NA49 at the CERN SPS

Maja Maćkowiak-Pawłowska for the NA49 Collaboration

Frankfurt University, IKF, Frankfurt
WUT, Faculty of Physics, Warsaw

November 7, 2011
1 Motivation

2 NA49 experiment

3 Measures of fluctuations
 - Chemical fluctuations N and average p_T
 - Azimuthal angle fluctuations

4 Summary

Intermittency analysis will be presented by F. Diakonos
Contents

1 Motivation

2 NA49 experiment
Contents

1 Motivation

2 NA49 experiment

3 Measures of fluctuations
Contents

1 Motivation

2 NA49 experiment

3 Measures of fluctuations
 • Chemical fluctuations
Contents

1 Motivation

2 NA49 experiment

3 Measures of fluctuations
 - Chemical fluctuations
 - N and average p_T fluctuations
Motivation

NA49 experiment

Measures of fluctuations
- Chemical fluctuations
- N and average p_T fluctuations
- Azimuthal angle fluctuations
1 Motivation

2 NA49 experiment

3 Measures of fluctuations
 - Chemical fluctuations
 - N and average p_T fluctuations
 - Azimuthal angle fluctuations
 - Intermittency analysis will be presented by F. Diakonos
Contents

1 Motivation

2 NA49 experiment

3 Measures of fluctuations
 - Chemical fluctuations
 - N and average p_T fluctuations
 - Azimuthal angle fluctuations
 - Intermittency analysis will be presented by F. Diakonos

4 Summary
Motivation
Fluctuations study for OD and CP

Onset of Deconfinement:
- early stage hits transition line,
- observed signals: kink, horn, step

Critical Point:
- freeze-out close to critical point,
- and system large enough,
- expected signal: a hill in fluctuations

E(CP) > E(OD)

Fluctuations/correlations may serve as an additional evidence of OD

Fluctuations/correlations are basic signal of the critical point.
NA49 experiment
NA49 (fixed target) experiment at CERN SPS

- Data taking 1994–2002
- p+p, C+C, Si+Si, Pb+Pb interactions at √s_{NN} ∈ (6.3 − 17.3)GeV

- **Hadron spectrometer**
 - Four TPCs; two VTPCs (1/2) in the B field and two others MTPCs (R/L) outside; for a precise measurement of p and dE/dx

- **Large acceptance ~ 50%**

- **High momentum resolution**
 \[\frac{\sigma(p)}{p^2} \sim 10^{-4} \left(\frac{GeV}{c} \right)^{-1} \]

- **PID by dE/dx, TOF, decay topology, invariant mass**
 \[\frac{\sigma(dE/dx)}{<dE/dx>} \sim 5\% \]
 \[\sigma(TOF) \sim 60\text{ps} \]
 \[\sigma(m_{inv}) \sim 5\text{MeV} \]

- **Good centrality determination**
 - Forward Calorimeter (energy of projectile spectators)
E-by-e identified hadron multiplicities in NA49

Fit dE/dx spectra in each phase-space bin:

11.00 < p < 13.23 GeV/c, $\pi < \phi < 5\pi$/4
0.4 < p_{T} < 0.6 GeV/c, $q = 1$

Fit multiplicities of identified hadrons with maximum likelihood method in each event.

Correct fluctuation results for misidentification using mixed events method.
Measures of fluctuations
Fluctuation measures studied in NA49

\(\sigma_{\text{dyn}} \) - measure of dynamical particle ratio fluctuations \((K/p, K/\pi, p/\pi)\)

- E-by-e fit of particle multiplicities required in NA49
- Mixed events used as reference
- \(\sigma_{\text{dyn}}^2 \approx \frac{1}{N_W} \), \(\sigma_{\text{dyn}} \approx \nu_{\text{dyn}} \)

\[\sigma_{\text{dyn}} = \text{sign}(\sigma_{\text{data}}^2 - \sigma_{\text{mix}}^2) \sqrt{|\sigma_{\text{data}}^2 - \sigma_{\text{mix}}^2|} \]

\[\sigma = \sqrt{\frac{\text{Var}(A/B)}{\langle A/B \rangle}} \cdot 100[\%] \]

\(\omega \) - scaled variance of multiplicity distribution

- Intensive measure
- For Poissonian multiplicity distribution \(\omega = 1 \)
- In wounded nucleon model: \(\omega(AA) = \omega(NN) + \frac{1}{2} < n > \omega_W \)
 - Where \(w(NN) \) and \(< n > \) are scaled variance and mean multiplicity in NN interactions; respectively
 - \(\omega_W \) - scaled variance of the number of wounded nucleons, \(N_W \)
 - \(\omega \) depends on \(N_W \) fluctuations

\[\omega = \frac{n^2}{<n>^2} - \frac{n^2}{<n>} \]

\(\Phi_x \) - strongly intensive fluctuation measure \((x= p_T, \phi, Q)\)

- In superposition model \(\Phi_x(AA) = \Phi_x(NN) \)
- For independent particle emission \(\Phi_x = 0 \)
- \(\Phi_x \) is independent of volume and volume fluctuations (strongly intensive)

\[\Phi_x = \sqrt{\frac{n^2}{<n>}} - \sqrt{z^2}, \quad z_x = x - \bar{x}, \quad \bar{x} - \text{incl. aver.}, \]

\[Z_x = \sum_{i=1}^{N} (x - \bar{x}) \]

Intermittency analysis will be presented by F. Diakonos
Chemical fluctuations
E-b-e hadron ratios

Fitted event-by-event hadron ratios (e.g., K/p) from

\[\sqrt{s_{NN}} = 6.3 \text{ GeV} \]

- data events
- mixed events:
 - event mixing + maximum likelihood PID

Calculate from data and mixed events:

\[\sigma = \frac{\sqrt{\text{Var}(A/B)}}{<A/B>} \cdot 100[\%] \]

\[\sigma_{dyn} = \text{sign}(\sigma_{data}^2 - \sigma_{mix}^2) \sqrt{|\sigma_{data}^2 - \sigma_{mix}^2|} \]
Energy dependence for central Pb+Pb

\[\frac{K}{\pi}: \sigma_{\text{dyn}} > 0 \]

\[\frac{p}{\pi}: \sigma_{\text{dyn}} < 0 \]

\(\sigma_{\text{dyn}} \) rises towards low SPS energies which is not reproduced by UrQMD. HSD catches the trend but over-predicts points at high SPS energies. Data are reproduced by multiplicity scaling.

NA49: PRC79, 044910 (2009)
HSD: PRC79, 024907 (2009)

Multiplicity scaling is expected in thermodynamic models for \(\mu_B, T_{\text{chem}} = \text{const} \) [Koch, Schuster PRC81,034910(2010)]
Energy dependence for central Pb+Pb

\[\frac{(K^+ + K^-)}{(p + \overline{p})} \]

\(\sigma_{dyn} \) changes sign

The sign change is not reproduced by hadronic models (UrQMD and HSD) and by the multiplicity scaling.

NA49: PRC83, 061902 (2011) [arXiv:1101.3250]; HSD: J.Phys. G36, 125106 (2009)
Centrality dependence of Pb+Pb at 17.3 GeV

\[\sigma_{dyn} \text{ does not change sign for } K/p, \ K/\pi, \ p/\pi \]
Direct multiplicity scaling

\[
\sigma_{\text{dyn}} \propto \sqrt{\frac{1}{\langle A \rangle} + \frac{1}{\langle B \rangle}}
\]

works for \(K/\pi \) and \(p/\pi \) fluctuations

The same scaling does not work for \(K/p \)
Comparison between NA49 and STAR

Energy dependence for central Pb+Pb (Au+Au) collisions.

\[\nu_{\text{dyn}} = \text{sign}(\sigma_{\text{dyn}}) \cdot \sigma_{\text{dyn}}^2 \]

STAR results do not show increase towards low SPS energies for \(K/\pi \) and \(K/p \).

Figures from T. Tarnowsky (STAR, SQM2011) conversion via:

CPOD2011, Wuhan, China
Maja Maćkowiak-Pawłowska for the NA49 Collaboration
Possible sources of the difference

Analysis procedures were carefully checked, no problems found

NA49 and STAR acceptance and centrality selection differ significantly

Further steps

- further checks of the used analysis methods
- a new analysis method (identity $PRC_{83},054907(2011),PRC_{84},024902(2011)$) and strongly intensive fluctuation measures will be used by NA49
N and average p_T fluctuations
Large fluctuations of multiplicity and mean transverse momentum expected at CP \[\text{[Stephanov, Rajagopal, Shuryak, PRD60, 114028 (1999)]}\]

Maximum of Φ_{p_T} and ω for C+C and Si+Si

Weak, if any, energy dependence

Maja Maćkowiak-Pawłowska for the NA49 Collaboration
Multiplicity and mean transverse momentum fluctuations

For the search of CP it is more convenient to use \((T_{\text{chem}}, \mu_B) \) instead of \((N_w, \sqrt{s_{NN}}) \)

Chemical freeze-out points
[Beccattini et al., PRC73, 044905 (2006)]
Comparing with critical point predictions

All charged:

Maximum of Φ_{p_T} and ω observed for C+C and Si+Si

Data are consistent with the CP_2 predictions

1 Stephanov et al., PRD60 114028 (1999), Hatta, Ikeda et al., PRD67 014028 (2003) for details see Grebieszkow et al., NPA830, 547C-550C (2009)
Results for same charged particles

Increase about two times larger for all charged than for same charged particles (as predicted for CP)
3^{rd} moment of average p_T fluctuations

Higher moments are expected to be more sensitive to the CP fluctuations.

$$\Phi_{p_T}^{(3)} = \sqrt{\frac{3<Z_{p_T}^3>}{<N>}} - \sqrt{\frac{3<\bar{Z}_{p_T}^3>}{<\bar{N}>}}$$

No quantitative predictions for fluctuations at CP.
Azimuthal angle fluctuations
Azimuthal angle fluctuations may be sensitive to:

- plasma instabilities \cite{PLB314, 118 (1993)}
- flow fluctuations \cite{APPB34, 4241 (2003); arXiv:nucl-ex/0312008}

Central Pb+Pb:

\[\Phi_\phi (\text{negative}) > 0 \]
- different than in UrQMD (1.3)

\[\Phi_\phi (\text{positive}) \text{ consistent with zero} \]
System size dependence at 17.3 GeV of azimuthal angle fluctuations

NA49 preliminary:

- $\Phi_\phi > 0$ for peripheral Pb+Pb
- UrQMD(3.3) does not reproduce the data
- the magnitude of Φ_ϕ reproduced by the effect of v_1 and v_2
Energy and system size dependence of K/π and p/π fluctuations can be described in a simple multiplicity scaling model.

K/p fluctuations show a deviation from this scaling; is the underlying correlation physics changing with energy?

The energy dependence of event-by-event K/p and K/π fluctuations measured by NA49 and STAR in central Pb+Pb/Au+Au is different. Both collaborations work on clarification of the observed differences.

Fluctuations of average p_T and multiplicity are maximal in Si+Si collisions at 17.3 GeV. This might be connected with the critical point at SPS energies → strong motivation for future experiments.
Back-up slides
Details of acceptance in NA49 and STAR

NA49:

![Graph showing acceptance in NA49](image1)

STAR:

![Graph showing acceptance in STAR](image2)
Test of the method

artificial correlations introduced by the fit procedure are quantified by applying the same analysis procedure to mixed events and subtracted

$$
\sigma_{\text{dyn}} = \text{sign}(\sigma^2_{\text{data}} - \sigma^2_{\text{mix}})\sqrt{|\sigma^2_{\text{data}} - \sigma^2_{\text{mix}}|}, \quad \sigma = \frac{\sqrt{\text{Var}(A/B)}}{\langle A/B \rangle}
$$

UrQMD simulation demonstrates validity of the method:

- differences mostly insignificant, taken into systematic errors

- equivalence of σ_{dyn} and ν_{dyn}

$$
\sigma_{\text{dyn}}^2 \approx \left(\frac{\langle A(A-1) \rangle}{\langle A^2 \rangle} + \frac{\langle B(B-1) \rangle}{\langle B^2 \rangle} - 2 \frac{\langle AB \rangle}{\langle A \rangle \langle B \rangle} \right) = \nu_{\text{dyn}}
$$

- generic multiplicity dependence

Koch, Schuster PRC81, 034910(2010)
Calculate ν_{dyn} in NA49

\[\nu = \frac{\langle A^2 \rangle}{\langle A \rangle^2} + \frac{\langle B^2 \rangle}{\langle B \rangle^2} - 2 \frac{\langle AB \rangle}{\langle A \rangle \langle B \rangle} \]

The definition of ν_{dyn} assumes uncorrelated background

\[\nu_{stat} = \frac{1}{\langle A \rangle} + \frac{1}{\langle B \rangle} \quad \nu_{dyn} = \nu - \nu_{stat} \]

To subtract correlation present in mixed events, we instead define

\[\Delta \nu = \nu_{data} - \nu_{mix} \]
K/\pi in central Pb+Pb

K/\pi fluctuations

Results for v_Δ

![Graphs showing K/\pi fluctuations](image)

CPOD2011, Wuhan, China

Maja Maćkowiak-Pawłowska for the NA49 Collaboration
K/π in central Pb+Pb

Calculate ν_{dyn} in NA49

Compare to σ_{dyn} results
Multiplicity and mean transverse momentum fluctuations

Strategy to look for critical point in NA49:

- Energy scan (beams 20A-158A GeV) with central Pb+Pb collisions - μ_B extracted from the fits to particles multiplicities
- System size dependence (different ions) at 158A GeV (top SPS energy) - T_{chem} depends on system size
Estimates of effects due to the critical point

Correlation length ξ at the critical point not divergent but limited by finite size and lifetime of the fireball.

parameterization: $\xi = \min(c_1 A^{1/3}, c_2 A^{1/9})$

size lifetime

Suggesting: $\xi(Pb + Pb) = 3 \to 6\text{ fm}$

$\xi(p + p) = 1 \to 2\text{ fm}$

Range of correlation effect estimated from QCD calculations (Hatta, Ikeda, PRD67, 014028(2003):

$\sigma(\mu_B) = 30\text{ MeV}, \sigma(T) = 10\text{ MeV}$

considered examples:

- CP1 - $\mu_B = 360\text{ MeV}$ (lattice QCD, Fodor-Katz)
 $T = 147\text{ MeV}$ (chem. freeze-out line)

- CP2 - $\mu_B = 250\text{ MeV}$ (data 158A GeV)
 $T = 178\text{ MeV}$ (fit of p+p data)