Enhanced Photoelectrocatalytical Performance of Inorganic-Inorganic Hybrid Consisting BiVO$_4$, V$_2$O$_5$, and Cobalt Hexacyanocobaltate as a Perspective Photoanode for Water Splitting

K. Trzciński1 · M. Szkoda1 · M. Sawczak2 · A. Lisowska-Oleksiak1

Published online: 10 December 2019 © The Author(s) 2019

Abstract
Thin layers of BiVO$_4$/V$_2$O$_5$ were prepared on FTO substrates using pulsed laser deposition technique. The method of cobalt hexacyanocobaltate (CoHcc) synthesis on the BiVO$_4$/V$_2$O$_5$ photoanodes consists of cobalt deposition followed by electrochemical oxidation of metallic Co in K$_3$[Co(CN)$_6$] aqueous electrolyte. The modified electrodes were tested as photoanodes for water oxidation under simulated sunlight irradiation. Deposited films were characterized using UV-Vis spectroscopy, Raman spectroscopy, and scanning electron microscopy. Since the V$_2$O$_5$ is characterized by a narrower energy bandgap than BiVO$_4$, the presence of V$_2$O$_5$ shifts absorption edge ($\Delta E \approx -0.25$ eV) of modified films towards lower energies enabling the conversion of a wider range of solar radiation. The formation of heterojunction increases photocurrent of water oxidation measured at 1.2 V vs Ag/AgCl (3 M KCl) to over 1 mA cm$^{-2}$, while bare BiVO$_4$ and V$_2$O$_5$ exhibit 0.37 and 0.08 mA cm$^{-2}$, respectively. On the other hand, the modification of obtained layers with CoHcc shifts onset potential of photocurrent generation into a cathodic direction. As a result, the photocurrent enhancement at a wide range of applied potential was achieved.

Keywords
Photoanode · Water splitting · Visible light activity · Pulsed laser deposition

Introduction
The scientific community has a moral obligation to take up efforts to reduce emissions of greenhouse gases. Photoelectrochemical water splitting is one of the most promising methods of hydrogen generation which is of great importance considering climate changes [1]. Sunlight energy conversion to environmentally desired fuel requires efficient photocatalysts. Since 1972, when Fujishima and Honda published their milestone paper [2], many different materials were tested as photoanodes for water photooxidation. Among them is bismuth vanadate, which exhibits high absorption coefficient [3] and a relatively narrow energy bandgap [4]. However, BiVO$_4$ suffers from poor kinetics of water oxidation and low mobility and separation efficiency of charge carriers [5]. There are many strategies of enhancement of the BiVO$_4$ photocatalytic properties that can minimize the main drawbacks [6]. One of them is based on the formation of heterojunction. It can be n-n [7] as well as n-p [8, 9] junction built from BiVO$_4$ and another semiconductor. The most commonly tested system is based on BiVO$_4$ and WO$_3$; however, BiVO$_4$ has been already combined with, e.g., Bi$_4$V$_2$O$_{11}$ [10], TiO$_2$ [11], and MnO$_2$ [12]. This manuscript is focused on the photoelectrochemical properties of BiVO$_4$/V$_2$O$_5$ bulk system. The photocatalytic and antibacterial properties of such a composite have been already studied, e.g., [13, 14]. Recently, BiVO$_4$/V$_2$O$_5$ junction has been characterized as a promising photoanode for water splitting. The various geometries of the junction (e.g., bulk, layer on layer) have been studied [15]. The V$_2$O$_5$ presence positively affects charge separation efficiency and light absorption ability due to the narrower energy bandgap. BiVO$_4$ was additionally doped using W atoms, and it leads to one of the highest photocurrents of water oxidation obtained for BiVO$_4$-based photoanodes [15]. Other authors claim that the presence of V$_2$O$_5$ in BiVO$_4$/V$_2$O$_5$ junction enhances mobility of charge carriers measured as transit time for the migration of photoexcited electrons to counter electrode, what was confirmed using intensity-
modulated photocurrent spectroscopy [16]. The Bi/BiVO₄/V₂O₅ composite was obtained by annealing of pure bismuth vanadate powder in Ar/H₂ gas mixture. Obtained powder exhibited photocatalytic properties towards water oxidation reaction in AgNO₃ solution. The films of resulting material were tested as photoanodes, but only for hole scavenger photoelectrooxidation [17]. Significant enhancement of water oxidation photocurrent has been achieved for inverse opal heterostructure (V₂O₅/BiVO₄) modified using NiOOH due to the specific morphology, presence of the heterojunction, and electrode/electrolyte interface modified by cocatalyst [18].

The formation of a junction may positively affect the electron/hole pairs separation on the interface between the components as well as, in some cases, enhancing photoabsorption ability. Nevertheless, such a way of modification does not affect the surface recombination that takes place on the BiVO₄/electrolyte surface. The passivation of recombination centers and enhancement of oxygen evolution kinetics can be achieved via cocatalyst loading. BiVO₄-based photoanodes are commonly modified using oxygen evolution catalysts, i.e., FeOOH/NiOOH [19], cobalt phosphate (CoPi) [20], and cobalt borate [21]; however, the catalytic role of cocatalyst is not the most important. It is claimed that the presence of CoPi on BiVO₄ suppresses surface recombination and does not affect the kinetics of water oxidation [22]. However, appropriate cocatalyst on the top of BiVO₄ may affect both the kinetics of O₂ evolution reaction and inhibits surface recombination [23]. Thus, the discussion about the role of oxygen evolution cocatalysts in photoelectrochemical water splitting is still open.

Prussian blue analogues (PBA) are interesting group of oxygen evolution catalysts. Generally, the cobalt center coordinated by the nitrogen atoms from the cyanide group in PBA is essential to obtain efficient electrocatalyst [24]. However, the enhancement of photocurrent generation of water oxidation by BiVO₄ modified using nickel hexacyanoferrate has been also reported [25]. Some of PBA, e.g., cobalt hexacyanoferrate can accumulate photoexcited holes from BiVO₄, positively affecting the efficiency of photocurrent generation [26]. Thus, PBAs which exhibit electrocatalytic properties in oxygen evolution reaction can be successfully utilized to modification of electrode/electrolyte interface in BiVO₄-based photoanodes.

In the present work, bismuth vanadate was modified in two different ways. The first one is based on the formation of the BiVO₄/V₂O₅ bulk heterojunction. The phase of V₂O₅ can be formed from the excess of the V-source during the synthesis of BiVO₄. The thin films were prepared using pulsed laser deposition technique. The role of V₂O₅ in the photoelectrochemical water oxidation is discussed here. In order to enhance photocurrent generation in a wider range of applied potential, BiVO₄/V₂O₅ photoanodes were modified by cobalt hexacyanocobaltate (Cohcc) synthesized during two-step method. The choice of Cohcc is based on previous reports showing its catalytic activity towards water oxidation. Among tested cobalt hexacyanometalates, cobalt hexacyanocobaltate exhibited the lowest overpotential of water oxidation [24]. We have also reported previously that the presence of Cohcc on the BiVO₄ affects its photoelectrochemical performance as well [27]. Both ways of BiVO₄ modification enhance the efficiency of water splitting in a different way. In both cases, significant enhancement of anodic photocurrent has been demonstrated.

Experimental

Chemicals

FTO (fluorine-doped tin oxide) glass slides were purchased from Sigma and used as electrode substrates. Chemicals of analytical grade, Bi(NO₃)₃·5H₂O, NH₄VO₃, V₂O₅, K₃[Co(CN)₆] were supplied by Sigma-Aldrich. K₂SO₄, acetone, and isopropanol were supplied by POCH. The metallic Co target (TK 8900) for magnetron sputtering was purchased from Quorum. Triple distilled water was used for all electrochemical experiments.

Layer Preparation

The high-temperature solid-state chemical reaction using of Bi(NO₃)₃·5H₂O and an excess amount of NH₄VO₃ (the Bi:V molar ratio equals to 1:1.5) was used to obtain the BiVO₄/V₂O₅ powder via annealing at 500 °C for 5 h. The resulting mixture was homogenized and pressed into a pellet, and annealed again at 500 °C for 4 h. The BiVO₄/V₂O₅ pellet acted as a target for the pulsed laser deposition (PLD) technique. PLD was performed using a laser (Nd:YAG) equipped with a 4th harmonic generation module emitting 6 ns pulses at 266 nm (4 pulses per 1 s). The energy density of the laser was established at about 6.5 J cm⁻². The deposition process was performed at room temperature in an oxygen atmosphere (pO₂ ~1 10⁻² mbar). Deposition took 60 min. Then, the samples were annealed in a tube furnace (PRC 55 L/1300 M, Czylok) for 2 h at 450 °C in air atmosphere (heating rate 2 °C/min) in order to obtain crystalline BiVO₄/V₂O₅ films. Deposition of FTO/V₂O₅ and FTO/BiVO₄ was performed for a comparison at the same conditions, but from separate targets, (a) V₂O₅ – pure oxide and (b) BiVO₄ (synthesized using equimolar amounts of Bi(NO₃)₃·5H₂O and NH₄VO₃).

The Cohcc deposition was performed according to the procedure reported in our previous report [27]. Briefly, it was a two-step method that consists (1) sputtering of a metallic cobalt using magnetron sputtering and (2) electrooxidation of Co film in 0.05 M K₃[Co(CN)₆] + 0.1 M KCl electrolyte. As a result, FTO/BiVO₄/V₂O₅/Cohcc electrodes were obtained.
Research methods

The surface morphology was examined using scanning electron microscopy (SU3500, Hitachi). Raman spectra were recorded by a confocal micro-Raman spectrometer (InVia, Renishaw) with sample excitation, by means of an argon ion laser emitting at 514 nm and operating at 5% of its total power (50 mW). The transmittance of the samples was measured by UV-Vis spectrometer (Lambda 35, Perkin-Elmer). The spectra were registered in the range of 300–700 nm, with a scanning speed of 120 nm min$^{-1}$. The calibration of UV-Vis spectrometer was performed using bare FTO substrate.

The electrochemical and photoelectrochemical studies of materials were conducted using the AutoLabPGStat 302 N potentiostat-galvanostat system (Methrom, AutoLab) in the one-compartment three-electrode cell with a quartz window, where photoanode served as a working electrode (geometric surface area of ~0.5 cm2). The Pt mesh with the high surface area was used as a counter electrode, while Ag/AgCl (3 M KCl) as a reference electrode. The electrochemical tests were carried out in deaerated 0.2 M K$_2$SO$_4$. Scan rate during photoelectrochemical measurements was equal to 20 mV s$^{-1}$ A xenon lamp (LOT-QuantumDesign) equipped with AM 1.5 filter with a light intensity of 100 mW cm$^{-2}$ was used as the light source.

Results and Discussion

Scanning Electron Microscopy

In order to investigate the surface morphology of annealed films, the SEM was employed. The SEM images of four films are presented in Fig. 1. The film of V$_2$O$_5$ deposited using pulsed laser deposition technique crystallizes in the form of coarse, longitudinal crystals. Bismuth vanadate exhibits completely different morphology. The films are built from small grains with ~100–200 nm diameter. In the case of BiVO$_4$/V$_2$O$_5$ composite, the morphology is dominated by the presence of BiVO$_4$ grains. Elongated V$_2$O$_5$ crystals are not present in the SEM image. As can be observed, the grains forming the layer seem to be partially melted on the edges. It may be related to the presence of V$_2$O$_5$ that is characterized by the lower than BiVO$_4$ melting point (690 °C [28] and 940 °C [29], respectively). Films modified by cobalt hexacyanocobaltate are evenly covered by regular, cubic-shaped crystallites characteristic for metal hexacyanometallates [30]. The zoom of the ideal cube of Cohcc is shown in Fig. 1 inset.

Raman Spectroscopy

The Raman spectra of the V$_2$O$_5$, BiVO$_4$, BiVO$_4$/V$_2$O$_5$, and BiVO$_4$/V$_2$O$_5$/Cohcc are shown in Fig. 2. Samples showed characteristic bands of monoclinic structure BiVO$_4$ in 828, 709, 367, and 327 cm$^{-1}$ [31]. A single band at 828 cm$^{-1}$ is assigned to symmetric stretching V-O while the band at 709 cm$^{-1}$ is attributed to the antisymmetric stretching V-O. The bands at 367 and 327 cm$^{-1}$ are assigned to the symmetric and antisymmetric deformation V-O vibrations in VO$_4^3-$ units, respectively. The bands at 213 and 130 cm$^{-1}$ are attributed to external modes. The Raman spectrum of a film deposited from V$_2$O$_5$ target confirms that the sputtered layer consist only V$_2$O$_5$ [32]. In the case of the layer deposited from the BiVO$_4$ target with V-source excess, Raman spectrum of resulting layer consists of band characteristic for both bismuth vanadate and vanadium pentoxide. No other phases are detected, confirming the formation of pure BiVO$_4$/V$_2$O$_5$ junction. Raman spectroscopy has been applied also in order to affirm the chemical structure of Cohcc. As it is shown in Fig. 2, the spectrum of BiVO$_4$/V$_2$O$_5$/Cohcc exhibits new bands in comparison of the film without Cohcc. The set of Raman bands at 2150–2230 cm$^{-1}$ is characteristic for C≡N stretching vibration [33]. The presence of at least two bands at this region suggests that Co centers coexist at different oxidation states. The Raman band of Co-CN vibration at about 490 cm$^{-1}$ are not clearly detected [34], probably due to the overlapping with bands coming from V$_2$O$_5$.

UV-Vis spectroscopy

The influence of V$_2$O$_5$ on the optical properties of tested films was investigated using UV-Vis spectroscopy in a transmittance mode, see fig. 3. The spectrum of bismuth vanadate film is characterized by an absorption edge typical for monoclinic BiVO$_4$ deposited onto transparent conductive oxide substrate [35]. The energy bandgaps were estimated from the absorption edges. The Tauc plot was not utilized here due to the difficulty to choose an appropriate type of an electron transition. BiVO$_4$ is characterized by allowed direct and allowed indirect transitions [3], while V$_2$O$_5$ by direct forbidden transition [32]. The one function cannot be used in order to determine a bandgap of BiVO$_4$/V$_2$O$_5$ heterojunction. The E_g of BiVO$_4$ was estimated to be equal to 2.45 eV. The edge seen on UV-Vis spectrum of V$_2$O$_5$ containing film is clearly shifted towards higher wavelengths. The lower energy bandgap of V$_2$O$_5$ enhances the absorption ability of the film in a visible range of electromagnetic radiation. The shift of absorption edge of about 0.25 eV is achieved due to the presence of V$_2$O$_5$ phase. It is not a very significant change; however, it should positively affect the photoactivity of investigated photoanodes. As it was reported, the absorbance of Prussian blue analogues is negligible due to the very low absorption

[30]
coefficient [36] in comparison with absorption coefficients of V₂O₅ and BiVO₄, and can be omitted in a discussion.

Photoelectrochemical Performance

In order to investigate the influence of the presence of V₂O₅ and Cohcc components on the photoelectrochemical properties of BiVO₄-based photoanodes, the linear sweep voltammograms were recorded under the illumination of the tested photoanodes. As it is shown in Fig. 4a, both BiVO₄ and V₂O₅ act as n-type semiconductors in contact with an aqueous electrolyte. Registered photocurrent measured at 1.2 V vs Ag/AgCl was equal to 90 and 370 μA cm⁻² for V₂O₅ and BiVO₄, respectively. There is a significant difference of onset potential, where photocurrent is detectable. Photocurrent of water oxidation was generated at the much lower potential in the case of bismuth vanadate. Such an effect was expected due to the differences of flat-band potential of two photoanode materials [37]. The curve of V₂O₅ consists also a dark current anodic hump at 0.2–0.6 V. It was previously reported that at this range of applied potential, electrochemical oxidation with simultaneous Na⁺ desorption occurs, what was confirmed using electrochemical quartz crystal microbalance and in situ Raman spectroscopy [38]. This phenomenon should be rather
confined to the surface or a few crystallographic planes of the studied thin film than to the bulk oxide because current response is recorded at relatively high sweep rates. The effect of cation intercalation/deintercalation in aqueous electrolytes is even more pronounced for K⁺ cations [39, 40]. It was reported that electroactivity of V₂O₅ due to the Li⁺ intercalation/deintercalation is related to the partial reduction of V⁵⁺ to V⁴⁺ centers [41, 42], and it occurs in the aqueous electrolyte as well [43]. The similar effect of dark anodic hump was observed here in the case of BiVO₄/V₂O₅ junction; see Fig. 4b. Interestingly, the photocurrent at this range of potential was registered. It is very likely that part of photoexcited holes on BiVO₄ took part at V₂O₅ oxidation at a specific range of applied potential (~0–0.4 V), where BiVO₄ acts as photoanode (E > E₀), but applied potential is lower than E₀ of V₂O₅. The LSV curve of FTO/BiVO₄/Cohcc photoanode, presented in Fig. 4b for comparison, does not exhibit anodic hump. As it is shown, photoanode without V₂O₅ generates lower photocurrent at a more anodic potential. Lack of heterojunction makes bulk e⁻/h⁺ recombination easier to occur. However, curves recorded for photoanodes with and without V₂O₅ almost overlapped at a low potential range that is strongly influenced by the presence of cobalt hexacyanocobaltate. Schematically, the effect of V₂O₅ oxidation taking into account band alignment is presented in Fig. 5a. More anodic potential makes V₂O₅ on the electrode already oxidized, and applied potential is higher than flat-band potential of V₂O₅, thus photoexcited holes from both components take part in water photooxidation as it is outlined in a Fig. 5b. There is a significant enhancement of photocurrent generation due to the bulk heterojunction formation and photocurrent reached ~1 mA cm⁻² at 1.2 V. There are three possible reasons for

Fig. 4 The linear sweep voltammetry curves of a) FTO/BiVO₄ and FTO/V₂O₅, and b) FTO/BiVO₄/V₂O₅, FTO/BiVO₄/Cohcc (based on previous report [32]) and FTO/BiVO₄/V₂O₅/Cohcc recorded under intermittent simulated solar light illumination

Fig. 5 The schematic presentation of photocurrent generation by a), b) BiVO₄/V₂O₅ and c) BiVO₄/V₂O₅/Cohcc
increase in photoactivity. The first one is related to the wider range of absorbed radiation due to the narrower energy bandgap of V$_2$O$_5$. As it was evidenced (Fig. 4a), photoexcited holes from the V$_2$O$_5$ can take part in water photooxidation. The second reason for enhancement is observed due to the heterojunction formation. The internal electric field is generated on the interface between components of photoanode. It significantly enhances e$^-$/h$^+$ pairs separation and inhibits bulk recombination. The third one is related to the higher mobility of h$^+$ of V$_2$O$_5$ [33]. BiVO$_4$-based photoanodes required to apply high anodic potential to photooxidize water on its surface efficiently [44]. The common method of onset potential shift towards cathodic direction is based on the BiVO$_4$ modification with oxygen evolution catalysts. Indeed, the presence of Cohcc, which exhibits catalytic properties, makes tested photoanode active in a much wider range of applied potential. Thus, photocurrent of water oxidation is generated at potential more anodic than the flat-band potential of BiVO$_4$ as it is schematically showed in Fig. 5c (effect of V$_2$O$_5$ oxidation is probably overlapped). Photocurrent recorded by photoanode with and without Cohcc equals over ~1.1 V vs Ag/AgCl (3 M KCl). It is possible to achieve photocurrent on the same range as catalyst (Cohcc) does not affect the absorption ability of investigated photocatalyst. Thus, the formation of BiVO$_4$/V$_2$O$_5$ junction increases photocurrent at an anodic range of potential, but surface recombination processes and more anodic location of flat-band potential of V$_2$O$_5$ adversely shift onset potential of photocurrent generation in comparison with bare BiVO$_4$. On the other hand, this effect can be eliminated due to the presence of cobalt hexacyanocobaltate on the surface of photoanode.

Conclusions

Four different photoanode arrangements: FTO/BiVO$_4$, FTO/V$_2$O$_5$, FTO/BiVO$_4$/V$_2$O$_5$, and FTO/BiVO$_4$/V$_2$O$_5$/Cohcc were systematically examined using UV-Vis spectroscopy, Raman Spectroscopy, scanning electron microscopy, and electrochemical measurement under intermittent simulated solar light illumination. The phase of V$_2$O$_5$ can be formed from the excess of the V-source during the synthesis of BiVO$_4$, and no additional reagents are required. Pulsed laser deposition technique allows obtaining BiVO$_4$/V$_2$O$_5$ bulk heterojunction. The photoelectrochemical measurements showed that it is possible to photooxidize V$_2$O$_5$ component by photoexcited BiVO$_4$ at some range of applied potential. Applying a higher potential makes BiVO$_4$/V$_2$O$_5$ a more efficient photoanode for water oxidation (than bare BiVO$_4$ and V$_2$O$_5$) due to the wider utilization of the solar spectrum, improvement of hole mobility, and enhancement of bulk e$^-$/h$^+$ separation due to the formation of internal electric field on the BiVO$_4$/V$_2$O$_5$ heterojunction. Thus, V$_2$O$_5$ improve the photoelectrochemical water splitting, but only at anodic range of applied potential. The BiVO$_4$/V$_2$O$_5$/Cohcc photoanode achieved a significantly improved photocurrent density of about 1 mA cm$^{-2}$ at 1.2 V vs Ag/AgCl (3 M KCl) than the individual components: BiVO$_4$ (0.37 mA cm$^{-2}$) and V$_2$O$_5$ (0.90 mA cm$^{-2}$). However, the enhancement was achieved in a whole range of tested potential, because the presence of Cohcc significantly shifts onset potential of photocurrent generation towards a cathodic direction. In conclusion, a highly efficient BiVO$_4$/V$_2$O$_5$/Cohcc heterojunction photoanode was successfully synthesized. The properties of BiVO$_4$-based photoanodes can be tuned via proposed modifications. The formation of heterojunction with V$_2$O$_5$ significantly affects the values of generated photocurrent, while appropriate cocatalyst (Cohcc) makes possible to photoelectrochemical water splitting at a lower applied potential.

Acknowledgments Author KT gratefully acknowledges financial support from the Statutory Funds of Gdańsk University of Technology (DS 033209). Author M.Sz. is supported by the Foundation for Polish Science.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. S.Y. Tee, K.Y. Win, W.S. Teo, L. Koh, S. Liu, C.P. Teng, Recent progress in energy-driven water splitting. Advanced Science News 4, 1600337 (2017). https://doi.org/10.1002/advs.201600337
2. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 37–38 (1972). https://doi.org/10.1038/239137a0
3. J.K. Cooper, S. Gil, F.M. Toma, L. Chen, S. Liu, J. Guo, J.W. Ager, J. Yano, I.D. Sharp, On the indirect bandgap and optical properties of monoclinic bismuth vanadate. Journal of Physical Chemistry C 119, 2969–2974 (2015). https://doi.org/10.1021/jp512169w
4. S. Siouthton, M. Showak, Q. Mao, P. Koirala, D.A. Hillsberry, S. Sullis, L.F. Kourkoutis, K. Nguyen, L.F.J. Piper, D.A. Tennie, N.J. Podraza, D.A. Muller, C. Adamo, D.G. Schlom, Adsorption-controlled growth of BiVO$_4$ by molecular-beam epitaxy. APL Materials 1, 42112 (2013). https://doi.org/10.1063/1.4824041
5. Y. Park, K.J. McDonald, K.S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chemical Society Reviews 42, 2321–2337 (2013). https://doi.org/10.1039/c2cs35260e
6. K. Tolod, S. Hernández, N. Russo, Recent advances in the BiVO$_4$ photocatalyst for sun-driven water oxidation: top-performing
photoanodes and scale-up challenges. Catalysts 7, 13 (2017). https://doi.org/10.3390/catal7010013
7. P. Chatchai, Y. Murakami, S. ya Kishioka, A.Y. Nosaka, Y. Nosaka, Efficient photocatalytic activity of water oxidation over WO3/ BiVO4 composite under visible light irradiation. Electrochimica Acta 54, 1147–1152 (2009). https://doi.org/10.1016/j.electacta.2008.08.058
8. X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co3O4/BiVO4 photoanodes. Journal of the American Chemical Society 137, 8356–8359 (2015). https://doi.org/10.1021/jacs.5b04186
9. W. Wang, X. Huang, S. Wu, Y. Zhou, L. Wang, H. Shi, Y. Liang, B. Zou, Environmental preparation of p–n junction Co3O4/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental 134–135, 293–301 (2013). https://doi.org/10.1016/apcatb.2013.01.013
10. W.S. dos Santos, L.D. Almeida, A.S. Afonso, M. Rodriguez, J.P. Pereira, Photoelectrochemical water oxidation over fibrous and sponge-like BiVO4/Bi2V2O11 photoanodes fabricated by spray pyrolysis. Applied Catalysis B: Environmental 182, 247–256 (2016). https://doi.org/10.1016/j.apcatb.2015.09.034
11. Z. Tian, P. Zhang, P. Qin, D. Sun, S. Zhang, X. Guo, Novel Black BiVO4/TiO2−x Photoanode with enhanced photon absorption and charge separation for efficient and stable solar water splitting. Advanced Energy Materials 1901287, 1–8 (2019). https://doi.org/10.1002/aenm.201901287
12. K. Trzciński, M. Szkoda, M. Sawczak, J. Karczewski, A. Lisowska-Oleskia, Visible light activity of pulsed layer deposited BiO/ MnO2 films decorated with gold nanoparticles: the evidence for hydroxyl radicals formation. Applied Surface Science 385, 199 (2016). https://doi.org/10.1016/j.apsusc.2016.05.115
13. H. Jiang, M. Nagai, K. Kobayashi, Enhanced photocatalytic activity for degradation of methylene blue over V2O5/BiVO4 composite. Journal of Alloys and Compounds 479, 821–827 (2009). https://doi.org/10.1016/j.jallcom.2009.01.051
14. Y. Wang, Y. Long, D. Zhang, Novel bifunctional V2O5/BiVO4 nanocomposite materials with enhanced antibacterial activity. Journal of the Taiwan Institute of Chemical Engineers 68, 387–395 (2016). https://doi.org/10.1016/j.tice.2016.10.001
15. A.T. Oliveira, M. Rodriguez, T.S. Andrade, H.E.A. De Souza, A.C. Pereira, Photoelectrochemical water oxidation over fibrous and sponge-like BiVO4/Bi2V2O11 photoanodes fabricated by spray pyrolysis. Applied Catalysis B: Environmental 182, 247–256 (2016). https://doi.org/10.1016/j.apcatb.2015.09.034
16. C.S. Yaw, Q. Ruan, J. Tang, A.K. Soh, M.N. Chong, A Type II n–n staggered orthorhombic V2O5/monoclinic clinobisvanite BiVO4 heterojunction photoanode for photoelectrochemical water oxidation: Fabrication, characterisation and experimental validation. Chemical Engineering Journal 364, 177 (2019). https://doi.org/10.1016/j.cej.2019.01.179
17. X. Xu, S. Kou, X. Guo, X. Li, H. Mao, The enhanced photocatalytic properties for water oxidation over Bi2V2O9 photoanode. Journal of Physical Chemistry C 121, 2–10 (2017). https://doi.org/10.1021/acs.jpcc.7b03119
18. M. Arunachalam, K. Ahn, S. Hyung, ScienceDirect Oxygen evolution NiOOH catalyst assisted V2O5@BiVO4 inverse opal heterojunction for solar water oxidation. International Journal of Hydrogen Energy 44, 4656–4663 (2018). https://doi.org/10.1016/j.ijhydene.2019.01.024
19. T.W. Kim, K.-S.K.-S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science (80) 343, 990 (2014). https://doi.org/10.1126/science.1246913
20. Y. Ma, F. Le Formal, A. Kafizas, S.R. Pendlebury, J.R. Durrant, Efficient suppression of back electron/hole recombination in cobalt phosphate surface-modified undoped bismuth vanadate photoanodes. Journal of Materials Chemistry A 3, 20649–20657 (2015). https://doi.org/10.1039/c5ta05826k
21. S. Wang, P. Chen, J.H. Yun, Y. Hu, L. Wang, An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angewandte Chemie, International Edition 56, 8500–8504 (2017). https://doi.org/10.1002/anie.201703491
22. C. Zachäus, F.F. Abdi, L.M. Peter, R. Van De Krol, Photourrent of BiVO4 is limited by surface recombination, not surface catalysis. Chemical Science 8, 3712–3719 (2017). https://doi.org/10.1039/ c7sc00363c
23. F. Hegner, J. Herráiz-Cardona, D. Cardenas-Morcoso, N. Lopez, J.R. Galan-Mascaros, S. Gimenez, Cobalt hexacyanoferrate on BiVO4 photoanodes for robust water splitting. ACS Applied Materials & Interfaces 9, 36771 (2017). https://doi.org/10.1021/acscami.7b09449
24. E.P. Alsaç, E. Ulker, S.V.K. Nune, Y. Dede, F. Karadas, Tuning the electronic properties of Prussian blue analogues for efficient water oxidation electrocatalysis: experimental and computational studies. Chemistry - A European Journal 24, 4856–4863 (2018). https://doi.org/10.1002/chem.201704933
25. M.N. Shaddad, P. Annachalam, J. Labis, M. Hezam, Fabrication of robust nanostructured (Zr)BiVO4/nickel hexacyanoferrate core/shell photoanodes for solar water splitting. Applied Catalysis B: Environmental 244, 863–870 (2019). https://doi.org/10.1016/j.apcatb.2018.11.079
26. B. Moss, F.S. Hegner, S. Corby, S. Selim, L. Francois-Forcada, N. Lopez, S. Gimenez, J.R. Galan-Mascaros, J.R. Durrant, Unraveling Charge-transfer in CoFe-Prussian blue modified BiVO4 4 photoanodes. ACS Energy Letters 4, 337 (2019). https://doi.org/10.1021/acsenergylett.8b02225
27. K. Trzciński, M. Szkoda, K. Szulc, M. Sawczak, A. Lisowska-Oleskia, The bismuth vanadate thin layers modified by cobalt hexacyanocobaltate as visible-light active photoanodes for photoelectrochemical water oxidation. Electrochimica Acta 295, 410–417 (2019). https://doi.org/10.1016/j.electacta.2018.10.167
28. K. Honma, M. Yoshinaka, K. Hirota, O. Yamaguchi, Fabrication, microstructure and electrical conductivity of V2O5 ceramics. Materials Research Bulletin 31, 531–537 (1996). https://doi.org/10.1016/S0025-5408(96)00015-3
29. S.S. Dunkle, R.J. Helmich, K.S. Suslick, BiVO4 as a Visible-light photocatalyst prepared by ultrasonic spray pyrolysis. Journal of Physical Chemistry C 113, 11980–11983 (2009). https://doi.org/10.1021/jp903757x
30. M. Hu, N.L. Torad, Y. Yamauchi, Preparation of various Prussian blue analogue hollow nanocubes with Single Crystalline Shells. Eur J Inorg Chem, 4795–4799 (2012). https://doi.org/10.1002/ejic.201200654
31. R.L. Frost, D. Henry, M.L. Weier, W. Martens, Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to (VO4)3− bearing minerals: namibite, pottsite and schumacherite. Journal of Raman Spectroscopy 37, 722 (2006). https://doi.org/10.1002/jrs.1499
32. C.V. Ramana, O.M. Hussain, B.S. Naidu, P.J. Reddy, Spectroscopic characterization of electron-beam evaporated V2O5 thin films. Thin Solid Films 305, 219–226 (1997). https://doi.org/10.1016/S0040-6090(97)00141-7
33. S.F.A. Kettle, E. Diana, E.M.C. Marchese, E. Boccaletti, P. Luigi, The vibrational spectra of the cyanide ligand revisited: the ν(CN) infrared and Raman spectroscopy of Prussian blue and its analogues. Journal of Raman Spectroscopy 2011, 2006–2014 (2013). https://doi.org/10.1002/jrs.2944
34. J. Roque, E. Reguera, J. Balmaseda, J. Rodríguez-Hernández, L. Reguera, L.F. del Castillo, Porous hexacyanocobaltates(III): Role of
the metal on the framework properties. Microporous and Mesoporous Materials **103**, 57–71 (2007). https://doi.org/10.1016/j.micromeso.2007.01.030

35. B. Zhou, J. Qu, X. Zhao, H. Liu, Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO₄ thin-film electrode. Journal of Environmental Sciences **23**, 151–159 (2011). https://doi.org/10.1016/S1001-0742(10)60387-7

36. K. Itaya, T. Ataka, S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. Journal of the American Chemical Society **104**, 4767–4772 (1982). https://doi.org/10.1021/ja00382a006

37. J. Su, X.-X. Zou, G.-D. Li, X. Wei, C. Yan, Y.-N. Wang, J. Zhao, L.-J. Zhou, J.-S. Chen, Macroporous V₂O₅ – BiVO₄ composites: effect of heterojunction on the behavior of photogenerated charges. Journal of Physical Chemistry C **115**, 8064–8071 (2011). https://doi.org/10.1021/jp200274k

38. M. Yao, P. Wu, S. Cheng, L. Yang, Y. Zhu, M. Wang, H. Luo, B. Wang, D. Ye, M. Liu, Investigation into the energy storage behaviour of layered α-V₂O₅ as a pseudo-capacitive electrode using operando Raman spectroscopy and a quartz crystal microbalance. Physical Chemistry Chemical Physics **19**, 24689–24695 (2017). https://doi.org/10.1039/c7cp04612j

39. Q.T. Qu, Y. Shi, L.L. Li, W.L. Guo, Y.P. Wu, H.P. Zhang, S.Y. Guan, R. Holze, V₂O₅ 0.6H₂O nanoribbons as cathode material for asymmetric supercapacitor in K₂SO₄ solution. Electrochemistry Communications **11**, 1325–1328 (2009). https://doi.org/10.1016/j.elecom.2009.05.003

40. Q.T. Qu, L.L. Liu, Y.P. Wu, R. Holze, Electrochemical behavior of V₂O₅ 0.6H₂O nanoribbons in neutral aqueous electrolyte solution. Electrochimica Acta **96**, 8–12 (2013). https://doi.org/10.1016/j.electacta.2013.02.078

41. V. Maurice, S. Zanna, J. Swiatowska-mrowiecka, L. Klein, P. Marcus, XPS study of Li ion intercalation in V₂O₅ thin films prepared by thermal oxidation of vanadium metal. Electrochimica Acta **52**, 5644–5653 (2007). https://doi.org/10.1016/j.electacta.2006.12.050

42. S.D. Perera, A.D. Liyanage, N. Nijem, J.P. Ferraris, Y.J. Chabal, K.J. Balkus, Vanadium oxide nanowire - Graphene binder free nanocomposite paper electrodes for supercapacitors : A facile green approach. Journal of Power Sources **230**, 130–137 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.118

43. N. Cvjetic, I. Pašti, M. Mitric, I. Stojkovic, Electrochemical behaviour of V₂O₅ xerogel in aqueous LiNO₃ solution. Electrochemistry Communications **11**, 1512–1514 (2009). https://doi.org/10.1016/j.elecom.2009.05.043

44. Y. Ma, S.R. Pendlebury, A. Reynal, F. Le Formal, J.R. Durrant, Dynamics of photogenerated holes in undoped BiVO₄ photoanodes for solar water oxidation. Chemical Science **5**, 2964–2973 (2014). https://doi.org/10.1039/c4sc00469h

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.