Case Report

Cervical, Intradural Extramedullary Solitary Fibrous Tumor of the Spinal Cord: A Case Report and Review of the Literature

Abstract
Solitary fibrous tumors (SFTs) are rare, spindle cell neoplasms of the mesenchymal origin. Lesions localized to the spine are exceptionally uncommon, only described in the literature in case reports and small case series. While these lesions are typically benign, there are a few reports in which they recur or present as malignancies. The patient presented in the case herein was a 72-year-old male, who presented with a 1-year history of lower extremity weakness, pain, and numbness and was found to have a cervical, intradural extramedullary tumor. In addition to the case report, the authors perform a thorough review of all previously published cases of spinal SFT.

Keywords: Solitary fibrous tumor, spine, tumor

Introduction
Solitary fibrous tumors (SFTs) are rare spindle cell neoplasms of the mesenchymal origin. Lesions localized to the spine are exceptionally uncommon, only described in the literature in case reports and small case series. While these lesions are typically benign, there are a few reports in which they recur or present as malignancies. The patient presented in the case herein was a 72-year-old male, who presented with a 1-year history of lower extremity weakness, pain, and numbness. Symptoms were initially localized to the right lower extremity and progressively worsened, evolving to include the left lower extremity. Three weeks before presentation, the patient began having difficulty walking and experiencing instability at the knee joint. Interestingly, the patient reported that the pain was limited to his right lower extremity, while the only symptom on the left side was weakness. The patient underwent magnetic resonance imaging (MRI) of the cervical and thoracic spine and was found to have an intradural enhancing lesion, with associated spinal cord compression [Figure 1a and b]. The mass, located along the ventral and right lateral surface of the thoracic cord at the C7 vertebral level, appeared to be causing prominent mass effect, severe canal narrowing, and hydrosyringomyelia.

The patient underwent C5–C7 laminectomies with intraoperative neuromonitoring. After opening the dura, a large, extremely hard, and fibrous extramedullary tumor was found closely adherent to the spinal cord [Figure 2a]. The tumor was debulked, and a biopsy was sent for frozen section. Subsequently, microdissection was performed to remove the tumor from the cord. All tumors were removed, including some areas with a poor resection plane [Figures 1c, d and 2b]. The operation was well tolerated by the patient, with no complications during the follow-up period.

Illustrative Case Solitary Fibrous Tumor
The patient, in this case, was a 72-year-old male who presented with a 1-year history of lower extremity weakness, pain, and numbness. Symptoms were initially localized to the right lower extremity and progressively worsened, evolving to include the left lower extremity. Three weeks before presentation, the patient began having difficulty walking and experiencing instability at the knee joint. Interestingly, the patient reported that the pain was limited to his right lower extremity, while the only symptom on the left side was weakness. The patient underwent magnetic resonance imaging (MRI) of the cervical and thoracic spine and was found to have an intradural enhancing lesion, with associated spinal cord compression [Figure 1a and b]. The mass, located along the ventral and right lateral surface of the thoracic cord at the C7 vertebral level, appeared to be causing prominent mass effect, severe canal narrowing, and hydrosyringomyelia.

The patient underwent C5–C7 laminectomies with intraoperative neuromonitoring. After opening the dura, a large, extremely hard, and fibrous extramedullary tumor was found closely adherent to the spinal cord [Figure 2a]. The tumor was debulked, and a biopsy was sent for frozen section. Subsequently, microdissection was performed to remove the tumor from the cord. All tumors were removed, including some areas with a poor resection plane [Figures 1c, d and 2b]. The operation was well tolerated by the patient, with no complications during the follow-up period.

How to cite this article: Glauser G, Sharma N, Kritikos M, Malhotra NR, Choudhri O. Cervical, intradural extramedullary solitary fibrous tumor of the spinal cord: A case report and review of the literature. Asian J Neurosurg 2020;15:204-9.

Submission: 11-07-2019 Accepted: 25-10-2019
Published: 25-02-2020

© 2020 Asian Journal of Neurosurgery | Published by Wolters Kluwer - Medknow
Histological Findings

Histologically, the specimen was composed of spindle-shaped cells arranged in intersecting fascicles within an abundant collagen network. Immunohistochemical stains demonstrated that the mass was strongly, diffusely positive for CD34 and BCL-2 and negative for S100 and EMA. In addition, stain for Ki-67 revealed a low proliferation rate. Collectively, these findings supported a diagnosis of SFT.

Discussion

Spinal SFTs can be classified, according to their compartment of development, as intramedullary, intradural extramedullary, or extradural. To the authors’ knowledge, there have been only three cases of cervical, intradural extramedullary SFTs, including the present case (Table 1). As these lesions are rare, no large case series have been performed on spinal SFTs; however, comprehensive reviews have been conducted by Fargen et al., Bisceglia et al., and more recently Albert and Gokden. According to these studies, the majority of spinal SFTs are intradural and occur in the cervical and thoracic segments. Males and females are roughly equally affected. Fargen et al. reported that the patients included in their analysis almost universally presented with pain, sensory loss, motor weakness, urinary dysfunction, or a combination of these symptoms. Generally, SFTs are considered to be benign or indolent; however, malignant cases have been reported in the literature. The current consensus treatment for spinal SFTs consists of surgical resection via laminotomy or laminectomy. The extent of surgical resection has been implicated as the most important prognostic factor. Fargen et al. reported that 25% of cases exhibited recurrences, half of which underwent subtotal resection (STR). Further analysis showed that STR was associated with a 16-fold increased odds of recurrence (odds ratio 15.9, 95% confidence interval 5.5–46.1). The role of radiotherapy and chemotherapy is yet to be defined against these tumors. However, it is suggested that there is minimal benefit in benign cases and that these therapies are likely ineffective for malignant SFTs.

Although gross total resection carries a good prognosis and lower risk of recurrence, these resections are not without risks. As treating these lesions requires a challenging microsurgical resection, the possibility of postoperative morbidity remains. Damage to the spinal tracts, particularly in intramedullary SFTs, is a potential complication and must be mediated through the use of neuromonitoring. In cases where there is no clear plane of resection and close adherence to the spinal cord, the use of cutting instruments and lasers is found to be useful.

The ability to distinguish SFTs from other spindle cell tumors is important for clinicians as these lesions have similar features. The differential diagnosis includes meningioma, schwannoma, and neurofibroma. A definitive diagnosis can be made through a combination of histopathological and immunohistochemical analysis. Histologically, SFT cells are found encircled by dense collagen networks in fascicular, storiform, herringbone, or patternless...
Table 1: Literature review of reported cases of cervical/thoracic, intradural extramedullary solitary fibrous tumors

Authors (years)	Age/sex	Location	Compartment	Treatment	Follow-up	Outcome/notes
Malek et al. (1997)	53/male	T7-8	Intradural, extramedullary	STR	1 month disease-free	
Brunori et al. (1999)	46/female	T12-L1	Intradural, extramedullary	GTR	4 months disease-free	
Vorster et al. (2000)	51/male	T2-3	Intradural, extramedullary	GTR	7 months no recurrence	
Kurtkaya et al. (2001)	70/female	T3	Intradural, extramedullary	GTR	12 months disease-free	
Caroli et al. (2004)	54/male	C7-T1	Intradural, extramedullary	GTR	15 months no recurrence	
Pizzolitto et al. (2004)	36/male	T7-8	Intradural, extramedullary	GTR	18 months no recurrence	
Pakasa et al. (2005)	27/male	T5-7	Intradural, extramedullary	STR		
Arantes et al. (2009)	22/male	T1-2	Intradural, extramedullary	GTR	18 months disease-free	Tumor embedded in posterior nerve rootlets
Bisceglio et al. (2011)	47/male	T3-4	Intradural, extramedullary	GTR	11.5 years disease-free	
Vassal et al. (2011)	52/female	T8-9	Extradural and intradural, extramedullary	GTR	62 months disease-free	
Mariniello et al. (2012)	75/female	T6-7	Intradural, extramedullary	GTR	1 year disease-free	
Brigui et al. (2013)	56/male	T6-7	Intradural, extramedullary	GTR	29 months disease-free	
Hwang et al. (2014)	48/male	C7-T1	Intradural, intramedullary, and extramedullary	STR	No recurrence at 6 months	
Robert et al. (2014)	49/female	T9-10	Intradural, intramedullary, and extramedullary	STR	No recurrence at 6 months	
Yuan et al. (2014)	48/male	T9	Intradural, extramedullary	GTR		
Sade et al. (2015)	43/male	Thoracic T10-11	Intradural, extramedullary	GTR		
Biswas et al. (2017)	35/female	Thoracic T10-11	Intradural, extramedullary, and extramedullary	Surgery	Local recurrence and pulmonary metastases at 5 months→palliative radiotherapy and chemotherapy	Malignant tumor
Present case	72/male	C6-7	Intradural extramedullary	GTR		

GTR – Gross total resection; STR – Subtotal resection; Surgery – Otherwise unspecified surgical resection

arrangements on hematoxylin and eosin staining. Positive staining for CD34, vimentin, BCL-2, and CD99 and negative staining for EMA and S-100 are hallmark findings in SFTs.

Hemangiopericytomas (HPCs) display many of the same characteristics as SFTs, sometimes making differential diagnosis a challenge. A new paradigm has gained traction among pathologists in the past decade, which views HPC as a variant within the broader spectrum of SFT. Recent evidence supports this view, including a study by Schweizer et al., where a similar NAB2-STAT6 fusion protein was found in both SFT and HPC. However, this is not universally accepted. Given the better prognosis associated with SFTs, particularly in the central nervous system, most experts retain that distinguishing the two entities remains clinically significant.

On MRI, SFTs appear isointense on T1-weighted sequences and hypointense on T2-weighted sequences. Intraoperative appearance of SFTs can aid in distinguishing them from other, similar neoplasms. Intradural extramedullary SFTs lack involvement of the spinal roots (unlike neurinomas) and have a hard tumor consistency, little to no vascularization, and an absent or weak dural adherence (unlike meningiomas). In addition, unlike schwannomas and meningiomas, there is a firm attachment to the spinal cord and no clear arachnoidal interface. Intradural SFTs also have a hard consistency (unlike metastases and astrocytomas) and scarce vascularization (unlike hemangioblastomas).

Conclusion

We report a rare case of a cervical, intradural extramedullary SFT of the spinal cord. To date, with the inclusion of the case herein, there are only three similar cases reported in the literature. Thus, continual reports must be contributed to inform clinicians regarding how to identify, differentiate, classify, and treat these lesions.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and
other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Klemperer P, Rabin CB. Primary neoplasms of the pleura: A report of five cases. Arch Pathol 1931;11:385-412.
2. Cowper SE, Kilpatrick T, Proper S, Morgan MB. Solitary fibrous tumor of the skin. Am J Dermatopathol 1999;21:213-9.
3. Takeshima Y, Yoneda K, Senda N, Inai K. Solitary fibrous tumor of the prostate. Pathol Int 1997;47:713-7.
4. Dorfman DM, To K, Dickersin GR, Rosenberg AE, Pilch BZ. Solitary fibrous tumor of the orbit. Am J Surg Pathol 1994;18:281-7.
5. Challa VR, Kilpatrick SE, Ricci P, Wilson JA, Kelly DL Jr. Solitary fibrous tumor of the meninges. Clin Neuropathol 1998;17:73-8.
6. Safneck JR, Alguacil-Garcia A, Dort JC, Phillips SM. Solitary fibrous tumour: Report of two new locations in the upper respiratory tract. J Laryngol Otol 1993;107:252-6.
7. Kotkite-Marchant K, Hart WR, Broughan T. Localized fibrous tumor (localized fibrous mesothelioma) of the liver. Cancer 1989;64:1096-102.
8. Witkin GB, Rosai J. Solitary fibrous tumor of the upper respiratory tract. A report of six cases. Am J Surg Pathol 1991;15:842-8.
9. Cameselle-Tejeiro J, Varela-Duran J, Fonseca E, Villanueva JP, Sobrinho-Simoes M. Solitary fibrous tumor of the thyroid. Am J Clin Pathol 1994;101:535-8.
10. Batsakis JG, Hybels RD, el-Naggar AK. Solitary fibrous tumor. Ann Otol Rhinol Laryngol 1993;102:74-6.
11. O’Connell JX, Logan PM, Beauchamp CP. Solitary fibrous tumor of the periosteum. Hum Pathol 1995;26:460-2.
12. Suster S, Nascimento AG, Miettinen M. Solitary fibrous tumours of soft tissue. A clinicopathologic and immunohistochemical study of 12 cases. Am J Surg Pathol 1995;19:1257-66.
13. Carneiro SS, Scheithauer BW, Nascimento AG, Hirose T, Davis DH. Solitary fibrous tumor of the meninges: A lesion distinct from fibrous meningioma. A clinicopathologic and immunohistochemical study. Am J Clin Pathol 1996;106:217-24.
14. Bisceglia M, Galliani C, Giannatempo G, Lauriola W, Bianco M, D’angelo V, et al. Solitary fibrous tumor of the central nervous system: A 15-year literature survey of 220 cases (August 1996-July 2011). Adv Anat Pathol 2011;18:356-92.
15. Aftab S, Casey A, Tirabosco R, Kabir SR, Saifuddin A. Fat-forming solitary fibrous tumour (lipomatous haemangiopericytoma) of the spine: Case report and literature review. Skeletal Radiol 2010;39:1039-42.
16. Albert GW, Golden M. Solitary fibrous tumors of the spine: A pediatric case report with a comprehensive review of the literature. J Neurosurg Pediatr 2017;19:339-48.
17. Alston SR, Francel PC, Jane JA Jr. Solitary fibrous tumor of the spinal cord. Am J Surg Pathol 1997;21:477-83.
patients: Case report. Neurosurgery 2005;57:E195.
37. Jia Q, Zhou Z, Zhang D, Yang J, Liu C, Wang T, et al. Surgical management of spinal solitary fibrous tumor/hamangiopericytoma: A case series of 20 patients. Eur Spine J 2018;27:891-901.
38. Kakimaru H, Matsusaki M, Sanada H, Iwata A, Uchio Y. Dumbbell-type spinal solitary fibrous tumor with paraplegia. Orthopedics 2009;32:213.
39. Kanahara M, Ikamazawa M, Teraakame K, Nakamura E, Hino Y, et al. Solitary fibrous tumor of the spinal cord. Report of a case with scrape cytology. Acta Cytol 1999;43:425-8.
40. Kataoka H, Akiyama Y, Kubo S, Itoh H, Hamasuna R, Tajima N, et al. Solitary fibrous tumor of the spinal nerve rootlet: Case report and literature survey. Pathol Int 1999;49:826-30.
41. Kawamura M, Izawa K, Hosono N, Hirano H. Solitary fibrous tumor of the spinal cord: Case report and review of the literature. Neurosurgery 2004;55:433.
42. Kirkbride M, Heitman K, Szallasi A. Spinal solitary fibrous tumor mimicking schwannoma: A case report. Spine J 2014;14:e17-20.
43. Kakimaru H, Matsusaki M, Sanada H, Iwata A, Uchio Y. Dumbbell-type spinal solitary fibrous tumor with paraplegia. Orthopedics 2009;32:213.
44. Kurkaya O, Elmaci I, Sav A, Pamir MN. Spinal solitary fibrous tumor presenting as a symptomatic intraspinal mass: Case report. Spinal Cord 2001;39:57-60.
45. Llavador JD, Oliveira E, Neto L, Pimentel J, Francisco AF, Livraghi S, et al. Dumbbell-shaped spinal solitary fibrous tumor: Combined approach and a review of the literature. Neurochirurgie 2015;61:287-91.
46. Malek AM, Weller SJ, Price DL Jr., Madsen JR. Solitary fibrous tumor mimicking hemangioma. Clin Neuropathol 2011;30:149-51.
47. Kobayashi K, Imagama S, Ito Z, Ando K, Ukiy J, Muramoto A, et al. Recurrence of solitary fibrous tumor of the cervical spinal cord. Nagoya J Med Sci 2014;76:217-23.
48. Kurtkaya O, Elmaci I, Sav A, Pamir MN. Spinal solitary fibrous tumor: Seventh reported case and review of the literature. Spinal Cord 2003;41:39-40.
49. Kakimaru H, Matsusaki M, Sanada H, Iwata A, Uchio Y. Dumbbell-type spinal solitary fibrous tumor with paraplegia. Orthopedics 2009;32:213.
50. Kurkaya O, Elmaci I, Sav A, Pamir MN. Spinal solitary fibrous tumor mimicking schwannoma: A case report. Spine J 2014;14:e17-20.
51. Kawamura M, Izawa K, Hosono N, Hirano H. Solitary fibrous tumor of the spinal cord: Case report and review of the literature. Neurosurgery 2004;55:433.
52. Kirkbride M, Heitman K, Szallasi A. Spinal solitary fibrous tumor mimicking schwannoma: A case report. Spine J 2014;14:e17-20.
53. Kakimaru H, Matsusaki M, Sanada H, Iwata A, Uchio Y. Dumbbell-type spinal solitary fibrous tumor with paraplegia. Orthopedics 2009;32:213.
54. Kurkaya O, Elmaci I, Sav A, Pamir MN. Spinal solitary fibrous tumor mimicking schwannoma: A case report. Spine J 2014;14:e17-20.
55. Kawamura M, Izawa K, Hosono N, Hirano H. Solitary fibrous tumor of the spinal cord: Case report and review of the literature. Neurosurgery 2004;55:433.
reason of spinal cord compression: Solitary fibrous tumor. Spine J 2015;15:1158-9.

76. Fargen KM, Opalach KJ, Wakefield D, Jacob RP, Yachnis AT, Lister JR, et al. The central nervous system solitary fibrous tumor: A review of clinical, imaging and pathologic findings among all reported cases from 1996 to 2010. Clin Neurol Neurosurg 2011;113:703-10.

77. Hanau CA, Miettinen M. Solitary fibrous tumor: Histological and immunohistochemical spectrum of benign and malignant variants presenting at different sites. Hum Pathol 1995;26:440-9.

78. Uzoaru I, Chou P, Reyes-Mugica M. Malignant solitary fibrous tumor of the pleura. Pediatr Pathol 1994;14:11-8.

79. Yang XJ, Zheng JW, Ye WM, Wang YA, Zhu HG, Wang LZ, et al. Malignant solitary fibrous tumors of the head and neck: A clinicopathological study of nine consecutive patients. Oral Oncol 2009;45:678-82.

80. Briselli M, Mark EJ, Dickersin GR. Solitary fibrous tumors of the pleura: Eight new cases and review of 360 cases in the literature. Cancer 1981;47:2678-89.

81. England DM, Hochholzer L, McCarthy MJ. Localized benign and malignant fibrous tumors of the pleura. A clinicopathologic review of 223 cases. Am J Surg Pathol 1989;13:640-58.

82. Hasegawa T, Hirose T, Seki K, Yang P, Sano T. Solitary fibrous tumor of the soft tissue. An immunohistochemical and ultrastructural study. Am J Clin Pathol 1996;106:325-31.

83. Chan JK. Solitary fibrous tumour – Everywhere, and a diagnosis in vogue. Histopathology 1997;31:568-76.

84. Tihan T, Viglione M, Rosenblum MK, Olivi A, Burger PC. Solitary fibrous tumors in the central nervous system. A clinicopathologic review of 18 cases and comparison to meningeal hemangiopericytomas. Arch Pathol Lab Med 2003;127:432-9.

85. Chilosi M, Facchetti F, Dei Tos AP, Lestani M, Morassi ML, Martignoni G, et al. Bcl-2 expression in pleural and extrapleural solitary fibrous tumours. J Pathol 1997;181:362-7.

86. Mentzel T, Bainbridge TC, Katenkamp D. Solitary fibrous tumour: Clinicopathological, immunohistochemical, and ultrastructural analysis of 12 cases arising in soft tissues, nasal cavity and nasopharynx, urinary bladder and prostate. Virchows Arch 1997;430:445-53.

87. Gengler C, Guillou L. Solitary fibrous tumour and haemangiopericytoma: Evolution of a concept. Histopathology 2006;48:63-74.

88. Schweizer L, Koelsche C, Sahm F, Piro RM, Capper D, Reuss DE, et al. Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein. Acta Neuropathol 2013;125:651-8.

89. Hayashi Y, Uchiyama N, Hayashi Y, Nakada M, Iwato M, Kita D, et al. A reevaluation of the primary diagnosis of hemangiopericytoma and the clinical importance of differential diagnosis from solitary fibrous tumor of the central nervous system. Clin Neurol Neurosurg 2009;111:34-8.