A Method for Functional Trans-Complementation of Intracellular Francisella tularensis

Shaun Steele, Sharon Taft-Benz, Thomas Kawula*

Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, United States of America

Abstract

Francisella tularensis is a highly infectious bacterial pathogen that invades and replicates within numerous host cell types. After uptake, F. tularensis bacteria escape the phagosome, replicate within the cytosol, and suppress cytokine responses. However, the mechanisms employed by F. tularensis to thrive within host cells are mostly unknown. Potential F. tularensis mutants involved in host-pathogen interactions are typically discovered by negative selection screens for intracellular replication or virulence. Mutants that fulfill these criteria fall into two categories: mutants with intrinsic intracellular growth defects and mutants that fail to modify detrimental host cell processes. It is often difficult and time consuming to discriminate between these two possibilities. We devised a method to functionally trans-complement and thus identify mutants that fail to modify the host response. In this assay, host cells are consistently and reproducibly infected with two different F. tularensis strains by physically tethering the bacteria to antibody-coated beads. To examine the efficacy of this protocol, we tested phagosomal escape, cytokine suppression, and intracellular replication for F. tularensis ΔripA and ΔpdpC. ΔripA has an intracellular growth defect that is likely due to an intrinsic defect and fails to suppress IL-1β secretion. In the co-infection model, ΔripA was unable to replicate in the host cell when wild-type bacteria infected the same cell, but cytokine suppression was rescued. Therefore, ΔripA intracellular growth is due to an intrinsic bacterial defect while cytokine secretion results from a failed host-pathogen interaction. Likewise, ΔpdpC is deficient for phagosomal escape, intracellular survival and suppression of IL-1β secretion. Wild-type bacteria that entered through the same phagosome as ΔpdpC rescued all of these phenotypes, indicating that ΔpdpC failed to properly manipulate the host. In summary, functional trans-complementation using bead-bound bacteria co-infections is a method to rapidly identify mutants that fail to modify a host response. Francisella tularensis is a facultative intracellular bacterial pathogen and is the causative agent of the disease tularemia. F. tularensis enters host cells through phagocytosis, escapes the phagosome, and replicates in the host cell cytosol while suppressing cytokine secretion [1–4]. Although substantial progress has been made in understanding the intracellular life cycle of F. tularensis, the F. tularensis proteins responsible for manipulating many host cell pathways are unknown. Identifying novel host-pathogen effector proteins is difficult because there is no rapid method to reliably distinguish between bacterial proteins that modify host processes and proteins that are involved in bacterial processes that are required for the bacteria to survive or replicate in the intracellular environment. The ability to identify mutants that are deficient for host-pathogen interactions is important because it can aid in prioritizing the investigation of genes of interest and in downstream experimental design. Moreover, certain mutant phenotypes, such as decreased phagosomal escape, hinder investigation of other potential phenotypes. A method to specifically complement these phenotypes would allow for further characterizations of certain F. tularensis mutants. Thus we sought to develop a method to easily identify and functionally complement mutants that are deficient for interactions with the host.

Introduction

In order to distinguish whether a phenotype results from a host-pathogen interaction or an intrinsic bacterial defect, we devised a method to functionally complement and thus identify host-pathogen interactions in trans. Wild-type and a mutant strain were tethered to the same magnetic bead to ensure that both bacteria enter the same eukaryotic cell. Since cells are consistently infected with both strains of bacteria via the same phagosome, the wild-type bacteria functionally complement the host-pathogen interactions that the neighboring mutant strain fails to initiate. For example, a mutant deficient for phagosomal escape that co-infects a host cell with wild-type bacteria will escape the phagosome because the wild-type bacteria secrete the effectors required for phagosomal escape. Bacterial mutants that exhibit a phenotype caused by intrinsic deficiencies such as defective metabolite production or acquisition will not be functionally complemented by this method since intrinsic defects cannot be trans-complemented by neighboring bacteria.

To demonstrate the efficacy of this protocol, we functionally complemented cytokine suppression, phagosomal escape, and intracellular survival in F. tularensis subsp. holarctica live vaccine strain (LVS) ΔpdpC and ΔripA. The pdpC gene is located in the Francisella pathogenicity island (FPI), which is proposed to encode a
secretion and effector system that facilitates phagosomal escape [5–13]. PdpC contributes to phagosomal escape, intracellular survival and cytokine suppression [5,13]. We therefore used ΔpdpC as a model of a mutant that contributes to a host-pathogen interaction.

ΔripA can escape the phagosome but is defective for intracellular growth and cytokine suppression [2,14]. ΔripA replication is reduced in defined media at a pH of 7.5 compared to a pH of 6.5, which implies that cytosolic pH, rather than a host-pathogen interaction, is responsible for decreased intracellular proliferation [15]. Furthermore, RipA regulates the activity of LpxA, a protein required for F. tularensis lipid A synthesis (our unpublished data). The ΔripA strain does not proliferate within host cells, but ΔripA strains encoding lpxA suppressors are able to replicate within host cells (our unpublished data). These data imply that ΔripA fails to replicate inside of host cells due to irregular regulation of lipid A synthesis and therefore intracellular proliferation of this mutant should not be restored by co-infection with wild-type organisms.

Results

Two bacterial strains consistently bind to the same bead

Reliable functional complementation of mutants within infected cells requires that both the mutant and complementing strain consistently enter host cells together. To achieve this result we tethered two different F. tularensis strains to individual magnetic beads. To test if the two different strains consistently bound to the same bead, we combined anti-F. tularensis lipopolysaccharide (LPS) antibody coated beads with a 1:1 mixture of F. tularensis expressing either GFP or DsRed. By microscopy, virtually every bead bound cells expressing either GFP or DsRed. We quantified the amount of beads that bound to both GFP and CellTrace Far Red labeled F. tularensis by flow cytometry and found that 97.3% ± 0.7% (mean ± /−SD) of the beads bound to both GFP and CellTrace Far Red labeled bacteria (Figure 1D, E, F). This indicates that in infection experiments where wild-type and mutant bacteria are bound to beads, the majority of cells will be infected with both bacterial strains.

Although this method requires multiple bacteria to be present on each bead, too many bacteria infecting the same cell may skew results or phenotypes compared to a normal infection. To quantify the number of bacteria per bead, F. tularensis LVS containing a luciferase plasmid was bound to beads and the amount of luminescence per bead was compared to a standard curve. The median bacteria per bead was 3.43 (SEM = 6.69, 4 independent experiments). Additionally, 6.66+/−2.32 intracellular wild-type bacteria per cell were present at 4 hours post inoculation (average+/−SEM, n = 23 from 9 independent experiments, assumptions described in materials and methods). Taken together, we estimate that the average cell is infected with 3 to 8 bacteria using bead co-infections.

F. tularensis is transiently linked to the bead

Tethering the bacteria to the same bead ensures that cells are co-infected with different strains, but irreversible binding of F. tularensis to the bead could affect the intracellular life cycle of F. tularensis. Thus, we took advantage of a binding mechanism that should allow the bacteria to detach from the bead over time by linking the bacteria to beads coated with antibodies to F. tularensis LPS. Each bacterium should initially link to the bead by binding to several anti-LPS antibodies, which should create a high avidity between the bead and the bacterium. The advantage of binding F. tularensis to the bead by an anti-LPS antibody is that Gram-negative bacteria, including F. tularensis, shed LPS. Thus, viable F. tularensis should detach from the bead over time. Indeed, the majority of bacteria were bound to beads immediately prior to infection as determined by flow cytometry (Figure 2A). Intracellular bacteria dissociated from beads within 2 hours during an infection of J774A.1 macrophage-like (J774) cells, presumably due to the bacteria shedding LPS (Figure 2A). Furthermore, microscopy of cells infected with GFP LVS bound to beads shows that some bacteria are spatially separated from the bead by 4 hours post inoculation (Figure 2B). These data demonstrate that the described methodology results in bacteria bound to beads upon initial infection, but that the bacteria detach from the bead following host cell entry. The bacteria also released from beads at similar rates when left in PBS for 2 hours, suggesting that bacterial release from the bead is not mediated by infection (data not shown).

Bead co-infections functionally complement cytokine suppression

F. tularensis suppresses host cell production or secretion of several different cytokines, including interleukin 1β (IL-1β) by both active (such as MAPK inhibition) and passive mechanisms (such as via LPS modifications) [2,4,5,16–18]. Since wild-type F. tularensis actively suppresses inflammatory responses, co-infection of cells with wild-type bacteria should complement a mutant that fails to suppress the immune response. To test the efficacy of bead co-infections on rescuing immune suppression, we co-infected murine bone marrow derived macrophages (mBMDM) with wild-type F. tularensis bound to beads with either ΔpdpC or ΔripA and measured IL-1β secretion.

Infections of mBMDMs with ΔripA results in increased IL-1β secretion compared to wild-type [2]. Similarly, cells infected with ΔripA bound to beads also induced increased IL-1β secretion compared to cells infected with bead-bound wild-type F. tularensis (Figure 3). However, co-infecting cells with wild-type bacteria and ΔripA resulted in reduced IL-1β secretion compared to ΔripA alone (Figure 3). ΔripA bound to beads and typical ΔripA infections elicit similar levels of IL-1β, even though the cells infected with beads should contain more bacteria initially (data not shown). Thus the decrease of IL-1β secretion during co-infections was not due to fewer ΔripA infecting each cell. Together, these data demonstrate that active immune suppression mechanisms expressed by wild-type F. tularensis were sufficient to inhibit the inflammatory response induced by ΔripA.

We also measured IL-1β secretion of ΔpdpC infected mBMDMs and found that cells infected with ΔpdpC bound to beads also had slightly increased IL-1β secretion when compared to wild-type infected cells (Figure 3). Co-infecting cells with wild-type and ΔpdpC bacteria resulted in decreased IL-1β secretion compared to ΔpdpC bacteria alone (Figure 3). Thus, ΔpdpC failed to entirely suppress the host immune response but suppression could be rescued by the presence of wild-type bacteria. Wild-type bacteria fully complemented suppression of IL-1β secretion during mixed infections of wild-type and ΔpdpC (p = 0.77) but there was a slight increase in the wild-type and ΔripA mixed infection when compared to wild-type infections alone (p = 0.01). We hypothesize that the observed increase in IL-1β secretion during co-infections with ΔripA is due to a small subset of cells that are infected by beads bound only to ΔripA bacteria combined with the increased magnitude of IL-1β secretion observed during ΔripA infections compared to ΔpdpC infections. However, we cannot rule out the possibility that ΔripA may stimulate the immune response via a pathway that cannot be entirely suppressed by wild-type bacteria. In summary, co-infections of mutant and wild-type bacteria can rescue a phenotype caused by the inability of the mutant to properly modify the host cell.
Phagosomal escape is functionally complemented during bead co-infections

Several FPI mutants, including ΔpdpC, as well as killed *F. tularensis* do not effectively escape the phagosome [5–13]. Therefore, *F. tularensis* phagosomal escape is a *F. tularensis* mediated process. As a result, wild-type bacteria should facilitate release of escape-defective mutants so long as the mutant and wild-type bacteria are within the same phagosome. To test this hypothesis, we bound ΔpdpC containing a GFP-expressing plasmid (GFPΔpdpC) to beads and quantified the amount of GFPΔpdpC present in the cytosol of J774 cells. We found that GFPΔpdpC had reduced phagosomal escape at 2 hours post inoculation compared to GFP expressing wild-type bacteria and GFPΔpdpC phagosomal escape was rescued by the presence of wild-type bacteria within the same phagosome (Figure 4). This result is consistent with other published analyses of ΔpdpC mutant phenotypes and indicates that PdpC contributes to, but is not absolutely required for, *F. tularensis* LVS phagosomal escape [5,13]. More importantly, wild-type bacteria export the necessary effector protein(s) to allow both wild-type and ΔpdpC to escape the phagosome.

Bead co-infections achieve functional complementation of phagosomal escape across an entire population. This allows for the further characterization of phagosomal escape deficient mutants in the cytoplasmic environment. One caveat to using wild-type bacteria for complementation is that wild-type bacteria may out-compete certain mutants in the cytosol or obscure additional host-pathogen interactions. We hypothesized that any mutant strain that escapes the phagosome can be used to complement phagosomal escape of escape deficient mutants. To test this hypothesis, we co-infected cells with GFPΔpdpC and ΔripA. The ΔripA strain escapes the phagosome with similar kinetics as wild-type bacteria, but does not replicate inside the host cell [14]. Indeed, ΔripA functionally complemented GFPΔpdpC phagosomal escape when GFPΔpdpC entered through the same phagosome as ΔripA (Figure 4). Our data demonstrate that infecting cells with ΔpdpC and a phagosome escape competent *F. tularensis* bacterium results in phagosomal escape of both bacteria. Thus, pairing a phagosomal escape deficient mutant with an escape competent mutant will allow for further characterization of cytoplasmic phenotypes associated with the phagosomal escape deficient mutant.

Bead co-infections complement intracellular survival

F. tularensis mutants can be deficient for intracellular survival or replication due to the inability of the mutant to perform a required interaction with the host or due to an intrinsic intracellular survival or replication defect. Co-infections with both mutant and wild-type bacteria can be used to determine whether the mutant fails to properly control a host-pathogen interaction.

The *ripA* gene encodes a hypothetical protein of unknown function that is required for *F. tularensis* intracellular proliferation, likely through regulation of lipid A synthesis [14] (our unpublished data). We found that co-infecting J774 cells infected with wild-type *F. tularensis* did not complement ΔripA intracellular growth.
Although \(\Delta pdpC\) replicated slightly when wild-type bacteria were present in the same cell, \(\Delta pdpC\) replication did not achieve wild-type levels. This is interesting because \(\Delta pdpC\) escaped the phagosome, albeit at lower levels than wild-type, but was still inhibited by the host cell during individual infections (Figure 4, 5B) [5,13]. Thus, wild-type bacteria may promote \(\Delta pdpC\) survival in the host cytosol (Figure 5B) but wild-type \(F. tularensis\) either out-competes \(\Delta pdpC\) or \(\Delta ripA\) is also required for a cell intrinsic process to fully restore intracellular replication. To distinguish between these possibilities, we co-infected cells with \(\Delta pdpC\) and \(\Delta ripA\). The \(\Delta ripA\) strain has an intact FPI and rescues \(\Delta pdpC\) phagosomal escape, but since \(\Delta ripA\) does not replicate, it should not out-compete \(\Delta pdpC\). We found that co-infections with \(\Delta ripA\) and \(\Delta pdpC\) resulted in \(\Delta pdpC\) survival but proliferation did not increase to

Figure 2. \(F. tularensis\) separates from the beads inside host cells. (A) Percentage of events representing bacteria that were bound to a bead prior to infection (\(n = 3\)) and the percentage of events representing intracellular bacteria bound to a bead 2 hours post inoculation (\(n = 9\)), as quantified by flow cytometry. Bar graph represents the mean +/- the standard deviation. (B) Representative fluorescence micrograph of a cell infected with beads bound to GFP (green) expressing LVS. The white arrow indicates the location of the bead. The image was taken 4 hours post inoculation. The scale bar represents 5 \(\mu\)M. doi:10.1371/journal.pone.0088194.g002

Although \(\Delta pdpC\) replicated slightly when wild-type bacteria were present in the same cell, \(\Delta pdpC\) replication did not achieve wild-type levels. This is interesting because \(\Delta pdpC\) escaped the phagosome, albeit at lower levels than wild-type, but was still inhibited by the host cell during individual infections (Figure 4, 5B) [5,13]. Thus, wild-type bacteria may promote \(\Delta pdpC\) survival in the host cytosol (Figure 5B) but wild-type \(F. tularensis\) either out-competes \(\Delta pdpC\) or \(\Delta ripA\) is also required for a cell intrinsic process to fully restore intracellular replication. To distinguish between these possibilities, we co-infected cells with \(\Delta pdpC\) and \(\Delta ripA\). The \(\Delta ripA\) strain has an intact FPI and rescues \(\Delta pdpC\) phagosomal escape, but since \(\Delta ripA\) does not replicate, it should not out-compete \(\Delta pdpC\). We found that co-infections with \(\Delta ripA\) and \(\Delta pdpC\) resulted in \(\Delta pdpC\) survival but proliferation did not increase to

Figure 4. Functional trans-complementation via bead-bound bacteria complements suppression of cytokine secretion. IL-1\(\beta\) ELISA of murine bone marrow derived macrophages that were inoculated with single or mixed inoculations of wild-type, \(\Delta pdpC\) or \(\Delta ripA\) LVS (triplicates, \(n = 3\)). All samples were bound to beads prior to infection. Bar graph represents the mean +/- SEM. **\(p < .01\)**, ***\(p < .001\)** doi:10.1371/journal.pone.0088194.g004
wild-type levels (Figure 5C). Thus, we conclude that PdpC is required for intracellular survival through a host-mediated process but has a secondary function that enhances bacterial proliferation.

Together, the ΔpdpC and ΔripA intracellular replication data demonstrate that co-infecting cells with wild-type and mutant bacteria can differentiate between mutants that fail to replicate due to defective host-pathogen interactions and mutants that are defective for growth due to intrinsic replication defects.

Discussion

We developed and optimized a method to reliably deliver two distinct F. tularensis bacteria into the same host cell. Co-infection of cells with bacteria bound to beads allows for functional complementation of host-pathogen interactions, which can be used to identify mutants that fail to induce a host-pathogen interaction or to complement a specific host-pathogen interaction.
The \(\Delta \text{ripA} \) strain fails to replicate inside of cells and induces IL-1\(\beta \) secretion \[2,14,15\]. With the described co-infection method, neighboring wild-type bacteria functionally complement IL-1\(\beta \) suppression in \(\Delta \text{ripA} \) infected cells but not \(\Delta \text{ripA} \) intracellular proliferation. The \(\text{Francisella novicida} \ \Delta \text{ripA} \) strain has also been shown to have increased intracellular lysis compared to wild-type \(\text{F. novicida} \) bacteria, which leads to increased cytokine secretion via the AIM2 inflammasome \[20\]. Herein we show that wild-type \(\text{F. tularensis} \) LVS bacteria can suppress cytokine secretion in cells infected with \(\Delta \text{ripA} \) bacteria. Assuming that RipA has an identical function between the different \(\text{Francisella} \) species, these data indicate that wild-type LVS bacteria, but not \(\Delta \text{ripA} \), suppress the AIM2 inflammasome.

Interestingly, wild-type \(\text{F. tularensis} \) bacteria replicated in cells that contained \(\Delta \text{ripA} \) bacteria, which indicates that the cell cytosol remains permissive for \(\text{F. tularensis} \) replication and that the proliferation defect is specific to \(\Delta \text{ripA} \) bacteria. These data also indicate that increased cytokine secretion and intracellular proliferation phenotypes seen in \(\Delta \text{ripA} \) infections occur through different mechanisms because one phenotype is functionally complemented while the other is not. Additionally, we were able to genetically distinguish between \(\Delta \text{ripA} \) cytokine suppression and intracellular replication. A chromosomal \(\text{ripA} \) N21A point mutant of LVS proliferated in the cytosol at a rate comparable to wild-type bacteria, but failed to suppress IL-1\(\beta \) secretion (data not shown). Taken together, the described co-infection method indicates that RipA is involved in cytokine suppression (a host-pathogen interaction) and a separate, intrinsic bacterial process for intracellular replication.

The \(\Delta \text{pdpC} \) strain was functionally complemented for phagosomal escape, intracellular survival, and IL-1\(\beta \) suppression. Thus, PdpC contributes to those host-pathogen interactions. Interestingly, \(\Delta \text{pdpC} \) replication never reached the same level as wild-type bacteria during co-infections even though \(\Delta \text{pdpC} \) escaped the initial phagosome with the wild-type bacteria. These data hint that PdpC is involved in an intrinsic bacterial replication process that is required for optimal growth. It is also possible that a local host-pathogen interaction is required that is not reliably complemented by neighboring bacteria. Further investigation is needed to determine if the intracellular growth defect is specific to \(\Delta \text{pdpC} \) or if other FPI genes are required for replication in the host cell cytosol.

The antibody used throughout these experiments has been used to identify \(\text{F. tularensis} \) Schu S4 by microscopy and for purifying Schu S4 from infected cell lysates \[21,22\]. As described, this method should be compatible with a range of \(\text{F. tularensis} \) species with O-antigen structures similar to \(\text{F. tularensis} \) LVS. More importantly, the described co-infection method is compatible with any biotinylated antibody, so antibodies specific to surface molecules of \(\text{F. tularensis} \) novicida or other bacterial species can be used to link bacterial cells to beads.

Binding bacteria to beads does alter some aspects of infection that must be taken into consideration when designing experiments. The beads are dense and sink to the bottom of the well, allowing for a substantially lower multiplicity of infection (MOI) while maintaining a high infection frequency. More bacteria are phagocytosed per cell when bacteria are bound to beads compared to a typical infection. This may require time points to be taken earlier than a typical infection and the magnitude of certain phenotypes, particularly intracellular proliferation, are slightly different. Lastly, we expect that phagocytosis of beads coated in bacteria will primarily occur through typical phagocytic routes of a given bacteria because bacteria on the bead surface still interact with the cell. But phagocytosis may occasionally occur through a different mechanism than in a typical infection. For example, some Fc receptor mediated phagocytosis likely occurs in some cells due to antibodies bound to the beads. Despite these potential pitfalls, our individual infection controls for IL-1\(\beta \) secretion, phagosomal escape, and intracellular proliferation resulting from infection with bead-bound bacteria are consistent with previously published data based on infection by free bacterial cells \[2,5,13,14\].

Bead co-infections provide a consistent method of functionally complementing most intracellular bacterial manipulations of the host cell. However, there are a few specialized cases in which further characterization beyond bead co-infections is necessary. We expect that some gain of function mutants and host-pathogen interactions that require local manipulation will not be reliably complemented. For example, immune signaling phenotypes that are not complemented by wild-type bacteria are likely gain of function mutations because the mutants stimulate the immune system in a manner that wild-type bacteria cannot suppress. Likewise, xenophagy evasion and re-entry into \(\text{Francisella} \) containing vacuoles likely requires local host-pathogen interactions. As a result, a lack of complementation for mutants that are strongly suspected of manipulating the host cell can also narrow down potential functions for a given protein. Altogether, bead co-infections are a reliable method to gain insight into the function of a gene of interest, identify mutants that fail to initiate a host-pathogen interaction, and to aid in downstream experimental design.

Materials and Methods

Ethics Statement

All animal studies were approved by and conducted according to the Institutional Animal Care and Use Committee (NIH/PHS Animal Welfare Assurance number: A3410-01, USDA Animal Research Facility Registration Number: 55-R-004, AAALAC Institutional Number: #329) guidelines of the University of North Carolina-Chapel Hill (IACUC ID 13-213).

Bacteria and plasmids

\(\text{Francisella tularensis subsp holarctica} \) LVS was obtained from the CDC Atlanta, GA. A \(\text{pdpC} \) deletion construct was made by splice overlap extension (SOE) PCR as described previously \[14\]. Primers were used to delete all but the first five amino acid (MNDKY) and the last five codons (KISS stop) while keeping the deletion in frame. After blunt end cloning into pCR BLUNT II (Invitrogen), the SOED \(\text{pdpC} \) fragment was removed by BamHI-Not I digest and cloned into suicide vector pMP312 \[23\]. Integrants were selected on kanamycin (10 \(\mu \)g/mL). Resolved integrants were selected by growth overnight in brain heart infusion (BHI) broth (BD Biosciences) supplemented with isovitalex followed by plating on chocolate containing 10% sucrose. Resolved integrants were sequenced to confirm in-frame deletion of \(\text{pdpC} \) and integrity of the flanking sequence. Deletion of both \(\text{pdpC} \) genes was verified by PCR. Genetic complementation of \(\text{pdpC} \) by constitutively expressing the \(\text{pdpC} \) gene on pMP322 restored intracellular proliferation (Figure S1) \[24\]. The \(\Delta \text{ripA} \) in-frame deletion and GFP\(\Delta \text{ripA} \) strains were previously generated \[25\].

GFP wild-type LVS (GFP-wt) was generated by Hall et al \[26\] and GFP-\(\Delta \text{pdpC} \) was generated using the same GFP plasmid. DsRed LVS and luciferase expressing LVS were generated with the plasmids from DsRed Schu S4 and luciferase expressing Schu S4 respectively \[22\]. Hygromycin B resistant \(\Delta \text{ripA} \) and \(\Delta \text{ripA} \) strains were generated by transforming the deletion mutant bacteria with the hygromycin B resistance plasmid pMP381 \[24\]. The
kanamycin resistant wild-type strain was generated by transform-
ing wild-type bacteria with the kanamycin resistance plasmid
pMP208 and kanamycin resistant ΔopaI with the pkkMCS plasmid
[14,24].

Cell Culture
J774.A.1 Macrophage like cells were obtained from ATCC and
grown in DMEM with 4.5 g/L glucose and supplemented with
10% FBS, L-glutamine and sodium pyruvate (all from Gibco).
Mouse bone marrow derived macrophages were generated from a
C57Bl/6 as previously described [27].

Binding F. tularensis to the magnetic beads
800 nm streptavidin coated magnetic beads (Solulink) were
blocked with sterile filtered Tris buffered saline (TBS) containing
0.1% casein for 20 minutes. The beads were washed 4 times with
antibody wash buffer [100 mM Tris, 150 mM NaCl and 0.05%
tween 20 in distilled water, pH 8.0]. For every 10 ug of beads, we
added 2.5 μg of anti-Francisella tularensis LPS antibody (US
Biological) that was previously biotinylated using a Fluoreporter
Mini-Biotin-XX Protein Labeling Kit (Invitrogen) following the
manufacturer’s instructions. The antibody was suspended in
antibody wash. After 30 minutes of rocking at 4°C, the beads
were washed twice in antibody wash buffer and twice in PBS.
10 μg of magnetic beads coated with anti- LPS antibodies were
mixed with 8 x 10^8 bacteria for 20 minutes. Each sample was then
washed twice in PBS to remove unbound F. tularensis. After the
final wash, the beads were suspended in cell culture media and
ready to use for the given experiment. All washes were performed
by placing a 12 x 75 mm round bottom tube containing the sample
on a BD IMagnet (BD biosciences) and waiting approximately 2
minutes for the beads to move toward the magnet. After all wash
steps, approximately 1 x 10^5 beads bound to bacteria were present
for every 10 ug of beads initially added (based on plating bacteria
bound to beads on chocolate agar). The amount varied up to
4 x 10^6 beads between experiments. All experiments were inocu-
lated assuming 1 x 10^7 bacteria bound to beads per 10 ug of
starting beads.

For samples where multiple strains were added together, 4 x 10^8
each strain was added. For all mixed infections, the inoculum of
each type of bacteria was plated and compared to ensure both
types of bacteria were equally represented. Typically the ratio of
one type of bacteria to the other was between 1: 0.8 and 1: 1.2
(data not shown). Infecting cells at a MOI higher than 1 can result
in each cell taking up a substantial number of beads, which may
impact results (data not shown). Bead aggregates can form over
2 hours post inoculation. The permeabilized cells were stained
with calnexin to assay the percentage of cells that were permeabilized.
No significant difference in localization was seen between F. tularensis
attached to beads and unbound bacteria, although bacteria bound to beads tended to escape the phagosome
at higher rates. Control cells were stained with calnexin to assay
the percentage of cells that were permeabilized. The percentage of
permeabilized cells was used to determine the total percentage of
bacteria that escaped the phagosome.

To assay for bacterial dissociation from the beads prior to
inoculation, GFP-LVS was used to count the number of beads as previously described [29]. Briefly, J774 cells were incubated with beads
coated with the indicated wild-type or deletion mutants bacteria
(prepared as above). 2 hours post inoculation, the cells were
washed and stained with 0.1% paraformaldehyde. No significant difference in localization was observed
between F. tularensis attached to beads and unbound bacteria, although bacteria bound to beads tended to escape the phagosome
at higher rates. Control cells were stained with calnexin to assay
the percentage of cells that were permeabilized. The percentage of
permeabilized cells was used to determine the total percentage of
bacteria that escaped the phagosome.

All samples were mounted using a DAPI containing mounting
media (Vector Shield). Images were acquired using a Zeiss 700
confocal laser scanning microscope (Zeiss) using Zen image
acquisition software (Zeiss) or an Olympus FV500 confocal
scanning laser microscope (Olympus). Images were cropped and
scale bars were added using ImageJ [28].

Flow Cytometry
To assess the frequency of both types of bacteria binding to a
single bead, beads were prepared as above with GFP-LVS and/or
CellTrace Far Red DDAO-SE (Invitrogen) labeled wild-type LVS.
Immediately following the final wash, the beads were stained with
Pacific blue conjugated anti-F. tularensis LPS antibody (US
biological) [Pacific blue antibody labeling kit (Invitrogen) following
the manufacturer’s protocol]. The beads were washed once more
and then immediately fixed using 4% paraformaldehyde. The event trigger on the flow cytometer was set to only record Pacific
Blue positive events.

Phagosomal escape assays were performed as previously
described [29]. Briefly, J774 cells were incubated with beads
coated with the indicated wild-type or deletion mutants bacteria
(prepared as above). 2 hours post inoculation, the cells were
washed and stained with Pacific blue conjugated anti-Francisella
LPS antibody to label extracellular bacteria. After the antibody
was washed away with KH2O buffer, the cells were
permeabilized with 100 μl of 10 μg/ml digitonin and the cells were
stained with AF647 conjugated anti-Francisella tularensis LPS
antibody to stain cytosolic bacteria. The cells were lysed and the
samples were then analyzed by flow cytometry. We compared the
ratio of intracellular cytosolic bacteria (GFP+ AF647+ Pac Blue-)
to bacteria in the phagosome (GFP+ AF647- Pac Blue-). The data
from these experiments includes both bacteria bound to beads and
unattached bacteria. No significant difference in localization was
seen between F. tularensis attached to beads and unbound bacteria.

Intracellular bacterial proliferation assay
The indicated LVS mutants were coated on beads as previously
described. J774 cells were seeded at approximately 2.5 x 10^5 cells
per well the night before infection and were infected with an
approximate multiplicity of infection (MOI) of 1 bead per cell
(assuming 5×10^5 cells prior to infection). The media was replaced with containing 25 μg/ml of gentamicin 2 hours post inoculation. At 4 and 22 hours post inoculation, the cells were scraped off the plate, lysed, serially diluted and plated on chocolate agar containing isovitalex and either kanamycin or hygromycin to assess bacterial proliferation. As expected, hygromycin resistant colonies did not form under kanamycin selection and vice versa (data not shown).

Quantification of bacteria per bead

F. tularensis LVS containing a luciferase–expressing plasmid was bound to beads following the previously described method. Half of the sample was plated on chocolate agar to assay for the number of beads bound to bacteria and the other half was placed into an Infinite M200 Pro plate reader (Tecan) and the amount of light produced was quantified and compared to a standard curve consisting of known quantities of *F. tularensis* LVS containing the luciferase plasmid.

The number of bacteria per cell was determined based on the results at 4 hours post inoculation of the wild-type bacteria from the intracellular proliferation assay described previously. We assumed that 60% of the cells were infected based on flow cytometry of similar samples examined 2 hours post inoculation. Since gentamicin is added 2 hours post inoculation, additional cells should not be infected. We also assumed that the J774 cells doubled overnight, resulting in 5×10^5 cells, that 100% of bacteria were bound to beads and no bacterial death or replication occurred between 0 and 4 hours post inoculation.

IL-1β ELISA

Murine bone marrow derived macrophages were seeded at 5×10^5 cells per well in 24-well plates. Beads coated with the appropriate bacterial strains and were used to inoculate the cells at an MOI of approximately 1 bead per cell. The cell supernatant was collected 22 hours post inoculation and the amount of IL-1β was measured using a BD OptiEIA mouse IL-1β ELISA set (BD biosciences) following the manufacturers protocol.

Statistics

All statistics were performed using an unpaired Student t-test using the compiled data from all experiments performed. Intracellular proliferation assays were log$_{10}$ transformed prior to statistical analysis.

Supporting Information

Figure S1 Genetic complementation of ΔpdpC intracellular proliferation. Intracellular proliferation assay of J774 cells infected with wild-type, ΔpdpC or ΔpdpC with a complementation plasmid containing the pdpC gene. The bar graph represents the mean +/- the standard deviation. Data is a compilation of 3 independent experiments performed in triplicate. ***p<0.005 (TIF)

Acknowledgments

We would like to thank Dr. Jean Celii for assistance with the phagosomal escape assay protocol, Dr. Cheryl Miller for all nrf2/2 data, Melanie Kähler for technical assistance, the UNC Flow Cytometry Core Facility for flow cytometry assay and the UNC Microscopy Service Laboratory for microscopy assistance.

Author Contributions

Conceived and designed the experiments: SS TK. Performed the experiments: SS STB. Analyzed the data: SS TK. Contributed reagents/materials/analysis tools: SS STB TK. Wrote the paper: SS STB TK.

References

1. Clemens DL, Lee BY, Horwitz MA (2004) Virulent and avirulent strains of francisella tularensis prevent acclimation and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immum 72: 3204-3217. 10.1128/IAI.72.6.3204-3217.2004.
2. Huang MT, Moertens BL, Taxman BJ, Craven RR, Taft-Benz S, et al. (2010) Deletion of ripA alleviates suppression of the inflammasome and MAPK by francisella tularensis. J Immunol 185: 5476-5485. 10.4049/jimmunol.1002154; 10.4049/jimmunol.1002154.
3. Bosio CM, Bielefeldt-Ohmann H, Belisle JT (2007) Active suppression of the pulmonary immune response by francisella tularensis Schu. J Immunol 179: 4538-4547.
4. Hajjar AM, Harvey MD, Shaffer SA, Goodlett DR, Sjostedt A, et al. (2006) Lack of in vitro and in vivo recognition of francisella tularensis subspecies lipopolysaccharide by toll-like receptors. Infect Immum 74: 6730-6738. 10.1128/IAI.00934-06.
5. Lindgren M, Ensellat K, Broms JE, Spidlov P, Dankova V, et al. (2009) The role of endotoxin during typhoid fever and tularemia in man. I. Disruption of francisella tularensis schu S4 iglI, iglJ, and pdpC genes results in attenuation and provides protection against the challenge with the parental strain. Microbes Infect 12: 4538-4547. 10.1128/IAI.00475-08.
6. Bosio CM, Bielefeldt-Ohmann H, Belisle JT (2007) Active suppression of the pulmonary immune response by francisella tularensis Schu. J Immunol 178: 4538-4547.
7. Bonquist L, Lindgren H, Golovlev I, Guina T, Sjostedt A (2008) MglA and igl for modulation of a host cell death pathway induced by francisella tularensis LVS. Infect Immum. 10.1128/IAI.00275-13.
8. Barker JR, Chong A, Wehrly TD, Yu JJ, Rodriguez SA, et al. (2009) The francisella tularensis pathogenicity island encodes a secretion system that is required for phagosomal escape and virulence. Mol Microbiol 76: 4549-4560. 10.1111/j.1462-5822.2010.01643.x; 10.1111/j.1462-5822.2010.01643.x.
9. Broms JE, Lavander M, Meyer L, Sjostedt A (2013) Importance of PdpC, IglC, and IglG for modulation of a host cell death pathway induced by francisella tularensis Holarctica. J. Biol Chem 288: 6748-6756. 10.1128/JBC.06753-13.
10.1128/JBC.06753-13.
11. Broms JE, Lavander M, Sjostedt A (2008) A conserved alpha-helix essential for a type VI secretion-like system of francisella tularensis. J Bacteriol 191: 2431-2446. 10.1128/JB.01759-08; 10.1128/JB.01759-08.
12. Straskova A, Cerveny L, Spidlov P, Dankova V, Belcic D, et al. (2012) Deletion of iglH in virulent francisella tularensis subsp. holarctica FSC200 strain results in attenuation and provides protection against the challenge with the parental strain. Biochim Biophys Acta 1818: 177-187. 10.1016/j.bbamcr.2011.08.017; 10.1016/j.bbamcr.2011.08.017.
13. Long ME, Lindemann SR, Rasmussen JA, Jones BD, Allen LA (2013) Disruption of francisella tularensis schu S4 iglI, iglJ, and pdpC genes results in attenuation for growth in human macrophages and in vivo virulence in mice and reveals a unique phenotype for pdpC. Infect Immun 81: 850-861. 10.1128/IAI.00822-12; 10.1128/IAI.00822-12.
14. Fuller JR, Craven RR, Hall JD, Kijek TM, Taft-Benz S, et al. (2008) RipA, a cytoplasmic membrane protein conserved among francisella species, is required for intracellular survival. Infect Immun 76: 4934-4943. 10.1128/IAI.00475-08; 10.1128/IAI.00475-08.
15. Fuller JR, Kijek TM, Taft-Benz S, Kawula TH (2009) Environmental and intracellular regulation of francisella tularensis ripA. BMC Microbiol 9: 216-219. 10.1186/1471-2180-9-216.
16. Baranyai T, Dzikovay G, Hargittai I, Munck A (2011) Elevated AIM2-mediated pyroptosis triggered by hypercytotoxic francisella mutant strains is attributed to increased intracellular bacteriolysis. Cell Microbiol 13: 1586-1600. 10.1111/j.1462-5822.2011.01643.x.
21. Chong A, Wehrly TD, Nair V, Fischer ER, Barker JR, et al. (2008) The early phagosomal stage of francisella tularensis determines optimal phagosomal escape and francisella pathogenicity island protein expression. Infect Immun 76: 5488–5499. 10.1128/IAI.00682-08; 10.1128/IAI.00682-08.

22. Steele S, Brunton J, Ziehr B, Taft-Benz S, Moorman N, et al. (2015) Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth. PLoS Pathog 9: e1003562. 10.1371/journal.ppat.1003562; 10.1371/journal.ppat.1003562.

23. LoVullo ED, Molins-Schneekloth CR, Schweizer HP, Pavelka MS Jr (2009) Single-copy chromosomal integration systems for francisella tularensis. Microbiology 155: 1152–1163. 10.1099/mic.0.022491-0; 10.1099/mic.0.022491-0.

24. LoVullo ED, Sherrill LA, Pavelka MS Jr (2009) Improved shuttle vectors for francisella tularensis genetics. FEMS Microbiol Lett 291: 95–102. 10.1111/j.1574-6968.2008.01440.x; 10.1111/j.1574-6968.2008.01440.x.

25. Fuller JR, Craven RR, Hall JD, Kijek TM, Taft-Benz S, et al. (2008) RipA, a cytoplasmic membrane protein conserved among francisella species, is required for intracellular survival. Infect Immun 76: 4934–4943. 10.1128/IAI.00475-08.

26. Hall JD, Woolard MD, Gunn BM, Craven RR, Taft-Benz S, et al. (2008) Infected-host-cell repertoire and cellular response in the lung following inhalation of francisella tularensis schu S4, LVS, or U112. Infect Immun 76: 5843–5852. 10.1128/IAI.01176-08.

27. Mortensen BL, Fuller JR, Taft-Benz S, Kijek TM, Miller CN, et al. (2010) Effects of the putative transcriptional regulator IclR on francisella tularensis pathogenesis. Infect Immun 78: 5022–5032. 10.1128/IAI.00544-10.

28. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Meth 9: 671–675. Available: http://dx.doi.org/10.1038/nmeth.2089 via the Internet.

29. Checroun C, Wehrly TD, Fischer ER, Hayes SF, Celli J (2006) Autophagy-mediated reentry of francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci U S A 103: 14578–14583. 10.1073/pnas.0601630103.