Modeling collaterally sensitive drug cycles: shaping heterogeneity to allow adaptive therapy

Nara Yoon (presenter)1,2, Robert Vander Velde3,4, Nikhil Krishnan2,5, Andriy Marusyk3, Jake Scott2,5

1Adelphi University, Garden city, NY AU; 2THOR, Cleveland Clinic, Cleveland, OH T; 3Moffit Cancer Center, Tampa, FL M; 4Univ. of South Florida, Tampa, FL U; 5Sch. of Medicine, CWRU, Cleveland, OH C;

CATMO2020
December 10, 2020, 11 am – 11:20 am
1. Background

Drug resistance

![Graph showing disease burden over time with therapy started and resistance observed points highlighted.]

- **Disease burden**
- **Time**
- **Therapy started**
- **Resistance observed**
1. Background

Drug resistance

Dynamics of tumor heterogeneity
1. Background

Drug resistance

Dynamics of tumor heterogeneity

Collateral sensitivity

[Sdhawan et al., Scientific Reports, 2017]
2. Model for 2 drugs

Fundamental modeling structure of a heterogeneous cell population

- Dynamic variables:
 - C_S: sensitive cell population
 - C_R: resistant cell population
 - $C_S + C_R$: total tumor size, disease burden

- Parameters:
 - $s < 0$, $r > 0$: net proliferation rates for C_S and C_R (birth minus death, $s = b_s - d_s$, $r = b_r - d_r$)
 - $g > 0$: rate or resistance acquisition due to therapy

Deterministic ODE system depends on $\{s, r, g \mid C_S^0, C_R^0\}$

\[
\begin{pmatrix}
\dot{C}_S \\
\dot{C}_R
\end{pmatrix} = \begin{pmatrix}
 s - g & 0 \\
 g & r
\end{pmatrix} \begin{pmatrix}
 C_S \\
 C_R
\end{pmatrix}, \quad \begin{pmatrix}
 C_S \\
 C_R
\end{pmatrix}_{t=0} = \begin{pmatrix}
 C_S^0 \\
 C_R^0
\end{pmatrix}
\]

Solution

\[
\begin{align*}
C_S(t) &= C_S^0 e^{-(g-s)t} \\
C_R(t) &= A e^{-(g-s)t} + Be^{r t}
\end{align*}
\]

\[
C_S(t) + C_R(t) = A' e^{-(g-s)t} + Be^{r t}
\]

(Ex) $s=-0.05$/day, $r=0.01$/day, $g=0.02$/day
2. Model for 2 drugs

Modeling of collateral sensitive network

With Drug A

\[\begin{align*}
&\text{With Drug A} \\
&\quad R_A \xrightarrow{g_A} R_B \quad s_A \xleftarrow{r_A} R_A \\
&\quad R_B \xrightarrow{g_B} R_A \quad r_B \xleftarrow{s_B} R_B
\end{align*} \]

With Drug B

\[\begin{align*}
&\text{With Drug B} \\
&\quad R_A \xrightarrow{g_B} R_B \quad r_B \xleftarrow{s_B} R_A \\
&\quad R_B \xrightarrow{g_A} R_A \quad s_A \xleftarrow{r_A} R_B
\end{align*} \]

- **Dynamic variables:**
 - \(R_A \): resistant to Drug A sensitive to Drug B
 - \(R_B \): resistant to Drug B sensitive to Drug A
 - \(R_A + R_B \): total tumor size, disease burden

- **Parameters:**
 - \(\{s_A = b_A^s - d_A^s, r_A = b_A^r - d_A^r, g_A\} \) for Drug A
 - \(\{s_B = b_B^s - d_B^s, r_B = b_B^r - d_B^r, g_B\} \) for Drug B

- **Initial population makeup:** \(A_p B_0 = R_A^0 / R_B^0 \)

- **Drug Switches**
 - (e.g.) (A-drug, 1 week) → (B-drug, 1.5 week) → ...
2. Model for 2 drugs

Analysis: strategic drug-switch timing

1. T_{max}: clinical intuition

The longest time period with $Drug A$ lasting effective.

$$T_{max} \left(\{s_A, r_A, g_A\}, A p B_0 \right)$$

$$= \log \frac{(g_A - s_A)(r_A - s_A)}{r_A \left(g_A (1 + A p B_0) + A p B_0 (r_A - s_A) \right)}$$

which exists if and only if (iff) $A p B_0 < \frac{s_A}{r_A}$, where $A p B_0 = R_A(0)/R_B(0)$.

(Blue) $Drug A$ alone
(Red) $Drug B$ alone

(Used parameters)

$s_A = s_B = -0.09, r_A = r_B = 0.008,$

$g_A = g_B = 0.001, \{R^0_A, R^0_B\} = \{0.1, 0.9\}$
2. Model for 2 drugs

Analysis: strategic drug-switch timing

1. T_{max}: clinical intuition

The longest time period with Drug A lasting effective.

\[
T_{\text{max}}(\{s_A, r_A, g_A\}, ApB_0) = \log \left[\frac{(g_A - s_A)(r_A - s_A)}{r_A(g_A(1 + ApB_0) + ApB_0(r_A - s_A))} \right],
\]

which exists if and only if (iff) $ApB_0 < |s_A/r_A|$, where $ApB_0 = R_A(0)/R_B(0)$.

2. T_{min} suggests improvement

Population decreases even faster by switch from Drug A to Drug B at or after:

\[
T_{\text{min}}(\{s_A, r_A, g_A\}, \{s_B, r_B\}, ApB_0) = \log \left[\frac{(r_A - s_A)(r_B - s_A) + g_A(r_A + r_B - s_A - s_B)}{(g_A + ApB_0(g_A + r_A - s_A))(r_A - s_B)} \right],
\]

which exists iff $ApB_0 < |(r_B - s_A)/(r_A - s_B)|$

Condition: $T_{\text{min}} < T_{\text{max}}$ iff $r_A r_B < s_A s_B$

(Blue) Drug A alone
(Red) Drug B alone
(Dashed magenta) arbitrary switch

(Used parameters)

$s_A = s_B = -0.09$, $r_A = r_B = 0.008$, $g_A = g_B = 0.001$, $\{R_A^0, R_B^0\} = \{0.1, 0.9\}$
2. Model for 2 drugs

Analysis: strategic drug-switch timing

1. T_{max}: clinical intuition

The longest time period with Drug A lasting effective.

$$T_{\text{max}}(\{s_A, r_A, g_A\}, ApB_0) = \log \left(\frac{(g_A - s_A)(r_A - s_A)}{r_A(g_A(1 + ApB_0) + ApB_0(r_A - s_A))} \right),$$

which exists if and only if (iff) $ApB_0 < |s_A/r_A|$

where $ApB_0 = R_A(0)/R_B(0)$.

2. T_{min} suggests improvement

Population decreases even faster by switch from Drug A to Drug B at or after:

$$T_{\text{min}}(\{s_A, r_A, g_A\}, \{s_B, r_B\}, ApB_0) = \log \left(\frac{(r_A - s_A)(r_B - s_A) + g_A(r_A + r_B - s_A - s_B)}{(g_A + ApB_0(g_A + r_A - s_A))(r_A - s_B)} \right),$$

which exists iff $ApB_0 < |(r_B - s_A)/(r_A - s_B)|$

Condition: $T_{\text{min}} < T_{\text{max}}$ iff $r_Ar_B < s_As_B$

(Blue) Drug A alone
(Red) Drug B alone
(Dashed magenta) arbitrary switch
(Black) instantaneous switch

(Used parameters)

$s_A = s_B = -0.09$, $r_A = r_B = 0.008$,

$g_A = g_B = 0.001$, $\{R_A^0, R_B^0\} = \{0.1, 0.9\}$
2. Model for 2 drugs

Analysis: population makeup at T_{min} and T_{max}

- Population makeup:
 \[
 ApB(t) := \frac{R_A(t)}{R_B(t)}
 \]

- \(ApB(T_{\text{min}}) = ApB(T_{\text{min}}) = \frac{r_B - s_A}{r_A - s_B} := ApB^*\),
- \(ApB(T_{\text{max}}) = \frac{-s_A}{r_A}, \quad ApB(T_{\text{max}}) = \frac{r_B}{-s_B}\)

- Drug effect at \(ApB\):
 \[
 \frac{d}{dt} P(t) \bigg|_{t=0}^{\{s_i, r_i, g_i\}, ApB_0} = P(t) = R_A(t) + R_B(t), \quad P(0) = 1 \text{ (fixed)}
 \]

when \(r_A r_B < s_A s_B\)
2. Model for 2 drugs

Optimal control consists of **two stages** of therapy

(Stage 1; *shaping*) until T_{min}, “better” drug alone

(Stage 2; *adaptive therapy*) combination of the two drugs switched in turn with a definite ratio in duration, k, i.e., *Drug A* for t days and *Drug B* for k times t days.

$$k^{(t)}(\{s_A, r_A, g_A\}, \{s_B, r_B, g_B\}, \Delta t)$$

$$\lim_{\Delta t \to 0} k = \lim_{\Delta t \to 0} k' = \frac{(r_A-s_A)(r_B-s_A)+g_A(r_A+r_B-s_A-s_B)(r_A-s_B)}{(r_A-s_B)(r_B-s_B)+g_B(r_A+r_B-s_A-s_B)(r_B-s_A)} = k^*$$

- **Blue** T_{min} switch (optimal)
- **Red** T_{max} switch
- **Solid** Total: $R_A + R_B$
- **Dotted** R_A
- **Dashed** R_B
- **Gray area** Stage 1
- **White area** Stage 2

(Used parameters)

$$\{s_A, s_B\} = -0.09\{2,1\}, \quad \{r_A, r_B\} = 0.008\{1,2\},$$

$$\{g_A, g_B\} = 0.001\{0.75,1.25\}, \quad \{R_A^0, R_B^0\} = \{0.1,0.9\}$$
2. Model for 2 drugs

Simple analytic description of Stage 2 of the optimal control

• Differential system on Stage 2:

\[
\begin{align*}
\text{Drug A for } (k^* \Delta t)\text{-long period } \\
\frac{\dot{R}_A}{\dot{R}_B} &= \begin{pmatrix} r_B & g_B \\ s_B - g_B & 0 \end{pmatrix} \begin{pmatrix} R_A \\ R_B \end{pmatrix} := D_A \begin{pmatrix} R_A \\ R_B \end{pmatrix}, \\
\text{Drug B for } \Delta t\text{-long period } \\
\frac{\dot{R}_A}{\dot{R}_B} &= \begin{pmatrix} s_A - g_A & 0 \\ g_A & r_A \end{pmatrix} \begin{pmatrix} R_A \\ R_B \end{pmatrix} := D_B \begin{pmatrix} R_A \\ R_B \end{pmatrix},
\end{align*}
\]

\[
\begin{align*}
\text{Drug A for } (k^* \Delta t)\text{-long period }
\end{align*}
\]

... as \(\Delta t \to 0 \)

\[
\begin{align*}
\frac{\dot{R}_A}{\dot{R}_B} &= \frac{k^*}{1 + k^*} D_A + \frac{1}{1 + k^*} D_B \begin{pmatrix} R_A \\ R_B \end{pmatrix}
\end{align*}
\]

• Stage 2 starts at \(T_{\text{min}} \):

\[
A p B (T_{\text{min}}) = A p B^*
\]

• Populations on stage 2

\[
P(t + T_{\text{min}}) = P(T_{\text{min}}) \exp(\lambda \: t)
\]

for \(P \in \{R_A, R_B, R_A + R_B\} \)

where \[
\lambda = - \frac{r_A r_B - s_A s_B}{r_A + r_B + s_A + s_B}
\]

Details of the proof is shown in [Yoon et al., Bulletin of Mathematical Biology, 2018]
3. Model for \(n \) drugs

Collateral Sensitivity cycle of length \(N \):

\[
\text{Drug 1} \rightarrow \text{Drug 2} \rightarrow \cdots \rightarrow \text{Drug } N \rightarrow \text{Drug 1} \rightarrow \cdots
\]

\(N \) dynamic variables:
- \(R_i \): resistant to Drug \(i \)
- \(R_{i-1} \) (or \(R_N \)): sensitive to Drug \(i \) (or Drug 1)
- \(R_j \): neutral to Drug \(i \) \((j \notin \{i - 1, i\})\)

\(N \times 5 \) parameters:
- Proliferation rates: \(\{p_r^i > 0, p_s^i < 0, p_0^i\} \) for Drug \(i \)
- Transition rates: \(\{g_s^i, g_0^i\} \) for Drug \(i \)

![Diagram of collateral sensitivity cycle with dynamic variables and parameter interpretations](image)
3. Model for n drugs

Dynamics of cell populations under Drug i: \[
\frac{dv}{dt} = \mathcal{M}(i) \, v \quad \text{where} \ v = (R_1, \ldots, R_N)^T
\]

\[
\mathcal{M}(i) = \begin{pmatrix}
\lambda^i_0 & 0 & \cdots & 0 & g^i_s & 0 & \cdots & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \cdots & \cdots & \ddots \\
\vdots & \ddots & \cdots & \ddots \\
\vdots & \ddots \\
0 & \cdots & \cdots & 0 & \lambda^i_s & \lambda^i_r & \ddots & \ddots & \cdots & \cdots \\
g^i_0 & \cdots & \cdots & g^i_0 & 0 & \lambda^i_s & g^i_s & \cdots & \cdots & g^i_s \\
0 & \cdots & \cdots & 0 & g^i_s & 0 & \lambda^i_0 & 0 & \cdots & 0 \\
\vdots & \ddots & \cdots & \ddots & \ddots & \cdots & \ddots & \ddots & \cdots & \ddots \\
\vdots & \ddots & \cdots & \cdots & \ddots & \cdots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & 0 & g^i_s & 0 & \cdots & \cdots & 0 & \lambda^i_0
\end{pmatrix}
\]

With
- \((\lambda^i_r, \lambda^i_s, \lambda^i_0) = (p^i_r, p^i_s - g^i_s, p^i_0 - g^i_0)\)
- \(g^i_s = \frac{g^i_s}{N-2}\)
3. Model for n drugs

Availability of analytic derivations

	2- drugs	n-drugs
Drug switch time (T_{min})	Yes	No
Population makeup with same drug effect ($A_p B^* \text{ or } v^*$)	Yes	Yes
Relative drug period (k^*)	Yes	No
Metaphor problem	$a^x = b$ (analytically solvable)	$a^x + b^x = c$ (analytically proved to have a solution; numerically solvable)

Total cell population with optimal therapy

$$\frac{dv}{dt} = M \left(\arg\min_{1 \leq i \leq N} e_{fi} \right) v$$

where $e_{fi}(t) = P^i \cdot v(t)$

Discretely solvable by finding the best drug at every discrete time point and solve $v' = M(j) \cdot v$ until the next point.
3. Model for \(n \) drugs

Start;
\[t \leftarrow 0 \]

Calculate \(ef_i(t) \) s, and find best drug(s):
\[I_{best} = \{ i \mid ef_i(t) \leq ef_k(t), \ 1 \leq k \leq N \} \]

Randomly choose one best drug from \(I_{best} \)

Run the chosen drug

Time is up?
\[t \leftarrow t + \Delta t \]

\(\uparrow \) Example of optimal therapy simulation compared to a non-optimal therapy

← Diagram to run optimal therapy over a discrete timeline
3. Model for \(n \) drugs

Example with 4 of symmetric drugs

\[
\{p_r, p_s, p_0\} = \{0.2, -0.7, 0.1\}, \quad \{g_s, g_0\} = \{0.1, 0.05\},
\]

\[
\{R_1^0, R_2^0, R_3^0, R_4^0\} = \{0.45, 0.3, 0.05, 0.2\}
\]

Example 4 of asymmetric drugs

\[
\{p_r^1, p_s^1, p_0^1\} = \{0.5, -0.7, 0.0\}, \quad \{g_s^1, g_0^1\} = \{0.01, 0.005\},
\]

\[
\{p_r^2, p_s^2, p_0^2\} = \{0.1, -0.7, 0.0\}, \quad \{g_s^2, g_0^2\} = \{0.01, 0.01\},
\]

\[
\{p_r^3, p_s^3, p_0^3\} = \{0.2, -0.3, 0.0\}, \quad \{g_s^3, g_0^3\} = \{0.05, 0.05\},
\]

\[
\{p_r^4, p_s^4, p_0^4\} = \{0.1, -0.2, 0.0\}, \quad \{g_s^4, g_0^4\} = \{0.001, 0.0005\},
\]

\[
\{R_1^0, R_2^0, R_3^0, R_4^0\} = \{0.05, 0.15, 0.2, 0.6\}
\]
3. Model for n drugs

An example with symmetric drugs

\[\{p_r, p_s, p_0\} = \{0.2, -0.7, 0.1\}, \{g_s, g_0\} = \{0.1, 0.05\}, \{R_1^0, R_2^0, R_3^0, R_4^0\} = \{0.45, 0.3, 0.05, 0.2\} \]

shaping adaptive therapy

\[v^* = \lambda(1, ..., 1)^T \]

Decay rate: $\frac{p_r + p_s + (N-2)p_0}{N}$
3. Model for \(n \) drugs

An example with *asymmetric* drugs

\[
\{p_r^1, p_s^1, p_0^1\} = \{0.5, -0.7, 0.0\}, \{g_s^1, g_0^1\} = \{0.01, 0.005\}, \{p_r^2, p_s^2, p_0^2\} = \{0.1, -0.7, 0.0\},
\{g_s^2, g_0^2\} = \{0.01, 0.01\}, \{p_r^3, p_s^3, p_0^3\} = \{0.2, -0.3, 0.0\}, \{g_s^3, g_0^3\} = \{0.05, 0.05\},
\{p_r^4, p_s^4, p_0^4\} = \{0.1, -0.2, 0.0\}, \{g_s^4, g_0^4\} = \{0.001, 0.0005\}, \{R_1^0, R_2^0, R_3^0, R_4^0\} = \{0.05, 0.15, 0.2, 0.6\}
\]

\[
\begin{align*}
\nu^* &= \lambda \left((\mathcal{P}^1)^T \right)^{-1} \begin{pmatrix} 1 \\ \vdots \\ (\mathcal{P}^N)^T \end{pmatrix} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \\
\text{Decay rate: ??}
\end{align*}
\]
3. Model for n drugs

An example with asymmetric drugs

\[
\begin{align*}
\{p_r^1, p_s^1, p_0^1\} &= \{0.5, -0.7, 0.0\}, \{g_s^1, g_0^1\} = \{0.01, 0.005\}, \{p_r^2, p_s^2, p_0^2\} = \{0.1, -0.7, 0.0\}, \\
\{g_s^2, g_0^2\} &= \{0.01, 0.01\}, \{p_r^3, p_s^3, p_0^3\} = \{0.2, -0.3, 0.0\}, \{g_s^3, g_0^3\} = \{0.05, 0.05\}, \\
\{p_r^4, p_s^4, p_0^4\} &= \{0.1, -0.2, 0.0\}, \{g_s^4, g_0^4\} = \{0.001, 0.0005\}, \{R_1, R_2, R_3, R_4\} = \{0.05, 0.15, 0.2, 0.6\}
\end{align*}
\]

Within each stage, since the entropy graph is flat on each stage, drugs are periodically switching with relative period from the bar chart.
3. Model for \(n \) drugs

Instantaneous drug switch is supposed to be consistent with the **linear combination** of the dynamics with corresponding intensities (as numerically tested).

\[
v = \left(\sum_{i=1}^{N} f_i M(i) \right) v
\]

Symmetric drugs

Asymmetric drugs
4. Optimal regimen without parameters

1. Subpopulations are known (e.g., cell free DNA):

 Three equations from the explicit solutions of the ODE system, for $R_i, R_{i-1}, \sum_{j \notin \{i-1,i\}} R_j$

 Hypotheses with mutation per proliferation
 \[g^i_0 = \alpha_0 p^i_0 \text{ and } g^i_s = \alpha_s p^i_s \]

 Calibration of 5 parameters

2. Only total population is known (e.g., Prostate Specific Antigen):

 Computational algorithm??
4. Optimal regimen without parameters

Algorithm to prescribe optimal regimen without parameters

- **Testing period**
 1. Calculate Pop^is and Der^is
 2. Choose good drug(s) (not just the best; ϵ)
 3. Find the level of intermediate drug effect (ef^*)

- **Optimal therapy period**
 1. Run the best drug(s)

- Time is up?
 - yes: Still more efficient than other drug(s)?
 - no: Time is up?
 - yes: end
 - no: still more efficient than other drug(s)?
4. Optimal regimen without parameters

Algorithm to prescribe optimal regimen without parameters

Good consistency with $\epsilon = 0.01$

Errors of the algorithm over a range of ϵ
Conclusions

• Population structure

• Numerically figured out optimal control

\[
\frac{dv}{dt} = M \left(\arg\min_{1 \leq i \leq N} e_{f_i} \right) v
\]

• Optimal prescription without drug parameters known

• Population makeup with balanced drug effects

A-drug is better

B-drug is better

\[
\begin{align*}
r_B & \quad ApB^* \\
-S_B & \quad -S_A \\
& \quad \frac{-S_A}{r_A}
\end{align*}
\]

P decreases with B-drug

P decreases with A-drug

Still more efficient than other drug(s)?

end

Time is up?

no

yes
Future work

- Considerations on the third type of cells (Areeba Khalid, Adelphi)

Differential equations:

\[
\begin{align*}
\frac{dR_A}{dt} &= r_A - g_A R_A + k_{O_A} R_O,
\frac{dR_B}{dt} &= s_A R_A - g_A R_B - h_{O_B} R_O,
\frac{dR_O}{dt} &= s_B R_B - g_B R_O - h_{O_B} R_O + h_{A_O} R_A;
\end{align*}
\]

- Find combinations of collaterally sensitive factors from RNA (miRNA), DNA, network data

- Interdisciplinary implementation of the optimal therapy in the automatic cell culturing device, Mobidostat.

- Expansion of the model considering spatial distribution of microenvironment.
Thank you all!!

Theory Division

Math & CS at Adelphi
