The No-Binding Regime of the Pauli-Fierz Model

Fumio Hiroshima1, Herbert Spohn2, and Akito Suzuki3

1Faculty of Mathematics, Kyushu University, Fukuoka, 819-0395, Japan
2Zentrum Mathematik and Physik Department, TU München, D-80290, München, Germany
3Department of Mathematics, Faculty of Engineering, Shinshu University, Nagano, 380-8553, Japan

January 19, 2013

\textit{Key words:} Enhanced binding, ground state, Birman-Schwinger principle, Pauli-Fierz model

\textbf{Abstract}

The Pauli-Fierz model $H(\alpha)$ in nonrelativistic quantum electrodynamics is considered. The external potential V is sufficiently shallow and the dipole approximation is assumed. It is proven that there exist constants $0 < \alpha_- < \alpha_+$ such that $H(\alpha)$ has no ground state for $|\alpha| < \alpha_-$, which complements an earlier result stating that there is a ground state for $|\alpha| > \alpha_+$. We develop a suitable extension of the Birman-Schwinger argument. Moreover for any given $\delta > 0$ examples of potentials V are provided such that $\alpha_+ - \alpha_- < \delta$.
1 Introduction

Let us consider a quantum particle in an external potential described by the Schrödinger operator

\[H_p(m) = -\frac{1}{2m}\Delta + V(x) \]

acting on \(L^2(\mathbb{R}^d) \). If the potential \(V \) is short ranged and attractive and if the dimension \(d \geq 3 \), then there is a transition from unbinding to binding as the mass \(m \) is increased. More precisely, there is some critical mass, \(m_c \), such that \(H_p(m) \) has no ground state for \(0 < m < m_c \) and a unique ground state for \(m_c < m \). In fact, the critical mass is given by

\[\frac{1}{2m_c} = \| |V|^{1/2} (\Delta)^{-1} |V|^{1/2} \|, \]

see Lemma 3.3. We now couple \(H_p(m) \) to the quantized electromagnetic field with coupling strength \(\alpha \geq 0 \). The corresponding Hamiltonian is denoted by \(H(\alpha) \). On a heuristic level, through the dressing by photons the particle becomes effectively more heavy, which means that the critical mass \(c_0\alpha^2(\alpha) \) should be decreasing as a function of \(\alpha \) with \(m_c(0) = m_c \). In particular, if \(m < m_c \), then there should be an unbinding-binding transition as the coupling \(\alpha \) is increased. This phenomenon has been baptized enhanced binding and has been studied for a variety of models by several authors \([AK03, BV04, HVV03, HHS05, HS01, HS08]\). In case \(m > m_c \) more general techniques are available and the existence of a unique ground state for the full Hamiltonian is proven in \([AH97, BFS99, GLL01, LL03, Ger00, Spo98]\).

The heuristic picture also asserts that the full Hamiltonian has a regime of couplings with no ground state. This property is more difficult to establish and the only result we are aware of is proved by Benguria and Vougalter \([BV04]\). In essence they establish that the line \(m_c(\alpha) \) is continuous as \(\alpha \to 0 \). (In fact, they use the strength of the potential as parameter). From this it follows that the no binding regime cannot be empty. In our paper, as in \([HS01]\), we will use the dipole approximation for simplicity, but provide a fairly explicit bound on the critical mass. In the dipole approximation the effective mass \(m_{\text{eff}}(\alpha) = m + c_0\alpha^2 \) with some explicitly computable coefficient \(c_0 \), see Eq. (2.10) below. Thus the most basic guess for \(m_c(\alpha) \) would be \(m_c(\alpha) + c_0\alpha^2 = m_c \). The corresponding curve is displayed in Fig. 1. In fact the guess turns out to be a lower bound on the true \(m_c(\alpha) \). We will
complement our lower bound with an upper bound of the same qualitative form.

The unbinding for the Schrödinger operator $H_p(m)$ is proven by the Birman-Schwinger principle. Formally one has

$$H_p(m) = \frac{1}{2m}(-\Delta)^{1/2}(\mathbb{1} + 2m(-\Delta)^{-1/2}V(-\Delta)^{-1/2})(-\Delta)^{1/2}.$$

If m is sufficiently small, then $2m(-\Delta)^{-1/2}V(-\Delta)^{-1/2}$ is a strict contraction. Hence the operator $\mathbb{1} + 2m(-\Delta)^{-1/2}V(-\Delta)^{-1/2}$ has a bounded inverse and $H_p(m)$ has no eigenvalue in $(-\infty, 0]$. More precisely the Birman-Schwinger principle states that

$$\dim \mathbb{1}_{(-\infty, 0]}(H_p(m)) \geq \dim \mathbb{1}_{(2m, \infty]}(V^{1/2}(-\Delta)^{-1}V^{1/2}).$$

For small m the left hand side equals 0 and thus $H_p(m)$ has no eigenvalues in $(-\infty, 0]$.

Our approach will be to generalize (1.2) to the Pauli-Fierz model of non-relativistic quantum electrodynamics. The Pauli-Fierz Hamiltonian $H(\alpha)$ is defined on the Hilbert space $\mathcal{H} = L^2(\mathbb{R}^d) \otimes \mathcal{F}$, where \mathcal{F} denotes the boson Fock space. Transforming $H(\alpha)$ unitarily by U one arrives at

$$U^{-1}H(\alpha)U = H_0(\alpha) + W + g$$
as the sum of the free Hamiltonian
\begin{equation}
H_0(\alpha) = -\frac{1}{2m_{\text{eff}}(\alpha)} \Delta \otimes 1 + 1 \otimes H_f,
\end{equation}
involving the effective mass of the dressed particle and the Hamiltonian H_f of the free boson field, the transformed interaction
\begin{equation}
W = T^{-1}(V \otimes 1)T,
\end{equation}
and the global energy shift g. $m_{\text{eff}}(\alpha)$ is an increasing function of α. We will show that (1.3) has no ground state for sufficiently small $|\alpha|$ by means of a Birman-Schwinger type argument such as (1.2). In combination with the results obtained in [HS01] we provide examples of external potentials V such that for some given $\delta > 0$ there exist two constants $0 < \alpha_- < \alpha_+$ satisfying
\begin{equation}
\delta > \alpha_+ - \alpha_- > 0
\end{equation}
and $H(\alpha)$ has no ground state for $|\alpha| < \alpha_-$ but has a ground state for $|\alpha| > \alpha_+$.

Our paper is organized as follows. In Section 2 we define the Pauli-Fierz model and in Section 3 we prove the absence of ground states. Section 4 lists examples of external potentials exhibiting the unbinding-binding transition.

2 The Pauli-Fierz Hamiltonian

We assume a space dimension $d \geq 3$ throughout, and take the natural unit: the velocity of light $c = 1$ and the Planck constant divided 2π, $\hbar = 1$. The Hilbert space \mathcal{H} for the Pauli-Fierz Hamiltonian is given by
\[
\mathcal{H} = L^2(\mathbb{R}^d) \otimes \mathcal{F},
\]
where
\[
\mathcal{F} = \bigoplus_{n=0}^{\infty} \left[\otimes^n (\oplus^{d-1} L^2(\mathbb{R}^d)) \right]
\]
denotes the boson Fock space over the $(d-1)$-fold direct sum $\oplus^{d-1} L^2(\mathbb{R}^d)$. Let $\Omega = \{1, 0, 0, \ldots\} \in \mathcal{F}$ denote the Fock vacuum. The creation operator and the annihilation operator are denoted by $a^*(f, j)$ and $a(f, j)$, $j = 1, \ldots, d-1$, $f \in L^2(\mathbb{R}^d)$, respectively, and they satisfy the canonical commutation relations
\[
[a(f, j), a^*(g, j')] = \delta_{jj'}(f, g) 1, \quad [a(f, j), a(g, j')] = 0 = [a^*(f, j), a^*(g, j')].
\]
with \((f, g)\) the scalar product on \(L^2(\mathbb{R}^d)\). We write

\[
(2.1) \quad \alpha^x(f, j) = \int \alpha^x(k, j)f(k)dk, \quad \alpha^x = a, a^*,
\]

The energy of a single photon with momentum \(k \in \mathbb{R}^d\) is

\[
(2.2) \quad \omega(k) = |k|.
\]

The free Hamiltonian on \(\mathcal{F}\) is then given by

\[
(2.3) \quad H_f = \sum_{j=1}^{d-1} \int \omega(k)a^*(k, j)a(k, j)dk.
\]

Note that \(\sigma(H_f) = [0, \infty)\), and \(\sigma_p(H_f) = \{0\}\). \(\{0\}\) is a simple eigenvalue of \(H_f\) and \(H_f \Omega = 0\).

Next we introduce the quantized radiation field. The \(d\)-dimensional polarization vectors are denoted by \(e_j(k) \in \mathbb{R}^d, j = 1, \ldots, d-1\), which satisfy \(e_i(k) \cdot e_j(k) = \delta_{ij}\) and \(e_j(k) \cdot k = 0\) almost everywhere on \(\mathbb{R}^d\). The quantized vector potential then reads

\[
(2.4) \quad A(x) = \sum_{j=1}^{d-1} \int \frac{1}{\sqrt{2\omega(k)}} e_j(k)\left(\hat{\phi}(k)a^*(k, j)e^{-ikx} + \hat{\phi}(-k)a(k, j)e^{ikx}\right)dk
\]

for \(x \in \mathbb{R}^d\) with ultraviolet cutoff \(\hat{\phi}\). Conditions imposed on \(\hat{\phi}\) will be supplied later. Assuming that \(V\) is centered, in the dipole approximation \(A(x)\) is replaced by \(A(0)\). We set \(A = A(0)\). The Pauli-Fierz Hamiltonian \(H(\alpha)\) in the dipole approximation is then given by

\[
(2.5) \quad H(\alpha) = \frac{1}{2m} \left(p \otimes \mathbb{1} - \alpha \mathbb{1} \otimes A \right)^2 + V \otimes \mathbb{1} + \mathbb{1} \otimes H_f,
\]

where \(\alpha \in \mathbb{R}\) is the coupling constant, \(V\) the external potential, and \(p = (-i\partial_1, \ldots, -i\partial_d)\) the momentum operator. For notational convenience we omit the tensor notation \(\otimes\) in what follows.

Assumption 2.1 Suppose that \(V\) is relatively bounded with respect to \(-\frac{1}{2m} \Delta\) with a relative bound strictly smaller than one, and

\[
(2.6) \quad \hat{\varphi}/\omega \in L^2(\mathbb{R}^d), \quad \sqrt{\omega} \hat{\varphi} \in L^2(\mathbb{R}^d).
\]
By this assumption $H(\alpha)$ is self-adjoint on $D(-\Delta) \cap D(H_f)$ and bounded below for arbitrary $\alpha \in \mathbb{R}$ [Ara81, Ara83]. We need in addition some technical assumptions on $\hat{\varphi}$ which are introduced in [HS01, Definition 2.2]. We list them as

Assumption 2.2 The ultraviolet cutoff $\hat{\varphi}$ satisfies (1)-(4) below.

1. $\hat{\varphi}/\omega^{3/2} \in L^2(\mathbb{R}^d)$;
2. $\hat{\varphi}$ is rotation invariant, i.e. $\hat{\varphi}(k) = \chi(|k|)$ with some real-valued function χ on $[0, \infty)$; and $\rho(s) = |\chi(\sqrt{s})|^2 s^{(d-2)/2} \in L^r([0, \infty), ds)$ for some $1 < r$, and there exists $0 < \beta < 1$ such that $|\rho(s + h) - \rho(s)| \leq K|h|^\beta$ for all s and $0 < h \leq 1$ with some constant K;
3. $\|\hat{\varphi}\omega^{(d-1)/2}\|_\infty < \infty$;
4. $\hat{\varphi}(k) \neq 0$ for $k \neq 0$.

The Hamiltonian $H(\alpha)$ with $V = 0$ is quadratic and can therefore be diagonalized explicitly, which is carried out in [Ara83, HS01]. Assumption 2.2 ensures the existence of a unitary operator diagonalizing $H(\alpha)$.

Let

$$D_+(s) = m - \alpha^2 d - 1 \int \frac{|\hat{\varphi}(k)|^2}{s - \omega(k)^2 + i0} \, dk, \quad s \geq 0.$$

We see that $D_+(0) = m + \alpha^2 d - 1 \|\hat{\varphi}/\omega\|^2 > 0$ and the imaginary part of $D_+(s)$ is $\alpha^2 d - 1 \pi S_{d-1} \rho(s) \neq 0$ for $s \neq 0$, where ρ is defined in (2) of Assumption 2.2 and S_{d-1} is the volume of the $d-1$ dimensional unit sphere, and the real part of $D_+(s)$ satisfies that $\lim_{s \to \infty} \Re D_+(s) = m > 0$. These properties follows from Assumption 2.2. In particular

$$(2.7) \quad \inf_{s \geq 0} |D_+(s)| > 0.$$

Define

$$(2.8) \quad \Lambda^\mu_j(k) = \frac{e(\mu)(k) \hat{\varphi}(k)}{\omega^{3/2}(k) D_+(\omega^2(k))}.$$

Then $\|\Lambda^\mu_j\| \leq C\|\hat{\varphi}/\omega^{3/2}\|$ for some constant C.

Proposition 2.3 Under the assumptions 2.1 and 2.2, for each \(\alpha \in \mathbb{R} \), there exist unitary operators \(U \) and \(T \) on \(\mathcal{H} \) such that both map \(D(-\Delta) \cap D(H_f) \) onto itself and

\[
U^{-1}H(\alpha)U = -\frac{1}{2m_{\text{eff}}(\alpha)} \Delta + H_f + T^{-1}VT + g,
\]

where \(m_{\text{eff}}(\alpha) \) and \(g \) are constants given by

\[
m_{\text{eff}}(\alpha) = m + \alpha^2 \left(\frac{d-1}{d} \right) \| \hat{\varphi}/\omega \|_2^2,
\]

\[
g = \frac{d}{2\pi} \int_{-\infty}^{\infty} \frac{t^2}{m + \alpha^2 \left(\frac{d-1}{d} \right)} \left\| \frac{\hat{\varphi}}{\sqrt{t^2 + \omega^2}} \right\|_2^2 dt.
\]

Here \(U \) is defined in (4.29) of [HS01] and \(T \) by

\[
T = \exp \left(-i \frac{\alpha}{m_{\text{eff}}(\alpha)} p \cdot \phi \right),
\]

where \(\phi = (\phi_1, ..., \phi_d) \) is the vector field

\[
\phi_\mu = \frac{1}{\sqrt{2}} \sum_{j=1}^{d-1} \int \left(\Lambda_j^\mu(k)a^*(k,j) + \Lambda_j^\mu(k)a(k,j) \right) dk.
\]

Proof: See [HS01] Appendix. \(\Box \)

3 The Birman-Schwinger principle

3.1 The case of Schrödinger operators

Let \(h_0 = -\frac{1}{2} \Delta \). We assume that \(V \in L^1_{\text{loc}}(\mathbb{R}^d) \) and \(V \) is relatively form-bounded with respect to \(h_0 \) with relative bound \(a < 1 \), i.e., \(D(|V|^{1/2}) \supset D(h_0^{1/2}) \) and

\[
||V|^{1/2}\varphi||^2 \leq a||h_0^{1/2}\varphi||^2 + b||\varphi||^2, \quad \varphi \in D(h_0^{1/2}),
\]

with some \(b > 0 \). Then the operators

\[
R_E = (h_0 - E)^{-1/2} |V|^{1/2}, \quad E < 0,
\]
are densely defined. From (3.1) it follows that \(R^*_E = |V|^{1/2}(h_0 - E)^{-1/2} \) is bounded and thus \(R_E \) is closable. We denote its closure by the same symbol. Let

\[
(3.3) \quad K_E = R^*_E R_E.
\]

Then \(K_E (E < 0) \) is a bounded, positive self-adjoint operator and it holds

\[
K_E f = |V|^{1/2} (h_0 - E)^{-1} |V|^{1/2} f, \quad f \in C_0^\infty (\mathbb{R}^d).
\]

Now let us consider the case \(E = 0 \). Let

\[
(3.4) \quad R_0 = h_0^{-1/2} |V|^{1/2}.
\]

The self-adjoint operator \(h_0^{-1/2} \) has the integral kernel

\[
h_0^{-1/2} (x,y) = \frac{a_d}{|x - y|^{d-1}}, \quad d \geq 3,
\]

where \(a_d = \sqrt{2\pi}^{(d-1)/2}/\Gamma((d-1)/2) \) and \(\Gamma(\cdot) \) the Gamma function. It holds that

\[
\left| \langle h_0^{-1/2} g, |V|^{1/2} f \rangle \right| \leq a_d \|g\|_2 \| |V|^{1/2} f \|_{2d/(d+2)}
\]

for \(f, g \in C_0^\infty (\mathbb{R}^3) \) by the Hardy-Littlewood-Sobolev inequality. Since \(f \in C_0^\infty (\mathbb{R}^3) \) and \(V \in L^1_{\text{loc}} (\mathbb{R}^3) \), one concludes \(\| |V|^{1/2} f \|_{2d/(d+2)} < \infty \). Thus \(|V|^{1/2} f \in D(h_0^{-1/2}) \) and \(R_0 \) is densely defined. Since \(V \) is relatively form-bounded with respect to \(h_0 \), \(R_0^* \) is also densely defined, and \(R_0 \) is closable. We denote the closure by the same symbol. We define

\[
(3.5) \quad K_0 = R^*_0 R_0.
\]

Next let us introduce assumptions on the external potential \(V \).

Assumption 3.1 \(V \) satisfies that (1) \(V \leq 0 \) and (2) \(R_0 \) is compact.

Lemma 3.2 Suppose Assumption 3.1. Then

(i) \(R_E, R^*_E \) and \(K_E (E \leq 0) \) are compact.

(ii) \(\|K_E\| \) is continuous and monotonously increasing in \(E \leq 0 \) and it holds that

\[
(3.6) \quad \lim_{E \to -\infty} \|K_E\| = 0, \quad \lim_{E \to 0} \|K_E\| = \|K_0\|.
\]
Proof: Under (2) of Assumption 3.1, \(R_0^* \) and \(K_0 \) are compact. Since

\[
(f, K_E f) \leq (f, K_0 f), \quad f \in C_c^\infty(\mathbb{R}^d),
\]

extends to \(f \in L^2(\mathbb{R}^3), K_E, R_E \) and \(R_E^* \) are also compact. Thus (i) is proven.

We will prove (ii). It is clear from (3.7) that \(K_E \) is monotonously increasing in \(E \). Since \(R_0 \) is bounded, (3.7) holds on \(L^2(\mathbb{R}^d) \) and

\[
K_E = R_0^* ((h_0 - E)^{-1} h_0) R_0, \quad E \leq 0.
\]

From (3.8) one concludes that

\[
\| K_E - K_{E'} \| \leq \| K_0 \| \frac{|E - E'|}{|E'|}
\]

for \(E, E' < 0 \). Hence \(\| K_E \| \) is continuous in \(E < 0 \). We have to prove the left continuity at \(E = 0 \). Since \(R_0 \) is bounded, \((3.7) \) holds on \(L^2(\mathbb{R}^d) \) and

\[
K_E \to K_0 = \text{s-lim}_{E \uparrow 0} K_E \quad K_0 f = \lim_{E \uparrow 0} \| K_E f \|.
\]

Hence we have \(\| K_0 \| \leq \liminf_{E \uparrow 0} \| K_E \| \) and \(\lim_{E \uparrow 0} \| K_E \| = \| K_0 \| \). It remains to prove that \(\lim_{E \to -\infty} \| K_E \| = 0 \). Since \(R_0^* \) is compact, for any \(\epsilon > 0 \), there exists a finite rank operator \(T_\epsilon = \sum_{k=1}^n (\varphi_k, \cdot) \psi_k \) such that \(n = n(\epsilon) < \infty, \varphi_k, \psi_k \in L^2(\mathbb{R}^d) \) and \(\| R_0^* - T_\epsilon \| < \epsilon \). Then it holds that \(\| K_E \| \leq (\epsilon + \| T_\epsilon h_0(h_0 - E)^{-1} \|) \| R_0 \| \). For any \(f \in L^2(\mathbb{R}^d) \), we have

\[
\| T_\epsilon h_0(h_0 - E)^{-1} f \| \leq \left(\sum_{k=1}^n \| h_0(h_0 - E)^{-1} \varphi_k \| \psi_k \| \right) \| f \|
\]

and \(\lim_{E \to -\infty} \| T_\epsilon h_0(h_0 - E)^{-1} \| = 0 \), which completes (ii).

Let

\[
H_p(m) = -\frac{1}{2m}\Delta + V.
\]

By (ii) of Lemma 3.2 we have \(\lim_{E \to -\infty} \| |V|^{1/2}(h_0 - E)^{-1/2} \| = 0 \). Therefore \(V \) is infinitesimally form bounded with respect to \(h_0 \) and \(H_p(m) \) is the self-adjoint operator associated with the quadratic form

\[
f, g \mapsto \frac{1}{m}(h_0^{1/2} f, h_0^{1/2} g) + (|V|^{1/2} f, |V|^{1/2} g)
\]
for \(f, g \in D(h_0^{1/2}) \). Note that the domain \(D(H_0(m)) \) is independent of \(m \).

Under (2) of Assumption 3.1 the essential spectrum of \(H_0(m) \) coincides with that of \(- \frac{1}{2m} \Delta\), hence \(\sigma_{\text{ess}}(H_0(m)) = [0, \infty) \). Next we will estimate the spectrum of \(H_0(m) \) contained in \((-\infty, 0]\). Let \(\mathbb{I}_\mathcal{O}(T), \mathcal{O} \subset \mathbb{R} \), be the spectral resolution of self-adjoint operator \(T \) and set

\[
N_\mathcal{O}(T) = \dim \text{Ran} \mathbb{I}_\mathcal{O}(T).
\]

The Birman-Schwinger principle [Sim05] states that

\[
\begin{align*}
(E < 0) & \quad N_{(-\infty, \frac{1}{m}]}(H_0(m)) = N_{[\frac{1}{m}, \infty)}(K_E), \\
(E = 0) & \quad N_{(-\infty, 0]}(H_0(m)) = N_{[\frac{1}{m}, \infty)}(K_0).
\end{align*}
\]

Now let us define the constant \(m_c \) by the inverse of the operator norm of \(K_0 \),

\[
m_c = \| K_0 \|^{-1}.
\]

Lemma 3.3 Suppose Assumption 3.1.

1. If \(m < m_c \), then \(N_{(-\infty, 0]}(H_0(m)) = 0 \).
2. If \(m > m_c \), then \(N_{(-\infty, 0]}(H_0(m)) \geq 1 \).

Proof: It is immediate to see (1) by the Birman-Schwinger principle (3.11). Suppose \(m > m_c \). Then, using the continuity and monotonicity of \(E \to \| K \| \), see Lemma 3.2, there exists \(\epsilon > 0 \) such that \(m_c < \| K_{-\epsilon} \|^{-1} \leq m \). Since \(K_{-\epsilon} \) is positive and compact, \(\| K_{-\epsilon} \| \in \sigma_p(K_{-\epsilon}) \) follows and hence \(N_{[\frac{1}{m}, \infty)}(K_{-\epsilon}) \geq 1 \). Therefore (2) follows again from the Birman-Schwinger principle. \(\square \)

Remark 3.4 By Lemma 3.3 the critical mass at zero coupling \(m_c(0) = m_c \).

In the case \(m > m_c \), by the proof of Lemma 3.3 one concludes that the bottom of the spectrum of \(H_0(m) \) is strictly negative. For \(\epsilon > 0 \) we set

\[
m_\epsilon = \| K_{-\epsilon} \|^{-1}.
\]

Corollary 3.5 Suppose Assumption 3.1 and \(m > m_\epsilon \). Then

\[
\inf \sigma(H_0(m)) \leq -\frac{\epsilon}{m}.
\]

Proof: The Birman-Schwinger principle states that \(1 \leq N_{(-\infty, -\frac{\epsilon}{m}]}(H_0(m)) \), since \(1/m < \| K_{-\epsilon} \| \), which implies the corollary. \(\square \)
3.2 The case of the Pauli-Fierz model

In this subsection we extend the Birman-Schwinger type estimate to the Pauli-Fierz Hamiltonian.

Lemma 3.6 Suppose Assumption 3.1. If \(m < m_c \), then the zero coupling Hamiltonian \(H_p(m) + H_f \) has no ground state.

Proof: Since the Fock vacuum \(\Omega \) is the ground state of \(H_f \), \(H_p(m) + H_f \) has a ground state if and only if \(H_p(m) \) has a ground state. But \(H_p(m) \) has no ground state by Lemma 3.3. Therefore \(H_p(m) + H_f \) has no ground state. \(\square \)

From now on we discuss \(U^{-1}H(\alpha)U \) with \(\alpha \neq 0 \). We set

\[
U^{-1}H(\alpha)U = H_0(\alpha) + W + g,
\]

where

\[
H_0(\alpha) = -\frac{1}{2m_{\text{eff}}(\alpha)}\Delta + H_f,
\]

\[
W = T^{-1}VT.
\]

Theorem 3.7 Suppose Assumptions 2.1, 2.2 and 3.1. If \(m_{\text{eff}}(\alpha) < m_c \), then \(H_0(\alpha) + W + g \) has no ground state.

Proof: Since \(g \) is a constant, we prove the absence of ground state of \(H_0(\alpha) + W \). Since \(V \) is negative, so is \(W \). Hence \(\inf \sigma(H_0(\alpha) + W) \leq \inf \sigma(H_0(\alpha)) = 0 \). Then it suffices to show that \(H_0(\alpha) + W \) has no eigenvalues in \((-\infty, 0] \). Let \(E \in (-\infty, 0] \) and set

\[
\mathcal{K}_E = |W|^{1/2}(H_0(\alpha) - E)^{-1}|W|^{1/2},
\]

where \(|W|^{1/2} \) is defined by the functional calculus. We shall prove now that if \(H_0(\alpha) + W \) has eigenvalue \(E \in (-\infty, 0] \), then \(\mathcal{K}_E \) has eigenvalue 1. Suppose that \((H_0(\alpha) + W - E)\varphi = 0 \) and \(\varphi \neq 0 \), then

\[
\mathcal{K}_E|W|^{1/2}\varphi = |W|^{1/2}\varphi.
\]

Moreover if \(|W|^{1/2}\varphi = 0 \), then \(W\varphi = 0 \) and hence \((H_0(\alpha) - E)\varphi = 0 \), but \(H_0(\alpha) \) has no eigenvalue by Lemma 3.6. Then \(|W|^{1/2}\varphi \neq 0 \) is concluded and \(\mathcal{K}_E \) has eigenvalue 1. Then it is sufficient to see \(\|\mathcal{K}_E\| < 1 \) to show that
$H_0(\alpha) + W$ has no eigenvalues in $(-\infty, 0]$. Notice that $-\frac{1}{2m_{\text{eff}}(\alpha)}\Delta$ and T commute, and
\[
\left\|(-\Delta)^{1/2}(H_0(\alpha) - E)^{-1}(-\Delta)^{1/2}\right\| \leq 2m_{\text{eff}}(\alpha).
\]
Then we have
\[
\|K_E\| \leq \left\||V|^{1/2} \left(-\frac{1}{2m_{\text{eff}}(\alpha)}\Delta\right)^{-1/2}\right\|^2 = m_{\text{eff}}(\alpha)\|K_0\| = \frac{m_{\text{eff}}(\alpha)}{m_c} < 1
\]
and the proof is complete. \hfill \Box

4 Absence and existence of a ground state

In this section we establish the absence, resp. existence, of a ground state of the Pauli-Fierz Hamiltonian $H_0(\alpha) + W$. Let $\kappa > 0$ be a parameter and let us define the Pauli-Fierz Hamiltonian with scaled external potential $V_\kappa(x) = V(x/\kappa)/\kappa^2$ by
\[
H_\kappa = \frac{1}{2m}(p - \kappa A)^2 + V_\kappa + H_f.
\]
We also define K_κ by $H(\alpha)$ with a^\sharp replaced by κa^\sharp. Then
\[
K_\kappa = \frac{1}{2m}(p - \kappa \alpha A)^2 + V + \kappa^2 H_f.
\]
H_κ and $\kappa^{-2}K_\kappa$ are unitarily equivalent,
\[
H_\kappa \simeq \kappa^{-2}K_\kappa.
\]
Let $m < m_c$ and $\epsilon > 0$. We define the function
\[
\alpha_\epsilon = \left(d - \frac{1}{d}\|\hat{\phi}/\omega\|^2\right)^{-1/2} \sqrt{m_c - m}, \quad \epsilon > 0
\]
\[
\alpha_0 = \left(d - \frac{1}{d}\|\hat{\phi}/\omega\|^2\right)^{-1/2} \sqrt{m_c - m},
\]
where we recall that $m_c = \|K_{-\epsilon}\|^{-1}$ for $\epsilon \geq 0$. Note that

1. $|\alpha| < \alpha_0$ if and only if $m_{\text{eff}}(\alpha) < m_c$;
(2) \(|\alpha| > \alpha_\epsilon\) if and only if \(m_{\text{eff}}(\alpha) > m_\epsilon\).

Note that \(\alpha_0 < \alpha_\epsilon\) because of \(m_\epsilon > m_c\). Since \(\lim_{\epsilon \to 0} m_\epsilon = m_c\), it holds that \(\lim_{\epsilon \to 0} \alpha_\epsilon = \alpha_0\). We furthermore introduce assumptions on the external potential \(V\) and ultraviolet cutoff \(\hat{\phi}\).

Assumption 4.1 The external potential \(V\) and the ultraviolet cutoff \(\hat{\phi}\) satisfies:

1. \(V \in C^1(\mathbb{R}^d)\) and \(\nabla V \in L^\infty(\mathbb{R}^d)\);
2. \(\hat{\phi}/\omega^{5/2} \in L^2(\mathbb{R}^d)\).

We briefly comment on (1) of Assumption 4.1. We know that

\[
H_0(\alpha) + W = -\frac{1}{2m_{\text{eff}}(\alpha)} \Delta + V + H_f + V(\cdot - \frac{\alpha}{m_{\text{eff}}(\alpha)} \phi)^2 - V.
\]

The term on the right-hand side above, \(H_{\text{int}} = V(\cdot - \frac{\alpha}{m_{\text{eff}}(\alpha)} \phi)^2 - V\), is regarded as the interaction, and

\[
H_{\text{int}} \sim \frac{\alpha}{m_{\text{eff}}(\alpha)} \nabla V(\cdot) \cdot \phi.
\]

By (1) of Assumption 4.1 we have

\[
\|H_{\text{int}} \Phi\| \leq C \|(H_f + 1)^{1/2} \Phi\|
\]

with some constant \(C\) independent of \(\alpha\). This estimate follows from the fundamental inequality \(\|a^2(f) \Phi\| \leq \|f/\sqrt{\Omega}\| \|(H_f + 1)^{1/2} \Phi\|\). Then the interaction has a uniform bound with respect to the coupling constant \(\alpha\). Since the decoupled Hamiltonian \(-\frac{1}{2m_{\text{eff}}(\alpha)} \Delta + V + H_f\) has a ground state for sufficiently large \(\alpha\), it is expected that \(H_0(\alpha) + W\) also has a ground state for sufficiently large \(\alpha\). This is rigorously proven in (1) of Theorem 4.2 below. Now we are in the position to state the main theorem.

Theorem 4.2 Suppose Assumptions 2.1, 2.2, 3.1 and 4.1. Then (1) and (2) below hold.

1. For any \(\epsilon > 0\), there exists \(\kappa_\epsilon\) such that for all \(\kappa > \kappa_\epsilon\), \(H_\kappa\) has a unique ground state for all \(\alpha\) such that \(|\alpha| > \alpha_\epsilon\).
2. \(H_\kappa\) has no ground state for all \(\kappa > 0\) and all \(\alpha\) such that \(|\alpha| < \alpha_0\).
Proof: Let U_κ (resp. T_κ) be defined by U (resp. T) with ω and $\hat{\phi}$ replaced by $\kappa^2 \omega$ and $\kappa \hat{\phi}$. Then

\begin{equation}
U_\kappa^{-1} K_\kappa U_\kappa = H_p(m_{\text{eff}}(\alpha)) + \kappa^2 H_f + \delta V_\kappa + g,
\end{equation}

where $\delta V_\kappa = T_\kappa^{-1} V T_\kappa - V$. Note that g is independent of κ. Since $U_\kappa^{-1} K_\kappa U_\kappa$ is unitary equivalent to $\kappa^2 H_\kappa$, we prove the existence of a ground state for $U_\kappa^{-1} K_\kappa U_\kappa$. Let $N = \sum_{j=1}^{d-1} \int a^*(k,j) a(k,j) dk$ be the number operator. Since $H_p(m_{\text{eff}}(\alpha))$ has a ground state by the assumption $|\alpha| > \alpha_\epsilon$, i.e., $m_{\text{eff}}(\alpha) > m_\epsilon$, it can be shown that $U_\kappa^{-1} K_\kappa U_\kappa + \nu N$ with $\nu > 0$ also has a ground state, see [HS01, p.1168] for details. We denote the normalized ground state of $U_\kappa^{-1} K_\kappa U_\kappa + \nu N$ by $\Psi_\nu = \Psi_\nu(\kappa)$. Since the unit ball in a Hilbert space is weakly compact, there exists a subsequence of Ψ_ν' such that the weak limit $\Psi = \lim_{\nu' \to 0} \Psi_\nu'$ exists. If $\Psi \neq 0$, then Ψ is a ground state [AH97]. Let $P = \mathbb{1}_{\{\Sigma \geq 0\}}(-1/2m_{\text{eff}}(\alpha) \Delta + V) \otimes \mathbb{1}_{\{0\}}(H_f)$ and $\Sigma = \inf \sigma(H_p(m_{\text{eff}}(\alpha)))$. Adopting the arguments in the proof of [HS01, Lemma 3.3], we conclude

\begin{equation}
(\Psi, P \Psi) \geq 1 - \frac{|\alpha| \|\hat{\phi}/\omega^{5/2}\|^2}{\kappa^3 m_{\text{eff}}(\alpha)} - \frac{3 D}{2\kappa} - \frac{3 D}{2\kappa},
\end{equation}

where $\varepsilon > 0$ and D are constants independent of κ and α. Since $m_{\text{eff}}(\alpha) > m_\epsilon > m_{\epsilon}/2$,\n
\begin{equation}
\Sigma \leq \inf \sigma(H_p(m_\epsilon)) \leq -\frac{\varepsilon}{2m_\epsilon}
\end{equation}

by Corollary [35]. By (4.8) and (4.7) we have

\begin{equation}
(\Psi, P \Psi) \geq \kappa^{-3} \left(\rho(\kappa) - \varepsilon \|\hat{\phi}/\omega^{5/2}\|^2 \frac{|\alpha|}{m_{\text{eff}}(\alpha)} \right),
\end{equation}

where $\rho(\kappa) = \kappa^3 - \frac{\kappa}{\xi \kappa - 1}$ with $\xi = \frac{2\epsilon}{3m_{\ell}D}$. Then there exists $\kappa_\epsilon > 0$ such that the right-hand side of (4.9) is positive for all $\kappa > \kappa_\epsilon$ and all $\alpha \in \mathbb{R}$. Actually a sufficient condition for the positivity of the right-hand side of (4.9) is

\begin{equation}
\rho(\kappa) > \frac{\varepsilon \|\hat{\phi}/\omega^{5/2}\|^2}{2\sqrt{m} \|\hat{\phi}/\omega\|^2},
\end{equation}

since $\sup_{\alpha} \frac{|\alpha|}{m_{\text{eff}}(\alpha)} = (2\sqrt{m} \|\hat{\phi}/\omega\|)^{-1}$. Then $\Psi \neq 0$ for all $\kappa > \kappa_\epsilon$. Thus the ground state exists for all $|\alpha| > \alpha_\epsilon$ and all $\kappa > \kappa_\epsilon$ and (1) is complete.
We next show (2). Notice that

\[U_\kappa^{-1} H_\kappa U_\kappa = -\frac{1}{2m_{\text{eff}}(\alpha)} \Delta + H_f + T^{-1} V_\kappa T + g. \]

Define the unitary operator \(u_\kappa \) by \((u_\kappa f)(x) = k^{d/2} f(x/\kappa)\). Then we infer

\[V_\kappa = \kappa^{-2} u_\kappa V u_\kappa^{-1}, -\Delta = \kappa^{-2} u_\kappa (-\Delta) u_\kappa^{-1} \]

and

\[|||V_\kappa|^{1/2}(-\Delta)^{-1}|V_\kappa|^{1/2}|| = \kappa^{-2}||u_\kappa|V|^{1/2}u_\kappa^{-1}(-\Delta)^{-1}u_\kappa|V|^{1/2}u_\kappa^{-1}|| = ||K_0||. \]

(2) follows from Theorem 3.7.

Corollary 4.3 Let arbitrary \(\delta > 0 \) be given. Then there exists an external potential \(\tilde{V} \) and constants \(\alpha_+ > \alpha_- \) such that

1. \(0 < \alpha_+ - \alpha_- < \delta \);
2. \(H(\alpha) \) has a ground state for \(|\alpha| > \alpha_+ \) but no ground state for \(|\alpha| < \alpha_- \).

Proof: Suppose that \(V \) satisfies Assumption 3.1. For \(\delta > 0 \) we take \(\epsilon > 0 \) such that \(\alpha_\epsilon - \alpha_0 < \delta \). Take a sufficiently large \(\kappa \) such that (4.10) is fulfilled, and set \(\tilde{V}(x) = V(x/\kappa)/\kappa^2 \). Define \(H(\alpha) \) by the Pauli-Fierz Hamiltonian with potential \(\tilde{V} \). Then \(H(\alpha) \) satisfies (1) and (2) with \(\alpha_+ = \alpha_\epsilon \) and \(\alpha_- = \alpha_0 \).

Remark 4.4 (Upper and lower bound of \(m_c(\alpha) \)) Corollary 4.3 implies the upper and lower bounds

\[m_-(\alpha) \leq m_c(\alpha) \leq m_+(\alpha), \]

\[m_c(0) = m_c, \]

where

\[m_-(\alpha) = m_0 - \alpha^2 \frac{d-1}{d} \|\tilde{\psi}/\omega\|^2, \]

\[m_+(\alpha) = m_\epsilon - \alpha^2 \frac{d-1}{d} \|\tilde{\psi}/\omega\|^2. \]

Fix the coupling constant \(\alpha \). If \(m < m_-(\alpha) \), then there is no ground state, and if \(m > m_+(\alpha) \), then the ground state exists, compare with Fig. 1.

Remark 4.5 (\(m_c(\alpha) \) for sufficiently large \(\alpha \)) Let \((\frac{d-1}{d} \|\tilde{\psi}/\omega\|^2)^{-1} m_\epsilon < \alpha^2 \). Then by Remark 4.4, \(H(\alpha) \) has a ground state for arbitrary \(m > 0 \). It is an open problem to establish whether this is an artifact of the dipole approximation or in fact holds also for the Pauli-Fierz operator.
5 Examples of external potentials

In this section we give examples of potentials \(V \) satisfying Assumption 3.1. The self-adjoint operator \(h_0^{-1} \) has the integral kernel

\[
h_0^{-1}(x, y) = \frac{b_d}{|x - y|^{d-2}}, \quad d \geq 3,
\]

with \(b_d = 2\Gamma((d/2) - 1)/\pi^{(d/2)-2} \). It holds that

\[
(f, K_0 f) = \int dx \int dy f(x) K_0(x, y) f(y),
\]

where

\[
K_0(x, y) = b_d \frac{|V(x)|^{1/2}|V(y)|^{1/2}}{|x - y|^{d-2}}, \quad d \geq 3,
\]

is the integral kernel of operator \(K_0 \). We recall the Rollnik class \(\mathcal{R} \) of potentials is defined by

\[
\mathcal{R} = \left\{ V \big| \int_{\mathbb{R}^d} dx \int_{\mathbb{R}^d} dy \frac{|V(x)V(y)|}{|x - y|^2} < \infty \right\}.
\]

By the Hardy-Littlewood-Sobolev inequality, \(\mathcal{R} \supset L^p(\mathbb{R}^3) \cap L^r(\mathbb{R}^3) \) with \(1/p + 1/r = 4/3 \). In particular, \(L^{3/2}(\mathbb{R}^3) \subset \mathcal{R} \).

Example 5.1 (\(d = 3 \) and Rollnik class) Let \(d = 3 \). Suppose that \(V \) is negative and \(V \in \mathcal{R} \). Then \(K_0 \in L^2(\mathbb{R}^3 \times \mathbb{R}^3) \). Hence \(K_0 \) is Hilbert-Schmidt and Assumption 3.1 is satisfied.

The example can be extended to dimensions \(d \geq 3 \).

Example 5.2 (\(d \geq 3 \) and \(V \in L^{d/2}(\mathbb{R}^d) \)) Let \(L_w^p(\mathbb{R}^d) \) be the set of Lebesgue measurable function \(u \) such that sup\(\beta > 0 \) \(\left| \{ x \in \mathbb{R}^d | u(x) > \beta \} \right|_L^{1/p} < \infty \), where \(|E|_L \) denotes the Lebesgue measure of \(E \subset \mathbb{R}^d \). Let \(g \in L^p(\mathbb{R}^d) \) and \(u \in L_w^p(\mathbb{R}^d) \) for \(2 < p < \infty \). Define the operator \(B_{u,g} \) by

\[
B_{u,g} h = (2\pi)^{-d/2} \int e^{ikx} u(k) g(x) h(x) dx.
\]

It is shown in [Cwi77, Theorem, p.97] that \(B_{u,g} \) is a compact operator on \(L^2(\mathbb{R}^d) \). It is known that \(u(k) = 2|k|^{-1} \in L_w^d(\mathbb{R}^d) \) for \(d \geq 3 \). Let \(F \) denote Fourier transform on \(L^2(\mathbb{R}^d) \), and suppose that \(V \in L^{d/2}(\mathbb{R}^d) \). Then \(B_{u,[V]^{1/2}} \) is compact on \(L^2(\mathbb{R}^d) \) and then \(R_0^* = FB_{u,V^{1/2}}F^{-1} \) is compact. Thus \(R_0 \) is also compact.
Assume that $V \in L^{d/2}(\mathbb{R}^d)$. Let us now see the critical mass of zero coupling $m_c = m_0$. By the Hardy-Littlewood-Sobolev inequality, we have
\begin{equation}
|\langle f, K_0 f \rangle| \leq D_V \|f\|_2^2,
\end{equation}
where
\begin{equation}
D_V = \sqrt{2\pi} \sqrt[4/d]{\frac{\Gamma((d/2) - 1)}{\Gamma((d/2) + 1)} \left(\frac{\Gamma(d)}{\Gamma(d/2)} \right)^{2/d} \|V\|_{d/2}^2},
\end{equation}
a constant in (5.4) is proved by Lieb \cite{Lie83}. Then
\begin{equation}
\|K_0\| \leq D_V.
\end{equation}
By (5.5) we have $m_c \geq D_V^{-1}$. In particular in the case of $d = 3$,
\begin{equation}
m_c \geq \frac{3}{\sqrt{2\pi}^{2/3} 4^{5/3} \|V\|_{3/2}^2}.
\end{equation}

Acknowledgments:
FH acknowledges support of Grant-in-Aid for Science Research (B) 20340032 from JSPS and Grant-in-Aid for Challenging Exploratory Research 22654018 from JSPS. SA acknowledges support of Grant-in-Aid for Research Activity start-up 22840022. We are grateful to Max Lein for helpful comments on the manuscript.

References

[Ara81] A. Arai, Self-adjointness and spectrum of Hamiltonians in nonrelativistic quantum electrodynamics, \textit{J. Math. Phys.} \textbf{22} (1981), 534–537.

[Ara83] A. Arai, Rigorous theory of spectra and radiation for a model in quantum electrodynamics, \textit{J. Math. Phys.} \textbf{24} (1983), 1896–1910.

[AH97] A. Arai and M. Hirokawa, On the existence and uniqueness of ground states of a generalized spin-boson model, \textit{J. Funct. Anal.} \textbf{151} (1997), 455–503.

[AK03] A. Arai and H. Kawano, Enhanced binding in a general class of quantum field models, \textit{Rev. Math. Phys.} \textbf{15} (2003), 387–423.

[BFS99] V. Bach, J. Fröhlich, and I. M. Sigal, Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field, \textit{Commun. Math. Phys.} \textbf{207} (1999), 249–290.
[BV04] R. D. Benguria and S. A. Vugalter, Threshold for the Pauli-Fierz Operator,
Lett. Math. Phys. **70** (2004) 249–257.

[Cwi77] M. Cwikel, Weak type estimates for singular values and the number of
bound states of Schrödinger operators, *Ann. Math.* **106** (1977), 93–100.

[Ger00] C. Gérard, On the existence of ground states for massless Pauli-Fierz Hamiltonians. *Ann. Henri Poincaré* **1** (2000), 443–459.

[GLL01] M. Griesemer, E. Lieb, and M. Loss, Ground states in non-relativistic
quaternion electrodynamics, *Invent. Math.* **145** (2001), 557–595.

[HVV03] C. Hainzl, V. Vougalter and S. A. Vugalter, Enhanced binding in non-
relativistic QED, *Commun. Math. Phys.* **233** (2003), 13–26.

[HHS05] M. Hirokawa, F. Hiroshima, and H. Spohn, Ground state for point particles interacting through a massless scalar Bose field, *Adv. Math.* **191** (2005), 339–392.

[HS08] F. Hiroshima and I. Sasaki, Enhanced binding of an N particle system
interacting with a scalar field I, *Math. Z.* **259** (2008), 657–680.

[HS01] F. Hiroshima and H. Spohn, Enhanced binding through coupling to quantum field, *Ann. Henri Poincaré* **2**, (2001), 1159–1187.

[Lie76] E. H. Lieb, Bounds on the eigenvalues of the Laplace and Schrödinger operator, *Bull. Amer. Math. Soc.* **82** (1976), 751–753.

[Lie83] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related
inequalities, *Ann. Math.* **118** (1983), 349–374.

[LL03] E. H. Lieb and M. Loss, Existence of atoms and molecules in non-
relativistic quantum electrodynamics, *Adv. Theor. Math. Phys.* **7** (2003), 667–710.

[Ros72] C. V. Rosenbljum, The distribution of the discrete spectrum for singular differential operator, *Soviet Math. Dokl.* **13** (1972), 245-249.

[Sim05] B. Simon, *Trace Ideals and Their Applications*, 2nd ed., AMS, 2005.

[Spo98] H. Spohn, Ground state of quantum particle coupled to a scalar boson
field, *Lett. Math. Phys.*, **44** (1998), 9–16.