Background: As the number of cancer survivors has increased with advancements in cancer treatment, fertility preservation has become a treatment goal. Ovarian tissue cryopreservation (OTC) and transplantation (OTT) has made great progress over the past few decades. It has become the treatment of choice for fertility preservation in adolescents or patients in urgent need of chemotherapy. However, it is considered to be experimental compared with oocyte or embryo cryopreservation in some countries. Nevertheless, OTC and OTT is regarded as the more ideal method for fertility preservation in that it can also restore hormonal functions.

Current Concepts: Currently, over 200 live births have been reported worldwide after OTC and OTT, proving the excellence of the technology. However, before its application in clinical settings, some challenges, including cryoinjury, ischemic injury, and cancer cell reimplantation, should be overcome. For cryoinjury, studies are underway on protocol improvement with the addition of agents such as antifreeze protein during cryopreservation. For ischemic injury, various agents have been studied to promote angiogenesis or revascularization. Furthermore, studies are underway on artificial ovary or xenotransplantation for fertility preservation in an effort to avoid cancer cell metastasis.

Discussion and Conclusion: OTC and OTT is a clinically applicable option for fertility preservation. To set OTC and OTT as an established method for fertility preservation, further research is necessary to overcome the current challenges.

Key Words: Fertility preservation; Cryopreservation; Tissue transplantation
사제 투여 등 보조치료가 있다. 난자 또는 배아 동결은 임상적으로 널리 사용되는 가임력 보존 방법이지만, 초경 이후의 환자들에서만 적용이 가능하고, 또한 최소 10-14일 정도의 난소 과자극을 위한 시간이 소요되므로 항암치료가 급한 환자들은 적용되지 못하는 단점이 있다. 그러나 난소조직 동결(ovarian tissue cryopreservation) 및 이식(ovarian tissue transplantation)의 경우는 과배란을 할 필요가 없고 시간에 구애되지 않아 빠르게 적용이 가능하여 청소년이나 암치료가 급한 환자들에게 있어서 이 방법이 최적의 치료법이 될 수 있다[1-3]. 특히 장기적으로는 난자 또는 배아 동결의 경우는 암치료 후 제한된 수의 암신시도만 가능하지만, 난소조직의 동결-해동 및 이식은 암신시도 및 호르몬 가능의 복구까지도 기대할 수 있어 보다 완벽한 가임력 보존 방법으로 여겨진다. 하지만 난소조직 채취 및 이식 시 수술적 방법이 필요하다는 점은 단점이 될 수 있다.

1895년 Morris[4]가 자궁에 동결하지 않은 신선 난소를 이식했던 케이스를 첫 시작으로, 1948년 동결보호제(cryoprotective agents)의 발견으로 살아있는 세포와 조직을 동결 보존할 수 있게 되며 해동 과학이 빠르게 발전하였다. 이러한 흐름 속에 2004년 Donnez 등[5]이 호지킨림프종(Hodgkin lymphoma) 환자에서 동결-해동한 난소조직을 같은자리 자가이식(orthotopic autotransplantation) 후 성공적인 생아 출생을 보고하였고, 이후 많은 국가들에서 난소조직 동결-해동 및 이식 방법을 통해 현재까지 약 200건에 달하는 성공적인 생아 출생을 보고하여[6], 난소조직 동결-해동 및 이식 기술의 가임력 보존 가능성 및 우수성을 입증한 바 있다.

이 논문에서는 난소조직 동결-해동 이식에 관한 기본적인 내용들, 그리고 여러 문제점들과 이를 극복하고자 하였던 다양한 연구들에 대해 소개하고자 한다.

난소조직 동결-해동 이식 시 고려 사항 및 난소기능의 평가

난소조직 동결-해동 이식에 적합한 환자군을 선별하고, 수술의 전체 과정, 예상되는 결과, 수술의 치유성 등에 대한 충분한 사항을 해주는 것이 필요하다. 환자가 수술을 결정하는 데 있어 환자와의 현재 병기 및 5년 생존율, 임상의 종류, 예상되는 치유 시간, 암치료 후의 조기 난소 부전(primary ovarian insufficiency) 확률 등 모든 요소를 포함하여 난소조직 동결-해동에 적합한지 평가하는 것이 필요하다. 모든 암 환자는, 항암치료 전 난소조직 동결을 고려할 수 있다. 하지만 혈액암과 같은 특정 암 종의 경우, 난소로의 전이가능성이 있기에 이에 대한 평가는 사전에 이루어져야 한다. 효과적인 결정을 위해서는 다양한 분야의 전문가들의 다학제적 논의가 필요하다.

이식 시 고려되는 중요한 조건 중의 하나는 나이다. 여성은 태어날 때 정해진 수의 난자를 가지고 태어나고, 연령 증가에 따라 감소하게 되는데, 나이는 조직에 남아 있는 난포의 수와 밀접한 관련이 있고 향후 이식 시 가임력 회복의 중요한 요소가 된다. 유럽생식의학회 가이드라인에서는 36세 이상의 여성에서의 난소조직 동결의 효용성에 대해 의문을 품고 있지만[7], 고령이라고 하여도 우수한 난소기능을 가지는 경우가 있기 때문에, 임상적으로 판단할 수 없고, 수술 전 개별 환자들의 난소기능 평가를 통해 평가가 필요하다.

산부인과에서 시행하는 대표적인 난소기능 평가 방법으로는 초음파로 확인할 수 있는 동난포수(antral follicle count)와 혈액학적 검사인 항뮬러관호르몬(anti-Mullerian hormone, AMH) 지표가 있다. 동난포는 팔을 성장할 수 있는 난포의 잠재력을 보여주는 것이고, AMH는 성장하는 난포의 잠재력을 보여주는 것이다.
포의 과립막 세포에서 분비되어 난소기능을 반영하므로 난소기능 평가지표로 사용된다. 특히 AMH는생리 주기에 어느 때나 측정이 가능하다는 장점이 있다.

현재 난소조직 동결-해동 및 이식은 암 환자에서 가장 많이 적용이 되고 있으나, 암 환자뿐만이 아닌 루프스, 류마티스 절환, 조혈성포이식이 필요한 비암종성 질환에서도 고려가될 수 있다.

난소조직의 획득 및 동결

동결은 난소조직의 피질 일부 또는 전체를 수술적 방법으로 얻은 뒤 시행하게 되고, 이후 임신시도를 하게 되는 시점에서 이식을 시행한다. 최근에는 복강경 수술과 같은 최소침습수술을 통해 난소조직을 획득한다. 이상적인 난소기능의 회복을 위해서는 독성 치료 전 난소를 획득하여 동결하는 것이 바람직하다[8], 하지만 만약 난소조직 동결 전, 이미 항암화학요법을 받았다면 하더라도, 이식 이후 난소기능 회복에 있어 선택적화학요법을 받은 그룹과 그렇지 않은 그룹 사이에 큰 차이가 없다는 보고도 있어, 선택적항암화학요법 유무가 조직 동결의 급기 사항으로 적용해서는 안될 것이다[8], 난소조직 획득 시 수술자의 손가락 조작이 중요한데, 특히 지속적으로 열을 가하거나 하는 것은 조직 내 난포를 손상시킬 수 있으므로 최소화하는 것이 필요하며, 난소동맥 역시, 난소박리의 제일 마지막 단계에서 절제를 시행하여 허혈 손상을 최소화하는 것이 필요하다.

획득한 난소조직에서 난포액을 흡인하여 난자를 획득하고, 이후 수질 부위를 제거한 뒤, 피질(cortex)만 남기고 난소를 얇게 다듬는 과정을 거친다. 난소조직은 완만동결법(slow freezing)과 유리화동결법(vitrification) 2가지 방법으로 동결하게 된다. 먼저 완만동결법의 경우, 얻은 난소조직 피질층을 얇게(1,0×0,5×0,1 mm) 자른 뒤 cryovial에 적재하여, 동결보호제를 첨가한 동결액에 넣은 뒤 완만동결법에 넘어 순차적으로 난포시기는 방식으로 조직을 동결한다. 영하 140℃에 이르기까지 2°C/min-0,3°C/min의 속도로 난포 시키며, 이후 cryovial을 거내 영하 196℃의 액체 질소에 보관한다. 해동 시에는 37℃ 물에 넣어 해동시키고[5,10-13], 이후 조직을 상온에서 순차적인 농도의 포도당 용액에 담가 재수화하는 과정을 거친다. 현재까지 대부분의 난소조직 동결-해동 및 이식 후 출생한 아이들은 완만동결법에 의해 출생하였다.

완만동결법의 경우 고가의 방사선이 필요하고, 얼음결정에 의해 세포 손상을 받을 수 있으며, 동결에 오랜 시간이 소요되는 점 등으로 인해 최근 특별한 기구가 필요하지 않고 빠르게 조직 동결을 할 수 있는 유리화동결법에 대한 연구가 활발하게 진행되고 있다. 완만동결법과 마찬가지로 난소의 피질을 작게 분획한 뒤(10×10×1 mm) 고농도의 동결보호제를 첨가한 동결액을 완전으로 해동시킨다. 이은 난소조직 동결-해동 이식으로 출생한 생아수는 매우 적지만[15-17], 최근의 메타 분석에서는 난소조직 동결-해동으로 출생한 생아수는 매우 적지만[15-17], 최근의 메타 분석에서 난소 밀도나 정상 원시난포 비율 면에서 유리화동결법과 완만동결법이 차이가 많다고 보고한 바 있으며[18], 특히 유리화동결법이 난포 DNA 손상이 적고 기질세포 보존 측면에서는 더 우수하다고 하여 최근 유리화동결법 역시 난소조직 동결법의 대표적인 방법의 하나로 자리잡을 수 있을 것으로 생각된다.

난소조직 이식

동결된 난소를 해동 후 자가이식하여 임신시도를 할 수 있는데, 이식은 여러 다양한 부위에 시행할 수 있다. 난소조직 동결 보존과 이식 347
아 있는 난소 또는 난소와 (ovarian fossa)의 복막 주머니 (peritoneal space)에 이식하는 방법을 같은자리 자가이식법이라고 하고, 이 외의 장소, 예컨대 복부의 피하지방층, 전완, 양당, 복직근, 유방조직 등에 이식하는 방법을 다같이 자가이식법 (heterotopic autotransplantation)이라고 한다. 같은자리 자가이식법의 경우 원래 난소가 있던 환경과 유사하다고 최적의 생장 조건을 제공하고 자연임신이 가능하게 한다는 측면이 있지만 동결 및 이식을 위해서는 2번의 전신마취 수술이 필요하다는 단점이 있다. 반면 다른자리 자가이식법의 경우 복강 내가 아니라면 추후 이식 시 국소마취를 통해 이식이 가능하고, 특히 난소조직의 수명은 기저 난포 밀도에 따라 다를 뿐이 수개월, 짧게는 수년 정도인데, 이러한 제한적인 난소조직 수명으로 반복 이식해야 할을 고려한다면, 자가자리 자가이식법의 좋은 대안이 될 수 있다. 하지만 원래 난소가 있던 환경이 아니기 때문에 혈관 공급이 원활하지 않아 생존에 적합한 환경이 아니므로 생착이 어렵다. 또한 동결 간이동한 난소조직에서 난포를 분리하여 성숙시켜 난자를 획득할 수 있는 방법 또한 연구되고 있는데 대표적인 것이 난포의 체외배양 (in vitro culture)과 이종이식 (xenotransplantation) 등에 대한 연구이다. 이식 전 여러 가지 검사방법을 통해 잔존암세포의 유무를 확인하고 있지만, 아직까지 난소조직 동결-해동 및 이식 방법은 잔존암세포의 유무를 확인하고 있지만, 아직까지 완벽하지 못하다는 점, 효과적인 난소조직의 회복을 위해서는 최대한 항암화학요법 전 동결이 이루어져야 한다는 점, 난소조직 동결-해동 및 이식 방법이 난자 또는 배아 동결이 불가능한 여성 양막에서 임신의 기회를 제공해 줄 수 있는 가임력 보존 방법이라는 점에서 시사하는 바가 크다고 할 수 있었다.

난소조직 동결-해동 및 이식 시 극복 과제: 동결 손상 및 허혈 손상

난소조직 동결-해동 시 처음 부딪히게 되는 문제는 동결 손상이다. 동결 손상의 2가지 주요한 기전은 세포 내부에 얼음 결정 생성과 전해질 축적 (salt deposit)이다. 완만한 동결 시, 액화상태에서 과냉각되는 -10℃에서 -40℃에 얼음 결정의 생성이 증가하고, 동결 (thawing) 시에도 재결정화 (re-crystallization)로 인해 상당한 손상이 발생한다. 느린 동결 속도에서는 과도한 탈수, 세포 내외부에 고농도의 전해질 축적으로 인한 세포 손상이 발생할 수 있다. 동결 보존 시, 이러한 동결 손상으로부터 세포를 보호하기 위해 동결 보호제를 부여하지만, 이 역시 세포독성이 있다. 세포에 대한 독성 정도는, 참가된 동결보호제의 농도나 노출시간 등으로 200명 이상의 생아 출생이 이루어졌음을 보고한 바 있고, 미보고 캐이스까지 고려한다면 현편 더 많은 수의 생아 출생이 이루어졌을 것으로 생각된다. 이는 난소조직 자가이식의 임상 적용 효용성을 입증하는 것뿐만 아니라 향후 많은 가임력 보존 방법으로 자리잡을 것임을 시사하는 것이 라고 볼 수 있었다. 한국에서도 2018년에 대장암 환자에서 동결-해동 난소의 자기자리 자가이식 후 체외수정시술을 통해 임신시도 예를 보고한 바 있다[22], 이 논문에서 출생아까지는 보고하지 못하였고, 향후의 난소조직의 회복으로 불충분한 내분비 기능의 회복을 보였으며, 향후 자가이식 후 충분한 내분비 기능의 회복을 보였으나, 그럼에도 불구하고, 이식한 난소에서 난자를 획득하여 정상 배아를 형성하여 이식까지 시도하였다는 점은 매우 고무적이다 할 수 있다. 난소조직 자가이식 후 충분한 내분비 기능 회복이 있더라도 촉발매군이 가능한지, 효과적인 난소기능의 회복을 위해서는 최대한 항암화학요법 전 동결이 이루어져야 한다는 점, 난소조직 동결-해동 및 이식 방법이 난자 또는 배아 동결이 불가능한 여성 양막에서 임신의 기회를 제공해 줄 수 있는 가임력 보존 방법이라는 점에서 시사하는 바가 크다고 할 수 있었다.
에 따라 다르다. 유리화동결체상의 급속 냉각 시에는 액상에서 solid amorphous phase로 진행되므로 얼음결정의 형성을 억제할 수 있지만, 투여하는 고농도의 동결보호제는 세포에 치명적일 수 있다. 이러한 문제점을 해결하기 위해 Leucosporidium-derived ice-binding protein에 대한 연구가 활발히 진행되고 있다. 항동결단백질은 얼음 형성을 억제하고, 유리화동결 시 더 낮은 농도의 동결보호제를 사용하게 하여 독성을 줄이는 역할을 한다. 마우스에서 3가지 서로 다른 항동결단백질의 효과를 연구한 논문에서 고농도의 항동결단백질을 투여하여 난소조직을 동결-해동 시 난포를 보호하는 효과가 있었고, 항동결단백질Leucosporidium-derived ice-binding protein을 투여한 군에서 가장 뚜렷한 보호 효과를 보였음을 보고하였다. Leucosporidium-derived ice-binding protein의 유익한 효과는 유리화동결-해동한 난소조직을 자가이식한 후에도 관찰되었다[23]. 또한 이러한 항동결단백질은 항산화 성능을 향상시켜 난소조직을 동결-해동 시 난포를 보호하는 효과가 있었다. 항동결단백질은 항산화 성능을 향상시키는 역할을 한다. 이를 바탕으로 항산화재를 첨가한 군에서 가장 뚜렷한 보호 효과를 보였다고 보고하였다[26]. 이러한 허혈 손상을 극복하는 신기술로 최근 Yang 등[38]은 산화질소 방출 나노입자를 활용한 난소 이식 시의 허혈 손상을 보호하였다고 보고하였다. 비타민C나 E와 같은 항산화제를 첨가한 경우 이식 후 난포의 성장과 기능을 회복시키고 세포사멸 및 섬유화를 감소시킨다고 보고하였다[39]. 이러한 항산화제는 독특한 성질을 가지고 있으며, 이러한 선택적 허혈 손상의 예방에 효과적이다. 이러한 허혈 손상의 예방을 위해 이식 시 적절한 이식 부위를 선택하는 것도 중요하다. 전통 동물실험의 결과에서 난소조직을 이식하여 빠른 혈류 개통을 도모하고자 하는 방법도 연구되고 있다. 하지만 전통 난소의 경우는 난소조직 절편에 비해 부피가 매우 작고, 다양한 세포로 구성되어 동결보호제 및 항동결단백질이 골고루 침투하기 어렵다. 동결손상에 매우 취약하다. 또한 혈관 자체의 적정이 매우 가늘어 문합에 고난도의 술기가 필요하고 최소 이식 시간을 필요하다. 

해당한 난소조직은 적합한 부위에 이식을 하게 되는데, 무혈관성 이식으로 허혈 손상이 발생할 수 있다. 적어도 초기 2~3일은 산소 공급이 제한되어 저산소중에 빠지게 되어 이 기간 동안 50~90%의 난포 소실이 발생한다[28,29]. 전통난소조직은 성장하는 난포에 비해 허혈 저항성이 있음에도 불구하고 대부분의 전통난소는 동결 손상보다는 허혈 손상으로 소실이 되고, 이식 후 난포의 5~50%만 생존하게 된다[30~32]. 따라서 난소조직의 이식 성공을 위해서는 빠른 혈관 신생을 촉진하거나, 허혈 손상을 최소화하기 위한 방법이 필요하다. 실제로 이러한 허혈 손상을 타게하고자 혈관확장제나 혈관 형성을 촉진하는 연구들이 진행되어 왔다. 비타민C나 E와 같은 항산화제를 첨가한 경우 이식 후 난포 생존율의 향상 및 지질 과산화의 감소 효과 등을 보여 허혈 손상으로부터 보호하였다[29,33]. 마우스 또는 소 난소조직이 심장내피세포생장인자, angiopoietin-2 등을 투여하였을 때 혈관 신생을 촉진시키고 허혈 손상을 감소시켜 난포의 양과 질을 보존하고 세포사멸 및 섬유화를 감소시킨다고 보고하였다[34,35]. 이 밖에도 현재 증가세포세포에 대한 연구가 활발히 진행되고 있는데, 혈관 신생을 촉진시키고 원시난포의 세포사멸을 감소시키는 것으로 보고하였다[36,37]. 이러한 허혈 손상을 극복하는 신기술로 최근 Yang 등[38]은 산화질소 방출 나노입자를 활용한 난소 이식 시의 허혈 손상에 대한 방법을 제시하고 기대한다. 이에 따라 난소조직의 이식 후 난포의 활성화를 통해 난소 조직의 자가이식을 보다 효과적으로 확인시킨다고 한다. 이에 따라 난소조직의 이식 후 난포의 활성화를 통해 난소 조직의 자가이식을 보다 효과적으로 확인시킨다고 한다.
로 하므로 임상 적용을 위해서는 여러 가지 기술 장벽의 극복이 수반되어야 한다.

난소조직 동결-해동 및 이식 시 극복 과제: 암세포 재유입의 문제

마지막으로, 암세포 재유입의 위험성은 암 환자의 난소 이식 시 제기되는 가장 큰 안전성 문제 중 하나이다. 난소로의 암 전이 정도는 암의 종류, 병기, 등급 등에 따라 다르다. 현재까지 이성했던 케이스들 중에서 이식한 난소조직으로 인해 재발이 되었다는 보고는 없지만[41~43], 활발한 임상적응을 위해서는 반드시 해결해야 할 과제이다. 현재 역전사합효소사슬반응(reverse transcriptase-polymerase chain reaction, RT-PCR), 조직학/세포과학(histology/cytology), 면역조직화학(immunohistochemistry), 흐름세포측정(flow cytometry) 등 다양한 방법을 통해 이식 전 암세포를 선별하려는 노력들이 이루어지고 있다. 다른 측면으로는, 난소조직에서 얻은 미성숙난자를 체외에서 성숙(in vitro maturation)시키거나, 인공난소로써 난포를 분리 배양(in vitro culture)하여 난자를 얻으려는 시도, 이외에 체세포로부터 생식세포를 유도하고자 하는 연구들이 현재 이루어지고 있다.

결론

 암 치료법의 발달은 암 환자들의 생존율의 향상을 가져왔고, 이에 많은 암 생존자들은 이제 단순히 생존의 문제를 넘어서, 건강한 삶을 추구하게 되었다. 가임력 보존은 그 삶의 질을 결정하는 데 있어 가장 중요한 요소 중 하나로써 자리를 잡게 되었다. 진도유망한 가임력 보존 방법의 하나로서 난소조직 동결-해동 및 이식으로 이미 200명 이상의 생아 출생을 이루었다는 것은 기술의 우수성을 반증하는 것이며, 특히 난소조직 이식은 생식능의 보존뿐 아니라 호르몬 기능도 보존하므로 가장 완성된 형태의 가임력 보존 방법이라고 할 수 있다. 앞으로 안정적이고 효율적인 임상 적용을 위해서는 현재 직면하고 있는 동결 손상, 허혈 손상, 암세포 재유입과 같은 제반 문제들을 보다 효과적인 해결할 수 있는 기술의 발전, 그리고 이러한 치료가 원활히 제공될 수 있는 사회적 지지 장치가 수반되어야 한다. 현재까지는 대부분 암 환자들을 대상으로 한 가임력 보존 목적의 난소조직 동결 보존이 주를 이루었다. 이들은 전강한 여성에서 출산 연령을 늦추고[44], 폐경 호르몬을 대체하려는 목적의 연구들도 조심스레 시도되고 있어[45], 향후 난소조직 동결 보존 이식의 적용중은 더욱 확대될 것으로 전망된다. 또한 동결 난소조직 이식 후의 임신율은 높게는 60%까지도 보고되지만 이와 대비되어 조직사용률은 10%가 채 되지 못하며[46]. 효율적인 조직의 사용 및 가용 자원의 이용을 위해 환자들을 대상으로 난소생식치료 이후의 난소기능 부전에 대한 정보 제공 및 가임력 보존에 대한 교육 역시 다방면으로 이루어져야 할 것이다[47].

 찾아보기말: 가임력 보존; 냉동 보존; 조직 이식

ORCID

Yeon Hee Hong, https://orcid.org/0000-0002-9709-4175
Jung Ryeol Lee, https://orcid.org/0000-0003-3743-2934

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

1. Sugishita Y, Suzuki N. Fertility preservation for adolescent and young adult cancer patients in Japan. Obstet Gynecol Sci 2018;61:443-452.
2. Kim S, Lee Y, Lee S, Kim T. Ovarian tissue cryopreservation and transplantation in patients with cancer. Obstet Gynecol Sci 2018;61:431-442.
3. Park KH, Lee BS, Chung DJ. Ovarian tissue cryopreservation and transplantation. Korean J Obstet Gynecol 2006;49:2473-2478.
4. Morris RT. The ovarian graft. New York Med J 1895;5:436-
Sugishita Y, Okamoto N, Uekawa A, Yamochi T, Nakajima M, Silber S. How ovarian transplantation works and how resting follicle selection to analyze in vitro fertilization outcome with transplanted cryopreserved ovarian tissue. Fertil Steril 2020;114:279-280.

Donnez J, Dolmans MM, Demydle D, Jadoul P, Piric C, Squifflet J, Martinez-Madrid B, van Langendonckt A. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 2004;364:1405-1410.

Donmans MM, Falcone T, Patrizio P. Importance of patient selection to analyze in vitro fertilization outcome with transplanted cryopreserved ovarian tissue. Fertil Steril 2020;114:279-280.

ESHRE Guideline Group on Female Fertility Preservation, Anderson RA, Amant F, Braat D, D’Angelo A, Chua de Sousa Lopes SM, Demeestere I, Dwek S, Frith L, Lamberti M, Maslin C, Moura-Ramos M, Nogueira D, Rodriguez-Wallberg K, Vermeulen N. ESHRE guideline: female fertility preservation. Hum Reprod Open 2020;2020:hooa052.

Donnez J, Martinez-Madrid B, Jadoul P, Van Langendonckt A, Demydle D, Donmans MM. Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update 2006;12:519-535.

Poirot C, Fortin A, Lacorte JM, Akakpo JP, Genestie C, Vernant JP, Brice P, Morice P, Leblanc T, Garbarre J, Delmer A, Badachi Y, Drouineaud V, Gouy S, Chalas C, Egelis S, Dhedin N, Touraine P, Dommengues M, Lebegue G, Wolf JR, Capron F, Lefebvre G, Boissel N; CAROLELISA Cooperative Group. Impact of cancer chemotherapy before ovarian cortex cryopreservation on ovarian tissue transplantation. Hum Reprod 2019;34:1083-1094.

Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at -196 degrees C. Hum Reprod 1994;9:597-603.

Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod 1996;11:1487-1491.

Fuller B, Paynter S. Fundamentals of cryobiology in reproductive medicine. Reprod Biomed Online 2004;9:680-691.

Hovatta O. Methods for cryopreservation of human ovarian tissue. Reprod Biomed Online 2005;10:729-734.

Lv F, Liu B, Li W, Jaganathan GK. Devitrification and recrystallization of nanoparticle-containing glycerol and PEG-600 solutions. Cryobiology 2014;68:84-90.

Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, Ho CH, Kawamura N, Tamura M, Hashimoto S, Sugishita Y, Morimoto Y, Hosoi Y, Yoshioka N, Ishizuka B, Hsieh AJ. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A 2013;110:17474-17479.

Silber S. How ovarian transplantation works and how resting follicle recruitment occurs: a review of results reported from one center. Womens Health (Lond) 2016;12:217-227.

Sugishita Y, Okamoto N, Uekawa A, Yamochi T, Nakajima M, Namba C, Igarashi S, Sato T, Ohta S, Takenoshita M, Hashimoto S, Tzawa A, Morimoto Y, Suzuki N. Oocyte retrieval after heterotopic transplantation of ovarian tissue cryopreserved by closed vitrification protocol. J Assist Reprod Genet 2018;35:2037-2048.

Shi Q, Xie Y, Wang Y, Li S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-analysis. Sci Rep 2017;7:8538.

Lee J, Kim EJ, Kong HS, Youn HW, Kim SK, Lee JR, Suh CS, Kim SH. Comparison of the oocyte quality derived from two-dimensional follicle culture methods and developmental competence of in vitro grown and matured oocytes. Biomed Res Int 2018;2018:7907092.

McLaughlin M, Albertini DF, Wallace WHB, Anderson RA, Telfer EE. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod 2018;24:135-142.

Khattak H, Mallhas R, Craciunias L, Afifi Y, Amorim CA, Fishef S, Silber S, Gook D, Demeestere I, Bystrova O, Lisynskaia A, Manikhas G, Lotz L, Dittrich R, Colmorn LB, Macklon KT, Hjorth IMD, Kristensen SG, Gallos I, Coomarasamy A. Fresh and cryopreserved ovarian tissue transplantation for preserving reproductive and endocrine function: a systematic review and individual patient data meta-analysis. Hum Reprod Update 2022;28:400-416.

Lee JR, Lee D, Park S, Paik EC, Kim SK, Lee BC, Suh CS, Kim SH. Successful in vitro fertilization and embryo transfer after transplantation of cryopreserved ovarian tissue: report of the first Korean case. J Korean Med Sci 2018;33:e156.

Lee J, Kim SK, Youn HW, Kim HJ, Lee JR, Suh CS, Kim SH. Effects of three different types of antifreeze proteins on mouse ovarian tissue cryopreservation and transplantation. PLoS One 2015;10:e0126252.

Kong HS, Kim EJ, Youn HW, Kim SK, Lee JR, Suh CS, Kim SH. Improvement in ovarian tissue quality with supplementation of antifreeze protein during warming of vitrified mouse ovarian tissue. Yonsei Med J 2018;59:331-336.

Kong HS, Hong YH, Lee J, Youn HW, Lee JR, Suh CS, Kim SH. Antifreeze protein supplementation during the warming of vitrified bovine ovarian tissue can improve the ovarian tissue quality after xenotransplantation. Front Endocrinol (Lausanne) 2021;12:672619.

Choi SR, Lee J, Seo YJ, Kong HS, Kim M, Jin E, Lee JR, Lee JH. Molecular basis of ice-binding and cryopreservation activities of type III antifreeze proteins. Comput Struct Biotechnol J 2021;19:897-909.

Youn HW, Lee JR, Lee J, Lee BC, Suh CS, Kim SH. Optimal vitrification protocol for mouse ovarian tissue cryopreservation: effect of cryoprotective agents and in vitro culture on vitrified-warmed ovarian tissue survival. Hum Reprod 2014;29:720-730.

Donmans MM, Donnez J, Cacciottola L. Fertility preservation: the challenge of freezing and transplanting ovarian tissue. Trends Mol Med 2021;27:777-791.

Kim SS, Yang HW, Kang HG, Lee HH, Lee HC, Ko DS, Gosden RG. Quantitative assessment of ischemic tissue damage in ovarian cortical tissue with or without antioxidant (ascorbic acid) treatment. Fertil Steril 2004;82:679-685.

Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG. Long-term ovarian function in sheep after ovariectomy and...
transplantation of autografts stored at -196 C. Endocrinology 1999;140:462-471.
31. Aubard Y, Piver P, Cogni Y, Fermeaux V, Poulin N, Driancourt MA. Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep. Hum Reprod 1999;14:2149-2157.
32. Youm HW, Lee J, Kim HS, Kong HS, Suh CS, Kim SH. Ovarian injury during cryopreservation and transplantation in mice: a comparative study between cryoinjury and ischemic injury. Hum Reprod 2015;31:1827-1837.
33. Aubard Y, Piver P, Cogni Y, Fermeaux V, Poulin N, Driancourt MA. Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep. Hum Reprod 1999;14:2149-2154.
34. Lee J, Kong HS, Kim EL, Youm HW, Lee JR, Suh CS, Kim SH. Effects of angiopoietin-2 on grafted mouse ovarian tissue. PLoS One 2016;11:e0166782.
35. Youm HW, Lee J, Kong HS, Lee JR, Suh CS, Kim SH. Effects of angiopoietin-2 on transplanted mouse ovarian tissue. PLoS One 2016;11:e0166782.
36. Xia X, Yin T, Yan J, Yan L, Jin C, Lu C, Wang T, Zhu X, Zhi, X, Wang J, Tian L, Liu J, Li R, Qiao J. Mesenchymal stem cells enhance angiogenesis and follicle survival in human cryopreserved ovarian cortex transplantation. Cell Transplant 2015:24:1999-2010.
37. Cacciottola L, Nguyen TYT, Chiti MC, Camboni A, Amorim CA, Donnez J, Dolmans MM. Long-term advantages of ovarian reserve maintenance and follicle development using adipose tissue-derived stem cells in ovarian tissue transplantation. J Clin Med 2020;9:2980.
38. Yang C, Chung N, Song C, Youm HW, Lee K, Lee JR. Promotion of angiogenesis toward transplanted ovaries using nitric oxide releasing nanoparticles in fibrin hydrogel. Biofabrication 2014;6:041001.
39. Ayuandari S, Winkler-Crepaz K, Paulitsch M, Wagner C, Zavadil C, Manzl C, Ziehr SC, Wildt L, Hofer-Tollinger S. Follicular growth after xenotransplantation of cryopreserved/thawed human ovarian tissue in SCID mice: dynamics and molecular aspects. J Assist Reprod Genet 2016;33:1585-1593.
40. Youm HW, Lee JR, Lee J, Lee BC, Suh CS, Kim SH. Transplantation of mouse ovarian tissue: comparison of the transplantation sites. Theriogenology 2015;83:854-861.
41. Donnez J, Dolmans MM. Fertility Preservation in Women. N Engl J Med 2017;377:1657-1665.
42. Shapira M, Raanani H, Barshack I, Amariglio N, Derech-Haim S, Marciano MN, Schiff E, Orvieto R, Meirov D. First delivery in a leukemia survivor after transplantation of cryopreserved ovarian tissue, evaluated for leukemia cells contamination. Fertil Steril 2018;109:48-53.
43. Greve T, Classen-Linde E, Andersen MT, Andersen MK, Sorensen SD, Rosendahl M, Ralfkiaer E, Andersen CY. Cryopreserved ovarian cortex from patients with leukemia in complete remission contains no apparent viable malignant cells. Blood 2012;120:4311-4316.
44. Scantamburlo VM, Linsingen RV, Centa LJ, Tosio KFD, Scarabo D, Araujo Junior E, Kulak Junior J. Association between decreased ovarian reserve and poor oocyte quality. Obstet Gynecol Sci 2021;64:532-539.
45. Okty KH, Marin L, Petrovsky B, Terrani M, Babayev SN. Delaying reproductive aging by ovarian tissue cryopreservation and transplantation: is it prime time? Trends Mol Med 2021;27:753-761.
46. Hoekman EJ, Louwe LA, Rooijers M, van der Westerlaken LAJ, Klijn NF, Palgrim GSK, de Kroon CD, Hilders CGJM. Ovarian tissue cryopreservation: Low usage rates and high live-birth rate after transplantation. Acta Obstet Gynecol Scand 2020;99:213-221.
47. Mahey R, Kandpal S, Gupta M, Vanamail P, Bhata N, Malhotra N. Knowledge and awareness about fertility preservation among female patients with cancer: a cross-sectional study. Obstet Gynecol Sci 2020;63:480-489.

Peer Reviewers’ Commentary

이 논문은 암 환자의 가임력 보존 방법으로써 활발한 연구가 진행 중인 난소조직 동결 보존의 실제적 과정, 유용성과 한계에 관하여 최근 문헌들을 정리하여 설명하고 있다. 난소조직 동결 보존은 기존의 가임력 보존 방법인 난자 및 배아 동결과 달리, 초경전 청소년에서 시행할 수 있으며, 간헐적 허혈과 동결에 걸려있는 시간이 없고, 정상적인 호르몬 기능 회복을 기대할 수 있다. 그러나 조직 재입식 시 수술이 필요하고, 조직의 해동이나 이식 과정에서 발생하는 동결과 허혈 손상에 대한 극복이 필요하다. 또 조직 이식으로 인한 암세포 재유입 문제에 대한 해결이 필요하다. 이 논문은 기존 가임력 보존 방법의 단점을 보완할 수 있는 난소조직 동결 보존에 대한 내용을 깔끔하게 설명하고 있어 암 환자의 삶의 질에서 큰 부분을 차지하는 가임력 상담 및 치료에 많은 도움이 될 것으로 판단된다.

[정리: 편집위원회]