EDGE-CRITICAL SUBGRAPHS OF SCHRIJVER GRAPHS

TOMÁŠ KAISER AND MATĚJ STEHLÍK

Abstract. For $k \geq 1$ and $n \geq 2k$, the Kneser graph $KG(n, k)$ has all k-element subsets of an n-element set as vertices; two such subsets are adjacent if they are disjoint. It was first proved by Lovász that the chromatic number of $KG(n, k)$ is $n - 2k + 2$. Schrijver constructed a vertex-critical subgraph $SG(n, k)$ of $KG(n, k)$ with the same chromatic number. For the stronger notion of criticality defined in terms of removing edges, however, no analogous construction is known except in trivial cases. We provide such a construction for $k = 2$ and arbitrary $n \geq 4$ by means of a nice explicit combinatorial definition.

1. Introduction

For positive integers n, k, where $n \geq 2k$, the Kneser graph $KG(n, k)$ has all k-element subsets of the set $[n] = \{1, \ldots, n\}$ as its vertices, with edges joining disjoint pairs of subsets. It was conjectured by Kneser [3] and proved by Lovász [4] that the chromatic number of $KG(n, k)$ is $n - 2k + 2$. Schrijver [6] proved that there is a subgraph of $KG(n, k)$ that is in general much smaller and still has chromatic number $n - 2k + 2$. This is the Schrijver graph $SG(n, k)$, defined as the induced subgraph of $KG(n, k)$ on the set of all stable k-subsets of $[n]$, that is, those that contain no pair of consecutive elements nor the pair $1, n$. In fact, Schrijver proved that $SG(n, k)$ is vertex-critical, i.e., the removal of any vertex of $SG(n, k)$ decreases the chromatic number.

It is natural to ask whether $SG(n, k)$ satisfies the stronger condition of criticality defined in terms of removing edges. A graph G is said to be edge-critical if $\chi(G - e) < \chi(G)$ for each edge e of G, where χ denotes the chromatic number. Equivalently, G is edge-critical if none of its proper subgraphs has the same chromatic number. For instance, the graph $SG(2k + 1, k)$ is edge-critical (being isomorphic to a cycle of length $2k + 1$) and so is $SG(n, 1)$ (the complete graph K_n), but this is not the case for $SG(n, k)$ with $n \geq 2k + 2$ and $k \geq 2$.

In this paper, we give a simple combinatorial description of an edge-critical spanning subgraph of the graph $SG(n, 2)$ (for any $n \geq 4$) that was discovered in the course of our work on colouring quadrangulations of projective spaces [1] [2]. This is the first step to a description of such edge-critical subgraphs in $SG(n, k)$ for general k, which is currently work in progress.

For every integer $n \geq 4$, we define the graph G_n as follows. The vertex set of G_n is the set of all stable 2-subsets of $[n]$. A stable subset $\{a, b\}$, where...
a < b, is denoted by ab. Edges in G_n only join disjoint pairs of 2-subsets of $[n]$. Let ab and cd be such a pair, where $a < c$. The vertices ab and cd are adjacent in G_n if and only if one of the following holds:

- $a < c < b < d$ (a crossing pair), or
- $1 < a < c < d < b$ (a transverse pair).

See Figure 1 for an illustration of the definition. In this figure, vertices of G_n are visualised as chords of the cycle C_n. Accordingly, we sometimes refer to vertices of G_n as chords of C_n.

The main result of this paper is the following.

Theorem 1.1. For every $n \geq 4$, the graph G_n is $(n - 2)$-chromatic and edge-critical.

Since G_n is an edge-critical spanning subgraph of $SG(n, 2)$, it is interesting to compare the number of edges in G_n to the number of edges in $SG(n, 2)$. The only case where G_n is not a proper subgraph of $SG(n, 2)$ is when $n \leq 5$: G_4 and $SG(4, 2)$ are both isomorphic to K_2, while G_5 and $SG(5, 2)$ are both isomorphic to C_5. For $n > 5$, G_n is a proper subgraph of $SG(n, 2)$, and the following proposition determines the asymptotic ratio of their sizes.

Proposition 1.2. As $n \to \infty$, the ratio $|E(G_n)|/|E(SG(n, 2))|$ tends to $2/3$.

Proof. Each edge of G_n corresponds to either a crossing pair or a transverse pair of chords of the cycle C_n. Let us call the pairs of disjoint chords of C_n not corresponding to any of these types lateral. (That is, chords ab and cd form a lateral pair if $a < b < c < d$ or $c < d < a < b$.)

Let us estimate the number of pairs of each of these three types. Any pair of chords determines a 4-tuple of elements of $[n]$, namely the endvertices of the chords. For crossing pairs, this is in fact a 1–1 correspondence, since any 4-element subset of $[n]$ determines precisely one crossing pair. Thus, the number of crossing pairs is $\binom{n}{4}$.

For transverse and lateral pairs, the correspondence is no longer one-to-one, but it is not hard to show that the number of pairs of each of these
types is \(\binom{n}{4} - O(n^3) \). It follows that
\[
|E(G_n)| = 2\binom{n}{4} - O(n^3),
\]
\[
|E(SG(n, 2))| = 3\binom{n}{4} - O(n^3),
\]
so the asymptotic ratio of these two quantities is 2/3 as claimed. □

2. Proof of Theorem 1.1

The Mycielski construction \[5\] is one of the earliest and arguably simplest constructions of triangle-free graphs of arbitrarily high chromatic number. Given a graph \(G = (V, E) \), we let \(M(G) \) be the graph with vertex set \(V \cup \{u : u \in V\} \cup \{\ast\} \), where there are edges \(\{u, v\} \) and \(\{u, \ast\} \) whenever \(\{u, v\} \in E \), and an edge \(\{u, \ast\} \) for all \(u \in V \). For each \(u \in V \), the vertex \(u \) is referred to as the clone of \(u \) in \(M(G) \).

It is an easy exercise to show that the chromatic number increases with each iteration of \(M(\cdot) \). Let \(M_k \) be the graph obtained from \(K_2 \) by iterating the Mycielski construction \(k - 2 \) times. It is easy to see that \(M_k \) is \(k \)-chromatic (in fact, \(M_k \) is \(k \)-edge-critical).

Theorem 1.1 follows immediately from the following two lemmas.

Lemma 2.1. For \(n \geq 5 \), there is a homomorphism
\[
h : M(G_{n-1}) \to G_n.
\]
In particular, \(\chi(G_n) \geq n - 2 \).

Proof. Let \(ab \) be a vertex of \(G_{n-1} \); recall that this means \(a < b \). The clone of \(ab \) in \(M(G_{n-1}) \) is denoted by \(\overline{ab} \). We define
\[
h(ab) = ab,
\]
\[
h(ab) = \begin{cases} an & \text{if } a \neq 1, \\ bn & \text{if } a = 1, \end{cases}
\]
\[
h(\ast) = \{1, n - 1\}.
\]

Observe first that in all cases, the value of the mapping \(h \) is a vertex of \(G_n \). The only case that needs an explanation is that of \(\overline{ab} \). Here, if \(a \neq 1 \), then \(an \) is stable, since \(a < b \leq n - 1 \). On the other hand, if \(a = 1 \), then \(2 < b < n - 1 \) (since \(ab \) is a vertex of \(G_{n-1} \)), so \(bn \) is stable.

Let us show that \(h \) is a homomorphism. We consider an edge \(e \) of \(M(G_{n-1}) \) and prove, in each of the following cases, that the image of \(e \) under \(h \) is an edge of \(G_n \).

Case 1: \(e \) is an edge of \(G_{n-1} \). Note that \(h(ab) = ab \) and \(h(cd) = cd \). Since a crossing pair of vertices of \(G_{n-1} \) is also crossing in \(G_n \), and similarly for a transverse pair, \(e \) is an edge of \(G_n \).

Case 2: \(e \) has endvertices \(ab \) and \(\overline{cd} \), where \(ab \) and \(cd \) form an edge of \(G_{n-1} \). We have \(h(ab) = ab \). For \(h(\overline{cd}) \), we have
\[
h(\overline{cd}) = \begin{cases} cn & \text{if } c > 1, \\ dn & \text{if } c = 1. \end{cases}
\]
Suppose first that the pair ab, cd is crossing in G_{n-1}. (This subcase is illustrated in Figure 2.) If $a < c < b < d$, then $h(cd) = cn$ and $a < c < b < n$, so the pair ab, cn is crossing in G_n. (In particular, it is disjoint, which will not be repeated in the following subcases.) If $1 < c < a < d < b$, then again $h(cd) = cn$ and $c < a < b < n$, so the pair ab, cn is transverse in G_n. Finally, if $c = 1$ (and $1 < a < d < b$), then $h(cd) = dn$ and $a < d < b < n$, so the pair ab, dn is crossing.

Suppose then that ab, cd is a transverse pair in G_n. Thus, $1 \notin \{a, b, c, d\}$ and in particular $h(cd) = cn$. If $a < c < d < b$, then $a < c < b < n$ and the pair ab, cn is crossing. If $c < a < b < d$, then $c < a < b < n$ and ab, cn is a transverse pair.

Case 3: e has endvertices cd and $*$, where cd is a vertex of G_{n-1}. We have $h(*) = \{1, n - 1\}$. Since $n \in h(cd)$, the pair $h(cd), h(*)$ must be crossing.

This concludes the proof that h is a homomorphism. It follows that $\chi(G_n) \geq \chi(M(G_{n-1})$. The statement that $\chi(G_n) \geq n - 2$ follows by induction with base case $\chi(G_5) = 3$: if we know that $\chi(G_{n-1}) \geq n - 3$, then $\chi(M(G_{n-1})) \geq n - 2$ since — as remarked above — an application of $M(\cdot)$ increases the chromatic number, and therefore $\chi(G_n) \geq n - 2$. \qed
Lemma 2.2. For every $n \geq 4$ and every edge $e \in E(G_n)$, the graph $G_n - e$ is $(n - 3)$-colourable.

Proof. Let e be an edge of G_n with endvertices ab and cd. We will show that $G - e$ is $(n - 3)$-colourable.

Case 1: ab and cd are a crossing pair and $1 \in \{a, b, c, d\}$. Without loss of generality, assume that $a = 1$ and $1 < c < b < d$. Let $A = \{a, b, c, d\}$. We first colour all stable 2-subsets of $[n]$ not contained in A using the $n - 4$ colours from the set $[n] \setminus A$: any such stable 2-subset xy is coloured by $\min(\{x, y\} \setminus \{a, b, c, d\})$. Observe that this partial colouring is proper in G_n. (We will call it the min-based colouring with respect to A.)

Having used $n - 4$ colours, we have one colour left for the stable 2-subsets of A. Since $a = 1$, no pair of these subsets is transverse. Additionally, there is only one crossing pair, namely ab and cd. Assign a new colour ℓ_1 to each stable 2-subset of A; we obtain a proper $(n - 3)$-colouring of $G_n - e$. (See Figure 3 for an illustration of this and the following cases.)

Case 2: ab and cd are a crossing pair and $1 \notin \{a, b, c, d\}$. Let $A = \{1, a, b, c, d\}$ and start with the min-based colouring with respect to A. This uses $n - 5$ colours.

We will colour stable 2-subsets of A using two new colours ℓ_1 and ℓ_2. Without loss of generality, assume that $a < c < b < d$. Assigning colour ℓ_1 to all the stable 2-subsets in the set $\{1a, 1b, 1c, 1d, bc, bd\}$ and colour ℓ_2 to those in $\{ab, ac, ad, cd\}$, it is easy to check that the 2-colouring of the induced subgraph of $G_n - e$ on the set of stable 2-subsets of A is proper. Consequently, we obtain a proper $(n - 3)$-colouring of $G_n - e$.

Case 3: ab and cd are a transverse pair. By the assumption, $1 \notin \{a, b, c, d\}$. Without loss of generality, assume that $1 < a < c < d < b$. Since cd is stable, there is $x \in [n]$ such that $c < x < d$. Let $A = \{1, a, b, c, d, x\}$ and start with a min-based colouring with respect to A using $n - 6$ colours.

To colour the uncoloured stable 2-subsets of $[n]$ using new colours ℓ_1, ℓ_2, and ℓ_3, we use the following rule:

- ℓ_1 is assigned to stable 2-subsets in $\{1a, 1x, 1d, ax, dx\}$,
- ℓ_2 is assigned to those in $\{1b, 1c, bc, bx, cx\}$,
- ℓ_3 is assigned to those in $\{ab, ac, ad, cd, bd\}$.

We obtain a proper $(n - 3)$-colouring of $G_n - e$ since no crossing pair gets the same colour, and the only monochromatic transverse pair is ab, cd.

\[\Box\]

References

[1] T. Kaiser, M. Stehlík. Colouring quadrangulations of projective spaces. J. Combin. Theory Ser. B 113 (2015), 1-17.
[2] T. Kaiser, M. Stehlík. Schrijver graphs and projective quadrangulations. In: M. Loebl, J. Nešetřil, R. Thomas (eds.), A Journey Through Discrete Mathematics. Springer, 2017, pp. 505–526.
[3] M. Kneser. Aufgabe 300. Jber. Deutsch. Math.-Verein. 58 (1955).
[4] L. Lovász. Knesers conjecture, chromatic number, and homotopy. J. Combin. Theory, Ser. A 25 (1978), 319–324.
[5] J. Mycielski. Sur le coloriage des graphes. Colloq. Math. 3 (1955), 161–162.
Figure 3. Colouring of chords in the three cases of the proof of Lemma 2.2. The colouring uses one colour (left), two colours (middle) and three colours (right) represented by shades of grey.

[6] A. Schrijver. Vertex-critical subgraphs of Kneser graphs. Nieuw Arch. Wisk. (3) 26(3) (1978), 454–461.

Department of Mathematics and European Centre of Excellence NTIS (New Technologies for the Information Society), University of West Bohemia, Pilsen, Czech Republic.
E-mail address: kaisert@kma.zcu.cz

Laboratoire G-SCOP, Univ. Grenoble Alpes, France
E-mail address: matej.stehlik@grenoble-inp.fr