Top quark rare three-body decays in the littlest Higgs model with T-parity

Jinzhong Han, Bingzhong Li, and Xuelei Wang

College of Physics and Information Engineering,
Henan Normal University, Xinxiang, Henan 453007. P.R. China

In the littlest Higgs model with T-parity (LHT), the mirror quarks have flavor structures and will contribute to the top quark flavor changing neutral current. In this work, we perform an extensive investigation of the top quark rare three-body decays $t \to cV (V = \gamma, Z, g)$ and $t \to cff$ ($f = b, \tau, \mu, e$) at one-loop level. Our results show that the branching ratios of $t \to cgg$ and $t \to cbb$ could reach $O(10^{-3})$ in the favorite parameter space of the littlest Higgs model with T-parity, which implies that these decays may be detectable at the LHC or ILC, while for the other decays, their rates are too small to be observable at the present or future colliders.

PACS numbers: 14.65.Ha, 12.60.-i, 12.15.Mm

I. INTRODUCTION

Top quark physics is among the central physical topics at the Tevatron and will continue to be so at the Large Hadron Collider (LHC) in the next few years. Compared to other lighter SM fermions, the top quark is the only fermion with mass at the electroweak symmetry breaking scale, so it is widely speculated that the properties of the top quark are sensitive to new physics. Among various top quark processes at present and future colliders, the flavor changing neutral current (FCNC) processes are often utilized to probe new physics (NP) because in the SM, the FCNC processes are highly suppressed [1], while in NP models, there may be no such suppression. Therefore, searching for top FCNC at colliders can serve as an effective way to hunt for NP.

The two-body FCNC decays of top quark such as $t \to cg, c\gamma, cZ, cH$ received much attention in the past. In the SM, the rates of these decays are less than 10^{-11} [2], which is far below the reaches of the LHC [3,4] and the International Linear Collider (ILC) [5], while in many NP models these decays may be enhanced to detectable levels [6]. By now, the two-body processes $t \to cg, c\gamma, cZ, cH$ have been extensively investigated in the minimal supersymmetric standard model (MSSM) [7], the left-right supersymmetric models [8], the supersymmetric model with R-parity violation [9], the two-Higgs doublet model (2HDM) [10], the topcolor-assisted technicolor model (TC2) [11], as well as models with extra singlet quarks [12]. Beside this, some three-body FCNC decays of the top quark, such as $t \to cVV (V = \gamma, Z, g)$ and $t \to cff$ ($f = b, \tau, \mu, e$), were also studied in the framework of the SM [13–16], 2HDM [15–17], MSSM [16,18–20], TC2 [21–24], or in a model-independent way [25].

The aim of this work is to perform a comprehensive analysis of the FCNC top quark decays $t \to cVV (V = \gamma, Z, g)$ and $t \to cff$ ($f = b, \tau, \mu, e$) in the little Higgs model with T-parity (LHT) [26]. In the LHT model, the related two-body decays $t \to cg, c\gamma, cZ, cH$ and the three-body decays $t \to cll$ ($l = \tau, \mu, e$) have been studied in [27,28] respectively, and these studies show that, compared with the SM, the rates of these decays can be greatly enhanced. So taking the completeness and the phenomenon of higher order dominance into consideration [14], it is necessary to consider all the three-body decays, which will be done in this work.

This paper is organized as follows. In Sec II a brief review of the LHT is given. In Sec III we present the details of our calculation of the decays $t \to cVV$ and $t \to cff$, and show some numerical results. Finally, we give a short conclusion in Sec IV.

II. A BRIEF REVIEW OF THE LHT

One of the major motivations for the little Higgs model [29,30] is to resolve the little hierarchy problem [31], in which the quadratic divergence of the Higgs mass term at one-loop level was canceled by the new diagrams with additional gauge bosons and a heavy top-quark partner. It was soon recognized that the scale of the new particles should be in the multi-TeV range in order to satisfy the constraints from electroweak precision measurements, which in turn reintroduces the little hierarchy problem [32]. This problem has been eased in the LHT model where a new Z_2 discrete symmetry called “T-parity” is introduced, and in this way, all dangerous tree level contribution to the precision measurements are forbidden [26].

Just like the little Higgs model, in the LHT model the assumed global symmetry $SU(5)$ is spontaneously broken down to $SO(5)$ at a scale $f \sim O(TeV)$, and the embedded $[SU(2) \otimes U(1)]^2$ gauge symmetry is simultaneously broken at f to the diagonal subgroup $SU(2)_L \otimes U(1)_Y$, which is identified with the SM gauge group.
From the $SU(5)/SO(5)$ breaking, there arise 14 Goldstone bosons which are described by the “pion” matrix Π, given explicitly by

$$\Pi = \begin{pmatrix} -\frac{v^0}{\sqrt{2}} - \frac{\eta}{\sqrt{2}} & -\frac{\omega^0}{\sqrt{2}} & -\frac{\omega^\pm}{\sqrt{2}} & -\frac{i\phi^0}{\sqrt{2}} & -\frac{i\phi^+}{\sqrt{2}} & -\frac{i\phi^-}{\sqrt{2}} & -\frac{i\phi^+}{\sqrt{2}} & -\frac{i\phi^-}{\sqrt{2}} \\
-\frac{\omega^0}{\sqrt{2}} & \frac{v + h + h^0}{\sqrt{2}} & \frac{v + h - h^0}{\sqrt{2}} & \frac{v + h^+ - h^0}{\sqrt{2}} & \frac{v + h^- - h^0}{\sqrt{2}} & \frac{v + h^+ + h^0}{\sqrt{2}} & \frac{v + h^- + h^0}{\sqrt{2}} & \frac{v + h^+ - h^0}{\sqrt{2}} \\
-\frac{i\phi^0}{\sqrt{2}} & \frac{\sqrt{2}}{2} \\
i\frac{\phi^+}{\sqrt{2}} & \frac{\sqrt{2}}{2} \\
i\frac{\phi^-}{\sqrt{2}} & \frac{\sqrt{2}}{2} \\
i\frac{\phi^+}{\sqrt{2}} & \frac{\sqrt{2}}{2} \\
i\frac{\phi^-}{\sqrt{2}} & \frac{\sqrt{2}}{2} \\
i\frac{\phi^+}{\sqrt{2}} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

(1)

Among the Goldstone bosons, the fields ω^0, ω^\pm and η are eaten by the new heavy gauge bosons Z_H, W^\pm_H and A_H so that the gauge bosons acquire following masses:

$$M_{W^\pm_H} = M_{Z_H} = g f (1 - \frac{v^2}{8 f^2}), \quad M_{A_H} = \frac{g'}{\sqrt{2}} f (1 - \frac{5v^2}{8 f^2}).$$

(2)

Likewise, the fields π^0 and π^\pm are eaten by the SM gauge bosons Z and W^\pm, but one minor difference from the SM is the masses of these bosons, up to $O(v^2/f^2)$, are given by

$$M_{W_L} = \frac{g v}{2} (1 - \frac{v^2}{12 f^2}), \quad M_{Z_L} = \frac{g v}{2} (1 - \frac{5v^2}{12 f^2}),$$

(3)

where g and g' are the SM $SU(2)$ and $U(1)$ gauge couplings respectively, and $v = 246$ GeV.

In the framework of the LHT model, all the SM particles are assigned to be T-parity even, and the other particles, such as the new gauge bosons, are assigned to T-parity odd. In particular, in order to implement the T-parity symmetry, each SM fermion must be accompanied by one heavy fermion called the mirror fermion. In the following, we denote the mirror fermions by u_H^i and d_H^i with $i = 1, 2, 3$ being the generation index. At the order of $O(v^2/f^2)$, their masses are given by

$$m_{u_H}^i = \sqrt{2} \kappa f, \quad m_{d_H}^i = m_{d_H}^i (1 - \frac{v^2}{8 f^2}),$$

(4)

where the Yukawa couplings κ_i generally depend on the fermion species i.

Since the T-parity is conserved in the LHT model, the fermion pairs interacting with the T-odd gauge boson must contain one SM fermion and one mirror fermion. In this case, due to the misalignment of the mass matrices for the SM fermions and for the mirror fermions, new gauge bosons can mediate flavor changing interactions. As pointed out in Ref. [34], these interactions can be described by two correlated CKM-like unitary mixing matrices V_{H_u} and V_{H_d} satisfying $V_{H_d}^\dagger V_{H_u} = V_{C_KM}$ with the subscripts u and d denoting which type of the SM fermion is involved in the interaction. The details of the Feynman rules for such interactions were given in Ref. [34], and in order to clarify our results, we list some of them:

$$\bar{u}_H^i u^j : - \frac{ig'}{10m_{u_H}} (m_{H_u}^i P_L - m_{d_H}^i P_R)(V_{H_u})_{ij},$$

(5)

$$\bar{u}_H^i \omega^0 u^j : \frac{ig'}{2m_{u_H}} (m_{H_u}^i P_L - m_{u_H}^i P_R)(V_{H_u})_{ij},$$

(6)

$$\bar{d}_H^i \omega^+ u^j : \frac{g}{\sqrt{2}m_{W_H}} (m_{H_d}^i P_L - m_{d_H}^i P_R)(V_{H_u})_{ij},$$

(7)

$$\bar{u}_H^i A_H u^j : - \frac{ig'}{10} (V_{H_u})_{ij} \gamma^\mu P_L,$$

(8)

$$\bar{d}_H^i Z_H u^j : - \frac{ig}{2} (V_{H_d})_{ij} \gamma^\mu P_L,$$

(9)

$$\bar{d}_H^i W^\mu_H u^j : \frac{ig}{\sqrt{2}} (V_{H_d})_{ij} \gamma^\mu P_L.$$

(10)

The unitary matrix V_{H_d} is usually parameterized with three angles $\theta_{12}^d, \theta_{23}^d, \theta_{13}^d$ and three phases $\delta_{12}^d, \delta_{23}^d, \delta_{13}^d$.
As introduced above, in the LHT model new contributions to the FCNC top quark coupling $t\bar{c}V$ come from the new gauge interactions mediated by (A_H, Z_H, W^\pm_H), which are shown in Fig. 1. Since we use Feynman gauge in our calculation, the Goldstone bosons η, ω^0 and ω^\pm also appear in the diagrams. The heavy scalar triplet Φ, in principle, may also contribute to the FCNC coupling, but since such a contribution is suppressed by the factor v^2/f^2, we neglect it hereafter. It should be noted that the rules in (5)-(10) imply that the form factors of the loop-induced $t\bar{c}V$ interaction, F, must take the following form

$$F \propto \sum_{i=1}^{3} (V^\dagger_{H_i})_{ji} f(m_{H_i})(V_{H_i})_{ic}$$

(12)

where $f(m_{H_i})$ is a universal function for three generation mirror quarks, but its value depends on the mass of ith-generation mirror quark, m_{H_i}. Obviously, for the degeneracy of the three generation mirror quarks, F vanished exactly due to the unitary of V_{H_i}, while for the degeneracy of the first two generations as discussed below, the factor behaviors like $(V^\dagger_{H_3})_{13}(f(m_{H_3}) - f(m_{H_1}))(V_{H_3})_{3c}$ with m_H being the common mass of the first two generations. In the case of very heavy third generation mirror quarks, $f(m_{H_3})$ vanish, that is its effect decouples, then F is proportional to $(V^\dagger_{H_3})_{13}f(m_H)(V_{H_3})_{3c}$, which are independent of m_{H_3}.
of Ref. [19], instead by calculating the amplitude square analytically. This greatly simplifies our calculations.

In above expressions, $P_{L,R} = \frac{1}{2} (1 \mp \gamma_5)$ are the left and right chirality projectors, p_t is the top quark momentum, p_c, p_1, p_2 are the momentum of the charm quark and gluons respectively, εs are wave functions of the gluons, and $G(p, m)$ is defined as $\frac{1}{p^2 - m^2}$. In actual calculation, we compute the amplitudes numerically by using the method of Ref. [19], instead by calculating the amplitude square analytically. This greatly simplifies our calculations.

B. Amplitude for $t \to cVV$ in the LHT model

Since the expressions of the amplitudes for $t \to cgg, cg\gamma, cgZ, c\gamma\gamma$ are quite similar, we only list the result for $t \to cgg$, which is given by

$$\mathcal{M}(t \to cgg) = M_a^g + M_b^g + M_c^g$$

with

$$M_a^g = -ig_f^{abcd} G(p_t - p_c, 0) \bar{u}_c^a(p_c) \Gamma_{\mu ji}^{ij} [(p_1 - p_2) \mu] \varepsilon_i^a(p_1) \cdot \varepsilon_j^b(p_2) + 2p_2 \cdot \varepsilon_i^a(p_1) \varepsilon_j^b(p_2)$$

$$M_b^g = g_T^{abc} G(p_t - p_2, p_c) \bar{u}_c^a(p_c) \tilde{T}_{\mu ji}^{ij} [(p_t - p_2 + m_c) \mu] \varepsilon_i^a(p_1) \cdot \varepsilon_j^b(p_2)$$

$$M_c^g = g_T^{abc} T_{\mu ji}^{ij} G(p_t - p_2, m_t) \bar{u}_c^a(p_c) \Gamma_{\mu ji}^{ij} [(p_t - p_2 + m_c) \mu] \varepsilon_i^a(p_1) \cdot \varepsilon_j^b(p_2)$$

In above expressions, $P_{L,R} = \frac{1}{2} (1 \mp \gamma_5)$ are the left and right chirality projectors, p_t is the top quark momentum, p_c, p_1, p_2 are the momentum of the charm quark and gluons respectively, εs are wave functions of the gluons, and $G(p, m)$ is defined as $\frac{1}{p^2 - m^2}$. In actual calculation, we compute the amplitudes numerically by using the method of Ref. [19], instead by calculating the amplitude square analytically. This greatly simplifies our calculations.

C. Numerical results for $t \to cVV$ and $t \to c\bar{f}f$ in the LHT model

In this work, we take the SM parameters as: $m_t = 172.0$ GeV, $m_c = 1.27$ GeV, $m_e = 0.00051$ GeV, $m_{\mu} = 0.106$ GeV, $m_\tau = 1.777$ GeV, $m_b = 4.2$ GeV, $m_Z = 91.2$ GeV, $\sin^2 \theta_W = 0.231$, $\alpha_e = 1/128.8$, $\alpha_s(m_t) = 0.107$ [37]. For the parameters in the LHT model, the breaking scale f, the three generation mirror quark masses $m_{H_i}(i = 1, 2, 3)$ and six mixing parameters (θ^{d}_{ij} and δ^{t}_{ij} with $i, j = 1, 2, 3$ and $i \neq j$) in Eq. [11] are involved. The breaking scale f determines the new gauge boson masses, and it has been proven that, as long as $f \geq 500$ GeV, the

FIG. 2: The Feynman diagrams for the decays $t \to cVV$ and $t \to c\bar{f}f(f = b, \tau, \mu, \epsilon)$ in the LHT.
indicates that the rates for the decay $t \rightarrow cgg$ can be easily understood from the expression in Eq. (12). From Fig. 3, one may conclude that in the LHT model, one compares the results in Fig. 3 (a) and Fig. 3 (b) with those in Fig. 3 (c) and Fig. 3 (d). This character can represent representative cases. The matrix elements of the first two generation up-type mirror quarks, i.e., m_{H_1} for the first two generation mirror quarks, i.e., $m_{H_1} = m_{H_2} = 500 \text{ GeV}$.

The LHT model can be consistent with the precision electroweak data. So we set $f = 500 \text{ GeV}, 1000 \text{ GeV}$ as two representative cases. The matrix elements of V_{H_1} have been severely constrained by the FCNC processes in K, B and D meson systems. To simplify our discussion, we consider two scenarios which can easily escape the constraints:

Case I: $V_{H_1} = I$, $V_{H_2} = V_{CKM}$

Case II: $s_{33}^d = 1/\sqrt{2}$, $s_{12}^d = s_{13}^d = 0$, $\delta_{12}^d = \delta_{23}^d = 0$ (17)

As for the mirror quark masses, it has been shown that the experimental bounds on four-fermi interactions require $m_{H_1} \leq 4.8f^2/\text{TeV}$. In our discussion, we take this bound. We also assume a common mass for the first two generation up-type mirror quarks, i.e., $m_{H_1} = m_{H_2} = 500 \text{ GeV}$ and let the third generation quark mass m_{H_3} to vary from 600 GeV to 1200 GeV for $f = 500 \text{ GeV}$ and from 600 GeV to 4800 GeV for $f = 1000 \text{ GeV}$. To make our predictions more realistic, we apply some kinematic cuts as did in Ref. [11], that is, we require the energy of each decay product larger than 15 GeV in the top quark rest frame.

In Fig. 3 we show the dependence of the rates for $t \rightarrow cgg, c\gamma Z, c\gamma \gamma$ on m_{H_3}. This figure indicates that the dependence is quite strong, i.e., more than 1 order of magnitude change when m_{H_3} varies from 600 GeV to 1200 GeV in Fig. (3a) and (3c) and from 600 GeV to 4800 GeV in Figs. (3b) and (3d). The reason is, as explained in Eq. (12) and below, the cancellation between the third generation mirror quark contribution and the first two generation mirror quark contribution is alleviated with the increase of m_{H_3}. This figure also indicates that the rates $t \rightarrow cgg, c\gamma Z, c\gamma \gamma$ are also sensitive to the parametrization scenarios of V_{H_4} when one compares the results in Fig. 3 (a) and Fig. 3 (b) with those in Fig. 3 (c) and Fig. 3 (d). This character can be easily understood from the expression in Eq. (12). From Fig. 3, one may conclude that in the LHT model, the rate for the decay $t \rightarrow cgg$ is much larger than the others, reaching 10^{-3} in optimal cases, while the rates

$FIG. 3$: The rates for $t \rightarrow cgg, c\gamma Z, c\gamma \gamma$ as a function of m_{H_3} for different values of f and V_{H_4}. We take a common mass for the first two generation mirror quarks, i.e., $m_{H_1} = m_{H_2} = 500 \text{ GeV}$.

In Eq. (17) and below, the cancellation between the third generation mirror quark contribution and the first two generation mirror quark contribution is alleviated with the increase of m_{H_3}. This figure also indicates that the rates $t \rightarrow cgg, c\gamma Z, c\gamma \gamma$ are also sensitive to the parametrization scenarios of V_{H_4} when one compares the results in Fig. 3 (a) and Fig. 3 (b) with those in Fig. 3 (c) and Fig. 3 (d). This character can be easily understood from the expression in Eq. (12). From Fig. 3, one may conclude that in the LHT model, the rate for the decay $t \rightarrow cgg$ is much larger than the others, reaching 10^{-3} in optimal cases, while the rates...
of the decays $t \to c g Z, c g \gamma, c \gamma \gamma$ are all below 10^{-5}.

We investigate the same dependence of the decays $t \to c f \bar{f}$ ($f = b, e, \mu, \tau$) in Fig. 4. Since the lepton masses are small compared with top quark mass, the rates for the decay $t \to c l \bar{l}$ with $l = e, \mu, \tau$ are approximately equal. This figure shows that that the dependence of $t \to c f \bar{f}$ on m_{H_2} is similar to that of $t \to c V V$ shown in Fig. 3. This figure also shows the rate of the decay $t \to c b \bar{b}$ can reach 10^{-3} in the optimum case, while the rate of the decay $t \to c l \bar{l}$ is usually less than 10^{-6}.

The authors of [42] have roughly estimated the discovery potentials of the high energy colliders in probing top quark FCNC decay for $100 fb^{-1}$ of integrated luminosity, and they obtained

$$LHC: Br(t \to c X) \geq 5 \times 10^{-5}$$
$$ILC: Br(t \to c X) \geq 5 \times 10^{-4}$$
$$TEV33: Br(t \to c X) \geq 5 \times 10^{-3}$$

Then by the results presented in Figs. 3 and 4, one can learn that the LHT model can enhance the decays $t \to c g g(b \bar{b})$ to the observable level of the LHC. So we may conclude that the LHC is capable in testing the flavor structure of the LHT model.

| Table I: Optimum predictions for the decays $t \to c g g, c b \bar{b}, c l \bar{l}$ in different models. |
|---------------------------------|----------------|----------------|-------------|-------------|----------------|----------------|
| $Br(t \to c g g)$ | $O(10^{-9})$ | $O(10^{-5})$ | $O(10^{-5})$| $O(10^{-5})$| $O(10^{-5})$ | $O(10^{-5})$ |
| $Br(t \to c l \bar{l})$ | 10^{-6} | 10^{-6} | 10^{-6} | 10^{-6} | 10^{-6} | 10^{-6} |
| $Br(t \to c b \bar{b})$ | $O(10^{-5})$ | $O(10^{-5})$ | $O(10^{-5})$| $O(10^{-5})$| $O(10^{-5})$ | $O(10^{-5})$ |
Finally, we summarize the LHT model predictions for the FCNC three-body decays $t \to cgg, cbp, c\ell\bar{\ell}$ in comparison with the predictions of the SM, the MSSM, the TC2, and the 2HDM in Table I. This table indicates that the optimum rates of the decays in the LHT model are comparable with those in the TC2 model, and the predictions of the two models are significantly larger than the corresponding predictions of the SM and the MSSM. As far as the decay $Br(t \to cb)$ is concerned, its branching ratios may reach 10^{-3}. So if the decays $t \to cgg$ and $t \to cb$ are observed at the LHC, more careful theoretical analysis and more precise measurement are needed to distinguish the models; while on the other hand, if these decays are not observed, one can constrain the parameter space of the LHT model. This table also indicates that, even in the optimum cases, the rate for $t \to c\ell\bar{\ell}$ is only 10^{-6}, which implies that it is difficult to detect such decay.

IV. CONCLUSION

In this work, we investigate the FCNC three-body decays $t \to cVV (V = \gamma, Z, g)$ and $t \to cff (f = b, e, \mu, \tau)$ in the LHT. We conclude that: i) The rates of these decays strongly depend on the mirror quark mass splitting. ii) The rates rely significantly on the flavor structure of the mirror quarks, namely V_{tH} and $V_{t\gamma}$. iii) In the optimum case of the LHT model, the rates for the decays $t \to cgg$ and $t \to cb$ are large enough to be observed at present or future colliders and with the running of the LHC, one get some useful information about the flavor structure of the LHT model by detecting these decays.

Acknowledgments

We would like to thank Junjie Cao and Lei Wu for helpful discussions and suggestions. This work is supported by the National Natural Science Foundation of China under Grant Nos.10775039, 11075045, by Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20094104110001, 20104104110001 and by HASTIT under Grant No.2009HASTIT004.

[1] J. A. Aguilar-Saavedra, Acta Phys. Polon. B 35, 2695 (2004).
[2] G. Eilam, J. L. Hewett, and A. Soni, Phys. Rev. D 44, 1473 (1991); 59, 039901 (1999); B. Mele, S. Petrarca, and A. Soddu, Phys. Lett. B 435, 401 (1998).
[3] M. Beneke, I. Efthymiopoulos, M. L. Mangano, J. Womersley (conveners) et al., arXiv: hep-ph/0003033.
[4] J. Carvalho, N. Castro, A. Onofre, and F. Velasco (ATLAS Collaboration), ATLAS internal note, ATL-PHYS-PUB-2005-009, 2005.
[5] M. Cobal, AIP Conf. Proc. No. 753, (AIP, New York, 2005), p. 234.
[6] W. Wagner, Rept. Prog. Phys. 68, 2409 (2005); A. Juste et al., econf C050814, PLEN0043 (2005); J. M. Yang, Ann. Phys. (N.Y.) 316, 529 (2005); D. Chakraborty, J. Konigsberg, and D. Rainwater, Ann. Rev. Nucl. Part. Sci. 53, 301 (2003); F. Larios, R. Martinez, and M. A. Perez, Int. J. Mod. Phys. A 21, 3473 (2006).
[7] C. S. Li, R. J. Oakes and J. M. Yang, Phys. Rev. D 49, 293 (1994); 56, 3156 (1997); J. L. López, D. V. Nanopoulos and R. Rangarajan, Phys. Rev. D 56, 3100 (1997); G. M. de Divitiis, R. Petronzio and L. Silvestrini, Nucl. Phys. B 504, 45 (1997); J. Guasch and J. Sola, Nucl. Phys. B 562, 3 (1999); J. J. Liu, C. S. Li, L. L. Yang and L. G. Jin, Phys. Lett. B 599, 92 (2004).
[8] M. Frank and I. Turan, Phys. Rev. D 72, 035008 (2005).
[9] J. M. Yang, B.-L. Young and X. Zhang, Phys. Rev. D 58, 055001 (1998).
[10] A. Arhrib, Phys. Rev. D 72, 075016 (2005); S. Bejar, J. Guasch, and J. Sola, Nucl. Phys. B 675, 270 (2003); E. O. Iltan, Phys. Rev. D 65, 075017 (2002); W. S. Hou, Phys. Lett. B 296, 179 (1992); R. A. Díaz, R. Martínez, and J. Alexis Rodríguez, hep-ph/0103307.
[11] Xue-lei Wang, Gong-ru Lu, Jin-min Yang, et al., Phys. Rev. D 50, 5781 (1994); Gong-ru Lu, Chong-xing Yue and Jin-shu Huang, J. Phys. C 22, 305 (1996); Phys. Rev. D 57, 1755 (1998); Gong-ru Lu, Fu-rong Yin, Xue-lei Wang, and Ling-de Wan, Phys. Rev. D 68, 015002 (2003); Chong-xing Yue, Gong-ru Lu, Guo-li Liu, and Qing-jun Xu, Phys. Rev. D 64, 095004 (2001).
[12] A. Arhrib and W. S. Hou, JHEP 0607, (2006) 009.
[13] E. Jenkins, Phys. Rev. D 56, 458 (1997); G. Altarelli, L. Conti and V. Lubicz, Phys. Lett. B 502, 125 (2001).
[14] G. Eilam, M. Frank and I. Turan, Phys. Rev. D 73, 053011 (2006).
[15] S. Bar-Shalom, G. Eilam, M. Frank and I. Turan, Phys. Rev. D 72, 055018 (2005); J. L. Díaz-Cruz, M. A. Pérez, G. Tavares-Velasco, and J. J. Toscano, Phys. Rev. D 60, 115014 (1999).
[16] M. Frank and I. Turan, Phys. Rev. D 74, 073014 (2006).
[17] E. O. Ittan and I. Turan, Phys. Rev. D 67, 015004 (2003); S. Bar-Shalom, G. Eilam, A. Soni and J. Wudka, Phys. Rev. D 57, 2957 (1998).
[18] G. Eilam, M. Frank and I. Turan, Phys. Rev. D 74, 035012 (2006).
[19] J. J. Cao, G. Eilam, M. Frank, K. Hikasa, G. L. Liu, I. Turan, and J. M. Yang, Phys. Rev. D 75, 075021 (2007).
[20] Zhaoxia Heng, Gongru Lu, Lei Wu, Jin Min Yang, Phys. Rev. D 79, 094029 (2009).
[21] Chong-xing Yue, Gong-ru Lu, Qing-jun Xu, et al., Phys. Lett. B 508, 290 (2001).
[22] Huan-Jun Zhang, Phys. Rev. D 77, 057501 (2008).
[23] Chong-xing Yue, Lei Wang, Dong-qi Yu, Phys. Rev. D 70, 054011 (2004); Chong-xing Yue, et al., Mod. Phys. Lett. A 18, 2187 (2003).
[24] Guoli Liu, Chin. Phys. Lett. 26, 104101 (2009).
[25] J. Drobnak, S. Fajfer and J. F. Kamenik, JHEP, 0903, 077 (2009).
[26] H. C. Cheng and I. Low, JHEP, 0309, 051 (2003); I. Low, JHEP, 0410, 067 (2004); H. C. Cheng and I. Low, JHEP, 0408, 061 (2004); J. Hubisz and P. Meade, Phys. Rev. D 71, 035016 (2005).
[27] Hou-Hong-Sheng, Phys. Rev. D 75, 094010 (2007).
[28] Hui-Di Yang, Chong-Xing Yue, Jia Wen, Yong-Zhi Wang, Mod. Phys. Lett. A 24, 1943 (2009).
[29] N. Arkani-Hamed, A. G. Cohen, H. Georgi, Phys. Lett. B 513, 232 (2001); N. Arkani-Hamed, A. G. Cohen, T. Gregoire, J. G. Wacker, JHEP 0208, 020 (2002); N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire, J. G. Wacker, JHEP 0208, 021 (2002).
[30] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, JHEP 0207, 034 (2002); T. Han, H. E. Logan, B. McElrath and L. T. Wang, Phys. Rev. D 67, 095004 (2003).
[31] R. Barbieri, A. Strumia, Phys. Lett. B 462, 144 (1999).
[32] W. Kilian, J. Reuter, Phys. Rev. D 70, 015004 (2004); C. Csaki, J. Hubisz, G. D. Kribs, P. Meade, J. Terning, Phys. Rev. D 67, 115002 (2003); J. L. Hewett, F. J. Petriello, T. G. Rizzo, JHEP 0310, 062 (2003); C. Csaki, J. Hubisz, G. D. Kribs, P. Meade, J. Terning, Phys. Rev. D 68, 035009 (2003).
[33] M. Blanke, A. J. Buras, A. Poschenrieder, C. Tarantino, S. Uhlig, A. Weiler, JHEP 0612, 003 (2006); J. Hubisz, S. J. Lee, and G. Paz, JHEP 0606, 041 (2006); M. Blanke, A. J. Buras, S. Recksiegel, C. Tarantino, S. Uhlig, Phys. Lett. B 657, 81 (2007); M. Blanke, A. J. Buras, S. Recksiegel, C. Tarantino, S. Uhlig, JHEP 0706, 082 (2007); M. Blanke, A. J. Buras, S. Recksiegel, C. Tarantino, JHEP 0705, 013 (2007).
[34] M. Blanke, A. J. Buras, A. Poschenrieder, S. Recksiegel, C. Tarantino, S. Uhlig, A. Weiler, JHEP 0701, 066 (2007).
[35] Andrzej J. Buras, Anton Poschenrieder, Selma Uhlig, and William A. Bardeen, JHEP 0611, 062 (2006).
[36] T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999); T. Hahn, Nucl. Phys. Proc. Suppl. 135, 333 (2004).
[37] C. Amsler et al., Particle Data Group, Phys. Lett. B 667, 1 (2008).
[38] J. Hubisz, P. Meade, A. Noble, M. Perelstein, JHEP 0601, 135 (2006).
[39] M. Blanke et al., Phys. Lett. B 646, 253 (2007).
[40] C. X. Yue, J. Wen, J. Y. Liu, W. Liu, Chin. Phys. C 3, 89 (2009); X. L. Wang, et al., Nucl. Phys. B 807, 210 (2009); X. L. Wang, et al., Nucl. Phys. B 810, 226 (2009).
[41] Jun jie Cao, Gad Eilam, Ken-ichi Hikasa, Jin Min Yang, Phys. Rev. D 74, 031701 (2006).
[42] J. Guasch and J. Sola, Nucl. Phys. B 562, 3 (1999).
[43] M. Clements, et al., Phys. Rev. D 27, 570 (1983); A. Axelrod, Nucl. Phys. B 209, (1982) 349; G. Passarino, M. Veltman, Nucl. Phys. B 160 151 (1979).
Appendix: Expressions of the effective $t\bar{c}V$ vertex

The effective $t\bar{c}V$ vertex can be obtained by calculating directly the diagrams in Fig.1 and with the help of the formula in [19]. The loop functions in the effective vertex are defined by the convention of [43] with p_L defined as the incoming momentum while p_R as the outgoing momentum. In our calculation, higher order terms, namely, terms proportional to v^2/f^2, in the masses of new gauge bosons and in the Feynman rules are ignored.

\[
\Gamma^\mu_{\bar{c}c\gamma}(p_L, p_R) = \Gamma^\mu_{\bar{c}c\gamma}(\eta^0) + \Gamma^\mu_{\bar{c}c\gamma}(\omega^+) + \Gamma^\mu_{\bar{c}c\gamma}(A_H) + \Gamma^\mu_{\bar{c}c\gamma}(Z_H) + \Gamma^\mu_{\bar{c}c\gamma}(W_H^\pm)
\]

\[
\Gamma^\mu_{\bar{c}c\gamma}(\eta^0) = \frac{i e g^2}{16\pi^2 150 M^2_{A_H}} (V_{H_u})^* (V_{H_u})_{ic}(A + B + C),
\]

\[
A = \frac{1}{p_L^2 - m_t^2} \left[m_{H_1}^2 (m_0^2 B_0 + p_L^2 B_1^0) \gamma^\mu P_L + m_c m_1 (m_0^2 B_0 + p_L^2 B_1^0) \gamma^\mu P_R
+ m_c (m_0^2 B_0 + p_L^2 B_1^0) \gamma^\mu P_L + m_c (m_0^2 B_0 + p_L^2 B_1^0) \gamma^\mu P_R \right]
\]

\[
B = \frac{1}{p_L^2 - m_c^2} \left[m_{H_2}^2 m_c^2 B_0^0 + p_L^2 B_1^0 \gamma^\mu P_L + m_c m_1 (m_0^2 B_0 + p_L^2 B_1^0) \gamma^\mu P_R
+ m_c m_1 (m_0^2 B_0 + p_L^2 B_1^0) \gamma^\mu P_L + m_c m_1 (m_0^2 B_0 + p_L^2 B_1^0) \gamma^\mu P_R \right]
\]

\[
C = \left[-m_{H_1}^4 C_0^1 \gamma^\mu P_L - m_1 m_c m_1^2 C_0^1 \gamma^\mu P_R + m_{H_2}^2 m_c C_1^1 \alpha \gamma^\mu P_L
+ m_{H_2}^2 m_c C_1^1 \alpha \gamma^\mu P_R + m_{H_2}^2 m_c C_1^1 \alpha \gamma^\mu P_R + m_{H_2}^2 m_c C_1^1 \alpha \gamma^\mu P_R \right]
\]

\[
\Gamma^\mu_{\bar{c}c\gamma}(\omega^+) = \frac{i e g^2}{16\pi^2 6 M^2_{Z_H}} (V_{H_u})^* (V_{H_u})_{ic}(D + E + F),
\]

\[
D = A(B_0^0 \rightarrow B_0^0, B_1^0 \rightarrow B_1^0),
E = B(B_0^0 \rightarrow B_0^0, B_1^0 \rightarrow B_1^0),
F = C(C_{0\alpha} \rightarrow C_{0\beta}, C_{1\alpha} \rightarrow C_{1\alpha}, C_{1\alpha} \rightarrow C_{1\beta}).
\]

\[
\Gamma^\mu_{\bar{c}c\gamma}(\omega^+) = \frac{i e g^2}{16\pi^2 2 M^2_{W_H}} (V_{H_u})^* (V_{H_u})_{ic}\left[\frac{2}{3} G + \frac{2}{3} H - \frac{1}{3} I + J \right],
\]

\[
J = m_{H_2}^2 m_1 (p_L^0 - p_L^0, p_L^0, p_L^0) + m_{H_2}^2 m_1 (p_L^0, p_L^0, p_L^0, p_L^0 + 2 C_0^1) P_L
- m_{H_2}^2 m_1 (p_L^0 - p_R^0 + 2 C_0^1) + (p_L^0 - p_L^0) C_1^1 + 2 C_1^1) \gamma^\mu P_L
- m_{H_2}^2 m_1 (p_L^0 - p_R^0 + 2 C_0^1) + (p_L^0 - p_L^0) C_1^1 + 2 C_1^1) \gamma^\mu P_L.
\]
\[
G = A(B_0^a \to B_0^a, B_1^a \to B_1^a),
\]
\[
H = B(B_0^b \to B_0^b, B_1^b \to B_1^b),
\]
\[
I = C(C_{\alpha\beta} \to C_{\alpha\beta}^1, C_{\alpha}^1 \to C_{\alpha}^1, C_0^1 \to C_0^2).
\]
\[
\Gamma_{i\epsilon\gamma}(A_H) = \frac{i e q^2}{16\pi^2} (V_{Hu})^*_{ij}(V_{Hu})_{ik}(K + L + M),
\]
\[
K = \frac{1}{p_{c}^2 - m_{i}^2} [p_{c}^2 B_{1}^a + m_{i} \phi_{c} B_{1}^a] \gamma_{\mu} P_{L},
\]
\[
L = \frac{1}{p_{c}^2 - m_{i}^2} [p_{c}^2 B_{1}^b + m_{i} \phi_{c} B_{1}^b] \gamma_{\mu} P_{L},
\]
\[
M = [(\phi_{c} - \phi_{c}) C_{\alpha}^1, \gamma_{\mu} \gamma_{\alpha} - m_{H_{t}} C_{\alpha}^1, \gamma_{\mu} - C_{\alpha}^1, \gamma_{\alpha} \gamma_{\mu} \gamma_{\beta}] P_{L}.
\]
\[
\Gamma_{i\epsilon\gamma}(Z_H) = \frac{i e q^2}{16\pi^2} (V_{Hu})^*_{ij}(V_{Hu})_{ik}(N + O + P),
\]
\[
N = K(B_1^a \to B_1^a),
\]
\[
O = L(B_1^b \to B_1^b),
\]
\[
P = M(C_{\alpha\beta}^2 \to C_{\alpha\beta}^1, C_{\alpha}^1 \to C_{\alpha}^1, C_0^3 \to C_0^2).
\]
\[
\Gamma_{i\epsilon\gamma}(W_{H}^\pm, \omega) = \frac{i e q^2}{16\pi^2} (V_{Hu})^*_{ij}(V_{Hu})_{ik} [m_i (\gamma_{\mu} \gamma_{\alpha} C_{\alpha}^4 + 2 \gamma_{\mu} \gamma_{\alpha} C_{\alpha}^4 - \psi_{c} \gamma_{\mu} C_{\alpha}^4)] P_{R} + (m_{i} \phi_{c} C_{\alpha}^4 + m_{c} \gamma_{\alpha} C_{\alpha}^4 - 2 m_{H_{t}} C_{\alpha}^4) \gamma_{\mu} P_{L}.
\]
\[
\Gamma_{i\epsilon\gamma}(\eta) = \frac{i}{16\pi^2} \frac{e q^2}{\cos \theta_{W} 100 M_{A_H}^2} (V_{Hu})^*_{ij}(V_{Hu})_{ik} (A' + B' + C'),
\]
\[
A' = \frac{1}{p_{c}^2 - m_{i}^2} [\frac{1}{2} \gamma_{\alpha} \gamma_{\beta} \gamma_{\mu} \gamma_{\alpha} \gamma_{\beta} \gamma_{\mu} + \frac{2}{3} \sin^2 \theta_{W} m_{i} m_{c} (m_{H_{t}} B_{0}^a + m_{H_{t}} B_{0}^a) \gamma_{\mu} P_{L} - \frac{2}{3} \sin^2 \theta_{W} m_{i} m_{c} (m_{H_{t}} B_{0}^a + m_{H_{t}} B_{0}^a) \phi_{c} \gamma_{\mu} P_{L}
\]
\[
- \frac{2}{3} \sin^2 \theta_{W} m_{H_{t}} m_{i} (B_{0}^a + B_{0}^a) \phi_{c} \gamma_{\mu} P_{L}].
\]
\[B' = \frac{1}{p_t^2 - m_e^2} \left[\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right] m_{H_1}^2 (m_e^2 B_0^h + p_t^2 B_1^h) \gamma^\mu P_L - \frac{2}{3} \sin^2 \theta_W m_e m_e (m_{H_1}^2 B_0^h) + \left(\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right) m_e (m_{H_1}^2 B_0^h + m_e^2 B_1^h) \gamma^\mu \phi_t P_R \]
\[+ \frac{2}{3} \sin^2 \theta_W m_e m_{H_1}^2 (B_0^h + B_1^h) \gamma^\mu \phi_t P_L, \]
\[C' = \left(\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right) C. \]
\[\Gamma_{\ell Z}^\mu (\omega^0) = i \frac{g}{16\pi^2 \cos \theta_W} \frac{g^2}{4M^2_{Z_H}} (V_{H_u})_{\alpha}(V_{H_u})_{\beta} m_{H_1}^2 (D' + E' + F'), \]
\[D' = A' (B_0^\alpha \rightarrow B_0^\alpha, B_1^\alpha \rightarrow B_1^\alpha), \]
\[E' = B' (B_0^\alpha \rightarrow B_1^\alpha, B_1^\alpha \rightarrow B_1^\alpha), \]
\[F' = C' (C_{\alpha \beta} \rightarrow C_{\alpha \beta}, C_\alpha \rightarrow C_\alpha, C_\beta \rightarrow C_\beta). \]
\[\Gamma_{\ell Z}^\mu (\omega^\pm) = i \frac{g}{16\pi^2 \cos \theta_W} \frac{g^2}{2M^2_{W_H}} (V_{H_u})_{\alpha}(V_{H_u})_{\beta} (G' + H' + I' + J'), \]
\[G' = A' (B_0^\alpha \rightarrow B_0^\alpha, B_1^\alpha \rightarrow B_1^\alpha), \]
\[H' = B' (B_0^\alpha \rightarrow B_1^\alpha, B_1^\alpha \rightarrow B_1^\alpha), \]
\[I' = C' (C_{\alpha \beta} \rightarrow C_{\alpha \beta}, C_\alpha \rightarrow C_\alpha, C_\beta \rightarrow C_\beta), \]
\[J' = \cos^2 \theta_W J. \]
\[\Gamma_{\ell Z}^\mu (A_H) = i \frac{g}{16\pi^2 \cos \theta_W} \frac{g^2}{100} (V_{H_u})_{\alpha}(V_{H_u})_{\beta} (K' + L' + M'), \]
\[K' = \frac{1}{p_t^2 - m_e^2} \left[\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right] p_t^2 B_1^a \left[\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right] m_e \phi_t B_1^a \gamma^\mu P_L, \]
\[L' = \frac{1}{p_t^2 - m_e^2} \left[\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right] p_t^2 B_1^h \left[\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right] m_e \phi_t B_1^h \gamma^\mu P_L, \]
\[M' = \left(\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right) \left[\phi_t - \phi_c \right] C_\alpha \gamma^\mu \gamma^\alpha - \left[\gamma^\mu C_0 \right] - \left[\gamma^\mu C_0 \right], \]
\[\Gamma_{\ell Z}^\mu (Z_H) = i \frac{g}{16\pi^2 \cos \theta_W} \frac{g^2}{4} (V_{H_u})_{\alpha}(V_{H_u})_{\beta} (N' + O' + P'), \]
\[N' = K' (B_1^\alpha \rightarrow B_1^\alpha), \]
\[O' = L' (B_1^\alpha \rightarrow B_1^\alpha), \]
\[P' = M' (C_{\alpha \beta} \rightarrow C_{\alpha \beta}, C_\alpha \rightarrow C_\alpha, C_\beta \rightarrow C_\beta). \]
\[\Gamma_{\ell Z}^\mu (W_H^\pm) = i \frac{g}{16\pi^2 \cos \theta_W} \frac{g^2}{2} (V_{H_u})_{\alpha}(V_{H_u})_{\beta} (Q' + R' + S' + T'), \]
\[Q' = K' (B_1^\alpha \rightarrow B_1^\alpha), \]
\[R' = L' (B_1^\alpha \rightarrow B_1^\alpha), \]
\[S' = \left(\frac{1}{2} + \frac{1}{3} \sin^2 \theta_W \right) (\left[\phi_t - \phi_c \right] C_\alpha \gamma^\mu \gamma^\alpha - \left[\gamma^\mu C_0 \right] - \left[\gamma^\mu C_0 \right]), \]
\[T' = \cos^2 \theta_W T. \]
The two-point and three-point loop functions B^a, B^b, C_0, C_{ij} in the above expressions are defined as

\[
C^1_{ij} = \begin{cases}
-p_c, p_t, m_{H_1}, M_{A_{h}}, m_{H_1}, &
\end{cases},
C^2_{ij} = \begin{cases}
-p_c, p_t, m_{H_1}, M_{Z_{h}}, m_{H_1}, &
\end{cases},
C^3_{ij} = \begin{cases}
-p_c, p_t, m_{H_1}, M_{W_{h}}, m_{H_1}, &
\end{cases},
C^4_{ij} = \begin{cases}
p_c, p_t, m_{H_1}, m_{H_1}, M_{W_{h}}, &
\end{cases},
B^a = B^a(-p_c, m_{H_1}, M_{A_{h}}),
B^b = B^b(-p_t, M_{H_1}, M_{A_{h}}),
B^c = B^c(-p_c, m_{H_1}, M_{Z_{h}}),
B^d = B^d(-p_t, M_{H_1}, M_{Z_{h}}),
B^e = B^e(-p_c, m_{H_1}, M_{W_{h}}),
B^f = B^f(-p_t, M_{H_1}, M_{W_{h}}).
\]