Incorporating aligned carbon nanotube electrode arrays in organic thin-film transistors

Cite as: AIP Advances 9, 045025 (2019); https://doi.org/10.1063/1.5075638
Submitted: 23 October 2018. Accepted: 08 April 2019. Published Online: 23 April 2019

Zhihui Yi, and Jonathan Sayago

ARTICLES YOU MAY BE INTERESTED IN

Effect of channel thickness, electrolyte ions, and dissolved oxygen on the performance of organic electrochemical transistors
Applied Physics Letters 107, 053303 (2015); https://doi.org/10.1063/1.4927595

Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors
APL Materials 3, 014911 (2015); https://doi.org/10.1063/1.4905154

Highly stretchable electrospun conducting polymer nanofibers
Applied Physics Letters 111, 093701 (2017); https://doi.org/10.1063/1.4997911
Incorporating aligned carbon nanotube electrode arrays in organic thin-film transistors

Zhihui Yi and Jonathan Sayago

AFFILIATIONS
1 Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
2 Center for Biocomposites and Biomaterials Processing, Faculty of Forestry, University of Toronto, Toronto, Ontario M5S 3B3, Canada
3 Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos 62588, Mexico

ABSTRACT
We introduce a very simple technique to obtain aligned carbon nanotube arrays tested in organic thin-film transistors based on poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) as the organic semiconductor. The technique to prepare aligned CNT electrode arrays was simple and resulted in organic thin-film transistors with a higher drain-source current and lower threshold voltage proving their effectiveness as injection electrodes. We believe that the aligned carbon nanotube electrode array can find important applications in organic microelectronic and biosensor devices.

Charge carrier injection at the organic semiconductor/metal electrode interface has an important impact on the performance of organic electronic devices that can limit the capacity to scale down devices. Carbon nanotubes (CNTs) are ideal candidates as electrode materials in organic electronics because of their high electrical conductivity, chemical stability and good mechanical properties.CNT electrode materials have been used in several devices such as transistors, light-emitting diodes and photodetectors. Better charge carrier injection with respect to gold electrodes has been achieved by incorporating carbon nanotube electrode arrays in transistors based on: pentacene, copper phthalocyanine, phenyl-C61-butyric acid methyl ester (PCBM), titanyl-phthalocyanine (TiOPc), poly-3(hexylthiophene) (P3HT) and P3HT/PCBM blends as the organic semiconductor, proving the efficacy of CNT to inject both electrons and holes charge carriers.

The improvement in charge carrier injection has been attributed to the favorable shape (one dimensional structure) and chemical compatibility of CNT/organic semiconductor interfaces, due to its validity over various organic semiconductors, belonging to different class of materials (polymers and small molecules) and deposited by different methods (via solution or vacuum-based deposition techniques). For example, such favorable shape can promote tunneling injection across a Schottky barrier contact, where the electrode workfunction mismatches the highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) levels of the organic semiconductor. Recent studies conducted by Hamed Khoshnevis et al. show possible correlations with the CNT structure-relaxation and its improved mechanical viscoelastic properties. Indeed, current trends in micro- and nano-composites are focusing on the mechanical and functional reinforcement, not only in terms of mechanical properties but also electrical/thermal conduction, and optical properties.

In this work we investigate the effect of the CNT alignment morphology in organic thin-film transistors (OTFTs). A simple method was developed to incorporate aligned SWCNT electrode arrays into an OTFT structure. The CNT structure morphology from this method was compared with an alternative method reported in the literature, that results in non-aligned carbon nanotube electrode arrays. The OTFT structure was completed employing poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), as organic semiconductor and tested with conventional transistor output and transfer characteristics. The method employed to prepare aligned CNT electrode arrays was simple and resulted in OTFTs with lower threshold voltage and higher drain source current. The organic semiconductor MEH-PPV
was chosen for its well known electroluminescent properties21 that aims to the possibility to study its light-emitting properties as a future work.

EXPERIMENTAL SECTION

The OTFT structure (Fig. 1a) consisted in a bottom gated, bottom contacted configuration employing a highly doped silicon wafer (conductivity > 200 S/cm), with 250 nm of thermally grown SiO\textsubscript{2} (Addison Engineering, Inc.), as the gate electrode and dielectric, respectively.

A dense network of single wall carbon nanotubes (SWCNTs) was deposited following the filtration method,9,23 7 ml of 2% sodium cholate (aq) dispersion of single walled CNTs (1 × 108 mg ml-1) was filtered through an amino-cellulose filter. The filter was subsequently set on top of Si/SiO\textsubscript{2} substrate and dissolved in a beaker containing acetone for ca 30 mins. The deposition of CNTs was completed by rinsing the substrates with acetone, isopropyl alcohol and water followed by gently drying with N\textsubscript{2} flow.

Photolithography lift-off technique was employed to deposit and pattern the Ti/Au (5 nm/40 nm) electrodes with concentric geometry to circumvent parasitic currents.10 The interelectrode distance (L, without considering the CNT extension into the channel) was 40 μm and the width was 2000 μm.

A vacuum annealing of the CNTs at 500 °C for 1 h at 4 × 10-6 mbar atmosphere was carried out to reduce the contact resistance between the metal electrodes and the CNTs.22

Two methods were employed to remove the CNTs from the transistor channel. The first method consisted in aligned photolithography followed by a sequential sonication in deionized water and MF319 (Microchem) developer solution in two consecutive steps of two min each, resulting in aligned CNT electrode arrays, possibly due to the effect of the polar solvent and the ultrasonic waves on the CNT natural preferred arrangement, aligned vs non-aligned. The other method was achieved through photolithography and reactive ion etching with oxygen plasma resulting in non-aligned CNT electrode arrays. The structures where cleaned in sequential ultrasonic baths in remover PG, acetone and isopropanol for 5 min each, previous to the deposition of the organic semiconductor.

The transistor structures were completed by spin-coating (1000 rpm, 1 min) a solution of MEH-PPV (Sigma Aldrich, M.W. 55 000 Da) in toluene (5 mg ml-1) resulting in a MEH-PPV layer with typical thickness of 40 nm.

The morphology of the structure was investigated (Figure 1 b, c) using Atomic Force Microscopy (AFM, Digital Instruments Dimension 3100) with a Si cantilever (radius < 10 nm), in tapping mode, in ambient conditions. Thin-film deposition and transistor characterization were carried out in a N\textsubscript{2} glove-box (H\textsubscript{2}O, O\textsubscript{2} < 1 ppm). The transistor electric characteristics were measured using a B1500A Agilent semiconductor parameter analyzer.

RESULTS AND DISCUSSION

The CNTs extension into the channel was 1 μm and 4 μm for the aligned and non-aligned CNT electrode array structures (Figs. 1b and 1c). Although it remains unclear how the geometry of the electrodes affects the performance of the resulting transistor, a slight yet noticeable improvement with aligned CNT electrodes was visible in the transistor electric characteristics.

The electrical output and transfer characteristics of the MEH-PPV OTFTs, of aligned and non-aligned CNTs electrode arrays, showed a typical p-type unipolar behavior (Fig. 2a–2d). The shape of the output curves (Fig. 2a and 2c) in the linear region indicates an Ohmic behavior despite the work function mismatch between gold and CNTs with respect to MEH-PPV HOMO and LUMO levels (work function of Au and CNTs is located at -4.7,24 and -4.6 eV,25 respectively vs. vacuum level; and the HOMO and LUMO levels of MEH-PPV are located at -5.07 and -2.9 eV, respectively vs. vacuum level; and the HOMO and LUMO levels of MEH-PPV are located at -5.07 and -2.9 eV, respectively26). The threshold voltage (V_{th}), deduced from the extrapolation at y=0 of the square root of the transistor current in the transfer curves at saturation, was 31 V for transistors with aligned CNT and 35 V for the non-aligned structures. The field effect mobility, deduced from the transfer curves at saturation27 was 3.1 × 10-6 and 4.7 × 10-6 cm2/V·s, for the aligned and non-aligned CNTs transistors. The field effect mobility values here estimated are lower than the ones reported in the literature for MEH-PPV, from 10-5 to 10-4 cm2/V·s,28,29 which can indicate the presence of charge carrier trapping due to electronic defects in the MEH-PPV film. A higher drain and source current and lower threshold voltage was found in aligned CNT with respect to the non-aligned array structure transistors demonstrating the applicability of the present method to deposit and pattern carbon nanotube electrode arrays to improve charge injection in organic thin-film transistors. We are currently investigating small molecule semiconducting channel materials deposited through vacuum sublimation and other techniques in order to further advance the device electric performance.

![FIG. 1. Structure of OTFTs with carbon nanotube electrode arrays; (a) lateral view schematic, (b) atomic force micrograph of non-aligned carbon nanotube electrode arrays, RMS roughness (r_{rms})=1.26 nm; and (c) atomic force micrograph of aligned carbon nanotube electrode arrays, with r_{rms}=2.2 nm.](image-url)
CONCLUSIONS

CNTs are ideal electrode materials in organic electronics. A new and simple method to deposit aligned CNT electrode arrays from solution was introduced and used to investigate the effect of CNT morphology alignment in MEH-PPV based OTFTs. Transistors based on aligned CNT electrode array showed a moderate increase in the drain-source current and a lower threshold voltage with respect to transistors with non-aligned CNT electrode arrays. We believe in the general applicability of the present technique to deposit aligned carbon nanotubes to improve various organic electronic devices with a number of organic semiconductors including biosensors, energy storage and organic photovoltaics.

ACKNOWLEDGMENTS

JS would like to thank Irina Valitova for her fruitful discussions. The authors greatly acknowledge Ford Canada, Total Gas & Power North America, Inc, Ontario Research Fund-Research Excellence (ORF-RE) 07–41, and the Centre for Biocomposite and Biomaterial Processing (CBBP). JS acknowledges support from CONACYT.

REFERENCES

1. Y.-T. Chang, J.-H. Huang, M.-C. Tu, P. Chang, and T.-R. Yew, “Flexible direct-growth CNT biosensors,” Biosens. Bioelectron. 41, 898–902 (2013).
2. K. Balasubramanian and M. Burghard, “Biosensors based on carbon nanotubes,” Anal. Bioanal. Chem. 385(3), 452–468 (2006).
3. C. C. Scott, “Metal–organic interface and charge injection in organic electronic devices,” J. Vac. Sci. Technol. Vac. Surf. Films 21(3), 521–531 (2003).
4. B. Braun, W. R. Salaneck, and M. Fahlman, “Energy-level alignment at organic/metal and organic/organic interfaces,” Adv. Mater. 21(14–15), 1450–1472 (2009).
5. N. Koch, S. Duhm, J. P. Rabe, A. Vollmer, and R. L. Johnson, “Optimized hole injection with strong electron acceptors at organic-metal interfaces,” Phys. Rev. Lett. 95(23), 237601 (2005).
6. Y. Cao, M. L. Steigerwald, C. Nuckolls, and X. Guo, “Current trends in shrinking the channel length of organic transistors down to the nanoscale,” Adv. Mater. 22(1), 20–32 (2010).

7. F. Cicoira, N. Coppede, S. Iannotta, and R. Martel, “Ambipolar copper phthalocyanine transistors with carbon nanotube array electrodes,” Appl. Phys. Lett. 98(18), 183303-1–183303-3 (2011).
8. F. Cicoira, C. M. Aguirre, and R. Martel, “Making contacts to n-type organic transistors using carbon nanotube arrays,” ACS Nano 5(1), 283–290 (2011).
9. C. M. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, and R. Martel, “Carbon nanotube sheets as electrodes in organic light-emitting diodes,” Appl. Phys. Lett. 88(18), 183104-1–183104-3 (2006).
10. C. M. Aguirre, C. Tviron, M. Paulet, P. Desjardins, and R. Martel, “Carbon nanotubes as injection electrodes for organic thin film transistors,” Nano Lett. 9(4), 1457–1461 (2009).
11. M. C. Gwinner, F. Jakubka, F. Gazzotti, H. Strimming, and J. Zausmeil, “Enhanced ambipolar charge injection with semiconducting polymer/carbon nanotube thin films for light-emitting transistors,” ACS Nano 6(1), 539–548 (2012).
12. H. Maki, T. Sato, and K. Ishibashi, “Transport characteristic control of field-effect transistors with single-walled carbon nanotube films using electrode metals with low and high work functions,” Jpn. J. Appl. Phys. 45(9A), 7234–7236 (2006).
13. F. Ozel, A. Gaur, J. A. Rogers, and M. Shim, “Polymer electrolyte gating of carbon nanotube network transistors,” Nano Lett. 5(3), 905–911 (2005).
14. Y.-T. Chang, J.-H. Huang, M.-C. Tu, P. Chang, and T.-R. Yew, “Flexible direct-growth CNT biosensors,” Biosens. Bioelectron. 41, 898–902 (2013).
15. A. Jagota, R. S. McLean, G. P. Mitchell, G. B. Onoan, S. R. Lustig, E. D. Boyes, R. H. French, T. D. Gierke, M. A. Harmer, P. B. Hietpas, F. Mahvash, “Carbon nanotube array electrodes for organic thin film transistors,” M.S. Thesis, École Polytechnique de Montréal: Montréal, Canada, 2012.
16. H. Khoshnevis, T. Q. Tran, S. M. Mint, A. Zadhoush, H. M. Duong, and M. Youssefi, “Effect of alignment and packing density on the stress relaxation process of carbon nanotube fibers spun from floating catalyst chemical vapor deposition method,” Colloids Surf. Physicochem. Eng. Asp. 307(1), 183303-1–183303-3 (2009).
17. G. C. Gwinner, F. Jakubka, F. Gazzotti, H. Strimming, and J. Zausmeil, “Enhanced ambipolar charge injection with semiconducting polymer/carbon nanotube thin films for light-emitting transistors,” ACS Nano 6(1), 539–548 (2012).
18. H. Maki, T. Sato, and K. Ishibashi, “Transport characteristic control of field-effect transistors with single-walled carbon nanotube films using electrode metals with low and high work functions,” Jpn. J. Appl. Phys. 45(9A), 7234–7236 (2006).
19. F. Ozel, A. Gaur, J. A. Rogers, and M. Shim, “Polymer electrolyte gating of carbon nanotube network transistors,” Nano Lett. 5(3), 905–911 (2005).
20. Y.-T. Chang, J.-H. Huang, M.-C. Tu, P. Chang, and T.-R. Yew, “Flexible direct-growth CNT biosensors,” Biosens. Bioelectron. 41, 898–902 (2013).
21. A. Jagota, R. S. McLean, G. P. Mitchell, G. B. Onoa, S. R. Lustig, E. D. Boyes, R. H. French, T. D. Gierke, M. A. Harmer, P. B. Hietpas, F. Mahvash, “Carbon nanotube array electrodes for organic thin film transistors,” M.S. Thesis, École Polytechnique de Montréal: Montréal, Canada, 2012.
22. H. Khoshnevis, T. Q. Tran, S. M. Mint, A. Zadhoush, M. Youssefi, “Effect of alignment and packing density on the stress relaxation process of carbon nanotube fibers spun from floating catalyst chemical vapor deposition method,” Colloids Surf. Physicochem. Eng. Asp. 307(1), 183303-1–183303-3 (2009).
23. G. C. Gwinner, F. Jakubka, F. Gazzotti, H. Strimming, and J. Zausmeil, “Enhanced ambipolar charge injection with semiconducting polymer/carbon nanotube thin films for light-emitting transistors,” ACS Nano 6(1), 539–548 (2012).
24. H. Maki, T. Sato, and K. Ishibashi, “Transport characteristic control of field-effect transistors with single-walled carbon nanotube films using electrode metals with low and high work functions,” Jpn. J. Appl. Phys. 45(9A), 7234–7236 (2006).
25. F. Ozel, A. Gaur, J. A. Rogers, and M. Shim, “Polymer electrolyte gating of carbon nanotube network transistors,” Nano Lett. 5(3), 905–911 (2005).
26. Y.-T. Chang, J.-H. Huang, M.-C. Tu, P. Chang, and T.-R. Yew, “Flexible direct-growth CNT biosensors,” Biosens. Bioelectron. 41, 898–902 (2013).
27. A. Jagota, R. S. McLean, G. P. Mitchell, G. B. Onoa, S. R. Lustig, E. D. Boyes, R. H. French, T. D. Gierke, M. A. Harmer, P. B. Hietpas, F. Mahvash, “Carbon nanotube array electrodes for organic thin film transistors,” M.S. Thesis, École Polytechnique de Montréal: Montréal, Canada, 2012.
28. H. Khoshnevis, T. Q. Tran, S. M. Mint, A. Zadhoush, M. Youssefi, “Effect of alignment and packing density on the stress relaxation process of carbon nanotube fibers spun from floating catalyst chemical vapor deposition method,” Colloids Surf. Physicochem. Eng. Asp. 307(1), 183303-1–183303-3 (2009).
29. G. C. Gwinner, F. Jakubka, F. Gazzotti, H. Strimming, and J. Zausmeil, “Enhanced ambipolar charge injection with semiconducting polymer/carbon nanotube thin films for light-emitting transistors,” ACS Nano 6(1), 539–548 (2012).
30. H. Maki, T. Sato, and K. Ishibashi, “Transport characteristic control of field-effect transistors with single-walled carbon nanotube films using electrode metals with low and high work functions,” Jpn. J. Appl. Phys. 45(9A), 7234–7236 (2006).
31. F. Ozel, A. Gaur, J. A. Rogers, and M. Shim, “Polymer electrolyte gating of carbon nanotube network transistors,” Nano Lett. 5(3), 905–911 (2005).
32. Y.-T. Chang, J.-H. Huang, M.-C. Tu, P. Chang, and T.-R. Yew, “Flexible direct-growth CNT biosensors,” Biosens. Bioelectron. 41, 898–902 (2013).
33. A. Jagota, R. S. McLean, G. P. Mitchell, G. B. Onoa, S. R. Lustig, E. D. Boyes, R. H. French, T. D. Gierke, M. A. Harmer, P. B. Hietpas, F. Mahvash, “Carbon nanotube array electrodes for organic thin film transistors,” M.S. Thesis, École Polytechnique de Montréal: Montréal, Canada, 2012.
21. A. L. Holt, J. M. Leger, and S. A. Carter, “Electrochemical and optical characterization of p- and n-doped poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene],” J. Chem. Phys. 123(4), 044704–044707 (2005).
22. E. J. Meijer, C. Detcheverry, P. J. Baesjou, E. van Veenendaal, D. M. de Leeuw, and T. M. Klapwijk, “Dopant density determination in disordered organic field-effect transistors,” J. Appl. Phys. 93(8), 4831–4835 (2003).
23. J.-O. Lee, C. Park, J.-J. Kim, J. Kim, J. W. Park, and K.-H. Yoo, “Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method,” J. Phys. Appl. Phys. 33(16), 1953–1956 (2000).
24. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim et al., “A universal method to produce low–work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
25. S. Suzuki, Y. Watanabe, Y. Homma, S. Fukuba, S. Heun, and A. Locatelli, “Work functions of individual single-walled carbon nanotubes,” Appl. Phys. Lett. 85(1), 127–129 (2004).
26. Y. Ahn, S.-W. Ko, J. Lee, and H.-K. Shim, “Novel cyclohexylsilyle- or phenylsilyle-substituted poly(p-phenylene vinylene)s via the halogen precursor Route and Gilch polymerization,” Macromolecules 35(9), 3495–3505 (2002).
27. Organic Field Effect Transistors: Theory, Fabrication and Characterization (Springer, 2009).
28. F. Cicoira and C. Santato, “Organic light emitting field effect transistors: Advances and perspectives,” Adv. Funct. Mater. 17(17), 3421–3434 (2007).
29. Y. Li, Y. Cao, J. Gao, D. Wang, G. Yu, and A. J. Heeger, “Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells,” Synth. Mat. 99, 243 (1999).