Is increasing nodal count associated with improved recurrence-free and overall survival following standard right hemicolectomy for colon cancer?

Ian P. Hayes MBBS, MS, MEpi, FRCS(Gen-Surg), FR1,2 | Elasma Milanzi PhD, MBiostats3,4 | Peter Gibbs MBBS, MD, FRACP5,6,7 | Ian Faragher FRACS8 | Jeanette C. Reece PhD, MPH3,9

1Colorectal Surgery Unit, Royal Melbourne Hospital, Melbourne, Victoria, Australia
2Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
3Neuroepidemiology Unit, Melbourne School of Population and Global Health, Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
4Australasian Kidney Trials Network, University of Queensland, Brisbane, Queensland, Australia
5Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
6Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
7Department of Medical Oncology, Western Health, Melbourne, Victoria, Australia
8Department of Colorectal Surgery, Western Health, Melbourne, Victoria, Australia
9The University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia

Correspondence
Jeanette C. Reece, PhD, MPH, Neuroepidemiology Unit, Melbourne School of Population and Global Health, Centre for Epidemiology and Biostatistics, The University of Melbourne, Level 3 207 Bouverie St, Melbourne, VIC 3010, Australia.
Email: jreece@unimelb.edu.au

Abstract
Background and Objectives: Increasing lymph node harvest for right-sided colon cancer is associated with improved overall survival (OS), but most relevant studies failed to report the extent of resection. We examined the association between increasing lymph node count with standard right hemicolectomy according to nodal status and prognostic outcomes in right-sided tumors.

Methods: Retrospective analysis of prospectively collected clinical data from patients with proximal colonic adenocarcinomas (n = 1390) following right hemicolectomy. Associations between lymph node counts (0–12 vs. 13–15, 16–20, and >20) and recurrence-free survival (RFS) and OS were examined using multivariate Cox modeling adjusted for confounders.

Results: We found no association between increasing nodal count and RFS, regardless of nodal status. In the absence of nodal metastases, increasing nodal count (16–20 and >20 vs. 0–12 nodes) was associated with 57% (95% confidence interval [CI]: 0.21–0.89) and 52% (95% CI: 0.24–0.95) improved OS, respectively. In the presence of nodal metastases, increasing nodal count was not associated with OS. Adjuvant chemotherapy did not modify this effect.

Conclusion: Increasing nodal count (>15 nodes) with right hemicolectomy was not associated with improved RFS. Improved OS was only found for node-negative tumors, casting some doubt on the benefits of resecting more lymph nodes in the presence of nodal metastases.

Keywords
nodal count, overall survival, proximal colon cancer, recurrence-free survival, right hemicolectomy
1 | INTRODUCTION

Standard treatment for right-sided colon cancer comprises resection of the primary tumor and associated tumor-draining lymph nodes. Previous studies found increasing nodal count is associated with improved recurrence-free survival (RFS) and survival outcomes. Further, two national cancer database studies recently found yields of ≥22 and ≥24 nodes, respectively, had the highest overall survival (OS). Similarly, studies have found more extensive surgery for proximal tumors (complete mesocolic excision [CME] with central vascular ligation or extended lymph node dissection [D3 lymphadenectomy], resulting in higher lymph node yields, is associated with improved disease-free survival or OS using univariate analysis.

However, evidence for the positive association between increasing node yields and improved prognostic outcomes in right-sided colon cancers is compromised due to limitations of previous studies. Several studies, especially those utilizing large national databases, provided little or no information regarding the extent of resection. Also statistical shortcomings were often present as potential confounders, including adjuvant chemotherapy use, tumor characteristics, or DNA mismatch repair (MMR) status were not adjusted for in multivariate analyses, or only univariate analyses were performed. Further, most studies only examined one outcome (survival) with few assessing both recurrence and survival, and only a handful of studies examined the status of retrieved nodes.

In the present study, we aimed to clarify the association between increasing nodal count for cecal and ascending colon tumors and prognostic outcomes compared with lower nodal count. The limitations of heterogeneity of surgery resection in prior related studies were overcome by analyzing data following one surgical procedure, standard (D2) right hemicolectomy, using data from a large comprehensive multicentre clinical database. The association between categories of increasing numbers of lymph nodes and two prognostic outcomes, RFS and OS, was examined using multivariate analysis adjusted for confounders, including adjuvant chemotherapy use and tumor characteristics and MMR status. Additionally, we examined associations between increasing nodal count and prognostic outcomes in both the presence and absence of involved nodes. The findings of this study will help clarify the association between the number of lymph nodes harvested and oncological outcomes for right-sided colon cancer following standard right hemicolectomy surgery. The potential oncological effect of increasing nodal count is also relevant to current surgical interest in extended lymphadenectomy.

2 | MATERIALS AND METHODS

2.1 | Data

A retrospective analysis of data from the BioGrid ACCORD clinical colorectal cancer database was conducted. BioGrid comprises prospectively collected data from all colorectal cancer patients admitted to seven tertiary-referral hospitals with specialist colorectal surgery services in Melbourne, Australia (four public, three private) via clinical notes, supported by radiology and histopathology reports. BioGrid was demonstrated to perform well in a validation study. The selected sample satisfied the following inclusion and exclusion criteria; tumor site: ascending colon or cecum; microscopic type: adenocarcinoma; surgery method: laparoscopic or open standard right hemicolectomy (operative title was defined by the title used in clinical notes); time period: between 1990 and 2018; no synchronous or distant metastatic tumor; no preoperative chemotherapy or radiotherapy or postoperative radiotherapy; and no previous history of any cancer. Extended resections including extended right hemicolectomy, subtotal and total colectomy were excluded. Right hemicolectomy, as performed by the contributing surgeons, routinely involved resection of the distal 5 cm ileum and right colon to approximately the junction of proximal and middle third of the transverse colon. The ileocolic pedicle was routinely ligated 1–2 cm distal to the junction of ileocolic and superior mesenteric arteries. High ligation of the middle colic pedicle was not routinely performed. However, resected length of colon, extent of lymphadenectomy, and completeness of mesocolic excision were not recorded in the database. This resulted in a sample size of 1390. Figure 1 shows the selected sample after applying the inclusion and exclusion criteria.

2.2 | Primary outcome

The primary outcome of interest was RFS, defined as the time from right hemicolectomy surgery to first recurrence at any site. Those who had not experienced recurrence at the time the data were extracted, who died or were lost to follow-up before recurrence, were censored. Censoring occurred at either the date of the last recorded visit or the date of death.

2.3 | Secondary outcomes

Secondary outcomes included OS and loco-regional recurrence-free survival (LRRFS). OS was defined as time from surgery to death. Patients were censored if they were still alive at the time of data extraction or were lost to follow-up. For LRRFS, the event of interest was restricted to first recurrence, classified as loco-regional recurrence. Those who experienced other forms of recurrence or did not experience any form of recurrence while under observation were censored on their last observed date.
Exposure

The exposure of interest was increasing nodal count (as a categorical variable). Total lymph nodes examined (positive and negative combined) were categorized as 0–12, 13–15, 16–20, and >20 nodal counts. We used 12 resected lymph nodes as the control group in analyses as studies indicate histological evaluation of 12 nodes identifies 90% of positive nodes and the College of American Pathologists Consensus Statement recommends at least 12 nodes be removed for reliable nodal status classification. Categories >12 nodes were selected to ensure the relative numbers in each categorical group were comparable and to identify any potential trends in the association between increasing nodal counts and prognostic outcomes.

Covariables (and how they were categorized) are listed in Table 1.

Statistical methods

Descriptive statistics (frequencies and percentages) were used to summarize patient and tumor characteristics. Pearson correlation was used to measure the correlation between total number of lymph nodes examined and count of positive nodes. Kaplan Meier (KM) curves based on cumulative incidence were used to visualize survival relationships in unadjusted analyses (recurrence and mortality).

The main analysis for RFS and OS was multivariate Cox proportional hazards (PH) modeling adjusting for potential confounders, consistent with several prior studies examining nodal yields and prognostic outcomes. Results of analyses are reported as hazard ratios (HRs) and 95% confidence intervals (CIs) representing the hazard of tumor recurrence and mortality, respectively. Potential confounders with p values ≤0.15 in univariate modeling were included in multivariate models. The PH assumption of the Cox model was checked using the Schoenfeld residuals test.

We noted that a competing risk approach should be considered when death can prevent observing recurrence. Mortality cumulative incidence for the different levels of the number of lymph nodes examined was assessed (Figure 1) and found to be similar. Therefore, we assumed that any differences in RFS would not be due to differential prevention of observing recurrence due to death.

Effect modifiers

Effect modifiers are variables that are assumed to modify the association between the exposure and the outcomes, such that the association varies for different levels of the effect modifiers. Nodal stage (N-stage) was considered an effect modifier in addressing the objective as to whether the relationship between the number of lymph nodes examined and outcomes (RFS and OS) depended on nodal metastases. For meaningful interpretation, N-stage was categorized as N0, N1, and N2 based on the AJCC 8th edition.
TABLE 1 Baseline characteristics of the full data set (patients with right-sided colon cancers who underwent right hemicolectomy between 1990 and 2018) and cumulative 5-year recurrence

Covariate	Categories	No. of participants	Recurrence	Death								
		n	%	Yes (n)	Yes (%)	No (n)	No (%)	Yes (n)	Yes (%)	No (n)	No (%)	5-year recurrence
No. of lymph nodes examined	0–12	259	20%	57	22	202	78	71	27	188	73	26
	13–15	284	22%	45	16	239	84	56	20	228	80	18
	16–20	334	26%	52	16	282	84	64	19	270	81	18
	>20	423	33%	60	14	363	86	55	13	368	87	17
	Missing	15	15%	3	20	12	80	4	27	11	73	NA
N stage	N0	814	62%	61	8	753	93	102	13	712	88	9
	N1	300	23%	72	24	228	76	70	23	230	77	27
	N2	191	15%	84	44	107	56	77	40	114	60	50
	Missing	10	10%	0	0	10	100	1	10	9	90	NA
Age	<55	89	9%	20	23	69	78	15	17	74	83	26
	≥55	875	91%	141	16	734	84	170	19	705	81	19%
	Missing	351	35%	56	16	295	84	65	19	286	82%	18
Sex	F	672	51%	104	16	568	85	118	18	554	82%	18
	M	643	49%	113	18	530	82	132	21	511	80%	21
Surgical method	Laparoscopic	902	69%	109	12	793	88	108	12	794	88%	13
	Open	413	31%	108	26	305	74	142	34	271	66%	30
Year of surgery	1990–1999	66	5%	23	35	43	65	30	46	36	55%	39
	2000–2004	110	8%	28	26	82	75	45	41	65	59%	27
	2005–2009	259	20%	48	19	211	82	74	29	185	71%	20
	2010–2014	434	33%	71	16	363	84	81	19	353	81%	17
	≥2015	446	34%	47	11	399	90	20	5	426	96%	NA
Type of hospital	Private	337	26%	39	12	298	88	32	10	305	91%	13
	Public	978	74%	178	18	800	82	218	22	760	78%	21
Admission type	Elective	1125	86%	152	14	973	87	187	17	938	83%	15
	Emergency	184	14%	64	35	120	65	63	34	121	66%	44
	Missing	6	6%	1	17	5	83	0	0	6	100%	20
Diabetes	No	979	76%	161	16	818	84	174	18	805	82%	19
	Yes	306	24%	55	18	251	82	73	24	233	76%	21
	Missing	30	30%	1	3	29	97	3	10	27	90%	5
ASA comorbidity^a	<3	799	61%	147	18	652	82	137	17	662	83%	21
	3+	516	39%	70	14	446	86	113	22	403	78%	15
Adjuvant chemotherapy	No	917	70%	116	13	801	87	169	18	748	82%	15
	Yes	398	30%	101	25	297	75	81	20	317	80%	27
BMI	Normal/Under weight	743	73%	128	17	615	83	138	19	605	81%	19
	Overweight/Obese	279	27%	42	15	237	85	40	14	239	86%	16
	Missing	293	29%	47	16	246	84	72	25	221	75%	21
Margins	Involved	4	0%	2	50	2	50	2	50	2	50	NA
	Not involved	1275	100%	208	16	1067	84	242	19	1033	81%	19
	Missing	36	36%	7	19	29	81	6	17	30	83%	26
To assess whether the association between increasing nodal count in patients with N-stage 1–2 and recurrence and OS depended on whether the patient received postoperative adjuvant chemotherapy, a subanalysis was performed where postoperative adjuvant chemotherapy was considered an effect modifier.

2.7 Potential confounders

To minimize bias in estimating the association between increasing nodal count and outcomes (RFS and OS), we adjusted analyses for potential confounders (Supporting Information: Tables 1 and 2, covariates with p values ≤ 0.15 in univariate modeling).

3 RESULTS

In all, 1390 patients with right-sided stage 1–3 colon cancer who had right hemicolectomy within the study period were eligible for study inclusion (Figure 1). Patient baseline characteristics and tumor characteristics are shown in Table 1. Over 90% of patients were ≥ 55 years. Most surgeries were elective (86%), laparoscopic (69%), and performed in
The percentage of patients who had 0–12, 13–15, 16–20, and ≥20 nodes examined was 20%, 22%, 26% and 33%, respectively. In total, 62%, 23%, and 15% were N0, N1, and N2, respectively. There were no involved margins. Five-year cumulative incidence for recurrence was highest for 0–12 nodes at 26%.

The median follow-up time for RFS and OS ranged from 2.1 to 3.0 and 2.3 to 3.5 years, respectively (Supporting Information: Table 3).

Estimated Spearman’s correlation between number of nodes harvested and number of positive nodes was 0.11, suggesting that examining a greater number of nodes does not necessarily lead to finding more positive nodes.

3.1 | Lymph nodes examined and RFS

KM plots of unadjusted analyses suggested increasing nodal count was associated with improved RFS (Figure 2A).

In univariate analysis (Supporting Information: Table 1), surgery method (laparoscopic vs. open), tumor differentiation (poor, well, not reported), Kras status (mutated, wild type, not done), Braf status (mutated, wild type, not done), inflammatory infiltrate (absent, present, not reported), DNA MMR status (MSI high or abnormal HC phenotype, MSI stable or normal IHC, not done), lymphovascular invasion (yes, no, not reported), ASA comorbidity category (<3 vs. ≥3+), N stage (N0, N1, N2), admission type (elective, emergency), hospital type (public vs. private), surgery period (1990–1999, 2000–2004, 2005–2009, 2010–2014, 2015+), and T-stage (T1, T2, T3, T4) had p values ≤0.15 and were adjusted for in multivariate analysis.

Multivariate analysis examining the association between the number of nodes examined, with N-stage as an effect modifier and adjusting for confounders, found no clear trend in the relationship of RFS and nodes examined (Table 2). For N0 stage tumors, the hazard of recurrence was reduced by 29% and 24% when >15 nodes were examined compared to examining ≤12 nodes. For N1 stage tumors, examining >12 nodes reduced the hazard of recurrence by at least 35%. On the other hand, for N2 stage tumors, harvesting 16–20 nodes increased the hazard of recurrence by at least 35%. On the other hand, for N2 stage tumors, harvesting 16–20 nodes increased the hazard of recurrence by at least 35%. However, all p values associated with these analyses were much higher than 0.05, indicating no statistical evidence of an association between increased nodal count and RFS, regardless of nodal stage.

The hazard of recurrence was 3.1 times higher in tumors that were MSI stable or had normal IHC compared to tumors with MSI-high or had abnormal IHC. Increased hazard of recurrence was also found in patients that had lymphovascular invasion, T4 tumors, or emergency surgery. Notably, surgeries performed after 2005 were associated with remarkably improved recurrence outcomes compared with surgeries between 1990 and 1999.

An additional univariate analysis examining number of nodes harvested and LRRFS found no association between increasing nodes harvested and loco-regional recurrence (Supporting Information: Table 4).

3.2 | Lymph nodes examined and OS

KM plots of unadjusted analyses suggested superior OS with increasing number of nodes examined (Figure 2B). In univariate analysis (Supporting Information: Table 2), the same covariates for

![Figure 2](image-url) Kaplan Meier curves of recurrence (A) and overall survival (B) based on lymph nodes examined using Cox PH regression.
Covariate	Category	Nodal status	No. of nodes harvested	Adjusted hazard ratio (95% CI)	p value
		N0 ≤12	1		
		N0 13–15	1.152 (0.560, 2.369)	0.7	
		N0 16–20	0.709 (0.331, 1.518)	0.376	
		N0 >20	0.737 (0.357, 1.521)	0.409	
		N1 ≤12	1		
		N1 13–15	0.652 (0.245, 1.737)	0.783	
		N1 16–20	0.543 (0.222, 1.330)	0.338	
		N1 >20	0.645 (0.279, 1.491)	0.624	
		N2 ≤12	1		
		N2 13–15	1.041 (0.402, 2.695)	1	
		N2 16–20	1.927 (0.802, 4.628)	0.243	
		N2 >20	0.847 (0.342, 2.095)	0.996	
ASA comorbiditya	<3	1			
	≥3	1.019 (0.745, 1.393)	0.907		
Surgery method	Laproscopic	1			
	Open	0.945 (0.641, 1.392)	0.774		
Admission type	Elective	1			
	Emergency	1.488 (1.028, 2.155)	0.035**		
Hospital type	Private	1			
	Public	1.32 (0.896, 1.945)	0.16		
Year of surgery	1990–1999	1			
	2000–2004	0.654 (0.356, 1.203)	0.172		
	2005–2009	0.364 (0.193, 0.685)	0.002**		
	2010–2014	0.259 (0.125, 0.537)	<0.001**		
	≥2015	0.254 (0.117, 0.55)	0.001**		
Adjuvant chemotherapy	No	1			
	Yes	0.815 (0.583, 1.139)	0.231		
Tumor characteristics	T1	1			
	T2	1.297 (0.393, 4.275)	0.669		
	T3	2.501 (0.893, 7.002)	0.081		
	T4	5.437 (1.902, 15.542)	0.002**		
Differentiation	Not reported	1			
	Poor	0.555 (0.216, 1.424)	0.22		
	Moderate/well	0.491 (0.194, 1.24)	0.132		
Lymphovascular invasion	No	1			
	Not reported	0.504 (0.244, 1.039)	0.063		
	Yes	1.483 (1.048, 2.098)	0.026**		
Inflammatory infiltrate	Absent	1			
	Not reported	1.284 (0.914, 1.805)	0.15		

(Continues)
recurrence were associated with OS except adjuvant chemotherapy use. Additionally, sex (female, male) and mucinous histology (no, not reported, Yes), BMI (normal/underweight, overweight/obese), and diabetes (no, yes) were included in the multivariate analysis.

Multivariate analysis examining the association between the number of nodes examined, with N-stage as an effect modifier and adjusting for confounders, found for N0 stage tumors, 16–20 and >20 nodes examined was associated with 57% and 52% decreased hazard of death, respectively (Table 3; 95% CI: 0.21–0.89% and 95% CI: 0.24–0.95, respectively), with evidence of a statistical difference (p < 0.05). However, for N1 and N2 stage tumors, there was no evidence of association between increasing nodal count and OS.

Consistent with recurrence, OS was higher in surgeries performed after 2005 compared with surgeries between 1990 and 1999. Stage T4 tumors, emergency procedures, and higher ASA score were associated with reduced OS.

3.3 Subanalysis with postoperative chemotherapy as an effect modifier

In the subanalysis of patients with nodal metastases (N1, N2) to assess whether the association between increased nodal count and oncological outcomes depended on whether the patient received postoperative adjuvant chemotherapy, multivariate analysis with postoperative adjuvant chemotherapy as an effect modifier found no evidence that increasing nodal count was associated with decreased hazard of recurrence or death (Supporting Information: Tables 5 and 6).

4 DISCUSSION

The present study aimed to determine whether increased nodal count was associated with improved prognostic outcomes in a large cohort of patients with right-sided colon cancer. To the authors’ knowledge this is the first study to investigate the association between nodal count controlling for N-stage following standard right hemicolectomy and examining both recurrence and survival outcomes. In multivariate analysis with N-stage as an effect modifier, we found no evidence of association between increasing nodal count and RFS, regardless of N-stage. However, increasing nodal count (16–20 and >20 nodes) was associated with 57% and 52% improved OS, respectively, compared with 0–12 nodes but only in the absence of involved nodes, with no evidence of a trend between increasing nodal count categories and OS. Therefore, increasing nodal count may only result in marginal clinical benefit in this better prognosis group. In the presence of involved nodes, increasing nodal count was not associated with improved OS.

Previous studies have also found an association between increasing nodes harvested and survival for stage II or III colon cancers. The single-center prospective Norwegian study by Sjo et al. found examining ≥12 nodes versus <8 nodes was associated with improved OS for both stage II and III colon cancer in multivariate analysis. Similarly, Prandi et al. found greater nodal yields (≥7 vs. <7 nodes) in stage II cancers were associated with improved OS in univariate analysis. A large study of T3N0 tumor data from the National Cancer Database by Swanson et al. also found increasing nodes examined (8–12 or ≥13 versus 1–7 nodes) reduced the hazard of recurrence by 19% (95% CI: 0.77–0.84) and 32% (95% CI: 0.65–0.71), respectively, using multivariate analysis. However, these
Covariate	Category	Nodal status	No. of nodes harvested	Adjusted hazard ratio (95% CI)	p value
Sex	Female		1		
	Male		0.994 (0.715, 1.382)	0.971	
ASA comorbidity	<3		1		
	≥3		1.961 (1.404, 2.74)	<0.001**	
BMI	Normal/underweight		1		
	Overweight/obese		0.81 (0.554, 1.186)	0.279	
Diabetes	No		1		
	Yes		1.399 (0.987, 1.983)	0.059	
Surgery method	Laproscopic		1		
	Open		0.902 (0.591, 1.375)	0.631	
Admission type	Elective		1		
	Emergency		1.887 (1.201, 2.963)	0.006**	
Hospital type	Private		1		
	Public		1.399 (0.84, 2.331)	0.198	
Year of surgery	1990–1999		1		
	2000–2004		0.83 (0.35, 1.967)	0.673	
	2005–2009		0.547 (0.229, 1.307)	0.175	
	2010–2014		0.556 (0.215, 1.441)	0.227	
	≥2015		0.369 (0.126, 1.084)	0.07	
Tumor characteristics	T1		1		
	T2		0.706 (0.253, 1.966)	0.505	
	T3		1.705 (0.715, 4.067)	0.229	
	T4		3.37 (1.353, 8.39)	0.009**	
Differentiation	Not reported		1		
	Poor		0.917 (0.269, 3.129)	0.891	
	Moderate/well		0.575 (0.167, 1.972)	0.379	
Lymphovascular invasion	No		1		

(Continues)
studies did not control for nodal status and/or information regarding the type of surgical procedure performed was not specified.1,2,4

Studies that stratified for nodal status found there was an association between increasing yields of negative nodes and improved survival but these studies were also limited due to the limited details on surgical procedures provided.5,12 The large study of stage III colon cancer data from the US SEER data by John et al. found \(\geq 13 \) negative nodes were associated with improved disease-specific survival after controlling for the number of positive nodes; however, adjuvant chemotherapy data were not included in multivariate analyses.12 Similarly, Le Voyer et al.5 found increasing negative node yields were associated with improved RFS and OS in stage II and III patients in multivariate analysis, after controlling for the number of positive nodes,5 consistent with the study by Zafar et al.3 where negative node yields (\(\geq 12 \) versus <12) were associated with less recurrence in multivariate analysis (hazard ratio = 0.98; 95% CI: 0.97–0.99).3

Notably, we did not subcategorize nodal count beyond >20 so were unable to determine whether there was a threshold nodal count above which outcomes plateaued, a concept demonstrated by two recent National Cancer Database studies. In these studies, Trepnier et al.8 found survival outcomes plateaued at 24 nodes and harvesting \(\geq 24 \) nodes did not improve survival, with Lee et al. reporting >22 node yields had the highest OS (HR = 0.71; 95% CI: 0.68–0.75). When taking into account nodal status, Del Paggio et al.15 found improved survival outcomes (and the ability to identify positive nodes) plateaued after examining 12–14 negative nodes, whereas Renshaw et al.23 found the majority of positive nodes were identified in yields \(\leq 40 \) nodes, with >40 nodes yields only increasing the ability to identify further positive nodes by <1% (1/378 cases).

While we found no association between increasing nodes and improved prognostic outcomes in the presence of positive nodes, these findings support emerging evidence that the process of lymph node metastases represents a complex process where nodal metastases may not necessarily be the precursors of distant metastases.24 Although the metastatic process is thought to occur early via lymphatic and vascular systems, a recent study by Naxerova et al.25 examined the genetic origins of lymphatic and distant colorectal carcinoma metastases and found in only 35% of cases, nodal and distant metastases had the same subclonal origin as the primary tumor. That is, two-thirds of distant metastases had a different subclonal origin to the primary tumor, indicating distant metastases arose via a mechanism independent of nodal metastases.26 Consequently, resection of higher yields of metastatic nodes may not result in less recurrence or improved survival outcomes.

Lymph node metastases have important implications for prognosis,19 and for determining whether a patient will have postoperative

Covariate	Category	Nodal status	No. of nodes harvested	Adjusted hazard ratio (95% CI)	\(p \) value
	Not reported			0.837 (0.368, 1.908)	0.673
	Yes			1.097 (0.751, 1.602)	0.632
Inflammatory infiltrate	Absent			1	
	Not reported			1.737 (1.162, 2.595)	0.007**
	Present			0.906 (0.572, 1.433)	0.672
Braf	Mutated			1	
	Not done			0.793 (0.297, 2.115)	0.643
	Wild-type			0.81 (0.28, 2.347)	0.698
Kras	Mutated			1	
	Not done			0.31 (0.156, 0.613)	0.001**
	Wild type			0.884 (0.384, 2.032)	0.771
DNA mismatch repair status	MSI high or abnormal IHC			1	
	MSI stable or normal IHC			1.169 (0.645, 2.119)	0.606
	Not done			1.433 (0.77, 2.669)	0.256
Mucinous histology	No			1	
	Not reported			0.804 (0.498, 1.299)	0.373
	Yes			0.974 (0.663, 1.432)	0.894

Note: Multivariate analysis adjusted for sex, ASA, BMI, diabetes, surgery method, hospital type, patient type, year of surgery, and tumor characteristics (T-stage, differentiation, lymphovascular invasion, inflammatory infiltrate, Kras, Braf, immune history, mucinous). Abbreviations: IHC, immunohistochemistry; MSI, microsatellite instability.

\(*\)American Society of Anesthesiologists physical status classification system used to assess patient's preanesthesia medical comorbidities.

\(**\)\(p < 0.05.\)
resecting more nodes may only result in marginal clinical benefit in metastases. This suggests resecting greater numbers of lymph nodes but no evidence of improved OS was found for those with nodal metastases. These findings are relevant in the context of current interest in the utility of extended lymphadenectomy for colon cancer with the results of forthcoming randomized controlled trials comparing standard resection with extended lymphadenectomy awaited with interest.

AUTHOR CONTRIBUTIONS
Ian P. Hayes, Elasma Milanzi, and Jeanette C. Reece were responsible for the concept and study design and for writing the report. Ian P. Hayes, Elasma Milanzi, Peter Gibbs, and Jeanette C. Reece were responsible for the interpretation of the results. Elasma Milanzi was responsible for the statistical analysis. Ian P. Hayes, Elasma Milanzi, Peter Gibbs, Ian Faragher, and Jeanette C. Reece were responsible for intellectual content and approving the final draft of the manuscript.

ACKNOWLEDGMENTS
We would like to acknowledge Biogrid Australia for providing the data for this study. Open access publishing facilitated by The University of Melbourne, as part of the Wiley – The University of Melbourne agreement via the Council of Australian University Librarians.

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

DATA AVAILABILITY
The reidentifiable data used in the study are derived from Biogrid Australia https://www.biogrid.org.au/. Biogrid has not verified and is not responsible for the statistical methodology employed, or the conclusions drawn by the investigators using these data.

ETHICS STATEMENT
Biogrid data were collected from patients’ clinical notes, supported by radiology and histopathology reports. Study ethics approval was obtained from Melbourne Health/Biogrid HREC, no. BG-201905/8. This study was performed in accordance with the Declaration of Helsinki.

ORCID
Elasma Milanzi https://orcid.org/0000-0003-1164-2298
Peter Gibbs https://orcid.org/0000-0003-1423-4484
Jeanette C. Reece https://orcid.org/0000-0003-2897-0271

REFERENCES
1. Swanson RS, Compton CC, Stewart AK, Bland KI. The prognosis of T3N0 colon cancer is dependent on the number of lymph nodes examined. Ann Surg Oncol. 2003;10(1):65-71.
2. Prandi M, Lionetto R, Bini A, et al. Prognostic evaluation of stage B colon cancer patients is improved by an adequate lymphadenectomy: results of a secondary analysis of a large scale adjuvant trial. Ann Surg. 2002;235(4):458-463.
3. Zafar SN, Hu CY, Snyder RA, et al. Predicting risk of recurrence after colorectal cancer surgery in the United States: an analysis of a special commission on cancer national study. Ann Surg Oncol. 2020;27(8):2740-2749.

4. Sjo OH, Merok MA, Svindland A, Nesbakken A. Prognostic impact of lymph node harvest and lymph node ratio in patients with colon cancer. Dis Colon Rectum. 2012;55(3):307-315.

5. Le Voyer TE, Sigurdson ER, Hanlon AL, et al. Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol. 2003;21(15):2912-2919.

6. Chen SL, Blichik AJ. More extensive nodal dissection improves survival for stages I to III of colon cancer: a population-based study. Ann Surg. 2006;244(4):602-610.

7. Lee L, Erkan A, Alhassan N, et al. Lower survival after right-sided versus left-sided colon cancers: is an extended lymphadenectomy the answer? Surg Oncol. 2018;27(3):449-455.

8. Trepanier M, Erkan A, Kouyoumdjian A, et al. Examining the relationship between lymph node harvest and survival in patients undergoing colectomy for colon adenocarcinoma. Surgery. 2019;166(4):639-647.

9. Kotake K, Mizuguchi T, Moritani K, et al. Impact of D3 lymph node dissection on survival for patients with T3 and T4 colon cancer. Int J Colorectal Dis. 2014;29(7):847-852.

10. Galizia G, Lieto E, De Vita F, et al. Is complete mesocolic excision with central vascular ligation safe and effective in the surgical treatment of right-sided colon cancers? A prospective study. Int J Colorectal Dis. 2014;29(1):89-97.

11. West NP, Hohenberger W, Weber K, Perrakis A, Finan PJ, Quirke P. Complete mesocolic excision with central vascular ligation produces an oncologically superior specimen compared with standard surgery for carcinoma of the colon. J Clin Oncol. 2010;28(2):272-278.

12. Johnson PM, Porter GA, Ricciardi R, Baxter NN. Increasing negative lymph node count is independently associated with improved long-term survival in stage IIIB and IIIC colon cancer. J Clin Oncol. 2006;24(22):3570-3575.

13. Ouyang M, Luo Z, Wu J, et al. Comparison of outcomes of complete mesocolic excision with conventional radical resection performed by laparoscopic approach for right colon cancer. Cancer Manag Res. 2019;11:8647-8656.

14. Chang GJ, Rodríguez-Bigas MA, Skibber JM, Moyer VA. Lymph node evaluation and survival after curative resection of colon cancer: systematic review. J Natl Cancer Inst. 2007;99(6):433-441.

15. Del Paggio JC, Peng Y, Wei X, et al. Population-based study to re-evaluate optimal lymph node yield in colonic cancer. Br J Surg. 2017;104(8):1087-1096.

16. Bertelsen CA, Neuenschwander AU, Jansen JE, et al. 5-year outcome after complete mesocolic excision for right-sided colon cancer: a population-based cohort study. Lancet Oncol. 2019;20(11):1556-1565.

17. Field K, Kosmidis S, Johns J, et al. Linking data from hospital and cancer registry databases: should this be standard practice? Intern Med J. 2010;40(8):566-573.

18. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Colon Cancer, Rectal Cancer. Version 1. 2014.

19. Compton CC, Fielding LP, Burgart LJ, et al. Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124(7):979-994.

20. Nelson H, Petrelli N, Carlin A, et al., National Cancer Institute Expert Panel. Guidelines 2000 for colon and rectal cancer surgery. J Natl Cancer Inst. 2001;93(8):583-596.

21. Balciscueta Z, Balciscueta I, Uribe N, et al. D3-lymphadenectomy enhances oncological clearance in patients with right colon cancer. Results of a meta-analysis. Eur J Surg Oncol. 2021;47(7):1541-1551.

22. Pettitt AN, Bin Daud I. Investigating time dependence in Cox's proportional hazards model. Appl Stat. 1990;39:313-329.

23. Renshaw AA, Gould EW. How many lymph nodes are enough in a colorectal resection? Am J Surg Pathol. 2020;44(9):1290-1292.

24. Sleeman JP, Cady B, Pantel K. The connectivity of lymphogenous and hematogenous tumor cell dissemination: biological insights and clinical implications. Clin Exp Metastasis. 2012;29(7):737-746.

25. Naxerova K, Reiter JD, Brachtel E, et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science. 2017;357(6346):55-60.

26. Cady B. Lymph node metastases. Indicators, but not governors of survival. Arch Surg. 1984;119(9):1067-1072.

27. Chau I, Cunningham D. Adjuvant therapy in colon cancer—what, when and how? Ann Oncol. 2006;17(9):1347-1359.

28. Field K, Platell C, Rieger N, et al. Lymph node yield following colorectal cancer surgery. ANZ J Surg. 2011;81(4):266-271.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Hayes IP, Milanzi E, Gibbs P, Faragher I, Reece JC. Is increasing nodal count associated with improved recurrence-free and overall survival following standard right hemicolecotomy for colon cancer? J Surg Oncol. 2022;126:523-534. doi:10.1002/jso.26913