Application of machine learning with impedance based techniques for structural health monitoring of civil infrastructure

Ahmed, Z. \(^a\) \text{Ali, J.S.M.} \(^b\) \text{Rafeeq, M.} \(^c\) \text{Hrairi, M.} \(^b\) \\
\(^a\)International Islamic University Kulalampur, Malaysia \text{Dept. of Mechanical Engineering, International Islamic University Kulalampur, Malaysia}
\(^c\)Department of ECE, Bearys Institute of Technology Mangalore, India

Abstract

Increased attentiveness on the environmental and effects of aging, deterioration and extreme events on civil infrastructure has created the need for more advanced damage detection tools and structural health monitoring (SHM). Today, these tasks are performed by signal processing, visual inspection techniques along with traditional well known impedance based health monitoring EMI technique. New research areas have been explored that improves damage detection at incipient stage and when the damage is substantial. Addressing these issues at early age prevents catastrophe situation for the safety of human lives. To improve the existing damage detection newly developed techniques in conjugation with EMI innovative new sensors, signal processing and soft computing techniques are discussed in details this paper. The advanced techniques (soft computing, signal processing, visual based, embedded IOT) are employed as a global method in prediction, to identify, locate, optimize, the damage area and deterioration. The amount and severity, multiple cracks on civil infrastructure like concrete and RC structures (beams and bridges) using above techniques along with EMI technique and use of PZT transducer. In addition to survey advanced innovative signal processing, machine learning techniques civil infrastructure connected to IOT that can make infrastructure smart and increases its efficiency that is aimed at socioeconomic, environmental and sustainable development. ©BEIESP.

SciVal Topic Prominence

Topic: Structural health monitoring | Damage detection | Smart aggregates
Prominence percentile: 97.404

Author keywords

Concrete EMI IOT PZT RC Beam RC bridges SHM Soft computing

ISSN: 22783075
Source Type: Journal
Original language: English

DOI: 10.35940/jjitee.F1237.04865419
Document Type: Article
Publisher: Blue Eyes Intelligence Engineering and Sciences Publication
References (40)
1 Chiang, P.C., Flatau, A., Liu, S.C.
Review paper: Health monitoring of civil infrastructure
(2003) *Structural Health Monitoring*, 2 (3), pp. 257-267. Cited 630 times.
http://shm.sagepub.com/
doi: 10.1177/1475921703036169
View at Publisher
2 Park, S., Park, G., Yun, C.-B., Farrar, C.R.
Sensor self-diagnosis using a modified impedance model for active sensing-based
structural health monitoring
(2009) *Structural Health Monitoring*, 8 (1), pp. 71-82. Cited 56 times.
doi: 10.1177/1475921708094792
View at Publisher
3 Yang, Y., Hu, Y., Lu, Y.
Sensitivity of PZT impedance sensors for damage detection of concrete structures
(*Open Access*)
(2008) *Sensors*, 8 (1), pp. 327-346. Cited 131 times.
http://www.mdpi.org/sensors/papers/s8010327.pdf
doi: 10.3390/s8010327
View at Publisher
4 Lu, Y., Ma, H., Li, Z.
Civil Infrastructures Connected Internet of Things
(2014) *CACE*, 2 (1), pp. 16-19. Cited 2 times.
5 Li, Z., Zhang, D., Wu, K.
Cement-based 0-3 piezoelectric composites
(2002) *Journal of the American Ceramic Society*, 85 (2), pp. 305-313. Cited 209 times.
View at Publisher
6 Norwood, J., Casey, J.
(2002) *Key Transportation Indicators: Summary of a Workshop*
7 Zeng, N., Ding, Y., Pan, J., Wang, H., Gregg, J.
Sustainable development: Climate change - The Chinese challenge
(2008) *Science*, 319 (5864), pp. 730-731. Cited 94 times.
doi: 10.1126/science.1153368
View at Publisher |