Natural infection by *Procyrnea uncinipenis* (Nematoda, Habronematidae), a parasite from rheas, an autoctone bird from South America, in emus *Dromaius novaehollandiae*, a ratite from New Zealand

Nicole Brand Ederli1-2, Samira Salim Mello Gallo2 & Francisco Carlos Rodrigues de Oliveira2

The present study reports a natural infection of emus, *Dromaius novaehollandiae*, by the nematode *Procyrnea uncinipenis*. Five adult emus from a scientific breeding farm at North Fluminense State University located in the city of Campos dos Goytacazes, Rio de Janeiro state, Brazil were necropsied, and their gastrointestinal tract were collected and examined for the presence of parasites from October 2013 to November 2015. Two of the five (40%) emus necropsied were infected with nematodes, and a portion of the nematodes were processed for light microscopy. In addition, two other nematodes (a male and a female) were prepared for scanning electron microscopy. In a female bird, one nematode was collected in the proventriculus and two nematodes in the gizzard and in the male bird four nematodes were collected in the gizzard. The morphological and morphometric analyzes allowed to identify the nematodes as *P. uncinipenis*, this being the first report of an infection by *P. uncinipenis* in emus. Therefore, we infer that these emus were naturally infected by nematodes that were considered specific to rheas.

There are two species of rheas in South America, the greater rhea, *Rhea americana* Linnaeus, 1758, and the lesser rhea, *Rhea pennata* (d’Orbigny 1834). Of these, *R. americana* has been of increased interest for farming since the 1990s, receiving attention in South America, North America and Europe1. This species is composed of five subspecies distributed in South America: *R. americana americana* (northeastern to southeastern Brazil), *R. americana intermedia* (southeastern Brazil and Uruguay), *R. americana nobilis* (eastern Paraguay), *R. americana araneipes* (western Paraguay, eastern Bolivia, and southwestern Brazil) and *R. americana albescens* (northeastern and eastern Argentina)2. These birds are found in open and stream areas3, and the presence of parasitic infections in these species is common, particularly those caused by the nematodes *Procyrnea uncinipenis* (Molin, 1860) and *Deletrocephalus dimidiatu*s Diesing, 1851, *Deletrocephalus cesarpintoi* Vaz, 1936 and *Paradeletrocephalus minor* (Molin, 1861)4-5, both of which are considered host-specific.

The emu, *Dromaius novaehollandiae* (Latham 1790), is widely distributed throughout the Oceania continent and is one of the most characteristic components of the modern Australian avifauna6. There are three living subspecies: *D. novaehollandiae novaehollandiae* (central and south Queensland, Victoria and Southern Australia); *D. novaehollandiae woodwardi* (Northwestern and Western Australia and northern territory), and *D.
Material and methods

Five adult emus (3 males and 2 females) from a scientific breeding farm regulated by the governmental agency IBAMA under number 18981-2 and approved by Ethics Committee at the Universidade Estadual do Norte Fluminense (North Fluminense State University) located in the city of Campos dos Goytacazes, State of Rio de Janeiro, Brazil were necropsied after natural death, and the gastrointestinal tract were collected and examined for the presence of parasites from October 2013 to November 2015. All applicable institutional, national and international guidelines for the care and use of animals were followed. These birds live in proximity to *R. americana* from the same breeding. The contents of the proventriculus and gizzard were passed through a sieve with a 75 μm mesh, and the mucosa was observed under a stereomicroscope (Opton TIM-2T, China). The koin layer was removed and observed for the presence of nematodes. The nematodes that were found were washed in a saline solution (0.09% NaCl). A portion of the nematodes were processed for light microscopy, and two (a male and a female) were prepared for scanning electron microscopy.

Optical microscopy. The nematodes were fixed in A.F.A. (70° GL ethanol, 93%; formaldehyde, 5%; glacial acetic acid, 2%) at 70 °C, for 48 h, transferred to a solution containing 70% ethanol and 5% glycerin, cleared and mounted on slides with lactophenol (one part distillated water, two parts glycerin, one part lactic acid, one part phenic acid) and observed under a light microscope.

Measurements were performed to the nearest micron (mean ± S.D. (range)) and were conducted on three mature adult specimens and 10 embryonated eggs in utero. Measurements were conducted with an Axioplan Zeiss light microscope (Carl Zeiss, Germany) equipped with a Canon Power-Shot A640 digital camera (Canon, China) and Zeiss AxionVision Sample Images Software (Carl Zeiss, Germany) for image analysis. Specimens deposited in the Harold W. Manter Parasite Collection at the University of Nebraska-Lincoln (UNL/USA), registration number HWML 67092, were examined for comparative purposes. Representative specimens were deposited in the Helminthological Collection of the Oswaldo Cruz Institute (Rio de Janeiro, Brazil) under the registration number CHIOC 38941.

Scanning electron microscopy. The nematodes were fixed for 2 h in 2.5% glutaraldehyde, 4% freshly prepared paraformaldehyde, and 5 mM calcium chloride in 0.1 M cacodylate buffer, pH 7.2. The nematodes were postfixed in 2% osmium tetroxide in 0.1 M cacodylate buffer. The samples were dehydrated in an acetone series, critical-point dried with CO₂, sputter-coated with gold and examined under a Zeiss 962 scanning electron microscope (SEM) operating at 15 kV.

Ethical approval. All applicable institutional, national and international guidelines for the care and use of animals were followed.

Results

Two of the five (40%) analyzed emus (one male and one female) were infected with nematodes. In one bird (female), one nematode was collected from the proventriculus and two from the gizzard, under the koin layer. In another bird (male), four nematodes were collected from under the gizzard koin layer. No gross pathology was observed.

The morphological and morphometrical analyses identified the nematodes as *P. uncinipenis*. The nematodes were large and whitish in vivo and had two lateral lips with denticles and two interlabia, four labial papillae and two amphids (Fig. 1a). The esophagus was divided into an anterior muscular portion and a posterior glandular portion. Only one female specimen was measured, which had a total body length approximately 21,724 by 734 wide. Buccal cavity 55 long by 38 wide. Muscular esophagus 357 long by 93 wide, and glandular esophagus 4874 long by 306 wide. Distances from nerve ring, excretory pore and cervical papillae to anterior end were approximately 289, 1368 and 1401, respectively. Anus and vulva with a transverse slit (Fig. 1b,c) opening at 236 and 1484 from posterior end, respectively. Female posterior end with two lateral phasmds and a circular structure at the tip tail (Fig. 1c). Eggs (n = 10) 26 ± 1.31 long, ranging from 24 to 28, by 43 ± 2.36 wide, ranging from 40 to 48.

Two males were measured, and the total body length ranged from 14,855 to 20,861 long by 624 to 625 wide, buccal cavity 47–65 long by 42–60 wide, muscular esophagus 313–516 long by 104–108 wide, glandular esophagus 3305–3442 long by 264–266 wide, nerve ring at 422–432 from anterior end. Excretory pore was not observed in the specimens. Spicules unequal in size and shape, with a proportion of approximately 1:4. Left spicule long and thin, measuring 3224 long, with a more robust spicule head (Fig. 2a). Distal tip ended sharply (Fig. 2b). Spicule head shorter (Fig. 2c). Right spicule short and thick, measuring 741 long, with a curved distal end, similar to a hook, and a dilation at the tip (Figs. 1d, 2d). Gubernaculum well chitinized, “v” shaped (Fig. 2d), 145 long.

Procyrnea uncinipenis is a nematode that infect the gizzard and proventriculum of rheas, *Rhea americana*, a native bird from South America. These nematodes have been reported in rheas from Brazil⁷–¹¹ and Argentina¹². Another species, *Procyrnea choique*¹³, was described from another species of rhea, *R. pennatta*, from Argentina.

The present study reports a natural infection of emus, *D. novaehollandiae*, by the nematode *P. uncinipenis*.
Discussion

The morphology, observed by light and scanning electron microscopy, and the morphometry of the nematodes collected from *D. novaehollandiae* are similar to those of the nematode species that infect *R. americana* in South America, *P. uncinipenis*, which shows that this exotic bird can host this parasite from rheas, a native bird of the continent. This is the first report of an infection by *P. uncinipenis* in emus. Other studies that evaluated this species of parasites in emus have not reported the presence of *P. uncinipenis*\(^{14,15}\). There are reports of infection by other nematode species, including *Chandlerella quiscali*\(^{16}\), *Baylisascaris* spp.\(^{17}\), *Cyathostoma variegatum*\(^{18}\), *Dromaestrongylus bicuspis*, *Trichostrongylus tenuis*, and *Syngamus trachea*\(^{19}\).

This report of *P. uncinipenis*, a parasite from *R. americana*, in emus bred in captivity in Brazil together with rheas shows that these birds developed an adaptation to this nematode parasite, which was considered to be host-specific. In rheas, there can be a high intensity infection, with more than 400 nematodes infecting the proventriculus and gizzard, causing widespread necrosis accompanied by a hemorrhagic appearance. The nematodes deeply penetrate the gizzard glands\(^5\). Although the emus had few specimens of *P. uncinipenis* in the gizzard (\(n = 4\)), infections with a high parasite load can occur and lead to the death of the birds.

The female and male specimens of *P. uncinipenis* that infected the emus in the present study are smaller than those from *R. americana* and larger than *P. choique* from *R. pennata* (Tables 1 and 2). However, the morphology

Figure 1. Scanning electron microscopy of *Procyrnea uncinipenis* (Nematoda, Habronematidae) from *Dromaius novaehollandiae* (Aves, Casuariidae). (a) Anterior end showing lateral pseudolips (pl), interlabia (i), cephalic papillae (p), amphidia (a), pseudolip denticles (arrow) and lateral lip denticles (head arrow); (b) right spicule, distal end (arrow); (c) female tip tail showing two lateral phasmids (head arrow), a circular structure (arrow) and the anus (a); (d) vulva opening (arrow). Bars: A–B: 25 µm, C: 15 µm, D: 50 µm.
observed by light and scanning electron microscopy is similar to *P. uncinipenis*, a parasite from *R. americana*. These differences in nematode size are probably due to early infection in emus. The low prevalence (2 of 5 analyzed birds) and low parasite load (one bird with 3 nematodes and another with 4 nematodes) shows that this ratite species, *D. novaehollandiae*, originally from New Zealand, become naturally infected by this nematode species from another ratite from South America, *R. americana*. Thus, farmers and zoological gardens from Oceania should pay attention to infection with *R. americana* in their flock by using effective sanitary control measures.

The intention should be to avoid the introduction of this parasite, which has the capacity to infect emus. The consequences of this parasite in other birds are unknown. In rheas, this parasitosis can lead to death.

Procyrnea uncinipenis, as a Spirurid, has an arthropod as intermediate host, which is unknown. So, it is not known if this parasite can complete its life cycle, if introduced in Oceania.

Table 1. Measurements, in microns, of male specimens of *Procyrnea uncinipenis*, a parasite of rhea. *P. uncinipenis* present study (n = 2).

Character	*P. uncinipenis* present study (n = 2)	*P. uncinipenis*	*P. uncinipenis*	*P. uncinipenis*	*P. waltoni*	*P. choique*
Body total length	14,855–20,861	22,546–30,980	17,750–21,770	25,000–28,000	20,000	8250–9850
Body width	624–625	659–827	600–740	600–700	700	350–400
Buccal cavity deep	47–65	46–68	55–63	62	120–130	30–40
Buccal cavity wide	42–60	24–40	67–84	37	–	25–30
Muscular esophagus length	313–516	351–455	300–360	400–420	425–450	200–300
Muscular esophagus width	104–108	74–108	70–83	–	40	
Glandular esophagus length	3305–3442	2685–3568	2660–3650	3220–3400	2600–2900	2640–3560
Glandular esophagus width	264–266	164–249	170–230	–	80–120	
Nerve ring	422–432	382–490	330–390	420	360–400	120–200
Excretory pore	–	529–658	500–610	–	250–290	
Cervical papillae	–	361–411	290–340	–	140–180	
Right spicule length	741 (n = 1)	740–982	660–800	700–720	300–420	300–360
Left spicule length	3224 (n = 1)	3206–3774	3000–3700	3050–3170	2400–2650	970–1050
Right spicule left spicule	1:4	1:4	1:4	1:4	1:8	~ 1:4
Gubernaculum length	145	102–169	110–140	100	–	60–80
Table 2. Measurements, in microns, of female specimens of Procyrnea uncinipenis, a parasite of rhea.

After analyzing the nematode specimens collected from the gizzard of emus, a bird from Oceania that were introduced in Brazil for commercial and ornamental purposes, along with rheas, a native bird from South America, the present study can infer that the emus were naturally infected by nematodes that were considered specific to rheas.

Received: 14 November 2019; Accepted: 17 September 2020
Published online: 06 October 2020

References
1. Navarro, J. L. & Martella, M. B. Reproductivity and raising of Greater Rhea (Rhea americana) and Lesser Rhea (Pterocnemia pennata)—a review. Arch. Geflügelkd. 66, 124–132 (2002).
2. Del Hoyo, J., Elliot, A. & Sargatal, J. Complete Checklist of the Birds of the World, Ostrich to Ducks (Lynx Edicions, Barcelona, 1992).
3. Bruning, D. F. Social structure and reproductive behavior of the Greater Rhea. Living Bird 13, 251–294 (1974).
4. Ederli, N. B. & Oliveira, F. C. R. Macroscopic lesions of the ventriculus of Rhea americana. Living Bird 13, 251–294 (1974).
5. Ederli, N. B. & Oliveira, F. C. R. Morphology of the nematode Deletrocephalus dimidiatus Diesing, 1851 from the rhea, Rhea americana Linnaeus, 1758, together with a key to species of Deletrocephalinae. J. Helminthol. 91, 244–254 (2017).
6. Sales, J. The emu (Dromaius novaehollandiae): a review of its biology and commercial products. Avian Poult. Biol. Rev. 18, 1–20 (2007).
7. Howard, R. & Moore, A. A. Complete Checklist of the Birds of the World (Macmillan, London, 1984).
8. Vaz, Z. Estudos sobre nematoides parasitas da emas (Rhea americana). Arg. Infect. Biol. 7, 253–266 (1936).
9. Freitas, J. T. & Lent, H. “Spiruroidea” parasitos de “Rheiformes” (Nematoda). Mem. Inst. Oswaldo Cruz 45, 743–779 (1947).
10. Zettermann, C. D., Nascimento, J. A., Tebaldi, J. A. & Szabó, M. J. P. Observations on helminth infection of free-living and captive and lesser rheas (Rhea americana) in Brazil. Vet. Parasitol. 129, 169–172 (2005).
11. Avelar, I. O. et al. Sicarius uncinipenis and Deletrocephalus cesarpintoi in captive greater rhea of Minas Gerais State, Brazil. Rev. Bras. Parasitol. Vet. 23, 355–359 (2014).
12. Martinez-Diaz, R. A., Martella, M. B., Navarro, J. L. & Ponce-Gordo, F. Gastrointestinal parasites in greater rheas (Rhea americana) and lesser rheas (Rhea pennata) from Argentina. Vet. Parasitol. 194, 75–78 (2013).
13. Bagnato, E., Frixione, M., Digianni, M. C. & Cremona, F. A new species of Procyrnea (Nematoda: Habronematidae) parasitic in Rhea pennata (Aves: Rheidae) from Patagonia, Argentina, with a key to species of the genus. J. Helminthol. 92, 504–513 (2018).
14. Shane, S. M. Infectious diseases and parasites of rartes. Vet. Clin. N. Am. Food Anim. Pract. 14, 455–483 (1998).
15. Biswal, J. Studies on Castra-intestinal Parasitic Infections of Emu Birds (Dromaius novaehollandiae) in Odisha with a Comparison to Free Range Chickens. Dissertation, University of Agriculture and Technology Bhubaneswar, India (2014).
16. Law, J. M., Tully, T. N. & Stewart, T. B. Verminous encephalitis apparently caused by the filarioid nematode Chanderlrella quiscali in emus (Dromaius novaehollandiae). Avian Dis. 37, 597–601 (1993).
17. Campbell, G. A., Hoever, J. P., Russell, W. C. & Breazile, J. E. Naturally occurring cerebral nematodiasis due to Baylisascaris larval migration in two black-and-white ruffed lemuRs (Varecia variegata variegata) and suspected cases in three emus (Dromaius novaehollandiae). J. Zoo Wildl. Med. 28, 204–207 (1997).
18. Rickard, L. G., Steinhort, L. A. & Black, S. S. Subclinical cystocephaliosis and unidentified helminthiasis in a juvenile emu (Dromaius novaehollandiae). Avian Dis. 41, 993–996 (1997).
19. Craig, T. M. & Diamond, P. L. Parasites of rartes. In Ratite Management, Medicine and Surgery (eds Tully, T. N. et al.) 115–126 (Krieger Publishing Company, Malabar, 1996).
20. Ederli, N. B. & Oliveira, F. C. R. Redescription of *Procyrnea uncinipenis* (Molin, 1860) (Nematoda: Habronematidae) based on material from *Rhea americana* (L.) (Aves: Rheidae). *Syst. Parasitol.* 96, 735–745 (2019).

21. Walton, A. C. A revision of the nematodes of the Leidy collection. *Proc. Acad. Nat. Sci. Phila.* 79, 46–163 (1927).

Author contributions

N.B.E. prepared the images and wrote the main manuscript text. S.S.M.G. measured the parasites and wrote the main manuscript text. F.C.R.O. performed the necropsy and wrote the main manuscript.

Funding

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES), Conselho Nacional de Pesquisa (CNPq), and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to N.B.E.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020