Adjuvanticity of silver nanoparticles with Infectious bursal disease virus VP2 protein and its effect on humoral immune response in chickens

Sudhakar P. Awandkar (drspawandkar@gmail.com)
College of Veterinary and Animal Sciences Udgir
https://orcid.org/0000-0002-7171-8576

Prabhakar A Tembhurne
Nagpur Veterinary College

Nitin V Kurkure
Nagpur Veterinary College

Sandeep P Chaudhari
Nagpur Veterinary College

Sachin W Bonde
Nagpur Veterinary College

Vijay C Ingle
Nagpur Veterinary College

Research Article

Keywords: rvp2, protein, silver, nanoparticles, infectious, bursal, disease

DOI: https://doi.org/10.21203/rs.3.rs-837805/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The present study was conducted to decipher the effect of silver nanoparticles conjugated marker recombinant VP2 immunogen of Infectious bursal disease virus on humoral immune response in chickens. The hypervariable VP2 gene segment of field *Infectious bursal disease virus*, consisting of major and minor hydrophilic loops, was amplified using reverse transcription-polymerase chain reaction. The gene segment of size 664 bp was cloned into pGEM-T Easy plasmid followed by subcloning into pET32a plasmid vector. Truncated recombinant VP2 protein (rVP2, 19 kDa) was expressed in a prokaryotic expression system using Escherichia coli BL32DE3 cells. The rVP2 protein showed reactivity with specific anti VP2 chicken antibodies. The results of Western blot revealed its utility in serological diagnosis. The recombinant antigen was tested for immunogenic potential by vaccinating the chickens with and without silver nanoparticles. The rVP2 protein blended with adjuvant grade montanide oil showed a highly significant rise in serum IgY titers. The titers induced by rVP2 protein mixed with montanide oil were non-significant when compared with titers induced by the conventional vaccines. The IgY response was highly significant in chickens vaccinated with rVP2 protein blended with montanide oil and silver nanoparticles than in chickens vaccinated with conventional vaccines or rVP2 protein. The results represent Infectious bursal disease virus rVP2 protein as a promising candidate for the DIVA vaccine and sero-diagnostic tool. For the first time, the current study elucidated the adjuvanticity effect of silver nanoparticles on avian Infectious bursal disease virus rVP2 vaccine potency.

Introduction

The Infectious bursal disease (IBD) is a highly contagious disease of chickens causing heavy morbidity and mortality [1]. Transient immuno-suppression and decreased productivity due to the infection result in substantial direct and indirect economic losses to the poultry industry worldwide [2,3].

The conventional live vaccines derived from the “Intermediate” and “intermediate plus” vaccine strains of *Infectious bursal disease virus* (IBDV) have better efficacy and breakthrough higher levels of antibodies [4]. However, these vaccines induce moderate to severe bursal lesions leading to mild immunosuppression with low mortality [5]. Increased morbidity and mortality were documented in vaccinated flocks indicating that these vaccines may not fully protect chickens from vvIBDVs [6]. The recent reports suggested that conventional vaccines do not offer complete protection against new IBDV variants [7,8]. Thus, the safety and efficacy of these vaccines remain a significant concern [9].

The structural VP2 protein is considered the best candidate for developing diagnostics and subunit vaccines as it induces a protective immune response in chickens [10-14]. The virus neutralizing humoral immune response is generated against this protein [15]. Therefore, it is considered for the development of recombinant vaccine candidates. Very limited antigenic determinants can trigger the B and T cell responses, and the epitopes present in VP2 protein produce virus-neutralizing antibodies [15,16]. Two conformational virus-neutralizing epitopes were suggested and mapped in the 204–359 amino acids on VP2 protein [17, 18].

The recombinant vaccine candidates are considered to be weak immunogens in producing antiviral responses. Therefore, adjuvants are used to enhance their immunogenicity. An ideal adjuvant should stimulate a long-term immune response with minimum side effects. Various adjuvants are used in veterinary vaccines. The newer developments in metal nanotechnology exhibited a variety of different applications. The nanoparticles can trap proteins. Therefore, they can be used for antigen delivery and immune system stimulation by targeting antigen-presenting cells (APC). Antigen presentation to the APCs is an essential issue in the improvement of vaccine potency. The adjuvanted nanoparticle vaccines open the avenues for controlled antigen delivery to immune cells [19]. Recent studies showed the adjuvanticity of silver, gold, polylactide-co-glycolide, and calcium phosphate nanoparticles in enhancing the immunogenicity of antigens [10-24]. Despite other applications of nanoparticles, they are used as immune potentiators. Moreover, few recent studies elucidated the immunomodulatory effects of silver nanoparticles (AgNPs) on the immune response to weaker antigens like albumin and Rabies veterinary vaccine [24,25].

In the present study, the potential effect of the AgNPs was evaluated to enhance the humoral immune response against recombinant VP2 protein (rVP2) of IBDV, and the results were compared with the existing commercially available live vaccines.

Materials And Methods

Extraction of viral dsRNA

The samples were aseptically collected from broiler birds exhibiting Infectious bursal disease (IBD) from central India. The bursa of Fabricius was frozen at -80 °C and minced in fine powder to obtain 10% suspension. The clarified suspension was subjected to total RNA
extraction using TRI reagent (Sigma Aldrich, USA) following the manufacturer's instructions. The resultant RNA pellet was resuspended in 200 μl DEPC treated water. Lithium chloride and 3M Sodium acetate (Sigma Aldrich, USA) precipitation was followed to extract viral dsRNA as per the method described by Green and Sambrook [26]. The RNA pellet was resuspended in 25 μl of 1X TE buffer and quantified using nanodrop 1000 (Eppendorf, Germany).

Amplification of hypervariable segment of VP2 gene

The cDNA was synthesized using a Superscript TM III First-Strand Synthesis kit (Invitrogen USA). The polymerase chain reaction was set up in 50 μl volume (5.0 μl of 10X PCR buffer, 1.5 μl of 50 mM MgCl₂, 1.0 μl of 10 mM dNTPs, 2.0 μl of each 10 pmol primers and 1.0 unit of Taq DNA polymerase (Promega, USA). The F 5'- ACT GTC CTC AGC TTA CCC ACA T-3' and R 5'- TCT GTG ACC AGG TTC TTT GCT A-3' primers specific to a 678 bp VP2 gene segment, consisting of the hypervariable region, were used for amplification. The amplification was carried out in 35 cycles at an annealing temperature of 49 °C with a final extension at 72 °C for 10 minutes. The amplicon was sequenced using commercial sequencing services (Eurofins, India). The sequence was deposited in GenBank (Accession No. MK172062).

Cloning of VP2 gene segment

The EcoRI (Fermentas, USA) digested VP2 amplicon was cloned into pGEM-T Easy vector (Promega, USA) using T4 DNA ligase (Promega, USA). The JM109 Escherichia coli cells were transfected with a recombinant plasmid (50 ng) and plated onto the Luria-Bertani agar (Sigma, USA) with 5-Bromo-4-chloro-3-indol β-D galactoside (X-Gal, 100 μg/ml), isopropylthio-β-galactoside (IPTG, 40 μg/ml), and ampicillin (50 μg/ml). The plates were incubated at 37°C for 48 hours. The transformed bacteria with self-ligated vector produced blue colonies and were eliminated. The transformed bacteria with recombinant pGEM-T Easy plasmid had white colonies. The colonies were inoculated into Luria-Bertani broth containing ampicillin (50 μg/ml). The recombinant plasmid DNA was extracted from the overnight grown cultures using QIA Prep plasmid isolation kit (Qiagen, Germany). The recombinant plasmid was subjected for confirmation of the insert by restriction digestion.

Sub-cloning of VP2 gene segment

The agar gel-purified VP2 gene insert (12 ng/μl) from recombinant pGEM-T Easy plasmid was isolated after EcoRI digestion. The insert was ligated into EcoRI restriction sites of pET32a (40 ng/μl, Novagen, USA) plasmid. The recombinant plasmid DNA was transformed into BL32DE3 Escherichia coli cells. The insert orientation in recombinant clones was determined by restriction endonuclease digestion using BamHI (Fermentas, USA).

Expression and purification of rVP2

The rVP2 protein was expressed into a prokaryotic expression system using BL21DE3 Escherichia coli cells [23]. The overnight grown culture (100 μl) of a single transformed colony was transferred to 10 ml LBAmp broth in a 100 ml conical flask. The flask was incubated in an orbital shaker incubator. The expression was induced at the mid-exponential phase with one mM IPTG for three hours at 37 °C. Bacterial pellets were resuspended and boiled in Laemmli buffer for five minutes. The expression of rVP2 protein was confirmed by sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) following the method described by Moore and Burke [27]. Large-scale protein expression was carried out at an optimum concentration of 0.5 mM IPTG for 6 hrs. The bacterial pellet was resuspended in a binding buffer and subjected to three cycles of sonication at five μm amplitude for 10 seconds pulse each in an ice bath with 30 seconds gap between each cycle. The slurry was centrifuged at 10000 g for 30 min at 4 °C. The supernatant was subjected to the purification of rVP2 protein using charged Ni-NTA resin (Thermo, USA). The Ni-NTA resin column was equilibrated by adding a five-column volume of equilibration buffer with one ml per minute flow rate. The supernatant from the above step was loaded onto the column, and flow-through was collected. The washing was done with a 10 column volume of washing buffer at one ml per minute flow rate. The protein was eluted with a five-column volume of elution buffer. The rVP2 protein was quantified by the Bradford method [28].

Western blot

The purified rVP2 protein (3 μl) was dotted onto nitrocellulose membrane and allowed to bind for an hour at room temperature. The membrane was blocked in 5% skimmed milk for half an hour. The membrane was immersed in primary chicken antibodies (non-immune, 1:400) and anti IBDV antibodies (1:400) for half an hour. Anti-chicken horse reddish peroxidase conjugate (Sigma, USA) was allowed to react for half an hour. The membrane was subjected for spot development in 3’3’ Diaminobenzidine (0.3%, Sigma, USA) and hydrogen peroxide (0.6%) for 10 minutes.

Immunogenicity of rVP2
Purified rVP2 protein (50 μg/dose) was blended with adjuvant grade montanide oil (1:2, Sigma, USA), and montanide oil with AgNP (20 mg/kg body weight, particle size 50 to 80 nm, zeta potential -21.03 ± 2.46 mV, Sigma, USA). The blends showing no growth on bacteriological and mycological media were used for further study.

Day-old chicken birds were randomly divided into seven groups consisting of 20 birds per group. Sera were randomly collected from 12 birds/group before vaccination. The birds were vaccinated with the above blends keeping placebo as negative control and commercial vaccines as a positive control. Each preparation was evaluated with and without a booster dose. Post-vaccination sera were collected on days 7, 14, 21, and 28 (Table 1). The sera were subjected to IBDV rVP2 ELISA (IDVet, France) following the manufacturer's instructions. The OD was taken at 450 nm in an ELISA reader (BioTech, India). The results were interpreted by calculating the S/P ratio and antibody titer be using the following formulas. The ELISA antibody titer greater than 1324 was taken as positive as indicated by the manufacturer.

\[
S/P = \frac{(OD_{Sample} - ODNegative\ Control)}{(OD_{Positive}\ control - ODNegative\ Control)}
\]

\[
\text{Log}_{10}(\text{titer}) = 0.97 \times \log_{10}(S/P) + 3.800
\]

\[
\text{Titer} = 10^{\log_{10}(\text{titer})}
\]

Statistical analysis

Mean ELISA titer and SE of each group were calculated. The one-way analysis of variance analyzed antibody titers between groups. The titers at different time intervals in each group were analyzed by repetitive measures analysis of variance using IBM SPSS-20 software.

Results

Amplification VP2 gene and construction of recombinant plasmid

The RT-PCR amplified 664 bp nucleotide sequence specific to the VP2 gene hypervariable region from position 548 to 1248 on segment A of the IBDV genome. The homology of deduced amino acid sequence with other IBDV sequences is shown in figure 1.

The codon-optimized VP2 gene segment (aa 178-385) was ligated into EcoRI restriction sites of the pGEM-T Easy vector. The recombinant plasmid was transformed into JM109 Escherichia coli cells. The plasmid DNA was extracted and digested with EcoRI. The excised VP2 gene insert was subcloned into EcoRI restriction sites of dephosphorylated pET32a expression vector. BL21DE3 Escherichia coli cells were transfected with this recombinant pET32a plasmid. The recombinant pET32a plasmid yielded two fragments of 6336 bp and 64 bp on endonuclease digestion using BamHI. The digestion patterns showed correct insert orientation in the expression vector (Figure 2).

Expression, purification, and characterization truncated rVP2

The truncated rVP2 protein of IBDV was expressed into a prokaryotic expression system under the control of the T7 promoter. The induced clones were lysed, and rVP2 was purified from cell-free supernatant using His tag purification. The Ni-NTA purification yielded rVP2 protein with a concentration of 1600 μg/ml. The induction and purification of rVP2 protein were monitored by SDS-PAGE (Figure 3). The recombinant clones expressing a specific 19 kDa protein were selected for further evaluation. The western blot identified the expressed protein as IBDV rVP2 with no specific reaction in negative controls (Figure 4), indicating that the protein is expressed correctly and has a reaction with chicken anti-IBDV antibodies.

Humoral response rVP2 protein blends

The mean serum antibody titers are shown in table 2 and figure 5. The results showed that the commercial vaccines and rVP2 protein blend preparations induced significant (p < 0.01) and protective titers after the 14th day of vaccination. The titers of birds from the placebo group were non-significant and non-protective throughout the experiment. The birds vaccinated with the commercial vaccine showed a significant decrease in the serum IgY titers on the 7th-day post-vaccination. The titers on the 7th-day post-vaccination were non-immune in all the treatment groups. However, from the 14th-day onwards, an exponential and significant increase (p < 0.01) in serum IgY level was recorded till the 28th-day post-vaccination. Similar trends were observed for all the treatment groups. The birds from groups vaccinated with rVP2-montanide oil showed significantly increased but non-immune titers on the 7th-day post-vaccination. On the 14th-day, a significant increase in the serum antibody titers was recorded in the group vaccinated with rVP2- montanide oil, commercial vaccine, and rVP2-montanide oil-AgNP compared with the placebo group. On the 21st-day, serum antibody titers were more significant in the group vaccinated with commercial vaccine booster followed by rVP2-montanide oil-AgNP booster, rVP2-montanide oil-AgNP, commercial vaccine, rVP2-montanide oil booster, and rVP2-montanide oil. The non-significant increase was recorded in serum IgY titers in groups vaccinated with rVP2-
montanide oil (both primary and booster) on the 21st-day compared with the respective titers on the 14th day. On the 28th-day, a significant increase in the serum antibody titers was recorded in the group vaccinated with rVP2-montanide oil-AgNP booster followed by rVP2-montanide oil-AgNP, commercial vaccine booster, rVP2-montanide oil booster, commercial vaccine, and rVP2-montanide oil. The results indicated that rVP2 expressed in the prokaryotic expression system has immunogenic potential.

Discussion

The VP2 protein is the major structural protein of IBDV and is routinely used in diagnosis and epidemiology [29,30]. It forms the outer surface of the viral capsid and possesses neutralizing epitope. The neutralizing antibodies and protective immune response have been demonstrated against this protein [10,11,31,32]. The VP2 protein comprises the major conformational epitopes. These epitopes are responsible for the induction of virus-neutralizing antibodies. Therefore, the IBDV major capsid protein VP2 is utilized for developing diagnostics and novel subunit vaccines [12,14]. Recent studies used Escherichia coli [7,33], Lactococcus lactis [34], and plant [14] expression systems to express IBDV rVP2 based virus-like particles and had a molecular mass of more than 40 kDa. This study elaborated the diagnostic and immunogenic potential of a truncated 19 kDa rVP2 protein.

Purified rVP2 protein concentration of 50 μg/dose induced significant serum IgY titers. These titers were comparable with the titers induced against commercial vaccines. In the placebo group, the titers remained non-immune throughout the experiment. Recently, a 40 kDa IBDV rVP2 expressed in Nicotiana benthamiana demonstrated IBDV specific neutralizing antibody titers in chicken comparable to those induced by the commercial vaccine [14].

The significant (2.31 to 2.67 fold) increase in the serum IgY level was recorded on the 14th-day post-vaccination in the birds vaccinated with rVP2 protein and commercial vaccines. On the 14th-day, the titers against rVP2-Montanide oil (2.48 fold) were comparable but significantly higher than the titers produced by the commercial vaccine (2.31 fold). The birds vaccinated with rVP2-Montanide oil-AgNP showed equivalent but significantly higher serum IgY titers (2.55 to 2.67 fold) than the commercial vaccine.

On the 21st-day, a significant rise in serum IgY level (4.95 to 5.11 fold) was recorded in birds vaccinated with booster dose compared to birds that did not receive booster dose (2.92 to 3.94 fold). Comparable but non-significant titers were observed in the birds with (2.97 fold) and without (2.92 fold) booster vaccination with rVP2-Montanide oil blends. However, the group receiving booster rVP2-Montanide oil-AgNP booster showed significantly higher titers (4.95 fold).

On the 28th-day, titers were significantly higher in all the vaccinated groups except in placebo (0.06 fold) compared with the respective titers on the 21st-day. All the groups receiving booster doses viz. commercial vaccine, rVP2-Montanide oil, and rVP2-Montanide oil-AgNP showed significantly higher levels of serum IgY titer (14.55, 14.07, and 17.84 fold, respectively) as compared to the corresponding groups which did not receive booster vaccination (12.00, 11.91, and 16.37 fold, respectively). The titers in the groups receiving rVP2-Montanide oil-AgNP were significantly higher than those reported in the commercial vaccine booster group. At the same time, the titers in the group receiving rVP2-Montanide oil booster were comparable with the titers recorded in the commercial booster vaccine group. The titers in groups not receiving booster doses of rVP2-Montanide oil were comparable with the titers observed in the group receiving only a primary dose of commercial vaccine. Exceptionally, the titers in the group receiving only primary rVP2-Montanide oil-AgNP were significantly higher throughout the experiment. Earlier reports documented significantly higher anti-IBDV antibody titer against rVP2 after two weeks of immunization [7,34]. Wang et al. reported that the IBDV SH619-VLP vaccine induced comparatively lower antibody titers than the commercial vaccine [33]. Our findings also demonstrated significantly high IgY titers after two weeks of vaccination. However, the titers produced against rVP2-Montanide oil were comparatively lower than those induced by commercial vaccines.

The results indicated that the immunogenic potential of rVP2 is comparable to commercial vaccines. Moreover, serum IgY response in birds receiving rVP2-Montanide oil-AgNP was superior when compared with the commercial vaccines. Secondly, the results are suggestive of potentiating immune response of rVP2 when blended with AgNP. Similarly, developing a recombinant DIVA vaccine could be possible as antibody response to VP3 structural protein will be absent in marker vaccine preparations. The commercial live vaccines could not differentiate the infected versus vaccinated birds due to the induction of similar immune responses. Recombinant VP2 vaccine may discriminate vaccinated versus naturally infected birds as naturally infected birds show antibodies to VP3 viral protein [35]. Earlier studies reported induction of protective immune response in chickens immunized with VP2 antigen [10,11]. The recombinant VP2 protein expressed in the prokaryotic expression system was utilized in diagnostic assays [13]. Recombinant VP2 subunit vaccines have been experimentally demonstrated [36,37]. The available commercial vaccines are prepared from "Intermediate" and "intermediate plus" or "hot" strains, which lead to the bursal changes attributing the immunosuppression, which was being altered by the use of the recombinant VP2 protein-based
vaccines. The benefits of using recombinant VP2 immunogen are that it harbors most of the neutralizing epitopes with a crystalline structure and will not compromise sero-surveillance of IBD.

The mineral oils are often used in a vaccine to form stable water in oil emulsions, ensuring depot formation and steady antigen release [38-40]. The montanide oil used in this study yielded stable emulsions after blending with rVP2 and rVP2-AgNP. It is a proven adjuvant and is safer than Freund's adjuvant, aluminum hydroxide, and aluminum phosphate and can be used in veterinary vaccines [41]. A recent report indicated that the chickens vaccinated with rVP2 neutralizing epitope antigen blended in oil emulsion adjuvant-induced more robust humoral immune response with no side effects [7,42]. This investigation reported the adjuvanticity of montanide oil in significant induction of anti VP2 antibodies when blended with rVP2.

In the present study, we reported adjuvanticity of AgNP in poultry vaccine. Availability of a novel adjuvant is the current need of veterinary vaccines with more safety, adjuvanticity, and targeted antigen delivery. Many adjuvants have been used in the development of veterinary vaccines. But issues like antigen-dependent adjuvanticity, their physicochemical properties, and toxicity limited their applications. Mineral oil like montanide oil and other derivatives are routinely used in vaccine formulations. However, nanoparticles showed more promising results in potentiating the immune response [23].

Moreover, AgNPs were experimentally used in vaccine preparations in laboratory animals like dogs, rabbits, and mice for viral antigens like Rabies [25,43,44]. There are proven reports of silver toxicity in vitro and in vivo; however, AgNP is considered non-toxic due to the negligible release of Ag ions from AgNP in water [24]. Asgary et al. documented no toxicity of AgNP at the triple dose rate (60 mg/Kg body weight) in laboratory animals [25,43]. The present study utilized the AgNP at the dose rate of 20 mg/Kg body weight in poultry, which is considered safe [25,43].

This study compares the adjuvanticity of AgNP, montanide oil, and commercial live poultry vaccines. The results indicated a significant rise of serum IgY titers in birds who received rVP2 vaccine blended with montanide oil and AgNP compared with commercial vaccines and rVP2 vaccine mixed with montanide oil alone. The AgNP can be used in veterinary vaccine preparations for a more promising and long-lasting immune response with the additional advantage of less animal handling. Moreover, booster vaccination can be withdrawn because the primary vaccination could produce comparable IgY titers, as evident in the present investigation. The mechanism of AgNP in potentiating antigenicity is not well elucidated in the literature. However, the accumulation property of the AgNP in water is believed to be the primary mechanism involved in antigen trapping and its slow release. Other suggested mechanisms involve cytokine release, leukocyte recruitment, and up-regulation of major histocompatibility complex (MHC II) expression of peripheral macrophages [24]. Abd reported follicular hyperplasia due to increased B cell number in rabbit spleen and increased humoral response after AgNP immunization [44].

Conclusions

The rVP2 protein has diagnostic potential as evident by dot blot assay and immunogenic potential as it induced serum IgY titers significantly at the protective level. The AgNPs had boosting effect on humoral response and produced IgY at par with the commercial vaccines.

Declarations

Acknowledgment

The authors acknowledge the support received from Dr. M.M. Kadam and Dr. J.A. Kesarkar, Nagpur Veterinary College, Nagpur, during animal experimentation and Dr. N.V. Khode, College of Veterinary and Animal Sciences, Udgir for statistical analysis.

Funding: The authors did not receive support from any organization for the submitted work.

Conflicts of interest/Competing interests (include appropriate disclosures): No

Availability of data and material (data transparency): The manuscript includes all data.

Authors' contributions: Conceptualization; Methodology; Formal analysis and investigation; Writing - original draft preparation: Sudhakar P Awandkar; Conceptualization; Supervision: Prabhakar A. Tembhume; Supervision: Nitin V. Kurkure, Sandeep P. Chaudhari, S.W. Bonde, and Vijay C. Ingle.

Ethics approval: The study protocol was approved by the Board of Studies, Maharashtra Animal and Fishery Sciences University, Nagpur (No. NVC/Micro/MAFSU-BOS/47/2017 dated 30/05/2017) and the Institutional Animal Ethical Committee, Nagpur Veterinary College,
References

1. Teshome M, Fentahunand, Admassu B (2015) Infectious Bursal Disease (Gumboro Disease) in Chickens. British Journal of Poultry Sciences 4(1):22–28

2. Ingrao F, Rauw F, Lambrecht B, van den Berg T (2013) Infectious Bursal Disease: A complex host–pathogen interaction. Dev Comp Immunol 41:429–438

3. Rekha K, Sivasubramanian C, Chung I, Thiruvengadam M (2014) Growth and Replication of Infectious bursal disease virus in the DF-1 Cell Line and Chicken Embryo Fibroblasts. BioMed Research International Article ID 494835 http://dx.doi.org/10.1155/2014/494835

4. Geerligs HJ, Ons E, Boelm GJ, Vancraeynest D (2015) Efficacy, Safety, and Interactions of a Live Infectious bursal disease virus Vaccine for Chickens Based on Strain IBD V877. Avian Dis 59(1):114–121

5. Müller H, Mundt E, Eterradossi N, Islam MR (2012) Current status of vaccines against infectious bursal disease. Avian Pathol 41:2133–2139

6. Preeti KS, Bai L, Ramkaran, Jindal N, Gupta R (2018) Epidemiological studies on IBD in broiler chickens in Haryana state during 2012-15. The Pharma Innov J 7(4):282–285

7. Li G, Hongyan K, Huaxiong G, Lianshen C, Dianfeng C, Xi W, Jixiong H, Jun R (2020) Development of a recombinant VP2 vaccine for the prevention of novel variant strains of infectious bursal disease virus. Avian Pathol. https://doi.org/10.1080/03079457.2020.1791314

8. Wang 2000Z, Huang S, Elankumaran AS, Yunus,t, Siba K, Samal (2004) A Recombinant Newcastle Disease Virus (NDV) Expressing VP2 Protein of Infectious Bursal Disease Virus (IBDV) Protects against NDV and IBDV. J Virol 78(18):10054–10063. https://doi.org/10.1128/JVI.78.18.10054–10063.2004

9. Rautenschlein S, Kraemer C, Vanmarcke J, Montiel E (2005) Protective efficacy of intermediate and intermediate plus Infectious bursal disease virus (IBDV) vaccines against very virulent IBDV in commercial broilers. Avian Dis 49:231–237

10. Wu J, Lian Y, Li L, Hu J, Zhou J, Zhou X (2007) Oral immunization with transgenic rice seeds expressing VP2 protein of Infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnol J 5:570–578

11. Rong J, Jiang T, Cheng T et al (2007) Large-scale manufacture and use of recombinant VP2 vaccine against infectious bursal disease in chickens. Vaccine 25:7900–7908

12. Bentley WE, Wang MY, Vakharia VN (1994) Development of an efficient bioprocess for poultry vaccines using high-density insect cell culture. Annals of NY Academy of Sciences 745:336–359

13. Wenqiang P, Kunkun Z, Jingqing X et al (2015) Purified recombinant VP2 protein can provide complete protection to very virulent Infectious bursal disease virus challenge as a subunit vaccine. Journal of Vaccines Immunity 1(1):39–42

14. Marusci C, Drissi Touzani C, Bortolami A, Donini M, Zanardello C, Lico C et al (2021) The expression in plants of an engineered VP2 protein of Infectious Bursal Disease Virus induces formation of structurally heterogeneous particles that protect from a very virulent viral strain. PLoS ONE 16(2):e0247134. https://doi.org/10.1371/journal.pone.0247134

15. Heine HG, Boyle DB (1993) Infectious bursal disease virus structural protein VP2 expressed by a fowl pox virus recombinant confers protection against disease in chickens. Arch Virol 127:1–22

16. Lukert PD, Saif YM (2003) Infectious bursal disease. In: Saif YM (ed) Disease of Poultry, 11th edn. Iowa State University, Ames, pp 161–179

17. Yamaguchi T, Iwata K, Kobayashi M, Ogawa M, Fukushima H, Hirai K (1996) Epitope mapping of capsid proteins VP2 and VP3 of IBDV. Arch Virol 141:1493

18. Cui X, Nagesha HS, Holmes IH (2003) Mapping of conformational epitopes on capsid protein VP2 of infectious bursal disease virus by fd-tet phage display. J Virol Methods 114:109–112

19. Zhao L, Seth A, Wibowo N et al (2014) Nanoparticle vaccines. Vaccine 32(3):327–337

20. He Q, Mitchell AR, Johnson SL, Wagner-Bartak C, Morcol T, Bell SJ (2000) Calcium phosphate nanoparticle adjuvant. Clin Diagn Lab Immunol 7(6):899–903

21. Dykman LA, Staroverov SA, Bogatyrev VA, Shchygolev SY (2010) Adjuvant properties of gold nanoparticles. Nanotechnol Russ 5(11–12):748–761
22. Malyala P, Singh M (2010) Micro/nanoparticle adjuvants: preparation and formulation with antigens. In: Davies G (ed) Vaccine Adjuvants: Methods and Protocols. Humana Press, Totowa, pp 91–101

23. Akagi T, Baba M, Akashi M (2012) Biodegradable nanoparticles as vaccine adjuvants and delivery systems: regulation of immune responses by nanoparticle-based vaccine. In: Kunugi S, Yamaoka T (eds) Polymers in Nanomedicine, vol 247. Springer, Berlin, pp 31–64

24. Xu Y, Tang H, Liu JH, Wang H, Liu Y (2013) Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo. Toxicol Lett 219(1):42–48

25. Asgary V, Shoani A, Baghban-Arani F, Shandiz SAS, Khosravy MS, Janani A, Bigdeli R, Bashar R, Cohan RA (2016) Green synthesis and evaluation of silver nanoparticles as adjuvant in Rabies veterinary vaccine. International Journal of Nanomedicine 11:3597–3605. DOI:10.2147/IJN.S109098

26. Green MR, Sambrook J (2012) Molecular Cloning: A Laboratory Manual, Fourth Edition Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

27. Moore NF, Burke AC (1974) Characterization of the structural proteins of different strains of Newcastle disease virus. J Gen Virol 25:275–289

28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annals of Biochemistry 72:248–254

29. Jackwood DJ, Sommer-Wagner SE (2007) Genetic characteristics of Infectious bursal disease viruses from four continents. Virology 365:369–375

30. Adamu J, Owode AA, Abdu PA, Kazeem HM, Fatihu MY (2013) Characterization of field and vaccine infectious bursal disease viruses from Nigeria revealing possible virulence and regional markers in the VP2 minor hydrophilic peaks. Avian Pathol 42(5):420–433

31. Macreadie G, Vaughan PR, Chapman AJ et al (1990) Passive protection against Infectious bursal disease virus by viral VP2 expressed in yeast. Vaccine 8:549–552

32. Vakharia VN, Snyder DB, He J et al (1993) Infectious bursal disease virus structural proteins expressed in a baculovirus recombinant confer protection in chickens. J Gen Virol 74:1201–1206

33. Wang Y, Jiang N, Fan L, Gao L, Li K, Gao Y, Niu X, Zhang W, Cui H, Liu A et al (2021) Development of a Viral-Like Particle Candidate Vaccine Against Novel Variant Infectious Bursal Disease Virus. Vaccines 2021, 9, 142. https://doi.org/10.3390/vaccines9020142

34. Wang 2020 Wang Z y, JM y, Y Wang, Wang T, Qi X, Li K, Pan Q, Gao Y, Gao L, Liu C, Zhang Y, Xiaomei Wang * and Hongyu Cui (2020) Recombinant Lactococcus expressing a novel variant of Infectious bursal disease virus VP2 protein can induce unique specific neutralizing antibodies in chickens and provide complete protection. Viruses 12:1350. https://doi.org/10.3390/v12121350

35. Martinez-Torrecuadrada JL, Saubi N, Pagès-Manté A, Castón JR, Espuña E, Casal JI (2003) Structure-dependent efficacy of Infectious bursal disease virus (IBDV) recombinant vaccines. Vaccine 21:1952–1960

36. Dybing JK, Jackwood DJ (1998) Antigenic and Immunogenic Properties of Baculovirus-Expressed Infectious Bursal Disease Viral Proteins. Avian Dis 42(1):80–91

37. Yehuda H, Goldway M, Gutter B et al (2000) Transfer of antibodies elicited by baculovirus derived VP2 of very virulent Infectious bursal disease virus strains to the progeny of commercial breeder chickens. Avian Dis 29:13–19

38. Brewer KD, Weir GM, DudeI et al (2018) Unique depot formed by an oil-based vaccine facilitates active antigen uptake and provides effective tumor control. J Biomed Sci 25.7. https://doi.org/10.1186/s12929-018-0413-9

39. Huang CH, Huang CY, Cheng CP et al (2016) Degradable emulsion as vaccine adjuvant reshapes antigen-specific immunity and thereby ameliorates vaccine efficacy. Sci Rep 6:36732. https://doi.org/10.1038/srep36732

40. Ghosh M, Gauger M, Denk M, Rammensee H, Stevanovic S (2020) Antigens in water-in-oil emulsion: a simple antigen extraction method for analysis and proof of equal antigen distribution in vaccination syringe after mixture. bioRxiv. doi:https://doi.org/10.1101/2020.01.22.916189

41. Jang SI, Lillehoj HS, Lee SH et al (2010) Immunoenhancing effects of Montanide ISA oil-based adjuvants on recombinant coccidiosis antigen vaccination against Eimeria acervulina infection. Vet Parasitol 172:221–228

42. Gao X, Sun, Lan W, Wang W, Zou Y, Zhang Y, Wang SL, Jiang M, Zhao H, Qu E, Pang Y, Yin J, Ren G (2021) Development and evaluation of a recombinant VP2 neutralizing epitope antigen vaccine candidate for infectious bursal disease virus. Transboundary Emerging Diseases. https://doi.org/10.1111/tbed.13974

43. Asgary V, Kord Mafi Q, Khosravy MS, Janani A, Namvar Asl N, Bashar R et al (2014) Evaluation of the Effect of Silver Nanoparticles on Induction of Neutralizing Antibodies against Inactivated Rabies Virus. Vaccine Research 1(1):31–34
44. Abd FG (2014) Silver nanoparticles effect on some immunological parameters in rabbits. Journal of Pharmacy Biological Sciences 9(6):10–12

Tables

Table 1. Experimental design for testing rVP₂-MO and rVP₂-AgNP-MO immunogen preparations

Treatments	Number of chickens	Serum collection	Vaccination	Serum collection	Serum collection	Vaccination	Serum collection	Serum collection	
		Day 0	Day 14	Day 14	Day 21	Day 28	Day 35	Day 35	Day 42
Placebo	20	12	No vaccination	12	12	No vaccination	12	12	
CV	20	12	Primary	12	12	No vaccination	12	12	
CV-B	20	12	Primary	12	12	Booster	12	12	
rVP₂-MO	20	12	Primary	12	12	No vaccination	12	12	
rVP₂-MO-B	20	12	Primary	12	12	Booster	12	12	
rVP₂-AgNP-MO	20	12	Primary	12	12	No vaccination	12	12	
rVP₂-AgNP-MO-B	20	12	Primary	12	12	Booster	12	12	

(CV: Commercial vaccine, CV-B: Commercial vaccine booster, rVP₂-MO: truncated rVP₂ protein blended with montanide oil, rVP₂-MO-B: truncated rVP₂ protein mixed with montanide oil booster, rVP₂-AgNP-MO: truncated rVP₂ protein mixed with AgNP and montanide oil, rVP₂-AgNP-MO-B: truncated rVP₂ protein blended with AgNP and montanide oil booster)

Table 2. Mean serum IgY titers induced by commercial vaccines and rVP₂-MO and rVP₂- AgNP-MO immunogen preparations

Treatment	Placebo	CV	CV-B	rVP₂-MO	rVP₂-MO-B	rVP₂-MO-AgNP	rVP₂-MO-AgNP-B	F	p
Age of the chickens									
14th day	84.00 ± 32.3^{NS}	86.75 ± 28.86^{NS}	85.42 ± 30.17^{NS}	78.25 ± 28.12^{NS}	84.00 ± 22.87^{NS}	78.58 ± 21.63^{NS}	87.58 ± 29.06^{NS}	0.018	1.000
21st day	116.50 ± 31.78^{NS}	74.83 ± 36.22^{NS}	71.67 ± 39.81^{NS}	126.83 ± 45.44^{NS}	136.00 ± 49.35^{NS}	25.17 ± 19.19^{NS}	66.92 ± 29.89^{NS}	1.141	0.347
28th day	33.83 ± 17.92^{NS}	2313.08 ± 152.77^{NS}	2315.42 ± 46.21^{NS}	2489.83 ± 79.17^{NS}	2473.25 ± 83.53^{NS}	2554.33 ± 97.25^{NS}	2671.33 ± 108.91^{NS}	100.158	0.000
35th day	84.17 ± 49.47^{NS}	3493.00 ± 178.09^{NS}	5114.00 ± 48.61^{NS}	2920.25 ± 103.72^{NS}	2970.42 ± 302.24^{NS}	3942.92 ± 153.72^{NS}	4946.67 ± 70.86^{NS}	115.684	0.000
42nd day	65.58 ± 31.34^{NS}	12009.33 ± 375.67^{NS}	14557.17 ± 380.11^{NS}	11912.67 ± 415.89^{NS}	14071.92 ± 416.14^{NS}	16374.25 ± 347.83^{NS}	17845.83 ± 344.00^{NS}	274.818	0.000
F	0.856	609.955	1549.363	663.683	635.43	1550.72	1900.854		
p	0.498	0.000	0.000	0.000	0.000	0.000	0.000		

Treatments found Significant p < 0.01 (a to d indicate the difference between days/A to E indicate the difference between groups; NS: non-significant)
Figures

Figure 1

Alignment of deduced amino acid sequences for the hypervariable region of VP2 gene of very velogenic, classical, variant, and attenuated strains of IBDVs. (Dots and differences by single letter show identity. The major and minor hydrophilic peaks are highlighted)
Figure 2

Restriction digestion of pET32a prokaryotic expression vector and pGEM-T Easy-VP2 recombinant cloning vector (Lane 1: Undigested pET32a, Lane 2 and 3: EcoRI digested pET32a, Lane 4: DNA Marker (1 kbp plus), Lane 5: Undigested pGEM-T Easy VP2, Lane 6 and 7: EcoRI digested pGEM-T Easy-VP2, Lane 8: PstI digested pGEM-T Easy-VP2)
Figure 3

Expression and purification of rVP2 (Lane1: BL21DE3 cell lysate, Lane2: pET32a transformed BL21DE3 cell lysate, Lane3: pET32a-VP2 transformed BL21DE3 uninduced, Lane4: pET32a-VP2 transformed BL21DE3 induced with 0.50 mM IPTG, Lane5: Protein Marker, Lane6: Pellet after sonication, Lane7: Supernatant after sonication, Lane 8: Ni-NTA purified rVP2)
Figure 4

Western blot showing reactivity of rVP2 with polyclonal and anti rVP2 antibodies (A: Pooled serum from rVP2 vaccinated birds, B: Pooled serum from birds vaccinated with the commercial vaccine, C: Anti-rVP2 antibodies (IDVet), 1: Purified rVP2, 2: Uninduced BL21DE3 cell lysate, 3: IBDV infected cell culture supernatant, 4: Commercial IBD vaccine, 5: Negative control, 6: Conjugate at a working concentration from the kit as a positive control, 7: rVP2 + 7 M Urea (4:1), 8: rVP2 + 7 M Urea (3:2), 9: rVP2 + 7 M Urea (2.5:2.5), 10: rVP2 + 7 M Urea (2:3), 11: rVP2 + 7 M Urea (1:4), 12: 7 M Urea as negative control)
Figure 5

Mean serum IgY titers induced by commercial vaccines and rVP2 protein preparations (CV: Commercial vaccine, CV-B: Commercial vaccine booster, rVP2-MO: rVP2 protein blended with montanide oil, rVP2-MO-B: rVP2 protein mixed with montanide oil booster, rVP2- AgNP-MO: rVP2 protein mixed with AgNP and montanide oil, rVP2- AgNP-MO-B: rVP2 protein blended with AgNP and montanide oil booster)