NERVE: New Enhanced Reverse Vaccinology Environment
Sandro Vivona, Filippo Bernante and Francesco Filippini*

Address: Molecular Biology and Bioinformatics (MOLBINFO), Department of Biology, University of Padua, viale G. Colombo 3, 35131 Padova, Italy
Email: Sandro Vivona - sandro@bio.unipd.it; Filippo Bernante - filippob@bio.unipd.it; Francesco Filippini* - francesco.filippini@unipd.it
* Corresponding author

Abstract

Background: Since a milestone work on Neisseria meningitidis B, Reverse Vaccinology has strongly enhanced the identification of vaccine candidates by replacing several experimental tasks using in silico prediction steps. These steps have allowed scientists to face the selection of antigens from the predicted proteome of pathogens, for which cell culture is difficult or impossible, saving time and money. However, this good example of bioinformatics-driven immunology can be further developed by improving in silico steps and implementing biologist-friendly tools.

Results: We introduce NERVE (New Enhanced Reverse Vaccinology Environment), an user-friendly software environment for the in silico identification of the best vaccine candidates from whole proteomes of bacterial pathogens. The software integrates multiple robust and well-known algorithms for protein analysis and comparison. Vaccine candidates are ranked and presented in a html table showing relevant information and links to corresponding primary data. Information concerning all proteins of the analyzed proteome is not deleted along selection steps but rather flows into an SQL database for further mining and analyses.

Conclusion: After learning from recent years’ works in this field and analysing a large dataset, NERVE has been implemented and tuned as the first available tool able to rank a restricted pool (~8–9% of the whole proteome) of vaccine candidates and to show high recall (~75–80%) of known protective antigens. These vaccine candidates are required to be "safe" (taking into account autoimmunity risk) and "easy" for further experimental, high-throughput screening (avoiding possibly not soluble antigens). NERVE is expected to help save time and money in vaccine design and is available as an additional file with this manuscript; updated versions will be available at http://www.bio.unipd.it/molbinfo.

Background

Reverse Vaccinology (RV) is one of the best examples of how Bioinformatics can boost Molecular Immunology. The conventional approach to design vaccines requires pathogen’s cultivation and dissection of its main components before testing their ability to elicit protective immunity. RV’s novelty consists in starting the search for immunogenic antigens from in silico analyses of the pathogen’s genome instead of culturing the microorganism [1]. This allows scientists to save time and money while facing pathogens for which cell culture is difficult or impossible. RV potentially permits researchers to select, in addition to most in vivo expressed antigens (the easiest ones to purify), any protein encoded by the genome of a
pathogen. RV is less helpful with eucaryotes due to complexities of cellular and tissue organization, and it is more effective with prokaryotes, extra- and intracellular. Indeed, the production of specific antibodies can boost immunity not only against extracellular pathogens, usually controlled by Th2-polarized responses, but also against either obligate or facultative intracellular ones, usually controlled by Th1-polarized responses. Even these latter pathogens are susceptible to humoral immunity during the extracellular phases of their infectious cycle and are made vulnerable by antibody cross-linking that modifies the intracellular milieu through signaling [2,3].

The extracellular pathogen, *Neisseria meningitidis* sero-group B, stands as a milestone for RV. From its genome, Pizza and coworkers selected 570 out of 2158 predicted ORFs for protein expression as those meant to be new, surface-exposed antigens [4]. 350 ORFs were successfully cloned, expressed in *Escherichia coli* and tested in a variety of assays. In the end, five proteins were found to satisfy criteria of surface exposure, conservation/expression in all strains as well as a significant titer in serum bactericidal assays. This work induced further research of other pathogens in the same way: *Porphyromonas gingivalis* [5], *Streptococcus pneumoniae* [6], *Chlamydia pneumoniae* [3], *Bacillus anthracis* [7] and group B streptococci [8]. Enhancing such a genome-based approach with a trascriptome-based one – through the use of DNA microarrays – shows whether, when and to what extent antigens are expressed, thus identifying those highly expressed during infection processes [9]. Finally, proteomics, although expensive and laborious, can verify in silico prediction of membrane composition [10].

We focused on the selection of the in silico vaccine candidates (VCs) from the list of predicted proteins to address two issues: the possibility (i) of automatizing the process with new criteria of analyses and (ii) of reducing the percentage of VCs to less than the 20–30% reported until now [11]. Indeed, the real goal of in silico selection is to choose the minimal number of VCs sufficient to find protective antigens (PAs) during experimental phases, thus designing a vaccine that conserves time and money. Therefore, it has to be stressed that obtaining a high recall of PAs in a very small number of selected VCs is more convenient than trying to find all possible PAs. According to this approach it is more productive to select the PAs that will most likely be easily expressed. This reduces the risk of experimental troubles. The main cause of failed cloning and expression of 250 out of 600 VCs from *Neisseria meningitidis* B was the presence of more than one transmembrane spanning region (TM) [12]. Thus, we decided to have no more than two predicted TMs as an a priori requirement. Of course, viable VCs can be missed because of such a filter; the extracellular loops of multispansing membrane proteins can actually be significant targets especially if reasonably large. Hence, one may focus on fragments likely to be exposed and accessible to antibodies rather than the entire protein in order to overcome eventual cloning and expression problems. Although such a "local" approach is reasonable, we designed the software to select entire antigens for experimental challenges rather than hazarding fine predictions that may not correspond to in vivo conditions.

Choosing such a conservative way to face vaccine design inevitably implies missing some PAs, but this is a small price to reach a valuable compromise. Even selecting only surface antigens may imply missing non-surface PAs. Yet discarding non-surface-exposed predicted antigens, thereby forwarding further bioinformatic analyses on selected ones, proved successful. However, to minimize the risk of loosing good VCs, we stored up information concerning analytical steps for each sequence without distinction: the final output presents only selected VCs, but information concerning all other proteins is retained. VCs are presented with corresponding integrated analyses. In order to "rationalize" selection step, we took into account the importance of avoiding antigens that can potentially cause autoimmunity in man [13]. Since Major Hystocompatibility Complex (MHC) ligands can be really short (as few as eight residues); this problem may rise also from antigens sharing weak global similarity with host proteins. Addressing such a question on a proteomic scale would make manual management of bioinformatic analyses impossible.

We report here on a new, fully automated RV system, developed to predict best VCs from bacterial proteomes (inferred by completely sequenced genomes and publicly available) and to manage and show data by user-friendly output.

Implementation

NERVE software pipeline is presented in figure 1. NERVE is composed of eight Perl scripts. A script named "NERVE" leads the user through text-interface configuration. Once this is successfully completed, the script starts and manages the whole process that can be roughly divided in two parts: the first in which all data is produced and stored and the second in which a restricted part of this data is selected. The acquisition of data is performed by six different analytical steps, each forwarded by a special script and each in turn screens the whole proteome indistinctly. All the information produced is stored both in a MySQL table and in text files organized in special subdirectories. Once production and storage of data is completed, another script selects a restricted number of entries from the MySQL table (restriction) and ranks them in a user-friendly html table (ranking). Restriction is performed by
NERVE software pipeline. The process can be divided into two parts: data production and storage (top) and data selection (bottom). Six different scripts screen the entire proteome to mine and infer information that flows into a MySQL table. A seventh script uses four filters (LOC, localization; TOP topology; PAD, probability of being adhesin; SHP, similarity to human proteins) and analyzes values created by steps 1 through 5 to select and rank VCs that are then presented in a html table with links to relevant data.
four integrated filters and is based on values created by steps 1 to 4. Filters LOC and TOP select non cytoplasmic antigens containing no more than two TMs (NERVE *a priori* requirements). Subsequently, based on empirical threshold values, filters PAD and SHP discard antigens that show a low probability of being adhesins and/or a significant similarity to human proteins. To set these values, NERVE was tuned on ten entire proteomes containing known immunogens; we chose the pair of threshold values that gave the best compromise between restrictiveness and immunogen recall. After restriction, NERVE uses values created by step 5 to rank the antigens extracted by the filters. An html table presents this restricted and ranked pool of VCs, showing in six columns the values created by the analytical steps. Entries and data are linked to the corresponding textfiles, thus providing the user with complete information.

Results and discussion

The system we created predicts the best VCs starting from the flatfile proteome of a prokaryotic pathogen. It forwards six proteome-wide analyses that mine and save data in text files and in an automatically generated MySQL table. The table will contain as many records of extracted information as the number of sequences in thirteen fields. The best VCs are finally selected and are shown in a user-friendly html table reporting seven out of the thirteen fields. The table contains the following values.

- The number of mined SPs.
- Four features based on data mined by various tools: (i) subcellular localization, (ii) adhesin probability and (iii) topology, using the algorithms PSORTb 2.0 [14], SPAAN [15] and HMMTOP [16] respectively.
- The fourth one reports the aggregate number of amino acid residues of evidence rather than an evidence of absence. The fourth step is not compulsory, it allows NERVE to rank VCs from most to least represented in the compared prokaryotic proteome in the html table presenting the selection set (see below). When possible the sixth step assigns an homology-driven, function prediction to each VC. For instance, this allows one to focus on a VC that shows strong similarity to either known virulence factors or strong immunogens. NERVE uses BLASTp algorithm to compare each sequence to the UniProt database. According to Ariel *et al.* (2003) [7], the script adopts these parameters: e-value ≤1e-10 and (alignment extension)/(query length) ≥ 0.8. This allows NERVE to attribute to the sequence the subject's most similar function as a query putative function, reported in a further special MySQL column – if no hits are found, the notice "no sufficient similarity found for function inference" is
shown. The putative function is then saved in a special text file with the corresponding score and e-value. This last step completes the MySQL database, which in total contains thirteen fields complete with all the information produced along the six analyses. Although each type of information may be retrieved at any time, the final script presents the best VCs in a user-friendly html table. This displays accession numbers and six out of the eleven MySQL fields, linking them to text files containing summarized data (figure 2).

For final selection of VCs, NERVE uses feature-based, a priori requirements to discard proteins that are likely to waste time and money during the experimental tasks (such as those with > 2 TMs) and to exclude non-surface antigens such as cytoplasmic/inner membrane proteins (see introduction for rationale). To further improve final selection efficiency, NERVE considers two characteristics for empirical tuning: the probability that a sequence is an adhesin and the presence of regions common to human proteins. Variation of threshold values for such features along iterative analysis of a known data set (ten proteomes, from both Gram$^+$ and Gram$^-$, both extra- and intracellular bacteria) allowed NERVE to define restricted VC pools (average size: 8.17% proteome sequences, figure 3) including a high number (33/42 = 78.6%) of the described PAs that fulfill NERVE a priori requirements (see table 1: selected PAs are underlined; PAs not fulfilling NERVE a priori requirements are not shown). Settings consistently confirmed themselves as reliably effective – in terms of both PA recall and selection restrictiveness – when tested on six further proteomes (from both Gram$^+$ and Gram$^-$, both extra- and intracellular bacteria). In fact, most (22/29 = 75.9%) of the described PAs fulfilling NERVE a priori requirements (see table 2: same PAs representation criteria as in table 1) were included in 9.32% whole proteomes average size pools (figure 4).

Conclusion

RV stands as a turning stone in Vaccinology. It shows how powerful and useful Bioinformatics can be in the post-genomic era. Creating a tool specifically designed to automatize in silico steps not only makes RV really available but also time and cost efficient. Indeed, NERVE was conceived to combine automation with an exhaustive treatment of VCs selection task by implementing and integrating six different kinds of analyses. Its modular structure allows further development of new, additional steps as well as the refinement of existing modules. This would improve the compromise between VC selection restrictiveness and PA recall. Another goal was to avoid loosing information, thereby giving the user the chance to recover all data mined by NERVE for further investigation. For instance, recovered data regarding shared similarity regions between VCs and human proteins may be of help when taking into account possible occurrences of either tolerance or autoimmunity.

Finally, the NERVE prediction system proved – on a large number of bacterial proteomes – to be reliably effective in selecting very restricted VC pools that are characterized by a high recall (75–80%) of PAs. In particular these results narrow VC pool restriction from the reported 20–30% to an improved 8–9% of proteome sequences. NERVE's attempt to save time and money is also mediated by selection criteria, meant to facilitate crucial experimental steps, the protein cloning and expression phases. Last but not least, NERVE's user-friendly format and easily interpretable output should further aid researchers in designing subunit vaccines against bacterial pathogens.
Table 1: Tuning NERVE settings on a known dataset including 10 proteomes.

Pathogen	Strain	Known protective antigens (non cytoplasmic, ≤2 TMs)	Primary accession numbers (Uniprot database)	References
Bacillus anthracis	AMES ANCESTOR	PA83, Sap, EA1, AhpC	P13423 P49051 P94217 Q8IY83	[7,22]
Pseudomonas aeruginosa	ATCC 15692	OprD, OprF	P11221 P13794	[23-25]
Yersinia pestis	CO-92	Cfa, LcrV, YscF	P26948 P12106 Q7AR10	[26,27]
Streptococcus gallectiae V	2603 V/R	Sip, GB567, GB580	Q8E72F Q8BDY8 Q8E509	[8]
Streptococcus gallectiae III	NEM316	Sip, GB567, GB580, C5a-ase, C protein alpha-antigen, C protein beta-antigen	Q8E72F Q8E4C Q8E664 Q8E4T9	[8]
Streptococcus gallectiae la	A909	Sip, GB567, GB580, C5a-ase, C protein alpha-antigen, C protein beta-antigen	Q8E72F Q8KD26 Q9K250 Q9K0M1	[8]
Neisseria meningitidis B	MC58	NspA, PorA, TbpA, TbpB, GNA33, GNA992, NadA, App, GNA1870	Q7DDM2 Q51240 Q9K0U9 Q9K0V0	[12]
Porphyromonas gingivalis	W83	FimA, HagA, HagB, PG32, PG33	PS9914 P59915 Q7MT15 Q9S3R9	[29-32]
Borrelia burgdorferi	B31	OspA, OspC, BBI16	Q72737 O50870	[33-35]
Chlamydia trachomatis D	UW-3/Cx	MOMP, OMP3, OMP2	Q46409 P21355 P38006	[36]

Table 2: Test of NERVE settings on another dataset including 6 proteomes.

Pathogen	Strain	Known protective antigens (non cytoplasmic, ≤2 TMs)	Primary accession numbers (Uniprot database)	References
Staphylococcus aureus	MW2	Spa, PBP2A, CIA, collagen-binding, fibronectin-binding, enterotoxin alpha, alpha-toxin	Q8NXTO Q8NXW5 P0A0L1 Q8NUH0	[37-39]
Neisseria gonorrhoeae	ATCC 700825	PorB, TbpA, TbpB	Q5SFV7 Q5SF6Q Q5SF6Q	[40,41]
Streptococcus pyogenes M1	SF370	Spv0128, Spv0130, Spv0843, Spv1357, Spv1274, Spv1390, Spv0416, Spv2010, Spv2018	P60811 Q7DA7L Q9Z927 Q9A0C0 Q9A180 Q9A180 Q9A180 Q9A180 P58099	[42]
Campylobacter jejuni	NCTC 11168	FlaA, cjaA	Q58693 Q9P9V7	[43,44]
Helicobacter pylori	J99	CagA, VacA, Nap	Q9ZKWS Q5ZLT1 Q9ZMJ1	[45]
Chlamydia pneumoniae	CWL029	MQMP, Pmp2, ArtJ, HtrA, Omph-like	P27455 Q9Z21J Q9Z869 Q9Z6T0 Q9Z87N	[46,46]

Figure 3
Data concerning the ten proteomes used for tuning NERVE. The number of selected VCs is reported beside the overall number of sequences. The average size of the selected VC pools is 8.17% of the proteome (min 5.09%, max 10.73%).

Figure 4
Data concerning the six proteomes used to test NERVE settings. The number of selected VCs is reported beside the overall number of sequences. Average size of selected VC pools is 9.32% of proteome (min 8.17%, max 11.33%).
Availabilty and requirements
Project name: NERVE

Home page: http://www.bio.unipd.it/molbinfo

This software is also available as an additional file [See Additional file 1]

Operating system: Linux (tested distribution: Debian)

Programming language: Perl

Other requirements: Perl 5.8.7 or higher, PSORTb 2.0, SPAAN

License: GNU GPL

Any restrictions to use by non-academics: licence needed

Abbreviations
MHC = major hystocompatibility complex; ORF = open reading frame; PA = protective antigen; RV = Reverse Vaccinology; SP = shared peptide; TM = transmembrane helix; VC = vaccine candidate.

Authors' contributions
SV: conception, design, acquisition, analysis and interpretation of data, manuscript drafting; FF: conception, analysis and script critical reading; FF: conception, design, acquisition, analysis and interpretation; SP = shared peptide; TM = transmembrane helix; VC = vaccine candidate.

Acknowledgements
This work was supported by grant "Ricerca Nazionale – ex 60%" to FF. We thank Gabor Tusnady and Istvan Simon for providing HMMTOP algorithm, Massimo Facchinetti for addressing and managing intellectual property issues, Aaron Riedel for reviewing and editing the English and Dimitri Trakovsky for manuscript proofreading.

References
1. Rappuoli R: Reverse vaccinology. Curr Opin Microbiol 2000, 3:445-450.
2. Casadevall A: Antibody-Mediated Immunity against Intracellular Pathogens: Two-Dimensional Thinking Comes Full Circle. Infect Immun 2003, 71:4225-4228.
3. Montigiani S, Falugi F, Scarselli M, Finco O, Petracca R, Galli G, Mariani M, Manetti R, Agnusdei M, Cevenini R, Donati M, Nogarotto R, Noris N, Garaguso I, Nuti S, Saletti G, Rosa D, Ratti G, Grandi G: Genomic Approach for Analysis of Surface Proteins in Chlamydia pneumoniae. Infect Immun 2002, 70:368-379.
4. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comabesca M, Jennings GT, Baldi L, Bartolini E, Capecchi B, Galeotti CL, Luzzi E, Manetti R, Marchetti E, Mora M, Nuti S, Ratti G, Santini L, Savino S, Scarselli M, Storni E, Zuo P, Broeker M, Hundt E, Knapp B, Blair E, Mason T, Tettelin H, Hood DW, Jeffries AC, Saunders NJ, Granoff DM, Venter J, Moxon ER, Grandi G, Rappuoli R: Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 2000, 287:1816-1820.
5. Ross BC, Czajkowski L, Hoisington D, Margetts M, Webb E, Rothel L, Patterson M, Agius C, Camuglia S, Reynolds E, Littlejohn T, Gaeta B, Ng A, Kuczek ES, Mattick JS, Gearing D, Barr IG: Identification of vaccine candidate antigens from a genomic analysis of Porphyromonas gingivalis. Vaccine 2001, 19:4135-4142.
6. Wizemann TM, Heinrichs JH, Adamou JE, Erwin AL, Kunsch C, Choi GH, Barash SC, Rosen CA, Masure HR, Tuomanen E, Gayle A, Brewha YA, Walsh W, Barren P, Lathigra R, Hanssen M, Langermann S, Johnson S, Koenig S: Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect Immun 2001, 69:1593-1598.
7. Ariel N, Zvi A, Makarova KS, Chittrai T, Elhanany E, Velan B, Cohen S, Friedlander AM, Shafferman A: Genome-based bioinformatic selection of chromosomal bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun 2003, 71:4563-4579.
8. Maione D, Martiraglia I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Bretoni C, Iacobini ET, Rosini D, A’Gostino N, Miorin L, Buccato S, Mariani M, Galli G, Nogarotto R, Nardi Dal V, Vegni F, Frazer K, Manuccio G, Tettelin H, Rappuoli R, Randazzo F, Grandi G: Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nature Biotechnol 2002, 20:914-921.
9. Grandi G: Rational antibacterial vaccine design through genomic technologies. Int J Parasitol 2003, 33:615-620.
10. Grandi G: Bioinformatics, DNA Microarrays and Proteomics in Vaccine Discovery: Competing or Complementary Technologies? In Genomics, Proteomics and Vaccines Edited by: Grandi G. John Wiley & Sons Ltd; 2004:23-41.
11. Serruto D, Rappuoli R, Pizza M: Meningococcus B: from Genome to Vaccine. In Genomics, Proteomics and Vaccines Edited by: Grandi G. John Wiley & Sons Ltd; 2004:185-201.
12. Oldstone MB: Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept. Curr Top Microbiol Immunol 2005, 296:1-17.
13. Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FSL: PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 2005, 21:617-623.
14. Sachdeva G, Kumar K, Presti J, Ramachandran S: SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 2004, 21:483-491.
15. Tussuz GE, Simon I: The HMMTOP transmembrane topology prediction server. Bioinformatics 2001, 17:849-850.
16. Ackerman AL, Kyristis C, Tampé R, Cresswell P: Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept. Curr Top Microbiol Immunol 2005, 296:1-17.
17. Reche PA, Glutting JP, Zhang H, Reinherz EL: Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 2004, 56:405-419.
18. Lehner PJ, Cresswell P: Recent developments in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 2004, 16:82-89.
19. Ackerman AL, Kyristis C, Tampé R, Cresswell P: Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nat Immunol 2005, 6:107-113.
20. Brusic V, Rudy G, Kyne AP, Harrison LC: MHCPEP, a database of MHC-binding peptides: update 1997. Nucleic Acids Res 1998, 26:368-371.
21. Klauser AL, Kyristis C, Tampé R, Cresswell P: Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nat Immunol 2005, 6:107-113.
22. Voorhees JS, Lacy DB, Linsley PS, Gershon MD: MHC tetramers: a tool for studying T-cell recognition. Immunity 2003, 18:87-98.
23. Ackerman AL, Kyristis C, Tampé R, Cresswell P: Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nat Immunol 2005, 6:107-113.
tation against P. aeruginosa with an adeno virus vector containing an OprF epitope in the capsid. J Clin Invest 2005, 115:1281-1291.

26. DiGiandomenico A, Rao J, Goldberg J: Oral vaccination of BALB/c mice with Salmonella enterica serovar Typhimurium expressing Pseudomonas aeruginosa O antigen promotes increased survival in an acute fatal pneumonia model. Infect Immun 2004, 72:7013-7021.

27. Jones T, Adamovicz J, Cyr SL, Bok CR, Bellerose N, Pitt LM, Lowell GH, Burt DS: Intranasal Proteolipid/Fl-I-V vaccine elicits respiratory and serum antibody responses and protects mice against lethal aerosolized plague infection. Vaccine 2006, 24:1625-1632.

28. Matson JS, Durick KA, Bradley DS, Nilles ML: Immunization of mice with YscF provides protection from Yersinia pestis infections. BMC Microbiol 2005, 5:38.

29. Shin EA, Lee JY, Kim TG, Park YK, Langridge VH: Synthesis and assembly of an adjuvanted Porphyromonas gingivalis fimbrial antigen fusion protein in plants. Protein Expr Purif 2006, 47:99-109.

30. Zhang F, Yang QB, Balkovetz DF, Lewis JP, Clements JD, Michalek SM, Katz J: Effectiveness of the B subunit of cholera toxin in potentiating immune responses to the recombinant hemagglutinin/adhesin domain of the gingipain Kgp from Porphyromonas gingivalis. Vaccine 2005, 23:4734-4744.

31. Yang QB, Martin M, Michalek SM, Katz J: Mechanisms of monophosphoryl lipid A augmentation of host responses to recombinant HagB from Porphyromonas gingivalis. Infect Immun 2002, 70:3557-3565.

32. Ross BC, Czajkowski L, Vandenbarg KL, Camuglia S, Woods J, Agius C, Paolini R, Reynolds E, Barr IG: Characterization of two outer membrane protein antigens of Porphyromonas gingivalis that are protective in a murine lesion model. Oral Microbiol Immunol 2004, 19:6-15.

33. Yoder A, Wang X, Ma Y, Philipp MT, Heilbrun M, Weis JH, Kirschning CJ, Wooten RM, Weis JJ: Tripalmitoyl-S-glycerol-cysteine-dependent OspA vaccination of toll-like receptor 2-deficient mice results in effective protection from Borrelia burgdorferi challenge. Infect Immun 2003, 71:3894-3900.

34. Scheibelhofer S, Weiss R, Dunbar H, Mostbock S, Breitenbach M, Livey I, Thalamier J: A DNA vaccine encoding the outer surface protein C of Borrelia burgdorferi is able to induce protective immune responses. Microbes Infect 2003, 5:939-946.

35. Labandeira-Rey M, Baker EA, Skare JT: VraA (BBI16) protein of Borrelia burgdorferi is a surface-exposed antigen with a repetitive motif that confers partial protection against experimental Lyme borreliosis. Infect Immun 2001, 69:1409-1419.

36. Eko FO, He Q, Brown T, McMillan L, Ifere GO, Ananba GA, Lyn D, Lubitz W, Kellar KL, Black CM, Igietseme JU: A novel recombinant multisubunit vaccine against Chlamydia. J Immunol 2004, 173:3375-3382.

37. Palmqvist N, Silverman GJ, Josefsson E, Tarkowski A: Bacterial cell wall-expressed protein A triggers supracholinergic B-cell responses upon in vivo infection with Staphylococcus aureus. Microbes Infect 2005, 7:1501-1511.

38. Senna JP, Roth DM, Oliveira JS, Machado DC, Santos DS: Protective immune response against methicillin-resistant Staphylococcus aureus in a murine model using a DNA vaccine approach. Vaccine 2003, 21:2661-2666.

39. Josefsson E, Hartford O, O’Brien L, Patzi JM, Foster T: Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J Infect Dis 2001, 184:1572-1580.

40. Zhu W, Thomas CE, Chen CJ, Van Dam CN, Johnston RE, Davis NL, Sparling PF: Comparison of immune responses to gonococcal PorB delivered as outer membrane vesicles, recombinant protein, or Yersinia equineencephalitis virus replicon particles. Infect Immun 2005, 73:7558-7568.

41. Price GA, Russell MW, Cornillissen CN: Intranasal administration of recombinant Neisseria gonorrhoeae transferrin binding proteins A and B conjugated to the cholera toxin B subunit induces systemic and vaginal antibodies in mice. Infect Immun 2005, 73:3945-3953.

42. Rodríguez-Ortega MJ, Norais N, Bensi G, Liberatori S, Capo S, Mora M, Scarselli M, Doro F, Ferrari G, Garaguso I, Magi T, Neumann A, Covre A, Telford JL, Grandi G: Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol 2004, 24:191-197.

43. Lee LH, Burg E 3rd, Baqar S, Bourgeois AL, Burr DH, Ewing CP, Trust TJ, Guerry P: Evaluation of a truncated recombinant flagellin subunit vaccine against Campylobacter jejuni. Infect Immun 1999, 67:5799-5805.

44. Wyszniska A, Raczk A, Lis M, Juguszyn-Krynicka EK: Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72D2/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine 2004, 22:1379-1389.

45. Rossi G, Ruggiero P, Peppoloni S, Pancotto L, Fortuna D, Lauretti L, Volpini G, Mancianti S, Corazza M, Taccini E, Di Pisa F, Rappuoli R, Del Giudice G: Therapeutic vaccination against Helicobacter pylori in the beagle dog experimental model: safety, immunogenicity, and efficacy. Infect Immun 2004, 72:3252-3259.

46. Capo S, Nardi S, Scarselli M, Tavarnini S, Montigiani S, Mori E, Finco O, Abrignani S, Grandi G, Bensi G: Chlamydia pneumoniae genome sequence analysis and identification of HLA-A2-restricted CD8+ T cell epitopes recognized by infection-primed T cells. Vaccine 2005, 23:5028-5037.

47. Finco O, Bonci A, Agnusdel S, Scarselli M, Petracca R, Norais N, Ferrari G, Garaguso I, Donati M, Sambri V, Cevenini R, Ratti G, Grandi G: Identification of new potential vaccine candidates against Chlamydia pneumoniae by multiple screenings. Vaccine 2005, 23:1178-1188.