ADDITIVE UNIT REPRESENTATIONS IN ENDOMORPHISM RINGS AND AN EXTENSION OF A RESULT OF DICKSON AND FULLER

PEDRO A. GUIL ASENSIO AND ASHISH K. SRIVASTAVA

Dedicated to T. Y. Lam on his 70th Birthday

Abstract. A module is called automorphism-invariant if it is invariant under any automorphism of its injective hull. Dickson and Fuller have shown that if R is a finite-dimensional algebra over a field F with more than two elements then an indecomposable automorphism-invariant right R-module must be quasi-injective. In this note, we extend and simplify the proof of this result by showing that any automorphism-invariant module over an algebra over a field with more than two elements is quasi-injective. Our proof is based on the study of the additive unit structure of endomorphism rings.

1. Introduction.

The study of the additive unit structure of rings has a long tradition. The earliest instance may be found in the investigations of Dieudonné on Galois theory of simple and semisimple rings [4]. In [6], Hochschild studied additive unit representations of elements in simple algebras and proved that each element of a simple algebra over any field is a sum of units. Later, Zelinsky [15] proved that every linear transformation of a vector space V over a division ring D is the sum of two invertible linear transformations except when V is one-dimensional over F_2. Zelinsky also noted in his paper that this result follows from a previous result of Wolfson [14].

The above mentioned result of Zelinsky has been recently extended by Khurana and Srivastava in [8] where they proved that any element in the endomorphism ring of a continuous module M is a sum of two automorphisms if and only if $\text{End}(M)$ has no factor ring isomorphic to the field of two elements F_2. In particular, this means that, in order to check if a module M is invariant under endomorphisms of its injective

\hspace{1cm}

2000 Mathematics Subject Classification. 16D50, 16U60, 16W20.

Key words and phrases. automorphism-invariant modules, injective modules, quasi-injective modules.
hull $E(M)$, it is enough to check it under automorphisms, provided that $\text{End}(E(M))$ has no factor ring isomorphic to \mathbb{F}_2. Recall that a module M is called quasi-injective if every homomorphism from a submodule L of M to M can be extended to an endomorphism of M. Johnson and Wong characterized quasi-injective modules as those that are invariant under any endomorphism of their injective hulls [7].

A module M which is invariant under automorphisms of its injective hull is called an automorphism-invariant module. This class of modules was first studied by Dickson and Fuller in [3] for the particular case of finite-dimensional algebras over fields \mathbb{F} with more than two elements. They proved that if R is a finite-dimensional algebra over a field \mathbb{F} with more than two elements then an indecomposable automorphism-invariant right R-module must be quasi-injective. And it has been recently shown in [11] that this result fails to hold if \mathbb{F} is a field of two elements. Let us recall that a ring R is said to be of right invariant module type if every indecomposable right R-module is quasi-injective. Thus, the result of Dickson and Fuller states that if R is a finite-dimensional algebra over a field \mathbb{F} with more than two elements, then R is of right invariant module type if and only if every indecomposable right R-module is automorphism-invariant. Examples of automorphism-invariant modules which are not quasi-injective, can be found in [5] and [13]. And recently, it has been shown in [5] that a module M is automorphism-invariant if and only if every monomorphism from a submodule of M extends to an endomorphism of M. For more details on automorphism-invariant modules, see [5], [9], [11], and [12].

The purpose of this note is to exploit the above mentioned result of Khurana and Srivastava in [8] in order to extend, as well as to give a much easier proof, of Dickson and Fuller’s result by showing that if M is any right R-module such that there are no ring homomorphisms from $\text{End}_R(M)$ into the field of two elements \mathbb{F}_2, then M_R is automorphism-invariant if and only if it is quasi-injective. In particular, we deduce that if R is an algebra over a field \mathbb{F} with more than two elements, then a right R-module M is automorphism-invariant if and only if it is quasi-injective.

Throughout this paper, R will always denote an associative ring with identity element and modules will be right unital. We refer to [1] for any undefined notion arising in the text.
EXTENSION OF A RESULT OF DICKSON AND FULLER

Results.

We begin this section by proving a couple of lemmas that we will need in our main result.

Lemma 1. Let M be a right R-module such that $\text{End}(M)$ has no factor isomorphic to \mathbb{F}_2. Then $\text{End}(E(M))$ has no factor isomorphic to \mathbb{F}_2 either.

Proof. Let M be any right R-module such that $\text{End}(M)$ has no factor isomorphic to \mathbb{F}_2 and let $S = \text{End}(E(M))$. We want to show that S has no factor isomorphic to \mathbb{F}_2. Assume to the contrary that $\psi : S \to \mathbb{F}_2$ is a ring homomorphism. As $\mathbb{F}_2 \cong \text{End}_Z(\mathbb{F}_2)$, the above ring homomorphism yields a right S-module structure to \mathbb{F}_2. Under this right S-module structure, $\psi : S \to \mathbb{F}_2$ becomes a homomorphism of S-modules. Moreover, as \mathbb{F}_2 is simple as \mathbb{Z}-module, so is as right S-module. Therefore, $\ker(\psi)$ contains the Jacobson radical $J(S)$ of S and thus, it factors through a ring homomorphism $\psi' : S/J(S) \to \mathbb{F}_2$.

On the other hand, given any endomorphism $f : M \to M$, it extends by injectivity to a (non-unique) endomorphism $\varphi_f : E(M) \to E(M)$

\[
\begin{array}{ccc}
M & \xrightarrow{f} & M \\
\downarrow & & \downarrow \\
E(M) & \xrightarrow{\varphi_f} & E(M).
\end{array}
\]

Now define $\eta : \text{End}(M) \to \frac{S}{J(S)}$ by $\eta(f) = \varphi_f + J(S)$. It may be easily checked that η is a ring homomorphism. Clearly, then $\eta \circ \psi' : \text{End}(M) \to \mathbb{F}_2$ is a ring homomorphism. This shows that $\text{End}(M)$ has a factor isomorphic to \mathbb{F}_2, a contradiction to our hypothesis. Hence, $\text{End}(E(M))$ has no factor isomorphic to \mathbb{F}_2. \qed

Lemma 2. ([8]) Let M be a continuous right module over any ring S. Then each element of the endomorphism ring $R = \text{End}(M_S)$ is the sum of two units if and only if R has no factor isomorphic to \mathbb{F}_2.

We can now prove our main result.

Theorem 3. Let M be any right R-module such that $\text{End}(M)$ has no factor isomorphic to \mathbb{F}_2, then M is quasi-injective if and only if M is automorphism-invariant.

Proof. Let M be an automorphism-invariant right R-module such that $\text{End}(M)$ has no factor isomorphic to \mathbb{F}_2. Then by Lemma 1, $\text{End}(E(M))$
has no factor isomorphic to \(\mathbb{F}_2 \). Now by Lemma 2, each element of \(\text{End}(E(M)) \) is a sum of two units. Therefore, for every endomorphism \(\lambda \in \text{End}(E(M)) \), we have \(\lambda = u_1 + u_2 \) where \(u_1, u_2 \) are automorphisms in \(\text{End}(E(M)) \). As \(M \) is an automorphism-invariant module, it is invariant under both \(u_1 \) and \(u_2 \), and we get that \(M \) is invariant under \(\lambda \). This shows that \(M \) is quasi-injective. The converse is obvious. \(\square \)

Lemma 4. Let \(R \) be any ring and \(S \), a subring of its center \(Z(R) \). If \(\mathbb{F}_2 \) does not admit a structure of right \(S \)-module, then for any right \(R \)-module \(M \), the endomorphism ring \(\text{End}(M) \) has no factor isomorphic to \(\mathbb{F}_2 \).

Proof. Assume to the contrary that there is a ring homomorphism \(\psi : \text{End}_R(M) \to \mathbb{F}_2 \). Now, define a map \(\varphi : S \to \text{End}_R(M) \) by the rule \(\varphi(r) = \varphi_r \), for each \(r \in S \), where \(\varphi_r : M \to M \) is given as \(\varphi_r(m) = mr \). Clearly \(\varphi \) is a ring homomorphism since \(S \subseteq Z(R) \) and so, the composition \(\varphi \circ f \) gives a nonzero ring homomorphism from \(S \) to \(\mathbb{F}_2 \), yielding a contradiction to the assumption that \(\mathbb{F}_2 \) does not admit a structure of right \(S \)-module. \(\square \)

We can now extend the above mentioned result of Dickson and Fuller.

Theorem 5. Let \(A \) be an algebra over a field \(\mathbb{F} \) with more than two elements. Then any right \(A \)-module \(M \) is automorphism-invariant if and only if \(M \) is quasi-injective.

Proof. Let \(M \) be an automorphism-invariant right \(A \)-module. Since \(A \) is an algebra over a field \(\mathbb{F} \) with more than two elements, by Lemma 4 it follows that \(\mathbb{F}_2 \) does not admit a structure of right \(Z(A) \)-module and therefore \(\text{End}(M) \) has no factor isomorphic to \(\mathbb{F}_2 \). Now, by Theorem 3 \(M \) must be quasi-injective. The converse is obvious. \(\square \)

As a consequence we have the following

Corollary 6. Let \(R \) be any algebra over a field \(\mathbb{F} \) with more than two elements. Then \(R \) is of right invariant module type if and only if every indecomposable right \(R \)-module is automorphism-invariant.

Corollary 7. If \(A \) is an algebra over a field \(\mathbb{F} \) with more than two elements such that \(A \) is automorphism-invariant as a right \(A \)-module, then \(A \) is right self-injective.

It is well-known that a group ring \(R[G] \) is right self-injective if and only if \(R \) is right self-injective and \(G \) is finite (see [2], [10]). Thus, in particular, we have the following

Corollary 8. Let \(K[G] \) be automorphism-invariant, where \(K \) is a field with more than two elements. Then \(G \) must be finite.
References

[1] F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York, 1992.

[2] I. G. Connell, *On the Group Ring*, Can. J. Math. 15 (1963), 650-685.

[3] S. E. Dickson, K. R. Fuller, *Algebras for which every indecomposable right module is invariant in its injective envelope*, Pacific J. Math., vol. 31, no. 3 (1969), 655-658.

[4] J. Dieudonné, *La théorie de Galois des anneaux simples et semi-simples*, Comment. Math. Helv., 21 (1948), 154-184.

[5] N. Er, S. Singh, A. K. Srivastava, *Rings and modules which are stable under automorphisms of their injective hulls*, J. Algebra, 379 (2013), 223-229.

[6] G. Hochschild, *Automorphisms of simple algebras*, Trans. Amer. Math. Soc. 69 (1950), 292-301.

[7] R. E. Johnson, E. T. Wong, *Quasi-injective modules and irreducible rings*, J. London Math. Soc. 36 (1961), 260-268.

[8] D. Khurana and A. K. Srivastava, *Right self-injective rings in which each element is sum of two units*, J. Alg. Appl., vol. 6, no. 2 (2007), 281-286.

[9] T. K. Lee, Y. Zhou, *Modules which are invariant under automorphisms of their injective hulls*, J. Alg. Appl., to appear.

[10] G. Renault, *Sur les anneaux de groupes*, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), 84-87.

[11] S. Singh, A. K. Srivastava, *Dual automorphism-invariant modules*, J. Algebra, 371 (2012), 262-275.

[12] S. Singh and A. K. Srivastava, *Rings of invariant module type and automorphism-invariant modules* Contemp. Math., Amer. Math. Soc., to appear (available on http://arxiv.org/pdf/1207.5370.pdf)

[13] M. L. Teply, *Pseudo-injective modules which are not quasi-injective*, Proc. Amer. Math. Soc., vol. 49, no. 2 (1975), 305-310.

[14] K. G. Wolfson, *An ideal theoretic characterization of the ring of all linear transformations*, Amer. J. Math. 75 (1953), 358-386.

[15] D. Zelinsky, *Every Linear Transformation is Sum of Nonsingular Ones*, Proc. Amer. Math. Soc. 5 (1954), 627-630.

Departamento de Matematicas, Universidad de Murcia, Murcia, 30100, Spain
E-mail address: paguil@um.es

Department of Mathematics and Computer Science, St. Louis University, St. Louis, MO-63103, USA
E-mail address: asrivas3@slu.edu