WEAK UNBOUNDED NORM TOPOLOGY AND DOUNFORD-PETTIS OPERATORS

MINA MATIN, KAZEM HAGHNEJAD AZAR, AND RAZI ALAVIZADEH

Abstract. In this paper, we study un-dual (in symbol, E^o) of Banach lattice E and compare it with topological dual E^*. If E^* has order continuous norm, then $E^* = E^o$. We introduce and study weakly unbounded norm topology (wun-topology) on Banach lattices and compare it with weak topology and uaw-topology. In the final, we introduce and study wun-Dunford-Pettis operators from a Banach lattice E into Banach space X and we investigate some of its properties and its relationships with others known operators.

1. Introduction

In [6], authors shows that uo-convergence need not be given by a topology, but un-convergence is topological. We will refer to this topology as un-topology. The smallest topology τ that each un-continuous functional $f : E \to \mathbb{R}$ is continuous with respect to that topology is called weakly unbounded norm topology (for short, wun-topology), and we denote it by τ_{wun}. First we will ours motivate to write this article.

(1) We have defined un-continuous operators between two Banach lattices E and F in [11], and so we introduced the un-dual space for a Banach lattice E and we study some of its properties.
(2) Such as the definition of weak topology for a normed space, we define wun-topology for a Banach lattice and compare it with uaw-topology which is introduced in [17]. We show that in general un-topology and wun-topology are different and by some conditions both topologies coincide.
(3) By studying of uaw-Dunford-Pettis operators in [15], it is interested to define a new generation of operators as wun-Dunford-Pettis operators. We study some of its properties and compare with other known classifications of operators.

2010 Mathematics Subject Classification. Primary 46B42; Secondary 46A40, 46C05.

Key words and phrases. un-dual, wun-topology, wun-Dunford-Pettis.

*Corresponding author.
Here we bring some definitions of need.
Let E be a vector lattice and $x \in E$. A net $(x_\alpha)_{\alpha \in A} \subseteq E$ is said to be order convergent to x if there is a net $(z_\beta)_{\beta \in B}$ in E such that $z_\beta \downarrow 0$ and for every $\beta \in B$, there exists $\alpha_0 \in A$ such that $|x_\alpha - x| \leq z_\beta$ whenever $\alpha \geq \alpha_0$. We denote this convergence by $x_\alpha \stackrel{o}{\to} x$ and write that (x_α) is o-convergent to x. In vector lattice E we write $x_\alpha \stackrel{uo}{\to} x$ and say that (x_α) is uo-convergent to x if $|x_\alpha - x| \wedge u \stackrel{\to}{\to} 0$ for every $u \in E^+$. In Banach lattice E we write $x_\alpha \stackrel{un}{\to} x$ and say that (x_α) is un-convergent to x if $|x_\alpha - x| \wedge \|\cdot\| \stackrel{\to}{\to} 0$ for every $u \in E^+$.

It was observed in [6] that un-convergence is topological. Let $x_0 \in E$ be arbitrary. For every $\epsilon > 0$ and non-zero $u \in X^+$, put $V_{\epsilon,u} = \{x \in X : ||x - x_0| \wedge u|| < \epsilon\}$.

The collection of all sets of this form is a base of x_0 neighbourhoods for a topology, and the convergence in this topology agrees with un-convergence. We will refer to this topology as un-topology.

Recall of [17], a net (x_α) in Banach lattice E is unbounded absolutely weakly convergent (uaw-convergent) to x if $(|x_\alpha - x| \wedge u)$ converges to zero weakly for every $u \in E^+$; we write $x_\alpha \stackrel{uaw}{\to} x$. It was observed in [17] that uaw-convergence is topological. By Theorem 4 of [17], if Banach lattice E has order continuous norm, then $(x_\alpha) \subseteq E$ is un-null iff it is uaw-null in E.

Let E be a vector lattice and $e \in E^+$. e is weak unit, if band B_e generated by e is equal with E; equivalently, $x \wedge ne \uparrow x$ for every $x \in E^+$, and e is strong unite when ideal I_a generated by e is equal E; equivalently, for every $x \geq 0$ there exists $n \in \mathbb{N}$ such that $x \leq ne$. A positive non-zero vector a in a vector lattice E is an atom if the ideal I_a generated by a coincides with span a. We say that E is non-atomic if it has no atoms. We say that E is atomic if E is the band generated by all the atoms.

Let E be a vector lattice, E^\sim be the space of all order continuous functionals on E and $(E^\sim)^\sim$ be the order bidual of E. Recall that a subset A of E is b-order bounded in E if A is order bounded in $(E^\sim)^\sim$. If each b-order bounded subset A of vector lattice E is order bounded, we say that E has property (b). Let X, Y be two Banach spaces, then the continuous operator $T : X \to Y$ is said to be:

- **Dounford-Pettis** whenever $(x_n) \subseteq X$ and $x_n \stackrel{w}{\to} 0$, then $T(x_n) \stackrel{\|\|}{\to} 0$.
• **weakly compact** whenever T carries the closed unit ball of X to a relatively weakly compact subset of Y.

Let E be a Banach lattice and X Banach space, then the continuous operator $T : E \to X$ is said to be:

- **M-weakly compact** if $\lim \|Tx_n\| = 0$ holds for every norm bounded disjoint sequence (x_n) of E.
- **order weakly compact** whenever $T[0,x]$ is relatively weakly compact subset of X for each $x \in E^+$.
- **b-weakly compact** whenever for each b-order bounded subset A of E, $T(A)$ is a relatively weakly compact. The class of b-weakly compact operators was firstly introduced by Alpay, Altin and Tonyali [2], the class of all b-weakly compact operators between E and X will be denoted by $W_b(E,X)$. One of the interesting properties of the class of b-weakly compact operators is that it satisfies the domination property. Some more investigations on $W_b(E,X)$ were done by [3, 4, 14].
- **uaw-Dunford-Pettis** if for every norm bounded sequence (x_n) in E, $x_n \xrightarrow{un} 0$ in E implies $\|Tx_n\| \to 0$ in X. These operators are introduced and examined in [15], the class of all uaw-Dunford-Pettis operators on E will be denoted by $B_{UDP}(E)$. This is continued in [10]. Moreover if F is a Banach lattice, a continuous operator $T : E \to F$ is said to be
- **un-continuous** if for every norm bounded and un-null net $(x_\alpha) \subseteq E$, $T(x_\alpha) \xrightarrow{un} 0$ in F. These operators are introduced and examined in [11].

Recall that a Banach lattice E is said to have dual positive Schur property if every w^*-null positive sequence in E^* is norm null.

Throughout this article E and X will be assumed to be Banach lattice and Banach space, respectively, and (e_n) is the sequence of real numbers whose n^{th} term is one and the rest are zero, i.e. $e_n := (0, 0, ..., 0, 1, 0, 0, ...)$ unless specified otherwise. For a normed space X, $A \subseteq X$ and $B \subseteq X^*$, $\sigma(A,B)$ is the smallest topology for A such that each $f \in B$ is continuous on A with respect to this topology.

2. Weakly unbounded norm topology

Let E be a Banach lattice. A functional $f : E \to \mathbb{R}$ is *un-continuous*, if $x_\alpha \xrightarrow{un} 0$ implies $f(x_\alpha) \to 0$ for each norm bounded net $(x_\alpha) \subseteq E$. We denote the vector space of all *un-continuous* functionals on E by
Let E^\diamond be the second un-dual of Banach lattice E. It is clear that E^\diamond is a subspace of E^*. The functional $f : \ell^1 \to \mathbb{R}$ defined by $f(x_1, x_2, x_3, ...) = \sum_{i=1}^{\infty} x_i$ is continuous but is not un-continuous. Therefore $E^\diamond \neq E^*$. Let $f \in E^\diamond$, we define $\|f\|_{E^\diamond} = \sup\{|f(x)| : x \in E, \|x\|_E \leq 1\}$. It is clear that E^\diamond is a normed space.

Theorem 2.1. Let E be a Banach lattice. Then we have the following assertions.

1. If E^* has order continuous norm, then $E^* = E^\diamond$.
2. E^\diamond is an ideal in E^*.
3. If E is AM-space, then E^\diamond is AL-space.

Proof.

1. Proof follows by Theorem 6.4 of [6].
2. Proof has similar argument of Proposition 5.3 of [9].
3. Let E be an AM-space. Since E^* is an AL-space, so E^* has order continuous norm and therefore by part (1), we have $E^\diamond = E^*$ and it is an AL-space.

Example 2.2. Let c be the sublattice of ℓ^∞ consisting of all convergent sequences. Since $c^* = \ell^1$ has order continuous norm, therefore by preceding theorem, we have $c^\diamond = c^* = \ell^1$.

Theorem 2.1 shows that E^\diamond is a normed sublattice of a Banach lattice of E. Thus we define the second un-dual of Banach lattice E which show by $E^{\diamond\diamond}$. $E^{\diamond\diamond}$ in general is not equal with topological second dual of E, E^{**}. Set $E = c$. It is obvious that $c^{\diamond\diamond} = c^\diamond = \ell^\infty \neq \ell^1 = c^{**}$ On the other hand E^\diamond is neither norm closed nor order closed, since $E = \ell_2$, then $\ell_2^\diamond = c_{00}$.

Proposition 2.3. Let E be a Banach lattice and G be a sublattice of E such that one of the following conditions hold.

1. G is majorizing in E;
2. G is norm dense in E;
3. G is a projection band in E.

If $E^\diamond = E^*$, then $G^\diamond = G^*$.

Proof. We know that $G^\diamond \subseteq G^*$. Now assume that $f \in G^*$ and $(x_\alpha) \subseteq G$ is norm bounded and un-null in G. By Theorem 3.6 of [16], there exists $g \in E^*$ such that $f = g$ on G. Note that by assumption $g \in E^\diamond$. By Theorem 4.3 [9], $x_\alpha \xrightarrow{un} 0$ in E. We obvious that (x_α) is norm bounded in E. Therefore $f(x_\alpha) = g(x_\alpha) \xrightarrow{\|\|} 0$ in \mathbb{R}. It follows that $f \in G^\diamond$. ☐
Naturally, we can define weakly unbounded norm topology \((wun\text{-topology})\) as follows.

Definition 2.4. The smallest topology \(\tau\) that each \(f \in E^\circ\) is continuous with respect to that topology is called weakly unbounded norm topology (for short, \(wun\text{-topology}\)), and we denote by \(\tau_{wun}\). In the other words,

\[
\tau_{wun} := \bigcap \{\tau : \text{each } f \in E^\diamond \text{ is } \tau\text{-continuous}\}.
\]

For every \(\epsilon > 0\) and each \(f \in E^\diamond\), put

\[
V_{\epsilon,f} = \{x \in X : |f(x)| < \epsilon\}.
\]

It easily follows from Definition 2.4.2 of [12] that the collection of all \(V_{\epsilon,f}\) is a subbasis for \(wun\)-topology at zero.

Let \(x, y \in V_{\epsilon,f}\) and \(0 \leq \lambda \leq 1\). We have

\[
|f(\lambda x + (1-\lambda)y)| = \lambda |f(x)| + (1-\lambda) |f(y)| \leq \lambda \epsilon + (1-\lambda) \epsilon = \epsilon.
\]

Therefore \(\lambda x + (1-\lambda)y \in V_{\epsilon,f}\).

Hence \(\tau_{wun}\) is a locally convex in Banach lattice \(E\).

Let \(E\) be a Banach lattice. It is obvious that for each norm bounded net \((x_{\alpha}) \subseteq E\), \(x_{\alpha} \overset{wun}{\longrightarrow} 0\) if and only if for each \(f \in E^\circ\), \(f(x_{\alpha}) \overset{0}{\longrightarrow} 0\) in \(\mathbb{R}\).

It is obvious that every \(un\)-null net is \(wun\)-null in a Banach lattice, but in general the converse not holds. The following example shows that in general both topologies \(un\) and \(wun\)-topology are not the same. On the other hand by Proposition 3.5 of [9], every norm bounded and disjoint net in order continuous Banach lattice \(E\) is \(wun\)-null. Thus if we set \(E = \ell^1\), then \((e_n)\) is \(wun\)-null in \(\ell^1\).

Example 2.5. Consider the sequence \((e_n)\) in the sublattice \(c\) of \(\ell^\infty\). By Example 2.2, \(c^\circ = \ell^1\). For each \(f = (x_1, x_2, \ldots, x_n, \ldots) \in c^\circ\), \(f(e_n) = x_n \overset{\|\|}{\longrightarrow} 0\), therefore \(e_n \overset{wun}{\longrightarrow} 0\) in \(c\), but \((e_n)\) is not \(un\)-null in \(c\). Consider \(u = (1, 1, 1, \ldots) \in c^+\). We have \(\|e_n \wedge u\| = \|e_n\| = 1 \nless 0\).

The following facts are in \(wun\)-topology that will be used throughout the paper.

Lemma 2.6. Let \(E\) be a Banach lattice and \((x_{\alpha}) \subseteq E\), then

1. \(x_{\alpha} \overset{wun}{\longrightarrow} x\) iff \((x_{\alpha} - x) \overset{wun}{\longrightarrow} 0\);
2. \(wun\)-limits are unique;
3. If \(x_{\alpha} \overset{wun}{\longrightarrow} x\) and \(y_{\beta} \overset{wun}{\longrightarrow} y\), then \(ax_{\alpha} + by_{\beta} \overset{wun}{\longrightarrow} ax + by\), for any scalars \(a, b\);
4. If \(x_{\alpha} \overset{wun}{\longrightarrow} x\), then \(y_{\beta} \overset{wun}{\longrightarrow} x\), for every subnet \((y_{\beta})\) of \((x_{\alpha})\).

Proof.

(1) The proof is clear.
On the other hand, (E and (x bounded and disjoint in ℓ-uaw-topology (in short uaw-topology. Note that wun-is not weak convergent to zero in ℓ-topology in Banach lattice (n∞, x ∈ E. When E has strong unit then by Theorem 2.3 of [9], E∞ = E* and therefore, τw = τwun in E. □

Remark 2.7. Since wun-limits are unique, therefore for each x ∈ E, {x} is wun-closed. By condition 2 of Lemma 2.6, τwun is a vector topology on E, and (E, τwun) is a topological vector space. By Theorem 1.12 of [16], τwun is a Hausdorff topology.

Note that wun-topology is different with weak topology (in short w-topology). Consider the sequence (e_n) in ℓ^1. Since (e_n) is norm bounded and disjoint in ℓ^1, then by Example 2.5(1), e_n wun→ 0 in ℓ^1. On the other hand, (e_n) is not w-null in ℓ^1. Therefore τw ≠ τwun. Since E∞ is a subspace of E*, w-topology is weaker then wun-topology. Thus every w-null net is wun-null for each Banach lattice E.

Proposition 2.8. Let E be a Banach lattice. If E has strong unit, then w-topology and wun-topology coincide.

Proof. Since E∞ ⊆ E*, follows that wun-topology is weaker than w-topology in Banach lattice E. When E has strong unit then by Theorem 2.3 of [9], E∞ = E* and therefore, τw = τwun in E. □

O. Zabti in [17] has been introduced unbounded absolutely weakly topology (in shorn uaw-topology) and investigated some of its properties. Note that wun-topology is different with uaw-topology. By Lemma 2 of [17], the sequence (e_n) ⊆ ℓ^∞ is uaw-null in ℓ^∞, but (e_n) is not weak convergent to zero in ℓ^∞, and so by Proposition 2.8, it is not wun-null in ℓ^∞.

Remark 2.9. Note that if Banach lattice E has order continuous norm and (x_α) ⊆ E is norm bounded and uaw-null, then by Proposition 5 of [17], x_α wun→ 0 in E. If E is an AM-space with strong unit and (x_n) ⊆ E with x_n wun→ 0, then x_n w→ 0 and by Exercise 5 of page 355 of [1], |x_n| w→ 0. It follows that x_n uaw→ 0 in E.
Proposition 2.10. If a Banach lattice E is atomic with order continuous norm, then $(E, \tau_{un})^* = E^\circ$.

Proof. It follows from Theorem 5.2 of [9] that un-topology is locally convex. Therefore, E° separates the points of E. Thus, by Theorem 3.10 of [16] we have $(E, \tau_{un})^* = E^\circ$. \qed

Let G be a sublattice of E and $(x_\alpha) \subseteq G$. By Theorem 3.6 of [16], $x_\alpha \wto 0$ in G iff $x_\alpha \to 0$ in E. The situation is different for wun-convergence.

Example 2.11. (1) Consider the sequence (e_n) of ℓ^1. It is wun-null in ℓ^1 while is not wun-null in ℓ^∞.

(2) Note that ℓ^1 is an order continuous Banach lattice with a weak unit e. It is known that ℓ^1 can be represented as an order and norm dense ideal in $L_1(\mu)$ for some finite measures μ. Consider the sequence $(x_n) = (\frac{1}{2}(e_1 - e_n)) \subseteq \ell^1$. Since $L_1(\mu)$ has order continuous norm and is non-atomic, therefore by Corollary 5.4 of [9], $x_n \un 0$ in $L_1(\mu)$. On the other hand (x_n) is not wun-null in ℓ^1. Since (x_n) is un-convergent to $\frac{1}{2}e_1$ in ℓ^1 and therefore is wun-convergent to $\frac{1}{2}e_1$ in ℓ^1.

Let G be a sublattice of a Banach lattice E. In the following, we bring the conditions that if a net $(x_\alpha) \subseteq G$ is wun-null in G, then is wun-null in E and vice versa.

Theorem 2.12. Let G be a sublattice of Banach lattice E and $(x_\alpha) \subseteq G$.

(1) If $E^* = E^\circ$ and $x_\alpha \un 0$ in E, then $x_\alpha \un 0$ in G.

(2) If $G^* = G^\circ$ and $x_\alpha \un 0$ in G, then $x_\alpha \un 0$ in E.

Proof. (1) Let $(x_\alpha) \subseteq G$ and $x_\alpha \un 0$ in E. By $E^* = E^\circ$, $x_\alpha \to 0$ in E. By Theorem 3.6 of [16], $x_\alpha \to 0$ in G and therefore $x_\alpha \un 0$ in G.

(2) If $x_\alpha \un 0$ in G, then $x_\alpha \to 0$ in G and therefore $x_\alpha \to 0$ in E. So $x_\alpha \un 0$ in E. \qed

Corollary 2.13. Let G be a sublattice of Banach lattice E and $(x_\alpha) \subseteq G$. If $E^* = E^\circ$ and G is a majorizing or norm dense or band projection in E, then $x_\alpha \un 0$ in E iff $x_\alpha \un 0$ in G.
Let $T : E \to F$ be a continuous operator between two Banach lattices. Then T has a un-adjoint if there exists the unique operator $T^\circ : F^\circ \to E^\circ$ satisfying
\[< T^\circ y^\circ, x > = < y^\circ, Tx > = y^\circ(Tx), \quad \forall y^\circ \in F^\circ, \forall x \in E. \]
It easily follows from $F^\circ \subseteq F^*$ that $T^\circ = T^*|_{F^\circ}$.

Theorem 2.14. Let $T : E \to F$ be an operator between two Banach lattices. If T is un-continuous, then T has un-adjoint.

Proof. Assume that T is un-continuous. It is enough to prove that $T^\circ(F^\circ) \subseteq E^\circ$. Let $y^\circ \in F^\circ$ and (x_α) be norm bounded and un-null net in E. Since T is un-continuous, we have (Tx_α) is norm bounded and un-null in F. As y° is un-continuous, $T^\circ y^\circ(x_\alpha) = y^\circ(Tx_\alpha) \overset{\text{un}}{\to} 0$. Thus, $T^\circ y^\circ \in E^\circ$.

Example 2.15. The operator $T : C[0,1] \to c_0$, given by
\[T(f) = (\int_0^1 f(x) \sin x dx, \int_0^1 f(x) \sin 2xdx, ...) \]
is a un-continuous. By Theorem 2.14, T has un-adjoint. We have $T^\circ : c_0^\circ \to (C[0,1])^\circ$, given by
\[(T^\circ(x_1, x_2, ...), f) = \langle (x_1, x_2, ...), Tf \rangle = \sum_{n=1}^{\infty} x_n \int_0^1 f(x) \sin nx \, dx, \]
for all $(x_1, x_2, ...) \in c_0^\circ$ and $f \in C[0,1]$.

Now, assume that Q_E be a natural mapping from E into E^{**} where $\langle x', Q_E(x) \rangle = \langle x, x' \rangle = x'(x)$ for all $x \in E$ and $x' \in E^*$. Since E^{**} is a subspace of E^{**}, we have the following lemma.

Lemma 2.16. Let E be a Banach lattice. Then $Q_E(E) \subseteq E^{**}$.

Proof. Let $(x_\alpha') \subseteq E^\circ$ be a norm bounded and un-null net in E°. By Theorem 2.1 we know that E° is an ideal in E^*, and so $x_\alpha' \wedge y' \in E^\circ$ for all $y' \in E^*$. It follows that $x_\alpha' \wedge (x_\alpha' \wedge y') \overset{\|\|}{\to} 0$ in E°. Thus for each $y' \in E^*$, we have $x_\alpha' \wedge y' \overset{\|\|}{\to} 0$ in E°.

Let $x \in E$. If $x = 0$, $Q_E(0) \in E^{\infty}$, and proof holds. Now assume that $x \neq 0$. Then there exists $y' \in E^*$ such that $y'(x) = 1$. Then we have $(y')^+(x) \geq 1$. Since $x_\alpha'(x) \wedge (y')^+(x) \overset{\|\|}{\to} 0$ in E°, follows that $x_\alpha'(x) \overset{\|\|}{\to} 0$ in E°, and so $Q_E(x)(x_\alpha') \to 0$. It follows that $Q_E(x) \in E^{\infty}$ and proof follows. \hfill \Box
Now the Lemma 2.16 make motivation to us for definition a new
topology for E°, that is, the smallest topology on E° such that each
$Q_E(x)$ is continuous with respect to it where $x \in E$. This topology is
called weak* unbounded topology (for short $w^*\text{-}\text{un}$-topology). In this
way, $x_\alpha \xrightarrow{w^*\text{-}\text{un}} 0$ if and only if $x'(x) \rightarrow 0$ for all $x \in E$. It is clear that the
$w^*\text{-}\text{un}$-topology in E° is a subtopology of w^*-topology in E^*, and $w^*\text{-}\text{un}$-
topology is a subset of $w\text{-}\text{un}$-topology in E°, that is, $\sigma(E^\circ, Q_E(E)) \subseteq
\sigma(E^\circ, E^{**}) \subseteq \sigma(E^\circ, (E^\circ)^*) \subseteq \sigma(E^\circ, E^{**})$.

Theorem 2.17. Let E be a Banach lattice. Then $B_{E^\circ} = \{x' \in
E^\circ : \|x\| \leq 1\}$ is $w^*\text{-}\text{un}$-compact.

Proof. It is obviously that $A \subseteq E^\circ$ is $w^*\text{-}\text{un}$-closed in E° if and only if
there exists $B \subseteq E^\circ$ which is w^*-closed in E^* and $A = B \cap E^\circ$. Since
$B_{E^\circ} = B_{E^*} \cap E^\circ$ and B_{E^*} is w^*-compact, proof follows. \hfill \Box

In the following we have some facts for $w\text{-}\text{un}$-topology and $w^*\text{-}\text{un}$-
topology in E° which theirs proofs has similar arguments such as clas-
sical studying for w^* and w-topologies in E^*.

Corollary 2.18. Suppose that E and F are Banach lattices. Then we
have the following assertions.

1. If $T \in B(E, F)$, then T° is $w^*\text{-}\text{un}$-continuous. Conversely,
 if S is a $w^*\text{-}\text{un}$-continuous linear operator from F° into
 E°, then there is a T in $B(E, F)$ such that $T^\circ = S$.
2. If $T \in B(E, F)$, then $T^\circ Q_E(F) \subseteq Q_F(F)$ and $Q_F^{-1} T^\circ Q_E = T$.
3. A bounded linear operator from a Banach lattice into a Banach
 lattice is $w\text{-}\text{un}$-compact if and only if its adjoint is $w\text{-}\text{un}$-compact.
4. Suppose that $T \in B(E, F)$ and Q_F is the natural map from F
 into $F^{\circ\circ}$. Then T is $w\text{-}\text{un}$-compact if and only if $T^\circ(E^{\circ\circ}) \subseteq
 Q_F(F)$.

Definition 2.19. Let E and F be two Banach lattices. A continuous
operator $T : E \rightarrow F$ is said to be, weak unbounded norm continuous
(or, $w\text{-}\text{un}$-continuous for short), if $x_\alpha \xrightarrow{w\text{-}\text{un}} 0$ in E implies
$Tx_\alpha \xrightarrow{w\text{-}\text{un}} 0$ in F for each norm bounded net $(x_\alpha) \subseteq E$. The collection of all $w\text{-}\text{un}$-
continuous operators from E to F, will be denoted by $L_{w\text{-}\text{un}}(E, F)$.

Example 2.20. (1) Let G be a majorizing or norm dense or band
projection of ℓ^∞. Then each continuous operator from G to ℓ^∞
is $w\text{-}\text{un}$-continuous.

(2) Consider the functional $f : \ell^\infty \rightarrow \mathbb{R}$ defined with
$f(x_1, x_2, ...) = \lim_{n \rightarrow \infty} x_n$.

Since \(f \) is positive, \(f \) is continuous. Now if \((x_n) \subseteq \ell^\infty \) is norm bounded and \(x_n \xrightarrow{un} 0 \) then \(x_n \xrightarrow{w} 0 \) and therefore \(f(x_n) \xrightarrow{w} 0 \).

Hence \(f(x_n) \xrightarrow{un} 0 \) in \(\mathbb{R} \).

Remark 2.21. Note that the operator \(T : \ell^1 \rightarrow \ell^\infty \) defined by

\[
T(x_1, x_2, \ldots) = \left(\sum_{i=1}^{\infty} x_i, \sum_{i=1}^{\infty} x_i, \ldots\right)
\]

is continuous, while is not \(w_{un} \)-continuous.

Theorem 2.22. A functional \(f : E \rightarrow \mathbb{R} \) is \(un \)-continuous if and only if is \(w_{un} \)-continuous.

Proof. Let \(f \) is \(un \)-continuous and \((x_\alpha) \subseteq E \) is norm bounded with \(x_\alpha \xrightarrow{un} 0 \) in \(E \). Therefore for each \(x^* \in E^* \), we have \(x^* (x_\alpha) \xrightarrow{\parallel \cdot \parallel} 0 \) in \(\mathbb{R} \). Since \(f \) is \(un \)-continuous, therefore by Theorem 2.14, \(f \) has \(un \)-adjoint. Hence \(f^* (\mathbb{R}^*) \subseteq E^* \). Therefore for all \(y^* \in E^* \), we have

\[
y^* (f(x_\alpha)) = f^* y^* (x_\alpha) \xrightarrow{\parallel \cdot \parallel} 0 \text{ in } \mathbb{R}.
\]

Hence \(f(x_\alpha) \xrightarrow{un} 0 \) in \(\mathbb{R} \).

Conversely, let \((x_\alpha) \subseteq E \) is norm bounded and \(x_\alpha \xrightarrow{un} 0 \) in \(E \). It is clear that \(x_\alpha \xrightarrow{un} 0 \) in \(E \) and therefore \(f(x_\alpha) \xrightarrow{un} 0 \) in \(\mathbb{R} \). So \(f(x_\alpha) \xrightarrow{\parallel \cdot \parallel} 0 \) in \(\mathbb{R} \). \(\square \)

Corollary 2.23. Let \(E \) and \(F \) be two Banach lattices. Similar to Therem 2.22, if operator \(T : E \rightarrow F \) is \(un \)-continuous, then is \(w_{un} \)-continuous.

Remark 2.24. Note that, if Banach lattice \(E \) is an atomic \(KB \)-space, then by Theorem 7.5 of [9], \(B_E \) is \(un \)-compact. Since \(\tau_{un} \subseteq \tau_{w_{un}} \), therefore \(B_E \) is \(w_{un} \)-compact.

Theorem 2.25. Let \(E \) be an atomic Banach lattice with order continuous norm. If \(A \subseteq E \) is a convex set, then \(w_{un} \)-closure of \(A \) is the same as its \(un \)-closure, that is; \(\overline{A}_{w_{un}} = \overline{A}_{un} \).

Proof. Since \(\tau_{w_{un}} \subseteq \tau_{un} \), \(\overline{A}_{un} \subseteq \overline{A}_{w_{un}} \). On the other hand, by Theorem 5.2 of [9], \(un \)-topology is locally convex, hence if \(x \notin \overline{A}_{un} \) then by Theorem 3.13 [5] there exists some \(f \in E^* \), \(\alpha \in \mathbb{R} \) and an \(\epsilon > 0 \) such that

\[
f(a) \leq \alpha < \alpha + \epsilon < f(x),
\]

for all \(a \in \overline{A}_{un} \). Therefore, \(\overline{A}_{un} \subseteq B = \{ y : f(y) \leq \alpha \} \). By Proposition 2.10 \(f \) is \(w_{un} \)-continuous, thus \(B \) is \(w_{un} \)-closed. Hence \(\overline{A}_{w_{un}} \subseteq B \). Therefore, \(x \notin \overline{A}_{w_{un}} \). Consequently, \(\overline{A}_{un} = \overline{A}_{w_{un}} \). \(\square \)
3. wun-Dunford-Pettis operators

A continuous operator T from Banach lattice E into Banach space X is a wun-Dunford-Pettis whenever $x_n \overset{wun}{\rightarrow} 0$ in E implies $Tx_n \overset{\|\|}{\rightarrow} 0$ in X for each norm bounded sequence $(x_n) \subseteq E$.

Example 3.1. Operator $T: C[0, 1] \rightarrow \ell^1$, given by

$$T(f) = \left(\frac{\int_0^1 f(x) \sin x \, dx}{1^2}, \frac{\int_0^1 f(x) \sin 2x \, dx}{2^2}, \ldots \right)$$

is a wun-Dunford-Pettis operator. Let $(f_n) \subseteq C[0, 1]$ is norm bounded and $f_n \overset{wun}{\rightarrow} 0$. Since $(C[0,1])^\ast = (C[0,1])^\circ$, so $f_n \overset{\ast}{\rightarrow} 0$ in $C[0,1]$. By continuity of T, we have $T(f_n) \overset{\ast}{\rightarrow} 0$ in ℓ^1 and by Schur property of ℓ^1, $T(f_n) \overset{\|\|}{\rightarrow} 0$ in ℓ^1.

Remark 3.2. Let E and F be two Banach lattices and X be a Banach space. If $T: E \rightarrow F$ and $S: F \rightarrow X$ are wun-Dunford-Pettis, then ST is wun-Dunford-Pettis.

It is clear that if T is wun-Dunford-Pettis, then it is Dunford-Pettis and σ-un-continuous. The identity operator $I: \ell^1 \rightarrow \ell^1$ is a σ-un-continuous, but it is not wun-Dunford-Pettis operator.

Here we give an example to illustrate the difference between Dunford-Pettis and wun-Dunford-Pettis operators.

Example 3.3. The operator $T: \ell^1 \rightarrow \ell^\infty$ defined by

$$T(x_1, x_2, \ldots) = \left(\sum_{i=1}^{\infty} x_i, \sum_{i=1}^{\infty} x_i, \ldots \right)$$

is a Dunford-Pettis operator (ℓ^1 has Schur property and T is a continuous operator). Consider $(e_n) \subseteq \ell^1$. $e_n \overset{wun}{\rightarrow} 0$ in ℓ^1. We have $T(e_n) = (1, 1, 1, \ldots)$, therefore (Te_n) is not convergent to zero in norm topology. Thus T is not wun-Dunford-Pettis operator.

Remark 3.4. It is clear that if $E^\ast = E^\circ$, then operator $T: E \rightarrow X$ is Dunford-Pettis iff it is wun-Dunford-Pettis.

Proposition 3.5. A linear operator from a Banach lattice into a Banach lattice is wun-Dunford-Pettis if and only if it is wun-norm sequentially continuous.

Proof. The forward implication is an easy consequence of the wun-wun continuity of wun-Dunford-Pettis operators along with the fact that a subset of a Banach lattice consisting of the terms and limit of a wun-convergent sequence is wun-compact. The converse follows
directly from the fact that \textit{wun}-compact subsets of a normed space are \textit{wun}-sequentially compact. \hfill \square

Proposition 3.6. If each Dunford-Pettis operator \(T : E \to F \) between two Banach lattices is \textit{wun}-Dunford-Pettis, then the norm of \(E^* \) is order continuous or \(F = \{0\} \).

Proof. The proof has the similar argument of Theorem 3.1 of [10]. \hfill \square

Theorem 3.7. Let \(F \neq \{0\} \) be a reflexive Banach lattice. The zero operator is the only \textit{wun}-Dunford-Pettis positive operator \(T : \ell^1 \to F \).

Proof. Let \(T : \ell^1 \to F \) be a positive operator. Since \(F \) is reflexive, then by Theorem 5.29 of [1], \(T \) is a weakly compact operator. By Theorem 5.85 of [1], \(\ell^1 \) has Dunford-Pettis property. Therefore by Theorem 5.82 of [1], \(T \) is Dunford-Pettis. Since the norm of \((\ell^1)^*\) is not order continuous and \(F \neq \{0\} \), so by Proposition 3.6, \(T \) is not \textit{wun}-Dunford-Pettis. \hfill \square

Remark 3.8. It is known that every compact operator between Banach lattices is Dunford-Pettis. In the case of a \textit{wun}-Dunford-Pettis operator, the situation is different. The Example 3.3 is compact while it is not \textit{wun}-Dunford-Pettis.

Here we give an example that it illustrate \textit{uaw}-Dunford-Pettis operators differ from \textit{wun}-Dunford-Pettis operators.

Example 3.9. For each continuous operator \(T : C[0,1] \to c_0 \), the adjoint operator \(T^* : \ell^1 \to (C[0,1])^* \) is a \textit{uaw}-Dunford-Pettis. Indeed let \((x_n) \subseteq \ell^1 \) be norm bounded and \(x_n \xrightarrow{\text{uaw}} 0 \). By Proposition 5 of [17], \(x_n \xrightarrow{w^*} 0 \) in \(\ell^1 \) and therefore \(T^*(x_n) \xrightarrow{w^*} 0 \) in \((C[0,1])^*\). Since \(C[0,1] \) has dual positive Schur property, so we have \(T^*(x_n) \xrightarrow{\|\cdot\|} 0 \) in \((C[0,1])^*\). Note that for each continuous operator \(T : C[0,1] \to c_0 \), the adjoint operator \(T^* : \ell^1 \to (C[0,1])^* \) is Dunford-Pettis (we know that \(T^* \) is continuous and \(\ell^1 \) has Schur property). Since \((\ell^1)^* = \ell^\infty \) does not has order continuous norm and \((C[0,1])^* \neq 0\), therefore by Proposition 3.6, there exists some \(T : C[0,1] \to c_0 \) such that \(T^* \) is not \textit{wun}-Dunford-Pettis.

Remark 3.10. If \(T : E \to X \) is a \textit{wun}-Dunford-Pettis where \(E \) has order continuous norm, then \(T \) is a \(M \)-weakly compact and therefore by Theorem 1 of [15], it is a \textit{uaw}-Dunford-Pettis.

Theorem 3.11. Let \(T : E \to X \) be an operator from AM-space \(E \) to Banach space \(X \). Then the following assertions are equivalent:

1. \(T \) is \(M \)-weakly compact.
(2) \(T \) is weakly compact.
(3) \(T \) is Dunford-Pettis.
(4) \(T \) is wun-Dunford-Pettis.
(5) \(T \) is uaw-Dunford-Pettis.
(6) \(T \) is \(b \)-weakly compact.
(7) Moreover if \(E \) has property \((b)\), \(T \) is order weakly compact.

Proof.
(1) ⇔ (2) By Theorem 5.62 of [1], the proof is complete.
(2) ⇒ (3) By Theorems 5.85 and 5.82 of [1], \(T \) is a Dunford-Pettis operator.
(3) ⇒ (1) Since \(E \) is an \(AM \)-space, then by Theorem 4.23 of [1], \(E^* \) is an \(AL \)-space and therefore \(E^* \) has order continuous norm. By Theorem 3.7.10 of [13], \(T \) is \(M \)-weakly compact.
(3) ⇔ (4) Since \(E^* = E^\circ \), therefore \(x_n \overset{w}{\rightarrow} 0 \) in \(E \) iff \(x_n \overset{wun}{\rightarrow} 0 \) in \(E \). Hence the proof is clear.
(3) ⇔ (5) Follows from Corollary 3.7 of [10].
(2) ⇒ (6) Since each \(b \)-order bounded set in Banach lattice is norm bounded, hence the proof is clear.
(6) ⇒ (2) Let \(B_E \) be a closed unit ball of \(E \). Since \(E \) has strong unit, so \(B_E \) is an order interval. Therefore \((TB_E) \) is a relatively weakly compact subset of \(X \).
(6) ⇔ (7) By property \((b)\) of \(E \), \(A \subseteq E \) is order bounded if and only if it is \(b \)-order bounded, hence the proof is clear.

Let \(S, T : E \rightarrow F \) be two positive operators satisfying \(0 \leq S \leq T \) with \(T \) is wun-Dunford-Pettis, it is clear that \(S \) is wun-Dunford-Pettis.

We give an example that an operator \(T \) is wun-Dunforde-Pettis while its adjoint is not wun-Dunford-Pettis and vic versa. In the following with under certain conditions, an operator \(T \) is wun-Dunford-Pettis iff \(T^* \) is wun-Dunford-Pettis.

Example 3.12.
(1) Consider the operator \(T : C[0,1] \rightarrow c_0 \), given by

\[
T(f) = \left(\int_0^1 f(x) \sin x \, dx, \int_0^1 f(x) \sin 2x \, dx, \ldots \right).
\]

If \((f_n) \subseteq C[0,1] \) is norm bounded and \(f_n \overset{wun}{\rightarrow} 0 \) then \(f_n \overset{w}{\rightarrow} 0 \). We have \(\|Tf_n\| = \sup_{m \geq 1} \int_0^1 f_n(t) \sin mt \, dt \leq \int_0^1 |f_n(t)| \, dt \rightarrow 0 \). Hence \(T \) is a wun-Dunforde-Pettise. Similar to Example 3 of [15], adjoint of \(T \), \(T^* \) is not wun-Dunford-Pettis.
The functional $f : \ell^1 \to \mathbb{R}$ defined by

$$f(x_1, x_2, ...) = \sum_{i=1}^{n} x_i$$

is not wun-Doufnord-Pettis, but f^* is wun-Dounford-Pettis.

Theorem 3.13. Let E and F be two Banach lattices such that E and F^* have strong unit. Then $T : E \to F$ is wun-Doufnord-Pettis iff T^* is wun-Dounford-Pettis.

Proof.

(1) Let $T : E \to F$ be a wun-Dounford-Pettis. Since E has strong unit, then by Theorem 3.11, T is b-weakly compact operator. because E has strong unit therefore it ia an AM-space. By Theorem 4.23 of [1], E^* is an AL-space. Each AL-space is a KB-space. Therefore E^* is a KB-space. Hence by Theorem 3.1 of [4], T^* is b-weakly compact. Since F^* has strong unit, hence by Theorem 3.11, T^* is wun-Doufnord-Pettis.

(2) The Proof has similar argument of (1) and by Theorem 3.5 of [4], proof follows.

Theorem 3.14. Let F be a Banach lattice. If for each arbitrary Banach lattice E, operator $T : E \to F$ is wun-Doufnord-Pettis, then

1. F is KB-space.
2. T is b-weakly compact.

Proof.

(1) Let c_0 be embeddable in F and $T : c_0 \to F$ be this embedding. Then there exist two positive constants K and M satisfying

$$K\|x_n\| \leq \|T(x_n)\| \leq M\|x_n\| \text{ for all } (x_n) \subseteq c_0.$$

Consider the sequence $(e_n) \subseteq c_0. e_n \xrightarrow{\text{wun}} 0$ and norm bounded in c_0 but $\|T(e_n)\| \geq K\|e_n\| = K > 0$ which contradicts with assumption. Therefore c_0 is not embeddable in F. Hence by Theorem 4.61 of [1], F is a KB-space.

(2) By past part we have F is KB-space. Since c_0 is not embeddable in F, then by Theorem 4.63 of [1], there exist a KB-space H, a lattice homomorphism $Q : E \to H$ and a continuous operator $S : H \to F$ such that $T = SQ$. Let (x_n) be a b-order bounded disjoint sequence in E. It is clear that $(Q(x_n))$ is also b-order bounded and disjoint sequence in H. By Lemma 2.1 of [4], $Q(x_n) \xrightarrow{\text{w}} 0$ in H. Thererore $T(x_n) = SQ(x_n) \xrightarrow{\text{w}} 0$. So T is b-weakly compact.
Remark 3.15. Note that if F is KB-space, then every operator T from a Banach lattice E into F, in general, is not wun-Dounford-Pettis. By Example 3.12 there exists adjoint operator T^* from ℓ^1 into KB-space $(C[0, 1])^*$ such that it is not wun-Dounford-Pettis.

Remark 3.16. Let E and F be two Banach lattices. If an operator $T : E \to F$ is b-weakly compact, in general, T is not wun-Dounford-Pettis necessarily. We know that ℓ^1 is KB-space. Therefore by Theorem 4.61 of [1], c_0 is not embeddable in ℓ^1. By Proposition 2.2 of [4], for any Banach lattice E, each operator from E into ℓ^1 is b-weakly compact. On the other hand, the identity operator $I : \ell^1 \to \ell^1$ is not wun-Dounford-Pettis.

References

[1] Aliprantis, C.D., Burkinshaw, O.: Positive Operators, Springer, Berlin 2006. Zbl 1098.47001, MR2262133.
[2] Alpay, S., Altin, B., Tonyali, C. On property (b) of vector lattices, Positivity, 7 (2003), 135–139.
[3] Alpay, S., Altin, B., Tonyali, C. A note on Riesz spaces with property-b, Czechoslovak Math. J. 56 (2006), 765–772.
[4] Aqzzouz, B., Elbour, A., Hmichane, J.: The duality problem for the class of b-weakly compact operators. Positivity. (4) 13, 683–692 (2009). Zbl 1191.47024, MR2538515.
[5] Conway, J.B: A course in functional analysis, 2nd edition, springer-verlag, New york, 1990.
[6] Deng, Y., O'Brien, M., Troitsky, V.G.: Unbounded norm convergence in Banach lattices, Positivity.
[7] Gao, N.: Unbounded order convergence in dual spaces, J. Math. Anal. Appl. 419, 347–354 (2014). Zbl 1316.46019, MR3217153.
[8] Gao, N., Troitsky, V.G., Xanthos, F.: Uo-convergence and its applications to Cesro means in Banach lattices. Isr. J. Math. 220, 649-689 (2017). Zbl 1395.46017, MR3666441.
[9] Kandic, M., Marabeh, M.A.A., Troitsky, V.G.: Unbounded norm topology in Banach lattices, J. Math. Anal. Appl. 451(2017), 259–279. Zbl 1373.46011, MR3619237.
[10] Li, H., Chen, Z.: Some results on unbounded absolute weak Dunford-Pettis operators, Positivity. 24(1), 501–505 (2020). Zbl 1.
[11] Matin, M., Haghejad Azar, K., Alavizadeh, R.: Unbounded σ-order-norm continuous and un-continuous operators. submitted
[12] Megginson, R.E.: An introduction to Banach space theory,
[13] Meyer-Nieberg, P.: Banach lattices, Springer-verlag, Berlin, (1991). Zbl 0743.46015, MR1128093.
[14] Mousavi Amiri, M., Haghejad Azar, K.: Bulletin of the Iranian Mathematical Society (2019), https://doi.org/10.1007/s41980-019-00340-1. Banach lattices, Springer-verlag, Berlin, (1991). Zbl 0743.46015, MR1128093.
[15] Nazife E., Niyazi, A. G., Zabeti, O.: Unbounded absolutely weak Dunford-Pettis operators, Turk. J. Math. 43, 27312740 (2018). Zbl doi:10.3906/mat-1904-27

[16] Rudin, W. 1973. Functional analysis, Third Ed. McGraw-Hill. Inc. New York.

[17] Zabeti, O. Unbounded absolute weak convergence in Banach lattices, preprint. arXive:1608.02151[math.FA].

Department of Mathematics and Applications, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.

E-mail address: minamatin1368@yahoo.com
E-mail address: haghnejad@uma.ac.ir
E-mail address: ralavizadeh@uma.ac.ir