number of important implications. First, from a clinical perspective, early loss of small airways helps to explain why patients with IPF usually have significant loss of DLCO even when presenting with minor symptoms. This, in turn, reiterates the need for clinicians to consider early therapy given that such loss is likely irreversible. Second, their data provide potential insights into the role played by MUC5B in the pathogenesis of IPF. Third, the observation that loss of small airways is a feature of a range of respiratory diseases, including chronic obstructive pulmonary disease, cystic fibrosis, and IPF, highlights the importance of ensuring good lung health, especially during lung development. Finally, knowing that small airway loss is important in the development of IPF provides an opportunity for new therapeutic strategies.

Although the small airways of the lung can be considered the quiet zone, they should not remain a forgotten zone. Knowledge that loss of these important terminal airways occurs early in the evolution of IPF should serve as a wake-up call for the respiratory community to better understand the determinants of optimal development of small airways and to identify what can be done to prevent their premature loss in chronic respiratory disease.

References

1. Mead J. The lung’s “quiet zone”. *N Engl J Med* 1970;282:1318–1319.
2. Daccord C, Maher TM. Recent advances in understanding idiopathic pulmonary fibrosis. *F1000 Res* 2016;5:F1000.
3. Katzenstein AL. Pathogenesis of “fibrosis” in interstitial pneumonia: an electron microscopic study. *Hum Pathol* 1985;16:1015–1024.
4. Sisson TH, Mendez M, Choi K, Subbotina N, Courrey A, Cunningham A, et al. Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. *Am J Respir Crit Care Med* 2010;181:254–263.
5. Adamson IY, Young L, Bowden DH. Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. *Am J Pathol* 1988;130:377–383.
6. Fingerlin TE, Murphy E, Zhang W, Peljto AL, Brown KK, Steele MP, et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. *Nat Genet* 2013;45:613–620.
7. Schwartz DA. Idiopathic pulmonary fibrosis is a genetic disease involving mucus and the peripheral airways. *Ann Am Thorac Soc* 2018;15:S192–S197.
8. Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. *Sci Adv* 2020;6:eaba1983.
9. Verleden SE, Tanabe N, McDonough JE, Vasilescu DM, Xu F, Wuys WA, et al. Small airways pathology in idiopathic pulmonary fibrosis: a retrospective cohort study. *Lancet Respir Med* 2020;8:573–584.
10. Ikezoe K, Hackett T-L, Peterson S, Prins D, Hague CJ, Murphy D, et al. Small airway reduction and fibrosis is an early pathologic feature of idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* 2021;204:1048–1059.

Author disclosures are available with the text of this article at www.atsjournals.org.

Toby M. Maher, M.D., Ph.D.*
Keck School of Medicine
University of Southern California, Los Angeles
Los Angeles, California

Interstitial Lung Disease Unit
Royal Brompton Hospital
London, United Kingdom

and

National Heart and Lung Institute
Imperial College London
London, United Kingdom

*ORCID ID: 0000-0001-7192-9149 (T.M.M.).

*T.M.M. is Associate Editor of *AJRCCM*. His participation complies with American Thoracic Society requirements for recusal from review and decisions for authored works.

Breathing Hope into Directed Therapy for Pulmonary Infections

Empiric therapy for respiratory infections, including pneumonia and exacerbations of chronic obstructive pulmonary disease (COPD), has remained the norm despite decades of promise that new diagnostic techniques and platforms would deliver clinicians accurate, timely, and affordable information on the pathogen(s). Although microbiological tests have been part of our standard of care for patients at risk of unusual or antibiotic-resistant pathogens, they have had little to no impact on initial therapy. As each successive pneumonia guideline has pointed out (1, 2), there is no evidence that traditional diagnostic offerings from the laboratory have any meaningful impact on patient outcomes or clinician behavior in usual settings. Equally, in the setting of acute exacerbations of COPD, it is well recognized that although viral pathogens are extremely frequent, there is substantial overuse of antibiotics owing to clinical uncertainty over the pathogen(s). Although recently some small gains had been made, such as the use of rapid-diagnostic platforms to screen for methicillin-resistant *Staphylococcus aureus* (3), the sense of promise molecular methods engendered in the 1990s still remained to be realized.

Then, along came coronavirus disease (COVID-19) and changed the world’s perspective on the importance of having the ability to rapidly determine the pathogen(s) in play. In the last 18 months, we have seen a massive uplift in the capability of “ordinary” hospitals to rapidly process respiratory samples, driven by clinical need and...
loosening of the normally tight fiscal controls over new technology. A host of platforms are now in widespread use, and when COVID-19 finally retreats into being just one of the usual pathogens we need to deal with each winter, there is likely to be an explosion of knowledge arising from this vast increase in availability and use of the latest generation of diagnostic tools.

However, if we are to truly drop concepts like “community-acquired pneumonia” or “acute exacerbation of COPD” and move to pathogen-specific therapeutic approaches, a number of hurdles need to be crossed. Although the designs of many of the new platforms are amenable to point-of-care use, in most settings, they remain based in traditional laboratories, adding complexity and time to a time-critical decision process. Breaking down traditionalriefdoms and developing greater trust in their use as true point of care devices will take time. The challenge of altering clinician behavior, particularly in using diagnostic data to reduce the use of broad-spectrum antimicrobials, should not be underestimated, as it has been a struggle to achieve this with conventional microbiological tests (4–7). We will need new trials to tell us what the significance of multiple pathogens being present means: are these sequential or concurrent infections, and does the presence of one or more additional pathogens alter the treatment or prognosis?

Perhaps the biggest barrier, however, remains getting adequate specimens from patients for analysis. Obtaining an adequate sputum specimen is a challenge in somewhere between one-third and one-half of patients with community-acquired pneumonia (7, 8) and even more problematic in nonventilated hospital-acquired pneumonia (9). In acute exacerbations of COPD, obtaining sputum is easier but still not achievable in a significant minority of patients (10). This is a fundamental limitation for molecular techniques. Nasopharyngeal aspirates have their own technical challenges, and, although now well accepted for many viral infections and not harmful, they remain highly questionable for bacterial infections and can be unpleasant. Saliva or oral wash samplings have proven useful in COVID-19 (11) as they have Pneumocystis (12), but, again, their utility in bacterial infection is problematic and unlikely to be high. How, then, do we move forward if our current generation platforms are not going to help us in a sizeable proportion of patients with lower respiratory tract infection?

In this issue of the Journal, Kamal and colleagues (pp. 1075–1085) show one possible way to progress (13). In their study of infected airway epithelial cell cultures, exhaled breath samples from healthy subjects challenged with rhinovirus and patients with COPD, Kamal and colleagues (13) used use highly sensitive gas-chromatography mass spectrometry to detect volatile organic compounds (VOC) as diagnostic signatures of infection. VOC are expelled in the airways in response to infection. Bacteria release VOC as part of their metabolic process, and many have characteristic signatures (14). In both bacterial and viral infections, VOC are released as part of the inflammatory process from airway epithelial cells (15), and whether these have diagnostic signatures was addressed by Kamal and colleagues (13).

Through screening a variety of VOC, they showed that in tissue culture, rhinovirus infection increased the production of decane, but Streptococcus pneumonia and Haemophilus influenza did not, suggesting this maybe a useful marker for differentiating viral from bacterial infection. They next demonstrated that infecting healthy volunteers with rhinovirus induced the production of decane and other long-chain alkanes in proportion to other inflammatory responses and to viral load. Finally, in a cohort of 139 patients with COPD, they assessed VOC in exhaled air while stable and again during exacerbation in the 98 who did so during the period of the study. In viral exacerbations, the long-chain alkane 2,9 methyl undecane was significantly increased and correlated with the severity of exacerbation. In patients with bacterial, mixed viral/bacterial, or no pathogen identified, 2,9 methyl undecane was not elevated, suggesting that it may be a useful marker of pure viral infection and therefore potentially a useful tool for limiting antibiotic use in the setting of lower respiratory tract infections.

Clearly the work by Kamal and colleagues is not yet a point-of-care diagnostic box and has many steps to go before reaching that point. However, the appeal of a diagnostic tool patients simply breath into that can rapidly determine whether an infection is viral or bacterial, and if so, which bacteria, is immensely appealing. Such an “electronic nose” may also have applications well beyond infection, as characteristic VOC signatures have been shown to be present in many systemic disease processes, including a variety of cancers (16).

Thanks to COVID-19, enthusiasm to progress such technology is likely to be high, and, hopefully, unlike molecular diagnostic tools, we will not have to wait three decades to see a fully functional product in our hospitals.

Author disclosures are available with the text of this article at www.atsjournals.org.

Grant Waterer, M.B. B.S., Ph.D.
University of Western Australia
Royal Perth Hospital
Perth, Western Australia, Australia

References

1. Meloty JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, et al. Diagnosis and treatment of adults with community-acquired pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019;200:e45–e67.

2. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al.; Infectious Diseases Society of America; American Thoracic Society. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44:S27–S72.

3. Pickens C, Wunderink RG, Qi C, Mopuru H, Donnelly H, Powell K, et al. A multiplex polymerase chain reaction assay for antibiotic stewardship in suspected pneumonia. Diagn Microbiol Infect Dis 2020;98:115179.

4. Waterer GW, Jennings SG, Wunderink RG. The impact of blood cultures on antibiotic therapy in pneumococcal pneumonia. Chest 1999;116:1278–1281.

5. Kernéis K, Blanc K, Caliez J, Canouë L, Loubinoux I, Gauzit R, et al. Epidemiology and appropriateness of antibiotic prescribing in severe pneumonia after lung resection. Ann Thorac Surg 2019;108:196–202.

6. Piso RJ, Iven-Koller D, Koller MT, Bassetti S. The routine use of urinary pneumococcal antigen test in hospitalised patients with community acquired pneumonia has limited impact for adjustment of antibiotic treatment. Swiss Med Wkly 2012;142:w13679.

7. Egw S, Schlochtermeier M, Göke N, Niederman MS. Applying sputum as a diagnostic tool in pneumonia: limited yield, minimal impact on treatment decisions. Chest 2002;121:1486–1492.

8. Rosin B, Carratalà J, Verdaguer R, Dorca J, Manresa F, Gudiol F. Prospective study of the usefulness of sputum Gram stain in the initial approach to community-acquired pneumonia requiring hospitalization. Clin Infect Dis 2000;31:869–874.
In 1991, the World Health Organization (WHO) introduced the Directly Observed Treatment—Short course strategy for global tuberculosis (TB) control (1, 2) This strategy simplified TB diagnosis and standardized TB treatment so that this could be decentralized to peripheral Heath centers in resource-limited settings. Front line workers, who are usually not physicians, ask one simple question (“Have you ever been treated for TB before?”), perform one simple test (Sputum Acid-Fast Bacilli Smear), and then initiate a standardized TB treatment so that this could be decentralized to peripheral health centers throughout the country by frontline workers following simple algorithms, as recommended by WHO. Hence, the applicability of a more complex treatment algorithm would be limited in Benin and likely in other resource-limited settings without substantial additional training.

How many patients in high-burden settings would be eligible for a shortened 4-month regimen? Based on the findings from the

9. Naidus EL, Lasalvia MT, Marcantonio ER, Herzig SJ. The diagnostic yield of noninvasive microbiologic sputum sampling in a cohort of patients with clinically diagnosed hospital-acquired pneumonia. J Hosp Med 2018;13:34–37.
10. Ko FW, Iq M, Chan PK, Fok JP, Chan MC, Ngai JC, et al. A 1-year prospective study of the infectious etiology in patients hospitalized with acute exacerbations of COPD. Chest 2007;131:44–52.
11. Nagura-Ikeda M, Imai K, Tabata S, Miyoshi K, Murahara N, Mizuno T, et al. Clinical evaluation of self-collected saliva by quantitative reverse transcription-PCR (RT-qPCR), direct RT-qPCR, reverse transcription-loop-mediated isothermal amplification, and a rapid antigen test to diagnose COVID-19. J Clin Microbiol 2020;58:e01438-20.
12. Goteris L, Mancebo Fernández MA, Aguilar-Company J, Falcó V, Ruiz-Camps I, Martín-Gómez MT. Molecular diagnosis of Pneumocystis jiroveci pneumonia by use of oral wash samples in immunocompromised patients: usefulness and importance of the DNA target. J Clin Microbiol 2019;57:e01287-19.
13. Kamal F, Kumar S, Edwards MR, Veselkov K, Belluomo I, Kebadze T, et al. Virus-induced volatile organic compounds are detectable in exhaled breath during pulmonary infection. Am J Respir Crit Care Med 2021;204:1075–1085.
14. Bos LD, Sterk PJ, Schultz MJ. Volatile metabolites of pathogens: a systematic review. PLoS Pathog 2013;9:e1003311.
15. Abd El Qader A, Lieberman D, Shemer Avni Y, Svobodin N, Lazarowitch T, Sagi O, et al. Volatile organic compounds generated by cultures of bacteria and viruses associated with respiratory infections. Biomed Chromatogr 2015;29:1783–1790.
16. Baldini C, Billeci L, Sansone F, Conte R, Domenici C, Tonacci A. Electronic nose as a novel method for diagnosing cancer: a systematic review. Biosensors (Basel) 2020;10:84.

Copyright © 2021 by the American Thoracic Society