Sign reversal of the quantum Hall coefficient in the field-induced spin density wave states of quasi-one-dimensional system with periodic potential

Keita Kishigi1, and Yasumasa Hasegawa2

1 Faculty of Education, Kumamoto University, Kurokami 2-40-1, Kumamoto, 860-8555, Japan
2 Department of Material Science, Graduate School of Material Science, University of Hyogo, Hyogo, 678-1297, Japan

E-mail: kishigi@educ.kumamoto-u.ac.jp

Abstract. The magnetic susceptibility of the quasi-one-dimensional system with the periodic potential such as slow cooled (TMTSF)\textsubscript{2}ClO\textsubscript{4} is studied numerically. The magnitude of the periodic potential is given by V. The imperfect nesting on the Fermi surface originates from higher harmonics (t'_4, t_3, t_4) of the tight-binding model. We have found that q_x of \(Q = (2k_F + q_x, \pi/b + q_y) \) which gives a maximum of $\chi_0(Q)$ has a negative value at $t_4/t_b \geq 0.007$, $t_4/t_b \geq 0.0001$, and $V < 2t'_4 - 2t_4$, where t'_4/t_b is fixed to be 0.1. It means that the negative quantum Hall coefficient is possible in these parameters. Since the sign reversal of the quantum Hall coefficient is observed in (TMTSF)\textsubscript{2}ClO\textsubscript{4}, t_3, t_4 and V should satisfy the above conditions. We also discuss the periodic oscillation of Hall resistance with sign reversal which has been observed by Uji \textit{et al}.

1. Introduction

(TMTSF)\textsubscript{2}X (X=ClO\textsubscript{4} or PF\textsubscript{4}) has a two-piece sheet-like Fermi surface[1]. By neglecting the very small transfer integrals between layers, the energy band becomes

$$\epsilon(k) = \hbar v_F(|k_x| - k_F) - 2t_b \cos(bk_y) - 2t'_4 \cos(2bk_y) - 2t_4 \cos(4bk_y) - 2t_4 \cos(4bk_y), \quad (1)$$

where the dispersion in k_x is linearized, i.e., $v_F = 2t_a a \sin(ak_F)$, t_a and t_b are transfer integrals, and t'_4, t_3 and t_4 are the higher harmonic terms. We take t_a, t_b, t'_4, t_3 and t_4 as positive. The field-induced spin density wave (FISDW) transition \cite{1, 2, 3, 4, 5} has been observed when the magnetic field (B) is applied perpendicular to the conductive plane (a-b plane). It has been known[6, 7, 8, 9, 10, 11] that the FISDW is characterized by an integer N of the SDW wave number $Q_x = 2k_F + NG$, where $k_F = \frac{\pi}{2b}$ is the Fermi wave number and $G = \frac{\hbar \omega}{eB}$. The quantized Hall effect in FISDW states and the sign change of the Hall voltage in some range of the magnetic field are found in (TMTSF)\textsubscript{2}X, X=ClO\textsubscript{4}[2, 12] and PF\textsubscript{6}[13]. Theoretically, it has been shown that the Hall conductivity is quantized as $\sigma_{xy} = 2Ne^2/h$ with the quantum number N of the nesting vector[14, 15] and the sign change of the Hall coefficient is explained[16, 17, 18].

When (TMTSF)\textsubscript{2}ClO\textsubscript{4} is cooled slowly, ClO\textsubscript{4} anion orders at $T_{AO} = 24K$. It makes the periodic potential along b-axis as $\mathcal{H}_V = V \cos(\frac{\pi}{4}y)$, where we take V as positive. In this case,
the state $|k\rangle$ and $|k + Q_A\rangle$ are mixed, where $Q_A = (0, \pi/b)$. The Hamiltonian is written as[19]

$$\hat{H} = \left(\begin{array}{cc} \epsilon(k) & V \\ V & \epsilon(k + Q_A) \end{array} \right).$$

(2)

By the anion ordering, it is known that the B and temperature phase diagram in $(\text{TMTSF})_2\text{PF}_6$[2] is different from that in $(\text{TMTSF})_2\text{ClO}_4\text{[3, 4, 5]}$. Some features of the difference have been explained theoretically[19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. In slow cooled $(\text{TMTSF})_2\text{ClO}_4$, a negative phase ($N = -2$) appears in some region of the magnetic field and $0 < V/t'_b < 2$ by taking $t'_b/t_b = 0.1$, $t_3/t'_b = 0.02$, and $t_4/t'_b = 0.002$.

Recently, from the numerical study[29, 30] in the nesting vector (Q) and the magnetic susceptibility ($\chi_0(Q)$) in the quasi-one-dimensional system with the periodic potential, it is found that $\chi_0(Q)$ has the plateau-like maximum in sweptback region in the momentum space. It has been analytically[30] shown that the sweptback region is surrounded by q_1, q_3 and q_4 (q_2, q_3 and q_1), as seen in Figs. 1, 2 and 3, where $Q = (2k_F, \pi/b) + q_i$ ($i = 1, 2, 3, 4$) and

$$q_1 = \left(\frac{1}{\hbar v_F}(-4t'_b + 4t_4), 0 \right), \quad q_2 = \left(\frac{1}{\hbar v_F}(-4t'_b + 4t_4 + 2V), 0 \right), \quad q_3 = \left(\frac{1}{\hbar v_F}(4t'_b + 4t_4), 0 \right),$$

$$q_4 = \left(\frac{1}{\hbar v_F} \frac{24t'_b}{\sqrt{1 + 128(\frac{t'_b}{t_b})^2 + 1}}, \pm \frac{2}{b} \sin^{-1} \left(\frac{8(\frac{t'_b}{t_b})}{\sqrt{1 + 128(\frac{t'_b}{t_b})^2 + 1}} \right) \right).$$

\textbf{Figure 1.} The sweptback region is enclosed by q_1, q_3 and q_4, where we set $\hbar = b = 1$.

\textbf{Figure 2.} The same figure as Fig. 1 with $V/t'_b = 1$. The sweptback region is enclosed by q_2, q_3 and q_4.

\textbf{Figure 3.} The same figure as Fig. 1 with $V/t'_b = 2$.

In the parameters of $t_3/t_b = 10$, $t'_b/t_b = 0.1$, $t_3/t_b = 0.02$ and $t_4/t_b = 0.002$, we found that a maximum of $\chi_0(Q)$ appears at q_2 for $0 < V < 4t'_b - 4t_4$[30]. When t_3 and t_4 are neglected, a maximum is located near q_4. However, its maximum is suppressed due to t_3 and the degeneracy of peaks of $\chi_0(Q)$ at q_2 and at q_3 is released by t_4. For $V = 0$, Zanchi and Montambaux[17] have found that a maximum of $\chi_0(Q)$ appears at q_1 owing to t_3 and t_4. As the x-component of q_2 is negative when $V < 2t'_b - 2t_4$, we have concluded[30] that V should be smaller than $2t'_b - 2t_4$ in $(\text{TMTSF})_2\text{ClO}_4$, because the sign reversal of the quantum Hall effect has been observed. If the conventionally used $t'_b/t_b = 0.1$ and $t_4/t_b = 0.001$ are supposed in $V < 2t'_b - 2t_4$, we obtain $V/t_b < 0.198$. It gives the limitation for the value of V. The experimentally estimated V/t_b has a upper limit value as $V/t_b = 0.23$[31] or a little larger value as $V/t_b = 0.34$[32].

In this paper, we examine whether q_4 of q which gives a maximum of $\chi_0(Q)$ is positive or negative in the wide parameter region such as $0 \leq t_3/t_b \leq 0.02$, $0 \leq t_4/t_b \leq 0.002$ and $0 \leq V/t'_b \leq 4$. For other band parameters, we set $t_{a}/t_b = 10$, $t'_b/t_b = 0.1$ and $k_B T/t_b = 0.001$.
2. Susceptibility

We can diagonalize Eq. (2) by the unitary transformation,

$$U \hat{H} U^{-1} = \begin{pmatrix} e^+ & 0 \\ 0 & e^- \end{pmatrix},$$

$$U^{-1} = \begin{pmatrix} u^* & -u \\ v^* & u \end{pmatrix},$$

$$u = \frac{1}{\sqrt{2}} \left[1 + \frac{d}{\sqrt{d^2 + V^2}} \right], v = \left[1 - \frac{d}{\sqrt{d^2 + V^2}} \right],$$

$$d = \frac{1}{2} \left(\epsilon(k) - \epsilon(k + Q_A) \right).$$

By using Eq. (4), the eigenvectors ($|k^+\rangle$ and $|k^-\rangle$) are given by

$$\begin{pmatrix} |k^+\rangle \\ |k^-\rangle \end{pmatrix} = U \begin{pmatrix} |k\rangle \\ |k + Q_A\rangle \end{pmatrix}.$$

The eigenvalues (ϵ^\pm) are obtained as

$$\epsilon^\pm(k) = \frac{1}{2} \left[(\epsilon(k) + \epsilon(k + Q_A)) \pm \sqrt{(\epsilon(k) - \epsilon(k + Q_A))^2 + 4V^2} \right].$$

The generalized susceptibility is given by

$$\chi_0(Q) = \frac{1}{\Omega} \sum_{k,k',\gamma,\gamma'} \left| \langle k'| e^{iQr} | k' \rangle \right|^2 \frac{f(\epsilon^\gamma(k')) - f(\epsilon^\gamma(k))}{\epsilon^\gamma(k) - \epsilon^\gamma(k')}.$$

where Ω is the volume of the system. By using the unitary matrix, Eq. (8) becomes[19]

$$\chi_0(Q) = \frac{1}{\Omega} \sum_k \left[(u_{k+Q}u_k + v_{k+Q}v_k)^2 \frac{f(\epsilon^+(k)) - f(\epsilon^+(k + Q))}{\epsilon^+(k + Q) - \epsilon^+(k)} + \frac{f(\epsilon^-(k)) - f(\epsilon^-(k + Q))}{\epsilon^-(k + Q) - \epsilon^-(k)} \right]$$

$$\left. + \left. (u_{k+Q}u_k + v_{k+Q}v_k)^2 \frac{f(\epsilon^-(k)) - f(\epsilon^+(k + Q))}{\epsilon^+(k + Q) - \epsilon^-(k)} + \frac{f(\epsilon^+(k)) - f(\epsilon^-(k + Q))}{\epsilon^-(k + Q) - \epsilon^+(k)} \right].$$

Figures

Figure 4. Sign of q_x which gives the maximum of $\chi_0(Q)$ in the plain of V and t_4. Open circles (blue closed circles) mean positive (negative) q_x.

Figure 5. The same as Fig. 4 with $t_3/t_b = 0.02$. A red dotted line represents $V/t_b' = 2 - 2t_4/t_b'$.

Figure 6. Sign of q_x in the parameter plain of V and t_3 with $t_4/t_b = 0.0003$.

3. Results and Discussions

We investigate a maximum of $\chi_0(Q)$ by changing nesting vectors. When t_3 is zero, q_x of q which gives a maximum of $\chi_0(Q)$ is positive at $0 \leq t_4/t_b \leq 0.002$ and $0 \leq V/t_b \leq 4$, as seen in Fig. 4. When we set $t_3/t_b = 0.02$, the region where q_x is negative appears at $t_4/t_b \geq 0.0001$, as seen in Fig. 5. When t_4/t_b is fixed to be 0.0003, q_x is negative at $t_3/t_b \geq 0.007$, as seen in Fig. 6. These negative regions are limited in the region of $V < 2t_b^3 - 2t_4$.

4. Conclusion

Even in the case of $V \neq 0$, both of t_3 and t_4 are needed to the occurrence of the negative quantum Hall resistance. In particular, we consider that $t_3/t_b \geq 0.007, t_4/t_b \geq 0.0001$ and $V < 2t_b^3 - 2t_4$ are realized in (TMTSF)$_2$ClO$_4$.

Uji et al. [33] found the periodic oscillation with sign reversal of the Hall resistance at 26 T $< B < 45$ T. The value of q_x of q_2 maximized $\chi_0(Q)$ is near zero when $V/t_b^3 \simeq 2$. Therefore, q_2 may be the origin of the sign reversal periodical Hall resistance in (TMTSF)$_2$ClO$_4$ with $V/t_b^3 \simeq 2$. The magnitude of V is thought to be small when cooling rate is fast. The amplitude of the sign reversal oscillation of the Hall resistance may be changed by the cooling rate.

[1] For a review, see T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2nd ed., (Springer-Verlag, Berlin, 1998).

[2] W. Kang, S. T. Hannahs and P. M. Chaikin, Phys. Rev. Lett. 70, 3091 (1993).

[3] S. K. McKernan S. T. Hannahs, U. M. Scheven, G. M. Danner and P. M. Chaikin, Phys. Rev. Lett. 75, 1630 (1995).

[4] N. Matsunaga A. Ayari, A. Ishikawa, K. Nomura, M. Watanabe, J. Yamada and S. Nakatsuji, Phys. Rev. B 66, 024425 (2002).

[5] N. Matsunaga K. Hino, T. Ohta, K. Yamashita, K. Nomura, T. Sasaki, A. Ayari, P. Monceau, M. Watanabe, J. Yamada and S. Nakatsuji, J. Phys. IV France 131, 269 (2005).

[6] L. P. Gor’kov and A. G. Lebed’, J. Phys. Lett. (Paris) 45, 433 (1984).

[7] G. Montambaux, M. Heritier and P. Lederer, Phys. Rev. Lett. 55, 2078 (1985).

[8] K. Yamaji, J. Phys. Soc. Jpn. 54, 1034 (1985).

[9] K. Makii, Phys. Rev. B33, 4826 (1986).

[10] K. Machida, Y. Hori and M. Nakano, Phys. Rev. Lett. 70, 61 (1993).

[11] A.G. Lebed’, Phys. Rev. Lett. 88, 177001 (2002).

[12] M. Ribault, Mol. Cryst. Liq. Cryst. 119, 91 (1985).

[13] J. R. Cooper, W. Kang, P. Auban, G. Montambaux, D. Jerome and K. Bechgaard, Phys. Rev. Lett., 63, 1984 (1989).

[14] D. Poliblanc, G. Montambaux, M. Heritier, and P. Lederer Phys. Rev. Lett. 58, 270 (1987).

[15] V. M. Yakovenko, Phys. Rev. B43, 11353 (1991).

[16] K. Machida, Y. Hasegawa, Phys. Rev. B50, 921 (1994).

[17] D. Zanchi and G. Montambaux, Phys. Rev. Lett. 77, 366 (1996).

[18] N. Dupuis and V. M. Yakovenko, Phys. Rev. Lett. 80, 3618 (1998).

[19] M. Miyazaki, K. Kishigi and Y. Hasegawa, J. Phys. Soc. Jpn. 68, 313 (1999).

[20] A. G. Lebed’ and P. Bak, Phys. Rev. B40, 11433 (1989).

[21] T. Osada, S. Kagoshima and N. Miura, Phys. Rev. Lett., 69, 1117 (1992).

[22] K. Kishigi, K. Machida and Y. Hasegawa, J. Phys. Soc. Jpn. 66, 2909 (1997).

[23] K. Kishigi, J. Phys. Soc. Jpn. 67, 3825 (1998).

[24] Y. Hasegawa, K. Kishigi and M. Miyazaki, J. Phys. Soc. Jpn. 67, 964 (1998).

[25] K. Sengupta and N. Dupuis, Phys. Rev. B65, 035108 (2002).

[26] D. Zanchi and A. Bjelis, Europhys. Lett. 56, 506 (2001).

[27] S. Haddad, S. Charfi-Kaddour, M. Heritier, and R. Benameur, Phys. Rev. B72, 085104 (2005).

[28] K. Kishigi and Y. Hasegawa, Phys. Rev. B75, 245107 (2007).

[29] K. Kishigi and Y. Hasegawa, Solid State Sciences in press.

[30] Y. Hasegawa and K. Kishigi, arXiv:0805.2445.

[31] A. G. Lebed, Heon-Ick Ha, and M. J. Naughton, Phys. Rev. B, 71, 132504 (2005).

[32] H. Yoshino, S. Shodai and K. Murata, Synth. Met. 133 55 (2003).

[33] S. Uji, S. Yasuzuka, T. Konoike, K. Enomoto, J. Yamada, E. S. Choi, D. Graf and J. S. Brooks, Phys. Rev. Lett. 94, 077206 (2005).