Stieltjes constants appearing in the Laurent expansion of the hyperharmonic zeta function

Mümün Can · Ayhan Dil · Levent Kargin

Received: 20 January 2022 / Accepted: 15 October 2022 / Published online: 29 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this paper, we consider meromorphic extension of the function

$$\zeta_h(r)(s) = \sum_{k=1}^{\infty} \frac{h_k^{(r)}}{k^s}, \quad \text{Re} (s) > r$$

(which we call hyperharmonic zeta function) where $h_k^{(r)}$ are the hyperharmonic numbers. We establish certain constants, denoted $\gamma_h^{(r)}(m)$, which naturally occur in the Laurent expansion of $\zeta_h(r)(s)$. Moreover, we show that the constants $\gamma_h^{(r)}(m)$ and integrals involving the generalized exponential integral can be written as a finite combination of some special constants.

Keywords Stieltjes constant · Zeta values · Harmonic numbers · Hyperharmonic numbers · Laurent expansion · Euler sum · Integro-exponential function

Mathematics Subject Classification 11Y60 · 11B83 · 33B15 · 11M41 · 11B73
1 Introduction

The Riemann zeta function which is initially defined by the series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad \text{Re}(s) > 1,$$

has an analytic continuation to the whole complex s plane except for a simple pole $s = 1$ with residue 1. It is well known that around this simple pole, $\zeta(s)$ has the following Laurent expansion:

$$\zeta(s) = \frac{1}{s-1} + \sum_{m=0}^{\infty} (-1)^m \frac{\gamma(m)}{m!} (s-1)^m,$$ \hspace{1cm} (1)

where the coefficients $\gamma(m)$ are called Stieltjes constants. It is shown by various authors that these constants can be alternatively presented by the limit

$$\gamma(m) = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{\ln^m k}{k} - \int_{1}^{n} \frac{\ln^m x}{x} dx \right), \quad m = 0, 1, 2, \ldots $$ \hspace{1cm} (2)

(see for example [4, 10, 24, 27] and for an extensive literature information see [6]). The special case $m = 0$ is the famous Euler–Mascheroni constant $\gamma = \gamma(0) = 0.5772156649 \ldots$ Besides, the constant γ has the relation $\psi(1) = \Gamma'(1) = -\gamma$, where

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt, \quad x > 0,$$

is Euler’s gamma function and $\psi(x) = \Gamma'(x)/\Gamma(x)$ is the digamma function (e.g., [33]). It is well known that for a positive integer n, $\psi(n+1) + \gamma = H_n = 1 + 1/2 + \cdots + 1/n$, where H_n are the harmonic numbers.

There is a comprehensive literature on deriving series and integral representations for the Stieltjes constants and their extensions (see for example [5, 6, 14–16, 23, 34]). These representations usually allow a more accurate estimation of mentioned constants (see for example [1, 4, 6]).

The Dirichlet series associated with harmonic numbers, so-called harmonic zeta function, is defined by

$$\zeta_H(s) = \sum_{k=1}^{\infty} \frac{H_k}{k^s}, \quad \text{Re}(s) > 1.$$
continued meromorphically to the whole complex \(s \) plane except for the poles \(s = 1, \ s = 0 \) and \(s = 1 - 2j, \ j \in \mathbb{N} \). Later, Boyadzhiev et al. [8] deal with the Laurent expansion of the harmonic zeta function:

\[
\xi_H(s) = \frac{a_{-1}}{s - b} + a_0 + O(s - b), \tag{3}
\]

and give explicitly the coefficient \(a_0 \) when \(b = 0 \) and \(b = 1 - 2j, \ j \in \mathbb{N} \).

Recently, using the Ramanujan summation method, Candelpergher and Coppo [13] have recorded that the harmonic Stieltjes constants \(\gamma_H(m) \) defined by the Laurent expansion

\[
\zeta_H(s) = \frac{1}{(s - 1)^2} + \frac{\gamma}{s - 1} + \sum_{m=0}^{\infty} (-1)^m \frac{\gamma_H(m)}{m!} (s - 1)^m, \ 0 < |s - 1| < 1
\]

can be presented as follows:

\[
\gamma_H(m) = \lim_{x \to \infty} \left(\sum_{n \leq x} \frac{H_n \ln^m n}{n} - \frac{\ln^{m+2} x}{m + 2} - \gamma \frac{\ln^{m+1} x}{m + 1} \right).
\]

Besides they also present \(\gamma_H(0) \) explicitly and rediscover the coefficient \(a_0 \) in (3).

We now introduce the main object of this study, the hyperharmonic zeta function:

\[
\zeta_{h(r)}(s) = \sum_{k=1}^{\infty} \frac{h_k^{(r)}}{ks}, \ \text{Re}(s) > r,
\]

where \(h_n^{(r)} \) are the hyperharmonic numbers defined by [17]

\[
h_n^{(r)} = \sum_{k=1}^{n} h_k^{(r-1)} \text{ with } h_n^{(0)} = \frac{1}{n}, \ n, r \in \mathbb{N}.
\]

It is clear that \(\zeta_{h(0)}(s) = \zeta(s + 1) \) and \(\zeta_{h(1)}(s) = \xi_H(s) \). The Dirichlet series \(\sum_{k=1}^{\infty} h_k^{(r)}/ks \) converges absolutely and represents an analytic function of \(s \) for \(\text{Re}(s) > r \) since \(h_n^{(r)} = O(n^{r-1} \ln n) \). Kamano [25] has shown that the function \(\zeta_{h(r)}(s) \) can be continued meromorphically to the whole complex \(s \) plane except for the double poles at \(s = 1, 2, \ldots, r \) and an infinite number of simple poles at \(s = -k, \ k \in \mathbb{N} \cup \{0\} \). For positive integer values of \(s \), in which case it is called the Euler sum of the hyperharmonic numbers [30], it has enjoyed considerable attention in a number of publications during the last decade. For instance, evaluations of \(\zeta_{h(r)}(m), \ m \in \mathbb{N} \) and their extensions in terms of the Riemann zeta values and some other special constants can be found in [12, 19, 26, 30, 37].
1.1 Outline of the study

The aim of this paper is to determine certain constants which naturally occur in the Laurent expansion of hyperharmonic zeta function. We prove in Sect. 2 that the function $\zeta_{h}(r)$ has a meromorphic continuation (Theorem 1). In Sect. 3, we present the Laurent expansion of the hyperharmonic zeta function in the region $0 < |s-r| < 1$ (Theorem 2). For appearing coefficients, denoted $\gamma_{h}(r) (m)$, we obtain the following limit representation:

$$\gamma_{h}(r) (m) = \lim_{x \to \infty} \left(\sum_{n \leq x} \frac{h_{n}^{(r)} \ln^{m+1} x}{n^{r}} \ln^{m+2} x + \frac{\psi(r) \ln^{m+1} x}{\Gamma(r) m + 1} \right)$$

(4)

by modifying the method of Briggs and Buschman [9]. It is clear that the coefficients $\gamma_{h}(r) (m)$, which we call hyperharmonic Stieltjes constants, reduce to the Stieltjes constants $\gamma(r) (m)$ when $r = 0$ (with the assumption $\psi(0)/\Gamma(0) = \lim_{r \to 0} \psi(r)/\Gamma(r) = -1$) and to the harmonic Stieltjes constants $\gamma_{H}(m)$ when $r = 1$. In Sect. 4, we confer two more representations for $\gamma_{h}(r) (m)$ in addition to (4). The first one is in terms of Stieltjes constants $\gamma_{h}(r-1) (m)$, $\gamma(r) (m)$ and values related to the zeta function (Theorem 4). The second one is in terms of Stieltjes constants $\gamma_{H}(m)$, $\gamma(r) (m)$ and some other special values related to the Riemann zeta function (Theorem 5). In Sect. 5, we consider the limit

$$\gamma_{h}^{*}(r) (m) = \lim_{n \to \infty} \left(\sum_{k=1}^{n} h_{k}^{(r)} \ln^{m} k - \int_{1}^{n} h_{x}^{(r)} \ln^{m} x \, dx \right),$$

which is motivated by the interpretation of (2) as follows:

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} f(k) - \int_{1}^{n} f(x) \, dx \right).$$

(5)

(If $f : (0, \infty) \to (0, \infty)$ is continuous, strictly decreasing and $\lim_{x \to \infty} f(x) = 0$, then the limit (5) exists (cf. [36]).) Here $h_{x}^{(r)}$ is an analytic extension of $h_{n}^{(r)}$, defined by [29]

$$h_{x}^{(r)} = \frac{x^{r}}{x \Gamma(r)} (\psi(x+r) - \psi(r)), \quad r, x, r + x \in \mathbb{C} \setminus [0, -1, -2, ...],$$

(6)

where

$$x^{r} = x (x+1) \cdots (x+r-1) = \sum_{j=0}^{r} \left[\begin{array}{c} r \\ j \end{array} \right] x^{j}$$

(7)

and $[\cdot]$ are the Stirling numbers of the first kind, with $[r] = 1$ for $r \geq 0$ and $[0] = 0$ for $r > 0$. We give a representation for $\gamma_{h}^{*}(r) (m)$ which involves integrals having the
integro-exponential function $E^m_s(t)$ as integrand (Theorem 6);

$$E^m_s(t) = \frac{1}{\Gamma(m+1)} \int_1^\infty \frac{e^{-xt}}{x^m \ln x} \, dx$$

(e.g., [32] see also [31, 35] for different fields where the function $E^m_s(t)$ arises). In particular, Theorem 6 leads to find exact formulas for the integrals

$$\int_0^\infty \left(\frac{1}{t} - \frac{1}{1-e^{-t}} \right) E^0_p(t) \, dt$$

in terms of the zeta values, Euler–Mascheroni constant, Stieltjes constant and some other certain constants (Theorem 7 or more precisely Eq. (18) with Remark 3), for instance

$$\int_0^\infty \left(\frac{1}{t} - \frac{1}{1-e^{-t}} \right) E^0_1(t) \, dt = \gamma_{h(1)} - \frac{1}{2} \gamma^2 - \gamma (1) - \sigma_1 + \frac{\pi^2}{12} - 1,$$

$$\int_0^\infty \left(\frac{1}{t} - \frac{1}{1-e^{-t}} \right) E^0_2(t) \, dt = \gamma_{h(1)} - 2 \zeta (3) - \zeta' (2) + \sigma_2 - \frac{3}{2}$$

and

$$\int_0^\infty \left(\frac{1}{t} - \frac{1}{1-e^{-t}} \right) E^0_3(t) \, dt$$

$$= \gamma_{h(3)} - \frac{3}{2} \gamma_{h(2)} + \gamma_{h(1)} - \frac{5}{4} \gamma + \zeta' (3) - \sigma_3 - \frac{\pi^4}{72} + \frac{3}{8} \pi^2 - \frac{7}{12},$$

where $\gamma_{h(r)} = \gamma_{h(r)}(0)$ and

$$\sigma_k = \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{j} \zeta (k + j), \quad k \geq 1 \text{ (see [7, 13, 18, 20])}.$$
where $P_k(x) = B_k(x - \lfloor x \rfloor)$ is the periodic extension of the Bernoulli polynomial $B_k(x)$ given by

$$\frac{te^{xt}}{e^t - 1} = \sum_{k=0}^{\infty} B_k(x) \frac{t^k}{k!}, \ |t| < 2\pi$$

with $\lfloor x \rfloor$ being the largest integer $\leq x$.

Considering the well-known relation $\psi(n) + \gamma = H_n - 1$ for $n \in \mathbb{N}$, (6) becomes

$$h_n^{(r)} = \frac{n^r}{n \Gamma(r)} (H_{n+r-1} - \psi(r) - \gamma).$$

(9)

For $\text{Re}(s) = \sigma > r$, from (8) and (9), we deduce the following representation for $\zeta_h^{(r)}(s)$:

$$\zeta_h^{(r)}(s) = -\frac{1}{\Gamma(r)} \zeta'(s + 1 - r) - \frac{\psi(r)}{\Gamma(r)} \zeta(s + 1 - r)$$

$$+ \frac{1}{\Gamma(r)} \sum_{j=0}^{r-1} \left[\begin{array}{c} r \\ j \end{array} \right] (-\zeta'(s + 1 - j) - \psi(r) \zeta(s + 1 - j))$$

$$+ \left[\begin{array}{c} r \\ j+1 \end{array} \right] \left(\frac{1}{2} \zeta(s + 1 - j) + \sum_{v=1}^{r-1} \sum_{n=1}^{\infty} \frac{1}{n^{s-j}(n+v)} \right)$$

$$+ \frac{1}{\Gamma(r)} \sum_{j=1}^{r} \left[\begin{array}{c} r \\ j \end{array} \right] \left(\sum_{m=1}^{k} \zeta(1 - 2m) \zeta(s + 1 - j + 2m) + R(s, k, j) \right).$$

(10)

where

$$R(s, k, j) = \sum_{n=1}^{\infty} \frac{1}{n^{s+1-j}} \int_{n}^{\infty} \frac{P_{2k+1}(x)}{x^{2k+2}} \, dx.$$
are second-order poles at \(s = j \) for \(1 \leq j \leq r - 1 \), and simple poles at \(s = j - 2m \) with \(j - 2m < 1 \) for \(1 \leq j \leq r \) and \(1 \leq m \leq k \). Since \(k \) is an arbitrary positive integer, this implies that \(\zeta_{h(r)}(s) \) has a simple pole at every non-positive integer. \(\square \)

Remark 1 Interested readers can find the residues of \(\zeta_{h(r)}(s) \) at \(s = k \), \(k \in \mathbb{Z} \) with \(k < r \) in [25, Theorem 1.1]. However, there are little misprints; the factors \(r! \) in equations (1.6), (1.7) and (1.8) of [25, Theorem 1.1] should be \((r - 1)! \).

3 Laurent expansion and hyperharmonic Stieltjes constants

This section is devoted to determine the hyperharmonic Stieltjes constants, the main theme of this study.

Theorem 2 Let \(r \) be a non-negative integer. The hyperharmonic zeta function has the following Laurent expansion in the annulus \(0 < |s - r| < 1 \):

\[
\zeta_{h(r)}(s) = \frac{a_{-2}}{(s - r)^2} + \frac{a_{-1}}{s - r} + \sum_{m=0}^{\infty} \frac{(-1)^m \gamma_{h(r)}(m)}{m!} (s - r)^m,
\]

where \(a_{-2} = 1/\Gamma(r) \), \(a_{-1} = -\psi(r) / \Gamma(r) \) and

\[
\gamma_{h(r)}(m) = \lim_{x \to \infty} \left(\sum_{n \leq x} \frac{h_n^{(r)} \ln^m n}{n^r} - a_{-2} \frac{\ln^{m+2} x}{m+2} - a_{-1} \frac{\ln^{m+1} x}{m+1} \right).
\]

It is clear from the proof of Theorem 1 that, \(\zeta_{h(r)}(s) \) has the Laurent series

\[
\zeta_{h(r)}(s) = \frac{a_{-2}}{(s - r)^2} + \frac{a_{-1}}{s - r} + \sum_{m=0}^{\infty} a_m (s - r)^m
\]

in the annulus \(0 < |s - r| < 1 \), where \(a_{-2} = 1/\Gamma(r) \) and \(a_{-1} = -\psi(r) / \Gamma(r) \).

To complete the proof, we must show that

\[
a_m = \frac{(-1)^m}{m!} \lim_{x \to \infty} \left(\sum_{n \leq x} \frac{h_n^{(r)} \ln^m n}{n^r} - a_{-2} \frac{\ln^{m+2} x}{m+2} - a_{-1} \frac{\ln^{m+1} x}{m+1} \right).
\]

For this purpose, we give some lemmas and a theorem.

Lemma 1 (Abel summation formula) (see [2, Theorem 4.2]) If \(b_1, b_2, b_3, \ldots \) is a sequence of complex numbers and \(v(x) \) has a continuous derivative for \(x > 1 \), then

\[
\sum_{n \leq x} b_n v(n) = \left(\sum_{n \leq x} b_n \right) v(x) - \int_1^x \left(\sum_{n \leq t} b_n \right) v'(t) \, dt.
\]

\(\copyright \) Springer
For \(n \leq x < n + 1 \), we see from (8) and (9) that

\[
\sum_{k \leq x} h_k^{(r)} = h_n^{(r+1)} = \frac{n^{r+1}}{n \Gamma (r + 1)} \left(\ln n - \psi (r + 1) + O \left(\frac{1}{n} \right) \right)
\]

\[
= \frac{1}{\Gamma (r + 1)} n^r \ln - \frac{\psi (r + 1)}{\Gamma (r + 1)} n^r + O (n^{r-1} \ln n).
\]

Setting \(b_n = h_n^{(r)} \) and \(v (x) = x^{-s} \) in Lemma 1 gives the following result.

Lemma 2 Let \(r \) be a non-negative integer. For \(\Re (s) > r \) we have

\[
\zeta_{h^{(r)}} (s) = s \int_1^\infty x^{-s-1} \left(\sum_{k \leq x} h_k^{(r)} \right) dx.
\]

Lemma 3 Let \(r \) be a non-negative integer. Let

\[
E (x) = \sum_{k \leq x} h_k^{(r)} - \frac{1}{\Gamma (r + 1)} x^r \ln x + \frac{\psi (r + 1)}{\Gamma (r + 1)} x^r.
\]

Then for \(\Re (s) > r - 1 \) we have

\[
f (s) := s \int_1^\infty x^{-s-1} E (x) dx = \frac{\psi (r + 1)}{\Gamma (r + 1)} + \sum_{n=0}^\infty a_n (s - r)^n.
\]

Proof For \(\Re (s) > r - 1 \), the aforementioned integral is an analytic function. Moreover, for \(\Re (s) > r \), we have

\[
s \int_1^\infty x^{-s-1} E (x) dx
\]

\[
= \zeta_{h^{(r)}} (s) - \frac{1}{\Gamma (r + 1)} s \int_1^\infty x^{-s-1} \ln x dx + \frac{\psi (r + 1)}{\Gamma (r + 1)} s \int_1^\infty x^{-s-1} dx
\]

\[
= \frac{a_{-2}}{(s - r)^2} + \frac{a_{-1}}{s - r} + \sum_{n=0}^\infty a_n (s - r)^n - \frac{1}{\Gamma (r + 1)} \frac{s}{(r - s)} + \frac{\psi (r + 1)}{\Gamma (r + 1)} \frac{s}{s - r}
\]

\[
= \frac{1}{r^2 \Gamma (r)} + \frac{\psi (r)}{r \Gamma (r)} + \sum_{n=0}^\infty a_n (s - r)^n
\]

from (11) and Lemma 2. The proof is then completed. \(\square \)
Theorem 3 Let m and r be non-negative integers. Let $u < -(r - 1)$. Then,

$$\sum_{n \leq x} h_n^{(r)} n^u \ln^m n = \frac{1}{\Gamma (r)} \int_1^x t^{r+u-1} \ln^{m+1} t \, dt - \frac{\psi (r)}{\Gamma (r)} \int_1^x t^{r+u-1} \ln^m t \, dt$$

$$+ (-1)^m f^{(m)} (-u) - \alpha_m (r) + O (1),$$

where $\alpha_m (r) = \psi (r + 1) / \Gamma (r + 1)$ if $m = 0$ and $\alpha_m (r) = 0$ if $m > 0$, and $f (s)$ is given in Lemma 3.

Proof Set $v (x) = x^u \ln^m x$, $u < -r$ and $b_n = h_n^{(r)}$ in Lemma 1. Then

$$S := \sum_{n \leq x} h_n^{(r)} n^u \ln^m n = x^u \ln^m x \sum_{n \leq x} h_n^{(r)} - \int_1^x \sum_{n \leq t} h_n^{(r)} \frac{d}{dt} (t^u \ln^m t) \, dt.$$

We now use the equality

$$\frac{d}{dt} (t^u \ln^m t) = \frac{d^m}{du^m} (ut^{u-1})$$

to see that

$$S = x^u \ln^m x \sum_{n \leq x} h_n^{(r)} - \frac{d^m}{du^m} \int_1^x \sum_{n \leq t} h_n^{(r)} t^{u-1} \, dt$$

$$= x^u \ln^m x \left(\frac{1}{\Gamma (r + 1)} x^r \ln x - \frac{\psi (r + 1)}{\Gamma (r + 1)} x^r + O \left(x^{r-1} \ln x \right) \right)$$

$$- \frac{d^m}{du^m} \int_1^x \left(E (t) + \frac{1}{\Gamma (r + 1)} t^r \ln t - \frac{\psi (r + 1)}{\Gamma (r + 1)} t^r \right) \, dt$$

$$= \frac{1}{\Gamma (r + 1)} \left(x^{u+r} \ln^{m+1} x - \frac{d^m}{du^m} \int_1^x t^{r+u-1} \ln^m t \, dt \right)$$

$$- \frac{\psi (r + 1)}{\Gamma (r + 1)} \left(x^{u+r} \ln^{m} x - \frac{d^m}{du^m} \int_1^x t^{r+u-1} \, dt \right)$$

$$- \frac{d^m}{du^m} \int_1^x E (t) t^{u-1} \, dt + O \left(x^{r-1+u} \ln^{m+1} x \right).$$
Here,
\[x^{u+r} \ln^m x - \frac{d^m}{du^m} \int_1^x t^{r+u-1} dt = \frac{d^m}{du^m} \left(x^{u+r} - 1 - u \int_1^x t^{r+u-1} dt \right) + \frac{d^m}{du^m} 1 \]

\[= \frac{d^m}{du^m} \left(r \int_1^x t^{r+u-1} dt \right) + \frac{d^m}{du^m} 1 = r \int_1^x t^{r+u-1} \ln^m t dt + \left\{ 1, m = 0; 0, m > 0 \right\} \]

Since
\[\int_1^x t^{r+u-1} \ln t dt = \frac{x^{u+r} \ln x}{u+r} - \frac{x^{u+r}}{(u+r)^2} + \frac{1}{(u+r)^2} \]

we obtain
\[x^{u+r} \ln x - u \int_1^x t^{r+u-1} \ln t dt = r \int_1^x t^{r+u-1} \ln t dt + \frac{x^{u+r}}{u+r} - \frac{1}{u+r} \]

Hence,
\[x^{u+r} \ln^{m+1} x - \frac{d^m}{du^m} u \int_1^x t^{r+u-1} \ln t dt = \frac{d^m}{du^m} \left(x^{u+r} \ln x - u \int_1^x t^{r+u-1} \ln t dt \right) \]

\[= \frac{d^m}{du^m} \int_1^x (rt^{r+u-1} \ln t + t^{r+u-1}) dt \]

\[= r \int_1^x t^{r+u-1} \ln^{m+1} t dt + \int_1^x t^{r+u-1} \ln^m t dt. \]

These complete the proof. \(\Box \)

Now we are ready to complete the proof of Theorem 2.

Proof of Theorem 2 From Lemma 3, we have
\[f(r) = \frac{\psi(r+1)}{\Gamma(r+1)} + a_0 \quad \text{and} \quad a_m = \frac{f(m)}{m!} \quad \text{for} \quad m > 0. \]

Setting \(u = -r \) in Theorem 3 yields
\[a_m = \frac{f(m)(r)}{m!} = \frac{(-1)^m}{m!} \lim_{x \to \infty} \left(\sum_{n \leq x} \frac{h_n^{(r)} \ln^m n}{n^r} - a_{-2} \frac{\ln^{m+2} x}{m+2} - a_{-1} \frac{\ln^{m+1} x}{m+1} \right), \]

\(\square \) Springer
which gives the desired result. \(\square \)

4 Alternative representations for hyperharmonic Stieltjes constants

Recall that \(\gamma_{h^r} (m) \) reduces to \(\gamma (m) \) for \(r = 0 \). Now we are going to analyze the case \(r > 0 \) in the following theorems.

Theorem 4 Let \(m \) be a non-negative integer and \(r \) be a positive integer. Then

\[
\gamma_{h^{r+1}} (m) = \frac{\gamma_{h^r} (m)}{r} - \frac{\gamma (m)}{r \Gamma (r + 1)} + \zeta_{h^r} (m) + \sum_{j=0}^{r-1} \left[\frac{r}{j} \right] \zeta (m) + \sum_{n=1}^{x} \frac{h_n^{r+1} \ln^m n}{n^{r+1}} ,
\]

where \(\zeta_{h^r} (m) = \frac{d^m}{ds^m} \zeta_h (s) \bigg|_{s=r+1} \) and \(\zeta (m) = \frac{d^m}{ds^m} \zeta (s) \bigg|_{s=r} \).

Proof We employ the following equation [21, Proposition 3]

\[
h_n^{r+1} = \left(1 + \frac{n}{r} \right) h_n^r - \frac{n}{r (n + r)} \binom{n + r}{r} ,
\]

in (4). After some manipulations, we deduce that

\[
\gamma_{h^{r+1}} (m) = \lim_{x \to \infty} \left(\frac{1}{r} \sum_{n \leq x} h_n^r \ln^m n \frac{1}{n^{r+1}} - \frac{\ln^m n}{r \Gamma (r) m + 2} \right) ,
\]

which is the desired result. \(\square \)

Now we are going to give a representation for the constants \(\gamma_{h^r} (m) \) in terms of Stieltjes constants \(\gamma_H (m) \), \(\gamma (m) \) and some other special values related to the Riemann zeta function. For this purpose, we need the following lemma:

Lemma 4 Let \(m \) and \(r \) be non-negative integers. Then

\[
\sum_{k=1}^{n} \frac{h_k^r \ln^m k}{k^r} = \frac{1}{\Gamma (r)} \left(\sum_{k=1}^{n} \frac{H_k \ln^m k}{k^r} - \sum_{j=1}^{n} \sum_{k=1}^{n+j} \frac{\ln^m k}{k} \right) + \delta (r) \sum_{k=1}^{n} \frac{\ln^m k}{k} .
\]
\begin{align}
&\quad + \frac{1}{\Gamma(r)} \sum_{j=0}^{r-1} \left[\sum_{k=1}^{n} \frac{H_{k+r-1}}{k^{r+1-j}} \ln^{m} k - H_{r-1} \sum_{k=1}^{n} \frac{\ln^{m} k}{k^{r+1-j}} \right] \\
&\quad + \sum_{j=1}^{r-1} \left(\sum_{k=1}^{m} \frac{\ln^{m} k}{jk \Gamma(r)} - \sum_{\mu=1}^{n} \sum_{k=j+1}^{n} \frac{(\ln k)^{m-\mu}}{jk \Gamma(r)} \right) \right),
\end{align}

(12)

where

\[
\delta(r) = \frac{1}{\Gamma(r)} \sum_{j=1}^{r-1} \frac{1}{j} - \frac{\psi(r) + \gamma}{\Gamma(r)} = \begin{cases}
1, & r = 0, \\
0, & r > 0.
\end{cases}
\]

Proof In the light of (7) and (9), we have

\[
h_k^{(r)} = \frac{1}{\Gamma(r)} \sum_{j=0}^{r} \left[\sum_{k=1}^{n} \frac{H_{k+r-1}}{k^{r+1-j}} - \ln^{m} k \right] (H_{k+r-1} - \psi(r) - \gamma),
\]

from which we obtain that

\[
\Gamma(r) \sum_{k=1}^{n} h_k^{(r)} = \sum_{j=0}^{r-1} \left[\sum_{k=1}^{n} \frac{H_{k+r-1}}{k^{r+1-j}} \right] + \sum_{k=1}^{n} \frac{H_{k+r-1}}{k^{r+1-j}} \\
- (\psi(r) + \gamma) \left(\sum_{k=1}^{n} \frac{1}{k^{r+1-j}} + \sum_{j=0}^{r-1} \left[\sum_{k=1}^{n} \frac{1}{k^{r+1-j}} \right] \right).
\]

Differentiating both sides \(m\) times with respect to \(s\) at \(s = r\) gives

\[
\Gamma(r) \sum_{k=1}^{n} \frac{h_k^{(r)}}{k^r} \ln^{m} k = \sum_{j=0}^{r-1} \left[\sum_{k=1}^{n} \frac{H_{k+r-1}}{k^{r+1-j}} \ln^{m} k \right] + \sum_{k=1}^{n} \frac{H_{k+r-1}}{k} \ln^{m} k \\
- (\psi(r) + \gamma) \left(\sum_{k=1}^{n} \frac{\ln^{m} k}{k} + \sum_{j=0}^{r-1} \left[\sum_{k=1}^{n} \frac{\ln^{m} k}{k^{r+1-j}} \right] \right).
\]

(13)

It is easy to see that

\[
\sum_{k=1}^{n} \frac{H_{k+r-1}}{k} \ln^{m} k = \sum_{k=1}^{n} \frac{H_{k}}{k} \ln^{m} k + \sum_{j=1}^{r-1} \frac{1}{j} \sum_{k=1}^{n} \frac{\ln^{m} k}{k} - \frac{1}{j} \sum_{k=1}^{n} \frac{\ln^{m} k}{j(k+j)}
\]
and

\[
\sum_{j=1}^{r-1} \frac{1}{j} \sum_{k=1}^{n} \ln^{m} k = \sum_{j=1}^{r-1} \frac{1}{j} \sum_{k=j+1}^{n+j} \left(\ln k + \ln \left(1 - \frac{j}{k} \right) \right)^{m}
\]

\[
= \sum_{j=1}^{r-1} \frac{1}{j} \left(\sum_{k=1}^{n} \frac{\ln^{m} k}{k} - \sum_{k=1}^{j} \frac{\ln^{m} k}{k} + \sum_{\mu=1}^{m} \sum_{k=j+1}^{n+j} \frac{1}{k} (\ln k)^{m-\mu} \ln^{\mu} \left(1 - \frac{j}{k} \right) \right)
\]

Then, we have

\[
\sum_{k=1}^{n} \frac{H_{k+r-1}}{k} \ln^{m} k = \sum_{k=1}^{n} \frac{H_{k}}{k} \ln^{m} k + n \left(H_{r-1} \sum_{k=1}^{n} \frac{\ln^{m} k}{k} - \sum_{j=1}^{r-1} \frac{1}{j} \sum_{k=1}^{n+j} \frac{\ln^{m} k}{k} \right)
\]

\[
+ \sum_{j=1}^{r-1} \left(\sum_{k=1}^{j} \frac{\ln^{m} k}{jk} - \sum_{\mu=1}^{m} \sum_{k=j+1}^{n+j} \frac{1}{jk} (\ln k)^{m-\mu} \ln^{\mu} \left(1 - \frac{j}{k} \right) \right)
\]

(14)

Hence, (12) follows from (13) and (14). \qed

We are ready to give the aforementioned representation for the constants \(\gamma_{H(r)} (m) \).

Theorem 5 Let \(m \) and \(r \) be positive integers. Then,

\[
\Gamma (r) \gamma_{H(r)} (m)
\]

\[
= \gamma_{H} (m) - H_{r-1} \gamma (m) + \sum_{j=1}^{r-1} \frac{1}{j} \left(\sum_{k=1}^{j} \frac{\ln^{m} k}{k} - C (j, m) \right)
\]

\[
+ (-1)^{m} \sum_{j=0}^{r-1} \left[\zeta_{H}^{(m)} (r+1-j, r-1) - H_{r-1} \zeta^{(m)} (r+1-j) \right]
\]

where

\[
\zeta_{H} (s, a) = \sum_{k=1}^{\infty} \frac{H_{k+a}}{k^{s}} = \sum_{k=a+1}^{\infty} \frac{H_{k}}{(k-a)^{s}} \quad \zeta_{H}^{(m)} (r, a) = \left. \frac{d^{m}}{ds^{m}} \zeta_{H} (s, a) \right|_{s=r}
\]

and the constants \(C (j, m) \)

\[
C (j, m) = \sum_{\mu=1}^{m} \left(\sum_{k=j+1}^{\infty} \frac{1}{k} (\ln k)^{m-\mu} \ln^{\mu} \left(1 - \frac{j}{k} \right) \right)
\]
Proof From Lemma 4, we have

$$\sum_{k=1}^{n} \frac{h_k^{(r)}}{k^r} \ln^m k = \frac{1}{\Gamma (r)} \left(\sum_{k=1}^{n} \frac{H_k}{k} \ln^m k - \sum_{j=1}^{r-1} \frac{1}{j} \sum_{k=1}^{n+j} \frac{\ln^m k}{k} \right) \frac{\ln^{m+2} n}{m+2} + \psi (r) \frac{\ln^{m+1} n}{m+1}$$

$$= \frac{1}{\Gamma (r)} \left(\sum_{k=1}^{n} \frac{H_k}{k} \ln^m k - \sum_{j=1}^{r-1} \frac{1}{j} \sum_{k=1}^{n+j} \frac{\ln^m k}{k} \right) \frac{\ln^{m+2} n}{m+2} + \psi (r) \frac{\ln^{m+1} n}{m+1}$$

$$+ \frac{1}{\Gamma (r)} \sum_{j=0}^{r-1} \left[j \right] \left(\sum_{k=1}^{n} \frac{H_{k+r-1}}{kr^{1-j}} \ln^m k - H_{r-1} \sum_{k=1}^{n} \frac{\ln^m k}{k^{r+1-j}} \right)$$

$$+ \frac{1}{\Gamma (r)} \sum_{j=1}^{r-1} \frac{\ln^m k}{k} \ln^{m+1} n \ln^m \left(\frac{1}{k} \right)$$

By letting \(n \) tends to infinity, we see that

$$\gamma^{(r)} (m) = \frac{1}{\Gamma (r)} \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{H_k}{k} \ln^m k - \sum_{j=1}^{r-1} \frac{1}{j} \sum_{k=1}^{n+j} \frac{\ln^m k}{k} \right) \frac{\ln^{m+2} n}{m+2} + \psi (r) \frac{\ln^{m+1} n}{m+1}$$

$$+ (-1)^m \frac{1}{\Gamma (r)} \sum_{j=0}^{r-1} \left[j \right] \frac{\zeta^{(m)} (r+1-j, r-1) - \zeta^{(m)} (r+1-j)}{\Gamma (r)}$$

Then the desired result follows from

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{H_k}{k} \ln^m k - \frac{\ln^{m+2} n}{m+2} + \psi (r) \frac{\ln^{m+1} n}{m+1} \right)$$

$$= \lim_{n \to \infty} \left(\gamma^{(1)} (m) + H_{r-1} \frac{\ln^{m+1} n}{m+1} - \sum_{j=1}^{r-1} \frac{1}{j} \sum_{k=1}^{n+j} \frac{\ln^m k}{k} \right)$$

$$= \gamma^{(1)} (m) - H_{r-1} \gamma^{(0)} (m)$$

$$- \sum_{j=1}^{r-1} \frac{1}{j (m+1)} \lim_{n \to \infty} \left((\ln (n+j))^{m+1} - \ln^{m+1} n \right)$$

$$= \gamma^{(1)} (m) - H_{r-1} \gamma^{(0)} (m) .$$

\[\square\]
5 A formal extension of the Stieltjes constants with an application

In this section, we give a presentation for the constants

\[\gamma^\ast_{h(r)} (m) = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{h_k^{(r)}}{k^r} \ln^m k - \int_{1}^{n} \frac{h_x^{(r)}}{x^r} \ln^m x \, dx \right), \]

which are a formal extension of the Stieltjes constants. Thanks to this presentation, we show that integrals involving the generalized exponential function can be written in terms of some special constants.

We first analyze the integral in the limit above.

Lemma 5 Let \(m \) and \(r \) be non-negative integers. Then

\[
\Gamma (r) \int_{1}^{n} \frac{h_x^{(r)}}{x^r} \ln^m x \, dx = \frac{\ln^{m+2} n}{m + 2} - \psi (r) \frac{\ln^{m+1} n}{m + 1} + \frac{n^r}{n^{r+1}} \ln^m n + \\
\int_{1}^{n} \left(\sum_{j=0}^{r-1} \left[{r \atop j} \right] \frac{\ln^{m+1} n - \psi (r) \ln^m x}{x^r + 1 - j} + \sum_{j=0}^{r} \left[{r \atop j} \right] (r + 1) \frac{\ln^m x - m \ln^{m-1} x}{x^{r+2} - j} \right) \, dx \\
+ \sum_{j=0}^{r} \left[{r \atop j} \right] \int_{0}^{\infty} \left(\frac{1}{t} - \frac{1}{1 - e^{-t}} \right) \left(\int_{1}^{n} \frac{\ln^m x}{x^{r+1-j}} e^{-xt} \, dx \right) \, dt. \tag{15}
\]

Proof Utilizing the identity \(\psi (x + 1) = \psi (x) + 1/x \) in (6), we have

\[
\Gamma (r) \int_{1}^{n} \frac{h_x^{(r)}}{x^r} \ln^m x \, dx = \int_{1}^{n} \frac{x^r}{x^{r+1}} \psi (x + 1) \, dx \\
+ \int_{1}^{n} \frac{1}{x^s} \frac{d}{dx} (x + 1)^{r-1} \, dx - \psi (r) \int_{1}^{n} \frac{x^r}{x^{r+1}} \, dx. \tag{16}
\]

In view of (7) the first integral on the RHS of (16) becomes

\[
\int_{1}^{n} \frac{x^r}{x^{s+1}} \psi (x + 1) \, dx = \sum_{j=0}^{r} \left[{r \atop j} \right] \int_{1}^{n} \frac{\psi (x + 1)}{x^{s+1-j}} \, dx.
\]

Thanks to the expression [33, p. 26]

\[
\psi (z) = \ln z + \int_{0}^{\infty} \left(\frac{1}{t} - \frac{1}{1 - e^{-t}} \right) e^{-zt} \, dt, \quad \text{Re} (z) > 0,
\]
we write
\[
\int_1^n \frac{\psi (x + 1)}{x^{s+1-j}} dx = \int_1^n \frac{\ln x}{x^{s+1-j}} dx + \int_1^n \frac{1}{x^{s+2-j}} dx + \int_0^\infty \left(\frac{1}{t} - \frac{1}{1 - e^{-t}} \right) \left(\int_1^n e^{-xt} x^{s+1-j} dx \right) dt.
\]

We then deduce that
\[
\frac{\partial^m}{\partial s^m} \int_1^n \frac{x^r}{x^{s+1}} \psi (x + 1) dx \bigg|_{s=r} = \sum_{j=0}^r \left[r \right] \int_1^n \frac{\psi (x + 1)}{x^{r+1-j}} \ln^m x dx
\]
\[
= \int_1^n \frac{\ln^{m+1} x}{x} dx + \sum_{j=0}^{r-1} \left[r \right] \int_1^n \frac{\ln^{m+1} x}{x^{r+1-j}} dx + \sum_{j=0}^r \left[r \right] \int_1^n \frac{\ln^m x}{x^{r+2-j}} dx
\]
\[
+ \sum_{j=0}^r \left[r \right] \int_0^\infty \left(\frac{1}{t} - \frac{1}{1 - e^{-t}} \right) \left(\int_1^n \frac{\ln^m x}{x^{r+1-j}} e^{-xt} dx \right) dt.
\]

On the other hand, the second and the third integrals on the RHS of (16) can be obtained as follows:
\[
\frac{\partial^m}{\partial s^m} \int_1^n \frac{1}{x^s} d x (x + 1)^{r-1} dx \bigg|_{s=r} = \int_1^n \frac{\ln^m x}{x^{r+1-j}} dx (x + 1)^{r-1} dx
\]
\[
= \frac{\ln^m n}{n^r} (n+1)^{r-1} - \sum_{j=0}^r \left[r \right] \int_1^n \frac{-r \ln^m x + m \ln^{m-1} x}{x^{r+2-j}} dx
\]

and
\[
\psi (r) \frac{\partial^m}{\partial s^m} \int_1^n \frac{x^r}{x^{s+1}} dx \bigg|_{s=r} = \psi (r) \int_1^n \frac{\ln^m x}{x} dx + \psi (r) \sum_{j=0}^{r-1} \left[r \right] \int_1^n \frac{\ln^m x}{x^{r+1-j}} dx.
\]

Combining the results above yields (15).

\[\square\]

5.1 Integrals involving the generalized exponential function

The next theorem gives the aforementioned representation for the constants \(\gamma_h^{*} (m) \), which involves the generalized integro-exponential function \(E_s^{m} (t) \).

Theorem 6 Let \(m \) and \(r \) be non-negative integers. Then,
\[
\gamma_{h^{(r)}}^{*} (m) = \gamma_{h^{(r)}} (m) - \frac{m!}{\Gamma (r)} \sum_{j=0}^{r-1} \left[r \right] \left(\frac{m + 1 - (r - j) \psi (r)}{(r - j)^{m+2}} + \frac{j}{(r + 1 - j)^{m+1}} \right)
\]
\[
- r \frac{m!}{\Gamma (r)} - \frac{m!}{\Gamma (r)} \sum_{j=0}^{r} \left[r \right] \int_0^\infty \left(\frac{1}{t} - \frac{1}{1 - e^{-t}} \right) E_s^{m} (r+1-j) (t) dt.
\]

\[\square\]
Proof In the light of Lemma 5, we have

\[
\gamma_{h^{(r)}}^* (m) = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{h_k^{(r)}}{k^r} \ln^m k - \frac{1}{\Gamma (r)} \frac{\ln^{m+2} n + \psi (r) \ln^{m+1} n}{m + 2} \right)
\]

- \frac{1}{\Gamma (r)} \sum_{j=0}^{r-1} \left[\frac{r}{j} \right] \int_{1}^{\infty} \frac{\ln^{m+1} x - \psi (r) \ln^m x}{x^{r+1-j}} \, dx$

- \frac{1}{\Gamma (r)} \sum_{j=0}^{r} \left[\frac{r}{j} \right] \int_{1}^{\infty} \frac{(r+1) \ln^m x - m \ln^{m-1} x}{x^{r+2-j}} \, dx$

- \frac{1}{\Gamma (r)} \sum_{j=0}^{r} \left[\frac{r}{j} \right] \int_{0}^{\infty} \left(\frac{1}{t} - \frac{1}{1 - e^{-t}} \right) \left(\int_{1}^{\infty} \frac{\ln^m x}{x^{r+1-j} e^{-xt}} \, dx \right) \frac{t^m}{(r+1-j)^{m+1}} \, dt. \quad (17)$

Using the following reduction formula,

\[
I (\mu, k) = \int_{1}^{\infty} \frac{\ln^\mu x}{x^k} \, dx = \frac{\mu!}{(k-1)^\mu} I (\mu - 1, k)
\]

we deduce that

\[
I (\mu, k) = \frac{\mu!}{(k-1)^\mu} I (0, k) = \frac{\mu!}{(k-1)^{\mu+1}}.
\]

Hence, after some rearrangements, (17) becomes

\[
\gamma_{h^{(r)}}^* (m) = \gamma_{h^{(r)}} (m) - \frac{m!}{\Gamma (r)} \sum_{j=0}^{r-1} \left[\frac{r}{j} \right] \left(\frac{m+1}{(r-j)^{m+2}} - \frac{\psi (r)}{(r-j)^{m+1}} \right)
\]

- \frac{m!}{\Gamma (r)} \sum_{j=0}^{r} \left[\frac{r}{j} \right] \left(\frac{r+1}{(r+1-j)^{m+1}} - \frac{1}{(r+1-j)^{m}} \right)

- \frac{m!}{\Gamma (r)} \sum_{j=0}^{r} \left[\frac{r}{j} \right] \int_{0}^{\infty} \left(\frac{1}{t} - \frac{1}{1 - e^{-t}} \right) E_{r+1-j}^m (t) \, dt,
\]

which completes the proof. □

Remark 2 In fact, one can use Theorem 6 as a recursion to find an exact formula for the integrals

\[
\int_{0}^{\infty} \left(\frac{1}{t} - \frac{1}{1 - e^{-t}} \right) E_r^m (t) \, dt
\]
in terms of $\gamma_{h^{(r)}}(m)$, $\gamma_{h^{(r)}}^*(m)$ and $\psi(r)$ such as
\[
\int_0^\infty \left(\frac{1}{t} - \frac{1}{1 - e^{-t}}\right) E_1^m(t) \, dt = \frac{1}{m!} \left(\gamma_{h^{(1)}}(m) - \gamma_{h^{(1)}}^*(m)\right) - 1
\]
and
\[
\int_0^\infty \left(\frac{1}{t} - \frac{1}{1 - e^{-t}}\right) E_2^m(t) \, dt = \frac{\gamma_{h^{(2)}}(m) - \gamma_{h^{(1)}}(m)}{m!} - \frac{\gamma_{h^{(2)}}^*(m) - \gamma_{h^{(1)}}^*(m)}{m!} - m + \psi(2) - \frac{1}{2m+1} - 2.
\]

We conclude the paper with a result on evaluation of the integrals involving generalized exponential function $E_0^0(t)$.

Theorem 7 Let $p \in \mathbb{N}$. Then the integral
\[
\int_0^\infty \left(\frac{1}{t} - \frac{1}{1 - e^{-t}}\right) E_0^0(t) \, dt
\]
can be written as a finite combination of the Riemann zeta values $\zeta(l)$ and $\zeta'(k)$, Euler–Mascheroni constant γ, Stieltjes constant $\gamma^{(1)}$ and the constants σ_k.

Proof In special case $m = 0$, the constants $\gamma_{h^{(r)}}^*(0)$ reduce to the constants
\[
\gamma_{h^{(r)}}^* = \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{h_k^{(r)}}{k^r} - \int_1^n \frac{h_k^{(r)}}{x^r} \, dx\right)
\]
introduced in recent paper [11]. Accordingly, we have two alternative representations for $\gamma_{h^{(r)}}^*(0) = \gamma_{h^{(r)}}^*$. The first one appears from Theorem 6:

\[
\Gamma(r) \gamma_{h^{(r)}}^* = \Gamma(r) \gamma_{h^{(r)}}(0) - \sum_{j=0}^{r-1} \binom{r}{j} \left(\frac{1}{(r-j)^2} + \frac{j}{(r+1-j)}\right) - r - \sum_{j=0}^{r-1} \binom{r}{j} \int_0^\infty \left(\frac{1}{t} - \frac{1}{1 - e^{-t}}\right) E_{r+1-j}^0(t) \, dt,
\]

and the second one is given in Theorem 8 of [11]:

\[
\Gamma(r) \gamma_{h^{(r)}}^* = \frac{1}{2} \gamma^2 - \frac{1}{2} \zeta(2) + \sigma_1 + \gamma(1) + \sum_{j=1}^{r-1} \frac{H_j}{j} - (\psi(r) + \gamma) \gamma + r!
\]
where \(H_p^{(v)} = \sum_{k=1}^{p} k^{-v} \) are the generalized harmonic numbers. As a consequence of these two representations, we have

\[
\sum_{j=0}^{r} \left[\frac{r}{j} \right] \int_{0}^{\infty} \left(\frac{1}{t} - \frac{1}{1 - e^{-t}} \right) E_{r+1-j}^{0} (t) \, dt \\
= \Gamma (r) \gamma_{h^{(r)}} (0) - \frac{1}{2} \gamma^2 + \frac{1}{2} \xi (2) - \sigma_1 - \gamma (1) - \sum_{j=1}^{r-1} \frac{H_j}{j} + (\psi (r) + \gamma) \gamma - r!
\]

\[
- \sum_{j=1}^{r-1} \left[\frac{r}{j} \right] \left\{ \begin{array}{l}
\frac{r+3-j}{2} \xi (r + 2 - j) - \frac{1}{2} \sum_{v=1}^{r-j-1} \xi (r + 1 - j - v) \xi (v + 1) \\
- \sum_{v=2}^{r-j} (-1)^v \xi (r + 2 - j - v) \left(H_{r-1}^{(v)} + \frac{(-1)^{r-j}}{v-1} + H_{r-j} \right) \\
+ (-1)^{r-j} \left(\sigma_{r+1-j} - \xi' (r + 1 - j) + \sum_{v=1}^{r-1} \frac{H_v}{v^{r+1-j}} \right) - \frac{r^2}{r+1-j} \\
- \sum_{j=0}^{r-1} \left[\frac{r}{j} \right] \left(\frac{1 - (r - j) \psi (r)}{(r - j)^2} + \frac{j}{r + 1 - j} \right) \end{array} \right. \tag{18}
\]

To complete the proof, it is enough to show that the constants

\[
\gamma_{h^{(r)}} := \gamma_{h^{(r)}} (0) = \lim_{x \to \infty} \left(\sum_{n \leq x} \frac{H_n^{(r)}}{n^r} - \frac{1}{2 \Gamma (r)} \ln^2 x + \frac{\psi (r)}{\Gamma (r)} \ln x \right)
\]

can be written in terms of zeta values, Euler–Mascheroni constant and harmonic numbers. To achieve this, we appeal the following expression [11, Lemma 4]:

\[
\sum_{k=1}^{n} \frac{H_k^{(r)} (2)}{k^r} = \frac{(H_n)^2 + H_n^{(2)}}{2 \Gamma (r)} + \frac{\psi (r)}{\Gamma (r)} H_n \\
+ \frac{1}{\Gamma (r)} \sum_{j=0}^{r-1} \left[\frac{r}{j} \right] \left(\sum_{k=1}^{n} \frac{H_{k+j}}{k^{r+1-j}} - H_{r-1} H_{n+j}^{(r+1-j)} \right) \\
+ \frac{1}{\Gamma (r)} \sum_{j=1}^{r-1} \frac{H_j}{j} - \frac{H_{r-1}}{\Gamma (r)} (H_{n+r-1} - H_n) + \frac{H_{r-1}}{\Gamma (r)} \sum_{j=1}^{r-1} \frac{1}{j + n},
\]

where \(r \) is a non-negative integer.
We now utilize the asymptotic expression (cf. (8))

\[
H_n = \ln n + \gamma + O\left(n^{-1}\right)
\]
to find that

\[
\lim_{x \to \infty} \left(\frac{(H_n)^2}{2} - (\psi(r) + \gamma) H_n - \frac{\ln^2 n}{2} + \psi(r) \ln n \right) = -\frac{\gamma^2}{2} - \gamma \psi(r).
\]

Hence,

\[
\Gamma(r) \gamma_h(r) = -\frac{\gamma^2}{2} - \gamma \psi(r) + \frac{\zeta(2)}{2} + \frac{(H_{r-1})^2 + H_{r-1}^{(2)}}{2}
\]

\[
+ \sum_{j=1}^{r-1} \left[\left(\frac{r}{j} \right) \zeta_H\left(r + 1 - j, r - 1\right) - H_{r-1} \xi\left(r + 1 - j\right) \right].
\]

(19)

On the other hand, it is known that the values \(\tilde{\zeta}_H(p, r - 1)\) can be written as [38, Theorem 2.1]

\[
\tilde{\zeta}_H(p, r - 1) = \frac{1}{2} (p + 2) \zeta(p + 1) - \frac{1}{2} \sum_{v=1}^{p-2} \xi(p - v) \zeta(v + 1)
\]

\[
- \sum_{v=1}^{p-1} (-1)^v \xi(p + 1 - v) H_{r-1}^{(v)} - (-1)^p \sum_{v=1}^{r-1} \frac{H_v}{v^p}
\]

(20)

for \(p \in \mathbb{N} \setminus \{1\}\). Combining (19) and (20), we accomplish that the constants \(\gamma_h(r)\) can be written in terms of zeta values, Euler–Mascheroni constant, and harmonic numbers.

Therefore, it can be seen from (18), (19), and (20) that integrals involving \(E^0_p(t)\) can be written in terms of some special constants which is the assertion of Theorem 7.

\(\square\)

Remark 3 (1) It follows from (19) and (20) that the constants \(\gamma_h(r)\) can be explicitly written as follows:

\[
\Gamma(r) \gamma_h(r) = -\frac{\gamma^2}{2} - \gamma \psi(r) + \frac{\zeta(2)}{2} + \frac{(H_{r-1})^2 + H_{r-1}^{(2)}}{2}
\]

\[
+ \frac{1}{2} \sum_{j=1}^{r-1} \left[\left(\frac{r}{j} \right) \zeta(3 - j) \xi(r + 2 - j) - \sum_{v=1}^{r-1} \frac{(-1)^{r-1+j-v}}{v^{r+1-j}} \right]
\]

\[
- \sum_{j=1}^{r-2} \left[\left(\frac{r}{j} \right) \sum_{v=2}^{r-j} \left(\frac{\xi(v)}{2} + (-1)^v H_{r-1}^{(v)} \right) \xi(r + 2 - j - v) \right].
\]
In particular, when $r = 1$, it reduces to

$$
\gamma_{H^{(1)}} = \frac{\gamma^2}{2} + \frac{\zeta(2)}{2}
$$

and coincides with the constant $\gamma_{H(0)}$ recorded in [13, Eq. (6)].

(2) Equation (18) can be used recursively to find exact formulas for the integrals

$$
\int_0^\infty \left(\frac{1}{t} - \frac{1}{1-e^{-t}} \right) E^0_p(t) \, dt.
$$

A few examples of such formulas are presented at the end of the introductory section.

Acknowledgements The authors are grateful to the anonymous referees and the editor for their constructive and encouraging comments, which helped to improve this article.

References

1. Adell, J.A.: Asymptotic estimates for Stieltjes constants: a probabilistic approach. Proc. R. Soc. A 467(2128), 954–963 (2011)
2. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)
3. Apostol, T.M., Vu, T.H.: Dirichlet series related to the Riemann zeta function. J. Number Theory 19(1), 85–102 (1984)
4. Berndt, B.C.: On the Hurwitz zeta-function. Rocky Mt. J. Math. 2(1), 151–157 (1972)
5. Blagouchine, I.V.: A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations. J. Number Theory 148, 537–592 (2015)
6. Blagouchine, I.V.: Expansions of generalized Euler’s constants into the series of polynomials in π^{-2} and into the formal enveloping series with rational coefficients only. J. Number Theory 158, 365–396 (2016)
7. Boyadzhiev, K.N.: A special constant and series with zeta values and harmonic numbers. Gazeta Mat. Ser. A 115, 1–16 (2018)
8. Boyadzhiev, K.N., Gadiyar, H.G., Padma, R.: The values of an Euler sum at the negative integers and a relation to a certain convolution of Bernoulli numbers. Bull. Korean Math. Soc. 45(2), 277–283 (2008)
9. Briggs, W.E., Buschman, R.G.: The power series coefficients of functions defined Dirichlet series. III. J. Math. 5(1), 43–44 (1961)
10. Briggs, W.E., Chowla, S.: The power series coefficients of $\zeta(s)$. Amer. Math. Monthly 62, 323–325 (1955)
11. Can, M., Dil, A., Kargın, L., Cenkci, M., Guloğlu, M.: Generalizations of the Euler-Mascheroni constant associated with the hyperharmonic numbers. J. Ramanujan Math. Soc. (in press). https://arxiv.org/abs/2109.01515
12. Can, M., Kargın, L., Dil, A., Soysal, G.: Euler sums of generalized harmonic numbers and connected extensions. Appl. Anal. Discret. Math. https://doi.org/10.2298/AADM210122014C (2022)
13. Candelpergher, B., Coppo, M.-A.: Laurent expansion of harmonic zeta functions. J. Math. Anal. Appl. 491, 124309 (2020)
14. Choi, J.: Certain integral representations of Stieltjes constants γ_n. J. Inequal. Appl. 2013(1), 1–10 (2013)
15. Coffey, M. W.: Hypergeometric summation representations of the Stieltjes constants. Analysis 33(2), 121–142 (2013)
16. Coffey, M.W.: Series representations for the Stieltjes constants. Rocky Mt. J. Math. 44(2), 443–477 (2014)
17. Conway, J.H., Guy, R.: The Book of Numbers. Springer, New York (1998)
18. Coppo, M.-A., Candelpergher, B.: A note on some formulae related to Euler sums. https://hal.univ-cotedazur.fr/hal-03170892
19. Dil, A., Boyadzhiev, K.N.: Euler sums of hyperharmonic numbers. J. Number Theory 147, 490–498 (2015)
20. Dil, A., Boyadzhiev, K.N., Aliyev, I.A.: On values of the Riemann zeta function at positive integers. Lith. Math. J. 60, 9–24 (2020)
21. Dil, A., Muniroglu, E.: Applications of derivative and difference operators on some sequences. Appl. Anal. Discret. Math. 14(2), 406–430 (2020)
22. Euler, L.: Opera omnia, vol. 15. Teubner, Berlin (1917)
23. Fredrik, J., Blagouchine, I.V.: Computing Stieltjes constants using complex integration. Math. Comput. 88(318), 1829–1850 (2019)
24. Hardy, G.H.: Note on Dr. Vacca’s series for \(\gamma \). Q. J. Pure Appl. Math 43, 215–216 (1912)
25. Kamano, K.: Dirichlet series associated with hyperharmonic numbers. Mem. Osaka Inst. Tech. Ser. A 56, 11–15 (2011)
26. Kargın, L., Can, M., Dil, A., Cenkci, M.: On evaluations of Euler-type sums of hyperharmonic number. Bull. Malays. Math. Sci. Soc. 45, 113–131 (2022)
27. Liang, J.J.Y., Todd, J.: The Stieltjes constants. J. Res. Nat. Bur. Standards Sect. B 76, 161–178 (1972)
28. Matsuoka, Y.: On the values of a certain Dirichlet series at rational integers. Tokyo J. Math. 5(2), 399–403 (1982)
29. Mező, I.: Analytic extension of hyperharmonic numbers. Online J. Anal. Combin. 4 (2009)
30. Mező, I., Dil, A.: Hyperharmonic series involving Hurwitz zeta function. J. Number Theory 130, 360–369 (2010)
31. Milgram, M.S.: Approximate solutions to the half-space integral transport equation near a plane boundary. Can. J. Phys. 58(9), 1291–1310 (1980)
32. Milgram, M.S.: The generalized integro-exponential function. Math. Comput. 44(170), 443–458 (1985)
33. Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht (2001)
34. Su, H., Kim, M.-S.: On the Stieltjes constants and gamma functions with respect to alternating Hurwitz zeta functions. J. Math. Anal. Appl. 509, 125930 (2021)
35. Van de Hulst, H.C.: Scattering in a planetary atmosphere. Astrophys. J. 107, 220–246 (1948)
36. Weisstein, E.: Maclaurin-Cauchy theorem. accessed December 21. http://mathworld.wolfram.com/Maclaurin-CauchyTheorem.html (2021)
37. Xu, C.: Computation and theory of Euler sums of generalized hyperharmonic numbers. C.R. Math. 356(3), 243–252 (2018)
38. Xu, C., Li, Z.: Tornheim type series and nonlinear Euler sums. J. Number Theory 174, 40–67 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.