DUALITY INDUCED REFLECTIONS AND CPT

Heinrich Saller
Max-Planck-Institut für Physik and Astrophysik
Werner-Heisenberg-Institut für Physik
München

Abstract

The linear particle-antiparticle conjugation C and position space reflection P as well as the antilinear time reflection T are shown to be inducable by the selfduality of representations for the operation groups $SU(2)$, $SL(\mathbb{C}^2)$ and \mathbb{R} for spin, Lorentz transformations and time translations resp. The definition of a colour compatible linear \mathbb{CP}-reflection for quarks as selfduality induced is impossible since triplet and antitriplet $SU(3)$-representations are not linearly equivalent.
1 Reflections

1.1 Reflections

A reflection will be defined to be an involution of a finite dimensional vector space V

$$ V \leftarrow^R V, \quad R \circ R = \text{id}_V \iff R = R^{-1} $$

i.e. a realization of the parity group $\mathbb{Z}_2 \equiv \{\pm 1\}$ in the V-bijections which is linear for a real space and may be linear or antilinear for a complex space

$$ R(v + w) = R(v) + R(w), \quad R(\alpha v) = \begin{cases} \alpha R(v) & \text{for } \alpha \in \mathbb{R} \text{ or } \mathbb{C} \quad (\text{linear}) \\ \bar{\alpha}R(v) & \text{for } \alpha \in \mathbb{C} \quad (\text{antilinear}) \end{cases} $$

An antilinear reflection for a complex space $V \cong \mathbb{C}^n$ is a real linear one for its real forms $V \cong \mathbb{R}^{2n}$.

The inversion of the real numbers $\alpha \leftrightarrow -\alpha$ is the simplest nontrivial linear reflection, the canonical conjugation $\alpha \leftrightarrow \bar{\alpha}$ is the simplest nontrivial

\footnote{Since the parity group is used as multiplicative group, I do not use the additive notation $\mathbb{Z}_2 = \{0, 1\}$.}
antilinear one being a linear one of \(C \) considered as real 2-dimensional space \(C = \mathbb{R} \oplus i\mathbb{R} \).

Any (anti)linear isomorphism \(\iota : V \longrightarrow W \) of two vector spaces defines an (anti)linear reflection of the direct sum \(V \oplus W \xrightarrow{\iota \oplus \iota^{-1}} V \oplus W \) which will be denoted in short also by \(V \xrightarrow{\iota} W \).

1.2 Mirrors

The fixpoints of a linear reflection \(V_R^+ = \{ v \mid R(v) = v \} \), i.e. the elements with even parity, in an \(n \)-dimensional space constitute a vector subspace, the mirror for the reflection \(R \), with dimension \(0 \leq m \leq n \) with the complement \(V_R^- = \{ v \mid R(v) = -v \} \), i.e. the elements with odd parity, for the direct decomposition \(V = V_R^+ \oplus V_R^- \). The central reflection \(R = -\text{id}_V \) has the origin as a 0-dimensional mirror. Linear reflections are diagonalizable \(R \sim \left(\begin{array}{cc} 1_m & 0 \\ 0 & -1_{n-m} \end{array} \right) \) with \((m, n - m) \) the signature characterizing the degeneracy of \(\pm 1 \) in the spectrum of \(R \). And vice versa: Any direct decomposition \(V = V^+ \oplus V^- \) defines two reflections with the mirror either \(V^+ \) or \(V^- \).

With \((\det R)^2 = 1 \) any linear reflection has either a positive or a negative orientation. Looking in the 2-dimensional bathroom mirror is formalized by the negatively oriented 3-space reflection \((x, y, z) \leftrightarrow (-x, y, z)\). The position space \(\mathbb{R}^3 \) reflection \(\vec{x} \xleftarrow{13} -\vec{x} \) with negative orientation or the Minkowski spacetime translation \(\mathbb{R}^4 \) reflection \(x \xleftarrow{14} -x \) with positive orientation are central reflections with the origins ‘here’ and ‘here-now’ as point mirrors. A space reflection \((x_0, \vec{x}) \xleftarrow{p} (x_0, -\vec{x})\) in Minkowski space or a time reflection \((x_0, \vec{x}) \xleftarrow{T} (-x_0, \vec{x})\) have both negative orientation with a 1-dimensional time and 3-dimensional position space mirror resp.

1.3 Reflections in Orthogonal Groups

A real linear reflection \(R \cong \left(\begin{array}{cc} 1_m & 0 \\ 0 & -1_{n-m} \end{array} \right) \) can be considered to be an element of an orthogonal group \(\mathbf{O}(p, q) \) for any \(3 \mid (p, q) \) with \(p + q = n \). A positively oriented reflection, \(\det R = 1 \), is is an element even of the special orthogonal groups, \(R \in \mathbf{SO}(p, q), p + q \geq 1 \).

Orthogonal groups have discrete (semi)direct factor parity subgroups \(\mathbb{I}(2) \) as seen in the simplest compact and noncompact examples

\[
\mathbf{O}(2) \ni \epsilon \left(\begin{array}{cc} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array} \right), \quad \epsilon \in \mathbb{I}(2) = \{ \pm 1 \}, \quad \alpha \in [0, 2\pi[\\
\mathbf{O}(1, 1) \ni \epsilon' \left(\begin{array}{cc} \cosh \beta & \sinh \beta \\ \sinh \beta & \cosh \beta \end{array} \right), \quad \epsilon, \epsilon' \in \mathbb{I}(2), \quad \beta \in \mathbb{R}
\]

In general, the classes of a real orthogonal groups with respect to its special normal subgroup constitute a reflection group

\[\mathbf{O}(p, q)/\mathbf{SO}(p, q) \cong \mathbb{I}(2) \]

For real odd dimensional spaces \(V \), e.g. for position space \(\mathbb{R}^3 \), one has direct products of the special groups with the central reflection group, whereas for

\[3\]The orthogonal signature \((p, q)\) has nothing to do with the reflection signature \((n, m)\).
even dimensional spaces, e.g. a Minkowski space \mathbb{R}^4, there arise semidirect products (denoted by \rtimes) of the special group with a reflection group which can be generated by any negatively oriented reflection

\[
O(p, q) \cong \begin{cases}
\mathbb{I}(2) \times SO(p, q), & p + q = 1, 3, \ldots \\
\mathbb{I}(2) \rtimes SO(p, q), & p + q = 2, 4, \ldots
\end{cases} \quad \mathbb{I}(2) \cong \{ \pm \text{id}_V \}
\]

In the semidirect case the product is given as follows

\[(I, \Lambda) \in \mathbb{I}(2) \rtimes SO(p, q) \Rightarrow (I_1, \Lambda_1)(I_2, \Lambda_2) = (I_1 \circ I_2, \Lambda_1 \circ I_1 \circ \Lambda_2 \circ I_1)\]

Obviously, in the semidirect case the reflection group $\mathbb{I}(2)$ is not compatible with the action of the (special) orthogonal group.

\[p + q = 2, 4, \ldots, \det R = -1 \Rightarrow [R, SO(p, q)] \neq \{0\}\]

E.g. the group $O(2)$ is nonabelian, or, a space reflection and a time reflection of Minkowski space is not Lorentz group $SO(1, 3)$ compatible.

For noncompact orthogonal groups there is another discrete reflection group: The connected subgroup G_0 (unit connection component and Lie algebra exponent) of a Lie group G is normal with a discrete quotient group G/G_0. The connected components of the full orthogonal groups are those of the special groups $O_0(p, q) = SO_0(p, q)$. For the compact case they are the special groups, for the noncompact ones one has two components

\[SO_0(n) = SO(n) \quad \text{if } pq \geq 1 \Rightarrow SO(p, q)/SO_0(p, q) \cong \mathbb{I}(2)\]

Summarizing: A compact orthogonal group gives rise to a reflection group $\mathbb{I}(2)$

\[O(n) \cong \begin{cases}
\{ \pm 1_n \} \times SO(n), & n = 1, 3, \ldots \\
\mathbb{I}(2) \rtimes SO(n), & n = 2, 4, \ldots
\end{cases} \quad \mathbb{I}(2) \cong \{ R, 1_n \}, \quad \det R = -1
\]

a noncompact one to a reflection Klein group $\mathbb{I}(2) \times \mathbb{I}(2)$

\[O(p, q) \cong \begin{cases}
\{ \pm 1_{p+q} \} \times \mathbb{I}(2) \rtimes SO_0(p, q), & p + q = 3, 5, \ldots \\
\mathbb{I}(2) \rtimes \{ [\pm 1_{p+q}] \times SO_0(p, q) \}, & p + q = 2, 4, \ldots
\end{cases} \quad \mathbb{I}(2) \cong \{ R, 1_n \}, \quad \det R = -1
\]

For a noncompact $O(p, q)$ with $p = 1$ the connected subgroup is the orthochronous group, compatible with the order on the vector space $V \cong \mathbb{R}^{1+q}$, e.g. for Minkowski spacetime

\[O(1, 3) \cong \mathbb{I}(2) \rtimes \mathbb{I}(2) \rtimes SO_0(1, 3)\]

where the reflection Klein group can be generated by the central reflection -1_4 and a position space reflection P

\[\mathbb{I}(2) \times \mathbb{I}(2) \cong \{ P, 1_4 \} \times \{ \pm 1_4 \} = \{ \pm 1_4, P, T = -P \}, \quad [SO_0(1, 3), P] \neq \{0\}
\]

\[P = \begin{pmatrix} 1 & 0 \\ 0 & -1_3 \end{pmatrix}, \quad T = -1_4 \circ P = \begin{pmatrix} -1 & 0 \\ 0 & 1_3 \end{pmatrix}\]
Also the connected subgroup $\text{SO}_0(p, q)$ may contain positively oriented reflections which are called continuous since they can be written as exponentials $R = e^l$ with an element of the orthogonal Lie algebra $l \in \log \text{SO}_0(p, q)$. E.g. the central reflections $-1_{2n} \in \text{SO}(2n)$ in even dimensional Euclidean spaces, e.g. in the Euclidean 2-plane. A negatively oriented reflection R of a space V can be embedded as a reflection $R \oplus S$ with any orientation of a strictly higher dimensional space $V \oplus W$

$$V \xleftarrow{R} V, \quad \det R = -1$$
$$V \oplus W \xleftarrow{R \oplus S} V \oplus W, \quad \det (R \oplus S) = -\det S$$

where, for compact orthogonal groups on V and $V \oplus W$, a reflection $R \oplus S$ with $\det S = -1$ is a continuous reflection, i.e. a rotation. There are the familiar examples2 for $\text{O}(n) \hookrightarrow \text{SO}(n + 1)$: Two letter noodles in L-form, lying with opposite helicity on the kitchen table, can be 3-space rotated into each other, or, a left and a right handed glove are identical up to Euclidean 4-space rotations. The embedding of the central position space reflection into Minkowski spacetime can go into a positively or negatively oriented reflection which are both not continuous, i.e. they are in the discrete Klein reflection group

$$-1_3 \hookrightarrow \left(\begin{array}{cc} 1 & 0 \\ 0 & -1_3 \end{array} \right), \quad \{0, -1_4\} \subset \text{O}(1, 3)/\text{SO}_0(1, 3)$$

2 Reflections for Spinors

The doubly connected groups $\text{SO}(3)$ and $\text{SO}_0(1, 3)$ can be complex represented via their simply connected covering groups $\text{SU}(2)$ and $^5\text{SL}(\mathbb{C}^2)$ resp.

$$\text{SO}(3) \cong \text{SU}(2)/\{\pm 1_2\}, \quad \text{SO}_0(1, 3) \cong \text{SL}(\mathbb{C}^2)/\{\pm 1_2\},$$

The reflection group $\{\pm 1_2\}$ for the $\text{SO}(3)$-classes in $\text{SU}(2)$ and the $\text{SO}_0(1, 3)$-classes in $\text{SL}(\mathbb{C}^2)$ contains the continuous central \mathbb{C}^2-reflection $-1_2 = e^{i\pi\sigma_3} \in \text{SU}(2)$.

2.1 The Pauli Spinor Reflection

The fundamental defining $\text{SU}(2)$-representation for the rotations acts on Pauli spinors $W \cong \mathbb{C}^2$

$$u = e^{i\vec{a} \vec{\sigma}} \in \text{SU}(2) \quad (\text{Pauli matrices} \ \vec{\sigma})$$

They have an invariant antisymmetric bilinear form (spinor ‘metric’)

$$\epsilon : W \times W \rightarrow \mathbb{C}, \quad \epsilon(\psi^A, \psi^B) = \epsilon^{AB} = -\epsilon^{BA}, \quad A, B = 1, 2$$

$^4\log G$ denotes the Lie algebra of the Lie group G.

5Throughout this paper the group $\text{SL}(\mathbb{C}^2)$ is used as real 6-dimensional Lie group.
which defines an isomorphism with the dual space $W^T \cong \mathbb{C}^2$ is compatible with the $SU(2)$-action - on the dual space as dual representation \tilde{u} (inverse transposed)

$$
\begin{array}{c}
W \xrightarrow{u} W \\
W^T \xrightarrow{\tilde{u}} W^T
\end{array}
$$

ϵ connects the two Pauli representations with reflected transformations of the spin Lie algebra $\log SU(2)$, i.e. it defines a central reflection for the three compact rotation parameters $\vec{\alpha}$

$$
e^{i\vec{\alpha}\vec{\sigma}} \leftrightarrow \epsilon (e^{-i\vec{\alpha}\vec{\sigma}})^T$$

and will be called the **Pauli spinor reflection**

$$W \xleftrightarrow{\epsilon} W^T, \ \psi^A \leftrightarrow \epsilon^{AB}\psi^*_B, \ \ [\epsilon, SU(2)] = \{0\}$$

The mathematical structure of selfduality as a reflection generating mechanism is given in the appendix.

2.2 Reflections C and P for Weyl Spinors

The two fundamental $SL(\mathbb{C}^2)$-representations for the Lorentz group are the the left and right handed Weyl representation on $W_L, W_R \cong \mathbb{C}^2$ with the dual representations on the linear forms W^T_L,R

left: $\lambda = e^{(i\vec{\alpha}+\vec{\beta}\vec{\sigma})}$, right: $\tilde{\lambda} = \lambda^{-1*} = e^{(i\vec{\alpha}-\vec{\beta}\vec{\sigma})}$

left dual: $\tilde{\lambda} = \lambda^{-1T} = [e^{(-i\vec{\alpha}+\vec{\beta}\vec{\sigma})}]^T$, right dual: $\lambda^{T*} = \overline{\lambda} = [e^{(-i\vec{\alpha}+\vec{\beta}\vec{\sigma})}]^T$

The Weyl representations with dual bases in the conventional notations with dotted and undotted indices

$$
\begin{array}{c}
\text{left: } l^A \in W_L \cong \mathbb{C}^2, \ \text{right: } r^A \in W_R \cong \mathbb{C}^2 \\
\text{left dual: } r^*_A \in W^*_L \cong \mathbb{C}^2, \ \text{right dual: } l^*_A \in W^*_R \cong \mathbb{C}^2
\end{array}
$$

6The linear forms V^T of a vector space V define the dual product $V^T \times V \rightarrow \mathbb{C}$ by $\langle \omega, v \rangle = \omega(v)$ and dual bases by $\langle e_j, e^k \rangle = \delta^k_j$. Transposed mappings $f : V \rightarrow W$ are denoted by $f^T : W^T \rightarrow V^T$ with $(f^T(\omega), v) = \langle \omega, f(v) \rangle$.

7The usual strange looking crossover association of the letters l^* and r^* for right and left handed dual spinors resp. will be discussed later.
are selfdual with the $\text{SL}(\mathbb{C}^2)$-invariant volume form on \mathbb{C}^2, i.e. the dual isomorphisms are Lorentz compatible

\[
\begin{array}{ccc}
W_L & \xrightarrow{\lambda} & W_L \\
\epsilon_L & & \epsilon_L \\
W'_L & \xrightarrow{\lambda} & W'_L \\
\end{array}
\quad
\begin{array}{ccc}
W_R & \xrightarrow{\lambda} & W_R \\
\epsilon_R & & \epsilon_R \\
W'_R & \xrightarrow{\lambda} & W'_R \\
\end{array}
\]

For the Lorentz group the spinor ‘metric’ will prove to be related to the particle-antiparticle conjugation, and will be called Weyl spinor reflection, denoted by $C \in \{\epsilon_L, \epsilon_R\}$

\[
\begin{align*}
W_L & \xleftarrow{\epsilon} W'_L, & l^A & \leftrightarrow \epsilon^{AB} r^*_B \\
W_R & \xleftarrow{\epsilon} W'_R, & r^A & \leftrightarrow \epsilon^{AB} l^*_B \\
\end{align*}
\]

There exist isomorphisms δ between left and right handed Weyl spinors, compatible with the spin group action, however not with the Lorentz group $\text{SL}(\mathbb{C}^2)$

\[
\begin{array}{ccc}
W_L & \xrightarrow{u_L} & W_L \\
\delta & & \delta \\
W_R & \xrightarrow{u_R} & W_R \\
\end{array}
\quad
\begin{array}{ccc}
W_L & \xrightarrow{u_L} & W_L \\
\delta & & \delta \\
W_R & \xrightarrow{u_R} & W_R \\
\end{array}
\]

They connect representations with a reflected boost transformation, i.e. they define a central reflection for the three noncompact boost parameters $\tilde{\beta}$

\[
e^{(i\tilde{\alpha}+\tilde{\beta})\bar{\sigma}} \leftarrow \delta \rightarrow e^{(i\tilde{\alpha}-\tilde{\beta})\bar{\sigma}} \\
\tilde{\sigma}\tilde{\beta} \in \log \text{SL}(\mathbb{C}^2)/\log \text{SU}(2) \cong \mathbb{R}^3, \quad \tilde{\beta} \xrightarrow{\delta} -\tilde{\beta}
\]

These isomorphisms induce nontrivial reflections of the Dirac spinors $\Psi \in W_L \oplus W_R \cong \mathbb{C}^4$

\[
\Psi = \begin{pmatrix} l^A \\ r^A \end{pmatrix} \xleftarrow{\delta} \begin{pmatrix} 0 \\ \delta_B^A \end{pmatrix} \begin{pmatrix} l^B \\ r^B \end{pmatrix} = \gamma^0 \Psi
\]

with the chiral representation of the Dirac matrices

\[
\gamma^j = \begin{pmatrix} 0 & \sigma^j \\ \tilde{\sigma}^j & 0 \end{pmatrix}, \quad \sigma^j = (1_2, \tilde{\sigma}), \quad \tilde{\sigma}^j = (1_2, -\tilde{\sigma})
\]

and will be called Weyl spinor boost reflections $P = \delta$, later used for the central position space reflection representation

\[
\begin{align*}
W_L & \xleftarrow{P} W_R, & l^A & \leftrightarrow \delta^A_{\tilde{\alpha}} r^A \\
W'_L & \xleftarrow{P} W'_R, & r^*_A & \leftrightarrow \delta^A_{\tilde{\alpha}} l^*_A \\
\end{align*}
\]
Therewith all four Weyl spinor spaces are connected to each other by linear reflections

\[
\begin{align*}
W_L \xleftarrow{p} & W_R, \\
W_L^T \xleftarrow{c} & W_R^T,
\end{align*}
\]

\[[P, SL(\mathbb{C}^2)] \neq \{0\}, \quad [P, SU(2)] = \{0\}\]

\[[C, SL(\mathbb{C}^2)] = \{0\}\]

\[
3 \text{ Time Reflection}
\]

The time representations define the antilinear reflection \(T\) for time translation. The different duality with respect to \(SL(\mathbb{C}^2)\) and Lorentz group representations, on the one side, and time representations, on the other side, leads to the nontrivial \(C, P, T\) cooperation.

3.1 Reflection \(T\) of Time Translations

The irreducible time representations, familiar from the quantum mechanical harmonic oscillator with time action eigenvalue (frequency) \(\omega\), with their duals (inverse transposed) are complex 1-dimensional

\[
t \mapsto e^{i\omega t} \in GL(U), \quad t \mapsto e^{-i\omega t} \in GL(U^T), \quad U \cong \mathbb{C} \cong U^T
\]

They are selfdual (equivalent) with an antilinear dual isomorphism which is the \(U(1)\)-conjugation for a dual basis \(u \in U, \ u^* \in U^T\)

\[
\begin{array}{ccc}
U & \xrightarrow{e^{i\omega t}} & U \\
U^T & \xrightarrow{e^{-i\omega t}} & U^T \\
\end{array}
\]

\(*, \ u \leftrightarrow u^*\)

The antilinear isomorphism \(*\) defines a scalar product which gives rise to the quantum mechanical probability amplitudes (Fock state for the harmonic oscillator)

\[
U \times U \rightarrow \mathbb{C}, \quad \langle u | u \rangle = \langle u^*, u \rangle = 1
\]

and defines the time reflection \(T = *\) for the time translations

\[
e^{i\omega t} \xleftarrow{T} e^{-i\omega t}, \quad t \xleftarrow{T} -t
\]
3.2 Lorentz Duality versus Time Duality

As anticipated in the conventional, on first sight strange looking dual Weyl spinor notation, e.g. \(l \in W_L \) and \(l^* \in W^T_R \), the Weyl spinor spaces \(W_L, W^T_R \) with the dual left and right handed \(\text{SL}(\mathbb{C}^2) \)-representations are not the spaces with the dual time representations as exemplified in the harmonic analysis of the left and right handed components in a Dirac field

\[
\begin{align*}
1^A(x) &= \int \frac{d^3q}{(2\pi)^3} \ s\left(\frac{q}{m} \right)^A_C \ C e^{+ixq}u^C(q) + C e^{-ixq}a^C(q) \sqrt{2} \\
1^*_A(x) &= \int \frac{d^3q}{(2\pi)^3} \ s^*\left(\frac{q}{m} \right)^C_A \ \sqrt{2} \\
r^A(x) &= \int \frac{d^3q}{(2\pi)^3} \ s^{-1}\left(\frac{q}{m} \right)^A_C \ C e^{-ixq}u^C(q) + C e^{ixq}a^C(q) \sqrt{2} \\
r^*_A(x) &= \int \frac{d^3q}{(2\pi)^3} \ s^{-1}\left(\frac{q}{m} \right)^C_A \ \sqrt{2} \\
s\left(\frac{q}{m} \right) &= \sqrt{q_0^2 + m^2} (1 + \frac{\vec{q} \cdot \vec{q}}{q_0 + m}) \quad q = (q_0, \vec{q}), \quad q_0 = \sqrt{m^2 + \vec{q}^2}
\end{align*}
\]

Here, \(s\left(\frac{q}{m} \right) \in \text{SL}(\mathbb{C}^2) \) is the Weyl representation of the boost from the rest system of the particle to a frame moving with velocity \(\frac{\vec{q}}{q_0} \) (solution of the Dirac equation), \(u^C \) and \(a^C \) are the creation operators for particle and antiparticles with spin \(\frac{1}{2} \) and opposite charge number \(\pm 1 \) and 3rd spin direction, e.g. for electron and positron, \(u^*_C \) and \(a^*_C \) are the corresponding annihilation operators.

\(\star \) denotes the time representation dual \(U \leftrightarrow U^* \), and \(T \) the Lorentz representation dual \(W \leftrightarrow W^T \) (with spinor indices up and down), i.e. for the four types of Weyl spinors

\[
\begin{align*}
1^A &\in W_L \quad \text{time dual} \\
1^*_A &\in W^T_R = W_L^* \quad \text{Lorentz dual} \\
r^*_A &\in W^T_L = W^*_R \quad \text{Lorentz dual} \\
r^A &\in W_R \quad \text{time dual}
\end{align*}
\]

Time representation duality does not coincide with Lorentz group representation duality.

The antilinear time reflection \((U(1)-\text{conjugation}) \ T = \star \) is compatible with the action of the little group \(\text{SU}(2) \), not with the full Lorentz group

\[
\begin{align*}
W_L &\leftrightarrow W^T_R, \quad 1^A \leftrightarrow \delta^{A\dot{A}}_A 1^*_A \\
W_R &\leftrightarrow W^T_L, \quad r^A \leftrightarrow \delta^{A\dot{A}}_A r^*_A \\
[\text{SU}(2), \text{SU}(2)] &= 0 \quad \text{not compatible}
\end{align*}
\]

3.3 The Cooperation of \(C, P, T \) in the Lorentz Group

It is useful to summarize the action of the linear Weyl spinor reflections \(C \) (particle-antiparticle conjugation) and \(P \) (position space central reflection) and
the antilinear time reflection T in the two types of commuting diagrams

\[
\begin{align*}
\text{with } \mathcal{C}, \mathbf{SL}(&\mathbb{C}^2) = \{0\}, \quad [\mathbf{P} \text{ and } T, \mathbf{SL}(&\mathbb{C}^2)] \neq \{0\}, \quad [\mathbf{P} \text{ and } T, \mathbf{SU}(2)] = \{0\} \\
&[\mathcal{C}, \mathbf{P}] = 0, \quad [\mathcal{C}, T] = 0, \quad [\mathbf{P}, T] = 0
\end{align*}
\]

The product \mathbf{CPT} is an antilinear reflection of each Weyl spinor space, e.g. for the left handed spinors

\[
\begin{align*}
\mathbf{CPT} \sim &\delta^A_{\dot{A}} \delta_{\dot{B}B}^B \mapsto \begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix} \in \mathbf{SO}(3), \quad (x, y, z) \leftrightarrow (-x, y, -z)
\end{align*}
\]

The fact that the antilinear \mathbf{CPT}-reflection is - up to a number conjugation (indicated by overlining) - an element of $\mathbf{SL}(&\mathbb{C}^2)$, covering the connected Lorentz group $\mathbf{SO}_0(1, 3)$, is decisive for the proof of the well known \mathbf{CPT}-theorem\[4,3\]

\[
\mathbf{CPT} \in \mathbf{SL}(&\mathbb{C}^2)
\]

4 Spinor Induced Reflections

The linear spinor reflections ϵ for Pauli spinors and \mathcal{C}, \mathbf{P} for Weyl spinors are inducable on all irreducible finite dimensional representations of $\mathbf{SU}(2)$ and
\(\text{SL}(\mathbb{C}^2) \) with their adjoint groups \(\text{SO}(3) \) and \(\text{SO}_0(1,3) \) resp. via the general procedure: Given the group \(G \) action on two vector spaces its tensor product representation reads
\[
G \times (V_1 \otimes V_2) \rightarrow V_1 \otimes V_2, \quad g \cdot (v_1 \otimes v_2) = (g \cdot v_1) \otimes (g \cdot v_2)
\]
A realization of the simple reflection group \(\mathbb{I}(2) = \{ \pm 1 \} \) is either faithful or trivial.

4.1 Spinor Induced Reflection of Position Space

The reflection \(W \xleftarrow{\epsilon} W^T \) for a Pauli spinor space \(W \cong \mathbb{C}^2 \) induces the central reflection of position space whose elements come - in the Pauli representation of position space - as traceless hermitian \((2 \times 2) \)-matrices
\[
\vec{x} : W \rightarrow W, \quad \text{tr} \, \vec{x} = 0, \quad \vec{x} = \vec{x}^* = \left(\begin{array}{cc} x_3 & x_1 - ix_2 \\ x_1 + ix_2 & x_3 \end{array} \right)
\]
i.e. as elements\(^8\) of the tensor product \(W \otimes W^T \) with the induced \(\epsilon \)-reflection
\[
-\vec{\sigma} = \epsilon^{-1} \circ \sigma^T \circ \epsilon \Rightarrow \vec{x} \xleftarrow{\epsilon} \epsilon^{-1} \circ \vec{x}^T \circ \epsilon = -\vec{x}
\]
In the Cartan representation the Minkowski spacetime translations are hermitian mappings from right handed to left handed spinors
\[
x : W_R \rightarrow W_L, \quad x = x^* = \left(\begin{array}{cc} x_0 + x_1 & x_1 - ix_2 \\ x_1 + ix_2 & x_0 - x_3 \end{array} \right)
\]
i.e. tensors in the product \(W_L \otimes W_R^T \). The linear \(\mathbb{C}P \)-reflection for Weyl spinors
\[
W_L \xleftarrow{\mathbb{C}P} W_R^T, \quad W_R \xleftarrow{\mathbb{C}P} W_L^T
\]
induces the position space reflection of Minkowski spacetime
\[
\sigma^j = (1_2, \vec{\sigma}), \quad \epsilon^{-1} \circ (\sigma^j)^T \circ \epsilon = \sigma^j = (1_2 - \vec{\sigma})
\]
\[
x \cong (x_0, \vec{x}) \xleftarrow{\mathbb{C}P} \epsilon^{-1} \circ x^T \circ \epsilon = \left(\begin{array}{cc} x_0 - x_3 & -x_1 + ix_2 \\ -x_1 - ix_2 & x_0 + x_3 \end{array} \right) \cong (x_0, -\vec{x})
\]

4.2 Induced Reflections of Spin Representation Spaces

All irreducible complex representations of the spin group \(\text{SU}(2) \) with \(2J = 0, 1, 2, \ldots \) have an invariant bilinear form arising as a symmetric tensor product of the antisymmetric spinor ‘metric’ \(\epsilon \). The bilinear form is given for the irreducible representation \([2J] \cong \bigvee^u W \) on the vector space \(\bigvee^u W \cong \mathbb{C}^{2J+1} \) by the corresponding totally symmetric\(^9\) power and is antisymmetric for halfinteger spin and symmetric for integer spin
\[
\epsilon^{2J} = \bigvee^2 \epsilon, \quad \epsilon^{2J}(v,w) = \begin{cases} +\epsilon^{2J}(w,v), & 2J = 0, 2, 4 \ldots \\ -\epsilon^{2J}(w,v), & 2J = 1, 3, \ldots \end{cases}
\]
\(^8\)The linear mappings \(\{ V \rightarrow W \} \) for finite dimensional vector spaces are naturally isomorphic to the tensor product \(W \otimes V^T \) with the linear \(V \)-forms \(V^T \).
\(^9\)\(\bigvee \) and \(\bigwedge \) denotes symmetrized and antisymmetrized tensor products.
The complex representation spaces for integer spin \(J = 0, 1, \ldots \), acted upon faithfully only with the special rotations \(\text{SO}(3) \cong \text{SU}(2)/\{\pm 1\} \), are direct sums of two irreducible real \(\text{SO}(3) \)-representation spaces \(\mathbb{R}^{2J+1} \) where the invariant bilinear form is symmetric and definite, e.g. the negative definite Killing form \(-\mathbf{1}_3\) for the adjoint representation \([2] \cong u \lor u\) on \(\mathbb{R}^3 \).

The Pauli spinor reflection induces the reflections for the irreducible spin representation spaces

\[
V \cong \sqrt{2W} \cong \Phi^{2J+1} : \quad V \xleftarrow{\epsilon^{2J}} V^T
\]

For integer spin (odd dimensional representation spaces) the two real subspaces with irreducible real \(\text{SO}(3) \)-representation come with a trivial \(-\mathbf{1}_3\mapsto \mathbf{1}_3\) and a faithful \(-\mathbf{1}_3 \mapsto -\mathbf{1}_3 \in \text{O}(2J+1)/\text{SO}(2J+1)\) representation of the central position space reflection, as seen in the diagonalization of the induced reflection

\[
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\cong
\begin{pmatrix}
1 & 0 \\
0 & -1 \\
\end{pmatrix}, \quad J = 0
\]

\[
\begin{pmatrix}
0 & \epsilon \\
\epsilon & 0 \\
\end{pmatrix}, \quad J = \frac{1}{2}
\]

\[
\begin{pmatrix}
0 & -1_3 \\
-1_3 & 0 \\
\end{pmatrix}
\cong
\begin{pmatrix}
1_3 & 0 \\
0 & -1_3 \\
\end{pmatrix}, \quad J = 1
\]

etc.

The decomposition for the integer spin representation spaces uses symmetric and antisymmetric tensor products as illustrated for the scalar and vector spin representation with a Pauli spinor basis

\[
W \xleftarrow{\epsilon} W^T,
\]

\[
W^T \otimes W \xleftarrow{\epsilon} W \otimes W^T,
\]

\[
\begin{aligned}
\psi^A &\leftrightarrow \epsilon^{AB}\psi^*_B, & J = \frac{1}{2} \\
\psi^*_A \otimes \psi^A &\leftrightarrow \psi^A \otimes \psi^*_A, & J = 0 \\
\bar{\sigma}^A_B\psi^*_A \otimes \psi^B &\leftrightarrow -\bar{\sigma}^A_B\psi^B \otimes \psi^*_A, & J = 1
\end{aligned}
\]

Writing for the tensor (anti)commutator \([a, b]_\epsilon = a \otimes b + \epsilon b \otimes a \) with \(\epsilon = \pm 1 \) one has in both cases one trivial and one faithful reflection representation

\[
\begin{aligned}
[\psi^*_A, \psi^A]_\epsilon \leftrightarrow \epsilon[\psi^*_A, \psi^A]_\epsilon, & \quad J = 0 \\
[\psi^*_A \bar{\sigma}^A_B, \psi^B]_\epsilon \leftrightarrow -\epsilon[\psi^*_A \bar{\sigma}^A_B, \psi^B]_\epsilon, & \quad J = 1
\end{aligned}
\]

\[4.3\] Induced Reflections of Lorentz Group Representation Spaces

The generating structure of the two Weyl representations induces \(C, P \)-reflections of \(\text{SL}(\mathbb{C}^2) \)-representation spaces.

The complex finite dimensional irreducible representations of the group \(\text{SL}(\mathbb{C}^2) \) are characterized by two spins \([2L|2R]\) with integer and halfinteger
$L, R = 0, \frac{1}{2}, 1, \ldots$. They are equivalent to the totally symmetric products of the left and right handed Weyl representations

Weyl left: $[1|0] = \lambda = e^{(i\vec{a} + \vec{b})\vec{\sigma}}$, Weyl right: $[0|1] = \hat{\lambda} = e^{(i\vec{a} - \vec{b})\vec{\sigma}}$

$[2L|2R] \cong \sqrt{\lambda} \otimes \sqrt{\hat{\lambda}}$ acting on $V \cong \sqrt{W_L} \otimes \sqrt{W_R} \cong \mathbb{C}^{(2L+1)(2R+1)}$

$[2L|2R]$ and $[2R|2L]$ are equivalent with respect to the subgroup SU(2)-representations. The induced reflections are given by the corresponding products of the Weyl spinor reflections.

The real representation spaces for the Lorentz group $SO_0(1, 3)$ are characterized by integer spin $L + R = 0, 1, 2, \ldots$ They are all generated by the Minkowski representation $[1|1] \cong \lambda \otimes \bar{\lambda}$ where the complex 4-dimensional representation space is decomposable into two real 4-dimensional ones, a hermitian and an antihermitian tensor

$\mathbb{C}^4 \cong W_L \otimes W^T_R \ni l \otimes l^* = z = x + i\alpha \in \mathbb{R}^4 \oplus i\mathbb{R}^4$

With Weyl spinor bases the induced linear reflections for the Minkowski representation look as follows (with $\sigma^j = (1_2, \vec{\sigma}) = \vec{\sigma}$ and $\sigma_j = (1_2, -\vec{\sigma}) = \vec{\sigma}^j$)

$\sigma^j \leftarrow \vec{P} \rightarrow \vec{\sigma}^T_j$, $\text{I}^* \sigma^j \leftarrow \vec{P} \rightarrow \text{I}^* \vec{\sigma}^T_j$

$\sigma_j \leftarrow \vec{C} \rightarrow \vec{\sigma}^T_j$, $\text{I}^* \sigma_j \leftarrow \vec{C} \rightarrow \text{I}^* \vec{\sigma}^T_j$

$\sigma^j \leftarrow \text{CP} \rightarrow \sigma^T_j$, $\text{I}^* \sigma^j \leftarrow \text{CP} \rightarrow \text{I}^* \sigma^T_j$, $\text{I}^* \vec{\sigma}^j \leftarrow \text{CP} \rightarrow \text{I}^* \vec{\sigma}^T_j$

and can be arranged in combinations of definite parity, e.g. for \mathbb{P} with Dirac spinors in a vector $\bar{\Psi} \gamma^j \Psi$ and an axial vector $\bar{\Psi} \gamma^j \gamma^5 \Psi$. The antilinear time reflection has to change in addition the order in the product

$\sigma^j \leftarrow \vec{T} \rightarrow \sigma_j$, $\text{I}^* \sigma^j \leftarrow \vec{C} \rightarrow \text{I}^* \sigma_j$, $\text{I}^* \vec{\sigma}^j \leftarrow \vec{P} \rightarrow \text{I}^* \vec{\sigma}_j$

4.4 Reflections of Spacetime Fields

A field Φ is a mapping from position space \mathbb{R}^3 or, as relativistic field, from Minkowski spacetime \mathbb{R}^4 with values in a complex vector space V with the action of a group G both on space(time) and on V. This defines the action of the group on the field $\Phi \mapsto g \cdot \Phi = g\Phi$ by the commutativity of the diagram

$$
\Phi \quad \begin{array}{c}
\mathbb{R}^3 \rightarrow \mathbb{R}^4 \\
V \rightarrow V
\end{array} \quad \begin{array}{c}
o(g) \\
d(g)
\end{array} \quad \begin{array}{c}
\mathbb{R}^3 \rightarrow \mathbb{R}^4 \\
V \rightarrow V
\end{array} \quad \begin{array}{c}
s_\Phi \\
g\Phi = D(g)\Phi(O(g^{-1}).x)
\end{array}
$$

for $g \in G$.
For position space the external action group is the Euclidean group $O(3) \times \mathbb{R}^3$, for Minkowski spacetime the Poincaré group $O(1,3) \times \mathbb{R}^4$. The value space may have additional internal action groups, e.g. $U(1)$, $SU(2)$ and $SU(3)$ hypercharge, isospin and colour resp. in the standard model for quark and lepton fields.

For Pauli spinor fields on position space the $O(3)$-action has a direct $SU(2)$-factor and a reflection factor $\mathbb{I}(2)$

$$\psi : \mathbb{R}^3 \rightarrow W \cong \mathbb{C}^2, \quad \left\{ \begin{array}{ll}
u \psi(\vec{x}) = D(u)\psi(O(u^{-1}).\vec{x}), & u \in SU(2), \; O(u) \in SO(3) \\ \psi^A(\vec{x}) & \mapsto \epsilon^{AB}\psi^B(\vec{x}), \end{array} \right.$$

Position reflection $\mathbb{I}(2)$

Spacetime fields have the Lorentz group behaviour

$$\lambda \Phi(x) = D(\lambda).\Phi(O(\lambda^{-1}).x), \; \lambda \in SL(\mathbb{C}^2), \; O(\lambda) \in SO_0(1,3)$$

The antilinear time reflection uses the conjugation to the time dual field

$$\Phi(x_0, \vec{x}) \xrightarrow{T} \Phi^*(-x_0, \vec{x})$$

The reflections for Weyl spinor fields on Minkowski spacetime are

$$\begin{array}{cccc}
1^A & (x_0, \vec{x}) & \xrightarrow{P} & \delta^A_{\bar{A}} (x_0, -\vec{x}) \\
(l^A, r^\bar{A}) & (x_0, \vec{x}) & \xrightarrow{C} & (\epsilon^{AB}_{\bar{A}}\epsilon^{\bar{B}}_{\bar{B}}, \epsilon^{\bar{B}}_{\bar{B}}) (x_0, \vec{x}) \\
(l^A, r^\bar{A}) & (x_0, \vec{x}) & \xrightarrow{CP} & (\delta^A_{\bar{A}}\epsilon_{\bar{B}}^B, \epsilon_{\bar{A}}^B\epsilon_{\bar{B}}^A) (x_0, -\vec{x}) \\
(l^A, r^\bar{A}) & (x_0, \vec{x}) & \xrightarrow{T} & (\delta^A_{\bar{A}}\epsilon_{\bar{B}}^B, \delta^A_{\bar{A}}\epsilon_{\bar{B}}^A) (-x_0, \vec{x})
\end{array}$$

which is inducable on product representations.

5 The Standard Model Breakdown of P and CP

A relativistic dynamics, characterized by a Lagrangian for the fields involved, may be invariant with respect to an operation group G, e.g. the C, P and T reflections, or not. A breakdown of the symmetry can occur in two different ways: Either the symmetry is represented on the field value space V, but the Lagrangian is not G-invariant, or there does not even exist a G-representation on V. Both cases occur in the standard model for quark and lepton fields.

5.1 Standard Model Breakdown of P

The charge $U(1)$ vertex in electrodynamics for a Dirac electron-positron field Ψ interacting with an electromagnetic gauge field Γ_j

$$-\Gamma_j \bar{\Psi} \gamma^i \gamma^j \Psi = -\Gamma_j (l^* \sigma^j l + r^* \bar{\sigma}^j \bar{r})$$

is invariant under P and T if the fields have the Weyl spinor induced behaviour given above.
In the standard model of leptons with a left handed isospin doublet field L and a right handed isospin singlet field r the hypercharge $U(1)$ and isospin $SU(2)$ vertex with gauge fields A_j and \vec{B}_j resp. and internal Pauli matrices $\vec{\tau}$ reads

$$-A_j(L^\dagger \sigma^j \frac{1}{2} L + r^\dagger \vec{\sigma}^j r) + \vec{B}_j L^\dagger \sigma^j \frac{\vec{\tau}}{2} L$$

All gauge fields are assumed with the spinor induced reflection behaviour. The P-invariance is broken in two different ways: One component of the lepton isodoublet, e.g. $l = \frac{1-\tau_3}{2} L \in W^- \cong \mathbb{C}^2$, can be used together with the right handed isosinglet r as a basis of a Dirac space $\Psi \in W^- \oplus W^R \cong \mathbb{C}^4$ with a representation of P. This is impossible for the remaining unpaired left handed field $\frac{1+\tau_3}{2} L \in W^+ \cong \mathbb{C}^2$ - here P cannot even be defined. However, also for the left-right pair (l, r) the resulting gauge vertex breaks position space reflection P invariance via the familiar neutral weak interactions, induced by a vector field Z_j arising in addition to the $U(1)$-electromagnetic gauge field Γ_j

$$-\frac{A_j + B_j^3}{2} l^\dagger \sigma^j 1 = -A_j \vec{\sigma}^j r = -\Gamma_j \overline{\psi} \gamma^j \psi - Z_j \overline{\psi} \gamma^j \gamma_5 \psi$$

with \(\begin{pmatrix} \Gamma_j \\ Z_j \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} A_j \\ B_j \end{pmatrix} \)

There is no parameter involved whose vanishing would lead to a P-invariant dynamics.

5.2 GP-Invariance in the Standard Model of Leptons

The CP-reflection induced by the spinor ‘metric’

$$W_L \leftrightarrow_{CP} W^T_R, \quad 1^A \leftrightarrow \delta^A_B \epsilon \hat{B}^B$$

$$W_R \leftrightarrow_{CP} W^T_L, \quad r^A \leftrightarrow \delta^A_B \epsilon \hat{B}^B$$

has to include also a linear reflection of internal operation representations spaces in the case of Weyl spinors with nonabelian internal degrees of freedom.

For isospin $SU(2)$-doublets this reflection is given by the Pauli isospinor reflection discussed above and is denoted as internal reflection by $I = \epsilon$

\[
\begin{array}{cccc}
U & \rightarrow & U & , \quad u \in SU(2) \ (\text{isospin}) \\
\epsilon & \downarrow & \epsilon & , \\
U^T & \rightarrow & U^T & , \\
\hat{u} & \downarrow & \hat{u} & , \\
\end{array}
\]

\[
\psi^a \rightarrow \epsilon \psi^b \epsilon, \quad a, b = 1, 2 \\
\overline{\psi} = \epsilon^{-1} \circ \overline{\psi} \circ \epsilon
\]

Therewith the linear GP-reflection as particle-antiparticle conjugation including nontrivial isospin eigenvalues

$$G = IC, \quad GP = ICP$$

reads for left handed Weyl spinors isospinors

$$W_L \otimes U \leftrightarrow_{GP} W^T_R \otimes U^T, \quad L^A a \leftrightarrow \delta^A_B \epsilon \hat{B}^B e^{ab} \epsilon \hat{B}^B$$
The antilinear T-reflection uses the $U(2)$-scalar product

$$U \leftrightarrow U^T, \quad U \times U \rightarrow \mathbb{C}, \quad \langle \psi^a | \psi^b \rangle = \delta^{ab}$$

$$W_L \otimes U \leftrightarrow W_R^T \otimes U^T, \quad L^A \leftrightarrow \delta^{AB} \delta_{aB} L^a$$

The isospin dual coincides with the time dual $U^T = U^\star$.

In the product CP there arises - in the basis chosen - an isospin transformation $\epsilon^{ac} \delta_{cb} \sim e^{i \pi/2} \in SU(2)$

$$W_L \otimes U \leftrightarrow W_L \otimes U, \quad L^a \leftrightarrow \delta^{AB} \delta_{B B} \epsilon^{ac} \delta_{cb} L^b$$

decisive to prove the GPT-theorem with

$$\mathcal{CPT} \in SU(2) \times SL(\mathfrak{q}^2)$$

With the spinor induced reflection behaviour for the gauge fields the standard model for leptons, i.e. with internal hupercharge-isospin action, allows the representation of GP and T with the gauge vertex above being GP and T invariant.

5.3 CP-Problems for Quarks

If quark triplets and antitriplets which come with the dual defining $SU(3)$-representations, are included in the standard model, an extended CP-reflection has to employ a linear reflection γ between dual representation spaces of colour $SU(3)$, i.e. an $SU(3)$-invariant bilinear form of the representation space

$$\gamma^T \gamma \rightarrow \gamma^T \gamma, \quad \gamma^{-1} \circ D(u)^T \circ \gamma = D(u^{-1}) \text{ for all } u \in SU(3)$$

The situation for isospin $SU(2)$ and colour $SU(3)$ is completely different with respect to the existence of such a linear dual isomorphism γ: All irreducible $SU(2)$-representations $[2T]$ with isospin $T = 0, \frac{1}{2}, 1, \ldots$ have an - up to a scalar factor - unique invariant bilinear form $\sqrt{\epsilon}$ as product of the spinor ‘metric’, discussed above.

That is not the case for the colour representations. Some representations are linearly selfdual, some are not.

The complex irreducible representations of $SU(3)$ are characterized by $[N_1, N_2]$ with two integers $N_{1,2} = 0, 1, 2, \ldots$. They arise from the two fundamental triplet representations, dual to each other and parametrizable with eight Gell-Mann matrices λ

triplet: $[1, 0] = u = e^{i \lambda^X}$, antitriplet: $[0, 1] = \bar{u} = u^{-1T} = (e^{-i \lambda^X})^T$

$[N_1, N_2]$ acting on vector space U with $\dim_\mathbb{C} U = (N_1 + 1)(N_2 + 1)(N_1 + N_2 + 2)/2$
Dual representations have reflected integer values \([N_1, N_2] \leftrightarrow [N_2, N_1]\). Only those SU(3)-representations whose weight diagram is central reflection symmetric in the real 2-dimensional weight vector space (appendix) have one, and only one, SU(3)-invariant bilinear form \([1]\), i.e. they are linearly selfdual. Dual representations have weights which are reflected to each other(weights) \([N_1, N_2]\) \[\leftarrow \{1\} \rightarrow\] (weights) \([N_2, N_1]\). Therefore, one obtains as selfdual irreducible SU(3)-representations\([1]\), i.e. they are linearly selfdual. Dual representations have weights which are reflected to each other.

\[\text{weights} [N_1, N_2] \leftrightarrow [N_2, N_1]\]

E.g. for the octet \([1, 1]\) as adjoint SU(3)-representation, the Killing form defines its selfduality.

A central reflections of Lie Algebras

A representation of a group \(G\) on a vector space \(V\) is selfdual if it is equivalent to its dual representation, defined by the inversed transposed action on the linear forms \(V^T\)

\[
\begin{align*}
D : G &\rightarrow \text{GL}(V) \\
\check{D} : G &\rightarrow \text{GL}(V^T)
\end{align*}
\]

\(\check{D}(g) = D(g^{-1})^T\)
i.e. if the following diagram with a linear or antilinear isomorphism $\zeta : V \rightarrow V^T$ commutes with the action of all group elements

$$
\begin{array}{c}
V & \xrightarrow{D(g)} & V \\
\downarrow \zeta & & \downarrow \zeta \\
V^T & \xrightarrow{D(g)} & V^T \\
\end{array}
$$

$\zeta^{-1} \circ D(g)^T \circ \zeta = D(g^{-1})$ for all $g \in G$

Selfduality is equivalent to the existence of a nondegenerate bilinear (for linear ζ) or sesquilinear form (for antilinear ζ) of the vector space V

$$
V \times V \rightarrow \mathbb{C}, \quad \zeta(w, v) = \langle \zeta(w), v \rangle \\
\text{selfdual} \quad \zeta(g \bullet w, g \bullet v) = \zeta(w, v), \quad g \bullet v = D(g).v
$$

For the Lie algebra $L = \log G$ of a Lie group G with dual representations in the endomorphism algebras $\mathbf{AL}(V)$ and $\mathbf{AL}(V^T)$ which are negative transposed to each other

$$
\begin{array}{c}
\varnothing : L \rightarrow \mathbf{AL}(V) \\
\check{\varnothing} : L \rightarrow \mathbf{AL}(V^T) \\
\end{array}
\quad \check{\varnothing}(l) = -\varnothing(l)^T
$$

a selfduality isomorphism, i.e. the reflection $V \xleftarrow{\zeta} V^T$ fulfills

$$
\zeta(l \bullet w, v) = -\zeta(w, l \bullet v), \quad l \bullet v = \varnothing(l).v
$$

and defines the central reflection of the Lie algebra in the representation

$$
\begin{array}{c}
V & \xrightarrow{\varnothing(l)} & V \\
\downarrow \zeta & & \downarrow \zeta \\
V^T & \xrightarrow{\check{\varnothing}(l)} & V^T \\
\end{array}
$$

$\zeta^{-1} \circ \varnothing(l)^T \circ \zeta = \varnothing(l)$ for all $l \in \log G$

With Schur’s lemma, an irreducible complex finite dimensional representation of a group or Lie algebra can have at most - up to a constant - one invariant bilinear and one invariant sesquilinear form. E.g. Pauli spinors for $\text{SU}(2)$ have both, ϵ^{AB} (bilinear) and δ^{AB} (sesquilinear, scalar product), $A,B = 1, 2$, quark triplets have only a scalar product δ^{ab}, $a,b = 1, 2, 3$, Weyl spinors for $\text{SL}(\mathbb{C}^2)$ have only the bilinear ‘metric’ ϵ^{AB}.

For a simple Lie algebra L of rank r, the weights (eigenvalue vectors for a Cartan subalgebra) of dual representations \varnothing and $\check{\varnothing}$ are related to each other by the central reflection of the weight vector space \mathbb{R}^r

$$
\text{weights } \varnothing[L] \xleftarrow{1_r} \text{weights } \check{\varnothing}[L]
$$
which may be induced by a linear isomorphism ζ of the dual representation spaces. Therewith: Such a linear isomorphism for an L-representation exists if, and only if, the weights of the representation $\mathcal{D}: L \to \text{AL}(V)$ are invariant under central reflection

$$V \overset{\zeta}{\leftarrow} V^T \iff \text{weights } \mathcal{D}[L] = -\text{weights } \mathcal{D}[L]$$

References

[1] N. Bourbaki, *Groupes et Algèbres de Lie, Chapitre 8* (Algèbres de Lie semi-simples déployées), Hermann, Paris (1975)

[2] M. Gardner, *The New Ambidextrous Universe* (1990), W.H. Freeman, New York

[3] G. Lüders, *Kong. Dansk Vid. Selskab Mat. Fys. Medd. 28* (1954), *Ann. Phys.*, 2, 1(1957)

[4] W. Pauli, *Niels Bohr and the Development of Physics* (1955), MacGraw-Hill, New York

[5] S. Weinberg, *Phys. Rev. Lett.* 18 (1967), 507