An Event-Related Potential Study of Onset Primacy in Visual Change Detection

Jennifer Van Pelt¹, Benjamin G. Lowe², Jonathan E. Robinson³, Maria J. Donaldson⁴, Patrick Johnston⁵, and Naohide Yamamoto¹⁶⁺

¹School of Psychology and Counselling, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
²Perception in Action Research Centre and School of Psychological Sciences, Macquarie University, Sydney, New South Wales, Australia
³Monash Centre for Consciousness and Contemplative Studies, Monash University, Melbourne, Victoria, Australia
⁴Department of Psychology, Cleveland State University, Cleveland, Ohio, USA
⁵School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
⁶Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia

*Corresponding author (naohide.yamamoto@qut.edu.au)

ORCID IDs:
Jennifer Van Pelt https://orcid.org/0009-0007-9423-1932
Benjamin G. Lowe https://orcid.org/0000-0002-0474-3392
Jonathan E. Robinson https://orcid.org/0000-0002-4886-8234
Maria J. Donaldson https://orcid.org/0000-0002-7153-5884
Patrick Johnston https://orcid.org/0000-0001-7703-1073
Naohide Yamamoto https://orcid.org/0000-0001-9734-7470
Abstract

Onset primacy is a behavioural phenomenon whereby humans identify the appearance of an object (onset) with greater efficiency than other kinds of visual change, such as the disappearance of an object (offset). The default mode hypothesis explains this phenomenon by postulating that the attentional system is optimised for onset detection in its initial state. The present study extended this hypothesis by combining a change detection task and measurement of the P300 event-related potential (ERP), which was thought to index the amount of processing resources available to detecting onsets and offsets. In an experiment, while brain activity was monitored by electroencephalography, participants indicated the locations of onsets and offsets under the condition in which they occurred equally often in the same locations across trials. Although there was no reason to prioritise detecting one type of change over the other, onsets were detected more quickly and they evoked a larger P300 than offsets. These results suggest that processing resources are preferentially allocated to onset detection. This biased allocation may be a basis on which the attentional system defaults to the ‘onset detection’ mode.

Keywords: attention, attentional capture, P3, P3b, P300
An Event-Related Potential Study of Onset Primacy in Visual Change Detection

The ability to direct attention within an environment provides an adaptive mechanism that is useful for the detection of change. In the absence of effective visual change detection, it would be difficult to successfully navigate everyday life. Driving a car or crossing the road, for example, requires the ability to detect new obstacles as they appear in the visual field. Research involving visual search paradigms has indicated that humans are particularly adept at noticing new objects that abruptly enter their environment (Cole & Liversedge, 2006; Jonides & Yantis, 1988; Yantis & Jonides, 1984). Under certain conditions, however, even significant changes in visual scenes go unnoticed, through a phenomenon known as change blindness (Simons & Rensik, 2005). Behavioural studies have demonstrated that the sudden appearance of an object (object onset) is relatively resistant to change blindness, while other types of change, such as the sudden disappearance of an object (object offset), are more likely to remain unnoticed (Cole & Kuhn, 2010; Cole & Liversedge, 2006). The comparative efficiency of onset over offset detection has been referred to in the literature as onset primacy (Cole et al., 2004; Donaldson & Yamamoto, 2012).

The persistence of onset primacy across experimental paradigms led Donaldson and Yamamoto (2016) to propose that onset detection is the default processing mode of the attentional system. To process other kinds of change, a shift is required from this default mode, resulting in less efficient responses. While the robust nature of onset primacy may be functionally adaptive, given that onset detection is advantageous in most situations, there are other situations in which offset detection may be more beneficial. For example, a lifeguard monitoring a crowded beach needs to notice the disappearing swimmer; a parent watching over a group of children in the playground needs to notice if one goes missing. As such, it is important to understand how and why onset primacy occurs by investigating the processes
that underlie onset and offset detection.

In pursuing this endeavour, the present study tested the default mode hypothesis by examining differences in neural activation with electroencephalography (EEG) while participants attempted to detect onsets and offsets. According to the default mode hypothesis, the system of neural processing should initially be optimised for detection of onsets, making relevant areas of the brain more responsive to onsets than offsets. This enhanced processing of onsets should be reflected in event-related potentials (ERPs) that are of theoretical relevance to visual change detection. Specifically, this study focused on the P300 ERP as a neural marker of cognitive processes that underlie behavioural findings of onset primacy.

The P300, which is also called the P3, is a positive deflection that typically occurs between 300–500 ms after the onset of sensory stimuli (Hopfinger & Mangun, 1998; Hopfinger & Maxwell, 2005; Koivisto & Revonsuo, 2003), though it could range more widely from 250 ms up to 900 ms (Polich, 2007). It is generally implicated in information processing that involves selective attention and may be evoked after exposure to auditory or visual stimuli. Given that the P300 varies in topographic distribution, it is often conceptualised as two separate subcomponents, the P3a, a frontal distribution associated with stimulus novelty, and the P3b, a temporal-parietal distribution associated with attention and memory processing (Polich, 2007). The latter subcomponent has also been observed over the occipital areas in studies of selective attention (Koivisto & Revonsuo, 2003). While the P3a novelty subcomponent may instinctively be of interest in a change detection paradigm, it is likely that novelty effects would quickly be habituated across the repetitive presentation of visual stimuli, making it difficult to observe this subcomponent in averaged trials. The P3b subcomponent, however, remains of particular interest. As such, consequent discussion of the P300 is largely focused on the P3b in this paper. For simplicity, the P3b subcomponent is referred to as P300 hereafter.
A key reason for focusing on the P300 is that its amplitude is a good index of the amount of processing resources available for performing a task. This is best demonstrated in dual-task studies in which participants are given two tasks to perform simultaneously (Israel et al., 1980; Mangun & Hillyard, 1990; Sirevaag et al., 1989; Wickens et al., 1983). A typical finding from these studies is that the P300 evoked by a primary task decreased when a secondary task was made more difficult so that it demanded a greater degree of participants’ attention (which, in turn, reduced their attention to the primary task). The P300 is modulated in the same way even when two tasks do not coincide strictly—there can be a delay of up to 1–1.5 s between them (Nash & Fernandez, 1996; Strayer & Kramer, 1990). These findings indicate that the P300 generally reflects the trade-off relationship between tasks when participants mentally prepare for performing both of the tasks, and its amplitude goes up and down as more and less resources are allocated to a task of interest. This idea is directly applicable to the current paradigm because there is similar reciprocity between onset and offset detection such that as observers improve their behavioural performance in detecting offsets through training, their efficiency in detecting onsets declines (Donaldson & Yamamoto, 2016). Taken together, it was postulated that P300 amplitude would function as a measure of processing resources allotted for detecting onsets and offsets.

The present study used this postulation to test the default mode hypothesis. This hypothesis posits that perceiving onsets is prioritised in the system of visual change detection in its initial state. One way of implementing this prioritisation is to assign a greater amount of processing resources for detecting onsets by default. Thus, if a larger amplitude of P300 was observed when participants detected onsets as compared to when they detected offsets, it would support the default mode hypothesis by showing that more resources are indeed allocated to detection of onsets. It is important to note that, as shown in the method section below, onsets and offsets were equal in the present experiment in that both were to-be-
detected targets and they occurred in the same frequency and in the same spatial locations across trials. Therefore, participants should not have had any particular reasons to pay more attention to one type of change than the other. If onsets were still detected more efficiently, and if the detection was accompanied with a larger P300, it would indicate that allocation of processing resources is biased in favour of onset detection as the default mode of the system.

In summary, the goal of the present study was to seek neural evidence for the default mode hypothesis of onset primacy (Donaldson & Yamamoto, 2016). To this end, P300 amplitude was measured while participants attempted to detect onsets and offsets. It was predicted that the P300 would appear in a larger amplitude for onset than offset conditions in electrodes over temporal, parietal, and occipital regions of the brain.

Method

The experiment reported below was approved by the Office of Research Ethics and Integrity of Queensland University of Technology (QUT) and conducted in accordance with the National Statement on Ethical Conduct in Human Research (National Health and Medical Research Council, 2018).

Participants

Twenty-five QUT students (19 female, 6 male) aged 17–29 years ($M = 20.88$, $SD = 3.18$) participated in return for partial course credit. Written informed consent was obtained prior to their participation. All were right-handed with no known history of neurological disorder, and had normal or corrected-to-normal vision, as confirmed by a Snellen eye-chart.

Materials

This experiment used the change detection task developed by Donaldson and Yamamoto (2012), who modelled it from Cole et al.’s (2003) one-shot flicker paradigm. Stimuli depicted visual scenes, each of which included a small circular table-top (30 cm diameter) with a single supporting leg (38 cm height). A range of objects of approximately
equal size (4 × 3 × 2 cm of width, height, and depth) were placed onto the table in 16 different arrangements. The number of objects on the table was varied, ranging from six to nine, to minimise the potential to predict patterns of change. Images were presented at a central fixation point, with visual angle subtending approximately 7° horizontally and 4° vertically. Participants viewed the stimuli from an approximate distance of 60 cm on a monitor with a screen resolution of 1920 × 1080 pixels, via PsychoPy software (version 1.86; Peirce, 2007, 2009).

Design and Procedure

Participants were informed that they were going to view a series of paired photographs, and that a change would be identifiable on the appearance of the second image. They were instructed to indicate whether they observed the change on the left or right side of the stimulus by pressing either F or J on their keyboard, respectively. Participants were asked to keep their index fingers resting on the response keys throughout the experiment and to respond as quickly and accurately as possible. Participants were not informed of the nature of change (i.e., onset or offset) and received no performance feedback.

In onset trials, the second image of a photograph pair contained one additional object on the tabletop; in offset trials, the second image removed one object from the tabletop (see Figure 1 for an example). The change occurred on each side of the table (left and right) an equal number of times and was counterbalanced across onset and offset conditions. To control for the potential influence of object properties, such as colour, location, or semantic salience, the same paired photographs were used for both onset and offset trials, in reversed order. Each photograph in the pair had either seven or eight objects on the tabletop, with each object acting as the change target an equal number of times. There were 64 trials for each change type, making a total of 128 experimental trials.
Figure 1

A Sample Experimental Trial

Note. (A) Sequence of trials. (B) A closer view of stimuli, demonstrating how the paired images changed in onset and offset trials. Here, the green car is the object of change. The figure is adapted from Donaldson and Yamamoto (2012). A coloured version of the figure is available online.

Additional 32 photograph pairs were used for creating filler trials. In a filler onset trial, an eight-object display was followed by a nine-object display. In a filler offset trail, a seven-object display was followed by a six-object display. These filler trials (16 trials per change type) were included to discourage participants from anticipating the type of an upcoming trial on the basis of the first photograph alone. Without the filler trials, having a seven-object display in the first photograph could mean for certain that it would be an onset
trial; similarly, having an eight-object display in the first photograph could mean that it would be an offset trial. The filler trials were intermixed with experimental trials, creating a total of 80 onset and 80 offset trials. These trials were randomly presented to each participant in a single block. Data from the filler trials were not included in the analysis.

Participants also completed eight onset and eight offset practice trials to familiarise themselves with the task. The practice trials were randomly presented in a block preceding the main block of experimental and filler trials. Photograph pairs used for the practice trials were not repeated in the main block.

The sequence of a trial is shown in Figure 1. First, participants viewed a central fixation cross for 1000 ms. The first image then appeared for 1200 ms, followed by a blank grey screen for 100 ms. The second image (referred to as change stimulus hereafter) then appeared for 1200 ms, before a final grey screen lasting 2000 ms. Participants were able to provide a response any time after the appearance of the change stimulus. When a response was provided, or when the final grey screen timed out, the fixation cross reappeared to indicate the start of the next trial.

EEG Data Acquisition and Analysis

EEG data were recorded using the BioSemi ActiveTwo 64-channel amplifier and the ActiView software (version 7.06) at a sampling rate of 1024 Hz. The 64 EEG electrodes were laid out in accordance with the International 10–20 system, with a common mode sense and driven right leg circuit as online recording references. Electrode offsets were kept within ±25 mV prior to the recording.

Pre-processing was conducted using MNE-Python (version 1.4.2; Gramfort et al., 2013) within a Python 3.9.16 environment. It commenced with generating a second copy of a given participant’s raw EEG, which was high-pass filtered at 1 Hz to remove signal drifts so that independent components were identified (Winkler et al., 2015). These filtered copies of
the data were produced solely for the purpose of identifying artefacts and were not used during any other subsequent analyses. Fifteen independent components were found through this process. The scalp topography and time series of these components were then visually inspected, and those that resembled eye-blink artefacts were removed from the original (i.e., unfiltered) data.

Subsequently, bandpass (0.1–30 Hz) and notch (50 Hz) filters were applied to the original EEG data, which were then downsampled to 1000 Hz. Next, the time series of each electrode was visually inspected, and when excessively noisy electrodes were found outside the regions of interest (ROIs; see Outcome Measures), they were interpolated via the spherical spline method (Perrin et al., 1989). On average, 3.48 interpolations were made per participant ($SD = 3.36$). Finally, data were re-referenced to the average activity of all 64 electrodes.

Data were segmented into epochs between −100 and 700 ms relative to the appearance of each image and baseline-corrected to the mean of a pre-stimulus period (−100–0 ms). Epochs containing filler trials or incorrectly performed experimental trials were excluded from analysis. Out of the remaining epochs, those in which peak-to-peak difference between −100 and 600 ms exceeded 200 μV in any of the electrodes included in the ROIs were further removed. For three participants, no epochs survived these processes in one or more conditions, resulting in exclusion of these participants from all analyses. Participant-level ERPs were then averaged across epochs per condition.

Outcome Measures

Behavioural Measures

Reaction time was measured as the time that elapsed between the appearance of a change stimulus and a participant’s response. Accuracy of the change location judgement, as indicated by the keyboard button press, was also measured. Trials in which participants failed
to provide a response before the end of the final grey screen were considered incorrect. All trials (i.e., including those that were rejected for EEG analysis due to recording artefacts) were used for reaction time and accuracy calculations, with the exception that incorrectly performed trials were excluded from reaction time analysis.

P300

The ROIs for the P300 included electrodes over the cortical surface of the temporal, parietal, and occipital lobes (Eimer & Mazza, 2005; Koivisto & Revonsuo, 2003; Polich, 2007). They were grouped into clusters corresponding to their topographic location (Figure 2): left (CP1, CP3, CP5, TP7, P1, P3, P5, P7, PO3, PO7, and O1), centre (CPz, Pz, POz, and Oz), and right (CP2, CP4, CP6, TP8, P2, P4, P6, P8, PO4, PO8, and O2). The mean amplitude measures at these electrode sites were computed by temporally averaging amplitude values across time points within the time window of 275–500 ms after the appearance of a change stimulus, which was set a priori by referring to time windows used in previous studies for measuring the P300 (Hopfinger & Mangun, 1998; Hopfinger & Maxwell, 2005; Koivisto & Revonsuo, 2003). The mean amplitude was calculated for each electrode first, and then averaged across the electrodes per ROI before being entered into statistical models for analysis.

Peak amplitude measures were also derived by finding the largest positive amplitude peaks within the same time window for individual electrodes and averaging them per ROI. The mean and peak amplitude data yielded consistent results. Thus, for brevity, analysis of the peak amplitude data is not reported below. Both mean and peak amplitude values at each electrode site are available on the Open Science Framework at https://osf.io/jnq27.
Figure 2

Grand-Average Topographic Plots in the P300 Time Window

![Grand-Average Topographic Plots](image)

Note. The plots show the distributions of the mean voltage in the period of 275–500 ms post change stimulus averaged across participants separately for each change type. Circles represent EEG electrodes. Broken lines indicate electrode clusters that constituted the regions of interest (ROIs): left (CP1, CP3, CP5, TP7, P1, P3, P5, P7, PO3, PO7, and O1), centre (CPz, Pz, POz, and Oz), and right (CP2, CP4, CP6, TP8, P2, P4, P6, P8, PO4, PO8, and O2). A coloured version of the figure is available online.

Results

Behavioural Results

Descriptive statistics are summarised in Table 1, and full analysis is reported in Supplementary Material. Accuracy scores for three participants were more than two standard deviations lower than those of the rest of the sample in one of the two conditions (i.e., onset and offset), resulting in their removal from all further analyses. The remaining 19 participants (16 female, 3 male, 17–29 years of age with $M = 20.89, SD = 3.19$) detected onsets
significantly faster than offsets while maintaining statistically equivalent accuracy in onset and offset trials. At the level of individual participants, there was no evidence of speed-accuracy trade-offs—in fact, most of the participants responded more quickly and accurately to onsets than offsets. These results indicate that the participants exhibited onset primacy in this experiment.

Table 1

Behavioural Results

	Onset	Offset				
	M	SD	95% CI	M	SD	95% CI
Accuracy (%)	96.13	3.22	[94.54, 97.73]	94.65	3.01	[93.16, 96.15]
Reaction time (ms)	563.74	72.49	[527.84, 599.64]	627.54	50.24	[602.66, 652.42]

EEG Results

For the 19 participants whose ERPs were assessed, on average, 90.58% of epochs (SD = 8.92%) remained in the analysed data after removal of those that were compromised by recording artefacts and incorrect behavioural responses. The mean P300 amplitude values were examined by a 2 (onset and offset) × 3 (left, centre, and right ROIs) repeated-measures analysis of variance (ANOVA).¹ There was no evidence for violation of sphericity as per Mauchly’s tests (Ws > .89, ps > .394).

Descriptive statistics for the mean amplitude data are displayed in Table 2. Consistent with prediction, the P300 amplitude was higher in onset than offset conditions. The amplitude

¹ A 2 × 3 × 2 ANOVA was also run by including the location of change (left and right sides) as an additional within-participant factor. Given that fixation and eye movements were not strictly controlled in this experiment, it was expected that the location of change would not show any major effects. Consistent with this expectation, this factor yielded no significant main effect or interactions.
values also suggest that amplitude varied with electrode location, with the amplitude being larger in the centre and right ROIs than in the left ROI on average. These patterns can be seen in Figure 2 that shows the topographic distributions of the P300 amplitude. Figure 3 displays mean ERP waveforms from each ROI that demonstrate the expected pattern of the P300, wherein the amplitude was greater in onset trials than in offset trials.

Table 2

Mean Amplitude of the P300

ROI	Onset	Offset				
	M	SD	95% CI	M	SD	95% CI
Left	1.87	1.70	[1.02, 2.71]	0.95	1.15	[0.38, 1.52]
Centre	2.83	1.90	[1.89, 3.77]	2.20	1.64	[1.39, 3.01]
Right	2.90	1.46	[2.17, 3.62]	1.61	1.26	[0.99, 2.24]

Note. The amplitude values are shown in μV. ROI = region of interest.

Figure 3

P300 Amplitude Time Series

Note. These waveforms were derived by averaging across participants, separately for each change type and each region of interest (left, centre, and right electrode clusters). Shading
around each waveform represents ±1 standard error of the mean at each time point. Grey shaded areas indicate the time window from which P300 amplitude values were calculated for analysis (275–500 ms post change stimulus). A coloured version of the figure is available online.

The ANOVA examining the amplitude data revealed a significant main effect of change types, \(F(1, 18) = 21.11, p < .001, \eta_p^2 = .086 \), in which onsets (\(M = 2.53 \mu V, SD = 1.51 \mu V \)) were greater than offsets (\(M = 1.59 \mu V, SD = 1.05 \mu V \)). There was also a significant main effect of ROIs, \(F(2, 36) = 6.87, p = .003, \eta_p^2 = .086 \). Follow-up pairwise comparisons (each with a Bonferroni-corrected \(\alpha \) of .016) indicated that this main effect emerged because EEG activity was lateralised towards the right hemisphere: While the mean amplitude values in the central (\(M = 2.51 \mu V, SD = 1.66 \mu V \)) and right (\(M = 2.25 \mu V, SD = 1.31 \mu V \)) ROIs were statistically indistinguishable from each other, \(t(18) = 0.84, p = .415, d_{rm} = 0.17, 95\% CI [-0.40, 0.92] \), the mean amplitude value in the left ROI (\(M = 1.41 \mu V, SD = 1.32 \mu V \)) was significantly lower than that in the central ROI, \(t(18) = 3.77, p = .001, d_{rm} = 0.70, 95\% CI [0.49, 1.72] \) (for the definition of \(d_{rm} \), see Lakens, 2013). The difference between the left and right ROIs did not reach statistical significance, \(t(18) = 2.57, p = .019, d_{rm} = 0.62, 95\% CI [0.15, 1.53] \). The interaction between change types and ROIs was not significant, \(F(2, 36) = 2.97, p = .064, \eta_p^2 = .007 \), suggesting that the way the effects of change types occurred did not substantially differ between the electrode clusters.

One possible confound in this experiment was that change stimuli in onset trials contained eight objects, whereas those in offset trials displayed seven objects. Thus, any effects of change types could have been caused by this simple difference in the number of objects. To empirically rule out this possibility, EEG responses to the first photograph of each
pair were analysed. As shown in Supplementary Material, there was no evidence for P300 difference between onset and offset trials in this analysis, suggesting that the patterns of P300 amplitude evoked by the change stimuli were not mere artefacts of the experimental paradigm.

Discussion

The current study aimed to test the default mode hypothesis (Donaldson & Yamamoto, 2016) by examining whether behavioural findings of onset primacy were reflected in EEG-recorded neural activation during a change detection task. The default mode hypothesis postulates that a larger amount of processing resources is allocated to onset detection than offset detection under the initial mode of attention, leading unbiased observers to perform trials involving the detection of onsets with greater neural efficiency than trials involving the detection of offsets. On the basis of previous studies of dual-task performance (Isreal et al., 1980; Mangun & Hillyard, 1990; Nash & Fernandez, 1996; Sirevaag et al., 1989; Strayer & Kramer, 1990; Wickens et al., 1983), the amplitude of the P300 ERP was hypothesised to be an index of this efficiency. Specifically, it was predicted that the P300 would have a higher amplitude in onset trials than in offset trials, across the specified time-window (275–500 ms post change stimulus) and ROIs (temporal, parietal, and occipital regions), reflecting the relative abundance of processing resources for detecting onsets in the change detection task.

The prediction was confirmed, as mean amplitude of the P300 was larger in onset than offset conditions, and this pattern emerged while participants detected onsets more quickly than offsets. Accuracy of change detection did not statistically differ between onset and offset trials, indicating that the quicker detection of onsets was not a mere consequence of speed-accuracy trade-offs (see Supplementary Material for further details). It should be noted that these results were obtained when the onset and offset trials were well equated—
that is, onsets and offsets occurred equally often on the same objects and at the same locations across the trials, and the participants were instructed to respond to the location of a change, not to the type of the change. Given the design of the task, it was very likely that the participants carried out the trials without overtly shifting their attentional priority to specifically detecting onsets or offsets. Nevertheless, onsets were still detected faster and this behavioural performance was associated with the greater P300 amplitude. Together, these findings support the interpretation that onset primacy is a result of the attentional system’s default mode in which the allocation of processing resources is biased in favour of onset detection.

In addition to specifically supporting the default mode hypothesis, the present results are more broadly consistent with previous studies on change blindness and detection. Using tasks in which changes were difficult to perceive, these studies found that the P300 was evoked following successful detection of change (Koivisto & Revonsuo, 2003; Niedeggen et al., 2001). In the current study, it appears that not only onsets, but also offsets, elicited a canonical P300 component when their location was correctly indicated (Figure 3). Because the location judgements were made with very high accuracy, this study alone does not clarify whether the P300 is uniquely associated with correct recognition of change—that is, no reliable EEG data were available as to whether the P300 was absent when the changes were incorrectly localised or entirely missed. However, combined with the previous studies, these findings suggest that the P300 reflects neural processes that have to do with establishing conscious awareness of a visual stimulus and making decisions about the detected stimulus (Eimer & Mazza, 2005; Turatto et al., 2002).

Although the current study was carried out without forming any predictions about the effect of electrode location, differences in amplitude did emerge as a function of electrode location for the P300 component. Specifically, the amplitude was overall higher across
electrodes in the midline and in the right hemisphere than those in the left hemisphere, regardless of change type. Moreover, there was a distinct peak in the right hemisphere in the onset condition (Figure 2). These amplitude patterns are consistent with results from previous studies in which the P300 was evoked in midline electrodes by appearing and disappearing visual targets (Eimer & Mazza, 2005; Hopfinger & Mangun, 1998, 2001), and also with the common view that the right hemisphere tends to be dominant in tasks involving visuospatial attention (Corballis, 2003; Mesulam, 1999; Shulman et al., 2010). This account is supported by EEG studies that examined performance across visuospatial tasks and identified similar P300 lateralisation (Alexander et al., 1995; Makeig et al., 1999).

One noteworthy finding in the literature is that when onsets and offsets were presented as non-informative and task-irrelevant stimuli so that observers had no reason to direct attention to them (i.e., the onsets and offsets were perceived largely in an exogenous fashion), the P300 was not observed (Hopfinger & Maxwell, 2005). Given this finding, it is possible that the P300 evoked in the present study represented top-down processes involved in the change detection task, namely, deployment of attention to onsets and offsets. The P300 amplitude difference reflected the fact that this deployment was more preferentially done for onsets than offsets. In other words, the current results suggest that as a neural correlate of onset primacy, the P300 chiefly captures component processes in which more attention is given to onsets than offsets in an endogenous manner.

Finally, it may be worth noting what steps can be taken to advance this research. Since this was the first study in which Donaldson and Yamamoto’s (2012) onset primacy paradigm was combined with EEG, participants’ behavioural responses were collected simultaneously with EEG recordings. This was to ensure that any patterns of EEG data were observed while onset primacy was actually taking place. Without the behavioural responses, it would have been necessary to assume that participants were detecting onsets more
efficiently than offsets, but it is an open question whether onset primacy occurs in the same way when no overt responses to the changes are required. Thus, in this initial investigation, there was a clear benefit of obtaining the behavioural responses. However, it inevitably came with some drawbacks. Most notably, the EEG data reflected not just perceptual and cognitive processes inherent in onset primacy but also motor processes involved in response preparation and execution. Presumably, these motor processes were commonly engaged in onset and offset trials, and therefore their effects should not have caused a fundamental problem in the comparison between the two trial types. Nevertheless, to isolate EEG signals that are unique to onset primacy itself, it would be useful to conduct experiments in which participants do not make any behavioural responses while they view onset and offset stimuli. Such no-response paradigms are now justified because the present study has provided a clear EEG marker of onset primacy that future experiments can look for (i.e., the P300). These experiments would offer further clarification of how onsets and offsets modulate the EEG signals, thereby delineating onset primacy at both cognitive and neural levels.
Acknowledgements

This research was supported by the Long Leave Research Momentum Scheme funding by Queensland University of Technology. The authors have no competing interests to declare. The authors thank Yasmin Allen-Davidian for cooperation in participant recruitment.

Open Practices Statement

Original data collected and analysed in this research and the code used for processing and visualising EEG results are available on the Open Science Framework at https://osf.io/jnq27. The experiment was not pre-registered.
References

Alexander, J. E., Porjesz, B., Bauer, L. O., Kuperman, S., Morzorati, S., O'connor, S. J., Rohrbaugh, J., Begleiter, H., & Polich, J. (1995). P300 hemispheric amplitude asymmetries from a visual oddball task. *Psychophysiology, 32*(5), 467–475. https://doi.org/10.1111/j.1469-8986.1995.tb02098.x

Cole, G., Kentridge, R. W., Gellatly, A., & Heywood, C. A. (2003). Detectability of onsets versus offsets in the change detection paradigm. *Journal of Vision, 3*(1), Article 3. https://doi.org/10.1167/3.1.3

Cole, G., Kentridge, R. W., & Heywood, C. A. (2004). Visual salience in the change detection paradigm: The special role of object onset. *Journal of Experimental Psychology: Human Perception and Performance, 30*(3), 464–477. https://doi.org/10.1037/0096-1523.30.3.464

Cole, G., & Kuhn, G. (2010). Attentional capture by object appearance and disappearance. *Quarterly Journal of Experimental Psychology, 63*(1), 147–159. https://doi.org/10.1080/17470210902853522

Cole, G., & Liversedge, S. (2006). Change blindness and the primacy of object appearance. *Psychonomic Bulletin & Review, 13*(4), 588–593. https://doi.org/10.3758/BF03193967

Corballis, P. M. (2003). Visuospatial processing and the right-hemisphere interpreter. *Brain and Cognition, 53*(2), 171–176. https://doi.org/10.1016/s0278-2626(03)00103-9

Donaldson, M. J., & Yamamoto, N. (2012). Detection of object onset and offset in naturalistic scenes. In C. Stachniss, K. Schill, & D. Uttal (Eds.), *Lecture Notes in Computer Science: Vol. 7463. Spatial Cognition VIII* (pp. 451–460). Springer-Verlag. https://doi.org/10.1007/978-3-642-32732-2_29

Donaldson, M. J., & Yamamoto, N. (2016). Detection of object onsets and offsets: Does the
primacy of onset persist even with bias for detecting offset? Attention, Perception, & Psychophysics, 78(7), 1901–1915. https://doi.org/10.3758/s13414-016-1185-5

Eimer, M., & Mazza, V. (2005). Electrophysiological correlates of change detection. Psychophysiology, 42(3), 328–342. https://doi.org/10.1111/j.1469-8986.2005.00285.x

Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., & Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7, Article 267. https://doi.org/10.3389/fnins.2013.00267

Hopfinger, J. B., & Mangun, G. R. (1998). Reflexive attention modulates processing of visual stimuli in human extrastriate cortex. Psychological Science, 9(6), 441–447. https://doi.org/10.1111/1467-9280.00083

Hopfinger, J. B., & Mangun, G. R. (2001). Tracking the influence of reflexive attention on sensory and cognitive processing. Cognitive, Affective, & Behavioral Neuroscience, 1(1), 56–65. https://doi.org/10.3758/CABN.1.1.56

Hopfinger, J. B., & Maxwell, J. S. (2005). Appearing and disappearing stimuli trigger a reflexive modulation of visual cortical activity. Cognitive Brain Research, 25(1), 48–56. https://doi.org/10.1016/j.cogbrainres.2005.04.010

Isreal, J. B., Wickens, C. D., Chesney, G. L., & Donchin, E. (1980). The event-related brain potential as an index of display-monitoring workload. Human Factors, 22(2), 211–224. https://doi.org/10.1177/001872088002200210

Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception & Psychophysics, 43(4), 346–354. https://doi.org/10.3758/bf03208805

Koivisto, M., & Revonsuo, A. (2003). An ERP study of change detection, change blindness, and visual awareness. Psychophysiology, 40(3), 423–429. https://doi.org/10.1111/1469-8986.00044
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. *Frontiers in Psychology, 4*, Article 863. https://doi.org/10.3389/fpsyg.2013.00863

Makeig, S., Westerfield, M., Jung, T.-P., Covington, J., Townsend, J., Sejnowski, T. J., & Courchesne, E. (1999). Functionally independent components of the late positive event-related potential during visual spatial attention. *Journal of Neuroscience, 19*(7), 2665–2680. https://doi.org/10.1523/JNEUROSCI.19-07-02665.1999

Mangun, G. R., & Hillyard, S. A. (1990). Allocation of visual attention to spatial locations: Tradeoff functions for event-related brain potentials and detection performance. *Perception & Psychophysics, 47*(6), 532–550. https://doi.org/10.3758/BF03203106

Mesulam, M.-M. (1999). Spatial attention and neglect: Parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354*(1387), 1325–1346. https://doi.org/10.1098/rstb.1999.0482

Nash, A. J., & Fernandez, M. (1996). P300 and allocation of attention in dual-tasks. *International Journal of Psychophysiology, 23*(3), 171–180. https://doi.org/10.1016/S0167-8760(96)00049-9

National Health and Medical Research Council (2018, July). *National statement on ethical conduct in human research 2007 (updated 2018).* https://www.nhmrc.gov.au/guidelines/publications/e72

Niedeggen, M., Wichmann, P., & Stoerig, P. (2001). Change blindness and time to consciousness. *European Journal of Neuroscience, 14*(10), 1719–1726. https://doi.org/10.1046/j.0953-816x.2001.01785.x

Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. *Journal of*
Neuroscience Methods, 162(1–2), 8–13.
https://doi.org/10.1016/j.jneumeth.2006.11.017

Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics, 2, Article 10. https://doi.org/10.3389/neuro.11.010.2008

Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–187. https://doi.org/10.1016/0013-4694(89)90180-6

Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019

Shulman, G. L., Pope, D. L. W., Astafiev, S. V., McAvoy, M. P., Snyder, A. Z., & Corbetta, M. (2010). Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. Journal of Neuroscience, 30(10), 3640–3651. https://doi.org/10.1523/JNEUROSCI.4085-09.2010

Sirevaag, E. J., Kramer, A. F., Coles, M. G. H., & Donchin, E. (1989). Resource reciprocity: An event-related brain potentials analysis. Acta Psychologica, 70(1), 77–97. https://doi.org/10.1016/0001-6918(89)90061-9

Strayer, D. L., & Kramer, A. F. (1990). Attentional requirements of automatic and controlled processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 67–82. https://doi.org/10.1037/0278-7393.16.1.67

Turatto, M., Angrilli, A., Mazza, V., Umiltà, C., & Driver, J. (2002). Looking without seeing the background change: Electrophysiological correlates of change detection versus change blindness. Cognition, 84(1), B1–B10. https://doi.org/10.1016/S0010-0277(02)00016-1

Wickens, C., Kramer, A., Vanasse, L., & Donchin, E. (1983). Performance of concurrent tasks: A psychophysiological analysis of the reciprocity of information-processing
resources. *Science*, 221(4615), 1080–1082. https://doi.org/10.1126/science.6879207

Winkler, I., Debener, S., Müller, K.-R., & Tangermann, M. (2015). On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP. In *2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)* (pp. 4101–4105). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/EMBC.2015.7319296

Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. *Journal of Experimental Psychology: Human Perception and Performance, 10*(5), 601–621. https://doi.org/10.1037/0096-1523.10.5.601