COUNTABLE POWERS OF COMPACT ABELIAN GROUPS IN THE UNIFORM TOPOLOGY AND CARDINALITY OF THEIR DUAL GROUPS

D. DIKRANJAN, E. MARTÍN-PEINADOR AND V. TARIELADZE

Abstract. For a topological Abelian group \(X \) we consider in the group \(X^\infty \) the uniform topology and study some properties of the obtained topological group. We show, in particular, that if \(X = S \) is the circle group, then the group \(S^\infty \) endowed with the uniform topology has dual group with cardinality \(2^\omega \).

1. Introduction

For a set \(A \) we denote by \(\text{Card}(A) \) or by \(|A| \) the cardinality of \(A \).

For a topological space \(A \) we denote by:

- \(w(A) \) the weight of \(A \), i.e. the smallest cardinality of a base of \(A \),
- \(d(A) \) the density character of \(A \), i.e., the smallest cardinality of a dense subset of \(A \),
- \(c(A) \) the cellularity of \(A \), i.e., the smallest cardinal \(\kappa \) such that every family of non-empty pairwise disjoint open sets has cardinality \(\leq \kappa \).

All groups considered in this note will be Abelian.

Let \(G, Y \) be groups. We denote by \(\text{Hom}(G, Y) \) the group of all group homomorphisms from \(G \) to \(Y \).

A set \(\Gamma \subset \text{Hom}(G, Y) \) will be called separating, if

\[
(x_1, x_2) \in G \times G, x_1 \neq x_2 \implies \exists \gamma \in \Gamma, \gamma(x_1) \neq \gamma(x_2).
\]

In what follows the letter \(S \) will stand for the multiplicative group of complex numbers of modulus one endowed with the usual compact topology. We write:

\[
S_+ = \{ s \in S : \text{Re}(s) \geq 0 \}.
\]

For a topological group \(G \) we denote by \(\mathcal{N}(G) \) the collection of all neighborhoods of the neutral element of \(G \).

A subset \(K \) of a topological group \(G \) is called precompact if for every \(V \in \mathcal{N}(G) \) there exists a finite non-empty \(A \subset G \) such that \(K \subset A + V := \{ a + v : a \in A, v \in V \} \).

A topological group \(G \) is called locally precompact if \(\mathcal{N}(G) \) admits a basis consisting of precompact subsets of \(G \).

For a group \(G \) an element of \(\text{Hom}(G, S) \) is called a (multiplicative) character.

For a topological group \(G \) we write

\[
G^\wedge := \text{CHom}(G, S).
\]

The elements of \(G^\wedge \) are called continuous characters and \(G^\wedge \) itself is the (topological) dual of \(G \).

Accordingly, for a group \(G \) and for a group topology \(\tau \) in \(G \) we denote by \((G, \tau)^\wedge \) the dual of the topological group \((G, \tau) \), i.e.,

\[
(G, \tau)^\wedge = \{ \chi \in \text{Hom}(G, S) : \chi \text{ is } \tau \text{- continuous} \}.
\]

A topological group \(G \) is called maximally almost periodic, for short a MAP-group, if \(G^\wedge \) is separating. It is known that every locally precompact Hausdorff topological group is a MAP-group (this follows from the highly non-trivial statement that every locally compact Hausdorff topological group is a MAP-group).
Remark 1.5. In connection with Theorem 1.4 we note that in [11] it is presented the first example of a Banach space which is not locally precompact (see Proposition 2.6).

Theorem 1.4. Let \(u \) be a topological group.

Definition 1.2. A subset \(A \) of a topological group \(G \) is called quasi-convex if for every \(x \in G \setminus A \) there exists \(\chi \in G^\wedge \) such that \(\chi(A) \subseteq S_+ \), but \(\chi(x) \notin S_+ \).

A topological group \(G \) is called locally quasi-convex if \(N(G) \) admits a basis consisting of quasi-convex subsets of \(G \).

Similar concepts (without a reference to [19]) were defined later in [17], where the terms polar set and locally polar group are used instead of ‘quasi-convex set’ and ‘locally quasi-convex group’. It is easy to see that every locally quasi-convex Hausdorff topological abelian group is a MAP-group. For more information about locally quasi-convex topological groups we refer [3, 4, 6].

The locally precompact groups are a prominent class of locally quasi-convex groups.

Proposition 1.3. For an infinite locally precompact Hausdorff topological abelian group \(G \) TFAE:

1. \(G \) is precompact metrizable.
2. \(G^\wedge \) is countably infinite.

The implication (ii) \(\implies \) (i) of Proposition 1.3 may fail if \(G \) is a locally quasi-convex Hausdorff group, which is not locally precompact (see Proposition 2.6).

In Section 2 we introduce the group of sequences \(X^N \) for a topological group \(X \) and its uniform topology \(u \). The following statement is the main result of this note.

Theorem 1.4. Let \(X \neq \{0\} \) be a compact Hausdorff topological abelian group and \(G = (X^N, u) \). Then

1. \(|\text{CHom}(G, X)| \geq 2^\aleph_0 \).
2. If \(|X| \leq 2^\aleph_0 \) (in particular, if \(X \) is separable), then \(|\text{CHom}(G, X)| = 2^\aleph_0 \).
3. If \(X = S \), then \(|G^\wedge| = 2^\aleph_0 \).

The proof of this theorem is given in Section 3.

Remark 1.5. In connection with Theorem 1.4 we note that in [11] it is presented the first example of a Banach space \(G \) over \(\mathbb{R} \) with the following properties: \(|G| = \aleph_0 \) and \(|\text{CHom}(G, \mathbb{R})| = 2^\aleph_0 \).

2. Two groups of sequences and their uniform topology

Let \(X \) be a set. As usual, \(X^N \) will denote the set of all sequences \(x = (x_n)_{n \in \mathbb{N}} \) of elements of \(X \).

If \(X \) is a group with the neutral element \(\theta \), then \(X^{(N)} \) will stand for the subgroup of \(X^N \) consisting of all sequences from \(X^N \), which eventually equal to \(\theta \). If \(X \) is a topological group with the neutral element \(\theta \), then \(c_0(X) \) is a subgroup of \(X^N \), \(X^{(N)} \subseteq c_0(X) \) and \(X^{(N)} = c_0(X) \) iff \(X \) has only trivial convergent sequences.

In what follows \(X \) will be a fixed Hausdorff topological group.

We denote by \(p_X \) the product topology in \(X^N \) and by \(b_X \) the box topology in \(X^N \). It is easily verified that the collection \(\{V^N : V \in \mathcal{N}(X)\} \) is a basis at \(e := (\theta, \theta, \ldots) \) for a group topology in \(X^N \) which we denote by \(u_X \). In all three cases we shall omit the subscript \(x \) when no confusion is likely.
The topology \(u \) in \(X^N \) is nothing else but the topology of uniform convergence on \(N \) when the elements of \(X^N \) are viewed as functions from \(N \) to \(X \) and \(X \) is considered as a uniform space with respect to its left (=right) uniformity \([5]\). So it will be called the uniform topology. Since it plays an important role in the sequel, we give in the next proposition an account of its main properties.

We write:

\[p_0 := p|_{c_0(X)}, \quad b_0 := b|_{c_0(X)} \quad \text{and} \quad u_0 := u|_{c_0(X)}. \]

Proposition 2.1. \([8]\) Let \((X, +)\) be a Hausdorff topological abelian group.

(a) The uniform topology \(u \) is a Hausdorff group topology in \(X^N \) with \(p \leq u \leq b \). Moreover,

\[(a_1) \quad p|_{X^0} = u|_{X^0} \iff X = \{0\}. \]

\[(a_2) \quad u|_{X^0} = b|_{X^0} \implies X \text{ is a } P\text{-group} \implies u = b; \text{ in particular, if } X \text{ is metrizable and} \]

\[u|_{X^0} = b|_{X^0}, \text{ then } X \text{ is discrete.} \]

(b) The passage from \(X \) to \((X^N, u)\) preserves (sequential) completeness, metrizability, MAP and local quasi-convexity.

(c) If \(X \neq \{0\} \) and \(G := (X^N, u) \), then:

\[(c_1) \quad c(G) \geq \kappa, \text{ in particular } G \text{ is not separable;} \]

\[(c_2) \quad (X^N, u|_{X^0}) \text{ is not precompact and hence, } (c_0(X), u_0) \text{ and } (X^N, u) \text{ are not precompact.} \]

Remark 2.2. The topology of \((S^N, u)\) can be induced by the invariant metric \(\rho \) defined by the equality

\[\rho(x, y) = \sup_{n \in \mathbb{N}} |x_n - y_n|, \quad x, y \in S^N. \]

The metric group \(G := (S^N, \rho) \) was considered earlier in \([7\) Example 4.2\)], where it was noted that \(G \) is not precompact, but every uniformly continuous \(f : G \to \mathbb{R} \) is bounded.

Proposition 2.3. \([8]\) Let \(X \) be a Hausdorff topological abelian group.

(a) \((c_0(X), u_0)\) is a Hausdorff topological group having as a basis at zero the collection \(\{V^N \cap c_0(X) : V \in \mathcal{N}(X)\} \).

(b) \(p_0 \leq u_0 \leq b_0 \). Moreover, \(p_0 = u_0 \iff X = \{0\} \); if \(X \) is metrizable and \(u_0 = b_0 \), then \(X \) is discrete.

(c) The passage from \(X \) to \((c_0(X), u_0)\) preserves (sequential) completeness, metrizability, separability, MAP, local quasi-convexity, non-discreteness, and connectedness.

Remark 2.4. Let \(X \) be the additive group \(\mathbb{R} \) with the usual topology.

1. By Proposition 2.1 \((\mathbb{R}^N, u)\) is a complete metrizable topological abelian group. Note that although \(\mathbb{R}^N \) is a vector space over \(\mathbb{R} \), \((\mathbb{R}^N, u)\) is not a topological vector space over \(\mathbb{R} \). The group \((\mathbb{R}^N, u)\) is not connected; the connected component of the null element coincides with \(l_\infty \) and the topology \(u|_{l_\infty} \) is the usual Banach-space topology of \(l_\infty \).

2. By Proposition 2.3 \((c_0(\mathbb{R}), u_0)\) is a complete separable metrizable topological abelian group. Note that \(c_0(\mathbb{R}) \) is a vector space over \(\mathbb{R} \) and \((c_0(\mathbb{R}), u_0)\) is a topological vector space over \(\mathbb{R} \). The topology \(u_0 \) is the usual Banach-space topology of \(c_0 \).

3. It is easy to see that \(\mathbb{Z}^N \) is a closed subgroup of \((c_0(\mathbb{R}), u_0)\) and the quotient group

\[(c_0(\mathbb{R}), u_0)/\mathbb{Z}^N \]

is topologically isomorphic with \((c_0(\mathbb{S}), u_0)\).

Remark 2.5. The topology of \((c_0(\mathbb{S}), u_0)\) can be induced by the invariant metric \(\rho_0 \) defined by the equality

\[\rho_0(x, y) = \sup_{n \in \mathbb{N}} |x_n - y_n|, \quad x, y \in c_0(\mathbb{S}). \]

It seems that the metric group \((c_0(\mathbb{S}), \rho_0)\) was first considered by Rolewicz in \([16\) Lemma 26.2 (p. 96)]; see also \([2\) Remark 5\)], where a construction of a different example of a complete metrizable non-locally compact group is indicated). In \([15\) it is observed that \(|(c_0(\mathbb{S}), \rho_0)^\wedge| = \kappa_0 \). A proof of the fact that \((c_0(\mathbb{S}), \rho_0)\) is monothetic and \(|(c_0(\mathbb{S}), \rho_0)^\wedge| = \kappa_0 \) is contained also in \([9\) pp. 20–21\]. In \([12\) it is shown further that \((c_0(\mathbb{S}), \rho_0)\) is a Pontryagin reflexive group.
The following statement provides, in particular, a wide class of non-compact Polish locally quasi-convex topological abelian groups with countable dual.

Proposition 2.6. [8] For an infinite locally compact Hausdorff topological abelian group X TFAE:

(i) X is compact connected and metrizable.

(ii) $|c_{0}(X), u_{0}|=\aleph_0$.

Our Theorem 1.4 shows, in particular, that in the implication $(i) \implies (ii)$ of Proposition 2.6 the group $(c_{0}(X), u_{0})$ cannot be replaced by the group $(X^\mathbb{N}, u)$.

3. Auxiliary statements and proof of Theorem 1.4

We will need the following refinement of item (c)1 of Proposition 2.6.

Proposition 3.1. Let X be a Hausdorff topological group and $G:=(X^\mathbb{N}, u)$.

Then $d(G) \leq d(X)^{\aleph_0}$.

Proof. Let D be a dense subset of X of size $d(X)$. It suffices to show that $D^\mathbb{N}$ is dense in G. This follows immediately from the definitions.

We will also use later the following known statement.

Proposition 3.2. Let X be a compact Hausdorff topological group.

(a) If $|X| \leq 2^c$, then $d(X) \leq c$.

(b) If X is infinite, then $|X| = 2^{w(X)}$.

Proof. (a). From $w(X) \leq |X|$ (see [10] (3.1.21)) and $|X| \leq 2^c$ we have: $w(X) \leq 2^c$. From the last inequality according to Ivanovskii-Kuzminov theorem [11] Theorem 4.1.7 (p. 222) we get the existence of a continuous surjection $f: \{0,1\}^{2^c} \to X$. By [10] (2.3.15) $d(\{0,1\}^{2^c}) \leq c$. Consequently, $d(X) = d(f(\{0,1\}^{2^c})) \leq d(\{0,1\}^{2^c}) \leq c$.

(b) Let D be the group X^ω endowed with the compact-open topology. Then it is not hard to see that D is a discrete group. Endow D^ω with the compact-open topology (which, in this case, coincides with the topology of point-wise convergence). It follows easily from Tikhonov-product theorem that D^ω is compact Hausdorff topological group. The powerful Pontryagin duality theorem implies that the compact groups D^ω and X are topologically isomorphic: $D^\omega \cong X$. By [13] (24.15) we have: $w(X) = |D|$. Since X is infinite, D is infinite as well; from this and $X \cong D^\omega$ by Fact 1.1 we have: $|X| = 2^{|D|}$. From this equality, as $w(X) = |D|$, we get (b).

In the sequel we deal with cardinals larger than c and even 2^c. We need to recall several standard definitions on cardinals.

Definition 3.3. Let κ be a cardinal.

- κ^+ will denote the successor of κ.
- κ is called a strong limit cardinal, if $2^\lambda < \kappa$ for all $\lambda < \kappa$.

Clearly, a strong limit cardinal κ is a limit cardinal (i.e., κ is not of the form λ^+ for any cardinal λ). Obviously, \aleph_0 is a strong limit cardinal. To obtain the next strong limit cardinal one has to go a long way. To this end let

$$\beth_0 = \aleph_0 \quad \text{and} \quad \beth_{n+1} = 2^{\beth_n} \quad \text{for all} \quad n \in \mathbb{N}.$$

Then $\beth_\omega := \sup_{n \in \mathbb{N}} \beth_n$ is the smallest uncountable strong limit cardinal. From Proposition 3.2(b) one can easily deduce that the cardinality of an infinite compact group is never a strong limit cardinal. In particular, if X is a compact Hausdorff topological group, then $|X| \neq \beth_\omega$.

Proposition 3.4. Let X be a Hausdorff topological group and $G:=(X^\mathbb{N}, u)$. Then:

(a) $|\text{Chom}(G, X)| \leq |X|^{d(X)^{\aleph_0}}$.

(b) If X is compact and $|X| \leq 2^c$, then $|\text{Chom}(G, X)| \leq 2^c$.

(c) If X is compact and $2^c < |X| < \beth_\omega$, then under the assumption of the Generalized Continuum Hypothesis (GCH) we have: $|\text{Chom}(G, X)| \leq |X|$.
Proof. (a) Denote by $C(G, X)$ the set of all continuous mappings $f : G \to X$; it is easy to see that $|C(G, X)| \leq |X|^{|d(G)|}$. From this inequality and Proposition 3.1 we get: $|C(G, X)| \leq |X|^{|d(X)|}$. Consequently, $|\text{CHom}(G, X)| \leq |C(G, X)| \leq |X|^{|d(X)|}$.

(b) From $|X| \leq 2^c$ by Proposition 3.2(a) we have: $d(X) \leq c$. From the inequalities $|X| \leq 2^c$, $d(X) \leq c$ and from (a) we obtain: $|\text{CHom}(G, X)| \leq |X|^{|d(X)|} \leq (2^c)^c = 2^c$.

(c) Let us recall that according to GCH, one has $2^\kappa = \kappa^+$ for every infinite cardinal κ. In particular, every uncountable $\kappa < \beth_\omega$ has the form $\kappa = \beth_m$ for some $m \geq 1$. In particular, the hypothesis $2^\kappa < |X| < \beth_\omega$ and the fact that $2^{\beth_m} = \beth_2$ imply that $|X| = \beth_m$ for some $m > 2$. By Proposition 3.2(b), it follows that $w(X) = \beth_{m-1}$, with $m - 1 > 1$. So $w(X) = 2^{\beth_{m-2}}$ and consequently,

$$w(X)^{\beth_0} = (2^{\beth_{m-2}})^{\beth_0} = 2^{\beth_{m-2}} = \beth_{m-1}$$

Using the latter inequality and item (a), we get

$$|\text{CHom}(G, X)| \leq |X|^{|d(X)|} \leq (2^{\beth_{m-1}})^{\beth_{m-2}} = 2^{\beth_{m-1} \cdot \beth_{m-2}} = 2^{\beth_{m-1}} = \beth_m = |X|.$$

\square

We prove in Theorem 1.4 that in Proposition 3.4(b) is practically an equality. The groups X for which in Proposition 3.4(c) can occur an equality will be treated elsewhere.

Proof of Theorem 1.4

(a). Denote by \mathfrak{F} the set of all ultrafilters on \mathbb{N}.

It is known that

$$|\text{Card}(\mathfrak{F})| = 2^\beth.$$

For a filter \mathcal{F} on \mathbb{N}, $(x_n)_{n \in \mathbb{N}} \in X^\mathbb{N}$ and $x \in X$ we write:

$$\lim_{n \in \mathcal{F}} x_n = x$$

if for every $W \in \mathcal{N}(X)$ there is $F \in \mathcal{F}$ such that $x_n - x \in W$, $\forall n \in F$.

Since X is compact Hausdorff, it follows that for every $\mathcal{F} \in \mathfrak{F}$ and $(x_n)_{n \in \mathbb{N}} \in X^\mathbb{N}$ there exists a unique $x \in X$ such that $\lim_{n \in \mathcal{F}} x_n = x$. This follows from the fact that the sets $A_F := \{ x_n : n \in F \}$, when F runs over \mathcal{F}, give rise to a filter base on X that generates an ultrafilter \mathcal{F}^* on X that has a unique limit point x.

For a filter $\mathcal{F} \in \mathfrak{F}$ define the mapping $\chi_{\mathcal{F}} : X^\mathbb{N} \to X$ by equality:

$$\chi_{\mathcal{F}}(x) = \lim_{n \in \mathcal{F}} x_n, \quad \forall x = (x_n)_{n \in \mathbb{N}} \in X^\mathbb{N}.$$

Then

$$\chi_{\mathcal{F}} \in \text{CHom}(G, X) \quad \forall \mathcal{F} \in \mathfrak{F}.$$

When \mathcal{F} is the principal ultrafilter on \mathbb{N} generated by a fixed $n \in \mathbb{N}$, then $\chi_{\mathcal{F}}$ is simply the projection $p_n : X^\mathbb{N} \to X$ on the n-th coordinate, so (5.2) is obvious. To verify (5.2) in the general case, fix $\mathcal{F} \in \mathfrak{F}$. As

$$\chi_{\mathcal{F}}(x + y) = \lim_{n \in \mathcal{F}} (x_n + y_n) = \lim_{n \in \mathcal{F}} x_n + \lim_{n \in \mathcal{F}} y_n = \chi_{\mathcal{F}}(x) + \chi_{\mathcal{F}}(y), \quad \forall x, y \in X^\mathbb{N},$$

we conclude that $\chi_{\mathcal{F}} \in \text{Hom}(X^\mathbb{N}, X)$. To see that χ is continuous on $(X^\mathbb{N}, u)$, fix a closed $W \in \mathcal{N}(X)$. Since W is closed, for $x = (x_n)_{n \in \mathbb{N}} \in W$ we shall have

$$\chi_{\mathcal{F}}(x) = \lim_{n \in \mathcal{F}} x_n \in W.$$

Consequently, $\chi_{\mathcal{F}}(W^\mathbb{N}) \subset W$. From this relation, as $W^\mathbb{N} \in \mathcal{N}(X^\mathbb{N}, u)$, we get that $\chi_{\mathcal{F}}$ is continuous on $(X^\mathbb{N}, u)$ and (5.2) is proved.

We also have:

$$\mathcal{F}_1 \in \mathfrak{F}, \mathcal{F}_2 \in \mathfrak{F}, \mathcal{F}_1 \neq \mathcal{F}_2 \implies \chi_{\mathcal{F}_1} \neq \chi_{\mathcal{F}_2}$$

(3.3)
In fact, as \mathcal{F}_1 and \mathcal{F}_2 are distinct ultrafilters, there is $F \in \mathcal{F}_1$ such that $F \notin \mathcal{F}_2$. Let $x = (x_n)_{n \in \mathbb{N}} \in X^\mathbb{N}$ be defined by conditions: $x_n = 0$ if $n \in F$ and $x_n = a \neq 0$ if $n \in \mathbb{N} \setminus F$. Then $\chi_{\mathcal{F}_1}(x) = 0$ and $\chi_{\mathcal{F}_2}(x) = a$. Therefore, $\chi_{\mathcal{F}_1} \neq \chi_{\mathcal{F}_2}$ and (3.3) is proved.

Clearly (3.1), (3.2) and (3.3) imply that $|\text{CHom}(G, X)| \geq 2^\mathfrak{c}$.

(b) follows from (a) and from Proposition 3.4(b).

(c) follows immediately from (b).

\begin{remark}
\textbf{Remark 3.5.} In notation of Theorem 1.4 and its proof let
\[\Gamma := \{ \chi_F : \mathcal{F} \in \mathfrak{F} \}. \]
Denote by (Γ) the subgroup of $\text{CHom}(G, X)$ generated by the set Γ. As $|\Gamma| = 2^\mathfrak{c}$, we have also that $|(\Gamma)| = 2^\mathfrak{c}$; so, in view of Theorem 1.4(b), for X with $|X| \leq 2^\mathfrak{c}$ we have the equality: $|(\Gamma)| = 2^\mathfrak{c} = |\text{CHom}(G, X)|$.

We do not know whether for X with $|X| \leq 2^\mathfrak{c}$ we have the equality $(\Gamma) = \text{CHom}(G, X)$ as well.
\end{remark}

\begin{remark}
\textbf{Remark 3.6.} It follows from Proposition 2.1(a2) that on \mathbb{N}^N the box topology b is strictly finer than the uniform topology u. This implies that we have the set-theoretic inclusion
\begin{equation}
(\mathbb{N}^N, u)^\wedge \subset (\mathbb{N}^N, b)^\wedge.
\end{equation}
From Fact 1.1 we get:
\begin{equation}
|\text{Hom}(\mathbb{N}^N, \mathbb{N})| = 2^\mathfrak{c}.
\end{equation}
From (3.4), (3.5) and Theorem 1.4(c) we obtain:
\begin{equation}
| (\mathbb{N}^N, u) | = 2^\mathfrak{c} = | (\mathbb{N}^N, b) |.
\end{equation}
This equality shows that from the pure cardinality arguments it is not possible to conclude that in (3.4) we have the strict inclusion. Nevertheless, we conjecture that the inclusion in (3.4) is strict, i.e., $(\mathbb{N}^N, u)^\wedge \neq (\mathbb{N}^N, b)^\wedge$.

\textbf{Acknowledgements.} We are grateful to S. S. Gabriyelyan (Ben-Gurion University of the Negev, Beer-Sheva, Israel) for useful discussions while preparing this manuscript.

\section*{References}

[1] A. V. Arhangel’skii and M. G. Tkachenko, \textit{Topological Groups and Related Structures}, Atlantis Series in Mathematics, Vol. I, Atlantis Press/World Scientific, Paris–Amsterdam 2008.

[2] H. Anzai and S. Kakutani, \textit{Bohr compactifications of a locally compact Abelian group. II}. Proc. Imp. Acad. Tokyo \textbf{19}, (1943). 533–539.

[3] L. Aussenhofer, \textit{Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups}, Diss. Math. \textbf{CCCLXXXIV}, Warsaw, 1999.

[4] W. Banaszczyk, \textit{Additive Subgroups of Topological Vector Spaces}. Lecture Notes in Mathematics, \textbf{1466}. Springer-Verlag, Berlin, 1991.

[5] N. Bourbaki, \textit{Elements de mathematique. Premiere partie, Livre III: Topologie Generale. Chapitre X: Espaces Fonctionnels}.

[6] M. J. Chasco, E. Martín-Peinador and V. Tarieladze, \textit{On Mackey Topology for groups}, Stud. Math. \textbf{132}, No.3, 257-284 (1999).

[7] W.W. Comfort and Kenneth A. Ross, \textit{Pseudocompactness and uniform continuity in topological groups}. Pacific J. Math. \textbf{16} (1966) 483–496.

[8] D. Dikranjan, E. Martín-Peinador and V. Tarieladze, \textit{Group valued null sequences and metrizable non-Mackey groups}. Forum Math. Published Online: 2012.02.03.

[9] D. Dikranjan, Iv. Prodanov and L. Stoyanov, \textit{Topological Groups: Characters, Dualities and Minimal Group Topologies}, Pure and Applied Mathematics, vol. \textbf{130}, Marcel Dekker Inc., New York-Basel, 1989.

[10] R. Engelking, \textit{General topology}, Pustwowe Wydawnictwo Naukowe, 1985.

[11] G. Feichtengolz and L. Kantorovitch, \textit{Sur les operations lineaires dans l’espace des fonctions bornees}. Studia Math. \textbf{5}(1944), 69–98.

[12] S.S. Gabriyelyan, \textit{Groups of quasi-invariance and the Pontryagin duality}. Topology and its Applications, \textbf{157}(2010), 2786–2802.

[13] E. Hewitt, and Kenneth A. Ross, \textit{Abstract Harmonic Analysis I}. Die Grundlehren der Mathematischen Wissenschaften 115. Springer-Verlag 1963.

[14] S. Kakutani, \textit{On cardinal numbers related with a compact Abelian group}. Proc. Imp. Acad. Tokyo \textbf{19}, (1943). 366–372.

[15] J. W. Nienhuys, \textit{A solenoidal and monothetic minimally almost periodic group}. Fund. Math. \textbf{73} (1971/72), no. 2, 167–169.
[16] S. Rolewicz, Some remarks on monothetic groups, Colloq. Math. **XIII** (1964), 28–29.
[17] L. J. Sulley, On countable inductive limits of locally compact abelian groups. J. London Math. Soc. **5** (1972), pp. 629–637.
[18] A. Weil, L’integration dans les groupes topologiques et ses applications. (French) Actual. Sci. Ind., no. 869. Hermann et Cie., Paris, 1940. 158 pp
[19] N. Ya. Vilenkin, The theory of characters of topological Abelian groups with boundedness given, Izvestiya Akad. Nauk SSSR. Ser. Mat. **15** (1951), 439–162.

Addresses:

Dikran Dikranjan
Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, Località Rizzi 33100 Udine, Italy
e-mail: dikran.dikranjan@uniud.it

Elena Martín-Peinador
Departamento de Geometría y Topología, Universidad Complutense de Madrid, 28040 Madrid, Spain
e-mail: em_peinador@mat.ucm.es

Vaja Tarieladze
Niko Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University 8, Akuri str. 0160 Tbilisi, Georgia
e-mail: vajatarieladze@yahoo.com