Search for the Θ^+ pentaquark in the $\gamma d \rightarrow \Lambda n K^+$ reaction measured with CLAS

S. Niccolai,1 M. Mirazita,2 P. Rossi,2 N.A. Baltzell,3 D.S. Carman,4 K. Hicks,4 B. McKinnon,5 T. Mibe,4 S. Stepanyan,6 D.J. Tedeschi,3 G. Adams,30 P. Ambrozevich,17 S. Anefnos Pereira,2,38 M. Anghinolfi,21 G. Asryan,37 H. Avakian,6 H. Bagdasaryan,29 N. Baillie,36 J.P. Ball,8 V. Batourine,24 M. Battagliera,21 I. Bedlinskiy,22 M. Bektasoglu,4 M. Bellis,30,11 N. Benmoua,19,19,19,19 A.S. Biselli,11 S. Boiarinov,6 S. Bouchigny,3 R. Bradford,11 D. Branford,16 W.J. Briscoe,19 W.K. Brooks,9 S. Buitmann,29 V.D. Burkert,6 C. Butuceanu,36 J.R. Calarco,27 S.L. Careccia,29 B. Carnahan,12 S. Chen,18 P.L. Cole,12,20,6 P. Collins,8 P. Coltharp,18 D. Crabb,35 H. Crannell,12 V. Crede,18 J.P. Cummings,30 N. Dashyan,37 P.V. Detyayrenko,6 R. De Masi,13 A. Deppe,38 E. De Sanctis,2 A. Deur,6 R. DeVita,21 K.V. Dharmawardane,29 C. Djalal,3 G.E. Dodge,29 J. Donnelly,5 D. Doughty,14,6 M. Dugger,8 O.P. Dzyubak,3 H. Egiyan,6 K.S. Egiyan,37 L. El Fassi,7 L. Elouadrhiri,6 P. Eugenio,18 G. Fedotov,26 G. Feldman,19 H. Funsten,36 M. Garcon,13 G. Gavalian,27,29 G.P. Gilfoyle,32 K.L. Giovanetti,23 F.X. Girod,13 J.T. Goetz,9 A. Gonenc,17 C.I.O. Gordon,5 R.W. Gothe,3 K.A. Griffioen,36 M. Guidal,1 N. Guler,29 L. Guo,6 V. Gyurjyan,6 C. Hadjidakis,1 K. Hafidi,7 H. Hakobyan,37 R.S. Hakobyan,12 J. Hardie,14,6 F.W. Hersman,27 I. Hleiqaqi,4 M. Holtrop,27 C.E. Hyde-Wright,29 Y. Ilieva,19 D.G. Ireland,5 B.S. Ishkhanyan,26 E.L. Ispov,26 M.M. Ito,6 D. Jenkins,34 H.S. Jo,1 K. Joo,15 H.G. Juengst,19,29 J.D. Kellie,5 M. Khandaker,28 W. Kim,24 A. Klein,29 F.J. Klein,12 A.V. Klimenko,29 M. Kossor,22 L.H. Kramer,17 V. Kubarovsky,30 J. Kuhn,31 S.E. Kuhn,29 S.V. Kuleshov,22 J. Lachniet,11,29 J. Langheirich,3 D. Lawrence,25 T. Lee,27 Ji Li,30 K. Livingston,5 H. Lu,3 M. MacCormick,3 N. Markov,15 B.A. Mecking,6 J. Mellor,35 J.J. Melone,15 M.D. Mestayer,26 C.A. Meyer,11 K. Mikhailov,22 R. Minehart,35 R. Miskimen,25 V. Mokeev,26 L. Morand,13 S.A. Morrow,1,13 M. Moteabbed,17 G.S. Mutcher,31 P. Nadel-Turonski,19 J. Napolitano,30 R. Nasseripour,17,3 G. Niculescu,23 I. Niculescu,23 B.B. Niczyporuk,6 M.R. Niroula,29 R.A. Niyazov,6 M. Nozar,29 J. de Oliveira Echeimberg,2,38 M. Osipenko,21,26 A.I. Ostrovishov,18 K. Park,24 E. Pasyuk,8 C. Paterson,5 J. Pierce,35 N. Pivnyuk,22 D. Pocanic,35 O. Pogorelov,22 S. Pozdniakov,22 B.M. Prevedom,3 J.W. Price,10 Y. Prok,35,6 D. Protopenkov,5 B.A. Raue,7 G. Riccardi,18 G. Ricco,21 M. Ripani,21 B.G. Ritchie,8 F. Ronchetti,2 G. Rosner,5 F. Sabatid,13 C. Salgado,28 J.P. Santoro,34,6 V. Sapunenko,6 R.A. Schumacher,11 V.S. Serov,22 Y.G. Sharabian,6 N.V. Shvedunov,26 E.S. Smith,6 L.C. Smith,35 D.I. Sober,12 A. Stavinsky,22 S.S. Stepanyan,24 B.E. Stokes,18 P. Stoler,30 I.J. Strakovsky,19 S. Strauch,19,3 M. Taiuti,21 U. Thoma,6 A. Tkabladze,4,19 S. Tkachenko,29 L. Todor,32 C. Tur,3 M. Ungaro,15 M.F. Vineyard,3 A.V. Vlassov,22 D.P. Watts,5 L.B. Weinstein,29 D.P. Weygand,6 M. Williams,11 E. Wolin,6 M.H. Wood,3 A. Yegneswaran,6 L. Zana,27 J. Zhang,29 B. Zhao,15 and Z. Zhao3
(The CLAS Collaboration)

1Institut de Physique Nucl´eaire, Orsay, France
2INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
3University of South Carolina, Columbia, South Carolina 29208
4Ohio University, Athens, Ohio 45701
5University of Glasgow, Glasgow G12 8QQ, United Kingdom
6Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
7Argonne National Laboratory, Argonne, IL 60439
8Arizona State University, Tempe, Arizona 85287-1504
9University of California at Los Angeles, Los Angeles, California 90095-1547
10California State University, Dominguez Hills, Carson, CA 90747
11Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
12Catholic University of America, Washington, D.C. 20064
13CEA-Saclay, Service de Physique Nucl´eaire, F91191 Gif-sur-Yvette, France
14Christopher Newport University, Newport News, Virginia 23606
15University of Connecticut, Storrs, Connecticut 06269
16Edinburgh University, Edinburgh EH9 3JZ, United Kingdom
17Florida International University, Miami, Florida 33199
18Florida State University, Tallahassee, Florida 32306
19The George Washington University, Washington, DC 20052
20Idaho State University, Pocatello, Idaho 83209
21INFN, Sezione di Genova, 16146 Genova, Italy
22Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
23James Madison University, Harrisonburg, Virginia 22807
24Kyungpook National University, Daegu 702-701, Republic of Korea
25University of Massachusetts, Amherst, Massachusetts 01003

26Apr 2006
For the first time, the reaction $\gamma d \rightarrow \Lambda nK^+$ has been analyzed in order to search for the exotic pentaquark baryon Θ^+ (1540). The data were taken at Jefferson Lab, using the Hall-B tagged-photon beam of energy between 0.8 and 3.6 GeV and the CEBAF Large Acceptance Spectrometer (CLAS). No statistically significant structures were observed in the nK^+ invariant mass distribution. The upper limit on the $\gamma d \rightarrow \Lambda \Theta^+$ integrated cross section has been calculated and found to be between 5 and 25 nb, depending on the production model assumed. The upper limit on the differential cross section is also reported.

PACS numbers: 12.39.Mk, 13.60.Rj, 13.60.-r, 14.20.Jn, 14.80.-j

Since the first publication of the observation of the new state Θ^+ (1540) in the year 2003 [1], the possible existence of exotic baryons that have quantum numbers which require a minimum quark content of $qqqq\bar{q}$ has generated tremendous interest in the physics community. Although the idea of exotic pentaquark states was introduced originally in the early 70’s, the specific prediction for both a mass of 1530 MeV/c2 and a narrow width of less than 15 MeV/c2, which motivated the first measurement at LEPS/SPring-8 [1], was made in 1997 by Diakonov et al. [2]. Within the framework of their Chiral Soliton Model, they predicted the Θ^+ to be an isosinglet member of a $J^P = \frac{1}{2}^+$ anti-decuplet of pentaquark states, having an exotic flavor quantum number $S(\Theta^+) = +1$ and a minimal quark content of $uudd\bar{c}$.

Experimental evidence for the Θ^+ state has been claimed in several published works [1, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The observation of a candidate for the anti-charmed equivalent of the Θ^+ ($uudd\bar{c}$), of mass 3.1 GeV/c2, has been claimed by the H1 Collaboration [12]. One experiment [13] also reported the observation of two other pentaquarks, Ξ^+_5 and Ξ^+_5. However, several reports of non-observation of pentaquarks have also been made [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Moreover, the statistical significances of the observed Θ^+ signals are rather low, and there are discrepancies in the measured masses. The still-open question of the existence of narrow five-quark baryons can therefore be addressed only by performing a second generation of dedicated, high-statistics experiments. The CLAS Collaboration is currently pursuing high-statistics searches for the Θ^+ through photoproduction on hydrogen [32] and deuterium [33] targets, and in various final states.

Searching for the Θ^+ through photoproduction on the deuteron together with a Λ hyperon has various experimental advantages. The main advantage of this reaction channel is that there are no competing channels to remove in the final state, while at the same time it excludes kinematical reflections of heavy mesons in the NK invariant mass spectrum, possible in other channels, like $pK^+K^-\Lambda$ or $pK^+K^0\Lambda$. Moreover, the presence of the Λ provides a “strangeness tag” ($S_\Lambda = -1$) in both the nK^+ and the pK^0 decay modes. Figure 11 shows a possible diagram that could lead to Θ^+ production via a two-step process. The photon interacts with one of the nucleons in the deuteron and produces a Λ and a kaon. The Λ leaves the target nucleus, while the K rescatters on the spectator nucleon to form a Θ^+. The rescattering probability is determined by the deuteron wave function and the KN scattering cross section. This kind of process has been taken into account by Guzey [35] to calculate the total and differential cross section for the $\gamma d \rightarrow \Lambda \Theta^+$ reaction. Also, calculations of the KN rescattering amplitude and the probability of production of a narrow resonant state have been performed by Laget [36].

We have searched for the Θ^+ in the $\gamma d \rightarrow \Lambda nK^+$ reac-
tion using the CLAS-G10 data set \[29, 33\] (the results of our analysis on the \(pK^0\) mode, currently underway, will be presented in an upcoming publication). The data were taken during spring 2004 with the Hall-B tagged-photon beam \[37\] of energy between 0.8 GeV and 3.6 GeV, impinging on a 24-cm-long liquid-deuterium target. Two different values for the CLAS torus magnetic field \[38\] were chosen for the two halves of the experiment. The run with lower magnetic field had higher acceptance for negative particles in the forward direction, and has been used for this analysis. For this part of the experiment, an integrated luminosity of 31 pb\(^{-1}\) has been achieved.

The run with higher magnetic field was taken to reproduce the same acceptance and track resolution of the data used for the CLAS published result on the deuteron in the \(pK^+K^-n\) channel \[4\], but had very low acceptance for the \(\gamma d \rightarrow \Lambda nK^+\) reaction, giving approximately a factor of six less statistics than the low-field run, and was therefore not used for the analysis discussed in this Letter.

Since CLAS is mainly efficient for the detection of charged particles, the \(\Lambda \rightarrow p\pi^-\) decay mode was chosen. The final state was determined exclusively, identifying the 3 charged particles \((p, \pi^-, K^+)\) through their momenta and times of flight measured in CLAS, reconstructing the neutron with the missing mass technique (Fig. 2, top plot), and the \(\Lambda\) via the \(p\pi^-\) invariant mass (Fig. 2, bottom plot). Selection cuts 3\(\sigma\)-wide were placed around both the neutron peak in the missing mass and the \(\Lambda\) peak in the invariant mass, as shown by the dotted lines in Fig. 2.

The \(p\pi^-nK^+\) final state can also arise from the \(\gamma d \rightarrow \Sigma^-pK^+\) channel, when the \(\Sigma^-\) decays weakly into \(n\pi^-\). In order to study this possible source of background, the distribution of the missing mass of the \(pK^+\) system has been studied. As expected, the \(\Sigma^-\) peak (Fig. 3 crosses) disappears after applying the \(\Lambda\) selection cut on the \(p\pi^-\) invariant mass (circles).

After selecting the \(\Lambda nK^+\) events, the \(\Theta^+\) signal was searched for in the invariant mass of the \(nK^+\) system. The result obtained is shown in the top plot of Fig. 4. Since the \(nK^+\) mass spectrum does not show any evi-
dent structure, the following kinematical cuts were subsequently imposed based on the model of Ref. [35] in order to try to enhance a possible Θ+ signal over the non-resonant nK+ background:

- non-spectator-neutron cuts: the non-resonant nK+ background can be suppressed by removing the events in which the neutron is a spectator, having momentum given by the Fermi-momentum distribution in the deuteron.
- photon-energy cuts: according to the model [35], the γd → ΛΘ+ cross section decreases rapidly with increasing photon energy.

Several cuts on the neutron momentum (p_n) and on the photon energy (E_γ) have been tried. However, also under these stringent kinematic conditions, no narrow peaks having statistical relevance can be observed in the mass region around 1.54 GeV/c^2. An example is given in the bottom plot of Fig. 4 where the kinematic requirements p_n > 0.2 GeV/c and E_γ < 1.6 GeV are applied. A parallel analysis based upon a kinematic fitting procedure was also carried out, leading to equivalent final results.

Since no structures having relevant statistical significance appear in the nK+ invariant mass for any of the kinematic cuts that have been studied, the upper limit on the cross section has been calculated for p_n > 0.2 GeV/c and E_γ < 1.6 GeV. For each bin in M(nK+), the number of events above the background was calculated as follows: the nK+ distribution was fitted with a third-order polynomial (as shown in the bottom plot of Fig. 4), and then a second fit was performed by fixing the third-order polynomial and adding a Gaussian curve having a fixed centroid at the M(nK+) bin under examination and a width equal to 5 MeV/c^2. This width corresponds to the invariant-mass resolution of CLAS determined via Monte-Carlo simulations. Only the amplitude of the Gaussian was left as a free parameter for the fit. The yield above or below the curve describing the background is therefore given by the integral of the Gaussian. The upper limit at the 95% confidence level on the yield was calculated using the Feldman-Cousins method [37]. The acceptance has been computed with the aid of a Monte-Carlo simulation reproducing the response of CLAS, with three different models used to generate the ΛnK+ final state: (a) a two-body (ΛΘ+) phase space, followed by the decay Θ+ → nK+, with an energy-independent cross section and a bremsstrahlung photon-energy distribution; (b) a ΛnK+ final state for which the kinematical variables are tuned to match the experimental data; and (c) a two-body (ΛΘ+) final state based upon the model of Guzy [37], followed by the decay Θ+ → nK+. The integrated acceptances obtained with model (a) and model (b) are comparable and are of the order of 0.5%. Model (c) produces most of the Λ’s (i.e. π−’s) in the very forward direction, where CLAS has no acceptance for negative particles, and thus it gives an integrated acceptance about a factor of 5 smaller than for models (a) and (b). Therefore, the integrated acceptance is strongly model dependent. The Λ → πn− decay branching ratio (64%) was included in the calculation of the acceptance, as well as the Θ+ decay branching ratio for the nK+ mode, which was assumed to be 50%. The photon flux was measured by integrating the tagged-photon rate during the data-acquisition livetime. The tagging efficiency was measured during dedicated low-flux runs, using a lead-glass total-absorption detector [37]. The resulting upper limit on the γd → ΛΘ+ total cross section is shown, as a function of M(nK+), in the top plot of Fig. 5. In the mass range between 1.52 and 1.56 GeV/c^2 the upper limit is 5 nb. Here, the acceptance obtained with model (a) has been used. Adopting model (c) to extract the total cross section gives an upper limit about a factor of 5 larger than the one shown in Fig. 5.

The upper limit on the γd → ΛΘ+ differential cross section as a function of the momentum transfer t, with t = (p_n^2 − p_H^2), has also been calculated, again for p_n > 0.2 GeV/c and E_γ < 1.6 GeV. The data were divided into
five t bins, as shown in the lower plot of Fig. 5. For each t bin, the upper limit on the cross section was extracted according to the procedure described above for the total cross section, using the acceptances given by models (a) (triangles) and (c) (circles). The maximum value of the upper limit in the $M(nK^+) = 1.52 - 1.56$ GeV/c^2 range for each t bin was then used to get the upper limit on the differential cross section, as shown in the bottom plot of Fig. 5. It varies between 0.5 nb/(GeV/c^2) at the highest values of $-t$ and 30 nb/(GeV/c^2) as t approaches 0. The kinematic region at small t values, however, corresponds to the forwardmost part of the spectrometer, where the acceptance drops to zero. This explains the higher value on the upper limit for the last bin in Fig. 5.

In conclusion, for the first time a search for the exotic pentaquark Θ^+ in the $\gamma d \rightarrow \Lambda n K^+$ reaction was performed. The high-statistics CLAS-G10 data were used for this search, and the final state was cleanly identified. No statistically significant signal was observed in the nK^+ invariant mass distribution, even under several different kinematic conditions. Upper limits on the total cross section were calculated in the mass range between 1.52 and 1.56 GeV/c^2 and for $p_t > 0.2$ GeV/c and $E_\gamma < 1.6$ GeV, and found to be 5 nb when computed with the phase-space Monte-Carlo acceptance, while this number increases by a factor of 5 if the Guzey model is used. The upper limit on the differential cross section as a function of t has also been extracted and found to be between 0.5 and 30 nb/(GeV/c^2).

We would like to thank the staff of the Accelerator and Physics Divisions at Jefferson Lab, who made this experiment possible. Acknowledgments for the support of this experiment go also to the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique and Commissariat a l’Energie Atomique, the UK Engineering and Physical Science Research Council, the U.S. Department of Energy and the National Science Foundation, and the Korea Research Foundation. The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility under U.S. Department of Energy contract DE-AC05-84ER40150.

[1] T. Nakano et al. (LEPS Collaboration), Phys. Rev. Lett. 91, 012002 (2003).
[2] D. Diakonov, V. Petrov, and M.V. Polyakov, Z. Phys. A359, 305 (1997).
[3] V. Barmin et al. (DIANA Collaboration), Phys. Atom. Nucl. 66, 1715 (2003).
[4] S. Stepanyan et al. (CLAS Collaboration), Phys. Rev. Lett. 91, 252001 (2003).
[5] V. Kubarovsky et al. (CLAS Collaboration), Phys. Rev. Lett. 92, 032001 (2004); ibidem 92, 049902(E) (2004).
[6] J. Barth et al. (SAPHIR Collaboration), Phys. Lett. B572, 127 (2003).
[7] A. Airapetian et al. (HERMES Collaboration), Phys. Lett. B585, 213 (2004).
[8] S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B591, 7 (2004).
[9] A.E. Asratyan, A.G. Dolgolenko, M.A. Kubantsev, Phys. Atom. Nucl. 67, 682 (2004); Yad. Fiz. 67, 704 (2004).
[10] A. Aleev et al. (SVD Collaboration), arXiv: hep-ex/0410124.
[11] M. Abdel-Bary et al. (COSY-TOF Collaboration), Phys. Lett. B595, 127 (2004).
[12] H1 Collaboration, Phys. Lett. B 588, 17 (2004).
[13] C. Alt et al. (NA49 Collaboration), Phys. Rev. Lett. 92, 042003 (2004).
[14] A. Aktas et al. (H1 Collaboration), Phys. Lett. B588, 17 (2004).
[15] S. Schael et al. (ALEPH Collaboration), Phys. Lett. B599, 1 (2004).
[16] B. Aubert et al. (BABAR Collaboration), arXiv: hep-ex/040806.
[17] K. Abe et al. (Belle Collaboration), arXiv: hep-ex/0411005.
[18] J.Z. Bai et al. (BES Collaboration), Phys. Rev. D 70, 012004 (2004).
[19] I.V. Gorelov (CDF Collaboration), arXiv:
D.O. Litvintsev (CDF Collaboration), Nucl. Phys. Proc. Suppl. 142, 374 (2005).

K. Stenson (FOCUS Collaboration), arXiv: hep-ex/0412021

I. Abt et al. (HERA-B Collaboration), Phys. Rev. Lett. 93, 212003 (2004); K.T. Knopfle, M. Zavertyaev and T. Zivko (HERA-B Collaboration), J. Phys. G 30, S1363 (2004).

M.J. Longo et al. (HyperCP Collaboration), Phys. Rev. D 70, 111101 (R) (2004).

J. Napolitano, J. Cummings and M. Witkowski, arXiv: hep-ex/0412031

S.R. Armstrong, Nucl. Phys. Proc. Suppl. 142, 364 (2005).

C. Pinkerburg (PHENIX Collaboration), J. Phys. G 30, S1201 (2004).

Y.M. Antipov et al. (SPHINX Collaboration), Eur. Phys. J A 21, 455 (2004).

M.I. Adamovich et al. (WA89 Collaboration), arXiv: hep-ex/0405042

M. Battaglieri et al. (CLAS Collaboration), Phys. Rev. Lett. 96, 042001 (2006).

B. McKinnon et al., hep-ex/0603028

A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D 71, 032004 (2005).

E.S. Ageev et al. (COMPASS Collaboration), Eur. Phys. J. C 41, 469 (2005).

M. Battaglieri et al., Jefferson Lab. experiment E04-021.

K. Hicks et al., Jefferson Lab. experiment E03-113.

A.R. Dzierba et al., Phys. Rev. D 69, 051901 (2004).

V. Guzey, Phys. Rev. C 69, 065203 (2004).

J. M. Laget, nucl-th/0603009

D. Sober et al., Nucl. Instr. and Meth. A440, 263 (2000).

B. Mecking et al., Nucl. Instr. and Meth. A503, 513 (2003).

G.D. Feldman and R.D. Cousins, Phys. Rev. D 57, 3873 (1998).