Hypertension is the major preventable cause of premature all-cause mortality globally, mainly through cardiovascular disease (CVD) such as ischemic heart disease and stroke. The prevalence of hypertension is around 30%–45%, and is increasing. However, detection and treatment of hypertension vary greatly, with evidence suggesting that few patients with hypertension worldwide have a controlled blood pressure (BP). Hypertension and diabetes mellitus often coexist, and both increase the risk of CVD so that the total risk is the combined or even multiplicative risk of each disease. Lowering BP reduces both morbidity and mortality.

Both elevated office BP and out-of-office BP are associated with independent and continuous increased risk of CVD. There are several benefits with out-of-office BP over office BP measurements, where out-of-office measurements have been shown to significantly predict cardiovascular mortality,
also when adjusted for office BP measurements. On the contrary, office BP measurements adjusted for out-of-office BP measurements have not been shown to predict cardiovascular mortality. Neither home blood pressure monitoring (HBPM) nor ambulatory blood pressure monitoring (ABPM) is superior for predicting cardiovascular events. HBPM has been shown to increase patient adherence to antihypertensive therapy. Furthermore, the combination of office and out-of-office BP measurements allows for the diagnosis of intermediate hypertension phenotypes: white coat hypertension, in which office BP measurements are falsely elevated, and masked hypertension, in which office BP measurements are falsely normal. Masked hypertension is more prevalent among patients with obesity and diabetes mellitus, and the prevalence increases with treatment (so-called masked uncontrolled hypertension). Current guidelines consider out-of-office BP to be of decisive value in the diagnosis of hypertension.

Diabetes mellitus is a heterogeneous group of metabolic diseases diagnosed by elevated fasting plasma glucose, elevated plasma glucose after oral glucose tolerance testing, and/or elevated glycated hemoglobin (HbA1c). HbA1c is an indirect marker of prolonged elevation of plasma glucose levels, and a diagnostic threshold of 48 mmol/mol or higher is advised by most guidelines. Prediabetes is defined as supranormal glucose levels that do not meet the criteria of diabetes mellitus, but the diagnostic criteria are not universally agreed upon. Furthermore, prediabetes is classified as impaired fasting glucose (IFG) and impaired glucose tolerance and this categorization is lacking consensus as well. Prediabetes increases the risk of type 2 diabetes mellitus and the risk of CVD, although the predictive significance of the various definitions of prediabetes differ.

The 2019 ESC Guidelines on Diabetes, Pre-Diabetes and Cardiovascular Diseases suggest that HBPM should be considered to evaluate antihypertensive treatment in patients with diabetes. However, there is no evidence of greater benefits of HBPM for patients with diabetes compared with hypertensive patients without diabetes.

To our knowledge, the relationship between HbA1c, office BP, and HBPM is not known. Thus, the aim of our study was to explore if there is a discrepancy between office BP and HBPM in relation to HbA1c as well as glycemic status.

METHODS

Study population

The Swedish CardioPulmonary BioImage Study (SCAPIS) is a prospective observational study of 30,000 randomly selected men and women aged 50–64 years. In brief, the study participants were selected randomly from the Swedish population register, and the study includes data from anthropometric measurements, clinical physiology such as electrocardiogram and spirometry, urine and blood analyses, advanced imaging studies such as ultrasound of the carotid arteries and coronary computed tomography angiography, as well as 175 questionnaire questions in a broad range of topics including lifestyle. In addition, in a subsample in Linköping, the 5,057 SCAPIS participants were evaluated with HBPM as well as regular office BP measurements.

Measurement of BP and definition of BP classification

Office BP and HBPM measurement methodology has been previously described in detail. Measurements were taken after 5 minutes’ rest using the same semiautomatic Omron M10-IT oscillometric device (Omron, Kyoto, Japan) for both office BP and HBPM, with approximately 1 minute between each consecutive measurement. Participants were instructed to abstain from smoking, coffee and strenuous activity at least 1 hour prior to measurements. Office BP was measured in the supine position twice consecutively on each arm and a mean variable was calculated. The arm with the highest mean BP was designated as reference arm and used for further measurements. HBPM was measured in a sitting position in the morning and evening on 7 consecutive days, except for the first day for which only evening measurements were recorded. Each of these thirteen measurements was calculated as an average from 2 separate measurements.

An average office BP ≥140 mm Hg systolic and/or ≥90 mm Hg diastolic was labeled as hypertensive office BP. An average office BP below these limits was labeled as normotensive office BP. An average HBPM ≥135 mm Hg systolic and/or ≥85 mm Hg diastolic was labeled as hypertensive HBPM. An average below these limits was labeled as normotensive HBPM. Based on this categorization of office BP and HBPM, BP was classified as “sustained normotension,” “white coat hypertension,” “masked hypertension,” or “sustained hypertension,” Box 1.

Glycemic measurements and definition of glycemic status

Fasting capillary glucose and venous HbA1c were measured on day 1 of participant inclusion. IFG and diabetes mellitus were classified according to guidelines from the World Health Organization (WHO). In addition, elevated HbA1c was defined according to current recommendations. Thus, glycemic status was classified as “known diabetes mellitus,” “new diabetes mellitus,” “prediabetes,” or “normoglycemia,” Box 2. If HbA1c was missing, fasting glucose was used to classify glycemic status. If fasting glucose was missing, classification was done if HbA1c was elevated, ≥42 mmol/mol, but if fasting glucose was missing and HbA1c was <42 mmol/mol, participants were classified as

Box 1. Blood pressure classifications according to study measurements

- Sustained normotension: normal office BP and HBPM.
- White coat hypertension: elevated office BP but normal HBPM.
- Masked hypertension: normal office BP but elevated HBPM.
- Sustained hypertension: elevated office BP and elevated HBPM.
The systolic white coat effect was calculated for each individual by subtracting systolic HBPM from systolic office BP. Low-density lipoprotein (LDL) was calculated using Friedwald’s formula \(LDL = \text{total cholesterol} - \text{high-density lipoprotein} - 0.45 \times \text{triglycerides} \). Estimated glomerular filtration rate \((eGFR) \) was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation, but without including race since that was not recorded. Coronary artery calcium score (CACS) was presented as a dichotomous variable of a total score of less than 100, or a total score of 100 or above.

Subgroup analyses were made comparing white coat hypertension with sustained hypertension and masked hypertension with sustained normotension, in participants without current antihypertensive medication. Analyses were made using logistic regression, and were crude (model 1), adjusted for age and sex (model 2), adjusted for age, sex, smoking status, prescribed lipid-lowering medication, waist circumference, \(eGFR \), hemoglobin, LDL/high-density lipoprotein ratio, and total CACS \(\geq 100 \) (model 3) and adjusted for PWV in addition to the variables in model 3 (model 4). Further subgroup analysis was made comparing masked hypertension with sustained normotension, in participants without current antihypertensive medication and with PWV in the highest quartile, using logistic regression.

Analyses of systolic white coat effect in relation to \(\text{HbA1c} \) were made using linear regression with the same adjustments as in models 1–4, but with the addition of including prescribed medication for diabetes and prescribed antihypertensive medication in the adjusted models (models 3 and 4). Furthermore, sensitivity analyses were done for the relationship between the systolic white coat effect and \(\text{HbA1c} \) in participants without known antihypertensive medication.

Analysis of the difference between morning and evening mean systolic HBPM in relation to antihypertensive medication was made using linear regression.

Statistical tests were 2 tailed and \(P \) values of \(< 0.05 \) were considered statistically significant. IBM SPSS Statistics version 26 and R 4.1.2 and RStudio 2021.09.1 were used for data analyses.

Ethical considerations

The SCAPIS study was approved by the Regional Ethical Review board in Umeå (Dnr 2010-228-31M) and the Regional Ethical Review board in Linköping (Dnr 2018/478-31) and adheres to the Declaration of Helsinki.

RESULTS

Of 5,057 included participants, 5,029 participated in the HBPM measurements. Four of these had a hemoglobin level below 90 g/l (range 76–86 g/l), hence their \(\text{HbA1c} \) (range 33–44 mmol/mol) was considered invalid, and the participants were excluded. Thus, a total of 5,025 individuals were included in our analysis. The median age was 57.3 (53.5–61.3) years, and 2,520 (50.1%) of the participants were men. Of participants, 907 (18.0%) reported taking medication for hypertension, 363 (7.2%) reported taking antihypertensive medication in the adjusted models (models 3 and 4).

Further subgroup analysis was made comparing masked hypertension with sustained normotension, in participants without current antihypertensive medication and with PWV in the highest quartile, using logistic regression.

Analyses of systolic white coat effect in relation to \(\text{HbA1c} \) were made using linear regression with the same adjustments as in models 1–4, but with the addition of including prescribed medication for diabetes and prescribed antihypertensive medication in the adjusted models (models 3 and 4). Furthermore, sensitivity analyses were done for the relationship between the systolic white coat effect and \(\text{HbA1c} \) in participants without known antihypertensive medication.

Analysis of the difference between morning and evening mean systolic HBPM in relation to antihypertensive medication was made using linear regression.

Statistical tests were 2 tailed and \(P \) values of \(< 0.05 \) were considered statistically significant. IBM SPSS Statistics version 26 and R 4.1.2 and RStudio 2021.09.1 were used for data analyses.

Ethical considerations

The SCAPIS study was approved by the Regional Ethical Review board in Umeå (Dnr 2010-228-31M) and the Regional Ethical Review board in Linköping (Dnr 2018/478-31) and adheres to the Declaration of Helsinki.
Table 1. Baseline characteristics according to glycemic status
Normoglycemia (n = 3,979)
Sex, men, n (%)
Age (y), median (Q1–Q3)
Ever-smokers, n (%)
Previous
Current
BMI (kg/m²), median (Q1–Q3)
Waist circumference (cm), median (Q1–Q3)
Fasting glucose (mmol/l), median (Q1–Q3)
HbA1c (mmol/mol), median (Q1–Q3)
Hemoglobin (g/l), mean (SD)
eGFR (CKD-EPI) (ml/min/1.73 m²), median (Q1–Q3)
Total cholesterol (mmol/l), median (Q1–Q3)
LDL (mmol/l), median (Q1–Q3)
HDL (mmol/l), median (Q1–Q3)
Triglycerides (mmol/l), median (Q1–Q3)
LDL/HDL ratio, median (Q1–Q3)
Total CACS ≥100, n (%)
PWV (m/s), median (Q1–Q3)
Current medication, n (%)
Hypertension
Hyperlipidemia
Diabetes mellitus
Office BP, mean (SD), mm Hg
Systolic
Diastolic
HBPM, mean (SD), mm Hg
Systolic
Diastolic

Values for sex, age, body mass index (BMI), estimated glomerular filtration rate (eGFR), cholesterol, high-density lipoprotein (HDL), triglycerides, and all blood pressure variables were calculated based on all 5,025 participants. Values for other variables were calculated based on 97%–99% of the total population. BMI was calculated as weight (kg) divided by the square of height (m). Low-density lipoprotein (LDL) was calculated using Friedwald’s formula (LDL = total cholesterol – high-density lipoprotein − 0.45 × triglycerides). Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation, but without including race since that variable was not recorded. For HBPM, mean values were calculated from the sum of all measurements. CACS was presented as a dichotomous variable of a total score of less than 100, or a total score of 100 or above. Pulse wave velocity (PWV) was measured according to a previously published protocol, and calculated using a correction factor of 0.8 in accordance with current international guidelines. Difference between glycemic statuses was tested using 1-way ANOVA for continuous variables with normal distribution, Jonckheere–Terpstra test for trend for continuous variables with skewed distribution and Cochran–Armitage test for trend for categorical variables.
The number of participants with a CACS ≥100 increased with dysglycemia, from 390 (9.8%) of participants with normoglycemia to 100 (27.0%) of participants with diabetes mellitus, P for trend <0.001, Table 1. Overall, 439 (17.4%) of men and 153 (6.1%) of women had a CACS value of ≥100, Supplementary Tables S1 and S2 online. Both systolic office BP and HBPM increased with increased dysglycemia according to glycemic status. Difference between systolic office BP and HBPM, respectively, and glycemic status, was tested using Jonckheere–Terpstra test for trend. The boxplot includes the median, the box extending between the 25th and the 75th percentile (the interquartile range, IQR) and its whiskers extending between the IQR times 1.5; the violin plot illustrates the relative distribution of observations; and the left-sided vertical bar plot shows the actual observations. Abbreviations: BP, blood pressure; HBPM, home blood pressure monitoring.

DISCUSSION

Our study showed that the systolic white coat effect decreases with dysglycemia, both in terms of increased HbA1c, and known vs. not known diabetes mellitus. In line with these findings, masked hypertension (hypertensive BP at home but not at the office) was more prevalent than sustained normotension in participants with dysglycemia compared with participants with normoglycemia. The inverse correlation between the systolic white coat effect and the level of dysglycemia was no longer significant in the multivariate model, and this may have several explanations. For example, the positive correlation between arterial stiffness and both the white coat effect and dysglycemia, as well as its correlation with measurements such as PWV and CACS.

Arterial stiffness has previously been shown to precede both diabetes mellitus and hypertension, however whether this relationship is a result of confounding or causal is not yet known. BP is a complex measurement that has been studied in many different aspects: choice of parameter (diastolic, systolic, pulse pressure, mean BP, and mid-BP), location of measurement (at the office [attended or unattended] or out-of-office), and time of measurement (morning vs. evening, day vs. night, rest vs. activity). Furthermore, results are known to vary depending on potential underlying medical conditions, as well as possible antihypertensive treatment and if the patient takes the treatment in the morning or evening. Systolic BP is of stronger predictive value than diastolic.

Masked hypertension has previously been shown to be more prevalent among patients with obesity and diabetes mellitus, and the prevalence also increases with antihypertensive treatment (so-called masked uncontrolled hypertension). One explanation for this is nocturnal hypertension, but our findings indicate that this may only partially explain this difference as our study did not include BP measurements during the night. Another potential explanation is that current antihypertensive treatments have a greater effect on office BP as opposed to out-of-office BP. Further possible explanations could be that patients with diabetes are less affected by stress when visiting their healthcare provider because of its regularity, or that their antihypertensive medication and normal office BP, the prevalence of masked hypertension compared with sustained normotension was associated with dysglycemia in models 1–3 (P = 0.005, P = 0.005, and P = 0.036, respectively) but not in model 4 (P = 0.181), Table 3. However, in a subgroup analysis of those without current antihypertensive medication and PWV in the highest quartile (n = 596), the association was no longer significant (P = 0.218 for model 1), not shown.

The difference between morning and evening mean systolic HBPM was associated with antihypertensive medication, such that it was higher in the evening for participants without current treatment, but higher in the morning for participants with current treatment (P < 0.001 in all 4 models, not shown).
Table 2. Blood pressure measurements, classifications, and subtypes according to glycemic status

	Normoglycemia (n = 3,979)	Prediabetes (n = 676)	Diabetes (n = 370)	Total (N = 5,025)	P for trend
Office blood pressure					<0.001
Normotensive, n (%)	2,645 (66.5)	358 (53.0)	184 (49.7)	3,187 (63.4)	
Hypertensive, n (%)	1,334 (33.5)	318 (47.0)	186 (50.3)	1,838 (36.6)	
Home blood pressure monitoring					<0.001
Normotensive, n (%)	3,144 (79.0)	459 (67.9)	221 (59.7)	3,824 (76.1)	
Hypertensive, n (%)	835 (21.0)	217 (32.1)	149 (40.3)	1,201 (23.9)	
Blood pressure classifications					<0.001
Sustained normotension, n (%)	2,473 (62.2)	314 (46.4)	146 (39.5)	2,933 (58.4)	
Sustained hypertension, n (%)	663 (16.7)	173 (25.6)	111 (30.0)	947 (18.8)	<0.001
White coat hypertension, n (%)	671 (16.9)	145 (21.4)	75 (20.3)	891 (17.7)	0.006
Masked hypertension, n (%)	172 (4.3)	44 (6.5)	38 (10.3)	254 (5.1)	<0.001
Hypertension subtypes					<0.001
Combined hypertension, n (%)	914 (23.0)	225 (33.3)	122 (33.0)	1,261 (25.1)	
Diastolic hypertension, n (%)	260 (6.5)	56 (8.3)	37 (10.0)	353 (7.0)	0.004
Systolic hypertension, n (%)	332 (8.3)	81 (12.0)	65 (17.6)	478 (9.5)	<0.001

Blood pressure classification was done according to the definitions specified in Box 1. Thus, sustained normotension was defined as normal office blood pressure (OBP) and normal home blood pressure monitoring (HBPM); white coat hypertension as elevated OBP but normal HBPM; masked hypertension as normal OBP but elevated HBPM; and sustained hypertension as elevated OBP and elevated HBPM. Difference between glycemic statuses was tested using Cochran–Armitage test for trend. For blood pressure classifications and hypertension subtypes, each class was tested against all other participants.
compliance to antihypertensive treatment may be increased ahead of healthcare visits compared with the compliance at home.32

Study limitations

Our SCAPIS substudy had a low missing rate of less than 3% for all baseline variables, and less than 0.6% for all BP measurements. We used the same BP monitoring devices and intervals in the office and at home, something that previous studies have been criticized for not doing.33 A limitation is that participants had their BP measured in a supine position at the office and in a sitting position at home. However, a previous study with a similar measurement protocol showed no significant difference comparing supine and sitting systolic BP.34 Furthermore, the same study found no association between diabetes and the difference between systolic supine and sitting BP.34 Another limitation is that we did not have access to data on prescribed medications, and participants’ current medication for diabetes and hypertension were reported via the questionnaires. Our study did not include the parameter of race for calculation of eGFR as included in the original formula for CKD-EPI, which is another limitation.24 The use of race however is also debated based on its origins as a social rather than biological concept,35 and studies have shown that the use of race in calculating eGFR may not be clinically relevant outside of the United States.36 To further increase our knowledge on the correlation between HBPM and dysglycemia, it would be of interest to combine our data with more detailed information on antihypertensive medication, including substance, dosage, and time of intake.

Conclusion and future studies

In conclusion, decreased systolic white coat effect as well as increased prevalence of masked hypertension was associated with dysglycemia. However, these associations were highly dependent on PWV which implies linkage with the degree of aortic stiffness to glycemic control. Our findings suggest that for patients with diabetes or prediabetes, a combination of office and home blood pressure measurements could aid clinicians in their risk evaluation of this large group of patients, already at increased cardiovascular risk.

There are currently no studies investigating the prevalence of masked hypertension depending on the type of out-of-office BP measurements used, which would be relevant since only ABPM measures nighttime BP. Masked hypertension could then be further categorized as occurring during the day, during the night or both. In that context, it would also be highly relevant to investigate the timing of antihypertensive treatments in relation to these diagnoses.

SUPPLEMENTARY MATERIAL

Supplementary data are available at American Journal of Hypertension online.
The main funding body of The Swedish CArdioPulmonary bioImage Study (SCAPIS) is the Swedish Heart and Lung Foundation [2016-0315]. The study is also funded by the Knut and Alice Wallenberg Foundation [2014-0047], the Swedish Research Council [822-2013-2000], VINNOVA (Sweden’s Innovation agency) [2012-04476], the University of Gothenburg and Sahlgrenska University Hospital, Karolinska Institutet and Stockholm county council, Linköping University and University Hospital, Lund University and Skåne University Hospital, Umeå University and University Hospital, Uppsala University and University Hospital, the Swedish state under the agreement between the Swedish government and the county councils (the ALF-agreement), and the King Gustaf V and Queen Victoria’s Foundation of Freemasons.

ACKNOWLEDGMENTS

We are grateful to all participants of the SCAPIS study, as well as to Karin Festin for statistical advice.

AUTHORS’ CONTRIBUTIONS

P. a. G., F. H. N., and K. R. contributed to the concept and rationale for the study, interpretation of the results, and drafted the manuscript. P. a. G. conducted statistical analysis with advice from F. H. N., P. a. G., J. E., C. J. Ö., F. H. N., and K. R. contributed to discussion and reviewed and edited the manuscript. F. H. N. and K. R. are the guarantors of this work and, as such, had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

DISCLOSURE

The authors declared no conflict of interest.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES

1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Rullof L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsiouris I, Aboyans V, Desormais I. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension.
of the European Society of Cardiology and the European Society of Hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 2018; 36:1953–2041.

2. (NCD-RisC) NRFC. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021; 398:957–980.

3. Franklin SS, Thijis L, Li Y, Hansen TW, Boggia J, Liu Y, Asayama K, Björklund-Bodegård K, Ohkubo T, Jeppesen T, Torp-Pedersen C, Dolan E, Kuznetsova T, Stolarz-Skrzypek K, Tikhonoff V, Malyutina S, Casiglia E, Nikitin Y, Lind L, Sundaya E, Kawecka-Jaszcz K, Filippovsky J, Imai Y, Wang J, Ibsen H, O’Brien E, Staessen JA. Masked hypertension in diabetes mellitus: treatment implications for clinical practice. Hypertension 2013; 61:964–971.

4. Parati G, Stergiou GS, Bilò G, Kollias A, Pengo M, Ochoa JE, Agarwal R, Asayama K, Asmar R, Burnier M, De La Sierra A, Giannattasio C, Gispe P, Head G, Hoshide S, Imai Y, Kario K, Li Y, Manios E, Mant J, McManus RJ, Mengden T, Mihalidou AS, Munter P, Myers M, Niiranen T, Niniere A, O’Brien E, Octavio JA, Ohkubo T, Oniboni S, Padfield P, Palatini P, Pellegrini D, Postel-Vinay N, Ramírez AJ, Sharman JE, Shennan A, Silva E, Topouchian J, Torlasco C, Wang JG, Weber MA, Whelton PK, White WB, Mancia G; Working Group on Blood Pressure Monitoring and Cardiovascular Monitoring of the European Society of Hypertension. Home blood pressure monitoring: methodology, clinical relevance and practical application: a 2021 position paper by the Working Group on Blood Pressure Monitoring and Cardiovascular Monitoring of the European Society of Hypertension. J Hypertens 2021; 39:1742–1767.

5. Stergiou GS, Kario K, Kollias A, McManus RJ, Ohkubo T, Parati G, Imai Y. Home blood pressure monitoring in the 21st century. J Clin Hypertens (Greenwich) 2018; 20:1116–1121.

6. Franklin SS, O’Brien E, Thijis L, Asayama K, Staessen JA. Masked hypertension: a phenomenon of measurement. Hypertension 2015; 65:16–20.

7. Unger T; Borghi C; Charchar F; Khan NA, Poulter NR, Prabhakaran D, Ramírez A, Schlaig M, Stergiou GS, Tomaszewski M, Windahl RD, Williams B, Schulte AE. International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension Practice 2020; 75:1334–1337.

8. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamarson KA, Jones DW, MacLaughlin EJ, O’Neill F, Muntner P, Myers M, Nnamani N, O’Brien E; Office Blood Pressure Committee. Executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines for the management of high blood pressure in adults: the 2017 evidence-based high blood pressure clinical practice guidelines. Hypertension 2018; 71:1269–1324.

9. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filipatos G, Grobbée HE, Hahn TB, Huijzer HV, Johansson I, Juni P, Lettino M, Marx N, Melbin LG, Östgren CJ, Rocca B, Roffi M, Sattar N, Seferovic PM, Sousa-Uva M, Vlasiu P, Wheeler DC. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular disease in type 2 diabetes: a consensus report of the European Society of Cardiology and the European Association for the Study of Diabetes. Eur Heart J 2020; 41:255–323.

10. Classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care 2021; 44:S1–S53.

11. World Health Organization IDF. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation. Geneva, Switzerland: World Health Organization, 2006.

12. Punthakee Z, Goldenberg R, Katz P. Diabetes Canada Clinical Practice Guidelines Expert Committee. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes 2018; 42:S10–S15.

13. International Diabetes Federation. IDF Diabetes Atlas. International Diabetes Federation: Brussels, Belgium, 2019.

14. Peddinti G, Bergman M, Tuomi T, Group L. 1-Hour post-O GTT glucose improves the early prediction of type 2 diabetes by clinical and metabolic markers. J Clin Endocrinol Metab 2019; 104:1131–1140.

15. Rett K, Gottwald-Hostalek U. Understanding prediabetes: definition, prevalence, burden and treatment options for an emerging disease. Curr Med Res Opin 2019; 35:1529–1534.

16. McManus RJ, Mant J, Fransen M, Nickless A, Schwartz C, Hodgkinson J, Bradburn P, Farmer A, Grant S, Greenfield SM, Heneghan C, Jowett S, Martin U, Milner S, Monahan M, Mort S, Ogburn E, Perera-Salazar R, Shah SA, Yu LM, Tarassenko L, Hobbs FDR. Efficacy of self-monitored blood pressure, with or without telemonitoring, for titration of antihypertensive medication (TASMINHA): an unmasked randomised controlled trial. Lancet 2018; 391:949–959.

17. Bergröm G, Berglund G, Blomberg A, Brandberg J, Engström G, Engvall J, Eriksson M, de Faire U, Flinck A, Hansson MG, Hedblad B, Hjerling O, Janson C, Jernberg T, Johnsson A, Johansson L, Lind L, Löfdahl CG, Melander O, Östgren CJ, Persson A, Persson M, Sandström A, Schmidt C, Söderberg S, Sundström J, Toren K, Waldenstrom A, Wedel H, Vikgren J, Fagerberg B, Rosengren A. The Swedish Cardiopulmonary BioImage Study: objectives and design. J Intern Med 2015; 278:645–659.

18. Johansson MA, Östgren CJ, Engvall J, Swahn E, Wijkman M, Nyström FH. Relationships between cardiovascular risk factors and white-coat hypertension diagnosed by home blood pressure recordings in a middle-aged population. J Hypertens 2021; 39:2009–2014.

19. The International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009; 32:1327–1334.

20. John WG; UK Department of Health Advisory Committee on Diabetes. Use of HbA1c in the diagnosis of diabetes mellitus in the UK. The implementation of World Health Organization guidance 2011. Diabet Med 2012; 29:1350–1357.

21. Zaigham S, Östgren CJ, Persson M, Muhammad IF, Nilsson PM, Wollmer P, Engvall J, Engström G. The association between carotid-femoral pulse wave velocity and lung function in the Swedish Cardiopulmonary BioImage study (SCAPIS) cohort. Respir Med 2021; 185:106054.

22. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, Filippovsky J, Huybrechts K, Mattace-Raso FU, Protogerou AD, Schillaci G, Segers P, Vermeersch S, Weber T; Artery Society; European Society of Hypertension Working Group on Vascular Structure and Function; European Network for Noninvasive Investigation of Large Arteries. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012; 30:445–448.

23. World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008. 2011, Geneva, Switzerland: World Health Organization.

24. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Varte L, Greene T, Coresh J; CKD-EPI (chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150:604–612.

25. de Simone G, Schillaci G, Chiniari M, Angeli F, Reboli GP, Verdecchia P. Estimate of white-coat effect and arterial stiffness. J Hypertens 2007; 25:827–831.

26. Brenner SB, Chirinos JA. Arterial stiffness in diabetes mellitus. Atherosclerosis 2015; 238:370–379.

27. Torrington K, Rylance B, Björk J, Engström G, Frantz S, Marko-Varga G, Melander O, Nilhen U, Olsson H, Pank P, Wennsten A, Malmqvist U, Erlinge D. Association of coronary calcium score with endothelial dysfunction and arterial stiffness. Atherosclerosis 2020; 313:70–75.

28. Chirinos JA. Large artery stiffness and new-onset diabetes. Circ Res 2020; 127:1499–1501.

29. Hermsd RA, Ayala DE, Molón A, Fernández JR. Cardiovascular risk of essential hypertension: influence of class, number, and treatment regimen of hypertension medications. Chronobiol Int 2013; 30:313–327.

30. Flint AC, Connell C, Ren X, Banki NM, Chan SL, Rao VA, Melles RB, Bhattacharjee MA. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N Engl J Med 2019; 381:243–251.

31. Munakata MA. Clinical significance of stress-related increase in blood pressure: current evidence in office and out-of-office settings. Hypertens Res 2018; 41:553–569.

32. Hostetter J, Schwarz N, Klug M, Wynne J, Basson MD. Primary care visits increase utilization of evidence-based preventative health
measures. *BMC Fam Pract* 2020; 21:151:1–10. https://bmcprimcare.biomedcentral.com/articles/10.1186/s12875-020-01216-8#citea

33. Sobiczewski W, Wirtwein M. Is masked hypertension related to diabetes mellitus? *Hypertension* 2013; 62:e22.

34. Privšek E, Hellgren M, Råstam L, Lindblad U, Daka B. Epidemiological and clinical implications of blood pressure measured in seated versus supine position. *Medicine (Baltim)* 2018; 97:e11603.

35. National Kidney Foundation. Understanding African American and Non-African American eGFR Laboratory Results. www.kidney.org. 2021.

36. Rocha AD, Garcia S, Santos AB, Eduardo JCC, Mesquita CT, Lugon JR, Strogoff-de-Matos JP. No race-ethnicity adjustment in CKD-EPI equations is required for estimating glomerular filtration rate in the Brazilian population. *Int J Nephrol* 2020; 2020:2141038.