Virtual laboratory for enhancing students’ understanding on abstract biology concepts and laboratory skills: a systematic review

W N Udin’, M Ramli, and Muzzazinah

1 Master of Biology Teacher Education, Postgraduate Program, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36, Kenitingan, Jebres 57126, Surakarta, Indonesia
*Corresponding author’s e-mail: mramlim@staff.uns.ac.id

Abstract. The virtual laboratory has been widely used in biology learning at all levels of education, but it remains a challenge for countries with technological shortages. Many biological concepts were abstract and difficult to be understood through simple explanation or even difficult to do in a laboratory. Utilization of virtual labs in biology learning, especially in higher education needs to be reviewed about the characteristics of contents, and function and its efficiency to assess the specific variables. Thus, this systematic review was carried out to analyze research articles published from 2010 to 2018. The articles were selected using the PRISMA. The articles were obtained from Google Scholar, the Science Direct, and the Journal of Science Education, ERIC, and Journal of Biological Education. In total, 199 articles were found. The general analysis was conducted. The results yielded 47 articles to be further analyzed by looking at the content and results of the study. Twenty-three articles were obtained and analyzed. Journal content analysis was focused on the selected topic, the dependent variables, sample size, effect size, research design, data collection techniques, research objectives, and the results. Cell or molecular biology was the most widely used topics in the virtual laboratory. Students’ conceptual understanding was the most studied variable, some studies examine students’ affective and psychomotor skills, but only a few studies examine the learning process. Most biology virtual labs were developed using the Adobe Flash Player application with 3D animation. The results suggested for further research to develop a virtual biology lab that is more inquiry-based, and capable of assessing students’ conceptual change and science process skills which not have been widely studied.

1. Introduction

The virtual laboratory is a relatively new media for biology learning, although it had been used in many other fields of science [1]. The virtual laboratory (V-Lab) was first used in biology learning to help students learn an abstract and difficult-to-visualize topics (i.e. Cell and DNA) [2]. Animation-based V-Lab for biology was created by Barnea and Dori in 2000 and was redeveloped into three-dimensional animation by Sanger [3]. The virtual laboratory (V-Lab) is the representation of a virtual-based simulation and animation laboratory to present an interactive virtual environment for education [4]. Virtual Labs provide important experiences for individual students as additional material to prepare for manual laboratory or provide experiences similar to the manual laboratories [3]. The V-Lab also useful to present science as a process and to emphasize scientific concepts [5].

V-Lab provides opportunities for students to build their understanding of the environment, objects, and phenomena. Students can observe and manipulate objects, variables, and processes. They can also understand the relationship between science theory, empirical evidence, and discoveries [6].
has been widely used to support the learning process especially as the effort to create authentic laboratory activities in biology learning.

Empirical studies have shown the effect of V-Lab on cognitive and affective learning outcomes in science learning, but there were few studies about the extent to which virtual laboratories were being used in biology learning. Earlier studies stated the importance to discuss various aspects of science learning, especially the specific characteristics which relevant to the field of subjects [7-9]. This research was aimed to find out the use of virtual laboratories as the learning media for biology and to find out the effect of virtual laboratory use on student learning achievement.

Based on the previous descriptions, some research questions can be formulated about the use of the virtual laboratory in biology learning, such as:

a. What is the extent of virtual laboratories utilization in biology learning, includes the topic often used by researchers?

b. What the characteristics of V-labs for biology?

c. What the effects of V-labs on the cognitive, psychomotor, and affective domains of students in biology learning?

2. Methods

This systematic review included the research articles about virtual laboratories in biology education published from 2010 to 2018. The articles were selected using the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) approach from [10]. The articles were obtained from Google Scholar, the Science Direct, and the Journal of Science Education, ERIC (Educational Resources Information Center), and Journal of Biological Education. Twenty-eight articles were obtained from articles with Google Scholar using keywords: “biology education” “biology learning” “Virtual laboratory” and “simulation.” Twenty-nine articles were obtained from the Journal of Biological Education. Twenty-six articles were yielded from Science Direct with the following keywords: “biology education” “Biology learning” “Virtual laboratory” and “undergraduate.” One-hundred and sixteen articles were obtained from ERIC databases with the categories: “Since 2010,” “biology,” “Reports Research,” “Undergraduate Student,” and “CBE-Life Sciences Education.”

In total, 199 articles were found. The general analysis was conducted to confirm if the articles were: a. research reports, b. applied in biology learning, c. using a virtual laboratory, d. applied in higher education, and e. issued from 2010 to 2018. The results yielded 47 articles to be further analyzed by looking at the content and results of the study. Journal content analysis was focused on the selected topic, the dependent variables, sample size, effect size, research design, data collection techniques, research objectives, and the results.

3. Result and Discussion

3.1 The Topic Coverage

Content analysis showed the cell, molecular biology, and introductory biology was the most widely used topic in the virtual laboratory. Few researchers used virtual laboratories for interdisciplinary science or topics (Figure 1).

Several topics were applied using virtual laboratories, such as the cell, molecular biology, ecology, introductory biology, evolution, biotechnology, genetics, and interdisciplinary topics (e.g. Biochemistry). The results showed the introductory biology (including biodiversity), and the body systems as the most used topics for virtual labs (n=7). The Cell or Molecular biology has 5 articles, the biotechnology was 2 articles, biochemistry was one article, ecology two articles, and two articles for the mechanism of the evolution (Figure 1).
There are several reasons researchers were interested in the topic above. Some topics were considered as abstract (i.e. cell, DNA), dynamic (i.e. protein synthesis, cell division), difficult to visualize in real life (i.e. molecule biology, viruses), and comprised of complex relationships between elements (i.e. ecological systems). The interdisciplinary topics were rarely used by researchers in virtual laboratories. The examples of interdisciplinary topics which have used virtual labs were biochemistry (integration between biological and chemical sciences) and biophysics (integration between biological and physical sciences).

3.2 The Measured Variables

The biological conceptual understanding was the most prominent variable to be researched, some study focused on the students’ affective and skills, only a few focused on the learning process. The biological conceptual understanding was viewed from the students’ correctness and comprehensive understanding of the biological concepts. Some studies showed the V-labs have both positive and negative effects. Study by [11] concluded 90% of the students experienced improvement their understanding of genetics. Highest gain was observed on the low academic students, which their scores were improved from 44% to 68%, the significant improvement of 24%, $t (85) = 14.42$, $p < 0.001$; $d = 3.35$. The middle achievers were improved as much as 11%, $t (100) = 10.87$, $p < 0.001$; $d = 1.45$. And the higher achievers were improved as much as 3%, $t (112) = 3.69$, $p < 0.001$; $d = 0.36$. Some studies stated there were no significant effects of V-labs on students’ conceptual understanding [4,12,13]. The V-labs accompanied by direct hands-on activities were more effective than the traditional laboratories or v-labs alone [14-16].

Students’ laboratory skill was another variable to be researched. Laboratory skill is students’ ability to perform correct laboratory experiment activity. Various studies showed V-labs have significant positive effects on students’ laboratory skills compared to traditional laboratory [14,17-20]. V-labs have positive effects if supported with proper textbooks and equipment [21]. That is, combining the V-labs with other learning media.

Improving students’ cognitive and conceptual understanding are important. But the students’ affective and psychomotor should not be marginalized. The V-labs gave positive effects on students’ learning motivation [11]. They found 78% of the students were interested to learn about the genetic with V-lab. Students’ conceptual understanding, confidence, and motivation have also improved due to the usage of V-Lab in microbiology. If viewed from conceptual understanding, V-Labs can be used to substitute the conventional laboratories and improve students’ confidence and motivation [11]. V-Labs cannot substitute traditional laboratory to improve students’ motivation. It because some students were uninterested if cases or problems were presented in V-labs, and prefer to real life representations [4].
The review showed the trend was focused on the research to compare the technology-aided learning. For example, [22] have studied the comparison between hybrid lab (V-labs with the touch screen) and conventional laboratory. They found out the hybrid V-labs have gained 15% better compared to the conventional laboratory. Some studies have different outcomes. Face to face laboratories have a better environment for students’ interactions and collaborations compared to V-labs [1].

The review showed the V-labs can be used as the alternative learning media to improve students’ conceptual understanding and laboratory skills. The V-labs can be effective if: a) The materials and equipment for experiments were expensive, b) limited time windows, c) problematic students’ ethics (d) difficulties in results interpretation (e) need for sophisticated instruments, and (f) usages of dangerous substances [1,19].

4. Conclusion
V-Labs is possible as alternative learning media to improve students’ conceptual understanding and laboratory skills. V-Labs have both positive and negative effects on students’ conceptual understanding and laboratory skills reviewed from cognitive, affective, and psychomotor aspects. The V-labs were used if the topics were abstract, dynamic, hard to visualize, and comprised of complex relationships between elements. The interdisciplinary topics were rarely used by researchers in virtual laboratories.

5. References
[1] Reece A 2015 An Investigation of the Impacts of Face-to-Face and Virtual Laboratories in an Introductory Biology Course on Students’ Motivation to Learn Biology 196
[2] Dyrberg N R, Treusch A H & Wiegand C 2017 Virtual laboratories in science education: students’ motivation and experiences in two tertiary biology courses. Journal of Biological Education 51 4 358–374
[3] Radhamani R, Sasidharakurup H, Sujatha G, Nair B, Achuthan K, & Diwakar S 2014 Virtual Labs Improve Student’s Performance in a Classroom. In G. Vincenti, A. Bucciero, & C. Vaz de Carvalho (Eds.), E-Learning, E-Education, and Online Training 138 138–146
[4] Konak, A., Clark, T. K., & Nasereddin, M. (2014). Using Kolb’s Experiential Learning Cycle to improve student learning in virtual computer laboratories. Computers & Education 72 11–22
[5] Whittle S R & Bickerdike S R 2015 Online Preparation Resources Help First Year Students to Benefit from Practical Classes. Journal of Biological Education 49 2 139–149
[6] Hotaling S, Slabach B L, & Weisrock D W 2018 Next-generation teaching: a template for bringing genomic and bioinformatic tools into the classroom. Journal of Biological Education, 52 3 301–313
[7] Cann A J 2016 Increasing Student Engagement with Practical Classes through Online Pre-Lab Quizzes. Journal of Biological Education 50 1 101–112
[8] Solé-Llussà A, Casanoves M, Salvadó Z, Garcia-Vallve S Valls C & Novo M 2018 Annapurna expedition game: applying molecular biology tools to learn genetics Journal of Biological Education 1–8
[9] Taher M & Khan A 2015 Effectiveness of Simulation versus Hands-on Labs: A Case Study for Teaching an Electronics Course ASEE Annual Conference and Exposition Proceedings, 26.582.1-26.582.21
[10] Moher D, Liberati A, Tetzlaff J & Altman D G 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine 6 7
[11] Makransky, G., Thisgaard, M. W., & Gadegaard, H. (2016). Virtual Simulations as Preparation for Lab Exercises: Assessing Learning of Key Laboratory Skills in Microbiology and Improvement of Essential Non-Cognitive Skills. PLOS ONE 11 6
[12] Bactol K E, Laursen A, & de Araujo C 2017 An Option of Hybrid Virtual Labs in an Introductory Biology Course as the Means for Accessible Learning and Enhancing Student Education. International Journal for Inonomics 10 1
[13] Špernjak A & Šorgo A 2018 Differences in acquired knowledge and attitudes achieved with traditional, computer-supported and virtual laboratory biology laboratory exercises. *Journal of Biological Education* **52** 2 206–220

[14] Flowers L O 2011 *Investigating the Effectiveness of Virtual Laboratories in an Undergraduate Biology Course*. 7 2 7

[15] Swan A E & O’Donnell A M 2009 The contribution of a virtual biology laboratory to college students’ learning. *Innovations in Education and Teaching International* **46** 4 405–419

[16] Paxinou E, Zafeiropoulos V, Sypsas A, Kiourt C, & Kalles D 2018 *Assessing The Impact Of Virtualizing Physical Labs*. 8

[17] Bonser S P, de Permentier P, Green J, Velan G M, Adam P, & Kumar R K 2013 Engaging students by emphasising botanical concepts over techniques: innovative practical exercises using virtual microscopy. *Journal of Biological Education* **47** 2 123–127

[18] Radhamani R, Sasidharakurup H, Kumar D, Nizar N, Achuthan K, Nair B, & Diwakar S 2015 Role of Biotechnology simulation and remotely triggered virtual labs in complementing university education. *2015 International Conference on Interactive Mobile Communication Technologies and Learning (IMCL)*, 28–32

[19] Sauter M., Uttal D H, Rapp, D N, Downing M., & Jona K 2013 Getting real: the authenticity of remote labs and simulations for science learning. *Distance Education* **34** 1 37–47

[20] Smith V A & Duncan I 2011 *Biology Students Building Computer Simulations Using StarLogo TNG*. *Bioscience Education* **18** 1 1–9

[21] İnce, E., Kırbaşlar, F. G., Güneş, Z. Ö., Yaman, Y., Yolcu, Ö., & Yolcu, E. (2015). An Innovative Approach in Virtual Laboratory Education: The Case of “IUVIRLAB” and Relationships between Communication Skills with the Usage of IUVIRLAB. *Procedia—Social and Behavioral Sciences* **195** 1768–1777

[22] Gould K S, Gilbert A, Pike A. J & Menzies I J 2018 Interactive touch-screen monitors facilitate collaborative learning of microscopy skills in an introductory-level plant biology lab. *Journal of Biological Education* 1–7

Acknowledgments

This review was part of a research sponsored by the Grant for Postgraduate Research of Universitas Sebelas Maret FY 2018–2019