How Macrophages Become Transcriptionally Dysregulated: A Hidden Impact of Antitumor Therapy

Galina F. Medvedeva 1,†, Daria O. Kuzmina 1,†, Julia Nuzhina 2, Maria S. Dukhinova 1,*

1 International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, 191002 Saint-Petersburg, Russia; medvedeva@scamt-itmo.ru (G.F.M.); kuzmina@scamt-itmo.ru (D.O.K.); shtil@scamt-itmo.ru (A.A.S.)
2 Institute of Gene Biology, Russian Academy of Science, 119334 Moscow, Russia; julia.nuzhina@gmail.com
* Correspondence: marina.dukhinova@gmail.com
† Authors contributed equally.

Abstract: Tumor-associated macrophages (TAMs) are the essential components of the tumor microenvironment. TAMs originate from blood monocytes and undergo pro- or anti-inflammatory polarization during their life span within the tumor. The balance between macrophage functional populations and the efficacy of their antitumor activities rely on the transcription factors such as STAT1, NF-κB, IRF, and others. These molecular tools are of primary importance, as they contribute to the tumor adaptations and resistance to radio- and chemotherapy and can become important biomarkers for theranostics. Herein, we describe the major transcriptional mechanisms specific for TAM, as well as how radio- and chemotherapy can impact gene transcription and functionality of macrophages, and what are the consequences of the TAM-tumor cooperation.

Keywords: tumor-associated macrophages; transcription factors; cancer; immunotherapy; radiotherapy; chemotherapy; oncoimmunology

1. Introduction

Tumor-associated macrophages (TAMs) are essential components of the tumor microenvironment, along with other immune cells, fibroblasts, and neovasculature [1,2]. Macrophages, including TAMs, interact with the surrounding milieu and exhibit functional diversity with the specific release of pro- and anti-inflammatory cytokines and growth factors [3–8]. TAMs represent a mixed cell population, which includes pro- and anti-inflammatory activated macrophages and newly infiltrated macrophages and monocytes that migrate from the surrounding tissues or through the blood vessel wall, respectively, and undergo further alterations in the tumor microenvironment. Of interest, phenotypically and functionally, TAMs are more similar to tissue-resident cells, such as alveolar macrophages (lungs), Kupffer cells (liver), microglia (the central nervous system), and others, depending on the tumor location, but not to blood-derived monocytes.

Generally, macrophages are classified as resting (non-activated, M0), proinflammatory (classically activated, M1), or anti-inflammatory (alternatively activated, M2) [9]. Tumor microenvironment contains a plethora of signaling and chemoattractant molecules, which flexibly balance the monocyte/macrophage pro- or anti-inflammatory polarization (Tables 1 and 2). M1 activation is induced in response to Toll-like receptor (TLR) ligands such as bacterial lipopolysaccharide (LPS) and lipoteichoic acid, or proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) [10]. The major M1-associated transcriptional patterns require the participation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 1 (STAT1) in cooperation with interferon regulatory factor (IRF) 9, p53, and other transcription factors (TFs) (Table 1) [11,12]. M1-like macrophages show a high...
capacity for antigen presentation and increased production of nitric oxide (NO), reactive oxygen species (ROS), and proinflammatory cytokines (interleukin (IL) IL-1β, IL-6, tumor necrosis factor alpha (TNF-α), and others), playing a dual role in the tumor microenvironment [13,14]. Proinflammatory activity improves the therapeutic outcome in patients with breast, ovarian, lung, and other types of cancer [3–5]. At the same time, M1-like macrophages stimulate cancer cell motility and are associated with tumor progression in certain cases, such as pancreatic and gastric cancer [8,15,16]. Cytokines, such as IL-4, IL-6, IL-10, IL-13, chemokine (C-C motif) ligand (CCL) 2, TNF-α, transforming growth factor beta (TGF-β), or prostaglandin E2 (PGE2), functionalize anti-inflammatory macrophage polarization, thereby suppressing immunity and stimulating angiogenesis, tissue remodeling/repair, and self-antigen tolerance [17–21]. Anti-inflammatory polarization requires activation of STAT3, STAT6, and NF-κB p50-p50 homodimer (Table 2) [22,23]. M2-like cells release cytokines IL-4, IL-10, IL-13, and growth factors TGF-β, vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), which exhibit pro-tumorigenic properties: stimulate cell proliferation, tumor encapsulation, and vasculogenesis and promote drug resistance [6,7].

Table 1. Major transcription factors involved in proinflammatory macrophage polarization.

Transcription Factor	Activating or Inhibitory Stimuli	Target Genes (Up/Down Regulated)	Reference
NF-κB	Hypoxia ↑	Up: HIF1A, COX2	[24]
	LPS ↑	Up: ADM, HIF1A, COX2, INOS, TNFA, IL6	[25–27]
	Fungal polysaccharide↑		[28]
	Mechanical stretch ↑		[29]
STAT1	IFN-γ ↑	Up: GBP6, CXCL10, CIITA, IRF1, CXCL11, IFIT2	[30,31]
	HDL ↑	Up: IL12B	[32]
STAT3	LPS ↑	Up: IL8 and TNFA	[33]
IRF1	GM-CSF + IFN-γ ↑	Up: INOS	[34]
	IFN-γ ↑	Up: IL12B, IL6, TNFA	[35,36]
	IFN-α ↑	Down: IL10	
IRF2	LPS ↑	Up: IL12B, IL12Rb1, IFNG, IL1B, IL6	[37]
	Down: TNFA		
IRF3	LPS ↑	Up: IFNB1	[38]
IRF5	IFN-γ + LPS/GM-CSF ↑	Up: IL12B, IL23	[39]
	Down: IL10		
IRF6	IL-4 ↓	Up: ARG1, IL10, PPARG	[40]
IRF7	IFN-α, LPS ↑	Down: IL10	[41,42]
IRF8	IFN-γ ↑	Up: TNFA	[43]
Table 2. Major transcription factors involved in anti-inflammatory macrophage polarization.

Transcription Factor	Activating or Inhibitory Stimuli	Target Genes (Up/Down Regulated)	Reference
NF-κB	IL-17 ↑	Up: ARG1, FIZZ1, YM1, CD206, CD163	[44]
	IL-10 ↑	Down: IL12B	[45]
	GDF-15 ↑	Down: INOS, TNFA	[46]
		Up: ARG1, VEGFA, TGFβ1 and IL10	
STAT3	IL-6 + LIF/ERK5 ↑	Down: IL12B, INOS, TNFA	[47,48]
	IL-6 ↑	Up: ARG1, FIZZ1, IL10	
STAT6	IL-4, IL-13 ↑		[49]
IRF4	LPS ↑	Down: TNFA, IL12B	[50]
p53	IL-4 ↓	Up: MYC, ARG1, FIZZ1	[51]

Legend and abbreviations used in Tables 1 and 2. The major transcription factors involved in pro- (Table 1) and anti- (Table 2) inflammatory polarization. Transcription factors (column 1) become activated following specific external stimuli (column 2), regulate certain gene expression (column 3), and participate in macrophage functional polarization. ↑—activating stimulus; ↓—inhibitory stimulus; up—regulated genes; down—down-regulated genes. NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells; STAT—signal transducer and activator of transcription; IRF—interferon regulatory factors; LPS—lipopolysaccharide; IFN-α—interferon alfa; IFN-γ—interferon gamma; HDL—high-density lipoprotein; GM-CSF—granulocyte-macrophage colony-stimulating factor; IL—interleukin; GDF-15—growth differentiation factor 15; LIF—leukemia inhibitory factor; HIF1α—hypoxia-inducible factor 1-alpha; COX2—prostaglandin-endoperoxide synthase 2; ADM—adrenomedullin; INOS—inducible nitric oxide synthase; TNFA—tumor necrosis factor; ARG1—arginase-1; CD—cluster of differentiation; TGFβ1—transforming growth factor beta; GBP6—guanylate binding protein; CXCL—C-X-C motif chemokine ligand; CIITA—class II major histocompatibility complex transactivator; IFIT2—interferon-induced protein with tetratricopeptide repeats 2; IFNβ1—interferon beta 1; IFNG—interferon gamma; PPARG—peroxisome proliferator-activated receptor gamma; VEGFA—vascular endothelial growth factor A; FN1—fibronectin 1; CCL22—C-C motif chemokine ligand 22; PDCD1LG2—programmed cell death 1 ligand 2; CYP19A1—cytochrome P450 family 19 subfamily A member 1.

Additionally, the M1/M2 ratio and the exact cytokine secretion profile of macrophages vary with respect to cancer stage and tumor microenvironment [53,54]. With the disease progression, the number of M2-like TAMs gradually increases in the tumor microenvironment due to its immunosuppressive activities and abnormal blood vessel fenestration, as it is shown for lung carcinoma, cutaneous melanoma, colorectal, prostate, and ovarian cancer [55–59]. Moreover, the transition from acute to chronic inflammation, which occurs at the late stages, reduces antitumor immunoreactivity and increases growth factor production with subsequent tumor growth and metastasis [60,61].

The pro- or anti-oncogenic function of macrophages is precisely controlled by the specific TFs, which can be used as additional diagnostic and immunotherapeutic tools (Figure 1) [13,62,63].

TF activities depend on the disease stage and therapeutic regimen. However, transcriptional programming of macrophages during chemo- and radiotherapy is not fully investigated. In this review, we focus on the role of TAMs in cancer therapy. We address the transcriptional mechanisms of macrophage polarization in response to chemotherapy or ionizing radiation and the routes for macrophages-supported immunotherapy to improve the outcome of the disease.
Figure 1. Transcription factors involved in macrophage polarization: impact of tumor microenvironment and chemotherapy. The activation or inhibition of signaling pathways are indicated by the blue arrows or by the yellow suppression symbols, respectively. The principal chemotherapeutic drugs, which impact macrophage transcriptional profiles, are shown. TAMs transcriptional patterns require phosphorylation (P) and activation of NF-κB, STATs, p53, and other TFs (Table 1) [11,12]. NF-κB (P65-p50 heterodimer) becomes activated upon LPS stimulation and acts as a positive regulator of proinflammatory gene transcription in macrophages [28,45,64–66]. However, anti-inflammatory macrophage activity is also NF-κB-dependent [64,67]. P50-p50 homodimers inhibit proinflammatory genes. The roles of NF-κB in M1/M2 balance are likely associated with p65/p50 ratio [68–70]. Hypoxia-inducible factor 1-alpha (HIF-1α) and p53 are also associated with the proinflammatory macrophage phenotype [24,52,71–74]. IRF3 and 5 are involved in proinflammatory macrophage polarization following IFN-α/β (interferon alfa/beta) and IFN-γ receptor engagement while IRF4 is involved in IL-4-induced macrophage polarization [65,75,76]. TLR and IFN-γ receptor signaling induces macrophage proinflammatory activity with STAT1-dependent increase in NOS2, IL12, MHC (major histocompatibility complex) class II expression and enhanced antigen presentation [31]. IL-4 and IL-13 induce alternative polarization implying TFs STAT3 and STAT6 [77–80]. M1-like macrophages show increased production of NO, ROS, and proinflammatory cytokines IL-1β, IL-6, TNF-α, and others [13,14]. M2-like cells release cytokines IL-4, IL-10, IL-13, and growth factors TGF-β, VEGF, EGF that exhibit pro-tumorigenic properties [6,7]. Chemotherapeutic agents such as paclitaxel, cyclophosphamide, and cisplatin induce M1 polarization via NF-κB (p50/p65) [4,81–84]. Cisplatin and carboplatin alter M2 differentiation via STAT3, while carboplatin suppresses STAT1 and STAT6 [85,86]. Doxorubicin in combination with lapatinib activates immature macrophages via STAT1 [87].
2. Macrophage Transcriptional Reprogramming during Chemo- and Radiotherapy

Tumor resistance relies directly on the interaction between cancer cells and their surrounding [6,88]. TAMs are among the major tumor microenvironment components, which significantly restrict therapeutic efficiency and mediate tumor resistance via several essential mechanisms. First, macrophages stimulate drug metabolism and removal from the cancer cell [89]. Second, tumorigenic cytokines, such as IL-6, insulin-like growth factors (IGF) 1 and 2, produced by TAMs, also promote drug resistance in various cancer types [90–92]. Finally, M2-like macrophages tend to accumulate in proximity to the tumor blood vessels following therapy and release the plethora of growth factors, leading to revascularization and tumor relapse [93]. Given that, the TAM functionality is a major factor that determines the treatment outcome (Table 3).

Table 3. Effects of chemotherapy and radiotherapy on macrophage phenotypes.

Therapeutic Intervention	Tumor Type	Mechanism of Action	Impact on Macrophages
Doxorubicin	Breast, bladder carcinoma, Kaposi sarcoma, lymphoma, acute lymphocytic leukemia [94–98]	- Intercalates within DNA base pair; - Inhibits DNA and RNA synthesis; - Inhibits topoisomerase II causing DNA damage and induction of apoptosis [94]	- In combination with lapatinib: suppresses TAMs, activates immature macrophages via STAT1 and recruits them to the tumor site [87]; - In combination with cyclophosphamide, vincristine and immunotherapy induces M1 polarization [81]; - Induces M2 polarization via AK2/STAT3 pathway, stimulates CD206, and decreases iNOS production [77]; - Induces M2 polarization via STAT6, up-regulates IL10 and TGFBI expression [100]
Taxol (Paclitaxel)	Ovarian, breast, lung, sarcoma	- Stimulates tubulin polymerization, anti-mitotic and proapoptotic activity [106]	- Induces M1 polarization via NF-κB (p50/RelA and p50/c-Rel) and IRF; - Stimulates TNF-α and IL-12 production [4,82]
Cyclophosphamide (CY)	Hodgkin, non-Hodgkin, cutaneous T-cell lymphoma, multiple myeloma, leukemia, retinoblastoma, neuroblastoma, ovarian cancer, breast cancer [107–114]	- Alkylates DNA to trigger apoptosis; - Decreases the IFN-γ and IL-12 production; - Increases Th2 cytokine (IL-4, IL-10) levels in the cerebrospinal fluid and peripheral blood; - Shows immunosuppressive activity [115,116]	- Activates NF-κB; - Stimulates the production of proinflammatory IL-6 and IL-12 cytokines and decreases anti-inflammatory IL-10 and TGF-β production [83]; - Increases the number of M1 TAMs in a mouse model [81]
Cisplatin	Testicular, ovarian, cervical, breast, bladder, head and neck, esophageal, lung, mesothelioma, neuroblastoma [117–122]	- Interacts with DNA forming crosslink adducts; - Activates pro-apoptotic signaling pathways [123]	- Modulates M1 TAM phenotype and stimulates iNOS, TNF-α, IL-1β, IL-12, and IFN-γ production [124,125]; - Alters M2 differentiation via STAT3, stimulates IL-10, IL-12 production [85]
Carboplatin	Ovarian, lung, head and neck, endometrial, esophageal, bladder, breast, cervical cancers, central nervous system or germ cell tumors; osteogenic sarcoma [126–132]	- Forms reactive platinum complexes; - Forms the cross-linked adducts of DNA molecules; - inhibits DNA synthesis in all the phases of the cell cycle [133]	- Induces M2-like phenotype via STAT3 activation, STAT1 and STAT6 suppression, IL-10, IL-12 stimulation [85,86]
Methotrexate	Cervical, breast, lung, head and neck, lymmphoblastoma, leukemia [134–138]	- Inhibits dihydrofolate reductase (DHFR) and nucleotide biosynthesis [139]	- Induces p53 activity in TAMs; contributes to the thymidylate synthase-dependent drug sensitivity [140]
Olaparib	Prostate, pancreatic, and breast cancer [141–143]	- Inhibits poly (ADP-ribose) polymerase (PARP) responsible for DNA break repair; - Leads to cancer cell apoptosis, especially during homologous recombination [144]	- Induces M1 polarization via IRF5 [145]
Table 3. Cont.

Therapeutic Intervention	Tumor Type	Mechanism of Action	Impact on Macrophages
2 Gy	Rectal cancer [145]	- DNA double- and single-strand breaks; - ROS generation; - Activates cell repair following DNA damage [146,147]	- Activates IRF TF and up-regulates TNFα, IFNG, IL6, IL8, and IL23 expression; - Induces M1 polarization via IRF5 activation
10 Gy	Colon carcinoma [148]	- Recruits ATM and activates Chk2 for DNA repair and checkpoint escape [146,147]	- Triggers RelB nuclear translocation and expression; - Stimulates Bcl-xL production and promotes TAM survival; - Stimulates IL-10, IL-6, CCL2 production and up-regulates HLA-DR, CD80, and CD86 cell membrane expression; - Induces M1 polarization
12–13.3 Gy	Melanoma [149]	- Induces HMGB1 production by tumor and subsequent macrophage remodeling [152]	- Activates TRs STAT3, STAT6, SOCS3 and suppresses IRF5; - Stimulates CCL2, HDC, TGF-β, IL-6, IL-6R, IL-23, IL-13, Arg-1 and IL-12 and IFN-γ production; - Polarizes macrophages towards M2
20 Gy	Breast cancer [153]	- Induces tumor antigens and endogenous adjuvants production (heat shock proteins) and subsequent macrophage remodeling [154,155]	- Stimulates p50 activity; - Increases Arg-1 and IL-10 production; - Induces M2 polarization via p50 activation
1.5 Gy X-ray	Lung cancer [156]	- Decreases TGF-β production in the tumor microenvironment [157]	- Suppresses STAT6; - Promotes M1 polarization
66–70 Gy total in 2–2.2 Gy fractions	Head and neck cancers [158]	- Induces tumor-derived mitochondrial DNA production, TLR9 signaling, and macrophage remodeling [159]	- Implies STAT3 transcriptional activity; - Up-regulates ARG1, LIF, TGFβ1, IL4 and IL5 expression in TAMs; - Induces M2 polarization
8 Gy	Pancreatic ductal adenocarcinoma [160]	- Stimulates TGF-β production in the tumor microenvironment [161]	- Activates STAT3; - Stimulates CCL2, CCL4, VEGF, and TGF-β production; - Induces M2 polarization
5–10 Gy proton irradiation	Lung adenocarcinoma [68]	- Induces ATM recruitment and DNA repair	- Promotes p65 nuclear translocation; - Induces M1 polarization

Legend and abbreviations used in Table 3. Treatment (column 1) strategies applied for majority of cancer types (column 2) induce principal alterations in cancer and tumor-associated cells impacting cell survival and metabolism (column 3). The therapeutic interventions additionally exhibit pro- or anti-inflammatory effects mediated by macrophages (column 4). Gy—Gray (Units); γ—gamma-irradiation; DNA—deoxyribonucleic acid; RNA—ribonucleic acid; Th2—T helper cell 2; ADP—ribose-adenosine diphosphate ribose; ROS-reactive oxygen species; ATM—ataxia telangiectasia mutated; Chk2—checkpoint kinase 2; HMGB1—high-mobility group protein B1; TLR9—toll-like receptor 9; JAK2—janus kinase 2; RelA, Bcl-xL—B-cell lymphoma-extra large; HLA-DR—human leukocyte antigen-DR isotype; oxygen species; ATM—ataxia telangiectasia mutated; Chk2—checkpoint kinase 2; HMGB1—high-mobility group protein B1; TLR9—toll-like receptor 9; JAK2—janus kinase 2; RelA, Bcl-xL—B-cell lymphoma-extra large; HLA-DR—human leukocyte antigen-DR isotype; p50, p65—nuclear transcription factors; STAT—the Janus kinase/signal transducer and activator of transcription family; IRF—interferon regulatory factor; JAK—Janus kinase; CSF—colony-stimulating factor; IL—interleukin; TNF—tumor necrosis factor; LIF—leukemia inhibitory factor; ARG1, LIF, TGFB1, IL4—arginase-1, leukemia inhibitory factor, transforming growth factor beta, interleukin-4 |
As macrophage polarization and cytokine production rely on the cell transcriptional machinery, we aim to discuss the major TFs involved in cytokine network regulation-NF-κB, STAT-family, IRF-family, and p53,-in the context of the tumor microenvironment and chemo- and radiotherapy (Figures 1 and 2, Table 3).

Figure 2. Transcriptional activity of tumor-associated macrophages during radiotherapy. The activation or inhibition of signaling pathways are indicated by the blue arrows or by the yellow suppression symbols, respectively. Gy-Gray (Units). The most common types of radiotherapy applied in clinics are gamma (γ)-, proton-, and X-ray irradiation (Figure 2). Irradiation doses range from low (less than 1 Gy) and moderate (2–10 Gy) to high (>10 Gy) and can be applied as a single course or fractionated [169–171]. G -irradiation (2 Gy) induces M1 phenotype via IRF5 activation [145]. Bigger doses (>12 Gy) induce M2 phenotype via STAT3 and STAT6 activation with IRF5 suppression and p50-p50 activation, respectively [149–151,153]. Four Gy γ-irradiation activates STAT1 and STAT6, up-regulates M1 and M2 markers [172]. 1.5 Gy X-ray induces macrophage polarization toward M1 phenotype via STAT6 suppression while 5–10 Gy proton irradiation induces M1 phenotype via p50-p65 nuclear translocation [68,156]. Two or eight Gy X-ray induce M2 phenotype via STAT3 activation while 0.5–0.7 Gy X-ray down-regulates M1 markers via inhibition of p65 nuclear transport [158,160,173].

2.1. The Nuclear Factor Kappa B (NF-κB)

The NF-κB/Rel TF family in mammals consists of five proteins-p65 (Rel-A, transcription factor p65), p50 (NF-κB1, nuclear factor NF-kappa-B p105 subunit), p52 (NF-κB2, nuclear factor NF-kappa-B p100 subunit), c-Rel (proto-oncogene c-Rel), and RelB (transcription factor RelB), with possible 15 combinations of homo- and heterodimeric complexes. All of these proteins contain a characteristic N-terminal Rel homology domain (RHD) required for dimerization and target DNA binding [174]. NF-κB participates in cell metabolism and is also involved in responses to external stimuli such as cytokines, ROS, heavy metals, irradiation, bacterial, and viral infection. Additionally, NF-κB is a well-known mediator of tumor-associated inflammation [175,176].

The reported roles for NF-κB in TAMs are associated with both pro- and anti-inflammatory functions [64]. It is well-known that NF-κB transcription is driven upon LPS stimulation and results in proinflammatory cytokine production (Table 1) [28,45,65,66]. NF-κB
signaling is inhibited in M2-like TAMs in many tumors including glioblastoma, ovarian cancer, hepatocellular carcinoma, and others [176,177]. At the same time, macrophage anti-inflammatory activity is also controlled by NF-κB [64,67]. NF-κB p50 and p65 subunits are both embedded into M2-like polarization with high IL-10 and low IL-12 secretion profiles [44,178–180]. The roles of NF-κB in M1/M2 balance are likely associated with a p65/p50 ratio with p65-p50 heterodimers supporting proinflammatory functions and p50 homodimers acting as anti-inflammatory mediators [68–70]. NF-κB functionality is essential for TAM transcriptional reprogramming and prediction of the outcome for chemo-, radio, and immunotherapy.

2.1.1. NF-κB and Chemotherapy

Numerous drugs impact NF-κB transcriptional activity guiding TAMs toward M1 polarization. Taxol, cyclophosphamide, and cisplatin stimulate NF-κB p50/RelA and p50/c-Rel subunits and upregulate proinflammatory cytokine (TNFA, IL12, INOS, COX2) and TLR gene expression while downregulating anti-inflammatory IL10 and TGFB (Figure 1) [82–84,107]. Interestingly, combinations of cyclophosphamide, vincristine, and doxorubicin with immunotherapy induce only partial M1-activation of TAMs [81].

NF-κB plays a critical role not only in macrophage polarization but also in their metabolism and surveillance in the tumor microenvironment upon chemotherapy. Such effects of chemotherapy are mediated via caspase-8-dependent apoptosis, which is selectively activated in monocytes and tumor-associated phagocytes upon trabectedin treatment and in M2-like TAMs upon platinum-containing drug exposure [85,181–184]. Upon chemotherapy, NF-κB acts as an important proinflammatory inductor and regulator of macrophage viability.

2.1.2. NF-κB and Radiotherapy

Radiotherapy can shift the balance between NF-κB subunits depending on the irradiation dose (Figure 2). Low radiation doses increase the nuclear translocation of p50-p50 homodimer and inhibit p65 translocation, thereby reducing IL1B expression and proinflammatory macrophage activity [173]. Moderate doses (5–10 Gy) preferentially stimulate p65-p50 transcriptional activity in macrophage thereby reprogramming them into M1 phenotype with increased TNF-α, IL-6, IL-8 and reduced EGF [68]. High irradiation dose utilizes p50 subunit for M2 polarization and maintenance of the immunosuppressive microenvironment following radiotherapy [153]. NF-κB mediates pro-survival signaling in macrophages exposed to 10 Gy and higher cumulative doses [148]. This mechanism partially protects macrophages from irradiation. The preferred strategy for NF-κB implementation in radiotherapy is to target p50/p65 and to consider the doses of irradiation.

2.2. STAT Transcription Factor Family

The STAT family consists of 7 TFs including STAT1, STAT3, STAT6, which play an essential role in macrophage polarization. TLR and IFN-γ receptor signaling induces macrophage proinflammatory activity with STAT1-dependent increase in NOS2, IL12, MHC (major histocompatibility complex) class II expression and enhanced antigen presentation [31]. IL-4 and IL-13 induce alternative polarization with high levels of IL-10 and Arg-1 (Arginase-1), implying TFs STAT3 and STAT6 [77–80]. STAT3 can also orchestrate NF-κB-mediated transcription and promote pro-tumor chronic inflammation [33,185–187].

2.2.1. STATs and Chemotherapy

Chemotherapy has a strong impact on macrophage STAT activities resulting in TAM abundance and phenotypic alterations. Among the routinely applied anticancer drugs, cisplatin and carboplatin increase STAT3 and STAT6 activity and M2-like phenotype of the TAMs [85]. Doxorubicin treatment alone stimulates STAT6 and is also associated with anti-inflammatory effects. At the same time, combined therapy with doxorubicin and cyclophosphamide or EGFR inhibitor lapatinib implies M1-associated STAT1 to stimu-
late and prolong macrophage antitumor activity [87]. Imatinib and paclitaxel inhibit the STAT6 pathway and M2-like cytokine production in macrophages showing, thus, proinflammatory potential [4,188]. Taken together, STAT TFs exhibit multidirectional effects in TAM functionality due to counterplay between the various STAT members, NF-κB, and other TFs.

2.2.2. STATs and Radiotherapy

Various radiotherapeutic strategies have a differential and, sometimes, non-specific impact on the members of the STAT TF family [172]. The generalized effect of X-ray and γ-photon radiotherapy is STAT3 activation, which is observed in TAMs in response to all clinical doses of radiation. Irradiation promotes IL-6 production by the tumor microenvironment, which results in STAT3 phosphorylation and subsequent anti-inflammatory CCL2, CCL4, VEGF, and TGF-β cytokine production [149,158,160,189]. It is worth noting that STAT3 signaling also promotes cell survival after irradiation exposure via induction of anti-apoptotic proteins (survivin and Bcl-2), and this effect is more profound for M2-like TAMs [158,160,190]. The low radiation doses show a bidirectional impact on the anti-inflammatory TFs, comprised of STAT3 stimulation, as mentioned earlier, and STAT6 suppression with high IL-5 and 13 and low TGF-β cytokine profile [150,156]. Considering that NF-κB is also suppressed upon low-dose radiotherapy, macrophages may finally acquire anti-inflammatory characteristics, although this has to be further studied. Intermediate radiation doses stimulate the transcriptional activities of STAT1, STAT3, and STAT6 [172]. The immunomodulatory effect of such treatment is the most difficult to control, as it simultaneously triggers intracellular pro- and anti-inflammatory signaling pathways. The functional outcome likely depends on individual cell characteristics (time after infiltration of the tumor), the other TFs impacted by radiotherapy (for example, NF-κB) and tumor microenvironment [191]. Finally, high-dose radiation activates STAT6 and therefore has the most pronounced anti-inflammatory effect [149,156].

2.3. Interferon Regulatory Factor (IRF)

The IRF family is represented by nine members ranging from IRF1 to IRF9. IRFs promote host defense against viral and microbial pathogens by regulating type I and II IFN-responsive genes. IRF TFs are also active in TAMs and are linked to the pro- and anti-inflammatory cytokine production [192]. IRF3, 5, 7, and 8 are involved in proinflammatory macrophage polarization and control of chemokine (S100A8, S100A9S100a9, matrix metallopeptidase (MMP) 9 and 14, CXCL2, and CCL5) production [65,75,193]. IRF3, along with IRF4, can also exhibit an alternative activity inducing the expression of anti-inflammatory genes IL1RA, IL10, IFNB [76,194].

In the context of carcinogenesis, IRFs support tumor-driven macrophage activity, particularly, promoting T-cell exhaustion, while also controlling neovascularization and proinflammatory features of TAMs [39,42,75,195–199]. It is also worth noting that IRFs are commonly involved in STAT-mediated transcription and have to be considered as a complex transcriptional network [43,45,59,71].

2.3.1. IRFs and Chemotherapy

IRF TFs strongly echo the STAT-mediated transcription in macrophages and it becomes challenging to evaluate exclusively IRFs contribution to macrophage function. The majority of data show that chemotherapy-induced IRF activation supports the tumoricidal activity of macrophages. For instance, IRF5 activation and, subsequently, macrophage proinflammatory functionalization are induced by PARP inhibitor olaparib [145]. However, some studies show that IRFs are involved in M2-like polarization following chemotherapy and can be associated with resistance [200,201].
2.3.2. IRFs and Radiotherapy

The IRF input into macrophage polarization upon radiotherapy remains poorly investigated. In fact, according to the authors’ knowledge, alterations in IRF1, 2, 3, and 5 activity were reported in irradiated macrophages so far [72,73,202]. Low dose-irradiation induces ROS generation with subsequent ATM activation to stimulate IRF5 expression and M1-like macrophage polarization with increased IL-6, TNF-α, and IFN-γ [145]. Furthermore, IRF5 cooperates with the NF-κB Rel-A subunit, regulates proinflammatory cytokine gene expression, which can result in M1 polarization. However, the IRF5-NF-κB interactions have not yet been studied in irradiated macrophages [71]. Moderate dose-radiotherapy stimulates IRF1 and 5 revealing the potential proinflammatory effects. High radiation doses reduce IRF2 and 5 levels increasing numbers of M2-like macrophages in the tumor [151]. At least for the high-dose irradiation IRF1 is suppressed in monocytes, while upregulated in macrophages, suggesting the different responses from infiltrated cells and TAMs [72,73].

2.4. P53

Despite the extensive studies on the tumor suppressor p53, its roles in immune cells, including TAMs, are not fully understood. It is known that p53 regulates inflammatory responses in the tumor microenvironment. In macrophages p53 is involved in cell survival and death, monocyte-to-macrophage differentiation, and M1/M2 polarization [52,74,203,204]. P53 is up-regulated and activated following both pro- and anti-inflammatory macrophage activation and promotes pro-apoptotic pathways predominantly in M1 cells [205,206].

The majority of observations suggest that p53 is required for anti-tumor activities of TAMs, as p53 is generally associated with the proinflammatory macrophage phenotype, increased levels of IL-6 and IL-12, and enhanced phagocytic activity [52,74,203,204,207]. At the same time, p53 may restrict the performance of other M1-associated TFs STAT1, NF-κB, IRF9, IRF5, and c-Myc [52,204,208–210]. In accordance, the p53 transcriptional activities and high levels of its target genes CDKN1A (cyclin-dependent kinase inhibitor 1), MDM2, PUMA, and BAX are detected in TAMs along with increased IL6 and CXCL1 [211]. The outcome of p53-mediated transcription in the tumor microenvironment depends on the cooperation with the other signaling molecules, such as NF-κB, STAT1, and c-Myc, p21 and some others [52,203,208–210,212–214].

2.4.1. P53 and Chemotherapy

P53 is involved in cell responses to cytotoxic, cytostatic, and targeted drugs, which impact macrophages. Doxorubicin, methotrexate 5-fluorouracil, and other chemotherapeutic compounds induce p53 activity in TAMs with subsequent increase in p53 target p21 and IL6 expression. The p53-driven proinflamatory polarization results in tumor sensitization to chemotherapy and is specific for monocyte/macrophage subsets [140]. Among the targeted drugs, nutlin-3, which inhibits p53/MDM2 interaction and stabilizes p53, MDM2 inhibitor APG-115, and anti-VEGF receptor 3 activate p53 and promote p53-NF-κB cooperation to stimulate antitumor macrophage reactivity [52,210,211,215]. P53 maintains the physiological levels of programmed cell death protein 1 (PD-1) ligand, restricts excessive extracellular vesicle formation, and subsequently limits T-cell exhaustion and immunosuppression [216,217]. With that, p53 can become a multifaceted target for immunotherapy.

2.4.2. P53 and Radiotherapy

As a pro-apoptotic protein, p53 sensitizes cells to radiation, and this effect is also present in irradiated macrophages. P53 becomes activated in macrophages during radiotherapy and is associated with TAM polarization and modulation of cell survival. However, the impact of different irradiation doses has not been studied. At least the intermediate (4–5 Gy) irradiation increases p53 protein levels and its transcriptional activity together with the antitumor (TNF-α, FasL) and tumorigenic activities (MMP-2, MMP-9) of macrophages [218,219]. P53 is directly linked to macrophage survival, as TP53/-
macrophages are highly radioresistant due to reduced caspase-8 expression [220]. Interestingly, p53 proapoptotic activity is stronger in M1, than in M2, macrophages, which correlates with the improved radioresistance of M2 cells [221]. Thus, p53 may regulate the balance of pro- and anti-inflammatory macrophages in the irradiated tumor microenvironment [221,222]. P53 plays an important role in macrophages simultaneously regulating cell functional activities and survival during chemo- and radiotherapy. These facts have to be considered when applying p53-targeted therapy.

2.5. Other Transcription Factors Affected by Radio- and Chemotherapy

Transcriptional networks essential for macrophage polarization include a broad range of TFs, which are also involved in therapeutic responses. When summarizing the existing data it can be observed that various treatments tend to impact M2-associated TFs, such as nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPAR-γ), cAMP response element-binding protein (CREB), and some others, which may be due to the immunosuppressive properties of the tumor microenvironment. However, a substantial number of transcriptional mechanisms have not yet been studied in the context of chemo- and radiotherapy.

Nrf2 shifts macrophages toward anti-inflammatory polarization altering cytokine, growth factor and cell adhesion molecule profiles [223–225]. Nrf2 deficiency in myeloid cells is associated with the enhanced metastatic profile of the tumor and tumorigenic immune activity [226,227]. The Nrf2 activation orchestrated by p21, which is observed after γ-irradiation, is dose-dependent, reduces oxidative stress in macrophages, and may, thus, protect the cells against γ-ray damage [228]. While the Nrf2 activities in chemotherapy have not yet been studied, Nrf2 controls local tissue inflammation and can potentially protect TAMs from drug-induced oxidative damage [229,230].

Peroxisome proliferator-activated receptors (PPARs) comprise another family of anti-inflammatory TFs [231]. Macrophage-specific PPAR-γ impairs the chemotherapeutic efficiency [232]. During radiotherapy, PPAR-γ is involved in macrophage activation by irradiated cancer cells and immunogenic antitumor activity thereby reducing cancer progression and metastasis [233]. Thus, regulators of PPAR-γ may emerge as promising candidates in targeting both cancer cells and the tumor microenvironment [234].

Other candidate TFs, which can shape macrophage behavior, include cAMP response element-binding protein (CREB) and CCAAT-enhancer-binding proteins (C/EBPs) TF family [235–238]. The phosphorylated CREB inhibits NF-κB activation, thus limiting proinflammatory responses [239,240]. Furthermore, overexpression of CREB in committed macrophages provokes myeloproliferative diseases [241]. The C/EBP family consists of six members, from C/EBP-α to C/EBP-ζ, which may function in opposite ways. For instance, C/EBP-α and C/EBP-δ are one of the most important TFs that contribute to the M1 polarization, whereas C/EBPβ is associated with M2 macrophage polarization [11,242]. Furthermore, C/EBPβ activated by vitamin D3 or its derivatives can aggravate alternative macrophage polarization [225,243]. Interestingly, C/EBPβ is downstream of the rapamycin kinase (mTOR) pathway which is a target of immunosuppressive and anticancer drugs [244,245]. Therefore, mTOR targeting drugs should be considered in the framework of macrophage polarization and could represent a novel therapeutic approach. High-mobility group box protein 1 (HMGB1) is a chromatin-binding factor that promotes M2 polarization by activation of the receptor for advanced glycation end-products (RAGE) [246]. High expression of HMGB1 in TAMs has been shown to enhance lymphatic metastasis [247]. Current observations show opposite effects after radiotherapy; HMGB1 release can lead to immunosuppression and potentiate macrophages reprogramming towards M1 phenotype [166,248]. Chemotherapy stimulates HMGB1 production to promote antigen-presenting function of immune cells [249].

Many other factors that have an impact on TAM polarization have been not yet sufficiently investigated. For example, the Maf family consists of a wide number of TFs including V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (Mafb) and c-Maf.
Both of them are highly expressed in TAMs and correlate with anti-inflammatory responses in both human and murine models [250–252]. At the same time, JunB governs functional behaviour of both pro and anti-inflammatory macrophages. JunB upregulates IL-1β in proinflammatory polarized macrophages while enhancing anti-inflammatory markers in M2-like cells [253]. MAP kinase-interacting kinase (Mnk2) promotes education of M2 phenotype through induction of anti-inflammatory marker translation by activation of eukaryotic translation initiation factor (eIF4E) [254]. All of them are promising research targets in the framework of resistance overcoming.

3. Macrophage Transcription Factors in Antitumor Therapy

Numerous preclinical and clinical studies confirm the promising effects of multitargeted combinations based on radio-, chemo-, and immunotherapy in cancer medicine [255,256]. The most prominent treatment effects on monocyte/macrophage subsets are associated with the increased immune cell recruitment to the tumor site and promoted antigen presentation, which are now recognized as essential components of the tumor microenvironment [257].

While numerous TAM signaling pathways become non-specifically activated by the drug or irradiation, immunotherapy can potentially direct macrophage polarization with enhanced antitumor activity [258]. In the current clinical practice the most common TAM immunotherapeutic targets are membrane receptors such as cluster of differentiation 40 (CD40) [259], SIRP-α [260,261], CXCR4 [262], C-C chemokine receptor 2 (CCR2), [263], CSF1R [264–266], which promote M1-like macrophage activation with enhanced antigen presentation activity and immune cell chemoattraction in lung, breast and colon cancer, Burkitt’s lymphoma, and leukemia [258,267–269]. The corresponding transcriptional networks have to be additionally considered in future theranostics [270–272].

TF-based macrophage regulation can be considered as one of the most potent and efficient strategies against tumor therapeutic resistance. As described previously, a substantial number of chemical agents are already available for TAM transcriptional reprogramming. For NF-κB-based approaches target deletion of IκB kinase β (IKKβ) or inhibition of downstream PI3K significantly improve antitumor activities [273,274]. TLR agonists can be used for stimulation of NF-κB-mediated transcription, as shown for alveolar macrophages and monocytes (paraquat), for lung, breast, and melanoma cancers (chloroquine), for melanoma and squamous cell carcinoma (imiquimod) [275–277]. Cancer-associated chronic inflammation may request the application of nonsteroidal-based anti-inflammatory drugs (NSAIDs), such as acetaminophen or sulindac, to suppress undesired NF-κB-promoted production of growth and metastatic factors. Furthermore, NF-κB inhibition can prevent cisplatin- and carboplatin-induced M2-like phenotype in cervical and ovarian cancer [85]. Other possible additives for oncotherapy may implement salicylates (aspirin, sulfasalazine, triflusal), antioxidants (pyrrolidine dithiocarbamate, N-acetylcysteine, vitamin E, vitamin C), and peptides (SN50, nuclear localization signal peptide, NEMO-binding domain peptide, Toll/interleukin-1 receptor domain-containing adaptor protein) for non-specific NF-κB regulation [278–280].

STAT family-based immunotherapy can enhance the effects of γ-radiation via regulation of macrophage subset and cytokine balance in the tumor microenvironment [281]. For instance, tyrosine kinase inhibitors (sunitinib, sorafenib), WP1066, plant-derived imodin (PM37), and resveratrol inhibit STAT TF activity in macrophages and restricts M2 polarization, suggesting the improved antitumor reactivity against pancreatic adenocarcinoma, breast, and lung cancer [49,160,191,258,282–284]. Additionally, STATs, IRFs, NF-κB, and c-MYC mediated polarization can be regulated by microRNAs. MicroRNAs regulate gene expression through translation repression or mRNA degradation. It has been shown as a prospective macrophage-centered diagnostic and therapeutic strategy [22].

In conclusion, macrophage TFs are among the prospective diagnostic markers and therapeutic targets, which allow repolarize TAMs and impact tumor microenvironment preventing tumor resistance. In macrophage-based immunotherapy, various immunomodulators can be applied to optimize the chemo- or radiotherapeutic outcome and prolong
the treatment benefits. Currently NF-κB, STAT, and IRF transcriptional machinery, which is implied in cancer and immune cell functionality, present the most substantial potential for cancer immunotherapy. Tumor status and disease type have to be considered for preferential pro- or anti-inflammatory alterations.

Author Contributions: Conceptualization, M.S.D.; writing—original draft preparation, G.F.M. and D.O.K.; writing—review and editing, M.S.D., J.N. and A.A.S.; visualization, G.F.M., D.O.K. and J.N.; supervision, M.S.D., A.A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Government of the Russian Federation through the ITMO Fellowship and Professorship Program, and by the Russian Science Foundation (Grant No. 20-75-10112).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ADM Adrenomedullin
Arg-1 Arginase-1
ATM Ataxia telangiectasia mutated (serine/threonine kinase)
Bcl-xL B-cell lymacrophageoma-extra large
CCL Chemokine (C-C motif) ligand
CCR2 C-C chemokine receptor 2
CD40 Cluster of differentiation 40
CIITA Class II, major histocompatibility complex, transactivator
COX2 Prostaglandin-endoperoxide synthase 2
CREB cAMP response element-binding protein
CSF Colony stimulating factor
CYP19A1 Cytochrome P450 Family 19 Subfamily A Member 1
CXCL1 The chemokine (C-X-C motif) ligand
C/EBP CCAAT/enhancer binding protein
DHFR Dihydrofolate reductase
EGF Epidermal growth factor
ERK Mitogen-activated protein kinase
eIF4E Eukaryotic translation initiation factor
FN1 Fibronectin 1
Fizz1 Resistin-like beta
GBP6 Guanylate binding protein
GM-CSF Granulocyte-macrophage colony-stimulating factor
Gy Gray
GDF-15 Growth differentiation factor 15
HDL High-density lipoprotein
HLA Human leukocyte antigens
HMGB1 High-mobility group protein B1)
IFIT2 Interferon-induced protein with tetraticopeptide repeats 2
IFN Interferon
IκB Inhibitor of nuclear factor kappa B
IKK IκB kinase
IL Interleukin
iNOS Inducible nitric oxide synthase
IRF Interferon regulatory factor
JAK Janus kinase
LPS Lipopolysaccharide
L-Arg L-arginine
LIF Leukemia inhibitory factor
MafB V-maf musculoaponeurotic fibrosarcoma oncogene homolog B
MHC Major histocompatibility complex
MMP Matrix metalloproteinase
Mnk MAP kinase-interacting kinase
MYD88 Myeloid differentiation primary response 88
NK-kB Nuclear factor kappa-light-chain-enhancer of activated B cells
NRF2 The nuclear factor erythroid 2-related factor 2
NSAIDs Nonsteroidal anti-inflammatory drugs
PARP poly-ADP-ribose polymerase
PDTC Pyrrolidine dithiocarbamate
PD-L1 Programmed cell death 1
PGE2 Prostaglandin E2
PPAR Peroxisome proliferator-activated receptors
RHD Rel homology domain
ROS Reactive oxygen species
SDF-1 Stromal cell-derived factor-1
STAT Signal transducer and activator of transcription
TAM Tumor associated macrophage
TF Transcription factor
TGF-β Transforming growth factor beta
TLR Toll-like receptor
TNF-α Tumor necrosis factor alpha
TRAF TNF receptor associated factor
TRAM TRIF-related adaptor molecule
HIF-1α Hypoxia-inducible factor 1-alpha
VEGF Vascular endothelial growth factor
Ym1 Chitinase 3-like 3

References
1. Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008, 27, 5904–5912. [CrossRef]
2. Balkwill, F.R.; Capasso, M.; Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci. 2012, 125, 5591–5596. [CrossRef] [PubMed]
3. Macciò, A.; Gramignano, G.; Cherchi, M.C.; Tanca, L.; Melis, L.; Madeddu, C. Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci. Rep. 2020, 10, 1–8. [CrossRef] [PubMed]
4. Wanderley, C.W.; Colon, D.F.; Luiz, J.P.M.; Oliveira, F.F.; Viacava, P.R.; Leite, C.A.; Pereira, J.A.; Silva, C.M.; Silva, C.R.; Silva, R.L.; et al. Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1-profile in a TLR4-dependent manner. Cancer Res. 2018, 78, 5891–5900. [CrossRef] [PubMed]
5. Garrido-Martin, E.M.; Mellows, T.W.P.; Clarke, J.; Ganesan, A.-P.; Wood, O.; Caaly, A.; Seumois, G.; Chee, S.J.; Alzetani, A.; King, E.V.; et al. M1hot tumor-associated macrophages boost tissue-resident memory T cells infiltration and survival in human lung cancer. J. Immunother. Cancer 2020, 8, e000778. [CrossRef]
6. Petrillo, M.; Zannoni, G.F.; Martinelli, E.; Pedone Anchora, L.; Ferrandina, G.; Tropeano, G.; Fagotti, A.; Scambia, G. Polarisation of Tumor-Associated Macrophages toward M2 Phenotype Correlates with Poor Response to Chemoradia-tion and Reduced Survival in Patients with Locally Advanced Cervical Cancer. PLoS ONE 2015, 10, e0136654. [CrossRef] [PubMed]
7. Valeta-Magara, A.; Gadi, A.; Volta, V.; Walters, B.; Arju, R.; Giashuddin, S.; Zhong, H.; Schneider, R.J. Inflammatory Breast Cancer Promotes Development of M2 Tumor-Associated Macrophages and Cancer Mesenchymal Cells through a Complex Chemokine Network. Cancer Res. 2019, 79, 3360–3371. [CrossRef]
8. Xiao, M.; Zhang, J.; Chen, W.; Chen, W. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2018, 37, 1–15. [CrossRef]
9. Jayasingam, S.D.; Citartan, M.; Thang, T.H.; Zin, A.A.M.; Ang, K.C.; Ch’Ng, E.S. Evaluating the Polarization of Tumor-Associated Macrophages Into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice. Front. Oncol. 2020, 9, 1512. [CrossRef]
10. Müller, E.; Christopoulos, P.F.; Halder, S.; Lunde, A.; Beraki, K.; Speth, M.; Øynebråten, I.; Corthay, A. Toll-Like Receptor Ligands and Interferon-γ Synergize for Induction of Antitumor M1 Macrophages. Front. Immunol. 2017, 8, 1383. [CrossRef]
11. Lawrence, T.; Natoli, G. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nat. Rev. Immunol. 2011, 11, 750–761. [CrossRef]
12. Levy, D.E.; Kessler, D.S.; Pine, R.; Reich, N.; Darnell, J.E. Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. *Genes Dev.* 1988, 2, 383–393. [CrossRef] [PubMed]

13. Solinas, G.; Schiare, S.; Ligori, M.; Fabbri, M.; Pesce, S.; Zammataro, L.; Pasqualini, E.; Nebulori, M.; Chiabrando, C.; Mantovani, A.; et al. Tumor-Conditioned Macrophages Secrete Migration-Stimulating Factor: A New Marker for M2-Polarization, Influencing Tumor Cell Motility. *J. Immunol.* 2010, 185, 642–652. [CrossRef] [PubMed]

14. Chacon-Salinas, R.; Serafin-Lopez, J.; Ramos-Payan, R.; Mendez-Aragon, P.; Hernandez-Pando, R.; Van Sooilingen, D.; Flores-Romo, L.; Estrada-Parra, S.; Estrada-Garcia, I. Differential pattern of cytokine expression by macrophages infected in vitro with different Mycobacterium tuberculosis genotypes. *Clin. Exp. Immunol.* 2005, 140, 443–449. [CrossRef] [PubMed]

15. Sanford, D.E.; Belt, B.A.; Panni, R.Z.; Mayer, A.; Deshpande, A.D.; Carpenter, D.; Mitchem, J.B.; Plumbeck-Suess, S.M.; et al. IRF1 and IFN-β expression in human airway epithelial cells and macrophages via NF-κB signaling proteins. *PLoS Pathog.* 2007, 3, e1007358. [CrossRef] [PubMed]

16. Li, T.; Li, B.; Sara, A.; Ay, C.; Leung, W.Y.; Zhang, Y.; Dong, Y.; Liang, Q.; Zhang, X.; Weidner, P.; et al. Docking protein-1 promotes inflammatory macrophage signaling in gastric cancer. *Oncoimmunology* 2019, 8, e1649961. [CrossRef]

17. Sica, A.; Larghi, P.; Mancino, A.; Rubino, L.; Porta, C.; Totaro, M.G.; Rimoldi, M.; Biswas, S.K.; Allavena, P.; Mantovani, A. Macrophage polarization in tumor progression. *Semin. Cancer Biol.* 2008, 18, 349–355. [CrossRef]

18. Ham, S.; Lima, L.G.; Lek, E.; Möller, A. The Impact of the Cancer Microenvironment on Macrophage Phenotypes. *Front. Immunol.* 2020, 11, 1308. [CrossRef]

19. Wang, Q.; He, Z.; Huang, M.; Liu, T.; Wang, Y.; Xu, H.; Duan, H.; Ma, P.; Zhang, L.; Zamvil, S.S.; et al. Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2α. *Nat. Commun.* 2018, 9, 559. [CrossRef]

20. Rösser, T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. *Mediat. Inflamm.* 2015, 2015, 1–16. [CrossRef]

21. Wang, Q.; Ni, H.; Lan, L.; Wei, X.; Xiang, R.; Wang, Y. Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. *Cell Res.* 2020, 10, 701–712. [CrossRef]

22. Li, H.; Jiang, T.; Li, M.-Q.; Zheng, X.-L.; Zhao, G.-J. Transcriptional Regulation of Macrophages Polarization by MicroRNAs. *Cell Res.* 2018, 11, 1175. [CrossRef] [PubMed]

23. Platanitis, E.; Decker, T. Regulatory Networks Involving STATs, IRFs, and NF-κB in Inflammation. *Front. Immunol.* 2018, 9, 2542. [CrossRef]

24. Rius, J.; Guma, M.; Schachtrup, C.; Akassoglou, K.; Zinkernagel, A.S.; Nizet, V.; Johnson, R.S.; Haddad, G.G.; Karin, M. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. *Nat. Cell Biol.* 2008, 453, 807–811. [CrossRef] [PubMed]

25. Frede, S.; Stockmann, C.; Freitag, P.; Fandrey, J. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-κB. *Biochem. J.* 2006, 396, 517–527. [CrossRef]

26. Hwang, D.; Jang, B.C.; Yu, G.; Boudreau, M. Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide. *Biochem. Pharmacol.* 1997, 54, 87–96. [CrossRef]

27. Kim, J.-B.; Han, A.-R.; Park, E.-Y.; Kim, J.-Y.; Cho, W.; Lee, J.; Seo, E.-K.; Lee, K.-T. Inhibition of LPS-Induced iNOS, COX-2 and Cytokines Expression by Poncirin through the NF-κB Inactivation in RAW 264.7 Macrophage Cells. *Biol. Pharm. Bull.* 2007, 30, 2345–2351. [CrossRef]

28. Liu, C.-P.; Zhang, X.; Tan, Q.-L.; Xu, W.-X.; Zhou, C.-Y.; Luo, M.; Li, X.; Huang, R.-Y.; Zeng, X. NF-κB pathways are involved in M1 polarization of RAW 264.7 macrophages by polyporous polysaccharide in the tumor microenvironment. *PLoS ONE* 2012, 7, e0188317. [CrossRef]

29. Shan, S.; Fang, B.; Zhang, Y.; Wang, C.; Zhou, J.; Niu, C.; Gao, Y.; Zhao, D.; He, J.; Wang, J.; et al. Mechanical stretch promotes tumoricidal M1 polarization via the FAK/NF-κB signaling pathway. *FASEB J.* 2019, 33, 13254–13266. [CrossRef] [PubMed]

30. Wager, C.M.L.; Hole, C.R.; Campuzano, A.; Castro-Lopez, N.; Cai, H.; Van Dyke, M.C.C.; Wozniak, K.L.; Wang, Y.; Wormley, F.L., Jr. IFN-γ immune priming of macrophages in vivo induces prolonged STAT1 binding and protection against Cryptococcus neoformans. *PLoS Pathog.* 2018, 14, e1007358. [CrossRef]

31. Darnell, J.E.; Kerr, I.M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. *Science* 1994, 264, 1415–1421. [CrossRef] [PubMed]

32. Van Der Vorst, E.P.; Theodorou, K.; Wu, Y.; Hoeksema, M.A.; Goossens, P.; Bursill, C.A.; Aliyev, T.; Huitema, L.F.; Tas, S.W.; Wolfs, I.M.; et al. High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-κB/STAT1-IRFI Signaling, *Cell Metab.* 2017, 25, 197–207. [CrossRef] [PubMed]

33. Liu, X.; Yin, S.; Chen, Y.; Wu, Y.; Zheng, W.; Dong, H.; Bai, Y.; Qin, Y.; Li, J.; Feng, S.; et al. LPS-induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF-κB or AP-1 signaling. *Mol. Med. Rep.* 2018, 17, 5484–5491. [CrossRef] [PubMed]

34. Ribechni, E.; Hutchinson, J.A.; Hergovits, S.; Heuer, M.; Lucas, J.; Schleicher, U.; Garrote, A.-L.J.; Potter, S.J.; Riquelme, P.; Brackmann, H.; et al. Novel GM-CSF signals via IFN-γR/IRF-1 and AKT/mTORC license monocytes for suppressor function. *Blood Adv.* 2017, 1, 947–960. [CrossRef]

35. Xie, C.; Liu, C.; Wu, B.; Lin, Y.; Ma, T.; Xiong, H.; Wang, Q.; Changli, X.; Ma, C.; Tu, Z. Effects of IRF1 and IFN-β interaction on the M1 polarization of macrophages and its antitumor function. *Int. J. Mol. Med.* 2016, 38, 148–160. [CrossRef] [PubMed]
36. Lehtonen, A.; Matikainen, S.; Julkunen, I. Interferons up-regulate STAT1, STAT2, and IRF family transcription factor gene expression in human peripheral blood mononuclear cells and macrophages. *J. Immunol.* 1997, 159, 794.

37. Cuesta, N.; Sáulkowski, C.A.; Thomas, K.E.; Vogel, S.N. Regulation of Lipopolysaccharide Sensitivity by IFN Regulatory Factor-2. *J. Immunol.* 2003, 170, 5739–5747. [CrossRef]

38. Han, H.-S.; Shin, J.-S.; Lee, S.-B.; Park, J.C.; Lee, K.-T. Cirsimarin, a flavone glucoside from the aerial part of Cirsium japonicum var. ussuriense (Regel) Kitam. ex Ohvii, suppresses the JAK/STAT and IRF-3 signaling pathway in LPS-stimulated RAW 264.7 macrophages. *Chem. Interact.* 2016, 293, 38–47. [CrossRef]

39. Krausgruber, T.; Blazek, K.; Smallie, T.; Alzabin, S.; Lockstein, H.; Sahgal, N.; Hussel, T.; Feldmann, M.; Udalova, I.A. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. *Nat. Immunol.* 2011, 12, 231–238. [CrossRef]

40. Li, C.; Ying, W.; Huang, Z.; Brehm, T.; Morin, A.; Vella, A.T.; Zhou, B. IRF6 Regulates Alternative Activation by Suppressing PPARα in Male Urine Macrophages. *Endocrinology* 2017, 158, 2837–2847. [CrossRef] [PubMed]

41. Solis, M.; Goubau, D.; Grandvaux, N.; Mesplede, T.; Julkunen, I.; Nardin, A.; Salcedo, M.; Hiscott, J.; Romieu-Mourez, R. Involvement of TBK1 and IKKε in lipopolysaccharide-induced activation of the interferon response in primary human macrophages. *Eur. J. Immunol.* 2007, 37, 528–539. [CrossRef]

42. Pinilla-Vera, M.; Xiong, Z.; Zhao, Y.; Zhao, J.; Donahoe, M.P.; Barge, S.; Horne, W.T.; Kolls, J.K.; McVerry, B.J.; Birukova, A.; et al. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling. *PLoS ONE* 2016, 11, e0159329. [CrossRef]

43. Sol, V.V.-D.; Punzón, C.; Fresno, M. IFN-γ-Induced TNF-α Expression Is Regulated by Interferon Regulatory Factors 1 and 8 in Mouse Macrophages. *J. Immunol.* 2008, 181, 4461–4470. [CrossRef]

44. Shen, J.; Sun, X.; Pan, B.; Cao, S.; Cao, J.; Che, D.; Liu, F.; Zhang, S.; Yu, Y. IL-17 induces macrophages to M2-like phenotype via NF-κB. *Cancer Manag. Res.* 2018, 10, 4217–4228. [CrossRef] [PubMed]

45. Sica, A.; Saccani, A.; Bottazzi, B.; Polentarutti, N.; Vecchi, A.; Van Damme, J.; Mantovani, A. Autocrine Production of IL-10 Mediates Defective IL-12 Production and NF-κB Activation in Tumor-Associated Macrophages. *J. Immunol.* 2000, 164, 762–767. [CrossRef] [PubMed]

46. Ratnam, N.M.; Peterson, J.M.; Talbert, E.E.; Ladner, K.J.; Rajasekera, P.V.; Schmidt, C.R.; Dillhoff, M.E.; Swanson, B.J.; Haverick, E.; Kladney, R.D.; et al. NF-κB regulates GDF-15 to suppress macrophage surveillance during early tumor development. *J. Clin. Investig.* 2017, 127, 3796–3809. [CrossRef]

47. Giuriati, E.; Xu, Q.; Lonardi, S.; Telfer, B.; Russo, I.; Pearson, A.; Finegan, K.G.; Wang, W.; Wang, J.; Gray, N.S.; et al. Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. *Proc. Natl. Acad. Sci. USA* 2018, 115, E2801–E2810. [CrossRef]

48. Yin, Z.; Ma, T.; Lin, Y.; Lu, X.; Zhang, C.; Chen, S.; Jian, Z. IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. *J. Cell. Biochem.* 2018, 119, 9419–9432. [CrossRef] [PubMed]

49. Rahal, O.M.; Wolfe, A.R.; Mandal, P.K.; Larson, R.; Lin, S.; Jimenez, C.; Zhang, D.; Horton, J.; Reuben, J.M.; McMurray, J.S.; et al. Blocking Interleukin (IL)-12 and IL-13-Mediated Phosphorylation of STAT6 (Ytr641) Decreases M2 Polarization of Macrophages and Protects Against Macrophage-Mediated Radioresistance of Inflammatory Breast Cancer. *Int. J. Radiat. Oncol.* 2018, 100, 1034–1043. [CrossRef]

50. Brady, N.J.; Farrar, M.A.; Schwertfeger, K.L. STAT5 deletion in macrophages alters ductal elongation and branching during mammary gland development. *Dev. Biol.* 2017, 428, 232–244. [CrossRef]

51. Honma, K.; Udono, H.; Kohno, T.; Yamamoto, K.; Ogawa, A.; Takemori, T.; Kumatori, A.; Suzuki, S.; Matsuyama, T.; Yui, K. Role of M1 and M2 Macrophages in Prostate Cancer in relation to Extracapsular Tumor Extension and Biochemical Recurrence is Closely Associated with Aggressive Phenotype and Poor Prognosis in Colorectal Cancer. *Int. J. Biol. Sci.* 2019, 15, 984–998. [CrossRef] [PubMed]

52. Lafont, A.; Godin, B.; Friebos, H.B. Modeling of the tumor microenvironment to highlight nonlinear interactions between chemotherapeutic response and macrophage polarization state. *J. Clin. Oncol.* 2018, 36, e24120. [CrossRef]

53. Cao, L.; Che, X.; Qiu, X.; Li, Z.; Yang, B.; Wang, S.; Hou, K.; Fan, Y.; Qu, X.; Liu, Y. M2 macrophage infiltration into tumor islets leads to poor prognosis in non-small-cell lung cancer. *Cancer Manag. Res.* 2019, 11, 6125–6138. [CrossRef] [PubMed]

54. Salmi, S.; Siiskonen, H.; Sironen, R.; Tyynelä-Korhonen, K.; Hirschovits-Gerz, B.; Valkonen, M.; Auvinen, P.; Pasonen-Seppänen, S. The number and localization of CD68+ and CD163+ macrophages in different stages of cutaneous melanoma. *Melanoma Res.* 2019, 29, 237–247. [CrossRef] [PubMed]

55. Yang, C.; Wei, C.; Wang, S.; Shi, D.; Zhang, C.; Lin, X.; Dou, R.; Xiong, B. Elevated CD163+/CD68+ Ratio at Tumor Invasive Front is Closely Associated with Aggressive Phenotype and Poor Prognosis in Colorectal Cancer. *Int. J. Biol. Sci.* 2019, 15, 984–998. [CrossRef] [PubMed]

56. Lanciotti, M.; Masieri, L.; Raspolini, M.R.; Minervini, A.; Mari, A.; Comito, G.; Giannoni, E.; Carini, M.; Chiarugi, P.; Serni, S. The Role of M1 and M2 Macrophages in Prostate Cancer in relation to Extracapsular Tumor Extension and Biochemical Recurrence after Radical Prostatectomy. *BioMed Res. Int.* 2014, 2014, 1–6. [CrossRef]
81. Buhtoiarov, I.N.; Sondel, P.M.; Wigginton, J.M.; Buhtoiarova, T.N.; Yanke, E.M.; Mahvi, D.A.; Rakhmilevich, A.L. Anti-tumour activity of peritoneal macrophages in mice. *J. Immunol*. 1992, 149, 1280–1285. [CrossRef]

82. Javeed, A.; Ashraf, M.; Riaz, A.; Ghafoor, A.; Afzal, S.; Mukhtar, M.M. Paclitaxel and immune system. [PubMed]

83. Bryniarski, K.; Szczepaniak, M.; Ptak, M.; Zemelka, M.; Ptak, W. Influence of cyclophosphamide and its metabolic products on the activity of peritoneal macrophages in mice. *Pharmacol. Rep.* 2009, 61, 550–557. [CrossRef]

84. Chauhan, P.; Sodhi, A.; Shrivastava, A. Cisplatin primes murine peritoneal macrophages for enhanced expression of nitric oxide, proinflammatory cytokines, TLRs, transcription factors and activation of MAP kinases upon co-incubation with L929 cells. *Immunobiology* 2009, 214, 197–209. [CrossRef] [PubMed]

85. Yuan, X.; Zhang, J.; Li, D.; Mao, Y.; Mo, F.; Du, W.; Ma, X. Prognostic significance of tumor-associated macrophages in ovarian cancer: A meta-analysis. *Gynecol. Oncol.* 2017, 147, 181–187. [CrossRef] [PubMed]

86. McMillan, D.C.; Elahi, M.M.; Sattar, N.; Angerson, W.J.; Johnston, J.; McArdle, C.S. Measurement of the Systemic Inflammatory Response Predicts Cancer-Specific and Non-Cancer Survival in Patients with Cancer. *Nutr. Cancer* 2001, 41, 64–69. [CrossRef] [PubMed]

87. Biswas, S.K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. *Nat. Immunol.* 2010, 11, 889–896. [CrossRef] [PubMed]

88. Lewis, C.E.; Pollard, J.W. Distinct Role of Macrophages in Different Tumor Microenvironments. *Cancer Res.* 2006, 66, 605–612. [CrossRef] [PubMed]

89. Bottazzi, B.; Walter, S.; Govoni, D.; Colotta, F.; Mantovani, A. Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. *J. Immunol.* 1992, 148, 1280–1285. [CrossRef] [PubMed]

90. Brasini, K.; Szczepanik, M.; Ptak, W. Influence of cyclophosphamide and its metabolic products on the activity of peritoneal macrophages in mice. *J. Immunol*. 1992, 149, 1280–1285. [CrossRef]

91. Manzoni, A.; Lawrence, T. Nuclear Factor- B and Tumor-Associated Macrophages. *Clin. Cancer Res.* 2010, 16, 784–789. [CrossRef] [PubMed]

92. Genard, G.; Wera, A.-C.; Huart, C.; Le Calve, B.; Penninckx, S.; Fattaccioli, A.; Tabarrant, T.; Demazy, C.; Ninane, N.; Heuskin, A.-C.; et al. Proton irradiation orchestrates macrophage reprogramming through NFkB signaling. *Cell Death Dis.* 2018, 9, 1–13. [CrossRef] [PubMed]

93. Lin, E.Y.; Li, J.-F.; Gnatovskiy, L.; Deng, Y.; Zhu, L.; Grzesik, D.A.; Qian, H.; Xue, X.-N.; Pollard, J.W. Macrophages Regulate the Angiogenic Switch in a Mouse Model of Breast Cancer. *Cancer Res.* 2006, 66, 11238–11246. [CrossRef] [PubMed]

94. Lawrence, T. Macrophages and NF-κB in Cancer. *Curr. Top. Microbiol. Immunol.* 2010, 349, 171–184. [CrossRef] [PubMed]

95. Muñoz-Fontela, C.; Mandinova, A.; Aaronson, S.A.; Lee, A.M.S.W. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. *Nat. Rev. Immunol.* 2016, 16, 741–750. [CrossRef] [PubMed]

96. Purby, P.K.; Scumpia, P.O.; Kim, P.J.; Tong, A.-J.; Iwamoto, K.S.; McBride, W.H.; Smale, S.T. Defined Sensing Mechanisms and Signaling Pathways Contribute to the Global Inflammatory Gene Expression Output Elicited by Ionizing Radiation. *Immunology* 2017, 47, 421–434.e3. [CrossRef] [PubMed]

97. Wang, P.; Guo, F.; Han, L.; Wang, X.; Li, J.; Guo, Y.; Lu, Y. X-ray-Induced Changes in the Expression of Inflammation-Related Genes in Human Peripheral Blood. *Int. J. Mol. Sci.* 2014, 15, 19516–19534. [CrossRef] [PubMed]

98. Essandoh, K.; Li, Y.; Huo, J.; Fan, G.-C. MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response. *Shock*. 2016, 46, 122–131. [CrossRef] [PubMed]

99. Romieu-Mourez, R.; Solis, M.; Nardin, A.; Goubau, D.; Baron-Bodo, V.; Lin, R.; Massie, B.; Salcedo, M.; Hiscott, J. Distinct Roles for IFN Regulatory Factor (IRF)-3 and IRF-7 in the Activation of Antitumor Properties of Human Macrophages. *Cancer Res.* 2006, 66, 10576–10585. [CrossRef] [PubMed]

100. Chistiakov, D.A.; Myasoedova, V.A.; Revin, V.V.; Orekhov, A.N.; Bobryshev, Y.V. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. *Immunobiology* 2018, 223, 101–111. [CrossRef] [PubMed]

101. Zhang, Z.; Sun, C.; Li, C.; Jiao, X.; Griffin, B.B.; Dongol, S.; Wu, H.; Zhang, C.; Cao, W.; Dong, R.; et al. Uregulated MEK3 Leads to Doxorubicin Chemoresistance and M2 Macrophage Polarization via the miR-34a/JAK2/STAT3 Pathway in Uterine Leiomyosarcoma. *Front. Oncol.* 2020, 10, 453. [CrossRef] [PubMed]

102. Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. *J. Clin. Investig.* 2012, 122, 787–795. [CrossRef] [PubMed]

103. Takaishi, K.; Komohara, Y.; Tashiro, H.; Ohtake, H.; Nakagawa, T.; Katabuchi, H.; Takeya, M. Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. *Cancer Sci.* 2010, 101, 2128–2136. [CrossRef] [PubMed]

104. Vasquez-Dunddel, D.; Pan, F.; Zeng, Q.; Gorbounov, M.; Albesiano, E.; Fu, J.; Blosser, R.L.; Tam, A.J.; Bruno, T.; Zhang, H.; et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. *J. Clin. Investig.* 2013, 123, 1580–1589. [CrossRef] [PubMed]

105. Buhtoioarov, I.N.; Sondel, P.M.; Wigginton, J.M.; Buhtoiarova, T.N.; Yanke, E.M.; Mahvi, D.A.; Rakhmilevich, A.L. Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. *Immunology* 2010, 132, 226–239. [CrossRef] [PubMed]

106. Javeed, A.; Ashraf, M.; Riaz, A.; Ghafoor, A.; Afzal, S.; Mukhtar, M.M. Paclitaxel and immune system. *Eur. J. Pharm. Sci.* 2009, 38, 283–290. [CrossRef] [PubMed]

107. Bryniarski, K.; Szczepaniak, M.; Ptak, M.; Zemelka, M.; Ptak, W. Influence of cyclophosphamide and its metabolic products on the activity of peritoneal macrophages in mice. *Pharmacol. Rep.* 2009, 61, 550–557. [CrossRef] [PubMed]
Zhao, Y.-R.; Song, H.-M.; Ni, L. Cyclophosphamide for the treatment of acute lymphoblastic leukemia. *Medicine* 2019, 98, e14293. [CrossRef]

Mustafa, M.M.; Jamshed, A.; Khafaga, Y.; Mourad, W.A.; Al-Mesfer, S.; Kofide, A.; El-Husseiny, G.; Gray, A. Adjuvant Chemotherapy with Vincristine, Doxorubicin, and Cyclophosphamide in the Treatment of Postenucleation High Risk Retinoblastoma. *J. Pediatr. Hematol.* 1999, 21, 364–369. [CrossRef]

Ashraf, K.; Shaikh, F.; Gibson, P.; Baruchel, S.; Irwin, M.S. Treatment with topotecan plus cyclophosphamide in children with first relapse of neuroblastoma. *Pediatr. Blood Cancer* 2013, 60, 1636–1641. [CrossRef]

Handelias, D.; Quinn, M.; Foo, S.; Mileshkin, L.; Grant, P.; Dutu, G.; Rischin, D. Oral cyclophosphamide in recurrent ovarian cancer. *Asia Pac. J. Clin. Oncol.* 2013, 12, e154–e160. [CrossRef]

Mills, K.A.; Chess-Williams, R.; McDermott, C. Novel insights into the mechanism of cyclophosphamide-induced bladder toxicity: chloroacetaldehyde's contribution to urothelial dysfunction in vitro. *Arch. Toxicol.* 2019, 93, 3291–3303. [CrossRef]

Ahlmann, M.; Hempel, G. The effect of cyclophosphamide on the immune system: Implications for clinical cancer therapy. *Cancer Chemother. Pharmacol.* 2016, 78, 661–671. [CrossRef]

Aldossary, S.A. Review on Pharmacology of Cisplatin: Clinical Use, Toxicity and Mechanism of Resistance of Cisplatin. *Biomed. Pharmacol. J.* 2019, 12, 7–15. [CrossRef]

Serkies, K.; Jassem, J. Concurrent weekly cisplatin and radiotherapy in routine management of cervical cancer: A report on patient compliance and acute toxicity. *Int. J. Radiat. Oncol.* 2004, 60, 814–821. [CrossRef] [PubMed]

Ilson, D.H. Esophageal Cancer Chemotherapy: Recent Advances. *Gastrointest Cancer Res.* 2008, 2, 85–92.

Sledge, G.W.; Roth, B.J. Cisplatin in the management of breast cancer. *Semin. Oncol.* 1989, 16, 110–115. [PubMed]

Rodrigo, M.A.M.; Buchtelova, H.; Jimenez, A.M.J.; Adam, P.; Babula, P.; Heger, Z.; Adam, V. Transcriptomic Landscape of Cisplatin-Resistant Neuroblastosma Cells. *Cells* 2019, 8, 235. [CrossRef]

Shani, J.; Wolf, W. Modalities of Cisplatin Administration to Brain Tumors. *Cancer Investig.* 1989, 7, 571–579. [CrossRef] [PubMed]

Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. *Oncogene* 2003, 22, 7265–7279. [CrossRef] [PubMed]

Chauhan, P.; Sodihi, A.; Tarang, S. Cisplatin-treated murine peritoneal macrophages induce apoptosis in L929 cells: Role of Fas–Fas ligand and tumor necrosis factor–tumor necrosis factor receptor 1. *Anti Cancer Drugs* 2007, 18, 187–196. [CrossRef] [PubMed]

Di Caro, G.; Cortese, N.; Castino, G.F.; Grizzli, F.; Gavazzi, F.; Ridolfi, C.; Capretti, G.; Mineri, R.; Todoric, J.; Zerbi, A.; et al. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. *Gut* 2016, 65, 1710–1720. [CrossRef] [PubMed]

Ozols, R.F.; Bundy, B.N.; Greer, B.E.; Fowler, J.M.; Clarke-Pearson, D.; Burger, R.A.; Mannel, R.S.; DeGeest, K.; Hartenbach, E.M.; Baergen, R. Phase III Trial of Carboplatin and Paclitaxel Compared with Cisplatin and Paclitaxel in Patients With Optimally Resected Stage III Ovarian Cancer: A Gynecologic Oncology Group Study. *J. Clin. Oncol.* 2003, 21, 3194–3200. [CrossRef] [PubMed]

Ettinger, D.S. The role of carboplatin in the treatment of small-cell lung cancer. *Oncology* 1998, 12, 36–43.

Aisner, J.; Sinibaldi, V.; Eisenberger, M. Carboplatin in the treatment of squamous cell head and neck cancers. *Semin. Oncol.* 1992, 19, 60–65.

Xia, Y.; Li, Y.-H.; Chen, Y.; Liu, Q.; Zhang, J.-H.; Deng, J.-Y.; Ai, T.-S.; Zhu, H.-T.; Badakhshi, H.; Zhao, K.-L. A phase II trial of concurrent chemoradiotherapy with weekly paclitaxel and carboplatin in advanced esophageal carcinoma. *Int. J. Clin. Oncol.* 2018, 23, 458–465. [CrossRef] [PubMed]

Michener, C.M.; Peterson, G.; Kulp, B.; Webster, K.D.; Markman, M. Carboplatin plus paclitaxel in the treatment of advanced or recurrent endometrial carcinoma. *J. Cancer Res. Clin. Oncol.* 2005, 131, 581–584. [CrossRef] [PubMed]

Valsecchi, M.E.; Kimmey, G.; Bir, A.; Silbermins, D. Role of Carboplatin in the Treatment of Triple Negative Early-Stage Breast Cancer. *Rev. Recent Clin. Trials* 2015, 10, 101–110. [CrossRef] [PubMed]

Sebastião, A.M.; Rocha, L.S.D.S.; Gimenez, R.D.; De Barros, L.A.B.; Fukushima, J.T.; Da Silva, S.C.S.; Miranda, V.D.C.; Caires, I.Q.D.S.; De Freitas, D.; Filho, E.A.; et al. Carboplatin-based chemoradiotherapy in advanced cervical cancer: An alternative to cisplatin-based regimens? *Eur. J. Obstet. Gynecol. Reprod. Biol.* 2016, 201, 161–165. [CrossRef] [PubMed]

Hah, S.S.; Stivers, K.M.; White, R.W.D.V.; Henderson, P.T. Kinetics of Carboplatin—DNA Binding in Genomic DNA and Bladder Cancer Cells As Determined by Accelerator Mass Spectrometry. *Chem. Res. Toxicol.* 2006, 19, 622–626. [CrossRef] [PubMed]

Vogl, S.E.; Moukhtar, M.; Kaplan, B.H. Chemotherapy for advanced cervical cancer with methotrexate, bleomycin, and cis-dichlorodiammineplatinum(II). *Cancer Treat. Rep.* 1979, 63, 1005–1006.

Yang, V.; Gouveia, M.J.; Santos, J.; Koksch, B.; Amorim, I.; Gärtner, F.; Vale, N. Breast cancer: Insights in disease and influence of drug methotrexate. *RSC Med. Chem.* 2020, 11, 646–644. [CrossRef] [PubMed]

Neijstrom, E.S.; Capizzi, R.L.; Rudnick, S.A.; Kirsch, M.; Delaney, D.; Kahn, L.; Lipper, S.; Carney, C. High-dose methotrexate in small cell lung cancer: Lack of efficacy in preventing CNS relapse. *Cancer* 1983, 51, 1056–1061. [CrossRef] [PubMed]

Woods, R.L.; Fox, R.M.; Tattersall, M.H. Methotrexate treatment of squamous-cell head and neck cancers: Dose-response evaluation. *BMJ* 1981, 282, 600–602. [CrossRef] [PubMed]
209. Zheng, S.-J.; Lamhamedi-Cherradi, S.-E.; Wang, P.; Xu, L.; Chen, Y.H. Tumor Suppressor p53 Inhibits Autoimmune Inflammation.

206. Saliba, D.G.; Heger, A.; Eames, H.L.; Oikonomopoulos, S.; Teixeira, A.; Blazek, K.; Androulidaki, A.; Wong, D.; Goh, F.G.; An, Y.; Yang, Q. MiR-21 modulates the polarization of macrophages and increases the effects of M2 macrophages on promoting.

205. Ishikawa, H.; Ma, Z.; Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nat. Cell Biol. 2009, 461, 788–792. [CrossRef] [PubMed]

204. Merchad, A.J.; Williams, E.; Chan, L. Macrophage-Specific p53 Expression Plays a Crucial Role in Atherosclerosis Development and Plaque Remodeling. Arter. Thromb. Vasc. Biol. 2003, 23, 1608–1614. [CrossRef]

203. Zheng, S.-J.; Lamhamedi-Cheradi, S.-E.; Wang, P.; Xu, L.; Chen, Y.H. Tumor Suppressor p53 Inhibits Autoimmune Inflammation and Macrophage Function. Diabetes 2005, 54, 1423–1428. [CrossRef]
234. Gionfriddo, G.; Plastina, P.; Augimeri, G.; Catalano, S.; Giordano, C.; Barone, I.; Morelli, C.; Giordano, F.; Gelsomino, L.; Sisci, D.; et al. Modulating Tumor-Associated Macrophage Polarization by Synthetic and Natural PPARy Ligands as a Potential Target in Breast Cancer. Cells 2020, 9, 174. [CrossRef] [PubMed]

235. Bradley, M.N.; Zhou, L.; Smale, S.T. C/EBPβ Regulation in Lipopolysaccharide-Stimulated Macrophages. Mol. Cell. Biol. 2003, 23, 4841–4858. [CrossRef] [PubMed]

236. Screpanti, I.; Romani, L.; Musiani, P.; Modesti, A.; Fattori, E.; Lazzaro, D.; Sellitto, C.; Scarpa, S.; Bellavia, D.; Lattanzio, G. Lymphoproliferative disorder and imbalanced T-helper response in C/EBP beta-deficient mice. EMBO J. 1995, 14, 1932–1941. [CrossRef] [PubMed]

237. Ruffell, D.; Mourkioti, F.; Gambardella, A.; Kirstetter, P.; Lopez, R.G.; Rosenthal, N.; Nerlov, C. A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc. Natl. Acad. Sci. USA 2009, 106, 17475–17480. [CrossRef] [PubMed]

238. Luft, F.C. C/EBPβ LIP induces a tumor menagerie making it an oncogene. J. Mol. Med. 2014, 93, 1–3. [CrossRef] [PubMed]

239. Ollivier, V.; Parry, G.C.; Cobb, R.R.; de Prost, D.; Mackman, N. Elevated Cyclic AMP Inhibits NF-κB-mediated Transcription in Human Monocytic Cells and Endothelial Cells. J. Biol. Chem. 1996, 271, 20828–20835. [CrossRef] [PubMed]

240. Parry, G.C.; Mackman, N. Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-κB-mediated transcription. J. Immunol. 1997, 159, 5450–5456. [PubMed]

241. Ollivier, V.; Parry, G.C.; Cobb, R.R.; de Prost, D.; Mackman, N. Elevated Cyclic AMP Inhibits NF-κB-mediated Transcription in Human Monocytic Cells and Endothelial Cells. J. Biol. Chem. 1996, 271, 20828–20835. [CrossRef] [PubMed]

242. Tugal, D.; Liao, X.; Jain, M.K. Transcriptional Control of Macrophage Polarization. Biochem. Biophys. Res. Commun. 2016, 474, 227–233. [CrossRef]

243. Koschmieder, S.; Agrawal, S.; Romani, L.; Musiani, P.; Modesti, A.; Fattori, E.; Lazzaro, D.; Sellitto, C.; Scarpa, S.; Bellavia, D.; Lattanzio, G. Lymphoproliferative disorder and imbalanced T-helper response in C/EBP beta-deficient mice. EMBO J. 1995, 14, 1932–1941. [CrossRef] [PubMed]

244. Smink, J.J.; Leutz, A. Rapamycin and the transcription factor C/EBPβ as a switch in osteoclast differentiation: Implications for lytic bone diseases. J. Mol. Med. 2009, 88, 227–233. [CrossRef]

245. Nakahara, T.; Morita, A.; Yagasaki, R.; Mori, A.; Sakamoto, K. Mammalian Target of Rapamycin (mTOR) as a Potential Therapeutic Target in Pathological Ocular Angiogenesis. Biol. Pharm. Bull. 2017, 40, 2045–2049. [CrossRef] [PubMed]

246. Rojas, A.; Delgado-Lopez, F.; Perez-Castro, R.; Gonzalez, I.; Romero, J.; Rojas, I.; Araya, P.; Añazco, C.; Morales, E.; Llanos, J. HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumor Biol. 2016, 37, 3321–3329. [CrossRef]

247. Zhang, W.; Tian, J.; Hao, Q. HMGB1 combining with tumor-associated macrophages enhanced lungangiogenicity in human epithelial ovarian cancer. Tumor Biol. 2014, 35, 2175–2186. [CrossRef] [PubMed]

248. Liao, Y.; Liu, S.; Fu, S.; Wu, J. HMGB1 in Radiotherapy: A Two Headed Signal Regulating Tumor Radiosensitivity and Immunity. OncoTargets Ther. 2020, 13, 6859–6871. [CrossRef] [PubMed]

249. Apetoh, L.; Ghiringhelli, F.; Tesniere, A.; Ortiz, C.; Lidereau, R.; Mariette, C.; Chaput, N.; Mira, J.-P.; Delaloge, S.; et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol. Rev. 2007, 207, 349–355. [CrossRef] [PubMed]

250. Liu, M.; Tong, Z.; Ding, C.; Luo, F.; Wu, S.; Wu, C.; Albeituni, S.; He, L.; Hu, X.; Tieri, D.; et al. Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer. J. Clin. Investig. 2020, 130, 2081–2096. [CrossRef] [PubMed]

251. Yadav, M.K.; Inoue, Y.; Nakane-Otani, A.; Tsunakawa, Y.; Jeon, H.; Samir, O.; Teramoto, A.; Kulathunga, K.; Kusakabe, M.; Nakamura, M.; et al. Transcription factor MafB is a marker of tumor-associated macrophages in both mouse and humans. Biochem. Biophys. Res. Commun. 2020, 521, 590–595. [CrossRef] [PubMed]

252. Daassi, D.; Hamada, M.; Jeon, H.; Imamura, Y.; Tran, M.T.N.; Takahashi, S. Differential expression patterns of MafB and c-Maf in macrophages in vivo and in vitro. Biochem. Biophys. Res. Commun. 2016, 473, 118–124. [CrossRef] [PubMed]

253. Fontana, M.F.; Baccarella, A.; Pancholi, N.; Pufall, M.A.; Herbert, D.R.; Kim, C.C. JUNB is a Key Transcriptional Modulator of M2-Like Tumor-Associated Macrophage-Targeted Codelivery of STAT6 Inhibitor and IKKβ siRNA Induces M2-to-M1 Repolarization for Cancer Immunotherapy with Low Immune Side Effects. ACS Central Sci. 2020, 6, 1208–1222. [CrossRef]
283. Tariq, M.; Zhang, J.-Q.; Liang, G.-K.; He, Q.-J.; Ding, L.; Yang, B. Gefitinib inhibits M2-like polarization of tumor-associated macrophages in Lewis lung cancer by targeting the STAT6 signaling pathway. *Acta Pharmacol. Sin.* **2017**, *38*, 1501–1511. [CrossRef]

284. Binnemars-Postma, K.; Bansal, R.; Storm, G.; Prakash, J. Targeting the Stat6 pathway in tumor-associated macrophages reduces tumor growth and metastatic niche formation in breast cancer. *FASEB J.* **2018**, *32*, 969–978. [CrossRef] [PubMed]