Association between urinary sodium excretion and uric acid, and its interaction on the risk of prehypertension among Chinese young adults

Yang Wang¹,², Jia-Wen Hu¹,², Peng-Fei Qu³, Ke-Ke Wang¹,², Yu Yan¹,², Chao Chu¹,², Wen-Ling Zheng¹,², Xian-Jing Xu⁴, Yong-Bo Lv¹,², Qiong Ma¹, Ke Gao¹, Yue Yuan¹, Hao Li⁵, Zu-Yi Yuan¹,² & Jian-Jun Mu¹,²

High uric acid (UA) level and high salt intake are reportedly associated with cardiovascular disease. This study investigated the association between UA and urinary sodium excretion, as well as its interaction on the risk of prehypertension. A total of 1869 participants without hypertension were recruited from a previously established cohort in Shaanxi Province, China. The participants were classified as normotensive or prehypertensive on the basis of their blood pressure. Increasing quartiles of sodium excretion were associated with high urinary UA/creatinine levels in prehypertensive participants. Estimated sodium excretion positively correlated with urinary UA/creatinine excretions in the prehypertensive group. In addition, the multivariate-adjusted odds ratios for prehypertension compared with normotension were 1.68 (1.27–2.22) for sodium excretion and 1.71 (1.21–2.42) for serum UA. Increasing sodium excretion and serum UA were associated with higher risk of prehypertension. Compared with the lowest quartiles, the highest sodium excretion and serum UA quartiles entailed 3.48 times greater risk of prehypertension. Sodium excretion is associated with urinary UA excretion in prehypertensive participants. The present study shows that high levels of salt intake and serum UA simultaneously are associated with a higher risk of prehypertension.

Hypertension contributes to the burden of heart disease, stroke, and kidney failure, and it is one of the leading causes of morbidity and mortality. Prehypertension, a state between normotension and hypertension, is a strong predictor of hypertension. According to the Seventh Report of the Joint National Committee (JNC-7) guideline, prehypertension is characterized by a systolic blood pressure (SBP) ranging from 120 mm Hg to 139 mm Hg and/or a diastolic blood pressure (DBP) ranging from 80 mm Hg to 90 mm Hg. The prevalence of prehypertension is rapidly increasing worldwide. In the InterASIA study, the prevalence of prehypertension is 21.9% among Chinese adults (25.7% in males and 18.0% in females), and prehypertension is emerging as an independent risk factor for cardiometabolic disorders, including metabolic syndrome, diabetes, chronic kidney disease, stroke, and cardiovascular diseases.

Excessive dietary salt intake plays an important role in the onset and maintenance of hypertension, whereas restricted salt intake lowers blood pressure. Dietary salt intake by itself, even without causing hypertension or volume overload, might be deleterious, resulting in cardiac remodeling, renal fibrosis, and left ventricular hypertrophy. Several mechanisms, including endothelial dysfunction, oxidative stress, inflammation, insulin resistance, and neurogenically mediated increase in peripheral resistance, contribute to the harmful effects of

¹Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China. ²Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi’an, China. ³Assisted Reproduction Center, Northwest Women and Children’s Hospital, Xi’an, China. ⁴General Ward, Henan Provincial People’s Hospital, Zhengzhou, Henan, China. ⁵Department of Critical Care Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China. Yang Wang, Jia-Wen Hu and Peng-Fei Qu contributed equally to this work. Correspondence and requests for materials should be addressed to J.-J.M. (email: mujunj163.com)
Recent studies have shown that increased salt intake may be associated with the pathogenesis of prehypertension \(^{11-13}\). However, data on the association between dietary salt intake and prehypertension are lacking.

Uric acid (UA) is the metabolic end product of purine degradation in humans; xanthine oxidase is the enzyme responsible for UA production and free radical damage \(^{14}\). Epidemiological studies have identified serum UA is an important risk factor for cardiovascular disease and hypertension \(^{15-17}\). For example, Puddu et al. \(^{16,17}\) found that serum UA could predict not only short-term but also long-term incidence of cardiovascular events as well as cardiovascular death and all-cause mortality. Recent studies have shown that increased sodium intake significantly lowers serum UA \(^{18,19}\). However, no research has focused on the relationship between dietary salt intake and UA levels, especially urinary UA excretion, in prehypertensive participants. Furthermore, the relationship between UA and prehypertension and the synergistic effects of UA and dietary salt intake on the risk of prehypertension remain unclear to date.

In the present study, we used our previously established cohort that has been followed up for 30 years to examine the possible associations between urinary sodium excretion, which was used as surrogate for salt intake, and serum and urinary UA levels in prehypertensive participants. We particularly sought to investigate the interactions between urinary sodium excretion and serum UA on the risk of prehypertension in Chinese young adults.

Methods

Cohort of study. In March and April 1987, we established the cohort of Hanzhong Adolescent Hypertension Study based on a baseline survey of 4623 adolescents aged 6–15 years in over 20 schools of three towns (Qili, Laojun, and Shayan) in Hanzhong, Shaanxi, China \(^{20,21}\). To explore the BP trajectory and its risk factors from children to adults, we made the long-term follow-ups of this cohort in 1989, 1992, 1995, 2005, 2013, and 2017 (Supplementary Figure S1).

In this study, we followed up this cohort from April to July 2017, and a total of 2780 were followed up this time. The total rate of this follow-up was 60.3%, which was very rare for such a long-term follow-up. The participant selection process is described in Fig. 1. Of the 2780 participants, 911 were excluded from the current analysis for the following reasons: hypertension defined as a SBP \(\geq 140\) mm Hg or DBP \(\geq 90\) mm Hg or current use of antihypertensive medications \((n=584)\), missing important data \((BP, n=29); \text{height and weight, } n=1); \text{blood biochemistry, } n=207); \text{urinary biochemistry, } n=87); \text{urinary creatinine, } n=1); \text{and self-identified history of stroke} \((n=2)). The remaining 1869 individuals were included in the analysis. Data including social demographic survey (age, gender, education, occupation, medical conditions, and prescription and nonprescription medication use), physical activity, physical examination with anthropometric measurements, and laboratory testing were collected by trained physicians or medical students.

The present study complied with the Declaration of Helsinki, and the research protocol was approved by the Ethics Committee of the First Affiliated Hospital of Xi'an Jiaotong University (code: 2015–128). Upon admission, all subjects provided their informed consent. Trial Registration Number: NCT02734472 (http://www.clinicaltrials.gov). Date of registration: 12/04/2016.

BP measurement. BP was measured by six trained staff members using a standard mercury sphygmomanometer as previously described \(^{12,23}\). The average of three readings was recorded. Study participants were classified into one of the two non-hypertensive BP categories in accordance with the criteria of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure and the International Society of Hypertension: prehypertension (SBP of 120–140 mm Hg or DBP of 80–90 mm Hg) and normotension (SBP < 120 mm Hg and DBP < 80 mm Hg).
Blood biochemical analyses. Blood samples were obtained by peripheral venous puncture, immediately centrifuged at 3000 × g for 10 min, and then stored at −80 °C until analysis. Total cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), serum creatinine, and blood glucose were measured using an automatic biochemical analyzer (model 7600; Hitachi, Ltd., Tokyo, Japan). Serum UA level was measured with a Hitachi clinical chemistry analyzer with the uricase HMPS method. Five samples were used to evaluate the intra-assay and inter-assay coefficients of variation (CV), which ranged from 2.3% to 4.5% and from 3.2% to 6.4%, respectively. Estimated glomerular filtration ratio (eGFR) was calculated using the Modification of Diet in Renal Disease formula23. Hyperuricemia was defined as serum UA level of ≥420 μmol/L for men and ≥360 μmol/L for women.

Urinary biochemical testing. A morning fasting midstream urine sample was collected from each participant and frozen at −20 °C to −40 °C. All urine samples were shipped in ambient packaging with the use of ice boxes to the clinical laboratory at the First Affiliated Hospital of Xi’an Jiaotong University in Xi’an, China. Urinary sodium, creatinine, UA, and albumin were measured by an automatic biochemical analyzer (Hitachi, Ltd., Japan) at a certified clinical lab. The intra- and inter-assay CVs were 0.42% and 1.69% for urinary sodium, 1.25% and 2.17% for urinary creatinine, 0.64% and 2.13% for urinary albumin, and 3.1% and 5.2% for urinary UA, respectively. The Kawasaki formula was used to estimate 24-hour urinary sodium excretion, and the estimate was used as surrogate for salt intake25,26. A brief description of the validation of the Kawasaki formula is provided in the article by Mente et al.27.

Statistical analysis. Data are expressed as means ± standard deviation (SD) for normally distributed values, as median (25th and 75th percentile) for non-normally distributed values, and as percentages. The Kolmogorov–Smirnov test was used to determine whether the continuous variables were normally distributed. Statistical significance of difference among the groups was calculated using χ²-test for categorical variables, Student’s t-test for continuous variables in normally distributed data, and Mann–Whitney test for non-normally distributed data. One-way ANOVA was employed to compare the mean values across the sodium excretion quartile groups. Multiple linear regression and Pearson correlation analyses were performed to determine the strength of association between serum and urinary UA levels and other continuous parameters. The adjusted odds ratio (OR) and 95% confidence interval (CI) were calculated to estimate the risk for prehypertension of single(combined) status of sodium excretion and serum UA, and quartiles of sodium excretion and serum UA by logistic regression analyses. All statistical analyses were performed using SPSS for Windows version 16.0 (SPSS, Inc., Chicago, IL). A two-sided P < 0.05 was considered statistically significant.

Data availability. All raw experimental data used in this study is available from the corresponding authors on request.

Results

Characteristics of study participants. A total of 1869 individuals who met the inclusion criteria were finally followed up and included in the current analyses. Of these 1869 individuals, 842 (45.1%) were identified as prehypertensive while 1027 (54.9%) as normotensive.

Firstly, a total of 842 prehypertensive subjects were analyzed to examine the association between sodium excretion and serum and urinary UA levels. Table 1 presents the characteristics of the prehypertensive participants according to the quartiles of urinary sodium excretion. Individuals with higher sodium excretion were tended to be male, younger and fatter; unwilling to engage in physical activity; and usually possessed lower HDL-C and serum creatinine but higher eGFR and urinary albumin/creatinine. It was noteworthy that starting with the lowest quartile of estimated sodium excretion, the excretion of urinary UA/creatinine was 0.12, 0.17, 0.24, and 0.33 for increasing quartiles, respectively (P for trend <0.001). No significant difference was observed in serum UA across each quartile of urinary sodium excretion in prehypertensive participants (P for trend = 0.931).

Association between salt intake and serum and urinary UA levels in prehypertensive participants. Estimated sodium excretion, the substitute for salt intake, positively correlated with urinary UA/creatinine excretions (r = 0.496, P < 0.001) but not with serum UA (r = 0.026, P = 0.23) in the prehypertensive group (Fig. 2). In multiple linear regression analysis, we assessed the potential confounding factors [age, gender, body mass index (BMI), fasting glucose, total cholesterol, triglycerides, LDL, HDL, serum creatinine, alcohol consumption, smoking status, diabetes, and physical activity] for serum and urinary UA in the prehypertensive participants. In this model, urinary UA/creatinine positively correlated with estimated sodium excretion (β = 0.488, P < 0.001) and gender (β = 0.27, P < 0.001).

In addition, serum UA levels positively correlated with serum creatinine, BMI, total cholesterol, and alcohol consumption but negatively correlated with gender, HDL, and fasting glucose. No correlation was found between serum UA and urinary sodium excretion in the prehypertensive group (Supplementary Table S1). After adjustment for various confounders, BMI and serum creatinine but not sodium excretion (OR = 0.96, P = 0.393; Supplementary Table S2) were associated with a higher risk of hyperuricemia in the prehypertensive participants.

Individual effects of salt intake and serum UA on prehypertension. Next, to examine the relationship between salt intake and serum UA, and the risk of prehypertension, we include the normotensive (n = 1027) and prehypertensive (n = 842) subjects in the current analysis. Table 2 shows the characteristics of all subjects according to BP status. Prevalence of men, alcohol consumption, smoking, light physical activity, and age, BMI, SBP, DBP, total cholesterol, fasting glucose, triglycerides, LDL, serum UA, serum creatinine, eGFR, urinary albumin/creatinine and sodium excretions were higher in participants with prehypertension than those with normotension, but HDL-C was higher in those with normotension. There were no inter-group differences regarding prevalence of diabetes mellitus.
1.15 (0.87–1.52), 1.46 (1.11–1.91) and 1.68 (1.27–2.22) (P = 0.025). 4.19) II (4.19–5.14) and 322.2 < 219.2 μmol/L; quartile 3: 271.1–322.2 μmol/L; and quartile 4: > 322.2 μmol/L. After adjustment for multiple confounders, compared with the lowest serum UA quartile, the ORs of prehypertension were 2.42; P = 0.019 for trend.

Synergistic effect of salt intake and serum UA on prehypertension. Finally, the synergistic effects of salt intake and serum UA on the risk of prehypertension were estimated after controlling for confounders (Fig. 3 and Supplementary Table S3). A formal test for interaction between sodium excretion and serum UA revealed a significant interaction (P = 0.046). The ORs of prehypertension were about 3.48 times as much as in the highest sodium excretion and serum UA quartiles (sodium excretion > 5.88 g/day and serum UA > 322.2 μmol/L) than in the lowest sodium excretion and serum UA quartiles (sodium excretion < 4.02 g/day and serum UA < 219.2 μmol/L).

Discussion
In this cohort of Chinese individuals with prehypertension, urinary sodium excretion showed no association with serum UA but significantly correlated with urinary UA. To the best of our knowledge, this study is the first to examine the relationship of salt intake to serum and urine UA levels in prehypertensive subjects.

Table 1. Baseline characteristics according to salt intake in prehypertensive subjects (n = 842). LDL, low-density lipoprotein; HDL, high-density lipoprotein; eGFR, estimated glomerular filtration rate; Non-normally distributed variables are expressed as the median (interquartile range). All other values are expressed as mean ± SD or n, %.

Characteristics	Quarters of Sodium excretion (g/day)	I (< 4.19)	II (4.19–5.14)	III (5.14–6.07)	IV (>6.07)	P for trend
No. of subjects	210	210	210	212	–	
Age (years)	44 (40.0–45.0)	43.5 (41.0–45.0)	44.0 (40.8–45.0)	42.0 (39.0–45.0)	0.025	
Gender (M/F)	110/100	128/82	144/66	152/60	<0.001	
Body mass index (kg/m²)	23.7 ± 3.0	24.5 ± 2.9	24.8 ± 2.9	24.8 ± 3.0	<0.001	
Alcohol consumption (n, %)	62 (29.5)	71 (33.8)	68 (32.4)	79 (37.3)	0.133	
Current smoking (n, %)	84 (40.0)	80 (38.1)	91 (43.3)	100 (47.2)	0.079	
Diabetes mellitus (n, %)	8 (3.8)	3 (1.4)	7 (3.3)	6 (2.8)	0.841	
Heart rate (beats/min)	75.0 (69.0–82.2)	73.0 (66.0–79.0)	73.0 (65.0–78.0)	72.0 (65.0–77.0)	0.011	
Level of physical activity (n, %)						
Almost no	65 (31.0)	92 (43.8)	110 (52.4)	102 (48.1)	0.006	
Light	124 (59.0)	102 (48.6)	85 (40.5)	102 (48.1)	0.059	
Moderate	13 (6.2)	12 (5.7)	7 (3.3)	5 (2.4)	0.184	
Heavy	8 (3.8)	4 (1.9)	8 (3.8)	3 (1.4)	0.307	
Systolic blood pressure (mmHg)	125.0 (121.7–130.0)	126.3 (122.3–130.8)	126.5 (123.3–131.4)	126.3 (122.7–131.0)	0.399	
Diastolic blood pressure (mmHg)	80.0 (75.3–83.3)	79.3 (74.3–83.3)	80.2 (75.7–84.0)	80.3 (76.7–84.0)	0.6	
Serum uric acid (μmol/L)	288.2 ± 81.8	297.5 ± 87.6	295.2 ± 69.7	289.5 ± 76.7	0.951	
Fasting glucose (mmol/L)	4.58 (4.29–4.93)	4.58 (4.28–4.96)	4.60 (4.31–4.93)	4.66 (4.35–5.00)	0.479	
Total cholesterol (mmol/L)	4.64 ± 0.81	4.61 ± 0.81	4.66 ± 0.84	4.49 ± 0.75	0.106	
Triglycerides (mmol/L)	1.31 (0.94–1.85)	1.47 (1.03–2.17)	1.46 (1.07–2.11)	1.47 (1.02–2.18)	0.216	
LDL- cholesterol (mmol/L)	2.59 ± 0.66	2.58 ± 0.61	2.65 ± 0.68	2.45 ± 0.62	0.072	
HDL- cholesterol (mmol/L)	1.19 (0.99–1.37)	1.12 (0.97–1.31)	1.22 (0.97–1.28)	1.11 (0.93–1.30)	0.025	
Serum creatinine (μmol/L)	79.2 ± 13.8	77.1 ± 14.6	78.1 ± 13.0	75.2 ± 13.9	0.027	
eGFR (mL/min/1.73 m²)	65.8 (60.3–73.8)	68.1 (61.3–76.4)	69.8 (63.1–78.1)	73.9 (66.0–81.5)	<0.001	
Urine albumin/creatinine (mg/g)	8.02 (5.30–13.19)	8.05 (5.46–12.56)	9.33 (5.88–15.62)	10.73 (6.32–19.51)	<0.001	
Urinary uric acid/creatinine	0.12 (0.08–0.19)	0.17 (0.12–0.24)	0.24 (0.15–0.36)	0.33 (0.20–0.47)	<0.001	
Urinary sodium excretion (g/day)	3.62 (3.22–3.92)	4.66 (4.43–4.91)	5.54 (5.32–5.78)	6.84 (6.38–7.43)	<0.001	
Although the relationship between salt intake and hypertension is well established, its relationship with UA remains controversial. One proposed hypothesis states that higher UA levels represent an evolutionary advantage in *Homo sapiens*, allowing them to maintain BP when access to sodium is scarce. This theory was demonstrated in uricase-deficient rat models showing an increase in BP from hyperuricemia in the context of a low-salt diet. Additional rat models have supported this hypothesis, showing that UA upregulates and activates epithelial sodium channels in nephrons. Hou et al. have recently reported in a cross-sectional study of 1668 Chinese participants that high salt intake enhances associations of blood UA with hypertension and related cardiovascular risk. However, limited studies focused on salt intake and UA. One large longitudinal cohort study conducted in 4062 participants from Netherlands found that higher sodium intake predicted a larger longitudinal increase of blood pressure.

![Figure 2](image-url)

Figure 2. The correlations between estimated sodium excretion and serum UA (a) and urinary UA/creatinine excretions (b) in prehypertensive participants.

Characteristics	All	Normotension	Prehypertension	P-value
No. of subjects	1869	1027	842	—
Age (years)	43.0 (40.0–45.0)	42.0 (39.0–45.0)	43.0 (40.0–45.0)	<0.001
Gender (M/F)	951/918	417/610	534/308	<0.001
Body mass index (kg/m²)	23.3 (21.5–25.4)	22.7 (21.0–24.5)	24.3 (22.4–26.4)	<0.001
Alcohol consumption (n, %)	475 (25.4)	195 (19.0)	280 (33.3)	<0.001
Current smoking (n, %)	654 (35.0)	299 (29.1)	355 (42.2)	<0.001
Diabetes mellitus (n, %)	43 (2.3)	19 (1.9)	24 (2.9)	0.101

Table 2. Characteristics of participants categorized by blood pressure status (n = 1869). LDL, low-density lipoprotein; HDL, high-density lipoprotein; eGFR, estimated glomerular filtration rate; Non-normally distributed variables are expressed as the median (interquartile range). All other values are expressed as mean ± SD or n, %.

Although the relationship between salt intake and hypertension is well established, its relationship with UA remains controversial. One proposed hypothesis states that higher UA levels represent an evolutionary advantage in *Homo sapiens*, allowing them to maintain BP when access to sodium is scarce. This theory was demonstrated in uricase-deficient rat models showing an increase in BP from hyperuricemia in the context of a low-salt diet. Additional rat models have supported this hypothesis, showing that UA upregulates and activates epithelial sodium channels in nephrons. Hou et al. have recently reported in a cross-sectional study of 1668 Chinese participants that high salt intake enhances associations of blood UA with hypertension and related cardiovascular risk. However, limited studies focused on salt intake and UA. One large longitudinal cohort study conducted in 4062 participants from Netherlands found that higher sodium intake predicted a larger longitudinal increase of blood pressure.
mEq/day decreased UA levels by 1 mg/dL. In addition, a randomized crossover trial of 103 adults with prehypertension showed that 30 days of low versus high sodium intake (60 versus 180 mmol/day) significantly decreased serum UA. It was reported that each 1 gram higher sodium intake was associated with a 1.4 μmol/L increase in serum UA. Another trial performed in 27 men showed that increasing sodium intake from 20 mEq/day to 200 mEq/day decreased UA levels by 1 mg/dL. In another study, serum UA positively correlated with urinary sodium excretion. Furthermore, a study performed in 103 adults with prehypertension showed that 30 days of low versus high sodium intake (60 versus 180 mmol/day) significantly decreased serum UA. In this study, we showed that the serum UA levels were similar between controls and prehypertensive controls. However, the mechanisms underlying the association between sodium intake and serum UA remain unclear. It is possible that the relationship between sodium intake and urinary urate excretion is mediated by the renin-angiotensin system, as uric acid is inversely related to vascular resistance and renal blood flow. Thus, it is possible that decreased renal reabsorption of sodium from excess sodium intake contributes to a decrease in urate reabsorption. This hypothesis has been evidenced by our interventional study showing that urinary UA excretions were markedly increased during high-salt intake, which was further reinforced by the observation that urinary UA positively correlated with urinary sodium excretion. Furthermore, a Spanish study also found a direct correlation between the clearance of UA and fractional excretion of sodium, indicating the potential interaction of sodium and UA excretion. Finally, this relationship may reflect action of the renin-angiotensin system, as uric acid is inversely related to vascular resistance and renal blood flow. Similarly, angiotensin II has been shown to decrease urate excretion after an acute infusion. Determining the molecular mechanism and signaling molecules responsible for the effects of salt intake on urinary UA can be of great interest.

Table 3. Association between various characteristics and prehypertension by stepwise multiple logistic regression analysis (n = 1869). Logistic regression analyses were used to test the risk of hyperuricemia, after adjustment for age, gender, BMI, fasting glucose, total cholesterol, triglycerides, LDL, HDL, serum creatinine, alcohol consumption, smoking status, diabetes and physical activity. Urinary UA/creatinine (P = 0.107) did not remain in the final model.

Characteristics	Odds Ratios (confidence interval)	P value
Gender (Male)	1.47 (1.14–1.89)	0.003
Age (years)	1.06 (1.03–1.09)	<0.001
Alcohol consumption (%)	1.41 (1.10–1.80)	0.007
Fasting glucose (mmol/L)	1.11 (1.02–1.22)	0.02
Triglycerides (mmol/L)	1.23 (1.11–1.57)	<0.001
LDL-Cholesterol (mmol/L)	1.20 (1.03–1.40)	0.022
Sodium excretion (g/day)	1.06 (1.03–1.09)	<0.001
Serum uric acid (μmol/L)	1.003 (1.001–1.004)	0.002

Urinary sodium excretion	Nomotensive controls	Prehypertensive cases	Odds Ratios (95% confidence interval)
Quartile 1 (<4.02 g/day)	293 (62.6%)	175 (37.4%)	1.00 (reference)
Quartile 2 (4.02–4.93 g/day)	269 (58.0%)	195 (42.0%)	1.16 (0.88–1.52)
Quartile 3 (4.93–5.88 g/day)	242 (51.8%)	225 (48.2%)	1.42 (1.08–1.86)
Quartile 4 (>5.88 g/day)	223 (47.4%)	247 (52.6%)	1.70 (1.29–2.24)
P for trend	0.012	0.002	<0.001

Serum uric acid	Nomotensive controls	Prehypertensive cases	Odds Ratios (95% confidence interval)
Quartile 1 (<219.2 μmol/L)	321 (68.7%)	146 (31.3%)	1.00 (reference)
Quartile 2 (219.2–271.1 μmol/L)	279 (59.9%)	187 (40.1%)	1.27 (0.96–1.68)
Quartile 3 (271.1–322.2 μmol/L)	235 (50.1%)	234 (49.9%)	1.60 (1.18–2.16)
Quartile 4 (>322.2 μmol/L)	192 (41.1%)	275 (58.9%)	2.04 (1.47–2.83)
P for trend	<0.001	<0.001	0.019

Table 4. Association between each quartile of urinary sodium excretion and serum UA and incidence of prehypertension (n = 1869). Logistic regression analyses were used to test the risk of prehypertension, after adjustment for age, gender, BMI, fasting glucose, total cholesterol, triglycerides, LDL, HDL, serum creatinine, alcohol consumption, smoking status, diabetes and physical activity.

The results of these studies may be attributed to different study populations, designs, sample sizes, and racial differences. UA is a product of the metabolic breakdown of purine nucleotides. Approximately 70% of UA is excreted into the urine but is easily filtered into the renal tubule, and about 90% of filtered UA is reabsorbed by the S1 segment of the proximal convoluted tubule. Approximately 10% of filtered UA is excreted. To the best of our knowledge, this is the first to demonstrate that urinary excretions of UA were significantly associated with sodium excretion in prehypertensive subjects. The mechanism by which sodium intake increases urinary excretion of UA remains unclear. It is possible that the relationship between sodium intake and urinary urate excretion results from effects of sodium intake on glomerular filtration rate and excretion or absorption of urate. Previous physiology studies have shown that reabsorption of sodium and urate accompanies one another at different sites in the nephron. Thus, it is possible that decreased renal reabsorption of sodium from excess sodium intake contributes to a decrease in urate reabsorption. This hypothesis has been evidenced by our interventional study showing that urinary UA excretions were markedly increased during high-salt intake, which was further reinforced by the observation that urinary UA positively correlated with urinary sodium excretion. Furthermore, a Spanish study also found a direct correlation between the clearance of UA and fractional excretion of sodium, indicating the potential interaction of sodium and UA excretion. Finally, this relationship may reflect action of the renin-angiotensin system, as uric acid is inversely related to vascular resistance and renal blood flow. Similarly, angiotensin II has been shown to decrease urate excretion after an acute infusion. Determining the molecular mechanism and signaling molecules responsible for the effects of salt intake on urinary UA can be of great interest.
A limited number of studies have examined the relationship serum UA and prehypertension, and findings are conflicting. One US study found a positive association between serum UA and prehypertension with an OR of 1.96 for the top category of serum UA levels compared with the lowest43. Jiang et al.44 described that the OR for prehypertension is 1.36 in subjects with UA ≥365 μmol/L compared with those with UA <215.9 μmol/L after adjusting for many confounders. The other two cross-sectional studies demonstrated that serum UA was independently related to the prevalence of prehypertension in Chinese adults45,46. In contrast, Vucak et al.47 determined that no association existed between elevated serum UA level and prehypertension; this might be because of higher background rate of prehypertension with increasing age that would contribute to a reduction in the odd ratios for serum UA. Recently, a prospective cohort study demonstrates that serum UA is an independent predictor for developing prehypertension48. In addition, Soletsky et al.49 reported that UA reduction rectifies prehypertension in obese adolescents. In the present study, we consistently showed that higher serum UA category was significantly associated with an increased OR for the presence of prehypertension, compared with the reference group. And the observed positive association between serum UA and prehypertension consistently occurred when serum UA was considered as a continuous variable.

Previously, ample evidence suggests that excess salt intake is positively associated with elevated blood pressure and it can be lowered with reductions in dietary salt5. However, clinical trials scarcely examined the relationship between salt intake and prehypertension. Moinuddin et al.50 showed that daily salt intake of prehypertensives (21.2 ± 1.2 g/day) was significantly greater than normotensive subjects (9.0 ± 0.5 g/day). This result is similar to our study, which found that compared with participants without prehypertension, those with prehypertension tended to have higher urinary sodium excretions (5.20 ± 1.38 vs. 4.86 ± 1.34; \(P < 0.001 \)). We further observed that the risk of prehypertension was significantly increased with the increasing quartiles of sodium excretion. In addition, Forman et al.51 in a large, prospective, population-based cohort, found that a higher sodium intake is associated with an increased risk of developing hypertension, particularly in those individuals who have higher levels of serum UA. Our results also showed that salt intake significantly interacted with serum UA. Taken both serum UA and sodium excretion into consideration to assess prehypertension, we found that the risk of prehypertension in the highest quartiles of serum UA and sodium excretion was 3.48 (95% CI, 3.32–5.86) times greater than in the lowest quartile. In other words, participants with higher serum UA levels and salt intake simultaneously were more likely to have a higher risk for prehypertension.

This study has limitations that deserve mention. Firstly, since the study population was included from our previously established cohort, all participants in the present work were middle aged and youth between the ages of 35 and 48 years during the follow-up at 2017. In addition, 24-h urinary sodium excretion was estimated using spot urine samples. Estimated sodium excretions may change according to the urine sampling time because urinary sodium excretion has a circadian rhythm and may also be influenced by the time at which food is consumed. Thus, a single measurement may be insufficient to assess the sodium excretion of individuals. However, spot urine samples are practical at general medical facilities, and the reliability of the findings obtained may be improved using a calculation formula incorporating the estimated 24-hour urinary creatinine excretion based on age, height, and body weight. The validation of the Kawasaki formula was conducted by Mente et al.52. Finally, the study was a single-center, cross-sectional study. A multi-center, prospective trial will be conducted to further understand and confirm the conclusions.

In conclusion, the present study showed that urinary sodium excretion was significantly associated with urinary UA excretions in prehypertensive individuals. However, we failed to find a significant relationship between sodium excretion and serum UA in this Chinese population. In addition, elevated serum UA and sodium excretions appeared to be associated with the development of prehypertension. Individuals with higher serum UA levels and sodium excretions simultaneously had a higher risk for prehypertension. Further clinical trials that include participants with hypertension to investigate evaluate the joint effects of salt intake and serum UA on hypertension and other cardiovascular diseases can be of significant interest. Our findings supported the need for the development of a salt reduction programme.
References

1. Chobanian, A. V. et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. *Hypertension* **42**, 1206–1252 (2003).

2. Yu, D. et al. Prevalence and risk factors of prehypertension among Chinese adults. *J Cardiovasc Pharmacol* **52**, 363–368 (2008).

3. Hsia, J. et al. Prehypertension and cardiovascular disease risk in the Women's Health Initiative. *Circulation* **115**, 855–860 (2007).

4. Zhang, Y. et al. Incidence and risk factors for stroke in American Indians: The Strong Heart Study. *Circulation* **118**, 1577–1584 (2008).

5. Meneton, P., Jeunemaitre, X., de Wardener, H. E. & MacGregor, G. A. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. *Physiol Rev* **85**, 679–715 (2005).

6. Wang, Y. et al. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure. *Braz J Med Biol Res* **47**, 223–230 (2014).

7. Eng, Y., Mau, J. J., He, L. C., Wang, S. C. & Liu, Z. Q. Salt loading on plasma asymmetrical dimethylarginine and the protective role of potassium supplement in normotensive salt-sensitive mice. *Hypertension* **48**, 724–729 (2006).

8. Frohlich, E. D. & Varagic, J. Sodium directly impairs target organ function in hypertension. *Carr Opin Cardiol* **20**, 424–429 (2005).

9. Zhu, J., Mori, T., Huang, T. & Lombard, J. H. Effect of high-salt diet on NO release and superoxide production in rat aorta. *Am J Physiol Heart Circ Physiol* **286**, H575–583 (2004).

10. Li, J. Salt inactivates endothelial nitric oxide synthase in endothelial cells. *J Nutr* **139**, 447–451 (2009).

11. Moinuddin, A., Gupta, R. & Saxena, Y. Assessment of Anthropometric Indices, Salt Intake and Physical Activity in the Aetiology of Prehypertension. *J Clin Diagn Res* **10**, CC11–14 (2016).

12. Pal, G. K. et al. Preference for salt contributes to sympathovagal imbalance in the genesis of prehypertension. *Eur J Clin Nutr* **67**, 586–591 (2013).

13. Wang, Y. et al. The Role of Uric Acid in Hypertension of Adolescents, Prehypertension and Salt Sensitivity of Blood Pressure. *Med Sci Monit* **23**, 790–795 (2017).

14. So, A. & Thorens, B. Uric acid transport and disease. *J Clin Invest* **120**, 1791–1799 (2010).

15. Feig, D. I. Serum uric acid and the risk of hypertension and chronic kidney disease. *Carr Opin Rheumatol* **26**, 176–185 (2014).

16. Puddu, P. E. et al. Serum uric acid and eGFR, CKD-EPI differ predict long-term cardiovascular events and all cause of deaths in a residential cohort. *Int J Cardiol* **171**, 361–367 (2014).

17. Puddu, P. E. et al. Serum uric acid for short-term prediction of cardiovascular disease incidence in the Gubbio population study. *Acta Cardiol* **56**, 243–251 (2001).

18. Juraschek, S. P., Choi, H. K., Tang, O., Appel, L. J. & Miller, R. E. 3rd. Opposing effects of sodium intake on uric acid and blood pressure and their causal implication. *Am J Soc Hypertens* **10**, 939–946.e2 (2016).

19. Juraschek, S. P., Gelber, A. C., Choi, H. K., Appel, L. J. & Miller, R. E. 3rd. Effects of the Dietary Approaches to Stop Hypertension (DASH) Diet and Sodium Intake on Serum Uric Acid. *Arthritis Rheumatol* **68**, 3002–3009 (2016).

20. Mu, J. et al. Baseline Na-Li countertransport and risk of hypertension in children: a 10-year prospective study in Hanzhong children. *J Hum Hypertens* **18**, 885–890 (2004).

21. Mu, J. J. et al. Reduction of blood pressure with calcium and potassium supplementation in children with salt sensitivity: a 2-year double-blinded placebo-controlled trial. *J Hum Hypertens* **19**, 479–483 (2005).

22. Wang, Y. et al. Effect of Salt Intake and Potassium Supplementation on Urinary Renalase and Serum Dopamine Levels in Chinese Adults. *Cardiology* **130**, 242–248 (2015).

23. Wang, Y. et al. Effect of salt intake and potassium supplementation on serum renasal levels in Chinese adults: a randomized trial. *Medicine (Baltimore)* **93**, e44 (2014).

24. Inai, E. et al. Prevalence of chronic kidney disease in the Japanese general population. *Clin Exp Nephrol* **13**, 621–630 (2009).

25. Kawasaki, T., Itoh, K., Uezono, K. & Sasaki, H. A simple method for estimating 24 h urinary sodium and potassium excretion from second morning voiding urine specimen in adults. *Clin Exp Pharmacol Physiol* **20**, 7–14 (1993).

26. Mente, A. et al. Validation and comparison of three formulae to estimate sodium and potassium excretion from a single morning fasting urine compared to 24-h measures in 11 countries. *J Hypertens* **32**, 1005–1015 (2014).

27. Mente, A. et al. Association of urinary sodium and potassium excretion with blood pressure. *N Engl J Med* **371**, 601–611 (2014).

28. Watanabe, S. et al. Uric acid, homoglobin evolution, and the pathogenesis of salt sensitivity. *Hypertension* **40**, 355–360 (2002).

29. Mazzali, M. et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. *Hypertension* **38**, 1101–1106 (2001).

30. Xu, W. et al. Hyperuricemia induces hypertension through activation of renal epithelial sodium channel (ENaC). *Metabolism* **65**, 73–83 (2016).

31. Liou, Y. et al. Influence of Salt Intake on Association of Blood Uric Acid with Hypertension and Related Cardiovascular Risk. *PLoS One* **11**, e0150451 (2016).

32. Forman, J. P. et al. Association between sodium intake and change in uric acid, urine albumin excretion, and the risk of developing hypertension. *Circulation* **125**, 3108–3116 (2012).

33. Egan, B. M., Weder, A. B., Petrin, J. & Hoffman, R. G. Neurohumoral and metabolic effects of short-term dietary NaCl restriction in men. *Relationship to salt-sensitivity status. Am J Hypertens* **4**, 416–421 (1991).

34. Li, J. et al. Serum uric acid and body mass index on risk of prehypertension in Chinese population. *Curr Opin Cardiol* **24**, 279–284 (2009).

35. Wang, Y. et al. Verification and comparison of three formulae to estimate sodium and potassium excretion from a single morning voiding urine specimen in adults. *Clin Exp Pharmacol Physiol* **20**, 7–14 (1993).

36. Weinman, E. J., Knight, T. F., McKenzie, R. & Rknoyan, G. Dissociation of urate from sodium transport in the rat proximal tubule. *Kidney Int* **10**, 295–300 (1976).

37. Wang, Y. et al. Effect of Salt Intake on Plasma and Urinary Uric Acid Levels in Chinese Adults: An Interventional Trial. *Sci Rep* **8**, 1434 (2018).

38. Perez-Ruiz, F. et al. Renal clearance of uric acid is linked to insulin resistance and lower excretion of sodium in gout patients. *Rheumatol Int* **35**, 1519–1524 (2015).

39. Omvik, P. & Lund-Johansen, P. Iosodium restriction effective treatment of borderline and mild essential hypertension: A long-term haemodynamic study at rest and during exercise. *J Hypertens* **4**, 535–541 (1986).

40. Messeri, F. H., Frohlich, E. D., Dreslsinki, G. R., Suarez, D. H. & Aristimuno, G. G. Serum uric acid in essential hypertension: an indicator of renal vascular involvement. *Ann Intern Med* **93**, 817–821 (1980).

41. Ferris, T. F. & Gorden, P. Effect of angiotensin and norpinephrine upon urate clearance in man. *Am J Med* **44**, 359–365 (1968).

42. Moriwaki, Y., Yamamoto, T., Tsutsumi, Z., Takahashi, S. & Hada, T. Effects of angiotensin II infusion on renal excretion of purine bases and oxypurinol. *Metabolism* **51**, 893–895 (2002).

43. Syamala, S., Li, J. & Shankar, A. Association between serum uric acid and prehypertension among US adults. *J Hypertens* **25**, 1583–1589 (2007).

44. Jiang, L. et al. Joint effects of serum uric acid and body mass index on risk of prehypertension in Chinese population. *Clin Chim Acta* **446**, 1–5 (2015).

45. Li, J. et al. Serum uric acid and prehypertension among Chinese adults. *J Hypertens* **27**, 1761–1765 (2009).
46. Bao, X. et al. Serum concentration of uric acid associated with prehypertension among Chinese population. Angiology 65, 800–805 (2014).
47. Vucak, J. et al. Association between hyperuricemia, prediabetes, and prehypertension in the Croatian adult population—a cross-sectional study. BMC Cardiovasc Disord 12, 117 (2012).
48. Liu, L. et al. Serum uric acid is an independent predictor for developing prehypertension: a population-based prospective cohort study. J Hum Hypertens 31, 116–120 (2017).
49. Soletsky, B. & Feig, D. I. Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension 60, 1148–1156 (2012).

Acknowledgements
We are indebted to the participants in the study for their outstanding commitment and cooperation. Y.W. is grateful to the China Scholarship Council (No: 201506280092) for a PhD fellowship. This work was supported by the National Natural Science Foundation of China No. 81570381 (J.-J.M.), No. 81600327 (Y.W.), No. 81600574 (L.H.) and No. 81700368 (C.C.), China Postdoctoral Science Foundation funded project (2018M631177), the Clinical Research Award of the First Affiliated Hospital of Xi’an Jiaotong University of China No. XJTU1AF-CRF-2015–006 (J.-J.M.) and No. XJTU1AF-CRF-2017–021 (Y.W.), Grants 2017YFC1307604 and 2016YFC1300104 from the Major Chronic Non-communicable Disease Prevention and Control Research Key Project of the Ministry of Science and Technology of the People’s Republic of China, and Grant 2017ZDXM-SF-107 from the Key Research Project of Shaanxi Province.

Author Contributions
Y.W. and J.-J.M. conceived and designed the experiments; J.-J.M. and Z.-Y.Y. were responsible for subject recruitment; J.-W.H., K.-K.W., Y.Y., C.C., W.-L.Z., X.-J.X., Y.-B.L., Q.M., K.G., Y.Y. and H.L. performed the experiments; Y.W. and P.-F.Q. analyzed the data; Y.W. and J.-W.H. wrote the paper. All authors read, critically revised and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-26148-3.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018