Large thigh circumference is associated with lower blood pressure in overweight and obese individuals: a community-based study

Jie Shi1, Zhen Yang1, Yixin Niu1, Weiwei Zhang1, Ning Lin1, Xiaoyong Li1, Hongmei Zhang1, Hongxia Gu1, Jie Wen2, Guang Ning3, Li Qin1 and Qing Su1

1Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2Department of Endocrinology and Metabolism, Institute of Endocrinology and Diabetes, Huashan Hospital, Fudan University, Shanghai, China
3Department of Endocrinology and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Correspondence should be addressed to Z Yang or L Qin or Q Su: yangzhen@xinhuamed.com.cn or qinli@xinhuamed.com.cn or suqing@xinhuamed.com.cn

Abstract

Objective: A small thigh circumference is associated with an increased risk of diabetes, cardiovascular diseases, and total mortality. The purpose of this study was to evaluate the association between thigh circumference and hypertension in the middle-aged and elderly population.

Methods: A total of 9520 individuals aged 40 years and older with measurement of thigh circumference were available for analysis. The measurement of thigh circumference was performed directly below the gluteal fold of the thigh. The association of thigh circumference with hypertension was tested in logistic regression analyses and reported as odds ratio (OR) with 95% CI.

Results: Thigh circumference was negatively correlated with systolic blood pressure, diastolic blood pressure, fasting glucose, and total cholesterol. Compared with the lowest thigh circumference tertile group, the risk of hypertension was significantly lower in the highest tertile group, both in overweight individuals (OR 0.68; 95% CI 0.59–0.79, P < 0.001) and obese individuals (OR 0.51; 95% CI 0.38–0.70, P < 0.001).

Conclusion: In the present study, large thigh circumference is associated with lower risk of hypertension in overweight and obese Chinese individuals.

Key Words
- thigh circumference
- hypertension
- overweight
- obesity

Introduction

Hypertension, characterized by chronically elevated blood pressure (BP) above 140/90 mmHg, is a major public health problem affecting more than 1 billion people worldwide (1, 2). Despite multiple methods to prevent and manage high blood pressure, the global incidence and prevalence of hypertension continues to increase significantly (3). Convincing evidence demonstrated that hypertension, untreated or uncontrolled, is a crucial contributor to cardiovascular disease, stroke, and chronic kidney diseases (2). Consequently, hypertension is the leading cause of mortality and disability globally, which results in a huge health burden (4). Startlingly, more than half of individuals with elevated BP were unaware of their hypertensive status in numerous surveys, partly owing to hypertension rarely showing symptoms in the early stages (3, 4, 5). Hence, hypertension is a silent killer.

Previous research has demonstrated that intra-abdominal visceral deposition of adipose tissue, which characterizes upper-body obesity, plays a significant role in the development of hypertension (6, 7). Conversely, subjects with lower-body obesity exhibited a favorable metabolic profile (8). Due to the advantages of simplicity,
convenience, harmlessness, and low cost, anthropometric measurements, especially circumferences, are useful options for estimating fat distribution and body composition, particularly in large-scale population-based studies. Certain circumferences have shown good performance in evaluating nutritional status, assessing obesity, screening for ectopic lipid deposits, and identifying decline of muscle mass (9, 10, 11). Moreover, some abnormal circumferences are marks of increased risk of certain diseases (12). For instance, a small thigh circumference was associated with greater risk of diabetes (13), cardiovascular diseases, and total mortality (14) in both men and women. Additionally, it is well established that waist circumference is positively correlated with blood pressure (15) and that a high waist–thigh circumference ratio is a risk factor for hypertension (16). Data indicate that thigh circumference may be an indicator of hypertension.

To date, however, evidence from large-scale populations about the association between thigh circumference and hypertension is scarce. The aim of the present study was to examine the relationship between thigh circumference and blood pressure.

Methods

Study population

The study is a part of the Risk Evaluation of cAncers in Chinese diabeTic Individuals: A lONgitudinal (REACTION) study, which was a community-based cross-sectional study conducted among 259,657 Chinese individuals aged 40 years and older, from 2011 to 2012 (17). The study design and methods have been described previously in detail (17, 18, 19). The data presented in this study are based on the baseline survey of subsamples from the Chongming District in Shanghai, China. A total of 9930 eligible subjects participated in the research. The individuals with data missing for thigh circumference, blood pressure (BP), and metabolic variables were excluded. The final model included 9520 subjects (3095 men and 6425 women).

Data collection

A standardized questionnaire was used by certified medical workers to gather essential information, including sex, age, smoking and alcohol consumption habits, physical activity, education status, and previous medical history. Anthropometric measurements were performed by trained physicians using standard protocols. Thigh circumference was measured directly below the gluteal fold of the thigh. The final thigh circumference is the average value of left thigh circumference and right thigh circumference. BP was measured with an automated electronic device (OMRON Model1 Plus; Omrion Company, Kyoto, Japan) after the subjects sat down and rested quietly for >5 min. BP measurements were taken three times and the mean was recorded as the BP result. Overweight was defined as 24 kg/m² ≤ BMI < 28 kg/m² and obesity was defined as BMI ≥ 28 kg/m².

Biochemical measurements

Peripheral venous blood samples were collected after 10 h of overnight fasting. Plasma glucose level was assessed by the glucose oxidase method (ADVIA-1650 Chemistry System, Bayer). Triglycerides, low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), and total cholesterol were measured by an automatic analyzer (Hitachi 7080). Fasting insulin was assessed by RIA (Linco Research). Insulin resistance was evaluated by the homeostasis model of assessment for insulin resistance (HOMA-IR).

Definition of hypertension

Hypertension was defined as a systolic blood pressure (SBP) ≥ 140 mmHg, a diastolic blood pressure (DBP) ≥ 90 mmHg, or current use of antihypertensive medications (20).

Statistical analysis

Normally distributed continuous variables were presented as means±s.d., and variables with skewed distribution were reported as medians (interquartile range) and log transformed to approximate normality before analysis. Categorical variables were described by percentage (%). P values were calculated by Student’s t-test (for continuous parametric variables) or nonparametric Mann–Whitney U test (for continuous nonparametric variables) and by Chi-squared tests for categorical variables. Multiple linear regression analyses were used to assess the association between thigh circumference and metabolic features. Multivariate logistic regression models were applied to estimate the odds ratios (ORs) for hypertension. Potential confounding variables including age, gender, smoking, alcohol drinking, physical activity, educational status, C-reactive protein (CRP), adiponectin, BMI, and HOMA-IR were controlled in the regression models.
Data management and statistical analysis were performed with SPSS software (version 23.0). The significance level was set at \(P < 0.05 \), and \(P \) values were provided for two-sided tests.

Ethics statement

The study protocol was approved by the Ethics Committee of Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine. Written informed consent was obtained from all participants.

Results

Characteristics of participants with or without incident hypertension

The mean thigh circumference was 53.3 ± 5.0 cm for men and 52.6 ± 4.7 cm for women \((P < 0.001) \), respectively. Subjects with hypertension were more likely to be older, a smoker, and with a higher BMI, waist circumference, fasting blood glucose, HOMA-IR, total cholesterol and triglyceride level (**Table 1**).

The thigh circumference of hypertensive patients is lower than normotensive subjects

Compared with normotensive individuals, the thigh circumference of subjects with hypertension was lower (normal weight: 51.2 ± 4.2 cm vs 50.9 ± 4.2 cm, \(P = 0.011 \); overweight: 53.9 ± 4.4 cm vs 53.3 ± 4.4 cm, \(P < 0.001 \); obese: 56.6 ± 5.1 cm vs 55.4 ± 5.5 cm, \(P < 0.001 \) (**Fig. 1**).

Large thigh circumference is associated with lower prevalence of hypertension in overweight and obese individuals

The subjects were divided into three groups (T1, T2, and T3) according to the tertiles of thigh circumference.

Table 1 Baseline characteristics of the study participants.

Characteristics	Men				Women			
	Normotension	Hypertension	\(P \) value	Normotension	Hypertension	\(P \) value		
\(n \)	1363	1732	<0.001	3586	2839	<0.001		
Age, year(s)	56.23 ± 7.71	58.83 ± 7.24	<0.001	53.49 ± 7.68	57.90 ± 7.23	<0.001		
Smoking (yes), %	39.5	45.7	0.005	3.8	5.9	<0.001		
Alcohol (yes), %	48.3	48.9	0.392	48.8	49.2	0.08		
Education, %	16.1	21.3	0.001	19	30.1	<0.001		
Fat mass, %	51.5	48.5	0.08	50.9	48.5	0.08		
Physical activity	32.4	30.2	0.08	32.3	20.7	0.08		
SBP, mmHg	121 ± 10	144 ± 17	<0.001	118 ± 11	144 ± 16	<0.001		
DBP, mmHg	77 ± 7	87 ± 9	<0.001	75 ± 7	85 ± 10	<0.001		
BMI, kg/m²	24.04 ± 3.20	25.62 ± 3.23	<0.001	23.80 ± 2.93	25.46 ± 3.28	<0.001		
Waist circumference, cm	85.2 ± 9.5	89.8 ± 9.5	<0.001	80.9 ± 9.5	86.4 ± 11.4	<0.001		
WHR	0.89 ± 0.07	0.91 ± 0.06	<0.001	0.85 ± 0.08	0.09 ± 0.16	<0.001		
FPG, mmol/L	6.35 ± 1.79	6.73 ± 1.91	<0.001	5.91 ± 1.34	6.49 ± 1.82	<0.001		
Insulin, µU/L	5.40 (3.80–7.70)	6.50 (4.50–9.00)	<0.001	6.40 (4.80–6.00)	7.70 (5.60–10.70)	<0.001		
HOMA-IR	1.53 (0.99–2.30)	1.88 (1.29–2.75)	<0.001	1.65 (1.24–2.38)	2.24 (1.54–3.19)	<0.001		
CRP, µg/mL	4.89 ± 6.12	5.24 ± 6.18	<0.001	4.63 ± 5.39	5.27 ± 6.11	0.427		
Adiponectin, µg/mL	12.6 (7.9–15.7)	10.9 (6.7–13.2)	<0.001	11.9 (7.2–14.6)	9.5 (6.2–12.6)	0.014		
Triglycerides, mmol/L	1.32 (0.94–2.04)	1.53 (1.06–2.33)	<0.001	1.19 (0.87–1.73)	1.52 (1.09–2.20)	<0.001		
TC, mmol/L	4.49 ± 0.99	4.61 ± 1.01	<0.001	4.58 ± 1.04	4.85 ± 1.03	<0.001		
LDL-c, mmol/L	2.53 ± 0.73	2.58 ± 0.75	<0.001	2.58 ± 0.77	2.72 ± 0.79	0.094		
HDL-c, mmol/L	1.17 ± 0.32	1.15 ± 0.32	<0.001	1.26 ± 0.31	1.24 ± 0.31	0.097		
Thigh circumference, cm	53.2 ± 5.0	53.4 ± 5.1	0.143	52.6 ± 4.5	52.6 ± 4.7	0.825		

Continuous data are shown as means ± s.d. or medians with interquartile range and categorical data as percentage (%). \(P \) values were calculated by Student’s \(t \)-test (for continuous parametric variables) or nonparametric Mann–Whitney \(U \) test (for continuous nonparametric variables) and by Chi-squared tests for categorical variables.

CRP, C-reactive protein; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL-c, high-density lipoprotein cholesterol; HOMA-IR, the homeostatic model assessment of insulin resistance; LDL-c, low-density lipoprotein cholesterol; SBP, systolic blood pressure; TC, total cholesterol; WHR, waist–hip ratio.
The tertile ranges of thigh circumference were \(\leq 51.2 \), \(51.2–55.3 \), and \(\geq 55.3 \) cm in men and \(\leq 50.7 \), \(50.7–54.4 \), and \(\geq 54.4 \) cm in women, respectively. Along with the increased tertile of thigh circumference, the prevalence of hypertension gradually decreased in both overweight (men: 64.6% vs 61.3% vs 55.1%, \(P = 0.046 \); women: 53.8% vs 48.1% vs 43.5%, \(P = 0.004 \)) and obese individuals (men: 79.5% vs 75.2% vs 71.5%, \(P = 0.047 \); women: 74.5% vs 69.3% vs 59.0%, \(P < 0.001 \)).

We used multivariate logistic regression models, with the lowest tertile group (T1) as a reference, to evaluate the association between thigh circumference and risk of incident hypertension. As is shown in Table 2, the ORs for hypertension decreased when thigh circumference tertiles increased (\(P < 0.001 \)). In the highest tertile group (T3), the OR (95% CI) for hypertension was 0.83 (0.71–0.96) in overweight individuals and 0.56 (0.41–0.75) in obese individuals compared with the T1 group, after adjusting for age, sex, life factor, CRP, adiponectin, and BMI in overweight and obese individuals (Fig. 3). Individuals with small thigh circumference and large waist circumference form the reference group.

Subgroup analyses

To evaluate the effect of waist circumference on the association of thigh circumference and blood pressure, we further combined thigh circumference and waist circumference in statistical analysis. We divided participants into four subgroups based on the medians of thigh circumference and waist circumference. The OR for hypertension was lower in the large thigh circumference with small waist circumference subgroup than in other subgroups (OR 0.52; 95% CI, 0.43–0.63; \(P < 0.001 \)) after adjustment for age, sex, life factor, CRP, adiponectin, and BMI in overweight and obese individuals (Fig. 3).

Discussion

In this study, we found that large thigh circumference is significantly associated with lower prevalence of hypertension in overweight and obese individuals, independent of age, BMI, and waist circumference. Moreover, thigh circumference is negatively correlated with both SBP and DBP.

Differences in body fat distribution patterns have long been linked to certain metabolic disease risks (21, 22). Previous studies have reported that upper-body and lower-body fat have opposite (harmful vs beneficial) correlations with long-term blood pressure

Figure 1
The thigh circumference was smaller in subjects with hypertension than individuals with normotension. Data are presented as mean ± S.E.M. \(P \) values were calculated by Student’s t-test. *\(P < 0.05 \); **\(P < 0.01 \), ***\(P < 0.001 \).
and the risk of developing diabetes (23). Advanced and accurate measuring techniques such as dual-energy X-ray absorptiometry and CT are often used to assess body fat and muscle distribution. However, these sophisticated, time-consuming, and costly techniques are not always feasible, particularly in large-scale population studies. Due to convenience, harmlessness, and low cost, simple anthropometric measurements, such as waist circumferences, are often preferable. Large waist circumference is a proxy of abnormal accumulation of visceral fat along with adverse metabolism (15, 24).

Conversely, large thigh circumference is considered to be protective for diabetes and cardiovascular disease, and a small thigh circumference seems to be associated with an increased risk of developing heart disease (14, 25).

There are two likely causes for the hypertensive risk difference between different thigh circumference groups. On the one hand, a small thigh circumference may involve low subcutaneous thigh fat. Several studies reported that, independently of high abdominal fat,

Characteristics	T1 (n = 3177)	T2 (n = 3187)	T3 (n = 3156)	P value for trend
Normal weight (n = 4172)				
Model 1	1	0.97 (0.84–1.12)	1.05 (0.87–1.26)	0.72
Model 2	1	1.02 (0.87–1.20)	1.09 (0.98–1.35)	0.21
Model 3	1	0.91 (0.79–1.06)	0.95 (0.78–1.14)	0.49
Model 4	1	0.91 (0.78–1.06)	0.94 (0.78–1.13)	0.45
Overweight (n = 3864)				
Model 1	1	0.87 (0.76–0.99)	0.86 (0.75–0.98)	0.024
Model 2	1	0.86 (0.75–0.99)	0.83 (0.71–0.96)	0.020
Model 3	1	0.85 (0.73–0.99)	0.69 (0.59–0.81)	<0.001
Model 4	1	0.83 (0.72–0.95)	0.68 (0.59–0.79)	<0.001
Obese (n = 1484)				
Model 1	1	0.67 (0.48–0.93)	0.57 (0.42–0.77)	0.001
Model 2	1	0.65 (0.46–0.90)	0.56 (0.41–0.75)	0.001
Model 3	1	0.64 (0.46–0.89)	0.52 (0.38–0.70)	<0.001
Model 4	1	0.63 (0.45–0.88)	0.51 (0.38–0.70)	<0.001

Model 1: adjusted for age and sex; Model 2: further adjusted for smoking, drinking, physical activity, education status, CRP, and adiponectin; Model 3: further adjusted for BMI; Model 4: further adjusted for waist circumference. T1 is the reference group. Multivariate logistic regression models were applied.

Figure 2
Adjusted ORs of hypertension according to tertiles of thigh circumference. The ORs with corresponding 95% CIs were adjusted for age, gender, life factors, CRP, adiponectin, BMI, and waist circumference. T1 is the reference group.

Figure 3
The association of thigh circumference with hypertension in different subgroups of waist circumference. WC, waist circumference; TC, thigh circumference. Model 1 was unadjusted; Model 2 was adjusted for age, sex, life factor, CRP, and adiponectin; Model 3 was further adjusted for BMI. Large waist circumference with small thigh circumference is the reference group.
Table 3 Adjusted regression coefficients of thigh circumference with metabolic parameters.

	Model 1 (β (s.e.m.))	Model 2 (β (s.e.m.))	Model 3 (β (s.e.m.))	Model 4 (β (s.e.m.))
	P		P	
SBP (mmHg)	−0.143 (0.084)	<0.001	−0.146 (0.089)	<0.001
	−0.145 (0.090)	<0.001	−0.110 (0.049)	<0.001
FPG (mmol/L)	−0.032 (0.005)	0.020	−0.033 (0.005)	0.018
	0.029 (0.020)	0.268	0.049 (0.021)	0.086
Insulin (μU/mL)	0.145 (0.016)	<0.001	0.153 (0.016)	<0.001
	0.122 (0.006)	<0.001	0.136 (0.005)	<0.001
TC (mmol/L)	−0.115 (0.005)	<0.001	−0.116 (0.005)	<0.001
	−0.021 (0.004)	0.422	−0.018 (0.004)	0.529
HOMA-IR	0.276 (0.001)	<0.001	0.281 (0.001)	<0.001
Triglycerides (mmol/L)	0.068 (0.003)	<0.001	0.070 (0.003)	0.013
			0.122 (0.017)	<0.001
			0.107 (0.006)	<0.001
			−0.119 (0.005)	<0.001
			−0.018 (0.004)	0.539
			0.280 (0.001)	<0.001
			0.068 (0.001)	0.016
			0.098 (0.017)	<0.001
			0.084 (0.006)	<0.001
			−0.119 (0.005)	<0.001
			−0.018 (0.004)	0.536
			0.282 (0.001)	<0.001
			0.063 (0.001)	0.025

Fasting insulin, HOMA-IR, and triglycerides were log-transformed before analysis. Model 1: adjusted for age, sex. Model 2: further adjusted for smoking, drinking, physical activity, education status, CRP, and adiponectin. Model 3: further adjusted for BMI. Model 4: further adjusted for waist circumference. Multiple linear regression analyses were used.

low subcutaneous thigh fat contributed to adverse lipid and glucose metabolism, while high subcutaneous thigh fat was associated with favourable lipid and glucose metabolism (26). It is established that thigh subcutaneous adipose is negatively associated with fasting glucose, post load glucose, and HOMA-IR (27, 28). Moreover, greater thigh-fat deposition exhibited a more favorable metabolic profile including lower triglycerides and LDL-c (26), and thigh adipocytes were resistant to epinephrine-stimulated lipolysis, presumably due to an increase in alpha-adrenergic receptors (29). Therefore, the adverse glucose and lipid metabolism that mediates vascular dysfunction may link low thigh circumference to increased risk of elevated blood pressure.

On the other hand, small thigh circumference may indicate a low thigh skeletal muscle mass, which is closely associated with increased risk factors for hypertension and diabetes (30, 31). Clear evidence demonstrated that obese individuals with sarcopenia have a higher risk of hypertension than patients with obesity or sarcopenia alone (31, 32). Obesity increases the risk of hypertension, a decline in thigh skeletal muscle mass increases this risk further. This may partially explain why we only found a stronger correlation of small thigh circumference and increased risk of developing hypertension in overweight and obese subjects. Additionally, skeletal muscle is the predominant site for insulin-stimulated glucose uptake, a lower thigh skeletal muscle mass may induce or promote dysfunctional glucose metabolism.

The major strength of this study is that the analysis is performed in different BMI classifications. Many potential covariates were considered in the analysis to minimize the impact of confusing risk factors. However, there are several potential limitations to consider in this study. First, we could not quantify the thigh muscle mass, intermuscular adipose tissue, and subcutaneous fat accumulation by more accurate radiographic measures owing to limitations of epidemiological screening conditions. Therefore, the amount and size of thigh subcutaneous adipocyte and intermuscular adipocyte and thigh muscle mass are not clear. Second, since the current study is a cross-sectional analysis, we cannot draw conclusions on causality from our findings. Third, it is unclear whether our findings in overweight and obese middle-aged and older Chinese subjects can be generalized to normal-weight or younger people of other ethnicities.

Conclusions

In summary, large thigh circumference is independently associated with lower prevalence of hypertension, while small thigh circumference is linked to higher prevalence of hypertension in overweight and obese Chinese individuals. Based on the observations, it is necessary to include thigh circumference in routine anthropometric measurements, when evaluating populations at high risk of hypertension, cardiovascular diseases, or diabetes.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by the National Natural Science Foundation of China (81670743, 81370953); Shanghai Health System Outstanding Young
Talents Training Program (XYQ2013098); and Shanghai Health and Family Planning Commission (21740173).

Availability of data
This study is a part of the Risk Evaluation of cAnCers in Chinese diabeTic Individuals: A IONGitudinal (REACTION) study. All data analyzed in this study are based on REACTION study. The data are held in a secure and confidential database that can only be assessed by members of the REACTION group. The REACTION study website is http://www.rjh.com.cn/pages/neifenmike/REACTION/index.shtml.

Ethics approval and consent to participants
This study protocol was approved by the Ethics Committee of Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine. Written informed consent was obtained from all participants.

Author contribution statement
Z Y, L Q, and Q S designed the study. Y N, W Z, X L, H Z, N L, H G, J W, and G N recruited the subjects, processed samples, and contributed to acquisition of data. Z Y and J S analyzed the data. J S wrote the manuscript. Z Y revised the manuscript.

Acknowledgements
The authors thank all the subjects who participated in the study and the hospital staffs for their contribution in sample and data collection.

References
1 Whelton PK, Carey RM, Aronow WS, Casey Jr DE, Collins KJ, Dunnerson Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASCPCJAMA/NCQA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice guidelines. Hypertension 2018 71 1269–1324. (https://doi.org/10.1161/HYPERTENSIONAHA.114.04990)

2 Fisher NDL & Curfman G. Hypertension-A public health challenge of global proportions. Lancet 2009 333 2465–2467. (https://doi.org/10.1016/S0140-6736(09)60798)

3 Eastwood SV, Tillin T, Wright A, Mayet J, Goddard I, Forouhi NG, Whincup P, Hughes AD & Chaturvedi N. Thigh fat and muscle each contribute to excess cardiometabolic risk in South Asians, independent of visceral adipose tissue. Obesity 2014 22 2071–2079. (https://doi.org/10.1002/oby.20796)

4 Terry RB, Stefanick ML, Haskell WL & Wood PD. Contributions of regional adipose tissue depots to plasma lipoprotein concentrations in overweight men and women: possible protective effects of thigh fat. Metabolism: Clinical and Experimental 1991 40 733–740. (https://doi.org/10.1016/0026-0495(91)90093-c)

5 Sullivan CA, Kahn SE, Fujimoto WY, Hayashi T, Leonetti DL & Boyko EJ. Change in intra-abdominal fat predicts the risk of hypertension in Japanese Americans. Hypertension 2015 66 134–140. (https://doi.org/10.1161/HYPERTENSIONAHA.114.04990)

6 Eastwood SV, Tillin T, Wright A, Mayet J, Goddard I, Forouhi NG, Whincup P, Hughes AD & Chaturvedi N. Thigh fat and muscle each contribute to excess cardiometabolic risk in South Asians, independent of visceral adipose tissue. Obesity 2014 22 2071–2079. (https://doi.org/10.1002/oby.20796)

7 Manco M, Bedogni G, Marcellini M, Devito R, Ciampalini P, Sartorelli MR, Comparcola D, Piemonte F & Nobili V. Waist circumference correlates with liver fibrosis in children with non-alcoholic steatohepatitis. Gut 2008 57 1283–1287. (https://doi.org/10.1136/gut.2007.142919)

8 Yang GR, Yuan SY, Fu HJ, Wan G, Zhu LX, Bu XL, Zhang JD, Du XP, Li YL, Ji Y, et al. Neck circumference positively related with central obesity, overweight, and metabolic syndrome in Chinese subjects with type 2 diabetes: Beijing Community Diabetes Study 4. Diabetes Care 2010 33 2465–2467. (https://doi.org/10.2337/dc10-0798)

9 Berkley J, Mwangi I, Griffiths K, Ahmed I, Mithwani S, English M, Newton C & Maitland K. Assessment of severe malnutrition among hospitalized children in rural Kenya: comparison of weight for height and mid upper arm circumference. Jama 2005 294 591–597. (https://doi.org/10.1001/jama.294.5.591)

10 Manco M, Bedogni G, Marcellini M, Devito R, Ciampalini P, Sartorelli MR, Comparcola D, Piemonte F & Nobili V. Waist circumference correlates with liver fibrosis in children with non-alcoholic steatohepatitis. Gut 2008 57 1283–1287. (https://doi.org/10.1136/gut.2007.142919)

11 de Koning L, Merchant AT, Pogue J & Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. European Heart Journal 2007 28 850–856. (https://doi.org/10.1093/eurheartj/ehm026)

12 Yang GR, Yuan SY, Fu HJ, Wan G, Zhu LX, Bu XL, Zhang JD, Du XP, Li YL, Ji Y, et al. Neck circumference positively related with central obesity, overweight, and metabolic syndrome in Chinese subjects with type 2 diabetes: Beijing Community Diabetes Study 4. Diabetes Care 2010 33 2465–2467. (https://doi.org/10.2337/dc10-0798)

13 Jung KJ, Kimm H, Yun J & Lee SH. Thigh circumference and diabetes: obesity as a potential effect modifier. Journal of Epidemiology 2013 23 329–336. (https://doi.org/10.2188/jea.je20120174)

14 Heitmann BL & Frederiksen P. Thigh circumference and risk of heart disease and premature death: prospective cohort study. BMJ 2009 339 b3292. (https://doi.org/10.1136/bmj.b3292)

15 Okosun IS, Cooper RS, Rotimi CN, Osotimehin B & Forrester T. Association of waist circumference with risk of hypertension and type 2 diabetes in Nigerians, Jamaicans, and African-Americans. Diabetes Care 1998 21 1836–1842. (https://doi.org/10.2337/diacare.21.11.1836)

16 Seidell JC, Bakx JC, De Boer E, Deurenberg P & Hautvast JG. Fat distribution of overweight persons in relation to morbidity and subjective health. International Journal of Obesity 1985 9 363–374.

17 Ning G & Reaction Study Group. Risk Evaluation of Cancers in Chinese diabeTic Individuals: a IONGitudinal (REACTION) study. Journal of Diabetes 2012 4 172–173. (https://doi.org/10.1111/j.1753-0407.2012.00182.x)

18 Yang Z, Yan C, Liu G, Niu Y, Zhang W, Lu S, Li X, Zhang H, Ning G, Fan J, et al. Plasma selenium levels and nonalcoholic fatty liver disease in Chinese adults: a cross-sectional analysis. Scientific Reports 2016 6 37288. (https://doi.org/10.1038/srep37288)

19 Qin L, Yang Z, Gu H, Lu S, Shi Q, Xing Y, Li X, Li R, Ning G & Su Q. Association between serum uric acid levels and cardiovascular disease in middle-aged and elderly Chinese individuals. BMC Cardiovascular Disorders 2014 14 26. (https://doi.org/10.1186/1471-2261-14-26)

20 Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. European Heart Journal 2018 39 3021–3104. (https://doi.org/10.1093/eurheartj/ehy339)

21 Goodpaster BH, Krishnaswami S, Harris TB, Katsiaras A, Kritchevsky SB, Simonsick EM, Nevitt M, Holvoet P & Newman AB. Obesity, regional body fat distribution, and the metabolic syndrome
in older men and women. *Archives of Internal Medicine* 2005 165 777–783. (https://doi.org/10.1001/archinte.165.7.777)

22 Lim S & Meigs JB. Links between ectopic fat and vascular disease in humans. *Arteriosclerosis, Thrombosis, and Vascular Biology* 2014 34 1820–1826. (https://doi.org/10.1161/ATVBAHA.114.303035)

23 Yano Y, Yongpattanasin W, Ayers C, Turer A, Chandra A, Carmethon MR, Greenland P, de Lemos JA & Neeland IJ. Regional fat distribution and blood pressure level and variability: the Dallas heart study. *Hypertension* 2016 68 576–583. (https://doi.org/10.1161/HYPERTENSIONAHA.116.07876)

24 Gentile CL, Weir TL, Cox-York KA, Wei Y, Wang D, Reese L, Moran G, Estrada A, Mulligan C, Pagliassotti MJ, et al. The role of visceral and subcutaneous adipose tissue fatty acid composition in liver pathophysiology associated with NAFLD. *Adipocyte* 2015 4 101–112. (https://doi.org/10.4161/21623945.2014.97862)

25 Chen GC, Arthur R, Iyengar NM, Kamensky V, Xue X, Wassertheil-Smoller S, Allison MA, Shadyab AH, Wild RA, Sun Y, et al. Association between regional body fat and cardiovascular disease among postmenopausal women with normal body mass index. *European Heart Journal* 2019 40 2849–2855. (https://doi.org/10.1093/eurheartj/ehz391)

26 Snijder MB, Visser M, Dekker JM, Goodpaster BH, Harris TB, Kritchevsky SB, De Rekeneire N, Kanaya AM, Newman AB, Tylavsky FA, et al. Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study. *Diabetologia* 2005 48 301–308. (https://doi.org/10.1007/s00125-004-1637-7)

27 Snijder MB, Dekker JM, Visser M, Yudkin JS, Stehouwer CD, Bouter LM, Heine RJ, Nijpels G & Seidell JC. Larger thigh and hip circumferences are associated with better glucose tolerance: the Hoorn study. *Obesity Research* 2003 11 104–111. (https://doi.org/10.1038/oby.2003.18)

28 Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Yudkin JS, Heine RJ, Nijpels G, Seidell JC & Hoorn Study. Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study. *Diabetes Care* 2004 27 372–377. (https://doi.org/10.2337/diacare.27.2.372)

29 Kissebah AH, Veldinghum N, Murray R, Evans DJ, Hartz AJ, Kalkhoff RK & Adams PW. Relation of body fat distribution to metabolic complications of obesity. *Journal of Clinical Endocrinology and Metabolism* 1982 54 254–260. (https://doi.org/10.1210/jcem-54-2-254)

30 Han P, Yu H, Ma Y, Kang I, Fu L, Jia L, Chen X, Yu X, Hou L, Wang L, et al. The increased risk of sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the AWGS definition. *Scientific Reports* 2017 7 9592. (https://doi.org/10.1038/s41598-017-08488-8)

31 Han K, Park YM, Kwon HS, Ko SH, Lee SH, Yim HW, Lee WC, Park YG, Kim MK & Park YM. Sarcopenia as a determinant of blood pressure in older Koreans: findings from the Korea National Health and Nutrition Examination Surveys (KNHANES) 2008–2010. *PLoS ONE* 2014 9 e86902. (https://doi.org/10.1371/journal.pone.0086902)

32 Park SH, Park JH, Song PS, Kim DK, Kim KH, Seol SH, Kim HK, Jang HJ, Lee JG, Park HY, et al. Sarcopenic obesity as an independent risk factor of hypertension. *Journal of the American Society of Hypertension* 2013 7 420–425. (https://doi.org/10.1016/j.jash.2013.06.002)

Received in final form 27 January 2020
Accepted 11 March 2020