Adolescent Suicidal Behavior Across the Excess Weight Status Spectrum

Meg H. Zeller¹, Jennifer Reiter-Purtill¹, Todd M. Jenkins² and Megan B. Ratcliff¹

Objective: Relative suicidal behavioral risks (ideation, attempts) for overweight, obese, and extremely obese adolescents (vs. healthy weight) and who did/did not accurately perceive themselves as overweight were examined in this study.

Design and Methods: A new variable (weight status/accuracy) was computed that combined actual weight status (based on BMI) with weight perception accuracy. To evaluate the effect of weight status/accuracy on each suicidal risk behavior, logistic regression was performed to calculate odds-ratios and 95% confidence intervals (CI). Potential model covariates included gender, age, race, survey year, and whether they had felt sad/hopeless.

Results: Weight perception accuracy increased as the degree of excess weight increased. Relative to healthy weight, being obese or extremely obese (but not overweight) was associated with significantly greater risk for adolescent engagement in suicidal ideation, but was unrelated to suicide attempts. Adolescents in all excess weight categories who were accurate in their weight perception were at significantly greater odds of suicidal ideation, whereas those who were inaccurate were of no greater odds of suicidal ideation than healthy weight youth who accurately perceived their weight. Findings regarding suicide attempts varied based on actual weight/weight perception accuracy and race/ethnicity.

Conclusion: The present findings are both important and clinically relevant. While widely accepted that there are multiple pathways to suicide, our understanding of adolescent suicidal behavior risks and accordingly, prevention efforts, will be informed by comprehensive prospective studies that should also, from here forward, consider categorization of the entire weight spectrum (e.g., extreme obesity).

Introduction

As the third leading cause of death among adolescents in the United States, suicide is considered a critical public health problem for today’s youth (1). Adolescence is a period of rapid change in physical, psychosocial, educational, and vocational domains, also distinguished by an increase in behaviors considered to be risky, harmful, or even antisocial (2). Not surprisingly, adolescence is a developmental period known for increased risk for the first onset of nonfatal suicidal behaviors, with noteworthy lifetime prevalences of suicidal ideation (19.8-24%) and attempts (3.1-8.8%) for this age group (3). It is widely accepted that there are multiple pathways to adolescent suicide, with a myriad of known contributing factors (e.g., previous nonfatal attempts, depression, peer victimization, family history of suicide, peer suicidal behaviors, impulsivity, substance use, and childhood trauma) to guide prevention initiatives (3). However, current evidence remains equivocal regarding whether being overweight or obese increases an adolescent’s suicidal behavior risk.

The aim of the present study, to understand whether adolescent excess weight status is associated with suicidal behaviors, proves critical and timely for a number of reasons. First, adolescent overweight and obesity are also public health priorities, given their high prevalence, related health and psychosocial consequences, and likelihood of persistence into adulthood. Only recently have adolescents with extreme obesity (BMI ≥ 99th percentile) emerged as their own unique excess weight subgroup in the pediatric literature, representing an alarming 3-6% of today’s teenagers (4,5). Second, adolescents who are obese, and in particular, those with extreme obesity, while not necessarily depressed (6), report some of the greatest impairments in health-related quality of life (HRQOL) relative to other pediatric chronic health conditions and across domains (physical functioning/discomfort, social, emotional, and body-esteem) (7,8). Moreover, it is well established that overweight and obese youth also experience peer difficulties, including victimization (9) which are known risk factors for higher rates of suicidal ideation and attempts (10). Third, a recent review of the extant adult obesity...
Suicidal ideation and attempts. Suicidal ideation was measured by the survey question which asked adolescents “during the past 12 months, did you ever seriously consider attempting suicide?” with response options either “yes” or “no.” Suicide attempt was represented by the question “during the past 12 months, how many times did you actually attempt suicide?” and collapsing the response choices (0, 1, 2-3, 4-5, or 6 or more times) to a dichotomous variable 0 versus 1 or more times. Convergent and discriminant validity of these items have recently been established (18), with continued use of these specific items endorsed by the CDC and others for estimating teen suicidality.

Independent variables

Actual weight status. Metric conversion of self-reported height and weight were used to calculate body mass index (BMI: kg/m2). Age, sex, and BMI were used to calculate BMI percentiles using 2000 CDC Growth Charts (20) and were categorized as follows: healthy weight (5th-84th percentile, \(n = 19,053, 67.5\% \) of total sample), overweight (85th-94th percentile, \(n = 4,669; 16.5\% \) of total sample), obese (95th-98th percentile, \(n = 3,005, 10.7\% \) of total sample), and extremely obese (≥99th percentile, \(n = 802; 2.8\% \) of total sample). The validity of the YRBS self-reported height and weight questions (“How tall are you without your shoes on?,” “How much do you weigh without your shoes on?”) has been established given their high correlations with measured values (21). Given the aims of the study were to understand suicidal risks associated with excess weight status, YRBS participants who were underweight (<5th percentile, \(n = 711, 2.5\% \) of total sample) were excluded from the present analyses, resulting in a final study \(N = 27,529 \) adolescents. Of note, prior to public release of the YRBS databases, BMI values less than 13 (11 for those 11-12 years of age) or greater than 55 (considered “biologically implausible values” based on CDC criteria) were coded as missing, and accordingly, these participants were not available/included.

Weight perception accuracy. Self-perception of weight was measured by asking the question, “how do you describe your weight?” Response options included “very overweight,” “slightly overweight,” “about the right weight,” “slightly underweight,” and “very underweight.” Response options were collapsed into two categories (accurate vs. inaccurate weight perception) based on the following criteria for excess and healthy weight status groups. Consistent with Edwards et al. (17), overweight, obese, and extremely obese participants were categorized as accurate weight perceivers if they described their weight as “slightly” or “very” overweight, while inaccurate weight perceivers were those who endorsed “about the right weight” or “slightly” or “very” underweight. For healthy weight youth, accurate weight perceivers endorsed they were “about the right weight,” while inaccurate weight perceivers were those who endorsed they were “slightly” or “very” overweight or underweight.

Adolescent demographics. Race was assessed by the following survey questions: (1) “What is your race?”, with race classifications including Alaskan Native, Asian, Black or African American (non-Hispanic), Hispanic or Latino, Native Hawaiian or other Pacific Islander, White (non-Hispanic), multiple Hispanic or multiple non-Hispanic. For the present study, only non-Hispanic White, non-Hispanic Black, and Hispanic youth were reported. Age groups were defined as: \(\leq 14, 15, 16, 17, > 18 \) years. Also included in analyses was participant cohort year (2007 or 2009), and gender.

Sadness/hopelessness. Sadness/hopelessness was measured by the survey question which asked adolescents “have you felt so sad/hopeless during the last 12 months for two weeks or more in a row...
that you stopped doing some usual activities,” with response options either “yes” or “no.”

Statistical analyses

SAS v9.3 was used to complete analyses using weighted data to adjust for non-response and oversampling of Black and Hispanic students (19), accounting for the complex survey design. A new variable (weight status/accuracy) was computed that combined actual weight status (based on BMI) with weight perception accuracy. To evaluate the effect of weight status/accuracy on each suicidal risk behavior, logistic regression was performed to calculate odds-ratios and 95% confidence intervals (CI) (SAS Proc SurveyLogistic). Potential model covariates included gender, age, race, survey year, and sadness/hopelessness. All significant ($P < 0.05$) covariates were retained in the final models. Interactions of weight status/accuracy with demographic variables (e.g., gender, race, age) and feelings of sadness/hopelessness were examined. The Institutional Review Board at Cincinnati Children’s Hospital Medical Center approved these secondary analyses.

Results

Weight status and weight perception accuracy

Actual weight status prevalence of overweight (16.5%), obese (10.7%), and extreme obesity (2.8%) was consistent with widely cited national base rates (4). The frequencies for weight perception accuracy, gender, and race by weight status group are presented in Table 1. The percentage of adolescents, whose perception of overweight status was accurate/inaccurate, varied by degree of excess weight, race, and gender. Eighty-six percent of adolescents with extreme obesity accurately perceived themselves to be overweight whereas only 77.1% of obese and 54.2% of overweight youth did so. This trend was apparent when taking into account gender and race, although it is notable that a higher percentage of Black adolescents who were overweight were inaccurate in their weight perception as opposed to accurate.

Weight status group and suicidal ideation and attempts

The associations between weight status group with suicidal behaviors were examined after adjusting for demographic covariates and
Suicidal ideation and weight status/accuracy

Prevalence rates and ORs for suicidal ideation by weight status/accuracy of weight perception among US high school students (YRBS 2007 and 2009)

Seriously considered attempting suicide	%	OR (95% CI)	P
Sex			<0.0001
Male	10.31	0.67 (0.59-0.76)	
Female	18.11	<REF>	
Race/ethnicity			0.0024
White	13.54	<REF>	
Black	13.16	0.86 (0.74-0.99)	
Hispanic	15.63	0.91 (0.82-1.02)	
Year			a
2007	14.49		
2009	13.84		
Age group			0.0037
≤ 14	13.42	1.07 (0.90-1.28)	
15	15.17	1.19 (1.06-1.35)	
16	14.32	1.10 (0.96-1.27)	
17	13.93	<REF>	
≥ 18	12.60	0.96 (0.80-1.16)	
Feel Sad/Hopeless	36.27	<0.0001	
Weight Status/Accuracy			<0.0001
Healthy weight/accurate	10.10	<REF>	
Healthy weight/inaccurate	18.46	1.58 (1.43-1.74)	
Overweight/accurate	17.35	1.40 (1.16-1.68)	
Overweight/inaccurate	11.36	1.17 (0.96-1.43)	
Obese/accurate	17.93	1.65 (1.38-1.97)	
Obese/inaccurate	10.78	1.13 (0.80-1.60)	
Extremely obese/accurate	19.86	2.28 (1.48-3.49)	
Extremely obese/inaccurate	9.55	1.13 (0.55-2.30)	

All listed variables were considered for inclusion in the model.

aNot included in final model.

Feelings of sadness/hopelessness. The odds of suicidal ideation were significantly greater for adolescents who were obese (odds ratio [OR] adj = 1.31, 95% confidence interval [CI]: 1.11-1.55) or extremely obese (OR adj = 1.81, 95% CI: 1.24-2.66) relative to those who were of healthy weight. Adolescents who were overweight (OR adj = 1.11, 95% CI: 0.98-1.26) were similar to healthy weight youth in suicidal ideation risk. The odds of suicide attempts were not significantly greater for any excess weight status group as compared to adolescents of healthy weight (P = 0.18).

Suicidal ideation and weight status/accuracy

Prevalence rates and ORs of suicidal ideation when examining weight status/accuracy were presented in Table 2. Adolescents in all excess weight categories who were accurate in their weight perception were at significantly greater odds of suicidal ideation than healthy weight youth who accurately perceived their weight status. Adolescents in all excess weight status groups who were inaccurate in their weight perception were similar to healthy weight youth who accurately perceived their weight status. These findings did not vary based on race, gender, age, data cohort, or whether the adolescent had feelings of sadness/hopelessness.

Suicide attempts and weight status/accuracy

Table 3 lists prevalence rates and odds ratios for suicide attempts when examining weight status/accuracy. Weight status/accuracy was found to significantly vary by race, therefore results were stratified by race. In general, odds of attempts were not significantly elevated among youth with excess weight and accurate weight perception. Black youth who were overweight/accurate and Hispanic youth who were extremely obese/accurate were the exceptions. When weight perception was inaccurate, Black obese youth, and Hispanic overweight and extremely obese youth had significantly higher odds of reporting suicide attempts. Of note, Hispanic, extremely obese/inaccurate youth had a 9-fold greater odds of suicide attempts compared to healthy weight/accurate adolescents.

Discussion

Adolescent obesity as well as teen suicide are leading public health challenges. While adolescent suicide has many known risk factors (3), should adolescent excess weight status and further, recognition of that excess weight by the adolescent, be added to this list? The present study advances the adolescent health literature in several unique ways. First, these results are based on a large nationally representative sample of high school students both in terms of demographics as well as prevalence of excess weight status. Second, for the first time in the adolescent obesity/suicide literature, adolescents who were extremely obese (BMI > 99th percentile) were deliberately differentiated from those who were relatively less obese (BMI 95th-98th percentile), or overweight (BMI 85th-94th percentile). Previous studies in this area, the majority of which also utilized YRBS data, did not identify the extreme subgroup (13-16), did not differentiate those who were obese (BMI ≥ 95th percentile) from those who were overweight (BMI 85th-94th percentile) (14-16), or did not consider the entire excess weight spectrum (22). Finally, recognizing that the previous adolescent suicide literature suggests an adolescent’s perception of weight (e.g., overweight, underweight) may play an important role in understanding suicidal risks, we examined accuracy of weight perception in a manner recently presented by Edwards et al. (17) utilizing YRBS 2007 data (e.g., whether an adolescent who carries excess weight reports they are “overweight”), given its relative simplicity and potential utility for use in clinical settings.

Our initial analyses examined the most basic questions: are actual excess weight status and suicidal behaviors linked in adolescence? And, what is the prevalence of weight perception accuracy in adolescents with varying levels of excess weight? This first step revealed that, relative to youth of healthy weight, being obese or extremely obese (but not overweight) was associated with significantly greater risk for adolescent engagement in suicidal ideation, though excess weight did not increase the odds of suicide attempts during the same time period. Thus, being obese or when it has progressed to an extreme level is associated with heightened risk of one suicidal behavior but not the other, with risk of attempting suicide no greater than “normative” adolescent risk. This was arguably unexpected, although existing literature demonstrates a suicide risk
TABLE 3 Prevalence and odds ratios (ORs) for suicide attempts by weight status/accuracy of weight perception among White, Black, and Hispanic US high school students (YRBS 2007 and 2009)

Attempted suicide	White		Black		Hispanic				
	%	OR (95% CI)	P	%	OR (95% CI)	P	%	OR (95% CI)	P
Sex									
Male	3.59	0.75 (0.57-0.97)	0.0280	5.53	0.56 (0.41-0.77)	0.0004	4.53	0.51 (0.39-0.67)	<0.0001
Female	7.11	<REF>		10.21	<REF>		10.88	<REF>	
Year									
2007	5.55	7.79		9.00					
2009	5.06	8.00		7.00					
Age Group									
≤ 14	6.23	1.71 (1.23-2.37)		8.17			9.72		
15	6.03	1.50 (1.15-1.96)		7.77			8.86		
16	5.80	1.44 (1.10-1.88)		8.76			8.77		
17	4.61	<REF>		7.33			8.29		
≥ 18	3.46	0.86 (0.62-1.20)		7.26			11.31		
Feel sad/hopeless	17.35	14.57 (10.76-19.73)	<0.0001	17.97	5.72 (4.07-8.04)	<0.0001	20.82	7.86 (6.15-10.03)	<0.0001
Weight status/accuracy									
Healthy weight/accurate	4.06	1.36 (1.09-1.71)	0.0090	5.32	<REF>		7.07	<REF>	
Healthy weight/inaccurate	7.04	1.36 (1.09-1.71)		10.78	1.98 (1.31-2.98)		10.92	1.31 (0.95-1.79)	
Overweight/accurate	5.78	1.00 (0.76-1.31)		9.95	1.75 (1.22-2.52)		8.95	0.99 (0.68-1.44)	
Overweight/inaccurate	4.60	1.37 (0.94-1.98)		6.76	1.38 (0.79-2.40)		9.41	1.56 (1.05-2.32)	
Obese/accurate	6.67	1.37 (0.95-1.99)		9.62	1.74 (0.99-3.03)		8.65	1.19 (0.79-1.80)	
Obese/inaccurate	4.89	1.62 (0.73-3.57)		12.02	3.24 (1.70-6.19)		5.73	0.79 (0.29-2.12)	
Extremely obese/accurate	4.26	0.90 (0.40-2.04)		7.34	1.65 (0.60-4.57)		12.00	2.13 (1.22-3.74)	
Extremely obese/inaccurate	3.44	1.46 (0.16-12.96)		1.44	0.34 (0.06-1.95)		27.52	9.03 (2.39-34.07)	

All listed variables were considered for inclusion in the model. Significant interactions by race/ethnicity were identified. Thus, results were stratified by race/ethnicity.

†Not included in final model.

factor can influence one adolescent suicidal behavior (e.g., attempt) and not the other (e.g., ideation) (23).

As expected (17), these multi-year (2007, 2009) YRBS data document that weight misperception was remarkably common in adolescents with excess weight. Interestingly, there was evidence of increasing weight perception accuracy as the degree of excess weight increased. In fact, four out of five adolescents with extreme obesity acknowledged their “overweight” status.

When actual weight status was placed in the context of whether or not an adolescent with excess weight perceived him/herself to be overweight, findings became less straightforward. With regard to suicidal ideation, an overweight, obese, or extremely obese adolescent (regardless of race, gender, age, or whether they acknowledged feelings of sadness/hopelessness) who understood they were overweight, was at significantly greater risk of reporting suicidal ideation than adolescents of healthy weight (who also accurately perceived their weight). Thus, our findings suggest that for all excess weight status groups represented in the present analyses (e.g., overweight, obese, extremely obese), it is not actual BMI that is key, but rather, weight perception accuracy that increases risk of adolescent suicidal ideation. In contrast, non-recognition of overweight status for an adolescent with of any level of excess weight indicated more “normative” (e.g., similar to healthy weight/accurate youth) suicidal ideation risk. Perhaps then, it is the subgroup of adolescents who both carry excess weight and acknowledge their overweight status who perceive their weight as particularly burdensome. Indeed, a recent study from a clinically referred sample of younger school-age obese children (BMI ≥ 95th percentile; ages 5-11 years) found obese youth who did not perceive themselves as overweight self-reported less impairment in HRQOL as compared to those who understood they were overweight (24).

Like suicidal ideation, findings regarding suicide attempts varied based on actual weight/weight perception accuracy, but also race/ethnicity. Two clear patterns emerged relative to the respective healthy weight/accurate comparators of similar race/ethnicity. For White youth, excess weight status/accuracy had no impact on the odds of reporting a suicide attempt. However, extreme obesity was associated with greater risk of suicide attempts for Hispanic youth only and irrespective of weight perception accuracy. While in general, a disproportionately higher prevalence of suicidal behaviors have been reported for Hispanic youth relative to White and Black youth (25), no associations with obese weight status (BMI ≥ 95th percentile) have yet to be identified (13,16). To our knowledge, these are the first analyses in the literature that isolate adolescents with extreme obesity within race/ethnic groups, revealing a specific weight group engaging in a less prevalent but more lethal suicidal behavior (actual attempt). Given there were no additional discernible
The present findings are both important and clinically relevant. Adolescents who are overweight or obese comprise a considerable proportion of today’s youth, with those who are extremely obese growing in numbers. Furthermore, adolescents who are obese will likely remain obese, carrying disease burden and risk into young adulthood (27). In addition to more universal prevention efforts to decrease adolescent suicidality (e.g., public education, screening programs, education of physicians, restriction of access to lethal means), adolescents with excess weight may benefit from routine screening for suicidal ideation (28). Furthermore, in this context, assessing an adolescent’s perception of whether they are overweight (e.g., “how would you describe your weight?”) may provide critical additional information. This may prove especially relevant to the clinical population of adolescents who consider and/or progress to undergoing bariatric surgery, given findings from the adult bariatric literature. However, it is important to recognize that while a history of suicide ideation in adolescents is known to predict subsequent ideation, a history of previous nonfatal attempts, depression, substance use, family history of suicide, childhood trauma, impulsivity, history of self-harm) are critical.

The present findings must be interpreted within the context of several limitations, with consequent directions for future research. First, YRBS adolescent weight and height (i.e., BMI) were self-reported. Previous work has shown YRBS self-report methodology to be highly correlated with measured weight and height values (21). However, given noted trends that adolescents may underestimate weight and overestimate height, the present data may reflect an underestimation of true BMI and the extent of excess weight in the YRBS sample. Arguably, the present study may also represent an underestimation in weight misperception as well, given weight perception accuracy increased as excess weight status increased. Interestingly however, extant research would suggest that a child or adolescent who carries excess weight does not base their self-perception of their weight status (“Am I overweight or not?”) on just their knowledge (or lack thereof) of their actual height/weight or BMI. Rather, overweight perception accuracy in youth has been shown to be associated with a number of individual and contextual factors including the psychosocial impact of their weight (e.g., weight-related quality of life) (24), race (30), gender (17) as well as their social environment. For example, overweight and obese youth are more likely to misperceive their weight status if they have parents or school classmates who are also overweight (31).

Second, the YRBS survey was developed with the specific purpose of monitoring epidemiological trends of a broad array of adolescent health and health-risk behaviors, including the extent of suicidality as a public health problem for the CDC. We recognize single item criterion measures of suicidality, even with established validity (18), are not full clinical assessments of these behaviors. Furthermore, these data characterize only nonfatal suicidal behaviors and do not reflect the role of weight status in completed suicides in adolescents. Thus, comparison to the findings in the adult obesity literature proves challenging, as with few exceptions (12,32,33), those investigating adults have focused on completed suicide as an outcome (34-37), versus the suicidal risk behaviors that precede the fatal event. Third, the YRBS also lacks an indicator of socioeconomic status (SES), a potential confound given suggested links between SES or proxy variables (e.g., parental education) with obesity prevalence in youth (38) and weight status misperception (39) and suicide (40) in adults. Finally, YRBS data is cross-sectional in design and, accordingly, causality cannot be inferred.

We recognize that there are a number of additional avenues worthy of further exploration, including weight misperception as it relates to adolescent suicidal behaviors for youth who do not carry excess weight. For example, in the present data, adolescents who were of a healthy weight yet who misperceived their weight status (either underweight or overweight) were at greater risk of reporting suicidal ideation, and for White and Black adolescents, greater attempts than their healthy weight counterparts who perceived their weight accurately. Further, we did not include examination of the additional weight category of underweight adolescents (BMI < 5th percentile). Certainly our reported findings and those of others (13) highlight weight perception accuracy as critical in understanding adolescent suicide behavior risks. The goals of the present study were deliberately simple in their focus on adolescents with excess weight.

As is evident, not all adolescents of excess weight status or even those at an extreme level will consider or attempt suicide, nor should any adolescent, independent of demographic background or weight status/accuracy, be exempt from monitoring or concern. Adolescent risk pathways for suicidal behaviors will only be understood with the testing of comprehensive adolescent models (e.g., previous nonfatal attempts, depression, peer victimization, family history of suicide, peer suicidal behaviors, impulsivity, substance use, childhood trauma) and with assessments that are more clinically driven (vs. public health surveillance) and utilize prospective designs. Based on the present findings, these future studies would also benefit from use of the actual measurement of height and weight (e.g., weight status), the categorization of the entire excess weight spectrum (e.g., extreme obesity), and the adolescent’s weight perception accuracy when they carry excess weight.

© 2012 The Obesity Society

References
1. (CDC) CfDCaP. Web-based Injury Statistics Query and Reporting System (WISQARS) [Online]. 2010, Retrieved on December 1, 2011 from URL:http://www.cdc.gov/injury/wisqars/index.html.
2. Moffit TE. Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychol Rev 1993;100:674-701.
3. Nock MK, Borges G, Bromet EJ, Cha CB, Kessler RC, Lee S. Suicide and suicidal behavior. Epidemiol Rev 2008;30:133-154.
4. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999-2004. JAMA 2006;295:1549-1555.
5. Koebnick C, Smith N, Coleman KJ, et al. Prevalence of extreme obesity in a multi-ethnic cohort of children and adolescents. J Pediatr 2010;157:28-31.e22.

6. Goodman E, Must A. Depressive symptoms in severely obese compared with normal weight adolescents: Results from a community-based longitudinal study. J Adolesc Health 2011;49:64-69.

7. Ingerski LM, Modi AC, Hood KK, et al. Health-related quality of life across pediatric chronic conditions. J Pediatr 2010;156:639-644.

8. Modi AC, Loux TJ, Bell SK, Harmon CM, Inge TH, Zeller MH. Weight-specific health-related quality of life in adolescents with extreme obesity. Obesity 2008;16:2266-2271.

9. Pearce MJ, Boergers J, Prinstein MJ. Adolescent obesity, overt and relational peer victimization, and romantic relationships. Obes Res 2002;10:386-393.

10. Kaminski JW, Fang X. Victimization by peers and adolescent suicide in three US samples. J Pediatr 2009;155:683-688.

11. Heneghan HM, Heinberg L, Windover A, Rogula T, Schauer PR. Weighing the evidence for an association between obesity and suicide risk. Surg Obes Relat Dis 2012;8:98-107.

12. Windover AK, Merrell J, Ashton K, Heinberg LJ. Prevalence and psychosocial correlates of self-reported past suicide attempts among bariatric surgery candidates. Surg Obes Relat Dis 2010;6:702-706.

13. Eaton DK, Lowry R, Brener ND, Galuska DA, Crosby AE. Associations of body mass index and perceived weight with suicide ideation and suicide attempts among US high school students. Arch Pediatr Adolesc Med 2005;159:513-519.

14. Swahn MH, Reynolds MR, Tuce M, Miranda-Pierangel M, Jones CR, Jones IR. Perceived overweight, BMI, and risk for suicide attempts: Findings from the 2007 Youth Risk Behavior Survey. J Adolesc Health 2009;45:292-295.

15. Crow S, Eisenberg ME, Story M, Neumark-Sztainer D. Suicidal behavior in adolescents: Relationship to weight status, weight control behaviors, and body dissatisfaction. Int J Eat Disord 2008;41:82-87.

16. Eaton DK, Foth K, Brener ND, Crosby AE, Flores G, Kann L. Associations between risk behaviors and suicidal ideation and suicidal attempts: Do racial/ethnic variations in associations account for increased risk of suicidal behaviors among Hispanic/Latina 9th-12th grade female students? Arch Suicide Res 2011;15:113-126.

17. Edwards NM, Pettingell S, Borowksy JW. Where perception meets reality: Self-perception of weight in overweight adolescents. Pediatrics 2010;125:e452-e458.

18. May A, Klosky ED. Validity of suicidality items from the Youth Risk Behavior Survey in a high school sample. Assessment 2011;18:379-381.

19. Brener ND, Kann L, Kinchen S, et al. Methodology of the Youth Risk Behavior Surveillance System. MMWR 2004;53(RR12):1-14.

20. Kuczmarski RJ, Ogden CL, Guo SS, et al. 2000 CDC Growth Charts for the United States: Methods and development. Vital Health Stat 2002;11:1-190.

21. Brener ND, McManus T, Galuska DA, Lowry R, Wechsler H. Reliability and validity of self-reported height and weight among high school students. J Adolesc Health 2003;32:281-287.

22. Benoit Ratcliff M, Jenkins TM, Reiter-Purtill J, Noll JG, Zeller MH. Risk-taking behaviors of adolescents with extreme obesity: Normative or not? Psychiatry 2011;127:827-834.

23. Winfree LT, Jiang S. Youthful suicide and social support: Exploring the social dynamics of suicide-related behavior and attitudes within a national sample of US adolescents. Youth Violence Juvenile Justice 2010;8:19-37.

24. Zeller MH, Ingerski L, Wilson L, Modi AC. Factors contributing to weight misperception in obese children presenting for intervention. Clin Pediatr 2010;49:330-336.

25. Eaton DK, Kann L, Kinchen S, et al. Youth risk behavior surveillance—United States 2009. MMWR Surveill Summ 2010;59:1-142.

26. Langhinrichsen-Rohling J, Friend J, Powell A. Adolescent suicide, gender, and culture: A rate and risk factor analysis. J Adolesc Health 2009;44:402-414.

27. Merten MJ. Weight status continuity and change from adolescence to young adulthood: Examining disease and health risk conditions. Obesity 2010;18:1423-1428.

28. Mann JJ, Apter A, Bertolote J, et al. Suicide prevention strategies. JAMA 2005;294:2064-2074.

29. Borges G, Angst J, Nock MK, Ruscio AM, Kessler RC. Risk factors for the incidence and persistence of suicide-related outcomes: A 10-year follow-up study using the National Comorbidity Surveys. J Affect Disord 2008;105:25-33.

30. Fitzgibbon ML, Blackman LR, Avellone ME. The relationship between body image discrepancy and body mass index across ethnic groups. Obes Res 2000;8:582-589.

31. Maximova K, McGrath JJ, Barnett T, O’Loughlin J, Paradis G, Lambert M. Do you see what I see? Weight status misperception and exposure to obesity among children and adolescents. Int J Obes 2008;32:1008-1015.

32. Carpenter K, Hasin D, Allison D, Faith M. Relationships between obesity and DSM-IV major depressive disorder, suicide ideation, and suicide attempts: Results from a general population study. Am J Public Health 2001;90:251-257.

33. Mather AA, Cox BJ, Enns MW, Sareen J. Associations of obesity with psychiatric disorders and suicidal behaviors in a nationally representative sample. J Psychosom Res 2009;66:277-285.

34. Adams TD, Gross RE, Smith SC, et al. Long-term mortality after gastric bypass surgery. NEJM 2007;357:753-761.

35. Omalu BI, Ives DG, Buhari AM, et al. Death rates and causes of death after bariatric surgery for Pennsylvania residents, 1995 to 2004. Arch Surg 2007;142:923-928.

36. Bjerknes O, Romundstad P, Evans J, Gannan D. Association of adult body mass index and height with anxiety, depression, and suicide in the general population. Am J Epidemiol 2008;167:193-202.

37. Makmal KJ, Miller M. BMI and risk factors for suicide: Why is BMI inversely related to suicide? Obesity 2009;17:532-538.

38. Wang Y. Disparities in pediatric obesity in the United States. Adv Nutr 2011;2:23-31.

39. Kuchler F, Varlam Y. Mistakes were made: Misperception as a barrier to reducing overweight. Int J Obes Relat Metab Disord 2003;27:856-861.

40. Sareen J, Afifi TO, McMillan KA, Asmundson GJG. Relationship between household income and mental disorders: Findings from a population-based longitudinal study. Arch Gen Psychiatry 2011;68:419-427.