A Population-Based Analysis of Distant Metastasis in Stage IV Gastric Cancer

Yiran Zhang
Yile Lin
Jincai Duan
Ke Xu
Min Mao
Xin Wang

Corresponding Authors: Min Mao, e-mail: mmarine510704@hotmail.com, Xin Wang, e-mail: wangxinmarine@126.com

Source of support: The present study was supported by Chongqing Natural Science Foundation Program (cstc2019jcyj-msxmX0466), the Top Talent Training Program of the First Affiliated Hospital of PLA Army Medical University (SWH2018BJKJ-12), and the Natural Science Foundation of China (No. 81802508 and No. 81903398)

Background: Distant metastasis (DM) is a crucial problem in management of patients with gastric cancer. Identification of the risk factors for development of DM and the prognostic factors for patients with DM is essential in development of individualized treatment of patients at the advanced stage with specific metastasis.

Material/Methods: Records of patients with gastric cancer were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. Survival duration of patients with specific DM was estimated, and the prognostic factors were investigated using the Cox proportional hazard regression model. The logistic regression model was used to reveal the inherent risk factors for development of DM.

Results: Eventually, 32.6% (11,918 out of 36,588) of gastric cancer patients were diagnosed with DM between 2010 and 2015, among whom 5,361, 1,778, 1,495, and 231 patients were diagnosed with liver, lung, bone, and brain metastasis, respectively. The median overall survival for patients with DM was 5.0 (95% CI: 4.8–5.2) months, with a 5-year survival rate of 3.9%. Primary tumor site, histology types, tumor grade, T stage, N stage, surgery, chemotherapy, and the number of metastases were associated with worse survival. Younger age and higher tumor grade were positively associated with the development of DM.

Conclusions: Initial DM was found in 32.6% of patients with gastric cancer. Homogenous and heterogenous predictive factors were identified for patients with a specific metastatic site, which can be used in targeted screening and individualized treatment.

MeSH Keywords: Neoplasm Metastasis • Prognosis • Risk Factors • SEER Program • Stomach Neoplasms

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/923867
Background

As one of most common cancers worldwide, gastric cancer causes many death every year, imposing a huge burden on economic and medical resources [1]. In the latest cancer statistics (2019) in the United States, it was reported that there were 17,230 newly diagnosed cases of gastric cancer and 11,140 deaths caused by gastric cancer [2]. With the development of new treatment strategies, the long-term survival outcome of patients with gastric cancer has significantly improved, especially for pre-metastatic patients, with a 5-year survival rate of approximate 70% [3]. However, the prognosis of patients with distant metastasis has remained poor.

Distant metastasis is the main criterion for stage IV gastric cancer diagnosis, and distant metastasis is correlated with worse survival [4]. The percentage of metastasis in gastric cancer patients was reported to have increased from 24% in 1990 to 44% in 2011 in the Netherlands [5]. Due to the absence of early specific clinical symptoms, many patients are diagnosed with distant metastasis. Among all patients with gastric cancer, 40.1% were found to have synchronous distant metastasis [6]. The National Comprehensive Cancer Network (NCCN) recommends that different treatments should be administered to gastric cancer patients in different stages. For gastric cancer patients in stage IV, palliative therapy is suggested [7,8]. Due to the various symptoms associated with different metastatic sites, targeted treatment should be given in a specialized department. Thus, it is important to perform distant metastasis screening, and research on the risk factors for distant metastasis is needed.

Although it is important for guiding individualized treatment, prediction of prognosis of gastric cancer patients with distant metastasis is often difficult. Compared with other organs, the liver is more likely to develop metastasis in gastric cancer patients. A previous study found that 2.43% of gastric cancer patients who received gastrectomy subsequently developed liver metastases [9]. The 2-year survival rate in gastric cancer patients with synchronous liver-only metastases was reported to be 17.2% [10]. Favorable prognostic factors for patients with gastric cancer after radical hepatectomy were reported to be: lower T and N stage, less metastases, lesions smaller than 5 cm, and negative resection margins [11]. The pulmonary metastasis rate for gastric cancer patients was reported to be 0.96%, and the median survival was 4.0 months after diagnosis of pulmonary metastasis [12]. In a study of a cohort of patients with metastatic or recurrent gastric cancer, the initial bone metastasis rate was 6.7%, and the median survival was 4.4 months after diagnosis of bone metastasis [13]. Brain metastasis has seldom been studied [14], with a reported occurrence rate of 2.33% in gastric cancer patients [15].

However, the research cited above studied specific metastasis in gastric cancer and had limited sample sizes. To thoroughly study the relative risk factors and prognosis in stage IV gastric cancer, research exploring different patterns of distant metastasis on gastric cancer in a large population is needed.

The present study assessed a gastric cancer patient cohort extracted from the Surveillance, Epidemiology, and End Results (SEER) Program database to thoroughly investigate distant metastasis in gastric cancer patients. Our analysis of the risk factors, prognostic factors, and prognosis may help develop targeted specific metastatic screening and guide individualized treatment.

Material and Methods

Study population

Data were extracted from the National Cancer Institute SEER cohort (https://seer.cancer.gov/data/). SEER*Stat Software version 8.3.6 was used to generate the data.

Patients who were initially diagnosed with gastric cancer between 2010 to 2015 were selected because sites of metastases were available after 2010. In the patients we enrolled from the SEER database, all had been followed up until at least 2018 (i.e., minimum 3-year follow-up). The primary site label was used to identify patients with gastric cancer (C16.0–C16.9). Patients diagnosed at autopsy or via death certificate and those without detailed records on distant metastasis were excluded. To investigate the prognostic factors for gastric cancer patients with distant metastasis, patients diagnosed without distant metastasis were excluded after logistic regression analysis (Figure 1).

Statistical analysis

The following patient-related characteristics were included: age (≤65 and ≥65 years); sex (female and male); marital status (unmarried and married); race (white, black, and others); insurance status (insured and uninsured); histological type (adenocarcinoma, mucinous adenocarcinoma, signet ring cell carcinoma, and others/unknown); primary site (proximal third, middle third, distal third, stomach, NOS, and overlapping lesion); tumor grade (I to IV: well, moderately, poorly, and undifferentiated, respectively); T stage (T0/Tis/T1, T2, T3, and T4); N stage (N0, N1, N2, and N3); the presence of lung, liver, brain, or bone metastasis; surgical treatment (no, yes); radiation treatment (no/unknown, yes); and treatment with chemotherapy (no/unknown, yes). To investigate the prognostic factors for patients with distant metastasis, the variables of ‘Number of mets’ (the sum of metastases sites) and ‘Other mets (metastasis for other sites)’ were defined. The homogenous predictive
factors are variables which exert the same effect on disease development or survival prediction in subgroup analysis, while heterogeneous factors are those affecting a specific subgroup. Categorical variables were presented as number and percentage (N,%), and Pearson chi-square (χ^2) or Fisher’s exact test was used to evaluate the differences between demographic and clinicopathological variables. To identify risk factors for specific metastasis, logistic regression analysis was performed in our initial population. Variables with statistical differences in univariate logistic regression analysis were further analyzed by multivariate analysis. To identify risk factors for patients at M1 stage, patients who presented any distant metastatic sites (including liver, lung, bone, brain, and other non-specific sites) were defined as ‘M-Met’. To identify risk factors for liver metastasis, patients with only liver, lung, bone, and brain metastasis were regarded as having specific metastasis. For example, to identify risk factors for liver metastasis, patients who were diagnosed with only liver metastasis were regarded as ‘Liver-Met’ and were compared with those without any metastasis and those who had other metastatic sites. Overall survival (OS) was the primary outcome in the present study, which was defined as the time from diagnosis of gastric cancer to death due to any cause. Kaplan-Meier analysis were performed to estimate the length of survival, and the differences were assessed with log-rank test. To identify the prognostic factors for patients with distant metastasis, patients at M0 stage were excluded. We tested the proportional hazards assumption. Univariate Cox proportional hazards regression analysis was performed for patients at M1 stage. Variables with statistically significant differences were further analyzed by multivariate analysis to identify the prognostic factors.

IBM SPSS Statistics (version 23.0, Armonk, NY, USA) was used for statistical analyses, and survival curves were generated using MedCalc 15.2.2 (MedCalc Software, Ostend, Belgium). All statistical tests were 2-sided, and $p<0.05$ was considered significant.

Ethnics statement

The SEER dataset is freely available and the data released by SEER do not require informed patient consent because cancer is a reportable disease in every state in the USA. The present study complied with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Results

Patient characteristics

According to the pre-defined inclusion and exclusion criteria, a total of 36,588 gastric cancer patients were selected, among whom 11,918 (32.6%) cases were diagnosed at M1 stage. There were 5,361, 1,778, 1,495, and 231 patients diagnosed with liver, lung, bone, and brain metastasis, respectively. The mean age was 67.2±14.0 years, with a predominance for male patients (N=22,421, 61.3%) in the total cohort. After excluding patients without detailed information, more than half of the patients were of white race (N=25,930, 71.3%) and married (N=20,317, 58.9%), and almost of the patients were insured (N=34,269, 96.3%). The main histological subtype was adenocarcinoma (N=23,245, 63.5%), and proximal third was the most common tumor site (N=12,898, 35.3%), following by stomach, NOS (N=10,158, 27.8%) and distal third (N=7,079, 19.3%). Almost half of patients (N=17,266, 47.2%) underwent surgical treatment, and the percentage of patients receiving radiation and chemotherapy were 23.0% and 47.8%, respectively. Table 1 shows additional information on patient characteristics.

Survival estimation and prognostic factors for patients with metastasis

For patients without distant metastasis, the median overall survival was 32.0 (95% CI: 30.7–33.3) months, and the 1-, 2-, 3-, and 5-year survival rates were 69.3%, 55.4%, 47.9%, and 39.8%, respectively. On the contrary, the median overall survival for metastatic patients was 5.0 (95% CI: 4.8–5.2) months, and the 1-, 2-, 3-, and 5-year survival rates were 25.9%, 11.6%, 6.7%, and 3.9%, respectively. The 1-year survival rates for patients with liver, lung, bone, and brain metastasis were 24.0%, 18.0%, 14.0%, and 16.2%, respectively. The corresponding 5-year survival rates were 4.4%, 1.6%, 1.2%, and 0%, respectively. The survival curves for gastric cancer patients with or without metastasis to liver (Figure 2A), lung (Figure 2B), bone (Figure 2C), and brain (Figure 2D) are illustrated in Figure 2.
Table 1. Description of the SEER population of patients with gastric cancer by distant metastasis at diagnosed between 2010–2015.

Subject characteristics	M-Met	Liver-Met	Lung-Met	Bone-Met	Brain-Met					
Age (χ², P)										
<65	378.42	0.001	7.34	0.007	7.96					
≥65	15,576	6.256	18.72	3.109	20.828	1.004	21.107	730	21,726	106
Gender (χ², P)	64.13	<0.001	236.58	<0.001	39.84					
Male	14,768	7.653	18.629	3.792	21.205	1.216	21,427	994	22,253	168
Female	9,902	4.265	12.598	1.569	13.605	562	13,666	501	14,104	63
Race (χ², P)	38.18	<0.001	93.68	<0.001	17.82					
White	17,308	8.622	22.070	3.860	24,583	1.347	24,802	1,128	25,740	190
Black	3,450	1.647	4.228	0.869	4.882	215	4,938	159	5,078	19
Others	3,742	1.601	4.731	0.612	5,131	212	5,139	204	5,322	21
Unknown	440	18.0	96.8	20.92	24.4	4	214	4	217	3
Marital status (χ², P)	40.00	<0.001	16.02	<0.001	9.34					
Married	13,557	6.760	17.276	3.041	19,335	982	19,469	848	20,183	134
Unmarried	9,565	4.600	12.092	2.073	13,444	721	13,580	585	14,079	86
Unknown	1,548	55.8	1.859	2.47	2.031	75.36	2,044	62	2,095	11
Insurance status (χ², P)	191.62	<0.001	29.22	<0.001	12.06					
Insured	23,203	11.066	29.265	5.004	32,622	1.647	32,878	1,391	34,057	212
Uninsured	680	627	1,061	246	1,218	89	1,229	78	1,294	13
Unknown	787	225	901	111	970	42	986	26	1,006	6
Year of diagnosis (χ², P)	11.67	0.040	11.81	0.038	4.34					
2010	3,935	1.871	4.983	823	5,524	282	5,599	207	5,769	37
2011	3,994	1.830	4.956	868	5,566	258	5,601	223	5,787	37
2012	4,197	1.958	5.316	839	5,866	289	5,913	242	6,121	34
2013	4,134	2.020	5.314	940	5,850	306	5,900	251	6,119	35
2014	4,231	2.094	5.411	914	6,003	322	6,054	271	6,281	44
Table 1 continued. Description of the SEER population of patients with gastric cancer by distant metastasis at diagnosed between 2010–2015.

Subject characteristics	M-Met	Liver-Met	Lung-Met	Bone-Met	Brain-Met					
	No N (%)	Yes N (%)								
2015	4,179 (66.1)	2,145 (33.9)	5,347 (84.6)	977 (15.4)	6,001 (94.9)	323 (5.1)	6,023 (95.2)	301 (4.8)	6,280 (99.3)	44 (0.7)
Primary site (χ², P)	221.36 <0.001	310.33 <0.001	176.00 <0.001	82.92 <0.001	70.87 <0.001					
Proximal third	8,619 (66.8)	4,279 (33.2)	10,469 (81.2)	2,429 (18.8)	12,045 (93.4)	853 (6.6)	12,265 (95.1)	633 (4.9)	12,763 (99.0)	135 (1.0)
Mid	2,715 (69.7)	1,178 (30.3)	3,439 (88.3)	454 (11.7)	3,768 (96.8)	125 (3.2)	3,746 (96.2)	147 (3.8)	3,882 (99.7)	11 (0.3)
Distal third	5,184 (73.2)	1,895 (26.8)	6,323 (89.3)	756 (10.7)	6,883 (97.2)	196 (2.8)	6,915 (97.7)	164 (2.3)	7,066 (99.8)	13 (0.2)
Stomach	6,640 (65.4)	3,518 (34.6)	8,792 (86.6)	1,366 (13.4)	9,674 (95.2)	484 (4.8)	9,708 (96.2)	450 (3.8)	10,093 (99.4)	65 (0.6)
Overlapping	1,512 (59.1)	1,048 (40.9)	2,204 (86.1)	356 (13.9)	2,440 (93.5)	120 (4.7)	2,459 (96.1)	101 (3.9)	2,553 (99.7)	7 (0.3)
Histology (χ², P)	758.44 <0.001	570.14 <0.001	88.15 <0.001	173.99 <0.001	13.26 0.004					
Adenocarcinoma	15,256 (65.6)	7,939 (34.4)	19,113 (82.3)	4,106 (17.7)	21,951 (94.4)	1,291 (5.6)	22,298 (95.9)	917 (4.1)	22,708 (99.3)	167 (0.7)
Mucous carcinoma	381 (65.7) 199	517 63	546 (94.1)	34 (5.9)	557 (96.0)	23 (4.0)	578 (99.7)	2 (0.3)		
Signet-ring cell	3,497 (59.3)	2,401 (40.7)	5,553 (94.2)	345 (5.8)	5,647 (95.7)	251 (4.3)	5,513 (93.5)	385 (6.5)	5,859 (99.3)	39 (0.7)
Unknown	5,536 (80.6)	1,329 (19.4)	6,018 (87.7)	847 (12.3)	6,666 (97.1)	199 (2.9)	6,735 (98.1)	130 (1.9)	6,842 (99.7)	23 (0.3)
Grade (χ², P)	1231.98 <0.001	305.40 <0.001	93.89 <0.001	227.91 <0.001	27.33 0.001					
I	2,766 (93.1)	236 (7.4)	2,868 (95.1)	134 (4.9)	2,958 (98.5)	44 (1.5)	2,986 (99.5)	15 (0.5)	3,001 (100.0)	1 (0.0)
II	5,655 (73.5)	2,038 (26.5)	6,400 (83.2)	1,293 (16.8)	7,310 (95.0)	383 (5.0)	7,515 (97.7)	178 (2.3)	7,641 (99.7)	5 (0.3)
III	10,775 (62.5)	6,475 (37.5)	14,753 (85.5)	2,497 (14.5)	16,974 (94.9)	876 (5.1)	16,346 (94.8)	904 (5.2)	17,119 (99.4)	201 (0.6)
IV	483 (86.2) 225	595 (31.8)	840 (16.0)	113 (84.0)	686 (96.9)	22 (3.1)	687 (97.0)	21 (3.0)	701 (99.0)	7 (1.0)
Unknown	4,991 (62.9)	2,944 (37.1)	6,611 (83.3)	1,324 (16.7)	7,482 (94.3)	453 (5.7)	7,559 (95.3)	376 (4.7)	7,865 (99.1)	70 (0.9)
T stage (χ², P)	4691.69 <0.001	2339.40 <0.001	803.09 <0.001	840.77 <0.001	155.81 <0.001					
T1	7,401 (77.8)	2,112 (22.2)	8,438 (88.7)	1,075 (11.3)	9,146 (96.1)	367 (3.9)	9,245 (97.2)	268 (2.8)	9,473 (99.6)	40 (0.4)
T2	3,471 (84.8)	622 (15.2)	3,891 (95.1)	202 (4.9)	4,031 (98.5)	62 (1.5)	4,039 (98.7)	54 (1.3)	4,084 (99.8)	9 (0.2)
T3	6,845 (80.0)	1,711 (20.0)	7,906 (92.4)	650 (7.6)	8,365 (97.8)	191 (2.2)	8,369 (97.8)	187 (2.2)	8,529 (99.7)	27 (0.3)
T4	3,697 (59.3)	2,535 (40.7)	5,280 (84.7)	952 (15.3)	5,931 (95.2)	301 (4.8)	6,031 (96.8)	201 (3.2)	6,207 (99.6)	25 (0.4)
Table 1 continued. Description of the SEER population of patients with gastric cancer by distant metastasis at diagnosed between 2010–2015.

Subject characteristics	M-Met	Liver-Met	Lung-Met	Bone-Met	Brain-Met				
	No N (%)	Yes N (%)							
Unknown	3,256 (4.938)	5,712 (6.97)	2,482 (30.3)	7,337 (89.5)	857 (10.5)	7,409 (89.4)	785 (9.6)	8,064 (98.4)	130 (1.6)
N stage (χ², P)	2899.94 <0.001	1388.41 <0.001	590.22 <0.001	471.15 <0.001	80.68 <0.001				
N0	14,807 (26.0)	17,422 (35.6)	2,062 (48.0)	18,844 (640)	640 (37.3)	18,959 (525)	525 (2.7)	19,407 (99.6)	77 (0.4)
N1	4,557 (53.1)	4,607 (77.0)	1,970 (23.0)	7,908 (92.2)	669 (7.8)	7,993 (84.8)	584 (6.8)	8,493 (90.0)	84 (1.0)
N2	2,171 (76.8)	654 (23.2)	2,572 (91.0)	2,756 (96.0)	69 (2.4)	2,762 (63)	63 (2.2)	2,815 (99.6)	10 (0.4)
N3	2,034 (74.9)	682 (25.1)	2,503 (92.1)	2,650 (97.5)	67 (2.5)	2,655 (62)	62 (2.3)	2,704 (99.5)	13 (0.5)
Unknown	1,101 (36.9)	1,884 (71.1)	2,123 (28.9)	2,652 (88.8)	333 (11.2)	2,724 (261)	261 (8.7)	2,938 (98.4)	47 (1.6)
Surgery (χ², P)	8952.99 <0.001	3808.23 <0.001	1391.97 <0.001	1199.06 <0.001	163.73 <0.001				
None	8,707 (74.5)	10,488 (74.5)	14,298 (25.5)	17,496 (91.1)	1,698 (8.9)	17,756 (92.5)	1,439 (7.5)	18,977 (98.9)	218 (1.1)
Yes	15,853 (91.8)	1,413 (8.2)	16,808 (97.3)	17,189 (99.6)	77 (0.4)	17,121 (54)	54 (0.3)	17,253 (99.9)	13 (0.1)
Unknown	110 (86.6)	17 (13.4)	121 (95.3)	125 (98.4)	2 (1.6)	125 (1.6)	2 (1.6)	127 (100)	0 (0.0)
Radiation therapy (χ², P)	510.46 <0.001	244.63 <0.001	20.13 <0.001	44.61 <0.001	190.20 <0.001				
No/unknown	18,148 (64.4)	10,031 (35.6)	23,605 (83.8)	26,732 (94.9)	1,447 (5.1)	27,134 (96.3)	1,045 (3.7)	28,089 (99.7)	90 (0.3)
Yes	6,522 (77.6)	1,887 (22.4)	7,622 (90.6)	8,078 (96.1)	331 (3.9)	7,959 (94.6)	450 (5.4)	8,268 (98.3)	141 (1.7)
Chemical therapy (χ², P)	782.93 <0.001	171.88 <0.001	39.20 <0.001	62.04 <0.001	8.09 <0.005				
No/unknown	14,134 (74.0)	4,965 (26.0)	16,735 (87.7)	18,290 (95.8)	799 (4.2)	18,458 (61)	61 (3)	18,990 (99.5)	99 (0.5)
Yes	10,546 (60.3)	6,953 (39.7)	14,492 (82.8)	16,520 (94.4)	979 (5.6)	16,635 (864)	864 (4.9)	17,367 (99.2)	132 (0.8)
Vital status (χ², P)	5077.26 <0.001	1866.53 <0.001	725.16 <0.001	643.67 <0.001	75.14 <0.001				
Alive	11,792 (91.0)	1,166 (9.0)	12,457 (96.1)	12,858 (99.2)	100 (0.8)	12,888 (9.5)	70 (0.5)	12,939 (99.9)	19 (0.1)
Dead	12,878 (54.5)	10,752 (45.5)	18,770 (79.4)	21,952 (92.9)	1,678 (7.1)	22,205 (94.0)	1,425 (6.0)	23,418 (99.1)	212 (0.9)
Number of mets (χ², P)	3248.96 <0.001	6493.04 <0.001	16646.25 <0.001	7459.10 <0.001	1968.49 <0.001				
≤1	24,670 (70.3)	10,413 (29.7)	31,025 (88.4)	34,432 (98.1)	651 (1.9)	34,299 (784)	784 (88)	34,995 (97.9)	3 (0.3)
>1	0 (0.0)	1,505 (202)	1,303 (13.4)	378 (25.1)	1,127 (74.9)	794 (52.8)	711 (47.2)	1,362 (90.5)	143 (9.5)

SEER – Surveillance, Epidemiology, and End Results; Met – metastases; NOS – not otherwise specified.
Supplementary Table 1 shows P values for results of testing the proportion hazards assumption. Most of the factors did not violate the proportional hazards assumption. As shown in Supplementary Table 2, primary site, T stage, and treatment by surgery and chemotherapy were associated with survival in univariate Cox regression analysis. Other variables, such as age, marital status, histology types, tumor grade, N stage, radiation treatment, and presence or absence of other metastasis, were associated with specific metastasis patients. After adjusting all these characteristics in multivariate analysis, factors significantly associated with survival outcome for patients with liver metastasis were: age ≥65 years (HR=1.19, 95% CI 1.12–1.26); tumor grade (II HR=1.64, 95% CI 1.21–2.22; III HR=2.23, 95% CI 1.66–3.00; IV HR=1.91, 95% CI 1.21–2.82); T stage (T2 HR=0.80, 95% CI 0.64–0.99; T3 HR=0.88, 95% CI 0.77–1.00; N3 stage (HR=1.23, 95% CI 1.01–1.50); surgery (HR=0.45, 95% CI 0.38–0.52); chemotherapy (HR=0.30, 95% CI 0.27–0.34); and more other metastases (HR=1.38, 95% CI 1.24–1.55). In patients with lung metastasis, the following factors were associated with overall survival: tumor grade III (HR=1.53, 95% CI 1.02–2.29); T4 stage (HR=1.27, 95% CI 1.06–1.53); surgery (HR=0.74, 95% CI 0.55–0.99); chemotherapy (HR=0.31, 95% CI 0.26–0.37); and more other metastases (HR=1.51, 95% CI 1.28–1.77). Table 2 provides additional information on the results of multivariate Cox regression analysis.

Risk factors for distant metastases

In our cohort, there were 11,918 patients presenting distant metastasis. The number of cases with bone, brain, liver, and lung metastasis was 1495, 231, 5361, and 1778, respectively. As shown in Supplementary Table 3, the following factors were significantly associated with developing distant metastasis and bone, liver, or lung metastasis: age, sex, race, insurance status, primary tumor site, histological type, grade, T stage, and N stage, and all of these variables except insurance status and T stage were also associated with developing brain metastasis.

The multivariate regression analysis suggested several independent risk factors. Younger age and higher tumor grade were positively associated with developing distant metastasis, including all four organs. Proximal third of stomach was the most common primary site for tumor metastasis. Patients without insurance were more likely to have distant metastasis. T stage and N stage were independent risk factors. More details on the results of the multivariate analysis are provided in Table 3.

Figure 2. The overall survival for gastric cancer patients with or without metastasis to liver (A), lung (B), bone (C), and brain (D).
Table 2. Multivariable Cox regression for analyzing the prognostic factors for gastric cancer patients with distance metastases.

Subject characteristics	M-Met	Liver-Met	Lung-Met	Bone-Met	Brain-Met						
	HR (95% CI)	P-value	HR (95% CI)	P-value	HR (95% CI)	P-value					
Age											
<65	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00					
≥65	1.19 (1.12–1.26)	<0.001	1.16 (1.06–1.28)	0.002	0.94 (0.81–1.11)	0.479	0.96 (0.82–1.13)	0.652	NA	NA	
Marital status											
Married	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00					
Unmarried	1.02 (0.96–1.08)	0.631	0.95 (0.86–1.04)	0.244	1.10 (0.94–1.29)	0.233	0.95 (0.81–1.12)	0.544	NA	NA	
Primary site											
Proximal third	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00					
Mid	1.09 (0.98–1.22)	0.107	0.99 (0.83–1.18)	0.880	1.12 (0.81–1.56)	0.490	1.55 (1.17–2.05)	0.002	2.90	(0.86–9.85)	0.088
Distal third	0.93 (0.85–1.02)	0.135	0.91 (0.79–1.04)	0.167	1.02 (0.79–1.31)	0.892	1.30 (0.98–1.74)	0.071	2.32	(1.00–5.41)	0.051
Stomach, NOS	0.96 (0.89–1.04)	0.349	0.93 (0.82–1.05)	0.241	1.11 (0.91–1.37)	0.306	0.98 (0.81–1.19)	0.837	1.13	(0.69–1.85)	0.625
Overlapping	1.17 (1.05–1.30)	0.004	1.29 (1.08–1.55)	0.005	1.25 (0.93–1.67)	0.137	1.09 (0.81–1.46)	0.575	0.42	(0.09–1.96)	0.272
Histology											
Adenocarcinoma	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00					
Mucous carcinoma	1.05 (0.82–1.34)	0.696	1.42 (0.89–2.28)	0.142	NA	NA	NA	NA	NA		
Signet-ring cell carcinoma	1.03 (0.95–1.11)	0.514	1.02 (0.85–1.23)	0.843	NA	NA	NA	NA	NA		
Unknown	0.74 (0.65–0.84)	<0.001	0.80 (0.68–0.95)	0.012	NA	NA	NA	NA	NA		
Grade											
I	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00					
II	1.55 (1.24–1.92)	<0.001	1.64 (1.21–2.22)	0.001	1.08 (0.71–1.64)	0.726	NA	NA	NA	NA	
III	2.00 (1.62–2.48)	<0.001	2.23 (1.66–3.00)	<0.001	1.53 (1.02–2.29)	0.039	NA	NA	NA	NA	
IV	1.84 (1.39–2.43)	<0.001	1.91 (1.29–2.82)	0.001	1.04 (0.51–2.13)	0.920	NA	NA	NA	NA	
T stage											
T1	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00					
T2	0.83 (0.73–0.93)	0.002	0.80 (0.64–0.99)	0.039	0.98 (0.69–1.39)	0.904	0.54 (0.39–0.74)	<0.001	1.67	(0.79–3.53)	0.184
Table 2 continued. Multivariable Cox regression for analyzing the prognostic factors for gastric cancer patients with distance metastases.

Subject characteristics	M-Met	Liver-Met	Lung-Met	Bone-Met	Brain-Met					
	HR (95% CI)	P-value								
T3	0.92 (0.84–1.00)	0.042	0.88 (0.77–1.00)	0.048	1.16 (0.93–1.44)	0.183	0.89 (0.73–1.09)	0.262	1.34 (0.74–2.40)	0.333
T4	1.15 (1.06–1.24)	0.001	1.07 (0.95–1.21)	0.241	1.27 (1.06–1.53)	0.011	0.91 (0.91–1.36)	0.309	2.28 (1.28–4.07)	0.005
N0 stage	1.00 (Reference)	1.00								
N1	1.06 (0.99–1.31)	0.122	1.05 (0.95–1.17)	0.350	NA	NA	NA	NA	NA	NA
N2	1.11 (0.99–1.24)	0.074	1.15 (0.95–1.38)	0.146	NA	NA	NA	NA	NA	NA
N3	1.19 (1.06–1.34)	0.003	1.23 (1.01–1.50)	0.040	NA	NA	NA	NA	NA	NA
Surgery	1.00 (Reference)	1.00								
No	0.43 (0.39–0.47)	<0.001	0.45 (0.38–0.52)	<0.001	0.74 (0.55–0.99)	0.045	0.54 (0.38–0.75)	<0.001	0.32 (0.13–0.79)	0.014
Yes	0.93 (0.86–1.00)	0.053	NA	NA	0.99 (0.81–1.20)	0.903	0.94 (0.80–1.12)	0.499	0.91 (0.56–1.46)	0.683
Radiation	1.00 (Reference)	1.00								
No/unknown	1.00 (Reference)	1.00								
Yes	0.32 (0.30–0.35)	<0.001	0.30 (0.27–0.34)	<0.001	0.31 (0.26–0.37)	<0.001	0.28 (0.24–0.34)	<0.001	0.24 (0.14–0.42)	<0.001
Chemotherapy	1.00 (Reference)	1.00								
No/unknown	1.00 (Reference)	1.00								
Yes	0.32 (0.30–0.35)	<0.001	0.30 (0.27–0.34)	<0.001	0.31 (0.26–0.37)	<0.001	0.28 (0.24–0.34)	<0.001	0.24 (0.14–0.42)	<0.001
Number of mets	1.00 (Reference)	1.00								
≤1	1.00 (Reference)	1.00	–	–	–	–	–	–	–	–
>1	1.48 (1.35–1.63)	<0.001	–	–	–	–	–	–	–	–
Other mets	–	–	1.38 (1.24–1.55)	<0.001	1.51 (1.28–1.77)	<0.001	NA	NA	1.47 (0.90–2.38)	0.123

Met – metastases; HR – hazard ratio; CI – confidence interval; NOS – not otherwise specified; NA – not available.
Table 3. Multivariable logistic regression for analyzing the risk factors for developing distant metastases in patients with gastric cancer.

Subject characteristics	M-Met (OR 95% CI)	P-value	Liver-Met (OR 95% CI)	P-value	Lung-Met (OR 95% CI)	P-value	Bone-Met (OR 95% CI)	P-value	Brain-Met (OR 95% CI)	P-value
Age										
<65	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
≥65	0.68 (0.63–0.72)	<0.001	0.87 (0.79–0.96)	0.005	0.80 (0.68–0.94)	0.008	0.71 (0.59–0.85)	<0.001	0.50 (0.35–0.71)	<0.001
Gender										
Male	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
Female	0.94 (0.87–1.01)	0.076	0.73 (0.66–0.82)	<0.001	0.90 (0.75–1.07)	0.215	0.82 (0.67–1.00)	0.056	0.80 (0.52–1.21)	0.287
Race										
White	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
Black	1.01 (0.92–1.12)	0.817	1.37 (1.20–1.57)	<0.001	0.99 (0.77–1.27)	0.947	0.69 (0.50–0.95)	0.022	0.49 (0.23–1.07)	0.073
Others	0.82 (0.74–0.90)	<0.001	0.82 (0.71–0.95)	0.008	0.89 (0.70–1.13)	0.330	0.96 (0.74–1.25)	0.760	0.62 (0.32–1.20)	0.154
Insurance status										
Insured	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
Uninsured	1.48 (1.25–1.75)	<0.001	1.48 (1.18–1.85)	0.001	1.52 (1.06–2.16)	0.021	1.39 (0.93–2.08)	0.107	NA	NA
Primary site										
Proximal third	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
Mid	1.05 (0.93–1.18)	0.446	0.79 (0.66–0.94)	0.009	0.53 (0.39–0.73)	<0.001	0.64 (0.46–0.91)	0.012	0.25 (0.10–0.63)	0.003
Distal third	0.70 (0.63–0.77)	0.001	0.62 (0.54–0.72)	<0.001	0.37 (0.28–0.48)	<0.001	0.29 (0.21–0.41)	<0.001	0.17 (0.08–0.37)	<0.001
Stomach, NOS	1.04 (0.94–1.14)	0.465	0.71 (0.63–0.82)	<0.001	0.65 (0.52–0.80)	<0.001	0.88 (0.70–1.11)	0.267	0.39 (0.23–0.65)	<0.001
Overlapping	1.32 (1.16–1.50)	<0.001	0.86 (0.72–1.04)	0.125	0.77 (0.57–1.04)	0.085	0.81 (0.58–1.14)	0.229	0.30 (0.12–0.74)	0.009
Histology										
Adenocarcinoma	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
Mucous carcinoma	0.78 (0.59–1.02)	0.720	0.43 (0.26–0.69)	0.001	0.80 (0.41–1.56)	0.508	0.97 (0.45–2.08)	0.938	NA	NA
Signet-ring cell carcinoma	0.95 (0.86–1.03)	0.218	0.31 (0.26–0.38)	<0.001	0.78 (0.61–0.98)	0.035	1.34 (1.07–1.67)	0.011	1.03 (0.62–1.72)	0.918
Unknown	0.82 (0.71–0.94)	0.003	1.22 (1.04–1.45)	0.018	0.66 (0.47–0.93)	0.018	1.05 (0.72–1.53)	0.797	0.61 (0.27–1.37)	0.233
Table 3 continued. Multivariable logistic regression for analyzing the risk factors for developing distant metastases in patients with gastric cancer.

Subject characteristics	M-Met	Liver-Met	Lung-Met	Bone-Met	Brain-Met					
	OR (95% CI)	P-value								
Grade										
I (Reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
II	3.53	<0.001	4.14	<0.001	2.26	<0.001	4.72	<0.001	11.32	0.017
III	5.46	<0.001	4.41	<0.001	2.64	<0.001	9.49	<0.001	9.20	0.029
IV	4.93	<0.001	4.90	<0.001	1.53	<0.001	5.15	<0.001	20.76	0.005
T stage										
T1 (Reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
T2	0.48	<0.001	0.29	<0.001	0.33	<0.001	0.40	<0.001	NA	NA
T3	0.56	<0.001	0.41	<0.001	0.40	<0.001	0.45	<0.001	NA	NA
T4	1.59	<0.001	1.14	0.048	1.11	0.329	0.78	0.054	NA	NA
N stage										
N0 (Reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
N1	2.17	<0.001	2.24	<0.001	2.05	<0.001	2.35	<0.001	19.1	0.003
N2	0.91	0.011	0.95	0.595	0.77	0.119	1.01	0.967	0.70	0.354
N3	0.85	0.008	0.88	0.182	0.64	0.013	0.91	0.608	1.40	0.315

Met – metastases; OR – odds ratio; CI – confidence interval; NOS – not otherwise specified; NA – not available.

Discussion

Distant metastasis is a serious problem during cancer management. The median overall survival time for gastric cancer patients with distant metastasis was approximately 4.0 months in our analysis. Synchronous metastasis was present in 32.6% of patients with primary gastric cancer. The poor survival and high metastasis rate in gastric cancer suggested that further research should be performed to thoroughly investigate the related predictive factors for prognosis and prevalence of distant metastasis.

To promote the survival of patients at stage IV, developing a comprehensive treatment strategy has been the global focus. Surgery of the primary cancer and chemotherapy can improve survival for patients with metastasis to liver, lung, bone, and brain. In the present study, chemotherapy was the main treatment for patients with distant metastasis and it was offered to 56.1% of patients with liver metastasis, while surgery of primary gastric cancer was performed in only 8.5% of patients. The proportion of gastric resection and chemotherapy was consistent with a previous study in Europe [16]. As previously reported, chemotherapy was the main treatment for patients with liver metastasis, and conversion surgery can be considered in some selected patients [17]. Similarly, according to a survey from two European and Japanese gastric cancer study groups, preoperative chemotherapy followed by resection of both primary and liver lesions was the recommended option for patients without extrahepatic metastasis [18], an similar percentages of chemotherapy and surgery were performed in patients with metastasis to lung and bone. Based on the records from the Metastatic Lung Tumor Study Group of Japan,
the 5-year survival rate was 28% after pulmonary metastatic tumor resection [19]. For bone metastasis in gastric cancer, a metastasis rate of 3.8% was reported, and palliative chemotherapy was a significant factor for improved survival [20]. Brain metastasis was rare and no prediction was made in large cohorts. In our study, based on the analysis of 231 patients with brain metastasis, we found similar benefits from surgery and chemotherapy. Currently, chemotherapy is the standard first-line treatment for advanced gastric cancer patients and has shown good performance [21]. More than 50 years since chemotherapy was first introduced, infusional 5-FU has been accepted as the main component of most combination regimens in stage IV gastric cancer [22], while paclitaxel is a widely used second-line chemotherapy drug [23]. Adverse effects and resistance to chemotherapy in clinical practice have recently focused attention on developing combination therapy [23,24]. Further study is needed to reveal the underlying causes of adverse effects and chemotherapy resistance.

Except for the homogenous prognostic factors for all metastatic sites in our analysis, age older than 65 years, higher grade (II, III, and IV), and N4 were associated with worse survival in patients with liver metastasis. Tumor grade III and T4 stage were independent factors associated with pulmonary metastasis. T4 stage was also associated with worse survival for patients with brain metastasis. All these negative factors should be considered in the prediction of survival in patients with specific metastasis.

To improve long-term survival and quality of life, the negative influence of distant metastasis on survival must be determined. Thus, timely screening and early diagnosis of the possible metastasis is important before treatment. PET/CT has been the main strategy for distant metastasis screening in gastric cancer [25]. However, due to limited medical resources, the screening should be offered to gastric cancer patients with higher risk of distant metastasis. Thus, the prediction of possible distant metastasis is crucial in clinical practice.

Although many studies have evaluated the survival and related factors for gastric cancer patients with metastasis, few studies have investigated risk factors for distant metastasis. The risk factors for the development of bone metastasis were evaluated in a study including 1,342 patients with metastatic gastric cancer, in which 141 (10.5%) patients presented bone metastasis and predictive factors included age younger than 65 years, signet ring cell histology and location than 2/3 of stomach [13]. In our study, homogenous risk factors for all the metastatic sites were age less than 65 years, tumor in the proximal third of the stomach, higher grade, and N1 stage. Male sex, black race, and uninsured status were also associated with higher risk of liver metastasis. Histological type showed different effects on metastasis. The clinicopathological factors revealed in our study can guide the identification of patients with distant metastasis.

In addition to predictive clinicopathological characteristics, some blood tests can also be used for prediction; for example, the serum level of the bone alkaline phosphatase was reported to be correlated with bone metastasis [26]. More advanced techniques have been developed to predict distant metastasis, including high-quality image-based artificial intelligence technologies [27]. Based on radiomics analysis and selected clinical characteristics, constructed nomograms can be used to predict metastasis to the liver [28], lymph nodes [29], and peritoneum [30]. Gene expression [31] and metastasis-associated protein [32] have been studied for their value as potential predictive biomarkers for distant metastasis in gastric cancer. All these promising tools at different levels can be further applied and validated to assist prediction of metastasis.

Our work has some limitations. First, the SEER database only recorded synchronous metastatic patients; therefore, patients developing distant metastasis later in their course were not analyzed. Although our analysis revealed some important factors predicting distant metastasis in gastric cancer, only the liver, lung, bone, and brain metastatic sites were available, and the lack of data on other metastatic sites may impair the accuracy of our findings. The significant predictive factors need to be externally validated in different databases or multiple centers. Furthermore, other useful information such as genetic or clinical tests were not available in the SEER database, and these should be analyzed and incorporated into the predictive model to establish a more accurate and robust tool for patient stratification.

Conclusions

Initial distant metastasis was recorded in 32.6% of patients with gastric cancer in the SEER database. Patients with distant metastasis had significantly shorter survival than those without metastasis. Homogeneity and heterogeneity were identified in the risk factors for specific distant metastasis and the prognostic factors of gastric cancer patients. A series of factors were found to be correlated with distant metastasis, including: age, sex, race, insurance status, primary tumor site, histological type, grade, T stage, and N stage. These factors might be used in auxiliary individualized evaluation and prediction in the future. Our findings may improve individualized evaluation and prediction of gastric cancer patients.

Conflicts of interest

None.
Supplementary Data

Supplementary Table 1. P values for the results of proportion hazards assumption test.

Subject characteristics	M-Met P-value	Liver-Met P-value	Lung-Met P-value	Bone-Met P-value	Brain-Met P-value
Age	0.039	0.103	0.187	0.576	0.654
Gender	0.482	0.001	0.070	0.647	0.971
Race	0.802	0.956	0.813	0.147	0.562
Marital Status	0.716	0.091	0.516	0.226	0.845
Insurane Status	0.360	0.328	0.659	0.999	0.930
Primary site	0.381	0.475	0.695	0.329	0.568
Histology	0.263	0.587	0.218	0.718	0.993
Grade	0.097	0.160	0.006	0.904	0.340
T Stage	0.022	0.656	0.900	0.720	0.930
N Stage	0.170	0.430	0.548	0.432	0.674
Surgery	0.092	0.138	0.509	0.269	0.507
Radiation	0.178	0.243	0.043	0.804	0.462
Chemotherapy	<0.001	<0.001	<0.001	<0.001	0.900
Number of mets	0.244	–	–	–	–
Other mets	–	0.506	0.768	0.181	0.602

Supplementary Table 2. Univariable Cox regression for analyzing the prognostic factors for gastric cancer patients with distant metastases.

Subject characteristics	M-Met HR (95% CI)	P-value	Liver-Met HR (95% CI)	P-value	Lung-Met HR (95% CI)	P-value	Bone-Met HR (95% CI)	P-value	Brain-Met HR (95% CI)	P-value
Age	<65: 1.00 (Reference)	1.00								
	≥65: 1.31 (1.26–1.36)	<0.001	≥65: 1.34 (1.26–1.42)	<0.001	≥65: 1.17 (1.06–1.29)	0.001	≥65: 1.12 (1.01–1.24)	0.036	≥65: 1.14 (0.87–1.49)	0.355
Gender	Male: 1.00 (Reference)	1.00								
	Female: 0.98 (0.94–1.02)	0.333	Female: 0.95 (0.89–1.01)	0.116	Female: 1.02 (0.92–1.13)	0.702	Female: 1.04 (0.94–1.17)	0.442	Female: 1.02 (0.75–1.38)	0.894
Race	White: 1.00 (Reference)	1.00								
	Black: 1.11 (0.93–1.04)	0.597	Black: 1.16 (0.88–1.02)	0.166	Black: 1.12 (0.97–1.30)	0.135	Black: 1.16 (0.98–1.37)	0.084	Black: 1.16 (0.72–1.87)	0.540
	Others: 0.99 (0.94–1.05)	0.746	Others: 0.99 (0.91–1.09)	0.850	Others: 1.14 (0.98–1.32)	0.950	Others: 1.06 (0.91–1.24)	0.460	Others: 1.29 (0.81–2.05)	0.290
Supplementary Table 2 continued. Univariable Cox regression for analyzing the prognostic factors for gastric cancer patients with distant metastases.

Subject characteristics	M-Met	Liver-Met	Lung-Met	Bone-Met	Brain-Met			
	HR (95% CI)	P-value						
Marital status								
Married	1.00 (Reference)	1.00						
Unmarried	1.18 (1.13–1.23)	<0.001	1.15 (1.09–1.22)	<0.001	1.21 (1.10–1.34)	<0.001	1.13 (1.02–1.26)	0.025
Insurance status								
Insured	1.00 (Reference)	1.00						
Uninsured	1.05 (0.96–1.14)	0.303	1.14 (0.99–1.30)	0.067	1.07 (0.85–1.35)	0.562	1.08 (0.84–1.38)	0.548
Primary site								
Proximal third	1.00 (Reference)	1.00						
Mid	1.06 (0.99–1.14)	0.084	1.04 (0.93–1.15)	0.495	1.18 (0.97–1.43)	0.100	1.29 (1.08–1.55)	0.006
Distal third	1.02 (0.97–1.08)	0.488	1.04 (0.96–1.14)	0.328	1.18 (1.01–1.38)	0.043	1.32 (1.10–1.57)	0.002
Stomach, NOS	1.06 (1.01–1.11)	0.017	1.00 (0.93–1.07)	0.983	1.19 (1.06–1.34)	0.003	1.18 (1.04–1.33)	0.010
Overlapping	1.17 (1.09–1.26)	<0.001	1.29 (1.15–1.44)	<0.001	1.32 (1.08–1.60)	0.006	1.17 (0.95–1.46)	0.147
Histology								
Adenocarcinoma	1.00 (Reference)	1.00						
Mucous carcinoma	1.02 (0.88–1.17)	0.845	1.43 (1.11–1.85)	0.005	1.00 (0.70–1.42)	0.995	1.00 (0.47–1.14)	0.163
Signet-ring cell carcinoma	1.06 (1.01–1.11)	0.018	1.17 (1.04–1.31)	0.007	1.13 (0.99–1.30)	0.080	1.01 (0.90–1.14)	0.831
Unknown	0.67 (0.63–0.71)	<0.001	0.63 (0.58–0.69)	<0.001	1.07 (0.92–1.26)	0.372	1.07 (0.88–1.29)	0.502
Grade								
I	1.00 (Reference)	1.00						
II	1.51 (1.30–1.77)	<0.001	1.57 (1.28–1.92)	<0.001	1.24 (0.89–1.73)	0.204	0.74 (0.44–1.24)	0.251
III	1.83 (1.57–2.12)	<0.001	2.02 (1.66–2.47)	<0.001	1.65 (1.20–2.28)	0.002	0.95 (0.58–1.55)	0.825
IV	1.34 (1.09–1.65)	0.005	1.46 (1.11–1.92)	0.008	1.12 (0.65–0.94)	0.691	0.88 (0.46–1.70)	0.700
T stage								
T1	1.00 (Reference)	1.00						

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Supplementary Table 2 continued. Univariable Cox regression for analyzing the prognostic factors for gastric cancer patients with distant metastases.

Subject characteristics	M-Met	Liver-Met	Lung-Met	Bone-Met	Brain-Met			
	HR (95% CI)	P-value						
T2	0.71 (0.64–0.78)	<0.001	0.59 (0.50–0.70)	<0.001	0.90 (0.68–1.20)	0.456	0.58 (0.43–0.80)	0.001
T3	0.71 (0.66–0.76)	<0.001	0.68 (0.61–0.75)	<0.001	0.90 (0.75–1.07)	0.225	0.59 (0.69–1.01)	0.059
T4	0.92 (0.86–0.97)	0.004	0.91 (0.83–1.00)	0.043	1.18 (1.01–1.38)	0.042	1.01 (0.84–1.22)	0.932
N stage								
N0	1.00 (Reference)	1.00						
N1	1.01 (0.97–1.06)	0.572	1.09 (1.02–1.16)	0.012	0.98 (0.88–1.10)	0.758	1.09 (0.97–1.23)	0.155
N2	0.84 (0.77–0.92)	<0.001	0.99 (0.86–1.13)	0.867	0.96 (0.75–1.24)	0.745	0.93 (0.71–1.21)	0.571
N3	0.86 (0.79–0.93)	<0.001	1.01 (0.87–1.17)	0.944	1.11 (0.86–1.44)	0.410	0.95 (0.72–1.24)	0.686
Surgery								
No	1.00 (Reference)	1.00						
Yes	0.51 (0.48–0.55)	<0.001	0.51 (0.46–0.57)	<0.001	0.73 (0.57–0.92)	0.009	0.66 (0.50–0.87)	0.003
Radiation								
No/unknown	1.00 (Reference)	1.00						
Yes	0.91 (0.87–0.96)	0.001	1.01 (0.93–1.09)	0.845	0.80 (0.71–0.91)	<0.001	0.89 (0.79–0.99)	0.036
Chemotherapy								
No/unknown	1.00 (Reference)	1.00						
Yes	0.37 (0.36–0.39)	<0.001	0.37 (0.34–0.39)	<0.001	0.36 (0.32–0.40)	<0.001	0.38 (0.34–0.42)	<0.001
Number of mets								
≤1	1.00 (Reference)	1.00	–	–	–	–	–	–
>1	1.44 (1.37–1.53)	<0.001	–	–	–	–	–	–
Other mets								
No	–	–	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
Yes	–	–	1.41 (1.32–1.50)	<0.001	1.27 (1.15–1.40)	<0.001	1.01 (0.91–1.12)	0.813

Met – metastases; HR – hazard ratio; CI – confidence interval; NOS – not otherwise specified; NA – not available.
Supplementary Table 3. Univariable logistic regression for analyzing the risk factors for developing distant metastases in patients with gastric cancer.

Subject characteristics	M-Met OR (95% CI)	M-Met P-value	Liver-Met OR (95% CI)	Liver-Met P-value	Lung-Met OR (95% CI)	Lung-Met P-value	Bone-Met OR (95% CI)	Bone-Met P-value	Brain-Met OR (95% CI)	Brain-Met P-value
Age										
<65	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
≥65	0.65 (0.62–0.67)	<0.001	0.92 (0.87–0.98)	0.007	0.87 (0.79–0.96)	0.005	0.63 (0.57–0.70)	<0.001	0.57 (0.44–0.74)	<0.001
Gender										
Male	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
Female	0.83 (0.79–0.87)	<0.001	0.61 (0.57–0.65)	<0.001	0.72 (0.65–0.80)	<0.001	0.79 (0.71–0.88)	<0.001	0.59 (0.44–0.79)	<0.001
Race										
White	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
Black	0.96 (0.90–1.02)	0.193	1.18 (1.08–1.27)	<0.001	0.80 (0.69–0.93)	0.004	0.71 (0.60–0.84)	<0.001	0.51 (0.32–0.81)	0.005
Others	0.86 (0.81–0.92)	<0.001	0.74 (0.68–0.81)	<0.001	0.75 (0.65–0.87)	<0.001	0.87 (0.75–1.02)	0.080	0.34 (0.34–0.84)	0.007
Marital status										
Married	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
Unmarried	0.96 (0.92–1.01)	0.121	0.97 (0.92–1.04)	0.392	1.06 (0.96–1.17)	0.279	0.99 (0.89–1.10)	0.841	0.92 (0.70–1.21)	0.548
Insurance status										
Insured	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
Uninsured	1.93 (1.73–2.16)	<0.001	1.36 (1.18–1.56)	<0.001	1.45 (1.16–1.81)	0.001	1.50 (1.19–1.90)	0.001	1.61 (0.92–2.83)	0.096
Primary site										
Proximal third	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
Mid	0.87 (0.81–0.94)	0.001	0.57 (0.51–0.63)	<0.001	0.47 (0.39–0.57)	<0.001	0.76 (0.63–0.91)	0.003	0.27 (0.15–0.50)	<0.001
Distal third	0.74 (0.69–0.79)	<0.001	0.52 (0.47–0.56)	<0.001	0.40 (0.34–0.47)	<0.001	0.46 (0.39–0.55)	<0.001	0.17 (0.10–0.31)	<0.001
Stomach, NOS	1.07 (1.01–1.13)	0.020	0.67 (0.62–0.72)	<0.001	0.63 (0.60–0.72)	<0.001	0.63 (0.59–0.67)	0.089	0.45 (0.45–0.82)	0.001
Overlapping	1.40 (1.28–1.52)	<0.001	0.70 (0.62–0.79)	<0.001	0.69 (0.57–0.85)	<0.001	0.80 (0.64–0.99)	0.037	0.26 (0.12–0.56)	0.001
Histology										
Adenocarcinoma	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00	1.00 (Reference)	1.00
Mucous carcinoma	1.00 (0.84–1.19)	0.977	0.57 (0.44–0.74)	<0.001	1.06 (0.74–1.50)	0.760	0.96 (0.63–1.47)	0.856	0.48 (0.12–1.93)	0.300
Supplementary Table 3 continued.

Univariable logistic regression for analyzing the risk factors for developing distant metastases in patients with gastric cancer.

Subject characteristics	M-Met	Liver-Met	Lung-Met	Bone-Met	Brain-Met					
	OR (95% CI)	P-value								
Signet-ring cell carcinoma	1.31 (1.24–1.39)	<0.001	0.29 (0.26–0.33)	<0.001	0.75 (0.66–0.87)	<0.001	1.63 (1.44–1.84)	<0.001	0.92 (0.65–1.31)	0.640
Unknown	0.46 (0.43–0.49)	<0.001	0.66 (0.61–0.71)	<0.001	0.51 (0.44–0.59)	<0.001	0.45 (0.37–0.54)	<0.001	0.47 (0.30–0.72)	0.001
Grade										
I	1.00 (Reference)	1.00								
II	4.22 (3.66–4.87)	<0.001	4.32 (3.60–5.19)	<0.001	3.52 (2.57–4.83)	<0.001	4.42 (2.65–7.39)	<0.001	20.42 (2.82–147.80)	0.003
III	7.04 (6.15–8.07)	<0.001	3.62 (3.03–4.33)	<0.001	3.60 (2.65–4.88)	<0.001	10.32 (6.29–16.95)	<0.001	17.68 (2.47–126.74)	0.004
IV	5.46 (4.44–6.71)	<0.001	4.07 (3.12–5.30)	<0.001	2.16 (1.28–3.62)	<0.004	5.71 (2.96–10.99)	<0.001	29.97 (3.68–243.96)	0.001
T stage										
T1	1.00 (Reference)	1.00								
T2	0.63 (0.57–0.69)	<0.001	0.41 (0.35–0.48)	<0.001	0.38 (0.29–0.50)	<0.001	0.46 (0.34–0.62)	<0.001	0.52 (0.25–1.08)	0.078
T3	0.88 (0.82–0.94)	<0.001	0.65 (0.58–0.72)	<0.001	0.57 (0.48–0.68)	<0.001	0.77 (0.64–0.93)	<0.001	0.75 (0.46–1.22)	0.248
T4	2.40 (2.24–2.58)	<0.001	1.42 (1.29–1.55)	<0.001	1.27 (1.08–1.48)	0.003	1.15 (0.96–1.38)	0.141	0.95 (0.58–1.57)	0.853
N stage										
N0	1.00 (Reference)	1.00								
N1	2.79 (2.65–2.95)	<0.001	2.52 (2.35–2.70)	<0.001	2.49 (2.23–2.79)	<0.001	2.64 (2.34–2.98)	<0.001	1.83 (1.83–3.40)	<0.001
N2	0.95 (0.87–1.05)	0.320	0.83 (0.73–0.95)	0.008	0.74 (0.57–0.95)	0.017	0.82 (0.63–1.07)	0.150	0.90 (0.46–1.73)	0.743
N3	1.06 (0.97–1.17)	0.196	0.72 (0.62–0.84)	<0.001	0.74 (0.58–0.96)	0.023	0.84 (0.65–1.10)	0.210	1.21 (0.67–2.18)	0.523

Met – metastases; OR – odds ratio; CI – confidence interval; NOS – not otherwise specified.
References:

1. Thrift AP, El-Serag HB: Burden of gastric cancer. Clin Gastroenterol Hepatol, 2020; 18(3): 534–42
2. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2019. Cancer J Clin, 2019; 69(1): 7–34
3. Rawla P, Barsouk A: Epidemiology of gastric cancer: Global trends, risk factors and prevention. Prz Gastroenterol, 2019; 14(1): 26–38
4. Leiting JL, Grotz TE: Advancements and challenges in treating advanced gastric cancer in the West. World J Gastro Oncol, 2019; 11(9): 652–64
5. Bernardi N, Creemers GJ, Nieuwenhuijsen GAP et al: No improvement in median survival for patients with metastatic gastric cancer despite increased use of chemotherapy. Ann Oncol, 2013; 24(12): 3056–60
6. Qiu M, Shi S, Chen Z et al: Frequency and clinicopathological features of metastasis to liver, lung, bone, and brain from gastric cancer: A SEER-based study. Cancer Med, 2018; 7(8): 3662–72
7. Ma T, Wu Z, Xu H et al: Nomograms for predicting survival in patients with metastatic gastric adenocarcinoma who undergo palliative gastrectomy. BMC Cancer, 2019; 19(3): 852
8. Omari J, Drewes R, Ortther M et al: Treatment of metastatic gastric adenocarcinoma with image-guided high-dose rate, interstitial brachytherapy as second-line or salvage therapy. Diagn Interv Radiol, 2019; 25(5): 360–67
9. Markar SR, Mackenzie H, Mikhail S et al: Surgical resection of hepatic metastases from gastric cancer: Outcomes from national series in England. Gastric Cancer, 2017; 20(2): 379–86
10. Liu J, Li J, Zhai R et al: Predictive factors improving survival after gastric and hepatic surgical treatment in gastric cancer patients with synchronous liver metastases. Chin Med J (Engl), 2012; 125(2): 165–71
11. Montagnani F, Crivelli F, Aprile G et al: Long-term survival after liver metastasectomy in gastric cancer: Systematic review and meta-analysis of prognostic factors. Cancer Treat Rev, 2018; 69: 11–20
12. Kong JP, Lee J, Yi C et al: Lung metastases in metastatic gastric cancer: Pattern of lung metastases and clinical outcome. Gastric Cancer, 2012; 15(3): 292–98
13. Kim YI, Kim SH, Kim JW et al: Gastric cancer with initial bone metastasis: A distinct group of diseases with poor prognosis. Eur J Cancer, 2014; 50(16): 2810–21
14. Tamura S, Takeno A, Miki H et al: Gastric cancer with brain metastasis and the role of human epidermal growth factor 2 status. Oncol Lett, 2018; 15(4): 5787–91
15. Cavaenna L, Seghini P, Di Nunzio C et al: Gastric cancer with brain metastasis: The role of humaiden epidermal growth factor 2 status. Oncol Lett, 2014; 54(4): 578–91
16. Claassen YM, Bastiaannet E, Hartgrink HH et al: International comparison of treatment strategy and survival in metastatic gastric cancer. BIS Open, 2018; 3(1): 56–61
17. Zhang F, Huang X, Song Y et al: Conversion surgery for stage IV gastric cancer. Front Oncol, 2019; 9: 1158
18. Kataoka K, Kinoshita T, Moehler M et al: Current management of liver metastases from gastric cancer: What is common practice? New challenge of EORTC and JCOG. Gastric Cancer, 2017; 20(5): 904–12
19. Shiono S, Sato T, Hori H et al: Outcomes and prognostic factors of survival after pulmonary resection for metastatic gastric cancer. Eur J Cardiothorac, 2013; 43(1): e13–16
20. Turkoz FP, Solak M, Killip 5 et al: Bone metastasis from gastric cancer: The incidence, clinicopathological features, and influence on survival. J Gastric Cancer, 2014; 14(3): 164–72
21. Liu Y, Chen L, Zhang R et al: Efficacy and safety of elemente combined with chemotherapy in advanced gastric cancer: A Meta-analysis. Medicine (Baltimore), 2020; 99(11): e19481
22. Digikia A, Wagner AD: Advanced gastric cancer: Current treatment landscape and future perspectives. World J Gastroenterol, 2016; 22(8): 2403–14
23. Ajanj IA, D’Amico TA, Alhannan K et al: Gastric cancer, Version 3.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw, 2016; 14(10): 1286–312
24. Biagioni A, Skalamera I, Peri S et al: Update on gastric cancer treatment and gene therapies. Cancer Metastasis Rev, 2019; 38(3): 537–48
25. Kawanaka Y, Kitajima K, Fukushima K et al: Added value of pretreatment (18)F-FDG PET/CT for staging of advanced gastric cancer: Comparison with contrast-enhanced MDCT. Eur J Radiol, 2016; 85(5): 989–95
26. Lim SM, Kim YN, Park KH et al: Bone alkaline phosphatase as a surrogate marker of bone metastasis in gastric cancer patients. BMC Cancer, 2016; 16: 385
27. Ma W, Zhao Y, Ji Y et al: Breast cancer molecular subtype prediction by mammographic radiomic features. Acad Radiol, 2019; 26(2): 196–201
28. Tsurumaru D, Nishimuta Y, Muraki T et al: Gastric cancer with synchronous and metachronous hepatic metastasis predicted by enhancement pattern on multiphasic contrast-enhanced CT. Eur J Radiol, 2018; 108: 165–71
29. Wang Y, Liu W, Yu Y et al: CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Eur Radiol, 2020; 30(2): 976–86
30. Liu S, He J, Liu S et al: Radiomics analysis using contrast-enhanced CT for preoperative prediction of occult peritoneal metastasis in advanced gastric cancer. Eur Radiol, 2020; 30(1): 239–46
31. Jin X, Zhu Z, Shi Y: Metastasis mechanism and gene/protein expression in gastric cancer with distant organs metastasis. Bull Cancer, 2014; 101(1): E1–12
32. Okugawa Y, Mohri Y, Tanaka K et al: Metastasis-associated protein is a predictive biomarker for metastasis and recurrence in gastric cancer. Oncol Rep, 2016; 36(4): 1893–900