Multilocus sequencing-based evolutionary analysis of 52 strains of Burkholderia pseudomallei in Hainan, China

Y. Fang1,2,3,*, Z. Hu1,*, H. Chen4, J. Gu5, H. Hu2,3, L. Qu2,3 and X. Mao1

1Department of Clinical Microbiology and Immunology of College of Medical Laboratory Science, Third Military Medical University, Chongqing, 400038, China; 2Department of Respiratory, No.161 Hospital of PLA, Wuhan, 430012, China; 3 Department of Respiratory, Wuhan General Hospital of PLA, Wuhan, 430070, China; 4Department of Clinical Laboratory, People’s Hospital of Sanya City, Hainan Province 572000, China and 5National Engineering Research Centre for Immunobiological Products, Third Military Medical University, Chongqing, 400038, China

Abstract

Previously, we reported a phylogenetic study of 98 Burkholderia pseudomallei clinical isolates from Hainan, China. Here, we update the B. pseudomallei strain library with 52 strains from newly identified cases dating from 2014 to 2017, analysed by multilocus sequence typing. Twenty-two sequence types (STs) were identified from the 52 cases, illustrating high genetic diversity; five of them (ST1480, ST1481, ST1482, ST1483 and ST1484) were novel. ST46, ST50 and ST58 predominated (34.6%) as was the case in the previous study (35.7%). An e-BURST map of the ST profiles of the two collections of isolates showed their genetic foundation to be largely unchanged. Neighbour-joining tree analysis was suggestive of a close phylogenetic relationship between the novel STs from this series and those first reported from Hainan (ST1105, ST1099, ST55 and ST1095). Moreover, the two novel STs (1481 and 1483) showed close similarity to ST58 which originated in Thailand indicating a close relationship between B. pseudomallei strains from both countries. The previously described allele profiles gmhD36 and lppA68 were found for the first time in our strain collections. Our study emphasises the importance of monitoring the epidemiological status and evolutionary trends of B. pseudomallei in China.

Burkholderia pseudomallei is a select agent (Tier 1) as classified by the US Centers for Disease Control and Prevention (CDC), which can infect both animals and humans and causes the disease melioidosis [1]. Melioidosis was generally thought to be endemic in Southeast Asia and Northern Australia but is now known to be distributed on a much wider scale [2–5]. Clinical manifestations of melioidosis vary greatly, from pneumonia to sepsis, with a high mortality rate of 40%, and a clinical relapse rate up to 20% [6–8]. Hainan is the main melioidosis-endemic area of China and covers an area of 33 210 km² with a population of over 9 million residents [8–10].

Multilocus sequence typing (MLST) has been used for the molecular epidemiological study of B. pseudomallei since 2003, and MLST data have proved to be easy-to-use, unambiguous and readily comparable across laboratories [11]. To date, approximately 1453 sequence types (STs) of B. pseudomallei have been identified worldwide, and the number of new cases identified by MLST increases each year. We have adopted this methodology as a standard analysis strategy for all B. pseudomallei strains isolated from cases of melioidosis in Hainan and previously published a phylogenetic and epidemiological study on 98 such isolates (2002–2014) [11]. Here, we report further phylogenetic analysis of 52 strains from cases in the province typed by MLST in the last 3 years to examine their genetic stability over time.

Fifty-two B. pseudomallei strains were isolated from melioidosis cases between January 2014 and August 2017 in Hainan Island; two were first isolated from non-coastal cities (Baisha and Qiongzhou). Most isolates were recovered from blood (63.5%) and pus (34.6%), others were from sputum (3.8%) and urine samples (3.8%) (Table 1). Clinical samples were cultured on Columbia blood agar incubated at 37°C for 2–3 days. B. pseudomallei identification was confirmed by the Vitek 2 Compact system (BioMerieux, Missouri, USA), and 16S rRNA PCR as previously described [11].

For MLST, PCR amplification of seven housekeeping genes was performed as previously published [11]. The sequence data for each allele were trimmed to a determined length and defined as relative allele numbers according to the B. pseudomallei MLST database (https://pubmlst.org/bpseudomallei). STs were assigned and all strain numbers were deposited in the database.

Clinical characteristics and patient demographic data were analysed in Microsoft Excel 2016. The phylogenetic relationships of all strains were generated using e-BURST v3 and
Strain	Year	ST^a	ace	gltB	gltD	lepA	lipA	narK	ndh	Region of China^b	Source	Manifestation
BPC102	2014	1104	3	1	36	3	5	2	3	Haikou	Blood	Pneumonia
BPC103	2014	658	1	4	2	1	1	4	3	Haikou	Blood	Septicaemia
BPC104	2014	58	3	1	5	1	1	4	1	Sanya	Sputum	Septicaemia
BPC105	2014	1096	3	4	28	1	1	3	1	Changjiang	Pus	Pneumonia
BPC106	2014	46	3	1	2	1	1	3	3	Haikou	Blood	Pneumonia
BPC107	2014	58	3	1	5	1	1	4	1	Danzhou	Urine	Pneumonia
BPC108	2014	1105	1	4	2	3	5	4	1	Baisha	Pus	Pneumonia
BPC109	2014	177	1	1	4	3	1	3	1	Changjiang	Blood	Sepsis
BPC110	2014	1094	1	2	28	3	1	9	3	Danzhou	Blood	Parotid infection
BPC111	2014	58	3	1	5	1	1	4	1	Ledong	Blood	Sepsis
BPC112	2014	354	1	1	3	2	1	4	1	Haikou	Blood	Pneumonia
BPC113	2014	1480	3	3	2	1	1	3	3	Dongfang	Blood	Sepsis
BPC114	2015	1099	1	12	3	2	1	2	1	Haikou	Blood	Pneumonia
BPC115	2015	1095	1	12	3	2	1	2	3	Haikou	Pus	Pneumonia
BPC116	2015	1106	1	2	28	3	8	4	3	Wenchang	Pus	Sepsis
BPC117	2015	50	3	1	2	1	1	4	3	Dongfang	Pus	Pneumonia
BPC118	2015	58	3	1	5	1	1	4	1	Sanya	Pus	Pneumonia
BPC119	2015	658	1	4	2	1	1	4	3	Sanya	Blood	Pneumonia
BPC120	2015	1108	3	1	2	68	1	4	3	Sanya	Blood	Pneumonia
BPC121	2015	58	3	1	5	1	1	4	1	Sanya	Sputum	Sepsis
BPC122	2015	70	3	4	11	3	5	4	6	Sanya	Blood	Soft tissue infection
BPC123	2015	50	3	1	2	1	1	4	3	Sanya	Pus	Soft tissue infection
BPC124	2015	562	1	1	4	1	1	29	1	Sanya	Pus	Pneumonia
BPC126	2015	1481	3	1	5	1	5	4	1	Qionghai	Pus	Pneumonia
BPC127	2015	1482	3	4	2	3	5	4	6	Sanya	Blood	Pneumonia
BPC128	2015	1483	1	1	11	1	5	4	1	Qionghai	Blood	Pneumonia
BPC129	2015	50	3	1	2	1	1	4	3	Sanya	Blood	Pneumonia
BPC130	2015	50	3	1	2	1	1	4	3	Sanya	Blood	Sepsis
BPC131	2015	50	3	1	2	1	1	4	3	Qionghai	Blood	Pneumonia
BPC132	2015	366	3	1	2	3	8	4	3	Sanya	Pus	Pneumonia
BPC133	2015	306	1	2	3	1	1	2	1	Sanya	Pus	Pneumonia
BPC134	2015	1091	3	4	2	1	1	4	3	Sanya	Blood	Pneumonia
BPC135	2015	366	3	1	2	3	8	4	3	Sanya	Blood	Pneumonia
BPC136	2015	930	1	1	3	2	5	1	1	Sanya	Blood	Pneumonia
BPC137	2015	46	3	1	2	1	1	3	3	Sanya	Blood	Pneumonia
BPC138	2015	46	3	1	2	1	1	3	3	Sanya	Blood	Pneumonia
BPC139	2015	46	3	1	2	1	1	3	3	Sanya	Blood	Pneumonia
BPC140	2015	46	3	1	2	1	1	3	3	Sanya	Blood	Pneumonia
BPC141	2015	46	3	1	2	1	1	3	3	Sanya	Blood	Pulmonary abscess
BPC142	2015	46	3	1	2	1	1	3	3	Sanya	Blood	Pneumonia
BPC143	2015	1109	1	2	2	1	1	4	1	Qionghai	Blood	Pneumonia
BPC144	2015	658	1	4	2	1	1	4	3	Sanya	Blood	Pneumonia
BPC145	2015	658	1	4	2	1	1	4	3	Sanya	Blood	Pneumonia

(Continued)
compared against all strains in the database with JAVA 8.0. The
STs of 98 strains previously described from Hainan [11] were
also analysed to show the relationship and mutational trend
between the two groups of strains. The interactive tree of life
(ITOL) v3 (https://pubmlst.org/) was used
to display phylogenetic relationships. This tool generates neighbour-joining trees from concatenated nucleo-
tide sequences based on the pair-wise differences in the allelic
profiles of strains [12].

The distribution of melioidosis cases across the 17 city areas
of Hainan Island between the two surveys 2002–2014 (black)
and 2014–2017 (red) is shown in Supplementary Fig. S1. The
ages among the 52 more recent cases ranged from 1 to 79 years
(median – 47 years); the majority were male (76.9%) and farmers
(71.2%). Pneumonia (71.2%) and sepsis (13.5%) remained the
major manifestations of melioidosis, with some cases presenting
with abscesses (5.8%) and soft tissue infections (7.7%). Seven
deaths occurred following pneumonia or sepsis, and old age
(⩾ 58 years); two of the deaths were associated with novel STs
(Table 1).

All 52 strains were resolved into 22 STs, five of which (ST1480,
ST1481, ST1482, ST1483 and ST1484) were novel (Table 1). The
dominant STs occurring in ⩾ 4 cases were ST50 (seven cases;
13.5%), ST58 (six; 11.5%), ST46 (five; 9.6%) and ST658 (four;
7.7%); these four STs accounted for 42.3% of all cases and the
remainder were associated with ⩽3 cases. This distribution reflects
that found in the first survey where the dominant STs were ST46
(13 cases; 13.2%), ST50 (11; 11.2%) and ST58 (11; 11.2%),
accounting for 35.7% in all 98 strains of B. pseudomallei.

The pair-wise differences in the allelic profiles of the STs iden-
tified in both strain collections are shown in Table 1. Half of the cases were clustered into a single dominant CC,
with ST50 as founder, and ST46 as sub-founder. Likewise three
of the novel STs in the present study (ST1480, ST1481 and
ST1484) and five novel STs from the first study (ST1345,
ST1346, ST1347, ST1350 and ST1351) were grouped in the
same CC (Fig. 1b). Furthermore, some novel STs originated
from the same founders but generated different gene types:
ST1484, ST1345 and ST1350 (founder: ST51), ST1480 and
ST1346 (founder: ST46), ST1481 and ST1351 (founder: ST211)
(Fig. 1b). Additionally, ST1482 and ST1483 were grouped in
different CCs; ST1482 showed close linkage to both ST70 and
ST541, both of which were first isolated from Thailand and
ST1483 had a relatively close relationship with ST1349, an ST
related to ST562, which was shared by Australian and Chinese
strains of B. pseudomallei [10].

The neighbour-joining tree shows the phylogenetic relation-
ship among the 22 STs identified in strains from this study
(Fig. 2). The five novel STs were genetically close to ST1105,
ST1099, ST55 and ST58, and ST1096 (all first isolated from
China, except for ST58, which was first isolated from Thailand).
The dominant allele profiles were mostly the same as previously
found, except for ndh-3; allele ndh-1 predominated in the first
strain collection. Some rare alleles were evident between the
studies, such as gmhD-36 (ST1196) and lepA-68 (ST1108) (Supplementary
Table S1).

It is clear that B. pseudomallei is no longer restricted to tropical
regions but is increasingly found in non-endemic areas [6].
Melioidosis is relatively uncommon in China but most reported
human cases in the country are from the tropical Hainan island
[8–10], and as in other countries, pneumonia remains the most
common presentation of the disease [7].

MLST has been repeatedly shown to be a simple and share-
able strategy for molecular epidemiological studies of B. pseudo-
mallei in various regions [2, 11]. Previously, we published an
MLST study of 98 B. pseudomallei strains from Hainan, and
here we have characterised 52 recently isolated strains and

Strain	Year	ST*	allele at the following locus	Source	Manifestation
BPC163	2016	50	3 1 2 1 1 4 3	Sanya	Pus
BPC164	2016	50	3 1 2 1 1 4 3	Sanya	Blood
BPC165	2016	211	3 3 3 1 1 4 1	Sanya	Blood
BPC166	2016	1446	3 1 3 1 1 4 1	Ledong	Pus
BPC167	2016	58	3 1 3 1 1 4 1	Sanya	Pus
BPC168	2016	1111	3 3 4 1 1 4 1	Baoting	Blood
BPC169	2016	2017	3 3 4 1 1 4 1	Baoxing	Blood
BPC170	2016	1091	3 3 4 1 1 4 1	Lingshui	Blood
BPC171	2016	55	3 3 4 1 1 4 1	Ledong	Pus
BPC172	2016	46	3 3 4 1 1 4 1	Lingshui	Pus
BPC173	2016	48	3 3 4 1 1 4 1	Lingshui	Pus
BPC174	2016	1484	3 3 4 1 1 4 1	Lingshui	Blood

*The numbers in bold represent the novel STs, the death cases are labelled with underscore.

The shaded regions represent the regions which were identified as isolation locations in Hainan Island.

Table 1. (Continued.)
identified five novel STs. An e-BURST map of the 150 strains from both collections showed a clonal cluster with ST50 (first identified in China) as the founder genotype and that the genetic structure had remained largely unchanged over the 16-year period. Neighbour-joining tree analysis also suggests that recently emergent novel STs are closely related to some of the historical STs first isolated from Hainan Island. The linkage of two of the novel STs (1481 and 1483) to ST58, originating from Thailand, which has a close interplay with China [13]. Hainan attracts millions of tourists per year, which likely increases the risk of spreading infection among wider populations. A few melioidosis cases related to a history of travel in

Fig. 1. e-BURST analysis of the *B. pseudomallei* strains. (a) MLST data of 52 STs in this study. The primary founder (yellow), ST48, is positioned centrally in the cluster and subgroup founder (blue) is ST50. Strain groups are connected by dark lines and the five novel STs are highlighted by red circles. Dot diameter reflects the number of cases. (b) e-BURST of sequence types for combined 150 strains from both surveys. Novel STs highlighted by red circles and green circles, respectively. Dot diameter reflects the number of cases.
Hainan have been recorded by local hospitals in recent years (unpublished observations). In addition, the communications and commerce activities between the countries may promote the interaction of *B. pseudomallei* with different genetic backgrounds, and possibly give rise to the evolution of new gene types [13, 14]. No correlation was found between STs and geographic location, isolation source and clinical outcome of the patients but further genomic analysis may reveal hitherto unrecognised relationships [15].

In conclusion, this study has confirmed the relative genetic stability of *B. pseudomallei* strains in Hainan over a 15-year period. With the exception of the appearance of some novel STs, the clonal populations have remained mostly conserved but further monitoring of population structures and evolutionary trends through cooperative research with other endemic areas in the region is warranted.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/S0950268818002741.

Acknowledgements. We are grateful to Dr Erin Price (the curator of the *B. pseudomallei* MLST database, Royal Darwin Hospital Campus, Australia) for useful suggestions during the analysis.

Financial support. This work was supported by the National Natural Science Foundation of China (grant numbers 81772141 and 81471914).

Conflict of interest. None.

Ethical standards. This study was approved by the Human Research Ethics Committee of the Third Military Medical University, which is a member of the Chongqing City Ethics Committees of China. All clinical cases were anonymised without personal information.

References

1. White NJ (2003) Melioidosis. The Lancet **361**, 1715–1722.
2. Tellapragada C et al. (2016) Unravelling the molecular epidemiology and genetic diversity among *Burkholderia pseudomallei* isolates from South India using multi-locus sequence typing. *PLoS ONE* **11**, e0168331.
3. Sarovich DS et al. (2016) Phylogenomic analysis reveals an Asian origin for African *Burkholderia pseudomallei* and further supports melioidosis endemicity in Africa. *mSphere* **1**, e00089-15.
4. Currie BJ and Kaeści M (2016) Epidemiology: a global picture of melioidosis. *Nature* **529**, 290–291.
5. Doker TJ et al. (2015) Contact investigation of melioidosis cases reveals regional endemicity in Puerto Rico. *Clinical Infectious Diseases* **60**, 243–250.
6. Limmathurotsakul D et al. (2016) Predicted global distribution of *Burkholderia pseudomallei* and burden of melioidosis. *Nature Microbiology* **1**, 15008.
7. McLeod C et al. (2015) Clinical presentation and medical management of melioidosis in children: a 24-year prospective study in the Northern Territory of Australia and review of the literature. *Clinical Infectious Diseases* **60**, 21–26.
8. Fang Y et al. (2015) Melioidosis in Hainan, China: a retrospective study. *Transactions of the Royal Society of Tropical Medicine and Hygiene* **109**, 636–642.
9. Yang S et al. (1998) Prevalence of human melioidosis on Hainan Island in China. *Microbiology and Immunology* **42**, 651–654.
10. Li L, Lu Z and Han O (1994) [Epidemiology of melioidosis in China]. *Zhonghua Liu Xing Bing Xue Za Zhi* **15**, 292–295.
11. **Fang Y et al.** (2016) Multilocus sequence typing of 102 *Burkholderia pseudomallei* strains isolated from China. *Epidemiology and Infection* **144**, 1917–1923.

12. **Letunic I and Bork P** (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. *Nucleic Acids Research* **44**, W242–W245.

13. **Chen H et al.** (2015) *Burkholderia pseudomallei* sequence type 562 in China and Australia. *Emerging Infectious Diseases* **21**, 166–168.

14. **Price EP et al.** (2016) Unprecedented melioidosis cases in Northern Australia caused by an Asian *Burkholderia pseudomallei* strain identified by using large-scale comparative genomics. *Applied and Environmental Microbiology* **82**, 954–963.

15. **Nandi T et al.** (2010) A genomic survey of positive selection in *Burkholderia pseudomallei* provides insights into the evolution of accidental virulence. *PLoS Pathogens* **6**, e1000845.