Unexpected role of lipocalin-type prostaglandin D synthase in brain
Regulation of glial cell migration and morphology

Kyoungcho Suk
Department of Pharmacology; Brain Science and Engineering Institute; Kyungpook National University School of Medicine; Daegu, Korea

Lipocalin-type prostaglandin D synthase (L-PGDS) is one of the most abundant proteins in the cerebrospinal fluid. Nevertheless, its role in the central nervous system is far from clear. Here, we present evidence that L-PGDS induces glial cell migration and morphological changes in vitro and in vivo. We also identified myristoylated alanine-rich C-kinase substrate (MARCKS), heat shock proteins and actin as L-PGDS-binding proteins, demonstrating that MARCKS/Akt/Rho/Jnk pathways are involved in the L-PGDS actions in glia. We further show that the cell migration-promoting activity of L-PGDS is independent of PGD2 production. The results suggest a novel non-enzymatic function of L-PGDS protein in brain inflammation, and may have an impact on glial cell biology and brain pathology related with reactive gliosis. L-PGDS is a potential drug target that can be exploited for therapeutic intervention of glia-driven neuroinflammation and related diseases.

Keywords: glia, cell migration, morphology, L-PGDS, MARCKS, neuroinflammation, cerebrospinal fluid

Submitted: 02/24/12
Revised: 03/08/12
Accepted: 04/03/12
http://dx.doi.org/10.4161/cam.20251
Correspondence to: Kyoungcho Suk; Email: ksuk@knu.ac.kr

Commentary to: Lee S, Jang E, Kim JH, Kim JH, Lee WH, Suk K. Lipocalin-type prostaglandin D2 synthase protein regulates glial cell migration and morphology through myristoylated alanine-rich C-kinase substrate: prostaglandin D2-independent effects. J Biol Chem 2012; 287:9414–28; PMID:22753633; http://dx.doi.org/10.1074/jbc.M111.330662

L-PGDS protein present in cerebrospinal fluid or locally secreted in the inflammatory site may modulate glial recruitment into the injury site in the CNS. In an attempt to elucidate the molecular mechanisms underlying the L-PGDS-induced glial cell migration, L-PGDS-interacting proteins were identified by coimmunoprecipitation followed by liquid
Chromatography and tandem mass spectrometry (LC-MS/MS) analysis. In order to identify the L-PGDS-binding proteins on or near the cell surface, intact glial cells were treated with L-PGDS protein, thoroughly washed prior to formaldehyde-mediated crosslinking. L-PGDS-treated glial cells were then lysed and immunoprecipitated using the anti-L-PGDS antibody. The proteins coimmunoprecipitated with L-PGDS were separated by PAGE and visualized by silver staining, which were then identified with LC-MS/MS analysis. MARCKS, actin and a group of heat shock proteins were identified as the major L-PGDS-binding proteins (Table 1). The interaction between L-PGDS and MARCKS was confirmed by a separate immunoprecipitation and western blot analysis. An important role of MARCKS in the L-PGDS-induced glial migration was demonstrated by knocking down MARCKS expression using siRNA. MARCKS knockdown partially abrogated

Table 1. List of proteins coimmunoprecipitated with L-PGDS

Accession number*	Protein name	Symbol	Peptide hit**
IPI00554929	Heat shock protein HSP 90-β	Hsp90ab1	31
IPI00110850	Actin, cytoplasmic 1	Actb	25
IPI00223357	Heat shock cognate 71 kDa protein	Hspa8	12
IPI00319992	78 kDa glucose-regulated protein	Hspa5	7
IPI00462072	α-enolase	Eno1	7
IPI00129526	Hsp90b1 endoplasm	Hsp90b1	5
IPI00275539	Reticulon 4	Rtn4	4
IPI00229534	Myristoylated alanine-rich C-kinase substrate	Marcks	4
IPI00111560	Isoform 1 of protein SET	Set	3
IPI00115679	Isoform 2 of neutral α-glucosidase AB	Ganab	3
IPI00133903	Stress-70 protein, mitochondrial	Hsp9a9	2
IPI00604969	Titin isoform N2-A	Tnt	2

*SWISS-PROT accession numbers are listed. **Number of peptide hit identified by LC-MS/MS analysis. In brief, NIH3T3 fibroblast cells were treated with the recombinant L-PGDS protein (1 μg/ml), and then crosslinked with 1% formaldehyde for 1 h and rinsed twice with PBS. Cells were lysed in triple-detergent lysis buffer (50 mM TRIS-HCl, pH 8.0; 150 mM NaCl; 0.02% sodium azide; 0.1% SDS; 1% Nonidet P-40; 0.5% sodium deoxycholate; and 1 mM phenylmethyl sulfonyl fluoride). The lysates were centrifuged for 20 min at 4°C, and the supernatants were collected. The protein concentration in the cell lysates was determined using the Quant-iT Protein Assay kit (Molecular Probes). To remove nonspecific binding proteins in the lysates, the samples were incubated in a ~30 μl packed volume of recombinant protein G-agarose (PGA) for 1 h at 4°C. After a brief centrifugation, supernatants were collected and then incubated with anti-L-PGDS antibody (1 μg/ml; Cayman Chemical) for 4 h at 4°C. PGA (30 μl) was then added and incubated for 4 h. Afterwards, L-PGDS-Ab-PGA complexes were washed three times with wash buffer (50 mM HEPES, 150 mM NaCl, 0.1% Triton X-100 and 10% glycerol). For the identification of coimmunoprecipitated proteins, the immunoprecipitation samples were separated by electrophoresis on a 10% polyacrylamide gel and visualized by silver staining. The protein band of interest was excised from the silver-stained gel for in-gel tryptic digestion. The excised gel slices were destained and shrunk by dehydration in acetonitrile and dried in a vacuum centrifuge. Proteins within the shrunk gel slices were then digested overnight with trypsin at a substrate/enzyme ratio of 10:1 (wt/wt) in 25 mM ammonium bicarbonate (pH 8.0). The enzyme reaction was terminated by the addition of 0.1% formic acid in water. Peptides from gel pieces were extracted by sonication for 10 min and supernatants containing the peptides were transferred to new tubes. Peptides were analyzed using a liquid chromatography (LC) and tandem mass spectrometry (MS/MS) system with reverse-phase LC, which consisted of a Surveyor MS pump (Thermo Electron), a Spark autosampler (Spark Holland), and a Finnigan LTQ linear ion-trap mass spectrometer (Thermo Electron) equipped with nanospray ionization sources. All MS/MS data were searched against the IPI mouse protein database (version 3.16) using the SEQUEST algorithm (Thermo Electron) incorporated into BioWorks software (version 3.2).
the L-PGDS effects on glial cell migration. Further studies using pharmacological inhibitors, dissection of intracellular signal transduction pathways, and morphological analysis revealed that L-PGDS induced glial cell migration via MARCKS/Akt/Rho/Jnk pathways, leading to augmented formation of actin filaments and focal adhesion (Fig. 1). The list of proteins co-immunoprecipitated with L-PGDS also included heat shock proteins, actin, α-enolase and reticulon-4. However, mechanistic involvement of these proteins in the L-PGDS actions in glia remains to be determined. Heat shock proteins and actin may indirectly interact with L-PGDS through membrane-anchoring adaptor proteins (Fig. 1), suggesting that stress response and actin cytoskeleton may be associated with L-PGDS effects on glial cell morphology and motility. α-enolase is a glycolytic enzyme that is expressed in most tissues.14 α-enolase has been identified as an autoantigen in Hashimoto encephalopathy, asthma and Behcet disease. It is also known as the Myc-binding protein-1 (MBP1), which regulates c-myc activity. The interaction between L-PGDS and α-enolase has to be confirmed and deserves further investigation. Reticulon-4, also known as Nogo, is an inhibitor of neurite outgrowth in CNS.15 Reticulon-4 is associated with endoplasmic reticulum, and has a potent inhibitory effect on neurite outgrowth, which blocks the CNS regeneration. Membrane-associated reticulon-4 binds to its receptor (NgR) to inhibit axon outgrowth. Blockade of reticulon-4 during neuronal damage is thought to enhance restoration of damaged neurons. As the neurite outgrowth requires local movement of cellular processes, interaction between L-PGDS and reticulon-4 may regulate axonal outgrowth. The precise role of reticulon-4 in the L-PGDS actions may need to be clarified by further investigation.

Although much of the findings in the study by Lee et al. were based on in vitro experiments, the effect of L-PGDS on glial migration was also determined in vivo. When L-PGDS protein was stereotaxically injected into the specific regions of the mouse brain such as striatum or cortex, the number of GFAP-positive astrocytes in the peri-region of the L-PGDS-injected site was significantly higher compared with the vehicle-injection (Fig. 2). The results are based on immunofluorescence detection of GFAP-positive astrocytes from the six independent tissue sections per animal. Astrocyte count obtained from three different animals per group (vehicle vs. L-PGDS-injected mice) showed statistically significant differences. These results support that L-PGDS enhances glial migration and accumulation in brain. These phenotypic changes of glia are well known to be associated with reactive gliosis. Therefore, the recent report by Lee et al. suggests a novel non-enzymatic role of L-PGDS in brain inflammation, and has an impact on glial cell biology and brain pathology that is related with reactive gliosis. Since cell migration plays a pivotal role in development, wound healing, immune/inflammatory responses and tumor metastasis, the effects of L-PGDS on cell migration and morphology identified in the study by Lee et al. may broaden our understanding of these biological processes. In conclusion, L-PGDS is a potential drug target that can be exploited for therapeutic intervention of glia-driven neuroinflammation and related diseases.
Acknowledgments
This work was supported by Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (MEST) of Korean government (2010-0029460). This study was also supported by a grant of the Korea Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (A111345, A100176).

References
1. Urade Y, Fujimoto N, Hayashi O. Purification and characterization of rat brain prostaglandin D synthase. J Biol Chem 1985; 260:12410-5; PMID:3930495
2. Urade Y, Hayashi O. Prostaglandin D synthase: structure and function. Vitam Horm 2000; 58:89-120; PMID:10668396; http://dx.doi.org/10.1016/S0083-6729(00)58022-4
3. Ragolia L, Palaia T, Frese L, Fishbane S, Maesaka JK. Prostaglandin D2 synthase induces apoptosis in PC12 neuronal cells. Neureport 2001; 12:2623-8; PMID:11522937; http://dx.doi.org/10.1097/00001756-200108280-00008
4. Maesaka JK, Palaia T, Frese L, Fishbane S, Ragolia L. Prostaglandin D2 synthase induces apoptosis in pig kidney LLC-PK1 cells. Kidney Int 2001; 60:1692-8; PMID:11703586; http://dx.doi.org/10.1046/j.1523-1755.2001.00989.x
5. Ragolia L, Palaia T, Paric E, Maesaka JK. Elevated L-PGDS activity contributes to FMA-induced apoptosis concomitant with downregulation of PI3-K. Am J Physiol Cell Physiol 2003; 284:C119-26; PMID:12388064
6. Xin X, Huher A, Meyer P, Flammer J, Neutzner A, Miller NR, et al. L-PGDS (betatrace protein) inhibits astrocyte proliferation and mitochondrial ATP production in vitro. J Mol Neurosci 2009; 39:366-71; PMID:19598000; http://dx.doi.org/10.1007/s12031-009-9214-7
7. Ragolia L, Palaia T, Hall CE, Maesaka JK, Eguchi N, Urade Y. Accelerated glucose intolerance, nephropathy, and atherosclerosis in prostaglandin D2 synthase knock-out mice. J Biol Chem 2005; 280:29946-55; PMID:15970590; http://dx.doi.org/10.1074/jbc.M502927200
8. Scholgi R, Grill M, Heinemann A, Pojak BA, Amann R. Sequential induction of prostaglandin E and D synthases in inflammation. Biochem Biophys Res Commun 2005; 335:684-9; PMID:16084489; http://dx.doi.org/10.1016/j.bbrc.2005.07.130
9. Joo M, Kwon M, Cho YJ, Hu N, Pedchenko TV, Sadikot RT, et al. Lipopolysaccharide-dependent interaction between PU.1 and c-Jun determines production of lipocalin-type prostaglandin D synthase and prostaglandin D2 in macrophages. Am J Physiol Lung Cell Mol Physiol 2009; 296:L771-9; PMID:19187146; http://dx.doi.org/10.1152/ajplung.90320.2008
10. Tanaka R, Miwa Y, Mou K, Tomikawa M, Eguchi N, Urade Y, et al. Knockout of the l-pgds gene aggravates obesity and atherosclerosis in mice. Biochem Biophys Res Commun 2009; 378:851-6; PMID:19070593; http://dx.doi.org/10.1016/j.bbrc.2008.11.152
11. Hoffmann A, Conradt HS, Gross G, Nimtz M, Lottspeich F, Wustrer U. Purification and chemical characterization of beta-trace protein from human cerebrospinal fluid; its identification as prostaglandin D synthase. J Neurochem 1993; 61:451-6; PMID:8336134; http://dx.doi.org/10.1111/j.1471-4159.1993.tb02145.x
12. Watanabe K, Urade Y, Mäder M, Murphy C, Hayaishi O. Identification of beta-trace as prostaglandin D synthase. Biochem Biophys Res Commun 1994; 203:1110-6; PMID:8093029; http://dx.doi.org/10.1006/bbrc.1994.2297
13. Lee S, Jang E, Kim JH, Lee WH, Suk K. Lipocalin-type prostaglandin D2 synthase regulates glial cell migration and morphology through markers prostaglandin D2-independent effects. J Biol Chem 2012; 287:9414-28; PMID:2275363; http://dx.doi.org/10.1074/jbc.M111.330662
14. Subramanian A, Miller DM. Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 2000; 275:5958-65; PMID:10681589; http://dx.doi.org/10.1074/jbc.275.8.5958
15. GrandPre T, Nakamura F, Vartanian T, Strittmatter SM. Identification of the Nogo inhibitor of axon regeneration as a Reticulin protein. Nature 2000; 403:439-44; PMID:10667797; http://dx.doi.org/10.1038/350000226
16. Vicente-Manzanares M, Webb DJ, Horwitz AR. Cell migration at a glance. J Cell Sci 2005; 118:4917-9; PMID:16254237; http://dx.doi.org/10.1242/jcs.02662
17. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Bosuy G, et al. Cell migration: integrating signals from front to back. Science 2003; 302:2094-9; PMID:14657486; http://dx.doi.org/10.1126/science.1092053
18. Franz CM, Jones GE, Ridley AJ. Cell migration in development and disease. Dev Cell 2002; 2:153-8; PMID:11832241; http://dx.doi.org/10.1016/S1534-5807(02)00120-X