On the maximum induced density of directed stars and related problems

Hao Huang*

Abstract

Let $k \geq 3$ be an integer, we prove that the maximum induced density of the k-vertex directed star in a directed graph is attained by an iterated blow-up construction. This confirms a conjecture by Falgas-Ravry and Vaughan, who proved this for $k = 3, 4$. This question provides the first known instance of density problem for which one can prove extremality of an iterated blow-up construction. We also study the inducibility of complete bipartite digraphs and discuss other related problems.

1 Introduction

In modern extremal combinatorics, a substantial number of problems study the asymptotic relations between densities of subgraphs, and can be formulated in the following language. Given a family F of graphs and another graph H, define the Turán H-number of F to be the maximum number of induced copies of H in a F-free graph on n vertices, and denote it by $ex_H(n, F)$. We also denote by $\pi_H(F)$ the limit of the maximum induced density of H in a F-free graph when the number of vertices tends to infinity. Similar definitions can be as well made in the setting of r-uniform hypergraph, directed graph, and so forth. When H is a single edge, $\pi_e(F)$ is just the classical Turán density. It has been a long-standing open problem in extremal combinatorics to understand these densities for families of hypergraphs and directed graphs. For results and techniques, we refer the readers to the survey [10].

On the other hand, when $F = \emptyset$, $\pi_H(\emptyset)$ studies the maximum induced density of H in arbitrary graph, and is known as the inducibility of H. Although there are various works [1, 2, 3, 5, 9, 11] on the inducibility of graphs, there are relatively fewer results for directed graphs. Sperfeld [13] studied the inducibility of some digraphs on three vertices. Falgas-Ravry and Vaughan [6] determined $\pi_{\vec{S}_3}(\emptyset)$ and $\pi_{\vec{S}_k}(\emptyset)$ by flag algebra. Here \vec{S}_k is the directed star on k vertices, with one vertex being the center, and $k - 1$ edges oriented away from it. They further made the following conjecture that the extremal digraph having the maximum induced density of \vec{S}_k is always an unbalanced blow-up of \vec{S}_2 iterated inside one part.

*Institute for Advanced Study, Princeton, NJ 08540. Email: huanghao@math.ias.edu. Research supported in part by NSF grant DMS-1128155.
Conjecture 1.1. For every integer $k \geq 3$,

$$\pi_{\vec{S}_k}(\emptyset) = \alpha_k = \max_{0 \leq x \leq 1} \frac{kx(1-x)^{k-1}}{1-x^k}.$$

Assume the maximum is attained by $x = x_k$, then the extremal configuration is constructed by starting with two parts $|A| = x_k n$ and $|B| = (1-x_k)n$, adding all the edges oriented from A to B, and iterating this process inside A.

As we mentioned earlier, the proofs for cases $k = 3$ and $k = 4$ employ the method of flag algebra developed by Razborov [12] and are partly computer assisted. However since the search space and running time grow exponentially in k, a different approach may be needed for large k. It is also worth mentioning that for most Turán-type problems studying densities of subgraphs, if the conjectured extremal graph comes from such iterated construction instead of a simple blow-up of small graph, usually we do not know how to obtain an exact bound. For example, the Turán density of K_4^- (the unique 3-graph on 4 vertices with 3 edges) was conjectured to be achieved by the iterated blow-up of certain 6-vertex 3-graph by Frankl and Füredi [7] and is still open. Another example is the special case of the well-known Caccetta-Häggkvist conjecture [4]: every n-vertex digraph with minimum outdegree at least $n/3$ contains a directed triangle. Its difficulty probably lies in the fact that the iterated blow-up of a directed 4-cycle is one of the conjectured extremal examples. To the best of our knowledge, the case $k = 3$ and 4 of Conjecture 1.1 are probably the only examples that the exact bound has been proved for an iterated construction, which leads us to believe there exists a simpler and more human-readable proof. Actually we are able to apply certain operations on digraphs, and reduce it to an optimization problem, and verify this conjecture for every directed star \vec{S}_k for $k \geq 3$.

The rest of this short paper is organized as follows. In Section 2 we give a complete proof of Conjecture 1.1. Section 3 discusses the inducibility for complete bipartite digraphs. In the concluding remarks, we mention some related problems and possible future directions for research.

2 Main proof

In this section we will give a proof of Conjecture 1.1. Our proof is inspired by that of [3]. Assume D_n is the extremal directed graph on n vertices which has the maximum number of induced copies of of \vec{S}_k. We define an equivalence relation on its vertex set $V(D_n)$ as follows: $u \sim v$ iff they have the same in- and out-neighborhoods, i.e. $N^+(u) = N^+(v)$ and $N^-(u) = N^-(v)$. This equivalence relation naturally partitions the vertices of D_n into the following equivalence classes: $V(D_n) = V_1 \cup \cdots \cup V_m$, where each V_i induces an empty digraph. From the definition, between two classes V_i and V_j there are three possible scenarios: (i) all the edges are oriented from V_i to V_j; (ii) all the edges are oriented from V_j to V_i; (iii) there is no edge between V_i and V_j. We claim that a sequence of operations can be applied on D_n such that the number of induced copies of \vec{S}_k does not decrease, and in the resulted digraph case (iii) never occurs.
Lemma 2.1. Given a directed graph D_n with equivalence classes V_1, \cdots, V_m, and $1 \leq i \neq j \leq m$. If there is no edge between V_i and V_j, we can merge V_i and V_j into one equivalence class without decreasing the number of induced copies of \vec{S}_k.

Proof. Assume $|V_i| = x$ and $|V_j| = y$. Denote by D'_n the digraph formed by moving vertices between V_i and V_j and changing their neighborhoods accordingly, with $|V'_i| = z$, $|V'_j| = x + y - z$.

Let N_{00} be the number of induced copies of \vec{S}_k in D not involving vertices in V_i or V_j; N_{10} be the number of induced copies of \vec{S}_k using vertices from V_i but not vertices from V_j; N_{01} be the number of induced copies of \vec{S}_k using vertices from V_j but not vertices from V_i; and finally N_{11} be the number of induced copies of \vec{S}_k using vertices from both V_i and V_j. Obviously the total number of induced copies of \vec{S}_k is equal to $N_{00} + N_{10} + N_{11} + N_{11}$. Similarly we also define the parameters $N'_{00}, N'_{10}, N'_{01}, N'_{11}$ for D'_n.

Note that $N'_{00} = N_{00}$ since only the adjacencies involving vertices in $V_i \cup V_j$ might be changed. We also have $N_{11} = N'_{11}$. Consider an induced copy of \vec{S}_k containing $v_i \in V_i$, and $v_j \in V_j$. Since there is no edge between the two parts V_i and V_j, v_i is not adjacent to v_j. Therefore both of them are the leaves of \vec{S}_k. Because all the leaves are equivalent in \vec{S}_k, moving vertices between V_i and V_j does not change the value of N_{11}.

Next we show that z can be chosen such that $N'_{10} + N'_{01} \geq N_{10} + N_{01}$. Denote by s_l the number of $(k-l)$-vertex sets S in $[n] \setminus (V_i \cup V_j)$ such that S together with any l vertices in V_i induce a copy of \vec{S}_k. Similarly let t_l be the number of $(k-l)$-vertex sets T such that T together with any l vertices in V_j induce a copy of \vec{S}_k. Then by the definition of equivalence class, we have

$$N_{10} = \sum_{l=1}^{k} \binom{x}{l} s_l, \quad N_{01} = \sum_{l=1}^{k} \binom{y}{l} t_l,$$

$$N'_{01} = \sum_{l=1}^{k} \binom{z}{l} s_l, \quad N'_{10} = \sum_{l=1}^{k} \binom{x+y-z}{l} t_l.$$

It is not difficult to verify that $\binom{z}{l}$ and $\binom{x+y-z}{l}$ are both convex functions in the variable z. Therefore one could merge these two equivalence classes V_i and V_j by taking either $z = 0$ or $z = x+y$ in the new digraph D'_n, such that $N'_{01} + N'_{10} \geq N_{01} + N_{10}$. \hfill \Box

Note that after merging vertices in Lemma 2.1, the number of equivalence classes decreases, so this process stops after a finite number of steps. We may assume that in the extremal digraph D_n with equivalent classes $\{V_1, \cdots, V_m\}$, and any $i \neq j$, either there is a complete bipartite digraph with every edge oriented from V_i to V_j, or from V_j to V_i. We denote them by $V_i \rightarrow V_j$ and $V_j \rightarrow V_i$ respectively. Assume $|V_i| = w_i n$ where $\sum_{i=1}^{m} w_i = 1$. The induced density of \vec{S}_k in D_n is equal to

$$\frac{1}{\binom{m}{k}} \sum_{i=1}^{m} w_i n \binom{w_i n}{k-1} \sum_{i=1}^{m} k w_i w_j^{k-1} + o(1).$$

Since $\pi_{\vec{S}_k}(\emptyset)$ is the limit of the maximum induced density when n tends to infinity, we can neglect the $o(1)$ term here. Without loss of generality, we may assume that $w_1 \geq w_2 \geq \cdots \geq w_m$ by
Therefore which implies that \(\alpha \) converges to a limit, denoted by \(\beta \), and bounded on the compact set \([0, 1]\). Reordering \(\{w_i\} \), the induced density increases by \(w_jw_i^{k-1} - w_iw_j^{k-1} \geq 0 \) Therefore we can assume \(V_j \rightarrow V_i \) for any \(i < j \). Basically speaking we obtain \(D_n \) to be the unbalanced blow-up of a transitive tournament, and the induced density of \(\bar{S}_k \) in \(D_n \) is now equal to

\[
 f_m(w_1, \ldots, w_m) = k \sum_{1 \leq i < j \leq m} w_i^{k-1}w_j = k \cdot \left(w_1^{k-1}(w_2 + \cdots + w_m) + w_2^{k-1}(w_3 + \cdots + w_m) + \cdots + w_m^{k-1}w_m \right)
\]

Let \(F_m(x) = \max f_m(w_1, \ldots, w_m) \) subject to \(\sum_i w_i = x \) and \(w_i \geq 0 \), then \(\pi_{\bar{S}_k}(\emptyset) = \lim \sup_{m \to \infty} F_m(1) \). Because \(f_m \) is a homogeneous polynomial of degree \(k \), we have \(F_m(x) = F_m(1)x^k \) and thus

\[
 F_m(1) = \max_{0 \leq w_1 \leq 1} kw_1^{k-1}(1 - w_1) + F_{m-1}(1 - w_1) = \max_{0 \leq w_1 \leq 1} kw_1^{k-1}(1 - w_1) + (1 - w_1)^k F_{m-1}(1).
\]

(1)

Taking \(w_1 = 0 \) in (1) shows that \(F_m(1) \geq F_{m-1}(1) \). Due to the fact that the induced density can never be greater than 1, \(\{F_m(1)\} \) is a bounded monotone non-decreasing sequence and thus converges to a limit, denoted by \(\alpha_k \). Let \(m \to \infty \) in (1), we have

\[
 \alpha_k = \max_{0 \leq x \leq 1} kx^{k-1}(1 - x) + (1 - x)^k \alpha_k
\]

Let \(\beta_k = \max_{0 \leq x \leq 1} \frac{kx^{k-1}(1 - x)}{1 - (1 - x)^k} \), we now prove that \(\alpha_k = \beta_k \). Since \(\frac{kx^{k-1}(1 - x)}{1 - (1 - x)^k} \) is continuous and bounded on the compact set \([0, 1]\), \(\beta_k = \frac{ky^{k-1}(1 - y)}{1 - (1 - y)^k} \) for some \(y \in [0, 1] \) and thus

\[
 \alpha_k \geq ky^{k-1}(1 - y) + (1 - y)^k \alpha_k = (1 - (1 - y)^k)\beta_k + (1 - y)^k \alpha_k,
\]

which implies that \(\alpha_k \geq \beta_k \). On the other hand, suppose \(z \in [0, 1] \) maximizes \(kx^{k-1}(1 - x) + (1 - x)^k \alpha_k \), then \(\alpha_k = k\beta - (1 - z)^k\alpha_k \), and

\[
 \beta_k \geq \frac{k\beta - (1 - z)^k}{1 - (1 - z)^k} = \alpha_k.
\]

Therefore

\[
 \pi_{\bar{S}_k}(\emptyset) = \alpha_k = \beta_k = \max_{0 \leq x \leq 1} \frac{kx^{k-1}(1 - x)}{1 - (1 - x)^k} = \max_{0 \leq x \leq 1} \frac{kx(1 - x)^{k-1}}{1 - x^k}.
\]

Suppose \(x_k \in [0, 1] \) maximizes \(kx(1 - x)^{k-1}/(1 - x^k) \), from the above proof, we can see that the bound is obtained uniquely by the infinite sequence \(w_i = x_i^{k-1}(1 - x_k), i = 1, 2, \ldots \), which corresponds to the iterated blow-up of \(\bar{S}_2 \) and concludes the proof of Conjecture 1.1.
Theorem 3.1. For integers $m \geq 0$, let w_i be non-negative reals. Then the coefficient of the term $w_i w_j$ in the expansion of $(w_1 + \cdots + w_m)^s$, when $s \geq 2$, is greater than or equal to s, which is the coefficient of $w_1 w_j$ in the expansion of w^s_j. The second inequality follows from the fact that the coefficient of $w_i w_j^{s-1}$ in the expansion of $(w_1 + \cdots + w_m)^s$ is equal to s, which is greater than the coefficient 1 of the corresponding term in the left hand side, whenever $s \geq 2$. It follows from inequality (2) that $F_m \leq F_2$. By elementary calculus, one can easily show that $w_1^t w_2^s$ is maximized when $w_1 = \frac{t}{s+t}$ and $w_2 = \frac{s}{s+t}$, which finishes the proof of Theorem 3.1.
4 Concluding remarks

• In [6], the authors mention that for any given digraph D, an auxiliary 3-uniform hypergraph $G(D)$ can be defined by setting xyz to be a 3-edge whenever $\{x, y, z\}$ induces a copy of \vec{S}_3 in D. It is not hard to check that $G(D)$ is always a C_5-free 3-graph. Here C_5 refers to the tight cycle on 5 vertices, whose edges are (123), (234), (345), (451), and (512). Mubayi and Rödl conjectured that the Turán number $\pi(C_5)$ is equal to $2\sqrt{3} - 3$, with exactly the same iterated construction in the \vec{S}_3 problem. The result $\pi_{\vec{S}_3}(\emptyset) = \max_{0 \leq x \leq 1} 3x(1-x)^2/(1-x^3) = 2\sqrt{3} - 3$ settles the special case when the 3-graph has the form $G(D)$ from a digraph D.

• Sperfeld [13] studies the maximum induced density of some small digraphs, and in particular he proved that $\pi_{\vec{C}_3}(\emptyset) = 1/4$ with the extremal example including the random tournament and the iterated blow-up of \vec{C}_3, and conjecture that $\pi_{\vec{C}_4}(\emptyset)$ is achieved by the iterated blow-up of \vec{C}_4. It would be of great interest to develop new techniques to attack this problem, since the solution of this problem might as well provide insights into solving the Caccetta-Häggkvist conjecture.

• Although obtaining a general solution to the graph or digraph inducibility problem seems to be difficult, Hatami, Hirst and Norine [8] showed that for a given graph H, the n-vertex graph G containing the most number of induced copies of sufficiently large balanced blow-up of H, is itself essentially a blow-up of H. It would be interesting if similar results can be proved for the inducibility of directed graphs, which may also involve some iterated blow-ups.

Acknowledgement. The author would like to thank Benny Sudakov for his valuable comments and discussions.

References

[1] B. Bollobás, Y. Egawa, A. Harris, and G. Jin, The maximal number of induced r-partite subgraphs, *Graphs Combin.*, 11(1) (1985), 1–19.

[2] B. Bollobás, C. Nara, and S. Tachibana, The maximal number of induced complete bipartite graphs, *Discrete Math.*, 62(3) (1986), 271–275.

[3] J. Brown and A. Sidorenko, The inducibility of complete bipartite graphs, *J. Graph Theory*, 18 (1994), 629–645.

[4] L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, *Congressus Numerantium* 21 (1978), 181-187.

[5] G. Exoo, Dense packings of induced subgraphs, *Ars Combin.*, 22 (1986), 5–10.

[6] V. Falgas-Ravry and E. Vaughan, Turán H-densities for 3-graphs, preprint available on Arxiv: http://arxiv.org/abs/1201.4326.
[7] P. Frankl and Z. F"uredi, An exact result for 3-graphs, *Discrete Mathematics*, **50** (1984), 323–328.

[8] H. Hatami, J. Hirst and S. Norine, The inducibility of blow-up graphs, preprint available on Arxiv: http://arxiv.org/abs/1108.5699.

[9] J. Hirst, The inducibility of graphs on four vertices, preprint available on Arxiv: http://arxiv.org/abs/1109.1592.

[10] P. Keevash, Hypergraph Turán Problems, *Surveys in combinatorics*, Cambridge (2011).

[11] N. Pippenger and M. Golumbic, The inducibility of graphs, *J. Comb. Theory Ser. B*, **19** (3) (1975), 189-203.

[12] A. Razborov, Flag Algebras, *J. Symbolic Logic*, **72** (2007), 1239-1282.

[13] K. Sperfeld, The inducibility of small oriented graphs, preprint available on Arxiv: http://arxiv.org/abs/1111.4813.