Bilharzia: Pathology, Diagnosis, Management and Control

David U Olveda1, Yuesheng Li2, Remigio M Olveda3, Alfred K Lam1, Thao N P Chau4, Donald A Harn2, Gail M Williams6, Darren J Gray6 and Allen G P Ross1*

1Griffith Health Institute, Griffith University, Gold Coast Campus, Australia
2Hunan Institute of Parasitic Diseases, WHO Collaborating Centre for Research and Control of Schistosomiasis on Lake Region, China and Queensland Institute of Medical Research, Australia
3Research Institute for Tropical Medicine, Department of Health, Philippines
4Flinders University, Discipline of Public Health, Australia
5College of Veterinary Medicine, University of Georgia, USA
6School of Population Health, University of Queensland, Brisbane, Australia

Abstract

More than one billion people travel internationally each year and approximately 100 million to the tropics. Schistosomiasis is a neglected tropical disease caused by trematode blood flukes of the genus Schistosoma. It currently infects over 250 million people worldwide and results in approximately 25 million disability adjusted life years lost. Clinical manifestations depend on the affected organ. Subtle morbidities have also been documented including: growth retardation, anaemia and poor cognitive function in children. While schistosomiasis has been eradicated from Japan and significantly reduced in parts of China and Egypt, transmission in many other regions remains ongoing due to the wide-spread distribution of the intermediate snail host, poor sanitation, lack of health education and decreasing compliance to mass drug administration. Integrated control has significantly reduced the burden of disease in China but considerable financial capital is needed if similar results are to be duplicated elsewhere. Human vaccination is in various stages of development, and once found, will become an integral part of future control. This comprehensive review examines the epidemiology, pathology, diagnosis, clinical management, prevention and control of the disease.

Keywords: Bilharzia; Schistosomiasis; Neglected tropical disease; Diagnosis; Management; Treatment

Global Burden of Schistosomiasis

The World Health Organization estimates that schistosomiasis and geohelminths represent more than 40% of the global disease burden caused by all tropical diseases, excluding malaria [1]. Schistosomiasis is the third most devastating tropical disease globally (after malaria and intestinal helminthiases) and is a major cause of morbidity and mortality for developing countries in Africa, South America, the Caribbean, the Middle East, and Asia [2]. Schistosomiasis or Bilharzia is caused by schistosomes, which are parasitic trematode worms of the genus Schistosoma. Five species infect humans, namely: Schistosoma mansoni, Schistosoma japonicum, Schistosoma mekongi, Schistosoma intercalatum, and Schistosoma haematobium. In 74 countries where the disease is endemic, an estimated 250 million people are infected and approximately 700 million people are at risk of infection [3,4]. The burden of disease attributable to the three major human schistosome species (Schistosoma mansoni, S. haematobium, and S. japonicum) is estimated to be between 24-29 million disability adjusted life years [5,6] (Table 1).

Schistosoma mansoni is widespread in Africa, the Eastern-Mediterranean, the Caribbean, and South America (Figure 1). Almost 300,000 people die annually from schistosomiasis in Africa alone [7]. Approximately 90% of the 250 million people infected worldwide live in Sub-Saharan Africa where S. mansoni is the prevalent species [7]. About 10 million women in Africa are infected during pregnancy [8]. Zoonotic transmission is possible with these species, because the parasite infects not only humans but also wild rodents [9-11].

Schistosoma haematobium infection is a significant cause of clinical morbidity and disability in the endemic countries of Africa and the Middle East, where more than 110 million people are infected [12].

In sub-Saharan Africa, two-thirds of schistosomiasis cases are due to S. haematobium, which represents an important cause of severe urinary tract disease. In a survey in 2000, it was estimated that 70

Figure 1: Map of the current global distribution of schistosomiasis. Source: US Centers for Disease Control and Prevention, <http://wwwnc.cdc.gov/travel/yellowbook/2012/chapter-3-infectious-diseases-related-to-travel/schistosomiasis#2696>.

*Corresponding author: Prof. Allen G P Ross, Griffith Health Institute, Griffith University, Gold Coast Campus, Australia, E-mail: a.ross@griffith.edu.au

Received July 12, 2013; Accepted August 13, 2013; Published August 20, 2013

Citation: Olveda DU, Li Y, Olveda RM, Lam AK, PChau TN, Harn DA, et al. (2013) Bilharzia: Pathology, Diagnosis, Management and Control. Trop Med Surg 1: 135. doi:10.4172/2329-9088.1000135

Copyright: © 2013 Olveda DU, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Species	Geographic Distribution	Signs and Symptoms	Diagnosis	Adult Treatment	Pediatric Treatment	Vaccine Candidate
Schistosoma mansoni	Africa, the Middle East, the Caribbean, Brazil, Venezuela, Suriname	In non-immune individuals (migrants or tourists), mild maculopapular eruption may arise at the site of skin penetration by schistosome cercariae, few hours to a week later. Weeks later, acute phase (Katayama syndrome), when present, manifest with fever, malaise, myalgia, fatigue, non-productive cough, diarrhoea (with or without the presence of blood) and right upper quadrant pain. More likely to happen in non-immune people. Months or years later, infected individuals may develop signs and symptoms referable to the affected organ. Gastrointestinal involvement cause colicky hypogastric pain or pain in the left iliac fossa, diarrhoea (particularly in children) that may alternate with constipation, and haematochezia (blood in the faeces). Liver pathology leads to hepato-splenomegaly, enlargement of the abdomen with dilated superficial abdominal veins and upper GI bleeding. Cerebral disease include encephalopathy with headache, visual impairment, delirium, seizures, motor deficit, and ataxia; spinal symptoms comprise lumbar pain, lower limb radicular pain, muscle weakness, sensory loss, and bladder dysfunction. Growth retardation, malnutrition anaemia and poor cognitive functions in children.	Schistosoma mansoni eggs are large (114 to 180 µm long by 45-70 µm wide) and have a characteristic shape, with a prominent lateral spine near the posterior end. The anterior end is tapered and slightly curved.	Praziquantel, 40 mg/kg in two divided doses for 1 day, 4-6 hours apart.	Praziquantel, (<4 years old) at the dose 40 mg/kg in two divided doses for 1 day, 4-6 hours apart.	FSmTSP-2c (tetraspanin D), SmTSP-1 (Tetraspanin), Sm29 (C-terminal transmembrane domain), Sm23 (Tetraspanin), Sm-p80 (Calpain), Sm14 (Fatty Acid Binding Protein (FABP)), Sm28-GST(Glutathione S-transferase), Sm28-TPI, Sm97 paramyosin, CT-SOD (Cytosolic Cu-Zn SOD)
Schistosoma haematobium	Africa, the Middle East	Acute signs and symptoms are similar to S. mansoni. Haematuria, appears 10-12 weeks after infection. Dysuria and haematuria occur in early and late disease. Late disease manifestations also include proteinuria, renal colic and renal failure. Vaginal bleeding and dyspareunia in females and infertility in males. Signs and symptoms of transverse myelitis like lumbar pain, lower limb radicular pain, and bladder dysfunction are common compared to S. Mansoni. S. japonicum and S. mekongi infections.	The eggs of Schistosoma haematobium are large (110-170 µm long by 40-70 µm wide) and bear a conspicuous terminal spine.	Praziquantel, 40 mg/kg in two divided doses for 1 day, 4-6 hours apart	Praziquantel (4 to 19 years old), 40 mg/kg in two divided doses for 1 day, 4–6 hours apart	SjSh28 GST (Glutathione S-transferase, recombinant)
Schistosoma japonicum

China, Indonesia, the Philippines

Similar to S. mansoni infection but notably more severe in manifestations.

The eggs of are large and more rounded than other species, measuring 70-100 µm long by 55-64 µm wide. The spine on S. japonicum eggs is smaller and less conspicuous than other species.

Praziquantel, 60 mg/kg in two divided doses for 1 day, 4 – 6 hours apart.

Praziquantel (4 to 19 years old), 60 mg/kg in two divided doses for 1 day, 4-6 hours apart

Schistosoma mekongi

Several districts of Cambodia and the Lao People’s Democratic Republic

Manifestations are similar to S. mansoni and S. japonicum but milder compare to S. japonicum infection.

The eggs are similar to S. japonicum, but are generally smaller (50-80 µm by 40-65 µm). They also contain a small, inconspicuous spine and are shed in stool.

Praziquantel, 60 mg/kg in two divided doses for 1 day, 4-6 hours apart.

Praziquantel (4 to 19 years old), 60 mg/kg in two divided doses for 1 day, 4-6 hours apart

Schistosoma intercalatum

Rain forest areas of central Africa

Unlike the more pathogenic species, infection with S. intercalatum is usually only associated with bloody stool, and sometimes splenomegaly. Majority of infections are asymptomatic and go unnoticed.

The eggs are similar to S. haematobium in general shape and in possessing a terminal spine, but are usually longer (140-240 µm), often have an equatorial (central) bulge and are shed in stool, not urine. The eggs of Schistosoma intercalatum have a terminal spine and tend to be moderately larger than those of S. haematobium (approximately 130×75 µm).

Praziquantel, 40 mg/kg in two divided doses for 1 day, 4-6 hours apart.

Praziquantel (4 to 19 years old), 40 mg/kg in two divided doses for 1 day, 4-6 hours apart

Table 1: Summary clinical table for schistosomiasis globally.

Schistosoma intercalatum is a minor schistosomal species limited to a few western and central African countries [15]. Two main distinct species are recognized: one in Zaire and one in Lower Guinea (mainly Cameroon) [16]. Environmental factors and possible mating with the more predominant species S. hematobium contribute to the limited species distribution and number [17].

Schistosoma japonicum infection occurs in China, Indonesia and the Philippines. Zoonotic transmission is noted to be important.

million individuals out of 682 million had experienced haematuria and 32 million had dysuria associated with S. haematobium infection. It was also estimated that 18 million suffered bladder wall pathology and 10 million have hydronephrosis [7]. Renal failure accounts for a large percentage of the estimated 150,000 deaths from urinary tract schistosomiasis. Significant association was observed between major bladder wall pathology and squamous cell carcinoma [13]. Also, large percentage of women and men with urinary schistosomiasis acquire genital ulcers and other lesions [14].
in *S. japonicum*. Wide varieties of domestic and feral animals are infected. In China and the Philippines, cattle and water buffalo contribute significantly in the transmission of infection [18-26]. *S. japonicum* approximately 60 million individuals are at risk of infection and close to two million are currently infected [27,28]. A small focus of infection and transmission persists on the island of Sulawesi in Indonesia [29]. The disease has been eradicated in Japan through integrated multidisciplinary approach. The last case of human infection documented was in 1977 and the last infected snails were detected in 1982 [30].

Schistosoma mekongi is endemic along the Mekong River and certain tributaries in the lower Mekong basin [31]. Approximately, 140,000 people are at risk for infection with 80,000 found in Cambodia and a further 60,000 in Laos [32]. While infection in animals, such as dogs and pigs, have been reported, the contribution of these various animal reservoir hosts to the transmission of *S. mekongi* has not been established [33-35]. Integrated control measures have greatly reduced the incidence of human infection.

Life Cycle

The life cycles of all five human schistosome species are similar and involve a snail intermediate host (Figure 2). Human or animal hosts (as with *S. japonicum*) get infected when they come in contact with fresh water contaminated by cercariae, the infective stage of the parasite [4,36,37]. Upon host location, the cercariae attach to and penetrate the host skin via glandular secretions [37]. The parasites lose their tails as they penetrate the skin, and transform into young schistosomes called schistosomula [4,36,37]. After spending at least two days in the skin, the parasites burrow through the dermis, penetrate a blood vessel wall, and gain access into the circulatory system [38]. The parasites migrate to the lungs and remain there for several days before travelling to the liver were they blood-feed on red blood cells, mature and mate within the liver vessels [4,36,37]. Afterwars, they emerge as male-female worm pairs, and inhabit either the portal or pelvic vessels [36,37]. This habitat of the parasite is exemplified by the four schistosome species except *S. hematobium* which prefers the urinary bladder venous plexus [36,38]. The female begins to lay eggs within the mesenteric or pelvic vessels [36,37]. Most of the eggs are carried upstream to the liver via the portal veins and its branches and get trapped in the pre-sinusoidal portal venules [36,37]. Some of the eggs migrate and penetrate the intestines and shed in the stool. Eggs laid in the pelvic venous plexus migrate towards the urinary bladder, pass through the bladder wall, and are excreted in urine [4,36,37]. When eggs contact water, they hatch into ciliated larval forms called miracidia that can sense compatible intermediate host species [4,36,37]. Miracidia penetrate the snail by proteolytic activity and mechanical movement [37]. Inside the snail host, miracidia undergo asexual development and transform into cercariae which emerge from the snails and seek out the definitive host [4,37,39]. The parasite life cycle is thus completed [40].

Pathology and Morbidity

In schistosomiasis, adult worms reside in the mesenteric and pelvic venules in various sites where they lay eggs [36,37]. These sites tend to be specific for each species (e.g. *S. japonicum* prefers the superior mesenteric veins draining to the small intestine, while *S. mansoni* prefers the superior mesenteric veins of the large intestine) [41]. Many eggs are carried upstream where they get lodged in various organs, especially in the liver, bowel, and genitourinary tract [4]. In acute disease (Katayama syndrome), schistosomula antigens/secretions orchestrate a T helper type 1 (Th1) cell-driven inflammatory response (involving tumour necrosis factor, interleukin-1, and interleukin-6 cytokines) and cause febrile illness [42-45]. As mature female worms lay eggs, products of worm and egg metabolism induce formation of immune complexes resulting to a serum like-sickness called Katayama syndrome [4]. In chronic disease, eggs are the cause of pathology; they evoke a Thelper type 2 (Th2) cell-driven granulomatous reaction (involving interleukin-4, interleukin-5, and interleukin-13 cytokines) resulting in tissue fibrosis and chronic morbidity [36,40,41-44]. Interleukin-13 has been observed to produce fibrosis in animal models [46]. Both Th1 and Th2 arms play a role in granuloma formation, the latter being the dominant player [45].

Gastrointestinal schistosomiasis due to *S. mansoni*, *S. japonicum* and *S. mekongi* can cause bowel lesions such as ulceration, pseudopolyps, and microabcesses. The semanifest clinically as abdominal pain, altered bowel habits, and blood in stools [4]. Liver enlargement and periportal fibrosis are common in advanced cases, and is generally linked with ascites and portal hypertension. Clinical signs including: superficial abdominal blood vessel dilatation, spleen enlargement, and bleeding-prone esophageal varices have been well documented [4]. Patients with severe hepatosplenic schistosomiasis may die from ruptured esophageal varices. Some studies suggest an association of *S. mansoni* and *S. japonica* and cancer development in the liver and colon, but no hard evidence exists to support the association [46-54].

The classic sign of urogenital schistosomiasis is haematuria and is specifically noted with *S. haematobium* [4]. Bladder, uterine fibrosis and kidney damage are sometimes seen in advanced cases [4]. The
Infection with human schistosome species including *S. haematobium* can also be diagnosed through microscopic examination of tissues obtained by biopsies of the rectal mucosa [94]. This procedure, however, is invasive and can be performed only in health facilities where there are experienced physicians and microscopists. For organ pathology detection, sophisticated imaging methods, such as ultrasound, computed tomography scan (CT scan), and Magnetic Resonance Imaging (MRI), can demonstrate evidence of liver fibrosis and portal hypertension, and can visualize urogenital schistosomal infection of the bladder, polyposis, and ulcers [95-98].

Chemotherapy

In the past, antischistosomal pharmacologic agents against *S. haematobium* or *S. mansoni* (hyacanthone, metrifonate, oxamquin and others) or against *S. japonicum* (niridazole, antimonials) have been used but were found less effective due to the development of toxicities before therapeutic levels were reached. The situation dramatically changed when praziquantel was released in 1979. Praziquantel was proven to be effective against the five species of schistosomes affecting humans. However, efficacy depends on the dose used in the treatment. Meta-analyses of 52 clinical trials published in peer-reviewed journals showed that a dosage of 30-60 mg/kg praziquantel compared with placebo, produced a cure rate of around 76% (range from 67-83%) for human schistosomiasis. No significant differences in cure rates
were found among the subspecies *S. haematobium*, *S. japonicum* or *S. mansoni*. Cure rate of the drug at 40 mg/kg was 52% (range from 49-55%) compared to 91% (range from 88%-92%) when divided dosages were increased to 60, 80, 100 mg/kg [99].

In 2003, TDR (Research and Training in Tropical Disease WHO), in an attempt to optimize praziquantel use for the treatment of schistosomiasis, launched a series of multi-country trials, comparing efficacy and safety of 40 mg and 60 mg/kg in schistosome infected patients in Asia, Africa and the Americas. In the Philippines clinical trial, where *S. japonicum* is predominant, the 40 mg/kg dose was effective and better tolerated than the higher 60 mg/kg dose. The national policy-makers in the Philippines adopted the 40 mg/kg dose for its mass drug administration (MDA) program against schistosomiasis. However, those found infected by stool examination were treated with 60 mg/kg and given the same dose, two weeks later. In Brazil, where *S. mansoni* is predominant, the reinfection rate post-treatment was lower in the 60 mg/kg group than among those who received the 40 mg/kg dose. Brazil supported the use of the higher dose for their country. It is important to note that the overall rates of schistosomiasis reinfection with 40 mg/kg were high at 30-50% depending on the species and the region [100].

Artether or Artesunate for the prevention of schistosomiasis was introduced in the early 1990s. Multiple doses of artether or artesunate over weekly or biweekly intervals resulted in protection rates from 65% to 97% due to its killing of juvenile schistosomula. Increasing doses and shortening medication intervals improved the efficacies of the drug. Praziquantel and artesinin derivatives when used in combination resulted in a higher protection rate of 84% (range 64%-91%) than praziquantel used alone. The combination of praziquantel and artesunate greatly increased the protection to 96% (range 78%-99%) for preventing schistosome infection [99]. Side effects of abdominal discomfort, fever, sweating, and giddiness, were minimal and transient. Chemotherapy aids greatly in reducing schistosomiasis infection burden but does not prevent reinfection. However, it decreases infection intensity, reverses liver and spleen enlargement, and resolves anaemia [101]. Furthermore, chemotherapy can resolve (and sometimes reverse) hepatic fibrosis, prevent the rise of advanced hepatosplenic cases, and eliminate blood in stool and urine [101-103].

Prevention and Control

The integrated control of schistosomiasis advanced considerably with the introduction of praziquantel (PZQ) in the late 1970’s. After decades of extensive use, severe schistosome-related morbidities decreased significantly, but high re-infection rates and transmission remained. In addition, to sustain the gains accomplished with PZQ, the agent has to be administered periodically through MDA for an indefinite period of time and without relaxation to prevent rebound of morbidities. Furthermore, continuous and extensive drug use may lead to PZQ-resistant strains of schistosomes [104]. Therefore, the search for alternative approaches is vital. Development of new pharmacological agents should be pursued aggressively. Vaccines that can help sustain MDA must be well supported.

Several promising vaccine candidates against schistosomiasis are in various stages of development. Some of the candidates are in the pre-clinical trial stage, and some have entered phase one and phase two clinical trials. These candidates include: GST, Paramyosin, Fatty Acid Binding Protein (FABP), Calpain, Triose-phosphate isomerase, and Tetraspanins.

Among the GST candidate vaccine molecules, the 28kDa GST recombinant protein (sSh28GST) from *S. haematobium* has already been tested in safety, immunogenicity and toxicity clinical trials studies, and Phase I and II trials [105]. Paramyosin (rS97) candidate vaccine molecules are undergoing pre-clinical studies. The paramyosin recombinant fragment has been observed to provide protection and immunogenicity in BALB/c mice [106]. On the other hand, the full length recombinant protein, aside from exhibiting protection in mice, has also shown antibody responses in humans associated with re-infection resistance [107]. More importantly, the full length paramyosin molecule production has been up-scaled, and is now undergoing pre-clinical testing in water buffaloes in the Philippines [108]. One of the FABP candidate vaccine molecules called Sm14-FABP, as for sSh28GST, has already reached an advanced developmental stage. A noteworthy development with this candidate vaccine is its ability to induce cross-protection against *Schistosoma* and *Fasciola*. Up-scaled production of this molecule has been successful and the procedure for its industrial GMP-grade production has been developed. Phase I and II clinical trials are already being planned for Sm14-FABP [109].

Another promising vaccine candidate called Sm-p80, a calpain subunit, has been tested for its anti-infective and anti-fecundity efficacy in different vaccine formulations and approaches. Mice vaccinated with DNA plasmids encoding Sm-p80 and interleukin-2 (IL-2) provide 59% protection, while vaccination with plasmid formulated with Sm-p80 and interleukin-12 (IL-12) provides 45% protection. In addition, the Sm-p80-VR1020 vaccine elicited strong immune responses to the specific antigen Sm-p80, including immunoglobulin IgG (along with subtypes IgG1 and IgG2), IgA, and IgM in vaccinated animals [110-113].

Triose-phosphate isomerase (TPI) and the tetraspanins are other groups of antigens that have great vaccine candidate potential. Two randomised double-blind control vaccine trials were performed in buffaloes to determine the efficacy levels of the SJCTPI (TPI) and the SJC23 (Tetraspanin) vaccines, both on their own, and fused together with the dendritic cell targetting molecule, heat-shock protein 70 (Hsp70) (SJCTPI-Hsp70 and SJC23-Hsp70). The most successful vaccine construct was the SJCTPI-Hsp70, which produced a 51.2% reduction in worm burden, a 61.5% reduction in liver eggs, a 52.1% reduction in faecal eggs and a 52.1% reduction in the hatching of faecal miracidia [114,115]. These are very important findings because buffaloes account for approximately 80% of the transmission to humans for *S. japonicum* in China and the Philippines [13-20]. Bovine vaccination in combination with other control measures may lead to the elimination of the disease in Asia.

Acknowledgments

The authors would like to thank the UBS-Optimus Foundation, the National Health and Medical Research Council, Australia and the National Institutes for Health Grant number A1068109, USA for providing financial support for the schistosomiasis research in the Philippines. YS Li is an Australian Research Council (ARC) Future Fellow; and DJG is an ARC Fellow (DECRA).

References

1. World Health Organization (2006) Schistosomiasis and soil-transmitted helminth infections–preliminary estimates of the number of children treated with albendazole or mebendazole. Wkly Epidemiol Rec 81: 145-163.
22. Olveda DU, Brindley PJ, Ramirez B, Tiu W, Wu G, Wu H W, et al. (1995). Networking Jordan, G. Webbe, and R. F. Sturrock (eds.), CAB International, Wallingford, epidemiology, clinical and pathological aspects. In: Human Schistosomiasis, P. Chen M. G (1993) Schistosoma japonicum and S. japonicum-like infections: Boyang Lake regions. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong domotic animal reservoirs of schistosomiasis japonica in Dongting and Wu ZW, Liu ZD, Pu KM, Hu GH, Zhou SJ, et al. (1992) [Role of human and characteristics of infection sources of schistosomiasis in mountainous region. Asian J Trop Med Public Health 13: 575-579.

23. Ishii A, Matsuoka H, Aji T, Ohta N, Arimoto S, et al. (1994) Parasite infection in water buffaloes in the Philippines assessed by real-time polymerase chain reaction. Am J Trop Med Hyg 82: 646-652.

24. Wang Z, Yuan HC, Feng Z (1998) Epidemic status of schistosomiasis in China. Ministry of Health, People’s Republic of China, Shanghai.

25. McGarvey ST, Zhou XN, Willingham AL 3rd, Feng Z, Olveda R (1999) The epidemiology and host-parasite relationships of Schistosoma japonicum in definitive hosts. Parasitol Today 15: 214-215.

26. Wu HW, Qin YF, Chu K, Meng R, Liu Y, et al. (2010) High prevalence of Schistosoma japonicum infection in water buffaloes in the Philippines assessed by real-time polymerase chain reaction. Am J Trop Med Hyg 82: 646-652.

27. Gordon CA, Acosta LP, Gray DJ, Olveda RM, Jarilla B, et al. (2012) High prevalence of Schistosoma japonicum infection in Carabao from Samar Province, the Philippines: implications for transmission and control. PLoS Negl Trop Dis 6: e1778.

28. Zhou XN, Guo GJ, Wu XH, Jiang QW, Zheng J, et al. (2007) Epidemiology of schistosomiasis in the People's Republic of China. 2004. Emerg Infect Dis 13: 1470-1476.

29. Blas BL, Rosales MI, Lipayon IL, Yasurakaa K, Matsuda H, et al. (2004) The schistosomiasis problem in the Philippines: a review. Parasitol Int 53: 127-134.

30. Izhar A, Sinaga RM, Sudomo M, Wardiyo ND (2002) Recent situation of schistosomiasis in Indonesia. Acta Trop 82: 283-288.

31. Tanaka H, Tsuji M (1997) From discovery to eradication of schistosomiasis in Japan: 1847-1996. Int J Parasitol 27: 1465-1480.

32. Zhou XN, Bergquist R, Leonardo L, Yang GJ, Yang K, et al. (2010) Schistosomiasis japonica control and research needs. Adv Parasitol 72: 145-178.

33. Urbani C, Sinoun M, Socheat D, Pholsena K, Strandgaard H, et al. (2002) Epidemiology and control of mekongi schistosomiasis. Acta Trop 82: 157-168.

34. Muth S, Sayasonse S, Odermatt-Biays S, Phompida S, Duong S, et al. (2010) Schistosoma mekongi in Cambodia and Lao People's Democratic Republic. Adv Parasitol 72: 179-203.

35. Matsumoto J, Muth S, Socheat D, Matsuda H (2002) The first reported cases of canine schistosomiasis mekongi in Cambodia. Southeast Asian J Trop Med Public Health 33: 458-461.

36. Strandgaard H, Johansen MV, Pholsena K, Teikayavong K, Christensen NO (2001) The pig as a host for Schistosoma mekongi in Laos. J Parasitol 87: 708-709.

37. Warren KS (1978) The pathology, pathobiology and pathogenesis of schistosomiasis. Nature 273: 609-612.

38. Walker AJ (2011) Insights into the functional biology of schistosomes. Parasit Vectors 4: 203.

39. McKeever JH, Salter J (2002) Invasion of skin by Schistosoma cercariae. Trends Parasitol 18: 193-195.

40. Curwen RS, Wilson RA (2003) Invasion of skin by schistosome cercariae: some neglected facts. Trends Parasitol 19: 63-66.

41. Warren KS, Boros DL, Hang LM, Mahmoud AA (1975) The Schistosoma japonicum egg granuloma. Am J Pathol 80: 279-294.

42. Food and Health, Bear Market Economics, Issues and News, Nov. 26, 2011.

43. Warren KS, Boros DL, Hang LM, Mahmoud AA (1975) The Schistosoma japonicum egg granuloma. Am J Pathol 80: 279-294.

44. Sajid M, McKeever JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120: 1-21.

45. Warren KS (1971) Schistosomiasis japonica: models for the pathogenesis of hepatoplastic, intestinal and cerebral disease. Jap. J. Parasitol. 20:40-44.

46. McKeever JH and Salter J, 2002. Invasion of Skin by Schistosoma Cercariae. Trends in Pathology 18: 193-195.

47. Wilson MS, Mentink-Kane MM, Pesce JT, Ramalingam TR, Thompson R, et al. (2007) Immunopathology of schistosomiasis. Immunol Cell Biol 85: 148-154.

48. Inaba Y, Maruchi N, Matsuda M, Yoshinara N, Yamamoto S (1984) A case-control study on liver cancer with special emphasis on the possible aetiological role of schistosomiasis. Int J Epidemiol 13: 408-412.

49. Ishii A, Matsuoka H, Aji T, Ohta N, Arimoto S, et al. (1994) Parasite infection
and cancer: with special emphasis on Schistosoma japonicum infections (Trematoda). A review. Mutat Res 305: 273-281.
50. Takeurna Y, Kikuchi S, Inaba Y (1998) Epidemiologic study of the relationship between schistosomiasis due to Schistosoma japonicum and liver cancer/ cirrhosis. Am J Trop Med Hyg 59: 551-556.
51. Madbouly KM, Senagore AJ, Mulerjee A, Hussien MA, Shehata MA, et al. (2007) Colorectal cancer in a population with endemic Schistosoma mansoni: is this an at-risk population? Int J Colorectal Dis 22: 175-181.
52. H Salim OE, Hamid HK, Mekki SO, Suleiman SH, Ibrahim SZ (2010) Colorectal carcinoma associated with schistosomiasis: a possible causal relationship. World J Surg Oncol 8: 66.
53. Ming-Chai C, Jen-Chun H, Pei-Yu C (1985) Pathogenesis of carcinoma of the colon and rectum in schistosomiasis japonica. Chinese Med J 84: 513-525.
54. Ming-Chai C, Chi-Yuan C, Pei-Yu C, Jen-Chun H (1980) Evolution of colorectal cancer in schistosomiasis: transitional mucosal changes adjacent to large intestinal carcinoma in colectomy specimens. Cancer 46: 1661-1675.
55. Ming-Chai C, Pei-Yu C, Chi-Yuan C, Wang Fu-Pan, Chen Yi-Jen , et al. (1981) Colorectal cancer and schistosomiasis. Lancet 1: 971-973.
56. Infection with Schistosomes. 1994. International Agency for Research on Cancer (IARC) - Summaries & Evaluations 61: 45.
57. Mbabazi PS, Andan Q, Fitzgerald DW, Chisulo L, Engels D, et al. (2011) Examining the relationship between urogenital schistosomiasis and HIV infection. PLoS Negl Trop Dis 5: e1396.
58. MUSTACCHI P, SHIMKIN MB (1958) Cancer of the bladder and infestation with Schistosoma hematobium. J Natl Cancer Inst 20: 825-842.
59. Gelfand M, Weinberg RW, Castle WM (1967) Relation between carcinoma of the bladder and infestation with Schistosoma haematobium. Lancet 1: 1249-1251.
60. Anjarwalla KA (1971) Carcinoma of the bladder in the coast province of Kenya. East Afr Med J 48: 502-509.
61. Bowry TR (1975) Carcinoma of bladder in Kenya. East Afr Med J 52: 356-364.
62. Lucas SB (1982) Squamous cell carcinoma of the bladder and the bladder and squamous cancers: a review. East Afr Med J 59: 345-351.
63. Elb E, Purohit R (1983) Carcinoma of the urinary bladder in Zambia. A quantitative estimation of Schistosoma haematobium infestation. Br J Urol 55: 275-278.
64. Katnya JN, Lauren PA, Eshleman LJ, Patjlavir J, Tanaka K (1988) The incidence of squamous and transitional cell carcinomas of the urinary bladder in northern Tanzania in areas of high and low levels of endemic Schistosoma haematobium infestation. Trans R Soc Trop Med Hyg 80: 935-939.
65. Thomas JE, Bassett MT, Sigola LB, Taylor P (1990) Relationship between bladder cancer incidence, Schistosoma haematobium infestation, and geographical region in Zimbabwe. Trans R Soc Trop Med Hyg 94: 551-553.
66. Blankfein RJ, Chirico AM (1965) Cerebral schistosomiasis. Neurology 15: 957-967.
67. Ross AG, McManus DP, Farrar J, Hunstman RJ, Gray DJ, et al. (2012) Neuroschistosomiasis. J Neurol 259: 22-32.
68. Leenstra T, Acosta LP, Langdon GC, Manalo DL, Su L, et al. (2006) The pattern of schistosome egg distribution in a micturition flow. Cent Afr J Med 52: 45-48.
69. Hairston N.G 1973. The dynamics of transmission. In N. Ansari (ed), Epidemiology and Control of Schistosomiasis (Bilharziasis). Baltimore: University Press.
70. Zhu YC (2005) Immunodiagnosis and its role in schistosomiasis control in China: a review. Acta Trop 96: 130-136.
71. Tchuem Tchuente LA, Kouté Fououdo CJ, Kamwa Ngassam RI, Sono L, Dongnong Nounedem C, et al. (2012) Evaluation of circulating cathodic antigen (CCA) urine-tests for diagnosis of Schistosoma mansoni infection in Cameroon. PLoS Negl Trop Dis 6: e1759.
72. Navaratnam AM, Mutumba-Nakalemble MJ, Stothard JR, Kabatereine NB, Fenwick A, et al. (2012) Notes on the use of urine-CCA-dipsticks for detection of intestinal schistosomiasis in preschool children. Trans R Soc Trop Med Hyg 106: 619-622.
73. Shane HL, Verani JR, Abudho B, Montgomery SP, Blackstock AJ, et al. (2011) Evaluation of urine CCA assays for detection of Schistosoma mansoni infection in Western Kenya. PLoS Negl Trop Dis 5: e951.
74. Midzi N, Butterworth AE, Mululza T, Munyati S, Deelder AM, et al. (2009) Use of circulating cathodic antigen strips for the diagnosis of urinary schistosomiasis. Trans R Soc Trop Med Hyg 103: 45-51.
75. Stothard JR, Sousa-Figueiredo JC, Standley C, Van Dam GJ, Knopp S, et al. (2009) An evaluation of urine-CCA strip test and fingerprrick blood SEA-ELISA for detection of urinary schistosomiasis in schoolchildren in Zanibar. Acta Trop 111: 64-70.
76. Deelder AM, Miller RL, de Jonge N, Krüger FW (1990) Detection of schistosomum antigen in mummies. Lancet 335: 724-725.
77. Deelder AM, de Jonge N, Boerman OC, Fillie YE, Hiberath GW, et al. (1989) Sensitive Determination of Circulating Anodic Antigen in Schistosoma Mansoni Infected Individuals by an Enzyme linked Immunosorbon Assay using Monoclonal Antibodies. American Journal Tropical Medicine and Hygiene 40: 269-272.
78. van Lieshout L, Polderman AM, Deelder AM (2000) Immunodiagnosis of schistosomiasis by determination of the circulating antigens CAA and CCA, in particular in individuals with recent or light infections. Acta Trop 77: 69-80.
79. Mengistu L, and Erko B (2007) Field-based evaluation of a reagent strip test for diagnosis of Schistosoma mansoni by detecting circulating cathodic antigen in urine before and after chemotherapy. Transactions of the Royal Society of Tropical Medicine and Hygiene 101: 668-673.
94. Al-Sherbiny MM, Osman AM, Hancock K, Deelder AM, Tsang VC (1999) Application of immunodiagnostic assays: detection of antibodies and circulating antigens in human schistosomiasis and correlation with clinical findings. Am J Trop Med Hyg 60: 960-966.

95. Colley DG, Binder S, Campbell C, King CH, Thueen Thueutne LA, et al. (2013) A five-country evaluation of a point-of-care circulating cathodic antigen urine assay for the prevalence of Schistosoma mansoni. Am J Trop Med Hyg 88: 428-432.

96. BADRAN A, EL-ALFI O, PFISCHNER WC, KILLOUGH TW, BURNS TW (1966) The value of routine rectal biopsy in the diagnosis of schistosomiasis. Am J Trop Med Hyg 51: 1068-1071.

97. Homeida M, Abdel-Gadir AF, Cheever AW, Bennett JL, Arbab BM, et al. (1988) Diagnosis of pathologically confirmed Symmers' periportal fibrosis by ultrasonography: a prospective blinded study. Am J Trop Med Hyg 38: 86-91.

98. Hatz C, Murakami H, Jenkins JM (1992) A review of the literature on the use of ultrasonography in schistosomiasis with special reference to its use in field studies. 3. Schistosoma japonicum. Acta Trop 51: 29-36.

99. Cheung H, Lai YM, Loke TK, Lee KC, Ho WC, et al. (1996) The imaging diagnosis of hepatic schistosomiasis japonicum sequelae. Clin Radiol 51: 51-55.

100. Li Y, Ross AGP, LIY, William GM, Tanner M, et al. (2000) Two-year impact of praziquantel treatment for Schistosomajaponicum infection in China: re-infection, subclinical disease and fibrosis marker measurements. Transactions of the Royal Society of Tropical Medicine and Hygiene 94: 191-197.

101. Liu R, Dong HF, Guo Y, Zhao QP, Jiang MS (2011) Efficacy of praziquantel and artemisinin derivatives for the treatment and prevention of schistosomiasis: a systematic review and meta-analysis. Parasit Vectors 4: 201.

102. Praziquantel: Getting the dosage right. TDR news item, 2 October 2008.

103. Carlton EJ, Hsiang M, Zhang Y, Johnson S, Hubbard A, et al. (2010) The impact of Schistosoma japonicum infection and treatment on ultrasound-detectable morbidity: a five-year cohort study in Southwest China. PLoS Negl Trop Dis 4: e685.

104. Mohamed-Ali Q, Doehring-Schwerdtfeger E, Abdel-Rahim IM, Schlae J, Kardorf R, et al. (1991) Ultrasonographical investigation of portal fibrosis in children with Schistosoma mansoni infection: reversibility of morbidity seven months after treatment with praziquantel. Am J Trop Med Hyg 44: 444-451.

105. Devidas A, Lamothe F, Develoux M, Mouchet F, Sellin B (1989) Ultrasonographic assessment of the regression of bladder and renal lesions due to Schistosoma haematobium after treatment with praziquantel. Ann Soc Belg Med Trop 69: 57-65.

106. Fenwick A, Webster JP (2006) Schistosomiasis: challenges for control, treatment and drug resistance. Curr Opin Infect Dis 19: 577-582.

107. Capron A, Riveau G, Capron M, Trottein F (2005) Schistosomiasis: the road from host-parasite interactions to vaccines in clinical trials. Trends Parasitol 21: 143-149.

108. Zhang DM, Pan WQ, Qian L, Duke M, Shen LH, et al. (2006) Investigation of recombinant Schistosoma japonicum paramyosin fragments for immunogenicity and vaccine efficacy in mice. Parasite Immun 28: 77-84.

109. Jiz M, Friedman JF, Leenstra T, Jarilla B, Pablo A, et al. (2009) Immunoglobulin E (IgE) responses to paramyosin predict resistance to reinfecion with Schistosoma japonicum and are attenuated by IgG4. Infect Immun 77: 2051-2058.

110. Jiz M, Wu HW, Meng R, Pond-Tor S, Reynolds M, et al. (2008) Pilot-scale production and characterization of paramyosin, a vaccine candidate for schistosomiasis japonica. Infect Immun 76: 3164-3169.

111. Tendler M, Simpson AJ (2008) The biotechnology-value chain: development of Sm14 as a schistosomiasis vaccine. Acta Trop 108: 263-266.

112. Siddiqui A, Phillips T, Chareet H, Podesta R, Quinlin M, et al. (2003) Enhancement of Sm-p80 (large subunit of calpain) induced protective immunity against Schistosoma mansoni through co-delivery of interleukin-2 and interleukin-12 in a DNA vaccine formulation. Vaccine 21: 2882-2889.

113. Ahmad G, ZhangW, Torben W, Haskins C, Digs S, et al. (2009) Prime-boost and recombinant protein vaccination strategies using Sm-p80 protects against Schistosoma mansoni infection in the mouse model to levels previously attainable only by the irradiated cercarial vaccine. Parasitology Research 105: 1767–77.

114. Zhang W, Ahmad G, Torben W, Noor Z, Le L, et al. (2010) Sm-p80-based DNA vaccine provides baboons with levels of protection against Schistosoma mansoni infection comparable to those achieved by the irradiated cercarial vaccine. J Infect Dis 201: 1105-12.

115. Ahmad G, Zhang W, Torben W, Ahrorov A, Damian RT, Wolf, RF, White, GL, Carey, DW, et al. (2011), Preclinical Prophylactic Efficacy Testing of Sm-p80-Based Vaccine in a Nonhuman Primate Model of Schistosoma mansoni Infection and Immunoglobulin G and E Responses to Sm-p80 in Human Serum Samples from an Area Where Schistosomiasis is Endemic. Journal of Infectious Diseases204 (9): 1437–49. doi:10.1093/infdis/jir545. PMC3182311. PMID21921206.

116. Da'dara AA, Li YS, Xiong T, Zhou J, Williams GM, et al. (2008) DNA-based vaccine protect against zoontic schistosomiasis in water buffalo. Vaccine 26: 3617-3625.