Wild-type GBA1 increases the α-synuclein tetramer–monomer ratio, reduces lipid-rich aggregates, and attenuates motor and cognitive deficits in mice

Kelly E. Glajch a, Tim E. Moors b, Yi Chen c, Pascal A. Bechade b, Alice Y. Nam b, Molly M. Rajsbomb, Thomas D. McCaffery d, Ulf Dettmernb, Andreas Weihefenc, Warren D. Hirsteds, Dennis J. Selkoeb,1,1, and Silke Nuberc,1

aNeurodegenerative Diseases Research Unit, Biogen, Cambridge, MA 02142; and bAnn Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115

Edited by Anders Björklund, Lund University, Lund, Sweden, and approved June 11, 2021 (received for review February 19, 2021)

Loss-of-function mutations in acid beta-glucosidase 1 (GBA1) are among the strongest genetic risk factors for Lewy body disorders such as Parkinson’s disease (PD) and Lewy body dementia (DLB). Altered lipid metabolism in PD patient-derived neurons, carrying either GBA1 or PD α-syn mutations, can shift the physiological α-synuclein (αS) tetramer–monomer (T:M) equilibrium toward aggregation-prone monomers. A resultant increase in pSer129+ αS monomers provides a likely building block for αS aggregates. 3K αS mice, representing a neuropathological amplification of the E46K PD-causing mutation, have decreased αS T:M ratios and vesicle-rich αS aggregates in neurons, accompanied by a striking PD-like motor syndrome. We asked whether enhancing glucocerebrosidase (GCase) expression could benefit αS dysphoomeostasis by delivering an adeno-associated virus (AAV)–human wild-type (wt) GBA1 vector into the brains of 3K neonates. Intracerebroventricular AAV-wtGBA1 at postnatal day 1 resulted in prominent forebrain neuronal GCase expression, sustained through 6 mo. GBA1 attenuated behavioral deficits both in working memory and fine motor performance tasks. Furthermore, wtGBA1 increased αS solubility and the T:M ratio in both 3K-GBA mice and control littermates and reduced pS129+ and lipid-rich aggregates in 3K-GBA. We observed GCase distribution in more finely dispersed lysosomes, in which there was increased GCase activity, lysosomal cathepsin D and B maturation, decreased perilipin-stabilized lipid droplets, and a normalized TFEB translocation to the nucleus, all indicative of improved lysosomal function and lipid turnover. Therefore, a prolonged increase of the αS T:M ratio by elevating GCase activity reduced the lipid- and vesicle-rich aggregates and ameliorated PD-like phenotypes in mice, further supporting lipid modulating therapies in PD.

α-synuclein | tetramer | glucocerebrosidase | cathepsin | GBA

G

BA1 gene mutations in Gaucher’s disease carriers are recognized as the most important risk factors for developing Parkinson’s disease (PD), since large multicenter patient cohorts identified GBA variants in PD, including in ~3% of sporadic PD patients and up to ~15% of the Ashkenazi Jewish population with PD (1). Homozygous and heterozygous GBA1 mutation carriers display a similar risk (~20%) of developing PD (2). GBA1 mutations can impact the activity of its gene product, the lysosomal lipid metabolism enzyme glucocerebrosidase (GCase), leading to changes in cellular lipid content and lipid membrane morphologies (3, 4). Clinically, PD patients with GBA1 mutations are largely indistinguishable from the idiopathic form. Both populations exhibit widespread α-synuclein (αS)+ Lewy bodies (LBs), including in the hippocampus and other brain regions, and these are associated with motor deficits and cognitive decline (2). PD-GBA1 mutation carriers are at a greater risk of cognitive impairments, and this finding is consistent with a higher incidence of GBA1 mutations in ≈DLB patients (5, 6). Recent morphological analyses of “sporadic” PD brain tissues have revealed that Lewy-type inclusions also contain substantial amounts of lipid-rich membranes and vesicles, including lysosomes (7). Additional evidence for the role of GCase in αS homeostasis has been generated in mouse studies and in GBA1-mutant neural cells, suggesting increased accumulation of αS secondary to different pathogenic GBA1 mutations (8–11).

Accumulating evidence from our laboratory (12–14) and others (15–18) shows that αS normally occurs in a dynamic equilibrium between helically folded tetramers and “natively unfolded” monomers. Regarding the relevance of αS tetramers to disease, we found that all familial PD (fPD)—causing αS mutations decrease the physiological tetramer–monomer (T:M) ratio and some induce cytoplasmic inclusions and neurotoxicity in human (hu) and rodent cell culture (13). Supporting these findings, neurons harboring PD-causing GBA1 mutations shifted endogenous wild-type (wt) αS tetramers to monomers that lead to abnormal phosphorylated serine 129 αS (pS129+) + αS accumulation (18), indicating lipid metabolism can impact physiological αS homeostasis. Mechanistic studies have shown that saturated fatty acids (SFAs) stabilize normal tetramers, while unsaturated FAs, such as oleic acid, decrease the T:M ratio (19, 20). Accordingly, decreasing stearoyl-CoA desaturase

Significance

The mechanisms responsible for brain α-synuclein (αS) dyshomeostasis, caused by Gaucher’s GBA1 mutations that increase Parkinson’s disease (PD) risk, are largely unknown. We previously showed that abrogating physiological αS tetramers by a familial PD-E46K–amplified 3K mutation produces PD-like syndrome in mice and that treatment with stearoyl-CoA desaturase inhibitors increased a portion of the αS tetramers, benefitting the motor phenotypes. Here, we show that—similar to previous findings in GBA1-mutant PD culture—GCase elevation prolonged the stabilization of wild-type and 3K mutant αS tetramers in wtGBA1–transduced mouse brains, improving lysosomal integrity and motor and cognitive phenotypes. These data help elucidating lipid modifiers that impact the αS physiological state in vivo and the development of PD therapeutic approaches.

Author contributions: K.E.G., T.E.M., and S.N. designed research; K.E.G., T.E.M., Y.C., P.A.B., A.Y.N., M.M.R., T.D.M., and S.N. performed research; K.E.G., T.E.M., Y.C., P.A.B., A.Y.N., M.M.R., T.D.M., and S.N. analyzed data; and K.E.G., T.E.M., Yi C., P.A.B., U.D., A.W., W.D.H., D.J.S., and S.N. wrote the paper.

Competing interest statement: D.J.S. is a director and consultant of Prothena. K.E.G., Y.C., A.W., and W.D.H. are employees of Biogen.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Published by Biomed Central Ltd. Published July 29, 2021.

PNAS 2021 Vol. 118 No. 31 e2103425118

https://doi.org/10.1073/pnas.2103425118
SCD activity, the rate-limiting enzyme for generating monounsaturated (MU) FA, decreases αS+ neuronal inclusions in yeast, rat cortical neurons, hu wt, iPD E46K–induced neurons, and in 3K cell culture models (19–21).

Our recent approach to treating hu wt or 3K αS mutant mice with SCD inhibitors showed that the prolonged increases in the T:M ratio can reduce excess triacylglycerides (TAGs), lipid droplets (LDs) (rich in TAGs), and pS129 αS+ aggregates, aiding multiple PD motor phenotypes (22). Intriguingly, overexpressing hu wtGBA increased the αS T:M ratio in Gaucher’s GBA1-mutant neuronal culture (18).

Whether early transduction and prolonged increase of hu wtGBA can enhance αS T:M homeostasis in vivo has yet not been examined. To begin investigating this question, we used the tetramer-abrogating “3K” αS mutant mouse line that is a biochemical amplification of the E46K mutation-causing PD. The 3K mutation shifts the normally aggregation-resistant αS tetramers (12) to increased levels of monomers that then cluster with vesicle membranes and form sizeable aggregates, thereby producing multiple PD-like motor phenotypes by the age of 6 mo (23). The Thy1.2 promotor that drives the 3K transgene reaches stable expression from postnatal day 7 onwards (24), thereby enabling us to study whether GBA1 effects the onset of αS dyshomeostasis in mouse brain when injecting it into 3K neonates. Here, we transduced an adeno-associated virus (AAV)–wtGBA1 vector by intracerebroventricular (ICV) injections in 3K and control littermate pups at P1 and then, 6 mo later, performed motor and cognitive testing and examined the brains for αS species, GCase activity, lysosomal abnormalities, and lipid aggregation patterns.

Results
Regional and Cellular Distribution of hu GCase after Neonatal wtGBA1 Transduction. We first characterized the hu wtGCase expression pattern produced by ICV injections of P1 neonates, as indicated

![Fig. 1](image-url)
by coexpressed GFP (Fig. 1). The strongest GFP intensities were observed in the forebrain (hippocampus and cortex), with more modest signals in the subcortical regions, including the striatum, thalamus, and midbrain (Fig. 1A). This regional pattern was in accord with ICV administration of the AAV vector. Under higher magnification, we observed large numbers of GFP-expressing neurons throughout the hippocampal and cortical layers and some sparsely scattered glial cells (Fig. 1B and SI Appendix, Fig. S1). Coating with glial markers showed S100β+ cells with a bushy appearance, thus identifying protoplasmic astrocytes, but we did not observe the microglial markers Iba1 or TMEM119 to colocalize with GFP (SI Appendix, Fig. S1). Therefore, hu AAV–GCase is likely not expressed in microglia. GFP labeling was mainly found in neurons of the CA2/CA3 subregion of the hippocampus (SI Appendix, Fig. S2). Brain regions more distal to the injection site, such as the substantia nigra that only had occasional scattered GFP+ neurons or glia, far fewer than in cortex and hippocampus. Confocal imaging using an antibody (ab) to hu GCase (ab55080; Abcam) showed the expected coexpression pattern with GFP (Fig. 1C) in the cortical and hippocampal layers, and this pattern was further substantiated by light microscopic analyses of hu GCase in 3,3′-diaminobenzidin (DAB)–stained, adjacent sagittal sections (Fig. 1D). Based on these data, we conclude that GBA1 was transduced mainly in neurons and was predominantly expressed in the cortex and hippocampus but also in a small number of cells in regions distant from the lateral ventricle, presumably because of viral particles that diffused through the brain.

Transduction with hu wtGBA1 Improves Both Cognitive and Motor Deficits of 3K PD Mice. Given the high expression of wtGBA1 in hippocampus and cortex, we assessed cognitive changes in hu GBA– and vector-injected littermates at the age of ~6 mo in a Y-Maze, widely used for testing hippocampus-dependent spatial working memory (Fig. 2). The results revealed that 3K vector (3K-vec) mice displayed a significant deficit in spatial working memory, evidenced by a decrease in alternation of the three Y-Maze arms, as qualitatively depicted by superimposed images of all mouse tracks (Fig. 2A, yellow, highlighting an overlay of mouse tracks) and quantified via automated tracking analyses (Fig. 2 B–D). Two-way ANOVA confirmed that expressing wtGBA1 increased the spontaneous alternation of 3K mice [interaction: \(F_{(1,38)} = 7.9; P < 0.01 \); GBA1 expression: \(F_{(1,38)} = 3.9; P = 0.05 \)] toward the performance levels of healthy vector or GBA-transduced nontransgenic (Ntg) littermate mice (Fig. 2B). The test further revealed a decreased latency of 3K-vec mice to enter the new (blocked) arm \((P < 0.05) \) (Fig. 2C), and this was improved in 3K-GBA mice. To exclude the possibility that the observed defects in spatial working memory were due to a decrease in locomotor activity in 3K-vec, we evaluated ambulatory activity by measuring the covered distance in the Y-Maze over the testing period and found no differences between the groups (Fig. 2D). To further explore motor skills, we placed mice on a pole and measured the time to climb down the pole (Fig. 2E). 3K-GBA mice showed a notable decrease in time required to climb down, becoming similar to control littermates \([\text{GBA treatment } F_{(1,38)} = 6.68; \ P = 0.013] \).

wtGBA1 Improves Soluble α-S Tetramer–Monomer Homeostasis in 3K Mice. Our previous studies established that the E46K-related 3K mutation shifted the normal α-S T:M ratio toward excess aggregation-prone monomers, and this led to biochemical changes and PD-like neuropathology (23). AAV-wtGBA1 injection into 3K neocortices allowed us to explore wtGBA1 effects very close to the onset of 3K α-S expression, given that the AAV vector (25) and the Thy1 promoter of the transgene (24) can each induce stable expression within 7 to 10 d after birth. We first quantified hu and total \((\text{t} = \text{rodent} + \text{hu}) \) GCase (tGCase) to estimate the induced enzyme expression level in cortical brain extracts (Fig. 3). We found that GBA1-transduced mice robustly expressed hu GCase (SI Appendix, Fig. S3A), and this elevated the total amount of GCase (Fig. 3A and B). Since the level of the GCase enzyme correlates with its activity (26), the results suggested an increase in GCase activity (that we also validated by an activity assay; see Fig. 5C). Immunoblotting with the hu α-S–specific ab (Fig. 3A) or a mouse + hu ab showed that wtGBA1-transduced mice had increased Tris-buffered saline (TBS)–soluble αS and lessened radioimmunoprecipitation assay (RIPA)–soluble αS versus empty vector–treated mice (Fig. 3C).

![Figure 2](https://doi.org/10.1073/pnas.2103425118)

Fig. 2. Induced hu GCase expression “rescues” hippocampal-dependent cognitive function and fine motor skills. GBA1- or vector-transduced 3K and control littermates were subjected to the Y-maze at age 6 mo. (A) Digital mouse tracks were summed to generate one superimposed image, a heat map of tracks generated using the FIJI plugin "LUT smart," and exported as a 16-bit image. Spontaneous alternation (B), latency (C), and distance covered (D) were recorded as an index for spatial memory and statistically analyzed using Noldus automatic tracking camera and software. (E) 3K fine motor abnormalities were tested using the pole climbing test. Data are means ± SEM. \(n = 8 \) to 12 per group; \(*P < 0.05 \) and \(**P < 0.01 \); two-way ANOVA and Tukey’s post hoc test.
Two-way ANOVA confirmed a highly significant treatment effect $[F_{1,16} = 24.20; P < 0.001]$ and genotype effect $[F_{1,16} = 26.55; P < 0.001]$. In order to assess the impact of wtGCase on the T:M ratio in the 3K mice, we performed intact cell cross-linking using DSG on washed cortical brain bits (13). 3K-GBA mice showed a marked increase in αS tetramers (Fig. 3 D and E) and a rise in the T:M ratio (Fig. 3F), compared to 3K-vec. In vector- and GBA-transduced control (Ntg littermate) mice, the enhanced GCase in the later also raised the αS tetramer level (Fig. 3E) and T:M ratio (Fig. 3F). Two-way ANOVA confirmed significant treatment ($P < 0.001$) and genotype ($P < 0.001$) effects. We previously observed a relative decrease of the αS T:M ratio in male versus female 3K mice (26). Thus, we analyzed both sexes in the 3K. The three-way ANOVA (sex × genotype × GBA1 treatment) confirmed that the increase in GCase raised the αS T:M ratio to a similar level in male and female 3K mice (SI Appendix, Fig. S3).

Since RIPA extracts may also include a portion of dissolved αS deposits that we observed to develop into sizeable vesicle- and lipid-rich inclusions between the age of 3 to 6 mo in 3K versus wt control mice (23), we performed immunohistochemistry using an ab highly specific for pS129 [EP1536Y (27)]. Because αS can also acquire protease K-digestion resistance (PKres) when aggregated into Lewy-type lesions that may include lipid membranes (7), brain sections were PK digested and then stained against an aggregate-sensitive pS129 ab (Fig. 3G). The PKres aggregates were imaged and quantified with higher-resolution light microscopy (Fig. 3H). In GBA-transduced 3K mice, PKres granules were...
markedly decreased in cortical and hippocampal pyramidal neurons (Fig. 3J). Only minimal background immunoreactivity was observed in vector- or GBA1-transduced Ntg control littermates (Fig. 3G, Left). These findings suggest that a chronic increase in GCase level by AAV-wtGBA1 neonatal transduction preserved a portion of membrane-associated αS monomers from developing into pS129+ and lipid-rich inclusions in 3K mouse brain.

wtGBA1 Reduces Lipid-Rich αS Aggregates and Increases Nuclear TFEB Translocation in 3K Mice. Abnormal, lipidic aggregates are found in hu PD brain (7), in PD-GBA1 mutant neurons (28), and were recently described in a PD fly model (29). We consistently observed pS129 coaggregated with the lysosomal membrane–associated protein1 (LAMP1) in 3K αS mice. The mice develop vesicle-rich inclusions containing multilaminar membranes (26) and Lewy body–type aggregates (23), and these can be decreased by down-regulating LD contents via SCD inhibition (30). Nile Red (NileR) is an established histochemical marker for neutral lipids and LDs (31, 32). Therefore, we quantified NileR+ puncta colocalizing with pS129+ αS aggregates in 3K brain hippocampal neurons (Fig. 4A and B, graph). wtGBA1 decreased the NileR+ puncta in 3K neurons (P < 0.01). In order to assess whether these changes were the general effects of GBA1, we included the GBA-transduced control littermates in the analyses. Two-way ANOVA revealed a significant interaction [F(1,20) = 16; P < 0.001] and post hoc paired comparison showed that the excess NileR+ positive foci were decreased in the 3K-wtGBA1 versus 3K-vec mice (P < 0.01) and became more similar to the (unchanged) NileR+ puncta detected in Ntg mice. Additionally, Plin2, a coat protein whose binding shields LDs from cytosolic degradation, if not being stripped off by lysosomal

![Fig. 4.](https://doi.org/10.1073/pnas.2103425118)

Fig. 4. wtGBA1 decreases lipid-rich pS129+ αS aggregates and increases the nuclear translocation of TFEB in 3K mouse brain. (A) Confocal microscopy of hippocampal (hc) sections triple labeled with NileR(gray), pS129 (pS) (red), and DAPI (blue), expressed in GFP+ (green) positive neurons. (B) Quantification of NileR puncta in vector- and GBA1-transduced 3K, and Ntg littermates showing a decrease in 3K-vec versus 3K-GBA1 (Left) and decrease in lipidic pS129+ aggregates (Right). (C) Plin2 staining identifies excess LDs accumulating in 3K and are reduced in 3K-GBA1–transduced neurons. (D) Quantification of LD counts. wtGBA1 increased nuclear TFEB immunoreactivity in 3K hc neurons. (E) Representative overview (large image) and magnifications (Insets) in the hc CA3 neurons of 3K-vec (Left) and 3K-GBA1 (Right) mice. Blue circles represent the outline of DAPI-labeled nuclei. Arrowheads (yellow) in the insets highlight nuclear TFEB labeling (red) in 3K-GBA1 mice versus 3K-vec mice. (F) Counts of the proportion of hc CA3/CA2 neurons displaying nuclear TFEB immunolabeling. Colocalized points of the respective dual-color confocal images were analyzed for their cts or sizes by using the ImageJ particle analyzer plugin. For spectrally unmixed pS129 and Plin2 staining, see SI Appendix, Fig. 5A. The quantification of n = 7 to 10 fields from each genotype were averaged per mouse (n = 4 to 8 each cohort). Data expressed as means ± SEM; *P < 0.05 and **P < 0.01; two-way ANOVA, Tukey’s post hoc test, or unpaired two-tailed t test.

Glajch et al. PNAS
Wild-type GBA1 increases the α-synuclein tetramer–monomer ratio, reduces lipid-rich aggregates, and attenuates motor and cognitive deficits in mice

https://doi.org/10.1073/pnas.2103425118
proteases (33, 34), formed numerous immunoreactive foci in 3K-vec mouse brains. This suggests a decrease in lysosomal lipophagy in 3K brain, as we previously observed (22). The excess Plin2-stabilized LDs were decreased in 3K-GBA1 versus 3K-vec mice (Fig. 4 C and D) (two-way ANOVA interaction: \(P = 0.0087 \)), indicating increased lysosomal lipid turnover following higher GCase activity in 3K mouse brain. Previous studies showed that a high-lipid load retains the transcription factor EB (TFEB) in the cytosol (35). Nuclear TFEF induces genes involved in autophagy and lysosomal biogenesis, thereby contributing to the degradation of cytoplasmic, lipidic material (35–37). We investigated whether the reduction of hippocampal, lipidic pS129+ aggregates in wtGBA1-transduced 3K mice could associate with increased nuclear TFEF immunoreactivity in CA2/CA3 hippocampal neurons. Confocal analyses of double-labeled sections (TFEB and DAPI) showed a relatively lower number of DAPI+ nuclei with TFEF+ in 3K-vec, and this was increased in 3K-GBA–treated mice (Fig. 4 E and F). Two-way ANOVA of the cell counts revealed a significant interaction \([F_{1,18}] = 0.3, P = 0.02\) and a rise in percentage nuclear TFEF in 3K-GBA versus 3K-vec (\(P = 0.015 \)), becoming similar to TFEF signals in Ntg controls. We only found an average of ~6 to 7 GFP+ astrocytes in close proximity to GFP+ neurons in hippocampal fields in the CA1 to CA3 region (SI Appendix, Fig. S3); thus, it is unlikely that these few astroglia impacted the overall lipid findings. A more likely interpretation of wtGCase effects on 3K mice is that the observed normalized immunofluorescence derives from increased, neuronal GCase activity. Together, our data suggest that the increase in soluble T:M homeostasis because of a reduced αS monomer association with membranes is associated with a decrease of lipidic pS129+ aggregates in 3K brain.

Increased Neuronal wtGCase Activity Improves Lysosomal Function and LD Metabolism. Lipidic material, including LDs, can aggregate within LAMP1+ lysosomes because of changes in lysosomal, proteolytic activity (36). Intriguingly, in our vec-3K mice, the sizeable LAMP1+ foci were essentially devoid of GCase immunoreactivity. In the 3K-GBA-wt mouse brain, as we previously observed (22), the excess Plin-stabilized LDs due to a decrease in CatB activity further retains TFEB in the cytosol (50), as supported by the observation of increased JNK and TNFα mRNA expression and a potential association to the normalized colocalization pattern detected in GBA-treated Ntg littermates (SI Appendix, Fig. S5). These results suggest that an increase in wtGCase activity improves lysosomal integrity and thereby lysosomal lipid turnover (see summary diagram, Fig. 6).

Discussion

Here, we show that the prolonged induction of hu wtGBA1 beginning at P1 in 3K PD-like mice improves αS solubility and the T:M ratio, associated with reduced, lipidic αS+ aggregates, and improved cognitive and fine motor coordination at the age of 6 mo. These data provide key in vivo preclinical data supporting the beneficial effects of targeting GCase to improve soluble αS homeostasis in PD. Several of our findings are informative for the future design of such therapies, including the positive effects through 6 mo treatment, even with modest increases of wtGCase (~15% level and activity), and that prolonged stabilization of αS tetramers was associated with benefits for secondary, PD-like alterations, including lysosomal abnormalities. Moreover, increasing GCase activity also enhanced nonmutant (wt) αS solubility and the T:M ratio of GBA1-transduced control (Ntg) littermate mice. Since GCase deficiency may also occur in some idiopathic PD cases (44, 45), these results suggest that targeting GCase could benefit αS homeostasis beyond αS genetic PD forms.

In previous wtGBA1 overexpression studies using transgenic mouse models of PD, GCase-dependent changes in monomeric αS were not observed (10) or not tested (46), or it was reported that only (Tris-) soluble, monomeric αS decreased (47). In contrast, we used a well-established (48) and validated (13, 18) intact cell cross-linking method to capture all αS forms, including the most lipid-resistant αS tetramers (13). We validated this method using sequential extractions to test for soluble and membrane-associated αS.

Overexpressing GCase reduced pathological pS129+ αS deposits that colocalized with the lysosomal membrane and lipidic material. Accordingly, the more dispersed and smaller-sized lysosomal (LAMP1+) and lipid (NileR+ or Plin2+) puncta in GBA1-transduced neurons decrease in the pS129+ vesicle- and lipid-rich aggregates, indicating an improved vesicle flux (9) versus cagggregation into multilamellar and fibrillar aggregates by electron microscopy (23, 26). The observed increase in Plin2+ puncta in untreated 3K mouse brain (22) suggests lysosomal deficiencies (29), since these LD membrane coat proteins are stripped off at acidic pH (33). Overexpressing GCase likely promotes lysosomal, enzymatic activities. CatB can process CatD (43), and a new study reported increasing GCase activity in GBA1-mutant cell–promoted CatD processing and activity, and this decreased monomeric αS (49). Consistently, we observed an increase in CatD and CatB maturation (Fig. 5). CatB is a newly reported risk factor for PD penetrance in GBA1-mutant carriers ([i.e., displaying reduced CatB maturation in the patient-derived neurons (40)]). Additionally, CatB can degrade Plin-coated LDs (22), suggesting that CatB contributes to neuronal lipolysis. Therefore, one could hypothesize that an excess of Plin-stabilized LDs due to a decrease in CatB activity further retains TFEF in the cytosol (50), as supported by less nuclear staining in the 3K brain, and these together lead to formation of αS aggregates (Fig. 6: “disease”). Thus, increasing GCase and other lysosomal, enzymatic activities in PD or Gaucher...
patients may help to normalize lipid homeostasis. (Fig. 6: “health”). In addition, increasing GCase activity by small compounds, such as ambroxol, could be used to continuously reduce pS129+-deposited αS in PD cases (51). These various observations alone do not explain how increased GCase activity can apparently move excess membrane-bound αS monomers toward the formation of more tetramers but that was also seen in GBA1-mutant neurons of Gaucher’s carriers with PD that underwent wtGBA1 transduction (18). Interestingly, GCase preferentially turns over unsaturated glucosylceramides, and this can increase the lipid order of membranes (3). Intriguingly, adding SFA (versus unsaturated FA) to certain PD-relevant cell culture models resolved αS inclusions (19). The apparent increase in relative SFA levels could decrease membrane fluidity, including that of lysosomes, and thereby decrease αS on the membrane (52). Therefore, an increase in GCase activity may promote αS monomer solubility and their subsequent assembly into tetramers. Our and other laboratories’ previous studies showed that inhibiting SCD, the key enzyme turning saturated FAs into MU FAs, provided protection against αS-induced neurotoxicity in PD-modeling yeast and neuronal cultures (19–21). In our PD-like mouse model, both the pharmacological inhibition (using the 5b compound) and genetic deletion of SCD1 (SCD knockout [KO] mice or SKO) could stabilize the αS T:M equilibrium. Decreasing SCD activities also decreased excess TAGs, reduced Plin-coated LDs, and improved motor phenotypes at either 3 or 6 mo in 3K-SKO mice (22). Hence, it is likely that certain alterations in the neuronal lipid composition can promote PD pathogenesis by acting on lysosomal lipid clearance pathways. This concept fits with the growing evidence that lipid dyshomeostasis is an imprint factor in hu PD (7, 53–55), as has been observed in PD-relevant neuronal cultures (19, 56–58) and mouse models (22, 59, 60). Therefore, a likely mechanistic explanation for the therapeutic benefits of GBA expression seen here is a shift in FA balance that contributes to proper, amphipathic α-helix in αS that stabilizes tetramer formation, perhaps by enhancing the transient interaction of αS monomers with highly curved vesicle membranes. Additional studies are needed to clarify the relationship between GCase-modified lipid

Fig. 5. wtGBA1 increases lysosomal enzyme maturation and activity. The sizeable LAMP1+ foci (FUJI “Maxima” plugin) lacked tGCase reactivity in 3K (magnified on the Right), and GBA1 induction increased the colocalization of tGCase with more finely distributed LAMP1 puncta (A) and quantitation of colocalized puncta (B). (C) GCase activity measured in the cortex of GBA or vector-injected 3K and non-Ntg littermates at 6-mo postinjection using the 4MUG assay. Increased CatB immunoreactivity in GBA versus vec-3K (D) and quantification (E). (F) WB shows preforms of CatD (50 kDa) and CatB (43 to 46 kDa) and their LMW (CatD at 14 + 34 kDa and CatB at 25 to 26 kDa) products, representing cleavage at low pH+, consistent with increased CatB immunoreactivity and colocalization with LAMP1+ shown in D. (G) Quantification of the ratio between the higher and lower molecular signals of CatD and CatB. For histological analyses, n = 7 to 10 fields of three hippocampal sections from each genotype (n = 3 to 4 each cohort). IOD, integrated optic density; col, colocalization; exp, exposure. Data are expressed as means ± SEM; *P < 0.05 and **P < 0.01; two-way ANOVA, Tukey’s post hoc test, or unpaired two-tailed t test. (Scale bars, 20 μm.)
the AutoDG system from BioRad. Final titers of the injected solutions for hu GBA1. Droplets were produced and analyzed using QX200 with and purified by ion exchange chromatography. To quantify titers, AAV pathway, see the tetramer formation. For additional references of the hypothesized Finally, certain SFAs can stabilize the helical structure of tetramers and subsequently decrease the vesicle- and lipid-rich aggregates.

at 4 °C in two volumes of TBS+ [50 mM Tris·HCl, pH 7.4, 175 mM NaCl; 5 mM EDTA; and protease inhibitor mixture (Calbiochem)]; and spun for 45 min at 120,000 g. The pellet was subsequently sonicated in RIPA buffer (TBS+, 1% Triton X-100) and blocked for 1 h at RT in PBS containing 5% bovine serum albumin (BSA). Blots with rabbit and guinea pig were incubated with other hu-specific GCase (ab55080, 1:1,000; abcam), hu and hu-rodent-detecting GCase (G4171; 1:1,000; Sigma), or CatB (RD Biosciences; 1:1,000), or CatD (MAB 1029; RD Biosciences; 1:1,000). Blots with cross-linked samples were incubated with syn1 (M42, 1:2,000, BD biosciences). All abs were diluted in PBS containing 5% BSA overnight. After washing with PBST, membranes were probed with appropriate secondary abs (1:3,000, American Qualex), visualized with enhanced chemiluminescence (PerkinElmer), and analyzed with the VersaDoc gel imaging system. Proteins were normalized to β-actin (AS441; Sigma; 1:5,000), which was used as a loading control. DJ-1 was used as a quality control for cross-linking. Quantification of signal intensities was performed as described (64).

Immunohistochemistry. Anesthetized mice were intracardially perfused with PBS and ice cold 4% (wt/volume) PFA in PBS (pH 7.4). The brain was dissected for subsequent new neurons and postmortem tissue for antibodies. 1 mm cryotome sections. After treatment with H2O2 (0.3% in PBS, 30 min) and blocking (10% normal goat serum, 1 h), sections were incubated for 12 h at 4 °C with anti-hu GCase (ab55080, 1:200; abcam) or anti-ro + hu GCase (G4171; 1:1,000; Sigma) in PBS. After washing with PBS, sections were incubated with the respective biotinylated secondary abs (1:200 in PBS; vector; and subsequently transferred into avidin-biotin complex solution (1:500 in PBS; Vectastain Elite Kit, Vector Laboratories) for 1 h and visualized with DAB, as previously described [23]. For immunofluorescent experiments, sections were blocked in 10% normal donkey serum and incubated over night at 4 °C with abs to hu or tGCase (ab55080, 1:100, abcam) or anti-488, 1:200; Bethyl Laboratories). This was followed by incubation with the appropriate fluorophore-conjugated secondary abs (1:500 in PBS; Alex568, and 647) for 3 h at RT. Nikon (ab228553; abcam) was diluted 1:5000, applied for 15 min, and washed five times for 10 min at the final staining step, prior to embedding with DAPI-containing mounting medium (Vectashield). For confocal imaging of TFE2, a Leica TCS SP8 STED 3x microscope (Leica Microsystems) and LAS X navigator software (Leica) was used. Focus was set based on autofocus on the DAPI channel. Z-stacks of 0.9 μm (z-step size 0.15 μm) were made for each image. Confocal microscopy was conducted with an Axiovert 35 microscope (Zeiss) mounted on an MRC1024 laser-scanning confocal microscope (Bio-Rad), and each image was color balanced. Image analyses were done using Fiji ImageJ software (NIH). The Fiji plugin “colocalization highlighter” created a mask of overlapped pixels. The number or metabolism and the αS T:M equilibrium and whether increasing FA saturation (e.g., by SCD inhibition) can increase physiological αS homeostasis in mice with additional mutant GBA1-induced neuropathologies.

Materials and Methods

Experimental Animals and AAV Injection. Recombinant single-stranded AAV.PHPB-CAG-GBA1-p2A-eGFP (“GBA1”) and AAV.PHPB-CAG-p2A-eGFP-control empty vector (“vec”) were prepared by triple transfection and purified by ion exchange chromatography. To quantify titers, AAV samples were treated with DNase I, diluted, and combined with droplet digital PCR Supermix for probes (no UTP) and a primer/probe mix specific for hu GBA1. Droplets were produced and analyzed using QX200 with the AutoDG system from BioRad. Final titers of the injected solutions were 3.71e13 gc/mL for empty vector and 3.27e12 gc/mL for AAV1-GBA1. A total of 4 μL viral vector and 0.1% (volume/volume) fast green (Sigma) were injected unilaterally. The dye confirmed distribution into both ventricles of each injected P1 neonate.

Sequential Tissue Extractions. Mice were anesthetized, transcardially flushed with cold phosphate-buffered saline (PBS), decapitated, and the brains dissected on a chilled stage. Sequential extractions were performed as described (61). Briefly, small pieces of cortex were homogenized via sonication at 4 °C in two volumes of TBS+ [50 mM Tris HCl, pH 7.4, 175 mM NaCl; 5 mM EDTA; and protease inhibitor mixture (Calbiochem)]; and spun for 45 min at 120,000 g. The pellet was subsequently sonicated in RIPA buffer (TBS+, 1% Nonidet P-40, 0.5% sodium deoxycholate, and 0.1% sodium dodecyl sulfate) and incubated for 15 min, followed by ultracentrifugation for 30 min at 120,000 g.

Intact Cell Cross-Linking of Brain Tissue. Dissected cortical brain bits were gently minced with a razor blade, washed, and resuspended in PBS with EDTA-free complete protease inhibitors (Roche Applied Science). Intact cell cross-linking was then conducted, as previously described (23). Briefly, the cell-permeable cross-linker DSG was prepared at 1 mM final concentration in DMSO immediately before use. Samples were incubated with DSG for 30 min at 37 °C with rotation. The reaction was quenched by adding Tris, pH 7.6, at 100 mM final concentration and incubated for 5 min at room temperature (RT) with rotation. After quenching and aspiration of the supernatant, cells were lysed in TBS containing 1% Triton X-100. Proteins were separated from cell debris by ultracentrifugation for 45 min at 120,000 g.

4MUG GCase Activity Assay. Tissue samples were homogenized in 10 weight per volume buffer (250 mM sucrose, 10 mM Tris pH = 7.5, 1 mM EDTA, and 0.25% Triton X-100 solution with protease/phosphatase inhibitors) using an Omni Ruptor, sonicated in a water bath, and lysed on ice. Samples were centrifuged at 20,000 g for 15 mins at 4 °C, and supernatant was collected and quantified with BCA. To measure GCase activity, 3mM 4MUG (Sigma M3633), an artificial substrate of GCase, was incubated with 10 μg lyses with and without 100 mM conducted B-epoxide (EMD Millipore 234595), a GBA antagonist, at 37 °C for 1 h. Reactions were stopped with 1 M Glycine (pH 10.8), and fluorescence was detected with a Biotek synergy microplate reader at 365/445 excitation/emission wavelengths. The TGcase activity (nanomole/milligram/hour) was calculated using known concentrations of a 4-methylumbelliferone (Sigma M1381) standard curve.

Western Blot Analyses. For WB, 8 to 15 μg total protein of sequential extracts were each run on 4 to 12% Bis-Tris gels (Invitrogen) and electroblotted onto nitrocellulose membranes (Millipore). All cross-linked samples were blotted on PVDF membranes for the enhanced retention of proteins. For improved immunodetection of αS (monomers of which are prone to washing off filters (62, 63), the membranes were fixed in 4% paraformaldehyde (PFA) for 10 min. After washing in PBST (PBS with 0.2% Tween 20), membranes were blocked for 1 h at RT in PBS containing 5% bovine serum albumin (BSA). Blots were then incubated with either hu-specific GCase (ab55080, 1:1,000; abcam), hu and hu-rodent-detecting GCase (G4171; 1:1,000; Sigma), or CatD (MAB 1029; RD Biosciences; 1:1,000). Blots with cross-linked samples were incubated with syn1 (M42, 1:2,000, BD biosciences). All abs were diluted in PBS containing 5% BSA overnight. After washing with PBST, membranes were probed with appropriate secondary abs (1:3,000, American Qualex), visualized with enhanced chemiluminescence (PerkinElmer), and analyzed with the VersaDoc gel imaging system. Proteins were normalized to β-actin (AS441; Sigma; 1:5,000), which was used as a loading control. DJ-1 was used as a quality control for cross-linking. Quantification of signal intensities was performed as described (64).

Glajch et al.

Wild-type GBA1 increases the α-synuclein tetramer–monomer ratio, reduces lipid-rich aggregates, and attenuates motor and cognitive deficits in mice
sizes or percentage area of the colocalized pixels on the resultant 8-bit images were quantified using the analyze particle function plugin.

Y-Maze Test. Working memory was assessed in the Y-Maze with small modifications (65). Briefly, in order to test for spontaneous alternation performance (SAP) percentage all three arms were accessible for each mouse (each arm 15 × 10 × 10 cm). The percentage SAP was determined by using the equation of total alternations (actual alternations) divided by total number of arm entries – 2 (possible alternations) × 100 in a session over 3 min. In order to test for recognition memory, one arm of the maze was blocked off, and the mouse was allowed to explore two arms for 3 min. After a 3 min interval period, the mouse was returned to the maze with all arms open, and the mice was monitored for the tendency to spend time in the new arm or the known arms for 1 min. The sum of number of arm entries were traced automatically by an overhead, contrast-detecting camera and entrance time to the arm distance covered, and percentage SAP were calculated by Noldus EthoVision XT tracking software. A two-dimensional heatmap of the sum of mouse tracks was generated using Fiji plugin LUT smart and exported as a 16-bit superimposed image.

Pole Climbing. Mice were placed with the head oriented toward the top of a 50-cm vertical threaded metal pole with a diameter of 1 cm. Mice were timed as they descended to the base of the pole, as a way to assess their ability to grasp and maneuver on a pole. The timing began as soon as mice oriented themselves downward. A maximum duration time of 1 min was set to avoid exhaustion. The mice were tested for three consecutive trials (climbing down to the base), and average times to “climb down” were calculated for each mouse.

1. E. Sidransky et al., Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N. Engl. J. Med. 361, 1651–1661 (2009).
2. J. Neumann et al., Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain 132, 1783–1794 (2009).
3. H. Akiyama, S. Kobayashi, Y. Hirabayashi, K. Murakami-Murofushi, Cholesterol glucosylation is catalyzed by transglucosylation reaction of β-glucosidase 1. Biochem. Biophys. Res. Commun. 441, 838–843 (2013).
4. H. Akiyama et al., Glucocerebrosidase catalyze a transgalactosylation reaction that yields a newly identified brain sterol metabolite, galactosylated cholesterol. J. Biol. Chem. 295, 5257–5277 (2020).
5. R. N. Alcalay et al., Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations. Brain 138, 2648–2658 (2015).
6. G. Liu et al.; International Genetics of Parkinson Disease Progression Consortium. Specifically neuropathic Gaucher’s mutations accelerate cognitive decline in Parkinson’s Ann. Neurol. 80, 674–685 (2016).
7. S. H. Shahmoradian et al., Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22, 1099–1109 (2019).
8. I. Fishbein, Y.-M. Kuo, B. J. Glasson, R. L. Nussbaum, Augmentation of phenotype in a transgenic Parkinson mouse heterozygous for a Gaucher mutation. Brain 137, 3235–3247 (2014).
9. J. R. Mazzulli et al., Gaucher disease glucocerebrosidase and α-synuclein form a bi-directional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011).
10. D. Kim et al., D409H GBA1 mutation accelerates the progression of pathology in AS5T α-synuclein transgenic mouse model. Acta Neuropathol. Commun. 6, 32 (2018).
11. A. Migdalaska-Richards et al., The L444P Gba1 mutation enhances alpha-synuclein induced loss of nigral dopaminergic neurons in mice. Brain 140, 2706–2721 (2017).
12. T. Bartels, J. G. Choi, D. J. Selkoe, α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107–110 (2011).
13. U. Dettmer et al., Parkinson-causing α-synuclein misfolds mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat. Commun. 6, 7314 (2015). Correction in: Nat. Commun. 6, 8008 (2015).
14. E. S. Luth, T. Bartels, U. Dettmer, N. C. Kim, D. J. Selkoe, Purification of α-synuclein tetramer to monomers as a mechanism for disease initiation. Proc. Natl. Acad. Sci. U.S.A. 108, 17797–17802 (2011).
15. A. J. Yexer, E. Rhodes, N-Terminal acetylation is critical for forming α-helical oligomer of α-synuclein, Protein Sci. 21, 601–605 (2012).
16. J. Burré, M. Sharma, T. C. Sudhoff, α-Synuclein assembles into higher-order multimers under membrane binding to promote SNARE complex formation. Proc. Natl. Acad. Sci. U.S.A. 115, E4274–E4283 (2016).
17. S. Kim et al., Gaucher disease does not negatively affects physiological α-synuclein tetramer and related multimers. Proc. Natl. Acad. Sci. U.S.A. 115, 798–803 (2018).
18. T. Imberdis et al., Cell models of lipid-rich α-synuclein aggregation validate known modifiers of α-synuclein biology and identify stearyl-CoA desaturase. Proc. Natl. Acad. Sci. U.S.A. 116, 20760–20769 (2019).
19. S. Fanoni et al., Lipidomics analysis of α-synuclein neurotoxicity identifies stearyl-CoA desaturase as a target for Parkinson treatment. Mol. Cell. 73, 1001–1014.e1 (2019).
41. J. K. Götzl et al., Early lysosomal maturation deficits in microglia triggers enhanced lysosomal activity in other brain cells of progranulin knockout mice. Mol. Neurodegener. 13, 48 (2018).

42. G. Werner et al., Loss of TME1068 potentiates lysosomal and FTLD-like pathology in progranulin-deficient mice. EMBO Rep. 21, e50241 (2020).

43. V. Laurent-Matha, D. Derooq, C. Prebois, N. Katunuma, E. Liaudet-Coopman, Processing of human cathepsin D is independent of its catalytic function and auto-activation: Involvement of cathepsins L and B. J. Biochem. 139, 363–371 (2006).

44. D. Chiasserini et al., Selective loss of glucocerebrosidase activity in sporadic Parkinson's disease and dementia with Lewy bodies. Mol. Neurodegener. 10, 15 (2015).

45. T. E. Moors et al., Characterization of brain lysosomal activities in GBA-related and sporadic Parkinson's disease and dementia with Lewy bodies. Mol. Neurobiol. 56, 1344–1355 (2019).

46. E. Rockenstein et al., Glucocerebrosidase modulates cognitive and motor activities in murine models of Parkinson's disease. Hum. Mol. Genet. 25, 2645–2660 (2016).

47. S. P. Sardi et al., Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for Parkinsonism and other Gaucher-related synucleinopathies. Proc. Natl. Acad. Sci. U.S.A. 110, 3537–3542 (2013).

48. U. Dettmer, A. J. Newman, E. S. Luth, T. Bartels, D. Selkoe, In vivo cross-linking reveals principally oligomeric forms of α-synuclein and β-synuclein in neurons and non-neural cells. J. Biol. Chem. 288, 6371–6385 (2013).

49. S.-Y. Yang, M. Gegg, D. Chau, A. Schapira, Glucocerebrosidase activity, cathepsin D and monomeric α-synuclein interactions in a stem cell derived neuronal model of a PD associated GBA1 mutation. Neurobiol. Dis. 134, 104620 (2020).

50. T. E. Moors et al., Therapeutic potential of autophagy-enhancing agents in Parkinson's disease. Mol. Neurodegener. 12, 11 (2017).

51. A. Migalska-Richards, L. Dally, E. Bezard, A. H. V. Schapira, Ambroxol effects in glucocerebrosidase and α-synuclein transgenic mice. Ann. Neurol. 80, 766–775 (2016).

52. Y. Shen et al., Metabolic activity induces membrane phase separation in endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 114, 13394–13399 (2017).

53. O. R. Brekk, J. R. Honey, S. Lee, P. J. Hallett, O. Isacson, Cell type-specific lipid storage changes in Parkinson's disease patient brains are recapitulated by experimental glycolipid disturbance. Proc. Natl. Acad. Sci. U.S.A. 117, 27646–27654 (2020).

54. P. L. Wood, S. Tippenhury, J. Feriante, R. L. Woltjer, Augmented frontal cortex diacylglycerol levels in Parkinson's disease and Lewy body disease. PLoS One 13, e0191815 (2018).

55. M. E. Gegg et al., Glucocerebrosidase deficiency in substantia nigra of Parkinson disease brains. Ann. Neurol. 72, 455–462 (2012).

56. N. P. Alza, M. A. Conde, P. G. Scodelaro-Bilbao, G. A. Salvador, Neutral lipids as early biomarkers of cellular fate: The case of α-synuclein overexpression. Cell Death Dis. 12, S2 (2021).

57. S. Fanning et al., Lipidomic analysis of alpha-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment. Mol. Cell. 73, 1001–1014.e8 (2019).

58. H. Xicoy, J. F. Brouwers, O. Kalnytyska, B. Wieringa, G. J. M. Martens, Lipid analysis of the 6-hydroxydopamine-treated SH-SY5Y cell model for Parkinson's disease. Mol. Neurobiol. 57, 848–859 (2020).

59. X. Han et al., PIn4-dependent lipid droplets hamper neuronal mitochondrial in the MPTP/p-induced mouse model of Parkinson's disease. Front. Neurosci. 12, 397 (2018).

60. M. Diaz et al., Lipostatic mechanisms preserving cerebellar lipids in MPTP-treated mice: Focus on membrane microdomains and lipid-related gene expression. Front. Mol. Neurosci. 12, 93 (2019).

61. S. Nuber et al., A progressive dopaminergic phenotype associated with neurotoxic conversion of α-synuclein in BAC-transgenic rats. Brain 136, 412–432 (2013).

62. A. J. Newman, D. Selkoe, U. Dettmer, A new method for quantitative immunoblotting of endogenous α-synuclein. PLoS One 8, e81314 (2013).

63. B. R. Lee, T. Kamitani, Improved immunodetection of endogenous α-synuclein. PLoS One 6, e23939 (2011).

64. S. Nuber et al., Neurodegeneration and motor dysfunction in a conditional model of Parkinson's disease. J. Neurosci. 28, 2471–2488 (2008).

65. E. M. Knight, I. V. Martins, S. Gümlügöz, S. M. Allan, C. B. Lawrence, High-fat diet-induced memory impairment in triple-transgenic Alzheimer's disease (3xTgAD) mice is independent of changes in amyloid and tau pathology. Neurobiol. Aging 35, 1821–1832 (2014).

66. J. Bodner, D. Pelleg, C. Riebeling, S. Trajkovic, A. H. Futerman, Phosphatidylcholine synthesis is elevated in neuronal models of Gaucher disease due to direct activation of CTP:Phosphocholine cytidylyltransferase by glucosylceramide. FASEB J. 16, 1814–1816 (2002).

67. E. I. O'Leary, Z. Jiang, M.-P. Strub, J. C. Lee, Effects of phosphatidylcholine membrane fluidity on the conformation and aggregation of N-terminally acetylated α-synuclein. J. Biol. Chem. 293, 11195–11205 (2018).