SPHERE THEOREM FOR MANIFOLDS WITH POSITIVE CURVATURE

BAZANFARÉ MAHAMAN
Chef du Département de Mathématiques and Informatique Faculté des Sciences, BP 10662 Niamey-Niger
email: bmahaman@yahoo.fr
(Received 16 February, 2005; accepted 10 October, 2005)

Abstract. In this paper, we prove that, for any integer \(n \geq 2 \), and any \(\delta > 0 \) there exists an \(\epsilon(n, \delta) \geq 0 \) such that if \(M \) is an \(n \)-dimensional complete manifold with sectional curvature \(K_M \geq 1 \) and if \(M \) has conjugate radius \(\rho \geq \pi/2 + \delta \) and contains a geodesic loop of length \(2(\pi - \epsilon(n, \delta)) \) then \(M \) is diffeomorphic to the Euclidian unit sphere \(\mathbb{S}^n \).

2002 Mathematics Subject Classification. 53C20, 53C21.

1. Introduction. One of the fundamental problems in Riemannian geometry is to determine the relation between the topology and the geometry of a Riemannian manifold. In this way the Toponogov’s theorem and the critical point theory play an important role. Let \(M \) be a complete Riemannian manifold and fix a point \(p \) in \(M \) and define \(d_p(x) = d(p, x) \). A point \(q \neq p \) is called a critical point of \(d_p \) or simply of the point \(p \) if, for any nonzero vector \(v \in T_qM \), there exists a minimal geodesic \(\gamma \) joining \(q \) to \(p \) such that the angle \(\angle(v, \gamma'(0)) \leq \pi/2 \). Suppose \(M \) is an \(n \)-dimensional complete Riemannian manifold with sectional curvature \(K_M \geq 1 \). By Myers’ theorem the diameter of \(M \) is bounded from above by \(\pi \). In [4] Cheng showed that the maximal value \(\pi \) is attained if and only if \(M \) is isometric to the standard sphere. It was proved by Grove and Shiohama [5] that if \(K_M \geq 1 \) and the diameter of \(M \) \(\text{diam}(M) > \pi/2 \) then \(M \) is homeomorphic to a sphere.

Hence the problem of removing homeomorphism to diffeomorphism or finding conditions to guarantee the diffeomorphism is of particular interest. In [13] C. Xia showed that if \(K_M \geq 1 \) and the conjugate radius \(\rho(M) \) of \(M \) is greater than \(\pi/2 \) and if \(M \) contains a geodesic loop of length \(2\pi \), then \(M \) is isometric to \(\mathbb{S}^n \).

Definition 1.1. Let \(M \) be an \(n \)-dimensional Riemannian manifold and \(p \) be a point in \(M \). Let \(\text{Conj}(p) \) denote the set of first conjugate points to \(p \) on all geodesics issuing from \(p \). The conjugate radius \(\rho(p) \) of \(M \) at \(p \) in the sense of Xia [13] is defined as

\[
\rho(p) = d(p, \text{Conj}(p)) \quad \text{if} \ \text{Conj}(p) \neq \emptyset
\]

and

\[
\rho(p) = +\infty \quad \text{if} \ \text{Conj}(p) = \emptyset
\]

Then the conjugate radius of \(M \) is given by

\[
\rho(M) = \inf_{x \in M} \rho(x).
\]
Many interesting results have been proved by using the critical points theory and Toponogov’s theorem [3], [5], [7], [8], [10], [11], [12], [13], etc...

The purpose of this paper is to prove the following result.

Theorem 1.2. For any \(n \geq 2 \) and any \(\delta > 0 \), there exists a positive constant \(\epsilon(n, \delta) \) depending only on \(n \) and \(\delta \) such that for any \(\epsilon \leq \epsilon(n) \), if \(M \) is an \(n \)-dimensional complete connected Riemannian manifold with sectional curvature \(K_M \geq 1 \) and conjugate radius \(\rho(M) > \frac{\pi}{2} + \delta \) and if \(M \) contains a geodesic loop of length \(2(\pi - \epsilon) \) then \(M \) is diffeomorphic to an \(n \)-dimensional unit sphere \(\mathbb{S}^n \) and the metric \(g \) of \(M \) is \(\epsilon' = \epsilon'(\epsilon, n, \delta, \alpha) \) close in the \(C^\alpha \) topology to the canonical metric of curvature 1 of \(\mathbb{S}^n \) for any \(\alpha \in]0, 1[\).

Proof. Let \(i(M) \) denote the injectivity radius of \(M \). By definition we have

\[
i(M) = \inf_{x \in M} d(x, C(x)),
\]

where \(C(x) \) is the set of cut points of \(x \). \(\square \)

A classical result due to Klingenberg (see for instance corollary 4.14 of [9]) asserts that if \(M \) is compact then \(i(M) = \min\{l_0, \frac{\pi}{2}\} \), where \(l_0 \) is the minimum of the length of non trivial closed geodesics of \(M \) and \(l_0 \) is the minimum over unit vector \(u \) of \(TM \) of the first conjugate value \(t_0(u) \) along the geodesic \(\gamma_0(t) = \exp(tu) \).

Lemma 2.1. Let \(M \) be an \(n \)-dimensional complete, connected Riemannian manifold with sectional curvature \(K_M \geq 1 \). With Xia’s convention on the conjugate radius we have \(i(M) \geq \rho(M) \).

The proof is a direct application of the Klingenberg’s result: by the definition above of the conjugate radius we have \(t_0 \geq \rho(M) \) and, since \(K_M \geq 1 \), every geodesic \(\gamma \) issued from a point \(p \) hits \(\mathrm{Conj}(p) \) at a point \(q \) (by the Rauch comparison theorem). Consequently, the length of every non trivial closed geodesic issued from \(p \) is bounded below by \(2d(p, q) \geq 2\rho(M) \).

Lemma 2.2. For any \(\delta > 0 \), there exists a function \(\tau_{\delta} \) which satisfies \(\lim_{\epsilon \to 0} \tau_{\delta}(\epsilon) = 0 \) and such that if \(M \) is a complete manifold with \(K_M \geq 1 \), injectivity radius \(i(M) \geq \frac{\pi}{2} + \delta \) and which contains a geodesic loop of length \(2(\pi - \epsilon) \) then we have \(\mathrm{diam}(M) \geq \pi - \tau_{\delta}(\epsilon) \).

Proof. Let \(\gamma \) be a loop with length \(2\pi - 2\epsilon \). Let \(x = \gamma(0) = \gamma(2\pi - 2\epsilon), y = \gamma(\pi/2 + \delta), m = \gamma(\pi - \epsilon) \) and \(z = \gamma(3(\pi - \epsilon)/2 - \delta) \).

Let

\[
\gamma_1 = \gamma \left[0, \frac{\pi}{2} + \delta \right], \quad \gamma_2 = \gamma \left[\frac{\pi}{2} + \delta, \pi - \epsilon \right], \quad \gamma_3 = \gamma \left[\pi - \epsilon, \frac{3(\pi - \epsilon)}{2} - \delta \right],
\]

and

\[
\gamma_4 = \gamma \left[\frac{3(\pi - \epsilon)}{2} - \delta, 2\pi - 2\epsilon \right].
\]

Then the geodesics \(\gamma_1 \) are minimal. Let \(\sigma \) be a minimal geodesic joining \(m \) and \(x \).

Set \(\alpha = \angle(\sigma'(0), -\gamma'(\pi - \epsilon)) \) and \(\beta = \angle(\sigma'(0), \gamma'(\pi - \epsilon)) \).

We have \(\alpha \leq \pi/2 \) or \(\beta \leq \pi/2 \). Suppose, without loss of generality, that \(\alpha \leq \pi/2 \).

Applying the Toponogov comparison theorem on length to the hinge formed by \(\gamma_2 \)
and σ at $\gamma(\pi - \epsilon)$ we have

$$\cos\left(\frac{\pi}{2} + \delta\right) \geq \cos L(\sigma) \cos\left(\frac{\pi}{2} - \epsilon - \delta\right) + \cos \alpha \sin L(\sigma) \sin\left(\frac{\pi}{2} - \epsilon - \delta\right)$$

so that

$$\cos L(\sigma) \leq -\frac{\sin \delta}{\sin (\delta + \epsilon)} \Rightarrow L(\sigma) \geq \pi - \tau_0(\epsilon)$$

and the conclusion follows. \-box

Note that Anderson [1] and Otsu [6] constructed, for $n \geq 4$-dimensional closed manifolds with $\text{Ric} \geq n - 1$ and diameter arbitrarily close to π but whose homotopy type is distinct from that of the sphere. Thus additional assumptions are needed.

In [2] G. Pacelli Bessa proved the following theorem from which we deduce Theorem 1.2.

Theorem 2.3. Given $n \geq 2$ and $i_0 > 0$ there exists an $\epsilon = \epsilon(n, i_0)$ such that if M admits a metric g satisfying

$$\text{Ric} \geq n - 1, \quad i(M) \geq i_0, \quad \text{Diam}(M) \geq \pi - \epsilon$$

then, for any $\alpha \in [0, 1]$, M is diffeomorphic to \mathbb{S}^n and the metric g of M is $\epsilon' = \epsilon'(\epsilon, n, \alpha)$ close in the C^α topology to the canonical metric of curvature 1 of \mathbb{S}^n, where ϵ' tends to 0 with ϵ.

Remark. The complex projective space shows that theorem 1.2 is false under the weaker hypothesis $\rho \geq \frac{\pi}{2}$.

Acknowledgement. I would like to thank the referee for his/her insightful and helpful comments.

References

1. M. T. Anderson, Metrics of positive Ricci curvature with large diameters, *Manuscripta Math.* 68 (1990), 405–415.
2. G. P. Bessa, Differentiable sphere theorems for Ricci curvature, *Math. Z.* 214 (1993), 245–259.
3. J. Cheeger, Critical points of distance functions and applications to geometry, in *Geometric topology: recent developments* (Montecatini Terme, 1990), Lectures Notes in Mathematics, No. 1504 (Springer-Verlag, 1991), 1–38.
4. S. Y. Cheng, Eigenvalue comparison theorem and geometric applications, *Math. Z.* 143 (1975), 289–297.
5. K. Grove and K. Shiohama, A generalized sphere theorem, *Ann. of Math.* (2) 106 (1977), 201–211.
6. Yukio Otsu, On manifolds of positive Ricci curvature with Carge diameter, *Math. Z.* 206 (1991), 255–264.
7. P. Perteresen, Comparison geometry problem list, in *Riemannian geometry*, Waterloo, ON, 1993 (Amer. Math. Soc., Providence, RI 1996), 87–115.
8. K. Shiohama, A sphere theorem for manifolds of positive Ricci curvature, *Trans. Amer. Math. Soc.* 275, No. 2 (1983), 811–819.
9. T. Sakai, *Riemannian geometry*, *Transl. Math. Monographs* No. 149 (Amer. Math. Soc., 1996).
10. Z. Shen, Complete manifolds with nonnegative Ricci curvature and large volume growth, *Invent. Math.* **125** (1996), 393–404.

11. J. Sha and Z. Shen, Complete manifolds with nonnegative curvature and quadratically nonnegative curved infinity, *Amer. J. Math.* **119** (1997), 1399–1404.

12. C. Xia, Complete manifolds with sectional curvature bounded below and large volume growth, *Bull. London Math. Soc.* **34** (2002), 229–235.

13. C. Xia, Some applications of critical point theory of distance functions on Riemannian manifolds, *Composition Math.* **132** (2002), 49–55.