Region-specific mechanisms of corticosteroid-mediated inotropy in rat cardiomyocytes

Caroline Wacker1, Niklas Dams1, Alexander Schauer1, Anne Ritzer1, Tilmann Volk1,2,4*, & Michael Wagner1,3,4*

Regional differences in ion channel activity in the heart control the sequence of repolarization and may contribute to differences in contraction. Corticosteroids such as aldosterone or corticosterone increase the L-type Ca2+ current (ICaL) in the heart via the mineralocorticoid receptor (MR). Here, we investigate the differential impact of corticosteroid-mediated increase in ICaL on action potentials (AP), ion currents, intracellular Ca2+ handling and contractility in endo- and epicardial myocytes of the rat left ventricle. Dexamethasone led to a similar increase in ICaL in endocardial and epicardial myocytes, while the K+ currents Ito and IK were unaffected. However, AP duration (APD) and AP-induced Ca2+ influx (QCa) significantly increased exclusively in epicardial myocytes, thus abrogating the normal differences between the groups. Dexamethasone increased Ca2+ transients, contractility and SERCA activity in both regions, the latter possibly due to a decrease in total phospholamban (PLB) and an increase PLBpThr17. These results suggest that corticosteroids are powerful modulators of ICaL, Ca2+ transients and contractility in both endo- and epicardial myocytes, while APD and QCa are increased in epicardial myocytes only. This indicates that increased ICaL and SERCA activity rather than QCa are the primary drivers of contractility by adrenocorticoids.

Aldosterone, a corticosteroid hormone of the adrenal gland and a key player in the renin–angiotensin–aldosterone cascade, has a pivotal role in maintaining total body Na+ via its action on the mineralocorticoid receptor (MR) in epithelia that control excretion of NaCl such as the aldosterone sensitive distal nephron, the colon, or sweat ducts. Aldosterone thereby controls extracellular fluid volume and arterial blood pressure1. Beyond its action on Na+-absorbing epithelia, the effects of MR activation on various non-epithelial targets, such as the heart, are increasingly recognized. However, its mechanisms of action on these non-classical targets are far less understood. Clinical trials provide convincing evidence that MR antagonistic therapy increases survival in patients with heart failure, by, among others, decreasing the rate of fatal arrhythmias2,3, which are facilitated by electrical remodeling of the myocardium4. In line with this observation, a number of studies have demonstrated that MR activation modulates ionic currents and transporters in ventricular cardiomyocytes, including the fast Na+ current5, the hyperpolarization-activated and cyclic-nucleotide gated current6, the ryanodine receptor7, and the L-type Ca2+ current (ICaL)8. The latter is of particular importance as alterations in ICaL not only affect cardiac electrophysiology and contractility directly, but also serve as a first step in chronic electrical and mechanical remodeling of the heart9,10. Consequently, mice overexpressing the MR show electrical abnormalities, arrhythmia and cardiac hypertrophy11.

In the normal heart, repolarization is a well-coordinated process controlled by the sequence of excitation and regional differences in action potential duration (APD) among the ventricles. In fact, the regions excited early, such as endocardial or septal parts of the left ventricle, repolarize last due to longer action potentials (AP) and vice versa12. Although differences in a number of ionic currents contribute to the heterogeneity in APD among the ventricle13,14, differences in the magnitude of the transient outward K+ current (Ito) between endo- and epicardial layers of the ventricle are the most prominent. In rodents such as mice and rats, these differences in Ito are mainly responsible for the gradient in APD among the left ventricular free wall15,16, while in larger mammals

1Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054 Erlangen, Germany. 2Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany. 3Abteilung für Rhythmologie, Herzzentrum Dresden, Fetscherstraße 76, 01307 Dresden, Germany. 4These authors contributed equally: Tilmann Volk and Michael Wagner. 5*email: tilmann.volk@fau.de; michael_wagner@tu-dresden.de
such as dog or humans, I_{m} magnitude exerts less influence on total APD, but rather controls the membrane voltage level during the early part of the plateau phase. Since the AP constitutes the driving force for the ionic currents flowing during the AP, differences in AP waveform directly affect ion fluxes across the membrane. This is particularly important for the L-type Ca$^{2+}$ current, as the amount of Ca$^{2+}$ entering the myocytes during an AP controls excitation–contraction–coupling. For example, despite a similar I_{m} magnitude in endo- and epicardial myocytes, the longer AP in endocardial myocytes leads to an increased AP-induced Ca$^{2+}$ influx. Differences in duration and shape of the AP, therefore, not only control the sequence of repolarization but also affect Ca$^{2+}$ influx, intracellular Ca$^{2+}$ cycling, contractility and cardiac remodeling. The particular relevance of the AP shape is highlighted by studies, in which epicardial myocytes displayed increases in Ca$^{2+}$ influx, Ca$^{2+}$ transients and contractility, when clamped on an endocardial AP and vice versa. Moreover, alterations in AP waveform in ferret myocytes caused desynchronized SR Ca$^{2+}$ release which is typically observed in myocytes originating from failing hearts. Although the magnitude of I_{m} is the major parameter responsible for differences in AP shape and duration among different regions of the ventricular wall, it is important to note that the AP waveform of individual myocytes is a function of the cell's magnitude of both, I_{m} and I_{Ca}. In experiments, in which I_{m} and I_{Ca} and APD were measured in the same cells, Gomez and coworkers showed that early repolarization of the rat AP (APD$_{90}$) neither correlated with the magnitude of I_{Ca} nor with I_{m} alone, but only with both currents together. This suggests that changes not only in the magnitude of I_{m} but also in I_{Ca} might substantially affect AP waveform and in turn Ca$^{2+}$ influx, Ca$^{2+}$ transients and contractility.

In the present study, we therefore hypothesized that the corticosteroid induced increase in I_{Ca} affects AP shape, Ca$^{2+}$ influx, Ca$^{2+}$ transient and contractility differently in endo- and epicardial myocytes. To address this question, we investigated the influence of mineralocorticoid receptor activation on I_{Ca}. AP-induced Ca$^{2+}$ influx, contractility, Ca$^{2+}$ transient and SR Ca$^{2+}$ handling in endo- and epicardial myocytes isolated from the rat left ventricle. We show that MR activation substantially increases contractility to a similar extent in both endo- and epicardial myocytes but modulates intracellular Ca$^{2+}$ handling differently.

Results

Incubation of isolated left ventricular cardiomyocytes for 24 h with corticosteroids, such as the mineralocorticoid aldosterone or the glucocorticoid cortisol, has been shown to increase the L-type Ca$^{2+}$ current (I_{Ca}) via activation of the mineralocorticoid receptor (MR). In the present study, we used dexamethasone as corticosteroid to stimulate I_{Ca}. Moreover, in a previous study, insulin was part of the primary culture conditions and we later learned that it is a prerequisite for I_{Ca} regulation by corticosteroids: Fig. 1A displays typical recordings of I_{Ca} obtained from a control myocyte, a myocyte incubated with 1 µM dexamethasone, a myocyte incubated with 100 nM insulin and a myocyte incubated with the combination of both dexamethasone and insulin. 24 h incubation with dexamethasone substantially increased I_{Ca} only in the presence of insulin. The current–voltage (I–V) relations shown in Fig. 1B summarize similar experiments. On average, dexamethasone + insulin increased I_{Ca} at 0 mV by 46% from 7.0 ± 0.5 pA/pF (n = 21) to 10.2 ± 0.8 pA/pF (n = 19, p < 0.01) while in the presence of dexamethasone (7.7 ± 0.6 pA/pF, n = 19) or insulin (7.9 ± 0.8 pA/pF, n = 15) alone, no significant difference was observed. For that reason we combined 1 µM dexamethasone with 100 nM insulin (DI) in all following experiments. To address the question whether DI increases I_{Ca} via the MR or the glucocorticoid receptor (GR), we incubated myocytes with DI alone and with DI and the MR antagonist spironolactone (10 µM). 24 h incubation with DI substantially increased I_{Ca}, while in the presence of spironolactone, I_{Ca} remained at the level of the control myocytes (see Fig. 2A). The current–voltage (I–V) relations shown in Fig. 2B summarize similar experiments. Similar to the experiments shown in Fig. 1, DI increased I_{Ca} by 46% from 7.6 ± 0.4 pA/pF (n = 21) to 11.1 ± 0.6 pA/pF (N_{exp} = 60 mV, n = 31, p < 0.001). In the presence of spironolactone, DI did not significantly affect I_{Ca}, indicating that dexamethasone, like aldosterone or corticosterone, increases I_{Ca} via the MR.

To investigate regional differences in the effects of corticosteroids on I_{Ca}, we isolated endo- and epicardial myocytes from the left ventricular free wall and investigated I_{Ca} after 24 h incubation with DI. Figure 3A shows average I–V relations of I_{Ca} recorded from endo (left panel) and epicardial (right panel) myocytes. Compared to control, DI increased I_{Ca} at 0 mV in endocardial and in epicardial myocytes to a similar extent by 45% (n = 37, p < 0.001) and 49% (n = 36, p < 0.001), respectively. We also investigated the effect of DI on repolarizing K current. The transient outward K current (I_{m}) displayed the typical gradient among the left ventricular free wall with much larger currents in epi–compared to endocardial myocytes. However, in both endo- and epicardial myocytes, I_{m} magnitude was not affected by 24 h incubation with DI (Fig. 3B). To address a potential effect of DI on the delayed rectifier group of K currents (I_{m}), we used the current at the end of a 600 ms voltage pulse. Figure 3C displays average I–V relations obtained by plotting the current at the end of a 600 ms voltage pulse versus the pulse potential. We did neither observe regional differences nor an effect of DI on I_{m}.

Next, we recorded action potential (AP) from endo- and epicardial myocytes. Figure 4A (upper panels) shows representative AP recordings obtained under control conditions (blue) and after 24 h incubation with DI (green). As reported previously, APs were much shorter in epicardial than in endocardial myocytes. DI substantially increased APD in epicardial but not in endocardial myocytes. On average, in epicardial myocytes APD at 90% repolarization (APD$_{90}$) increased from 90.2 ± 11.4 ms at 220.2 ± 31.4 ms (24 ≤ n ≤ 28, p < 0.001, Fig. 4C). In endocardial myocytes, the small increase in APD$_{90}$ did not reach statistical significance. Similar results were observed with respect to the APD at 0 mV (Fig. 4B). The substantial increase in epicardial APD in the absence of alterations in endocardial APD completely abolished the large difference in APD between endo- and epicardial myocytes in the presence of DI.

Since under physiological conditions the ‘command potential’ for the I_{Ca} current is not a rectangular voltage pulse such the ones used in Figs. 1, 2 and 3, but rather the myocyte’s own AP, we conducted AP-clamp experiments to address the question whether the DI-induced changes in AP shape and duration affect the AP induced...
Ca²⁺ influx. We therefore recorded APs from myocytes and subsequently used their own individual AP as voltage template for the following voltage clamp experiments, in which we clamped the membrane voltage of each myocyte on its own AP in the absence and in the presence of 100 µM Cd²⁺ to inhibit ICaL. The resulting current is a good estimate of the AP-induced Ca²⁺ current²⁰. Figure 4A (lower panels) displays the corresponding AP-induced Ca²⁺ currents obtained from individual myocytes of endo- and epicardial origin recorded under control conditions (blue) and after incubation with DI (green). Incubation with DI increased the peak AP-induced Ca²⁺ current in endo- and epicardial myocytes to a similar extent (Fig. 4D), reflecting the increase in ICaL shown in Figs. 1, 2 and 3. The area under the AP-induced Ca²⁺ current equals the Ca²⁺ charge (QCₐ), i.e. the total amount of Ca²⁺ entering the myocyte via L-type channels during an AP. As we have published previously²⁰, the long endocardial AP leads to a significantly larger QCₐ in endo-compared to epicardial myocytes under control conditions. Incubation with DI dramatically increased QCₐ by 301% (n = 18 vs. n = 20, p < 0.001) in epicardial myocytes, while in endocardial myocytes the increase was much smaller (84%, n = 19 vs. n = 20, n.s.) and did not reach statistical significance (Fig. 4C,E).

Given the substantial increase in AP-induced Ca²⁺ influx, we combined Ca²⁺ imaging with simultaneous sarcomere length measurements to investigate intracellular Ca²⁺ transients and myocyte contractility. Figure 5A shows representative recordings of individual Ca²⁺ transients (given as relative Fura ratio) obtained from an endo- and epicardial myocyte under control conditions (blue) and after 24 h incubation with DI (green), while Fig. 5B shows representative simultaneous recordings of sarcomere length. Despite the longer APD and the larger QCₐ in endo-compared to epicardial myocytes, while in endocardial myocytes the increase was much smaller (84%, n = 19 vs. n = 20, n.s.) and did not reach statistical significance (Fig. 4C,E).

Figure 1. Dexamethasone increases ICaL only in the presence of insulin. (A) Representative whole-cell current traces of ICaL recorded from myocytes incubated for 24 h under control conditions (Control), with 1 µM dexamethasone, 100 nM insulin, 1 µM dexamethasone + 100 nM insulin. Myocytes were clamped for 600 ms from the holding potential of Vpip = −90 mV to test potentials between Vpip = −60 mV up to +70 mV in steps of 10 mV. Na⁺ currents were inactivated by a prepulse of 70 ms to −50 mV. Basic cycle length was 3,000 ms. (B) Average current−voltage relations of currents similar to those shown in A. ICaL was quantified by subtracting the peak current from the current at the end of the voltage pulse (at 600 ms). *p < 0.05, **p < 0.01, dexamethasone + insulin versus control. 15 ≤ n ≤ 21.
Fractional shortening increased by 74% (8.7 ± 0.7%, n = 48, \(p < 0.001\) vs. control) in endocardial cells and by 45% (7.4 ± 0.5%, n = 52, \(p < 0.05\) vs. control) in epicardial myocytes (Fig. 5C and D). Diastolic Ca²⁺ levels and diastolic sarcomere length remained unaffected by DI (see Table 1).

To examine whether the increase in Ca²⁺ transient was due to an increased Ca²⁺ content of the SR, we analyzed Ca²⁺ transients evoked by rapid application of 10 mM caffeine after 60 s of steady-state pacing at 1 Hz. Figure 6A displays typical caffeine-induced Ca²⁺ transients recorded from endo- and epicardial myocytes under control conditions (blue) and after incubation with DI (green). Since caffeine locks the ryanodine-receptor in an open state, Ca²⁺ release from the SR is maximal. Accordingly, the Ca²⁺ transients were substantially larger than those observed in response to pacing. SR Ca²⁺ content was assessed as the amplitude of the Ca²⁺ transients and was similar in endo- and epicardial myocytes under control conditions. Interestingly, DI did not significantly alter SR Ca²⁺ content (see Fig. 6B). However, in the presence of DI, the amplitude of the Ca²⁺ transients during regular pacing reached ~ 70% of the caffeine-induced Ca²⁺ transients, while under control conditions Ca²⁺ transients during pacing reached only ~ 30% of the caffeine-induced Ca²⁺ transients (Fig. 6C). This suggests that incubation with DI leads to a substantial increase in fractional release of Ca²⁺ from the SR.

To further address this question, we assessed Ca²⁺ transients under steady-state pacing at 1 Hz and then blocked Ca²⁺ uptake into the SR by inhibiting the SERCA using thapsigargin (1 µM) leaving residual Ca²⁺ transients arising from Ca²⁺ influx via L-type Ca²⁺ channels only. Figure 6D displays a typical recording of Ca²⁺ transients stimulated by 1 Hz pacing. The arrow indicates the application of thapsigargin to the bath solution. Within 3–5 min, Ca²⁺ transients had decreased to a residual amplitude reflecting Ca²⁺ influx from the extracellular space only. Figure 6E summarizes similar experiments and displays the difference between the amplitude of Ca²⁺ transients before and after the application of thapsigargin thus equaling the amount of Ca²⁺ released from the SR. In both, endo- and epicardial myocytes, DI substantially increased SR Ca²⁺ release. Since the total amount of Ca²⁺ in the SR was not affected (see Fig. 6B), this confirms that dexamethasone treatment increased the fractional release of Ca²⁺ from the SR during each cardiac cycle.

Figure 2. The effect of dexamethasone is mediated by the mineralocorticoid receptor. (A) Representative whole-cell current traces of \(I_{\text{Ca,L}}\) recorded from myocytes incubated for 24 h under control conditions (Control), with 1 µM dexamethasone + 100 nM insulin and 1 µM dexamethasone + 100 nM insulin + 10 µM spironolactone. Myocytes were clamped for 600 ms from the holding potential of \(V_{\text{pip}} = -90\) mV to test potentials between \(V_{\text{pip}} = -60\) mV up to +70 mV in steps of 10 mV. Basic cycle length was 3,000 ms. (B) Average current–voltage relations of currents similar to those shown in (A). \(I_{\text{Ca,L}}\) was quantified by subtracting the peak current from the current at the end of the voltage pulse (at 600 ms). * \(p < 0.05\), ** \(p < 0.01\), *** \(p < 0.001\), dexamethasone + insulin versus control; * \(p < 0.05\), ** \(p < 0.01\), *** \(p < 0.001\) dexamethasone + insulin versus dexamethasone + insulin + spironolactone. 21 ≤ n ≤ 32.
In light of increased Ca2+ release from the SR and an increased Ca2+ influx from the extracellular space, both Ca2+ extrusion via the Na/Ca exchanger (NCX) and Ca2+ reuptake into the SR via SERCA should be increased in myocytes treated with DI. We therefore assessed time and rate constants of the decline of Ca2+ transients during regular pacing and in response to application of caffeine. In DI treated myocytes the time constant of the Ca2+ transient decay was accelerated in both endo- and epicardial myocytes (Fig. 7) indicating increased rates of Ca2+ removal from the cytoplasm. The time constant of the caffeine-induced Ca2+ transient decay was much slower, since in the presence of caffeine, Ca2+ extrusion from the myocytes via the NCX is the only significant pathway left. In myocytes incubated with DI, the NCX time constants were accelerated compared to control which is consistent with the increased AP-induced Ca2+ influx upon DI treatment. The SERCA time constant (Fig. 7C, calculated as the reciprocal value of the difference in total and NCX-dependent rate-constants of the decay of the Ca2+ transient) was also substantially accelerated by DI treatment.

Finally, to address mechanisms underlying the increased SERCA transport rate, we performed western blot experiments in cardiomyocytes incubated for 24 h under control conditions and after treatment with DI to quantify SERCA and phospholamban expression as well as phospholamban phosphorylation. Since SERCA activity was similar in endo- and epicardial myocytes of both, control and DI groups, and in order to increase the total protein yield, we used isolated myocytes of the whole left ventricle for western blot experiments. Figure 8A–D
display typical western blots stained against SERCA (8A), phospholamban (8B) and, using phospho-specific antibodies, against pSer16 (8C) and pThr17 (8D). Figure 8E summarizes the results of similar western blots and shows that SERCA expression is unaffected by treatment with dexamethasone while phospholamban expression was decreased. Moreover, phosphorylation of phospholamban increased at the Thr17 site thereby further reducing the inhibitory action of phospholamban on SERCA. This is consistent with increased SERCA activity.

Discussion
In the present study, MR activation increased IC\textsubscript{aL} to a similar extent in endo- and epicardial myocytes, demonstrating that, independent of regional origin, IC\textsubscript{aL} is not only similar in magnitude, but is also identically affected by MR agonists. Although treatment with DI led to a much larger increase in APD and AP-induced Ca2+ influx in epicardial myocytes, the increase in intracellular Ca2+ transient and, hence, contractility was similar in both regions. Moreover, SR Ca2+ content was similar in both regions and not affected by DI treatment. We discovered that in both regions the fractional release of Ca2+ from the SR was increased by DI treatment. Our results suggest that the increase in IC\textsubscript{aL} density rather than APD or AP-induced Ca2+ influx controls the increase in Ca2+ transient and contractility observed by DI treatment.

In the present study, we confirm regional differences in AP shape and duration as well as in underlying ionic currents that we and others have previously described for the left ventricular free wall of the rat15,16,20. Specifically, APD was substantially shorter in epicardial than in endocardial myocytes. This difference is attributable at least to a large extent to the larger epicardial I\textsubscript{to} current density, while other ionic currents, such as I\textsubscript{K} and IC\textsubscript{aL}, were similar in both regions. Since the AP waveform constitutes the voltage driving force for ionic currents including IC\textsubscript{aL}, the longer AP in endocardial myocytes led to an increased AP-induced Ca2+ influx in endocardial compared to epicardial myocytes, despite of a similar current density of IC\textsubscript{aL} in both regions. This is in line with previous observations20,22,30 and underlines the importance of AP shape for control of the AP-induced Ca2+ influx. Moreover, all recordings in the present study were performed after at least 24 h incubation, hence, our data show that the regional differences in APD, underlying ionic currents and AP-induced Ca2+ influx remain well preserved even after a prolonged (24–36 h) period of primary culture.
Despite the larger AP-induced Ca\(^{2+}\) influx in endocardial myocytes, the intracellular Ca\(^{2+}\) transient as well as unloaded sarcomere shortening were similar in myocytes obtained from both regions. This fits well to previous observations in canine\(^{31,32}\) and rabbit\(^{33}\) left ventricle, while in mouse left ventricle a larger Ca\(^{2+}\) transient was found in endocardial myocytes\(^{21,34}\). For the rat left ventricle, conflicting results have been reported. Fowler et al. showed larger Ca\(^{2+}\) transients in endocardial myocytes probably evoked by an increased SR Ca\(^{2+}\) content\(^{35}\). However, they did not address myocyte contractility. On the other hand, Cazorla et al. reported similar Ca\(^{2+}\) transient amplitudes\(^{36}\) and Smail et al. also reported similar Ca\(^{2+}\) transient amplitudes and myocyte shortening in endo- and epicardial myocytes\(^{37}\). We also found no significant difference in Ca\(^{2+}\) transient amplitude or sarcomere shortening. Moreover, in our hands SR Ca\(^{2+}\) content was similar in endo- and epicardial myocytes, suggesting that the larger AP-induced Ca\(^{2+}\) influx in endocardial myocytes does not result in an increased SR Ca\(^{2+}\) filling state. In a state of intracellular Ca\(^{2+}\) homeostasis, a larger Ca\(^{2+}\) influx from the extracellular space into the cytoplasm during each AP must be matched by an increased Ca\(^{2+}\) extrusion into the extracellular space, carried predominantly by the NCX\(^{38}\). Consistently, we found a trend towards a shorter time constant of NCX Ca\(^{2+}\) removal in endocardial compared to epicardial myocytes (Fig. 7B), possibly indicating an increased NCX activity. This trend did not reach statistical significance, however, one should keep in mind that the difference in NCX time constant necessary to match the increased Ca\(^{2+}\) influx in endocardial myocytes without an increase in Ca\(^{2+}\) transient might be small and below our detection threshold, since the amount of Ca\(^{2+}\) entering via L-type current and exiting via the NCX is only a small fraction of the total Ca\(^{2+}\) transient. Moreover, by using EGTA in the pipette solution in our AP-clamp experiments we might have somewhat overestimated AP-induced Ca\(^{2+}\) influx since EGTA moderately ameliorates\(^{39}\) Ca\(^{2+}\)-induced Ca\(^{2+}\)-inactivation of ICaL.

It is well established that MR activation for \(>18-24\) h increases ICaL in vitro in isolated cardiomyocytes\(^{8,27}\) as well as in vivo in mice with an increased plasma aldosterone concentration\(^{40}\) or in transgenic mice overexpressing...
In the present study, we demonstrate that MR activation increases ICaL in endo- and epicardial myocytes to a similar extent. Accordingly, regulation of ICaL magnitude by corticosteroids per se does not directly contribute to regional differences among the left ventricular free wall. However, especially in the early phase of the AP, the relation of the magnitudes of the repolarizing K+-current Ito and the depolarizing ICaL not only sets the level of the plateau potential and controls early repolarization and the APD26 but is also a potent modulator of the Ca2+-influx during the AP. For example, an acute delay in early repolarization (e.g. caused by a decrease in

Figure 6. Effect of DI treatment on SR Ca2+ handling. (A) Representative caffeine-induced Ca2+ transients after 24 h incubation under control conditions (blue curves) and with DI (green curves). Caffeine (10 mM) was applied after 60 s of pacing at 1 Hz to ensure equal SR loading. (B) Average increase in Fura ratio in response to caffeine application. (C) Average relative Ca2+ release (Rel. Ca2+-release) calculated by dividing the increase in Fura ratio during regular pacing (1 Hz) by the increase in Fura ratio after application of caffeine. (D) Representative recording of Ca2+ transients after application of 1 µM thapsigargin obtained from a myocyte incubated under control conditions. (E) Average difference of systolic increase in Fura ratio calculated by subtraction of the systolic increase in Fura ratio after 5 min incubation with 1 µM thapsigargin from the systolic increase in Fura ratio before application of 1 µM thapsigargin. Numbers in bars indicate number of myocytes in each group.

Table 1. Effect of DI treatment on Ca2+ transients and contractility in endo- and epicardial myocytes. Diastolic and peak (Systolic) intracellular Ca2+ concentration (given as Fura ratio) and recorded from endo- and epicardial myocytes after 24 h incubation under control conditions or with DI. Diastolic and peak (Systolic) sarcomere length (SL) recorded during the same experiments. *p < 0.05, ***p < 0.001, DI versus control. 30 ≤ n ≤ 36.

	Endo	Epi	Endo DI	Epi DI
Diastolic Fura ratio	0.84 ± 0.01	0.82 ± 0.01	0.81 ± 0.01	0.84 ± 0.01
Systolic Fura ratio	1.14 ± 0.03	1.06 ± 0.03	1.40 ± 0.03***	1.35 ± 0.05***
Diastolic SL (µm)	1.56 ± 0.02	1.62 ± 0.02	1.53 ± 0.02	1.55 ± 0.02
Systolic SL (µm)	1.47 ± 0.02	1.57 ± 0.02	1.38 ± 0.02*	1.43 ± 0.02***

In the present study, we demonstrate that MR activation increases ICaL in endo- and epicardial myocytes to a similar extent. Accordingly, regulation of ICaL magnitude by corticosteroids per se does not directly contribute to regional differences among the left ventricular free wall. However, especially in the early phase of the AP, the relation of the magnitudes of the repolarizing K+-current I_{Ks} and the depolarizing ICaL not only sets the level of the plateau potential and controls early repolarization and the APD but is also a potent modulator of the Ca2+-influx during the AP. For example, an acute delay in early repolarization (e.g. caused by a decrease in
I_(Ca) increased AP-induced Ca^{2+} influx^{20,41}. One would therefore expect that an acute delay in early repolarization caused by an increase in I_(Ca) should even further increase the AP-induced Ca^{2+} influx, since not only the driving force (i.e., the membrane potential set by the AP) changes, but also the Ca^{2+} conductance of the membrane. Indeed, the increase in I_(Ca) we observed in response to MR activation substantially delayed early repolarization and increased APD, predominantly in epicardial myocytes, to such an extent that the endo-epicardial differences in APD disappeared. As a consequence, AP induced Ca^{2+}-influx increased substantially in epicardial and to a lesser (but not significant) extent in endocardial myocytes. The relatively small increase of the AP induced Ca^{2+}-influx in endocardial myocytes is consistent with their per se longer AP and delayed early repolarization, which leaves less room for an increase in APD upon an increase in I_(Ca).

MR activation led to a substantial increase in the intracellular Ca^{2+} transient in both endo- and epicardial myocytes. A prolonged AP with a resulting increase in sarcolemmal Ca^{2+} influx might alter several factors contributing to the intracellular Ca^{2+} transient: an increase in Ca^{2+} influx can trigger an increased release from the SR and might also increase the SR Ca^{2+} content which in turn increases SR Ca^{2+} release. Moreover, fractional release of Ca^{2+} from the SR is controlled by two mechanisms, the SR Ca^{2+} content and the magnitude of the trigger Ca^{2+}, i.e., the AP-induced Ca^{2+} influx^{38,42}. In the present study, we found no increase in SR Ca^{2+} content despite a substantial increase in AP-induced Ca^{2+} influx and in SERCA activity. The increase in amplitude of the Ca^{2+} transient can be explained by an increase in fractional release from the SR and (to a lesser extent) by an increase in trans-sarcolemmal Ca^{2+} influx. This finding is supported by previous observations. Trafford et al. showed that an increase in Ca^{2+} influx can substantially increase Ca^{2+} release from the SR (and contractility) in the absence of effects on SR Ca^{2+} content^{43,44}. In animal models of heart failure with an increase in APD, Sah^{41} and Kaprielian^{46} observed an increased Ca^{2+} release from the SR in the absence of an increased SR Ca^{2+} content. In our study, fractional Ca^{2+} release averaged ~40% under control conditions which is similar to the ~50% observed by Picht et al.^{46}. In cardiomyocytes from mice overexpressing the MR or after 48 h of incubation with aldosterone, SR Ca^{2+} content was also unaltered compared to control myocytes^{5}. Since Bassani et al. found only a 4% increase in SR Ca^{2+} content in response to a switch to high loading condition, one could speculate that already under control conditions, SR Ca^{2+} content might be nearly maximal. Moreover, Bode et al. showed that in rat cardiomyocytes, SR Ca^{2+} content only weakly depends on SERCA activity, when the SR Ca^{2+} content is high. This was explained by an increase in SR Ca^{2+} leak. Interestingly, aldosterone has been shown to increase SR Ca^{2+} leak by downregulation of FKBP12 and 12.6 expression, thereby further limiting a potential increase in SR Ca^{2+} load^{47}. SERCA activity is in addition modulated by SUMOylation^{46,47}. SUMOylation of SERCA by SUMO1 is decreased in heart failure and contributes to decreased SERCA activity under this condition. Moreover, β-arrestin-2 enhances SERCA SUMOylation^{48}. Interestingly, glucocorticoids decrease β-arrestin-2 expression at least in human lung adenocarcinoma cells^{49}, could thus indirectly decrease SUMOylation of SERCA and thereby reduce SERCA activity. Taken together, modulation of I_(Ca) density via the MR appears as a potent regulator of intracellular Ca^{2+} transient magnitude and contractility in both, endo- and epicardial myocytes.
Methods

Isolation of myocytes. Cardiomyocytes were isolated from the left ventricular free wall of female Wistar rats (~ 220 g) as described previously [51]. After induction of deep anesthesia by intraperitoneal injection of thiopenatal-sodium (100 mg kg⁻¹ body mass), the heart was quickly excised and placed into cold (4 °C) Tyrode’s solution. Subsequently, the aorta was retrogradely perfused for 5 min with modified Tyrode’s solution containing 4.5 mM Ca²⁺ and 5 mM EGTA (~ 1 μM free Ca²⁺ concentration) supplemented with 1 μM insulin (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany). The perfusion was continued for 19 min, recirculating 25 ml of the same solution containing collagenase (CLS type II, 160 U/ml, Biochrom KG, Berlin, Germany) and protease (type XIV, 0.6 U/ml, Sigma). Then, the heart was perfused for another 5 min with storage solution [8] containing 100 μM Ca²⁺. Using fine forceps, tissue portions of the subendocardial (endocardial) and subepicardial (epicardial) layers were taken and placed in separate cell culture dishes containing the same solution at 37 °C. Tissue pieces were minced and gently agitated to obtain single cardiomyocytes. Myocytes were stepwise adapted to physiological Ca²⁺ levels, transferred to cell culture dishes containing storage solution supplemented with 1 g l⁻¹ BSA, 100 IU ml⁻¹ penicillin and 0.1 mg ml⁻¹ streptomycin and stored at 37 °C in a water-saturated atmosphere containing 5% CO₂. For incubation with dexamethasone and insulin, appropriate amounts of stock solutions containing dexamethasone (dissolved in 100% ethanol) and insulin were added to the respective cell culture dishes; the corresponding amount of ethanol was added to control groups, the final concentration of ethanol was ~ 0.02%. Isolated cardiomyocytes were used for experiments for up to 36 h. Only quiescent single rod-shaped cells with clear cross striations were used for experiments. All experiments were performed in accordance with relevant guidelines and regulations and all experimental protocols were approved by the Regierung von Mittelfranken, license No: 621–2,531.32–11/05.

Patch-clamp technique. The ruptured-patch whole-cell configuration was used as described previously [15,52]. Myocardial cells were transferred into an elongated chamber (2.5 × 20 mm), mounted on the stage of an inverted microscope (Axiovert 25, Zeiss, Jena, Germany) and initially superfused with control solution. All experiments were performed at room temperature (22–25 °C). Patch pipettes were pulled from borosilicate glass (GC150-15,
at 5 kHz. Action potentials were sampled at 5 kHz. To elicit outward K+ currents, myocytes were clamped for 600 ms from the holding potential of −90 mV to test potentials between −60 mV and +70 mV in steps of 10 mV. Na+ currents were inactivated by a prepulse of 70 ms to −50 mV. Basic cycle length was 3,000 ms. ICaL was quantified by subtracting the current at the end of the test pulse from the peak current.54 To elicit outward K+ currents, myocytes were clamped for 600 ms from the holding potential of −90 mV to test potentials between −60 mV and −80 mV in steps of −20 mV. Na+ currents were inactivated by a prepulse of 20 ms to −50 mV. Basic cycle length was 3,000 ms. Icorr was quantified by subtracting the current at the end of the test pulse from the peak current. Icorr was defined as the current at the end of the voltage pulse.

Ca2+ epifluorescence measurements. Ca2+ epifluorescence was recorded as previously described.55,56 Cells were incubated in modified Tyrode's solution with Fura-2-AM (4 μmol/l). Cells were transferred into a chamber (self-manufactured) mounted on an inverted microscope (Nikon DM IRB, Nikon, Düsseldorf, Germany). Ca2+ transients were recorded during field stimulation (1 Hz, 20–25 V, 4 ms duration; MyoPacer, IonOptix Corporation, Milton, MA, USA). Cells were alternatively excited at 340 and 380 nm (hyper-switch dual excitation, IonOptix Corporation). The F340/F380 ratio was used as an index of cytosolic Ca2+ concentration. In some experiments, caffeine or thapsigargin were washed in. For all Ca2+ fluorescence experiments, cells were paced for 1 min at 1 Hz before starting the measurements to ensure that Ca2+ balance was at steady state.

Protein extraction. Isolated cardiomyocytes were incubated with DI for 24 h while myocytes isolated from the same heart were incubated for 24 h with vehicle and served as paired control. Myocytes were pelleted by centrifugation and dispensed in 1 ml TNE buffer. 40 μl protease inhibitor, 40 μl phosphatase inhibitor, 30 μl triton X-100 (10%), 5 μl PMSF (200 mM in 100% EtOH) and 20 μl sodium deoxycholate (12.5% in H2O) were added. Handled on ice at all times, samples were mechanically homogenized for 20 s, sonicated for 3 × 5 s and then centrifuged at 13,000 g and 4 °C for 10 min. The supernatant was used for further studies. To ensure equal protein loading, protein concentration was measured using the BCA Protein Assay Reagent Kit for microplate assay (Pierce, Rockford, USA). BSA in concentrations between 25 and 2000 μg/ml in TNE buffer was used as standard.

Western blots. Samples were prepared for electrophoresis by adding Roti-Load 1 (4 × concentrated) (Carl Roth GmbH & Co. KG, Karlsruhe, Germany) at 1:4 to respective identical amounts of protein. Samples were heated to 95 °C for 5 min and then loaded pairwise (DI and the corresponding control) into the wells of 8% or 12% SDS polyacrylamide gels, separated by electrophoresis and blotted to PVDF membranes, which were blocked in TBST solution containing 1% dry milk and probed for SERCA and phospholamban. Primary antibodies were: goat SERCA2 (C-20): sc-8094 (Santa Cruz Biotechnology, Santa Cruz, USA), mouse phospholamban: A010-13 (Badrilla Ltd.). Secondary antibodies were: goat anti-rabbit (1:50,000, polyclonal, Santa Cruz), rabbit phospholamban pThr17: A010-13 (Badrilla Ltd.). Secondary antibodies were: goat anti-rabbit (1:50,000, polyclonal, Sigma), goat anti-mouse (1:50,000, polyclonal, Santa Cruz). Blots were developed using the Super Signal West Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific, Waltham, MA, USA). Chemiluminescence was acquired using a STELLA imager with the XStella and AIDA image analyzer software (raytest Isotopenmeßgeräte, Straubenhardt, Germany). Image saturation was prevented by adjusting exposure times of the camera. Using serial dilutions we ensured for each antibody that the applied amounts of protein were within the linear detection range of the imaging system. The amount of total protein was assessed by using Ponceau S staining.57

Solutions. For the isolation of myocytes, modified Tyrode's solution contained (in mM): NaCl 138, KCl 4, Glucose 10, NaH2PO4 0.33, MgCl2 1, HEPES 10, CaCl2 4.5, EGTA 5, titrated to pH 7.30 using NaOH. The same solution without EGTA and with 2 mM Ca2+ was used as bath solution for the patch-clamp and fluorescence imaging experiments. For cell digestion, collagenase (162.8 U/ml, CSLII, Biochem AG, Berlin, Deutschland) and protease (0.54 U/ml, type XIV, Sigma-Aldrich GmbH, Steinheim, Deutschland) were added to modified Tyrode's solution (10−6 M Ca2+). Storage solution contained (in mM): NaCl 130, NaH2PO4 0.4, NaHCO3 5.8, MgCl2 0.5, CaCl2 1, KCl 5.4, glucose 22, and HEPES 25, titrated to pH 7.40 with NaOH in the presence of 5% CO2 and supplemented with 1 mg ml−1 BSA. For recording action potentials and K+-currents, the pipette solution contained (in mM): CsCl 130, MgCl2 5, EGTA 10, HEPES 10, Na2ATP 2, pH 7.20 with KOH. For recording Ca2+ currents, the pipette solution contained (in mM): CsCl 130, MgCl2 5, EGTA 10, HEPES 10, Na2ATP 2, pH 7.20 with CsOH.

For protein extraction and western blots, TNE buffer contained (in mM): Tris 20, NaCl 150, EDTA 1, pH = 7.40 and was completed with protease inhibitor (Complete Mini, Roche, 1 tablet for 10 ml buffer) and PMSF (1 mM) just before starting protein extraction. SDS sample buffer was the mix from the homogenizing...
buffer and 4xRoti-Load (Roth, Karlsruhe, Germany). TBST solution contained (in mM): Tris 50, NaCl 150, 0.05% Tween-20, pH 7.6 with HCl.

Data analysis and statistics. Patch clamp data were analyzed using the PULSE-FIT software (HEKA Elektronik, Lambrecht/Pfalz, Germany), IGOR Pro (WaveMetrics, Lake Oswego, USA), and Microsoft Excel (Microsoft Corporation, Redmond, USA) as described previously. Calcium epifluorescence data were analyzed using Ionoptix Corporation, Milton, USA) and Microsoft Excel. Quantitative densitometric analysis of western blots was performed using ImageJ software. The intensity of specific bands was determined after background subtraction and normalized to the total protein content per lane as quantified by densitometric analysis of the corresponding Ponceau stains.

Data are given as mean ± SEM. Statistical significance was evaluated by paired or unpaired Student’s t test when two groups were compared or one-way ANOVA followed by Newman-Keuls test (with the exception of APD\textsubscript{max} and Q\textsubscript{Ca}, which were analyzed by Kruskal Wallis test followed by Dunn’s post test because both were not normally distributed) when more than two groups were compared using Prism 5 (GraphPad, San Diego, USA). \(p < 0.05\) was considered statistically significant.

Received: 21 February 2020; Accepted: 23 June 2020
Published online: 14 July 2020

References

1. Bandukw, S. Of channels and pumps: different ways to boost the aldosterone? Acta Physiol. (Oxf) **220**, 332–360 (2017).
2. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. *N. Engl. J. Med.* **341**, 709–717 (1999).
3. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. *N. Engl. J. Med.* **348**, 1309–1321 (2003).
4. Rubart, M. & Zipes, D. P. Mechanisms of sudden cardiac death. *J. Clin. Invest.* **115**, 2305–2315 (2005).
5. Boixel, C., Gavillet, B., Rougier, J. S. & Abriel, H. Aldosterone increases voltage-gated sodium current in ventricular myocytes. *Am. J. Physiol. Heart Circ. Physiol.* **290**, H2257–H2266 (2006).
6. Muto, T. et al. Aldosterone modulates I\(\text{f}\) current through gene expression in cultured neonatal rat ventricular myocytes. *Am. J. Physiol. Heart Circ. Physiol.* **293**, H2710–H2718 (2007).
7. Gómez, A. M. et al. Mineralocorticoid modulation of cardiac ryanodine receptor activity is associated with downregulation of FK506-binding proteins. *Circulation* **119**, 2179–2187 (2009).
8. Benitah, J. P. & Vassort, G. Aldosterone upregulates Ca2+ current in adult rat cardiomyocytes. *Circ. Res.* **85**, 1139–1145 (1999).
9. Kassiri, Z., Zobel, C., Nguyen, T. T., Molkentin, J. D. & Backx, P. H. Reduction of I\(\text{to}\) causes hypertrophy in neonatal rat ventricular myocytes. *Circ. Res.* **90**, 578–585 (2002).
10. Perrier, E. et al. Mineralocorticoid receptor antagonism prevents the electrical remodeling that precedes cellular hypertrophy after myocardial infarction. *Circulation* **110**, 776–783 (2004).
11. Ouward-Pascaud, A. et al. Conditional mineralocorticoid receptor expression in the heart leads to life-threatening arrhythmias. *Circulation* **111**, 3025–3033 (2005).
12. Antzelevitch, C. & Fish, J. Electrical heterogeneity within the ventricular wall. *Basic Res. Cardiol.* **96**, 517–527 (2001).
13. Nerbonne, J. M. & Kass, R. S. Molecular physiology of cardiac repolarization. *Physiol. Rev.* **85**, 1205–1253 (2005).
14. Rosati, B., Grau, F. & McKinnon, D. Regional variation in mRNA transcript abundance within the ventricular wall. *J. Mol. Cell Cardiol.* **40**, 295–302 (2006).
15. Volk, T., Nguyen, T. H. D., Schultz, J. H., Faulhaber, J. & Ehmke, H. Regional alterations of repolarizing K+ currents among the left ventricular wall of rats with ascending aortic stenosis. *J. Physiol.* **530**, 443–455 (2001).
16. Clark, R. B., Bouchard, R. A., Salinas, S. E., Sánchez-Chapula, J. A. & Giles, W. P. Heterogeneity of action potential waveforms and potassium currents in rat ventricle. *Cardiovasc. Res.* **27**, 1795–1799 (1993).
17. Nābauer, M., Beuckelmann, D. J., Überfuhr, P. & Steinbeck, G. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. *Circulation* **93**, 168–177 (1996).
18. Cooper, P. J., Soeller, C. & Cannell, M. B. Excitation–contraction coupling in human heart failure examined by action potential clamp in rat cardiac myocytes. *J. Mol. Cell Cardiol.* **49**, 911–917 (2010).
19. Priebe, L. & Beuckelmann, D. J. Simulation study of cellular electric properties in heart failure. *Circ. Res.* **82**, 1206–1223 (1998).
20. Volk, T., Nguyen, T. H. D., Schultz, J. H. & Ehmke, H. Relationship between transient outward K+ current and Ca2+ influx in rat cardiac myocytes of endo- and epicardial origin. *J. Physiol.* **519**, 841–850 (1999).
21. López-Alarcón, M. M., de Rodríguez, Y. A., Pelie, J. L., Medei, E. & Escobar, A. L. Phase 1 repolarization rate defines Ca2+ dynamics and contractility on intact mouse hearts. *J. Gen. Physiol* **151**, 771–785 (2019).
22. Sah, R. et al. Inhibition of calcineurin and sarcocelomal Ca2+ influx protects cardiac morphology and ventricular function in Kv4.2N transgenic mice. *Circulation* **105**, 1850–1856 (2002).
23. Chen, X. et al. Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. *J. Mol. Cell Cardiol.* **50**, 460–470 (2010).
24. Dong, M. et al. Role of the transient outward current in regulating mechanical properties of canine ventricular myocytes. *J. Cardiovasc. Electrophysiol.* **21**, 697–703 (2010).
25. Harris, D. M. et al. Alterations in early action potential repolarization causes localized failure of sarcoplasmic reticulum Ca2+ release. *Circ. Res.* **96**, 543–550 (2005).
26. Gómez, A. M. et al. Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. *Am. J. Physiol.* **272**, H1078–H1086 (1997).
27. Wagner, M., Rudakova, E. & Volk, T. Aldosterone-induced changes in the cardiac L-type Ca2+ current can be prevented by anti-oxidants in vitro and are absent in rats on low salt diet. *Pflugers Arch.* **457**, 339–349 (2008).
28. Rousseau, E. & Meissner, G. Single cardiac sarcoplasmic reticulum Ca2+-release channel: activation by caffeine. *Am. J. Physiol.* **256**, H1328–H1333 (1989).
29. Volk, T. & Ehmke, H. Conservation of L-type Ca2+ current characteristics in endo- and epicardial myocytes from rat left ventricle with pressure-induced hypertrophy. *Pflugers Arch.* **443**, 399–404 (2002).
30. Bouchard, R. A., Clark, R. B. & Giles, W. R. Effects of action potential duration on excitation–contraction coupling in rat ventricular myocytes. Action potential voltage-clamp measurements. *Circ. Res.* **76**, 790–801 (1995).
31. Yang, Z. K. et al. Regional differences in the negative inotropic effect of acetylcholine within the canine ventricle. J. Physiol. 492(Pt 3), 789–806 (1996).
32. Cordeiro, J. M., Greene, L., Heilmann, C., Antzelevitch, D. & Antzelevitch, C. Transmural heterogeneity of calcium activity and mechanical function in the canine left ventricle. Am. J. Physiol. Heart Circ. Physiol. 286, H1471–H1479 (2004).
33. Chamunorwa, J. P. & O’Neill, S. C. Regional differences in rest decay and recoveries of contraction and the calcium transient in rabbit ventricular muscle. Pflugers Arch. 430, 195–204 (1995).
34. Bassani, J. W., Yuan, W. & Bers, D. M. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. J. Physiol. 500, 285–295 (1997).
35. Perrier, R. et al. A direct relationship between plasma aldosterone and cardiac L-type Ca²⁺ current: evidence for local Ca²⁺ signalling. J. Physiol. 569, 153–162 (2005).
36. Sah, R., Ramirez, R. J., Kaprielian, R. & Backx, P. H. Alterations in action potential profile enhance excitation–contraction coupling across the mouse left ventricular free wall. J. Physiol. 572, 227–241 (2006).
37. Sham, I. S. Ca²⁺ release induced inactivation of Ca²⁺ current in rat ventricular myocytes: evidence for local Ca²⁺ signalling. J. Physiol. 500, 285–295 (1997).
38. Fowler, M. R. et al. Decreased Ca²⁺ extrusion via Na⁺/Ca²⁺ exchange in epicardial left ventricular myocytes during compensated hypertrophy. Am. J. Physiol Heart Circ. Physiol 288, H2431–H2438 (2005).
39. Cazorla, O., Le Guennec, J. Y. & White, E. Length-tension relationships of sub-epicardial and sub-endocardial single ventricular myocytes from rat and ferret hearts. J. Mol. Cell Cardiol. 32, 735–744 (2000).
40. Perrier, R. et al. Decreased Ca²⁺ extrusion via Na⁺/Ca²⁺ exchange in epicardial left ventricular myocytes during compensated hypertrophy. Am. J. Physiol Heart Circ. Physiol 288, H2431–H2438 (2005).
41. Sah, R., Ramirez, R. J., Kaprielian, R. & Backx, P. H. Alterations in action potential profile enhance excitation–contraction coupling across the mouse left ventricular free wall. J. Physiol. 572, 227–241 (2006).
42. Bassani, J. W., Yuan, W. & Bers, D. M. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. J. Physiol. 268, C1313–C1319 (1995).
43. Thompson, A. W., Diaz, M. E., Sikibring, G. C. & Eisner, D. A. Modulation of CIICR has no maintained effect on systolic Ca²⁺: simultaneous measurements of sarcomplasmic reticulum and sarcolemmal Ca²⁺ fluxes in rat ventricular myocytes. J. Physiol. 552, 259–270 (2000).
44. Thompson, A. W., Diaz, M. E. & Eisner, D. A. Coordinated control of cell Ca²⁺ loading and triggered release from the sarcoplasmic reticulum underlies the rapid inotropic response to increased L-type Ca²⁺ current. Circ. Res. 88, 195–201 (2001).
45. Kaprielian, R., Sah, R., Nguyen, T., Wickenden, A. D. & Backx, P. H. Myocardial infarction in rat eliminates regional heterogeneity of AP profiles, Ito K⁺ currents, and [Ca²⁺]i transients. Am. J. Physiol. 283, H1157–H1168 (2002).
46. Picht, E. et al. Dynamic calcium movement inside cardiac sarcomplasmic reticulum during release. Circ. Res. 100, 847–856 (2011).
47. Bode, E. F. et al. Changes of SERCA activity have only modest effects on sarcomplasmic reticulum Ca²⁺ content in rat ventricular myocytes. J. Physiol. 589, 4723–4729 (2011).
48. Kho, C. et al. SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477, 601–605 (2011).
49. McCrink, K. A. et al. Beta-Arrestin2 improves post-myocardial infarction heart failure via Sarco(endo)plasmic reticulum Ca²⁺-ATPase-dependent positive inotropy in cardiomyocytes. Hypertension 70, 972–981 (2017).
50. Dilly, K. W., Revollo, J. & Cedlowski, J. A. Glucocorticoids regulate arrestin gene expression and redirect the signaling profile of G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 109, 17591–17596 (2012).
51. Wagner, M. et al. Lipid rescue reverses the bupivacaine-induced block of the fast Na⁺ Current (INa) in cardiomyocytes of the rat left ventricle. Anesthesiology 47, 22 (2013).
52. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).
53. Doerr, T., Denger, R. & Trautwein, W. Calcium currents in single SA nodal cells of the rabbit heart studied with action potential clamp. Pflugers Arch. 413, 599–603 (1989).
54. Foltz, W. U., Wagner, M., Rudakova, E. & Volk, T. N.-Acetylcysteine prevents electrical remodeling and attenuates cellular hypertrophy in epicardial myocytes of rats with ascending aortic stenosis. Basic Res. Cardiol. 107, 290 (2012).
55. Pohlmann, L. et al. Cardiac myosin-binding protein C is required for complete relaxation in intact myocytes. Circ. Res. 101, 928–938 (2007).
56. Schaeren, A. P. et al. Enhanced Ca influx through cardiac L-type Ca channels maintains the systolic Ca transient in early cardiac atrophy induced by mechanical unloading. Pflugers Arch. 465, 1763–1773 (2013).
57. McDonough, A. A., Veiras, L. C., Minas, J. N. & Ralph, D. L. Considerations when quantitating protein abundance by immunoblot. Am. J. Physiol. Cell Physiol. 308, C426–C433 (2015).
58. Taylor, S. C. & Posch, A. The design of a quantitative western blot experiment. Biomed. Res. Int. 2014, 361590 (2014).

Acknowledgements

We gratefully acknowledge the expert technical assistance of Céline Grüninger and Lorenz McCargo. This work was supported by the Dr. Ernst und Anita Bauer-Stiftung and Otto Hess Promotionstipendium der Deutschen Gesellschaft für Kardiologie—Herz-Kreislaufforschung. The present work was performed in (partial) fulfillment of the requirements for obtaining the degree „Dr. med.“

Author contributions

Conceptualization: TV and MW; Investigation: CW, ND, AS, AR and MW; Writing: CW, TV and MW.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-68308-4.

Correspondence and requests for materials should be addressed to T.V. or M.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
