Baryon Asymmetry in a Heavy Moduli Scenario

Masahiro Kawasaki and Kazunori Nakayama

Institute for Cosmic Ray Research,
University of Tokyo, Kashiwa 277-8582, Japan

(Dated: February 1, 2008)

Abstract

In some models of supersymmetry breaking, modulus fields are heavy enough to decay before BBN. But the large entropy produced via moduli decay significantly dilutes the preexisting baryon asymmetry of the universe. We study whether Affleck-Dine mechanism can provide enough baryon asymmetry which survives the dilution, and find several situations in which desirable amount of baryon number remains after the dilution. The possibility of non-thermal dark matter is also discussed. This provides the realistic cosmological scenario with heavy moduli.

PACS numbers: 98.80.Cq, 14.80.Ly
I. INTRODUCTION

Recent cosmological observations have revealed that the ordinary matter contributes to the only small fraction of the energy density of the universe, $\Omega_b h^2 \sim 0.022$ in terms of the density parameter, and the remainder comes from “dark” components, dark matter and dark energy, whose contributions are represented by $\Omega_m h^2 \sim 0.13$ and $\Omega_\Lambda \sim 0.72$ respectively [1]. The existence of these dark components indicates physics beyond the standard model such as supersymmetry (SUSY) [2], but on the other hand, the non-standard physics is also considered to be imprinted in the ordinary matter (baryon) component. From the measurement of cosmic microwave background (CMB) anisotropy and light element abundances predicted by big-bang nucleosynthesis (BBN) [3], it is known that the baryon density of the universe is almost made only of baryons, and anti-baryons do not exist. But such observed amount of baryon asymmetry can not be generated within the framework of the standard model. Thus, if there is an underlying physics beyond the standard model, the baryon density of the universe $\Omega_b h^2 \sim 0.022$ should also be explained by violation of the baryon number and CP built in the new physics, as well as the dark matter. In supersymmetric theory, which is one of the best motivated physics beyond the standard model, there is an interesting mechanism to create baryon asymmetry. In SUSY there exist many scalar fields as superpartner of the standard model fermion which carry baryon or lepton number. Along some directions of the configuration of these scalar fields, the scalar potential is flat. Thus scalar fields corresponding to these flat directions can develop to large field value during inflation, and subsequent evolution of the scalar fields naturally leads to baryon asymmetry. This is called Affleck-Dine mechanism [4], which we will focus on this paper.

On the other hand, global supersymmetry is naturally extended to the local supersymmetry, which inevitably includes gravity, that is supergravity. In supergravity there appear long-lived massive particles whose lifetime are typically longer than 1 sec and they decay after BBN starts. One is the gravitino, the superpartner of the graviton. Gravitinos are produced in high-temperature plasma via scatterings of the particles in thermal bath and their subsequent decay may greatly affect the standard cosmology [2, 5], or may overclose the universe if they are stable [5]. Another is the Polonyi field, which is a singlet scalar field introduced in order to give the SUSY breaking masses to the superparticles, especially the mass of gauginos, in many models of SUSY breaking. Generally the Polonyi field has the
large field value during inflation, and it begins to oscillate coherently with initial amplitude of order reduced Planck scale \(M_P \) when the Hubble parameter \(H \) becomes equal to the gravitino mass \(m_{3/2} \). It has extremely large energy density and its decay after BBN has catastrophic effects on the standard cosmology [8]. Furthermore, supergravity may be the low energy effective theory of string theory, which is defined in 10 dimensional space-time. In compactification of such extra dimensions, there appear light scalar fields called moduli. Generally moduli have the mass of order \(m_{3/2} \) through non-perturbative dynamics associated with SUSY breaking. The dynamics of moduli fields and cosmological difficulty they cause are similar to those of the Polonyi field, and we call them moduli problem [9].

There are some suggestions to solve the moduli problem. One possible way is to use late-time inflation and the subsequent entropy production in order to dilute the moduli abundance to cosmologically safe value. Such late-time inflation is realized by thermal inflation models and concrete examples for are found in Refs. [10, 11, 12]. The other way is to make moduli heavy enough to decay well before BBN. The modulus mass larger than about 100 TeV is safe and such large mass is naturally realized in anomaly-mediated SUSY breaking models, where other SUSY particles obtain the mass of order \(\sim m_{3/2}/(8\pi^2) \sim 1 \) TeV [13].

But the scenario is not complete. In late-time entropy production scenario, the preexisting baryon asymmetry is also diluted. The reheating temperature after thermal inflation is typically less than a few GeV, and hence almost all baryogenesis mechanisms which rely on high energy physics do not work. The variant type of Affleck-Dine mechanism after thermal inflation may work [14] and to the best of our knowledge it is only possibility to create enough baryon asymmetry in the presence of thermal inflation. In heavy moduli scenario, significant entropy released by the decay of moduli also dilute the preexisting baryon asymmetry. In previous works [15, 16], it was assumed that Affleck-Dine mechanism can create enough baryon asymmetry which survives the dilution from moduli decay. However, in fact, for large \(m_{3/2} \) ordinary Affleck-Dine mechanism does not work due to the non-trivial potential minima of the Affleck-Dine field [17, 18].

In this paper we study whether the sufficient baryon asymmetry is created in heavy moduli scenario, such as anomaly-mediated SUSY breaking models or mixed modulus anomaly mediation (or mirage mediation) models [19]. Mirage mediation models are based on the concrete model of KKL T flux compactification [20] and the lightest modulus mass is pre-
dicted as \(m_\chi \sim (4\pi^2)m_{3/2} \). Thus in the following we consider the typical situations where the modulus mass \(m_\chi \) is of the order \(m_{3/2} \) and \((4\pi^2)m_{3/2}\) as reference values, although we do not specify the concrete SUSY breaking models. The only assumption on which our analysis is based is the hierarchical relation between the gravitino mass and other SUSY particle masses. In both scenarios (anomaly- or mirage mediation models) other SUSY particles have mass of order \(\sim m_{3/2}/(8\pi^2) \) and hence the gravitino is considered to be as heavy as 100 TeV. As we will explain later, Affleck-Dine mechanism for such large \(m_{3/2} \) is highly non-trivial. One possible way to incorporate Affleck-Dine mechanism in anomaly- or mirage-mediation model is to introduce the gauged \(U(1)_{B-L} \) symmetry [21]. But we pointed out that Affleck-Dine mechanism with large \(m_{3/2} \) works without any additional assumption if the reheating temperature is relatively high [22]. We examine these two scenarios and find possible parameter region in which the desired amount of baryon asymmetry is generated.

This paper is organized as follows. In Sec. II we briefly review the cosmological dynamics of moduli fields. In Sec. III Affleck-Dine baryogenesis in high reheating temperature scenario is discussed. In Sec. IV Affleck-Dine baryogenesis in gauged \(U(1)_{B-L} \) model is discussed. Somewhat similar to this case, but the case without superpotential and Q-ball domination is discussed in Sec. V. The decay of moduli may cause another difficulty, especially LSP overproduction from the decay of moduli-induced gravitinos. We give possible solutions to this problem in Sec. VI. We conclude in Sec. VII.

II. DYNAMICS OF MODULUS FIELDS

In general, a modulus field has the mass of order \(m_{3/2} \) in the presence of SUSY breaking. In the early universe, the inflaton dominates the energy density and this vacuum energy also breaks supersymmetry. As a result the modulus field obtains Hubble-induced SUSY breaking mass of order \(H \) [23]. Thus, during inflation the modulus has very large mass and sits at the origin. However, this high-energy minimum does not need to coincide with the low-energy true minimum of the potential. In general, these two minima are expected to be separated by the Planck scale and hence when \(H \) becomes smaller than the modulus mass \(m_\chi \), the modulus field begins to oscillate with the initial amplitude \(\chi_0 \sim M_P \). This coherent oscillation of the modulus field has the energy density \(\sim m_\chi^2M_P^2 \) initially, and the total energy density of the universe is given by \(\sim 3m_\chi^2M_P^2 \). We can see that the modulus
has inevitably large energy density comparable to the total energy density and dominates the universe as soon as inflaton decays (in the case of $m_\chi > \Gamma_I$, where Γ_I denotes the decay rate of the inflaton) or the modulus field begins to oscillate (in the case of $\Gamma_I > m_\chi$).

In the case of $m_\chi > \Gamma_I$ where inflaton decays after the moduli start to oscillate, the moduli-to-entropy ratio is given by

$$\frac{\rho_\chi}{s} = \frac{m_\chi^2(T_R)^2}{4\rho(T_R)/3T_R} = \frac{1}{4} T_R \left(\frac{\chi_0}{M_P} \right)^2 \sim 2.5 \times 10^4 \text{GeV} \left(\frac{T_R}{10^9 \text{GeV}} \right) \left(\frac{\chi_0}{M_P} \right)^2,$$

where T_R denotes the reheating temperature from inflaton decay. On the other hand, in the case of $m_\chi < \Gamma_I$, it is given by

$$\frac{\rho_\chi}{s} = \frac{1}{4} \left(\frac{90}{\pi^2 g_*} \right)^{1/4} m_\chi^{1/2} M_P^{1/2} \left(\frac{\chi_0}{M_P} \right)^2 \sim 1.2 \times 10^{11} \text{GeV} \left(\frac{90}{\pi^2 g_*} \right)^{1/4} \left(\frac{m_\chi}{100 \text{TeV}} \right)^{1/2} \left(\frac{\chi_0}{M_P} \right)^2.$$

In both cases the moduli abundance largely exceeds the critical density of the universe, $\rho_c/s_0 \sim 3.6 \times 10^{-9} h^2 \text{ GeV}$. If we parametrize the decay width of the modulus as

$$\Gamma_\chi = \frac{c}{4\pi} \frac{m_\chi^3}{M_P^2},$$

the decay temperature of moduli T_χ is given by

$$T_\chi \sim 5.5 \text{MeV} \sqrt{c} \left(\frac{m_\chi}{100 \text{TeV}} \right)^{3/2}.$$

Hence, the decay temperature of modulus typically takes a value from a few MeV to a few GeV for $100 \text{ TeV} \lesssim m_\chi \lesssim (4\pi^2)100 \text{ TeV}$. The late decay of moduli with such large abundance has significant effects on BBN (24), CMB (25) and diffuse X(γ)-ray background (26), which results in strong disagreement with observations. But for the modulus mass larger than about 100 TeV, the moduli decay before BBN and do not spoil the success of standard BBN. The universe is finally reheated by the moduli with reheating temperature T_χ.

1 If the modulus field does not have the Hubble mass and obtain unsuppressed quantum fluctuation during inflation, it can be the interesting candidate of the curvaton (27, 28). But we do not go into the details of this issue.
III. AFFLECK-DINE BARYOGENESIS WITH EARLY OSCILLATION

A. The model

In minimal supersymmetric standard model (MSSM), there exist some configurations of
the scalar fields (flat directions) along which scalar potential vanishes in supersymmetric
limit within the renormalizable terms [29]. A flat direction is parameterized by the single
complex scalar ϕ, which we call Affleck-Dine field. The Affleck-Dine field feels potentials
from non-renormalizable superpotentials represented as

$$W_{NR} = \frac{\phi^n}{nM^{n-3}}$$

(5)

where M is the effective cutoff scale and $n \geq 4$. Including SUSY breaking effects, the
potential for the Affleck-Dine field is written as

$$V_S(\phi) = m_\phi^2 |\phi|^2 + \left(a_m m_3/2 \frac{\phi^n}{nM^{n-3}} + \text{h.c.} \right) + \frac{|\phi|^{2(n-1)}}{M^{2(n-3)}},$$

(6)

where a_m is $O(1)$ numerical coefficient. There are other sources for the scalar potentials. As
explained in sec.[II] the scalar fields obtain Hubble-induced SUSY breaking terms such as

$$V_H(\phi) = -c_H H^2 |\phi|^2 + \left(a_H H \frac{\phi^n}{nM^{n-3}} + \text{h.c.} \right),$$

(7)

where c_H and a_H are $O(1)$ coefficients. Here we assume $c_H > 0$. Furthermore, in high-
temperature environment of the early universe, thermal corrections to the scalar potential
also arise. These are [32, 33]

$$V_T(\phi) = \sum_{f_k |\phi| < T} c_k f_k^2 T^2 |\phi|^2 + a a(T)^2 T^4 \log \left(\frac{|\phi|^2}{T^2} \right)$$

(8)

where c_k is a constant of order unity, f_k denotes gauge or Yukawa couplings relevant for
the Affleck-Dine field, and a is a constant of order unity assumed to be positive, which is
determined by the two-loop finite-temperature effective potential for the Affleck-Dine field.
Then the total scalar potential for the Affleck-Dine field is sum of them,

$$V(\phi) = V_S(\phi) + V_H(\phi) + V_T(\phi).$$

(9)

2 In some inflation models such as D-term inflation [30], Hubble-induced term does not arise during inflation [31].
Let us summarize the dynamics of Affleck-Dine field. First, it is trapped by the minimum determined by the balance of negative Hubble-induced mass term and non-renormalizable term,

\[|\phi| \simeq (HM^{n-3})^{1/(n-2)}, \quad (10) \]

and tracks this minimum as \(H \) becomes small. The important fact is that without the finite-temperature effect, the scalar potential has the global minimum at

\[|\phi|_{\text{min}} \sim \left(\frac{a_m}{n-1}m^{3/2}M^{n-3} \right)^{1/(n-2)}. \quad (11) \]

if \(m^{3/2} \) is much greater than \(m_\phi \), which is the situation we are interested in. Thus the Affleck-Dine field is eventually trapped by this minimum and leads to charge or color breaking vacuum, which is a disaster. But finite-temperature effects can save the situation. Including finite-temperature effects, when \(H \) becomes equal to \(H_{\text{os}} \) determined by

\[H_{\text{os}}^2 \sim m_{\phi}^2 + \sum_{f_k|\phi|<T} c_k f_k^2 T^2 + a\alpha(T)^2 T^4 |\phi|^2, \quad (12) \]

the Affleck-Dine field begins to oscillate around its minimum of the potential. The important fact is that if the thermal log term dominates the potential and oscillation begins by this term, the Affleck-Dine field will be taken to the origin without trapped by the global minimum \[22]. Through the process of field evolution, the Affleck-Dine field receives angular kick from \(A \)-terms and results in elliptical motion around the origin. Hence the baryon number is generated and conserved in comoving volume. In fact, as we will see, for high reheating temperature from inflaton and high field value, the oscillation starts when thermal logarithmic term dominates the potential and Affleck-Dine mechanism works well. Note that although the resultant vacuum is meta-stable, the lifetime of the false vacuum is much longer than the age of the universe \[18].

B. Baryon asymmetry

Next we estimate the baryon asymmetry in the presence of a heavy modulus field. In the case of early oscillation due to thermal logarithmic potential, \(H_{\text{os}} \) is given by

\[H_{\text{os}} = \alpha T_R \left(\frac{M_P}{M} \right)^{1/2} \quad \text{for} \quad n = 4, \quad (13) \]

\[H_{\text{os}} = \left(\alpha^2 T_R^2 M_P M^{-3/2} \right)^{2/3} \quad \text{for} \quad n = 6. \quad (14) \]
Hereafter we consider $n = 4$ and $n = 6$ case only, because flat directions with $n \geq 7$ are lifted by the superpotential of the form $\psi \phi^{n-1}/M^{n-3}$ where ψ represents scalar field other than Affleck-Dine field and can not generate baryon asymmetry via Affleck-Dine mechanism \cite{29}. We need following constraints for this scenario to work. One is the condition that early oscillation occurs ($H_{\text{os}} > m_\phi$), this leads to

$$T_R \gtrsim \frac{m_\phi}{\alpha} \left(\frac{M}{M_P} \right)^{1/2} \sim 1 \times 10^3 \text{GeV} \left(\frac{0.1}{\alpha} \right) \left(\frac{m_\phi}{100 \text{GeV}} \right) \left(\frac{M}{M_P} \right)^{1/2}$$

for $n = 4$, and

$$T_R \gtrsim \frac{1}{\alpha} \left(\frac{m_\phi^3 M^3}{M_P^2} \right)^{1/4} \sim 3 \times 10^5 \text{GeV} \left(\frac{0.1}{\alpha} \right) \left(\frac{m_\phi}{100 \text{GeV}} \right)^{3/4} \left(\frac{M}{10^{15} \text{GeV}} \right)^{3/4}$$

for $n = 6$. The other is the condition that thermal correction hide the valley of the potential around the true charge breaking minimum and this thermal logarithmic potential leads Affleck-Dine field to the origin. This condition is written in the form $\alpha^2 T_{\text{os}}^4 \gtrsim |V(|\phi|_{\text{min}})|$, explicitly,

$$T_R \gtrsim \alpha^{-1} m_{3/2} \left(\frac{M_P}{M} \right)^{1/2} \sim 1 \times 10^6 \text{GeV} \left(\frac{0.1}{\alpha} \right) \left(\frac{m_{3/2}}{10 \text{TeV}} \right) \left(\frac{M}{M_P} \right)^{1/2}$$

for $n = 4$ and

$$T_R \gtrsim \alpha^{-1} M^{3/4} M_P^{-1/2} m_{3/2}^{3/4} \sim 8 \times 10^5 \text{GeV} \left(\frac{0.1}{\alpha} \right) \left(\frac{m_{3/2}}{10 \text{TeV}} \right)^{3/4} \left(\frac{M}{10^{15} \text{GeV}} \right)^{3/4}$$

for $n = 6$. We can see that in general the latter condition is severer whenever $m_{3/2} > m_\phi$, which is always satisfied in anomaly-mediated SUSY breaking.

Now let us estimate the baryon asymmetry in the presence of modulus fields. It is convenient to express the baryon-to-entropy ratio as

$$\frac{n_B}{s} = \frac{n_B}{\rho_\chi} \frac{\rho_\chi}{s(T_\chi)} = \frac{n_B}{\rho_\chi} 3 T_\chi.$$

\begin{equation}
\end{equation}
The ratio n_B/ρ_χ is fixed when both the Affleck-Dine field and modulus field begin to oscillate. When $H_{os} > m_\chi$, this ratio is fixed at the onset of the oscillation of the moduli, $H = m_\chi$. On the other hand, when $H_{os} < m_\chi$, the ratio is fixed at the beginning of Affleck-Dine field oscillation, $H = H_{os}$. From Eqs. (14) and (17) or (18),

$$H_{os} \gtrsim m_3/2$$ \hspace{1cm} (20)

must always hold. Thus if we assume $m_\chi \sim m_3/2$ we can safely focus on the case $H_{os} > m_\chi$. But in some models based on string theory, $m_\chi \gg m_3/2$ might be possible. In mirage mediation model, the modulus mass is predicted as $m_\chi \sim 4\pi^2 m_3/2$ \[^{19}\] . Although in such a model $H_{os} < m_\chi$ is still possible, we mainly focus the case $H_{os} > m_\chi$ and briefly discuss about the modification in the case $H_{os} < m_\chi$. The condition $H_{os} > m_\chi$ is rewritten as

$$T_R \gtrsim \alpha^{-1} m_\chi \left(\frac{M_P}{M} \right)^{1/2}$$

$$\sim 1 \times 10^6 \text{GeV} \left(\frac{0.1}{\alpha} \right) \left(\frac{m_\chi}{100 \text{ TeV}} \right) \left(\frac{M}{M_P} \right)^{1/2}$$ \hspace{1cm} (21)

for $n = 4$ and

$$T_R \gtrsim \alpha^{-1} m_\chi^{3/4} M^{3/4} M_P^{-1/2}$$

$$\sim 2 \times 10^9 \text{GeV} \left(\frac{0.1}{\alpha} \right) \left(\frac{m_\chi}{100 \text{ TeV}} \right)^{3/4} \left(\frac{M}{M_P} \right)^{3/4}.$$ \hspace{1cm} (22)

for $n = 6$. High reheating temperature from inflaton is not a problem as far as the moduli decay well before BBN and non-thermal LSPs associated with modulus decay do not overclose the universe. In fact it is possible that non-thermal LSPs from the decay of moduli account for the present matter density of the universe (see Sec. VII).

1. $H_{os} > m_\chi$

In this case the baryon-to-moduli ratio n_B/ρ_χ is fixed at $H = m_\chi$ where the modulus field begins to oscillate with amplitude $\chi_0 \sim M_P$,

$$\frac{n_B}{\rho_\chi} = \frac{n_B(t_{os})}{m_\chi^2 \chi_0^2} \left(\frac{a(t_{os})}{a(t_{mod})} \right)^3,$$ \hspace{1cm} (23)

where $t_{mod} \simeq m_\chi^{-1}$. In order to get correct estimation, we must specify the decay epoch of inflaton, whose decay rate is denoted as Γ_I. Thus depending on Γ_I, three scenarios are
available: (a) $\Gamma_I > H_{\text{os}} > m_\chi$, (b) $H_{\text{os}} > \Gamma_I > m_\chi$, (c) $H_{\text{os}} > m_\chi > \Gamma_I$. Note that in case (a), at the beginning of oscillation of the Affleck-Dine field the universe already enters radiation dominated era and estimation of baryon number is somewhat different from the other two cases. Before the estimation, we see the conditions when the case (a), (b) and (c) are realized. The condition that $m_\chi > \Gamma_I$ can be written as
\[T_R \lesssim 2 \times 10^{11}\text{GeV} \left(\frac{m_\chi}{100\text{TeV}} \right)^{1/2}, \] (24)

On the other hand, the condition $H_{\text{os}} > \Gamma_I$ can be rewritten as follows,
\[T_R \lesssim 5 \times 10^{16}\text{GeV} \left(\frac{\alpha}{0.1} \right) \left(\frac{M_P}{M} \right)^{1/2} \text{ for } n = 4, \]
\[T_R \lesssim 2 \times 10^{15}\text{GeV} \left(\frac{\alpha}{0.1} \right)^2 \left(\frac{M_P}{M} \right)^{3/2} \text{ for } n = 6 \] (25)
which is satisfied for natural range of parameters. In other words, unless reheating temperature is unnaturally high, case (a) is not realized. The conditions (21) (or (22)), (24) and (25) determine which of the following scenario is realized.

In the case (a), early oscillation begins in radiation dominated regime and the baryon-to-moduli ratio (23) is written as
\[\frac{n_B}{\rho_\chi} = \frac{\delta_e m_{3/2} |\phi_{\text{os}}|^2}{m_\chi^2 H_{\text{os}}} \left(\frac{m_\chi}{H_{\text{os}}} \right)^{3/2}, \] (26)

where $\delta_e (\sim O(1))$ denotes the effective CP phase. Note that as far as the initial amplitude of the Affleck-Dine field is smaller than M_P, it never dominates the universe at the instant of oscillation. We can estimate ϕ_{os} and H_{os} as
\[|\phi_{\text{os}}| \sim \gamma_*^{-\frac{4}{3}} \alpha M_P \] (27)
and
\[H_{\text{os}} \sim \frac{\alpha^2 M_P^2}{\gamma_* M} \text{ for } n = 4, \]
\[H_{\text{os}} \sim \frac{\alpha^4 M_P^4}{\gamma_*^2 M^3} \text{ for } n = 6. \] (28)
where $\gamma_* = (\pi^2 g_s(T_R)/90) \sim 25$. Substituting these values and using Eq. (4), we finally obtain the baryon-to-entropy ratio after decay of the modulus field as
\[\frac{n_B}{s} = \frac{0.2 \delta_e \sqrt{c} \gamma_* m_{3/2} m_\chi}{\alpha M_P^2} \left(\frac{M}{M_P} \right)^{3/2} \left(\frac{M_P}{\chi_0} \right)^2 \]
\[\sim 7 \times 10^{-27} \delta_e \sqrt{c} \left(\frac{0.1}{\alpha} \right) \left(\frac{m_{3/2}}{100\text{TeV}} \right) \left(\frac{m_\chi}{100\text{TeV}} \right) \left(\frac{M}{M_P} \right)^{3/2} \left(\frac{M_P}{\chi_0} \right)^2 \] (29)
in the case of \(n = 4 \) flat direction. Clearly this is too small and it is impossible that we obtain a proper amount of baryon asymmetry. For \(n = 6 \), we obtain

\[
\frac{n_B}{s} = \frac{0.2\delta_e\sqrt{c}\gamma^2}{\alpha^4} \frac{m_{3/2}m_\chi}{M_P^2} \left(\frac{M}{M_P} \right)^{9/2} \left(\frac{M_P}{\chi_0} \right)^2 \\
\sim 2 \times 10^{-21} \sqrt{c}\delta_e \left(\frac{0.1}{\alpha} \right)^4 \sqrt{\frac{m_{3/2}}{100 \text{TeV}}} \left(\frac{m_\chi}{100 \text{TeV}} \right) \left(\frac{M}{M_P} \right)^{9/2} \left(\frac{M_P}{\chi_0} \right)^2. \tag{30}
\]

It also seems too small, but dependence of the cut-off scale \(M \) is rather large, so that if we assume \(M \sim 100M_P \) the desired amount of baryon asymmetry can be obtained. It may seem peculiar that the cut-off scale \(M \) is bigger than Planck-scale, but our definition of \(M \) includes some coupling constant, e.g., even if physical cut-off scale is \(M_P \), the effective cut-off scale can be \(\sim 100M_P \) if the relevant coupling constant is \(10^{-2} \).

In the case (b), the modulus oscillation begins in radiation dominated era. The baryon-to-moduli ratio \((23)\) is expressed as

\[
\frac{n_B}{\rho_\chi} = \frac{\delta_e m_{3/2}|\phi_\text{os}|^2}{m_\chi^2\chi_0^2} \left(\frac{\Gamma_I}{H_\text{os}} \right)^2 \left(\frac{m_\chi}{\Gamma_I} \right)^{3/2}. \tag{31}
\]

A straightforward calculation yields

\[
\frac{n_B}{s} = \frac{0.5\delta_e\sqrt{c}m_{3/2}m_\chi}{\alpha T_R M_P} \left(\frac{M}{M_P} \right)^3 \left(\frac{M_P}{\chi_0} \right)^2 \\
\sim 8 \times 10^{-27} \delta_e \sqrt{c} \left(\frac{0.1}{\alpha} \right)^2 \sqrt{\frac{m_{3/2}}{100 \text{TeV}}} \left(\frac{m_\chi}{100 \text{TeV}} \right) \left(\frac{M}{M_P} \right)^3 \left(\frac{M_P}{\chi_0} \right)^2. \tag{32}
\]

for \(n = 4 \) case. Obviously, this is too small. On the other hand, for \(n = 6 \) case we obtain

\[
\frac{n_B}{s} = \frac{0.5\delta_e\sqrt{c}m_{3/2}m_\chi}{\alpha^2 T_R M_P^5} \left(\frac{M}{M_P} \right)^3 \left(\frac{M_P}{\chi_0} \right)^2 \\
\sim 2 \times 10^{-16} \delta_e \sqrt{c} \left(\frac{0.1}{\alpha} \right)^2 \sqrt{\frac{m_{3/2}}{100 \text{TeV}}} \left(\frac{m_\chi}{100 \text{TeV}} \right) \left(\frac{10^9 \text{GeV}}{T_R} \right) \left(\frac{M}{M_P} \right)^3 \left(\frac{M_P}{\chi_0} \right)^2. \tag{33}
\]

It seems possible that a proper amount of baryon asymmetry after choosing cut-off scale appropriately. But \(T_R \) is constrained from the condition \(H_\text{os} > m_\chi \) [Eq.(22)]. Substituting Eq. (22) into the above equation, we obtain the upper bound on \(n_B/s \),

\[
\frac{n_B}{s} \leq \frac{0.5\delta_e\sqrt{c}m^{1/4}_{3/2}m_\chi}{\alpha^2 M_P^{5/4}} \left(\frac{M}{M_P} \right)^{9/4} \left(\frac{M_P}{\chi_0} \right)^2 \\
\sim 8 \times 10^{-17} \delta_e \sqrt{c} \left(\frac{0.1}{\alpha} \right)^2 \sqrt{\frac{m_{3/2}}{100 \text{TeV}}} \left(\frac{m_\chi}{100 \text{TeV}} \right) \left(\frac{M}{M_P} \right)^{9/4} \left(\frac{M_P}{\chi_0} \right)^2. \tag{34}
\]
Thus we need $M \gtrsim 200 M_P$ to obtain enough baryon asymmetry. If this is the case, T_R must also be as high as 10^{12} GeV. This also satisfies the constraint $\Gamma_I > m_\chi$.

In the case (c), the modulus starts to oscillate in inflaton-dominated regime and then inflaton decays resulting in brief radiation dominated era followed by moduli dominated universe. The baryon-to-moduli ratio (23) in this case is expressed as

$$n_B = \frac{\delta_e m_{3/2} |\phi_{\text{os}}|^2}{m_\chi^2 \chi_0^2} \left(\frac{m_\chi}{H_{\text{os}}} \right)^2. \quad (35)$$

For the $n = 4$ case, we obtain

$$\frac{n_B}{s} = \frac{0.2 \delta_e \sqrt{c} m_{3/2} m_\chi^3}{\alpha M^3 (M/P)^2} \left(\frac{M}{M_P} \right) \left(\frac{M_P}{\chi_0} \right)^2 \sim 2 \times 10^{-24} \delta_e \sqrt{c} \left(\frac{0.1}{\alpha} \right) \left(\frac{m_{3/2}}{100 \text{TeV}} \right) \left(\frac{m_\chi}{100 \text{TeV}} \right)^3 \left(\frac{10^9 \text{GeV}}{T_R} \right) \left(\frac{M}{M_P} \right) \left(\frac{M}{M_P} \right)^2 \left(\frac{M_P}{\chi_0} \right)^2, \quad (36)$$

which is extremely small compared with the present baryon density. When we apply to the $n = 6$ flat direction, the baryon-to-entropy ratio is estimated as

$$\frac{n_B}{s} = \frac{0.2 \delta_e \sqrt{c} m_{3/2} m_\chi^3}{\alpha^2 T_R^2 M_P^{1/2}} \left(\frac{M}{M_P} \right)^3 \left(\frac{M_P}{\chi_0} \right)^2 \sim 4 \times 10^{-14} \delta_e \sqrt{c} \left(\frac{0.1}{\alpha} \right)^2 \left(\frac{m_{3/2}}{100 \text{TeV}} \right) \left(\frac{m_\chi}{100 \text{TeV}} \right)^3 \left(\frac{10^9 \text{GeV}}{T_R} \right)^2 \left(\frac{M}{M_P} \right)^3 \left(\frac{M_P}{\chi_0} \right)^2, \quad (37)$$

which seems successful. However, we need rather high reheating temperature which suppress the baryon-to-entropy ratio, due to the condition $H_{\text{os}} > m_\chi$ [Eq.(22)]. Substituting Eq.(22), the upper limit for baryon asymmetry is obtained,

$$\frac{n_B}{s} \lesssim 0.2 \delta_e \sqrt{c} \frac{m_{3/2}}{M_P^3} \left(\frac{M}{M_P} \right)^{3/2} \sim 8 \times 10^{-15} \delta_e \sqrt{c} \left(\frac{0.1}{\alpha} \right)^2 \left(\frac{m_{3/2}}{100 \text{TeV}} \right) \left(\frac{M}{M_P} \right)^{3/2} \quad (38)$$

If $M \sim 100 M_P$ we can obtain desired baryon asymmetry, and this indicates that reheating temperature should be higher than $\sim 10^{11}$ GeV. On the other hand, $T_R \lesssim 10^{12}$ GeV is necessary in order to satisfy $\Gamma_I < m_\chi$. Thus $M \sim 100 M_P$ and 10^{11} GeV $\lesssim T_R \lesssim 10^{12}$ GeV are the possible parameter region (see Fig. 1).
2. \(H_{os} < m_\chi \)

Now let us turn to the case \(H_{os} < m_\chi \). As we explained, early oscillation to avoid charge or color breaking minima requires \(H_{os} > m_{3/2} \) and hence this particular possibility arises only when modulus mass \(m_\chi \) is much heavier than \(m_{3/2} \). In this case, we can classify the cosmological scenario depending on the inflaton decay rate \(\Gamma_I \): (d) \(\Gamma_I > m_\chi > H_{os} \), (e) \(m_\chi > \Gamma_I > H_{os} \), (f) \(m_\chi > H_{os} > \Gamma_I \). Note that baryon-to-moduli ratio is fixed once the Affleck-Dine field starts to oscillate, but resulting formula for \(n_B/\rho_\chi \) is the same as eq. (23). Therefore the results of case (d) and (f) are the same as (a) and (c) respectively. Only the case (e) slightly differs from (b).

In the case (e) the baryon-to-moduli ratio is expressed as

\[
\frac{n_B}{\rho_\chi} = \frac{\delta_e m_{3/2}|\phi_{os}|^2}{m_\chi^2 \chi_0^2} \left(\frac{m_\chi}{\Gamma_I} \right)^2 \left(\frac{\Gamma_I}{H_{os}} \right)^2,
\]

which is slightly different from the case (b). Note that we have used the approximation that the moduli dominate the universe soon after the oscillation. The following calculations are similar, and the result is

\[
\frac{n_B}{s} = \frac{0.2\delta_e \sqrt{c} \gamma_s^4}{\alpha^6} \frac{m_{3/2}^3 m_{3/2}^{3/2} T_R^4}{M_{13/2}} \left(\frac{M}{M_P} \right)^4 \left(\frac{M_P}{\chi_0} \right)^2
\]

\[
\geq 4 \times 10^{-30} \delta_e \sqrt{c} \left(\frac{0.1}{\alpha} \right)^2 \left(\frac{m_{3/2}}{100 \text{ TeV}} \right) \left(\frac{m_\chi}{100 \text{ TeV}} \right)^{3/2} \left(\frac{M}{M_P} \right)^2 \left(\frac{M_P}{\chi_0} \right)^2,
\]

for \(n = 4 \) case, where we have used the constraint \(\Gamma_I > H_{os} \) in the second line. Using the same constraint, for \(n = 6 \) case we obtain

\[
\frac{n_B}{s} = \frac{0.2\delta_e \sqrt{c} \gamma_s^{12}}{\gamma_s^{12}} \frac{m_{3/2}^3 m_{3/2}^{19/2} M_P^{12}}{T_R^{12}} \left(\frac{M}{M_P} \right)^{12} \left(\frac{M_P}{\chi_0} \right)^2
\]

\[
\lesssim 4 \times 10^{-33} \delta_e \sqrt{c} \left(\frac{0.1}{\alpha} \right)^6 \left(\frac{m_{3/2}}{100 \text{ TeV}} \right)^6 \left(\frac{m_\chi}{100 \text{ TeV}} \right)^{3/2} \left(\frac{M}{M_P} \right)^6 \left(\frac{M_P}{\chi_0} \right)^2.
\]

Similar to the case for \(H_{os} > m_\chi \), for appropriate choice of the cut-off scale \(M \) and the reheating temperature \(T_R \), it seems that we can obtain a proper amount of baryon asymmetry.

\(^3\) As we explain in Sec. [VI], although moduli decay into gravitinos may cause cosmological difficulty, here gravitinos are also heavy enough to decay well before the BBN. Furthermore LSPs produced by decay of moduli effectively annihilates and do not overclose the universe (or they become dark matter). However, the subsequent decay of non-thermally produced gravitinos may pose a cosmological difficulty. See Sec. [VI].
However, we should recall that the constraint $m_{3/2} < H_{\text{os}} < m_\chi$ narrows the allowed parameter range. In fact, the case (e) is not realized in the parameter region we are interested in.

In Figs. 1 and 2 we show the resulting baryon-to-entropy ratio in (M, T_R) plane in the case of $m_{3/2} = m_\chi = 100$ TeV and $m_\chi = (4\pi^2)m_{3/2} = (4\pi^2)100$ TeV for $n = 6$. The latter case is naturally realized in mirage-mediation models. We can see that $T_R \gtrsim 10^{11}$ GeV and $M \gtrsim 10^{20}$ GeV are required in the former case. In the latter case where the modulus field is much heavier than the gravitino, the constraint is weaker. Note that in such a heavy moduli scenario gravitinos can be efficiently produced by the decay of moduli, and these non-thermal gravitinos also decay before BBN for $m_{3/2} \sim 100$ TeV. LSPs produced by the decay of those gravitinos may be harmful. We will discuss it in Sec. VI.

C. Q-ball formation

Finally we must consider the effects of Q-ball formation. The fluctuations of the Affleck-Dine field with $U(1)_B$ charge grow and result in lumped condensate, called Q-balls [34, 35]. The Q-ball formation leads to many non-trivial cosmological consequences, and they highly depend on SUSY breaking models [36, 37] (see also [17, 38]). As we have seen in the previous subsection, quite large cut-off scale M is required. One may wonder this leads to large Q-balls and invalidates the applicability of our scenario. However, as we will see, largeness of Q-balls is suppressed because of early oscillation. The radius of Q-balls is comparable to the hubble horizon scale at the epoch of Q-ball formation. Thus although larger cut-off scale M tends to create larger Q-balls, but higher reheating temperature T_R, which causes earlier oscillation, tends to make Q-balls smaller. Now let us estimate Q.

It is found that that for the Q-balls which have developed via logarithmic potential, the total charge of Q-ball Q is fitted by the formula [38],

$$Q = \beta \left(\frac{|\phi_{\text{os}}|}{T_{\text{os}}} \right)^4$$

(42)

where $\beta \sim 6 \times 10^{-4}$. Applying to the early oscillation case for $n = 6$ flat direction, it is estimated as

$$Q \sim 4 \times 10^{17} \left(\frac{\beta}{6 \times 10^{-4}} \right) \left(\frac{10^{11}\text{GeV}}{T_R} \right)^2 \left(\frac{M}{100M_P} \right)^3$$

(43)
for $H_\text{os} > \Gamma_I$, and

$$Q \sim 9 \times 10^{16} \left(\frac{\beta}{6 \times 10^{-4}} \right) \left(\frac{0.1}{\alpha} \right)^4 \left(\frac{M}{100M_P} \right)^6$$

(44)

for $H_\text{os} < \Gamma_I$. It is known that evaporation of Q-balls in high-temperature plasma can efficiently transfer the charge of Q-balls up to $\Delta Q \sim 10^{20}$ almost model independently [39] (see also [22]). Therefore in the most interesting parameter region, Q-balls formed through Affleck-Dine mechanism can completely evaporate and have no further effects on cosmological evolution of baryon asymmetry.

In Figs. 1 and 2 we show the contour of $Q \sim 10^{20}$ with black dotted line. It can be seen that in the interesting parameter region where $n_B/s \sim 10^{-10}$ is obtained, only small Q-balls are produced and they evaporate in the high-temperature plasma.

FIG. 1: Contour plot of n_B/s as a function of M and T_R. We take $m_\chi = m_{3/2} = 100\text{TeV}$. In the shaded region Affleck-Dine field is trapped into charge-breaking minima and baryogenesis does not work. Also we show by the dotted line $Q \sim 10^{20}$. The left side of the dotted line predicts $Q < 10^{20}$ and Q-balls completely evaporate in high-temperature plasma.

IV. AFFLECK-DINE BARYOGENESIS WITH GAUGED $U(1)_{B-L}$

Next we turn to another possibility that Affleck-Dine baryogenesis with large gravitino mass works with an extension of MSSM to include some additional fields and gauged $U(1)_{B-L}$
symmetry. Because the global $U(1)_{B-L}$ symmetry within MSSM is anomaly-free, it can naturally be extended to local symmetry. But from the viewpoint of baryogenesis, it must be spontaneously broken at some high energy scale in order to create baryon asymmetry and not to contradict with terrestrial experiments such as proton decay.

A. The model

We briefly explain the model discussed in Ref. [21]. First, we introduce MSSM singlet fields which have the superpotential as

$$W = \lambda X (S\bar{S} - v^2),$$

(45)

where X, S and \bar{S} have the $U(1)_{B-L}$ charge 0, 2 and -2 respectively, and v denotes the $U(1)_{B-L}$ breaking scale. They induce the scalar potential given by

$$V = |\lambda|^2 \left\{ |X|^2 (|S|^2 + |\bar{S}|^2) + |S\bar{S} - v^2|^2 \right\}$$

$$+ \frac{g^2}{2} \left(2|S|^2 - 2|\bar{S}|^2 - q|\phi|^2 \right)^2$$

(46)

where g denotes the $U(1)_{B-L}$ gauge coupling constant and q denotes the $U(1)_{B-L}$ charge of the Affleck-Dine field. The second term comes from the D-term contribution. In the following, we consider flat directions which are lifted by $n = 6$ non-renormalizable superpotential
in MSSM, such as \textit{udd} or \textit{LLe} direction. In this model, gauge-invariant superpotential which lifts those flat directions are given by

\begin{equation}
\frac{k_1}{6M^3} \left(\frac{S}{M} \right) (\text{udd})^2, \quad \frac{k_2}{6M^3} \left(\frac{S}{M} \right) (\text{LLe})^2
\end{equation}

where \(k_1\) and \(k_2\) are \(O(1)\) coupling constants, and the resulting zero-temperature scalar potential is written as

\begin{equation}
V = m_\phi^2 |\phi|^2 - c_H H^2 |\phi|^2 + \frac{m_{3/2}}{6M^3} \left(\frac{S}{M} \right) (a_m \phi^6 + \text{h.c.}) + \frac{H}{6M^3} \left(\frac{S}{M} \right) (a_H \phi^6 + \text{h.c.}) \\
+ \frac{1}{M^6} \left(\frac{S}{M} \right)^2 |\phi|^{10} + \frac{1}{36M_8} |\phi|^{12}.
\end{equation}

Although the whole dynamics is somewhat complicated and we do not give the details here (see \cite{21} for a detail), the point is that by using the additional \(D\)-term potential which does not exist in MSSM, the Affleck-Dine field can be stopped at the \(U(1)_{B-L}\) breaking scale \(v\) during inflation. If \(v\) is smaller than the hill of the potential of the Affleck-Dine field

\begin{equation}
v \lesssim |\phi|_{\text{hill}} \sim \left(\frac{m_\phi^2 M^4}{m_{3/2} \langle S \rangle} \right)^{1/4},
\end{equation}

Affleck-Dine mechanism works without trapping into the charge or color breaking global minimum. If we assume \(\langle S \rangle \sim v\) and we focus on \(n = 6\) case, this condition is equivalent to

\begin{equation}v \lesssim \left(\frac{m_\phi^2 M^4}{m_{3/2}} \right)^{1/5} \sim 8 \times 10^{14}\text{GeV} \left(\frac{100\text{TeV}}{m_{3/2}} \right)^{1/5} \left(\frac{m_\phi}{1\text{TeV}} \right)^{2/5} \left(\frac{M}{M_\text{Pl}} \right)^{4/5}.
\end{equation}

If the value \(v\) exceeds this bound, Affleck-Dine baryogenesis can not work due to trapping of the Affleck-Dine field in global charge breaking minima, if thermal effects are neglected.

\section{B. Baryon asymmetry}

We saw that in this type of model, the Affleck-Dine field stops at \(U(1)_{B-L}\) breaking scale \(v\) until Hubble parameter becomes of the order \(m_\phi\) and oscillation begins. If \(v\) is smaller than the hill of the potential of the Affleck-Dine field, Affleck-Dine mechanism works. In the case of early oscillation, the result is the same as usual early oscillation scenario considered in the
previous section. Thus we consider only the case of no early oscillation in this subsection. The condition to avoid early oscillation is

\[T_R \lesssim \frac{m_\phi^{1/2} v}{\alpha M_P^{1/2}} \]

\[\sim 2.1 \times 10^8 \text{GeV} \left(\frac{0.1}{\alpha} \right) \left(\frac{m_\phi}{1 \text{TeV}} \right)^{2/5} \left(\frac{v}{10^{15} \text{GeV}} \right). \]

Thus we can safely set \(\Gamma_I < m_\chi \). The baryon number at the instant of oscillation of the Affleck-Dine field is given by

\[n_B(t_{\text{os}}) = \frac{4\beta |a_m|}{9} \frac{\delta_e m_{3/2}}{H_{\text{os}} M^4 v^7} \]

with \(H_{\text{os}} \sim m_\phi \). The baryon-to-moduli ratio is once fixed at the epoch of oscillation of the Affleck-Dine field, \(t = t_{\text{os}} \), and the final reheating comes from the decay of moduli. The result is

\[\frac{n_B}{s} = 0.1 \sqrt{c_\delta e} \frac{m_{3/2}^{3/2} m_\chi^{3/2}}{m_\phi^2 M^5} \left(\frac{M_P}{\lambda_0} \right)^2, \]

which depends on seventh powers of \(v \). Substituting the upper bound on \(v \) [Eq.(50)], we obtain an upper bound on the baryon-to-entropy ratio,

\[\frac{n_B}{s} \lesssim 0.1 \sqrt{c_\delta e} \frac{m_{3/2}^{3/2} M^{8/5}}{m_\phi^{1/5} m_{3/2}^{2/5} M^5} \left(\frac{M_P}{\lambda_0} \right)^2 \]

\[\sim 5 \times 10^{-13} \sqrt{c_\delta e} \frac{m_\chi}{100 \text{TeV}} \left(\frac{100 \text{TeV}}{m_{3/2}} \right)^{2/5} \left(\frac{1 \text{TeV}}{m_\phi} \right)^{1/5} \left(\frac{M}{M_P} \right)^{8/5} \left(\frac{M_P}{\lambda_0} \right)^2, \]

which seems successful. However, it is non-trivial whether Q-ball is small enough to evaporate completely. Charge of Q-ball is given by

\[Q \sim \gamma \left(\frac{v}{m_\phi} \right)^2 \times \left\{ \begin{array}{ll} \epsilon & (\epsilon \gtrsim 0.01) \\ 0.01 & (\epsilon \lesssim 0.01) \end{array} \right. \]

where \(\gamma \) is order \(10^{-2} - 10^{-3} \) factor which represents the delay of Q-ball formation from the oscillation of Affleck-Dine field and \(\epsilon \) is called the ellipticity parameter given by

\[\epsilon \sim \delta_e \frac{m_{3/2} v^5}{m_\phi^2 M^4}. \]

Therefore, using the upper bound of \(v \) [Eq.(50)], we obtain

\[Q \sim \frac{4\delta_e \gamma}{9} \frac{m_{3/2} v^7}{m_\phi^4 M^4} \]

\[\lesssim 1 \times 10^{21} \delta_e \left(\frac{\gamma}{6 \times 10^{-3}} \right) \left(\frac{100 \text{TeV}}{m_{3/2}} \right)^{2/5} \left(\frac{1 \text{TeV}}{m_\phi} \right)^{6/5} \left(\frac{M}{M_P} \right)^{8/5}. \]
for $\epsilon \gtrsim 0.01$, which is a little larger than total evaporated charge $\Delta Q \sim 10^{20}$. For pure leptonic flat direction such as LLe, Q-balls must completely evaporate above the temperature where electroweak phase transition occurs in order to convert lepton number into baryon number by sphaleron effects, and hence $Q \gtrsim 10^{20}$ is not acceptable. On the other hand for flat directions carrying baryon number such as udd, $10^{20} \lesssim Q \lesssim 10^{22}$ is allowed. In such a case, where Q-balls decay below the freeze-out temperature of LSP, we must care about overproduction of LSPs from Q-ball decay. But in our scenario entropy production from moduli decay dilutes them. Therefore for udd direction 4 gauged $U(1)_{B-L}$ scenario in the presence of heavy moduli is marginally possible.

In Fig. 3 we show the resultant baryon asymmetry in (M, v) plane with constraints. We can see that for $m_\chi = 100$ TeV, Q-balls become too large. But for larger m_χ the correct baryon asymmetry can be obtained without forming too large Q-balls.

![Diagram showing baryon asymmetry in (M, v) plane.](image)

FIG. 3: The two solid lines show $n_B/s \sim 10^{-10}$ in gauged $U(1)_{B-L}$ scenario, the upper (blue) line corresponds to $m_\chi = 100$ TeV and the lower (red) line corresponds to $m_\chi = (4\pi^2)100$ TeV. We take $m_{3/2} = 100$ TeV. In the dark shaded region Affleck-Dine field is trapped into charge-breaking minima and baryogenesis does not work. We also show $Q \sim 10^{22}$ by the dotted line.

4 Actually LLe and udd direction can have large field value simultaneously.
V. AFFLECK-DINE BARYOGENESIS WITHOUT SUPERPOTENTIAL

A. The model

Next we consider the models of Affleck-Dine baryogenesis with gauged $U(1)_{B-L}$ including no non-renormalizable superpotentials due to some symmetry such as R-symmetry. In such a case, baryon number violating operators are supplied by higher order effects from Kahler potentials (see e.g., Ref. [41]) and the initial amplitude of the Affleck-Dine field can become as large as Planck scale. The dynamics of the Affleck-Dine field is similar to the previous section. As a result, large Q-balls are formed associated with Affleck-Dine baryogenesis and they decay at late time after the freeze-out of LSPs but before BBN. Interestingly, in this type of model late-decaying Q-balls may once dominate the universe [41]. If this is the case, a nice feature arises when considering the moduli-induced gravitino problem, as explained in Sec. VII.

Now let us investigate the above model. The zero-temperature scalar potential for the flat direction ψ is given by

$$V(\psi) = (m_\psi^2 - c_H H^2) |\psi|^2 + \frac{m^{3/2}_\psi}{nM^{n-2}} (a_m \psi^n + \text{h.c.})$$

$$+ \frac{H^2}{nM^{n-2}} (a_H \psi^n + \text{h.c.}) + \ldots$$

(58)

where the ellipsis denote the higher order terms, which stabilize the Affleck-Dine field at some value of order the Planck-scale. Note that the potential (58) also has charge and/or color breaking global minimum near the field value at M. Similar to the previous section, in order to avoid falling into this minimum, the D-term stopping at v must satisfy the following condition,

$$v \lesssim |\psi|_{\text{hill}} \sim \frac{m_\psi}{m^{3/2}} M.$$

(59)

Here we consider only the case without early oscillation due to thermal effects. This requires

$$T_R \lesssim \alpha^{-1} m^{1/2}_\psi |\psi_0| M^{-1/2}_P$$

$$\sim 2 \times 10^{11} \text{GeV} \left(\frac{0.1}{\alpha} \right) \left(\frac{m_\psi}{100 \text{GeV}} \right)^{1/2} \left(\frac{|\psi_0|}{M_P} \right).$$

(60)

At the beginning of the oscillation $H = m_\psi$, the baryon number is calculated as

$$n_B(t_{\text{os}}) \sim \frac{|a_m| \delta \epsilon m^{3/2}}{m_\psi M^{n-2} \psi_0^n}$$

(61)
where ψ_0 is given by $U(1)_{B-L}$ breaking scale v. Note that we assume the Affleck-Dine field has baryonic charge. In such a case, the whole baryon number created by the coherent motion of the Affleck-Dine field contributes to the baryon number of the universe as far as Q-balls decay before BBN. If it does not have baryonic charge and only has leptonic charge, only some fraction of the total created lepton number evaporated from Q-balls at the temperature above the electroweak scale can be converted into baryon number through the sphaleron effects [42, 43]. Thus the resultant baryon asymmetry is suppressed. We do not consider such a case.

The charge of Q-balls is given by Eq. (55) where the ellipticity parameter ϵ is now estimated as

$$\epsilon \sim \delta_e \left(\frac{m_{3/2}}{m_\psi} \right)^2 \left(\frac{v}{M} \right)^{n-2}. \quad (62)$$

Thus we obtain the charge of Q-balls

$$Q \sim 4 \times 10^{26} \left(\frac{\gamma}{6 \times 10^{-3}} \right) \left(\frac{1\text{TeV}}{m_\psi} \right)^2 \left(\frac{v}{M_P} \right)^2. \quad (63)$$

for $\epsilon \lesssim 0.01$, and

$$Q \sim 4 \times 10^{32} \left(\frac{\gamma}{6 \times 10^{-3}} \right) \left(\frac{m_{3/2}}{100\text{TeV}} \right)^2 \left(\frac{1\text{TeV}}{m_\psi} \right)^4 \left(\frac{v}{M_P} \right)^n \left(\frac{M_P}{M} \right)^{n-2}. \quad (64)$$

for $\epsilon \gtrsim 0.01$. On the other hand, the decay temperature of Q-balls is estimated as [22, 44]

$$T_Q \sim 1.8\text{GeV} \left(\frac{m_\psi}{1\text{TeV}} \right)^{1/2} \left(\frac{10^{24}}{Q} \right)^{1/2} \quad (65)$$

if there exist lighter scalar fields than the Affleck-Dine field, and hence we can see that Q-balls decay below the electroweak scale but before BBN for some parameter region, $v \ll M_P$ and/or $M \gg M_P$. The entire cosmological scenario depends on the decay temperature of Q-balls T_Q, the initial amplitude of the Affleck-Dine field v and that of the modulus filed χ_0. We assume the reheating temperature from inflaton is not so high as inflaton dominates the universe when the Affleck-Dine field begins to oscillate but decays well before the modulus field decays. This is satisfied for $10\text{GeV} \lesssim T_R \lesssim 10^9\text{GeV}$. The following analysis does not depend on the precise value of T_R as far as the T_R lies in the above range.

The final reheating comes from moduli or Q-balls. If the following condition

$$T_Q < T_\chi \left(\frac{v}{\chi_0} \right)^2 \quad (66)$$

is satisfied (T_χ is the decay temperature of the modulus field), Q-balls dominate the universe before they decay but after the modulus field decays.
B. Baryon asymmetry

In the case with Q-ball domination, the baryon-to-entropy ratio is fixed at the decay of Q-balls,

\[\frac{n_B}{s} = \frac{n_B \rho_{\psi}}{\rho_{\psi}} = \frac{n_B 3T_Q}{4} \]

and the subsequent cosmological scenario does not depend on the properties of moduli. This is calculated as

\[\frac{n_B}{s} \sim 7 \times 10^{-3} \left(\frac{6 \times 10^{-3}}{\gamma} \right)^{1/2} \left(\frac{1 \text{TeV}}{m_{\psi}} \right)^{3/2} \times \left(\frac{m_{3/2}}{100 \text{TeV}} \right)^2 \left(\frac{M_P}{M} \right)^2 \left(\frac{v}{M_P} \right) \]

for \(\epsilon \lesssim 0.01 \), and

\[\frac{n_B}{s} \sim 2 \times 10^{-5} \left(\frac{6 \times 10^{-3}}{\gamma} \right)^{1/2} \left(\frac{1 \text{TeV}}{m_{\psi}} \right)^{1/2} \times \left(\frac{m_{3/2}}{100 \text{TeV}} \right)^{(n-2)/2} \left(\frac{M_P}{M} \right)^{(n-4)/2} \left(\frac{v}{M_P} \right)^{(n-4)/2} \]

for \(\epsilon \gtrsim 0.01 \), where we have assumed \(\delta \epsilon \sim 0.01 \). On the other hand, in the case of no Q-ball domination, the final reheating occurs due to the modulus decay. The baryon-to-entropy ratio is thus given by

\[\frac{n_B}{s} = \frac{n_B \rho_{\chi}}{\rho_{\chi}} = \frac{n_B 3T_{\chi}}{4} \]

and it is estimated as

\[\frac{n_B}{s} \sim 2 \times 10^{-4} \sqrt{c} \left(\frac{m_{\chi}}{100 \text{TeV}} \right)^{3/2} \left(\frac{1 \text{TeV}}{m_{\psi}} \right)^3 \times \left(\frac{m_{3/2}}{100 \text{TeV}} \right)^2 \left(\frac{M_P}{M} \right)^n \left(\frac{v}{M_P} \right)^n \left(\frac{M_P}{\chi_0} \right)^2 \]

In both cases, we can see that \(M \gg M_P \) and/or \(v \ll M_P \) is required in order to obtain correct order of baryon asymmetry.

We show in Fig. 4 the contour where the appropriate baryon asymmetry \(n_B/s \sim 10^{-10} \) is obtained for \(n = 4 \) and the modulus mass \(m_{\chi} = 100 \text{ TeV} \) and \((4\pi^2)100 \text{ TeV} \). It should be noticed that for \(v > \sqrt{3}M_P \), a brief period of inflation occurs due to the Affleck-Dine field. But in general, supergravity effects steepen the potential above the Planck scale, and hence the region with \(v \gtrsim M_P \) is not favored from naturalness. Above the dotted lines Q-ball
domination is realized for each modulus mass. It can be seen that for $M \gtrsim 10^{18}$ GeV and $v \gtrsim 10^{16}$ GeV, this baryogenesis mechanism works. But another subtlety arises when one considers the LSP produced by the Q-ball decay or gravitinos from modulus decay. This will be discussed in Sec. VI.

![Graph](image)

FIG. 4: The two solid lines show $n_B/s \sim 10^{-10}$ for $m_\chi = 100$ TeV and $(4\pi^2)100$ TeV in the no superpotential model. We take $m_{3/2} = 100$ TeV. In the dark shaded region Affleck-Dine field is trapped into charge-breaking minima and baryogenesis does not work.

VI. REMARKS ON HEAVY MODULUS DECAY

Before closing the discussion, we consider some non-trivial feature of the modulus decay. In the above arguments, we have not considered the details of the decay products of the modulus field. We briefly discuss the other consequences of modulus decay on cosmological evolution.
A. Non-thermal dark matter from modulus decay

One of the favored nature of the supersymmetric theory is that it can provide the candidate of the dark matter of the universe. Under the R-parity conservation, the lightest supersymmetric particle (LSP) becomes stable and if it has the appropriate annihilation cross section, it can account for the energy density of the dark matter \[45\]. In anomaly-mediated SUSY breaking models, wino-like neutralino naturally becomes the LSP. In the standard thermal relic scenario, the mass of wino should be as heavy as 2 TeV to account for the dark matter because of its large annihilation cross section \(^5\). In mirage-mediation model, the LSP is the mixed state of bino and higgsino-like neutralino \[47, 48\] and their thermal relic abundance can account for the dark matter of the universe \[49\]. But in our scenario, the final reheating temperature from modulus decay is typically much lower than the freeze-out temperature of LSP and thermal relic cannot be the dark matter. However, there is a non-thermal origin of the dark matter from the decay of moduli, and there arises a possibility that non-thermal LSPs can account for the dark matter of the universe. Its abundance is estimated as \[10, 50\]

\[
Y(T) \simeq \left[\frac{1}{Y(T_\chi)} + \frac{5 \pi^2 g_*}{120} \langle \sigma v \rangle M_{Pl} (T_\chi - T) \right]^{-1}
\]

(72)

where \(Y = n_{LSP}/s\) and \(T_\chi\) denotes the decay temperature of the modulus field. We can see that if the annihilation cross section is large enough, the second term dominates and the relic abundance is inversely proportional to it. In terms of the density parameter, we can rewrite it as

\[
\Omega_{LSP} h^2 \sim 0.27 \left(\frac{10}{g_*(T_\chi)} \right)^{1/2} \left(\frac{100 \text{MeV}}{T_\chi} \right) \left(\frac{m_{LSP}}{100 \text{GeV}} \right)^3 \left(\frac{10^{-3}}{m_{LSP}^2 \langle \sigma v \rangle} \right).
\]

(73)

For higgsino-like neutralino LSP, the annihilation cross section into \(W\)-boson pair is estimated as \[51\]

\[
\langle \sigma v \rangle \simeq \frac{\pi \alpha_s^2}{2} \frac{m_{LSP}^2}{(2m_{LSP}^2 - m_W^2)^2} \left(1 - \frac{m_W^2}{m_{LSP}^2} \right)^{3/2}
\]

(74)

and for wino-like neutralino LSP, it is given by \[10\]

\[
\langle \sigma v \rangle \simeq 8 \pi \alpha_s^2 \frac{m_{LSP}^2}{(2m_{LSP}^2 - m_W^2)^2} \left(1 - \frac{m_W^2}{m_{LSP}^2} \right)^{3/2}
\]

(75)

\(^5\) There is an argument that non-perturbative effect enhances the annihilation cross section, and wino should be about 3 TeV if its thermal relic accounts for the dark matter of the universe \[46\].
where \(\alpha_2 \) is the \(SU(2)_L \) gauge coupling constant and \(m_W \) is the mass of \(W \)-boson. We can see that the desired density of LSP can be obtained for \(m_{\text{LSP}} \sim 100 \text{ GeV} \). Thus both the dark matter and baryon asymmetry of the universe can be explained even in the presence of heavy modulus fields.

One may consider that these non-thermal LSPs from late-decaying particles can have large free-streaming length \(\lambda_{\text{FS}} \) (\(\gtrsim 1 \text{ Mpc} \)) and may become the warm dark matter [15, 52, 53, 54]. Now we estimate the free-streaming length of non-thermally produced LSPs assuming that they contribute to the dark matter of the universe. For simplicity, we neglect the energy loss via the interaction between particles in thermal bath. Free streaming length of the LSP produced at \(\tau_\chi \) is given by [55]

\[
\lambda_{\text{FS}} \sim 1.0 \text{ Mpc} \quad u_d \left(\frac{\tau_\chi}{10^6 \text{sec}} \right)^{1/2} \left\{ 1 + 0.14 \ln \left(\frac{10^6 \text{sec}}{\tau_\chi} \right) \right\}
\]

where \(u_d = \sqrt{m_{\chi}^2 - 4m_{\text{LSP}}^2/2m_{\text{LSP}}} \). Using \(\tau_\chi \sim (4\pi M_P^2/cm^3) \), we can rewrite it as

\[
\lambda_{\text{FS}} \sim 1.7 \times 10^{-2} \text{Mpc} \quad c^{-1/2} \left(\frac{100 \text{TeV}}{m_{\chi}} \right)^{1/2} \left(\frac{1 \text{TeV}}{m_{\text{LSP}}} \right) \left\{ 1 + 0.07 \ln \left[c^{1/2} \left(\frac{m_{\chi}}{100 \text{TeV}} \right)^{1/2} \left(\frac{m_{\text{LSP}}}{1 \text{TeV}} \right) \right] \right\}.
\]

Thus, for \(m_{\chi} \gtrsim 100 \text{ TeV} \), free streaming length is much smaller than 1 Mpc and non-thermal LSPs serve as the cold dark matter. Actually, there exist non-negligible interactions of LSPs with background particles. It is expected that LSPs lose their energy and momentum through those interactions and hence the non-thermal LSPs from modulus decay unlikely take a role of warm dark matter [56, 57].

B. Gravitinos from modulus decay

If \(m_{\chi} > 2m_{3/2} \), which is naturally realized in mirage-mediation model, the modulus decay into two gravitinos is kinematically allowed. In particular, it is found that such a decay mode generally has the branching ratio as large as \(O(0.01) \) [58, 59] and the late-decay of gravitinos generated in this way may cause another cosmological difficulty. In our scenario these gravitinos do not upset BBN, since they are also heavy enough to decay before the beginning of BBN. But LSPs emitted from the decay of those non-thermally produced gravitinos may overclose the universe.
The decay of such non-thermal gravitinos does not release huge entropy, because the energy density of the gravitino is two orders of magnitude smaller than that of the ordinary radiation. We denote the temperature at the modulus decay and at the gravitino decay as T_χ and $T_{3/2}$, respectively. The branching ratios of moduli that decay into ordinary radiation and two gravitinos are denoted as $B_r \sim O(1)$ and $B_{3/2}$. In these terms, the ratio of the energy density of gravitino to radiation at the decay of gravitino is given by

$$\frac{\rho_{3/2}}{\rho_r} = \bar{\epsilon} \frac{B_{3/2}}{B_r}$$

(78)

where

$$\bar{\epsilon} = \begin{cases} T_{\text{NR}} & (T_{\text{NR}} > T_{3/2}) \\ \frac{T_{3/2}}{T_{\text{NR}}} & (T_{\text{NR}} < T_{3/2}) \end{cases}$$

(79)

and $T_{\text{NR}} = (m_{3/2}/m_\chi)T_\chi$ denotes the temperature at which gravitinos become non-relativistic. Since $B_{3/2} \ll B_r$, $\rho_{3/2}$ is not larger than ρ_r for $T_{\text{NR}} < T_{3/2}$. When the gravitino becomes non-relativistic before decay, we obtain

$$\frac{\rho_{3/2}}{\rho_r} = \frac{B_{3/2}}{B_r} \frac{T_\chi}{T_{3/2}} \frac{m_{3/2}}{m_\chi} \sim \frac{B_{3/2}}{B_r} \left(\frac{m_\chi}{m_{3/2}} \right)^{1/2} .$$

(80)

This ratio does not exceed 1 in the parameter region we are interested in, and baryon asymmetry is not diluted further by the gravitino decay. The difficulty comes from the subsequent decay of gravitinos into LSPs. The LSP abundance emitted from gravitino decay is also expressed by Eq. (72) after replacing T_χ with $T_{3/2}$. But for $m_{3/2} \sim 100$ TeV, $T_{3/2}$ is so small that the LSPs do not annihilate and their density overcloses the universe. To avoid this difficulty, we require $m_{3/2} \gtrsim 10^3$ TeV. But in such a case, the mass of LSP becomes too large in anomaly-mediation or mirage-mediation models and the overclosure problem of LSPs is not cured.

Here we describe some ways to avoid the LSP overproduction problem in such heavy moduli scenario with $m_\chi \gg m_{3/2}$. One possible solution is to reduce $B_{3/2}$ so that the abundance of gravitinos from moduli decay can be neglected. Depending on the Kahler potential and SUSY breaking sector, the branching ratio of modulus decay into gravitinos may have the helicity suppression factor $\sim (m_{3/2}/m_\chi)^2$ compared with other decay modes [59].

Another is to introduce lighter R-odd particles other than MSSM particles. Axino, which appears in supersymmetric extension of the axion models [60], is one of the candidates
In such a case, the overproduced lightest neutralino eventually decays into axinos and its abundance is reduced by the factor \((m_{\tilde{a}}/m_{\text{LSP}})\) where \(m_{\tilde{a}}\) is the axino mass. If \(m_{\tilde{a}}\) is sufficiently small \([62]\), the overproduction problem of neutralino LSP can be solved. It should be noticed that it may also open the decay mode of gravitino into axino and axion \([63]\), and this newly produced non-thermal axions serve as the additional radiation energy density \([64]\), which speeds-up the Hubble expansion and changes the result of BBN especially the \(^4\text{He} \) abundance. In terms of the effective number of neutrinos \(N_\nu\), the success of BBN requires \(\Delta N_\nu \lesssim 1\) at the beginning of BBN \([6]\). But in our situation this is not a problem, since the gravitino abundance is smaller than the radiation at the decay of gravitinos and hence the axion abundance generated from the gravitino decay is also smaller than the radiation energy density. In this scenario axinos should decay before BBN \([66]\). Otherwise, decay products of the neutralino spoils BBN. This requires the Peccei-Quinn scale \(10^{10} \text{GeV} \lesssim F_{\text{PQ}} \lesssim 10^{11} \text{GeV}\), where the lower bound comes from the astrophysical consideration \([67]\) and the upper bound comes from the requirement the lifetime of the decaying neutralino into axino should be shorter than 1 sec. Thermally produced axinos \([68]\) can contribute to the only small fraction of the energy density of the universe because the final reheating temperature is very low. The coherent oscillation of the axion is also diluted by the modulus decay and has neglecting effects on cosmology for \(F_{\text{PQ}} \lesssim 10^{11} \text{GeV}\) \([69]\).

Finally, we mention the possibility that gravitinos are diluted by entropy production after the modulus decay in the following subsection. This is already built in the models of Q-ball dominant universe (Sec. \([\text{V}]\), as we will see.

C. Dilution by Q-ball decay

The abundance of gravitinos from modulus decay is expressed as

\[
Y_{3/2} = 2 \frac{B_{3/2}^3}{B_r} \frac{3T_\chi}{4m_\chi},
\]

\(81\)

\(\text{[6]}\) The recent analysis of primordial \(^4\text{He}\) abundance favors non-standard value of \(N_\nu(>3)\) \([65]\), but \(\Delta N_\nu \sim 1\) is disfavored.
Assuming no annihilation, the energy density of the LSP produced by the decay of gravitinos is given by

\[\Omega_{\text{LSP}} h^2 \sim 2.3 \times 10^2 \sqrt{c} \left(\frac{B_{3/2}/B_r}{0.01} \right) \left(\frac{m_{\text{LSP}}}{100 \text{GeV}} \right) \left(\frac{m_\chi}{100 \text{TeV}} \right)^{1/2} . \]

(82)

Thus we need the dilution factor \(\Delta \sim 10^{-2} - 10^3 \) after the production of gravitinos. In fact, in the Q-ball dominant case investigated in Sec. V, the decay of Q-balls releases large entropy and dilutes the gravitinos from modulus decay. If we denote the decay temperature of Q-balls as \(T_Q \), the dilution factor is given by

\[\Delta = \frac{T_\chi}{T_Q} \left(\frac{|\psi_0|}{|\chi_0|} \right)^2 . \]

(83)

Thus if \(T_Q \) is slightly smaller than \(T_\chi \), and the initial amplitude of the modulus field \(|\chi_0| \) is slightly smaller than that of the Affleck-Dine field \(|\psi_0| \), the required dilution factor is obtained. This is no more than the situation we encountered in Sec. V and hence those Q-balls give the desired dilution factor, solving the overproduction problem of LSPs from gravitino decay. Note also that LSPs are also produced from decay of Q-balls. Their abundance is given by Eq. (72) after replacing \(T_\chi \) with \(T_Q \). As far as \(T_Q \gtrsim 100 \text{ MeV} \), LSPs can effectively annihilate and their abundance becomes below or comparable to that of the dark matter [17, 50].

In Fig. 5, the result with \(|\chi_0| = 10^{17} \text{ GeV} \) is shown. It can be seen that the wide parameter region which has been favored in Sec. V is excluded by the constraint from the overproduction of LSPs both from the Q-ball decay (the purple shaded region) and gravitino decay (the blue shaded region). We can see that only in narrow parameter region for \(M \sim 10^{22} \text{ GeV} \) and \(v \sim M_P \), both the dark matter as non-thermal LSPs and baryon asymmetry can be explained simultaneously. As the value of \(\chi_0 \) is reduced, the constraint is relaxed. Although some degree of tunings to the parameters especially the initial amplitude of the modulus and Affleck-Dine field is required, this is a fully consistent cosmological scenario in the presence of heavy moduli.

Finally we comment on the possibility where the similar dilution from Q-ball decay is obtained in the model of Sec. III. In order to realize this, we consider the situation where a flat direction other than Affleck-Dine field responsible for baryogenesis dominates the universe after the moduli decay. In fact, udd and LLe directions can have the large field value simultaneously. As described in Sec. III, \(n = 6 \) udd direction is used as the Affleck-Dine field which create the appropriate baryon number. On the other hand, LLe direction...
FIG. 5: Same as Fig. 4 but for $\chi_0 = 10^{17}$ GeV. We also show the constraint from LSP overproduction from gravitino decay for $m_\chi = 4\pi^2100$ TeV. In the blue shaded region, the Q-ball decay can not dilute LSPs produced by the decay of moduli-induced gravitinos sufficiently. In the purple shaded region, LSPs produced by Q-ball decay overclose the universe.

also has the large field value. We assume for the LLe direction there do not exist non-renormalizable superpotentials which lift the direction and we parametrize this direction as ψ (Such a model was considered in Ref. [70]). Similar to the case in Sec. VII ψ has the initial amplitude ψ_0 of order M_P. The late decay of Q-balls from ψ-condensate dilutes the gravitino to the cosmologically safe value. Although it also dilutes the baryon asymmetry by the factor $\Delta \sim 10^2$, dilution of such amount of baryon asymmetry is not so harmful, as can be seen from Fig. [2]

VII. CONCLUSIONS

Within the framework of fundamental theory such as supergravity or superstring theory, there appear cosmologically harmful scalar fields called moduli. In anomaly-mediated SUSY breaking or mirage mediation model, moduli are heavy and decay well before BBN starts,
but the decay process dilutes the preexisting baryon asymmetry. We have shown that in some models of Affleck-Dine baryogenesis mechanism, large amount of baryon asymmetry can be generated and can survive the dilution from the modulus decay. Successful baryogenesis requires high reheating temperature from inflaton, \(T_R \gtrsim 10^{10} \) GeV, and high effective cutoff scale, \(M \gtrsim 10^{19} \) GeV for early oscillation models. Such a high reheating temperature is naturally realized in chaotic inflation models \(\text{[71]} \). Gauged \(U(1)_{B-L} \) models also work for some parameter regions. We also investigated the gauged \(U(1)_{B-L} \) model without superpotentials which lift the flat direction. The favored parameter region is also found in this type of model. Other baryogenesis mechanisms such as thermal leptogenesis \(\text{[72]} \) and electroweak baryogenesis \(\text{[73]} \) do not work, since produced baryon asymmetry is not so large as to survive the dilution.

Aside from baryon asymmetry, dark matter of the universe can also be explained by the non-thermal LSPs from the decay of moduli. The final reheating temperature is determined by the decay of moduli and it is predicted as from a few MeV to 1 GeV for 100 TeV \(\lesssim m_\chi \lesssim (4\pi^2)100 \) TeV. Hence the standard cosmological scenario below a few MeV should not be changed. One subtlety arises when we consider the gravitino production from decay of the heavy moduli if the modulus mass \(m_\chi \) is larger than two times the gravitino mass \(m_{3/2} \). If the branching ratio of modulus decay into two gravitinos is not suppressed, we encounter the another cosmological problem, i.e., overproduction of neutralino LSPs from the subsequent decay of gravitinos. In the Q-ball dominant scenario in Sec. \(\text{[V]} \) Q-ball decay dilutes the gravitino and the problem can be solved by choosing the initial amplitude of the modulus and Affleck-Dine field as \(|\chi_0| \lesssim |\psi_0| \sim M_P \). Besides Q-ball dominant scenario, there are a couple of ways to avoid this difficulty. One is controlling the SUSY breaking sector to suppress the branching ratio into gravitinos, and another is to introduce the axinos. The other solution is to invoke another flat direction condensate into large Q-balls. The late-decay of Q-balls dilutes the gravitino abundance, and also such a Q-ball decay itself can provide the non-thermal origin of the dark matter, similar to the Q-ball dominant model. In any way, our scenario provides the realistic cosmological scenario in the presence of modulus fields and may have phenomenologically interesting implication to future collider experiments and direct or indirect detection of the dark matter.
Acknowledgments

We are grateful to M. Endo and F. Takahashi for useful comments. K. N. would like to thank the Japan Society for the Promotion of Science for financial support. This work was supported in part by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan, No. 18540254 and No 14102004 (M.K.). This work was also supported in part by JSPS-AF Japan-Finland Bilateral Core Program (M.K.)

[1] D. N. Spergel et al. [WMAP Collaboration], arXiv:astro-ph/0603449.
[2] For reviews, see H. P. Nilles, Phys. Rept. 110, 1 (1984);
S. P. Martin, arXiv:hep-ph/9709356.
[3] K. A. Olive, G. Steigman and T. P. Walker, Phys. Rept. 333, 389 (2000) arXiv:astro-ph/9905320.
[4] I. Affleck and M. Dine, Nucl. Phys. B 249, 361 (1985);
M. Dine, L. Randall and S. D. Thomas, Nucl. Phys. B 458, 291 (1996) arXiv:hep-ph/9507453.
[5] M. Y. Khlopov and A. D. Linde, Phys. Lett. B 138, 265 (1984);
J. R. Ellis, J. E. Kim and D. V. Nanopoulos, Phys. Lett. B 145, 181 (1984).
[6] M. Bolz, A. Brandenburg and W. Buchmuller, Nucl. Phys. B 606, 518 (2001) arXiv:hep-ph/0012052;
J. Pradler and F. D. Steffen, Phys. Rev. D 75, 023509 (2007) arXiv:hep-ph/0608344;
V. S. Rychkov and A. Strumia, arXiv:hep-ph/0701104.
[7] T. Moroi, H. Murayama and M. Yamaguchi, Phys. Lett. B 303, 289 (1993).
[8] G. D. Coughlan, W. Fischler, E. W. Kolb, S. Raby and G. G. Ross, Phys. Lett. B 131, 59 (1983);
M. Dine, W. Fischler and D. Nemeschansky, Phys. Lett. B 136, 169 (1984);
J. R. Ellis, D. V. Nanopoulos and M. Quiros, Phys. Lett. B 174, 176 (1986).
[9] T. Banks, D. B. Kaplan and A. E. Nelson, Phys. Rev. D 49, 779 (1994) arXiv:hep-ph/9308292;
B. de Carlos, J. A. Casas, F. Quevedo and E. Roulet, Phys. Lett. B 318, 447 (1993)
[10] K. Yamamoto, Phys. Lett. B 168, 341 (1986);
 G. Lazarides, C. Panagiotakopoulos and Q. Shafi, Phys. Rev. Lett. 56, 557 (1986).

[11] D. H. Lyth and E. D. Stewart, Phys. Rev. Lett. 75, 201 (1995) [arXiv:hep-ph/9502417];
 D. H. Lyth and E. D. Stewart, Phys. Rev. D 53, 1784 (1996) [arXiv:hep-ph/9510204].

[12] T. Asaka and M. Kawasaki, Phys. Rev. D 60, 123509 (1999) [arXiv:hep-ph/9905467].

[13] L. Randall and R. Sundrum, Nucl. Phys. B 557, 79 (1999) [arXiv:hep-th/9810155];
 G. F. Giudice, M. A. Luty, H. Murayama and R. Rattazzi, JHEP 9812, 027 (1998)
 [arXiv:hep-ph/9810442].

[14] E. D. Stewart, M. Kawasaki and T. Yanagida, Phys. Rev. D 54, 6032 (1996)
 [arXiv:hep-ph/9603324];
 D. h. Jeong, K. Kadota, W. I. Park and E. D. Stewart, JHEP 0411, 046 (2004)
 [arXiv:hep-ph/0406136];
 M. Kawasaki and K. Nakayama, Phys. Rev. D 74, 123508 (2006) [arXiv:hep-ph/0608335];
 G. N. Felder, H. Kim, W. I. Park and E. D. Stewart, arXiv:hep-ph/0703275.

[15] T. Moroi, M. Yamaguchi and T. Yanagida, Phys. Lett. B 342, 105 (1995)
 [arXiv:hep-ph/9409367].

[16] T. Moroi and L. Randall, Nucl. Phys. B 570, 455 (2000) [arXiv:hep-ph/9906527].

[17] M. Fujii and K. Hamaguchi, Phys. Rev. D 66, 083501 (2002) [arXiv:hep-ph/0205044];
 M. Fujii and M. Ibe, Phys. Rev. D 69, 035006 (2004) [arXiv:hep-ph/0308118].

[18] M. Kawasaki, T. Watari and T. Yanagida, Phys. Rev. D 63, 083510 (2001)
 [arXiv:hep-ph/0010124].

[19] K. Choi, A. Falkowski, H. P. Nilles, M. Olechowski and S. Pokorski, JHEP 0411, 076 (2004)
 [arXiv:hep-th/0411066];
 K. Choi, A. Falkowski, H. P. Nilles and M. Olechowski, Nucl. Phys. B 718, 113 (2005)
 [arXiv:hep-th/0503216].

[20] S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, Phys. Rev. D 68, 046005 (2003)
 [arXiv:hep-th/0301240].

[21] M. Fujii, K. Hamaguchi and T. Yanagida, Phys. Rev. D 64, 123526 (2001)
 [arXiv:hep-ph/0104186].

[22] M. Kawasaki and K. Nakayama, JCAP 0702, 002 (2007) [arXiv:hep-ph/0611320].
[23] M. Dine, L. Randall and S. D. Thomas, Phys. Rev. Lett. 75, 398 (1995) [arXiv:hep-ph/9503303].

[24] M. Kawasaki and T. Moroi, Prog. Theor. Phys. 93, 879 (1995);
E. Holtmann, M. Kawasaki, K. Kohri and T. Moroi, Phys. Rev. D 60, 023506 (1999);
K. Jedamzik, Phys. Rev. Lett. 84, 3248 (2000);
M. Kawasaki, K. Kohri and T. Moroi, Phys. Rev. D 63, 103502 (2001);
K. Kohri, Phys. Rev. D 64, (2001) 043515;
R. H. Cyburt, J. R. Ellis, B. D. Fields and K. A. Olive, Phys. Rev. D 67, 103521 (2003);
M. Kawasaki, K. Kohri and T. Moroi, Phys. Lett. B 625, 7 (2005); Phys. Rev. D 71, 083502 (2005).

[25] D. J. Fixsen, E. S. Cheng, J. M. Gales, J. C. Mather, R. A. Shafer and E. L. Wright, Astrophys. J. 473, 576 (1996) [arXiv:astro-ph/9605054].

[26] M. Kawasaki and T. Yanagida, Phys. Lett. B 399, 45 (1997) [arXiv:hep-ph/9701346];
J. Hashiba, M. Kawasaki and T. Yanagida, Phys. Rev. Lett. 79, 4525 (1997) [arXiv:hep-ph/9708226].

[27] T. Moroi and T. Takahashi, Phys. Lett. B 522, 215 (2001) [Erratum-ibid. B 539, 303 (2002)] [arXiv:hep-ph/0110096];
D. H. Lyth and D. Wands, Phys. Lett. B 524, 5 (2002) [arXiv:hep-ph/0110002];
K. Enqvist and M. S. Sloth, Nucl. Phys. B 626, 395 (2002) [arXiv:hep-ph/0109214].

[28] K. Hamaguchi, M. Kawasaki, T. Moroi and F. Takahashi, Phys. Rev. D 69, 063504 (2004) [arXiv:hep-ph/0308174].

[29] T. Gherghetta, C. F. Kolda and S. P. Martin, Nucl. Phys. B 468, 37 (1996) [arXiv:hep-ph/9510370].

[30] E. Halyo, Phys. Lett. B 387, 43 (1996) [arXiv:hep-ph/9606423];
P. Binetruy and G. R. Dvali, Phys. Lett. B 388, 241 (1996) [arXiv:hep-ph/9606342].

[31] C. F. Kolda and J. March-Russell, Phys. Rev. D 60, 023504 (1999) [arXiv:hep-ph/9802358].

[32] R. Allahverdi, B. A. Campbell and J. R. Ellis, Nucl. Phys. B 579, 355 (2000) [arXiv:hep-ph/0001122].

[33] A. Anisimov and M. Dine, Nucl. Phys. B 619, 729 (2001) [arXiv:hep-ph/0008058];
A. Anisimov, Phys. Atom. Nucl. 67, 640 (2004) [Yad. Fiz. 67, 660 (2004)] [arXiv:hep-ph/0111233].
[34] S. R. Coleman, Nucl. Phys. B 262, 263 (1985) [Erratum-ibid. B 269, 744 (1986)].

[35] A. Kusenko, Phys. Lett. B 405, 108 (1997) [arXiv:hep-ph/9704273];
A. Kusenko, Phys. Lett. B 404, 285 (1997) [arXiv:hep-th/9704073].

[36] A. Kusenko and M. E. Shaposhnikov, Phys. Lett. B 418, 46 (1998) [arXiv:hep-ph/9709492].

[37] K. Enqvist and J. McDonald, Phys. Lett. B 425, 309 (1998) [arXiv:hep-ph/9711514];
K. Enqvist and J. McDonald, Nucl. Phys. B 538, 321 (1999) [arXiv:hep-ph/9803380].

[38] S. Kasuya and M. Kawasaki, Phys. Rev. D 64, 123515 (2001) [arXiv:hep-ph/00106119].

[39] M. Laine and M. E. Shaposhnikov, Nucl. Phys. B 532, 376 (1998) [arXiv:hep-ph/9804237];
R. Banerjee and K. Jedamzik, Phys. Lett. B 484, 278 (2000) [arXiv:hep-ph/0005031].

[40] S. Kasuya and M. Kawasaki, Phys. Rev. D 62, 023512 (2000) [arXiv:hep-ph/0002285].

[41] M. Fujii and T. Yanagida, Phys. Lett. B 542, 80 (2002) [arXiv:hep-ph/0206066].

[42] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).

[43] S. Y. Khlebnikov and M. E. Shaposhnikov, Nucl. Phys. B 308 (1988) 885;
J. A. Harvey and M. S. Turner, Phys. Rev. D 42, 3344 (1990).

[44] A. G. Cohen, S. R. Coleman, H. Georgi and A. Manohar, Nucl. Phys. B 272, 301 (1986).

[45] For reviews, see G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267, 195 (1996)
[arXiv:hep-ph/9506380];
G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405, 279 (2005) [arXiv:hep-ph/0404175].

[46] J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Phys. Lett. B 646, 34 (2007)
[arXiv:hep-ph/0610249].

[47] M. Endo, M. Yamaguchi and K. Yoshioka, Phys. Rev. D 72, 015004 (2005)
[arXiv:hep-ph/0504036].

[48] K. Choi, K. S. Jeong and K. i. Okumura, JHEP 0509, 039 (2005) [arXiv:hep-ph/0504037].

[49] H. Baer, E. K. Park, X. Tata and T. T. Wang, JHEP 0608, 041 (2006) [arXiv:hep-ph/0604253];
K. Choi, K. Y. Lee, Y. Shimizu, Y. G. Kim and K. i. Okumura, JCAP 0612, 017 (2006)
[arXiv:hep-ph/0609132].

[50] M. Fujii and K. Hamaguchi, Phys. Lett. B 525, 143 (2002) [arXiv:hep-ph/0110072].

[51] K. A. Olive and M. Srednicki, Phys. Lett. B 230, 78 (1989).

[52] S. Borgani, A. Masiero and M. Yamaguchi, Phys. Lett. B 386, 189 (1996)
[arXiv:hep-ph/9605222].

[53] M. Kaplinghat, Phys. Rev. D 72, 063510 (2005) [arXiv:astro-ph/0507300].
[54] T. Bringmann, F. Borzumati and P. Ullio, arXiv:hep-ph/0701007.

[55] J. A. R. Cembranos, J. L. Feng, A. Rajaraman and F. Takayama, Phys. Rev. Lett. 95, 181301 (2005) arXiv:hep-ph/0507150.

[56] M. Kawasaki, T. Moroi and T. Yanagida, Phys. Lett. B 370, 52 (1996) arXiv:hep-ph/9509399.

[57] J. Hisano, K. Kohri and M. M. Nojiri, Phys. Lett. B 505, 169 (2001) arXiv:hep-ph/0011216.

[58] M. Endo, K. Hamaguchi and F. Takahashi, Phys. Rev. Lett. 96, 211301 (2006) arXiv:hep-ph/0602061; S. Nakamura and M. Yamaguchi, Phys. Lett. B 638, 389 (2006) arXiv:hep-ph/0602081.

[59] M. Dine, R. Kitano, A. Morisse and Y. Shirman, Phys. Rev. D 73, 123518 (2006) arXiv:hep-ph/0604140; M. Endo, K. Hamaguchi and F. Takahashi, Phys. Rev. D 74, 023531 (2006) arXiv:hep-ph/0605091.

[60] For a review, see J. E. Kim, Phys. Rept. 150, 1 (1987).

[61] K. Rajagopal, M. S. Turner and F. Wilczek, Nucl. Phys. B 358, 447 (1991).

[62] T. Goto and M. Yamaguchi, Phys. Lett. B 276, 103 (1992); E. J. Chun, J. E. Kim and H. P. Nilles, Phys. Lett. B 287, 123 (1992) arXiv:hep-ph/9205229; E. J. Chun and A. Lukas, Phys. Lett. B 357, 43 (1995) arXiv:hep-ph/9503233.

[63] T. Asaka and T. Yanagida, Phys. Lett. B 494, 297 (2000) arXiv:hep-ph/0006211.

[64] K. Ichikawa, M. Kawasaki, K. Nakayama, M. Senami and F. Takahashi, arXiv:hep-ph/0703034.

[65] Y. I. Izotov, T. X. Thuan and G. Stasinska, arXiv:astro-ph/0702072.

[66] L. Covi, J. E. Kim and L. Roszkowski, Phys. Rev. Lett. 82, 4180 (1999) arXiv:hep-ph/9905212.

[67] G. G. Raffelt, Phys. Rept. 198, 1 (1990).

[68] L. Covi, H. B. Kim, J. E. Kim and L. Roszkowski, JHEP 0105, 033 (2001) arXiv:hep-ph/0101009; A. Brandenburg and F. D. Steffen, JCAP 0408, 008 (2004) arXiv:hep-ph/0405158.

[69] M. Kawasaki, T. Moroi and T. Yanagida, Phys. Lett. B 383, 313 (1996) arXiv:hep-ph/9510461.

[70] K. Ichikawa, M. Kawasaki and F. Takahashi, Phys. Lett. B 597, 1 (2004)
[71] A. D. Linde, Phys. Lett. B 129 (1983) 177.

[72] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986);
 W. Buchmuller, P. Di Bari and M. Plumacher, Annals Phys. 315, 305 (2005)
 [arXiv:hep-ph/0401240];
 W. Buchmuller, R. D. Peccei and T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55, 311 (2005)
 [arXiv:hep-ph/0502169].

[73] For a review, see M. Trodden, Rev. Mod. Phys. 71, 1463 (1999) [arXiv:hep-ph/9803479].