TAC from *Mycobacterium tuberculosis*: a paradigm for toxin-antitoxin systems controlled by SecB-like chaperones

Ambre Sala, Virginie Calderon, Patricia Bordes and Pierre Genevaux

Materials and Methods

Annotation of putative systems

The sequence of the *Mycobacterium tuberculosis* TAC chaperone Rv1957 was used as a query in PSI-BLAST searches among all complete and partial prokaryotic genome sequences available on the NCBI server (http://www.ncbi.nlm.nih.gov) with default parameters. Recursive PSI-BLAST searches were performed using the less conserved retrieved sequences, *i.e.* those with the lowest BLAST score. The procedure was terminated when the results converged to a final stable data set (no new sequences were detected). For each result, the neighborhood was analyzed searching for putative toxin-antitoxin partners on the base of conserved gene organization with the original system (Fig. 1A), except that in some cases we accepted the absence of the toxin gene. Each gene product of the putative partners was used as query in a BLASTP search against the non redundant database (Altschul et al. 1990). Functional annotation was inferred when at least the best hits for the gene located directly upstream of the putative chaperone were annotated as antitoxins (or transcriptional regulator), and eventually as toxins for the more upstream gene. Note that for MTBC and Mpho2 the *Rv1954a* gene of unknown function is conserved.
Taxonomic tree and distribution of solitary SecB versus TAC/AC

The taxonomic tree of bacterial species was generated from the available complete genomes (October 2011) on the basis of the NCBI taxonomic classification (http://www.ncbi.nlm.nih.gov/taxonomy). The tree was then edited with iTol (http://itol.embl.de/index.shtml) and annotated with the solitary SecB chaperones and TAC/AC systems identified. For the sake of clarity, only one strain per species was retained, giving 901 genomes in the tree. Therefore, in some species other strains may not possess the system.

Horizontal Gene Transfer detection

We used Alien Hunter (AH) software (Vernikos and Parkhill 2006) to identify regions that have unusual sequence composition in terms of k-mers for various values of k (called interpolated variable order). An alien region is one whose AH score is above a genome-dependent and automatically calculated threshold based on the sequence composition of the whole genome (termed background composition). AH was run on all the 52 complete genomes possessing a TAC or AC system. Predictions were visualized using Artemis (Rutherford et al. 2000). In some cases, AH predictions could be reinforced when the region encoded other HGT signatures such as tRNA, integrase, transposase, phage genes, plasmid genes or TA genes.

MCL analyses

A graph was built in which nodes correspond to proteins and weighted edges represent the BLASTP log(e-value) obtained between a pair of proteins. Graph partitioning - detection of communities of highly connected nodes - was performed using the Markov clustering program. Sequences used correspond to the proteins whose locus tags are given in table S1.
For SecB chaperones we used the seed of the Pfam02556, corresponding to a subset of 114 representative sequences. Two sequences were removed: one from an archaea, since our analysis focuses on bacteria, and one that our analysis identified as part of a TAC system. The homology relationship was inferred when an e-value less than or equal to 10^{-5} was observed between two chaperone or toxin sequences and 10^{-3} between two antitoxin sequences. Partitioning was performed by using an inflat factor of 1.2.

Determination of antitoxin and toxin families

On the base of MCL results, we used RPS-BLAST (Altschul et al. 1990) to detect conserved domains describing each community. The five MCL antitoxin communities, namely HigA, HicB, MqsA, MqsA-like and HTH-like are respectively described by the conserved domains pfam01381, pfam05534, tigr03830, a partial tigr03830 (no CXXCG N-terminal motifs) and a partial and weakly conserved pfam01381. MCL partition leads to 7 toxin communities from which 3 correspond to the pfam05973 that characterizes the HigB toxin of *M. tuberculosis*, thus these sequences were annotated as HigB toxins. Repartition of HigB toxins in the three communities globally follows taxonomic groups. The MqsR family was named according to the annotation of one of the members of the corresponding community. All toxins associated to HicB antitoxins presented the pfam07927 conserved domain. This domain characterizes the sequences homologues to the YcfA protein from *E. coli*. Since the BLASTP best hits for this protein are annotated as HicA toxins, we named this family HicA. Two toxin communities did not present any conserved domain, but were considered as potential new families. In some cases, putative toxin sequences were excluded from the MCL analysis, but were either described by conserved domains corresponding to the HigB or HicA families, either presented low sequence similarity with proteins annotated as toxins.
Strains and media

In vivo assays were performed in the strain *Escherichia coli* W3110 ΔsecB::CmR (Ullers et al. 2007). Bacteria were grown at 37°C in LB medium supplemented when necessary with ampicillin (100 µg/mL) or kanamycin (100 µg/mL).

Plasmid constructs

Plasmids pSE380ΔNcoI (Genevaux et al. 2004), pSE380-SecB (Ullers et al. 2004), pSE380-Rv1957, pMPMK6 and pMPMK6-HigBA (Bordes et al. 2011) were described previously. To construct plasmid pSE380-SmegB, the gene *Msmeg_2143* was amplified by PCR from *Mycobacterium smegmatis* mc²155 genomic DNA using primers smegB-for (5’-gacaattgcatatgattgagcgggacggcgcgcccac-3’) and smegB-rev (5’-gaaagcttggatcctcaggcgtcctcggccgagtccatag-3’). PCR fragment was digested with MfeI/HindIII and ligated into pSE380ΔNcoI digested with EcoRI/HindIII.

In vivo assays

The *in vivo* assays were performed as described (Bordes et al. 2011) with minor modifications. For complementation of Rv1957 function in controlling HigBA, the *E. coli* W3110 ΔsecB strain co-transformed with plasmids pMPMK6-HigBA and pSE380ΔNcoI, pSE380-Rv1957 or pSE380-SmegB, were grown to mid-log phase in LB containing 0.2% glucose, kanamycin and ampicillin. Cultures were serially diluted and spotted on LB-ampicillin-kanamycin agar plates with or without arabinose and IPTG inducers as indicated. Plates were incubated at 37°C overnight. For complementation of the SecB chaperone activity at low temperature, fresh transformants of *E. coli* W3110 ΔsecB containing pSE380ΔNcoI, pSE380-SecB, pSE380-Rv1957 or pSE380-SmegB were grown to mid-log phase at 37°C in LB containing 0.2% glucose and ampicillin. Cultures were serially diluted and spotted on LB-ampicillin
plates with or without IPTG as indicated and incubated at 37°C overnight or at 16°C for 5 days.

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410

Bordes P, Cirinesi AM, Ummels R, Sala A, Sakr S, Bitter W, Genevaux P (2011) SecB-like chaperone controls a toxin-antitoxin stress-responsive system in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 108: 8438-8443

Genevaux P, Keppel F, Schwager F, Langendijk-Genevaux PS, Hartl FU, Georgopoulos C (2004) In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO Rep 5: 195-200

Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16: 944-945

Ullers RS, Ang D, Schwager F, Georgopoulos C, Genevaux P (2007) Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli. Proc Natl Acad Sci U S A 104: 3101-3106

Ullers RS, Luirink J, Harms N, Schwager F, Georgopoulos C, Genevaux P (2004) SecB is a bona fide generalized chaperone in Escherichia coli. Proc Natl Acad Sci U S A 101: 7583-7588

Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22: 2196-2203
Fig. S1. Conserved universal SecB-like motif designed with Web Logo (http://weblogo.berkeley.edu/logo.cgi) for the 60 TAC/AC chaperone sequences and the 114 SecB sequences of the seed sample of the pfam02556 conserved domain. This motif is located at positions 106-114 on the *E. coli* SecB sequence, and 138-146 on the *M. tuberculosis* Rv1957 sequence. The size of the amino-acid letters, measured in bits, indicates the level of conservation at the position.

Fig. S2. MCL analysis of the TAC/AC antitoxin sequences. The MCL communities are depicted with brackets and the corresponding antitoxin family names are indicated. For each system, the color assigned for the chaperones communities (Fig. 2A) was conserved. Note that the sequences from the MqsA and MqsA-like families formed one community when increasing the e-value threshold at 10^{-2}.

Fig. S3. (A) Steady-state expression of SmegB and Rv1957. Cultures of W3110 ΔsecB containing plasmids pMPMK6-HigBA and pSE380ΔN*col*, pSE380-SmegB or pSE380-Rv1957 were grown to mid-log phase at 37°C. Protein expression was induced with 50µM (left) or 500µM (right) IPTG, and 20min later with 0.1% arabinose for 1h. Whole cell extracts were separated on SDS-PAGE. (B) Chaperone protection of the HigA antitoxin. The extracts from (A) induced with 50µM IPTG were analyzed by western blot using a rabbit anti-HigA antibody (Bordes et al. 2011). (C) SmegB/SecB and SmegB/Rv1957 amino acid sequence alignments realized with MAFFT and edited with Jalview. The residues were colored by conservation with a threshold of 8.5. Positions are colored with a grayscale for similarity, and in black for identity.
Taxonomic group	Abb.	Species	Toxin	Antibiotic	Chaperone	Ref. Genome	
γ-proteobacteria	AacI	Acidithiobacillus caldus SM-1	x	MGG_1101	MGG_1100	CP002573.1	
	AcoI	Acinetobacter johnsonii SH046	x	MHPREF0006_0330	MHPREF0006_0331		
	Aehr	Alkalimicrobium ehrlichii MLHE-1	x	Mgl_2300	Mgl_2308	CP000453.1	
	Mmet	Methylobacterium methanicum MC09	x	Metme_2813	Metme_2812		
	Nhal	Nitrospira halophila Nl04	x	Nhal_3521	Nhal_3522	CP002738.1	
	Pana	Planotalea anamatis AJ13255	x	PAJ_0167	PAJ_0158	AP013292.1	
	Flr	Pseudomonas fluorescens SBW25	x	PFLU_0406	PFLU_0428	AM811764.1	
	VchoA	Vibrio cholerae RC385	x	VCRCS85_0367	VCRCS85_0369	CP0074551	
	VchoB	Vibrio cholerae HE-09	x	VCHB09_0202	VCHB09_0204	AFO01000011.1	
	Taue	Tolypolum aurensc DSM 9187	x	Tola_2654	Tola_2653	CP000161.1	
β-proteobacteria	Avyl	Acinetobacter xylosidans C54	x	MHPREF0006_0297	MHPREF0006_0298	ACRC0001056.1	
	CtaI	Carnobacterium lauisenii LM21424	x	GLALTA_0477	GLALTA_0478	CUA31751.1	
	Geap	Gallionella capsuliformans ES-2	x	Gil_0727	Gil_0728	CP002159.1	
	Rsol	Ralstonia solanaceae CPB2357	x	RCPBP_mp0354	RCPBP_mp0355	FP8SR907.1	
δ-proteobacteria	Dalk	Desulfobacterium alkalovorans AK-01	x	Dak_1586	Dak_1597	CP002122.1	
	Dace	Desulfohalobus acidovorans DSM 11108	x	Desac_2259	Desac_2260	CP002629.1	
	Dret	Desulfohalobus rebmae DSM 5692	x	Dret_0389	Dret_0390	CP002741.1	
	Glov	Gobobacter livelyi ATCC 8181	x	Glov_3492	Glov_3493	CP000688.1	
	Gura	Gobobacter uniradicicola R14	x	Gura_1411	Gura_1410	CP000698.1	
	Pcar	Pelobacter carbinolicus DSM 2380	x	Pcar_0789	Pcar_0789	CP000142.2	
	Satl	Sulfuritalea acidiphila S10	x	SYN_0016	SYN_0015	CP000252.1	
	Udes	uncultured Desulfobacterium sp. env.	x	UDD_41915	UDD_41916	EE666777.1	
Firmicutes	Amet	Alkaliphilus metallospecificus GEYM	x	Amet_3123	Amet_3123	CP000724.1	
	Cbes	Cloacibacterium bresii DSM 6725	x	Cbres_2318	Cbres_2319	CP000391.1	
	Chyd	Cloacibacterium hydrothermalis DSM 18901	x	Chhy_0257	Chhy_0258	CP000219.1	
	Ckro	Cloacibacterium koreensis DSM 18902	x	Ckro_0234	Ckro_0235	CP000230.1	
	Coac	Cloacibacterium saccharoliicus DSM 8803	x	Coac_0625	Coac_0626	CP000679.1	
	LplA	Lactobacillus plantarum plantarum ATCC 14917	x	LPTST_0260	LPTST_0261	CP002222.1	
	LplB	Lactobacillus plantarum plantarum ST-III	x	LPLB_0260	LPLB_0261	CP002222.1	
Acinetobacteria	Cmci1	Clavibacter michiganensis subsp. Scedopedicus ATCC33113	x	CSM2954	CSM2955	AAS40904.1	
	Cmci2	Clavibacter michiganensis subsp. Scedopedicus ATCC331	x	CSM2954	CSM2955	AAS40904.1	
	Cgu	Clostridium acetobutylicum ATCC8253	x	Cgl_1742	Cgl_1743	BA00036.1	
	Mpho1	Microbacterium phosphovorus NM-1	x	MPP_0450	MPP_0451	AP012204.1	
	Mpho2	Microbacterium phosphovorus NM-2	x	MPP_0450	MPP_0451	AP012204.1	
	MaFr	Mycobacterium africanaum G6041182	x	MAFR_19780	MAFR_19780	FP8HR894.1	
	MbloK	Microbacterium bosri AP1222-67	x	MBloK_1991	MBloK_1992	CP004340.1	
	MbloV	Microbacterium boxii BCG Pasteur 1175P2	x	BCG_1994	BCG_1995	CP004340.1	
	MbloW	Microbacterium boxii BCG Pasteur 1175P2	x	BCG_1994	BCG_1995	CP004340.1	
	Mcan	Mycobacterium canettii CPT14001059	x	MCan_19712	MCan_19713	HSE72590.1	
	MgIH	Mycobacterium gilum PYR-G0K	x	MGH_3206	MGH_3206	CP000856.1	
	Mme	Microbacterium streptomycitum MCI-155	x	MME_2144	MME_2143	CP000810.1	
	MtbA6	Mycobacterium tuberculosis H37Rv	x	MtbA6_2145	MtbA6_2143	CP000810.1	
	MtbA6	Mycobacterium tuberculosis H37Rv	x	MtbA6_2145	MtbA6_2143	CP000810.1	
	MtbA6	Mycobacterium tuberculosis H37Rv	x	MtbA6_2145	MtbA6_2143	CP000810.1	
	MtbA6	Mycobacterium tuberculosis H37Rv	x	MtbA6_2145	MtbA6_2143	CP000810.1	
	Pfie	Propionibacterium freudenreichii subsp. shermanii CRM BIA1	x	PFREU_0298	PFREU_0297	FN8607).1	
	Ropa	Rhodococcus opacus BA4	x	ROP_02980	ROP_02981	AP011116.1	
	Xcel	Xylemonas cellulolytica DSM 1598	x	Xcel_2929	Xcel_2930	CP000812.1	
	Tett	Thermotoga tetangica TMOD	x	Tett_0057	Tett_0058	CP000812.1	
	Tmar	Thermotoga maritima MS299	x	Tmar_0330	Tmar_0331	AE000512.1	
	Trap	Thermotoga naphthophila RUK-10	x	Trap_0472	Trap_0473	CP000819.1	
	Tnea	Thermotaeniella neapolitana DSM 4359	x	Tnea_1254	Tnea_1255	CP000819.1	
	Tpet	Thermotaeniella petrophila RUK-1	x	Tpet_1451	Tpet_1452	CP000819.1	
	Tbc1	Thermotogales bacteria mesG1 Ag-4.2 ctg90	x	Tbc1_1153	Tbc1_1154	CP000819.1	
	Tbc2	Thermotogales bacteria mesG1 Ag-4.2 ctg90	x	Tbc2_1153	Tbc2_1154	CP000819.1	
	Doac	Deinococcus radionicus R1	x	Doac_0530	Doac_0531	AE000826.1	
	Oter	Cetalius terae DSM 11246	x	Oter_0530	Oter_0531	CP001032.1	
	Synergist	Acoc	Acinobacter colombiensis DSM 12261	x	Acoc_0944	Acoc_0945	CP001997.1
Abb.	Alien position (bp)	Score	Threshold	HGT signatures			
------	--------------------	--------	-----------	-------------------------------------			
Acal	1147000-1205500	27,013	17,294	tRNA, integrase, transposase, TA			
Acol	967500-992500	38,741	19,367	tRNAs, integrase			
Aehr	2615000-2625000	18,559	14,790	TA			
CgluA	1775000-1997500	44,318	21,483	Transposases, integrases, tRNAs			
Cmic1	3112500-3120000	18,976	13,934				
Dace	2508000-2514000	20,695	9,881				
Dalka	2092500-2100500	13,515	10,854				
Gcap	770000-790000	35,573	23,483	Transposases, phage genes, TA			
Glov	3742500-3750500	14,562	13,312	Integrases, phage genes			
Maf	2197500-2212500	19,589	16,268	TA			
MbovA	2185000-2209000	20,593	16,123	TA			
MbovB	2200000-2215000	17,529	15,043	TA			
MbovC	2182500-2207500	19,734	14,473	TA			
Mcan	2242500-2250000	16,687	13,091	TA			
Mgil	3402500-3412500	21,549	16,209				
Mmet	3095500-3112500	20,64	15,037	Transposases, phage genes			
Mpho1	5470000-5479500	14,316	9,19				
Mpho2	5225000-5255000	26,982	9,19	Integrases, transposases, tRNA			
Mme	2212500-2232500	17,852	11,478	Phage genes, transposase			
MubA	2192500-2203500	15,566	13,415	TA			
MubB	2190000-2201000	18,18	15,778	TA			
MubC	2215000-2225000	19,425	15,433	TA			
MubD	2202500-2213500	15,956	13,857	TA			
MubE	2205000-2212500	15,361	13,239	TA			
Oter	630000-675000	44,881	15,171	Integrase			
Pana	885000-905000	25,061	12,298	tRNA, phage genes, integrase			
Pcar	9250000-957500	17,491	11,921	Integrases			
Pflb	4565000-4585000	32,909	11,461	PROPHAGE			
Pfre	3450000-371500	21,123	10,393	ARNt, transposases			
Taue	3128000-3140000	58,532	14,546	TA, phage genes			
Tmar	1317500-1359000	26,068	14,564	tRNA			
Tnap	14525000-1470000	21,482	13,493	tRNA			
Tnea	1213000-1236500	24,765	15,194	tRNA			
Tpet	1430000-1445000	27,148	18,904	tRNA			
Amet	Not detected			Transposase, tRNA			
Cbes	Not detected			Transposases			
Ckro	Not detected			Transposase			
Csac	Not detected			Transposase			
Nhal	Not detected			Plasmid genes			
Tlet	Not detected			tRNA			
TAC chaperones motif

Solitary SecB motif

Fig. S1
Fig. S2
Fig. S3