ON TOPOLOGICAL GROUPS CONTAINING
A FRÉCHET-URYSOHN FAN

TARAS BANAKH

ABSTRACT. Suppose G is a topological group containing a (closed) topological copy of the Fréchet-Urysohn fan. If G is a perfectly normal sequential space (a normal k-space) then every closed metrizable subset in G is locally compact. Applying this result to topological groups whose underlying topological space can be written as a direct limit of a sequence of closed metrizable subsets, we get that every such a group either is metrizable or is homeomorphic to the product of a k_ω-space and a discrete space.

The present investigation was stimulated by the paper [Pe] of E. Pentsak who studied the topology of the direct limit $X^\infty = \lim_\leftarrow X^n$ of the sequence

$$X \subset X \times X \subset X \times X \times X \subset \ldots,$$

where (X, \ast) was a “nice” pointed space and X^n was identified with the subspace $X^n \times \{\ast\}$ of X^{n+1}. In particular, in [Pe] the topology of the direct limit l_2^∞, where l_2 is the separable Hilbert space, was characterized. To characterize the space l_2^∞, it was necessary to glue together maps into l_2^∞ and at this point it turned out that the equiconnected function generated by the natural convex structure on l_2^∞ was discontinuous. The same concerned the addition operation on l_2^∞ — it was discontinuous.

So question arose: is l_2^∞ homeomorphic to a topological group or a convex set in a linear topological space?

We pose this problem more generally: find simple conditions on a topological space X under which X does not support certain algebraic structure.

In order to answer this question, we will define spaces K, V, and W, called test spaces, and will prove that an existence in X (closed) subspaces homeomorphic to one (or several) of the spaces K, V, W forbids X to carry certain algebraic structures.

Now we define two of three test spaces.

1) The space K. Let

$$K = \{(0,0)\} \cup \{(\frac{1}{n}, \frac{1}{n-m}) \mid n, m \in \mathbb{N}\} \subset \mathbb{R}^2.$$
The space K is metrizable and not locally compact. Moreover, K is a minimal space with these properties in the sense that each metrizable non-locally compact space contains a closed copy of K. In sake of simplicity of denotations in the sequel, put $x_0 = (0, 0)$ and $x_{n,m} = (\frac{1}{n}, \frac{1}{nm})$, $n, m \in \mathbb{N}$. Thus $K = \{ x_0, x_{n,m} \mid n, m \in \mathbb{N} \}$.

2) The space V (the Fréchet-Urysohn fan). Let $S_0 = \{ 0 \} \cup \{ \frac{1}{n} \mid n \in \mathbb{N} \}$ denote the convergent sequence and let

$$V = \mathbb{N} \times S_0 / \mathbb{N} \times \{ 0 \}.$$

Denote by $\pi_V : \mathbb{N} \times S_0 \to V$ the quotient map. Let $y_{n,m} = \pi_V(n, \frac{1}{m})$, $n, m \in \mathbb{N}$, and y_0 be the (unique) non-isolated point of V. So $V = \{ y_0, y_{n,m} \mid n, m \in \mathbb{N} \}$. Evidently, for every $n \in \mathbb{N}$ the sequence $\{ y_{n,m} \}_{m=1}^{\infty}$ converges to y_0. For each $k \in \mathbb{N}$ let $V_k = \{ y_0, y_{n,m} \mid n \leq k, m \in \mathbb{N} \}$. It is easy to see that V has the direct limit topology with respect to the sequence $V_1 \subset V_2 \subset \ldots$ (that is a set $U \subset V$ is open if and only if the intersection $U \cap V_n$ is open in V_n for every $n \in \mathbb{N}$).

A space X contains a closed copy of V, provided X can be written as a direct limit of a sequence

$$X_1 \subset X_2 \subset \ldots,$$

where each X_n is a closed metrizable subset of X, nowhere dense in X_{n+1}. In particular, the space l_2^{∞} contains a topological copy of V.

We call a subset A of a topological group G multiplicative if for every $a, b \in A$ we have $a \ast b \in A$ (here \ast stands for the group operation on G). The following theorem implies that l_2^{∞} carries no topological group structure.

Theorem 1. A normal k-space X containing closed copies of the test spaces K and V is homeomorphic to a) no closed multiplicative subset of a topological group and b) no closed convex set in a linear topological space.

Proof. Assume the converse and let $f : K \times V \to X$ be the map defined for $(x, y) \in K \times V \subset X \times X$ by $f(x, y) = x \ast y$ if X is a closed multiplicative subset of a topological group with \ast standing for the group operation, or by $f(x, y) = \frac{1}{2} x + \frac{1}{2} y$ if X is a closed convex set in a linear topological space. It is easily verified that the map f has the following properties:

1) the map $(pr_K, f) : K \times V \to K \times X$ is a closed embedding;

2) the map $f_{y_0} : K \to X$ defined by $f_{y_0} : x \mapsto f(x, y_0)$, $x \in K$, is a closed embedding.

Denote by $\text{conv}(K) = \{ (0, 0) \} \cup \{ (x, y) \mid 0 < y \leq x \leq 1 \}$ the convex hull of K in \mathbb{R}^2 and let $h : X \to \text{conv}(K)$ be a continuous extension of the map $f_{y_0}^{-1} : f_{y_0}(K) \to K$, see [Hu, p.63].

For $n, m \in \mathbb{N}$ let $\varepsilon_{n,m} = \frac{1}{2nm(m+1)}$ and set

$$O_{n,m} = \text{conv}(K) \cap \left((\frac{1}{n} - \varepsilon_{n,m}, \frac{1}{n} + \varepsilon_{n,m}) \times (\frac{1}{nm} - \varepsilon_{n,m}, \frac{1}{nm} + \varepsilon_{n,m}) \right).$$

One can check that $O_{n,m}, n, m \in \mathbb{N}$, is a collection of pairwise disjoint neighborhoods of the points $x_{n,m}$ in $\text{conv}(K)$. Since $\lim_{m \to \infty} y_{n,m} = y_0$ and $h \circ f(x_{n,m}, y_0) = x_{n,m} = (\frac{1}{n}, \frac{1}{nm})$, for every $n, m \in \mathbb{N}$, we may find a number $k(n, m) \in \mathbb{N}$ such that
Let \(\tilde{y} \) be any extension of the map \(f \) to \(V \). Since \(f \) is an embedding, we claim that \(Z = \{ f(x_{n,m}, y_{n,k(m)}) \mid n, m \in \mathbb{N} \} \). Therefore \(Z \not\ni f(x_0, y_0) \) is a closed set in \(X \). Using continuity of \(f \), find neighborhoods \(U(x_0) \subset K \) and \(V(y_0) \subset V \) of \(x_0 \) and \(y_0 \) such that \(f(U(x_0) \times V(y_0)) \cap Z = \emptyset \). Fix \(n \) such that \(x_{n,m} \in U(x_0) \) for every \(m \). Since the sequence \(\{ y_{n,m} \}_{m=1}^{\infty} \) converges to \(y_0 \) and the sequence \(\{ k(n,m) \}_{m=1}^{\infty} \) is increasing we may find \(m \) such that \(y_{n,k(m,m)} \in V(y_0) \). Then \(f(U(x_0) \times V(y_0)) \cap Z \ni f(x_{n,m}, y_{n,k(m,m)}) \) is not empty, a contradiction. \(\square \)

In light of Theorem 1 the following Question arises.

Question. Is \(l_2^\infty \) homeomorphic a) to a multiplicative subset of a topological group, b) to a convex set in a linear topological space?

We will give a negative answer to the question a) under the additional assumption that the multiplicative subset contains an idempotent (the unity of the group). This follows from topological homogeneity of \(l_2^\infty \) and the following theorem.

Theorem 2. A perfectly normal sequential space \(X \) containing a closed copy of \(K \) and a copy of \(V \) is homeomorphic to a) no closed convex set in a linear topological space, b) no closed multiplicative subset of a topological group, c) no multiplicative subset of a topological group such that the nonisolated point \(y_0 \) of \(V \subset X \) is an idempotent.

Proof. Assume the converse and similarly as in the previous proof define the map \(f : K \times V \to X \). Observe that the map \(f \) has the following properties:

1') the map \((pr_k, f) : K \to V \to K \times X \) is an embedding;

2') the map \(f_{y_0} : K \to X \) is a closed embedding (in the case (c) \(f_{y_0} \) is the identity embedding because \(y_0 \) is the unity of the group).

Let \(h : X \to \text{conv}(K) \) be a continuous extension of the map \(f_{y_0}^{-1} : f_{y_0}(K) \to K \) such that \(h^{-1}(x_0) = f(x_0, y_0) \). (The map \(h \) can be constructed as follows. Using the perfect normality of \(X \), fix a map \(\lambda : X \to [0, 1] \) such that \(\lambda^{-1}(0) = f_{y_0}(K) \). Let \(h : X \to \text{conv}(K) \) be any extension of the map \(f_{y_0}^{-1} : f_{y_0}(K) \to K \) and define a map \(h : X \to \text{conv}(K) \) letting \(h(x) = \lambda(x) \cdot x_{1,1} + (1 - \lambda(x))h(x) \) for \(x \in K \).
Similarly as in the previous proof define neighborhoods \(O_{n,m} \) and the set \(Z \not
 f(x_0, y_0) \). As in the proof of Theorem 1, to get a contradiction, it suffices to show that the set \(Z \) is closed in \(X \). Since the space \(X \) is sequential, it is enough to verify that for every convergent sequence \(S \subset X \) the intersection \(S \cap Z \) is closed in \(S \). We shall show that \(S \cap Z \) is always finite. Assume on the contrary, \(S \cap Z \) is infinite.

If \(f(x_0, y_0) \) is not a limit point of \(S \) then \(S \cap Z \) is finite because the collection \(\{h^{-1}(O_{n,m})\}_{n,m \in \mathbb{N}} \) is discrete in \(X \setminus f(x_0, y_0) \) and \(S \setminus f(x_0, y_0) \) is compact. So assume \(f(x_0, y_0) \) is a limit point of \(S \). Enumerate \(S \cap Z = \{z_i\}_{i=1}^\infty \). Evidently, the sequence \(\{z_i\}_{i=1}^\infty \) converges to \(f(x_0, y_0) \). For every \(i \in \mathbb{N} \) find (unique) \(n_i, m_i \) such that \(z_i = f(x_{n_i,m_i}, y_{n_i,k(n_i,m_i)}) \). Observe that the sequence \(\{x_{n_i,m_i}\}_{i=1}^\infty \) converges to \(x_0 \). Then the sequence \(\{x_{n_i,m_i}, z_i\}_{i=1}^\infty \) converges to \((x_0, f(x_0, y_0)) \) and lies (together with its limit) in \((\operatorname{pr}_K, f)(K, V) \). Since \((\operatorname{pr}_K, f) \) is an embedding and the projection \(\operatorname{pr}_V : K \times V \to V \) is continuous, we get the set

\[
C_2 = \{y_0\} \cup \{y_{n_i,k(n_i,m_i)} \mid i \in \mathbb{N} \} = \operatorname{pr}_V \circ (\operatorname{pr}_K, f)^{-1}(\{(x_0, f(x_0, y_0))\} \cup \{(x_{n_i,m_i}, z_i) \mid i \in \mathbb{N}\}) \subset V
\]

is compact. Then \(C_2 \subset V_{n_0} \) for some \(n_0 \) and thus the sequence \(\{n_i\} \) is bounded, a contradiction with the convergence of the sequence \(\{x_{n_i,m_i}\} \).

Therefore both Theorems 1 and 2 give us that \(l_2^\infty \) is homeomorphic to no topological group. And what about its powers \((l_2^\infty)^n \)? Do they admit a compatible group structure? It turns out that the answer here is negative too. Observe that Theorems 1 or 2 are not applicable because the powers of \(l_2^\infty \) are not \(k \)-spaces. So we must think out something new.

3. The test space \(W \). We let \(W \) be the direct limit of a sequence \(W_0 \subset W_1 \subset \ldots \), where the spaces \(W_n \subset K \times V \) are defined as follows. In \(K \times V \) let us consider the points: \(z_0 = (x_0, y_0) \), \(z_{n,m} = (x_{n,m}, y_0) \), and \(z_{n,m,p,q} = (x_{n,m}, y_{p,q}) \), \(n, m, p, q \in \mathbb{N} \). Let \(W_0 = \{z_0, z_{n,m} \mid n, m \in \mathbb{N} \} \) and \(W_p = W_{p-1} \cup \{z_{n,m,p,q} \mid n, m, p, q \in \mathbb{N} \} \) for \(p \geq 1 \). It is easy to see that for every \(p \geq 1 \) \(W_p \) is a closed subspace of \(K \times V \) and \(W_0 \) is a nowhere dense closed copy of \(K \) in \(W_0 \cup (W_p \setminus W_{p-1}) \). On the union \(W = \bigcup_{p=0}^\infty W_p \) consider the topology of the direct limit of \(W_p \), allowing a subset \(U \subset W \) to be open if and only if \(U \cap W_p \) is open in \(W_p \) for every \(p \). Observe that a space \(X \) contains a closed copy of \(W \), provided \(X \) can be written as the direct limit of a sequence \(X_0 \subset X_1 \subset \ldots \), where each \(X_n \) is a closed metrizable subset of \(X \), \(X_n \) is nowhere dense in \(X_{n+1} \), and \(X_0 \) is not locally compact. Since the space \(l_2^\infty \) admits such a representation, it contains a copy of \(W \).

Remark that each direct limit \(X \) of a sequence of metrizable spaces satisfies the following property:

\((\mathcal{M})\) for every map \(f : Y \to X \) of a metrizable space \(Y \), every point \(y \in Y \) has a neighborhood \(U \subset Y \) such that \(f(U) \) admits a countable neighborhood base at \(f(y) \).

Observe that a finite product of spaces with the property \((\mathcal{M})\) enjoys this property too. Since the space \(l_2^\infty \) has the property \((\mathcal{M})\) and contains a copy of the test space \(W \), the following theorem implies that for every \(1 \leq n \leq \omega \) the power \((l_2^\infty)^n\) does not admit a compatible group operation.
Theorem 3. A topological group containing a copy of the test space W can not be embedded into a countable product of spaces satisfying the property (\mathcal{M}).

Proof. Suppose $W \subset X \subset \prod_{n=1}^{\infty} X_n$, where each X_n has the property (\mathcal{M}). Suppose X is a topological group and denote by π the group operation and by e the unity of X. For each $k \in \mathbb{N}$ let $Y_k = \prod_{i=1}^{k} X_i$ and denote by $\pi_k : X \to Y_k$ the projection onto the first k-coordinates.

By induction on k we shall construct increasing number sequences $\{n(k)\}_{k=1}^{\infty}$, $\{q(k,m)\}_{m=1}^{\infty}$, $k \in \mathbb{N}$, such that for every k the sequence

$$\{\pi_k(z_{n(k),m}^{-1} * z_{n(k),m,k,q(k,m)})\}_{m=1}^{\infty}$$

converges in Y_k.

Let $n(0) = 0$ and suppose that for $k - 1$, the number $n(k-1)$ is known. Define a map $f_k : W_0 \times W_k \to Y_k$ letting $f_k(x,y) = \pi_k(x^{-1} * y)$ for $(x,y) \in W_0 \times W_k$. Since the space $W_0 \times W_k$ is metrizable and the space Y_k, being a finite product of the spaces X_i’s, has the property (\mathcal{M}), the point (z_0, z_0) has a neighborhood $U_1 \times U_2 \subset W_0 \times W_k$ such that $f_k(U_1 \times U_2)$ has a countable neighborhood base $\{O_m\}_{m=1}^{\infty}$ at $f_k(z_0, z_0) = \pi_k(e)$. Pick $n(k) > n(k-1)$ so that $z_{n(k),m} \in U_1$ for every m. Since for every m the sequence $\{z_{n(k),m,k,q}\}_{q=1}^{\infty}$ converges to $z_{n(k),m}$, we get the sequence $\{\pi_k(z_{n(k),m}^{-1} * z_{n(k),m,k,q})\}_{q=1}^{\infty}$ converges to $\pi_k(e)$. Thus, inductively, for every m we can find a number $q(k,m) > q(k,m-1)$ such that $\pi_k(z_{n(k),m}^{-1} * z_{n(k),m,k,q(k,m)}) \in O_m$. The inductive step is complete.

Consider the set

$$Z = \{z_{n(k),m,k,q(k,m)} \mid k, m \in \mathbb{N}\} \subset W$$

and notice that Z is closed in W. Since $z_0 \notin Z$, we may find neighborhoods $U(z_0), U(e) \subset X$ of z_0 and e such that $(U(z_0) * U(e)) \cap Z = \emptyset$. Let k be such that $U(e) \supset \pi_k^{-1}(O)$ for some neighborhood $O \subset Y_k$ of $\pi_k(e)$. We may assume the number k to be so great that $z_{n(k),m} \in U(z_0)$ for every m. Find finally m such that

$$\pi_k(z_{n(k),m}^{-1} * z_{n(k),m,k,q(k,m)}) \in O.$$

Then $z_{n(k),m}^{-1} * z_{n(k),m,k,q(k,m)} \in U(e)$ and hence the intersection $(U(z_0) * U(e)) \cap Z \ni z_{n(k),m}^{-1} * (z_{n(k),m}^{-1} * z_{n(k),m,k,q(k,m)}) = z_{n(k),m,k,q(k,m)}$ is not empty, a contradiction. \square

Now let us consider some applications of the obtained results.

Structure of topological groups that are \mathcal{M}_ω-spaces

Recall that a topological space X is called a k_ω-space if X contains a countable collection \mathcal{K} of compact subsets of X such that a subset U of X is open in X if and only if the intersection $U \cap K$ is closed in K for every $K \in \mathcal{K}$ (equivalently, X is a k_ω-space, provided X is the direct limit of a sequence of its compact subsets).
We define a topological space X to be an \mathcal{M}_ω-space if X contains a countable collection \mathcal{M} of closed metrizable subsets of X such that a subset U of X is open in X if and only if the intersection $U \cap M$ is closed in M for every $M \in \mathcal{M}$ (equivalently, X is an \mathcal{M}_ω-space, if X is the direct limit of a sequence of its closed metrizable subsets).

It turns out that an existence of a compatible group structure imposes very strict restrictions on the topology of \mathcal{M}_ω-spaces.

Theorem 4. Suppose a topological group X is an \mathcal{M}_ω-space. If X is not metrizable, then

1. X contains a closed copy of the Fréchet-Urysohn fan;
2. each closed metrizable subset of X is locally compact;
3. X contains an open subgroup H that is a k_ω-space;
4. X is homeomorphic to a product of a k_ω-space and a discrete space;
5. X is homeomorphic to an open subset of a k_ω-space.

Proof. Suppose X is not metrizable and let e denote the unity of the group X. Write $X = \lim X_n$ be the direct limit of a sequence $\{e\} = X_0 \subset X_1 \subset X_2 \subset \ldots$ consisting of closed metrizable subsets of X. To prove 1) we will show that for every n there is m such that e is a limit point of the set $X_m \setminus X_n$ in X_m. Fix n and a decreasing neighborhood base $\{U_i\}_{i=1}^\infty$ of e in X_n. Since X is not metrizable, each U_i is not open in X, and thus U_i is not open in some $X_{m(i)}$. Consequently, there is a sequence $\{y_{ij}\}_{j=1}^\infty \subset X_{m(i)} \setminus X_n$ convergent to a point $x_i \in U_i$. Let $k(i) = \min\{k \in \mathbb{N} \mid \forall j_0 \in \mathbb{N} \exists j \geq j_0$ such that $y_{ij} \in X_k\}$. Passing to a subsequence, if necessary, we may assume that $\{y_{ij}\}_{j=1}^\infty \subset X_{k(i)} \setminus X_{k(i)-1}$.

If $m = \sup\{k(i) \mid i \in \mathbb{N}\} < \infty$ then all the points y_{ij}, $i, j \in \mathbb{N}$ lie in the set $X_m \setminus X_n$. Since X_m is metrizable and the sequence $\{x_i\}$ tends to e, we may choose a subsequence $\{z_j\}_{j=1}^\infty \subset \{y_{ij} \mid i, j \in \mathbb{N}\}$ convergent to e. Thus e is a limit point of the set $X_m \setminus X_n$ and we are done.

Now suppose $\sup\{k(i) \mid i \in \mathbb{N}\} = \infty$. Using the continuity of the multiplication \ast, find $p \in \mathbb{N}$ such that $U_p \ast U_p \subset X_k$ for some k. Let i be such that $k(i) > k$ and $i \geq p$. Obviously, the sequence $\{x_i^{-1} \ast y_{ij}\}_{j=1}^\infty$ converges to e. We claim that there exists $j_0 \in \mathbb{N}$ such that $x_i^{-1} \ast y_{ij} \notin X_n$ for all $j \geq j_0$. Assuming the converse we would find j such that $x_i^{-1} \ast y_{ij} \in U_p \subset X_n$. Then $y_{ij} \in x_i \ast U_p \subset U_p \ast U_p \subset X_k$, a contradiction with $k(i) > k$ and $y_{ij} \in X_{k(i)} \setminus X_{k(i)-1}$. Thus we have proven that $\{x_i^{-1} \ast y_{ij}\}_{j \geq j_0} \subset X \setminus X_n$ for some j_0. Since this sequence converges to e, it is contained in some X_m.

Now we are ready to construct a closed copy of V in X. Applying the statement proved above, we may construct inductively an increasing number sequence $\{m(i)\}_{i=1}^\infty$ and sequences $\{y_{ij}\}_{j=1}^\infty; i \in \mathbb{N}$, such that

$$\lim_{j \to \infty} y_{ij} = e; y_{ij} \in X_{m(i)} \setminus X_{m(i-1)}, j \in \mathbb{N}.$$

Evidently, the set $\{e\} \cup \{y_{ij} \mid i, j \in \mathbb{N}\}$ is a closed copy of V in X. Hence a) is proven.

To prove 2), notice that X, being a direct limit of a sequence of metrizable spaces, is a perfectly normal sequential space. Since X contains a copy of the test
space V, by Theorems 1 and 2, X contains no closed copy of the test space K. Because every metrizable non-locally compact space contains a closed copy of K, every closed metrizable subset in X must be locally compact.

To prove 3), let us firstly construct an open separable subset $U \subset X$. By 2), each X_n is locally compact. Thus, we may choose inductively open neighborhoods U_n of e in X_n so that the closure \bar{U}_n is compact and $\bar{U}_n \subset U_{n+1}$ for every $n \in \mathbb{N}$. Since each \bar{U}_n is a (separable) metric compactum, the union $U = \bigcup_{n \in \mathbb{N}} U_n$ is an open separable subset of X. Then its span $H = \text{span}(U)$ is an open separable subgroup of X. Using the separability of H, one can easily show that for every n the locally compact space $H_n = H \cap X_n$ is separable, and thus H_n is a k_ω-space. Then $H = \lim_{\leftarrow} H_n$ is a k_ω-space too. Since the subgroup H is open in X the decomposition of X onto right residue classes of H just provides us with a homeomorphism of X onto the product $H \times D$ for some discrete space D. Let αD be the one-point compactification. Evidently, $H \times D$ is an open subset of the k_ω-space $H \times \alpha D$, thus (5) follows. □

References

[Pe] E. Pentsak, *On manifolds modeled on direct limits of C-universal ANR’s*, Matematychni Studii 5, 107–116.