A Rare Case of Cerebral Air Embolism Caused by Pulmonary Arteriovenous Malformation After Removal of a Central Venous Catheter

TOMOKO KUGIYAMA, MASAMICHI KOGANEMARU, ASAKO KUHARA, MASAZAKU NABETA*, YUSUKE UCHIYAMA, NORIMITSU TANAKA, MASAHIRO KAWABATA** AND TOSHI ABE

Department of Radiology, *Department of Emergency and Critical Care Medicine, Kurume University School of Medicine, Kurume 830-0011, **Department of Surgery, Fukuoka Saiseikai Futsukaichi Hospital, Chikushino 818-8516, Japan

Received 14 September 2017, accepted 15 January 2018
J-STAGE advance publication 30 August 2018
Edited by MOTOHIRO MORIOKA

INTRODUCTION

A central venous catheter (CVC) is often used for the management of parenteral nutrition, administration of anti-tumor drugs, plasmapheresis, and hemodialysis [1]. Most cases of air embolism associated with CVC use involve pulmonary embolism [2]. Although cerebral air embolism is rare, it is one of the most fatal complications of CVC use. Here we report an extremely rare case of cerebral air embolism that was caused by pulmonary arteriovenous malformation (PAVM) after CVC removal.

CASE REPORT

A 61-year-old woman with a hepatic neuroendocrine tumor underwent hepatectomy of the right lobe of the liver. Preoperatively, a 12-gauge triple-lumen CVC was inserted via the right internal jugular vein under ultrasound guidance with local anesthesia. The CVC was removed with the patient in the supine position on postoperative day 6, with manual compression. Despite a normal blood pressure, the patient experienced a sudden loss of consciousness (Glasgow coma scale: 3), 5 min after CVC removal. Computed tomography (CT) revealed areas with air attenuation along the sulci in both cerebral hemispheres, as well as a PAVM. The cerebral air embolism was treated with hyperbaric oxygen and intravenous thrombolytic therapy, and transcatheter embolization of the PAVM was performed. When inserting/removing CVC in a patient with a small PAVM, treatment of the PAVM, irrespective of its size, could prevent the type of complication that occurred in our present case.

Summary: Cerebral air embolism following central venous catheter (CVC) removal is extremely rare. We report a case of cerebral air embolism with loss of consciousness after removal of CVC caused by pulmonary arteriovenous malformation (PAVM). Computed tomography revealed air bubbles in the internal carotid arteries along the sulci in the cerebral hemispheres, as well as a PAVM. The cerebral air embolism was treated with hyperbaric oxygen and intravenous thrombolytic therapy, and transcatheter embolization of the PAVM was performed. When inserting/removing CVC in a patient with a small PAVM, treatment of the PAVM, irrespective of its size, could prevent the type of complication that occurred in our present case.

Key words cerebral air embolism, central venous catheter, pulmonary arteriovenous malformation

Corresponding Author: Tomoko Kugiyama, Department of Radiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume-city, Fukuoka, 830-0011, JAPAN. Tel: +81-942-31-7576, Fax: +81-942-32-9405, E-mail: kugiyama_tomoko@med.kurume-u.ac.jp

Abbreviations: CT, Computed tomography; CVC, central venous catheter; MRI, magnetic resonance imaging; PAVM, pulmonary arteriovenous malformation.
greater attenuation on the right side (Fig. 1). In addition, air bubbles were detected in the bilateral internal carotid arteries (Fig. 2A, B).

Diffusion-weighted magnetic resonance imaging (MRI) revealed cortical areas in the right frontal and parietal lobes as well as the left cerebellar hemisphere with restricted diffusion near the air. MRI suggested a cerebral air embolism (Fig. 3). Ninety minutes after CVC removal, the patient regained consciousness, but demonstrated left-sided paralysis. The cerebral air embolism was treated with hyperbaric oxygen and intravenous thrombolytic therapy, which resulted in complete recovery from paralysis. Transesophageal echocardiography revealed no visible intracardiac right-to-left shunting, such as that observed with an atrial septal defect. Preoperative CT had revealed a PAVM in the middle lobe of the right lung (Fig. 4). Subsequent pulmonary arteriography confirmed the

![Fig. 1. Brain computed tomography revealed air bubbles in considered cortical veins that were examined (arrows) in both cerebral hemisphere.](image1)

![Fig. 2. (A, B) Brain computed tomography revealed air bubbles in bilateral internal carotid arteries (arrows).](image2)

![Fig. 3. Brain magnetic resonance imaging (diffusion-weighted imaging) revealed restricted diffusion in the cortical area (arrows) near the air embolism seen observed on the brain computed tomography.](image3)
presence of the PAVM (feeding pulmonary artery diameter, 1.8 mm) (Fig. 5A). Considering that the patient was scheduled to undergo further CVC for chemotherapy we treated the small PAVM by transcatheter coil embolization to avoid complications, such as cerebral air embolism, infarction, or abscess formation.

Pulmonary arteriography also confirmed the complete absence of anatomic shunting immediately after the feeding pulmonary artery and sac embolization (Fig. 5B). There were no complications related to endovascular treatment.

DISCUSSION

Cerebral air embolisms are uncommon complications of CVC removal. However, the complications can be severe, with a reported mortality rate as high as 23% [3].

The reported incidence of CVC-associated air embolism ranges from 0.1% to 2% [4].

Cerebral air may originate from the CVC through a retrograde mechanism directly and/or by paradoxical embolus formation via right-to-left shunting [5].

Fig. 5. (A) Digital subtraction pulmonary angiogram revealed a simple type of pulmonary arteriovenous malformation in the middle lobe of the right lung.
(B) A pulmonary arteriogram confirmed the complete absence of the shunt immediately after the feeding pulmonary artery and sac embolization.
Intracardiac right-to-left shunting is frequently associated with paradoxical air embolism [1]. The cause of CVC-related cerebral air embolism in our case was believed to be right-to-left shunting due to a PAVM. We reached this conclusion for three reasons. First, brain CT revealed air bubbles in the bilateral internal carotid arteries. Second, the CVC was removed in the supine position with manual compression. Third, the PAVM was located in the anterior part of the lung (segment 5) under supine position.

Intravascular air can lead to both arterial and venous infarcts [6]. In our case, MRI revealed multiple infarcts in the cortical area. Other studies have reported similar MRI findings in cases with cerebral venous air embolism [6, 7]. Cerebral infarcts are often observed in the cortical area near air bubbles [6]. Mechanisms that lead to air embolism ischemia are blood flow obstruction, vasospasm, and thrombus formation due to platelet activation [6]. The blood–brain barrier is compromised by the migration of air bubbles to the arteries and arterioles because of endothelial damage [8, 9]. Furthermore, air bubbles cause air embolisms and inflammatory reactions, such as margination and activation of leukocytes, resulting in cerebral edema or secondary ischemia [10]. In many cases, right-to-left shunting is frequently associated with a paradoxical air embolism [1]. The most common mechanism for right-to-left shunting is through a patent foramen ovale [11]. Although not as frequent as intracardiac right-to-left shunting, numerous cases have been reported where transpulmonary passage has been suggested to be the cause of a paradoxical air embolism [12]. PAVMs are abnormal vascular structures that most often connect pulmonary arteries to pulmonary veins while bypassing the normal pulmonary capillary bed, resulting in intrapulmonary right-to-left shunting [13]. A paradoxical air embolism across a PAVM has been suggested as a cerebrovascular complication. Usually, a symptomatic PAVM or one with a feeding artery diameter of ≥ 3 mm, regardless of the symptoms, should be treated with transcatheter embolization or surgical intervention [14]. Smaller feeding arteries are often left untreated. However, neurological complications have also been described in patients with small PAVMs that were left untreated; there is no evidence to support a 3 mm feeding artery diameter as the critical size that can potentially result in complications. It has not been possible to stratify risks according to the size of the feeding artery [14]. We recommend carefully following the appropriate protocol when removing a CVC to prevent air embolism (Table1). We conclude that careful CVC removal can avoid air embolisms. When inserting/removing a CVC in a patient with a small PAVM, treatment of the PAVM should be considered, irrespective of its size, to avoid the complications seen in this case.

TABLE 1.
The procedure for the removal of central venous catheters to prevent air embolism

Procedure
Place the patient in the Trendelenburg or head-down position.
Remove the catheter only after the patient takes a deep breath and holds it.
Apply pressure to the catheter insertion site for 5 min.
Apply an airtight dressing to the catheter insertion site.

REFERENCES

1. McGee DC and Gould MK. Preventing complications of central venous catheterization. N Engl J Med 2003; 348:1123-1133.
2. Eum da H, Lee SH, Kim HW, Jung MJ, and Lee JG. Cerebral air embolism following the removal of a central venous catheter in the absence of intracardiac right-to-left shunting: a case report. Medicine 2015; 94:e630.
3. Heckman JG, Lang CJ, Kindler K, Huk W, Erbguth FJ et al. Neurologic manifestations of cerebral embolism as a complication of central venous catheterization. Crit Care Med 2002; 341:1621-1625.
4. Han SS, Kim SS, Hong HP, Lee SY, Lee SJ et al. Massive paradoxical air embolism in brain occurring after central venous catheterization: a case report. J Korean Med Sci. 2010 Oct; 25(10):1536-1538.
5. Boer WH and Hené RJ. Lethal air embolism following removal of a double lumen jugular vein catheter. Nephrol Dial Transplant 1999; 14:1850-1852.
6. Kaichi Y, Kakeda S, Korogi Y, Nezu T, Aoki S et al. Changes over time in intracranial air in patients with cerebral venous air embolism: radiological study in two cases. Case Rep Neurol Med 2015; 2015:491017.
7. Bartolini L and Burger K. Pearls & oy-sters: cerebral venous air embolism after central catheter removal: too much air can kill. Neurology 2015; 84:e94-96.
8. Persson LI, Rosengren LE, Johansson BB, and Hansson HA. Blood-brain barrier dysfunction to peroxidase after air embolism, aggravated by acute ethanol intoxication. J Neurol Sci 1979; 42:65-72.
9. Johansson BB. Cerebral air embolism and the blood-brain...
barrier in the rat. Acta Neurol Scand 1980; 62:201-209.
10. Mitchell S and Gorman D. The pathophysiology of cerebral arterial gas embolism. J Extra Corpor Technol 2002; 34:18-23.
11. Marquez J, Sladen A, Gendell H, Boehnke M, and Mendelow H. Paradoxical cerebral air embolism without an intracardiac septal defect. Case report. J Neurosurg 1981; 55:997-1000.
12. Bedell EA, Berge KH, and Losasso TJ. Paradoxic air embolism during venous air embolism: transesophageal echocardiographic evidence of transpulmonary air passage. Anesthesiology 1994; 80:947-950.
13. Cartin-Ceba R, Swanson KL, and Krowka MJ. Pulmonary arteriovenous malformations. Chest 2013; 144:1033-w1044.
14. Andersen PE and Kjeldsen AD. Embolization of pulmonary AVMs of feeding arteries less than 3 mm: reports of two cases and an 8-year follow-up without embolization. Acta Radiol Short Rep 2012; 1:2012.120001.