Polarization Effects in the Search for Dark Vector Boson at e^+e^- Colliders\#

Fei-Fan Lee\(^1\), Guey-Lin Lin\(^2*\), and Vo Quang Nhat\(^2\)

\(^1\)Department of Physics, Jimei University, 361021, Xiamen, Fujian province, P. R. China
\(^2\)Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

Received February 22, 2022

Abstract—We argue that the search for dark vector boson through $e^+e^-\rightarrow Z_d\gamma$ can determine the Lorentz structure of $Z_d^{\pm}\gamma$ couplings with the detection of leptonic decays $Z_d\rightarrow l^+l^-$. We assume a general framework that the dark vector boson interacts with ordinary fermions through vector and axial-vector couplings. Taking $l^\pm\equiv\mu^\pm$, we study the correlation between Z_d angle relative to e^- beam direction in e^+e^- CM frame and μ^- angle relative to the boost direction of Z_d in Z_d rest frame. This correlation is useful for probing the Lorentz structure of $Z_d^{\pm}\gamma$ couplings. We discuss the measurement of such correlation in Belle II detector.

Keywords: e^+e^- colliders, dark vector boson, dark matter

DOI: 10.3103/S0027134922020606

1. INTRODUCTION

Recently there are growing interests to search for DM related phenomena with huge statistics and high precision measurements. These phenomena involve the hidden sector [1–6], which is assumed to interact with Standard Model (SM) particles through certain messengers. A popular messenger particle proposed is the so called dark photon, which mixes with the $U(1)$ hypercharge field B_μ in SM,

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} + \frac{\varepsilon_{\gamma}}{2\cos\theta_W}B_{\mu\nu}A'_{\mu\nu} - \frac{1}{4}A'_{\mu\nu}A'^{\mu\nu},$$

where A'_μ is the dark photon field, and $A'_{\mu\nu} = \partial_\mu A'_\nu - \partial_\nu A'_\mu$. The above mixing induces electromagnetic couplings, $\mathcal{L}_{\text{em}} = \varepsilon_{\gamma}\varepsilon f_{\text{em}} A'_{\mu\nu}$, between the dark photon and SM fermions while the neutral current couplings between the same set of particles are further suppressed by the factor $m_{A'}/m_Z^2$ for $m_{A'} \ll m_Z$ with $m_{A'}$ the dark photon mass. However, independent neutral current couplings can be generated through mass mixing between the messenger particle and the Z boson [7–9]. In this case, the messenger particle is often referred to as Z' boson. The mass mixing term $\delta m^2 Z'_{\mu}Z_{\mu}$ can induce neutral current couplings $\mathcal{L}_{\text{NC}} = (\varepsilon_Z/\cos\theta_W) J_{\text{NC}}^\mu Z_{\mu}$ with $\varepsilon_Z \equiv \delta m^2/m_Z^2$. For a general scenario that both kinetic and mass mixings are present, the interactions between dark boson and SM fermions are given by

$$\mathcal{L}_{\text{int}} = \left(\varepsilon_{\gamma}\varepsilon f_{\text{em}} + \varepsilon_Z g_{\cos\theta_W} J_{\text{NC}}^\mu\right) Z_{d,\mu},$$

with Z_d the dark boson, which is the generalization of A' and Z'. We can conveniently rewrite the above interaction as $\mathcal{L}_{\text{int}} = \varepsilon f_{\gamma\gamma} f_{Z'\gamma} + f_{Z'\gamma} f_{Z'\gamma} f_{Z_d\gamma} \gamma_5 f Z_{d,\mu}$ with $g^2_{\gamma,\gamma} + g^2_{Z',\gamma} = 1$. Due to the presence of both vector and axial vector couplings, parity violation effect is expected in the search for Z_d and it can be quantified by the parameter $\rho \equiv 4g_{\gamma\gamma}g_{Z'\gamma}$. The maximum parity violation case corresponds to $\rho = \pm 2$ ($V = A$). In this talk we discuss the prospect of detecting Z_d and possibly measuring ρ in Belle II detector [10, 11].

2. RESULTS

We propose to search for Z_d in Belle II detector through the process $e^+e^-\rightarrow Z_d\gamma \rightarrow \mu^+\mu^-\gamma$ with the

*E-mail: glin@nycu.edu.tw
\#Talk presented by G.-L. Lin.
muon pair arising from Z_d decay. Following Ward–Takahashi identity [12, 13], the vector boson Z_d must be in one of the transversely polarized states (left- or right-handed) in the limit $m_{Z_d} \ll \sqrt{s}$ [14]. The longitudinal Z_d appears in the final state when m_{Z_d} is no longer suppressed compared to \sqrt{s}. The appearance of longitudinal Z_d weakens parity violation effects in the dark boson production. To probe parity violation effects, we bin the signal events according to the sign of $J \equiv \cos \theta \times \cos \theta_d$ where θ is the angle of Z_d with respect to the e^- direction in e^+e^- CM frame while θ_d is the helicity angle of μ^- arising from Z_d decay. Such an event binning allows one to measure the asymmetry parameter $A_{PN} \equiv (S(J > 0) - S(J < 0))/(S(J > 0) + S(J < 0))$ with S the number of signal events. Under the assumption of 5σ detection of the dark boson, i.e., $S/\sqrt{B} = 5$, with Belle II full integrated luminosity 50 ab$^{-1}$, the expected measurement of A_{PN} is shown in Fig. 1 for $\rho = 0.5, 1.0, 1.5$, and 2.0, respectively [14]. In Fig. 1, we present results for $\rho = 0.5, 1.0, 1.5$, and 2.0, respectively. It is seen that A_{PN} is consistent with zero for $\rho = 0.5$ and 1, since the 1σ error bars in these cases reach $A_{PN} < 0$ regime. On the other hand, for $\rho = 2$, A_{PN} is non-vanishing at more than 2σ for $m_{Z_d}/\sqrt{s} \leq 0.3$. In general, the central value of A_{PN} decreases when m_{Z_d}/\sqrt{s} increases. This is due to the growing fraction of longitudinal Z_d boson in the final state of $e^+e^- \rightarrow Z_d\gamma$, as we have just commented.

ACKNOWLEDGMENTS

This work is supported by the Ministry of Science and Technology, Taiwan, grant no. 107-2119-M-009-017-MY3.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. B. Holdom, Phys. Lett. B 166, 196 (1986).
2. P. Galison and A. Manohar, Phys. Lett. 136B, 279 (1984).
3. R. Foot, Int. J. Mod. Phys. D 13, 2161 (2004).
4. D. Feldman, B. Kors, and P. Nath, Phys. Rev. D 75, 023503 (2007).
5. N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009).
6. M. Pospelov and A. Ritz, Phys. Lett. B 671, 391 (2009).
7. K. S. Babu, C. F. Kolda, and J. March-Russell, Phys. Rev. D 57, 6788 (1998).
8. H. Davoudiasl, H. S. Lee, and W. J. Marciano, Phys. Rev. D 85, 115019 (2012).
9. H. Davoudiasl, H. S. Lee, I. Lewis, and W. J. Marciano, Phys. Rev. D 88, 015022 (2013).
10. E. Kou et al. (Belle-II Collab.), Prog. Theor. Exp. Phys. 2019, 123C01 (2019).
11. T. Abe et al. (Belle-II Collab.), arXiv: 1011.0352 [physics.ins-det].
12. J. C. Ward, Phys. Rev. 78, 1824 (1950).
13. Y. Takahashi, Nuovo Cim. 6, 370 (1957).
14. F. F. Lee, G. L. Lin, and V. Q. Nhat, Phys. Rev. D 103, 015016 (2021).