Randomized, Open-Label Phase II Study Comparing Capecitabine-Cisplatin Every 3 Weeks with S-1-Cisplatin Every 5 Weeks in Chemotherapy-Naïve Patients with HER2-Negative Advanced Gastric Cancer: OGSSG1105, HERBIS-4A Trial

Hisato Kawakami, a, ATSUSHI TAKENO, n SHUNJI ENDO, c YOICHI MAKARI, d JUNJI KAWADA, e HIROKAZU TANIGUCHI, f SHIGEYUKI TAMURA, g NAOTOSHI SUGIMOTO, h YUTAKA KIMURA, b TAKAO TAMURA, i KAZUMASA FUJITANI, j Daisuke Sakai, k TOSHO SHIMOKAWA, l YUKINORI KUROKAWA, l TAROH SATOH

Departments of aMedical Oncology and bSurgery, Kindai University Faculty of Medicine, Osaka, Japan; cDepartment of Surgery, Higashiosaka City Medical Center, Osaka, Japan; dDepartment of Surgery, Sakai City Medical Center, Osaka, Japan; eDepartment of Surgery, Kaizuka City Hospital, Osaka, Japan; fDepartment of Surgery, Minoh City Hospital, Osaka, Japan; gDepartment of Surgery, Yao Municipal Hospital, Osaka, Japan; hDepartment of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan; iDepartment of Medical Oncology, Kindai University Nara Hospital, Nara, Japan; jDepartment of Surgery, Osaka General Medical Center, Osaka, Japan; kDepartments of lFrontier Science for Cancer and Chemotherapy and mGastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; nClinical Study Support Center, Wakayama Medical University, Wakayama, Japan; oDepartment of Surgery, Kansai Rosai Hospital, Hyogo, Japan

Disclosures of potential conflicts of interest may be found at the end of this article.

TRIAL INFORMATION

- ClinicalTrials.gov Identifier: UMIN000006755
- Sponsor(s): Osaka Clinical Study Supporting Organization
- Principal Investigator: Hisato Kawakami
- IRB Approved: Yes

LESSONS LEARNED

- Evidence has suggested that capecitabine-cisplatin is similar or possibly superior to S-1-cisplatin in terms of safety and efficacy for Japanese patients with advanced gastric cancer (AGC).
- As far as we are aware, our study is the first randomized trial of two regimens consisting of an oral fluoropyrimidine plus cisplatin in human epidermal growth receptor 2-negative AGC patients with measurable lesions.

ABSTRACT

Background. We performed a phase II study to evaluate the safety and efficacy of capecitabine plus cisplatin in comparison with S-1 plus cisplatin for first-line treatment of human epidermal growth receptor 2 (HER2)-negative advanced gastric cancer in Japan.

Methods. Eligible patients were randomly assigned to receive either capecitabine at 1,000 mg/m² twice daily for 14 days plus cisplatin at 80 mg/m² on day 1 every 3 weeks (n = 43) or S-1 at 40–60 mg twice daily for 21 days plus cisplatin at 60 mg/m² on day 8 every 5 weeks (n = 41). The primary endpoint of the study was response rate.

Results. Response rate did not differ significantly between the capecitabine-cisplatin and S-1-cisplatin groups (53.5% vs. 51.2%, respectively, p > .999). S-1-cisplatin tended to confer a better progression-free survival (PFS; median of 5.9 vs. 4.1 months, p = .284), overall survival (OS; median of 13.5 vs. 10.0 months, p = .290), and time to treatment failure (TTF; median of 4.5 vs. 3.1 months, p = .052) compared with capecitabine-cisplatin. Common hematologic toxicities of grade 3 or 4 included anemia and neutropenia in both groups. However, anorexia, fatigue, and hyponatremia of grade 3 or 4 occurred more frequently in the capecitabine-cisplatin group.

Conclusion. Capecitabine-cisplatin failed to demonstrate superior efficacy compared with S-1-cisplatin. The higher incidence of severe adverse events with capecitabine-cisplatin suggests that S-1-cisplatin should remain the standard first-line chemotherapy for HER2-negative advanced gastric cancer in Japan. The Oncologist 2018;23:1411–e147

Correspondence: Hisato Kawakami, M.D., Ph.D., Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan. Telephone: 81-72-366-0221; e-mail: kawakami_h@med.kindai.ac.jp. Received April 26, 2018; accepted for publication May 24, 2018; published Online First on August 16, 2018. ©AlphaMed Press; the data published online to support this summary is the property of the authors. http://dx.doi.org/10.1634/theoncologist.2018-0175

The Oncologist 2018;23:1411–e147 www.TheOncologist.com © AlphaMed Press 2018
DISCUSSION

The response rate was 51.2% (95% CI, 35.1%–67.1%) in the S-1–cisplatin group and 53.5% (95% CI, 37.7%–68.8%) in the capecitabine-cisplatin group (\(p > .999\)). The DCR for the FAS was higher in the S-1–cisplatin arm (82.9%) than in the capecitabine-cisplatin arm (67.4%). A waterfall plot analysis revealed that patients in the S-1–cisplatin arm showed greater tumor shrinkage and that a larger proportion of patients in this arm experienced tumor shrinkage from baseline compared with the capecitabine-cisplatin arm (Fig. 1).

For survival analysis, the median follow-up time was 11.3 months. The median PFS was 5.9 months in the S-1–cisplatin group and 4.1 months in the capecitabine-cisplatin group (HR, 0.76; 95% CI, 0.485–1.24; \(p = .284\)) (Fig. 2A), whereas the corresponding values for median OS were 13.5 and 10.0 months (HR, 0.776; 95% CI, 0.485–1.244; \(p = .290\)) (Fig. 2B) and those for median TTF were 4.5 and 3.1 months (HR, 0.651; 95% CI, 0.421–1.006; \(p = .052\)) (Fig. 2C).

The most common all-grade hematologic adverse events were anemia (79% in the S-1–cisplatin group, 74% in the capecitabine-cisplatin group) and neutropenia (54% and 60%), each of which occurred at a similar frequency in the two groups. In contrast, anemia and neutropenia of grade 3 or 4 were more common in the capecitabine-cisplatin group than in the S-1–cisplatin group. With regard to nonhematologic toxicities, anorexia (67% and 72%) and malaise (46% and 49%) were common all-grade adverse events in both treatment groups. Anorexia, fatigue, and hyponatremia of grade 3 or 4 were more frequent in the capecitabine-cisplatin group (23%, 14%, and 16%) than in the S-1–cisplatin group (13%, 0%, and 5%). Peripheral
neuropathy and hand-foot syndrome of grade 3 or 4 were apparent in the capecitabine-cisplatin arm (5% and 2%) but not in the S-1–cisplatin arm. One death in the capecitabine-cisplatin group (2%, 1 of 43) was due to brain infarction, which was considered to be treatment related by the investigators.

Trial Information
Disease
Stage of Disease/Treatment
Prior Therapy
Type of Study – 1
Type of Study – 2
Primary Endpoint
Secondary Endpoint
Secondary Endpoint
Secondary Endpoint
Secondary Endpoint

Additional Details of Endpoints or Study Design

The trial was based on a randomized phase II screening design with a primary endpoint of response rate (RR). On the basis of an assumed RR of 40% in the S-1-cisplatin arm, the study was designed to detect an improvement in RR of 15 percentage points (i.e., to 55%) in the capecitabine-cisplatin arm. For primary analysis, 100 patients were required to detect such an improvement in RR with ≥80% power, with a one-sided significance level of 0.20 in Fisher’s exact test. However, as a result of slow accrual, the protocol was amended in December 2015 to reduce the planned sample size from 100 to 84 based on a one-sided significance level of 0.10 and power of 70%. Ultimately, enrollment was terminated after inclusion of 85 patients in April 2016.

The primary endpoint of the study was RR, with secondary end points including PFS, OS, TTF, and safety. Tumor response was assessed by investigators on the basis of RECIST version 1.1 at baseline and every 8 weeks after randomization until disease progression. The RR and disease control rate were defined as the proportion of patients who achieved a confirmed complete response (CR) or partial response (PR) or who achieved a confirmed CR, PR, or stable disease (SD), respectively. Tumor histology was based on the Japanese classification of gastric carcinoma, with differentiated-type tumors being defined as papillary or tubular adenocarcinoma and undifferentiated-type tumors as poorly differentiated adenocarcinoma, signet ring cell carcinoma, or mucinous adenocarcinoma. Adverse events were evaluated according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0.

Investigator’s Analysis

Inactive because results did not meet primary endpoint.

Drug Information for Phase II S-1 + CDDP

Drug 1
Generic/Working Name
Trade Name
Company Name
Dose
Route
Schedule of Administration

Drug 2
Generic/Working Name
Drug Class
Dose
Route
Schedule of Administration

Drug Information for Phase II Capecitabine + CDDP

Drug 1
Generic/Working Name
Trade Name
Company Name
Dose

Route
Schedule of Administration

Drug 2

Generic/Working Name	Cisplatin (CDDP)
Drug Class	Platinum compound
Dose	80 mg/m²
Route	IV
Schedule of Administration	Cisplatin at 80 mg/m² on day 1 every 3 weeks

PATIENT CHARACTERISTICS FOR PHASE II S-1 + CDDP

Number of Patients, Male	33
Number of Patients, Female	8

Stage

T factor	**N factor**	**M factor**
TX	NX	MX/M0/M1
T1 (SM)	N0	2/6/33
T2 (MP)	N1	
T3 (SS)	N2	
T4a (SE)	N3a	
T4b (SI)	N3b	

Age

Median (range): 68 (38–77)

Number of Prior Systemic Therapies

Median (range): 0

Performance Status: ECOG

ECOG	**Number**
0 — 22	22
1 — 19	19
2 — 0	0
3 — 0	0
Unknown	0

Other

Metastatic/recurrent sites	**Number**
Lymph node	33
Peritoneum	8
Liver	17
Lung	5
Bone	4
Adrenal	1
Portal vein tumor thrombus	1
Cancer Types or Histologic Subtypes

- HER2 unknown, 0
- HER2 negative 0/1+/2+ 23/14/4
- Papillary adenocarcinoma 0
- Tubular adenocarcinoma 23
- Poorly differentiated adenocarcinoma 14
- Signet ring cell carcinoma 3
- Mucinous adenocarcinoma 0
- Undetermined 1

Patient Characteristics for Phase II Capecitabine + CDDP

	36	7
Number of Patients, Male		
Number of Patients, Female		

Stage	T factor	TX	1
	T1 (SM)	1	
	T2 (MP)	1	
	T3 (SS)	9	
	T4a (SE)	21	
	T4b (SI)	10	
N factor	NX	2	
	N0	5	
	N1	7	
	N2	15	
	N3a	9	
	N3b	5	
M factor	MX/M0/M1	1/4/38	

Previous gastrectomy	Yes/No
	2/41

Age	Median (range): 64 (34–79)
Number of Prior Systemic Therapies	Median (range): 0

Performance Status: ECOG	0 — 24
	1 — 19
	2 — 0
	3 — 0
Unknown — 0	

Other	Metastatic/recurrent sites	
	Lymph node	37
	Peritoneum	13
	Liver	16
	Lung	4
	Bone	2
	Adrenal	0
	Portal vein tumor thrombus	0

Cancer Types or Histologic Subtypes	HER2 unknown 1
	HER2 negative 0/1+/2+ 22/17/3
	Papillary adenocarcinoma 2
	Tubular adenocarcinoma 19
Primary Assessment Method for Phase II S-1 + CDDP

Title	Total patient population
Number of Patients Screened	41
Number of Patients Enrolled	39
Number of Patients Evaluable for Toxicity	39
Number of Patients Evaluated for Efficacy	41
Evaluation Method	RECIST 1.1
Response Assessment CR	\(n = 0 \) (0%)
Response Assessment PR	\(n = 21 \) (51%)
Response Assessment SD	\(n = 13 \) (32%)
Response Assessment PD	\(n = 3 \) (7%)
Response Assessment OTHER	\(n = 4 \) (10%)
(Median) Duration Assessments PFS	179 days, CI: 136–225
(Median) Duration Assessments OS	412 days, CI: 340–701

Secondary Assessment Method for Phase II S-1 + CDDP

Title	Total patient population
(Median) Duration Assessments PFS	179 days, CI: 136–225
(Median) Duration Assessments OS	412 days, CI: 340–701

Primary Assessment Method for Phase II Capecitabine + CDDP

Title	Total patient population
Number of Patients Screened	43
Number of Patients Enrolled	43
Number of Patients Evaluable for Toxicity	43
Number of Patients Evaluated for Efficacy	43
Evaluation Method	RECIST 1.1
Response Assessment CR	\(n = 0 \) (0%)
Response Assessment PR	\(n = 23 \) (53%)
Response Assessment SD	\(n = 6 \) (14%)
Response Assessment PD	\(n = 10 \) (3%)
Response Assessment OTHER	\(n = 4 \) (10%)
(Median) Duration Assessments PFS	124 days, CI: 108–200
(Median) Duration Assessments OS	305 days, CI: 218–474

Secondary Assessment Method for Phase II Capecitabine + CDDP

Title	Total patient population
(Median) Duration Assessments PFS	124 days, CI: 108–200
(Median) Duration Assessments OS	305 days, CI: 218–474
Phase II S-1 + CDDP Adverse Events

All Cycles Name	NC/NA	1	2	3	4	5	All grades
Neutrophil count decreased	46%	5%	26%	8%	15%	0%	54%
Platelet count decreased	46%	21%	15%	15%	3%	0%	54%
Aspartate aminotransferase increased	79%	18%	0%	3%	0%	0%	21%
Hypokalemia	79%	13%	3%	5%	0%	0%	21%
Hypoalbuminemia	48%	23%	26%	3%	0%	0%	52%
Febrile neutropenia	95%	0%	0%	5%	0%	0%	5%
Anemia	21%	28%	28%	23%	0%	0%	79%
Hyponatremia	64%	28%	3%	5%	0%	0%	36%
Peripheral sensory neuropathy	97%	0%	3%	0%	0%	0%	3%
Fatigue	54%	28%	18%	0%	0%	0%	46%
Creatinine increased	61%	33%	3%	3%	0%	0%	39%
Anorexia	33%	26%	28%	13%	0%	0%	67%
White blood cell decreased	49%	18%	15%	18%	0%	0%	51%
Abdominal pain	77%	18%	5%	0%	0%	0%	23%
Nausea	67%	28%	5%	0%	0%	0%	33%
Diarrhea	82%	10%	8%	0%	0%	0%	18%
Hyperkalemia	80%	15%	0%	5%	0%	0%	20%
Palmar-plantar erythrodysesthesi syndrome	95%	5%	0%	0%	0%	0%	5%
Mucositis oral	87%	3%	5%	0%	0%	0%	13%

Abbreviation: NC/NA, no change from baseline/no adverse event.

Serious Adverse Events

Name	Grade	Attribution
Sepsis	4	Unlikely
Syncope	3	Unlikely

Phase II Capecitabine + CDDP Adverse Events

All Cycles Name	NC/NA	1	2	3	4	5	All grades
Neutrophil count decreased	40%	2%	23%	21%	14%	0%	60%
Platelet count decreased	40%	21%	15%	15%	3%	0%	54%
Aspartate aminotransferase increased	87%	9%	2%	2%	0%	0%	13%
Hypokalemia	79%	12%	0%	7%	2%	0%	21%
Hypoalbuminemia	56%	21%	23%	0%	0%	0%	44%
Febrile neutropenia	93%	0%	0%	7%	0%	0%	7%
Anemia	25%	19%	28%	28%	0%	0%	75%
Hyponatremia	63%	21%	0%	14%	2%	0%	37%
Peripheral sensory neuropathy	85%	5%	5%	5%	0%	0%	15%
Fatigue	51%	19%	30%	0%	0%	0%	49%
Vomiting	95%	5%	0%	0%	0%	0%	5%
White blood cell decreased	47%	7%	28%	16%	2%	0%	53%
Creatinine increased	72%	9%	14%	5%	0%	0%	28%
Anorexia	28%	19%	30%	23%	0%	0%	72%
Abdominal pain	98%	0%	0%	2%	0%	0%	2%
Gastric cancer is the fifth most common malignant disease and the second leading cause of cancer deaths worldwide [1], with an especially high incidence in East Asia. Individuals newly diagnosed with gastric cancer often present with unresectable or metastatic disease, known as advanced gastric cancer (AGC). Trastuzumab in combination with unresectable or metastatic disease, known as HER2-negative AGC, represents the standard therapy for such patients in practice, given that the addition of docetaxel [6] or epirubicin [7] was associated with a limited improvement in survival but substantial hematologic toxicity [6,7]. Adverse events were generally mild, with the most common events of grade 3 or 4 being neutropenia, anemia, anorexia, and nausea. Similar efficacy and safety profiles for capcitabine-cisplatin in Japanese AGC patients were also apparent in a retrospective study [12]. These data have suggested that capcitabine-cisplatin is similar or possibly superior to S-1-cisplatin in terms of safety and efficacy for Japanese patients with AGC. However, capcitabine-cisplatin has not been prospectively compared with S-1-cisplatin in patients with HER2-negative AGC to date. We have therefore now conducted a phase II study to assess the efficacy and safety of capcitabine-cisplatin versus S-1-cisplatin in Japanese patients with HER2-negative AGC.

In our trial, however, capcitabine-cisplatin failed to show a superior efficacy relative to S-1-cisplatin. Although RR, the primary endpoint of our trial, did not differ significantly between the two treatment groups, disease control rate (DCR) was higher in the S-1-cisplatin arm, with this benefit being confirmed by waterfall analysis. The benefit of S-1-cisplatin with regard to its high DCR likely reflects the observed trend toward a better PFS and OS in the S-1-cisplatin arm than in the capcitabine-cisplatin arm.
With respect to adverse events, both regimens in the present study showed similar hematologic toxicity profiles, with anemia and neutropenia being most frequently observed. In contrast, the overall incidence of nonhematologic toxicities of grade 3 or 4 was higher in the capecitabine-cisplatin group than in the S-1-cisplatin group. A meta-analysis comparing S-1 with capecitabine in AGC found no overall difference in terms of serious adverse events [13]. In the present study, however, anorexia, fatigue, and hyponatremia of grade 3 or 4 occurred more frequently in the capecitabine-cisplatin arm than in the S-1-cisplatin arm. Moreover, brain infarction of grade 5 occurred in one patient of the capecitabine-cisplatin group, possibly as a result of the high dose intensity of cisplatin, which is known to be associated with venous thromboembolism [14]. Indeed, most of the differences in nonhematologic toxicity between the two groups were likely due to the higher dose of cisplatin administered in the capecitabine-cisplatin arm, which was also associated with a shorter time to treatment failure. Together, our findings suggest that, at least in the setting of the present trial, administration of cisplatin at 80 mg/m² every 3 weeks in combination with capecitabine did not increase efficacy but was more toxic compared with that at 60 mg/m² every 5 weeks in combination with S-1.

In conclusion, although our study was a phase II trial and our results thus need confirmation, capecitabine-cisplatin failed to demonstrate superior efficacy over S-1-cisplatin. The higher incidence of severe nonhematologic adverse events observed with capecitabine-cisplatin suggests that S-1-cisplatin should remain the standard first-line chemotherapy for HER2-negative AGC with measurable lesions, at least in Japan.

ACKNOWLEDGMENTS
We thank all the patients, investigators, and medical staff who participated in this study, as well as the OGSG data center for their contribution.

DISCLOSURES
Hisato Kawakami: Chugai Pharmaceutical, Eli Lilly & Co., Taiho Pharmaceutical, Takeda Pharmaceutical, Ono Pharmaceutical, Bristol-Myers Squibb, Bayer (H); Takao Tamura: Chugai Pharmaceutical, Taiho Pharmaceutical, Roche (RF, H); Daisuke Sakai: Chugai Pharmaceutical (RF, H); Yukinori Kurokawa: Taiho Pharmaceutical (H); Taroh Satoh: Takara Bio, Inc (SAB), Yakult Honsha, Chugai Pharmaceutical, Eli Lilly & Co., Merck-Serono, Takeda Pharmaceutical, Taiho Pharmaceutical, Ono Pharmaceutical, Bristol-Myers Squibb, Bayer (H); Yakult Honsha, Ono Pharmaceutical, Eli Lilly & Co., Chugai Pharmaceutical, Merck Sharp & Dohme, Daiichi-Sankyo, Giliad Science, Bristol-Myers Squibb, Sanofi-Aventis (RF). The other authors indicated no financial relationships.

(C/A) Consulting/advisory relationship; (RF) Research funding; (E) Employment; (ET) Expert testimony; (H) Honoraria received; (OI) Ownership interests; (IP) Intellectual property rights/inventor/patent holder; (SAB) Scientific advisory board

REFERENCES
1. Ferlay J, Soerjomataram I, Dikshit R et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359–E386.
2. Bang YJ, Van Cutsem E, Feyereislova A et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010;376:687–697.
3. Koizumi W, Narahara H, Hara T et al. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): A phase III trial. Lancet Oncol 2008;9:215–222.
4. Kang YK, Kang WK, Shin DB et al. Capecitabine/cisplatin versus S-fluorouracil/cisplatin as first-line therapy in patients with advanced gastric cancer: A randomised phase III noninferiority trial. Ann Oncol 2009;20:666–673.
5. Shirasaka T, Shimamoto Y, Oshhimo H et al. Development of a novel form of an oral S-fluorouracil derivative (S-1) directed to the potenti-ation of the tumor selective cytotoxicity of S-fluorouracil by two biochemical modulators. Anticancer Drugs 1996;7:548–557.
6. Van Cutsem E, Moiseyenko VM, Tjulandin S et al. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluoroura- cil as first-line therapy for advanced gastric cancer: A report of the Y325 study group. J Clin Oncol 2006;24:4991–4997.
7. Cunningham D, Starling N, Rao S et al. Capeci-tabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med 2008;358:36–46.
8. Miwa M, Ura M, Nichida M et al. Design of a novel oral fluoropyrimidine carbamate, capecita-bine, which generates S-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer 1998;34:1274–1281.
9. Ohtsu A, Shah MA, Van Cutsem E et al. Bevaci-zumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: A random-ized, double-blind, placebo-controlled phase III study. J Clin Oncol 2011;29:3968–3976.
10. Lordick F, Kang YK, Chung HC et al. Capecita-bine and cisplatin with or without cetuximab for patients with previously untreated advanced gas-tic cancer (EXPAND): A randomised, open-label phase 3 trial. Lancet Oncol 2013;14:490–499.
11. Yamaguchi K, Sawaki A, Doi T et al. Efficacy and safety of capecitabine plus cisplatin in Japa-nese patients with advanced or metastatic gas-tic cancer: Subset analyses of the AVAGAST study and the ToGA study. Gastric Cancer 2013;16:175–182.
12. Shitara K, Sawaki A, Matsu K et al. A retro-spective comparison of S-1 plus cisplatin and capeci-tabine plus cisplatin for patients with advanced or recurrent gastric cancer. Int J Clin Oncol 2013;18:539–546.
13. Ter Veer E, Mohammad NH, Lodder P et al. The efficacy and safety of S-1-based regimens in the first-line treatment of advanced gastric cancer: A systematic review and meta-analysis. Gastric Cancer 2016;19:696–712.
14. Seng S, Liu Z, Chiu SK et al. Risk of venous thromboembolism in patients with cancer treated with cisplatin: A systematic review and meta-analysis. J Clin Oncol 2012;30:4416–4426.

Click here to access other published clinical trials.