On Stabilization in Herman’s Algorithm

Stefan Kiefer1*, Andrzej Murawski2, Joël Ouaknine1, James Worrell1, and Lijun Zhang3

1 Department of Computer Science, University of Oxford, UK
2 Department of Computer Science, University of Leicester, UK
3 DTU Informatics, Technical University of Denmark, Denmark

Abstract. Herman’s algorithm is a synchronous randomized protocol for achieving self-stabilization in a token ring consisting of \(N \) processes. The interaction of tokens makes the dynamics of the protocol very difficult to analyze. In this paper we study the expected time to stabilization in terms of the initial configuration.

It is straightforward that the algorithm achieves stabilization almost surely from any initial configuration, and it is known that the worst-case expected time to stabilization (with respect to the initial configuration) is \(\Theta(N^2) \). Our first contribution is to give an upper bound of \(0.64N^2 \) on the expected stabilization time, improving on previous upper bounds and reducing the gap with the best existing lower bound. We also introduce an asynchronous version of the protocol, showing a similar \(O(N^2) \) convergence bound in this case.

Assuming that errors arise from the corruption of some number \(k \) of bits, where \(k \) is fixed independently of the size of the ring, we show that the expected time to stabilization is \(O(N) \). This reveals a hitherto unknown and highly desirable property of Herman’s algorithm: it recovers quickly from bounded errors. We also show that if the initial configuration arises by resetting each bit independently and uniformly at random, then stabilization is significantly faster than in the worst case.

1 Introduction

Self-stabilization is a concept of fault-tolerance in distributed computing. A system is self-stabilizing if, starting in an arbitrary state, it reaches a correct or legitimate state and remains in a legitimate state thereafter. Thus a self-stabilizing system is able to recover from \textit{transient errors} such as state-corrupting faults. The study of self-stabilizing algorithms originated in an influential paper of Dijkstra [4]. By now there is a considerable body of work in the area, see [18, 5].

In this paper we consider self-stabilization in a classical context that was also treated in Dijkstra’s original paper—a \textit{token ring}, i.e., a ring of \(N \) identical processes, exactly one of which is meant to hold a token at any given time. If, through some error, the ring enters a configuration with multiple tokens, self-stabilization requires that the system be guaranteed to reach a configuration with

* Stefan Kiefer is supported by a postdoctoral fellowship of the German Academic Exchange Service (DAAD).
only one token. In particular, we are interested in analyzing a self-stabilization algorithm proposed by Herman [12].

Herman’s algorithm is a randomized procedure by which a ring of processes connected uni-directionally can achieve self-stabilization almost surely. The algorithm works by having each process synchronously execute the following action at each time step: if the process possesses a token then it passes the token to its clockwise neighbor with probability $1/2$ and keeps the token with probability $1/2$. If such a process decides to keep its token and if it receives a token from its neighbor then the two tokens are annihilated. Due to the way the algorithm is implemented we can assume that an error state always has an odd number of tokens, thus this process of pairwise annihilation eventually leads to a configuration with a single token.

While the almost-sure termination of Herman’s algorithm is straightforward, computing the time to termination is a challenging problem. This is characteristic of systems of interacting particles under random motion, which are ubiquitous in the physical and medical sciences, including statistical mechanics, neural networks and epidemiology [15]. The analysis of such systems typically requires delicate combinatorial arguments [6]. Our case is no exception, and we heavily exploit work of Balding [1], which was motivated by a scenario from physical chemistry.

Given some initial configuration, let T be the time until the token ring stabilizes under Herman’s algorithm. We analyze the expectation of T in three natural cases: the worst case (over all initial configurations); the case in which the initial configuration is chosen uniformly at random; the case in which the initial configuration arises from a legitimate configuration by a bounded number of bit errors. In addition we introduce and analyze an asynchronous variant of Herman’s algorithm. The latter dispenses with the successive time steps required in the synchronous algorithm, and instead has each process pass its token after an exponentially distributed time delay.

Herman’s original paper [12] showed that $\mathbb{E}T \leq (N^2 \log N)/2$ in the worst case (i.e., over all initial configurations with N processes). It also mentions an improved upper bound of $O(N^2)$ due to Dolev, Israeli, and Moran, without giving a proof or a further reference. In 2005, three papers [10, 16, 17] were published, largely independently, all of them giving improved $O(N^2)$ bounds. The paper [16] also gives a lower bound of $4N^2/27$, which is the expected stabilization time starting from a configuration with three equally spaced tokens. It was conjectured in [16] that this is the worst case among all starting configurations, including those with more than three tokens. This intriguing conjecture is supported by experimental evidence [2].

Our first result, Theorem 2, gives an upper bound of $0.64N^2$ for the expected stabilization time in the synchronous version of Herman’s protocol (improving the constant in the hitherto best bound by a third). We also give an upper bound in the asynchronous case. To the best of our knowledge this is the first analysis of an asynchronous version of Herman’s algorithm.
To understand the other main results of the paper requires some detail of the implementation of Herman’s algorithm. We assume that each process has a bit that it can read and write, and that each process can read the bit of its counterclockwise neighbor. A process’s bit does not directly indicate the presence of a token, rather a process has a token if it has the same bit as its counterclockwise neighbor. Token passing is then implemented by having processes flip their bits.

In Theorem 7 we provide an upper bound on the expected time to stabilize starting from the random initial configuration, that is, the configuration in which each process’s bit is reset independently and uniformly at random. Herman’s algorithm is such that the random configuration is obtained in one step from the full configuration, i.e., the configuration in which every process has a token. The upper bound for the random configuration is far better than the worst-case bound in Theorem 2; in particular, there are three-token configurations for which \(E_T \) is provably larger than the upper bound for the random configuration.

In Theorem 8 we show that for configurations that are obtained from a legitimate configuration by flipping a constant number of process bits, we have \(E_T = O(N) \); i.e., the expected restabilization time is linear in \(N \). This contrasts with the fact that there are configurations, even with only three tokens, that need \(\Omega(N^2) \) expected time for self-stabilization. Intuitively, our result points at a highly desirable—and, to the best of our knowledge, previously unknown—feature of Herman’s protocol: it recovers quickly from bounded errors. This is related to the notion of a time adaptive protocol from [14], which refers to a protocol whose recovery time depends on the number of state-corrupted nodes rather than the total number of nodes.

Full proofs are given in the appendix.

Related Work. One parameter in the design of self-stabilizing algorithms is the number of states per machine. In [9], three different self-stabilizing algorithms with two states per machine are investigated. Only one of those algorithms works in a unidirectional ring, the other algorithms need more connections. The ring algorithm is probabilistic, but it is not symmetric: it requires an “exceptional machine” which executes different code. Herman’s algorithm is mentioned in [9] as another two-state algorithm, but it is criticized by saying “it requires that all machines make moves synchronously which is not easily done”. In this paper, we suggest and analyze an asynchronous variant of Herman’s algorithm, which is symmetric and has only two states per machine.

The protocol of [13], also described in [2], is similar to Herman’s protocol in that tokens are passed on a ring of processors. A scheduler selects a processor among those with a token; the selected processor passes the token to left or right neighbor, with probability 0.5, respectively. Two colliding tokens are merged to a single token. Our analysis of the asynchronous version of Herman’s protocol could possibly be adapted to this protocol, by assuming that a processor passes its token after an exponentially distributed holding time. Of course, the fact that meeting tokens are merged and not annihilated would have to be taken into account.
2 Preliminaries

We assume N processors, with N odd, organized in a ring topology. Each processor may or may not have a token. Herman’s protocol in the traditional synchronous variant \cite{12} works as follows: in each time step, each processor that has a token passes its token to its clockwise neighbor with probability r (where $0 < r < 1$ is a fixed parameter), and keeps it with probability $1 - r$; if a processor keeps its token and receives another token from its counterclockwise neighbor, then both of those tokens are annihilated. Notice that the number of tokens never increases, and can decrease only by even numbers.

Herman’s protocol can be implemented as follows. Each processor possesses a bit, which the processor can read and write. Each processor can also read the bit of its counterclockwise neighbor. In this representation having the same bit as one’s counterclockwise neighbor means having a token. In each time step, each processor compares its bit with the bit of its counterclockwise neighbor; if the bits are different, the processor keeps its bit; if the bits are equal, the processor flips its bit with probability r and keeps it with probability $1 - r$. It is straightforward to verify that this procedure implements Herman’s protocol: in particular a processor flipping its bit corresponds to passing its token to its clockwise neighbor.\footnote{Notice that flipping all bits in a given configuration keeps all tokens in place. In fact, in the original formulation \cite{12}, in each iteration each bit is effectively flipped once more, so that flipping the bit means keeping the token, and keeping the bit means passing the token. The two formulations are equivalent in the synchronous version, but our formulation allows for an asynchronous version.}

We denote the number of initial tokens by M, where $1 \leq M \leq N$. The token representation described above enforces that M be odd. A configuration with only one token is called legitimate. The protocol can be viewed as a Markov chain with a single bottom SCC in which all states are legitimate configurations. So a legitimate configuration is reached with probability 1, regardless of the initial configuration, that is, the system self-stabilizes with probability 1.

In this paper we also propose and analyze an asynchronous variant of Herman’s protocol which works similarly to the synchronous version. The asynchronous variant gives rise to a continuous-time Markov process. Each processor with a token passes the token to its clockwise neighbor with rate λ, i.e., a processor keeps its token for a time that is distributed exponentially with parameter λ, before passing the token to its clockwise neighbor (i.e., flipping its bit). The advantage of this variant is that it does not require processor synchronization. Note that a processor can approximate an exponential distribution by a geometric distribution, that is, it can execute a loop which it leaves with a small fixed probability at each iteration. A more precise approximation can be obtained using a random number generator and precise clocks. For our performance analyses we assume an exact exponential distribution.

Let T denote the time until only one token is left, i.e., until self-stabilization has occurred. In this paper we analyze the random variable T, focusing mainly
on its expectation $\mathbb{E}T$. Many of our results hold for both the synchronous and the asynchronous protocol version.

To aid our analysis we think of the processors as numbered from 1 to N, clockwise, according to their position in the ring. We write $m := (M - 1)/2$. Let $z : \{1, \ldots, M\} \to \{1, \ldots, N\}$ be such that $z(1) < \cdots < z(M)$ and for all $i \in \{1, \ldots, M\}$, the processor $z(i)$ initially has a token; in other words, $z(i)$ is the position of the i-th token. We often write z_{uv} for $z(v) - z(u)$.

3 Bounds on $\mathbb{E}T$ for Arbitrary Configurations

The following proposition gives a precise formula for $\mathbb{E}T$ in both the synchronous and asynchronous protocols in case the number of tokens is $M = 3$.

Proposition 1 (cf. [16]). Let N denote the number of processors and let a, b, c denote the distances between neighboring tokens, so that $a + b + c = N$. For the synchronous protocol with parameter r let $D = r(1 - r)$, and for the asynchronous protocol with parameter λ let $D = \lambda$. Then the expected time to stabilization is

$$\mathbb{E}T = \frac{abc}{DN}.$$

Proposition 1 is shown in [16] for the synchronous case with $r = \frac{1}{2}$. Essentially the same proof works for $0 < r < 1$, and also in the asynchronous case.

We call a configuration with $M = 3$ equally spaced tokens an *equilateral configuration*. If N is an odd multiple of 3 then $a = b = c = N/3$ for the equilateral configuration. If N is not a multiple of 3 then we ask that a, b, c equal either $\lfloor N/3 \rfloor$ or $\lceil N/3 \rceil$. By Proposition 1 the expected stabilization time for an equilateral configuration is $\mathbb{E}T = \frac{N^2}{27}$. It follows that for configurations with $M = 3$ the worst case is $\mathbb{E}T = O(N^2)$ and this case arises for the equilateral configuration.

In fact it has been conjectured in [16] that, for all N, the equilateral configuration is the worst case, not only among the configurations with $M = 3$, but among all configurations. This conjecture is supported by experiments carried out using the probabilistic model checker PRISM—see [2].

Finding upper bounds on $\mathbb{E}T$ in the synchronous case goes back to Herman’s original work [12]. He does not analyze $\mathbb{E}T$ in the journal version, but in his technical report [12], where he proves $\mathbb{E}T \leq N^2[\log N]/2$. He also mentions an improvement to $O(N^2)$ due to Dolev, Israeli, and Moran, without giving a proof or a further reference. In 2005, three papers [10, 16, 17] were published, largely independently, all of them giving improved $O(N^2)$ bounds. In [10] path-coupling methods are applied to self-stabilizing protocols, which lead in the case of Herman’s protocol to the bound $\mathbb{E}T \leq 2N^2$ for the case $r = \frac{1}{2}$. Independently, the authors of [16] claimed $O(N^2)$. Their proof is elementary and also shows $\mathbb{E}T \leq 2N^2$ for the case $r = \frac{1}{2}$. Finally, the author of [17] (being aware of the conference version of [10]) applied the theory of coalescing random walks to Herman’s protocol to obtain $\mathbb{E}T \leq \left(\frac{\pi^2}{8} - 1\right) \cdot \frac{N^2}{\tau(1 - \tau)}$, which is about $0.93N^2$ for
the case \(r = \frac{1}{2} \). By combining results from [17] and [16], we further improve the constant in this bound (by about 32%), and at the same time generalize it to the asynchronous protocol.

Theorem 2. For the synchronous protocol with parameter \(r \) let \(D = r(1 - r) \), and for the asynchronous protocol with parameter \(\lambda \) let \(D = \lambda \). Then, for all \(N \) and for all initial configurations, we have

\[
\mathbb{E}T \leq \left(\frac{\pi^2}{8} - \frac{29}{27} \right) \cdot \frac{N^2}{D}.
\]

Hence, \(\mathbb{E}T \leq 0.64N^2 \) in the synchronous case with \(r = \frac{1}{2} \).

4 Expressions for \(\mathbb{E}T \)

Our analysis of Herman’s protocol exploits the work of Balding [1] on annihilating particle systems. Such systems are a special case of interacting particle systems, which model finitely or infinitely many particles, which, in the absence of interaction, would be modeled as independent Markov chains. Due to particle interaction, the evolution of a single particle is no longer Markovian. Interacting particle systems have applications in many fields, including statistical mechanics, neural networks, tumor growth and spread of infections, see [15]. Balding’s paper [1] is motivated by a scenario from physical chemistry, where particles can be viewed as vanishing on contact, because once two particles have met, they react and are no longer available for reactions afterwards. We refer the reader to [11] and the references therein for more information on such chemical reaction systems.

We transfer results from [1] to Herman’s protocol. The setup is slightly different because, unlike chemical particles, the tokens in Herman’s protocol move only in one direction. This difference is inconsequential, as the state of a system can be captured using only relative token (or particle) distances. Care must be taken though, because Balding does not consider “synchronous” particle movement (this would make no sense in chemistry), but particles moving “asynchronously” or continuously in a Brownian motion.

Given two tokens \(u \) and \(v \) with \(1 \leq u < v \leq M \), we define a random variable \(T_{uv} \) and events \(A_{(uv)\downarrow} \) and \(A_{(uv)\uparrow} \) in terms of a system in which collisions between tokens \(u \) and \(v \) cause \(u \) and \(v \) to be annihilated, but the movement of the other tokens and their possible collisions are ignored. In that system, \(T_{uv} \) denotes the time until \(u \) and \(v \) have collided. Further, let \(A_{(uv)\downarrow} \) and \(A_{(uv)\uparrow} \) denote the events that tokens \(u \) and \(v \) eventually collide down and up, respectively. By colliding down (resp. up) we mean that, upon colliding, the token \(u \) (resp. \(v \)) has caught up with \(v \) (resp. \(u \)) in clockwise direction; more formally, if \(d_u, d_v \geq 0 \) denote the distances travelled in clockwise direction by the tokens until collision, then the collision is said to be down (resp. up) if \(z(u) + d_u = z(v) + d(v) \) (resp. \(z(u) + d_v + N = z(v) + d(u) \)). The behavior of two such tokens is equivalent to
that of a one-dimensional random walk on \{0, \ldots, N\}, started at \(z_{uv}\), with absorbing barriers at 0 and \(N\): the position in the random walk corresponds to the distance between the tokens, and colliding down (resp. up) corresponds to being absorbed at 0 (resp. \(N\)). By this equivalence we have \(\mathcal{P}(A_{(uv)^\downarrow}) = 1 - z_{uv}/N\) and \(\mathcal{P}(A_{(uv)^\uparrow}) = z_{uv}/N\) (see, e.g., [8]).

Proposition 3 below allows to express the distribution of \(T\) in terms of the distribution of \(T_{uv}\), conditioned under \(A_{(uv)^\downarrow}\) and \(A_{(uv)^\uparrow}\), respectively. Those distributions are well-known [8, 3]. For the statement we need to define the set \(W_M\) of all pairings. A pairing is a set \(w = \{(u_1, v_1), \ldots, (u_m, v_m)\}\) with \(1 \leq u_i < v_i \leq M\) for all \(i\), such that there is \(w_0 \in \{1, \ldots, M\}\) with \(\{u_1, v_1, \ldots, u_m, v_m, w_0\} = \{1, \ldots, M\}\). Define \(s(w) = 1\) if the permutation \((u_1 v_1 \cdots u_m v_m w_0)\) is even, and \(s(w) = -1\) otherwise. (This is well-defined: it is easy to see that \(s(w)\) does not depend on the order of the \((u_i, v_i)\).) We have the following proposition:

Proposition 3 (cf. [1, Theorem 2.1]). Let \(M \geq 3\). For all \(t \geq 0\):

\[
\mathcal{P}(T \leq t) = \sum_{w \in W_M} s(w) \prod_{(u, v) \in w} \left(\mathcal{P}(T_{uv} \leq t \cap A_{(uv)^\downarrow}) - \mathcal{P}(T_{uv} \leq t \cap A_{(uv)^\uparrow})\right).
\]

Balding’s Theorem 2.1 in [1] is more general in that it gives a generating function for the number of remaining tokens at time \(t\). Strictly speaking, Balding’s theorem is not applicable to the synchronous version of Herman’s protocol, because he only considers tokens that move according to the asynchronous version (in our terms), and tokens in a Brownian motion. In addition, his proof omits many details, so we give a self-contained proof for Proposition 3 in the appendix.

Theorem 4 below yields an expression for \(\mathbb{E}T\). We define the set \(\overrightarrow{W}_M\) of all directed pairings as the set of all sets \(\overrightarrow{w} = \{(u_1, v_1, d_1), \ldots, (u_m, v_m, d_m)\}\) such that \(\{(u_1, v_1), \ldots, (u_m, v_m)\} \in W_M\) and \(d_i \in \{\downarrow, \uparrow\}\) for all \(i \in \{1, \ldots, m\}\). For a directed pairing \(\overrightarrow{w} = \{(u_1, v_1, d_1), \ldots, (u_m, v_m, d_m)\}\) we define

\[
\overrightarrow{s}(\overrightarrow{w}) := s(\{(u_1, v_1), \ldots, (u_m, v_m)\}) \cdot (-1)^{\{(i|1 \leq i \leq m, \ d_i = \uparrow)\}}
\]

and the event \(A_{\overrightarrow{w}} := \bigcap_{i=1}^m A_{(u_i, v_i)d_i}\). Notice that \(\mathcal{P}(A_{\overrightarrow{w}}) = \prod_{i=1}^m \mathcal{P}(A_{(u_i, v_i)i})\).

Further, we set \(T_{\overrightarrow{w}} := \max\{T_{u_iv_i} | 1 \leq i \leq m\}\). We have the following theorem:

Theorem 4. For \(M \geq 3\):

\[
\mathbb{E}T = \sum_{\overrightarrow{w} \in \overrightarrow{W}_M} \overrightarrow{s}(\overrightarrow{w}) \cdot \mathbb{E}[T_{\overrightarrow{w}} | A_{\overrightarrow{w}}] \cdot \mathcal{P}(A_{\overrightarrow{w}}).
\]

A Finite Expression for \(\mathbb{E}T\). In the rest of the section we focus on the synchronous protocol. We obtain a closed formula for \(\mathbb{E}T\) in Proposition 5 below.

For \(1 \leq u < v < M\), we define \(z_{uv\downarrow} := z_{uv}\) and \(z_{uv\uparrow} := N - z_{uv}\). For sets \(\emptyset \neq \overrightarrow{w} \subseteq \overrightarrow{w} \in \overrightarrow{W}_M\) with \(\overrightarrow{w} = \{(u_1, v_1, d_1), \ldots, (u_k, v_k, d_k)\}\) and \(\overrightarrow{w} = \{(u_1, v_1, d_1), \ldots, (u_k, v_k, d_k)\}\) and \(\overrightarrow{w} = \{(u_1, v_1, d_1), \ldots, (u_k, v_k, d_k)\}\) and
\{(u_1, v_1, d_1), \ldots, (u_m, v_m, d_m)\} we write

\[y_F(\vec{x}, \vec{w}) := \left(\frac{z_{u_1v_1d_1}}{N}, \ldots, \frac{z_{u_mv_md_m}}{N}\right) \quad \text{and} \quad y_G(\vec{x}, \vec{w}) := \left(\frac{z_{u_{k+1}v_{k+1}d_{k+1}}}{N}, \ldots, \frac{z_{u_{m+1}v_{m+1}d_{m}}}{N}\right). \]

Let

\[g(j; y; u) := \frac{\sin(j\pi y) \cdot \sin(j\pi u)}{1 - \cos(j\pi u)} \quad \text{and} \quad h(j; u) := 1 - 2r(1-r)(1 - \cos(j\pi u)), \]

and define, for \(k \in \mathbb{N}_+ \) and \(\ell \in \mathbb{N}_+ \),

\[F_k^{(N)}(y_1, \ldots, y_k) := -\left(-\frac{1}{N}\right)^k \sum_{j=\{1,\ldots,N-1\}^k} \frac{\prod_{i=1}^k g(j(i), y_i; 1/N)}{1 - \prod_{i=1}^k h(j(i); 1/N)} \quad \text{and} \quad G_\ell(y_1, \ldots, y_\ell) := \prod_{i=1}^\ell (1 - y_i). \]

We drop the subscripts of \(F_k^{(N)} \) and \(G_\ell \), if they are understood. Observe that \(F^{(N)} \) and \(G \) are continuous and do not depend on the order of their arguments. The following proposition gives, for the synchronous protocol, a concrete expression for \(\mathbb{E}T \).

Proposition 5. Consider the synchronous protocol. For \(M \geq 3 \):

\[
\mathbb{E}T = \sum_{\vec{w} \in \mathcal{W}_M} \nu(\vec{w}) \sum_{\emptyset \neq \vec{x} \subseteq \vec{w}} F^{(N)}(y_F(\vec{x}, \vec{w})) \cdot G(y_G(\vec{x}, \vec{w})).
\]

An Approximation for \(\mathbb{E}T \). The function \(F^{(N)} \) in Proposition 5 depends on \(N \), and also on \(r \). This prohibits a deeper analysis as needed in Section 6. Proposition 6 gives an approximation of \(\mathbb{E}T \) without those dependencies. To state it, we define, for \(k \in \mathbb{N}_+ \), a function \(\tilde{F}_k : [0, 1]^k \to \mathbb{R} \) with

\[
\tilde{F}_k(y_1, \ldots, y_k) = -\frac{1}{\pi^2} \left(-\frac{2}{\pi}\right)^k \sum_{j \in \mathbb{N}_k} \frac{\prod_{i=1}^k \sin(jy_i\pi)}{\left(\prod_{i=1}^k j(i)\right) \left(\sum_{i=1}^k j(i)^2\right)}. \]

We drop the subscript of \(\tilde{F}_k \), if it is understood. It follows from Lemma 15 in the appendix that the series in \(\tilde{F}_k \) converges. We have the following proposition.

Proposition 6. Consider the synchronous protocol. Let

\[
\tilde{E} := \frac{N^2}{r(1-r)} \sum_{\vec{w} \in \mathcal{W}_M} \nu(\vec{w}) \sum_{\emptyset \neq \vec{x} \subseteq \vec{w}} \tilde{F}(y_F(\vec{x}, \vec{w})) \cdot G(y_G(\vec{x}, \vec{w})).
\]

Then, for each fixed \(M \geq 3 \) and \(r \in \left(\frac{1}{2} - \frac{\sqrt{37}}{6} \cdot \frac{1}{2} + \frac{\sqrt{37}}{6}\right) \approx (0.12, 0.88) \) and \(\varepsilon > 0 \),

\[
\mathbb{E}T = \tilde{E} + O(N^\varepsilon).
\]

The proof of Proposition 6 is elementary but involved.
5 The Full Configuration

In this section we consider the initial configuration in which every processor has a token, i.e., \(N = M \). We call this configuration full. Notice that in the full configuration, with all bits set to 0, in the successor configuration each bit is independently set to 1 with probability \(r \). Thus we study the full configuration in lieu of the random configuration. We have the following theorem:

Theorem 7. For the synchronous protocol with parameter \(r \) let \(D = r(1-r) \). For the asynchronous protocol with parameter \(\lambda > 0 \) let \(D = \lambda \). For almost all odd \(N \in \mathbb{N}_+ \), we have for the full configuration:

\[
\mathbb{E}T \leq 0.0285N^2/D \quad \text{and} \quad \mathbb{P}(T \geq 0.02N^2/D) < 0.5.
\]

Recall from Proposition 1 that, for \(N \) an odd multiple of 3, we have \(\mathbb{E}T = \frac{1}{27}N^2 \approx 0.0370N^2 \) if we start from the equilateral configuration. It follows that, for large \(N \), the full configuration (with \(M = N \)) stabilizes faster than the equilateral configuration (with \(M = 3 \)). This is consistent with the aforementioned conjecture of McIver and Morgan that the equilateral configuration with \(M = 3 \) is the worst case among all configurations for a fixed \(N \).

6 Restabilization

In this section we restrict attention to the synchronous version of Herman’s algorithm and consider the standard bit-array implementation. Theorem 2 shows that the worst-case expected time to termination, considering all initial configurations, is \(\mathbb{E}T = O(N^2) \). We imagine that an initial configuration represents the state of the system immediately after an error, that is, the ring of tokens has become illegitimate because some of positions in the bit array were corrupted. In this light a natural restriction on initial configurations is to consider those that arise from a one-token configuration by corrupting some fixed number \(m \) of bits. We call these flip-\(m \) configurations. Notice that, by the token representation in Herman’s protocol, a single bit error can lead to the creation of two neighboring tokens. So, \(m \) bit errors could lead to the creation of \(m \) new pairs of neighboring tokens. It could also happen that two bit errors affect neighboring bits, leading to a new pair of tokens at distance 2. To account for this, we characterize flip-\(m \) configuration as those with at most \(2m + 1 \) tokens such that the tokens can be arranged into pairs, each pair at distance at most \(m \), with one token left over.

Fixing the number of bit errors we show that the expected time to restabilization improves to \(O(N) \). Formally we show:

Theorem 8. Consider the synchronous protocol. Fix any \(m \in \mathbb{N}_+ \) and \(r \in \left(\frac{1}{2} - \frac{\sqrt{27}}{6}, \frac{1}{2} + \frac{\sqrt{27}}{6} \right) \approx (0.12, 0.88) \). Then for any flip-\(m \) configuration we have \(\mathbb{E}T = O(N) \).
Proof. It suffices to consider flip-\(m \) configurations with \(M = 2m + 1 \) tokens. Without loss of generality, we assume that, when removing token 2, the token pairs \((1, 2), (3, 4), \ldots, (2m - 1, 2m)\) have distances at most \(m \); i.e., we assume \(z(u + 1) - z(u) \leq m \) for all odd \(u \) between 1 and \(2m - 1 \).

For each directed pairing \(\bar{w} \in \overrightarrow{W}_M \), we define its class \(Cl(\bar{w}) \) and its companion pairing \(\bar{w}' \in \overrightarrow{W}_M \). For the following definition, we define \(\bar{u} := u + 1 \), if \(u \) is odd, and \(\bar{u} := u - 1 \), if \(u \) is even.

- If \((u, M, d) \in \bar{w} \) for some \(u \), then \(Cl(\bar{w}) = 0 \). Its companion pairing is obtained, roughly speaking, by \(u \) and \(\bar{u} \) switching partners. More precisely:
 - If \((\bar{u}, v, d') \) (resp. \((v, \bar{u}, d')) \) for some \((v, d') \), then the companion pairing of \(w \) is obtained by replacing \((u, M, d) \) and \((\bar{u}, v, d') \) with \((u, M, d) \) and \((v, \bar{u}, d') \) (resp. \((v, u, d') \)).
 - Otherwise (i.e., \(\bar{u} \) does not have a partner), the companion pairing of \(w \) is obtained by replacing \((u, M, d) \) with \((\bar{u}, M, d) \).
- If \(\bar{w} = \{(1, 2, d_1), (3, 4, d_2), \ldots, (M - 2, M - 1, d_m)\} \) for some \(d_1, \ldots, d_m \), then \(Cl(\bar{w}) = m \). In this case, \(\bar{w} \) does not have a companion pairing.
- Otherwise, \(Cl(\bar{w}) \) is the greatest number \(i \) such that for all \(1 \leq j \leq i - 1 \), the tokens \(2j - 1 \) and \(2j \) are partners (i.e., \((2j - 1, 2j, d)\) for some \(d \)). Notice that \(0 < Cl(\bar{w}) < m \). The companion pairing of \(\bar{w} \) is obtained by \(2i - 1 \) and \(2i \) switching partners.

It is easy to see that, for any \(\bar{w} \in \overrightarrow{W}_M \) with \(Cl(\bar{w}) < m \), we have \(Cl(\bar{w}') = Cl(\bar{w}) \), and the companion pairing of \(\bar{w}' \) is \(\bar{w} \), and \(\nabla(\bar{w}) = -\nabla(\bar{w}') \). Partition \(\overrightarrow{W}_M \) into the following sets:

\[
\overrightarrow{W}_M^{(+)} := \{ \bar{w} \in \overrightarrow{W}_M \mid Cl(\bar{w}) < m \text{ and } \nabla(\bar{w}) = +1 \} \quad \text{and} \quad \overrightarrow{W}_M^{(-)} := \{ \bar{w} \in \overrightarrow{W}_M \mid Cl(\bar{w}) < m \text{ and } \nabla(\bar{w}) = -1 \} \quad \text{and} \quad \overrightarrow{W}_M^{(m)} := \{ \bar{w} \in \overrightarrow{W}_M \mid Cl(\bar{w}) = m \}.
\]

The idea of this proof is that, in the sum of Proposition 6, the terms from \(\overrightarrow{W}_M^{(+)} \cup \overrightarrow{W}_M^{(-)} \) cancel each other “almost” out, and the terms from \(\overrightarrow{W}_M^{(m)} \) are small. To simplify the notation in the rest of the proof, let \(y(\bar{x}, \bar{w}) := (y_F(\bar{x}, \bar{w}), y_G(\bar{x}, \bar{w})) \) and \(H(y(\bar{x}, \bar{w})) := F(y_F(\bar{x}, \bar{w})) \cdot G(y_G(\bar{x}, \bar{w})) \). Since \(F \) and \(G \) are continuous and bounded, so is \(H \).

- Let \((\bar{x}, \bar{w}) \) with \(\bar{x} \subseteq \bar{w} \in \overrightarrow{W}_M^{(+)} \cup \overrightarrow{W}_M^{(-)} \). To any such \((\bar{x}, \bar{w}) \) we associate a companion \((\bar{x}', \bar{w}') \) such that \(\bar{w}' \) is the companion pairing of \(\bar{w} \), and \(\bar{x}' \subseteq \bar{x}' \) is obtained from \(\bar{x} \) in the following way: if \(\bar{w}' \) is obtained from \(\bar{w} \) by replacing one or two triples \((u, v, d) \), then \(\bar{x}' \) is obtained by performing the same replacements on \(\bar{x} \) (of course, only if \((u, v, d) \in \bar{x} \)). Note that \(y(\bar{x}, \bar{w}) \) and \(y(\bar{x}', \bar{w}') \) are equal in all components, except for one or two components, where they differ by at most \(\frac{1}{m} \). Hence we have (for constant \(m \))

\[
y(\bar{x}', \bar{w}') = y(\bar{x}, \bar{w}) + O(1/N) \cdot (1, \ldots, 1).
\]
Since H is continuous, it follows
\[H(y(\vec{x}', \vec{w}')) = H(y(\vec{x}, \vec{w})) + O(1/N). \]

Let (\vec{x}, \vec{w}) with $\vec{x} \subseteq \vec{w} \in W_M^{(m)}$. Note that all components of $y_f(\vec{x}, \vec{w})$ are at most $\frac{m}{N}$ or at least $1 - \frac{m}{N}$. Also note that for any vector $e \in \{0, 1\}^{|\vec{x}|}$ it holds $H(e, y_G(\vec{x}, \vec{w})) = 0$. Since H is continuous, it follows
\[H(y(\vec{x}, \vec{w})) = O(1/N). \]

Take $0 < \varepsilon < 1$. By Proposition 6 and the above considerations, we have:

\[
\mathbb{E}T = O(N^\varepsilon) + \frac{N^2}{r(1-r)} \sum_{\vec{w} \in W_M} \overline{s}(\vec{w}) \sum_{\emptyset \neq \vec{x} \subseteq \vec{w}} H(y(\vec{x}, \vec{w}))
\]
\[
= O(N^\varepsilon) + \frac{N^2}{r(1-r)} \left(\sum_{\vec{w} \in W_M^{(+)}} \overline{s}(\vec{w}) \sum_{\emptyset \neq \vec{x} \subseteq \vec{w}} H(y(\vec{x}, \vec{w})) - \sum_{\emptyset \neq \vec{x}' \subseteq \vec{w}'} H(y(\vec{x}', \vec{w}')) \right)
\]
\[
+ \sum_{\vec{w} \in W_M^{(m)}} \sum_{\emptyset \neq \vec{x} \subseteq \vec{w}} H(y(\vec{x}, \vec{w}))
\]
\[
= O(N^\varepsilon) + \frac{N^2}{r(1-r)} \left(\sum_{\vec{w} \in W_M^{(+)}} \overline{s}(\vec{w}) \sum_{\emptyset \neq \vec{x} \subseteq \vec{w}} O(1/N)
\]
\[
+ \sum_{\vec{w} \in W_M^{(m)}} \sum_{\emptyset \neq \vec{x} \subseteq \vec{w}} O(1/N) \right)
\]
\[
= O(N^\varepsilon) + O(N) = O(N).
\]

\[\square\]

7 Conclusions and Future Work

We have obtained several results on the expected self-stabilization time $\mathbb{E}T$ in Herman’s algorithm. We have improved the best-known upper bound for arbitrary configurations, and we have given new and significantly better bounds for special classes of configurations: the full configuration, the random configuration, and, in particular, for configurations that arise from a fixed number of bit errors. For the latter class, $\mathbb{E}T$ reduces to $O(N)$, pointing to a previously unknown feature that Herman’s algorithm recovers quickly from bounded errors. We have also shown that an asynchronous version of Herman’s algorithm not requiring synchronization behaves similarly. For our analysis, we have transferred techniques that were designed for the analysis of chemical reactions.
The conjecture of [16], saying that the equilateral configuration with three tokens constitutes the worst-case, remains open. We hope to exploit our closed-form expression for E_T to resolve this intriguing problem. While we have already shown that many relevant initial configurations provably converge faster, solving this conjecture would close the gap between the lower and upper bounds for stabilization time for arbitrary configurations. We would also like to investigate the performance of the algorithm in case the number of bit errors is not fixed, but is small (e.g., logarithmic) in the number of processes.

References

1. D. Balding. Diffusion-reaction in one dimension. *J. Appl. Prob.*, 25:733–743, 1988.
2. PRISM case studies. Randomised self-stabilising algorithms. http://www.prismmodelchecker.org/casestudies/self-stabilisation.php.
3. D. Cox and H. Miller. *The theory of stochastic processes*. Chapman & Hall/CRC, 2001.
4. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. *Commun. ACM*, 17(11):643–644, 1974.
5. S. Dolev. *Self-Stabilization*. MIT Press, 2000.
6. R. Durrett and H. Kesten (eds). *Random Walks, Brownian Motion and Interacting Particle Systems*. Birkhauser Verlag AG, 1991.
7. W. Feller. *An introduction to probability theory and its applications*, volume 2. John Wiley & Sons, 1966.
8. W. Feller. *An introduction to probability theory and its applications*, volume 1. John Wiley & Sons, 1968.
9. M. Flatebo and A.K. Datta. Two-state self-stabilizing algorithms for token rings. *IEEE Trans. Softw. Eng.*, 20(6):500–504, 1994.
10. L. Fribourg, S. Messika, and C. Picaronny. Coupling and self-stabilization. *Distributed Computing*, 18:221–232, 2005.
11. S. Habib, K. Lindenberg, G. Lythe, and C. Molina-Paris. Diffusion-limited reaction in one dimension: Paired and unpaired nucleation. *Journal of Chemical Physics*, 115:73–89, 2001.
12. T. Herman. Probabilistic self-stabilization. *Information Processing Letters*, 35(2):63–67, 1990. Technical Report at ftp://ftp.math.uiowa.edu/pub/selfstab/H90.html.
13. A. Israeli and M. Jalfon. Token management schemes and random walks yield self-stabilizing mutual exclusion. In *Proceedings of PODC’90*, pages 119–131. ACM, 1990.
14. S. Kutten and B. Patt-Shamir. Stabilizing time-adaptive protocols. *Theor. Comput. Sci.*, 220(1):93–111, 1999.
15. T.M. Liggett. *Interacting particle systems*. Springer, 2005.
16. A. McIver and C. Morgan. An elementary proof that Herman’s ring is $\Theta(n^2)$. *Inf. Process. Lett.*, 94(2):79–84, 2005.
17. T. Nakata. On the expected time for Herman’s probabilistic self-stabilizing algorithm. *Theoretical Computer Science*, 349(3):475–483, 2005.
18. M. Schneider. Self-stabilization. *ACM Comput. Surv.*, 25(1):45–67, 1993.
A Proof of Theorem 2

Here is a restatement of Theorem 2:

Theorem 2. For the synchronous protocol with parameter \(r \) let \(D = r(1 - r) \), and for the asynchronous protocol with parameter \(\lambda \) let \(D = \lambda \). Then, for all \(N \) and for all initial configurations, we have

\[
\mathbb{E}T \leq \left(\frac{\pi^2}{8} - \frac{29}{27} \right) \cdot \frac{N^2}{D}.
\]

Hence, \(\mathbb{E}T \leq 0.64N^2 \) in the synchronous case with \(r = \frac{1}{2} \).

Proof. We build upon the proof in [17] for the synchronous case, which works as follows. For \(M \geq 3 \), let \(\tau_M \) denote the maximal expected time for a configuration with \(M \) tokens to reach a configuration with fewer than \(M \) tokens, where the maximum is taken over all \(M \)-token configurations. It is shown that \(\tau_M \leq \frac{N^2}{\pi^2} \cdot \frac{1}{M^2} \). Since \(\mathbb{E}T \leq \tau_3 + \tau_5 + \tau_7 + \cdots \) and \(\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8} \), it follows that \(\mathbb{E}T \leq \left(\frac{\pi^2}{8} - 1 \right) \cdot \frac{N^2}{D} \). We obtain the improvement by replacing the bound \(\tau_M \leq \frac{1}{M^2} \frac{N^2}{\pi^2} \) with \(\tau_M \leq \frac{1}{M^2} \frac{N^2}{\pi^2} \), which follows from Proposition 1 and the comments below the proposition.

To generalize the result to the asynchronous case, one needs to show that \(\tau_M \leq \frac{1}{M^2} \frac{N^2}{\pi^2} \) also holds in the asynchronous case. Before showing how to suitably adapt the proof in [17] for the synchronous case, let \(M \geq 3 \). For a configuration \(c \) with at most \(M \) tokens, define \(\delta_M(c) \) as follows: if \(c \) has less than \(M \) tokens, then \(\delta_M(c) = 0 \); otherwise \(\delta_M(c) \) is the minimal token distance in \(c \). Let \(c' \) the successor configuration of \(c \). Note that \(\delta_M(c) \) and \(\delta_M(c') \) differ by at most 1. Also note that a given token pair decreases its distance by 1 with probability \(r(1 - r) \), because one token must be passed, the other one kept. Similarly, the distance is increased by 1 also with probability \(r(1 - r) \). For the event that \(\delta_M \) decreases by 1, it suffices that the distance decreases for one token pair among those that define the minimal distance \(\delta_M(c) \). For the event that \(\delta_M \) increases by 1, the distance must increase for all token pairs which define \(\delta_M(c) \). It follows:

\[
\mathcal{P} (\delta_M(c') = \delta_M(c) - 1 \mid c \text{ and } 1 \leq \delta_M(c) \leq \lfloor N/M \rfloor) \geq r(1 - r)
\]

\[
\mathcal{P} (\delta_M(c') = \delta_M(c) + 1 \mid c \text{ and } 1 \leq \delta_M(c) \leq \lfloor N/M \rfloor - 1) \leq r(1 - r).
\]

This process is compared in [17] with the following random walk on \(\{0, \ldots, \lfloor N/M \rfloor\} \), absorbing at state 0:

\[
\mathcal{P} (X' = X - 1 \mid 1 \leq X \leq \lfloor N/M \rfloor) = r(1 - r)
\]

\[
\mathcal{P} (X' = X + 1 \mid 1 \leq X \leq \lfloor N/M \rfloor - 1) = r(1 - r)
\]

\[
\mathcal{P} (X' = X \mid X = \lfloor N/M \rfloor - 1) = 1 - 2r(1 - r)
\]

\[
\mathcal{P} (X' = X \mid X = \lfloor N/M \rfloor) = 1 - r(1 - r).
\]
It is argued there that the expected time to hit 0 in this random walk is an upper bound on the expected time to hit a configuration \(c \) with \(\delta_M(c) = 0 \), and hence also on \(\tau_M \). The expected time to hit 0 in the random walk is maximized when starting at \(X = \lfloor N/M \rfloor \), in which case the expected time is \(\frac{N/M}{(N/M+1)} \leq \frac{N^2}{M} \).

This argument can be adapted to the asynchronous protocol in a straightforward way: Arguing similarly as above, the rate in which \(\delta_M \) decreases by 1 is at least \(\lambda \), and the rate in which \(\delta_M \) increases by 1 is at most \(\lambda \). We compare this process with a continuous-time Markov chain on \(\{0, \ldots, [N/M]\} \), absorbing at state 0:

- the rate in which \(X \) is decreased by 1 is \(\lambda \);
- the rate in which \(X \) is increased by 1 is \(\lambda \) if \(1 \leq X \leq \lfloor N/M \rfloor - 1 \); and 0 if \(X = \lfloor N/M \rfloor \).

Analogous arguments yield

\[
\tau_M \leq \frac{[N/M]([N/M]+1)}{2\lambda} \leq \frac{1}{M^2} \cdot \frac{N^2}{D}.
\]

\[\square\]

B Proof of Proposition 3

The proof follows the one of Theorem 2.1 of [1], but is more detailed and applies also to the synchronous version of Herman’s protocol.

We first prove the following lemma.

Lemma 9. Let \(M \geq 3 \). Denote, for \(1 \leq u < v \leq M \), by \(T_{uv} \) the time until one token is left, in a system with \(M - 2 \) tokens obtained by removing the \(u \)-th and the \(v \)-th token. Then, for all \(t \geq 0 \):

\[
\mathcal{P}(T \leq t) = \frac{1}{m} \sum_{1 \leq u < v \leq M} (-1)^{v-u-1} \left(\mathcal{P}(T_{uv} \leq t \cap A_{(uv)\downarrow}) - \mathcal{P}(T_{uv} \leq t \cap A_{(uv)\uparrow}) \right) \mathcal{P}(T_{-uv} \leq t).
\]

Proof. Consider, for \(1 \leq u < v \leq M \), the expression

\[
(\mathcal{P}(T_{uv} \leq t \cap A_{(uv)\downarrow}) - \mathcal{P}(T_{uv} \leq t \cap A_{(uv)\uparrow})) \mathcal{P}(T_{-uv} \leq t) = \mathcal{P}(T_{uv} \leq t \cap A_{(uv)\downarrow}) \mathcal{P}(T_{-uv} \leq t) - \mathcal{P}(T_{uv} \leq t \cap A_{(uv)\uparrow}) \mathcal{P}(T_{-uv} \leq t).
\]

We wish to define events \(D_{(uv)\downarrow} \) and \(D_{(uv)\uparrow} \) such that

\[
\mathcal{P}(D_{(uv)\downarrow}) = \mathcal{P}(T_{uv} \leq t \cap A_{(uv)\downarrow}) \mathcal{P}(T_{-uv} \leq t)
\]

and

\[
\mathcal{P}(D_{(uv)\uparrow}) = \mathcal{P}(T_{uv} \leq t \cap A_{(uv)\uparrow}) \mathcal{P}(T_{-uv} \leq t).
\]
This can be done as follows. Call the tokens \(u \) and \(v \) red, and the other tokens green. Think of a system in which red and green tokens do not interact, i.e., red-green meetings do not cause annihilations. Meeting tokens of the same color are however annihilated. Then \(D_{(uv)\downarrow} \) can be defined as the event that, by time \(t \), the red tokens \(u \) and \(v \) have met down, and all other tokens have annihilated, except for one remaining (green) token. The event \(D_{(uv)\uparrow} \) is defined similarly.

With this definition, the expression in (1) is equal to \(P \left(D_{(uv)\downarrow} \right) - P \left(D_{(uv)\uparrow} \right) \).

Now we partition the event \(D_{(uv)\downarrow} \) according to the first red-green meeting as follows:

\[
D_{(uv)\downarrow} = D_{(uv)\downarrow}^0 \cup \bigcup_{p \in \{u,v\}} D_{(uv)\downarrow}^{pq},
\]

where the unions are disjoint, \(D_{(uv)\downarrow}^{pq} \) is the event that the first red-green meeting is between \(p \) and \(q \), and \(D_{(uv)\downarrow}^0 \) is the event that no red-green meeting occurs. If it happens that \(u \) and \(v \) have their first meeting with a green token (say, with \(g_u \) and \(g_v \), respectively) at the same time, then we count this sample run in \(D_{(uv)\downarrow}^{g_u, g_v} \).

The event \(D_{(uv)\uparrow} \) is partitioned similarly; in particular, if \(u \) and \(v \) have their first meeting with a green token (say, with \(g_u \) and \(g_v \), respectively) at the same time, then we count this sample run in \(D_{(uv)\uparrow}^{g_u, g_v} \).

We show that each nonempty event \(D_{(uv)\downarrow}^{pq} \) has a “companion” event with the same probability.

- Consider \(D_{(uv)\downarrow}^{ug} \) with \(g < v \). Its companion event is \(D_{(gv)\downarrow}^{gu} \). In order to prove that those events have the same probability, we establish a bijection between \(D_{(uv)\downarrow}^{ug} \) and \(D_{(gv)\downarrow}^{gu} \). The bijection \(b \) is defined as follows: Let \(\omega \) be a sample run (up to time \(t \)) of \(D_{(uv)\downarrow}^{ug} \). Let \(t_0 \leq t \) be the time of the first red-green meeting in \(\omega \), i.e., \(u \) and \(g \) meet at \(t_0 \). Then \(b(\omega) \) equals \(\omega \), except that after time \(t_0 \), the movement of token \(u \) in \(b(\omega) \) is the movement of token \(g \) in \(\omega \), and the movement of token \(g \) in \(b(\omega) \) is the movement of token \(u \) in \(\omega \). By the reflection principle, \(\omega \) and \(b(\omega) \) have the same probability. Furthermore, it is straightforward to verify that any sample run \(\omega \) is in \(D_{(uv)\downarrow}^{ug} \) if and only if \(b(\omega) \in D_{(gv)\downarrow}^{gu} \).

Note that \(D_{(uv)\downarrow}^{ug} \) and \(D_{(gv)\downarrow}^{gu} \) are nonempty only if \(u - g \) is odd, because all tokens between \(u \) and \(g \) must annihilate, so their number must be even.

- Similarly, for \(g > v \), the companion event of \(D_{(uv)\downarrow}^{ug} \) is \(D_{(vg)\uparrow}^{gu} \). The events are nonempty only if \(u - g \) is even.

- For \(g < u \), the companion event of \(D_{(uv)\downarrow}^{ug} \) is \(D_{(gu)\uparrow}^{gu} \). The events are nonempty only if \(v - g \) is even.

- For \(g > u \), the companion event of \(D_{(uv)\downarrow}^{ug} \) is \(D_{(ug)\downarrow}^{gu} \). The events are nonempty only if \(u - g \) is odd.

Similarly, there is a companion event to each nonempty event \(D_{(uv)\downarrow}^{pq} \). Letting RHS denote the right hand side of the equation in the statement of the lemma,
we have:

\[\text{RHS} = \frac{1}{m} \sum_{1 \leq u < v \leq M} (-1)^{v-u-1} \left(P \left(T_{uv} \leq t \cap A_{(uv)\downarrow} \right) - P \left(T_{uv} \leq t \cap A_{(uv)\uparrow} \right) \right) P \left(T_{uv} \leq t \right) \]

\[= \frac{1}{m} \sum_{1 \leq u < v \leq M} (-1)^{v-u-1} \left(P \left(D_{(uv)\downarrow} \right) - P \left(D_{(uv)\uparrow} \right) \right) \]

\[= \frac{1}{m} \sum_{1 \leq u < v \leq M} (-1)^{v-u-1} \left(P \left(D_{(uv)0}^{\downarrow} \right) - P \left(D_{(uv)0}^{\uparrow} \right) \right), \]

where the last equality is because the probabilities of the events \(D_{(uv)0}^{\downarrow} \) and \(D_{(uv)0}^{\uparrow} \) cancel with the probabilities of their respective companion events.

The event \(D_{(uv)0}^{\downarrow} \) is nonempty if and only if \(v - u \) is odd; similarly, \(D_{(uv)0}^{\uparrow} \) is nonempty if and only if \(v - u \) is even. Hence, we have

\[\text{RHS} = \frac{1}{m} \sum_{1 \leq u < v \leq M} P \left(D_{(uv)0}^{-} \right), \]

where \(D_{(uv)0} := D_{(uv)\downarrow} \cup D_{(uv)\uparrow} \). Note that \(D_{(uv)0} \) contains exactly those sample runs in which, under the normal annihilation rules, by time \(t \), the tokens \(u \) and \(v \) have met and annihilated, and all other tokens except for one have also annihilated.

Recall that \(W_M \) is the set of pairings. For any pairing \(w = \{(u_1, v_1), \ldots, (u_m, v_m)\} \in W_M \) we denote by \(E_w \) the event that, by time \(t \), for all \(i \in \{1, \ldots, m\} \), the tokens \(u_i \) and \(v_i \) have met and annihilated (under the normal annihilation rules). Note that

\[D_{(uv)0} = \bigcup_{w: (u,v) \in w \in W_M} E_w, \]

where the union is disjoint. Hence, we have:

\[\text{RHS} = \frac{1}{m} \sum_{1 \leq u < v \leq M} P \left(D_{(uv)0}^{-} \right) \]

\[= \frac{1}{m} \sum_{1 \leq u < v \leq M} \sum_{w: (u,v) \in w \in W_M} P \left(E_w \right) \]

\[= \sum_{w \in W_M} P \left(E_w \right) \]

\[= P \left(\bigcup_{w \in W_M} E_w \right) \]

\[= P \left(T \leq t \right), \]

which concludes the proof of the lemma. \(\square \)
Now we can prove Proposition 3 which is restated here.

Proposition 3. Let $M \geq 3$. For all $t \geq 0$:

$$P(T \leq t) = \sum_{w \in W_M} s(w) \prod_{(u,v) \in w} \left(P(T_{uv} \leq t \cap A_{(uv)\uparrow}) - P(T_{uv} \leq t \cap A_{(uv)\uparrow}) \right).$$

Proof. The proof is by induction on $M = 3, 5, 7, \ldots$. The case $M = 3$ is immediate from Lemma 9. (Notice in particular that $P(T_{uv} \leq t) = 1$ if $M = 3$.)

For the induction step, let $M \geq 5$. By Lemma 9 we have

$$P(T \leq t) = \frac{1}{m} \sum_{1 \leq u < v \leq M} (-1)^{v-u-1} \left(P(T_{uv} \leq t \cap A_{(uv)\downarrow}) - P(T_{uv} \leq t \cap A_{(uv)\downarrow}) \right) P(T_{uv} \leq t).$$

For $1 \leq u < v \leq M$, we define the set W_{-uv} similarly to the set W_M, but W_{-uv} is the set of pairings on $\{1, \ldots, M\} \setminus \{u, v\}$ rather than on $\{1, \ldots, M\}$. Similarly, for $w' \in W_{-uv}$, the number $s'(w') \in \{-1, +1\}$ is defined as $s(w)$, but depending on the parity of the permutation of $\{1, \ldots, M\} \setminus \{u, v\}$. Applying the induction hypothesis we have:

$$P(T \leq t) = \frac{1}{m} \sum_{1 \leq u < v \leq M} (-1)^{v-u-1} \left(P(T_{uv} \leq t \cap A_{(uv)\downarrow}) - P(T_{uv} \leq t \cap A_{(uv)\downarrow}) \right) \sum_{w' \in W_{-uv}} s'(w') \prod_{(u',v') \in w'} \left(P(T_{u'v'} \leq t \cap A_{(u'v')\downarrow}) - P(T_{u'v'} \leq t \cap A_{(u'v')\downarrow}) \right).$$

We claim that for any $w' \in W_{-uv}$, we have $(-1)^{v-u-1}s'(w') = s(w \cup \{(u, v)\})$. To see this, assume $w' = \{(u_1, v_1), \ldots, (u_{m-1}, v_{m-1})\}$ and $\{u_1, v_1, \ldots, u_{m-1}, v_{m-1}, w_0\} = \{1, \ldots, M\} \setminus \{u, v\}$. We need to argue that the parities of the permutations $p_1 = (u_1v_1 \cdots u_{m-1}v_{m-1}w_0)$ and $p_2 = (uv_1u_1v_1 \cdots u_{m-1}v_{m-1}w_0)$ are equal if and only if $v - u$ is odd. It suffices to argue that adding u, v at the front of p_1 adds an even number of inversions in the permutation, if and only if $v - u$ is odd. Since $u < v$, the pair (u, v) is not an inversion. For $x < u$, both (u, x) and (v, x) are inversions. For $x > v$, neither (u, x) nor (v, x) are inversions. For $x \in \{u + 1, \ldots, v - 1\}$, the pair (u, x) is not an inversion, but (v, x) is. There is an even number of such x, if and only if $v - u$ is odd. This proves the claim. It follows:

$$P(T \leq t) = \frac{1}{m} \sum_{1 \leq u < v \leq M} s(w) \sum_{w' \in W_M} \prod_{(u,v) \in w} \left(P(T_{uv} \leq t \cap A_{(uv)\downarrow}) - P(T_{uv} \leq t \cap A_{(uv)\downarrow}) \right)$$

$$= \sum_{w \in W_M} s(w) \prod_{(u,v) \in w} \left(P(T_{uv} \leq t \cap A_{(uv)\downarrow}) - P(T_{uv} \leq t \cap A_{(uv)\downarrow}) \right),$$

which completes the induction proof.

\[\square \]
C Proof of Theorem 4

Theorem 4 is restated here:

Theorem 4. Let \(M \geq 3 \). For all \(t \geq 0 \):

\[
P(T \leq t) = \sum_{w \in W_M} s(w) \prod_{(u,v) \in w} \left(P(T_{uv} \leq t \cap A_{(uv)_\downarrow}) - P(T_{uv} \leq t \cap A_{(uv)_\uparrow}) \right).
\]

Proof. By Proposition 3 we have:

\[
P(T > t) = 1 - P(T \leq t)
= 1 - \sum_{w \in W_M} s(w) \prod_{(u,v) \in w} \left(P(T_{uv} \leq t \cap A_{(uv)_\downarrow}) - P(T_{uv} \leq t \cap A_{(uv)_\uparrow}) \right)
= 1 - \sum_{\vec{w} \in \overrightarrow{W}_M} \overrightarrow{s}(\vec{w}) \prod_{(u,v,d) \in \vec{w}} P(T_{uv} \leq t \cap A_{(uv)_d})
= 1 - \sum_{\vec{w} \in \overrightarrow{W}_M} \overrightarrow{s}(\vec{w}) \cdot P(T_{\vec{w}} \leq t \cap A_{\vec{w}}).
\]

(2)

The Markov chain associated with Herman’s protocol has a unique bottom SCC. Hence, \(P(T = \infty) = 0 \). Similarly, \(P(T_{\vec{w}} = \infty) = 0 \) for all \(\vec{w} \in \overrightarrow{W}_M \). By (2) it follows

\[1 = \sum_{\vec{w} \in \overrightarrow{W}_M} \overrightarrow{s}(\vec{w}) \cdot P(A_{\vec{w}}),\]

and hence

\[
P(T > t) = \sum_{\vec{w} \in \overrightarrow{W}_M} \overrightarrow{s}(\vec{w}) \cdot P(T_{\vec{w}} > t \cap A_{\vec{w}})
= \sum_{\vec{w} \in \overrightarrow{W}_M} \overrightarrow{s}(\vec{w}) \cdot P(T_{\vec{w}} > t | A_{\vec{w}}) \cdot P(A_{\vec{w}}).
\]

(3)

For any random variable \(X \) on \(\{0, 1, \ldots\} \), it is known that \(\mathbb{E}X = \sum_{t=0}^{\infty} \mathbb{P}(X > t) \).

Similarly, if \(X \) is on \([0, \infty) \), then \(\mathbb{E}X = \int_{t=0}^{\infty} \mathbb{P}(X > t) \, dt \), see [8]. Hence, summing or integrating (3) over \(t \) yields the result.

\[\square\]

D Proof of Proposition 5

Proposition 5 is restated here.

Proposition 5. Consider the synchronous protocol. For \(M \geq 3 \):

\[
ET = \sum_{\vec{w} \in \overrightarrow{W}_M} \overrightarrow{s}(\vec{w}) \sum_{\emptyset \neq \vec{x} \subseteq \vec{w}} F^{(N)}(y_F(\vec{x}, \vec{w})) \cdot G(y_G(\vec{x}, \vec{w})).
\]
Proof. Given \(\overrightarrow{w} \in \overrightarrow{W_M} \) and any \(\overrightarrow{x} \subseteq \overrightarrow{w} \), we define \(A_{\overrightarrow{x}} := \bigcap_{(u,v,d) \in \overrightarrow{x}} A_{(uv)d} \). Recall that

\[
\mathcal{P} (A_{\overrightarrow{x}} \setminus \overrightarrow{x}) = \prod_{(u,v,d) \in \overrightarrow{x} \setminus \overrightarrow{w}} \mathcal{P} (A_{(uv)d}) = \prod_{(u,v,d) \in \overrightarrow{x} \setminus \overrightarrow{w}} (1 - \frac{z_{uvd}}{N}) = G(y_G(\overrightarrow{x}, \overrightarrow{w})).
\]

The maximum-minimums identity states, for any set \(S \) of numbers, that \(\text{max } S = \sum_{\emptyset \neq S' \subseteq S} (-1)^{|S'|+1} \text{ min } S' \). Using Theorem 4 and the maximum-minimums identity, we get

\[
\mathbb{E} T = \sum_{\overrightarrow{w} \in \overrightarrow{W_M}} \overrightarrow{f} (\overrightarrow{w}) \mathbb{E} \{ \mathbf{T}_{\overrightarrow{w}} \mid A_{\overrightarrow{w}} \} \mathcal{P} (A_{\overrightarrow{w}})
= \sum_{\overrightarrow{w} \in \overrightarrow{W_M}} \overrightarrow{f} (\overrightarrow{w}) \mathbb{E} \{ \max \{ \mathbf{T}_{uv} \mid (u,v,d) \in \overrightarrow{w} \} \mid A_{\overrightarrow{w}} \} \mathcal{P} (A_{\overrightarrow{w}})
= \sum_{\overrightarrow{w} \in \overrightarrow{W_M}} \overrightarrow{f} (\overrightarrow{w}) \sum_{\emptyset \neq \overrightarrow{y} \subseteq \overrightarrow{w}} (-1)^{|\overrightarrow{y}|+1} \mathbb{E} \{ \min \{ \mathbf{T}_{uv} \mid (u,v,d) \in \overrightarrow{y} \} \mid A_{\overrightarrow{w}} \} \mathcal{P} (A_{\overrightarrow{w}})
= \sum_{\overrightarrow{w} \in \overrightarrow{W_M}} \overrightarrow{f} (\overrightarrow{w}) \sum_{\emptyset \neq \overrightarrow{y} \subseteq \overrightarrow{w}} (-1)^{|\overrightarrow{y}|} \mathbb{E} \{ \min \{ \mathbf{T}_{uv} \mid (u,v,d) \in \overrightarrow{y} \} \mid A_{\overrightarrow{w}} \} \mathcal{P} (A_{\overrightarrow{w}} \setminus \overrightarrow{y})
\]

Consequently, by (4) it suffices to show

\[
\mathbb{E} \{ \min \{ \mathbf{T}_{uv} \mid (u,v,d) \in \overrightarrow{y} \} \mid A_{\overrightarrow{w}} \} \mathcal{P} (A_{\overrightarrow{w}}) = \frac{1}{N^{||\overrightarrow{x}||}} \sum_{j \in \{1,\ldots,N-1\}^{\overrightarrow{x}}} \prod_{(u,v,d) \in \overrightarrow{y}} g \left(j(u,v,d), \frac{z_{uvd}}{N}, \frac{1}{N} \right) \cdot \frac{1}{1 - \prod_{(u,v,d) \in \overrightarrow{x}} h \left(j(u,v,d); \frac{1}{N} \right)}.
\]

For any \((u,v,d) \), it follows from [3] (Section 2.2, Equation (25)) that

\[
\mathcal{P} (\mathbf{T}_{uv} > t \cap A_{(uv)d}) = \frac{1}{N} \sum_{j=1}^{N-1} g \left(j, \frac{z_{uvd}}{N}, \frac{1}{N} \right) h \left(j; \frac{1}{N} \right)^t.
\]

For any \(\overrightarrow{x} \), we therefore have

\[
\mathcal{P} (\min \{ \mathbf{T}_{uv} \mid (u,v,d) \in \overrightarrow{y} \} > t \cap A_{\overrightarrow{w}})
= \frac{1}{N^{||\overrightarrow{x}||}} \sum_{j \in \{1,\ldots,N-1\}^{\overrightarrow{x}}} \left(\prod_{(u,v,d) \in \overrightarrow{y}} g \left(j(u,v,d), \frac{z_{uvd}}{N}, \frac{1}{N} \right) \right) \left(\prod_{(u,v,d) \in \overrightarrow{x}} h \left(j(u,v,d); \frac{1}{N} \right) \right)^t.
\]

Summing (6) over \(t = 0,1,\ldots \) yields (5).

\[\square\]

E Proof of Proposition 6

In this section we prove Proposition 6, which is restated here:
Proposition 6. Consider the synchronous protocol. Let

\[
\tilde{E} := \frac{N^2}{r(1-r)} \sum_{\vec{w} \in \mathbb{W}_M} \tilde{s}(\vec{w}) \sum_{\emptyset \neq \mathcal{M} \subseteq \mathbb{W}} \tilde{F}(y_{\mathcal{F}}(\vec{x}, \vec{w})) \cdot G(y_{\mathcal{G}}(\vec{x}, \vec{w})).
\]

Then, for each fixed \(M \geq 3 \) and \(r \in \left(\frac{1}{2} - \frac{\sqrt{27}}{6}, \frac{1}{2} + \frac{\sqrt{27}}{6} \right) \approx (0.12, 0.88) \) and \(\varepsilon > 0 \),

\[
\mathbb{E}T = \tilde{E} + O(N^\varepsilon).
\]

Proof. In the following we write \(j = (j_1, \ldots, j_k) \) and \(y = (y_1, \ldots, y_k) \) for elements of \(\mathbb{N}_k^+ \) and \([0, 1]^k\), respectively, where \(k \in \mathbb{N}_+ \). Define the function

\[
f_k(j, y; u) := \frac{\prod_{i=1}^{j_k} g(j_i, y_i; u) \cdot u^{k+2}}{1 - \prod_{i=1}^{k} h(j_i; u)}.
\]

Proposition 5 then reads as

\[
\mathbb{E}T = N^2 \cdot \sum_{\vec{w} \in \mathbb{W}_M} \tilde{s}(\vec{w}) \sum_{\emptyset \neq \mathcal{M} \subseteq \mathbb{W}} -(-1)^{|\mathcal{M}|} \cdot G(y_{\mathcal{G}}(\vec{x}, \vec{w})) \cdot \sum_{j \in \{1, \ldots, N-1\}^k} f_k(j, y_{\mathcal{F}}(\vec{x}, \vec{w}); 1/N).
\]

Consequently, it suffices to show that, for any fixed \(k \in \mathbb{N}_+ \) and \(r \in \left(\frac{1}{2} - \frac{\sqrt{27}}{6}, \frac{1}{2} + \frac{\sqrt{27}}{6} \right) \) and \(\varepsilon > 0 \),

\[
\sum_{j \in \{1, \ldots, N-1\}^k} f_k(j, y; 1/N) = \tilde{F}(y) \cdot \frac{-1}{(-1)^k \cdot r \cdot (1-r)} + O \left(\frac{1}{N^{2-\varepsilon}} \right). \tag{7}
\]

Let

\[
a_0(j) := \frac{2^k}{r \cdot (1-r) \cdot \pi^{k+2} \cdot j_1 \cdots j_k \cdot (j_1^2 + \cdots + j_k^2)} \quad \text{and} \quad s(j, y) := \sin(y_1j_1\pi) \cdots \sin(y_kj_k\pi)
\]

\[
\overline{f}_k(j; u) := \frac{f_k(j, y; u)}{s(j, y)}.
\]

Note that \(\overline{f}_k(j; u) \) is independent of \(y \). Then (7) is equivalent to

\[
\sum_{j \in \{1, \ldots, N-1\}^k} s(j, y)\overline{f}_k(j; 1/N) = \sum_{j \in \mathbb{N}_k^+} s(j, y)a_0(j) + O \left(\frac{1}{N^{2-\varepsilon}} \right). \tag{8}
\]

Since \(|s(j, y)| \leq 1\) and \(a_0(j) > 0 \), Equation (8) is implied by the following two lemmata.
Lemma 10. For any fixed $k \in \mathbb{N}_+$ and $r \in \left(\frac{1}{2} - \frac{\sqrt{27}}{6}, \frac{1}{2} + \frac{\sqrt{27}}{6}\right)$, we have

$$\sum_{j \in \{1, \ldots, N-1\}^k} |\mathcal{T}_k(j, y; 1/N) - a_0(j)| = O\left(\frac{(\log N)^k}{N^2}\right).$$

Lemma 11. For any fixed $k \in \mathbb{N}_+$ and $\varepsilon > 0$, we have

$$\sum_{j_k=N}^{\infty} \sum_{(j_1, \ldots, j_{k-1}) \in \mathbb{N}_{k-1}^k} \frac{1}{j_1 \cdot \cdots \cdot j_k \cdot (j_1^2 + \cdots + j_k^2)} = O\left(\frac{1}{N^{2-\varepsilon}}\right).$$

Lemmata 10 and 11 are proved in the following Subsections E.1 and E.1, respectively.

E.1 Proof of Lemma 10

In the following, for $\ell \in \mathbb{N}$, let $E_k((j^2)\ell)$ denote a sum of monomials of the form $c \cdot j_1^{2\ell_1} \cdots j_k^{2\ell_k}$ such that $c \in \mathbb{R}$ and $\ell_i \in \{0, \ldots, \ell\}$ for $i \in \{1, \ldots, k\}$ and $\ell_1 + \cdots + \ell_k = \ell$. For instance, we write $3 j_1^8 - \sqrt{2} j_1^6 = E_2((j^2)^4)$.

Lemma 12. The function \overline{f}_k has a Taylor expansion

$$\overline{f}_k(j; u) = a_0(j) + a_2(j)u^2 + a_4(j)u^4 + \cdots$$

with

$$a_i(j) = \frac{E_k((j^2)^i)}{j_1 \cdot \cdots \cdot j_k \cdot (j_1^2 + \cdots + j_k^2)^{(i+2)/2}}$$

for $i = 0, 2, \ldots$

More precisely, we have

$$a_0(j) = \frac{2^k}{r \cdot (1 - r) \cdot \pi^k \cdot j_1 \cdots j_k \cdot (j_1^2 + \cdots + j_k^2)},$$

and for $r \in \left(\frac{1}{2} - \frac{\sqrt{27}}{6}, \frac{1}{2} + \frac{\sqrt{27}}{6}\right)$, all coefficients of the multivariate polynomial in the nominator of $a_4(j)$ are negative.

Proof. Let $\overline{g}(j; u) := g(j, y; u)/\sin(yj\pi)$. Notice that $\overline{g}(j; u)$ and $h(j; u)$ have the following Taylor series:

$$\overline{g}(j; u) = c_1 j u + c_3 j^3 u^3 + c_5 j^5 u^5 + \cdots$$

and

$$h(j; u) = 1 + d_2 j^2 u^2 + d_4 j^4 u^4 + \cdots$$

with $c_1 = \frac{\pi}{2}$ and $d_2 = -r(1 - r)^2$. It follows that we have

$$\overline{f}_k(j; u) = \frac{1}{e_0 + e_2 u^2 + e_4 u^4 + \cdots}.$$
with
\[
e_0 = \frac{c_1^k(-d_2)}{2^k \cdot (1-r) \cdot \pi^{k+2} j_1 \cdots j_k \cdot (j_1^2 + \cdots + j_k^2)} \quad \text{and}
\]
\[
e_i = j_1 \cdots j_k \cdot E_k((j^2)^{(i+2)/2}) \quad \text{for } i = 0, 2, \ldots
\]
Since \(e_0 > 0\), the power series \(e_0 + e_2 u^2 + e_4 u^4 + \cdots\) can be inverted. The inversion formula yields
\[
\overline{f}_k(j; u) = a_0 + a_2 u^2 + a_4 u^4 + \cdots
\]
with
\[
a_0 = \frac{1}{e_0} = \frac{2^k}{r \cdot (1-r) \cdot \pi^{k+2} j_1 \cdots j_k \cdot (j_1^2 + \cdots + j_k^2)} \quad \text{and}
\]
\[
a_i = -a_0 \cdot \sum_{\ell=0,2,\ldots,i-2} a_i e_{i-\ell} \quad \text{for } i = 2, 4, \ldots
\]
It follows by an easy induction that
\[
a_i = \frac{E_k((j^2)^i)}{j_1 \cdots j_k \cdot (j_1^2 + \cdots + j_k^2)^{(i+2)/2}} \quad \text{for } i = 0, 2, \ldots
\]
Using further values of the Taylor coefficients \(c_i, d_i\) from above, a straightforward but tedious computation shows that
\[
a_4 = \frac{2^{k-4} P(j)}{45 \cdot \pi^{k-2} \cdot r \cdot (1-r) \cdot j_1 \cdots j_k \cdot (j_1^2 + \cdots + j_k^2)^3},
\]
where
\[
P(j) = \sum_{1 \leq i_1 \leq k} -3j_{i_1}^8 + \sum_{1 \leq i_1 < i_2 \leq k} -9(j_{i_1}^6 j_{i_2}^2 + j_{i_1}^2 j_{i_2}^6) + \sum_{1 \leq i_1 < i_2 < i_3 \leq k} (720(r(1-r))^2 - 240r(1-r) + 8)r_{i_1}^4 r_{i_2}^4 + \sum_{1 \leq i_1 < i_2 < i_3 < i_4 \leq k} (1440(r(1-r))^2 - 720r(1-r) + 60)r_{i_1}^2 r_{i_2}^2 r_{i_3}^2 r_{i_4}^2.
\]
We have determined the above coefficients of \(P(j)\) using the computer algebra system Maple. Now it is straightforward to verify that all coefficients of \(P(j)\) are negative, if \(\frac{3\sqrt{3}}{12} < r \cdot (1-r) \leq \frac{1}{4}\). Those inequalities hold, if \(r \in \left(\frac{1}{2} - \frac{\sqrt{3}}{6}, \frac{1}{2} + \frac{\sqrt{3}}{6}\right)\).

The following lemma is used as an induction step in the proof of Lemma 10 below.
Lemma 13. If \(k \in \{2, 3, \ldots \} \) and \(u > 0 \), then
\[
\lim_{j_k \to 0} \left(j_k \cdot \mathbf{f}_k(j_1, \ldots, j_k; u) \right) = \frac{2}{\pi} \mathbf{f}_{k-1}(j_1, \ldots, j_{k-1}; u),
\]
where the \(j_i \) vary over the nonnegative reals. Consequently, with the Taylor expansion \(\mathbf{f}_k(j; u) = a_{k,0}(j) + a_{k,2}(j)u^2 + a_{k,4}(j)u^4 + \cdots \) from Lemma 12 we also have
\[
\lim_{j_k \to 0} \left(j_k \cdot a_{k;i}(j_1, \ldots, j_k) \right) = \frac{2}{\pi} a_{k-1;i}(j_1, \ldots, j_{k-1}).
\]

Proof. As \(h(0, u) = 1 \), it suffices to show that \(\lim_{j_k \to 0} \frac{j_k \sin(j_k \pi u)}{1 - \cos(j_k \pi u)} = \frac{2}{\pi u} \). This follows easily from l'Hopital's rule:
\[
\lim_{j_k \to 0} \frac{j_k \sin(j_k \pi u)}{1 - \cos(j_k \pi u)} = \lim_{j_k \to 0} \frac{\sin(j_k \pi u) + j_k \cos(j_k \pi u) \cdot \pi u}{\sin(j_k \pi u) \cdot \pi u} = \frac{1}{\pi u} + \lim_{j_k \to 0} \frac{j_k \cos(j_k \pi u)}{\sin(j_k \pi u)} = \frac{1}{\pi u} + \lim_{j_k \to 0} \frac{\cos(j_k \pi u) - j_k \sin(j_k \pi u)}{\cos(j_k \pi u) \cdot \pi u} = \frac{1}{\pi u} + \frac{1}{\pi u} = \frac{2}{\pi u}.
\]

Now we can prove Lemma 10 which is restated here.

Lemma 10. For any fixed \(k \in \mathbb{N}_+ \) and \(r \in \left(\frac{1}{2} - \frac{\sqrt{27}}{6}, \frac{1}{2} + \frac{\sqrt{27}}{6} \right) \), we have
\[
\sum_{j \in \{1, \ldots, N-1\}^k} \left| \mathbf{f}_k(j, y; 1/N) - a_0(j) \right| = O \left(\frac{(\log N)^k}{N^2} \right).
\]

Proof. By Lemma 12 it is equivalent to prove
\[
\sum_{j \in \{1, \ldots, N-1\}^k} \left| \frac{a_2(j)}{N^2} \cdot \frac{a_4(j)}{N^4} + \cdots \right| = O \left(\frac{(\log N)^k}{N^2} \right).
\]

Notice that an easy induction shows that
\[
\sum_{j \in \{1, \ldots, N-1\}^k} \frac{1}{j_1 \cdots j_k} = \sum_{j_k=1}^{N-1} \frac{1}{j_k} \sum_{j_1, \ldots, j_{k-1}} \frac{1}{j_1 \cdots j_{k-1}} = O((\log N)^k).
\]

Hence, with Lemma 12 we have
\[
\sum_{j \in \{1, \ldots, N-1\}^k} \left| \frac{a_2(j)}{N^2} \right| = \frac{1}{N^2} \sum_{j \in \{1, \ldots, N-1\}^k} O(1) = O \left(\frac{(\log N)^k}{N^2} \right).
\]
Similarly, we also have

$$\sum_{j \in \{1, \ldots, N-1\}^k} \left| \frac{a_4(j)}{N^4} \right| = \frac{1}{N^2} \sum_{j \in \{1, \ldots, N-1\}^k} \frac{O(j_1^2 + \cdots + j_k^2)}{N^2 \cdot j_1 \cdots j_k} = \frac{1}{N^2} \sum_{j \in \{1, \ldots, N-1\}^k} \frac{O(1) j_1 \cdots j_k}{j_1 \cdots j_k} = O \left(\frac{(\log N)^k}{N^2} \right).$$

Now it suffices to show that, for any fixed $k \in \mathbb{N}_+$,

$$R_k(j; 1/N) := \frac{\bar{T}_k(j; 1/N) - a_0(j) - a_2(j)/N^2}{a_4(j)/N^4} = \frac{a_4(j) + a_0(j)/N^6 + \cdots}{a_4(j)/N^4}$$

is bounded over all $N \in \mathbb{N}_+$ and all $j \in \{1, \ldots, N-1\}^k$, because then we also have that

$$\sum_{j \in \{1, \ldots, N-1\}^k} \left| \frac{a_4(j)}{N^4} + \frac{a_0(j)}{N^6} + \cdots \right| = O \left(\frac{(\log N)^k}{N^2} \right).$$

It follows from Lemma 12 that R_k depends only on $j_1/N, \ldots, j_k/N$; i.e., there is a function $\tilde{R}_k : [0, 1]^k \to \mathbb{R}$ such that $R_k(j_1, \ldots, j_k; 1/N) = \tilde{R}_k(j_1/N, \ldots, j_k/N)$. Therefore it suffices to take $N = 1$ and to show that

$$R_k(j; 1) = \frac{\bar{T}_k(j; 1) - a_0(j) - a_2(j)}{a_4(j)}$$

is bounded over all $j \in (0, 1]^k$. We first argue that $R_k(j; 1)$ does not have poles for $j \in (0, 1]^k$. This follows from the facts that (1) the function $\bar{T}_k(j; 1)$ clearly does not have poles there, (2) the coefficients $a_0(j)$ and $a_2(j)$ do not have poles there by Lemma 12, and (3) we have $a_4(j) < 0$ for $j \in (0, 1]^k$ by Lemma 12. Let $j \in [0, 1]^k \setminus (0, 1]^k$. By symmetry, we can assume that there is $\ell \in \{1, \ldots, k\}$ such that $j_i \neq 0$ for $i \in \{1, \ldots, \ell - 1\}$ and $j_i = 0$ for $i \in \{\ell, \ldots, k\}$. Denote by $\mathbf{0}$ a vector $(0, \ldots, 0)$, whose dimension is clear from the context. We need to show that $\lim_{(j_\ell, \ldots, j_k) \to \mathbf{0}} R_k(j; 1)$ exists and is finite. We proceed by induction on k. For the induction base, let $k = 1$. Basic computations show that

$$R_1(j_1; 1) = \frac{240}{\pi^4 j_1^4} - \frac{60 \sin(j_1 \pi)}{\pi (1 - \cos(j_1 \pi))^2 j_1}.$$

One can use l’Hôpital’s rule to find $\lim_{j_1 \to 0} R_1(j_1; 1) = 1$. For the induction step, let $k \geq 2$. In the following we write $a_{k; i}$ to make the dependence of a_i on k
explicit. We have:

\[
\lim_{(j_1,\ldots,j_k) \to 0} R_k(j; 1)
\]

\[
= \lim_{(j_1,\ldots,j_k) \to 0} \lim_{j_k \to 0} \frac{T_k(j; 1) - a_{k,0}(j) - a_{k,2}(j)}{a_{k,4}}
\]

\[
= \lim_{(j_1,\ldots,j_k) \to 0} \lim_{j_k \to 0} \frac{T_{k-1}(j_1,\ldots,j_k-1; 1) - a_{k-1,0}(j_1,\ldots,j_k-1) - a_{k-1,2}(j_1,\ldots,j_k-1)}{a_{k-1,4}(j_1,\ldots,j_k-1)}
\]

(by Lemma 13)

\[
= \lim_{(j_1,\ldots,j_k) \to 0} R_{k-1}(j_1,\ldots,j_k-1; 1),
\]

where the last limit exists and is finite by induction hypothesis. \qed

E.2 Proof of Lemma 11

Lemma 14. Let \(j_1,\ldots,j_k \in \mathbb{N}_+ \). Let \(\delta, \varepsilon \in \mathbb{R} \) with \(\delta > 0 \) and \(0 \leq \varepsilon \leq 2\delta \). Then

\[
\frac{j_k^\varepsilon}{(j_1^2 + \cdots + j_k^2)^\delta} \leq \frac{1}{(j_1^2 + \cdots + j_{k-1}^2)^{\delta - \varepsilon/2}}.
\]

Proof. Define \(r := \sqrt{j_1^2 + \cdots + j_{k-1}^2} \). Then we need to prove that

\[
j_k^\varepsilon \cdot r^{2\delta - \varepsilon} \leq (j_k^2 + r^2)^\delta,
\]

or, equivalently,

\[
j_k^{\varepsilon/\delta} \cdot r^{2 - \varepsilon/\delta} \leq j_k^2 + r^2.
\]

If \(j_k \leq r \), then \(j_k^{\varepsilon/\delta} \cdot r^{2 - \varepsilon/\delta} \leq r^{\varepsilon/\delta} \cdot r^{2 - \varepsilon/\delta} = r^2 \leq j_k^2 + r^2 \). The case \(j_k \geq r \) is similar. \qed

Lemma 15. Let \(\delta \in \mathbb{R}_+ \) and \(k \in \mathbb{N}_+ \). The following series converges:

\[
\sum_{(j_1,\ldots,j_k) \in \mathbb{N}_+^k} \frac{1}{j_1 \cdots j_k \cdot (j_1^2 + \cdots + j_k^2)^\delta}.
\]
Proof. The proof is by induction on k. The assertion clearly holds for the base case $k = 1$. For $k \geq 2$ we have:

\[
\sum_{(j_1, \ldots, j_k) \in \mathbb{N}_+^k} \frac{1}{j_1 \cdot \ldots \cdot j_k \cdot (j_1^2 + \cdots + j_k^2)^3} = \sum_{j_k \in \mathbb{N}_+} \frac{1}{j_k^{1+\delta}} \sum_{j_1, \ldots, j_{k-1} \in \mathbb{N}_+} \frac{j_k^3}{j_1 \cdot \ldots \cdot j_{k-1} \cdot (j_1^2 + \cdots + j_{k-1}^2)^{3/2}} \leq \sum_{j_k \in \mathbb{N}_+} \frac{1}{j_k^{1+\delta}} \sum_{j_1, \ldots, j_{k-1} \in \mathbb{N}_+} \frac{1}{j_1 \cdot \ldots \cdot j_{k-1} \cdot (j_1^2 + \cdots + j_{k-1}^2)^{3/2}} = \sum_{j_k \in \mathbb{N}_+} \frac{1}{j_k^{1+\delta}} C_{\delta/2,k-1},
\]

where $C_{\delta/2,k-1}$ is the constant from the induction hypothesis. The series $\sum_{j_k \in \mathbb{N}_+} j_k^{-(1+\delta)}$ clearly converges. \qed

Now we can prove Lemma 11, which is restated here.

Lemma 11. For any fixed $k \in \mathbb{N}_+$ and $\varepsilon > 0$, we have

\[
\sum_{j_k = N}^{\infty} \sum_{(j_1, \ldots, j_{k-1}) \in \mathbb{N}_+^{k-1}} \frac{1}{j_1 \cdot \ldots \cdot j_k \cdot (j_1^2 + \cdots + j_k^2)} = O \left(\frac{1}{N^{2-\varepsilon}} \right).
\]

Proof. Let

\[
R_k(N) := \sum_{j_k = N}^{\infty} \sum_{(j_1, \ldots, j_{k-1}) \in \mathbb{N}_+^{k-1}} \frac{1}{j_1 \cdot \ldots \cdot j_k \cdot (j_1^2 + \cdots + j_k^2)}.
\]

We have for all $\varepsilon \in (0, 2)$:

\[
R_k(N) = \sum_{j_k = N}^{\infty} \frac{1}{j_k^{2-\varepsilon}} \sum_{(j_1, \ldots, j_{k-1}) \in \mathbb{N}_+^{k-1}} \frac{j_k^{2-\varepsilon}}{j_1 \cdot \ldots \cdot j_{k-1} \cdot (j_1^2 + \cdots + j_{k-1}^2)^{3/2}} \leq \sum_{j_k = N}^{\infty} \frac{1}{j_k^{2-\varepsilon}} \sum_{(j_1, \ldots, j_{k-1}) \in \mathbb{N}_+^{k-1}} \frac{1}{j_1 \cdot \ldots \cdot j_{k-1} \cdot (j_1^2 + \cdots + j_{k-1}^2)^{3/2}} = \sum_{j_k = N}^{\infty} \frac{1}{j_k^{2-\varepsilon}} C_{\varepsilon/2,k-1} \leq C_{\varepsilon/2,k-1} \int_{x = N-1}^{\infty} \frac{1}{x^{3-\varepsilon}} \, dx = C_{\varepsilon/2,k-1} \cdot (N - 1)^{-2+\varepsilon} = O(N^{-2+\varepsilon}).
\]

\qed
F Proof of Theorem 7

Theorem 7 is restated here.

Theorem 7. For the synchronous protocol with parameter r let $D = r(1 - r)$. For the asynchronous protocol with parameter $\lambda > 0$ let $D = \lambda$. For almost all odd $N \in \mathbb{N}_+$, we have for the full configuration:

$$\mathbb{E}T \leq 0.0285 N^2/D \quad \text{and} \quad \mathbb{P}(T \geq 0.02 N^2/D) < 0.5.$$

Proof. Recall that Proposition 3 expresses the distribution of T in terms of the distributions of one-dimensional random walks with absorbing barriers at 0 and N. It is well-known that such random walks converge, for large N, to an appropriately scaled Brownian motion; see [7, Chapter XIV]. (In passing we remark that the approximation of $F^{(N)}$ through \tilde{F}_r in Proposition 6 is exactly the same approximation; however, there we also establish bounds on the rate of convergence, which are not needed here.) For the theorem it suffices to consider N tokens in a Brownian motion placed equidistantly on a circle of unit circumference, so that the variance of the relative movement of two tokens is $2\sigma^2 = 2D/N^2$ per time unit. We use Balding’s analysis [1] in the following. Let $S(t)$ denote the expected number of tokens at time t. Balding [1, p. 740] gives

$$S(t) = 1 + \frac{2N}{\pi} \sum_{j=1}^{\infty} \frac{1}{j} \tan \left(\frac{j\pi}{N} e^{-\frac{4\pi^2 j^2 \sigma^2 t}{2}} \right).$$

We have

$$\tilde{S}(t) := \lim_{N \to \infty} S(t) = 1 + 2 \sum_{j=1}^{\infty} e^{-4\pi^2 j^2 \sigma^2 t}.$$

As $S(t) \geq \mathbb{P}(T \leq t) \cdot 1 + \mathbb{P}(T > t) \cdot 3 = 2\mathbb{P}(T > t) + 1$, we have for all $\varepsilon > 0$ that

$$\mathbb{P}(T > t) \leq \min \left(1, \frac{S(t) - 1}{2} \right) \leq \min \left(1, (1 + \varepsilon) \frac{\tilde{S}(t) - 1}{2} \right)$$

for almost all odd N. With $t_1 := \frac{1}{100\sigma^2}$ we get $\frac{\tilde{S}(t_1) - 1}{2} \approx 0.91 < 1$. Notice that $\tilde{S}(t)$ is decreasing. Hence we obtain

$$\mathbb{E}T = \int_0^{\infty} \mathbb{P}(T > t) \, dt \leq t_1 + (1 + \varepsilon) \int_{t_1}^{\infty} \sum_{j=1}^{\infty} e^{-\pi^2 j^2/25} \, dt \\
= t_1 + (1 + \varepsilon) \sum_{j=1}^{\infty} \frac{e^{-\pi^2 j^2/25}}{4\pi^2 j^2 \sigma^2} \leq \frac{0.0285}{\sigma^2},$$

where the last inequality holds for small ε. The first statement of the theorem follows by setting $\sigma^2 = D/N^2$. The second statement follows by noting that with $t_2 := \frac{2}{100\sigma^2}$ we get $\frac{\tilde{S}(t_2) - 1}{2} \approx 0.497 < 0.5$. \qed