A Roadmap for Fixing the Heart: RNA Regulatory Networks in Cardiac Disease

Rong Tang,1,2,4 Tianxin Long,1,2,4 Kathy O. Lui,3 Yili Chen,1,2 and Zhan-Peng Huang1,2

1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; 2NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China; 3Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR 999077, China

With the continuous development of RNA biology and massive genome-wide transcriptome analysis, more and more RNA molecules and their functions have been explored in the last decade. Increasing evidence has demonstrated that RNA-related regulatory networks play an important role in a variety of human diseases, including cardiovascular diseases. In this review, we focus on RNA regulatory networks in heart disease, most of which are devastating conditions with no known cure. We systematically summarize recent discoveries of important new components of RNA regulatory networks, including microRNAs, long non-coding RNAs, and circular RNAs, as well as multiple regulators that affect the activity of these networks in cardiac physiology and pathology. In addition, this review covers emerging micropeptides, which represent short open reading frames (sORFs) in long non-coding RNA transcripts that may modulate cardiac physiology. Based on the current knowledge of RNA regulatory networks, we think that ongoing discoveries will not only provide us a better understanding of the molecular mechanisms that underlie heart disease, but will also identify novel biomarkers and therapeutic targets for the diagnosis and treatment of cardiac disease.

Cardiac disease is the leading cause of death and disease around the world. In response to external stress or stimulus, the heart maintains homeostasis through dynamic remodeling. In the beginning of remodeling, these adaptations are an attempt to compensate for contractile dysfunction. As cardiac remodeling progresses, compensatory changes are gradually replaced by decompensatory changes. This transition leads to contractile and conduction dysfunction and progression toward heart failure. When the heart is confronted with serious pathological changes, such as the creation of collagenous, non-contractile scar tissue, thinning of the myocardial wall, or progressive enlargement and dilation of the ventricle, patients have very poor prognosis and an increased risk of death. Despite significant progress in the treatment of cardiac disease, including heart failure, in the past decade, there remains a lack of therapeutic options that can significantly alter the morbidity and mortality. Consequently, discovery of novel therapeutic targets is urgently required to develop effective treatments for heart disease.

Most research has focused on coding genes involved in the occurrence and progression of cardiac disease. However, the vast majority of the mammalian genome that is transcriptionally active (about 75%–90%) does not encode proteins, as only ~2% of the DNA encodes proteins. Therefore, exploration of RNA regulatory networks is imperative, as increasing evidence indicates that non-coding RNAs (ncRNAs) participate in regulating the expression of protein-coding genes. ncRNAs include a variety of functional RNA species, and among all ncRNAs, microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) have received the most attention with respect to physiology and pathophysiology, including cardiovascular biology and disease. Recently, it has been discovered that previously “mislabeled” ncRNAs encode stable and functional peptides through short open reading frames (sORFs), and the micropeptides produced from these sORFs participate in the regulation of the physiological function of the heart. Alternatively, most RNAs undergo a series of modifications after transcription. There are more than 100 known modifications of RNA molecules, which affect processes such as splicing, nucleation, stabilization, and translation of miRNAs, thereby regulating gene expression. Among these, N6-methyladenosine (m6A) is one RNA modification that is closely associated with human disease. Although early research on m6A RNA modifications focused on tumor biology, it has recently been shown that m6A modifications are involved in heart disease.

In this review, we summarize the latest research of ncRNA and RNA modifications in heart disease, including cardiac remodeling, fibrosis, and regeneration. We also discuss recent developments and challenges for the development of diagnostic and therapeutic applications of ncRNAs in cardiac disease.

ncRNAs Play Important Roles in Heart Disease
miRNAs Mediate Post-Transcriptional Regulation of Gene Expression in Heart Disease

miRNAs are small, single-stranded ncRNAs with a length of 20–22 nt, which play a crucial role in regulating posttranscriptional gene expression by guiding their target mRNAs to the RNA-induced silencing complex (RISC). Lin-4 of C. elegans was the first...
documented miRNA in the early 1990s. This molecule inhibited expression of target genes to regulate developmental timing in worm larvae. Subsequent studies showed that one-third of the genes documented miRNAs in the early 1990s. This molecule inhibited expression of target genes to regulate developmental timing in worm larvae. Subsequent studies showed that one-third of the genes

miRNA	Upregulated/Downregulated	Potential Target	Cardiac Function	Refs.
miR-208a	up	THRAP1, myostatin	cardiac hypertrophy	17-18
miR-208a	down	MED13/NcoR1	accelerate the conversion from compensated RVH to decompensated heart failure	19
miR-1	down	FBLN2, TWF1, CALM1, CALM2, MEF2A, MYLK3, RasGAP, Cdk9, Rheb	inhibition of cardiac hypertrophy	22-30
miR-21(CF)	up	SPRY1, Jagged1, mt-Cyto b	cardiac fibrosis; myocardial fibroblast proliferation and fibroblast-to-myofibroblast transformation; reduce blood pressure and attenuate cardiac hypertrophy in SHR	30,43,50,59
miR-133	down	CTGF, RH0A, CDC42, NELF-a/WHSC2	inhibition of cardiac hypertrophy	160,161
miR-155	down	Jari2,	cardiac hypertrophy and cardiac remodeling	162
miR-155 (CF)	up	TP53INP1	collagen deposition and fibrosis	163
miR-222	up	HMBOX1, p27, HIPK1/2	inhibition of cardiac hypertrophy	164
miR-221/222 (CF)	down	INK1, TGF-b1, TGF-b2, ET3-1	inhibition of fibroblast activation and differentiation	165
miR-15 family	up	Sirt4, MO25, SIRT3, TGFb1R1, p38, SMAD3, SMAD7	inhibition of hypertrophy	166,167

Cardiac Ischemic Disease

miR-1	up	MYOCD, Bcl2, Hsp90a1, LXRα	apoptosis	31-35,168
miR-208	up	BAX, CHD9, QKI15	apoptosis	169-170,171
miR-126	up	ERRF1	anti-apoptosis	172
miR-499	down	CnaA/z, PDCD4, PACS2	anti-apoptosis	173-175
miR-195	up	CHEK1	inhibition of proliferation	176-178
miR-15 family	up	SMAD7, Bcl2, β2-Ar, c-myc, IRX5, IRX5; MYCN2, AR, MAPK3, CIAPIN1	apoptosis	179-180

Cardiac Arrhythmias

miR-208a	down	GATA4	cardiomyopathy	18
miR-1/133	up	GJA1, KCNJ2, HCN2, HCN4, NCX1, B50a, CACNA1C, JIRX	ventricular arrhythmias; cardiomyopathy	34,36-38,177
miR-328	up	Cacna1c, Cacnb2	atrial fibrillation	178
miR-499	down	KCN3, CACNB2	atrial fibrillation	179-180

Cardiac-Enriched miRNAs. A subset of miRNAs are enriched in the heart, such as miR-1, miR-133, miR-208, and miR-499. Furthermore, accumulating evidence reveals that miRNAs are closely connected to the regulation of cardiac physiology and pathology (Table 1).
miR-1 is another well-studied, cardiac-enriched miRNA. miR-1-1 and miR-1-2 are members of the miR-1 family and are located at separate chromosomal loci. miR-1 and miR-133a form a miRNA gene cluster and are co-expressed during cardiomyocyte differentiation and proliferation.

Recent studies confirmed that miR-1 suppresses cardiac hypertrophy by inhibiting the expression of downstream targets, including fibulin-2 (FBLN2), twinfilin-1 (TWF1), CALM1 and CALM2, MEF2A, MYLK3, and GATA4. In addition, the serum level of miR-1 and miR-133 is elevated in animal models and human patients with acute myocardial infarction (MI). This increase in the levels of these miRNAs suggests that they may play a crucial role in the pathogenesis of cardiac hypertrophy.

Molecular Therapy: Nucleic Acids Vol. 20 June 2020 675

Ubiquitously Expressed miRNAs. Other than cardiac-enriched miRNAs, some ubiquitously expressed miRNAs also play important roles in cardiac pathology. Previous studies have shown that miR-21 is closely involved in the pathological progression of multiple cardiac abnormalities, including aberrant remodeling, arrhythmia, heart failure, and infarction. Thum et al. found that miR-21 activated the ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase) signaling pathway by inhibiting Spry1 expression, thereby promoting cardiac fibroblast activation and growth factor secretion. Interestingly, intravenous injection of antagoniR-21 suppresses myocardial fibrosis and preserves cardiac function; however, the precise mechanism remains poorly understood. It was suggested that fibroblast exosomal-derived miR-21-3p (miR-21*) is a potent paracrine-acting RNA molecule that induces cardiomyocyte hypertrophy. A recent study showed that miR-21 plays a key role in myocardial fibroblast activation and myocardial fibrosis following MI by targeting the transforming growth factor β (TGF-β)/Smad7 signaling pathway. Interestingly, phosphorylated Smad2 and Smad3, which are downstream effectors of TGF-β signaling, interact with DROSHA to promote processing of primary miR-21 under pressure overload through a feedback loop. Zhou et al. also showed that miR-21 promotes myocardial fibroblast proliferation and fibroblast-to-myofibroblast transformation by targeting Jagged1. Also note that loss of miR-21 through genetic engineering could not recapitulate the cardiac phenotype observed as a consequence of antagoniR-21 interference, indicating that the transient interference with the function of miR-21 could be compensated for by other mechanisms in the long term.

miR-21 also participates in the regulation of cardiomyocyte apoptosis in ischemic cardiomyopathy. It was reported that miR-21 is downregulated in the infarcted region 6 h after AMI. Additional studies demonstrated that miR-21 inhibits hypoxia-induced apoptosis through the PDCD4/AP-1 (activator protein 1) pathway by targeting PDCD4. Therefore, miR-21 appears to play a protective role in reducing oxidative stress in cardiomyocytes due to ischemia/reperfusion (I/R) injury.

The miR-15 family consists of six members, which possess a common seed sequence, including miR-15a, miR-15b, miR-16-1, miR-16-2, miR-195, and miR-497. Recently, several studies have shown that the miR-15 family plays crucial roles in the pathogenesis of cardiac disease. Tijsen et al. found that the miR-15 family was upregulated in the infarcted region 6 h after AMI. Additional studies demonstrated that miR-21 inhibits hypoxia-induced apoptosis through the PDCD4/AP-1 (activator protein 1) pathway by targeting PDCD4. Therefore, miR-21 appears to play a protective role in reducing oxidative stress in cardiomyocytes due to ischemia/reperfusion (I/R) injury.

Therefore, these cardiac-enriched miRNAs seem to be housekeepers of cardiomyocytes. They maintain cardiomyocyte physiology, including assembly and function of the contractile apparatus as well as controlling electrophysiological function, to ensure efficient and coordinated pumping of blood to the circulation.
growth and chamber remodeling of the heart in response to pathological signaling.\(^{49}\) It was further demonstrated that the elevated expression of miR-195 in hypertrophic cardiomyocytes impedes the formation of LKB1/STRAD/MO25 complexes and activates the AMPK (AMP-activated protein kinase) pathway by suppressing MO25.\(^{50}\)

Most mammalian cardiomyocytes lose the ability to regenerate shortly after birth. Once the heart is severely damaged by injuries such as those caused by MI, cardiomyocyte replenishment is insufficient to repair the damage.\(^{51}\) Porrello et al.\(^{52}\) found that multiple miR-15 family members resistant to hypoxia-induced cell death, reduces infarct size, and suppresses cardiac apoptosis, such as SMAD7,\(^{53}\) Bcl2,\(^{54}\) LC3B-II,\(^{55}\) mitofusin 2 (MFN2),\(^{56}\) ADP-ribosylation factor-like protein 2 (ARL2),\(^{57}\) MAPK3,\(^{58}\) and cytokine-induced apoptosis inhibitor 1 (CIAPIN1).\(^{59}\)

In summary, a large effort has been expended on investigating these “tiny” miRNAs. Many of the miRNAs listed in Table 1, but not discussed here in detail, participate in the regulation of many aspects of cardiac physiology and pathology.

IncRNAs Have a Variety of Molecular Functions in Regulating Heart Disease

New technologies for genome-wide, massively parallel sequencing have led to the discovery that vast regions of the mammalian genome are actively transcribed into RNA. Surprisingly, all protein-coding sequences originate from about only 1.5% of the human genome sequence.\(^{60}\) As a result, numerous non-coding transcripts have been identified. IncRNAs belong to a class of ncRNAs with a length of more than 200 nt. Because of a huge effort, more and more IncRNAs are now known to have significant regulatory functions in cardiovascular biology.\(^{61,62}\) Herein, we have cataloged IncRNAs with important functions in cardiac remodeling, including those involved in hypertrophy, apoptosis, necrosis, and fibrosis\(^{63-65}\) (Table 2).

Cardiac hypertrophy is an adaptive response by the heart to counteract cardiac overload to maintain output. However, sustained hypertrophy often leads to heart failure. Recently, IncRNA Myheart (Mhrt), which originates from the MYH7 locus and is enriched in adult hearts, was found to protect the adult heart from pathological hypertrophy by interacting with the helicase domain of Brg1 and inhibiting the function of Brg1, a chromatin-remodeling factor that is associated with the pathogenesis of cardiac hypertrophy.\(^{66}\) Conversely, IncRNA Chaer (cardiac hypertrophy-associated epigenetic regulator) is required for the pathogenesis of cardiac hypertrophy. Chaer interacts with PRC2 and interferes with the targeting of the PRC2 complex to genomic loci, which inhibits

Table 2. List of Cardiac Function of IncRNAs and Their Molecular Mechanisms Summarized in This Review

IncRNA	Upregulated/Downregulated	Potential Mechanism	Effect	Refs.
Mhrt	down	interacts with Brg1	inhibits developing heart failure	68,69,81
Chaer	Up	interacts with PRC2	promotes cardiac hypertrophy	70,182
Chrf	Up	sponge for miR-489	promotes cardiac hypertrophy	71
APF	Up	sponge for miR-188-3p	promotes deregulated autophagy and cell death	75
CAIF	down	interacts with p53	inhibits autophagy	77
MALATI	Up	sponge for miR-203	worsens cardiomyocyte inflammation and apoptosis	78
MALAT1	up	sponge for miR-204c	regulates transient outward potassium current	79
Chaer	Up	interacts with PRC2	promotes cardiac hypertrophy	70,182
MALAT1	Up	sponge for miR-145	promotes cardiac fibrosis and deteriorates cardiac function after MI	80
Wisper	Up	interacts with TIAL1	promotes cardiac fibrosis	81
MEG3	down	interacts with p53	promotes cardiac fibrosis and impaired diastolic performance	82
GASS	down	sponge for miR-21	inhibits cardiac fibrosis	83

Mhrt, Myheart; Brg1, also known as Smarca4 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4); Chaer, cardiac hypertrophy-associated epigenetic regulator; PRC2, polycomb repressive complex 2; Chrf, cardiac hypertrophy-related factor; APF, autophagy-promoting factor; CAIF, cardiac autophagy inhibitory factor; MALAT1, metastasis-associated lung adenocarcinoma transcript1; MI, myocardial infarction; Wisper, Wisp2 super-enhancer-associated RNA; TIAL1, TIA1 cytotoxic granule-associated RNA-binding protein-like 1; MEG3, maternally expressed gene 3; GAS5, growth arrest-specific factor; MALAT1 up sponge for miR-200c regulates transient outward potassium current 79; MEG3 down interacts with p53 promotes cardiac fibrosis and impaired diastolic performance. 81

676 Molecular Therapy: Nucleic Acids Vol. 20 June 2020
PRC2-dependent histone H3 lysine 27 trimethylation at the promoter of prohypertrophic genes and the activation of their expression. The molecular mechanisms that underlie IncRNA regulation of cardiac hypertrophy are not limited to their action as a decoy for epigenetic regulators, as they also function as endogenous sponges for miRNAs. For example, IncRNA Chrf serves as a competing RNA by sequestering mir-489 and de-repressing the miR’s target, MYD88. Furthermore, ROR, H19, Plscr4, and MI-associated transcript (MIAT) regulate cardiac hypertrophy through a similar mechanism by inhibiting the function of different miRNAs.

IncRNAs, such as APF, CAIF, and MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) were reported to regulate cardiomyocyte apoptosis and autophagy in heart disease. Under pathological conditions, upregulating the autophagy promoting factor (APF) de-represses the autophagy gene ATG7 by sequestering miR-188-3p. This leads to abnormal autophagy as well as cell death. In contrast, IncRNA CAIF (cardiac autophagy inhibitory factor) acts as a cardioprotective factor. CAIF inhibits p35-induced transcription of myocardin by directly binding to its promoter, which leads to the suppression of cardiac autophagy and protection of the heart during MI. During I/R injury, MALAT1 is highly expressed in heart, and it leads to a more severe cardiomyocyte inflammation and apoptosis by sequestering miR-203.

Other than cardiac hypertrophy and apoptosis, IncRNAs have also been reported to regulate arrhythmia and fibrosis in heart disease. MALAT1 was reported to regulate electrical activity in an arrhythmic rat model by modulating expression of the miR-200c-HMGB1 axis in cardiomyocytes. Expression of transient outward potassium current and Kv4.2/Kv4.3 channel proteins are regulated via HMGB1 when MALAT1 is knocked down. In addition, knockdown of MALAT1 inhibits AngII-induced fibroblast proliferation and collagen synthesis, and then suppresses cardiac fibrosis following MI by suppressing TGF-β1 activity via mir-145. Other IncRNAs, such as Wisp2 super-enhancer-associated RNA (Wisper), MEG3, and GAS5, have also been reported to participate in the regulation of cardiac fibrosis through various molecular mechanisms.

As mentioned above, a large number of IncRNAs play important roles in cardiac remodeling during stress. It is also noteworthy that several IncRNAs, including Braveheart (Bvht) and Fendrr, are critical to cardiac lineage commitment and lead to developmental defects in the heart when these IncRNAs are deleted. Both of these IncRNAs interact with the PRC2 complex and epigenetically regulate the cardiac transcriptome during cardiac development.

circRNAs Primarily Function as a miRNA Sponge in Heart Disease

circRNAs are a class of ncRNA molecules shaped by a covalently closed continuous loop. Previous studies indicated that circRNAs play vital roles in the regulation of gene expression, including miRNA sponge effects, transcriptional and post-transcriptional gene expression regulation, alternative splicing, and protein coding and protein decay activity. Some of these molecules are expressed in a tissue-specific manner. Recently, it has been shown that circRNAs are closely related to the pathological and physiological processes of various cardiac diseases, such as myocardial ischemia, myocardial fibrosis, cardiac hypertrophy, and heart failure.

An early study on the role of circRNAs in hypertrophy and heart failure revealed decreased expression of circRNA HRCR, which functions as a sponge to sequester cardiac miR-223, in the failing heart. *In vivo* overexpression of HRCR results in increased expression of miR-223’s downstream target ACR, which is an apoptosis repressor with a CARD domain. ACR plays a crucial role in cardiomyocyte hypertrophy and apoptosis and protects the heart from hypertrophy and failure. Another interesting study reported that expression of circRNA Foxo3 is significantly higher in aged hearts compared to young hearts. It induces cellular senescence and doxorubicin-induced heart failure by interacting with the anti-senescence proteins ID1 and E2F1, and the anti-stress proteins FAK and HIF-1α. These interactions block the nuclear translocation of these proteins and inhibit their function as transcription factors.

Multiple circRNAs have been reported to regulate apoptosis and survival in heart disease. circRNA cerebellar degeneration-related protein 1 transcript (Cdr1) contains complementary binding sites for miR-7a that may function as miRNA sponges. This circRNA de-represses targets of miR-7a, PARP, and SP1, and it participates in the regulation of apoptosis after MI injury. In another study, it was shown that mitochondrial fission and apoptosis-related circRNA (MFCAR) plays an essential role in modulating mitochondrial fission and apoptosis by acting as a sponge for miR-652-3p. MFCAR prevents miR-652-3p from binding with mitochondrial membrane-associated protein 18 (MTP18). Knockdown of MFCAR decreases expression of MTP18 and attenuates mitochondrial fission and cardiomyocyte apoptosis in MI injury. Other than acting as miRNA sponges, circRNAs can interact with proteins and regulate their activities. A recent study reported that circ-Amotl1 binds to AKT and PDK1 and induces their nuclear translocation. *In vivo*, circ-Amotl1 overexpression enhances cardiomyocyte survival and, therefore, protects the heart in doxorubicin-induced cardiomyopathy. Furthermore, Zhou et al. report that a circRNA, autophagy-related circRNA (ACR), protects the heart from I/R injury and reduces the extent of the infarct. Mechanistically, ACR directly binds to Dnmt3B and blocks Dnmt3B-mediated DNA methylation of the promoter of Pink1, which suppresses autophagy via phosphorylating its downstream target, FAM65B.

Emerging evidence indicates that circRNAs also participate in the regulation of cardiac regeneration. Super-enhancer-associated circRNA circNfix was found to enhance expression in the adult heart. This study showed that circNfix regulates cardiomyocyte proliferation through diverse molecular mechanisms. circNfix functioned as a miRNA sponge to modulate Gsk3β signaling activity by sequestering miR-214. Alternatively, circNfix interacts with Ybx1 (Y-box-binding protein 1) and Nedd4l (an E3 ubiquitin ligase) and
enhances the interaction of these two proteins, which induces Ybx1 degradation through ubiquitination. Knockdown of circNfix promotes cardiomyocyte proliferation and angiogenesis and, therefore, attenuates cardiac dysfunction and protects the heart after MI.

Aside from their function for RNA transcripts, a recent study showed that ribosome-associated cardiac circRNAs produce detectable peptides.4,90 The roles of these peptides in cardiac disease are currently unknown and, consequently, provide a new direction for future exploration.

Micropeptides Encoded by “Non-coding” RNAs in Heart Disease

Micropeptides are a group of protein molecules less than 100–150 aa in length.100 Micropeptides are significantly different from bioactive peptides, because the former originate from sORFs, which nest in transcripts identified as IncRNAs and TUFs (transcripts of unknown function), whereas the latter are derived from larger precursor proteins and contain N-terminal signal sequences.101 Because they are short, traditional computational prediction programs of protein-coding ORFs excluded these sORFs as false positives.102,103 Studies have shown that some of these sORF have non-classical start codons as well.100 Various approaches, such as computational analyses, ribosome sequencing, mass spectrometry, and combinations of these procedures are recommended for accurately identifying protein-coding sORFs.

Using emerging technologies and experimental approaches, researchers have begun to address this challenge. For example, Anderson et al.104 reported a group of micropeptides, named myoregulin (MLN), phospholamban (PLN), and sarcolipin (SLN). These peptides have similar conserved regions in their peptide sequence as well as a homologous function to inhibit SERCA activity by regulating cardiac calcium uptake in muscle. Another two micropeptides that have functions similar to MLN/PLN/SLN were subsequently identified and named endoregulin (ELN) and another-regulin (ALN).105 The search for SERCA-associated regulatory micropeptides did not end there, as the identification of the micropeptide dwarf ORFs (DWORFs) revealed enhanced SERCA activity by displacing the SERCA inhibitors PLN, SLN, and MLN in the mouse heart. So far, DWORF is the only endogenous peptide known to activate the SERCA pump by a physical interaction, resulting in enhanced muscle contraction.106

As more micropeptides are identified, the questions of how many micropeptides are present in the heart and whether they share any common features will eventually be answered. For instance, a genome-wide study recently identified micropeptides in diseased hearts. As a result, hundreds of micropeptides were found in human, mouse, and rat hearts. Interestingly, the overall coding sequence for these micropeptides were less conserved than that observed in traditional proteins. Furthermore, this study indicated that many microproteins are produced from sORFs located in IncRNAs identified with previously described cardiac functions, such as Myheart,69 chaer,70 UPPERHAND (also known as UPH or HAND2-AS1),107 ZFAS1,108 and TRDN-AS (also known as RP11-532N4.2).109 Although the subcellular location of micropeptides varied, most of these localized to mitochondria, which suggests that micropeptides could have important regulatory functions for mitochondrial biogenesis and function. Indeed, recent studies have shown a micropeptide named MOXI (micropeptide regulator of β-oxidation)110 or Mtn (mitoregulin)111 interacts with the mitochondrial trifunctional protein (MTP) and several mitochondrial complexes to regulate mitochondrial function, including fatty acid β-oxidation, respiratory (super)complex formation and activity, Ca2+ retention, and reactive oxygen species formation.

It is important to recognize that as more micropeptides are identified, it will be necessary to take this into account in future investigations of RNA regulatory networks, especially those determining the function of IncRNAs. To accurately define the function of a “non-coding” gene, the coding potential of a transcript needs to be carefully excluded when investigating the function of IncRNAs. For example, recent studies identified UPPERHAND as a critical IncRNA during cardiac development.107,112 However, a potential coding sORF was also identified in both human and murine UPPERHAND.4 Therefore, further studies need to be carried out to determine whether the discovered function of UPPERHAND was derived from the RNA transcript or the micropeptide. Alternatively, more effort should be expended on genome-wide discovery of sORFs to define the noncoding gene. Various approaches, such as computational analyses, ribosome profiling (Ribo-seq [ribosome sequencing]), mass spectrometry, and combinations of these procedures are recommended for accurately identifying protein-coding sORFs.

Dysregulation of RNA Modifications Is Associated with Heart Disease

RNA molecules often undergo various modifications post-transcriptionally. m6A methylation is one of the most widespread, internal, post-transcriptional modifications of eukaryotic mRNAs, involving the regulation of physiological and pathological activities by modifying mRNA or ncRNA.113 Although m6A was first discovered in 1974,114 its location in mRNAs and functions are not fully understood. Recently, the dynamics and function of m6A modifications of mRNAs in different biological processes have been intensively investigated. The m6A modifications were recently reported to facilitate cap-independent mRNA translation.115 The modification of m6A can be dynamically deposited, removed, and identified by a series of methyltransferases (METTL3/14, WTAP, RBM15/15B, ZC3H13, KIAA1429, and METTL16, termed “writers”), demethylases (FTO and ALKBH5, termed “erasers”), and m6A-binding proteins (YTHDF1/2/3, IGF2BP1 and HNRNPA2B1, termed “readers”).116,117 More and more studies have demonstrated that the abnormal dynamics of methylation of RNA on N6-adenosines are closely related to tumorigenesis.118

Until recently, the connection between m6A RNA modifications and heart disease was yet to be explored. Dorn et al.9 demonstrated that m6A modification of a subset of mRNAs was significantly increased in response to a hypertrophic stimulus in cardiomyocytes. As an important enzyme for N6-adenosine methylation, overexpression of METTL3 was sufficient to induce adaptive cardiac hypertrophy in
the heart. Conversely, inhibition of METTL3 expression suppressed the hypertrophic growth of cardiomyocytes. Furthermore, the METTL3 knockout mouse showed gradual pathological changes during aging and stress. Interestingly, m6A modifications were found to occur specifically at MAPK mRNAs, which are important for hypertrophic growth of cardiomyocytes. In an ischemic heart mouse model, Song et al.\(^\text{119}\) have shown that increased Mettl3 activity promoted the association of HNRNPD with Tfeb pre-mRNA by regulating m6A modifications in the Tfeb 3’ UTR, and then decreased Tfeb mRNA stability in hypoxia/reoxygenation-treated cardiomyocytes, which inhibited the autophagic flux and promoted apoptosis of cardiomyocytes. In another recent study, decreased FTO expression and increased m6A RNA modifications were found in failing mammalian hearts and hypoxic cardiomyocytes. Importantly, myocardial overexpression of FTO showed a protective effect in ischemic hearts.\(^\text{7}\) It was shown that loss of FTO leads to abnormal calcium homeostasis and sarcomeric dynamics. In contrast, FTO overexpression selectively increases demethylation of contractile protein-related mRNAs, thereby inducing their expression. In addition, decreased cardiac fibrosis and enhanced angiogenesis were observed in the FTO-overexpressing ischemic myocardium through an unknown mechanism. Future studies may uncover the underlying mechanisms, which could lead to an identification of novel therapeutic strategy for MI. So far, while the m6A modification of mRNA was linked to heart disease, it will be interesting to find out whether m6A modifications of ncRNAs are involved in the pathogenesis of cardiac disease.

Increased mRNA translation is an essential step for cardiac remodeling, in which several key signaling pathways are involved, including AKT\(^\text{120}\) and AMPK.\(^\text{121,122}\) Similar to m6A modifications, which affect the translational activity of mRNA, the length of the poly(A) tail of the PABPC1 mRNA, coding a poly(A)-binding protein known to promote translation, was reported to be a key modification regulating the translation efficiency of its own mRNA.\(^\text{123}\) Pabpc1 poly(A) tail length was found to be significantly shorter in the adult heart compared to its length in the embryonic heart. This effect is correlated with the translational silencing of Pabpc1 in the adult heart under physiological conditions. The shortening of the poly(A) tail was reversed in the hypertrophic heart. It significantly enhanced the translation of Pabpc1 and triggered the subsequent global mRNA translational enhancement observed in cardiac hypertrophy. Unfortunately, the detailed mechanism of how this modification is regulated remains to be thoroughly explored.

RNA Molecules Are Potential Targets for Clinical Diagnosis and Gene Therapy for Cardiac Disease

One of the ultimate goals for investigating RNA regulatory networks in cardiac disease is to develop clinical applications with those RNA molecules, which can serve as biomarkers for disease diagnosis/prognosis and/or therapeutic targets.

Other than behaving as regulatory factors in the pathogenesis of cardiac disease, ncRNAs also function as paracrine factors by interacting with proteins to form RNA-protein complexes, as well as with lipids or high-density lipoproteins in the circulation.\(^\text{124}\) These complexes are stable and resistant to RNase degradation. Therefore, some ncRNAs with different expression levels in the serum of healthy and diseased people have the potential to act as biomarkers for the diagnosis of heart disease.

Effective biomarkers are important for assessing post-infarction risk and treatment responses in AMI. miR-1, miR-126, and cTnT expression levels in plasma from patients with AMI are significantly elevated, suggesting that miR-1 and miR-126 could be valuable indicators for AMI.\(^\text{125}\) miR-499 is specifically expressed in cardiomyocytes and only increases after AMI.\(^\text{126}\) Therefore, miR-499 could be an important biomarker for MI, especially NSTEMI.\(^\text{127}\) Other miRNAs, such as miR-208,\(^\text{128}\) miR-133,\(^\text{129}\) miR-1254,\(^\text{130}\) miR-99a,\(^\text{131}\) miR-122-5p,\(^\text{132}\) miR-874-3p,\(^\text{133}\) miR-19b, miR-223, and miR-483-5p,\(^\text{134}\) also have the potential to predict MI as biomarkers. The potential for IncRNAs to serve as biomarkers of cardiac disease has also been investigated. Vausort et al.\(^\text{135}\) demonstrated that levels of circulating IncRNAs aHIF, KCNQ1OT1, and MALAT1 were higher in patients with MI than in healthy volunteers, while levels of the circulating IncRNA ANRIL were lower. A recent study showed that high plasma ANRIL levels were correlated with a high risk of in-stent restenosis (ISR).\(^\text{136}\) Other evidence suggests that HOTAIR,\(^\text{137}\) UCA1,\(^\text{138}\) MHRT,\(^\text{139}\) MIAT,\(^\text{140}\) LIPCAR,\(^\text{141}\) CDR1AS, and ZFAS1\(^\text{142}\) could serve as potential markers for diagnosis and prognosis of AMI or CAD. circRNAs were found to be abundant in circulating blood and more stable than linear RNAs because of the closed-loop structure.\(^\text{143}\) These attributes allow the detection of these circRNAs using a convenient method.\(^\text{144}\) circRNA MICA was found to be downregulated in peripheral blood samples from MI patients.\(^\text{145}\) A study of 472 patients with AMI showed that circRNA MICRA improved the predictive value of a multivariable clinical model and it also improved the risk classification of patients after MI.\(^\text{146}\)

The potential of ncRNAs as biomarkers for heart failure was also investigated. Similar to established diagnostic protein biomarkers, such as cTnl, circulating cardiac-enriched miRNAs (myomirs) increased up to 140-fold in advanced heart failure.\(^\text{147}\) In a study of chronic heart failure, miR-660-3p, miR-665, miR-1285-3p, and miR-4491, which were derived from cardiac fibroblasts, were significantly increased in heart and plasma.\(^\text{148}\) Recent studies also showed that many circulating miRNAs were differentially expressed in heart failure, including miR-18a-5p, miR-26b-5p, miR-27a-3p, miR-199a-3p,\(^\text{149}\) miR-499,\(^\text{150}\) miR-155-5p, and miR-595.\(^\text{151}\) Some of these were also demonstrated to be effective in the assessment of risk. For example, a decrease in plasma miR-18a-5p and miR-652-3p during early hospitalization was found to correlate with an increased risk of mortality within 180 days.\(^\text{149}\) Other circulating ncRNAs, such as IncRNAs, were also investigated for their potential as biomarkers in heart failure. Previous studies showed IncRNA UCA1 could predict a similar survival rate compared to BNP in patients with chronic heart failure.\(^\text{152}\) Similarly, quantitative analysis of IncRNAs in plasma revealed that NRON and MHRT have great potential as predictive biomarkers for heart failure.\(^\text{152}\)
Other than biomarkers, ncRNAs are also attractive candidates for therapeutic targets in treating various human diseases. Some pioneering studies for cardiac regeneration with miRNAs have been carried out. Studies demonstrated that the miR-17-92 cluster plays a critical role in regulating cardiomyocyte proliferation in postnatal and adult hearts. A recent follow-up study explored the therapeutic potential of miR-19a/19b in protecting the heart in response to MI. In a MI mouse model, direct injection of miR-19a/19b mimics or AAV9-miR-19a/19b into infarcted hearts reduced scar formation, improved cardiac function, and promoted cardiomyocyte proliferation. Also note that transient overexpression of miR-19a/19b by injecting miR mimics has a long-term protective effect. Further investigation of the therapeutic effect of miR-19a/19b in a large animal model needs to be performed to demonstrate the therapeutic potential of this miR for MI in humans. Another miR, miR-199a, has also been shown to regulate cardiac regeneration. miR-199a promoted cardiomyocyte proliferation in both neonatal and adult rats. Excitingly, miR-199a also showed a therapeutic potential for MI in a large animal model. In an I/R injury pig model, overexpression of miR-199a in the myocardium using adenovirus-associated virus had a protective effect on the injured heart with better global cardiac function and regional/segmental contractility 28 days after injury. Further evidence demonstrated that morphological and functional improvements are associated with the role of miR-199a in promoting endogenous cardiomyocyte proliferation. However, it has been noticed that persistent and uncontrolled expression of miR-199a can cause sudden death due to arrhythmia. Therefore, several key factors, such as dosage, time window, and delivery approach, have to be carefully investigated before human trials can proceed.

A huge amount of effort has been spent on exploring targets and developing approaches for clinical applications in the diagnosis/treatment of cardiac diseases using proteins. Although great strides have been made, the clinical need has not yet been met. Numerous
investigations of RNA regulatory networks, especially ncRNAs, will continue to provide new RNA targets with therapeutic potential. RNA targets have their own advantages as opposed to proteins, such as not relying on antibodies for their detection and their ease of synthesis and delivery. Therefore, in combination with protein targets, the discoveries of RNA regulatory networks will likely lead to a breakthrough in clinical applications for heart disease.

Conclusion and Perspective

After annotation of the human genome, people surprisingly found that the amount of protein-coding genes and the length of coding sequences were comparable to many other vertebrates and even invertebrates, such as C. elegans. However, humans have more abundant non-coding DNA sequences than other lower species. Until the last two decades, ncRNAs started to be explored, and the known regulatory networks in cardiac pathology, which mainly consist of proteins, are likely to be just a “tip of iceberg” phenomenon. In this review, we summarize the main discoveries in RNA regulatory networks in cardiac disease, which are just the beginning of exploring the “dark matter” of the human genome. Clearly, RNA molecules are one of an indispensable component of these networks. Further work will help us better understand the underlying molecular mechanisms of cardiac disease (Figure 1). Perhaps more importantly, this knowledge may provide a roadmap to defeat heart disease.

AUTHOR CONTRIBUTIONS

R.T., T.L., and Z.-P.H. prepared the manuscript. R.T. and T.L. wrote the main parts of the article and produced graphics. K.O.L. and Y.C. reviewed and edited the manuscript. Z.-P.H drafted the final version of the manuscript. All authors read and approved the final manuscript.

CONFLICTS OF INTEREST

The authors declare no competing interests.

ACKNOWLEDGMENTS

We thank members of the Huang laboratory for advice and support. We also thank Dr. Douglas Cowan for editing the manuscript. This work is supported by grants from the National Natural Science Foundation of China (81873463), the Guangdong Basic and Applied Basic Research Foundation (2019B151502003), the Guangdong Science and Technology Department (2018A050506026) and the Fundamental Research Funds for the Central Universities (20ykyzd06) to Z.-P.H.

REFERENCES

1. Hastings, C.L., Roche, E.T., Ruiz-Hernandez, E., Schenke-Layland, K., Walsh, C.J., and Duffy, G.F. (2015). Drug and cell delivery for cardiac regeneration. Adv. Drug Deliv. Rev. 84, 85–106.
2. Hashimoto, H., Olson, E.N., and Bassel-Duby, R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nat. Rev. Cardiol. 15, 585–600.
3. Atianand, M.K., and Fitzgerald, K.A. (2014). Long non-coding RNAs and control of gene expression in the immune system. Trends Mol. Med. 20, 623–631.
4. van Heesch, S., Witte, F., Schneider-Lunitz, V., Schulz, J.F., Adami, E., Faber, A.B., Kirchner, M., Maat, H., Blachut, S., Sandmann, C.L., et al. (2019). The translational landscape of the human heart. Cell 178, 242–260.e29.
5. Boccaletto, P., Machnicka, M.A., Purta, E., Piatkowski, P., Baginski, B., Wirecki, T.K., de Crécy-Lagard, V., Ross, R., Limbach, P.A., Kotter, A., et al. (2018). MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46 (D1), D303–D307.
6. Dorn, L.E., Lasman, L., Chen, J., Xu, X., Hund, T.J., Medvedovic, M., Hanna, J.H., van Berlo, J.H., and Accornero, F. (2019). The N6-methyladenosine mRNP methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 139, 533–545.
7. Mathiyalagan, P., Adamia, M., Mayourian, J., Sassi, Y., Liang, Y., Agarwal, N., Jha, D., Zhang, S., Kohlbrenner, E., Cherupko, E., et al. (2019). FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139, 518–532.
8. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.
9. Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.
10. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.
11. Shenoy, A., and Blelloch, R.H. (2014). Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat. Rev. Mol. Cell Biol. 15, 565–576.
12. Tomasetti, M., Amati, M., Santarelli, L., and Neuzil, J. (2016). MicroRNA in metabolic re-programming and their role in tumorigenesis. Int. J. Mol. Sci. 17, 754.
13. Boon, R.A., Ikeshi, K., Lechner, S., Seeger, T., Fischer, A., Heydt, S., Kaluza, D., Tréguer, K., Carmona, G., Bonauers, A., et al. (2013). MicroRNA-34a regulates cardiac ageing and function. Nature 495, 107–110.
14. Walslquist, C., Jeong, D., Rojas-Muñoz, A., Kho, C., Lee, A., Mitsuya, S., van Mil, A., Park, W.J., Sluijter, I.P., Doevendans, P.A., et al. (2014). Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508, 531–535.
15. Small, E.M., Frost, R.J., and Olson, E.N. (2010). MicroRNAs add a new dimension to cardiovascular disease. Circulation 121, 1022–1032.
16. Yan, B., Wang, H., Tan, Y., and Fu, W. (2019). MicroRNAs in cardiovascular disease: small molecules but big roles. Curr. Top. Med. Chem. 19, 1918–1947.
17. van Rooij, E., Sutherland, L.B., Qi, X., Richardson, J.A., Hill, J., and Olson, E.N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579.
18. Callis, T.E., Pandya, K., Seok, H.Y., Tang, R.H., Tatsuguchi, M., Huang, Z.P., Chen, J.F., Deng, Z., Gunn, B., Shumate, J., et al. (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119, 2772–2786.
19. Paulin, R., Sutendra, G., Gurtu, V., Dromparis, P., Haromy, A., Provencer, S., Bonnet, S., and Michelakis, E.D. (2015). A miR-208-Mef2 axis drives the decompen-sation of right ventricular function in pulmonary hypertension. Circ. Res. 116, 56–69.
20. Ivey, K.N., Muth, A., Arnold, J., King, F.W., Yeh, R.F., Fish, J.E., Hsiao, E.C., Schwartz, R.J., Conklin, B.R., Bernstein, H.S., and Srivastava, D. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2, 219–229.
21. Sayed, D., Hong, C., Chen, I.Y., Lypowy, J., and Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100, 416–424.
22. Sano, M., Abdellatif, M., Oh, H., Xie, M., Bagella, L., Giordano, A., Michael, L.H., DeMayo, F.J., and Schneider, M.D. (2002). Activation and function of cyclin T-activating protein, Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. J. Biol. Chem. 277, 25717–25728.
32. Zhu, W.S., Guo, W., Zhu, J.N., Tang, C.M., Fu, Y.H., Lin, Q.X., Tan, N., and Shan, Hua, Y., Zhang, Y., and Ren, J. (2012). IGF-1 de
genic potential by targeting the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J. Cell Sci. 123, 2444–2452.

33. Cheng, Y., Zhao, W., Zhang, X., Sun, L., Yang, H., Wang, Y., Cao, Y., Chu, Y., et al. (2010). Attenuation of microRNA-1 downregulates the hepatocyte-associated calmodulin and Mea2 genes. Mol. Cell. Cardiovasc. Res. 219, 2293–2304.

34. Ai, J., Zhang, R., Gao, X., Niu, H.F., Wang, N., Xu, Y., Li, Y., Ma, N., Sun, L.H., Pan, Z.W., et al. (2012). Overexpression of microRNA-1 impairs cardiac contractile function by damaging sarcomere assembly. Cardiovasc. Res. 95, 385–393.

35. Luo, X., Guo, W., Zhu, J.N., Tang, C.M., Fu, Y.H., Lin, Q.X., Tan, N., and Shan, Z.X. (2016). Hsp90aa1: a novel target gene of miR-1 in cardiac ischemia/reperfusion injury. Sci. Rep. 6, 24498.

36. Cheng, Y., Zhao, W., Zhang, X., Sun, L., Yang, H., Wang, Y., Cao, Y., Chu, Y., and Liu, G. (2018). Downregulation of microRNA-1 attenuates glucose-induced apoptosis by regulating the liver X receptor α in cardiomyocytes. Exp. Ther. Med. 16, 1814–1824.

37. Yang, B., Lin, H., Xiao, J., Li, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., et al. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486–491.

38. Luo, X., Lin, H., Pan, Z., Xiao, J., Zhang, Y., Li, Y., Yang, B., and Wang, Z. (2011). Retraction. J. Biol. Chem. 286, 28565.

39. Kumaraswamy, R., Lyon, A.R., Volkman, L., Mills, A.M., Bretthauer, J., Pahuja, A., Geers-Knörr, C., Kraft, T., Hajar, R.I., Macleod, K.T., et al. (2012). SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur. Heart J. 33, 1067–1075.

40. Terentiev, D., Belevych, A.E., Terentyeva, R., Martin, M.M., Malana, G.E., Kuhn, D.E., Abdellatif, M., Feldman, D.S., Elton, T.S., and Györke, S. (2009). miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56 and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ. Res. 104, 514–521.

41. Myers, R., Timofeyev, V., Li, N., Kim, C., Ledford, H.A., Sirish, P., Lau, V., Zhang, Y., Dorn, G.W., 2nd, van Rooij, E., and Olson, E.N. (2009). The muscle-specific microRNAs and CaMKII signaling in electrical remodeling. Circ. Arrhythm. Electrophysiol. 2, 942–950.

42. Garcia, R., Nistal, J.F., Merino, D., Price, N.L., Fernández-Hernando, C., Beaumont, J., González, A., Hurlé, M.A., and Villar, A.V. (2015). p-SMAD2/3 and Dicer promote pre-miR-21 processing during pressure overload-associated myocardial remodeling. Biochim. Biophys. Acta 1852, 1520–1530.

43. Zhou, X.L., Xu, H., Liu, Z.B., Wu, Q.C., Zhu, R.R., and Liu, J.C. (2018). miR-21 promotes cardiac fibroblast-to-myofibroblast transformation and myocardial fibrosis by targeting Jagged1. J. Cell. Mol. Med. 22, 3816–3824.

44. Patrick, D.M., Montgomery, R.L., Qi, X., Obad, S., Kauppinen, S., Hill, J.A., van Rooij, E., and Olson, E.N. (2010). Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Invest. 120, 3912–3916.

45. Dong, S., Cheng, Y., Yang, J., Li, J., Liu, X., Wang, X., Wang, D., Krall, T.J., Delphin, E.S., and Zhang, C. (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J. Biol. Chem. 284, 29514–29525.

46. Cheng, Y., Liu, X., Zhang, S., Lin, Y., Yang, J., and Zhang, C. (2009). MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J. Mol. Cell. Cardiol. 47, 5–14.

47. Cheng, Y., Zhu, P., Yang, J., Liu, X., Dong, S., Wang, X., Chun, B., Zhuang, J., and Zhang, C. (2010). Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc. Res. 87, 431–439.

48. Tsijen, A.J., van der Made, I., van den Hoogenhof, M.M., Wijnen, W.J., van Deel, E.D., de Groot, N.E., Alekseev, S., Flutter, K., Schroen, B., Boumans, M.J., et al. (2014). The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc. Res. 104, 61–71.

49. van Rooij, E., Sutherland, L.B., Liu, N., Williams, A.H., McAnally, J., Gerard, R.D., Richardson, J.A., and Olson, E.N. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA 103, 18255–18260.

50. Chen, H., Untrieros, G.M., McKee, L.A., Perez, J., Li, J., Antin, P.B., and Konhilas, J.P. (2012). MicroRNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS ONE 7, e11574.

51. Hsieh, P.C., Segers, V.F., Davis, M.E., MacGillivray, C., Gannon, J., Molkentin, J.D., Robbins, J., and Lee, R.T. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 13, 970–974.

52. Porrollo, E.R., Johnson, B.A., Aurora, A.B., Simpson, E., Yam, J.Y., Markovich, S.J., Dorn, G.W., 2nd, van Rooij, E., and Olson, E.N. (2011). miR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ. Res. 109, 670–679.

53. Hullinger, T.G., Montgomery, R.L., Seto, A.G., Dickinson, B.A., Semus, H.M., Lynch, J.M., Dalby, C.M., Robinson, K., Stack, C., Latimer, P.A., et al. (2012). Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res. 110, 71–81.

54. Yang, Y., Ding, S., Xu, G., Chen, F., and Ding, F. (2017). MicroRNA-15a inhibition protects against hypoxia/reoxygenation-induced apoptosis of cardiomyocytes by targeting mothers against decapentaplegic homolog 7. Mol. Med. Rep. 15, 3699–3705.

55. Liu, L., Zhang, G., Liang, Z., Liu, X., Li, T., Fan, J., Bai, J., and Wang, Y. (2014). MicroRNA-15b enhances hypoxia/reoxygenation-induced apoptosis of cardiomyocytes via a mitochondrial apoptotic pathway. Apoptosis 19, 19–29.

56. Hang, P., Sun, C., Guo, J., Zhao, J., and Du, Z. (2016). BDNF-mediated down-regulation of microRNA-195 inhibits ischemic cardiac apoptosis in rats. Int. J. Biol. Sci. 12, 979–989.

57. Li, X., Zeng, Z., Li, Q., Xu, Q., Xie, J., Hao, H., Luo, G., Liao, B., Bin, J., Huang, X., and Liao, Y. (2015). Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy. Oncotarget 6, 18829–18844.

58. Liu, J., Sun, F., Wang, Y., Yang, W., Xiao, H., Zhang, Y., Lu, R., Zhu, H., Zhuang, Y., Pan, Z., et al. (2017). Suppression of microRNA-16 protects against acute myocardial infarction by reversing beta2-adrenergic receptor down-regulation in rats. Oncotarget 8, 20122–20132.

59. Chen, C., Jia, K.Y., Zhang, H.L., and Fu, J. (2016). miR-195 enhances cardiomyocyte apoptosis induced by hypoxia/reoxygenation injury via downregulating c-myc. Eur. Rev. Med. Pharmacol. Sci. 20, 3410–3416.
116. Chen, X.Y., Zhang, J., and Zhu, J.S. (2019). The role of m6A RNA methylation in cancer. Mol. Cancer 18, 103.

117. Yang, Y., Hsu, P.J., Chen, Y.S., and Yang, Y.G. (2018). Dynamic transcriptomic m^6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 28, 616–624.

118. Wang, S., Chai, P., Jia, r, and Jia, R. (2018). Novel insights on m^6A RNA methylation in tumorigenesis: a double-edged sword. Mol. Cancer 17, 101.

119. Song, H., Feng, X., Zhang, R., Luo, R., Huang, J., Lin, M., Jin, D., Ding, X., Wu, S., Huang, H., et al. (2019). METTL3 and ALKBH5 oppositely regulate m^6A modification of TFE3 mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 15, 1419–1437.

120. Dorn, G.W., 2nd, and Force, T. (2005). Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Invest. 115, 527–537.

121. Chan, A.Y., Soltys, C.L., Young, M.E., Proud, C.G., and Dyck, J.R. (2004). Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J. Biol. Chem. 279, 32771–32779.

122. Li, Y., Wang, R., Zou, M., Chen, C., Chen, Y., Xue, R., Dong, Y., and Liu, C. (2018). AMPK blunts chronic heart failure by inhibiting autophagy. Biosci. Rep. 38, BSR20170982.

123. Chorghade, S., Seimetz, J., Emmons, R., Yang, J., Bresson, S.M., Lisio, M., Parise, G., Conrad, N.K., and Kalsotra, A. (2017). Poly(A) tail length regulates PABPC1 expression to tune translation in the heart. eLife 6, e24139.

124. Busch, A., Eken, S.M., and Maegdeffels, L. (2016). Prospective and therapeutic screening value of non-coding RNA as biomarkers in cardiovascular disease. Ann. Transl. Med. 4, 236.

125. Long, G., Wang, F., Duan, Q., Chen, F., Yang, S., Gong, W., Wang, Y., Chen, C., and Wang, D.W. (2012). Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int. J. Biol. Sci. 8, 811–818.

126. Devaux, Y., Vausort, M., Goretti, E., Nazarov, P.V., Azaize, F., Gilson, G., Corsten, M.F., Schroen, B., Lair, M.L., Heymans, S., and Wagner, D.R. (2012). Use of circRNA microRNAs to diagnose acute myocardial infarction. Clin. Chem. 58, 559–567.

127. Zhang, L., Chen, X., Su, T., Li, H., Huang, Q., Wu, D., Yang, C., and Han, Z. (2015). Circulating miR-499 are novel and sensitive biomarker of acute myocardial infarction. J. Thorac. Dis. 7, 303–308.

128. Ji, X., Takahashi, R., Hiura, Y., Hirokawa, G., Fukushima, Y., and Iwai, N. (2009). Plasma miR-208 as a biomarker of myocardial injury. Clin. Chem. 55, 1944–1949.

129. Zha, L., Liu, F., Xie, H., and Feng, J. (2018). Diagnostic performance of microRNA-133a in acute myocardial infarction: a meta-analysis. Cardiol. J. 25, 260–267.

130. de Gonzalez-Calvo, D., Cediel, G., Bár, C., Núñez, J., Revuelta-Lopez, E., Gavara, J., Ríos-Navarro, C., Llorente-Cortes, V., Bodi, V., Thum, T., and Bayes-Genis, A. (2018). Circulating miR-1254 predicts ventricular remodeling in patients with ST-segment-elevation myocardial infarction: a cardiovascular magnetic resonance study. Sci. Rep. 8, 15115.

131. Yang, S.Y., Wang, Y.Q., Gao, H.M., Wang, B., and He, Q. (2016). The clinical value of circulating miR-99a in plasma of patients with acute myocardial infarction. Eur. Rev. Med. Pharmacol. Sci. 20, 5193–5197.

132. Wang, Y., Zhang, W., Zhang, Y., Huang, R., Qi, H., Xue, S., Yu, H., Hu, L., Liu, D., et al. (2018). Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. J. Cell Physiol. 234, 4778–4786.

133. Yang, Y., Song, X., Li, Z., Zhang, J., Ren, J., Wu, J., Li, Y., Gao, Y., and Wang, J. (2017). Elevated levels of granzyme B correlated with miR-874-3p downregulation in patients with acute myocardial infarction. Biomarkers Med. 11, 761–767.

134. Li, L., Liu, S., Wu, M., Chi, C., Hu, D., Cui, Y., Song, J., Lee, C., and Chen, H. (2019). Early diagnostic value of circulating microRNAs in patients with suspected acute myocardial infarction. J. Cell Physiol. 234, 13649–13658.

135. Vausort, M., Wagner, D.R., and Devaux, Y. (2014). Long noncoding RNAs in patients with acute myocardial infarction. Circ. Res. 115, 668–677.

136. Wang, F., Su, X., Liu, C., Wu, M., and Li, B. (2017). Prognostic value of plasma long noncoding RNA ANRIL for in-stent restenosis. Med. Sci. Monit. 23, 4733–4739.

137. Gao, L., Liu, Y., Guo, S., Yao, R., Wu, L., Xiao, L., Wang, Z., Liu, Y., and Zhang, Y. (2017). Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell. Physiol. Biochem. 44, 1497–1508.
138. Yan, Y., Zhang, B., Liu, N., Qi, C., Xiao, Y., Tian, X., Li, T., and Liu, B. (2016). Circulating Long noncoding RNA UCA1 as a novel biomarker of acute myocardial infarction. BioMed Res. Int. 2016, 8079372.

139. Zhang, J., Gao, C., Meng, M., and Tang, H. (2016). Long noncoding RNA MHTF protects cardiomyocytes against H2O2-induced apoptosis. Biomed. Ther. (Seoul) 24, 19–24.

140. Araz, M., Huoijahemattii, X., Gao, R., and Peng, P. (2019). Long noncoding RNA MIAT: a potential role in the diagnosis and mediation of acute myocardial infarction. Mol. Med. Rep. 20, 5216–5222.

141. Zhang, Z., Gao, W., Long, Q.Q., Zhang, J., Li, Y.F., Liu, D.C., Yan, J.J., Yang, Z.J., and Wang, L.S. (2017). Increased plasma levels of IncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci. Rep. 7, 7491.

142. Zhang, Y., Sun, L., Xuan, L., Pan, Z., Li, K., Liu, S., Huang, Y., Zhao, X., Huang, L., Wang, Z., et al. (2016). Reciprocal changes of circulating long non-coding RNAs ZFAS1 and GDR1AS predict acute myocardial infarction. Sci. Rep. 6, 22384.

143. Shang, Q., Yang, Z., Jia, R., and Ge, S. (2019). The novel roles of circRNAs in human cancer. Mol. Cancer 18, 6.

144. Memczak, S., Papavasileiou, P., Peters, O., and Rajewsky, N. (2015). Identification and characterization of circRNAs as a new class of putative biomarkers in human blood. PLoS ONE 10, e0141214.

145. Vassort, M., Salgado-Somoza, A., Zhang, L., Leszek, P., Scholz, M., Teren, A., Burkhart, R., Thiery, J., Wagner, D.R., and Devaux, Y. (2016). Myocardial infarction-associated circ RNA predicting left ventricular dysfunction. J. Am. Coll. Cardiol. 68, 1247–1248.

146. Salgado-Somoza, A., Zhang, L., Vassort, M., and Devaux, Y. (2017). The circular RNA MICRA for risk stratification after myocardial infarction. Int. J. Cardiol. Heart Vasc. 17, 33–36.

147. Akat, K.M., Moore-McGriff, D., Morenov, P., Brown, M., Gogakos, T., Correa Da Rosa, J., Mihalovic, A., Sauer, M., Ji, R., Ramarathnam, A., et al. (2014). Comparative RNA-sequencing analysis of myocardial and circulating small RNAs. Biochem. Biophys. Res. Commun. 452, 596–602.

150. Corsten, M.F., Dennert, R., Jochems, S., Kuznetsova, T., Devaux, Y., Hofstra, L., Wagner, D.R., Staessen, J.A., Heymans, S., and Schroen, B. (2010). Circulating microRNAs in patients with acute heart failure. Eur. J. Heart Fail. 12, 746–751.

151. Eulalio, A., Mano, M., Dal Ferro, M., Zentilin, L., Sinagra, G., Zacchigna, S., and Veronese, D.Z. (2014). Loss of microRNA-155 protects the heart from pathological cardiac hypertrophy. Circ. Res. 115, 1585–1595.

153. Xuan, L., Sun, L., Zhang, Y., Huang, D., and Xiao, Y. (2016). miR-155 knockout in fibroblasts improves cardiac remodeling by targeting tumor protein p53-inducible nuclear protein 1. J. Cardiovasc. Pharmacol. Ther. 21, 423–435.

154. Li, H., Zhang, X., Fan, S., Cui, G., and Shen, Z. (2016). MicroRNA-497 inhibits cardiac hypertrophy by targeting Sirt4. PLoS ONE 11, e0168078.

155. Zhang, X., Ji, R., Xiao, M., Castillero, E., Kennel, P.J., Brunjes, D.L., Franz, M., Mobius-Winkler, S., Drosatos, K., George, I., et al. (2018). MicroRNA-195 regulates metabolism in failing myocardium via alterations in sirtuin 3 expression and mitochondrial protein acetylation. Circulation 137, 2022–2067.

156. Zhao, X., Yang, Z., Fan, S., Cui, G., and Shen, Z. (2016). MicroRNA-497 inhibits cardiac hypertrophy by targeting Sirt4. PLoS ONE 11, e0168078.
175. Zhu, J., Yao, K., Wang, Q., Guo, J., Shi, H., Ma, L., Liu, H., Gao, W., Zou, Y., and Ge, J. (2016). Ischemic postconditioning-regulated miR-499 protects the rat heart against ischemia/reperfusion injury by inhibiting apoptosis through PDCD4. Cell. Physiol. Biochem. 39, 2364–2380.

176. Porrello, E.R., Mahmoud, A.I., Simpson, E., Johnson, B.A., Grinsfelder, D., Canseco, D., Mammen, P.P., Rothermel, B.A., Olson, E.N., and Sadek, H.A. (2013). Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. USA 110, 187–192.

177. Luo, X., Lin, H., Pan, Z., Xiao, J., Zhang, Y., Lu, Y., Yang, B., and Wang, Z. (2011). Retraction. J. Biol. Chem. 286, 28656.

178. Lu, Y., Zhang, Y., Wang, N., Pan, Z., Gao, X., Zhang, F., Zhang, Y., Shan, H., Luo, X., Bai, Y., et al. (2010). MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation J22, 2378–2387.

179. Ling, T.Y., Wang, X.L., Chai, Q., Lau, T.W., Koestler, C.M., Park, S.J., Daly, R.C., Greason, K.L., Jen, J., Wu, L.Q., et al. (2013). Regulation of the SK3 channel by microRNA-499—potential role in atrial fibrillation. Heart Rhythm 10, 1001–1009.

180. Ling, T.Y., Wang, X.L., Chai, Q., Lu, T., Stulak, J.M., Joyce, L.D., Daly, R.C., Greason, K.L., Wu, L.Q., Shen, W.K., et al. (2017). Regulation of cardiac CACNB2 by microRNA-499: potential role in atrial fibrillation. BBA Clin. 7, 78–84.

181. Liew, C.-C., and Dzau, V.J. (2004). Molecular genetics and genomics of heart failure. Nat. Rev. Genet. 5, 811–825.

182. Viereck, J., and Thum, T. (2017). Long noncoding RNAs in pathological cardiac remodeling. Circ. Res. 120, 262–264.