Canonical path integral measures for Holst and Plebanski gravity: I. Reduced phase space derivation

Jonathan Engle\textsuperscript{1,2,3}, Muxin Han\textsuperscript{1,3} and Thomas Thiemann\textsuperscript{1,3,4}

\textsuperscript{1} MPI f. Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Potsdam, Germany
\textsuperscript{2} Centre de Physique Théorique\textsuperscript{5}, Campus de Luminy, Case 907, 13288 Marseille, France
\textsuperscript{3} Institut f. Theoretische Physik III, Universität Erlangen-Nürnberg Staudtstraße 7, 91058 Erlangen, Germany
\textsuperscript{4} Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N2L 2Y5, Canada

E-mail: engle@theorie3.physik.uni-erlangen.de, mhan@aei.mpg.de, thiemann@theorie3.physik.uni-erlangen.de, thiemann@aei.mpg.de and tthiemann@perimeterinstitute.ca

Received 31 January 2010, in final form 20 June 2010
Published 26 November 2010
Online at stacks.iop.org/CQG/27/245014

Abstract

An important aspect in defining a path integral quantum theory is the determination of the correct measure. For interacting theories and theories with constraints, this is non-trivial, and is normally not the heuristic ‘Lebesgue measure’ usually used. There have been many determinations of a measure for gravity in the literature, but none for the Palatini or Holst formulations of gravity. Furthermore, the relations between different resulting measures for different formulations of gravity are usually not discussed. In this paper we use the reduced phase technique in order to derive the path-integral measure for the Palatini and Holst formulation of gravity, which is different from the Lebesgue measure up to local measure factors which depend on the spacetime volume element and spatial volume element. From this path integral for the Holst formulation of general relativity we can also give a new derivation of the Plebanski path integral and discover a discrepancy with the result due to Buffenoir, Henneaux, Noui and Roche whose origin we resolve. This paper is the first in a series that aims at better understanding the relation between canonical loop quantum gravity and the spin-foam approach.

PACS numbers: 04.60.Pp, 04.60.Gw, 04.60.Ds

\textsuperscript{5} Unité Mixte de Recherche (UMR 6207) du CNRS et des Universités Aix-Marseille I, Aix-Marseille II, et du Sud Toulon-Var; laboratoire affilié à la FRUMAM (FR 2291).
1. Introduction

Richard Feynman, in the course of his doctoral work, developed the path integral formulation of quantum mechanics as an alternative, spacetime covariant description of quantum mechanics, which is nevertheless equivalent to the canonical approach [1]. It is thus not surprising that the path integral formulation has been of interest in the quantization of general relativity, a theory where spacetime covariance plays a key role. However, once one departs from the regime of free, unconstrained systems, the equivalence of the path integral approach and canonical approach becomes more subtle than originally described by Feynman in [1]. In particular, in Feynman’s original argument, the integration measure for the configuration path integral is a formal Lebesgue measure; in the interacting case, however, in order to have equivalence with the canonical theory, one cannot use the naive Lebesgue measure in the path integral, but must use a measure derived from the Liouville measure on the phase space [2].

Such a measure has yet to be incorporated into spin-foam models, which can be thought of as a path integral version of loop quantum gravity (LQG) [3, 4]. LQG is an attempt to make a mathematically rigorous quantization of general relativity that preserves background independence—for reviews, see [6–8] and for books see [9, 10]. Spin foams intend to be a path integral formulation for LQG, directly motivated from the ideas of Feynman appropriately adapted to reparametrization-invariant theories [4, 5]. Only the kinematical structure of LQG is used in motivating the spin-foam framework. The dynamics one tries to encode in the amplitude factors appearing in the path integral is being replaced by a sum in a regularization step which depends on a triangulation of the spacetime manifold. Eventually one has to take a weighted average over these (generalized) triangulations for which the proposal at present is to use methods from group field theory [3]. The current spin-foam approach is independent from the dynamical theory of canonical LQG [11]. Because the dynamics of canonical LQG is rather complicated, it uses an apparently much simpler starting point. Namely, in the Plebanski formulation [14], GR can be considered as a constrained BF theory and treating the so-called simplicity constraints as a perturbation of BF theory, one can make use of the powerful toolbox that comes with topological QFTs [12]. It is an unanswered question, however, and one of the most active research topics momentarily6, how canonical LQG and spin foams fit together. It is one the aims of this paper to make a contribution towards answering this question.

In LQG one is compelled to introduce a 1-parameter quantization ambiguity—the so-called Immirzi parameter [15, 16]. This enters the action through a necessary extra ‘topological’ term added to the Palatini action; the full action is termed the Holst action [17]. To properly incorporate the Immirzi parameter into spin foams, one should in fact not start from the usual Plebanski formulation but rather an analogous generalization, in which an analogous topological term is added to the action, leading to what we call the Plebanski–Holst formulation of gravity [19–21].

In [22] we have shown (and partly reviewed) for a rather general theory that different canonical quantization techniques for gauge theories, specifically Dirac’s operator constraint method, the master constraint method and the reduced phase space method all lead to the same path integral. A prominent role in establishing this equivalence is played by what is called ‘the choice of gauge fixing’ (from the reduced phase space point of view) or, equivalently, the choice of clocks (from the gauge invariant, i.e. relational point of view [24]). After a long analysis, it transpires that the common basis for the path integral measure, no matter from which starting point it is derived, is the Liouville measure on the reduced phase, which can be defined via gauge fixing of the first-class constraints. This measure can be extended to

---

6 Here we are referring the spin-foam model for four-dimensional gravity, while for three-dimensional gravity the consistency is discussed in e.g. [13].
the full phase space and one shows that the dependence on the gauge fixing disappears when one integrates gauge-invariant functions\(^7\). From this point of view, that is, the equivalence between path integral formulation and the canonical theory, it is obvious that formal path integrals derived from the various formulations of gravity should all be equivalent, because all of them have the same reduced phase space—that of general relativity.

We thus apply the general reduced phase space framework to the Holst action as the starting point for deriving a formal path integral for both the Holst action and the Plebanski–Holst action. It turns out that the resulting path integral for either the Holst action or the Plebanski–Holst action is not naively the Lebesgue measure integral times the exponentiated action. There are extra measure factors of the spacetime volume element \(V\) and the spatial volume element \(V_s\). The presence of a spatial volume element is especially surprising because it breaks the manifest spacetime covariance of the path integral when we are off-shell. The origin of this lack of covariance is in the mixture of dynamics and gauge invariance inherent to generally covariant systems with propagating degrees of freedom and it is well known that the gauge symmetries generated by the constraints only coincide on-shell with spacetime diffeomorphism invariance. The quantum theory chooses to preserve the gauge symmetries generated by the constraints rather than spacetime diffeomorphism invariance when we take quantum corrections into account (go off-shell).

This kind of extra measure factor (so-called local measure) has appeared and been discussed in the literature since 1960s (see for instance [25, 26]) in the formalism of geometrodynamics and its background-dependent quantizations (stationary phase approximation). The outcome from the earlier investigations appears to be that in background-dependent, perturbative quantizations, these measure factors of \(V\) and \(V_s\) only contribute to the divergent part of the higher loop-order amplitudes. Thus their meanings essentially depend on the regularization scheme used. One can of course try to choose certain regularization schemes such that, either the local measure factors never contribute to the transition amplitude, or that their effect is canceled by the divergence from the action [25, 26]. However, the power of renormalization and the very reason we trust it is that its predictions are independent of the regularization technique chosen. Therefore the status of these measure factors is very much unsettled, especially for non-perturbative quantization techniques. We here take the point of view that the measure factors should be taken seriously because they take the off-shell symmetry generated by the constraints properly into account. In which sense this so-called Bergmann–Komar ‘group’ (BKG) [33] is preserved in the path integral is the subject of the research conducted in [28]. In this paper we confine ourselves to a brief discussion.

In the formalism of connection dynamics, which is a preparation of background-independent quantization, a similar local measure factor also appears. It was first pointed out in [27], whose path integral will be shown to be equivalent to our present formulation up to a discrepancy whose origin we resolve. When we perform background-independent quantization as in spin-foam models, the local measure factor should not be simply ignored, because the regularization arguments in background-dependent quantization have no obvious bearing in the background-independent context anymore. For example, spin-foam models are defined on a triangulation of the spacetime manifold with finite number of vertices, where at each vertex the value of local measure is finite, and the action also does not show any divergence.

\(^7\) However, the dependence on the gauge fixing is secretly there, in a gauge-invariant form, since choices of algebras of Dirac observables (i.e. gauge-invariant functions) are in one-to-one correspondence with choices of gauge fixing. The choice of such an algebra is the zeroth step in a canonical quantization scheme and determines everything else such as the representation theory; see [22] for a comprehensive discussion.
However, so far none of the existing spin-foam models implements this non-trivial local measure factor in the quantization. The quantum effect implied by this measure factor has not been analyzed in the context of spin-foam models. But without it there is no chance to link spin foams with canonical LQG which at present is the only method we have in order to derive a path integral formulation of LQG from first principles. In an ongoing work [32], we analyze the non-trivial effects caused by this measure factor in the context of spin-foam models, and try to give spin-foam amplitudes an unambiguous canonical interpretation by establishing a link between path integral formulation and canonical quantization. In this paper we also make a few comments on this.

The paper is organized as follows. In section 2, after defining the reduced phase space path integral for a general theory, we begin with the Hamiltonian framework arising from the $SO(\eta)$ Holst action [34] (see also [35]). We then derive the path integral formula for the Holst action in terms of spacetime field variables, i.e. the $so(\eta)$ connection $\omega_{\mu}^{\alpha}$ and the co-tetrad $e_{\mu}^{\alpha}$. In section 3, starting from the Holst phase space path integral, we construct a path integral formula for the Plebanski–Holst action by adding some extra fields and extra constraints. In section 4, we discuss the consistency with the calculations in [27]. Finally, we summarize and conclude with an outlook to future research.

2. The path integral measure for the Holst action

2.1. Reduced phase space path integral

To cut a long story short (see e.g. [2, 22]) the central ingredient for most applications of the path integral is the generating functional

$$Z(j) := \int Dq Dp \left| \det((F, \xi)) \right| \sqrt{|\det(S, S)|} \delta[F] \delta[\xi] \exp \left( i \int dt (p_a \dot{q}^a + j_a q^a) \right)$$

(2.1)

Here $(q^a, p_a)$ denotes any instantaneous Darboux coordinates on phase space, $S$ denotes the collection of all second-class constraints $S_S$, $F$ is the collection of all first class constraints $F_\mu$, $\xi$ is any choice of gauge-fixing conditions $\xi^\mu$ and $j$ is a current which allows us to perform functional derivations at $j = 0$ in order to define any object of physical interest. For instance the rigging kernel between initial and final kinematical states $\psi_i(q)$, $\psi_f(q)$ results by generating these two functions through functional derivation at $t = \pm \infty$. In addition, as usual $Dq = \prod_{a \in \mathbb{R}, \nu} dq^a(t)$ and $\delta[F] = \prod_{\nu \in \mathbb{R}, \mu} \delta(F_\mu(t))$, and likewise for $Dp$ and $\delta[S]$. We will often write $|D_1| = |\det(F, \xi)|^2$, $|D_2| = |\det(S, S)|$. We will also drop the exponential of the current in what follows since it does not affect any of our manipulations; hence we will mostly deal with the partition function $Z = Z[0]$. Since what one is really interested in is $Z[j]/Z$ we can drop overall constant factors from all subsequent formulae.

Applied to our situation, we restrict ourself to the case of pure gravity defined by the Holst action. We follow the notation employed in [17, 34]. Note that for the simplicity of the formulae, we skip $\prod_{x \in M}$ in almost all following path integrals, where $M$ is the spacetime manifold.

The ambiguities of the path integral measure in spin-foam models have been discussed in the literatures. In the context of spin-foam models, this issue of path integral measure can be translated into an ambiguity of the gluing constraints. In section 4, we discuss the consistency with the calculations in [27]. Finally, we summarize and conclude with an outlook to future research.

8 The ambiguities of the path integral measure in spin-foam models have been discussed in the literatures. In the context of spin-foam models, this issue of path integral measure can be translated into an ambiguity of the gluing constraints. However, so far none of the existing spin-foam models implements this non-trivial local measure factor in the quantization. The quantum effect implied by this measure factor has not been analyzed in the context of spin-foam models. But without it there is no chance to link spin foams with canonical LQG which at present is the only method we have in order to derive a path integral formulation of LQG from first principles. In an ongoing work [32], we analyze the non-trivial effects caused by this measure factor in the context of spin-foam models, and try to give spin-foam amplitudes an unambiguous canonical interpretation by establishing a link between path integral formulation and canonical quantization. In this paper we also make a few comments on this.

9 Our discussions apply to both Euclidean and Lorentzian signatures.

10 Provided they are analytic. In case they are not, they are analytic functions times a reference vector $\Omega_0$ in which case the reference vector must be included in (2.1). See [22] for details.
manifold. Moreover, we will assume that all the gauge-fixing conditions $\xi_\alpha$ are functions independent of the connections $\omega_{IJ}^a$, i.e. they are the functions of tetrad only. This assumption will simplify the following discussion. Then

$$Z = \int D\omega_{I J}^a D\pi_{I J}^a \delta(C^{ab}) \delta(D^{ab}) \sqrt{|D_2|} \delta(G_{IJ}) \delta(H_a) \sqrt{|D_1|} \prod_\alpha \delta(\xi_\alpha)$$

$$\times \exp i \int dt d^3 \gamma \pi_{I J}^a \omega_{I J}^a,$$

where $\pi_{I J}^a := (\tau - \frac{1}{\gamma} \pi)_{I J}^a$, and the expressions of the constraints $G_{IJ}, H_a, H, C^{ab}$ and $D^{ab}$ are given by [34]

$$G_{IJ} = D_a \pi_{I J}^a := \partial_a \pi_{I J}^a + \omega_a K_{IJ}^a - \omega_a J_{IK}^a$$

$$H_a = \frac{1}{2} F_{IJ}^a \omega_{I J}^a$$

$$H = \frac{1}{4\sqrt{\det q}} \left( F - \frac{1}{\gamma} F \right)_{IJ}^{ab} \pi_a K_{IJ}^b \eta^{KL}$$

$$C^{ab} = \varepsilon_{I J K L} \pi_{I J}^a \pi_{K L}^b$$

$$D^{ab} = \frac{1}{2\sqrt{\det q}} \pi_{I J}^a (\pi^a K_{IJ}^b + \pi^b K_{IJ}^a) \eta_{KL}.$$

where $D^{ab}$ is the secondary constraint with $\{H(x), C^{ab}(x')\} = D^{ab}(x) \delta(x, x')$. Note that the definition of $H$ and $D^{ab}$ is slightly different from [34], up to a factor of $1/(2\sqrt{\det q})$. In rewriting the kinematical Liouville measure $D\omega_{I J}^a D\pi_{I J}^a$ as $D\omega_{I J}^a D\pi_{I J}^a$, an overall constant Jacobian factor has also been dropped.

In equation (2.2), $D_2$ is the determinant of the Dirac matrix

$$\begin{bmatrix}
[\{C^{ab}(x), C^{cd}(x')\}], & \{C^{ab}(x), D^{cd}(x')\}], & \{D^{ab}(x), D^{cd}(x')\} = 0, & \{C^{ab}(x), D^{cd}(x')\}, & \{D^{ab}(x), D^{cd}(x')\} = 0
\end{bmatrix}.$$

Therefore $|D_2| = [\det G]^2$ where $G$ is the matrix

$$G^{ab,cd}(x, x') = \{C^{ab}(x), D^{cd}(x')\} \approx (\det q)^{3/2} \left[ q^{ab} q^{cd} - \frac{1}{2} q^{ac} q^{bd} - \frac{1}{2} q^{bc} q^{ad} \right] \delta^3(x, x').$$

By the symmetry of $q^{ab}$, there exists an orthogonal matrix $M_b^a$ such that $M_a^b M^c_d q^{cd} = \lambda^a \delta^{ab}$ for some $[\lambda^a]$, so that

$$M_a^b M^c_d M^d_b G_{I J, G}^{c, G} = (\det q)^{3/2} \left[ \lambda^a \lambda^b \delta^{ab} \delta^{cd} - \frac{1}{2} \lambda^a \lambda^b \delta^{ac} \delta^{bd} - \frac{1}{2} \lambda^a \lambda^b \delta^{bc} \delta^{ad} \right].$$

(2.6)

Let $G_{I J, G}^{c, G} := \lambda^a \lambda^b \delta^{ab} \delta^{cd} - \frac{1}{2} \lambda^a \lambda^b \delta^{ac} \delta^{bd} - \frac{1}{2} \lambda^a \lambda^b \delta^{bc} \delta^{ad}$ denote the portion in square brackets. Each of the rows (12), (13), (23) in $\tilde{G}$ has exactly one non-zero matrix element. Reducing $\det \tilde{G}$ by minors along these three rows,

$$\det \tilde{G} = G_{12, G}^{12, 23} G_{13, G}^{13, 23} \det R = -2^{-9} (\lambda^1 \lambda^2 \lambda^3)^2 \det R$$

11 Here and later on in the paper, when we say a matrix is ‘orthogonal’, even if it has spatial-manifold indices, we mean orthogonal in the standard matrix sense—i.e. ‘orthogonal’ with respect to $\delta_{ab}$, and not with respect to some covariantly determined metric.
where $R^{ab} = G^{ab,bb}$ is the reduced 3 by 3 matrix. $\det R$ has only two non-zero terms; evaluating it and substituting in the result gives

$$\det \hat{G} = \frac{-1}{4} (\lambda^1 \lambda^2 \lambda^3)^4 = \frac{-1}{4} (\det q)^4 = \frac{-1}{4} (\det q)^{-4},$$

(2.7)

so that

$$\det G = \frac{-1}{4} (\det q)^{3/4} (\det q)^{-4} = \frac{-1}{4} (\det q)^{5/4}. (2.8)$$

Thus, up to an overall factor,

$$\sqrt{|D|^2} = (\det q)^{-5/2} \times 6 (\det q)^{-4} = (\det q)^{-4},$$

(2.9)

Next we express the delta functions $\delta(H)$ and $\delta(D_{ab})$ in equation (2.2) as integrals of exponentials:

$$Z = \int \mathcal{D}\omega_{ij} \mathcal{D}N \mathcal{D}d_{ab} V_s^{10} \delta(\Gamma_{ij}) \delta(H) \delta(C_{ab}) \sqrt{|D|} \prod_a \delta(\xi_a) \times \exp i \int d^3x \left[ \frac{\omega_{ij} \omega_{kl}^J}{2} - NH + d_{ab} D_{ab} \right].$$

(2.10)

Then we follow the strategy used in [27] to eliminate the secondary second-class constraint $D_{ab}$ in the path integral. We consider a change of variables which is also a canonical transformation generated by the functional

$$F := -\int d^3x d_{ab} C_{ab} / N.$$  (2.11)

The integral measure is the Liouville measure on the phase space and thus is invariant under canonical transformation. $\sqrt{|D|}$, $G_{ij}$, $C_{ab}$, and $\xi_a$ are invariant because they strongly Poisson commute with $C_{ab}$ (here we use the assumption that the gauge-fixing conditions $\xi_a$ only depend on $\pi^{ij}_{\mu}$), and $H$ is invariant because it weakly Poisson commutes with $C_{ab}$. $\sqrt{|D|}$ is not invariant under the canonical transformation, but the correction depends linearly on $d_{ab}$. Thus the correction will vanish under the Gauss integral over $d_{ab}$, which is performed. The change of kinetic term $\delta \int dt d^3x C_{ab} \partial_t \partial_x D_{ab}$ is proportional to $\int dt d^3x C_{ab} \partial_t (d_{ab} / N) / N$ which also vanishes by the delta functions $\delta(C_{ab})$ in front of the exponential. So $H$ and $D_{ab}$ are the only terms that change in the canonical transformation generated by $F$. Moreover because $\{H(x), C_{ab}(x')\} = D_{ab}(x) \delta(x, x')$ and $\{C_{ab}(x), D_{cd}(x')\} = G_{ab,cd}(x, x')$ we can obtain explicitly the transformation behavior of $H(N)$ and $D_{cd}(d_{cd})$:

$$\hat{H}(N) \equiv \sum_{n=0}^{\infty} \frac{1}{n!} \{F, H(N)\}_{(n)}$$

$$= \int d^3x N(x) H(x) - \int d^3x \int d^3y \frac{N(x)}{N(y)} d_{ab}(y) \{C_{ab}(y), H(x)\} + \frac{1}{2} \int d^3x \int d^3y \int d^3z \frac{N(x)}{N(y) N(z)} d_{ab}(y) d_{cd}(z) \{C_{ab}(y), C_{cd}(z), H(x)\}$$

$$= \int d^3x N(x) H(x) + \int d^3x \int d^3y \frac{N(x)}{N(y)} d_{ab}(y) D_{ab}(x) \delta(x, y) - \frac{1}{2} \int d^3x \int d^3y \int d^3z \frac{N(x)}{N(y) N(z)} d_{ab}(y) d_{cd}(z) G_{ab,cd}(y, z) \delta(x, z)$$

12 One might be worried at first about the absolute value signs around this determinant in the path integral. However, as this Faddeev–Popov determinant should never be zero, it should never change sign, so that in fact the absolute value sign can just be removed.
\[ \begin{align*}
&= \int d^3x \, N(x)H(x) + \int d^3x \, d_{ab}(x)D^{ab}(x) \\
&\quad - \frac{1}{2} \int d^3y \int d^3z \, \frac{1}{N(y)} d_{ab}(y)d_{cd}(z)G^{ab,cd}(y, z) \\
&\quad - \frac{1}{2} \int d^3y \int d^3z \, \frac{1}{N(y)} d_{ab}(y)d_{cd}(z)G^{ab,cd}(y, z) \\
\end{align*} \]

\[ D^{cd}(d_{cd}) \equiv \sum_{n=0}^{\infty} \frac{1}{n!} [F, D^{cd}(d_{cd})]^{(n)} \]

\[ \tilde{D}_{cd}(d_{cd}) \equiv \int d^3x \, d_{cd}(x)D^{cd}(x) - \int d^3x \int d^3y \, \frac{1}{N(y)} d_{cd}(y)d_{ab}(y)\{C^{ab}(y), D^{cd}(x)\} \]

\[ Z = \int D\omega_{IJ}^a D\pi_{IJ}^a DNdab \, V_{10}^{10} \delta(G^{IJ}) \delta(H_a) \delta(C^{ab}) \sqrt{|D_1|} \\
\times \prod \delta(\xi_a) \exp \int dt \, d^3x \left[ T_{\mu}^{\nu} \omega_{IJ}^a - NH - \frac{1}{2} d_{ab}d_{cd}G^{ab,cd}/N \right] \\
= \int D\omega_{IJ}^a D\pi_{IJ}^a DNdab \, V_{10}^{10} \sqrt{\det(G/N)} \sqrt{|D_1|} \\
\times \prod \delta(\xi_a) \exp \int dt \, d^3x \left[ T_{\mu}^{\nu} \omega_{IJ}^a - \omega_{IJ}^a G_{IJ} - N^a H_a - NH \right] \\
= \int D\omega_{IJ}^a D\pi_{IJ}^a DNdab \, V_{10}^{10} \sqrt{\det(G/N)} \sqrt{|D_1|} \\
\times \prod \delta(\xi_a) \exp \int dt \, d^3x \left[ T_{\mu}^{\nu} \omega_{IJ}^a - \omega_{IJ}^a G_{IJ} - N^a H_a - NH \right]. \]

This is the canonical phase space path integral for the Holst action, with secondary constraints removed as in [36]. The Palatini case is recovered by setting \( \gamma = \infty \) while holding \( G \) constant.

### 2.2. Configuration path integral in terms of spacetime \( so(\eta) \)-connection and tetrad

It is too difficult in concretely performing the integrations in equation (2.14) to compute transition amplitudes. However if we transform equation (2.14) to be an integral of the Lagrangian Holst action in terms of original configuration variables, i.e. the spacetime connection field \( \omega_{IJ}^a \) and tetrad field \( e_I^\mu \), the integral will become easier to handle. To rewrite the canonical path integral as a configuration path integral for the Holst action, one proceeds in two steps. (1) Replace the canonical variables and Lagrange multipliers with spacetime variables and the simplicity constraint (2) Integrate out the simplicity constraint.

#### 2.2.1. Basic relations between variables

In this section we give the definitions of the new coordinates in terms of the old coordinates. These definitions will be motivated and explained, and the bijectivity of the coordinate transformation demonstrated, in the subsequent section.
When the simplicity constraint is imposed,
\[ C^{ab} = \epsilon^{ijkl} \pi^a_{ij} \pi^b_{kl} \approx 0. \] (2.15)

\( \pi^a_{ij} \) takes one of the five forms\(^{13}\):
\[ (I \pm) \pi^a_{ij} = \pm \epsilon^{abc} e^a_i e^j_c \]
\[ (II \pm) \pi^a_{ij} = \pm \frac{1}{2} \epsilon^{abc} e^a_i e^j_c \epsilon_{ijkl} \]
\[ (\text{Deg}) \pi^a_{ij} = 0. \] (2.16) (2.17)

Note that the appearance of the degenerated sector shows that the Hamiltonian constrained system derived from the Holst action is not regular, i.e. the rank of the Dirac matrix
\[ \left( \{ C^{ab}(x), C^{cd}(x') \}, \{ D^{ab}(x), D^{cd}(x') \} \right) \] (2.18)
is not a constant on the whole phase space. We have to remove the degenerated sector in order to carry out the derivations in the reduced phase space. Therefore all the derivations in the last subsection hold only if the degenerate sector is removed. Now we restrict ourself in the sector \((II+)^+\), and in addition stipulate \( \det e^a_i > 0 \), removing the sign ambiguity in the definition of \( e^a_i \). The derivations for other sectors can be carried out in the same way. With the restriction to \((II+)^+\), the above relation can be inverted as
\[ e^a_i = \frac{1}{4\sqrt{2}} \left| \det \pi^b_{ij} \right|^{-\frac{1}{2}} \epsilon^{ijkl} \epsilon_{abc} \pi^b_{ij} \pi^c_{kl}. \] (2.19)

This equation can then be used to define \( e^a_i \) off-shell with respect to the simplicity constraint. One might ask whether \( e^a_i \) so defined, along with \( C^{ab} \), good coordinates on \( \pi^a_{ij} \). In fact, with the restrictions just stipulated, we will show that \( \pi^a_{ij} \mapsto (e^a_i, C^{ab}) \) is bijective in the next subsection.

Lastly, we equip the internal space with a time orientation, and define \( n^I \) as the unique internal future-pointing unit vector satisfying \( n^I \pi^a_{ij} = 0 \). Then one defines
\[ e^I_i := N n^I + N^a e^a_i. \] (2.20)

When the simplicity constraint is satisfied, \( e^I_i \) is equal to the \( t \) component of the physical spacetime tetrad, so that the above definition is indeed an extension of the usual \( e^I_i \).

### 2.2.2. Proof of bijectivity.
For the purpose of making apparent the bijectivity of the coordinate transformation, and to aid in later calculations, define
\[ \pi^a_i := \frac{1}{2} \pi^a_{0i} \]
\[ \tilde{\pi}^a_i := \frac{1}{2} e^j_{(k} \pi^a_{j)k}. \] (2.21) (2.22)

\(^{13}\) To see that the four sectors \((I \pm)\) and \((II \pm)\) are disjoint, define \( \pi^a_{0i} := \frac{1}{2} \pi^a_{00} \) and \( \eta^a_i := \frac{1}{2} \epsilon^{ijk} \pi^a_{jk} \). Then one has
\[ (I+) \Rightarrow \det \pi^a_{0i} = 0 \text{ and } (\det \eta^a_i) (\det e^a_i) > 0, \]
\[ (I-) \Rightarrow \det \pi^a_{0i} = 0 \text{ and } (\det \eta^a_i) (\det e^a_i) < 0, \]
\[ (II+) \Rightarrow \det \pi^a_{0i} = 0 \text{ and } (\det \eta^a_i) (\det e^a_i) > 0, \]
\[ (II-) \Rightarrow \det \pi^a_{0i} = 0 \text{ and } (\det \eta^a_i) (\det e^a_i) < 0. \]
In terms of these, the ‘triad’ $e^{Ia}$ defined in the last subsection can be alternatively introduced via

1. $f^{a}_i := \left( \det \pi^b_j \right)^{-\frac{1}{2}} \pi^a_i$,  \quad $e^{Ia} = (f^{a}_i)^{-1}$
2. $e^{0}_a := \frac{1}{2} \epsilon_{abc} f^{b}_a \pi^{c}_j$

Note that here $e^{Ia}$ denotes simply the $I = 1, 2, 3$ components of $e^{Ia}$, not the co-triad\textsuperscript{14}.

The map $f^{a}_i \mapsto \pi^a_i$ is manifestly bijective. The definition of $e^{0}_a$ uses precisely the information contained in the anti-symmetric part of $f^{a}_i \tilde{\pi}^b_i$, whence the remaining information in $\pi^a_{ij}$ is exactly the symmetric part of $f^{a}_i \tilde{\pi}^b_i$:

\[ S^{ab} := f^{(a}_i \tilde{\pi}^b_i). \]  \hspace{1cm} (2.23)

In terms of this, the simplicity constraint is given by

\[ C^{ab} = -2 \pi^a_i \tilde{\pi}^b_i = -2 (\det e^{Ia}) S^{ab}. \]  \hspace{1cm} (2.24)

From this one sees that $\pi^a_{ij} \mapsto (e^{Ia}, C^{ab})$ is bijective.

2.2.3. Rewriting the measure. We have

\[ d\pi_{ij} = d\pi_i d\tilde{\pi}_i. \]  \hspace{1cm} (2.25)

The inverse of the relation between $\pi^a_i$ and $e^{Ia}$, $\pi^a_i = \frac{1}{2} \epsilon_{abc} \epsilon_{ijk} e^k_i \delta_{aj}$, gives

\[ \frac{\partial \pi^a_i}{\partial e^j_i} = \epsilon_{abc} \epsilon_{ijk} e^k_i. \]  \hspace{1cm} (2.26)

Note (ai) labels rows and (bj) labels columns. Let $J^{ai}_{bj}$ denote this matrix. From the singular value decomposition theorem, there exist orthogonal matrices $O^a_b$ and $O^i_j$ such that

$O^a_b O^i_j e^j_b$ is diagonal, that is

\[ O^a_b O^i_j e^j_b = \lambda_a \delta^{ai}_b. \]  \hspace{1cm} (2.27)

Let $O^{ai}_{bj} := O^a_b O^i_j$. Then $O^{ai}_{bj}$ is also an orthogonal matrix, and we use it to define

\[ J^{ai}_{bj} := O^{ai}_{bj} \tilde{\pi}^{b}_i \delta^{ai}_b e^j_i = \sum_{c,k} \epsilon_{abc} \epsilon_{ijk} \lambda^c_k \delta^{ai}_b e^j_i, \]  \hspace{1cm} (2.28)

where the symmetry of $\epsilon_{abc}$ and $\epsilon_{ijk}$ under orthogonal transformations has been used. From the above equation, $J^{ai}_{bj} = 0$ when $(i = j)$ or $(a = b)$ or $(i, j) \neq (a, b)$. From this one can deduce that, for $i \neq a$, the row $(a, i)$ in $J^{ai}_{bj}$ has only one non-zero element: the one in column $(b = i, j = a)$. Reducing by minors along these six rows then gives

\[ \text{det } J = J^{12}_{21} J^{21}_{12} J^{31}_{13} J^{13}_{11} J^{23}_{31} J^{32}_{32} \text{ det } R, \]  \hspace{1cm} (2.29)

where $R^{ij} = J^{ii}_{jj}$ is the reduced $3 \times 3$ matrix. The diagonal elements of $R$ are zero, so that $\text{det } R$ has only two non-zero terms:

\[ \text{det } R = J^{12}_{21} J^{22}_{32} J^{33}_{11} + J^{11}_{33} J^{22}_{12} J^{33}_{22}. \]  \hspace{1cm} (2.30)

14 One can see that $e^{Ia}$ may not be taken as the co-triad from the following. For $v^a$, $w^b$ tangent to the spatial slice $M$, $e^{Ia}_e v^a w^b = e^{Ia}_e v^a w^b + \epsilon^{Ia}_e \tilde{\pi}^b_i \tilde{\pi}^b_i + \epsilon^{Ia}_e \tilde{\pi}^b_i \tilde{\pi}^b_i + \epsilon^{Ia}_e \tilde{\pi}^b_i \tilde{\pi}^b_i = \delta_{ab} v^a w^b + \sigma^2 (e^{Ia}_e v^a w^b) + (e^{Ia}_e v^a w^b) = q_{ab} v^a w^b + s(e^{Ia}_e v^a w^b)$; however, $e^{Ia}_e$ is in general arbitrary, so that the second term on the right-hand side is in general non-zero, whence in general $e^{Ia}_e v^a w^b \neq q_{ab}$.\]
As one can check, $J_{12}^{12} = J_{21}^{21} = -J_{12}^{12} = -J_{21}^{21} = \lambda_3$, and similarly for cyclic permutations of 1, 2, 3. Plugging this into (2.30) and then (2.29) gives
\[
\text{det } J = 2(\lambda_1 \lambda_2 \lambda_3)^3 = 2(\text{det } e_\mu^\gamma)^3.
\]
\text{det } J = \text{det } \bar{J}, \text{ so that dropping the irrelevant 2-factor,}
\[
\mathcal{D}\pi^{ai} = (\text{det } e_\mu^\gamma)^3 \mathcal{D}e_\mu^\gamma.
\]
Next, define $\mathcal{G}^{ab} := f_a^{\mu} \delta^{\mu b}$, so that
\[
\frac{\partial \mathcal{G}^{ab}}{\partial \pi^{ai}} = f_\alpha^{\mu} \delta^{\mu b}.
\]
This is again block diagonal, whence
\[
\text{det } \left( \frac{\partial \mathcal{G}^{ab}}{\partial \pi^{ai}} \right) = (\text{det } f_\mu^i)^3 = (\text{det } e_\mu^\gamma)^{-3}
\]
so that
\[
\mathcal{D}\pi^{ai} = (\text{det } e_\mu^\gamma)^3 \mathcal{D}G^{ab} = (\text{det } e_\mu^\gamma)^3 \mathcal{D}G^{(ab) \mathcal{D}G^{(ab)}} = (\text{det } e_\mu^\gamma)^3 \mathcal{D}S^{ab} \mathcal{D}e_\mu^b.
\]
Lastly, from (2.24), $\mathcal{D}C^{ab} = (\text{det } e_\mu^\gamma)^6 \mathcal{D}S^{ab}$, so that
\[
\mathcal{D}\pi^{ai} = (\text{det } e_\mu^\gamma)^{-1} \mathcal{D}C^{ab} \mathcal{D}e_\mu^b.
\]
Coming to the lapse and shift, the Jacobian of the transformation $(N, N^a) \mapsto e_\mu^i$ is
\[
J = \frac{\partial e_\mu^i}{\partial (N, N^a)} = (n^i, e_\mu^i).
\]
On the other hand, the 4-volume element
\[
\text{det } e_\mu^i = \text{det } (e_\mu^i, e_\mu^i) = \text{det } (N n_1 + N^a e_d^i, e_d^i) = \text{det } (N n_1, e_d^i) = N \text{ det } J;
\]
\text{thus, } | \text{det } J | = V_s \text{ and } dN^a \text{ d}N^a = \text{det } e_\mu^i / V_s.
\]
Putting all the above relations together, we have
\[
\mathcal{D}\pi^{ai} \mathcal{D}N D^a = \frac{1}{V_s} \mathcal{D}e_\mu^i \mathcal{D}C^{ab}.
\]
Note the above measure is $SO(\eta)$ covariant, consistent with the $SO(\eta)$ covariance of the starting point.

2.2.4. Final path integral. Inserting (2.39) into (2.14), and integrating out $C^{ab}$ finally gives
\[
Z = \int \mathcal{D}o_\mu^i \mathcal{D}e_\mu^i N^3 V_s^3 \sqrt{|D|} \prod_a \delta(\xi_a) \exp \int e^i \wedge e^j \wedge \left( \mathcal{F}_{ij} - \frac{1}{y} \mathcal{F}_{ij} \right) \left[ o \right].
\]
\[
= \int \mathcal{D}o_\mu^i \mathcal{D}e_\mu^i V_s^3 \sqrt{|D|} \prod_a \delta(\xi_a) \exp \int e^i \wedge e^j \wedge \left( \mathcal{F}_{ij} - \frac{1}{y} \mathcal{F}_{ij} \right) \left[ o \right].
\]
Note that the integral in equation (2.40) is restricted in the sector $(II^+)$. But if we want the integral to be over both the sectors $(II^+)$ and $(II^-)$, we will obtain
\[
Z_\pm = \int_{II \pm} \mathcal{D}o_\mu^i \mathcal{D}e_\mu^i V_s^3 \sqrt{|D|} \prod_a \delta(\xi_a) \cos \int e^i \wedge e^j \wedge \left( \mathcal{F}_{ij} - \frac{1}{y} \mathcal{F}_{ij} \right) \left[ o \right].
\]
In the existing spin-foam models in the literature [3, 18, 21], sectors $(II^+)$ and $(II^-)$ are not distinguished. One can see from the above equation, therefore, why it is generally the cosine of the action and not the exponential of the action that is expected to appear (and does appear) in the asymptotic analysis of vertex amplitudes [37]; see also the discussions of the issue in some other different perspectives [38].

In what follows, we always use $Z_\pm$ and $\int_{II \pm}$ to denote the integral over both sectors, and $Z$, $\int$ only to denote the integral over a single sector $(II^+)$. 

3. The construction of path integral measure for Plebanski–Holst, by way of Holst

In this section we would like to relate the previous Holst action partition function with the partition function for the Plebanski–Holst action. Our starting point for the reconstruction is equation (2.14) (we first only consider a single sector $II+$ for simplicity):

$$Z = \int D\omega^{IJ} D\omega^{ab} DN^{a} D\delta(C_{\pi\pi}^{b}) N^{3} V_{t}^{5} \sqrt{|D_1|} \times \prod_{\alpha} \delta(\xi_{\alpha}) \exp i \int dt d^{3}x \left[ \pi^{a}_{IJ} \omega^{IJ}_{a} + \omega^{IJ}_{t} G_{IJ} - N^{a} H_{a} - N \right],$$  \hspace{1cm} (3.1)

where we use new notation for the simplicity constraint $C_{\pi\pi}^{ab} := C_{ab}$, anticipating the introduction of further simplicity constraints. To remind the reader,

$$G_{IJ} = D_{\alpha} \pi^{a}_{IJ} \hspace{1cm} H_{a} = \frac{1}{2} F_{ab}^{IJ} [\omega] \pi^{b}_{IJ} \hspace{1cm} H = \frac{1}{4 \sqrt{\det q}} \left( F - \frac{1}{\gamma} * F \right)_{ab}^{IJ} \pi^{a}_{KJ} \pi^{b}_{KL} \hspace{1cm} C_{\pi\pi}^{ab} = \epsilon^{IJKL} \pi^{a}_{IJ} \pi^{b}_{KL}.$$  \hspace{1cm} (3.2)

3.1. Basic strategy and some definitions

In order to rewrite this path integral as a (generalized) Plebanski path integral, one needs to change the variables $\pi^{a}_{IJ}, N, N^{a}$ in favor of a constrained Plebanski 2-form $X_{\mu\nu}^{IJ}$. If we define $< Y, Z > := \frac{1}{4!} \epsilon^{IJKL} Y^{IJ} Z^{KL}$, the constraint on $X_{\mu\nu}^{IJ}$ is

$$< X_{\mu\nu}, X_{\rho\sigma} > = \frac{\mathcal{V}}{4!} \epsilon_{\mu\nu\rho\sigma},$$

where $\mathcal{V} := \epsilon^{IJKL} < X_{\mu\nu}, X_{\rho\sigma} >$. This constraint implies that $X_{\mu\nu}^{IJ}$ takes one of the four forms

$$X_{\mu\nu}^{IJ} = \begin{cases} \pm \epsilon_{\mu\nu}^{IJ} e_{\nu}^{I} (I \pm) \\ \pm \epsilon_{K}^{IJ} e_{\nu}^{K} e_{\nu}^{L} (I \pm) \end{cases}$$  \hspace{1cm} (3.4)

for some tetrad $e_{\mu}^{I}$. On-shell, $\mathcal{V} = \det e_{\mu}^{I}$, the 4-volume element. Following [27], we decompose $X_{\mu\nu}^{IJ}$ into

$$\pi^{a}_{IJ} := \frac{1}{2} \epsilon^{abc} (X_{bc})_{IJ} \hspace{1cm} (3.5)$$

and (3.3) becomes

$$C_{\pi\pi}^{ab} := < \pi^{a}, \pi^{b} > \approx 0 \hspace{1cm} (3.6)$$

and (3.7) becomes

$$C_{\beta\beta}^{ab} := < \beta^{a}, \beta^{b} > \approx 0 \hspace{1cm} (3.7)$$

The first of these constraints was imposed in section 2.2.1; the four sectors appearing there are the same four sectors here in (3.4). As in section 2.2, we restrict to the sector $(II+)$.
As \( \pi^0_{IJ} \) was coordinatized by \( e^I_a \) and the simplicity constraint \( C^a_{\pi\pi} \) in section 2.2, similarly in this section we introduce coordinates for \( \beta^{IJ}_a \). Specifically, we will define a change of variables

\[
\beta^{IJ}_a \leftrightarrow (N, N^a, \tilde{C}_\beta\beta, \tilde{C}_\beta\pi),
\]

where \( \tilde{C}_\beta\beta \) and \( \tilde{C}_\beta\pi \) have the following properties.

1. If \( C^a_{\pi\pi} = 0 \), then \( \tilde{C}_\beta\pi = C_\beta\pi \).
2. If \( \tilde{C}_\beta\pi = 0 \), then \( \tilde{C}_\beta\beta = C_\beta\beta \).

These properties will be used to replace \( \tilde{C}_\beta\pi, \tilde{C}_\beta\beta \) in favor of \( C_\beta\pi, C_\beta\beta \) in the final path integral in section 3.4. \( N \) and \( N^a \) are defined as follows. First define, in order,

\[
(1) \quad e^I_t := \frac{1}{2} \epsilon_{ijk} f^a_j \beta^k_a
\]

\[
(2) \quad e^0_0 := \frac{1}{3} f^a_i \left( \frac{1}{2} \epsilon_{ijk} \beta^j_a + e^0_a e^I_t \right),
\]

where \( f^a_i := \left( e^I_t \right)^{-1} = \left| \det \pi^0_{ij} \right|^{-\frac{1}{2}} \), and \( \pi^0_{ij} \) and \( e^0_a \) are as defined in section 2.2. One can verify that when \( X^{IJ}_{\mu\nu} \) is of the form (II+) above, this definition of \( e^I_t \) coincides with the \( t \) component of the tetrad. \( N, N^a \) are then defined by the relation

\[
(3.8)
\]

\[
N = N^I + N^a e^I_a,
\]

where we recall from section 2.2.1 that \( n^I \) is determined by \( \pi^I_{aJ} \) essentially via \( n^I \pi^I_{aJ} = 0 \).

### 3.2. The coordinate transformation and its bijectivity

We begin by decomposing \( \beta^{IJ}_a \) as

\[
\beta^{IJ}_a := \beta^0_a,
\]

\[
\tilde{\beta}^I_a := \frac{1}{2} \epsilon^I_{jk} \beta^j_a \beta^k_a.
\]

Then one sees that \( e^I_t \) and \( e^0_a \)

\[
(3.10)
\]

\[
(3.11)
\]

\[
\begin{align*}
(3.12) & \quad e^I_t := \frac{1}{2} \epsilon^I_{jk} f^a_j \beta^k_a \\
(3.13) & \quad e^0_a := \frac{1}{3} f^a_i \left( \tilde{\beta}^I_a + e^0_a e^I_t \right)
\end{align*}
\]

contain precisely the information about the skew-symmetric part of \( f^a_i \beta^k_a \) and the trace of \( f^a_i \tilde{\beta}^I_a \). This leaves only the symmetric part of \( f^a_i \beta^k_a \) and the trace-free part of \( f^a_i \tilde{\beta}^I_a \):

\[
\begin{align*}
(3.14) & \quad C^{ij} := f^{a(i} \beta^{j)a} \\
(3.15) & \quad K^a_b := f^a_i \tilde{\beta}^I_b - \frac{1}{3} \delta^a_b f^a_i \tilde{\beta}^I_t,
\end{align*}
\]

so that there is a manifest isomorphism

\[
\beta^{IJ}_a \leftrightarrow (e^I_t, e^0_a, C^{ij}, K^a_b).
\]

It is convenient to replace \( K^a_b \) with a translation depending only on \( \pi^I_{IJ}, e^I_t \):

\[
(3.16)
\]

\[
\begin{align*}
(3.17) & \quad L^a_b = K^a_b + f^a_i e^0_a e^I_t - \frac{1}{2} \delta^a_b f^a_i e^0_a e^I_t = \text{trace-free part of } f^a_i \left( \beta^I_b + e^0_a e^I_t \right) \\
(3.18) & \quad \beta^{IJ}_a \leftrightarrow (e^I_t, e^0_a, C^{ij}, L^a_b).
\end{align*}
\]
We next invert relations (3.12)–(3.17)
\[
\beta_i^a = e^i_j e^j_a + C^{ij} e_{ij} \\
\tilde{\beta}_i^a = e^i_b L^b_a + 2 e^i_j e^j_0
\]
and substitute them into the expressions for $C_{\beta\beta}, C_{\beta\pi}$. This gives
\[
\frac{s}{2} (C_{\beta\beta})_{ab} = \epsilon_{ijk} e^j_a e^k_b + C_{ij} e^j_a L^b_j + 2 C_{ij} e^i_a e^j_0 e^j_0
\]
\[
s(C_{\beta\pi})^a_i = e^i_j e^j_b S^{bc} e^c_i + C_{ij} e^a_i e^j_0 + (\text{det} e^j_a) L^a_i + C_{ij} e^j_i e^j_0 S^{bc} - \frac{1}{3} \delta^a_i C_{ij} e^j_i e^j_0 S^{bd}.
\]
where $S^{ab}$ is determined by $\pi^a I$ as in section 2.2.2. Dropping the $S^{ab}$ terms from the second of these equations leads to the definition of $\tilde{C}_{\beta\pi}$:
\[
s(\tilde{C}_{\beta\pi})^a_i = e^i_j e^j_b S^{bc} e^c_i + C_{ij} e^a_i e^j_0 + (\text{det} e^j_a) L^a_i + C_{ij} e^j_i e^j_0 S^{bc} - \frac{1}{3} \delta^a_i C_{ij} e^j_i e^j_0 S^{bd}.
\]
Solving (3.22) for $L^a_i$ and substituting it into (3.21) gives, after some manipulation,
\[
\frac{s}{2} (C_{\beta\beta})_{ab} = \epsilon_{ijk} e^j_a e^k_b + C_{ij} e^j_a L^b_j + 2 C_{ij} e^i_a e^j_0 e^j_0
\]
\[
\frac{s}{2} (C_{\beta\pi})^a_i = e^i_j e^j_b S^{bc} e^c_i + C_{ij} e^a_i e^j_0 + (\text{det} e^j_a) L^a_i + C_{ij} e^j_i e^j_0 S^{bc} - \frac{1}{3} \delta^a_i C_{ij} e^j_i e^j_0 S^{bd}.
\]
Dropping the $\tilde{C}_{\beta\pi}$ term leads to the definition $\tilde{C}_{\beta\beta}$:
\[
\frac{s}{2} (C_{\beta\beta})_{ab} = (\text{det} e^j_a) (e^j_0 - e^j_i f^j_k e^k_a) e^j_b C_{ij}
\]
so that $\tilde{C}_{\beta\beta} = C_{\beta\beta}$ when $\tilde{C}_{\beta\pi} = 0$. In order to understand the significance of the prefactor in (3.26), we prove the following
Lemma 3.1. $(\det e^j_a) (e^j_0 - e^j_i f^j_k e^k_a)$ is equal to the 4-volume element $V = \det e^j_a$.
Proof.
\[
\det e^j_a = \frac{1}{4!} \epsilon^{a \rho \sigma \theta} e_{IJKL} e^j_\rho e^j_\sigma e^j_\theta e^j_\xi
\]
\[
= \frac{1}{3!} \epsilon^{ijkl} e_{IJKL} e^j_i e^j_k e^j_l = \frac{1}{3!} \epsilon^{ij ab} e_{IJKL} e^j_i e^j_a e^j_b e^j_c
\]
\[
= \frac{1}{3!} \epsilon^{ij ab} e_{ijkl} e^j_i e^j_k e^j_l + \frac{1}{2} \epsilon^{ij ab} e_{ij ab} e^j_i e^j_a e^j_b e^j_c
\]
\[
= (\det e^j_a) (e^j_0 - e^j_i f^j_k e^k_a)
\]
\[
= (\det e^j_a) (e^j_0 - e^j_i f^j_k e^k_a).
\]
By assumption $V$ and $\det e^j_a$ are non-zero, so the prefactor in (3.26) is non-zero, whence, from (3.26), $C^{ij} \mapsto (\tilde{C}_{\beta\beta})_{ab}$ is manifestly bijective. Thus
\[
\beta^I_a \leftrightarrow (e^j_i, e^j_0, \tilde{C}_{\beta\beta}, \tilde{C}_{\beta\pi})
\]
is a bijection.
Finally, $e^j_i \leftrightarrow (N, N^a)$
\[
e^j_i \leftrightarrow (N, N^a)
\]
as defined in (3.9) is clearly an isomorphism. Putting these together, we see that
\[
\beta^I_a \leftrightarrow (N, N^a, \tilde{C}_{\beta\beta}, \tilde{C}_{\beta\pi})
\]
is a bijection as claimed.
3.3. The change of measure

In this subsection, we calculate the measure $\mathcal{D}\beta_a^{IJ}$ in terms of $\mathcal{D}N\mathcal{D}N^{\alpha}D\tilde{\mathcal{C}}_{\beta\rho}D\tilde{\mathcal{C}}_{\beta\tau}$. First,

$$\mathcal{D}\beta_a^{IJ} = \mathcal{D}\beta_a^{i}\mathcal{D}\tilde{\beta}_c^i.$$  \hfill (3.29)

We next wish to relate $\mathcal{D}\beta_a^{i}$ and $\mathcal{D}e_i^{a}D\mathcal{C}_{jk}$. Our strategy is to first define

$$\mathcal{F}_{ij} := \beta\alpha f_j^a,$$  \hfill (3.30)

find the relation between $\mathcal{D}\beta_a^{i}$ and $\mathcal{D}\mathcal{F}_{ij}$ and then use $\mathcal{D}\mathcal{F}_{ij} = \mathcal{D}\mathcal{F}_{(ij)}\mathcal{D}\mathcal{F}_{(ij)}$. As $C_{ij} = \mathcal{F}_{(ij)}$ and $e_i^{a} = \frac{1}{2}\epsilon^{ijkl}\mathcal{F}_{ij}$, in fact this becomes $\mathcal{D}\mathcal{F}_{ij} = \mathcal{D}C_{ij}\mathcal{D}e_i^{a}$. First,

$$\frac{\partial\mathcal{F}_{ij}}{\partial\beta^{ak}} = \delta^k_i f_j^a.$$  \hfill (3.31)

This is a block diagonal matrix, with three blocks each equal to $f_j^a$:

$$\det \left( \frac{\partial\mathcal{F}_{ij}}{\partial\beta^{ak}} \right) = (\det f_j^a)^3 = (\det e_i^{a})^{-3}$$  \hfill (3.32)

so that

$$\mathcal{D}\beta_{ai} = (\det e_i^{a})^{-3}\mathcal{D}\mathcal{F}_{ij} = (\det e_i^{a})^{-3}\mathcal{D}C_{ij}\mathcal{D}e_i^{a}.$$  \hfill (3.33)

Next, to rewrite $\mathcal{D}\tilde{\beta}_a^{i}$, first define $\mathcal{H}_b^{a} := f_j^{a}\tilde{\beta}_b^{i}$. Then

$$\frac{\partial\mathcal{H}_b^{a}}{\partial\tilde{\beta}_c^{i}} = f_j^{a}\delta^c_i.$$  \hfill (3.34)

so that the matrix is block diagonal with three blocks, each equal to $f_j^a$:

$$\det \left( \frac{\partial\mathcal{H}_b^{a}}{\partial\tilde{\beta}_c^{i}} \right) = (\det f_j^a)^3 = (\det e_i^{a})^{-3},$$  \hfill (3.35)

so that

$$\mathcal{D}\tilde{\beta}_a^{i} = (\det e_i^{a})^{-3}\mathcal{D}\mathcal{H}_b^{a} = (\det e_i^{a})^{-3}\mathcal{D}K_b^{a}\mathcal{D}\text{tr}\mathcal{H},$$  \hfill (3.36)

where we have used that $K_b^{a}$ is the traceless part of $\mathcal{H}_b^{a}$. As $L_b^{a}$ is just a translation of $K_b^{a}$ (3.17) by a term involving only $e_i^{a}$, which is being held constant, one can replace $\mathcal{D}K_b^{a}$ with $\mathcal{D}L_b^{a}$. Likewise $e_i^{a}$ is just a translation of $\text{tr}\mathcal{H}$ by a term involving only $e_i^{a}$, so that $\mathcal{D}\text{tr}\mathcal{H} = \mathcal{D}e_i^{a}$, whence

$$\mathcal{D}\tilde{\beta}_a^{i} = (\det e_i^{a})^{-3}\mathcal{D}L_b^{a}\mathcal{D}e_i^{a}.$$  \hfill (3.37)

Putting together (3.29), (3.33), (3.37),

$$\mathcal{D}\beta_a^{IJ} = (\det e_i^{a})^{6}\mathcal{D}e_i^{a}\mathcal{D}C_{ij}\mathcal{D}L_b^{a}.$$  \hfill (3.38)

To perform the change of variables $(C_{ij}, L_b^{a}) \rightarrow (\tilde{C}_{\beta\rho}, \tilde{C}_{\beta\tau})$, we proceed in two steps, $(C_{ij}, L_b^{a}) \rightarrow (\tilde{C}_{\beta\rho}, \bar{C}_{\beta\tau}) \rightarrow (\bar{C}_{\beta\rho}, \tilde{C}_{\beta\tau})$. Holding $C_{ij}$ constant, the Jacobian of the first transformation is

$$\frac{\partial(\bar{C}_{\beta\rho})^b}{\partial L^a_i} \approx (\det e_i^{a}) \left( \delta^b_i \delta^a_j - \frac{1}{3} \delta^b_i \delta^a_j \right).$$  \hfill (3.39)

Here $\delta^b_i \delta^a_j - \frac{1}{3} \delta^b_i \delta^a_j$ is the identity matrix on the space of trace-less matrices. The space of trace-less matrices is eight dimensional, so that

$$\det \left( \frac{\partial(\bar{C}_{\beta\rho})^b}{\partial L^a_i} \right) \approx (\det e_i^{a})^8,$$  \hfill (3.40)
whence
\[ DL_{ab}^\beta = (\det e_a^b)^{-6} \partial \bar{C}_{\beta \pi} \]  
(3.41)

Next, to replace \( C_{ij} \) in favor of \( \bar{C}_{\beta \pi} \), we want the Jacobian of the matrix
\[ \frac{\partial (\bar{C}_{\beta \pi})_{ab}}{\partial C_{ij}} = 2\varepsilon (\varepsilon_i^0 - \varepsilon_h^0 \varepsilon_k^j \varepsilon_l^j) e_i^a e_l^b, \]
that is,
\[ \det \left( \frac{\partial (\bar{C}_{\beta \pi})_{ab}}{\partial C_{ij}} \right) = 2^6 (\varepsilon_i^0 - \varepsilon_h^0 \varepsilon_k^j \varepsilon_l^j)^6 \det e_a^b e_i^j. \]
(3.42)

Let \( H_{ab}^{ij} := e_a^i e_b^j \). Recall from section 2.2.3 the orthogonal matrices \( O^a_b \) and \( O^i_j \), satisfying
\[ O^a_b O^j_i \varepsilon_i^0 = \lambda_a \bar{\delta}_a^b; \]
let \( S^a_{cd} := O^a_{\mu} O^b_{\nu} \delta_{\mu \nu} \) and \( S^i_{kl} := O^i_{(i} O^j_{j)}, \) orthogonal matrices. Then
\[ \bar{H}_{ab}^{ij} := S^a_{cd} H_{cd}^{ij} S^i_{kl}, \]
(3.43)

which is a diagonal 6 by 6 matrix:
\[ \det \bar{H} = (\lambda_1^2) (\lambda_2^2) (\lambda_3^2) (\lambda_1 \lambda_2 \lambda_3) (\lambda_1 \lambda_2 \lambda_3) = (\det e_a^b)^4 \]
(3.44)

so
\[ DC_{ij} = (\varepsilon_i^0 - \varepsilon_h^0 \varepsilon_k^j \varepsilon_l^j)^{-6} (\det e_a^b)^{-6} \partial \bar{C}_{\beta \pi}, \]
(3.45)

where an irrelevant overall numerical coefficient was dropped.

Finally one performs the change of variables \( e_i^j \rightarrow (N, N^a) \). Using (2.37), (2.38) from the last section, and (3.41), (3.46), (3.38), one has finally
\[ D\beta_{aIJ} = (\varepsilon_i^0 - \varepsilon_h^0 \varepsilon_k^j \varepsilon_l^j)^{-6} (\det e_a^b)^{-6} V_s D N D N^a D \bar{C}_{\beta \pi} D \bar{C}_{\beta \pi}. \]
(3.47)

With lemma 3.1 this becomes
\[ D\beta_{aIJ} = V^{-6} V_s D N D N^a D \bar{C}_{\beta \pi} D \bar{C}_{\beta \pi}. \]
(3.48)

3.4. Final path integral

Starting with the canonical path integral (2.14), and inserting \( \int D\bar{C}_{\beta \pi} D\bar{C}_{\beta \pi} \delta(\bar{C}_{\beta \pi}) \delta(\bar{C}_{\beta \pi}) = 1 \), we have
\[ Z = \int D\omega^a_1 D\pi_1^a D N^a D N^a D \bar{C}_{\beta \pi} D \bar{C}_{\beta \pi} \delta(\bar{C}_{\beta \pi}) \delta(\bar{C}_{\beta \pi}) N^3 V_s^{10} \sqrt{|D_{\bar{C}_{\beta \pi}}|} \prod_a \delta(\xi_a). \]
(3.49)

Using (3.48) then gives
\[ Z = \int D\omega^a_1 D\pi_1^a D N^a D N^a D \bar{C}_{\beta \pi} D \bar{C}_{\beta \pi} \delta(\bar{C}_{\beta \pi}) \delta(\bar{C}_{\beta \pi}) N^3 V_s^{10} \sqrt{|D_{\bar{C}_{\beta \pi}}|} \prod_a \delta(\xi_a) \times \exp \int dt d^3 x \left[ \bar{\delta}_{1I} \bar{\omega}^a_1 - \omega^a_1 G_{IJ} - N^a H_a - N H \right] \prod_a \delta(\xi_a). \]
(3.50)

We next use the presence of \( \delta(\bar{C}_{\beta \pi}) \) and the fact that this enforces \( \bar{C}_{\beta \pi} = C_{\beta \pi} \) in favor of \( \bar{C}_{\beta \pi} \); then we use the presence of \( \delta(\bar{C}_{\beta \pi}) \) and the fact that it enforces \( C_{\beta \pi} = C_{\beta \pi} \) to replace \( \bar{C}_{\beta \pi} \) in favor of \( C_{\beta \pi} \), yielding
\[ Z = \int D\omega^a_1 D\pi_1^a D N^a D N^a \delta(\bar{C}_{\beta \pi}) \delta(\bar{C}_{\beta \pi}) N^3 V_s^{10} \times \exp \int dt d^3 x \left[ \bar{\delta}_{1I} \bar{\omega}^a_1 - \omega^a_1 G_{IJ} - N^a H_a - N H \right]. \]
(3.51)
Lemma 3.2. When the simplicity constraints are satisfied,
\[ X^{IJ}_{\text{ta}} = \frac{1}{2} N^{c} e^{bL}_{abc} \pi^{bL}_{K} - \frac{N}{\sqrt{\det q}} e^{bL}_{abc} \pi^{bL}_{K} \pi^{cKJ}. \] (3.52)

Proof. With the simplicity constraints satisfied,
\[ X^{IJ}_{\text{ta}} = \epsilon^{IJ}_{K L} e^{K}_{\text{ta}} e^{L}_{\text{ta}} \]
so that
\[ X^{IJ}_{\text{ta}} = \epsilon^{IJ}_{K L} (N^{b}_{e} e^{K}_{b} + N^{K}_{e} e^{L}_{e}) \]
\[ = N^{b}_{e} e^{b}_{a} + N^{K}_{e} e^{1L}_{a} \]
\[ = \frac{1}{2} N^{b}_{e} e_{a} + N^{K}_{e} e^{1L}_{a}. \] (3.53)

The first term here matches the first term on the right-hand side of (3.52). The second term on the right-hand side of (3.52) is
\[ -\frac{N}{\sqrt{\det q}} e^{bL}_{abc} \pi^{bL}_{K} \pi^{cKJ} = -\frac{N}{4 \sqrt{\det q}} e^{bL}_{abc} \pi^{bL}_{K} \pi^{cKJ} \]
\[ = -\frac{N}{2 \sqrt{\det q}} e^{bL}_{abc} \epsilon^{IJ}_{K M N} e^{K}_{P} e^{M}_{Q} e^{N}_{P} e^{Q}_{e}. \] (3.54)

Now,
\[ e^{bL}_{abc} e^{Q}_{e} e^{N}_{e} = e^{bL}_{abc} e^{Q}_{e} e^{N}_{e} = \sqrt{q} e^{bL}_{abc} e^{Q}_{e} e^{N}_{e} = \sqrt{q} e^{bL}_{abc} \epsilon^{bL}_{K M N} e^{K}_{P} e^{M}_{Q} e^{N}_{P} e^{Q}_{e}, \]
where \( \eta^{\mu\nu\rho\sigma} \) is the inverse volume form, and \( e^{\mu}_{R} \) is the indicated component of \( e^{\mu}_{I} := (e^{\mu}_{I})^{-1} \).
But \( e^{\mu}_{R} = (\partial^{\mu} t) e^{\mu}_{R} = -\frac{1}{N} \eta^{\mu}_{R} e^{\mu}_{R} = -\frac{1}{N} \eta^{\mu}_{R}, \) so that
\[ e^{bL}_{abc} e^{Q}_{e} e^{N}_{e} = -\sqrt{q} e^{bL}_{abc} \eta^{K M N} e^{K}_{P} e^{M}_{Q} e^{N}_{P} e^{Q}_{e}. \] (3.55)

Thus (3.54) becomes
\[ -\frac{N}{2 \sqrt{\det q}} e^{bL}_{abc} \pi^{bL}_{K} \pi^{cKJ} = \frac{N}{2} e^{bL}_{abc} \epsilon^{IJ}_{K M N} e^{K}_{P} e^{M}_{Q} e^{N}_{P} e^{Q}_{e} \]
\[ = N^{K}_{e} e^{1L}_{a} e^{P}_{e}. \]

matching the second term in (3.53) and completing the proof. \( \square \)

Corollary 3.3. On-shell with respect to the simplicity constraints:
\[ \int \text{d}x \text{d}^{3}x \left[ \dot{\gamma}^{I}_{IJ} \dot{\gamma}^{J I} + \omega^{I}_{IJ} G^{I J} - N^{a} H_{a} - N^{H} \right] = \int \left( X - \frac{1}{Y} X \right) \left( X - \frac{1}{Y} X \right) F^{I J}. \]

Proof.
\[ \int B^{I J} \land F^{E J} = \frac{1}{4} \int \text{d}^{3}x \epsilon^{I \mu \nu \rho \sigma} B_{\mu \nu \rho \sigma} F^{E J} \]
\[ = \frac{1}{2} \int \text{d}^{3}x \left[ e^{a b c} B_{a b \text{I} J} \dot{\omega}^{I J} + \omega^{I J} (D_{c} B_{a b}) I J e^{abc} + e^{a b c} B_{\text{I} c E J} F^{E J} \right] \]
\[ = \int \text{d}^{3}x \left[ e^{a b c} \dot{\omega}^{I J} + \omega^{I J} (D_{c} B_{a b}) I J + \frac{1}{2} e^{a b c} \left( X - \frac{1}{Y} X \right) F^{E J} \right] \]
\[ = \int \text{d}^{3}x \left[ e^{a b c} \dot{\omega}^{I J} + \omega^{I J} (D_{c} B_{a b}) I J + \frac{1}{4} e^{a b c} N^{e} e^{e d c} \pi^{d I J} F^{E J} \right] \]
\[ - \frac{N}{4 \sqrt{\det q}} e^{a b c} \epsilon^{e d c} \left[ \pi^{d I} \pi^{c} - \frac{1}{Y} (\pi^{d I} \pi^{c}) \right] F^{E J} \right] \]
\[ = \int \text{d}^{3}x \left[ e^{a b c} \dot{\omega}^{I J} + \omega^{I J} (D_{c} B_{a b}) I J + \frac{1}{4} e^{a b c} N^{e} e^{e d c} \pi^{d I J} F^{E J} \right] \] \( \square \)
Substituting this into the path integral (3.51), one has finally
\[ Z = \int D\omega^{IJ}_\mu D\pi^{IJ}_\mu \delta(C_{\mu\nu})\delta(C_{\beta\pi})N^{I}_V V_i^{10}\sqrt{|D_1|} \prod_a \delta(\xi_a) \exp i \int \left( X - \frac{1}{\gamma} X \right) \wedge F^{IJ}. \] (3.56)

Note that this integral is restricted to the solution sector \((II^+)^{I}\) of the simplicity constraint. We can extend the integral to include both sectors \((II^+)^{I}\) and \((II^-)^{I}\) without changing the form of the integrand, i.e. we obtain
\[ Z = \int \int D\omega^{IJ}_\mu D\omega^{IJ}_t D\pi^{IJ}_a \delta(C_{\mu\nu})\delta(C_{\beta\pi})N^{I}_V V_i^{10}\sqrt{|D_1|} \prod_a \delta(\xi_a) \times \exp i \int \left( X - \frac{1}{\gamma} X \right) \wedge F^{IJ}. \] (3.57)

In the following subsection, we show another way to construct the Plebanski–Holst path integral from the Holst path integral, where we implement both sectors \((II^+)^{I}\) and \((II^-)^{I}\).

3.5. An alternative way to construct Plebanski–Holst path integral from Holst

In this subsection we would like to give another derivation from the the Holst action partition function to the partition of Plebanski–Holst action. Such a derivation is made by transforming delta functions in the integral. Our starting point for this alternative derivation is also equation (2.14), but with an integral over both sectors \((II^+)^{I}\) and \((II^-)^{I}\)
\[ Z = \int D\omega^{IJ}_\mu D\omega^{IJ}_t D\pi^{IJ}_a \delta(C_{\mu\nu})\delta(C_{\beta\pi})N^{I}_V V_i^{10}\sqrt{|D_1|} \prod_a \delta(\xi_a) \times \exp i \int \left( X - \frac{1}{\gamma} X \right) \wedge F^{IJ}. \] (3.58)

We define a new tensor field \(X_{tc}^{IJ}\) by
\[ X_{tc}^{IJ} := \frac{1}{2} \varepsilon^{abc} N^a^{\pi blij} - \frac{N}{\sqrt{\det q}} \varepsilon_{abc}a^{a1K} \pi^{blij} \eta_{KL}; \] (3.59)
then the action on the exponential is again expressed as a BF action as it is shown above:
\[ S := \int dt \int d^3x \left[ \frac{\pi^{IJ}}{\gamma} \tilde{\omega}_{IJ} - \omega_{IJ} G_{IJ} - N^a H_a + N H \right] \]
\[ = \int \left( X - \frac{1}{\gamma} X \right) \wedge F^{IJ} =: \int B_{IJ} \wedge F^{IJ}. \] (3.60)

Therefore in terms of the new field \(X_{tc}^{IJ}\) we can re-express the path integral as a constrained BF theory:
\[ Z = \int D\omega^{IJ}_\mu D\omega^{IJ}_t D\pi^{IJ}_a D\pi^{IJ}_{tc} \delta(C_{\mu\nu})\delta(C_{\beta\pi})N^{I}_V V_i^{10}\sqrt{|D_1|} \prod_a \delta(\xi_a) \exp i \int \left( X - \frac{1}{\gamma} X \right) \wedge F^{IJ} \times \delta^6 \left( \epsilon^{IJKL} \pi_{IJ}^{a1K} \eta_{KL} \right) \delta^{18} \left( X_{tc}^{IJ} + \frac{1}{2} \varepsilon^{abc} N^a^{\pi blij} - \frac{N}{4\sqrt{\det q}} \varepsilon_{abc}a^{a1K} \pi^{blij} \eta_{KL} \right). \] (3.61)
As a first step for recovering the full Plebanski simplicity constraints, we divide the 18 $\delta$-functions into two collections, each of which has 9 $\delta$-functions. Then we transform the two collections of $\delta$-functions in two different ways, i.e.

$$
\delta^{18}\left(X_{ic}^{ij} + \frac{1}{2} \epsilon_{abc} N^a \pi^{bli} - \frac{N}{4\sqrt{\det q}} \epsilon_{abc} \pi^{aIK} \pi^{bL} \eta_{KL}\right)
= \delta^9\left(X_{ic}^{ii} + \frac{1}{2} \epsilon_{abc} N^a \pi^{bli} - \frac{N}{4\sqrt{\det q}} \epsilon_{abc} \pi^{aIK} \pi^{bL} \eta_{KL}\right)
\times \delta^9\left(X_{ic}^{0j} + \frac{1}{2} \epsilon_{abc} N^a \pi^{bli} - \frac{N}{4\sqrt{\det q}} \epsilon_{abc} \pi^{aIK} \pi^{bL} \eta_{KL}\right)
= \text{(Jacobian)}
\times \delta^9\left(X_{ic}^{ik} X_{id} \pi^{ijk} + X_{ic}^{ij} X_{id} \pi^{ijk} + \frac{1}{2} N^a \epsilon_{abc} \pi^{aIK} \pi^{bL} \eta_{KL} X_{id}^{0k} \pi^{bli} \epsilon_{ijk}\right)
- \frac{N}{4\sqrt{\det q}} \epsilon_{abc} \pi^{aIK} \pi^{bL} \eta_{KL} X_{id}^{0k} \pi^{bli} \epsilon_{ijk}\n\times \delta^9\left(X_{ic}^{ik} \pi^{bli} \epsilon_{ijk} + X_{ic}^{ij} \pi^{bli} \epsilon_{ijk} + \frac{1}{2} \epsilon_{abc} N^a \pi^{bli} \pi^{bli} \eta_{KL} X_{id}^{0k} \pi^{bli} \epsilon_{ijk}\right)
- \frac{N}{4\sqrt{\det q}} \epsilon_{abc} \pi^{aIK} \pi^{bL} \eta_{KL} X_{id}^{0k} \pi^{bli} \epsilon_{ijk}\n= \chi_{ic}^{ik} \epsilon_{ijk} + \tilde{\chi}_{ic}^{ik} \epsilon_{ijk}\n\mathcal{F}_{cd} := \chi_{ic}^{0k} \pi^{bli} \epsilon_{ijk} + \chi_{ic}^{ik} \pi^{bli} \epsilon_{ijk} + \frac{1}{2} N^a \epsilon_{abc} \pi^{aIK} \pi^{bL} \eta_{KL} \pi^{bli} \epsilon_{ijk}\n- \frac{N}{4\sqrt{\det q}} \epsilon_{abc} \pi^{aIK} \pi^{bL} \eta_{KL} \pi^{bli} \epsilon_{ijk}\n= \chi_{ic}^{0k} \pi^{bli} \epsilon_{ijk} + \tilde{\chi}_{ic}^{ik} \pi^{bli} \epsilon_{ijk}\n(3.62)
$$

We define some notations:

$$
\chi_{ic}^{ik} := X_{ic}^{0k} + \frac{1}{2} \epsilon_{abc} N^a \pi^{bli} - \frac{N}{4\sqrt{\det q}} \epsilon_{abc} \pi^{aIK} \pi^{bL} \eta_{KL}
\tilde{\chi}_{ic}^{ik} := X_{ic}^{ik} + \frac{1}{2} \epsilon_{abc} N^a \pi^{bli} - \frac{N}{4\sqrt{\det q}} \epsilon_{abc} \pi^{aIK} \pi^{bL} \eta_{KL}
\mathcal{F}_{cd} := X_{ic}^{0k} \pi^{bli} \epsilon_{ijk} + X_{ic}^{ik} \pi^{bli} \epsilon_{ijk} + \frac{1}{2} N^a \epsilon_{abc} \pi^{aIK} \pi^{bL} \eta_{KL} \pi^{bli} \epsilon_{ijk}\n- \frac{N}{4\sqrt{\det q}} \epsilon_{abc} \pi^{aIK} \pi^{bL} \eta_{KL} \pi^{bli} \epsilon_{ijk}\n= \chi_{ic}^{0k} \pi^{bli} \epsilon_{ijk} + \tilde{\chi}_{ic}^{ik} \pi^{bli} \epsilon_{ijk}
= \mathcal{F}_{cd}
\tilde{\mathcal{F}}_{cd}
$$

then the Jacobian from above $\delta$-function transformation is the determinant of the transformation matrix on the constraint surface

$$
\frac{\partial(F_{cd}, \tilde{F}_{cd})}{\partial(\chi_{ic}^{ik}, \tilde{\chi}_{ic}^{ik})} = \left(\begin{array}{cc}
\delta^a_{\epsilon c} X_{id}^{jk} + \tilde{\chi}_{ic}^{ik} & \delta^a_{\epsilon c} X_{id}^{0k} \pi^{bli} \epsilon_{ijk}
\delta^a_{\epsilon c} \pi^{bli} \epsilon_{ijk} & \delta^a_{\epsilon c} \pi^{bli} \pi^{bli} \epsilon_{ijk}
\end{array}\right) \approx \left(\begin{array}{cc}
\delta^a_{\epsilon c} X_{id}^{jk} \epsilon_{ijk} & \delta^a_{\epsilon c} X_{id}^{0k} \pi^{bli} \epsilon_{ijk}
\delta^a_{\epsilon c} \pi^{bli} \epsilon_{ijk} & \delta^a_{\epsilon c} \pi^{bli} \pi^{bli} \epsilon_{ijk}
\end{array}\right).
\text{(3.63)}
$$

We can see that

$$
\det\left[\begin{array}{ccc}
\delta^a_{\epsilon c} X_{id}^{jk} \epsilon_{ijk} & \delta^a_{\epsilon c} X_{id}^{0k} \pi^{bli} \epsilon_{ijk} \\
\delta^a_{\epsilon c} \pi^{bli} \epsilon_{ijk} & \delta^a_{\epsilon c} \pi^{bli} \pi^{bli} \epsilon_{ijk}
\end{array}\right] = \left(\det\left[\begin{array}{cc}
X_{id}^{jk} \epsilon_{ijk} & X_{id}^{0k} \pi^{bli} \epsilon_{ijk}
\epsilon_{ijk} & \pi^{bli} \pi^{bli} \epsilon_{ijk}
\end{array}\right]\right)^3 = (\det X_{id}^{jk})^3 = \nu^9.
\text{(3.64)}
$$
Therefore we insert back this result, and further divide the first collection into its symmetric and anti-symmetric parts. After some manipulation, we have

\[
\delta^{18} \left( X^{IJ}_{tc} + \frac{1}{2} \epsilon_{abc} N^a \pi^{bIJ} - \frac{N}{4 \sqrt{|\det q|}} \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} \right)
\]

\[
= \mathcal{V}^3 \delta^3 \left( \frac{1}{2} N^a \left[ \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} + \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} \right] \right) \mathcal{V}^3 \delta^3 \left( \frac{1}{2} N^a \left[ \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} + \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} \right] \right)
\]

\[
= \frac{N}{4 \sqrt{|\det q|}} \left[ \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} - \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} \right] \mathcal{V}^3 \delta^3 \left( \frac{1}{2} N^a \left[ \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} + \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} \right] \right)
\]

\[
= \frac{N}{4 \sqrt{|\det q|}} \left[ \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} - \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} \right] \mathcal{V}^3 \delta^3 \left( \frac{1}{2} N^a \left[ \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} + \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} \right] \right)
\]

\[
= \frac{N}{4 \sqrt{|\det q|}} \left[ \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} - \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} \right] \mathcal{V}^3 \delta^3 \left( \frac{1}{2} N^a \left[ \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} + \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} \right] \right)
\]

\[
= \frac{N}{4 \sqrt{|\det q|}} \left[ \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} - \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} \right] \mathcal{V}^3 \delta^3 \left( \frac{1}{2} N^a \left[ \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} + \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} \right] \right)
\]

\[
= \frac{N}{4 \sqrt{|\det q|}} \left[ \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} - \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} \right] \mathcal{V}^3 \delta^3 \left( \frac{1}{2} N^a \left[ \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} + \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} \right] \right)
\]

\[
\times \delta^6 \left( X^{IJ}_{tc} \pi^{KL} \epsilon^{IJKL} - \frac{N}{4 \sqrt{|\det q|}} \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} \right)
\]

\[
\times \frac{N}{4 \sqrt{|\det q|}} \left[ \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} - \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} \right] \mathcal{V}^3 \delta^3 \left( \frac{1}{2} N^a \left[ \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} + \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} \right] \right)
\]

\[
\times \frac{N}{4 \sqrt{|\det q|}} \left[ \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} - \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} \right] \mathcal{V}^3 \delta^3 \left( \frac{1}{2} N^a \left[ \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} + \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} \right] \right)
\]

\[
\times \delta^9 \left( X^{IJ}_{tc} \pi^{KL} \epsilon^{IJKL} - \frac{N}{4 \sqrt{|\det q|}} \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} \right)
\]

\[
\times \frac{N}{4 \sqrt{|\det q|}} \left[ \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} - \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} \right] \mathcal{V}^3 \delta^3 \left( \frac{1}{2} N^a \left[ \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} + \epsilon_{abc} \pi^{bIJ} X^{jk}_{id} \right] \right)
\]

Since the simplicity constraint \( C_{ab} = \epsilon^{IJKL} \pi^{a}_{IJ} \pi^{b}_{KL} = 0 \) implies that there exists a non-degenerated \( so(3) \)-valued 1-form \( e^I_a \) and an another independent 1-form \( e^I_0 \) such that (we are working in both two sectors \((I \pm 1) \)) \( \pi^I_{IJ} = \pm \epsilon_{abc} e^I_a e^I_0 \), we obtain the following lemma.

Lemma 3.4. On the constraint surface defined by the delta function \( \delta(C_{ab}) \), the field \( X^{IJ}_{tc} \) can be written as

\[
X^{IJ}_{tc} = \pm e^K_t e^L_c \epsilon_{IJ}^{KL} = \pm (N \pi^K_{IJ} + N^a \pi^a_{IJ}) e^K_t e^L_c \epsilon_{IJ}^{KL},
\]

(3.66)

where \( e^I_0 \) \( \alpha = 1, 2, 3 \) form a non-degenerate tetrad field for non-vanished \( N \). Thus the 18 delta functions

\[
\delta^{18} \left( X^{IJ}_{tc} + \frac{1}{2} \epsilon_{abc} N^a \pi^{bIJ} - \frac{N}{4 \sqrt{|\det q|}} \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL} \right)
\]

(3.67)

can essentially be written as \( \delta^{18} \left( X^{IJ}_{tc} + e^K_t e^L_c \epsilon_{IJ}^{KL} \right) + \delta^{18} \left( X^{IJ}_{tc} - e^K_t e^L_c \epsilon_{IJ}^{KL} \right) \).

Proof. The lemma follows straightforwardly from the definition of \( X^{IJ}_{tc} \):

\[
X^{IJ}_{tc} = \frac{1}{2} \epsilon_{abc} N^a \pi^{bIJ} - \frac{N}{\sqrt{|\det q|}} \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL}
\]

(3.68)

with the solution \( \pi^a_{IJ} = \epsilon_{abc} e^c_{t} e^K_t \epsilon_{IJ}^{KL} \). First of all, we check the first term

\[
- \frac{1}{2} \epsilon_{abc} N^a \pi^{bIJ} = \frac{1}{2} \epsilon_{abc} N^a e^{bIJ} e^K_t e^L_c \epsilon_{IJ}^{KL} = \pm \delta^K_t \delta^L_c \epsilon_{IJ}^{KL} = \pm \delta^K_t \delta^L_c \epsilon_{IJ}^{KL}.
\]

(3.69)

And then the second term:

\[
\frac{N}{4 \sqrt{|\det q|}} \epsilon_{abc} \pi^{aIK} \pi^{bJL} \eta_{KL}
\]

\[
= \frac{N}{4 \sqrt{|\det q|}} \epsilon_{abc} \epsilon_{dce} M^c_d \epsilon_{eIJMN} e^{bJL} e^K_t e^P_q \epsilon_{IJLPQ} \eta^{KL}
\]

\[
= - \frac{N}{2 \sqrt{|\det q|}} \delta^K_t \delta^L_c \epsilon_{abc} \epsilon_{dce} M^c_d \epsilon_{eIJMN} e^{bJL} e^K_t e^P_q \epsilon_{IJLPQ} \eta^{KL}
\]

\[
= - \frac{N}{2 \sqrt{|\det q|}} \epsilon_{abc} \epsilon_{dce} M^c_d \epsilon_{eIJMN} e^{bJL} e^K_t e^P_q \epsilon_{IJLPQ} \eta^{KL}.
\]
here now we define a new field \( e^I_H \) or \( n_H \) such that
\[
\varepsilon \text{dea } e^M_N e^P_a = \pm N \sqrt{\det q} e^{HMPN} e^I_H = \mp \sqrt{\det q} e^{HMPN} n_H \text{ and } n_H n_H = -1.
\]
Thus
\[
\frac{N}{4 \sqrt{\det q}} e_{abc} T_{IK MN} e_{JLPQ} e^{KL}
\]
\[
= \pm \frac{N}{2 \sqrt{\det q}} \varepsilon^{HMPN} n_H e^Q_e e^{IKN} e^{JLPQ} e^{KL}
\]
\[
= \pm N \left[ \varepsilon^H n^P - \delta^H \delta^P \right] n_H e^Q_e e^{IKN} e^{JLPQ} e^{KL}
\]
\[
= \pm N n_L e^Q_e e^{IKN} e^{JLPQ} = \pm N n_L e^Q_e e^{IKN} e^{JLPQ}.
\]

As a result,
\[
X^{IJ}_{IC} = \pm \left( n^I n^J + N^a n^a_K \right) e^I_L e^J_K \equiv \pm e^I_L e^J_K.
\]

To check the non-degeneracy of \( e^I_{\alpha} \), we calculate its determinate
\[
\det e^I_{\alpha} = \frac{1}{4!} \varepsilon^{abc} \left[ e^J_{\alpha} - \delta^J_\alpha \varepsilon^K e^L_K \right] e_{JIKL}
\]
\[
= \frac{1}{3!} \varepsilon^{abc} \left( N n^I + N^d e^I_d \right) e^J_{\alpha} e^K_{\beta} e^L_{\gamma} e^{IJKLM}
\]
\[
= N \frac{1}{3!} \varepsilon^{abc} n^I e^J_{\alpha} e^K_{\beta} e^L_{\gamma} e^{IJKLM} = \pm N \sqrt{\det q}.
\]

(3.70)

which is nonzero for non-vanished \( N \).

By this lemma, we can immediately simplify the expression of equation (3.65) to be
\[
\mathcal{V}^{3} 3 \left[ 3 N^a \left[ e_{abc} \pi \varepsilon^{0k} X^{ik}_{1d} + e_{abc} \pi \varepsilon^{0i} X^{ik}_{d1} \right] e_{ij} \right]
\]
\[
= - \frac{N}{4 \sqrt{\det q}} \left[ e_{abc} \pi \varepsilon^{0k} X^{ik}_{1d} + e_{abc} \pi \varepsilon^{0i} X^{ik}_{d1} \right] e_{ij}
\]
\[
\times \delta^3 \left( X_{IC}^{IJ} X_{IC}^{KL} e^{IJKLM} \right) \delta^3 \left( X_{IC}^{IJ} X_{IC}^{KL} e^{IJKLM} - \frac{1}{3} N \right) e_{abc} n_I e^J_{\alpha} e^K_{\beta} e^{IJKLM}.
\]

(3.73)

Now we are ready to integral over \( N \) and \( N^a \) and obtain
\[
Z_{\pm} = \int_{1I\pm} D\omega^{IJ}_{ab} D\chi^{L}_{ab} \prod_{x \in M} \mathcal{V}^{12} V^2 \left( \frac{1}{\det (M)} \delta^{20} \left( \epsilon^{IJKLM} X^{IJ}_{ab} X^{KL}_{ab} - \frac{1}{4!} \mathcal{V} e_{de} \right) \sqrt{|D_1|} \right)
\]
\[
\times \prod_{a} \delta(\xi_a) \exp i \int \left( \chi - \frac{1}{\gamma} \chi \right)_{IJ} \wedge F^{IJ},
\]

(3.74)

where
\[
M_{a} := \left[ \varepsilon_{abc} \pi \varepsilon^{b0} X^{jk}_{id} + \varepsilon_{abc} \pi \varepsilon^{bij} X^{0k}_{id} \right] e_{ij} e^{cd}
\]
\[
= \left[ \left( \delta_{a}^i \delta_{b}^j - \delta_{a}^j \delta_{b}^i \right) \pi \varepsilon^{b0} X^{jk}_{id} + \left( \delta_{a}^i \delta_{b}^j - \delta_{a}^j \delta_{b}^i \right) \pi \varepsilon^{bij} X^{0k}_{id} \right] e_{ij}
\]
\[
= \pi \varepsilon^{b0} X^{jk}_{id} - \delta_{a}^i \pi \varepsilon^{b0} X^{jk}_{id} + \pi \varepsilon^{bij} X^{0k}_{id} - \delta_{a}^j \pi \varepsilon^{b0} X^{0k}_{id} \right] e_{ij}
\]
\[
= \frac{1}{2} \mathcal{V} \delta^{a}_{a} - \frac{1}{4} \mathcal{V} \delta^{a}_{a} = - \frac{1}{4} \mathcal{V} \delta^{a}_{a}.
\]

(3.75)

Thus \( \det (M) = \mathcal{V}^3 \) and the final result is
\[
Z_{\pm} = \int_{1I\pm} D\omega^{IJ}_{ab} D\chi^{L}_{ab} \prod_{x \in M} \mathcal{V}^{12} V^2 \left( \epsilon^{IJKLM} X^{IJ}_{ab} X^{KL}_{ab} - \frac{1}{4!} \mathcal{V} e_{de} \right) \sqrt{|D_1|} \prod_{a} \delta(\xi_a)
\]
\[
\times \exp i \int \left( \chi - \frac{1}{\gamma} \chi \right)_{IJ} \wedge F^{IJ},
\]

(3.76)
which is the resulting path integral of Plebanski–Holst action on both sectors \((II\pm)\).
Considering both sectors is the preparation for the spin-foam construction.

4. Consistency with Buffenoir, Henneaux, Noui and Roche

On setting \(\gamma = \infty\), the path integral of the last section becomes a Plebanski path integral. However, at first glance, this path integral is different from the one derived in the paper of Buffenoir, Henneaux, Noui and Roche (BHNR) [27], having a different measure factor. In this section we will show that this discrepancy is only apparent, and show how the two path integrals are in fact equivalent. Because in this section we set \(\gamma = \infty\), \(B = X\).

The key difference in the analysis of [27] is that \(B_{\alpha}\) is made into a dynamical variable by introducing a conjugate variable \(P_{\alpha J}\) constrained, however, to be zero. This leads, in a precise sense, to the presence of ‘two lapses and two shifts’. First, lapse and shift appear as certain components of \(B_{\alpha}\); we call these ‘physical lapse and shift’ and denote them \(N_p, N_a\), respectively. More precisely, we define \(N_p, N_a\) to be functions of \(B_{\alpha}\) in the same way \(N, N^a\) depended on \(X_{\alpha}\) in the last section. A second lapse and shift appear on writing the Hamiltonian and vector constraint delta functions in exponential form; we call these ‘Langrange multiplier lapse and shift’ and denote them \(N, N^a\). (\(N_p, N_a, N, N^a\) will always be undensitized.)

In the last section, by contrast, only one lapse and shift appeared. For this reason, the path integral of [27] is not directly comparable with the path integral of the last section, but rather first one of the extra lapse and shift needs to be removed before comparison. We will carry this out in the present section, and see how the path integral of [27] in fact reduces to that of the last section. Of course, we knew that these two path integrals must be equivalent since they are constructed from a single reduced phase space—that of GR. It is nevertheless instructive to see explicitly how the equivalence comes about. This also provides a valuable check against errors, by deriving the final path integral from two independent starting points.

Choice of gauge fixings and manipulation of constraints

We start from equation (75) in [27]:

\[
Z = \int D\omega_{\alpha IJ} D\pi_{\alpha IJ} D\beta_{\alpha IJ} (\sqrt{D_1^{(\phi,D)}})_{P=0}\delta(C_0')\delta(C_a')\delta(G)\delta(\xi_{a}) \\
\times (N^{11}_p V_{s}^{15} \delta(C_{\pi\pi})\delta(C_{\rho\pi})\delta(C_{\phi\phi})\delta(\tilde{T})) \exp i \int dt d^3x \pi_{\alpha IJ} \dot{\omega}_{\alpha IJ},
\]

where we have used \(V = N_p V_s\) and \((\sqrt{D_2})_{BHNR} = N_p^{20} V_s^{24}\), and where we have also used the presence of constraint delta functions to remove a weakly vanishing term \(\tilde{H}\) that is present in the exponent in equation (75) of [27]. (Indeed, in [27], \(\tilde{H}\) is introduced into the exponent in this way, using that \(\tilde{H}\) vanishes weakly.) Here \(C_0', C_a'\) and \(\tilde{T}{\alpha \beta}\) are as defined in [27], and are essentially the scalar constraint, vector constraint and secondary constraint generated by \(C_{\pi\pi}\), respectively. \(\xi_{a} = (\xi_{0a}, \xi_{a}, \xi_{S}, \xi_{V}, \xi_{G})\) are the gauge-fixing functions corresponding to the full set of first class constraints \(\kappa_0, \kappa_a, C_0', C_a', G_{IJ}\) originally present in [27]. (By the time one reaches the above equation in [27], \(\delta(\kappa_0)\delta(\kappa_a)\) have already been integrated out, but their corresponding gauge-fixing functions have not.) To review, \(\kappa_0\) and \(\kappa_a\) are defined by

\[
\kappa_0 := \frac{1}{2} P_{IJ} B_{\alpha IJ}^{IJ}\quad \text{(4.2)}
\]

\[
\kappa_a := \frac{1}{4} \epsilon_{abc} P_{IJ}^{b} \pi_{\alpha IJ}^{\epsilonIJ}\quad \text{(4.3)}
\]
and the gauge they generate correspond precisely to the freedom in the choice of physical lapse and shift $N_p, N^a_p$. $D_1^{(ψ,ξ)}$ in the above path integral denotes the determinant of the Poisson bracket matrix

$$\begin{pmatrix}
{[ψ_α, ψ_β]} & {[ψ_α, ξ_β]} \\
{[ξ_α, ψ_β]} & {[ξ_α, ξ_β]}
\end{pmatrix},$$

where $ψ_α$ collectively denotes the first class constraints $κ_0, κ_a, C'_0, C'_a, G$, so that $[ψ_α, ψ_β] ≈ 0$, and we have $D_1^{(ψ,ξ)} = (det[ψ_α, ξ_β])^2$. Because of the argument in [22] without loss of generality we may assume for convenience a particular choice of gauge fixing:

\begin{align}
ξ_{κ_0} & := N_p - 1 \approx 0 \\
ξ_{κ_a} & := N^a_p \approx 0.
\end{align}

With this choice, one can check

\begin{align}
{[κ_0, ξ_{κ_0}]} & = -\frac{1}{2} N_p \\
{[κ_a, ξ_{κ_0}]} & = 0 \\
{[κ_a, ξ_{κ_a}]} & = -δ_{b,a}.
\end{align}

We furthermore assume that the gauge-fixing functions $ξ_S, ξ_V, ξ_G$ are chosen to depend only on $π_{a}^{IJ}$; this is clearly possible due to the fact that the scalar, vector and Gauss constraints are also present in the Hamiltonian framework of Barros e Sa [34] derived from the Holst action, and there it is possible to choose pure momentum gauge-fixing conditions, hence depending only on $π_{a}^{IJ}$.

Second, recall that

$$\sqrt{D_1^{(ψ,ξ)}} \prod_a δ(ψ_α)δ(ξ_α)$$

is invariant under the choice of functions $ψ_α, ξ_α$ enforcing the chosen gauge-fixed constraint surface. We use this to replace $C'_0, C'_a$ in favor of the constraints $H, H_a$ defined in the foregoing sections. That this replacement is valid can be seen in two steps.

(1) Replace $C'_0, C'_a$ with $C_0, C_a$ as defined in [27]. These differ from $C'_0, C'_a$ by a linear combination of the other constraints (see [27]).

(2) Within the constraint surface defined by the simplicity constraints and $C_a ≈ 0$, we have $C_0 = N_p H$. This, combined with $N_p ≠ 0$, allows one to replace $C_0$ by $H$. Lastly, $C_a$ is equal to $H_a$.

Let $ψ_α$ denote the new constraint functions $κ_0, κ_a, H, H_a, G_{1j}$.

The assumptions about the gauge-fixing conditions imply that the Poisson bracket matrix $\{ψ_α, ξ_β\}$ is of the form

$$\begin{array}{cccc}
κ_0 & ξ_{κ_0} & ξ_S & ξ_V \\
κ_a & ξ_{κ_a} & ξ_{κ_a} & ξ_{κ_a} \\
H & B & A \\
G & & & \\
\end{array}$$

15 BHNR [27] assumes non-degeneracy of the 4-metric, which implies $N_p ≠ 0$. Of course there is some hand-waving here, because in fact BHNR integrates over all possible $N_p$ in the path integral.
The fact that we are now using $H, H_a$ ensures that $A$ is independent of $N_p, N^a_p$. Thus, we have the factorization
\begin{equation}
D \big( \tilde{\psi}, \xi \big) = (\det(\psi, \xi))^2 = \frac{1}{2}(N_p \det A)^2 \tag{4.8}
\end{equation}
with $\det A$ independent of $N_p, N^a_p$. In fact, if we choose the gauge fixings in the Holst path integral to be the same as the gauge fixings $\xi_S, \xi_V, \xi_G$, then $\det A = \sqrt{\mathcal{D}_{\text{Holst}}}$. We will write $\sqrt{\mathcal{D}_{\text{Holst}}} \big|_1$ from now on. This gives us
\begin{equation}
Z = \int D\omega_{IJ} D\pi_{IJ} D\beta_{IJ} (N_p \sqrt{\mathcal{D}_{\text{Holst}}(H) \delta(H_a) \delta(G) \delta(\xi_a)})
\end{equation}
\begin{equation}
\times \left( N^P_1 V^1_5 \delta(C_{\pi\pi}) \delta(C_{\beta\pi}) \delta(C_{\beta\beta}) \delta(D_{ab}) \right) \exp i \int dt dx \left[ \pi_{IJ}^a \omega_{IJ}^a \right]. \tag{4.9}
\end{equation}
Finally, when the other constraints are satisfied, $\tilde{T}^{ab} = N_p D^{ab}$, where $D^{ab}$ is as in (2.3). Thus we may replace $\delta(\tilde{T})$ by $\delta(N_p D^{ab}) = \frac{1}{N_p} \delta(D^{ab})$:
\begin{equation}
Z = \int D\omega_{IJ} D\pi_{IJ} D\beta_{IJ} (N_p \sqrt{\mathcal{D}_{\text{Holst}}(H) \delta(H_a) \delta(G) \delta(\xi_a)})
\end{equation}
\begin{equation}
\times \left( N^P_1 V^1_5 \delta(C_{\pi\pi}) \delta(C_{\beta\pi}) \delta(C_{\beta\beta}) \delta(D_{ab}) \right) \exp i \int dt dx \left[ \pi_{IJ}^a \omega_{IJ}^a \right]. \tag{4.10}
\end{equation}
Integrating out $N_p, N^a_p$ from (3.48),
\begin{equation}
D \beta_{IJ}^a = V^{-3} V_s D N_p D N^a_p D \tilde{C}_{\beta\pi} D \tilde{C}_{\beta\beta},
\end{equation}
so that we have
\begin{equation}
Z = \int D\omega_{IJ} D\pi_{IJ} D N_p D N^a_p D \tilde{C}_{\beta\pi} D \tilde{C}_{\beta\beta} N^P_1 V^1_5 (\sqrt{\mathcal{D}_{\text{Holst}}(H) \delta(H_a) \delta(G) \delta(\xi_a)})
\end{equation}
\begin{equation}
\times \delta(C_{\pi\pi}) \delta(C_{\beta\pi}) \delta(D_{ab}) \exp i \int dt dx \left[ \pi_{IJ}^a \omega_{IJ}^a \right]. \tag{4.11}
\end{equation}
The only $N_p, N^a_p$ dependence is that explicitly shown above. Factoring out the the integrals over $N_p, N^a_p$ and evaluating gives
\begin{equation}
\int D N_p D N^a_p N^2_1 \delta(\xi_0) \delta(\xi_a) = 1.
\end{equation}
Inserting this gives
\begin{equation}
Z = \int D\omega_{IJ} D\pi_{IJ} D \tilde{C}_{\beta\pi} D \tilde{C}_{\beta\beta} V^1_5 (\sqrt{\mathcal{D}_{\text{Holst}}(H) \delta(H_a) \delta(G) \delta(\xi_0) \delta(\xi_V) \delta(\xi_G)})
\end{equation}
\begin{equation}
\times \delta(C_{\pi\pi}) \delta(C_{\beta\pi}) \delta(D_{ab}) \exp i \int dt dx \left[ \pi_{IJ}^a \omega_{IJ}^a \right]. \tag{4.13}
\end{equation}
Using the inverse of the reasoning leading to (3.51), we replace $C_{\beta\pi}$ with $\tilde{C}_{\beta\pi}$, then $C_{\beta\beta}$ with $\tilde{C}_{\beta\beta}$ and integrate out $\tilde{C}_{\beta\pi}, \tilde{C}_{\beta\beta}$. This yields
\begin{equation}
Z = \int D\omega_{IJ} D\pi_{IJ} V^1_5 (\sqrt{\mathcal{D}_{\text{Holst}}(H) \delta(H_a) \delta(G) \delta(\xi_0) \delta(\xi_V) \delta(\xi_G)})
\end{equation}
\begin{equation}
\times \delta(C_{\pi\pi}) \delta(D_{ab}) \exp i \int dt dx \left[ \pi_{IJ}^a \omega_{IJ}^a \right], \tag{4.14}
\end{equation}
which is precisely equation (2.2), which in the last section was in turn shown to be equal to (3.56).
Remark on BHNR

In the above we began with equation (75) in BHNR [27], and not the final answer (76) in BHNR. This is because in BHNR the Henneaux–Slavnov trick [36] was not applied correctly in passing from (75) to (76). Specifically, as already mentioned earlier in this section, BHNR introduces the Hamiltonian constraint into the path integral exponential ‘for free’ by using the presence of $\delta(C_0)$ in the path integral, instead of by ‘exponentiating’ $\delta(C_0)$. As a consequence, $\delta(C_0)$ remains explicitly in the path integral; but $\delta(C_0)$ is not invariant under the canonical transformation used in the Henneaux–Slavnov trick introduced in [27], even on-shell. ([27] explicitly calculates the change of $C_0$ under the canonical transformation.) This was overlooked in [27] and presents an obstacle to using the Henneaux–Slavnov trick.

In section 2.1 of this paper, however, the Hamiltonian constraint is brought into the exponential by casting the associated delta function in exponential form. As a consequence, no similar problem arises when performing the Henneaux–Slavnov trick, and the trick goes through.

5. Discussion

The goal of the present work has been to calculate the appropriate formal path integrals for Holst gravity and for Plebanski gravity with Immirzi parameter—which we call Holst–Plebanski gravity—as determined by canonical analysis. This has been done, starting from the $SO(\eta)$ covariant framework of [34]. The final Holst–Plebanski path integral was shown to be consistent with the calculations of [27], modulo a slight oversight in [27] which we corrected.

We used the well-known reduced phase space method [2] in our derivation of which a compact account adapted to the notation employed here can be found in [22].

The main differences between the formal path integral expression for Holst gravity derived in this paper and the ‘new spin-foam models’ [21] that are also supposed to be quantizations of Holst gravity are\footnote{The origin of the differences is that the approach in this paper relies on the canonical quantization, while the standard spin-foam approach does not.} (1) the appearance of the local measure factor, and (2) the continuum rather than discrete formulation (triangulation) and the lack of manifest spacetime covariance\footnote{In fact discrete models are also never spacetime covariant unless they are topological; however, the continuum limit of spin-foam models, if one could take it, should be spacetime covariant.}. The next steps in our programme are therefore clear. In [32] we propose a discretization of the path integral derived in this paper which does take the proper measure factor into account. We will do this using a new method designed to take care of the simplicity constraints of Plebanski gravity and which lies somewhere between the spirits of [21] and [23]. As we have said before, we interpret the lack of manifest spacetime covariance even in the continuum as an unavoidable consequence of the mixture of dynamics and gauge invariance in background-independent (generally covariant) theories with propagating degrees of freedom. In the classical theory it requires some work to establish that spacetime covariance actually does hold on, albeit on-shell only. However, the quantum corrections are about the off-shell physics and thus lack of spacetime diffeomorphism invariance will presumably prevail off the classical limit. The question is then whether there is a different symmetry group of the quantum theory, which coincides with spacetime diffeomorphism invariance on-shell in the classical theory. The obvious candidate for this ‘quantum diffeomorphism group’ is the quantization of the BKG [33] as was proposed in [10] and in [28] it is analyzed if and in which sense the BKG is a symmetry of the quantum theory.
Acknowledgments

JE thanks Eugenio Bianchi for discussions, and gratefully acknowledges partial support by NSF grant OISE-0601844 and the Alexander von Humboldt foundation of Germany. MH thanks Aristide Baratin, Michael Köhn, Florian Löbert and Yongge Ma for discussions, and acknowledges the support by International Max Planck Research School and the partial support by NSFC nos 10675019 and 10975017.

Appendix: An example for checking the equivalences between the path integrals of the Holst Hamiltonian, Ashtekar–Barbero–Immirzi Hamiltonian and triad-ADM Hamiltonian formalisms: imposing the time gauge

In order to check these equivalences we need to fix the boost part of the internal gauge transformations by imposing the time gauge, i.e. inserting the delta function $\delta(e^0_a)$ and the corresponding Faddeev–Popov determinant into the path integral formula (equation (2.2)). In order to do that, we need the time gauge condition written in terms of canonical variables of Holst action. But it is not hard to find:

$$- 2 \left( \det e^0_a \right) \gamma^{-1} = \pi^a \pi^b \epsilon_{bac} = - \frac{1}{8} \epsilon^{ijk} \pi^a_{0i} \pi^b_{jk} \epsilon_{abc} \tag{A.1}$$

then we denote the time gauge condition $T_c : e^0_a = 0$ instead of $\epsilon^0_a = 0$, in the sector that $e^0_a$ is non-degenerate. On the other hand, the boost part of the Gauss constraint reads

$$G_{0j} = \partial_a \left( \pi^a - \frac{1}{\gamma} \pi^b \right)_{0j} + \omega^k_{aj} \pi^a_{jk} - \omega^k_{aj} \pi^a \tag{A.2}$$

The Faddeev–Popov determinant $\Delta_{FP}$ is defined by

$$\Delta_{FP} = | \det \left( \{G_{0j} (x), T_c (x') \} \right) | \tag{A.3}$$

where $\{ , \}$ is the Dirac bracket with respect to the second-class constraints $C^{ab}$ and $D^{ab}$. However since both $C^{ab}$ and $D^{ab}$ are $SO(\eta)$ gauge invariant, they are Poisson commutative with the Gauss constraint $G_{IJ}$. Therefore the Dirac bracket between $G_{0j}$ and $T_c$ is identical to their Poisson bracket, so that

$$\{G_{0j} (x), T_c (x') \} = \{G_{0j} (x), T_b (x') \} = \{ \omega^k_{0j} \pi^a_{0j} - \omega^k_{0j} \pi^a \}, \epsilon^{imn} \pi^a_{0i} \pi^b_{0j} \epsilon_{abc} \}$$

where the first term vanishes by the time gauge $e^0_d = 0$ (our analysis is for the sector of solutions in which $\pi^a_{0i} = \epsilon^a_{jkl} \epsilon^b_{jmn} \delta^{ij}_{kl} \delta^{mn} \delta(x, x')$). And the second term

$$- 2 \epsilon_{abc} \epsilon^{ijk} \pi^a_{0i} \pi^b_{0j} = - 2 \left( \det e^0_a \right)^2 \epsilon_{abc} \epsilon^{ijk} f^a_{0i} f^b_{0j} = - 2 \left( \det e^0_a \right) \epsilon^{ijk} e^a \epsilon^b \tag{A.4}$$

As a result, we obtain that $\Delta_{FP} = \prod e^0_a \left( \det e^0_a \right)^3$. Thus we can insert the gauge-fixing term $\Delta_{FP} \delta^3 (T_c)$ into the phase space path integral (equation (2.2)).
\[
Z_T = \int \left[ D\omega_{IJ} \right] \left[ D\pi_{IJ} \right] \prod_{x \in M} \delta(G^{IJ}) \delta(H_a) \delta(C^{ab}) \delta(D^{ab}) \delta(T_c) \Delta_{FP} \sqrt{|D_2|} \\
\quad \times \exp i \int dt \int d^3x \pi_{IJ} \omega_{IJ} \\
= \int \left[ D\omega_{IJ} \right] \left[ D\pi_{IJ} \right] \prod_{x \in M} \delta(G^{IJ}) \delta(H_a) \delta(C^{ab}) \delta(D^{ab}) \delta(T_c) V_s^{14} \\
\quad \times \exp i \int dt \int d^3x \pi_{IJ} \omega_{IJ}. \tag{A.5}
\]

Following the same strategy as in section 2.2, we can obtain the time gauge-fixed path integral for the Holst action which is expressed as

\[
Z_T = \int \left[ D\pi_{IJ} \right] \left[ D\omega_{IJ} \right] \prod_{x \in M} \mathcal{V}^3 \delta^3 \left( (\det e_a^I) e_I^j \right) \exp i \int e^I \wedge e^I \wedge \left( */F_{IJ} - \frac{1}{\gamma} F_{IJ} \right) [\omega] \\
= \int \left[ D\pi_{IJ} \right] \left[ D\omega_{IJ} \right] \prod_{x \in M} \mathcal{V}^3 \delta^3 \left( (\det e_a^I) e_I^j \right) \exp i \int e^I \wedge e^I \wedge \left( */F_{IJ} - \frac{1}{\gamma} F_{IJ} \right) [\omega], \tag{A.6}
\]

where \( \mathcal{V} = | \det e_a^I | \) is the four-dimensional volume element, and \( V_s = | \det e_a^I | \) is the spatial volume element when we have imposed the time gauge-fixing condition.

In the following, starting from equation (A.5), we try to derive a canonical path integral formula for the Hamiltonian framework used in canonical LQG, i.e. the Ashtekar–Barbero–Immirzi Hamiltonian. The product of two \( \delta \)-functions in (A.5) can be rewritten as

\[
\delta(T_c) \delta(C^{ab}) = \delta^3 \left( \epsilon^{ijk} \pi_c^a \pi_c^b \right) \delta^3 \left( \epsilon^{ijk} \pi_c^a \pi_c^b \right) = \delta^3 \left( \epsilon^{ijk} \pi_c^a \pi_c^b \right) \\
= [\det \pi_c^a]^3 \delta^3 \left( \pi_c^a \right) = V_s^{-6} \delta^3 \left( \pi_c^a \right); \tag{A.7}
\]

then we integrate over \( \pi_c^a \) in equation (A.5) and denote \( \pi_c^a = \sqrt{\det q} f_c^a \equiv E_c^a; \)

\[
Z_T = \int \left[ DA_a^I \right] \left[ D\Gamma_a^I \right] \left[ DE_a^I \right] \prod_{x \in M} \delta(G^{IJ}) \delta(H_a) \delta(D^{ab}) V_s^{8} \exp i \int dt \int d^3x E_a^I A_a^I, \tag{A.8}
\]

where \( A_a^I \equiv \omega_a^I = A_a^I - \frac{1}{2\gamma} \epsilon^{ijk} A_a^j k \) and \( \Gamma_a^I \equiv \frac{1}{2} \epsilon^{ijk} A_a^j k \). We then obtain the relation

\[
\omega_a^I = \epsilon^{ijk} \left[ (1 + \gamma^{-2}) \Gamma_a^j k + \gamma^{-1} A_a^j k \right]. \tag{A.9}
\]

Then the Gauss constraint \( G_{ij} \) and the secondary constraint \( D^{ab} \) become

\[
G_{ai} = \partial_i E_a^a \quad \epsilon^{ijk} \left[ (1 + \gamma^{-2}) \Gamma_a^j k + \gamma^{-1} A_a^j k \right] E_k^a \\
G_i = \frac{1}{2} \epsilon_{ijk} G_{ij} = -\gamma^{-1} \partial_i A_a^a + \epsilon_{kij} A_a^j E_k^a \\
D^{ab} = \frac{1}{\sqrt{\det q}} \left[ \epsilon_{ijk} E_i^a \left( \partial_k E_j^a \right) E_k^a + \epsilon_{ijk} E_i^a \left( \partial_k E_j^a \right) E_k^a \right. \\
\left. \quad + \epsilon_{ijk} E_i^a \epsilon_{jmn} \Gamma^a E_m^b E_k^b + \epsilon_{ijk} E_i^a \epsilon_{jmn} \Gamma^a E_m^b E_k^b \right]. \tag{A.10}
\]

And the result in [34] means that

\[
\delta^3(G^{IJ}) \delta^3(D^{ab}) = \left[ \frac{\partial(G_{ai}, D^{ab})}{\partial \Gamma_a^I} \right]^{-1} \delta^3 \left( \Gamma_a^I - \frac{1}{2} \epsilon_{ijk} E_j^a \left[ \partial_k E_i^a + E_{a[i} E_{j]b} \partial_b E_{c]} \right] \right) \delta^3 \left( G_i \right) \tag{A.11}
\]
which shows that $\Gamma^i_a$ is the spin-connection compatible with the triad $E^a_i$. And we have defined $E^a_i = e^a_i/\sqrt{|\det q|}$ as the inverse of $E^a_i$. In order to compute the Jacobian factor, we observe that

$$\delta^6(D^{ab})\delta^3(G_0) = | \det E^a_i E^b_j | \delta^6(D^{ab} E^a_i E^b_j) \delta^3 \left( \frac{\gamma}{1 + \gamma^2} [\gamma G_{0k} - G_1] \right)$$

$$= V_s^{-2} \delta^6 \left( - \frac{4}{\sqrt{|\det q|}} \left[ E^a_i \Gamma^i_{|ab|j} - \delta_{ij} E^a_i \Gamma^a_j \right] + \cdots \right) \delta^3 \left( \epsilon_{ijk} \Gamma_{aj} E^a_k + \cdots \right)$$

$$= V_s^{-2} \delta^6 \left( \frac{1}{2} \epsilon_{ijk} \Gamma^i_{aj} E^a_k + \cdots \right) \delta^3 \left( \frac{1}{3} \delta_{ij} E^a_i \Gamma^a_j \right) + \cdots$$

$$= V_s^{-2} \delta^6 \left( \Gamma^i_{a} - \frac{1}{2} \epsilon_{ijk} E^b_j \left[ \partial_b E^a_i + E_{a[i]} E^a_i \partial_b E_{i]} \right] \right)$$

$$= V_s^{-2} \delta^6 \left( \Gamma^i_a - \frac{1}{2} \epsilon_{ijk} E^b_j \left[ \partial_b E^a_i + E_{a[i]} E^a_i \partial_b E_{i]} \right] \right),$$

where in the fourth step we split the six $\delta$-functions for a symmetric matrix into a $\delta$-function of its trace product and five $\delta$-functions of its traceless part. With this result, we can integrate over $\Gamma^i_a$ and obtain the desired result:

$$Z_T = \int \left[ DA^a_i \right] \left[ DE^a_i \right] \prod_{s \in M} \delta(G_i) \delta(H_a) \delta(H) \exp i \int dt \int d^3x \; E^a_i A^a_i,$$  \hspace{1cm} (A.13)

where the constraints $G_i$, $H_a$ and $H$ take the form as we used in canonical LQG ($s = \eta_{00}$)

$$G_i = \partial_t E^a_i + \epsilon_{ijk} A^j_a E^k_i \quad H_a = F_{ab} E^b_j - A^i_a G_i$$

$$H = \frac{1}{2} \frac{E^a_i E^b_j}{\sqrt{|\det q|}} \left[ \epsilon_{ijk} F^k_{ab} - 2(\gamma^2 - s) K^i_a K^j_b \right].$$  \hspace{1cm} (A.14)

Therefore we obtain equivalence between the time gauge-fixed Holst action path integral (equation (A.6)) and the canonical path integral of the Ashtekar–Barbero–Immirzi Hamiltonian. Furthermore, the Ashtekar–Barbero–Immirzi Hamiltonian formalism is symplectically equivalent to the triad ADM Hamiltonian formalism, i.e. there is a canonical transformation $A^i_a = \Gamma^i_a + \gamma K^i_a$ which relates the conjugate pair $(A^i_a, E^a_i)$ to $(E^a_i, K^i_a)$, where the $su(2)$-valued 1-form $K^i_a$ relates the extrinsic curvature via $-s K^i_a = K^i_a e^i_a$. Then it is trivial that the time gauge-fixed Holst action path integral (equation (A.6)) also equivalent to the canonical path integral of the triad ADM Hamiltonian, i.e.

$$Z_T = \int \left[ DK^a_i \right] \left[ DE^a_i \right] \prod_{s \in M} \delta(G_i) \delta(H_a) \delta(H) \exp i \int dt \int d^3x \; K^a_i E^a_i,$$  \hspace{1cm} (A.15)

where the constraints $G_i$, $H_a$ and $H$ takes the form

$$G_i = \epsilon_{ijk} K^j_a E^k_i \quad H_a = 2s D_b \left[ K^j_a E^b_j - \delta^b_a K_j^b \right]$$

$$H = \frac{s}{\sqrt{|\det q|}} \left( K^a_i K^i_a - K^i_a K^a_i \right) E^a_i E^b_j - \sqrt{|\det q|} R.$$  \hspace{1cm} (A.16)

References

[1] Feynman R P 1942 The principle of least action in quantum mechanics PhD Thesis Princeton University
[2] Feynman R P 1948 Space-time approach to non-relativistic quantum mechanics Rev. Mod. Phys. 20 367–87
[2] Henneaux M and Teitelboim C 1992 Quantization of Gauge System (Princeton, NJ: Princeton University Press)

[3] Perez A 2003 Spin-foam models for quantum gravity Class. Quantum Grav. 20 R43–104

[4] Reisenberger M and Rovelli C 1997 ‘Sum over surfaces’ form of loop quantum gravity Phys. Rev. D 56 3490-3508

[5] Reisenberger M 1997 A lattice worldsheet sum for 4-d Euclidean GR arXiv:gr-qc/9711052

[6] Ashtekar A and Lewandowski J 2004 Background independent quantum gravity: a status report Class. Quantum Grav. 21 R53

[7] Smolyn L 2004 An invitation to loop quantum gravity Quantum Theory and Symmetries (Cincinnati, 2003) pp 655–82 (arXiv:hep-th/0408048)

[8] Thiemann T 2003 Lectures on loop quantum gravity Lect. Notes Phys. 631 41–135 (arXiv:gr-qc/0210094)

[9] Rovelli C 2004 Quantum Gravity (Cambridge: Cambridge University Press)

[10] Thiemann T 2007 Modern Canonical Quantum General Relativity (Cambridge: Cambridge University Press)

[11] Thiemann T 1998 Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity Phys. Lett. B 380 257–64 (arXiv:gr-qc/9806088)

[12] Thiemann T 1998 Quantum spin dynamics (QSD) Class. Quantum Grav. 15 839–73 (arXiv:gr-qc/9806089)

[13] Thiemann T 1998 Quantum Spin Dynamics (QSD): V. Quantum gravity as the natural regulator of the Hamiltonian constraint of matter quantum field theories Class. Quantum Grav. 15 1281–314 (arXiv:gr-qc/9705019)

[14] Han M and Ma Y 2006 Master constraint operator in loop quantum gravity Phys. Lett. B 635 225–31 (arXiv:gr-qc/0510014)

[15] Ooguri H 1992 Topological lattice models in four dimensions Mod. Phys. Lett. A 7 2799

[16] Noui K and Perez A 2005 Three-dimensional loop quantum gravity: physical scalar product and spin foam models Class. Quantum Grav. 22 1739–62

[17] Plebanski J 1977 On the separation of Einsteinian substructures J. Math. Phys. 18 2511–20

[18] Reisenberger M P 1998 Classical Euclidean general relativity from left-handed area = right-handed area? arXiv:gr-qc/9804061

[19] De Pietri R and Freidel L 1999 so(4) Plebanski action and relativistic spin foam model Class. Quantum Grav. 16 2187–96

[20] G Barbero F 1995 Real Ashtekar variables for Lorentzian signature space–times Phys. Rev. D 51 5507–5510

[21] Immirzi G 1997 Real and complex connections for canonical gravity Phys. Rev. D 53 5096–9

[22] Holst S 1996 Barbero’s Hamiltonian derived from a generalized Hilbert–Palatini action Phys. Rev. D 53 9666–9

[23] Barrett J and Crane L 1998 Relativistic spin-networks and quantum gravity J. Math. Phys. 39 3296

[24] Engle J, Pereira R and Rovelli C 2007 The loop-quantum-gravity vertex-amplitude Class. Quantum Grav. 21 L49–52

[25] Livine R E and Oriti D 2002 Barrett–Crane spin foam model from generalized BF-type action for gravity Phys. Rev. D 65 044025

[26] Engle J, Pereira R and Rovelli C 2008 Flipped spinfoam vertex and loop gravity Nucl. Phys. B 798 251–90

[27] Freidel L and Krasnov K 2008 A new spin foam model for 4d gravity Class. Quantum Grav. 25 125018

[28] Engle J, Livine E Pereira R and Rovelli C 2008 LQG vertex with finite Immirzi parameter Nucl. Phys. B 799 136

[29] Han M and Thiemann T 2009 On the relation between operator constraint–, master constraint–, reduced phase space– and path integral quantisation arXiv:0911.3428

[30] Baratin A, Flori C and Thiemann T 2008 The Holst spin foam model via cubulations arXiv:0812.4055v2 [gr-qc]

[31] Dittrich B 2007 Partial and complete observables for Hamiltonian constraint systems Gen. Rel. Grav. 39 1941–927

[32] Thiemann T 2006 Reduced phase space quantization and Dirac observables Class. Quantum Grav. 23 1163–80

[33] Leutwyler H 1964 Gravitational field: equivalence of Feynman quantization and canonical quantization Phys. Rev. 134 B1156

[34] Fradkin E S and Vilkovisky G A 1973 S matrix for gravitational field: II. Local measure; general relations; elements of renormalization theory Phys. Rev. D 8 4241

[35] Fradkin E S and Vilkovisky G A 1977 Quantization of relativistic systems with constraints: equivalence of canonical and covariant formalisms in quantum theory of gravitational field CERN–TH-2332
[26] Gitman G M and Tyutin I V 1990 *Quantization of Fields with Constraints* (Berlin: Springer)

[27] Buffenoir E, Henneaux M, Noui K and Roche P 2004 Hamiltonian analysis of Plebanski theory *Class. Quantum Grav.* 21 5203–20

[28] Han M 2010 Canonical Path Integral Measures for Holst and Plebanski Gravity: II. Gauge invariance and physical inner product *Class. Quantum Grav.* 27 245015 (arXiv:0911.3436)

[29] Oriti D 2002 Boundary terms in the Barrett–Crane spin foam model and consistent gluing *Phys. Lett. B* 532 363–72

Baez J *et al* 2002 Spin foam models of Riemannian quantum gravity *Class. Quantum Grav.* 19 4627–48

Bianchi E *et al* 2010 Face amplitude of spin foam quantum gravity arXiv:1005.0764

[30] Perini C *et al* 2009 Self-energy and vertex radiative corrections in LQG *Phys. Lett. B* 682 78–84

Livine E and Speziale S 2006 Group integral techniques for the spin foam graviton propagator *J. High Energy Phys.* JHEP11(2006)092

[31] Freidel L and Louapre D 2003 Diffeomorphisms and spin foam models *Nucl. Phys. B* 662 279–98

[32] Han M and Thiemann T in preparation

[33] Bergmann P and Komar A 1981 The phase space formulation of general relativity and approaches towards its canonical quantization *Gen. Rel. Grav.* 1 227

[34] Barros e Sa N 2001 Hamiltonian analysis of general relativity with the Immirzi parameter *Int. J. Mod. Phys. D* 10 261–72

[35] Alexandrov S 2000 SO(4,C)-covariant Ashtekar–Barbero gravity and the Immirzi parameter *Class. Quantum Grav.* 17 4255–68

[36] Henneaux M and Slavnov S 1994 A note on the path integral for systems with primary and secondary second class constraints *Phys. Lett. B* 338 47–50

[37] Barrett J, Dowdall R, Fairbairn W, Gomes H and Hellmann F 2009 Asymptotic analysis of the EPRL four-simplex amplitude arXiv:0902.1170

Barrett J, Dowdall R, Fairbairn W, Hellmann F and Pereira R 2009 Lorentzian spin foam amplitudes: graphical calculus and asymptotics arXiv:0907.2440

Conrado F and Freidel L 2008 On the semiclassical limit of 4d spin foam models *Phys. Rev. D* 78 104023

Barrett J and Steele C 2003 Asymptotics of relativistic spin networks *Class. Quantum Grav.* 20 1341

Barrett J and Williams R 1999 The asymptotics of an amplitude for the 4-simplex *Adv. Theor. Math. Phys.* 3 209

[38] De Pietri R and Freidel L 1999 so(4) Plebanski action and relativistic spin foam model *Class. Quantum Grav.* 16 2187–96

Livine E and Oriti D 2003 Implementing causality in the spin foam quantum geometry *Nucl. Phys. B* 663 231–79

Oriti D 2005 The Feynman propagator for spin foam quantum gravity *Phys. Rev. Lett.* 94 111301

Oriti D 2005 The Feynman propagator for quantum gravity: spin foams, proper time, orientation, causality and timeless-ordering *Brz. J. Phys.* 35 481–8