Coagulation and Fibrinolysis Index Profile in Patients with ANCA-Associated Vasculitis

Tian-Tian Ma¹,2,3, Yi-Min Huang¹,2,3, Chen Wang¹,2,3, Ming-Hui Zhao¹,2,3,4, Min Chen¹,2,3*

¹ Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China, ² Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China, ³ Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China, ⁴ Peking-Tsinghua Center for Life Sciences, Beijing, China

Abstract

Background: Previous studies observed the high prevalence of venous thromboembolism in patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). The current study analyzed the coagulation and fibrinolysis index profile in AAV patients.

Methods: The current study recruited 321 AAV patients in active stage and 78 AAV patients in quiescent stage. Coagulation and fibrinolysis index profiles in these AAV patients were analyzed, and their associations with various clinical and pathological parameters were further investigated.

Results: The circulating levels of D-dimer, fibrin degradation products and platelet count were significantly higher in AAV patients in active stage compared with those in remission (10.8 (0.4, 1.5) mg/L vs. 0.28 (0.2, 0.55) mg/L, P < 0.05; 5.6 (5.0, 10.0) mg/L vs. 1.9 (1.2, 2.8) mg/L, P < 0.05; 269 ± 127 × 10⁹/L vs. 227 ± 80 × 10⁹/L, P < 0.05, respectively). Among the 321 AAV patients in active stage, compared with patients with normal levels of D-dimer, patients with elevated D-dimer levels had significantly higher levels of initial serum creatinine, erythrocyte sedimentation rate, C reactive protein and the Birmingham Vasculitis Activity Scores (P = 0.014, P < 0.001, P < 0.001, P = 0.002, respectively). Moreover, correlation analysis showed that the levels of D-dimer correlated with erythrocyte sedimentation rate and C reactive protein levels (r = 0.384, P < 0.001; r = 0.380, P < 0.001, respectively).

Conclusion: Patients with active AAV are in hypercoagulable states, and circulating levels of D-dimer are associated with disease activity of AAV.

Introduction

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of systemic vasculitis associated with ANCA specific for myeloperoxidase (MPO) or proteinase-3 (PR3). AAV includes granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA) [1]. The high risk of acute venous thrombosis in AAV was initially recognized in the pediatric population [2] and confirmed in a large randomized trial conducted by the Wegener’s Granulomatosis Etenercept Trial Research Group [3]. In a retrospective study, Stassen et al. found the overall incidence of venous thromboembolism (VTE) in patients with AAV was 1.8/100 person-years, and increased to 6.7/100 person-years in periods with active AAV [4]. A higher prevalence of venous thrombosis has been observed in patients with AAV compared with healthy population of the same age. Merkel et al. prospectively investigated VTE in patients with GPA, and reported an incidence of 7.0/100 person-years of VTE in GPA patients [5]. However, the coagulation and fibrinolysis index profile in patients with AAV was not clear yet. In this retrospective study, we analyzed the coagulation and fibrinolysis index profile in AAV patients in both active and quiescent phases, and their associations with various clinical and pathological parameters were further investigated.

Patients and Methods

Patients

The current study retrospectively recruited 321 consecutive patients with newly onset AAV diagnosed in Renal Division, Peking University First Hospital between July 1998 and November 2011. All these patients met the Chapel Hill Consensus Conference criteria for AAV [1]. Exclusion criteria was defined as follows: (1) patients with negative ANCA; (2) patients with secondary vasculitis, such as drug-induced vasculitis; or with comorbid renal diseases, for instance, anti-glomerular basement membrane disease, lupus nephritis, IgA nephropathy, or diabetic
Demographic and general data

Of the 321 patients with AAV in active stage, 155 were male and 166 were female, with an age of 63±14.6 (range 14–89) years at diagnosis, including three children, with an age of 14, 14 and 16 respectively. The level of initial serum creatinine was 439±345.1 (range 55–1759) μmol/L. The level of urinary protein excretion was 2.0±1.66 (range 0.04–13.09) g/24 hr. The level of erythrocyte sedimentation rate (ESR) was 68.2±39.6 mm/1 hr. The level of BVAS was 19.9±6.8. The general data of the patients with AAV were listed in Table 1. For the 78 patients with AAV in remission stage, the levels of BVAS were 0 and 1 in 76 and 2 patients, respectively.

Venous thromboembolism (VTE)

Among the 321 patients with AAV, there were totally 13 patients who developed VTEs during the active stage of the disease. Among these 13 patients, 12 patients were classified as MPA and the other one was classified as GPA. Nine out of the 13 patients had VTE on the lower extremities, 1/13 patient had pulmonary embolism, 2/13 patients had thrombosis in the renal vein, and the other 1/13 patient had thrombosis in the jugular vein. However, none of the 78 patients with AAV in remission stage developed VTEs. No significant difference of the occurrence of VTEs was found between patients with PR3-ANCA and MPO-ANCA.

Coagulation and fibrinolysis index profiles in AAV patients in active stage and remission

Among the 321 AAV patients in active stage, the level of PT was 11.8±1.7 (range 8.3–26.7) sec. The level of APTT was 31.0±12.5 (range 20.4–214.7) sec. The level of FDP was 5.6 (5.0, 10.0) mg/L. The level of D-dimer was 0.8 (0.4, 1.5) mg/L. The level of platelet count was 269±127 (range 58–739) x10^9/L.

The level of D-dimer, which is a useful aid in the diagnosis of thromboembolism, was significantly higher in AAV patients in active disease compared with AAV patients in remission [5.6 (5.0, 10.0) mg/L vs. 1.9 (1.2, 2.8) mg/L, P<0.05]. The levels of FDP and platelet count were also significantly higher in AAV patients in active disease compared with AAV patients in remission [5.6 (5.0, 10.0) mg/L vs. 1.9 (1.2, 2.8) mg/L, P<0.05; 269±127 ×10^9/L vs. 227±80×10^9/L, P<0.05, respectively].

Associations between D-dimer levels and clinical features

Among 321 AAV patients in active stage, there were 221 patients whose circulating D-dimer levels were higher than the normal range (≥0.5 mg/L), and the circulating D-dimer levels among the other 100 patients were in the normal range (<0.5 mg/L). Compared with patients without elevated D-dimer levels, those with elevated D-dimer levels had significantly higher levels of initial serum creatinine (P=0.014). The levels of ESR, C reactive protein (CRP) and BVAS, which are useful markers reflecting disease activity of AAV, were significantly higher in patients with elevated D-dimer levels than those in patients with normal D-dimer levels (P<0.001, P=0.001, P=0.002, respectively). Compared with patients with normal D-dimer levels, patients with elevated D-dimer levels had significantly higher levels of white blood cell count and platelet count, and significantly lower level of hemoglobin in the peripheral blood cell count test (P=0.01, P=0.001, P<0.001, respectively) (Table 2). Moreover, correlation analysis showed that the levels of D-dimer correlated with ESR and CRP levels (r=0.384, P<0.001; r=0.380, P<0.001, respectively). No significant difference of the coagulation and fibrinolysis index was found between patients with PR3-ANCA and MPO-ANCA.

Discussion

AAV is a group of autoimmune disorders. In some previous studies, it has been observed that patients with AAV have an
increased risk of developing VTEs, especially when AAV is active [4,5]. The current study investigated the coagulation and fibrinolysis index profile in AAV patients, and their associations with various clinical and pathological parameters.

The current study found the abnormal fibrinolysis index of patients with AAV in the active stage, characterized by elevated levels of circulating FDP and D-dimer, which supported thrombosis formation [9,10] and hypercoagulable state. There are several lines of the potential mechanism. For example, neutrophil extracellular traps (NETs), a meshwork of DNA fibers comprising histones and antimicrobial proteins, should be one of the important contributors. The level of NETs is increased in AAV patients, and, more importantly, NETs play an important role in the pathogenesis of AAV [11]. NETs can provide a scaffold for platelet and RBC adhesion and concentrate effector proteins involved in thrombosis [12,13]. In addition, Kambas et al. provided evidence for the release of tissue factor through NETs by neutrophils [14,15]. Another possible mechanism is associated with neutrophil-derived microparticles, whose level was elevated in active AAV [16]. Kambas et al. found expression of tissue factor in neutrophil-derived microparticles [15]. Tissue factor can induce thrombin generation and thus promote hypercoagulation.

Table 1. General data of patients with AAV in acute phase.

Values
Total number of patients
Gender (male/female)
Age at diagnosis of disease (years)
MPO-ANCA/PR3-ANCA
Initial Scr (µmol/L)
Mean±s.d.
Range
Urinary protein (g/24 hr)
Mean±s.d.
Range
ESR (mm/1 hr)
BVAS
Renal involvement
Skin rash
Arthralgia
Muscle pain
Pulmonary involvement
ENT involvement
Ophthalmic involvement
Gastrointestinal involvement
Nervous system involvement

[Abbreviations]: AAV, anti-neutrophil cytoplasmic antibody-associated vasculitis; ANCA, antineutrophil cytoplasmic antibodies; BVAS, Birmingham Vasculitis Activity Scores; ENT, ear, nose, and throat; ESR, erythrocyte sedimentation rate; MPO, myeloperoxidase antibodies; PR3, proteinase 3 antibodies; s.d., standard deviation; Scr, serum creatinine.

doi:10.1371/journal.pone.0097843.t001

Table 2. Comparison of clinical and laboratory features of AAV patients with and without elevated levels of D-dimer in active stage.

	D-dimer<0.5 mg/L (n = 100)	P
Initial Scr, µmol/L (median,IQR)	252.0 (110.5/583.5)	P = 0.014
ESR, mm/1 h (median,IQR)	40.00 (21.8/67.3)	P < 0.001
CRP, mg/L (median,IQR)	7.54 (2.2/17.1)	P < 0.001
Platelet count, ×10^9/L (median,IQR)	217.0 (151.0/296.0)	P = 0.001
BVAS (mean,s.d.)	17.8±6.8	P = 0.002
WBC, ×10^9/L (median,IQR)	8.4 (6.0/12.1)	P = 0.010
Hb, g/dL (median,IQR)	9.6 (8.2/11.2)	P < 0.001

[Abbreviations]: AAV, anti-neutrophil cytoplasmic antibody-associated vasculitis; BVAS, Birmingham Vasculitis Activity Scores; CRP, c-reactive protein; ESR, erythrocyte sedimentation rate; Hb, hemoglobin; IQR, interquartile range; Scr, serum creatinine; WBC, white blood cell.

doi:10.1371/journal.pone.0097843.t002
garding the prothrombin time or activated partial thromboplastin time, which are routine parameters for assessing coagulation, there was no significant difference between AAV patients in active and remission stage in the current study. Therefore, a more accurate index is needed for evaluating the blood coagulation status in AAV patients. For example, Hilhorst et al. used the endogenous thrombin potential (ETP), a sensitive indicator of overall plasma coagulability, to demonstrate hypercoagulability in AAV patients [17,18]. However, since the current study was a retrospective one, such parameter was not routinely measured.

It was found in our study that patients with elevated D-dimer levels had significantly higher levels of initial serum creatinine, ESR, CRP, BVAS, white blood cell count and platelet count, and significantly lower level of hemoglobin in the peripheral blood cell count test, compared with patients with normal range of D-dimer. Furthermore, correlation analysis showed that in active phase of AAV, the level of D-dimer correlated with ESR and CRP. These results suggested that the high activity of coagulation and fibrinolysis was associated with active diseases of AAV. The underlying mechanism is not fully clearly yet. There are extensive crosstalks between immune system and the coagulation system [19]. Inflammation can shift the balance promoting a prothrombotic state [20]. The production of the proinflammatory cytokines, such as TNFα, interleukin-1 or C5a, may trigger thrombotic processes by increased expression of tissue factor on endothelial cell and/or neutrophils, which initiates the extrinsic coagulation pathway [21–23]. Furthermore, there was a close correlation between disease activity in patients with GPA or MPA and markers of endothelial cell damage [24], and apoptotic endothelial cells have been shown to become procoagulant and proadhesive for platelets [25].

In the current study, the prevalence of VTEs among patients with AAV in active stage was 4.05%, and no patients with AAV in remission developed VTEs. This was in line with some previous studies [4,5]. However, in a retrospective study, not every patient routinely received imageological examinations to screen thrombosis, we could not accurately assess the real prevalence of VTEs in AAV patients. Furthermore, microthrombus may not be detected in imageological examinations.

In conclusion, this study found that the patients with AAV in active stage were in hypercoagulable state, and circulating level of D-dimer was associated with the disease activity of AAV. The underlying mechanism for this high activity of coagulation system may lie in systemic inflammatory condition.

Key Messages

Patients with AAV in active stage are in hypercoagulable state. Circulating levels of D-dimer are associated with disease activity of AAV.

Author Contributions

Conceived and designed the experiments: MC MHZ. Performed the experiments: TTM YMH CW MC. Analyzed the data: TTM YMH CW MC MHZ. Contributed reagents/materials/analysis tools: TTM YMH CW MC. Wrote the paper: TTM YMH CW MC MHZ.

References

1. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, et al. (2013) 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 65: 1–11
2. von Scheven E, Lu TT, Emery HM, Elder ME, Wara DW, et al. (2003) Thrombosis and pediatric Wegener’s granulomatosis: acquired and genetic risk factors for hypercoagulability. Arthritis Rheum 49: 862–865
3. Wegener’s Granulomatosis Etanercept Trial (WGET) Research Group (2005) Etanercept plus standard therapy for Wegener’s granulomatosis. N Engl J Med 353: 352–361
4. Stassen PM, Derks RPH, Kallenberg CGM, Stegeman CA (2008) Venous thrombembolism in ANCA-associated vasculitis—incidence and risk factors. Rheumatology 47: 330–334
5. Mörkel PA, Lo GH, Hollbrook JF, Tibbs AK, Allen NB, et al. (2005) Brief communication: high incidence of venous thrombotic events among patients with Wegener granulomatosis: the Wegener’s Clinical Occurrence of Thrombosis (WECLOT) Study. Ann Intern Med 142: 620–625
6. Abir A, Calanna KT, Cohen MD (2005) The Chung Strauss Syndrome (Allergic Granulomatous Angiitis): Review and Update. Semin Arthritis Rheum 33: 106–114
7. Lupiani RA, Bacon PA, Moots RJ, James BA, Pull A, et al. (1994) Birmingham vasculitis activity score (BVAS) in systemic necrotizing vasculitis. QJM 87: 671–678
8. Hellmich B, Flossmann O, Gross WL, Bacon P, Cohen-Tervaert JW, et al. (2007) EULAR recommendations for conducting clinical studies and/or clinical trials in systemic vasculitis: focus on anti-neutrophil cytoplasm antibodies-associated vasculitis. Ann Rheum Dis 66: 605–617
9. Kroneman R, Nieuwenhuizen W, Knot EAR (1990) Monoclonal antibody-based plasma assays for fibrinogen and derivatives, and their clinical relevance. Blood Coagul Fibrinolysis 1: 91–111
10. Rowbotham BJ, Carroll P, Whitaker AN, Murtaugh A, Reabeck P, et al. (1987) Measurement of crosslinked fibrin derivatives—use in the diagnosis of venous thrombosis. Thromb Haemost 57: 59–61
11. Kessenbrock K, Krumbholz M, Scho¨nermarck U, Back W, Gross WL, et al. (2011) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107: 15380–15385
12. Fuchs TA, Reill A, Drueschmied D, Schatzberg D, Monastier M, et al. (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107: 15380–15383
13. Diamantopoulos AP (2013) Extracellular neutrophiltraps: a novel therapeutic target in ANCA-associated vasculitis? Front Immun 4: 24
14. Kambas K, Mitroulis I, Apostolidou E, Girod A, Chrysanthyopoulou A, et al. (2012) Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS One 7: e51927
15. Kambas K, Chrysanthyopoulou A, Vassilopoulos D, Apostolidou E, Skendros P, et al. (2013) Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann Rheum Dis In press
16. Hong Y, Eleftheriou D, Hassain AA, Price-Kauhefe EH, Savage CO, et al. (2012) Neutrophil extracellular cytoplasmic antibodies stimulates release of neutrophil microparticles. J Am Soc Nephrol 23: 49–62
17. Hilhorst M, Winders K, Wilde B, van Oree R, ten Cate H, et al. (2013) Patients with antineutrophil cytoplasmic antibodies associated with remission are hypercoaguable. J Rheumatol 40: 2042–2046
18. Monach PA (2013) ANCA-associated vasculitis: a prothrombotic state even in remission? J Rheumatol 40: 1935–1938
19. Biemond RJ, Levi M, Ten Cate H, Soule HR, Morris LD, et al. (1995) Complete inhibition of endotoxin-induced coagulation activation in chimpanzees with a monoclonal Fab fragment against factor VII/VIIa. Thromb Haemost 73: 223–230
20. Springer J, Villa-Forte A (2013) Thrombosis in vasculitis. Curr Opin Rheumat 25: 19–25
21. Cockwell P, Savage CO (2000) Role of leukocytes in the immunopathogenesis of ANCA-associated glomerulonephritis. Nephron 83: 267–306
22. Kallenberg CGM, Heerings P (2012) Complement is crucial in the pathogenesis of ANCA-associated vasculitis. Kidney Int 83: 16–18
23. Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD, et al. (2007) Complement and coagulation: strangers or partners in crime? Trends Immunol 28: 184–192
24. Hergrøll O, Andrassy K, Nawroth P (1996) Elevated levels of markers of endothelial cell damage and markers of activated coagulation in patients with systemic necrotizing vasculitis. Thromb Haemost 75: 892–898
25. Bombeli T, Karsan A, Tait JF, Harlan JM (1997) Apoptotic vascular endothelial cells become procoagulant. Blood 89: 2429–2442