Relations on FP-Soft Sets Applied to Decision Making Problems

Irfan Deli
Department of Mathematics, Faculty of Arts and Sciences
7 Aralık University, 79000 Kilis, Turkey
irfandeli@kilis.edu.tr

Naim Çağman
Department of Mathematics, Faculty of Arts and Sciences
Gaziosmanpaşa University, 60250 Tokat, Turkey
naim.cagman@gop.edu.tr

February 14, 2014

Abstract
In this work, we first define relations on the fuzzy parametrized soft sets and study their properties. We also give a decision making method based on these relations. In approximate reasoning, relations on the fuzzy parametrized soft sets have shown to be of a primordial importance. Finally, the method is successfully applied to a problems that contain uncertainties.

Keyword 0.1 Soft sets, fuzzy sets, FP-soft sets, relations on FP-soft sets, decision making.

1 Introduction

In 1999, the concept of soft sets was introduced by Molodtsov [25] to deal with problems that contain uncertainties. After Molodtsov, the operations of soft sets are given in [4, 23, 28] and studied their properties. Since then, based on these operations, soft set theory has developed in many directions and applied to wide variety of fields. For instance; on the theory of soft sets [2, 4, 5, 9, 20, 23, 24, 28], on the soft decision making [16, 17, 18, 21, 22, 27], on the fuzzy soft sets [7, 10, 11] and soft rough sets [16] are some of the selected works. Some authors have also studied the algebraic properties of soft sets, such as [1, 3, 6, 19, 26, 29, 30].

The FP-soft sets, firstly studied by Çağman et al. [8], is a fuzzy parameterized soft sets. Then, FP-soft sets theory and its applications studied in detail, for example [12, 13, 14]. In this paper, after given most of the fundamental
definitions of the operations of fuzzy sets, soft sets and FP-soft sets in next section, we define relations on FP-soft sets and we also give their properties in Section 3. In Section 4, we define symmetric, transitive and reflexive relations on the FP-soft sets. In Section 5, we construct a decision making method based on the FP-soft sets. We also give an application which shows that this methods successfully works. In the final section, some concluding comments are presented.

2 Preliminary

In this section, we give the basic definitions and results of soft set theory \[25\] and fuzzy set theory \[31\] that are useful for subsequent discussions.

Definition 2.1 \[31\] Let \(U \) be the universe. A fuzzy set \(X \) over \(U \) is a set defined by a membership function \(\mu_X \) representing a mapping

\[
\mu_X : U \to [0,1].
\]

The value \(\mu_X(x) \) for the fuzzy set \(X \) is called the membership value or the grade of membership of \(x \in U \). The membership value represents the degree of \(x \) belonging to the fuzzy set \(X \). Then a fuzzy set \(X \) on \(U \) can be represented as follows,

\[
X = \{(\mu_X(x)/x) : x \in U, \mu_X(x) \in [0,1]\}.
\]

Note that the set of all fuzzy sets on \(U \) will be denoted by \(F(U) \).

Definition 2.2 \[15\] \(t \)-norms are associative, monotonic and commutative two valued functions \(t \) that map from \([0,1] \times [0,1] \) into \([0,1] \). These properties are formulated with the following conditions:

1. \(t(0,0) = 0 \) and \(t(\mu_{X_1}(x), 1) = t(1, \mu_{X_1}(x)) = \mu_{X_1}(x), \ x \in E \)
2. If \(\mu_{X_1}(x) \leq \mu_{X_2}(x) \) and \(\mu_{X_3}(x) \leq \mu_{X_4}(x) \), then \(t(\mu_{X_1}(x), \mu_{X_2}(x)) \leq t(\mu_{X_3}(x), \mu_{X_4}(x)) \)
3. \(t(\mu_{X_1}(x), \mu_{X_3}(x)) = t(\mu_{X_2}(x), \mu_{X_1}(x)) \)
4. \(t(\mu_{X_1}(x), t(\mu_{X_2}(x), \mu_{X_3}(x))) = t(t(\mu_{X_1}(x), \mu_{X_2}(x)), \mu_{X_3}(x)) \)

Definition 2.3 \[15\] \(t \)-conorms or \(s \)-norm are associative, monotonic and commutative two valued functions \(s \) which map from \([0,1] \times [0,1] \) into \([0,1] \). These properties are formulated with the following conditions:

1. \(s(1,1) = 1 \) and \(s(\mu_{X_1}(x), 0) = s(0, \mu_{X_1}(x)) = \mu_{X_1}(x), \ x \in E \)
2. if \(\mu_{X_1}(x) \leq \mu_{X_2}(x) \) and \(\mu_{X_3}(x) \leq \mu_{X_4}(x) \), then \(s(\mu_{X_1}(x), \mu_{X_2}(x)) \leq s(\mu_{X_3}(x), \mu_{X_4}(x)) \)
3. \(s(\mu_{X_1}(x), \mu_{X_2}(x)) = s(\mu_{X_2}(x), \mu_{X_1}(x)) \)
4. $s(\mu_{X_1}(x), \mu_{X_2}(x), \mu_{X_3}(x)) = s(s(\mu_{X_1}(x), \mu_{X_2}(x), \mu_{X_3}(x)))$

t-norm and t-conorm are related in a sense of logical duality. Typical dual pairs of non parametrized t-norm and t-conorm are complied below:

1. Drastic product:

$$t_w(\mu_{X_1}(x), \mu_{X_2}(x)) = \begin{cases} \min\{\mu_{X_1}(x), \mu_{X_2}(x)\}, & \max\{\mu_{X_1}(x)\mu_{X_2}(x)\} = 1 \\ 0, & \text{otherwise} \end{cases}$$

2. Drastic sum:

$$s_w(\mu_{X_1}(x), \mu_{X_2}(x)) = \begin{cases} \max\{\mu_{X_1}(x), \mu_{X_2}(x)\}, & \min\{\mu_{X_1}(x)\mu_{X_2}(x)\} = 0 \\ 1, & \text{otherwise} \end{cases}$$

3. Bounded product:

$$t_1(\mu_{X_1}(x), \mu_{X_2}(x)) = \max\{0, \mu_{X_1}(x) + \mu_{X_2}(x) - 1\}$$

4. Bounded sum:

$$s_1(\mu_{X_1}(x), \mu_{X_2}(x)) = \min\{1, \mu_{X_1}(x) + \mu_{X_2}(x)\}$$

5. Einstein product:

$$t_{1.5}(\mu_{X_1}(x), \mu_{X_2}(x)) = \frac{\mu_{X_1}(x)\mu_{X_2}(x)}{2 - \left[\mu_{X_1}(x) + \mu_{X_2}(x) - \mu_{X_1}(x)\mu_{X_2}(x)\right]}$$

6. Einstein sum:

$$s_{1.5}(\mu_{X_1}(x), \mu_{X_2}(x)) = \frac{\mu_{X_1}(x) + \mu_{X_2}(x)}{1 + \mu_{X_1}(x)\mu_{X_2}(x)}$$

7. Algebraic product:

$$t_2(\mu_{X_1}(x), \mu_{X_2}(x)) = \mu_{X_1}(x)\mu_{X_2}(x)$$

8. Algebraic sum:

$$s_2(\mu_{X_1}(x), \mu_{X_2}(x)) = \mu_{X_1}(x) + \mu_{X_2}(x) - \mu_{X_1}(x)\mu_{X_2}(x)$$

9. Hamacher product:

$$t_{2.5}(\mu_{X_1}(x), \mu_{X_2}(x)) = \frac{\mu_{X_1}(x)\mu_{X_2}(x)}{\mu_{X_1}(x) + \mu_{X_2}(x) - \mu_{X_1}(x)\mu_{X_2}(x)}$$

10. Hamacher sum:

$$s_{2.5}(\mu_{X_1}(x), \mu_{X_2}(x)) = \frac{\mu_{X_1}(x) + \mu_{X_2}(x) - 2\mu_{X_1}(x)\mu_{X_2}(x)}{1 - \mu_{X_1}(x)\mu_{X_2}(x)}$$
11. Minimum:
\[t_3(\mu_{X_1}(x), \mu_{X_2}(x)) = \min\{\mu_{X_1}(x), \mu_{X_2}(x)\} \]

12. Maximum:
\[s_3(\mu_{X_1}(x), \mu_{X_2}(x)) = \max\{\mu_{X_1}(x), \mu_{X_2}(x)\} \]

Definition 2.4 [25]. Let \(U \) be an initial universe set and let \(E \) be a set of parameters. Then, a pair \((F, E)\) is called a soft set over \(U \) if and only if \(F \) is a mapping or \(E \) into the set of aft subsets of the set \(U \).

In other words, the soft set is a parametrized family of subsets of the set \(U \). Every set \(F(\varepsilon), \varepsilon \in E \), from this family may be considered as the set of \(\varepsilon \)-elements of the soft set \((F, E)\), or as the set of \(\varepsilon \)-approximate elements of the soft set.

It is worth noting that the sets \(F(\varepsilon) \) may be arbitrary. Some of them may be empty, some may have nonempty intersection.

In this definition, \(E \) is a set of parameters that are describe the elements of the universe \(U \). To apply the soft set in decision making subset \(A, B, C, ... \) of the parameters set \(E \) are needed. Therefore, Çağman and Enginoğlu [4] modified the definition of soft set as follows.

Definition 2.5 [4] Let \(U \) be a universe, \(E \) be a set of parameters that are describe the elements of \(U \), and \(A \subseteq E \). Then, a soft set \(F_A \) over \(U \) is a set defined by a set valued function \(f_A \) representing a mapping

\[f_A : E \to P(U) \text{ such that } f_A(x) = \emptyset \text{ if } x \in E - A \quad (1) \]

where \(f_A \) is called approximate function of the soft set \(F_A \). In other words, the soft set is a parametrized family of subsets of the set \(U \), and therefore it can be written a set of ordered pairs

\[F_A = \{(x, f_A(x)) : x \in E, f_A(x) = \emptyset \text{ if } x \in E - A\} \]

The subscript \(A \) in the \(f_A \) indicates that \(f_A \) is the approximate function of \(F_A \). The value \(f_A(x) \) is a set called \(x \)-element of the soft set for every \(x \in E \).

Definition 2.6 [8] Let \(F_X \) be a soft set over \(U \) with its approximate function \(f_X \) and \(X \) be a fuzzy set over \(E \) with its membership function \(\mu_X \). Then, a \(FP \)-soft sets \(\Gamma_X \), is a fuzzy parameterized soft set over \(U \), is defined by the set of ordered pairs

\[\Gamma_X = \{(\mu_X(x)/x, f_X(x)) : x \in E\} \]

where \(f_X : E \to P(U) \) such that \(f_X(x) = \emptyset \) if \(\mu_X(x) = 0 \) is called approximate function and \(\mu_X : E \to [0,1] \) is called membership function of \(FP \)-soft set \(\Gamma_X \). The value \(\mu_X(x) \) is the degree of importance of the parameter \(x \) and depends on the decision-maker’s requirements.

Note that the sets of all \(FP \)-soft sets over \(U \) will be denoted by \(FPS(U) \).
3 Relations on the FP-Soft Sets

In this section, after given the cartesian products of two FP-soft sets, we define a relations on FP-soft sets and study their desired properties.

Definition 3.1 Let $\Gamma_X, \Gamma_Y \in FPS(U)$. Then, a cartesian product of Γ_X and Γ_Y, denoted by $\Gamma_X \times \Gamma_Y$, is defined as

$$\Gamma_X \times \Gamma_Y = \left\{ (\mu_{X,Y}(x,y)/(x,y), f_{X,Y}(x,y)) : (x,y) \in E \times E \right\}$$

where

$$f_{X,Y}(x,y) = f_X(x) \cap f_Y(y)$$

and

$$\mu_{X,Y}(x,y) = \min\{\mu_X(x), \mu_Y(y)\}$$

Here $\mu_{X,Y}(x,y)$ is a t-norm.

Example 3.2 Let $U = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_9, u_{10}, u_{11}, u_{12}, u_{13}, u_{14}, u_{15}\}$, $E = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$, and $X = \{0.5/x_1, 0.7/x_2, 0.3/x_3, 0.9/x_4, 0.6/x_5\}$ and $Y = \{0.9/x_3, 0.1/x_6, 0.7/x_7, 0.3/x_8\}$ be two fuzzy subsets of E. Suppose that

$$\Gamma_X = \left\{ (0.5/x_1, \{u_1, u_3, u_4, u_6, u_7, u_8, u_{11}, u_{12}, u_{13}, u_{15}\}), (0.7/x_2, \{u_3, u_7, u_8, u_{14}, u_{15}\}), (0.3/x_3, \{u_1, u_2, u_4, u_5, u_6, u_9, u_{10}, u_{12}, u_{13}\}), (0.9/x_4, \{u_2, u_4, u_6, u_8, u_{12}, u_{13}\}), (0.6/x_5, \{u_3, u_4, u_6, u_7, u_9, u_{13}, u_{15}\}) \right\}$$

$$\Gamma_Y = \left\{ (0.9/x_3, \{u_1, u_5, u_6, u_9, u_{10}, u_{13}\}), (0.1/x_6, \{u_3, u_5, u_7, u_8, u_{10}, u_{11}, u_{15}\}), (0.7/x_7, \{u_2, u_5, u_9, u_{10}, u_{11}, u_{14}\}), (0.3/x_8, \{u_2, u_5, u_8, u_{10}, u_{12}, u_{14}\}) \right\}$$

Then, the cartesian product of Γ_X and Γ_Y is obtained as follows

$$\Gamma_X \times \Gamma_Y = \left\{ (0.5/(x_1, x_3), \{u_1, u_6, u_{13}\}), (0.1/(x_1, x_6), \{u_3, u_7, u_8, u_{11}, u_{15}\}), (0.5/(x_1, x_7), \{u_{11}\}), (0.3/(x_1, x_8), \{u_8, u_{12}\}), (0.7/(x_2, x_3), \emptyset), (0.1/(x_2, x_6), \{u_3, u_7, u_8, u_{11}, u_{15}\}), (0.7/(x_2, x_7), \{u_{14}\}), (0.3/(x_2, x_8), \{u_8, u_{14}\}), (0.3/(x_3, x_3), \{u_1, u_3, u_6, u_9, u_{10}, u_{13}\}), (0.1/(x_3, x_6), \{u_5, u_9\}), (0.3/(x_3, x_7), \{u_2, u_5, u_9, u_{10}\}), (0.3/(x_3, x_8), \{u_2, u_5, u_{10}, u_{12}\}), (0.9/(x_4, x_3), \{u_6\}), (0.1/(x_4, x_6), \emptyset), (0.7/(x_4, x_7), \{u_2, u_6\}), (0.3/(x_4, x_8), \{u_2, u_8, u_{12}\}), (0.6/(x_5, x_3), \{u_6, u_9, u_{13}\}), (0.1/(x_5, x_6), \{u_3, u_7, u_9, u_{11}, u_{15}\}), (0.6/(x_5, x_7), \{u_2\}), (0.3/(x_5, x_8), \emptyset) \right\}$$

Definition 3.3 Let $\Gamma_X, \Gamma_Y \in FPS(U)$. Then, an FP-soft relation from Γ_X to Γ_Y, denoted by R_F, is an FP-soft subset of $\Gamma_X \times \Gamma_Y$. Any FP-soft subset of $\Gamma_X \times \Gamma_Y$ is called a FP-relation on Γ_X. 5
Note that if \(\alpha = (\mu_X(x), f_X(x)) \in \Gamma_X \) and \(\beta = (\mu_Y(y), f_Y(y)) \in \Gamma_Y \), then
\[
\alpha R_F \beta \iff (\mu_X \bowtie_Y (x, y), f_X \bowtie_Y (x, y)) \in R_F
\]

Example 3.4 Let us consider the Example \(\beta \). Then, we define an FP-soft relation \(R_F \), from \(\Gamma_Y \) to \(\Gamma_X \), as follows
\[
\alpha R_F \beta \iff \mu_X \bowtie_Y (x, x_i) / (x_i, x_j) \geq 0.3 \quad (1 \leq i, j \leq 3)
\]

Then
\[
R_F = \left\{ (0.5/(x_1, x_3), \{u_1, u_6, u_{13}\}), (0.5/(x_1, x_7), \{u_{11}\}), (0.3/(x_1, x_8), \{u_8, u_{12}\}), (0.7(x_2, x_7), \{u_{14}\}), (0.3/(x_2, x_8), \{u_8, u_{14}\}), (0.3/(x_3, x_3), \{u_1, u_5, u_6, u_9, u_{10}, u_{13}\}), (0.3/(x_3, x_7), \{u_2, u_5, u_9, u_{10}\}), (0.3/(x_3, x_8), \{u_2, u_5, u_{10}, u_{12}\}), (0.9/(x_4, x_3), \{u_6\}), (0.7/(x_4, x_7), \{u_2, u_6\}), (0.3/(x_4, x_8), \{u_2, u_{8}, u_{12}\}), (0.6/(x_5, x_3), \{u_6, u_9, u_{13}\}), (0.6/(x_5, x_7), \{u_2\}) \right\}
\]

Definition 3.5 Let \(\Gamma_X, \Gamma_Y \in FPS(U) \) and \(R_F \) be an FP-soft relation from \(\Gamma_X \) to \(\Gamma_Y \). Then domain and range of \(R_F \) respectively is defined as
\[
D(R_F) = \{ \alpha \in F_A : \alpha R_F \beta \}
\]
\[
R(R_F) = \{ \beta \in F_B : \alpha R_F \beta \}
\]

Example 3.6 Let us consider the Example \(\beta \). Then
\[
D(R_F) = \left\{ (0.5/x_1, \{u_1, u_3, u_4, u_6, u_7, u_8, u_{11}, u_{12}, u_{13}, u_{15}\}), (0.7/x_2, \{u_3, u_7, u_8, u_{14}, u_{15}\}), (0.3/x_3, \{u_1, u_2, u_4, u_5, u_6, u_9, u_{10}, u_{12}, u_{13}\}), (0.9/x_4, \{u_2, u_4, u_6, u_{12}, u_{13}\}), (0.6/x_5, \{u_3, u_4, u_6, u_7, u_9, u_{13}, u_{15}\}) \right\}
\]
\[
R(R_F) = \left\{ (0.9/x_3, \{u_1, u_5, u_6, u_9, u_{10}, u_{13}\}), (0.7/x_7, \{u_2, u_5, u_9, u_{10}, u_{11}, u_{14}\}), (0.3/x_8, \{u_2, u_5, u_8, u_{10}, u_{12}, u_{14}\}) \right\}
\]

Definition 3.7 Let \(R_F \) be an FP-soft relation from \(\Gamma_X \) to \(\Gamma_Y \). Then \(R_F^{-1} \) is from \(\Gamma_Y \) to \(\Gamma_X \) is defined as
\[
\alpha R_F^{-1} \beta = \beta R_F \alpha
\]

Example 3.8 Let us consider the Example \(\beta \). Then, \(R_F^{-1} \) is from \(\Gamma_Y \) to \(\Gamma_X \) is obtained by
\[
R_F^{-1} = \left\{ (0.5/(x_3, x_1), \{u_1, u_6, u_{13}\}), (0.5/(x_7, x_1), \{u_{11}\}), (0.3/(x_8, x_1), \{u_8, u_{12}\}), (0.7(x_2, x_2), \{u_{14}\}), (0.3/(x_8, x_2), \{u_8, u_{14}\}), (0.3/(x_3, x_3), \{u_1, u_5, u_6, u_9, u_{10}, u_{13}\}), (0.3/(x_7, x_3), \{u_2, u_5, u_9, u_{10}\}), (0.3/(x_3, x_3), \{u_2, u_5, u_{10}, u_{12}\}), (0.9/(x_3, x_4), \{u_6\}), (0.7/(x_7, x_4), \{u_2, u_6\}), (0.3/(x_8, x_4), \{u_2, u_{8}, u_{12}\}), (0.6/(x_3, x_5), \{u_6, u_9, u_{13}\}), (0.6/(x_7, x_5), \{u_2\}) \right\}
\]
Proposition 3.9 Let R_{F_1} and R_{F_2} be two FP-soft relations. Then

1. $(R_{F_1}^{-1})^{-1} = R_{F_1}$

2. $R_{F_1} \subseteq R_{F_2} \Rightarrow R_{F_1}^{-1} \subseteq R_{F_2}^{-1}$

Proof:

1. $\alpha(R_{F_1}^{-1})^{-1} = \beta R_{F_1}^{-1} \alpha = \alpha R_{F_1} \beta$

2. $\alpha R_{F_1} \beta \subseteq \alpha R_{F_2} \beta \Rightarrow \beta R_{F_1}^{-1} \alpha \subseteq \beta R_{F_2}^{-1} \alpha \Rightarrow R_{F_1}^{-1} \subseteq R_{F_2}^{-1}$

Definition 3.10 If R_{F_1} is a fuzzy parametrized soft relation from Γ_X to Γ_Y and R_{F_2} is a fuzzy parametrized soft relation from Γ_Y to Γ_Z, then a composition of two FP-soft relations R_{F_1} and R_{F_2} is defined by

$$\alpha(R_{F_1} \circ R_{F_2}) = (\alpha R_{F_1}) \beta \wedge (\beta R_{F_2})$$

Proposition 3.11 Let R_{F_1} and R_{F_2} be two FP-soft relation from Γ_X to Γ_Y. Then, $(R_{F_1} \circ R_{F_2})^{-1} = R_{F_2}^{-1} \circ R_{F_1}^{-1}$

Proof:

$$\alpha(R_{F_1} \circ R_{F_2})^{-1} = \gamma(R_{F_1} \circ R_{F_2}) \alpha = (\gamma R_{F_1} \beta) \wedge (\beta R_{F_2} \alpha) = (\beta R_{F_2} \alpha) \wedge (\gamma R_{F_1} \beta) = (\alpha R_{F_1}^{-1} \beta) \wedge (\beta R_{F_2}^{-1} \gamma) = \alpha(R_{F_2}^{-1} \circ R_{F_1}^{-1}) \gamma$$

Therefore we obtain

$$(R_{F_1} \circ R_{F_2})^{-1} = R_{F_2}^{-1} \circ R_{F_1}^{-1}$$

Definition 3.12 An FP-soft relation R_F on Γ_X is said to be an FP-soft symmetric relation if $\alpha R_F \beta \Rightarrow \beta R_F \alpha$ for all $\alpha, \beta \in \Gamma_X$.

Definition 3.13 An FP-soft relation R_F on Γ_X is said to be an FP-soft transitive relation if $R_F \circ R_F \subseteq R_F$, that is, $\alpha R_F \beta$ and $\beta R_F \gamma \Rightarrow \alpha R_F \gamma$ for all $\alpha, \beta, \gamma \in \Gamma_X$.

Definition 3.14 An FP-soft relation R_F on Γ_X is said to be an FP-soft reflexive relation if $\alpha R_F \alpha$ for all $\alpha \in \Gamma_X$.

Definition 3.15 An FP-soft relation R_F on Γ_X is said to be an FP-soft equivalence relation if it is symmetric, transitive and reflexive.

Example 3.16 Let $U = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8\}$, $E = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$ and $X = \{0.5/x_1, 0.7/x_2, 0.3/x_3\}$ be a fuzzy subsets over E. Suppose that

$$\Gamma_X = \left\{(0.5/x_1, \{u_1, u_3, u_5, u_7, u_8\}), (0.7/x_2, \{u_3, u_7, u_8\}), (0.3/x_3, \{u_1, u_2, u_5, u_6, u_9\})\right\}$$
Then, a cartesian product on Γ_X is obtained as follows

$$
\Gamma_X \times \Gamma_X = \left\{ (0.5/(x_1, x_1), \{u_1, u_3, u_4, u_6, u_7, u_8\}),
(0.5/(x_1, x_2), \{u_3, v_7, u_8\}), (0.3/(x_1, x_3), \{u_1, u_4, u_6\}),
(0.5/(x_2, x_1), \{u_3, u_7, u_8\}), (0.7/(x_2, x_2), \{u_3, u_7, u_8\}),
(0.3/(x_3, x_1), \{u_1, u_4, u_6\}), (0.3/(x_3, x_3), \{u_1, u_2, u_4, u_5, u_6, u_9\}) \right\}
$$

Then, we get a fuzzy parametrized soft relation R_F on F_X as follows

$$
\alpha R_F \beta \iff \mu_{X \times Y}(x_i, x_j)/(x_i, x_j) \geq 0.3 \quad (1 \leq i, j \leq 3)
$$

Then

$$
R_F = \left\{ (0.5/(x_1, x_1), \{u_1, u_3, u_4, u_6, u_7, u_8\}), (0.5/(x_1, x_2), \{u_3, u_7, u_8\}),
(0.3/(x_1, x_3), \{u_1, u_4, u_6\}), (0.5/(x_2, x_1), \{u_3, u_7, u_8\}),
(0.7/(x_2, x_2), \{u_3, u_7, u_8\}), (0.3/(x_3, x_1), \{u_1, u_4, u_6\}),
(0.3/(x_3, x_3), \{u_1, u_2, u_4, u_5, u_6, u_9\}) \right\}
$$

R_F on Γ_X is an FP-soft equivalence relation because it is symmetric, transitive and reflexive.

Proposition 3.17 If R_F is symmetric if and only if R_F^{-1} is so.

Proof: If R_F is symmetric, then $\alpha R_F^{-1} \beta = \beta R_F \alpha = \alpha R_F \beta = \beta R_F^{-1} \alpha$. So, R_F^{-1} is symmetric.

Conversely, if R_F^{-1} is symmetric, then $\alpha R_F \beta = \alpha (R_F^{-1})^{-1} \beta = \beta (R_F^{-1}) \alpha = \alpha R_F^{-1} \beta = \beta R_F \alpha$. So, R_F is symmetric.

Proposition 3.18 R_F is symmetric if and only if $R_F^{-1}=R_F$

Proof: If R_F is symmetric, then $\alpha R_F^{-1} \beta = \beta R_F \alpha = \alpha R_F \beta$. So, $R_F^{-1}=R_F$.

Conversely, if $R_F^{-1}=R_F$, then $\alpha R_F \beta = \alpha R_F^{-1} \beta = \beta R_F \alpha$. So, R_F is symmetric.

Proposition 3.19 If R_{F_1} and R_{F_2} are symmetric relations on Γ_X, then $R_{F_1} \circ R_{F_2}$ is symmetric on Γ_X if and only if $R_{F_1} \circ R_{F_2}=R_{F_2} \circ R_{F_1}$

Proof: If R_{F_1} and R_{F_2} are symmetric, then it implies $R_{F_1}^{-1}=R_{F_1}$ and $R_{F_2}^{-1}=R_{F_2}$. We have $(R_{F_1} \circ R_{F_2})^{-1} = R_{F_2}^{-1} \circ R_{F_1}^{-1}$, then $R_{F_1} \circ R_{F_2}$ is symmetric. It implies $R_{F_1} \circ R_{F_2} = (R_{F_1} \circ R_{F_2})^{-1} = R_{F_2}^{-1} \circ R_{F_1} = R_{F_2} \circ R_{F_1}$.

Conversely, $(R_{F_1} \circ R_{F_2})^{-1} = R_{F_2}^{-1} \circ R_{F_1} = R_{F_2} \circ R_{F_1} = R_{F_1} \circ R_{F_2}$. So, $R_{F_1} \circ R_{F_2}$ is symmetric.

Corollary 3.20 If R_F is symmetric, then R_F^n is symmetric for all positive integer n, where $R_F^n = \overbrace{R_F \circ R_F \circ \ldots \circ R_F}^{n \text{ times}}$.

8
Proposition 3.21 If R_F is transitive, then R_F^{-1} is also transitive.

Proof:

\[
\alpha R_F^{-1} \beta = \beta R_F \alpha \supseteq (\beta R_F \circ R_F) \alpha
\]

\[
= (\beta R_F \gamma) \land (\gamma R_F \alpha)
\]

\[
= (\gamma R_F \alpha) \land (\beta R_F \gamma)
\]

\[
= (\alpha R_F^{-1} \gamma) \land (\gamma R_F^{-1} \beta)
\]

\[
\alpha (R_F^{-1} \circ R_F^{-1}) \beta
\]

So, $R_F^{-1} \circ R_F^{-1} \subseteq R_F^{-1}$. The proof is completed.

Proposition 3.22 If R_F is transitive then $R_F \circ R_F$ is so.

Proof:

\[
\alpha (R_F \circ R_F) \beta = (\alpha R_F \gamma) \land (\gamma R_F \beta)
\]

\[
= (\alpha R_F \circ R_F) \gamma \land (\gamma (R_F \circ R_F) \beta)
\]

\[
= (\alpha R_F \circ R_F \circ R_F) \beta
\]

So, $\alpha (R_F \circ R_F \circ R_F) \beta \subseteq \alpha (R_F \circ R_F) \beta$. The proof is completed.

Proposition 3.23 If R_F is reflexive then R_F^{-1} is so.

Proof: $\alpha R_F^{-1} \beta = \beta R_F \alpha \subseteq \alpha R_F \alpha = \alpha R_F^{-1} \alpha$ and $\beta R_F^{-1} \alpha = \alpha R_F \beta \subseteq \alpha R_F \alpha = \alpha R_F^{-1} \alpha$. The proof is completed.

Proposition 3.24 If R_F is symmetric and transitive, then R_F is reflexive.

Proof: Proof can be made easily by using Definition 4.1, Definition 4.2 and Definition 4.3.

Definition 3.25 Let $\Gamma_X \in FPS(U)$, R_F be an FP-soft equivalence relation on Γ_X and $\alpha \in R_F$. Then, an equivalence class of α, denoted by $[\alpha]_{RF}$, is defined as

\[
[\alpha]_{RF} = \{ \beta : \alpha R_F \beta \}.
\]

Example 3.26 Let us consider the Example 3.16. Then an equivalence class of $(x_1, \{u_1, u_3, u_4, u_6, u_7, u_8\})$ will be as follows.

\[
[(0.5/x_1, \{u_1, u_3, u_4, u_6, u_7, u_8\})]_{R_F} = \left\{ (0.5/x_1, \{u_1, u_3, u_4, u_6, u_7, u_8\}), (0.7/x_2, \{u_3, u_7, u_8\}), (0.3/x_3, \{u_1, u_2, u_4, u_5, u_6, u_9\}) \right\}
\]
4 Decision Making Method

In this section, we construct a soft fuzzification operator and a decision making method on FP-soft relations.

Definition 4.1 Let $\Gamma_X \in FPS(U)$ and R_F be a FP-soft relation on Γ_X. Then fuzzification operator, denoted by s_{R_F}, is defined by

$$s_{R_F} : R_F \rightarrow F(U), \quad s_{R_F}(X \times X, U) = \{\mu_{R_F}(u)/u : u \in U\}$$

where

$$\mu_{R_F}(u) = \frac{1}{|X \times X|} \sum_j \sum_i \mu_{R_F}(x_i, x_j) \chi(u)$$

and where

$$\chi(u) = \begin{cases} 1, & u \in f_{R_F}(x_i, x_j) \\ 0, & u \notin f_{R_F}(x_i, x_j) \end{cases}$$

Note that $|X \times X|$ is the cardinality of $X \times X$.

Now, we can construct a decision making method on FP-soft relation by the following algorithm:

1. construct a feasible fuzzy subset X over E,
2. construct a FP-soft set Γ_X over U,
3. construct a FP-soft relation R_F over Γ_X according to the requests,
4. calculate the fuzzification operator s_{R_F} over R_F,
5. select the objects, from s_{R_F}, which have the largest membership value.

Example 4.2 A customer, Mr. X, comes to the auto gallery agent to buy a car which is over middle class. Assume that an auto gallery agent has a set of different types of car $U = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8\}$, which may be characterized by a set of parameters $E = \{x_1, x_2, x_3, x_4\}$. For $i = 1, 2, 3, 4$ the parameters x_i stand for “safety”, “cheap”, “modern” and “large”, respectively. If Mr. X has to consider own set of parameters, then we select a car on the basis of the set of customer parameters by using the algorithm as follows.

1. Mr X constructs a fuzzy sets X over E,
 $$X = \{0.5/x_1, 0.7/x_2, 0.3/x_3\}$$
2. Mr X constructs a FP-soft set Γ_X over U,
 $$\Gamma_X = \{(0.5/x_1, \{u_1, u_3, u_4, u_6, u_7, u_8\}), (0.7/x_2, \{u_3, u_7, u_8\}), (0.3/x_3, \{u_1, u_2, u_4, u_5, u_6, u_9\})$$
3. the fuzzy parametrized soft relation R_F over Γ_X is calculated according to the Mr X’s requests (The car must be a over middle class, it means the membership degrees are over 0.5),

$$R_F = \left\{ \frac{0.5}{(x_1, x_1)}, \{u_1, u_3, u_4, u_6, u_7, u_8\}\right\}, \left\{ \frac{0.5}{(x_1, x_2)}, \{u_3, u_7, u_8\}\right\}, \left\{ \frac{0.5}{(x_2, x_1)}, \{u_3, u_7, u_8\}\right\}, \left\{ \frac{0.7}{(x_2, x_2)}, \{u_3, u_7, u_8\}\right\} \right\}$$

4. the soft fuzzification operator s_{R_F} over R_F is calculated as follows

$$s_{R_F} = \left\{ \frac{0.055}{u_1}, \frac{0.0}{u_2}, \frac{0.244}{u_3}, \frac{0.055}{u_4}, \frac{0.0}{u_5}, \frac{0.055}{u_6}, \frac{0.244}{u_7}, \frac{0.244}{u_8}\right\}$$

5. now, select the optimum alternative objects u_3, u_7 and u_8 which have the biggest membership degree 0.244 among the others.

5 Conclusion

We first gave most of the fundamental definitions of the operations of fuzzy sets, soft sets and FP-soft sets are presented. We then defined relations on FP-soft sets and studied some of their properties. We also defined symmetric, transitive and reflexive relations on the FP-soft sets. Finally, we construct a decision making method and gave an application which shows that this method successfully works. We have used a t-norm, which is minimum operator, the above relation. However, application areas the relations can be expanded using the above other norms in the future.

References

[1] Acar, U. Koyuncu, F. and Tanay, B. Soft sets and soft rings, Comput. Math. Appl. 59, 3458-3463, 2010.

[2] Ali, M.I. Feng, F. Liu, X. Min, W.K. and Shabir, M. On some new operations in soft set theory, Comput. Math. Appl. 57, 1547-1553, 2009.

[3] Aktaş, H. and Çağman, N. Soft sets and soft groups, Inform. Sci. 177, 2726-2735, 2007.

[4] Çağman, N. and Enginoğlu, S. Soft set theory and uni-int decision making, Eur. J. Oper. Res. 207, 848-855, 2010.

[5] Çağman, N. and Enginoğlu, S. Soft matrix theory and its decision making, Comput. Math. Appl. 59, 3308-3314, 2010.
[6] Çağman, N. Çıtak, F. and Aktaş, H. Soft int-group and its applications to group theory, Neural Computing and Applications 21, 151-158, 2012.

[7] Çağman, N. and Enginoğlu, S. Fuzzy soft matrix theory and its applications in decision making, Iranian Journal of Fuzzy Systems, 9/1, 109-119, 2012.

[8] Çağman, N. Çıtak, F. and Enginoğlu, S. FP-soft set theory and its applications, Annals of Fuzzy Mathematics and Informatics 2/2, 219-226, 2011.

[9] Çağman, N. Karataş, S. and Enginoğlu, S. Soft Topology, Computers and Mathematics with Applications 62, 351 - 358, 2011.

[10] Çağman, N. Çıtak, F. and Enginoğlu, S. Fuzzy parameterized fuzzy soft set theory and its applications, Turkish Journal of Fuzzy Systems 1, 21-35, 2010.

[11] Çağman, N. Enginoğlu, S. and Çıtak, F. Fuzzy Soft Set Theory and Its Applications, Iran. J. Fuzzy Syst. 8/3, 137-147, 2011.

[12] Çağman, N. Deli, I. Means of FP-Soft Sets and its Applications, Hacettepe Journal of Mathematics and Statistics, (In Press)

[13] Çağman, N. Deli, I. Product of FP-Soft Sets and its Applications, Hacettepe Journal of Mathematics and Statistics, (In Press)

[14] Deli, I. Means of Fuzzy Parameterzed Soft Sets and its Applications (In Turkish), Masters Thesis, Gaziosmanpasa University, Graduate School of Natural and Applied Science, 2010.

[15] D. Dubois, and H. Prade, Fuzzy Set and Systems: Theory and Applications, Academic Press, New York, 1980.

[16] Feng, F. Liu, X.Y. Leoreanu-Fotea, V. Jun, Y.B. Soft sets and soft rough sets, Inform. Sci. 181/6, 1125-1137, 2011.

[17] Feng, F. Jun, Y.B. Liu, X. and Li, L. An adjustable approach to fuzzy soft set based decision making, J. Comput. App. Math. 234, 10-20, 2010.

[18] Feng, F. Li, L. Çağman, N. Generalized uni-int decision making schemes based on choice value soft sets, European Journal of Operational Research 220, 162-170, 2012.

[19] Jun, Y.B. Lee, K.J. and Khan, A. Soft ordered semigroups, Math. Logic Q. 56/1, 42-50, 2010.

[20] Karaaslan, F. Çağman N. and Enginoğlu, S. Soft Lattices, Journal of New Results in Science 1, 5-17, 2012.

[21] Kovkov, D.V. Kolbanov, V.M. and Molodtsov, D.A. Soft sets theory-based optimization, J. Comput. Sys. Sc. Int. 46/6, 872-880, 2007.
[22] Maji, P.K. Roy, A.R. and Biswas, R. An application of soft sets in a decision making problem, Comput. Math. Appl. 44, 1077-1083, 2002.

[23] Maji, P.K. Biswas, R. and Roy, A.R. Soft set theory, Comput. Math. Appl. 45, 555-562, 2003.

[24] Majumdar, P. and Samanta, S.K. Generalised fuzzy soft sets, Comput. Math. Appl. 59, 1425-1432, 2010.

[25] Molodtsov, D.A. Soft set theory-first results, Comput. Math. Appl. 37, 19-31, 1999.

[26] Park, C.H. Jun, Y.B. and Öztürk, M.A. Soft WS-algebras, Commun. Korean Math. Soc. 23/3, 313-324, 2008.

[27] Roy, A.R. and Maji, P.K. A fuzzy soft set theoretic approach to decision making problems, J. Comput. App. Math. 203, 412-418, 2007.

[28] Sezgin, A. and Atagün, A.O. On operations of soft sets, Comput. Math. Appl. 61/5, 1457-1467, 2011.

[29] Sezgin, A. Atagün, A.O. and Çağman N. Soft intersection near-rings with its applications, Neural Computing and Applications 21, 221-229, 2012.

[30] Sezgin, A. Atagün, A.O. and Çağman N. Union soft substructures of near-rings and N-groups, Neural Computing and Applications 21, 133-143, 2012.

[31] Zadeh, L.A. Fuzzy Sets, Inform. and Control 8, 338-353, 1965.

[32] Zimmermann, H.J. Fuzzy Set Theory and its applications. Kluwer Academic, 2th edition, Dordrecht, 1991.