In Vitro and In Vivo Biological Evaluation of Crude Extracts of Dioscorea dumetorum and Psidium guajava Leaves in the Control of Storage Rot of Onion (Allium cepa L.) Bulbs

Okey, Edward Ntui¹, Akwaji, Patrick Ishoro²*, Umana, Etim Johnson² and Markson, Aniedi-Abasi Akpan²

¹ Department of Biological Sciences, Akwa Ibom State University, Ikot-Akpae, Akwa Ibom State, Nigeria.
² Department of Botany, University of Calabar, Calabar, Cross River State, Nigeria.

Corresponding author’s email: akwajiisnever@yahoo.com

Keywords: Crude extracts, in vitro and in vivo, antifungal effect, onion bulb, fungal pathogens.

ABSTRACT. The antifungal activity of the ethanolic crude leaf extracts of Dioscorea dumetorum and Psidium guajava on the fungal pathogens isolated from infected onion bulbs were investigated in vitro and in vivo. The pathogens were Aspergillus niger and Rhizopus stolonifer. For the in vitro antifungal assay, various concentrations of the extracts ranging from 10g/200ml, 20g/200ml, 30g/200ml, 40g/200ml and 50g/200ml were separately added to PDA media. The fungal pathogens were separately inoculated into the media and incubated for seven days. For the in vivo assay, healthy onion bulbs were properly surface sterilized using 99% ethanol and sodium hypochlorite (bleach). The sterile onion bulbs were then sprayed with the extracts at different concentrations two hours prior to inoculation with the fungal pathogens. Each onion bulb after being treated with different concentration of the extracts of 10g/200ml, 20g/200ml, 30g/200ml, 40g/200ml and 50g/200ml were dipped into beakers containing dissolved spore of each pathogen and incubated for seven days. Results of the in vitro antifungal assay shows that at 10g/200ml – 50g/200ml concentration, ethanolic leaf extracts of D. dumetorum and P. guajava completely inhibited the radial growth of A. niger and R. stolonifer after seven days observation period. For the in vivo antifungal assay, results shows that the extracts had a significant effect (P<0.05) on the mycelial growth of the fungal pathogens at all the different concentrations tested. Pathogen growth inhibition was most effective at 30g/200ml, 40g/200ml and 50g/200ml concentrations. The inhibitory action of the extracts increased/decreased with a corresponding increase/decrease in the concentration of the plant extracts. Ethanolic extracts of D. dumetorum was found to be more effective in inhibiting the growth of the fungal pathogens than P. guajava extracts.

INTRODUCTION

The onion (Allium cepa L.), also known as bulb (Fritsch and Friesen, 2002), or common onion, is one of the most widely cultivated species of the genus Allium. The species is probably native to South-western Asia but is now commercially grown throughout the world, chiefly in the temperate zones (Ozer and Koycu, 2004). The onion often called as “queen of kitchen” is commonly used for cooking by almost all the people. It ensures excellent taste to dishes and also exhibits a number of therapeutic properties such as antibacterial, antifungal, antihelmentic, anti-inflammatory, antiseptic and antispasmodic. Due to its enormous commercial and medicinal value, the plant is now cultivated in almost all countries of the world and consumed across the globe (Rai and Yadav, 2006).

Onion belongs to the Lily family, Alliaceae, however, some classification place it in the family Liliaceae (Fritsch and Friesen, 2002). Modern varieties of onion typically grow to a height of 15 to 45cm (6 to 18inch) with real stem very short, formed at the base of the plant in the form of a disk with adventitious root at the base, the leaves are yellowish-green and grow alternately in a flattened, fan-shaped varying from globule to ovoid to oblate up to 20cm in diameter (Brickell, 2002). The species is biennial but usually grown as annuals in the temperate climates. In Nigeria, it is mostly
cultivated during the dry season (October to April) and as such are easily propagated, transported and stored (Zohary and Hopf, 2000).

Common onions are normally available in three colour varieties ranging from yellow or brown onions (called red in some European countries), are full flavour red and are the onions of choice for everyday use. With its pungent aroma and strong flavour, it is a good all-round onion. Their varieties are grown in countries like Australia, Nigeria and they vary from cream gold and muray brown. Other varieties of onion crop also include Red onion; these are sometimes called Spanish onions, which have purplish red skin and white flesh tinged with red. This onion tends to be medium to large size and can have a mild to sweet flavour but after being stored for a short time can become quite pungent. They are often consumed raw, grilled or lightly cooked with other foods or added as colour to salads, these variety of onion plant can be stored three to four months under ideal condition, and their varieties include red shine, red wing and red emperor. Although white onions are considered to be the strongest in flavour after brown onions, their varieties vary in size, skin characteristics and flavour; they include Bianca, Gladalan white and white Spanish (Mower, 2013).

Onion is a valuable ingredient in diet due to its content of sugars, vitamins and minerals (Ole et al., 2004). Most species of onion contain low amount of essential nutrient, are low in fats and have an energy value of 166KJ (40 cal) per 100g. The onion cultivars are about 89% water, 4% sugar, 1% protein, 2% fiber and 0.1% fat (Fern, 2011). Furthermore, onion contain bioactive compound such as phenol that are under basic research to determine their possible properties in human (Slimestad et al., 2004). Yellow and Red onions have considerable content of anthocyanin pigments with 25 different compounds representing 10% of total flavonoid content (Yang et al., 2004). As a result of the bioactive compounds contained in onion, some people suffer from allergic reaction after handling them. Some of the allergic reactions include eye irritation, bronchial asthma, blurred vision, intense itching etc. This stinging sensation can be avoided by cutting onions under running water or submerged in a basin of water (Williamson et al., 1997).

Onion as an important vegetable crop is eaten all over the world. They play the role of being antioxidant and cardio-protective in nature as a result is rich in vitamin B, C, E and other trace elements (Conant, 2006). Recent report suggest that onion plays an important role in preventing cancer, diabetes and even common cold and are also reputed to increase fertility in men and milk in nursing mothers, more so to cure headache when mixed with milk and vinegar (Rai and Yadar, 2006). In addition, Allium Species are used as traditional medicine in countries like Europe, North Asia and Africa to treat intestinal worms, gastroenteritis, heart diseases and other ailments (Brewster, 1999) planting them closely to other vulnerable crops such as carrot discourages insect attack on those crops (Wane and Taskeen, 2011).

Onions have greater water and sugar content that gives them their sweeter-and milder-tasting but reduces their shelf life (Olsson et al., 2010). Onion are better stored at room temperature, optimally in a single layer, in mesh bags in a dry cool, dark, well-ventilated location, storing them in a cool dry place with plenty of circulating air can help prolong their shelf life approximately one to five months irrespective of type (Jauron, 2009). For propagation, the onion plant are monocotyledons, they sometimes behave like the annuals, by setting seed-bolting in their first year. They grow from the base of their leaves pushing their leaves up and out from the base, by contrast, grow outward from the edges of the leaves (Savon et al., 2006), may also be grown from seed or seed sets ranging from 3.5 to 4.5kg/ha when transplanted, 4 to 6kg/ha when direct seeded with spacing usually 25-40cm between rows.

Onions are adapted to moist soils where nutrients are in sufficient quantity; viability falls rapidly in hot humid conditions and this may be 0% in less than a year especially in their F1 hybrid (klas and Friesen, 1998).

Fungi especially moulds are important pathogens of fruit and vegetables particularly under tropical and subtropical conditions (Adebayo and Diyaulo, 2003). The effect of storage rots includes reduction in the quantity and quality of onion which affects the markets value (Adebayo and Diyaulo, 2003). Black mould disease caused by Aspergillus niger Van Tieghem is a limiting factor in onion production worldwide (Ozer and Koycu, 2004). Aspergillus niger Van Tieghem is a
high temperature fungus, with an optimum temperature range from growth 28-34°C, are ubiquitous in occurrence, it attacks/infect bulbs of onion in field/storage, whenever they find injured tissues by producing various toxins (Srinivasan and Shanmugam, 2006). Other fungal pathogens in association with post-harvest rot of onion include Neck rot of onion caused by Botrytis allii, white rot and a host of other pathogens (Amienyo and Ataga, 2007).

According to Okigbo (2009) and Okigbo and Nmeka (2005), in Nigeria, for instance, about 98% of the food consumed is produced by the local farmers. Most of these farmers are not educated and therefore in most cases cannot practice the various control measures recommended for disease control. In addition to these inadequacies, most of the chemicals are not available and where they are, they are very expensive. These problems have necessitated the search for alternatives to synthetic fungicides. Among the various alternatives, natural plant products that are biodegradable, ecologically, friendly and readily available have therefore been sort by scientists worldwide. Similarly, Lee et al., (2007), Verastegui et al., (2008) and Santa et al (2010) reported that extracts obtained from many plants have recently gained popularity and scientific interest for their antifungal activities. Other research workers Amadioha and Obi (1999) Amadioha (2000) and Okigbo (2009) see the significance of fungi cides of plant origin as possible means of fungal disease control in fruits and vegetables as they are easily biodegradable and non toxic to humans.

Diseases and deterioration by fungal pathogens constitute a menace in the production and storage of onion bulb thereby decreasing their food and market value. In view of this, the aim and objectives of this research work was to isolate and identify the fungal pathogens associated with storage rot of onion bulb as well as evaluate the antifungal potentials of crude extracts of Psidium guajava and Dioscora dumetorum on fungal pathogens associated with postharvest storage rot of onion bulb both in vitro and in vivo.

MATERIALS AND METHODS

Sources of materials

Infected and uninfected onion bulbs were obtained from three different markets (Watt, Akim and Marian) in Calabar Metropolis, Cross River State, Nigeria and wrapped in sterile cellophane bags and transported to the Laboratory for further studies. Dioscorea dumetorum and Psidium guajava leaves were obtained from the Botanic Garden of the Department of Botany, University of Calabar, Calabar, Cross River state, Nigeria. The research was carried out in the Laboratory of the Department of Botany, University of Calabar, Calabar, Cross River State, Nigeria.

Isolation of fungal pathogens and morphological identification

Cut sections of the diseased onion bulbs were surface sterilized with 70% sodium hypochlorite (bleach) solution for 1 min and rinsed quickly in 3 changes of sterile distilled water, blotted dry on Whatman’s No. 1 filter paper and placed on Potato Dextrose Agar (PDA) in Petri dishes. Four (4) sections were inoculated per Petri dish. The plates were incubated at 28 ± 1°C until fungal growth was noticed. After 7 days, the different isolates were subcultured on freshly prepared PDA to obtain their pure culture. Isolated fungi were microscopically (Olympus optical, Philippines) identified as far as possible using the identification guides of the International Mycological Institute, Kew, Barnett and Hunter, (1998), Dugan, (2006).

Pathogenicity test and Koch’s postulates

Pathogenicity test was carried out using the method of Amienyo and Ataga (2006). Healthy onion bulbs were washed in distilled water and surface sterilized with 70% Sodium hypochlorite solution. A 5mm diameter cork borer was used to cut disc from the bulbs (three discs per bulb) and cultures of the isolates (four days old) were introduced into bulbss and replaced with the discs. The discs portions were sealed with Vaseline to prevent entry by other pathogens. They were kept for 24-48 hours wrapped in sterilized cellophane bags. A sterile cotton wool was soaked with distilled water and dropped inside the cellophane bags to enable the organism to breath (respire). The
inoculated fruits established symptoms after 24 hours, tissue segment from the healthy and infected bulbs was excised, surface sterilized and plated into freshly prepared PDA and incubated at 28±1°C for four days. Pure cultures of the isolate were identified.

Preparation of plant extracts

Leaves of *Psidium guajava* and *Dioscorea dumetorum* obtained were washed with distilled water and oven dried at a temperature of 80°C for 24 hours grounded into fine powder and extracted separately using 200ml of 99% concentration of ethanol.

Susceptibility test

The extracts percentage concentrations were prepared at 10g/200ml, 20g/200ml, 30g/200ml, 40g/200ml, and 50g/200ml with ethanol as solvent.

In vitro antifungal assay

5ml of each concentration was first poured into different Petri dishes using sterile syringe. The sterile Potato Dextrose Agar (PDA) was also poured into the plates containing the solvent extracts after which the plates containing the solvent extracts were gently swirled to ensure mixing. The media was allowed to solidify and with a sterilized No.2 cork borer of 5.5mm in diameter, a disc of the matured culture was punched out and inoculated at the centre of plates and incubated at room temperature of (28±1°C) for 7days. As a control, the dishes were inoculated on PDA instead of extracts-agar mix. Three (3) control plates were prepared for each extract. Measurement of the mycelia radial growth was done daily for seven days (Umana et al., 2014).

In vivo antifungal assay

In *vivo* antifungal assay of the plant extracts was carried out using the method described by Poppe et al., (2003) with some modifications. Whole healthy onion bulbs were properly surfaced sterilized using 99% ethanol rinsed with distilled water and allowed to dry for 2-3minutes. The sterile bulbs were then sprayed with the extracts at different concentrations, two hours prior to inoculation with the fungal pathogens. Each bulb after being treated with different concentrations of the extracts of 10g/200ml, 20g/200ml, 30g/200ml, 40g/200ml and 50g/200ml were dipped into beaker containing dissolved spores of each pathogen. The bulbs were then allowed to dry for 2-5minutes, after which each bulb was incubated at room temperature (28±1°C) for twenty-eight days. The control which was also dipped in beakers containing the dissolved spores of each pathogen was not treated with any of the extracts. Growth rate were measured after one week of inoculation and was repeated after every four days for four times.

RESULTS

Identified fungal pathogens

The fungal pathogens isolated and identified as the causative agents of storage rot of onion bulbs from this study and used were *Aspergillus niger* and *Rhizopus stolonifer*.

Pathogenicity test and Koch’s postulates

Result from the pathogenicity confirmed that the two fungal isolates *Aspergillus niger* and *Rhizopus stolonifer* were responsible for the storage rot of onion bulbs obtained from three major markets in Calabar Metropolis of Cross River State, Nigeria. Pathogenicity was established 24 - 48 hours after inoculation (Plate 1).
Plate 1: Infected onion bulbs × 400 showing symptoms of rot and mycelia growth of *Aspergillus niger* (Black) and *Rhizopus stolonifer* (white) two days post inoculation (dpi).

In vitro effect of the plant extracts on the radial growth of *A. niger* and *R. stolonifer* at the different concentrations.

The *in vitro* effect of the crude plant extracts at the different concentrations on the radial growth of the fungal isolates is presented in (Tables 1 - 4). Results showed that, at 10g/200ml, 20g/200ml, 30g/200ml, 40g/200ml and 50g/200ml *D. dumetorum* and *P. guajava* extracts completely inhibited the radial growth of *Aspergillus niger* and *Rhizopus stolonifer* at the different concentrations tested when compared with the control (Plate 2).

Plate 2: *In vitro* effect of the ethanolic crude extracts of *Dioscorea dumetorum* and *Psidium guajava* on the radial growth of *Aspergillus niger* and *Rhizopus stolonifer* after seven days of incubation.
Table 1: *In vitro* effect of ethanolic crude *Dioscorea dumetorum* leaf extract on the radial growth of *Aspergillus niger*.

Concentration	Incubation period (Days) and radial growth (cm²)						
	1	2	3	4	5	6	7
10g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Control	0.60	0.80	2.40	2.90	3.20	3.80	4.00

Table 2: *In vitro* effect of ethanolic crude *D. dumetorum* leaf extract on the radial growth of *Rhizopus stolonifer* (cm).

Concentration	Incubation period (Days) and radial growth (cm²)						
	1	2	3	4	5	6	7
10g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Control	0.90	1.80	3.90	4.20	4.50	4.50	4.50

Table 3: *In vitro* effect of ethanolic crude *Psidium guajava* leaf extract on the radial growth of *A. niger* (cm).

Concentration	Incubation period (Days) and radial growth (cm²)						
	1	2	3	4	5	6	7
10g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Control	0.60	0.90	1.90	2.40	3.20	3.60	3.80

Table 4: *In vitro* effect of ethanolic crude *Psidium guajava* leaf extract on the radial growth of *Rhizopus stolonifer* (cm).

Concentration	Incubation period (Days) and radial growth (cm²)						
	1	2	3	4	5	6	7
10g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50g/200ml	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Control	0.90	1.70	2.90	3.90	4.40	4.50	4.50
In vivo effect of the crude plant extracts on the growth and sporulation of A. niger and R. stolonifer at the different concentrations.

The *in vivo* effect of the plant extracts at different concentrations on the radial growth of the fungal isolates is presented in (Tables 5-8). Investigations from the study showed that extracts of *Dioscorea dumetorum* and *Psidium guajava* had a significant effect on the isolated pathogens at all the concentration levels (10g/200ml, 20g/200ml, 20g/200ml, 40g/200ml and 50g/200ml) tested when compared with the control. Results (Table 5) showed that at 30g/200ml, 40g/200ml and 50g/200ml concentrations, *Dioscorea dumetorum* extract completely inhibited the radial growth of *Aspergillus niger* on the first and second day of incubation. However, at 50g/200ml concentration, extract of *D. dumetorum* completely inhibited the radial growth of *A. niger* in the first four days when compared with the control. While results (Table 6) showed that *D. dumetorum* extract completely inhibited the radial growth of *Rhizopus stolonifer* at 40g/200ml and 50g/200ml concentrations on the first and second day and at 50g/200ml on the third day of incubation respectively. Results (Table 5-8) showed that there was a corresponding increase in the antifungal activity of the plant extracts as the concentration of the extracts increased from 10g/200ml to 50g/200ml. Results (Table 7 and 8) showed that *Psidium guajava* extract completely inhibited *Aspergillus niger* at 50g/200ml concentration on the first and second day of incubation. While at 50g/200ml *Psidium guajava* extract inhibited the radial growth of *R. stolonifer* at 50g/200ml concentration only on the first day of incubation. Results therefore, showed that *Dioscorea dumetorum* leaf extracts was more effective inhibiting the growth of *Aspergillus niger* and *Rhizopus stolonifer* than those of *Psidium guajava*. Results also showed that the extracts were more effective in inhibiting the growth of *Aspergillus niger* than that of *Rhizopus stolonifer*.

Table 5: In vivo effect of ethanolic crude *Dioscorea dumetorum* leaf extract on the growth of *Aspergillus niger* (cm).

Concentration	Incubation period (Days) and radial growth (cm²)						
	1	2	3	4	5	6	7
10g/200ml	3.0±0.08	4.0±3.12	8.0±0.09	10±0.13	10±0.40	13±2.16	14±0.17
20g/200ml	3.0±0.01	3.0±0.30	6.0±1.31	7.0±2.11	9.0±1.12	11±0.12	12±3.21
30g/200ml	-	2.0±1.18	4.0±1.19	6.0±0.01	6.0±2.21	8.0±0.95	9±1.138
40g/200ml	-	-	2.0±1.19	4.0±0.08	5.0±2.13	6.0±0.01	7±0.21
50g/200ml	-	-	-	2.0±0.01	2.0±1.12	3±0.97	
Control	7.0±0.31	10.0±0.01	16.0±2.21	23.0±0.24	30.0±2.21	36.0±3.12	42.0±0.12

Note: Values are means of three replicates ± standard error
Table 6: *In vivo* effect of ethanolic crude *Dioscorea dumetorum* leaf extract on the growth of *Rhizopus stolonifer* (cm).

Concentration	Incubation period (Days) and radial growth (cm²)						
	1	2	3	4	5	6	7
10g/200ml	5.0±0.01	7.0±0.98	9.0±2.09	13.0±0.13	14.0±2.01	17.0±0.01	19.0±0.10
20g/200ml	3.0±2.21	4.0±0.09	8.0±2.11	8.0±2.98	9.0±0.11	10.0±2.18	12.0±0.81
30g/200ml	2.0±0.91	3.0±0.04	5.0±2.19	6.0±0.81	7.0±2.11	7.0±2.98	8.0±0.15
40g/200ml	-	-	3.0±0.05	5.0±2.11	5.0±2.97	6.0±2.16	6.0±3.32
50g/200ml	-	-	-	2.0±0.05	4.0±2.13	5.0±0.19	5.0±2.12
Control	10.0±0.12	15.0±2.11	21.0±0.09	27.0±2.15	35.0±1.19	41.0±2.23	46.0±2.91

Note: Values are means of three replicates ± standard error

Table 7: *In vivo* effect of ethanolic crude *Psiduim guajava* leaf extract on *Aspergillus niger*.

Concentration	Incubation period (Days) and radial growth (cm²)						
	1	2	3	4	5	6	7
10g/200ml	4.0±2.05	5.0±0.01	7.0±0.21	7.0±2.28	10.0±0.07	14.0±0.91	20.0±0.02
20g/200ml	4.0±0.01	4.0±2.25	5.0±0.97	6.0±0.17	8.0±3.16	12.0±2.16	14.0±0.17
30g/200ml	3.0±2.10	4.0±0.02	4.0±2.28	5.0±0.29	7.0±0.67	8.0±0.12	10.0±1.41
40g/200ml	3.0±0.01	3.0±1.12	4.0±0.09	4.0±2.23	5.0±0.09	6.0±0.02	8.0±2.01
50g/200ml	-	-	3.0±0.98	4.0±0.11	4.0±0.01	4.0±2.23	6.0±0.01
Control	9.0±0.13	13.0±1.11	15.0±2.21	21.0±0.09	31.0±2.11	38.0±2.25	48.0±2.81

Note: Values are means of three replicates ± standard error
DISCUSSION

The efficacy of two plant extracts was tested in vitro and in vivo against the radial growth of two pathogenic fungi associated with post harvest storage rot of onion bulb. The fungal pathogens isolated were identified as Aspergillus niger and Rhizopus Stolonifer. The results of this study revealed that the fungi were responsible for the post harvest rot of onion bulbs in Calabar Metropolis as evidenced by the pathogenicity tests. The fungal spores of these pathogens could be airborne and therefore spread by wind and may land on susceptible host like onion bulbs, fruits and other plants. The pathogens (A. niger and R. stolonifer) were reported by Shehu and Muhamed (2011) to cause storage rot fungi of onion bulb. Also Adebayo and Diyaulo (2003) reported (A. niger and R. stolonifer) as pathogens of post harvest rot of onion, which is in agreement with the finding of this study. The in vitro and in vivo inhibitory effects of D. dumetorum and P. guajava extracts on the isolated fungal pathogens are presented in (Tables 1-8). The results showed that, the extracts significantly (P<0.05) inhibited the radial growth of the fungal pathogens at the different concentrations tested and the rate of inhibition differed from one extract to the other. However, results, (Table 1-4) showed that in the invitro study, the plant extracts completely inhibited the radial growth of the fungal isolates at all the different concentration levels tested, while in the in vivo, increase in antifungal activity was observed with the corresponding increase in the concentrations of all the plant extracts (Table 5-8). The differences in the fungi-toxic potentials between these plant extracts may be attributed to the susceptibility of each of the fungal pathogens to the different concentration of the extracts. This agrees with the result of some workers like Amienyo and Ataga (2007), Joon et al., (2001) who reported that plant are rich source of bioactive compounds such as tannins, terpenoids, saponins, alkaloids, flavonoids and other compounds as such have antifungal properties. Cushnie and Lamb (2005), Srinivasan and Shanmugam (2006) and Faridt et al., (2002) also reported that, the presence of these compounds in plant could be responsible for the control of fungal pathogens of plant. The plant extracts differed significantly in their potential to inhibit the growth of these fungal pathogens. Generally, radial growth decreased with increase in each of the plant extract concentrations. The in vitro and in vivo effects of D. dumetorum and P. guajava ethanolic extracts at five different concentrations were evaluated in order to develop cheaper methods of controlling post storage rot of onion bulbs. The greater efficiency of these plants extract maybe due to the high content of the phenol substance they contain.

Table 8: In vivo effect of ethanolic crude Psidium guajava leaf extra on Rhizopus stolonifer.

Concentration	Incubation period (Days) and radial growth (cm²)						
	1	2	3	4	5	6	7
10g/200ml	6.0±0.11	8.0±0.03	12.0±2.13	14.0±0.16	18.0±0.02	20.0±1.09	24.0±0.01
20g/200ml	5.0±0.06	4.0±0.09	8.0±0.95	13.0±2.13	16.0±0.91	16.0±2.31	19.0±0.05
30g/200ml	4.0±0.31	3.0±0.04	6.0±0.04	8.0±2.11	9.0±2.09	10.0±1.11	13.0±0.06
40g/200ml	3.0±0.01	3.0±2.11	4.0±0.07	5.0±2.09	6.0±2.04	8.0±0.91	10.0±0.01
50g/200ml	-	3.0±0.07	3.0±2.21	4.0±0.01	4.0±0.98	5.0±2.31	6.0±2.161
Control	12.0±0.01	13.0±3.25	23.0±0.91	30.0±0.31	37.0±2.12	44.0±0.03	50.0±2.05

Note: Values are means of three replicates ± standard error
(Amienyo and Ataga, 2007), since they are ranked as the most efficient therapeutically significant plant substances (Okwu and Igara, 2011). This result is also consistent with the findings of Okigbo and Nmeka (2005), Santas et al., (2010) who reported that plants have phenolic compounds and that their antifungal activity may be due to the action of the proteolytic enzymes which is their major component, as such have adverse effect on the protein component of fungal cells as well as disrupting their growth.

CONCLUSION

The fungal pathogens isolated and identified from this study as the causative agents of postharvest storage rot of onion bulb obtained from different markets in Calabar Metropolis of Cross River State were Aspergillus niger and Rhizopus stolonifer. Pathogenicity test confirmed that these pathogens actually caused storage rot of onion bulb. The efficacy of the crude plant extracts (Dioscorea dumetorum and Psidium guajava) against storage rot fungi was tested in vitro and in vivo. The in vitro results showed that the extracts significantly inhibited the mycelia growth of the fungal pathogens at all the concentrations tested when compared with the control. However, in the in vivo assay, the crude plant extracts significantly (p≤ 0.05) inhibited the mycelia growth of the fungal isolates at the higher different concentrations tested and the rate of inhibition differed from each other. The extracts showed significant effect on the growth and sporulation of A. niger and R. stolonifer both in vitro and in vivo at all the concentration levels tested and as such can be used in the control of postharvest storage rot of onion bulb.

REFERENCES

[1] Adebayo, L. O. and Diyaolu, S. A. (2003). Mycology and spoilage of cashew nuts. African Journal of Biotechnology, 2: 369-373.
[2] Amadioha, A. C. and Obi, V. I. (1999). Control of Anthracnose diseases of cowpea by Cymbopogon Cunitus and Ocimum gratissimum. Acto phytopathology and Entmology, 85: 89.
[3] Amadioha, A. C. (2000). Fungitoxic effects of some leaf extracts against Rhizopus Oryzae causing tuber rot of potato. Archives of phytopatholpflanzo, 34:1-9.
[4] Amienyo, C. A. and Ataga, A. E. (2006). Post-harvest fungal diseases of sweet potato (Ipomoea batata L.) tubers sold in selected markets in River State. Nigeria Science of Africa, 5(2): 95-98.
[5] Amienyo, C. A. and Ataga, A. E. (2007). Antifungal activity of selected plants against phytopathogenic fungi, Aspergillus niger. Indian Journal of Science and Technology, Vol. 2(4): 87-90.
[6] Barnett, H. L. and Hunter, B. B. (1998). Illustrated genera of imperfect fungi 4th edition. St. Paul Minesota: Aps Press. P. 32.
[7] Bowers, J. H. and Locke, J. C. (2004). Effect of formulated plant extracts and oils on population density of phytopthora nicotianae in soil and control of phytopthora blight in the green house. Plant Diseases, 88:11-16.
[8] Brewster, J. L. (1999). Onions and other vegetable Alliums (1st ed). CAB International, p. 16.
[9] Brickell, C. (2002). The Encyclopedia of Gardening. The Royal Horticultural society, Dorling Kindersley, P. 345.
[10] Conant, P. (2006). “Onion-culinary foundation and medicine”. The Epicurean Table. Retrieved 2013-04-02.
Cushine, T. P. and Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26: 343-356.

Dugan, F. M. (2006). The identification of fungi. St. Paul Minnesota: Aps Press.

Faridt, A. M., Khatequzzaman, K. M., Nazrallslam, M. D., Anam, M. K. and Tashasinw, I. M. (2002). Effect of plant extracts against Bipolaris oryzae of rice under in-vitro conditions. Pakistan Journal of Biological Sciences, 5(4): 442-445.

Fern, K. A. (2011). Allium cepa L. Plants for A Future. Retrieved 2013-03-22.

Fritsch, R. M. and Friesen, N. (2002). “Chapter 1: Evolution, Domestication and Taxonomy.” In Rabinowitch, H. D. and Curah, L. Allium Crop Science: Recent Advances. UK. CABI Publishing. Pp 20-21. ISBN 9780 863189791.

Jauron, R. (2009). “Harvesting and Storing Onions”. Howa State University Extension, Retrieved 2013-03-28.

Joon, T. L., Dong, W. B., Seun, H. P., Chang, K. S., Youn, S. K. and Hee, K. K. (2001). Occurrence and biological control of post harvest decay in onion caused by fungi. Journal of Plantpathol, 17: 141-148.

Klaas, M. and Friesen, N. (1998). “Origin of some vegetatively progado Allium crops studied with RAPD and GISH”. Genetic Resources and Crop Evolution, 45(6): 511.

Lee, S. H., Chang, K. S., Su, M. S., Huang, Y. S. and Jang, H. D. (2007). Effects of some Chinese medicinal plant extracts of five different fungi. Food Control, 18: 1547-1550.

Mower, C. (2013). “The difference between yellow, white and red onions”. The Cooking Dish. Retrieved 2013-03-24.

Okigbo, R. N. (2009). Variation in phytochemical properties of selected fungicidal aqueous extract of some plant leaves in Kogi State, Nigeria. American-Eurasian Journal of Sustainable Agriculture, 3(3): 407-409.

Okigbo R. N. and Nmeka I. A. (2005). Control of yam tuber rot with leaf extracts of Xylopia aethiopica and zingiber officinale. African Journal of Biotechnology, 4(8):804-807.

Oke, P. E. and Igara, E. C. (2011). Isolation, characterization and antibacterial activity screening of alkaloid from Datura metel leaves. Der Chaemica Sinica, 2(2), 261-267.

Ole, H., Torben, L., Lars, P. C., Ulla, K., Nazmul, H. and Shakuntala, H. A. (2004). Contents of iron zinc and B-carotene is commonly consumed vegetables. Journal of Food Composition and Analysis, 17:587-597.

Olsson, M. E., Gustavsson, K. E. and Vagen, I. M. (2010). “Quarcetin and Isorhamnetin in sweet and red cultivars of onion (Allium cepa L.) at harvest after field curing, heat treatment and storage”. Journal of Agricultural and Food Chemistry, 58(4): 2323-2330.

Ozer, N. and Koycu, N. D. (2004). Seed-borne fungal diseases of onion and their control. Dordrecht, Academic Publishers.

Poppe, L., Vanhoutte, S. and Hopte, M. (2003). Modes of action of pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits. European Journal of Plant Pathology, 109: 963-973.

Rai, N. and Yadar, D. S. (2005). Advantage in vegetable production. New Delhi, Research Book Centre, Ch. 2:2.

Santas, J., Almajano, M. P. and Carbo, R. (2010). Antimicrobial and antioxidant activity of crude onion (Allium cepa L.) extracts. International Journal of Food Science Technology, 45: 403-409.
[30] Savo, C. (2006). “Onion bulb formation is strongly linked with day length”. Oregon State University Extension Service. Retrieved 2013-09-14.

[31] Shehu, K. and Muhammad, V. (2011). Fungi associated with storage rots of onion bulbs in Sokoto, Nigeria. *International Journal of Modern Botany*, 1(1): 1-3.

[32] Srinivasan, R. and Shanmugam, V. (2006). Post-harvest management of black mould rot of onion. *Indian Journal of Phytopathology*, 59:87-93.

[33] Slimestad, R., Fossen, T. and Vagen, I. M. (2007). “Onion, a source of unique dietary flavonoid”. *Journal of Agricultural and Food Chemistry*, 52(22): 6787-6793.

[34] Sutton, D. A., Forthercill, A. W. and Rinaldi, M. G. (1998). Guide to clinically significant fungi. Baltimore: William and Wilkins. 321p.

[35] Varastegui, A., Verde, J., Garcia, S., Heredia, N., Oranday, A. and Rivas, C. (2008). Species of *agave* with antimicrobial activity against selected pathogenic bacteria and fungi. *World Microbiology and Biotechnology Journal*, 24: 1249-1252.

[36] Wane, A. H. and Taskeen, U. N. (2011). Management of block mould rot of onion. *Mycopath*, 9(1): 43-49.

[37] Yang, J., Meyers, K. J., Vanbertteide, J. and Liu, R. H. (2004). “Varietal differences in phenol content, antioxidant and antiproliferative activities of onion”. *Journal of Agricultural and Food Chemistry*, 52(22): 6787-6793.

[38] Zohary, D. and Hopf, M. (2000). *Domestication of plants in the old world*. (3rd ed.). Oxford University Press. P. 198. ISBN 0-19-850357-1.