Jordi Soria Comas

Improving data utility in differential privacy and k-anonymity

DOCTORAL THESIS

Supervised by Dr. Josep Domingo-Ferrer

Department of Computer Engineering and Mathematics

Tarragona
2013
I STATE that the present study, entitled “Improving data utility in differential privacy and k-anonymity”, presented by Jordi Soria Comas for the award of the degree of Doctor, has been carried out under my supervision at the Department of Computer Engineering and Mathematics of this university, and that it fulfils all the requirements to be eligible for the European Doctorate Award.

Tarragona, 24 Apr 2013

Doctoral Thesis Supervisor

Dr. Josep Domingo-Ferrer
Contents

Abstract
Resum
Resumen

1 Introduction
1.1 Motivation
1.2 Contributions

2 Background
2.1 The right to privacy: a brief history
2.2 Types of data
2.3 Microdata sets
2.4 Approaches to disclosure limitation
2.5 Privacy models
2.6 The privacy-utility tradeoff
2.7 Measuring utility
2.8 k-Anonymity
2.9 ε-Differential Privacy

3 Probabilistic k-anonymity
3.1 Limitations of the k-anonymity model for disclosure limitation
3.2 The probabilistic k-anonymity model
3.3 Probabilistic k-anonymity via microaggregation and swapping
3.3.1 Uninformed intruders
3.3.2 MDAV microaggregation for informed intruders
3.3.3 Individual ranking microaggregation for informed intruders
3.4 Experimental results
3.4.1 “Census” data set
3.4.2 “EIA” data set
3.5 Conclusions

4 Optimal data-independent noise for ε-differential privacy
4.1 Optimal data-independent noise
4.2 Characterization of differential privacy in terms of the density function
4.3 Non-optimality of the Laplace noise

4.4	Optimal noise for univariate queries	44
4.5	Optimal noise for multivariate queries	51
4.6	Conclusions	59
5	Sensitivity-independent differential privacy via knowledge refinement	61
5.1	Refining prior knowledge	61
5.2	A general algorithm for knowledge refinement	65
5.3	Differential privacy in multicomponent queries	68
5.4	Interactive queries and adaptive attacks	72
5.4.1	Interactive access mechanisms	72
5.4.2	Adaptive attacks	73
5.5	Quality of the response to individual queries	74
5.5.1	Data quality for a Boolean attribute	74
5.5.2	Data quality for a continuous attribute	77
5.6	Discussion	78
5.7	Conclusions	79
6	Enhancing data utility in differential privacy via microaggregation-based k-anonymity	83
6.1	Introduction	83
6.2	Differential privacy through k-anonymous microaggregation	85
6.3	Differentially private data sets through k-anonymity	92
6.3.1	Achieving differential privacy with numerical attributes	92
6.3.2	Insensitive MDAV	93
6.3.3	General insensitive microaggregation	94
6.3.4	Achieving differential privacy with categorical attributes	95
6.3.5	A semantic distance suitable for differential privacy	100
6.3.6	Integrating heterogeneous attribute types	101
6.4	Empirical evaluation	102
6.4.1	Evaluation data	102
6.4.2	Evaluation measures	103
6.4.3	Discussion	105
6.4.4	Statistical analysis of anonymized results	109
6.5	Conclusions	110
7	Differential privacy via t-closeness in data publishing	113
7.1	Partitioning strategies for k-anonymity	113
7.1.1	Partitioning based on the confidential attribute	116
7.1.2	Anatomy: reducing information loss in quasi-identifiers	118
7.1.3	Comparison of partitioning strategies	120
7.2	A bucketization construction to achieve t-closeness	120
7.2.1	Bucketization of the original data	122
7.2.2	t-Closeness construction	125
Abstract

Data about individuals are collected on a regular basis by governments and companies for a variety of purposes. These data stores are valuable resources, and there is a growing demand to access them. However, the dissemination of data about individuals is a controversial task. On the one side, there is a demand to access accurate data; on the other side, there is a risk of disclosing confidential information about specific individuals. Protecting individuals’ privacy usually entails some degree of data modification, which decreases the utility of the output. Finding a good balance between privacy and utility is of the utmost importance in data dissemination.

The suitability of an anonymization method depends on several aspects of the data release: the type of release (e.g., microdata file, statistical table, on-line database), the specificities of the data (e.g., numerical, nominal, ordinal), and the desired level of disclosure limitation. Regarding the level of disclosure limitation, the privacy guarantees offered by anonymization methods have evolved with time. The initial approach by the statistical community focused on masking confidential data (using either a perturbative or a non-perturbative masking), but no formal privacy guarantees were offered. Later, the computer science community developed several privacy models that offer more abstract privacy guarantees; for instance, by hiding each individual within groups of indistinguishable individuals, or by limiting the information that may be gained from accessing the released data.

We take the approach of the computer science community. The focus lies on two mainstream privacy models: k-anonymity and ε-differential privacy. Once a privacy model has been selected, the goal is to enforce it while preserving as much data utility as possible. The main objective of this thesis is to improve the data utility in k-anonymous and ε-differentially private data releases.

k-Anonymity is a widely accepted privacy model for the anonymization of microdata sets; however, it has several drawbacks. On the disclosure limitation side, there is a lack of protection against attribute disclosure and against informed intruders. On the data utility side, dealing with a large number of quasi-identifier attributes is problematic. The first contribution of this thesis is a relaxation of k-anonymity that improves protection against informed intruders, as well as data utility in case of multiple quasi-identifier attributes.

Differential privacy limits disclosure risk through noise addition. The Laplace distribution is commonly used for the random noise. We show that the Laplace distribution is not optimal: the same disclosure limitation guarantee can be attained
by adding less noise. In this thesis, optimal univariate and multivariate noises are characterized and constructed.

Differential privacy seeks to limit the contribution of any single individual on the response to a query. However, the expected response usually depends on the user's prior knowledge. Common mechanisms to attain differential privacy do not take into account the users' prior knowledge; they implicitly assume zero initial knowledge about the query response. As a consequence, the response provided may not be very accurate for users with substantial initial knowledge. We propose a mechanism that focuses on limiting the knowledge gain over the prior knowledge.

k-Anonymity and ε-differential privacy are often seen as opposed privacy notions. Supporters of ε-differential privacy present k-anonymity as an old-fashioned privacy model that offers only poor disclosure limitation guarantees, while supporters of k-anonymity claim that the damage done to the original data when enforcing ε-differential privacy is too large. The last contribution of this thesis shows that microaggregation-based k-anonymity and ε-differential privacy can be combined to produce microdata releases with the strong privacy guarantees of ε-differential privacy and improved data accuracy.
Resum

Els governs i les corporacions recullen de manera habitual dades sobre individus per a una varietat de propòsits. Aquestes dades són un recurs valuós i hi ha una demanda creixent per accedir-hi. Amb tot, la disseminació de dades sobre individus és una tasca controvertida. D’una banda hi ha una demanda d’accés a dades acurades; de l’altra, cal tenir present el risc de revelar informació confidencial sobre algun dels individus. La protecció de la privadesa dels individus implica una modificació de les dades abans de llur publicació, cosa que en reduced la utilitat. És fonamental trobar un equilibri adequat entre privadesa i utilitat.

La conveniència d’un mètode d’anonimització depèn de diversos aspectes: el tipus de publicació (microdades, taules, base de dades interactives), les especificitats pròpies de les dades (numèriques, nominals, ordinals, etc.) i el nivell de protecció desitjat. Pel que fa al nivell de protecció, les garanties que ofereixen els mètodes d’anonimització han anat evolucionant. Inicialment, el procediment proposat per la comunitat estadística buscava emmascarar les dades confidencials (mitjançant tècniques pertorbatives o no pertorbatives), però sense oferir garanties formals de privadesa. Més tard, la comunitat informàtica va desenvolupar diversos models que ofereixen garanties de privadesa més abstractes; per exemple, amagar els individus dins de grups d’individus indistingibles, o limitar la contribució que cada individu pot tenir en la resposta a una consulta.

Aquesta tesi adopta el punt de vista de la comunitat informàtica. Ens centrem en dos models de privadesa àmpliament acceptats: el k-anonimat i la privadesa ε-diferencial. Un cop triat el model de privadesa, l’objectiu passa a ser complir-ne els requisits, alhora que preservar la màxima utilitat possible en les dades resultants. L’objectiu principal d’aquesta tesi és la millora de la utilitat en la publicació de dades k-anònimes i ε-diferencialment privades.

El k-anonimat és un model de privadesa per a fitxers de microdades àmpliament acceptat. No obstant, presenta alguns problemes. Pel que fa al risc de revelació, no protegeix contra la revelació d’atributs ni contra intrusos informats. Pel que fa a la utilitat de les dades, tractar amb fitxers amb un nombre elevat d’atributs quasi-identificadors pot ser problemàtic. Proposem un nou model basat en la relaxació dels estrictes requeriments d’indistingibilitat que estableix el k-anonimat però que, alhora, manté la mateixa probabilitat de re-identificació. Aquest nou model permet de millorar la protecció contra intrusos informats, alhora que millora la utilitat de les dades en presència de múltiples atributs quasi-identificadors.
La privadesa diferencial limita el risc de revelació afegint un soroll aleatori al resultat de les consultes. Habitualment, es fa servir la distribució de Laplace per al soroll aleatori. A la tesi, mostrem que aquesta distribució no és òptima: es poden complir els requeriments de la privadesa ε-diferencial afegint sorolls més petits. A més, caracteritzem i construïm les distribucions òptimes (univariant i multivariant).

La privadesa diferencial busca limitar l’efecte que cada individu té sobre la resposta a una consulta. La resposta que un usuari espera depèn del coneixement previ que té de la base de dades. Malgrat això, els mecanismes habituals per obtenir privadesa diferencial no tenen en compte el possible coneixement previ dels usuaris; implícitament, se’ls suposa un coneixement nul. Per a un usuari amb un coneixement previ elevat, la resposta obtinguda pot ser poc precisa. Proposem un mecanisme basat a limitar el guany de coneixement de l’usuari respecte del seu coneixement inicial.

El k-anonimat i la privadesa ε-diferencial es presenten sovint com a models contraposats. D’una banda, els partidaris de la privadesa ε-diferencial presenten el k-anonimat com un model ja superat que ofereix unes garanties de privadesa pobres; d’altra banda, els qui recollen el k-anonimat argumenten que la privadesa diferencial provoca danys massa importants a les dades. La darrera contribució d’aquesta tesi mostra que la privadesa ε-diferencial i el k-anonimat no són conceptes completament inconnexos: si es pren com a punt de partida per obtenir privadesa ε-diferencial un conjunt de dades k-anònim (obtingut mitjançant un cert tipus de microagregació), la quantitat de soroll necessari es veu reduïda significativament.
Resumen

Los gobiernos y las corporaciones recogen regularmente datos sobre individuos para gran variedad de propósitos. Estos almacenes de datos son unos recursos valiosos, cosa que provoca una creciente demanda de acceso a los datos. Sin embargo, la diseminación de datos sobre individuos es una tarea controvertida. Por un lado, hay una demanda de acceso a datos precisos; por otro lado, existe el riesgo de revelar información confidencial sobre algún individuo específico. La protección de la privacidad de los individuos acarrea normalmente la modificación de los datos originales, reduciéndose así la utilidad de los datos publicados. Es primordial encontrar un equilibrio adecuado entre privacidad y utilidad.

La conveniencia de un método de anonimización depende de varios aspectos: el tipo de publicación (microdatos, datos agregados, bases de datos interactivas), las especificidades propias de los datos (numéricos, nominales, ordinales) y el nivel de protección deseado. En relación al nivel de protección, ha habido una evolución en las garantías que ofrecen los métodos de anonimización. Inicialmente, el procedimiento propuesto por la comunidad estadística se centraba en enmascarar los datos confidenciales (mediante técnicas perturbativas o no perturbativas), pero sin ofrecer garantías formales de privacidad. Más tarde, la comunidad informática desarrolló varios modelos que ofrecen unas garantías de privacidad más abstractas; por ejemplo, esconder a los individuos en grupos formados por varios individuos indistinguibles, o limitar el incremento de información que proporcionan los datos publicados.

Adoptamos aquí el proceder de la comunidad informática y nos ocupamos de dos de los principales modelos de privacidad: k-anonimato y privacidad ε-diferencial. Una vez seleccionado un modelo de privacidad, el objetivo pasa a ser cumplir con sus requisitos, a la vez que se trata de preservar la máxima utilidad posible para los datos. El objetivo principal de la presente tesis es la mejora de la utilidad de los datos en publicaciones k-anónimas y ε-diferencialmente privadas.

El k-anonimato es un modelo de privacidad para ficheros de microdatos ampliamente aceptado; sin embargo, presenta algunos problemas. En relación a la limitación del riesgo de revelación, no protege contra la revelación de atributos, ni contra intrusos informados. En relación a la utilidad de los datos, tratar con ficheros que tienen un número elevado de atributos cuasi-identificadores es problemático. En esta tesis proponemos un nuevo modelo basado en la relajación del requisito de indistinguibilidad que establece el k-anonimato pero que mantiene la misma probabilidad de re-identificación. Este nuevo modelo nos permite aumentar la protección contra
intrusos informados, a la vez que mejora la utilidad de los datos en presencia de múltiples atributos cuasi-identificadores.

La privacidad diferencial limita el riesgo de revelación añadiendo un ruido aleatorio al resultado de las consultas. Habitualmente se utiliza la distribución de Laplace para generar dicho ruido. En esta tesis mostramos que la distribución de Laplace no es óptima para obtener privacidad diferencial: los requisitos de la privacidad diferencial se pueden cumplir introduciendo menos ruido. Asimismo, caracterizamos y construimos las distribuciones óptimas (univariante y multivariante).

La privacidad diferencial busca limitar el efecto que cada individuo tiene en la respuesta a una consulta. La respuesta que los usuarios esperan depende del conocimiento previo que tienen. Sin embargo, los mecanismos usuales para obtener privacidad diferencial no tienen en cuenta este conocimiento previo; implícitamente, se supone un conocimiento nulo. Como consecuencia, la respuesta puede ser poco precisa cuando el usuario tiene un conocimiento previo elevado sobre ella. Proponemos un mecanismo para obtener privacidad diferencial orientado a limitar la ganancia de conocimiento del usuario con respecto a su conocimiento previo.

El k-anonimato y la privacidad ε-diferencial son a menudo presentados como nociones de privacidad contrapuestas. Por un lado, quienes apoyan la privacidad ε-diferencial presentan el k-anonimato como un modelo de privacidad obsoleto que ofrece unas garantías pobres; por otro lado, quienes apoyan el k-anonimato argumentan que la privacidad diferencial daña demasiado los datos. En la última contribución de esta tesis, mostramos que la privacidad ε-diferencial y el k-anonimato no son nociones completamente inconexas: tomando como datos de partida para obtener ε-privacidad diferencial un conjunto de datos k-anónimo (construido mediante un cierto tipo de microagregación) se reduce la cantidad de ruido necesaria y se mejora la utilidad de la información.
1 Introduction

1.1 Motivation

The collection of personal information has traditionally been limited to surveys (where information about a specific topic is collected from a sample population) and client-provider relationships (where transactions carried out are recorded). One remarkable characteristic of such situations is that the individual whose information is collected is aware of it. Nowadays, the advances in information technologies have dramatically changed the state of things. Information gathering has become pervasive: vast amounts of data are collected by governments and corporations on a daily basis, most of the times without the consent of individuals who may even be unaware of it. For instance, Internet stores gather data from everything that happens in their sites [5, 6, 54]; not only do they keep track of the items you buy, but also of the ones you browse but do not buy. Their objective is the generation of a detailed profile of each individual; they can exploit this information to guide personalized commercial communication actions, but also to guide the strategic planning of the firm. Internet firms have long recognized that the information they collect from customer interaction offers them a competitive advantage over traditional firms.

As a valuable resource, there is a growing demand to access the collected data. For instance, many firms base their marketing and strategic plans on publicly released census data [37]. However, when data about individuals or entities are to be disseminated for secondary use, special care must be taken to avoid privacy violations. Some popular attacks against publicly released data include: the uncovering of the medical records of the governor of Massachusetts in the data released by the Group Insurance Commission (GIC) [97], the uncovering of identities in a de-identified data set containing a list of 20 million web search queries collected by AOL [12], and the de-anonymization attacks conducted against the Netflix Prize data set [69].

The goal of Statistical Disclosure Control (SDC) or Statistical Disclosure Limitation (SDL) is to allow the release of data while preserving the privacy of individuals. SDC techniques work by masking the original data or statistics to be released. While reducing the risk of disclosure, the masking also reduces the utility of the published data. This is a fundamental trade-off that cannot be avoided: finding a balance between privacy and utility, so that individuals’ privacy is protected and data are still useful, is the primary objective of disclosure limitation techniques.

SDC has traditionally evaluated the level of disclosure limitation experimentally; for instance, by trying to re-identify records in the released data. In the last few
years, the computer science community has proposed several privacy models that try to bring formal privacy guarantees into the field. Usually these privacy models seek to introduce uncertainty in the outcome of the attacks against the privacy of individuals. The suitability of such privacy models depends on several aspects of the data dissemination under consideration: the type of data being released, the required level of disclosure risk limitation, etc. When a privacy model is judged to offer enough disclosure limitation, the next goal is to generate a data set that satisfies the selected model and maximizes data utility. In this thesis, we focus on two mainstream privacy models: k-anonymity, a model used to limit the risk of re-identification in microdata releases; and ε-differential privacy, a privacy model for interactive databases that seeks to limit the knowledge gain that can be extracted from query responses. We mainly focus on data utility: we aim at providing methods to satisfy those models, while offering improved data utility; but we also aim at finding a link between those models.

1.2 Contributions

We revisit two mainstream privacy models, k-anonymity and ε-differential privacy, and we propose several improvements. These are mainly on the data utility side, but also on the disclosure limitation guarantees for the case of k-anonymity. Our main contributions are:

1. Probabilistic k-anonymity. The k-anonymity model, although widely accepted, suffers from certain limitations that affect both data utility and disclosure limitation. We propose a relaxation of the k-anonymity model where the requirement for indistinguishability of records in terms of quasi-identifiers is removed, but the same probability of uncovering a confidential attribute in the released data set is retained. The new proposal offers two advantages. First of all, by removing the indistinguishability requirement, the range of feasible methods widens, and we can thus search for a method that offers improved data utility. Apart from the improvement in data utility, the fact that we no longer have a fixed partition in sets of indistinguishable records opens the door to improvements on disclosure limitation against informed intruders.

2. Optimal data-independent noise for ε-differential privacy. ε-Differential privacy is an output perturbation methodology; therefore, to improve the accuracy of the responses, the magnitude of the perturbation must be reduced. We focus on data-independent noises, which are more frequently used due to their simplicity, and state a strict optimality criterion for the perturbation in terms of the concentration of the probability mass around the zero. To show the validity of our optimality criterion, we justify that a noise that is optimal under this criterion must be optimal under any sensible criterion (those that prefer that less distortion is introduced). We show that the commonly used
1.2 Contributions

Laplace distribution is not optimal, and optimal univariate and multivariate distributions are built.

3. Considering prior knowledge in ε-differential privacy. ε-Differential privacy guarantees that the knowledge gain that can be extracted from the response to any query is limited by a factor of $\exp(\varepsilon)$. Such guarantee must be enforced independently of the prior knowledge that a particular user has. The usual approach is to assume that the user has zero prior knowledge, and to limit the knowledge gain to $\exp(\varepsilon)$ over it. While doing so, the knowledge gain is limited to $\exp(\varepsilon)$ independently of the prior knowledge that a particular user may have. For a user with some prior knowledge, the response may be less than optimal in terms of accuracy. We propose a novel approach towards ε-differential privacy where, for each query, database users also send their prior knowledge; a knowledge gain of $\exp(\varepsilon)$ is then enforced over prior knowledge. We also show that the greater interaction between the database and the users that results from the communication of the prior knowledge does not open the door for any attack.

4. Improving the utility of ε-differentially private data releases by prior microaggregation-based k-anonymity. Although it was introduced as a disclosure limitation methodology for interactive databases, ε-differential privacy is general enough to be used in microdata releases. However, due to the large amount of noise introduced, general-purpose mechanisms to generate ε-differentially private data have not been developed; the focus has been on the generation of data sets that preserve the utility for specific families of functions. A general approach towards the construction of ε-differential private data sets consists in querying for the attributes' value of each individual; however, due to the large sensitivity of such queries, this general approach turns out to be infeasible. Our proposal employs a prior microaggregation step to reduce the sensitivity of those queries. Not all microaggregation algorithms offer the reduction in the sensitivity that we seek; we provide a characterization of those which do.

5. Differential Privacy via t-Closeness in Data Publishing. Differential privacy and k-anonymity are often presented as antagonistic privacy models. The guarantees offered by such models are quite different: whereas k-anonymity seeks to limit re-identification, ε-differential privacy seeks to limit the knowledge gain that users get from query responses. However, t-cloness, an improvement over k-anonymity to limit attribute disclosure, offers privacy guarantees that are closer to those of differential privacy. We show that under specific conditions (using a specific distance function for t-closeness and given a specific users’ prior knowledge) t-closeness implies ε-differential privacy. A method to attain t-cloness for such conditions (and thus also ε-differential privacy) is provided. It is worth noting that unlike other approaches to differential privacy, which output a random sample from a differentially private distribution, our proposal fits the distribution in each of the k-anonymous groups of records to the differentially private distribution by selecting the individuals that must
belong to each of the groups. Thus not only we achieve ε-differential privacy, but also preserve the truthfulness of the data inside each of the k-anonymous groups.
2 Background

2.1 The right to privacy: a brief history

Although nowadays it is considered a fundamental right \[50, 99\], the “right to privacy” is a quite recent concept. It was coined by Warren and Brandeis, back in 1890, in an article \[101\] published at the Harvard Law Review. Warren and Brandeis presented laws as dynamic systems for the protection of individuals whose evolution is triggered by social, political, and economic changes. In particular, the conception of the right to privacy is triggered by the technical advances and new business models of the time. To quote Warren and Brandeis:

> Instantaneous photographs and newspaper enterprise have invaded the sacred precincts of private and domestic life; and numerous mechanical devices threaten to make good the prediction that "what is whispered in the closet shall be proclaimed from the house-tops.'

Warren and Brandeis argue that the “right to privacy” was already existent in many areas of the common law; they only gathered all these sparse legal concepts, and put them into focus under their common denominator. Within the legal framework of the time, the “right to privacy” was part of the right to life, one of the three fundamental individual rights recognized by the U.S. Constitution.

Privacy concerns revived again with the invention of the computers \[45\] and information exchange networks, which skyrocketed information collection, storage and processing capabilities. The generalization of population surveys was a consequence. The focus was now on data protection.

Nowadays, the concept of privacy has gained recognition and applies to a wide range of situations such as: avoiding external meddling at home, limiting the use of surveillance technologies, controlling processing and dissemination of personal data, etc. Privacy is widely considered a fundamental right, and it is supported by international treaties and many constitutional laws. For example, the Universal Declaration of Human Rights (1948) devotes its Article 12 to privacy.

For a more comprehensive plot of key events in the history of privacy, see \[3, 4\]. In \[3\] key privacy-related events between 1600 (when it was a civic duty to keep an eye on your neighbors) and 2008 (after the USA PATRIOT Act and the inception of Facebook) are listed. In \[4\] key moments that have shaped privacy related laws are depicted.
As far as the protection of individuals’ data is concerned, privacy legislation is based on several principles \cite{72, 99}: collection limitation, purpose specification, use limitation, data quality, security safeguards, openness, individual participation, and accountability.

Among all the aspects that relate to data privacy, we are especially interested in data dissemination. Data dissemination is, for instance, a primary task of National Statistical Offices. These aim at offering an accurate picture of society; to that end, they collect and publish statistical data on a wide range of aspects such as economy, population, etc. Legislation usually assimilates privacy violations on data dissemination to individual identifiability \cite{1, 2}; for instance, Title 13 Chapter 1.1 of the U.S. Code states that “no individual should be re-identifiable in the released data”.

2.2 Types of data

Among all privacy-related aspects, we are mainly concerned with disclosure risk arising from data dissemination. The type of data being released determines the potential threat to privacy as well as the most suitable methods to limit it. Three types of data releases are considered:

Microdata releases The term “microdata” refers to a record that contains information related to a specific individual. A microdata release aims at publishing raw data; that is, a set of microdata records. This kind of data release offers the greatest level of flexibility among all types of data releases: data recipients are not limited to a specific prefixed view of data; they are able to carry any kind of custom analysis on the released data. However, microdata releases incur in the greatest threat to individuals’ privacy.

Microdata releases seek to allow data recipient on carrying custom data analysis; however, if strong privacy guarantees are to be provided, data utility may be greatly lowered, which may turn the released data unsuitable for specific analysis that require accurate data. In order to be able to meet the requirements for accurate data, NSO sometimes generate two data sets: a publicly accessible data set where privacy is prioritized over accuracy, and a data set that offers improved data accuracy, but accessible only to restricted to a set of users (committed to non-disclosure agreements).

Aggregated data releases The data released do not refer to a single individual but to a group of individuals. Contingency tables, the traditional output of NSO, belong to this category. As only aggregated data is published, threats to individuals’ privacy are diminished in comparison to microdata releases, but data analysis is limited to the aggregated values being published.

Dynamic Databases Both microdata and aggregated data releases offer a static view of the collected data. A specific data recipient may not be interested
in all the published data, but just on a subset of them. The problem with static approaches is that, even if not used, all the published data accounts when dealing with disclosure risk; in other words, if a particular data recipient were only given access to the data that are relevant to him, improved accuracy could be provided. This is the idea that underlies dynamic databases: the user is allowed to submit queries to the database, and data is only provided for the submitted queries.

In the present thesis we deal with microdata releases (contributions 1 and 4) and dynamic databases (contributions 2 and 3).

2.3 Microdata sets

A microdata set can be modeled as a table where each row refers to a different individual and each column contains information regarding one of the attributes collected. We use the notation $T(A_1, \ldots, A_n)$ to denote a microdata set with information about attributes A_1, \ldots, A_n.

The attributes in a microdata set are usually classified in the following non-exclusive categories, according to the sensitivity of the information they convey and the risk of record re-identification they imply:

- **Identifiers.** An attribute is an identifier if it provides unambiguous re-identification of the individual to which the record refers. Some examples of identifier attributes are the social security number, the passport number, etc. If a record contains an identifier, any sensitive information contained in other attributes may immediately be linked to a specific individual. To avoid direct re-identification of an individual, identifier attributes must be removed or encrypted. We assume in the present thesis that, when dealing with microdata releases, identifier attributes have previously been removed; that is, we assume that $T(A_1, \ldots, A_n)$ does not contain any identifier attribute.

- **Quasi-identifiers.** Unlike an identifier, a quasi-identifier attribute alone does not lead to record re-identification. However, in combination with other quasi-identifier attributes, it may allow unambiguous re-identification of some individuals. For example, [96] shows that 87% of the population in the U.S. can be unambiguously identified by combining a 5-digit ZIP code, birth date and sex. Removing quasi-identifier attributes, as proposed for the identifiers, is not possible, because quasi-identifiers are most of the times required to perform any useful analysis of the data. Deciding whether a specific attribute should be considered a quasi-identifier is a thorny issue. In practice, any information an intruder has about an individual can be used in record re-identification. For uninformed intruders, only the attributes available in an external non-anonymized data set should be classified as quasi-identifiers; in presence of informed intruders any attribute may potentially be a quasi-identifier. Thus,
to make sure all quasi-identifiers have been removed, one should remove all attributes (!).

- **Confidential attributes.** Confidential attributes hold sensitive information on the individuals that took part in the data collection process (e.g. salary, health condition, sex orientation, etc.). The primary goal of microdata protection techniques is to prevent intruders from learning confidential information about a specific individual. This goal involves not only preventing the intruder from determining the exact value that a confidential attribute takes for some individual, but preventing inferences on the value of that attribute (such as bounding it).

- **Non-confidential attributes.** Non-confidential attributes are those that do not belong to any of the previous categories. As they do not contain sensitive information about individuals and cannot be used for record re-identification, they do not affect our discussion on disclosure limitation for microdata sets. Therefore, we assume that none of the attributes in $T(A_1, \ldots, A_n)$ belong to this category.

When publishing a microdata file, the data collector must guarantee that no sensitive information about specific individuals is disclosed. To do so, the data collector does not publish the original microdata set $T(A_1, \ldots, A_n)$, but a modified version $T'(A_1, \ldots, A_n)$ where the quasi-identifiers and/or the confidential attributes have been masked. Disclosure can be classified into two categories [52]:

- **Identity disclosure.** The intruder is able to determine the true identity of the individual corresponding to a record in the microdata file. After re-identification, the intruder associates the values of the confidential attributes for the record to the re-identified individual.

- **Attribute disclosure.** Even if identity disclosure does not happen, it may be possible for an intruder to infer some information for a specific individual based on the published microdata set. For example, imagine that the salary is one of the confidential attributes and the job is a quasi-identifier attribute; if an intruder is interested in a specific individual whose job he knows to be “accountant” and there are several accountants in the data set (including the target individual), the intruder will be unable to re-identify the individual’s record based only on her job, but he will be able to lower-bound and upper-bound the individual’s salary (which lies between the minimum and the maximum salary of accountants in the data set).

2.4 Approaches to disclosure limitation

Given a data set that contains information about individuals —where an individual is a person, household, company, etc.—, the goal is to provide statistical information
Disclosure limitation technologies were initially developed under the umbrella of National Statistical Institutes (NSIs), which still remain a primary player, with the denomination of Statistical Disclosure Control (SDC) or Statistical Disclosure Limitation (SDL). Initially for tabular data releases, and later for microdata releases, the statistical community has proposed many methods for limiting disclosure risk. The preservation of the statistical properties of the original data has also been on the focus of the statistical community since the very beginning of statistical disclosure control. Good reference literature on statistical disclosure control are [7, 33, 52]. For an update on the current practices in statistical disclosure limitation at NSIs see [104, 105, 52].

Disclosure limitation also became a topic of interest in the computer science research community. Within the computer science community, the terms Privacy Preserving Data Publishing (PPDP) and Privacy Preserving Data Mining (PPDM) are more commonly used. Privacy Preserving Data Mining [11, 8] brings privacy protection concerns into traditional data mining tasks: only the results of the data mining are released; the original data are kept secret. A prevalent characteristic among PPDP methods is that they are tightly coupled to the underlying data mining task. On the other side, Privacy Preserving Data Publishing [48] focuses on the publication of data about individuals (microdata). PPDP allows data users to carry any kind of analysis on the released data. Although PPDM and PPDP seem to take completely different approaches to disclosure limitation, they may take advantage of the same anonymity models; for instance, k-anonymity can be used in both the generation of anonymous microdata sets and in the anonymization of the results of data mining tasks [23].

Although both pursue the same objective, the approaches towards disclosure limitation taken by the statistical and computer science communities are not coincident. The common understanding [35] is that the statistical community is usually more concerned with the statistical validity of the data (valid inferences should be obtainable) but offers only vague privacy guarantees (no formal privacy guarantees are provided; the level of protection is evaluated a posteriori for each specific data set). In contrast, methods developed by the computer science community seek to attain a predefined notion of privacy; thus, they offer a priori privacy guarantees. In this work we follow the path of the computer science community by focusing on two mainstream privacy models.

2.5 Privacy models

The first attempt to come up with a formal definition for privacy was done by Dalenius in [24]. Dalenius stated that access to the released data should not allow
any attacker to increase his knowledge about confidential information related to a specific individual. This is a very strict notion of privacy; in fact, it was shown in [39] that Dalenius’s view of privacy is not feasible in presence of background information (if any utility is to be provided). Privacy criteria used in practice offer only limited disclosure limitation guarantees.

Two main notions are used when talking about privacy in data releases: anonymity (it should not be possible to re-identify any individual in the published data), and confidentiality or secrecy (access to the released data should not allow an attacker to increase its knowledge about confidential information related to any specific individual). Privacy models used in practice focus on one of those two notions (anonymity or confidentiality) and offer certain guarantees.

Preservation of individuals’ privacy entails some loss on the utility of the protected data, in comparison to the original data. For the data to remain useful, the privacy guarantees offered are limited. Some assumptions on the side knowledge available to potential attackers are made, and the privacy preservation guarantees offered hold only for such attackers.

In this thesis we focus on two mainstream privacy models: k-anonymity [77, 78], which, based on the anonymity principle, seeks to hide individuals within groups of indistinguishable records; and ε-differential privacy [42, 39], which, based on confidentiality, seeks to limit the knowledge gain provided by the output data.

Despite the fact that k-anonymity is solely based on anonymity, and ε-differential privacy is solely based on secrecy, other privacy models may mix both anonymity and secrecy. This is the case, for instance, of l-diversity [62] and t-closeness [58] that, similarly to k-anonymity, seek to hide each individual among a group of individuals, but, unlike k-anonymity, they also require the confidential information of the individuals in the group to be sufficiently diverse to improve secrecy.

A great number of privacy criteria have been proposed. They differ in the kind and strength of the disclosure limitation guarantees they offer, and in the suitability for a certain type of data release. For a thorough review of privacy models see [100].

2.6 The privacy-utility tradeoff

Disclosure limitation in a public data release involves some degree of modification of the data to be released. Instead of publishing the original data D, a masked version D' is published. The masking improves privacy but reduces the utility of the published data, in comparison to the original data. This tension between privacy and utility is unavoidable: privacy and utility are two different views of the same thing, the amount of information published. By reducing the amount of information published, privacy improves but utility decreases; and the other way round. Two extreme cases are: publish the original data, which offers the greatest utility but
the least privacy; and publish encrypted or random data, which incurs no disclosure risk at all, but offers no utility.

Disclosure limitation technologies seek an equilibrium between privacy and utility: the disclosure risk must be limited, but the data need to remain useful. Sometimes the required equilibrium between privacy and utility does not exist; for instance, when access to very accurate and sensitive data is required by some data recipient. As the publication of such a data set is not feasible, data providers must rely on other mechanisms such as data access restriction and non-disclosure agreements.

2.7 Measuring utility

Disclosure limitation entails some modifications of the original data, which decreases the utility of the protected data; therefore, it is important to be able to assess the quality of the protected data.

Measuring the utility of the released data is a tough task. Currently, no single utility measure is broadly accepted [15]. The main problem with utility measures is related to the relativity of the term “data utility” [18]: “data utility” can be seen as “fitness for use”. In other words, a data set may be useful for some kind of analysis, but not for others. The measurement of the data utility based on the intended data usage is usually preferred [15], as then utility evaluation focuses on the particular type of knowledge that is to be extracted. Often, data protection cannot be performed with a specific data use in mind [52] (e.g. data uses may be very diverse or even hard to identify at the time of data release). For such cases, a generic measure of data utility is required to help the data collector in assessing the damage inflicted during the disclosure limitation process.

The suitability of a utility measure also depends on the type of data release. Measures suitable for microdata releases may not be suitable in assessing data utility in an interactive database environment. For instance, in a microdata release we may evaluate how well the correlation between attributes or marginal distributions are preserved; but these utility measures are not appropriate for interactive databases. See [52] for a thorougher review of utility measures used for microdata releases, and [15] for utility measures used in privacy preserving data mining.

2.8 k-Anonymity

A de-identified data set is a data set that has had identifier attributes removed. Removal of identifiers is essential to hide the individuals’ identity; however, it is usually not enough. For instance, [96] shows that 87% of the population in the United States can be uniquely identified by combining 5-digit ZIP, gender, date of birth.
Chapter 2

To re-identify a record in a published data set, the intruder performs a record linkage attack. In a record linkage attack the intruder tries to link the records in the released data set to the records in a non-anonymous external data set; that is, the intruder seeks to associate identities to the records in the released data set. This linkage is done by matching the values of the common attributes (the quasi-identifiers). If the linkage is correct, the attack succeeds and the intruder learns the value of the confidential attributes for the re-identified individual.

For an attribute to be a quasi-identifier, it must be externally available in a non-anonymous data set; otherwise it cannot be used for re-identification of records in the released data set.

Definition 1 (Quasi-identifier). A quasi-identifier QI of T is a subset of the set of attributes $\{A_1, \ldots, A_n\}$ that is available in an external, non-anonymous data set.

A common approach to prevent record linkage attacks is to hide each individual within a group of individuals. This is the approach that k-anonymity [78, 23] takes: k-anonymity requires each record in the published microdata set to be indistinguishable from $k - 1$ other records based on the quasi-identifiers. This way, an intruder with access to an external non-anonymous data set that contains the quasi-identifiers in the released data set $T'(A_1, \ldots, A_n)$ is unable to perform an exact re-identification. For any individual in the external data set, the intruder can at most determine a set of k records in the published data set that contains the target individual.

Definition 2 (k-Anonymity [78, 23]). A microdata set $T'(A_1, \ldots, A_n)$ is said to satisfy k-anonymity if, for each record $t \in T'$, there are at least $k - 1$ other records sharing the same values for all the quasi-identifier attributes.

The determination of the attributes that are available externally in a non-anonymous data set is a key point for k-anonymity to provide the desired protection against re-identification. It was already acknowledged in the original proposal of k-anonymity that it is not possible for the data holder to determine the knowledge that each of the data recipients may have; thus, the data holder may misjudge which attributes need to be considered as quasi-identifier attributes. In such cases the released data may be less anonymous than initially intended. Proposed solutions [95] rely on policies, laws, and contracts.

The original method to generate a k-anonymous data set [77] was based on generalization and suppression, which continue to be the dominant techniques to achieve k-anonymity. Generalization reduces the granularity of the information contained in the quasi-identifier attributes, thus increasing the chance of several records sharing the values of these attributes. A generalization hierarchy is defined for each of the quasi-identifier attributes. Generalization is usually performed at the attribute level; that is, either all or none of the records are generalized. Suppression removes tuples from the original data set so that they are not released. Suppression is usually
applied to remove outlier records before applying generalization. Suppression seeks to reduce the amount of generalization required to generate the k-anonymous data set.

The use of generalization and suppression to enforce k-anonymity produces a data set that is truthful, but less precise than the original data set. The objective is to obtain a k-anonymous data set where information loss is minimized. Usually the goal is a minimal generalization that produces a k-anonymous data set for a given level of suppression that is considered to be acceptable. It was shown in [66] that finding an optimal k-anonymization via generalization and suppression is a NP-hard problem. A large number of algorithms to attain k-anonymity have been proposed [78, 14, 56, 57, 10]; they rely on properties of k-anonymous data sets or heuristics to reduce the amount of search, or search for sub-optimal solution.

A different approach towards achieving k-anonymity is based on microaggregation [35]. Microaggregation [30] is a family of anonymization algorithms for data sets that works in two stages:

- First, the set of records in a data set is clustered in such a way that: i) each cluster contains at least k records; ii) records within a cluster are as similar as possible.

- Second, records within each cluster are replaced by a representative of the cluster, typically the centroid record.

Clearly, when microaggregation is applied to the projection of records on their quasi-identifier attributes, the resulting data set is k-anonymous. In [35] a simple microaggregation heuristic called MDAV is described, in which all clusters have exactly k records, except the last one, which has between k and $2k - 1$ records. As the internals of MDAV will be required in Section 6.2 we recall the MDAV algorithm (See Algorithm 2.1).

Despite being a widely accepted privacy model, k-anonymity suffers from certain limitations. The most common criticism against k-anonymity refers to the lack of protection against attribute disclosure: if all the individuals within a group of indistinguishable records share same value for a confidential attribute, then the intruder learns the confidential attribute, even without re-identification. Some refinements to the basic k-anonymity model have been proposed to improve the protection against attribute disclosure: l-diversity [62] requires the presence of l different well-represented values for the confidential attribute in every group of records sharing the same quasi-identifier values; t-closeness [58] requires the distribution of the confidential attribute in any group of records sharing the quasi-identifier values to be close to the distribution in the overall data set.
Algorithm 2.1 Maximum distance to average record (MDAV)

let X be the original data set
let k be the minimal cluster size

while $|X| \geq 3k$ do
 \[
 \bar{x} \leftarrow \text{average record of } X
 \]
 \[
 x_1 \leftarrow \text{most distant record to } \bar{x} \text{ in } X
 \]
 \[
 x_2 \leftarrow \text{most distant record to } x_1 \text{ in } X
 \]
 Form a cluster with x_1 and its $k - 1$ closest records
 Form a cluster with x_2 and its $k - 1$ closest records
 Remove the clustered records from X

end while

if $|X| \geq 2k$ then
 \[
 \bar{x} \leftarrow \text{average record of } X
 \]
 \[
 x_1 \leftarrow \text{most distant record to } \bar{x} \text{ in } X
 \]
 Form a cluster with x_1 and its closest $k - 1$ records
 Remove the clustered records from X
end if

Form a new cluster with the remaining records.

Within each formed cluster, replace the values of each quasi-identifier attribute with the average value of the attribute over the cluster.

2.9 ε-Differential Privacy

Most disclosure limitation mechanisms are specifically designed to avoid releasing information that is known to be disclosive. Such mechanisms are instructed with the kind of data releases that may lead to a privacy breach, and are designed to avoid them. To determine the data releases that may lead to a privacy breach, a guess on the amount of side information available to the intruders is usually made. As long as this guess is accurate, the disclosure limitation mechanism accomplishes its duty, but a privacy breach may happen if there are intruders with greater amounts of information.

The approach of differential privacy towards disclosure limitation is different. Instead of enforcing a pre-specified set of rules that seek to limit disclosure risk, it limits the effect of the presence or absence of any single individual on any information that can be extracted from the database.

The disclosure limitation guarantee provided by ε-differential privacy is similar to that of Dalenius (see Section 2.5), being the difference that, while Dalenius compared the knowledge before and after accessing the released data, differential privacy compares the knowledge before and after a single individual contributes her data. In other words, instead of limiting the knowledge provided by the data set, it limits the knowledge provided by each individual in the data set.
Differential privacy was introduced as an interactive (or query-response) mechanism, where the database is held by a trusted party that catches the queries sent by the database users and outputs a sanitized response. Let D be the database, and assume that a user wants to compute the value of a function f over D. The trusted party computes the real response to the query (that is, the value of $f(D)$) and masks it before release. The end user receives $\kappa_f(D)$, the masked response. The usual way to compute the perturbed value $\kappa_f(D)$ is to add a random noise to $f(D)$ that depends on the variability of the query response.

Differential privacy assumes that each record in the data set refers to a different individual; thus, comparing the output of a query before and after an individual has contributed her data is equivalent to comparing the output of that query between data sets that differ in one record. Data sets that differ in one record are known as neighbor data sets. Strictly speaking, a database is a data set plus some software allowing the data to be accessed and managed. However, unless there is risk of ambiguity, in the sequel we will use database and data set as equivalent terms.

Definition 3. [ε-differential privacy, 39] A randomized function κ gives ε-differential privacy if, for all data sets D, D' that differ in one record, and all $S \subset \text{Range}(\kappa)$

$$P(\kappa(D) \in S) \leq e^\varepsilon \times P(\kappa(D') \in S)$$

(2.1)

The randomized function κ in the definition represents the output the user gets from the database as response to the submitted query; actually, $\kappa(D)$ is the value resulting from adding random noise to the real query response. Inequality (2.1) can be interpreted as a bound on the knowledge gain between the responses obtained when performing the same query on data sets D and D'.

Two approaches to the concept of “neighbor data sets” are found in the literature on differential privacy: in 39 two data sets are said to be neighbors if one can be obtained from the other by adding or removing a single record; in 70 two data sets are said to be neighbors if one can be obtained from the other by modifying a single record.

Let us shed some light on the disclosure risk limitation provided by differential privacy. Assume that the data sets D and D' can be obtained from one another by adding or removing one record; the case of data sets D and D' that can be obtained from one another by modifying a record is similar. Let $D' = D \setminus \{r\}$; that is, D contains the record r contributed by individual i_r, but D' does not. Since D' does not contain i_r’s data, the level of privacy for i_r when querying D' is maximum; even if disclosure for individual i_r happens, it seems unreasonable to blame the data set D' (it does not contain i_r’s data). As differential privacy guarantees that the knowledge gain between data sets D and D' is limited, the disclosure risk for i_r is limited.
To improve the accuracy of ε-differentially private responses, the magnitude of the noise must be minimized. Several methods for calibrating the noise have been proposed. We classify them in two categories, according to their dependency on the data set: data-independent methods, such as [42], and data-dependent methods, such as [71]. When calibrating to a data-independent noise, the distribution of the noise is constant across data sets; on the other side, when calibrating to data-dependent noises the distribution of the noise is adjusted for each data set. In general, using a data-independent noise is simpler, but data-dependent noises provide a better adjustment of the noise to different degrees of variability of the query function between neighbor data sets.

For data-independent noises, a Laplace distribution is typically used. The mean parameter is set to zero (for the expected value of the noise to be zero), and the scale parameter is adjusted to the largest variability of the query function between neighbor data sets. Specifically, the density function of the Laplace noise is

$$p(x) = \frac{\varepsilon}{2\Delta(f)} e^{-|x|\varepsilon/\Delta(f)}$$

To refer to the largest change of a function between neighbor data sets, the notion of L_1-sensitivity is introduced.

Definition 4. [L_1-sensitivity] The L_1-sensitivity of $f : D \rightarrow \mathbb{R}^d$ is

$$\Delta f = \max_{D,D'} \| f(D) - f(D') \|_1$$

for all neighbor data sets D,D'.

Using Laplace-distributed noise with zero mean and $\Delta f / \varepsilon$ scale parameter provides ε-differential privacy [42]. This result holds independently of the number of components of f. An independent Laplace-distributed noise with zero mean and $\Delta f / \varepsilon$ scale must be added to each of the components.

In [26, 44, 17], it was proven that if accurate responses are returned for a sufficiently large number of count queries, then the original database can be reconstructed with great accuracy. Initially, these results raised the belief that the generation of protected microdata sets that preserve the utility for a large number of queries was unfeasible. In particular, this motivated the presentation of differential privacy as an an interactive query-response mechanism. However, it was later shown in [18, 43, 51, 22] that differential privacy could also be enforced in the non-interactive setting and, indeed, that the generated microdata set could preserve the utility for an arbitrary large number of queries.

There is a lack of methods to generate general-purpose ε-differentially private data sets. Current proposals preserve utility only for restricted classes of queries (typically count queries). This contrasts with the general-purpose utility-preserving data release offered by the k-anonymity model.
3 Probabilistic \(k \)-anonymity

We propose a privacy model that, similarly to \(k \)-anonymity, protects against identity disclosure (the probability of determining the true identity for a specific value of a confidential attribute is \(1/k \)), but offers improved data accuracy (in particular, it behaves well in presence of multiple quasi-identifier attributes). Our proposal is based on a relaxation of the indistinguishability requirement of \(k \)-anonymity. Instead of requiring records to be indistinguishable within sets of \(k \) records as far as quasi-identifiers are concerned, we focus on the probability of re-identification. By requiring the probability of re-identification to be \(1/k \) at most, we achieve the same level of protection against re-identification provided by \(k \)-anonymity, but the range of applicable methods to implement our model is wider and hence the information loss can be reduced.

The contents of this chapter have been published in [89, 92].

3.1 Limitations of the \(k \)-anonymity model for disclosure limitation

Although \(k \)-anonymity is a popular privacy criterion, some criticism has been raise against it [36]. \(k \)-Anonymity seeks to prevent identity disclosure (re-identification is only possible with probability \(1/k \)), but confidential information can be revealed even if re-identification is not feasible. For example, let a medical data set contain quasi-identifier attributes Age, Gender, Zipcode and Race, and confidential attribute AIDS (whose values can be Yes or No). Imagine that we 3-anonymize this data set, but a group of three records sharing a certain combination of quasi-identifier attribute values also shares the confidential attribute value AIDS=Yes. In this case, if the intruder can establish that her target respondent’s record lies within that group (because it is the only group with compatible Age, Gender, Zipcode and Race), the intruder learns that the target respondent suffers from AIDS. This kind of disclosure is known as attribute disclosure and arises from the lack of variability of the confidential attribute inside a group of indistinguishable records. Several fixes/alternatives to \(k \)-anonymity which are also based on the partitioning of the data set in groups of indistinguishable records have appeared: \(l \)-diversity [52], \(t \)-closeness [58], etc. However, none of those alternatives is free from shortcomings (see [36]).
On the data utility side, k-anonymity has been shown to provide reasonably useful anonymized results, especially for small k, but utility degrades rapidly if the number of quasi-identifiers is increased. This is a fundamental drawback that affects any method that is based on the partitioning of the data set in groups of indistinguishable records. Even more dramatic is the effect of increasing the number of quasi-identifiers on the utility. This issue is known as “the curse of dimensionality” [9].

There is yet another serious concern on the disclosure limitation provided by k-anonymity: the attack model considered is weak. k-Anonymity assumes that the data holder is capable of discerning between quasi-identifier attributes and non-quasi-identifier attributes; that is, the data holder is supposed to be able to determine which attributes may be available externally in a non-anonymous data set. It was already recognized, when k-anonymity was first introduced [78], that this is a quite stringent assumption. The proposed solution was to rely on policies, laws, and contracts, but this is not feasible if we aim at releasing the data openly.

For example, consider a data set T that holds the attributes Zipcode, Gender, Age, Income, and Disease, where the Income and Disease attributes hold confidential information. As Income and Disease are confidential, they should not be available in an external non-anonymous data set; therefore, by following the usual approach, we would take Zipcode, Gender, and Age as the quasi-identifiers. However, even if not available in an external non-anonymous data set, Income and Disease may be available to an informed intruder, which could use that knowledge to improve the accuracy of the re-identification. For instance, let us assume that Alice knows that Bob is in the released table T. By using Zipcode, Gender, and Age, Alice is able to determine a group of k records that contains Bob’s data. Now, let us assume that, as Alice and Bob are friends, Alice knows the value of the Disease attribute for Bob’s record. By using this knowledge, Alice can perform a more precise re-identification, thus learning more about Bob’s income than initially intended. The extreme case happens when nobody else in the group of k individuals shares Bob’s disease; Alice is then able to determine the exact value of Bob’s income with total certainty.

An even more insidious intruder can be imagined. Imagine that Alice does not know Bob’s disease, but knows the disease of some of the other individuals that share Bob’s combination of quasi-identifier attribute values — e.g. Alice works in an hospital, and happens to meet those individuals. By using the quasi-identifiers, Alice determines a set of k records that must contain Bob’s data; by using her knowledge about the Disease attribute, Alice is then able to perform a more precise re-identification of Bob’s record than initially intended.

For k-anonymity to offer protection against intruders with confidential information, we have to assume that all the attributes can be used in the re-identification; in other words, all attributes are quasi-identifiers. But we have already commented that increasing the number of quasi-identifiers has a deep negative effect on the utility of the released data. We will show that probabilistic k-anonymity offers improved data accuracy in case of multiple quasi-identifier attributes; thus, probabilistic k-
3.2 The probabilistic k-anonymity model

k-Anonymity guarantees that, for any combination of values of quasi-identifier attributes in the published microdata set $T'(A_1, \ldots, A_n)$, there are at least k records sharing that combination of values. Therefore, given an individual in an external non-anonymous data set, the probability of performing the right linkage back to the corresponding record in the published microdata set, and thus the probability of learning its confidential attributes, is at most $1/k$. It is in this sense that probabilistic k-anonymity is defined.

A similar relaxation of the notion of k-anonymity was presented in [106], which partitioned the data set and applied a permutation inside each of the partition components. This is the same strategy that we will apply in Section 3.3 to achieve probabilistic k-anonymity. However, probabilistic k-anonymity is a more general framework; it is not limited to permutations, although permutations are a convenient choice to simplify probability calculations. Moreover, [106] did not address the issues described in Section 3.1, which probabilistic k-anonymity does address.

Definition 5 (Probabilistic k-anonymity). Let $T'(A_1, \ldots, A_n)$ be a published data set generated from an original data set $T(A_1, \ldots, A_n)$ using an anonymization mechanism M. The data set T' is said to satisfy probabilistic k-anonymity if, for any non-anonymous external data set E, the probability for an intruder I knowing T', M and E to correctly link any record $x \in E$ and its corresponding record (if any) in T' is at most $1/k$.

Note that any method used to achieve k-anonymity also leads to probabilistic k-anonymity. In this sense, it may be said that k-anonymity provides a stronger guarantee. However, from the point of view of the probability of re-identification, both provide the same level of protection. Note that stating that k-anonymity is stronger does not contradict the fact that a distinguishing feature of probabilistic k-anonymity is to protect against informed intruders knowing some confidential attribute values. Indeed, k-anonymity can also provide such protection, but it needs to take all attributes as quasi-identifiers.

The advantage of probabilistic k-anonymity in comparison to k-anonymity is that, by relaxing the indistinguishability requirements within groups of k records, the range of eligible methods to enforce probabilistic k-anonymity is wider, and therefore we may expect a reduction in the information loss.

We start by analyzing probabilistic k-anonymity in presence of non-informed intruders: confidential attributes are not available externally, so they need not be
considered as quasi-identifiers. As probabilistic \(k\)-anonymity is expressed in terms of probability of reidentification, it is natural to think of the released data set \(T'(A_1,\ldots,A_n)\) as a perturbation of \(T(A_1,\ldots,A_n)\). We use the notations in Figure 3.1. The records \(x_i\) in \(T\) have been split in two parts: the quasi-identifier attributes \(q_i\), and the confidential attributes \(c_i\). The records in \(T'\) are obtained by applying a random perturbation to the corresponding record in \(T\): \(x'_i = X(x_i)\). This perturbation affects only the quasi-identifier attributes.

For the sake of simplicity, we assume that the released records in \(T'\) correspond to the first \(|T'|\) records in \(T\). If \(|T'| = |T|\), then all the records are released. The data set \(E\) links the quasi-identifiers \(q_i\) to the identifier \(id_i\). The functions \(Id\) and \(Rid\) assign a record in \(T'\) to the records in \(E\), thus performing the re-identification of the records in \(T'\). The function \(Rid\) is the re-identification function used by the intruder, while \(Id\) is assumed to be the correct re-identification function. If there is no record in \(T'\) corresponding to the identity \((i.e., the identified record) e_i \in E\), then \(Id\) returns the empty set.

The goal of probabilistic \(k\)-anonymity is to limit the probability of performing the right linkage to at most \(1/k\). With the above notations this requirement can be stated as: for all \(e_i \in E\) and for all \(\text{Rid()}\)

\[
P(\text{Rid}(e_i) = \text{Id}(e_i)) \leq \frac{1}{k}
\]

This formula captures the essence of the definition of probabilistic \(k\)-anonymity: the probability of performing the right re-identification must not be greater than \(1/k\). However, by having the intruder use any possible function \(\text{Rid()}\) to perform the re-identification, the details on how a rational intruder will proceed are hidden. Given a record \(e_i\), a rational intruder selects the record \(x_i\) in \(T'\) that has the greatest probability given the knowledge of \(T', E\) and \(M\). The following examples will clarify how a rational intruder acts. All examples assume that \(E\) contains identities for all records in \(T\), which is the best possible knowledge that an intruder can have.

Example 1. Let us assume that \(T\) contains two records, and that only the first one is included in the anonymized data set. This situation is shown in Table 3.1. From the intruder’s point of view, \(x'_1\) corresponds to either the individual in \(e_1\) or \(e_2\). The best the intruder can do is to select the one that has the greatest probability given the knowledge of \(T', E\), and the mechanism \(M\) used to generate \(T'\) from \(T\).
The probability that x'_1 corresponds to e_i equals the probability of obtaining qi'_1 from qi'_1^E, over the total probability of obtaining qi'_1 from any other record in E:

$$P(X'(qi'_1^E) = qi'_1 | T', E, M) = \frac{P(X'(qi'_1^E) = qi'_1 | M)}{\sum_{(qi'_j, id_j) \in E} P(X'(qi'_j^E) = qi'_1 | M)}$$

The intruder selects e_1 as his guess if $P(X'(qi'_1^E) = qi'_1 | T', E, M) \geq P(X'(qi'_2^E) = qi'_1 | T', E, M)$, and e_2 otherwise.

Table 3.1: Data sets in Example 1

T	T'	E
$x_1 = (qi_1, c_1)$	$x'_1 = (qi'_1, c_1)$	$e_1 = (qi^E_1, id_1)$
$x_2 = (qi_2, c_2)$	$e_2 = (qi^E_2, id_2)$	

In the previous example we have seen that, given a record in E, the linkage is performed to the record in T' that has greatest probability. If that probability is smaller than $1/k$, then the probability of performing the right linkage will also be smaller than $1/k$, as any other linkage will indeed result in a yet smaller probability. Therefore, to achieve probabilistic k-anonymity, we must have for all $qi^E \in E$ and all $qi^E' \in T'$

$$P(X'(qi^E) = qi'_1 | T', E, M) \leq \frac{1}{k} \quad (3.1)$$

Example 2. In this example the amount of information in T' has been increased, by adding the record x'_2. The new data sets are shown in Table 3.2. As E is assumed to exactly contain the identities for the individuals in T, the intruder knows that if one identity in E corresponds to a specific record in T', the other identity in E must correspond to the other record in T'. This must be taken into account when computing the probabilities. For example, the probability $P(X'(qi^E_1) = qi'_1 | T', E, M)$ that qi^E_1 corresponds to qi'_1 equals $P(X'(qi^E_1) = qi'_1, X'(qi^E_2) = qi'_2 | T', E, M)$, which can be computed as

$$P(X'(qi^E_1) = qi'_1, X'(qi^E_2) = qi'_2 | M) \sum_{i,j = 1,2} P(X'(qi^E_1) = qi'_1, X'(qi^E_2) = qi'_2 | M)$$

Table 3.2: Data sets in Example 2

T	T'	E
$x_1 = (qi_1, c_1)$	$x'_1 = (qi'_1, c_1)$	$e_1 = (qi^E_1, id_1)$
$x_2 = (qi_2, c_2)$	$x'_2 = (qi'_2, c_2)$	$e_2 = (qi^E_2, id_2)$

The next example shows how the correct re-identification probability would be computed in the most general case.
Chapter 3 Probabilistic k-anonymity

Example 3. Assume data sets T, T' and E as in Table 3.3. Contrary to Example 2, fixing a correspondence between a record in T' and a record in E does not completely fix the rest of the correspondences. We still have to consider all the possible combinations. The probability $P(X'(q_i^E) = q_i^E | T', E, M)$ that q_i^E corresponds to q_i^E equals $\sum P(X'(q_i^E) = q_i^E, X'(q_{i_2}^E) = q_{i_2}^E, \ldots, X'(q_{i_M}^E) = q_{i_M}^E | T', E, M)$, where $1 < i_2 < \ldots < i_M \leq N$, and $\{j_2, \ldots, j_M\} = \{2, \ldots, M\}$. This probability can be computed as

$$\frac{\sum P(X'(q_{r_1}^E) = q_{r_1}^E, X'(q_{r_2}^E) = q_{r_2}^E, \ldots, X'(q_{r_M}^E) = q_{r_M}^E | M)}{\sum P(X'(q_{r_1}^E) = q_{r_1}^E, X'(q_{r_2}^E) = q_{r_2}^E, \ldots, X'(q_{r_M}^E) = q_{r_M}^E | M)}$$

where $1 < r_2 < \ldots < r_m \leq N$, and $\{s_2, \ldots, s_M\} = \{2, \ldots, M\}$.

	T	T'	E
$x_1 = (q_1^1, c_1)$	$x_1' = (q_1^1, c_1)$	$e_1 = (q_1^E, id_1)$	
\vdots	\vdots	\vdots	
$x_N = (q_N, c_N)$	$x_N' = (q_N, c_N)$	$e_N = (q_N, id_N)$	

Table 3.3: Data sets in Example 3

We have said that, to have probabilistic k-anonymity, Inequality (3.1) must hold. However, the previous examples show that the computation of the re-identification probability in Inequality (3.1) for an arbitrary mechanism M may be complex. In the following section, we propose to use data swapping as M, which has the advantage of making the computation of the re-identification probability very simple.

3.3 Probabilistic k-anonymity via microaggregation and swapping

The proposed method consists of two main steps: (i) partition the records in T into groups of size k and (ii) apply a permutation to the quasi-identifier attributes within each of the groups. This method can accommodate many variations, depending on how the partition step (i) is done.

Note that, as the same permutation is applied to all quasi-identifier attributes, the identity of the individual is not masked. However, the quasi-identifier attributes are dissociated from the confidential attributes, and therefore intruders can only guess the actual values corresponding to a confidential attribute with probability at most $1/k$. If leaking the mere presence of an individual in the data set is itself disclosive, then some of the quasi-identifier attributes must be considered confidential, which takes us to the informed intruder scenario.

We introduce first the method that offers protection against uninformed intruders. In other words, we assume that the attributes may be quasi-identifier attributes
3.3 Probabilistic \(k \)-anonymity via microaggregation and swapping

or confidential attributes, but not both. Later we extend our proposal to protect against informed intruders; assuming that confidential attributes can be employed in the re-identification.

3.3.1 Uninformed intruders

In presence of uninformed intruders there is a clear separation between quasi-identifier and confidential attributes. Assuming that all records in \(T \) are masked and included in \(T' \), we have the data sets in Table 3.4.

Table 3.4: Data sets in the uninformed intruder scenario

\(T \)	\(T' \)	\(E \)
\(x_1 = (q_{i1}, c_1) \)	\(x'_1 = (q'_{i1}, c_1) \)	\(e_1 = (q_{i1}, id_1) \)
\(\vdots \)	\(\vdots \)	\(\vdots \)
\(x_N = (q_{iN}, c_N) \)	\(x'_N = (q'_{iN}, c_N) \)	\(e_N = (q_{iN}, id_N) \)

Selecting a random sample from \(T \) to create \(T' \) is a sensible approach, as it introduces uncertainty on whether an individual whose data was collected has been included in the published data set. However, by assuming that all the individuals in \(T \) have been included in \(T' \), we provide the intruder with the best information available. Therefore, if we achieve probabilistic \(k \)-anonymity in this scenario, then we will also achieve it in a scenario where a random sample from \(T \) is selected.

It is easy to see that the partition and swapping method described above satisfies probabilistic \(k \)-anonymity because

\[
P(X'(q_{i}^{E}) = q_{i}|T', E, M) = \begin{cases}
\frac{1}{k} & \text{if } q_{i} \in G(id(q_{i}^{E})) \\
0 & \text{otherwise}
\end{cases}
\]

where \(G(id(q_{i}^{E})) \) is the group of records of \(T \) that contains the record corresponding to \(q_{i}^{E} \).

The key point in the method is the partition step. A first approach is to partition the data set \(T \) into random groups. This leads indeed not only to probabilistic \(k \)-anonymity, but to probabilistic \(|T| \)-anonymity, as the quasi-identifiers of a record can be swapped with the quasi-identifiers of any other record. Moreover, the risk of attribute disclosure is small. However, the impact on data quality can be substantial, because very different records may be swapped.

To achieve better data quality, the groups of records must be selected to be as homogeneous as possible, although this increases the risk of attribute disclosure. Our proposal is to generate the groups using a microaggregation algorithm ([30][35]) over the quasi-identifier attributes. Microaggregation is a cardinality-constrained form of clustering in which the number of clusters (groups) is not fixed beforehand but
the minimum cardinality of each group is required to be \(k \). In the section devoted to informed intruders, there are some experimental results obtained by using the MDAV microaggregation algorithm (\[35, 53\]); MDAV attempts to maximize intragroup homogeneity using the least squares criterion and it yields groups with size \(k \), except perhaps one group which has size between \(k \) and \(2k - 1 \).

Other options in the selection of the groups of records are possible. For example, a variant of MDAV, known as V-MDAV (\[86, 85\]), may be used that performs clustering in groups of variable size and that is known to reduce the information loss in clustered data sets. The \(\mu \)-Approx microaggregation heuristic (\[32\]) offers also variable-sized groups and is proven to yield a clustering within a bound of the optimal clustering. Another possibility is to select the groups of records in such a way that the risk of attribute disclosure is reduced, by ensuring a certain diversity in the values of the confidential attributes within each group.

3.3.2 MDAV microaggregation for informed intruders

Consider a data set with attributes: \(A_0, A_1, \ldots, A_n \), with \(A_0 \) being a non-confidential quasi-identifier attribute, and \(A_1, \ldots, A_n \) being confidential quasi-identifier attributes. We assume the presence of several informed intruders, each of them having knowledge of all confidential attributes except by one, whose value wants to determine. To be more specific, intruder \(I_i \), for \(i = 1 \) to \(n \), is assumed to know the values of all attributes except \(A_i \). This is not the most stringent scenario. In the worst case scenario, intruder \(I_i \) would also have knowledge some of the values of attribute \(A_i \). However, we judge that the proposed intruders are already strong enough. Note that the stronger the intruders, the lower the data utility of the protected data set.

To achieve the desired level of protection against all informed intruders, we apply the method presented for uninformed intruders once for each informed intruder, in order to dissociate the value of the confidential attribute unknown to this intruder from the rest of attributes. For each informed intruder, we use the quasi-identifiers and the confidential attribute shown in Table 3.5.

Table 3.5: Quasi-identifiers and confidential attribute for each informed intruder

Intruder	Quasi-identifier attributes	Confidential attribute
\(I_1 \)	\(A_0, A_2, \ldots, A_n \)	\(A_1 \)
\(I_2 \)	\(A_0, A_1, A_3, \ldots, A_n \)	\(A_2 \)
\(\vdots \)	\(\vdots \)	\(\vdots \)
\(I_n \)	\(A_0, A_1, \ldots, A_{n-1} \)	\(A_n \)

One difficulty that we face with the previous approach is that dealing with informed intruders in sequence requires applying different permutations over different but overlapping sets of attributes of the original data set \(T \) (the quasi-identifiers for
3.4 Experimental results

We have implemented the following three methods:

- **MDAV-ID.** MDAV microaggregation is run on the quasi-identifier attributes to partition the data set in groups of size k records. Within each group, quasi-identifiers are replaced by the group centroid in order to have identical quasi-identifiers for all records in the group. This is the procedure suggested in [35] and it achieves the standard notion of k-anonymity proposed in [78] in the sense that all quasi-identifiers within a group are made indistinguishable.

- **MDAV-SWAP.** This is the method described in Section 3.3.1 for probabilistic k-anonymity: MDAV microaggregation on the quasi-identifier attributes plus swapping within groups.

- **IR-SWAP.** This is the method described in Section 3.3.2 above for probabilistic k-anonymity: individual ranking microaggregation on each confidential attribute plus swapping within groups.

The above methods have been tested with the “Census” and “EIA” reference data sets proposed in the European project CASC [19].
3.4.1 “Census” data set

The “Census” data set contains 1080 records with 13 continuous attributes. Following the approach in [35], we consider the first 6 attributes in “Census” to be non-confidential quasi-identifiers, and the last 7 attributes to be confidential.

To assess the data quality, we evaluate the correlations from all attributes to the confidential attributes. As the proposed methods for probabilistic k-anonymity do not modify non-confidential attributes, correlations between the latter have the same value as in the original data set. Means and variances also remain unchanged for all attributes, because swapping does not change the values taken by each original attribute.

As an example, we computed the correlations for: i) the original data set (see Table 3.6); ii) the k-anonymous data set resulting from MDAV-ID with $k = 12$ (see Table 3.7); iii) the probabilistically k-anonymous data set resulting from MDAV-SWAP with $k = 12$ (see Table 3.8); and the probabilistically k-anonymous data set resulting from IR-SWAP with $k = 12$ (see Table 3.9). The values in these tables must be taken with caution: they are results from a single execution of the algorithms, and may change in another execution. Despite these words of caution, we observe that MDAV-SWAP and IR-SWAP result in correlation values closer to the original data set than those obtained with MDAV-SWAP. The results of IR-SWAP are closest to the original correlations.

Table 3.6: Correlations to the confidential attributes in the original “Census” data set

	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}
A_1	.0038	-.027	-.024	.031	.032	.039	.036
A_2	.98	.14	.2	.73	.71	.72	.7
A_3	.44	-.12	-.058	.56	.55	.56	.55
A_4	.98	.2	.28	.73	.69	.71	.69
A_5	.78	.27	.27	.9	.85	.88	.86
A_6	.79	.13	.22	.59	.57	.57	.56
A_7	1	.17	.23	.72	.7	.71	.69
A_8	1	.45	-.17	-.19	-.17	-.17	-.17
A_9	1	.072	.061	.70	.075		
A_{10}	1	.96	.98	.96			
A_{11}	1	.91	.89				
A_{12}	1	.97					
A_{13}							1

To obtain results with more statistical significance, we ran MDAV-ID, MDAV-SWAP and IR-SWAP 100 times. In Table 3.10 we report the mean and the standard deviation of the absolute value of the difference between the correlations to the confidential
3.4.2 “EIA” data set

Empirical results for the “EIA” data set are more succinctly presented, because their interpretation is parallel to the one of the “Census” results. Table 3.11 reports an evaluation for the “EIA” data set analogous to the one reported in Table 3.10 for the “Census” data set. Like before, we observe that MDAV-SWAP performs better than MDAV-ID, but IR-SWAP is clearly the best of the three methods.

3.5 Conclusions

k-Anonymity is a broadly used privacy property that focuses on protection against identity disclosure. In a *k*-anonymous data set, for each record there are at least
Chapter 3 Probabilistic k-anonymity

Table 3.8: Correlations to the confidential attributes in the probabilistically k-anonymous data set obtained using MDAV-SWAP with $k = 12$ (“Census” data set)

	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}
A_1	-.0011	-.028	-.034	.032	.033	.036	.032
A_2	.81	.089	.17	.69	.67	.69	.67
A_3	.42	-.020	.091	.48	.47	.48	.43
A_4	.77	.093	.18	.68	.65	.68	.67
A_5	.72	.086	.16	.80	.76	.79	.77
A_6	.64	.086	.14	.54	.52	.54	.52
A_7	1	.12	.17	.69	.67	.66	.65
A_8	1	.19	-.013	-.022	-.042	-.011	
A_9	1	.11	.10	.10	.13		
A_{10}	1	.76	.81	.87			
A_{11}	1	.72	.70				
A_{12}	1	.77					
A_{13}	1						

$k - 1$ other records sharing the same values for all the quasi-identifier attributes. Hence, enforcing k-anonymity implies variability loss and therefore, quality loss. This is especially serious in a scenario with informed intruders who know the values of some confidential attributes: the confidential attributes known by the informed intruder can be viewed as additional quasi-identifiers. The more quasi-identifier attributes, the more data quality loss is caused by k-anonymity.

To mitigate the above problem, we have introduced the notion of probabilistic k-anonymity. Like standard k-anonymity, probabilistic k-anonymity guarantees that the probability of correct re-identification is $1/k$ at most, but without explicitly requiring that the quasi-identifier attributes take identical values within each group of k records. We have presented two computational methods to reach probabilistic k-anonymity, based on microaggregation and swapping. Experimental work shows that, for a fixed re-identification probability $1/k$, the new methods are much more quality-preserving than standard k-anonymity enforcement.

The method based on individual ranking microaggregation is particularly interesting. It builds on the fact that applying a permutation over the quasi-identifiers and leaving the confidential attributes unmodified is equivalent to applying the opposite permutation to the confidential attributes and leaving the quasi-identifiers unmodified. Switching the focus to confidential attributes has several important benefits. First, it prevents informed intruders from using confidential information to improve the re-identification; the value of each confidential attribute must be dissociated from all the other attributes. This becomes possible after switching the focus to confidential attributes because the permutation only affects the attribute being pro-
3.5 Conclusions

Table 3.9: Correlations to the confidential attributes in the probabilistically k-anonymous data set obtained using IR-SWAP with $k = 12$ (“Census” data set)

	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}
A_1	.0041	-.017	-.018	.031	.038	.039	.038
A_2	.98	.13	.20	.73	.71	.72	.70
A_3	.44	-.12	-.041	.56	.55	.56	.55
A_4	.98	.19	.27	.73	.68	.71	.69
A_5	.78	.26	.26	.90	.85	.88	.86
A_6	.79	-.12	.21	.59	.57	.57	.56
A_7	1	.16	.23	.72	.69	.71	.69
A_8	1	.42	-.17	-.19	-.17	-.17	-.17
A_9	1	.077	.063	.075	.080		
A_{10}	1	.95	.98	.96			
A_{11}	1	.91	.89				
A_{12}	1	.97					
A_{13}	1						

protected. Second, it allows using a different partition for each confidential attribute, thereby boosting accuracy and utility. Obviously, the reduction in the diversity in the confidential attribute increases the chances of attribute disclosure. Selecting a non-optimal partition (as done in k-anonymity) does not seem to be the proper approach. To increase the variability we advocate to increase k, or enforce additional criteria such as l-diversity or t-closeness. Third, some attributes are usually more disclosive than others. The ability to generate a different partition for each confidential attribute offers the possibility of selecting a different level of disclosure limitation (the k parameter) for each of the confidential attributes.

While k-anonymity is, in principle, only concerned with the cloaking of individuals within groups of k or more individuals (thus preventing re-identification), the level of disclosure limitation for the confidential attribute derives from the variability within the groups of indistinguishable records. The level of variability is not determined by the parameter k selected; it may even happen that all the records in a group share the same value for a confidential attribute. The criterion to generate the partition in k-anonymity is based on the values of the quasi-identifier attributes, but there is no way to determine the optimal partition for an arbitrary user: a user may be very interested in preserving one specific attribute that may be meaningless for another user. When using individual ranking for probabilistic k-anonymity, we advocate for the best partition for each confidential attribute (grouping records according to the value of the confidential attribute), even if that means that we get the least variability (the least protection). It is obvious that the parameter k must be much larger that in regular k-anonymity to prevent disclosing confidential information; however, this approach has a great advantage: the value of k is related to the level
Chapter 3

Probabilistic k-anonymity

Table 3.10: Mean and standard deviation of the absolute value of the difference between the correlations in the original and the anonymized data sets (“Census” data set)

k	MDAV-ID mean	st.dev.	MDAV-SWAP mean	st.dev.	IR-SWAP mean	st.dev.
5	.055	.064	.037	.045	.0021	.0041
7	.062	.071	.048	.056	.0022	.0039
9	.069	.078	.055	.064	.0028	.0049
11	.078	.085	.061	.070	.0038	.0068
25	.11	.11	.091	.093	.0061	.012
50	.14	.13	.13	.12	.010	.020
100	.17	.15	.19	.17	.020	.030
200	.29	.27	.31	.28	.044	.047
300	.38	.39	.37	.34	.087	.071

of confidentiality.

Future research will combine probabilistic k-anonymity with other properties like l-diversity or t-closeness in view of reducing the quality loss incurred to protect against attribute disclosure. As we deal with each confidential attribute separately, the enforcement of additional properties (l-diversity and t-closeness) is relatively easy to achieve.
Table 3.11: Mean and standard deviation of the absolute value of the difference between the correlations in the original and the anonymized data sets (“EIA” data set)

k	MDAV-ID mean	MDAV-ID st.dev.	MDAV-SWAP mean	MDAV-SWAP st.dev.	IR-SWAP mean	IR-SWAP st.dev.
5	.018	.017	.017	.035	.00064	.00075
7	.02	.017	.024	.05	.0012	.0018
9	.034	.031	.028	.053	.0015	.0018
11	.039	.036	.029	.052	.0019	.0023
25	.085	.078	.043	.081	.0063	.0072
50	.13	.12	.053	.089	.011	.011
100	.15	.14	.058	.092	.029	.037
200	.19	.18	.09	.11	.093	.074
300	.2	.18	.12	.13	.14	.091
4 Optimal data-independent noise for ε-differential privacy

To maximize the utility of the results provided by ε-differential privacy, the magnitude of the random noise should be as small as possible. Some criticisms have appeared to the data utility that results from using Laplace noise addition as the mechanism to obtain differential privacy [68, 83, 84]. The question of the optimality of Laplace noise addition arises: is it possible to achieve ε-differential privacy with substantially more data utility using other noise distributions?

Our goal is to determine the optimal distribution to achieve differential privacy with data-independent random noise. We will limit our discussion to absolutely continuous random noise distributions, as they provide the greatest level of generality. Similar results can also be obtained for discrete random noise; however, this type of noise is only applicable in very specific circumstances.

By using an optimal noise, the distortion required to achieve a certain level ε of differential privacy is minimized. This may lead to under-protection if the disclosure limitation offered by ε-differential privacy is measured by how much noise is added to the data (as in traditional noise addition for disclosure control, see [52]), rather than by the theoretical guarantee offered by differential privacy in terms of ε. In what follows, we assume that a protection level ε is chosen such that the theoretical guarantee provides sufficient protection.

We propose a general optimality criterion based on the concentration of the probability mass of the noise distribution around zero, and we show that any noise optimal under this criterion must be optimal under any other sensible criterion. We also show that the Laplace distribution, commonly used for noise in ε-differential privacy, is not optimal, and we build the optimal data-independent noise distribution. We compare the Laplace and the optimal data-independent noise distributions. For univariate query functions, both introduce a similar level of distortion; for multivariate query functions, optimal data-independent noise offers responses with substantially better data quality.

The contents of this chapter have been accepted for publication in [87].
4.1 Optimal data-independent noise

To improve the utility of the outputs provided by an ε-differentially private access mechanism, the random noise must be adjusted to minimize the distortion to the real query result. When using Laplace noise, the scale parameter is set to $\Delta f/\varepsilon$ (see Section 2.9); this yields a noise distribution optimal within the class of Laplacian noises, because a smaller scale parameter would no longer satisfy ε-differential privacy. However, the question of the optimality of the Laplace distribution itself within all possible noise distributions has not been addressed in the literature: can we improve the utility of the output by using a different noise distribution? The answer to this question is deferred until Section 4.3. In this section we tackle a more fundamental issue: the concept of optimality for a random noise.

Deciding which among a pair of random noises, Y_1 and Y_2, leads to greater utility is a question that may depend on the users’ preferences. The goal of this section is to come up with an optimality notion that is independent from the users’ preferences: if Y_1 is better than Y_2 according to our criterion, any rational user must prefer Y_1 to Y_2. Later, in Section 4.3, we will determine the form of all optimal random noises that provide ε-differential privacy to a given query function.

Let Y_1 and Y_2 be two random noise distributions. If Y_1 can be constructed from Y_2 by moving some of the probability mass towards zero (but without going beyond zero), then Y_1 must always be preferred to Y_2. The reason is that the probability mass of Y_1 is more concentrated around zero, and thus the distortion introduced by Y_1 is smaller. A rational user always prefers less distortion and, therefore, prefers Y_1 to Y_2.

We use the notation $\langle 0, \alpha \rangle$, where $\alpha \in \mathbb{R}$, to denote the interval $[0, \alpha]$ when $\alpha \geq 0$, and the interval $[\alpha, 0]$ when $\alpha \leq 0$. If Y_1 can be constructed from Y_2 by moving some of the probability mass towards zero, it must be $P(Y_1 \in \langle 0, \alpha \rangle) \geq P(Y_2 \in \langle 0, \alpha \rangle)$ for any $\alpha \in \mathbb{R}$: otherwise, some of the probability mass that Y_2 had in $\langle 0, \alpha \rangle$ would have been moved outside $\langle 0, \alpha \rangle$, which is not possible. This leads to the following definition.

Definition 6. Let Y_1 and Y_2 be two random noise distributions on \mathbb{R}. We say that Y_1 is smaller (or better) than Y_2, denoted by $Y_1 \leq Y_2$, if $P(Y_1 \in \langle 0, \alpha \rangle) \geq P(Y_2 \in \langle 0, \alpha \rangle)$ for any $\alpha \in \mathbb{R}$. We say that Y_1 is strictly smaller than Y_2, denoted by $Y_1 < Y_2$, if some of the previous inequalities are strict.

For $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d$, we use $\langle 0, \alpha \rangle$ to denote the set $\langle 0, \alpha_1 \rangle \times \ldots \times \langle 0, \alpha_d \rangle$. Consider a set $S \subset \mathbb{R}^d$ such that for every point $x \in S$ we have $\langle 0, x \rangle \subset S$, and a pair of random noises $Y_1 = (Y_1^1, \ldots, Y_1^d)$ and $Y_2 = (Y_2^1, \ldots, Y_2^d)$ such that Y_1 can be constructed from Y_2 by moving some probability mass towards zero. It is obvious that we must have $P(Y_1 \in S) \geq P(Y_2 \in S)$; if that was not the case, it would mean that some of the probability mass that Y_2 had in S has been moved outside S, which is not possible because of the form of S. This leads to the definition for the multivariate case.
4.2 Characterization of differential privacy in terms of the density function

Definition 7. Let \(Y_1 \) and \(Y_2 \) be two random noise distributions on \(\mathbb{R}^d \). We say that \(Y_1 \) is smaller (or better) than \(Y_2 \), denoted by \(Y_1 \leq Y_2 \), if \(P(Y_1 \in S) \geq P(Y_2 \in S) \) for every set \(S \subseteq \mathbb{R}^d \) such that for any \(x \in S \) we have \(\langle 0, x \rangle \subseteq S \). We say that \(Y_1 \) is strictly smaller than \(Y_2 \), denoted by \(Y_1 < Y_2 \), if some of the previous inequalities are strict.

Definitions 6 and 7 induce an order relationship between random noises. We use that order relationship to define the concept of optimal random noise.

Definition 8. A random noise distribution \(Y_1 \) is optimal within a class \(\mathcal{C} \) of random noise distributions if \(Y_1 \) is minimal within \(\mathcal{C} \); in other words, there is no other random \(Y_2 \in \mathcal{C} \) such that \(Y_2 < Y_1 \).

As stated in the previous definition, the concept of optimality is relative to a specific class \(\mathcal{C} \) of random noise distributions. In Section 4.4 we will determine the form of all optimal symmetric random noise distributions that provide \(\varepsilon \)-differential privacy to a specific query function \(f \); to do so, we will take \(\mathcal{C} \) to be the class of all symmetric random noise distributions that provide \(\varepsilon \)-differential privacy for \(f \).

4.2 Characterization of differential privacy in terms of the density function

To build the optimal data-independent random noise distribution satisfying differential privacy, we will have to analyze the properties that such a distribution must satisfy. The first step to perform this analysis is to express the condition in the definition of differential privacy in terms of the random noise. Assuming a data-independent random noise \(Y \), if we let \(\kappa = f + Y \) then Inequality (2.1) becomes

\[
P(Y \in S - f(D)) \leq e^\varepsilon P(Y \in S - f(D'))
\]

As this inequality holds for all \(S \), we can think of \(S \) as being of the form \(S + f(D) \).

\[
P(Y \in S) \leq e^\varepsilon P(Y \in S + (f(D) - f(D')))
\] \hspace{1cm} (4.1)

For the case of absolutely continuous random noise, the characterization in Inequality (5.3) can be expressed in terms of the density function \(f_Y \) of \(Y \). To simplify the notation, we will assume that \(Y \) takes values in \(\mathbb{R} \). Consider that \(f_Y \) is continuous except for a finite or countable set of removable discontinuities and a finite or countable set of jump discontinuities. If the set of jump discontinuities is countable, we will assume that it has no accumulation points; that is, around any jump discontinuity point in \(\mathbb{R} \) we assume we can find an interval with no other jump discontinuity points. If \(f_Y \) has removable discontinuities we will modify \(f_Y \) to remove them. As
we are modifying f_Y in at most a countable set, the modification will not affect the distribution of Y.

Let x be a continuity point of f_Y such that $x + d$ is also a continuity point, where $d = f(D) - f(D')$ for some data sets D and D' that differ in one row. Let I be an interval of size m centered at x such that f_Y is continuous in I and $I + d$. We know that such I exists because there are no accumulation points in the set of jump discontinuities. We can upper- and lower-bound the integrals by multiplying the maximum and minimum by the size of the interval:

$$m \times \inf_I(f_Y) \leq \int_I f_Y \leq m \times \sup_I(f_Y)$$
$$m \times \inf_{I+d}(f_Y) \leq \int_{I+d} f_Y \leq m \times \sup_{I+d}(f_Y)$$

As f_Y is continuous in I, the limit of $\inf_I(f_Y)$ and $\sup_I(f_Y)$ as the size m of I goes to zero is $f_Y(x)$. In the same way, as f_Y is continuous in $I + d$, the limit of $\inf_{I+d}(f_Y)$ and $\sup_{I+d}(f_Y)$ as m tends to 0 is $f_Y(x + d)$. Dividing both expressions by m and taking limits as m goes to zero, we have

$$f_Y(x) \leq \lim_{m \to 0} \frac{\int_I f_Y}{m} \leq f_Y(x)$$
$$f_Y(x + d) \leq \lim_{m \to 0} \frac{\int_{I+d} f_Y}{m} \leq f_Y(x + d)$$

Hence, combining the above limits and Expression (5.3) we have

$$\frac{\int_I f_Y}{m} \downarrow \leq e^\varepsilon \times \frac{\int_{I+d} f_Y}{m} \downarrow f_Y(x) \leq e^\varepsilon \times f_Y(x + d)$$

Thus for all $x \in \mathbb{R}$ continuity point of f_Y, if $x + d$ is a continuity point we have

$$f_Y(x) \leq e^\varepsilon \times f_Y(x + d), \quad d = f(D) - f(D') \quad (4.2)$$

It is immediate to see that, if Inequality (4.2) holds, by integrating it over a set we recover Inequality (5.3). Hence, Inequality (4.2) is in fact an equivalent definition of differential privacy for the case of a.c. random noise.

4.3 Non-optimality of the Laplace noise

Since the inception of differential privacy up to now [42, 40], Laplace noise addition has been proposed as a method to achieve ε-differential privacy for an arbitrary function f in terms of its L_1-sensitivity. Also, as we said in the introduction, this practice has raised some criticisms.

In this section we show, for a univariate function f with values in \mathbb{R}, that the Laplace distribution is not optimal in the sense of Definition 8. To that end, we
build another distribution, based on the Laplace distribution, that still fulfills the conditions of differential privacy and has its probability mass more concentrated towards zero, that is, it is strictly smaller than Laplace according to Definition 6. Although the distribution we build is optimal, we leave the formal proof of this assertion for Section 4.4.

The basic idea is to concentrate the probability mass around 0 as much as possible. This can only be done to a certain extent, because Inequality (4.2) limits our capability to do so. For example, increasing the value of the density at a point \(x \) may increase the minimum value that \(f_Y \) may take in the interval \([x - \Delta f, x + \Delta f]\).

In the construction of the distribution we will split the domain of \(f_Y \) into intervals of the form \([i \Delta f, (i + 1) \Delta f]\) where \(i \in \mathbb{Z} \). For each interval we will redistribute the probability mass that \(f_X \) assigns to that interval. The new density function \(\tilde{f}_Y \) will take only two values (see Figure 4.1): \(\max_{[i \Delta f, (i + 1) \Delta f]} f_X \) at the portion of the interval closer to zero and \(\min_{[i \Delta f, (i + 1) \Delta f]} f_X \) at the portion of the interval farther from zero. The result is an absolutely continuous distribution where the probability mass has clearly been moved towards zero. We still have to check that it fulfills the conditions of \(\varepsilon \)-differential privacy.

![Figure 4.1: Construction of the new distribution based on the Laplace(0,1) distribution](image)

To simplify, we will detail the argument only for intervals at the right of zero (positive reals); the argument for intervals at the left of zero is symmetrical. The probability mass at \([i \Delta f, (i + 1) \Delta f]\) is \(e^{-i\varepsilon} \frac{1 - e^{-\varepsilon}}{2\Delta f} \). The maximum value of the density of the Laplace distribution, \(\frac{e^{-\varepsilon} - e^{-i\varepsilon}}{2\Delta f} \), occurs at the beginning of the interval and the minimum, \(\frac{e^{-i\varepsilon} - e^{-\varepsilon}}{2\Delta f} \), occurs at the end. Let us determine the size \(m_i \) of the interval portion where the new density will be set to the maximum.
Since the probability mass of the interval must be preserved, we have
\[
\frac{\varepsilon e^{-i\varepsilon} m_i}{2\Delta f} + \frac{\varepsilon e^{-(i+1)\varepsilon}}{2\Delta f} (\Delta f - m_i) = e^{-i\varepsilon} \frac{1 - e^{-\varepsilon}}{2}
\]
By solving for \(m_i\) in the above equality, we obtain:
\[
m_i = \frac{\Delta f}{\varepsilon(1 - e^{-\varepsilon})} (1 - e^{-\varepsilon} - \varepsilon e^{-\varepsilon})
\]
The important fact about \(m_i\) is that it does not depend on \(i\). Also, note that the maximum density of the current interval is equal to the minimum density of the previous interval. This way, by joining the portion of the previous interval which evaluates to the minimum with the portion of the current interval which evaluates to the maximum, we obtain an interval of size \((\Delta f - m_i) + m_i = \Delta f\) which evaluates to a constant density value (such joined intervals are depicted as horizontal segments in Figure 4.1). Thus, except for the maximum of the first interval, we have split the domain of the density function into intervals of size \(\Delta f\) such that the density function evaluates to \(\frac{\varepsilon e^{-i\varepsilon}}{2\Delta f}\). This clearly satisfies the density-based characterization of differential privacy specified by Inequality (4.2).

4.4 Optimal noise for univariate queries

Section 4.3 has shown that the Laplace noise distribution is not optimal to achieve differential privacy. A new distribution has been built that satisfies differential privacy and has its probability mass more concentrated towards zero. This section will determine the optimal data-independent absolutely continuous random noise distribution to achieve \(\varepsilon\)-differential privacy for any univariate function with finite \(L_1\)-sensitivity. Optimal noise distributions need not be symmetric; however, we focus on the symmetric case, because it is the most usual one.

Showing that optimal absolutely continuous noise distributions are of a certain form requires using some properties that will be stated as lemmata. Some of the proofs place additional regularity requirements on the noise distribution, beyond being absolutely continuous. These additional requirements are hardly a limitation as they are satisfied by any practical distribution, and can be overlooked if the reader is not interested in the proofs. In particular, we restrict the discussion to absolutely continuous random noises, \(Y\), whose density function, \(f_Y\), is continuous except for a finite or countable set of jump or removable discontinuities, with the set of jump discontinuities having no accumulation points. To avoid being unnecessarily cumbersome, we will not mention this again in the sequel.

It was shown in Section 4.2 that for a.c. noise distributions the definition of \(\varepsilon\)-differential privacy can be stated in terms of the density function. Now we show that if the inequality in terms of the probability function is satisfied at the extreme, it also must be the case for the inequality in terms of density functions.
Lemma 1. Let Y be an a.c. noise random variable that provides ε-differential privacy to a function f with a given L_1-sensitivity. Consider an interval $I = [i_0, i_1] \subseteq \mathbb{R}$. Then $P(Y \in I + \Delta f) = e^{-\varepsilon} P(Y \in I)$ if and only if $f_Y(x + \Delta f) = e^{-\varepsilon} f_Y(x)$, $\forall x \in I$, except at those points $x \in I$ such that f_Y is not continuous at x or at $x + \Delta f$. Similarly, $P(Y \in I - \Delta f) = e^{-\varepsilon} P(Y \in I)$ if and only if $f_Y(x - \Delta f) = e^{-\varepsilon} f_Y(x)$, $\forall x \in I$, except at those points $x \in I$ such that f_Y is not continuous at x or at $x - \Delta f$.

Proof. We will prove the first claim; the second one is completely symmetric. The proof of (\Longleftrightarrow) is straightforward by computing the probability as the integral of the density function. We will focus on the (\implies) implication. By the ε-differential privacy condition we know that $f_Y(x + \Delta f) \geq e^{-\varepsilon} f_Y(x)$. Assuming that the implication does not hold, a continuity point $a \in I$ exists such that $f_Y(a + \Delta f) > e^{-\varepsilon} f_Y(a)$. Because of the constraints on the set of discontinuity points, an interval $[a_0, a_1] \subseteq I$ exists such that $f_Y(x + \Delta f) > e^{-\varepsilon} f_Y(x) \forall x \in [a_0, a_1]$. Now we can decompose the probability as follows

\[
P(Y \in I) = \int_{i_0}^{i_1} f_Y(x) \, dx + \int_{i_0}^{i_1} f_Y(x) \, dx + \int_{i_1}^{i_1} f_Y(x) \, dx
\]

\[
P(Y \in I + \Delta f) = \int_{i_0}^{i_0} f_Y(x + \Delta f) \, dx + \int_{i_0}^{i_1} f_Y(x + \Delta f) \, dx + \int_{i_1}^{i_1} f_Y(x + \Delta f) \, dx
\]

Since $f_Y(a + \Delta f) \geq e^{-\varepsilon} f_Y(a)$ and, for $x \in [a_0, a_1]$, $f_Y(a + \Delta f) > e^{-\varepsilon} f_Y(a)$, we have $P(Y \in I + \Delta f) > e^{-\varepsilon} P(Y \in I)$, which is a contradiction that comes from the assumption that a continuity point $a \in I$ exists such that $f_Y(a + \Delta f) > e^{-\varepsilon} f_Y(a)$. \square

We are trying to find the optimal a.c. noise distribution that provides ε-differential privacy. The goal is to concentrate as much probability mass around the mean as possible; ε-differential privacy limits our capability to do so. We will see how the probability mass must be distributed to achieve the optimal random noise.

Lemma 2. Let Y be a symmetric a.c. noise random variable with zero mean that satisfies ε-differential privacy for a function f. If Y is optimal at providing ε-differential privacy, then for all $i \in \mathbb{Y}$

\[
P(Y \in [(i + 1)\Delta f, (i + 2)\Delta f]) = e^{-\varepsilon} P(Y \in [i\Delta f, (i + 1)\Delta f])
\]

\[
P(Y \in [-(i + 2)\Delta f, -(i + 1)\Delta f]) = e^{-\varepsilon} P(Y \in [-i\Delta f, -(i + 1)\Delta f])
\]

The second claim is completely symmetric to the first one; a symmetric distribution that satisfies the first claim will also satisfy the second one. We will show that, if the claims do not hold, we can build another distribution that fulfills ε-differential privacy and has its probability mass more concentrated towards zero.
Proof. We will assume that the claim for \(Y \) does not hold and we will build another distribution \(\tilde{Y} \) that provides \(\varepsilon \)-differential privacy and has \(\tilde{Y} \leq Y \). If the claim held, by Lemma 1, it would be \(f_Y(x + \Delta f) = e^{-\varepsilon} f_Y(x) \), \(\forall x \in \mathbb{R} \) where \(x + \Delta f \) are continuity points. Let \(i_0 \geq 0 \) be the index of the first interval \([i \Delta f, (i + 1) \Delta f]\) such that \(f_Y(x + \Delta f) = e^{-\varepsilon} f_Y(x) \) does not hold for all \(x \) in the interval. Let \(\tilde{f}_{i_0} \) be the function defined as follows

\[
\tilde{f}_{i_0}(x) = \begin{cases}
 e^{-\varepsilon} f_Y(x + \Delta f) & x \in [- (i_0 + 1) \Delta f, - \Delta f] \\
 f_Y(x) & x \in [- \Delta f, + \Delta f] \\
 e^{-\varepsilon} f_Y(x - \Delta f) & x \in [\Delta f, (i_0 + 1) \Delta f]
\end{cases}
\]

Since \(\tilde{f}_{i_0} \) has been defined in such a way that the decrease of the density between points at distance \(\Delta f \), as we move away from zero, is maximum, it is clear that we will have \(f_Y > \tilde{f}_{i_0} \). As both \(f_Y \) and \(\tilde{f}_{i_0} \) are symmetric, we will only consider the points on the right of zero; the same transformations must be applied to the points on the left. For each \(x \in [\Delta f, (i_0 + 1) \Delta f] \) we will consider \(e_x = \tilde{f}_{i_0}(x) - f_Y(x) \), the excess density of \(f_Y \) over \(\tilde{f}_{i_0} \). We will build another function \(f_{i_0} \) by distributing \(e_x \) among the points \(\{x + i \Delta f : 0 \leq i \leq i_0 \} \) in such a way that the new function concentrates as much as possible around the mean, and \(\varepsilon \)-differential privacy is satisfied. The density added to \(\tilde{f}_{i_0} \) at \(x + i \Delta f \) will be \(\alpha_x e^{-i \varepsilon} \) where \(\alpha_x \) is determined by imposing \(\sum_{i=0}^{i_0} \alpha_x e^{-i \varepsilon} = e_x \). Note that \(f_{i_0} \) still satisfies that images of points at distance \(\Delta f \) exponentially decrease as we move away from zero, that is \(f_{i_0}(x + \Delta f) = e^{-\varepsilon} f_{i_0}(x) \).

It is important to note that the new function \(f_{i_0} \) satisfies \(\varepsilon \)-differential privacy in the range \([-i_0 \Delta f, i_0 \Delta f]\). We will show that \(\varepsilon \)-differential privacy is satisfied in the interval \([-\Delta f, \Delta f]\); then by using that the images by \(f_{i_0} \) of points at distance \(\Delta f \) exponentially decrease as we move away from zero, \(\varepsilon \)-differential privacy will be satisfied in \([-i_0 \Delta f, i_0 \Delta f]\). In fact we will only check that \(\varepsilon \)-differential privacy is satisfied in \([0, \Delta f]\); if it is so, by the symmetry of \(f_{i_0} \), differential privacy will be satisfied in the whole interval \([-\Delta f, \Delta f]\).

We must check that \(f_{i_0}(x + \delta) \leq e^\varepsilon \times f_{i_0}(x) \) for all \(x \in [0, \Delta f] \) and all \(\delta \in [-\Delta f, \Delta f] \). Let us assume that there exist \(x \in [0, \Delta f] \) and \(\delta \in [-\Delta f, \Delta f] \) such that the condition is not satisfied, that is, \(f_{i_0}(x + \delta) > e^\varepsilon f_{i_0}(x) \). If \(x + \delta \in [\Delta f, 2 \Delta f] \), by multiplying by \(e^{-(i_0 - 1) \varepsilon} \) we have that \(x + (i_0 - 1) \Delta f \), the corresponding point in the interval \([(i_0 - 1) \Delta f, i_0 \Delta f]\), does not fulfill the \(\varepsilon \)-differential privacy condition, but this is not possible as we had \(f_Y(x + i_0 \Delta f) \leq e^\varepsilon f_Y(x + (i_0 - 1) \Delta f) \) and when building \(f_0 \) we have increased the value at \(x + (i_0 - 1) \Delta f \) and decreased the value at \(x + i_0 \Delta f \). If \(x + \delta \in [0, \Delta f] \), by multiplying by \(e^{-i \varepsilon} \) we have that the corresponding point in the interval \([i_0 \Delta f, (i_0 + 1) \Delta f]\) does not satisfy the differential privacy condition. This is impossible as we know that \(\tilde{f}_{i_0} \) and \(f_Y \) do satisfy it and that \(f_{i_0} \) lies between them; therefore \(f_{i_0} \) must also satisfy the differential privacy condition. In the case \(x + \delta \in [-\Delta f, 0] \), the justification is different. The point \(-x - \delta \) belongs to the interval \([0, \Delta f]\) and, by the symmetry of \(f_{i_0} \), we have \(f_{i_0}(-x - \delta) = f_{i_0}(x + \delta) \); therefore, as we have already checked that the condition is satisfied when \(x + d \in [0, \Delta f] \), it must also be satisfied when \(x + d \in [-\Delta f, 0] \).
Now we iterate this process and define functions $f_i, i \in \mathbb{N}$. To be able to do this, it is important to note that, when defining f_i, we are reducing the density amount in the interval $[i\Delta f, (i + 1)\Delta f]$ and that f_{i+1} is defined in $[(i + 1)\Delta f, (i + 2)\Delta f]$ by reducing the value in the previous interval as much as possible while still satisfying ε-differential privacy. This means that $f_Y > \tilde{f}_{i+1}$ at $[(i + 1)\Delta f, (i + 2)\Delta f]$ and thus we can compute the excess and distribute it among the corresponding points in the previous intervals.

The resulting \tilde{f}_∞ satisfies the ε-differential privacy condition. By construction it also satisfies $f_Y(x + \Delta f) = e^{-\varepsilon}f_Y(x) \forall x \in \mathbb{R}$ which by integration over the desired intervals leads to the claim of the lemma. Moreover, as all the probability mass translation has been done towards zero, we have $\tilde{Y} \leq Y$.

Corollary 1. Let Y be a symmetric a.c. noise random variable with zero mean that provides ε-differential privacy to a function f. If Y is optimal at providing ε-differential privacy then

$$f_Y(x + \Delta f) = e^{-\varepsilon}f_Y(x) \quad \forall x \geq 0$$

$$f_Y(x - \Delta f) = e^{-\varepsilon}f_Y(x) \quad \forall x \leq 0$$

when the points x and $x + \Delta f$ in the first equality above and x and $x - \Delta f$ in the second equality are continuity points of f_Y.

Proof. The proof follows from Lemmata 1 and 2.

Now we will show that for any symmetric a.c. noise distribution that provides ε-differential privacy for a function f we can find another noise distribution, similar to the one used in the proof that the Laplace distribution is not optimal, that performs at least as well according to Definition 6.

Theorem 1. Let Y be an a.c. noise random variable with zero mean that provides ε-differential privacy to a query function f. Then there exists a noise random variable \tilde{Y} with density function $f_{\tilde{Y}}$ of the form

$$f_{\tilde{Y}}(x) = \begin{cases}
M_0e^{-i\varepsilon} & x \in [-d - (i + 1)\Delta f, -d - i\Delta f], i \in \mathbb{N} \\
M_0 & x \in [-d, 0] \\
M_0 & x \in [0, d] \\
M_0e^{-i\varepsilon} & x \in [d + i\Delta f, d + (i + 1)\Delta f], i \in \mathbb{N}
\end{cases}$$

that provides ε-differential privacy to f and satisfies $\tilde{Y} \leq Y$ as per Definition 6.

Proof. We will assume that Y is optimal and that its density function is not of the form of $f_{\tilde{Y}}$ for any M_0 and d. The goal is to build another distribution \tilde{Y} from Y such that the density $f_{\tilde{Y}}(x)$ is as stated above and satisfies $\tilde{Y} \leq Y$. Note that, from
the definition of $f_Y(x)$, the condition of ε-differential privacy immediately holds for f.

Since Y fulfills the conditions of Corollary 1, we have

$$f_Y(x + \Delta f) = e^{-\varepsilon} f_Y(x) \quad \forall x \geq 0$$
$$f_Y(x - \Delta f) = e^{-\varepsilon} f_Y(x) \quad \forall x \leq 0$$

Now we apply the same procedure we used in Section 4.3 for the Laplace noise. First we split the domain of f_Y into intervals of the form $[i\Delta f, (i+1)\Delta f]$ where $i \in \mathbb{Z}$. At a given interval, we redistribute the probability mass that f_Y assigns to that interval. The new density function $\tilde{f}_Y(x)$ takes only two values: $\max_{[i\Delta f, (i+1)\Delta f]} f_Y(x)$ at the portion of the interval closer to zero and $\min_{[i\Delta f, (i+1)\Delta f]} f_Y(x)$ at the portion of the interval farther from zero. The result is an absolutely continuous distribution \tilde{Y} with $\tilde{Y} \leq Y$.

To make sure that the distribution \tilde{Y} has the specified form, and thus satisfies ε-differential privacy, it remains to check that the length of the interval where we assign maximum value is constant across intervals.

The probability mass at $[i\Delta f, (i+1)\Delta f]$ is $e^{-i\varepsilon} \frac{1 - e^{-\varepsilon}}{2}$. It is clear from $f_Y(x + \Delta f) = e^{-\varepsilon} f_Y(x), \forall x \geq 0$, that the maximum and the minimum of each interval, M_i and m_i respectively, satisfy $M_i = e^{-i\varepsilon} M_0$ and $m_i = e^{-i\varepsilon} m_0$. Let d_i be the size of the interval where the new density evaluates to the maximum. We have

$$e^{-i\varepsilon} M_0 \times d_i + e^{-i\varepsilon} m_0 \times (\Delta f - d_i) = e^{-i\varepsilon} \frac{1 - e^{-\varepsilon}}{2}$$

This formula leads to $d_i = \frac{1 - e^{-\varepsilon} - 2m_0 \Delta f}{2(M_0 - m_0)}$ which does not depend on i, as we wanted to see.

Theorem 1 states that, for any random noise that provides ε-differential privacy to f, we can find another random noise distribution, of the specified form, that is smaller. However, we still have to prove that such a distribution is optimal.

Theorem 2. Let Y be a random noise distribution with a density function f_Y of the form specified in Theorem 1. Then Y is optimal at providing ε-differential privacy.

Proof. To prove that Y is optimal, we have to show that if we move some probability mass of Y towards zero then ε-differential privacy no longer holds. We only show it for the probability mass to the right of zero; a symmetric argument can be used for the probability mass to the left of zero.

First of all, we must show that it is not possible to move any probability mass from an interval $I_i = [i\Delta f, (i+1)\Delta f]$ to an interval $I_j = [j\Delta f, (j+1)\Delta f]$ with $0 \leq j < i$. This is straightforward: as the density f_Y specified in Theorem 1 has the maximum decrease rate between consecutive intervals compatible with the constraints of ε-differential privacy, moving probability mass from I_i to I_j would break ε-differential privacy.
To conclude the proof, we need to check that it is not possible to redistribute the probability mass within an interval I_i so that it gets closer to zero. Within the interval I_i, the density function f_Y takes values $M_0 \exp(-i \varepsilon)$ at I^*_l (the left portion of the interval) and $M_0 \exp(-(i+1) \varepsilon)$ at I^*_r (the right portion of the interval). We cannot move any probability mass from I^*_r towards zero, because the density would go below $M_0 \exp(-(i+1) \varepsilon)$ and, thus, ε-differential privacy would not hold. We cannot move any probability mass from I^*_l towards zero, because the density would go above $M_0 \exp(-i \varepsilon)$ and, thus, ε-differential privacy would not hold.

Although the theorems above are stated in terms of a fixed query function f, the optimal distribution depends only on Δf; hence, all query functions with the same L_1-sensitivity share the same optimal noise distribution.

The values of M_0 and d can be freely chosen according to the user’s preferences. In fact the two parameters M_0 and d of the optimal family of distributions can be reduced to one because

\[d = \frac{1 - e^{-\varepsilon} - 2M_0 e^{-\varepsilon} \Delta f}{2(1 - e^{-\varepsilon})M_0} \]

For instance, let us assume that the user prefers to minimize the noise variance. We compute the variance of candidate optimal distributions in terms of the parameters d and M_0, and find the values that yield the minimum:

\[V(Z) = 2M_0 \int_0^d x^2 \, dx + 2M_0 e^{-\varepsilon} \sum_{i=0}^{\infty} e^{-i \varepsilon} \int_{d+i \Delta f}^{d+(i+1) \Delta f} x^2 \, dx \]

The variance can be computed by performing the integrals and calculating the sum of the power series. Figure 4.2 shows the variance obtained in terms of the parameter d for the case of $\varepsilon = 1$ and $\Delta f = 1$. In this case, the minimum is reached at $d = 0.416737$ and the variance is 1.9181. This is below 2, the variance of the Laplace noise with scale parameter 1.

Table 4.1 shows a comparison of the variance achieved by the Laplace distribution and the optimal a.c. random noise with minimum variance, for different values of ε when $\Delta f = 1$. The table shows that the Laplace variance is only slightly greater than the minimum variance; we may say that, for a single univariate query, although the Laplace distribution is not optimal, it is near-optimal. Therefore, if the utility of the differentially private answer to a single univariate query obtained using Laplace noise is poor, not much improvement can be expected from using a data-independent variance-optimal random noise distribution.

Assume now that the user wants the noise distribution that minimizes the size of the symmetric confidence interval around the differentially private query answer that contains the real query value at 95% confidence level. In this case, we must solve a minimization problem, as before, but now the objective function is the size of the
Chapter 4 Optimal data-independent noise for ε-differential privacy

Figure 4.2: Variance for $\varepsilon = 1$ and $\Delta f = 1$

Table 4.1: Variance comparison between Laplace random noise and a.c. optimal random noise with minimum variance, for $\Delta f = 1$

	$\varepsilon = 0.1$	$\varepsilon = 0.5$	$\varepsilon = 1$
Laplace distribution	200.00	8.00	2.00
Optimal a.c. noise with min. var.	199.92	7.92	1.92

confidence interval in terms of the parameters d and M_0. Figure 4.3 shows the size of the confidence interval, when $\Delta f = 1$ and $\varepsilon = 1$, in terms of parameter d. The minimal length for this case is achieved for $d = 0.993$, approximately; in general, however, the actual value of d where the minimum is reached depends on Δf and ε. Table 4.2 shows a comparison between the optimal lengths of the confidence intervals at 95% confidence level for several values of ε when $\Delta f = 1$. As expected, the results obtained from the Laplace distribution are worse but close to those obtained using the optimal distribution.

Table 4.2: Comparison of the size of the symmetric 95% confidence interval between Laplace random noise and a.c. optimal random noise with minimum confidence interval, for $\Delta f = 1$

	$\varepsilon = 0.1$	$\varepsilon = 0.5$	$\varepsilon = 1$
Laplace distribution	59.91	11.98	5.99
Optimal a.c. noise with min. conf. int.	59.91	11.97	5.98
4.5 Optimal noise for multivariate queries

In Section 4.4 we worked out the optimal a.c. random noise for a query with values in \mathbb{R}. We deal here with multiple queries or with a single query whose response is a value in \mathbb{R}^d: both cases are equivalent, because d queries with answers in \mathbb{R} can be viewed as a single query with answer in \mathbb{R}^d. Determining the form of all optimal multivariate a.c. random noises is out of scope; we restrict to a class of noise distributions whose density consists of several steps (as was the case for optimal univariate distributions) and show that they are optimal. The optimal distributions constructed will be shown to be substantially better than Laplace. Hence, \textit{while Laplace is near-optimal in the univariate case, in general it is far from optimal for multivariate or multiple queries.}

We will be less formal here and, to simplify even more, examples will be presented for the case of two queries/two dimensions, that is, $d = 2$; generalization to arbitrary d is easy.

For the case of a.c. random noise for a single query, it was shown in Section 4.2 that the ε-differential privacy condition can be expressed in terms of the density function. The result is easily generalizable to greater dimensions, and therefore here we can also express the condition in terms of the density function.

\textbf{Proposition 1.} Let $Y = (Y_1, \ldots, Y_d)$ be an absolutely continuous random noise that provides ε-differential privacy to a query $f : D \rightarrow \mathbb{R}^d$. Then ε-differential privacy can be characterized in terms of the density function as:

$$f_Y(x) \leq e^\varepsilon \times f_Y(x + d), \quad d = f(D) - f(D')$$

for all x and $x + d$ continuity points of f_Y, where D and D' differ in one row.

Similarly to the case of a single univariate query, we will construct a noise density
with several steps, which reaches its maximum all over a set that contains zero and decreases by a factor $e^{-\varepsilon}$ as we move away from it.

The main difference with other, non-optimal distributions, such as multivariate Laplace noise, is that the various components (dimensions) of the random noise do not need to be independent. This allows more freedom in the definition of the distribution, which we will employ to achieve a finer calibration to the query function. This is illustrated below in an example, but prior to it we define a set that will be repeatedly used in the remainder of this section.

Definition 9. Let $f: D \rightarrow \mathbb{R}^d$ be a query function. The set of differences between neighbor data sets is defined as

$$S_f = \bigcup_{D,D'} \langle 0, f(D) - f(D') \rangle$$

where D and D' data sets that differ in at most one row.

The set S_f contains all possible variations in f when one record changes. The boundary of S_f can be seen as a generalization of the L_1-sensitivity used in the univariate case. Instead of summarizing the variability of f with a single figure, as L_1-sensitivity does, S_f keeps track of the maximum variability in each direction.

Example 4. Consider a query function $f = (f_1, f_2)$ such that $S_f = [-1, 1] \times [-1, 1]$. From Definition 4, the L_1-sensitivity of f is

$$\Delta f = \sup_{D,D'} \| f(D) - f(D') \|_1 = \sup_{D,D'} (|f_1(D) - f_1(D')| + |f_2(D) - f_2(D')|) = 1 + 1 = 2$$

As stated in Proposition 1, the density of the random noise, f_Y, in each of the points of the set $[-1, 1] \times [-1, 1]$ must be in the range $[e^{-\varepsilon}f_Y(0), e^{\varepsilon}f_Y(0)]$. When using independent Laplace-distributed components with zero mean and $\Delta f/\varepsilon$ scale parameter, the top value for the density is reached at zero, and it decreases exponentially as we move away from it. Points with density $e^{-\varepsilon}f_Y(0)$ are those that have L_1-norm equal to Δf. Figure 4.4 depicts S_f as a gray shaded box. If all points in S_f are protected with independent Laplace-distributed random noise components, all points within $[-1, 1] \times [-1, 1]$ must have density within the range $[e^{-\varepsilon}f_Y(0), f_Y(0)]$.

As it can be appreciated in Figure 4.4 to satisfy ε-differential privacy at points $(1,1), (1,-1), (-1,-1)$ and $(-1,1)$ with independent Laplace noise addition for each dimension, we are overprotecting those points with L_1-norm less than or equal to $\Delta f = 2$ that do not belong to $[-1, 1] \times [-1, 1]$; the density at these points is greater or equal to $e^{-\varepsilon}f_Y(0)$, while this is not a requirement of ε-differential privacy (which only requires a density greater or equal to $e^{-\varepsilon}f_Y(0)$ for the points in S_f).

The ratio between the size of the overprotected region and the size of S_f may become still larger if the variability of one of the components is greater than the variability of the other. Figure 4.5 illustrates the case of S_f being the set $[-1, 1] \times [-10, 10]$.

52
In the construction of the piecewise constant noise density, we will fix a set $S_0 \subset S_f$ with $\langle 0, x \rangle \subset S_0$ for all $x \in S_0$, where the maximum density will be reached. From this S_0, we will define S_i as the set that contains the points that are reachable from S_{i-1} in one step, that is, by adding a value from S_f:

$$S_i = \{ x \in \mathbb{R}^d | x = z + \delta, z \in S_{i-1}, \delta \in S_f \} \setminus \cup_{j=0}^{i-1} S_j$$

The density value over the points in S_i will be $e^{-\epsilon}$ times the density value over the points in S_{i-1}. Therefore, for x in S_i it will be

$$f_Y(x) = Me^{-\epsilon \cdot i}$$

The value M must be calibrated so that the total probability equals 1. Such calibration is possible because the density function decreases exponentially as i grows.

The following theorem shows that the constructed distribution is optimal at providing ϵ-differential privacy to the function f.

Theorem 3. Let $f = (f_1, \ldots, f_d)$ be a query function with values in \mathbb{R}^d. Let $Y = (Y_1, \ldots, Y_d)$ be an a.c. random noise with density

$$f_Y(x) = \sum_{i \geq 0} M \exp(-i\epsilon) I_{S_i}(x)$$
Figure 4.5: Achieving ε-differential privacy by Laplace noise addition for $S_f = [-1, 1] \times [-10, 10]$ The shaded box represents the possible differences in the query result between data sets that differ in one record. Differential privacy requires the density of the noise in the shaded box to be within a factor in $[\exp(-\varepsilon), \exp(\varepsilon)]$ of the density at zero. The square that encloses the shaded box represents the points that satisfy the previous condition when using Laplace noise.

where $\mathbb{I}_{S_i}(x)$ is the indicator function for set S_i and M has been calibrated to adjust the total probability mass to one. If the following conditions hold, then Y is optimal at providing ε-differential privacy to f:

- $S_0 \subset S_f$
- $(0, x) \subset S_0$ for all $x \in S_0$
- $S_{i+1} = (S_i + S_f) \setminus \bigcup_{j=0}^{i-1} S_j$ for all $i \geq 0$

Proof. First of all we check that Y satisfies the ε-differential privacy condition as stated in Proposition [1]. Consider $x \in \mathbb{R}^d$ and $\delta \in S_f$. The sets S_i form a cover of \mathbb{R}^d; therefore we have $x \in S_i$ for some $i \in \mathbb{N}$. For $x + \delta$ we have one of the following possibilities: $x + \delta \in S_{i-1}$, $x + \delta \in S_i$, or $x + \delta \in S_{i+1}$. The value of the density function will, respectively, be $Me^{-(i-1)\varepsilon}$, $Me^{-i\varepsilon}$, or $Me^{-(i+1)\varepsilon}$; in all three cases, the ε-differential privacy condition is satisfied.

To show that Y is optimal at providing ε-differential privacy to f we have to check that if we move some probability mass towards zero, the resulting random noise does not provide ε-differential privacy to f. We partition \mathbb{R}^d and check, for each set...
in the partition, that it is not possible to move any probability mass towards zero and still satisfy ε-differential privacy. The partition is $\{S_i^f, i \geq 1\}$ where $S_1^f = S_f$ and $S_i^{f+1} = (S_i^f + S_f) \setminus \bigcup_{j=1}^{i} S_j^f$.

We start by checking that it is not possible to move any probability mass contained in S_1^f towards zero and still satisfy ε-differential privacy. The density f_Y in S_1^f can be expressed as

$$f_Y(x) = M \times \mathbb{1}_{S_0^f}(x) + M \exp(-\varepsilon) \times \mathbb{1}_{S_1^{f \setminus S_0^f}}(x)$$

Note that f_Y already has the maximum change in the density that ε-differential privacy allows: $\exp(\varepsilon)$. In other words, if we increase the density above M or decrease it below $M \times \exp(-\varepsilon)$, ε-differential privacy will not hold. Let $U \subset S_1^f$ be the set that will have its probability mass reduced. It must be $U \subset S_0^f$; otherwise some points would have their density reduced below $M \times \exp(-\varepsilon)$, which is not possible. Now, as we have $(0, x) \subset S_0^f$ for all $x \in S_0^f$ (i.e for any point in S_0 the points closer to zero are already in S_0), if we move probability mass from U towards zero, this probability mass must go to a set of points U' contained in S_0. This way the density of points in U' would be greater than M, which would also break ε-differential privacy.

To conclude the proof we have to check that it is not possible to move any probability mass belonging to a set S_i^{f+1} with $i \geq 1$ towards zero and still satisfy ε-differential privacy. Note that the density function f_Y decreases as fast as possible as we move away from S_0^f: according to proposition Proposition 1 the density at a point y reachable from a point x by adding a value from S_f must satisfy $f_Y(y) \geq \exp(-\varepsilon)f_Y(x)$. We have set the density f_Y at S_{i+1}^f to be $\exp(-\varepsilon)$ times the density at S_i^f; that is, the minimum value that satisfies ε-differential privacy.

To move some probability mass belonging to S_i^{f+1} towards zero we must select a set $U \subset S_i^{f+1}$ and reduce its probability mass. In other words, the density function in the points in U is to be reduced. But this is not possible, if we want to preserve ε-differential privacy.

Example 5. Let f be a function with $S_f = [-1, 1] \times [-10, 10]$, and take $\varepsilon = 1$. Hence, the sensitivity of f is $\Delta f = 1 + 10 = 11$ and ε-differential privacy with two independent Laplace-distributed random noise components requires these components to have zero mean and $11/\varepsilon$ scale parameter. Our proposal to achieve ε-differential privacy is to use the piecewise constant density construction by setting $S_0^f = [-0.1, 0.1] \times [-1, 1]$. Figure 4.6 shows the density function of both distributions. Note that with the Laplace distribution the noise densities for both components of f decrease at the same rate, even if the second component of f has ten times the sensitivity of the first one.

It is easily appreciated in the figure that the piecewise constant distribution has much more probability concentrated around zero, which agrees with our optimality definition in Section 4.1. To compare both distributions, we compute the variance.
Figure 4.6: Density functions of the Laplace and piecewise constant noise distributions required to achieve 1-differential privacy for a bivariate function $f = (f_1, f_2)$ with $\Delta f_1 = 1$ and $\Delta f_2 = 10$ of the components, and the minimal size of a confidence region at some confidence levels.

For Laplace-distributed random noise (Y_1, Y_2), the computations are easy. Since we know that Y_1 and Y_2 follow a Laplace distribution, their variance is twice the square of the scale factor

\[
Var(Y_1) = 242
\]
\[
Var(Y_2) = 242
\]

With the Laplace-distributed random noise (Y_1, Y_2) points with equal L_1-norm are assigned the same noise density. Therefore the confidence region with minimal size, for a given confidence level is of the form $\{x \mid \|x\| \leq \alpha\}$. Table 4.3 shows the size of the confidence region for several confidence levels.
4.5 Optimal noise for multivariate queries

Table 4.3: Minimal size of the confidence region for two-dimensional Laplace-distributed random noise with scale parameter 11

Confidence level	α	Size
0.99	73.02	10663
0.95	52.18	5445
0.90	42.79	3662

Computing the variance of the components of the piecewise constant distribution will be done in terms of the sets S_f and S_0. If we let $S_f = [-s_1, s_1] \times [-s_2, s_2]$ and $S_0 = [-z_1, z_1] \times [-z_2, z_2]$ then the density of the components Y_1 and Y_2 is

$$f_{Y_1}(x) = 2Me^{-i_1e} \times (z_2 + s_2i_1 + s_2/(e^e - 1))$$
$$f_{Y_2}(x) = 2Me^{-i_2e} \times (z_1 + s_1i_2 + s_1/(e^e - 1))$$

where $i_1 = \lfloor (|x| - z_1)/s_1 + 1 \rfloor$ is the index of the first set S_i such that $(x, 0)$ belongs to it, $i_2 = \lfloor (|x| - z_2)/s_2 + 1 \rfloor$ is the index of the first set S_i such that $(0, x)$ belongs to it, and M is a constant adjusted so that the random distribution (Y_1, Y_2) has probability mass one. Figure 4.7 compares the first and second components of the Laplace and the piecewise constant random noise. Note that the piecewise constant distribution seems to slightly underperform Laplace for the second component, but it clearly outperforms Laplace for the first component.

Since the mean of the components is zero, their variance can be computed by integrating $\int_{\mathbb{R}} x^2 f_{Y_i}(x) dx$, which results in:

$$Var(Y_1) = 4.0338$$
$$Var(Y_2) = 403.38$$

Compared to the variances obtained for the Laplace-distributed random noise, we observe that the variance for Y_2 when using the piecewise constant distribution is about twice as big as when using Laplace distribution. On the other side, the variance of Y_1 is much smaller when using the piecewise constant distribution. These results are consistent with the previous observation about Figure 4.7.

We compute now confidence regions for the piecewise constant distribution. To obtain a confidence region with minimal size, we make sure to include all the points in S_i before including any point in S_{i+1}. We will consider confidence regions of the form $[-z_1 - \beta s_1, z_1 + \beta s_1] \times [-z_2 - \beta s_2, z_2 + \beta s_2]$. Table 4.4 shows the confidence regions obtained. By comparing with Table 4.3, it can be observed in the table that the minimal size for a confidence level is much smaller when using the piecewise constant distribution.
Figure 4.7: Comparison of the Laplace and the piecewise constant random noise distributions required to achieve ε-differential privacy for a bivariate function $f = (f_1, f_2)$ with $\Delta f_1 = 1$ and $\Delta f_2 = 10$. Top, comparison for the first component; bottom, comparison for the second component.

Note that in Example 4 we considered S_f to be the product of two intervals. This case models the situation where the query function components are independent, in the sense that we can achieve any possible combination of values for the difference of the query function. That is, $S_f = [-1, 1] \times [-1, 1]$ means that, for any $[\delta_1, \delta_2] \in [-1, 1] \times [-1, 1]$, we can find two data sets D and D' differing in one row such that $f_1(D) - f_1(D') = \delta_1$ and $f_2(D) - f_1(D') = \delta_2$. Taking S_f to be the product of intervals is the natural option in the case of an interactive mechanism [42], where we get to know each of the components of the query function (i.e. each successive query if we view the multivariate query as a group of queries) at different times. In an interactive mechanism it is not possible to construct the distribution that best matches the multiquery function f, because at the time of the first query we only know f_1. Clearly, it is possible to achieve a better noise calibration for a non-
Table 4.4: Minimal size of the confidence region for the piecewise constant noise distribution needed for a bivariate function $f = (f_1, f_2)$ with $\Delta f_1 = 1$ and $\Delta f_2 = 10$

Confidence level	β	Size
0.99	6.99	1790.2
0.95	4.79	916.6
0.90	3.90	611.2

interactive query than for an interactive one, but using independent Laplace noise addition for each component fails to exploit non-interactivity.

4.6 Conclusions

Our goal in this chapter was to analyze the optimality of data-independent random noise distributions to achieve ε-differential privacy. The first step was to define the concept of optimal distribution as a distribution that concentrates the probability around zero as much as possible while ensuring differential privacy. This criterion led to a family of optimal distributions, which can be refined by using additional criteria. In the examples, we have computed optimal distributions using as additional criteria the minimization of the response variance or the minimization of the size of the confidence interval around the response.

For a single univariate query, the optimal absolutely continuous noise distributions to achieve ε-differential privacy were built; as a result, we obtained a family of piecewise constant density functions. The comparison with the Laplace noise distribution showed that Laplace performs only slightly worse than the optimal absolutely continuous distributions. Comparison figures were provided for the variance and the size of the confidence interval.

For a multivariate query or multiple queries, a piecewise constant construction similar to that of a single query was presented. Comparisons in terms of variance and of size of the minimal confidence interval showed that, for multivariate and/or multiple queries, the Laplace distribution is far from being optimal. Given the popularity of the Laplace distribution, this is a very relevant result. We also observed that the proposed mechanism provides better responses for non-interactive queries, as it is able to exploit the global knowledge on the query function. This is not possible for mechanisms that assume the components of the query function to be independent, as it is the case for Laplace noise addition.
5 Sensitivity-independent differential privacy via knowledge refinement

Differential privacy states that the probability for a query response to belong to any subset of the query domain must be similar regardless of presence or absence of any specific individual in the data set (see Definition 3). A usual approach to satisfy such condition is noise addition: first, the real value of the query response is computed and, then, a random noise is added to mask it. A Laplace distribution with zero mean and a scale parameter that depends on the variability of the query function is commonly used for noise addition.

Our proposal is not based on masking the true value of the response by adding some noise, but on modifying the prior knowledge that the database user has on the response. When a query is submitted to the database, the user submits at the same time her knowledge/beliefs about the response. We think of this prior knowledge as the probability distribution that the user expects for the response.

Our mechanism is shown to have several advantages over noise addition: it does not require complex computations, and thus it can be easily automated; it lets the user exploit her prior knowledge about the response to achieve better data quality; and it is independent of the sensitivity of the query function (although this can be a disadvantage if the sensitivity is small). Furthermore, we give a general algorithm for knowledge refinement and we show some compounding properties of our mechanism for the case of multiple queries; also, we build an interactive mechanism on top of knowledge refinement and we show that it is safe against adaptive attacks. Finally, we give a quality assessment for the responses to individual queries.

The contents of this chapter have been published in [88, 90].

5.1 Refining prior knowledge

Our proposal to attain ϵ-differential privacy is not based on masking the true value of the response by adding some noise, but on modifying the prior knowledge of the database user on the response. When a query is submitted to the database, the user submits at the same time her knowledge/beliefs about the response. We think of this prior knowledge as the probability distribution that the user expects for the response. For example, in case the user has absolutely no idea about the
possible result for a query f, the probability distribution to be used is the uniform
distribution over the range of f (assuming that this range is bounded). The access
mechanism modifies this prior knowledge to fit the real value of the response as
much as possible given the constraints imposed by differential privacy.

Definition 10. Given a query function f, the *prior knowledge* about the response
$f(D)$ is the probability distribution P_f, defined over $\text{Range}(f)$, that the user expects
for the response to f.

The more concentrated the probability mass of P_f around the real value of the
response to f, the more accurate is the user’s prior knowledge. In general, as the
user knows the query f and the set of possible databases D, one may expect her to
have some prior knowledge about the response $f(D)$. The better the knowledge the
user has on the actual database D, the more accurate is the prior knowledge the
user can provide to the response mechanism. If the user’s prior knowledge is wrong,
the accuracy of the response may suffer. However, whatever the prior knowledge,
the refinement procedure guarantees that the output is more accurate than the prior
knowledge.

Some users may be reluctant to provide detailed prior knowledge, because they
regard doing so as giving information about themselves to the database. We should
usually think of the prior knowledge as the information about the response that
is publicly available. Providing the database with such a prior knowledge reveals
nothing about the database user. If the database user has information that is not
publicly available, she must decide whether to use it as prior knowledge or not; the
more accurate the prior knowledge, the more accurate the response will be. We
will see in Section 5.5 that, even when little prior knowledge is assumed, knowledge
refinement may be superior, in terms of data quality, to noise addition approaches.
Therefore, it may make sense to use knowledge refinement even if the database user
is not willing to provide all her actual prior knowledge.

If the query function f has multiple components (dimension $n > 1$), the joint prob-
ability distribution must be provided. If the components of f are independent,
specifying the marginal distribution for each component is enough to compute the
joint distribution. This will also be the case if the components are not independent
but the user has no knowledge about the relationship among them.

The access mechanism is run by the database holder as follows:

- Receive the query f and the prior knowledge P_f from the database user.
- Compute the actual value of the query response, $f(D)$.
- Modify P_f to adjust it to $f(D)$ as much as possible, given the constraints
 imposed by differential privacy.
- Randomly sample the distribution resulting from the previous step, and return
 the sampled value as the response to f evaluated at D.
5.1 Refining prior knowledge

Even though knowledge refinement works by adjusting the prior knowledge, the output is not the adjusted distribution but a sample from it. This is the usual approach in differential privacy; only a sample from the output distribution is returned. Returning the output distribution itself would leak too much information; in some cases, it could be used to determine the exact value of the query response.

Note that the user cannot pretend to have more knowledge than she actually has: sending a guess as P_f will most likely be wrong and worsen the response quality. Also, we show in Section 5.4 that using several different (fake) prior knowledge distributions to mount adaptive attacks does not succeed in breaking ε-differential privacy.

The critical step is the adjustment of the prior knowledge to the real query response. To perform this adjustment, we distinguish two types of queries: statistical queries and individual queries. We call statistical queries those whose outcome depends on multiple individuals, while individual queries are those that depend on a single individual. It will be shown below that a finer adjustment of the prior knowledge is feasible for individual queries. We start by focusing on statistical queries, but, before formally specifying the response mechanism, we give an example to illustrate what we intend to do.

Example 6. Assume a query function f that is known to return a value within the interval $[0, 1]$. Assume also that the database user has no further knowledge about the query response, i.e. her prior knowledge is the uniform distribution over $[0, 1]$.

To refine the prior knowledge, we modify its density by applying two multiplicative factors: $\alpha_u \geq 1$ to the points near $f(D)$, and $\alpha_d \leq 1$ to the points farther from $f(D)$. In this way, the probability of obtaining as the response a value near the actual response $f(D)$ is increased with respect to the prior knowledge, while the probability of obtaining a distant value is decreased. Figure 5.1 shows the probability distribution resulting from applying the procedure described above for a pair of neighbor data sets D and D'.

![Figure 5.1: Distributions for the response to $f(D)$ (left) and to $f(D')$ (right)](image)

To obtain ε-differential privacy, the density at a given point for the response to $f(D)$ must be a factor within the interval $[e^{-\varepsilon}, e^{\varepsilon}]$ of the density at the same point.
for the response to $f(D')$. Check, for example, the point 0.6 in Figure 5.1 on the left-hand side distribution, the point is far from the real response and thus a factor α_d is applied; on the right-hand side distribution, the point is near the real response and the factor applied is α_u. For the ε-differential privacy condition to hold, it must be $\alpha_u/\alpha_d \leq e^\varepsilon$. We can also think in the reverse way: given two constants $\alpha_u \geq 1$ and $\alpha_d \leq 1$, the level of differential privacy achieved by this response mechanism is $\varepsilon = \ln(\alpha_u/\alpha_d)$.

Note that, to obtain a valid density function from the above modification, the set of points over which each of the factors α_u and α_d are applied must be selected in such a way that the total probability mass of the resulting distribution equals 1. If we denote by \mathcal{U}_u the set over which we apply the factor α_u, for the total probability mass of the adjusted distribution to be 1, we must have $\alpha_u P_f(\mathcal{U}_u) + \alpha_d (1 - P_f(\mathcal{U}_u)) = 1$.

If the prior knowledge is an absolutely continuous distribution, as in Example 6, for any pair of values $\alpha_u \geq 1$ and $\alpha_d \leq 1$ it is possible to select a set \mathcal{U}_u in such a way that $\alpha_u P_f(\mathcal{U}_u) + \alpha_d (1 - P_f(\mathcal{U}_u)) = 1$ is satisfied. The reason is that we can select the set \mathcal{U}_u to have any probability mass between 0 and 1. If the prior knowledge distribution is not absolutely continuous, it may not be possible to find a set \mathcal{U}_u with the required probability mass for the given values α_u and α_d. This section assumes that such a set \mathcal{U}_u exists. In Section 5.2, we specify a general algorithm that works for any prior knowledge distribution.

The following proposition formalizes the ideas discussed in the previous example.

Proposition 2. Let $f : \mathcal{D} \to \mathbb{R}^n$ be a query function and let P_f be the prior knowledge for $f(D)$. Let $\alpha_u \geq 1$ and $\alpha_d \leq 1$ be such that $\alpha_u = e^\varepsilon \alpha_d$. Let \mathcal{U}_u be an environment of $f(D)$ satisfying $\alpha_u P_f(\mathcal{U}_u) + \alpha_d (1 - P_f(\mathcal{U}_u)) = 1$. The response mechanism that returns a value randomly sampled from the distribution obtained by modifying P_f through multiplication of the probability mass of the points in \mathcal{U}_u by α_u, and multiplication of the probability mass of the points outside \mathcal{U}_u by α_d, satisfies ε-differential privacy.

When the query f returns a value related to a single individual, the mechanism in Proposition 2 can be improved. In that case, there are only two possibilities for the response: (i) if the individual we are asking about is not in the database, the distribution of the response equals the prior knowledge distribution, and (ii) if the individual is in the database, the distribution for the response will be the result of refining the prior knowledge. To satisfy ε-differential privacy, we only need to guarantee that the distribution resulting from (i) and (ii) does satisfy the limitation on the knowledge gain imposed by differential privacy. In other words, the output distribution need only be compared to the prior knowledge. The conditions that must hold are $1 \leq \alpha_u \leq e^\varepsilon$ and $e^{-\varepsilon} \leq \alpha_d \leq 1$.

Note that, by choosing $\alpha_u = e^\varepsilon$ and $\alpha_d = e^{-\varepsilon}$, the level of differential privacy that we can guarantee for a statistical query function (depending on multiple individuals) is...
Proposition 3. Let \(f : D \rightarrow \mathbb{R}^n \) be an individual query in the above sense and let \(P_f \) be the prior knowledge distribution for \(f \). Let \(\alpha_u = e^\varepsilon \) and \(\alpha_d = e^{-\varepsilon} \). Let \(U_u \) be an environment of \(f(D) \) satisfying \(\alpha_u P_f(U_u) + \alpha_d(1 - P_f(U_u)) = 1 \). The response mechanism that returns a value randomly sampled from the distribution obtained by modifying \(P_f \) through multiplication of the probability mass of the points in \(U_u \) by \(\alpha_u \), and multiplication of the probability mass of the points outside \(U_u \) by \(\alpha_d \), satisfies \(\varepsilon \)-differential privacy.

5.2 A general algorithm for knowledge refinement

Propositions 2 and 3 above state that, given appropriate factors \(\alpha_u \) and \(\alpha_d \) and a set \(U_u \) with the required probability mass, the knowledge refinement mechanism satisfies \(\varepsilon \)-differential privacy. However, some details were left aside in the previous section: (i) how is the set \(U_u \) selected?, and (ii) can we still apply knowledge refinement if a set \(U_u \) with the required probability mass does not exist? This section gives a more detailed view of the knowledge refinement mechanism and answers the two aforementioned questions.

Knowledge refinement works by increasing the probability mass of the points near \(f(D) \), and by decreasing the probability mass of the rest of points in such a way that the total probability mass equals one. In Example 6 there was a natural way to determine the set \(U_u \): the points closest to \(f(D) \) in absolute value. However, such a natural way does not always exist, as illustrated in the next example.

Example 7. To determine the form of the set \(U_u \) for a query function with two components, say \(f = (f_1, f_2) \), we use a distance function defined over the range of \(f \), namely \(d : \text{Range}(f_1) \times \text{Range}(f_2) \rightarrow [0, \infty) \). If \(d \) does not treat \(f_1 \) and \(f_2 \) symmetrically, then one component is given priority over the other. In fact, there is no natural way to define \(d \) and hence \(U_u \). Such definitions are application-dependent.

Table 5.1 shows some distance functions that are appropriate for a query with a single component in terms of the type of the result. We do not provide any distance for multivariate queries because such distances are very application-dependent, as pointed out in Example 7.

Note that when we feed the knowledge refinement algorithm with a certain distance function, we are instructing it with the sets that we want to favor. Given a value \(f(D) \), we modify the probability that the prior knowledge assigns to the points in \(\text{Range}(f) \) according to the distance \(d \). If a point at distance \(r \) is being applied a factor \(\alpha_1 \), all points at distance \(r \) must be applied the same factor, and points at a shorter distance must be applied a factor \(\alpha_2 \) with \(\alpha_2 \geq \alpha_1 \). Therefore, the set \(U_u \) of
Table 5.1: Example distance function for univariate query functions depending on the type of the query result

Query result	Range(f)	distance		
continuous	\mathbb{R}	$d(x, y) =	x - y	$
nominal	$\{c_1, \ldots, c_n\}$	$d(c_i, c_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases}$		
ordinal	$\{c_1, \ldots, c_n\}$	$d(c_i, c_j) =	i - j	$

points that has its probability increased must be of the form $U^1_{f(D), r}$ or $U^2_{f(D), r}$, for some $r \in [0, \infty)$, where:

$$U^1_{f(D), r} = \{ x \in \text{Range}(f) : d(f(D), x) \leq r \}$$
$$U^2_{f(D), r} = \{ x \in \text{Range}(f) : d(f(D), x) < r \}$$

(5.1)

The set U_d of points that has its probability decreased is the complement of U_u, that is, $U_d = \text{Range}(f) \setminus U_u$.

We want to choose two multiplicative factors α_u and α_d to modify the probability mass of U_u and U_d, respectively. Factors α_u and α_d must be selected so that differential privacy holds and the total probability mass of the resulting modified distribution equals one.

Table 5.2 shows the form of factors α_u and α_d for the two types of queries considered in Section 5.1: individual and statistical. For the case of individual queries, the differential privacy condition need only hold between the distribution of the response and the prior knowledge.

Any pair of values $\alpha_u \in [1, e^\varepsilon]$ and $\alpha_d \in [e^{-\varepsilon}, 1]$ yields ε-differential privacy; however, $\alpha_u = e^\varepsilon$ and $\alpha_d = e^{-\varepsilon}$ yield the greatest knowledge gain.

For statistical queries, the condition must hold for each pair of distributions for the response to the query over data sets that differ in a single record. Therefore, we must have $\alpha_u/\alpha_d \leq e^\varepsilon$. Same as for individual queries, the greatest knowledge gain is achieved when $\alpha_u/\alpha_d = e^\varepsilon$. The actual values of α_u and α_d must belong to the intervals $[1, e^\varepsilon]$ and $[e^{-\varepsilon}, 1]$, respectively, but they can be freely chosen, as long as $\alpha_u/\alpha_d \leq e^\varepsilon$ holds and the total probability mass is one:

$$\alpha_u P_f(U_u) + \alpha_d P_f(U_d) = 1$$

(5.2)

For statistical queries, the specific values selected for α_u and α_d determine the maximum knowledge gain for the points in U_u and U_d, where the gain is understood as the modification w.r.t. the prior knowledge P_f. Assuming that $\alpha_u/\alpha_d = e^\varepsilon$ holds, a greater value for α_u provides increased knowledge gain for the points in U_u, but it also results in a greater value for α_d, because otherwise $\alpha_u/\alpha_d \leq e^\varepsilon$ would not
be satisfied; this implies decreasing the knowledge gain for the points in \mathcal{U}_d with respect to the prior knowledge.

For fixed values of the factors α_u and α_d, from Equation (5.2) and $P_f(\mathcal{U}_d) = 1 - P_f(\mathcal{U}_u)$, we have:

$$
P_f(\mathcal{U}_u) = \frac{\alpha_u - 1}{\alpha_u - \alpha_d}
$$

$$
P_f(\mathcal{U}_d) = \frac{1 - \alpha_d}{\alpha_u - \alpha_d}
$$

For continuous prior knowledge, it is always possible to select sets \mathcal{U}_u and \mathcal{U}_d with the above probability masses. In this case, the knowledge refinement mechanism is very simple: apply factor α_u to \mathcal{U}_u and factor α_d to \mathcal{U}_d, as stated in Propositions 2 and 3.

For other kinds of prior knowledge, the sets \mathcal{U}_u and \mathcal{U}_d with the required probability masses may not exist. In such cases, we still want to apply the factor α_u to the greatest possible set of points closest to $f(D)$, and the factor α_d to the greatest possible set of points farthest from $f(D)$, thus achieving the maximum knowledge gain at such points. We denote \mathcal{U}_u' the set that is applied factor α_u, and \mathcal{U}_d' the set that is applied factor α_d. For the remaining points we adjust their factor to have a total probability mass of one. See Algorithm 5.1 for a detailed description of the process; this algorithm is run by the database holder.

It is easy to check that the total probability mass of the distribution equals one, no matter whether the then or the else option of the if statement of Algorithm 5.1 is taken. Regarding the differential privacy condition, we have already seen that it holds for the then case. For the else case, differential privacy also holds, because α_{ud} belongs to the interval $[\alpha_d, \alpha_u]$.

Differential privacy is usually criticized for the low utility of the results it provides [68, 83, 84]. Several relaxations of ε-differential privacy have been proposed; in particular, the authors of [41] propose (ε, δ)-differential privacy (a.k.a (ε, δ)-indistinguishability), and (ε, δ)-probabilistic differential privacy. The former property relaxes the strict requirement of differential privacy by adding a non-zero δ. The latter property allows arbitrarily large knowledge gains within probability δ. Let us briefly review (ε, δ)-privacy and sketch how prior knowledge refinement can achieve it.

Definition 11. A randomized function gives (ε, δ)-differential privacy if, for all data sets D_1, D_2 such that one can be obtained from the other by adding or removing a single record, and all $S \subset \text{Range}(\kappa)$

$$
P(\kappa(D_1) \in S) \leq \exp(\varepsilon) \times P(\kappa(D_2) \in S) + \delta
$$

$$
(5.3)
$$
As ε-differential privacy implies (ε, δ)-differential privacy, Algorithm 5.1 can be used to obtain (ε, δ)-differential privacy. However, a simple modification to Algorithm 5.1 can offer better data utility while still satisfying (ε, δ)-differential privacy (but no longer ε-differential privacy). We do not provide a formal algorithm with the required modifications, but the idea is to use the extra margin δ to increase the probability at $f(D)$ and reduce it at the points farthest from $f(D)$.

Just like it happened for ε-differential privacy, the improvement of (ε, δ)-privacy for individual queries is greater than for statistical queries. For an individual query, we only need to compare the distribution of the response with the prior knowledge (see Figure 5.2). As the prior knowledge is not modified, we can modify the response by adding δ to the probability mass of $f(D)$, and subtract δ from the tails of the distribution.

![Figure 5.2: Distribution of the response to a individual query when $f(D) = 0.5$, for ln 2-differential privacy (left), and $(\ln 2, 0.2)$-differential privacy (right)](image)

For a statistical query, we also want to increase the probability mass of the actual response $f(D)$, while reducing the probability mass of the set $S'_f(D)$ of points farthest from $f(D)$. Although other schemes are possible, a sensible choice is to have the probability mass of $f(D)$ increased by the same amount δ', whatever the data set D. As we have to keep the total probability mass equal to one, we must decrease the probability of $S'_f(D)$ by δ'. Now, since we can select data sets D_1 and D_2 such that $f(D_1)$ belongs to $S'_f(D_2)$, for Inequality (5.3) to hold for $S'_f(D_2)$, it must be $\delta' = \delta/2$ (it can also be $\delta' < \delta/2$, but then we are not taking advantage of the whole δ margin).

5.3 Differential privacy in multicomponent queries

The knowledge refinement privacy mechanism as introduced in Section 5.1 is independent of the number of components of the query function. However, for the case of multicomponent queries, we can relate the level of differential privacy for the multicomponent query to the level of differential privacy of the components. If we have a
5.3 Differential privacy in multicomponent queries

Figure 5.3: Distribution for the response to a statistical query when \(f(D) = 0.166 \) (left) and \(f(D) = 0.833 \) (right), for \(\ln 2 \)-differential privacy (top) and \((\ln 2, 0.2) \)-differential privacy (bottom)

query \(f = (f_1, \ldots, f_n) \) and for each of the components, \(f_i \), we get an \(\varepsilon_i \)-differentially private response, then we get a \(\sum_{i=1}^{n} \varepsilon_i \)-differentially private response for \(f \). This is in fact a property of \(\varepsilon \)-differential privacy, hence a proof for our specific mechanism is not required (see [65]).

The above result on multicomponent queries can be improved when each of the queries refers to a disjoint set of individuals. For the noise addition mechanism, it easy to see that, when performing queries \(f_1, \ldots, f_n \) that refer each to a disjoint set of individuals, the global sensitivity equals the maximum of the sensitivities of the individual queries [42]. The reason is that, by adding or removing a single individual from the data set, only one of the queries is affected. This is a good property, as it guarantees \(\max \{ \varepsilon_i \} \)-differential privacy instead of \(\sum \varepsilon_i \)-differential privacy. Our goal is to show that this property can also be achieved for our proposal. In fact, we will show further on that this is also a general property of differential privacy. We start with an example.

Example 8. Let \(D \) be a database with two attributes: an identifier \(ID \) and a Boolean attribute \(B \). Let \(f_1 \) and \(f_2 \) be queries that return the value of \(B \) for individuals 1 and 2, respectively. Let the prior knowledge for both queries be the independent uniform distribution over the set \{0, 1\}, which assigns a prior probability 0.5 to each of the possible outcomes for each query. To respond to \(f_1 \) in an \(\varepsilon \)-differentially private way with \(\varepsilon = 1 \), we select factors \(\alpha_u = e^{\varepsilon} \) and \(\alpha_d = e^{-\varepsilon} \) that
modify the prior knowledge. The same factors are selected for f_2. Now we want
to check whether the combination of responses to f_1 and f_2 is still ε-differentially private.

For the sake of simplicity, we assume that both individuals are in D, and that
$f_1(D) = 0$ and $f_2(D) = 0$. For the rest of cases we would proceed in a similar way.

Figure 5.4 shows the prior knowledge and the output distribution for both query functions f_1 and f_2. Indeed, by setting $\alpha_d = e^{-\varepsilon}$ and adjusting the probability mass
to one instead of setting $\alpha_u = e^{\varepsilon}$, we have

$$P(K_{f_1}(D) = 1 | f_1(D) = 0) = P(K_{f_1}(D) = 1 | f_2(D) = 0) =$$
$$= 0.5\alpha_d = 0.5e^{-1} = 0.1839$$

$$P(K_{f_1}(D) = 1 | f_1(D) = 1) = P(K_{f_1}(D) = 1 | f_2(D) = 1) =$$
$$= 1 - 0.5\alpha_d = 0.8161$$

Figure 5.4: Prior knowledge about attribute B and distribution of the ε-differentially private response to query functions f_1 and f_2, assuming that the actual value for attribute B is 0

Table 5.3 shows the joint distribution for the output of (f_1, f_2), which is obtained
by multiplying the output distributions for f_1 and f_2.

For ε-differential privacy to hold for the two-component query $f = (f_1, f_2)$, the
ratio of the response distribution at D and the response distribution at any D'
that results from D by adding or removing a single individual must be within the
range $[e^{-\varepsilon}, e^{\varepsilon}]$. As f_1 and f_2 are related to individuals 1 and 2, any modification
to D that does not affect the records for those individuals leaves the distribution
of responses unchanged. As we are assuming that individuals 1 and 2 are in D,
Table 5.3: Distribution of the differentially private response to the two-component query \((f_1, f_2)\) when the true values are \(f_1(D) = f_2(D) = 0\)

\(K_{f_1}\)	0	\(1 - 0.5\alpha_d\)	0.5\alpha_d	
\(K_{f_2}\)	0	\(1 - 0.5\alpha_d\)	\((1 - 0.5\alpha_d)^2\)	\((1 - 0.5\alpha_d)0.5\alpha_d\)
1	\(0.5\alpha_d\)	\((1 - 0.5\alpha_d)0.5\alpha_d\)	\(0.25\alpha_d^2\)	

The only modifications to be considered are the removal of one of these individuals. Table 5.4 shows the distributions of responses when individual 1 or 2 are removed.

Table 5.4: Distribution of the response to query \(f = (f_1, f_2)\) when either individual 1 is missing (top) or individual 2 is missing (bottom), and when the attribute value for the non-missing individual is 0.

\(K_{f_1}\)	0	1		
\(K_{f_2}\)	0	\(1 - 0.5\alpha_d\)	\(0.5(1 - 0.5\alpha_d)\)	\(0.5(1 - 0.5\alpha_d)\)
1	\(0.5\alpha_d\)	\(0.25\alpha_d\)	\(0.25\alpha_d\)	

We now state and prove in general the property illustrated in the previous example.

Proposition 4. Let \(D\) be a data set and let \((f_1, \ldots, f_n)\) be a set of query functions related to disjoint sets of individuals. Let \(K_{f_i}\) be a random variable that provides \(\varepsilon_i\)-differential privacy for \(f_i\), and assume that \(K_{f_i}\) is independent from \(K_{f_j}\) for any \(i \neq j\). Then \((K_{f_1}, \ldots, K_{f_n})\) provides \(\max\{\varepsilon_i\}\)-differential privacy for \((f_1, \ldots, f_2)\).

Proof. Let \(D'\) be a data set obtained from \(D\) by adding or removing a single user. We want to check that the following inequalities hold for any subset \(S\) of the range of \((K_{f_1}, \ldots, K_{f_n})\):

\[
e^{-\max\{\varepsilon_i\}} \leq \frac{P((K_{f_1}(D), \ldots, K_{f_n}(D)) \in S)}{P((K_{f_1}(D'), \ldots, K_{f_n}(D')) \in S)} \leq e^{\max\{\varepsilon_i\}}\]
It is easy to show that the above inequality holds for the case of \(S \) being the Cartesian product of sets \(S_i \), with \(S_i \) a subset of the range of \(K_{f_i}(D) \), or when the probability distribution of \((K_{f_1}, \ldots, K_{f_n}) \) is absolutely continuous. For a general set \(S \) and a non-absolutely continuous distribution, the inequalities still hold. However, we restrict the proof for \(S = S_1 \times \ldots \times S_n \).

The probabilities \(P((K_{f_1}(D), \ldots, K_{f_n}(D)) \in S) \) and \(P((K_{f_1}(D'), \ldots, K_{f_n}(D')) \in S) \) can be written as the product of probabilities \(\prod P(K_{f_i}(D) \in S_i) \) and \(\prod P(K_{f_i}(D') \in S_i) \) respectively. By adding or removing a single individual, only one of the queries is affected. Say the affected query is \(f_j \) for some \(j \in \{1, \ldots, n\} \). By removing the factors that are both in the numerator and the denominator, the inequalities that we need to check become

\[
e^{-\max\{\varepsilon_i\}} \leq \frac{P(K_{f_j}(D) \in S_j)}{P(K_{f_j}(D') \in S_j)} \leq e^{\max\{\varepsilon_i\}}
\]

which holds because \(K_{f_j} \) satisfies \(\varepsilon_j \)-differential privacy, and \(\varepsilon_j \leq \max\{\varepsilon_i\} \).

5.4 Interactive queries and adaptive attacks

Differential privacy is usually presented as an interactive query-response mechanism where the data set is held by a trusted party to whom users send their queries. Despite this claimed interactivity, the formal definition of differential privacy (Definition 3) is based on a single query, thereby removing the complexities that interactivity would introduce. Malicious users may try to use interaction to exploit potential vulnerabilities of the access mechanism. When using Laplace noise addition the user can, for example, use the knowledge acquired from previous answers to forge the new query. For knowledge refinement the problem is even more compelling, since, besides the query function, the user also feeds the access mechanism with a prior knowledge distribution and optionally with a distance function.

5.4.1 Interactive access mechanisms

To implement interactivity, a protocol is built on top of the non-interactive access mechanism. The idea is quite simple; when a query is submitted, the access mechanism analyzes if answering the query is too disclosive, in which case the query is simply discarded. To determine if answering a new query is too disclosive, all the queries submitted by a user so far, including the new query, are treated as a single multicomponent query and \(\varepsilon \)-differential privacy is enforced for it. Protocol 1 describes the protocol for the interactive Laplace noise access mechanism introduced in [42]; in the protocol, \(\Delta(\cdot) \) stands for sensitivity.

We now present an interactive knowledge refinement mechanism parallel to the Laplace-based one. As knowledge refinement does not depend on the sensitivity
of the query function, our interactive mechanism does not need to compute sensitivities and is therefore simpler than the Laplace-based one. Also, we will allow the database user to select the amount of leakage ε_i independently for each query f_i. The only requirement is that the access mechanism will refuse answering query f_i (and successive queries) if the leakage of the multicomponent query (f_1, \cdots, f_i) exceeds ε.

If the d-th query is the last query answered by the interactive mechanism of Protocol 2 by construction the user obtains at most a knowledge gain ε for (f_1, \cdots, f_d). This holds regardless of the prior knowledge distributions and distance functions chosen by the user for each query.

By submitting the desired level of leakage ε_i for each query, in Protocol 2 the database user is allowed to trade more accurate answers in some queries for less accurate answers in other queries. Protocol 1 could be modified to permit such flexibility as well: the user could be asked to choose the noise parameter λ_i for the i-th query, and the condition checked by the access mechanism would become

$$\sum_{j=1}^{i} \Delta(f_j)/\lambda_j \leq \varepsilon$$

Since $\Delta(f_1, \cdots, f_i) \leq \Delta(f_1) + \cdots + \Delta(f_i)$, when $\lambda_1 = \cdots = \lambda_i$ the modified condition above may result in less queries being answered than the condition in Protocol 1.

5.4.2 Adaptive attacks

The interactive mechanisms of Protocols 1 and 2 guarantee, respectively for Laplace noise and knowledge refinement, that the responses to any sequence of adaptive queries (q_1, \cdots, q_d) will not violate ε-differential privacy. However, the following question can be raised: is there any sequence of adaptive queries (q_1, \cdots, q_d) and a way to combine the responses to this sequence that allows an attacker to obtain an estimator of $f(D)$ that does not satisfy ε-differential privacy?

We show that such an attack cannot succeed. Our proof is completely general; it does not depend on the access mechanism used to attain differential privacy. Let $F : \mathbb{R}^d \to \mathbb{R}$ be the function used by the attacker to combine the responses to q_1, \cdots, q_d; let these responses be samples of the random vector $K_{f_1}(D), \cdots, K_{f_d}(D)$. The attacker computes $F(K_{f_1}(D), \cdots, K_{f_d}(D))$ and takes it as the response to $f(D)$. We are not interested in determining F or even in determining whether $F(K_{f_1}(D), \cdots, K_{f_d}(D))$ is a good estimate for $f(D)$. The following result will suffice.

Proposition 5. For any function F, if $(K_{f_1}(D), \cdots, K_{f_d}(D))$ satisfies ε-differential privacy, then $F(K_{f_1}(D), \cdots, K_{f_d}(D))$ also satisfies ε-differential privacy.
Proof. We need to check that, for each pair of data sets D and D' that differ in a single individual and for each set $S \in \text{Range}(F(K_{f_1}, \cdots, K_{f_d}))$, it holds that

$$\frac{P(F(K_{f_1}(D), \cdots, K_{f_d}(D))) \in S)}{P(F(K_{f_1}(D'), \cdots, K_{f_d}(D'))) \in S)} \leq e^\varepsilon$$

Since $P(F \circ X \in S) = P(X \in F^{-1}(S))$, we can express the previous inequality as

$$\frac{P((K_{f_1}(D), \cdots, K_{f_d}(D)) \in F^{-1}(S))}{P((K_{f_1}(D'), \cdots, K_{f_d}(D')) \in F^{-1}(S))} \leq e^\varepsilon$$

which holds because $(K_{f_1}(D), \cdots, K_{f_d}(D))$ satisfies ε-differential privacy.

The following corollary follows from the previous proposition.

Corollary 2. Whatever the attacker’s strategy, her estimate for $f(D)$ always satisfies ε-differential privacy.

5.5 Quality of the response to individual queries

We have defined an individual query, f, to be one that depends on a single individual. We can think of it as a query that returns the value of some attribute for some specific individual.

Typical differential privacy mechanisms based on noise addition provide low data quality responses for individual queries. The reason is that, as any individual can take any value in $\text{Range}(f)$, the sensitivity of the query equals the length of $\text{Range}(f)$. When using knowledge refinement, the quality of the response depends to a great extent on the prior knowledge available.

In this section, we provide some data quality comparisons between Laplace noise addition and knowledge refinement for individual queries. Comparisons will be based of specific query functions. The first one is based on a query function that returns a Boolean value; we show how the distribution for the differentially private response gets closer to the real response by refining prior knowledge than by adding Laplace noise. The second comparison is based on a continuous function with range $[0, 1]$; we show that, even if we have no prior knowledge, knowledge refinement provides better data quality for individual queries.

5.5.1 Data quality for a Boolean attribute

Consider a simple database D with two attributes: an identifier ID and a Boolean attribute B that may take values 0 and 1. We assume that B is very sensitive and
that, to limit the disclosure risk, access to the database must be mediated by a query-
response mechanism satisfying differential privacy, with $\varepsilon = 1$. Let $f : D \to \{0, 1\}$
be a query that asks the value of attribute B for a specific individual.

To achieve differential privacy via Laplace noise addition, we must first compute the
sensitivity of function f. Assuming that f returns 1/2 if the individual is not in the
database, the L_1-sensitivity of f is 1/2. Therefore, to achieve differential privacy for
$\varepsilon = 1$, we must add a Laplace distribution $L(0, 1/2)$ to the true value of the query
response. Figure 5.5 shows the distribution of the responses for both possible values
of B, 0 and 1.

![Figure 5.5: Response distributions with Laplace noise addition](image)

Assuming that the user is only interested in a 0/1 response, any value below 1/2 is
taken as 0, and any value above 1/2 as 1. The distribution for the response thus
obtained is:

$$K_f(D) = \begin{cases}
0 & \text{if } f(D) + L(0, 1/2) < 0.5 \\
1 & \text{otherwise.}
\end{cases}$$

If $f(D)$ equals 0, $K_f(D)$ follows a Bernoulli distribution with parameter 0.184. If
$f(D)$ equals 1, the distribution of $K_f(D)$ is a Bernoulli with parameter 0.816. Note
that this is completely independent from the true distribution of attribute B, and
from any previous knowledge that the user might have on it. Hence, differential
privacy via Laplace noise addition does not let the user exploit prior knowledge.

Let us assume that attribute B is 1 only with probability 0.01. For a user with this
information, using the response obtained from the differential privacy mechanism is
actually misleading, as the result will be 1 with probability
Chapter 5 Sensitivity-independent differential privacy via knowledge refinement

\[
P(K_f(D) = 1) = P(K_f(D) = 1|f(D) = 0)P(f(D) = 0) + P(K_f(D) = 1|f(D) = 1)P(f(D) = 1) \\
= 0.184 \cdot 0.99 + 0.816 \cdot 0.01 = 0.19
\]

We could increase the parameter \(\varepsilon \) to get a more accurate response. However, by doing so we would be reducing the privacy guarantees.

Now, we turn to the refinement mechanism and, same as before, we assume that the user knows that \(B \) equals 1 with probability 0.01. Take \(\alpha_u = e^\varepsilon = e \) and \(\alpha_d = e^{-\varepsilon} = e^{-1} \). Hence,

\[
P(K_f(D) = 1|f(D) = 0) = P(f(D) = 1) \cdot \alpha_d = 0.003678 \\
P(K_f(D) = 0|f(D) = 0) = 1 - 0.003678 = 0.9963222 \\
P(K_f(D) = 1|f(D) = 1) = P(f(D) = 1)) \cdot \alpha_u = 0.027182 \\
P(K_f(D) = 0|f(D) = 1) = 1 - 0.027182 = 0.972817
\]

Note that, as this is not an absolutely continuous distribution, we had to do some adjustment to have a total probability mass equal to one: instead of adjusting \(\alpha_u \) and \(\alpha_d \), we directly adjusted \(P(K_f(D) = 0|f(D) = 0) \) and \(P(K_f(D) = 0|f(D) = 1) \). Figure 5.6 depicts the distribution of the response for both possible values of attribute \(B \) and for the prior knowledge.

![Figure 5.6: Response distribution with prior knowledge refinement](image)

Now, the probability of obtaining a response 1 is

\[
P(K_f(D) = 1) = P(K_f(D) = 1|f(D) = 0)P(f(D) = 0) + P(K_f(D) = 1|f(D) = 1)P(f(D) = 1) \\
= 0.003678 \cdot 0.99 + 0.02182 \cdot 0.01 = 0.003912
\]
As 0.003912 is much closer to 0.01 than 0.19, we conclude that, despite both mechanisms providing the same level of privacy, the output distribution is much closer to the actual distribution of the attribute when using the mechanism based on knowledge refinement. Therefore, knowledge refinement outperforms Laplace noise addition for Boolean attributes released under differential privacy.

5.5.2 Data quality for a continuous attribute

Let \(f : \mathcal{D} \to [0, 1] \) be a query function that returns a value in the interval \([0, 1]\). We have fixed the range of \(f \) to be able to obtain some numerical results, but a similar comparison can be done for other ranges. We compare the response obtained by using Laplace noise addition and knowledge refinement with a uniform \(U[0, 1] \) prior knowledge.

When using Laplace noise addition, the response to \(f(D) \) is \(K_f(D) = f(D) + \text{Laplace}(0, 1/\varepsilon) \). When using knowledge refinement, the prior knowledge is modified by increasing the probability of the set \(\mathcal{U}_u \) containing the points closer to \(f(D) \) by a factor \(\alpha_u \), and decreasing the probability of the rest by a factor \(\alpha_d \). We saw in Section 5.2 that \(\mathcal{U}_u \) must satisfy \(P_f(\mathcal{U}_u) = (\alpha_u - 1)/(\alpha_u - \alpha_d) \), which in the case of a uniform prior knowledge within the interval \([0, 1]\) coincides with the size of \(\mathcal{U}_u \). We also saw (Table 5.2) that, for an individual query, the factors are \(\alpha_u = e^\varepsilon \) and \(\alpha_d = e^{-\varepsilon} \).

Table 5.5 shows a comparison of the distribution for the response to \(f(D) \) for several values of \(\varepsilon \) when \(f(D) = 0 \). For Laplace noise addition, we have computed the variance of the response, as well as the probability for the response to be within the range \([0, 1]\). For knowledge refinement, we have computed the variance of the response, the size of \(\mathcal{U}_u \), and the probability for the response to be in \(\mathcal{U}_u \). The results in the table show that knowledge refinement behaves much better than Laplace noise addition, but perhaps this is better observed by comparing the actual distributions. Figure 5.7 shows the distributions for the response when using Laplace noise addition and knowledge refinement with the same values of \(\varepsilon \) used in the table.

Table 5.5: Comparison between the distribution of the response to \(f(D) \) for Laplace noise addition and knowledge refinement for several values of \(\varepsilon \) when \(f(D) = 0 \)

\(\varepsilon \)	Laplace noise addition	Knowledge refinement			
	Variance \(P(K_f(D) \in [0, 1]) \)	Variance size(\(\mathcal{U}_u \)) \(P(K_f(D) \in \mathcal{U}_u) \)			
---	---	---	---		
0.1	200	0.476	0.077	0.475	0.525
\(\ln(2) \)	4.16	0.549	0.046	0.333	0.667
1	2	0.607	0.034	0.269	0.731
2	0.5	0.684	0.012	0.119	0.881
Figure 5.7: Distribution for the response to $f(D)$, when $f(D) = 0.5$, for Laplace noise addition (distribution with unbounded support) and knowledge refinement (distribution with support $[0, 1]$) for $\varepsilon = 0.1$ (top left), $\varepsilon = \ln(2)$ (top right), $\varepsilon = 1$ (bottom left), and $\varepsilon = 2$ (bottom right)

5.6 Discussion

In previous sections we have highlighted that the knowledge refinement mechanism lets the database user exploit her prior knowledge to obtain a more accurate response. In Section 5.5 we saw that, for the case of individual queries, knowledge refinement provides a much more accurate response even when there is no prior knowledge.

Other advantages of prior knowledge refinement are:

- **Simplicity.** Mechanisms such as Laplace noise addition are based on the addition of a random noise whose magnitude depends on the variation of the query function across neighbor data sets, also known as sensitivity. To calibrate the random noise, the sensitivity of the function must be computed, which may be quite complex. The mechanism based on the refinement of the prior knowledge only depends on the prior knowledge (it is independent from the sensitivity of the query function), and thus it is easier to implement, especially in a non-supervised environment.

- **Generality.** As said above, Laplace noise addition requires computing the sensitivity of the query function, and this can only be done if the query func-
tion takes values in a metric space. This introduces some complexities when
the function returns categorical information. The mechanism based on prior
knowledge refinement does not impose any requirement on the query func-
tion, and thus it can be applied without extra overhead to functions returning
categorical information.

- Consistency. Knowledge refinement lets the database user easily restrict the
response to a set of values consistent with the query function, by having the
prior knowledge assign a probability mass of zero to the set of inconsistent val-
ues. For example, in Table 5.5 we saw that Laplace noise sends the response
outside the query function range $[0, 1]$ with great probability, while knowl-
edge refinement always keeps the response within range. Querying categorical
attributes is another example. It is usual to have some combinations of cate-
gories that do not make sense. For example, if the attributes are “employed”
(Y/N), and “unemployment benefits” (Y/N), a response Y for both attributes
does not make sense. When using a noise addition mechanism, there is no way
to avoid that combination of values, while, when using knowledge refinement,
to avoid that combination we only have to use a prior knowledge distribution
that assigns zero probability mass to it.

Despite the advantages listed above, there are some situations for which the proposed
mechanism is not appropriate. If the range of values that the function may return
is large compared to the variability between neighbor data sets, and the database
user does not have precise knowledge of the response, then a method based on noise
addition produces better data quality. This may be the case of statistical queries
where the user has no prior knowledge of the result. However, when querying about
a specific individual, the proposed method results in much greater response quality.

5.7 Conclusions

We have introduced a novel mechanism to attain differential privacy. This mech-
anism is based on refining the prior knowledge that the user may have about the
query response. This refinement is performed taking into account the constraints
imposed by differential privacy.

The refinement mechanism presents several advantages over the usual noise addition
mechanism. It is easier to implement, especially in a non-supervised environment,
as it does not require potentially complex computations (such as determining the
sensitivity of the query function). The fact that it lets users exploit their prior knowl-
ledge may lead to a level of data quality not reachable by mechanisms independent
of the user knowledge. For example, we showed in the examples of Section 5.5 that
the distribution of the response was closer to the real distribution when using the
refinement mechanism. For query functions with great sensitivity, the amount of
noise added by noise addition mechanisms, such as [42], may render the response
useless. In contrast, the data quality that results from our proposal is independent from the sensitivity of the query function; yet this has the drawback that, for small sensitivities, our approach may be inferior to noise addition.

We have also analyzed the behavior of our approach for multicomponent queries. A generic property of differential privacy guarantees that, if a ε_i-differentially private response is provided for a query f_i, for $i = 1$ to n, a $\sum \varepsilon_i$-differentially private response is provided for the query $(f_1, \ldots f_n)$. We have seen that this can be improved if each query f_i refers to a disjoint set of individuals. In this case, we achieve $\max\{\varepsilon_i\}$-differential privacy, instead of $\sum \varepsilon_i$-differential privacy. Interactive mechanisms for Laplace noise addition and knowledge refinement have also been described. Such interactive mechanisms take as input parameter the maximum level of leakage ε allowed by the database holder, and queries are answered until that level of leakage is reached. The knowledge refinement interactive mechanism is superior to the Laplace noise interactive mechanism in that it does not need to compute sensitivities. We have shown that any interactive mechanism providing ε-differential privacy is safe against adaptive attacks; whatever the strategy used by an attacker to combine query responses, ε-differential privacy holds.
Algorithm 5.1 Knowledge refinement algorithm to respond to query $f(D)$ for a general prior knowledge

Input parameters: query f, prior knowledge P_f of the database user, distance function d, factors α_u and α_d from the database holder.

1. Compute the actual value of the query response, $f(D)$.

2. Modify P_f to adjust it to $f(D)$ as much as possible, given the constraints imposed by differential privacy. This is done as follows:
 a) Let $p_u = (\alpha_u - 1)/(\alpha_u - \alpha_d)$.
 b) Let $p_d = (1 - \alpha_d)/(\alpha_u - \alpha_d)$.
 c) if there exists a set U_u of the form $U_{f(D),r}^1$ or $U_{f(D),r}^2$ (see Expression \[5.1\]) with $P_f(U_u) = p_u$ then
 Build the distribution of the response to $f(D)$ by applying the factor α_u to U_u, and α_d to $\text{Range}(f) \setminus U_u$.
 else
 i. Find the maximal set U_u' of the form $U_{f(D),r}^1$ or $U_{f(D),r}^2$ with $P_f(U_u') < p_u$.
 ii. Find the maximal set U_d' of the form $\text{Range}(f) \setminus U_{f(D),r}^1$ or $\text{Range}(f) \setminus U_{f(D),r}^2$ with $P_f(U_d') < p_d$.
 iii. Let $p_{ud} = 1 - P_f(U_u') - P_f(U_d')$ be the probability of the points not in $U_u' \cup U_d'$.
 iv. Let $\alpha_{ud} = (1 - \alpha_u p_u - \alpha_d p_d)/(1 - p_u - p_d)$ be the factor to be applied to $\text{Range}(f) \setminus (U_u' \cup U_d')$.
 v. Build the distribution of the response to $f(D)$ by applying:
 • factor α_u to points in U_u'
 • factor α_d to points in U_d'
 • factor α_{ud} to points in $\text{Range}(f) \setminus (U_u' \cup U_d')$.
 3. Randomly sample the distribution resulting from the previous step, and return the sampled value as the response to f evaluated at D.

5.7 Conclusions
Protocol 1 Interactive Laplace noise addition mechanism

1. The database holder initializes the access mechanism with the following parameters:
 - ε, the maximum level of leakage allowed;
 - λ, the amount of noise to be added to every response (λ is the parameter of the Laplace noise distribution); for fixed ε, the greater λ, the more queries the access mechanism will be able to answer.

2. Let $i := 1$.

3. while queries are answered by the access mechanism do
 a) The user submits a query f_i (for $i > 1$, f_i may depend on responses to previous queries (f_1, \cdots, f_{i-1})).
 b) if $\Delta(f_1, \cdots, f_i)/\lambda \leq \varepsilon$ then the access mechanism returns $f_i(D) + \text{Laplace}(\lambda)$ as response; else it returns nothing.
 c) $i := i + 1$

Protocol 2 Interactive mechanism for knowledge refinement

1. The database holder initializes the access mechanism with ε, the maximum level of leakage allowed.

2. Let $i := 1$.

3. while queries are answered by the access mechanism do
 a) The user submits a query $q_i = (f_i, P_{f_i}, d_i, \varepsilon_i)$, where f_i is the query function, P_{f_i} is the prior knowledge distribution for the query, d_i is the distance function to be used and ε_i is the desired level of leakage (for $i > 1$, q_i may depend on responses to previous queries (q_1, \cdots, q_{i-1})).
 b) if $\sum_{j=1}^{i} \varepsilon_j \leq \varepsilon$ then the access mechanism returns a response to f_i resulting from applying knowledge refinement to P_{f_i} with distance d_i so that ε_i-differential privacy is guaranteed; else it returns nothing.
 c) $i := i + 1$
6 Enhancing data utility in differential privacy via microaggregation-based \(k \)-anonymity

It is not uncommon in the data anonymization literature to oppose the “old” \(k \)-anonymity model to the “new” differential privacy model, which offers more robust privacy guarantees. Yet, it is often disregarded that the utility of the masked results provided by differential privacy is quite limited, due to the amount of noise that needs to be added to the output, or because utility can only be guaranteed for a restricted type of queries. This is in contrast with the general-purpose anonymized data resulting from \(k \)-anonymity mechanisms, which also focus on preserving data utility. In this chapter, we show that a synergy between differential privacy and \(k \)-anonymity can be found: \(k \)-anonymity can help improving the utility of differentially private query responses. We devote special attention to the utility improvement of differentially private published data sets. Specifically, we show that the amount of noise required to fulfill \(\varepsilon \)-differential privacy can be reduced if noise is added to a \(k \)-anonymous version of the data set, where \(k \)-anonymity is reached through a specially designed microaggregation of all attributes. As a result of noise reduction, the analytical utility of the anonymized output is increased. The theoretical benefits of our proposal are illustrated in a practical setting with an empirical evaluation on a pair of reference data sets.

The contents of this chapter have been accepted for publication in [93].

6.1 Introduction

Publishing microdata (e.g., responses to polls, census information, healthcare records) collected by organizations such as statistical agencies is of great interest for the data analysis community. At the same time, microdata may contain confidential information about individuals. To overcome this privacy threat, data should be anonymized before making them available for secondary use [52].

In the last two decades, several models for data anonymization have been proposed in the literature. One of the best-known and widely used is \(k \)-anonymity [78], which
Chapter 6 Enhancing utility in differential privacy via \(k \)-anonymity

aims at making each record indistinguishable from, at least, \(k-1 \) other records. The usual computational procedure to reach \(k \)-anonymity is a combination of attribute generalization and local suppression \([76, 97]\). An alternative procedure, especially suitable for attributes with no obvious generalization hierarchy (like the numerical ones), is microaggregation \([35, 30]\). Whatever the computational procedure, \(k \)-anonymity assumes that identifiers are suppressed from the data to be released and it focuses on masking quasi-identifier attributes; these are attributes (e.g., Age, Gender, Zipcode and Race) that may enable re-identifying the respondent of a record because they are linkable to analogous attributes available in external identified data sources (like electoral rolls, phone books, etc.). \(k \)-Anonymity does not mask confidential attributes (e.g., salary, health condition, political preferences, etc.) unless they are also quasi-identifiers. While \(k \)-anonymity has been shown to provide reasonably useful anonymized results, especially for small \(k \), it is also vulnerable to attacks based on the possible lack of diversity of the non-anonymized confidential attributes or on additional background knowledge available to the attacker \([36]\).

On the other hand, \(\varepsilon \)-differential privacy \([39]\) is a more recent and rigorous privacy model that makes no assumptions about the attacker’s background knowledge. In a nutshell, it guarantees that the anonymization output is insensitive (up to a factor dependent on \(\varepsilon \)) to modifications of individual input records. In this way, the privacy of an individual is not compromised by her presence in the data set, which is a much more robust guarantee than the one offered by \(k \)-anonymity model. To do so, \(\varepsilon \)-differential privacy requires adding an amount of noise to the anonymization output that depends on the variability of the actual non-anonymized values. \(\varepsilon \)-Differential privacy was originally proposed for the interactive scenario, in which, instead of releasing a masked version of the data, the anonymizer returns noise-added answers to interactive queries. Compared to the unrestricted and general-purpose data publication offered by \(k \)-anonymity, the interactive scenario of \(\varepsilon \)-differential privacy severely limits data analysis, because it only allows answering queries whose number and type are limited. Otherwise, an adversary could reconstruct some of the original data \([22]\).

It is pointed out in \([18]\) that the previous limitation can be circumvented by allowing an \(\varepsilon \)-differentially private data publication (i.e., a non-interactive setting), which supports answering an unlimited number of potentially heterogeneous queries. However, since \(\varepsilon \)-differential privacy should ensure that the probability distribution of the published records is not changed by any modification of a single input record, the amount of noise that needs to be added to the published data in such a general setting is so large that it would severely hamper data utility \([22]\). This problem can be minimized in specific scenarios, but at the expense of preserving usefulness only for restricted classes of queries \([18, 43, 51]\).

In summary, we can conclude that \(k \)-anonymity enables general-purpose data publication with reasonable utility at the cost of some privacy weaknesses. On the contrary, \(\varepsilon \)-differential privacy offers a very robust privacy guarantee at the cost of substantially limiting the utility of anonymized outputs.
6.2 Differential privacy through k-anonymous microaggregation

We show here that a synergy between both privacy models can be found in order to achieve ε-differential privacy: k-anonymity can help increasing the utility of differentially private query outputs. Specifically, we show that the amount of noise required to fulfill ε-differential privacy can be greatly reduced if the query is run over a k-anonymous version of the data set obtained through microaggregation of all attributes (instead of running it on the raw input data). The rationale is that the microaggregation performed to achieve k-anonymity helps reducing the sensitivity of the input versus modifications of individual records; hence, it helps reducing the amount of noise to be added to achieve ε-differential privacy. As a result, data utility can be improved without renouncing the strong privacy guarantee of ε-differential privacy.

Section 6.2 discusses the use of a k-anonymous microaggregation step prior to the evaluation of a query function as a means to reduce the query sensitivity, thereby reducing the noise required to attain differential privacy. Section 6.3 proposes a general algorithm for generating ε-differentially private data sets that employs the k-anonymous microaggregation procedure described earlier. Implementation details for data sets with numerical and categorical attributes are given. Section 6.4 reports on an empirical evaluation of the differentially private outputs obtained from a pair of reference data sets via k-anonymous microaggregation; the output is compared against standard k-anonymity and ε-differential privacy mechanisms regarding data utility and disclosure risk. Section 6.5 presents the conclusions and proposes some lines of future research.

6.2 Differential privacy through k-anonymous microaggregation

Differential privacy and microaggregation offer quite different disclosure limitation guarantees. Differential privacy is introduced in a query-response environment and offers probabilistic guarantees that the contribution of any single individual to the query response is limited, while microaggregation is used to protect microdata releases and works by clustering groups of individuals and replacing them by the group centroid. When applied to the quasi-identifier attributes, microaggregation achieves k-anonymity. In spite of those differences, we can leverage the masking introduced by microaggregation to decrease the amount of random noise required to attain differential privacy.

Let X be a data set with attributes A_1, \ldots, A_m, and \overline{X} be a microaggregated X with minimal cluster size k. Let M be a microaggregation function that takes as input a data set, and outputs a microaggregated version of it: $M(X) = \overline{X}$. Let f be an arbitrary query function for which an ε-differentially private response is requested. A typical differentially private mechanism takes these steps: capture the query f, compute the real response $f(D)$, and output a masked value $f(X) + N$, where N is
a random noise whose magnitude is adjusted to the sensitivity of \(f \).

To improve the utility of an \(\varepsilon \)-differentially private response to \(f \), we seek to minimize the distortion introduced by the random noise \(N \). Two main approaches are used in the literature. In the first approach, a random noise is used that allows for a finer calibration to the query \(f \) under consideration. For instance, if the variability of the query \(f \) is highly dependent on the actual data set \(X \), using a data-dependent noise (such as in [71]) would probably reduce the magnitude of the noise. In the second approach, the query function \(f \) is modified so that the new query function is less sensitive to modifications of a record in the data set (the abovementioned paper [67] exemplifies this approach).

Our proposal falls into the second approach: we replace the original query function \(f \) by \(f \circ M \), that is, we run the query \(f \) over the microaggregated data set \(\bar{X} \). For our proposal to be meaningful, the function \(f \circ M \) must be a good approximation of \(f \). Our assumption is that the microaggregated data set \(\bar{X} \) preserves the statistical information contained in the original data set \(X \); therefore, any query that is only concerned with the statistical properties of the data in \(X \) can be run over the microaggregated data set \(\bar{X} \) without much deviation. The function \(f \circ M \) will certainly not be a good approximation of \(f \) when the output of \(f \) depends on the properties of specific individuals; however, this is not our case, as we are only interested in the extraction of statistical information.

Since the \(k \)-anonymous data set \(X \) is formed by the centroids of the clusters (i.e., the average records), for the sensitivity of the queries \(f \circ M \) to be effectively reduced the centroid must be stable against modifications of one record in the original data set \(X \). This means that modification of one record in the original data set \(X \) should only slightly affect the centroids in the microaggregated data set. Although this will hold for most of the clusters yielded by any microaggregation algorithm, we need it to hold for all clusters in order to effectively reduce the sensitivity.

Not all microaggregation algorithms satisfy the above requirement; for instance, if the microaggregation algorithm could generate a completely unrelated set of clusters after modification of a single record in \(X \), the effect on the centroids could be large. As we are modifying one record in \(X \), the best we can expect is a set of clusters that differ in one record from the original set of clusters. Microaggregation algorithms with this property lead to the greatest reduction in the query sensitivity; we refer to them as insensitive microaggregation algorithms.

Definition 12 (Insensitive microaggregation). Let \(X \) be a data set, \(M \) a microaggregation algorithm, and let \(\{C_1, \ldots, C_n\} \) be the set of clusters that result from running \(M \) on \(X \). Let \(X' \) be a data set that differs from \(X \) in a single record, and \(\{C'_1, \ldots, C'_n\} \) be the clusters produced by running \(M \) on \(X' \). We say that \(M \) is insensitive to the input data if, for every pair of data sets \(X \) and \(X' \) differing in a single record, there is a bijection between the set of clusters \(\{C_1, \ldots, C_n\} \) and the set of clusters \(\{C'_1, \ldots, C'_n\} \) such that each pair of corresponding clusters differs at most in a single record.
6.2 Differential privacy through k-anonymous microaggregation

Figure 6.1: MDAV clusters and centroids with $k = 5$. Left, original data set X; right, data set after modifying one record in X.

Since for an insensitive microaggregation algorithm corresponding clusters differ at most in one record, bounding the variability of the centroid is simple. For instance, for numerical data, when computing the centroid as the mean, the maximum change for each attribute equals the size of the range of the attribute divided by k. If the microaggregation was not insensitive, a single modification in X might lead to completely different clusters, and hence to large variability in the centroids.

The output of microaggregation algorithms is usually highly dependent on the input data. On the positive side, this leads to greater within-cluster homogeneity and hence less information loss. On the negative side, modifying a single record in the input data may lead to completely different clusters; in other words, such algorithms are not insensitive to the input data as per Definition 12. We illustrate this fact for MDAV. Figure 6.1 shows the clusters generated by MDAV for a toy data set X consisting of 15 records with two attributes, before and after modifying a single record. In MDAV, we use the Euclidean distance and $k = 5$. Two of the clusters in the original data set differ by more than one record from the respective most similar clusters in the modified data set. Therefore, no mapping between clusters of both data sets exists that satisfies the requirements of Definition 12. The centroids of the clusters are represented by a cross. A large change in the centroids between the original and the modified data sets can be observed.

We want to turn MDAV into an insensitive microaggregation algorithm, so that it can be used as the microaggregation algorithm to generate \overline{X}. MDAV depends on two parameters: the minimal cluster size k, and the distance function d used to measure the distance between records. Modifying k does not help making MDAV insensitive: similar examples to the ones in Figure 6.1 can easily be proposed for any $k > 1$; on the other hand, setting $k = 1$ does make MDAV insensitive, but it is
Therefore, clusters except for x proof. x and the respective cluster C_x according to in X of X elements in x.

Let x_1, \ldots, x_n be the elements of X sorted according to \leq_X. MDAV generates a set clusters of the form:

$$\{x_1, \ldots, x_k\}, \ldots, \{x_{n-k+1}, \ldots, x_n\}$$

We want to check that modifying a single record of X leads to a set of clusters that differ in at most one element. Suppose that we modify record x by setting it to x', and let X' be the modified data set. Without loss of generality, we assume that $x \leq_X x'$; the proof is similar for the case $x' \leq_X x$.

Let C be the cluster of X that contains x, and C' the cluster of X' that contains x'. Let m be the minimum of the elements in C, and let M be the maximum of the elements in C'. As MDAV takes groups of k records from the extremes, the clusters of X whose elements are all inferior to m, or all superior to M remain unmodified in X'. Therefore, we can assume that x belongs to the leftmost cluster of X, and x' belongs to the rightmost cluster in X'.

Let C_1, \ldots, C_m and C'_1, \ldots, C'_m be, respectively, the clusters of X and X', ordered according to \leq_X. Let x_i and x'_i be the minimum and the maximum of the elements of C_i: $C_i = \{z \in X | x_i \leq z \leq x'_i\}$. Cluster C'_i contains the same elements as C_i except for x that has been removed from C'_i and for x'_i that has been added to C'_i, $C'_i = (C_i \cup \{x'_i\}) \setminus \{x\}$. Clusters C'_2, \ldots, C'_{m-1} contain the same elements as the respective cluster C_2, \ldots, C_{m-1}, except for x_i that has been removed from C'_i and x'_{i+1} that has been added to C'_i. Cluster C'_m contains the same elements as C_m except for x'_i that has been removed from C'_m, and x' that has been added to C'_m. Therefore, clusters C_i and C'_i differ in a single record for all i, which completes the proof.

We have seen that, when the distance function is consistent with a total order relation, MDAV is insensitive. Now, we want to determine the necessary conditions for an arbitrary microaggregation algorithm to be insensitive. Algorithm 6.1 describes the general form of a microaggregation algorithm with fixed cluster size k. Essentially it keeps selecting groups of k records, until less than $2k$ records are left; the
remaining records form the last cluster, whose size is between k and $2k - 1$. Generating each cluster requires a selection criterion to prioritize some elements over the others. We can think of this prioritization as an order relation \leq_i, and the selection criterion for constructing the cluster C_i to be “select the k smallest records according to \leq_i.” Note that the prioritization used to generate different clusters need not be the same; for instance, MDAV selects the remaining element that is farthest from the average of remaining points, and prioritizes based on the distance to it.

Algorithm 6.1 General form of a microaggregation algorithm with fixed cluster size

```
let $X$ be the original data set
let $k$ be the minimal cluster size

set $i := 0$

while $|X| \geq 2k$ do
    $C_i \leftarrow k$ smallest elements from $X$ according to $\leq_i$
    $X := X \setminus C_i$
    $i := i + 1$
end while

$X \leftarrow$ Replace each record $r \in X$ by the centroid of its cluster

return $X$
```

Let X and X' be a pair of data sets that differ in one record. For Algorithm 6.1 to be insensitive, the sequence of orders \leq_i must be constant across executions of the algorithm; to see this, note that if one of the orders \leq_i changed, we could easily construct data sets X and X' such that cluster C_i in X would differ by more than one record from its corresponding cluster in X', and hence the algorithm would not be insensitive.

Another requirement for Algorithm 6.1 to be insensitive is that the priority assigned by \leq_i to any two different elements must be different. If there were different elements sharing the same priority, we could end up with clusters that differ by more than one record. For instance, assume that the sets X and X' are such that $X' = (X \setminus \{x\}) \cup \{x'\}$, and assume that x belongs to cluster C_i and x' belongs to cluster C_i'. Clusters C_i and C_i' already differ in one element, so for the clustering to be insensitive all the other records in these clusters must be equal. If there was a pair of elements, $y \neq y'$, with the same priority, and if only one of them was included in each of the clusters C_i and C_i', then, as there is no way to discriminate between y and y', we could, for instance, include y in C_i, and y' in C_i'. In that case the clusters C_i and C_i' would differ by more than one record. Therefore, for the microaggregation to be insensitive \leq_i must assign a different priority to each element; in other words, \leq_i must be a total order.

A similar argument to the one used in Proposition 6.1 can be used to show that when the total order relation is the same for all the clusters —in other words, when \leq_i and \leq_j are equal for any i and j—, then Algorithm 6.1 is insensitive to the input
data. However, we want to show that even when the total orders \(\leq_i \) are different, insensitivity still holds. In fact, Proposition 7 provides a complete characterization of insensitive microaggregation algorithms of the form of Algorithm 6.1.

Proposition 7. Algorithm 6.1 is insensitive to input data if and only if \(\{\leq_i\}_{i \in \mathbb{N}} \) is a fixed sequence of total order relations defined over the domain of \(X \).

Proof. In the discussion previous to Proposition 7 we have already shown that if Algorithm 6.1 is insensitive, then \(\{\leq_i\}_{i \in \mathbb{N}} \) must be a fixed sequence of total order relations. We show now that the reverse implication also holds: if \(\{\leq_i\}_{i \in \mathbb{N}} \) is a fixed sequence of total order relations, then Algorithm 6.1 is insensitive to input data.

Let \(X \) and \(X' \) be, respectively, the original data set and a data set that differs from \(X \) in one record. Let \(C_i \) and \(C'_i \) be, respectively, the clusters generated at step \(i \) for the data sets \(X \) and \(X' \). We want to show, for any \(i \), that \(C_i \) and \(C'_i \) differ in at most one record.

An argument similar to the one in Proposition 6 shows that the clusters \(C_0 \) and \(C'_0 \) that result from the first iteration of the algorithm differ in at most one record. To see that Algorithm 6.1 is insensitive, it is enough to check that the sets \(X \setminus C_0 \) and \(X' \setminus C'_0 \) differ in at most one record; then, we could apply the previous argument to \(X \setminus C_0 \) and \(X' \setminus C'_0 \) to see that \(C_1 \) and \(C'_1 \) differ in one record, and so on.

Let \(x_1, \ldots, x_n \) be the elements of \(X \) ordered according to \(\leq_0 \), so that \(C_0 = \{x_1, \ldots, x_k\} \). Assume that \(X' \) has had element \(x \) replaced by \(x' \): \(X' = \{x_1, \ldots, x_n, x'\} \setminus \{x\} \). We have the following four possibilities. (i) If neither \(x \) belongs to \(C_0 \) nor \(x' \) belongs to \(C'_0 \), then \(C_0 \) and \(C'_0 \) must be equal; therefore, \(X \setminus C_0 \) and \(X' \setminus C'_0 \) differ, at most, in one record. (ii) If both \(x \) belongs to \(C_0 \) and \(x' \) belong to \(C'_0 \), then \(X \setminus C_0 \) and \(X' \setminus C'_0 \) are equal. (iii) If \(x \) belongs to \(C_0 \) but \(x' \) does not belong to \(C'_0 \), we can write \(C'_0 \) as \(\{x_1, \ldots, x_{k+1}\} \setminus \{x\} \); the set \(X' \setminus C'_0 \) is \(\{x_{k+2}, \ldots, x_n, x'\} \), which differs in one record from \(X \setminus C_0 = \{x_{k+1}, \ldots, x_n\} \); and (iv) If \(x \) is not in \(C_0 \) but \(x' \) is in \(C'_0 \), we can write \(C'_0 \) as \(\{x, \ldots, x_{k-1}, x'\} \); the set \(X' \setminus C'_0 \) is \(\{x_k, \ldots, x_n\} \setminus \{x\} \), which differs in one record from \(X \setminus C_0 = \{x_k, \ldots, x_n\} \). Therefore, we have seen that \(X \setminus C_0 \) and \(X' \setminus C'_0 \) differ in at most one record, which completes the proof.

Using multiple order relations in Algorithm 6.1 as allowed by Proposition 7 in contrast with the single order relation used to turn MDAV insensitive in Proposition 6 allows us to increase the within-cluster homogeneity achieved in the microaggregation (see Section 6.4 for an empirical evaluation).

The modification of the query function \(f \) to \(f \circ M \) by introducing a prior microaggregation step is intended to reduce the sensitivity of the query function. Assume that the microaggregation function \(f \) computes the centroid of each cluster as the mean of its components. We analyze next how microaggregation affects the \(L_1 \)-sensitivity of the query function \(f \).
6.2 Differential privacy through k-anonymous microaggregation

Definition 14 ((L₁-Sensitivity)). The L₁-sensitivity of a function \(f : D^n \to \mathbb{R}^d \) is the smallest number \(\Delta(f) \) such that for all \(X, X' \in D^n \) which differ in a single entry,

\[
\| f(X) - f(X') \|_1 \leq \Delta(f)
\]

The L₁-sensitivity of \(f \), \(\Delta(f) \), measures the maximum change in \(f \) that results from a modification of a single record in \(X \). Essentially, the microaggregation step \(M \) in \(f \circ M \) distributes the modification suffered by a single record in \(X \) among multiple records in \(M(X) \). Consider, for instance, the data sets \(X \) and \(X' \) depicted in Figure 6.2. The record at the top right corner in \(X \) has been moved to the bottom left corner in \(X' \); all the other records remain unmodified. In the microaggregated data sets \(M(X) \) and \(M(X') \)—the crosses represent the centroids—we observe that all the centroids have been modified but the magnitude of the modifications is smaller: the modification suffered by the record at the top right corner of \(X \) has been distributed among all the records in \(M(X) \).

When computing the centroid as the mean, we can guarantee that the maximum variation in any centroid is at most \(1/k \) of the variation of the record in \(X \). Therefore, we can think of the L₁-sensitivity of \(f \circ M \) as the maximum change in \(f \) if we allow a variation in each record that is less than \(1/k \) times the maximal variation. In fact, this is a very rough estimate, as only a few centroids can have a variation equaling \(1/k \) of the maximal variation in \(X \), but it is useful to analyze some simple functions such as the identity. The identity function returns the exact contents of a specific record, and is used extensively in later sections to construct \(\varepsilon \)-differentially private data sets. The sensitivity of the identity functions depends only on the maximum variation that the selected record may suffer; therefore, it is clear that distributing the variation among several records lowers the sensitivity. This is formalized in the following proposition.

Proposition 8. Let \(X \in D^n \) be a data set with numerical attributes only. Let \(M \) be a microaggregation function with minimal cluster size \(k \) that computes the centroid by taking the mean of the elements of each cluster. Given a record \(r \in X \), let \(I_r() \) be the function that returns the attribute values contained in record \(r \) of \(X \). Then \(\Delta(I_r \circ M) \leq \Delta(I_r) / k \).

Proof. The function \(I_r \circ M \) returns the centroid of \(M(X) \) that corresponds to the record \(r \) in \(X \). It was shown in the discussion that precedes the proposition that, for a data set that contains only numerical attributes, if the centroid is computed as the mean of the records in the cluster, then the maximum change in any centroid is, at most, \(\Delta(I_r) / k \); that is, \(\Delta(I_r \circ M) \leq \Delta(I_r) / k \). \(\square \)
6.3 Differentially private data sets through k-anonymity

Assume that we have an original data set X and that we want to generate a data set X_ε — an anonymized version of X — that satisfies ε-differential privacy. Even if differential privacy was not introduced with the aim of generating anonymized data sets, we can think of a data release as the collected answers to successive queries for each record in the data set. Let $I_r()$ be as defined in Proposition 8. We generate X_ε, by querying X with $I_r(X)$, for all $r \in X$. If the responses to the queries $I_r()$ satisfy ε-differential privacy, then, as each query refers to a different record, by the parallel composition property X_ε also satisfies ε-differential privacy.

The proposed approach for generating X_ε is general but naive. As each query $I_r()$ refers to a single individual, its sensitivity is large; therefore, the masking required to attain ε-differential privacy is quite significant, and thus the utility of such a X_ε very limited.

To improve the utility of X_ε, we introduce a microaggregation step as discussed in Section 6.2: (i) from the original data set X, we generate a k-anonymous data set \overline{X} — by using a microaggregation algorithm with minimum cluster size k, like MDAV, and assuming that all attributes are quasi-identifiers —, and (ii) the ε-differentially private data set X_ε is generated from the k-anonymous data set \overline{X} by taking an ε-differentially private response to the queries $I_r(\overline{X})$, for all $r \in \overline{X}$.

By constructing the k-anonymous data set \overline{X}, we stop thinking in terms of individuals, to start thinking in terms of groups of k individuals. Now, the sensitivity of the queries $I_r(\overline{X})$ used to construct X_ε reflects the effect that modifying a single record in X has on the groups of k records in \overline{X}. The fact that each record in \overline{X} depends on k (or more) records in X is what allows the sensitivity to be effectively reduced. See Proposition 8 above.

Algorithm 6.2 details the procedure for generating the differentially private data set X_ε.

6.3.1 Achieving differential privacy with numerical attributes

For a data set consisting of numerical attributes only, generating the ε-differentially private data set X_ε as previously described is quite straightforward.

Let X be a data set with m numerical attributes: A_1, \ldots, A_m. The first step to construct X_ε is to generate the k-anonymous data set \overline{X} via an insensitive microaggregation algorithm. As we have seen in Section 6.2, the key point of insensitive microaggregation algorithms is to define a total order relation over $Dom(X)$, the domain of the records of the data set X. The domain of X contains all the possible values that make sense, given the semantics of the attributes. In other words, the
Algorithm 6.2 Generation of an ε-differentially private data set X_ε from X via microaggregation

let X be the original data set
let M be an insensitive microaggregation algorithm with minimal cluster size k
let $S_\varepsilon()$ be an ε-differentially private sanitizer
let $I_r()$ be the query for the attributes of record r

$X \leftarrow$ microaggregated data set $M(X)$
for each $r \in X$ do
 $r_\varepsilon \leftarrow S_\varepsilon(I_r(X))$
 insert r_ε into X_ε
end for
return X_ε

domain is not defined by the actual records in X but by the set of values that make sense for each attribute and by the relation between attributes.

Microaggregation algorithms use a distance function, $d : \text{Dom}(X) \times \text{Dom}(X) \rightarrow \mathbb{R}$, to measure the distances between records and generate the clusters. We assume that such a distance function is already available and we define a total order with which the distance is consistent. To construct a total order, we take a reference point R, and define the order according to the distance to R. Given a pair of elements $x, y \in \text{Dom}(X)$, we say that $x \leq y$ if $d(R, x) \leq d(R, y)$. On the other hand, we still need to define the relation between elements that are equally distant from R.

As we assume that the data set X consists of numerical attributes only, we can take advantage of the fact that individual attributes are equipped with a total order—the usual numerical order—and sort the records that are equally distant from R by means of the alphabetical order: given $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_m)$, with $d(x, R) = d(y, R)$, we say that $x \leq y$ if $(x_1, \ldots, x_m) \leq (y_1, \ldots, y_m)$ according to the alphabetical order.

Proposition 8 shows that, as a result of the insensitive microaggregation, one has $\Delta(I_r \circ M) = \Delta(I_r)/k$; therefore, ε-differential privacy can be achieved by adding to X an amount of Laplace noise that would only achieve $k\varepsilon$-differential privacy if directly added to X.

6.3.2 Insensitive MDAV

According to Proposition 6, to make MDAV insensitive we must define a total order among the elements in $\text{Dom}(X)$. According to the previous discussion, this total order is constructed by selecting a reference point. To increase within-cluster homogeneity, MDAV starts by clustering the elements at the boundaries. For our total order to follow this guideline, the reference point R must be selected among the elements of the boundary of $\text{Dom}(X)$. For instance, if the domain of A_i is $[a_i^l, a_i^r]$,
we can set R to be the point (a^1_1, \ldots, a^m_n).

Figure 6.2 illustrates the insensitive microaggregation obtained by using MDAV with the total order defined above. The original data set X and the modified data set X' are the same as in Figure 6.1. We also use $k = 5$ and the Euclidean distance for insensitive MDAV. Let us take as the reference point for the above defined total order the point R at the lower left corner of the grids. Note that now clusters $C_1, C_2,$ and C_3 in X differ in a single record from $C'_1, C'_2,$ and C'_3 in X', respectively. By comparing Figures 6.1 and 6.2, we observe that the standard (non-insensitive) MDAV results in a set of clusters with greater within-cluster homogeneity; however, in exchange for the lost homogeneity, insensitive MDAV generates sets of clusters that are more stable when one record of the data set changes.

6.3.3 General insensitive microaggregation

It was seen in Section 6.2 that each clustering step within microaggregation can use a different total order relation, as long as the sequence of order relations is kept constant. The advantage of using multiple total order relations is that it allows the insensitive microaggregation algorithm to better mimic a standard non-insensitive microaggregation algorithm, and thus increase the within-cluster homogeneity.

The sequence of total orders is determined by a sequence of reference points R_i. In the selection of R_i, we try to match the criteria used by non-insensitive microaggregation algorithms to increase within-cluster homogeneity: start clustering at the boundaries, and generate a cluster that is far apart from the previously generated cluster.
6.3 Differentially private data sets through k-anonymity

Let the domain of A_i be $[a_i^b, a_i^t]$. Define the set \mathcal{R} of candidate reference points at those points in the boundaries of $\text{Dom}(X)$, that is:

$$\mathcal{R} = \{(a_{v_1}^1, \ldots, a_{v_m}^m) | v_i \in \{b, t\} \text{ for } 1 \leq i \leq m\}$$

The first reference point R_1 is arbitrarily selected from \mathcal{R}; for instance, $R_1 = (a_1^b, \ldots, a_m^b)$. Once a point R_i has been selected, R_{i+1} is selected among the still unselected points in \mathcal{R} so that it maximizes the Hamming distance to R_i —if $R_1 = (a_1^b, \ldots, a_m^b)$, then $R_2 = (a_1^t, \ldots, a_m^t)$—. If several unselected points in \mathcal{R} maximize the Hamming distance to R_i, we select the one among them with greatest distance to R_{i-1}, and so on.

Figure 6.3 shows the form of the clusters for a data set containing two numerical attributes. The graphic on the left is for a single reference point —this is also the form of the clusters obtained by insensitive MDAV, which uses a single total order relation—. The graphic on the right uses four reference points, one for each edge of the domain, which are selected in turns as described above.

6.3.4 Achieving differential privacy with categorical attributes

Many data sets contain attributes with categorical values, such as Race, Country of birth, or Job [16]. Unlike continuous-scale numerical attributes, categorical attributes take values from a finite set of categories for which the arithmetical operations needed to microaggregate and add noise to the outputs do not make sense. In the sequel, we detail alternative mechanisms that are suitable for categorical attributes in order to achieve differential privacy as detailed above.
Let X be a data set with m categorical attributes: A_1, \ldots, A_m. The first challenge regards the definition of $\text{Dom}(X)$. Unlike for numerical attributes, the universe of each categorical attribute can only be defined by extension, listing all the possible values. This universe can be expressed either as a flat list or it can be structured in a hierarchic/taxonomic way. The latter scenario is more desirable, since the taxonomy implicitly captures the semantics inherent to conceptualizations of categorical values (e.g., disease categories, job categories, sports categories, etc.). In this manner, further operations can exploit this taxonomic knowledge to provide a semantically coherent management of attribute values [64].

Formally, a taxonomy τ can be defined as an upper semilattice \preceq on a set of concepts ς with a top element root_ς. We define the taxonomy $\tau(A_i)$ associated to an attribute A_i as the lattice on the minimum set of concepts that covers all values in $\text{Dom}(A_i)$. Notice that $\tau(A_i)$ will include all values in $\text{Dom}(A_i)$ (e.g., “skiing”, “sailing”, “swimming”, “soccer”, etc., if the attribute refers to sport names) and, usually, some additional generalizations that are necessary to define the taxonomic structure (e.g., “winter sports”, “water sports”, “field sports”, and “sport” as the root of the taxonomy).

If A_1, \ldots, A_m are independent attributes, $\text{Dom}(X)$ can be defined as the ordered combination of values of each $\text{Dom}(A_i)$, as modeled in their corresponding taxonomies $\tau(A_1), \ldots, \tau(A_m)$. If A_1, \cdots, A_m are not independent, value tuples in $\text{Dom}(X)$ may be restricted to a subset of valid combinations.

Next, a suitable distance function $d: \text{Dom}(X) \times \text{Dom}(X) \to \mathbb{R}$ to compare records should be defined. To tackle this problem, we can exploit the taxonomy $\tau(A_i)$ associated to each A_i in X and the notion of semantic distance [82]. A semantic distance δ quantifies the amount of semantic differences observed between two terms (i.e., categorical values) according to the knowledge modeled in a taxonomy. Section 6.3.5 discusses the adequacy of several semantic measures in the context of differential privacy. By composing semantic distances δ for individual attributes A_i, each one computed from the corresponding taxonomy $\tau(A_i)$, we can define the required distance $d: \text{Dom}(X) \times \text{Dom}(X) \to \mathbb{R}$.

To construct a total order that yields insensitive and within-cluster homogeneous microaggregation as detailed in Section 6.3.3, we need to define the boundaries of $\text{Dom}(X)$, from which records will be clustered. Unlike in the numerical case, this is not straightforward since most categorical attributes are not ordinal and, hence, a total order cannot be trivially defined even for individual attributes. However, since the taxonomy $\tau(A_i)$ models the domain of A_i, boundaries of $\text{Dom}(A_i)$, that is, $[a_i^l, a_i^r]$, can be defined as the most distant and opposite values from the “middle” of $\tau(A_i)$. From a semantic perspective, this notion of centrality in a taxonomy can be measured by the marginality model [27]. This model determines the central point of the taxonomy and how far each value is from that center, according to the semantic distance between value pairs.

The marginality $m(\cdot, \cdot)$ of each value a_i^j in A_i with respect to its domain of values
6.3 Differentially private data sets through \(k \)-anonymity

\(\text{Dom}(A_i) \) is computed as

\[
m(\text{Dom}(A_i), a^i_j) = \sum_{a^i_j \notin \text{Dom}(A_i) \cup \{a^i_j\}} \delta(a^i_l, a^i_j)
\]

(6.1)

where \(\delta(\cdot, \cdot) \) is the semantic distance between two values. The greater \(m(\text{Dom}(A_i), a^i_j) \), the more marginal (i.e., the less central) is \(a^i_j \) with regard to \(\text{Dom}(A_i) \).

Hence, for each \(A_i \), one boundary \(a^i_b \) of \(\text{Dom}(A_i) \) can be defined as the most marginal value of \(\text{Dom}(A_i) \):

\[
a^i_b = \arg \max_{a^i_j \in \text{Dom}(A_i)} m(\text{Dom}(A_i), a^i_j)
\]

(6.2)

The other boundary \(a^i_t \) can be defined as the most distant value from \(a^i_b \) in \(\text{Dom}(A_i) \):

\[
a^i_t = \arg \max_{a^i_j \in \text{Dom}(A_i)} \delta(a^i_j, a^i_b)
\]

(6.3)

By applying the above expressions to the set of attributes \(A_1, \cdots, A_m \) in \(X \), the set \(R \) of candidate reference points needed to define a total order according to the semantic distance can be constructed as described in Section 6.3.3.

If no taxonomic structure is available, other centrality measures based on data distribution can be used (e.g., by selecting the modal value as the most central value [35]). However, such measures omit data semantics and result in significantly less useful anonymized results [63].

Similarly to the numerical case, if several records are equally distant from the reference points, the alphabetical criterion can be used to induce an order within those equidistant records.

At this point, records in \(X \) can be grouped using the insensitive microaggregation algorithm, thereby yielding a set of clusters with a sensitivity of only one record per cluster. The elements in each cluster must be replaced by the cluster centroid (i.e., the arithmetical mean in the numerical case) in order to obtain a \(k \)-anonymous data set. Since the mean of a sample of categorical values cannot be computed in the standard arithmetical sense, we rely again on the notion of marginality [27]: the mean of a sample of categorical values can be approximated by the least marginal value in the taxonomy, which is taken as the centroid of the set.

Formally, given a sample \(S(A_i) \) of a nominal attribute \(A_i \) in a certain cluster, the marginality-based centroid for that cluster is defined in [27] as:

\[
\text{Centroid}(S(A_i)) = \arg \min_{a^i_j \in \text{Dom}(S(A_i))} m(S(A_i), a^i_j)
\]

(6.4)
where $\tau(S(A_i))$ is the minimum taxonomy extracted from $\tau(A_i)$ that includes all values in $S(A_i)$. Notice that by considering as centroid candidates all concepts in $\tau(S(A_i))$, which include all values in $S(A_i)$ and also their taxonomic generalizations, we improve the numerical accuracy of the centroid discretization inherent to categorical attributes [63].

The numerical value associated to each centroid candidate a^j_i corresponds to its marginality value $m(S(A_i),a^j_i)$, which depends on the sample of values in the cluster. Given a cluster of records with a set of independent attributes A_1, \cdots, A_m, the cluster centroid can be obtained by composing the individual centroids of each attribute.

As in the numerical case, cluster centroids depend on input data. To fulfill differential privacy for categorical attributes, two aspects must be considered. On the one hand, the centroid computation should evaluate as centroid candidates all the values in the taxonomy associated to the domain of each attribute ($\tau(A_i)$), and not only the sample of values to be aggregated ($\tau(S(A_i))$), since the centroid should be insensitive to any value change of input data within the attribute’s domain. On the other hand, to achieve insensitivity, uncertainty must be added to the centroid computation. Since adding Laplacian noise to centroids makes no sense for categorical values, an alternative way to obtain differentially private outputs consists in selecting centroids in a probabilistic manner. The general idea is to select centroids with a degree of uncertainty that is proportional to the suitability of each centroid and the desired degree of ε-differential privacy. To do so, the Exponential Mechanism proposed by McSherry and Talwar [65] can be applied. Given a function with discrete outputs t, the mechanism chooses the output that is close to the optimum according to the input data D and quality criterion $q(D,t)$, while preserving ε-differential privacy. Each output is associated with a selection probability $\Pr(t)$, which grows exponentially with the quality criterion, as follows:

$$\Pr(t) \propto \exp\left(\frac{\varepsilon q(D,t)}{2\Delta(q)}\right)$$

In this manner, the optimal output or those that are close to it according to the quality criterion will be more likely to be selected. Based on the above arguments, ε-differentially private centroids can be selected as indicated in Algorithm 6.3.

Notice that the inversion of the marginality function has no influence on the relative probabilities of centroid candidates, since it is achieved through a bijective linear transformation.

With the algorithm we have the following result, which is parallel to what we saw in the numerical case: if the input data are k-anonymous, the higher k, the less the uncertainty that needs to be added to reach ε-differential privacy.

Proposition 9. Let X be a data set with categorical attributes. Let \bar{X} be a k-anonymous version of X generated using an insensitive microaggregation algorithm...
Algorithm 6.3 Computation of ε-differentially private centroids for clusters with categorical attributes

let C be a cluster with at least k records

for each categorical attribute A_i do

Take as quality criterion $q(\cdot, \cdot)$ for each centroid candidate a^j_i in $\tau(A_i)$ the additive inverse of its marginality towards the attribute values $S(A_i)$ contained in C, that is, $-m(S(A_i), a^j_i)$;

Sample the centroid from a distribution that assigns

$$\Pr(a^j_i) \propto \exp\left(\frac{\varepsilon \times (-m(S(A_i), a^j_i))}{2\Delta(m(A_i))}\right)$$ \hspace{5cm} (6.5)$$

end for

M with minimum cluster size k. ε-Differential privacy can be achieved by using Algorithm 6.3 to obtain cluster centroids in X with an amount of uncertainty that decreases as k grows.

Proof. Without loss of generality, we can write the proof for a single attribute A_i. The argument can be composed for multi-attribute data sets.

Let $\Delta(m(A_i))$ be the sensitivity of the marginality function for attribute A_i. According to the insensitive microaggregation described earlier in Section 6.2, modifying one record in the data set will induce a change of at most one value in the set $S(A_i)$ of values of A_i in a cluster. Considering that marginality measures the sum of distances between a centroid candidate and all the elements in $S(A_i)$, in the worst case, in which all values in $S(A_i)$ correspond to the same boundary of $Dom(A_i)$ (defined by either Equation (6.2) or Equation (6.3)), and one of these is changed by the other boundary, the sensitivity $\Delta(m(A_i))$ will correspond to the semantic distance between both boundaries.

We have that: i) to compute the probabilities in Expression (6.5), the quality criterion $-m(S(A_i), a^j_i)$ is combined with ε and $\Delta(m(A_i))$, and the latter two magnitudes are constant for $Dom(A_i)$; ii) $|S(A_i)| \geq k$; iii) $m(S(A_i), a^j_i)$ is a sum of, at least, $k-1$ terms. Hence, as the cluster size k grows, the marginalities $m(S(A_i), a^j_i)$ of values a^j_i in the cluster $S(A_i)$ have more degrees of freedom and hence tend to become more markedly diverse. Hence, as k grows, the probabilities computed in Expression (6.5) tend to become more markedly diverse, and the largest probability (the one of the optimum centroid candidate) can be expected to dominate more clearly; note that probabilities computed with Expression (6.5) decrease exponentially as marginality grows. Therefore, optimum centroids are more likely to be selected as k increases.

In other words, the amount of uncertainty added to the output to fulfill differential privacy for categorical attributes decreases as the k-anonymity level of the input data increases. \hfill \square
6.3.5 A semantic distance suitable for differential privacy

As described above, the selection of differentially private outputs for categorical attributes is based on the marginality value of centroid candidates that, in turn, is a function of the semantic distance between centroids and clustered values. Moreover, the total order used to create clusters also relies on the assessment of semantic distances between attribute values. Hence, the particular measure used to compute semantic distances directly influences the quality of anonymized outputs.

A semantic distance $\delta : o \times o \rightarrow \mathbb{R}$ is a function mapping a pair of concepts to a real number that quantifies the difference between the concept meanings. A well-suited δ to achieve semantic-preserving differentially private outputs should have the following features. First, it should capture and quantify the semantics of the categorical values precisely, so that they can be well differentiated, both when defining the total order and also when selecting cluster centroids [63]. Second, from the perspective of differential privacy, δ should have a low numerical sensitivity to outlying values, that is, those that are the most distant to the rest of data. In this manner, the sensitivity of the quality criterion, which is the semantic distance of the two most outlying values of the domain, will also be low. This will produce less noisy and, hence, more accurate differentially private outputs.

The accuracy of a semantic measure depends on the kind of techniques and knowledge bases used to perform the semantic assessments [82]. Among those relying on taxonomies, feature-based measures and measures based on intrinsic information-theoretic models usually achieve the highest accuracy with regard to human judgments of semantic distance [82]. The former measures [82] quantify the distance between concept pairs according to their number of common and non-common taxonomic ancestors. The latter measures [81, 79, 74, 80] evaluate the similarity between concept pairs according to their mutual information, which is approximated as the number of taxonomic specializations of their most specific common ancestor. Both approaches exploit more taxonomic knowledge and, hence, tend to produce more accurate results, than well-known edge-counting measures [75, 102], which quantify the distance between concepts by counting the number of taxonomic edges separating them.

On the other hand, the sensitivity to outlying values depends on the way in which semantic evidences are quantified. Many classical methods [75, 102] propose distance functions that are linearly proportional to the amount of semantic evidences observed in the taxonomy (e.g., number of taxonomic links). As a result, distances associated to outlying concepts are significantly larger than those between other more “central” values. This leads to a centroid quality criterion with a relatively high sensitivity, which negatively affects the accuracy of the Exponential Mechanism [65]. More recent methods [82, 74, 27] choose to evaluate distances in a non-linear way. Non-linear functions provide more flexibility since they can implicitly weight the contribution of more specific [27, 59] or more detailed [82, 74, 81, 80] concepts. As a result, concept pairs become better differentiated and semantic as-
6.3 Differentially private data sets through \(k \)-anonymity

assessments tend to be more accurate \[82\]. We can distinguish between measures that exponentially promote semantic differences \[27, 59\] and those that aggregate semantic similarities \[74, 81, 80\] and differences \[82\] in a logarithmic way. Among these, the latter one is best suited for the differential privacy scenario, since the logarithmic assessment of the semantic differences helps to reduce the relative numerical distances associated to outlying concepts and, hence, to minimize the sensitivity of the quality function used in the Exponential Mechanism.

Formally, this measure computes the distance \(\delta : A_i \times A_i \rightarrow \mathbb{R} \) between two categorical values \(a_i^1 \) and \(a_i^2 \) of attribute \(A_i \), whose domain is modeled in the taxonomy \(\tau(\mathcal{A}_i) \), as a logarithmic function of their number of non-common taxonomic ancestors divided (for normalization) by their total number of ancestors \[82\]:

\[
\delta(a_i^1, a_i^2) = \log_2 \left(1 + \frac{|\phi(a_i^1) \cup \phi(a_i^2)| - |\phi(a_i^1) \cap \phi(a_i^2)|}{|\phi(a_i^1) \cup \phi(a_i^2)|} \right)
\]

(6.6)

where \(\phi(a_i^j) \) is the set of taxonomic ancestors of \(a_i^j \) in \(\tau(A_i) \), including itself. As demonstrated in \[82\] and \[13\], Expression (6.6) satisfies non-negativity, reflexivity, symmetry and subadditivity, thereby being a distance measure in the mathematical sense.

Moreover, thanks to the normalizing denominator, the above distance is insensitive to the size and granularity of the background taxonomy, and it yields positive normalized values in the \([0, 1]\) range. Since the distance \(d : \text{Dom}(X) \times \text{Dom}(X) \rightarrow \mathbb{R} \) defined in Section 6.3.4 is the composition of semantic distances for individual attributes and their domains may be modeled in different taxonomies, a normalized output is desirable to coherently integrate distances computed from different sources.

6.3.6 Integrating heterogeneous attribute types

The above-described semantic measure provides us with a numerical assessment of the distance between categorical attributes. As a result, given a data set \(X \) with attributes of heterogeneous data types (i.e., numerical and categorical), the record distance \(d : \text{Dom}(X) \times \text{Dom}(X) \rightarrow \mathbb{R} \) required for microaggregation can be defined by composing numerically assessed distances for individual attributes, as follows:

\[
d(x_1, x_2) = \sqrt{\frac{(\text{dist}(a_1^1, a_1^2))^2}{(\text{dist}(a_1^1, a_1^1))^2} + \cdots + \frac{(\text{dist}(a_m^m, a_m^m))^2}{(\text{dist}(a_m^m, a_m^m))^2}}
\]

(6.7)

where \(\text{dist}(a_i^1, a_i^2) \) is the distance (either numerical or semantic) between the values for the \(i \)-th attribute \(A_i \) in \(x_1 \) and \(x_2 \), and \(\text{dist}(a_i^j, a_i^j) \) is the distance between the
boundaries of $\text{Dom}(A_i)$, which is used to eliminate the influence of the attribute scale.

It can be noticed that Expression (6.7) is similar to the normalized Euclidean distance, but replacing attribute variances, which depend on input data, by distances between domain boundaries, which are insensitive to changes of input values. In this manner, the record distance function effectively defines a total order that fulfills differential privacy.

6.4 Empirical evaluation

In this section we show some empirical results that illustrate how k-anonymous microaggregation of input data reduces the amount of noise required to fulfill differential privacy and, hence, positively influences the utility of the anonymized outputs.

6.4.1 Evaluation data

The above-described mechanism has been applied to numerical and categorical attributes of two reference data sets:

- “Census”, which contains 1,080 records with numerical attributes [19]. This data set was used in the European project CASC and in [31, 25, 103, 55, 35, 32, 28]. Like in [28], we took attributes FICA (Social security retirement payroll deduction), FEDTAX (Federal income tax liability), INTVAL (Amount of interest income) and POTHVAL (Total other persons income). To fulfill differential privacy, all four attributes were masked, i.e., they were considered as quasi-identifiers in all our tests. The resulting records were all different from each other. Since all attributes represent non-negative amounts of money, we took as boundaries for the attribute domains $a_i^b = 0$ and $a_i^t = 1.5 \times \text{max}_{\text{attribute value in the dataset}}$. The domain upper bound a_i^t is a reasonable estimate if the attribute values in the data set are representative of the attribute values in the population, which in particular means that the population outliers are represented in the data set. The difference between the bounds a_i^b and a_i^t defines the sensitivity of each attribute and influences the amount of Laplace noise to be added to masked outputs, as detailed in Section 6.3.1. Since the Laplace distribution takes values in the range $(-\infty, +\infty)$, for consistency, we bound noise-added outputs to the $[a_i^b, a_i^t]$ range defined above.

- “Adult”, a well-known data set from the UCI repository [47], which has often been used in the past to evaluate privacy-preserving methods [64, 29, 49, 60]. Like in [64] we focused on two categorical attributes: OCCUPATION and NATIVE-COUNTRY. According to the data
set description $Dom(\text{OCCUPATION})$ includes 14 distinct categories, whereas $Dom(\text{NATIVE-COUNTRY})$ covers 41. The taxonomies modeling attribute domains, $\tau(\text{OCCUPATION})$ and $\tau(\text{NATIVE-COUNTRY})$, were extracted from WordNet 2.1 \cite{wordnet}, a general-purpose repository that taxonomically models more than 100,000 concepts. Mappings between attribute labels and WordNet concepts are those stated in \cite{64}. Considering attribute categories and their taxonomic ancestors, the resulting taxonomies contain 122 distinct concepts for OCCUPATION and 127 for NATIVE-COUNTRY. As discussed in Section \ref{sec:6.3.4} these higher figures enable a finer grained and more accurate discretization of cluster centroids in comparison with approaches based on flat lists of attribute categories. Domain boundaries for each attribute and sensitivities for centroid quality criteria were set as described in Section \ref{sec:6.3.4}.

For evaluation purposes, we used the training corpus from the Adult data set, which consists of 30,162 records after removing records with missing values. Due to the reduced set of attribute categories, the evaluation data contained 388 different record tuples, hence being a much more homogeneous data set than Census.

6.4.2 Evaluation measures

The quality of the masked output for different combinations of k-anonymity and ε-differential privacy levels has been evaluated from the perspectives of information loss and disclosure risk:

- Information loss has been quantified by means of the well-known Sum of Squared Errors (SSE), a measure used in a good deal of the anonymization literature (e.g. \cite{30}). For a given anonymized data set (i.e., a k-anonymous data set X or an ε-differentially private data set X_ε), SSE is defined as the sum of squares of attribute distances between original records in X and their versions in the anonymized data set, that is

$$\text{SSE} = \sum_{x_j \in X} \sum_{a_{ij} \in x_j} (\text{dist}(a_{ij}, (a_{ij})'))^2,$$

where a_{ij} is the value of the i-th attribute for the j-th original record and $(a_{ij})'$ represents its masked version. For numerical attributes, $\text{dist}(\cdot, \cdot)$ corresponds to the standard Euclidean distance, whereas for categorical ones we used the semantic distance defined in Equation (6.6). Hence, the lower is SSE, the lower is information loss and the higher is the utility of the anonymized data.

- The disclosure risk has been evaluated as the percentage of records of the original data that can be correctly matched from the anonymized data set, that is, the percentage of Record Linkages (RL)

$$RL = 100 \times \frac{\sum_{x_j \in X} \text{Pr}(x'_j)}{m},$$

where x'_j is the masked version of the j-th original record.
where \(m \) is the number of original records and the record linkage probability for an anonymized record \((\Pr(x'_j)) \) is calculated as

\[
\Pr(x'_j) = \begin{cases}
0 & \text{if } x_j \not\in G \\
\frac{1}{|G|} & \text{if } x_j \in G
\end{cases}
\]

where \(G \) is the set of original records that are at minimum distance from \(x'_j \). The same distance functions as for SSE have been used. If the correct original record \(x_j \) is in \(G \), then \(\Pr(x'_j) \) is computed as the probability of guessing \(x_j \) in \(G \), that is, \(1/|G| \). Otherwise, \(\Pr(x'_j) = 0 \). The lower RL, the better is the privacy of the anonymized output.

As baseline results, we have computed SSE and RL values for a standard \(k \)-anonymity scenario in which all attributes are microaggregated by means of the original MDAV algorithm \[35\], and also with its modified insensitive version with several reference points (Algorithm 6.1). Furthermore, we also considered the straightforward \(\varepsilon \)-differential privacy scenario in which Laplace noise or the Exponential Mechanism are directly applied to unaggregated inputs; this approach is equivalent to applying our method with a \(k \)-anonymity level of \(k = 1 \).

The \(\varepsilon \) parameter for differential privacy has been set to \(\varepsilon = 0.01, 0.1, 1.0, 10.0 \), which covers the usual range of differential privacy levels observed in the literature \[40, 20, 21, 61\]. The \(k \)-anonymity levels have been set between 1 and 100, except for the raw sensitive and insensitive MDAV microaggregations, which start from \(k = 2 \), because \(k = 1 \) would mean that input data are not modified.

Figure 6.4 depicts the SSE and RL values for the different parameterizations of \(k \) and \(\varepsilon \) for the Census data set, whereas Figure 6.5 corresponds to the Adult data set. Due to the broad ranges of the SSE and RL values, the Y-axes are represented using a \(\log_{10} \) scale. Each test involving Laplace noise shows the averaged results of 10 runs, for the sake of stability.

Figure 6.4: SSE and RL values for different \(k \) (varying with step 1) and \(\varepsilon \) values for the “Census” data set.
6.4 Empirical evaluation

Figure 6.5: SSE and RL values for different k (varying with step 5) and ϵ values for the “Adult” data set.

To compare our method against baseline approaches regarding the balance between information loss and disclosure risk, we also computed the relative improvement of SSE and RL values for our approach ($SSE_{k\epsilon}$, $RL_{k\epsilon}$) over the baseline values (SSE_0, RL_0) obtained with the original MDAV algorithm and with unaggregated differential privacy. First, we computed the improvement factor of SSE values as follows:

$$SSE_f = \frac{\sqrt{SSE_0}}{\sqrt{SSE_{k\epsilon}}}$$

Then, the improvement factor of RL values was computed as:

$$RL_f = \frac{RL_0}{RL_{k\epsilon}}$$

The final score that balances both dimensions was the ratio between SSE and RL factors:

$$Score = \frac{SSE_f}{RL_f}$$

Notice that SSE values have been square-rooted to provide a coherent linear integration of RL and SSE, and that Scores above 1.0 show a practical improvement against baseline approaches.

Tables 6.1 and 6.2 show the SSE_f and RL_f factors and the resulting Scores for different ϵ values and some k-anonymity degrees with respect to baseline approaches for the Census data set. Tables 6.3 and 6.4 correspond to the Adult data set.

6.4.3 Discussion

Regarding the evolution of SSE values in Figures 6.4(a) and 6.5(a), we observe for both data sets that the k-anonymous microaggregation of input records effectively
Chapter 6 Enhancing utility in differential privacy via k-anonymity

Table 6.1: Census data set. \(SSE_f \) and \(RL_f \) factors, and \(Scores \) for different \(\varepsilon \) values against standard MDAV microaggregation for several \(k \)-anonymity levels

\(MDAV \)	\(\varepsilon = 0.01 \)	\(\varepsilon = 0.1 \)	\(\varepsilon = 1.0 \)	\(\varepsilon = 10.0 \)
\(k = 2 \)	\(3.07 \times 10^9 \)	\(0.015 \)	\(0.025 \)	\(0.17 \)
\(k = 5 \)	\(1.20 \times 10^{10} \)	\(0.015 \)	\(0.025 \)	\(0.17 \)
\(k = 15 \)	\(2.41 \times 10^{10} \)	\(0.04 \)	\(0.092 \)	\(0.588 \)
\(k = 30 \)	\(4.00 \times 10^{10} \)	\(0.112 \)	\(0.343 \)	\(0.955 \)

Table 6.2: Census data set. \(SSE_f \) and \(RL_f \) factors, and resulting \(Scores \) for different \(\varepsilon \) values and \(k \)-anonymity degrees against straightforward \(\varepsilon \)-differential privacy scenario (i.e., \(k = 1 \))

\(k \)	\(\varepsilon = 0.01 \)	\(\varepsilon = 0.1 \)	\(\varepsilon = 1.0 \)	\(\varepsilon = 10.0 \)
\(k = 1 \)	\(1.62 \times 10^9 \)	\(1.05 \)	\(1.10 \)	\(1.10 \)
\(k = 5 \)	\(1.54 \times 10^9 \)	\(1.05 \)	\(1.20 \)	\(1.20 \)
\(k = 15 \)	\(1.86 \times 10^9 \)	\(1.20 \)	\(1.20 \)	\(1.20 \)
\(k = 30 \)	\(3.69 \times 10^9 \)	\(1.20 \)	\(1.20 \)	\(1.20 \)

reduces the required amount of noise and hence the loss of information, compared to a straightforward implementation of \(\varepsilon \)-differential privacy (with no prior microaggregation, i.e., \(k = 1 \)). The relative improvement directly depends on the value of \(\varepsilon \) and the best results are obtained for \(\varepsilon = 1.0 \). As shown in Tables 6.2 and 6.4 for \(k = 30 \) and \(\varepsilon = 1.0 \), the relative improvement \(SSE_f \) is around one order of magnitude for the Census data set and is around 3 for the Adult data set.

Looking at Figures 6.4(a) and 6.5(a) we observe different effects depending on the value of \(\varepsilon \) for both data sets:

- For small \(\varepsilon \) (that is, 0.01 or 0.1), the larger \(k \), the smaller is \(SSE \), because the noise reduction at the \(\varepsilon \)-differential privacy stage more than compensates the noise increase at the microaggregation stage due to greater aggregation. Anyway, the amount of noise involved for these values of \(\varepsilon \) is so high that even with the aforementioned noise reduction, the output data are hardly useful.

- For very large \(\varepsilon \) (that is, 10), there is a sharp decline of \(SSE \) for low \(k \) values (around 5); however, for larger \(k \) (above 10), there is a new and slow increase in \(SSE \), because the noise added by \(\varepsilon \)-differential privacy being low, it is dominated by the noise added by prior microaggregation in larger clusters. This is more noticeable for the Census data set, since \(SSE \) values are more similar to those of standard microaggregation.

- For medium \(\varepsilon \) (that is, 1), there is a substantial decline of \(SSE \) for low \(k \) (below 30) and, for larger \(k \), \(SSE \) stays nearly constant and reasonably low.
6.4 Empirical evaluation

Table 6.3: Adult data set. SSE_f and RL_f factors, and resulting $Scores$ for different ε values against standard MDAV microaggregation for several k-anonymity levels

$MDAV$	$\varepsilon = 0.01$	$\varepsilon = 0.1$	$\varepsilon = 1.0$	$\varepsilon = 10.0$
	SSE_0 RL$_0$	SSE_f RL$_f$	SSE_f RL$_f$	SSE_f RL$_f$
$k = 2$	1.01 0.95	0.019 343.13	0.019 497.53	0.02 127.49
$k = 5$	3.33 0.59	0.034 123.31	0.035 89.48	0.042 42.21
$k = 15$	8.93 0.3	0.057 56.49	0.059 163.06	0.118 6.66
$k = 30$	14.6 0.19	0.073 48.55	0.08 23.72	0.25 3.73

In this case, the noise added by prior microaggregation in larger clusters is compensated by the noise reduced at the ε-differential privacy stage due to decreased sensitivity with larger k.

Notice also that insensitive MDAV microaggregation incurs a higher SSE than standard MDAV microaggregation. Indeed, the clusters formed by insensitive microaggregation are less homogeneous, due to the total order enforced for input records. Particularly, the Adult data set shows a more noticeable increase of SSE figures. This is coherent with the criterion detailed in Section 6.3.3 to define a total order, which alternatively picks combinations of attribute domain boundaries as reference points to create clusters. Since the evaluated Adult data set consists of two attributes, four different reference points can be defined. This contrasts with the four attributes considered for the Census data set, which provide 16 different combinations of domain boundaries, giving more degrees of freedom and producing a more accurate clustering of input data. Moreover, since the Adult data set consists of categorical attributes with a limited set of possible categories (in comparison with continuous scale numerical ranges defined by the Census attributes), the imperfections introduced by the insensitive aggregation are amplified by the need to discretize cluster centroids. In any case, the SSE increase caused by insensitive microaggregation is around an order of magnitude smaller than the noise reduction this microaggregation enables when used as a prior step to ε-differential privacy.

RL values shown in Figures 6.4(b) and 6.5(b) behave the other way round as SSE.

Table 6.4: Adult data set. SSE_f and RL_f factors, and resulting $Scores$ for different ε values and k-anonymity degrees against straightforward ε-differential privacy scenario (i.e., $k = 1$)

k	$\varepsilon = 0.01$	$\varepsilon = 0.1$	$\varepsilon = 1.0$	$\varepsilon = 10.0$
	SSE RL	SSE_f RL$_f$	SSE_f RL$_f$	SSE_f RL$_f$
$k = 1$	2.78E+04 0.0029	1.00 0.60	1.01 0.54	1.00 0.73
$k = 5$	2.77E+04 0.0021	1.01 0.32	1.05 1.14	1.11 0.26
$k = 15$	2.61E+04 0.0019	1.18 0.14	2.01 0.04	3.34 0.04
$k = 30$	1.02E+04 0.09	2.89 0.56	2.83 0.90	2.70 1.29

107
First, we notice that the standard MDAV algorithm results in the highest percentage of linkages. For the Census data set, a k-anonymity level $k \geq 20$ is needed to attain a percentage of linkages below 5%. For Adult, RL is much lower because the number of distinct records is limited by the set of categories of each attribute (i.e., only 388 distinct tuples for Adult, whereas all 1,080 records are different for Census), and because the number of records is much higher (i.e., 30,162 for Adult vs. 1,080 for Census). As a result, the probability of correct record linkage is much lower (i.e., below 1% from $k = 2$). Insensitive MDAV yields slightly more privacy than MDAV for the Census data set and significantly more privacy (less percentage of record linkages) for the Adult data set. The superior RL reduction in Adult w.r.t. Census is coherent with the differences in information loss observed in SSE values, which were caused by the less homogeneous clusterization in Adult. In both data sets, the RL values of insensitive microaggregation are very similar to the ones obtained with ε-differential privacy with $\varepsilon = 10$. For ε values of 0.01 and 0.1, the RL values hardly vary when the k-anonymity level increases, because they are very low already with $k = 1$ (no prior microaggregation). Note that, for such low ε-values, the RL values stay around 0.1% for Census data, which, considering the data set size of 1,080 records, corresponds to the probability of successful random record linkage (i.e., 1/1,080). The fact that records are almost randomly matched is reflected by the large spikes of the plot. For the Adult data set, RL behaves similarly but it shows a much lower matching probability (i.e., around 0.0033%, that is, 1/30,162), because of the larger cardinality of the data set. It can also be seen that the top level of privacy offered by standard ε-differential privacy ($k = 1$) for low ε is basically maintained when using prior microaggregation ($k > 1$); hence, the reduction in information loss achieved by using microaggregation prior to noise addition does not entail appreciable privacy penalties.

For $\varepsilon = 1$, the RL results are more interesting. For the Census data set, they show an increase of the percentage of record linkages from 0.2% for $k = 1$ (no prior microaggregation) to around 1% for $k = 25$. For the Adult data set, RL rises from 0.02% for $k = 1$ to around 0.05% for $k \geq 20$. This is the other side of the very noticeable improvement of SSE values.

In all cases, as shown by RL_f in Tables 6.1 and 6.3 ε-differential privacy reduces RL versus standard k-anonymity from around 2 orders of magnitude (for $\varepsilon = 0.01$ or 0.1) to 1 order (for $\varepsilon = 1.0$ or 10.0), for the considered k-anonymity levels. This illustrates the practical privacy improvement that ε-differential privacy brings as a result of the more strict theoretical privacy guarantees.

By analyzing the balance ($Score$) between the SSE and RL figures summarized in Tables 6.1, 6.2, 6.3 and 6.4, we can conclude that:

- **Scores** with respect to the standard MDAV algorithm (Tables 6.1 and 6.3) are above 1.0 in all cases for the Census data set and for Adult when $\varepsilon = 0.01$ or 0.1. This shows that the improved disclosure risk brought by ε-differential privacy more than compensates the relative increase of information loss caused
by noise. Scores for the Adult data set are lower than for Census because baseline RL0 figures for Adult were so low that the improvements brought by differential privacy are less noticeable when evaluating disclosure risk. For the same reason, Scores also tend to decrease as the microaggregation level k increases.

- Scores with respect to standard ε-differential privacy (i.e., $k = 1$, Tables 6.2 and 6.4) tend to increase as both ε and k grow. In fact, values of k and ε over a threshold are needed for the balance to show improvement (i.e., $Score > 1.0$). We observe that for $k \geq 15$ and $\varepsilon \geq 1.0$, the very substantial information loss reduction obtained by using k-anonymous microaggregation prior to ε-differential privacy more than compensates the small increase in the percentage of record linkages with respect to standard ε-differential privacy.

The above observations suggest that, given a desired level ε of differential privacy and a specific data set, a k-anonymity level can be determined that optimizes the improvement of data utility and/or privacy.

6.4.4 Statistical analysis of anonymized results

To complement the above evaluation, in this section we provide an attribute-level analysis of several statistics for the numerical data set (Census). As in [28], Θ and Θ' denote the same statistic (e.g., attribute mean, attribute variance, etc.) for each attribute over the original data set and its masked version (by means of k-anonymity and/or ε-differential privacy), respectively, we computed the variation of the statistic introduced by the anonymization process as:

$$\Delta(\Theta) = \left| \frac{\Theta' - \Theta}{\Theta} \right|$$

Variations were computed for the mean of each attribute (named $\Delta(m_X)$ for FED-TAX, $\Delta(m_P)$ for POTHVAL, $\Delta(m_I)$ for INTVAL and $\Delta(m_F)$ for FICA) and also for their variances ($\Delta(\sigma_X)$ for FEDTAX, $\Delta(\sigma_P)$ for POTHVAL, $\Delta(\sigma_I)$ for INTVAL and $\Delta(\sigma_F)$ for FICA). In both cases, the smaller the variations, the less is the information loss and the better is the data utility. Results are reported in Table 6.5.

The variations of the attribute means directly depend on the amount of noise added to the anonymized output. Hence, for the two k-anonymous MDAV implementations, attribute means are perfectly preserved in the masked output since centroids are the exact means of clustered values. Regarding differentially privacy implementations, we observe a monotonic decrease for the variations of the mean for all attributes as the k-anonymity factor applied to input data increases from $k = 1$ to $k = 30$. This shows the benefits that data microaggregation brings at reducing the amount of noise needed to fulfill differential privacy. For fixed ε, the sharpness of this monotonic decrease is similar for all attributes. However, as ε increases from 0.01 to 10.0, the decrease becomes sharper and sharper for all attributes. Indeed,
for $\varepsilon = 0.01$ the decrease factor for the variation of the mean is around 1.1 for all attributes (quotient of the variations of the mean for $k = 1$ and $k = 30$), whereas for $\varepsilon = 10.0$ the decrease factor reaches around 200. Hence, we see that $\varepsilon > 0.1$ is needed to significantly reduce baseline variations of the mean for all attributes (we take as baseline the variations for $k = 1$, that is for plain ε-differential privacy without prior microaggregation).

The variations of the attribute variances increase for the two MDAV implementations as the k-anonymity level grows, since output record values tend to be more homogeneous and thereby suppress more variance as a result of the data aggregation process. The growth factor is larger for the standard MDAV algorithm in comparison with its insensitive version, since the latter tends to produce less homogeneous clusters. Differential privacy implementations behave the other way round. For $\varepsilon \leq 1.0$, the variations of attribute variances decrease as the k-anonymity level grows, for all attributes. This suggests that prior microaggregation helped to decrease the large variance introduced by the noise added to fulfill differential privacy. Similarly to what happened for variations of means, decrease factors for variations of variances are larger for higher ε values. Results with $\varepsilon = 10.0$ are worth noting. In this case, variances tend to increase for k values above 5. As discussed in the previous section, the noise added for such a high ε value is so low that the effect of the prior microaggregation dominates in larger clusters. In other words, prior microaggregation followed by 10-differential privacy behaves similarly to microaggregation alone.

The results of the above analysis of attribute-level statistics are coherent with the results based on SSE presented in previous sections. It becomes clear that prior microaggregation helps differentially private data to retain the utility of original data much like standard k-anonymity does.

6.5 Conclusions

We have presented an approach that combines k-anonymity and ε-differential privacy in order to reap the best of both models: namely, the reasonably low information loss incurred by k-anonymity and the high privacy level guaranteed by ε-differential privacy. In our approach, we use a newly defined insensitive microaggregation to obtain a k-anonymous data set by considering all attributes as quasi-identifiers; then we take the k-anonymous microaggregated data set as an input to which uncertainty is added in order to reach ε-differential privacy. We have also described how our approach can be applied to numerical and categorical attributes and also to records combining heterogeneous attribute types.

In addition to a theoretical proposal, we have presented empirical results for heterogeneous data sets which show that our approach reduces the information loss of standard differential privacy by several orders of magnitude, while preserving its theoretical privacy guarantee and improving the practical privacy (percentage of record linkages) versus standard k-anonymity.
Future work will involve at least the following research lines:

- Even though special care has been exerted to avoid damaging within-cluster homogeneity when making microaggregation insensitive, there is still room for improvement, especially for categorical data. New criteria to define total orders are conceivable, such as fixing sampling and sorting strategies of data spaces, so that the within-cluster homogeneity reaches levels more similar to the ones achieved by standard microaggregation.

- It would also be interesting to define a methodology that, given a data set, a target privacy level ε and fixed utility and privacy measures, determines the most suitable k for the prior k-anonymous microaggregation, in view of optimizing the data utility and/or disclosure risk.
Chapter 6
Enhancing utility in differential privacy via k-anonymity

Table 6.5: Census data set. Variation for several statistics between the original data set and data sets anonymized with methods using different values of \(k \) and \(\varepsilon \). Methods include \(\varepsilon \)-differential privacy with prior \(k \)-anonymous microaggregation \((k = 1 \text{ amounts to plain } \varepsilon \text{-differential privacy})\), insensitive MDAV microaggregation and plain MDAV microaggregation.

Statistic	\(k \)	\(\varepsilon = 0.01 \)	\(\varepsilon = 0.1 \)	\(\varepsilon = 1.0 \)	\(\varepsilon = 10.0 \)	Insensit. MDAV	MDAV
\(\Delta(m_X) \)	1	1.0947	1.0356	0.6925	0.0500	0.0	0.0
	2	1.1065	1.0088	0.4421	0.0134	0.0	0.0
	5	1.1030	0.8743	0.1461	0.0024	0.0	0.0
	10	1.0063	0.5171	0.0202	0.0003	0.0	0.0
	30	0.9677	0.2841	0.0030	0.0001	0.0	0.0
\(\Delta(m_P) \)	1	14.5160	13.7959	9.0362	1.2125	0.0	0.0
	2	14.4279	12.9546	6.2642	0.5245	0.0	0.0
	5	14.0466	11.4310	2.6323	0.1670	0.0	0.0
	10	13.4838	7.2579	0.7462	0.0302	0.0	0.0
	15	12.5205	4.4492	0.2970	0.0034	0.0	0.0
\(\Delta(m_I) \)	1	25.4754	24.6380	15.9486	2.2799	0.0	0.0
	2	24.8984	23.0202	10.9231	0.5245	0.0	0.0
	5	24.5284	19.3688	4.7766	0.3356	0.0	0.0
	10	23.6351	12.6533	1.4402	0.0656	0.0	0.0
	15	21.9726	7.7496	0.6244	0.0152	0.0	0.0
\(\Delta(\sigma_X) \)	1	9.5299	9.2111	6.4855	0.5122	0.0	0.0
	2	9.4974	8.8891	4.3752	0.1067	0.0447	0.0053
	10	9.3824	7.8526	1.5560	0.0584	0.0804	0.0156
	15	9.0318	5.2659	0.1527	0.0972	0.1015	0.0398
	30	8.5521	2.9454	0.0461	0.1241	0.1254	0.0639
\(\Delta(\sigma_P) \)	1	69.3473	67.3757	45.9873	2.1168	0.0	0.0
	2	69.1904	64.9683	29.3618	0.4549	0.0697	0.0247
	10	68.5536	57.7628	8.0984	0.0597	0.1268	0.0991
	15	66.2145	35.8830	0.7419	0.2365	0.2429	0.1967
	30	62.0932	18.9228	0.0958	0.3370	0.3416	0.3214
\(\Delta(\sigma_I) \)	1	96.3225	93.3506	64.2854	3.0044	0.0	0.0
	2	96.0339	90.2298	40.5087	0.5915	0.0950	0.0349
	10	95.2261	79.1174	11.0832	0.0411	0.1358	0.1327
	15	91.7395	49.0829	1.1650	0.2330	0.2362	0.2614
	30	86.7387	24.3520	0.1243	0.4433	0.4476	0.4729
\(\Delta(\sigma_F) \)	1	16.3302	15.7698	11.3811	0.9712	0.0	0.0
	2	16.2702	15.2505	7.8828	0.2338	0.0593	0.0067
	10	16.1054	13.6669	3.0073	0.0625	0.1117	0.0224
	15	15.4965	9.3544	0.3439	0.1580	0.1634	0.0670
	30	14.7710	5.4324	0.0423	0.1780	0.1797	0.1060
7 Differential privacy via t-closeness in data publishing

k-Anonymity and ϵ-differential privacy are two mainstream privacy models originated within the computer science community. Their approaches towards disclosure limitation are quite different: k-anonymity is a model for releases of microdata (i.e. individual records) that seeks to prevent record re-identification by hiding each original record within a group of k indistinguishable anonymized records, while ϵ-differential privacy originated as a model for interactive databases and seeks to limit the knowledge that users obtain from query responses. Both models are often presented as antagonistic: ϵ-differential privacy supporters view k-anonymity as an old-fashioned privacy notion that offers only poor disclosure limitation guarantees, while ϵ-differential privacy detractors criticize the limited utility of ϵ-differentially private outputs and the cumbersomeness of not having access to the data set.

We show that for data set anonymization, the t-closeness extension of k-anonymity is closely related to ϵ-differential privacy. This relation is demonstrated both versus uninformed intruders (having access only to the released data set) and informed intruders (having also background knowledge). For uninformed intruders we prove that $\exp(\epsilon)$-closeness is equivalent to ϵ-differential privacy. For informed intruders, the strict equivalence we obtain for uninformed intruders does not hold; however, we show that $\exp(\epsilon)$-closeness can be seen as a good approximation to ϵ-differential privacy. Our approach is a constructive one: we specify a computational procedure based on bucketization that, given an original data set, builds a t-close version of it. In the case of uninformed intruders, this version turns out to be differentially private as well; in the case of informed intruders, it is approximately differentially private.

Section 7.1 reviews partitioning strategies used to achieve k-anonymity and its extensions, including t-closeness. Specifically, we first examine the shortcomings of achieving k-anonymity and t-closeness in the classical sense, that is, by modifying the quasi-identifier attributes to create groups of at least k indistinguishable records. We then review two approaches which leave the quasi-identifier attributes unaltered and which will be used as building blocks of our computational procedure to reach t-closeness and ϵ-differential privacy. Section 7.2 develops in detail our proposed construction to reach t-closeness. Section 7.3 shows that $\exp(\epsilon)$-closeness reached with the previous construction implies: i) ϵ-differential privacy in the case of uninformed intruders; ii) approximate ϵ-differential privacy in the case of informed
intruders. Conclusions are summarized in Section 7.4.

The contents of this chapter have been accepted for publication in [91].

7.1 Partitioning strategies for k-anonymity

In k-anonymity and its extensions (including t-diversity and t-closeness), the partitioning strategy to create groups of indistinguishable records is a key point for data utility. Assume a data user who wants to analyze a group of individuals that has been selected based on the value of the quasi-identifier attributes. The utility that this user derives from the k-anonymous data depends on how well the target group of individuals can be approximated by the groups of indistinguishable records. The best utility is achieved when the target group of individuals can be approximated as the union of groups of indistinguishable records.

As an example, consider a data set with 16 records, two quasi-identifier attributes Q_1 and Q_2, and one confidential attribute C. Assume that Q_1 and Q_2 take values in the sets $\{A, B, C, D\}$ and $\{P, Q, R, S\}$, respectively. Figure 7.1 represents the projection of this data set on the quasi-identifier attributes; each point is the projection of one record on the quasi-identifiers. In this case, we assume that each possible combination of quasi-identifiers occurs in exactly one record. The dominant approach towards k-anonymity uses generalization and suppression to partition the data set into groups of k indistinguishable records. Assume that the generalization hierarchies are those in Figure 7.2 and that we want to obtain a 4-anonymous data set. Figure 7.3 depicts the 4-anonymous data sets produced by minimal generalizations. A data user interested in the group of individuals with $Q_1 = A$ would prefer the 4-anonymous data set on the left, which still allows distinguishing that group. On the contrary, the data set on the right of Figure 7.3 is the worst option for a user interested in the individuals with $Q_1 = A$, because all values of Q_1 are lumped together. However, a user interested in the group of individuals with $Q_2 = P$ would prefer the 4-anonymous data set on the right of Figure 7.3.

Therefore, the selected partitioning of the records is essential for the protected data set to deliver high utility. If the data collector is aware of the kind of analyses that data users are interested in, then the collector can tailor the partitioning to those analyses. However, most of the time the data collector is unaware of the intended use of the data; thus, a customized partitioning is not feasible. Even if the data collector knew the relevant analyses, different analyses may require different partitions, but releasing several versions of the same data set using a different partition each is not advisable, as it would endanger whatever anonymity is gained by partitioning.

Another problem of the generalization approach is related to the number of quasi-identifiers. When there is a large number of quasi-identifiers, all of them need to be generalized to satisfy k-anonymity, which results in a large information loss. This is known as “the curse of dimensionality” [9].
7.1 Partitioning strategies for \(k \)-anonymity

Figure 7.1: Projection of the records in the data set on the quasi-identifier attributes \(Q_1 \) and \(Q_2 \)

Figure 7.2: Generalization hierarchies for attributes \(Q_1 \) (left) and \(Q_2 \) (right)

Figure 7.3: Minimal 4-anonymous generalizations
This section aims at a method to generate k-anonymous data sets that mitigates the issues described above:

- We generate a partition of the records that preserves as much information as possible. To construct such a partition, instead of partitioning based on the quasi-identifiers, we will do it based on the confidential attribute.

- To avoid losing information on the quasi-identifier attributes, we replace generalization of the quasi-identifiers by an approach that preserves both the quasi-identifiers and the confidential attributes. In particular, we propose to use either the Anatomy \cite{94} or the probabilistic k-anonymity \cite{89} methods.

If our goal is to construct a k-anonymous data set, the Anatomy method is better, as it preserves more information, namely the distribution of the confidential attribute within each set in the partition. However, if our goal is to achieve t-closeness, we will show that the probabilistic k-anonymity approach is preferable.

7.1.1 Partitioning based on the confidential attribute

We have argued above that customizing the k-anonymous partition to specific data analysis requirements is not an option. Hence, the utility of the data depends on the amount of variability of the confidential attribute. For instance, if we target a specific individual, the quasi-identifiers allow us to determine a group of k records that must contain that individual; thus, we know that each of the values of the confidential attribute within the group has probability $1/k$ of corresponding to the target individual. The amount of knowledge we get (and thus the utility) depends on the variability of the confidential attribute within the group: the more similar the confidential attribute values, the more knowledge for the user, but also the higher the risk of attribute disclosure.

To limit the variability of the confidential attribute within groups of indistinguishable records, we propose to partition the records in the data set based on the value of the confidential attribute. We focus on a numerical confidential attribute. Let D be a data set with quasi-identifiers collectively denoted as QI, and a confidential attribute C, as represented in Table 7.1.

For the sake of clarity, we take a single confidential attribute. If there are several confidential attributes, we can treat them as a single compound confidential attribute and partition the data set according to a proximity criterion that takes into account all the components (e.g. microaggregation over confidential attributes \cite{35}).

To minimize the variability of C, we sort the records by C, and generate the partition by taking the k minimal and maximal records, iteratively (see Algorithm 7.1).
7.1 Partitioning strategies for k-anonymity

Table 7.1: Data set with quasi-identifiers QI and a confidential attribute C

individual 1	q_1	c_1
...
individual N	q_N	c_N

Algorithm 7.1 Optimal partitioning based on the confidential attribute

let $D = \{(q_i, c_i)|i = 1, \ldots, N\}$ be the original data set
let $P = \emptyset$ the partition of D to be returned
let $O = ((oq_1, oc_1), \ldots, (oq_N, oc_N))$ be the list of records of D ordered by ascending values c_i

while $|O| \geq 3k$
 let P_{min} be the set containing the first k records of O
 insert P_{min} into P
 remove the first k records from O
 let P_{max} be the set containing the last k records of O
 insert P_{max} into P
 remove the last k records from O
end while

if $|O| \geq 2k$
 let P_{min} be the set containing the first k records of O
 insert P_{min} into P
 remove the first k records from O
end if

let P_{rest} be the set with the records remaining in O
insert P_{rest} into P
return P
Table 7.2: Original de-identified medical data

Ethnicity	Date of Birth	Sex	Problem
asian	09/27/64	female	hypertension
asian	05/08/61	female	obesity
asian	04/18/64	male	chest pain
black	03/13/63	male	hypertension
black	03/18/63	male	shortness of breath
black	09/07/64	female	obesity
white	05/14/61	male	chest pain
white	05/08/63	male	obesity
white	09/15/61	female	shortness of breath

7.1.2 Anatomy: reducing information loss in quasi-identifiers

We have mentioned above the “curse of dimensionality” information loss problem inherent to generalizations affecting many quasi-identifier attributes. The problem may get even worse if we construct the partition based on the confidential attribute, as proposed in the previous section. The values of the quasi-identifier attributes in each group of the partition may span the whole domains of those attributes (or substantial fractions of them). Therefore, replacing all values of each quasi-identifier attribute within a group by a single generalized value would lead to a great utility loss. Moreover, note that the generalized values for the quasi-identifiers might coincide for different groups.

To overcome this difficulty, we propose to use the Anatomy approach to k-anonymity, which preserves the original values of the quasi-identifiers. To dissociate (break the relation between) quasi-identifiers and confidential attributes, two tables are generated: the first one assigns a group identifier to the quasi-identifiers, and the second one relates each group identifier to the confidential attributes. We illustrate this in Tables 7.2, 7.3, and 7.4. Table 7.2 shows the original de-identified data. Table 7.3 presents a 3-anonymous version of the data obtained by generalization of the attributes Date of Birth and Sex. Note that we have used the greatest level of generalization for those attributes, and thus the information loss is large. In contrast, we observe in Table 7.4 that, by using a group identifier to relate quasi-identifier attributes and confidential attributes, we achieve exactly what we wanted: we k-anonymize the relation between quasi-identifiers and confidential attributes, while preserving the values of quasi-identifier attributes and the confidential attribute. In particular, the distribution of the confidential attribute within each group (records sharing the same group identifier) is preserved.
Table 7.3: 3-Anonymous data set

Ethnicity	Date of Birth	Sex	Problem
asian	[61,64]	-	hypertension
asian	[61,64]	-	obesity
asian	[61,64]	-	chest pain
black	[61,64]	-	hypertension
black	[61,64]	-	shortness of breath
black	[61,64]	-	obesity
white	[61,64]	-	chest pain
white	[61,64]	-	obesity
white	[61,64]	-	shortness of breath

Table 7.4: Left, relation between quasi-identifiers and group identifier. Right, relation between group identifier and confidential attribute.

Ethnicity	Date of Birth	Sex	ID	ID	Problem
asian	09/27/64	female	1	1	hypertension
asian	05/08/61	female	1	1	obesity
asian	04/18/64	male	1	1	chest pain
black	03/13/63	male	2	2	hypertension
black	03/18/63	male	2	2	shortness of breath
black	09/07/64	female	2	2	obesity
white	05/14/61	male	3	3	chest pain
white	05/08/63	male	3	3	obesity
white	09/15/61	female	3	3	shortness of breath
7.1.3 Comparison of partitioning strategies

When generating the partition based on the quasi-identifiers, small values of the parameter k are typically used. Usually, the variability of the confidential attribute thus obtained is large enough not to lead to attribute disclosure. However, when basing the partition on the confidential attribute, small values of k will almost certainly lead to attribute disclosure, because in this case the within-group variability of the confidential attribute is small.

However, constructing the partition based on the confidential attribute has one important advantage: it allows fixing the desired level of variability for the confidential attribute. Indeed, parameter k can be increased to a value that provides effective disclosure limitation guarantees. For instance, by setting k to $0.1 \times N$, we guarantee that the confidential attribute for any individual is hidden inside a group of individuals that amount to a 10% of the actual sample.

Note that if partitioning is based on the quasi-identifiers, we cannot control the level of variability of the confidential attribute inside each of the k-anonymous groups: some of them may exhibit a large variability (which offers protection against attribute disclosure, but poor data utility) and others may not (which offers good data utility, but high risk of attribute disclosure). The underlying problem is the impossibility of enforcing a predetermined amount of variability: variability increases with k, but the relationship between k and the amount of variability of the confidential attribute is not clear. Usually, k must be small (if any utility is to be provided), which results in poor disclosure limitation guarantees.

7.2 A bucketization construction to achieve t-closeness

It has been argued above that when partitioning is based on the confidential attribute, the value of k must be increased to provide effective disclosure limitation. In this section we seek to enforce a stronger disclosure limitation criterion: t-closeness. t-Closeness limits the knowledge gain that an intruder can derive from the k-anonymous groups. The distribution of the confidential attribute within each of the k-anonymous groups is required to be similar to the distribution of the confidential attribute on the whole data set.

For t-closeness to be satisfied, the distance between the data set-level and the group-level distribution of the confidential attribute must be less than t for any group. When t-closeness was introduced, the Earth Mover’s distance (EMD) was proposed [58]. The EMD measures the minimal amount of work required to transform one distribution to another by moving probability mass between each other.

The kind of guarantee that t-closeness offers depends on the distance function used. We aim at achieving an ε-differentially privacy-like guarantee, and this requires us
to use a different distance. \(\varepsilon\)-Differential privacy guarantees that, for any two data sets that differ in one individual, the probability for a query response computed on either data set to belong to an arbitrary set \(S\) differs at most by a factor \(\exp(\varepsilon)\). The distance function we propose mimics the \(\varepsilon\)-differential privacy criterion.

Definition 15. Given two random distributions \(D_1\) and \(D_2\), we define the distance between \(D_1\) and \(D_2\) as:

\[
d(D_1, D_2) = \max_S \left\{ \frac{\Pr_{D_1}(S)}{\Pr_{D_2}(S)} : \frac{\Pr_{D_2}(S)}{\Pr_{D_1}(S)} \right\}
\]

where \(S\) is an arbitrary (measurable) set, and we take the quotients of probabilities to be zero, if both \(\Pr_{D_1}(S)\) and \(\Pr_{D_2}(S)\) are zero, and to be infinity if only the denominator is zero.

If the distributions \(D_1\) and \(D_2\) are discrete (as it is the case for the sampling distribution of the confidential attribute in a microdata set), computing the distance between them is simpler: taking the maximum over the possible individual values suffices.

Proposition 10. If distributions \(D_1\) and \(D_2\) take values in a discrete set \(\{x_1, \ldots, x_N\}\), then the distance \(d(D_1, D_2)\) can be computed as

\[
d(D_1, D_2) = \max_{i=1,\ldots,N} \left\{ \frac{\Pr_{D_1}(x_i)}{\Pr_{D_2}(x_i)} : \frac{\Pr_{D_2}(x_i)}{\Pr_{D_1}(x_i)} \right\} \quad (7.1)
\]

To satisfy \(t\)-closeness, the groups in the partition must be selected such that the distance of the distribution of the confidential attribute on the whole data set and the distribution on each of the groups is less than \(t\). When using the previously defined distance, if we work with the sampling distribution of the confidential attribute (assuming that at least one of the values of the confidential attribute has multiplicity less than the cardinality of the partition), the distance is always infinity. The reason is that the distance due to values of the confidential attribute that do not appear within the group is infinity (according to Definition 15). To avoid this issue, instead of working with the sampling distribution of the confidential attribute, we work with a bucketized version of it, where several points are clustered into a set of buckets \(B_1, \ldots, B_n\). In Figure 7.4, the values of the confidential attribute in the original data have been clustered in buckets \(B_1, B_2\) and \(B_3\) that contain four points each. From this step we get a distribution for the confidential attribute with diminished granularity.

By using the proposed bucketization it is feasible to attain \(t\)-closeness for a finite \(t\). For instance, Figure 7.5 shows a 4-anonymous partition of the data set that satisfies 1.5-closeness, according to the previously defined distance. The sampling distribution of the original data assigns probability 1/3 to each of the buckets \(B_1, B_2\) and \(B_3\); hence, the bucket-level distribution \(D\) of the confidential attribute in
Chapter 7
Differential privacy via t-closeness in data publishing

Figure 7.4: Top, original confidential attribute values. Bottom, bucketized confidential attribute values.

Figure 7.5: Sample partition that satisfies 1.5-closeness

the original data set is $\Pr(B_1) = \Pr(B_2) = \Pr(B_3) = 1/3$. Each of the groups in the partition (P_1, P_2, P_3) takes either one or two points from each bucket. Hence, the bucket-level distribution $\mathcal{D}(P_1)$ of the confidential attribute for group P_1 is $\Pr(B_1) = 1/2$ and $\Pr(B_2) = \Pr(B_3) = 1/4$; for group P_2 the distribution, denoted by $\mathcal{D}(P_2)$, is $\Pr(B_1) = \Pr(B_3) = 1/4$ and $\Pr(B_2) = 1/2$; for group P_3 the distribution, denoted by $\mathcal{D}(P_3)$, is $\Pr(B_1) = \Pr(B_2) = 1/4$ and $\Pr(B_3) = 1/2$. By using Equation (7.1) to measure the distance between \mathcal{D} and $\mathcal{D}(P_i)$, for all i, we conclude that the generated partition satisfies 1.5-closeness. In Table 7.5 we have depicted both the original set of values of the confidential attribute, and the generated buckets.

Let the points in the original data set depicted in Figure 7.5 be of the form (q_i, c_i), where c_i the value of the confidential attribute and $c_i \geq c_j$ for $i \geq j$. According to the Anatomy approach to k-anonymity, the 4-anonymous 1.5-close resultant data, associated to partition $\{P_1, P_2, P_3\}$ in Figure 7.5 and bucketization $\{B_1, B_2, B_3\}$ in Figure 7.4 consists of the two linked tables displayed in Table 7.5.

7.2.1 Bucketization of the original data

The selected bucketization of the confidential attribute has a large impact on data utility: if the bucketization is too coarse, the information loss in the confidential attribute is large; if the bucketization is too fine, it may not be possible to attain t-closeness. In this section we seek to determine the optimal size (in terms of probability mass) of the buckets.
7.2 A bucketization construction to achieve \(t \)-closeness

Table 7.5: 4-Anonymous 1.5-close data set associated to the partition \(\{P_1, P_2, P_3\} \) in Figure 7.5 and bucketization in Figure 7.4

QI	\(q_1 \)	\(q_2 \)	\(q_3 \)	\(q_4 \)	\(q_5 \)	\(q_6 \)	\(q_7 \)	\(q_8 \)	\(q_9 \)	\(q_{10} \)	\(q_{11} \)	\(q_{12} \)
Group Id	\(P_2 \)	\(P_1 \)	\(P_1 \)	\(P_3 \)	\(P_2 \)	\(P_3 \)	\(P_1 \)	\(P_2 \)	\(P_3 \)	\(P_3 \)	\(P_1 \)	\(P_2 \)
Group Id	\(P_1 \)	\(P_1 \)	\(P_1 \)	\(P_2 \)	\(P_2 \)	\(P_2 \)	\(P_3 \)	\(P_3 \)	\(P_3 \)	\(P_3 \)		
Bucket	\(B_1 \)	\(B_1 \)	\(B_2 \)	\(B_3 \)	\(B_1 \)	\(B_2 \)	\(B_3 \)	\(B_1 \)	\(B_2 \)	\(B_3 \)		

Figure 7.6: Probability distributions satisfying 2-closeness with the distance of Definition 15.

Figure 7.6 illustrates two probability distributions: the uniform distribution represents the global distribution of the confidential attribute (over the whole data set), and the other distribution corresponds to the confidential attribute restricted to a group \(P_i \). These two distributions satisfy 2-closeness with the distance of Definition 15: the density of the restriction to \(P_i \) equals \(\frac{1}{2} \) for all the range of values of the confidential attribute, except for a range of values that has density 2.

When bucketizing the distributions in Figure 7.6, the range of values with density 2 should exactly correspond to a bucket or a union of buckets, in order to maximize the utility of the data. This is illustrated in Figure 7.7 whose top row shows bucketized versions of the distributions of Figure 7.6 using three buckets: top left graph, bucketized version of the global distribution; top right graph, bucketized version of the restriction to \(P_i \). Note that, for each of the buckets, the global probability and the probability restricted to \(P_i \) differ by a multiplicative factor of two; that is, we attain 2-closeness with equality for each of the buckets. The bottom row of Figure 7.7 shows the bucketized versions of the distributions in Figure 7.6 using two buckets. It can be seen that, with the two proposed buckets, both bucketized distributions are identical; that is, we get 1-closeness, which is stronger than the intended 2-closeness, but comes at the cost of data utility loss. Therefore, the number and hence the probability mass of the optimal buckets is dependent on the level of \(t \)-closeness that we want.

Let us now restate the bucketization process in an algorithmic way:

1. Let the number of records in the original data set be \(N \).
2. Cluster the \(N \) values of the confidential attribute in the original data set into a number \(b \) of buckets in such a way that:
 a) all buckets accumulate the same probability mass \(1/b \), that is, each bucket contains \(\lfloor N/b \rfloor \) values;
 b) values within a bucket are as similar as possible (e.g. for a numerical confidential value, each bucket would contain \(\lfloor N/b \rfloor \) consecutive values).

In this way, we can view the bucketized distribution of the confidential attribute in the original data set as being uniform.

3. Partition the records in the original data set into a number of groups, in such a way that every group satisfies that:
 a) it contains \(k \) (or more) records, in view of achieving \(k \)-anonymity;
 b) no bucket contains a proportion of the confidential attribute values of the group higher than \(t/b \) or lower than \(1/(tb) \) (that is, so that the bucketized distribution of the confidential attribute in the group is at distance less than \(t \) from the bucketized distribution of the confidential attribute in the overall data set, according to Definition 15).

In general, the smaller the number \(b \) of buckets, the easier it is to achieve \(t \)-closeness, for any given \(t \). In the extreme case \(b = 1 \), all bucketized distributions are 1-close (e.g. there is a single bucketized distribution). In the other extreme case \(b = N \) (no bucketization) it has been argued above (right after Proposition 10) that the
distance between the distributions of the confidential attribute on the global data set and on a particular group is infinity; hence, one can only achieve ∞-closeness. Hence, at most b can be k, the number of values in each group, and buckets should be large enough so that, when restricted to any group, any bucket contains at least one value.

On the other hand, if the privacy requirement is t-closeness, for a certain t, it seems reasonable to use up the allowed distance t between the global distribution of the confidential attribute and the restriction of that distribution within each group. Using up the allowed distance between the confidential attribute distributions enables forming groups that are more homogeneous in terms of the quasi-identifiers, and hence decreases information loss. We want each of the k-anonymous groups to emphasize a specific bucket; that is, the probability distribution of the restriction to the partition must differ from the global distribution by a factor of t for a specific bucket, and by a factor of $1/t$ for the rest of buckets. Now, in the distribution of the confidential attribute for the original data set each bucket accumulates probability mass $1/b$, and the total probability mass of the distribution restricted to a group must add to 1. Hence, we have

$$t \times \frac{1}{b} + \frac{1}{t} \times \left(1 - \frac{1}{b}\right) = 1$$

which yields a number of buckets $b = t + 1$.

7.2.2 t-Closeness construction

Consider the original data set $D = \{(q_i, c_i) | i = 1, \ldots, N\}$, where q_i refers to the quasi-identifier attributes, and c_i to the confidential attribute. We want to generate a k-anonymous t-close data set D'.

According to Section 7.2.1, we need to reduce the granularity of the confidential attribute. In particular, it was proposed to group the values of the confidential attribute in buckets of $\left\lceil \frac{N}{b} \right\rceil = \left\lceil \frac{N}{(t + 1)} \right\rceil$ records. Assuming that the records can be ordered in terms of the confidential attribute c_i (this is possible if c_i is numerical or ordinal) we can list the contents of the buckets as follows:

$$B_1 = \{c_1, \ldots, c_{\left\lfloor \frac{N}{t+1} + 0.5 \right\rfloor}\}$$
$$B_2 = \{c_{\left\lfloor \frac{N}{t+1} + 0.5 \right\rfloor + 1}, \ldots, c_{\left\lfloor 2 \times \frac{N}{t+1} + 0.5 \right\rfloor}\}$$
$$\vdots$$
$$B_{t+1} = \{c_{\left\lfloor x \times \frac{N}{t+1} + 0.5 \right\rfloor + 1}, \ldots, c_N\}$$

The k-anonymous t-close data set is generated as follows:

1. Replace the values of the confidential attribute in the original data set D by the corresponding buckets, and call \tilde{D} the resulting data set;
2. Partition \tilde{D} in groups of k (or more) records.
Table 7.6: Theoretical probability mass of the distribution of the confidential attribute in each of the buckets corresponding to the discretization of the confidential attribute.

	B_1	B_2	...	B_{t+1}
Original data	$1/(t+1)$	$1/(t+1)$...	$1/(t+1)$
P_1	$1/(t+1)$	$1/(t(t+1))$...	$1/(t(t+1))$
P_2	$1/(t(t+1))$	$1/(t+1)$...	$1/(t(t+1))$
...
P_{t+1}	$1/(t(t+1))$	$1/(t(t+1))$...	$1/(t+1)$

In the second step above, not all values of k are equally suitable. For instance, it must be $k \geq t+1$, because we showed in Section 7.2.1 that $b \leq k$ and $b = t+1$. In fact, we can write:

$$k = \frac{N}{(t+1)l}$$

where $l \geq 1$ is a natural number that counts the number of groups that emphasize each of the buckets. In fact, if we take into account the previous inequality $k \geq t+1$, we conclude that l belongs to the set \(\{1, \ldots, \left\lfloor \frac{N}{t(t+1)^2} \right\rfloor\}\). Similarly to the discretization of the confidential attribute, the value of k produced by the previous formula may not be exact. In that case we need to adjust the size k_i of each group P_i to

$$k_i = \left[i \cdot \frac{N}{(t+1)l} \right] - \left[(i-1) \cdot \frac{N}{(t+1)l} \right]$$

Table 7.6 gives the theoretical probability mass of each bucket of the confidential attribute for each of the groups. We assume that $l = 1$ and that group P_1 emphasizes bucket B_1, P_2 emphasizes bucket B_2, and so on. The exact theoretical probability masses may not be achievable due to the discrete nature of the data. First of all, it may not be possible to obtain a discretization of the confidential attribute in buckets with probability mass $1/(t+1)$. Also, when generating the k-anonymous partition P_1, \ldots, P_{t+1}, it may not be possible for each of the groups to contain exactly k records. Let k_i be the number of records in P_i and let p_j be the probability that a record in the original data set belongs to bucket B_j. For t-closeness to be achieved, the following must hold for every group P_i: (i) at most $[k_ip_i/t]$ records must have B_i as the value for the confidential attribute; and (ii) at least $[k_ip_j/t]$ records must have B_j as confidential attribute. For these conditions to hold, we can start selecting $[k_ip_j/t]$ records with confidential attribute B_j, for each $j \neq i$, and complete the partition set with $k_i - t \cdot [k_ip_j/t]$ records with confidential attribute B_i.

126
7.3 From t-closeness to ε-differential privacy

t-Closeness and ε-differential privacy take approaches towards disclosure limitation that are essentially different. However, for microdata releases a link between them can be found if we make some assumptions on the prior knowledge of intruders:

1. The marginal distribution of the confidential attribute is known to the intruder; actually, this assumption is a requirement, because a t-close data release preserves this marginal distribution.

2. The intruder knows whether an individual’s record is in the data set; this is also a requirement, as either of the approaches proposed to generate the t-close data set, Anatomy and probabilistic k-anonymity, preserves the quasi-identifiers.

3. When regular k-anonymity is used, another assumption on the intruder’s knowledge is required: the intruder’s knowledge about the confidential attribute is limited to its marginal distribution.

We aim at showing that, in the case of a microdata release, $\exp(\varepsilon)$-closeness implies ε-differential privacy. In other words, we want to show that the information that an intruder obtains from accessing the released $\exp(\varepsilon)$-close microdata set (generated as per Section 7.2) satisfies the ε-differential privacy condition.

Let I be a specific individual in the data set. Before accessing the data set, the intruder views the value of the confidential attribute of individual I as being distributed according to the distribution of the confidential attribute over the whole data set. Given the assumption that limits the prior knowledge to the marginal distribution of the confidential attribute, that is the most precise information that the intruder has about I. ε-Differential privacy guarantees that the knowledge gain obtained from the response to a query that asks for I’s confidential attribute is at most $\exp(\varepsilon)$; that is, the distribution of the response must differ at most by a factor of $\exp(\varepsilon)$ from the assumed prior knowledge. Note that if we did not take into account the intruder’s prior knowledge (usual ε-differentially private mechanisms do not assume any prior knowledge), the $\exp(\varepsilon)$-differentially private distribution for the confidential attribute of individual I’s would be different. However, the possibility of using the available prior knowledge exists, and thus any distribution that differs from it by a factor of $\exp(\varepsilon)$ satisfies $\exp(\varepsilon)$-differential privacy.

t-Closeness is an improvement of k-anonymity. As such, it seeks to thwart record re-identification by making each record indistinguishable from $k - 1$ other records as far as the quasi-identifiers are concerned. Apart from that, t-closeness requires that the sampling distribution of the confidential attribute within each of the k-anonymous groups be similar to the sampling distribution over the whole data set. Hence, t-closeness effectively limits the knowledge gain that the intruder obtains, that is, it achieves differential privacy.
7.3.1 Uninformed intruders

Consider an uninformed intruder. By inspecting the released $\exp(\epsilon)$-close k-anonymous data set, the intruder associates a k-anonymous group of records to individual I. In this way, the intruder learns the distribution of the confidential attribute within the k-anonymous group P that contains I. As the intruder’s prior knowledge is limited to the marginal distribution of the confidential attribute, after accessing the data, the best the intruder can do is to associate the distribution of the confidential attribute in P to individual I. As the released data set satisfies $\exp(\epsilon)$-closeness (generated as per Section 7.2), the distribution of P differs at most in a factor $\exp(\epsilon)$ from the distribution of the whole data set; that is, it satisfies ϵ-differential privacy.

7.3.2 Informed intruders

For an informed intruder (whose knowledge goes beyond the distribution of the confidential attribute over the whole data set), in general t-closeness does not imply differential privacy. To see this, consider an intruder who knows the value of the confidential attribute for $k-1$ of the k individuals in one of the k-anonymous groups. Such an intruder can determine (with certainty) the confidential attribute value for the remaining individual in the group by simple inspection of the released data; in differential privacy terms, access to the data set has produced a infinite knowledge gain on the confidential attribute of that specific individual.

The above situation is unavoidable if, as k-anonymity does, we intend to preserve the truthfulness of the confidential attribute inside the k-anonymous groups. However, as we showed in Section 7.1 by increasing k, the problem is mitigated. The greatest mitigation is attained when k equals the number of records in the data set. In such case, for the intruder to determine the confidential attribute value of any individual with certainty, he should know the confidential attribute for all the other individuals in the data set (strictly speaking, it would be enough to know that none of the other individuals take one of the values in the released data set). The problem with such a large k is that it is likely to severely damage utility.

The destruction of data utility can be mitigated if we hide the k-anonymous groups. In this way, a smaller k can be used, thereby preserving the utility of the data, and a protection equivalent to taking k equal to N is attained. Hiding the k-anonymous groups is feasible if instead of regular k-anonymity, we enforce probabilistic k-anonymity [89]. Probabilistic k-anonymity can be seen as an instance of the Anatomy method for k-anonymity: instead of associating a sampling distribution to each of the groups, the values of the confidential attribute are permuted and assigned to individual records. This process can be viewed as taking a sample of the sampling distribution for each record. When using probabilistic k-anonymity, the intruder cannot determine which records form each of the groups; thus, she cannot
use the information about a specific individual to increase her knowledge on the other individuals of the group.

7.4 Conclusions

We have shown that the k-anonymity family of models is powerful enough to achieve ε-differential privacy in the context of data publishing. Specifically, using a suitable construction, we have shown that $\exp(\varepsilon)$-closeness implies ε-differential privacy for uninformed intruders and approximate ε-differential privacy for informed intruders. Our t-closeness construction based on bucketization is also a contribution in its own right.
8 Conclusions

8.1 Contributions

This thesis has dealt with disclosure limitation in data releases. Among the available privacy criteria, we have focused on k-anonymity and ε-differential privacy. The focus has primarily been placed on improving data utility, but we have also dealt with the inherent limitations of k-anonymity, and with the combination of k-anonymity (or t-closeness) and ε-differential privacy. More specifically, our contributions are:

- We have reviewed k-anonymity and some of its limitations. In particular, we have shown that k-anonymity has a suboptimal behavior in presence of informed intruders, due to the “curse of dimensionality”. To improve data utility we have proposed a new privacy model, which relaxes the requirements of k-anonymity by imposing only a probability of re-identification equal to $1/k$. We have shown that our proposal offers equivalent disclosure limitation guarantees to those of k-anonymity, and allows for improved data utility. The improvement on data utility is chiefly due to the ability to use multiple partitions of the data set. It allows us to offer improved privacy guarantees against informed intruders and still keep the data useful.

- The Laplace distribution is the most commonly used data-independent noise distribution to attain ε-differential privacy. We have shown that the Laplace distribution is not optimal: another distribution exists which satisfies the ε-differential privacy condition and has its probability mass more concentrated around zero. For the univariate case, we have determined the form of and constructed all optimal data-independent distributions. For the multivariate case, we have shown that a specific family of distributions is optimal. Regarding data utility, we have shown that for the univariate case the improvement of the optimal distribution is small (and thus the Laplace distribution is near-optimal), but for the multivariate case the improvement can be significant.

- ε-Differential privacy guarantees that the knowledge gain that can be extracted from a query response is limited. As current methods to attain ε-differential privacy do not let users specify their prior knowledge, zero knowledge is implicitly taken as the base to compute the knowledge gain. We propose a mechanism to let users specify their prior knowledge on the response: each time a user sends a query, the user's prior knowledge is also sent. We show that this mechanism improves data utility and, despite the increased interaction between the database and the user, we show that it preserves privacy.
• A synergy between k-anonymity and ε-differential privacy has been described for privacy-preserving data publication, even if both models have quite different origins. In particular we have shown that a specific kind of microaggregation (that results in a k-anonymous data set) can be employed to reduce the sensitivity of identity queries by a factor of $1/k$. As a result, the ε-differentially private data set generated from the k-anonymous version offers improved data utility.

• We have shown that the k-anonymity family of models is powerful enough to achieve ε-differential privacy in the context of data publishing. Specifically, using a suitable construction, we have shown that $\exp(\varepsilon)$-closeness implies ε-differential privacy for uninformed intruders and approximate ε-differential privacy for informed intruders. Our t-closeness construction based on bucketization is also a contribution in its own right. In particular, as ε-differential privacy is attained through a method that provides t-closeness, the truthfulness of the data inside k-anonymous groups is preserved. This is a remarkable advantage over typical methods used to attain ε-differential privacy.

8.2 Publications

The publications supporting this thesis are:

• Jordi Soria-Comas and Josep Domingo-Ferrer. Probabilistic k-anonymity through microaggregation and data swapping. In: *IEEE International Conference on Fuzzy Systems - FUZZ-IEEE 2012*, pp. 1-8, 2012.

• Jordi Soria-Comas and Josep Domingo-Ferrer. Optimal data-independent noise for differential privacy.*Information Sciences* (To appear).

• Jordi Soria-Comas and Josep Domingo-Ferrer. Differential privacy through knowledge refinement. In: *4th IEEE International Conference on Privacy, Security, Risk and Trust - PASSAT 2012*, pp. 702-707, 2012.

• Jordi Soria-Comas and Josep Domingo-Ferrer. Sensitivity-independent differential privacy via prior knowledge refinement. *International Journal of Uncertainty, Fuzziness and Knowledge-based Systems* 20(6): 855-876, 2012.

• Jordi Soria-Comas, Josep Domingo-Ferrer and David Rebollo-Monedero. k-Anonimato probabilístico. In: *XII Reunión Española sobre Criptología y Seguridad de la Información - RECSI 2012*.

• Jordi Soria-Comas and Josep Domingo-Ferrer. On differential privacy and data utility in SDC. In *7th Joint UN/ECE-Eurostat Work Session on Statistical Data Confidentiality*, 2011. http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2011/24_Soria-Domingo.pdf
8.3 Future work

The work presented in this thesis opens several avenues for new research:

- In Chapter 3 we reviewed some of the limitations of k-anonymity in presence of informed intruders, and proposed a new privacy model, probabilistic k-anonymity, that offers privacy guarantees equivalent to those of k-anonymity. We showed that probabilistic k-anonymity may offer disclosure limitation against informed intruders and still provide useful results. The proposed method to attain probabilistic k-anonymity works by generating a different partition (the optimal one) for each confidential attribute. As a result, the risk of attribute disclosure is increased. To deal with this issue we proposed to increase k, but the enforcement of additional criteria (e.g. l-diversity, t-closeness) may be a better solution.

- The amount of noise added to attain ε-differential privacy is usually large, which damages the utility of the output. One strategy to reduce query sensitivity is based on applying some transformation to the query. Following this strategy we have shown that for queries returning information about specific individuals, a prior microaggregation step can reduce sensitivity by a factor of $1/k$. It could be interesting to determine whether microaggregation can help reducing the sensitivity of a generic queries.

- A common approach to the generation of ε-differentially private data sets is to divide the range of possible values in fixed buckets and then count the number of individuals within each bucket. This approach is not suitable for dealing with sparse data: the number of buckets with small counts is large, and therefore the added noise may substantially change the properties of the data set. A possible approach to make sure that the generated buckets have a similar number of records is to use a microaggregation algorithm. Regular microaggregation algorithms do not fit in the ε-differential privacy environment, as a change in a single point may change the cluster completely; however, the insensitive microaggregation proposed in Chapter 6 guarantees a maximum change of one record per cluster. By using this approach, the accuracy of the
released data may be increased as, in practice, we avoid considering the sparse regions.

- In Chapter 7 we presented a link between \(t \)-closeness and \(\varepsilon \)-differential privacy for numeric or ordinal attributes. Future research will include extending the proposed approach for nominal confidential attributes, which cannot be ordered. We will also provide a generalization to multiple confidential attributes. Experimental work will be conducted to compare the utility of the \(\varepsilon \)-differentially private data sets obtained via bucketized \(\exp(\varepsilon) \)-closeness. The very nature of our construction, based on \(k \)-anonymity, gives reasonable hopes that more utility may be preserved than the one offered by the Laplace noise addition typically used to achieve \(\varepsilon \)-differential privacy: for example, by design, our approach does not yield any off-range values, which may however appear in noise addition procedures; in fact, the anonymized values we provide are truthful, even if coarsened by bucketization. We will also explore the exact privacy guarantees offered by the approximate \(\varepsilon \)-differential privacy obtained with our construction for the case of informed intruders.
Bibliography

[1] Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of individuals with regard to the processing of personal data and on the free movement of such data. *Official Journal of the European Communities*, pages 31–50, October 1995.

[2] Standard for privacy of individually identifiable health information. *Federal Register, Special Edition*, pages 768–769, October 2007.

[3] Timeline: A history of privacy in America, 1600-2008. *Scientific American*, 2008.

[4] Timeline: Privacy and the law. *NPR*, 2009.

[5] Clicking for gold: How internet companies profit from data on the web. *The Economist: A Special Report on Managing Information*, pages 5–6, February 2010.

[6] Data, data everywhere. *The Economist: A Special Report on Managing Information*, pages 1–2, February 2010.

[7] N. R. Adam and J. C. Worthmann. Security-control methods for statistical databases: A comparative study. *ACM Computing Surveys*, 21(4):515–556, December 1989.

[8] C. C. Aggarwal and P. S. Yu, editors. *Privacy-Preserving Data Mining: Models and Algorithms*, volume 34 of *Adv. in Database Systems*. Springer, 2008.

[9] Charu C. Aggarwal. On k-anonymity and the curse of dimensionality. In *Proceedings of the 31st international conference on Very large data bases*, VLDB '05, pages 901–909. VLDB Endowment, 2005.

[10] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu. Anonymizing tables. In T. Eiter and L. Libkin, editors, *ICDT*, volume 3363 of *Lecture Notes in Computer Science*, pages 246–258. Springer, 2005.

[11] R. Agrawal and R. Srikant. Privacy-preserving data mining. In *Proceedings of the 2000 ACM SIGMOD international conference on Management of data*, SIGMOD '00, pages 439–450, New York, NY, USA, 2000. ACM.

[12] M. Barbaro and T. Zeller. A face is exposed for AOL searcher no. 4417749. *New York Times*, 2006.
[13] M. Batet, A. Valls, and K. Gibert. A distance function to assess the similarity of words using ontologies. In XV Congreso Español sobre Tecnologías y Lógica Fuzzy, pages 561–566, Huelva, Spain, 2010.

[14] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In Proceedings of the 21st International Conference on Data Engineering, ICDE ’05, pages 217–228, Washington, DC, USA, 2005. IEEE Computer Society.

[15] E. Bertino, D. Lin, and W. Jiang. A survey of quantification of privacy preserving data mining algorithms. In C. C. Aggarwal and P. S. Yu, editors, Privacy-Preserving Data Mining, volume 34 of Advances in Database Systems, pages 183–205. Springer, 2008.

[16] C. Blake and C. Merz. Adult data set. Technical report, UCI Machine Learning Repository, 1998. http://archive.ics.uci.edu/ml/datasets/Adult.

[17] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the sulq framework. In Proceedings of the 24th ACM Symposium on Principles of Database Systems (PODS 2005), pages 128–138, 2005.

[18] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC 2008), pages 609–618, 2008.

[19] R. Brand, J. Domingo-Ferrer, and J. M. Mateo-Sanz. Reference data sets to test and compare SDC methods for protection of numerical microdata. European FP5 Project IST-2000-25069 CASC, 2002. http://neon.vb.cbs.nl/casc.

[20] A.-S. Charest. How can we analyze differentially-private synthetic data sets? Journal of Privacy and Confidentiality, 2:21–33, 2010.

[21] A.-S. Charest. Empirical evaluation of statistical inference from differentially-private contingency tables. In Proceedings of the 2012 international conference on Privacy in Statistical Databases, PSD’12, pages 257–272, Berlin, Heidelberg, 2012. Springer-Verlag.

[22] R. Chen, N. Mohammed, B. C. M. Fung, B. C. Desai, and L. Xiong. Publishing set-valued data via differential privacy. The Proceedings of the VLDB Endowment (PVLDB), 4(11):1087–1098, August 2011.

[23] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-anonymous data mining: A survey. In P.S. Yu C.C. Aggarwal, editor, Privacy-Preserving Data Mining: Models and Algorithms. Springer-Verlag, 2008.

[24] T. Dalenius. Towards a methodology for statistical disclosure control. Statistik Tidskrift, 15:429–444, 1977.

[25] R. A. Dandekar, J. Domingo-Ferrer, and F. Sebé. LHS-based hybrid microdata vs rank swapping and microaggregation for numeric microdata protection. In Inference Control in Statistical Databases, From Theory to Practice, pages 153–162, London, UK, UK, 2002. Springer-Verlag.
[26] I. Dinur and K. Nissim. Revealing information while preserving privacy. In Proceedings of the 32nd ACM Symposium on Principles of Database Systems, pages 202–210, 2003.

[27] J. Domingo-Ferrer. Marginality: a numerical mapping for enhanced exploitation of taxonomic attributes. In Proceedings of the 9th international conference on Modeling Decisions for Artificial Intelligence, MDAI'12, pages 367–381, Berlin, Heidelberg, 2012. Springer-Verlag.

[28] J. Domingo-Ferrer and Ú González-Nicolás. Hybrid microdata using microaggregation. Inf. Sci., 180(15):2834–2844, August 2010.

[29] J. Domingo-Ferrer, A. Martínez-Ballesté, J. M. Mateo-Sanz, and F. Sebé. Efficient multivariate data-oriented microaggregation. The VLDB Journal, 15(4):355–369, November 2006.

[30] J. Domingo-Ferrer and J. M. Mateo-Sanz. Practical data-oriented microaggregation for statistical disclosure control. IEEE Transactions on Knowledge and Data Engineering, 14(1):189–201, 2002.

[31] J. Domingo-Ferrer, J. M. Mateo-sanz, and V. Torra. Comparing SDC methods for microdata on the basis of information loss and disclosure. In Proceedings of ETK-NTTS 2001, Luxemburg: Eurostat, pages 807–826. Eurostat, 2001.

[32] J. Domingo-Ferrer, F. Sebé, and A. Solanas. A polynomial-time approximation to optimal multivariate microaggregation. Comput. Math. Appl., 55(4):714–732, February 2008.

[33] J. Domingo-Ferrer and V. Torra. Disclosure control methods and information loss for microdata. In P. Doyle, J.I. Lane, J.J.M. Theeuwes, and L. Zayatz, editors, Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies, pages 91–110. North-Holland, Amsterdam, 2001.

[34] J. Domingo-Ferrer and V. Torra. A quantitative comparison of disclosure control methods for microdata. In P. Doyle, J.I. Lane, J.J.M. Theeuwes, and L. Zayatz, editors, Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies, pages 111–134. North-Holland, Amsterdam, 2001.

[35] J. Domingo-Ferrer and V. Torra. Ordinal, continuous and heterogeneous k-anonymity through microaggregation. Data Minining and Knowledge Discovery, 11(2):195–212, 2005.

[36] J. Domingo-Ferrer and V. Torra. A critique of k-anonymity and some of its enhancements. In Proceedings of the 2008 Third International Conference on Availability, Reliability and Security, ARES ’08, pages 990–993, Washington, DC, USA, 2008. IEEE Computer Society.

[37] A. K. Douglas. Kids & cul-de-sacs: Census 2000 and the reproduction of consumer culture. Yale Law School Legal Scholarship Repository, (387), 2002.
[38] J. Drechsler. My understanding of the differences between the CS and the statistical approach to data confidentiality. In The 4th IAB workshop on confidentiality and disclosure. Institute for Employment Research, 2011.

[39] C. Dwork. Differential privacy. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, Automata, Languages and Programming, volume 4052 of Lecture Notes in Computer Science, pages 1–12. Springer Berlin / Heidelberg, 2006.

[40] C. Dwork. A firm foundation for private data analysis. Commun. ACM, 54:86–95, 2011.

[41] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed noise generation. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 486–503. Springer Berlin / Heidelberg, 2006.

[42] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In In Proceedings of the 3rd Theory of Cryptography Conference, pages 265–284. Springer, 2006.

[43] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. Vadhan. On the complexity of differentially private data release: efficient algorithms and hardness results. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC 2009), pages 381–390, 2009.

[44] C. Dwork and K. Nissim. Privacy-preserving data mining on vertically partitioned databases. In Proceedings of the 24th Annual International Cryptology Conference (CRYPTO 2004), pages 528–544, 2004.

[45] H. Feistel. Cryptography and computer privacy. Scientific American, 228:15–23, 1973.

[46] C. Fellbaum, editor. WordNet An Electronic Lexical Database. The MIT Press, Cambridge, MA ; London, May 1998.

[47] A. Frank and A. Asuncion. Adult data set. Technical report, UCI Machine Learning Repository, 2010. http://archive.ics.uci.edu/ml/datasets/Adult.

[48] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing: A survey of recent developments. ACM Comput. Surv., 42(4):14:1–14:53, June 2010.

[49] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for information and privacy preservation. In Proceedings of the 21st International Conference on Data Engineering, ICDE ’05, pages 205–216, Washington, DC, USA, 2005. IEEE Computer Society.

[50] D. J. Glancy. The invention of the right to privacy. Arizona Law Review, 27:1–39, 1979.
[51] M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm for differentially private data release. CoRR, 2010.

[52] A. Hundepool, J. Domingo-Ferrer, L. Franconi, S. Giessing, E.S. Nordholt, K. Spicer, and P.P. de Wolf. Statistical Disclosure Control. Wiley, 2012.

[53] A. Hundepool, A. Van de Wetering, R. Ramaswamy, L. Franconi, A. Capobianchi, P.-P. DeWolf, J. Domingo-Ferrer, V. Torra, R. Brand, and S. Giessing. μ-ARGUS version 3.2 Software and User’s Manual. Statistics Netherlands, Voorburg NL, 2003. http://neon.vb.cbs.nl/casc.

[54] B. Krishnamurthi. I know what you will do next summer. SIGCOMM Comput. Commun. Rev., 40:65–70, oct 2010.

[55] M. Laszlo and S. Mukherjee. Minimum spanning tree partitioning algorithm for microaggregation. IEEE Trans. on Knowl. and Data Eng., 17(7):902–911, July 2005.

[56] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain k-anonymity. In Proceedings of the 2005 ACM SIGMOD international conference on Management of data, SIGMOD ’05, pages 49–60, New York, NY, USA, 2005. ACM.

[57] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-anonymity. In Proceedings of the 22nd International Conference on Data Engineering, ICDE ’06, Washington, DC, USA, 2006. IEEE Computer Society.

[58] N. Li, T. Li, and S. Venkatasubramanian. t-Closeness: Privacy beyond k-anonymity and l-diversity. In R. Chirkova, A. Dogac, M. T. Özsu, and T. K. Sellis, editors, ICDE, pages 106–115. IEEE, 2007.

[59] Y. Li, Z. A. Bandar, and D. McLean. An approach for measuring semantic similarity between words using multiple information sources. IEEE Trans. on Knowl. and Data Eng., 15(4):871–882, July 2003.

[60] J.-L. Lin, T.-H. Wen, J.-C. Hsieh, and P.-C. Chang. Density-based microaggregation for statistical disclosure control. Expert Syst. Appl., 37(4):3256–3263, April 2010.

[61] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. Privacy: Theory meets practice on the map. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering (ICDE 2008), pages 277–286, 2008.

[62] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. l-Diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1), March 2007.

[63] S. Martínez, A. Valls, and D. SáNchez. Semantically-grounded construction of centroids for datasets with textual attributes. Know.-Based Syst., 35:160–172, November 2012.

139
[64] S. Martínez, D. Sánchez, and A. Valls. Semantic adaptive microaggregation of categorical microdata. *Computers & Security*, 31(5):653–672, 2012.

[65] F. McSherry. Mechanism design via differential privacy. In *Proceedings of the 48th Annual Symposium on Foundations of Computer Science*, 2007.

[66] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In *PODS ’04: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems*, pages 223–228, New York, NY, USA, 2004. ACM Press.

[67] N. Mohammed, R. Chen, B. C.M. Fung, and P. S. Yu. Differentially private data release for data mining. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, KDD ’11, pages 493–501, New York, NY, USA, 2011. ACM.

[68] K. Muralidhar and R. Sarathy. Does differential privacy protect Terry Gross’ privacy? In *Proceedings of the 2010 International Conference on Privacy in Statistical Databases (PSD 2010)*, pages 200–209, 2010.

[69] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets. In *Proceedings of the 2008 IEEE Symposium on Security and Privacy*, SP ’08, pages 111–125, Washington, DC, USA, 2008. IEEE Computer Society.

[70] K. Nissim. Private data analysis via output perturbation. In A. K. Elmagarmid, C. C. Aggarwal, and P. S. Yu, editors, *Privacy-Preserving Data Mining*, volume 34 of *The Kluwer International Series on Advances in Database Systems*, pages 383–414. Springer US, 2008.

[71] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In *Proceedings of the thirty-ninth annual ACM symposium on Theory of computing*, STOC ’07, pages 75–84, New York, NY, USA, 2007. ACM.

[72] OECD. *Guidelines on the protection of privacy and transborder flows of personal data*, 1980.

[73] E. G. M. Petrakis, G. Varelas, A. Hliaoutakis, and P. Raftopoulou. X-similarity: Computing semantic similarity between concepts from different ontologies. *Journal of Digital Information Management (JDIM)*, 4, 2006.

[74] G. Pirró. A semantic similarity metric combining features and intrinsic information content. *Data Knowl. Eng.*, 68(11):1289–1308, November 2009.

[75] R. Rada, F. Mili, E. Bicknell, and M. Blettner. Development and application of a metric on semantic nets. *IEEE Transactions on Systems, Man and Cybernetics*, 19(1):17–30, 1989.

[76] P. Samarati. Protecting respondents’ identities in microdata release. *IEEE Trans. on Knowl. and Data Eng.*, 13(6):1010–1027, November 2001.

140
[77] P. Samarati and L. Sweeney. Generalizing data to provide anonymity when disclosing information. In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, PODS ’98, New York, NY, USA, 1998. ACM.

[78] P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. Tech. rep., SRI International, 1998.

[79] D. Sánchez and M. Batet. Semantic similarity estimation in the biomedical domain: An ontology-based information-theoretic perspective. Journal of Biomedical Informatics, 44(5):749–759, October 2011.

[80] D. Sánchez and M. Batet. A new model to compute the information content of concepts from taxonomic knowledge. Int. J. Semantic Web Inf. Syst., 8(2):34–50, 2012.

[81] D. Sánchez, M. Batet, and D. Isern. Ontology-based information content computation. Know.-Based Syst., 24(2):297–303, March 2011.

[82] D. Sánchez, M. Batet, D. Isern, and A. Valls. Ontology-based semantic similarity: A new feature-based approach. Expert Syst. Appl., 39(9):7718–7728, July 2012.

[83] R. Sarathy and K. Muralidhar. Some additional insights on applying differential privacy for numeric data. In Proceedings of the 2010 International Conference on Privacy in Statistical Databases (PSD 2010), pages 210–219, 2010.

[84] R. Sarathy and K. Muralidhar. Evaluating Laplace noise addition to satisfy differential privacy for numeric data. Transactions on Data Privacy, 4(1):1–17, April 2011.

[85] A. Solanas, U. Gonzalez-Nicolas, and A. Martinez-Balleste. A variable-MDAV-based partitioning strategy to continuous multivariate microaggregation with genetic algorithms. In IJCNN, pages 1–7, 2010.

[86] A. Solanas and A. Martinez-Balleste. V-MDAV: a multivariate microaggregation with variable group size. In Proceedings in Computational Statistics, 17th Conference of IASC-ERS (COMPSTAT), pages 917–925. Physica-Verlag, September 2006.

[87] J. Soria-Comas and J. Domingo-Ferrer. Optimal data-independent noise for differential privacy. Information Sciences. (To appear).

[88] J. Soria-Comas and J. Domingo-Ferrer. Differential privacy through knowledge refinement. In 4th IEEE International Conference on Privacy, Security, Risk and Trust - PASSAT 2012, pages 702–707. IEEE, 2012.

[89] J. Soria-Comas and J. Domingo-Ferrer. Probabilistic k-anonymity through microaggregation and data swapping. In IEEE International Conference on Fuzzy Systems - FUZZ-IEEE 2012, pages 1–8. IEEE, 2012.
[90] J. Soria-Comas and J. Domingo-Ferrer. Sensitivity-independent differential privacy via prior knowledge refinement. *International Journal of Uncertainty, Fuzziness and Knowledge-based Systems*, 20(6):855–876, 2012.

[91] J. Soria-Comas and J. Domingo-Ferrer. Differential privacy via t-closeness in data publishing. In *International Conference on Privacy, Security and Trust - PST 2013*, Tarragona, July 10-12, 2013. (to appear, IEEE Digital Library).

[92] J. Soria-Comas, J. Domingo-Ferrer, and D. Rebollo-Monedero. k-Anonimato probabilístico. In *XII Reunión Española sobre Criptología y Seguridad de la Información - RECSI 2012*, 2012.

[93] J. Soria-Comas, J. Domingo-Ferrer, D. Sánchez, and S. Martínez. Improving the utility of differentially private data releases via k-anonymous microaggregation. In *12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications -IEEE TrustCom 2013*, Melbourne, Australia, July 2013. (to appear).

[94] X. Sun, H. Wang, J. Li, and D. Ross. Achieving p-sensitive k-anonymity via Anatomy. In *IEEE International Conference on e-Business Engineering. ICEBE ’09.*, pages 199–205, 2009.

[95] L. Sweeney. Weaving technology and policy together to maintain confidentiality. *The Journal of Law, Medicine & Ethics*, 25:98–110, 1997.

[96] L. Sweeney. *Uniqueness of Simple Demographics in the U.S. Population*. LIDAP-WP4, Carnegie Mellon University, Laboratory for International Data Privacy, Pittsburgh PA, 2000.

[97] L. Sweeney. k-Anonymity: a model for protecting privacy. *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, 10(5):557–570, October 2002.

[98] G. K. Tayi and D. P. Ballou. Examining data quality. *Communications of the ACM*, 41(2):54–57, February 1998.

[99] J. Terstegge. Privacy in the law. In M. Petkovic and W. Jonker, editors, *Security, Privacy, and Trust in Modern Data Management*, pages 11–20. Springer, 2007.

[100] S. Venkatasubramanian. Measures of anonymity. In C. C. Aggarwal and P. S. Yu, editors, *Privacy-Preserving Data Mining: Models and Algorithms*, volume 34 of *Advances in Database Systems*, pages 81–103. Springer US, 2008.

[101] S. D. Warren and L. D. Brandeis. The right to privacy. *Harvard Law Review*, IV:193–220, 1890.

[102] Z. Wu and M. S. Palmer. Verb semantics and lexical selection. In J. Pustejovsky, editor, *Proc. of the 32nd Annual Meeting on Association for Computational Linguistics*, pages 133–138. Morgan Kaufmann Publishers / ACL, 1994.
[103] W. E. Yancey, W. E. Winkler, and R. H. Creecy. Disclosure risk assessment in perturbative microdata protection. In *Inference Control in Statistical Databases, From Theory to Practice*, pages 135–152, London, UK, UK, 2002. Springer-Verlag.

[104] L. Zayatz. Disclosure avoidance practices and research at the U.S. Census Bureau: An update. *Journal of Official Statistics*, 23:253–265, 2007.

[105] L. Zayatz, J. Lucero, P. Massell, and Ramanayake A. Disclosure avoidance for Census 2010 and American Community Survey five-year tabular data products. *Statistical Research Division Research Report Series*, 2009.

[106] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu. Aggregate query answering on anonymized tables. In *ICDE*, pages 116–125, 2007.