Herbicidal secondary metabolites from Bacillus velezensis JTB8-2 against Orobanche aegyptiaca

Wei He
Shihezi University College of Agriculture

Yan Li
Chinese Academy of Agricultural Sciences

Wenfang Luo
Xinjiang Academy of Agricultural Sciences

Junhui Zhou
Xinjiang Academy of Agricultural Sciences

Sifeng Zhao
Shihezi University College of Agriculture

Xu Jianjun (✉ xjj72@163.com)
Xinjiang Academy of Agricultural Sciences https://orcid.org/0000-0002-0425-875X

Research Article

Keywords: Bacillus velezensis, Orobanche aegyptiaca, Secondary metabolites, Seed germination inhibitors, Microbial herbicide

Posted Date: March 31st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1411307/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Egyptian broomrape (*Orobanche aegyptiaca*) is a parasitic plants that cause significant losses to important crops. The effective methods for controlling this weed are rare. Biological control could be one of the possible strategies to tackle these weeds efficiently. In this work, a bacteria strain *Bacillus velezensis* JTB8–2 was proven to possesse biological control functions against broomrapes in both pot and field experiments. Four secondary metabolites (1–4) were isolated from the *B. velezensis* JTB8–2 crude extracts, and all of them could inhibit the germination of *O. aegyptiaca* seeds at concentrations from 0.5 mM to 4 mM. Their structures were further elucidated by Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) analysis. Among the isolated compounds, 1 and 2 exhibited the strongest herbicidal activity with 100% inhibition rate against the germination of *O. aegyptiaca* seeds at 4 mM, and thus had great potential in the development of new herbicidal products to control *O. aegyptiaca* in the future.

Introduction

The broomrape (*Orobanche* spp.) is an obligate holoparasitic weed without functional photosynthetic system that causes severe damage to vegetables and field crops worldwide. It relies on a unique organ, the “haustorium”, to intercept water and nutrients from the host to maintain its growth, which affects the growth of the host and causes serious losses to the yield and quality of crops. Egyptian broomrape (*Orobanche aegyptiaca*) is a widespread parasitic weed of many *Solanaceae, Brassicaceae, Cannabaceae, Fabaceae, Apiaceae, Asteraceae*, and *Curcurbitaceae* species (Eizenberg and Goldwasser 2018). It is distributed mainly in the Mediterranean area, North Africa, and Asia (Boari and Vurro et al. 2004; Qasem 1998; Zehhar et al. 2002). Xinjiang is the region with the most extensive distribution and serious damage of *O. aegyptiaca* in China, and it had extensive infestations of muskmelon, watermelon and processing tomato, leading to 20–70% yield losses in Xinjiang Province, China (Parker 2009). The underground seed germination and parasitism activities of this parasitic weed are not easily detectable, consequently making it difficult to control. When the parasite finally emerges above ground, the majority of the damage to the host has already been done, and control would be ineffective.

The currently available methods to control broomrape include trap crops (Qasem 2019), hand weeding, soil solarization (Mauromicale et al. 2005); soil fumigation and use of chemical herbicides (Eizenberg and Goldwasser 2018). In most cases, these approaches are time-consuming, hazardous to the environment, and mostly ineffective. Microorganisms are an environmentally friendly and effective tool to reduce broomrape infestation in cropping systems, such as *Pseudomonas* spp. and *Bacillus* spp. (Zermane et al. 2007; Barghouthi et al. 2010). Microorganisms including symbionts (e.g., *Rhizobium* spp.) which colonize root of host plants and non-symbionts (e.g., *Alternaria* spp. and *Fusarium* spp.) (El-Halmouch et al. 2013; de Zélicourt et al. 2009; Xia et al. 2018) which directly attack the parasite. In addition, microorganism metabolites can also inhibit seeds germination and thus reduce broomrape seed banks, such as *Myrothecium verrucaria, Fusarium compactum* and *Pleurotus ostreatus*. (Andolfi et al. 2005; Elsakhawy et al. 2020). This is a biological method which can be included in an integrated
broomrape management program. Strategies for controlling parasitic weeds by using natural products include inducing "suicide germination". The ability of both artificial and natural compounds to induce germination of parasitic seeds was investigated. Analogues of strigolactone have been synthesized, such as GR24 and Nijmegen 1, which can effectively induce the germination of broomrape seeds (Wigchert et al. 1999). However, their poor stability in soil and the high cost of producing these compounds limit their use in agricultural production (Babiker et al. 1987). Dvorakova et al. (2019) synthesized simple and stable strigolactone mimics with selective activity against *Phelipanche ramosa*. Kuruma et al. (2021) discovered a structurally hybrid compound that can induce spontaneous germination and inhibit subsequent radical growth. However, their stability in soil and toxicology remains unclear. Other natural compounds, including mycotoxins (Evidente et al. 2006) and methyl jasmonate (Yoneyama et al. 1998), have been shown to induce the germination of witchweed and broomrape seeds, but their potential applications in agriculture need further investigation.

The use of microbial secondary metabolites to research and develop natural herbicides with high activity, high selectivity, and high safety will be an important direction for the development of new herbicides. *B. velezensis*, as a novel species, is harmless to human and animal, and its metabolites including antibiotic lipopeptide, polyketides and peptide (Ye et al. 2018). At present, the biocontrol effect of *B. velezensis* is mainly focused on plant diseases (Nifakos et al. 2021; Cheffy et al. 2019; Zhang et al. 2021). In this paper, a bacteria strain *Bacillus velezensis* JTB8–2 is proven possessed biological control functions of Egyptian broomrape in tomato pot and in the processing tomato field. Four pure herbicidal secondary metabolites are isolated from this strain, and detailed of their chemical purification, structure identification, and the inhibitory effects on the germination of *O. aegyptiaca* seeds are described.

Materials And Methods

Origin of strains

Strain JTB8–2 was isolated from the rhizosphere soil of Egyptian broomrape in Jimusar County, Xinjiang Province, China, and was identified as *B. velezensis*. The strain was also deposited in the Guangdong Microbial Culture Collection Center (No. GDMCC 60755). This strain was grown on Nutrient Agar (NA) medium (3 g beef paste, 7 g peptone, 5 g NaCl, and 17 g agar in 1 L distilled water, pH 7.0) for routine culturing.

Fermentation

The purified single colony was inoculated into NB medium (3 g beef paste, 7 g peptone, 5 g NaCl in 1 L distilled water, pH 7.0), and the bacterial culture was obtained through incubation at 130 revolutions per minute (rpm) at 25 °C for 24 h. The bacterial culture was transferred into two 500 mL-Erlenmeyer flasks containing 200 mL NB medium, and fermentation broth was obtained by oscillating culture at 28 °C and 180 rpm for 24 h.

Pot experiment
The experimental treatments included strain JTB8-2 fermentation broth, culture medium NB and blank control, with 3 replicates per treatment and 3 pots per replicate. Plastic basin specifications were 25 cm in diameter and 18 cm in height, with holes at the bottom. Tomato cultivar HS1015 was planted in hole trays and transplanted when tomato seedlings had 4 ~ 5 leaves. Potting soil was medium loam soil (Alkaline hydrolyzed nitrogen: 82.682 mg/kg; Available phosphorus: 42.824 mg/kg; Available potassium: 289.522 mg/kg; pH: 7.86) which taken from the field of the Anning Ditch test site in Urumqi, Xinjiang. About 200 g of fine soil was put into a 600 ml plastic bottle and then added 50 mg (approximately 10,000 seeds) *O. aegyptiaca* seeds, the mixture was shaken well and sprinkled evenly on the tomato roots. Covered with soil and then poured water. *B. velezensis* JTB8-2 fermentation broth at a concentration of 5×10^8 CFU/mL and culture medium NB were diluted 25fold, 50-fold, 100-fold respectively, and then irrigated with 1 L/pot the next day, once every 15 d, 3 consecutive times, and water as blank control. Tomato root soil was removed 60 d after transplantation, and the parasitism number in each pot was investigated. The fresh weight was taken, and then the collected broomrape was put into the oven to dry at 60°C.

The field test

Field experiments were carried out on processing tomato in Shuanghe Village, Qingyang Lake Township, Jimusar County, Changji Prefecture, Xinjiang (E: 89°1' 35''; N: 44°2' 3''). The soil was medium loam soil (Alkaline hydrolyzed nitrogen: 80.627 mg/kg; Available phosphorus: 41.033 mg/kg; Available potassium: 237.655 mg/kg; pH: 7.88). The experimental treatments included JTB8–2 agent 0.8 L/105m2, 1.6 L/105m2, 3.2 L/105m2 and water, with three replicates per treatment. Each replicate was randomly arranged in the field. The fermentation broth concentration of the strain was 5×10^8 CFU/mL by turbidimetric method. The first drip irrigation, 15 d after tomato seedlings were transplanted, came from an electric sprayer, and 40 L of bacterial liquid was applied every time, applied once every 20 d on 3 consecutive times. The first field investigation was carried out 25 d after the third application. 30 m2 area was select randomly from each 105 m2 area respectively, and the number of *O. aegyptiaca*, tomato plants, and broomrape parasites were investigated and fresh weight was taken. The collected broomrape was placed into an oven to dry at 60°C, and the biomass was collected.

Parasitism rate (%) = number of parasitized tomato plants/number of investigated tomato plants×100

The measured yield area of each plot was 4.5 m2. Yield increasing effects of bacterial treatments were evaluated by determining fruit weight of plant (kg/plant), weight of 100 fruits (kg/100) and fruit weight of plot (kg).

Chemical extraction, isolation and purification

The scaled-up fermentation was carried out in ten 1000 mL-Erlenmeyer flasks. For each flask, 10 mL secondary seed fermentation liquid was inoculated into 200 mL NBmedium, and 9 g macroporous resin (XAD-16) was added to absorb the secreted metabolites. After incubation at 28°C for 5 days, the fermentation broth was discarded, and the macroporous resin was repeatedly washed with distilled water.
and dried in oven at 28 °C. Next, the resin was extracted with methanol for 3 times, and the resulting methanol solution was combined and concentrated under vacuum. The concentrate was redissolved in 50% methanol solution, and then extracted with equal-volume dichloromethane for 4 times. The organic layer was evaporated to dryness under vacuum to get a 6.5 g crude extract, which was further fractionated by silica gel Vacuum Liquid Chromatography (VLC) eluting with gradient PE (petroleum ether)—EtOAc solution. All fractions were evaluated for their inhibitory effects on the germination of Egyptian broomrape seeds, and inhibition rate of fractions eluted with 25% and 40% EtOAc were 100%. Thus, the 25% EtOAc fraction (87.68 mg) was purified by reverse phase high performance liquid chromatography (RP HPLC) on a C18 column (Kromasil 100-5-C18; 5 µm; 10 × 250 mm; 40% MeOH in H₂O over 28 min; 2 mL/min) to get compound 1 (6.1 mg, tᵣ 9.10 min) and 2 (20 mg, tᵣ 11.99 min). The 40% EtOAc fraction (153.1 mg) was also purified by semipreparative RP HPLC (40% MeOH in H₂O over 30.0 min; 2 mL/min) to get compounds 3 (4.5 mg, tᵣ 13.4 min) and 4 (7.0 mg, tᵣ 24.5 min).

NMR analysis

The ¹H and ¹³C NMR data were collected on a Bruker Avance 500 MHz NMR spectrometer equipped with a 5-mm triple resonance cryoprobe at 298 K. Chemical shift values (δ) are given in parts per million (ppm) and the coupling constants (J values) are in Hz. Chemical shifts were referenced to the residual solvent peaks.

Bioactivity assay

Seed sterilization: The O. aegyptiaca seeds were disinfected in 75% ethanol for 30 s and then transferred to 3% sodium hypochlorite (effective chlorine) solution for 10 min. After rinsing in sterilized water 3 times, the seeds were dried on sterile filter paper for later use.

Activity determination of crude extract: 100 mg crude extract was dissolved in methanol and then mother liquor was prepared with add 100 µL distilled water for activity test before column chromatography separation. Whatman filter paper (GF/A) was cut into round paper with a diameter of 14 mm and placed in a 24-well cell culture plate bottom, with 2 pieces for each well. Approximately 50 sterilized and dried seeds were added to each well. Dissolved 1 mg GR24 in 200 mL distilled water. Added 200 µL GR24 (5 µg/mL) solution to each well and then added the crude extract mother liquor, respectively. Crude extracts were assayed at a final concentration from 5 µg/mL to 0.6 µg/mL. Water was set as blank control. After 5 days of shading culture at 25°C, the number of germinated seeds was observed under a microscope. The germination rate and inhibition rate were calculated according to the following formula for evaluate the effect of crude extract. The assay was repeated 4 times for each concentration.

Germination rate (%) = Germination seed number/The total number of seeds×100

Inhibition ratio (%) = (Seed germination rate of blank control-Germination rate of treated seeds)/Seed germination rate of blank control×100
Activity determination of pure compounds: Nitrogen blowing was carried out on the nuclear magnetic tube solution, and the quality of each compound was detected after drying. According to the molecular weight of different compounds, 8 mM mother liquor was prepared by adding sterile water and then diluted to 4 mM, 2 mM and 1 mM. Then, 0.25 mL of the assay solution was mixed with 0.25 mL GR24 solution at a concentration of 5 µg/mL. The pure metabolites were assayed at concentrations between 4 mM and 0.5 mM. The assay was repeated 4 times for each pure compound.

Statistical analysis

Data were presented as mean ± SE and analyzed using analysis of variance. For in vitro and in vivo results, completely randomized design (CRD) design was used while field data were analyzed using randomized complete block design (RCBD) design. Statistical software SPSS 16.0 was used. Significant difference in the treatment was measured with LSD test and separated by using lettering.

Results

Control effect of B. velezensis JTB8–2 on O. aegyptiaca in pot experiment

The results of pot experiment showed that treatments of neither *B. velezensis* JTB8–2 fermentation broth nor NB medium in three different dilutions had substantial impact on the parasitic rates of *O. aegyptiaca* as compared to the control (Table 1). However, treatments of *B. velezensis* JTB8–2 fermentation broth at 25-fold, 50-fold and 100-fold dilutions largely reduced the fresh weight and biomass of *O. aegyptiaca*, while no significant differences in *O. aegyptiaca* fresh weight and biomass were observed between the NB medium treatment and the control (Table 1). Moreover, the biomass of *O. aegyptiaca* after the treatment of *B. velezensis* JTB8–2 fermentation broth at 25-fold dilution (1.82 g/pot) was significantly lower than that of the same treatment at 100-fold dilution (3.88 g/pot) (Table 1). These results indicated that *B. velezensis* JTB8–2 could control the growth of *O. aegyptiaca* under potted condition.
Table 1
Parasitic rate, *O. aegyptiaca* number, fresh weight and biomass of different treatment in pot experiment.

Treatment	Diluted multiples	Parasitic rate (%)	Number (Shoots/pot)	Fresh weight (g/pot)	Biomass (g/pot)
JTB8–2	25-fold	100	4.33 ± 0.62b	14.42 ± 1.41c	1.82 ± 0.17c
	50-fold	100	6.33 ± 0.99b	21.97 ± 2.73b	2.78 ± 0.34b
	100-fold	100	11.11 ± 1.18a	29.78 ± 3.31b	3.88 ± 0.47b
NB	25-fold	100	15.78 ± 1.51a	44.72 ± 2.63a	5.68 ± 0.33a
	50-fold	100	15.33 ± 1.69a	45.07 ± 3.10a	5.67 ± 0.38a
	100-fold	100	15.44 ± 1.73a	45.59 ± 3.37a	5.87 ± 0.42a
CK	water	100	15.22 ± 1.81a	45.40 ± 5.69a	5.85 ± 0.75a

The results of variance analysis showed significant differences between different treatments, the different small letters represent significance at 5% level.

Control of effect of *B. velezensis* JTB8–2 on *O. aegyptiaca* in the field

Next, we evaluated the control effect of *B. velezensis* JTB8–2 on *O. aegyptiaca* in the field by applying the fermentation broth of *B. velezensis* JTB8–2 at three different dosages (0.8, 1.6 and 3.2 L/105m² in treatments 1, 2 and 3, respectively). All three treatments were able to reduce the parasitic rate and the number of shoots of *O. aegyptiaca* (Table 2 and Fig. 1), and treatment 3 displayed the strongest effect (6.76% parasitic rate and 41.67 shoots/30m²). Additionally, treatment 3 also reduced the fresh weight and biomass of *O. aegyptiaca* by 65% as compared to the control, while the other two treatments were less effective (Table 2). This suggested that the *B. velezensis* JTB8–2 could control the growth of Egyptian broomrapes in the field.
Table 2
Parasitic rate, *O. aegyptiaca* number, fresh weight and biomass of different treatment in the field.

Treatment	Parasitic rate (%)	*O. aegyptiaca* number (Shoots/30m²)	Fresh weight (g/30m²)	Biomass (g/30m²)
1	16.58 ± 2.5b	102.33 ± 8.09a	2000 ± 357.26b	267.64 ± 58.55b
2	10.53 ± 2.95c	64.33 ± 5.36b	1936.67 ± 417.03b	256.05 ± 50.93b
3	6.76 ± 0.83d	41.67 ± 4.91c	1476.67 ± 322.71c	190.13 ± 38.44c
CK	21.76 ± 4.30a	114.67 ± 8.11a	4236.67 ± 834.11a	540.66 ± 85.51a

1 was JTB8-2 agent 0.8 L/105m²; 2 was JTB8-2 agent 1.6 L/105m²; 3 was JTB8-2 agent 3.2 L/105m²; CK was water. The different small letters represent significance at 5% level.

Effects of *B. velezensis* JTB8–2 on the growth and fruiting of tomato

To investigate the impact of *B. velezensis* JTB8–2 on the growth and fruiting of crops, tomato plants were treated with the fermentation broth of *B. velezensis* JTB8–2 in the same way as Egyptian broomrapes. The results showed that all three treatments increased the fresh weight of tomato plant with treatment 3 being most effective (Fig. 2). Moreover, applying the fermentation broth of *B. velezensis* JTB8–2 significantly increased the fruit weight of plant and the fruit weight of plot by more than 0.8 kg/plant and 7.2 kg/plant, respectively (Table 3). However, no significant differences were found among all three treatments and the control concerning the weight of 100 fruits (Table 3). Taken together, these results demonstrated that *B. velezensis* JTB8–2 could promote the growth of tomato plant and increase the yield of fruits.

Table 3
Fruit weight of plant, weight of 100 fruits and fruit weight of plot in the field.

Treatment	Fruit weight o plant (kg/plant)	Weight of 100 fruits (kg/100)	Fruit weight of plot (kg)
1	4.03 ± 0.11a	5.38 ± 0.13a	65.75 ± 1.72b c
2	4.03 ± 0.18a	5.65 ± 0.22a	68.19 ± 1.52ab
3	4.02 ± 0.19a	5.58 ± 0.12a	72.15 ± 1.02a
CK	3.19 ± 0.19b	5.18 ± 0.12a	58.49 ± 2.23c
1 was JTB8-2 agent 0.8 L/105m²; 2 was JTB8-2 agent 1.6 L/105m²; 3 was JTB8-2 agent 3.2 L/105m²; CK was water. The different small letters represent significance at 5% level.

Bioactivities of extracts from *B. velezensis* JTB8–2 fermentation broth

The crude extracts from *B. velezensis* JTB8–2 fermentation broth significantly inhibited the germination of Egyptian broomrape seeds in a dose-dependent manner. The treatments of 1, 2 and 5 µg/mL crude extracts were most effective which showed 100% inhibition rate (Fig. 3). This result strongly indicated that the crude extracts contain substances with potential herbicidal activity against Egyptian broomrape. Subsequently, bioactivity-guided separation of the crude extracts using silica gel VLC resulted in two active fractions (eluted with 25% and 40% EtOAc, respectively), from which compounds 1–4 were isolated.

Structure elucidation

The presence of characteristic 13C NMR signals for the amide carbonyl groups ($\delta_C 169.9$ and 165.9), as well as the 1H and 13C NMR chemical shifts for heteroatom-bounding methine functionalities ($\delta_H 4.38$ and 4.12; $\delta_C 59.6$ and 57.1) suggested that compound 1 has a diketopiperazine scaffold which is consisted of two amino acid moieties (Tables 4 and 5). One of the amino acid unit was deduced as phenylalanine (Phe) based on the presence of resonance signals corresponding to a monosubstituted benzene ring ($\delta_H 7.23–7.35$; $\delta_C 127.5–138.2$) and a slightly de-shielded methane functionality ($\delta_H 3.02$ and 3.33; $\delta_C 37.0$). The remaining 1H and 13C NMR signals for another three methane groups (Tables 4 and 5) indicated that the other amino acid is proline (Pro). Thus, the planar structure of 1 was determined as cyclo-(Pro-Phe) (1; Fig. 4) and its 1H and 13C NMR data were in agreement with those found in the literature (Jayatilake, et al., 1996). The 1H and 13C NMR data of 2–3 were very similar to that of 1 except for considerable variations on the proline or benzene ring (Tables 4 and 5). Comparison of these data with those reported in literature (Jayatilake, et al., 1996; Fdhila, et al., 2003) confirmed the structures of 2–3 as cyclo-(Pro-Tyr) and cyclo-(4-OH-Pro-Phe), respectively (2 and 3; Fig. 4). Analysis of the 1H and 13C NMR data (Tables 4 and 5) revealed that 4 adopts a leucine (Leu) unit in place of the Phe moiety found in the structures of 3. Comparison of these data with those reported by Shigemori et al. (1998) established the structure of 4 as cyclo-(4-OH-Pro-Leu) (4; Fig. 4).
Table 4

1H NMR data (500 MHz) of compounds 1–4

proton	1a	2b	3a	4a
	δ_H, mult. (J in Hz)			
3	3.53, m	3.55, m	3.60, dd (3.8, 12.1)	3.61, dd (4.5, 12.5)
	3.38, m	3.34, m	3.27, dd (5.9, 12.1)	3.38, dd (2.5, 12.5)
4	1.84, m	1.80, m	3.10, m	4.13, m
5	2.13, m	2.09, m	2.23, m	2.19, m
	1.67, m	1.22, m	1.99, m	2.07, m
6	4.38, t (5.7)	4.36, t (5.5)	4.30, m	4.48, t (4.4)
9	4.12, m	4.05, dddd (2.0, 6.3, 10.9)	4.15, m	4.44, dddd (6.7, 10.8)
10	3.33, dd (4.3, 14.1)	3.08, dd (5.2, 14.1)	3.13, dd (5.9, 1.2)	1.97, m
	3.02, dd (6.9, 14.1)	3.02, dd (4.5, 14.1)	3.02, dd (4.7, 13.2)	
11				1.49, m
12				0.95, t (4.2)
13				0.95, t (4.2)
2'	7.35, d (8.0)	7.04, d (8.5)	7.28, m	
3'	7.30, dd (7.5, 8.0)	6.70, d (8.5)	7.21, m	
4'	7.23, d (7.5)		7.28, m	
5'	7.30, dd (7.5, 8.0)	6.70, d (8.5)	7.21, m	
6'	7.35, d (8.0)	7.04, d (8.5)	7.28, m	

a Acetone-d_6 as solvent

b Methanol-d_4 as solvent
Table 5

13C NMR data (acetone-d_6, 125 MHz) of compounds 1, 3 and 4

Carbon	1	3	4
	δ_C, type	δ_C, type	δ_C, type
1	165.9, C	165.9, C	171.3, C
3	45.6, CH$_2$	53.8, CH$_2$	54.0, CH$_2$
4	23.1, CH$_2$	68.3, CH	68.8, CH
5	28.9, CH$_2$	40.7, CH$_2$	38.1, CH$_2$
6	59.6, CH	59.4, CH	54.8, CH
7	169.9, C	168.9, C	167.3, C
9	57.1, CH	56.7, CH	58.2, CH
10	37.0, CH$_2$	38.1, CH$_2$	39.3, CH$_2$
11	25.4, CH		
12		23.3, CH$_3$	
13		22.1, CH$_3$	
1'	138.2, C	137.3, C	
2'	129.2, CH	129.2, CH	
3'	130.6, CH	130.9, CH	
4'	127.5, CH	127.8, CH	
5'	130.6, CH	130.9, CH	
6'	129.2, CH	129.2, CH	

3.6 Inhibition effects on O. aegyptiaca seeds germination of the four pure compounds

All four pure compounds inhibited *O. aegyptiaca* seed germination, and the inhibitory effects for Compounds 1 and 2 were the best, as they both had a 100% inhibitory effect on *O. aegyptiaca* seeds germination at a concentration of 4 mM (Fig. 5). Meanwhile, Compound 4 also showed over 80% inhibitory effects on *O. aegyptiaca* seeds germination at a concentration of 4 mM, and the inhibitory effects for Compound 3 was the worst, showing a less than 65% at a concentration of 4 mM (Fig. 5).
Discussion

In recent years, soil microorganisms have been paid more and more attention as an effective biocontrol tool for broomrape (Boari and Vurro 2004; Sauerborn et al. 2007; Zermane et al. 2007; Iasur Kruh et al. 2017). Soil microbiomes can affect broomrape emergence and growth via form biofilms, produce toxins or change the rhizosphere condition caused by them. For example, Iasur Kruh et al. (2017) suggested that the biocontrol effect of *Pseudomonas* on *Phelipanche aegyptiaca* attributed to the diverse compounds released by the bacteria which inhibit broomrape and improve the immune system of the host plant. In addition, compared with other non-soil microorganisms, soil microorganisms can play a role in the early growth stage of broomrape, and will not pollute soil and environment, and easily colonize and reproduce in soil and continue to play a control role. In this study, *B. velezensis* JTB8–2 strain was isolated from a local field soil, and its fermentation broth significantly reduced the fresh weight and dry weight of *O. aegyptiaca* in both pot and field experiments, indicated that the strain has the potential to control *O. aegyptiaca*. However, its colonization and reproductive ability in field soil and biocontrol mechanism remains unclear.

Bacteria have the advantages of fast growth, high antibacterial activity, and environmental friendliness compared with other microorganisms, which makes them a microorganism with great potential to develop microbial pesticides. *B. velezensis* is a new species isolated from marine environments, soil, and plants in recent years, and its biological control effect on a variety of plant diseases have been reported, such as lotus root rot disease (Wang et al. 2019), soybean root rot disease (Huang et al. 2017), and anthracnose (Huang et al. 2017). However, the biological control effect of its metabolites on the inhibition of *O. aegyptiaca* seeds germination is still reported for the first time. In addition, the growth-promoting ability of *B. velezensis* on different crops also has been reported (Chen et al. 2019; Torres et al. 2020). Our study also confirmed that the fermentation broth of *B. velezensis* JTB8-2 had the potential to promote tomato plant growth and yield increase. This may be due to *O. aegyptiaca* decrease and its own growth-promoting effect.

It will be one of the important directions to use microbial metabolites and artificial compounds of these metabolites to develop natural herbicides with high activity, high selectivity and high safety. Many reports have shown that the metabolites of microorganisms contain natural substances that inhibit the germination of seeds. Regarding infesting broomrapes, Zonno and Vurro (2002) recently showed that some toxins produced by fungi of the *Fusarium* genus were able to inhibit the germination of *O. ramosa* seeds and proposed their practical use for parasitic plant management. Louarn et al. (2012) reported that the extract of arbuscular mycorrhizal fungi has a significant inhibitory effect on the germination of *O. cumana* seeds. De Zélicourt et al. (2009) reported that sphinganine-analogue mycotoxins extracted from *Alternaria alternata* have a preventive effect on *Orobanche* spp.. Andolfi et al. (2005) reported that 7 toxins isolated from *Fusarium* could inhibit the germination of 100% of *Orobanche* seeds at a concentration of 10 mM. Among them, neosolaniol, diacetoxyscirpenol, T-2, and HT-2 toxins can completely inhibit the germination of *Orobanche* seeds, even at a concentration of 1 mM. It takes a few days to establish parasitism between broomrape seed with the host plant, and the germination time of
broomrape seed is not consistent in the soil. Therefore, metabolites need to be stable in the soil for their continued control function. However, there are no many reports on stability of microorganism metabolites in soil.

The production of compounds 1–4 and other diketopiperazine-type metabolites has been investigated in many microorganisms, such as *Pseudomonas aeruginosa* (Jayatilake et al. 1996), *Xenorhabdus nematophila* and *Photorhabdus temperate* subsp. *temperate* (Seo et al. 2012), and *Aureobasidium pullulans* (Shigemori et al. 1998). However, the four metabolites were the first reported inhibitors for the germination of *O. aegyptiaca* seeds, which were isolated from the organic crude extract of *B. velezensis*. The current study demonstrated the potential application of these diketopiperazines as natural herbicides for the management of *O. aegyptiaca* seeds germination. However, their stability in soil and toxicology remains unclear.

Declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors declare their consent for publication.

Availability of data and materials

The datasets on which the conclusions of the manuscript rely to were presented in the main paper.

Competing interests

All authors declare that he/she has no conflict of interest.

Funding

This work was financially supported by the Project of Renovation Capacity Building for the Young Sci-Tech Talents Sponsored by Xinjiang Academy of Agricultural Sciences, grant number xjnkg-2019017.

Authors' contributions

SZ, WH, and JX conceived and designed research. WH, YL, WL and JZ conducted experiments. WH, YL, and WL analyzed data. WH and YL wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank the Research Facility Center of Biotechnology Research Institute for providing HPLC-HRMSMS equipment.

Authors' details

1Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Agriculture College of Shihezi University, Shihezi, 832003, China. 2Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Urumqi 830091, China. 3Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

References

1. Andolfi A, Boari A, Evidente A, Vurro M (2005) Metabolites inhibiting germination of Orobanche ramosa seeds produced by Myrothecium verrucaria and Fusarium compactum. J Agric Food Chem 53(5):1598–1603. https://doi.org/10.1021/jf048339i

2. Azabou MC, Gharbi Y, Medhioub I, Ennouri K, Barham H, Tounsi S, Triki MA (2020) The endophytic strain Bacillus velezensis OEE1: An efficient biocontrol agent against Verticillium wilt of olive and a potential plant growth promoting bacteria. Biol Control 142:104168. https://doi.org/10.1016/j.biocontrol.2019.104168

3. Babiker AGT, Hamdoun AM, Rudwan A, Mansi NG, Faki HH (1987) Influence of soil moisture on activity and persistence of the strigol analogue GR 24. Weed Res 27(3):173–178. https://doi.org/10.1111/j.1365-3180.1987.tb00751.x

4. Barghouthi S, Salman M (2010) Bacterial inhibition of Orobanche aegyptiaca and Orobanche cernua radical elongation. Biocontrol Sci Technol 20(4):423–435. https://doi.org/10.1080/09583150903340544

5. Boari A, Vurro M (2004) Evaluation of Fusarium spp. and other fungi as biological control agents of broomrape (Orobanche ramosa). Biol Control 30(2):212–219. https://doi.org/10.1016/j.biocontrol.2003.12.003

6. Chen L, Shi H, Heng J, Wang D, Bian K (2019) Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiol Res 218:41–48. https://doi.org/10.1016/j.micres.2018.10.002

7. Cheffi M, Chenari Bouket A, Alenezi FN, Luptakova L, Belka M, Vallat A, Rateb ME, Tounsi S, Triki MA, Belbahri L (2019) Olea europaea L. root endophyte Bacillus velezensis OEE1 counteracts oomycete and fungal harmful pathogens and harbours a large repertoire of secreted and volatile metabolites and beneficial functional genes. Microorganisms 7(9):314. https://doi.org/10.3390/microorganisms7090314
8. de Zélicourt A, Montiel G, Pouvreau JB, Thoiron S, Delgrange S, Simier P, Delavault P (2009) Susceptibility of *Phelipanche* and *Orobanche* species to AAL-toxin. *Planta* 230(5):1047–1055. https://doi.org/10.1007/s00425-009-1008-1

9. Dvorakova M, Hylova A, Soudek P, Petrova S, Spichal L, Vanek T (2019) Triazolide strigolactone mimics as potent selective germinators of parasitic plant *Phelipanche ramosa*. *Pest Manag Sci* 75(7):2049–2056. https://doi.org/10.1002/ps.5330

10. Eizenberg H, Goldwasser Y (2018) Control of Egyptian broomrape in processing tomato: a summary of 20 years of research and successful implementation. *Plant Dis* 102(8):1477–1488. https://doi.org/10.1094/pdis-01-18-0020-fe

11. El-Halmouch Y, Mehesen A, El-Shanshoury AR (2013) The potential of cell-free cultures of *Rhizobium leguminosarum, Azotobacter chroococcum* and compost tea as biocontrol agents for faba bean broomrape (*Orobanche crenata* Forsk.). *J Plant Pathol Microb* 4(205):3. http://dx.doi.org/10.4172/21577471.1000205

12. El-Kassas R, Karam El-Din Z, Beale M, Ward J, Strange R (2005) Bioassay-led isolation of *Myrothecium verrucaria* and verrucarin A as germination inhibitors of *Orobanche crenata*. *Weed Res* 45(3):212–219. https://doi.org/10.1111/j.1365-3180.2005.00448.x

13. Elsakhawy T, ALKahtani MDF, Sharshar AAH, Attia KA, Hafez YM, Abdelaal KAA (2020) Efficacy of mushroom metabolites (*Pleurotus ostreatus*) as a natural product for the suppression of broomrape growth (*Orobanche crenata* Forsk) in faba bean. *Plants* 9(10):1265. https://doi.org/10.3390/plants9101265

14. Evidente A, Andolfi A, Fiore M, Boari A, Vurro M (2006) Stimulation of *Orobanche ramosa* seed germination by fusicoccin derivatives: a structure–activity relationship study. *Phytochemistry* 67(1):19–26. https://doi.org/10.1016/j.phytochem.2005.10.010

15. Fdhila F, Vázquez V, Sánchez JL, Riguera R (2003) dd-diketopiperazines: antibiotics active against *Vibrio anguillarum* isolated from marine bacteria associated with cultures of *Pecten maximus*. *J Nat Prod* 66(10):1299–1301. https://doi.org/10.1021/np030233e

16. Habimana S, Nduwumuremyi A, Chinama RJD (2014) Management of orobanche in field crops: a review. *J Soil Sci Plant Nutr* 14(1):43–62. https://doi.org/10.4067/s0718-95162014000500004

17. Huang MH, Zhang SQ, Di GL, Xu LK, Zhao TX, Pan HY, Li YG (2017) Determination of a *Bacillus velezensis* strain for controlling soybean root rot. *Biocontrol Sci Technol* 27(5):696–701. https://doi.org/10.1080/09583157.2017.1328483

18. Huang L, Li QC, Hou Y, Li GQ, Yang JY, Li DW, Ye JR (2017) *Bacillus velezensis* strain HYEB5-6 as a potential biocontrol agent against anthracnose on *Euonymus japonicus*. *Biocontrol Sci Technol* 27(5):636–653. https://doi.org/10.1080/09583157.2017.1319910

19. Iasur Kruh L, Lahav T, Abu-Nassar J, Achdari G, Salami R, Freilich S, Aly R (2017) Host-parasite-bacteria triangle: the microbiome of the parasitic weed *Phelipanche aegyptiaca* and tomato-*Solanum lycopersicum* (Mill.) as a host. *Front Plant Sci* 8:269. https://doi.org/10.3389/fpls.2017.00269
20. Jayatilake GS, Thornton MP, Leonard AC, Grimwade JE, Baker BJ (1996) Metabolites from an antarctic sponge-associated bacterium, *Pseudomonas aeruginosa*. J Nat Prod 59(3):293–296. https://doi.org/10.1021/np960095b

21. Joel DM (2000) The long-term approach to parasitic weeds control: manipulation of specific developmental mechanisms of the parasite. Crop Prot 19(8–10):753–758. https://doi.org/10.1016/S0261-2194(00)00100-9

22. Kuruma M, Suzuki T, Seto Y (2021) Tryptophan derivatives regulate the seed germination and radicle growth of a root parasitic plant, *Orobanche minor*. Bioorg Med Chem Lett 43:128085. https://doi.org/10.1016/j.bmcl.2021.128085

23. Louarn J, Carbonne F, Delavault P, Bécard G, Rochange S (2012) Reduced germination of *Orobanche cumana* seeds in the presence of Arbuscular Mycorrhizal fungi or their exudates. PLoS ONE 7(11):e49273. https://doi.org/10.1371/journal.pone.0049273

24. Mauromicale G, Monaco AL, Longo AMG, Restuccia A (2005) Soil solarization, a nonchemical method to control branched broomrape (*Orobanche ramosa*) and improve the yield of greenhouse tomato. Weed sci 53(6):877–883. https://doi.org/10.1614/WS-05-023R1.1

25. Nifakos K, Tsalgatidou PC, Thomloudi E, Skagia A, Kotopoulos D, Baira E, Delis C, Papadimitriou K, Markellou E, Venieraki A, Katinakis P (2021) Genomic analysis and secondary metabolites production of the endophytic *Bacillus velezensis* Bvel1: A biocontrol agent against *Botrytis cinerea* causing bunch rot in post-harvest table grapes. Plants 10(8):1716. https://doi.org/10.3390/plants10081716

26. Parker C (2009) Observations on the current status of *Orobanche* and *Striga* problems worldwide. Pest Manag Sci 65(5):453–459. https://doi.org/10.1002/ps.1713

27. Qasem JR (2019) Branched broomrape (*Orobanche ramosa* L.) control in tomato (*Lycopersicon esculentum* Mill.) by trap crops and other plant species in rotation. Crop Prot 120:75–83. https://doi.org/10.1016/j.cropro.2019.02.021

28. Qasem JR (1998) Chemical control of branched broomrape (*Orobanche ramosa*) in glasshouse grown tomato. Crop Prot 17(8):625–630. https://doi.org/10.1016/s02612194(98)00062-3

29. Sauerborn J, Müller-Stöver D, Hershenhorn J (2007) The role of biological control in managing parasitic weeds. Crop Prot 26(3):246–254. https://doi.org/10.1016/j.cropro.2005.12.012

30. Seo S, Lee S, Hong Y, Kim Y (2012) Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, *Xenorhabdus nematophila* and *Photorhabdus temperata* subsp. *Temperata*. Appl Environ Microbiol 78(11): 3816–3823. https://doi.org/10.1128/AEM.00301-12

31. Serghini K, de Luque AP, Castejón Muñoz M, García Torres L, Jorrín JV (2001) Sunflower (*Helianthus annuus* L.) response to broomrape (*Orobanche cernua* L. Loefl.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins. J Exp Bot 52(364):2227–2234. https://doi.org/10.1093/jexbot/52.364.2227

32. Shigemori H, Tenma M, Shimazaki K, Kobayashi JI (1998) Three new metabolites from the marine yeast *Aureobasidium pullulans*. J Nat Prod 61(5):696–698. https://doi.org/10.1021/np980011u
34. Torres M, Llamas I, Torres B, Toral L, Sampedro I, Béjar V (2020) Growth promotion on horticultural crops and antifungal activity of *Bacillus velezensis* XT1. Appl Soil Ecol 150:103453. https://doi.org/10.1016/j.apsoil.2019.103453

35. Wang GF, Meng JF, Tian T, Xiao XQ, Zhang B, Xiao YN (2019) Endophytic *Bacillus velezensis* strain B-36 is a potential biocontrol agent against lotus rot caused by *Fusarium oxysporum*. J Appl Microbiol 128(4):1153–1162. https://doi.org/10.1111/jam.14542

36. Wigchert SCM, Kuiper E, Boelhouwer GJ, Nefkens GHL, Verkleij JAC, Zwanenburg B (1999) Dose-response of seeds of the parasitic weeds *Striga* and *Orobanche* toward the synthetic germination stimulants GR 24 and Nijmegen 1. Agric Food Chem 47(4):1705–1710. https://doi.org/10.1021/jf981006z

37. Ye M, Tang XF, Yang R, Zhang HF, Li FS, Tao FZ, Li F, Wang ZG (2018) Characteristics and application of a novel species of *Bacillus: Bacillus velezensis*. ACS Chem Biol 13(3):500–505. https://doi.org/10.1021/acschembio.7b00874

38. Zehhar N, Ingouff M, Bouya D, Fer A (2002) Possible involvement of gibberellins and ethylene in *Orobanche ramosa* germination. Weed Res 42(6):464–469. https://doi.org/10.1046/j.1365-3180.2002.00306.x

39. Zermane N, Souissi T, Kroschel J, Sikora R (2007) Biocontrol of broomrape (*Orobanche crenata* Forsk. and *Orobanche foetida* Poir.) by *Pseudomonas fluorescens* isolate Bf7-9 from the faba bean rhizosphere. Biocontrol Sci Technol 17(5): 483–497. https://doi.org/10.1080/09583150701309535

40. Zonno MC, Vurro M (2002) Inhibition of germination of *Orobanche ramosa* seeds by *Fusarium toxins*. Phytoparasitica 30(5):519–524. https://doi.org/10.1007/bf02979757

Figures
Figure 1

The Egyptian broomrape number of different treatments in the field. 1 was JTB8–2 agent 0.8 L/105m²; 2 was JTB8–2 agent 1.6 L/105m²; 3 was JTB8–2 agent 3.2 L/105m²; 4 was blank control.
Figure 2

The tomato plant fresh weight of different treatments in the field. 1 was JTB8–2 agent 0.8 L/105m²; 2 was JTB8–2 agent 1.6 L/105m²; 3 was JTB8–2 agent 3.2 L/105m²; CK was blank control.
Figure 3

The germination rate and inhibition rate of *O. aegyptiaca* seeds treated by different concentrations of crude extract from *B. velezensis*. The different small letters represent significance at 5% level.

Figure 4

Chemical structures of compounds 1–4.
Figure 5

Effect of the compounds 1–4 on the percent inhibition of *O. aegyptiaca* seeds germination. The different lowercase letters represented significant difference at 0.05 level.