ORIGINAL ARTICLE

CORRELATION OF DIETARY HABITS, PHYSICAL ACTIVITY AND HYPERTENSION IN ADMINISTRATIVE OFFICERS IN WESTERN UTTAR PRADESH
Manju Lata Arya¹, Pallavi Anand², Vikas Kumar³

HOW TO CITE THIS ARTICLE:
Manju Lata Arya, Pallavi Anand, Vikas Kumar. “Correlation of Dietary Habits, Physical Activity and Hypertension in Administrative Officers in Western Uttar Pradesh”. Journal of Evolution of Medical and Dental Sciences 2015; Vol. 4, Issue 66, August 17; Page: 11493-11499, DOI: 10.14260/jemds/2015/1659

ABSTRACT: BACKGROUND: Sedentary lifestyle and dietary habits are modifiable risk factors for hypertension and change in these habits can lower the blood pressure. OBJECTIVE: This study aimed to correlate the hypertension with modifiable risk factors such as dietary habits among administrative class of Agra, Uttar Pradesh. MATERIAL AND METHODS: This cross sectional study was carried out in different administrative departments of Agra City and involved 150 personnel age 30 years or more who were interviewed with structured questionnaire (Dietary habits, daily routine, and exercise) and physical parameters of height, weight, BMI, blood pressure were taken to collect data. Chi - square test was done to analyse data. RESULTS: Overall prevalence of hypertension was 38%. It was positively correlated with overweight, obesity, physically inactivity, consuming extra salt in their diet. CONCLUSION: Government officials leading affluent lifestyle are at risk of developing spectrum of cardiovascular disorders due to unhealthy diet, stress and lack of physical activity as evident in this study. They need to be motivated to modify their lifestyle. KEYWORDS: Physical activity, Dietary habits, Blood Pressure, Hypertension.

INTRODUCTION: Out of many non-communicable diseases, Hypertension has emerged as major cause of morbidity and mortality worldwide. According to reports by the World Economic Forum and the Harvard School of Public Health, Non-Communicable Diseases (2014) are estimated to account for 60% of all deaths in India, about 40% of all hospital stays and roughly 35% of all recorded outpatient visits. It has been estimated that CVD will be the major cause of morbidity and mortality in developing countries by the year 2020. Several studies carried out in the different parts India have reported increase in the prevalence of chronic diseases like obesity, hypertension, and their correlation with diet and lifestyle, etc. in urban as well as rural areas.

Hypertension is known as a silent killer as hypertensive patients remain asymptomatic, only few of them develop some symptoms. Asymptomatic patients are unaware of the disease and are at risk for developing complications like heart failure, stroke and kidney diseases.

A positive association has been observed between age, BMI, high intake of salt, high carbohydrate diet, as risk factors, and non-vegetarian diet as protective factor with respect to hypertension (Shyamal Kumar Das,¹ 2005, Radika G. et al 2007,² Shashank R. Joshi 2012.³)

All these factors are more common amongst people from upper social class along with the presence of other factors such as sedentary jobs, lack of physical activity, alcohol intake, Smoking.

People in this group often experience the mental stress due to nature of job contributed by Increasing urbanization, small or nuclear family norms and working couples. Routine health check-ups, screening programmes can help in identifying such undetected cases.
This study was carried out to assess prevalence of hypertension and its correlation with dietary habits, daily routine and obesity among government officials of Agra.

MATERIAL AND METHOD: This cross sectional epidemiological descriptive study was carried out for duration of one and half years from March 2009 to August 2010 under Department of Physiology S. N. Medical college of Agra.

The study aimed to assess correlation of hypertension with dietary habits and lifestyle as risk factors among study population which comprised of personnel working in various government departments of Agra city.

According to various studies the overall prevalence of hypertension was 55% in 40-60 years of age group (WHO, 2001.⁴), 33.5% between 45-64 years of age group in urban population of south India.⁵ Based on these reports, a sample size was calculated and rounded of to 150 by using formula given by Cochran. Simple random sampling technique was used and all personnel working in administration were included irrespective of their age and gender. Cases of secondary Hypertension and subjects unwilling to participate were excluded.

A pre-tested semi structured questionnaire was used to collect data with their consent. Questions included about socio-demographic such as age, gender, education, marital status, family income, dietary habits, consumption of alcohol etc.

Using height and weight, Body Mass Index (BMI) was calculated and classified in to categories of normal 18.5-25kg/m², overweight (25-29.9) and obese (≥30).

Measurement of Blood Pressure: It was recorded by auscultatory method with mercury sphygmomanometer. Subjects were asked to take rest of five minute prior to measurement and to avoid caffeine, smoking for at least 30 min and instructed as number of factors cause significant variations in measurement of blood pressure like nicotine consumption, exercise, bladder distension etc.

Those who were taking antihypertensive drugs were considered as hypertensive. JNC VII criteria was used to classify subjects as normotensive (SBP<120mmHg and DBP<80mmHg), Pre hypertensive (SBP 120-139 mm Hg or DBP 80-89 mmHg) and Hypertensive (≥140 or DBP≥90 mmHg).

Questions related to dietary habits inquired about preference of vegetarian/non vegetarian diet, addition of fruits in diet. They were asked about adding salt to their cooked meal with answer in form of yes or no and if answer was yes, they were further asked about a rough estimation of it in form of less than half teaspoon or more than it. (Feng J He 2012,⁶ Radhika G. 2007.⁷)

Frequency of eating outside in restaurants was asked in terms of occasionally or regularly as food items of these places is known to be rich in fat and have high calories.

Questions related to physical activity were asked to elicit their lifestyle in terms of sedentary to strenuous physical activity. This part of study included questions to divide study population in no exercise group, exercise group which was further divided in to less than 30 minutes and more than 30 minutes spent per day doing some form of exercise. Questionnaire also inquired about yoga activity and answer was given in form of yes or no.

Government officials spend their maximum work hours sitting in making administrative decisions. Field work is also a part of some of posts yet it does not involve any form of movement.
Questions were asked about number of hours they spend sitting in offices, less than 5 hours, 5-8 or more than 8 hours per day.

Questionnaire included family history either positive or negative. In case of positive history they were asked to specify relation with family member. Relations were categorised in parents, siblings, children to be more specific to assess familial trend.

RESULT AND DISCUSSION: In this study out of 150 personnel, there were 135 males and 15 females with overall prevalence of hypertension of 38% (39.2% of males and 26.6% of females, table 1) which was comparable to other studies (37.1% from Kerala, KR Thankappanet al 2006,8 33.3% from Assam, Hazarika NC et al 2003.9) Age wise 15.3%, 36.7%, 50% were hypertensive in age group of 30-39, 40-49, 50-59 years respectively (Table 2).

Positive correlation of hypertension as well as prehypertension with overweight has been suggested by several studies. (Haresh Chandwani et al 2010,10 Yadav S. et al 2008.11) 49.1% in overweight group, 31.8% in obese were hypertensives with higher prevalence of prehypertension in these groups (Table 3).

Unhealthy dietary habits such as diet rich in unsaturated fat, trans-fat, rich in calories, addition of extra salt are few of modifiable risk factors of cardiovascular diseases. Out of 150 participants in study, 63 were taking vegetarian diet and rest 87 were taking mixed diet (Table 4). Vegetarian diet is considered to be source of low intake of saturated fat, cholesterol and high source of dietary fibers along with phytochemicals. 42.5% (n=87) of taking mixed diet were hypertensive in comparison to 31.7% (n=63) of consuming vegetarian diet.

Subjects were asked about consumption of fruits and categorised in no or occasional, taking 1 to 3 times per day groups. 43.4% were hypertensive in no/occasionally consuming group in comparison to 29.3% in those who consumes fruits regularly (Table 4).

Participants had to answer in yes or no form about addition of salt in cooked meal which already had salt in it. 63 out of 150 added extra salt 42.8% of this group had hypertension (Table 5). Out of those who did not add salt, 34.4% (n=87) suffered from hypertension. Addition of salt > 1 teaspoon/day at the dining table is associated with a higher prevalence for hypertension compared to zero added salt. (Radhika G2007.4) In this study out of salt addition group of 63 people 31 added >1 teaspoon per day and of these 54.8% (n=31) were hypertensive.

Out of 150 administrative personnel, 69 led sedentary lifestyle and were not doing any form of exercise and 50.7% (n=69) suffered from hypertension. 81 were engaged in some form of exercise, of which 51 did exercise roughly less than 30 minutes per day and rest 30 spent more than thirty minutes per day doing some form of exercise. 26.6% (n=30) had hypertension in those spending >30 minutes per day (Table 6). Physical activity which should be advocated for prevention/management of hypertension as even mild level of exercise for 30 minutes per day at least three to five times can be effective. (Lee L et al 2010,12 Jervas E et al 2009.13)

In this study prevalence of hypertension was 31.2% (n=64) among regular yoga practitioners which was significantly lower in comparison to those who did not do yoga regularly.

A positive association between work hours and hypertension is suggested by many studies. (Haiou Yang et al 2008.14) In this study prevalence of hypertension was 60.3% in those who worked >8hrs as compared to 30% who worked < 5 hrs. Per day. (Table 7)
The short sleep duration (<7 hours) has been associated with risk of hypertension. (Buxton OM et al 2010.) In present study questionnaire inquired about a rough duration of sleep per day. 39.8% had hypertension in group 6-8 hrs./day and 34.6% in group <6 hrs. Results were insignificant. Role of positive family history among parents or siblings in cases of hypertension has been considered as crucial non modifiable risk factors by several studies. (Stamler R et al 1979.)

Prevalence of hypertension among personnel with positive family history (62.5% n=32) was significantly higher than those with no family history in this study (Table 8).

There were several limitations in study. Collection of data as was done by questionnaire and answers were based on ability of subjects to recall and process. Estimation of salt intake in terms of quantity was one of the variables which posed difficulty. This cross study was only to ascertain extent and nature of physical activity and dietary habits rather than cause and effect between them and blood pressure variation.

Particulars	Frequency	Normotensive	Pre Hypertensive	Hypertensive	χ^2 = 3.56
Male	135	9(6.6)	73(54.1)	53(39.2)	df=2 p=0.168
Female	15	3(20)	8(53.3)	4(26.6)	
Total	150	12(8)	81(54)	57(38)	

Table 1: Variations of Blood Pressure among Males and Females

Age (years)	No. Examined	Normotensives No. (%)	Prehypertensive No. (%)	Hypertension No. (%)	χ^2 = 9.58
30-39	26	2(7.6)	20(76.9)	4(15.3)	df=4 p=0.048
40-49	68	6(8.8)	37(54.4)	25(36.7)	
50-59	56	4(7.1)	24(42.8)	28(50)	
60-	0	0	0	0	
Total	150	12(8)	81(54)	57(38)	

Table 2: Stage Wise Distribution of Blood Pressure According to Age

BMI (kg/m²)	No. examined	Normotensive No. (%)	Prehypertensive No. (%)	Hypertensive No. (%)	χ^2 = 27.7
< 18.5 (under wt)	3	3(100)	0	0	df=6 p=0.01
18.5-25 (normal)	72	9(12.5)	39(54.1)	24(33.3)	
>25 – 30 (over wt)	53	0	27(50.9)	26(49.1)	
>30 (obese)	22	0	15(68.1)	07(31.8)	
Total	150	81(54)	57(38)		

Table 3: Variations of Blood Pressure According to Grades of BMI (Kg/M²)
Table 4: Correlation of Dietary Habits and Hypertension

Variables	Frequency	Normotensive No. (%)	Prehypertensive No. (%)	Hypertensive No. (%)	χ²	df	p
Type of diet							
Vegetarian	63	9(14.2)	34(53.9)	20(31.7)	6.48	2	0.03
Mixed diet	87	3(3.4)	47(54.0)	37(42.5)			
Inclusion of fruits							
No/occasionally	92	4(4.3)	48(52.1)	40(43.4)	5.59	2	0.05
Regularly (1 to 3 times/day)	58	8(13.7)	33(56.8)	17(29.3)			

Table 5: Addition of Salt and Variations of Blood Pressure

Variables	Category	Frequency	Normotensive No. (%)	Prehypertensive No. (%)	Hypertensive No. (%)	χ²	df	p
Consumed extra salt	No	87	11(12.6)	46(52.8)	30(34.4)	2.50	2	0.28
	Yes	63	1(1.5)	35(55.5)	27(42.8)			
Quantity of extra salt/diet	< ½ teaspoon	32	1(3.1)	21(65.6)	10(31.2)	4.20	2	1.22
	< ½ teaspoon	31		14(45.1)	17(54.8)			

Table 6: Exercise, Yoga and Variations of Blood Pressure

Particulars	Total	Normotensive No. (%)	Prehypertensive No. (%)	Hypertensive No. (%)	χ²	df	p	
Exercise	No exercise	69	1(1.4)	33(47.8)	35(50.7)	15.96	4	0.003
	<30 minutes/day	51	5(9.8)	32(62.7)	14(27.4)			
	>30 minutes/day	30	6(20.0)	16(53.3)	8(26.6)			
Yoga	No	86	3(3.4)	46(53.4)	37(43.0)	6.47	2	0.03
	Yes	64	9(14.0)	35(54.6)	20(31.2)			

Table 7: Work/Office and Variations of Blood Pressure

Particulars	Number of hours	Frequency	Normotensive No. (%)	Prehypertensive No. (%)	Hypertensive No. (%)
Work/office	<5	30	5(16.6)	16(53.3)	9(30)
	5-8	62	4(6.4)	45(72.5)	13(20.9)
	>8	58	3(5.1)	20(34.4)	35(60.3)
Table 7: Work Hours, Sleep Hours And Blood Pressure

Sleep duration	<6	52	7(13.4)	27(51.9)	18(34.6)
6-8	98	5(15.3)	54(55.1)	39(39.7)	
>8	0	0	0	0	0

Table 8: Family History of Hypertension Among Study Group

Particulars Family history	Frequency	Normotensive No. (%)	Pre hypertensive No. (%)	Hypertensive No. (%)	χ²	df	p
+ve Parents(23)	32	5(15.6)	12(37.5)	15(46.8)	11.73	2	0.0028
-ve Children(1)		0	3(37.5)	1(100)			
Total	150	12(8)	81(54)	57(38)			

CONCLUSION: The high prevalence of hypertension, prehypertension and overweight as observed in this study needs great attention. One third of the employees were hypertensive which suggests that administrative personnel should be screened regularly. Several studies have shown that weight reduction through diet and regular physical exercise has been associated with reduction in blood pressure.

Personnel should be motivated to do lifestyle modification such as increasing time of physical activity programs per week, dietary modification and low caloric diet and avoiding junk and fast foods. Stress has been strongly correlated with weight gain and high level of blood pressure so stress relieving healthy habits like yoga, walking should be included in daily routine.

REFERENCES:

1. Shyamal Kumar Das, Kalyan Sanyal, and Arindam Basu Study of urban community survey in India: growing trend of high prevalence of hypertension in a developing country Int J. Med Sci. 2005; 2(2): 70–78.
2. Radhika G, Sathya RM, SudhaV. Dietary salt intake and hypertension in an urban south Indian population-J Assoc Physicians India.[CURES - 53]. 2007 Jun; 55: 405-11.
3. Shashank R. Joshi, BanshiSaboo. Prevalence of Diagnosed and Undiagnosed Diabetes and Hypertension in India—Results from the Screening India’s Twin Epidemic (SITE) Study. Diabetes Technology &Therapeutics.Volume:14 Issue 1: January 4, 2012.
4. Hypertension study Group. Prevalence, Awareness, treatment and control of hypertension among elderly in Bangladesh and India: a multi centric study. Bulletin of the World Health Organization, 2001, 79(6) 490-500.
5. Raheena Beegom, Razia Beegom, Mohammad A. Niaz, Ram B. Singh: Diet, central obesity and prevalence of hypertension in the urban population of South India. International Journal of Cardiology September 1995 Volume 51, Issue 2, Pages 183–191.
6. Feng J. He, Norm R. C. Campbell. Reducing salt intake to prevent hypertension and cardiovascular disease Rev Panam Salud Publica 32 (4), 2012.
7. Ganesan Radhika, Rob M. Van Dam, Vasudevan Sudha, Refined grain consumption and the metabolic syndrome in urban Asian Indians (Chennai Urban Rural Epidemiology Study 57) Metabolism Clinical and experimental. May 2009 Volume 58, Issue 5, Pages 675–681.
8. Thankappan KR, Sivasankaran S, Sarma PS, Mini G, Khader SA, Padmanabhan P, Vasan R. Prevalence-correlates-awareness-treatment and control of hypertension in kumara kom, kerala: baseline results of a community-based intervention program. Indian Heart J. 2006 Jan-Feb; 58(1): 28-33.
9. Hazarika NC, Biswas D, Mahanta J. Hypertension in the elderly population of Assam. J Assoc Physicians India 2003 Jun; 51: 567-73.
10. Haresh Chandwani, Jyotsna Pandor Prevalence and correlates of hypertension among adults in the urban area of Jamnagar, Gujrat, India [Electronic Physician 2010; 2: 52-59.
11. Yadav S, Boddula R, Genitta G, Bhatia V, Bansal B, Kongara S, Julka S, Kumar A, Singh HK, Ramesh V, Bhatia E. Prevalence & risk factors of pre-hypertension & hypertension in an affluent north Indian population. Indian J Med Res. 2008 Dec; 128(6): 712-20.
12. Lee LL, Watson MC, The effect of walking intervention on blood pressure control: A systemic review. Int J Nurs Stud 2010 Dec; 47(12): 1545-61.
13. Jervas E et al: The effect of Marital Status and Self-reported physical exercise on Adiposity and Blood Pressure of Igbosof Nigeria IJMU 2009; 4(1) 7-14.
14. Yang H, Schnall PL, Jauregui M, Su TC, Baker D. Work hours and self-reported hypertension among working people in California. Hypertension. 2006 Oct; 48(4):744-50. Epub 2006 Aug 28.
15. Buxton OM, Marcelli E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc Sci Med. 2010 Sep; 71(5):1027-36. Epub 2010 Jun 16.
16. Stamler R, Stamler J, Riedlinger WF, Algera G, Roberts RH. Family (parental) history and prevalence of hypertension. Results of a nationwide screening program. JAMA. 1979 Jan 5; 241(1):43-6.

AUTHORS:
1. Manju Lata Arya
2. Pallavi Anand
3. Vikas Kumar

PARTICULARS OF CONTRIBUTORS:
1. Assistant Professor, Department of Pathology, Rama Medical College, Hospital & Research Center, Kanpur.
2. Assistant Professor, Department of Biochemistry, Rama Medical College, Hospital & Research Center, Kanpur.

FINANCIAL OR OTHER COMPETING INTERESTS: None

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Manju Lata Arya,
Assistant Professor,
Department of Physiology,
Rama Medical College,
Hospital & Research Center, Kanpur.
E-mail: manjulataarya77@yahoo.co.in

Date of Submission: 28/07/2015.
Date of Peer Review: 29/07/2015.
Date of Acceptance: 11/08/2015.
Date of Publishing: 14/08/2015.