CONTRIBUTION OF EXTRAGALACTIC INFRARED SOURCES TO COSMIC MICROWAVE BACKGROUND FOREGROUND ANISOTROPHY

ERIC GAWISER AND GEORGE F. SMOOT
Department of Physics, and Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720; gawiser@physics.berkeley.edu

Received 1996 March 22; accepted 1997 February 12

ABSTRACT

We estimate the level of confusion to cosmic microwave background (CMB) anisotropy measurements caused by extragalactic infrared sources. CMB anisotropy observations at high resolution and high frequencies are especially sensitive to this foreground. We use data from the COBE satellite to generate a Galactic emission spectrum covering millimeter and submillimeter wavelengths. Using this spectrum as a template, we predict the microwave emission of the 5319 brightest infrared galaxies seen by IRAS. We simulate sky maps of extragalactic infrared sources over the relevant range of frequencies (30–900 GHz) and instrument resolutions (10°–10′ FWHM). An analysis of the temperature anisotropy of these sky maps shows that a reasonable observational window is available for CMB anisotropy measurements.

Subject heading: cosmic microwave background — galaxies: spiral — infrared: galaxies

1. INTRODUCTION

The COBE detection of large angular scale cosmic microwave background (CMB) anisotropy (Smoot et al. 1992) has generated interest in measuring CMB anisotropy on all angular scales, with the goal of determining cosmological parameters. Current anisotropy observations look at subdegree angular scales that correspond to observable structures in the present universe. Improved instrumentation and the Microwave Anisotropy Probe (MAP) and Max Planck Surveyor (formerly COBRAS/SAMBA) satellite missions focus attention on angular scales between one-half and one-sixth of a degree.

Due to its large beam size, COBE was basically unaffected by extragalactic foreground sources (Banday et al. 1996; Kogut et al. 1994). Because the antenna temperature contribution of a point source increases with the inverse of the solid angle of the beam, observations at higher angular resolution are more sensitive to extragalactic foregrounds, including radio sources, the Sunyaev-Zeldovich effect from galaxy clusters, and the infrared-bright galaxies examined here.

Previous work in this area (Toffolatti et al. 1995; Franceschini et al. 1989; Wang 1991) used galactic evolution models with specific assumptions about dust temperatures in order to predict the level of extragalactic foreground. We choose instead a phenomenological approach using the infrared-bright galaxies detected by the Infrared Astronomical Satellite (IRAS) and the Galactic emission detected by the Cosmic Background Explorer (COBE) satellite. Section 3 compares our results with those from galaxy evolution models.

The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on COBE gives evidence for the existence of cold (<15 K) dust in the Galactic plane (Reach et al. 1995; Wright et al. 1991). If the Milky Way has cold dust, then it is likely present in other dusty spirals, which comprise the majority of bright extragalactic infrared sources. Some observations (Chini et al. 1995; Block et al. 1994; Devereux & Young 1992) indicate the presence of cold dust in other galaxies. Neither galactic evolution models nor pre-FIRAS observations (see Eales, Wynn-Williams, & Duncan 1989) were able to set tight constraints on emission from cold dust, but the FIRAS observations do. Emission from dust close in temperature to the 2.73 K background radiation is difficult to separate from real CMB anisotropies. If cold dust is typically accompanied by warm dust in spiral galaxies, we can use the FIRAS information about the total dust emission of the Galaxy to overcome this spectral similarity.

2. EXTRAGALACTIC INFRARED SOURCES

The far-infrared discrete sources detected by IRAS are typically inactive spiral galaxies, although some are quasars, starburst galaxies, and Seyfert galaxies. The IRAS 1.2 Jy catalog (Fisher et al. 1995) provides flux measurements of 5319 galaxies at 12, 25, 60, and 100 μm, where interstellar dust emission is dominant. We compared the locations of these galaxies with those of a thousand of the brightest radio sources, and only seven possible coincidences resulted. This lack of coincidence shows that radio-loud galaxies can be treated separately. The IRAS sources are roughly isotropic in distribution, except for a clear pattern of the supergalactic plane. To reduce the possibility of residual galactic contamination, we use a sky map in our analysis that covers galactic latitudes |b| > 30°. This map contains contributions from 2979 galaxies.

The nature of dust in spiral galaxies is still an open question. It seems likely that there is dust at widely varying temperatures and possibly with different emissivities (Rowan-Robinson 1992; Franceschini & Andreani 1995). Attempts to fit observational data have yielded a variety of results; it is unclear if far-infrared luminous dust is well described by a one-component or a two-component model, and the emissivity power-law index is only known to be between 1 and 2. We avoid specifying the nature of this dust by using the observed Galactic far-infrared emission spectrum as a template for IRAS galaxies. To check the accuracy of this template, we fitted a two-component dust model to IRAS galaxies and to the integrated 12, 25, 60, and 100 μm fluxes of the Milky Way measured by the Diffuse Infrared Background Experiment (DIRBE) instrument of COBE. This produces similar results for the warm (15–40 K) dust component to which IRAS and
DIRBE are most sensitive; for an emissivity power-law index of 1.5, DIRBE gives a warm dust temperature of 28 K for the Milky Way, while the 425 IRAS galaxies with the highest quality flux measurements are collectively fitted to a warm dust temperature of 33 K. This warm dust accounts for the majority of the far-infrared emission of spiral galaxies.

However, there is observational evidence that the far-infrared emission of inactive spirals is dominated by dust slightly colder than 20 K (Neininger & Guelin 1996; Chini & Krugel 1993). Fitting the FIRAS spectrum of the Milky Way also leads to a warm dust temperature close to 20 K. These fits appear to conflict with the temperatures found above using IRAS and DIRBE fluxes at λ ≤ 100 μm. Using 60, 100, 140, and 240 μm DIRBE fluxes, however, indicates a warm dust temperature for the Galaxy of 24 K. This shows that temperature fits to the data on one side of the peak of the assumed blackbody spectrum can be inaccurate. Figure 1 shows that the spectra of the Milky Way found by DIRBE and FIRAS are indeed compatible. It may be an oversimplification to represent the warm dust in a galaxy by a single temperature.

We recognize that not all IRAS galaxies have exactly the same far-IR spectrum as the Milky Way. Active galaxies are warmer, with an average warm dust temperature of 33 K (for emissivity index 2; Chini et al. 1995). However, the cirrus emission that dominates Galactic dust is consistent with the emission from the majority of inactive spirals (Andreani & Franceschini 1996; Pearson & Rowan-Robinson 1996). Some observations indicate that our Galaxy is slightly warmer than the average inactive spiral (Chini et al. 1995). None of these observations include enough frequencies to provide a template microwave emission spectrum, and their results range by a factor of 3 depending on the choice of beam corrections (Franceschini & Andreani 1995). The Milky Way is a good middle-of-the-road choice for a microwave template spectrum; the DIRBE and IRAS dust temperature fits given above agree rather well.

After removing Galactic emission lines (as in Reach et al. 1995), we fitted a dust model to the FIRAS dust spectrum. The CO 1–0 emission line at 115 GHz is not clearly detected by FIRAS but could be responsible for increased emission at that frequency. It is possible to vary the parameters of the dust model significantly and still have an acceptable fit, so we refrain from giving any physical importance to the parameters of the fit. We add synchrotron and free-free components with microwave-range spectral indices of −1.0 and −0.15, respectively, so that these sources of microwave emission match COBE Differential Microwave Radiometer (DMR) observations below 100 GHz (Kogut et al. 1996; Reach et al. 1995; Bennett et al. 1992). Free-free emission is stronger than dust beyond the low-frequency end of the FIRAS spectrum.

We combine data from DIRBE, FIRAS, and DMR to form the broad Galactic spectrum shown in Figure 1. Each IRAS 1.2 Jy source is fitted to the DIRBE end of the spectrum and extrapolated to the desired frequency using this template. In fitting each IRAS galaxy to the DIRBE fluxes of the Milky Way, we give more weight to the 60 and 100 μm fluxes, which are most sensitive to warm dust, than to the 12 and 25 μm fluxes, which are also sensitive to hot (100–300 K) dust. The 1.2 Jy catalog gives redshifts for these galaxies. Most have z ≤ 0.05, and all have z < 0.3. We take these redshifts into account while fitting and extrapolating.

It would be advantageous to fit each type of galaxy to a specialized far-IR–to–microwave spectrum, but no other trustworthy template spectrum is currently available, so we use the Galactic far-infrared emission spectrum for all sources. The Galactic spectrum agrees well with observed correlations between radio and IR fluxes of IRAS galaxies (Condon & Broderick 1991; Crawford et al. 1996). Our template spectrum is consistent with detections and upper limits for bright infrared galaxies from DIRBE (Odenwald, Newmark, & Smoot 1997). This is helpful because DIRBE used 140 and 240 μm channels, which IRAS lacks, allowing it to probe much cooler dust temperatures than IRAS. DIRBE rules out the possibility of extremely bright sources occurring in the 2% of the high Galactic latitude sky not surveyed by IRAS and sees no evidence for sources whose emission comes predominantly from cold dust.

3. RESULTS

We use the Galactic far-infrared emission spectrum to predict the microwave flux of each IRAS galaxy in Jansky (1 Jy = 10−26 W m−2 Hz−1). To convert from flux S to antenna temperature T_a, we use

\[T_a = \frac{S \lambda^2}{2k_B\Omega}, \]

(1)

where \(k_B \) is Boltzmann's constant, \(\lambda \) is the wavelength, and \(\Omega \) is the effective beam size of the observing instrument. The antenna temperature is related to the thermodynamic temperature by

\[T_a = \frac{x}{e^x - 1} T, \]

(2)
defines \(x = h \nu / k T \). Small fluctuations in antenna temperature can be converted to effective thermodynamic temperature fluctuations using

\[\frac{dT_A}{dT} = \frac{x^2 e^x}{(e^x - 1)^2}. \]

(3)

An analysis of source counts indicates that the 1.2 Jy sample is complete down to an extrapolated flux of 3 mJy at 100 GHz. We divide the sources logarithmically into groups of similar flux and find a gradual decrease in anisotropy as flux decreases, indicating that dimmer sources will not generate significant anisotropy. Toffolatti et al. (1995) found a negligible contribution from non-Poissonian fluctuations. Poissonian fluctuations should be dominated by those sources prevalent enough to have roughly one source per pixel. For an instrument with a resolution of 10' to have one source per beam, we must look at sources with \(z \approx 0.24 \). Assuming \((1 + z)^3\) luminosity evolution and including k-correction (see Pearson & Rowan-Robinson 1996 and Beichman & Helou 1991), these sources will generate a temperature anisotropy only 2% of that caused by IRAS 1.2 Jy galaxies. High-redshift galaxies should produce a significant isotropic cosmic infrared background but should be too distant to produce significant foreground anisotropy. We therefore expect the anisotropy generated by sources too dim to make the 1.2 Jy catalog to be a small part of the total anisotropy; the brightest sources are generating most of the fluctuations.

To simulate observations, we convolve all sources on pixelized sky maps (2 times oversampled) of resolution varying from 10' to 10''. The resulting maps, covering a range of frequencies from 30 to 900 GHz, are analyzed to determine the expected contribution of IRAS 1.2 Jy galaxies to foreground confusion of CMB temperature anisotropy. The information contained in these sky maps can be used to choose regions of the sky in which to observe (Smoot et al. 1995). The contour plot in Figure 2 shows the rms thermodynamic temperature anisotropy produced by extragalactic infrared sources over the full range of frequencies and instrument resolution. The minimum value of \(\Delta T / T \) is \(1.3 \times 10^{-8} \) at large FWHM and medium frequency, and the maximum value is \(0.092 \) at small FWHM and high frequency. For frequency in gigahertz and FWHM in degrees, our results for temperature anisotropy are fitted to within 10% by

\[\log_{10} \frac{\Delta T}{T} = 2.0(\log_{10} \nu)^3 - 8.6(\log_{10} \nu)^2 + 10.3 \log_{10} \nu - 0.98 \log_{10} (\text{FWHM}) - 9.2. \]

(4)

The inverse linear relationship between anisotropy and FWHM results from the combined effects of beam convolving and map pixelization. Anisotropy from extragalactic infrared sources dominates expected CMB anisotropy at frequencies above 500 GHz. This makes effective foreground discrimination possible for instruments with a frequency range sufficiently wide to detect the extragalactic infrared foreground directly.

Figure 3 shows a summary of our results for several benchmark instrument resolutions. The dashed lines represent the results of subtracting the pixels where the fluctuations from extragalactic infrared sources are 5 times greater than the quadrature sum of the rms CMB anisotropy and the expected instrument noise for the Max Planck Surveyor at that frequency (Tegmark & Efstathiou 1995). These 5 \(\sigma \) pixels can be assumed to contain bright point sources. Our results agree closely with those of Toffolatti et al. (1995) for their model of moderate cosmological evolution of all galaxies. Our predictions for anisotropy are lower by about a factor of 3 than those of Franceschini et al. (1989), who assume strong evolution of the brightest IR sources and include early galaxies with heavy starburst activity. Wang (1991) ignores the possibility of cold dust and uses galaxy evolution models to predict anisotropy
levels somewhat lower than those found with our phenomenological approach.

The 5σ subtraction has a significant effect for small FWHM at frequencies below 500 GHz. The maximum effect is to subtract 0.002% of the pixels, leading to a factor of 5 reduction in foreground temperature anisotropy. This is further evidence that temperature anisotropy from extragalactic infrared sources is dominated by the brightest sources. The bright sources are a mixture of Local Group galaxies and more distant infrared-luminous galaxies such as starburst galaxies. Optimal subtraction of the extragalactic infrared foreground requires the contribution from each bright source to be predicted accurately.

4. DISCUSSION

Our usage of the Galactic far-infrared emission spectrum as a template causes systematic errors on a galaxy-by-galaxy basis. It is easy to place constraints on our results; if all galaxies had only 33 K dust, as is typical for active galaxies, the resulting anisotropy would be a factor of 100 lower. This is highly unlikely, because we know that most IRAS galaxies are inactive spirals, and galaxies with colder dust will dominate the anisotropy at millimeter wavelengths because of the selection effect favoring sources with flatter spectra. A robust upper limit on microwave anisotropy from infrared galaxies can be set by assuming that our IRAS 1.2 Jy galaxies cause the full cosmological far-infrared background (for which Puget et al. 1996 claims a detection and Mather et al. 1994 gives an upper limit).

In this case, we have underestimated the anisotropy by a factor of 100, but no predictions of the IR background expect these nearby galaxies to produce more than a few percent of it. A more realistic check on our results comes from Andreani & Franceschini (1996), who measured a complete sample of IRAS galaxies at 130 μm (240 GHz). Their average flux ratio of 1300 μm over 100 μm is half that of the Galaxy, but one of their beam correction methods brings their ratio into agreement with the Milky Way. They find that the 60 μm emission of spiral galaxies receives enough contribution from a starburst dust component that is mostly absent in the Galaxy that including 60 μm fluxes in our fits may have caused a factor of 2 overestimate. Combined, these corrections give us a possible systematic overestimate of anisotropy by a factor of 4. If typical IR-bright galaxies have dust colder than the Milky Way, our results could be an underestimate by a factor of a few instead, but this appears less likely. Our total systematic error is probably less than a factor of 3, which is consistent with our good agreement with previous results discussed in § 3.

The recently obtained spectral knowledge of our Galaxy has enabled us to take into account the possible presence of cold dust. Our predicted level of temperature anisotropy makes the extragalactic infrared foreground dominant over the Galactic foregrounds of dust, free-free, and synchrotron emission for angular resolutions near 10' and frequencies above 100 GHz. Below 100 GHz, radio sources are expected to be the dominant extragalactic foreground. The extragalactic infrared foreground will not be significant in comparison with CMB anisotropies around 100 GHz but will be dominant above 500 GHz. Despite the likely presence of cold dust in infrared-bright galaxies, our results leave a window at intermediate frequencies for the measurement of CMB anisotropies without significant confusion from extragalactic infrared sources.

We thank Michael Strauss and Dave Schlegel for their help with the IRAS 1.2 Jy catalog. The DIRBE integrated fluxes of the Milky Way were graciously provided by Ned Wright and Janet Weiland. We also thank Bill Reach for supplying the FIRAS Galactic dust spectrum. Marc Davis, Giovanni DeAmici, and Laura Cayon for helpful conversations, and Gianfranco DeZotti, Joe Silk, Ted Bunn, and Evan Goer for reviewing drafts of this Letter. E. G. acknowledges the support of an NSF Graduate Fellowship. This work was supported in part at LBNL through DOE contract DE-AC03-76SF00098.

REFERENCES

Andreani, P., & Franceschini, A. 1996, MNRAS, 283, 85
Banday, A. J., Górski, K. M., Bennett, C. L., Hinshaw, G., Kogut, A., & Smoot, G. F. 1996, ApJ, 468, L85
Beichman, C. A., & Helou, G. 1991, ApJ, 370, L1
Bennett, C. L. et al. 1992, ApJ, 396, L7
Block, D. L., Witt, A. N., Grosbol, P., Stockton, A., & Moneti, A. 1994, A&A, 288, 383
Chini, R., & Krugel, E. 1993, A&A, 279, 385
Chini, R., Krugel, E., Lemke, R., & Ward-Thompson, D. 1995, A&A, 295, 317
Condon, J. J., & Broderick, J. J. 1991, AJ, 102, 1663
Crawford, T., Marr, J. Partridge, B., & Strauss, M. A. 1996, ApJ, 460, 225
Devereux, N. A., & Young, J. S. 1992, AJ, 103, 1536
Eales, S. A., Wynn-Williams, C. G., & Duncan, W. D. 1989, ApJ, 339, 859
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1995, ApJS, 100, 69
Franceschini, A., & Andreani, P. 1995, ApJ, 440, L5
Franceschini, A., Toffolatti, L., Danese, L., & De Zotti, G. 1989, ApJ, 344, 35
Kogut, A., Banday, A. J., Bennett, C. J., Górski, K. M., Hinshaw, G., Smoot, G. F., & Wright, E. L. 1996, ApJ, 464, L5
Kogut, A., Banday, A. J., Bennett, C. J., Hinshaw, G., Loewenstein, K., Lubin, P., Smoot, G. F., & Wright, E. L. 1994, ApJ, 433, 435
Mather, J. C., et al. 1994, ApJ, 420, 439
Neininger, N., & Guelin, M. 1996, in Proc. Dust-Morphology Conf., Mapping the Cold Dust in Edge-On Galaxies at 1.2 mm Wavelength, ed. D. Block (Dordrecht: Kluwer), in press (astro-ph/9603005)
Odenwald, S., Newmark, J., & Smoot, G. 1997, ApJ, submitted
Pearson, C., & Rowan-Robinson, M. 1996, MNRAS, 283, 174
Puget, J.-L., Abergel, A., Bernard, J.-P., Boulanger, F., Burton, W. B., Desert, F.-X., & Hartmann, D. 1996, A&A, 308, L5
Reach, W. T., et al. 1995, ApJ, 451, 188
Rowan-Robinson, M. 1992, MNRAS, 258, 787
Smoot, G. F., et al. 1992, ApJ, 396, L1
———. 1995, Astrophys. Lett., 32, 297
Teegarden, S. M., & Elsathiou, H. G. 1995, MNRAS, 281, 1297
Toffolatti, L., et al. 1995, Astrophys. Lett., 32, 125
Wang, B. 1991, ApJ, 374, 465
Wright, E. L., et al. 1991, ApJ, 381, 200