Quantum Dynamical Model for Wave Function Reduction in Classical and Macroscopic Limits

Chang-Pu Sun
Institute for Theoretical Physics, State University of New York, Stony Brook, NY 11794-3840, USA
and
Physics Department, Northeast Normal University, Changchun 130024, P.R. China

Abstract

In this paper, a quantum dynamical model describing the quantum measurement process is presented as an extensive generalization of the Coleman-Hepp model. In both the classical limit with very large quantum number and macroscopic limit with very large particle number in measuring instrument, this model generally realizes the wave packet collapse in quantum measurement as a consequence of the Schrödinger time evolution in either the exactly-solvable case or the non-(exactly-)solvable case. For the latter, its quasi-adiabatic case is explicitly analysed by making use of the high-order adiabatic approximation method and then manifests the wave packet collapse as well as the exactly-solvable case. By highlighting these analysis, it is finally found that an essence of the dynamical model of wave packet collapse is the factorization of the Schrödinger evolution other than the exact solvability. So many dynamical models including the well-known ones before, which are exactly-solvable or not, can be shown only to be the concrete realizations of this factorizability.

PACS numbers: O3.65, 11.90, O3.80.
1. Introduction

Though quantum mechanics has been experimentally proved as a quite successful theory, its interpretation is still an important problem that the physicist cannot avoid completely [1-4]. In order to interpret its mathematical formalism physically, one has to introduce the wave packet collapse (WPC) postulate as an extra assumption added to the closed system of rules in quantum mechanics. This postulate is also called von Neumann's projection rule or wave function reduction process. Let us now describe it briefly. It is well known in quantum physics that, if measured quantum system \(S \) is in a state \(|\phi> \) that is a linear superposition of the eigenstates \(|k> \) of the operator \(\hat{A} \) of an observable \(A \) just before a measurement, i.e.,

\[
|\phi> = \sum c_k |k>, \quad c_k \text{ are complex numbers}
\]

(1.1)

then a result of the measurement of \(A \) is one \(a_k \) of the eigenvalues of \(\hat{A} \) corresponding to \(|k> \) with the probability \(|c_k|^2 \). The von Neumann's postulate tells us that, once a well-determined result \(a_k \) about \(A \) has been obtained, the state of \(S \) is no longer \(|\phi> \) and it must collapses into \(|n> \) since the immediately-successive measurement of \(A \) after the first one should repeats the same result. Using the density matrix

\[
\rho = |\phi><\phi| = \sum_{k,k'} c_k c_{k'}^* |k><k',
\]

(1.2)

for the state \(|\phi> \), the above WPC process can be expressed as a projector or reduction

\[
\rho \rightarrow \hat{\rho} = \sum |c_n|^2 |k><k|.
\]

(1.3)

However, to realize the WPC, the external classical measuring apparatus must be used to detect the result. Then, someone thinks the WPC postulate to be not quite satisfactory since quantum mechanics is expected to be an universal theory valid for whole 'universe' because the detector, as a part of the universe, behaves classically in the von Neumann's postulate. A reasonable description of the detector should be quantum essentially and it exhibits the classical or macroscopic features in certain limits. If one deals with the detector as a subsystem of the closed system (universe = the measured system \(S \) + the detector \(D \)), it is possible that the quantum dynamics of the universe can result in the WPC through the interactions between \(S \) and \(D \). Up to now, some exactly-solvable models have been presented to analyse this problem [5-10]. Among them, the Coleman-Happ (CH) model is very famous one and has
been extensively studied in last twenty years [5-9]. In order to describe studies in this paper clearly, we need to see some details of this model.

In the original CH model, an ultrarelativistic particle is referred to the measured system S while a one-dimensional array of scatterers with spin-1/2 to the detector D. The interaction between S and D is represented by an homogeneous coupling

$$H_I = \sum_{n=1}^{N} V(x - a_n) \sigma_{1}^{(n)}$$

(1.4)

where $\sigma_{1}^{(n)}$ is the first component of Puli matrix; a_n is the position of the scatterer assigned to the n’th site in the array. The Hamiltonian for D is

$$H_s = c\hat{P}$$

(1.5)

where c, \hat{P} and x are the light speed, the momentum and coordinate operators respectively for S. This model is quite simple, but it can be exactly solved to produce a deep insight on the dynamical description of the quantum measurement process. Starting with the initial state

$$|\psi(0)> = \sum c_k|k> \otimes |D>$$

(1.6)

where $|D>$ is pure state of D (it is usually taken to be ground state), the evaluation state $|\psi(t)>$ for the universe =S+D is defined by the exact solution to this model. Then, the reduced density matrix

$$\rho_s(t) = Tr_D(|\psi(t)> <\psi(t)|)$$

(1.7)

of the measured system is obtained by taking the trace of the density matrix

$$\rho(t) = |\psi(t)> <\psi(t)|$$

(1.8)

of the universe to the variables of D. Obviously, $\rho_s(t)$ depends on the particle number N of D. When $N \rightarrow \infty$, i.e., in the macroscopic limit, $\rho_s(t) \rightarrow \hat{\rho}$ after long enough time t as eq.(1-2). Namely, the Schrodinger evolution of the universe=S+D leads to the WPC for the measured system. More recently, the original CH model was improved to describe the energy exchange between S and D by adding a free energy Hamiltonian [9]

$$H_0 = \hbar \omega \sum_{n=1}^{N} \sigma_{3}^{(n)}$$

(1.9)
and correspondingly improving the interaction slightly. Notice that the improved model remains exactly-solvable.

However, because the spin quantum number is fixed to be 1/2 in the original CH model or its improved versions, they cannot describe the classical characters of the measurement. Usually, the classical feature of a quantum object is determined by taking certain value for some internal quantum numbers of the detector D or $\hbar = 0$. In the case of the angular momentum, this classical limit corresponds to infinite spin. In a nice paper[10], this problem was analysed by using another exactly-solvable dynamical model for quantum measurement. So it is expected that the WPC in classical limit can be incorporated in an extensive generalization of CH model. The first step of this paper is to establish such a generalized CH model manifesting the WPC as the dynamical process in the classical limit as well as in the the macroscopic limit simultaneously. Then, it is tried to find the essence for this model substantially resulting in the realization of the WPC as a quantum dynamical process as well as for those well-established ones before. To this end, we will explicitly study the dynamics of this generalized CH model in both the exactly-solvable case and the non-solvable case. For the latter, we will apply the high-order adiabatic approximation (HOAA) method [11-13] to its special case that the coupling parameter depends on the position of the measured ultrarelativistic particle quite slightly. Finally, we point out the possible essence in the dynamical realization of the WPC, which is largely independent of the concrete forms of model Hamiltonians.

2. Generalization of the CH model and Its Exact Evolution Operator

Based on the original CH model, the present generalizations are to assign an arbitrary spin j_n to each scatterer on one-dimensional array as the detector D and to take an inhomogeneous coupling of the scatters to the ultrarelativistic particle as the measured system S. In this case the spin couplings have different directions on different sites of the array. Let

$$\mathbf{J}(n) = (\hat{J}_x(n), \hat{J}_y(n), \hat{J}_z(n))$$

be the angular momentum operator acting on the n'th site and the angular momentum operators on different sites $n = 1, 2, ..., N$ commute with each other. Then, we
write the interacting Hamiltonian for the present generalized model

\[H_I = \sum_{n=1}^{N} J(n) \mathbf{B}(x - a_n), \]

(2.1)

in terms of the 3-vectors \(\mathbf{B}(x - a_n) \) depending on the coordinate \(x \) of \(S \) and the fixed coordinates \(a_n \) of the scatterers in the spin array. As the energy-exchanging between \(D \) and \(S \) is studied in ref.\[9\], we introduce a free Hamiltonian for the spin array \(D \)

\[H_D = \sum_{n} B_0(x - a_n) \hat{J}_z(n), \]

(2.2)

to distinguish the states of the detector \(D \) via energy levels. Then, we have a Hamiltonian

\[H = c \hat{P} + \sum_{n} J(n) \mathbf{R}(x - a_n), \]

(2.3)

for the universe \(= S + D \) where

\[\mathbf{R}(x) = (B_1(x), B_2(x), B_3(x) + B_0(x)). \]

In the above model, because of the introduction of the arbitrary spin \(j \), which labels any \(2j+1 \)-dimensional irreducible representation of rotation group \(\text{SO}(3) \), we are able to consider the behaviours of the quantum dynamics governed by this model Hamiltonian in the classical limit with infinite spin \(j \). It will be proved that, like in the macroscopic limit with infinite \(N \), the quantum dynamical evolution of the universe also leads to the WPC for the measured system in the classical limit. The reason that the limit with infinite \(j \) is called of classical is that the mean square deviations of the components \(\hat{J}_x \) and \(\hat{J}_y \) possess the limit feature\[17\]

\[\frac{\Delta \hat{J}_x}{j} = \frac{\Delta \hat{J}_y}{j} = \frac{1}{\sqrt{2j}} \rightarrow 0, \text{ as } N \rightarrow 0. \]

To solve the dynamical evolution of the universe \(= S + D \) exactly, the polar coordinate \((R, \theta, \phi) \) for the space \(\{\mathbf{R}\} \) of the coupling parameter :

\[\mathbf{R} = R(sin\theta cos\phi, sin\theta cos\phi, cos\theta) \]

is introduced where

\[R(x) = \sqrt{B_1^2(x) + B_2^2(x) + (B_0(x) + B_3(x))^2}, \]

\[\tan \theta(x) = \frac{\sqrt{B_1^2(x) + B_2^2(x)}}{B_3(x) + B_0(x)}, \]

(2.4)
\[tg \phi(x) = \frac{B_2(x)}{B_1(x)}. \]

Notice that the functions \(R, \theta, \) and \(\phi \) usually depend on \(x \) through the coupling parameters \(R \). According to the quantum rotation theory, the interaction Hamiltonian \(H_I \) can be rewritten as

\[
H_I = S(\theta, \phi)^+ \sum_{n=1}^{N} R_n \hat{J}(n) S(\theta, \phi),
\]

where

\[
S(x) = S(\theta(x-a_n), \phi(x-a_n)) = \prod_{n=1}^{N} e^{-i \hat{J}_z(n) \phi(x-a_n)/\hbar} e^{-i \hat{J}_y(n) \theta(x-a_n)/\hbar},
\]

is a globle rotation of the spin array generated by the local rotations

\[
S_n(x) = e^{-i \hat{J}_z(n) \phi(x-a_n)/\hbar} e^{-i \hat{J}_y(n) \theta(x-a_n)/\hbar}
\]

for each sites. Latter on, we will shows that it is just this factorization of the Hamiltonian that leads to the WPC in quantum measurement through the factorization of the evolution operator.

For the evolution operator \(U(t) \) of the universe satisfying the Schrodinger equation with the Hamiltonian \((2.3) \), we introduce the ‘interaction’ picture by

\[
U(t) = e^{-ict\hat{P}/\hbar} U_e(t),
\]

where \(e^{-ict\hat{P}} \) is the generator for the coherent state as Gaussian wave packet [17]. In this picture, the reduced evolution operator obeys an time-dependent Schrodinger equation

\[
i\hbar \frac{\partial}{\partial t} U_e(t) = H_e(t) U_e(t),
\]

with the time-dependent Hamiltonian

\[
H_e(t) = \sum_{k=1}^{N} h_{ek}(t) = \sum_{k=1}^{N} \hat{J}(n).R(x-a_n + ct),
\]

Notice that the Schrodinger equation governed by the Hamiltonian \(H \) is exactly-solvable only for the harmonic case with

\[
\theta(x) = \text{constant} \quad \theta, R = \text{constant}
\]

\[
\phi(x) = \frac{\omega x}{c}, \quad \omega = \text{a real constant}
\]
To solve the equation (2.9) in this exactly-solvable case, we use the Rabi-Ramsy-Schwinger’s rotating coordinate technique. We carry out the transformation on $U_e(t)$

$$U_e(t) = W(t)U_R(t) = \prod_{n=1}^{N} e^{-i\hat{J}_z(n)\frac{x}{\hbar}(x-a_n+c)/\hbar}U_R(t), \quad (2.12)$$

Here, the rotated evolution operator $U_R(t)$ is governed by the rotated Hamiltonian

$$H_R = W(t)^{-1}H_e(t)W(t) - \omega \sum_{k=1}^{N} J_z(n)$$

$$= \sum_{n=1}^{N} R[\hat{J}_x(n)\sin\theta + \hat{J}_z(n)(\cos\theta - \frac{\omega}{R})] \quad (2.13)$$

Notice that this is time-independent Hamiltonian.

In terms of

$$\Omega = R\sqrt{1 + \frac{\omega^2}{R^2} - 2\cos\theta\frac{\omega}{R}},$$

$$\sin\alpha = \frac{R\sin\theta}{\Omega},$$

we rewrite the above rotated Hamiltonian as

$$H_R = \sum_{n=1}^{N} \Omega[\hat{J}_x(n)\sin\alpha + \hat{J}_z(n)\cos\alpha]$$

$$= \Omega \sum_{n=1}^{N} e^{-i\hat{J}_y(n)\frac{\omega}{R} \hat{J}_z(n)}e^{i\hat{J}_y(n)\frac{\omega}{R} \hat{J}_z(n)}.$$

From the above expression for H_R, the rotated evolution operator $U_R(t)$ follows immediately

$$U_R(t) = e^{-iH_R t/\hbar} = \prod_{n=1}^{N} e^{-i\hat{J}_y(n)\frac{\omega}{R} \hat{J}_z(n)}e^{-i\hat{J}_y(n)\frac{\omega}{R} \hat{J}_z(n)}e^{i\hat{J}_y(n)\frac{\omega}{R} \hat{J}_z(n)}e^{i\hat{J}_y(n)\frac{\omega}{R} \hat{J}_z(n)}.$$

Therefore, the evaluation operator for the universe

$$U(t) = e^{-ict\hat{p}/\hbar} \prod_{n=1}^{N} e^{-i\hat{J}_z(n)\frac{\omega}{R} (x+a_n+c)/\hbar} e^{-i\hat{J}_y(n)\frac{\omega}{R} \hat{J}_z(n)} e^{-i\hat{J}_y(n)\frac{\omega}{R} \hat{J}_z(n)} e^{i\hat{J}_y(n)\frac{\omega}{R} \hat{J}_z(n)}$$

finally is obtained from the above eqs. (2.8, 2.12, 2.16).

Here, we should remark that the exact solvability of the above generalized CH model mainly depends on the harmonic form of the function $R(x)$ of x. If it is not harmonic, the above method can not work well and certain approximation methods should be used to deal with the evolution operators approximately in various cases.
If the coupling function $B(x)$ depends on x quite slightly and then the measured ultrarelativistic particle may move so slowly that the spin states of the scatterer in the detector can be excited hardly, the adiabatic (Born-Oppenheimer) approximation or its generalization can make sense for the problem. Thereby, the Berry’s geometric phase[14,15] and the corresponding induced gauge field can be incorporated in this dynamical model of the WPC for the quantum measurement in the adiabatic case.

3. Dynamical Realization of Wave Packet Collapse :Exactly-Solvable Case

To consider the dynamical realizability of the WPC in the above model for quantum measurement, we consider an ideal double-slit interference experiment. Let a coherent beam of the ultrarelativistic particles be split into two branches represented by the wave functions $|\psi_1>\text{ and } |\psi_2>$ respectively. In the same time, the detector is assigned to its ground state

$$ |0> = |j_1, m_1 = -j_1 > \otimes | j_2, m_2 = -j_2 > \otimes ... | j_N, m_N = -j_N >, $$

(3.1)

where $|j_k, m_k > (k = 1, 2, ..., N)$ are standard angular momentum states. The choice of ground state is required by the stable measurement D. Like the authors in refs.[5-9], we also suppose that only the second branch wave $|\psi_2>$ interacts with D. Starting with the initial state

$$ |\psi(0)> = (C_1 |\psi_1> + C_2 |\psi_2>) \otimes |0> $$

(3.2)

where

$$ |C_1|^2 + |C_1|^2 = 1, $$

the evolution operator (2.18) defines the evolution state at an instant t in the ‘interaction’ picture with the ‘interaction’ $H_I + H_D$

$$ |\psi(t)> = C_1 |\psi_1> \otimes |0> + C_2 |\psi_2> \otimes U_e(t) |0>, $$

(3.3)

Then, we get the corresponding density matrix

$$ \rho(t) = |\psi(t)> <\psi(t)| = |C_1|^2 |\psi_1(t)> <\psi_1(t)| \otimes |0> <0 | \\
|C_2|^2 |\psi_2(t)> <\psi_2(t)| \otimes U_e(t) |0> <0 | U_e(t)^+ $$

8
\[+C_1 C_2^* \mid \psi_1(t) > < \psi_2(t) \mid \otimes U_e(t) \mid 0 > 0 \mid \]
\[+C_2 C_1^* \mid \psi_2(t) > < \psi_1(t) \mid \otimes \mid 0 > 0 \mid U_e(t)^+. \]
(3.5)

In the problem of WPC, because we are only interested in the behaviors of the system
and the effect of the detector D on it, we only need the reduced density matrix for
\[\rho(t) = Tr_D \rho(t) = |C_1|^2 \mid \psi_1(t) > < \psi_1(t) \mid + |C_2|^2 \mid \psi_2(t) > < \psi_2(t) \mid + \]
\[(C_1 C_2^* \mid \psi_1(t) > < \psi_2(t) \mid + C_2 C_1^* \mid \psi_2(t) > < \psi_1(t) \mid < 0 \mid U_e(t) \mid 0 >, \]
where \(Tr_D \) represents the trace to the variables of the detector.

Obviously, under a certain conditions to be determined, if the vacuum-vacuum transition
amplitude \(< 0 \mid U_e(t) \mid 0 > \) vanishes for the detector D, the coherent terms in
eq(14) vanish and thus the quantum dynamics automatically leads to the wave
function reduction,

\[\rho(t) \rightarrow \hat{\rho}(t) = |C_1|^2 \mid \psi_1(t) > < \psi_1(t) \mid + |C_2|^2 \mid \psi_2(t) > < \psi_2(t) \mid . \]
(3.6)

Namely, the WPC occurs as quantum dynamical process under these conditions!

Now, let us prove that these conditions are just the macroscopic limit and the
classical limit, which respectively correspond to the cases with very large particle
number \(N \) and very large quantum number \(j_n \). To this end, we evolve the norm
of vacuum-vacuum transition amplitude \(< 0 \mid U_e(t) \mid 0 > \). Using the the explicit
expression of d-function

\[d_{m,m'}^j(\alpha) = < j, m | e^{-ij\omega(n)/\hbar} | j, m' >, \]

we have

\[| < 0 \mid U_e(t) \mid 0 > | = \prod_{n=1}^{N} \sum_{m=-j_n}^{j_n} d_{-j_n,m_n}^j(\alpha) d_{j_n,m_n,-j_n,-m}^j(-\alpha)e^{-im_n\Omega t} | \]

\[= \prod_{n=1}^{N} \sum_{m=-j_n}^{j_n} \frac{(2j_n)!}{(j_n + m_n)!(j_n - m_n)!} (\cos^2 \frac{\alpha}{2})^{j_n-m_n} (\sin^2 \frac{\alpha}{2})^{j_n+m_n} e^{-im_n\Omega t} | \]

\[= \prod_{n=1}^{N} [\cos^2 \frac{\alpha}{2} e^{-i\Omega t} + \sin^2 \frac{\alpha}{2}]^{2j_n}, \]

that is,

\[| < 0 \mid U_e(t) \mid 0 > | = \prod_{n=1}^{N} (1 - \sin^2 \frac{\Omega t}{2} \sin^2 \alpha)^{j_n}, \]
(3.7)
The above formula is a main result of this paper, which directly manifests the WPC in the classical and macroscopic limits. Let us now go into some details for this conclusion. Notice that in a nontrivial case, \(\Omega, \alpha \neq 0 \) and so

\[
|1 - \sin^2 \frac{\Omega t}{2} \sin^2 \alpha|
\]

is usually a positive number less than 1. Thus, in the classical limit with \(j_n \to \infty \) mentioned before,

\[
|<0|U_e(t)|0>| \to 0, \text{ as } j_n \to \infty.
\]

This means \(<0|U_e(t)|0>| \to 0, \text{ as } j_n \to \infty\), that is to say, the WPC occurs as a quantum dynamical process in classical limit! This is just what we expected. Then, we reach a concise statement that if the detector behaves classically, but need not to behave macroscopically, the WPC can be dynamically realized in the measurement. The classical detector was required as a purely classical object before, but here it is proved to be a classical limit of a quantum object and the quantum mechanics can work well on it for quantum measurement. We should also stress on that the macroscopic limit with very large \(N \) is not necessary for the WPC. So long as the detector is in classical limit, the WPC still appears as a dynamical evolution even for small \(N \).

Now, we turn to discuss the macroscopic limit behaviours of the problem in details. In eq.(3.3), let us defined the positive number \(\Delta_n(t) \) by

\[
e^{-\Delta_n(t)} = [1 - \sin^2 \alpha \sin^2 \frac{\Omega t}{2}]^{j_n} \leq 1,
\]

Then,

\[
|<0|U_e(t)|0>| = \exp[-\sum_{n=1}^{N} \Delta_n(t)],
\]

Usually, \(\Delta_n(t) \) is a non-zero and positive and thus the series \(\sum_{n=1}^{\infty} \Delta_n(t) \) diverges to infinity, that is to say, \(<0|U_e(t)|0>| \) as well as its norm approach zero as \(N \to \infty \). This just shows that the WPC can be realized as a quantum dynamical process for the generalized CH model in the macroscopic limit.

4. Adiabatic Approximation for Non-solvable Case

As most of the previous studies about the dynamical realization of the WPC for quantum measurement, the above discussions in this paper only concern an ex-
tremely idealized case that the model is exactly-solvable. So it seems that the exactly-solvability is necessary for this problem. However, it is not true really. We will observe that the WPC can also happen in the non-solvable case of the above generalized CH model. In such case, the parameter $R(t)$ is not harmonic and so some approximation methods are needed to probe the evolution of the universe =S+D. As an example of non-solvable model, the adiabatic case that the parameter $R(x + ct - a_n)$ in $H_e(t)$ depends on time ‘slightly’ will be used to illustrate the above-mentioned observation. Because the quasi-energy state of $H_e(t)$ can hardly be excited by the variation of $H_e(t)$ as t in this case, the so-called high-order adiabatic approximation (HOAA) method in connection with Berry’s geometric phase \[14,15\] can effectively be employed to this end. This method was recently developed by this author [11-13] and now reformulated in the evolution operator form in the appendix. This reformulation of the HOAA method is quite convenience for the application in this paper.

Defining the functions

$$f_n(t) = f(x - a_n + ct)$$

for $f = R, \theta, \phi$, etc., we first factorize the effective evolution operator $U_e(t)$ into

$$U_e(t) = S(t)U'(t) = \prod_{n=1}^{N} e^{-iJ_z(n)\phi_n(t)/\hbar} e^{-iJ_y(n)\theta_n(t)/\hbar} U'(t)$$

according to the HOAA method. Then, in the equivalent Hamiltonian governing $U'(t)$

$$H'(t) = H_0(t) + V(t):$$

$$H_0 = \sum_{n} [R_n(t) - \cos\theta_n(t) \frac{\partial}{\partial t} \phi_n(t)] J_z(n),$$

$$V(t) = \sum_{n} [-\frac{\partial}{\partial t} \theta_n(t) J_y(n) + \sin\theta_n(t) \frac{\partial}{\partial t} \phi_n(t) J_z(n)]$$

(4.2)

(4.3)

can be regarded as perturbation. The standard perturbation theory determines the first-approximate evolution operator

$$U'_0(t) = \prod_{n=1}^{N} e^{-i \int_{0}^{t} R_n(t')dt'/\hbar} e^{-i \int_{0}^{t} \cos\theta_n(t') \frac{\partial}{\partial t'} \phi_n(t') dt'} J_z(n)$$

$$= \prod_{n=1}^{N} e^{-i \int_{0}^{t} R_n(t')dt'} e^{i \gamma_n(t) J_z(n)},$$

which describes the geometric feature of the evolution in terms of the Berry’s phase

$$\gamma_n(t) = - \int_{0}^{t} \frac{\partial}{\partial t'} \phi_n(t') \cos\theta_n(t') dt',$$

(4.4)

(4.5)
When the parameter R is subject to a cyclic evolution that $R(0)=R(T)$, the Berry’s phase

$$\gamma_n(T) = \int_0^{2\pi} [1 - \cos \theta_n] d\phi_n,$$

(4.6)
is just a solid angle spanned by the closed curve traced by the parameter R. To consider whether the WPC happen or not for the adiabatic evolution, we explicitly calculate

$$| < 0|U_e(t)|0 > | = \prod_{n=1}^{N} | < 0|e^{-i\hat{J}_y(n)\theta_n(t)/\hbar}|0 > |$$

$$= \prod_{n=1}^{N} |d^{j_n}_{-j_n-j_n}(\theta_n(t))|^{2j_n} = \prod_{n=1}^{N} |\cos(\theta_n(t)/2)|^{2j_n}.$$

(4.7)

By the proof similar to that in last section, we see that $| < 0|U_e(t)|0 > | \to 0$ as $N \to \infty$. Namely, even in a non-solvable case, the generalized CH model still realizes the WPC quantum dynamically for the adiabatic evolution.

Furthermore, let us prove that it does so for the non-adiabatic evolution. In fact, if the parameter R does not changes slowly enough, the adiabatic condition

$$|\hbar \frac{\partial}{\partial t} \phi_n(t)/R_n(t)|, |\hbar \frac{\partial}{\partial t} \theta_n(t)/R_n(t)| \ll 1,$$

(4.8)

we at least consider the second order approximation

$$U'_e(t) = U'_0(t)[1 + U'_1(t)] = U'_0(t) \prod_{n=1}^{N} [1 + U''_n(t)]$$

$$= \prod_{n=1}^{N} e^{-i \int_0^t R_n(t') \hat{J}_x(n) dt'/\hbar} e^{-i \int_0^t \cos \theta_n(t') \frac{\partial}{\partial t'} \phi_n(t') dt' \hat{J}_z(n)} \{1 + \frac{1}{i\hbar} \int_0^t \! U'_0(t')[-\frac{\partial}{\partial t'} \theta_n(t') \hat{J}_y(n) + \sin \theta_n(t') \frac{\partial}{\partial t'} \phi_n(t') \hat{J}_x(n)] U'_0(t) dt' \}.$$

(4.9)

Because of the cut-off in the Dyson series for the approximate evolution operator, the unitarity of evolution operator is broken and so its leaded evolution state is not normalized to unity. Thus, when we calculate the vacuum-vacuum transition amplitude $< 0|U'_e(t)|0 >$, we should first renomalized it. Let us by $\tilde{U}'_e(t)$ denote the renormalized evolution operator defined by

$$\tilde{U}'_e(t)|\phi >= \frac{U'_e(t)|\phi >}{< \phi|U''_e(t)|U'_e(t)|\phi >}.$$

(4.10)

for any state vector $|\phi >$. This renormalization results in reasonable vacuum-vacuum transition amplitude satisfying

$$| < 0|\tilde{U}'_e(t)|0 > | = \left| \frac{< 0|U'_e(t)|\phi >}{< \phi|U''_e(t)|U'_e(t)|\phi >}\right|.$$
\[
= \prod_n^N \frac{< j_n, -j_n|U_1^m(t)|j_n, -j_n >}{< j_n, -j_n|U_1^m(t)iU_1^m(t)|j_n, -j_n >}.
\]

(4.11)

As the formula given by eq.(4.11), the above equation also explicitly defines the dynamical realization of the WPC in the classical limit with \(N \to \infty \). Here, we have taken it into account that

\[
|< j_n, -j_n|U_1^m(t)|j_n, -j_n >| \leq 1, \text{ for } n = 1, 2, \ldots N.
\]

(4.12)

Based on the above discussions on the first- and second -order approximations, we guess that the WPC can be realized in arbitrary order approximation. Trying to prove this guess, we find some essential properties related to the WPC closely in next section.

5. Comments on Essence of Dynamical realizability

Including the above discussion in this paper, the previous investigatons on the dynamical realization of the WPC in terms of quantum dynamical models only proceeded with the concrete form of the model Hamiltonians, especially of the interactions between S and D. It seems that the dynamical realizablity of WPC depends on the choice of concrete forms of interaction . However, motivated by the above discussions, we will shows a more universal fact that it is the factorizability of the evolution, other than its exactly- solvability, that leads to the WPC in quantum measurement. Now, let us describe what is the factorization of the evolution. Let \(x \) and \(p \) be the coordinate and momentum operator of the measured system respectively; \(x_n(n=1,2,\ldots,N) \) be the variables for the measuring instrument. Usually, the evolution operator \(U(t,p,x,x_i) \) for the universe =S+D depend on \(x, p \) and \(x_n(n=1,2,\ldots,N) \). If this operator can expressed as the following factorizable form

\[
U(p,x,x_i) = U_s(p,x,t) \prod_{n=1}^N U^{[n]}(x,x_n,t),
\]

(5 – 1)

then we say that the evolution characterized by \(U(t,p,x,x_i) \) is factorizable. Here, \(U_s(p,x,t) \) is the evolution operator of D in absence of the interaction with the detector D and the unitary operator \(U^{[n]}(x,x_n,t) \) only depend on \(x_n \) and \(x \) for fixed \(n \). In this case, the reduced density matrix of S for the above mentioned double- slit interference experiment in the ‘interaction’ picture is obtained as

\[
\rho(t)_S = Tr_D \rho(t) = |C_1|^2 | \psi_1(t) > < \psi_1(t) | + |C_2|^2 | \psi_2(t) > < \psi_2(t) | +
\]
\[[C_1 C_2^* | \psi_1(t) >< \psi_2(t) | + C_2 C_1^* | \psi_2(t) >< \psi_1(t)]) < 0 | U_e(t) | 0 >. \] (5-2)

where
\[| 0 > = | 0_1 > \otimes | 0_2 > \otimes \ldots | 0_N >, \]
\[| 0_k > \] is the ground state of each single particles in D.

Because
\[| < 0_k | U^{[k]}(t) | 0_k > | = \left[1 - \sum_{n \neq 0} | < n | U^{[k]} | 0_k > |^2 \right]^{1/2} \leq 1, \] (5-3)

for the possitive function
\[\Delta_k(t) = -ln(| < 0_k | U^{[k]} | 0_k > |), \]
the series \(\sum_{k=1}^{\infty} \Delta_k(t) \) diverges to infinity. That is to say, \(< 0|U_e(t)|0 > \) as well as its norm
\[| < 0|U_e(t)|0 > | = \prod_{k=1}^{N} | < 0_k | U^{[k]} | 0_k > | = exp\left[- \sum_{k=1}^{N} \Delta_k(t) \right], \] (5-4)
approach zero as \(N \to \infty. \) Then, the WPC appears in the macroscopic limit. If
we can incorporate a quantum number \(J_n \) into \(U^{[n]}(x, x_n, t) \) such that \(\Delta_k(t) \to \infty \) as \(N \to \infty. \) When \(J_n \) enjoys the classical limit at \(J_n = \infty, \) like the spins \(j_n \) in this paper, the WPC also occurs in this limit as a quantum dynamical process. Therefore, we
conclude that the essence of the dynamical realizability of WPC is the factorization
of the evolution operator for the appreciated model of quantum measurement.

Naturally, the succeeded question is what is the general form of the model Hamiltonian which can realize this factorizable evolution. The answer is that the Hamiltonian should be decomposable in certain sense. The following Hamiltonian sufficiently enjoys the answer
\[H = H_0 + H' = H_0 + H_I + H_D : \]
\[H_I = \sum_{k=1}^{N} V_k(x, x_k), H_D = \sum_{k=1}^{N} h_k(x_k), \] (5-5)
Here, the measured system S is sill represented by an ultrarelativisic particle with the
free Hamiltonian \(H_0 = c \hat{P}, \) but the detector D is made of N particles with quite
general single-particle Hamiltonian \(h_k(x_k), (k = 1, 2, \ldots, N) \) which is Hermitian. S is
assumed to be independently subjected to the interaction \(V_k(x, x_k) \) of each particle k.
Here, x and \(x_k \) are the coordinates of S and the single particle k in D respectively and
the k'th interaction potential \(V_k(x, x_k) \) only depeas on x and \(x_k \) and \(h_k(x_k) \) on the
single particle variable x_k. To prove the above statement, we take the transformation (2.8). Then the reduced evaluation operator $U_e(t)$ obeys an effective Schrödinger equation with the effective Hamiltonian

$$H_e(t) = \sum_{k=1}^{N} h_{ek}(t) = \sum_{k=1}^{N} [h_k(x_k) + V_k(x + ct, x_k)], \quad (5 - 6)$$

depending on time. Since $H_e(t)$ is a direct sum of the time-dependent Hamiltonians $h_{ek}(t)$ (k=1,2,...,N) parameterized by x, the x-dependent evolution operator, as the formal solution to the effective Schrödinger equation,

$$U_e(t) = \prod_{k=1}^{N} \otimes U^{[k]}(t) = U^{[1]}(t) \otimes U^{[2]}(t) \otimes \ldots \otimes U^{[N]}(t), \quad (5 - 7)$$

is factorizable, that is to say, $U_e(t)$ is a direct product of the single-particle evaluation operators

$$U^{[k]}(t) = \mathbb{3} \exp[(1/i\hbar \int_{0}^{t} h_{ek}(t)dt)], \quad (5 - 8)$$

where $\mathbb{3}$ denotes the time-order operation. As proved in as follows, it is just the above factorizable property of the reduced evolution operator that results in the quantum dynamical realization of the WPC. Notice that some results of this section was announced by this author more recently [16].

Before concluding this paper, we shall give some remarks on the results and method of this paper. We first point out that this paper emphasizes the unified description of classical limit and macroscopic limit for quantum measurement. Because the macroscopic phenomena in quantum mechanics can not be identified with those classical ones completely (e.g, the magnetic flux quantization is a macroscopic quantum phenomenon, but it is not definitely classical), it is quite necessary to distinguish between these two cases. We should also remark that, in practical problems, there must exist interactions among the particles constituting the detector D, but in the present discussions there is not interactions among the particles in the detector. We understand it as an ideal case. How to realize the quantum measurement both for the WPC in the interaction case is an open question we must face. It is expected, at least for some special case, that the certain canonical (or unitary) transformation possibly enable these particles to become the quasi-free ones. This is just similar to the the system of harmonic oscillators with quadratic coupling. In this case, we can imagine that the detector is made of free quasi-particles that do not interact with each other.
Appendix:

Reformulation of the High-Order adiabatic Approximation Method

In order to use it in this paper conveniently, we now reformulate the high-order adiabatic approximation (HOAA) method in refs.[11-13] in a general form, which can work well on the evolution operator for both the Hermitian and non-Hermitian Schrodinger time evolutions.

Let the Hamiltonian $H_e(t)$ of the quantum system depend on time t through a set of the slowly-changing parameters $\mathbf{R}(t) = (R_1(t), R_2(t), ..., R_K(t))$. We also assume the quasi-energy levels $E_k(t)$ ($k=1,2,...,K$) of the time-dependent Hamiltonian $H(t) = H[R(t)]$ for a frozen time t are not degenerate. Diagonalize $H(t)$ by a similarity transformation $S(t) = S[R(t)]$ in the following way

$$S(t)H_e(t)S(t)^{-1} = H_d(t) = \begin{bmatrix} E_1(t) & 0 & \cdots & 0 \\ 0 & E_2(t) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & E_K(t) \end{bmatrix}. \quad (A-1)$$

The corresponding quasi-energy state to $E_k(t)$ ($k=1,2,...,k$) is denoted by $|k(t)>$.

If we determine a solution of the Schrodinger equation of evolution operator $U_e(t)$ governed by $H_e(t)$ as the following form

$$U_e(t) = S(t)U'(t), \quad (A-2)$$

then $U'(t)$ obeys the Schrodinger-type equation

$$i\hbar \frac{\partial}{\partial t} U'(t) = H'(t)U'(t), \quad (A-3)$$

where the equivalent Hamiltonian

$$H'(t) = H_d(t) - i\hbar S(t)^{-1} \frac{\partial}{\partial t} S(t) \quad (A-4)$$

can be decomposed into the diagonal part

$$H_0(t) = H_d(t) + \text{diagonal part of } [-i\hbar S(t)^{-1} \frac{\partial}{\partial t} S(t)] \quad (A-5)$$

and the off-diagonal part

$$V(t) = \text{off-diagonal part of } [-i\hbar S(t)^{-1} \frac{\partial}{\partial t} S(t)]. \quad (A-6)$$
Physically, since $V(t)$ completely vanishes when $H(t)$ is independent of time, we deduce that $V(t)$ is a perturbation in the case that $H(t)$ depends time quite 'slightly'. Later on, we will give the analytic condition that $V(t)$ can regarded as a perturbation. Then, the adiabatic Dyson series solution of $U'(t)$

\[U'(t) = U'_0(t)[1 + \sum_{k=1}^{\infty} U'_k(t)] : \]

\[U'_0(t) = e^{\frac{i}{\hbar} \int_0^t H_0(s) ds} \quad (A-7) \]

\[U'_k(t) = (\frac{-i}{\hbar})^k \int_0^t \int_0^{s_1} \int_0^{s_2} \ldots \int_0^{s_{k-1}} V(s_1)V(s_2)\ldots V(s_{k-1})V(s_k) ds_1ds_2\ldots ds_{k-1}ds_k \]

immediately follows from the standard time-dependent perturbation theory. Here,

\[\tilde{V}(t) = e^{\frac{i}{\hbar} \int_0^t H(s) ds} V(t)e^{-\frac{i}{\hbar} \int_0^t H(s) ds} \quad (A-8). \]

The first order approximate solution $U'_0(t)$ can be decomposed into the dynamical factor

\[
\begin{pmatrix}
e^{-i \int_0^t dt' E_1(t')/\hbar} & 0 & \ldots & 0 \\
0 & e^{-i \int_0^t dt' E_2(t')/\hbar} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & e^{-i \int_0^t dt' E_K(t')/\hbar}
\end{pmatrix} \quad (A-9)
\]

and the geometric factor

\[
\begin{pmatrix}
e^{i \int_0^t dt' A_1(t')} & 0 & \ldots & 0 \\
0 & e^{i \int_0^t dt' A_2(t')} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & e^{i \int_0^t dt' A_K(t')}
\end{pmatrix} \quad (A-10)
\]

where

\[A_n(t) = i < n |S(t)^{-1} \frac{\partial}{\partial t} S(t)|n > \quad (A-11) \]

and each diagonal element in the above matrix is just the Berry’s phase factor

\[\gamma_n(t) = \int_0^t A_n(s) ds = i < n |S(s)^{-1} \frac{\partial}{\partial s} S(s) ds|n >. \quad (A-12) \]

In terms of the concept of differential manifold, this phase can be rewritten as a curve integral

\[\gamma_n(t) = \gamma_n[R(t)] = \int_{R(t)} A_\mu[R] dR^\mu \quad (A-13) \]
of the one-form $A_\mu[R]dR^\mu$:

$$A_\mu[R] = i < n|S[R]^{-1} \frac{\partial}{\partial R^\mu}S[R]|n >$$

(A - 14)

on the parameter manifold

$$M = \{ R = (R_1, R_2, ..., R_K) | R_i \in real \ number \ field, i = 1, 2, ..., K \}.$$

In this sense, the Berry’s phase factor $e^{i\gamma_n[R(T)]}$ can be understood as an element of the holonomy group for a closed parameter curve $C : \{ R(t) | R(0) = R(T) \}$.

Because the transformation $S[R]$ diagonalizing $H_e(t)$ is not unique, i.e., $S'[R] = S[R]X[R]$ also diagonalizes $H_e(t)$ if matrix $X[R]$ commutes with $H_e(t)$. This means that state vectors $|n[R]\rangle = (S[R]X[R])^{-1}|n\rangle$ as well as $|n[R]\rangle = (S[R])^{-1}|n\rangle$ are the instantaneous eigenfunctions of $H_e[R(t)]$. The above indeterminacy of $S[R]$ results in the gauge transformation

$$A_\mu[R] \rightarrow A'_\mu[R] = A_\mu[R] + i < n|X[R]^{-1} \frac{\partial}{\partial R^\mu}X[R]|n >.$$

(A - 15)

From the second order approximation

$$U(t)' \simeq U_0'(1)[1 + U(t)'_1] = e^{\int_0^t H_c(s)ds} [1 - \frac{i}{\hbar} \int_0^t \dot{V}(s)ds],$$

(A - 16)

we observe that the adiabatic condition, under which the adiabatic approximation solution $U'_0(t)$ work well, is

$$|\hbar < n|V(t)|m\rangle | \ll 1.$$

(A - 17)

Acknowledgements

The author wishes to express his sincere thanks to Prof. C.N. Yang for drawing his attentions to new progress in the quantum measurement. He also thank D.H. Feng, L.H. Yu and W.M. Zhang for many useful discussions. He is supported by Cha Chi Ming fellowship through the CEEC in State University of New York at Stony Brook and in part by the NFS of China through Northeast Normal University.
References
1. J.von Neumann, *Mathematische Grundlage de Quantummechanik*, Springer, Berlin, 1933.
2. V.B.Braginsky,F.Y.Khalili, *Quantum Measurement*, Cambridge, 1992.
3. R.Omnes, Rev.Mod.Phys.64(1992),339.
4. M.Gell-mann,J.B.Hartle, *Classical Equation of Quantum system*, to be published in Phys.Rev.D.
5. K.Hepp, Helv.Phys.Acta.45(1972),237.
6. J.S.Bell, Helv.Phys.Acta.48(1975),93.
7. T.Kobayashi, Found.Phys.Lett.5(1992),265.
8. M.Namik,S.Pascazio, Phys.Rev.A44.(1991),39.
9. H.Nakazato,S.Pascazio, Phys.Rev.Lett.70(1993) 1.
10. M.Cini, Nuovo Cimento,73B(1983),27.
11. C.P.Sun, J.Phys.A,21(1988)1595.
12. C.P.Sun , Phys.Rev.D.38(1988),2908.
13. C.P.Sun, Phys.Rev.D,41(1990),1318.
14. M.V.Berry, Proc.R.Soc.Lond.A,392(1984),45.
15. A.Shapere,F.Wilczek, *Geometrical Phases in Physics*, World Scientific , Singapore,1990.
16. C.P.Sun, *Dynamical Realizability for Quantum Measurement and Factorization of Evolution Operator*, preprint:ITP.SB-93-13,1993
17. W.M.Zhang,D.H.Feng,R.Gilmore, Rev.Mod.Phys.62(1990) ,867