Supplementary Information.

Unequivocal Experimental Evidence of the Relationship between Emission Energies and Aurophilic Interactions.

Alexander J. Blake¹, Rocío Donamaría¹,², Vito Lippolis³, Jose M. López-de-Luzuriaga²*, Miguel Monge², M. Elena Olmos², Alex Seal¹, Julia A. Weinstein⁴.

Correspondence to: josemaria.lopez@unirioja.es

This PDF file includes:

Materials and Methods
Supplementary Text
Figs. S1 to S19
Tables S1 to S8
Contents.

1. Crystallography study.

Table S1. Unit cell parameters for phases α-E and β-E obtained from the variable temperature experiments and from the high-pressure experiments.

Fig. S1. Calculated powder pattern for α-E phase.

Fig. S2. Calculated powder pattern for β-E phase.

1.1. Variable temperature experiment.

Table S2. Unit cell parameters taken from variable temperature experiment with a ramp rate of 360 K/h for E-[Au(C6Cl5)2Ag([9]aneS3)]2 (α-E and β-E)

1.2. Effects of pressure on the unit cell parameters.

Fig. S3. Molecular overlay of α-E-[Au(C6Cl5)2Ag([9]aneS3)]2 and β-E-[Au(C6Cl5)2Ag([9]aneS3)]2.

Fig. S4. Calculated powder pattern for α-E-[Au(C6Cl5)2Ag([9]aneS3)]2 at 6.24 kbar.

Fig. S5. Pressure dependence of the unit-cell a, b and c dimensions for E-[Au(C6Cl5)2Ag([9]aneS3)]2.

Fig. S6. Pressure dependence of the unit-cell α, β and γ dimension for E-[Au(C6Cl5)2Ag([9]aneS3)]2.

Fig. S7. Pressure dependence of the unit-cell volume for E-[Au(C6Cl5)2Ag([9]aneS3)]2.

Table S3. Unit cell parameters for the E-[Au(C6Cl5)2Ag([9]aneS3)]2 between ambient pressure and 149.4 kbar.

1.3. Effects of pressure on the molecular geometry.

Table S4. Selected experimental structural parameters for E-[Au(C6Cl5)2Ag([9]aneS3)]2 between ambient pressure and 149.4 kbar.

Table S5. Selected experimental structural parameters for E-[Au(C6Cl5)2Ag([9]aneS3)]2 between ambient pressure and 149.4 kbar.

Table S6. Torsion angles from the macrocyclic ligand component defined by the donor atoms S1, S2 and S3.

Table S7. Torsion angles from the macrocyclic ligand component defined by the donor atoms S1A, S2A and S3A.

Fig. S8. Molecular disorder of the α-E-[Au(C6Cl5)2Ag([9]aneS3)]2.

Fig. S9. Pressure dependence of the Ag···Ag interaction angle for the E-[Au(C6Cl5)2Ag([9]aneS3)]2.
Fig. S10. Pressure dependence of the Ag···Au···Au interaction angle for the E-$[Au(C_6Cl_5)_2Ag([9]aneS_3)]_2$.

Fig. S11. Pressure dependence of the Ag···Cl interaction distance for the E-$[Au(C_6Cl_5)_2Ag([9]aneS_3)]_2$.

Fig. S12. Pressure dependence of the Ag···C$_{ipso}$ interaction distances for the E-$[Au(C_6Cl_5)_2Ag([9]aneS_3)]_2$.

Fig. S13. Pressure dependence of the C···Au···C interaction angle for the E-$[Au(C_6Cl_5)_2Ag([9]aneS_3)]_2$.

Fig. S14. Pressure dependence of the centroid-centroid distance in the π···π interaction for the E-$[Au(C_6Cl_5)_2Ag([9]aneS_3)]_2$.

Table S8. Crystallographic data for E-$[Au(C_6Cl_5)_2Ag([9]aneS_3)]_2$ between ambient pressure and 149.4 kbar.

2. Photophysical properties at different pressures and ambient temperature.

Fig. S15. Normalised emission spectra of E-$[Au(C_6Cl_5)_2Ag([9]aneS_3)]_2$ single crystal at pressures between ambient and 103.5 kbar of pressure.

Fig. S16. Optimized model E-S_0 in the ground state (left) and model E-T_1 in the triplet excited state (right), and the corresponding MO diagram for each model.

2.1. Mathematical treatment of the exponential functions found experimentally.

Fig. S17. Computed potential energy of the ground state S_0 using pseudo-relativistic pseudopotentials for gold vs Au···Au distance.

Fig. S18. Computed potential energy of the ground state S_0 using non-relativistic pseudopotentials for gold vs Au···Au distance.

Fig. S19. S_0 energy calculated with non-relativistic pseudopotentials - S_0 energy calculated with pseudo-relativistic pseudopotentials for Au···Au distances in the range 2.44–3.40 Å.
1. Crystallographic study.

Three different crystals of the E-isomer of \([Au(C_6Cl_5)_2Ag([9]aneS_3)]_2\), of similar shape and size (see Methods section), were used in the acquisition of high-pressure diffraction data. The crystals continued to yield good-quality data well beyond the expected hydrostatic limit of 100 kbar for the pressure-transmitting medium used (4:1 MeOH/EtOH). The experiment was only terminated upon the clear onset of crystal degradation at a pressure of 149.4 kbar.

1.1. Variable temperature experiment.

The effects of temperature on the E-isomer of stoichiometry \([Au(C_6Cl_5)_2Ag([9]aneS_3)]_2\) were investigated by means of variable-temperature experiment. We determined the unit cell parameters at different temperatures with a ramp rate of 360 K/h between fixed temperatures (see Experimental Section and Table S1). When the temperature of the crystal was decreased from 298 to 130 K using a ramp rate of 360 K/h, a reversible phase transition from \(\beta\)-E to the original phase \(\alpha\)-E occurred between 250 and 200 K.

\[\text{Table S1. Unit cell parameters for phases } \alpha\text{-E and } \beta\text{-E obtained from the variable temperature experiments (first and second rows) and from the high-pressure experiments (third and fourth rows).}\]

Phase	Pressure (kbar)	T (K)	Space Group	\(a(\text{Å})\)	\(b(\text{Å})\)	\(c(\text{Å})\)	\(\beta(\degree)\)	\(V(\text{Å}^3)\)
\(\alpha\text{-E}\)	0	100	C\(2/c\)	23.4283(5)	8.78750(10)	28.331(6)	111.604(2)	5423.34(19)
\(\beta\text{-E}\)	0	298	P-1	8.8149(2)	12.6499(3)	26.538(5)	84.040(6)	2774.1(5)
\(\beta\text{-E}\)	3.6	298	P-1	8.7896(3)	12.6265(4)	26.530(5)	83.985(7)	2759.4(5)
\(\alpha\text{-E}\)	6.2	298	C\(2/c\)	23.3544(15)	8.54750(13)	28.023(7)	110.795(16)	5229.6(14)
Fig. S1. Calculated powder pattern for α-E phase.

Fig. S2. Calculated powder pattern for β-E phase.
Table S2. Unit cell parameters taken from variable temperature experiment with a ramp rate of 360 K/h for E-[Au(C₆Cl₅)₂Ag([9]aneS₃)]₂ (α-E and β-E).

T (K)	Space Group	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	V (Å³)
298	P-1	8.832(3)	12.674(5)	26.592(8)	83.11(3)	84.08(3)	71.16(3)	2790(2)
250	P-1	8.819(3)	12.619(5)	26.574(9)	82.98(3)	84.25(3)	71.24(3)	2773(2)
200	C2/c	23.630(11)	8.772(4)	28.383(11)	89.93(3)	111.49(4)	89.88(3)	5474(4)
150	C2/c	23.503(8)	8.781(3)	28.372(9)	89.92(3)	111.53(3)	89.95(3)	5446(3)
130	C2/c	23.492(14)	8.751(5)	28.345(16)	89.91(4)	111.54(5)	89.78(5)	5420(5)

1.2. Effects of pressure on the unit cell parameters.

Increasing pressure from ambient to 3.6 kbar results in small decreases, of 0.3, 0.2 and 0.004%, in the a, b and c unit cell dimensions, respectively. Subsequently, between 3.6 and 6.2 kbar, an exchange is observed in the a and b unit cell dimensions, accompanied by a change in the c unit cell dimension and a volume increase, indicative of a phase transition where the space group changes from P-1 to C2/c (see Table S1). Between 6.2 and 149.4 kbar, the unit cell dimensions a, b and c decrease by 14.4, 10.4 and 8.7%, respectively, while the β angle narrows from 110.795(16) to 108.21(18)° and the unit cell volume contracts by 28.9% (see Figs. S5–S6 and Table S3). This degree of volume contraction is comparable to those seen in previous high-pressure studies of gold(I) complexes.

Fig. S3. Molecular overlay of α-E-[Au(C₆Cl₅)₂Ag([9]aneS₃)]₂ (red) and β-E-[Au(C₆Cl₅)₂Ag([9]aneS₃)]₂ (black).
Fig. S4. Calculated powder pattern for α-E-[Au(C$_6$Cl$_5$)$_2$Ag([9]aneS$_3$)]$_2$ at 6.24 kbar.

Fig. S5. Pressure dependence of the unit-cell a, b and c dimensions for E-[Au(C$_6$Cl$_5$)$_2$Ag([9]aneS$_3$)]$_2$. Note the crossover at around 5 kbar, which was confirmed by refinement of the structures.
Fig. S6. Pressure dependence of the unit-cell α, β and γ dimension for E-[Au(C$_6$Cl$_3$)$_2$Ag([9]aneS$_3$)]. Note the crossover at around 5 kbar, which was confirmed by refinement of the structures.

Fig. S7. Pressure dependence of the unit-cell volume for E-[Au(C$_6$Cl$_3$)$_2$Ag([9]aneS$_3$)]. Note the crossover at around 5 kbar, which was confirmed by refinement of the structures.
Table S3. Unit cell parameters for the E-[Au(C₆Cl₅)₂Ag([9]aneS₃)]₂ between ambient pressure and 149.4 kbar.

Pressure (kbar)	Pressure error (kbar)	Space Group	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	V (Å³)
Compression									
0	0.5	P-1	8.8149 (2)	12.6499 (3)	26.538 (5)	83.184 (5)	84.040 (6)	71.160 (2)	2774.1 (5)
0	0.5	P-1	8.8124 (3)	12.6570 (4)	26.552 (4)	83.167 (7)	84.070 (7)	71.136 (3)	2776.0 (4)
0	0.5	P-1	8.8160 (3)	12.6485 (3)	26.531 (5)	83.193 (6)	84.021 (6)	71.160 (3)	2773.4 (5)
3.65	2.0	P-1	8.7896 (3)	12.6265 (4)	26.530 (5)	83.148 (7)	83.985 (7)	71.132 (3)	2759.4 (5)
6.24	1.0	C2/c	23.3544 (15)	8.54750 (13)	28.023 (7)	90	110.795 (16)	90	5229.6 (15)
9.03	0.7	C2/c	23.265 (3)	8.4889 (2)	27.817 (13)	90	110.48 (3)	90	5146 (3)
11.9	0.5	C2/c	23.0343 (17)	8.38562 (19)	27.674 (9)	90	110.01 (2)	90	5022.7 (18)
13.5	1.5	C2/c	22.996 (4)	8.3808 (4)	27.565 (19)	90	109.88 (4)	90	4996 (4)
21.3	1.5	C2/c	22.6342 (18)	8.1465 (2)	27.489 (9)	90	109.71 (2)	90	4771.7 (17)
25.3	1.4	C2/c	22.5307(8)	8.1113(2)	27.456 (19)	90	109.717 (7)	90	4723.5(8)
34.3	1.0	C2/c	22.1408 (17)	8.00587 (18)	27.327 (9)	90	109.65 (2)	90	4561.8 (16)
41.2	1.1	C2/c	21.847 (10)	7.9419 (8)	27.48 (5)	90	109.36 (12)	90	4498 (9)
48.7	0.6	C2/c	21.7321 (19)	7.9142 (2)	27.073 (10)	90	109.52 (2)	90	4388.7 (18)
53.7	3.6	C2/c	21.442 (5)	7.8469 (4)	26.97 (3)	90	109.32 (6)	90	4282.5 (5)
58.6	1.2	C2/c	21.222 (3)	7.8628 (3)	26.913 (14)	90	109.29 (3)	90	4279 (2)
66.9	1.1	C2/c	21.220 (3)	7.8301 (4)	26.741 (16)	90	108.99 (4)	90	4201 (3)
74.8	3.2	C2/c	21.089 (3)	7.7928 (3)	26.668 (15)	90	108.98 (3)	90	4144 (3)
100.3	3.1	C2/c	20.617 (5)	7.7051 (6)	26.32 (3)	90	108.30 (7)	90	3970 (5)
129.1	1.9	C2/c	20.323(5)	7.6796(5)	25.76(3)	90	108.22(6)	90	3819(5)
149.4	0.7	C2/c	19.980(15)	7.6558(14)	25.58(8)	90	108.21(18)	90	3717(13)
Decompression									
96.4	0.8	C2/c	20.473(11)	7.7638(8)	26.41(6)	90	108.22(13)	90	3987(9)
24.7	3.2	C2/c	22.549(6)	8.1533(5)	27.46(3)	90	109.78(6)	90	4751(6)
14.3	0.7	C2/c	23.003(5)	8.3280(4)	27.64(2)	90	110.03(5)	90	4975(4)
10	0.7	C2/c	23.212(5)	8.4325(5)	27.77(2)	90	110.12(6)	90	5104(4)
5.25	0.8	P-1	8.6157(16)	12.541(3)	26.548(7)	90.73(2)	99.12(2)	110.059(19)	2653.5(11)
1.3. Effects of pressure on the molecular geometry.

Table S4. Selected experimental structural parameters for E-[Au(C$_6$Cl$_3$)$_2$Ag([9]aneS$_3$)$_2$] between ambient pressure and 149.4 kbar.

Pressure (kbar)	Au···Au (Å)	π-π A (Å)	π-π B (Å)	Disorder π-π A (Å)	Disorder π-π B (Å)	Ag$_{1A}$···Cl$_6$ (Å)	Ag$_{1A}$-Cl$_{26}$ (Å)	Ag$_{1A}$-Au-Au (°)	Ag$_{1A}$-Ag$_{1A}$ (Å)	
Compression										
0	3.3955(9)	3.642	3.606	--	--	3.762(5)	--	140.00(8)	7.990(3)	
0	3.3962(7)	3.635	3.612	--	--	3.405(4)	--	139.60(5)	7.995(2)	
0	3.3938(9)	3.639	3.601	--	--	3.402(6)	--	139.60(8)	7.995(3)	
3.65	3.3767(11)	3.629	3.601	--	--	3.388(7)	--	139.67(10)	7.982(4)	
6.24	3.274(2)	3.535	3.535	--	--	3.394(3)	--	139.57(6)	7.866(3)	
9.03	3.233(3)	3.513	3.513	--	--	3.376(5)	--	140.19(9)	7.841(5)	
11.9	3.173(3)	3.528	3.528	--	--	3.306(10)	--	140.99(9)	7.811(1)	
13.5	3.160(6)	3.440	3.440	--	--	3.312(10)	--	141.31(16)	7.806(9)	
21.3	3.115(4)	--	--	3.265	3.729	2.65(2)	3.121(16)	133.63(18)	148.38(15)	7.22(2)
25.3	3.098(5)	--	--	3.240	3.721	2.61(2)	3.068(18)	132.96(18)	148.68(17)	7.15(3)
34.3	3.0300(15)	--	--	3.118	3.619	2.545(6)	3.115(8)	131.03(6)	149.76(7)	6.866(18)
41.2	2.987(3)	--	--	3.142	3.649	2.485(8)	3.025(12)	129.82(11)	150.04(12)	6.716(6)
48.7	2.962(2)	--	--	3.094	3.624	2.443(6)	3.004(9)	129.08(7)	150.87(8)	6.595(17)
53.7	2.924(3)	--	--	3.009	3.569	2.43(3)	2.98(3)	127.64(15)	151.13(3)	6.436(6)
58.6	2.926(2)	--	--	3.080	3.660	2.355(10)	2.912(8)	127.17(7)	150.61(8)	6.413(8)
66.9	2.908(3)	--	--	2.998	3.589	2.337(8)	2.890(11)	125.73(10)	149.91(12)	6.264(12)
74.8	2.881(3)	--	--	3.025	3.618	2.282(8)	2.832(10)	125.33(10)	150.51(12)	6.202(12)
100.3	2.828(4)	--	--	3.007	3.680	2.21(4)	2.70(3)	122.5(4)	149.3(3)	5.97(6)
129.1	2.827(5)	--	--	2.957	3.630	2.182(15)	2.521(18)	118.0(3)	149.0(3)	5.44(5)
149.4	2.758(11)	--	--	2.548	--	1.983(17)	2.17(2)	111.6(4)	153.1(4)	4.74(4)
Decompression										
96.4	2.847(12)	--	--	2.835	--	2.05(4)	2.59(5)	120.0(6)	148.3(6)	5.79(8)
24.7	3.096(8)	3.390	3.390	--	--	3.23(3)	--	141.7(2)	--	7.66(3)
14.3	3.171(7)	3.445	3.445	--	--	3.310(17)	--	141.44(16)	--	7.805(19)
10	3.217(8)	3.488	3.488	--	--	3.35(3)	--	141.0(2)	--	7.86(2)
5.25	3.321(5)	3.623	3.593	--	--	3.44(3)	--	140.8(4)	--	7.915(15)
Table S5. Selected experimental structural parameters for E-[Au(C₆Cl₅)₂Ag([9]aneS₃)]$_2$ between ambient pressure and 149.4 kbar.

Pressure (kbar)	$Ag_{IA}-Ag_{IA}$ (Å)	$Au_{1}-Ag_{1}$	$Au_{2}-Ag_{2}$	$Au_{1}-Ag_{IA}$	$Ag_{1}-C_{1}$ (Å)	$Ag_{1}-C_{21}$ (Å)	$Ag_{IA}-C_{1}$ (Å)	$Ag_{IA}-C_{21}$ (Å)	$C_{1}-Au_{1}-C_{7}$ (°)	$C_{21}-Au_{2}-C_{7}$ (°)
Compression										
0	--	2.722(3)	2.728(3)	--	2.547(10)	--	--	--	174.0(5)	--
0	--	2.734(2)	2.722(2)	--	2.499(8)	--	--	--	175.5(4)	--
0	--	2.731(3)	2.727(3)	--	2.502813	--	--	--	175.2(6)	--
3.65	--	2.733(4)	2.726(4)	--	2.509(14)	--	--	--	175.2(6)	--
6.24	--	2.7358(18)	--	--	2.505(14)	--	--	--	171.7(4)	--
9.03	--	2.734(3)	--	--	2.478(11)	--	--	--	171.9(5)	--
11.9	--	2.736(5)	--	--	2.424(13)	--	--	--	171.4(6)	--
13.5	--	2.737(5)	--	--	2.462(2)	--	--	--	175.5(11)	--
21.3	8.087(18)	2.767(12)	--	2.729(10)	2.31(2)	2.75(3)	2.135(17)	2.60(3)	166.9(9)	170.0(8)
25.3	8.09(2)	2.773(14)	--	2.733(14)	2.30(3)	2.77(3)	2.10(2)	2.59(3)	166.5(13)	169.3(10)
34.3	8.166(18)	2.755(4)	--	2.762(4)	2.467(5)	2.831(8)	2.172(3)	2.634(9)	166.24(8)	170.71(13)
41.2	8.102(8)	2.756(6)	--	2.769(7)	2.442(6)	2.819(9)	2.064(4)	2.559(11)	165.64(10)	172.80(14)
48.7	8.07(2)	2.746(4)	--	2.754(4)	2.454(5)	2.857(8)	2.065(3)	2.576(9)	165.18(8)	170.92(13)
53.7	8.002(11)	2.753(10)	--	2.734(11)	2.54(3)	2.89(4)	2.03(2)	2.56(4)	164.1(7)	171.6(10)
58.6	7.957(8)	2.761(4)	--	2.715(4)	2.451(8)	2.870(12)	1.93(1)	2.490(16)	163.7(5)	171.9(5)
66.9	7.846(11)	2.763(6)	--	2.675(6)	2.525(7)	2.945(8)	1.879(4)	2.479(10)	162.92(9)	173.49(14)
74.8	7.866(12)	2.761(6)	--	2.689(6)	2.473(7)	2.912(8)	1.860(4)	2.452(10)	163.11(9)	171.38(14)
100.3	7.72(4)	2.796(19)	--	2.65(2)	2.64(4)	2.92(3)	1.72(3)	2.37(4)	156.1(11)	172.9(14)
129.1	7.58(4)	2.725(13)	--	2.568(18)	2.684(11)	2.864(13)	1.647(11)	2.245(18)	158.1(3)	174.4(2)
149.4	7.99(4)	2.662(12)	--	2.77(2)	3.020(13)	3.050(16)	2.091(17)	2.75(3)	164.4(4)	167.5(7)
Decompression										
96.4	7.65(8)	2.82(3)	--	2.61(4)	2.56(6)	3.13(7)	1.71(5)	2.50(7)	161.7(15)	171(3)
24.7	--	2.712(15)	--	--	2.47(4)	--	--	--	172.0(18)	--
14.3	--	2.735(10)	--	--	2.53(4)	--	--	--	172.7(14)	--
10	--	2.740(13)	--	--	2.49(7)	--	--	--	174(3)	--
5.25	--	2.703(13)	2.733(16)	--	2.50(4)	--	--	--	169(2)	--
Table S6. Torsion angles from the macrocyclic ligand component defined by the donor atoms S1, S2 and S3.

Pressure (kbar)	S1-C13-C14-S2	C13-C14-S2-C15	C14-S2-C15-C16	S2-C15-C16-S3	C15-C16-S3-C17	C16-S3-C17-C18	S3-C17-C18-S1	C17-C18-S1-C13	C18-S1-C13-C14
0	57(3)	128.7(18)	57(2)	128.8(15)	54.4(17)	58(2)	129(2)	55(2)	
0	52(3)	125.9(18)	52.28(17)	124.6(17)	56(3)	47(3)	121.2(19)	72(2)	
0	55(3)	127(2)	54(3)	124.3(3)	56(3)	48(4)	120(2)	67(3)	
3.65	57(4)	128(3)	53(3)	127(3)	62(4)	41(5)	118(3)	68(3)	
6.24	59(2)	128.6(12)	53.2(15)	130.7(19)	56.4(15)	54(2)	127(2)	57(3)	
9.03	59(2)	129.3(15)	54.1(16)	130.3(18)	58(2)	53(3)	127(2)	57(2)	
11.9	61(4)	128(3)	55(4)	129(4)	60(4)	49(4)	123(3)	56(4)	
13.5	65(5)	133(3)	54(4)	132(4)	57(4)	51(6)	125(4)	56(4)	
21.3	57(7)	133(5)	61(6)	130(11)	56(6)	48(7)	129(6)	60(7)	
25.3	53(10)	133(6)	57(8)	134(10)	54(6)	49(8)	132(6)	64(8)	
34.3	48(3)	118.2(17)	60.0(14)	132.1(14)	52.8(16)	48.7(16)	131.2(11)	65.9(12)	
41.2	15(5)	99(4)	62.0(14)	137.9(14)	50(2)	55(2)	132.2(12)	82(3)	
48.7	35(3)	116.9(18)	66.2(14)	142.3(15)	52.3(17)	46.4(18)	130.1(11)	69(2)	
53.7	17(15)	100(10)	94(17)	12(25)	110(15)	71(6)	36(8)	126(7)	88(11)
58.6	39(3)	120.8(16)	68.6(14)	142.7(16)	55.9(17)	39.1(18)	124.1(11)	69(2)	
66.9	47(3)	124.2(17)	58.5(15)	143.7(16)	53.0(18)	45.2(19)	128.4(12)	64(2)	
74.8	44(3)	128.9(17)	67.7(15)	137.9(19)	52(2)	43(2)	129.5(12)	71(2)	
100.3	59(11)	142(8)	48(10)	159(12)	54(7)	49(12)	151(13)	64(11)	
129.1	83.8(11)	120.4(10)	7.7(11)	90.8(11)	148.6(8)	79.0(12)	22.1(13)	119.4(10)	62.4(10)
149.4	59.1(14)	145.6(11)	20.0(15)	64.8(16)	113.9(12)	137.5(12)	71.7(16)	46.7(14)	71.1(13)

Decompression	76(3)	126(5)	5(7)	81(6)	134(4)	122(6)	32(8)	78(7)	75(5)
24.7	62(7)	132(4)	59(5)	56(7)	130(5)	63(6)	51(8)	125(7)	51(7)
14.3	58(4)	130(3)	53(3)	61(4)	130(3)	53(4)	56(5)	128(4)	58(4)
10	55(6)	127(4)	56(5)	127(5)	52(5)	60(7)	129(6)	60(6)	
5.25	31(9)	110(11)	74(9)	36(10)	129(9)	64(5)	65(11)	125(8)	49(8)
Table S7. Torsion angles from the macrocyclic ligand component defined by the donor atoms S1A, S2A and S3A.

Pressure (kbar)	S1-C13-C14-S2	C13-C14-S2-C15	C14-S2-C15-C16	S2-C15-C16-S3	C15-C16-S3-C17	C16-S3-C17-C18	S3-C17-C18-S1	C17-C18-S1-C13	C18-S1-C13-C14
0	--	--	--	--	--	--	--	--	--
0	--	--	--	--	--	--	--	--	--
0	--	--	--	--	--	--	--	--	--
3.65	--	--	--	--	--	--	--	--	--
6.24	--	--	--	--	--	--	--	--	--
9.03	--	--	--	--	--	--	--	--	--
11.9	--	--	--	--	--	--	--	--	--
13.5	--	--	--	--	--	--	--	--	--
21.3	49(8)	125(5)	48(6)	65(8)	134(6)	60(6)	56(8)	127(6)	65(8)
25.3	50(10)	129(6)	51(7)	56(9)	132(7)	63(7)	57(10)	132(8)	67(9)
34.3	39(3)	125(2)	47.4(14)	62.7(13)	133.8(119)	57(3)	61(3)	133.9(13)	74.9(15)
41.2	48(4)	127(4)	41.9(17)	70.2(14)	135.68(12)	52(3)	64(4)	128.6(14)	70.1(19)
48.7	52(3)	133(3)	48.5(18)	54.9(18)	128.2(12)	57(3)	67(3)	139.7(14)	69.1(16)
53.7	56(8)	134(6)	31(5)	88(5)	151(6)	48(9)	52(10)	128(7)	77(6)
58.6	51(4)	133(4)	45.5(19)	54.2(18)	130.2(12)	58(3)	66(3)	142.2(14)	72.5(17)
66.9	53(5)	135(5)	48(2)	57.6(17)	127.9(14)	58(5)	52(5)	126.1(18)	77.3(19)
74.8	55(4)	132(3)	48(2)	57.9(19)	130.9(13)	56(3)	66(3)	137.9(16)	68.0(19)
100.3	80(10)	125(9)	131(42)	35(45)	89(14)	180(11)	90(10)	50(10)	66(13)
129.1	79.4(12)	2.1(12)	136.2(9)	82.8(11)	62.2(11)	47.7(13)	66.7(13)	138.3(9)	116.2(11)
149.4	37.6(18)	49.7(17)	160.9(10)	55.4(15)	63.9(13)	44.7(14)	74.6(15)	150.1(9)	104.3(15)
Compression									
0	--	--	--	--	--	--	--	--	--
24.7	--	--	--	--	--	--	--	--	--
14.3	--	--	--	--	--	--	--	--	--
10	--	--	--	--	--	--	--	--	--
5.25	--	--	--	--	--	--	--	--	--

Decompression

Pressure (kbar)	S1-C13-C14-S2	C13-C14-S2-C15	C14-S2-C15-C16	S2-C15-C16-S3	C15-C16-S3-C17	C16-S3-C17-C18	S3-C17-C18-S1	C17-C18-S1-C13	C18-S1-C13-C14
96.4	74(4)	1(5)	137(4)	90(5)	59(4)	53(6)	56(9)	142(4)	121(5)
24.7	--	--	--	--	--	--	--	--	--
14.3	--	--	--	--	--	--	--	--	--
10	--	--	--	--	--	--	--	--	--
5.25	--	--	--	--	--	--	--	--	--
1.3.1. Molecular disorder.

At pressures above 21.3 kbar, disorder affects almost the whole structure (see Fig. S8): the entire $[\text{Ag}([9]\text{aneS}_3)]^+$ cationic fragment is disordered, as are both of the pentachlorophenyl ligands. In order to allow the analysis of structural trends, it was necessary to identify which disorder components were mutually compatible since these decisions determine which of the derived distances and angles are chemically sensible and therefore valid.

![Molecular disorder](image)

Fig. S8. Molecular disorder of the α-E-$[\text{Au}(\text{C}_6\text{Cl}_5)_2\text{Ag}([9]\text{aneS}_3)]_2$.

1.3.2. Conformation of the macrocycle.

The $[9]\text{aneS}_3$ macrocycle is endodentate and facially coordinating to the Ag centre in all phases. In the disorder component containing the atoms S1, S2 and S3, the conformation can be described in the Dale notation as [333] and this remains unchanged until 129.1 kbar. When the pressure is increased towards 149.4 kbar and subsequently decreased to 96.4 kbar, the conformation can be described as [234], before reverting to [333] as the pressure is lowered further (see Tables S5 and S6). The disorder component defined by S1A, S2A and S3A displays a [333] conformation up to a pressure of 74.8 kbar. At higher pressures the conformation is [234], reverting to [333] when the pressure is decreased to 96.4 kbar, as seen for the first disorder component.
1.3.3. \([\text{Ag([9]aneS}_3])^+\) fragment.

Upon increasing the pressure, the \([\text{Ag([9]aneS}_3])^+\) cation changes its position along the \(b\) axis direction such that the Ag centres move closer together. The molecular disorder affecting this cation involves one disorder component moving slightly from its position with increasing pressure, while the other shifts more significantly. We have identified two parameters, the Ag···Ag distance and the Ag···Au···Au angle, which allow us to quantify the change in the position of the \([\text{Ag([9]aneS}_3])^+\) cation. In one component the Ag···Ag distance ranges between 8.116 and 7.58 Å, while in the other component the Ag···Ag distance shortens to 4.74 Å (see Tables S4 and S5 and Fig. S9). As we can see in Figure S10, the Ag···Au···Au angle in one of disorder components remains at around 150° throughout, while in the other component it decreases linearly from 133° reaching a value of 111° at 149.4 kbar.

![Fig. S9. Pressure dependence of the Ag···Ag interaction angle for the \(E\)-\([\text{Au(C}_6\text{Cl}_3)_2\text{Ag([9]aneS}_3)]_2\).](image)
Fig. S10. Pressure dependence of the Ag···Au···Au interaction angle for the E-[Au(C$_6$Cl$_5$)$_2$Ag([9]aneS$_3$)$_2$].

Moreover, the shift of the [Ag([9]aneS$_3$)]$^+$ cation gives rise to a new contact between Ag1 and a Cl atom in an *ortho* position on a phenyl ring and to the breaking of an existing Ag···C$_{ipso}$ contact. Taking into account the disorder in the pentachlorophenyl ligands, we have measured all the possible distances involved in these contacts. Although the Ag1···Cl distance shows a linear trend, decreasing as a function of the pressure (*Table S3, Fig. S11*), no such trend is seen in the Ag···C$_{ipso}$ distance (*Table S4, Fig. S12*).

Fig. S11. Pressure dependence of the Ag···Cl interaction distance for the E-[Au(C$_6$Cl$_5$)$_2$Ag([9]aneS$_3$)$_2$].
1.3.4. \([\text{Au(C}_6\text{Cl}_5\text{)}^2\text{]}\) fragment.

We have identified parameters, namely the C1⋯Au⋯C7 and the C21⋯Au⋯C7 angles of the \(E\)-isomer, which allow us to monitor both the effects of pressure and the extent of the disorder within the \([\text{Au(C}_6\text{Cl}_5\text{)}^2\text{]}\) fragment. As the pressure increases, the C1⋯Au⋯C7 angle decreases from a value close to 180° to approximately 156°, clearly indicating a decrease in linearity. In contrast, the C21⋯Au⋯C7 angle shows little variation with pressure, remaining close to an average value of 171(2)°; see Table S4 and Fig. S13.
In order to investigate the changes in the π-π interactions as a function of pressure, we measured the centroid-centroid distances between the neighbouring pentachlorophenyl ligands. As noted previously, these ligands also exhibit disorder, so that the corresponding distances for each disorder component were measured (see Table S3 and Fig. S14). For one of the disorder components the distance decreases with increasing pressure, suggesting a stronger π···π interaction, while no clear trend is observed for the other component.
Fig. S14. Pressure dependence of the centroid-centroid distance in the $\pi \cdots \pi$ interaction for the E-$[\text{Au(C}_6\text{Cl}_5\text{)}_2\text{Ag([9]aneS}_3\text{)]}_2]$.
Table S8. Crystallographic data for E-[Au(C₆Cl₅)]₂Ag([9]aneS₃)]₂ between ambient pressure and 149.4 kbar.

Experiment number - Pressure	Exp. 2.1 - 0 kbar	Exp. 6.1 - 0 kbar	Exp. 7.1 - 0 kbar	Exp. 2.2 – 3.65 kbar	Exp. 7.2A – 6.24 kbar
_chemical_formula_sum	C₁₈H₁₂AgAuCl₁₀S₃	C₁₈H₁₂AgAuCl₁₀S₃	C₁₈H₁₂AgAuCl₁₀S₃	C₁₈H₁₂AgAuCl₁₀S₃	C₁₈H₁₂AgAuCl₁₀S₃
_exptl_crystal_colour	green	green	green	green	green
_exptl_crystal_description	prism	prism	prism	prism	prism
_exptl_crystal_size_max	0.12	0.163	0.09	0.12	0.09
_exptl_crystal_size_mid	0.06	0.117	0.08	0.06	0.08
_exptl_crystal_size_min	0.03	0.061	0.013	0.03	0.013
_space_group_crystal_system	triclinic	triclinic	triclinic	triclinic	monoclinic
_space_group_name_H-M_alt	P -1	P -1	P -1	P -1	C 1 2/c 1
_space_group_name_Hall	-P 1	-P 1	-P 1	-P 1	-C 2yc
_cell_length_a	8.8149(2)	8.8124(3)	8.8160(3)	8.7896(3)	23.3544(15)
_cell_length_b	12.6499(3)	12.6570(4)	12.6485(3)	12.6265(4)	8.54750(13)
_cell_length_c	26.538(5)	26.552(4)	26.531(5)	26.530(5)	28.023(7)
_cell_angle_alpha	83.184(5)	83.167(7)	83.193(6)	83.148(7)	90
_cell_angle_beta	84.040(6)	84.070(7)	84.021(6)	83.985(7)	110.795(16)
_cell_angle_gamma	71.160(2)	71.136(3)	71.160(3)	71.132(3)	90
_cell_volume	2774.1(5)	2776.0(4)	2773.4(5)	2759.4(5)	5229.6(14)
_cell_formula_units_Z	4	4	4	4	8
_exptl_crystal_density_diffnm	2.356	2.354	2.356	2.368	2.499
_chemical_formula_weight	983.79	983.79	983.79	983.79	983.79
_exptl_crystal_F_000	1856	1856	1856	1856	3712
_diffrn_ambient_temperature	293	293	293	293	293
_cell_measurement_temperature	293	293	293	293	293
_diffrn_reflns_theta_max	27.693	27.854	27.941	27.789	27.873
_exptl_absorpt_coefficient_mu	7.188	7.183	7.190	7.226	7.626
_diffrn_reflns_number	25699	27102	27086	24573	35064
_cell_measurement_reflcs_used	5540	7649	5724	5644	9563
_refine_ls_R_factor_gt	0.0522	0.0385	0.0486	0.0600	0.0348
_refine_ls_wR_factor_ref	0.0972	0.0783	0.0987	0.1742	0.0781
_refine_ls_number_parameters	547	547	547	548	298
_refine_ls_number_restraints	982	910	678	931	306
_refine_ls_goodness_of_fit_ref	1.044	1.050	1.027	1.055	1.096
Experiment number - Pressure	Exp. 6.2 – 9.03 kbar	Exp. 7.3 – 11.9 kbar	Exp. 6.3 – 13.5 kbar	Exp. 7.4 – 21.3 kbar	Exp. 2.3 – 25.3 kbar
-----------------------------	----------------------	----------------------	----------------------	----------------------	----------------------
chemical_formula_sum	C\textsubscript{18}H\textsubscript{12}AgAuCl\textsubscript{10}S\textsubscript{3}	C\textsubscript{18}H\textsubscript{12}AgAuCl\textsubscript{10}S\textsubscript{3}	C\textsubscript{18}H\textsubscript{12}AgAuCl\textsubscript{10}S\textsubscript{3}	C\textsubscript{18}H\textsubscript{12}AgAuCl\textsubscript{10}S\textsubscript{3}	C\textsubscript{18}H\textsubscript{12}AgAuCl\textsubscript{10}S\textsubscript{3}
exptl_crystal_colour	green	green	green	yellowish green	yellowish green
exptl_crystal_description	prism	prism	prism	prism	prism
exptl_crystal_size_max	0.163	0.09	0.163	0.09	0.12
exptl_crystal_size_mid	0.117	0.08	0.117	0.08	0.06
exptl_crystal_size_min	0.061	0.013	0.061	0.013	0.03
space_group_crystal_system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
space_group_name_H-M_alt	C 1 2/c 1				
space_group_name_Hall	-C 2yc				
cell_length_a	23.265(3)	23.0343(17)	22.996(4)	22.6342(18)	22.5307(8)
cell_length_b	8.4889(2)	8.38562(19)	8.3808(4)	8.1465(2)	8.1113(2)
cell_length_c	27.817(13)	27.674(9)	27.565(19)	27.489(9)	27.456(4)
cell_angle_alpha	90	90	90	90	90
cell_angle_beta	110.48(3)	110.01(2)	109.88(4)	109.71(2)	109.717(7)
cell_angle_gamma	90	90	90	90	90
cell_volume	5146(3)	5022.7(17)	4996(4)	4771.7(17)	4723.5(8)
cell_formula_units_Z	8	8	8	8	8
exptl_crystal_density_diffrn	2.539	2.602	2.616	2.739	2.767
chemical_formula_weight	983.79	983.79	983.79	983.79	983.79
exptl_crystal_F_000	3712	3712	3712	3712	3712
diffrn_ambient_temperature	293	293	293	293	293
cell_measurement_temperature	293	293	293	293	293
diffrn_reflns_theta_max	27.723	27.807	27.809	27.936	25.491
exptl_absorp_coefficient_mu	7.497	7.940	7.983	8.358	8.443
diffrn_reflns_number	23039	24668	22962	22777	20731
cell_measurement_reflns_used	6353	6462	5891	6420	6082
refine_ls_R_factor_gt	0.0436	0.0643	0.0845	0.0660	0.0702
refine_ls_wR_factor_ref	0.0997	0.1548	0.2092	0.1573	0.1660
refine_ls_number_parameters	274	274	274	274	274
refine_ls_number_restraints	372	385	441	87	87
refine_ls_goodness_of_fit_ref	1.053	1.017	1.073	1.045	1.139
Experiment number - Pressure	Exp. 7.5 – 34.3 kbar	Exp. 2.4 – 41.2 kbar	Exp. 7.6 – 48.7 kbar	Exp. 2.5 – 53.7 kbar	Exp. 7.7 – 58.6 kbar
-----------------------------	----------------------	----------------------	----------------------	----------------------	----------------------
chemical_formula_sum	C\textsubscript{18}H\textsubscript{12}AgAuCl\textsubscript{10}S\textsubscript{3}	C\textsubscript{18}H\textsubscript{12}AgAuCl\textsubscript{10}S\textsubscript{3}	C\textsubscript{18}H\textsubscript{12}AgAuCl\textsubscript{10}S\textsubscript{3}	C\textsubscript{18}H\textsubscript{12}AgAuCl\textsubscript{10}S\textsubscript{3}	C\textsubscript{18}H\textsubscript{12}AgAuCl\textsubscript{10}S\textsubscript{3}
exptl_crystal_colour	yellow	yellow	yellow	orange	orange
exptl_crystal_description	prism	prism	prism	prism	prism
exptl_crystal_size_max	0.09	0.163	0.09	0.12	0.09
exptl_crystal_size_mid	0.08	0.06	0.08	0.06	0.08
exptl_crystal_size_min	0.013	0.03	0.013	0.03	0.013
space_group_crystal_system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
space_group_name_H-M_alt	C 1 2/c 1				
cell_length_a	22.1408(17)	21.847(10)	21.7321(19)	21.442(5)	21.422(3)
cell_length_b	8.00587(18)	7.9419(8)	7.9142(2)	7.8469(4)	7.8628(3)
cell_length_c	27.327(9)	27.48(5)	27.073(10)	26.97(3)	26.913(14)
cell_angle_alpha	90	90	90	90	90
cell_angle_beta	109.65(2)	109.36(12)	109.52(2)	109.32(6)	109.29(3)
cell_angle_gamma	90	90	90	90	90
cell_volume	4561.9(16)	4498(9)	4388.5(18)	4283(5)	4279(2)
cell_formula_units_Z	8	8	8	8	8
exptl_crystal_density_diffn	2.865	2.905	2.978	3.052	3.055
chemical_formula_weight	983.79	983.79	983.79	983.79	983.79
exptl_crystal_F_000	3712	3712	3712	3712	3712
diffrn_ambient_temperature	293	293	293	293	293
cell_measurement_temperature	293	293	293	293	293
diffrn_reflns_theta_max	27.715	27.920	27.850	27.932	27.733
exptl_absorpt_coefficient_mu	8.742	8.866	9.087	9.312	9.321
diffrn_reflns_number	21727	22827	20853	19023	20316
cell_measurement_reflns_used	6017	8121	5615	4679	5820
refine_ls_R_factor_gt	0.0580	0.0842	0.0601	0.0756	0.0667
refine_ls_wR_factor_ref	0.1262	0.2376	0.1440	0.2265	0.1583
refine_ls_number_parameters	388	456	408	455	408
refine_ls_number_restraints	417	665	441	690	456
refine_ls_goodness_of_fit_ref	1.063	1.060	1.053	1.062	1.071
Experiment number - Pressure	Exp. 2.6 – 66.9 kbar	Exp. 7.8 – 74.8 kbar	Exp. 7.9A – 100.3 kbar	Exp. 7.10 – 129.1 kbar	Exp. 7.11 – 149.4 kbar
-------------------------------	----------------------	----------------------	------------------------	------------------------	------------------------
chemical_formula_sum	C\textsubscript{18}H\textsubscript{12}Ag Au Cl\textsubscript{10} S\textsubscript{3}				
expltl_crystal_colour	orange	orange	brown	brown	brown
expltl_crystal_description	prism	prism	prism	prism	prism
expltl_crystal_size_max	0.12	0.09	0.09	0.09	0.09
expltl_crystal_size_mid	0.06	0.08	0.08	0.08	0.08
expltl_crystal_size_min	0.03	0.013	0.013	0.013	0.013
space_group_crystal_system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
space_group_name_H-M_alt	C 1 2/c 1	C 1 2/c 1	C 1 2/c 1	C 1 2/c 1	C 1 2/c 1
space_group_name_Hall	-C 2yc	-C 2yc	-C 2yc	-C 2yc	-C 2yc
cell_length_a	21.220(3)	21.089(3)	20.617(5)	20.323(5)	19.980(15)
cell_length_b	7.8301(4)	7.7928(3)	7.7051(6)	7.6796(5)	7.6558(14)
cell_length_c	26.741(16)	26.668(15)	26.32(3)	25.76(3)	25.58(8)
cell_angle_alpha	90	90	90	90	90
cell_angle_beta	108.99(4)	108.98(3)	108.30(7)	108.22(6)	108.21(18)
cell_angle_gamma	90	90	90	90	90
cell_volume	4201(3)	4144(3)	3970(5)	3818(4)	3716(12)
cell_formula_units_Z	8	8	8	8	8
exptl_crystal_density_diffrn	3.111	3.154	3.292	3.423	3.516
chemical_formula_weight	983.79	983.79	983.79	983.79	983.79
exptl_crystal_F_000	3712	3712	3712	3712	3712
diffrn_ambient_temperature	293	293	293	293	293
cell_measurement_temperature	293	293	293	293	293
diffrn_reflns_theta_max	27.871	24.561	25.459	27.866	28.172
exptl_absorp_coefficient_mu	9.492	9.623	10.046	10.445	10.729
diffrn_reflns_number	19527	12953	15749	17628	16751
cell_measurement_reflns_used	4078	4292	4760	2653	1603
refine_ls_R_factor_gt	0.0821	0.0656	0.1258	0.1576	0.2756
refine_ls_wR_factor_ref	0.2010	0.1416	0.3555	0.4521	0.6204
refine_ls_number_parameters	408	408	338	436	351
refine_ls_number_restraints	489	456	423	1027	729
refine_ls_goodness_of_fit_ref	1.072	1.054	1.343	1.642	2.003
Experiment number - Pressure	Exp. 7.12 – 96.4 kbar	Exp. 7.14 – 24.7 kbar	Exp. 7.15 – 14.3 kbar	Exp. 7.16 – 10.0 kbar	Exp. 7.17 – 5.25 kbar
-----------------------------	-----------------------	-----------------------	-----------------------	-----------------------	-----------------------
chemical_formula_sum	C_{18}H_{12}AgAuCl_{10}S_{3}	C_{18}H_{12}AgAuCl_{10}S_{3}	C_{18}H_{12}AgAuCl_{10}S_{3}	C_{18}H_{12}AgAuCl_{10}S_{3}	C_{18}H_{12}AgAuCl_{10}S_{3}
expl_crystal_colour	brown	dark green	dark green	prism	green
expl_crystal_description	prism	prism	prism	prism	prism
expl_crystal_size_max	0.13	0.09	0.09	0.09	0.09
expl_crystal_size_mid	0.08	0.08	0.08	0.08	0.08
expl_crystal_size_min	0.0013	0.013	0.013	0.013	0.013
space_group_crystal_system	monoclinic	monoclinic	monoclinic	monoclinic	triclinic
space_group_name_H-M_alt	C 1 2/c 1	P -1			
space_group_name_Hall	-C 2yc	-C 2yc	-C 2yc	-C 2yc	-P 1
cell_length_a	20.473(11)	22.549(6)	23.003(5)	23.212(5)	8.6157(16)
cell_length_b	7.7638(8)	8.1533(5)	8.3280(4)	8.4325(5)	12.541(3)
cell_length_c	26.41(6)	27.46(3)	27.64(2)	27.77(2)	26.548(7)
cell_angle_alpha	90	90	90	90	90.73(2)
cell_angle_beta	108.22(13)	109.78(6)	110.03(5)	110.12(6)	99.12(2)
cell_angle_gamma	90	90	90	90	110.059(19)
cell_volume	3987(9)	4751(5)	4974(4)	5104(5)	2653.5(11)
cell_formula_units_Z	8	8	8	8	4
expl_crystal_density_diffrn	3.278	2.751	2.627	2.561	2.463
chemical_formula_weight	983.79	983.79	983.79	983.79	983.79
expl_crystal_F_000	3712	3712	3712	3712	1856
diffrn_ambient_temperature	293	293(2)	293(2)	293	293
cell_measurement_temperature	293	293	293	293	293
diffrn_reflns_theta_max	27.711	27.956	27.741	27.872	27.972
expl_absort_coefficient_mu	10.002	8.394	8.017	7.813	7.515
diffrn_reflns_number	17911	21936	22307	23191	23256
cell_measurement_reflns_used	2329	3670	3787	3388	2522
refine_ls_R_factor_gt	0.1867	0.1187	0.0932	0.1233	0.1894
refine_ls_wR_factor_ref	0.4777	0.2350	0.1625	0.2301	0.4259
refine_ls_number_parameters	446	298	298	298	507
refine_ls_number_restraints	1048	603	597	638	951
refine_ls_goodness_of_fit_ref	1.659	1.084	1.154	1.198	1.035
2. Photophysical properties at different pressures and ambient temperature.

Fig. S15. Normalised emission spectra of E-[Au(C₆Cl₅)₂Ag([9]aneS₃)]₂ single crystal at pressures between ambient and 103.5 kbar of pressure.
Fig. S16. Optimized model $E-S_0$ in the ground state (left) and model $E-T_1$ in the triplet excited state (right), and the corresponding MO diagram for each model.
2.1. Mathematical treatment of the exponential functions found experimentally.

Mathematically, the exponential functions that fit the experimental results, as well the theoretical treatment of the repulsive branch of the potential energy curve, can be generalized with the expression: \(y = y_0 + A \cdot e^{r_0 x} \)

where \(y \) is the parameter represented versus the Au···Au distance (x),
\(y_0 \) is the value of this parameter at the equilibrium Au···Au distance at ambient pressure,
\(A \) is the initial value, i.e. \(y-y_0 \) when \(x = 0 \),
\(r_0 \) is the rate,

and

Reasoning mathematically:

\(r_0 = \ln(y-y_0/A)/x \)

Since the \(r_0 \) values are roughly similar for the three exponential representations,

\(\ln(p-p_0/A_1) = \ln(em-em_0/A_2) = \ln(S-S_0/A_3) \),

which is the symmetrical representation of a straight line in three-dimensional space with an approximate slope of 5 for each projection. This demonstrates mathematically that under the applied pressures the experimental Au···Au distances vary exponentially, and that the energy of the emissions and the total repulsive potential energy computed vary following the same trend.

On the other hand, taking into account that the straight-line expression that relates potential energy and experimental energy emission takes the form of:

\(S_0 = -2.513571 \cdot 10^8 - 2.15343771 \cdot E_{em} \)

Since at the point where both states cross each other \(E_{em} = 0 \),

i.e. \(S_0 = T_1 = -2.513571 \cdot 10^8 \) cm\(^{-1}\).

Introducing this value in the straight line equation that relates potential energy versus pressure:

\(P = 4.403429 \cdot 10^6 + 0.0175157 \cdot S_0 \)

gives a value of \(P = 733 \) kbar

and introducing this one in the equation that relates pressure and Au···Au distances:

\(P = -4.17944610 + 1.87483657 \cdot 10^8 \cdot e^{-5.10(d(Au···Au))} \)

we obtain a value for \(d(Au···Au) \) of 2.438 Å.
Fig. S17. Computed potential energy of the ground state S_0 using pseudo-relativistic pseudopotentials for gold vs Au···Au distance.

Fig. S18. Computed potential energy of the ground state S_0 using non-relativistic pseudopotentials for gold vs Au···Au distance.
Fig. S19. S_0 energy calculated with non-relativistic pseudopotentials - S_0 energy calculated with pseudo-relativistic pseudopotentials for Au···Au distances in the range 2.44–3.40 Å.