High richness, new occurrences, and threatened species in a savanna grassland remnant in the largest Brazilian metropolis

Victor Camargo Keller¹, Erico Fernando Lopes Pereira-Silva², ³*, Elisa Hardt¹

1 Group of Landscape Ecology and Conservation Planning, Laboratory of Ecology and Nature Conservancy, Department of Environmental Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil • VCK: vckeller00@gmail.com • https://orcid.org/0000-0003-3347-888X
• EH: elisa.hardt@unifesp.br • https://orcid.org/0000-0002-1654-0218
2 Department of Ecology, Universidade de São Paulo, São Paulo, SP, Brazil • candeya@gmail.com • https://orcid.org/0000-0002-6976-192X
3 Center for Natural Sciences and Humanities, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
* Corresponding author

Abstract
Parque Estadual do Juquery is the largest protected remnant of savanna grassland in the metropolitan region of São Paulo (MRSP). We conducted a floristic inventory and created a photographic record of the angiosperm flora of the savanna formations in this area and compared it with those of other Cerrado sites using Jaccard’s similarity index. We present a list with 366 species, distributed in 58 botanical families. Asteraceae and Poaceae were the families with the highest species richness. Eighty-six new occurrences were recorded in the park. According to the São Paulo state Red List, 14 species are threatened by extinction, of which four are presumably extinct. Most species are herbaceous (36.0%) and sub-shrub plants (26.5%). No floristic similarity was observed with other savanna formations in the countryside of the state of São Paulo. Our results emphasize the importance of the Parque Estadual do Juquery for the conservation of savanna grassland formations in the MRSP and the protection of locally endangered species.

Keywords
Brazilian savanna, floristic inventory, old-growth grassland, Poaceae, Asteraceae, tropical grassland

Introduction
In the Neotropical region, savannas cover more than two million square kilometers (Mistry 2000) and represent the second-largest vegetation formation in tropical America (Ratter et al. 2006). Among Neotropical savannas, the Cerrado is the most extensive and biodiverse (Ratter et al. 2006), with more than 12,000 plant species (Mendonça et al. 2008) distributed in a mosaic of physiognomies according to the forest-ecotone-grassland concept (Coutinho 1978). This mosaic includes the savanna forest, termed “cerradão”, and a gradient of savanna-grassland formations consisting of a mixed flora with forest and grassland elements, termed “cerrado stricto sensu”, “campo cerrado”, “campo sujo”, and “campo limpo” (Coutinho 1978).

Despite the importance of the plant diversity of Cerrado, two decades ago, less than 20% of its area was...
estimated to be undisturbed (Myers et al. 2000) and approximately 53% had been converted into pasture and monocultures (Klink and Machado 2005). These land cover changes reveal that the Cerrado biome has been highly influenced by anthropogenic pressure, especially agriculture, which could lead to the loss of up to 34% of the current 112 million hectares of remaining natural areas of Cerrado by 2050 (Strassburg et al. 2017). This scenario may be optimistic because it does not consider the current urban expansion rates of cities located in the Cerrado biome (Rumble et al. 2019). Based on the history of degradation of natural landscapes and the threat to species richness and endemism in the Cerrado, this biome has long been considered one of the priority areas for the conservation of global biodiversity (Myers et al. 2000).

Savanna-grassland formations (open habitats) comprise 64.4% of the Cerrado plant taxa, and 39.2% of its richness is represented by herbaceous plants (Filgueiras 2002; Mendonça et al. 2008), which are vital for the maintenance of ecological processes (Hoffmann et al. 2012; Parr et al. 2014). Also, the floral and faunal diversity in these formations (Tubelis and Cavalcanti 2001; Vynne et al. 2011) are essential for the maintenance of provisioning and regulating services in the ecosystem (Overbeck et al. 2015; Veldmann et al. 2015; Murphy et al. 2016), mainly hydrological processes (Scherer-Lorenzen et al. 2003; Honda and Durigan 2016). Despite their environmental role, grassland formations have fewer legally protected areas than tropical forest formations and, therefore, are more susceptible to land-use conversion (Veldman et al. 2015). This global reality is also observed in the Cerrado, especially in the state of São Paulo.

The prominent remnants of Cerrado in São Paulo are concentrated in the central region of the state (Durigan et al. 2003), represented mainly by more dense habitats, such as cerrado stricto sensu and cerradão, associated with deep, sandy soils (Ishara and Maimoni-Rodella 2012). Despite this biogeographical concentration, grassland fragments in the metropolitan region of São Paulo (MRSP) have also been reported (e.g., Usteri 1911; Joly 1950; Baitello et al. 2013; Beraldo et al. 2018). In this region is observed a typical flora of open Cerrado habitats, which are very distinct from those found in the central areas of the state (Durigan et al. 2003). The few sites that harbor this flora are relicts of the original vegetation of this biome (Raimundo 2006), and these are necessary for the conservation of rare and threatened species (Baitello et al. 2013). Still, few studies have been carried out in these fragments in the MRSP (e.g., Baitello et al. 2013; Beraldo et al. 2018; Silva et al. 2018). The lack of floristic surveys of the grasslands in the MRSP reveals a gap in knowledge on species diversity, especially for herbaceous plants, needed to understand the physiognomic and ecological characteristics and the conservation status of these areas.

New surveys and botanical lists of the Cerrado grassland vegetation complement the current knowledge of the flora. Moreover, along with the systematization of the existing information, we report data on potentially threatened plant species, which are of great importance for the conservation of these formations’ biodiversity. Surveys can be an essential step toward creating identification keys and photographic reference guides for other studies. Information on the floristic composition of grasslands of Cerrado formations in MRSP becomes even more important when considering the surrounding anthropogenic pressure of constant urban sprawl, which potentially leads to loss of habitats and, consequently, of species.

In this study we aim to provide an updated floristic inventory and create a photographic record of the angiosperm flora in the last and largest protected remnant of Brazilian grassland savanna in the MRSP. We also compared this vegetation’s floristic similarity with those from other savannas (Cerrado) remnants, especially from São Paulo state.

Study Area

We carried out this study in the Parque Estadual do Juquery in Portuguese (hereafter acronym PEJY), Franco da Rocha, São Paulo state, Brazil (23°20′52″S, 046°41′50″W at its center; Fig. 1A). This park comprises remnants of the Atlantic Forest and Cerrado, with most of the vegetation cover known as campo sujo; this park represents the largest remnant of this Cerrado phyto-physiognomy in the MRSP. PEJY is a protected area created in 1993 and with an area of 2,058 ha. The land originally belonged to the State Psychiatric Hospital, which was managed by Dr. Franco da Rocha at the former Juquery Farm (Baitello et al. 2013). Because of the history of low-intensity use (Fraletti 1986), the natural cover of grassland and forest formations of Juquery Farm was maintained, despite the growing urbanization in its surroundings.

In PEJY, the altitude ranges from 730 to 950 m, the mean annual rainfall varies between 1200 and 2000 mm, and the average temperature is between 20 and 21 °C (Baitello et al. 2013). The climate in the region is influenced by the ocean, and there is no defined dry season (Cfb in the Köppen-Geiger classification system; Alvares et al. 2013). The park’s geology is within the São Roque Group, with a lithological composition of phyllites and metasiltites and to a lesser extent, with eluvium-colluvium deposits and quartzites (Amorim et al. 2017). Haplyc acrisol and dystrophic cambisol are dominant (Rossi 2017), with a relief characterized by a series of phyllites and metasiltites and to a lesser extent, with eluvium-colluvium deposits and quartzites (Amorim et al. 2017). Haplyc acrisol and dystrophic cambisol are dominant (Rossi 2017), with a relief characterized by the presence of low hills with flat tops and steep valleys in mamelonized slopes covered mainly by campo sujo vegetation, in addition to campo cerrado in a few areas, and a drainage basin covered by ombrophilous forest (Baitello et al. 2013). These characteristics create a heterogeneous landscape of Cerrado campo sujo interspersed with ombrophilous Atlantic Forest and other savanna formations (Fig. 1B). PEJY also includes...
springs that are tributaries of the Juquery River and the Paiva Castro reservoir of the Cantareira system, one of the primary water sources that supply the MRSP.

Methods

Sampling and recording the flora. We recorded the flora of PEJY by systematically surveying woody and herbaceous plants as part of a larger project on the area’s grassland community structure. We surveyed in plots and sub-plots distributed in areas with a predominance of campo sujo (Fig. 1A). Woody plants with a circumference at ground height (CGH) >3 cm were sampled in 12 plots of 10 × 25 m. For herbaceous and woody plants with CGH <3 cm, in each of these plots we delimited five 1 × 1 m sub-plots 4 m equidistant from each other, totaling 60 sub-plots. These systematic surveys were carried out in the dry (August 2017) and wet (February 2018) seasons.

During these periods, we also made additional monthly surveys of specimens with flowers and fruits during walks, covering roads and areas close to the plots, including campo cerrado. We made photographic records of species in loco during surveys. The images were not treated by any imagen software or any post-production, except for a photo of *Polygala pumila* Norlind taken in the
laboratory under a stereomicroscope. The photographs were all taken at PEJY by the first author and comprise a personal image library spanning 2014 to 2020.

**Creating a species list.** We identified the specimens collected consulting specialized literature for the plants of the state of São Paulo (e.g., Wanderley et al. 2001, 2002, 2005, 2007, 2016; Martins et al. 2009) and for specific families and groups (e.g., Caruzo and Cordeiro 2007; Borges and Forzza 2008; Hattori and Nakajima 2008, 2011; Heiden et al. 2009; Silva et al. 2018). We consulted specialists in the local flora (see Acknowledgments) to identify or confirm species. We compared our samples with those of the Forestry Institute Herbarium (Instituto Florestal; SPSF) and the Reflora Virtual Herbarium (2020). We prepared vouchers of species with flowers or fruits, especially for those considered rare, threatened, or endangered, or that had not been reported at the study area by Baitello et al. (2013). All vouchers are deposited at the Universidade Federal do ABC Herbarium (HUFABC), and additional duplicates are available at the Universidade Federal de São Paulo Herbarium (HUFSP) and the Forestry Institute Herbarium (SPSF).

Species nomenclature and synonyms were verified and updated using the Reflora Project (Flora do Brasil 2020). The conservation status of species followed the São Paulo state’s Red List of threatened plants (Mamede et al. 2007) and its updated version (São Paulo 2016).

After creating our species list, we added the species presented by Baitello et al. (2013) for the open formations (campo limpo, campo sujo, campo cerrado, and cerrado strico sensu) to produce the final PEJY flora. We checked the names of species on Baitello et al.’s (2013) list to avoid synonyms.

**Floristic similarity.** We compared the flora composition with those from other Cerrado remnants in the states of São Paulo, Paraná, and Goiás, and in the Federal District (Table 1). Prior to analysis, we updated the names in the species lists in these areas according to the Flora do Brasil 2020 Project (Flora do Brasil 2020) to avoid synonyms. We carried out a comparison among areas using PAST v. 3.13 software (Hammer et al. 2001) based on the Jaccard similarity index applied to a hierarchical cluster analysis using the UPGMA algorithm (Legendre and Legendre 1998). We also tested our dataset using the Sørensen similarity index. As the structure of our cluster remained the same using both indexes, we only show here the one using Jaccard’s similarity index. We did not include in the analysis species occurring in only one of the areas.

### Table 1. Flora, edaphic and climatic (Köppen-Geiger climate classification) information of the localities with Brazilian savanna used in the comparison with the present study in the Parque Estadual do Juquery, Franco da Rocha, SP.

| Locality | Vegetation | Species richness | Soil | Climate | Reference |
|----------|------------|------------------|------|---------|-----------|
| Fazenda Agua Limpa, Brasília, DF | Campo sujo | 153 | Latossol | Aw | Munhoz and Felfili (2006) |
| Fazenda Agua Fria, Alto Paraíso, GO | Campo úmido | 181 | Neosol | Aw | Munhoz and Felfili (2006) |
| Parque Estadual de Vila Velha, Ponta Grossa, PR | Campo seco | 223 | Latossol | Cfb | Silva et al. (2016) |
| Cidade Universitária Armando de Salles Oliveira, Campus USP, Butantã, São Paulo, SP | Campo sujo | 311 | Argisol | Cwb | Joly (1950) |
| Estação Ecológica de Assis, Assis, SP | Cerrado stricto sensu | 369 | Latossol Gleysol | Cwa | Rosatto et al. (2008) + Pinheiro and Durigan (2012) |
| Cerrado de Emas, Pirassununga, SP | Campo sujo | 358 | Latossol | Cwa | Batalha et al. (1997) |
| Fazenda da Máquina, Itirapina, SP | Campo sujo | 337 | Neosol | Cwa | Tannus and Assis (2004) |
| Parque Estadual do Jaraguá, São Paulo, SP | Campo seco | 191 | Cambisol | Cfb | Beraldo et al. (2018) |
| Parque Estadual do Juquery, Franco da Rocha, SP | Campo limpo | 366 | Argisol | Cfb | This study + Baitello et al. (2013) |
| Área de Relevante Interesse Ecológico (ARIE) Cerrado Pé-de-gigante, Santa Rita do Passa Quatro, SP | Campo sujo | 353 | Latossol | Cwa | Batalha and Mantovani (2001) |
| Pedregulho municipality, SP | Campo sujo | 412 | Latossol | Cwa | Sasaki and Melo-Silva (2008) |
| Pratânia municipality, SP | Cerrado stricto sensu | 115 | Latossol | Cwa | Carvalho et al. (2010) |
| Reserva Biológica de Mogi Guaçu, Mogi Guaçu, SP | Campo cerrado | 503 | Latossol | Cwa | Mantovani and Martinis (1993) |
Results

Based on field sampling, we recorded 201 species of angiosperms in PEJY, 156 of them with photographic records (Table 2; Figs. 3–22). When we compiled our and Baitello et al.’s (2013) lists, we reached a total of 366 species for open habitats of PEJY. The species are distributed in 58 botanical families, with Asteraceae (75 spp.) and Poaceae (50 spp.) as the richest. Other important families are Fabaceae (30 spp.), Melastomataceae (22 spp.), Rubiaceae (12 spp.), Myrtaceae (11 spp.), Lamiaceae (10 spp.), Convolvulaceae (10 spp.), and Malvaceae (9 spp.). The genera with the highest species richness are Baccharis L. (20 spp.), Paspalum L. (14 spp.), Lessingianthus H.Rob. (7 spp.), and Axonopus P.Beauv. (6 spp.). Among the species recorded, 132 are herbaceous (36.0%), 97 are sub-shrubs (26.5%), 88 are shrubs (24.0%), 31 are trees (8.5%) 16 are vines (4.4%), and two are palms (0.6%). We recorded three potentially invasive exotic grass species, Hyparrhenia rufa (Nees) Stapf, Melinis minutiflora P.Beauv., and Urochloa brizantha (Hochst. ex A. Rich.) R.D.Webster, in the study area and at other sites, such as

Table 2. Angiosperm species from Parque Estadual do Juquery (PEJY), Franco da Rocha - SP, Brazil, and its conservation status according to São Paulo (2016). Conservation status: CR = Critically Endangered, EN = Endangered, EX = Presumably Extinct, NT = Near Threatened, and VU = Vulnerable. Acronyms: vck = collector number, HUFABC = herbarium voucher number and ref. = bibliographic reference.

| Families/Species | Habit | Figure | Conservation status | Reported by Baitello et al. (2013) | vck/HUFABC/ref. |
|------------------|-------|--------|---------------------|-----------------------------------|-----------------|
| Acanthaceae      |       |        |                     |                                   |                 |
| Ruellia geminiflora Kunth | sub-shrub | 3A | X |                                   | 316/2025 |
| Aamaranthaceae   |       |        |                     |                                   |                 |
| Pfefferia pulvata Mart. | sub-shrub | - | | Baitello et al. 2013 |
| Amaryllidaceae   |       |        |                     |                                   |                 |
| Hypestrum morrellianum Lem. | herb | - | VU | Baitello et al. 2013 |
| Annonaceae       |       |        |                     |                                   |                 |
| Dasyxypelum furfurose (A.St.-Hil.) Saff. | shrub | 3B | X | 183/2183, 184/2184 |
| Apiceae          |       |        |                     |                                   |                 |
| Eryngium canaliculatum Cham. & Schltdl. | herb | - | | Baitello et al. 2013 |
| Eryngium junceum Cham. & Schltdl. | herb | - | | Baitello et al. 2013 |
| Eryngium pristis Cham. & Schltdl. | herb | 3C | X | 185/2185 |
| Apocynaceae      |       |        |                     |                                   |                 |
| Barjonia erecta (Vell.) K.Schum. | sub-shrub | - | | Baitello et al. 2013 |
| Mandevilla coccinea (Hook. & Arn.) Woodson | sub-shrub | - | | Baitello et al. 2013 |
| Mandevilla emarginata (Vell.) C.Ezcura | sub-shrub | - | | Baitello et al. 2013 |
| Mandevilla pohliana (Stadl.) A.H.Gentry | sub-shrub | - | | Baitello et al. 2013 |
| Mandevilla semele (A.St.-Hil.) Pichon | sub-shrub | 3D | X | 160/2172 |
| Oxypetalum appendiculatum Mart. | vine | - | | Baitello et al. 2013 |
| Oxypetalum capitatum Mart. | sub-shrub | - | | Baitello et al. 2013 |
| Oxypetalum erectum Mart. | herb | 3E | X | 226/2068 |
| Araliaceae       |       |        |                     |                                   |                 |
| Hydrocotyle pusilla A.Rich. | herb | - | EX | 324/2013 |
| Didymopanax macrocarpus (Cham. & Schltdl.) Seem. | shrub | 3F | X | 99/1978 |
| Areaceae         |       |        |                     |                                   |                 |
| Alligatora campstris (Mart.) Kunze | palm | - | | Baitello et al. 2013 |
| Geonoma schottiana Mart. | palm | - | | Baitello et al. 2013 |
| Aristolochiaceae  |       |        |                     |                                   |                 |
| Aristolochia labata Willd. | vine | 3G | X | 328/2013, 329/2038 |
| Astereaceae      |       |        |                     |                                   |                 |
| Acanthospermum australe (Loefl.) Kunze | herb | - | | 214/2026 |
| Achynocline saturinodes (Lam.) DC. | herb | - | X | 69/2001 |
| Agrostemma hastigium (Gardner) R.M.King & H.Rob. | sub-shrub | - | X | 290/2210 |
| Aldama robusta (Gardner) E.E.Schill. & Panero | sub-shrub | 3H | | 279/2144, 280/2145 |
| Aspilia foliacea (Spreng.) Baker | herb | 4A | | 313/2042 |
| Ayapanas amygdalina (Lam.) R.M.King & H.Rob. | sub-shrub | 4B | | 65/1997, 66/1998, 67/1999, 68/2000 |
| Baccharis aphylla (Vell.) DC. | sub-shrub | - | X | 314/2043 |
| Baccharis articulata (Lam.) Pers. | sub-shrub | 4C | | 100/1969, 101/1970, 102/1971 |
| Baccharis brecifolia DC. | sub-shrub | - | X | 168/2071, 169/2072 |
| Baccharis caprisifolia DC. | sub-shrub | - | | Baitello et al. 2013 |
| Baccharis dracunculifolia DC. | shrub | - | | Baitello et al. 2013 |
| Baccharis erigeroides DC. | sub-shrub | - | | Baitello et al. 2013 |
| Baccharis gracilis DC. | herb | - | | Baitello et al. 2013 |
| Baccharis helichryosides DC. | sub-shrub | 4D | X | 134/1940, 135/1941 |
| Family/Species                          | Habit       | Figure | Conservation status | Reported by Baitello et al. (2013) | vck/HUFA/BC/ref. |
|----------------------------------------|-------------|--------|---------------------|------------------------------------|------------------|
| Baccharis intermedius Gardner          | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Baccharis lanceformis DC.              | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Baccharis linearifolia Pers.           | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Baccharis maxima Baker                 | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Baccharis montana DC.                  | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Baccharis myriocapha DC.               | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Baccharis pentaptera DC.               | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Baccharis pentodonata Malme            | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Baccharis reticularia DC.              | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Baccharis subdentata DC.               | sub-shrub   | 4E     | X                   | 43/1953, 44/1959, 61/1993          |                  |
| Baccharis tachanontoides DC.           | shrub       | -      |                     | Baitello et al. 2013               |                  |
| Baccharis cognata DC.                  | sub-shrub   | 4F     | X                   | 147/2123, 148/2124, 149/2125       |                  |
| Calca cuneifolia DC.                   | herb        |        |                     | Baitello et al. 2013               |                  |
| Campovassoria cruziata (Veill.) R.M.King & H.Rob. | shrub 4G    | X     | 331/2040, 332/2041  | 20/2200, 201/2203                |                  |
| Camphuleonimum macrocephalum (Less.) DC. | herb       | X      |                     | 200/2200, 201/2203                |                  |
| Camphuleonimum megacephalum (Baker) R.M.King & H.Rob. | herb       |        |                     | Baitello et al. 2013               |                  |
| Chaptalia integerrima (Veill.) Burkart  | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Chaptalia mandoni Sch.Bip. ex Burkart  | herb        | 4H     |                     | 310/2089                           |                  |
| Chresta sphaerocephala DC.             | shrub       | 5A     | X                   | 303/2165, 304/2166                |                  |
| Chromolaena congesta (Hook. & Arn.) R.M.King & H.Rob. | shrub 5B     | X     | 234/2078             | 235/2078                          |                  |
| Chromolaena hirsuta (Hook. & Arn.) R.M.King & H.Rob. | shrub 5C     | X     | 200/2200, 201/2201  | 235/2079                          |                  |
| Chromolaena laeviseta (Lam.) R.M.King & H.Rob. | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Chrysolea cognata (Less.) Dematt.      | sub-shrub   | 5D     |                     | 152/2128, 153/2129                |                  |
| Chrysolea desertorum (Mart. ex DC.) Dematt. | herb        | 3E     |                     | 151/2127                          |                  |
| Chrysolea obovata (Less.) Dematt.      | sub-shrub   | 5F     | X                   | 139/1945                          |                  |
| Chrysolea simplex (Less.) Dematt.      | herb        |        |                     | 140/1946                          |                  |
| Clidadium armani (Rab.) Sch.Bip. ex O.E.Schultz | shrub       |        |                     | Baitello et al. 2013               |                  |
| Conyza primulifolia (Lam.) Cuatrec. & Lourtieig | herb       | 5G     |                     | 123/1914                          |                  |
| Grazielia intermittu (DC.) R.M.King & H.Rob. | shrub 5H    | X      | 24/1906, 25/1901    | 64/1996, 217/217                  |
| Hiohephylum trioides (Gardner) Cabrera | shrub       | 6A     |                     |                                  |                  |
| Inulopsis samporum (Gardner) G.L.Hessom | herb        |        |                     | Baitello et al. 2013               |                  |
| Inulopsis scoposa (DC.) O.Hoffm.       | herb        | 6B     | X                   | 199/1980                          |                  |
| Koanophyllum myriophyllum (DC.) R.M.King & H.Rob. | sub-shrub   | 6C     | 296/2132, 288/2180, 289/2181 |                  |
| Lessingiaanthus angrophyllus (Less.) H.Rob. | sub-shrub   | 6D     | 23/1989, 18/2126    | 272/2129, 277/2132, 278/2134      |
| Lessingiaanthus cephalotes (DC.) H.Rob. | sub-shrub   | 6E     | 335/2044, 336/2045  | 273/2129, 277/2132, 278/2134      |
| Lessingiaanthus euryphyllus (DC.) H.Rob. | sub-shrub   | 6F     | 337/2046, 338/2047, 340/2049 |                  |
| Lessingiaanthus glabratus (Less.) H.Rob. | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Lessingiaanthus grandiflora (Less.) H.Rob. | sub-shrub   | -      |                     |                                  |                  |
| Lessingiaanthus roesii (Mart. ex DC.) H.Rob. | sub-shrub   | 7A     | 273/2120, 277/2132, 278/2134 |                  |
| Lessingiaanthus virgulatus (Mart. ex DC.) H.Rob. | sub-shrub   | 7B     | 45/1960, 46/1961, 47/1962 |                  |
| Luckia lyrupedinoides (Less.) S.E.Freire | herb        | 6G     | X                   | 95/2019                           |                  |
| Mikania nummularia DC.                 | sub-shrub   | -      |                     | 62/1994                           |                  |
| Mikania officinalis Mart.              | sub-shrub   | 6H     | X                   | 138/1944                          |                  |
| Mikania sessilifolia DC.               | sub-shrub   | 7C     | X                   | 65/1995, 352/2164                 |                  |
| Moquiniastrum panulatum (Less.) G.Sancho | shrub       | -      |                     | 70/2002, 71/2003                  |                  |
| Moquiniastrum polygonum (Less.) G.Sancho | shrub       | -      |                     | 70/2004, 71/2003                  |                  |
| Orthopappus angustifolius (Swe) Gleason | herb        | -      |                     |                                  |                  |
| Piptocarpa axillaris (Less.) Baker     | shrub       | -      |                     | Baitello et al. 2013               |                  |
| Piptocarpa macropoda (DC.) Baker       | shrub       | -      |                     | Baitello et al. 2013               |                  |
| Piptocarpa rotundifolia Baker          | shrub       | -      |                     | Baitello et al. 2013               |                  |
| Piptocarpa aloponocaudes (Lam.) DC.    | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Richterago reticulatus (Vell.) Roque   | herb        | -      |                     | 236/2080                          |                  |
| Solidago chilensis Meyen               | sub-shrub   | -      | X                   | 237/2081, 238/2082                 |                  |
| Stenecephalum megapotamicum (Spreng.) Sch.Bip. | sub-shrub   | -      | X                   | 204/2104                          |                  |
| Strophanthus lindianus DC.             | herb        | -      |                     | 235/2079                          |                  |
| Symphyopappus cuneatus Sch.Bip.ex Baker | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Symphyopappus reticulosus Baker        | sub-shrub   | -      |                     | Baitello et al. 2013               |                  |
| Tesisia baccata (L.f.) Pruski          | shrub       | 7D     |                     |                                  |                  |
| Vernonanthura divaricata (Spreng.) H.Rob. | shrub       | -      |                     | Baitello et al. 2013               |                  |
| Vernonanthura montevicensis (Spreng.) H.Rob. | shrub       | -      |                     | Baitello et al. 2013               |                  |
| Vernonanthura polyanthes (Spreng.) A.J.Vega & Dematt. | shrub       | -      |                     |                                  |                  |
| Families/Species | Habit | Figure | Conservation status | Reported by Baitello et al. (2013) | vck/HUFABC/ref. |
|-----------------|-------|--------|---------------------|-----------------------------------|-----------------|
| Anemopogon arvensis (Vell.) Stellfeld ex De Souza | sub-shrub | - | EN | Baitello et al. 2013 | |
| Fredericia platygynha (Cham.), L.G.Lohmann | shrub | 7F | | 191/2191, 192/2192 | |
| Handroanthus ochraceus (Cham.) Mattos | tree | - | | Baitello et al. 2013 | |
| Jacaranda oxyphylla Cham. | shrub | 8A | | 39/1931 | |
| Zeyheria montane Mart. | shrub | 8B | | 190/2190 | |
| Boraginaceae | | | | | |
| Varronia calocephala (Cham.) Friesen | sub-shrub | 8C | | 256/2100 | |
| Bromeliaceae | | | | | |
| Dyckia tuberosa (Vell.) Beer | herb | 8D | | 339/2048 | |
| Calophyllaceae | | | | | |
| Kielmeyera corymbosa Mart. | shrub | - | | Baitello et al. 2013 | |
| Kielmeyera grandiflora (Wawra) Saddi | tree | - | | Baitello et al. 2013 | |
| Kielmeyera pumila Pohl | sub-shrub | 8E | | 121/1912 | |
| Campanulaceae | | | | | |
| Lobelia camporum Pohl | herb | 8F | | 266/2110, 118/1909 | |
| Caryocaraceae | | | | | |
| Caryocar brasiliense A.St.-Hil. | tree | - | | Baitello et al. 2013 | |
| Celastraceae | | | | | |
| Pentassus campestris (Cambess.) A.C.Sm. | shrub | 8H | | 317/2026, 318/2027 | |
| Phlomis populnea Reissek | tree | - | | Baitello et al. 2013 | |
| Convolvulaceae | | | | | |
| Distimake cissoides (Lam.) A.R.Simões & Staples | vine | - | | Baitello et al. 2013 | |
| Distimake hirsutus (O'Donell) Petrongari & Sim.-Bianch. | vine | 9A | | 119/1910, 326/2035, 327/2036 | |
| Distimake macrocalyx (Ruiz & Pav.) A.R.Simoes | vine | 9B | | 120/1911 | |
| Cucurbitaceae | | | | | |
| Cayaponia cabocla (Vell.) Mart. | vine | - | | Baitello et al. 2013 | |
| Cayaponia espedina (Silva Manso) Cogn. | vine | 9G | | 29/1952, 30/1953 | |
| Melothria camporum Benth. | vine | - | | Baitello et al. 2013 | |
| Cupressaceae | | | | | |
| Bulbostylis hirtella (Schrad.) Urb. | herb | - | | 154/2130 | |
| Bulbostylis junciformis (Kunth) C.B.Clarke | herb | - | | 181/2160 | |
| Cypselia pubens Sims. | herb | - | | 157/2131 | |
| Dilleniacae | | | | | |
| Davilla elliptica A.St.-Hil. | vine | - | | 34/1926 | |
| Ericaceae | | | | | |
| Gaylussacia brasiliensis (Spreng.) Messn. | shrub | - | | Baitello et al. 2013 | |
| Erythroxylaceae | | | | | |
| Erythroxylum campestris A.St.-Hil. | shrub | 10A | | 97/1906, 98/1907, 320/2029 | |
| Erythroxylum cuneifolium Mart., D.E.Schulz | shrub | - | | Baitello et al. 2013 | |
| Erythroxylum deciduum A.St.-Hil. | shrub | - | | Baitello et al. 2013 | |
| Erythroxylum microphyllum A.St.-Hil. | shrub | - | | Baitello et al. 2013 | |
| Euphorbiaceae | | | | | |
| Croton campestri A.St.-Hil., A.Juss. & Cambess. | shrub | - | | Baitello et al. 2013 | |
| Croton idrichsieni G.L.Webster | sub-shrub | 10C | | 166/2178 | |
| Croton lundianus (Didr.) Müll.Arg. | herb | 10D | | 175/2137, 176/2138 | |
| Euphorbia petalotricha Boiss. | herb | 10E | | 94/2014 | |
| Fabaceae | | | | | |
| Chamancita catarhatica (Mart.) H.S.Inr & Barneby | sub-shrub | 10F | | 161/2173 | |
| Hevea brasiliensis (Jacq.) Muell.Arg. | sub-shrub | 10G | | 194/2192 | |
| Plagiostachys guianensis (Willd.) O.Kuntze | herb | 10H | | 195/2193 | |
| Sapium glandulosum (L.) Morong | shrub | - | | Baitello et al. 2013 | |
| Families/Species | Habit | Figure | Conservation status | Reported by Baitello et al. (2013) | vck/HUoLAB/ref. |
|------------------|-------|--------|---------------------|------------------------------------|-----------------|
| Chamaecrista longipilosa (Kunth ex Vogel) Britton ex Pittier | sub-shrub | - | - | 198/2198 |
| Chamaecrista nivitana subsp. paulonianae (DC. ex Collod.) H.S.Irwin & Barneby | sub-shrub | - | - | Baitello et al. 2013 |
| Clitoria guianensis (Aubl.) Benth. | sub-shrub | 10G | X | 195/2195 |
| Collinea speciosa (L.) DC. | shrub | - | - | Baitello et al. 2013 |
| Crotalaria langsdorffii Desf. | tree | - | - | Baitello et al. 2013 |
| Crotalaria micans Link | sub-shrub | - | - | Baitello et al. 2013 |
| Crotalaria unifoliolata Benth. | sub-shrub | 10H | X | 131/1937 |
| Dalbergia brasiliensis Vogel | tree | - | - | Baitello et al. 2013 |
| Dalbergia mixolobium Benth. | tree | - | - | Baitello et al. 2013 |
| Desmodium subsecundum Vogel | herb | - | - | Baitello et al. 2013 |
| Eriosema campestre var. macropolluna (Great) Fortunato | sub-shrub | - | - | 233/2077 |
| Eriosema crinitum (Kunth) G.Don | sub-shrub | 11A | 270/2117 |
| Eriosema heterophyllum Benth. | herb | 11B | X | 56/1988, 298/2161 |
| Eriosema platycarpon Micheli | herb | - | - | Baitello et al. 2013 |
| Eriosema racemosa decumbens Benth. (L.P Queiroz) | vine | 11C | - | 257/2101, 258/2102 |
| Betancourtia martii (DC.) L.P Queiroz | vine | 11D | 314/2023, 315/2024 |
| Dalbergia brasiliensis Vogel | tree | - | - | Baitello et al. 2013 |
| Dalbergia mixolobium Benth. | tree | - | - | Baitello et al. 2013 |
| Desmodium subsecundum Vogel | herb | - | - | Baitello et al. 2013 |
| Eriosema campestre var. macropolluna (Great) Fortunato | sub-shrub | - | - | 233/2077 |
| Eriosema crinitum (Kunth) G.Don | sub-shrub | 11A | 270/2117 |
| Eriosema heterophyllum Benth. | herb | 11B | X | 56/1988, 298/2161 |
| Eriosema platycarpon Micheli | herb | - | - | Baitello et al. 2013 |
| Cerradocladia decumbens Benth. (L.P Queiroz) | vine | 11C | - | 257/2101, 258/2102 |
| Betancourtia martii (DC.) L.P Queiroz | vine | 11D | 314/2023, 315/2024 |
| Nanogalactia pretiosa (Burkart) L.P Queiroz | vine | 11E | 167/2051 |
| Leuchocloron incuriale (Vell.) Barneby & J.W.Greene | tree | - | - | Baitello et al. 2013 |
| Gentianaceae | Calolisianthus amplissimus (Mart.) Gilg | herb | 12B | X | 271/2118, 272/2119 |
| Calolisianthus pendulus (Mart.) Gilg | sub-shrub | - | - | Baitello et al. 2013 |
| Calolisianthus speciosus (Cham. & Schltdl.) Gilg | sub-shrub | - | - | Baitello et al. 2013 |
| Curtia tenuifolia (Aubl.) Knobl. | herb | - | CR | Baitello et al. 2013 |
| Deianira chiquitana Herzog | herb | - | - | Baitello et al. 2013 |
| Deianira nervosa Cham. & Schltdl. | herb | 12C | - | 232/2076, 268/2115, 269/2116 |
| Gesneriaceae | Sinningia allagophylla (Mart.) Wehrler | herb | - | X | 130/1956 |
| Hypericaceae | Vismia microstachys A.St-Hil. | tree | - | - | Baitello et al. 2013 |
| Iridaceae | Calydoera campatrix (Kiatt) Baker | herb | - | - | Baitello et al. 2013 |
| Gelasia corneula (Vell.) Ravenna | herb | - | - | Baitello et al. 2013 |
| Sisyrinchium purpurellum Ravenna | herb | 12D | - | 312/2021, 341/2050 |
| Sisyrinchium restioides Spreng. | herb | 12E | X | 299/2209 |
| Sisyrinchium vaginatum Spreng. | herb | - | - | Baitello et al. 2013 |
| Trimezia juncifolia (Klatt) Benth. & Hook.f. | herb | - | - | Baitello et al. 2013 |
| Lamiastrum alpinum Benth. | herb | 12C | - | 232/2076, 268/2115, 269/2116 |
| Lauraceae | Oostenrya corymbosa (Meisn.) Mez | tree | - | - | Baitello et al. 2013 |
| Oostenrya minorum (Nees & Mart.) Mez | tree | - | - | Baitello et al. 2013 |
| Families/Species                                | Habit           | Figure | Conservation status | Reported by Baitello et al. (2013) | vck/HUFABC/ref. |
|------------------------------------------------|-----------------|--------|---------------------|-------------------------------------|-----------------|
| Ocotea pulchella (Nees & Mart.) Mez            | tree            | -      |                     | Baitello et al. 2013               |                 |
| Ocotea velutiana (Meiss.) Mez                  | tree            | -      |                     | Baitello et al. 2013               |                 |
| Ocotea velutina (Nees) Mart. ex B.D. Jacks.    | tree            | -      |                     | Baitello et al. 2013               |                 |
| **Lythraceae**                                 |                 |        |                     |                                     |                 |
| Cuphea limonoides Cham. & Schltdl.              | herb            | -      |                     | Baitello et al. 2013               |                 |
| L-filesia paccari A.St.-Hil.                   | tree            | -      |                     | Baitello et al. 2013               |                 |
| **Malpighiaceae**                              |                 |        |                     |                                     |                 |
| Banisteriopsis sampestris (A.Juss.) Little     | sub-shrub       | 13G    |                     | X 229/2073, 210/2074               |                 |
| Byssosma angustifolia Kanh.                    | tree            | -      |                     | Baitello et al. 2013               |                 |
| Byssosma guileimiana A.Juss.                   | shrub           | 13H    |                     | X 221/2063                         |                 |
| Byssosma intermedia A.Juss.                    | shrub           | 14A    |                     | X 219/2061                         |                 |
| Byssosma subterranca Braide & Markgr.          | sub-shrub       | 14B    |                     | X 108/1977, 220/2062, 222/2064     |                 |
| Camarea hirsuta A.St.-Hil.                     | sub-shrub       | -      |                     | EN                                  |                 |
| Heteropitys umbellata A.Juss.                  | shrub           | -      |                     | Baitello et al. 2013               |                 |
| **Melastomataceae**                            |                 |        |                     |                                     |                 |
| Acisanthera quadrata Pers.                     | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Acisanthera variabilis (Naud.) Triana           | herb            | 14G    |                     | 299/2121                            |                 |
| Cambessedesia elegans (A.St.-Hil. ex Bonpl.) DC| sub-shrub       | 14H    |                     | X 40/1955, 41/1956, 51/1983        |                 |
| Chatecesta gracilis (Bonpl.) DC.               | sub-shrub       | 15A    |                     | X 250/2099                          |                 |
| Chatecesta hirsutica DC.                       | sub-shrub       | -      |                     | Baitello et al. 2013               |                 |
| Chuteustoma glaziównii Cogn.                   | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Leandra arcaffifera (Naudin) Cogn.             | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Leandra flavinemas Cogn.                      | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Leandra lindeniana Cogn.                      | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Leandra polyancha (Naudin) Cogn.               | shrub           | 15B    |                     | X 36/1928, 37/1929, 38/1930        |                 |
| Miconia albicans (Sw.) Triana                 | shrub           | 15C    |                     | 79/1918                            |                 |
| Miconia latebracteata (DC.) Naudin             | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Miconia ligustróides (DC.) Naudin              | tree            | 15D    |                     | X 52/1984, 53/1985, 54/1986, 55/1987|                 |
| Miconia posilflora (DC.) Naudin                | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Miconia stenostachya DC.                      | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Microlicia subphyllae DC.                      | sub-shrub       | 15E    |                     | X 253/2097                          |                 |
| Plenafrigidosum (DC.) Triana                  | sub-shrub       | -      |                     | Baitello et al. 2013               |                 |
| Plenafrifolium (Cham.) Triana                 | sub-shrub       | 15F    |                     | 313/2622                           |                 |
| Plenafriloxiimum Triana                       | sub-shrub       | -      |                     | Baitello et al. 2013               |                 |
| Tibuchina dubia (Cham.) Cogn.                  | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Tibuchina versicolor Cogn.                    | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Trembleya phlogiformis Mart. & Schrank ex DC.  | sub-shrub       | 15G    |                     | X 254/2098, 188/2188               |                 |
| **Menispermaceae**                             |                 |        |                     |                                     |                 |
| Cissampelos ovalifolia DC.                     | herb            | 15H    |                     | X 17/1893, 18/1894                 |                 |
| **Myrtaceae**                                  |                 |        |                     |                                     |                 |
| Campanoeaes guazumifolia (Cambess.) O Berg     | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Campomanesia pubescens (Mart. ex DC.) O Berg   | shrub           | 16A    |                     | X 89/1968, 311/2020                |                 |
| Eugenia bigeminata DC.                        | shrub           | 16B    |                     | X 81/1920, 82/1921, 74/2006        |                 |
| Eugenia inoxiflora DC.                        | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Eugenia klotzschiana O Berg                   | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Eugenia punicifolia (Kanth) DC.                | shrub           | 16C    |                     | X 84/1923                          |                 |
| Myrica hebegetale DC.                         | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Pimenta pseudocaryophyllus (Gomes) Landrum     | shrub           | -      |                     | Baitello et al. 2013               |                 |
| Psidium firmum O Berg                         | shrub           | 16D    |                     | X 83/1922                          |                 |
| Psidium grandifolium Mart. ex DC.              | shrub           | 16E    |                     | X 297/2155                         |                 |
| Psidium guineense Sw.                         | shrub           | -      |                     | Baitello et al. 2013               |                 |
| **Ochnaceae**                                  |                 |        |                     |                                     |                 |
| Ouratea floribunda (A.St.-Hil.) Engl.          | sub-shrub       | 16F    |                     | X 103/1972, 104/1973, 105/1974, 106/1975|                 |
| Familias/Species         | Habit  | Figure | Conservation status | Reported by Baitello et al. (2013) | vck/HUFABC/ref. |
|--------------------------|--------|--------|---------------------|------------------------------------|-----------------|
| Orchidaceae              |        |        |                     |                                    |                 |
| Cleistis paranaensis     | herb   | -      |                     | Baitello et al. 2013              |                 |
| Cyrtopodium pallidum     | herb   | -      |                     | Baitello et al. 2013              |                 |
| Epipactis sphenoglossum  | herb   | 16G    | X                   | 186/2186, 187/2187                |                 |
| Galeanae juncageoides    | herb   | -      |                     | Baitello et al. 2013              |                 |
| Habenaria johannensis    | herb   | -      |                     | Baitello et al. 2013              |                 |
| Habenaria secunda        | herb   | -      |                     | Baitello et al. 2013              |                 |
| Pelexia laminate         | herb   | -      |                     | Baitello et al. 2013              |                 |
| Orobanchaceae            |        |        |                     |                                    |                 |
| Buchnea ternifolia       | herb   | 16H    |                     | 75/2007, 76/2008                  |                 |
| Eryodema grandiflora     | shrub  | -      |                     | EN                                 |                 |
| Esterhazya splendida     | sub-shrub | 17A | X                   | 227/2069, 228/2070                |                 |
| Passifloraceae           |        |        |                     |                                    |                 |
| Passiflora clathrata     | sub-shrub | - |                     | Baitello et al. 2013              |                 |
| Pentaphylacaceae         |        |        |                     |                                    |                 |
| Ternstromia brasiliensis | shrub  | -      |                     | Baitello et al. 2013              |                 |
| Poaceae                  |        |        |                     |                                    |                 |
| Andropogon bicrensis     | herb   | 17B    |                     | 85/1924                            |                 |
| Andropogon lateralis     | herb   | 17C    |                     | 158/2134                           |                 |
| Andropogon leucostachus   | herb   | 17D    |                     | 113/2016, 114/2017                |                 |
| Antherauntia lanata      | herb   | 17E    | X                   | 1/1875, 13/1879                   |                 |
| Aristida jubata          | herb   | 17F    |                     | 144/1950                           |                 |
| Aristida setifolia       | herb   | -      |                     | Baitello et al. 2013              |                 |
| Arthropogon villosus     | herb   | 17G    |                     | 110/1981                           |                 |
| Axonopus aureus          | herb   | 18A    |                     | 248/2092                           |                 |
| Axonopus brasiliensis    | herb   | 18B    |                     | 32/1954                            |                 |
| Axonopus fuscifolius     | herb   | -      |                     | Baitello et al. 2013              |                 |
| Axonopus marginatus      | herb   | 18C    |                     | 11/1877                            |                 |
| Axonopus pressus         | herb   | 18D    |                     | 250/2094, 251/2095                |                 |
| Calamagrostis virensiflora | herb  | 18E   |                     | 15/1881, 243/2087                 |                 |
| Digitaria corymotricha   | herb   | -      |                     | 117/1892                           |                 |
| Elyonurus muticus        | herb   | 18G    |                     | 10/1876, 14/1880, 7/1886, 8/1887  |                 |
| Eragrostis pilosa        | herb   | -      |                     | 92/2012, 93/2013                  |                 |
| Eragrostis polytricha    | herb   | -      |                     | 141/1947, 142/1948, 143/1949, 249/2093 |                 |
| Eriochysis holcoides      | herb   | -      |                     | Baitello et al. 2013              |                 |
| Hyparrhenia rufa         | herb   | -      |                     | Baitello et al. 2013              |                 |
| Imperata tenuis          | herb   | -      |                     | Baitello et al. 2013              |                 |
| Melinis minutiflora      | herb   | -      |                     | Baitello et al. 2013              |                 |
| Mesosetum ferrugineum    | herb   | 19A    |                     | 12/1876, 6/1885                   |                 |
| Panicum campestre        | herb   | -      |                     | 28/1904, 244/2088, 245/2089, 246/2090, 247/2091 |                 |
| Panicum rigidum          | herb   | 19B    |                     | 27/1963                            |                 |
| Panicum sellowii         | herb   | 19C    |                     | 170/2112                           |                 |
| Paspalum cannatum        | herb   | -      |                     | 9/1888                            |                 |
| Paspalum cordatum        | herb   | 19D    |                     | 163/2175, 164/2176                |                 |
| Paspalum ensatum         | herb   | 19E    |                     | 5/1884                            |                 |
| Paspalum escomum         | herb   | 19F    |                     | 31/1979, 283/2148                 |                 |
| Paspalum flavolium       | herb   | 19G    |                     | 124/1915, 125/1916, 126/1917, 249/2093 |                 |
| Paspalum hyalinum        | herb   | -      |                     | Baitello et al. 2013              |                 |
| Paspalum mariculum       | herb   | -      |                     | Baitello et al. 2013              |                 |
| Paspalum notatum         | herb   | -      |                     | Baitello et al. 2013              |                 |
| Paspalum plicatulum      | herb   | -      |                     | Baitello et al. 2013              |                 |
| Paspalum pectinatum      | herb   | 19G    |                     | 111/1982                           |                 |
| Paspalum pilosum         | herb   | 19H    |                     | 264/2149                           |                 |
| Paspalum ustrei          | herb   | -      |                     | 4/1889                            |                 |
| Schizachyrium condensatum| herb   | -      |                     | 216/2058, 217/2059                |                 |
| Schizachyrium sanguineum | herb   | -      |                     | 293/2123                           |                 |
| Schizachyrium tenerum     | herb   | 20A    |                     | 73/2005                            |                 |
| Families/Species | Habit | Figure | Conservation status | Reported by Baitello et al. (2013) | vck/HUFABC/ref. |
|------------------|-------|--------|---------------------|-----------------------------------|-----------------|
|              |       |        |                     |                                   |                 |
| Polygonaceae    |       |        |                     |                                   |                 |
| *Setaria parviflora* (Poir.) Kerguélen | herb | 20B | X | 26/1902 |                 |
| *Sporobolus submersis* Hitchc. | - | - | 2/1882, 3/1883 |                 |                 |
| *Trachypogon vestitus* Andersson | herb | - | 2/1882, 3/1883 | Baitello et al. 2013 |                 |
| *Tristachya leiochrysa* Rees | herb | - | 2/1882, 3/1883 | Baitello et al. 2013 |                 |
| *Urochloa brianthae* (Hochst. Ex A.Rich) R.D.Webster | herb | - | 2/1882, 3/1883 | Baitello et al. 2013 |                 |
| Polygalaceae    |       |        |                     |                                   |                 |
| *Asemia hirsuta* (A.St.-Hil. & Moq.) J.F.B.Pastore & J.R.Abbott | herb | - | 2/1882, 3/1883 | Baitello et al. 2013 |                 |
| *Monnina richardiana* A.St.-Hil. & Moq. | sub-shrub | 20C | X | 115/1908 |                 |
| *Polygala cuspidata* DC. | herb | - | 2/1882, 3/1883 | Baitello et al. 2013 |                 |
| *Polygala pooye Mart.* | herb | - | 2/1882, 3/1883 | Baitello et al. 2013 |                 |
| *Polygala pumila* Norlind | herb | - | 2/1882, 3/1883 | Baitello et al. 2013 |                 |
| Primulaceae     |       |        |                     |                                   |                 |
| *Myrsine coriacea* (Sw.) R.Br. ex Roem & Schult | tree | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Myrsine guianensis* (Aubl.) Kuntze | tree | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Myrsine umbellata* Mart. | - | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| Proteaceae      |       |        |                     |                                   |                 |
| *Roupala brasiliensis* Klotzsch | tree | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| Rubiaceae       |       |        |                     |                                   |                 |
| *Boronia tenella* (Kunth) Cham. & Schldl. | herb | 20G | 77/2141 | 33/1925 |                 |
| *Boronia verticillata* (L.) G.Mey. | sub-shrub | 20H | 77/2141 | 33/1925 |                 |
| *Boronia warmingii* K.Schum. | tree | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Galianthe angustifolia* (Cham. & Schldl.) DC. | tree | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| Sapindaceae     |       |        |                     |                                   |                 |
| *Coccocypselum lanceolatum* (Ruiz & Pav.) Pers. | herb | - | 2/1882, 3/1883 | Baitello et al. 2013 |                 |
| *Declieuxia fruticosa* (Willd.) Kuntze | tree | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Faramea latifolia* (Cham. & Schldl.) DC. | sub-shrub | 21B | 22/1898 | 112/1939 |                 |
| *Salicaceae*    |       |        |                     |                                   |                 |
| *Cavenia sylvestris* Sw. | tree | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Tsalantia brasiliensis* A.DC. | sub-shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Sapindaceae*   |       |        |                     |                                   |                 |
| *Dodonaea viscosa* Jacq. | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Sapindus paniculata* Vell. | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Sapindus variegata* Lam. | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Styrax acuminatus* Pohl | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Styrax camporum* Pohl | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Styrax pohlii* A.DC. | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Symplocaceae*  |       |        |                     |                                   |                 |
| *Symplocos inclinata* Benth. | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Symplocos oboirncifolia* Casar. | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Symplocos pohlii* A.DC. | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Symplocos triloba* (Mart.) Mart. | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Turnera brasiliensis* Urb. | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Verbenaceae*   |       |        |                     |                                   |                 |
| *Lantana trifolia* L. | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
| *Lippia lusitana* Cham. | shrub | - | 309/2153, 310/2154 | Baitello et al. 2013 |                 |
recently burned areas and roadsides of PEJY.

The survey by Baitello et al. (2013) in PEJY found 280 species in open habitats, 79 more than those identified by us. Despite this, only 115 species are common to both surveys. Our research found 86 new species occurring at PEJY that were not listed by Baitello et al. (2013). The new records represent an addition of almost a third of the species richness previously recorded, totaling 366 species found in open habitats of PEJY. The families Poaceae (26 spp.), Asteraceae (24 spp.), Fabaceae (7 spp.), and Rubiaceae (6 spp.) had the most significant increase in numbers of species compared to the list by Baitello et al. (2013). Our survey doubled the list of threatened species, from seven (Baitello et al. 2013) to 14, and found one more potentially invasive species in PEJY.

Of the total species presented here, including those of Baitello et al. (2013), 14 appear in the São Paulo state’s Red List of threatened plants (São Paulo 2016) (Table 2). Hydrocotyle pusilla A.Rich. (Araliaceae), Paspalum ustleri Hack. (Poaceae), Polygala pumila Norlind (Polygalaceae), and Richardia schumannii W.H.Lewis & R.L.Oliv. (Rubiaceae) are considered Presumably Extinct. Curtia tenuifolia (Aubl.) Knobl. (Gentianaceae) is listed as Critically Endangered. Anemopaegma arvense (Vell.) Stellfeld ex De Souza (Bignoniaceae), Camarea hirsuta A.St.-Hil. (Malpighiaceae), Escobedia grandiflora (L.f.) Kunz, (Orobanchaceae), Digitaria corynotricha (Hack.) Henrard, Mesosetum ferrugineum (Trin.) Chase, Paspalum erianthum Nees ex Trin., Schizachyrium tenerum Nees (all Poaceae), and Turnera hilaireana Urb. (Turneraceae) are Endangered, and Hippeastrum morelianum Lem. (Amaryllidaceae) is Vulnerable. Among any of these threatened species, P. pumila, M. ferrugineum, S. tenerum, and T. hilaireana seem to have stable populations, as their individuals have been frequently observed in different areas of PEJY. On the other hand, few individuals of H. pusilla, P. usteri, and D. corynotricha were observed in isolated points in the study area, indicating that these populations may be reduced.

We provide short descriptions, vernacular names (when present), comments, and geographic distribution in Brazil for 42 species; these are all threatened species and Poaceae species that we collected in our study.

The cluster analysis of the floristic composition of PEJY revealed three large groups (Fig. 2): (1) with the areas in the countryside of the state of São Paulo (Assis, Itirapina, Mogi Guaçu, Pedregulho, Pirassununga, Pratânia, and Santa Rita do Passa Quatro), where sandy and deep soils predominate as well as one seasonal subtropical climate (Table 1); (2) areas in MRSP and Paraná (Butanã, Jaraguá, Juquery, and Ponta Grossa), characterized by shallow clayey soils and a humid subtropical climate (Table 1); and (3) the areas in Alto Paraíso and Brasília, which are present in the core region of the Cerrado biome, with deep soils and a typical savanna climate (Table 1). The floristic similarity was observed (Jaccard < 25%, Mueller-Dombois and Ellenberg 1974) between PEJY and the grasslands of Butanã (Fig. 2), currently nearly nonexistent in the city of São Paulo. Despite the PEJY and the Jaraguá State Park both being located in the MRSP, our analysis indicated a dissimilarity (Jaccard < 25%) between their flora. The flora of the Cerrado sites in the countryside of São Paulo state was similar to each other but dissimilar to grassland formations of the MRSP, Ponta Grossa, Alto Paraíso, and Brasilia (Fig. 2). The cluster analysis by floristic similarity calculated with the Sørensen index did not change the cluster structure substantially.

Araliaceae

Hydrocotyle pusilla A.Rich.

Identification. Small prostrate herb, pubescent stem. Characterized by its alternate, simple, peltate, orbicular, and glabrous leaves, with 3–20 mm in diameter. Flowers white, in a 3–10-flowered simple umbel.

Remarks. A rare species found at grassland edges near anthropized areas. Considered Presumably Extinct in São Paulo state.

Brazilian range. Midwest (MS state), Northeast (BA state), South and Southeast (except ES state) regions.

Material examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20’42”S, 046°42’06”W; 2 Oct. 2018; collection number vck324; HUFABC2033.

Polygalaceae

Polygala pumila Norlind

Figure 20F

Identification. Small prostrate herb, cylindrical stem very branched. Differentiated by its alternate to sub-opposite, sessile or sub-sessile, elliptic-ovate leaves with mucronulate apex, 3.5–7 mm length and 1.5–5 mm wide.
Green-yellowish flowers in a spike.

**Remarks.** An unusual species, observed in low frequency in the PEJY grasslands and commonly occurring in clusters with other individuals from the same species. Considered Presumably Extinct in São Paulo state and Near Threatened in Brazil.

**Brazilian range.** South and Southeast regions (except ES and RJ states).

**Material examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′42″S, 046°42′06″W; 12 Sep. 2017; collection number vck86; HUFABC1932.

Rubiaceae

**Richardia schumannii W.H.Lewis & R.L.Oliv.**

**Figure 21E**

**Identification.** Small prostrate herb, with a short and hirsute stem. Stipulate sheath significantly reduced. Identified by its simple, opposite, lanceolate to narrowly ovate leaves with hirsute abaxial indumenta, 11 mm long and 5 mm wide. Glomerule with 1–4 white flowers.

**Remarks.** A rare species observed sparsely occurring in native grassland, near other individuals from the same species. Considered Presumably Extinct in São Paulo state, and Endangered in Brazil.

**Brazilian range.** South (PR state) and Southeast (except ES and RJ states) regions.

**Material examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′42″S, 046°42′06″W; 13 Dec. 2017; collection number vck132; HUFABC1938.

Turneraceae

**Turnera hilaireana Urb.**

**Figure 22D**

**Identification.** Erect herb, 3–17 cm height, with simple and glandular hairs. Distinguished by its alternate, simple, elliptical, obovate, or ovate leaves with discoidal, extrafloral nectaries, simple hairs on both sides, 7–28 mm long, and 4–15 mm wide. Flower yellow, axillary.

**Remarks.** A rare species, occurring sparsely in the native grassland. Considered Endangered in São Paulo state.

**Brazilian range.** Midwest (except MS and MT states), South (PR state) and Southeast (except ES and RJ states) regions.

**Material examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°21′05″S, 046°41′48″W; 15 Aug. 2017; collection number vck42; HUFABC1957.

Poaceae

**Andropogon bicornis L.**

**Figure 17B**

**Identification.** Perennial tussock grass, 0.6–1.8 m height. Leaf-blades linear, 23–60 cm long, 0.2–0.6 mm wide, usually hairy at the abaxial side, ligulate. Characteristic for its branched, contracted corymbiform inflorescence, with soft white hairs.

**Common name.** Capim-rabo-de-burro; Capim-vassoura

**Remarks.** Common species, occurring on roadsides and places with seasonal flooding.

**Brazilian range.** All Brazilian territory.

**Material examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°21′05″S, 046°41′48″W; 8 Sep. 2017; collection number vck85; HUFABC1924.

Andropogon lateralis Nees

**Figure 17C**

**Identification.** Perennial tussock grass, 0.40–1.75 m height. Leaf-blades linear, glabrous or hairy, 7–35 cm long and 0.2–0.4 cm wide, ligulate. It is identified by its inflorescence with 2–10 flower branches conjugated or sub-digitate, 3.5–6.0 cm long, pilose, with aristulate spikelets.

**Remarks.** Unusual grass, occurring mainly on sites with high moisture.
Figure 3. ACANTHACEAE A. Ruelia geminiflora. ANNONACEAE B. Duguetia furfuracea. APIACEAE C. Eryngium pristis. APOCYNACEAE D. Mandevilla velame, flower in detail. E. Oxypetalum erectum. ARALIACEAE F. Didymopanax macrocarpus. ARISTOLOCHIACEAE G. Aristolochia labiata, flower in detail. ASTERACEAE H. Aldama robusta.
Figure 4. ASTERACEAE A. Aspilia foliacea. B. Ayapana amygdalina. C. Baccharis articulata. D. B. helichrysoïdes. E. B. subdentata. F. B. cognata. G. Campovassouria cruciata. H. Chaptalia mandonii.
Figure 5. ASTERACEAE  
A. Chresta sphaerocephala.  
B. Chromolaena congesta.  
C. C. hirsuta.  
D. Chrysolaena cognata, inflorescence in detail.  
E. C. desertorum.  
F. C. obovata.  
G. Conyza primulifolia.  
H. Graziella intermedia, inflorescence in detail.
Brazilian range. Midwest, North (AM state), Northeast (MA state), South and Southeast (except ES state) regions.

**Material examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′17″S, 046°41′40″W; 10 Jan. 2018; collection number vck158; HUFABC2134.

**Andropogon leucostachyus Kunth**

*Figure 17D*

**Identification.** Perennial tussock grass, 0.25–1.05 m height. Leaf-blades linear, glabrous, or scabrous on both sides, 5–40 cm long and 0.1–0.3 cm wide, ligulate. Distinguished by its florescence with 2–7 branches conjugated or digitated, 2.5–5.0 cm long, densely covered with white, silky hair.

**Common name.** Campim-colchão; Capim-membeca

**Remarks.** A common species on roadsides and disturbed sites.

*Brazilian range.** All Brazilian regions.

**Materials examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′11″S, 046°42′07″W; 27 Oct. 2017; collection number vck113; HUFABC2016 • same collection data as for preceding; collection number vck114; HUFABC2017.

**Anthaenantia lanata** (Kunth) Benth.

*Figure 17E*

**Identification.** Perennial tussock grass, 0.15–1.1 m height. Characterized by its leaf-blades glabrous, or sometimes hairy, plane and convolute, 7–60 cm long and 0.1–0.5 cm wide, with a clear and conspicuous central vein. Spikelets in a typical panicle, 8–20 cm long, with scattered hairs.

**Common name.** Capim-prateado; Capim-zaranza

**Remarks.** A common species frequently observed on PEJY’s native grassland and also occurring on disturbed sites.

*Brazilian range.** Midwest, North (except AC state), Northeast (except AL, RN and SE states), South and Southeast (except ES and RJ states) regions.

**Materials examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′17″S, 046°41′40″W; 21 Oct. 2017; collection number vck110; HUFABC1981.

**Axonopus aureus** P. Beauv.

*Figure 18A*

**Identification.** Perennial tussock grass with short rhizomes, 30–70 cm height. Leaf-blades linear, apex acute, 6–15 cm long and 0.2–0.3 cm wide. It is recognized by its florescence with 2–7 sub-digitate racemes, 5–9 cm long, covered with golden trichomes.

**Remarks.** Species with individuals in small clusters scattered across the native grassland, mainly over the shallow and rocky soils.

*Brazilian range.** Midwest, North, Northeast (except AL, CE and PI states), South (PR state) and Southeast (except ES and RJ states) regions.

**Materials examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′33″S, 046°41′40″W; 6 Mar. 2018; collection number vck248; HUFABC2092.

**Axonopus brasiliensis** (Spreng.) Kuhlm.

*Figure 18B*

**Identification.** Perennial tussock grass with short rhizomes, 26–70 cm height. Leaf-blades linear, glabrous or sparsely hirsute, apex sub-acute, 8–18 cm long, 0.1–0.3 cm wide, ligulate. It can be distinguished by its florescence with 2–6 digitate branches, 4–6 cm long, covered with golden trichomes.

**Remarks.** A common species on native grassland.

*Brazilian range.** Midwest, North (AM, RO and TO states), Northeast (BA and MA states), South and Southeast regions.
Figure 6. ASTERACEAE A. Hoehnephytum trixoides, inflorescence in detail. B. Inulopsis capose. C. Koanophyllon myrtilloides. D. Lessingiant-hus argyrophyllus, inflorescence in detail. E. L. cephalotes. F. L. argyrophyllus. G. Lucilia lycopodioides. H. Mikania officinalis, inflorescence in detail.
Figure 7. **ASTERACEAE** A. *Lessingianthus roseus*. B. *L. virgulatus*, inflorescence in detail. C. *Mikania sessilifolia*. D. *Tilesia baccata*. **BIGNONIACEAE** E. *Adenocalymma pedunculatum*, flowers in detail. F. *Fridericia platyphylla*, flowers in detail.
Figure 8. BIGNONIACEAE A. Jacaranda oxyphylla, flower in detail. B. Zeyheria montana, flower and fruit in detail. BORAGINACEAE C. Varronia calocephala. BROMELIACEAE D. Dickya tuberosa, inflorescence in detail. CALOPHYLLACEAE E. Kielmeyera pumila, flower in detail. CAMPANULACEAE F. Lobelia camporum. G. Wahlenbergia brasiliensis. CELASTRACEAE H. Peritassa campestris, flower and fruit on detail.
Material examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20'42"S, 046°42'06"W; 15 May. 2017; collection number vck32; HUFABC1954.

Axonopus marginatus (Trin.) Chase
Figure 18C
Identification. Perennial tussock grass, 30–60 cm height. Leaf-blades linear, apex sub-acute, densely covered with hairs, 6–30 cm long, 0.2–0.8 cm wide. Characterized by its inflorescence with 2–11 sub-digitate branches, 4–11 cm long, concentrated on the apex and covered with silvery, yellowish, or brown trichomes.
Remarks. A unusual species in the native grassland.
Brazilian range. Midwest, North (except AC and AP states), Northeast, South (except RS state) and Southeast regions.

Material examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20'17"S, 046°41'40"W; 4 Nov. 2016; collection number vck11; HUFABC1877.

Axonopus pressus (Nees ex Steud.) Parodi
Figure 18D
Identification. Perennial tussock grass with conspicuous rhizomes, 0.7–1.5 m height. Distinguished by its leaf-blades linear-lanceolate, plain or conduplicate, obtuse apex, glabrous to densely covered with hairs, 20–35 cm long, 0.5–1.0 cm wide, sometimes presenting a bluish coloration. Inflorescence with 9–25 alternate branches, 5–25 cm long.
Remarks. A common species on the native grassland, occurring isolated or in small clusters.
Brazilian range. Midwest, North (PA and TO states), Northeast (BA, MA and RN states), South (except SC state) and Southeast (except RJ state) regions.

Materials examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20'33"S, 046°42'06"W; 4 Nov. 2016; collection number vck11; HUFABC1876 • same collection data as for preceding; collection number vck10; HUFABC1880.

Calamagrostis viridiflavescens (Poir.) Steud.
Figure 18F
Identification. Perennial tussock grass, with short rhizomes, 0.5–1.1 m height. Leaf-blades linear, glabrous, 10–30 cm long, 0.5–1.0 cm wide, ligulate. Identified by its green-yellowish contracted panicle inflorescence, 17–34 cm long.
Remarks. A unusual species on the native grassland, observed mainly in places with little disturbance.
Brazilian range. South and Southeast regions.

Material examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20'42"S, 046°42'06"W; 19 Nov. 2016; collection number vck16; HUFABC1890.

Digitaria corynotricha (Hack.) Henrard
Identification. Perennial tussock grass, 50–80 cm height. Leaf-blade lanceolate, with trichome in both faces, 8–14 cm long, 0.4 cm wide, ligulate. It is recognized by its inflorescence with 1–2 erect branches, 10–15 cm long, spikelets with dark-brown hairs.
Remarks. A rare species on the native grassland. Considered Endangered in São Paulo state.
Brazilian range. Midwest, North (PA state), Northeast (BA state), South (except SC state) and Southeast (except ES and RJ states) regions.

Materials examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20'33"S, 046°42'06"W; 2 Dec. 2017; collection number vck117; HUFABC1892.

Elionurus muticus (Spreng.) Kuntze
Figure 18G
Identification. Perennial tussock grass, with short rhizomes, 50–90 cm height. Distinguished by its leaf-blades filiform, involute, and hairy, 8–30 cm long, 0.1–0.14 cm wide, with a characteristic lemon odor when smashed. Inflorescence with a solitary branch, 3.0–6.5 cm long, with white-silvery trichomes.
Remarks. Prevalent species on the native grassland.
Brazilian range. Midwest, North (PA and RR states), Northeast (BA state), South (except PR state) and Southeast (except ES and RJ states) regions.

Materials examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20'56"S, 046°42'11"W; 4 Nov. 2016; collection number vck7; HUFABC1886 • same collection data as for preceding; collection number vck8; HUFABC1887 • same collection data as for preceding; collection number vck10; HUFABC1876 • same collection data as for preceding; collection number vck14; HUFABC1880.

Axonopus siccus (Nees) Kuhlm.
Figure 18E
Identification. Perennial tussock grass, 0.25–1.0 m height. Distinguished by its leaf-blades filiform, convolute to cylindrical, 5–60 cm long, 0.1–0.7 cm wide, with acuminate apex, glabrous to densely covered with hairs. Inflorescence with 2–25 alternate branches, 5–15 cm long.
Remarks. Prevalent species on the native grassland.
Brazilian range. Midwest, North (except AP and RR states), Northeast (except CE, PB and RN states), South (except RS state) and Southeast regions.

Materials examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20'42"S, 046°42'06"W; 4 Nov. 2016; collection number vck15; HUFABC1881 • Franco da Rocha, Parque Estadual do Juquery; 23°20'33"S, 046°40'42"W; 6 Mar. 2018; collection number vck243; HUFABC2087.
Figure 9. CONVOLVULACEAE A. Distimake hisrutus. B. D. tomentosus. C. Evolvulus macroblepharis. D. E. sericeus. E. Ipomoea argentea. F. I. delphinioides. CUCURBITACEAE G. Cayaponia espelina. CYPERACEAE H. Rhynchospora globosa.
Figure 10. ERYTHROXYLACEAE A. Erythroxylum campestre. B. E. suberosum. EUPHORBIACEAE C. Croton didrichsenii. D. C. lundianus. E. Euphorbia potentilloides. FABACEAE F. Chamaecrista cathartica. G. Clitoria guianensis. H. Crotalaria unifoliolata.
Figure 11. FABACEAE

A. Eriosema crinitum. B. E. heterophyllum. C. Cerradicola decumbens. D. Bettencourtia martii. E. Nanogalactia pretiosa. 
F. Mimosa debilis, flowers in detail. G. Senna rugosa. H. Zornia reticulata.
Eragrostis pilosa (L.) P.Beauv.

**Identification.** Annual tussock grass, 54–85 cm height. Leaf-blades lanceolate, glabrous, without glandules, 4.5–23.0 cm long, 0.1–0.5 cm wide, ligulate. Characterized by its open panicle, 8–24 cm long, 2.5–8 cm wide, with hairs on the axil.

**Common name.** Capim-peluco; Capim-orvalho.

**Remarks.** Species uncommon on the native grassland, occurring mainly on disturbed sites.

**Brazilian range.** Midwest, North (AP, PA and RR states), Northeast (except SE state), South, and Southeast regions.

**Materials examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′53″S, 046°42′36″W; 5 Mar. 2018; collection number vck218; HUFABC2060.  

**Remarks.** Uncommon species on the native grassland, more often occupying disturbed places.

**Brazilian range.** Midwest, North (except CE and SE states) regions.

**Materials examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′30″S, 046°42′06″W; 2 Feb. 2017; collection number vck28; HUFABC2060.

Eragrostis polytricha Nees

**Identification.** Perennial tussock grass, 20–75 cm height. Leaf-blades linear, without glandules, trichomes densely present on both sides, 9–28 cm long, 0.23–0.5 cm wide, ligulate. It is identified by its open panicle, 15–29 cm long, 14–23 cm wide, with trichomes present along the main axis and at the axils.

**Common name.** Palha-voadora

**Remarks.** A common species at the native grassland.

**Brazilian range.** Midwest, North (RR state), Northeast (BA, PB and PE states), South and Southeast (except RJ state) regions.

**Materials examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′53″S, 046°42′17″W; 26 Sep. 2017; collection number vck92; HUFABC2012 • same collection data as for preceding; collection number vck93; HUFABC2013.

Eragrostis secundiflora J. Presl

**Identification.** Perennial tussock grass, 50–70 cm height. Leaf-blades linear, without glandules, trichomes densely main axis and at the axils.

**Common name.** Palha-voadora

**Remarks.** A common species at the native grassland.

**Brazilian range.** Midwest, North (RR state), Northeast (BA state), South (PR state) and Southeast (except ES state) regions.

**Materials examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′30″S, 046°42′06″W; 26 Sep. 2017; collection number vck92; HUFABC1948 • same collection data as for preceding; collection number vck93; HUFABC2170.

Mesosetum ferrugineum (Trin.) Chase

**Figure 19A**

**Identification.** Perennial tussock grass, 30–70 cm height. Leaf-blades linear to linear-lanceolate, hairy on both sides, 8–24 cm long, 0.15–3.0 cm wide, ligulate. Characterized by its inflorescence with a single branch, 5–10 cm long, with spikelets covered with ferruginous trichomes.

**Remarks.** Less frequent species, occurring sparsely on the native grassland on dry soils. Considered Endangered in São Paulo state.

**Brazilian range.** Midwest (except MS state), Northeast (BA state), South (PR state) and Southeast (except ES and RJ states) regions.

**Materials examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′30″S, 046°42′19″W; 15 Jun. 2018; collection number vck308; HUFABC2170.

**Panico campestre Nees ex Trin.**

**Identification.** Perennial tussock grass, 53–95 cm height. Leaf-blades linear-lanceolate, acuminate, round to sub-cordate base, 8–22 cm long, 0.3–0.8 cm wide, sparsely to densely hairy, ligulate. Diagnosed by its typical panicle, 9.5–20.0 cm long, with trichomes on the rachis, solitary spikelets, rounded and green to purplish.

**Remarks.** An unusual species, occurring scattered on the native grassland.

**Brazilian range.** Midwest, North (AP and RR states), Northeast (BA and PE states), South and Southeast (except RJ state) regions.

**Materials examined.** BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′42″S, 046°42′06″W; 2 Feb. 2017; collection number vck28;
Figure 12. FABACEAE A. *Mimosa dolens* var. *acerba*. GENTIANACEAE B. *Calolisianthus amplissimus*. C. *Deianira nervosa*. IRIDACEAE D. *Sisyrinchium purpurellum*. E. *S. restioides*. LAMIACEAE F. *Aegiphila verticillata*. G. *Cantinoa althaeifolia*.
Figure 13. LAMIACEAE A. Cantinoa plectranthoides. B. Eriope crassipes, flowers in detail. C. Hyptis nudicaulis, inflorescence in detail. D. Medusantha crinita. E. Rhabdocaulon denudatum. F. Salvia minarum, flowers in detail. MALPIGHIACEAE G. Banisteriopsis campestris flowers in detail. H. Byrsonima guileminiana.
Check List 17 (2)

Figure 14. MALPIGHIACEAE A. Byrsonima intermedia. B. B. subterranea. MALVACEAE C. Krapovickasia macrodon. D. Peltaea polymorpha. E. Sida glaziouii. F. Waltheria indica. MELASTOMATACEAE G. Acisanthera variabilis. H. Cambessedesia espora.
**Panicum rudgei** Roem. & Schult.

*Identification.* Perennial decumbent, rhizomatous grass, 50–90 cm height. Leaf-blades linear, 0.6–1.1 cm wide, ligulate. It is identified by its typical panicle, 13–45 cm long, with hairs on the axile and glabrous spikelets.

*Common name.* Navalinha, Capim-mirião

*Remarks.* An uncommon species, occurring sparsely on the native grassland.

**Brazilian range.** Midwest (except TO state), Northeast (except MA, PI, RN and SE states), South (PR state) and Southeast regions.

*Material examined.* BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′42″S, 046°42′06″W; 2 Feb. 2017; collection number vck2; HUFABC2175.

**Paspalum carinatum** Humb. & Bonpl. ex Flüggé

*Identification.* Perennial tussock grass, 25–70 cm height. Leaf-blades linear, 6.5–40.0 cm long, 0.4–0.7 cm wide, acuminate, glabrous to densely hairy on both sides, ligulate. It is characterized by its inflorescence with 3–10 alternate branches, with solitary and cordiform spikelets.

*Remarks.* Occurs on the native grassland, mainly over humid soils.

**Brazilian range.** Midwest (except DF state), North (AM state), South (PR state), Southeast (except ES and RJ states) regions.

*Materials examined.* BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′56″S, 046°40′55″W; 16 Jan. 2018; collection number vck163; HUFABC2175 • same collection data as for preceding; collection number vck164; HUFABC2176.

**Paspalum erianthum** Nees ex Trin.

*Identification.* Perennial tussock grass, 39–56 cm height. Leaf-blades lanceolate, hairy on both sides, 9–20 cm long, 0.4–0.5 cm wide, ligulate. It is identified by its inflorescence with 3–6 alternate branches, 1.5–4.4 cm long, with short trichomes and its elliptical and hairy spikelets.

*Remarks.* Species observed scarcely on the native grassland. Considered Endangered in São Paulo state.

**Brazilian range.** Midwest (PA and TO states), Northeast (BA and CE states), South (PR state) and Southeast (except ES state) regions.

*Material examined.* BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′56″S, 046°42′11″W; 4 Nov. 2016; collection number vck5; HUFABC1884.

**Paspalum eucomum** Nees ex Trin.

*Identification.* Perennial tussock grass, 40–82 cm height. Leaf-blades filiform, involute, glabrous or hairy, 8.5–22.0 cm long, 0.01–0.3 cm wide, ligulate. Distinctly by its inflorescence with 2 sub-conjugated branches, 5–11 cm long, with green and purplish rachis with solitary spikelets covered with white trichomes.

*Remarks.* Common species over shallow soils on the native grassland.

**Brazilian range.** Midwest (except MS state), South (PR state) and Southeast (except ES and RJ states) regions.

*Materials examined.* BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′52″S, 046°42′21″W; 4 Nov. 2016; collection number vck9; HUFABC1888.

**Paspalum cordatum** Hack.

*Identification.* Perennial tussock grass, short rhizomes, 1.00–1.65 m height. Leaf-blades linear, 6.5–40.0 cm long, 0.4–0.7 cm wide, acuminate, glabrous to densely hairy on both sides, ligulate. It is characterized by its inflorescence with 3–10 alternate branches, with solitary and cordiform spikelets.

*Remarks.* Occurs on the native grassland, mainly over humid soils.

**Brazilian range.** Midwest (except DF state), North (AM state), South (PR state), Southeast (except ES and RJ states) regions.

*Materials examined.* BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′33″S, 046°40′42″W; 6 Mar. 2018; collection number vck244; HUFABC2088 • same collection data as for preceding; collection number vck245; HUFABC2089 • same collection data as for preceding; collection number vck246; HUFABC2090 • same collection data as for preceding; collection number vck247; HUFABC2091.
Figure 15. MELASTOMACEAE A. Chaetogastra gracilis, flower in detail. B. Leandra polystachya, flowers in detail. C. Miconia albicans. D. M. ligustroides. E. Microlicia isophylla, leaves in detail. F. Pleroma molle. G. Trembleya phlogiformis. MENISPERMACEAE H. Cissampelos ovalifolia.
Figure 16. MYRTACEAE A. Campomanesia pubescens. B. Eugenia bimarginata. C. E. punicifolia. D. Psidium firmum. E. P. grandifolium. OCHNACEAE F. Ouratea floribunda. ORCHIDACEAE G. Epistephium sclerophyllum. OROBANCHACEAE H. Buchnera ternifolia.
Figure 17. **OROBANCHACEAE** A. *Esterhazya splendida*. **POACEAE** B. *Andropogon bicornis*. C. *A. lateralis*. D. *A. leucostachyus*. E. *Anthaeantia lanata*. F. *Aristida jubata*. G. *Arthropogon villosus*. 
Paspalum filifolium Nees ex Steud.

Figure 19F

Identification. Perennial tussock grass, 0.1–0.8 m height. Leaf-blades filiform, convolute, 19–30 cm long, glabrous, ligulate. It is characterized by its inflorescence with 2 terminal branches, with green and glabrous spikelets.

Remarks. Relatively common species on the native grassland.

Brazilian range. South (except RS state) and Southeast (SP state) regions.

Materials examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′42″S, 046°42′06″W; 6 Dec. 2017; collection number vck124; HUFABC1915 • same collection data as for preceding; collection number vck125; HUFABC1916 • same collection data as for preceding; collection number vck126; HUFABC1917.

Paspalum pectinatum Nees ex Trin.

Figure 19G

Identification. Perennial tussock grass, 0.3–1.0 m height. Leaf-blades linear, apex acute, hairy on both sides, 4.5–31.0 cm long, 0.3–0.4 cm wide, ligulate. It is identified by its inflorescence with 2 conjugated branches, 3.5–18.0 cm long, with solitary cordate-lanceolate spikelets with white trichomes on the sides.

Remarks. Unusual species, occurring scarcely on the native grassland.

Brazilian range. Midwest North (AM and RR states), Northeast (MA state), South (except RS state) and Southeast (except ES and RJ states) regions.

Material examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′17″S, 046°41′40″W; 21 Oct. 2016; collection number vck1; HUFABC1989.

Paspalum pilosum Lam.

Identification. Perennial, tussock, or decumbent grass, 30–95 cm height. Leaf-blades plane, lanceolate, 3–27 cm long, 0.4–0.7 cm wide, covered with hairs on both sides, ligulate. It is diagnosed by its inflorescence with one single branch, 7.5–16.0 cm long, with small trichomes and paired spikelets.

Remarks. Observed more frequently on disturbed sites like roadsides, but also occurring on the native grassland.

Brazilian range. Midwest (except MS state), North (AM, PA and RO states), Northeast (BA, MA and PE states), South (PR state) and Southeast (except ES state) regions.

Material examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°21′04″S, 046°42′04″W; 7 Feb. 2018; collection number vck171; HUFABC2113.

Paspalum polyphyllum Nees in Trin.

Figure 19H

Identification. Perennial tussock grass, 30–66 cm height, with rhizomes and a bambusoid aspect. Leaf blades lanceolate, plane, apex acute, 2.5–11.7 cm long, 0.2–0.6 cm wide, glabrous or densely covered with hairs on both sides, ligulate. Distinguished by its inflorescence with 1–4 alternate branches, 2.5–7.8 cm long, and its spikelets with white hairs on the margins.

Remarks. Relatively common species, occurring on native grassland and roadsides.

Brazilian range. Midwest, Northeast (BA and MA states), South and Southeast (except ES state) regions.

Material examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′52″S, 046°42′24″W; 11 Apr. 2018; collection number vck284; HUFABC2149.

Paspalum usteri Hack.

Identification. Perennial rhizomatous grass, ca. 1.6 m height. Leaf-blades lanceolate, plain, apex acute, 32.0–42.5 cm long, 1.5 cm wide, ligulate. Characterized by its pyramidal inflorescence with 25–35 alternate branches, 0.7–9.2 cm long, brownish, with scattered trichomes and paired spikelets.

Remarks. Rare species, occurring on waterlogged sites. Considered Presumably Extinct in São Paulo state.

Brazilian range. Midwest (MS state) and Southeast (except ES and RJ states) regions.

Material examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′17″S, 046°41′40″W; 5 Sep. 2016; collection number vck4; HUFABC1889.

Schizachyrium condensatum (Kunth) Nees

Identification. Perennial tussock grass, 0.35–1.1 m height. Leaf-blades linear, glabrous, 3–25 cm long, 0.2–0.8 cm wide, ligulate. It is identified by its erect contracted inflorescence, 5–45 cm long, with lots of ramifications, and its sessile spikelets, awns with 8–16 mm long.

Remarks. Occurring scarcely on the native grassland but common on roadsides and colonizing disturbed sites.

Brazilian range. Midwest, Northeast (BA state), South and Southeast (except ES and RJ states) regions.

Materials examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20′30″S, 046°41′40″W; 5 Mar. 2018; collection number vck216; HUFABC2058 • same collection data as for preceding; collection number vck217; HUFABC2059.

Schizachyrium sanguineum (Retz.) Alston

Identification. Perennial tussock grass, 0.65–1.5 m height. Leaf-blades linear, glabrous or hairy, 8–30 cm long, 0.2–0.5 cm wide, with marginal trichomes. Distinguished by its erect inflorescence with few to many branches and sessile spikelets with a 15–18 mm long awn.
Figure 18. POACEAE A. Axonopus aureus. B. A. brasiliensis. C. A. marginatus. D. A. pressus. E. A. siccus. F. Calamagrostis viridiflavesens. G. Elionurus muticus. H. Eragrostis secundiflora.
Figure 19. POACEAE A. Mesosetum ferrugineum. B. Panicum rudgei. C. P. sellowii. D. Paspalum erianthum. E. P. eucomum. F. P. filifolium. G. P. pectinatum. H. P. polyphyllum.
Figure 20. **POACEAE** A. *Schizachyrium tenerum*, inflorescence in detail. **B. Setaria parviflora.** **POLYGALACEAE** **C. Moninna richardiana.** **D. Polygala cuspidata.** **E. P. poaya.** **F. P. pumila.** **RUBIACEAE** **G. Borreria tenella.** **H. B. verticillata.**
Remarks. Common species on the native grassland and roadsides.

Brazilian range. Midwest, North (except AC state), Northeast (BA, MA and PE states), South (except RS state) and Southeast regions.

Material examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20’17″S, 046°41’40″W; 26 Apr. 2018; collection number vck293; HUFABC2213.

**Schizachyrium tenerum** Nees

Identification. Perennial tussock grass, 30–80 cm height, ramified on the upper nodes. Leaf-blades linear, 3.5–30.0 cm long, 0.05–0.2 cm wide, glabrous, with marginal trichomes, ligulate. It is identified by its branched apical inflorescence, 2–6 cm long, pedicel covered with hairs and sessile spikelets with 10–14 mm awn.

Remarks. Occurs scarcely on the native grassland over shallow soils. Considered Endangered in São Paulo state.

Brazilian range. Midwest, Northeast (BA state), South and Southeast (except ES state) regions.

Material examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20’56″S, 046°40’55″W; 22 Aug. 2017; collection number vck73; HUFABC2005.

**Setaria parviflora** (Poir.) Kerguélen

Identification. Annual rhizomatous grass, 30–80 cm height. Leaf-blades linear-lanceolate, scattered trichomes on the abaxial surface, 5–30 cm long, 0.2–0.9 cm wide, ligulate. Identified by its erect spiciform panicle, 1.5–13.0 cm long, with elliptical spikelets with 4–11 bristles, 1–14 mm long.

Common name. Rabo-de-gato

Remarks. Occurs scarcely on the native grassland on roadsides and disturbed sites.

Brazilian range. Midwest, North (except RO state), Northeast (except CE state), South and Southeast (except RJ state) regions.

Material examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20’33″S, 046°40’42″W; 6 Mar. 2018; collection number vck252; HUFABC2076.

**Urochloa brizantha** (Hochst. Ex A.Rich) R.D.Webster

Identification. Perennial tussock plant, 0.5–1.8 m height with short rhizomes. Leaf-blades linear-lanceolate, hairy, 8–35 cm long, 0.12–0.17 cm wide, ligulate. It is characterized by its hairy inflorescence with 1–7 unilateral branches, 4–16 cm long, with elliptical spikelets.

Common name. Braquiárião

Remarks. Exotic and invasive species, very aggressive. Most common on disturbed roadsides and frequently burnt areas.

Brazilian range. Midwest, North (except AC, AM and AP states), Northeast (except MA state), South and Southeast (except RJ state) regions.

Material examined. BRAZIL – São Paulo • Franco da Rocha, Parque Estadual do Juquery; 23°20’33″S, 046°40’42″W; 6 Mar. 2018; collection number vck252; HUFABC2076.

**Discussion**

The high species richness observed in PEJY gives this savanna grassland high conservation priority, especially when the park’s surroundings have intense anthropogenic pressures. The species richness obtained in our survey was similar to what has been reported for other areas of Cerrado in São Paulo (e.g., Batalha et al. 1997; Tannus and Assis 2004; Almeida et al. 2005; Ishari and Maimoni-Rodella 2012). When our list is combined with the survey by Baitello et al. (2013), we have a glimpse of the megadiversity present on the open formation of the Cerrado of PEJY (Mendonça et al. 2008). We observed a predominance of species from the families Asteraceae and Poaceae, as expected for the open habitats of the Cerrado (e.g., Munhoz and Felfili 2006; Carvalho et al. 2010; Ishari and Maimoni-Rodella 2012). The species richness by family in descending order was consistent with that observed by Mendonça et al. (2008) for the Cerrado biome: Asteraceae > Poaceae > Fabaceae > Melastomataceae > Rubiaceae > Myrtaceae > Lamiaceae; these data reinforce the importance of PEJY as the last preserved Cerrado grassland remnant in the MRSP.

We found *U. brizantha*, an invasive exotic species that can cause declines in savanna grassland diversity. This species is one of the main threats to native plant populations due to its fast recover and spread after fires (Durigan et al. 2007; Pereira-Silva et al. 2019), being an especially severe threat to PEJY’s rare and threatened species.

The variation in species richness observed between our survey and Baitello et al.’s (2013) study might be...
Figure 21. RUBIACEAE A. Borreria warmingii. B. Galianthe angustifolia. C. G. grandifolia, inflorescence in detail. D. Palicourea rigida. E. Richardia schumannii, flower in detail. F. Sabicea brasiliensis. SMILACACEAE G. Smilax fluminensis. SOLANACEAE H. Solanum lycocarpum.
Figure 22. SOLANACEAE A. Solanum paniculatum. SYMPLOCACEAE B. Symplocos oblongifolia. TURNERACEAE C. Piriqueta aurea. D. Turnera hilaireana. VERBENACEAE E. Lantana trifolia, fruits on detail. F. Lippia lupulina. G. Lippia origanoides. H. Stachytarpheta cayennensis, flowers in detail.
due to differences in sampling methods. Baitello et al. (2013) made the continuous floristic survey in a non-systematic and long-term way for six years. In our study, plots were systematically sampled for a set amount of time, and these data were complemented by collections made during walks. The use of plots facilitates the finding of small, inconspicuous, rare species (e.g., *Richardia schumannii* and *Polygala pumila*) which occur sparingly in the vegetation (Garrard et al. 2008; Chen et al. 2009). This method revealed seven locally threatened species that had not yet been reported from the study area.

The species richness assessment by plant habit indicates that 62.5% of the species sampled are herbaceous or sub-shrub plants. Percentages close to that were observed in other remnants of savanna grassland in São Paulo, such as Pirassununga (72.3%; Batálha et al. 1997) and Itirapina (78.5%; Tannus and Assis 2004). Despite the predominance of non-woody plants, some portions of the rugged and mountainous terrain of PEJY (Amorim et al. 2017) seem to favor the shrub-tree vegetation, resembling a campo cerrado/cerrado stricto sensu. Large species individuals dominate in these areas; examples include *Dalbergia miscolobium* Benth., *Kielmeyera coriacea* Mart. & Zucc., *Roupala montana* Aubl., and *Plenckia populnea* Reissek, which are typical woody plant species of the Cerrado biome (Eiten 1972). As the diversity of soils, relief, and physiognomies promotes environmental heterogeneity and consequently higher species richness in plants (Kumar et al. 2006), the richness observed in PEJY might be associated with local habitat diversity, despite its small and isolated area.

The floristic dissimilarity observed between PEJY and the remnants of savanna forest (cerradão) and savanna (cerrado stricto sensu) in the countryside of the state was expected (e.g., Durigan et al. 2003). The cluster analysis by floristic similarity suggests that geographical proximity, soil, and climate may influence the remnants flora composition in this analysis. The temperature, both in Ponta Grossa and the MRSP (Juquery, Jaraguá, and Santa Rita do Passa Quatro) have a hotter, sea personal climate, more similar to those observed on the core sites’s surroundings within the MRSP. The park is also relatively small (ca. 2,000 ha) and physically and possibly functionally isolated from other regions. PEJY also has historical relevance as an example of the pristine landscape in the MRSP.

Other studies also reported floristic dissimilarities (Jaccard <25 %) among grassland formations of Cerrado (e.g., Durigan et al. 2003; Garcia et al. 2009). On the other hand, when comparing only woody formations in the Cerrado of São Paulo, they are similar to each other than when comparing only grassland formations (e.g., Durigan et al. 2003; Pereira-Silva et al. 2006; Carvalho et al. 2010; Ishara and Maimoni-Rodella, 2012). The floristic dissimilarities might be related to the concentration of woody physiognomies in the central-western portion of the state (cerradão and cerrado stricto sensu) on sandy and deep soils (Durigan et al. 2003). The lower similarity of the grassland formations of São Paulo may be associated with the geographic location of fragments, with a disjunction between the eastern (MRSP and Vale do Paraíba) urban matrix and the central-western agrosilvopastoral matrix. The floristic dissimilarity observed between these two areas may be reinforced by the low natural dispersion capacity of small herbaceous species (Levin et al. 2003), which hinders the flow of propagules among communities and reduces the ability to recolonize disturbed grassland areas (Sheth et al. 2020).

The proximity of the grasslands of Butantã (Joly 1950) and PEJY (24 km apart) and their floristic similarity suggest that in the last seven decades, these areas could have been at least functionally connected. Historical evidence indicates that a diverse landscape of grasslands was present on hilltops and Atlantic Forest extended throughout the depressions and valley bottoms (Usteri 1911; Raimundo 2006). A similar scenario currently exists in PEJY (Baitello et al. 2013). Among the species in common between PEJY and the grasslands of Butantã are many species typical of the Cerrado biome, such as *Aegiphila verticillata* Vell., *Baccharis aphylla* (Vell.) DC., *Byronasma intermedia* A.Juss., *Cambessedesia espora* (A.St.-Hil.-ex Bonpl.) DC., *Erythroxylum campestris* A.St.-Hil., *Echinolaena inflexa* (Poir.) Chase, and *Loudetia chrysotricha* (Nees) Conert (Eiten 1972; Ratter et al. 2006; Ribeiro and Walter 2006). Additionally, some locally threatened species were also observed in both areas, such as *Mesocestum ferrugineum* (Trin.) Chase, *Paspalum erianthum* Nees ex Trin., and *Polygala pumila*. With the growth of São Paulo city and its surroundings, the grasslands of Butantã were quickly replaced by densely urbanized areas, leaving only small fragments of grassland (Raimundo 2006). Therefore, PEJY is of critical importance as the last preserved grassland remnant of Cerrado within Brazil’s largest metropolis. PEJY also has historical relevance as an example of the pristine landscape in the MRSP.

The species diversity found in this area by us and a previous study (Baitello et al. 2013) is in contrast to the site’s surroundings within the MRSP. The park is surrounded by growing dense urban areas, threats such as increased fires and the spread of invasive plant species. The park is also relatively small (ca. 2,000 ha) and physically and possibly functionally isolated from other grassland savannas. These urbanized landscape surrounding PEJY reinforce the need for conservation of this grassland savanna and its species, as recommended in other parts of the world (Bond and Parr 2010; Parr et al. 2014; Veldman et al. 2015; Bond 2016). We suggest a combination of in situ conservation strategies, involving the protection and rehabilitation of threatened species, some of which were identified here. However, ensuring
the protection of species genetic resources of this area in its urban context requires local actions for inspection, management, and control of adverse human impacts, such as the indiscriminate use of fire and other recurrent threats in protected areas of the MRSP (Durigan et al. 2007; Arce et al. 2014).

Despite its small size and the human disturbance of its urban matrix, this protected area is vital for the biological conservation of grassland species, including those of restricted occurrence threatened by extinction. The low similarity of PEJY with other areas analyzed demonstrates its importance as one of the last remnants for the conservation of savanna grassland in the MRSP. Our results contribute to the understanding of the current conservation status of the savanna grassland of PEJY at a local scale and demonstrate the need for additional information on this vegetation type in the state of São Paulo. Additional surveys are needed to provide a framework for developing environmental protection and conservation policies for the Brazilian savanna grassland. To ensure the protection of PEJY, we also recommend additional inventories and studies to assess the current conservation status at the regional scale.

Acknowledgements

We thank the taxonomists that assisted in the identification and determination of species sampled: André Scatigna, Carla Bruniera (Rubiaceae), Carlos Nunes (Orchidaceae), Elisa Cândido (Fabaceae), Guilherme Antar (Lamiaceae), Gustavo Shimizu (Vochysiaceae), João B. Baitello, João do Carmo (Rubiaceae), João Semir (in memoriam), Jorge Y. Tamashiro, Marcelo Monge (Asteraeaceae), Osny T. de Aguiar (Myrtaceae), Rafaela Trad (Calophyllaceae), Rodrigo Rodrigues (Poaceae), Simone S. da Silva (Convolvulaceae), and Suzana Costa (Cyperaceae). We also thank Sergio T. Meirelles (IB-USP) and the staff of PEJY for assistance during field work, which was undertaken with logistical support of the Foundation for Forest Conservation and Production (Fundação Florestal/SMA-SP) of the state of São Paulo. We thank the reviewers for their contributions to the manuscript. This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil) – Grant code 01 [scholarship].

Authors’ Contributions

All authors contributed to the study conception and design. EH and EFLPS were the Master’s degree advisors of the first author and EFLPS was the coordinator of the project. Data collection was performed by VCK and EFLPS. Data analysis was made by VCK. The first draft of the manuscript was written by VCK. EH and EFLPS commented and made significant contributions to versions of the manuscript. All authors read and approved the final manuscript.

References

Almeida AM, Fonseca CR, Prado PI, Almeida-Neto M, Diniz S, Kubota U, Braun MR, Raimundo RLG, Anjos LA Dos, Mendonça TG, Futada SMD, Lewinsohn TM (2005) Diversidade e ocorrência de Astereaeae in cerrados de São Paulo. Biota Neotropica 5 (2): 1–17. https://doi.org/10.1590/S1519-6676-2006-0300000003

Alvares CA, Stape JL, Sentelhas PC, De Moraes Gonçalves JL, Sporrovk G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22 (6): 711–728. https://doi.org/10.1127/0941-2948/2013/0507

Amorim DG de A, Zaine JE, Bocarde D, Rodrigues FH (2017) Avaliação de suscetibilidade à erosão e movimentação gravitacional de massa no Parque Estadual do Juquery, Franco da Rocha (SP). Revista do Instituto de Geociências – USP 17 (2): 3–21. https://doi.org/10.11606/issn.2316-9095.v17–350

Arce PA, Santos-Pendeloski CJ, Barbosa-de-Oliveira R, Castelli-Figueiredo-Gallardo AL, Silva-Ruiz M (2014) Conflitos socioambientais em unidades de conservação em áreas urbanas: o caso do Parque Tizo, São Paulo. Holos 1: 75–85. https://doi.org/10.15628/holos.2014.1704

Baitello JB, Aguiar OT de, Pastore JA, Arzolla FAR (2013) Parque Estadual do Juquery: refúgio do Cerrado no Domínio Atlântico. IF Serie Registros 50: 1–46.

Batalha MA, Aragaki S, Mantovani W (1997) Florística do cerrado em Emas (Pirassununga, SP). Boletim de Botânica da Universidade de São Paulo 16: 49–64.

Batalha MA, Mantovani W (2001) Floristic composition of the cerrado in the Pê-de-Gigante reserve (Santa Rita do Passa Quatro, Southeaster Brazil). Acta Botanica Brasiliaca 15 (3): 289–304.

Beraldo K, França VG, Heiden G, Pirani R (2018) Florística e aspectos fitogeográficos dos “campos” do Parque Estadual do Jaraguá, São Paulo, Brasil. Boletim de Botânica da Universidade de São Paulo 36: 1–22. https://doi.org/10.1127/0960-4286/2016/0010

Bond WJ (2016) Ancient grasslands at risk. Science 351 (6269): 120–122. https://doi.org/10.1126/science.aad5132

Bond WJ, Parr CL (2010) Beyond the forest edge: Ecology, diversity and conservation of the grassy biomes. Biological Conservation 143 (10): 2395–2404. https://doi.org/10.1111/j.1365-2486.2009.01560.x

Borges RAX, Forzza RC (2008) A tribo Astereaeae (Asteraceae) no Parque Estadual do Ibitipoca, Minas Gerais, Brasil. Boletim de Botânica da Universidade de São Paulo 36: 1–22.

Carvalho MB, Ishara KL, Maimoni-Rodella RCS (2010) Vascular flora of a cerrado sensu stricto remnant in Pratânia, state of São Paulo, southeastern Brazil. Check List 6 (3): 350–357. https://doi.org/10.1556/6.3.2010.3.350

Chen G, Kéry M, Zhang J, Ma K (2009) Factors affecting detection probability in plant distribution studies. Journal of Ecology 97 (6): 1383–1389. https://doi.org/10.1111/j.1365-2745.2009.01560.x

Coutinho LM (1978) O conceito de Cerrado. Revista Brasileira de Botânica 1 (1): 17–23.

Durigan G, Siqueira MF de, Antonio GCD (2007) Threats to the Cerrado remnants of the state of São Paulo, Brazil. Scientia Agricola 64: 355–363. https://doi.org/10.1590/S0103-90162007000400006

Durigan G, Siqueira MF de, Franco GADC, Bridgewater S, Ratter JA (2003) The vegetation of priority areas for Cerrado conservation in São Paulo state, Brazil. Edinburgh Journal of Botany 60 (2): 217–241. https://doi.org/10.1017/s0966528603000155

Eiten G (1972) The Cerrado vegetation of Brazil. Botanical Reviews 38 (2): 201–341.

Filgueiras T de S (2002) Herbaceous plant communities. In: Oliveira PS, Marquis RJ (Eds.) The Cerrados of Brazil. Columbia University Press, New York, NY, USA, 757–760.

Flora do Brasil (2020) http://floradobrasil.ibri.gov.br/. Accessed on: 2019-08-08.
Fraleti P (1986) Juqueri: passado, presente, futuro. Arquivos Saúde Mental 46: 156–177.

Garcia RJF, Longhi-Wagner HM, Pirani JR, Meirelles ST (2009) A contribution to the phytogeography of Brazilian campos: an analysis based on Poaceae. Revista Brasileira de Botânica 32(4): 703–713. https://doi.org/10.1590/S0100-84422009000400009

Garrard GE, Bekassy SA, McCarthy MA, Wintle BA (2008) When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecology 33(8): 986–998. https://doi.org/10.1111/j.1442-9993.2008.01869.x

Hammer Ø, Harper DAT, Ryan PD (2001) PAST: palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4 (1): 1–9.

Hattori EKO, Nakajima JN (2008) A família Astereae na Estação de Pesquisa e Desenvolvimento Ambiental Galheiró, Perdizes, Minas Gerais, Brasil. Rodriguésia 59 (4): 687–749. https://doi.org/10.1590/S0100-2175-7860200859405

Hattori EKO, Nakajima JN (2011) A família Astereae na Reserva Ecológica do Panga, Uberlândia, Minas Gerais, Brasil. Hoehnea 38 (2): 165–214. https://doi.org/10.1590/S2236-89062010000200002

Heiden G, Ignaci JRV, Macias L (2009) Baccharides sect. Caulopteríae (Astereae, Astereae) no Rio Grande do Sul, Brasil. Rodriguésia 60 (4): 943–983. https://doi.org/10.1590/S0100-2175-7860200960411

Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau CR, Haridasan M, Franco AC (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters 15 (7): 759–768. https://doi.org/10.1111/j.1466-1249.2012.01789.x

Honda EA, Durigan G (2016) Woody encroachment and its consequences on hydrological processes in the savannah. Philosophical Transactions of the Royal Society, B: Biological Sciences 371: 1–9. https://doi.org/10.1098/rstb.2015.0313

Ishara KL, Maimoni-Rodella RCS (2012) Richness and similarity of sequences native and non-native plant species richness. Ecology 87(12): 343–354. https://doi.org/10.1890/0904628606000539

Murphy BP, Andersen AN, Parr CI (2016) The underestimated biodiversity of tropical grassy biomes. Philosophical Transactions of the Royal Society, B: Biological Sciences 371 (1703). https://doi.org/10.1098/rstb.2015.0319

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403 (6772): 835–838. https://doi.org/10.1038/35025010

Overbeck GE, Vélez-Martin E, Scarano FR, Lewinsohn TM, Fonseca CR, Meyer ST, Müller SC, Ceotto P, Dadalt L, Durigan G, Gussner G, Gossner MM, Guadagnin DL, Lorenzen K, Jackson BM, Weisser WW, Pillar VD (2015) Conservation in Brazil needs to include non-forest ecosystems. Diversity and Distributions 21 (12): 1455–1460. https://doi.org/10.1111/ddi.12380

Parr CL, Lehmann CER, Bond WJ, Hoffmann WA, Andersen AN (2014) Tropical grassy biomes: Misunderstood, neglected, and under threat. Trends in Ecology and Evolution 29 (4): 205–213. https://doi.org/10.1016/j.tree.2014.02.004

Pereira-Silva EFL, Hrdt B, Biral MB, Keller VC, Delitti WBC (2019) Effects of recent fire on soil conditions and nutrient use of a native and an invasive grass in the Brazilian savanna. Écoscience 26 (4): 359–370. https://doi.org/10.1111/11956860.2019.1613753

Pereira-Silva EFL, Hrdt E, Santos JE (2006) Composição florística e estrutura fitossociológica da vegetação lenhosa de três áreas de cerradão da Estação Ecológica de Jataí, Luiz Antônio (SP). In: Santos JE dos, Pirès JSR, and Moschini LE (Eds.) Estudos integrados em ecossistemas 3: Estação Ecológica de Jataí. Editora da Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil, 45–63.

Pinheiro ES, Durigan G (2012) Diferenças florísticas e estruturais entre fisionomias do cerrado em Assis, SP, Brasil. Revista Árvore 36 (1): 181–193.

Raimundo S (2006) A paisagem natural remanescente na região metropolitana de São Paulo. São Paulo en Perspectiva 20 (2): 19–31.

Ratter J, Bridgewater S, Ribeiro JF (2006) Biodiversity patterns of the woody vegetation of the brazilian cerrado. In: Pennington RT, Lewis GP, Ratter JA (Eds.) Neotropical savannas and seasonally dry forests. Taylor & Francis, Boca Raton, USA, 31–66. https://doi.org/10.1080/11956800.2019.1613753

Rellfora Virtual Herbarium (2020) http://rellfora.jbrj.gov.br/rellfora/herbarioVirtual/. Accessed on: 2019-08-08. Ribeiro JF, Walter BMT (1998). Fitofisionomias do bioma cerrado. In: Sano SM, Almeida SP (Eds.) Cerrado: ambiente e flora. Empresa Brasileira de Pesquisa Agropecuária, Planaltina, Brazil, 89–166.

Rossi M (2017) Mapa pedológico do Estado de São Paulo: revisado e ampliado. Instituto Florestal, São Paulo, Brazil, 118 pp.

Rumble H, Angeleotto F, Connon S, Goddard MA, Nash C (2019) Understanding and applying ecological principles in cities. In: Oliveira FL, Mell I (Eds) Planning cities with nature. Taylor & Francis, Boca Raton, USA, 217–234. https://doi.org/10.1017/S0960428606000539

SÃO PAULO (Estado) (2016) Resolução SMA n57, de 5 de junho de 2016 Seção I, 55–57.

Sasaki D, Mello-Silva R (2008) Levantamento florístico no cerrado de Pedregulho, SP, Brasil. Acta Botanica Brasílica 22 (1): 187–202.

Scherer-Lorenzen M, Palmborg C, Meyer ST, Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze E-D (2003) The effects of recent fire on soil conditions and nutrient use of a native and an invasive grass in the Brazilian savanna. Écoscience 26 (4): 359–370. https://doi.org/10.1111/11956860.2019.1613753

Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze E-D (2003) The effects of recent fire on soil conditions and nutrient use of a native and an invasive grass in the Brazilian savanna. Écoscience 26 (4): 359–370. https://doi.org/10.1111/11956860.2019.1613753
role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84 (6): 1539–1552. https://doi.org/10.1890/0012-9658(2003)084[1539:TROPDA]2.0.CO;2

Sheth SN, Morueta-Holme N, Angert AL (2020) Determinants of geographic range size in plants. New Phytologist 226: 650–665. https://doi.org/10.1111/nph.16406

Silva SS da, Simão-Bianchini R, Souza-Buturi FO de (2018) Convulvulaceae do Parque Estadual do Juquery, Franco da Rocha, SP, Brasil. Hoehnea 45: 1–18. https://doi.org/10.1590/2236-8906-72/2017

Strassburg BBN, Brooks T, Feltran-Barbieri R, Iribarrem A, Crouzeilles R, Loyola RD, Latawiec A, Oliveira F, Scaramuzza CA de M, Scarano FR, Soares-Filho B, Balmford A (2017) Moment of truth for the Cerrado hotspot. Nature Ecology & Evolution 1: 1–3. https://doi.org/10.1038/s41559-017-0099

Tannus JLS, Assis MA (2004) Composição de espécies vasculares de campo sujo e campo úmido em área de cerrado, Itirapina - SP, Brasil. Revista Brasileira de Botânica 27 (3): 489–506. https://doi.org/10.1590/S0100-84042004000300009

Tubelis DP, Cavalcanti RB (2001) Community similarity and abundance of bird species in open habitats of a central Brazilian Cerrado. Ornitologia Neotropical 12: 57–73.

Usteri A (1911) Flora der Umgebung der Stadt São Paulo in Brasilien. Jenaveralg von Gustav Fischer.

Veldman JW, Buisson E, Durigan G, Fernandes GW, Le Stradic S, Mahy G, Negrieros D, Overbeck GE, Veldman RG, Zaloumis NP, Putz FE, Bond WJ (2015) Toward an old-growth concept for grasslands, savannas, and woodlands. Frontiers in Ecology and the Environment 13 (3): 154–162. https://doi.org/10.1890/140270

Vynne C, Keim JL, Machado RB, Marinho-Filho J, Silveira L, Groom MJ, Wassker SK (2011) Resource selection and its implications for wide-ranging mammals of the Brazilian Cerrado. PLoS ONE 6 (12). https://doi.org/10.1371/journal.pone.0028939

Wanderley MGL, Shepherd GJ, Giulietti AM (Eds.) (2001) Flora fanerógâmica do estado de São Paulo Volume 1. Hucitec, São Paulo, Brazil, 292 pp.

Wanderley MGL, Shepherd GJ, Giulietti AM (Eds.) (2002) Flora fanerógâmica do estado de São Paulo Volume 2. Hucitec, São Paulo, Brazil, 391 pp.

Wanderley MGL, Shepherd GJ, Melhem TS, Giulietti AM (Eds.) (2005) Flora fanerógâmica do estado de São Paulo Volume 4. FAPESP, RiMA, São Paulo, Brazil, 392 pp.

Wanderley MGL, Shepherd GJ, Melhem TS, Giulietti AM (Eds.) (2007) Flora fanerógâmica do estado de São Paulo Volume 5. Hucitec, São Paulo, Brazil, 476 pp.

Wanderley MGL, Shepherd GJ, Melhem TS, Giulietti AM, Martins SE (Eds.) (2016) Flora fanerógâmica do estado de São Paulo Volume 8. Hucitec, São Paulo, Brazil, 415 pp.