Formation of synaptic connections involves the localized differentiation of pre- and postsynaptic cells as the result of a bidirectional exchange of information molecules during development. At a well-studied synapse, the neuromuscular junction (NMJ), agrin is thought to play an important role in the synaptic differentiation of the muscle induced by the motorneuron. Agrin is an extracellular matrix protein synthesized by motorneurons at the time of synapse formation, which can induce the clustering of synaptic molecules on the surface of culture muscle cells (for review see McMahan, 1990). Molecular analysis has shown that agrin is a family of proteins of ~220 kD that are produced by alternative splicing and that contain a number of structural motifs known from other extracellular proteins (Fig. 1; Rupp et al., 1991; Tsim et al., 1992). Full-length recombinant agrin, as well as truncated soluble forms, induce the clustering of nicotinic acetylcholine receptors (AChR) (Campanelli et al., 1991; Ruegg et al., 1992; Ferns et al., 1992, 1993). AChR clusters also form spontaneously on cultured myotubes, suggesting that the machinery for clustering is contributed by muscle. Although both motorneurons and muscles synthesize agrin, antibody inhibition experiments showed that motorneuron-derived agrin, but not the muscle-derived form, is required for synapse formation in culture (Reist et al., 1992). Here, we review the role of agrin in synaptogenesis, focusing on the structural requirements for agrin activity and implications of the recently described agrin-dystroglycan interaction for models of the mechanism of agrin-induced AChR clustering.

Structural Requirements for Agrin Activity

Multiple regions of the agrin protein contribute to clustering activity. Functional analysis of alternative splice variants reveals that insertions at two sites affect activity. Most important is the presence of an insert at splicing site Z (Fig. 1), which is found exclusively in agrin derived from neurons (Hoch et al., 1993; O’Connor et al., 1994). An 8-amino acid insert at this position increases agrin activity ~10,000-fold (Ferns et al., 1993), whereas the presence of an unrelated 11-amino acid insert at the same position increases activity 50-fold (Hoch et al., 1994). Both inserts lead to a conformational change in the agrin protein, involving the extreme COOH terminus, which is detected by the appearance of the epitope for a monoclonal antibody, agr 86.

Insertion of a 4-amino acid sequence at the Y splice site has a modest but significant effect on activity (Ruegg et al., 1992; Ferns et al., 1993). Interestingly, the Y site splice entails the inclusion of three basic residues into the second laminin G domain. This region may mediate interactions between agrin and negatively charged cell surface proteoglycans that have been independently implicated in the activity of agrin (see below).

Antibody inhibition studies and deletion analyses of the agrin protein confirm the importance of splice site Z and the second laminin G domain, and they identify two additional regions necessary for clustering activity. Function blocking antibodies that bind the Z splice site insertions and the second laminin G domain have been identified (Hoch et al., 1994). Additionally, the third EGF-like repeat and the extreme COOH-terminal 5 kD of the protein are also required for activity (Hoch et al., 1994; Fig. 1). These studies suggest that the binding of agrin to cell surface components requires four different regions of the agrin protein contained within the COOH-terminal 50 kD (Fig. 1). It is possible that the different regions of the agrin protein required for activity form a single receptor-binding site. This would be in contrast to some other described extracellular matrix (ECM) molecule–receptor interactions that have been defined as short peptide sequences (for review see Yamada, 1991). Alternatively, the four regions of the agrin protein may each interact with different components of the muscle cell surface: the combination of these interactions might confer clustering activity.

Postsynaptic Response to Agrin, Molecules

Several studies have addressed the involvement of second messengers in the activity of agrin. A screen for possible second messengers did not identify any candidates that mimicked agrin’s action (Wallace, 1988); however, several manipulations implicate phosphorylation in agrin-induced clustering. Activation of protein kinase C and energy depletion prevent agrin-induced AChR redistribution (Wallace, 1988).
Figure 1. Structural domains of agrin. A schematic of the agrin protein (top) and the minimal fragment necessary for clustering activity (bottom) are shown. The three sites of alternative splicing are denoted X, Y, and Z with the possible insert sequences shown above the full-length protein. Domains within the 50-kD fragment that are proposed to be required for activity are shown below.

Tyrosine phosphorylation of the β subunit of the AChR may be involved in agrin-induced clustering (Wallace et al., 1991). This phosphorylation occurs rapidly after treatment of chick myotube cultures with agrin. Two tyrosine kinases have recently been identified that are associated with the AChR and could be responsible for this phosphorylation (Swope and Huganir, 1993). However, during development of rat muscle, phosphorylation of the AChR was only detected postnatally, well after the formation of synapses is initiated (Qu et al., 1990). Recent experiments with inhibitors of tyrosine kinases suggest that phosphorylation is important for agrin activity, but have not yet identified the essential substrates (Wallace, 1994).

Several lines of evidence implicate proteoglycans in agrin-induced AChR clustering. Muscle cell lines defective in glycosaminoglycan synthesis are significantly less responsive to added recombinant agrin (Ferns et al., 1992, 1993). Furthermore, heparin inhibits both nerve- (Hirano and Kidokoro, 1989) and agrin- (Wallace, 1990) induced AChR clustering. Finally, agrin is a heparin-binding protein (Campanelli, 1993), and proteoglycans are among the subset of proteins that redistribute in response to agrin (Wallace, 1989).

An agrin-binding site has been described on the surface of cultured myotubes (Nastuk et al., 1991). This binding is Ca²⁺ dependent and blocked by heparin, as is the agrin-induced AChR clustering (Wallace, 1990). The agrin-binding site is initially distributed over the muscle surface, but it concentrates at AChR clusters after the addition of agrin. Thus, this site displays the characteristics of the proteoglycans described above, and it is likely to represent α-dystroglycan (see below).

Several cytoskeletal proteins are concentrated at AChR clusters (reviewed by Froehner, 1993). Most tightly associated with the AChR is a protein of 43 kD. The 43-kD protein forms aggregates on the surface of Xenopus oocytes or fibroblasts when expressed in these cells (Froehner et al., 1990; Phillips et al., 1991). When AChRs are coexpressed with the 43-kD protein, receptors are found concentrated at the 43-kD protein aggregates. These microaggregates of AChRs are different from nerve-induced clusters in vivo or agrin-induced clusters in culture: the former are only ~1 μm, whereas the latter can be >15 μm.

More loosely associated with the AChR are proteins of 58, 87, and 300 kD, as well as an isofrom of β-spectrin. The 58-kD protein (syntrophin) is a member of the dystrophin–glycoprotein complex (see below; Adams et al., 1993; Yang et al., 1994), the 87-kD protein is homologous to the COOH-terminus of dystrophin (Wagner et al., 1993), and the 300-kD protein is dystrophin (Sealock et al., 1991). These data suggest that a dystrophin membrane cytoskeleton may organize AChR clusters at the synapse.

Mutations or deletions in dystrophin, a major component of the sarcolemmic membrane, are responsible for Duchenne's muscular dystrophy (Hoffman et al., 1987). In rat muscle, dystrophin is expressed throughout the sarcolemma and is concentrated in the depth of the junctional folds that are rich in Na⁺ channels but devoid of AChRs (Sealock et al., 1991). A homologue of dystrophin, called utrophin- or dystrophin-related protein, is concentrated at the AChR-rich crests of the junctional folds, which do not contain dystro-
Agrin-induced Clustering of Acetylcholine Receptors

Postsynaptic Response to Agrin, Potential Mechanisms

The accumulated data are consistent with the suggestion that α-dystroglycan is the cell surface proteoglycan implicated in agrin activity, and that it corresponds to the previously described agrin-binding site on cultured myotubes (Nastuk et al., 1991). The agrin-α-dystroglycan interaction may play an instructive role in synaptic differentiation. This possibility is supported by the observation that the blocking of this interaction by an anti-α-dystroglycan mAb alters agrin-induced AChR clustering, although the effects of this mAb remain controversial. One group observed a reduction in the number of clusters after addition of the mAb (Gee et al., 1994). A second group detected changes in the appearance of the agrin-induced clusters; instead of the large relatively homogenous clusters normally induced by agrin, loose aggregates of microclusters were visible in cultures treated with mAb (Campanelli et al., 1994). These microclusters look similar to those induced by coexpression of the 43-kD protein with the subunits of the AChR in Xenopus oocytes (Froehner et al., 1990) and COS cells (Brennan et al., 1992). They also appear to correspond to immature clusters observed in vivo, and the early stages of agrin-induced aggregates in culture (Steinbach, 1981; Wallace, 1992). Under normal conditions, these microaggregates consolidate into larger clusters as development proceeds (Bevan and Steinbach, 1977). Interestingly, utrophin is associated with large clusters but not microaggregates (Phillips et al., 1993). These data suggest that an interaction of microclusters with the agrin–dystroglycan–utrophin complex leads to their consolidation into larger aggregates, either by directly anchoring them to the cytoskeleton or by indirectly corralling them (Fig. 2 B).

A testable model is that agrin discriminates between DGC bound to utrophin vs dystrophin. Alternatively, agrin binding to DGC might change the affinity of the complex for these cytoskeletal proteins. In either case, agrin binding could initiate or stabilize a rearrangement of the cytoskeleton that could serve as a template for the concentration of synaptic molecules. Whether agrin also acts at an earlier stage of the aggregation process (i.e., the formation of microclusters) by an independent mechanism remains an open question. Because utrophin has not yet been documented as a component of microclusters, other proteins may be necessary to initiate agrin action.

Another important question is whether agrin and the DGC are important for the formation of interneuronal synapses in the central nervous system. While expression of dystrophin is highest in muscle, low amounts can be detected in the brain, where the protein is found in synaptic areas (Lidow et al., 1990) and cofractionates with postsynaptic densities (Kim et al., 1992). Urophin is expressed in much higher amounts in the brain, and it has been localized to the postsynaptic membrane of dendrites by immunoelectron microscopy (Kamakura et al., 1994). Finally, agrin expression in the brain coincides with the periods of synaptogenesis. Thus, the molecular machinery implicated in NMJ formation is present in brain, and it may serve similar functions in the elaboration of interneuronal synaptic connections.

References

Adams, M. V., M. H. Butler, T. M. Dwyer, M. F. Peters, A. A. Murnane, and S. C. Froehner. 1992. Two forms of mouse syntrophin, a 58 kD dystrophin-associated protein, differ in primary structure and tissue distribution. Neuron. 11:531–540.

Bevan, S., and J. H. Steinbach. 1977. The distribution of alpha-bungarotoxin binding sites on mammalian muscle developing in vivo. J. Physiol. 267:195–213.

Bowe, M. A., K. A. Deyst, J. D. Leszyk, and J. R. Fallon. 1994. Identification and purification of an agrin receptor from torpedo postsynaptic membranes: a heteromeric complex related to the dystroglycans. Neuron. 12:1173–1180.

Brennan, C., P. B. Scotland, S. Froehner, and L. P. Henderson. 1992. Functional properties of acetylcholine receptors coexpressed with 43K protein in heterologous cell systems. Dev. Biol. 149:100–111.

Campanelli, J. T., W. Hoch, F. Rupp, T. Kretiner, and R. H. Scheller. 1991. A family of agrin proteins implicated in neuromuscular junction formation. Ph. D. thesis, Stanford University, Stanford, CA.

Campanelli, J. T., S. L. Roberds, K. P. Campbell, and R. H. Scheller. 1992. A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell. 77:663–674.

Ervasti, J. M., and K. P. Campbell. 1991. Membrane organization of the dystrophin-glycoprotein complex. Cell. 68:1121–1131.

Ervasti, J. M., and K. P. Campbell. 1993. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122:809–823.

Ferns, M., W. Hoch, J. T. Campanelli, F. Rupp, Z. W. Hall, and R. H. Scheller. 1992. RNA splicing regulates agrin-mediated acetylcholine receptor clustering activity on cultured myotubes. Neuron. 8:1079–1086.

Ferns, M. J., J. T. Campanelli, W. Hoch, R. H. Scheller, and Z. W. Hall. 1993. The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans. Neuron. 11:491–502.

Froehner, S. C. 1993. Regulation of ion channel distribution at synapse. Annu. Rev. Neurosci. 16:347–368.

Froehner, S. C., C. W. Luette, P. B. Scotland, and J. Patrick. 1990. The postsynaptic 43 K protein clusters muscle nicotinic acetylcholine receptors in Xenopus oocytes. Neuron. 5:403–410.

Gee, S. R., B. Blacher, P. Douvray, P. Provest, P. Yurchenko, and S. Carbonetto. 1993. Laminin-binding protein 120 from brain is closely related to the dystrophin-associated glycoprotein, dystroglycan, and binds with high affinity to syntrophin), a transmembrane protein of 25 kD, transmembrane protein of 5 kD (DHG), 43 kD (β-dystroglycan), and 35 kD, as well as a heavily glycosylated extracellular protein (α-dystroglycan). The DGC interacts with the COOH-terminus of dystrophin (Suzuki et al., 1991; Ohlendieck et al., 1991), while the NH2-terminal region of dystrophin binds to actin (Ervasti and Campbell, 1993). An extracellular component of the DGC, α-dystroglycan, has previously been shown to bind laminin (Ibrahimov-Beskrovnaya et al., 1992; Gee et al., 1993). Thus, the DGC may serve as a link-
to the major heparin binding domain of laminin. J. Biol Chem. 268:14972–14980.

Gee, S., F. Montaro, M. Lindebaum, and S. Carbonetto. 1994. The dystrophin associated glycoprotein, dystroglycan-α, is a functional agrin receptor. Cell. 77:675–686.

Hirano, Y., and Y. Kidokoro. 1989. Heparin and heparan sulphate partially inhibit induction of acetylcholine receptor accumulation by nerve in Xenopus culture. J. Neurosci. 9:1555–1561.

Hoch, W., J. T. Campellani, S. Harrison, and R. H. Scheller. 1994. Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. EMBO (Eur. Mol. Biol. Organ.) J. In press.

Hoch, W., M. Ferns, J. T. Campellani, Z. W. Hall, and R. H. Scheller. 1993. Developmental regulation of highly active alternatively spliced forms of agrin. Neuron. 11:479–490.

Hoffman, E. P., R. H. Brown, and L. M. Kunkel. 1987. Dystrophin: the protein product of the Duchenne's muscular dystrophy locus. Cell. 51:919–928.

Ibraghimov-Beskrovnaya, O., J. M. Ervasti, C. J. Leveille, C. A. Slaughter, S. W. Sernet, and K. P. Campbell. 1992. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature (Lond.). 355:696–702.

Kanakura, K., Y. Tadano, M. Kawai, S. Ishiura, R. Nakamura, K. Miyamoto, N. Nagata, and H. Sugita. 1994. Dystrophin-related protein is found in the central nervous system of mice at various developmental stages, especially at the postsynaptic membrane. J. Neurosci. Res. 37:728–734.

Kim, T.-W., K. Wu, J.-L. Xu, and I. B. Black. 1992. Detection of dystrophin in the postsynaptic density of rat brain and deficiency in a mouse model of Duchenne's muscular dystrophy. Proc. Natl. Acad. Sci. USA 87:11642–11644.

Lidow, H. G. W., T. J. Byers, S. C. Watkins, and L. M. Kunkel. 1990. Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature (Lond.) 348:725–728.

Man, N. T., J. M. Ellis, D. R. Love, K. E. Davies, K. C. Gatter, G. Dickson, and G. E. Morris. 1991. Localization of the DMDL gene-encoded, dystrophin-related protein using a panel of 19 monoclonal antibodies: presence at neuromuscular junctions, in the sarcotendons of dystrophic skeletal muscle, in vascular and other smooth muscles, and in proliferating brain cell lines. J. Cell Biol. 115:1695–1700.

Matsamura, K., J. M. Ervasti, K. Ohlendieck, S. D. Kahl, and K. P. Campbell. 1992. Association of dystrophin-related protein with dystrophin-associated proteins with mdx mouse muscle. Nature (Lond.). 360:588–591.

McManus, U. J. 1990. Agrin hypothesis. In Cold Spring Harbor Symposia on Quantitative Biology, Vol. LV. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. pp. 407–418.

Nastuk, M. A., E. Lithi, J. Ma, C. A. Cardasis, E. B. Moyer, B. A. McKean, and J. R. Fallon. 1991. The putative agrin receptor binds ligands in a calcium-dependent manner and aggregates during agrin-induced acetylcholine receptor clustering. Neuron. 7:807–818.

O'Connor, L. T., J. C. Lauterborn, C. M. Gall, and M. A. Smith. 1994. Localization and alternative splicing of agrin mRNA in adult rat brain: transcripts encoding isoforms that aggregate acetylcholine receptors are not restricted to cholinergic regions. J. Neurosci. 14:1141–1152.

Ohlendieck, K., J. M. Ervasti, K. Matsamura, S. D. Kahl, C. J. Leveille, and K. P. Campbell. 1991. Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron. 7:499–508.

Phillips, W. D., C. Kopa, P. Blount, P. D. Gardner, J. H. Steinbach, and J. P. Merli. 1991. ACh receptor-rich domains organized in fibroblasts by recombinant 43-kilodalton protein. Science (Wash. DC). 251:568–570.

Phillips, W. P., P. Noakes, S. Roberts, K. Campbell, and J. Merli. 1993. Clustering and immobilization of acetylcholine receptors by the 43-kD protein: a possible role for dystrophin-related protein. J. Cell Biol. 123:729–740.

Qu, Z., E. Moritz, and R. L. Huganir. 1990. Regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor at the rat neuromuscular junction. Neuron. 4:367–378.

Reist, N. E., M. J. Werle, and U. J. McManus. 1992. Agrin released by motor-neurons induces the aggregation of acetylcholine receptors at neuromuscular junctions. Neuron. 8:865–868.

Roberda, S. L., J. M. Ervasti, R. D. Anderson, K. Ohlendieck, S. D. Kahl, D. Zoloto, and K. P. Campbell. 1993. Disruption of the dystrophin-glycoprotein complex in the cardiomyopathic hamster. J. Biol. Chem. 268: 11496–11499.

Ruegg, M. A., K. W. K. Tsim, S. E. Horton, S. Kröger, G. Escher, E. M. Gensch, and U. J. McManus. 1992. The agrin gene codes for a family of basal lamina proteins that differ in function and distribution. Neuron. 8: 691–699.

Rupp, F., D. G. Payan, S. C. Magill, D. M. Cowan, and R. H. Scheller. 1991. Structure and expression of a rat agrin. Neuron. 6:811–823.

Sealock, R., M. H. Butler, N. R. Kramarcy, K.-X. Gao, A. A. Murnane, K. Douville, and S. C. Freibarker. 1991. Localization of dystrophin relative to acetylcholine receptor domains in electric tissue and adult and cultured skeletal muscle. J. Cell Biol. 113:1133–1144.

Steinbach, J. 1981. Developmental changes in acetylcholine receptor aggregates at rat skeletal neuromuscular junctions. Dev. Biol. 84:267–276.

Sugiymaba, J., Bowen, D. C., and Z. W. Hall. 1994. Dystroglycan binds nerve and muscle agrin. Neuron. In press.

Sunada, Y., S. M. Bernier, C. A. Kozak, Y. Yamada, and K. P. Campbell. 1994. Deficiency of merosin in dystrophic dy mice and genetic linkage of the laminin M chain gene to the dy locus. J. Biol. Chem. In press.

Suzuki, A., M. Yoshida, K. Hayashi, Y. Muzuno, Y. Hagihara, and E. Ozawa. 1994. Molecular organization at the glycoprotein-complex-binding site of dystrophin: three dystrophin-associated proteins bind directly to the carboxy-terminal portion of dystrophin. Eur. J. Biochem. 220:283–292.

Swope, S. L. and R. L. Huganir. 1993. Molecular cloning of two abundant protein tyrosine kinases in Torpedo electric organ that associate with the acetylcholine receptor. J. Biol. Chem. 268:25152–25161.

Tsim, K. W. K., M. A. Ruegg, G. Escher, S. Kröger, and U. J. McManus. 1992. cDNA that encodes active agrin. Neuron. 8:677–689.

Wagner, K. R., J. B. Cohen and R. L. Huganir. 1993. The 87K postsynaptic protein from Torpedo is a protein-tyrosine kinase substrate homologous to dystrophin. Neuron. 10:511–522.

Wallace, B. G. 1988. Regulation of agrin-induced acetylcholine receptor aggregation by Ca2+ and phorbol ester. J. Cell Biol. 107:267–278.

Wallace, B. G. 1989. Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus. J. Neurosci. 9:1294–1302.

Wallace, B. G. 1990. Inhibition of agrin-induced acetylcholine-receptor aggregation by heparin, heparan sulphate, and other polyans. J. Neurosci. 10: 3576–3582.

Wallace, B. G. 1992. Mechanism of agrin-induced acetylcholine receptor aggregation. J. Neurobiol. 23:592–604.

Wallace, B. G. 1994. Staurosporine inhibits agrin-induced acetylcholine receptor phosphorylation and aggregation. J. Cell Biol. 125:661–668.

Wallace, B. G., Z. Qu, and R. L. Huganir. 1991. Agrin induces phosphorylation of the nicotinic acetylcholine receptor. Neuron. 6:869–878.

Yang, B., O. Ibraghimov-Beskrovnaya, C. R. Moonaw, C. A. Slaughter and K. P. Campbell. 1994. Heterogeneity of the 59-kDa dystrophin-associated protein revealed by cDNA cloning and expression. J. Biol. Chem. 269: 6040–6044.

Yamada, K. M. 1991. Adhesive recognition sequences. J. Biol. Chem. 266: 12809–12812.