RESEARCH ARTICLE

SREBF1c and SREBF2 gene polymorphisms are associated with acute coronary syndrome and blood lipid levels in Mexican population

Gilberto Vargas-Alarcon1,2, Hector Gonzalez-Pacheco2,3, Oscar Perez-Mendez1,2, Rosalinda Posadas-Sanchez4, Guillermo Cardoso-Saldaña5, Galileo Escobedo6, Betzabe Nieto-Lima1, Jose Manuel Fragoso1,2*

1 Department of Molecular Biology, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico, 2 Atherosclerosis Study Group, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico, 3 Coronary Unit, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico, 4 Department of Endocrinology, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico, 5 Research Unit on Endocrine and Metabolic Diseases, Hospital Juarez de Mexico, Mexico City, Mexico, 6 Unit of the Experimental Medicine, Hospital General de Mexico, Dr. Eduardo Liceaga, Mexico City, Mexico

* mfragoso1275@yahoo.com.mx

Abstract

Aim

It has recently been reported that the sterol regulatory element-binding transcription factors (SREBF-1c, and -2) contribute to the variation in the plasma lipids levels, which have an important role in the atherosclerotic plaque development. The aim of the present study was to evaluate whether the SREBF1c and SREBF2 gene single nucleotide polymorphisms (SNPs) are associated with plasma lipids levels and ACS susceptibility in a case-control association study.

Material and methods

A case-control study was carried out in 625 patients with ACS (82% men and 18% women, with a mean age of 57.97 ± 10.5 years) and 700 healthy controls (66% men and 34% women, with a mean age of 54.37 ± 7.65 years). The sample size was calculated for a statistical power of 80%. We genotyped three SREBF1c (rs2297508, rs11656665 and rs11868035) and three SREBF2 (rs2267439, rs2267443, and rs2228314) gene polymorphisms by 5' exonuclease TaqMan assays. The associations were evaluated by logistic regression under the co-dominant, dominant, recessive, over-dominant and additive inheritance models. The contribution of the genotypes on the plasma lipids levels was evaluated by Student’s t-test.

Results

Under different models, the SREBF1c rs2297508 (OR = 1.50, p_CRes = 0.03), SREBF1c rs11656665 (OR = 1.35, p_CDom = 0.02 and OR = 1.26, p_CAdd = 0.02) and SREBF2 rs2228314 (OR = 1.78, p_CRes = 0.03, OR = 1.27, p_CAdd = 0.04) SNPs were associated with higher risk of ACS. On the other hand, the SREBF1c rs11868035 SNP was associated with...
lower risk of ACS (OR = 0.49, \(p_{\text{Co-dom}} = 0.001 \), OR = 0.66, \(p_{\text{Dom}} = 0.003 \), OR = 0.57, \(p_{\text{Res}} = 0.003 \) and OR = 0.71, \(p_{\text{Add}} = 0.001 \)). There was a statistically significant association of both \(SREBF1c \) rs11656665 and rs11868035 polymorphisms with plasma triglyceride levels.

Conclusions

In summary, our data suggest the association of the \(SREBF1c \) and \(SREBF2 \) SNPs with risk of developing ACS and with triglyceride levels in a Mexican population.

Introduction

The acute coronary syndrome (ACS) is an important consequence of both atherosclerosis and abnormalities in lipid levels, constitutes a worldwide public health problem. Generally, the transition of a stable coronary atherosclerotic lesion into a ruptured or eroded plaque produces the clinical manifestations of the acute coronary syndrome [1,2].

Lipid variations are major risk factors of metabolic diseases, such as atherosclerosis, fatty liver disease, and diabetes [3]. In recent years, several studies have indicated that the sterol regulatory element-binding transcription factors (SREBF-1a, -1c, and -2) contribute to the variation of cholesterol, triglycerides, high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) levels [4–6]. In addition, these factors are partly responsible for the development of some diseases, such as type 2 diabetes mellitus (T2DM), schizophrenia, ischemia stroke, coronary artery disease, and hypercholesterolemia [7–12]. The SREBF-1a and SREBF-1c isoforms are both encoded in a single gene (sterol regulatory element binding transcription factor-1 \(\text{SREBF-1} \)) located in chromosome 17p11.2). SREBF-1a stimulates the expression of both cholesterol and fatty acid biosynthesis genes, whereas SREBF-1c controls the expression of fatty acid, phospholipid and triglyceride biosynthetic genes [13–17].

On the other hand, SREBF-2 [encoded by the sterol regulatory element binding transcription factor-2 \(\text{SREBF-2} \) gene, located in chromosome 22q13.2] is preferentially involved in the regulation of cholesterol metabolism [14,15]. In this context, we postulated that \(SREBF-1 \) and \(SREBF-2 \) genes could be new candidates in the development of ACS due to their involvement in the regulation of the lipid biosynthesis; these molecules play an important role in the development of atherosclerotic plaque [1,2,5,6].

Recently three single nucleotide polymorphism (SNPs) of the \(SREBF-1c \) isoform: two in the 3’UTR region [positions A30225G (rs11868035) and G30009C (rs2297508)], and one in intron 1 [position IVSI G954A (rs11656665)] have been associated with T2DM, hypercholesterolemia, and adiponectin levels [8,9,18]. Nonetheless, the association of these polymorphisms with other inflammatory diseases such as ischemic stroke and non-alcoholic fatty liver disease is controversial with negative results [11,19]. On the other hand, the SREBF-2 gene presents two relevant SNPs in the intronic region [at positions IVSI C8407T (rs2267439) and IVSI2 A1667G (rs2267443), respectively] and one in the exon 10 [at position G1784C Gly595Ala (rs2228314 has merged into rs4822063)]. These SREBF-2 variants have been associated with and increased risk for T2DM, hypercholesterolemia, premature coronary artery disease, and osteoarthritis [7,10,20,21].

Considering the prominent role of these genes in both lipid metabolism regulation and plasma lipid concentrations, the aim of this study was to establish the role of six polymorphisms \(\text{SREBF-1c} \text{3’UTR A30225G, SREBF-1c} \text{3’UTR G30009C, SREBF-1c IVSI G954A, SREBF-2 IVSI C8407T, SREBF-2 IVSI2 A1667G, and SREBF-2 G1784C Gly595Ala} \) in the
susceptibility of developing ACS. Furthermore, we evaluated whether these polymorphisms were associated with plasma lipids levels in a Mexican population sample.

Materials and methods

Characteristics of the study population

The sample size calculation for unmatched cases and controls study, with a power of 80% and an alpha error of 0.05, showed that the total sample size needed to carry out this study was 528 Mexican mestizo individuals (264 patients with ACS and 264 control individuals) (http://www.openepi.com/SampleSize/SSCC.html). In this study, we included 1325 Mexican mestizo individuals (625 patients with ACS and 700 healthy controls unmatched by age or gender). From July 2007 to July 2017, we recruited 625 patients with ACS (82% men and 18% women, with a mean age of 57.97 ± 10.5 years) who were referred to the Instituto Nacional de Cardiología Ignacio Chavez. From this patient population, 501 were diagnosed with myocardial infarction and 124 with unstable angina. ACS was diagnosed based on clinical characteristics, electrocardiographic changes and biochemical markers of cardiac necrosis (creatinine kinase isoenzymes, creatinine phosphokinase, or troponin I above the normal upper limit). The diagnosis of ACS was made according to guidelines from the European Society of Cardiology (ESC) and American College of Cardiology (ACC) [22,23]. The exclusion criteria were (1) patients with clear inflammatory pathologies on admission, such as infection established by clinical, laboratory or image investigations, and (2) patients with an autoimmune disease or cancer previously diagnosed or documented during their hospitalization. Moreover, we included 700 apparently healthy controls (66% men and 34% women, with a mean age of 54.37 ± 7.65 years) without a family history of premature coronary artery disease (pCAD) or atherosclerosis. The control group was recruited from June 2009 to June 2013 from blood bank donors and with the assistance of brochures posted in social service centers. These control subjects were nested in the cohort of the Genetics of Atherosclerosis Disease (GEA) Mexican study. The exclusion criteria included the use of anti-inflammatory drugs at the time of the study, congestive heart failure, and liver, renal, thyroid or oncological disease. In addition, the control subjects had a coronary calcium score of zero determined by computed tomography, indicating the absence of subclinical atherosclerosis in them [24]. All the included subjects were ethnically matched and considered Mexican mestizos only if they were at least third generation Mexicans born in the country.

Ethics

The study complies with the Declaration of Helsinki. Ethical approval was provided by the Ethics and Research commission of Instituto Nacional de Cardiología Ignacio Chavez—registration number: 17CI09012010. Written informed consent was obtained from all participants.

Laboratory analyses

After a 12-h overnight fast, EDTA blood samples were drawn and centrifuged within 15 min after collection; plasma was separated into aliquots and immediately analyzed or frozen at −80°C until analysis. Cholesterol and triglycerides plasma concentrations were determined by enzymatic/colorimetric assays (Randox Laboratories, UK). The phosphotungstic acid-Mg²⁺ method was used to determine HDL-C concentrations. LDL-C was estimated in samples with a triglyceride level lower than 400 mg/dl, using the modified Friedewald formula [25]. Plasma lipid concentrations were determined within 24-h after blood sample collection. We followed the National Cholesterol Education Project (NCEP) Adult Treatment Panel (ATP III)
guidelines and thus defined dyslipidemia with the following levels: cholesterol > 200 mg/dl, LDL-C > 130 mg/dl, HDL-C < 40 mg/dl, and triglyceride > 150 mg/dl. (http://www.nhlbi.nih.gov/guidelines/cholesterol/atp3_rpt.htm).

Genetic analysis

DNA extraction was performed from peripheral blood in agreement with the method of Lahiri and Nurnberger [26]. The SREBF-1c 3'UTR A30225G (rs11868035), SREBF-1c 3'UTR G30009C (rs2297508), SREBF-1c IVS1 G954A (rs11656665), SREBF2 IVS1 C8407T (rs2267439), SREBF2 IVS2 A1667G (rs2267443) and SREBF2 G1784C Gly595Ala (rs2228314) SNPs were genotyped using 5' exonuclease TaqMan assays on a 7900HT Fast Real-Time PCR system according to manufacturer’s instructions (Applied Biosystems, foster City, USA). Samples previously sequenced for the different genotypes of the studied polymorphisms were included as positive controls.

Functional prediction analysis

Two *in silico* programs (http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home) and SNP Function Prediction (http://snpinfo.niehs.nih.gov/cgi-bin/snpinfo/snpfunc.cgi) were used to predict the possible functional effect of the SREBF1c and SREBF2 gene polymorphisms. Both programs (ESEfinder2.0 and SNPinfo) analyze the localization of the SNP (e.g. 5'-upstream, 3'-untranslated regions, intronic) and its possible functional effects such as amino acid changes in protein structure, transcription factor binding sites in promoter or intronic enhancer regions, and alternative splicing regulation by disrupting exonic splicing enhancers (ESE) or silencers [27,28].

Statistical analysis

Continuous variables that are not normally distributed, such as age, body mass index (BMI), blood pressure, glucose, total cholesterol, HDL-C, LDL-C, were analyzed using the Mann-Whitney U test. Categorical variables, such as gender, hypertension, T2DM, and smoking habit were analyzed with the chi-squared test or Fisher’s exact test. Using co-dominant, dominant, recessive, over-dominant, and additive models, we analyzed the association of the polymorphisms with ACS by logistic regression. Multiple logistic models were built to identify the variables that best explained the risk of developing ACS. Models were constructed including one variable at the time, while final models included variables with biological relevance, statistical significance or both. Confounding bias was accepted when changes in estimated odds ratios (ORs) were equal to or greater than 10%. When a principal effect model was reached, effect modification was also tested and interaction terms were constructed between the polymorphisms and different variables; the terms were included in the model when the significance of the p-value was greater than or equal to 0.05. All p-values were corrected (pC) by the Bonferroni test. The values of pC < 0.05 were considered statistically significant, and all odds ratios (OR) are presented with 95% confidence intervals. The occurrence of the ACS in our population was based in the OR values: (a) OR = 1 does not affect the odds of developing ACS, (b) OR>1 is associated with higher odds of developing ACS, and (c) OR<1 is associated with lower odds of developing ACS. The linkage disequilibrium analysis (LD, D²) of the polymorphisms and the haplotypes construction was performed with Haplovew version 4.1 (Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA). We used the chi-squared test to evaluate Hardy-Weinberg equilibrium (HWE). Student’s t-test was used for establishing the contributions of the genotypes on the plasma lipids levels. Values are expressed as means ± SD, and statistical significance was set at p < 0.05. The
analysis of data was performed with SPSS version 18.0 (SPSS, Chicago, Il) statistical package. The statistical power to detect an association with ACS was 0.80. We used the QUANTO software [http://biostats.usc.edu/software] to estimate the association.

Results

Characteristics of the study population

Demographic, clinical and biochemical characteristics of the ACS patients and healthy controls are shown in Table 1. There were significant differences between the ACS patients and healthy controls. Compared to healthy controls, the ACS patients had a higher frequency of T2DM, hypertension, dyslipidemia, and smoking habit. Conversely, the total cholesterol and LDL-C levels of ACS patients were lower than those of the control group; this effect may be due to their treatment with statins.

Allele and genotype frequencies

Genotype frequencies in the polymorphic sites were in HWE. The frequencies of the SREBF2 IVS1 C8407T (rs2267439) and SREBF2 IVS2 A1667G (rs2267443) polymorphisms were similar in ACS patients and healthy controls. Nonetheless, four SNPs [SREBF-1c 3’UTR A30225G (rs11868035), SREBF-1c 3’UTR G30009C (rs2297508), SREBF-1c IVS1 G954A (rs11656665), and SREBF2 G1784C Gly595Ala (rs2228314)] were associated with the presence of ACS (Table 2). Considering that the whole group of patients and controls were not age and sex matched, this analyses was adjusted by these variables. In order to corroborate the effect of these variables, we also performed a sub-analysis including a group of patients and controls age and sex matched. This sub-analysis showed similar results than those obtained with the whole group; the SREBF-1c 3’UTR A30225G (rs11868035), SREBF-1c 3’UTR G30009C...
Table 2. Distribution of SREBF-1c and SREBF-2 polymorphisms in ACS patients and healthy controls.

	Genotype frequency	MAF	Model	OR (95%CI)	pC		
SREBF-1c UTR’3							
Control (n = 698)	CC	GG					
	289 (0.414)	324 (0.464)	85 (0.121)	0.353	Co-dominant	1.53 (1.02–2.29)	0.10
	Dominant						
	1.14 (0.87–1.48)					0.34	
ACS (n = 623)							
	240 (0.385)	281 (0.451)	102 (0.163)	0.390	Recessive	1.50 (1.03–2.18)	0.03
	Over-dominant						
	0.93 (0.72–1.20)					0.58	
	Log-additive						
	1.18 (0.98–1.43)					0.08	
SREBF-1c IVS1							
Control (n = 699)	GG	GA	AA				
	318 (0.455)	298 (0.426)	83 (0.118)	0.331	Co-dominant	1.55 (1.03–2.31)	0.05
	Dominant						
	1.35 (1.04–1.76)					0.02	
ACS (n = 620)							
	245 (0.395)	278 (0.448)	97 (0.156)	0.380	Recessive	1.35 (0.93–1.97)	0.11
	Over-dominant						
	1.16 (0.90–1.51)					0.25	
	Log-additive						
	1.26 (1.04–1.52)					0.02	
SREBF-1c UTR’3							
Control (n = 695)	AA	AG	GG				
	251 (0.361)	318 (0.457)	126 (0.181)	0.410	Co-dominant	0.49 (0.33–0.73)	0.001
	Dominant						
	0.66 (0.51–0.87)					0.003	
ACS (n = 617)							
	268 (0.434)	269 (0.435)	80 (0.129)	0.347	Recessive	0.57 (0.40–0.83)	0.003
	Over-dominant						
	0.90 (0.69–1.17)					0.42	
	Log-additive						
	0.71 (0.59–0.85)					0.001	
SREBF-2 IVS1							
Control (n = 692)	TT	TC	CC				
	564 (0.815)	124 (0.179)	4 (0.006)	0.095	Co-dominant	2.98 (0.90–9.25)	0.14
	Dominant						
	1.17 (0.89–1.54)					0.26	
ACS (n = 619)							
	489 (0.789)	120 (0.193)	10 (0.016)	0.113	Recessive	2.82 (0.88–9.05)	0.06
	Over-dominant						
	1.10 (0.83–1.46)					0.50	
	Log-additive						
	1.21 (0.94–1.56)					0.14	
SREBF-2 IVS12							
Control (n = 691)	GG	GA	AA				
	465 (0.673)	197 (0.285)	29 (0.042)	0.184	Co-dominant	0.88 (0.50–1.56)	0.38
	Dominant						
	1.13 (0.90–1.42)					0.30	
ACS (n = 618)							
	399 (0.645)	197 (0.318)	22 (0.035)	0.195	Recessive	0.84 (0.48–1.48)	0.55
	Over-dominant						
	1.17 (0.93–1.49)					0.18	
	Log-additive						
	1.07 (0.88–1.30)					0.50	
SREBF-2							
Control (n = 689)	CC	CG	GG				
	346 (0.502)	285 (0.413)	58 (0.084)	0.291	Co-dominant	1.87 (1.08–3.22)	0.08
	Dominant						
	1.24 (0.90–1.70)					0.19	
ACS (n = 614)							
	284 (0.462)	252 (0.410)	78 (0.127)	0.332	Recessive	1.78 (1.05–3.00)	0.03
	Over-dominant						
	1.00 (0.72–1.38)					0.98	
	Log-additive						
	1.27 (1.00–1.61)					0.04	

ACS, Acute coronary syndrome; MAF, Minor allele frequency; OR, odds ratio; CI, confidence interval; pC, p-value. The p-values were calculated by the logistic regression analysis, and ORs were adjusted for gender, age, blood pressure, BMI, glucose, total cholesterol, HDL-C, LDL-C, triglycerides, and smoking habit.

https://doi.org/10.1371/journal.pone.0222017.t002
(rs2297508), and SREBF-1c IVS1 G954A (rs11656665) SNPs were associated with the presence of ACS (S1 Table). Under a recessive model, the G allele of the SREBF-1c 3’UTR G30009C (rs2297508) SNP was associated with a higher risk of ACS (OR = 1.50, pCRes = 0.03). In the same way, under dominant and additive models, the A allele of the SREBF-1c IVS1 G954A (rs11656665) SNP was associated with a higher risk of ACS (OR = 1.35, pCDom = 0.02 and OR = 1.26, pCAdd = 0.02, respectively). Moreover, under co-dominant, dominant, recessive and additive models, the G allele of the SREBF-1c 3’UTR A30225G (rs11868035) SNP was associated with a lower risk of ACS (OR = 0.49, pCCo-dom = 0.001, OR = 0.66, pCDom = 0.003, OR = 0.57, pCRes = 0.003 and OR = 0.71, pCAdd = 0.001). Finally, under recessive and additive models, the G allele of the SREBF2 G1784C Gly595Ala (rs2228314) SNP was associated with a higher risk of ACS (OR = 1.78, pCRes = 0.03, OR = 1.27, pCAdd = 0.04, respectively). All models were adjusted for gender, age, blood pressure, BMI, glucose, total cholesterol, HDL-C, LDL-C, triglycerides, and smoking habit.

Linkage disequilibrium analysis

We analyzed haplotypes using the Haploview version 4.1 program. In this analysis, the SREBF-1c 3’UTR A30225G (rs11868035), 3’UTR G30009C (rs2297508), and IVS1 G954A (rs11656665) polymorphisms showed a moderate linkage disequilibrium (D’ > 0.60). Furthermore, eight haplotypes were constructed (Table 3); two (AGG, and AGA) of the eight haplotypes were associated with risk of developing ACS (OR = 1.93, 95% CI: 1.32–2.82, pC = 0.016, OR = 5.32, 95% CI: <0.008, respectively), whereas that the ”GGG” haplotype was associated with a lower risk of ACS (OR = 0.50, 95% CI: 0.71–0.70, pC = 0.016, OR = 0.64, 95% CI: 0.88–1.05, pC = 0.17, respectively). Table 3. Haplotype distribution of SREBF1c and SREBF2 polymorphisms in ACS patients and healthy controls.

SREBF1c gene located in chromosome 17p11.2	ACS (n = 615)	Controls (n = 693)	OR	95%CI	pC
Haplotype	HF	HF			
ACG	0.470	0.501	0.88	0.75–1.02	0.11
GGA	0.232	0.241	0.95	0.79–1.13	0.61
GCG	0.049	0.063	0.77	0.55–1.09	0.17
GGG	0.036	0.070	0.50	0.55–0.72	0.016
ACA	0.063	0.044	1.47	1.04–2.08	0.26
AGA	0.061	0.032	1.93	1.32–2.82	0.016
AGA	0.059	0.012	5.32	3.08–9.20	<0.008
GCA	0.029	0.037	0.77	0.50–1.19	0.29

SREBF2 gene located in chromosome 22q13.2	ACS (n = 614)	Controls (n = 689)	OR	95%CI	pC
Haplotype	HF	HF			
TCG	0.658	0.698	0.83	0.70–0.98	0.03
TGA	0.160	0.158	1.02	0.82–1.26	0.87
CGG	0.086	0.074	1.16	0.88–1.55	0.31
TGG	0.059	0.040	1.52	1.06–2.17	0.02
CGA	0.027	0.019	1.43	0.85–2.41	0.21

Abbreviations: HF = Haplotype frequency, ACS = acute coronary syndrome, pC = corrected p-value. The order of the polymorphisms in the haplotypes is according to the positions in the chromosome. For the SREBF1c gene located in chromosome 17p11.2 [SREBF-1c 30225 A/G (rs11868035), SREBF-1c 30009 G/C (rs2297508), and SREBF-1c IVS1-954 G/A (rs11656665)], and for the SREBF2 gene located in chromosome 22q13.2 [SREBF2 IVSI+8407 C/T (rs2267439), SREBF2 1805 G/C (rs228314) and SREBF2 IVSI2-1667 A/G (rs2267443)]. The significant p-value is in bold.

https://doi.org/10.1371/journal.pone.0222017.t003
with a lower risk of developing ACS (OR = 0.50, 95% CI: 0.55–0.72, pC = 0.016). On the other hand, the analysis of the SREBF2 IVSI C8407T (rs2267439), IVSI2 A1667G (rs2267443), and G1784C Gly595Ala (rs2228314) SNPs showed a strong linkage disequilibrium (D' > 0.90). The haplotype analysis showed five haplotypes with different distribution in ACS patients and healthy controls (Table 3). The “TGG” haplotype was associated with a higher risk of developing ACS (OR = 1.52, 95% CI: 1.06–2.17, pC = 0.02), while the “TGG” haplotype was associated with a lower risk of developing ACS (OR = 0.83, 95% CI: 0.70–0.98, pC = 0.03).

Association of polymorphisms with plasma lipids levels

We determined the contributions of these SNPs in plasma lipids levels, such as total cholesterol, HDL-C, LDL-C, triglycerides, and LDL-C / HDL-C ratio. For this analysis, we only selected the group of healthy individuals who fulfilled the above-mentioned inclusion criteria for control subjects. We did not include the analysis of lipids plasma levels in patients with ACS, because in the setting of the coronary syndrome, these levels may be altered by the use of the anti-dyslipidemic or anti-inflammatory drugs. Comorbidities, such as insulin resistance/T2DM, hypertension, and inflammatory processes can also mask the real impact of SREBF1c and SREBF2 polymorphisms on plasma lipids. In this context, individual carriers of AG/AA (n = 226) genotypes of the SREBF2 IVSI2 A1667G (rs2267443) SNP had higher concentrations of cholesterol than GG homozygotes (194.62 ± 42.69 mg/dl, 189.06 ± 34.88 mg/dl, p < 0.034). On the other hand, the analysis of the SREBF1c 3’UTR A30225G (rs11868035) SNP showed that individuals with AG/GG (n = 444) genotypes had lower triglyceride levels (170.68 ± 88.53 mg/dl, 183.75 ± 104.48 mg/dl, p < 0.041) than AA genotype carriers. In addition, carriers of the GA/AA (n = 381) genotypes of the SREBF1c IVS1 G954A (rs11656665) SNP had a lower triglycerides concentration (169.61 ± 88.95 mg/dl, 181.70 ± 100.66 mg/dl, p < 0.046) than individuals with the GG genotype (Table 4). Additionally, we analyzed the association of the polymorphisms with cardiovascular risk factors, such as body mass index (BMI), blood pressure, glucose and their relation with SREBF1c and SREBF2 SNPs. This analysis revealed that the subjects with TC/CC (n = 128) genotypes of the IVSI C8407T (rs2267439) SNP had a lower concentration of glucose (92.99 ± 20.38 mg/dl, 99.90 ± 33.90 mg/dl, p = 0.046) and a lower systolic blood pressure (115.17 ± 14.40 mmHg, 117.82 ± 16.35 mmHg, p = 0.046) than TT genotype.

Functional prediction

The functional prediction analysis showed that the presence of the G allele of the SREBF1c 3’UTR G30009C (rs2297508) polymorphism potentially produces a binding motif for Srp55 protein. The analysis also revealed that the G allele of the SREBF2 G1784C Gly595Ala (rs2228314) polymorphism may generate binding motifs for SF2/ASF protein. In contrast, the analysis of the SREBF1c 3’UTR G30009C (rs2297508), SREBF1c IVS1 G954A (rs11656665), SREBF2 IVSI C8407T (rs2267439), and SREBF2 IVSI2 A1667G (rs2267443) polymorphisms did not exhibit evidence of potentially functional motifs.

Discussion

In our study, a similar distribution of IVSI C8407T (rs2267439) and IVSI2 A1667G (rs2267443) SNPs of the SREBF2 gene were observed in ACS patients and healthy controls. Nonetheless, we also found that the presence of the G allele of SREBF2 G1784C Gly595Ala (rs2228314) SNP was associated with a risk of developing ACS. Contrary to our findings, Robinet et al. reported that the C allele of the G1784C (rs2228314) SNP is associated with development of intima-media thickness and early-stage carotid atherosclerosis in a French population.
Table 4. Association of the SREBF1c and SREBF2 gene SNPs with plasma lipids levels and anthropometric characteristics in the healthy control group (n = 700).

Parameters	SREBF1c			SREBF2					
BMI (kg/m²)									
Blood pressure (mmHg)									
Systolic	117 ± 16	116 ± 15	0.214	117 ± 16	118 ± 16	0.147	117 ± 18	119 ± 15	0.284
Diastolic	73 ± 9	71 ± 8	0.117	72 ± 9	72 ± 8	0.464	73 ± 9	72 ± 9	0.276
Glucose (mg/dl)	99 ± 32	95 ± 28	0.129	97 ± 29	100 ± 35	0.161	98 ± 30	100 ± 36	0.158
Total cholesterol (mg/dl)	191 ± 38	188 ± 38	0.239	199 ± 38	191 ± 37	0.454	191 ± 38	191 ± 38	0.467
HDL-C (mg/dl)	45 ± 13	43 ± 13	0.198	43 ± 13	44 ± 14	0.397	45 ± 13	44 ± 14	0.432
LDL-C (mg/dl)	116 ± 31	115 ± 34	0.406	117 ± 32	115 ± 32	0.211	116 ± 30	115 ± 34	0.341
Triglycerides (mg/dl)	174 ± 94	179 ± 98	0.340	170 ± 89	182 ± 100	0.043	171 ± 88	184 ± 104	0.041
Ratio LDL-C/HDL-C	2.80 ± 1.08	2.85 ± 1.05	0.350	2.82 ± 1.11	2.78 ± 1.02	0.324	2.80 ± 1.05	2.79 ± 1.12	0.365

Abbreviations: BMI = Body mass index, HDL = High-density lipoprotein–cholesterol, LDL = Low-density lipoprotein, p = p-value. Data of BMI, blood pressure, glucose, total cholesterol, HDL-C, LDL-C, triglycerides and Ratio LDL-C/HDL-C are expressed as mean ± SD adjusted by gender and age.

https://doi.org/10.1371/journal.pone.0222017.004
association between the G allele and the presence of ACS; this allele has thus an important role in the development of the disease.

On the other hand, we found an association of the A allele of the $SREBF-1c$ gene $IVS1 G954A$ (rs11656665) SNP with a higher risk of developing ACS in the study population. A meta-analysis showed that the A allele of $SREBF-1c IVS1 G954A$ (rs11656665) SNP is associated with lower adiponectin levels [18]. This meta-analysis is in accord with our findings since hypoadiponectinemia may contribute to a higher cardiovascular risk. In addition, our results demonstrated that the 3'UTR $A30225G$ (rs11868035) and 3'UTR $G30009C$ (rs2297508) SNPs of the $SREBF-1c$ gene play an important role in the presence of ACS. To the best of our knowledge, this study is the first to describe the association between these polymorphisms with the presence of ACS. In this context, the association of these SNPs with several inflammatory diseases in different populations is controversial. In agreement with our findings, Felder et al. reported that G allele of the $SREBF-1c$ 3'UTR $G30009C$ SNP is associated with a risk of developing T2DM in a French population [9]. Similarly, in a Danish population, Grarup et al. reported in a meta-analysis study that the G allele is associated with a higher risk of T2DM [30]. However, Peng et al. studied a Chinese Han population and reported that the 3'UTR $A30225G$ and 3'UTR $G30009C$ polymorphisms were not associated with risk of non-alcoholic fatty liver disease (NAFLD) [19]. With regard to the 3'UTR $A30225G$ (rs11868035) polymorphism, we found that the G allele was associated with lower risk of developing ACS. In contrast, Liu et al. reported that G allele of the 3'UTR $A30225G$ (rs11868035) SNP in a Chinese population increased the risk of developing T2DM (OR = 1.76) [31]. In line with our findings, studies in Caucasian populations have shown that the A allele of the $SREBF-1c$ 3'UTR $A30225G$ (rs11868035) SNP is associated with a higher risk of developing T2DM [30,32,33]. In addition, we found that the AGG and AGA haplotypes were associated with increased risk of developing ACS. However, as far as we know, this study is first that describes haplotypes between these polymorphisms.

Moreover, in our study, the association of the $SREBF2 G1784C$ (rs2228314) and $SREBF-1c$ 3'UTR $A30225G$ (rs11868035) polymorphisms with the presence ACS were positive, but controversial with other populations. We think that the association of the $SREBF1c$ and $SREBF2$ polymorphisms could be due to the classical cardiovascular risk factors, and the environmental factors such as diet, exercise and lifestyle that have an important role in the development of the inflammatory diseases [19,33], as well as, to the fact that the allelic distribution of these polymorphisms varies according to the ethnic origin of the study populations. In this context, data obtained from the National Center for Biotechnology Information, showed that Caucasian population presents a higher frequency of the G allele of the 3'UTR $A30225G$ (rs11868035) SNP (72%) when compared to Mexican Mestizos and Asian population that present a lower frequency of the G allele (41% and 16%, respectively). Concerning the $G1784C$ (rs2228314) SNP the Mexican Mestizos presents a lower frequency of the G allele (29%) when compared to Asian and Caucasian populations (80% and 77%, respectively) (https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/). Owing to the specific genetic characteristics of the Mexican population, we consider that additional studies are needed in a larger number of individuals and in other populations with different ethnicities. This research could help define the true role of $SREBF1c$ and $SREBF2$ polymorphisms as risk or protective markers in the development of ACS and others cardiovascular events.

We further determined the effect of the $SREBF2$ and $SREBF-1c$ gene polymorphisms on plasma lipid levels using genotype groups. In this context, the analysis of the $G1784C$ Gly595Ala (rs2228314) SNP did not show changes in the plasma lipid levels. The G and T alleles of the $IVS12 A1667G$ (rs2267443) and $IVS1 C8407T$ (rs2267439) SNPs were not associated with risk of developing ACS. Nonetheless, we found an association of these two SNPs.
with not only higher cholesterol and glucose plasma concentrations, but also higher systolic blood pressure ($p < 0.05$). In contrast to our data, Galavi et al. reported that the IVS12 A1667G (rs2267443) and IVS1 C8407T (rs2267439) SNPs were not associated with plasma lipids levels in T2DM patients [21]. On the other hand, Grarup et al. reported that the G allele of the 3'UTR G30009C (rs2297508) SNP was associated with higher cholesterol and glucose plasma levels. In addition, the authors showed that the A allele of 3'UTR A30225G (rs11868035) was associated with higher cholesterol plasma levels [30]. By the same token, Musso et al. reported that the A allele of SREBF-1c 3'UTR A30225G (rs11868035) was associated with higher triglyceride and LDL-C plasma levels [33]. However, in this study population, we found that the SREBF-1c 3'UTR G30009C (rs2297508) SNP was not related with a change of plasma lipid levels. In addition, we found that the G allele of the SREBF-1c 3'UTR A30225G (rs11868035) was associated with lower triglyceride levels. In the same way, Peng et al. reported that the G allele of the SREBF-1c 3'UTR A30225G (rs11868035) was associated with lower triglyceride levels in non-alcoholic fatty liver disease [19]. Additionally, using bioinformatics tools we determined the potential effect of the SREBF2 and SREBF-1c gene polymorphisms associated with ACS. The analysis of the SREBF1c 3'UTR G30009C (rs2297508), SREBF1c IVS1 G954A (rs11656665), SREBF2 IVS1 C8407T (rs2267439), and SREBF2 IVS12 A1667G (rs2267443) polymorphisms did not exhibit evidence of potential functional motifs. Nonetheless, the analysis of the SREBF2 G1784C Gly595Ala (rs2228314) SNP showed that the G allele generates a binding site for the SRp55 protein. In the same way, the analysis of the SREBF1c 3'UTR G30009C (rs2297508) polymorphism showed that the G allele generates a binding site for the SF2/ASF proteins. These proteins have multiple functions in the pre-mRNA splicing process, as well as in the regulation of alternative splicing [34,35]. In our opinion, the specific correlation of these polymorphisms with plasma lipid levels deserves to be addressed in future studies.

Limitations

Unfortunately, in our study was not possible to match patients and controls by age and gender, considering this, the analysis was adjusted by these variables. On the other hand, a sub-analysis in a groups age and gender matched was done. In this case, the results were similar to those reported in the whole group of studied individual. Moreover, our results in Mexicans should be reproduced in other ethnic groups to have a better definition about the contribution of the SREBF1c and SREBF2 gene polymorphisms on the lipid profile as well as their role as possible markers of risk or protection against the development of ACS.

In summary, this study demonstrated that, in the Mexican population, three polymorphisms were associated with a high risk of developing ACS: the SREBF-1c 3'UTR G30009C (rs2297508) and SREBF-1c IVS1 G954A (rs11656665) polymorphisms of the SREBF1c gene, and SREBF2 G1784C Gly595Ala (rs2228314) of the SREBF2 gene. On the other hand, the SREBF-1c 3'UTR A30225G (rs11868035) polymorphism of the SREBF1c gene was associated with a lower risk of developing ACS. There was also a statistically significant association of both SREBF-1c IVS1 G954A (rs11656665) and SREBF-1c 3'UTR A30225G (rs11868035) polymorphisms with lower triglyceride levels.

Supporting information

S1 Table. Sub-analysis of the SREBF2 and SREBF-1c gene polymorphisms.

(DOC)
Acknowledgments

This work was supported in part by grants from the Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico. The authors are grateful to the study participants. Institutional Review Board approval was obtained for all sample collections. The authors are grateful to the technicians Marva Arellano-Gonzalez and Silvestre Ramirez-Fuentes for their participation in the collection of samples and extraction of DNA.

Author Contributions

Conceptualization: Gilberto Vargas-Alarcon, Jose Manuel Fragoso.

Data curation: Oscar Perez-Mendez, Rosalinda Posadas-Sanchez, Guillermo Cardoso-Saldana, Betzabe Nieto-Lima.

Formal analysis: Guillermo Cardoso-Saldana, Julian Ramirez-Bello, Betzabe Nieto-Lima, Jose Manuel Fragoso.

Investigation: Hector Gonzalez-Pacheco, Oscar Perez-Mendez, Rosalinda Posadas-Sanchez, Galileo Escobedo, Jose Manuel Fragoso.

Methodology: Julian Ramirez-Bello, Galileo Escobedo, Betzabe Nieto-Lima, Jose Manuel Fragoso.

Software: Betzabe Nieto-Lima.

Supervision: Jose Manuel Fragoso.

Validation: Betzabe Nieto-Lima.

Visualization: Hector Gonzalez-Pacheco.

Writing – original draft: Jose Manuel Fragoso.

Writing – review & editing: Jose Manuel Fragoso.

References

1. Libby P. (2002). Inflammation and Atherosclerosis Nature 420: 868–874. https://doi.org/10.1038/ nature01323 PMID: 12490960
2. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. (2005). Atherosclerotic Plaque Progression and Vulnerability to Rupture: Angiogenesis as a Source of Intraplaque Hemorrhage. Thromb Vasc Biol. 25: 2054–2061.
3. Zhang Y, Ma KL, Ruan XZ, Liu BC. (2016), Dysregulation of the low-density lipoprotein receptor pathway is involved in lipid disorder mediated organ injury. Int J Biol Sci. 12: 569–579 https://doi.org/10.7150/ijbs.14027 PMID: 27019638
4. Guo D, Bell EH, Mischel P, Chakravarti A. (2014). Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr Pharm Des. 20: 2619–2626 https://doi.org/10.2174/1381612811319990486 PMID: 23859617
5. Sato R. (2010). Sterol metabolism and SREBP activation. Arch Biochem Biophys. 501: 177–181 https://doi.org/10.1016/j.abb.2010.06.004 PMID: 20541520
6. Jeon TI, Osborne TF. (2012), SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab. 23: 65–72 https://doi.org/10.1016/j.tem.2011.10.004 PMID: 22154494
7. Miserez AR, Muller PY, Barella L, Barella S, Steahelin HB, Leitersdorf E, et al. (2002). Sterol-regulatory element-binding protein (SREBP)-2 contributes to polygenic hypercholesterolemia. Atherosclerosis. 164: 15–26 https://doi.org/10.1016/s0021-9150(01)00762-6 PMID: 12119189
8. Laaksonen R, Thelen KM, Paiva H, Matinheikki J, Vesalainen R, Janatuinen T, et al. (2006). Genetic variant of SREBF-1 gene is significantly related to cholesterol synthesis in man. Atherosclerosis. 185: 206–209 https://doi.org/10.1016/j.atherosclerosis.2005.06.007 PMID: 16005884
9. Felder TK, Oberkofler H, Weitgasser R, Mackevics V, Kremler F, Paulweber B, et al. (2007). The SREBF-1 locus is associated with type 2 diabetes and plasma adiponectin levels in a middle-aged Austrian population. Int J Obes. 31:1099–1103

10. Chen Z, Ding Z, Ma G, Liu N, Qian Q. (2011). Sterol regulatory element-binding transcription factor (SREBF)-2, SREBF cleavage-activating protein (SCAP), and premature coronary artery disease in a Chinese population. Mol Biol Rep. 38:2895–2901. https://doi.org/10.1007/s11033-010-9951-2 PMID: 21111910

11. Jin X, Zeng F, Zhang N, Huang T, Meng Q, Liu Y. (2012). Association of sterol regulatory element-binding transcription factor gene polymorphisms with ischaemic stroke. J Int Med Res. 40:157–166. https://doi.org/10.1177/030006051204000116 PMID: 22429355

12. Steen VM, Skrede S, Polushina T, Lopez M, Andreassen OA, Fermo J, et al. (2017). Genetic evidence for a role of the SREBP transcription system and lipid biosynthesis in schizophrenia and antipsychotic treatment. European Neuropsychopharmacology. 27:589–598. https://doi.org/10.1016/j.euroep.2016.07.011 PMID: 27492895

13. Shimano H, Horton JD, Shimomura I, Hammer RE, Beowm MS, Goldstein JL. (1997). Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest. 99:846–854. https://doi.org/10.1172/JCI119248 PMID: 9062341

14. Foretz M, Guichard C, Ferre P, Foufelle F. (1999). Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci USA. 96:12737–12742. https://doi.org/10.1073/pnas.96.22.12737 PMID: 10535992

15. Horton JD, Goldstein JL, Brown MS. (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 109:1125–1131. https://doi.org/10.1172/JCI115993 PMID: 11994399

16. Amemiya-Kudo M, Shimano H, Hasty AH, Yahagi N, Yoshikawa T, Matsuzaka T, et al. (2002). Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterologenic genes. J Lipid Res. 43:1220–1235. PMID: 12177166

17. Robinet P, Védie B, Chironi G, Gariepy J, Simon A, Moatti N, et al. (2003) Characterization of polymorphic structure of SREBP-2 gene: role in atherosclerosis. Atherosclerosis. 168:381–387. PMID: 12801623

18. Kedenko L, Lamina C, Klesslich T, KÀpur K, Bergmann S, Warterworth D, et al. (2012). Genetic polymorphisms of the main transcription factors for adiponectin gene promoter in regulation of adiponectin levels: association analysis in three European cohorts. PLoS ONE 7:e52497. https://doi.org/10.1371/journal.pone.0052497 PMID: 23285067

19. Peng XE, Chen FL, Liu W, Hu Z, Lin X. (2016). Lack of association between SREBF-1c gene polymorphisms and risk of non-alcoholic fatty liver disease in a Chinese Han population. Sci. Rep. 6, 32110; https://doi.org/10.1038/srep32110 PMID: 27572914

20. Qiu XM, Jin ChT, Wang W. (2014). Association between single nucleotide polymorphisms of sterol regulatory element binding protein-2 gene and risk of knee osteoarthritis in a Chinese Han population. J Int Med Res. 42:320–328. https://doi.org/10.1177/0300060513507392 PMID: 24496149

21. Galavi H, Noorzehi N, Saravani R, Sargazi S, Mollahasheh-Kokan F, Shahrahi H. (2018). Association study of SREBF-2 gene polymorphism and the risk of type 2 diabetes in a sample of iranian population. Gene. 660:145–150. https://doi.org/10.1016/j.gene.2018.03.080 PMID: 29601948

22. Cannon CP, Battler A, Brindis RG, Cox JL, Ellis SG, Every NR, et al., (2001) American College of Cardiology key data elements and definitions for measuring the clinical management and outcomes of patients with acute coronary syndromes. A report of the American College of Cardiology Task Force on Clinical Data Standards (Acute Coronary Syndromes Writing Committee). J Am Coll Cardiol. 38:2114–2130. https://doi.org/10.1016/S0735-1097(01)01702-8 PMID: 11738323

23. Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, et al. (2011). ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 32:2999–3054. https://doi.org/10.1093/eurheartj/ehr236 PMID: 21873419

24. Posadas-Sanchez R, Perez-Hernandez N, Angeles-Martinez J, Lopez-Bautista F, Villarreal-Molina T, Rodriguez-Perez JM, et al. (2017). Interleukin 35 Polymorphisms Are Associated with Decreased Risk of Premature Coronary Artery Disease, Metabolic Parameters, and IL-35 Levels: The Genetics of Atherosclerotic Disease (GEA) Study. Mediators Inflamm. 2017:6012795. https://doi.org/10.1155/2017/6012795 PMID: 28321150

25. DeLong DM, DeLong ER, Wood PD, Lippel K, Rifkind BM. (1986). A comparison of methods for the estimation of plasma low- and very low-density lipoprotein cholesterol. The Lipid Research Clinics Prevalence Study. JAMA. 256:2372–2377 PMID: 3464768
26. Lahiri DK, Nurnberger Ji Jr. (1991). A rapid non-enzymatic method for the preparation HMW DNA from blood for RFLP studies. Nucleic Acids Res. 19:5444. https://doi.org/10.1093/nar/19.19.5444 PMID: 1681511

27. Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR. (2006). An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 15: 2490–2508. https://doi.org/10.1093/hmg/ddf171 PMID: 16825284

28. Xu Z, Taylor JA. (2009). SNPInfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res 37(Web Server Issue), W600–605. https://doi.org/10.1093/nar/gkp290 PMID: 19417063

29. Liu X, Li Y, Lu X, Wang L, Zhao Q, Yang W, et al. (2010). Interactions among genetic variants from SREBP2 activating-related pathway on risk of coronary heart disease in Chinese Han population. Atherosclerosis. 201: 421–426

30. Grarup N, Stender-Petersen KL, Anderson EA, Jorgensen T, Borch-Johnsen K, Sandbaek A, et al. (2008). Association of variants in the sterol regulatory element-binding factor 1 (SREBF1) gene with type 2 diabetes, Glycemia, and insulin resistance. Diabetes. 57: 1136–1142 https://doi.org/10.2337/db07-1534 PMID: 18192539

31. Liu JX, Liu J, Li PQ, Xie XD, Guo Q, Tian LM, et al. (2008). Association of sterol regulatory element-binding protein -1c gene polymorphism with type 2 diabetes mellitus, insulin resistance and blood lipid levels in Chinese population. Diabetes Res Clin Pract. 82: 42–47 https://doi.org/10.1016/j.diabres.2008.06.017 PMID: 18692268

32. Harding AH, Loos RJF, Luan J, O’Rahilly S, Wareham NJ, Barroso I. (2006). Polymorphisms in the gene encoding sterol regulatory element-binding factor-1c are associated with type 2 diabetes. Diabetologia. 49: 2642–2648 https://doi.org/10.1007/s00125-006-0430-1 PMID: 17019602

33. Musso G, Bo S, Cassader M, de Michieli F, Gambino R. (2013). Impact of sterol regulatory element-binding factor -1c polymorphism on incidence of nonalcoholic fatty liver disease and on the severity of liver disease and of glucose and lipid dysmetabolism. Am J Clin Nutr. 98: 895–906 https://doi.org/10.3945/ajcn.113.063792 PMID: 23985808

34. Tardos JG, Eisenreich A, Deikus G, Bechhofer DH, Chandrasas S, Zafar U, et al. (2008). SR proteins ASF/SF2 and SRp55 participate in tissue factor biosynthesis in human monocyte cells. J Thromb Haemost. 6: 877–884. https://doi.org/10.1111/j.1538-7836.2008.02946.x PMID: 18315555

35. Graveley BR. (2000). Sorting out the complexity of SR protein functions. RNA 6: 1197–1211 https://doi.org/10.1017/s1355955200000960 PMID: 10999588