Optimized protocol for isolation of germ cells from mouse testis by centrifugal elutriation

Germline development is challenging to study due to the diversity of cell types in mammalian testis. Here, we present an optimized protocol, namely centrifugal elutriation, that allows the simultaneous isolation of mouse germ cells at different stages with high purity within ~2 h. This approach exploits the JE-5.0 centrifugal elutriation system that fractionates cells based on differential sedimentation gravity. We herein provide the optimized parameters and procedures for isolation of elongating spermatids, round spermatids, and pachytene spermatocytes from adult mouse testes.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.

Highlights
- Optimized protocol for efficient preparation of testicular single-cell suspension
- Rapid purification of three germ cell populations with high viability from mouse testes
- Easily scaled up and down depending on downstream applications
Protocol

Optimized protocol for isolation of germ cells from mouse testis by centrifugal elutriation

Yuzhu Cao,1,2,3,* Lan Meng,1,2 Yu Cheng,1,2 Muhammad Azhar,1 Xue Jiang,1 Xuemei Xing,1 and Jianqiang Bao1,4,*

1The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui 230001, China
2These authors contributed equally
3Technical contact
4Lead contact
*Correspondence: cyz0922@ustc.edu.cn (Y.C.), jqbao@ustc.edu.cn (J.B.)
https://doi.org/10.1016/j.xpro.2022.101540

SUMMARY

Germline development is challenging to study due to the diversity of cell types in mammalian testis. Here, we present an optimized protocol, namely centrifugal elutriation, that allows the simultaneous isolation of mouse germ cells at different stages with high purity within ~2 h. This approach exploits the JE-5.0 centrifugal elutriation system that fractionates cells based on differential sedimentation gravity. We herein provide the optimized parameters and procedures for isolation of elongating spermatids, round spermatids, and pachytene spermatocytes from adult mouse testes. For complete details on the use and execution of this protocol, please refer to Bao et al. (2018).

BEFORE YOU BEGIN

In mammals, the germ cell development undergoes three successive processes - mitotic proliferation (spermatogonia), meiotic division (primary and secondary spermatocytes), and haploid development (round and elongating/elongated spermatids). Over the past decades, several approaches have been developed to purify one population or several specific developmental stages of germ cells from the murine testis. For example, the STA-PUT, which is based on the differential sedimentation velocity, is most commonly adopted since it is easy to set up and is less costly; However, this approach usually takes 3–6 h and is vulnerable to external disturbance (Bryant et al., 2013; Kim et al., 2021). Flow cytometry usually produces a highly purified population of germ cells, but the yield is low and is technically demanding (Valles and Huynh, 2020). In this protocol, we present an optimized, highly reproducible protocol, to simultaneously isolate different stages of germ cells from adult mouse testis within a ~2-h time frame. For specific applications that require highly purified populations of sub-stage meiotic cells from juvenile mouse testes, the parameters are also appended in this protocol.

Preparation of solutions

Required solutions used in this protocol can either be prepared in advance and stored as indicated, or made fresh on the day of the experiment. Please refer to the materials and equipment for a complete list of solution recipes.

Institutional permissions

All mouse experiments were reviewed and approved by the Animal Care and Use Committee of the University of Science and Technology in China (USTC). The operations in mice complied with institutional rules.
Preparation for equipment

Timing: 10 min

During the intervals of single-cell preparation, one can set up the elutriation machine concurrently to shorten the waiting time before single-cell loading.

1. Machine Set-up.
 a. Set an incubator to 37°C.
 b. Set up and verify the tubing system following the manufacturer’s instructions (Beckman Avanti J-26S XP elutriator equipped with JE 5.0 elutriation systems and a standard elutriation chamber).
 c. Rinse the elutriator system with at least 500 mL sterile water (1000 rpm, 20 mL/min). Then replenish with elutriation buffer (>200 mL). Turn on/off the centrifugation repeatedly for several times and push out any visible bubbles.

 Note: To fully eliminate potential bubbles inside the tubing system, start the centrifuge for running at 1000 rpm for a while (e.g., 5 min), and then turn it off while the pump continues running. Repeat this process for several times until no visible bubbles are present.

2. Reagent Set-up.
 a. 1 L of sterile water.
 b. Prepare 100 mL of 6% Hydrogen peroxide.

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Lectin PNA From Arachis hypogaea (peanut), Alexa Fluor® 488 Conjugated; Working dilution 1:1000	Invitrogen	MEFL21409; RRID: AB_2315178
DDX4, VASA Polyclonal antibody, Working dilution 1:200	Proteintech	Cat#S1042-1-AP; RRID: AB_2092998
SYCP3 Polyclonal antibody; Working dilution 1:400	Proteintech	Cat#23024-1-AP; RRID: AB_1123426
Anti-phospho-Histone H2A.X (Ser139) antibody; Working dilution 1:800	Millipore	Cat#05-636-1; RRID: AB_2755003
Coralite 488-conjugated Goat Anti-Mouse IgG(H+L); Working dilution 1:500	Proteintech	Cat# SA000013-1; RRID: AB_2810983
Rhodamine(TRITC)-conjugate Goat Anti-Rabbit IgG(H+L); Working dilution 1:500	Proteintech	Cat#SA00007-2; RRID: AB_2889939
Chemicals, peptides, and recombinant proteins		
Collagenase IV	Sigma-Aldrich	Cat#C5138
Trypsin	Sigma-Aldrich	Cat#T9201
DNase I	Sigma-Aldrich	Cat#DN25
Fetal Bovine Serum	Gibco	Cat#10099-141
Bovine Serum Albumin	Sigma-Aldrich	Cat#A2153
HBSS- with Ca²⁺/Mg²⁺	Servicebio	Cat# G4204
HBSS-without Ca²⁺/Mg²⁺	Servicebio	Cat# G4203
PBS	Servicebio	Cat# G4202
0.5 M EDTA	Sangon Biotech	Cat# BS40625
Sodium chloride	Sigma-Aldrich	Cat#S9625
Sodium bicarbonate	Sigma-Aldrich	Cat#S8875
Potassium chloride	Sigma-Aldrich	Cat#P4504
D(+)-Glucose monohydrate	Sigma-Aldrich	Cat#49159
Magnesium sulfate heptahydrate	Sigma-Aldrich	Cat#M1880
Calcium chloride dihydrate	Sigma-Aldrich	Cat#C3881
MATERIALS AND EQUIPMENT

REAGENT or RESOURCE SOURCE IDENTIFIER

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Potassium phosphate monobasic	Sigma-Aldrich	Cat#P5379
60 mm cell culture and tissue dishes	Jetbiofil	Cat#TCD010060
ProLong™ Diamond Antifade Mountant with DAPI	Invitrogen	Cat# P36971
4% PFA in PBS	Aladdin	Cat#P395744
0.4% trypan blue	Solarbio	Cat#C0040
IHC PAP pen	Abcam	Cat#BC005
Triton X-100	Sigma-Aldrich	Cat#9036-19-5
Hydrogen peroxide 30% aqueous solution	Sinopharm	Cat#10011218
Tween-20	Beyotime	Cat#ST825

Experimental models: Organisms/strains

| Mouse: C57BL/6 male mice | Beijing Vital River Laboratory | n/a |

Software and algorithms

Software and algorithms	SOURCE	IDENTIFIER
GraphPad Prism 8 software	GraphPad	https://www.graphpad.com
ImageJ software	National Institutes of Health	https://imagej.net/software/fiji/

Other

Other	SOURCE	IDENTIFIER
70 µm Cell Strainer	Biosharp	Cat# BS-70-CS
Plastic tubes (50 mL)	Coming	Cat#352063
e-HC Electronic Pipette Filler	Bio-DL	Cat#73631451
Forceps	Accuspire	Cat#SS-424
Large Capacity Benchtop Centrifuge Refrigerated	Herexi	Cat#TGL20MW
High-speed Refrigerated Micro centrifuge	DLAB	Cat#D3024R
Benchtop Shaking Incubator	ZHICHENG	Cat#Z2WYR-240
Olympus BX53 upright microscope	Olympus Life Sciences	n/a
THUNDER Imager Live Cell	Leica	n/a
Peristaltic pump	Masterflex	Model#77200-60
Silicone tubing	Masterflex	Cat#6410-25
Elutriator	Beckman	Avanti J-26S XP
Elutriation systems	Beckman	JE-5.0
Elutriation Chamber	Beckman	356943

10×KREBS stock: Store at 4 °C

Reagent	Final concentration	Amount
NaCl	1.19 M	139.5 g
KCl	47.75 mM	7.12 g
D(+)-Glucose monohydrate	100.92 mM	40 g
MgSO4·7H2O	11.95 mM	5.89 g
CaCl2·2H2O	12.86 mM	3.78 g
KH2PO4	11.98 mM	3.26 g
ddH2O	n/a	2000 mL
Total	n/a	2000 mL

Filter through 0.22 µm and autoclave, and store at 4°C for several months, pH 4.2.

1×KREBS: Store at 4 °C

Reagent	Final concentration	Amount
10×KREBS stock	n/a	200 mL
NaHCO3	25.24 mM	4.24 g
ddH2O	n/a	1800 mL
Total	n/a	2000 mL

1×KREBS is prepared freshly, pH 7.6.
Elutriation buffer: Store at 25°C

Reagent	Final concentration	Amount
1x KREBS	n/a	1796.4 mL
0.5 M EDTA	1 mM	3.6 mL
BSA	0.1%(w/v)	1.8 g
Total	n/a	**1800 mL**

To be prepared fresh.

Note: The supplement of a chelating agent, EDTA, serves to both inhibit enzymatic activity and reduce cell clumping by chelating Ca^{2+}/Mg^{2+}.

DNase I stock: Store at −20°C

Reagent	Final concentration	Amount
DNase I	10 mg/mL	10 mg
HBSS-with Ca^{2+}/Mg^{2+}	n/a	1 mL
Total	n/a	**1 mL**

DNase I stock should be stored at −20°C for long-term storage.

Collagenase stock: Store at −20°C

Reagent	Final concentration	Amount
Collagenase IV	50 mg/mL	50 mg
HBSS-with Ca^{2+}/Mg^{2+}	1 mL	1 mL
Total	n/a	**1 mL**

Collagenase stock should be stored at −20°C for long-term storage.

Trypsin stock: Store at −20°C

Reagent	Final concentration	Amount
Trypsin	100 mg/mL	100 mg
HBSS-without Ca^{2+}/Mg^{2+}	n/a	1 mL
Total	n/a	**1 mL**

Trypsin stock should be stored at −20°C for long-term storage.

Collagenase buffer: Store at 4°C

Reagent	Final concentration	Amount
Collagenase stock	0.25 mg/mL	50 µL
DNase I	5 µg/mL	50 µL
BSA	0.5 mg/mL	5 mg
HBSS-with Ca^{2+}/Mg^{2+}	n/a	9.9 mL
Total	n/a	**10 mL**

Note: To be prepared fresh.

Trypsin buffer: Store at 4°C

Reagent	Final concentration	Amount
Trypsin stock	1.0 mg/mL	200 µL
DNase I	5 µg/mL	100 µL
HBSS-without Ca^{2+}/Mg^{2+}	n/a	19.7 mL
Total	n/a	**20 mL**
Note: To be prepared fresh. This buffer does not contain Ca\(^{2+}\)/Mg\(^{2+}\), which inhibit the enzymatic activity of trypsin.

Sodium citrate buffer

Reagent	Final concentration	Amount
Sodium Citrate	0.01 M	2.94 g
H\(_2\)O	n/a	1000 mL
Total	n/a	1000 mL

To be prepared fresh, pH 6.0.

Blocking buffer: Store at -20 °C

Reagent	Final concentration	Amount
BSA	5%(w/v)	0.5 g
1×PBS	n/a	10 mL
Total	n/a	10 mL

STEP-BY-STEP METHOD DETAILS

Preparation for testicular single-cell suspension

© Timing: 1 h

1. Isolation of mouse testes.
 a. Sacrifice two adult mice by cervical dislocation or isoflurane inhalation in a closed chamber. Wet the lower abdomen by spraying with 70% Ethanol, and use a surgical scissor and forceps to open the abdominal cavity (Figure 1A).
 b. Pull out the perigonadal white adipose tissue (pgWAT) with a tweezer. Dissect the two whole testes off the epididymis, remove any leftover fat, and keep them in cold 1×KREBS in a 60 mm dish on ice.
 c. Under dissection microscopy, carefully remove the tunica albuginea with a pair of sharp forceps one by one for each testis, and pool them in a fresh drop of 500 μL 1×KREBS (Figure 1C).

2. Testicular Germ Cell Suspension Preparation.
a. Briefly pull apart the seminiferous tubules using a pair of forceps to expose the interstitial cells (e.g., Leydig cells). See Figure 2A for an example of slightly dispersed seminiferous tubules.

b. Transfer the spermatogenic tubules to a 50 mL centrifuge tube containing 10 mL of freshly prepared collagenase buffer.

c. Incubate the centrifuge tube in a 37°C incubator at 80 rpm for 5 min.

Note: This step is to roughly digest the interstitial cells out of the seminiferous tubules. Do not over-digest the tubules, which might cause over fragmentation resulting in a loss of germ cells. It is beneficial to gently disperse the tubules by pipetting up and down several times briefly with a wide-bore tip (by cutting out the end of a 1 mL tip).

d. Top up the collagenase buffer to a final 40 mL with fresh ice-cold 1×KREBS, and let the tubes stand straightly on ice to allow the tubules to settle down for ~1 min.

Note: Watch carefully, and once the tubules all settle down to the bottom of the tube, carefully discard the supernatant using a 10 mL pipetman.

e. Add fresh 40 mL ice-cold 1×KREBS solution and gently mix. Repeat this wash step about 2–3 times until the supernatant turns from turbid to clear.

Note: The initial supernatant consists of abundant interstitial cells, e.g., Leydig cells, and thus looks highly turbid. During a short time frame of settlement on ice, the big chunk of tubules settles down faster to the bottom while the interstitial cells remain in the supernatant. Therefore, repeated wash with fresh 1×KREBS will eliminate interstitial cell contamination. Do not let the tube stand on ice too long, which might cause concurrent sedimentation of somatic cells.
f. After the last wash, carefully discard the residual 1xKREBS, transfer the tubules-containing solution into a 60 mm dish, use forceps to disperse the seminiferous tubules gently, and cut them into small pieces with sterile surgical blades. See Figure 2 for the representative morphology of the dispersed tubules before (B) and after cutting (C).

Note: This step is optional. However, it will enhance the digestion efficiency for trypsin enzyme in the following steps, and thus increase the germ cell yield.

g. Add 10 mL of freshly prepared trypsin buffer (1 mg/mL of trypsin in Ca\(^{2+}\)/Mg\(^{2+}\)-free 1xHBSS, plus 5 μg/mL DNase I), mix gently and place it in a 37°C incubator and shake for 10 min (~80 rpm).

Note: At this step, the buffer has no Ca\(^{2+}\)/Mg\(^{2+}\), which guarantees the optimal reaction milieu for trypsin digestion.

h. Add 10 mL of 1×HBSS (1×HBSS with Ca\(^{2+}\)/Mg\(^{2+}\), and plus 50 μL DNase I stock), then gently disperse the digested tubules with a 1 mL wide-bore tip every five minutes, shake for 10–20 min.

△ **CRITICAL:** Check the condition of the tubules. Once the solution turns cloudy and only a tiny fraction of fragmented tubules is present (Figure 2D), transfer the tube on ice and let the tubules settle down.

Note: We found that the gentle pipetting greatly facilitates the trypsin digestion and thus boosts the cell yield. In addition, it is critical to use narrow-bore tips when tubules are fragmented into small pieces. Do not over-digest the cells, which likely causes cell death and DNA release resulting in cell clumping.

i. Carefully transfer the supernatant containing single cells to a new 50 mL tube and quench the trypsin digestion by adding a final 2% FBS.

j. To the residual cell pellet containing undigested tubules, add ~5 mL of freshly prepared trypsin buffer, mix gently and place it in a 37°C incubator and shake for 5–10 min (~80 rpm).

k. Combine both trypsin-digested single-cell suspensions into one 50 mL tube. Pellet the cells by centrifugation at 700 g for 5 min at 4°C. Gently discard the supernatant.

Note: Centrifugation with a swinging bucket rotor at low speed will preserve the viability of germ cells.

l. Resuspend the cell pellet in 10 mL elutriation buffer supplemented with DNase I (5 μg/mL), gently pipetting up and down.

Note: Use the elutriation buffer containing BSA. It helps reduce the loss of germ cells throughout the buffer flowing through the elutriation tubing system. In addition, the supplement of DNase I is helpful in preventing the cell clumping before and during centrifugal elutriation.

m. (Optional) Add 90 μL of the germ cell suspension to 10 μL trypan blue (0.04%), incubate for 3 min, then take 10 μL of the cell suspension and count the number of living and dead cells under a microscope.

n. Filter through a 70 μm cell strainer. Add a final 2% FBS to the flow-through mixture. Keep on ice before elutriation.
Note: At this step, we recommend going straightly to the next step for elutriation without stop because long-term storage of single-cell suspension on ice will reduce cell viability and cause cell clumping.

Centrifugal elutriation

** Timing: 45 min**

The setup of the elutriation system (Figure 3) can be accomplished among the single-cell digestion procedures. The readers are strongly recommended to refer to the operational manual of Beckman JE5.0 system prior to first-time use. The parameters provided below are specifically for purification of germ cells from 2–10 adult mouse testes (from 1–5 mice).

3. Elutriation system set up.
 a. Set up the Centrifugal elutriator parameters: Speed: 3000 rpm; Temp: 20°C; Timer: HOLD Pump speed: 5.0 mL/min.

 Note: It is important to the buffer temperature must be constant from reservoir to elutriation chamber.

 b. Fill the buffer reservoir tank with 1.5 L of elutriation buffer.
 c. Prior to testicular single-cell suspension loading to the sample chamber, switch the 3-way bypass valve to the position that allows single-cell suspension to flow into the chamber, but the air is restrained to enter the system.
Note: Make sure that the bypass valve is closed.

d. Set the initial flow rate of the peristaltic pump at 5.0 mL/min.

Note: Determine an initial flow rate that will ensure all size ranges of particles to be fractionated are retained.

e. Put the collection tube into the buffer reservoir chamber so that the buffer will circulate inside the tubing system at 4°C. Start the elutriator and the pump.

4. Elutriation process.

a. Right before cell loading, gently pipet up and down and filter the cell suspension through a 70 μm cell strainer into a new 50 mL tube on ice.

Note: High cell density (>10^8/mL) can cause cell re-aggregation, and the maximum volume of cell suspension can be determined according to the injection device.

b. Open the injector valve and inject the cell suspension into the sample chamber.

c. Once the samples are loaded, open the 3-way valve to connect the buffer reservoir chamber to the elutriator.

i. Let the buffer run out until all the cells flow into the sample reservoir.

ii. Once the cell suspension has completely entered the elutriation chamber, close the injection valve.

iii. Refer to the procedure in Table 1 for cell collection.

Note: Just before the suspension lowers down to the bottom of the syringe, turn the bypass valve back toward the syringe to stop the sample flow. This will prevent any air bubbles from entering the line.

d. Start fraction collection (Table 1):

i. Fraction 1 (pump: 13.4 mL/min; elutriator: 3000 rpm): Collect four 50 mL tubes (200 mL in total): Major cell population-elongating spermatids;

ii. Fraction 2 (pump: 18.2 mL/min; elutriator: 3000 rpm): Collect two 50 mL tubes (100 mL in total): Major cell population-elongating spermatids;

iii. Fraction 3 (pump: 23.6 mL/min; elutriator: 3000 rpm): Collect two 50 mL tubes (100 mL in total): Major cell population-elongating spermatids and round spermatids;

iv. Fraction 4 (pump: 19.6 mL/min; elutriator: 2250 rpm): Collect three 50 mL tubes (150 mL in total): Major cell population-round spermatids;

Table 1. Elutriator settings (Standard Chamber)

Fraction #	RPM (centrifuge)	Volume (mL)	Flow rate (mL/min) (pump)
1	3000	200	13.4
2	3000	100	18.2
3	3000	100	23.6
4	2250	150	19.6
5	2250	100	21
6	2250	100	23.6
7	2250	150	34
8	2250	150	40.5
9	2250	100	45

Note: The parameters provided in this table are specifically optimized for a standard chamber in the JE5.0 machine. If using a Sanderson chamber in the JE5.0 machine, the flow rate needs to be re-calculated based on the formula: [flow rate (Standard Chamber) = flow rate (Sanderson Chamber) * 1.35].
v. Fraction 5 (pump: 21 mL/min; elutriator: 2250 rpm): Collect two 50 mL tubes (100 mL in total): Major cell population-round spermatids;
vi. Fraction 6 (pump: 23.6 mL/min; elutriator: 2250 rpm): Collect two 50 mL tubes (100 mL in total): Major cell population-round spermatids;
vii. Fraction 7 (pump: 34 mL/min; elutriator: 2250 rpm): Collect three 50 mL tubes (150 mL in total): Major cell population-round spermatids and pachytene spermatocytes;
viii. Fraction 8 (pump: 40.5 mL/min; elutriator: 2250 rpm): Collect three 50 mL tubes (150 mL in total): Major cell population-pachytene spermatocytes.
ix. Fraction 9 (pump: 45 mL/min; elutriator: 2250 rpm): Collect two 50 mL tubes (100 mL in total): Major cell population-pachytene spermatocytes.

Note: Cell fractionation is achieved by adjusting the pump speed and elutriator speed. Collect 50 mL suspension each time using a 50 mL tube.

e. Once all fractions are collected, turn off the centrifuge, and let all leftover elutriation buffer run out.
f. Perform the system cleaning: Turn off the elutriator, and replenish the buffer reservoir tank with 100 mL of freshly prepared 6% Hydrogen peroxide, followed by 500 mL of sterile water to rinse and sterilize the tubing system.

Note: This cleaning step can be executed during the waiting periods of the centrifugation in the following steps.

g. Pellet the cells by centrifugation of each fraction at 700 g for 5 min at 4°C.

Note: Centrifugation using a swimming bucket rotor at low speed will preserve the viability of germ cells.

h. Carefully discard the supernatant, add 1 mL of 1×KREBS to each tube and resuspend the cell pellet. Transfer the cell suspension into a 1.5 mL centrifuge tube and repeat centrifugation at 700 g for 5 min at 4°C.

Note: Depending on downstream applications, washing by 1×KREBS will eliminate BSA contamination.

i. After the last wash, carefully remove all supernatant and freeze down the cell pellet at −80°C, or leave an appropriate volume of the supernatant as needed and resuspend the cells, proceed to downstream operations (RNA extraction, protein extraction, etc).

Note: To achieve optimal results, it is necessary to thoroughly sterilize and clean the whole connecting tubing system in the elutriation machine at the end of each time. This will eliminate potential bacterial fermentation or other contaminations inside the chambers and the tubes.

5. Optional: Validation of cell purity in each fraction by DAPI staining.

Note: This procedure is only required for the initial validation of cell purification. Once the parameters are optimized, it can be skipped owing to the high reproducibility by centrifugal elutriation.

a. Label an appropriate number of glass slides. Draw a ring of ~1 cm in diameter with a grease pen and let the grease dry.
b. Transfer 20 µL of 4% paraformaldehyde (PFA) into each ring on the slides.
c. Immediately add 2 µL of the purified cell suspension from each fraction. Repeat for each fraction.
Note: Always keep all cell suspensions on ice.

d. Let the slides stand at 20°C–25°C for ~1 h until samples become dry, or cover them in a chamber and leave 8–12 h.
e. Wash slides three times for 5 min each with 1×PBS at 20°C–25°C.
f. Remove the excess buffer by gently tapping one corner of the slide on the desk or using lint-free kimwipes.
g. Aspirate ~10 μL of DAPI-containing mounting medium to cover the circled samples (Antifade Mountant with DAPI, Invitrogen).
h. Image the samples under a fluorescence microscope to evaluate the cell type enriched in each fraction.

Note: Different cell types can be defined by their distinct nuclear morphology as visualized by DAPI staining.

6. Optional: Indirect fluorescence staining.
a. Spread 2 μL of cell suspension with 20 μL of fixative solution (4% PFA and 0.5% Triton X-100 in PBS) inside a grease pen-circled ring. Dry the slides at 20°C–25°C for ~1 h.
b. After the buffer is gone, wash three times with 1×PBST (1×PBS with 0.1% Tween-20) for 5 min each at 20°C–25°C.
c. (Optional) Perform antigen retrieval by submerging the slides in boiled 0.01 M sodium citrate buffer (pH 6.0).

Note: It is not advisable to boil the slides directly in the buffer, as it likely causes cell detaching off the slides. In contrast, microwave the buffer tank until it becomes boiling (>95°C). Then immerse the slides in the boiled buffer till it cools down. Repeat this process to ensure the slides are heated > 30 min in the citrate buffer.

d. Wash three times with 1×PBST for 5 min each at 20°C–25°C.
e. For nuclear antigens, permeabilize the samples with 0.5% Triton X-100 in 1×PBST, for 15 min at 20°C–25°C.
f. Wash three times with 1×PBST for 5 min each at 20°C–25°C.
g. Block the slides with 5% BSA (Blocking buffer) for 1 h at 20°C–25°C.
h. Remove the excess blocking buffer, incubated with primary antibodies as follows:
 i. PNA (1:1000 dilution in blocking buffer) that stains the acrosome in round and elongating spermatids;
 ii. DDX4 antibody (1:200 dilution in blocking buffer) that labels chromatoid body (CB) in round spermatids;
 iii. γH2AX antibody (1:800 dilution in blocking buffer) that recognizes sex body (XY body) in meiotic spermatocytes;
 iv. SYCP3 antibody (1:400 dilution in blocking buffer) that recognizes the lateral element of the synaptonemal complex.
 i. Incubate the slides at 4°C for 12 h in a light-proof humidified chamber.
 j. The next day, recover the slides to 20°C–25°C for 30 min. Wash three times with 1×PBST for 5 min each at 20°C–25°C.
 k. Incubate slides with secondary antibodies diluted in 5% BSA (CoraLite 488-conjugated Goat Anti-Mouse, 1:500; Rhodamine (TRITC)-conjugated Goat Anti-Rabbit, 1:500), for 1 h at 20°C–25°C in a dark humidified chamber.
l. Wash three times with 1×PBST for 5 min each at 20°C–25°C.
m. Remove the excess buffer by tapping one corner of the slide on the desk gently and add ~10 μL of mounting medium (Antifade Mountant with DAPI, Invitrogen). Cover the samples with appropriate coverslips.
EXPECTED OUTCOMES

We herein provide the detailed parameters and procedures for simultaneous isolation of multiple stages of germ cells from 1–5 adult male mice at one time. Single-cell preparation by collagenase IV and trypsin digestion will yield approximately 1.5×10^5 cells per mg of testis (Figure 4), and the enriched percentages of round spermatids and spermatocytes were higher than 90%, respectively (Figure 4E). Owing to the highly condensed nuclei, the elongating and the elongated spermatids come out first from the elutriator chamber and are thus enriched in the initial fractions #1–2. Due

Image the samples with a wide-field Leica THUNDER Imager microscopy. Images can be processed using the Image J software.

Figure 4. Representative morphological images of the cell fractions and cell purity calculation
(A) Schematic diagram showing the developmental sub-stages of germ cells after birth in mice. The markers delineated below were used to distinguish various sub-stages of germ cells: pl, pre-Leptotene; L, Leptotene; Z, Zygotene; PS, Pachytene Spermatocytes; D, Diplotene.
(B) Representative morphology of pseudo-colored images of DAPI-stained nuclei in testicular cross-sections and enriched fractions as labeled. ES, Elongating Spermatids; RS, Round Spermatids; PS, Pachytene Spermatocytes. Scale bars: 20 μm.
(C) The average number of germ cells purified from an adult male mouse (n=10).
(D) The average cell viability of germ cells purified from an adult male mouse (n=10). The values are defined as mean ± SD.
(E) Relative quantification of the enriched stage of germ cells in each fraction. Individual cells belonging to a specific stage as defined by γH2AX, SYCP3 and DAPI staining, including elongating spermatids, round spermatids, leptotene/zygotene, pachytene and other cells, were manually counted using the ImageJ tool (n=10).
to the smaller size of round spermatids, they flow out faster than spermatocytes and are hence enriched in subsequent fractions #3–7. Given that round spermatids are the predominant cell type within the seminiferous epithelium in adult mouse testis, we found the percentage of round spermatids in fraction #4 enriched higher than 95% (Figures 4 and 5). Furthermore, the spermatocytes can also be readily enriched, and its purity is as high as 85% in fraction #8. Depending on the downstream applications and requirement, enriched cells in a single fraction can be directly utilized, or pooled together for some experiments that require an adequate number of cells at the cost of cell purity. Thanks to the fast elutriation process (<1 h), we have found the average cell viability is higher than 90% in all fractions.

Nonetheless, we have difficulty in purifying the leptotene/zygotene cells from adult mouse testes because they are most often intermixed with round spermatids as seen in fractions #5–7 (Figure 4E). Alternatively, in cases wherein a high purity of leptotene/zygotene cells is required, the readers can utilize juvenile male mice (Table 2). The testicular epithelium from a male mouse younger than 20 days of age exclusively comprises meiotic germ cells but is absent in round spermatids. In this scenario, we showed that the enriched percentage of leptotene/zygotene cells reached higher than 80% in mice between 14–17 days (Figure 6). Interestingly, previous studies have shown that the heterogeneous cell populations in varied cell cycle stages can be separated from each other through centrifugal elutriation (Banfalvi, 2008, 2017; Delgado et al., 2017; Liu et al., 2021). We thus envision that a further optimization will refine the purification of more sub-stages of meiotic cells from mice at different ages in the future.
LIMITATIONS

The commonly adopted STA-PUT method relies on natural gravity balance through the continuous BSA gradient, and is thus time-consuming and extremely vulnerable to external disturbance. The flow cytometry usually necessitates dye-labelling and thus produces highly purified cells, but with low yield and low viability. In comparison, the centrifugal elutriation method described herein is highly reproducible and time-saving with high yield and high viability. Owing to the differential sedimentation velocity, a plethora of populations of germ cells at varied developmental stages can be sequentially sorted out, which is well-controlled following the force balance between centrifugation and pumping.

Therefore, once the parameters are optimized, the researchers can go directly to set up the parameters without further calibration and do not need to visually check cell purity in each fraction.

Fraction#	RPM (Centrifuge)	Volume (mL)	Flow rate (mL/min) (pump)
1	2250	100	19.6
2	2250	100	21
3	2250	200	23.6
4	2250	150	34
5	2250	150	40.5
6	2250	100	45

Figure 6. Validation and counting of enriched germ cells in collected cell fractions from juvenile mouse testis (14–17-day old)

(A) Representative images of enriched meiotic germ cells as defined by γH2AX and SYCP3 staining. Scale bars: 10 μm.

(B) Relative quantification of the enriched percentages for the indicated types of germ cells in each fraction (14–17-day mice). Enriched cells were classified into leptotene/zygotene, pachytene and other cells.
repeatedly every time. However, there are some intrinsic limitations for application of centrifugal elutriation. For instance, the sedimentation velocity resembles each other between leptotene/zygote and round spermatids, hence it is difficult to get a highly purified population of leptotene/zygote meiotic cells since they only account for a small percentage in adult mouse testis. Nonetheless, we can utilize the juvenile mouse testes, which only possess meiotic cells without haploid spermatids, to get highly purified sub-meiotic spermatocytes. For purification of spermatogonia, it is advisable to use testes from ~P7 mice, when only spermatogonia and Sertoli cells are found within seminiferous tubules. There is no doubt that further optimization of the parameters would facilitate the purification of more sub-stages of germ cells in the future.

TROUBLESHOOTING

Problem 1
Insufficient digestion for preparation of single-cell testicular suspension.

Potential solution
The enzymatic activity of trypsin is inhibited in the presence of Ca²⁺/Mg²⁺, we thus strongly recommend to use Ca²⁺/Mg²⁺-free buffer for digestion of seminiferous tubules into single cells. In addition, we found that the second-step trypsin digestion of the undigested tubules after initial trypsin digestion (two-step trypsin digestion presented in this protocol) will improve the yield. Inadequate digestion will yield less number of germ cells.

Problem 2
Cell clumping or cell re-aggregation.

Potential solution
Cell clumping or re-aggregation is commonly observed for single-cell preparation from any tissues due to the release of the sticky genomic DNA molecules from the dead cells. Therefore, always avoid the over-digestion of fragmented seminiferous tubules by trypsin (<20 min). In addition, always gently pipetting up and down when wash or transfer germ cells. The inclusion of 0.1–0.5% BSA and Ca²⁺/Mg²⁺-chelating EDTA, as well as the supplement of DNase I are helpful to reduce the aggregation among single cells.

Problem 3
Cell aggregation within tubing system during loading.

Potential solution
We noticed that single cells re-aggregate during flowing through the sample reservoir chamber to the elutriation chamber for germ cells derived from genome-edited mouse models. If that happens, we recommend to increase the pump speed to 10 mL/min or higher during loading.

Problem 4
Low cell yield and low cell viability.

Potential solution
During digestion of intact seminiferous tubules into single cells, we recommend to boost the enzymatic digestion efficiency by gently pipetting up and down the cell suspension using wide-bore tips. This treatment will shorten the digestion time and lower the enzyme concentration, so as to increase the cell yield and cell viability.

Problem 5
Loss of cell pellet during cell collection.
Potential solution
At the last steps of cell collection, we recommend centrifugation using swinging-bucket rotors that will better preserve the intact cell pellet and cell viability compared with fixed-angle rotors.

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jianqiang Bao (jqbao@ustc.edu.cn).

Materials availability
No new materials were generated.

Data and code availability
This study did not generate/analyze new datasets or code.

ACKNOWLEDGMENTS
This work was supported by grants from the Ministry of Science and Technology of China (2019YFA0802600), Postdoctoral Research Foundation of China (2020M671885), National Natural Science Foundation of China (31970793, 32170856), the Fundamental Research Funds for the Central Universities (WK2070000156), and Startup funding (KY9100000001) from USTC.

AUTHOR CONTRIBUTIONS
J.B. and Y.C. designed and optimized protocols. Y.C. and L.M. performed the experiments and analyzed the data. J.B. and Y.C. wrote the manuscript. All authors contributed to writing and editing the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES

Banfalvi, G. (2008). Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nat. Protoc. 3, 663–673. https://doi.org/10.1038/nprot.2008.34.

Banfalvi, G. (2017). Synchronization of mammalian cells and nuclei by centrifugal elutriation. Methods Mol. Biol. 1524, 31–52. https://doi.org/10.1007/978-1-4939-6603-5_2.

Bao, J., Rousseaux, S., Shen, J., Lin, K., Lu, Y., and Bedford, M.T. (2018). The arginine methyltransferase CARM1 represses p300/ACT*CREMtau activity and is required for spermiogenesis. Nucleic Acids Res. 46, 4327–4343. https://doi.org/10.1093/nar/gky240.

Bryant, J.M., Meyer-Ficca, M.L., Dang, V.M., Berger, S.L., and Meyer, R.G. (2013). Separation of spermatogenic cell types using STA-PUT velocity sedimentation. J. Vis. Exp. 50648. https://doi.org/10.3791/50648.

Delgado, M., Kothari, A., Hittelman, W.N., and Chambers, T.C. (2017). Preparation of primary acute lymphoblastic leukemia cells in different cell cycle phases by centrifugal elutriation. J. Vis. Exp. 56418. https://doi.org/10.3791/56418.

Kim, C.R., Noda, T., Okada, Y., Ikawa, M., and Baek, S.H. (2021). Protocol for isolation of spermatids from mouse testes. STAR Protoc. 2, 100254. https://doi.org/10.1016/j.xpro.2020.100254.

Liu, Y., Nan, B., Niu, J., Kapler, G.M., and Gao, S. (2021). An optimized and versatile counter-flow centrifugal elutriation workflow to obtain synchronized eukaryotic cells. Front. Cell Dev. Biol. 9, 66418. https://doi.org/10.3389/fcell.2021.66418.

Valles, A.M., and Huynh, J.R. (2020). Isolation of stage-specific germ cells using FACS in Drosophila germarium. Methods Cell Biol. 158, 11–24. https://doi.org/10.1016/bs.mcb.2020.02.003.