125 GeV Higgs decay with lepton flavor violation in the μνSSM*

Hai-Bin Zhang(张海斌)1,1) Tai-Fu Feng(冯太傅)1,2,2) Shu-Min Zhao(赵树民)1, Yu-Li Yan(阎玉立)1 Fei Sun(孙飞)3

1 Department of Physics, Hebei University, Baoding 071002, China
2 State Key Laboratory of Theoretical Physics (KLTP), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
3 College of Science, China Three Gorges University, Yichang 443002, China

Abstract: Recently, the CMS and ATLAS collaborations have reported direct searches for the 125 GeV Higgs decay with lepton flavor violation, \(h \to \mu \tau \). In this work, we analyze the signal of the lepton flavour violating (LFV) Higgs decays \(h \to \mu \tau \) in the \(\mu \) from \(\nu \) Supersymmetric Standard Model (μνSSM) with slepton flavor mixing. Simultaneously, we consider the constraints from the LFV decay \(\tau \to \mu \gamma \), the muon anomalous magnetic dipole moment and the lightest Higgs mass around 125 GeV.

Keywords: supersymmetry, Higgs decay, lepton flavor violation

PACS: 12.60.Jv, 14.80.Da, 11.30.Fs DOI: 10.1088/1674-1137/41/4/043106

1 Introduction

The discovery of the Higgs boson by the ATLAS and CMS Collaborations [1, 2] is a great success of the Large Hadron Collider (LHC). Combining the updated data of the ATLAS and CMS Collaborations, the measured mass of the Higgs boson now is [3]

\[
m_h = 125.09 \pm 0.24 \text{GeV}.
\]
(1)

The next step is focusing on searching for its properties. In the Standard Model (SM), which is renormalizable, lepton flavour violating (LFV) Higgs decays are forbidden [4]. But recently, a direct search for the 125 GeV Higgs decay with lepton flavor violation, \(h \to \mu \tau \), has been described by the CMS collaboration [5, 6]. The upper limit of the branching ratio of \(h \to \mu \tau \) at 95% confidence level (CL) is [6]

\[
Br(h \to \mu \tau) < 1.20 \times 10^{-2}.
\]
(2)

Here, interpreted as a signal, \(\mu \tau \) means the final state consisting of \(\mu \tau \).

The ATLAS Collaboration gives the constraint on the branching ratio of \(h \to \mu \tau \) at 95% CL to be [7, 8]

\[
Br(h \to \mu \tau) < 1.43 \times 10^{-2}.
\]
(3)

The ATLAS and CMS experiments do not currently show a significant deviation from the SM. Therefore, the experiments still need to make more precise measurements in the future.

LFV Higgs decays can occur naturally in models beyond the SM, such as supersymmetric models [9–17], composite Higgs boson models [18, 19], Randall-Sundrum models [20–22], and many others [23–40]. Due to the running of the LHC, LFV Higgs decays have recently been discussed within various theoretical frameworks [41–105]. In this paper, we will study the LFV Higgs decay \(h \to \mu \tau \) in the “\(\mu \) from \(\nu \) Supersymmetric Standard Model” (μνSSM) [106–108]. As an extension of the Minimal Supersymmetric Standard Model (MSSM) [109–113], the μνSSM solves the \(\mu \) problem [114] of the MSSM, through the R-parity breaking couplings \(\lambda \bar{\nu}_i \bar{H}^+_u \bar{H}^+_u \) in the superpotential. The \(\mu \) term is generated spontaneously via the nonzero vacuum expectative values (VEVs) of right-handed sneutrinos, \(\mu = \lambda_i \bar{\nu}_i^c \), when the electroweak symmetry is broken (EWSB). In addition, nonzero VEVs of sneutrinos in the μνSSM can generate three tiny massive Majorana
The \(\mu\)SSM, we have studied some LFV processes, \(l_i \to l_j \gamma\) for \(i \neq j\), in the superpotential can generate the effective bilinear terms, the LFV Higgs decay \(h \to \mu \tau\) and the general soft SUSY-breaking terms. Section 3 contains the analytical expressions of the 125 GeV Higgs decay with lepton flavor violation in the \(\mu\)SSM. The numerical analysis and the summary are given in Section 4 and Section 5, respectively. Some formulae are collected in Appendix and Appendix.

2 The \(\mu\)SSM

In addition to the superfields of the MSSM, the \(\mu\)SSM introduces right-handed neutrino superfields \(\nu^c_i\) \((i = 1, 2, 3)\). Besides the MSSM Yukawa couplings for quarks and charged leptons, the superpotential of the \(\mu\)SSM contains Yukawa couplings for neutrinos, two additional types of terms involving the Higgs doublet superfields \(H_u\) and \(H_d\), and the right-handed neutrino superfields \(\nu^c\), [106]

\[
W = \epsilon_{ab} \left(Y_{u_{ij}} H_u^a \tilde{Q}^i e_j^c + Y_{d_{ij}} H_d^a \tilde{Q}^i d_j^c + Y_{e_{ij}} H_u^a \tilde{L}^i e_j^c \right) + \epsilon_{ab} Y_{e_{ij}} H_u^a \tilde{L}^i e_j^c - \epsilon_{ab} \lambda_{ij} \nu^{c_i} \tilde{H}^a \tilde{H}^a + \frac{1}{3} \epsilon_{ijk} \nu^{c_i} \nu^{c_j} \nu^{c_k}.
\]

Here, the first two lines contain mass squared terms of squarks, sleptons, Higgses and sneutrinos. The next three lines include the trilinear scalar couplings. In the last line, \(M_3, M_2, M_1\) represent the Majorana masses corresponding to \(SU(3), SU(2)\), and \(U(1)\) gauginos \(\tilde{\lambda}_3, \tilde{\lambda}_2, \tilde{\lambda}_1\), respectively. In addition, the tree-level scalar potential receives the usual \(D\)- and \(F\)-term contributions [107].

In the \(\mu\)SSM, the quadratic potential includes

\[
V_{\text{quadratic}} = \frac{1}{2} S^{aT} M_s S^a + \frac{1}{2} P^{eT} M_p P^e + S^{aT} M_2 S^a + \left(\frac{1}{2} \chi^{aT} M_n \chi^a + \Psi^{-T} M_2 \Psi^+ + \text{H.c.} \right) + \cdots.
\]

where in the unrotated basis \(S^{aT} = (h_d, h_u, (\tilde{\nu}^i)^c)^T, P^{eT} = (P_d, P_u, (\tilde{\nu}^i)^c)^T, \Psi^{-T} = (H^+_u, H^+_d, \tilde{e}^+_L, \tilde{e}^+_R)\), and \(\chi^{aT} = (\tilde{\nu}^c, \tilde{\nu}^c)^T\). The concrete expressions for the independent coefficients of mass matrices \(M_2, M_2^\pm, M_n\) and \(M_1\) can be found in Ref. [121]. Using 8 \times 8 unitary matrices \(R_S, R_p\) and \(R_{S^\pm}\), the unrotated basises \(S^a, P^e\) and \(S^{a\pm}\) can be respectively rotated to the mass eigenvectors \(S, P\) and \(S^\pm\):

\[
S^a = R_S S^a, \quad P^e = R_P P^e, \quad S^{a\pm} = R_{S^\pm} S^a.
\]

Through the unitary matrices \(Z_n, Z_-\) and \(Z_+\), neutral and charged fermions can also be rotated to the mass eigenvectors \(\chi^0\) and \(\chi\), respectively.
3 125 GeV Higgs decay with lepton flavor violation

The corresponding effective amplitude for 125 GeV Higgs decay with lepton flavor violation $h \rightarrow \tilde{l}_i l_j$ can be written as

$$\mathcal{M} = \bar{l}_i (F^{ij}_{L,R} P_L + F^{ij}_{R,L} P_R) l_j,$$

with

$$F^{ij}_{L,R} = F^{(V)ij}_{L,R} + F^{(S)ij}_{L,R},$$

where $F^{(V)ij}_{L,R}$ denotes the contributions from the vertex diagrams in Fig. 1, and $F^{(S)ij}_{L,R}$ stands for the contributions from the self-energy diagrams in Fig. 2, respectively.

The one-loop vertex diagrams for $h \rightarrow \tilde{l}_i l_j$ in the $\mu\nu$SUSY are depicted by Fig. 1. Then, we can have

$$F^{(V)ij}_{L,R} = F^{(a)ij}_{L,R} + F^{(b)ij}_{L,R} + F^{(c)ij}_{L,R} + F^{(d)ij}_{L,R},$$

where $F^{(a,b,c,d)ij}_{L,R}$ denotes the contributions from charged scalar $S_{\alpha,\rho}$ and neutral fermion $\chi_{\eta,\xi}^0$ loops, and $F^{(c,d)ij}_{L,R}$ stands for the contributions from the neutral scalar $N_{\alpha,\rho}$ ($N = S, P$) and charged fermion $\chi_{\beta,\xi}^+ \chi_{\beta,\xi}^-$ loops, respectively. After integrating the heavy freedoms out, we formulate the neutral fermion loop contributions $F^{(a,b)}_{L,R}$ as follows:

$$F^{(a)}_{L,R} = \frac{m_{N_{\alpha,\rho}}^2}{m_{W}^2} C_{L}^{S_{\alpha,\rho} \chi_{\eta,\xi}^0} C_{L}^{S_{\alpha,\rho} \chi_{\eta,\xi}^0} G_1(x_{\eta,\xi}^0, x_{S_{\alpha,\rho} \chi_{\eta,\xi}^0}),$$

$$F^{(b)}_{L,R} = \frac{m_{N_{\alpha,\rho}}^2}{m_{W}^2} C_{L}^{S_{\alpha,\rho} \chi_{\eta,\xi}^0} C_{L}^{S_{\alpha,\rho} \chi_{\eta,\xi}^0} C_{R}^{S_{\alpha,\rho} \chi_{\eta,\xi}^0} G_2(x_{S_{\alpha,\rho} \chi_{\eta,\xi}^0}, x_{\eta,\xi}^0),$$

$$F^{(a,b)}_{L,R} = F^{(a,b)}_{L,R} + F^{(a,b)}_{R,L}.$$

Here, the concrete expressions for couplings C (and below) can be found in Appendix A and Ref. [123].

In a similar way, the charged fermion loop contributions $F^{(c,d)}_{L,R}$ are

$$F^{(c)}_{L,R} = \sum_{N = S, P} \frac{m_{N_{\alpha,\rho}}^2}{m_{W}^2} C_{L}^{S_{\alpha,\rho} \chi_{\eta,\xi}^0} N_{\alpha,\rho}^{N_{\alpha,\rho} \chi_{\eta,\xi}^0} C_{L}^{N_{\alpha,\rho} \chi_{\eta,\xi}^0} G_1(x_{N_{\alpha,\rho} \chi_{\eta,\xi}^0}, x_{N_{\alpha,\rho} \chi_{\eta,\xi}^0}),$$

$$F^{(d)}_{L,R} = \sum_{N = S, P} \left[C_{L}^{N_{\alpha,\rho} \chi_{\eta,\xi}^0} C_{R}^{S_{\alpha,\rho} \chi_{\eta,\xi}^0} C_{L}^{N_{\alpha,\rho} \chi_{\eta,\xi}^0} \right] G_2(x_{N_{\alpha,\rho} \chi_{\eta,\xi}^0}, x_{N_{\alpha,\rho} \chi_{\eta,\xi}^0})$$

$$+ \sum_{N = S, P} \left[C_{L}^{N_{\alpha,\rho} \chi_{\eta,\xi}^0} C_{R}^{S_{\alpha,\rho} \chi_{\eta,\xi}^0} C_{L}^{N_{\alpha,\rho} \chi_{\eta,\xi}^0} \right] G_1(x_{N_{\alpha,\rho} \chi_{\eta,\xi}^0}, x_{N_{\alpha,\rho} \chi_{\eta,\xi}^0}),$$

$$F^{(c,d)}_{L,R} = F^{(c,d)}_{L,R} + F^{(c,d)}_{R,L}.$$
with

\[
F^{(S_{ij})}_{L} = \frac{C_{L}^{i,j}}{m_{i}^{2} - m_{j}^{2}} \left\{ m_{i}^{2} \Sigma_{R}(m_{j}^{2}) + m_{j}^{2} \Sigma_{S}(m_{i}^{2}) \right. \\
+ m_{i} \left[m_{j} \Sigma_{L}(m_{j}^{2}) + m_{j} \Sigma_{S}(m_{i}^{2}) \right] \right\},
\]

\[
F^{(S_{ij})}_{R} = \frac{C_{L}^{i,j}}{m_{i}^{2} - m_{j}^{2}} \left\{ m_{i}^{2} \Sigma_{L}(m_{j}^{2}) + m_{j}^{2} \Sigma_{S}(m_{i}^{2}) \right. \\
+ m_{i} \left[m_{j} \Sigma_{S}(m_{j}^{2}) + m_{j} \Sigma_{L}(m_{i}^{2}) \right] \right\},
\]

\[
F^{(S_{ij})}_{L} = F^{(S_{ij})}_{R} \bigg|_{L \rightarrow R}.
\]

The \(\Sigma \) of the self-energy diagrams in Fig. 2(c,d) can be obtained below

\[
\Sigma_{L}(p^{2}) = \frac{1}{16\pi^{2}} \left\{ B_{1}(p^{2},m_{\chi_{0}^{0}},m_{S_{\alpha}^{0}})C_{L}^{S_{\alpha}^{0}}x_{\alpha}^{i,j}x_{\alpha}^{0} + \sum_{N=S_{\mu},P} B_{2}(p^{2},m_{\chi_{3}^{0}},m_{N_{\alpha}}^{2})C_{L}^{N_{\alpha}}x_{\alpha}^{i,j}x_{\alpha}^{0} \right\},
\]

\[
m_{i} \Sigma_{L_{\alpha}}(p^{2}) = \frac{1}{16\pi^{2}} \left\{ m_{i} B_{0}(p^{2},m_{\chi_{0}^{0}},m_{S_{\alpha}^{0}})C_{L}^{S_{\alpha}^{0}}x_{\alpha}^{i,j}x_{\alpha}^{0} + \sum_{N=S_{\mu},P} m_{i} B_{0}(p^{2},m_{\chi_{3}^{0}},m_{N_{\alpha}}^{2})C_{L}^{N_{\alpha}}x_{\alpha}^{i,j}x_{\alpha}^{0} \right\},
\]

\[
\Sigma_{R}(p^{2}) = \Sigma_{L}(p^{2}) \big|_{L \rightarrow R},
\]

\[
m_{i} \Sigma_{R_{\alpha}}(p^{2}) = m_{i} \Sigma_{L_{\alpha}}(p^{2}) \bigg|_{L \rightarrow R}.
\]

Here, \(B_{0}, B_{1}, B_{2} \) are two-point functions \([124-130]\). Then, we can obtain the decay width of \(h \rightarrow l_{i}l_{j} \) [9, 14]

\[
\Gamma(h \rightarrow l_{i}l_{j}) \approx \frac{m_{h}}{16\pi} \left| \left(F_{L}^{i,j} \right)^{2} + \left(F_{R}^{i,j} \right)^{2} \right|.
\]

If interpreted as a signal, the decay width of \(h \rightarrow l_{i}l_{j} \) is

\[
\Gamma(h \rightarrow l_{i}l_{j}) = \Gamma(h \rightarrow l_{i}l_{j}) + \Gamma(h \rightarrow \bar{l}_{i}\bar{l}_{j}),
\]

and the branching ratio of \(h \rightarrow l_{i}l_{j} \) is

\[
\text{Br}(h \rightarrow l_{i}l_{j}) = \frac{\Gamma(h \rightarrow l_{i}l_{j})}{\Gamma_{h}},
\]

where \(\Gamma_{h} \approx 4.1 \times 10^{-3} \text{ GeV} \) [131] denotes the total decay width of the 125 GeV Higgs boson.

4 Numerical analysis

In order to obtain transparent numerical results in the \(\mu\nu\text{SSM} \), we take the minimal flavor violation (MFV) assumptions for some parameters, which assume

\[
\kappa_{ij} = \kappa_{j} \delta_{ij}, \quad (A_{\alpha})_{ij} = A_{\alpha} \kappa_{ij} \delta_{ij}, \quad \lambda_{i} = \lambda, \quad (A_{\lambda})_{i} = A_{\lambda} \lambda, \quad (A_{\lambda})_{i} = (A_{\lambda})_{i} \lambda, \quad Y_{e_{i}} = Y_{e_{i}} \delta_{ij}, \quad Y_{\nu_{i}} = Y_{\nu_{i}} \delta_{ij},
\]

\[
v_{\nu_{i}} = v_{\nu_{e}}, \quad (A_{\nu}Y_{e})_{ij} = a_{\nu} \delta_{ij}, \quad m_{\nu_{ij}}^{2} = m_{\nu_{e}}^{2} \delta_{ij}, \quad m_{\nu_{ij}}^{2} = m_{\nu_{e}}^{2} \delta_{ij}, \quad m_{\nu_{ij}}^{2} = m_{\nu_{e}}^{2} \delta_{ij},
\]

where \(i, j, k = 1, 2, 3 \). \(m_{\nu_{e}}^{2} \) can be constrained by the minimization conditions of the neutral scalar potential seen in Ref. [121]. To agree with experimental observations on quark mixing, one can have

\[
Y_{u_{ij}} = Y_{u} V_{L_{ij}}^{*}, \quad (A_{u}Y_{u})_{ij} = A_{u}Y_{u_{ij}},
\]

\[
Y_{d_{ij}} = Y_{d} V_{L_{ij}}^{*}, \quad (A_{d}Y_{d})_{ij} = A_{d}Y_{d_{ij}},
\]

and \(V = V_{u}^{*} V_{d}^{*} \) denotes the CKM matrix.

For the trilinear coupling matrix \((A_{Y}) \) and soft breaking slepton mass matrices \(m_{L_{\alpha}}^{2} \), we will take into account the off-diagonal terms for the matrices, which are named the slepton flavor mixings and are defined by \([132-137]\)

\[
m_{L}^{2} = \begin{pmatrix}
1 & \delta_{12}^{LL} & \delta_{13}^{LL} \\
\delta_{12}^{LL} & 1 & \delta_{23}^{LL} \\
\delta_{13}^{LL} & \delta_{23}^{LL} & 1
\end{pmatrix} m_{L}^{2},
\]

\[
m_{E}^{2} = \begin{pmatrix}
1 & \delta_{12}^{RR} & \delta_{13}^{RR} \\
\delta_{12}^{RR} & 1 & \delta_{23}^{RR} \\
\delta_{13}^{RR} & \delta_{23}^{RR} & 1
\end{pmatrix} m_{E}^{2},
\]

\[
(A_{Y})_{\nu} = \begin{pmatrix}
m_{1} & A_{\nu} & \delta_{12}^{RR} m_{L} m_{E} & \delta_{13}^{RR} m_{L} m_{E} & \nu_{d} \\
\delta_{12}^{RR} m_{L} m_{E} & m_{1} & A_{\nu} & \delta_{13}^{RR} m_{L} m_{E} & \nu_{d} \\
\delta_{13}^{RR} m_{L} m_{E} & \delta_{13}^{RR} m_{L} m_{E} & m_{1} & A_{\nu} & \nu_{d}
\end{pmatrix}.
\]

The following numerical results will show that the branching ratio of \(h \rightarrow \mu \tau \) depends on the slepton mixing parameters \(\delta_{23}^{XY} (X = L, R) \).

At first, the constraints from some experiments should be considered. Through our previous work \([119]\), we have discussed in detail how the neutrino oscillation data constrain neutrino Yukawa couplings \(Y_{\nu_{i}} \sim \mathcal{O}(10^{-7}) \) and left-handed neutrino VEVs \(v_{\nu_{i}} \sim \mathcal{O}(10^{-8}\text{GeV}) \) via the seesaw mechanism. Here, due to the neutrino sector only weakly affecting \(h \rightarrow \mu \tau \), we can take no account of the constraints from neutrino experiment data.

The neutral Higgs with mass around 125 GeV reported by ATLAS and CMS contributes a strict constraint on the relevant parameters of the \(\mu\nu\text{SSM} \). For a large mass of the pseudoscalar \(M_{A} \) and moderate \(\tan\beta \), the SM-like Higgs mass of the \(\mu\nu\text{SSM} \) is approximately written as \([107, 138]\)

\[
m_{h}^{2} \approx q m_{Z}^{2} \cos^{2} 2\beta + \frac{6\lambda_{A}^{2} q^{2} c_{w}^{2}}{c_{w}^{2}} m_{Z}^{2} \sin^{2} 2\beta + \Delta m_{\nu}^{2},
\]
Compared with the MSSM, the \(\nu\)SUSM gets an additional term, \(\frac{6X^2s_\beta^2c_\beta}{c^2}m_S^2\sin^22\beta\). Thus, the SM-like Higgs in the \(\nu\)SUSM can easily account for the mass around 125 GeV, especially for small \(\tan\beta\). Including two-loop leading-log effects, the main radiative corrections \(\Delta m^2_h\) can be given as \([139–141]\)

\[
\Delta m^2_h = \frac{3m^4_t}{4\pi\alpha_s}\left[\left(t + \frac{1}{2}\chi_t\right) + \frac{1}{16\pi^2}\left(\frac{3m^2_t}{2\alpha_t^2} - 32\pi\alpha_3\right)(t^2 + \chi_t t)\right],
\]

\[t = \log\frac{M^2}{m^2} = \frac{2\tilde{A}_t^2}{M^2} \left(1 - \frac{\tilde{A}_t^2}{12M^2}\right), \tag{29}\]

where \(v = 174\) GeV, \(\alpha_3\) is the strong coupling constant, \(M_S = \sqrt{m_{t1}m_{t2}}\) with \(m_{t1,2}\) denoting the stop masses, \(\tilde{A}_t = A_t - \mu\cot\beta\) with \(A_t = A_{\tilde{t}_L}\) being the trilinear Higgs-stop coupling and \(c = 3\lambda_{\nu\nu}\) denoting the Higgsino mass parameter.

We also impose a constraint on the SUSY contribution to the muon magnetic dipole moment \(a_\mu\) in the \(\nu\)SUSM, which is given in Appendix for convenience. The difference between experiment and the SM prediction on \(a_\mu\) is \([142–144]\)

\[\Delta a_\mu = a^\text{exp}_\mu - a^\text{SM}_\mu = (24.8 \pm 7.9) \times 10^{-10}, \tag{30}\]

with all errors combining in quadrature. Therefore, the SUSY contribution to \(a_\mu\) in the \(\nu\)SUSM should be constrained as \(1.1 \times 10^{-10} \leq \Delta a_\mu \leq 48.5 \times 10^{-10}\), where a 3\(\sigma\) experimental error is considered.

Through analysis of the parameter space of the \(\nu\)SUSM in Ref. \([107]\), we can take reasonable parameter values to be \(\lambda = 0.1, \kappa = 0.4, A_\lambda = 500\) GeV, \(A_\mu = -300\) GeV and \(A_t = 1\) TeV for simplicity. For the gauginos’ Majorana massess, we will choose the approximate GUT relation \(M_1 = \frac{\alpha_1^3}{\alpha_2^2} M_2 \approx 0.5 M_2\) and \(M_3 = \frac{\alpha_3^2}{\alpha_2} M_2 \approx 2.7 M_2\). The gluino mass, \(m_\tilde{g} \approx M_3\), is greater than about 1.2 TeV from the ATLAS and CMS experimental data \([145–148]\). For simplicity, we could adopt \(m_{\tilde{q}_1} = m_{\tilde{q}_2} = m_{\tilde{q}_3} = 1.5\) TeV. As key parameters, \(A_t\) and \(\tan\beta = v_u/v_d\) affect the SM-like Higgs mass. Here, we keep the SM-like Higgs mass \(m_h = 125\) GeV as input, and then the value of parameter \(A_t\) can be given automatically in the numerical calculation. Then, the free parameters that affect our next analysis are \(\tan\beta, \mu = 3\lambda_{\nu\nu}, M_2, m_L, m_E\ and slepton mixing parameters \(\delta_{23}^{XX} (X = L, R)\).

It is well known that the lepton flavour violating processes are flavor dependent. The LFV rates for \(\mu - \tau\) transitions depend on the slepton mixing parameters \(\delta_{23}^{XX} (X = L, R)\), which can be confirmed by Fig. 3. The slepton mixing parameters \(\delta_{23}^{XX}\) and \(\delta_{23}^{XX} (X = L, R)\) hardly affect the LFV rates for \(\mu - \tau\) transitions, which play a leading role in the LFV rates for \(e - \mu\) and \(e - \tau\) transitions. So, we take \(\delta_{23}^{XX} = 0\) and \(\delta_{23}^{XX} = 0 (X = L, R)\) here. To produce Fig. 3, we scan the parameter space shown in Table 1. Here the steps are large, because the running of the program is not very fast. However the scanned parameter space is broad enough to contain the possibility of more.

In the scan, we keep the chargino masses \(m_{\tilde{c}_1} > 200\) GeV (\(\beta = 1, 2\)), the neutral fermion masses \(m_{\tilde{q}_i} > 200\) GeV (\(\eta = 1, \cdots, 7\)), and the scalar masses \(m_{\tilde{g}, \tilde{e}, \tilde{\tau}, \tilde{\nu}, \tilde{\nu}_E} > 500\) GeV (\(\eta = 2, \cdots, 8\)), to avoid the range ruled out by the experiments \([142]\). The results are also constrained by the muon anomalous magnetic dipole moment \(1.1 \times 10^{-10} \leq \Delta a_\mu \leq 48.5 \times 10^{-10}\), where a 3\(\sigma\) experimental error is considered. In Ref. \([123]\), we have investigated the signals of the Higgs boson decay channels \(h \to \gamma\gamma, h \to VV^* (V = Z, W)\), and \(h \to f\bar{f} (f = b, \tau)\) in the \(\nu\)SUSM. When the lightest stop mass \(m_{\tilde{t}_1} \geq 700\) GeV and the lightest stau mass \(m_{\tilde{\tau}_1} \geq 300\) GeV, the signal strengths of these Higgs boson decay channels are in agreement with the SM. Therefore, the scanning results in this paper coincide with the experimental data of these Higgs boson decay channels.

Note that, when the calculation program is scanning one of the slepton mixing parameters \(\delta_{23}^{XX} (X = L, R)\), the other two slepton mixing parameters \(\delta_{23}^{XX} (X = L, R)\) are set to zero. So, we can see the contribution of every slepton mixing parameter alone. Then in Fig. 3, we plot \(B_r(h \to \mu\tau)\) varying with slepton mixing parameters \(\delta_{23}^{XX} (a), \delta_{23}^{XX} (c), \text{and } \delta_{23}^{RR} (e)\) respectively, where the dashed line stands for the upper limit on \(B_r(h \to \mu\tau)\) at 95\% CL shown in Eq. (2). We also plot \(B_r(\tau \to \mu\nu)\) versus slepton mixing parameters \(\delta_{23}^{XX} (b), \delta_{23}^{XX} (d), \text{and } \delta_{23}^{RR} (f)\) respectively, where the dashed line denotes the present limit of \(B_r(\tau \to \mu\nu)\) \([149]\):

\[B_r(\tau \to \mu\nu) < 4.4 \times 10^{-8}. \tag{31}\]

Here, the red triangles are ruled out by the present limit of \(B_r(\tau \to \mu\nu)\), and the black circles are consistent with the present limit of \(B_r(\tau \to \mu\nu)\).

In Fig. 3, when slepton mixing parameters \(\delta_{23}^{XX} (X = L, R)\) are considered, \(B_r(h \to \mu\tau)\) and \(B_r(\tau \to \mu\nu)\) grow quickly. With increasing \(\delta_{23}^{XX} (X = L, R)\), \(B_r(\tau \to \mu\nu)\) can easily go beyond the present experimental limit of \(B_r(\tau \to \mu\nu)\), shown in the plot as the red triangles. Although \(B_r(h \to \mu\tau)\) cannot reach
the present experimental upper limit of $Br(h \rightarrow \mu \tau)$,
$Br(h \rightarrow \mu \tau)$ becomes larger and approaches the present experimental limit with increasing $\delta_{23}^X (X = L, R)$. Especially in Fig. 3(a), considering nonzero slepton mixing parameters δ_{23}^{LR}, $Br(h \rightarrow \mu \tau)$ can achieve $O(10^{-4})$, which is below the present experimental limit by just two orders of magnitude. Compared to the MSSM, exotic singlet righthanded neutrino superfields in the μNSM induce new sources for lepton-flavor violation, considering that the righthanded neutrino and sneutrinos can mix and couple with the other particles seen in Eq. (8) and Appendix A. In Fig. 3(a,c,e), the red triangles overlap with the black circles, because some parameters strongly affect $Br(\tau \rightarrow \mu \gamma)$ but do not affect $Br(h \rightarrow \mu \tau)$. We will research this further in the following.

To see how other parameters affect the results, we appropriately fix $\delta_{23}^{LR} = 0.02$ and $\delta_{23}^{LL} = \delta_{23}^{RR} = 0.2$. Then, we scan the parameter space shown in Table 2, where $\mu = M_2 = m_L = m_E \equiv M_{\text{SUSY}}$. In the scanning, we also keep the chargino masses $m_{\tilde{\chi}_1^\pm} > 200$ GeV ($\beta = 1, 2$), the neutral fermion masses $m_{\tilde{q}_i} > 200$ GeV ($\eta = 1, \cdots, 7$), and the scalar masses $m_{S_a, P_a, S_\pm} > 500$ GeV ($\eta = 2, \cdots, 8$), to avoid the range ruled out by the experiments [142]. Then in Fig. 4, we plot $Br(h \rightarrow \mu \tau)$ respectively versus $\tan \beta$ (a) and M_{SUSY} (b), where the dashed line stands for the upper limit on $Br(h \rightarrow \mu \tau)$ at 95% CL shown in Eq. (2). We show $Br(\tau \rightarrow \mu \gamma)$ varying with $\tan \beta$ (c) and M_{SUSY} (d) respectively, where the dashed line denotes the present limit of $Br(\tau \rightarrow \mu \gamma)$ which can be seen in Eq. (31). We also picture the muon anomalous magnetic dipole moment Δa_μ versus $\tan \beta$ (e) and M_{SUSY} (f) respectively, where the gray area denotes the Δa_μ at 3.0σ given in Eq. (30). Here, the red triangles are excluded by the present limit of $Br(\tau \rightarrow \mu \gamma)$, the green squares are eliminated by the Δa_μ at 3.0σ, and the black circles conform to both the present limit of $Br(\tau \rightarrow \mu \gamma)$ and the Δa_μ at 3.0σ.

In Fig. 4(d,f), the numerical results show that $Br(\tau \rightarrow \mu \gamma)$ and the muon anomalous magnetic dipole
moment Δa_μ are decoupling with increasing M_{SUSY}. For large M_{SUSY}, it is hard to give large contribution to Δa_μ.

So, the large M_{SUSY} are easily excluded by the Δa_μ at 3.0σ given in Eq. (30), which can be seen in the graph as the green squares. For small M_{SUSY}, there can be a large contribution to $Br(\tau \to \mu\gamma)$. Therefore, the small M_{SUSY} are easily ruled out by the Δa_μ at $3:\sigma_0$ given in Eq. (30), which can be seen in the graph as the red triangles. In Fig. 4(b), $Br(h \to \mu\tau)$ is non-decoupling with increasing M_{SUSY}, which is in agreement with the research in the MSSM [44, 67]. Due to the introduction of slepton mixing parameters, the non-decoupling behaviour of $Br(h \to \mu\tau)$ tends to $O((m_h/M_{\text{SUSY}})^a)$, which is somewhat different from the Appelquist-Carazzone decoupling theorem [150]. (As a side note, in Ref. [151], a non-decoupling behaviour in computation of the Higgs mass showed that it was linked to an ambiguity in the treatment of \tanh, which is a renormalization scheme dependent parameter.) We can also see that the red triangles overlap with the black circles in Fig. 4(b), because the parameter $\tan\beta$ does not affect $Br(h \to \mu\tau)$ visibly in this parameter space. In Fig. 4(a,c,e), the numerical results show that $Br(h \to \mu\tau)$, $Br(\tau \to \mu\gamma)$ and the muon anomalous magnetic dipole moment Δa_μ can have large values when $\tan\beta$ is large.

Table 1. Scanning parameters for Fig. 3.

parameters	min	max	step
$\tan\beta$	5	50	15
$\mu = M_2/\text{GeV}$	500	5000	500
$m_L = m_E/\text{GeV}$	500	5000	500
ΔL^R	0	0.4	0.02
ΔL^L	0	1.0	0.05
ΔR^R	0	1.0	0.05

Table 2. Scanning parameters for Fig. 4, where $\mu = M_2 = m_L = m_E \equiv M_{\text{SUSY}}$.

parameters	min	max	step
$\tan\beta$	5	50	2.5
$M_{\text{SUSY}}/\text{GeV}$	500	5000	250

Fig. 4. (color online) $Br(h \to \mu\tau)$ versus $\tan\beta$ (a) and M_{SUSY} (b), where the dashed line stands for the upper limit on $Br(h \to \mu\tau)$ at $95\% \text{ CL}$ shown in Eq. (2). $Br(\tau \to \mu\gamma)$ versus $\tan\beta$ (c) and M_{SUSY} (d), where the dashed line denotes the present limit of $Br(\tau \to \mu\gamma)$, which can be seen in Eq. (31). Δa_μ versus $\tan\beta$ (e) and M_{SUSY} (f), where the gray area denotes the Δa_μ at 3.0σ given in Eq. (30). Here, the red triangles are excluded by the present limit of $Br(\tau \to \mu\gamma)$, the green squares are eliminated by the Δa_μ at 3.0σ, and the black circles simultaneously conform to the present limit of $Br(\tau \to \mu\gamma)$ and the Δa_μ at 3.0σ.
5 Summary

In this work, we have studied the 125 GeV Higgs decay with lepton flavor violation, $h \rightarrow \mu \tau$, in the framework of the \(\mu \nu \)SUSY with slepton flavor mixing. The numerical results show that the branching ratio of $h \rightarrow \mu \tau$ depends on the slepton mixing parameters $\delta_{X}^X (X = L, R)$, because the lepton flavour violating processes are flavor dependent. The branching ratio of $h \rightarrow \mu \tau$ increases with increasing $\delta_{X}^X (X = L, R)$. Under the experimental constraints of the muon anomalous magnetic dipole moment, the SM-like Higgs mass around 125 GeV and the present limit of $Br($\(\tau \rightarrow \mu \gamma \))$, the branching ratio of $h \rightarrow \mu \tau$ can reach $O(10^{-4})$. Compared with the MSSM, exotic singlet righthanded neutrino superfields in the $\mu \nu$SUSY induce new sources for the lepton-flavor violation. Considering that the recent ATLAS and CMS measurements for $h \rightarrow \mu \tau$ do not show a significant deviation from the SM, the experiments still need to make more precise measurements in the future. To detect a Higgs boson lepton flavour violating process is a prospective window to search for new physics.

Appendix A

The couplings

The couplings between CP-even neutral scalars and the other CP-even (or CP-odd) neutral scalars are formulated as

\[
\mathcal{L}_{\text{int}} = C_{\alpha \beta \gamma} S_{\alpha} S_{\beta} S_{\gamma} + C_{\alpha \beta \gamma}^{P} S_{\alpha} P_{\beta} P_{\gamma},
\]

(\text{A1})

with

\[
C_{\alpha \beta \gamma} = -\frac{e^2}{4 \sqrt{2} w_c w_W} \left[v_d R_{L}^{\alpha} R_{L}^{\beta} R_{L}^{\gamma} + v_u R_{R}^{\alpha} R_{R}^{\beta} R_{R}^{\gamma} + (v_d R_{R}^{\alpha} + v_u R_{L}^{\alpha}) R_{L}^{\beta} R_{R}^{\gamma} + (v_d R_{L}^{\alpha} + v_u R_{R}^{\alpha}) R_{R}^{\beta} R_{L}^{\gamma} \right] + \frac{1}{\sqrt{2}} \left[\lambda_{i} \lambda_{j} \left(v_d R_{L}^{\alpha} + v_u R_{R}^{\alpha} \right) R_{L}^{(5+i)} R_{R}^{(5+j)} \gamma \right] - \frac{1}{\sqrt{2}} \lambda_{i} \lambda_{j} \left(v_d R_{L}^{\alpha} + v_u R_{R}^{\alpha} \right) R_{R}^{(5+i)} R_{L}^{(5+j)} \gamma \left(\text{A2} \right)
\]

\[
C_{\alpha \beta \gamma}^{P} = -\frac{e^2}{4 \sqrt{2} w_c w_W} \left[v_d R_{L}^{\alpha} R_{L}^{\beta} R_{L}^{\gamma} + v_u R_{R}^{\alpha} R_{R}^{\beta} R_{R}^{\gamma} + (v_d R_{R}^{\alpha} + v_u R_{L}^{\alpha}) R_{L}^{\beta} R_{R}^{\gamma} + (v_d R_{L}^{\alpha} + v_u R_{R}^{\alpha}) R_{R}^{\beta} R_{L}^{\gamma} \right] + \frac{1}{\sqrt{2}} \left[\lambda_{i} \lambda_{j} \left(v_d R_{L}^{\alpha} + v_u R_{R}^{\alpha} \right) R_{L}^{(5+i)} R_{R}^{(5+j)} \gamma \right] - \frac{1}{\sqrt{2}} \lambda_{i} \lambda_{j} \left(v_d R_{L}^{\alpha} + v_u R_{R}^{\alpha} \right) R_{R}^{(5+i)} R_{L}^{(5+j)} \gamma \left(\text{A3} \right)
\]

where the unitary matrices R_{L}, R_{R} (and $Z_{\alpha}, Z_{\beta}, Z_{\gamma}$ below) can be found in Ref. [121], and the small terms containing $Y_{nu} \sim O(10^{-7})$ and $\nu_{\mu} \sim O(10^{-4}$ GeV) are ignored.

The interaction Lagrangian between CP-even neutral scalars and neutral fermions is formulated as

\[
\mathcal{L}_{\text{int}} = S_{\alpha} \chi_{0}^{\alpha} \left[C_{L} S_{\alpha} \chi_{0}^{\alpha} \bar{P}_{L} + C_{R}^{P} S_{\alpha} \chi_{0}^{\alpha} \bar{P}_{R} \right] \chi_{0}^{-}.
\]

(\text{A4})

where

\[
C_{L}^{S_{\alpha} \chi_{0}^{\alpha} \bar{P}_{L}} = -\frac{e}{2 s_{w} c_{w}} \left(c_{w} Z_{u}^{\alpha} - s_{w} Z_{d}^{\alpha} \right)
\]

\[
\left(R_{L}^{\alpha} Z_{u}^{\alpha} - R_{d}^{\alpha} Z_{d}^{\alpha} + R_{d}^{(2+i)\alpha} Z_{u}^{(7+i)\alpha} \right)
\]

\[
- \frac{1}{\sqrt{2}} Y_{nu} \left(R_{d}^{2+i\alpha} Z_{u}^{(7+i)\alpha} - R_{u}^{2+i\alpha} Z_{d}^{(7+i)\alpha} \right)
\]

\[
+ R_{d}^{(5+i)\alpha} Z_{u}^{(4+i)\alpha} + R_{d}^{(5+i)\alpha} Z_{d}^{(4+i)\alpha} \right)
\]

\[
- \frac{1}{\sqrt{2}} \lambda_{i} \left(R_{L}^{(5+i)\alpha} Z_{u}^{(4+i)\alpha} \right)
\]

\[
+ R_{d}^{(5+i)\alpha} Z_{u}^{(4+i)\alpha} + R_{d}^{(5+i)\alpha} Z_{d}^{(4+i)\alpha} \right)
\]

\[
+ R_{u}^{(5+i)\alpha} Z_{u}^{(4+i)\alpha} + R_{u}^{(5+i)\alpha} Z_{d}^{(4+i)\alpha} \right)
\]

\[
C_{R}^{S_{\alpha} \chi_{0}^{\alpha} \bar{P}_{R}} = \left[C_{L}^{S_{\alpha} \chi_{0}^{\alpha} \bar{P}_{L}} \right]^{*},
\]

(\text{A5})

and

\[
P_{L} = \frac{1}{2} (1 - \gamma^{5}), \quad P_{R} = \frac{1}{2} (1 + \gamma^{5}).
\]

(\text{A6})

The interaction Lagrangian of neutral scalars and charged fermions can be written as

\[
\mathcal{L}_{\text{int}} = S_{\alpha} \bar{\chi}_{\alpha} \left[C_{L}^{S_{\alpha} \chi_{0} \bar{P}_{L}} + C_{R}^{S_{\alpha} \chi_{0} \bar{P}_{R}} \right] \chi_{\alpha} \beta
\]

\[
+ P_{\alpha} \bar{\chi}_{\alpha} \left(C_{L}^{S_{\alpha} \chi_{0} \bar{P}_{L}} + C_{R}^{S_{\alpha} \chi_{0} \bar{P}_{R}} \right) \chi_{\alpha} \beta.
\]

(\text{A7})
where the coefficients are

\[C_{L}^{S_{0} \chi_{6} \tilde{\chi}_{3}} = -\frac{e}{\sqrt{2} \alpha_{0}} \left[R_{S}^{\rho \rho} Z_{-}^{2 \beta} Z_{+}^{2 \beta} + R_{S}^{\rho \rho} Z_{-}^{2 \beta} Z_{+}^{2 \beta} \right] \\
+ \frac{1}{\sqrt{2}} \lambda_{\rho} R_{S}^{(5+\alpha) \rho} Z_{-}^{2 \beta} Z_{+}^{2 \beta} Z_{+}^{2 \beta} Z_{+}^{2 \beta} \right] \\
+ \frac{1}{\sqrt{2}} Y_{\rho j} \left[R_{S}^{\rho \rho} Z_{-}^{2 \beta} Z_{+}^{2 \beta} Z_{+}^{2 \beta} \right] \\
- \frac{1}{\sqrt{2}} Y_{\rho j} \left[R_{S}^{(5+\alpha) \rho} Z_{-}^{2 \beta} Z_{+}^{2 \beta} Z_{+}^{2 \beta} \right], \tag{A9} \]

\[C_{R}^{P_{0} \chi_{6} \tilde{\chi}_{3}} = \left[C_{L}^{S_{0} \chi_{6} \tilde{\chi}_{3}} \right]^{*}, \quad C_{R}^{P_{0} \chi_{6} \tilde{\chi}_{3}} = \left[C_{L}^{P_{0} \chi_{6} \tilde{\chi}_{3}} \right]^{*}. \tag{A11} \]

The interaction Lagrangian of charged scalars, charged fermions, and neutral fermions can be similarly written by

\[\mathcal{L}_{\text{int}} = S_{\alpha} \bar{\chi}_{\beta} (C_{L}^{S_{0} \chi_{6} \tilde{\chi}_{3}} P_{L} + C_{R}^{S_{0} \chi_{6} \tilde{\chi}_{3}} P_{R}) \chi_{\gamma}, \tag{A10} \]

where

\[C_{L}^{S_{0} \chi_{6} \tilde{\chi}_{3}} = -\frac{e}{\sqrt{2} \alpha_{0}} [R_{S}^{2 \rho \rho \rho} Z_{-}^{2 \beta} Z_{+}^{2 \beta} Z_{+}^{2 \beta} Z_{+}^{2 \beta} \right] \\
+ \frac{1}{\sqrt{2}} \lambda_{\rho} R_{S}^{(5+\alpha) \rho} Z_{-}^{2 \beta} Z_{+}^{2 \beta} Z_{+}^{2 \beta} \right] \\
+ \frac{1}{\sqrt{2}} Y_{\rho j} \left[R_{S}^{\rho \rho} Z_{-}^{2 \beta} Z_{+}^{2 \beta} Z_{+}^{2 \beta} \right] \]

\[C_{R}^{S_{0} \chi_{6} \tilde{\chi}_{3}} = \left[C_{L}^{S_{0} \chi_{6} \tilde{\chi}_{3}} \right]^{*}, \quad C_{R}^{S_{0} \chi_{6} \tilde{\chi}_{3}} = \left[C_{L}^{S_{0} \chi_{6} \tilde{\chi}_{3}} \right]^{*}. \tag{A15} \]

Appendix B

Muon MDM in the μSSM

The muon anomalous magnetic dipole moment (MDM) in the μSSM can be given as the effective Lagrangian

\[\mathcal{L}_{\text{MDM}} = \frac{e}{4m_{\mu}} a_{\mu} l_{\mu} \sigma_{\alpha \beta} l_{\mu} F_{\alpha \beta}, \tag{B1} \]

where l_{μ} denotes the muon which is on-shell, m_{μ} is the mass of the muon, $\sigma_{\alpha \beta} = \frac{1}{2} [\gamma_{\alpha}, \gamma_{\beta}]$, $F_{\alpha \beta}$ represents the electromagnetic field strength and muon MDM $a_{\mu} = \frac{1}{2} (g-2)_{\mu}$. Adopting the effective Lagrangian approach, the MDM of the muon can be written by [152–154]

\[a_{\mu} = 4m_{\mu}^{2} \Re[C_{2}^{R} + C_{2}^{L} + C_{6}^{R}], \tag{B2} \]

where $\Re(\cdots)$ denotes the operation to take the real part of the complex number, and $C_{2,6}^{L,R}$ represent the Wilson coefficients of the corresponding effective operators $O_{2,6}^{L,R}$

\[O_{2}^{L,R} = \frac{eQ_{l_{\mu}}}{(4\pi)^{2}} (\bar{l}_{\mu} l_{\mu}) \gamma^{\mu} F \cdot \sigma P_{L,R}, \tag{B3} \]

The SUSY corrections of the Wilson coefficients in the μSSM can be

\[C_{2,6}^{L,R} = C_{2,6}^{L,R}(n) + C_{2,6}^{L,R}(c). \tag{B4} \]

The effective coefficients $C_{2,6}^{L,R}(n)$ denote the contributions from the neutralinos $\tilde{\chi}_{0}$ and the charged scalars S_{n} loops

\[C_{2}^{R}(n) = \frac{1}{m_{\chi_{0}}^{2}} C_{L}^{S_{n} \chi_{0} \tilde{\chi}_{3}} C_{R}^{S_{n} \chi_{0} \tilde{\chi}_{3}} \left[-I_{3}(x_{\tilde{\chi}_{3}, x_{S_{n}}}) + I_{4}(x_{\tilde{\chi}_{3}, x_{S_{n}}}) \right], \tag{B5} \]

Similarly, the contributions $C_{2}^{R}(c)$ coming from the charginos χ_{β} and the neutral scalars $N_{\alpha} (N = S, P)$ loops are

\[C_{2}^{R}(c) = \sum_{N=S, P} \frac{1}{m_{\chi_{\beta}}^{2}} C_{R}^{S_{n} \chi_{\beta} \tilde{\chi}_{3}} C_{L}^{S_{n} \chi_{\beta} \tilde{\chi}_{3}} \left[-I_{3}(x_{\chi_{\beta}, x_{N_{\alpha}}}) + I_{4}(x_{\chi_{\beta}, x_{N_{\alpha}}}) \right]. \]
Here, the loop functions $I_1(x_1, x_2)$ are given as

$$I_1(x_1, x_2) = \frac{1}{16\pi^2} \left[\frac{1 + \ln x_2}{x_1 - x_2} - \frac{x_1 \ln x_1 - x_2 \ln x_2}{(x_1 - x_2)^2} \right].$$

The references cited in the text are as follows:

1. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B, 716:1 (2012), arXiv:1207.7214 [hep-ex]
2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B, 716:30 (2012), arXiv:1207.7235 [hep-ex]
3. G. Aad et al. (ATLAS and CMS Collaborations), Phys. Rev. Lett., 114:191803 (2015), arXiv:1503.07589 [hep-ex]
4. R. Harinik, J. Kopp and J. Zupan, JHEP, 03:026 (2013), arXiv:1209.1397
5. V. Khachatryan et al. (CMS Collaboration), Phys. Lett. B, 749:337–362 (2015), arXiv:1502.07400 [hep-ex]
6. V. Khachatryan et al. (CMS Collaboration), CMS-PAS-HIG-16-005
7. G. Aad et al. (ATLAS Collaboration), JHEP, 11:211 (2015), arXiv:1508.03372 [hep-ex]
8. G. Aad et al. (ATLAS Collaboration), arXiv:1604.07730 [hep-ex]
9. J. L. Diaz-Cruz and J. J. Toscano, Phys. Rev. D, 62:116005 (2000), arXiv:hep-ph/9910233
10. T. Han and D. Marfatia, Phys. Rev. Lett., 86:1442 (2001), arXiv:hep-ph/0008141
11. J. L. Diaz-Cruz, JHEP, 05:036 (2003)
12. A. Brignole and A. Rossi, Phys. Lett. B, 566:217–225 (2003)
13. A. Brignole and A. Rossi, Nucl. Phys. B, 701:3–53 (2004)
14. E. Arganda, A.M. Curiel, M.J. Herrero and D. Temes, Phys. Rev. D, 71:035011 (2005)
15. J. K. Parry, Nucl. Phys. B, 760:38–63 (2007)
16. J. L. Diaz-Cruz, D. K. Ghosh and S. Moretti, Phys. Lett. B, 679:376–381 (2009)
17. A. Arhrib, Y. Cheng and O. C. W. Kong, Phys. Rev. D, 87:015025 (2013), arXiv:1210.8241
18. K. Agashe and R. Contino, Phys. Rev. D, 80:075016 (2009), arXiv:0906.1542
19. A. Azatov, M. Toharia and L. Zhu, Phys. Rev. D, 80:035016 (2009), arXiv:0906.1900
20. S. Casagrande et al., JHEP, 10:094 (2008), arXiv:0807.4937
21. G. Perez and L. Randall, JHEP, 01:077 (2009), arXiv:0805.4652
22. A. J. Buras, B. Duling and S. Gori, JHEP, 09:076 (2009), arXiv:0905.2318
23. M. Blanke, A. J. Buras, B. Duling et al., JHEP, 03:001 (2009), arXiv:0809.1073
24. G. F. Giudice and O. Lebedev, Phys. Lett. B, 665:79 (2008), arXiv:0804.1753
25. J. A. Aguilar-Saavedra, Nucl. Phys. B, 821:215 (2009), arXiv:0904.2387
26. M. E. Albrecht, M. Blanke, A. J. Buras et al, JHEP, 09:064 (2009), arXiv:0903.2415
27. H. Ishimori, T. Kobayashi, H. Okhi et al, Prog. Theor. Phys. Suppl., 183:1 (2010), arXiv:1003.3552
28. A. Goudelis, O. Lebedev and J. H. Park, Phys. Lett. B, 707:369 (2012), arXiv:1111.1715
29. D. McKeen, M. Pospelov and A. Ritz, Phys. Rev. D, 86:113004 (2012), arXiv:1208.4597
30. I. de Medeiros Varzielas, O. Fischer and V. Maurer, JHEP, 08:089 (2015), arXiv:1504.03955
31. A. Pilaftsis, Phys. Lett. B, 285:68–74 (1992)
32. K. A. Assamagan, A. Deandrea and P-A. Delsart, Phys. Rev. D, 67:035001 (2003), arXiv:hep-ph/0207302
33. S. Kanemura, K. Matsuda, T. Ota et al, Phys. Lett. B, 579:83–91 (2004), arXiv:hep-ph/0406316
34. U. Cotti, M. Pineda and G. Tavares-Velasco, arXiv:hep-ph/0501162
35. S. Kanemura, T. Ota and K. Tsumura, Phys. Rev. D, 73:016006 (2006), arXiv:hep-ph/0505191
36. M. Cannone and O. Panella, Phys. Rev. D, 79:056001 (2009), arXiv:0812.2875
37. S. Kanemura and K. Tsumura, Phys. Lett. B, 674:295–298 (2009), arXiv:0901.3159
38. S.-L. Chen, M. Frigerio and E. Ma, Phys. Lett. B, 612:29–35 (2005), arXiv:hep-ph/0412018
39. M. Cannone and O. Panella, Phys. Rev. D, 79:056001 (2009), arXiv:0812.2875
40. E. Itlan, Mod. Phys. Lett. A, 24:1361 (2009), arXiv:0809.3594
41. G. Blankenburg, J. Ellis and G. Isidori, Phys. Lett. B, 712:386–390 (2012), arXiv:1202.5704
42. A. Arhrib, Y. Cheng and O. C. W. Kong, Europhys. Lett., 101:31003 (2013), arXiv:1208.4669
43. A. Dery, A. Efrati, Y. Hochberg and Y. Nir, JHEP, 05:039 (2013), arXiv:1302.3229
44. M. Arana-Cataanía, E. Arganda and M. Herrero, JHEP, 09:160 (2013) [Erratum-ibid. 10 (2015) 192], arXiv:1304.3371
45. M. Arroyo, J. L. Diaz-Cruz, E. Diaz and J. A. Orduz-Ducuara, arXiv:1306.2343
46. A. Celis, V. Cirigliano and E. Passmann, Phys. Rev. D, 89:013008 (2014), arXiv:1309.3564
47. A. Falkowski, D. M. Straub and A. Vicente, JHEP, 05:092 (2014), arXiv:1312.5329
48. A. Dery, A. Efrati, Y. Nir et al, Phys. Rev. D, 90:115022 (2014), arXiv:1408.1371
49. M. D. Campos, A. E. Carcamo Hernández, H. Pás and E. Schumacher, Phys. Rev. D, 91:116011 (2015), arXiv:1408.1652
50. D. Aristizábal Sierra and A. Vicente, Phys. Rev. D, 90:115004 (2014), arXiv:1409.7690
51. J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, Nucl. Phys. B, 896:281–310 (2015), arXiv:1412.3671
52. A. Crivellin, G. D’Ambrosio and J. Heeck, Phys. Rev. Lett., 114:151801 (2015), arXiv:1501.00993
53. I. Dorner, S. Fajfer, A. Greljo et al, JHEP, 06:108 (2015), arXiv:1502.07784
54. Y. Omura, E. Senaha and K. Tobe, JHEP, 05:028 (2015), arXiv:1503.02348

References
131 S. Heinemeyer et al. (LHC Higgs Cross Section Working Group), CERN-2013-004, arXiv:1307.1347 [hep-ph]
132 M. Misiak, S. Pokorski and J. Rosiek, Adv. Ser. Direct. High Energy Phys., 15: 795 (1998), hep-ph/9703442
133 F. Paradisi, JHEP, 10: 006 (2005), hep-ph/0505046
134 J. Girrbach, S. Mertens, U. Nierste and S. Wiesenfeldt, JHEP, 05: 026 (2010), arXiv:0910.2663
135 J. Rosiek, P. H. Chankowski, A. Dedes et al, Comput. Phys. Commun., 181: 2180 (2010), arXiv:1003.4260
136 M. Arana-Catania, S. Heinemeyer and M. J. Herrero, Phys. Rev. D, 88: 015026 (2013), arXiv:1304.2783
137 H.-B. Zhang, T.-F. Feng, Z.-F. Ge and S.-M. Zhao, JHEP, 02: 012 (2014), arXiv:1401.2704
138 H.-B. Zhang, G.-L. Luo, T.-F. Feng et al, Mod. Phys. Lett. A, 29: 1450196 (2014), arXiv:1409.6837
139 M. Carena, J. R. Espinosa, M. Quirós and C. E. M. Wagner, Phys. Lett. B, 355: 209 (1995)
140 M. Carena, M. Quirós and C. E. M. Wagner, Nucl. Phys. B, 461: 407 (1996)
141 M. Carena, S. Gori, N.R. Shah and C. E. M. Wagner, JHEP, 03: 014 (2012)
142 K. A. Olive et al. (Particle Data Group), Chin. Phys. C, 38: 090001 (2014)
143 G. W. Bennett et al. (Muon (g-2) Collaboration), Phys. Rev. D, 73: 072003 (2006)
144 P. J. Mohr, B. N. Taylor and D.B. Newell, Rev. Mod. Phys. 80: 633 (2008)
145 ATLAS Collaboration, Phys. Rev. D, 86: 092002 (2012)
146 ATLAS Collaboration, JHEP, 10: 130 (2013)
147 CMS Collaboration, JHEP, 01: 077 (2013)
148 CMS Collaboration, JHEP, 07: 122 (2013)
149 B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett., 104: 021802 (2010), arXiv:0908.2381
150 T. Appelquist and J. Carazzone, Phys. Rev. D, 11: 2856 (1975)
151 P. Draper and H. E. Haber, Eur. Phys. J. C, 73: 2522 (2013)
152 T. F. Feng, L. Sun and X. Y. Yang, Nucl. Phys. B, 800: 221 (2008)
153 T. F. Feng, L. Sun and X. Y. Yang, Phys. Rev. D, 77: 116008 (2008)
154 T. F. Feng and X. Y. Yang, Nucl. Phys. B, 814: 101 (2009)