Administration of garlic and neem in broiler diet for safe meat production

R Islam¹, MM Hossain¹, F Nargis² and ME Hossain*²

¹Department of Poultry Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh; ²Institute for Inclusive Finance and Management, Dhaka, Bangladesh

Abstract

This study was conducted to observe the effect of different administration method of garlic and neem on growth performances, feed efficiency and serum biochemical parameters for safe broiler production. The experiment was done for a period of 32 days with 384 one-day-old straight run broiler chicks. The broiler chicks were divided into six groups each of 64 birds and replicated to four subgroups each of 16 birds. The dietary groups were; control (basal diet; no additives), antibiotic (basal diet + antibiotic), garlic in feed (basal diet + 0.25% garlic powder), garlic in water (basal diet + garlic extracts), neem in feed (basal diet + 0.25% neem powder) and neem in water (basal diet + neem extracts). Results showed that the body weight and body weight gain increased significantly \(P<0.05 \) in both the garlic and neem groups compared to the control group. Feed intake was not different \(P>0.05 \) among the treatment groups. Garlic in feed and water and neem in feed groups showed better FCR \(P<0.05 \) compared to the other treatment groups. There were no significant \(P>0.05 \) difference in meat yield, bone development and dressing parameters except head and gizzard in different dietary groups. Supplementation of garlic with feed and water significantly \(P<0.05 \) decrease cholesterol, triglyceride and LDL compared to the other groups. However, both the garlic and neem groups showed numerically higher HDL compare to the control group. There were no significant \(P>0.05 \) differences in serum glucose and GPT among different treatment groups. GOT was significantly \(P<0.05 \) lower in neem groups than that of garlic and antibiotic groups. Additive groups showed higher profitability than control group. Based on the results of the study, it may be suggested that the garlic and neem could be used both in feed and water as potential feed additives for safe broiler production.

Key words: neem, garlic, safe broiler, growth performance

Introduction

In the last few decades, poultry sector has become commercially organized, scientific and vibrant industry in Bangladesh. Addition of antibiotics in low doses to the feed of poultry improves growth performance (Lu et al., 2008). Although, their use in animal feed has shown several side effects such as resistance towards the drug and evidence of resistant strains that become zoonotic (Wegener et al., 1999). The use of antibiotic has been prohibited in the European Union since 2006 (Castanon, 2007). To minimize the loss in growth through the banning of antibiotic, there is a need to find alternatives. There are a number of non-therapeutic alternatives such as enzymes, inorganic acids, probiotics, prebiotics and herbs. Two herbal plants which are nutritionally adequate and locally available in Bangladesh that can be used as feed additives are garlic \((\text{Allium sativum})\) and neem \((\text{Azadirachta indica})\).

Garlic \((\text{Allium sativum})\) has long history of use as medicinal supplement. Garlic has been found to lower serum and liver cholesterol (Qureshi et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bacterial growth (Cavallito et al., 1994) and reduce oxidative stress (Horie et al., 1983), inhibit bactera...
Neem leaf and its constituents have been demonstrated to exhibit immunomodulatory, anti-inflammatory, anti-hyperglycemic, anti-ulcer, anti-malarial, anti-fungal and antihelminthic, antioxidant, antimutagenic and anticarcinogenic properties (Agarwal, 2002). Esonu et al. (2006) have shown that neem leaf meal could be of some value in the diet of laying hens both as feed ingredient and egg yolk pigmenter. Different authors have reported the use of neem dry leaf as protein source and for controlling infections (Onyimonyi et al., 2012; Tollba et al., 2009). Bui et al. (2006) used aqueous extract of neem to control poultry coccidiosis. The feeding neem leaves to immunosuppressed birds increase their humoral and cell mediate immune responses (Sadekar et al., 1998).

The current study was conducted to determine usefulness of garlic and neem in broiler feed and water as a natural growth promoting substance to replace antibiotics. Therefore the proposed study was attempted to generate more information on the effects of this two medicinal plants.

Materials and Methods

Experimental design, birds and diets

The study was conducted at Bangladesh Agricultural University Poultry Farm, Bangladesh Agricultural University, Mymensingh. A total of 384 unsexed one-day-old Cobb 500 broiler chicks were fed the experimental diets during the period from 1–32 days of age. The chicks were randomly assigned into six dietary treatments; each treatment consisted of four replications (16 birds/replication). A gable type open sided house was partitioned into 24 pens of equal size by using wire net. Area of each pen was 20 square feet. The dietary groups were; control (basal diet; no additives), antibiotic (basal diet + antibiotic), garlic in feed (basal diet + 0.25% garlic powder), garlic in water (basal diet + garlic extracts), neem in feed (basal diet + 0.25% neem powder) and neem in water (basal diet + neem extracts). Corn-soybean meal basal diet was formulated to meet the nutritional requirements according to Cobb 500 standard. Ingredient and nutrient composition of both starter and grower diet are shown in Table 1 and Table 2.

Managemental practices

Shed and necessary equipments were properly cleaned, washed, dried, disinfected and subsequently left empty for a week before the arrival of chicks. Feeders were cleaned in every week and drinkers were cleaned twice daily. Starter diet was provided for the first 21 days and grower diet was provided to the broiler up to 32 days of age. In all cases, *ad libitum* feed and water were offered to the broilers. Feed was supplied two times daily, once in the morning and another at afternoon in such a way that feeder was not kept empty. Fresh and clean water was made available at all times. The chicks were brooded in respective pens using one 100 watt electric bulbs in each pen. The chicks were provided with a temperature of 35°C at first week of age, decreasing gradually at the rate of 2.5°C per week continued up to 4 weeks of age. Vaccination and other routine poultry management practices were carried out neatly.

Data collection

Body weight and feed intake of bird

All the birds were weighed weekly in the morning, before feeding and watering. Live weight and feed consumption of the birds were recorded weekly and were used to calculate broiler performance.

Dressing parameter, meat yield and bone development

At the end of the experiment, one bird from each replication were randomly selected, fastened for 12 hours, weighed and slaughtered to complete bleeding. After complete bleeding, the slaughtered birds were immersed in hot water (approximately 50°C to 55°C) for 2 minutes in order to loosen feathers from the carcasses. Final processing was performed by removing the head, shank, viscera, oil gland, kidneys, lunges, heart and liver of the carcasses. After that, dressing percentage was recorded. Moreover, liver, gizzard, heart and abdominal fat were calculated as a percentage from the hot weight of the birds. Meat (breast, thigh, drumstick and wing) and bone (whole leg, drumstick, thigh and wing) relative weights were determined by weighing each meat or bone with respect to body weight.
Garlic and Neem in broiler diet

Table 1: Feed formulation of broiler in different dietary treatments

Ingredients	Control	Antibiotic	Garlic in feed	Garlic in water	Neem in feed	Neem in water
Broiler starter diet (0 to 21 days)						
Maize	54.99	54.97	54.74	54.99	54.74	54.99
Soya meal	31	31	31	31	31	31
Protein concentrate	7	7	7	7	7	7
Dicalcium phosphate	1.35	1.35	1.35	1.35	1.35	1.35
Limestone	0.8	0.8	0.8	0.8	0.8	0.8
Soybean oil	4	4	4	4	4	4
Lysine	0.1	0.1	0.1	0.1	0.1	0.1
Methionine	0.12	0.12	0.12	0.12	0.12	0.12
Vitamin premix	0.25	0.25	0.25	0.25	0.25	0.25
Choline chloride	0.03	0.03	0.03	0.03	0.03	0.03
Common salt	0.36	0.36	0.36	0.36	0.36	0.36
Antibiotic	-	0.02	-	-	-	-
Garlic	-	-	0.25	-	-	-
Neem	-	-	-	0.25	-	-
Total	100	100	100	100	100	100
Broiler grower diet (22 to 32 days)						
Maize	60	59.98	59.75	60	59.75	60
Soya meal	24.09	24.09	24.09	24.09	24.09	24.09
Protein concentrate	8	8	8	8	8	8
Dicalcium phosphate	1.35	1.35	1.35	1.35	1.35	1.35
Limestone	0.7	0.7	0.7	0.7	0.7	0.7
Soybean oil	5	5	5	5	5	5
Lysine	0.1	0.1	0.1	0.1	0.1	0.1
Methionine	0.12	0.12	0.12	0.12	0.12	0.12
Vitamin premix	0.25	0.25	0.25	0.25	0.25	0.25
Choline chloride	0.03	0.03	0.03	0.03	0.03	0.03
Common salt	0.36	0.36	0.36	0.36	0.36	0.36
Antibiotic	-	0.02	-	-	-	-
Garlic	-	-	0.25	-	-	-
Neem	-	-	-	0.25	-	-
Total	100	100	100	100	100	100

Lysine: L-lysine HCl (98.5%); Methionine: DL methionine (99%)

Blood collection and serum biochemical analysis

Blood samples were taken at the end of the experiment from the jugular vein from four birds per treatment group (one bird per replication). Blood collection tubes were placed in a slanting position (45º angles) at room temperature for clotting. After 2 hours separated blood serum was transferred to an eppendorf tube and centrifuged at 3000 rpm for 10 minutes. The serum was then transferred into another eppendorf tube and preserved at -20ºC until analysis. Serum was analyzed for total serum cholesterol, glucose, Triglyceride, HDL, GPT, GOT using commercial test kits.

Cost benefit analysis

Cost benefit analysis was done at the end of the experiment.

Statistical analysis

Data of body weight, body weight gain, feed consumption, FCR, dressing parameters and serum biochemical parameters were subjected to analysis of variance (ANOVA) in a completely randomized block design (CRD) using SAS (2009) statistical package program. Differences among all treatments were separated by Duncan’s multiple comparison tests. In the result P<0.05 was considered statistically significant.
Table 2: Nutrient composition of starter diet and grower diet (Calculated)

Nutrients	Starter diet (0-21 days)	Grower diet (22-32 days)
DM %	89.68	87.09
ME kcal/kg	3050	3150
CP%	23.66	20.59
CF%	3.81	2.88
EE%	5.71	4.81
Lys %	1.24	1.06
Met %	0.50	0.63
Met + Cys%	1.00	0.92
Ca%	1.21	1.05
Available P %	0.45	0.42

Results

Body weight and body weight gain

Body weight of birds at different week of age is shown in Table 3. Body weight of one-day-old chicks was almost similar. Significant difference (P<0.05) was found at 4th week and 32nd day among different dietary treatment groups. At 4th week neem in water group showed the highest body weight compared to the control and garlic group. At the end of the experiment numerically higher body weight was found in garlic in feed group, followed by neem in feed, garlic in water, neem in water and control group except in antibiotic group. There was a significant variation (P<0.05) on body weight gain at 32nd day and total between antibiotic and control groups, whereas supplemented groups had no significant difference with antibiotic group.

Feed intake and feed conversion ratio (FCR)

Feed intake of broiler showed no significant variation (P>0.05) among the dietary groups (Figure 1). Considering the total feed intake, garlic in feed and neem in feed & water groups showed numerically higher feed intake compared to the control group. Feed conversion ratio was found significant variation (P<0.05) on 4th week, 32nd day and total period among different dietary groups (Figure 2). At 4th week neem in feed showed numerically better FCR compare to the control group accept antibiotic group. At 32nd day’s garlic in water group showed significantly (P<0.05) better FCR than antibiotic group. Garlic in feed, garlic in water and neem in feed groups showed numerically better FCR compared to the control group when considering the total FCR.

Meat yield, bone development and different dressing parts of broiler

There were no significant (P>0.05) difference in meat yield (breast meat, thigh meat, drumstick meat and wing meat) and bone development (Table 4). Significant difference (P<0.05) was found only in head weight and gizzard weight among different dietary groups.

Serum biochemical parameter

The data represented in Table 5 and Figure 3 indicates that there were no significant (P>0.05) differences in serum glucose and GPT among different treatment groups, whereas significant (P<0.05) difference was found in serum cholesterol, triglyceride, HDL, LDL and GOT. Garlic in water, garlic in feed and neem in water group showed the lowest serum cholesterol concentration compare to the antibiotic and control group.

Figure 1: Weekly feed intake of broiler in different treatments
Garlic and Neem in broiler diet

Figure 2: Weekly feed conversion ratio of broiler in different treatments

Table 3: Body weight and body weight gain of broiler in different dietary treatments

Items	Control	Antibiotic	Garlic in feed	Garlic in water	Neem in feed	Neem in water
Body weight (g/bird)						
Initial weight	44.22±0.20	44.29±2.24	44.06±0.22	44.38±0.13	44.06±0.22	44.29±0.23
1st week	187.03±3.55	185.16±1.49	183.59±1.49	184.38±1.28	183.59±1.49	183.59±1.49
2nd week	387.19±3.61	376.47±5.32	380.32±6.89	375.54±3.87	382.82±6.61	377.00±6.67
3rd week	705±12.01	726.25±11.62	685.47±25.61	691.57±13.58	733.22±11.61	725.47±17.97
4th week	1080.3±17.0	1138.6±19.9	1084.5±21.7	1076.3±14.6	1090.5±21.8	1145.8±17.2
32nd days	1296.95±6.44	1353.60±11.81	1338.37±18.89	1320.60±20.18	1323.92±20.83	1317.62±18.69
Body weight gain (g/bird)						
1st week	142.81±3.53	140.86±1.38	139.53±1.57	140.00±1.28	139.53±1.67	139.29±1.47
2nd week	200.16±5.79	191.32±5.23	196.72±8.13	191.16±5.06	199.22±8.04	193.40±7.45
3rd week	317.81±12.41	349.79±10.23	305.16±26.76	316.03±17.39	350.41±7.43	348.47±14.57
4th week	375.33±9.02	412.42±28.20	399.07±44.16	384.77±20.76	357.28±28.83	420.36±33.39
32nd days	216.62±14.76	214.93±9.06	253.83±36.70	244.27±18.18	233.42±27.45	171.78±2.87
Total	1252.73±6.63	1309.30±11.82	1294.30±18.67	1276.23±20.10	1279.85±20.62	1273.32±18.56

a,b,c values with different superscripts in the same row differ significantly (P<0.05); Data are presented as mean±SE.
Table 4: Meat yield, bone development and dressing parameter of broiler in different dietary treatments (% in relation to body weight)

Parameter	Treatments	Control	Antibiotic	Garlic in feed	Garlic in water	Neem in feed	Neem in water
Meat yield							
Breast meat		11.07±1.04	10.91±2.02	12.26±0.11	12.48±0.18	12.61±0.82	12.87±0.43
Thigh meat		8.10±0.34	8.16±0.91	8.48±0.01	9.07±1.32	7.91±0.07	8.45±0.02
Drumstick meat		8.10±0.34	7.61±0.36	8.12±0.35	8.25±0.76	8.45±0.13	8.45±0.02
Wing weight		6.03±0.21	5.69±0.09	5.96±0.30	5.71±0.03	6.29±0.05	6.17±0.33
Bone development							
Thigh bone		2.07±0.13	1.79±0.14	1.99±0.22	2.13±0.33	1.97±0.11	2.26±0.01
Drumstick bone		2.97±0.70	2.69±0.06	2.89±0.42	2.26±0.19	3.05±0.07	3.01±0.09
Dressing parameters							
Skin		5.99±0.48	8.13±2.08	7.78±1.06	7.83±0.18	7.54±0.08	6.77±0.29
Head		2.75±0.002	2.40±0.07	3.16±0.16	2.45±0.13	2.69±0.09	2.56±0.13
Neck		2.52±0.42	2.32±0.02	2.44±0.32	2.12±0.07	1.23±0.67	2.18±0.08
Leg		9.42±0.91	7.92±0.34	9.23±1.45	8.12±0.62	8.81±0.14	8.97±1.19
Liver		2.86±0.44	2.57±0.23	2.25±0.04	2.26±0.06	2.51±0.27	2.17±0.23
Heart		0.70±0.21	0.52±0.03	0.54±0.01	0.47±0.08	0.54±0.02	0.42±0.009
Abdominal fat		0.86±0.05	1.17±0.34	1.12±0.20	0.59±0.08	1.07±0.14	0.82±0.17
Gizzard		1.89±0.05	1.73±0.08	2.08±0.13	1.66±0.11	1.97±0.11	1.96±0.02

a,b values with different superscripts in the same row differ significantly (P<0.05); Data are presented as mean±SE

Table 5: Serum biochemical parameter of broiler in different dietary treatments

Parameter	Treatments	Control	Antibiotic	Garlic in feed	Garlic in water	Neem in feed	Neem in water
Glucose (mg/dl)		89.93±4.87	83.80±2.6	87.33±2.27	87.63±8.43	83.48±1.58	81.95±0.05
GOT (U/l)		2.42±0.09	3.21±0.29	3.78±0.29	3.25±0.25	2.63±0.29	2.62±0.29
GPT (U/l)		2.92±0.59	2.92±0.00	3.79±0.29	3.21±0.29	3.21±0.88	3.29±0.79

Glutamic pyruvic transaminase (GPT), Glutamic oxaloacetic transaminase (GOT), a,b values with different superscripts in the same row differ significantly (P<0.05); Data are presented as mean±SE

Figure 3: Serum lipid profile of broiler in different dietary treatments
Garlic in feed showed lowest triglycerides value compare to the control and antibiotic group. Supplementation of garlic in feed significantly decreased serum triglyceride level. Garlic in feed supplemented groups showed higher serum GOT than antibiotic group, whereas neem in feed and water group had lower GOT compared to other treatment group.

Cost benefit analysis

The cost of production per kg broiler was slightly lower but total income per broiler was higher in all supplemented groups compared to the control group. Profit per broiler was higher in antibiotic group followed by garlic in feed, neem in feed, garlic in water and neem in water group compare to the control group (Figure 4).

Discussion

Body weight and body weight gain

Supplementation of garlic in feed enhances body weight gain. This is in general agreement with previous studies with garlic (Zikic et al., 2014; Galib and Huda, 2013 and Adeyemo et al., 2013). Improvement in weight gain may be the cause of allicin (an antibiotic substance found in garlic), which inhibits growth of intestinal bacteria and inhibit aflatoxins producing fungi resulting in lowering the load of these organisms in the intestine and birds may absorb more nutrients leading to the improvement in weight gain of the birds using rations supplemented with garlic (Pourali et al., 2010; Fayed et al., 2011). The improvement of performance observed in broilers by providing diet containing garlic powder might be due to the improvement of nutrient digestibility associated with the development of digestive tract and digestive organs (Lilja, 1983). The results of the present study contradicted to some of the previous observations that indicated garlic had no effect on body weight gain (Choi et al., 2010 and Fadlalla et al., 2010). We also found that supplementation of neem leaf with feed and water positively influenced the body weight and body weight gain of broiler compared to control group. This is in general agreement with previous studies those reported that supplementation of feed with neem enhances body weight gain, (Bishnu et al., 2009; Sarkar et al., 2014). The improvement in weight gain might be due to anti-protozoal and immune stimulatory properties of neem leave that help to reduce the microbial load and improved the performance (Wankar et al., 2009). Neem leaf might have suppressed the growth of harmful organisms, thereby create a conducing environment for digestion and give better performance (Adekuye et al., 2013). In the contrary to our findings, there were also some reports in which birds exhibited poor performance and lower body weights (Deore et al., 2005). While some earlier reports showed no significant variations in weight gain feeding em leaf (Nidaullah et al., 2010; Bonsu et al., 2012 and Nnenna et al., 2013).

Feed intake and FCR

The tested dose of neem and garlic had no significant effect on feed intake although supplemented groups intake higher feed than control. Onibi et al. (2009); Elagib et al. (2013); Galib and Huda (2013) also supported this result. Moreover, some of the previous observations contrasted present study and indicated garlic have no effect on feed intake (Yalcin et al., 2006). Kale et al. (2003) reported that antimicrobial and antiprotozoal properties of neem leaves reduced the microbial load of birds and thus improved the feed consumption and feed efficiency of the birds. Supplementation of garlic in feed, garlic in water and neem in feed significantly improved the FCR. The higher body weight gains might be due to growth promoting and antimicrobial property of garlic and neem that helped to improve feed efficiency (Wankar et al., 2009). Similar findings with respect to increased FCR were reported by earlier researchers (Zanu et al., 2011; Ansari et al., 2012). The significant effect of garlic on FCR of broiler was in close agreement with Toobba and Hassen (2003). Onyimonyi et al. (2012) and Galib and Huda (2013) reported supplementation of garlic in feed had better FCR.
Moreover, these results were not in agreement with Raeesi et al. (2010) who reported that supplementation of 1% garlic powder decreased feed conversion ratio (FCR) compared with the 0.5% supplemented and control group but garlic supplementation did not affect growth and feed intake in broilers. In contrary to findings of this study, some authors observed that the supplementation of garlic and neem leaves had no effect on FCR (Amouzmehr et al., 2012). Supplementation of garlic and neem leaves extract may be attributed to the antibacterial properties, which resulted in better absorption of the nutrients present in the gut and finely leading to improvement in FCR.

Meat yield, bone development and different dressing parts of broiler

Supplementation of garlic and neem with feed and water had no significant effects on meat and bone development. Moreover, significant difference was not found in on other body parts accept head weight and gizzard weight in relation to body weight among different treatments. The results were in agreement with Nahid et al. (2014); Bonsu et al. (2012); Amouzmehr et al. (2012) in garlic and neem study. In the contrary with these findings, a significant increase in average dressing percentage with supplementation of garlic (Fayed et al., 2011) and neem (Adeyemo et al., 2013 and Zanu et al., 2011) was also reported by earlier workers in broilers.

Serum biochemical parameter

Supplementation of garlic in feed and water significantly decrease the mean values of serum total cholesterol as compared to the antibiotic fed broilers (Onyimonyi et al., 2012; Abd El-Latif et al., 2013 and Galib and Huda, 2013). This may probably be due to the possible effects of hypcholesterolaemic and hypolipidemic action of garlic products which depresses the hepatic activities of lipogenic and cholesterol genicenzymes such as malic enzyme, fatty acid synthases, and glucose-6-phosphatase dehydrogenase. Chowdhury et al. (2002) indicated that the sulphur containing bioactive compounds mainly allicin in garlic homogenates help to show cholesterol lowering effect. Allicin also inhibits the action of hydroxymethylglutaryl-CoA reductase, which is the most important enzyme that participates in the synthesis of cholesterol and lipids (Lawson, 1998). Upadhyay (1990); Lonkar and Jalaludeen (2009) reported a decline in blood cholesterol levels of broilers fed Neem leaf meal. The progressive decrease in serum cholesterol observed in this study is in agreement with the report of Ogbuewu et al., 2009) that administration of neem leaf extract decreased serum cholesterol significantly without changing serum protein, blood urea and uric acid levels in rats probably suggests a general decrease in lipid mobilization. It is possible that NLE has indirect inhibitory effects exerted at the levels of HMG-CoA reductase, a key enzyme in cholesterol biosynthesis (Ogbuewu et al., 2009). Garlic in feed group showed reduced serum triglyceride levels compared to that of broilers of the control group. This effect can be explained by the possible inhibition of the Acetyl CoA synthetase enzyme that is necessary for the biosynthesis of fatty acids (Chi et al., 1982 and Qureshi et al., 1983). Eidi et al. (2006) reported that garlic extract significantly decreased serum total cholesterol, triglycerides. Addition of garlic and neem in feed and water separately caused a significant reduction in the levels of blood glucose, cholesterol, triglyceride, and increased HDL. The different values of serum biochemical parameters (GOT and GPT) was within normal ranges. Some researchers stated that garlic and neem did not induce significant effects on the activities of serum GOT and GPT (Zeinab et al., 2010 and Onu, 2010). However, previous reports indicated that feeding garlic significantly decreases the serum activity of GPT in broiler (Abd El-Latif et al., 2013). Jimoh et al. (2012) assumed that the hepatoprotective activity of garlic might be attributed to its excellent antioxidant potential to prevent liver damage thereby limiting the bioavailability of these biomarkers in the blood. Prabhakaran et al. (1996) reported that GOT and GPT concentration of blood serum decrease with advancement of age. These biochemical parameters varied due to the influence of sex, environment, exercise, nutritional status, species variation and climate (Dukes, 1995).

Cost-effectiveness of production

Supplementation of neem and garlic increased profitability per broiler compare to the control group. These results are in agreement with the result of Fayed et al. (2011) and Zekic et al. (2014). They stated that dietary garlic may be used in the diet for economical and efficient production of broilers. Though, Dieumou et al. (2013) disagreed with this result and stated that garlic would not be advisable in diet supplement
as basal diet proves to be economically better than garlic extract. These results are supported by the result of Mostofa et al. (2013) who reported that neem leave extract supplementation in the broiler rations may be useful for the safe, economical and efficient production of broiler and this formulation could be used as an alternative to commercial growth promoters.

Conclusion

It can be concluded that addition of garlic and neem to the broiler diet positively affects growth parameters and profitability but no negative effect on meat yield, bone development and dressing parameters. Moreover, garlic supplementation decrease serum cholesterol and triglyceride concentration. It can be suggested that both garlic and neem could be potential feed additives for safe broiler production. However, when compare to the application method supplementation with feed gives better result than water.

Acknowledgement

This research is funded by Ministry of Education, Government of the People’s Republic of Bangladesh.

Conflict of interest

The authors would like to declare that there is no conflict of interest

References

Abd El-Latif AS, NS Saleh, TS Alam and EW Ghazy (2013). The effects of rosemary (Rosmarinus officinalis) and garlic (Allium sativum) essential oils on performance, hematological, biochemical and immunological parameters of broiler chickens. British Journal of Poultry Sciences 2:16-24.

Adeyemo GO and AM Akanmu (2013). Effects of neem (Azadirachta indica) and Pawpaw (Carica papaya) leaves supplementation on performance and carcass characteristics of broilers. International Journal of Current Research 4:268-271.

Agarwal DP (2002). Biological activities and medicinal properties of neem (Azadirachta indica). Current Science 82(11):1336-1345.

Amouzmezhr A, B Dastar, JG Nejad, S Kyung, J Lohakare and F Forghani (2012). Effects of garlic and thyme extracts on growth performance and carcass characteristics of broiler chicks. Journal of Animal Science Technology 54(3):185-190.

Ansari J, SH Khan, AU Haq and M Yousaf (2012). Effect of the levels of Azadirachta indica dried leaf meal as phytogenic feed additive on the growth performance and haemato-biochemical parameters in broiler chicks. Journal of Applied Animal Research 40(4):336-345.

Bishnu J, L Sunil and S Anuja (2009). Antibacterial Property of Different Medicinal Plants: Azadirachta indica, Cinnamomum zeylanicum, Xanthoxylum armatum and Origanum majorana, Kathmandu University. Journal of Science, Engineering and Technology 5:143-150.

Biu AA, SD Yusuf and JS Rabo (2006). Use of neem (Azadirachta indica) aqueous extract as a treatment for poultry coccidiosis in Borno State, Nigeria. African Scientist 3:147-153.

Bonsu RK, JK Kagya-Agyemang, WKJ Kwenin and HK Zanu (2012). Medicinal response of broiler chickens to diets containing neem (Azadirachta indica) leaf meal, haematology and meat sensory analysis. World Applied Science Journal 19(6):800-805.

Castanon JIR (2007). History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Science 86:2466-2471.

Cavallito CJ, JS Buck and CM Suter (1994). Allicin, the antibacterial principle of Allium sativum. Determination of the chemical composition. Journal of the American Chemical Society 60:1952-1958.

Chi MS, H Koh and TJ Steward (1982). Effects of garlic on lipid metabolism in rats fed cholesterol or lard. Journal of Nutrition 112:241-248.

Choi H, WY Park and YJ Kim (2010). Effects of dietary garlic powder and α-tocopherol supplementation on performance, serum cholesterol levels and meat quality of chicken. Poultry Science 89:1724-31.

Chowdhury SD, BC Datta, ABMS Rahman and SU Ahmed (2004). Efficacy of neem (Azadirachta indica) leaf meal used alone or in combination with a probiotic in the diet of broiler chicks. In: Proceedings of 11th Animal Science Congress. Asian-Australasian Associations of Animal production Societies, Kuala Lumpur, Malaysia. 244-247.

Demir E, S Sarica, MA Ozcan and M Suicmez (2003). The use of natural feed additives as alternatives for antibiotic growth promoter in broiler diets. British Poultry Science 44:44-45.

Deore UB, RS Ingole, SP Waghmare, VP Pathak and MV Joshi (2005). Clinico-pathological investigations in broilers given different levels of neem oil supplementation in feed. Journal of Bombay Veterinary College 13(1-2):110-111.

Dieumou FE, DE Fon, A Teguia, JR Kuiate, UD Doma, US Abdullahi and AE Chiroma (2013). Economic effect of diet supplemented with garlic organic extract and streptomycin
sulphate on growth performance and feed cost for the production of broilers. *Agricultural Science Research Journals* 3:130-135.

Dukes HH (1995). The physiology of domestic animals. 7th edition. Bailers Tindal and Co. London

Eidi A, M Eidi and E Esmaeili (2006) Antidiabetic effect of garlic (*Allium sativum* L.) in normal or strepto-zotocin induced diabetic rats. *Phytotherapy* 9:624-629.

Elagib HAA, WIA El-Amin, KM Elamin and HEE Malik (2013). Effect of dietary garlic (*Allium sativum*) supplementation as feed additive on broiler performance and blood profile. *Journal of Animal Science Advances* 3:58-64.

Onyimonyi AE, PC Chukwuma and C Igbokwe (2012). Lipids profile and haematological indices of broiler chickens fed garlic (*Allium sativum*) supplemented diets. *Journal of Animal and Veterinary Advances* 2:474-480.

Kale BP, MA Kothekar, HP Tayade, JB Jaju and M Mateeddin (2003). Effect of aqueous extract of Azadirachta Indica leaves on hepatotoxicity induced by antitubercular drugs in rats. *Indian Journal of Pharmacology* 35(3):177-180.

Konjuftca VH, GM Pestl and RI Bakalli (1997). Modulation of cholesterol levels in broiler meat by dietary garlic and copper. *Poultry Science* 76:1264-1271.

Lilja C (1983). Comparative study of postnatal growth and organ development in some species of birds. *Growth* 47:317-329.

Lonkar VD and A Jalaludeen (2009). Modulation of cholesterol level in broiler chicken by feeding garlic (*Allium sativum*) powder and neem (*Azadirachta indica*) seed cake. *Indian-Journal of Poultry Science* 44(1):49-53.

Ezzat GN, SS Abood and SA Hasan (2018). A review on the effects of neem (*Azadirachta indica*) as feed additive in poultry production. *Journal of Entomology and Zoology Studies* 6(1):1331-1333

Fadalla IM, BH Mohammed and AO Bakhiet (2010). Effect of feeding Garlic on performance and immunity of broilers. *Asian Journal of Poultry Science* 4(4):182-189.

Fayed RH, AHA Razek and MO Jehan (2011). Effect of dietary garlic supplementation on performance, carcass traits and meat quality in broiler chickens. *Animal Nutrition and Sustainable Livestock Production*. Vol.1. Proceedings of the XVth International Congress of the International Society for Animal Hygiene, Vienna, Austria. 471-474.

Galib AM Al-Kassieand, FH Huda and Al-Qaraghuli (2013). Extract and Jerusalem artichoke tuber mixture as a source of prebiotic and probiotic (biomine) on the performance and health of broiler. *International Journal of Science and Nature* 4:120-123.

Gbenga OE, OE Adebisi, AN Fajemisin and AV Adejunji (2009). Response of broiler chickens in terms of performance and meat quality to garlic (*Allium sativum*) supplementation. *African Journal of Agriculture* 4:511-517.

Horie T, S Azawa, Y Itakura and T Fuwa (1992). Identified diallyl polysulfides from an aged garlic extract which protects the membranes from lipid peroxidation. *Planta Medica* 58:468-469.

Horton GM, MJ Fennell and BM Prasad (1991). Effects of dietary garlic (*Allium sativum*) on performance, carcass composition and blood chemistry changes in broiler chickens. *Canadian Journal of Animal Science* 71:939-942.

Jimoh AA, BR Oloredede, A Abubakar, JP Fabiyi, EB Iboriye, N Suleiman and S Garba (2012). Lipids profile and haematological indices of broiler chickens fed garlic (*Allium sativum*) supplemented diets. *Journal of Animal and Veterinary Advances* 2:474-480.

Kale BP, MA Kothekar, HP Tayade, JB Jaju and M Mateeddin (2003). Effect of aqueous extract of Azadirachta Indica leaves on hepatotoxicity induced by antitubercular drugs in rats. *Indian Journal of Pharmacology* 35(3):177-180.

Konjuftca VH, GM Pestl and RI Bakalli (1997). Modulation of cholesterol levels in broiler meat by dietary garlic and copper. *Poultry Science* 76:1264-1271.

Lilja C (1983). Comparative study of postnatal growth and organ development in some species of birds. *Growth* 47:317-329.

Lonkar VD and A Jalaludeen (2009). Modulation of cholesterol level in broiler chicken by feeding garlic (*Allium sativum*) powder and neem (*Azadirachta indica*) seed cake. *Indian-Journal of Poultry Science* 44(1):49-53.

Lu J, C Hofacre, F Smith and MD Lee (2008). Effects of feed additives on the development on the ileal bacterial community of the broiler chicken. *Animal* 2:669–676.

Nahid AM, U Jashim, DM Tahera, IZ Moni, A Firoj, A Rahman and AM Noman (2014). Broiler production by using polyherbal medication (neem, nishyinda, tulsi and turmeric extract). *International Journal of Innovation and Applied Studies* 9:1161-1175.

Nidaullah H, FR Durrami, S Ahmad, IU Jan and S Gul (2010). Aqueous extract from different medicinal plants as anticoxidial, growth promotive and immunostimulant in broilers. *Journal of Agricultural and Biological Science* 5(1): 53-59.

Nnenna OP and AA Okey (2013). Toxicity and nutritional assessment of aqueous *Azadirachta indica* (neem) leaf extract in broiler chicks. *International Journal of Biosciences* 3(6): 172-180.

Ogboewu IP, IC Okoli and MU Iloeje (2009). Effect of neem (*Azadirachta indica*) leaf meal on serum metabolite profiles of male rabbits. *Revista UDO Agricultura* 9(4): 986-991.

Onib EG, EO Adebisi, NA Fajemisin and VA Adejunji (2009). Response of broiler chickens in terms of performance and meat quality to garlic (*Allium sativum*) supplementation. *African Journal of Agricultural Research* 4:511-517.

Onu PN (2010) Evaluation of two herbal spices as feed additives for finisher broilers. *Biotechnology in Animal Husbandry* 26:383-392.

Onyimonyi AE, PC Chukwuma and C Igbokeke (2012). Growth and hypocholesterolemic properties of dry garlic powder (*Allium

Islam et al. (2019) *Bang. J. Anim. Sci.* 48 (2):116-126
Garlic and Neem in broiler diet

Pourali M, SA Mirghelenj and H Kermanshahi (2010). Effects of garlic powder on productive performance and immune response of broiler chickens challenged with Newcastle disease virus. *Global Veterinary* 4(6): 616-621.

Prabhakaran V, V Chihravel, SK Prabhakaran and CS Saravanan (1996). Hematological and biochemical profile of white leghorn chicken. *Indian Journal of Animal Health* 35:11-15.

Qureshi AA, ZZ Din, N Abuimeileh, WC Burger, Y Ahmad and CE Elson (1983). Suppression of avian hepatic lipid metabolism by solvent extracts of garlic: Impact on serum lipids. *The Journal of Nutrition* 113:1746–1755.

Raeesi M, SA Hoseini-Aliabad, A Roofchaee, ZA Shahneh and S Pirali (2010). Effect of periodically use of garlic (*Allium sativum*) powder on performance and carcass characteristics in broiler chickens. *World Academy of Science, Engineering and Technology* 44:1223-1229.

Sadekar RD, AY Kolte, BS Barmase and VF Desai (1998). Immunopotentiating effects of *Azadiracta indica* (neem) dry leaves powder in broiler, naturally infected with IBD virus. *Indian Journal of Experimental Biology* 36(11):1151-1153.

Sarker SK, M Mostofa, F Akter, MM Rahman and MR Sultana (2014). Effects of aqueous extract of Neem (*Azadirachta indica*) leaves as growth promoter and anti colibacilosis in broilers. *Bangladesh Journal of Animal Science* 43(2):138-141.

SAS (2009). SAS User’s Guide, Version 9.1 edn. SAS Institute, Cary, NC.

Stanacev V, D Glamocic, N Milosevic, N Puvaca and N Pivasa (2011). Effect of garlic (*Allium sativum* L) in fattening chick’s nutrition. *African Journal of Agricultural Research* 6:943-948.

Tolba AA and RM Mahmoud (2009). How to control the broiler pathological intestinal Flora under normal or heat stress conditions. *Egyptian Poultry Science* 29(2):565-587.

Upadhyay C (1990). The medicinal properties of neem (*Azadirachta indica*) tree. In: Animal pharmacology 2nd edition. Longman England.

Wankar K, RN Shirshate, KB Bhaliram, SA Dhenge and RA Jasutkar (2009). Effect of Neem (*Azadirachta indica*) leaf powder supplementation on growth in broilers. *Veterinary World*, 2(10):396-397.

Wegener HC, FM Aarestrup, LB Jensen, AM Hammerum and F Bager (1998). The association between the use of antimicrobial growth promoters and development of resistance in pathogenic bacteria towards growth promoting and therapeutic antimicrobials. *Journal of Animal Feed Science* 7:7-14.

Yalcin S, EE Onbasilar, Z Reisi and S Yalcin (2006). Effect of garlic powder on the performance, egg traits and blood parameters of laying hens. *Journal Science Food Agriculture* 86:1336-1339.

Zeinab MAA, RA Hassan, AA El-Salam and SA Helmy (2010). Effect of adding green tea and its aqueous extract as natural antioxidants to laying hen diet on productive, reproductive performance and egg quality during storage and its content of cholesterol. *Egyptian Poultry Science* 30:1121-1149.

Žikić D, L Perić, G Ušćebrka, S Stojanović, D Milić and L Nollet (2008). Effect of prebiotics in broiler breeder and broiler diets on performance and jejunum morphology of broiler chickens. Proceedings of the 1st Mediterranean Summit of WPSA, Porto Carras, Greece. 879-882.