Accessing the distribution of linearly polarized gluons in unpolarized hadrons

Daniël Boer*, Stanley J. Brodsky†, Piet J. Mulders** and Cristian Pisano‡

*Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands
†SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA, CP3-Origins, Southern Denmark University, Odense, Denmark
**Department of Physics and Astronomy, Vrije Universiteit Amsterdam, NL-1081 HV Amsterdam, The Netherlands
‡Dipartimento di Fisica, Università di Cagliari, and INFN, Sezione di Cagliari, I-09042 Monserrato (CA), Italy

Abstract. Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this distribution of linearly polarized gluons is through \(\cos^2 \phi \) asymmetries in heavy quark pair or dijet production in electron-hadron collisions. Future Electron-Ion Collider (EIC) or Large Hadron electron Collider (LHeC) experiments are ideally suited for this purpose. Here we estimate the maximum asymmetries for EIC kinematics.

PACS: 12.38.-t; 13.85.Ni; 13.88.+e

INTRODUCTION

Linearly polarized gluons in an unpolarized hadron, carrying a light-cone momentum fraction \(x \) and transverse momentum \(p_T \) w.r.t. to the parent’s momentum, are described by the transverse momentum dependent distribution (TMD) \(h_1^{\perp g}(x, p_T^2) \) [1, 2, 3]. Unlike the quark TMD \(h_1^{\perp q} \) of transversely polarized quarks inside an unpolarized hadron (also frequently referred to as Boer-Mulders function) [4], \(h_1^{\perp g} \) is chiral-even and \(T \)-even. This means it does not require initial or final state interactions (ISI/FSI) to be nonzero. Nevertheless, as any TMD, \(h_1^{\perp g} \) can receive contributions from ISI or FSI and therefore can be process dependent, in other words, non-universal, and its extraction can be hampered in nonfactorizing cases.

Thus far no experimental studies of \(h_1^{\perp g} \) have been performed. As recently pointed out, it is possible to obtain an extraction of \(h_1^{\perp g} \) in a simple and theoretically safe manner, since unlike \(h_1^{\perp q} \) it does not need to appear in pairs [3]. Here we will discuss observables that involve only a single \(h_1^{\perp g} \) in semi-inclusive DIS to two heavy quarks or to two jets, which allow for TMD factorization and hence a safe extraction. The corresponding

1 Speaker. Talk given at the XIX Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2011), April 11-15, Newport News, VA, USA.
AZIMUTHAL ASYMMETRIES

We first consider heavy quark (HQ) production, \(e(\ell) + h(P) \rightarrow e(\ell') + Q(K_1) + \bar{Q}(K_2) + X \), where the four-momenta of the particles are given within brackets, and the heavy quark-antiquark pair in the final state is almost back-to-back in the plane perpendicular to the direction of the exchanged photon and hadron. We look at the heavy quarks created in the photon-gluon fusion process, which can be distinguished kinematically from intrinsic charm production; e.g., from the \(Q\bar{Q} \) invariant mass distribution. The calculation proceeds along the lines explained in Refs. [2, 6]. We obtain for the cross section

\[
\frac{d\sigma}{dy_1 dy_2 dy d\phi dK_{\perp}} = \frac{\alpha^2 \alpha_s}{\pi s M_1^2} \frac{(1 + y_{x_B})}{y^5 x_B} \left(A + B q_T^2 \cos 2\phi \right) \delta(1 - z_1 - z_2). \tag{1}
\]

This expression involves the standard DIS variables: \(Q^2 = -q^2 \), where \(q \) is the momentum of the virtual photon, \(x_B = Q^2 / 2 P \cdot q, y = P \cdot q / P \cdot \ell \) and \(s = (\ell + P)^2 = 2 \ell \cdot P = 2 P \cdot q / y = Q^2 / x_B y \). Furthermore, we have for the HQ transverse momenta \(K_{1\perp}^2 = -K_{2\perp}^2 \) and introduced the rapidities \(y_i \) for the HQ momenta (along photon-target direction). We denote the proton mass with \(M \) and the heavy (anti)quark mass with \(M_Q \). For the partonic subprocess we have \(p + q = K_1 + K_2 \), implying \(z_1 + z_2 = 1 \), where \(z_i = P \cdot K_i / P \cdot q \). We introduced the sum and difference of the HQ transverse momenta, \(K_\perp = (K_{1\perp} - K_{2\perp}) / 2 \) and \(q_T = K_{1\perp} + K_{2\perp} \), considering \(|q_T| \ll |K_\perp| \). In that situation, we can use the approximate HQ transverse momenta \(K_{1\perp} \approx K_\perp \) and \(K_{2\perp} \approx -K_\perp \) denoting \(M_{1\perp}^2 \approx M_{2\perp}^2 = M_Q^2 + K_\perp^2 \). The azimuthal angles of \(q_T \) and \(K_\perp \) are denoted by \(\phi_T \) and \(\phi_\perp \) respectively, and \(\phi \equiv \phi_T - \phi_\perp \). The functions \(A \) and \(B \) depend on \(y, z(\equiv z_2), Q^2 / M_1^2, M_Q^2 / M_1^2, \) and \(q_T^2 \).

The angular independent part \(A \) is non negative and involves only the unpolarized TMD gluon distribution \(f_1^g \), \(A \equiv e_Q^2 f_1^g \left(x, q_T^2 \right) \cdot g_{e^g \rightarrow eQ\bar{Q}} \geq 0 \). We focus on the magnitude \(B \) of the \(\cos 2\phi \) asymmetry, which is determined by \(h_1^{1g} \). Namely,

\[
B = \frac{1}{M_T^2} e_Q^2 h_1^{1g}(x, q_T^2) \cdot g_{e^g \rightarrow eQ\bar{Q}}, \tag{2}
\]

with

\[
g_{e^g \rightarrow eQ\bar{Q}} = \frac{1}{2} \frac{z(1 - z)}{D^3} \left(1 - \frac{M_Q^2}{M_\perp^2} \right) a(y) \left\{ [2z(1 - z) b(y) - 1] \frac{Q^2}{M_\perp^2} + 2 \frac{M_Q^2}{M_\perp^2} \right\}, \tag{3}
\]

\[
D \equiv D \left(z, Q^2 / M_1^2 \right) = 1 + z(1 - z) Q^2 / M_1^2, \quad a(y) = 2 - y(2 - y), \quad b(y) = [6 - y(6 - y)] / a(y).
\]

Since \(h_1^{1g} \) is completely unknown, we estimate the maximum asymmetry that is allowed by the bound

\[
|h_1^{1g}(1)(x)| \leq f_1^g(x), \tag{4}
\]
FIGURE 1. Upper bound of $|\langle \cos 2(\phi_T - \phi_\perp) \rangle|$ defined in Eq. (5) as a function of $|K_\perp|$ at different values of Q^2, with $y = 0.01$ and $z = 0.5$.

where the superscript (1) denotes the $n = 1$ transverse moment (defined as $f^{(n)}(x) \equiv \int d^2p_T \left(p_T^2/2M^2 \right)^n f(x, p_T^2)$). The function R, defined as the upper bound of the absolute value of $\langle \cos 2(\phi_T - \phi_\perp) \rangle$,

$$
|\langle \cos 2(\phi_T - \phi_\perp) \rangle| \equiv \left| \frac{\int d^2q_T \cos 2(\phi_T - \phi_\perp) d\sigma}{\int d^2q_T d\sigma} \right| = \frac{\int d^2q_T q_T^2 |B|}{2 \int d^2q_T^2 A} \leq \frac{|R_{eg\rightarrow eQ\bar{Q}}|}{|B_{eg\rightarrow eQ\bar{Q}}|} \equiv R,
$$

is depicted in Fig. 1 as a function of $|K_\perp|$ (> 1 GeV) at different values of Q^2 for charm (left panel) and bottom (right panel) production. We have selected $y = 0.01$, $z = 0.5$, and taken $M_c^2 = 2$ GeV2, $M_b^2 = 25$ GeV2. Such large asymmetries would probably allow an extraction of $h_1^\perp g$ at EIC (or LHeC).

If one keeps the lepton plane angle ϕ_L, there are other azimuthal dependences, such as $\cos 2(\phi_T - \phi_L)$. The bound on $|\langle \cos 2(\phi_T - \phi_L) \rangle|$, denoted as R', is shown in Fig. 2 in the same kinematic region as in Fig. 1. One can see that R' can be larger than R, but only at smaller $|K_\perp|$. R' falls off more rapidly at larger values of $|K_\perp|$ than R. We note that it is essential that the individual transverse momenta $K_{i\perp}$ are reconstructed with an accuracy $\delta K_{i\perp}$ better than the magnitude of the sum of the transverse momenta $K_{1\perp} + K_{2\perp} = q_T$. This means one has to satisfy $\delta K_{i\perp} \ll |q_T| \ll |K_\perp|$, which will require a minimum $|K_\perp|$.

The cross section for the process $eh \rightarrow e'J\bar{J}X$ can be calculated in a similar way and is analogous to Eq. (1). In particular, the explicit expression for B can be obtained from the one for HQ production taking $M_Q = 0$, while A now depends also on x_b and receives a contribution from the subprocess $\gamma'q \rightarrow gq$ as well, not just from $\gamma'g \rightarrow q\bar{q}$. Therefore, the maximal asymmetries (not shown) are smaller than for HQ pair production.
FIGURE 2. Same as in Fig. 1, but for the upper bound R' of $|\langle \cos 2(\phi_\ell - \phi_T) \rangle|$.

CONCLUSIONS

Studies of the azimuthal asymmetry of jet or heavy quark pair production in $e p$ collisions can directly probe h_{1}^{g}, the distribution of linearly polarized gluons inside unpolarized hadrons. Breaking of TMD factorization is expected in $p p$ or $p \bar{p}$ collisions, hence a comparison between extractions from these two types of processes would clearly signal the dependence on ISI/FSI. The contribution of h_{1}^{g} to diphoton production has also been studied [7]. Since the proposed measurements are relatively simple (polarized beams are not required), we believe that the experimental determination of h_{1}^{g} and the analysis of its potential process dependence will be feasible in the future.

ACKNOWLEDGMENTS

C.P. is supported by Regione Autonoma della Sardegna (RAS) through a research grant under the PO Sardegna FSE 2007-2013, L.R. 7/2007. This research is part of the FP7 EU-programme Hadron Physics (No. 227431). SLAC-PUB-14494.

REFERENCES

1. P.J. Mulders and J. Rodrigues, Phys. Rev. D 63, 094021 (2001).
2. D. Boer, P.J. Mulders and C. Pisano, Phys. Rev. D 80, 094017 (2009).
3. D. Boer, S.J. Brodsky, P.J. Mulders and C. Pisano, Phys. Rev. Lett. 106, 132001 (2011).
4. D. Boer and P.J. Mulders, Phys. Rev. D 57, 5780 (1998).
5. T.C. Rogers and P.J. Mulders, Phys. Rev. D 81, 094006 (2010).
6. D. Boer, P.J. Mulders and C. Pisano, Phys. Lett. B 660, 360 (2008).
7. J. Qiu, M. Schlegel and W. Vogelsang, arXiv:1103.3861 [hep-ph].