Title

MAPR origins reveal a new class of prokaryotic cytochrome b$_6$ proteins and possible role in eukaryogenesis

Authors

Daniel Tamarit1,2, Sarah Teakel3, Michealla Marama4, David Aragão5,6, Svetlana Y. Gerdes7, Jade K. Forwood3, Thijs J. G. Ettema1, and Michael A. Cahill3,8*

1. Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, The Netherlands.
2. Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
3. School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
4. School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
5. Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC, 3168, Australia.
6. Current Address: Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
7. Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, USA.
8. The John Curtin School of Medical Research, The Australian National University, ACT 2601, Australia.

*Address Correspondence to:

Dr. Michael Cahill, School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
e-mail: mcahill@csu.edu.au
Abstract
The multiple functions of PGRMC1, the archetypal heme-binding eukaryotic MAPR family member, include steroidogenic regulation, membrane trafficking, and steroid responsiveness. The interrelationships between these functions are currently poorly understood. Previous work has shown that different MAPR subclasses were present early in eukaryotic evolution, and that tyrosine phosphorylated residues appeared in the eumetazoan ancestor, coincident with a gastrulation organizer. Here we show that MAPR proteins are related to a newly recognized class of prokaryotic cytochrome-b₅ domain proteins. Our first solved structure of this new class exhibits shared MAPR-like folded architecture and heme-binding orientation. We also report that a protein subgroup from Candidate Phyla Radiation bacteria shares MAPR-like heme-interacting tyrosines. Our results support bacterial origins for both PGRMC1 and CYP51A, that catalyze the meiosis-associated 14-demethylation of the first sterol lanosterol from yeast to humans. We propose that eukaryotic acquisition of a membrane-trafficking function related to sterol metabolism was associated with the appearance of MAPR genes early in eukaryotic evolution.

Keywords
Membrane-associated progesterone receptor, eukaryotic evolution, cytochrome b₅, steroidogenesis, candidate phyla radiation

1. Introduction
Progesterone Receptor Membrane Component 1 (PGRMC1) is the archetypal member of the eukaryotic membrane-associated progesterone receptor (MAPR) family of cytochrome b₅ (cytbs)-related proteins (Cahill, 2007). MAPR proteins are defined within the cytbs-superfamily by tyrosinate heme chelation with unique orientation of the heme
(Kabe et al., 2016a; Kaluka et al., 2015; Thompson et al., 2007), and by the presence of
a small insertion, the MAPR-specific inter-helical insertion region (MIHIR), between
helices 3 and 4 of the canonical cytb5-domain (Cahill, 2007, 2017; Mifsud and Bateman,
2002).

Mammalian MAPR members include Neuferricin (NEUFC), Neudesin (NENF),
PGRMC1 and PGRMC2. The latter diverged prior to the evolution of cartilaginous fish,
and share many PGRMC properties. It remains unclear how they differ in function. All
three MAPR families (PGRMC, NEUFC, NENF) were present in the Opisthikont
ancestor of fungi and animals. All three families are also expressed in the nervous system
(Hehenberger et al., 2020), and interact with cytochrome P450 (cyP450) enzymes (Ryu
et al., 2017). Otherwise, NEUFC and NENF function is poorly understood: for discussion
see Hehenberger et al. (2020).

PGRMC1 is by far the best characterized MAPR protein, and has diverse functions
(Cahill et al., 2016). These include some that predate or are potentially ancient in
eukaryotes, such as regulation of heme synthesis (Piel et al., 2016), cyP450 interactions
(Ryu et al., 2017), and sterol metabolism (Cahill and Medlock, 2017). Some functions
arose in eukaryotes, such as membrane trafficking (Cahill et al., 2016; Hampton et al.,
2018), cell cycle regulation at the Go/G1 checkpoint (Cahill et al., 2016; Griffin et al.,
2014; Peluso et al., 2014), and mitotic/meiotic spindle association (Juhlen et al., 2018;
Luciano and Peluso, 2016; Terzaghi et al., 2016). The eukaryotic phylogenetic
distribution of these properties remains unexplored. Other functions are specialized
metazoan developments, including roles in e.g. fertility, embryogenic axon guidance, and
membrane trafficking associated with synaptic plasticity (Cahill et al., 2016; Izzo et al.,
2014).
MAPR cyP450-interactions (Ryu et al., 2017) conspicuously feature PGRMC1 regulation of lanosterol-14-demethylase, the most conserved eukaryotic cyP450 (CYP51A), to modify the first sterol (lanosterol) in yeast and mammals in an oxygen requiring reaction (Fig. 1) (Cahill, 2007; Hughes et al., 2007b). McGuire et al. recently reported that PGRMC1 binding to this and multiple cyP450s leads to their stabilization, elevating the protein levels of cyP450s which occurs even for heme-binding deficient PGRMC1 mutants. They argue, but do not demonstrate, that the pentacoordinate and tyrosinate chelated PGRMC heme iron ion is unlikely to act as an electron carrier in enzyme catalyzed reactions (McGuire et al., 2021).

The isoprenoid precursors for lanosterol synthesis are produced by the mevalonate pathway, whose activity in eukaryotes is regulated by the SREBP/Insig/SCAP complex, which interacts with PGRMC1 (Cai et al., 2015; Suchanek et al., 2005). Thus, PGRMC1 is involved in the regulation of the mevalonate pathway, the modification of the first sterol, and it elicits responses to steroid/progesterone levels (Cahill, 2007; Cahill and Medlock, 2017; Neubauer et al., 2008).

PGRMC1 is also involved in endocytosis of low density lipoproteins (LDL) by the LDL receptor (Riad et al., 2020; Riad et al., 2018). Membrane trafficking and sterol biology seem to have been ancient eukaryotic traits, whereas cholesterol transport via LDLs would be an evolutionary adaptation developed by multicellular animals. This both suggested that sterol biology is a central feature of PGRMC1 function, and reveals a gap in knowledge about how membrane trafficking and LDL receptor function arose.
We have recently shown that the evolutionary acquisition of phosphorylated PGRMC1 tyrosines 139 and 180 was coincident with the appearance of the gastrulation organizer and synapsed neurons in the common ancestor of eumetazoans (Hehenberger et al., 2020). Y139 is situated in the MIHIR, and represents one of the heptad repeat residues of a predicted coiled-coil protein interaction domain that shares similarity with coiled-coil motifs from various myosin proteins. Thereby, phosphorylation of Y139 would be predicted to disrupt coiled-coil interactions, and permit new interactions with phosphotyrosine-binding SH2-domain proteins (Cahill, 2020; Hehenberger et al., 2020).

PGRMC1 is immunoprecipitated in protein complexes along with with components of the actin cytoskeleton (Salsano et al., 2020; Teakel et al., 2020), which is in turn involved in the membrane trafficking of exo- and endocytosis (Meunier and Gutierrez, 2016). It follows that evolutionarily ancient actin-cytoskeletal interactions of the PGRMC1 MIHIR sequence could be modulated by tyrosine phosphorylation that was acquired by eumetazoans at the same time as the gastrulation organizer developed (Cahill, 2020).

Gastrulation involves induction by transcription factor Brachyury of a suite of actin-cytoskeletal genes that have been conserved since our common ancestor with the opisthokont *Capsaspora owczarzaki*, a single celled eukaryote that can switch between motile and sessile life cycle stages. A similar phenotypic switch is observed during early gastrulation when previously sessile epithelial cells undergo epithelial mesenchymal transition, and migrate within the embryo (Sebe-Pedros et al., 2016). Interestingly, PGRMC1 phosphorylation site mutants in cancer cells both altered the abundance of components of the actin cytoskeleton, and affected cell motility (Thejer et al., 2020a) by epigenetically altering gene expression (Thejer et al., 2020b).
PGRMC1 is induced in hypoxic human breast cancer cells at a time and place where cells switch to anaerobic metabolism (Neubauer et al., 2008), which was suggestive of PGRMC1 modulation of mitochondrial function. PGRMC1 localizes to mitochondria (Xu et al., 2011) where it associates with mitochondrial proteins (Salsano et al., 2020), modulates mitochondrial ferrochelatase (Piel et al., 2016), and is suggested to have co-evolved with a number of genes encoding mitochondrial proteins (Cahill and Medlock, 2017).

Experimental alteration of PGRMC1 phosphorylation status indeed dramatically affects mitochondrial form and function (Thejer et al., 2020a), simultaneously with altered genomic mutation rates and the status of genomic CpG epigenetic methylation (Thejer et al., 2020b). Since a MIHIR-containing MAPR gene appeared early in eukaryotes (Hehenberger et al., 2020), and PGRMC1 affects mitochondria, we set out to investigate a possible role of MAPR proteins in the origins of mitochondria and the eukaryotic cell.

Eukaryotic sterol biosynthesis arose primarily from a non-mitochondrially-inherited bacterial mevalonate pathway (MVP) (Castelle and Banfield, 2018; Hoshino and Gaucher, 2018). The isoprenoid squalene products of bacterial MVPs are cyclized by a squalene cyclase homolog into steroid-like six ringed structures called hopanoids (Barrantes and Fantini, 2016; Belin et al., 2018). Like mitochondrial cholesterol, hopanoids modulate bacterial membrane order and permeability to protons (Saenz et al., 2015). It has long been recognized that cholesterol decreases the permeability of the inner mitochondrial membrane to protons (Baggetto et al., 1992), thereby increasing the efficiency of electron transport chain activity, which is critical to mitochondrial function.
Eukaryotic lanosterol production involves the action of the novel enzyme squalene epoxidase, which produces 2,3-oxidosqualene that is then the substrate of squalene cyclase (Fig. 1). This eukaryotic-specific oxygen-consuming epoxidase reaction dictates that steroidogenesis is oxygen dependent (and hence may be regulated by oxygen tension), and is the reason that eukaryotic squalene cyclases produce the characteristic 3-hydroxysterols which bacterial hopanoids do not possess (Belin et al., 2018; Kirschvink and Kopp, 2008). As discussed above, the subsequent CYP51A/PGRMC1 catalyzed 14-demethylation of lanosterol also requires oxygen (Fig. 1). Hence, eukaryotic steroidogenesis can arguably be viewed as an adaptation of an ancestral hopanoid biosynthesis pathway which can modulate membrane lipid composition in the presence of atmospheric oxygen. This could potentially regulate a switch between aerobic and anaerobic metabolism.

The supply of cytoplasmically-synthesized sterols to the mitochondrion was probably important for eukaryogenesis before presumed proto-mitochondrial hopanoid pathway genes could be lost from the bacterial genome. With its mevalonate pathway and steroidogenic regulatory functions, sensitivity to sterol levels, and membrane trafficking functionality (Cahill and Medlock, 2017), a PGRMC1-like MAPR protein could have been ideally situated to enable this process. Here we investigated the origins of eukaryotic MAPR proteins, showing that the ancestral MAPR gene originated from a newly identified class of prokaryotic (cytb$_{5M}$) cytb$_{5}$-domain proteins. We were unable to conclusively identify the phylogenetic origins of the ancestral eukaryotic proto-MAPR gene, or whether a MAPR gene was present in the LECA.

2. Materials and methods

2.1. Selection of sequences
To search for MAPR-related proteins in bacteria for Fig. A1A, initial NCBI BLASTp analyses (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Johnson et al., 2008) were performed using the following MAPR proteins (Accession and FASTA files obtained from UNIPROT): Q9UMX5 (human NENF), Q8WUJ1 (human NEUFC), O00264 (human PGRMC1), O15173 (human PGRMC2), Q9XF6 (Arabidopsis thaliana plant MAPR protein), and Q12091 (Saccharomyces cerevisiae yeast MAPR protein), or the single human cytochrome b5 sequence (P00167). The NCBI non-redundant protein sequence database was searched, restricting phylogenetic taxa using the “Organism” input to the eukaryotes (taxid:2759), Bacteria (taxid:2) or Archaea (taxid:2157). Hits were selected as proteins with schematic graphical alignment across the cyt b5 domain as provided by the BLASTp “Color key for alignment scores” output. Typical values were >40% identity, E<10. For Fig. A1A new eukaryotic sets of MAPR and cyt b5 sequences were generated with BLASTp query sequences of NP_006658_1 (PGRMC1) and P04166 (rat cyt b5). Three queries were made for each sequence, with “Organism” set to 1) Eukaryotes excluding Opisthokonta (taxid:33154) (the clade containing yeasts and animals), 2) Opisthokonta excluding metazoans (taxid:33208), and 3) Metazoans excluding Chordata (taxid:7711). For each query the top ten BLASTp hits were used to generate sets of 90 MAPR and cyt b5 proteins. Default BLASTp parameters were used unless otherwise specified: Expect threshold “10”, Word size “6”, Max matches in a query range “0”, Matrix “BLOSUM62”; Gap Costs: “Existence: 11, Extension: 1”, and Conditional adjustments “compositional score matrix adjustment”.

Another round of sequence similarity searches was performed with the hope to capture a more diverse sequence dataset and ensure that all representatives of cytb5MY were found. Separate BLASTp searches were performed against NCBI’s NR database using reference sequences for Clade 1 (KU041884, NP_037481_1 and NP_006658_1), Clade 2 (P04166
and pdb_1CXY_A) and cytb_{SMY} (EKD84736, KKQ43725, KKR05718, KKR31495, KKS94036, KUU89055, OGE21801, OHA80798, OHA83705, OIP98122, and PJA14771). Each one of these BLASTp searches was performed using a maximum number of target sequences set to 10,000, and a maximum e-value of 1e-5. These sequences were grouped into a non-redundant fasta file of 2470 sequences. CD-Hit (Fu et al., 2012) was used to reduce redundancy of these sequences using 5 different similarity thresholds, namely 50%, 65%, 70%, 80% and 90%.

Reduced stringency BLASTp was performed with standard NCBI BLASTp settings except: 10,000 max sequences, expect threshold 50, Word size 3 (Organism: bacteria, taxid:2) or Word size 2 (Organism: archaea database, taxid:2157) (Fig. A3). Word size 3 and 2 are the available alternative options on the NCBI BLASTp server. Data sets were iteratively refined to yield multiple hundreds of aligned sequences with sufficient gap-free residues for NJ tree building as described case by case in Fig. A3.

For BLASTp analysis of cytb_{SMY}-resembling proteins in eukaryotic sequences (Supplementary Appendix B) the accession numbers from Fig. A1C were individually entered as successive query sequences to the NCBI BLASTp server, with Organism restricted to Eukaryota (taxid:2759), otherwise employing default BLASTp settings. The top 100 best BLASTp hits per analysis were downloaded as FASTA files and subjected to MAFFT analysis as described below including control reference sequences NP_006658.1 (PGRMC1, clade-1), NP_037481.1 (NENF, clade-1), KUO41884.1 (Hadesarchaea archaeon YNP_N21 cytb_{SM}, clade-1), P04166.2 (rat cytochrome b5, clade-2) and 1CXY_A (E. Vacuolata Cytochrome B558, clade-2). The 116 resulting sequences were subjected to MAFFT and refining of the data set by deleting gapped sequences to
obtain sufficient gap-free alignments for tree building (between 112 and 116 sequences per analysis; see Supplementary Appendix B).

BLASTp of non-cytb5MY candidate phylum radiation (CPR) bacterial cytbs-like proteins against eukaryotes were performed using query sequences (IMG identifiers) Ga0075854_11113, Ga0075854_11513, Ga0301032_10388 and Ga0301032_10385, with organism restricted to Eukaryota (taxid:2759) and all other parameter default values. BLASTp searches for cytbsM proteins in CPR were performed separately using the query sequences KUO41884.1 and KKR30394.1 with Organism limited to bacteria candidate phyla (taxid:1783234). Resulting hits with homology over the cytbs-domain and E value <4 were downloaded. All hits from KKR30394 were also detected by KUO41884.

Taxon-restricted CYP51A sequences were obtained through BLASTp searches using UniProt Q16850 (human CYP51A) as search string with organism restricted in separate searches to 1) Opisthokonta (taxid:33154) exclude: Bilateria (taxid:33213) (“Eukaryotic”), 2) Archaebacteria (taxid:2157), 3) Alphaproteobacteria (taxid:28211) (“alphaproteobacteria”), and 4) Bacteria (taxid:2), exclude Alphaproteobacteria (taxid:28211) (“other bacteria”). Additionally, the eukaryotic sequences obtained by this search were aligned using MAFFT L-INS-I and the obtained alignment was used as query for a taxon-unrestricted Psiblast sequence similarity search (Altschul et al., 1997) against NR, with 100,000 maximum target sequences and an e-value of 1e-5. Out of these sequences, 4859 with e-values lower than 1e-50 were selected, and reduced with CD-Hit using a 70% similarity threshold, resulting in 533 sequences.

2.2. Phylogenetic analyses

2.2.1. Phylogenetic reconstruction of cytbs5 sequences
All NCBI BLASTp hit CSV files were downloaded and hits combined in Microsoft Excel. Non-redundant FASTA sequences were retrieved using Batch Entez, and subjected to MAFFT alignment by the L-INS-i method (Katoh et al., 2019; Kuraku et al., 2013; Yamada et al., 2016) using the Computational Biology Research Consortium (CBRC) server at https://mafft.cbrc.jp/alignment/server/index.html. For reduced stringency BLASTp, sequences which branched outside of MAPR (clade-1) and rat cytb5 (clade-2) reference sequences on the preliminary guide tree were discarded prior to iterative elimination of aligned sequences and NJ tree-building. Sequences with gaps were deleted manually by inspecting the MAFFT FASTA alignment in AliView (Larsson, 2014) and removing gapped sequences via the “Refine dataset” function of the CBRC server to iteratively generate sequence data sets with sufficient gap free sites for tree-building. The sequence selection was inverted, followed by sequence realignment with MAFFT L-INS-i until sufficient gap-free sites for tree building were iteratively obtained. Inferred phylogenetic trees were constructed using the NJ method (all gap-free sites) and each of JTT, WAG and Poisson substitution models with bootstrap selected and 1,000 resamplings, and were processed using Archaeopteryx software through the forester.jar program (Han and Zmasek, 2009), as described on the CBRC server.

Another round of phylogenetic analyses was performed on the extended set of homologs for cytb5 sequences, and the 5 datasets generated through sequence redundancy reduction with CD-Hit (see above). The resulting datasets were each aligned using MAFFT L-INS-i and T-Coffee’s regressive algorithm (Garriga et al., 2019), using the heads-and-tails strategy whereby each alignment is performed in the forward and reverse sense of the sequences, and the four resulting alignments were then merged using MergeAlign (Collingridge and Kelly, 2012). Finally, the merged alignments were trimmed using the -gappyout option in trimAl (Capella-Gutierrez et al., 2009). Phylogenetic reconstruction
was then performed with IQ-Tree 2.0 (Minh et al., 2020) using ModelFinder (Kalyaanamoorthy et al., 2017) with all variations of the models JTT, WAG, and LG, plus the mixture models generated by LG+C10.C60, with multiple rate heterogeneity (none, +G4, +R2, +R4, +R8) and frequency (none, +F) parameters, and adding the models LG4M and LG4X. Finally, PMSF (Wang et al., 2018) approximations of the chosen models (LG+C60+F+R8 for the 50% and 65% datasets, LG+C50+F+R8 for the 70% and 90% datasets, and LG+C40+F+R8 for the 80% dataset) were performed for all alignments to obtain trees with 100 non-parametric bootstrap pseudoreplicates, which were then analysed both using the classical Felsenstein criterion, and the Transfer Bootstrap Expectation (TBE) (Lemoine et al., 2018) variant. One more round was performed on sequence belonging only to Clade 1. The same procedure as above was followed, but more parameter variations were explored. Alignments were obtained with MAFFT L-INS-I. Trimming was performed to remove alignment positions with either over 75% or 50% gaps. Phylogenetic reconstructions were performed using LG+C60+R4+F+PMSF, WAG+C60+R4+F+PMSF or the model chosen by ModelFinder among JTT, WAG and LG with C10, C20, C40 and C60 mixtures, plus LG4M, LG4X, UL2 and UL3, in all combinations with extended rate heterogeneity (none, +G4, +G8, +R4, +R8) and frequency (none, +F) parameters, resulting in the WAG+C60+R6 and WAG+C60+R6+F mixture models being chosen for the PMSF approximation of the 50% and 65% reduced datasets, respectively). The 65%, 70% and 90% reduced datasets were also aligned following the heads-and-tails strategy with MAFFT L-INS-I, trimmed at a 75% gap threshold, and used for phylogenetic reconstruction under the LG+C60+R4+F+PMSF model. Critical TBE thresholds were calculated for specific branches following Lemoine et al. (2019), as (1 – ((p-x)/(p-1)), where t is the number of sequences at the lighter side of the bipartition, and x is the number of sequences of the clade of interest (13).
2.2.2. Phylogenetic analyses of CYP51A

The 533 CYP51A sequences obtained as above were aligned using MAFFT L-INS-I and trimmed with trimAl removing all columns containing at least 50% gaps. IQ-Tree 2.0 was used for phylogenetic reconstruction, under the model LG+G4+F, with 1000 replicates for SH-like approximate likelihood ratio tests and Ultrafast bootstraps.

2.3. Crystal structure

To achieve protein expression, the codon optimised ORF was subcloned into pGEX-4T-1-H expression vector to create pGEX4T1_KUO41884 (Fig. A2), transformed into BL21(DE3) pLysS cells (Novagen) (9F-, ompT, hsdSB(rB-mB-), gal, dcm (DE3) pLysS (CamR)), and cultured in an expression base media (1 % Tryptone, 0.5 % yeast extract) containing 30 mL of 2.852 M NaCl and ampicillin (100 μg/ml) until the OD$_{600}$ reached 0.6. Protein expression was induced using 1 mM isopropyl 1-thio-D galactopyranoside (IPTG) and cells were incubated overnight at 37°C at 80 rpm. Cells were harvested by centrifugation at 6,000 rpm at 18°C for 30 minutes. Cell pellets were resuspended in GST (glutathione-S-transferase) cell lysis buffer (50 mM Tris(hydroxymethyl)aminomethane, 125 mM NaCl, pH 7.4). All protein purification steps were performed at room temperature. The soluble whole cell lysate was filtered through a 0.45 μM syringe filter. The soluble cell extracts were injected using a superloop at 2 mL/minute into a GST column equilibrated with GST cell lysis buffer. Proteins were eluted using 10 mM Glutathione. The N-terminal GST tag was cleaved with 100 μL of Tobacco etch virus (TEV) protease. Size exclusion chromatography was performed to further purify proteins using AKTA FPLC using an S200 26/600 filtration column (GE Healthcare), following Khandokar et al. (2017). The protein eluted as a single homogeneous peak, and at a volume consistent with the expected molecular weight of a monomer. The protein was stored at -20°C prior to use for crystallisation.
Crystals were obtained through sparse matrix screening and the hanging drop vapor diffusion method following Khandokar et al. (2017). Crystals in the space group P63 diffracted to 1.9Å at the Australian Synchrotron microcrystallography beamlines (Aragao et al., 2018; Cowieson et al., 2015). The diffraction data was integrated in Mosflm (Battye et al., 2011), scaled, and reduced in AIMLESS (Evans, 2011; Evans and Murshudov, 2013), and the structure determined by molecular replacement using PDB ID 1J03 in Phaser (McCoy et al., 2007), REFMAC (Vagin et al., 2004), PHENIX (Adams et al., 2010), and COOT (Emsley et al., 2010). The final structural model has been refined to an Rwork and Rfree of 0.22 and 0.27 respectively, no Ramachandran outliers, and good stereochemistry (see Table A2). LIGPLOTs (Laskowski and Swindells, 2011), structural superposition (Krissinel and Henrick, 2004), and DALI (heuristic PDB search) protein structure comparison by alignment of distance matrices (Holm and Laakso, 2016) were performed as described.

2.4. Other protein analysis

The degree of conservation of cytbs-domain residues in the structure of PGRMC1 was visualized using the Consurf server (http://consurf.tau.ac.il/) (Ashkenazy et al., 2016). Sequence Logo Plots of amino acids in respective protein clades were generated using WebLogo (http://weblogo.berkeley.edu/logo.cgi) (Crooks et al., 2004). Non-PGRMC1 residues from the 4X8Y structure (Kabe et al., 2016a) were not included in the PGRMC1 structural data for Fig. 3.

2.5. Gene cluster analyses

Conserved gene cluster analysis is based on the observation that functionally related genes are often collocated on the chromosomes in prokaryotes, preserving similar gene
context across phylogenetically diverse organisms (Overbeek et al., 1999; Pellegrini et al., 1999). During evolution proteins that function together in a pathway or structural complex evolve in a correlated fashion, and tend to be either preserved collectively, thus ensuring that the pathway or complex remains fully functional, or be eliminated all together. Methods of chromosomal gene context analysis have proved to be valuable for delineation of evolutionary patterns between organisms, as well as for protein function prediction (Mavromatis et al., 2009; Overbeek et al., 1999; Pellegrini et al., 1999).

To find all genomes containing cytbSMY genes, we first downloaded all 7645 CPR bacterial genomes from NCBI. Using the alignment employed to reconstruct the phylogeny in Fig A3B, we performed an HMM search against all CPR genomes using HMMER 3.1b2 (hmmer.org). All candidate sequences were joined with those from the original alignment, aligned with MAFFT-auto, trimmed with trimAl to remove all columns with over 90% gaps and used for fast phylogenetic reconstruction using Fasttree2 (Price et al., 2010). Genomes containing genes clustering with the cytbSMY sequences were selected for further analysis, and annotated using InterProScan v5.48-83.0 (Jones et al., 2014). Taxonomic identification of these genomes was performed against the dereplicated genomes provided by Jaffe et al. (2020) using fastANI (Jain et al., 2018) with default parameters or, if no results were found, by using a fragment length threshold of 1000 bp. Gene synteny analyses were performed using the genoPlotR package (Guy et al., 2010) and the Gene Neighborhood Viewer and Chromosomal Cassette Viewer tools (Mavromatis et al., 2009) of the Integrated Microbial Genomes (IMG) database (Chen et al., 2019).

3. Results

3.1. MAPR related to new prokaryotic cytbSM
Preliminary BLASTp searches for the presence of MAPR-related proteins in prokaryotes were conducted using eukaryotic MAPR proteins and human cytbs as queries. We combined the significant hits from separate BLAST searches into a non-redundant list of 176 proteins, and generated an alignment including the reference sequences for human PGRMC1, human NENF, and rat cytbs. We inferred a preliminary distance-based phylogenetic tree, which produced two distinct eukaryotic clades (Fig. A1A), both of which were subtended by prokaryotic sequences. Notably, clade-1 contained MAPR proteins and the BLASTp hits obtained with those queries, and clade-2 contained eukaryotic cytbs, and its corresponding BLASTp hits. These results suggest that the eukaryotic cytbs protein families are polyphyletic and originated from at least two separate prokaryotic lineages. An alternative explanation could be that we have theoretically sampled MAPR-like and cytbs-like proteins from a single bacterial homolog, with apparent distinctiveness being an artefact of our BLASTp search strategy using MAPR and eukaryotic cytbs sequence search strings.

To address this possibility we first separately interrogated the archaeal and bacterial sequence data bases by BLASTp with selected prokaryotic sequences from each of clades 1 and 2 from the prior analysis to generate independent sets of cytbs sequences. MAFFT alignment again produced inferred trees with clade-1 and -2 tree topology, with bootstrap confidence values (BCV) >94% for both archaeal and bacterial trees (see Supplementary Appendix A). BLASTp with string sequences from one clade again did not detect members of the other. Combining all of the sequence from above with additional MAPR sequences yielded similar results when aligning 814 sequences (Fig. A1B), consistent with the cytbs-domain proteins in clades-1 representing a new type of distinct prokaryotic cytbs proteins. MAPR and some bacterial proteins formed a sub-cluster distinct from 348 other prokaryotic clade-1 sequences with BCV 87% (Fig. A1B). PDF tree images,
FASTA sequence alignments, and xml tree files for preliminary analyses and the panel of Fig. A1A are available in Supplementary Appendix A.

We had still not eliminated the possibility that separate clades were due to BLASTp search string bias. To further investigate this issue, we employed reduced-stringency BLASTp analysis by using ‘word size’ (the number of adjacent residue identity required for alignment) parameters of 3 and 2, so that queries from one clade detected sequences from the other clade (Fig. A2). The results continued to generate two discrete clades connected by a long branch (Fig. A3). We therefore detected no evidence that the two eukaryotic clades detected represented a sampling artefact selected by a biased choice of BLAST query sequences from a broad continuum of prokaryotic cytb5 proteins. Instead, these results support the existence of two separate types of prokaryotic cytb5 domain, which gave rise to eukaryotic MAPR proteins (clade-1) and cytb5 proteins (clade-2), respectively. We propose the name cytochrome b5M (cytb5M) for the newly recognized “MAPR-like” prokaryotic cytb5-domain clade-1 proteins.

3.2. Bacterial cytb5MY cluster with MAPR

Next, we considered the clade-1 bacterial sequences that clustered closer to MAPR than to other prokaryotic cytb5M proteins (Fig. A1B,C). Three contained MIHIR residues, while a clade of 11 sequences did not. The first three belonged to two 65 and 14 kb-long delta-proteobacterial contigs (KPK16282 and KPK52515) and one acidobacterium chromosome (ANM31058). They were nested within eukaryotic sequences in the tree, thus potentially representing misclassified sequences or horizontally transferred genes. The top eukaryotic BLASTp hits for two MIHIR-containing sequences were plants (KPK16282.1, KPK52515.1; not shown), and for the other (ANM31058.1) were all either
choanoflagellates or animals (not shown). We investigated the top BLASTp similarity of the proteins encoded by the two contiguous genes in their respective contigs, and observed that multiple top hits belonged to the same broad taxa, consistent with their classification being correct. Hence, these MIHIR-containing bacterial sequences likely represent HGT originating from eukaryotic plants and holozoans.

The other 11 MAPR-clustering bacterial sequences lacked MIHIR sequences, but contained the cognate equivalents of PGRMC1 heme-chelating Y113, and heme hydrogen bond donors Y107, K163 and K164 (Kabe et al., 2016a) (Fig. A1C), as opposed to the cytbs-domain bis-his axial heme ligation of hitherto described bacterial and eukaryotic cytbs proteins (Kabe et al., 2016a; Liu et al., 2014). We designate this subgroup of cytbsM proteins with “MAPR-like tyrosines (Y)” as cytbsMY. All cytbsMY sequences were found to originate from CPR bacteria (Table A1). The top 100 BLASTp hits of all cytbsMY sequences from Fig. A1B against eukaryotic sequences returned only proteins with MIHIR sequences (Supplementary Appendix B), indicating that eukaryotic genomes do not encode cytbsMY proteins.

To further investigate cytbsMY phylogenetic relationships, we performed additional sequence similarity searches using the 11 cytbsMY and additional reference sequences as queries (see Methods). We then reduced the resulting 2486 sequences under 5 different levels of redundancy, and subjected each one of these into more rigorous phylogenetic analyses. The obtained maximum likelihood phylogenies corroborated the previous topology, revealing two major separate eukaryotic clades (containing MAPR and cytbs sequences, respectively), and supporting the affiliation of CPR-bacterial cytbsMY with the eukaryotic MAPR sequences, albeit under different topologies and without satisfying branch support (Fig. A4). This is important because if cytbsMY formed a sister group to
eukaryotic MAPR proteins it could imply that MAPR proteins originated from a cytb_{5MY} protein. However, if cytb_{5MY} proteins are topologically nested within the MAPR family, it would imply that CPR bacteria obtained a MAPR gene from eukaryotes by HGT. We were unable to discriminate between these models.

In four of the obtained phylogenies, cytb_{5MY} branched within eukaryotes, while the fifth displayed cytb_{5MY} as sister to eukaryotes. For each phylogenetic reconstruction, 100 non-parametric bootstrap pseudoreplicates were obtained, for which both Felsenstein Bootstrap Proportion (FBP) and Transfer Bootstrap Expectation (TBE) (Lemoine et al., 2018) values were calculated to assess the robustness of the obtained trees.

We performed additional phylogenetic reconstructions using the same 5 reduced datasets, but restricting the analysis to clade-1 sequences only (Fig. 1, Supplementary Appendix D). In these trees, we observed two major topologies with respect to the positioning of the cytb_{5MY} sequences: as sister to MAPR group (Fig. 1A), or nested within it, possibly as sister to the NEUF clade (Fig. 1B) (see also Supplementary Appendix D). In general, these trees included high TBE support for many relevant branches, and none of the trees can be considered to accurately reflect cytb_{5MY} relationships. TBE values reflect the average number of transfers at either side of the bipartition, thus indicating the consistency of a clade but not necessarily of all its members (Lemoine et al. 2018). For that reason, we calculated for each tree the threshold TBE value that would support a given bipartition without allowing the transfer of the 13 cytb_{5MY} sequences.

With this consideration, several trees on the sequence datasets reduced at 50% and 90% redundancy levels included a TBE-supported topology with cytb_{5MY} as sister to all eukaryotic MAPR sequences. However, trees reconstructed from the sequence dataset
reduced at 65% redundancy level supported the alternative, derived position as sister to the NEUFC eukaryotic sequences. From these results we conclude that cytb5MY may derive from a HGT event from a eukaryote into a CPR bacterium, followed by loss of the MIHIR sequences and further propagation to other CPR species through HGT. However, an alternative scenario that a CPR cytb5MY protein gave rise to eukaryotic MAPR proteins cannot be excluded by our tree-building exercise.

Furthermore, the relationship between the eukaryotic MAPR protein families indicates that multiple events of duplication occurred early in the evolution of eukaryotes and diversified in various eukaryotic groups (Hehenberger et al., 2020). However, it is not possible to conclude from this analysis whether a MAPR ancestral protein was present in the LECA, or whether it was acquired later during eukaryotic evolution. The analysis is limited by the relatively short homologous region of the cytb5 domain, the substantial evolutionary distances separating the sequences, and the skewed taxonomic distribution of the domain.

Both MAPR and cytb5MY proteins are derived cytb5M proteins. However, the primitive MAPR/cytb5MY structural and functional characteristics remain uncertain. We suggest these proteins to be sufficiently distinct to warrant reference to prokaryotic cytb5M and cytb5MY proteins, with the continued use of the MAPR terminology for eukaryotes (although formally, as clade-1 members, MAPR and cytb5MY proteins cladistically belong to the cytb5M clade).

3.3. Sequence differences between clades

Next, we analyzed the nature of conserved sequence differences between cytb5, cytb5M, cytb5MY, and MAPR proteins. Sequence logos (Fig. 3A) revealed altered frequencies of
amino acid usage between clades (ΔC1:ΔC2, Fig. 3A). This included a surface loop
between PGRMC1 G83-R88 (Kabe et al., 2016a) (loop-1 in Fig. 3), which is at least two
residues larger in all clade-1 than clade-2 proteins. G83, site of a pronounced change of
polypeptide backbone direction (Kabe et al., 2016a), is strongly conserved in clade-1 (Fig.
3A). A second loop involving rat-cytoheme-binding (Rodriguez-Maranon et al., 1996)
was strongly conserved in clade-2 (loop-2 in Fig. 3). Additionally, relative to cytohemin,
MAPR and cytohemin proteins exhibit conserved cognates of PGRMC1 Y107, Y113, K163
and Y164 (Fig. A1C), all of which are involved in heme interaction (Kabe et al., 2016a).
The residues differential between clade-1 and clade-2, or cytohemin and cytohemin/MAPR
proteins are interspersed along the primary PGRMC1 sequence (Fig. 3A, top), yet form a
contiguous surface extending from the heme-binding pocket to the surface loop, which
rests upon conserved F81 and G83 (Fig. 3B,C). Residues more similar between MAPR
and cytohemin are clustered around the heme-binding pocket (purple in Fig. 3A,B). In
contrast, the residues conserved among all proteins in the analysis (conserved between
both cytoheme-domain clades) predominantly occupy the protein interior (Fig. 3D).

3.4. Clade-1 protein structure

We next solved the first crystal structure of a prokaryotic cytohemin clade-1 protein from the
archaeon Hadesarchaeaa YNP_N21 (KUO41884.1) (Fig. A1B) (attempts to crystalize
multiple cytohemin proteins were unsuccessful: not shown), to compare this with the
structures of representative proteins from each major group of clades-1 and -2, revealing
overall shared similarity of the clade-1 proteins (Fig. 4). The HP and HS heme iron
chelation sites of rat cytoheme (Fig. 4E) are strongly conserved in clade-2, with loop-2
extending from the conserved HP site (Fig. 3A). Hadesarchaeaa-cytohemin lacks the MAPR
heme-binding tyrosines yet binds heme in a MAPR-like orientation. It shares one heme
chelating histidine (H61) with conventional (clade-2) cytoheme proteins (Fig. 4E, Fig. A5),
which is conserved in cytbsM proteins (Fig. 3A). Heme-binding residues differ between

cytbsM, cytbsMY and MAPR proteins within clade-1 (Fig. 3A). Excluding known MAPR

proteins (Cahill, 2007), the published structures most closely resembling Hadesarchaea-
cytbsM belong to clade-2 and exhibit clade-2-like heme-binding (Fig. A6, Table A3),

confirming the novelty of our archetypal clade-1 cytbsM structure. Altogether, the

requirements for dissimilar heme-binding and folded architecture underlie the presence

of two discrete prokaryotic cytbs domain-related clades in Fig. 2, one of which gave rise

in eukaryotes to classical cytbs (clade-2), and the other to MAPR proteins (clade-1).

3.5. Genomic context of CPR cytbsMY clade-1 proteins

To compare the genomic context of CPR cytbsM and cytbsMY genes we investigated the
distribution of both protein types in CPR bacterial genomes. To recover all genomes
containing cytbsMY sequences regardless of sequence redundancy, we performed another
phylogenetic analysis with the sequences shown in Fig. 1AB and all hits with e-value
lower than 1e-5 after an HMM search against all 7645 CPR genomes found in NCBI (as
of July 5th 2021) (Fig A6). This tree revealed a total of 36 genomes which contained
cytb5MY proteins. To visualise the presence of cytbsMY in CPR bacteria, we mapped these
36 genomes onto a phylogenomic reconstruction performed by (Jaffe et al., 2020) (Fig. 5A). This analysis revealed that these genomes belong to multiple distinct phyla and that
the presence of cytbsMY is highly punctuated in CPR bacteria, indicative of horizontal
gene transfer as their main mode of evolution.

We then investigated the gene neighbourhoods of cytbsMY in these 36 genomes and found
that in most (29), the cytbsMY genes colocalized with putative ferric reductase (pFre)
genesis containing a ferric reductase-like transmembrane domain (Fig. 5B, Fig. A7). Other
genesis found to colocalise with cytbsMY were those containing other cytbs-domain
proteins (28), and two-component inducible signal transduction systems (22) (Fig. 5B, Fig. A7). The predicted phylogenetic tree topology for the cytb5MY genes in Fig. A7 is identical to Fig. A8, which expands the cytb5MY section of Fig A3B. While the synteny was often lost, a putative operonic structure of these genes followinig the same disposition was found for multiple distant lineages (e.g., Fig. 5B). Alternative configurations were found in multiple genomes, although these were often highly similar, such as a group of 8 Daviesbacterial and 3 Yonathbacterial genomes with over 99% average nucleotide identity (ANI) values, respectively (Fig. 5A).

Using the Integrated Microbial Genomes and Microbiomes (IMG) platform, we observed that besides cytb5MY and pFre, cytb5MY-containing operons often involved two novel types of atypical cytb5-domain-like proteins which we denote as cytb5-like type A (CBLA) and B (CBLB) proteins, additional to the cytb5MY protein and a two-component signal transduction element (Fig. 5B). The CBLA and CBLB proteins were distantly related to cytb5-domain protein clades-1 and -2, respectively, with barely detectable homology (Fig. A9). Because the deepest branches of the tree of Fig. A7 contain a two component element, a pFre gene, two cytb5-related genes as well as a cytb5MY gene, this probably represents the ancestral CPR state. All proteins in this putative ancestral operon contain one or more predicted transmembrane helices – hence, we speculate these could potentially form a membrane-associated protein complex.

Pfamscan (Mistry et al., 2007; Mistry et al., 2021) identified the ferric reductase domain (PF01794) in 1427 of the 7645 CPR genomes, 185 of which contained genes with cytb5 domain (PF00173) within 10 kb of the pFre genes (164 of which were distinct from the 39 genomes described above). Yet colocalization of pFre with cytb5-domain genes, including cytb5MY, was not observed outside of CPR bacteria in the IMG database,
suggesting that a putative transmembrane protein complex containing pFre and cytbs-like proteins performs an unknown CPR-specific function.

3.6. CYP51A is of bacterial origin

Having considered the prokaryotic origins of MAPR proteins, we next considered the origins of the eukaryotic MAPR-containing enzyme pathway responsible for synthesizing 14-demethylated lanosterol. Fig. 1 shows the conversion of squalene, the product of the mevalonate pathway (MVP), to the first sterol lanosterol, and subsequent decarboxylation to 14-dimethyl-14-dehydrolanosterol, also known as follicular fluid meiosis-activating sterol (FF-MAS) (Mitsche et al., 2015). The respective MVP (Castelle and Banfield, 2018; Hoshino and Gaucher, 2018) and squalene cyclase enzymes (Barrantes and Fantini, 2016; Rajamani and Gao, 2003) are of bacterial origin (Frickey and Kannenberg, 2009). PGRMC1-like proteins bind to and regulate CYP51A to catalyze subsequent lanosterol-14-demethylation in opisthokonts such as yeast and mammals (Hand et al., 2003; Hughes et al., 2007b). The evolutionary origin of CYP51A, however, has thus far remained unclear.

We performed taxon-restricted maximum-likelihood phylogenies of CYP51A, which revealed a closer relationship between eukaryotic CYP51A and bacterial rather than archael proteins with an ultrafast bootstrap support of 91% and an SH-like approximate likelihood ratio test support value of 98.7% (Fig. 6). A larger-scale taxonomically-unrestricted sequence similarity search against the NR database retrieved ca. 3500 eukaryotic, ca. 1000 bacterial (of which 30 from Alphaproteobacteria) and only 4 archael sequences with an e-value lower than 1e-50. A maximum-likelihood phylogeny of a reduced but phylogenetically diverse dataset obtained from these sequences resulted in a monophyletic eukaryotic clade with no particular affiliation to any specific bacterial
group (Fig. 6). Altogether, these results indicate that CYP51A derived from a bacterial gene, indicating that both the MVP (Hoshino and Gaucher, 2018) and genes for the subsequent conversion of squalene to FF-MAS (Fig. 1) may have been inherited via HGT from one or more bacterial donors. This would mean that steroidogenesis was imposed upon the emerging eukaryotic cell by bacteria.

4. Discussion

Here, we provide the first description of distinct clades of MAPR-related cytb5M clade-1 and eukaryotic cytb5-like clade-2 prokaryotic proteins. We show that the distinctive cytb5-related MAPR proteins and conventional eukaryotic cytb5 proteins arose from separate ancestral eukaryotic cytb5-domain genes. MAPR proteins may have arisen from a newly recognized distinct class of CPR cytb5MY proteins, already possessing the residues necessary for the unique tyrosinate-based heme chelation of MAPR proteins. Conversely, cytb5MY protein may alternatively have arisen by HGT of a eukaryotic MAPR protein into CPR bacteria. We cannot confidently discriminate between these opposing models. The cytb5 domain is rather small, permitting relatively few informative sites for phylogenetic analyses to reconstruct their evolutionary relationships. The relationship between MAPR and cytb5MY proteins remains therefore uncertain, the latter perhaps being either a sister group to all MAPR proteins or alternatively having arisen from the NEUFC clade within MAPR. While genome annotators currently refer to e.g. “Cytochrome b5-like Heme/Steroid-binding domain-containing protein” to proteins of both clades, we suggest that “Heme/Steroid-binding” should only characterize MAPR-like clade-1.

The newly identified class of MAPR-like cytb5MY proteins are unique to CPR bacteria, which typically have small genomes characteristic of symbionts (Brown et al., 2015; Castelle and Banfield, 2018; Castelle et al., 2018). Some eukaryotic MVP enzymes
resemble those from CPR (Castelle and Banfield, 2018; Hoshino and Gaucher, 2018). Therefore, a CPR cytb5MY gene may have contributed to a MAPR-influenced eukaryotic steroidogenic pathway. Genomic organization of CPR cytb5MY genes suggests an ancestral role related to undefined yet regulated redox reactions, which have no known eukaryotic counterparts.

The presence of a cytb5MY/pFre/cytb5-like operon co-locating with a two-component inducible system (Fig. 5A) in CPR but not other prokaryotes strongly suggests the existence of an inducible CPR-specific process which requires cytb5MY proteins. Regulated bacterial ferric-reductase-like operons are unusual because in prokaryotes these enzymes are largely constitutively expressed, catalyzing the reduction of free flavins which in turn could transfer electrons to a variety of substrates (e.g. various ferric siderophores are known substrates for the ‘classic’ ferric reductases) (Schroder et al., 2003). While eukaryotic ferric reductases are specific for Fe³⁺, in prokaryotes they are merely flavin reductases: reducing diverse flavins, not Fe³⁺ directly. Hence, we can predict neither flavin-specificity, nor the specificity for the terminal pFre reduction substrate: which could be Fe³⁺, copper, other siderophores (Schroder et al., 2003), or entirely different compounds.

The signature tyrosinate heme chelation of MAPR proteins allows them to bind ferric/Fe³⁺ heme tightly, but ferrous/Fe²⁺ heme weakly (Kaluka et al., 2015; Thompson et al., 2007), potentially discharging their heme upon reduction (“one-shot”, or stoichiometric reactivity), with heme-chaperone and conditional status-monitoring implications (Cahill and Medlock, 2017; Kabe et al., 2016b). This specialized functionality may be involved at CPR pFre/cytb5MY loci, speculatively involving Fe³⁺ reduction via cytbdomain proteins, with cytb5MY–released Fe²⁺-heme perhaps acting as
siderophore (Schroder et al., 2003). Involvement of MAPR proteins in similar biology remains unreported, however the heme-transport function of PGRMC2 (Galmozzi et al., 2019) is conceivably related.

The ancestral MAPR protein had evolved a eukaryotic-specific MIHIR motif, and together with CYP51A was catalysing the oxidative 14-demethylation of lanosterol (Fig. 1) early during eukaryotic evolution, at least before the diversification of fungi and metazoans (Hand et al., 2003; Hughes et al., 2007b). Although cytb_{SMY} proteins may have evolved through HGT from a eukaryotic NEUF gene to CPR bacteria, a bacterially-inherited MAPR-dependent steroidogenic pathway (Fig. 1) could carry profound implications for early eukaryotic evolution.

Eukaryotic membranes differ from those of archaea, such that a bacterial contribution to their evolution is believed to have been substantial. Cytoplasmically synthesized sterols and membrane lipids required the evolution of new transport pathways to reach the mitochondrion. Through regulation of SREBP1 and SREBP2 activity, PGRMC1 regulates the synthesis of fatty acids and sterols respectively (Cai et al., 2015; Lee et al., 2018; Shimano and Sato, 2017; Suchanek et al., 2005), the core constituents of eukaryotic cell membranes. It is possible that MAPR-mediated membrane trafficking (Cahill et al., 2016; Riad et al., 2020) contributed to the properties of eukaryotic cell membrane whose lipids resemble bacterial more than archaeal membranes, or alternatively, to the trafficking of cytoplasmically synthesized novel lipids to modify mitochondrial membrane properties. This line of reasoning could be highly informed if the NEUFC and NENF MAPR proteins were better functionally characterized, yet that is not the case (Hehenberger et al., 2020).
Four main features hitherto distinguished MAPR from other previously described cytb5 proteins: tyrosinate heme-chelation, heme orientation, a MIHIR, and membrane-trafficking functionality. Our analysis, the resemblance of the MIHIR to an actin-cytoskeleton interaction motif (Hehenberger et al., 2020), and the association of PGRMC1 with actin cytoskeletal components (Salsano et al., 2020; Teakel et al., 2020), together show that heme orientation was inherited by MAPR from a protein within the prokaryotic clade-1, whereas the MIHIR appears to have been a eukaryotic invention which may be associated with membrane trafficking. MAPR and cytb5MY proteins also share tyrosinate heme chelation, however the primitive state of the two protein classes remains unclear, as discussed above.

We hypothesise that the original MIHIR-containing MAPR protein may have initially been associated with the heme-related and redox-modulated modification of sterol-containing membranes and their trafficking, perhaps to modulate mitochondrial function. A potential non-vesicular route for mitochondrial sterols is via endoplasmic reticulum (ER)-mitochondrial contacts (EMC): communication mediators between ER and mitochondrial compartments. PGRMC1 is also associated with EMC (Cho et al., 2017).

In a preprint, Sabbir and colleagues report that PGRMC1 ablation disrupts the ordered association of mitochondria with the ER at EMC/mitochondrial-associated membranes (MAMs) (Sabbir et al., 2020). Because of the deep evolutionary conservation of the MAPR/CYP51A1 steroidogenic reaction, this MAPR function is possibly related to mitochondrial regulation of an early eukaryote. However, this conjectural hypothesis requires further study.

Sterols are involved in endocytosis at multiple levels in yeast and animals, both in facilitating membrane properties that enable receptor activation, and by participation in
an actin-independent post-internalization process (Heese-Peck et al., 2002). Additionally to catalyzing the CYP51A reaction, PGRMC1 is involved in sensing progesterone and progestogen sterol levels (Cahill et al., 2016; Cahill and Medlock, 2017; Ruan et al., 2012), associates with sigma-2 receptor/TMEM97 in sterol transport via endocytosis (Cahill and Medlock, 2017; Riad et al., 2020; Riad et al., 2018; Xu et al., 2011), and regulates sterol/lipid homeostasis via interaction with the SREBP/Insig/SCAP complex, where it is also involved in transcriptional regulation of SREBP-1 (Cahill and Medlock, 2017; Lee et al., 2018; Suchanek et al., 2005).

An evolutionary ancient role of MAPR-regulated sterol synthesis and mitochondrial oxygen consumption status seems plausible. Whereas bacterial hopanoid synthesis does not require oxygen (Saenz et al., 2015), molecular O₂ is required for steroidogenesis: in particular squalene oxidase epoxidation of squalene (Belin et al., 2018; Kirschvink and Kopp, 2008) and the first lanosterol modification to the 4-methyl sterol FF-MAS by the highly conserved PGRMC1-regulated CYP51A reaction (Stromstedt et al., 1996; Takishita et al., 2017) (Fig. 1). We could therefore model early eukaryotic steroidogenesis as a modulator of oxic/anoxic metabolic responses.

Accordingly, the synthesis of yeast cholesterol-like ergosterol from lanosterol requires oxygen. The fungal Sre1 (the yeast ortholog of SREBP) is cleaved to activate steroidogenesis in a process regulated by hypoxia and the sensing of 4-methyl sterols by Scp1 (the yeast ortholog of SCAP). Changes in 4-methyl sterol levels can lead to an Scp1-dependent proteolysis of Sre1, in a mechanism that has been proposed (based upon presence in mammals and two fungi) to possibly be conserved among unicellular eukaryotes (Hughes et al., 2007a; Hughes and Espenshade, 2008). The fungal Sre1 hypoxic response is accompanied by upregulated increased carbohydrate catabolism and
globally reduced transcription and translation in a monumental metabolic switch by the
coordination of multiple hypoxic pathways whose interconnectedness remains poorly
understood (Burr and Espenshade, 2018).

Interestingly, these dramatic metabolic changes are reminiscent of PGRMC1-dependent
effects on mammalian cell culture cells (Thejer et al., 2020a; Thejer et al., 2020b),
however, any mechanistic link remains uninvestigated. Both the *Schizosaccharomyces
pombe* Dap1 MAPR protein (a PGRMC-like protein (Hehenberger et al., 2020)) and the
CYP51A homolog are transcriptionally-induced by hypoxia (Hughes et al., 2007b).
PGRMC1 is also induced in the hypoxic zone of human tumors (Neubauer et al., 2008),
possibly representing conserved ancestral MAPR hypoxic functionality. That could be
related to a proposed role of mitochondria in O$_2$ detoxification during early eukaryotic
evolution (Imachi et al., 2020; Kurland and Andersson, 2000) (either pre- or post-LECA),
and to the profound effects of PGRMC1 on mitochondria (Thejer et al., 2020a), and on
glycolytic metabolism (Sabbir, 2019; Thejer et al., 2020b).

MAPR genes are present in at least plants, opisthokonts, *Guillardia, Dictyostelium* and
Stramenopiles (Hehenberger et al., 2020) (Fig. 2) (there has been no systematic
phylogenetic survey), which suggests an early MAPR origin in eukaryotes. Many aspects
of modern meiosis reflect functions shared by these groups (Loidl, 2016), which may
extend to MAPR proteins and steroids. Yeast meiotic membrane fusion requires sterols
(Aguilar et al., 2010). Mammalian PGRMC1 is attached to the kinetochore microtubules
of meiotic/mitotic spindles (Juhlen et al., 2018; Luciano and Peluso, 2016), and to
metaphase centromeres (Juhlen et al., 2018; Luciano et al., 2010; Terzaghi et al., 2016).
The products of the reaction catalyzed by PGRMC1 and CYP51A are either FF-MAS
(Fig. 1) or dihydro-FF-MAS, both 4-methylsterol inducers of meiosis (Fakheri and Javitt,
2011; Mitsche et al., 2015). Similar 4-methylsterols activate meiosis in plants as well as animals (Darnet and Schaller, 2019) and are induced by hypoxia in yeast (see above), suggesting the operation of an ancient and conserved mechanism. Mammalian PGRMC1 mediates a progesterone-induced block of meiotic progression (Guo et al., 2016; Luciano and Peluso, 2016). Yeast *Saccharomyces cerevisiae* Dap1 (PGRMC1 ortholog) mutation also leads to cell cycle defects (Hand et al., 2003). As tantalizingly as these PGRMC attributes align with possible ancestral eukaryotic biology, their phylogenetic distribution has not been investigated, and so functional extrapolation to an early eukaryotic ancestral MAPR gene remains speculative.

Whereas post-cholesterol steroid hormones evolved in vertebrates, the synthetic pathway from lanosterol to cholesterol involves production of diverse bioactive sterols (Mitsche et al., 2015) which sequentially appeared during evolution, where CYP51A/PGRMC1 catalyze the first step after lanosterol is produced (Fig. 1). The closest related bacterial proteins to eukaryotic CYP51A (Fig. 6) suggest that HGT of both the ancestral MAPR and CYP51A genes to an early eukaryote from genomes other than the proto-mitochondrial alphaproteobacterium to metabolize a lanosterol-like hopanoid and regulate its transport may have occurred early in eukaryotic evolution.

The MAPR-dependent first sterol modification (Fig. 1) may have originally been catalyzed by bacterial enzymes to manipulate an associated early eukaryotic cell, and drive a metabolic switch that is still operative in humans. These considerations refocus the context of highly conserved PGRMC1 biology across the spectrum of heme/lipid metabolism and transport, and affected diseases such as metabolism and glucose regulation, cancer, fertility, and neuropathologies such as Alzheimer’s disease (Cahill et
al., 2016; Cahill and Medlock, 2017; Izzo et al., 2020; Lee et al., 2018; Peluso and Pru, 2014; Riad et al., 2020; Riad et al., 2018; Sabbir, 2019; Xu et al., 2011).

CRediT authorship contribution statement

Daniel Tamarit: Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Writing - review & editing.

Sarah Teakel: Formal analysis, Writing - review & editing.

Michealla Marama: Formal analysis, Writing - review & editing.

David Aragão: Methodology, Resources, Writing - review & editing.

Svetlana Y. Gerdes: Data curation, Formal analysis, Investigation, Methodology, Writing - original draft.

Jade K. Forwood: Funding acquisition, Methodology, Resources, Supervision, Writing - review & editing.

Thijs J. G. Ettema: Funding acquisition, Methodology, Resources, Supervision, Writing - review & editing.

Michael A. Cahill: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Writing - original draft.

Declaration of Competing Interest

M.A.C. is scientific advisor to and minor shareholder of Cognition Therapeutics, a company developing sigma-2 receptor ligands against Alzheimer’s disease and other pathologies. This work was performed independently of and without input from the company. The authors declare that they have no other competing interests.

Acknowledgements
Acknowledgements. This research was supported by Charles Sturt University (CSU) School of Biomedical Sciences (SBMS) internal awards to M.A.C. and PhD scholarship support to S.T; by the Swedish Research Council (VR grants 2015-04959 to T.J.G.E., and 2018-06609 to D.T.), by the European Research Council (ERC consolidator grant 817834 to T.J.G.E.). Computation was performed on resources provided by the Swedish National Infrastructure for Computing through the Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under projects SNIC-2020-5-37 (to T.J.G.E. and Felix Homa) and SNIC-2020-15-113 (to D.T.). This research was partly undertaken on the macromolecular crystallography beamlines at the Australian Synchrotron, part of ANSTO. Elisabeth Hehenberger (Department of Botany, University of British Columbia, Vancouver, Canada) provided protist MAPR sequences. Aya Narunsky (The Nir Ben-Tal Group at the Department of Biochemistry and Molecular Biology of Tel-Aviv University) assisted with Consurf results. Amy Medlock (University of Georgia), George John (CSU), and Mike Dyall-Smith (University of Melbourne) commented upon draft manuscripts.

Supplementary Information is linked to the online version of the paper.

Research data for this article

The structure of Hadesarchaea YNP_N21 cytб⁵M (KUO41884.1) has been deposited in the Protein Data Bank with accession number 6NZX. The PDB validation report is included as Supplementary Appendix G. Other data and materials are supplied as supplemental data or are available upon request.
References

Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., McCoy, A.J., Moriarty, N.W., Oeffner, R., Read, R.J., Richardson, D.C., Richardson, J.S., Terwilliger, T.C., Zwart, P.H., 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta crystallographica. Section D, Biological crystallography 66, 213-221.

Aguilar, P.S., Heiman, M.G., Walther, T.C., Engel, A., Schwudke, D., Gushwa, N., Kurzchalia, T., Walter, P., 2010. Structure of sterol aliphatic chains affects yeast cell shape and cell fusion during mating. Proceedings of the National Academy of Sciences of the United States of America 107, 4170-4175.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.

Anantharaman, K., Brown, C.T., Hug, L.A., Sharon, I., Castelle, C.J., Probst, A.J., Thomas, B.C., Singh, A., Wilkins, M.J., Karaoz, U., Brodie, E.L., Williams, K.H., Hubbard, S.S., Banfield, J.F., 2016. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nature communications 7, 13219.

Aragao, D., Aishima, J., Cherukuvada, H., Clarken, R., Clift, M., Cowieson, N.P., Ericsson, D.J., Gee, C.L., Macedo, S., Mudie, N., Panjikar, S., Price, J.R., Riboldi-Tunnicliffe, A., Rostan, R., Williamson, R., Caradoc-Davies, T.T., 2018. MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron. Journal of synchrotron radiation 25, 885-891.

Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., Ben-Tal, N., 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44, W344-350.

Baggetto, L.G., Clottes, E., Vial, C., 1992. Low mitochondrial proton leak due to high membrane cholesterol content and cytosolic creatine kinase as two features of the deviant bioenergetics of Ehrlich and AS30-D tumor cells. Cancer research 52, 4935-4941.

Barrantes, F.J., Fantini, J., 2016. From hopanoids to cholesterol: Molecular clocks of pentameric ligand-gated ion channels. Progress in lipid research 63, 1-13.

Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R., Leslie, A.G., 2011. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta crystallographica. Section D, Biological crystallography 67, 271-281.

Belin, B.J., Busset, N., Giraud, E., Molinaro, A., Silipo, A., Newman, D.K., 2018. Hopanoid lipids: from membranes to plant-bacteria interactions. Nature reviews. Microbiology 16, 304-315.

Brown, C.T., Hug, L.A., Thomas, B.C., Sharon, I., Castelle, C.J., Singh, A., Wilkins, M.J., Wrighton, K.C., Williams, K.H., Banfield, J.F., 2015. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208-211.

Burr, R., Espenshade, P.J., 2018. Oxygen-responsive transcriptional regulation of lipid homeostasis in fungi: Implications for anti-fungal drug development. Semin Cell Dev Biol 81, 110-120.

Cahill, M.A., 2007. Progesterone receptor membrane component 1: an integrative review. J Steroid Biochem Mol Biol 105, 16-36.

Cahill, M.A., 2017. The evolutionary appearance of signaling motifs in PGRMC1. Bioscience trends 11, 179-192.
Cahill, M.A., 2020. Choose your partners for the next dance: implied PGRMC1 roles in membrane trafficking and mitochondrial modulation. Fertility and sterility 113, 938-941.
Cahill, M.A., Jazayeri, J.A., Catalano, S.M., Toyokuni, S., Kovacevic, Z., Richardson, D.R., 2016. The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochimica et biophysica acta 1866, 339-349.
Cahill, M.A., Medlock, A.E., 2017. Thoughts on interactions between PGRMC1 and diverse attested and potential hydrophobic ligands. J Steroid Biochem Mol Biol 171, 11-33.
Cai, H.L., Tan, Q.Y., Jiang, P., Dang, R.L., Xue, Y., Tang, M.M., Xu, P., Deng, Y., Li, H.D., Yao, J.K., 2015. A potential mechanism underlying atypical antipsychotics-induced lipid disturbances. Translational psychiatry 5, e661.
Capella-Gutierrez, S., Silla-Martinez, J.M., Gabaldon, T., 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics (Oxford, England) 25, 1972-1973.
Castelle, C.J., Banfield, J.F., 2018. Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life. Cell 172, 1181-1197.
Castelle, C.J., Brown, C.T., Anantharaman, K., Probst, A.J., Huang, R.H., Banfield, J.F., 2018. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nature reviews. Microbiology 16, 629-645.
Chen, I.A., Chu, K., Palaniappan, K., Pillay, M., Ratner, A., Huang, J., Huntemann, M., Varghese, N., White, J.R., Seshadri, R., Smirnova, T., Kirton, E., Jungbluth, S.P., Woyke, T., Eloe-Fadrosh, E.A., Ivanova, N.N., Kyrpides, N.C., 2019. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 47, D666-D677.
Cho, I.T., Adelmant, G., Lim, Y., Marto, J.A., Cho, G., Golden, J.A., 2017. Ascorbate peroxidase proximity labeling coupled with biochemical fractionation identifies promoters of endoplasmic reticulum-mitochondrial contacts. The Journal of biological chemistry 292, 16382-16392.
Collingridge, P.W., Kelly, S., 2012. MergeAlign: improving multiple sequence alignment performance by dynamic reconstruction of consensus multiple sequence alignments. BMC bioinformatics 13, 117.
Cowieson, N.P., Aragao, D., Clift, M., Ericsson, D.J., Gee, C., Harrop, S.J., Mudie, N., Panjikar, S., Price, J.R., Riboldi-Tunicliffe, A., Williamson, R., Caradoc-Davies, T., 2015. MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron. Journal of synchrotron radiation 22, 187-190.
Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., 2004. WebLogo: a sequence logo generator. Genome research 14, 1188-1190.
Darnet, S., Schaller, H., 2019. Metabolism and Biological Activities of 4-Methyl-Sterols. Molecules (Basel, Switzerland) 24, 451.
Deng, B., Parthasarathy, S., Wang, W., Gibney, B.R., Battaile, K.P., Lovell, S., Benson, D.R., Zhu, H., 2010. Study of the individual cytochrome b5 and cytochrome b5 reductase domains of Neb5or reveals a unique heme pocket and a possible role of the CS domain. The Journal of biological chemistry 285, 30181-30191.
Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., 2010. Features and development of Coot. Acta crystallographica. Section D, Biological crystallography 66, 486-501.
Evans, P.R., 2011. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta crystallographica. Section D, Biological crystallography 67, 282-292.
Evans, P.R., Murshudov, G.N., 2013. How good are my data and what is the resolution? Acta crystallographica. Section D, Biological crystallography 69, 1204-1214.
Fakheri, R.J., Javitt, N.B., 2011. Autoregulation of cholesterol synthesis: physiologic and pathophysiologic consequences. Steroids 76, 211-215.

Frickey, T., Kannenberg, E., 2009. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer. Environmental microbiology 11, 1224-1241.

Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W., 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics (Oxford, England) 28, 3150-3152.

Galmozzi, A., Kok, B.P., Kim, A.S., Montenegro-Burke, J.R., Lee, J.Y., Spreafico, R., Mosure, S., Albert, V., Cintron-Colon, R., Godio, C., Webb, W.R., Conti, B., Solt, L.A., Kojetin, D., Parker, C.G., Peluso, J.J., Pru, J.K., Siuzdak, G., Cravatt, B.F., Saez, E., 2019. PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature 576, 138-142.

Garriga, E., Di Tommaso, P., Magis, C., Erb, I., Mansouri, L., Baltzis, A., Laayouni, H., Kondrashov, F., Floden, E., Notredame, C., 2019. Large multiple sequence alignments with a root-to-leaf regressive method. Nat Biotechnol 37, 1466-1470.

Griffin, D., Liu, X., Pru, C., Pru, J.K., Peluso, J.J., 2014. Expression of progesterone receptor membrane component-2 within the immature rat ovary and its role in regulating mitosis and apoptosis of spontaneously immortalized granulosa cells. Biology of reproduction 91, 36.

Guo, M., Zhang, C., Wang, Y., Feng, L., Wang, Z., Niu, W., Du, X., Tang, W., Li, Y., Wang, C., Chen, Z., 2016. Progesterone Receptor Membrane Component 1 Mediates Progesterone-Induced Suppression of Oocyte Meiotic Prophase I and Primordial Folliculogenesis. Scientific reports 6, 36869.

Guy, L., Kultima, J.R., Andersson, S.G., 2010. genoPlotR: comparative gene and genome visualization in R. Bioinformatics (Oxford, England) 26, 2334-2335.

Hampton, K.K., Anderson, K., Frazier, H., Thibault, O., Craven, R.J., 2018. Insulin Receptor Plasma Membrane Levels Increased by the Progesterone Receptor Membrane Component 1. Molecular pharmacology 94, 665-673.

Han, M.V., Zmasek, C.M., 2009. phyloXML: XML for evolutionary biology and comparative genomics. BMC bioinformatics 10, 356.

Hand, R.A., Jia, N., Bard, M., Craven, R.J., 2003. Saccharomyces cerevisiae Dap1p, a novel DNA damage response protein related to the mammalian membrane-associated progesterone receptor. Eukaryotic cell 2, 306-317.

Heese-Peck, A., Pichler, H., Zanolari, B., Watanabe, R., Daum, G., Riezman, H., 2002. Multiple functions of sterols in yeast endocytosis. Molecular biology of the cell 13, 2664-2680.

Hoshino, Y., Gaucher, E.A., 2018. On the Origin of Isoprenoid Biosynthesis. Molecular biology and evolution 35, 2185-2197.

Hughes, A.L., Lee, C.Y., Bien, C.M., Espenshade, P.J., 2007a. 4-Methyl sterols regulate fission yeast SREBP-Scap under low oxygen and cell stress. The Journal of biological chemistry 282, 24388-24396.

Hughes, A.L., Powell, D.W., Bard, M., Eckstein, J., Barbuch, R., Link, A.J., Espenshade, P.J., 2007b. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell metabolism 5, 143-149.

Hughes, B.T., Espenshade, P.J., 2008. Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl hydroxylase family member. The EMBO journal 27, 1491-1501.
Imachi, H., Nobu, M.K., Nakahara, N., Morono, Y., Ogawara, M., Takaki, Y., Takano, Y., Uematsu, K., Ikuta, T., Ito, M., Matsui, Y., Miyazaki, M., Murata, K., Saito, Y., Sakai, S., Song, C., Tasumi, E., Yamanaka, Y., Yamaguchi, T., Kamagata, Y., Tamaki, H., Takai, K., 2020. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577, 519-525.

Izzo, N.J., Colom-Cadena, M., Riad, A.A., Xu, J., Singh, M., Abate, C., Cahill, M.A., Spires-Jones, T.L., Bowen, W.D., Mach, R.H., Catalano, S.M., 2020. Proceedings from the Fourth International Symposium on sigma-2 Receptors: Role in Health and Disease. eNeuro 7.

Izzo, N.J., Xu, J., Zeng, C., Kirk, M.J., Mozzoni, K., Silky, C., Rehak, C., Yuriko, R., Look, G., Rishton, G., Safferstein, H., Cruhchaga, C., Goate, A., Cahill, M.A., Arancio, O., Mach, R.H., Craven, R., Head, E., LeVine, H., 3rd, Spires-Jones, T.L., Catalano, S.M., 2014. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity. PLoS one 9, e111899.

Jaffe, A.L., Castelle, C.J., Matheus Carnevali, P.B., Gribaldo, S., Banfield, J.F., 2020. The rise of diversity in metabolic platforms across the Candidate Phyla Radiation. BMC biology 18, 69.

Jain, C., Rodriguez, R.L., Phillippy, A.M., Konstantinidis, K.T., Aluru, S., 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature communications 9, 5114.

Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., Madden, T.L., 2008. NCBI BLAST: a better web interface. Nucleic Acids Res 36, W5-9.

Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A.F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.Y., Lopez, R., Hunter, S., 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics (Oxford, England) 30, 1236-1240.

Juhlen, R., Landgraf, D., Huebner, A., Koehler, K., 2018. Triple A patient cells suffering from mitotic defects fail to localize PGRMC1 to mitotic kinetochore fibers. Cell division 13, 8.

Kabe, Y., Nakane, T., Koike, I., Yamamoto, T., Sugiura, Y., Harada, E., Sugase, K., Shimamura, T., Ohmura, M., Muraoka, K., Yamamoto, A., Uchida, T., Iwata, S., Yamaguchi, Y., Krayukhina, E., Noda, M., Hnda, H., Ishimori, K., Uchiyama, S., Kobayashi, T., Suematsu, M., 2016a. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nature communications 7, 11030.

Kabe, Y., Yamamoto, T., Kajimura, M., Sugiura, Y., Koike, I., Ohmura, M., Nakamura, T., Tokumoto, Y., Tsugawa, H., Hnda, H., Kobayashi, T., Suematsu, M., 2016b. Cystathionine beta-synthase and PGRMC1 as CO sensors. Free radical biology & medicine 99, 333-344.

Kaluka, D., Batabyal, D., Chiang, B.Y., Poulos, T.L., Yeh, S.R., 2015. Spectroscopic and mutagenesis studies of human PGRMC1. Biochemistry 54, 1638-1647.

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., Jeromin, L.S., 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods 14, 587-589.

Katoh, K., Rozewicki, J., Yamada, K.D., 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics 20, 1160-1166.

Khandokar, Y.B., Srivastava, P., Cowieson, N., Sarker, S., Aragao, D., Das, S., Smith, K.M., Raidal, S.R., Forwood, J.K., 2017. Structural insights into GDP-mediated regulation of a bacterial acyl-CoA thioesterase. The Journal of biological chemistry 292, 20461-20471.
Kirschvink, J.L., Kopp, R.E., 2008. Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 363, 2755-2765.

Kisker, C., Schindelin, H., Pacheco, A., Wehbi, W.A., Garrett, R.M., Rajagopalan, K.V., Enemark, J.H., Rees, D.C., 1997. Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91, 973-983.

Kostanjevecki, V., Leys, D., Van Driessche, G., Meyer, T.E., Cusanovich, M.A., Fischer, U., Guisez, Y., Van Beeumen, J., 1999. Structure and characterization of Ectothiorhodospira vacuolata cytochrome b(558), a prokaryotic homologue of cytochrome b(5). The Journal of biological chemistry 274, 35614-35620.

Krissinel, E., Henrick, K., 2004. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta crystallographica. Section D, Biological crystallography 60, 2256-2268.

Kuraku, S., Zmasek, C.M., Nishimura, O., Katoh, K., 2013. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res 41, W22-28.

Kurland, C.G., Andersson, S.G., 2000. Origin and evolution of the mitochondrial proteome. Microbiology and molecular biology reviews : MMBR 64, 786-820.

Larsson, A., 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics (Oxford, England) 30, 3276-3278.

Laskowski, R.A., Swindells, M.B., 2011. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of chemical information and modeling 51, 2778-2786.

Lee, S.R., Kwon, S.W., Kaya, P., Lee, Y.H., Lee, J.G., Kim, G., Lee, G.S., Baek, I.J., Hong, E.J., 2018. Loss of progesterone receptor membrane component 1 promotes hepatic steatosis via the induced de novo lipogenesis. Scientific reports 8, 15711.

Lemoine, F., Domelevo Entfellner, J.B., Wilkinson, E., Correia, D., Davila Felipe, M., De Oliveira, T., Gascuel, O., 2018. Renewing Felsenstein's phylogenetic bootstrap in the era of big data. Nature 556, 452-456.

Liu, J., Chakraborty, S., Hosseinzadeh, P., Yu, Y., Tian, S., Petrik, I., Bhagi, A., Lu, Y., 2014. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chemical reviews 114, 4366-4469.

Loidl, J., 2016. Conservation and Variability of Meiosis Across the Eukaryotes. Annual review of genetics 50, 293-316.

Luciano, A.M., Lodde, V., Franciosi, F., Ceciliani, F., Peluso, J.J., 2010. Progesterone receptor membrane component 1 expression and putative function in bovine oocyte maturation, fertilization, and early embryonic development. Reproduction (Cambridge, England) 140, 663-672.

Luciano, A.M., Peluso, J.J., 2016. PGRMC1 and the faithful progression through mitosis and meiosis. Cell cycle (Georgetown, Tex.) 15, 2239-2240.

Mavromatis, K., Chu, K., Ivanova, N., Hooper, S.D., Markowitz, V.M., Kyrpides, N.C., 2009. Gene context analysis in the Integrated Microbial Genomes (IMG) data management system. PloS one 4, e7979.

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., 2007. Phaser crystallographic software. Journal of applied crystallography 40, 658-674.

McGuire, M.R., Mukhopadhyay, D., Myers, S.L., Mosher, E.P., Brookheart, R.T., Kammers, K., Sehgal, A., Selen, E.S., Wolfgang, M.J., Bumpus, N.N., Espenshade, P.J., 2021. Progesterone receptor membrane component 1 (PGRMC1) binds and stabilizes cytochromes P450 through a heme-independent mechanism. The Journal of biological chemistry, 101316.
Meunier, F.A., Gutierrez, L.M., 2016. Captivating New Roles of F-Actin Cortex in Exocytosis and Bulk Endocytosis in Neurosecretory Cells. Trends Neurosci 39, 605-613.

Mifsud, W., Bateman, A., 2002. Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain. Genome Biology 3, RESEARCH0068.

Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A., Lanfear, R., 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular biology and evolution 37, 1530-1534.

Mistry, J., Bateman, A., Finn, R.D., 2007. Predicting active site residue annotations in the Pfam database. BMC bioinformatics 8, 298.

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonhammer, E.L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., Finn, R.D., Bateman, A., 2021. Pfam: The protein families database in 2021. Nucleic Acids Res 49, D412-D419.

Mitsche, M.A., McDonald, J.G., Hobbs, H.H., Cohen, J.C., 2015. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. eLife 4, e07999.

Neubauer, H., Clare, S.E., Wozny, W., Schwall, G.P., Poznanovic, S., Stegmann, W., Vogel, U., Sotlar, K., Wallwiener, D., Kurek, R., Fehm, T., Cahill, M.A., 2008. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1. Breast cancer research : BCR 10, R85.

Overbeek, R., Fonstein, M., D'Souza, M., Pusch, G.D., Maltsev, N., 1999. The use of gene clusters to infer functional coupling. Proceedings of the National Academy of Sciences of the United States of America 96, 2896-2901.

Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O., 1999. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proceedings of the National Academy of Sciences of the United States of America 96, 4285-4288.

Peluso, J.J., Griffin, D., Liu, X., Horne, M., 2014. Progesterone receptor membrane component-1 (PGRMC1) and PGRMC-2 interact to suppress entry into the cell cycle in spontaneously immortalized rat granulosa cells. Biology of reproduction 91, 104.

Peluso, J.J., Pru, J.K., 2014. Non-canonical progesterone signaling in granulosa cell function. Reproduction (Cambridge, England) 147, R169-178.

Piel, R.B., 3rd, Shiferaw, M.T., Vashisht, A.A., Marcero, J.R., Praissman, J.L., Phillips, J.D., Wohlschlegel, J.A., Medlock, A.E., 2016. A Novel Role for Progesterone Receptor Membrane Component 1 (PGRMC1): A Partner and Regulator of Ferrochelatase. Biochemistry 55, 5204-5217.

Price, M.N., Dehal, P.S., Arkin, A.P., 2010. FastTree 2--approximately maximum-likelihood trees for large alignments. PloS one 5, e9490.

Probst, A.J., Castelle, C.J., Singh, A., Brown, C.T., Anantharaman, K., Sharon, I., Hug, L.A., Burstein, D., Emerson, J.B., Thomas, B.C., Banfield, J.F., 2017. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environmental microbiology 19, 459-474.

Probst, A.J., Ladd, B., Jarett, J.K., Geller-McGrath, D.E., Sieber, C.M.K., Emerson, J.B., Anantharaman, K., Thomas, B.C., Malmstrom, R.R., Stiegmeier, M., Klingl, A., Woyke, T., Ryan, M.C., Banfield, J.F., 2018. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nature microbiology 3, 328-336.

Rajamani, R., Gao, J., 2003. Balancing kinetic and thermodynamic control: the mechanism of carbocation cyclization by squalene cyclase. Journal of the American Chemical Society 125, 12768-12781.

Riad, A., Lengyl-Zhand, Z., Zeng, C., Weng, C.C., Lee, V.M., Trojanowski, J.Q., Mach, R.H., 2020. The Sigma-2 Receptor/TMEM97, PGRMC1, and LDL Receptor Complex
Are Responsible for the Cellular Uptake of Abeta42 and Its Protein Aggregates.

Molecular neurobiology 57, 3803-3813.

Riad, A., Zeng, C., Weng, C.C., Winters, H., Xu, K., Makvandi, M., Metz, T., Carlin, S., Mach, R.H., 2018. Sigma-2 Receptor/TMEM97 and PGRMC-1 Increase the Rate of Internalization of LDL by LDL Receptor through the Formation of a Ternary Complex. Scientific reports 8, 16845.

Rodriguez-Maranon, M.J., Qiu, F., Stark, R.E., White, S.P., Zhang, X., Foundling, S.I., Rodriguez, V., Schilling, C.L., 3rd, Bunce, R.A., Rivera, M., 1996. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c. Biochemistry 35, 16378-16390.

Ruan, X., Schneck, H., Schultz, S., Fehm, T., Cahiill, M.A., Seeger, H., Chen, R., Yu, Q., Mueck, A.O., Neubauer, H., 2012. Nomegestrol acetate sequentially or continuously combined to estradiol did not negatively affect membrane-receptor associated progestogenic effects in human breast cancer cells. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology 28, 863-866.

Ryu, C.S., Klein, K., Zanger, U.M., 2017. Membrane Associated Progesterone Receptors: Promiscuous Proteins with Pleiotropic Functions - Focus on Interactions with Cytochromes P450. Frontiers in pharmacology 8, 159.

Sabbir, M.G., 2019. Progesterone induced Warburg effect in HEK293 cells is associated with post-translational modifications and proteasomal degradation of progesterone receptor membrane component 1. J Steroid Biochem Mol Biol 191, 105376.

Sabbir, M.G., Taylor, C.G., Zahradka, P., 2020. Progesterone-induced Warburg Effect is Regulated by Cell-type-specific Interaction of Progesterone Receptor Membrane Component 1 and Hexokinases. Research Square (non-peer reviewed preprint) https://doi.org/10.21203/rs.3.rs-55518/v1.

Saenz, J.P., Grosser, D., Bradley, A.S., Lagny, T.J., Lavrynenko, O., Broda, M., Simons, K., 2015. Hopanoids as functional analogues of cholesterol in bacterial membranes. Proceedings of the National Academy of Sciences of the United States of America 112, 11971-11976.

Salsano, S., Gonzalez-Martin, R., Quinsonero, A., Lopez-Martin, S., Gomez-Escribano, A.P., Perez-Deben, S., Yanez-Mo, M., Dominguez, F., 2020. Novel nonclass progesterone receptor PGRMC1 pulldown-precipitated proteins reveal a key role during human decidualization. Fertility and sterility 113, 1050-1066 e1057.

Schroder, I., Johnson, E., de Vries, S., 2003. Microbial ferric iron reductases. FEMS microbiology reviews 27, 427-447.

Sebe-Pedros, A., Ballare, C., Parra-Acero, H., Chiva, C., Tena, J.J., Sabido, E., Gomez-Skarmeta, J.L., Di Croce, L., Ruiz-Trillo, I., 2016. The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity. Cell 165, 1224-1237.

Shimano, H., Sato, R., 2017. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol 13, 710-730.

Song, J., Vinarov, D., Tyler, E.M., Shahian, M.N., Tyler, R.C., Markley, J.L., 2004. Hypothetical protein At2g24940.1 from Arabidopsis thaliana has a cytochrome b5 like fold. Journal of biomolecular NMR 30, 247-247.

Stromstedt, M., Rozman, D., Waterman, M.R., 1996. The ubiquitously expressed human CYP51 encodes lanosterol 14 alpha-demethylase, a cytochrome P450 whose expression is regulated by oxysterols. Archives of biochemistry and biophysics 329, 73-81.

Suchanek, M., Radzikowska, A., Thiele, C., 2005. Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nature methods 2, 261-267.
Takishita, K., Chikaraishi, Y., Tanifuji, G., Ohkouchi, N., Hashimoto, T., Fujikura, K., Roger, A.J., 2017. Microbial Eukaryotes that Lack Sterols. The Journal of eukaryotic microbiology 64, 897-900.

Teakel, S.L., Ludescher, M., Thejer, B.M., Poschmann, G., Forwood, J.K., Neubauer, H., Cahill, M.A., 2020. Protein complexes including PGRMC1 and actin-associated proteins are disrupted by AG-205. Biochemical and biophysical research communications 524, 64-69.

Teakel, S.L., Ludescher, M., Thejer, B.M., Poschmann, G., Forwood, J.K., Neubauer, H., Cahill, M.A., 2020. Protein complexes including PGRMC1 and actin-associated proteins are disrupted by AG-205. Biochemical and biophysical research communications 524, 64-69.

Teakel, S.L., Ludescher, M., Thejer, B.M., Poschmann, G., Forwood, J.K., Neubauer, H., Cahill, M.A., 2020. Protein complexes including PGRMC1 and actin-associated proteins are disrupted by AG-205. Biochemical and biophysical research communications 524, 64-69.

Terzaghi, L., Tessaro, I., Raucci, F., Merico, V., Mazzini, G., Garagna, S., Zuccotti, M., Franciosi, F., Lodde, V., 2016. PGRMC1 participates in late events of bovine granulosa cells mitosis and oocyte meiosis. Cell cycle (Georgetown, Tex.) 15, 2019-2032.

Thejer, B.M., Adhikary, P.P., Kaur, A., Teakel, S.L., Van Oosterum, A., Seth, I., Pajic, M., Hannan, K.M., Pavy, M., Poh, P., Jazayeri, J.A., Zaw, T., Pascevici, D., Ludescher, M., Pawlak, M., Cassano, J.C., Turnbull, L., Jazayeri, M., James, A.C., Coorey, C.P., Roberts, T.L., Kinder, S.J., Hannan, R.D., Patrick, E., Molloy, M.P., New, E.J., Fehm, T.N., Neubauer, H., Goldys, E.M., Weston, L.A., Cahill, M.A., 2020a. PGRMC1 phosphorylation affects cell shape, motility, glycolysis, mitochondrial form and function, and tumor growth. BMC Mol Cell Biol 21, 24.

Thejer, B.M., Adhikary, P.P., Teakel, S.L., Fang, J., Weston, P.A., Gurusinghe, S., Anwer, A.G., Gosnell, M., Jazayeri, J.A., Ludescher, M., Gray, L.A., Pawlak, M., Wallace, R.H., Pant, S.D., Wong, M., Fischer, T., New, E.J., Fehm, T.N., Neubauer, H., Goldys, E.M., Quinn, J.C., Weston, L.A., Cahill, M.A., 2020b. PGRMC1 effects on metabolism, genomic mutation and CpG methylation imply crucial roles in animal biology and disease. BMC Mol Cell Biol 21, 26.

Thompson, A.M., Reddi, A.R., Shi, X., Goldbeck, R.A., Moenne-Loccoz, P., Gibney, B.R., Holman, T.R., 2007. Measurement of the heme affinity for yeast dap1p, and its importance in cellular function. Biochemistry 46, 14629-14637.

Vagin, A.A., Steiner, R.A., Lebedev, A.A., Potterton, L., McNicholas, S., Long, F., Murshudov, G.N., 2004. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta crystallographica. Section D, Biological crystallography 60, 2184-2195.

Wang, H.C., Minh, B.Q., Susko, E., Roger, A.J., 2018. Modeling Site Heterogeneity with Posterior Mean Site Frequency Profiles Accelerates Accurate Phylogenomic Estimation. Syst Biol 67, 216-235.

Wrighton, K.C., Thomas, B.C., Sharon, I., Miller, C.S., Castelle, C.J., VerBerkmoes, N.C., Wilkins, M.J., Hettich, R.L., Lipton, M.S., Williams, K.H., Long, P.E., Banfield, J.F., 2012. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science (New York, N.Y.) 337, 1661-1665.

Xu, J., Zeng, C., Chu, W., Pan, F., Rothfuss, J.M., Zhang, F., Tu, Z., Zhou, D., Zeng, D., Vangveravong, S., Spitzer, D., Chang, K.C., Hotchkiss, R.S., Hawkins, W.G., Wheeler, K.T., Mach, R.H., 2011. Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nature communications 2, 380.

Yamada, K.D., Tomii, K., Katoh, K., 2016. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics (Oxford, England) 32, 3246-3251.

Yokota, T., Nakajima, Y., Yamakura, F., Sugio, S., Hashimoto, M., Takamiya, S., 2006. Unique structure of Ascaris suum b5-type cytochrome: an additional alpha-helix and positively charged residues on the surface domain interact with redox partners. The Biochemical journal 394, 437-447.

Yoshitani, N., Satou, K., Saito, K., Suzuki, S., Hatanaka, H., Seki, M., Shinozaki, K., Hirota, H., Yokoyama, S., 2005. A structure-based strategy for discovery of small ligands binding to functionally unknown proteins: combination of in silico screening and surface plasmon resonance measurements. Proteomics 5, 1472-1480.
Fig. 1. The production of FF-MAS from the mevalonate pathway. Enzymes involved in mammalian production and 14-demethylation of the 4 methyl-sterol lanosterol. MVP: mevalonate pathway. The CYP51A/PGRMC1 reaction produces 14-dimethyl-14-dehydrolanosterol, also known as follicular fluid meiosis-activating sterol (FF-MAS). For CYP51A reaction stoichiometry see UniProt Q16850.
Fig. 2. Eukaryotic cytochrome b5 domain proteins are polyphyletic. Maximum-likelihood phylogenetic reconstruction using IQ-Tree2 under LG+C60+R4+F+PMSF model of cytb5 sequences reduced at 90% (A) and 65% (B) redundancy. Both trees were rooted on the branch leading to Clade 1 bacterial sequences. Branch symbols indicate Felsenstein Bootstrap Proportions (FBP; upper left half) and Transfer Bootstrap Expectation (TBE; lower right half) interpretations of 100 non-parametric bootstrap pseudoreplicates. Critical thresholds for TBE were calculated as explained in the methods. Additional phylogenetic reconstructions under these and other levels of redundancy, alternative alignment and trimming strategies, and alternative evolutionary models, are all summarized in Supplementary Appendix D. Sequences, alignments and trees are included in Supplementary Appendix C.
Fig. 3. A conserved clade-1 surface. (A) Sequence logos of the alignment of Fig. A1A. The box and “?” in clade-2 show a potentially incorrect inter-clade alignment, in which case the adjacent position (H165) is absent from clade-2. “Loop-1” and “loop-2” are shown. (B) A conserved clade-1 surface. Loop 1 is shown as open mesh to display conserved underlying F81 and G83. (C) Rotation through 90° relative to “B”, showing conserved exposed surface residues as filled spheres. (D) Residues conserved between all cytbs-domain sequences in Fig. A1A (both clades) constitute the protein interior, as generated by Consurf (Ashkenazy et al., 2016), based upon 4X8Y.
Fig. 4. The crystal structure of Hadesarchaea cytb_{5M}. (A) Hadesarchaea YNP_N21 (NCBI KU041884.1) cytb_{5M} structure. (B) Topological organization of the structure from A). Numbering follows KU041884.1. (C) Alignment of loop-1 regions of bacterial cytb_{5} (1CXY, *Ectothiorhodospira vacuolata*) (Kostanjevecki et al., 1999), rat mitochondrial cytb_{5} (1B5M_A) (Rodriguez-Maranon et al., 1996), human PGRMC1 (4X8Y) (Kabe et al., 2016a), and KU041884.1. The position of KU041884.1 G14 and PGRMC1 G83 is arrowed at the base of the clade-1-specific loop (PGRMC1 84-88). (D) Heme orientation differs by typically 90 degrees between clades-1 and -2. (E)
Contacts with heme. The four proteins are shown in the alignment from Fig. A1A, showing heme-interacting residues. See Fig. A5 for interaction details.
Fig. 5. Phylogenetic distribution and CPR genomic context of cytb5MY genes. (A)

Phylogetic distribution of cytb5MY, mapped onto a maximum likelihood tree obtained from a concatenated alignment of 16 ribosomal proteins by Jaffe et al. (2020). Genome assignment was performed through ANI value calculation: circles indicate assignment with an ANI value larger than 70%; circles are outlined if they indicate an assignment larger than 99%), and larger if they indicate assignment of more than one genome. Only the taxonomy of groups with cytb5MY-containing genomes is indicated. (B) 5-kb gene neighbourhoods of cytb5MY and pFre genes of selected genomes. Each arrow represents...
a gene and they are colored based on assigned function according to the legend.

Connecting lines are drawn between homologous genes found as best reciprocal Blastp hits with e-values under 1e-5.
Fig. 6. CYP51A is of bacterial origin. Maximum-likelihood phylogenetic reconstruction using IQ-Tree2 under the LG+G4+F model. Branch symbols represent SH-like Approximate Ratio Test (upper left) and Ultrafast bootstrap (lower right), both using 1000 pseudoreplicates. Input alignment contained 533 sequences and 488 sites (Supplementary Appendix F).
Fig. A1. BLASTp hits from MAPR or cytochrome b5 protein search strings form two discrete clades and MAPR proteins are related to prokaryotic cytb5MY. (A) Neighbour-Joining 1,000 bootstrap maximum likelihood phylogenetic tree under the Poisson substitution model, constructed from the alignment of 176 protein sequences by MAFFT. (B) Neighbour-Joining phylogenetic tree under the Poisson substitution model, constructed as per (A) from the alignment of 814 protein sequences. Sequences from preliminary analyses are combined with independent eukaryotic MAPR and cytb5 sequences (see methods) in a 65 gap-free site alignment. 11 proteins clustering closer to MAPR than other bacterial proteins are indicated (cytb5MY). See Supplementary Appendix A for FASTA and tree files of all preliminary investigations, as well as the combined tree depicted in this panel. (C) MAFFT alignment of MAPR with bacterial HGT and cytb5MY proteins. Heme-interacting residues and the MIHIR in PGRMC1 are indicated. The heme interaction key follows the PGRMC1 4X8Y structure (Kabe et al., 2016a). Alignment with representative clade-2 cytb5M sequence (KU041884.1, Hadesarchaeae cytb5M), and eukaryotic (NP_085075.1, rat cytb5B) or bacterial (1CXY_A Ectothiorhodospira vacuolata) clade-1 proteins is provided below.
Fig. A2. Sequences of pGEX4T1_KUO41884 and the crystallized protein. (A) KUO41884.1 sequence was cloned into the BamH1 and EcoRI sites (bold) of pGEX4T1 with added Tobacco Etch Virus (TEV) cleavage site (boxed, cleavage site in translated protein marked by \`). The stop codon is underlined. (B) Sequence of the crystallized protein, corresponding to KUO41884.1 with additional N-terminal S residue after TEV cleavage.
Fig. A3. Reduced stringency BLAST does not detect a sequence continuum between clades 1 and 2. (A) Schematic of reduced stringency BLASTp analysis using Word Size 3 (see Methods) against the bacterial data base. The indicated sequences from clade-1 and clade-2 were used as BLASTp search strings, and combined with three clade-1 (PGRC1 NP_006658.1, NENF NP_037481.1, KXH777621.1) and two clade-2 (CYB5B_RAT P04166, and WP_103012903.1) reference sequences, tagged “>RC2_” respectively. Iterative processing of the data as shown led to 818 gap-free sequences which were used for NJ treebuilding. Bootstrap support for separate clades 1 and 2 was 94% for JTT (depicted), 89% (WAG), and 93% (Poisson). Of the 159 sequences in clade-2 of this tree (excluding two clade-2 reference sequences), only 4 (WP_093087318.1, KKQ27723.1, KIX20085.1, GBD33942.1) were detected by both the clade-1 (KUO41884.1) and clade-2 (P04166) BLAST query sequences. (B) Using the same BLASTp search strings as panel a, the smaller archaeal data base was searched schematically depicted. 103 WS2 hits were combined with the sequences from Fig. A1A and iteratively refined to provide a robust tree architecture of 932 sequences used for NJ tree building. Bootstrap support for the existence of separate clades 1 and 2 was 85% (JTT), 76% (WAG), and 86% (Poisson). Of the 34 WS2 sequences present in clade-2, 10 (AQS28389.1, RL196648.1, RME54213.1, P91N8782.1, RME31891.1, RME52388.1, PIN953061.1, PIN832621.1, OIO41921.1, RME53069.1) were also BLASTp hits for clade-1 search string KUO41884.1. (C) Word size 2 BLASTp with independent query sequences to panel b. Because of the relatively low hit number of panel b the analysis was repeated using the indicated two outlying clade-1 and clade-2 sequences from Fig. A1A. Iterative data refinement 103 WS2 hits were combined with sequences from Fig. A1A to yield ultimately 912 sequences with 57 gap-free sites for tree building. (D) NJ/Poisson tree (1,000 bootstrap) of the process from panel c, including nine WS2 sequences with 100% bootstrap support as outliers to clades 1 and 2 (green). Bootstrap support for clades 1 and 2 is below 70% for JTT, WAG and Poisson NJ trees (depicted), however a group of cytsβ-related proteins form an outlying distinct clade with 100% bootstrap support. Of the 11 WS2 sequences...
Present in clade-2, none were also BLASTp hits for clade-1 search string OHE40815.1. Of the 9 outlying WS2 sequences, one (KQM10489) was also a BLASTp hit for clade-1 search string OHE40815.1. (E) Identical tree to panel d, with nine WS2 outlying sequences removed prior to MAFFT alignment. This tree contains 78 WS2 sequences that fall within clades 1 or two, but none that cluster between those clades. Bootstrap support for clades 1 and two is 93% (JTT), 89% (WAG) and 97% (Poisson, depicted).

11 proteins were detected by both clade-1 and clade-2 search query sequences. No proteins intermediate in sequence between clades 1 and 2 were found. For identities of all cyt-bL proteins detected in CPR bacteria see Supplementary Appendix C.
Fig. A4. Phylogenetic reconstructions of cyt5MY tree position with alternative sequence datasets. Maximum-likelihood phylogenetic reconstructions using IQ-Tree2 under the PMSF approximation of the LG+C60+R8+F model (A,B), LG+C50+R8+F (C), LG+C40+R8+F (D) and LG+C50+R8+F (E). Input alignments were based on the reduction of the 2470 gathered sequences at different levels of similarity: 50% (A), 65% (B), 70% (C), 80% (D) and 90% (E), resulting in 274, 570, 702, 968 and 1384 sequences, respectively. Branch symbols indicate Felsenstein Bootstrap Proportions (FBP; upper left half) and Transfer Bootstrap Expectation (TBE; lower right half) interpretations of 100 non-parametric bootstrap pseudoreplicates. Sequence details are available as Supplementary Appendix D.
Hadesarchaea YNP_N21, KUO41884 (clade-1)

Hydrogen bonds

Atom no.	Atom	Res name	Chain	Atom no.	Atom	Res name	Chain	Distance
1	265	OG	34 A	603	O1D	HEM	101 A	2.88
2	535	NZ	68 A	601	O2D	HEM	101 A	2.67

![Diagram showing hydrogen bonds between atoms](image)
B

Hydrogen bonds

Atom no.	Atom name	Res name	Chain	Distance
337	OH	TYR 107	A	2.69
773	NZ	LYS 163	A	2.53
785	OH	TYR 164	A	2.54

Non-PGRMC1 vector residues from 4X8Y
1B5M_A rat cytb₅ (clade-2)

Atom no.	Atom name	Res no.	Chain	Distance
1	N	489	A	3.26
2	O	494	A	2.70

Diagram showing atoms and residues with distances and interactions.
Fig. A5. Heme-interacting residues from Fig. 4E. H-Bonds with heme propionate groups are given at the top of respective panels, with LIGPLOTs below. (A) Hadesarchaea YNP_N21, cytbsM KU041884.1 (clade-1). (B) Human PGRMC1 4X8Y (Clade-1). Non-PGRMC1 N-terminal residues in the 4X8Y structure from the bacterial expression vector that make contact with heme are indicated by a circled X. The N-terminus is not proximal to heme in the dimeric structure (Fig. 3C). These residues make contact from adjacent symmetry units. The PGRMC1 MAPR domain of 4X8Y
was also N-terminally truncated relative to Fig. A1B by 2 residues. N-terminal non-
PGRMC1 residues (from the expression vector fusion protein) of adjacent crystal
symmetry units contacting heme in the PGRMC1 4X8Y structure could artefactually
stabilize the heme-dependent dimer. A native PGRMC1 MAPR-domain structure would
be desirable to confirm biological heme-dependent PGRMC1 dimerization.
Hydrophobic interactions between heme and S68, P69 and E70 from 4X8Y PGRMC1
structure are not shown for Fig. 4E because these represent non-PGRMC1 residues from
the bacterial expression vector. (C) Rat mitochondrial cytb_5 1B5M_A (Clade-2).
Numbering is according to the corresponding rat cytb_5 sequence NP_085075.1. (D) *E.
vacuolata* 1CXY (clade-2).
Fig. A6. The most similar non-MAPR cytb5-domain published structures to Hadesarchaea cytb5M are from clade-2. (A) The thirty PDB structures most similar by DALI to KUO41884.1 (Hadesarchaea cytb5M, this study) were from seventeen proteins.
(colored boxes). MAFFT alignment followed by NJ Poisson putative tree construction (1,000 bootstrap) showed that all except the recognised MAPR proteins (4X8Y, 1J03, 1T0G) belonged to clade-2. Reference sequences include clade-1 proteins NP_006658.1 PGRMC1, NP_037481.1 NENF, and archaean cytβ5m KXH77621.1 (no structure available), and clade-2 NP_085075.1 rat cytβs. Note the KRR N-terminal PGRMC1 MAPR residues absent from 4X8Y. Other conventions follow Fig. A1. (B) Clade-2 proteins with solved structures most similar to KU041884.1 all shared the HPG heme iron chelation motif involving loop 2 (Fig. 4E). The HS motif was also present in all but chicken sulfite oxidase (1SOX) (Kisker et al., 1997), the cytβ-reductase domain of NADH cytochrome b5 oxidoreductase (3LF5) (Deng et al., 2010), and Ascaris suum cytβ (1X3X). The latter is known to be an atypical cytβ protein (Yokota et al., 2006), and also exhibited divergent tree clustering in “A”. Red: iron atom chelation. Grey: adjacent conserved heme hydrophobic interaction residue (following Fig. 4E). The color key corresponds to proteins shown in a. (C) All clade-2 proteins except 1X3X exhibit similar heme orientation to reference 1CXY (left panel). In 1X3X the propionates are rotated approximately 90° to the left (centre panel, arrows), whereas in clade-1 proteins the propionates are rotated to the right relative to clade-2 (arrows, right panel), and bind at a tilted plane relatively to clade-2, prominently permitted by the absence of loop 2. Superimposable Arabidopsis MAPR structures 1J03 (Yoshitani et al., 2005) and 1T0G (Song et al., 2004) do not include heme. Only 1J03 is included.
Fig. A7. Synteny of cytb$_{SMY}$ and pFre gene clusters. Gene neighbourhoods are shown at a 10-kb distance from cytb$_{SMY}$ and pFre genes. Functional annotation of selected genes is shown according to the legend colors. Arrows represent genes and thick vertical lines, contig boundaries. Connecting lines indicate similarity found as best reciprocal blastp hits with e-values lower than 1e-5. The tree shown at the left side is the phylogeny shown in Fig. A8.
Fig. A8. CPR cytb_{SMY} gene similarities. Phylogenetic tree obtained by Fasttree2 including all sequences used for the phylogenetic tree in Fig A3B. Sequences included in the previous analysis are marked in red. Only the cytb_{SMY} clade is shown expanded.
Fig. A9. Affiliation of pFre-associated Cytb5-L proteins. (A) Neighbour-joining tree under the Poisson model and showing 1,000 bootstrap pseudoreplicates, inferred from 916 sequences, including cytbs-like type A (CPR_BLA) and or cytbs-like type B1 (CPR1/2_BLB1) proteins (Fig. 5A) as well as the proteins from Fig. A1A. It was impossible to align clades-1 and 2 together with both cytbs-L type B1 and B2 proteins and obtain sufficient gap-free aligned sites for tree building. This panel shows the tree...
with CPR1/2_BLB2 sequences omitted. These sequences include those from Fig. A1A, supplemented with CPR cytb5-domain proteins detected in IMG analyses (labelled: “CPRx”), and the results of BLASTp of a cytb5MY search string (KUO41884.1) against the NCBI CPR database (taxid:1783234) (labelled “tax_”). Identical sequences from the three input sources were not removed. (B) All details are identical to “A”, except that CPR1/2_BLB1 sequences were omitted and CPR2_BLB2 sequences included in the alignment to give 912 MAFFT-aligned sequences. The position of the CPR_BLA clade relative to cytb5M is uncertain with only 32% and 34% bootstrap support in both analyses. The corresponding WAG tree for panel “A” positioned the CPR1_BLA clade deep within the cytb5M branch (not shown). Complete tree files and PDF printouts of the expanded trees for this figure are available as Supplementary Appendix E.
Table A1. Details of cytb_{SMY} proteins from Fig. A1B. All species are CPR bacteria (Castelle and Banfield, 2018). The details of all cytb_{SMY} and cytb_{SM} proteins detected in CPR bacteria are provided in Supplementary Appendix C.

Accession	Protein name [species]	Reference
KKR05718.1	hypothetical protein UT34_C0002G0225 [candidate division WS6 bacterium GW2011_GWF2_39_15]	(Brown et al., 2015)
OHA80798.1	hypothetical protein A2675_01620 [Candidatus Yonathbacteria bacterium RIFCSPHIGHO2_01_FULL_51_10]	(Anantharaman et al., 2016)
OHA83705.1	hypothetical protein A2408_00355 [Candidatus Yonathbacteria bacterium RIFOXYC1_FULL_52_10]	(Anantharaman et al., 2016)
KKS94036.1	putative steroid-binding protein 3 [Candidatus Collierbacteria bacterium GW2011_GWC2_43_12]	(Brown et al., 2015)
KKU89055.1	hypothetical protein UY18_C0004G0020 [Microgenomates group bacterium GW2011_GWF2_47_9]	(Brown et al., 2015)
OIP98122.1	hypothetical protein AUK40_01915 [Candidatus Wirthbacteria bacterium CG2_30_54_11]	(Probst et al., 2017)
PJA14771.1	hypothetical protein COX64_01640 [Candidatus Dojkabacteria bacterium CG_4_10_14_0_2_um_filter_Dojkabacteria_WS6_41_15]	(Probst et al., 2018)
EKD84736.1*	Predicted heme/sterol binding protein [Candidatus Daviesbacteria bacterium]*	(Wrighton et al., 2012)
HCE30597.1*		
OGE21801.1	hypothetical protein A2778_04905 [Candidatus Daviesbacteria bacterium RIFCSPHIGHO2_01_FULL_40_24]	(Anantharaman et al., 2016)
KKQ43725.1	hypothetical protein US62_C0043G0008 [Candidatus Woesebacteria bacterium GW2011_GWA1_37_8]	(Brown et al., 2015)
KKR31495.1	hypothetical protein UT63_C0068G0005 [Candidatus Gottesmanbacteria bacterium GW2011_GWC2_39_8]	(Brown et al., 2015)

* EKD84736.1 and HCE30597.1 are identical. Protein name and species are provided for HCE30597.1.
| **Table A2. Crystallography statistics.** |
|--|
| Resolution range | 19.28-1.9 (1.968-1.9) |
| Space group | P 63 |
| Unit cell | 72.17 72.17 22.81 90 90 120 |
| Total reflections | 445959 (41994) |
| Unique reflections | 5544 (519) |
| Multiplicity | 80.4 (80.9) |
| Completeness (%) | 99.87 (100.00) |
| Mean I/sigma(I) | 49.00 (4.27) |
| Wilson B-factor | 25.28 |
| R-pim | 0.09944 (0.3724) |
| CC1/2 | 0.968 (0.643) |
| CC* | 0.992 (0.885) |
| Reflections used in refinement | 5544 (519) |
| Reflections used for R-free | 280 (24) |
| R-work | 0.2228 |
| R-free | 0.2702 |
| Number of non-hydrogen atoms | 663 |
| Macromolecules | 599 |
| Ligands | 43 |
| Solvent | 21 |
| Protein residues | 76 |
| RMS(bonds) | 0.021 |
| RMS(angles) | 1.89 |
| Ramachandran favored (%) | 97.30 |
| Ramachandran allowed (%) | 2.70 |
| Ramachandran outliers (%) | 0.00 |
| Rotamer outliers (%) | 0.00 |
| Clashscore | 4.77 |
| Average B-factor | 29.60 |
| Macromolecules | 29.26 |
| Ligands | 31.56 |
| Solvent | 35.27 |
Table A3. Proteins with the highest structural homology to archaeal Hadesarchaea YNP_N21 cytb5M (KU041884.1, PDB accession number 6NZX). The protein structures are those from Fig. A6. 3MUS is the Ref_RatCyb5 sequence of Fig. A5. z: z-score confidence in similarity significance, RMSD: root-mean-square deviation of atomic positions across the aligned sequences (Å), LALI: Total number of aligned residues, Nres: Total number of residues, %ID: percentage sequence identity.

PDB ID	z	RMSD	LALI	Nres	%ID	Protein name	Gene	Organism
4X8Y	8.5	1.9	69	112	30	PGRMC1	PGRMC1	Homo sapiens
1J03	8.5	2	72	102	38	Putative steroid binding protein	At2g24940	Arabidopsis thaliana
1T0G	8.4	2.1	73	109	38	Cytochrome b5 domain-containing protein	At2g24940	Arabidopsis thaliana

Clade-2

PDB ID	z	RMSD	LALI	Nres	%ID	Protein name	Gene	Organism
4HIL	8	2.2	67	85	27	Cytochrome b5 type B	Cyb5b	Rattus norvegicus
1EUE	8	2.2	67	86	27	Cytochrome b5	Cyb5b	Rattus norvegicus
3MUS	7.9	2.2	67	85	27	Cytochrome b5 type B	Cyb5b	Rattus norvegicus
1CC	8.1	2.1	67	87	27	Cytochrome b5 mitochondrial	Cyb5b	Rattus norvegicus
2I89	8	2.2	67	85	25	Cytochrome b5 type B	Cyb5b	Rattus norvegicus
1U9M	8	2.2	67	82	30	Cytochrome b5	CYB5A	Bos taurus
1M2M	8.1	2.3	68	82	28	Cytochrome b5	CYB5A	Bos taurus
1LR6	8	2.2	67	82	30	Cytochrome b5	CYB5A	Bos taurus
3X32	8	2.4	68	87	29	Cytochrome b5	CYB5A	Sus scrofa
4HIN	8.3	2.2	67	81	31	Cytochrome b5	CYB5A	Bos taurus
3O2Z	8.3	2.2	67	82	31	Cytochrome b5	CYB5	Bos taurus
1X3X	8	2.2	66	82	30	Cytochrome b5	N/A	Ascaris suum
3LF5	8.1	2.3	69	87	25	Cytochrome b5 reductase 4	CYB5R4	Homo sapiens
1CXV	7.4	2.4	66	81	30	Cytochrome b558	CYB5S8	Ectothiorhodospira shaposhnikovii
1SOX	8.6	2.1	68	463	29	Sulfite oxidase	SUOX	Gallus gallus
Supplementary Appendix A. Zip archive containing full PDF images, FASTA sequence alignments, and xml tree files for preliminary studies leading to and including Fig. A1B.

Supplementary Appendix B. Zip archive containing top BLASTp hits from eukaryotes, using each respective cytb5MY protein from Fig. A1B as query sequence in BLASTp against the eukaryotic data base. See the methods section and the README file in the zip archive for details.

Supplementary Appendix C. Sequences, alignments and phylogenetic trees for the results summarised in Fig. A4, Fig. 2 and Supplementary Appendix D.

Supplementary Appendix D. Summary table of the phylogenetic analysis of Clade 1 topologies for Fig. A4 using TBE branch support values analysis.

Supplementary Appendix E. Zip archive containing full PDF images, FASTA sequence alignments, and xml tree files for Fig. A9.

Supplementary Appendix F. 533 sequences of Cyp51A from Fig. 6.

Supplementary Appendix G. Protein Data Bank validation reports for the structure of Hadesarchaea YNP_N21 cytb5M (KUO41884.1), with PDB accession number 6NZX.