Letters to the Editor

Type 2 diabetes is a common disorder in India and HbA1c assays are widely used to guide treatment. Dapsone use is also not uncommon in India. It is therefore essential that clinicians be aware of the HbA1c lowering effect of dapsone and be cautious while interpreting the HbA1c results of patients who are on this agent.

Ranjit Unnikrishnan, Ranjit Mohan Anjana, Ramamurthy Jayashri, Viswanathan Mohan
Departments of Diabetology and Clinical Biochemistry, Madras Diabetes Research Foundation and Dr. Mohan’s Diabetes Specialities Centre, Gopalapuram, Chennai, India

Corresponding Author: Dr. Viswanathan Mohan, Madras Diabetes Research Foundation, No: 6, Conran Smith Road, Gopalapuram, Chennai – 600 086, India. E-mail: drmohans@diabetes.ind.in

References
1. Bertholon M, Mayer A, Francina A, Thivolet CH. Interference of dapsone in HbA1c monitoring of a type 1 diabetic patient with necrobiosis lipoidica (letter). Diabetes Care 1994;17:1364.
2. Serratrice J, Granel B, Swiader L, Disdier P, de Roux-Serratrice C, Raccah D, et al. Interference of dapsone in HbA1c monitoring of a diabetic patient with polychondritis. Diabetes Metab (Paris) 2002;28:508-9.
3. Albright ES, Ovalle F, Bell DS. Artifactually low hemoglobin A1c caused by use of dapsone. Endocr Pract 2002;8:370-2.
4. Polgreen PM, Putz D, Stapleton JT. Inaccurate glycosylated haemoglobin A1c measurement in human immunodeficiency virus-positive patients with diabetes mellitus. Clin Infect Dis 2003;37:e53-6.

Does Vitamin D therapy affect hematological indices in adolescents with vitamin D deficiency?

Sir,

Analysis of the nonclassic actions of vitamin D (3) has highlighted a wide range of target tissues for the hormone 1,25-dihydroxyvitamin D(3) [1, 25(OH)(2)D(3)]. Vitamin D is a steroid hormone that can act on the cellular differentiation and growth in the bone marrow either directly or through hyperparathyroidism. Both systemic or locally produced 1,25 (OH)(2)D(3) may play a role in modulating cell development processes such as hematopoiesis and lymphocyte differentiation. Thus vitamin D deficiency (VDD) may have an adverse effect on the red blood cell (RBC) erythropoiesis in the bone marrow and partially explain the high incidence of iron-deficiency anemia and recurrent infections in children with VDD. Vitamin D insufficiency has also been linked to hypertension and cardiovascular events in observational studies. It is unclear whether vitamin D supplementation can reduce blood pressure. Children with higher BP levels at about 9 years of age and with large increases in BP from 9 to 18 years of age may have an increased risk of becoming hypertensive.

We examined the effect of vitamin D3 therapy (10,000 IU/kg, IM) on RBC count and indices and total and differential white blood cell (WBC) counts as well as on the blood pressure (BP) and heart rate (HR) in 40 adolescents (age 14.6 ± 2.5 years) with VDD (blood level < 15 ng/ml) before after 4 weeks of therapy (vitamin D replete state).

There was no significant effect of VDD on RBC count or indices before versus after correction of vitamin D status. Vitamin D therapy did not have any significant effect on total WBC count nor on the lymphocyte/neutrophil ratio. We detected small but significant increases in the

Table 1: Hematological data before versus after vitamin D therapy

	Before Vit D	After Vit D
BMI	19.6 ± 2.5	19.9 ± 3.1
Systolic BP (mm Hg)	109.3 ± 7.2	106.6 ± 8.5
Diastolic BP (mm Hg)	69.1 ± 6.3	68.56 ± 5.9
Pulse (/min)	75.5 ± 7.7	73.3 ± 10.2
25 OHD ng/ml	3.8 ± 2.5	35.8 ± 7.8*
ALP (U/L)	809 ± 292	586 ± 210*
Calcium nmol/L	2.16 ± 0.24	2.35 ± 0.15
Phosphate nmol/L	1.21 ± 0.34	1.62 ± 0.32*
RBCs (million/μl)	4.85 ± 0.6	4.96 ± 0.35
Hb g/dl	9.5 ± 0.89	10.3 ± 1.2
Htc (%)	30.4 ± 2.8	32 ± 2.8
MCV (fl)	66.6 ± 13	69.6 ± 18
MCH pg	19.7 ± 3.4	22.3 ± 4.3
RDW (%)	15.4 ± 2.7	15.78 ± 2.9
Retics (%)	1.17 ± 0.5	1.16 ± 0.47
WBCs (1000/μl)	8.6 ± 3.3	8.8 ± 2.8
Neutrophils (%)	52.2 ± 12	53.1 ± 11.2
Lymphocytes (%)	39.1 ± 10.2	39.7 ± 11.3
Platelets (1000/μl)	382 ± 156	473 ± 180*
Monocytes (1000/μl)	728 ± 384	935 ± 396*

Hb: Hemoglobin, Hct: Hematocrit, RBCs: Red cell count, ALP: Alkaline phosphatase, Vit D: Vitamin D, PTH: Parathormone. *P < 0.05 after versus before treatment
Letters to the Editor

platelet and monocyte counts after vitamin D therapy ($P < 0.04$ and 0.03 respectively). There was no significant effect of VDD on BP or HR and correction of VDD did not significantly change the BP or HR. No significant correlation was detected between RBC indices, WBC count, and BP on the one hand and vitamin D level on the other hand [Table 1].

Vitamin D deficiency does not have significant effect on RBC count and indices, on WBC total and differential count, nor on BP and HR. A mega-dose vitamin D therapy did not have significant effect on all these parameters in adolescents.

Ashraf T. Soliman, Muhamed Eldabbagh, Ahmed Elawwa, Wael Saleem
Department of Pediatrics, Hamad Medical Centre, Doha, Qatar

Corresponding Author: Ashraf T. Soliman, Professor of Pediatrics and Endocrinology, Department of Pediatrics, Hamad Medical Centre, Doha, Qatar. E-mail: ATSOLIMAN@yahoo.com

REFERENCES

1. Yetgin S, Ozsoylu S. Myeloid metaplasia in vitamin D deficiency rickets. Scand J Hematology 1982;28:180-5.
2. Bellido T, Girasole G, Passeri G, Yu XP, Mocharla H, Jilka RL, et al. Demonstration of estrogen and vitamin D receptors in bone marrow-derived stromal cells: Up-regulation of the estrogen receptor by 1, 25-dihydroxyvitamin-D3. Endocrinology 1993;133:553-62.
3. Yetgin S, Yalçın S. The effect of vitamin D3 on CD34 progenitor cells in vitamin D deficiency rickets. Turk J Pediatr 2004;46:164-6.
4. Witham MD, Nadir MA, Struthers AD. Effect of vitamin D on blood pressure: A systematic review and meta-analysis. J Hypertens 2009;27:1948-54.
5. Woynarowska B, Mukherjee D, ALEX F, Roche A F, Siervogel RM. Blood Pressure Changes During Adolescence and Subsequent Adult Blood Pressure Level. Hypertension 1985;7:695-701.

Access this article online

Quick Response Code:

Website: www.ijem.in

DOI: 10.4103/2230-8210.98038