서론

연구의 필요성

인간의 모든 학습은 뇌기능을 토대로 이루어진다는 가정과 함께 1990년대부터 뇌과학에 대한 연구가 폭발적으로 증가하면서, 뇌를 집중적으로 연구하는 신경과학 및 인지과학은 다양한 분야의 융합 형태로 발전해왔다(Yang, 2012). 이를 특징적으로 반영하는 것은 1999년 경제협력개발기구(Organization for Economic Co-operation and Development, OECD)에서 시작한 뇌과학과 교육학의 융합연구(educational neuroscience)로, 미국과학재단(National Science Foundation, NSF)에서는 2000년부터 뇌과학을 기반으로 하는 교육과학과발연구 6개년 계획을 세우고 뇌기반 학습에 대한 연구를 시작하고 있다(Sripada, 2012). 일본에서도 21세기를 '뇌의 시대(Century of the Brain)'라고 선포하여 뇌기반 학습 연구에 박차를 가하고 있다(Immordino-Yang & Damasio, 2007). 한편, 국내에서는 1998년에 '뇌연구촉진법'이 제정되어 뇌연구에 재정적 지원을 하고 있으며, 2003년 2월에 뇌기반 학습의 현상을 심도지어 처음으로 논의하여 다학제적 접근을 모색하기 시작하였다(Choi & Shin, 2014).

뇌기반 학습은 뇌과학이 가장 효율적으로 학습할 수 있는 여러 가지 상황을 제시하는데, 뇌과학이 진보하면서 이러한 결과들을 실제 학습에 이용하는 프로그램으로 더욱 진화하고 있다(Clement & Lovat, 2012). 특히 최근에는 뇌에서 인지적 처리가 수행될 때의 신경생리학적 메커니즘을 보여주는 뇌과학의 분광기 실험(Functional Near-Infrared Spectroscopy, fNIRS)을 포함한 신경영상기법들(Positron Emission Tomography, PET 등)을 이용하여 뇌기반 학습의 효과를 객관적으로 설명하면서 뇌기반 학습의 폐리다임은 다시금 주목을 받고 있다(Choi & Shin, 2014).

지금까지 국내에서 이루어진 뇌기반 학습 관련 연구는 뇌기반 학습의 필요성을 역설하거나, 기존의 교수-학습 내용을 뇌과학적인 관점에서 재조명하거나, 초-중등 교육에서 뇌기반 학습을 교과목에 적용하여 효과를 탐구해왔다(Yang, 2012). 그러나 한국에서의 뇌과학은 기존의 학습을 기역력 강화 또는 좌우뇌 개발과 같은 편파적인 측면을 부각시켜 상업적으로 이용하는 사례도 적지 않았다(Chung, 2010). 반면, 고등 교육에서 뇌기반 학습을 토대로 교육프로그램을 개발하거나 신경생리학적인 도구를 사용하여 뇌기반 학습의 효과를 분석한 연구들은 거의 찾아보기 힘들다. 오히려 뇌의 학습기제에 영향하는 교육 활동의 예를 발견할 수 있다. 즉, 뇌의 작용을 무관하게 학습의 외적 동기를 남용하거나, 취업을 위한 지식득득에만 급급하거나, 인성 함양이나 창의성 개발을 돕는 인문예술분야를 소홀히 하는 것 등이다.

한편, 국내외 간호교육 현장에서는 뇌기반 학습에 대한 정

주요어 : 뇌, 학습, 간호, 교육, 고찰

* 본 연구는 2013년 교육과학기술부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2013S1A5A2A01019026).
1) 인제대학교 건강과학연구소 간호학과 교수 2) 한림대학교 간호학부 교수(교신저자 E-mail: ksj@hallym.ac.kr)
3) 삼육대학교 간호학과 교수 4) 중앙대학교 적십자간호대학 교수
5) 인제대학교 의학교육학과 의과학부 교수 6) 듀크대학교 간호대학 교수

주고양: 2014년 8월 22일 심사완료일, 2014년 10월 21일 기획확정일, 2014년 10월 26일
보가 스페어가 못하고 있고 이에 대한 논의가 부족한 상태이 다. 간호사의 역량은 신체생리 기전이나 간호이론 지식의 적 용 및 속련된 간호술기의 수행을 넘어 대인관계, 의사결정, 그리고 정신적 기술까지도 포함하며, 이러한 역량 달성을 위 해 각 역량마다 학생들의 지식, 기술, 태도의 변화를 갖는 것 을 목표로 하고 있다(Oh, Shin, & De Gagne, 2012). 그러므로 인지, 정서, 그리고 신체생리 영역을 아우르는 능력 학습이 이루어질 때 간호역량은 더욱 쉽게 달성될 것으로 기대된다. 그러나 국내 간호교육에서는 아직까지 능력 학습에 특유한 개념저리나 문헌고찰이 이루어지지 않았기 때문에 이 미 시험기준이나 학습기반 기법 등은 일반 교육방법이 활용되면서도 능력 학습에 대한 연구가 부족했다고 본다.

이에 본 연구에서는 능력 학습과 관련된 국내 문헌들을 검색하여 Whittmore와 Knafl (2005)이 제시한 통합적 고찰 방 법으로 관련 문헌들을 우선적으로 탐색하고자 하였다. 통합적 고찰은 분석대상 연구 문헌을 특정 연구 설계에 국한하지 않는 보다 핵심의 문헌고찰 방법이기 때문에, 발견된 결과를 바탕으로 고찰하고자 하는 주제에 대한 포괄적인 이해를 제공 해준다. 그러하여 본 연구는 인지적 능력뿐 아니라 간호학적 능력의 향상시키기 위한 간호교육의 특성을 고려하여 간호교 육자들에게 능력 학습의 이해를 돕고 교수전략을 위한 기본 자료를 제공하고자 실시되었다.

연구 방법

연구 설계

본 연구는 간호교육에서 능력 학습을 적용한 연구논문을 통합적 고찰 방법으로 분석한 문헌고찰연구이다. Whittmore와 Knafl (2005)이 제시한 지침에 따라 연구문제의 명료화, 문헌 검색, 자료의 질평가, 자료분석, 자료기술의 5단계로 시행하였 다(Figure 1).

연구 문제

통합적 고찰의 첫 번째 단계는 고찰하고자 하는 현상과 연구의 목적을 명확하게 드리내는 것으로서, 본 연구에서는 “간 호교육자들의 간호교육에서 능력 학습의 교수전략은 무엇인가?”로 연구문제를 명료화하였다.

연구 대상 문헌검색

연구의 신회성과 문헌검색의 정확성을 높이기 위해 문헌검 색과정을 상세하게 기록하는 것은 매우 중요하다(Whittmore & Knafl, 2005). 문헌검색 및 분석기간은 2013년 5월 1일부터 2014년 7월 31일까지였으며, 문헌검색은 간호교육에서 능력 학습의 첫째 연구단(Burk, Gillman, & Ose, 1984) 1984년부터 2013년까지 최근 30년간으로 출판기한을 제한하였다. 검색 데이터베이스는 CINAHL, OVID, PubMed, SCOPUS를 사용하였으며, 문헌 검색에 사용된 주요 핵심 단어는 ‘nurs*’와 ‘brain based 또는 neuroscience’ 그리고 ‘educa* 또는 learn* 또는 teach*’으로 조합하였다. 초기 검색 결과 CINAHL 16편, OVID 16편, PubMed 25편, SCOPUS 14편으로 총 72편이 검색되었다. 초기 검색 논문에서 중복 제외 43편을 제외한 29편의 원문을 모두 확보하여 얻었으며, 이 중 제선강 간호중재 논문, 전문간호사 포함 대학원생 교육논문 등 연구 목적, 대상, 내용이 본 연구의 선정기준에 부합되지 않는 논문 7편 은 제외하였다. 또한 각 논문의 참고논문 목록을 검토하는 과 정에서 직접 손으로 찾은 논문 2편을 추가로 포함하여 최종 24편을 분석대상 문헌으로 확정하였다(Figure 2).

연구 대상 문헌검색

연구의 신회성과 문헌검색의 정확성을 높이기 위해 문헌검 색과정을 상세하게 기록하는 것은 매우 중요하다(Whittmore & Knafl, 2005). 문헌검색 및 분석기간은 2013년 5월 1일부터 2014년 7월 31일까지였으며, 문헌검색은 간호교육에서 능력 학습의 첫째 연구단(Burk, Gillman, & Ose, 1984) 1984년부터 2013년까지 최근 30년간으로 출판기한을 제한하였다. 검색 데이터베이스는 CINAHL, OVID, PubMed, SCOPUS를 사용하였으며, 문헌 검색에 사용된 주요 핵심 단어는 ‘nurs*’와 ‘brain based 또는 neuroscience’ 그리고 ‘educa* 또는 learn* 또는 teach*’으로 조합하였다. 초기 검색 결과 CINAHL 16편, OVID 16편, PubMed 25편, SCOPUS 14편으로 총 72편이 검색되었다. 초기 검색 논문에서 중복 제외 43편을 제외한 29편의 원문을 모두 확보하여 얻었으며, 이 중 제선강 간호중재 논문, 전문간호사 포함 대학원생 교육논문 등 연구 목적, 대상, 내용이 본 연구의 선정기준에 부합되지 않는 논문 7편은 제외하였다. 또한 각 논문의 참고논문 목록을 검토하는 과정에서 직접 손으로 찾은 논문 2편을 추가로 포함하여 최종 24편을 분석대상 문헌으로 확정하였다(Figure 2).

연구 대상 문헌검색

연구의 신회성과 문헌검색의 정확성을 높이기 위해 문헌검 색과정을 상세하게 기록하는 것은 매우 중요하다(Whittmore & Knafl, 2005). 문헌검색 및 분석기간은 2013년 5월 1일부터 2014년 7월 31일까지였으며, 문헌검색은 간호교육에서 능력 학습의 첫째 연구단(Burk, Gillman, & Ose, 1984) 1984년부터 2013년까지 최근 30년간으로 출판기한을 제한하였다. 검색 데이터베이스는 CINAHL, OVID, PubMed, SCOPUS를 사용하였으며, 문헌 검색에 사용된 주요 핵심 단어는 ‘nurs*’와 ‘brain based 또는 neuroscience’ 그리고 ‘educa* 또는 learn* 또는 teach*’으로 조합하였다. 초기 검색 결과 CINAHL 16편, OVID 16편, PubMed 25편, SCOPUS 14편으로 총 72편이 검색되었다. 초기 검색 논문에서 중복 제외 43편을 제외한 29편의 원문을 모두 확보하여 얻었으며, 이 중 제선강 간호중재 논문, 전문간호사 포함 대학원생 교육논문 등 연구 목적, 대상, 내용이 본 연구의 선정기준에 부합되지 않는 논문 7편은 제외하였다. 또한 각 논문의 참고논문 목록을 검토하는 과정에서 직접 손으로 찾은 논문 2편을 추가로 포함하여 최종 24편을 분석대상 문헌으로 확정하였다(Figure 2).
간호교육에서 뇌기반학습의 교수전략을 위한 통합적 고찰

자료의 질 평가

Whittmore와 Knafl (2005)는 논문의 질평가를 위해서는 연구의 선정기준을 엄격하게 적용하는 것이 가장 중요하다고 강조하였다. 여기에 따라 연구자들은 메트릭스 방법(Garrard, 2010)을 사용하여 저자(출판연도), 국가, 발표지, 연구설계, 연구방법, 주요 내용 등으로 분류하고 분석들을 구성하여 코딩하였다. 예비 코딩과 세미나를 통해 연구자 6인이의 안면타당도 검사와 조정과정을 거친 후 수정, 보완하여 다음과 같은 선정기준으로 최종분석의 준거를 마련하였으며, 석, 박사 학위논문과 편집자 서신, 사설, 학술대회 발표 논문은 제외하였다.

● 선정기준
 • 2014년 3월 31일까지 영문으로 발표된 논문
 • 심사를 거쳐 국제학술지에 게재된 논문
 • 학부과정의 간호학생 교육을 주제로 한 논문
 • 주요 내용의 문헌고찰 교육을 주제로 한 논문
 • 3Cs의 분석 방법 (code, categories, & concepts)을 사용하여 많은 양의 문서적인 정보들을 축소하면서 숨겨진 주제들을 찾아내도록 노력하였다(Lichtman, 2006).
 • 다양한 연구에서 뇌기반 학습과 관련된 문장을 추출하고 간호교육의 교수-학습 활동과 관련해서 뇌기반 학습이 어떻게 반영되는지 등을 조사하였다. 이러한 과정에서 다수의 통합적 문헌고찰의 경험이 있는 연구자들은 5회 이상의 세미나를 통해 탐색을 확장하여 노력하였으며 모든 과정은 문서화하였다. 또한 정기적인 연구 모임 외에도 전자 메일 또는 화상 회의 등을 이용하여 토의된 내용을 수렴하고 합의하면서 자료 분석의 결론을 도출하다.

통합적 문헌고찰의 결론은 테이블 또는 도표 형태로 나타내고 논리적인 흐름을 보이려고(Whittmore & Knafl, 2005). 이러한 마지막 절차에 따라 본 연구에서는 테이블을 통해 도출된 주요 개념에 대한 깊이와 폭을 제공하고 독자의 이해를 돕도록 노력하였다.

연구 결과

연구 자료의 일반적인 특성

간호교육에서 뇌기반 학습과 관련된 연구는 1984년을 시작으로 1993년까지 6편(25.0%), 1994년 - 2003년에 3편(12.5%), 2004년 - 2013년에 15(62.5%)편이 발표되었다. 연구가 진행된 국가는 미국이 18편(75.0%)으로 대부분이었으며, 캐나다 2편, 남아프리카 2편, 영국과 아일랜드에서 각각 1편씩 발표되었다. 연구설계별로 살펴보면, 문헌고찰 연구가 13편(54.2%)으로 가장 많았고 실험연구는 3편(12.5%)이었다(Table 1).

간호교육에서 뇌기반 학습을 위한 교수전략

본 연구결과 간호교육에서 뇌기반 학습을 위한 교수전략은 세 가지로 도출되었다. 첫째, 간호교육자는 뇌의 구조와 기능에 대한 이해를 바탕으로 뇌의 각 부분을 모두 활용할 수 있도록 학습자의 전뇌(whole-brain)의 기능을 활용하려는 것이었다. 둘째, 학습자 개인들의 다양성을 인지하고, 학습자의 동기와 흥미를 자극하며, 균형적인 정서 상태를 유지해주는 지지적인 교육환경을 구축하려는 것이다. 셋째, 정보의 보유를 강화하며 다양한 교육매체와 방법을 사용하여 학습자가 더욱 능동적이 되도록 겪려한다는 것이다(Table 2).

논의

뇌기반 학습은 뇌의 인지기능 및 구조에 대한 과학적인 이해를 기초로 하여, 지식의 양이 아닌 지식의 적절한 활용을 위한 실용적인 접근이다(Chung, 2010). 본 연구에서는 간호교육에서 뇌기반 학습과 관련된 24개의 국외 연구를 통합적으
No.*	First Author	Nation	Source	Research design	Research methods	Key findings	
1	Bond ME	Canada	Journal of Nursing Education, 48(3)	Literature review	Describe author's personal history of shame in the clinical practicum area	• The knowledge, skills, and attitudes needed by nurse educators to heal and prevent shaming in clinical nursing education.	
					• The practice which serves to connect nursing instructor with student include listening and responding, mutual empathy, authenticity, movement toward mutuality, and humor.		
2	Boss BJ (1986)	USA	Journal of Neuroscience Nursing, 18(5)	Literature review	Describe neurophysiology of learning and memory functions	• The established facts about memory, the memory systems, and learning are presented along with relevant theories currently proposed.	
3	Burk B (1984)	USA	Journal of Continuing Education in Nursing, 15(6)	Literature review	Review brain anatomy, overview of the research related to brain function, and discuss potential implications for educators	• The functions of the memory systems in cognition and the function of the frontal lobes in goal orientation and elaboration of thought are addressed.	
4	Cardoza MP (2011)	USA	Clinical Simulation in Nursing, 7(6)	Literature review	Describe neurobiology theory and method gaining acceptance of technological innovations: simulators, virtual worlds, video/computer games	• The possible connections between neurochemicals and responsiveness have important implications for simulation learning: student nurses predict the outcomes of their actions in response to the patients’ changing conditions, and these decisions and action results affect the students’ prediction error.	
5	Collins JW (2007)	USA	Journal of Neuroscience Nursing, 39(5)	Literature review	Describe neurophysiological principles to implement better educational strategies to provide quality education to patients and others	• Nurses are in a unique position to understand neurophysiological principles and implement educational strategies based on these principles to provide quality education; Role of mirror neurons, Gardner’s theory, and multiple intelligences.	
					• Review Gardner’s theory of multiple intelligences		
6	Davis AR (1988)	USA	Journal of Nursing Education, 27(4)	Literature review	Descriptive study of teaching strategies	• Teaching strategies developed specifically to enhance the brain’s natural capacities; memory and recall, cognition, and motivation.	
					• Nurse educators who are aware of individual differences in learning can structure teaching strategies to accommodate these differences.		
					• Researcher and nurse educator can develop methods of teaching based on new information form these fields that will improve both the efficiency and efficacy of faculty teaching and students’ learning.		
7	Denny M (2008)	Ireland	Nurse Education Today, 28(1)	Literature review	Using a multiple intelligence teaching approach [MITA] to teaching and learning to nursing student using a five phase approach	• A MITA has great potential and ensures the advancement of new innovative approaches to teaching and learning in undergraduate nurse education, particularly in terms of reinforcing learning beyond the educational domain and into the individual’s professional development and clinical practice.	
8	Fero LJ (2010)	USA	Journal of Advanced Nursing, 66(10)	Experimental study	36 nursing students participated in simulation-based performance using critical thinking skills scores and simulation-based performance score	• There was a statistically significant relationship between overall high-fidelity human simulation performance and overall critical thinking disposition scores.	
No.	First Author	Year	Nation	Source	Research design	Research methods	Key findings
-----	--------------	------	--------	--------	----------------	-----------------	--------------
9	Gendron D	1990	Canada	National League for Nursing Publication, 17	Literature review	Describe neurological perspective of integrated behavior	A myriad of experiential activities are important. From multiple exposure to and experiences of caring behavior and from multiple explorations about caring, the brain naturally begins to form a pattern of integrated caring behavior.
10	Gruendemann BJ	2007	USA	Association of periOperative Registered Nurses [AORN] Journal, 83(3)	Literature review	Overview of distance learning and its application to perioperative nursing	In nursing situations, learned caring actions are mostly naturally linked as association networks in the brain. To stimulate learners to think about the feeling of caring and imagine caring for others, caring becomes a psychophysiological or psychokinesthetic experience. Distance education is a pedagogical specialty, and distance teaching is a nursery for creating new approaches to teaching.
11	Hermanns M	2012	USA	Journal of Nursing Education, 51(9)	Anecdotal report	Use music to teach aspects of psychopharmacology to students in the course Psychiatric/Mental Health Nursing	Songs and six-verse rhyme, this innovative teaching method allowed students the opportunity to revisit the information through multiple exposures of the content for reinforcement and enhancement of student learning in a fun, creative approach.
12	Holbert CM	1988	USA	Nurse Educator, 13(1)	Anecdotal report	Review methodological research to explore the potential of whole brain learning with Kolb's model	Students with various learning styles have the opportunity to develop diverse brain capacities, and thus become flexible, life-long learners and problem solvers who are open to the infinite possibilities of the future. Kolb's experiential learning model has excellent potential for promoting whole-brain education in the nursing curriculum.
13	Hydo SK	2011	USA	International Journal of Nursing Education Scholarship, 4(1)	Experimental study with qualitative method	91 nursing students participated in scaffolding activity. Explore the themes from students' written responses using naturalistic inquiry	Scaffolding is a metaphor for supporting learners as they develop higher levels of thinking. Four themes emerged from the data: art and creativity, teamwork, boundaries and horizons within self, and boundaries and horizons in the profession.
14	Lillyman S	2011	UK	Nurse Education in Practice, 11(3)	Experimental study with qualitative method	6 second-year nursing students participated in classroom using storyboarding. Photographed after the session and copies of the pictures and then reviewed	Using of storyboarding within a classroom setting as a means of addressing end-of-life engaged student nurses in deeper learning and reflection about managing patient who receiving end-of-life care.
15	Mueller A	2001	USA	Nurse Educator, 26(2)	Descriptive analytical study	Descriptive analytical study of mind-mapping	Anecdotal data of mind-mapped care plans are very positive. Faculty comments primarily related to enhanced thinking skills: critical thinking, whole-brain thinking, comprehensive thinking, and patient-centered thinking.
16	Noonan P	2011	USA	AORN Journal, 94(5)	Literature review	Use concept map for active teaching strategy in nursing education and review of the concept map	Concept mapping is an active teaching strategy that can be used in nursing education to facilitate the development of critical thinking and decision-making skills. Complex knowledge can be better learned and retained when the brain works to organize information in a hierarchical framework and the information is built up with interacting concepts.
No.	First Author	Year	Country	Source	Research Design	Research Methods	Key Findings
-----	--------------	------	---------	--------	-----------------	-----------------	--------------
17	Pilcher J	2012	USA	Neonatal Network, 31(3)	Literature review	• Review of brain-based learning	- The information is stored in more isolated areas of the brain and is subsequently forgotten, if not used on a regular basis.
- Suggestions for promoting memorable learning of NICU nurses are chunk of information, use reflective activities, include interactivity, stimulate multiple senses, use novelty, surprise, and humor, and move away from traditional. |
| 18 | Potgieter E | 1999a| South Africa | Curationis, 12 | Exploratory descriptive study | • A descriptive analytical study of Kolb’s cognitive styles in relation to the Whole Brain Model and the implications for nursing education | - This article focuses on Kolb’s cognitive styles in relation to the whole brain model and the implications there of for nursing education. |
| 19 | Potgieter E | 1999b| South Africa | Curationis, 12 | Exploratory descriptive study | • Exploratory descriptive design comprising an analytical study of the literature on creativity was utilized
• Describe the whole brain creativity model and its implications for nursing education and practice | - The whole brain creativity model provides a sound basis for understanding the concept ‘creativity’ as illustrated in the works of scientific geniuses. |
| 20 | Restanio R | 2011 | USA | Journal of Continuing Education in Nursing, 42(5) | Literature review | • Discusses brain function and ‘tips’ for structuring teaching based on it | - Brain function and ‘tips’ for structuring teaching with the concept of brain-based learning; construct appropriately, elicit emotion, communicate with visuals, break down concepts, and repeat information. |
| 21 | Rothgeb MK | 2008 | USA | Journal of Nursing Education, 47(11) | Literature review | • Review simulation, learning theories, advantages and challenges, regulatory viewpoints, budgetary needs, and educator training in nursing | - Learning theories related to simulation such as constructivism, adult, brain-based, social-cognitive, experiential, and novice-to-expert learning theory.
- Simulation experience reinforces the development of skills in assessment, psychomotor activity, critical thinking. |
| 22 | Thomas KJ | 1990 | USA | AORN Journal, 51(1) | Exploratory descriptive study | • Methodology study to test Kolb’s theory for whole-brain education | - Kolb’s model provides a practical framework for designing learning experiences that provide a holistic view of the surgical experience and of the nurse’s role.
- The perioperative nurse will need to use highly innovative, whole-brain approaches to confront increasingly complex technologic environments limited time frames, and mandates of cost-effectiveness. |
| 23 | Trapp P | 2005 | USA | Journal of Continuing Education in Nursing, 3(2) | Literature review | • Review and describe brain-based strategies | - Applying brain-based strategies can engage the learner, focus attention, and increase the involvement of the professional level staff. |
| 24 | Zander PE | 2007 | USA | Journal of Theory Construction & Testing, 11(1) | Concept analysis | • Describe concept using Rodger’s evolutionary concept analysis | - Nursing is a dynamic profession and therefore needs continual exploration of the various concepts linked to its educational and evaluative processes.
- The ways of knowing in nursing appear straightforward when first encountered, but when critically examined, they are as complex as the discipline of nursing itself. |

A number of each paper is unique number given by authors.
간호교육에서 뇌기반학습의 교수전략을 위한 통합적 고찰

로 고찰하여 간호교육자를 위한 세 가지 뇌 기반 학습 교수전략이 도출되었다.

첫 번째 전략으로는 학습자의 전뇌의 기능을 활성화하려는 것이다. 학습이란 단순히 지식의 습득 뿐 아니라 학습된 지식을 신경계에 저장하고 필요할 때 다시 기억해내는 매우 복잡한 신경학적 활동이다(Cardoza, 2011).

아드레날린과 도파민은 학습자의 보상감과 만족감을 증가시키고 복잡한 임상상황에 대처해야 하는 의사결정 능력을 증진하며, 거울신경세포(mirror neuron)와 뇌신경세포의 생존과 기능에 관여하는 CREB(cAMP Responsive Element Binding protein, 고리형 AMP 반응요소결합단백질) 등은 학습효과를 증진시킨다(Collins, 2007).

인간의 뇌는 좌뇌와 우뇌로 구분되어 있는데, 좌뇌는 논리적 사고와 언어적 기능, 과학적 판단과 객관적 사고의 기능을 담당하는 반면, 우뇌는 창조적이고 공감적인 정보를 주로 처리하는 기능으로 알려져 있다(Collins, 2007).

이러한 다양한 교육매체와 교수방법을 활용하는 것은 뇌기반 학습에서 대뇌 양쪽 반구를 활성화시키고 뇌의 영역별 모든 기능을 활성화시킬 수 있는 것이다.

두 번째 전략은 지지적인 교육환경을 조성하라는 것이다. Jensen (2008)은 뇌기반 학습의 7가지 원리를 설명하였으며, 각각의 학습자 개인의 뇌 기능을 개발시킬 기회를 제공할 수 있는 것이 필요하다(Denny et al., 2008; Lillyman, Gutteridge, & Berridge, 2011).

또한 지난 30여년 동안 신경과학 연구에서 감성이 학습에 우선적으로 작용하고 결정적인 역할을 한다는 것이 밝혀짐에 따라(Cho & Kim, 2011), Immordino-Yang과 Damasio(2007)는 학습자의 기분, 생각, 신념, 열망, 태도 등을 인식하고 이를 창조적인 학습과정에 포함시켜야 한다고 주장했다. 그러므로 전통적인 강의형태를 벗어나 학사와 학생들의 흥미를 자극하고 평가하는 것이 필요하다(Denny et al., 2008; Lillyman, Gutteridge, & Berridge, 2011).

학습에 도움이 되는 긍정적인 정서를 촉진하는 신경전달물질인 에피네프린은 우리가 하는 행동에 용기와 능력을 부여하고 과제에 몰두할 수 있게 해준 반면, 노에프네프린은 두뇌에서 자신이 스트레스를 받고 있다고 느낄 때 분비되어 평소에 비해 더 안정적, 평화로운 상태를 제공하는 데 도움이 된다(Clement & Lovat, 2012).

이와 같이 간호교육자는 적절한 교육방법과 교육내용을 제공함으로써 학습자들이 자신의 동기를 파악할 때 더 높은 동기부여 상태에 도달할 수 있다(Jensen, 2008).

학습에 도움이 되는 긍정적인 정서를 촉진하는 신경전달물질인 에피네프린과 노에프네프린과 같은 전달물질의 작용에 의하면 학습자들의 학습동기와 인지능력, 자원을 감시하고 평가하는 것은 학생들의 동기와 흥미를 자극하며 학습의 흥미와 능력을 향상시킬 수 있는 것이다.
자의 마음을 편안하도록 돕고, 이러한 상태는 학습자가 더 몰두하고 깊이 있는 이해가 가능하도록 한다. 한편, 학습에 대한 흥미와 의욕이 유발될 때 학습이 용이하고, 약간의 두려움과 긴장이 유발되면 반면에 사고가 과정을 통해 개선되면서 학습이 증가한다는 보고도 있으나, 지나친 흥분이나 두려움이 유발되면 학습은 제대로 이루어지지 못한다(Immordino-Yang & Damasio, 2007).

이와 같은 맥락에서 기본 술기 과목과 임상현장 실습 시 많은 간호학생들이 가질 수 있는 부끄러움이나 자신감의 부족은 뇌기반 학습에 부정적인 영향을 미치는 강력한 장애요인으로(Bond, 2009), 뇌기반 학습에서 이에 대한 해결책이 동반되어야 한다. 비록 학습자 개인의 성별, 학습성취 수준, 성장 환경과 같은 배경을 이해하는 교육자의 개방적이고 학생을 존중하는 태도와 공감이 이루어지는 관계형성이 중요하다(Zander, 2007). Lyllyman 등(2011)은 간호교육에서는 단순히 정답을 추구하는 것이 아니라 상황적인 맥락 안에서 문제해결 능력을 가져야 하므로 학습자의 의사표현을 격려하며 교육자와 학습자가 서로 성찰적인 대화를 존중하는 것이 중요하다(Collins, 2007).

세 번째 전략은 학습자의 능동성을 촉진시키는 것이다. 대부분의 경우 정보를 오래 기억하는 것이 최적의 학습이므로 뇌기반 학습에서는 좀 더 효과적으로 장기간 기억을 보유하도록 하는 학습활동이 강조되고 있다(Noonan, 2011; Pilcher, 2012). 학습과 장기기억은 복잡하게 연관된 수행과정이며, 반복은 장기기억에 대한 정보를 형성시키기 때문에 다양하고 흥미로운 학습방법을 사용하여 반복할 수 있도록 해야 한다(Collins, 2007). Hermanns 등(2012)은 간호교육에서 음악과 노래를 사용함으로써 학생들의 인지와 지식의 보유 및 회상능력을 증진시킬 수 있다고 보고하였다. 즉, 신경전달물질을 암기하고 학습할 때에 운율을 맞춘 가사로 학습 내용을 담아 노래를 반복해서 부르는 것이 학습이 매 우 재미있게 해 주었음을 보고하고 있다. 또한 스티로 보딩(Lillicman et al., 2011; Rothgeb, 2008), 마인드 매핑(Mueller, Johnston, & Bligh, 2001), 개념 매핑 기법(Noonan, 2011) 등도 늙어진 학습의 정확성과 효과를 증명한 교육방법이다. 이 방법들은 핵심 단어나 개념을 중심으로 해지 문제를 파생하고 확장되어 가는 과정을 확인하고, 자신이 알고 있는 것을 동시에 검토하고 고려할 수 있는 시작적 사고 기법들로서(Mueller et al., 2001), 정보를 기억기억으로 바꾸어주어 전통적인 강의식 교육에서조차 충분히 활용할 수 있는 유용한 방법으로 생각된다.

한편, 시뮬레이션 교육은 늙어 환경을 시뮬레이션하는 맥락에서 대표적인 능동적 학습의 예라고 볼 수 있다(Cardozz, 2011). Fero 등(2010)과 많은 연구자들은 학생들이 암시 시나리오에 접했을 때보다 시뮬레이션 교육 사례에서 상황에 대한 분석능력과 창의적인 사고능력이 더욱 향상되었음을 보고하고 있다. 또한 암션이런 방법으로 노래, 미술, 게임, 투영 등 신체를 움직이는 방법들을 병행했을 때 학생들에게 감각적 인식의 통합을 가져올 수 있으며 이러한 신체활동은 늙어 기능과 학습을 더욱 향상시켰다(Herman, 2012).

세 번째 전략은 학습자의 능동성을 촉진시키는 것이다. 대부분의 경우 정보를 오래 기억하는 것이 최적의 학습이므로 뇌기반 학습에서는 좀 더 효과적으로 장기간 기억을 보유하도록 하는 학습활동이 강조되고 있다(Noonan, 2011; Pilcher, 2012). 학습과 장기기억은 복잡하게 연관된 수행과정이며, 반복은 장기기억에 대한 정보를 형성시키기 때문에 다양하고 흥미로운 학습방법을 사용하여 반복할 수 있도록 해야 한다(Collins, 2007). Hermanns 등(2012)은 간호교육에서 음악과 노래를 사용함으로써 학생들의 인지와 지식의 보유 및 회상능력을 증진시킬 수 있다고 보고하였다. 즉, 신경전달물질을 암기하고 학습할 때에 운율을 맞춘 가사로 학습 내용을 담아 노래를 반복해서 부르는 것이 학습이 매우 재미있게 해 주었음을 보고하고 있다. 또한 스티로 보딩(Lillicman et al., 2011; Rothgeb, 2008), 마인드 매핑(Mueller, Johnston, & Bligh, 2001), 개념 매핑 기법(Noonan, 2011) 등도 늙어진 학습의 정확성과 효과를 증명한 교육방법이다. 이 방법들은 핵심 단어나 개념을 중심으로 해지 문제를 파생하고 확장되어 가는 과정을 확인하고, 자신이 알고 있는 것을 동시에 검토하고 고려할 수 있는 시작적 사고 기법들로서(Mueller et al., 2001), 정보를 기억기억으로 바꾸어주어 전통적인 강의식 교육에서조차 충분히 활용할 수 있는 유용한 방법으로 생각된다.

한편, 시뮬레이션 교육은 늙어 환경을 시뮬레이션하는 맥락에서 대표적인 능동적 학습의 예라고 볼 수 있다(Cardozz, 2011). Fero 등(2010)과 많은 연구자들은 학생들이 암시 시나리오에 접했을 때보다 시뮬레이션 교육 사례에서 상황에 대한 분석능력과 창의적인 사고능력이 더욱 향상되었음을 보고하고 있다. 또한 암션이런 방법으로 노래, 미술, 게임, 투영 등 신체를 움직이는 방법들을 병행했을 때 학생들에게 감각적 인식의 통합을 가져올 수 있으며 이러한 신체활동은 늙어 기능과 학습을 더욱 향상시켰다(Herman, 2012).

세 번째 전략은 학습자의 능동성을 촉진시키는 것이다. 대부분의 경우 정보를 오래 기억하는 것이 최적의 학습이므로 뇌기반 학습에서는 좀 더 효과적으로 장기간 기억을 보유하도록 하는 학습활동이 강조되고 있다(Noonan, 2011; Pilcher, 2012). 학습과 장기기억은 복잡하게 연관된 수행과정이며, 반복은 장기기억에 대한 정보를 형성시키기 때문에 다양하고 흥미로운 학습방법을 사용하여 반복할 수 있도록 해야 한다(Collins, 2007). Hermanns 등(2012)은 간호교육에서 음악과 노래를 사용함으로써 학생들의 인지와 지식의 보유 및 흥미를 증진시킬 수 있다는 것을 증명하였다. 즉, 신경전달물질을 암기하고 학습할 때에 운율을 맞춘 가사로 학습 내용을 담아 노래를 반복해서 부르는 것이 학습이 매우 재미있게 해 주었음을 보고하고 있다. 또한 스티로 보딩(Lillicman et al., 2011; Rothgeb, 2008), 마인드 매핑(Mueller, Johnston, & Bligh, 2001), 개념 매핑 기법(Noonan, 2011) 등도 늙어진 학습의 정확성과 효과를 증명한 교육방법이다. 이 방법들은 핵심 단어나 개념을 중심으로 해지 문제를 파생하고 확장되어 가는 과정을 확인하고, 자신이 알고 있는 것을 동시에 검토하고 고려할 수 있는 시작적 사고 기법들로서(Mueller et al., 2001), 정보를 기억기억으로 바꾸어주어 전통적인 강의식 교육에서조차 충분히 활용할 수 있는 유용한 방법으로 생각된다.
의 개인적 차이에 따른 다양성과 다중지능을 고려하며 전뇌 기능을 통합하여 활성화할 수 있는 방법을 사용해야 할 것이 다. 간호교육에서 뇌기반 학습에 대한 통합적 고찰을 통해 나타난 본 연구결과는 새로운 간호교육의 이론과 실제에 대한 구체적인 교육방법의 사례를 제공해주고 있으며, 발전방향을 제시하는 데 중요한 의미를 가진다고 본다.

결론 및 제언
뇌기반 학습은 인간의 뇌가 보다 효율적으로 학습하는 원리를 교육에 이용하여 교수학습을 설계하는 것으로, 국내외 교육학자들은 뇌기반 학습 프로그램을 개발하고 적용하는 다양한 연구를 실시하였다. 그러나 국내 간호교육에서는 뇌기반 학습에 대한 논의가 충분히 형성되지 않고 있어 본 연구자들은 1984년부터 시작된 간호교육에서의 뇌기반 학습과 관련된 연구논문들을 통합적으로 고찰하여 국내 간호교육자들에게 뇌기반 학습을 통한 교수전략을 제시하고자 하였다.

본 연구결과 뇌기반 학습을 간호교육에 적용하기 위하여 학습자의 전뇌 활용, 지지적인 학습환경 제공, 학습자의 능동적인 활동 촉진이라는 3가지 교수전략이 도출되었다. 뇌기반 학습을 수행하는 간호교육자는 학생의 수준에 적합한 학습목표를 설정하고, 관심을 유도하여 동기부여가 되도록 이끌며, 자기주도적으로 다양한 시청각자료를 활용하여 의사소통하고, 학습된 정보를 반복하게 하는 것이 중요하게 고려된다.

본 연구의 의지는 국내 간호교육환경에서 뇌기반 학습이라는 논의를 형성하고, 뇌기반 학습의 사례를 보여주며, 이미 적용하고 있는 교육방법의 교육효과에 대한 근거를 제시함에 있다. 이러한 연구결과를 바탕으로 간호교육자들이 뇌기반 학습 원리를 이용한 다양한 간호교육방법을 개발할 것을 제언한다. 또한 뇌과학을 포함한 신경과학과 교육의 상호 활용한 교류를 통해 그 간극을 보완하거나 다양한 학습영역에서 실질적으로 기여해야 할 것이다. 따라서 뇌기반 학습이라는 새로운 학습기술에서 비춰지는 지식기반의 이론과 실용적 방법, 동문집 등으로 학습의 효과를 증명하는 연구가 필요한 것으로 사료된다.

References
Bond, M. E. (2009). Exposing shame and its effect on clinical nursing education. Journal of Nursing Education, 48(3), 132-140.
Burk, B., Gillman, D., & Osc, P. (1984). Brain research for educators. The Journal of Continuing Education in Nursing, 15(6), 195-198.
Cardoza, M. P. (2011). Neuroscience and simulation: An evolving theory of brain-based education. Clinical Simulation in Nursing, 7(6), e205-e208.
Cho, S., & Kim, M. (2011). An analysis of brain dominance, cognitive characteristics, and emotion between scientifically gifted students and general students. Biology Education, 39(3), 345-354.
Choi, H. Y., & Shin, D. H. (2014). The analysis of researches on the brain-based teaching and learning for elementary science education. Journal of Korean Elementary Science Education, 32(1), 140-161.
Chung, J. (2010). The concept and principal of brain-based teaching and learning. The Proceeding of The Korea Association of Yeolin Education, 2, 19-39.
Clement, N. D., & Lovat, T. (2012). Neuroscience and education: Issues and challenges for curriculum. Curriculum Inquiry, 42(4), 534-557.
Collins, J. W. (2007). The neuroscience of learning. Journal of Neuroscience Nursing, 39(5), 305-310.
Denny, M., Weber, E. F., Wells, J., Stokes, O. R., Lane, P., & Denieffe, S. (2008). Matching purpose with practice: Revolutionizing nurse education with MITA. Nurse Education Today, 28(1), 100-107.
Fero, L. J., O'Donnell, J. M., Zullo, T. G., Dabbs, A. D., Kitutu, J., Samosky, J. T., & Hoffman, L. A. (2010). Critical thinking skills in nursing students: Comparison of simulation‐based performance with metrics. Journal of Advanced Nursing, 66(10), 2182-2193.
Garrard, J. (2010). Health sciences literature review made easy: The matrix method (3rd ed). Massachusetts: Jones & Bartlett Learning.
Hermanns, M., Lilly, M. L., Wilson, K., & Russell, N. A. (2012). Name that neurotransmitter: using music to teach psychopharmacology concepts. Journal of Nursing Education, 51(9), 517-520.
Immordino-Yang, M. H. & Damasio, A. (2007). We feel, therefore we learn: The relevance of affective and social neuroscience to education. Mind, Brain and Education, 1(1), 3-10.
Jensen, E. P. (2008). Brain-based learning: The new paradigm of teaching (2nd ed). California: Corwin Press.
Kolb, A. Y., & Kolb, D. A. (2005). The Kolb Learning Style Inventory – Version 3.1 2005 Technical Specifications.
Boston: Hay Resources Direct.
Lee, W. H., Kang, K. A., Kim, D. S., & Jang, S. O. (2011). The nature of theoretical thinking in nursing. Seoul: Hyunmoonsa.
Lichtman, M. (2006). Qualitative research in education: A user’s guide. London: Sage Publication.
Lillyman, S., Gutteridge, R., & Berridge, P. (2011). Using a storyboarding technique in the classroom to address end of life experiences in practice and engage student nurses in deeper reflection. Nurse Education in Practice, 11(3), 179-185.
Mueller, A., Johnston, M., & Bligh, D. (2001). Mind-mapped care plans: A remarkable alternative to traditional nursing care plans. Nurse Educator, 26(2), 75-80.
Noonan, P. (2011). Using concept maps in perioperative education. AORN Journal, 94(5), 469-478.
Oh, J., Im, M., & Roh, H. (2014). Development of cinernurducation based on Kolb’s experiential learning model for understanding child growth and development. Child Health Nursing Research, 20(2), 96-104.
Oh, J., Shin, H., & De Gagne, J. C. (2012). QSEN competencies in pre-licensure nursing education and the application to cinernurducation. The Journal of Korean Academic Society of Nursing Education, 18(3), 474-485.
Pilcher, J. (2012). Growing dendrites and brain-based learning. Neonatal Network, 31(3), 191-194.
Potgiert, E., & Phill, D. L. (1999). Relationship between the whole brain creativity model and Kolb’s experiential learning model. Curationis, 12, 9-14.
Restaino., R. (2011). Gain attention, enhance memory, and improve learning with brain-based strategies. The Journal of continuing education in nursing, 42(5), 199-200.
Rothgeb, M. K. (2008). Creating a nursing simulation laboratory: A literature review. Journal of Nursing Education, 47(11), 489-494.
Sripada, K. (2012). Neuroscience in the capital: Linking brain research and federal early childhood programs and policies. Early Education and Development, 23(1), 120-130.
Whittemore, R., & Knafl, K. (2005). The integrative review: Updated methodology. Journal of Advanced Nursing, 52(5), 546-551.
Yang, S. (2012). The trend in domestic research on the brain-based education for early childhood. Korean Education Inquiry, 30(1), 239-265.
Zander, P. E. (2007). Ways of knowing in nursing: The historical evolution of a concept. Journal of Theory Construction & Testing, 11(1), 7-11.
Brain-based Teaching Strategies for Nurse Educators: An Integrative Review

Oh, Jina¹ · Kim, Shin-Keong² · Kang, Kyung-Ah³ · Kim, Sung-Hee⁴ · Roh, Heyrin⁵
Jennie C. De Gagné⁶

¹) Professor, Institute of Health Science, Department of Nursing, Inje University
²) Professor, Department of Nursing, Hallym University
³) Professor, Department of Nursing, Sahmyook University
⁴) Assistant Professor, ChungAng Redcross College of Nursing
⁵) Associate Professor, School of Medicine, Inje University
⁶) Assistant Professor, School of Nursing, Duke University

Purpose: Brain-based learning has become increasingly important in nursing education. The purpose of this study is to (a) synthesize the literature on brain-based learning in nursing education using Whittemore and Knafl’s integrative review method, and (b) discuss teaching strategies for nursing educators. Method: Searches were made through the CINAHL, OVID, PubMED, and SCOPUS databases using the terms nurs* AND (brain based OR neuroscience) AND (educa* OR learn* OR teach*). Included were original articles in the domain of undergraduate nursing education written in English in peer-reviewed journals between January 1984 and December 2013. Twenty-four papers met the criteria. Results: Three themes were retrieved: (a) activate whole-brain functions, (b) establish supportive educational environments, and (c) encourage learners to be more active. Conclusion: Brain-based learning enhances the learning capabilities of undergraduate nursing students.

Key words: Brain, Learning, Nursing, Education, Review

* This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2013S1A5A2A01019026)

* Address reprint requests to: Kim, Shin-Jeong
School of Nursing, Duke University
1 OkChun-Dong, ChunCheon, Kwangwon-Do (200-701)
Tel: 82-33-248-2721 Fax: 82-33-248-2734 E-mail: ksj@hallym.ac.kr