FREE MONOIDS AND FORESTS OF RATIONAL NUMBERS

MEIVYN B. NATHANSON

Abstract. The Calkin-Wilf tree is an infinite binary tree whose vertices are the positive rational numbers. Each such number occurs in the tree exactly once and in the form a/b, where a and b are relatively prime positive integers. This tree is associated with the matrices $L_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $R_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, which freely generate the monoid $SL_2(\mathbb{N}_0)$ of 2×2 matrices with determinant 1 and nonnegative integral coordinates. For other pairs of matrices L_u and R_v that freely generate submonoids of $GL_2(\mathbb{N}_0)$, there are forests of infinitely many rooted infinite binary trees that partition the set of positive rational numbers, and possess a remarkable symmetry property.

1. The Calkin-Wilf tree of rational numbers

A directed graph is a rooted infinite binary tree if it is a tree with the following properties:

(i) Every vertex is the tail of exactly two edges. Equivalently, every vertex has outdegree 2.

(ii) There is a vertex z such that every vertex $v \neq z$ is the head of exactly one edge, but z is not the head of any edge. Equivalently, every vertex $v \neq z$ has indegree 1, and z has indegree 0. We call z the root of the tree.

(iii) The graph is connected.

In this paper, a forest is a directed graph whose connected components are rooted infinite binary trees.

Let \mathbb{Q}^+ denote the set of positive rational numbers. We call the rational number a/b reduced if $b \geq 1$ and the integers a and b are relatively prime. The Calkin-Wilf tree [6] is a rooted infinite binary tree whose vertex set is the set of positive reduced rational numbers, and whose root is 1. In this tree, every positive reduced rational number a/b is the tail of two edges. The heads of these edges are the positive rational numbers $a/(a+b)$ and $(a+b)/b$. We draw this as follows:

\[\begin{array}{c}
 \bullet \\
 \downarrow \quad \downarrow \\
 a+b \quad a+b
\end{array} \]

Date: June 10, 2014.

2010 Mathematics Subject Classification. Primary 05A18, 05C05, 11B75, 05A19, 20M99.

Key words and phrases. Calkin-Wilf tree, linear fractional transformation, forests of rooted infinite binary trees, freely generated submonoids of $GL_2(\mathbb{N}_0)$.

Supported in part by a grant from the PSC-CUNY Research Award Program.
with \(a/(a + b) \) on the left and \((a + b)/b\) on the right. Note that
\[
0 < \frac{a}{a+b} < 1 < \frac{a+b}{b}.
\]
Equivalently, if \(w = a/b \), then the generation rule of the tree is
\[
\begin{align*}
\frac{w}{w+1} & \to w \\
w+1 & \to \frac{w}{w+1}
\end{align*}
\]

Calkin and Wilf [6] introduced this enumeration of the positive rationals in 2000. It is related to the Stern-Brocot sequence [5, 19], discussed in [10], and has stimulated much recent research (e.g. [1, 3, 4, 7, 9, 12, 13, 14, 17]).

The first four rows the Calkin-Wilf tree are as follows:

We enumerate the numbers on the rows of the Calkin-Wilf tree as follows. Row 0 contains only the number 1. Row 1 contains the numbers 1/2 and 2. For every nonnegative integer \(n \), the \(n \)th row of the Calkin-Wilf tree contains \(2^n \) positive reduced rational numbers. The \(n \)th row of the tree is also called the \(n \)th generation of the tree. We denote the ordered sequence of elements of the \(n \)th row, from left to right, by \(c(n, 1), c(n, 2), \ldots, c(n, 2^n) \). For example, \(c(2, 3) = 2/3 \) and \(c(3, 6) = 5/3 \). Note that \(0 < c(n, 2i-1) < 1 < c(n, 2i) \) for \(i = 1, 2, \ldots, 2^n-1 \).

Here are four properties of the Calkin-Wilf tree:

(i) Symmetry formula: For every nonnegative integer \(n \) and for \(i = 1, \ldots, 2^n \),
\[
c(n, i)c(n, 2^n + 1 - i) = 1.
\]
The proof is by induction on \(n \).

(ii) Denominator-numerator formula: For every positive integer \(n \), we have \(c(n, 1) = 1/(n + 1) \) and \(c(n, 2^n) = n + 1 \). For \(j = 1, \ldots, 2^n - 1 \), if \(c(n, j) = p/q \), then \(c(n, j + 1) = q/r \). Thus, as we move through the Calkin-Wilf tree from row to row, and from left to right across each row, the denominator of each fraction in the tree is the numerator of the next fraction in the tree. This is in Calkin-Wilf [6].

(iii) Successor formula: For every positive integer \(n \) and for \(j = 1, \ldots, 2^n - 1 \), we have
\[
c(n, j + 1) = \frac{1}{2[c(n, j)] + 1 - c(n, j)}
\]
where \([x]\) denotes the integer part of the real number \(x \). This result is due to Moshe Newman [2, 16].
(iv) Row formula: Let \(\frac{a}{b} \) be a positive reduced rational number. If

\[
\frac{a}{b} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots + \frac{1}{a_{k-1} + \frac{1}{a_k}}}} = [a_0, a_1, \ldots, a_{k-1}, a_k]
\]

is the finite continued fraction of \(\frac{a}{b} \), then \(\frac{a}{b} \) appears on the \(n \)th row of the Calkin-Wilf tree, where \(n = a_0 + a_1 + \cdots + a_{k-1} + a_k - 1 \). This is discussed in Gibbons, Lester, and Bird [8].

2. **Freely generated monoids and a symmetry of trees**

A monoid is a semigroup with an identity. Let \(GL_2(\mathbb{R}_{\geq 0}) \) denote the multiplicative monoid of \(2 \times 2 \) matrices with nonzero determinant and with coordinates in the set \(\mathbb{R}_{\geq 0} \) of nonnegative real numbers. To every matrix

\[
A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \in GL_2(\mathbb{R}_{\geq 0})
\]

we associate the linear fractional transformation

\[
A(w) = \frac{a_{1,1}w + a_{1,2}}{a_{2,1}w + a_{2,2}}.
\]

This is a monoid isomorphism from \(GL_2(\mathbb{R}_{\geq 0}) \) to the monoid of linear fractional transformations with nonnegative real coordinates, nonzero determinant, and the binary operation of composition of functions.

The monoid \(\mathcal{M}(A, B) \) generated by a pair of matrices \(\{A, B\} \) in \(GL_2(\mathbb{R}_{\geq 0}) \) consists of all matrices that can be represented as products of nonnegative powers of \(A \) and \(B \). The matrices \(A \) and \(B \) freely generate this monoid if every matrix in \(\mathcal{M}(A, B) \) has a unique representation as a product of powers of \(A \) and \(B \).

It is well-known (often described as a “folk theorem”) that the matrices

\[
L_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad R_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]

freely generate the monoid \(SL_2(\mathbb{N}_0) \) of \(2 \times 2 \) matrices with determinant 1 and nonnegative integral coordinates. The corresponding linear fractional transformations are

\[
L_1(w) = \frac{w}{w+1} \quad \text{and} \quad R_1(w) = w + 1.
\]

We observe that

\[0 < L_1(w) < 1 < R_1(w) \]

for all \(w \in \mathbb{Q}^+ \). We can rewrite the generation rule (1) of the Calkin-Wilf tree in the form

\[
(2) \quad \begin{array}{c}
\, \\
\downarrow \\
L_1(w) \\
\downarrow \\
\, \\
\, \end{array} \quad \begin{array}{c}
\, \\
\downarrow \\
R_1(w) \\
\downarrow \\
\, \\
\, \\
\end{array}
\]
That the Calkin-Wilf graph with vertex set \mathbb{Q}^+ is a tree is equivalent to the statement that the matrices L_1 and R_1 freely generate the monoid $M(L_1, R_1)$.

A standard generating set for the group $SL_2(\mathbb{Z})$ is $\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$. Because $L_1 R_1^{-1} L_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $(L_1 R_1^{-1} L_1)^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, it follows that $\{L_1, R_1\}$ generates but does not freely generate $SL_2(\mathbb{Z})$.

Let L and R be matrices in $GL_2(\mathbb{R}_{\ge 0})$ such that

$$0 < L(w) < 1 < R(w)$$

for all $w \in \mathbb{Q}^+$. If the coordinates of L and R are nonnegative integers, then $L(w) \in \mathbb{Q}^+$ and $R(w) \in \mathbb{Q}^+$ for all $w \in \mathbb{Q}^+$. For every positive rational number z, we can construct inductively a directed graph with root z such that every vertex is the tail of two edges:

$$(4) \quad w \quad \xleftarrow{\text{L}} \quad L(w) \quad \xrightarrow{\text{R}} \quad R(w)$$

Inequality (3) and the invertibility of the matrices L and R imply that this graph is a rooted infinite binary tree.

A standard application of the ping-pong lemma (e.g. Lyndon and Schupp [11, pp. 167–168]) proves that, for every pair (u, v) of integers with $u \ge 2$ and $v \ge 2$, the matrices

$$L_u = \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix} \quad \text{and} \quad R_v = \begin{pmatrix} 1 & v \\ 0 & 1 \end{pmatrix}$$

generate a free group of rank 2. In particular, the nonnegative powers of L_u and R_v generate a free monoid. The case $u = v = 2$ is Sanov’s theorem [18].

These are special cases of the following result.

Theorem 1 (Nathanson [15]). Let $A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$ and $B = \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{pmatrix}$ be matrices in $GL_2(\mathbb{R}_{\ge 0})$. If

$$a_{1,1} \le a_{2,1} \quad \text{and} \quad a_{1,2} \le a_{2,2}$$

and if

$$b_{1,1} \ge b_{2,1} \quad \text{and} \quad b_{1,2} \ge b_{2,2}$$

then

(i) for all $w \in \mathbb{Q}^+$,

$$0 < A(w) < 1 < B(w)$$

(ii) the submonoid of $GL_2(\mathbb{R}_{\ge 0})$ generated by A and B is free,

(iii) the matrices A and B freely generate $M(A, B)$.

The theorem implies that if u and v are are positive integers, then the matrices

$$L_u = \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix} \quad \text{and} \quad R_v = \begin{pmatrix} 1 & v \\ 0 & 1 \end{pmatrix}$$
freely generate a submonoid of the multiplicative monoid $GL_2(R_{\geq 0})$, and the directed graph $T_z^{(u,v)}$ with root z and generation rule

$$L_u(w) = \frac{w}{uw+1}, \quad R_u(w) = w + v$$

is a rooted infinite binary tree. If a/b is a positive reduced fraction and $w = a/b$, then the generation rule is

\[
\begin{array}{c}
\frac{a}{b} \\
\downarrow \\
\frac{a}{u(a+b)}, \quad \frac{a+vb}{b}
\end{array}
\]

Let $a/b \in Q^+$. If $a > vb$, then $a/b = R_v(((a-vb)/b)$. If $b > ua$, then $a/b = L_u(a/(b-ua))$. If

\[
\frac{1}{u} \leq \frac{a}{b} \leq v
\]

then a/b is an orphan, that is, $a/b \neq L_u(w)$ and $a/b \neq R_v(w)$ for all $w \in Q^+$. Thus, if $a/b \in Q^+$ satisfies inequality (6), then a/b is a vertex in a rooted infinite binary tree with generation rule (5) if and only if it is the root of the tree. We define the height of the reduced rational number a/b by $ht(a/b) = \max\{|a|, |b|\}$. Because $ht(a/b) < ht(L_u(a/b)$ and $ht(a/b) < ht(R_v(a/b)$, and because the height of every reduced rational number is a positive integer, it follows that every $a/b \in Q^+$ has only finitely many ancestors, and so every positive rational number is a vertex in some rooted infinite binary tree whose root is a rational number satisfying (6). This proves that the forest of such trees partitions Q^+.

Notation: For $n = 0, 1, 2, \ldots$ and $i = 1, 2, \ldots, 2^n$, we denote by $c_z^{(u,v)}(n, i)$ the ith number on the nth row of the rooted infinite binary tree with root z:

\[
\begin{array}{c}
c_z^{(u,v)}(n+1, 2i-1) = L_u\left(c_z^{(u,v)}(n, i)\right), \\
c_z^{(u,v)}(n+1, 2i) = R_u\left(c_z^{(u,v)}(n, i)\right)
\end{array}
\]

We examine some trees associated with pairs (u, v) of positive integers. For $(u, v) = (1, 1)$, the unique orphan is $z = 1$, and we obtain the Calkin-Wilf tree, whose vertex set is the set of all positive rational numbers, and $c_z^{(1,1)}(n, i) = c(n, i)$.

Consider the case $(u, v) = (2, 2)$. In the forest of trees of positive fractions generated by the matrices \(\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \) and \(\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \), the roots of the trees are the rational numbers z such that $1/2 \leq z \leq 2$. We consider the trees with roots 1, 3/2, and 2/3. For simplicity, we omit the arrows connecting vertices on successive rows.
The first five rows of the tree with root 1 are

\[
\begin{array}{ccccccc}
1 \\
1 & 3 \\
1 & 5 & 7 & 5 \\
1 & 7 & 11 & 7 & 5 & 11 & 7 \\
1 & 9 & 15 & 7 & 11 & 27 & 21 & 7 & 15 & 9 \\
\end{array}
\]

Observe the symmetry in each line:

\[c_1^{(2,2)}(n, i) c_1^{(2,2)}(n, 2^n + 1 - i) = 1\]

for \(i = 1, 2, \ldots, 2^n \).

The first five rows of the tree with root 3/2 are

\[
\begin{array}{ccccccc}
3 & 2 \\
3 & 7 & 8 & 2 \\
3 & 19 & 7 & 11 & 2 \\
3 & 31 & 19 & 7 & 11 & 15 & 2 \\
3 & 43 & 31 & 19 & 7 & 11 & 15 & 19 \\
26 & 20 & 76 & 14 & 84 & 46 & 78 & 8 & 44 & 30 & 94 & 46 & 24 & 32 & 2 \\
\end{array}
\]

In this case, the symmetry of type (7) in each line disappears. However, look at the first five rows of the tree with the reciprocal root 2/3.

\[
\begin{array}{ccccccc}
2 & 3 \\
2 & 8 & 3 \\
2 & 16 & 8 & 3 \\
2 & 24 & 16 & 8 & 3 \\
2 & 32 & 24 & 16 & 8 & 3 \\
19 & 15 & 59 & 11 & 39 & 7 & 35 & 19 & 31 & 3 \\
\end{array}
\]

We observe a new symmetry between corresponding lines of the two trees:

\[c_3^{(2,2)}(n, i) c_2^{(2,2)}(n, 2^n + 1 - i) = 1\]

for \(i = 1, 2, \ldots, 2^n \).
Consider next the case \((u, v) = (4, 5)\) and the forest of positive fractions generated by the matrices \(\begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}\) and \(\begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}\). The first five rows of the tree with root 3/2 are

\[
\begin{align*}
3 & \quad 2 \\
3 & \quad 17 \quad 11 \quad 2 \\
3 & \quad 71 \quad 11 \quad 19 \\
3 & \quad 131 \quad 57 \quad 2 \\
3 & \quad 47 \quad 32 \quad 131 \quad 139 \quad 17 \quad 112 \quad 27 \\
3 & \quad 19 \quad 459 \quad 239 \quad 467 \quad 19 \quad 407 \quad 27 \quad 35
\end{align*}
\]

Again there is no symmetry in each line.

We look at the first five rows of the tree with the reciprocal root 2/3.

\[
\begin{align*}
2 & \quad 3 \\
2 & \quad 14 \quad 13 \quad 3 \\
2 & \quad 54 \quad 14 \quad 26 \\
2 & \quad 94 \quad 54 \quad 106 \quad 143 \quad 73 \quad 38 \\
2 & \quad 33 \quad 23 \quad 283 \quad 543 \quad 13 \quad 213 \quad 143 \quad 3 \\
2 & \quad 134 \quad 94 \quad 186 \quad 54 \quad 1186 \quad 106 \quad 158 \quad 14 \quad 586 \quad 306 \quad 598 \quad 26 \quad 558 \quad 38 \quad 50
\end{align*}
\]

\[
\begin{align*}
2 & \quad 137 \quad 97 \quad 192 \quad 57 \quad 1252 \quad 112 \quad 167 \quad 17 \quad 712 \quad 372 \quad 727 \quad 32 \quad 687 \quad 47 \quad 62
\end{align*}
\]

In contrast to the case \((u, v) = (2, 2)\), when \((u, v) = (4, 5)\), we do not observe a symmetry of the form (8) between corresponding lines of the trees with reciprocal roots 3/2 and 2/3. However, consider the first five rows of the tree with \((u, v) = (5, 4)\), generated by the matrices \(\begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix}\) and \(\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}\), and with the root 2/3:

\[
\begin{align*}
2 & \quad 3 \\
2 & \quad 17 \quad 11 \quad 3 \\
2 & \quad 57 \quad 17 \quad 32 \\
2 & \quad 97 \quad 17 \quad 32 \quad 47 \\
2 & \quad 35 \quad 27 \quad 407 \quad 19 \quad 467 \quad 239 \quad 459 \quad 11 \quad 207 \quad 139 \quad 159 \quad 71 \quad 259 \quad 131 \quad 191 \quad 3
\end{align*}
\]

A beautiful symmetry reappears: In the tree constructed from the pair (4, 5) with
the root 3/2, and in the tree constructed from the reversed pair (5, 4) with the root 2/3, we find

(9) \[c_{3/2}^{(5,4)}(n, i) c_{2/3}^{(5,4)}(n, 2^n + 1 - i) = 1 \]

for \(i = 1, 2, \ldots, 2^n \). We shall prove that this identity holds for all pairs \((u, v)\) of real numbers such that \(u \geq 1 \) and \(v \geq 1 \), and for all roots \(z \).

3. Proof of symmetry

Theorem 2 (Symmetry). Let \(z \) be a variable, and let \(u \) and \(v \) be positive integers. For all \(n \in \mathbb{N}_0 \) and \(i = 1, 2, \ldots, 2^n \),

\[c_z^{(u,v)}(n, i) c_z^{(v,u)}(n, 2^n + 1 - i) = 1. \]

If \(u = v \geq 1 \), then for all \(n \in \mathbb{N}_0 \) and \(i = 1, 2, \ldots, 2^n \),

\[c_z^{(u,u)}(n, i) c_z^{(u,u)}(n, 2^n + 1 - i) = 1. \]

If \(u = v = 1 \), then this is the familiar symmetry of the Calkin-Wilf tree.

Proof. The proof is by induction on the row number \(n \). For \(n = 0 \) and \(i = 1 \), we have \(c_z^{(u,v)}(0, 1) = z \) and so

\[c_z^{(u,v)}(n, i) c_z^{(v,u)}(n, 2^n + 1 - i) = zz^{-1} = 1. \]

Let \(n \geq 0 \), and assume that the Theorem holds for row \(n \). For \(i = 1, 2, \ldots, 2^n \), we have

\[c_z^{(u,v)}(n, i) = \frac{1}{c_z^{(v,u)}(n, 2^n + 1 - i)}. \]

It follows that

\[c_z^{(u,v)}(n + 1, 2i - 1) = L_u \left(c_z^{(u,v)}(n, i) \right) \]

\[= \frac{c_z^{(u,v)}(n, i)}{c_z^{(v,u)}(n, 2^n + 1 - i) + 1} \]

\[= \frac{1}{c_z^{(v,u)}(n, 2^n + 1 - i) + u} \]

\[= R_u \left(c_z^{(v,u)}(n, 2^n + 1 - i) \right) \]

\[= \frac{1}{c_z^{(v,u)}(n + 1, 2(2^n + 1 - i))} \]

\[= \frac{1}{c_z^{(v,u)}(n + 1, 2^{n+1} + 1 - (2i - 1))}. \]
Similarly,
\[
c_z^{(u,v)}(n + 1, 2i) = R_v \left(c_z^{(u,v)}(n, i) \right) \\
= c_z^{(u,v)}(n, i) + v \\
= \frac{v c_z^{(v,u)}(n, 2^n + 1 - i) + 1}{c_z^{(v,u)}(n, 2^n + 1 - i)} \\
= \frac{1}{L_v(c_z^{(v,u)}(n, 2^n + 1 - i))} \\
= \frac{1}{c_z^{(v,u)}(n + 1, 2(2^n + 1 - i) - 1)} \\
= \frac{1}{c_z^{(v,u)}(n + 1, 2^{n+1} + 1 - 2i)}.
\]

This completes the proof. \[\square\]

4. Open problems

(1) Do there exist matrices \(L\) and \(R\) in \(GL_2(\mathbb{N}_0)\) (that may or may not freely generate the monoid \(M(L, R)\)) such that there exists a positive rational number \(z\) that has infinitely many ancestors in the directed graph with root \(z\) and generation rule \(\square\)?

(2) Do there exist pairs of matrices \(L\) and \(R\) that do not satisfy inequality \(\square\) but establish a partition of the positive rational numbers into pairwise disjoint rooted infinite binary trees?

(3) Find analogues of properties (ii), (iii), and (iv) of the Calkin-Wilf tree that apply to the trees \(T_z^{(u,v)}\). (For the trees of linear fractional transformations associated to the pair \((1, 1)\), see Nathanson [14].)

(4) Let \(m \geq 3\). Do there exist \(k\) matrices \(A_1, \ldots, A_m\) in \(GL_2(\mathbb{N}_j)\) such that the \(m\)-ary generation rule

\[
\begin{array}{c}
\vdots \\
A_1(z) \\
\downarrow \\
A_2(z) \\
\downarrow \\
\vdots \\
A_m(z)
\end{array}
\]

determines a forest of rooted infinite \(m\)-ary trees that partition the positive rational numbers?

References

[1] Boris Adamczewski, Non-converging continued fractions related to the Stern diatomic sequence, Acta Arith. 142 (2010), no. 1, 67–78.

[2] Martin Aigner and Günter M. Ziegler, Proofs from The Book, third ed., Springer-Verlag, Berlin, 2004.

[3] Bruce Bates, Martin Bunder, and Keith Tognetti, Linking the Calkin-Wilf and Stern-Brocot trees, European J. Combin. 31 (2010), no. 7, 1637–1661.

[4] Bruce Bates and Toufik Mansour, The \(q\)-Calkin-Wilf tree, J. Combin. Theory Ser. A 118 (2011), no. 3, 1143–1151.

[5] Achille Brocot, Calcul des rouages par approximation, nouvelle méthode, Revue Chronométrique 6 (1860), 186–194.
[6] Neil Calkin and Herbert S. Wilf, *Recounting the rationals*, Amer. Math. Monthly **107** (2000), no. 4, 360–363.
[7] Karl Dilcher and Kenneth B. Stolarsky, *A polynomial analogue to the Stern sequence*, Int. J. Number Theory **3** (2007), no. 1, 85–103.
[8] Jeremy Gibbons, David Lester, and Richard Bird, *Functional pearl: Enumerating the rationals*, Journal of Functional Programming **16** (2006), 281–291.
[9] S. P. Glasby, *Enumerating the rationals from left to right*, Amer. Math. Monthly **118** (2011), no. 9, 839–835.
[10] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, second ed., Addison-Wesley Publishing Company, Reading, MA, 1994.
[11] Roger C. Lyndon and Paul E. Schupp, *Combinatorial Group Theory*, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1977 edition.
[12] Colin L. Mallows, *A variation of the Stern-Brocot tree*, J. Comb. **2** (2011), no. 4, 501–506.
[13] Toufik Mansour and Mark Shattuck, *Two further generalizations of the Calkin-Wilf tree*, J. Comb. **2** (2011), no. 4, 507–524.
[14] Melvyn B. Nathanson, *A forest of linear fractional transformations*, [arXiv:1401.0012](https://arxiv.org/abs/1401.0012), 2014.
[15] ______, *Pairs of matrices in $GL_2(\mathbb{R}_{\geq 0})$ that freely generate*, arXiv: 1406.1194, 2014.
[16] Moshe Newman, *Recounting the rationals, continued*, solution to problem 10906, Amer. Math. Monthly **110** (2003), 642–643.
[17] Bruce Reznick, *Some binary partition functions*, Analytic Number Theory (Allerton Park, IL, 1989), Progr. Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, pp. 451–477.
[18] I. N. Sanov, *A property of a representation of a free group*, Doklady Akad. Nauk SSSR (N. S.) **57** (1947), 657–659.
[19] M. A. Stern, *Über eine zahlentheoretische Funktion*, J. reine angew. Math. **55** (1858), 193–220.