Host specialization and molecular evidence support a distinct species of smut fungus, Anthracoidea hallerianae (Anthracoideaceae), on Carex halleriana (Cyperaceae)

Authors: Denchev, Teodor T., Denchev, Cvetomir M., Koopman, Jacob, Begerow, Dominik, and Kemler, Martin

Source: Willdenowia, 51(1) : 57-67

Published By: Botanic Garden and Botanical Museum Berlin (BGBM)

URL: https://doi.org/10.3372/wi.51.51105
Host specialization and molecular evidence support a distinct species of smut fungus, *Anthracoidea halleriana* (Anthracoideaceae), on *Carex halleriana* (Cyperaceae)

Abstract: The species of *Anthracoidea* on *Carex* are host-specific smut fungi restricted to sedges belonging to the same or closely related sections. They are characterized by sori that form black, hard bodies around aborted nuts of their hosts. In *Carex* sect. *Hallerianae*, only one species, *C. halleriana*, is known as a host of *Anthracoidea*. The taxonomic status of this smut fungus was problematic due to a lack of molecular data. It has been reported under different names, mainly as “*A. caricis*” or “*A. irregularis*”. A comparative morphological study and molecular phylogenetic analysis, using LSU (large subunit) nuclear rDNA sequences, supported the recognition of a distinct species, *A. halleriana*. The new species is described and illustrated based on material from Central Europe, the Iberian Peninsula, the Balkan Peninsula, the Mediterranean area and Transcaucasia.

Key words: *Anthracoidea*, Anthracoideaceae, *Carex halleriana*, Cyperaceae, new species, phylogeny, smut fungi, taxonomy

Introduction

The smut fungi in the genus *Anthracoidea* Bref. are characterized by sori that form globose to broadly ellipsoidal or ovoid, black, hard bodies around aborted nuts of cyperaceous plants. In *Carex* L. (Cyperaceae), the sori are scattered in female spikes or in female flowers of mixed spikes, depending on the *Carex* species. The sori are covered initially by a thin peridium, which later ruptures to expose the spore mass. This spore mass is firmly agglutinated at first, at maturity becoming powdery on the surface of the sorus. A few species of *Anthracoidea* have mature sori with an agglutinated spore mass, which cracks into small, irregular pieces. The spores are formed singly and are usually flattened. Mature spores are liberated and dispersed by the wind after the peridium ruptures. At an early stage of host flowering, spores germinate to produce basidiospores that may infect flowers. The infection is local and confined to individual flowers (Kukkonen 1963; Vánky 1979, 2013; Denchev & al. 2013; Denchev & Denchev 2016).

Currently, 111 species are recognized in *Anthracoidea* (Denchev & Denchev 2016; Denchev & al. 2020), the largest genus of smut fungi on host plants in the Cy-
Species	Host	LSU rDNA accession no.	Reference
Anthracoida arenaria (Syd.) Nannf.	Carex arenaria L.	AY563606	Hendrichs & al. 2005
A. aspera (Liro) Kukkonen	C. chordorrhiza L. f.	AY563607	Hendrichs & al. 2005
A. baldensis Vánky	C. baldensis L.	AY563599	Hendrichs & al. 2005
A. bigelowii Nannf.	C. bigelowii Schwein.	AY563566	Hendrichs & al. 2005
A. bigelowii	C. bigelowii	AY563567	Hendrichs & al. 2005
A. bigelowii	C. bigelowii	AY563568	Hendrichs & al. 2005
A. buxbaumii Kukkonen	C. buxbaumii Wahlenb.	AY563582	Hendrichs & al. 2005
A. caricis	C. caricis	AY563596	Hendrichs & al. 2005
A. caricis-albae (Syd.) Kukkonen	C. alba Scop.	AY563594	Hendrichs & al. 2005
A. caricis-albae	C. alba	AY563595	Hendrichs & al. 2005
A. caricis-meadii Savchenko & al.	C. meadii	AY563614	Hendrichs & al. 2005
A. curvulae Vánky & Kukkonen	Carex curvula All.	AY563611	Hendrichs & al. 2005
A. curvulae	C. curvula	AY563612	Hendrichs & al. 2005
A. elynae (Syd.) Kukkonen	C. myosuroides Vill.	AY563609	Hendrichs & al. 2005
A. elynae	C. myosuroides	AY563610	Hendrichs & al. 2005
A. globularis Kukkonen	C. globularis L.	AY563593	Hendrichs & al. 2005
A. hallerianae T. Denchev & al., sp. nov.	C. halleriana Asso	MT628657	this study (SOMF 30201)
A. hallerianae	C. halleriana	MT628658	this study (SOMF 30002)
A. hallerianae	C. halleriana	MT628659	this study (SOMF 30001)
A. hallerianae	C. halleriana	MT628660	this study (SOMF 30199)
A. hallerianae	C. halleriana	MT628661	this study (SOMF 30000)
A. heterospora (B. Lindeb.) Kukkonen	C. elata All.	AY563600	Hendrichs & al. 2005
A. heterospora	C. elata	AY563601	Hendrichs & al. 2005
A. hostiana Nannf.	C. hostiana DC.	AY563581	Hendrichs & al. 2005
A. inclusa Bref.	C. rostrata Stokes	AY563605	Hendrichs & al. 2005
A. irregularis (Liro) Boidol & Poelt	C. digitata L.	AY563592	Hendrichs & al. 2005
A. irregularis	C. ornithopoda Willd.	AY563590	Hendrichs & al. 2005
A. irregularis	C. ornithopoda	AY563591	Hendrichs & al. 2005
A. karii (Liro) Nannf.	C. brunescens (Pers.) Poir.	AY563575	Hendrichs & al. 2005
A. karii	C. echinata Murray	AY563576	Hendrichs & al. 2005
A. karii	C. echinata	AY563577	Hendrichs & al. 2005
A. karii	C. echinata	AY563578	Hendrichs & al. 2005
A. karii	C. lachenalii Schkuhr	AY563579	Hendrichs & al. 2005
A. karii	C. paniculata L.	AY563574	Hendrichs & al. 2005
A. cf. karii	C. davalliana Sm.	AY563608	Hendrichs & al. 2005
A. lasiocarpeae B. Lindeb.	C. lasiocarpa Ehrh.	AY563583	Hendrichs & al. 2005
A. limosa (Syd.) Kukkonen	C. limosa L.	AY563572	Hendrichs & al. 2005
A. limosa	C. limosa	AY563573	Hendrichs & al. 2005
A. misandreae Kukkonen	C. atrofusca Schkuhr	AY563584	Hendrichs & al. 2005
A. pamiroalaica Piątek & al.	C. koshewnikowii Litv.	KT006854	Piątek & al. 2015
A. paniccae Kukkonen	C. panicca L.	AY563580	Hendrichs & al. 2005
A. pratensis (Syd.) Boidol & Poelt	C. flaccra Schreb.	AY563563	Hendrichs & al. 2005
A. pratensis	C. flaccra	AY563564	Hendrichs & al. 2005
A. pratensis	C. flaccra	AY563565	Hendrichs & al. 2005
A. rupestris Kukkonen	C. rupestris All.	AY563598	Hendrichs & al. 2005
A. cf. rupestris	C. glacialis Mack.	AY563588	Hendrichs & al. 2005
A. sclerotiformis (Cooke & Massee) Kukkonen	C. panicca K. A. Ford	AY563613	Hendrichs & al. 2005
A. sempervirentis Vánky	C. ferruginea Scop.	AY563587	Hendrichs & al. 2005
A. sempervirentis	C. firma Host	AY563585	Hendrichs & al. 2005
A. sempervirentis	C. sempervirens Vill.	AY563586	Hendrichs & al. 2005
A. subinclusa (Körn.) Bref.	C. hirta L.	AY563604	Hendrichs & al. 2005
A. subinclusa	C. riparia Curtis	AY563603	Hendrichs & al. 2005
Anthracoidea subinclusa
A. turfa (Syd.) Kukkonen
A. turfa
A. turfa
A. vankyi Nannf.

C. vesicaria L.
C. dioica L.
C. helaeonastes L. f.
C. parallelia (Laest.) Sommerf.
C. maricata L.

AY563602 Hendrichs & al. 2005
AY563571 Hendrichs & al. 2005
AY563569 Hendrichs & al. 2005
AY563570 Hendrichs & al. 2005
AY563597 Hendrichs & al. 2005

Table 2. Comparative morphological spore measurements (mean ± 1 standard deviation) of herbarium specimens of Anthracoidea halleriana.

Country	Specimen	M ± 1 σ
Austria	GZU 222890	21.4 ± 3.2 × 16.4 ± 1.3
Bulgaria	SOMF 30244	22.1 ± 2.9 × 16.1 ± 1.4
Bulgaria	SOMF 20359	22.5 ± 2.9 × 17.2 ± 1.6
Bulgaria	SOMF 30202	22.4 ± 3.1 × 17.1 ± 1.5
Bulgaria	SOMF 30000 (holotype)	22.2 ± 2.7 × 17.2 ± 1.7
Bulgaria	SOMF 20357	21.6 ± 2.0 × 17.9 ± 1.2
Bulgaria	SOMF 30001	20.8 ± 2.6 × 16.3 ± 1.2
Bulgaria	SOMF 30002	21.6 ± 2.2 × 17.0 ± 1.2
Bulgaria	SOMF 30199	20.9 ± 2.3 × 17.0 ± 1.3
Bulgaria	SOMF 30245	22.2 ± 2.4 × 17.3 ± 1.4
Greece	B 10 0427517	21.4 ± 2.2 × 16.8 ± 1.4
Greece	B (R. Böcker s.n.)	20.9 ± 2.2 × 16.0 ± 1.2
Romania	BUCM 59279	21.5 ± 2.2 × 17.0 ± 1.3
Spain	W 2004-0008293	21.4 ± 2.0 × 17.5 ± 1.5
Spain	MA 480029	21.9 ± 2.3 × 18.2 ± 1.3
Armenia	SOMF 30201	20.8 ± 2.2 × 16.2 ± 1.3
Cyprus	P00283665	22.1 ± 2.6 × 17.4 ± 1.3
Cyprus	L (E. C. Vellinga 903)	21.4 ± 2.2 × 16.7 ± 1.6
Turkey	K (Davis & Hedge D 27796)	21.5 ± 2.7 × 15.5 ± 1.3
Algeria	P01998567	21.9 ± 2.1 × 18.5 ± 1.5
Algeria	P01832709	21.7 ± 2.4 × 17.7 ± 1.5

peraceae. It is a cosmopolitan genus, but more widely distributed in the northern hemisphere. The most comprehensive taxonomic treatments of Anthracoidea are the monographs by Kukkonen (1963, where the genus Anthracoidea was re-established), Nannfeldt (1979, mainly species occurring in Fennoscandia), Vánky (1994, 2011, species distributed in Europe and at global scale, respectively), Denchev & al. (2013, species distributed in Japan and the Korean Peninsula) and Denchev & al. (2020, species distributed in Greenland). Individual Anthracoidea species are considered to be restricted to host plants belonging to the same or closely related sections of Carex, whereby host specificity of Anthracoidea species is regarded to be a result of homothallism and cospeciation with their hosts (Kukkonen 1963; Vánky 1979).

Carex halleriana Asso (syn.: C. gynobasis Vill., C. alpestris All.) belongs to a small section, C. sect. Halle rianae (Asch. & Graebn.) Rouy (Egorova 1999; Luceño 2008), which contains five species. Five smut fungi have been reported to infect this sedge: Moreaua aterrima (Tul. & C. Tul.) Vánky, Schizollena cocconii (Morini) Liro, S. melanogramma (DC.) J. Schröt., Urocystis fischeri Körn. and a species of Anthracoidea (Vánky 2011). The taxonomic treatments of the Anthracoidea species on C. halleriana vary considerably. The first reports of this smut fungus were published by Fischer de Waldheim (1877a, 1877b, 1877c, as “Ustilago urceolorum Tul.”, i.e. A. cari - cis). Subsequently, this fungus was reported under different names: Cintractia urceolorum (DC.) Cif. (Ciferri 1931), Ustilago carici (Pers.) Fuckel (Voss 1877; Winter 1880; Massalongo 1894), Cintractia carici (Pers.) Magnus (Maire & al. 1901; Maire 1905; González Fragoso 1924; Magnus 1926), A. carici (Pers.) Bref. (Tranzschel 1902; González Fragoso 1923; Kukkonen 1963; Durrieu 1968; Vánky 1994; Almaraz & Durrieu 1997; Almaraz 1999a, 1999b, 2002; Prosyannikova & al. 2019; Shivas & al. 2020), A. irregularis (Liro) Boidol & Poelt (Poelt 1978; Nannfeldt 1979; Zogg 1986; Scholz & Scholz 1988; Denchev 1993, 2001; Denchev & al. 2013) or A. pratensis (Syd.) Boidol & Poelt (Cintractia pratensis Syd.) (Llorens i Villagrasa 1984).

The aim of the present study is to clarify the taxonomic status of the Anthracoidea species on Carex halleriana. A combined approach, using host specialization and molecular data, revealed a new smut fungus, A. halleriana. This species is described and illustrated herein and its phylogenetic placement and affinities in Anthracoidea are analysed.

Material and methods

DNA extraction, PCR amplification, and sequencing — For DNA extraction, one sorus per infected Carex halleriana was removed. The samples were milled in the Fastprep-24® Sample Preparation Instrument (MP Biomedicals), using two steel beads. Genomic DNA was isolated using the my-Budget Plant DNA Kit™ (Bio-Budget Technologies GmbH, Germany), according to the manufacturer’s protocol (protocol 1: “Isolation of DNA from plant material using lysis buffer SLS”). PCR using GoTaq™ Master Mix (Promega, U.S.A.) with the primer combination LR0R/LR6 (Vilgalys & Hester 1990; Mon- calvo & al. 1995) was performed to amplify the LSU (large subunit) of nuclear rDNA, which is the standard molecular marker for Anthracoidea (e.g. Hendrichs & al. 2005; Piątek & al. 2015), Standard thermal cycling conditions with an annealing temperature of 52°C were used for amplification. Five μl of PCR products were purified using ExoSAP (1:5 diluted in ddH2O; New England Biolabs,
from Carex halleriana formed a statistically well-supported monophyletic group. This group formed the sister species to *A. capillaris*, but this phylogenetic relationship had low statistical support. Together they clustered within a clade that also contained *A. baldensis*, *A. caricis-albae*, *A. pamirolaica*, *A. rapestris* and *A. vankyi*. Importantly, specimens of *Anthracoidea* parasitizing *C. halleriana* clustered neither with the clade containing specimens of *A. caricis* and *A. irregularis* nor with *A. pratensis*, the three *Anthracoidea* species previously reported on *C. halleriana* (Fig. 1).

Morphology — The *Anthracoidea* species have very few diagnostic morphological characteristics. The morphology of the sori bears no diagnostic value, with the exception of very few species (e.g. *A. intercedens* Nannf., *A. pseudofoetidae* L. Guo and *A. subinclusa* (Körn.) Bref.; Denchev & Minter 2011; Vánky 2011; Denchev & al. 2020). The most important characteristics are spore-based: sizes, shape (in plane view, since most species have flattened spores), wall thickness and wall ornamentation (pattern and height). Characteristics of less taxonomic significance include internal swellings, light-refractive areas, and protuberances. Their presence and frequency may vary between different collections of one species, but due to the scarcity of morphological characteristics, their careful examination and use in combination with the diagnostic morphological features is still very important.

The morphological description of the studied smut fungus on *Carex halleriana* was based on the examination of 21 specimens from Central Europe, the Iberian Peninsula, the Balkan Peninsula, the Mediterranean area and Transcaucasia. The specimens were characterized by irregularly rounded to angular or elongated to irregularly elongated spores (as seen in plane view), with an unevenly thickened, 1–3.3(–3.7) μm thick spore wall, that was minutely to moderately verruculose (warts up to 0.4(–0.5) μm high). The mean values of the spore length and width of the examined specimens fell into a range of 20.8–22.5 μm and 15.5–18.5 μm, respectively (Table 2). Spores longer than 26 μm were usually with elongated or irregularly elongated shape. As an exception, single spores with a length up to 31 μm were observed. The spores often had light-refractive areas and 1(–3) protuberances and sometimes had 1 or 2(–4) internal swellings.

Taxonomy

Based on the host specialization and molecular data, we propose a new species of *Anthracoidea* on *Carex halleriana*.

Anthracoidea hallerianae T. Denchev, Denchev, Begerow & Kemler, **sp. nov.** – Fig. 2, 3.

Index Fungorum number: IF 557794.
Holotype: on Carex halleriana Asso, Bulgaria, Pernik Province, Mt. Vitosha, above the entrance of Douhlata cave near Bosnek village, 42°29′46″N, 23°11′45″E, alt. 930 m, 13 Jun 2019, T. T. Denchev & C. M. Denchev (SOMF 30000).

Diagnosis — Differs from other Anthracoidea species by specialization on sedges in Carex sect. Hallerianae.

Description — Infection local. Sori in some female flowers, around aborted nuts as ovoid, ellipsoidal or broadly ellipsoidal, hard bodies, 2.2–3 × 1.2–1.8 mm, initially covered by a thin, greyish peridium that later flakes away exposing a black spore mass, powdery on surface. Spores medium- to large-sized, slightly flattened, in plane view usually irregularly rounded to angular or elongated to irregularly elongated, sometimes broadly elliptic or suborbicular in outline, often with 1–3 protuberances, (15.5–)17–26.5(–29) × (13–)14.5–19.5(–21.5) (21.5 ± 2.4 × 17 ± 1.4) μm (n = 2100), in side view 10–14 μm thick, medium to dark reddish brown; wall unevenly thickened, 1–3.3(–3.7) μm thick, thickest at angles and

Fig. 1. Best tree of the RAxML analysis of species in the genus Anthracoidea based on a MAFFT alignment of partial LSU rDNA data. Bootstrap values ≥ 50 are depicted above the branches. The phylogeny is rooted with A. sclerotiformis and A. carphae according to Hendrichs & al. (2005).

Downloaded From: https://bioone.org/journals/Willdenowia on 12 Mar 2021
Terms of Use: https://bioone.org/terms-of-use
protuberances (up to 5 μm thick), sometimes with 1 or 2(–4) internal swellings (variable in conspicuousness), light-refractive areas often present; minutely to moderately verruculose, warts up to 0.4(–0.5) μm high, spore profile not affected to slightly affected. In SEM, warts sometimes partly confluent, forming short rows or small groups. Spore germination unknown.

Host plant and distribution — On Cyperaceae: Carex sect. Hallerianae: C. halleriana, Europe (Spain, Corsica, Alps, Lower Austria, Hungary, Balkan Peninsula, Aegean Islands, Crimea), Mediterranean Asia (Turkey, Cyprus), Transcaucasia (Armenia), Mediterranean Africa (Algeria) (Fig. 4).

Etymology — The epithet is derived from the host plant, Carex halleriana.

Remarks — The examined specimens share the same morphology, with only small variations. The Austrian specimen (GZU 222890) has spores with more regular shape and lower ornamentation, but the other characteristics match well with the morphology of the new species. Some specimens (like SOMF 30199; R. Böcker s.n., B; P00283665) possess spore walls with common and well-visible internal swellings, while most of the studied specimens have spore walls with uncommon and inconspicuous internal swellings. When numerous specimens of a particular species are examined, it may turn out that the presence and conspicuousness of internal swellings can vary considerably (cf. the case of Anthracoidea eburneae Denchev & T. Denchev; Denchev & Denchev 2016: 77). Internal swellings are more visible in the lightly coloured immature spores.

It was found that spores longer than 26 μm usually had an elongated or irregularly elongated shape (Fig. 3F). As an exception, single spores with length up to 31 μm were also observed.

Carex halleriana is distributed from C and S Europe, the Mediterranean area and Crimea to the Caucasus and W Asia (to Afghanistan) (Kukkonen 1987, 1998; Egorova 1999; Luceño 2008). It is a lowland to montane species, usually occurring on dry mountain slopes or in dry broad-leaved mountain forests, usually on limestone (Egorova 1999; Luceño 2008). Based on the available distribution data, it can be assumed that Anthracoidea hallerianae is coextensive with its host.

Recording a new species of Anthracoidea for Africa is noteworthy, as currently only two species of this genus have been reported from this continent: A. kukkonensis Vánky on Carex distachya Desf. from Algeria and a dubious record of A. heterospora (B. Lindeberg) Kukkonen from Nigeria (Vánky & al. 2011).

Additional specimens examined (paratypes) — On Carex halleriana. — EUROPE: AUSTRIA: Lower Austria, Thermenalpen, Fischauer Berge, Emmerberg, 9 Jun 1966, coll. ? s.n. (GZU 222890). — BULGARIA: Varna province, near Zlatni Pyasutsi resort (Golden Sands), 19 May 1994, A. Petrova 1626 (SOMF 30244); Sofia province, Kostinbroad municipality, Beledie Han, 21 May 1991, D. Stoyanov s.n. (SOMF 20359; in Denchev 1993 as “Anthracoidea irregularis”); Sofia province, Mt. Chepun, near Dragoman, 42°56'33"N, 22°56'04"E, alt. 814 m, 10 Jun 2016, T. T. Denchev & C. M. Denchev 1618 (SOMF 30202); Kyustendil province, Konyavsk planina, above Skakavitsa railway station, 6 Jun 1990, C. M. Denchev s.n. (SOMF 20357; in Denchev 1993 as “A. irregularis”).
Fig. 3. *Anthracoidea halleriana* on *Carex halleriana*. – A–D: spores in LM (A: holotype; B, C: SOMF 30202; D: SOMF 20359); arrows in B, C and D show irregularly elongated spores, arrowheads in A, C and D indicate internal swellings; E–G: spores in SEM (E, F: SOMF 30002; G: SOMF 30001). – Scale bars: A–D = 10 μm; E–G = 5 μm.
Kyustendil province, Kyustendil municipality, Konyavska planina, valley of Shegava river near Ruzhdavitsa village, 42°23′54″N, 22°43′35″E, alt. 593 m, 10 May 2014, T. T. Denchev & C. M. Denchev 1415 (SOMF 30001); Kyustendil province, Kyustendil municipality, Konyavska planina, near Tsurvenyano village, 42°21′08″N, 22°48′00″E, alt. 920 m, 10 May 2014, T. T. Denchev & C. M. Denchev 1419 (SOMF 30002); Plovdiv province, Asenovgrad municipality, Rhodopes, near Gorni V oden monastery St. Kirik and St. Yulita, 41°59′59″N, 24°50′58″E, alt. 636 m, 21 May 2014, T. T. Denchev & C. M. Denchev 1411 (SOMF 30199); Plovdiv province, Asenovgrad municipality, Rhodopes, near Martsiganitsa hut, above Dobrostan village, 41°53′27″N, 24°52′31″E, alt. 1336 m, 26 Jul 2019, T. T. Denchev & C. M. Denchev 1977 (SOMF 30245). — Greece: Peloponnese, Laconia, Elafonisos island, 21 Apr 1991, A. Jagels n. (B 10 0427517); South Aegean, Rhodes, E of Astypalea, 17 Apr 1988, R. Böcker s.n. (B, as "A. irregularis"). — Romania: Dobrogea, Constanta county, Duranie Agiieni, 28 May 1981, G. Negrean s.n. (BUCM 59279; in Negrean 1993 as "A. caricis"). — Spain: Palencia province, "Reserva Nacional de Fuentes Carrionas", c. 7 km NNW Camperdento da Alba, Espiguete, alt. 2180 m, 17 Jul 2003, R. Karl s.n. (W 2004-0008293); Huesca province, Mt. Oturia, alt. 1700 m, 3 Jun 1987, R. Carcia Adá & al. s.n. (MA-Fungi 37679, as "A. caricis"; ex MA 480029). — Turkey: prov. Kahramanmaras, distr. Pazaricik, between Narli and Karabiyikli, alt. 600–700 m, 11 May 1957, Davis & Hedge D 27796 (K). — Africa: Algeria: Mt. Djebel Touililla, N of Zahrez Chergui salt lake, maquis, 1300 m, 27 Apr 1938, A. Dubuis s.n. (P01998567); "in collibus, Algeria", 6 Apr 1836, C. Martius 504 (P01832709).

Literature records (specimens not seen) — On Carex halleriana. — Europe: Andorra: Almaraz (1999a, 2002, as "Anthracoidea caricis"). — Austria: Lower Austria (Voss 1877, as "Ustilago caricis"; Zwetko & Blanz 2004, as "A. sp."); Vienna (Zwetko & Blanz 2004, as "A. sp."). — Bulgaria: Blagoevgrad province, Mt. Slavyanka (Shivas & al. 2020, as "A. caricis"). — France (mainland): Hautes-Alpes (French Alps) (Kukkonen 1963, as "A. caricis"); Alpes-de-Haute-Provence (Shivas & al. 2020, as "A. caricis"); Alpes-Maritimes (Kukkonen 1963, as "A. caricis", Fungi 105 in Poelt 1978, as "A. irregularis"). — France (Corsica): Ajaccio (Maire & al. 1901; Maire 1905, as "Cintractia caricis"; Kukkonen 1963, as "A. caricis"). — Greece: Peloponese, Laconia, Elafonisos island, 21 Apr 1991, A. Jugel s.n. (B 10 0427517); South Aegean, Rhodes, E of Pastida, pine forest, 17 Apr 1988, R. Böcker s.n. (B, as "A. irregularis"). — Romania: Dobrogea, Constanța county, Pădurea Hagieni, 28 May 1981, G. Negrean s.n. (BUCM 59279; in Negrean 1993 as "A. caricis"). — Turkey: prov. Kahramanmaras, distr. Pazarcik, between Narli and Karabiyikli, alt. 600–700 m, 11 May 1957, Davis & Hedge D 27796 (K). — Africa: Algeria: Mt. Djebel Touililla, N of Zahrez Chergui salt lake, maquis, 1300 m, 27 Apr 1938, A. Dubuis s.n. (P01998567); "in collibus, Algeria", 6 Apr 1836, C. Martius 504 (P01832709).
irregularis”). Gerona (González Fragoso 1923 – as “A. caricis”); Barcelona (González Fragoso 1924, as “C. caricis”); Almaraz 2002, as “A. caricis”). — Turkey: Niğde province (Kabaktepe & al. 2020, as “A. caricis”). — Switzerland: Valais (Zogg 1986, as “A. caricis”). — Spain: Navarra (Almaraz 1999b, as “A. caricis”); Alicante (Almaraz 1999a, 2002, as “A. caricis”); Granada (Almaraz 2002, as “A. caricis”). — Switzerland: Valais (Zogg 1986, as “A. irregularis”). — Asia: Cyprus: Limassol (Shivas & al. 2020, as “A. caricis”). — Turkey: Niğde province (Kabaktepe & al. 2018, as “A. irregularis”).

Acknowledgements

This study was funded by the Bulgarian Ministry of Education and Science under the National Research Program “Young scientists and postdoctoral students”, approved by DCM # 577 / 17.08.2018, and received support from the SYNTHESYS Project (https://www.syntheses.info/), which was financed by the European Community Research Infrastructure Action under the FP7 “Capacities” Program at the Botanischer Garten und Botanisches Museum Berlin (Grant no. DE-TAF-4056), the Royal Botanic Gardens, Kew (Grant no. GB-TAF-709), the Naturalis Biodiversity Center, Leiden (Grant no. NL-TAF-4973), the Real Jardín Botánico (CSIC), Madrid (Grant no. ES-TAF-6618), the Muséum national d’Histoire naturelle, Paris (Grant no. FR-TAF-5919) and the Naturhistorisches Museum Wien (Grant no. AT-TAF-5938). The assistance of the staff of B, GZU, K, L, MA, P and W is kindly acknowledged. The authors would also like to thank Tanja Rollnik (Ruhr-Universität Bochum) for preparing the SEM images and two anonymous reviewers for their comments on a previous version of this paper.

References

Almaraz T. 1999a: Nuevas aportaciones corológicas de Ustilaginales. – Bol. Soc. Micol. Madrid 24: 95–102.

Almaraz T. 1999b: Quelques Ustilaginales de l’Andalousie (Espagne). – Cryptog. Mycol. 20: 5–10.

Almaraz T. 2002: Bases corológicas de flora micológica ibérica. Numeros 1766–1932. – Pp. 11–124 in: Pandoph F. & Hernández J. C. (ed.), Cuadernos de trabajo de flora micológica ibérica 17. – Madrid: Consejo Superior de Investigaciones Científicas, Real Jardín Botánico.

Almaraz T. & Durrieu G. 1997: Ustilaginales from the Spanish Pyrenees and Andorra. – Mycotaxon 65: 223–236.

Castresana J. 2000: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. – Molec. Biol. Evol. 17: 540–552.

Ciferri R. 1931: Quinta contribuzione allo studio degli Ustilaginales. – Ann. Mycol. 29: 1–74.

Denchev C. M. 1993: New data concerning Bulgarian smut fungi (Ustilaginales). 2. – Fitologiya 46: 47–52.

Denchev C. M. 2001: Class Ustomyces (orders Tilletiales, Ustilaginales, and Graphiaceae). – Pp. 1–286 in: Fakirova V. (ed.), Fungi of Bulgaria 4 [in Bulgarian with English summary]. – Sofia: Editio Academica “Prof. Marin Drinov” & Editio Pensoft.

Denchev C. M. & Minter D. W. 2011: Anthracoidea intercedens. – In: IMI descriptions of fungi and bacteria 1862. – Egham: CAB International.

Denchev T. T. & Denchev C. M. 2016: Anthracoidea caricis-reznicekii (Anthracoideaes), a new species on Carex reznicekii, and A. eburnea, a new record for the USA. – Phytotaxa 244: 69–79.

Denchev T. T., Denchev C. M., Michikawa M. & Kakishima M. 2013: The genus Anthracoidea (Anthracoideaes) in Japan and some adjacent regions. – Mycobiota 2: 1–125.

Denchev T. T., Knudsen H. & Denchev C. M. 2020: The smut fungi of Greenland. – MycoKeys 64: 1–164.

Durrieu G. 1968: Micromycetes parasites de Grèce. – Biologia Gallo-Hellenica 1: 65–83.

Egorova T. V. 1999: The sedges (Carex L.) of Russia and adjacent states (within the limits of the former USSR). – St. Petersburg: St. Petersburg State Chemical-Pharmaceutical Academy; St. Louis: Missouri Botanical Garden Press.

Fischer de Waldheim A. 1876: Ustilaginales. – Bol. Soc. Micol. Madrid 24: 116–127.

Gouy M., Guindon S. & Gascuel O. 2010: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. – Molec. Biol. Evol. 27: 221–224.

Hendrichs M., Begerow D., Bauer R. & Oberwinkler F. 2005: The genus Anthracoidea (Basidiomycota, Ustilaginales): a molecular phylogenetic approach using LSU rDNA sequences. – Mycol. Res. 109: 31–40.
Kabaktepe S., Akata I. & Karakuş Ş. 2018: A new Anthra-
coidea (Ustilaginales) record for Turkey. – Hacettepe J.
Biol. Chem. 46: 391–393.

Katoğlu K. & Standley D. M. 2013: MAFFT multiple se-
quence alignment software version 7: improvements in
performance and usability. – Molec. Biol. Evol. 30: 772–780.

Kravchuk E. A., Prosyannikova I. B., Repetskaya A. I.
& Kukkonen I. 1987: The genus Anthracidea (Ustilag-
inales) on Carex halleriana. – Flora iranica area. – Pl.
Syst. Evol. 155: 27–43.

Luceño M. 2008 [“2007”]: Contribución al estudio de los
Ustilaginales y Fragmobasidiomycetes de España. 1. – Anales Biol., Fac. Biol., Univ.
Murcia 1: 35–45.

Losasonata J. M. 1970: Contribución al estudio de los
micromycetes españoles. – Anales Inst. Bot. Boliv.-
Bot., Fenn. “Vanamo”. 34(3): 1–122.

Kukkonen I. 1987: The genus Carex (Cyperaceae) in the
Flora iranica area. – Fl. Syst. Evol. 155: 27–43.

Kukkonen I. 1998: Cyperaceae. – Pp. 1–307, t. 1–42
in: Rechinger K. H. (ed.), Flora iranica 173. – Graz:
Akademische Druck- und Verlagsanstalt.

Llorens I & Villagrasa I. 1984: Aportación al conocimiento de los
Ustilaginales, Ustilaginaceae y Fragmobasidiomycetes de España. 1. – Anales Biol., Fac. Biol., Univ.
Murcia 1: 35–45.

Lose-Qintana J. M. 1970: Contribución al estudio de los
micromycetes españoles. – Anales Inst. Bot.
Cavanilles 26: 5–14.

Luceño M. 2008 [“2007”]: Carex L. – Pp. 109–250 in:
Castroviejo S., Luceño M., Galán A., Jiménez Me-
jías P., Cabezas F. & Medina L. (ed.), Flora iberica
Cyperaceae – Pandertieraceae. – Madrid: Real Jardín
Botánico, CSIC.

Maurus P. 1926: Nachtrag zu: Die Pilze, bearbeitet von
P. Magnus in der Flora der gefürsteten Grafschaft
Tirol, des Landes Vorarlberg und des Fürstentums
Liechtenstein von Prof. K. W. v. Dalla Torre und
Ludw. Grafen v. Sarnthein: III. Band, Innsbruck,
142: clxxix – ccxlvii, t. 13, iv.

Massalongo C. 1894: Nuova contribuzione alla micologia
veronese. – Malpighia 8: 97–130; 193–226, t. iii, iv.

Moncalvo J.-M., Wang H.-H. & Hsu R.-S. 1995: Phylo-
genic relationships in Ganoderma inferred from the
internal transcribed spacers and 25S ribosomal DNA
sequences. – Mycologia 87: 223–238.

Nannfeldt J. A. 1979: Anthracidea (Ustilaginales) on
Nordic Cyperaceae–Caricoideae, a concluding syn-
synthesis. – Symb. Bot. Upsal. 22(3): 1–41.

Negrean G. 1993: New or rare host-plants for Romanian
Ustilaginales. – Rev. Roumaine Biol., Sér. Biol. Veg.
38: 139–148.

Piątek M., Lutz M., Nobis M. & Nowak A. 2015: Phy-
logeny and morphology of Anthracidea pamiro-
alaica sp. nov. infecting the endemic sedge Carex
koshehnikowii in the Pamir Alai Mts (Tajikistan). –
Mycol. Progr. 14: 120.

Poelt J. 1978: Fungi. – Pp. 1–17 in: Poelt J. (ed.), Plantae
gaceenses 3. – Graz: Institut für Systematische
Botanik der Universität Graz. – Open access at https://
www.zobodat.at/pdf/Plantae-Gaceenses_PI_Grace-
censes_03_0001-0049.pdf [accessed 22 May 2020].

Prosyannikova I. B., Kravchuk E. A., Repetskaya A.
& Kadochnikova V. I. 2019: Inventarizatsiya vid-
dovo sostava fитофтроных obligатно-парамитных
micromisetov zapovednego urochishcha “Lesnaya
Dubovaya Roschcha ‘Levadki’”. – Izv. S.-Peterburgsk.
Lesotechn. Akad. 228: 234–249.

Rambaut A. 2012: FigTree v1.4. – Published at http://
tree.bio.ed.ac.uk/software/figtree/

Savchenko K. G., Lutz M., Piątek M., Heluta V. & Nevo
E. 2013: Anthracidea caricis-meadii is a new North
American smut fungus on Carex sect. Panicaceae. –
Mycologia 105: 181–193.

Shivas R., Tan Y. P. & Beasley D. 2020: Plant pathology
herbarium. – Brisbane: Queensland Government,
Department of Agriculture and Fisheries. – Pub-
lished at https://collections.daf.qld.gov.au/web/imu
.php?request=search&page=herbarium [accessed 19
May 2020].

Shorthouse D. P. 2010: SimpleMappr, an online tool to
produce publication-quality point maps. – Published
at https://www.simplemappr.net/ [accessed 19 May
2020].

Stamatakis A. 2014: RAxML version 8: a tool for phy-
logenetic analysis and post-analysis of large phy-
logenies. – Bioinformatics 30: 1312–1313.

Thiers B. 2020+ [continuously updated]: Index herbari-
orum: a global directory of public herbaria and
associated staff. New York Botanical Garden’s virtual
herbarium. – Published at http://sweetgum.nybg.org
/science/ihv [last accessed 26 May 2020].

Tranzschel W. 1902: Contributiones ad floram mycologi-
cam Rossiae. 1. Enumeratio fungorum in Tauria a.
1901 lectorum [in Russian]. – Trudy Bot. Muz. Imp.
Akad. Nauk 1: 47–75.

Vánky K. 1979: Species concept in Anthracidea (Ustil-
aginales) and some new species. – Bot. Not. 132: 221–231.

Vánky K. 1994: European smut fungi. – Stuttgart: Gustav
Fischer Verlag.

Vánky K. 2011 [“2012”]: Smut fungi of the world. – St.
Paul: APS Press.

Vánky K. 2013: Illustrated genera of smut fungi, ed. 3. –
St. Paul: APS Press.

Vánky K., Vánky C. & Denchev C. M. 2011: Smut fungi
in Africa – a checklist. – Mycol. Balcan. 8: 1–77.
Vilgalys R. & Hester M. 1990: Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. – J. Bacteriol. 172: 4238–4246.

Voss W. 1877: Die Brand-, Rost- und Mehlthaupilze (Ustilaginei, Uredinei, Erysiphe et Peronosporei) der Wiener Gegend. – Verh. K. K. Zool.-Bot. Ges. Wien 26: 105–153.

Winter G. 1880 ["1884"]: II. Ordnung Ustilagineae. – Pp. 79–131 in: Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz. Ed. 2. Band 1. Pilze. Abt. 1. Schizomyceten, Saccharomyceten und Basidiomyceten. – Leipzig: Eduard Kummer.

Zogg H. 1986 ["1985"]: Die Brandpilze Mitteleuropas unter besonderer Berücksichtigung der Schweiz. – Cryptog. Helv. 16: 1–277.

Zwetko P. & Blanz P. 2004: Die Brandpilze Österreichs. Doassansiales, Entorrhizales, Entylomatales, Georgefischeriales, Microbotryales, Tilletiales, Urocystales, Ustilaginales. – In: Ehrendorfer F. (ed.) Catalogus florae Austriae 3(3), Biosystematics and Ecology Series 21. – Wien: Verlag der Österreichischen Akademie der Wissenschaften.