Possible association of 3′ UTR +357 A>G, IVS11-nt 93 T>C, c.1311 C>T polymorphism with G6PD deficiency

Mahmoud M. Sirdah,a,b Mohammad E. Shubairc, Mustafa S. Al-Kahloutd, Jamal M. Al-Tayebd, Josef T. Prchalb,e and N. Scott Readingb,e

aBiology Department, Al Azhar University-Gaza, Gaza, Palestine; bDivision of Hematology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA; cDepartment of Medical Laboratory Sciences, Islamic University-Gaza, Gaza, Palestine; dPalestinian Ministry of Health, Al Nasser Pediatric Hospital, Palestine; eInstitute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USA

ABSTRACT

Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked inherited enzymopathic disorder affecting more than 500 million people worldwide. It has so far been linked to 217 distinct genetic variants in the exons and exon–intron boundaries of the G6PD gene, giving rise to a wide range of biochemical heterogeneity and clinical manifestations.

Objectives: Reports from different settings suggested the association of intronic and other mutations outside the reading frame of the G6PD gene with reduced enzyme activity and presenting clinical symptoms. The present study aimed to investigate any association of other variations apart of the exonic or exonic intronic boundaries in the development of G6PD deficiency.

Methods: Sixty-seven unrelated Palestinian children admitted to the pediatric hospital with hemolytic crises due to G6PD deficiency were studied.

Results: In our Palestinian cohort of 67 [59 males (M) and 8 females (F)] G6PD-deficient children, previously hospitalized for acute hemolytic anemia due to favism, molecular sequencing of the G6PD gene revealed four cases (3M and 1F) that did not have any of the variants known to cause G6PD deficiency, but the 3′ UTR c.*+357 A>G (rs1050757) polymorphism in association with IVS11 (c.1365-13T>C; rs2071429), and c.1311 C>T (rs2230037).

Conclusion: We now provide an additional evidence from Palestinian G6PD-deficient subjects for a possible role of 3′ UTR c.*+357 A>G, c.1365-13T>C, and/or c.1311 C>T polymorphism for G6PD deficiency, suggesting that not only a single variation in the exonic or exonic intronic boundaries, but also a haplotype of G6PD should considered as a cause for G6PD deficiency.

KEYWORDS

Glucose-6-phosphate dehydrogenase (G6PD) deficiency; Gaza Palestine; 3′ UTR +357 A>G; IVS11-nt 93 T>C; c.1311 C>T; polymorphism

Introduction

Affecting more than 500 million people worldwide, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked (cytogenetic location: Xq28) inherited enzymopathic disorder which has been reported in peoples from nearly all geographical locations; however predominates where Plasmodium falciparum malaria is or had been endemic. The G6PD plays a crucial part in sustaining the integrity of red blood cells (RBC) by preventing the oxidation of hemoglobin and other cellular proteins through the reducing power of NADPH generated by G6PD in the hexose monophosphate shunt (pentose phosphate pathway). G6PD deficiency is associated with 217 distinct genetic variants in the exons and exon-intron boundaries of the G6PD gene [1,2]. These genetic variants result in diminished stability and or activity giving rise to a wide range of biochemical heterogeneity and clinical manifestations. This disorder is classified into five categories based on enzyme activity and clinical presentations [3]. Class I variants encompass the severely deficient cases with chronic non-spherocytic hemolytic anemia, while class V variants cause increased G6PD activity. The principle clinical presentation of G6PD deficiency is an acute hemolytic anemia (AHA) triggered by an exogenous drug or ingestion of fava beans that may require transfusion in children.

Recent studies from different populations have addressed probable and potential associations between some intronic and non-coding region polymorphisms and the biochemical and clinical presentation of G6PD-deficient subjects [4–10]. In the present study we aim to explore the association of 3′ UTR c.*+357 A>G (rs1050757), c.1365-13T>C (rs2071429, previously referred as IVS11 T93C in literature), and c.1311 C>T (rs2230037) polymorphisms with the G6PD deficiency among G6PD-deficient Palestinian children.
Table 1. The genetic variants identified in G6PD-deficient 67 samples.

Location	Number	cDNA nucleotide substitution	Codon (a.a. substitution)	Class	Endonuclease digestion
G6PD Mediterranean	Exon 6	rs5030868	563C>T	II	MboI
G6PD A-	Exon 4/Exon 5	rs1050828/rs1050829	188 (Ser>Pro)	III	NlaIII
			202 G>A		
			376 A>G		
G6PD Cairo	Exon 5	CM962574	404A>C	II*	FnuI
G6PD Chatham	Exon 9	rs5030869	404A>C		
G6PD Beverly Hills	Exon 10	rs137862321	1003G>A		
G6PD Gaza	Exon		1160G>A	II	AcI
c* +357 A>G	3’ UTR	rs1050757	+357 A>G		
c.1365-13T>C	Intron 11	rs2071429	93 T>C		
c.1311 C>T	Exon 11	rs2230037	1311 C>T		

*Based on Reading et al. [13].

Patients and methods

The present study was performed in accordance with the ethical standards established in the Declarations of Helsinki and has been approved by the Helsinki Ethical Committee of the Palestinian Health Research Council. Based on medical records from Al Nasser Pediatric hospital we enrolled 67 (59 boys and 8 girls) G6PD-deficient children with the informed consent from their parents or guardians.

Red blood cell count and indices (RBC count, Hb, Hct, MCV, MCH, MCHC), G6PD quantitative enzymatic activity, and DNA extraction for molecular investigations were obtained from venous blood samples collected in K2-EDTA tubes. The activity of G6PD enzyme was assessed spectrophotometrically at 340 nm using the G6PDH Screening Test (Randox Laboratories, Ltd, Antrim, UK) according to the manufacturer instructions, and G6PD activity was expressed as IU/g Hb at 37°C [11]. Dried blood spots were prepared by spotting approximately 400 µL whole blood on Ahlstrom 226 grade new-born screening filter paper (ID Biological Systems, Greenville, SC, U.S.A). DNA was extracted and purified from the dried blood spots as previously described [12]. Hematological and biochemical analyses were performed at Al Nasser Pediatric Hospital laboratories, Gaza, Palestine. All molecular analyses were conducted at the University of Utah and the Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, Utah, USA. The DNA samples were genotyped by polymerase chain reaction (PCR) amplification of G6PD exons 4, 5, 6 and restriction fragment length polymorphism (RFLP) analysis for A- -202, A- -376, Cairo -404C, and Mediterranean -563 variants (Table 1) as described [2]. Restriction enzyme digest products were analyzed using the Qiaxcel DNA analyser Screening kit and BioCalculator software (Qiagen Sciences, Germantown, MD, U.S.A). Those DNA samples without a defined G6PD mutation by the PCR-RFLP analysis were further characterized by BigDye™ terminator cycle sequencing on a 3100 Genetic Analyzer (Life Technologies Corporation, Carlsbad, CA, U.S.A) and Mutation Surveyor (SoftGenetics, LLC, State College, PA, U.S.A) analysis of the sequencing data.

Results

Enzyme activity measurements and other indices were taken at the time of hospitalization and at least 4 months after a child’s last reported AHA episode to ensure the assessment would be at a steady-state representation of G6PD activity (Table 2). At time of hospitalization activity levels for the 67 children ranged from 0.75 to 5.43 IU/gHb (normal range: 6.7–20.5); Hb levels 5.2–7.7 g/dL (normal range: 10.5–12.7 g/dL); reticulocyte counts 108–264 × 109/L (normal range: 28.5–78.1 × 109/L); MCV, MCH, MCHC, Hct, and DNA extraction for molecular investigations were obtained from venous blood samples collected in K2-EDTA tubes. The activity of G6PD enzyme was assessed spectrophotometrically at 340 nm using the G6PDH Screening Test (Randox Laboratories, Ltd, Antrim, UK) according to the manufacturer instructions, and G6PD activity was expressed as IU/g Hb at 37°C [11]. Dried blood spots were prepared by spotting approximately 400 µL whole blood on Ahlstrom 226 grade new-born screening filter paper (ID Biological Systems, Greenville, SC, U.S.A). DNA was extracted and purified from the dried blood spots as previously described [12]. Hematological and biochemical analyses were performed at Al Nasser Pediatric Hospital laboratories, Gaza, Palestine. All molecular analyses were conducted at the University of Utah and the Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, Utah, USA. The DNA samples were genotyped by polymerase chain reaction (PCR) amplification of G6PD exons 4, 5, 6 and restriction fragment length polymorphism (RFLP) analysis for A- -202, A- -376, Cairo -404C, and Mediterranean -563 variants (Table 1) as described [2]. Restriction enzyme digest products were analyzed using the Qiaxcel DNA analyser Screening kit and BioCalculator software (Qiagen Sciences, Germantown, MD, U.S.A). Those DNA samples without a defined G6PD mutation by the PCR-RFLP analysis were further characterized by BigDye™ terminator cycle sequencing on a 3100 Genetic Analyzer (Life Technologies Corporation, Carlsbad, CA, U.S.A) and Mutation Surveyor (SoftGenetics, LLC, State College, PA, U.S.A) analysis of the sequencing data.

Discussion

G6PD deficiency is a common disorder caused by many genetic variants that account for the biochemical and clinical heterogeneity of the disorder. With some exceptions, such as in Gaza Palestinian population [2,13], a single defined variant is typically endemic within defined ethnic/racial groups [14].
Currently 217 genetic variants have been linked to the clinical manifestation of reduced or deficient G6PD enzyme activity, vast majority located in exons and only rarely in exon/intron boundaries that interfere with the splicing process of G6PD mRNA [1]. The functional consequences of genomic changes outside of these regions have not been adequately explored. In recent years there have been numerous papers that have associated low G6PD enzyme activity with the common G6PD c.1311C>T/c.1365-13T>C haplotype [4–10]. Jiang et al. identified 59/1004 G6PD-deficient subjects (confirmed by lower enzymatic activity in accordance with class III) that carried the c.1311C>T/c.1365-13T>C haplotype with no other mutation within G6PD. These authors noted that the c.1311C>T/c.1365-13T>C haplotype occurs at a high frequency (∼6%) in the Chinese population, but only a portion of these present with variable degrees of decreased G6PD activity. Wang et al. also reported similar findings in 5 of 27 Malaysian G6PD-deficient subjects with the c.1311C>T/c.1365-13T>C haplotype (in the absence of any exonic variants) who had enzyme activity levels 30–50% of normal consistent with WHO Class III G6PD deficiency. Amini et al. identified the c.1311C>T/c.1365-13T>C haplotype was common in the Malaysian Negrito population with enzyme activity between 10 and 60% of normal values, while cases lacking this haplotype had normal G6PD activity. Amini and Ismail in a cohort of Malaysian subjects looked outside the G6PD coding region and identified three SNP (rs112950723, rs111485003 and rs1050757) with potentially strong association with the c.1311C>T/c.1365-13T>C haplotype and low enzyme activity. Using in-silico studies the authors showed that rs10507457 is sufficient to repress G6PD transcription by altering mRNA translation or stability leading to variable degrees of enzyme deficiency.

We report four of 67 G6PD-deficient Palestinian children, previously hospitalized for AHA due to favism, lacking any known mutations to cause G6PD deficiency. At their hospital admission the four children presented with the phenotype typical for favism including anemia, hemoglobinuria reported by parents as dark urine, jaundice, and a history of fava bean ingestion associated with reduced G6PD enzyme activity [15]. Of these, three children carried the 3’UTRc.*+357A>G/c.1365-13T>C/c.1311C>T haplotype and one child carried the 3’UTRc.*+357A>G polymorphism. Correlation of enzyme activity levels for these four individuals to the remainder of the cohort at time of hospitalization and while at steady-state revealed significant differences between the two groups (Table 2). These four children maintained,

Table 2. Biochemical and hematological parameters of the four G6PD-deficient patients with polymorphism as compared to 63 patients with exonic mutations.

Patients	Genotype	Sex	Neonatal jaundice	Agea (months)	At admission of first hemolytic crisis	At steady state	Neonatal jaundice	Agea (months)				
1	C.* +357 A>G/c.1365-13T>C/c.1311C>T	M	Yes	15	2.90	6.2	121.0	1.4	7.51	11.7	52.03	0.95
2	C.* +357 A>G/c.1365-13T>C/c.1311C>T	M	Yes	24	2.23	7.1	133.4	1.5	7.51	11.7	52.03	0.95
3	C.* +357 A>G/c.1365-13T>C/c.1311C>T	F	No	34	6.3	12.9	264.2	2.6	7.7	11.9	28.5	0.73
4	C.* +357 A>G	M	No	30	5.43	7.7	108.1	1.94	7.7	11.9	28.5	0.73
63 subjects	Mean											

aAge at first hemolytic crisis required hospitalization.

bNormal values as mentioned in Reading et al. [13].

c3′UTRc.* +357A>G
although in the deficient range, higher enzyme levels during AHA crisis (3.69 IU/gHb average) and at steady-state (7.29 IU/gHb average, low end of normal range) than the 63 children carrying known G6PD deficiency mutations. The clinical presentation during AHA crisis was also milder for these four children with higher RBC indices and lower unconjugated bilirubin levels (Table 2), therefore, these polymorphic variants may be classified as class III in the G6PD enzyme activity scale [3]. We cannot exclude the possibility of other more rare enzymopathies (e.g. such as enzymes of glutathione synthesis or transport pathways or glutathione reductase deficiency) as the primary cause of phenotype [16] because the G6PD activity was reduced during the crises and in remained at the steady-state in the low end of the normal range after hemolytic episode.

In this study we presented supporting data and observations linking non-coding variants to the incidence of G6PD deficiency. We recognize the c.1311T>C/c.1365-15T>C haplotype is commonly associated with those G6PD genotypes (i.e. G6PD Mediterranean, Viangchan) that lead to G6PD deficiency and therefore should be noted in the molecular evaluation of G6PD deficiency. To this association we would now add the 3′UTR variant c.Δ+357A>G as an associated deficient genotype and categorize it as a WHO class III G6PD deficiency. Identifying the frequency of these polymorphic variants among the general population was not performed in the present study, and thus we recommend further studies to determine the frequency of these polymorphic variants not only in the healthy Palestinian population but also searching for these variants in G6PD-deficient patients from other populations especially when no mutations are detected in the 13 G6PD exons or exonic–intronic boundaries [1].

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The research activities in Gaza were financially supported by a Qatar Charity IBHATH Project grant funded by the Gulf Cooperation Council for the Reconstruction of Gaza through the Islamic Development Bank. Dr Sirdah also would like to thank ARUP Laboratories for his training in molecular biology and support.

Notes on contributors

Mahmoud M. Sirdah, PhD, is a Professor of Hematology and Molecular Genetics at Al Azhar University-Gaza, Palestine and a visiting scholar to the University of Utah School of Medicine.

Mohammad E. Shubair, PhD, is a Professor of Medical Laboratory Sciences at the Islamic University of Gaza, Palestine.

Mustafa S. Al-Kahlout, MD, is a Pediatrician and the director of Al Nasser pediatric hospital, Gaza, Palestine.

Jamal M. Al-Tayeb, MD, is a pediatrician and the head of the emergency and casualty department at Al Nasser pediatric hospital, Gaza, Palestine.

Josef T. Prchal, MD, is a Professor in the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine at the University of Utah. He also holds adjunct Professor appointments in Human Genetics and in Pathology.

N. Scott Reading, PhD, is an R&D Investigator in Hematopathology, ARUP Laboratories, Institute of Clinical and Experimental Pathology Salt Lake City, UT, USA, and he also serves as an adjunct professor of Genetics at Department of Pathology, University of Utah, Salt Lake City, UT, USA.

References

[1] Gómez-Manzo S, Marcial-Quino J, Vanoye-Carlo A, et al. Glucose-6-phosphate dehydrogenase: update and analysis of new mutations around the world. Int J Mol Sci. 2016;17(12):2069.
[2] Sirdah M, Reading NS, Vankayalapati H, et al. Molecular heterogeneity of glucose-6-phosphate dehydrogenase deficiency in Gaza Strip Palestinians. Blood Cell Mol Dis. 2012;49(3–4):152–158.
[3] Yoshida A, Beutler E, Motulsky AG. Human glucose-6-phosphate dehydrogenase variants. B World Health Organ. 1971;45(2):243–253.
[4] Yu GL, Jiang WY, Du CS, et al. [Complex mutations of 1311 C→T in exon 11 and 93 T→C in intron 11 in G6PD gene]. Zhonghua xue ye xue za zhi = Zhonghua xue ye xue za zhi. 2004;25(10):610–612.
[5] Jiang W, Yu G, Liu P, et al. Structure and function of glucose-6-phosphate dehydrogenase-deficient variants in Chinese population. Hum Genet. 2006;119(5):463–478.
[6] Laosombat V, Sattayasevanna B, Chotsampancharoen T, et al. Glucose-6-phosphate dehydrogenase variants associated with favism in Thai children. Int J Hematol. 2006;83(2):139–143.
[7] Wang J, Luo E, Hirai M, et al. Nine different glucose-6-phosphate dehydrogenase (G6PD) variants in a Malaysian population with Malay, Chinese and Orang Asli (aboriginal Malaysian) backgrounds. Acta Med Okayama. 2008;62(5):327–332.
[8] Amini F, Ismail E, Zilfalil BA. Prevalence and molecular study of G6PD deficiency in Malaysian Orang Asli. Intern Med J. 2011;41(4):351–353.
[9] Amini F, Ismail E. 3′-UTR variations and G6PD deficiency. J Hum Genet. 2013;58(4):189–194.
[10] Nantakomol D, Chaowananthikhom M, Nuchnoi P. A pathogenic haplotypes of the g6pd gene correlating with enzyme activity. The American Society of Human Genetics (ASHG) annual meeting; 2014.
[11] Beutler E. Red cell metabolism: a manual of biochemical methods. New York: Grune and Stratton; 1971.
[12] Heath EM, O’Brien DP, Banas R, et al. Optimization of an automated DNA purification protocol for neonatal screening. Arch Pathol Lab Med. 1999;123(12):1154–1160.
Reading NS, Sirdah MM, Shubair ME, et al. Favism, the commonest form of severe hemolytic anemia in Palestinian children, varies in severity with three different variants of G6PD deficiency within the same community. Blood Cell Mol Dis. 2016;60:58–64.

Beutler E. G6PD deficiency. Blood. 1994;84(11):3613–3636.

Luzzatto L, Nannelli C, Notaro R. Glucose-6-phosphate dehydrogenase deficiency. Hematol/Oncol Clinics North Am. 2016;30(2):373–393.

Al-Abdi SY. Decreased glutathione S-transferase level and neonatal hyperbilirubinemia associated with glucose-6-phosphate dehydrogenase deficiency: a perspective review. Am J Perinat. 2016. DOI:10.1055/s-0036-1585465