Suppressor mutations in Mecp2-null mice implicate the DNA damage response in Rett syndrome pathology

Adebola Enikanolaiye, Julie Ruston, Rong Zeng, Christine Taylor, Marijke Schrock, Christie M. Buchovecky, Jay Shendure, Elif Acar, and Monica J. Justice

1Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, MSG 0A4, Canada; 2Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; 3Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; 4Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, USA; 5Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington 98195, USA; 6Howard Hughes Medical Institute, Seattle, Washington 98195, USA; 7The Centre for Phenogenomics, Toronto, Ontario, M3J 1T7, Canada; 8Department of Statistics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; 9Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada

Mutations in X-linked methyl-CpG-binding protein 2 (MECP2) cause Rett syndrome (RTT). To identify functional pathways that could inform therapeutic entry points, we carried out a genetic screen for secondary mutations that improved phenotypes in Mecp2/Y mice after mutagenesis with N-ethyl-N-nitrosourea (ENU). Here, we report the isolation of 106 founder animals that show suppression of Mecp2-null traits from screening 3177 Mecp2/Y genomes. Whole-exome sequencing, genetic crosses, and association analysis identified 22 candidate genes. Additional lesions in these candidate genes or pathway components associate variant alleles with phenotypic improvement in 30 lines. A network analysis shows that 63% of the genes cluster into the functional categories of transcriptional repression, chromatin modification, or DNA repair, delineating a pathway relationship with MECP2. Many mutations lie in genes that modulate synaptic signaling or lipid homeostasis. Mutations in genes that function in the DNA damage response (DDR) also improve phenotypes in Mecp2/Y mice. Association analysis was successful in resolving combinatorial effects of multiple loci. One line, which carries a suppressor mutation in a gene required for cholesterol synthesis, Sqle, carries a second mutation in retinoblastoma binding protein 8, endonuclease (Rbbp8, also known as CtIP), which regulates a DDR choice in double-stranded break (DSB) repair. Cells from Mecp2/Y mice have increased DSBs, so this finding suggests that the balance between homology-directed repair and nonhomologous end joining is important for neuronal cells. In this and other lines, two suppressor mutations confer greater improvement than one alone, suggesting that combination therapies could be effective in RTT.

[Supplemental material is available for this article.]

Mouse genetics is a powerful tool to identify molecular mechanisms that are important for disease suppression. By using a modifier screen, a dominant mutation can be isolated by its ability to alter the presentation of a recessive or dominant trait to discover genes that act in a given developmental or biochemical pathway. Modifier screens have been rare in the mouse; however, using massively parallel sequencing technologies, candidate mutations can now be efficiently identified without extensive breeding and mapping. Mutagenesis screens that focus on disease suppression may identify unrecognized pathways of pathogenesis as alternative therapeutic entry points.

Rett syndrome (RTT) is a prototype disease for which a modifier screen would be beneficial and representative for other diseases. RTT is a nearly monogenic disorder with >95% of patients carrying mutations in methyl-CpG-binding protein 2 (MECP2), a gene not present in invertebrates. MECP2 is central to neurological function and is associated with other diseases, including intellectual disabilities, autism, neuropsychiatric disorders, and lupus erythematosus (Neul and Zoghbi 2004; Bienvenu and Chelly 2006). The type of MECP2 mutation does not always correlate with disease severity, in part, because of skewing of X Chromosome inactivation in heterozygous females (Shahbazian et al. 2002). Hemizygous males with truncating or loss of function mutations in MECP2 usually die by two years of age (Bienvenu and Chelly 2006).

Mouse models recapitulate many of the pathologic features of RTT and are crucial for understanding the molecular and cellular basis (Chen et al. 2001; Guy et al. 2001). Male mice that lack Mecp2 are normal through three weeks of age, but they develop hypoactivity, limb clasping, tremors, and abnormal breathing as early as four weeks, depending upon the allele and the genetic background (Katze et al. 2012). The symptoms become progressively worse, leading to their death at 6–12 wk. RTT has historically been considered a neurological disease (Jellinger and Seitelberger 1986). MECP2 is expressed at near histone levels in neurons, and neurons of Mecp2/Y mice show a number of deficits, including delayed transition into mature stages, altered expression of...
Suppressors of Rett-like traits in MeCP2-null mice

Results

Two suppressor screens produce 106 founders with trait improvement

ENU-treated C57BL/6J males were bred to female 129.Mecp2tm1.1Bird/+ mice (Fig. 1A). Male offspring in the first generation (N1), asymptomatic at weaning, were genotyped for presence of mutant MeCP2 and examined for amelioration of disease phenotypes by a dominant mutation. In total, 3177 relevant gametes were screened for phenotype improvement. The preliminary screen 1 produced 2963 animals of which 679 were MeCP2/Y (Fig. 1A, gray; Buchovecky et al. 2013). This number is close to one genome’s equivalent, because the mutation rate for the 3 x 100 mg/kg dose of ENU is about one new mutation per gene in every 655 gametes screened (Hlitotumachi et al. 1985). In screen 1, 10 lines showing suppression of traits were identified, but only six of these bred naturally and one (1527) was reconstituted by in vitro fertilization (IVF) of fresh sperm. A scoring system was used to individually assess limb clasping, tremors, body weight, and activity. In general, improvement of these scores indicated improved longevity as evidenced by the long lifetime of the founders and their offspring (Buchovecky et al. 2013).

In screen 2, an additional 10,069 animals, of which 2498 were MeCP2/Y, produced 96 additional N1 founder males that showed suppression of one or more traits. In screen 2, sperm from each founder was frozen, and of 23 lines mated, nine bred naturally before they were sacrificed, whereas 14 were reconstituted using IVF of frozen sperm. In screen 2, all N1 mice were evaluated weekly starting at P35 for four subjective health parameters that have previously been noted in MeCP2/Y mice (Guy et al. 2001): hindlimb clasping, tremors, activity, and general body condition. Muscle tone was also assessed, because it was also an important indicator of health. Each subjective parameter was scored out of 2, whereby 0 indicated the health trait was equivalent to wild type, 1 if intermediate, or 2 if severe. Body weights were also obtained weekly and were scored 0 if <29 g, 1 if between 30 and 34 g, and 2 if >35 g. These five subjective health parameters and quantitative
parameter body weight were totaled to obtain a score out of 12. In screen 2, animals were classified as improved if their summed health score totaled <8 at 8 wk of age, and they were maintained generally until 12–14 wk, when they were sacrificed for sperm cryopreservation. N3 animals were evaluated using the same criteria. The Mecp2/Y animals from the strains maintained at the two institutions had different life spans, possibly owing to differing pathogen status. Therefore, Mecp2/Y animals from screen 1 were classified improved if they lived ≥14 wk, while those from screen 2 were classified improved if they lived ≥10 wk and had improved scores on assessed health traits.

Whole-exome sequencing identifies candidate genes in founder males

When the first modifiers were isolated in screen 1, WES was not yet available, so the first line was sequenced by custom capture resequencing of a mapped region (line 352). WES was carried out on lines 856, 895, 1395, and 1527, but the sequence was analyzed only in the regions with positive LOQ scores obtained by mapping, and only one candidate gene, Sdq1, from line 895 was reported (Buchovecky et al. 2013). The WES of 69 of the founder N1 males from the second screen was analyzed for all potential contributing mutations throughout the genome (Supplemental Table S1). Naturally occurring single-nucleotide polymorphisms (SNPs) that were specific to the 129S6/SvEv and C57BL/6j strains were filtered by comparing with parental and all sequenced founder male genomes, and variants predicted to be tolerated were excluded. The remaining potentially causative 3601 variants ranged in number from 20 to 135 in each N1 founder male, with a mean of 50 (Fig. 1B). These variants were largely nonsynonymous missense mutations (92%) (Fig. 1C), which were primarily transition mutations (A to G and T to C) (Fig. 1D). Each of 2588 genes had only one allele found in the N1 males, each of 380 genes had different alleles in two lines, 52 genes had three alleles, 13 genes had four, five genes had five, and a single large gene, titin (7M), had 20 alleles (Fig. 1E).

Confirming the candidate lesions shows complex inheritance of traits

The inheritance of traits was determined by mating 30 N1 founders from both screens (seven from screen 1 and 23 from screen 2) to 129.Mecp2/Y females. Their N2 female offspring, carrying the Mecp2 mutation inherited from their father, were mated again to 129S6/SvEvTac males, whereas N2 male offspring were mated to 129.Mecp2/Y females. In screen 1, each line was mapped to narrow the suppressor locus to a chromosomal location using SNP panels before sequencing (Neuhaus and Beier 1998; Moran et al. 2006). In screen 2, SNPs were not used for mapping. When possible, up to 10 N2 offspring from each family were mated to produce approximately 10 Mecp2/Y N3 offspring, which were assessed for phenotype and aged. If the modifier was inherited in a Mendelian fashion, 50% of the N2 animals should have inherited the trait and 50% should pass it on to their N3 offspring; thus, only 25% of the total N3 offspring are expected to inherit the suppressor trait (Table 1). Of 30 lines, 23 showed evidence for inheritance of disease improvement (Supplemental Table S2). Nineteen of the 23 lines segregated modifier loci in a non-Mendelian fashion, suggesting involvement of more than one locus (Table 1). In lines 856 and 895, the pattern of inheritance suggested that either locus conferred improvement, whereas the inheritance of both loci suggested additive health improvement. In contrast, although all families in line S20 had at least one animal with trait improvement, none showed greatly improved health scores, suggesting that the two loci may have influenced health traits independently. Seven lines, 137, 591, 722, 933_15N, A_87N, A_120N, and A_134L, were not solved because so few Mecp2/Y N3 animals showed trait improvement (fewer than eight), possibly because two or more loci must be inherited together to see an effect. It is also possible that a genetic combination resulted in decreased health or longevity, rather than improvement.

To identify candidate genes in screen 2, the exome from a minimum of two N3 offspring that showed the largest degree of improvement and were from different N2 parents was also sequenced. Lesions that occurred in the N1 founder and these two offspring were regenotyped in individuals from families that inherited trait improvement (Fig. 1A; Supplemental Table S2). Common SNPs identified in WES were used to genotype N3 animals to confirm the location after candidate loci were identified.

Statistical analysis of candidate genes shows support for a solution in 13/23 lines (Tables 1, 2; Supplemental Table S3). Within these 13 lines, 22 genes are supported by association analysis as candidates for suppression of a variety of traits. Eight additional lines carry alleles of these 22 candidate genes, and 11 lines carry mutations in a related pathway member or Mecp2 corepressor complex member. Some lines carry multiple associative mutations, thus, candidate genes have been identified in 30 of the lines (Tables 1, 2). The screen 2 loci that are supported by mating and association analysis are named Sum 6–21 (Table 1). Candidate genes are identified for two of the lines from screen 1 (Prdm1-Sum1-Jus and Zzz3-Sum2-Jus), and a second suppressor was found in line 895 from screen 1 (Rhbgp-Sum3-Jus).

Candidate genes fall into similar functional pathways

Genes with supported or pathway lesions were integrated into biological networks using Cytoscape (v3.7) (Shannon et al. 2003) and its accompanying applications GeneMANIA (v3.5.1) (Warde-Farley et al. 2010) and clusterMaker (1.3.1) (Morris et al. 2011). A functional enrichment map (network) generated by coexpression, shared protein domains, physical interactions or predictions was further clustered into biological pathways, confirming that most of the genes fall into three major pathways: lipid homeostasis, synaptic function, and DNA damage (Fig. 2). Gene Ontology (GO) analysis revealed that the top 16 enriched terms in this network included MECP2-associated biological processes involved in transcriptional corepressor activity and chromatin-associated functions. However, it also revealed novel GO terms such as DNA recombination, double-strand break repair, and regulation of DNA metabolic processes. Thus 20/32 or 63% of the genes clustered into the general category of “Regulation of DNA Activity,” which is expected for a functional relationship with MECP2. The genes with unknown function (Clint1, Demnd4a) fall outside the functional pathways.

Chromatin structure and transcriptional regulation

Several candidate genes are predicted to alter chromatin structure: These include PR domain containing 15 (Prdm15), zinc finger ZZ domain containing 3 (Zzz3), and lysine (K)-specific demethylase 4A (Kdm4a). The PR domain proteins, many of which have histone methyltransferase activity and others that recruit methyltransferases to DNA, play roles as molecular switches in many developmental processes (Fog et al. 2012; Hohenauer and Moore 2012; Mzoughi et al. 2017). ZZZ3 is a part of the Ada-Two-A-containing (ATAC) histone acetyltransferase complex, which widely regulates
gene expression (Mi et al. 2018). KDM4A is important for the structure of heterochromatin during embryonic development, and it influences neuropathic pain through brain derived neurotrophic factor (BDNF) expression (Sankar et al. 2017; Zhou et al. 2017). The corepressors Ncor1, transducin (beta)-like 1X-linked receptor 1 (Tbl1xr1), Rcor1, and Sin3a are transcriptional repressors that act with MECP2, yet missense mutations in these genes occurred in lines that were not mated, so they are included in Table 2 but are not given Sum designations.

Line	Families with improvement	Number of N3 Mecp/Y improved/total	Inheritance (P-value)	Solved	MGI: ID
352^{a,b}	6/6	1.00	36/129 0.28	<0.001	Prdm1^{Sum1-Jus} MGI:5489912
856^{a,b}	10/10	1.00	76/165 0.46	0.003	Zzz3^{Sum2-Jus} MGI:5489913
895^{a,b}	8/9	0.89	32/109 0.29	<0.001	Sgle^{Sum3-Jus} MGI:5489914
520	8/8	1.00	19/116 0.16	<0.001	Rdap8^{Sum4-Jus} MGI:6367664
4654^a	5/9	0.56	8/81 0.10	<0.001	Cd22^{Sum5-Jus} MGI:6367718
4751^a	5/6	0.83	13/81 0.16	<0.001	Cln1^{Sum6-Jus} MGI:6367719
4799^a	4/7	0.57	8/70 0.11	<0.001	Kdm4a^{Sum7-Jus} MGI:6367720
918.15L^a	3/6	0.50	7/60 0.12	<0.001	Tim7^{15-Jus} MGI:6367721
J_57L	7/9	0.78	18/108 0.17	<0.001	Dnmd1^{Sum8-Jus} MGI:6367722
A 27R	3/10	0.30	8/103 0.08	<0.001	Aacs^{Sum1-Jus} MGI:6367724
A 333N	3/8	0.38	9/62 0.15	0.009	Spin^{1-Jus} MGI:6367725
M 199LL^a	4/5	0.80	9/52 0.17	0.002	Atp8a1^{Sum6-Jus} MGI:6367726
M 333R^{a,b}	5/6	0.83	10/88 0.11	<0.001	Tm7sf2^{Sum9-Jus} MGI:6367727
1395^{a,b}	6/6	1.00	70/196 0.36	<0.001	Arhgef1^{Sum10-Jus} MGI:6367728
1527^b	13/14	0.93	61/190 0.32	<0.001	Hcn2^{Sum11-Jus} MGI:6367729
136^b	7/11	0.64	12/104 0.12	<0.001	Apoo^{Sum12-Jus} MGI:6367730
591	7/9	0.78	7/114 0.06	<0.001	Tet1^{Sum13-Jus} MGI:6367731
722	4/10	0.40	8/102 0.08	<0.001	Zbtb41^{Sum14-Jus} MGI:6367732
933.15N	4/10	0.40	5/118 0.04	<0.001	Gtf3c5^{Sum15-Jus} MGI:6367733
A 87N	4/9	0.44	8/95 0.08	<0.001	Rbbp8^{Sum16-Jus} MGI:6367734
A 120N	3/7	0.43	8/70 0.11	<0.001	Celsr3^{Sum17-Jus} MGI:6367735
A 134L^a	3/5	0.60	8/84 0.10	<0.001	Dbnl^{Sum18-Jus} MGI:6367736
A 230RR	NM				
604	NM				
A 347N	NM				
A 83L	NM				
620	NM				
A 189N	NM				
J 157N	NM				
A 136N	NM				
M 420L	NM				
M 79N	NM				
A 173N	NM				
920.39R	NM				
4633	NM				
272	NM				
591	4/9	0.44	8/95 0.08	<0.001	Tet1^{Sum19-Jus} MGI:6367737
722	4/10	0.40	8/102 0.08	<0.001	Zbtb41^{Sum20-Jus} MGI:6367738

Complex versus Mendelian inheritance was assessed from breeding data as described in Methods (Supplemental Table S2). The second column in “Families with Improvement” and in “Number of N3 Mecp2/Y improved/total” represents the ratio of the numbers in the first column. Column 4 presents the P-value of the Fisher’s exact test for testing the Mendelian hypothesis calculated based on 10⁶ Monte Carlo simulations. A P-value < 0.001 provides sufficient evidence to reject the Mendelian hypothesis. Bold indicates lines in which a candidate gene was associated with one or more improved traits. Loci that had an effect only in the presence of an another supported suppressor locus are named interacting loci (i).

^aLine mated naturally, (NM) not mated.
^bLines from screen 1.

Suppressors of Rett-like traits in Mecp2-null mice

Lipid homeostasis

Four mutations (Aacs, Apoa5, Atp8a1, Tm7sf2) support previous publications that lipid metabolism is a primary pathway for pathogenesis (Buchovecky et al. 2013; Justice et al. 2013; Segatto et al. 2014; Kyle et al. 2016). The founding lesion in this pathway occurred in Syle, a rate-limiting enzyme in cholesterol synthesis. MEC2 anchors a protein complex containing the master metabolic regulator nuclear receptor co-repressor 1 (NCOR1) to DNA.
When MECP2 is absent, NCOR1 does not suppress its lipid synthesis targets, including Syle, leading to lipid accumulation in the brain and liver of MeCP2-mutant males and females, resulting in metabolic syndrome (Buchovecky et al. 2013; Kyle et al. 2016). Acetoacetil-CoA synthetase (Aacs) is another target of the NCOR1 corepressor complex (Knutson et al. 2008), which allows ketone bodies to be used as an energy source (Hasegawa et al. 2005; Mandel et al. 2011; Monaghan et al. 2017; Hwang and Zukin 2018). Alternatively, drebrin-like (Dbnl) is a REST target involved in vesicular trafficking and synapse formation in neurons (Haeckel et al. 2008). Although line 4633 was not mated, it carries a missense mutation in Drosophila, which binds and corepresses target genes with MECP2 (Ballas et al. 2005). Other candidate genes that are predicted to function at the synapse are the hyperpolarization-activated, cyclic nucleotide-gated K+ 2 (Hn2) and the Rho guanine nucleotide exchange factor (GEF) 15 (Arhgef15).

DNA damage response

Another group of mutations affects the DNA damage response (DDR). Three lines carried mutations in tet methylcytosine dioxygenase 1 (Tet1). Tet1 modifies methylated CpG dinucleotides to 5-OH methylated bases in the first step of demethylation by base excision repair (BER) (Weber et al. 2016). Tet1 plays a role in chromosomal stability and telomere length in embryonic stem cells through methylation (Yang et al. 2016). Although only one of
Table 2. Mutations in modifier lines

Gene, chromosome	Supported lesion	Improvement p ≤ 0.5	Allele or pathway lesion
DNA damage response			
Birc6, Chr 17, NM_007566	exon49:c.9611G > A:p.R3204Q (M_199LL)	Health, weight	exons2:4.784G > A:p.S159SN (A.83)
Brc1, Chr 11, NM_009764			exons6:6.151G > A:p.A4506T (620)
Brc2a, Chr 5, NM_001081001			exons10:6.797G > A:p.F227T (620)
Fan1, Chr 7, NM_177893	exon10:c.2392T > C:p.S798P (A_333N)	Longevity, limb clasping, health	exons11:6.207G > T:p.D703Y (A_173N)
Mre11a, Chr 9, NM_001081001			
Rad50, Chr 11, NM_009012			
Rbbp8, Chr 18, NM_001081223			
Spin1, Chr 13, NM_146043			
Tet1, Chr 10, NM_027384			
Lipid metabolism			
Aacs, Chr 5, NM_030210			
Apoa5, Chr 9, NM_080434			
Atbp8a1, Chr 5, NM_009727			
Cyph6a1, Chr 12, NM_010010			
Sqle, Chr 15, NM_003129		LOD 3.03 longevity	
Tm7s2, Chr 19, NM_028454			
Synapse function			
Arhgef15, Chr 11, NM_177566			
Cd22, Chr 7, NM_009845			
Cels3, Chr 9, NM_080437			
Dbnl, Chr 11, NM_001146308			
Hcn2, Chr 10, NM_0097926			
Kdm4a, Chr 4, NM_001161823			
Regulation of DNA activity			
Gt3c5, Chr 2, NM_148928			
Prdm15, Chr 16, NM_114604	splicing, c.2099257392 A > G (352)	LOD 4.82 longevity	
Zbtb41, Chr 1, NM_172643	exon3:c.1236C > A:p.N412K (M_333R)	Longevity	exons11:6.234G > A:p.Q782K (J_136N)
Zzz3, Chr 3, NM_108946	exon4:c.1682C > T:p.T1303I (856*)	LOD 3.61 longevity	
Transcriptional repression			
Ncor1, Chr 11, NM_177229			
Ncor1, Chr 11, NM_001252313			
Rcor1, Chr 12, NM_198023			
Sin3a, Chr 9, NM_001110350			
Tbl1x1, Chr 3, NM_030732			

(continued)
the Tet1 lesions is supported by mating and association analysis in line A_27R, all three are missense mutations that lie in evolutionarily conserved amino acids near the CpG binding domain (Supplemental Fig. S1A). Mutations in the E2/E3 ubiquitin ligase baculoviral IAP repeat-containing 6 (Birc6, also called BRUCE) were also found in three lines (Supplemental Fig. S1B), and one in line M_199L was confirmed by mating and association analysis. BIRC6 stabilizes TRP53 in a first step toward inhibiting apoptosis (Ren et al. 2005), but BIRC6 also regulates the BRIT1-SWI-SNF double-strand break (DSB) response (Ge et al. 2015). BIRC6-depleted cells display reduced homologous recombination repair, and Birc6-mutant mice show repair defects and genomic instability (Rotz et al. 2004; Ren et al. 2005). The mutation in Spindlin 1 (Spn1) lies within its third TUDOR-like domain (Supplemental Fig. S2), which binds methylated histone H3, a mark associated with DDR (Chew et al. 2013; Choi et al. 2017; Shanle et al. 2017).

Additional mutations lie in components of the DSB repair pathway. A mutation in retinoblastoma binding protein 8, endonuclease (Rbbp8) occurred in exon 15, which results in a premature stop codon that predicts a truncated protein in the critical C-terminal domain (Fig. 3A). RBBP8 acts with BRCA1 to regulate the DSB repair choice between homologous recombination direct repair (HDR) or nonhomologous end joining (NHEJ) (Huertas et al. 2010; Escribano-Díaz et al. 2013), supporting the initial steps of HDR or nonhomologous end joining (NHEJ) (Huertas et al. 2010; Escribano-Díaz et al. 2013). RBBP8-depleted cells display reduced homologous recombination repair, and Birc6-mutant mice show repair defects and genomic instability (Rotz et al. 2004; Ren et al. 2005). The mutation in Spindlin 1 (Spn1) lies within its third TUDOR-like domain (Supplemental Fig. S2), which binds methylated histone H3, a mark associated with DDR (Chew et al. 2013; Choi et al. 2017; Shanle et al. 2017).

Combination mutations that improve health fall into different pathways

Association analysis of pairwise gene–gene interactions reveals six lines in which the presence of more than one mutation confers increased improvement in individual health traits (Fig. 4A; Supplemental Tables S2, S3). In line 520, the improvement segregated independently, suggesting two suppressors, so four N3 animals instead of two were sequenced. Consistently, mutations in both Cld22 and Kdm4a independently improved traits, but did not further improve traits when inherited together. However, the combined Cld22 and Clint1 mutations improved activity and muscle tone, although Clint1 did not improve traits when inherited alone. Similarly, a mutation in Gf5c5 in line 4654 improved longevity, activity, and muscle tone independently of Tm7s2. The mutation in Tm7s2 improved limb clapping, activity, and muscle tone; yet longevity was not improved unless the animals also carried a mutation in Dennda. Dbdl did not improve phenotypes alone in line M_199L, yet improved longevity when a mutation in Birc6 was present. The combination of mutations in Hcn2 and Apoa5 in line J_57L is associated with improved muscle tone. In most cases, the associated genes belonged to different pathways (Fig. 4A). The exception is line 4799 where the combination of Aacs and Atp8a1 improves longevity, muscle tone, activity, and muscle tone. In line 520, the improvement segregated independently, suggesting two suppressors, so four N3 animals instead of two were sequenced. Consistently, mutations in both Cld22 and Kdm4a independently improved traits, but did not further improve traits when inherited together. However, the combined Cld22 and Clint1 mutations improved activity and muscle tone, although Clint1 did not improve traits when inherited alone. Similarly, a mutation in Gf5c5 in line 4654 improved longevity, activity, and muscle tone independently of Tm7s2. The mutation in Tm7s2 improved limb clapping, activity, and muscle tone; yet longevity was not improved unless the animals also carried a mutation in Dennda. Dbdl did not improve phenotypes alone in line M_199L, yet improved longevity when a mutation in Birc6 was present. The combination of mutations in Hcn2 and Apoa5 in line J_57L is associated with improved muscle tone. In most cases, the associated genes belonged to different pathways (Fig. 4A). The exception is line 4799 where the combination of Aacs and Atp8a1 improves

Table 2. Continued

Gene, chromosome	Supported lesion	Improvement p ≤ 0.5	Allele or pathway lesion
Unknown			
Clint1, Chr 1	exon12:c.1730T>C.p.MS77T (520)	ns	Cd22=Clint1 longevity, muscle tone, activity
NM_001045520			
Denn4a, Chr 9	exon15:c.1778C>T.p.A593V (4654)		Denn4a=Tm7s2 longevity
NM_001162917			

Association scores are in Supplemental Table S3, and LOD scores were previously published. Candidate genes fall into three primary functional pathways: DNA damage response, lipid metabolism, synapse function. Other candidate genes fall into the categories of regulation of DNA activity or transcriptional repression. Column 2 shows the mouse line that carries the mutation in brackets. Animals were improved for longevity, additive subjective health score, limb clapping, activity, or muscle tone scores individually combined over 3 wk or body weight at 8 wk. The tremor score did not change significantly for any line, so is not included individually. The grooming score did not accurately reflect health, so is not included individually. (ns) Not significant; (>) indicates that pairwise interaction of candidate genes influenced the phenotype.

*Line 856 also revealed linkage with Mmu Chr 6, LOD 3.9.
longevity and health, but both genes are predicted to function in different aspects of lipid homeostasis—namely, energy utilization and lipid trafficking.

The founder of line 895 showed extreme longevity and was sacrificed at the age of 14 mo. The pattern of inheritance of line 895 indicated that he carried two different suppressor mutations (Table 1). One, a nonsense mutation in Sqle, was first identified by linkage (Chromosome 15, LOD 3.03). N3 males from line 895 that had a longer life were bred to segregate and identify the second locus by backcrossing again to 129S6/SvEv animals to generate N4 and N5 generations (Supplemental Table S2). Genotyping and segregation analysis revealed that a nonsense mutation in Rbbp8 (Chromosome 18) is well conserved among organisms from Xenopus to human. (A) Mecp2/Y;Rbbp8Sum6-Jus+/- mice (gray) have increased longevity (n=35, Median survival 112 d) when compared to Mecp2/Y mice (blue) (n=94, Median survival 77 d) without secondary mutations (P<0.0001 by Mantel-Cox test). (B) Transcript scripts are elevated in symptomatic at 8 wk Mecp2/Y;Rbbp8Sum6-Jus+/- brain, whereas NHEJ gene transformation related protein 53 binding protein 1 (Trp53bp1) is decreased compared to +/Y (black) (P< 0.05 by the two-sample Student’s t-test, +/Y: n=5, Mecp2/Y: n=5; error bars represent SEM.

Figure 3. The DNA damage response (DDR) pathway is implicated in a Mecp2/Y mouse model of Rett syndrome. (A) An ENU-induced nonsense mutation occurs at position p.Q743X within the critical C-terminal double-strand break (DSB) repair domain (blue) of RBBP8, also called CIBP interacting protein CtIP or SAE2 in yeast. Amino acid alignments generated using Clustal Omega show that this glutamine residue is well conserved among organisms from Xenopus to human. (B) Mecp2/Y;Rbbp8Sum6-Jus+/- mice (gray) have increased longevity (n=35, Median survival 112 d) when compared to Mecp2/Y mice (blue) (n=94, Median survival 77 d) without secondary mutations (P<0.0001 by Mantel-Cox test). (C) Rbbp8 transcripts are elevated in symptomatic at 8 wk Mecp2/Y (blue) brain compared to +/Y (black), but unchanged at 3 wk. Results are representative of three independent experiments (P<0.01 by the two-sample Student’s t-test, +/Y: n=5, Mecp2/Y: n=5); error bars represent SEM. (D) Double-strand break repair by homologous recombination involves the recruitment of RBBP8 to the site of the break in an MRN/BRC1-dependent manner. RBBP8 partners with BRCA1 to initiate DNA resection. Transcript levels of genes involved in HR, nibrin (Nbn) and ataxia telangiectasia and Rad3 related (Atr) are elevated at 8 wk in Mecp2/Y (blue) brain, whereas NHEJ gene transformation related protein 53 binding protein 1 (Trp53bp1) is decreased compared to +/Y (black) (P< 0.05 by the two-sample Student’s t-test, +/Y: n=5, Mecp2/Y: n=5; error bars represent SEM.

that combining mutations from different pathways may further improve health in Mecp2/Y mice.

Discussion

Genetic modifier screens are mainly carried out in fruit flies, worms, yeast, and bacteria to discover genes that are members of a developmental or biochemical pathway. The suppressor screen reported here represents the largest screen yet carried out in the mouse, and, by using massively parallel sequencing and association analysis, the screen identifies the largest number of candidate genes. Applications of modifier screens in the mouse are powerful (Carpinelli et al. 2004; Matera et al. 2008; Westrick et al. 2017). Even so, the mutations are identified based on their ability to suppress or enhance a mutant phenotype. Consequently, at least two mutations must be segregated to follow the phenotype, requiring an extensive amount of breeding. In the screen reported here, most lines showed evidence for complex trait inheritance, predicting that more than one modifier segregated. In a recent published modifier screen for thrombosis, very few candidate genes were identified, likely because of the lack of power in finding linkages using standard quantitative trait mapping strategies (Tomberg et al. 2018). Here, statistical tests that assessed association instead of linkage were used to identify multiple interacting loci in six lines, three of which had an effect only in the presence of other modifiers. These data show the power of ENU for identifying and identifying complex genetic interactions. However, the screen has limitations, of which the most relevant to RTT is the restriction of assessments to male mice, rather than females, whose variable penetrance and late onset of phenotypes preclude efficacy in a high-throughput screen.

ENU is expected to induce mutations randomly, but large genes are likely to have more mutations than small ones. Ttn is mutated in nearly every ENU screen because of its size (the cDNA is 81,843 base pairs, encompassing 192 exons), and 20 alleles were isolated here. Therefore, we cannot be certain that some genes had mutations because of their size, rather than their ability to modify Mecp2. Tet1 had three alleles, and is a relatively small gene, which has 13 exons. Birc6 also had three alleles, yet has 73 exons. Therefore, although alleles are called, some of the lesions may not suppress phenotypes. This scenario shows that mating all lines for inheritance and segregation is ideal. However, all of the founder lines reported here were not mated owing to time, cost, and animal space limitations. Our hope was that by identifying pathways, the number of animals used in breeding could be reduced. Candidate genes in any line can be confirmed after reanimation by IVF or by using CRISPR/Cas9 genome editing.
show positive combinatorial effects on Rbbp8
tions in Sqle
scores as potential modifiers: A mutation in SH3 and multiple
traits, yet modifying loci in the strain backgrounds were not a pri-
inbred strains used here may also influence the penetrance of
region of mouse Chromosome 7. Finally, loci present in the two
For example, the suppressor in line 1395 mapped to an unannotat-
plete, with missing segments and incompletely annotated exons.
call. Moreover, genome annotation in the mouse remains incom-
depth of coverage, making heterozygous mutations difficult to
imply a need for more prescriptive assessments of RTT-like pheno-
sence is associated with the accumulation of genetic damage
pathogenesis. Lipid homeostasis is directly regulated by an in-
2014) and RTT-like phenotypes in mice (Lyst et al. 2013), high-
interaction between MECP2 and the NCOR1 corepressor complex
RTT pathogenesis. Lipid homeostasis is directly regulated by an in-
metabolism associations, whereas a mutation
a strong candidate gene based on its aut-
tism associations, whereas a mutation in Fan1 would be consistent with the DDR pathway. However, these two genes lie only 20 Mb apart on Chromosome 7. Nine animals showed crossovers be-
tween the two loci, suggesting that the mutation in Fan1 was the more strongly
and there was no as-
signing their inheritance togeth-
In contrast, although Aacs and Atp8a1 lie 60 Mb from each other on
Chromosome 5, the mutations in each showed strong association with trait
improvement, and their inheritance together-
All of the potential modifiers were not identified. First, the
screening relied on subjective health parameters and did not in-
clude a quantitative test for neurological function. Thus, modifier
traits could be overlooked and/or misjudged. Although this may
lead to the identification of new modifiers. Thus, modifier
traits could be overlooked and/or misjudged. Although this may
lead to the identification of new modifiers. Thus, modifier
traits could be overlooked and/or misjudged. Although this may
lead to the identification of new modifiers. Thus, modifier
An unbiased modifier approach has implicated several pathways in RTT patho-
genome, one of which supports the idea of improving synaptic signaling for treat-
ment, as expected from published evidence. Even so, our study suggests
additional avenues for intervention. For example, CD22 responds to 2-hydroxy-
propyl-beta-cyclodextrin, which is in phase 2 and 3 clinical trials for Niemann–Pick disease, to reduce micro-
glia-associated defects (Cougnox et al. 2018), and antibodies directed against

Table A

Line	Synapse function	Lipid homeostasis	DNA integrity	Other	Combination Improvement
895	Cd22+/−;Cd22+/−	Sgle+/−;Sgle+/−	Rbbp8+/−;Rbbp8+/−	Yes	
520	Cd22+/−;Cd22+/−	Kdm4a+/−;Kdm4a+/−		No	
4654	Tm7/s2+/−;Tm7/s2+/−		GiFe5+/−;GiFe5+/−	No	
4751	Arhgef15+/−;Arhgef15+/−		Spin1+/−;Spin1+/−	Yes	
4798	Aacs+/−;Aacs+/−			No	
J_57L	Hor+/−;Hor+/−	Aopas+/−;Aopas+/−		Yes	
M_199L	Obr+/−;Obr+/−	Birc5+/−;Birc5+/−		Yes	

Figure 4. Combinatorial effects of multiple mutations on health and longevity. (A) Multiple lines (895, 520, 4654, 4751, 4799, J_57L, and M_199L) carry lesions in more than one gene that either indepen-
dently or additively improve health. Kdm4a and Cd22 in line 520, Tm7/s2 and Cits5c in line 4654, and Arhgef15 and Spin1 in line 4751 show independent effects on health, whereas the other mutations show positive combinatorial effects on Mecp2/Y health. (B) Mecp2/Y mice from line 895, carrying muta-
tions in Sgle and/or Rbbp8, show increased longevity when both mutations are present (Mecp2/Y; Rbbp8+/−;Sgle+/−; n = 7, median survival 277 d) when compared to Mecp2/Y mice carrying either muta-
tion alone (Mecp2/Y;Rbbp8+/−;Sgle+/−; n = 35, median survival 112 d or Mecp2/Y;Rbbp8+/−;Sgle+/−; n =
47, median survival 88 d). For Mecp2/Y;Rbbp8+/−;Sgle+/−; n = 94, the median survival was 77 d. (P <
0.0001 by Mantel-Cox test, for each comparison of Mecp2/Y;Rbbp8+/−;Sgle+/− to any of the three
groups). These data include the founder 895, N3 animals (genotyped for both Rbbp8 and Sgle) and all of the N5 animals generated.

All of the potential modifiers were not identified. First, the
screening relied on subjective health parameters and did not in-
clude a quantitative test for neurological function. Thus, modifier
traits could be overlooked and/or misjudged. Although this may
imply a need for more prescriptive assessments of RTT-like phenotypes,
time and cost preclude such evaluations in a high-through-
put screen. DNA variants could also be missed; as evidence, line
856 had a strong LOD score for a second modifying locus on
Chromosome 6, yet WES did not identify a candidate in the region. Many factors can influence the observation that WES falls short of
improving synaptic function for treat-
ment, as expected from published evidence. Even so, our study suggests
additional avenues for intervention. For example, CD22 responds to 2-hydroxy-
propyl-beta-cyclodextrin, which is in phase 2 and 3 clinical trials for Niemann–Pick disease, to reduce micro-
glia-associated defects (Cougnox et al. 2018), and antibodies directed against

CD22 reduce microglial impairment in aging brains (Pluvinage et al. 2019). In addition, other pathways suggest that alternative avenues for intervention should be considered when studying RTT pathogenesis. Lipid homeostasis is directly regulated by an in-
teraction between MECP2 and the NCOR1 corepressor complex (Kyle et al. 2016). Mutations in MECP2’s NCOR interaction
domain (NID) cause classical RTT in humans (Heckman et al. 2014) and RTT-like phenotypes in mice (Lyst et al. 2013), high-
lighting the importance of the NCOR1 interaction with MECP2 in RTT pathology. The NCOR complex is a master regulator of
metabolism, playing roles in lipid biogenesis, glucose utilization, and
mitochondrial energy efficiency (Mottis et al. 2013). It follows that
metabolism, which is a highly druggable target, should be careful-
ly examined in Mecp2 mice and in RTT patients.

This work suggests a role for DDR in RTT pathology for the
first time. The genomic DNA of all cells must be protected from
detrimental changes (Madabhushi et al. 2014), and MECP2
is involved in the DDR pathway. However, these two genes lie only 20 Mb apart on Chromosome 7. Nine animals showed crossovers be-
tween the two loci, suggesting that the mutation in Fan1 was the more strongly
supported modifier, and there was no as-
signing their inheritance togeth-
In contrast, although Aacs and Atp8a1 lie 60 Mb from each other on
Chromosome 5, the mutations in each showed strong association with trait
improvement, and their inheritance together-
All of the potential modifiers were not identified. First, the
screening relied on subjective health parameters and did not in-
clude a quantitative test for neurological function. Thus, modifier
traits could be overlooked and/or misjudged. Although this may
imply a need for more prescriptive assessments of RTT-like phenotypes,
time and cost preclude such evaluations in a high-through-
put screen. DNA variants could also be missed; as evidence, line
856 had a strong LOD score for a second modifying locus on
Chromosome 6, yet WES did not identify a candidate in the region. Many factors can influence the observation that WES falls short of
improving synaptic function for treat-
ment, as expected from published evidence. Even so, our study suggests
additional avenues for intervention. For example, CD22 responds to 2-hydroxy-
propyl-beta-cyclodextrin, which is in phase 2 and 3 clinical trials for Niemann–Pick disease, to reduce micro-
glia-associated defects (Cougnox et al. 2018), and antibodies directed against
during transcription (Suberbielle et al. 2013; Madabhushi et al. 2015). This in turn impacts gene expression, especially of neuronal early response genes important for synapse development and maturation, neurite outgrowth, the balance between excitatory and inhibitory synapses, and learning and memory. Robust mechanisms must be in place to rapidly and efficiently repair these DSBs; when these mechanisms fail, the accumulation of DSBs in the brain is a contributor to number of neurological diseases (Frappart and McKinnon 2008; Merlo et al. 2016). It is likely that elevated RBBP8 in Mecp2-null cells is a result of increased DSBs, making increased HDR and/or decreased NHEJ in Mecp2-null neurons important for understanding RTT pathology.

Altogether, the Mecp2 suppressor mutations paint a picture of altered metabolism and DNA damage that mediate synaptic function to cause pathology in Rett syndrome. FAN1 is also a modifier of Huntington’s disease phenotypes in humans (Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium 2019); thus, the modifiers found here could be common to other neurological diseases. Many of the lines with the largest degree of symptom improvement carry at least two modifiers, which may reflect a lack of quantitative phenotyping. Even so, combining modifiers often improves symptoms, suggesting that combination therapies for RTT will be more effective than any single therapy. The results underscore the power of a genetic screen for understanding RTT biology because they demonstrate how a modifier screen in mammals is possible, especially for disease genotypes that are not present in more tractable genetic organisms. With new sequencing technologies and statistical approaches, such screen should be amenable for nearly any gene for which phenotypes can be clearly assessed. Modifier screens in model organisms may thus help to identify the multitude of genetic variants that influence human disease presentation, as they may point to therapeutic entry points (Enikanolaiye and Justice 2019).

Methods

Animals

All animal experiments were conducted under protocols approved by local Animal Care and Use Committees at Baylor College of Medicine (BCM) or at The Centre for Phenogenomics (TCP) accredited by the American Association for Laboratory Animal Care (AALAC) and Canadian Council on Animal Care (CCAC), respectively. Congenic 129.Mecp2gnull1.1Bird/+ female mice were maintained by backcrossing females to males of the 129S6/SvEVTac strain. 129.Mecp2gnull1.1Bird/Y, which are Mecp2-null) and age matched wild type (+/Y) littermate controls were housed in plastic Tecniplast cages with corncob bedding in rooms alternating 12-h and 12-h periods of light and dark, were provided acidified water and a Harlan Teklad 2920X diet ad libitum (19.1% protein, 6.5% fat; 0% cholesterol) (BCM) or Harlan Teklad 2919 (19% protein, 9% fat) (The Center for Phenogenomics-TCP). The BCM colony allowed helicobacter, whereas mice were embryo rederived into TCP, which allows no common pathogens. C57BL/6j males were obtained from The Jackson Laboratory (Bar Harbor, ME) at six weeks of age, and injected with three weekly doses of 100 mg/kg ENU at 8 wk as described (Kile et al. 2003). After recovery of fertility, ENU-treated males were mated to 129.Mecp2gnull1.1Bird/+ females, and their N1 male offspring were genotyped for the Mecp2 mutation according to The Jackson Laboratory standard protocol using an Applied Biosystems thermocycler and resolution on a QiAamp (Qiagen).

For 30 of the founder lines, N1 males showing signs of improvement were mated to 129S6/SvEvTac females, or sperm was frozen and IVF was performed with oocytes from 129S6/SvEvTac females by the Cryopreservation and Recovery Core, TCP.

Sequence pipeline

DNA was extracted from mouse tails using standard methods (Supplemental Methods). For sequencing by The Centre for Applied Genomics (TCAG), 500 ng of genomic DNA was fragmented to 200 bp on average using a Covaris LE220 instrument. Sheared DNA was end-repaired and the 3’ ends adenylated before ligation of adapters with overhang-T. PCR amplified genomic libraries were exome captured, pooled, and sequenced with the TrueSeq SBS sequencing chemistry using a V4 high-throughput flowcell on a HiSeq 2500 platform following Illumina’s recommended protocol. Approximately 6–8 gb of raw paired end data of 126 bases were generated per exome library. Inbred strain polymorphisms as well as systematic sequencing artifacts, were removed from consideration if identified in the parental strains, dbSNP, or other founder males sequenced in this study, and detrimental variants were called using standard tools and custom scripts (Supplemental Code) (Li et al. 2009; Li and Durbin 2010). Candidate lesions were confirmed by Sanger sequencing before genotyping N3 animals (Supplemental Fig. S3). Primer sequences for each locus are in Supplemental Table S4.

Quantitative reverse transcription polymerase chain reaction (qRT-PCR)

Whole brain tissue was homogenized and total RNA isolated (Qiagen RNAeasy Lipid Tissue Mini Kit) for qRT-PCR analysis (Kyle et al. 2016). Expression was normalized to TATA-binding protein (Tbp) as an internal control and results analyzed using the 2−ΔΔCT method. Primer sequences are in Supplemental Table S5.

Statistics

Complex versus Mendelian inheritance was assessed from the number of animals that inherited trait improvement or longevity in each N2 family (Supplemental Table S2). For each line, the decomposition of N3 improved cases across N2 families is tested for the Mendelian hypothesis by generating data conditional on whether or not N2 animals inherited the trait given the presence (with probability 0.50) or absence (with probability 0.25) of an N3 offspring with improvement in the family. The P-value is calculated considering the number of as-or-more extreme cases under the same family configuration than the one observed.

In screen 2, associations of genetic loci with outcomes based on subjective health parameters were assessed using cumulative link models (CLM) suitable for ordinal data (Agresti 2011; https://cran.r-project.org). The health score, limb claspings, tone, activity, and tremor scores were fitted to separate models. Association with body weight at 8 wk was inferred using linear models. In either model, random effects were included to account for potential clustering of outcomes within families. However, in almost all cases, random effects had a negligible variance suggesting that there was no significant clustering of the outcomes, allowing for the fitted models to include only fixed effects. The associations of genetic loci with the longevity (time to sacrifice) were assessed using parametric survival models, in which the final model for each trait was selected using the Akaike Information Criterion (AIC) (Akaike 1974). For each line, marginal effects of each gene were investigated, as well as pairwise gene–gene interactions on each trait and the survival models. All association analyses were performed using the R statistical programing software (R Core Team 2019).
along with the packages ordinal (https://cran.r-project.org), lme4 (Bates et al. 2015), and flexsurv (Jackson 2016).

Kaplan-Meier survival curves in Figures 2B and 4B were generated in GraphPad Prism 8 followed by the Mantel-Cox test (log-rank comparison). Comparisons between two groups, as in qPCR experiments, were carried out in GraphPad Prism 8 using the two-sample Student's t-test.

Data access

The N1 founder whole-exome sequencing data generated in this study have been submitted to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) under accession number PRJNA603006.

Competing interest statement

The authors declare no competing interests.

Acknowledgments

The Centre for Applied Genomics (TCAG) generated sequence for founder animals from screen 2 and was crucial in analyzing the sequence. We thank Jeff McDonald of TCAG for helping to deposit the sequence files in National Center for Biotechnology Information (NCBI). The Canadian Mutant Mouse Repository Cryopreservation and Recovery Core at the Centre for Phenogenomics (TCP) carried out the sperm freezing and in vitro fertilization (IVF), which could not have been done without the expertise of Dr. Lauryl Nutter and Marina Gertenstein. We thank Dr. Dan Durocher for advice in examining the DNA damage response pathway; Ashlee Dargie, Travis Brooke-Bishop, and Stephen McDonald for technical assistance; and Dr. Rebekah Tillotson and Neeti Vashi for critical review. This work was supported by grants from the Rett Syndrome Research Trust and the Canadian Institute for Health Research Foundation Scheme FDN–154273 to M.J.J.

Author contributions: M.J.J. conceived of the work, obtained funding, assessed phenotypes, and wrote the manuscript. A.E. generated data for the DSB pathway, performed functional network analysis, and wrote the manuscript. J.R. oversaw the screen husbandry, assessed phenotypes, organized data, and wrote the manuscript. C.M.B., C.T., and M.S. generated data. R.Z. and J.S. generated and analyzed sequencing data. E.A. performed statistical analysis and wrote the manuscript.

References

Agresti A. 2011. *Categorical data analysis*. Wiley, Hoboken, NJ.

Akahei H. 1974. A new look at the statistical model identification. *IEEE Trans Autom Control* 19: 716–723. doi:10.1109/TAC.1974.1100708

Alessio N, Riccitiello F, Squillaro T, Capasso S, Del Gaudio S, Di Bernardo G, Chandola C, Nawaz MS, Rusconi L, et al. 2015. Fitting linear mixed-effects models using lme4. *J Stat Softw* 67: 1–48. doi:10.18637/jss.v067.i01

Bellini E, Pavesi G, Barbiero I, Bergo A, Chandola C, Nawaz MS, Rusconi L, Stefanello G, Strollo M, Valente MM, et al. 2014. MeCP2 post-translational modifications: a mechanism to control its involvement in synaptic plasticity and homeostasis. *Front Cell Neurosci* 8: 236. doi:10.3389/fncel.2014.00236

Bienvenu T, Chelly J. 2006. Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. *Nat Rev Genet* 7: 415–426. doi:10.1038/nrg1787

Buchovecky CM, Turley SD, Brown HM, Kyle SM, McDonald JG, Liu B, Pieper AA, Huang W, Katz DM, Russell DW, et al. 2013. A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome. *Nat Genet* 45: 1015–1020. doi:10.1038/ng.2714

Carpinelli MR, Hiltion DJ, Metcall D, Antonchuk JI, Hyland CD, Mifsud SL, Di Rago I, Hiltion AA, Willson TA, Roberts AW, et al. 2004. Suppressor screen in Mpt – mice: c-Myc mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. *Proc Natl Acad Sci USA* 101: 6553–6558. doi:10.1073/pnas.0401496101

Chao HT, Zoghbi HY, Rosenmund C. 2007. MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. *Neuron* 56: 877–887. doi:10.1016/j.neuron.2007.06.036

Chen ZR, Akbarian S, Tudor M, Jaenisch R. 2001. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. *Nat Genet* 27: 327–331. doi:10.1038/sj.ng.1401799

Chew TG, Peaston A, Lim AK, Lorthongpanich C, Knowles BB, Solter D. 2013. A tudor domain protein SPINDLIN1 interacts with the mRNA-binding protein SREBP1 and is involved in mouse oocyte meiotic resumption. *PLoS One* 8: e97964. doi:10.1371/journal.pone.0097964

Choi J, Zhao MH, Liang S, Liu Z, Li YJ, Jin SH, Cui XS. 2017. Spindlin 1 is essential for metaphase II stage maintenance and chromosomal stability in porcine oocytes. *Mol Hum Reprod* 23: 166–176. doi:10.1093/molehr/gax005

Cougouaux A, Drummond RA, Collar AJ, Iben JR, Salaman A, Westgarth JH, Wissal CA, Cawley NX, Farhat NY, Ozoa K, et al. 2018. Microglia activation in Niemann–Pick disease, type C1 is amendable to therapeutic intervention. *Hum Mol Genet* 27: 2016–2089. doi:10.1093/hmg/ddy112

Di Tommaso A, Justice MJ. 2019. Model systems inform rare disease diagnosis, therapeutic discovery and pre-clinical efficacy. In *Emerging topics in life sciences: rare diseases: new therapeutic avenues* (ed. A MacKenzie, S Groff, M Justice, C van Kannebeek), Vol. 3, pp. 1–10. Portland Press, London, UK.

Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JF, Tkáč J, Cook MA, Rosebrock AP, Munro M, Canny MD, et al. 2013. A cell cycle-dependent regulatory circuit controlled by SBF1-RIPl and BCR1-CAIIP controls DNA repair pathway choice. *Mol Cell* 49: 872–883. doi:10.1016/j.molcel.2013.01.001

Falck J, Forment JV, Coates J, Mistrik M, Lukas J, Bartek J, Jackson SP. 2012. Condensin II and the DNA damage response. *Nat Rev Mol Cell Biol* 13: 561–568. doi:10.1038/nrm3275

Feng J, Xian Q, Guan T, Hu J, Wang M, Huang Y, So KE, Evans SM, Chai G, Goffinet AM, et al. 2016. Celsr3 and Ed3 organize a pioneer neuron scaffold to steer growing thalamocortical axons. *Cereb Cortex* 26: 3334–3344. doi:10.1093/cercor/bhw1132

Fog CK, Galli GG, Lund AH. 2012. PRDM proteins: important players in differentiation and disease. *Bioessays* 34: 50–60. doi:10.1002/bies.201101017

Frappart PO, McKinnon PJ. 2008. Mouse models of DNA double-strand break repair and neurological disease. *DNA Repair (Amst)* 7: 1051–1060. doi:10.1016/j.dnarep.2008.03.007

Ge C, Che I, Ren J, Pandita RK, Lu J, Li K, Pandita TK, Du C. 2015. BRUCE regulates DNA double-strand break response by promoting USP8 deubiquitination of BRIT1. *Proc Natl Acad Sci USA* 112: E2110–E2129. doi:10.1073/pnas.1418335112

Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium. 2019. CAG repeat repeat not polyglutamine length determines timing of Huntington’s disease onset. *Cell* 178: 887–900.e14. doi:10.1016/j.cell.2019.06.036

Gonzalez JC, Gordski PT, Foley EM, Esko JD. 2013. Apolipoproteins E and A4 mediate lipoprotein clearance by hepatic proteoglycans. *J Clin Invest* 123: 2742–2751. doi:10.1172/JCI67398

Grillo E, Villard L, Clarke A, Ben Zeev B, Pineda M, Bahi-Buisson N, Grillo E, Villard L, Clarke A, Ben Zeev B, Pineda M, Bahi-Buisson N, et al. 2012. Rett networked database: an integrated clinical and genetic resource for disease. *Hum Genet* 130: 1031–1036. doi:10.1007/s00439-012-1354-9

Guy J, Hendrich B, Holmes M, Martin JE, Bird A. 2001. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. *Nat Genet* 27: 322–326. doi:10.1038/58998

TNFα expression. *PLoS One* 8: e68017. doi:10.1371/journal.pone.0068017

www.genome.org
Ross PD, Guy J, Jelfridge J, Kamal B, Babey N, Tanner KE, Gillingwater TH, Jones RA, Loughrey CM, McCarroll CS, et al. 2016. Exclusive expression of MeCP2 in the nervous system distinguishes between brain and peripheral Rett syndrome-like phenotypes. Hum Mol Genet 25: 4389–4404. doi:10.1093/hmg/ddw269

Sankar A, Kooistra JM, Gonzalez JM, Ohlsson C, Poutanen M, Helin K. 2017. Maternal expression of the histone demethylase Kdm4a is crucial for pre-implantation development. Development 144: 3264–3277. doi:10.1242/dev.155473

Segatto M, Trapani L, Di Tunno I, Sticozzi C, Valacchi G, Hayek J, Pallottini V. 2014. Cholesterol metabolism is altered in Rett syndrome: a study on plasma and primary cultured fibroblasts derived from patients. PLoS One 9: e104834. doi:10.1371/journal.pone.0104834

Shahbazian MD, Sun Y, Zoghbi HY. 2002. Balanced X chromosome inactivation patterns in the Rett syndrome brain. Am J Med Genet 111: 164–168. doi:10.1002/ajmg.10557

Shanle EK, Shinsky SA, Bridgers JB, Bae N, Sagum C, Krajewski K, Rothbart SB, Bedford MT, Strahl BD. 2017. Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions. Epigenetics Chromatin 10: 12. doi:10.1186/s13072-017-0117-5

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504. doi:10.1101/gr.1239303

Shepherd GM, Katz DM. 2011. Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met. Curr Opin Neurobiol 21: 827–833. doi:10.1016/j.conb.2011.06.006

Squillaro T, Alessio N, Cipollaro M, Renieri A, Giordano A, Galderisi U. 2010. Partial silencing of methyl cytosine protein binding 2 (MECP2) in mesenchymal stem cells induces senescence with an increase in damaged DNA. FEBS J 274: 1593–1603. doi:10.1111/j.1742-4658.2009.07457.x

Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Ellerton K, Devizic N, Kreitzer AC, Mucke L. 2013. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16: 613–621. doi:10.1038/nn.3356

Thakar S, Wang L, Yu T, Ye M, Onishi K, Scott J, QJ J, Fernandes C, Han X, Yates JR III, et al. 2017. Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci 114: E610–E618. doi:10.1073/pnas.1612062114

Tomberg K, Westrick RJ, Kotnik EN, Cleuren AC, Siemieniak DR, Zhu G, Saunders TL, Ginsburg D. 2018. Whole exome sequencing of ENU-induced thrombosis modifier mutations in the mouse. PLoS Genet 14: e1007658. doi:10.1371/journal.pgen.1007658

Wang F, Wang Q, Li C, Yu P, Qu Y, Zhou L. 2017. The role of Celsr3 in the development of central somatosensory projections from dorsal root ganglia. Neuroscience 359: 267–276. doi:10.1016/j.neuroscience.2017.07.040

Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, et al. 2010. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38: W214–W220. doi:10.1093/nar/gkq537

Weber AR, Krawczyk C, Robertson AB, Kasnierzczik A, Vågbø CB, Schuermann D, Klungland A, Schär P. 2016. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun 7: 10806. doi:10.1038/ncomms10806

Westrick RJ, Tomberg K, Siebert AE, Zhu G, Winn ME, Dobies SL, Manning SL, Brake MA, Cleuren AC, Hobbs LM, et al. 2017. Sensitized mutagenesis screen in Factor V Leiden mice identifies thrombosis suppressor loci. Proc Natl Acad Sci 114: 9659–9664. doi:10.1073/pnas.1705622114

Xu X, Miller EC, Pozzo-Miller L. 2014. Dendritic spine dysgenesis in Rett syndrome. Front Neuroanat 8: 97. doi:10.3389/fnana.2014.00097

Yang J, Guo R, Wang H, Ye X, Zhou Z, Dan J, Wang H, Gong P, Deng W, Yin Y, et al. 2016. Tet enzymes regulate telomere maintenance and chromosomal stability of mouse ESCs. Cell Rep 15: 1809–1821. doi:10.1016/j.celrep.2016.04.058

Zhou J, Wang F, Xu C, Zhou Z, Zhang W. 2017. The histone demethylase JMJD2A regulates the expression of BDNF and mediates neuropathic pain in mice. Exp Cell Res 361: 155–162. doi:10.1016/j.yexcr.2017.10.014

Received October 18, 2019; accepted in revised form March 20, 2020.