Wet carbonate-promoted radical arylation of vinyl pinacolboronates with diaryliodonium salts yields substituted olefins

Chao Wu1,5, Chongyang Zhao2,5, Jun Zhou3,4, Han-Shi Hu2✉, Jun Li2, Panpan Wu3,4 & Chao Chen1,3,4✉

Since the landmark work of Heck, Negishi and Suzuki on Pd-catalyzed crossing coupling reactions, innovative discovery of new reactions forming C-C bonds and constructing functional olefins via nonmetal catalysts remains an imperative area in organic chemistry. Herein, we report a transition-metal-free arylation method of vinyl pinacolboronates with diaryliodonium salts to form C(sp2)-C(sp2) bond and provide trans-arylvinylboronates. The resulting vinylboronates can further react with the remaining aryl iodides (generated from diaryliodonium salts) via Suzuki coupling to afford functional olefins, offering an efficient use of arylidonium salts. Computational mechanistic studies suggest radical-pair pathway of the diaryliodonium salts promoted by the multi-functional wet carbonate.
Vinylboronic esters are highly valuable organic intermediates and are intensively used in various transformations including C–C bond formations1–3, electrophilic or radical additions, and hydrogenation reactions1–9. Among these, the most prominent reaction is Pd-catalyzed Suzuki coupling, which could supply important substituted olefins with aryl, alkenyl, alkynyl, and alkyl halides2,7,10. Among the many ways to synthesize multi-substituted olefins (Fig. 1a)11–14, functional groups are needed to induce the vinyl group of boronates via precedent process or complicated conditions. Among them, the hydroboration of alkynes has gained much attention owing to efficiently access to arylvinylboronates via employing transition metal such as copper13,16, silver17, ruthenium18, etc. as catalyst (Fig. 1b-a). In addition, metal-photocatalyzed borylation reaction of vinyl halides has also been developed in recent years (Fig. 1b-b)19,20. Apparently, the direct modification of C–H on vinyl group is the most attractive way due to the efficiency. However, there is a big challenge for this strategy since the coupling reactions of aryl-electrophile with vinylic C–H bonds are normally catalyzed by Pd-catalyst (Heck-type reaction) (Fig. 1b-c)21,22, under which reaction conditions, boronate groups are generally not tolerant and thus such transformation is hardly realized23–26. Herein we report a wet base-promoted reaction of vinyl pinacolboronates and diaryliodonium salts (Ar\textsubscript{1}I+Ar\textsubscript{2}OTf−) to afford the corresponding trans-arylvinylboronates with high yields and selectivity. Our new findings disclose the radical arylation of vinyl pinacolborate can be realized with diaryliodonium salts (Ar\textsubscript{1}I+Ar\textsubscript{2}OTf−) promoted by wet base (such as carbonate, typically), so it is characterized by the simplicity and the possibility of further functionalization (Fig. 1c). Consequently, a new pathway for efficient employment of both aromatic moieties of (Ar\textsubscript{1}I+Ar\textsubscript{2}OTf−) is realized, engaged in two types of C–C bond forming reactions in the iterative synthesis of olefins27–29.

Recently, diaryliodonium salts, Ar\textsubscript{2}I+X−, have received considerable attention due to their powerful arylation for various nucleophiles to synthesize valuable aromatic compounds. A big challenge for these arylation reactions is how to efficiently use both aryl groups of the diaryliodonium salts since only one aryl group was utilized and the other one was deposited in most cases29. On the basis of our group’s previous research on diaryliodonium salts30–34, here we report a tandem process in which an aryl iodide generated in situ is captured in a second step by a Suzuki reaction, yielding aryl olefins. This atom-economical use of diaryliodonium salts may offer a useful approach to the
iterative synthesis of aryl olefins using alkenyl boronic esters as intermediates (Fig. 1c). Of note, it will be a novel approach for the iterative synthesis of aryl olefins using alkenyl boronic esters as intermediate.

Results and discussion

Investigation of reaction conditions. To achieve this goal, we initially examined the reaction of di(4-tolyl) iodonium triflate 1a and pinacol vinylboronate 2a serving as model substrates. As shown in Table 1, no product or low yield was observed when the reaction was performed at 80 °C in DCE with CuCl as catalyst and 1.0 equivalents of DIPEA or potassium carbonates as base. The desired product 3a could be detected in 3% yield (determined by GC with n-dodecane as an internal standard) in the presence of additive of tetra-butylammonium fluoride (TBAF). It was pleasingly found that the yield could be improved when the 40 equivalents of water was employed as the additive, affording 3a in 62% yield (in a mixture of Z– and E– isomers, Table 1, entry 4). As a comparison, Pd-catalyzed systems tended to give the Suzuki-type coupling product 4a (Table 1, entries 5 and 6). In addition, it was surprised to find that the reaction could also work without CuCl catalyst to give the only E-isomers in 64% yield (entry 7), indicating that the method was a novel approach for constructing C(sp²)−C(sp²) bonds. The element analysis showed that the content of transition metal was below 5 ppm. Subsequently, various solvents including DCM, PhMe, THF, CH₃OH, DMF (entries 8-9, 12-14) were screened. As a result, DCM was the best choice, affording 3a in 81% yield (entry 8). The yield was increased when elevating the reaction temperature, eventually, affording the isolated yield in 88% at 100 °C in a sealed tube (entry 11). Further base screening of inorganic base such as K₂PO₄, NaHCO₃, and Li₂CO₃ proceeded compatibly (Supplementary Table 1), and Li₂CO₃ also gave the isolated yield of 82%. Of note, treatment of the reaction using insoluble Ag₂CO₃ as base did not give the desired product 3a (entry 17), and the control experiment revealed that no reaction occurred in the absence of base (entry 15). Moreover, increasing or decreasing the equivalent of water significantly resulted in reduced yields. These results proved that water could dramatically influence the reaction. In addition, the counter anion of Ar⁺⁻Ar⁺OTf⁻⁻{-}1

Table 1 Optimization of the reaction condition for the arylation of vinylboronic esters.

Entry	Catalyst	Base (1 eq.)	Additive	Solvent	Temp. (°C)	Yieldb (%)
1	CuCl	DIPEA	-	DCE	80	Trace <1
2	CuCl	K₂CO₃	-	DCE	80	3 2
3	CuCl	K₂CO₃	TBAF	DCE	80	62d 4
4	CuCl	K₂CO₃	H₂O	DCE	80	11 58
5	Pd(OAc)₂	K₂CO₃	H₂O	DCE	80	11 58
6	Pd(Ph₃P)₄	K₂CO₃	H₂O	DCE	80	8 67
7	-	K₂CO₃	H₂O	DCE	80	64
8	-	K₂CO₃	H₂O	DCM	80	61
9	-	K₂CO₃	H₂O	PhMe	80	61
10	-	K₂CO₃	H₂O	DCM	90	84
11	-	K₂CO₃	H₂O	DCM	100	89(88)c <1
12	-	K₂CO₃	H₂O	CH₃OH	100	Trace 0
13	-	K₂CO₃	H₂O	THF	100	Trace 0
14	-	K₂CO₃	H₂O	DMF	100	Trace 0
15	-	-	H₂O	DCM	100	NPf
16	-	Li₂CO₃	H₂O	DCM	100	84(82)c <1
17	-	Ag₂CO₃	H₂O	DCM	100	NPf <1
18	-	K₂HPO₄	H₂O	DCM	100	Trace <1

*Unless noted, reactions were performed with 1a (0.15 mmol), 2a (2.0 eq.), catalyst (10 mol%), and additive (40 eq.), in solvent (1 mL) at the temperature described.

bDetermined by GC analysis using n-dodecane as an internal standard.

d2 equiv. of TBAF was used.

eE/Z isomer of 3a was 2/1.

fIsolated yield.

gNo product.

hThe optimal conditions are in bold.
promoted by wet base, we were keen to explore the further arylation of products 3 for efficient employment of both aromatic moieties of 1 via Suzuki reactions. Thus, a series of palladium catalyst, the temperature and phosphorus ligands were screened (Supplementary Table 2), and the best isolated yield and superior selectivity was obtained with Pd(OAc)$_2$ as the catalyst, NaOH as base, PPh$_3$ as ligand, of which 5a was given in 81% isolated yield (Fig. 3)2,35. Then, this one-pot protocol was extended to other substrates. As desired, symmetrical diaryliodonium salts with a variety of substituents (o,p-methyl, p-tert-butyl, p-trifluoromethyl) were all accomplished smoothly to give products 5a–5d. Subsequently, various unsymmetrical substituted diaryliodonium salts and substituted alkenyl borate esters were examined. It was all productive for various diaryliodonium salts when either the methyl (5e), bromo substituents (5f) or a bulky aryl group (5g) were well-tolerated to offer the respective products. Tri-substituted olefins were also afforded with comparable yields (5g, 5m, 5n), which were ubiquitous building blocks (vide infra).

Mechanistic study. To investigate the mechanism of the arylation on C–H bond of 2 with 1, a few experiments were conducted. First, the effect of K$_2$CO$_3$ amount was investigated in this process. The control experiments (Supplementary Figs. 1 and 2) showed that there was a dramatic rate increase after 1 to 2 h when 1 equivalent of K$_2$CO$_3$ base was used and reached >60% yield; as a comparison, increasing the amounts of K$_2$CO$_3$ led to an evident rate decrease. Due to less solubility, 2 equivalent of Li$_2$CO$_3$ was used as base (2 eq.) to promote the arylation of products 3 while (E)-formation of olefins trans-2x served as substrates.

After the successful arylation of C–H bond of vinyl pinacolboronates 2 was realized with (Ar1I$^+$Ar2OTf$^-$) 1 could be productive to exclusively give the product 3x in 41% yield, whereas no product was afforded while (E)-formation of olefins trans-2x served as substrates.

Fig. 3 The synthesis of various di- or tri-substituted aryl olefins. 91,2 eq. of 2.
needed. Above results indicated that the base amount was crucial to this procedure that might be essential for activating alkenyl borates 2 and accelerating dissociation of the OTf group of 1. To elucidate this transformation, 2,2,6,6-tetramethyl-1-piperidinyloxy was introduced to this base-promoted aryl migration process, and the adduct 2,2,6,6-tetramethyl-1-phenylpiperidine 6 was detected, and it could be even obtained in higher yields in the absence of 2 (Fig. 4a). Moreover, the deficient of either base or water could not be capable of getting the desired product 3 and the trapping product 6. The above results were consistent with the EPR experiments (Fig. 4b and Supplementary Fig. 3), which indicated that the base-H2O system could release CO3\(^{2-}\) with the EPR experiments (Fig. 4b and Supplementary Fig. 3), which indicated that the base-H2O system could release CO3\(^{2-}\) enabling the addition of radicals 7–8, generating the “ate” intermediate IV, which further eliminated to give the desired product 3.

To gain further insight of the base-promoted pathway, density functional theory (DFT) calculations were carried out to explore the reaction mechanism. In this system, the role of H2O in the reaction was discussed in Supplementary Figs. 4 and 5 and Supplementary Note 1. Besides, the anion exchange of diaryliodonium salts 3e from OTf\(^{-}\) to CO3\(^{2-}\) is easy to generate the intermediate I with quite an exothermic reaction energy release of 39.7 kcal/mol (Supplementary Fig. 6). The complex Ph2I\(^+\)X\(^-\) (X = K2CO3, KCO3\(^-\), CO3\(^{2-}\), OTf\(^{-}\)) decompose to Ph-I\(^+\)X\(^-\) radical and phenyl radical Ph\(^*\) endothermically. The corresponding Gibbs free energy required for the decomposition follows the order: K2CO3 > OTf\(^{-}\) > KCO3\(^-\) > CO3\(^{2-}\) (Supplementary Figs. 7 and 8). The Gibbs free energies for the case X = K2CO3 and OTf\(^{-}\) are +90.7 and +32.6 kcal/mol, respectively, which are so high that the decomposition can hardly take place under the experimental condition. While on the other hand, the Gibbs free energy of +2.5 kcal/mol for the case X = CO3\(^{2-}\) coming from the ionization of K2CO3 by water is small enough for the subsequent homo cleavage, the fact that no reaction occurs without water addition to the system. The proposed mechanism suggests that it starts from the combination of vinyl pinacolboronates and carbonate to form the intermediate II, which is calculated to be exothermic by 7.4 kcal/mol. The phenyl radical attacks the –CH2 group of II to give the intermediate III, which is calculated to be exothermic by 12.4 kcal/mol (Supplementary Figs. 9 and 10). The remaining calculated pathway for the reaction is shown in Fig. 5 and Supplementary Data 1, which shows that the intermediate III reacts with PhI-CO3\(^{2-}\) radical to produce the intermediate IV. Due to the weak interaction of PhI with CO3\(^{2-}\) radical anion, PhI will directly leave the reaction system and CO3\(^{2-}\) is bonding to intermediate III simultaneously. The next step of the reaction is the rate-determining one with a barrier of 25.5 kcal/mol.

Fig. 4 Preliminary mechanistic study. a Radical trapping experiments. b Radical detected experiments by EPR. c Proposed mechanism for arylation of vinylboronic esters.
overcoming the TS1, corresponding to proton abstraction by the CO₃ group and giving the intermediate V. The O–H bond length 1.06 Å of the intermediate V is longer than that of bicarbonate anion (0.97 Å), indicating that the benzylic proton is not abstracted completely, as long as the basicity of carbonate is not large enough. Then, V could convert into VI through the TS2. In this process, with the CO₃ group bonding to the α carbon left, the charge transfer occurs from the benzylic carbanion to the leaving CO₃ group, leading to the formation of C=C bond by overcoming a very small barrier of 6.2 kcal/mol. In the TS2, the distance between the leaving CO₃ group and α carbon is 2.43 Å, and the formed C=C bond length is 1.39 Å, which is approximately equal to that of C₂H₄ (1.33 Å). Subsequently the product 3e is obtained from VI via releasing bicarbonate, bearing successive barriers of 5.0 kcal/mol. The DFT pathway shows that the relative location Hₐ and H₅ of intermediate IV can be attributed to the stereo-configuration of the final product, because the carbonate bonded to the boron atom abstracts the Hₐ atom, while the H₅ atom remains. The H₅ and H₈ atoms are in the opposite direction along the C=C bond. Besides, we have also considered the situation that reaction starts from the binding of 2a and KCO₃⁻ (the detail in Supplementary Fig. 11), which shows a less preferred reaction mechanism comparing with that of CO₃²⁻.

The skeletons of aryl olefins widely occur in many biologically active compounds. The potential utility of this method was also assessed, as shown in Fig. 6, some illustrative cases were accomplished. The product 5l could be precisely transformed into [18F]AV-45, an effective PET agent for targeting Aβ plaques in human cerebrovascular, under the standard conditions of the Fig. 353. In addition, Chlorotrianisene 10 was furnished from compound 5n with 98% yield in one step of chlorination reaction54. Finally, the one-pot process of constructing tri-substituted olefins was applied to the synthesis of (Z)-tamoxifen precursor 5m with good selectivity, and then a series of downstream reactions were manipulated to afford the (Z)-tamoxifen in 68% yield55,56.

In summary, we have developed an approach for selective arylation of C–H bond of vinyl pinacolboronates utilizing diaryliodonium salts and water-base as additive. This new strategy was exemplified of two-component arylation of diaryliodonium salts accessing aryl olefins via radical-type and Suzuki-type cross-coupling reaction in one-pot, which has been demonstrated as an iterative synthesis of multi-substituted
olefins. The mechanistic experiments and DFT theoretical studies revealed the multi-function of carbonate and a novel radical-pair pathway of diaryldiuronium salts promoted by wet carbonate.

Methods

General considerations. Unless specified, all substrates were obtained commercially from various chemical companies and their purity has been checked before use. Unless otherwise stated, all commercial reagents were used as received without purification. The synthesis of 3: mixture of diaryldiuronium salt (0.15 mmol, 1.0 eq.) and base [condition a: K₂CO₃ (1 eq.) condition b: Li₂CO₃ (2 eq.)] was added into a schlenk tube and then evacuated and recharged with N₂ for three times. After that, 1.0 mL DCM was added in, followed by vinyl pinacol boronic esters (0.30 mmol, 51 μl) and pure water (6.0 mmol, 100 μl). The tube and mixture were stirred at 100 °C for 12 h. After completion, the tube was cooled to room temperature, then NaCl aq. (10 ml) was added and the mixture was extracted with EtOAc (10 ml × 3), and then dried by anhydrous Na₂SO₄. The mixture was evaporated then purified on silica gel (petroleum ether/EtOAc = 50:1) to give the corresponding product. Full experimental details can be found in the Supplementary Methods. NMR spectra can be found in Supplementary Figs. 12–50.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information and Supplementary Data 1 files. All relevant data are also available from the authors.

Received: 19 December 2019; Accepted: 22 June 2020; Published online: 22 July 2020

References

1. Hall, D. G. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine 2nd edn, (Wiley-VCH, Weinheim, 2011).
2. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. *Chem. Rev.* 95, 2457–2483 (1995).
3. Bonet, A., Odachowski, M., Essa, S. & Aggarwal, V. K. Enantioselective sp₂–sp₃ coupling of secondary and tertiary boronic esters. *Nat. Chem.* 6, 584–589 (2014).
4. Itami, K., Tonogaki, K. & Yoshida, J. Rapid construction of multisubstituted olefin structures using vinylboronate ester platform leading to highly fluorescent materials. *Org. Lett.*, 4093–4096 (2005).
5. Ollivier, C. & Renaud, P. Organoboranes as a source of radicals. *Chem. Rev.* 110, 3415–3434 (2011).
6. Duret, G., Quinlan, R., Bisseret, P. & Blanchard, N. Boron chemistry in a new light. *Chem. Soc. Rev.* 43, 5366–5383 (2015).
7. Lennox, A. J. & Jones, G. C. Selection of boron reagents for Suzuki–Miyaura coupling. *Chem. Rev.* 43, 412–443 (2014).
8. Cherney, A. H. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. *Chem. Rev.* 115, 9587–9652 (2015).
9. Rygus, J. P. & Crudden, C. M. Enantiospecific and Iterative Suzuki–Miyaura cross-couplings. *J. Am. Chem. Soc.* 139, 18124–18137 (2017).
10. Brown, H. C. & Ravindran, N. Reaction of alkenylboronic acids with iodine under the influence of base. Simple procedure for the stereospecific conversion of terminal alkynes into trans-1-alkenyl iodides via hydroboration. *J. Am. Chem. Soc.* 95, 5786–5788 (1973).
11. Flynn, A. B. & Ogilvie, W. V. Stereocontrolled synthesis of trisubstituted olefins. *Chem. Rev.* 107, 4698–4745 (2007).
12. Zhou, Y., You, W., Smith, K. B. & Brown, M. K. Copper-catalyzed cross-coupling of boronic esters with aryl iodides and application to the carboarylation of alkynes and allenes. *Angew. Chem. Int. Ed.* 53, 3475–3479 (2014).
13. Kiesewetter, E. T. & Hoveyda, A. H. Synthesis of Z-(pinacolato)alllylboron and Z-(pinacolato)alkenylboron compounds through stereoselective catalytic cross-metathesis. *J. Am. Chem. Soc.* 135, 6026–6029 (2013).
14. Allfaro, R. & Tortosa, M. Copper(I)-catalyzed formal carboarylation of alkynes: synthesis of tri- and trisubstituted vinylboronates. *J. Am. Chem. Soc.* 134, 15165–15168 (2012).
15. Zhao, J., Niu, Z., Fu, H. & Li, Y. Ligand-free hydroboration of alkynes catalyzed by heterogeneous copper powder with high efficiency. *Chem. Commun.* 20, 2058–2060 (2014).
16. Jang, H. & Hoveyda, A. H. Highly selective methods for synthesis of internal (α-) vinylboronates through efficient NHC–Cu-catalyzed hydroboration of terminal alkynes. Utility in chemical synthesis as mechanistic basis for selectivity. *J. Am. Chem. Soc.* 133, 7859–7871 (2011).
Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFB0401400), the National Natural Science Foundation of China (21871158, 91645203, and 21672120), the Fok Ying Tong Education Foundation of China (Grant No. 151014), the Department of Education of Guangdong Province (No. 2016KCXTD005), and the Youth Foundation of Wuyi University (No. 2017zd01).

Author contributions

C.W. discovered the reaction and performed the optimization. C.W., J.Z., and P.W. investigated the scope of the substrate and performed the application. And C.Z., H.S.H. and J.L. carried out computational studies. C.C. designed and directed the whole project and wrote the paper with input from all authors. All authors analyzed the results and commented on the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s42004-020-00343-8.

Correspondence and requests for materials should be addressed to H.-S.H. or C.C.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020