Original Research Article

The Parasitic Nematode *Physalopteroides venancioi* in the Snake *Platyceps ventromaculatus* (Gray, 1834) in Baghdad City, Central Iraq

Azhar Ahmed Al-Moussawi*

Iraq Natural History Museum- University of Baghdad, Bab Al-Muadham
Baghdad, Iraq
*Corresponding author

A B S T R A C T

Examination of the snake *Platyceps ventromaculatus* collected in Baghdad city for nematodes revealed the presence of 16 (3 males and 13 females) of the nematode *Physalopteroides venancioi* in the intestine of one specimen of *P. ventromaculatus* (25%), and one larva of *Physalopteroides* sp. isolated from gastric tissues of one *P. ventromaculatus*. Characters and measurements of *P. venancioi* were discussed and compared with those of other pertinent literatures. The present study provides information on infection rate, description and measurements of males, females and larva of *P. venancioi*. Reporting *P. venancioi* in the present study represents a new addition to Iraqi fauna as well as *P. ventromaculatus* as new host for it in Iraq.

Keywords
Snake; *Platyceps ventromaculatus*; Nematode; *Physalopteroides venancioi*; Baghdad; Iraq.

Article Info
Accepted: 15 April 2016
Available Online: 10 May 2016

Introduction

Platyceps ventromaculatus came in the list of Mahdi and George (1969) as *Coluber ventromaculatus*. Al-Barazengy et al., (2015) listed it as *Platyceps* (*Coluber*) *ventromaculatus* (Gray, 1834). Its distribution extends from Palestine through Jordan, Iraq, Iran, Pakistan and India (Masood, 2012).

P. venancioi known to infect toads, amphibians, lizards skinks and occasionally snakes of different families. It was described from gekkonid and agamid lizards as well as viperid snakes as definitive hosts (Baker, 1987).

To date, a few species of snakes have been examined for parasitic helminthes in Iraq: Molan and Saeed (1986) isolated the cestode *Diplopylidium nolleri* from Iraqi snakes; Rhaemo and Ami (1993) reported the cestode *Ophiotaenia europaea* from *N. tessellata*; Al–Hashimi (2006) recorded *Oochoristica* sp. and *Crepidobothrium* sp.; Al-Barwari and Saeed (2007) isolated the cysticercoid of the cestode *Diplopylidium nolleri* from the snake *Spalerosophis diadema cliffordi*. Al-Moussawi (2010) isolated the nematode *Tanqua anomala* from *N. tessellata*. Al-Moussawi (2014 and 2015) Recorded respectively the cestode *O.
europaea and the trematode Telorchis assula from Natrix natrix and Natrix tessellata.

There are no previous helminthic studies about the snake Platycps ventromaculatus in Iraq. Therefore, reporting Physalopteroides venancioi from this snake in the present study represents a new addition to Iraqi fauna.

Materials and Methods

The elementary canal of one from 4 specimens of P. ventromaculatus collected from Baghdad city on 2015, found infected with 16 adult nematodes of P. venancioi and 1 larva. The nematodes were removed, killed, cleaned, stored in 70% ethyl alcohol and cleared by lactophenol. Identification of nematodes was done according to the available keys and descriptions, adult nematodes were identified according to Fabio and Rolas (1974) and Vrcibradic et al., (2000a). Basir (1949); Kelehear and Jones (2010) and Singh and Chaudhary (2011) were followed to identify the larval stage. Measurements were given in millimeter as range followed by the means in parentheses, calculated using ocular and stage micrometers. Photomicrographs were taken with digital camera Infinity lite-K100 attached to compound microscope Micros MCX100.

Results and Discussions

The intestine of one specimen of four P. ventromaculatus (25%) found infected with sixteen adults (3 males and 13 females) of P. venancioi, and 1 larval stage were isolated from and gastric tissue.

Physalopteroides venancioi Figs (1 A; B; C; D; E; F and G)

Synonyms: Thubunaea dactyluris (Karve, 1938); Thubunaea dactyluris Karve, 1938 sensu Fabio and Rolas (1974) nec Karve, 1938 (Vrcibradic et al., 2000 a).

Description

White, cylindrical nematodes. The body with fine transversally striated cuticle. The anterior extremity is rounded and the posterior is tapered. Mouth opening with a cephalic collarette surrounding with two lateral rounded lips, the right lip with one mediolateral tooth, the left lip being smaller. Behind the bases of the lips there is a cuticular collar. Vestibule short, cylindrical with delicate walls. Oesophagus consists of anterior muscular and longer posterior glandular parts. Pair of spine-like cervical papillae locates immediately behind the nerve ring.

The posterior extremity of the mail is rounded terminating in a small conical process. Caudal alae well developed exhibiting a verrucose appearance. The male has 9 pairs of papillae of which, 4 pedunculated pairs precloacal, 1 pair adcloacal and 4 pairs postcloacal. The two spicules are unequal, the left spicule slightly larger than the right. The tip of the tail is ends in a blunt point. The tail of the female is short and conical. The vulva is nearer to the anterior body extremity. The embryonated eggs have thick shells.

As shown in Table (1) Most of the measurements of *P. venancioi* in the present study agree well with measurements of Thubunaea dactyluris Karve, 1938 of Fabio and Rolas (1974) which isolated from the stomach of the lizard Ameiva ameiva (L.) in Brazil, taking into account some differences that might be due to differences in hosts or to the small sample size in the present study. Lent et al., (1946) described Physaloptera venancioi from the amphibian host, *Bufo*
paracnemis in Paraguay. (Vrcibradic et al., 2000 a) said that Physalopteroides venancioi is indistinguishable from Thubunaea dactyluris of Fabio and Rolas (1974) and they considered the latter as a synonym for the former.

Physalopteroides sp. Figs. (2 A, & B)

One larva of Physalopteroides sp. isolated from gastric tissues of one *P. ventromaculatus*. Kelehear and Jones (2010) had distinguished Physalopteroides larvae by the absence of a cervical collarette, the presence of a single, lateral, apical tooth and the attenuated tail. This agree with the features of the larva in the present study. The body is small, 3.76 long, 0.237 wide, tapers slightly towards the tail. The oesophagus occupies a length nearly about 32% of body length. The muscular oesophagus is 0.205 long, 0.053 wide. Glandular esophagus 1.005 long, 0.05 wide anteriorly, 0.10 wide posteriorly. Nerve ring 0.033 long, 0.030 wide, locate at a distance of 0.22 from anterior extremity. Cervical papillae at a distance of 0.40 from anterior extremity. Tail 0.050 long.

Singh and Chaudhary (2011) considered that the teeth pattern on lips and form of the stoma are important characters for the larvae of the family Physalopteridae which is characterized by having asymmetrical lips. It is worthy of mention here that this larva might belong to the same nematode species of the present study.

Table.1 Measurements in millimeters followed by means in parentheses for males and females of *Physalopteroides venancioi* in the present study and other pertinent literatures

Measurements in mm	Lent *et al.*, (1946)	Fabio and Rolas(1974)	Vrcibradic *et al.*, (2000a)	Present study
Male				
Total body length	10.20-12.72	7.60-13.36 (10.48)	8.92	6.0 -6.6 (6.317)
Maximum body width	0.27-0.37	0.23-0.52 (0.37)	0.25	0.21-0.23 (0.22)
Vestibule	–	0.019-0.028 (0.023)	–	0.017-0.030 (0.022)
Muscular esophagus length	0.23-0.29	0.17-0.30 (0.23)	0.22	0.160-0.253 (0.185)
Glandular esophagus length	1.70-2.00	1.45-2.13 (1.79)	1.40	1.78-1.87 (1.83)
Cervical papillae (from anterior extremity)	–	–	–	0.22-0.26 (0.25)
Excretory pore (from anterior extremity)	0.28-0.29	0.22-0.24 (0.21)	0.28	0.22-0.27 (0.23)
Nerve ring (from anterior extremity)	0.19-0.26	0.20-0.23 (0.21)	0.19	0.160 -0.180 (0.167)
Nerve ring length	–	–	–	0.033- 0.041 (0.037)
Nerve ring width				0.057-0.060 (0.058)
Right spicule length	0.060- 0.10	0.057-0.072 (0.064)	0.08	0.050-0.062 (0.052)
Left spicule length	0.08-0.11	0.081-0.091 (0.086)	0.09	0.072-0.075 (0.073)
Tail length	0.13-0.18	0.10-0.17 (0.13)	0.19	0.172-0.176 (0.175)
No. of precloacal papillae	4 pairs	4 pairs	4 pairs	4 pairs
No. of adcloacal papillae	1 pairs	1 pairs	1 pairs	1 pair
No. of postcloacal papillae	4 pairs	4 pairs	4 pairs	4 pairs
Female				
Total body length	14.82-16.49	14.85-22.29 (18.57)	12.24-14.28	8.85 - 12.10(11. 66)
Maximum body width	0.34-0.41	0.32-0.65 (0.48)	0.35-0.42	0.22-0.31 (0.295)
Vestibule		0.024- 0.033 (0.028)		0.012-0.037 (0.024)
Muscular esophagus length	0.27-0.31	0.24-0.37 (0.305)	0.28-0.30	0.120-0.388 (0.241)
Glandular esophagus length	2.10-2.40	2.24-3.22 (2.73)	2.04-2.10	1.83-2.83 (2.22)
Excretory pore (from anterior extremity)	0.34- 0.35	0.19 -0.29 (0.24)	0.34-0.35	0.182-0.290 (0.217)
Cervical papillae (from anterior extremity)				0.20-0.44 (0.30)
Nerve ring (from anterior extremity)	0.26-0.29	0.17-0.29 (0.23)	0.25-0.28	0.18-0.21(0.20)
Nerve ring length				0.030-0.063(0.06)
Nerve ring width				0.038-0.075 (0.057)
Vulva (from anterior extremity)	1.80- 1.90	1.14-2.09 (1.62)	1.82-1.89	2.07-4.21(3.02)
Eggs length	0.033-0.037	0.031- 0.040 (0.035)	0.036 – 0.039	0.025- 0.037 (0.035)
Eggs width	0.020-0.025	0.020- 0.026 (0.023)	0.024-0.025	0.018-0.025 (0.024)
Tail length	0.11-0.13	0.07-0.10 (0.08)	0.12- 0.13	0.128-0.183 (0.161)
Fig. 1 Photomicrograph of *Physalopteroides venancioi*

A- Anterior extremity of the male shows the tooth, two lips, nerve ring and the cervical papillae; B- Posterior extremity of male; C- The tip of the tail in male; D- Spicules and the verrucose appearance of the tail; E - Anterior extremity of the female shows the tooth and the cervical collarette; F - Posterior extremity of female; G - Eggs and vulva region.
Although the life cycle of *P. venancioi* is unknown (Bursey *et al.*, 2005) but the physalopterines need insects as intermediate hosts, the final host takes infections from ingesting insects containing infective larvae (Anderson, 2000). *P. venancioi* preys on insects, frogs, toads, lizards, rodents, birds, rats, fishes and other snakes (Sharma and Vazirani, 1977; Firouz, 2005; Vrcibradic *et al.*, 2002 and Masood, 2012) and the lizards *Ameiva ameiva*, *Hemidactylus flaviviridis*, *Tropidurus torquatus*, *Mabuya macrorhyncha* and *M. agilis* (Baylis, 1939; Vrcibradic *et al.*, 2000a; 2000b; 2002). *P. ventromaculatus* gets infection with *P. venancioi* through ingesting the potential infected hosts.

To the best of my knowledge, reporting *P. venancioi* in the present study represents a new addition to Iraqi fauna as well as *P. ventromaculatus* as new host for it in Iraq.

Acknowledgements

I am grateful to Prof. Dr. Stephen Goldberg, Whittier College, California, U.S.A. for identifying the genus of the nematode.

References

Al-Barazengy, A.N., Salman, A.O., Abdul hameed, F.T. 2015. Updated list of amphibians and reptiles in Iraq 2014. *Bulletin of Iraq natural History Museum*, 13(4): 29-40.

Al-Barwari, S.E., Saeed, I. 2007. On the helminth fauna of some Iraqi reptiles. *Trkiye Parazitoloji Dergisi*, 31: 330-336.

Al-Hashimi, S.F.A. 2006. Parasitic worms of alimentary canal of some reptile species in Al- Ramadi city. Msc. thesis. Edu. Univ. Al-Anbar, 77pp. (in Arabic)

Al-Moussawi, A.A. 2014. The cestode *Ophiotaenia europaea* Odening, 1963 (Cestoda: Proteocephalidae) in two Colubrid snakes from Baghdad city, Central Iraq. *Int. J. Curr. Microbiol. Appl. Sci.*, 3(5): 410-413.
Al-Moussawi, A.A. 2015. Incidence of Telorchis assula (Dujardin, 1845) (Digenea: Telorchidae) in two Colubrid snakes in Baghdad city, Central Iraq. J. Entomol. Zool. Studies, 3(2): 321-323.

Anderson, R.M. 2000. Nematode Parasites of Vertebrates: Their Development and Transmission, 2nd ed. CABI Publishing, Wallingford, Oxon, U.K. 650 pp.

Baker, M.R. 1987. Synopsis of the Nematoda Parasitic in Amphibians and Reptiles, cited in: Vrcibradic, D., Cunha-Barros, M., Vicente, J.J., Galdino, C.A.B., Hatano, F.H., Van Sluys, M. and Rocha, C.F.D. 2000a. Nematode infection patterns in four sympatric lizards from a restinga habitat (Jurubatiba) in Rio de Janeiro state, southeastern Brazil. Amphibia-Reptilia, 21: 307–316.

Basir, M.A. 1949. On a larval nematode from an insect with a note on the genera Thubunaea Seurat, 1914 and Physalopteroides Wu and Liu, 1940. J. Parasit., 35(3): 301-305.

Baylis, H.A. 1939. The fauna of British India, including Ceylon and Burma. London: Tyler and Francis, Ltd., Nematoda, 2 (Filarioidea, Dioctophymoidea and Trichinelloidea): 274 pp.

Bursey, C.R., Goldberg, S.R. 1999. Skrjabinodon pankai sp. n. (Nematoda: Pharyngodonidae) and Other Helminths of Geckos (Sauria: Gekkonidae: Nephrurus spp.) from Australia. J. Helminthol., 66(2): 175-179.

Fabio, S.P., Rolas, F.J.T. 1974. Contribuição ao conhecimento de Thubunaea dactyluris karve, 1938 (Nematoda, Spiruroidea). Memórias do Instituto Oswaldo Cruz, 72(3/4): 283-290.

Firouz, E. 2005. The complete fauna of Iran.

Kelehear, C., Jones, H.I. 2010. Nematode larvae (Order Spirurida) in gastric tissues of Australian anurans: A comparison between the introduced cane toad and sympatric native frogs. J. Wildlife Dis., 46(4): 1126–1140.

Lent, H., Freitas, J.F.T., Proença, M.C. 1946. Alguns helmintos de batraquios colecionados no Paraguai. Memórias do Instituto Oswaldo Cruz, 44: 195–214.

Mahdi, N., George, P.V. 1969. A systematic list of the vertebrates of Iraq. Bull. Iraq Natural History Museum, Publ. No. 26: 104 pp.

Masood, M.F. 2012. Ecological distribution of snakes' fauna of Jazan region of Saudi Arabia. Egypt. Acad. J. Biolog. Sci., 4(1): 183-197.

Molan, A.L., Saeed, I.S. 1986. First record of Diploplyidium nolleri (Skrjabin, 1924) cysticercoid from Iraqi snake and geckos. Proceedings of the Scientific Research Conference, Baghdad, (5): 252-256.

Rhaemo, Z.I.F., Ami, S.N. 1993. Ophiotaelia europaea (Cestoidea: Proteocephalidae) from water snake, Natrix tessellata in Iraq. Mu’tah J. Res. Studies, 8(3): 101-106.

Sharma, R.C., Vazirani, D.J. 1977. Food and feeding habits of some reptiles of Rajasthan. Rec. Zool. Surv. Ind., 73: 77-93.

Singh, H.S., Chaudhary, M.A. 2011. Larval form of the genus Thubunaea Seurat, 1914 from the body cavity of an insect, Supella sp., at Meerut (U.P.), India. J. Appl. Natural Sci., 3(1): 54-57.

Vrcibradic, D., Cunha-Barros, M., Vicente, J.J., Galdino, C.A.B., Hatano, F.H., Van Sluys, M., Rocha, C.F.D. 2000b. Nematode infection patterns in four
sympatric lizards from a restinga habitat (Jurubatiba) in Rio de Janeiro state, southeastern Brazil. *Amphibia-Reptilia*, 21: 307–316.

Vrcibradic, D., Vicente, J.J., Bursey, C.R. 2000a. *Thubunaea dactyluris* Sensu Fabio and Rolas, a synonym of *Physalopteroides venancioi* (Spirurida, Physalopteridae). *J. Parasitol.*, 86(5): 1163–1165.

Vrcibradic, D., Rocha, C.F.D., Bursey, C.R., Vicente, J.J. 2002. Helminth communities of two sympatric skinks (*Mabuya agilis* and *Mabuya macrorhyncha*) from two ‘restinga’ habitats in southeastern Brazil. *J. Helminthol.*, 76: 355–361.

How to cite this article:

Azhar Ahmed Al-Moussawi. 2016. The Parasitic Nematode *Physalopteroides venancioi* in the Snake *Platyceps ventromaculatus* (Gray, 1834) in Baghdad City, Central Iraq. *Int.J.Curr.Microbiol.App.Sci.* 5(5): 350-357. doi: http://dx.doi.org/10.20546/ijcmas.2016.505.036