Zoonotic and reverse zoonotic transmission of viruses between humans and pigs

Glud, Helena Aagaard; George, Sophie; Skovgaard, Kerstin; Larsen, Lars Erik

Published in:
APMIS

Link to article, DOI:
10.1111/apm.13178

Publication date:
2021

Document Version
Peer reviewed version

Citation (APA):
Glud, H. A., George, S., Skovgaard, K., & Larsen, L. E. (2021). Zoonotic and reverse zoonotic transmission of viruses between humans and pigs. APMIS, 129(12), 675-693. https://doi.org/10.1111/apm.13178

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
1. Title page

I. Zoonotic and reverse zoonotic transmission of viruses between humans and pigs†.

† Invited review.

II. Helena Aagaard Glud¹*, Sophie George²*, Kerstin Skovgaard¹, and Lars Erik Larsen².

Author Contributions:

*These authors contributed equally.

III. ¹Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; ²Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.

IV. haaglu@dtu.dk, sophie.george@sund.ku.dk, kesk@dtu.dk, lael@sund.ku.dk.

V. Viruses in humans and pigs.

Corresponding Author: Helena Aagaard Glud, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, 2800 Kongens Lyngby, Denmark.

E-mail: haaglu@dtu.dk. Phone: +45 42 40 48 63.

2. Summary

Glud HA, George S, Skovgaard K, Larsen LE. Zoonotic and reverse zoonotic transmission of viruses between humans and pigs.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/apm.13178

This article is protected by copyright. All rights reserved
Humans and pigs share a close contact relationship, similar biological traits, and one of the highest estimated number of viruses compared to other mammalian species. The contribution and directionality of viral exchange between humans and pigs remain unclear for some of these viruses, but their transmission routes are important to characterize in order to prevent outbreaks of disease in both host species. This review collects and assesses the evidence to determine the likely transmission route of 27 viruses between humans and pigs.

Helena Aagaard Glud, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, 2800 Kongens Lyngby, Denmark. E-mail: haaglu@dtu.dk.

Sophie George, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 88, 1870 Frederiksberg, Denmark. E-mail: sophie.george@sund.ku.dk.

Key words: zoonosis; reverse zoonosis; viruses; pig; human.

Word count: 4203

3. Text

INTRODUCTION

Viruses circulating in wildlife reservoirs can spillover into susceptible human populations and contribute significantly to the global burden of human infectious diseases, which cause approximately 2.5 billion infections and 2.7 million deaths each year (1, 2). Before emerging as zoonotic human pathogens, wildlife-adapted viruses must first overcome a series of epidemiological barriers, such as behavioral barriers (level of human exposure to zoonotic viruses), interspecies barrier, and immunological barriers (3).

Livestock are able to facilitate viral spillover from wildlife to humans by acting as “epidemiological bridges” or intermediate hosts in the transmission chain (4, 5). Unsurprisingly,
through thousands of years of close contact animal husbandry and intensive farming in recent decades, domesticated animals harbor eight times more zoonotic viruses than predicted in other non-domesticated mammalian species (6). Opportunities for viral zoonosis accompanies the expansion of human agricultural activities, which provoked over 50% of zoonotic emerging infectious disease (EID) events during the past 70 years (7). Wildlife, however, is not the only threat to livestock; close contact humans can also be a source of viral zoonosis (hereafter referred to as reverse zoonosis and also known as zooanthroponosis and anthroponosis), which is somewhat understudied (8).

A recent study estimated that humans exchange the highest number of viruses with domesticated pigs (*Sus scrofa domesticus*) (*n* ≈ 31 viruses), cattle (*n* ≈ 31 viruses), horses (*n* ≈ 31 viruses) and dogs (*n* ≈ 27 viruses), surpassing both domestic cats (*n* ≈ 16 viruses) and goats (*n* ≈ 22 viruses) (6). Pigs have served as intermediate, amplification, and “mixing” hosts in past human epidemics and pandemics (e.g. Japanese Encephalitis (9), Nipah (10), and Influenza A viruses (11)), and humans have spread viruses to pigs in return (e.g. Influenza A virus (12)). Global demand for pork continues to rise and, although pig farming practices differ worldwide, the movement of swine and multiple contact points with humans, i.e. at farms, breeding facilities, slaughterhouses, wet markets, and trade shows, intensifies the opportunities for viral transmission (13-15). Furthermore, pigs are increasingly used for xenotransplantation and as animal models for human diseases and conditions due to their physiological, genetic, and immunological similarities to humans (16-19). Therefore, understanding the viral exchange at the swine-human interface can help prevent zoonotic and reverse zoonotic viral outbreaks leading to disease, deaths, culling of swine herds, and economic losses (20).

Predicting EIDs in humans and pigs is challenging. Viral zoonoses are considered rare in humans relative to the extensive viral diversity in the animal kingdom and viral dynamics are strongly amenable to selection mechanisms resulting in rapid changes to viral landscapes (21-24). Spillover events can occur incidentally into “dead-end” hosts, or viral outbreaks can ensue with sustained onward transmission within the novel host population, and can even become a persistent endemic threat (23, 25). Determining the natural reservoir species and intermediate
hosts of EIDs after a spillover event is also demanding when routine surveillance is not in place (26). Furthermore, the novel host of an EID can become a newfound viral reservoir and spillover into the next susceptible species, e.g. SARS-CoV-2 transmission chain from horseshoe bats-to-unknown mammalian intermediate-to-humans-to-mink-to-humans (26-28).

In this review, we collect genetic, pathogenic, and immunological based evidence to determine the likely direction of viral transmission between humans and pigs with the purpose of identifying viral threats to human and pig health, and the roles humans and pigs play as direct viral reservoirs for each other.

MATERIALS AND METHODS

A framework of factors (Supplementary Table 1) was designed and applied in scientific literature surveys to assess the infectivity and transmissibility of 27 viruses naturally found in humans and pigs within the past 70 years. The focus is largely on the detection of human or pig-associated viruses in the secondary host, genetic variation between viral strains isolated from the two hosts, viral entry into target host cells, detection of viral shedding that indicates viral replication in the host and transmission potential, viral dissemination in the host, and the ability for the host’s immune system to suppress infection. This information is highlighted in Supplementary Table 2 with distinctions drawn between humans and pigs where appropriate. The viruses were then determined to demonstrate zoonotic, reverse zoonotic, or bidirectional viral transmission according to the definitions in Box 1 and the results are summarized in Table 1.

The list of viruses shared by humans and pigs was taken from a recent study by Johnson et al., 2020 (6). However, we were unable to find documentation of natural infection (either detection of viral genetic material or serological evidence of an antibody response against viral infection) in pigs for Ilheus, Ljungan, Monkeypox (experimental inoculation in pig skin only (29)), and Wesselsbron viruses (one study indicated serological evidence of infection in pigs but was
inaccessible (30)). Tioman virus was included, despite undetected natural infection in pigs, due
to evidence from an *in vivo* experimental infection study (31).

RESULTS AND DISCUSSION

PIGS AS RESERVOIRS FOR ZOONOTIC VIRUSES

The majority of the reviewed zoonotic viruses originate from wildlife reservoirs (Table 1). Pigs are significant intermediate and amplification hosts for the transmission of at least seven wildlife viruses to humans; Nipah (NiV), Japanese encephalitis (JEV), Eastern equine encephalitis (EEEV), Vesicular stomatitis (VSV), Reston ebola (RESTV), Menangle (MenPV), and potentially Tioman (TioV) (Table 1). Transmission routes of these zoonotic viruses from pigs to humans are illustrated in Figure 1, which are generally linked to occupational exposure.

Global livestock abundance and destruction of wildlife habitats have been associated with increased zoonotic spillover risk (6). Following a rapid increase in the past few decades, approximately 800 million to 1 billion pigs are produced globally each year in often dense and genetically homogenous populations (32, 33), owing to 95% of genetic resources being exported from Europe and the United States to developing countries between 1990 to 2005 (34). Although increased homogeneity in a swine herd is unlikely to increase their susceptibility to epidemics, the severity of epidemics is likely to be enhanced (35). Furthermore, the frequency of animal turnover with immunologically naïve litters of piglets in swine herds can stunt the development of herd immunity against viral infections and enable viral persistence (36).

Deforestation and encroachment of pig farms into *Pteropus* fruit bat species habitats has been implicated in causing the zoonotic NiV epidemic in pigs and human pig farm workers in Malaysia and Singapore in 1999 (37). The spillover of NiV-Malaysia (NiV-M) into pig herds was traced back to two introductions from fruit bats, with isolates from local bats, pigs, and humans sharing >99% nucleotide homology (10, 38, 39), indicating transmission between hosts required...
limited viral adaptation. However, humans developed more severe disease with 40% case-fatality rate compared to 1-5% in pigs (40). This difference in disease severity could be linked to higher expression of the receptor ephrin-B2 on human tracheal and bronchial airway epithelial cells than in pigs, leading to more efficient infection (41). NiV-M did not transmit between humans and viral RNA was isolated from 30% of infected throat swabs (42); therefore, it seems unlikely that infected humans posed a risk to pigs.

Pigs contribute to the epidemiology of three zoonotic arthropod vector transmitted viruses; EEEV, JEV, and VSV. In addition to causing viremia in pigs (43-45), EEEV can be recovered from oropharyngeal, rectal, and tonsil swabs, JEV can shed in oronasal secretions, and VSV can exude from ruptured vesicular fluids, providing further transmission routes to close contact humans (Figure 1) (43, 47-50). However, VSV has infrequently infected farm and laboratory workers (51), likely due to the capability of human myxovirus resistance protein dynamin-like GTPase 1 (MxA) in reducing VSV replication by 90% compared to the porcine homolog Mx1, which inhibits only 25% of VSV replication (52-54).

Antibodies against RESTV were detected in 6.3% of exposed pig farm workers in the Philippines (55). Unlike other ebolavirus species, which cause severe hemorrhagic fever in humans (56), RESTV is unable to suppress interferon (IFN) signaling immune response in humans (57). However, pigs develop gross abnormalities in the lymphatic and respiratory systems after experimental infection and shed RESTV in nasopharyngeal secretions, which transmit RESTV to neighboring pigs (58).

An outbreak of MenPV occurred in an Australian piggery farm in 1997 with symptoms of reproductive disease in pigs, which included increased fetal death and abnormalities, and stillborn piglets (59). Additionally, neutralizing antibodies were detected in adult pigs and two farm workers who developed an unexplained febrile illness (59, 60). MenPV isolated from a stillborn piglet replicated in secondary lymphoid organs and intestines in experimentally infected pigs and shed in oronasal secretions, feces, and urine for under a week (61). The source of MenPV was assumed to be local *Pteropus* fruit bat species based on serological
Evidence and later confirmed following the isolation of MenPV from fruit bat urine samples, which shared 94% nucleotide homology to the pig isolates (59, 62).

TioV was also discovered in *Pteropus* fruit bat species in Tioman Island, Malaysia (63). Outbreaks of TioV have not been reported in either humans or pigs, but due to fruit bats harboring other zoonotic viruses, a serological survey of the Tioman Island population found 1.8% of islanders were seropositive for antibodies against TioV (64). TioV is unable to inhibit IFN-α/β signaling in human kidney cells, but can interfere with proinflammatory cytokine interleukin 6 (IL-6) and IFN-β promoter induction to cause infection (65). Following experimental infection in pigs, TioV was isolated from oral swabs and neutralizing antibodies developed without inducing clinical signs (31). This implicates pigs as potential amplification hosts if TioV spills over from bats.

Other Reservoir Host Species for Zoonotic Viruses

Pigs appear to be minor, incidental hosts in the transmission chain for eleven zoonotic viruses. Although, more research is required to substantiate the insignificant contribution from pigs in the maintenance of many of these viruses. The majority are vector-borne viruses; Toscana (TOSV), Venezuelan equine encephalitis (VEEV), Banna, Cache Valley, Chandipura, Getah, Louping ill, and three are non-vector-borne viruses; Rabies (RABV), Encephalomyocarditis, and Foot-and-mouth disease virus (Table 1).

Despite causing acute meningitis in humans (66, 67), the reservoir host species maintaining TOSV remains unknown, but likely involves a cyclic combination of arthropod, wildlife, and domesticated animals, akin to most other arbovirus maintainence cycles (Table 1). One serological survey detected IgG antibodies against TOSV in 22% of tested pigs in Spain (68), but further research efforts in pigs are lacking. Serological surveys for VEEV infection in pigs have also received limited attention since the last survey conducted in 1971 (69). However, horses and rodents have been identified as the main amplifying hosts for epidemic and endemic strains of VEEV (70).
Other zoonotic viruses present a threat to the wider human population, beyond immediate farm and laboratory workers. Each year, RABV causes 59,000 deaths in humans usually bitten by rabid canines or bats (71). Although RABV has been isolated from human secretions, the risk of human-to-human transmission is almost exclusively through organ transplantations (72). RABV incidence in pigs is rare and the “furious” form causing aggression with biting has only been recorded once in China (73). As a generalist virus capable of infecting a wide range of species, RABV genetic diversity correlates with geographical origin rather than specialization in different host species, as RABV isolated from a pig shared 99.7% nucleotide homology in the partial N gene to a circulating “street” strain from a rabid canine isolated in the previous year (73).

HUMANS AS RESERVOIRS FOR REVERSE ZOONOTIC VIRUSES

Humans have spread three viruses; Severe acute respiratory syndrome related-coronaviruses (SARSr-CoV), Swine vesicular disease (SVDV), and Noroviruses (NoV), to pigs through varied transmission routes (Table 1) illustrated in Figure 2 together with bidirectionally transmitted viruses (addressed in the next section).

Although SARSr-CoV originate from Rhinolophus horseshoe bat species and spilled over into humans through an intermediary species, humans rapidly became an effective transmitting host and viral reservoir for SARS-CoV in 2003 and SARS-CoV-2 in 2019 (74, 75). SARS-CoV was transmitted to pigs in China presumably via contaminated feed from restaurant leftovers (76), but there has been no evidence of natural infection in swine with SARS-CoV-2. However, both SARSr-CoV appear to replicate poorly in pigs (77, 78), possibly due to less efficient viral attachment to the porcine angiotensin-converting enzyme 2 (ACE2) homolog receptor, which shares 81% nucleotide identity with the human ACE2 receptor (75, 78).

During human meningitis epidemics between 1948 and 1964, SVDV emerged in pigs as a genetic sublineage of human infecting coxsackievirus B (CV-B) (79-81). Periodic outbreaks in pigs arose in Europe and Asia until 2007 with SVDV becoming progressively adapted to swine as
later SVDV isolates (post-1990s) lost the ability to bind human decay-accelerating factor as a co-receptor and infect humans (82).

Highly genetically diverse NoV infect a broad range of species but strains belonging to genogroup II (GII) exclusively infect humans and pigs (83). Human-associated NoV (huNoV) have been detected in pigs, but porcine-associated NoV (porNoV) have never been detected in humans (84-86). porNoV were unable to bind histo-blood group antigens (HBGA) as co-receptors on human cells, whereas huNoV-GII.P4 was able to bind to duodenal and buccal tissues from either A+ or H+ phenotype HBGA pigs (84, 87).

BIDIRECTIONAL VIRAL TRANSMISSION

Theoretically, a virus with the ability to infect and induce viral shedding in both humans and pigs can transmit between the two species. Non-enveloped viruses are typically stable in the environment, which increases potential routes for transmission (88-90). Seven viruses demonstrate bidirectional transmission by this principal (Table 1 and Figure 2), four of which are non-enveloped; Torque teno (TTV), Picobirnavirus (PBV), Hepatitis E (HEV), Rotavirus A (RVA), and three are enveloped; Influenza A (IAV), Influenza C (ICV), and Ross River (RRV).

TTV and PBV are considered opportunistic pathogens due to their ubiquitous detection in both diseased and healthy human and pig populations and in various environments (91-96). Although specific TTV species of varying genome sizes are associated with human or pig infection, human-associated Alphatorquevirus TTV species (huTTV) have been detected in 80% of pig sera samples and porcine-associated Iotatorquevirus and Kappatorquevirus TTV species (TTSuV1 and TTSuVK2) have been detected in 92.5% of human sera samples (97), indicating viral exchange between the hosts. Growing evidence indicates PBV infects prokaryotes in the microbiome of humans and pigs (98). Nevertheless, a genetic association between PBV isolated from humans and pigs has been suggested (99-101).
Humans are typically infected with HEV following the consumption of raw or undercooked pork products in developed countries and through the fecal-oral transmission route in developing countries via consumption of water contaminated with human feces \((102, 103)\). Viremia peaks during the incubation period and the early symptomatic phase, with viral shedding in feces \((102, 103)\). Whilst pigs are significant sources of HEV for humans, experimental infection in pigs with HEV isolated from humans has also been demonstrated \((104, 105)\).

Similar to NoV, RVA attaches to HBGAs as co-receptors to infect host cells, the phenotype of which depends on the VP8 domain of protease-cleaved protein \((P)\)-types rather than the host species \((106)\). Unlike NoV, however, reassortant viruses with segments of human RVA origin have been found in pigs and vice-versa \((107, 108)\).

The exchange of IAV between humans and pigs is well known. Reassortant IAV generated with segments originating from human and swine IAV have been found in both host populations \((12)\). One high profile example was the novel genotype of H1N1 virus, which caused a human pandemic in 2009 after a quadruple reassortant IAV containing segments from avian IAV, human H3N2 subtype, Eurasian avian-like swine IAV, and classical swine H1N1 subtype jumped from pigs into humans and back into pigs \((109, 110)\).

Although humans were the only known natural host for ICV \((111, 112)\), ICV has also been isolated from naturally infected pigs \((109)\). ICV strains isolated from humans during 1988-1990 were highly related to the swine isolates obtained in China during 1981-1982 \((111, 113)\), strongly suggesting interspecies transmission between humans and pigs; although, it is unknown whether the virus had transmitted from pigs to humans or from humans to pigs \((111)\). There is increasing evidence that other Influenza species (Influenza B and Influenza D) are able to infect both humans and pigs and transmit between the two hosts \((114)\).

Unlike all other zoonotic arboviruses in Table 1, RRV can potentially transmit between humans and pigs via mosquitoes. Human-to-mosquito-to-human transmission has been demonstrated.
during urban epidemics and pigs can also develop viremia, albeit at lower viral titers than humans (115-117).

VIRAL EMERGENCE, MOLECULAR EVOLUTION, AND GENERATION OF DIVERSITY

To spill over into human or pig populations, either viruses possess intrinsic ability to pass through epidemiological barriers when the permitting factors align (without significant alteration to the viral genome) or viruses must first undergo substantial genetic changes to infect new host cells and evade host immune responses. Genetic divergence is driven by mutation, recombination, and reassortment and the resulting variants, haplotypes, or reassortants either propagate or diminish by various selective processes as the virus adapts to the new host (118, 119).

RNA viruses are exceedingly more likely to be zoonotic than DNA viruses (120), given their high nucleotide substitution rates of approximately 1×10^{-3} nucleotide substitutions per site per year (ns/s/y) on average and rapid ability to adapt (121). This is reflected in our review as all except one virus encode an RNA genome (Supplementary Table 2). Nucleotide substitutions in most viruses with RNA genomes occur during replication by error-prone, viral encoded RNA polymerases, while viruses with DNA genomes employ the host cell DNA polymerase with exonuclease activity to correct errors and are additionally subjected to post-replication repair systems (119, 122). However, TTV has a DNA genome with a comparable mutation rate to RNA viruses ($0.53-0.55 \times 10^{-3}$ ns/s/y (123)) and is highly genetically diverse, which could be attributed to the persistent nature of TTV infections in the host (124).

Nucleotide substitution rates and the number of susceptible host species are uncorrelated across the reviewed viruses (Supplementary Table 2). Vector-borne RNA viruses generally exhibit significantly lower mutation rates than non-vector-borne RNA viruses, with highly genetically similar strains infecting wide ranges of hosts (Supplementary Table 2). For non-vector-borne RNA viruses, it is plausible that maintaining high mutation rates is necessary to adapt to a wide range of hosts. Encephalomyocarditis and Foot-and-Mouth disease viruses
infect a broad range of hosts (30 and 72 documented hosts, respectively) and exhibit
significantly higher mutation rates (1.61 and 1.45 x 10^{-3} ns/s/y, respectively) than vector-borne
viruses (6, 121, 125). However, the number of infected hosts is not a reliable proxy for mutation
rate; Chandipura virus (CHPV) has a host range of 6 and the highest mutation rate at 6.577 x 10^{-3} ns/s/y, RABV has the widest host range (126 known hosts) but a lower mutational rate (0.09 x
10^{-3} ns/s/y), and SVDV rapidly adapted to swine after introduction from humans (3.84 x 10^{-3}
ns/s/y) (Supplementary Table 2). Instead, mutation rates are more likely influenced by the
efficiency of virus-host cell interactions, host immune evasion, and viral reproductive strategies,
among many other biotic and abiotic factors.

Major genetic changes in viruses can occur by recombination and reassortment events when
host cells are co-infected with at least two viral strains (variants or distant relatives), which
interact during replication to form progeny with genetic material from both strains (118, 119).
In general, recombination is prevalent in single-stranded, positive-sense RNA viruses with the
exception of Flaviviruses where recombination is rarely observed (118). Novel SVDV emerged in
pigs because of a probable recombination event between human infecting coxsackievirus B (CV-
B) and CV-A9; although, it is unknown whether the recombination event occurred in pigs or
humans (80). Polymerase (P)-types of human and pig-associated NoV frequently recombine
with common breakpoints between open reading frame junctions (126-130), but such
recombinants have only been detected in pigs (85). Even though single-stranded, negative
sense RNA viruses in general show lower rates of recombination, reassortment are frequently
observed in Orthomyxoviridae, such as influenza A virus, which belong to the single-stranded,
negative sense RNA viruses. Reassortment is restricted to segmented RNA viruses and can
result in rapid genetic change by formation of reassortants with novel genome combinations
(118). 25% of the assessed viruses in this review have a segmented genome, potentially making
these viruses more disposed to fast adaptation to a new host/ interspecies transmission.

CHALLENGES IN DETERMINING VIRAL TRANSMISSION

This article is protected by copyright. All rights reserved
Our assessment of viral transmission is based on past strains of viruses. The viral landscape is under constant selective pressures and the rapid and continuous generation of extensive genetic diversity is challenging to anticipate. Emergence of novel antigenic variants of viruses can undermine vaccination efforts and vaccine availability against the majority of viruses is low (Supplementary Table 2). Identifying the host factors a virus would need to adapt to is one modelling strategy to predict future variants, e.g. identifying viral-host protein interactions between the protein homologs in different hosts or the use of alternative host cell receptors.

RESTV is currently non-pathogenic to humans, but substitutions of three amino acids in RESTV VP24 protein might enable binding to human karyopherin alpha5, which block innate immunity pathways in the same manner as other related pathogenic ebolaviruses (57, 131, 132). In addition, a truncation in RESTV VP30 in a fraction of the RESTV isolates from pigs is characteristic of the Zaire ebolavirus adaptation to human cells during several months of human-to-human transmission in the 2013-2016 ebolavirus disease outbreak (133).

Alternatively, wildlife viruses may attenuate as they passage through swine herds. NiV-M, which was transmitted from bats-to-pigs-to-humans caused a 40% case-fatality rate in humans, whilst NiV-Bangladesh genotype was transmitted directly from bats-to-humans via contaminated date palm sap causing over 70% case-fatals and has even transmitted onwards to first contact humans (134). The nucleotide difference between the two genotypes (8.2% (39)) is the most likely explanation for the difference in case-fatality rates. Thus, viral attenuation through nucleotide changes in an intermediary host is a potential outcome.

Interactions between viruses and bacteria in the host microbiome may be another hidden factor facilitating viral transmission between humans and pigs. Certain bacteria express HBGAs to facilitate attachment of NoV to B cells and CagA-positive Helicobacter pylori induces HBGA expression in the mucosa of individuals without a functional FUT2 gene and HGBA phenotype (135, 136). This can potentially increase the replication efficiency of particular NoV and RVA genotypes infecting humans and pigs.
Routine surveillance programs have been established for only some viruses in pigs (e.g. IAV (137)) and a few others are notifiable to international health bodies upon detection (138). Many outbreaks lack real-time monitoring and sampling in swine herds and humans, which can make retrospective analyses difficult and viral records incomplete (e.g. SARS-CoV-2 (26)). The choice of screening assays may also exclude some viruses. However, recent technical developments of next-generation sequencing or probe-based techniques with high-throughput capabilities allow characterizing entire viromes of large populations a viable option. The overall aim of surveillance programs for emerging pathogens and zoonosis should be to act as early detection/warning systems because the success of limiting the spread of e.g. a new zoonotic virus to a great extent rely on the possibility to contain it before it jumps to the first human. This in turn call for more basic research into identification of reliable viral- and host markers of species specificity for the different types of viruses combined with a One Health orientated design of the monitoring programs i.e. by the inclusion of more targeted sampling of people in close contact with animals, e.g. swine.

Experimental studies involving human volunteers are rare. Only IAV, ICV, NoV and RVA have been administered in challenge studies, usually with human-derived isolates, common circulating genotypes in the population, or attenuated viral strains (139-142). Therefore, experiments with viruses to study human related dynamics rely on cell culture, explants, or animal models, which have some restrictions for application in a human population. Nevertheless, these experiments provide valuable data, particularly concerning specific virus-cell interactions.

CONCLUDING REMARKS

The list of 27 viruses shared by humans and pigs are generally regarded as zoonotic (6). Reverse zoonosis or humans’ ability to transmit viruses to other animals is overlooked in some cases (8). This review gathered evidence to assess the direction of viral transmission in the context of humans and pigs. Where direct detection was lacking, we theorized whether the virus could
infect and transmit to the other host based on viral entry requirements, ability to establish infection, activation of immune responses, and shed in transmissible routes.

Transmission routes and viral sources are illustrated in Figure 1 and 2. Pigs are or have potential to be significant reservoirs, intermediaries, and amplifiers for at least seven zoonotic viruses; humans have been the source of three reverse zoonotic viruses in pigs; and humans and pigs possibly exchange seven viruses back and forth (Table 1).

Conflict of Interest
The authors have no conflicts of interest to declare.

Funding
The work presented in this review is part of the FluZooMark project supported by Novo Nordisk Foundation (grant NNF19OC0056326).

4. References

1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008 Feb 21;451(7181):990-3. doi: 10.1038/nature06536. PMID: 18288193; PMCID: PMC5960580.

2. Grace D, Mutua F, Ochungo P, Kruska R, Jones K, Brierley L, et al. Mapping of Poverty and Likely Zoonoses Hotspots. Zoonoses Project 4. Report to the UK Department for International Development. International Livestock Research Institute: Nairobi, Kenya. 2012.

3. Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, et al. Pathways to zoonotic spillover. Nat Rev Microbiol. 2017 Aug;15(8):502-510. doi: 10.1038/nrmicro.2017.45. Epub 2017 May 30. PMID: 28555073; PMCID: PMC5791534.

4. Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci U S A. 2013 May 21;110(21):8399-404. doi: 10.1073/pnas.1208059110. Epub 2013 May 13. PMID: 23671097; PMCID: PMC3666729.

5. Kock R. Drivers of disease emergence and spread: is wildlife to blame? Onderstepoort J Vet Res. 2014 Apr 23;81(2):E1-4. doi: 10.4102/ojvr.v81i2.739. PMID: 25005349.
6. Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CCW, et al. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc Biol Sci. 2020 Apr 8;287(1924):20192736. doi: 10.1098/rspb.2019.2736. Epub 2020 Apr 8. PMID: 32259475; PMCID: PMC7209068.

7. Rohr JR, Barrett CB, Civitello DJ, Craft ME, Delius B, DeLeo GA, et al. Emerging human infectious diseases and the links to global food production. Nat Sustain. 2019;2(6):445-456. doi: 10.1038/s41893-019-0293-3. Epub 2019 Jun 11. PMID: 32219187; PMCID: PMC7091874.

8. Messenger AM, Barnes AN, Gray GC. Reverse zoonotic disease transmission (zooanthroponosis): a systematic review of seldom-documented human biological threats to animals. PLoS One. 2014 Feb 28;9(2):e89055. doi: 10.1371/journal.pone.0089055. PMID: 24586500; PMCID: PMC3938448.

9. Erlanger TE, Weiss S, Keiser J, Utzinger J, Wiedenmayer K. Past, present, and future of Japanese encephalitis. Emerg Infect Dis. 2009 Jan;15(1):1-7. doi: 10.3201/eid1501.080311. PMID: 19116041; PMCID: PMC2660690.

10. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, et al. Nipah virus: a recently emergent deadly paramyxovirus. Science. 2000 May 26;288(5470):1432-5. doi: 10.1126/science.288.5470.1432. PMID: 10827955.

11. Vijaykrishna D, Poon LL, Zhu HC, Ma SK, Li OT, Cheung CL, et al. Reassortment of pandemic H1N1/2009 influenza A virus in swine. Science. 2010 Jun 18;328(5985):1529. doi: 10.1126/science.1189132. PMID: 20558710; PMCID: PMC3569847.

12. Anderson TK, Chang J, Arendsee ZW, Venkatesh D, Souza CK, Kimble JB, et al. Swine Influenza A Viruses and the Tangled Relationship with Humans. Cold Spring Harb Perspect Med. 2020 Jan 27:a038737. doi: 10.1101/cshperspect.a038737. Epub ahead of print. PMID: 31988203.

13. United States Department of Agriculture (USDA). Livestock and Poultry: World Markets and Trade. Foreign Agricultural Service. 2020 October 9. Retrieved from https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf

14. Food and Agriculture Organisation of the United Nations (FAO). Pigs and Management & Housing. 2014 Nov 23. Retrieved from: http://www.fao.org/ag/againfo/themes/en/pigs/AP_management.html

15. Bowman AS, Walia RR, Nolting JM, Vincent AL, Killian ML, Zentkovich MM, et al. Influenza A(H3N2) Virus in Swine at Agricultural Fairs and Transmission to Humans, Michigan and Ohio, USA, 2016. Emerg Infect Dis. 2017 Sep;23(9):1551-1555. doi: 10.3201/eid2309.170847. PMID: 28820376; PMCID: PMC5572863.
16. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. Trends Microbiol. 2012 Jan;20(1):50-7. doi: 10.1016/j.tim.2011.11.002. Epub 2011 Dec 5. PMID: 22153753; PMCID: PMC7173122.

17. Dawson HD, Loveland JE, Pascal G, Gilbert JG, Uenishi H, Mann KM, et al. Structural and functional annotation of the porcine immune system. BMC Genomics. 2013 May 15;14:332. doi: 10.1186/1471-2164-14-332. PMID: 23676093; PMCID: PMC3658956.

18. Mair KH, Sedlak C, Käser T, Pasternak A, Levast B, Gerner W, et al. The porcine innate immune system: an update. Dev Comp Immunol. 2014 Aug;45(2):321-43. doi: 10.1016/j.dci.2014.03.022. Epub 2014 Apr 4. PMID: 24709051; PMCID: PMC7103209.

19. Starbæk SMR, Brogaard L, Dawson HD, Smith AD, Heegaard PMH, Larsen LE, et al. Animal Models for Influenza A Virus Infection Incorporating the Involvement of Innate Host Defenses: Enhanced Translational Value of the Porcine Model. ILAR J. 2018 Dec 31;59(3):323-337. doi: 10.1093/ilar/ily009. PMID: 30476076.

20. Uddin Khan S, Atanasova KR, Krueger WS, Ramirez A, Gray GC. Epidemiology, geographical distribution, and economic consequences of swine zoonoses: a narrative review. Emerg Microbes Infect. 2013 Dec;2(12):e92. doi: 10.1038/emi.2013.87. Epub 2013 Dec 24. PMID: 26038451; PMCID: PMC3880873.

21. Warren CJ, Sawyer SL. How host genetics dictates successful viral zoonosis. PLoS Biol. 2019 Apr 19;17(4):e3000217. doi: 10.1371/journal.pbio.3000217. PMID: 31002666; PMCID: PMC6474636.

22. Centres for Disease Control and Prevention (CDC). Principles of Epidemiology in Public Health Practice. 2012 May. Retrieved from: https://www.cdc.gov/csels/dsepd/ss1978/SS1978.pdf

26. Friend T, Stebbing J. What is the intermediate host species of SARS-CoV-2? Future Virol. 2021 Mar;10.2217/fvl-2020-0390. doi: 10.2217/fvl-2020-0390. Epub 2021 Feb 4. PMCID: PMC7860928.
27. Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science. 2021 Jan 8;371(6525):172-177. doi: 10.1126/science.abe5901. Epub 2020 Nov 10. PMID: 33172935; PMCID: PMC7857398.

28. Larsen HD, Fonager J, Lomholt FK, Dalby T, Benedetti G, Kristensen B, et al. Preliminary report of an outbreak of SARS-CoV-2 in mink and mink farmers associated with community spread, Denmark, June to November 2020. Euro Surveill. 2021 Feb;26(5):2100009. doi: 10.2807/1560-7917.ES.2021.26.5.210009. PMID: 33541485; PMCID: PMC7863232.

29. Soekawa M, Moriguchi R, Morita C, Kitamura T, Tanaka Y. Electron-microscopical observations on the development of vaccinia, cowpox and monkeypox viruses in pig skin. Zentralbl Bakteriol Orig A. 1977;237(4):425-443.

30. Baba SS, Fagbami AH, Ojeh CK, Olaleye OD, Omilabu SA. Wesselsbron virus antibody in domestic animals in Nigeria: retrospective and prospective studies. New Microbiol. 1995 Apr;18(2):151-62. PMID: 7603342.

31. Yaiw KC, Bingham J, Crameri G, Mungall B, Hyatt A, Yu M, et al. Tioman virus, a paramyxovirus of bat origin, causes mild disease in pigs and has a predilection for lymphoid tissues. J Virol. 2008 Jan;82(1):565-8. doi: 10.1128/JVI.01660-07. Epub 2007 Oct 3. PMID: 17913804; PMCID: PMC2224375.

32. Drew TW. The emergence and evolution of swine viral diseases: to what extent have husbandry systems and global trade contributed to their distribution and diversity? Rev Sci Tech. 2011 Apr;30(1):95-106. doi: 10.20506/rst.30.1.2020. PMID: 21809756.

33. Food and Agriculture Organisation of the United Nations (FAO). FAOSTAT Production of Pigs in World 1980 - 2019. Accessed: 2020 Mar 5. Available from: http://www.fao.org/faostat/en/#data/QA/visualize

34. Gollin D, Van Dusen E, Blackburn, H. Animal genetic resource trade flows: Economic assessment. Livestock Science. 2009 Feb;120(3):248-255. doi: 10.1016/j.livsci.2008.07.017

35. Springbett AJ, MacKenzie K, Woolliams JA, Bishop SC. The contribution of genetic diversity to the spread of infectious diseases in livestock populations. Genetics. 2003;165(3):1465-1474.

36. Pitzer VE, Aguas R, Riley S, Loeffen WL, Wood JL, Grenfell BT. High turnover drives prolonged persistence of influenza in managed pig herds. J R Soc Interface. 2016 Jun;13(119):20160138. doi: 10.1098/rsif.2016.0138. PMID: 27358277; PMCID: PMC4938081.

37. Chua KB, Chua BH, Wang CW. Anthropogenic deforestation, El Niño and the emergence of Nipah virus in Malaysia. Malays J Pathol. 2002 Jun;24(1):15-21. PMID: 16329551.

This article is protected by copyright. All rights reserved
38. AbuBakar S, Chang LY, Ali AR, Sharifah SH, Yusoff K, Zamrod Z. Isolation and molecular identification of Nipah virus from pigs. Emerg Infect Dis. 2004 Dec;10(12):2228-30. doi: 10.3201/eid1012.040452. PMID: 15663869; PMCID: PMC3323361.

39. Harcourt BH, Lowe L, Tamin A, Liu X, Bankamp B, Bowden N, et al. Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg Infect Dis. 2005 Oct;11(10):1594-7. doi: 10.3201/eid1110.050513. PMID: 16318702; PMCID: PMC3366751.

40. Looi LM, Chua KB. Lessons from the Nipah virus outbreak in Malaysia. Malays J Pathol. 2007 Dec;29(2):63-7. PMID: 19108397.

41. Sauerhering L, Zickler M, Elvert M, Behner L, Matrosovich T, Erbar S, et al. Species-specific and individual differences in Nipah virus replication in porcine and human airway epithelial cells. J Gen Virol. 2016 Jul;97(7):1511-1519. doi: 10.1099/jgv.0.000483. Epub 2016 Apr 14. PMID: 27075405.

42. Chua KB, Lam SK, Goh KJ, Hooi PS, Ksiazek TG, Kamarulzaman A, et al. The presence of Nipah virus in respiratory secretions and urine of patients during an outbreak of Nipah virus encephalitis in Malaysia. J Infect. 2001 Jan;42(1):40-3. doi: 10.1053/jinf.2000.0782. PMID: 11243752.

43. Elvinger F, Baldwin CA. Eastern equine encephalomyelitis virus. In: Straw BE, Zimmerman J, D'Allaire S, et al., eds. Diseases of Swine, 9th ed. Blackwell Publishing Company; Ames, IA. 2006. p. 554–557.

44. Burke DS, Tingpalapong M, Ward GS, Andre R, Leake CJ. Intense transmission of Japanese encephalitis virus to pigs in a region free of epidemic encephalitis. Southeast Asian J Trop Med Public Health. 1985 Jun;16(2):199-206. PMID: 2999995.

45. Ricklin ME, García-Nicolás O, Brechbühl D, Python S, Zumkehr B, Posthaus H, et al. Japanese encephalitis virus tropism in experimentally infected pigs. Vet Res. 2016 Feb 24;47:34. doi: 10.1186/s13567-016-0319-z. PMID: 26911997; PMCID: PMC4765024.

46. Velazquez-Salinas L, Pauszek SJ, Stenfeldt C, O'Hearn ES, Pacheco JM, Borca MV, et al. Increased Virulence of an Epidemic Strain of Vesicular Stomatitis Virus Is Associated With Interference of the Innate Response in Pigs. Front Microbiol. 2018 Aug 15;9:1891. doi: 10.3389/fmicb.2018.01891. PMID: 30158915; PMCID: PMC6104175.

47. Ricklin ME, García-Nicolás O, Brechbühl D, Python S, Zumkehr B, Nougairede A, et al. Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nat Commun. 2016 Feb 23;7:10832. doi: 10.1038/ncomms10832. PMID: 26902924; PMCID: PMC4766424.

48. Howerth EW, Stallknecht DE, Dorminy M, Pisell T, Clarke GR. Experimental vesicular stomatitis in swine: effects of route of inoculation and steroid treatment. J Vet Diagn Invest. 1997 Apr;9(2):136-42. doi: 10.1177/104063879700900205. PMID: 9211231.
49. Stallknecht DE, Perzak DE, Bauer LD, Murphy MD, Howerth EW. Contact transmission of vesicular stomatitis virus New Jersey in pigs. Am J Vet Res. 2001 Apr;62(4):516-20. doi: 10.2460/ajvr.2001.62.516. PMID: 11327457.

50. Mead DG, Gray EW, Noblet R, Murphy MD, Howerth EW, Stallknecht DE. Biological transmission of vesicular stomatitis virus (New Jersey serotype) by Simulium vittatum (Diptera: Simuliidae) to domestic swine (Sus scrofa). J Med Entomol. 2004 Jan;41(1):78-82. doi: 10.1603/0022-2585-41.1.78. PMID: 14989350.

51. Letchworth GJ, Rodriguez LL, Del cbarrera J. Vesicular stomatitis. Vet J. 1999 May;157(3):239-60. doi: 10.1053/tvjl.1998.0303. PMID: 10328837.

52. Asano A, Ko JH, Morozumi T, Hamashima N, Watanabe T. Polymorphisms and the antiviral property of porcine Mx1 protein. J Vet Med Sci. 2002 Dec;64(12):1085-9. doi: 10.1292/jvms.64.1085. PMID: 12520098.

53. Sasaki K, Tungtrakoolsu B, Morozumi T, Uenishi H, Kawahara M, Watanabe T. A single nucleotide polymorphism of porcine MX2 gene provides antiviral activity against vesicular stomatitis virus. Immunogenetics. 2014 Jan;66(1):25-32. doi: 10.1007/s00251-013-0745-2. PMID: 24232602.

54. Schwemmle M, Weining KC, Richter MF, Schumacher B, Staeheli P. Vesicular stomatitis virus transcription inhibited by purified MxA protein. Virology. 1995 Jan 10;206(1):545-8. doi: 10.1016/s0042-6822(95)80071-9. PMID: 7831809.

55. Miranda ME, Miranda NL. Reston ebolavirus in humans and animals in the Philippines: a review. J Infect Dis. 2011 Nov;204 Suppl 3:S757-60. doi: 10.1093/infdis/jir296. PMID: 21987747.

56. Kobinger GP, Leung A, Neufeld J, Richardson JS, Falzarano D, Smith G, et al. Replication, pathogenicity, shedding, and transmission of Zaire ebolavirus in pigs. J Infect Dis. 2011 Jul 15;204(2):200-8. doi: 10.1093/infdis/jir077. Epub 2011 May 12. PMID: 21571728.

57. Guito JC, Albariño CG, Chakrabarti AK, Towner JS. Novel activities by ebolavirus and marburgvirus interferon antagonists revealed using a standardized in vitro reporter system. Virology. 2017 Jan 15;501:147-165. doi: 10.1016/j.virol.2016.11.015. Epub 2016 Dec 6. PMID: 27930961.

58. Marsh GA, Haining J, Robinson R, Foord A, Yamada M, Barr JA, et al. Ebola Reston virus infection of pigs: clinical significance and transmission potential. J Infect Dis. 2011 Nov;204 Suppl 3:S804-9. doi: 10.1093/infdis/jir300. PMID: 21987755.

59. Philbey AW, Kirkland PD, Ross AD, Davis RJ, Gleeson AB, Love RJ, et al. An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg Infect Dis. 1998 Apr-Jun;4(2):269-71. doi: 10.3201/eid0402.980214. PMID: 9621197; PMCID: PMC2640116.

This article is protected by copyright. All rights reserved.
60. Chant K, Chan R, Smith M, Dwyer DE, Kirkland P. Probable human infection with a newly described virus in the family Paramyxoviridae. The NSW Expert Group. Emerg Infect Dis. 1998 Apr-Jun;4(2):273-5. doi: 10.3201/eid0402.980215. PMID: 9621198; PMCID: PMC2640130.

61. Bowden TR, Bingham J, Harper JA, Boyle DB. Menangle virus, a pteropid bat paramyxovirus infectious for pigs and humans, exhibits tropism for secondary lymphoid organs and intestinal epithelium in weaned pigs. J Gen Virol. 2012 May;93(Pt 5):1007-1016. doi: 10.1099/vir.0.045385-0. Epub 2012 Aug 22. PMID: 22915696.

62. Barr JA, Smith C, Marsh GA, Field H, Wang LF. Evidence of bat origin for Menangle virus, a zoonotic paramyxovirus first isolated from diseased pigs. J Gen Virol. 2012 Dec;93(Pt 12):2590-2594. doi: 10.1099/vir.0.038448-0. Epub 2012 Jan 25. PMID: 22278823.

63. Chua KB, Wang LF, Lam SK, Crameri G, Yu M, Wise T, et al. Tioman virus, a novel paramyxovirus isolated from fruit bats in Malaysia. Virology. 2001 May 10;283(2):215-29. doi: 10.1006/viro.2000.0882. PMID: 11336547.

64. Yaiw KC, Crameri G, Wang L, Chong HT, Chua KB, Tan CT, et al. Serological evidence of possible human infection with Tioman virus, a newly described paramyxovirus of bat origin. J Infect Dis. 2007 Sep 15;196(6):884-6. doi: 10.1086/520817. Epub 2007 Aug 14. PMID: 17703419.

65. Caignard G, Lucas-Hourani M, Dhondt KP, Labernardiè re JL, Petit T, Jacob Y, et al. The V protein of Tioman virus is incapable of blocking type I interferon signaling in human cells. PLoS One. 2013;8(1):e53881. doi: 10.1371/journal.pone.0053881. Epub 2013 Jan 14. PMID: 23342031; PMCID: PMC3544715.

66. Charrel RN, Gallian P, Navarro-Mari JM, Nicoletti L, Papa A, Sánchez-Seco MP, et al. Emergence of Toscana virus in Europe. Emerg Infect Dis. 2005 Nov;11(11):1657-63. doi: 10.3201/eid1111.050869. PMID: 16318715; PMCID: PMC3367371.

67. Vilibić-Cavlek T, Zidovec-Lepej S, Ledina D, Knezevic S, Savic V, Tabain I, et al. Clinical, Virological, and Immunological Findings in Patients with Toscana Neuroinvasive Disease in Croatia: Report of Three Cases. Trop Med Infect Dis. 2020 Sep 14;5(3):144. doi: 10.3390/tropicalmed5030144. PMID: 32937866; PMCID: PMC7557803.

68. Navarro-Marí JM, Palop-Borrás B, Pérez-Ruiz M, Sanbonmatsu-Gámez S. Serosurvey study of Toscana virus in domestic animals, Granada, Spain. Vector Borne Zoonotic Dis. 2011 May;11(5):583-7. doi: 10.1089/vbz.2010.0065. Epub 2010 Oct 6. PMID: 20925529.

69. Scherer WF, Dickerman RW, Campillo-Sainz C, Zarate ML, Gonzales E. Ecologic studies of Venezuelan encephalitis virus in southeastern México. V. Infection of domestic animals other than equines. Am J Trop Med Hyg. 1971 Nov;20(6):989-93. doi: 10.4269/ajtmh.1971.20.989. PMID: 5167188.

This article is protected by copyright. All rights reserved
Weaver SC, Ferro C, Barrera R, Boshell J, Navarro JC. Venezuelan equine encephalitis. Annu Rev Entomol. 2004;49:141-74. doi: 10.1146/annurev.ento.49.061802.123422. PMID: 14651460.

World Health Organization (WHO). Rabies. 2020 Apr. Retrieved from: https://www.who.int/news-room/fact-sheets/detail/rabies

Manning SE, Rupprecht CE, Fishbein D, Hanlon CA, Lumlertdacha B, Guerra M, et al; Advisory Committee on Immunization Practices Centers for Disease Control and Prevention (CDC). Human rabies prevention—United States, 2008: recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm Rep. 2008 May 23;57(RR-3):1-28. PMID: 18496505.

Jiang Y, Yu X, Wang L, Lu Z, Liu H, Xuan H, et al. An outbreak of pig rabies in Hunan province, China. Epidemiol Infect. 2008 Apr;136(4):504-8. doi: 10.1017/S0950268807008874. Epub 2007 Jun 11. PMID: 17559696; PMCID: PMC2870836.

Zhong NS, Zheng BJ, Li YM, Poon, Xie ZH, Chan KH, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet. 2003 Oct 25;362(9393):1353-8. doi: 10.1016/s0140-6736(03)14630-2. PMID: 14585636; PMCID: PMC7112415.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270-273. doi: 10.1038/s41586-020-2012-7. Epub 2020 Feb 3. PMID: 32015507; PMCID: PMC7095418.

Chen W, Yan M, Yang L, Ding B, He B, Wang Y, et al. SARS-associated coronavirus transmitted from human to pig. Emerg Infect Dis. 2005 Mar;11(3):446-8. doi: 10.3201/eid1103.040824. PMID: 15757562; PMCID: PMC3322939.

Weingartl HM, Copps J, Drebot MA, Marszal P, Smith G, Gren J, et al. Susceptibility of pigs and chickens to SARS coronavirus. Emerg Infect Dis. 2004 Feb;10(2):179-84. doi: 10.3201/eid1002.030677. PMID: 15030680; PMCID: PMC3322906.

Zhang G, Haydon DT, Knowles NJ, McCauley JW. Molecular evolution of swine vesicular disease virus. J Gen Virol. 1999 Mar;80 (Pt 3):639-651. doi: 10.1099/0022-1317-80-3-639. PMID: 10092004.

Bruhn CA, Nielsen SC, Samaniego JA, Wadsworth J, Knowles NJ, Gilbert MT. Viral meningitis epidemics and a single, recent, recombinant and anthropogenic origin of swine vesicular
disease virus. Evol Med Public Health. 2015 Oct 27;2015(1):289-303. doi: 10.1093/emph/eov026. PMID: 26508717; PMCID: PMC4661520.

81. Lomakina NF, Yu Shustova E, Strizhakova OM, Felix Drexler J, Lukashev AN. Epizootic of vesicular disease in pigs caused by coxsackievirus B4 in the Soviet Union in 1975. J Gen Virol. 2016 Jan;97(1):49-52. doi: 10.1099/jgv.0.000318. Epub 2015 Oct 19. PMID: 26487269.

82. Jimenez-Clavero MA, Escribano-Romero E, Ley V, Spiller OB. More recent swine vesicular disease virus isolates retain binding to coxsackie-adenovirus receptor, but have lost the ability to bind human decay-accelerating factor (CD55). J Gen Virol. 2005 May;86(Pt 5):1369-1377. doi: 10.1099/vir.0.80669-0. PMID: 15831949.

83. Vinjé J. Advances in laboratory methods for detection and typing of norovirus. J Clin Microbiol. 2015 Feb;53(2):373-81. doi: 10.1128/JCM.01535-14. Epub 2014 Jul 2. PMID: 24989606; PMCID: PMC4298492.

84. Farkas T, Nakajima S, Sugieda M, Deng X, Zhong W, Jiang X. Seroprevalence of noroviruses in swine. J Clin Microbiol. 2005 Feb;43(2):657-61. doi: 10.1128/JCM.43.2.657-661.2005. PMID: 15695660; PMCID: PMC548037.

85. Villabruna N, Koopmans MPG, de Graaf M. Animals as Reservoir for Human Norovirus. Viruses. 2019 May 25;11(5):478. doi: 10.3390/v11050478. PMID: 31130647; PMCID: PMC6563253.

86. de Graaf M, van Beek J, Koopmans MP. Human norovirus transmission and evolution in a changing world. Nat Rev Microbiol. 2016 Jul;14(7):421-33. doi: 10.1038/nrmicro.2016.48. Epub 2016 May 23. PMID: 27211790.

87. Cheetham S, Souza M, McGregor R, Meulia T, Wang Q, Saif LJ. Binding patterns of human norovirus-like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo-blood group antigen expression. J Virol. 2007 Apr;81(7):3535-44. doi: 10.1128/JVI.01306-06. Epub 2007 Jan 10. PMID: 17215284; PMCID: PMC1866037.

88. Firquet S, Beaujard S, Lobern PE, Sané F, Caloone D, Izard D, et al. Survival of Enveloped and Non-Enveloped Viruses on Inanimate Surfaces. Microbes Environ. 2015;30(2):140-4. doi: 10.1264/jsme2.ME14145. Epub 2015 Apr 3. PMID: 25843687; PMCID: PMC4462923.

89. Geoghegan JL, Senior AM, Di Giallonardo F, Holmes EC. Virological factors that increase the transmissibility of emerging human viruses. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4170-5. doi: 10.1073/pnas.1521582113. Epub 2016 Mar 21. PMID: 27001840; PMCID: PMC4839412.

90. Bushman FD, McCormick K, Sherrill-Mix S. Virus structures constrain transmission modes. Nat Microbiol. 2019 Nov;4(11):1778-1780. doi: 10.1038/s41564-019-0523-5. Epub 2019 Jul 29. PMID: 31358983; PMCID: PMC6814542.
91. Griffin JS, Plummer JD, Long SC. Torque teno virus: an improved indicator for viral pathogens in drinking waters. Virol J. 2008 Oct 3;5:112. doi: 10.1186/1743-422X-5-112. PMID: 18834517; PMCID: PMC2569923.

92. Kekarainen T, Martínez-Guinó L, Segalés J. Swine torque teno virus detection in pig commercial vaccines, enzymes for laboratory use and human drugs containing components of porcine origin. J Gen Virol. 2009 Mar;90(Pt 3):648-653. doi: 10.1099/vir.0.006841-0. PMID: 19218210.

93. Jiménez-Melsió A, Parés S, Segalés J, Kekarainen T. Detection of porcine anelloviruses in pork meat and human faeces. Virus Res. 2013 Dec 26;178(2):522-4. doi: 10.1016/j.virusres.2013.09.035. Epub 2013 Sep 30. PMID: 24091365.

94. D'Arcy N, Cloutman-Green E, Klein N, Spratt DA. Environmental viral contamination in a pediatric hospital outpatient waiting area: implications for infection control. Am J Infect Control. 2014 Aug;42(8):856-60. doi: 10.1016/j.jic.2014.04.014. PMID: 25087137.

95. Martínez LC, Masachessi G, Carruyo G, Ferreyra LJ, Barril PA, Isa MB, et al. Picobirnavirus causes persistent infection in pigs. Infect Genet Evol. 2010 Oct;10(7):984-8. doi: 10.1016/j.meegid.2010.06.004. Epub 2010 Jun 22. PMID: 20601172.

96. Yinda CK, Vanhulle E, Conceição-Neto N, Beller L, Deboutte W, Shi C, et al. Gut Virome Analysis of Cameroonians Reveals High Diversity of Enteric Viruses, Including Potential Interspecies Transmitted Viruses. mSphere. 2019 Jan 23;4(1):e00585-18. doi: 10.1128/mSphere.00585-18. PMID: 30674646; PMCID: PMC6344602.

97. Ssemadaali MA, Effertz K, Singh P, Kolyvushko O, Ramamoorthy S. Identification of heterologous Torque Teno Viruses in humans and swine. Sci Rep. 2016 May 25;6:26655. doi: 10.1038/srep26655. PMID: 27222164; PMCID: PMC4879562.

98. Krishnamurthy SR, Wang D. Extensive conservation of prokaryotic ribosomal binding sites in known and novel picobirnaviruses. Virology. 2018 Mar;516:108-114. doi: 10.1016/j.virol.2018.01.006. Epub 2018 Jan 12. PMID: 29346073.

99. Bányai K, Martella V, Bogdán Á, Forgách P, Jakab F, Meleg E, et al. Genogroup I picobirnaviruses in pigs: evidence for genetic diversity and relatedness to human strains. J Gen Virol. 2008 Feb;89(Pt 2):534-539. doi: 10.1099/vir.0.83134-0. PMID: 18198385.

100. Carruyo GM, Mateu G, Martínez LC, Pujol FH, Nates SV, Liprandi F, et al. Molecular characterization of porcine picobirnaviruses and development of a specific reverse transcription-PCR assay. J Clin Microbiol. 2008 Jul;46(7):2402-5. doi: 10.1128/JCM.00655-08. Epub 2008 May 28. PMID: 18508933; PMCID: PMC2446882.

101. Chen M, Sun H, Hua X. Segment 2 sequences analysis of genogroup II picobirnavirus in pig stool in China. Acta Virol. 2019;63(1):126-128. doi: 10.4149/av_2019_108. PMID: 30879323.
102. Kamar N, Dalton HR, Abravanel F, Izopet J. Hepatitis E virus infection. Clin Microbiol Rev. 2014 Jan;27(1):116-38. doi: 10.1128/CMR.00057-13. PMID: 24396139; PMCID: PMC3910910.

103. Park WJ, Park BJ, Ahn HS, Lee JB, Park SY, Song CS, et al. Hepatitis E virus as an emerging zoonotic pathogen. J Vet Sci. 2016 Mar;17(1):1-11. doi: 10.4142/jvs.2016.17.1.1. Epub 2016 Mar 22. PMID: 27051334; PMCID: PMC4808633.

104. Halbur PG, Kasorndorkbua C, Gilbert C, Guenette D, Potters MB, et al. Comparative pathogenesis of infection of pigs with hepatitis E viruses recovered from a pig and a human. J Clin Microbiol. 2001 Mar;39(3):918-23. doi: 10.1128/JCM.39.3.918-923.2001. PMID: 11230404; PMCID: PMC87850.

105. Meng XJ, Halbur PG, Shapiro MS, Govindarajan S, Bruna JD, Mushahwar IK, et al. Genetic and experimental evidence for cross-species infection by swine hepatitis E virus. J Virol. 1998 Dec;72(12):9714-21. doi: 10.1128/JVI.72.12.9714-9721.1998. PMID: 9811705; PMCID: PMC110481.

106. Guo Y, Candelero-Rueda RA, Saif LJ, Vlasova AN. Infection of porcine small intestinal enteroids with human and pig rotavirus A strains reveals contrasting roles for histo-blood group antigens and terminal sialic acids. PLoS Pathog. 2021 Jan 29;17(1):e1009237. doi: 10.1371/journal.ppat.1009237. PMID: 33513201; PMCID: PMC7846020.

107. Wu FT, Bányai K, Jiang B, Liu LT, Marton S, Huang YC, et al. Novel G9 rotavirus strains co-circulate in children and pigs, Taiwan. Sci Rep. 2017 Jan 18;7:40731. doi: 10.1038/srep40731. PMID: 28098174; PMCID: PMC5241653.

108. Abass G, Dubal ZB, Rajak KK, Kale BM, Raorane A, Dudhe N, et al. Molecular characterization of porcine rotavirus A from India revealing zoonanthroponotic transmission. Anim Biotechnol. 2021 Jan 18:1-13. doi: 10.1080/10495398.2020.1868486. Epub ahead of print. PMID: 33455537.

109. Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses. 2018 Sep 13;10(9):497. doi: 10.3390/v10090497. PMID: 30217093; PMCID: PMC6165440.

110. Taubenberger JK, Kash JC. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe. 2010 Jun 25;7(6):440-51. doi: 10.1016/j.chom.2010.05.009. PMID: 20542248; PMCID: PMC2892379.

111. Kimura H, Abiko C, Peng G, Muraki Y, Sugawara K, Hongo S, et al. Interspecies transmission of influenza C virus between humans and pigs. Virus Res. 1997 Apr;48(1):71-9. doi: 10.1016/s0168-1702(96)01427-x. PMID: 9140195.
112. Matsuzaki Y, Mizuta K, Sugawara K, Tsuchiya E, Muraki Y, Hongo S, et al. Frequent reassortment among influenza C viruses. J Virol. 2003 Jan;77(2):871-81. doi: 10.1128/jvi.77.2.871-881.2003. PMID: 12502803; PMCID: PMC140804.

113. Guo YJ, Jin FG, Wang P, Wang M, Zhu JM. Isolation of influenza C virus from pigs and experimental infection of pigs with influenza C virus. J Gen Virol. 1983 Jan;64 (Pt 1):177-82. doi: 10.1099/0022-1317-64-1-177. PMID: 6296296.

114. Lee J, Wang L, Palinski R, Walsh T, He D, Li Y, et al. Comparison of Pathogenicity and Transmissibility of Influenza B and D Viruses in Pigs. Viruses. 2019 Sep 27;11(10):905. doi: 10.3390/v11100905. PMID: 31569752; PMCID: PMC6832242.

115. Koolhof IS, Carver S. Epidemic host community contribution to mosquito-borne disease transmission: Ross River virus. Epidemiol Infect. 2017 Mar;145(4):656-666. doi: 10.1017/S0950268816002739. Epub 2016 Nov 28. PMID: 27890043.

116. Spradbrow PB. Letter: Experimental infection of sheep and pigs with Ross River virus. Aust Vet J. 1973 Aug;49(8):403-4. doi: 10.1111/j.1751-0813.1973.tb09357.x. PMID: 4748805.

117. Rosen L, Gubler DJ, Bennett PH. Epidemic polyarthritis (Ross River) virus infection in the Cook Islands. Am J Trop Med Hyg. 1981 Nov;30(6):1294-302. doi: 10.4269/ajtmh.1981.30.1294. PMID: 7325286.

118. Pérez-Losada M, Arenas M, Galán JC, Palero F, González-Candelas F. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. Infect Genet Evol. 2015 Mar;30:296-307. doi: 10.1016/j.meegid.2014.12.022. Epub 2014 Dec 23. PMID: 25541518; PMCID: PMC7106159.

119. Sanjuán R, Domingo-Calap P. Genetic Diversity and Evolution of Viral Populations. Encyclopedia of Virology 4th ed. Academic Press; 2021. 53-61 p. doi: 10.1016/B978-0-12-809633-8.20958-8.

120. Kreuder Johnson C, Hitchens PL, Smiley Evans T, Goldstein T, Thomas K, Clements A, et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci Rep. 2015 Oct 7;5:14830. doi: 10.1038/srep14830. PMID: 26445169; PMCID: PMC4595845.

121. Jenkins GM, Rambaut A, Pybus OG, Holmes EC. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol. 2002 Feb;54(2):156-65. doi: 10.1007/s00239-001-0064-3. PMID: 11821909.

122. Smith EC. The not-so-infinite malleability of RNA viruses: Viral and cellular determinants of RNA virus mutation rates. PLoS Pathog. 2017 Apr 27;13(4):e1006254. doi: 10.1371/journal.ppat.1006254. PMID: 28448634; PMCID: PMC5407569.
123. Cadar D, Kiss T, Ádám D, Cságola A, Novosel D, Tuboly T. Phylogeny, spatio-temporal
 phylodynamics and evolutionary scenario of Torque teno sus virus 1 (TTSuV1) and 2
 (TTSuV2) in wild boars: fast dispersal and high genetic diversity. Vet Microbiol. 2013 Sep
 27;166(1-2):200-13. doi: 10.1016/j.vetmic.2013.06.010. Epub 2013 Jun 21. PMID: 23850440.

124. Nieto D, Aramouni M, Grau-Roma L, Segalés J, Kekarainen T. Dynamics of Torque teno
 sus virus 1 (TTSuV1) and 2 (TTSuV2) DNA loads in serum of healthy and postweaning
 multisystemic wasting syndrome (PMWS) affected pigs. Vet Microbiol. 2011 Sep 28;152(3-4):284-90. doi: 10.1016/j.vetmic.2011.05.020. Epub 2011 May 19. PMID: 21680113.

125. Hicks AL, Duffy S. Cell tropism predicts long-term nucleotide substitution rates of
 mammalian RNA viruses. PLoS Pathog. 2014 Jan;10(1):e1003838. doi:
 10.1371/journal.ppat.1003838. Epub 2014 Jan 9. PMID: 24415935; PMCID: PMC3887100.

126. Bull RA, Hansman GS, Clancy LE, Tanaka MM, Rawlinson WD, White PA. Norovirus
 recombination in ORF1/ORF2 overlap. Emerg Infect Dis. 2005 Jul;11(7):1079-85. doi:
 10.3201/eid1107.041273. PMID: 16022784; PMCID: PMC3371806.

127. Wang QH, Han MG, Cheetham S, Souza M, Funk JA, Saif LJ. Porcine noroviruses related
 to human noroviruses. Emerg Infect Dis. 2005 Dec;11(12):1874-81. doi:
 10.3201/eid1112.050485. PMID: 16485473; PMCID: PMC3367634.

128. Shen Q, Zhang W, Yang S, Yang Z, Chen Y, Cui L, et al. Recombinant porcine norovirus
 identified from piglet with diarrhea. BMC Vet Res. 2012 Sep 3;8:155. doi: 10.1186/1746-6148-8-155. PMID: 22938017; PMCID: PMC3514297.

129. Chhabra P, de Graaf M, Parra GI, Chan MC, Green K, Martella V, et al. Updated
 classification of norovirus genogroups and genotypes. J Gen Virol. 2019 Oct;100(10):1393-
 1406. doi: 10.1099/jgv.0.001318. Erratum in: J Gen Virol. 2020 Aug;101(8):893. PMID:
 31483239; PMCID: PMC7011714.

130. Cavicchio L, Tassoni L, Lacconi A, Cunial G, Gagliazzo L, Milani A, et al. Unrevealed genetic
 diversity of GII Norovirus in the pig population of North East Italy. Sci Rep. 2020 Jun
 8;10(1):9217. doi: 10.1038/s41598-020-66140-4. Erratum in: Sci Rep. 2020 Jul
 22;10(1):12522. PMID: 32513947; PMCID: PMC7280493.

131. Wauquier N, Becquart P, Padilla C, Baize S, Leroy EM. Human fatal zaire ebola virus
 infection is associated with an aberrant innate immunity and with massive lymphocyte
 apoptosis. PLoS Negl Trop Dis. 2010 Oct 5;4(10):e837. doi: 10.1371/journal.pntd.0000837.
 PMID: 20957152; PMCID: PMC2950153.

132. Pappalardo M, Juliá M, Howard MJ, Rossman JS, Michaelis M, Wass MN. Conserved
 differences in protein sequence determine the human pathogenicity of Ebolaviruses. Sci
 Rep. 2016 Mar 24;6:23743. doi: 10.1038/srep23743. PMID: 27009368; PMCID:
 PMC4806318.
133. Albariño CG, Wiggleton Guerrero L, Jenks HM, Chakrabarti AK, Ksiazek TG, et al. Insights into Reston virus spillovers and adaption from virus whole genome sequences. PLoS One. 2017 May 25;12(5):e0178224. doi: 10.1371/journal.pone.0178224. PMID: 28542463; PMCID: PMC5444788.

134. Lo MK, Lowe L, Hummel KB, Sazzad HM, Gurley ES, Hossain MJ, et al. Characterization of Nipah virus from outbreaks in Bangladesh, 2008-2010. Emerg Infect Dis. 2012 Feb;18(2):248-55. doi: 10.3201/eid1802.111492. PMID: 22304936; PMCID: PMC3310473.

135. Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science. 2014 Nov 7;346(6210):755-9. doi: 10.1126/science.1257147. PMID: 25378626; PMCID: PMC4401463.

136. Ruvoën-Clouet N, Magalhaes A, Marcos-Silva L, Breiman A, Figueiredo C, David L, et al. Increase in genogroup II.4 norovirus host spectrum by CagA-positive Helicobacter pylori infection. J Infect Dis. 2014 Jul 15;210(2):183-91. doi: 10.1093/infdis/jiu054. Epub 2014 Jan 23. PMID: 24459192.

137. Simon G, Larsen LE, Dürrwald R, Foni E, Harder T, Van Reeth K, et al. European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013. PLoS One. 2014 Dec 26;9(12):e115815. doi: 10.1371/journal.pone.0115815. PMID: 25542013; PMCID: PMC4277368.

138. World Organisation for Animal Health (OIE). OIE-Listed diseases 2021. Retrieved from: https://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2021/
144. Kirkland PD, Love RJ, Philbey AW, Ross AD, Davis RJ, Hart KG. Epidemiology and control of Menangle virus in pigs. Aust Vet J. 2001 Mar;79(3):199-206. doi: 10.1111/j.1751-0813.2001.tb14580.x. PMID: 11301749.

145. Love RJ, Philbey AW, Kirkland PD, Ross AD, Davis RJ, Morrissey C, et al. Reproductive disease and congenital malformations caused by Menangle virus in pigs. Aust Vet J. 2001 Mar;79(3):192-8. doi: 10.1111/j.1751-0813.2001.tb14578.x. PMID: 11301748.

146. Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, et al. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg. 2011 Nov;85(5):946-51. doi: 10.4269/ajtmh.2011.10-0567. PMID: 22049055; PMCID: PMC3205647.

147. Middleton DJ, Westbury HA, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, et al. Experimental Nipah virus infection in pigs and cats. J Comp Pathol. 2002 Feb-Apr;126(2-3):124-36. doi: 10.1053/jcpa.2001.0532. PMID: 11945001.

148. Goh KJ, Tan CT, Chew NK, Tan PS, Kamarulzaman A, Sarji SA, et al. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med. 2000 Apr 27;342(17):1229-35. doi: 10.1056/NEJM200004273421701. PMID: 10781618.

149. Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, Het al. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007. Emerg Infect Dis. 2009 Aug;15(8):1229-35. doi: 10.3201/eid0908.081237. PMID: 19751584; PMCID: PMC2815955.

150. Kasloff SB, Leung A, Pickering BS, Smith G, Moffat E, Collignon B, et al. Pathogenicity of Nipah henipavirus Bangladesh in a swine host. Sci Rep. 2019 Mar 26;9(1):5230. doi: 10.1038/s41598-019-40476-y. PMID: 30914663; PMCID: PMC6435791.

151. Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, et al. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis. 2001 May-Jun;7(3):439-41. doi: 10.3201/eid0703.010312. PMID: 11384522; PMCID: PMC2631791.

152. Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, et al. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect. 2002 Feb;4(2):145-51. doi: 10.1016/s1286-4579(01)01522-2. PMID: 11880045.

153. Jayme SI, Field HE, de Jong C, Olival KJ, Marsh G, Tagtag AM, Hughes T, Bucad AC, Barr J, Azul RR, Retes LM, Foord A, Yu M, Cruz MS, Santos JJ, Lim TM, Benigno CC, Epstein JH, Wang LF, Daszak P, Newman SH. Molecular evidence of Ebola Reston virus infection in Philippine bats. Virol J. 2015 Jul 17;12:107. doi: 10.1186/s12985-015-0331-3. PMID: 26184657; PMCID: PMC4504098.
154. Barrette RW, Metwally SA, Rowland JM, Xu L, Zaki SR, Nichol ST, et al. Discovery of swine as a host for the Reston ebolavirus. Science. 2009 Jul 10;325(5937):204-6. doi: 10.1126/science.1172705. PMID: 19590002.

155. Smith PF, Howerth EW, Carter D, Gray EW, Noblet R, Mead DG. Mechanical transmission of vesicular stomatitis New Jersey virus by Simulium vittatum (Diptera: Simuliidae) to domestic swine (Sus scrofa). J Med Entomol. 2009 Nov;46(6):1537-40. doi: 10.1603/033.046.0643. PMID: 19960709.

156. Rozo-Lopez P, Drolet BS, Londoño-Renteria B. Vesicular Stomatitis Virus Transmission: A Comparison of Incriminated Vectors. Insects. 2018 Dec 11;9(4):190. doi: 10.3390/insects9040190. PMID: 30544935; PMCID: PMC6315612.

157. Attoui H, Mohd Jaafar F, de Micco P, de Lamballerie X. Coltiviruses and seadornaviruses in North America, Europe, and Asia. Emerg Infect Dis. 2005 Nov;11(11):1673-9. doi: 10.3201/eid1111.050868. PMID: 16318717; PMCID: PMC3367365.

158. Jaafar FM, Attoui H, Mertens PPC, de Micco P, de Lamballerie X. Structural organization of an encephalitic human isolate of Banna virus (genus Seadornavirus, family Reoviridae). J Gen Virol. 2005 Apr;86(Pt 4):1147-1157. doi: 10.1099/vir.0.80578-0. PMID: 15784909.

159. Xia H, Liu H, Zhao L, Atoni E, Wang Y, Yuan Z. First Isolation and Characterization of a Group C Banna Virus (BAV) from Anopheles sinensis mosquitoes in Hubei, China. Viruses. 2018 Oct 11;10(10):555. doi: 10.3390/v10100555. PMID: 30314338; PMCID: PMC6213526.

160. Attoui H, Jaafar FM, Belhouchet M, Tao S, Chen B, Liang G, et al. Liao ning virus, a new Chinese seadornavirus that replicates in transformed and embryonic mammalian cells. J Gen Virol. 2006 Jan;87(Pt 1):199-208. doi: 10.1099/vir.0.81294-0. PMID: 16361432.

161. Centers for Disease Control and Prevention (CDC). Cache Valley virus. 2019 Nov. Retrieved from: https://www.cdc.gov/cache-valley/index.html

162. Nguyen NL, Zhao G, Hull R, Shelly MA, Wong SJ, Wu G, et al. Cache valley virus in a patient diagnosed with aseptic meningitis. J Clin Microbiol. 2013 Jun;51(6):1966-9. doi: 10.1128/JCM.00252-13. Epub 2013 Mar 20. PMID: 23515536; PMCID: PMC3716113.

163. Hayles LB, Lversen JO. Cache Valley virus: experimental infection in Culiseta inornata. Can J Microbiol. 1980 Mar;26(3):287-90. PMID: 6105910.

164. Armstrong PM, Andreadis TG, Anderson JF. Emergence of a new lineage of Cache Valley virus (Bunyaviridae: Orthobunyavirus) in the Northeastern United States. Am J Trop Med Hyg. 2015 Jul;93(1):11-7. doi: 10.4269/ajtmh.15-0132. Epub 2015 May 11. PMID: 25962774; PMCID: PMC4497881.

165. Andreadis TG, Armstrong PM, Anderson JF, Main AJ. Spatial-temporal analysis of Cache Valley virus (Bunyaviridae: Orthobunyavirus) infection in anopheline and culicine
mosquitoes (Diptera: Culicidae) in the northeastern United States, 1997-2012. Vector Borne Zoonotic Dis. 2014 Oct;14(10):763-73. doi: 10.1089/vbz.2014.1669. PMID: 25325321; PMCID: PMC4208611.

166. Mavale MS, Fulmali PV, Ghodke YS, Mishra AC, Kanojia P, Geervarghese G. Experimental transmission of Chandipura virus by Phlebotomus argentipes (diptera: psychodidae). Am J Trop Med Hyg. 2007 Feb;76(2):307-9. PMID: 17297040.

167. Sudeep AB, Gurav YK, Bondre VP. Changing clinical scenario in Chandipura virus infection. Indian J Med Res. 2016 Jun;143(6):712-721. doi: 10.4103/0971-5916.191929. PMID: 27748295; PMCID: PMC5094110.

168. Oberste MS, Gotuzzo E, Blair P, Nix WA, Ksiazek TG, Comer JA, et al. Human febrile illness caused by encephalomyocarditis virus infection, Peru. Emerg Infect Dis. 2009 Apr;15(4):640-6. doi: 10.3201/eid1504.081428. PMID: 19331761; PMCID: PMC2671410.

169. Billinis C, Paschaleri-Papadopoulou E, Anastasiadis G, Psychas V, Vlemmas J, Leontides S, et al. A comparative study of the pathogenic properties and transmissibility of a Greek and a Belgian encephalomyocarditis virus (EMCV) for piglets. Vet Microbiol. 1999 Dec;70(3-4):179-92. doi: 10.1016/s0378-1135(99)00145-5. PMID: 10596802.

170. Paton DJ, Gubbins S, King DP. Understanding the transmission of foot-and-mouth disease virus at different scales. Curr Opin Virol. 2018 Feb;28:85-91. doi: 10.1016/j.coviro.2017.11.013. Epub 2017 Dec 12. PMID: 29245054.

171. Armstrong R, Davie J, Hedger RS. Foot-and-mouth disease in man. Br Med J. 1967 Dec 2;4(5578):529-30. doi: 10.1136/bmj.4.5578.529. PMID: 4294412; PMCID: PMC1749100.

172. Prempeh H, Smith R, Müller B. Foot and mouth disease: the human consequences. The health consequences are slight, the economic ones huge. BMJ. 2001 Mar 10;322(7286):565-6. doi: 10.1136/bmj.322.7286.565. PMID: 11238137; PMCID: PMC1119772.

173. Hall MD, Knowles NJ, Wadsworth J, Rambaut A, Woolhouse ME. Reconstructing geographical movements and host species transitions of foot-and-mouth disease virus serotype SAT 2. mBio. 2013 Oct 22;4(5):e00591-13. doi: 10.1128/mBio.00591-13. PMID: 24149511; PMCID: PMC3812709.

174. Liu H, Zhang X, Li LX, Shi N, Sun XT, Liu Q, et al. First isolation and characterization of Getah virus from cattle in northeastern China. BMC Vet Res. 2019 Sep 5;15(1):320. doi: 10.1186/s12917-019-2061-z. PMID: 31488162; PMCID: PMC6729113.

175. Izumida A, Takuma H, Inagaki S, Kubota M, Hirahara T, Kodama K, et al. Experimental infection of Getah virus in swine. Nihon Juigaku Zasshi. 1988 Jun;50(3):679-84. doi: 10.1292/jvms1939.50.679. PMID: 3210480.
176. Jeffries CL, Mansfield KL, Phipps LP, Wakeley PR, Mearns R, Schock A, et al. Louping ill virus: an endemic tick-borne disease of Great Britain. J Gen Virol. 2014 May;95(Pt 5):1005-1014. doi: 10.1099/vir.0.062356-0. Epub 2014 Feb 19. PMID: 24552787; PMCID: PMC4811648.

177. Dobler G. Zoonotic tick-borne flaviviruses. Vet Microbiol. 2010 Jan 27;140(3-4):221-8. doi: 10.1016/j.vetmic.2009.08.024. Epub 2009 Aug 26. PMID: 19765917.

178. Davidson MM, Williams H, Macleod JA. Louping ill in man: a forgotten disease. J Infect. 1991 Nov;23(3):241-9. doi: 10.1016/0163-4453(91)92756-u. PMID: 1753132.

179. Alkan C, Bichaud L, de Lamballerie X, Alten B, Gould EA, Charrel RN. Sandfly-borne phleboviruses of Eurasia and Africa: epidemiology, genetic diversity, geographic range, control measures. Antiviral Res. 2013 Oct;100(1):54-74. doi: 10.1016/j.antiviral.2013.07.005. Epub 2013 Jul 19. PMID: 23872312.

180. Moriconi M, Rugna G, Calzolari M, Bellini R, Albieri A, Angelini P, et al. Phlebotomine sand fly-borne pathogens in the Mediterranean Basin: Human leishmaniasis and phlebovirus infections. PLoS Negl Trop Dis. 2017 Aug 10;11(8):e0005660. doi: 10.1371/journal.pntd.0005660. PMID: 28796786; PMCID: PMC5552025.

181. Wang E, Bowen RA, Medina G, Powers AM, Kang W, Chandler LM, et al. Virulence and viremia characteristics of 1992 epizootic subtype IC Venezuelan equine encephalitis viruses and closely related enzootic subtype ID strains. Am J Trop Med Hyg. 2001 Jul;65(1):64-9. doi: 10.4269/ajtmh.2001.65.64. PMID: 11504410.

182. Beckham JD, Tyler KL. Arbovirus Infections. Continuum (Minneap Minn). 2015 Dec;21(6 Neuroinfectious Disease):1599-611. doi: 10.1212/CON.0000000000000240. PMID: 26633778; PMCID: PMC5089063.

183. Cheetham S, Souza M, Meulia T, Grimes S, Han MG, Saif LJ. Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J Virol. 2006 Nov;80(21):10372-81. doi: 10.1128/JVI.00809-06. PMID: 17041218; PMCID: PMC1641747.

184. Souza M, Cheetham SM, Azevedo MS, Costantini V, Saif LJ. Cytokine and antibody responses in gnotobiotic pigs after infection with human norovirus genogroup II.4 (HS66 strain). J Virol. 2007 Sep;81(17):9183-92. doi: 10.1128/JVI.00558-07. Epub 2007 Jun 20. PMID: 17581999; PMCID: PMC1951422.

185. Fan Y, Zhao K, Shi ZL, Zhou P. Bat Coronaviruses in China. Viruses. 2019 Mar 2;11(3):210. doi: 10.3390/v11030210. PMID: 30832341; PMCID: PMC6466186.

186. Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and Sources of Endemic Human Coronaviruses. Adv Virus Res. 2018;100:163-188. doi: 10.1016/bs.avir.2018.01.001. Epub 2018 Feb 16. PMID: 29551135; PMCID: PMC7112090.
187. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5. PMID: 32142651; PMCID: PMC7102627.

188. Dekker A, Moonen P, de Boer-Luijtze EA, Terpstra C. Pathogenesis of swine vesicular disease after exposure of pigs to an infected environment. Vet Microbiol. 1995 Jul;45(2-3):243-50. doi: 10.1016/0378-1135(95)00032-6. PMID: 7571375.

189. Bellini S, Alborali L, Zanardi G, Bonazza V, Brocchi E. Swine vesicular disease in northern Italy: diffusion through densely populated pig areas. Rev Sci Tech. 2010 Dec;29(3):639-48. doi: 10.20506/rst.29.3.2006. PMID: 21309461.

190. Webster RG. Influenza virus: transmission between species and relevance to emergence of the next human pandemic. Arch Virol Suppl. 1997;13:105-13. doi: 10.1007/978-3-7091-6534-8_11. PMID: 9413531.

191. Yoon SW, Webby RJ, Webster RG. Evolution and ecology of influenza A viruses. Curr Top Microbiol Immunol. 2014;385:359-75. doi: 10.1007/82_2014_396. PMID: 24990620.

192. Sederdahl BK, Williams JV. Epidemiology and Clinical Characteristics of Influenza C Virus. Viruses. 2020 Jan 13;12(1):89. doi: 10.3390/v12010089. PMID: 31941041; PMCID: PMC7019359.

193. Kylla H, Dutta TK, Roychoudhury P, Malik YS, Mandakini R, Subudhi PK. Prevalence and molecular characterization of porcine Picobirnavirus in piglets of North East Region of India. Trop Anim Health Prod. 2017 Feb;49(2):417-422. doi: 10.1007/s11250-016-1210-7. Epub 2016 Dec 16. PMID: 27987110; PMCID: PMC7089439.

194. Smits SL, Poon LL, van Leeuwen M, Lau PN, Perera HK, Peiris JS, et al. Genogroup I and II picobirnaviruses in respiratory tracts of pigs. Emerg Infect Dis. 2011 Dec;17(12):2328-30. doi: 10.3201/eid1712.110934. PMID: 22172405; PMCID: PMC3311165.

195. Claflin SB, Webb CE. Ross River Virus: Many Vectors and Unusual Hosts Make for an Unpredictable Pathogen. PLoS Pathog. 2015 Sep 3;11(9):e1005070. doi: 10.1371/journal.ppat.1005070. PMID: 26335937; PMCID: PMC4559463.

196. Togami E, Gyawali N, Ong O, Kama M, Cao-Lormeau VM, Aubry M, et al. First evidence of concurrent enzootic and endemic transmission of Ross River virus in the absence of marsupial reservoirs in Fiji. Int J Infect Dis. 2020 Jul;96:94-96. doi: 10.1016/j.ijid.2020.02.048. Epub 2020 Feb 27. PMID: 32114197.

197. Harley D, Sleigh A, Ritchie S. Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clin Microbiol Rev. 2001 Oct;14(4):909-32, table of contents. doi: 10.1128/CMR.14.4.909-932.2001. PMID: 11585790; PMCID: PMC89008.
De Grazia S, Martella V, Rotolo V, Bonura F, Matthijnssens J, Bányai K, et al. Molecular characterization of genotype G6 human rotavirus strains detected in Italy from 1986 to 2009. Infect Genet Evol. 2011 Aug;11(6):1449-55. doi: 10.1016/j.meegid.2011.05.015. Epub 2011 May 26. PMID: 21640847.

Fu ZF, Hampson DJ. Natural transmission of group A rotavirus within a pig population. Res Vet Sci. 1989 May;46(3):312-7. PMID: 2544970.

Vlasova AN, Amimo JO, Saif LJ. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses. 2017 Mar 18;9(3):48. doi: 10.3390/v9030048. PMID: 28335454; PMCID: PMC5371803.

5. Tables and figures

Box 1. Definitions of viral transmission and reservoirs used in this review.

| Box 1: Definitions of viral transmission and reservoirs used in this review. |
| Zoonotic viruses amplify in pigs and shed sufficient amounts to infect close contact humans, but viruses infecting humans are unable to infect pigs, thereby, pigs are viral reservoirs for humans (pig-to-human transmission), or zoonotic viruses infect humans directly from another reservoir species without significant involvement of pigs. |
| Reverse zoonotic viruses amplify in humans and transmit to pigs, but pigs are unable to infect humans in return, in which case, humans are viral reservoirs for pigs (human-to-pig transmission). |
| Bi-directional zoonotic viruses are exchanged between humans and pigs, whereby, both hosts are reservoirs for the other (both zoonotic and reverse zoonotic). |

This article is protected by copyright. All rights reserved
Table 1. Summary of transmission routes and sources of the 27 reviewed viruses.

Virus and taxonomy	Transmission route (→ denotes direction)	Significant viral reservoir
ZOONOTIC VIRUSES (1): Pigs as major sources of viruses		
Eastern equine encephalitis (EEEV); *Alphavirus*; *Togaviridae*.	Mosquito (*Aedes, Coquillettidia* and *Uranotaenia* species) → human/pig (143): vector-borne. Pig → mosquito: vector-borne (43). Pig → pig/human: oronasal contact with infected oropharyngeal secretions or fecal-oral (43).	Birds are natural hosts (e.g. wading birds, passerine songbirds, and starlings) (143). Pigs are potential amplification hosts (43).
Japanese encephalitis (JEV); *Flavivirus*; *Flaviviridae*.	Mosquito (*Culex and Aedes* species) → human/pig: vector-borne (143). Pig → mosquito: viremia, vector-borne (44, 45). Pig → human: oronasal contact with infected oronasal secretions oronasal secretions (47). Mosquito → mosquito: transovarial (9).	Aquatic birds are natural hosts. Pigs are amplification hosts (9).
Menangle (MenPV); *Rubalavirus*; *Paramyxoviridae*.	Fruit bat (*Pteropus* species) → pig: oronasal contact with environmental contamination (59, 62). Pig → pig: fecal-oral or urinary-oral or transplacental (144, 145). Pig → human: possibly infected bodily fluid in cuts (60).	Fruit bats (*Pteropus* species) are natural hosts (59, 62). Pigs are possible intermediate hosts (60, 61).
Nipah (NiV); *Henipavirus*; *Paramyxoviridae*.	NiV-Malaysia: Fruit bat (*Pteropus* species) → pig: oronasal contact with environmental contamination (146). Pig → pig: airborne or oronasal contact with infected oronasal secretions (147).	Fruit bats (*Pteropus* species) (151, 152). Pigs are amplification hosts for NiV-Malaysia and potentially for NiV-Bangladesh (10, 150).
ZOONOTIC VIRUSES (2): Pigs as minor sources of viruses		
--		
Pig → human: airborne or oronasal contact with infected oronasal secretions (148). NiV-Bangladesh: Fruit bat (*Pteropus* species) → human: food-borne consumption of contaminated date palm sap (149). Human → human: oronasal contact with infected human bodily fluids, limited transmission chain but caused ~50% of cases (149). Pig → human: undocumented but possible (150).		
Reston ebola (RESTV); *Ebolavirus; Filoviridae.*		
Fruit bat (likely *Miniopterus* species) → pig: oronasal contact with environmental contamination (153). Pig → pig: oronasal contact with infected nasopharyngeal secretions (58). Pig → human: oronasal contact with infected nasopharyngeal secretions (58, 154).		
Fruit bats (likely *Miniopterus* species) are natural hosts (153). Pigs are intermediate hosts (154).		
Tioman (TioV); *Rubulavirus; Paramyxoviridae.*		
Fruit bat (*Pteropus* species) → pig/humans: oronasal contact with environmental contamination (64). Pig → pig/human: possible airborne or oronasal contact with oronasal secretions (31).		
Fruit bats (*Pteropus* species) are natural hosts (31, 63). Pigs are potentially intermediate hosts (64).		
Vesicular stomatitis (VSV); *Vesiculovirus; Rhabdoviridae.*		
Vertebrate reservoir → biting insect: vector (biological and mechanical (50, 155)). Biting insect → pig/human: vector. Pig → pig/human: possible vector (46, 50), airborne, oronasal contact with infected oronasal secretions, or contact with infected vesicular lesions (48-50).		
Unknown vertebrate reservoir host but likely multiple livestock (including pigs) and wildlife species (156).		
Virus Family	Vector	Transmission Path
---	---	---
Banna (BAV); Seadornavirus; Reoviridae.	Mosquito (Culex and Aedes species)	Mosquito → human/pig: vector-borne (157, 158).
Cache Valley (CVV); Orthobunyavirus; Bunyavidae.	Mosquito (Aedes, Coquillettidia, Culex, Culiseta, Orthopodomyia, Psorophora and Uranotaenia species)	Mosquito → human/pig: vector-borne (161, 162). Mosquito → mosquito: transovarial demonstrated experimentally (163).
Chandipura (CHPV); Vesiculovirus; Rhabdoviridae.	Sandfly (Phlebotomine)	Sandfly → human/pig: vector-borne (demonstrated in mice (166)). Sandfly → sandfly: transovarial and venereal (167).
Encephalomyocarditis (EMCV); Cardiovirus; Picornaviridae.	Rodent	Rodent → human/pig: fecal/urinal-oral (168). Pig → pig: fecal-oral or oronasal contact with infected nasal secretions (169).
Foot-and-mouth disease (FMDV); Aphthovirus; Picornaviridae.	Pig	Pig → pig: airborne, oronasal contact with infected oronasal secretions, physical contact with secretions in cuts, environmental contamination (equipment, clothing, animal feed) (170). Pig → human: potentially by direct contact with secretions through damaged skin (171, 172).
Disease	Virus Family	Transmission Path
---------	--------------	--------------------
Getah (GETV); Alphavirus; Togaviridae.	Mosquito (Culex, Anopheles, Aedes, Armigeres, and Mansonia species)	Human/pig: vector-borne (174). Pig → pig: vertically to fetus during early stage of pregnancy (175).
Louping ill (LIV); Flavivirus; Flaviviridae.	Tick (Ixodes ricinus)	Human/pig: vector-borne (176, 177). Sheep → human: contact with infected sheep, sheep tissues or raw milk (176-178).
Rabies (RABV); Lyssavirus; Rhabdoviridae.	Canine (Carnivora) or bat (Chiroptera)	Pig → pig: uncommon unless infected with 'furious' form and bite (73). Pig → human: undocumented but possible (73). Human → pig: unlikely due to behavioural factors. Human → human: only through organ/tissue transplant (72).
Toscana (TOSV); Phlebovirus; Bunyaviridae.	Vertebrate → sandfly (Phlebotomus): vector-borne → pig/human (68, 179, 180).	Vector reservoir is sandfly (Phlebotomus species). Unknown vertebrate reservoir host but likely multiple livestock and wildlife species. Unclear contribution of pigs in epidemiology (179, 180).
Venezuelan equine encephalitis (VEEV); Alphavirus; Togaviridae.	Horse or rodent → mosquito (Ochlorotatus or Culex species): vector-borne (70). Mosquito → pig/human: vector-borne (69, 70)	Horses are amplification host for epidemic subtypes and rodents are reservoirs for endemic subtypes (70).
Reverse Zoonotic Viruses	Bidirectionally Transmitted Viruses	
-------------------------	-----------------------------------	
Mosquito → human → mosquito: possible humans can develop sufficient viremia to infect mosquito (181). Human → human: airborne or oronasal contact possible but unproven (182).	**Hepatitis E (HEV); Orthohepevirus; Hepeviridae.** Pig → human: foodborne, consumption of raw or undercooked pig products, or direct contact (102, 103). Pigs (102).	
Norovirus (NoV); Norovirus; Caliciviridae. Human → human: depending on strain fecal-oral, vomit-oral, food/water-borne (dependent on strain) (reviewed in 86). Human → pig: possibly fecal-oral, but not directly detected (84, 183, 184). Pig → pig: fecal-oral (83).	**Swine vesicular disease (SVDV); Enterovirus; Picornaviridae.** Humans are reservoir hosts (185). Virulence decreased through subsequent passages in pigs (81, 189).	
Severe acute respiratory syndrome related-coronavirus (SARSr-CoV); Betacoronavirus; Coronaviridae. Horseshoe bat (Rhinolophus species) → (unknown mammalian intermediary, possible recombination with pangolin-CoV) → human: oronasal contact with infected secretions or excretions (26, 75, 185, 186). Human → human: airborne (187). Human → pig: foodborne via contaminated animal feed (restaurant leftovers) (76), possibly airborne/oronasal contact (78).	**Horseshoe bat (Rhinolophus species) are natural hosts (185). Humans are reservoir hosts (75).**	
Swine vesicular disease (SVDV); Enterovirus; Picornaviridae. Human → pig: possibly fecal-oral or oronasal contact with infected oronasal secretions or contaminated environment containing recombinant coxsackievirus B (CV-B) and CV-A9 (79-81). Pig → pig: oronasal contact with environmental contamination during transportation (188).		
Unknown source of novel strains emerging in human populations but immunocompromised patients in nosomical settings are significant reservoirs (86).	**Unknown source of novel strains emerging in human populations but immunocompromised patients in nosomical settings are significant reservoirs (86).**	
Pathogen Family	Transmission Routes	Notes
-----------------	---------------------	-------
Human → human:	fecal-oral via consumption of feces-contaminated water (type 1 and 2 in developing countries), or blood transfusion (102, 103). Pig → pig: fecal-oral (103). Human → pig: undetected but possible (104, 105).	
Influenza A (IAV); Alphainfluenzavirus; Orthomyxoviridae.	Human ↔ pig: airborne or oronasal contact with infectious oronasal secretions (190). Human → human: airborne or oronasal contact with infectious oronasal secretions (190). Pig → pig: airborne or oronasal contact with infectious oronasal secretions (190).	Wild aquatic birds are natural hosts (191). IAV subtypes circulate in human and pig populations (12).
Influenza C (ICV); Gammainfluenzavirus; Orthomyxoviridae.	Human ↔ pig: possible but unknown if ICV transmitted from pigs to humans or from humans to pigs (111, 192). Human → human: airborne or oronasal contact with infectious oronasal secretions (192). Pig → pig: airborne or oronasal contact with infectious oronasal secretions, demonstrated in contact pigs experimentally infected with human and pig-derived ICV (113).	Humans (192).
Picobirnavirus (PBV); Picobirnavirus; Picobirnaviridae.	Human ↔ pig: fecal-oral or oronasal contact with infected respiratory secretions (193, 194).	Prokaryotes in host microbiome are likely hosts (98).
Ross River (RRV); Alphavirus; Togaviridae.	Marsupial or horse → mosquito (Ades and Culex species): vector-borne. Mosquito → human/pig: vector-borne (195). Human → mosquito → human: vector-borne, occurs during urban epidemics (115, 117).	Marsupials in Australia (197) or horses in South Pacific islands (196).
Virus/Reservoir	Transmission Routes	Animal Reservoirs
-----------------	---------------------	------------------
Human/pig → mosquito → human/pig: possibly vector-borne (116, 117, 196).		
Rotavirus genogroup A (RVA); *Rotavirus*; *Reoviridae.*	Human ↔ pig: fecal-oral, respiratory, food/water-borne (108, 198-200).	Diverse animal reservoirs including humans, porcine, bovine, ovine, pteropine, rodent, avian and insectivore species (198, 200).
Torque teno (TTV); *Alphatorquevirus* (huTTV), *Iotatorquevirus* (TTSuV1), *Kappatorquevirus* (TTSuVK2); *Anelloviridae.*	Human ↔ pig: contact with environmental contamination e.g. contamination of TTSuV detected in veterinary vaccines, human drugs and pork products (92, 93), and TTV found ubiquitously in the environment including water sources and hospitals (91, 94).	Unknown sources of emergent strains.
Figure 1. Transmission routes for seven zoonotic viruses. Solid arrows indicate transmission route, while dashed arrows indicate potential transmission route. The figure was created with BioRender.com.

(See attached)

Figure 2. Transmission routes for three reverse zoonotic and seven bidirectionally transmitted viruses. Solid arrows indicate transmission route, while dashed arrows indicate potential transmission route. The figure was created with BioRender.com.

(See attached)
