Improving Capacity of Yellow Corn Tolerance to Water Stress by Foliar Application of Ascorbic Acid and Hydrogen Peroxide

Kotb M. A., Hamada M. S., El-Sayed M. E. and M. G. Abas
Agron. Dep., Fac. Agric., Suez Canal Univ., 41522 Ismailia, Egypt

Received: 17/2/2021

Abstract: Two field experiments were conducted in a new soil conditions in the extension field in El Qantra- West, Ismailia Governorate, Egypt (30\degree 58' N, 32\degree 23' E, and 10m above mean sea level) during 2016 and 2017 summer seasons. The study aimed to find out the effect of five exogenous application levels of AsA and H\textsubscript{2}O\textsubscript{2} on yellow corn hybrid 352 (three way cross) under three amounts of irrigation water (1.0, 0.8 and 0.6 of the estimated crop evapotranspiration) using surface irrigation system. A randomized complete block split-plot design with three replications was used in each season. The irrigation treatments and the levels of AsA and H\textsubscript{2}O\textsubscript{2} were randomly allocated in the main and sub-plots, respectively. The most important findings could be summarized as follows: Irrigation by 2250 m3/fad (severe water stress) instead of 3750 m3/fad (full irrigation) reduced ear leaf blade area, total chlorophyll and relative water content in both seasons. Increasing the level of AsA up to 350ppm/fad increased ear leaf blade area, total chlorophyll and relative water content followed by the highest level of H\textsubscript{2}O\textsubscript{2} (60mM H\textsubscript{2}O\textsubscript{2}). Decreasing irrigation water significantly reduced ear length, 100-grain weight and grain yield/fad. Meanwhile, ear length, 100-grain weight and grain yield/fad were significantly obtained from the highest level of AsA followed by the highest levels of H\textsubscript{2}O\textsubscript{2} compared with their untreated analogues. The interaction between the both studied factors showed that application of 350ppm AsA and 60mM H\textsubscript{2}O\textsubscript{2} treatments protected about 920 and 320 kg/fad grains from collapse under moderate water stress (3000 m3/fad). Meanwhile, under severe water stress, treatments by same levels of AsA and 30mM H\textsubscript{2}O\textsubscript{2} protected about 670 and 330kg/fad grains from lose. Application of 350ppm AsA saved approximately 750m3/fad of irrigation water without yield reduction.

Keywords: Maize, AsA, H\textsubscript{2}O\textsubscript{2}, Grain Yield, Drought, Evapotranspiration

INTRODUCTION

Water stress-associated with high salinity or with high temperature are often considered to be a limiting factors in maize (Zea mays L.) grown in arid and semiarid regions. About, one-third of the world’s arable land is suffering from chronically inadequate supplies of water for cultivation (Massacci et al., 2008). It has been reported that maize is relatively tolerant to water stress in the vegetative stage, very sensitive during the period of tasselling, silking, and pollination, and moderately sensitive during the grain-filling stage (Shannahah and Nielsen, 1987; Abo-El-Kheir and Mekki, 2007). Irrigation SC 10 maize hybrid by 1575 m3/fad instead of 2625 m3/fad of the estimated crop evapotranspiration significantly reduced ear leaf blade area, total chlorophyll, relative water content, grain yield and irrigation water use efficiency (Kotb et al., 2009; Kotb and Elhamamhy, 2013). Drought imposed at initiation of silking was more lethal in terms of reduction in different yield and yield components including 1000-grain weight, grain and biological yields (Qasim et al., 2019).

A consequence of soil water deficits is the limitation of photosynthesis which usually accompanied with the formation of reactive oxygen species (ROS) in various subcellular organelles of plant cell such as the superoxide, hydrogen peroxide and the hydroxyl radical. Increased levels of ROS cause damage to various cellular mechanisms, such as enzyme inhibition, protein degradation, DNA and RNA damage, and membrane lipid peroxidation, which ultimately culminate in cell death (Shao et al., 2008).

A complex antioxidative defense system, composed of both non-enzymatic and enzymatic constituents, is present in all plant cells (Foyer et al., 1994). Low-molecular weight, non-enzymatic, nutrient-derived antioxidants are presented by carotenoids, tocopherols, glutathione and ascorbic acid (AsA). Apart their obvious role as enzyme substrates, they can react chemically with almost all forms of ROS. AsA is a small, water-soluble antioxidant molecule that acts as a primary substrate in the cyclical pathway for detoxification and neutralization of superoxide radicals and singlet oxygen (Foyer, 1994).

Under normal irrigation or water stress conditions, the effects of foliar application of vitamin C on many plants were indicated. Dolatabadian et al. (2010) found that foliar application of 150 mg/l-1 ascorbic acid during growing phases of corn increased grain weight. Also, foliar spray of 200ppm AsA improved leaf area, photosynthetic pigments (chl. a, chl. b and total chl.), ear length, 100-grains weight and grain yield (Abo-Marzoka et al., 2016; Qasim et al., 2019). Grain yield of wheat was increased by about 0.5 t/ha in AsA-treated plants under normal irrigation. Also, AsA treatments protected about 0.8-0.9 t/ha grains from collapse under water stress. Application of AsA saved approximately 852 m3/h of irrigation water without yield reduction (Kotb and Elhamamhy, 2013).

Hydrogen peroxide plays an important role as a signalling molecule such as translocation, photosynthesis, respiration, and transpiration and prevents several biotic and abiotic stresses like drought, salinity, cold and heat. It is an environment friendly compound where, it is predominantly produced in plant cell during photosynthesis in photosynthesis and photosynthesis and to a lesser extent, in respiration (Slesak et al., 2007). Thus, these processes will lead to increment of crop yield. The...
foliar application of H₂O₂ during early stage of plants also had positive effect (Cavusoglu and Kabar, 2010). Khandaker et al. (2012) found that fruit growth can be enhanced by spraying the crop of wax apple with H₂O₂ treatment. They showed significantly increases with the photosynthetic rates, stomatal conductance, transpiration, chlorophyll and dry matter content of the leaves. Rice seeds treated with 10 H₂O₂ significantly protected chlorophyll from chilling-induced degradation, enhanced the activities of catalase and ascorbate peroxidase and produced quality seedlings (Afrin et al., 2019).

The objective of this study is to evaluate the effect of irrigation rates and exogenous application by ascorbic acid and hydrogen peroxide on growth and yield of yellow corn under new soil conditions.

MATERIALS AND METHODS

Two field experiments were conducted in a new soil conditions in the extension field in El Qantra- West, Ismailia Governorate, Egypt (30°58’ N, 32°23’ E, and 10m above mean sea level) during 2016 and 2017 summer seasons. The study aimed to find out the effect of five exogenous application levels of AsA and H₂O₂ on yellow corn hybrid 352 (three way cross) under three irrigation treatments and the levels of AsA and H₂O₂ were randomly allocated in the main and sub-plots, respectively.

Three amounts of irrigation water were calculated as 1.0 (IR1), 0.8 (IR2) and 0.6 (IR3) of the estimated crop evapotranspiration (ETc). Maize plants were given 9 irrigations at 10 days intervals starting after 25 days from sowing. In the two growing seasons, the amount of water needed for each irrigation was calculated according to the crop coefficient (Kc) and the daily reference potential evapotranspiration (ET₀). The latter was determined according to the Penman-Monteith equation (Allen et al., 1998) depending on the predicted climatic factors at each irrigation time and the growth stage of maize plant. The average amounts of water during the two growing seasons were 3750, 3000 and 2250 m³/fad for the irrigation treatments, respectively.

Five exogenous application levels of ascorbic acid and H₂O₂ levels (S0: spray with tap water, S1:175 ppm AsA, S2: 350ppm AsA, S3: 30mM H₂O₂ and 60mM H₂O₂) were foliar applied in 100 liter /fad after 30, 50 and 70 days from sowing. Ascorbic acid and H₂O₂ (30%) of Elnaser Pharmaceutical Chemicals Co. Egypt were used. Before beginning of the experiment, soil samples were obtained with an auger from soil depths of 0-60 cm to determine the physical and chemical properties of the experimental field (Table 1). The soil texture at this site was predominantly loamy throughout its profile (49.3% sand, 37.2% silt and 13.5% clay). The Soil physical and chemical properties of the experimental field over the two seasons were determined following the method of Cassel and Nielsen (1986) and Grossmann and Reinsch (2002). The climate in this region is almost arid with a scarce annual rainfall of 20 mm during December to March. The temperature averages approximately 28.0°C in summer; and the relative humidity averages approximately 58.0%. The predicted monthly climatic data at Ismailia region during the growing seasons of maize are presented in Table (2).

Soil depth (cm)	EC (dS m⁻¹)	pH	Sand (%)	Silt (%)	Clay (%)	Texture
0-60cm	3.96	7.77	49.3	37.2	13.5	Loamy

Soil depth (cm)	Cations (meq/l)	Anions (meq/l)						
	Ca²⁺	Mg²⁺	Na⁺	K⁺	CO₃²⁻	HCO₃⁻	Cl⁻	SO₄²⁻
0-60cm	3.5	4.0	23.1	8.6	-	4.4	27.0	7.8

Table (1): Soil physical and chemical properties of the experimental field soil over the two seasons.

Months	Average temperature °C	Average RH %	Average Wind speed (Km/h)		
	Minimum	Maximum	Average		
May	14	36	25.0	47.5	15.5
June	17	39	28.0	53.0	13.5
July	19	39	29.0	60.5	14.0
August	21	38	29.5	63.5	12.5
September	19	36	27.5	64.5	11.5

Data collected from Egyptian Meteorological Authority
The relative water content was determined according to expanded leaf using the Minolta SPAD

were thinned to one plant/hill. The agronomic practices treatments. Twenty days after sowing, maize plants seedlings, the normal irrigation was applied to the all ensure full germination and complete establishment of

was Egyptian clover in the two growing seasons. To ridges of 3 m long and 60 cm apart. The preceding crop

Sampling and Traits Studied At 85 days from sowing, five plants were randomly taken from the 2nd ridge for estimating the vegetative growth characters as follows: 1- Ear leaf blade area (cm²). 2- Total chlorophyll (µMm⁻²) It was determined from the youngest fully expanded leaf using the Minolta SPAD-502 chlorophyllmeter according to Markwell et al. (1995). 3- Relative water content (%) The relative water content was determined according to Schonfeld et al. (1988).

Yield measurements At maturity (at 125 days from sowing), yield measurements were estimated from plants of the two middle ridges (the 3rd and 4th ridges) in each sub plot. 1- Ear length (cm) 2- 100-grain weight (g) 3- Grain yield (kg/fad), it was adjusted to 15.5% moisture content.

Statistical Analysis The analysis of variance of a randomized complete block split plot design was used. The least significant difference (LSD at P ≥0.05) was used to compare the differences among interactions means, according to Steel et al. (1997). Graphical presentation of data was carried out using Microsoft Excel program (Microsoft Corporation, Los Angeles, CA, USA).

RESULTS AND DISCUSSION
The results and discussion were focus on the interaction effect between irrigation treatments and spraying treatments with AsA or H₂O₂ on measured traits as following:

a- At 85 days from planting Ear leaf blade area (cm)

The interaction between irrigation treatments and exogenous application by AsA and H₂O₂, illustrated in Figures (1 and 2) showed that both of them interacted with each other significantly on ear leaf blade area in both seasons. Ear leaf blade areas were significantly and gradually increased by increasing both of irrigation water amount and levels of AsA and H₂O₂ in both seasons.

![Figure (1): Effect of the interaction between water stress (R) and foliar spray (S) treatments by AsA and H₂O₂ on Ear leaf blade area (cm²) of maize at 85 days from planting in 2016 season. R1: well-watered (3750 m³/fad); R2: 0.8 R1, R3: 0.6 of R1. S0: untreated plants, S1: 175ppm AsA, S2: 350 ppm AsA, S3:30mM H₂O₂, S4: 60mM H₂O₂](Image129x161 to 497x373)
and promoting the expression of the flower related gene
important role in stimulating the reproductive growth
results of application AsA on peanut were obtained by
plant growth and establishment. It effects on both cell
respectively. It has been proven that drought stress is a
their unstressed maize plants in the two seasons,
reduced ear leaf blade area by 40.41% and 43.93% than
et al.
stress conditions. Si
in both seasons under normal irrigation as well as water
350 ppm AsA/fad or 60mM H\textsubscript{2}O\textsubscript{2}/fad, the responses of ear
leaf blade areas were 472.00 and 430.67 cm2 when the
concentrations of AsA and H\textsubscript{2}O\textsubscript{2} were decreased to zero
(control treatment) in both seasons, respectively. The
highest values of ear leaf blade area were obtained from
350 ppm AsA/fad or 60mM H\textsubscript{2}O\textsubscript{2}/fad under normal irrigation in both seasons. These results indicated, also,
that maize plants responded to AsA and H\textsubscript{2}O\textsubscript{2} addition
in both seasons under normal irrigation as well as water
stress conditions. Similar results were obtained by Kotb
et al. (2009), they indicated that severe water stress
reduced ear leaf blade area by 40.41% and 43.93% than
their unstressed maize plants in the two seasons, respectively. It has been proven that drought stress is a
very important limiting factor at the initial phase of plant growth and establishment. It effects on both cell elongation and its expansion (Shao et al., 2008). Similar results of application AsA on peanut were obtained by Kotb et al. (2014). Also, hydrogen peroxide plays an important role in stimulating the reproductive growth and promoting the expression of the flower related gene (Zhou et al., 2012). From these results, it could be concluded that exogenous AsA and H\textsubscript{2}O\textsubscript{2} application
with a proper dose helped stressed maize plants to ameliorate various physiological processes, such as translocation, photosynthesis, respiration, and transpiration (Barba-Espin et al., 2010) and hence had higher leaf area than their untreated analogues. Also, leaf area of maize hybrid SC.128 was significantly reduced with increasing intervals irrigation up to 25 days while ascorbic acid, particularly at 200 ppm tended to improve the adverse effect of water deficit stress by improving this trait (Abo-Morzoka et al., 2016).

Total Chlorophyll Content

Chlorophyll pigments have often been proposed as useful criteria for screening several plants for drought stress. Concerning to the interaction between irrigation treatments and exogenous application by AsA and H\textsubscript{2}O\textsubscript{2}, results in Figure (3) showed that both of them interacted with each other significantly for ear leaf blade area in the only second season (2017). Under severe water stress (0.6 of ETC), untreated plants (R3S0) significantly showed a less value of CHL content (37.83µMm-2) compared to 45.40µMm-2 which was obtained from treated plants by 350 ppm AsA/fad (R3S2). In the same direction, under moderate water stress (0.8 of ETC), untreated plants (R2S0) significantly gave a less value of CHL content (43.00µMm-2) compared to 50.97µMm-2 which was obtained from the

![Figure (2): Effect of the interaction between water stress (R) and foliar spray (S) treatments by AsA and H\textsubscript{2}O\textsubscript{2} on Ear leaf blade area (cm2) of maize at 85 days from planting in 2017 season.
R1: well-watered (3750 m3/fad); R2: 0.8 R1, R3: 0.6 of R1. S0: untreated plants,
S1: 175ppm AsA, S2: 350 ppm AsA, S3:30mM H\textsubscript{2}O\textsubscript{2}, S4: 60mM H\textsubscript{2}O\textsubscript{2}

L.S.D\textsubscript{0.05} = 22.50

Under severe water stress treatment (0.6 of the estimated crop evapotranspiration) and spray with 350 ppm AsA/fad or 60mM H\textsubscript{2}O\textsubscript{2}/fad, the responses of ear leaf blade areas were 472.00 and 430.67 cm2 in the first season and 507.00 and 465.67 cm2 in second season compared with 356.33 and 390.33 cm2 when the concentrations of AsA and H\textsubscript{2}O\textsubscript{2} were decreased to zero (control treatment) in both seasons, respectively. The

![Graph showing ear leaf blade area comparison](image-url)
highest level of AsA under the same condition. Also, under well-watered (3750 m³/fad), the maximum value of Chlorophyll (60.73µMm⁻²) was significantly gained from 350 ppm AsA/fad followed by 56.80 and 56.30µMm⁻² which were obtained from 60mM H₂O₂ and 175 ppm AsA/fad, respectively. Under well-watered, the application of 350ppm AsA significantly ameliorated the content of total CHL by 7.57µMm⁻² than untreated plants. Also, under the same conditions, using 60mM H₂O₂ ameliorated total CHL up to 4.0µMm⁻² than untreated plants (Figure 3). On the other hand, under severe water stress (0.6 of ETc), the increases of chlorophyll contents reached to 7.57 and 5.34 µMm⁻² by using the same levels of AsA and H₂O₂. Similar results were obtained by Shlemmer et al. (2005) and Premachandra et al. (2008), where they indicated that water stress reduced chlorophyll content more than the normal irrigated maize plants. In the same direction, severe drought stress decreased the levels of chlorophyll a, b, total chlorophyll (Reddy and Rao, 1968) and produced changes in the ratio of chlorophyll ‘a’ and ‘b’ and carotenoids (Anjum et al., 2003; Farooq et al., 2009). Moreover, under drip irrigation, Kotb et al. (2009) proved that irrigation SC 10 maize hybrid by 1575 m³/fad instead of 2625 m³/fad of (ETc) significantly reduced total chlorophyll. Meanwhile, Farahat et al. (2007) confirmed that foliar application of ascorbic acid on <i>Cupressus sempervirens</i> cultivated in Nobaria promoted chl(a) and chl(b) specially on the high concentration of ascorbic acid. Moreover, Khandaker et al. (2012) showed that spraying wax apple trees once a week with 5 mM H₂O₂ significantly increased the photosynthetic rates, chlorophyll and dry matter content of the leaves.

Relative Water Content (%)

Relative water content (RWC) was determined to give an indication on the plant water dehydration status during exposure drought. Concerning to the interaction between irrigation treatments and exogenous application by AsA and H₂O₂, results in Figures (4 and 5) showed that both of them interacted with each other significantly on relative water content in both seasons.

Under normal conditions, increasing the levels of AsA or H₂O₂ significantly ameliorated the values of RWC. These values of RWC reached to 88.55 and 86.01% in 2016 season and 86.35 and 82.91% in 2017 season, respectively without significant differences between them (Figures 4 and 5). On the other hand, under severe water stress, the lowest values were obtained from untreated plants or treated with 30 mM H₂O₂ in both seasons. These values reached to (40.36 and 43.97%) and (37.46 and 41.17%) in 2016 and 2017 seasons, respectively without significant differences between them (Figures 4 and 5). Maize is the one of most important cereal crops which is more sensitive to water scarcity as compared to other cereal crops excluding barley (Bänziger and Araus, 2007). Increasing water stress significantly reduced relative water content, chlorophyll content, leaf water potential (Shlemmer et al., 2005; Premachandra et al., 2008). Also, under drip irrigation water, irrigation SC 10 maize hybrid by 1575 m³/fad instead of 2625 m³/fad of the estimated crop evapotranspiration significantly

Figure (3): Effect of the interaction between water stress (R) and foliar spray (S) treatments by AsA and H₂O₂ on total chlorophyll (µMm⁻²) of maize at 85 days from planting in 2017 season.

R1: well-watered (3750 m³/fad); R2: 0.8 R1, R3: 0.6 of R1. S0: untreated plants, S1: 175ppm AsA, S2: 350 ppm AsA, S3:30mM H₂O₂, S4: 60mM H₂O₂
decreased ear leaf blade area, total chlorophyll, relative water content. (Kotb et al., 2009). Meanwhile, Kotb and Elhamahmy (2013) studied the effect of three levels of AsA (0.0, 100 and 200 ppm) on the response of wheat (Triticum aestivum, L. cv. Sakha 94) to three surface irrigation rates (1.00, 0.80 and 0.60 of the estimated crop evapotranspiration, which represented 4260, 3408 and 2556 m³/ha, respectively. Their results indicated that, drought caused a reduction in each of leaf area index, total chlorophyll and relative water content. Application of 100-200 ppm of AsA significantly alleviated the oxidative stress damage of drought, reflected by improving leaf area index, total chlorophyll and relative water content.

Figure (4): Effect of the interaction between water stress (R) and foliar spray (S) treatments by AsA and H₂O₂ on Relative water content (%) of maize at 85 days from planting in 2016 season. R1: well-watered (3750 m³/fad); R2: 0.8 R1, R3: 0.6 of R1. S0: untreated plants, S1: 175ppm AsA, S2: 350 ppm AsA, S3:30mM H₂O₂, S4: 60mM H₂O₂

Figure (5): Effect of the interaction between water stress (R) and foliar spray (S) treatments by AsA and H₂O₂ on Relative water content (%) of maize at 85 days from planting in 2017 season. R1: well-watered (3750 m³/fad); R2: 0.8 R1, R3: 0.6 of R1. S0: untreated plants, S1: 175ppm AsA, S2: 350 ppm AsA, S3:30mM H₂O₂, S4: 60mM H₂O₂
b- At harvest
Ear length (cm)

The interaction between water stress and exogenous application of AsA and H$_2$O$_2$ had a significant effect on ear length in second season (Figure 6). It is interesting to note that the values of this trait obtained from the combination of (1.0 ETc + 350 ppm AsA) and the combination of (1.0 ETc + 60 H$_2$O$_2$) were significantly increased by 14.25% and 15.72%, respectively, compared with the control treatment without application (R1S0). The same trend of results was obtained under moderate and severe water stress. It can be concluded that the high levels of AsA and H$_2$O$_2$ significantly ameliorated ear length either under full irrigation or under water stress. These results are compatible with those obtained by Qasim et al. (2019), they noticed that water stress significantly diminished cob length by about 13% as compared to normal irrigation. Zhang et al. (2019) suggested that ascorbic acid could be a promising material used to reduce the harmful effect of water stress on the growth and yield of maize plants. Also, the results of Noman et al. (2015) showed that exogenous application of ascorbic acid lowered the harmful effect of drought stress-induced reduction in growth, biomass, and photosynthetic pigments. Ascorbic acid (AsA) plays an important role in protecting plant tissues from harmful oxidative damage by acting as reductant (Anjum et al., 2016; Alamri et al., 2018). It can regulate several cellular processes such as cell division, cell differentiation and cell elongation (Alamri et al., 2018). Ear length was significantly diminished with increasing water stress while ascorbic acid, particularly at 200 ppm tended to improve the adverse effect of water deficit and ameliorate ear length of maize plants (Abo-Marzoka et al., 2016). In the other hand, hydrogen peroxide treatment also stimulated the antioxidant system that resulted in the induction of drought tolerance of maize plants in terms of higher shoot and root fresh and dry masses (Ashraf et al., 2015). H$_2$O$_2$ have regulatory effects on growth, development and quality of plants and it plays an important role in physiological processes and in resistance to stresses (Quan et al., 2008).

100-grain weight (g)

The interaction between irrigation treatments and foliar spray with antioxidants had significant effect on 100-seed weight (g) in both seasons (Figures 7 and 8). Our results revealed that using high concentration of ascorbic acid with full irrigation gave significantly higher 100-seed weight (32.82 and 35.60g) in both seasons, respectively, followed by the high concentration of hydrogen peroxide with significant difference between them. Meanwhile, untreated plants under full irrigation gave 27.66 and 29.14g in 2016 and 2017 seasons, respectively. On the other hand, the lowest 100-seed weights (16.66 and 17.67g) were obtained from the interaction between severe water stress and without antioxidants treatment. As average over the two seasons, using 350ppm AsA and 60mM H$_2$O$_2$ protected approximately 6 and 5 g from collapse in weight of 100-seed, respectively, under moderate stress. Also, under severe water stress, the same levels of AsA and H$_2$O$_2$ protected about 5 and 3.5g from lose in weight of 100-seed, respectively. It could be concluded that under same conditions both of foliar spray of these treatments significantly ameliorated 100-seed weight compared to untreated plants (spray with tap water). These results are in a good connection with those obtained by Quan et al. (2008), Geros et al. (2012), Kotb and Elhamahmy (2013) Abo-Marzoka et al. (2016) and Qasim et al. (2019).
Figure (7): Effect of the interaction between water stress (R) and foliar spray (S) treatments by AsA and H_2O_2 on 100-grain weight of maize at harvest in 2016 season. R1: well-watered (3750 m³/fad); R2: 0.8 R1, R3: 0.6 of R1. S0: untreated plants, S1: 175ppm AsA, S2: 350 ppm AsA, S3:30mM H_2O_2, S4: 60mM H_2O_2.

Figure (8): Effect of the interaction between water stress (R) and foliar spray (S) treatments by AsA and H_2O_2 on 100-grain weight (g) of maize at harvest in 2017 season. R1: well-watered (3750 m³/fad); R2: 0.8 R1, R3: 0.6 of R1. S0: untreated plants, S1: 175ppm AsA, S2: 350 ppm AsA, S3:30mM H_2O_2, S4: 60mM H_2O_2.

L.S.D$_{0.05}$ = 1.14

L.S.D$_{0.05}$ = 1.04
Grain yield (kg/fad)

The interaction effect between irrigation treatments and exogenous application treatments had significant effect on grain yield/fad in both seasons (Figures 9 and 10). When corn plants exposed to severe water stress without AsA gave the lowest averages of yield compared to the other treatments. Meanwhile, the highest averages of grain yield were obtained from the highest levels of AsA and H$_2$O$_2$ under normal irrigation without significant differences between them.

As average of the two seasons, grain yields were increased by about 650 and 640 kg/fad in AsA and H$_2$O$_2$-treated plants under normal irrigation (Figures 9 and 10). Under normal conditions, the effects of foliar application of vitamin C were significantly ameliorated the growth and productivity in many plants (Abdel-Halim, 1995; Abd El-Aziz et al., 2007; Zhang et al., 2019). Also, 350 ppm AsA or 60 mM H$_2$O$_2$ treatments protected about 920 and 320 kg/fad grains from collapse under moderate water stress, respectively (Figures 9 and 10). Meanwhile, under severe water stress, treatment by same level of AsA and 30 mM H$_2$O$_2$ protected about 670 and 330 kg/fad grains from lose. Under moderate water stress, application of 350 ppm AsA saved approximately 750m3/fad of irrigation water without yield reduction compared with unstressed plants (Figures 9 and 10). The different stages of maize growth are severely affected by drought leading to extension in anthesis-silking-duration, lower chlorophyll contents, less photosynthesis and thus lower yield (Aslam et al., 2013). Also, increasing water stress significantly decreased relative water content, chlorophyll content (Shlemmer et al., 2005; Premachandra et al., 2008), 1000-grain weight and grain yield (Muhammad et al., 2001). In the same direction, under water deficit conditions, growth traits, relative water content (RWC), chlorophyll a, total chlorophyll and carotenoids as well as grain yield decreased significantly in maize plants compared to those traits under control conditions (Kotb et al., 2009; Qasim et al., 2019; Moharramnejad et al., 2019). Meanwhile, foliar application of several concentrations of ascorbic acid on corn plants under water deficit alleviated the adverse effect of water stress and significantly improved the growth, yield and yield attributes of maize plants (Dolatabadiyan et al., 2010; Abo-Marzoka et al., 2016; Qasim et al., 2019). On the other hand, hydrogen peroxide plays a remarkable role as a signalling molecule and prevents several biotic and abiotic stresses like drought, salinity, cold and heat. H$_2$O$_2$ have regulatory effects on growth, development and quality of plants and improving plant production (Zhou et al., 2012). Also, the fruit growth can be enhanced by spraying the wax apple with H$_2$O$_2$ treatment (Khandaker et al., 2012). Results of Guler and Pehlivan (2016) suggested that low dose of H$_2$O$_2$ pre-treatment alleviated water loss and H$_2$O$_2$ content and increased drought stress tolerance by inducing the antioxidant system. Moreover, the treated wax apple fruit with 5 mM H$_2$O$_2$ gave larger fruit size, increased fruit set, fruit number, fruit biomass and yield compared to the control (Khandaker et al., 2012) while, the presence of H$_2$O$_2$ in the fruit could improve the process of ripening (Geros et al., 2012).

![Figure 9](image9.png)

Figure (9): Effect of the interaction between water stress (R) and foliar spray (S) treatments by AsA and H$_2$O$_2$ on Grain yield/fad of maize at harvest in 2016 season.

R1: well-watered (3750 m3/fad); R2: 0.8 R1, R3: 0.6 of R1. S0: untreated plants, S1: 175ppm AsA, S2: 350 ppm AsA, S3:30mM H$_2$O$_2$, S4: 60mM H$_2$O$_2$
REFERENCES

Abd El-Aziz, N. G., F. E. M. EL-Quensni and M. M. Farahat (2007). Response of vegetative growth and some chemicals constituents of *Syngonium podophyllum* L. to foliar application of Thiamine, Ascorbic Acid and Kinetin at Nubaria. World J. Agric. Sci., 3: 301-305.

Abdel-Halim, S. M. (1995). Effect of some vitamins as growth regulators on growth, yield and endogenous hormones of tomato plants during winter. Egypt. J. Appl. Sci., 10(12): 322-334.

Abo-El-Kheir, M. S. A. and B. B. Mekki (2007). Response of maize single cross-10 to water deficits during silking and grain filling stages. World J. of Agric. Sci., 3(3): 269-272.

Abo-Marzoka, E. A., R. F. Y. El-Mantawy and I. M. Soltan (2016). Effect of irrigation intervals and foliar spray with salicylic and ascorbic acids on maize. J. Agric. Res. Kafr El-Sheikh Univ., 42(4): 506-518.

Afrin, S., M. Tahjib-Ul-Arif, A. A. M. Sohag, M. A. S. Polash and M. A. Hussain (2019). Hydrogen peroxide priming alleviates chilling stress in rice (*Oryza sativa* L.) by enhancing oxidant scavenging capacity. Fundamental and Appl. Agri., 4(1): 713-722.

Alamri, S. A., Siddiqui, M. H., M. Y. Al-Khaishany, M. N. Khan, H. M. Ali, I. A. Alaraidh, A. A. Alsaahi, H. Al-Rabiah and M. Mateen (2018). Ascorbic acid improves the tolerance of wheat plants to lead toxicity. J Plant Interact, 13(1):409-419.

Allen, R. G., L. S. Pereira, D. Raes and M. Smith (1998). Crop Evapotranspiration Guidelines for Computing Crop Water Requirements (Irrigation and drainage paper 56). FAO of the United Nations, Rome, Italy.

Anjum, F., M. Yaseen, E. Rasul, A. Wahid and S. Anjum (2003). Water stress in barley (*Hordeum vulgare* L.). I. Effect on morphological characters. Pakistan J. Agric. Sci., 40: 43-44.

Anjum, S. A., M. Tanveer, S. Hussain, B. Shahzad, U. Ashraf, S. Fahad, W. Hassan, S. Jan, I. Khan, M. F. Saleem, A. A. Bajwa, L. Wang, A. Mahmood, R. A. Samad and S. A. Tung (2016). Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Env. Sci. Pollut Res., 23(12): 11864-11875.

Ashraf, M. A., R. Rasheed, L. Hussain, M. Iqbal, M. Z. Haider, S. Parveen and M. S. Sajid (2015). Hydrogen peroxide modulates antioxidant system and nutrient relation in maize (*Zea mays* L.) under water-deficit conditions, Archives of Agron. and Soil Sci., 61:4, 507-523.

Figure (10): Effect of the interaction between water stress (R) and foliar spray (S) treatments by AsA and H$_2$O$_2$ on Grain yield/fad of maize at harvest in 2017 season.

R1: well-watered (3750 m3/fad); R2: 0.8 R1, R3: 0.6 of R1. S0: untreated plants, S1: 175ppm AsA, S2: 350 ppm AsA, S3:30mM H$_2$O$_2$, S4: 60mM H$_2$O$_2$

L.S.D$_{0.05}$= 140.50

Grain yield (kg/fad)
Aslam, M., M. S. Zamir, I. Afzal, M. Yaseen, M. Mubeen and A. Shoaib (2013). Drought stress, its effect on maize production and development of drought tolerance through potassium application. Cercetărî Agronomice in Moldova, 46: 99-114.

Bänziger, M. and J. L. Araus (2007). Recent advances in breeding maize for drought and salinity stress tolerance. In Advances in molecular breeding toward drought and salt tolerant crops (pp. 587–601). Springer, Dordrecht.

Barba-Espin, G., P. Díaz-Vivancos, M. J. Clemente-Moreno, A. Albacete and L. Faize (2010). Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ., 33: 981-994.

Cavusoglu, K. and K. Kabar (2010). Effects of hydrogen peroxide on the germination and early seedling growth of barley under NaCl and high temperature stresses. Eur. Asian J. BioSci., 4: 70-79.

Dolatabadian, A., S. A. M. Modarressanavy and K. S. Asilan (2010). Effect of ascorbic acid foliar application on yield, yield component and several morphological traits of grain corn under water deficit stress conditions. Notulae Scientia Biologicae., 2(3): 45-50.

Farahat, M. M., M. M. I. Soad, S. T. Lobna and F. E. M. EL. (2007). response of vegetative growth and some chemical constituents of Cupressus sempervirens L. to foliar application of ascorbic acid and zinc at Nubaria . World. J. Agric. Sci., 3(4): 694-502.

Faroq, M., A. Wahid, N. Kobayashi, D. Fujita and S. M. A. Basra (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev., 29: 185–212.

Foyer, C. H., P. Descourvieres and K. J. Kunert (1994). Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant, Cell and Environ., 17: 507-523.

Cassel, D. K. and D. R. Nielsen (1986). Field capacity and available water capacity. Methods of Soil Analysis. Part I. Physical and Mineralogical Methods. Agronomy Monograph No. 9, In: Klute, A. (Ed.) Soil Sci. Soc. Am., Madison, Wisconsin, 901–926.

Geros, H., M. Chaves and S. Delrot (2012). The Biochemistry of the Grape Fruit. Bentham Science Publishers, USA., ISBN: 978160853605, Pages: 304.

Grossmann, R. B. and T. G. Reinsch (2002). Bulk density and linear extensibility, in: Methods of Soil Analysis. Part 4. Physical Methods. SSSA Book Series, No. 5, Soil Sci., Soc., Am., Madison, Wisconsin, 201-228.

Guler, N. S. and N. Pehlivian (2016). Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system. Acta Biologica Hungarica, 67(2): 169-183.

Khandaker, M. M., A. N. Booyce and N. Osman (2012). The influence of hydrogen peroxide on the growth, development and quality of wax apple (Syzygium samarangense, [Blume] Merr & L.M. Perry var. jambu mada) fruits. Plant Physiol. Biochem., 53: 101-110.

Koth, M. A. and M. A. Elhamahmy (2013). Foliar application of ascorbic acid improved drought tolerance and productivity of wheat (Triticum aestivum L.). J. of Plant Prod. Scie., Suez Canal Univ., 1: 1-16.

Koth, M. A., A. A. Mansour and A. B. Gaballah (2009). Improving water use efficiency and yield of maize (zae mays, l) by foliar application of glycinebetaine under induced water stress conditions. j. product. & dev., 14(2): 411-433

Koth, M. A. (2014): Effect of foliar application of non-enzymatic antioxidants on peanut yield and its quality under induced water stress conditions. Zagazig J. Agric. Res., 41 (5): 931-947.

Markwell, J., J. C. Osterman and J. L. Mitchell (1995). Calibration of Minolta SPAD-502 leaf chlorophyllmeter. Photosynthetic Res., 46: 467-472.

Massacci, A., S. M. Nabiev, L. Pietrosanti, S. K. Nematov, T. N. Chernikova, K. Thor and J. Leipner (2008). Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas exchange analysis and chlorophyll fluorescence imaging. Plant Physio. and Bioche., 46: 189-195.

Moharramejad, S., O. Sofalian, M. Valizadeh, A. Asghari, M. R. Shirri and M. Ashraf (2019). Response of maize to field drought stress: Oxidative defense system, osmolytes accumulation and photosynthetic pigments. Pak. J. Bot., 51(3): 799-807.

Muhammad, B. K., N. Hussain and M. Iqbal (2001). Effect of water stress on growth and yield components of maize variety YHS202. J. Res. Sci., 12 (1): 15-18.

Noman, A., S. Ali, F. Naheed, Q. Ali, M. Farid, M. Rizwan and M. K. Irshad (2015) Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Archives of Agron. and soil Sci., 61: 1659-1672.

Premachandra, G. S., H. Saneoka, K. Fujita and S. Ogata (2008). Water Stress and Potassium Fertilization in Field Grown Maize (Zea mays L.): Effects on Leaf Water Relations and Leaf Rolling. J. of Agron. and Crop Sci., 170(3): 195-201.

Qasim, M., M. Aziz, F. Nawaz and M. Arif (2019). Role of salicylic acid and ascorbic acid in alleviating the harmful effects of water stress in Maize (Zea mays L.). Asian J. Agric. Biol. 7(3): 442-449.
تحسن قدرة الذرة الشامية على تحمل الإجهاد المائي عن طريق الرش الورقي بحمض الأسكوربيك وفوق أكسيد الهيدروجين

ماهر عبد الله القاسم - محمد صبري حمادة - محمود إبراهيم السيد - محمد جمال عباس
قسم المحاصيل - كلية الزراعة - جامعة قناته السويس - 15221 الإسماعيلية - مصر

أجريت تجربتان جهت تحديد كيف تؤثر ظروف الري المعتدلي على قدرة الذرة الشامية (ذرة آ مجرة) على تحمل الإجهاد المائي. وقد تم استخدام عينة من الذرة الشامية (ذرة آ مجرة) حيث تم رش الري في مختلف مراحل النمو. تم قياس عدد من الميزانوات في كل مجموعة للفهم جيداً. النتائج المتوقعة تظهر أن رش الري يحسن قدرة الذرة الشامية على تحمل الإجهاد المائي. وقد تم استخدام عينة من الذرة الشامية (ذرة آ مجرة) حيث تم رش الري في مختلف مراحل النمو. تم قياس عدد من الميزانوات في كل مجموعة للفهم جيداً. النتائج المتوقعة تظهر أن رش الري يحسن قدرة الذرة الشامية على تحمل الإجهاد المائي.

Kotb et al., 2021

الكلمات المفتاحية: الذرة الشامية، حمض الأسكوربيك، فوق أكسيد الهيدروجين، محصول الحبوب، الجفاف، النتائج.