Paleoparasitological Surveys for Detection of Helminth Eggs in Archaeological Sites of Jeolla-do and Jeju-do

Myeong-Ju Kim¹, Dong Hoon Shin², Mi-Jin Song³, Hye-Young Song⁴ and Min Seo⁴*¹

¹Department of Anatomy, College of Medicine, Dankook University, Cheonan 330-714, Korea; ²Bioanthropology and Paleopathology Lab, Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea; ³Jeonnam Cultural Property Research Center, Naju 520-090, Korea; ⁴Department of Parasitology and Research Center for Mummy, College of Medicine, Dankook University, Cheonan 330-714, Korea

Abstract: A paleoparasitological survey to detect helminth eggs was performed in archaeological sites of Jeolla-do and Jeju-do, the Republic of Korea. Total 593 soil samples were collected in 12 sites of Jeolla-do and 5 sites of Jeju-do from April to November 2011, and examined by the methods of Pike and coworkers. A total of 4 helminth eggs, 2 eggs each for Trichuris trichiura and Ascaris sp., were found in soil samples from 1 site, in Hyangyang-ri, Jangheung-eup, Jangheung-gun, Jeollanam-do. The egg-recovery layer was presumed to represent a 19th century farm, which fact suggested the use of human manures. This is the third archaeological discovery of parasite eggs in Jeolla-do. Additionally, no helminth eggs in archaeological sites of Jeju-do is an interesting problem to be solved in the further investigations.

Key words: Ascaris, Trichuris trichiura, paleoparasitology, Jeolla-do, Jeju-do

Parasitological examination of human coprolites obtained from archaeological sites is a proved useful tool for reconstructing of parasitic infection patterns in historical populations [1]. Although paleoparasitological examination of coprolites from mummies or soil samples has revealed various helminth eggs in Korea, most of the ancient parasite-egg discovery sites to date are confined to Seoul and Gyonggi-do [2-4]. Helminth eggs were also discovered in archaeological sites of Chungcheong-do and Gyeongsang-do [5-9]. Especially, Shin et al. [5] detected helminth eggs in the moat ruins of the Royal Palace of Silla Dynasty in Gyeogju-si, Gyeongsangbuk-do.

In Jeolla-do, only 2 paleoparasitological surveys had been performed. The 7th century soil samplings from the Wanggung-ri site, Iksan, Jeollabuk-do, revealed the eggs of Ascaris lumbricoides, Trichuris trichiura, and Clonorchis sinensis. Also A. lumbricoides and T. trichiura eggs were discovered in soils from Shinchang-dong, Gwangju, dating to 2,000 years BP [10,11]. However, there have been no reports on paleoparasitological discovery in Jeju-do, the home of 63,093 people in 1,435 [12].

Hence, the present study was investigated for the presence of parasite eggs in both Jeolla-do and Jeju-do. In addition, environmental factors such as pH, temperature, and soil natures had been considered to effect the preservation of eggs. Although the effect was not larger than that of temperature, the changes in pH of the samples exhibited a little effect on the destruction or viability of parasite eggs [13]. In this study, the pH of their soils were measured to know the relationship with the egg preservation.

The sampling sites were selected in consultation with archeologists, who had excavated ancient remains of Jeolla-do and Jeju-do from April to November 2011. Detailed information has been provided in Table 1 and Table 2, respectively. Except in the case of tombs, soil-strata samples were collected by driving sterilized conical tubes deep into the archaeological layers. Additionally, for comparative purposes, surface-soil samples were collected. For these 2 regions, 12 and 5 sites were selected, respectively, from which a total of 593 samples were collected, 507 from Jeolla-do and 86 from Jeju-do. After transportation to our laboratory, the soil samples were prepared for light microscopic observations as described in Pike et al. [14]. If a parasite egg was discovered, it was identified for its species, and its density was measured. Sample pH also was measured, according to the AOAC Official method for the mineral soil [15], by which air-dried soil samples are mixed with H₂O₂, and...
the potential difference relative to standard soils was determined. The detailed procedures were as follows: The air-dried soil with known pH was selected as the standard one; 10 g of the standard soil was transferred into a cup, and mixed with 10 ml distilled water. After vortexing for 5 sec, the samples were laid for 30 min. The pH of the standard sample was measured, and that of the test soil was measured in case of a permissible error (< 0.1). The test soil was air-dried for 1-4 days, and ground into small pieces (< 2 mm in diameter). The test soil was mixed with soil-H₂O as the case of standard soil. The pH of the test soil was measured at 20-25˚C.

No parasite eggs were discovered in the surface soil samples, which ruled out any false positivity induced by accidental introduction of surface soil into the investigated layers. However, most of the Jeolla-do and Jeju-do sites yielded no parasite eggs. Only at Hyangyang-ri, Jangheung-eup, Jangheung-gun, Jeollanam-do, 2 Trichuris sp. (Fig. 1) and 2 Ascaris sp. eggs (Fig. 2) were detected. The estimated number of eggs contained in the samples was 20.0 per gram of soil for both Trichuris and Ascaris. Each of the Ascaris eggs were 66.0 µm long by 55.0 µm wide and 66.0 µm long by 52.8 wide; 1 Trichuris egg was 52.5 µm long by 24.0 µm wide, by which size it was easily identified as T. trichiura. The other Trichuris egg, which was broken, could not be measured. All 4 eggs were recovered from the layer corresponding to the farm of a 19th century. As already noted, no parasite eggs were recovered from other samples, not even from additional samples collected in the same region of Hyangyang-ri. As for the soil pH, the only positive site was Hyangyang-ri, where 6.71 was recorded. The other sites’ pH ranged from 4.69 to 6.91.

From the surveyed areas, the parasite eggs were only recovered from a site of Hyangyang-ri, Jeollanam-do. This is counter-intuitive considering the widespread and intensive utilization of human excreta as fertilizer in the Honam region (Jeolla-do), the breadbasket of Korea. Furthermore, while the soils from lyme soil mixture barrier (LSMB) tombs revealed many parasite eggs in spite of complete decomposition of the inside mummies in other provinces, the eggs could not be found through the investigation of 4 LSMB tombs in Jeolla-do and 1 LSMB tomb in Jeju-do. This might suggest that the eggs had not been preserved for a long time in these areas, but more extensive investigations seem to be needed for a conclusive remark.

While it was known that the amount of ammonia was in-

Table 1. Sampling sites and their information of Jeolla-do

Area	Period	Characteristics	No. of samples
Ungcheon-dong, Yeosu, Jeollanam-do	Bronze age	Dolmen	22
Songha-dong, Nam-gu, Gwangju-si	Bronze age	Agricultural land	19
Hyangyang-ri, Jangheung-eup, Jangheung-gun, Jeollanam-do	Bronze age	Tombs, ditches, trap pit	64
Sin-ri, Goksung-gun, Jeollanam-do	Iron age	Pits	28
Songnak-dong, Ikisan-li, Jeollabuk-do	Proto-three kingdom period	Unknown	28
Hwabang-ri, Wolsan-myeon, Damyang-gun, Jeollanam-do	Period of three states	Rice paddy	93
Seongsan-ni, Haerong-myeon, Suncheon-si, Jeollanam-do	4-5C	Residential areas	27
Musu-ri, Yudeung-myeon, Sunchang-gun, Jeollanam-do	4-5C	Residential areas	1
Hoejin-ri, Dasi-myeon, Naju-si, Jeollanam-do	Koryo Dynasty	Residential area & kiln	52
Yonggang-ri, Jangpyeong-myeon, Jangheung-gun, Jeollanam-do	Koryo Dynasty	Tombs & residential areas	95
Taekchon, Sameyong-dong, Naju-si, Jeollanam-do	Koryo Dynasty	Farm	8
Hyangyang-ri, Jangheung-eup, Jangheung-gun, Jeollanam-do	Joseon Dynasty	LSMB tombs, ditches, farm	70
Total	12 sites		507

Table 2. Sampling sites and their information of Jeju-do

Area	Period	Characteristics	No. of samples
Samyang 2-dong, Jeju-si	BC 7C	Presumed to be a toilet	2
Yongdam 2-dong, Jeju-si	BC 3C-AD 4C	Residential area	23
Oedo 1-dong, Jeju-si	1-4C	Pits	1
Hwasun-ri, Seogwipo-si	0-1C	Pits and drains	42
Geumsung-ri, Aewol-ri, Jeju-si	14-16C	Cemetery	18
Total	5 sites		86
versely correlated with the viability of parasite eggs [16], the predictors for long-term preservation of them had not been studied yet. In a previous study, there was a close correlation between the preservation of certain types of human remains and the presence of ancient parasite eggs in LSMB tombs, suggesting that such remains was a strong predictor of well-preserved ancient parasite eggs [4]. Another predictor is supposed to be the presence of water in the soil samples, as seen in the ancient moat ruins of Silla Dynasty [9]. The archaeological remains of Shinchang-dong, Gwangju, where the parasitic eggs had been discovered, were belonged to be the morass [11], and the large toilet of Wanggung-ri, Iksan-si, Jeollabuk-do, was connected to the drainage [10]. Decisively, the only positive samples of this study were collected from the farm connected with the drainage. It could be suggested that the moisture-laden environment helped the soils preserve parasite eggs for a long time.

However, the correlation between the soil pH and the preservation of eggs was not clearly observed due to the small number of positive samples. The soil pH of Hyangyang-ri, the only positive area, was 6.71, higher than that of Wanggung-ri, 4.68-5.24 [10]. According to the study of latrine soils in West Ger-
many, no statistical relationship between the number of recovered eggs and soil pH was demonstrated [17]. Nevertheless, a conclusion that the soil pH is irrelevant to the egg preservation should be too hasty, and further studies are needed on more samples, especially on the egg-discovered sites in Korea.

In this study, the egg of *Trichuris* could be easily identified as that of *T. trichiura*. While the widths of *T. suis* eggs were mostly distributed between 28-30 µm, those of *T. trichiura* eggs ranged 25-26 µm, compatible with that of this study [18]. Moreover, the egg size of *T. vulpis* reached 90 × 44 µm in average [19]. However, with morphological characteristics only, it was impossible to know if the eggs were of human or pig origin in the cases of *Ascaris*. Nevertheless, the present eggs seemed to be of human origin in consideration that the eggs of *Trichuris* were that of *T. trichiura*. Regardless of their origin, these eggs seemed to be related to the agriculture. The archaeological remain where the parasite eggs were recovered was presumed to be the farm, and the presence of eggs might prove the use of human manures at that time. In fact, human manures were used as a solid-compost from the 15th century, and later mixed with ashes for the purpose of an occupation. Nature 1968; 219: 303-304.

5. Shin DH, Oh CS, Chung T, Yi YS, Chai JY, Seo M. Detection of parasite eggs from a moat encircling the royal palace of Silla, the ancient Korean Kingdom. J Archæol Sci 2009; 11: 2534-2539.

6. Shin DH, Chai JY, Park EA, Lee W, Lee H, Lee JS, Choi YM, Koh BJ, Park JB, Oh CS, Bok GD, Kim WL, Lee E, Lee EJ, Seo M. Finding ancient parasite larvae in a sample from a male living in late 17th century Korea. J Parasitol 2009; 95: 768-771.

7. Lee HJ, Shin DH, Seo M. Discovery of taeniids eggs from a 17th century tomb in Korea. Korean J Parasitol. 2011; 49: 327-329.

8. Shin DH, Oh CS, Chai JY, Lee HJ, Seo M. *Enterobius vermicularis* eggs discovered in coprolites from a medieval Korean mummy. Korean J Parasitol 2011; 49: 323-326.

9. Shin DH, Oh CS, Chai JY, Ji MJ, Lee HJ, Seo M. Sixteenth century *Gymnophallus soi* infection on the coast of the Korean Peninsula. J Parasitol 2012; 98: 1283-1286.

10. Buyeo National Research Institute of Cultural Heritage. Wang-gung-ri site. Research Report of Antiquities 39. Buyeo, 2009.

11. Gryngiu National Museum. The significance and preservation of Shinchang-dong remains. 2010.

12. Kim O. Meteorological Disaster of Jeju Island in Chosun Dynasty and the Response Aspect of Government and Islanders. Korean Geographical Society J 2008; 43: 858-872.

13. O’Donnell CJ, Meyer KB, Jones JV, Benton T, Kaneshiro ES, Nichols JS, Schaefer FW 3rd. Survival of parasite eggs upon storage in sludge. Appl Environ Microbiol 1984; 48: 618-25.

14. Pike AW. Recovery of helmint eggs from archaeological excavations, and their possible usefulness in providing evidence for the purpose of an occupation. Nature 1968; 219: 303-304.

15. AOAC Official Method 994.16. pH measurement of mineral soils (First Action 1994), in Official Methods of Analysis of AOAC International, 16th ed.

16. Jensen PK, Phuc PD, Konradsen F, Klank LT, Dalsgaard A. Survival of *Ascaris* eggs and hygienic quality of human excreta in Vietnamese composting latrines. Environ Health 2009; 8: 57. doi: 10.1186/1476-069X-8-57.

17. Reinhard KJ, Confalonieri UE, Herrmann B, Ferreira LF, Araujo AG. Recovery of parasite remains from coprolites and latrines. Escola Nacional de Saúde Pública 1988; 83-108.

18. da Rocha GC, Harter-Lailheugue SH, Le Bailly M, Araujo A, Ferreira LF, da Serra-Freire NM, Bouchet F. Paleoparasitological remains revealed by seven historic contexts from “Place d’Armes”, Namur, Belgium. Mem Inst Oswaldo Cruz 2006; 101: 43-52.

19. Márquez-Navarro A, García-Bracamontes G, Álvarez-Fernández BE, Ávila-Caballero LP, Santos-Aranza I, Díaz-Chiguér DL, Sánchez-Manzano RM, Rodríguez-Bataz E, Noguera-Torres B. *Trichuris vulpis* (Froelich, 1789) infection in a child: a case report. Korean J Parasitol 2012; 50: 69-71.

20. Kim YJ, Kim YG. Fertilization technologies and usage of various manures in Chosun Dynasty. Korean Agri History Res 2008; 7: 29-48.