A concavity inequality for symmetric norms

Jean-Christophe Bourin

E-mail: bourinjc@club-internet.fr
Université de Cergy-Pontoise, dépt. de Mathématiques
2 rue Adolphe Chauvin, 95302 Pontoise, France

Abstract.

We review some recent convexity results for Hermitian matrices and we add a new one to the list: Let \(A \) be semidefinite positive, let \(Z \) be expansive, \(Z^*Z \geq I \), and let \(f : [0, \infty) \to [0, \infty) \) be a concave function. Then, for all symmetric norms

\[
\|f(Z^*AZ)\| \leq \|Z^*f(A)Z\|.
\]

This inequality complements a classical trace inequality of Brown-Kosaki.

Keywords: Hermitian operators, eigenvalues, operator inequalities, Jensen’s inequality
Mathematical subjects classification: 47A30 47A63

Introduction

A good part of Matrix Analysis consists in establishing results for Hermitian operators considered as generalized real numbers. In particular several results are matrix versions of inequalities for convex functions \(f \) on the real line, such as

\[
f\left(\frac{a+b}{2}\right) \leq \frac{f(a) + f(b)}{2}
\]

for all reals \(a, b \) and

\[
f(za) \leq zf(a)
\]

for convex functions \(f \) with \(f(0) \leq 0 \) and scalars \(a \) and \(z \) with \(0 < z < 1 \).

In this brief note we first review some recent matrix versions of (1), (2) and next we give the matrix version of the companion inequality of (2):

\[
f(za) \leq zf(a)
\]

for concave functions \(f \) with \(f(0) \geq 0 \) and scalars \(a \) and \(z \) with \(1 < z \).

Capital letters \(A, B \ldots, Z \) mean \(n \times n \) complex matrices, or operators on a finite dimensional Hilbert space \(\mathcal{H} \); \(I \) stands for the identity. When \(A \) is positive semidefinite, resp. positive definite, we write \(A \geq 0 \), resp. \(A > 0 \).
1. Some known convexity results

The following are well-known trace versions of elementary inequalities (1) and (2).

1.1. von Neuman’s Trace Inequality: For convex functions f and Hermitians A, B,

$$\text{Tr} \, f \left(\frac{A + B}{2} \right) \leq \text{Tr} \, \frac{f(A) + f(B)}{2}$$

(4)
equivalently $\text{Tr} \circ f$ is convex on the set of Hermitians.

1.2. Brown-Kosaki’s Trace Inequality [5]: Let f be convex with $f(0) \leq 0$ and let A be Hermitian. Then, for all contractions Z,

$$\text{Tr} \, f(Z^*AZ) \leq \text{Tr} \, Z^*f(A)Z.$$

(5)

1.3. Hansen-Pedersen’s Trace Inequality [7]: Let f be convex and let $\{A_i\}_{i=1}^n$ be Hermitians. Then, for all isometric columns $\{Z_i\}_{i=1}^n$,

$$\text{Tr} \, f(\sum_i Z_i^*A_iZ_i) \leq \text{Tr} \, \sum_i Z_i^*f(A_i)Z_i.$$

Here isometric column means that $\sum_i Z_i^*Z_i = I$. Hansen-Pedersen’s result contains (4) and (5).

When f is convex and monotone, we showed [2] that the above trace inequalities can be extended to operator inequalities up to a unitary congruence. Equivalently we have inequalities for eigenvalues. Let us give the precise statements corresponding to von Neumann and Brown-Kosaki trace inequalities.

1.4. Let A, B be Hermitians and let f be a monotone convex function. Then, there exists a unitary U such that

$$f \left(\frac{A + B}{2} \right) \leq U \cdot \frac{f(A) + f(B)}{2} \cdot U^*$$

(6)

1.5. Let A be a Hermitian, let Z be a contraction and let f be a monotone convex function. Then, there exists a unitary U such that

$$f(Z^*AZ) \leq UZ^*f(A)ZU^*$$

(7)

Statements 1.4 and 1.5 can break down when the monotony assumption is dropped. But we recently obtained [4] substitutes involving the mean of two unitary congruences. Let us recall the precise result corresponding to inequalities (1) and (6).
1.6. Let f be a convex function, let A, B be Hermitians and set $X = f(\{A + B\}/2)$ and $Y = \{f(A) + f(B)\}/2$. Then, there exist unitaries U, V such that

$$X \leq \frac{U Y U^* + V Y V^*}{2}.$$

Another substitute of (6) for general convex functions f would be a positive answer to the following still open problem [2]: Given Hermitians A, B, can we find unitaries U, V such that

$$f \left(\frac{A + B}{2} \right) \leq \frac{U f(A) U^* + V f(B) V^*}{2}.$$

We turn to a Brown Kosaki type inequality involving expansive operators Z, that is $Z^* Z \geq I$. We showed the following trace version of the elementary inequality (3):

1.7. Let f be convex with $f(0) \leq 0$ and let $A \geq 0$. Then, for all expansive operators Z,

$$\text{Tr} \ f(Z^* AZ) \geq \text{Tr} \ Z^* f(A) Z.$$

(8)

It is interesting to note [2] that, contrarily to the contractive case (5), the assumption $A \geq 0$ can not be dropped. Also, still contrarily to (5), this result can not be extended to eigenvalues inequalities like (7). Nevertheless, we have:

1.8. Let f be nonnegative convex with $f(0) = 0$, let $A \geq 0$ and let Z be expansive. Then, for all symmetric norms

$$\|f(Z^* AZ)\| \geq \|Z^* f(A) Z\|.$$

(9)

Here, by symmetric norm we mean a unitarily invariant one, that is $\|A\| = \|UAV\|$ for all operators A and all unitaries U, V.

2. A new concavity result

Of course if f is concave with $f(0) \geq 0$ then inequality (8) is reversed and provides an extension of its scalar version (3). Assuming furthermore f nonnegative we tried to extend it to all symmetric norms but, besides the trace norm, we only got the operator norm case. Here we may state:

Theorem 2.1. Let $f : [0, \infty) \to [0, \infty)$ be a concave function. Let $A \geq 0$ and let Z be expansive. Then, for all symmetric norms

$$\|f(Z^* AZ)\| \leq \|Z^* f(A) Z\|.$$
Proof. It suffices to prove the theorem for the Ky Fan k-norms $\| \cdot \|_k$ (cf. [1]). This shows, since Z is expansive, that we may assume that $f(0) = 0$. Note that f is necessarily nondecreasing. Hence, there exists a rank k spectral projection E for Z^*AZ, corresponding to the k-largest eigenvalues $\lambda_1(Z^*AZ), \ldots, \lambda_k(Z^*AZ)$ of Z^*AZ, such that

$$
\|f(Z^*AZ)\|_k = \sum_{j=1}^k \lambda_j(Z^*AZ) = \text{Tr} Ef(Z^*AZ)E.
$$

Therefore, using a well-known property of Ky Fan norms, it suffices to show that

$$
\text{Tr} Ef(Z^*AZ)E \leq \text{Tr} EZ^*f(A)ZE.
$$

This is the same as requiring that

$$
\text{Tr} EZ^*g(A)ZE \leq \text{Tr} Eg(Z^*AZ)E \quad (10)
$$

for all convex functions g on $[0, \infty)$ with $g(0) = 0$. Any such function can be approached by a combination of the type

$$
g(t) = \lambda t + \sum_{i=1}^n \alpha_i(t - \beta_i)_+ \quad (11)
$$

for a scalar λ and some nonnegative scalars α_i and β_i. Here $(x)_+ = \max\{0, x\}$. By using the linearity of the trace it suffices to show that (10) holds for $g_{\beta}(t) = (t-\beta)_+$, $\beta \geq 0$. We claim that there exists a unitary U such that

$$
Z^*g_{\beta}(A)Z \leq Ug_{\beta}(Z^*AZ)U^*. \quad (12)
$$

This claim and a basic property of the trace then show that (10) holds for g_{β}. Indeed, we then have

$$
\text{Tr} EZ^*g_{\beta}(A)ZE = \sum_{j=1}^k \lambda_j(EZ^*g_{\beta}(A)ZE) \\
\leq \sum_{j=1}^k \lambda_j(Z^*g_{\beta}(A)Z) \\
\leq \sum_{j=1}^k \lambda_j(g_{\beta}(Z^*AZ)) \quad \text{(by 12)} \\
= \sum_{j=1}^k \lambda_j(Eg_{\beta}(Z^*AZ)E) \\
= \text{Tr} Eg_{\beta}(Z^*AZ)E
$$

where the fourth equality follows from the fact that g_{β} is nondecreasing and hence E is also a spectral projection of $g_{\beta}(Z^*AZ)$ corresponding to the k largest eigenvalues.
The inequality (12) has been established in [2] in order to prove (8). Let us recall the proof of (12): We will use the following simple fact. If \(B \) is a positive operator with \(\text{Sp}B \subset \{0\} \cup (x, \infty) \), then we also have \(\text{Sp}Z^*BZ \subset \{0\} \cup (x, \infty) \). Indeed \(Z^*BZ \) and \(B^{1/2}Z^*ZB^{1/2} \) (which is greater than \(B \)) have the same spectrum.

Let \(P \) be the spectral projection of \(A \) corresponding to the eigenvalues strictly greater than \(\beta \) and let \(A_\beta = AP \). Since \(Z^*(A - \beta I)_+ Z = Z^*(A_\beta - \beta I)_+ Z \) we may then assume that \(A = A_\beta \). Now, the above simple fact implies

\[
(Z^*A_\beta Z - \beta I)_+ = Z^*A_\beta Z - \beta Q
\]

where \(Q = \text{supp}Z^*A_\beta Z \) is the support projection of \(Z^*A_\beta Z \). Therefore, using \((A_\beta - \beta I)_+ = A_\beta - \beta P \), it suffices to show the existence of a unitary operator \(W \) such that

\[
Z^*A_\beta Z - \beta Q \geq W Z^*(A_\beta - \beta P)ZW^* = WZ^*A_\beta ZW^* - \beta WZ^*PZW^*.
\]

But, here we can take \(W = I \). Indeed, we have

\[
\text{supp}Z^*PZ = Q \quad \text{and} \quad \text{Sp}Z^*PZ \subset \{0\} \cup [1, \infty) \quad (**)
\]

where \((**) \) follows from the above simple fact and the identity \((*) \) from the observation below with \(X = P \) and \(Y = A_\beta \).

Observation. If \(X, Y \) are two positive operators with \(\text{supp}X = \text{supp}Y \), then for every operator \(Z \) we also have \(\text{supp}Z^*XZ = \text{supp}Z^*YZ \).

To check this, we establish the corresponding equality for the kernels,

\[
\ker Z^*XZ = \{h : Z h \in \ker X^{1/2}\} = \{h : Z h \in \ker Y^{1/2}\} = \ker Z^*YZ.
\]

In the above proof, the simple idea of approaching convex functions as in (11) was fruitful. It is also useful to prove (see [2]) the Rotfel’d Trace Inequality: For concave functions \(f \) with \(f(0) \geq 0 \) and \(A, B \geq 0 \),

\[
\text{Tr} f(A + B) \leq \text{Tr} f(A) + \text{Tr} f(B).
\]

If \(f \) is convex with \(f(0) \leq 0 \) the reverse inequality holds, in particular we have McCarthy’s inequality

\[
\text{Tr} (A + B)^p \geq \text{Tr} A^p + \text{Tr} B^p
\]

for all \(p > 1 \).

Remark 2.2. Though scalars inequalities (2), (3) or their concave analogous hold for a more general class than convex or concave functions, the corresponding trace inequalities need the convexity or concavity assumption (cf. [2]). A fortiori, Theorem 2.1 needs the concavity assumption.
Remark 2.3. When f is operator monotone, Theorem 2.1 extends to an operator inequality which can be rephrased for contractions as follows: For nonnegative operator monotone functions f on $[0, \infty)$, contractions Z and $A \geq 0$,

$$Z^* f(A) Z \leq f(Z^* A Z)$$

This is the famous Hansen’s inequality [4]. Similarly when f is operator convex, Hansen-Pedersen’s Trace Inequality can be extended to an operator inequality [7] (see also [3]).

Extensions of Theorem 2.1 to infinite dimensional spaces will be considered in a forthcoming work.

Acknowledgement. The author is grateful to a referee for its valuable comments.

References
[1] R. Bhatia, Matrix Analysis, Springer, Germany, 1996.
[2] J.-C. Bourin, Convexity or concavity inequalities for Hermitian operators, Math. Ineq. Appl. 7 n04 (2004) 607-620.
[3] J.-C. Bourin, Compressions, Dilations and Matrix Inequalities, RGMIA monograph, Victoria university, Melbourne 2004 (http://rgmia.vu.edu.au/monograph)
[4] J.-C. Bourin, Hermitian operators and convex functions, to appear in J. Math. Ineq.
[5] L. G. Brown and H. Kosaki, Jensen’s inequality in semi-finite von Neuman algebras, J. Operator Theory 23 (1990) 3-19.
[6] F. Hansen, An operator inequality, Math. Ann. 246 (1980) 249-250.
[7] F. Hansen and G. K. Pedersen, Jensen’s operator inequality, Bull. London Math. Soc. 35 (2003) 553-564.