Charge versus energy transfer in atomically-thin graphene-transition metal dichalcogenide van der Waals heterostructures

Guillaume Froehlicher, Etienne Lorchat, and Stéphane Berciaud
Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, F-67000 Strasbourg, France

Van der Waals heterostructures, made from stacks of two-dimensional materials, exhibit unique light-matter interactions and are promising for novel optoelectronic devices. The performance of such devices is governed by near-field coupling through, e.g., interlayer charge and/or energy transfer. New concepts and experimental methodologies are needed to properly describe two-dimensional heterointerfaces. Here, we report an original study of interlayer charge and energy transfer in atomically thin metal (graphene)/semiconductor (transition metal dichalcogenide (TMD, here MoSe$_2$)) heterostructures using a combination of micro-photoluminescence and Raman scattering spectroscopies. The photoluminescence intensity in graphene/MoSe$_2$ is quenched by more than two orders of magnitude and rises linearly with the photon flux, demonstrating a drastically shortened (~ 1 ps) room temperature MoSe$_2$ exciton lifetime. Key complementary insights are provided from a comprehensive analysis of the graphene and MoSe$_2$ Raman modes, which reveals net photoinduced electron transfer from MoSe$_2$ to graphene and hole accumulation in MoSe$_2$. Remarkably, the steady state Fermi energy of graphene saturates at 290±15 meV above the Dirac point. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets) and environmental effects. In this saturation regime, balanced photoinduced flows of electrons and holes may transfer to graphene, a mechanism that effectively leads to energy transfer. Using a broad range of photon fluxes and diverse environmental conditions, we find that the presence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene/MoSe$_2$. This absence of correlation strongly suggests that energy transfer to graphene (either in the form of electron exchange or dipole-dipole interaction) is the dominant interlayer coupling mechanism between atomically-thin TMDs and graphene.

I. INTRODUCTION

Charge and energy transfer (CT, ET) play a prominent role in atomic, molecular and nanoscale systems. On the one hand, Förster-type energy transfer [1], mediated by relatively long-range (up to several nm) near-field dipole-dipole coupling is an essential step in photosynthesis [2] and is now engineered in a variety of light-harvesting devices and distance sensors [3, 4]. Charge transfer, on the other hand is a much shorter range process (~ 1 nm) that plays a key role in a number of molecular and solid-state systems and is at the origin of the operation of photodetectors and solar cells [5, 6]. In the limit of orbital overlap between donor and acceptor systems, electron exchange, resulting in no net charge transfer and also known as Dexter-type energy transfer [7], may occur. The efficiencies of CT and ET depend very sensitively on the donor-acceptor distance, on the energy levels (or bands) offsets, and on the local dielectric and electrostatic environment. CT and ET processes may have beneficial or detrimental impact on the performance of optoelectronic devices and therefore deserve fundamental investigations.

In this context, two-dimensional materials (2DM, such as graphene, boron nitride, transition metal dichalcogenides (TMDs), black phosphorus, . . .) provide an extraordinary toolkit to investigate novel regimes of CT/ET. Indeed the very diverse and complementary physical properties of 2DM can be tailored and controlled at the single-layer level, but also combined and possibly enhanced within so-called van der Waals heterostructures (vdWHs) [8, 9]. VdWHs provide a new paradigm of clean, ultra smooth two-dimensional heterointerfaces [10]. Since their van der Waals gap is only of a few Å, band bending and depletion regions cannot develop in vdWH. As a result, well-established concepts borrowed from the physics of bulk or low-dimensional heterojunctions [6] must be adapted with great care when describing the optoelectronic response of vdWHs. In addition, the ultimate proximity between the atomically thin building blocks that compose a vdWH potentially allows ultra efficient CT and/or ET.

Among the vast library of 2DM, graphene [12] and atomically-thin semiconducting TMDs (with formula MX$_2$, with M = Mo, W and X = S, Se, Te) [10, 13, 14] have attracted particular interest for optoelectronic applications [15–25]. Indeed, graphene (Gr) may act as a highly tunable transparent electrode, endowed with exceptional physical properties [26–28], while monolayer TMDs are direct bandgap semiconductors with unusually strong light-matter interactions and excitonic effects [10, 29, 30], as well as unique spin, valley and optoelectronic properties [10, 30, 31]. Photodetectors based on graphene and TMDs display high photoresponsivity and photogain [15, 19], down to picosecond timescales [20]. The photophysics of Gr/TMD vdWHs is governed by near-
field interlayer CT and/or ET (ICT, IET). In the related and most studied case of TMD/TMD heterojunctions with type II band alignment, sub-picosecond ICT and subsequent interlayer exciton formation is thought to be the dominant coupling mechanism [31–36]. However, recent photoluminescence excitation spectroscopy studies in MoSe\(_2\)/WS\(_2\) vdWH have suggested that IET may be at least as efficient as ICT [37].

In contrast, fundamental studies of IET and ICT remain scarce in Gr/TMD vdWH. Photoinduced ICT has been observed in Gr/MoS\(_2\) photodetectors [18]. Recent transient absorption studies have evidenced fast interlayer coupling in Gr/WS\(_2\) vdWHs and tentatively assigned it to photoinduced ICT [24]. Yet, such studies were mostly performed under ambient conditions and the share of environmental effects needs to be assessed. Importantly, in Ref. [20] the internal quantum efficiency of Gr/TMD photodetectors degrades when the active TMD layer is thinned down to the monolayer limit, possibly due to efficient IET to graphene. Overall, IET has been surprisingly overlooked in vdWH, whereas related studies in hybrid heterostructures composed of nanoscale emitters (molecules, quantum dots, quantum wells,...) interfaced with carbon nanotubes [38], graphene [39–42], TMDs [43, 44] have consistently demonstrated highly efficient Förster-type ET.

Unraveling the relative efficiencies of ICT and IET in vdWH is a timely challenge for optoelectronics. For this purpose, optical spectroscopy offer minimally invasive and spatially-resolved tools. First exciton dynamics and interlayer coupling can be probed with great sensitivity using micro-photoluminescence (PL) spectroscopy [10, 51]. Second, micro-Raman scattering spectroscopy allows quantitative measurements of doping and charge transfer as it has been demonstrated in graphene [45–49] and in MoSe\(_2\) [50, 51], but not yet in vdWHs.

In this paper, using an original combination of PL and Raman spectroscopies, we are able to disentangle contributions from ICT and IET in model vdWHs made of single-layer graphene stacked onto single-layer molybdenum diselenide (MoSe\(_2\)) (hereafter denoted Gr/MoSe\(_2\)) in the absence of any externally applied electric field. While highly efficient exciton-exciton annihilation and subsequent saturation of the PL intensity is – as expected – observed in bare MoSe\(_2\) as the incident photon flux increases, the PL in Gr/MoSe\(_2\) is massively quenched and its intensity rises linearly with the photon flux, demonstrating a drastically shortened room-temperature exciton lifetime in MoSe\(_2\). Key complementary insights are provided from an comprehensive analysis of the graphene and MoSe\(_2\) Raman modes, which reveals net photoinduced electron transfer from MoSe\(_2\) to graphene and hole accumulation in MoSe\(_2\). Remarkably, the steady state Fermi energy of graphene saturates at 290±15 meV above the Dirac point. In this saturation regime, balanced flows of electrons and holes transfer to graphene, resulting in no net photoinduced charge transfer. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets) and extrinsic effects associated with native doping and charge trapping. Using a broad range of photon fluxes and diverse environmental conditions, we find that the existence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene/MoSe\(_2\). This absence of correlation strongly suggests that energy transfer to graphene (either in the form of Dexter or Förster processes) is the dominant interlayer coupling mechanism between atomically-thin TMDs and graphene. Our results provide a better understanding of theatomically thin two-dimensional metal-semiconductor (i.e., Schottky) junction, an ubiquitous building block in emerging optoelectronic devices, and will serve as a guide to engineer charge carrier and exciton transport in two-dimensional materials.

II. CHARACTERIZATION OF THE Gr/MoSe\(_2\) HETEROSTRUCTURE

Figure 1(a) shows an optical image of a Gr/MoSe\(_2\) vdWH (Sample S\(_1\)) deposited onto a Si/SiO\(_2\) substrate. From AFM measurements (see Supplemental Material [52], Fig. S1), we can distinguish a region of the heterostructure (highlighted with a white dashed contour in Fig. 1(a)), where the two layers are well coupled, as evidenced by the small surface roughness [9] and the small height difference of approximately 0.65 nm between the surface of MoSe\(_2\) and Gr (see Fig. 1(b)). Outside this region, the interface shows sub-nanometer size “pockets” and an average step of \(\sim 2 – 3\, \text{nm} \) (see Fig. 1(b)) between MoSe\(_2\) and Gr. Hereafter, the former and the latter are referred to coupled and decoupled Gr/MoSe\(_2\), respectively (see Fig. 1(c) and Supplemental Material [52], Fig. S1).

Typical photoluminescence (PL) and Raman spectra from three different points of the sample are shown in Fig. 1(d) and Fig. 1(e), respectively. Unless otherwise noted, the samples were optically excited in the continuous wave regime using a single longitudinal mode, linearly polarized laser at a photon energy of 2.33 eV well above the optical bandgap of MoSe\(_2\).

Figure 1(f-k) displays the hyperspectral maps of (f) the MoSe\(_2\) PL intensity, (g-j) the frequencies (\(\Gamma_{G,2D}\)) and full-widths at half maximum (FWHM, \(\Gamma_{G,2D}\)) of the Raman G- and 2D-mode features [53], and (k) of the ratio of their integrated intensities (\(I_{2D}/I_{G}\)). Note that no defect-induced D-mode feature [53] (expected around 1350 cm\(^{-1}\)) emerges from the background showing the very good quality of our sample. All hyperspectral maps allow to distinctively identify the coupled and decoupled Gr/MoSe\(_2\) regions and confirm the trends observed on selected points.

The PL spectra in Fig. 1(d) are characteristic of single-layer MoSe\(_2\) with the A and B excitons [54] near 1.57 eV and 1.75 eV, respectively. Remarkably, the MoSe\(_2\) PL...
FIG. 1. (a) Optical image of a single-layer graphene/single-layer MoSe$_2$ van der Waals heterostructure deposited onto a Si/SiO$_2$ substrate (sample S$_1$). The coupled part of the heterostructure is represented by the white dashed contour. (b) Height profiles, measured by atomic force microscopy, along the dashed blue and red lines drawn in (a). (c) Schematic of the heterostructure showing the coupled and decoupled regions. Photoluminescence (d) and Raman scattering (e) spectra recorded on the three spots shown in (f) and (g), respectively. In (d) and (e), the spectra are plotted with the same color as the symbols in (f) and (g), respectively. (f) MoSe$_2$ photoluminescence intensity map. (g-k) Hyperspectral Raman maps of the (g) G-mode frequency ω_G, (h) G-mode FWHM Γ_G, (i) 2D-mode frequency ω_{2D}, (j) 2D-mode FWHM Γ_{2D}, and (k) ratio between the integrated intensities of the 2D- and G-mode features (I_{2D}/I_G) measured on single-layer graphene. All maps have the same scale as in (a) and were recorded in ambient air at a laser photon energy of 2.33 eV, with an incident photon flux $\Phi_{ph} = 2 \times 10^{19}$ cm$^{-2}$ s$^{-1}$ and $\Phi_{ph} = 2 \times 10^{22}$ cm$^{-2}$ s$^{-1}$ for photoluminescence and Raman measurements, respectively.

intensity is \sim 300 times smaller on coupled Gr/MoSe$_2$ than on MoSe$_2$/SiO$_2$, while it is only reduced by a modest factor of \sim 2 on decoupled Gr/MoSe$_2$ (Fig. 1d,f). Such massive PL quenching, also observed for other Gr/TMD vdWHs [20,24] demonstrates strong interlayer coupling and suggest a much reduced exciton lifetime.

As shown in Fig. 1(e),(g-k), interlayer coupling also dramatically affects the Raman response of graphene. Indeed, on coupled Gr/MoSe$_2$, the G-mode feature upshifts, gets narrower, and the I_{2D}/I_G ratio decreases (Fig. 1k) with respect to reference measurements on the neighboring pristine graphene deposited on SiO$_2$ (Gr/SiO$_2$) and decoupled Gr/MoSe$_2$ regions (Fig. 1e,k). These observations are robust evidence of an increased charge carrier concentration in graphene [47,48]. Surprisingly, we observe an upshift of the 2D-mode frequency on coupled Gr/MoSe$_2$ (Fig. 1i)), which is too high to be solely induced by doping or strain [48,55,56], and seems qualitatively similar to previous reports on graphene deposited on thick boron nitride terraces [57,58] and monolayer MoS$_2$ grown on graphene [21]. Possible origins for this upshift are discussed in the Supplemental Material [52] (Fig. S15).

In the following we quantitatively investigate exciton dynamics (Sec. III) and interlayer charge transfer (Sec. IV).
III. EXCITON DYNAMICS IN Gr/MoSe_2

Although PL quenching has been reported in previous studies of Gr/TMD heterostructures (see Figure 1 in Ref. [59] and Supplementary Figure 6 in Ref. [20]), quantitative analysis of PL quenching and its interpretation in terms of IET and ICT have not been reported thus far.

Figure 2(a,b) displays the normalized PL spectra of MoSe$_2$ recorded on MoSe$_2$/SiO$_2$, decoupled and coupled Gr/MoSe$_2$ at low and high incident photon flux Φ_{ph}. The A exciton PL feature of coupled Gr/MoSe$_2$/SiO$_2$ is marginally redshifted (by ≈ 10 meV) with respect to that of air/MoSe$_2$/SiO$_2$, irrespective of Φ_{ph}. Considering the drastically different dielectric environments, such a surprisingly small reduction of the optical bandgap is assigned to the near-perfect compensation of the reductions of electronic bandgap and exciton binding energy in graphene-capped MoSe$_2$ [60–62]. The lineshapes of the A exciton features are quite similar, except for a small but reproducible narrowing of the A-exciton linewidth in coupled Gr/MoSe$_2$. Similar narrowing has recently been observed in TMD layers fully encapsulated in boron ni-
tride [63, 64] and likely results from a reduction of inhomogeneous broadening and pure dephasing in graphene-capped TMD samples.

The integrated PL intensities of the A and B exciton features (denoted $I_{PL}^{A,B}$) normalized by Φ_{ph}, are plotted as a function of Φ_{ph} in Figure 2(c) and (d), respectively. For MoSe$_2$/SiO$_2$ and decoupled Gr/MoSe$_2$, $I_{PL}^{A,B}/\Phi_{ph}$ drops abruptly as Φ_{ph} augments due to highly efficient exciton-exciton annihilation (EEA), as previously evidenced in TMD monolayers [65, 66]. In the case of coupled Gr/MoSe$_2$, I_{PL}^{A}/Φ_{ph} remains constant, within experimental accuracy, up to $\Phi_{ph} \sim 10^{24}$ cm$^{-2}$ s$^{-1}$. As a result, while I_{PL}^{A} is about 300 times weaker on coupled Gr/MoSe$_2$ than on bare MoSe$_2$ at $\Phi_{ph} = 3 \times 10^{20}$ cm$^{-2}$ s$^{-1}$, this quenching factor reduces down to ~ 3 at $\Phi_{ph} = 6 \times 10^{23}$ cm$^{-2}$ s$^{-1}$. Strong PL quenching together with the linear scaling of I_{PL}^{A} with Φ_{ph} demonstrate that interlayer coupling between graphene and MoSe$_2$ opens up non-radiative decay channel for A excitons, that dramatically reduces of the A exciton lifetime and is sufficiently fast to bypass EEA. Very similar PL quenching and exciton dynamics have been observed in other Gr/MoSe$_2$/SiO$_2$ samples (see Supplementary Material [52], Fig. S11-S13) as well as in Gr/WS$_2$/SiO$_2$ (see Supplementary Material [52], Fig. S14) and Gr/WSe$_2$/SiO$_2$ (data not shown). The shortening of the A exciton lifetime is further substantiated by the analysis of the hot luminescence from the B exciton (note that our samples are photoexcited at 2.33 eV, i.e., well-above the B exciton in MoSe$_2$). In bare MoSe$_2$ and decoupled Gr/MoSe$_2$, $I_{PL}^{A} \gg I_{PL}^{B}$, whereas $I_{PL}^{A} \sim I_{PL}^{B}$ in coupled Gr/MoSe$_2$. Interestingly, I_{PL}^{B} is very similar in the three cases and scales linearly with Φ_{ph} (see Fig. 2(d)). These observations suggest (i) that interlayer coupling does not significantly affect exciton formation and exciton decay until a population of A excitons is formed, and (ii) that the A exciton lifetime in Gr/MoSe$_2$ is not appreciably longer than the B \rightarrow A decay time. The latter is typically in the subpicosecond range [67] in atomically thin TMDs, and provides a lower bound for the A exciton lifetime in Gr/MoSe$_2$. Additional insights are provided by time-resolved photoluminescence measurements recorded in ambient conditions (see Fig. 2(e)). Bare MoSe$_2$ and decoupled Gr/MoSe$_2$ display non-monoeponential decays [68] with average exciton lifetime of ~ 1 ns. As anticipated, the PL decay of Gr/MoSe$_2$ is too fast to be resolved using our experimental apparatus, confirming that the A exciton lifetime is significantly shorter that our time-resolution of ~ 20 ps. Using the estimated decay time of bare MoSe$_2$ and a typical quenching factor of ~ 300 (i.e., a quenching efficiency of $\sim 99.7\%$) in the low fluence limit, we can reckon a conservative upper bound of a few ps for the exciton lifetime in coupled Gr/MoSe$_2$.

IV. INTERLAYER CHARGE TRANSFER

A. Net photoinduced electron transfer to graphene

The fast MoSe$_2$ exciton decay in Gr/MoSe$_2$ heterostructures may arise from a combination of ICT and IET processes. In this section, we introduce an original Raman-based readout of the steady state charge carrier density in both materials.

Fig. 3 shows the evolution of $\omega_{G,2D}$, $\Gamma_{G,2D}$ and I_{2D}/I_G measured in sample S$_1$ as a function of Φ_{ph}, in ambient air. The corresponding spectra are shown in the Supplemental Material [52] (Fig. S2). First, for Gr/SiO$_2$ and decoupled Gr/MoSe$_2$, $\omega_{G} \approx 1583$ cm$^{-1}$, $\Gamma_{G} \approx 16$ cm$^{-1}$, $\omega_{2D} \approx 2674$ cm$^{-1}$ and $I_{2D}/I_G \approx 6.5$ do not show any appreciable variation as Φ_{ph} augments. These values correspond to very weakly doped graphene ($|n_{Gr}| \sim 10^{11}$ cm$^{-2}$ or $|E_F^G| \lesssim 100$ meV) [47, 48]. In addition, the absence of measurable phonon softening at high Φ_{ph}, indicates that the laser-induced temperature rise remains below ~ 100 K [70].

Second, for coupled Gr/MoSe$_2$, ω_{G} distinctly rises as Φ_{ph} increases, whereas Γ_{G} decreases (see Figs. 3(a)-(c)). Additionally, I_{2D}/I_G (Figs. 3(e)) drops significantly. These spectroscopic features provide strong evidence for net photoinduced ICT from MoSe$_2$ to graphene [47, 48]. We can now identify the sign of the net transferred charge flow using the correlation between ω_{2D} and ω_{G} in Fig. 3(f) as in Ref. [48] and [53]. As Φ_{ph} increases, the data for Gr/SiO$_2$ and decoupled Gr/MoSe$_2$ show no clear correlations. In contrast, on coupled Gr/MoSe$_2$, ω_{2D} and ω_{G} display a linear correlation with a slope of ≈ 0.11, a value that clearly points towards photoinduced electron doping in graphene [48].

Using well-established theoretical modelling of electron-phonon coupling in doped graphene [46, 71], we quantitatively determine the Fermi energy of graphene relative to the Dirac point E_F^G or equivalently its doping level n_{Gr}. The values of E_F^G and n_{Gr} extracted from a global fitting procedure (see Ref. [48]) are plotted in Fig. 3(f). As further discussed in Sec. IV.A, E_F^G (n_{Gr}) saturates as Φ_{ph} increases and reaches up to ≈ 280 meV ($\approx 5 \times 10^{12}$ cm$^{-2}$).

B. Hole accumulation in MoSe$_2$

Net electron transfer to graphene naturally implies hole accumulation in MoSe$_2$. Depending on the initial doping of MoSe$_2$, photoinduced hole accumulation in MoSe$_2$ should allow or impede the formation of charged excitons (trions). However, at room temperature, trions in MoSe$_2$ are not stable enough [72] to allow the observation of trion emission in our PL spectra. However, as in Sec. IV.A we can seek for fingerprints of ICT in the high-resolution Raman response of MoSe$_2$.

Figure 4(a) shows the MoSe$_2$ Raman spectra from MoSe$_2$/SiO$_2$, decoupled and coupled Gr/MoSe$_2$. In ad-
FIG. 3. (a) Raman G-mode frequency ω_G and (b) full-width at half maximum Γ_G recorded at a laser photon energy of 2.33 eV as a function of the incident photon flux Φ_{ph} for coupled (red squares) and decoupled (blue circles) Gr/MoSe$_2$ and for Gr/SiO$_2$ (gray diamonds) (see Figure 1). (c) Correlation between Γ_G and ω_G under increasing Φ_{ph}. (d) ratio between the integrated intensity of the 2D-mode feature and that of the G-mode feature I_{2D}/I_G as a function of Φ_{ph}. (e) Correlation between ω_{2D} and ω_G under increasing Φ_{ph}. The color of the symbols in (c) and (e) gets darker with increasing Φ_{ph}. (f) ω_G (red squares, left axis) and Γ_G (blue circles, right axis) as a function of the graphene Fermi energy E_F and doping level n_G. The solid lines are theoretical calculations [48, 50]. All measurements were performed in ambient air.

Addition to several higher-order resonant features involving finite momentum phonons, one can identify the two Raman-active one-phonon modes in monolayer MoSe$_2$ with A_1' symmetry (near 242 cm$^{-1}$) and E' symmetry (near 289 cm$^{-1}$) [73, 74]. The faint E' mode-feature is slightly downshifted on coupled Gr/MoSe$_2$, as compared to MoSe$_2$/SiO$_2$. The prominent A_1'-mode feature is much similar for MoSe$_2$/SiO$_2$ and decoupled Gr/MoSe$_2$, but distinctively blueshifts (by ≈ 0.5 cm$^{-1}$) and gets narrower (by $\approx 20\%$) for coupled Gr/MoSe$_2$ (see Fig. 4(b)).

As in the case of graphene, changes in the Raman spectra can tentatively be assigned to doping, with possible spurious contributions from native strain, laser-induced heating, as well as van der Waals coupling [75] and surface effects [76, 77, 78]. Interestingly, recent Raman studies in MoS$_2$ monolayers have demonstrated that the A_1'-mode phonon undergoes modest doping-induced phonon renormalization, namely a downshift and a broadening for increasing electron concentration whereas the E'-mode phonon is largely insensitive to doping [59, 60]. Conversely, also in MoS$_2$, it was shown that under tensile (resp. compressive) strain the E'-mode feature undergoes much larger shifts than the A_1'-mode feature [74, 79]. The A_1' and E' phonons may thus be used as probes of ICT and strain, respectively. Based on these considerations, the minute E' phonon softening observed irrespective of Φ_{ph} in Gr/MoSe$_2$ relative to MoSe$_2$/SiO$_2$ suggests a slightly larger native tensile strain on Gr/MoSe$_2$, that has no impact whatsoever on ICT (see Supplemental Material [72], Fig. S4-S8). More importantly, the upshifted and narrower A_1'-mode feature consistently observed up to $\Phi_{ph} \approx 6 \times 10^{23}$ cm$^{-2}$ s$^{-1}$ in coupled Gr/MoSe$_2$ indicates a lower electron density in MoSe$_2$ than in decoupled Gr/MoSe$_2$ and MoSe$_2$/SiO$_2$.

However, on the three regions of the sample, the frequency and FWHM of the A_1'-mode feature downshifts and increases linearly as Φ_{ph} augments, respectively. Such trends counter-intuitively suggest photoinduced electron doping in MoSe$_2$. We tentatively assign the observed evolution of the A_1'-mode feature to slight laser-induced temperature increase (estimated below 100 K [80] at $\Phi_{ph} \approx 6 \times 10^{23}$ cm$^{-2}$ s$^{-1}$), possibly combined with related photogating effects involving the presence of molecular adsorbates and trapped charges both acting as electron acceptors and laser-assisted desorption of the latter [51]. Remarkably, as shown in Fig. 4(c), the difference between the A_1' frequencies (FWHM) measured on coupled Gr/MoSe$_2$ and decoupled Gr/MoSe$_2$ or
MoSe\textsubscript{2}/SiO\textsubscript{2} monotonically increases (decreases) as \(\Phi_{\text{ph}}\) augments. These observations correspond to a net photoinduced hole doping for MoSe\textsubscript{2} in coupled Gr/MoSe\textsubscript{2}, relative to decoupled Gr/MoSe\textsubscript{2} and MoSe\textsubscript{2}/SiO\textsubscript{2}, consistently with the net photoinduced electron transfer from MoSe\textsubscript{2} to graphene demonstrated in Fig. 3.

V. ENVIRONMENTAL EFFECTS

The charge density and exciton dynamics in 2D materials are known to be influenced by environmental effects, in particular by molecular adsorbates and the underlying substrate \([49, 51, 81, 82]\). To determine the generality of the results presented above, we compare in Fig. 5(a,b) the evolution of \(E_F^{\text{Gr}}\) with increasing \(\Phi_{\text{ph}}\) recorded in ambient air and under high vacuum \((\lesssim 10^{-4} \text{ mbar})\) for a set of five samples, wherein strong PL quenching has been observed (see Supplemental Material [52], Fig. S11). Remarkably, in ambient air, all samples display (i) different initial doping at low \(\Phi_{\text{ph}}\), (ii) distinct sub-linear rises of \(E_F^{\text{Gr}}\) with increasing \(\Phi_{\text{ph}}\) and (iii) similar saturation at \(E_F^{\text{Gr}}\) around \(290 \pm 15\) meV (i.e., \(n_{\text{Gr}} \approx (5 \pm 0.5) \times 10^{12} \text{ cm}^{-2}\)). Interestingly, under vacuum, we systematically observe a transient regime with a photoinduced rise of \(E_F^{\text{Gr}}\) (at fixed \(\Phi_{\text{ph}}\)) towards a saturation value that is attained on a rather long timescale (typically several minutes, depending on \(\Phi_{\text{ph}}\), see Fig. 5(b) and Supplemental Material [52].
FIG. 5. (a) Fermi energy E_{F} (left) and doping level n_{Gr} (right) in graphene as a function of the incident photon flux Φ_{ph}. Measurements on three selected Gr/MoSe$_2$ samples (denoted S$_1$, S$_2$ and S$_3$) are represented with different symbols. The data shown in Fig. S10 is from S$_1$. The hatched region denotes the range of E_{F}^{Gr} close to the charge neutrality point where there is an uncertainty on the sign and on the exact value of E_{F}^{Gr}. The gray rectangle illustrates the saturation value of E_{F}^{Gr}. (b) E_{F}^{Gr} (left) and n_{Gr} (right) as a function of Φ_{ph} obtained under ambient conditions (filled symbols) and in vacuum (open symbols) at the same point of a Gr/MoSe$_2$/SiO$_2$ and a MoSe$_2$/Gr/SiO$_2$ heterostructure, denoted S$_4$ and S$_5$, respectively. Measurements under vacuum in S$_4$ are shown as Φ_{ph} is swept forward for the first time and then backward (see arrows).

Fig. S10). Once E_{F}^{Gr} has reached its saturation value, it becomes completely independent on Φ_{ph} (see Fig. 5(b)).

The distinct charge transfer dynamics observed under ambient conditions and in vacuum shed light on the role of molecular adsorbates at the surface of the vdWH. In vacuum, a significant fraction of the molecular adsorbates are removed, including through laser-assisted desorption. These adsorbates are efficient electron traps [49, 51, 81], acting against the net photoinduced electron transfer from MoSe$_2$ to graphene. In the absence of molecular adsorbates, the electrons that are transferred from MoSe$_2$ to graphene remain on graphene as long as the laser illumination is on (see Sec. VI). Such extrinsic effects impact the optoelectronic response of 2DM and vdWH - most often examined under ambient conditions - and therefore provide an impetus for further studies under controlled atmospheres [19], using different substrates, stacking sequences and encapsulating materials [62–64]. Along this line, we have studied (see Fig. 5(b) and Supplemental Material [52, Fig. S11]) a MoSe$_2$/Gr/SiO$_2$ vdWH. Remarkably, the results obtained on this inverted heterostructure are very similar to those obtained in Gr/MoSe$_2$/SiO$_2$ vdWHs.

Finally, we have compared the PL in Gr/MoSe$_2$/SiO$_2$ and MoSe$_2$/Gr/SiO$_2$ in ambient air and under vacuum conditions. While the PL of bare MoSe$_2$ is - as previously reported [81] - quenched under vacuum, the PL intensity and lineshape measured as a function of Φ_{ph} in ambient air and under vacuum in Gr/MoSe$_2$ are not appreciably different (See Fig. 6 and Supplemental Material [52, Fig. S12]).

VI. DISCUSSION

The complementary results reported in Sec. III now make it possible to address a set of open questions of high relevance for fundamental photophysics and optoelectronic applications. What are the microscopic mechanisms responsible for net electron transfer and its saturation (Sec. VIA)? What is the impact of excitonic effects on interlayer coupling (Sec. VIB)? What are the relative contributions of ICT and IET to the massive photoluminescence quenching analyzed in Fig. 2 (Sec. VIC)?

A. Charge transfer mechanism

The clear saturation of the net photoinduced ICT in Gr/TMD heterostructures shown in Fig. 3 had not been reported thus far and we shall first discuss the underlying microscopic ICT mechanisms. Since the Dirac point of graphene is located between the valence band maximum and the conduction band minimum of MoSe$_2$ [83–85], the tunneling of photoexcited electrons and holes to graphene can be envisioned as long as energy and momentum are conserved and that E_{F}^{Gr} lies sufficiently below (above) the conduction band minimum (valence band maximum) of MoSe$_2$. Electron and hole transfer to graphene are sketched in Fig. 7(a,b). To account for our experimental findings, we propose the following scenario.

The band structure of coupled Gr/MoSe$_2$ can be, in first approximation, considered as the superposition of the bands of the different materials [23, 86] separated by a subnanometer “van der Waal gap”. The relative position of the band structure is determined by the offsets between the Dirac point of graphene and the valence (conduction) band maximum (minimum) of MoSe$_2$. In the dark, without loss of generality we may assume that both graphene and MoSe$_2$ are quasi-neutral. When visible light is shined onto Gr/MoSe$_2$, electron-hole pairs and excitons are mainly created in MoSe$_2$ since the lat-
ter absorbs significantly more than graphene. At this point, given the very close electron and hole effective masses in MoSe$_2$ and graphene, the rates of photoinduced electron and hole transfer from MoSe$_2$ to graphene will chiefly depend on the the wavefunction overlap, the density of states in graphene and the energy difference between the band extrema in MoSe$_2$ and graphene.

Assuming the Dirac point lies closer to the valence band maximum than to the conduction band minimum, the photoinduced electron current to graphene should exceed the hole current immediately after sample illumination, consistently with our experimental findings. Due to the small density of states of graphene near its Dirac point, n-doped graphene increases significantly. The vanishing of the net current transfer to graphene then results from the cancellation of the photoinduced electron (Fig. 7(a)) and hole (Fig. 7(b)) currents. In vacuum and in the absence of adsorbates, this saturation is reached in the steady state at any Φ_{ph}. In ambient air, electrons may escape from graphene (in Gr/MoSe$_2$/SiO$_2$) or MoSe$_2$ (in MoSe$_2$/Gr/SiO$_2$) resulting at intermediate Φ_{ph} in a steady state E_F^{Gr} below the Φ_{ph}-independent saturation value observed in vacuum (see Fig. 7(b)).

The very similar saturation values of E_F^{Gr} uncovered in several Gr/MoSe$_2$ samples both in ambient air and vacuum (see Fig. 6) suggest an upper limit set by the intrinsic band offsets between graphene and MoSe$_2$, as well as the electron and hole tunnelling efficiencies. The latter be affected by extrinsic materials properties, such as the presence of band tails states as well as other traps and defects. Systematic studies using other TMDs with distinct band offsets relative to graphene, and controlled amounts of impurities and/or defects will help determining the shares of extrinsic and intrinsic effects in the net charge transfer saturation. Nevertheless, our work is a step towards optical determination of band offsets in van der Waals heterostructures. Confronted to electron transport measurements, or angle-resolved photomission spectroscopy, our Raman-based approach may unveil the impact of strong bandgap renormalization and exciton binding energy on the optoelectronic properties of TMDs and related vdWHs.

B. Impact of excitonic effects

Indeed, although PL measurements make it clear that excitons are formed in MoSe$_2$, the impact of excitonic effects on interlayer coupling and more generally on the optoelectronic response of vdWH remains elusive.

Upon optical excitation well-beyond the optical bandgap (as it is the case in Fig. 1(b)), free electron-hole pairs and tightly bound excitons can be formed in Gr/MoSe$_2$. Despite exciton formation being highly efficient and occurring on sub-picosecond to a few picosecond timescales, our PL measurements have revealed equally strong band-edge exciton lifetimes in Gr/MoSe$_2$ (see Fig 2). Therefore the observed interlayer coupling processes may certainly involve band-edge excitons but may also imply direct hot carrier and/or higher-order exciton transfer to graphene. To assess the contribution of out of equilibrium effects, we have combined PL and Raman measurements in ambient air and in vacuum on a Gr/WS$_2$/SiO$_2$ vdWH at two different laser photon energies near the B exciton (2.33 eV) and slightly below the A exciton (1.96 eV). In the latter case only A excitons can be formed by means of an upconversion process (see Supplemental Material, Fig. S14). For both incoming photon energies, we observe strong PL quenching as well as photoinduced doping, very similar to the observations discussed in Fig. 2 for Gr/MoSe$_2$ vdWHs. These observations indicate that ICT and IET processes in GR/TMD vdWHs mainly involve band-edge TMD excitons. This result illustrates the unusually strong excitonic effects in TMDs, which must be taken into consideration when...
FIG. 7. Sketches, in momentum-energy space, of interlayer (a) electron and (b) hole transfer, (c) Dexter-type and (d) Förster-type energy transfer processes from monolayer TMD to graphene. Band-edge (A) excitons are symbolized by the blue shaded area with electron in red and hole in dark blue. The curved dark yellow arrows represent ultrafast energy relaxation of transferred carriers in graphene down to the Fermi level. In the case of balanced electron and hole flows to graphene, the charge transfer processes effectively result in energy transfer.

adapting free-carrier optoelectronic models to the case of vdWH-based devices.

C. Charge vs energy transfer

Finally, we address the competition between ICT and IET. Let us first recall that Raman measurements probe the steady state charge carrier densities in our samples and do not make it possible to extract electron and hole transfer rates. Figure 6 summarizes our findings by confronting the dependence of E_{Gr} and I_{PL} on Φ_{ph} in sample S2. The key implications of our combined PL and Raman study are that the short exciton lifetime in Gr/MoSe$_2$ is (i) independent on Φ_{ph} (over nearly four orders of magnitude), (ii) unaffected by the environmental conditions (air vs vacuum), and, crucially by (iii) the presence (in air, at low Φ_{ph}) or absence (in vacuum at any Φ_{ph}, or in air at high Φ_{ph}) of net photoinduced ICT (here, electron transfer from MoSe$_2$ to graphene, see also Supplemental Material [52], Fig. S13).

Our data demonstrate that albeit electrons and holes may transfer to graphene, ICT processes alone (even in the case of balanced electron and hole transfer) cannot be responsible for the massive PL quenching and linear rise of the PL intensity vs Φ_{ph} (see Sec. III). First, although balanced ICT and Dexter-type IET follow a priori two distinct microscopic mechanisms (see Fig. 7(a-c)), both processes imply charge tunnelling (i.e., wavefunction overlap) and result in a similar final state where the energy of an exciton population is transferred to graphene. Interestingly, it was recently predicted in porphyrin/graphene hybrids that Dexter ET is largely inefficient compared to Förster ET even at sub-nanometer distances [95]. In the case of Gr/TMD vdWHs, the large in-plane dipoles in monolayer TMDs [96] should further favor Förster energy transfer to graphene. Along this line, the exciton lifetime measured in decoupled Gr/MoSe$_2$/SiO$_2$ (see Fig. 2(c)) is of the same order of magnitude yet appreciably shorter than in MoSe$_2$/SiO$_2$, an effect that may tentatively be assigned to long-range Förster energy transfer [97].
VII. CONCLUSION AND OUTLOOK

We have exploited complementary insights from micro-Raman and photoluminescence spectroscopies to disen- tangle contributions from interlayer charge and energy transfer in graphene/TMD heterostructures and estab- lish the key role of energy transfer. These general findings advance our fundamental understanding of light-matter interactions at atomically-thin heterointerfaces and have far reaching consequences for applications.

Indeed the Gr/TMD system is a ubiquitous building block in emerging optoelectronic nanodevices. Having es- tablished that edge TMD excitons transfer to graphene with near-unity efficiency, a key challenge is now to sepa- rate the electron-hole pairs formed in graphene [98] and enhance photoconductivity and/or photocurrent genera- tion before these charge carriers release their energy into heat on a sub-picosecond timescale [99, 100].

The competition between interlayer charge and energy transfer is also a matter of active debate in related sys- tems, e.g. in TMD/TMD type II heterojunctions [32, 37], that are of high relevance for optoelectronics [10] and valleytronics [31]. We have shown that fingerprints of interlayer charge transfer are encoded in the Raman response of TMD monolayers.

Combining Raman mea- surements and photoluminescence spectroscopy of intra- and inter-layer excitons should provide decisive insights into exciton dynamics in these atomically-thin semiconductor heterostructures.

More broadly, van der Waals heterostructures are also emerging as a platform to explore many-body effects and new regimes of strong- and/or chiral light-matter interactions. Further developments in these emerging areas will benefit from the present insights into interlayer charge and energy transfer.

Appendix A: Experimental details

Gr/MoSe$_2$ vdWHs were prepared onto Si wafers cov- ered with a 90 nm thick SiO$_2$ epilayer using a viscoelatic transfer technique [101]. The Gr/MoSe$_2$ vdWHs were first characterized by atomic force microscopy (AFM) and then by micro-PL and micro-Raman measurements. As-prepared samples (such as sample S_1 discussed above, see Fig. 1(a)) as well as annealed samples (1 hour at 150°C and 2 hours at 200°C in high vacuum) such as sample S_3 were studied. Although more “pockets” (see Supplemental Material [32, Fig. S1] are present on as-prepared samples, we could observe, both in annealed and as-prepared samples, extended (> 25 μm2) coupled Gr/MoSe$_2$ domains with smooth and uniform interfaces due to a self-cleaning process [11].

PL and Raman studies were carried out in ambient air and in high vacuum, in a backscattering geometry, using a home-built confocal microscope. Unless otherwise noted, the samples were optically excited using a single longitudinal mode, linearly polarized, 2.33 eV (532 nm) continuous wave laser. The collected light was dispersed onto a charged-coupled device (CCD) array by a single (500 nm in focal length) monochromator equipped with a 150 (resp. 900 for graphene, 2400 for MoSe$_2$) grooves/mm grating for PL (resp. Raman) measure- ments. Spectral resolutions of 1.4 cm$^{-1}$ and 0.6 cm$^{-1}$ were obtained for Raman measurements with the 900 and 2400 grooves/mm grating, respectively. The sample holder was mounted onto a x-y-z piezoelectric stage, allowing hyperspectral imaging. Time-resolved PL measure- ments were performed on the same setup using a pulsed supercontinuum laser, with a repetition rate tun- able from 1.95 MHz up to 78 MHz. The unpolarized out- put of the supercontinuum laser at 1.96 eV (633 nm) was selected using an acousto-optic tunable filter. PL decays were obtained using an avalanche photodiode coupled to a time-tagged, time-correlated single photon counting board. We have employed a very broad range of photon fluxes resulting in exciton densities below and beyond the values achieved in earlier works [18, 20, 59]. The incident photon flux Φ_{ph} is obtained by measuring the laser power and the area of the laser spot. For instance, with a measured optical power of 1 μW at the objective at 2.33 eV, we obtain a photon flux of 2×10^{21} cm$^{-2}$ s$^{-1}$ using a 100x objective with a numerical aperture of 0.9. The Raman peaks are fit using Lorentzian and modified Lorentzian [48, 56] profiles for the G- and 2D-mode features, respectively, and Voigt profiles (with a fixed Gaussian width taking into account our spectral resolution) for MoSe$_2$ features. Therefore in Fig. 4(b), the linewidth Γ_{A1}' has to be understood as the Lorentian FWHM extracted from a Voigt fit.

ACKNOWLEDGMENTS

We thank D.M. Basko, C. Robert, D. Lagarde, X. Marie, A. Ouerghi, G. Schull and C. Genet for fruitful discussions. We are grateful to J. Chrétien for his early contribution to experimental measurements, to H. Ma- jjad and M. Rastei for help with AFM measurements, and to the StNano clean room staff and M. Romeo for technical assistance. We acknowledge financial support from the Agence Nationale de la Recherche (under grant H2DH ANR-15-CE24-0016) and from the LabEx NIE (under Grant ANR-11-LABX-0058-NIE within the Investissement dAvenir program ANR-10-IDEX-0002-02). S.B. is a member of Institut Universitaire de France (IUF).

[1] Th Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Annalen der physik 437, 55 (1948)

[2] Rienk van Grondelle, Jan P. Dekker, Tomas Gillbro,
and Villy Sundstrom, “Energy transfer and trapping in photosynthesis,” Biochimica et Biophysica Acta (BBA) - Bioenergetics 1187, 1 – 65 (1994)

[3] Burak Guzeltekin and Hilmi Volkan Demir, “Near-field energy transfer using nanoemitters for optoelectronics,” Advanced Functional Materials 26, 8158–8177 (2016)

[4] Alexander Govorov, Pedro Ludwig Hernandez Martinez, and Hilmi Volkan Demir, Understanding and Modeling FRET (Springer, 2016).

[5] Volkhard May and Oliver Kühn, Charge and energy transfer dynamics in molecular systems (John Wiley & Sons, 2008).

[6] Simon M Sze and Kwok K Ng, Physics of semiconductor devices (John Wiley & Sons, 2006).

[7] David L Dexter, “A theory of sensitized luminescence in solids,” The Journal of Chemical Physics 21, 836–850 (1953).

[8] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013)

[9] KS Novoselov, A. Mishchenko, A. Carvalho, and AH Castro Neto, “2D materials and van der Waals heterostructures,” Science 353, 64 (2016)

[10] Kin Fai Mak and Jie Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016)

[11] SJ Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, DC Elias, KS Novoselov, LA Ponomarenko, AK Geim, and R. Gorbachev, “Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices,” Nat. Mater. 11, 764–767 (2012)

[12] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009)

[13] Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105, 136805 (2010)

[14] Andrea Splendiani, Liang Sun, Yuanbo Zhang, Tianshu Li, Jionghwan Kim, Chi-Yung Chim, Giulia Galli, and Feng Wang, “Emerging Photoluminescence in Monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010)

[15] Liam Britnell, RM Ribeiro, A. Eckmann, R Jalil, BD Belle, A Mishchenko, Y-J Kim, RV Gorbachev, T Georgiou, SV Morozov, et al., “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013)

[16] Woo Jong Yu, Yuan Liu, Hailing Zhou, Anxiang Yin, Zheng Li, Yu Huang, and Xiangfeng Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8, 952–958 (2013)

[17] Kalloł Roy, Medini Padmanabhan, Srijit Goswami, T. Phanindra Sai, Gopalakrishnan Ramalingam, Srinivasan Raghavan, and Arindam Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photore sponsive memory devices,” Nat. Nanotechnol. 8, 826–830 (2013)

[18] Wenjing Zhang, Chih-Piao Chu, Jing-Kai Huang, Chang-Hsiao Chen, Meng-Lin Tsai, Yung-Huang Chang, Chi-Te Liang, Yu-Ze Chen, Yu-Lun Chueh, Jr-Hau He, Mei-Yin Chou, and Lain-Jong Li, “Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures,” Sci. Rep. 4 (2014), 10.1038/srep03826

[19] Domenico De Fazio, Ilya Goykhman, Duhee Yoon, Matteo Bruna, Anna Eiden, Silvia Milana, Ugo Sassi, Matteo Barbone, Dumitru Dumcenco, Kolyo Marinov, Andreas Kris, and Andrea C. Ferrari, “High responsivity, large-area graphene/MoS2 flexible photodetectors,” ACS Nano 10, 8525–8526 (2016)

[20] M Massicotte, P Schmidt, F Vialla, KG Schäder, A Reserbat-Plantey, K Watanabe, T Taniguchi, KJ Tielrooij, and FHL Koppens, “Picosecond photore sponse in van der Waals heterostructures.” [Nat. Nanotechnol. 11, 42–46 (2016)]

[21] Kathleen M McCreary, Aubrey T Hambicki, Jeremy T Robinson, Enrique Cobas, James C Cubertson, Adam L Friedman, Glenn G Jernigan, and Berend T Jonker, “Large-area synthesis of continuous and uniform MoS2 monolayer films on graphene,” Adv. Funct. Mater. 24, 6449–6454 (2014)

[22] Gi Woong Shim, Kwnjoo Yoo, Seung-Bum Seo, Jong-Woo Shin, Dae Yool Jung, Il-Suk Kang, Chi Won Ahn, Byung Jin Cho, and Sung-Yool Choi, “Large-area single-layer MoSe2 and its van der Waals heterostruc tures,” ACS Nano 8, 6655–6662 (2014)

[23] Debra Pierucci, Hugo Henck, Jose Avila, Adrian Balan, Carl H Naylor, Gilles Patriarche, Yannick J Duppe, Mathieu G Silly, Fausto Sirotti, AT Charlie Johnson, et al., “Band alignment and minibands in monolayer MoS2-graphene van der Waals heterostructures,” Nano Lett. (2016).

[24] Jiaqi He, Nardeep Kumar, Matthew Z Bellus, Hsin-Ying Chiu, Dawei He, Yongsheng Wang, and Hui Zhao, “Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5 (2014).

[25] Hugo Henck, Debora Pierucci, Julien Chaste, Carl H. Naylor, Jose Avila, Adrian Balan, Mathieu G. Silly, Maria C. Asensio, Fausto Sirotti, A. T Charlie Johnson, Emmanuel Lhuillier, and Abdellah Ouergi, “Electrolytic phototransistor based on graphene-mos2 van der waals p-n heterojunction with tunable photore sponse,” Applied Physics Letters 109, 113013 (2016)

[26] FHL Koppens, T Mueller, Ph Avouris, AC Ferrari, MS Vitiello, and M Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014)

[27] Kin Fai Mak, Long Ju, Feng Wang, and Tony F Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152, 1341–1349 (2012).

[28] Klaas-Jan Tielrooij, Lukasz Piatkowski, Mathieu Mascicotte, Achim Woesnner, Qiong Ma, Yongjin Lee, Kevin Scott Myhro, Chun Ning Lau, Pablo Jarillo-Herrero, Niek F van Hulst, et al., “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015)

[29] Gang Wang, Alexey Chernikov, Mikhail M Glazov, Tony F Heinz, Xavier Marie, Thierry Amand, and Bernhard Urbaszek, “Excitons in atomically thin transition metal dichalcogenides,” arXiv preprint arXiv:1707.05863 (2017)

[30] Fengnian Xia, Han Wang, Di Xiao, Madan Dubey, and Ashwin Ramasubramaniam, “Two-dimensional mate-
rrial nanophotonics,” [Nat. Photonics 8, 899–907 (2014)].

[31] John R Schaubley, Hongyi Yu, Genevieve Clark, Pasqual Rivera, Jason S Ross, Kyle L Seyler, Wang Yao, and Xiaodong Xu, “Valleytronics in 2D materials,” [Nature Reviews Materials 1, 16055 (2016)].

[32] Frank Ceballos, Matthew Z Bellus, Hsin-Ying Chiu, and Hui Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure,” [ACS Nano 8, 12717–12724 (2014)].

[33] Xiaoping Hong, Jonghwan Kim, Su-Fei Shi, Yu Zhang, Chenhao Jin, Yinghui Sun, Sefaatinn Tongay, Junqiao Wu, Yanfeng Zhang, and Feng Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” [Nat. Nanotechnol. 9, 682–686 (2014)].

[34] Hui Fang, Corin Battaglia, Carla Carraro, Slavomir Nemšak, Burak Ozdol, Jeong Seuk Kang, Hans A. Bachtel, Sujay B. Desai, Florian Kronast, Ahmet A. Unal, Giuseppina Conti, Catherine Conlon, Gunnar K. Palsson, Michael C. Martin, Andrew M. Minor, Charles S. Fadley, Eli Yablonovitch, Roya Maboudian, and Ali Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” [Proc. Natl. Acad. Sci. U. S. A. 111, 6198–6202 (2014)].

[35] Chul-Ho Lee, Gwan-Hyoung Lee, Arend M. van der Zande, Wenchao Chen, Yilei Li, Minyong Han, Xu Cui, Javey, “Strong interlayer coupling in van der Waals heterostructures,” [Nano Lett. (2016)].

[36] Pasqual Rivera, John R Schaubley, Aaron M Jones, Jason S Ross, Sanfeng Wu, Grant Avizaid, Philip Kliment, Kyle Seyler, Genevieve Clark, Nirmal J Ghimire, et al., “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” [Nat. Commun. 6 (2015)].

[37] Daichi Kozawa, Alexandra Carvalho, Ivan Verzhbit-skii, Francesco Giustiniano, Yuhei Miyauchi, Shinichiro Mouri, AH Castro Neto, Kazunari Matsuda, and Goki Eda, “Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures,” [Nano Lett. (2016)].

[38] Cyrielle Roquelet, Damien Garrot, Jean-Sébastien Laurent, Christophe Voisin, Valérie Alain-Rizzo, Ph Roussignol, JA Delaire, and Emmanuelle Deleporte, “Quantitative efficiency of energy transfer in noncovalent carbon nanotube/porphyrin compounds,” [Appl. Phys. Lett. 97, 141918 (2010)].

[39] Zheyuan Chen, Stéphane Berciaud, Colin Nuckolls, Tony F Heinz, and Louis E Brus, “Energy transfer from individual semiconductor nanocrystals to graphene,” [ACS Nano 4, 2964–2968 (2010)].

[40] L. Gaudreau, KJ Tielrooij, GEDK Prawiroatmodjo, J Osmond, FJ García de Abajo, and FHL Koppe ns, “Universal distance-scaling of nonradiative energy transfer to graphene,” [Nano Lett. 13, 2030–2035 (2013)].

[41] Julia Tsiler, Thomas Oeckinghaus, Rainer J Sthr, Roman Kolesov, Rolf Reuter, Friedemann Reinhard, and Jörg Wrachtrup, “Single defect center scanning near-field optical microscopy on graphene,” [Nano Lett. 13, 3152–3156 (2013)].

[42] François Federer, Guillaume Froehlicher, Michel Naslowski, Silvia Pedetti, Ather Mahmood, Bernard Doulin, Serín Park, Jeong-O Lee, David Halley, Benoît Dubertret, et al., “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” [Nano Lett. 15, 1252–1258 (2015)].

[43] Ferry Prins, Aaron J Goodman, and William A Tisdale, “Reduced dielectric screening and enhanced energy transfer in single-and few-layer MoS2,” [Nano Lett. 14, 6087–6091 (2014)].

[44] Archana Raja, Andrs Montoya-Castillo, Johanna Zultak, Xiao-Xiao Zhang, Ziliang Ye, Cyrielle Roquelet, Daniel A Chenet, Arend M van der Zande, Pishnane Huang, Steffen Jockusch, et al., “Energy transfer from quantum dots to graphene and MoS2: The role of absorption and screening in two-dimensional materials,” [Nano Lett. 16, 2328–2333 (2016)].

[45] Jun Yan, Yuanbo Zhang, Philip Kim, and Aron Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” [Phys. Rev. Lett. 98, 166802 (2007)].

[46] Simone Pisana, Michele Lazzeri, Cinzia Casiraghi, Kostya S. Novoselov, A. K. Geim, Andrea C. Ferrari, and Francesco Mauri, “Breakdown of the adiabatic born-oppenheimer approximation in graphene,” [Nat. Mater. 6, 198–201 (2007)].

[47] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” [Nat. Nanotechnol. 3, 210–215 (2008)].

[48] Guillaume Froehlicher and Stéphane Berciaud, “Raman spectroscopy of electrochemically gated graphene transistors: Geometrical capacitance, electron-phonon, electron-electron, and electron-defect scattering,” [Phys. Rev. B 91, 205413 (2015)].

[49] Summin Ryu, Li Liu, Stéphane Berciaud, Young-Jun Yu, Haitao Liu, Philip Kim, George W. Flynn, and Louis E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” [Nano Lett. 10, 4944–4951 (2010)].

[50] Biswanath Chakraborty, Achintya Bera, D. V. S. Muthu, Sonnath Bhowmick, U. V. Waghmare, and A. K. Sood, “Symmetry-dependent phonon renormalization in monolayer MoS2 transistor,” [Phys. Rev. B 85, 161403 (2012)].

[51] Bastian Miller, Eric Parzinger, Anna Vernickel, Alexander W Holleitner, and Ursula Wurstbauer, “Phototagating of mono-and few-layer MoS2,” [Appl. Phys. Lett. 106, 122103 (2015)].

[52] See Supplemental Material for details on Atomic force microscopy, Raman spectra of graphene and MoSe2 for increasing Tph, details on spatially-resolved Raman studies, additional photoluminescence and Raman measurements, discussion on the frequency of the Raman 2D-mode feature in Gr/MoS2, discussion on optical interference effects. [53] Andrea C. Ferrari and Denis M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” [Nat. Nanotechnol. 8, 235–246 (2013)].

[54] Yilei Li, Alexey Chernikov, Xian Zhang, Albert Rigosi, Heath M. Hill, Arend M. van der Zande, Daniel A. Chenet, En-Min Shih, James Hone, and Tony F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” [Phys. Rev. B 90, 205222 (2014)].

[55] Ji Eun Lee, Guanghyun Ahn, Jihye Shim, Young Sik Lee, and Sumin Ryu, “Optical separation of mechanc-
tical strain from charge doping in graphene," Nat. Commun. 3, 1024 (2012).

[56] Dominik Metten, François Federspiel, Michelangelo Romeo, and Stéphane Berciaud, “All-optical blister test of suspended graphene using micro-Raman spectroscopy,” Phys. Rev. Appl. 2, 054008 (2014).

[57] Gwanghyun Ahn, Hye Ri Kim, Taeg Yeoung Ko, Kyoungjun Choi, Kenji Watanabe, Takashi Taniguchi, Byung Hee Hong, and Sumin Ryu, “Optical probing of the electronic interaction between graphene and hexagonal boron nitride,” ACS Nano 7, 1533–1541 (2013).

[58] F. Forster, A. Molina-Sanchez, S. Engels, A. Epping, K. Watanabe, T. Taniguchi, L. Wirtz, and C. Stampfer, “Dielectric screening of the Kohn anomaly of graphene on hexagonal boron nitride,” Phys. Rev. B 88, 085419 (2013).

[59] Keliang He, Nardeep Kumar, Liang Zhao, Zefang Wang, Kin Fai Mak, Hui Zhao, and Jie Shan, “Tightly Bound Excitons in Monolayer WSe₂,” Phys. Rev. Lett. 113, 026803 (2014).

[60] Miguel M. Ugeda, Aaron J. Bradley, Su-Fei Shi, Felipe H. da Jornada, Yi Zhang, Diana Y. Qiu, Wei Ruan, Sung-Kwan Mo, Zahid Hussain, Zhi-Xin Shen, Feng Wang, Steven G. Louie, and Michael F. Crommie, “Gi-ant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Commun. 5, 1091 (2014).

[61] Andreas V Stier, Nathaniel P Wilson, Genevieve Clark, Xiaodong Xu, and Scott A Crooker, “Probing the influence of dielectric environment on excitons in monolayer WSe₂: Insight from high magnetic fields,” Nano Letters 16, 7054–7060 (2016).

[62] Archana Raja, Andrey Chaves, Jaeun Yu, Ghidewon Arefe, Heather M Hill, Albert F Rigosi, Timothy C Berkelbach, Philipp Nagler, Christian Schüller, Tobias Korn, et al., “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nature Communications 8, 15251 (2017).

[63] F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. La- garde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic linewidth approach ing the homogeneous limit in monolayer transition metal dichalcogenide monolayers,” Phys. Rev. X 7, 021026 (2017).

[64] Obafunso A Ajavy, Jenny V Ardelean, Gabriella D Shep- herd, Jue Wang, Abhinandan Antony, Takeshi Taniguchi, Kenji Watanabe, Tony F Heinz, Stefan Strauf, X-Y Zhu, and James C Hone, “Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers,” 2D Materials 4, 031011 (2017).

[65] Nardeep Kumar, Qiamnan Cui, Frank Ceballos, Dawei He, Yongsheng Wang, and Hui Zhao, “Exciton-exciton annihilation in MoSe₂ monolayers,” Phys. Rev. B 89, 125427 (2014).

[66] Shinichiro Mouri, Yuhei Miyauchi, Minglin Toh, Wei-jie Zhao, Goki Eda, and Kazunari Matsuda, “Nonlin- ear photoluminescence in atomically thin layered WSe₂ arising from diffusion-assisted exciton-exciton annihilation,” Phys. Rev. B 90, 155449 (2014).

[67] Hongyan Shi, Rusen Yan, Simone Bertolazzi, Jacopo Brivio, Bo Gao, Andras Kis, Debdeep Jena, Hulí Grace Xing, and Libai Huang, “Exciton dynamics in suspended monolayer and few-layer mos2 2d crystals,” ACS Nano 7, 1072–1080 (2013).

[68] C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Las- sagen, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).

[69] Stéphane Berciaud, Sunmin Ryu, Louis E. Brus, and Tony F. Heinz, “Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers,” Nano Lett. 9, 346–352 (2009).

[70] Alexander A Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10, 569–581 (2011).

[71] Tsuneya Ando, “Anomaly of optical phonon in mono- layer graphene,” J. Phys. Soc. Jpn. 75, 124701 (2006).

[72] Jason S Ross, Sanféng Wu, Hongyi Yu, Nirmal J Ghimire, Aaron M Jones, Grant Aivazian, Jiaqiang Yan, David G Mandrus, Di Xiao, Wang Yao, et al., “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).

[73] P. Soubelet, A. E. Bruchhausen, A. Fainstein, K. No- gajewski, and C. Faugeras, “Resonance effects in the Raman scattering of monolayer and few-layer MoSe₂,” Phys. Rev. B 93, 155407 (2016).

[74] Xin Zhang, Xiao-Fen Qiao, Wei Shi, Ji, Shang-Bin Wu, De-Sheng Jiang, and Ping-Heng Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalo- genides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757 (2015).

[75] Kai-Ge Zhou, Freddie Withers, Yang Cao, Sheng Hu, Geliang Yu, and Cinzina Casiraghi, “Raman modes of MoSe₂ used as fingerprint of van der waals interactions in 2-D crystal-based heterostructures,” ACS Nano 8, 9914–9924 (2014).

[76] Xin Luo, Yanyuan Zhao, Jun Zhang, Qihua Xiong, and Su Ying Quek, “Anomalous frequency trends in MoS₂ thin films attributed to surface effects,” Phys. Rev. B 88, 075320 (2013).

[77] Guillaume Froehlicher, Etienne Lorchat, François Fer- nique, Chaitanya Joshi, Alejandro Molina-Sánchez, Ludger Wirtz, and Stéphane Berciaud, “Unified description of the optical phonon modes in N-layer MoTe₂,” Nano Lett. 15, 6481–6489 (2015).

[78] The observed upshift may in part stem from van der Waals coupling between the graphene and MoSe₂ monolayers [74, 77] (similarly to the case of TMD bilayers), as well as from surface effects [75, 76], i.e. in the present case, slightly larger force constants between Mo and Se atoms in Gr/MoSe₂/SiO₂ than in air/MoSe₂/SiO₂. However both kinds of effects would not lead to the significant narrowing of the A₁ feature observed in Gr/MoSe₂/SiO₂ and cannot account for the differential effects shown in Fig. 3.

[79] Hiram J. Conley, Bin Wang, Jed I. Ziegler, Richard F. Haglund, Sokrates T. Pantelides, and Kirill I. Bolotin, “Bandgap Engineering of Strained Monolayer and Bi- layer MoSe₂,” Nano Lett. 13, 3626–3630 (2013).

[80] Dattatray J Late, Sharmila N Shirodkar, Umesh V Waghmare, Vinayak P Dravid, and CNR Rao, “Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂,” ChemPhysChem 15, 1592–1598 (2014).

[81] Sefaattin Tongay, Jian Zhou, Can Ataca, Jonathan Liu, Jeong Seuk Kang, Tyler S Matthews, Long You, Jingbo Li, Jeffrey C Grossman, and Junqiao Wu, “Broad-range
modulation of light emission in two-dimensional semiconductors by molecular physisorption gating.” [Nano Lett. 13, 2831–2836 (2013)]

[82] Fabian Cadiz, Cedric Robert, Gang Wang, Wilson Kong, Xi Fan, Mark Blei, Delphine Lagarde, Maxime Gay, Marco Manca, Takashi Taniguchi, Kenji Watanabe, Thierry Amand, Xavier Marie, Pierre Renucci, Sefaattin Tongay, and Bernhard Urbaszek, “Ultra-low power threshold for laser induced changes in optical properties of 2d molybdenum dichalcogenides,” [2D Materials 3, 045008 (2016)]

[83] Young-Jun Yu, Yue Zhao, Sumin Ryu, Louis E Brus, Kwang S Kim, and Philip Kim, “Tuning the graphene work function by electric field effect.” [Nano Lett. 9, 3430–3434 (2009)]

[84] Yufeng Liang, Shouting Huang, Ryan Soklaski, and Li Yang, “Quasiparticle band-edge energy and band offsets of monolayer molybdenum and tungsten chalcogenides.” [Appl. Phys. Lett. 103, 042106 (2013)]

[85] Neil R. Wilson, Paul V. Nguyen, Kyle Seyler, Pasqual Rivera, Alexander J. Marszal, Zachary P. L. Laker, Gabriel C. Constantinescu, Viktor Kandyba, Alexei Barinov, Nicholas D. M. Hine, Xiaodong Xu, and David H. Cohden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures.” [Science Advances 3 (2017), 10.1126/sciadv.1601832]

[86] K. Kosmider and J. Fernandez-Rossier, “Electronic properties of the MoS\textsubscript{2}-WS\textsubscript{2} heterojunction.” [Phys. Rev. B 87, 075451 (2013)]

[87] Andor Kormyos, Guido Burkard, Martin Mitra, Jaroslav Fabian, Viktor Zylyoni, Neil D Drummond, and Vladimir Falko, “k p theory for two-dimensional transition metal dichalcogenide semiconductors.” [2D Materials 2, 022001 (2015)]

[88] As a result, the relative magnitudes of the electron and hole flows, and the resulting steady state E_F are not exclusively determined by Φ_{ph} (compare data in Fig. 5 and see Supplemental Material [52], Fig. S1).

[89] Marco M. Furchi, Andreas Pospischil, Florian Libisch, Aaron M Jones, Hongyi Yu, John R Schaibley, Ji-Thibault Chervy, Stefano Azzini, Etienne Lorchat, Philipp Steinleitner, Philipp Merkl, Philipp Nagler, Andor Kormnyos, Guido Burkard, Martin Gmitra, Asa aodong Xu, “Excitonic luminescence upconversion in a monolayer of WSe\textsubscript{2},” Nano Letters 10.1126/sciadv.1601832.

[90] This conclusion is consistent with the fact that momentum conservation can be more easily fulfilled for an exciton than for a free charge carrier. Indeed, an exciton in the TMD can decay by transferring an electron or hole to a finite momentum state graphene leaving the other carrier in the TMD with the excess momentum (see Fig. 7(a,b)), whereas at room temperature, a free charge carrier near the band-edges would need extra momentum provided by defect or phonon scattering.

[91] Ermin Malic, Heiko Appel, Oliver T Hofmann, and Angel Rubio, “ Förster-induced energy transfer in functionalized graphene.” [The Journal of Physical Chemistry C 118, 9283–9289 (2014)]

[92] Jon A Schuller, Sinan Karaveli, Thaneen Schiros, Keliang He, Shuyan Yang, Ioannis Kymis, Jie Shan, and Rashid Zia, “Orientation of luminescent excitons in layered nanomaterials.” [Nature nanotechnology 8, 271–276 (2013)]

[93] Let us note that the PL data in Fig. 1(f) and Fig. 2(c) have been recorded on freshly made sample S1, before the data in Fig. 2(c)-(d). Aging of the air-exposed MoSe\textsubscript{2} layer in S1 is likely responsible for the fact that in Fig. 2(c)-(d), the PL intensity in MoSe\textsubscript{2}/SiO\textsubscript{2} is slightly smaller than in decoupled Gr/MoSe\textsubscript{2}/SiO\textsubscript{2}, wherein graphene acts as an efficient passivating layer.

[94] Adeas Brenneis, Louis Gaudreau, Max Seifert, Helmut Karl, Martin S Brandt, Hans Huebl, Jose A Garrido, Frank HL Koppens, and Alexander W Holleitner, “Ultrafast electronic readout of diamond nitrogenvacancy centres coupled to graphene.” [Nature nanotechnology 10, 135–139 (2015)]

[95] Jens Christian Johannsen, Soren Ulstrup, Federico Cilento, Alberto Crepaldi, Michele Zacchinigha, Cephise Cacho, I. C. Edmond Turcu, Emma Springate, Felix Fromm, Christian Raidel, Thomas Seyller, Fulvio Parmigiani, Marco Grioni, and Philip Hofmann, “Direct view of hot carrier dynamics in graphene.” [Phys. Rev. Lett. 111, 027403 (2013)]

[96] Isabella Gierz, Jesse C Petersen, Matteo Mitrano, Cephise Cacho, IC Edmond Turcu, Emma Springate, Alexander Stöhr, Axel Köhler, Ulrich Starke, and Andrea Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene.” [Nature materials 12, 1119–1124 (2013)]

[97] Andre Castellanos-Gomez, Michele Buscema, Rianda Molenaar, Vibhor Singh, Laurens Janssen, Herre S J van der Zant, and Gary A Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping.” [2D Mater. 1, 011002 (2014)]

[98] AV Kretinin, Y Cao, JS Tu, GL Yu, R Jalil, KS Novoselov, SJ Haigh, A Gholinia, A Mishchenko, M Loozada, et al., “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals.” [Nano Lett. 14, 3270–3276 (2014)]

[99] D. M. Basko, “Theory of resonant multiphonon Raman scattering in graphene.” [Phys. Rev. B 78, 125418 (2008)]

[100] Stéphane Berciaud, Xianglong Li, Han Htoo, Louis E Brus, Stephen K. Doorn, and Tony F. Heinz, “Intrinic line shape of the Raman 2D-mode in freestanding graphene monolayers.” [Nano Lett. 13, 3517 (2013)]

[101] Nobuhiro Mitoma, Ryo Kouchi, and Katsumi Tanigaki, “Photo-oxidation of graphene in the presence of water,” [arXiv:1701.07972 (2017)]
[106] J. Maultzsch, S. Reich, and C. Thomsen, “Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion,” Phys. Rev. B 70, 155403 (2004).

[107] Pedro Venezuela, Michele Lazzeri, and Francesco Mauri, “Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands,” Phys. Rev. B 84, 035433 (2011).

[108] Hannu-Pekka Komsa and Arkady V. Krasheninnikov, “Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles,” Phys. Rev. B 88, 085318 (2013).

[109] Duhee Yoon, Hyerim Moon, Young-Woo Son, Jin Sik Choi, Bae Ho Park, Young Hun Cha, Young Dong Kim, and Hyeonsik Cheong, “Interference effect on Raman spectrum of graphene on SiO$_2$/Si,” Phys. Rev. B 80, 125422 (2009).

[110] Song-Lin Li, Hisao Miyazaki, Haisheng Song, Hiromi Kuramochi, Shu Nakahara, and Kazuhiro Tsukagoshi, “Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates,” ACS Nano 6, 7381–7388 (2012).

[111] Michele Buscema, Gary A Steele, Herre SJ van der Zant, and Andres Castellanos-Gomez, “The effect of the substrate on the raman and photoluminescence emission of single-layer MoS$_2$,” Nano Res. 7, 561–571 (2014).

[112] Guillaume Froehlicher, Etienne Lorchat, and Stéphane Berciaud, “Direct versus indirect band gap emission and exciton-exciton annihilation in atomically thin molybdenum ditelluride (MoTe$_2$),” Phys. Rev. B 94, 085429 (2016).
Supplemental Material

Appendix S1: Additional Results on Sample S₁

S1.1. Atomic force microscopy

FIG. S1. (a) Optical image of the sample presented in the main text (denoted S₁ in Fig. 4). (b) Atomic force microscopy image of the black square in (a). The coupled and decoupled regions are highlighted with red and blue dashed lines, respectively. In the coupled part, the interface between the two layers is free of contamination and is atomically flat due to the so-called “self-cleaning” mechanism [11, 102]. On the other hand, the interface in the decoupled part shows contamination pockets.
FIG. S2. Raman spectra corresponding to the data in Fig. 2. Measurements are performed in ambient conditions, at a photon energy $E_L = 2.33$ eV, for increasing values of incident photon flux (Φ_{ph}), between 3.3×10^{20} cm$^{-2}$ s$^{-1}$ and 4.2×10^{23} cm$^{-2}$ s$^{-1}$, for (a) Gr/SiO$_2$, (b) decoupled and (c) coupled Gr/MoSe$_2$. The spectra are vertically offset for clarity. Symbols are the experimental data and the solid lines are Lorentzian (G mode) and modified Lorentzian [103, 104] (2D mode) fits. A broad Lorentzian background has been subtracted from the G-mode spectra. We observe that the Raman spectra of Gr/SiO$_2$ and decoupled Gr/MoSe$_2$ are not affected by the increase of Φ_{ph}, whereas the Raman spectra of coupled Gr/MoSe$_2$ reveal clear fingerprints of photoinduced electron transfer (see main text).
S1.3. MoSe$_2$ Raman spectra for increasing Φ_{ph}

S1.3.1. A'_1 mode

FIG. S3. Raman spectra of the A'_1-mode feature in MoSe$_2$ recorded in ambient conditions at $E_L = 2.33$ eV for increasing values of incident photon flux (Φ_{ph}), between 3.3×10^{20} cm$^{-2}$ s$^{-1}$ and 6.7×10^{23} cm$^{-2}$ s$^{-1}$ for (a) Gr/SiO$_2$, (b) decoupled and (c) coupled Gr/MoSe$_2$. The spectra are vertically offset for clarity. The vertical gray dashed lines indicate the frequency measured at the lowest Φ_{ph}.
FIG. S4. Raman spectra of the \(E' \)-mode feature in \(\text{MoSe}_2 \) recorded in ambient conditions at \(E_L = 2.33 \text{ eV} \) for increasing values of incident photon flux (\(\Phi_{ph} \)), between \(3.3 \times 10^{20} \text{ cm}^{-2} \text{ s}^{-1} \) and \(6.7 \times 10^{23} \text{ cm}^{-2} \text{ s}^{-1} \) for (a) Gr/SiO\(_2\), (b) decoupled and (c) coupled Gr/MoSe\(_2\). The spectra are vertically offset for clarity. The vertical gray dashed lines indicate the frequency measured at the second lowest \(\Phi_{ph} \).

FIG. S5. Extracted (a) frequency \(\omega_{E'} \) and (b) FWHM \(\Gamma_{E'} \) from Fig. [S8] as a function of the incident photon flux \(\Phi_{ph} \). Note that the spectra at \(3.3 \times 10^{20} \text{ cm}^{-2} \text{ s}^{-1} \) were not fit due to a weak signal. No significant changes with \(\Phi_{ph} \) are observed.
S1.4. Spatially-resolved Raman studies

S1.4.1. Two-dimensional maps

FIG. S6. (a) Optical image of sample 1. (b) G-mode frequency ω_G and 2D-mode frequency ω_{2D} for the coupled part of the heterostructure (left) or for the rest of the graphene monolayer (either deposited on SiO$_2$ or decoupled from MoSe$_2$, right). (c) Correlations between the frequencies of the 2D- and G-mode features shown in (b). The (ω_{2D}, ω_G) points cluster around mean values of $(2674.7 \pm 1.8 \text{ cm}^{-1}, 1583.3 \pm 0.9 \text{ cm}^{-1})$ on decoupled Gr/MoSe$_2$ and Gr/SiO$_2$ (blue circles), and $(2690.4 \pm 1.7 \text{ cm}^{-1}, 1587.4 \pm 0.9 \text{ cm}^{-1})$ on coupled Gr/MoSe$_2$ (red squares). Their dispersions around these mean values follow linear correlations with a same slope of ≈ 1.5, that suggests the coexistence of both a native strain field (leading to a slope of ≈ 2.2) and unintentional doping heterogeneities (leading to a slope of $\approx 0.1 - 0.6$).
FIG. S7. (a) Optical image of sample S1. The red and blue dashed contours delimits the coupled and decoupled Gr/MoSe₂ regions. The line scans were recorded along the black arrow. The incident photon flux \(\Phi_{\text{ph}} \) are indicated. (b) G-mode frequency \(\omega_G \), (c) G-mode FWHM \(\Gamma_G \), (d) 2D-mode frequency \(\omega_{2D} \), (e) 2D-mode FWHM \(\Gamma_{2D} \) and (f) ratio between the integrated intensities of the 2D-and G-mode features \(I_{2D}/I_G \) along the line scan.
FIG. S8. Correlation between the 2D- and G-mode frequencies for the same line scans as in Fig. S3. The gray hatched area corresponds to the transition between decoupled and coupled Gr/MoSe$_2$. We notice that for decoupled Gr/MoSe$_2$, the (ω_{2D}, ω_G) points partly collapse onto a same line of slope ≈ 2.7 for all Φ_{ph}, while another set of points follows a linear correlation with a much reduced slope (≈ 0.1), typical from a slight electron doping [48]. In the coupled region, the (ω_{2D}, ω_G) points follow lines, again with a slope ≈ 2.7 that horizontally shift to higher ω_G for increasing Φ_{ph}. These observations are consistent with the conclusions drawn from the analysis of the Raman maps (see Figs. 1 and S3) and from the data in Fig. 2. This horizontal shift corresponds to the increase of doping with Φ_{ph}. The slope of ≈ 2.7 is in qualitative agreement with the typical slope of ≈ 2.2 measured for graphene under biaxial strain [56], and suggests negligible contributions from inhomogeneous doping in this restricted region (note that fingerprints of inhomogeneous doping are observed on the extended maps shown in Fig. S3).
Appendix S2: Additional results obtained on other samples

S2.1. Interlayer charge transfer in a Gr/MoSe$_2$ heterostructure with an initially hole-doped graphene layer

FIG. S9. (a) Frequency ω_G (red circles and lines, left axis) and FWHM Γ_G (blue circles and lines, right axis) of the G-mode feature measured on Sample S$_3$ (see Fig. 4a) at 2.33 eV under ambient conditions as a function of the incident photon flux Φ_{ph}. Lines are guides to the eye. (b) Correlations between the frequencies of 2D- and G-mode features under increasing photon flux Φ_{ph}. We observe a clear linear correlation along two lines with different slopes. At low Φ_{ph}, the frequencies follow a line of slope 0.56 corresponding to hole doping [48], while after crossing the charge neutrality point, the frequencies are aligned along a quasi-horizontal line corresponding to electron doping [48] (see also Fig. 2f). As a result, the graphene flake is initially hole-doped and photoexcited electrons are transferred from MoSe$_2$ to graphene.
S2.2. Laser-assisted desorption of molecular adsorbates under high vacuum

FIG. S10. Frequency of the Raman G mode (ω_G) measured as a function of time under high vacuum on MoSe$_2$/Gr/SiO$_2$ (sample S$_5$), Gr/MoSe$_2$/SiO$_2$ (sample S$_6$) (upper panel) and on a reference graphene monolayer sample on SiO$_2$ (lower panel). Measurements were performed at $\Phi_{ph} \sim 5 \times 10^{23}$ cm$^{-2}$ s$^{-1}$. The samples had not been illuminated before the measurements.
S2.3. Photoluminescence quenching on various samples

FIG. S11. Comparison between the photoluminescence spectra recorded on MoSe$_2$/SiO$_2$ and coupled Gr/MoSe$_2$ in ambient air at low $\Phi_{ph} < 10^{21}$ cm$^{-2}$ s$^{-1}$ on samples S$_1$, S$_3$, and S$_5$. Very similar quenching factors and PL lineshapes are observed. Note that sample S$_5$ is an inverted MoSe$_2$/Gr/SiO$_2$ heterostructure.

S2.4. Exciton dynamics in ambient air and in vacuum

FIG. S12. Integrated photoluminescence intensity normalized by Φ_{ph} recorded on Gr/MoSe$_2$/SiO$_2$ (sample S$_2$) in ambient air (filled symbols) and in high vacuum (open symbols) as a function of Φ_{ph}.
S2.5. Comparison between photoinduced doping and exciton dynamics

![Graph showing comparison between photoinduced doping and exciton dynamics](image)

FIG. S13. (a) Fermi energy in graphene and (b) integrated intensity of the MoSe$_2$ A exciton photoluminescence as a function of the Φ_{ph} for a forward (black squares) and backward (open red circles) sweep of Φ_{ph}. The measurements were recorded on sample S$_3$.

Figure S13 shows PL and Raman measurements recorded in ambient air on Sample S$_3$ (see also Fig. S9) along a forward sweep followed by a backward sweep of Φ_{ph}. As opposed to most samples studied in this work, the graphene layer is p-doped at low Φ_{ph} and we clearly see that E_{Gr}^F (extracted following the procedure described in the text) has a hysteretic behavior that we attribute to laser-assisted adsorption of electron trapping molecules, such as water or molecular oxygen [105]. Remarkably, the (linear) evolution of the PL intensity is non-hysteretic, and thus largely independent on the equilibrium value of E_{Gr}^F obtained at a given Φ_{ph}. These results further confirm that the ICT processes are likely not solely responsible for the massive PL quenching in Gr/MoSe$_2$, and that molecular adsorbates to affect the charge transfer dynamics.
S2.6. Measurements under quasi-resonant optical excitation

FIG. S14. PL and Raman measurements on a Gr/WS\textsubscript{2}/SiO\textsubscript{2} heterostructure. The PL spectra in (a) are recorded at Φ\textsubscript{ph} < 1020 cm-2 s-1 using a laser photon energy E\textsubscript{L} = 1.96 eV slightly below the optical bandgap of WS\textsubscript{2} \cite{54}. In these conditions, A excitons only can be formed by means of an upconversion process \cite{92, 93}. Strong PL quenching is observed when comparing the PL intensity from coupled Gr/WS\textsubscript{2}/SiO\textsubscript{2} (orange) to the PL intensity PL from a nearby decoupled Gr/WS\textsubscript{2}/SiO\textsubscript{2} region (purple). The sharp lines above (below) the laser line in the coupled Gr/WS\textsubscript{2}/SiO\textsubscript{2} spectra correspond to the anti-Stokes (Stokes) Raman modes of WS\textsubscript{2}. (b) Evolution of the Raman G-mode frequency ω\textsubscript{G} measured in vacuum as a function of time (similar to Fig. S10) on coupled Gr/WS\textsubscript{2}/SiO\textsubscript{2} at E\textsubscript{L} = 1.96 eV (Φ\textsubscript{ph} ∼ 5 × 1023 cm-2 s-1). For comparison, a reference measurement performed on the same sample on a Gr/SiO\textsubscript{2} region is also shown. The upshifted ω\textsubscript{G} relative to this reference is a clear fingerprint of photoinduced doping, as it has been thoroughly discussed on Gr/MoSe\textsubscript{2}.
Appendix S3: Discussion on the frequency of the 2D-mode feature

In this section, we briefly comment on the rigid upshift of the 2D-mode frequency observed in coupled Gr-MoSe$_2$. Figs. 1(i) and 2(d) in the main text, and Figs. S2-S5 reveal a rigid upshift of ≈ 15 cm$^{-1}$ in coupled Gr/MoSe$_2$ as compared to Gr/SiO$_2$ and decoupled Gr/MoSe$_2$. This upshift cannot be explained by a change of doping [48]. The 2D mode shows more sensitivity to mechanical strain than to doping. However, an upshift of the 2D-mode frequency of around 15 cm$^{-1}$ caused by strain would also lead to a G-mode upshift of around 7 cm$^{-1}$ [55, 56], irrespective of Φ_{ph}. Such a shift is clearly not observed in all the figures cited above. Interestingly, a similar upshift of the 2D-mode feature has been observed in graphene deposited of thick boron nitride (BN) flakes [57, 58]. For Gr/BN, the 2D-mode upshift has been tentatively explained by dielectric screening due to the thick BN substrate, which reduces the electron-phonon coupling at the K and K' points. It is not obvious that a similar explanation could hold for Gr/single-layer TMD because of the atomic thickness of the TMD. Since the 2D-mode feature interweaves the electron and phonon dispersions [53, 103, 104, 106, 107], another possible explanation could be the modification of the graphene band structure due to van der Waals coupling to MoSe$_2$. However, in the case of MoS$_2$/SLG, it has been calculated that the effects of the interaction on graphene band structure at Γ, K and K' can be neglected [23, 108]. This intriguing observation of significant 2D-mode stiffening in vdWH will need further theoretical investigations to be fully understood.

Appendix S4: Discussion on optical interference effects

Optical interferences are known to affect the PL and Raman scattering response of 2DM deposited on layered substrates such as Si/SiO$_2$ [109,112]. Here, we calculated a PL enhancement of only 5 % for air/MoSe$_2$/SiO$_2$/Si as compared to air/Gr/MoSe$_2$/SiO$_2$/Si. This value is much too low to explain the observed PL quenching. We also calculated that for Gr/MoSe$_2$, optical interference effects lead to a negligible enhancement of I_{2D}/I_G by about 4 % as compared to the case of Gr/SiO$_2$.