Investigating the Relationship between Mindful Parenting and Children's Executive Functions: The Mediating Role of Brain Waves

Somayeh Zarenezhad¹, Sakineh Soltani Kouhbanani²

¹. M.A. in Educational Psychology, Faculty of Psychology and Educational Sciences, Ferdowsi University of Mashhad, Iran
². Assistant Professor, Department of Educational and Counselling Psychology, Faculty of Educational Science and Psychology, Ferdowsi University of Mashhad, Iran

Background and Purpose: Mindful parenting enhances parenting capacity, stability, and adaptability, and strengthens parent-child relationships. The aim of this study was to investigate the relationship between mindful parenting and children’s executive functions with the mediating role of brain waves.

Method: This was a descriptive correlational study with a structural equation modeling method. The statistical population of the study included all 6-12-year-old children referred to the “Andisheh va Raftar” Clinic in Mashhad in 2019-20, from which 133 children (60 females, 73 males) were selected using available sampling method. The instruments used in the study included the Mindfulness in Parenting Questionnaire (McCaffrey et. Al, 2015), the Barkley Deficits in Executive Functions Scale-Children and Adolescents (Barkley, 2012), and Neurofeedback device. Data were analyzed by structural equation modeling method using SPSS23 and LISREL8.8 software.

Results: The results showed that the proposed model best fitted the data. There was a direct relationship between mindful parenting and executive functions ($\beta = 0.32$, $t = 5.34$) and an indirect relationship through alpha wave ($\beta = 0.18$, $t = 3.58$) and beta wave ($\beta = 0.15$, $t = 3.16$) and theta wave ($\beta = 0.12$, $t = 1.25$) and (0.22 = β, 14 / 4 = t).

Conclusion: According to the results, mindful parenting is both directly and indirectly related to the executive functions through the mediation of brain waves. The results of this study contain practical implications for promoting children's executive functions in relation to parenting.

Keywords: Mindful parenting, brain wave, executive functions

Received: 23 Jul 2020
Accepted: 11 Oct 2021
Available: 13 Feb 2022

Citation: Zarenezhad S, Soltani Kouhbanani S. Investigating the relationship between mindful parenting and children's executive functions: the mediating role of brain waves. J Child Ment Health. 2021; 8 (4):29-42.

URL: http://childmentalhealth.ir/article-1-1032-en.html

10.52547/jcmh.8.4.4
Extended Abstract

Introduction
Children undergo significant cognitive changes during the primary school years, and this age period is a critical time for the development of executive functions (EFs) in them (1). EFs include a set of functions that people use in situations that need cognitive processes such as planning or decision making. After age five, some EFs, especially working memory, organization, and planning have significant development. These EFs gradually increase during the school years and can play an important role in academic and social functions and emotion control.

Family and parenting styles are among the most crucial factors in the psychosocial development of children (6). Parenting styles include attitudes and behaviors that specify the nature of parent and child interactions in an inclusive emotional space (7). Research shows that EFs is one of the cognitive activities in children which is affected by mindful parenting (14 and 15). Researchers also believe that structures associated with EFs have a strong relationship with brain waves in individuals (16 and 17). When a group of neurons (perhaps hundreds of thousands) are activated together, they create a waveform effect called a brain wave. Brain waves spectrum are generally divided into alpha, beta, theta, and delta frequency bands (18). These waves, that origin from brain electrochemical activities, have been measured by professionals and it was proven that structures associated with EF have a strong relationship with brain waves (16, 17, 19, 21). Moreover, there is evidence that changes in brain waves can mediate the relationship between children’s cognitive activities and parenting style of their parents, and that parenting styles can affect electrical activities of children's brains (22, 23). Given the importance and necessity of EFs in the child's educational, professional and social life and the role that these functions play in controlling and guiding behavior, it is necessary to address different variables affecting children's EFs such as parenting and brain waves. So, this study aimed to investigate the relationship between mindful parenting and children’s executive functions with the mediating role of brain waves.

Method
This was a descriptive correlational study with a structural equation modeling method. The statistical population of the study included all 6-12 year old children referred to the “Andisheh va Raftar” Clinic in Mashhad in 2019-20, from which 133 children (60 females, 73 males) were selected using available sampling method. The inclusion criteria included: good physical health, having normal intelligence, lack of social problems (based on educational records of students), child and parents living together, and informed consent of the participants; And the exclusion criteria included: incomplete questionnaire. The instruments used in the study included the Mindfulness in Parenting Questionnaire (26), Barkley Deficits in Executive Functions Scale -Children and Adolescents (28), and Neurofeedback device. Data were analyzed by structural equation modeling method using SPSS23 and LISREL8.8 software.

Results
In Table 1, descriptive indicators of variables have been reported and based on the results, kurtosis and skewness values show that the variables have normal distribution.

Variable	Mean	SD	Skewness	Kurtosis
Mindful parenting	93.55	12.36	-1.09	0.980
Alpha wave	9.45	1.84	0.038	-0.210
Beta wave	18.34	4.45	0.025	-0.301
Theta wave	5.44	1.74	0.096	0.692
Executive functions	126.74	31.50	1.48	-1.24

In Table 2, the correlation matrix of the research variables is presented. According to Table 2, the relationship between mindful parenting (0.35), alpha wave (0.23), beta wave (0.21) and theta wave (0.19) with EF is significant at the level of 0.01.

Variable	1	2	3	4	5
Mindful parenting	1	0.28**	0.32**	-0.30**	0.35**
Alpha wave	0.28**	1	0.04	0.02	0.23**
Beta wave	0.32**	0.04	1	0.05	0.21**
Theta wave	-0.30**	0.02	0.05	1	-0.19**
Executive functions	0.35**	0.23**	0.21**	-0.19**	1

**p<0.01
The results of the correlation matrix showed that there is a positive and significant relationship between mindful parenting and EFs and between brain waves and EFs as well (P <0.01). To examine the research hypotheses by structural equation modeling method, the fitting parameters of the model were first examined: (Normed Fit Index (NFI) =0.98, Comparative Fit Index (CFI) =0.95, Incremental fit index (IFI) =0.98, Root Mean Square Error of Approximation (RMSEA) =0.01, Adjusted goodness of fit index (AGFI) =0.96, P=0.01); all indicators confirmed the goodness of fit of the proposed research model. The lower limit of confidence interval for alpha, beta and theta waves, as the mediating variable between the mindful parenting and EFs was 0.4660 and its upper limit was 0.6865. Therefore, this mediating relationship is significant and the mediating roles of alpha, beta and theta waves is confirmed. Also, due to the fact that the upper and lower limits for two alpha waves (the lower limit =0.2332, and the upper limit=0.4454) and beta (the lower limit = 0.1294, and the upper limit =0.2694) aren’t zero, the mediating role of these two waves in the relationship between the mindful parenting and EFs is confirmed. But due to the fact that the upper and lower limit for the theta wave (the lower limit = 0.0923 and the upper limit = 0.0756) is zero, it concludes that the theta wave doesn’t mediate the relationship between mindful parenting and EFs.

Conclusion
This study aimed to investigate the relationship between mindful parenting and children’s executive functions with the mediating role of brain waves. The results showed that there is a relationship between mindful parenting and EFs. These results are in line with previous research (14, 15) which believe that there is a positive relationship between mindful parenting and EFs in children. To explain this finding, it could conclude that mindful parents, when interacting with their children, have more present-moment awareness, and thus show more attention to the emotional and cognitive responses of children, and by adjusting their emotions, they will be more flexible in interacting with their children and will better deal with parental stress (8).

Another finding of the present study showed that there is a significant relationship between alpha, beta and theta waves and EFs in children. This finding is in line with the results of other studies (16, 17, 21, 19) that believe structures associated with EFs have a strong relationship with brain waves in individuals. The results of the proposed model showed that mindful parenting has an indirect relationship with children’s EFs through brain waves, and alpha and beta wave were able to mediate the relationship. This finding is in line with the results of the previous research (22 and 25) which believe that changes in brain waves can mediate the relationship between children’s EFs and parenting styles.

According to this finding, it could conclude that for the normal transformation of children’s brain and cognitive functions, parents should provide children with adequate stimulations (15). The use of available sampling method and self-report questionnaires are among the limitations of this study. We suggest future researchers consider the importance of mindful parenting in parental education programs.

Ethical Considerations
Compliance with ethical guidelines: The present study was implicated at Ferdowsi University of Mashhad on 2019/11/13 with ethics IR.UM.REC.1399.061. In this research, the ethical codes like obtaining the informed consent of the participants and confidentiality were considered by the authors.
Funding: The present study was conducted without any sponsoring from a specific organization.
Authors’ contribution: In this study, the first author was involved in data collection and writing, and the second author was involved in ideation and as a corresponding author.
Conflict of interest: There is no conflict of interest for the authors in this study.
Acknowledgments: The authors consider it necessary to appreciate all participants in the research.
مقاله بروزی
رابطه والدگری ذهن آگاهانه با کنش‌های اجرایی کودکان: نقش واسطه‌ای امواج مغزی
سیمه زارعی‌نژاد، سکیت سلطانی کوهبنانی

1. کارشناس ارشد روان‌شناسی تربیتی، دانشگاه علوم تربیتی و روان‌شناختی، دانشگاه فردوسی مشهد، ایران
2. استادیار گروه روان‌شناسی مشاوره و تربیتی، دانشگاه علوم تربیتی و روان‌شناختی، دانشگاه فردوسی مشهد، ایران

مشخصات مقاله
چکیده
زمینه و هدف: والدگری ذهن آگاهانه باعث افزایش طرفیت والدگری نمی‌شود. در این پژوهش، یافته‌ها به پرسش مطرح و رفتار شهر مشهد در سال 1399، با استفاده از روش نمونه‌گیری در دو سطح، 132 کودک و 132 پدر (60 دختر و 72 پسر) 6 تا 12 سال به همراه بهبود مطالعه و استاندارد انتخاب شدند. برای جمع آوری داده‌ها از 32-پرسشنامه‌های والدگری ذهن آگاهانه (مک کافری و همکاران، 2015)، کنش‌ها اجرایی کودکان و امواج مغزی با استفاده از نرم‌افزار SPSS و LISREL/8 تحلیل شد.

روش: روش این پژوهش از نظر هدف کاربردی و از نظر روش گردآوری داده‌ها از نوع همبستگی و مدل‌های معادلات ساختاری بود. جامعه آماری شامل تمامی کودکان مراجعه‌کننده به کلینیک اندیشیده و رفتار شهر مشهد در سال 1399 بود. با استفاده از روش نمونه‌گیری در دو سطح، 132 کودک و 132 پدر (60 دختر و 72 پسر) 6 تا 12 سال به همراه بهبود مطالعه و استاندارد انتخاب شدند. برای جمع آوری داده‌ها از 32-پرسشنامه‌های والدگری ذهن آگاهانه (مک کافری و همکاران، 2015)، کنش‌ها اجرایی کودکان و امواج مغزی با استفاده از نرم‌افزار SPSS و LISREL/8 تحلیل شد.

نتیجه‌گیری: با در نظر گرفتن نقش واسطه، امواج مغزی باعث افزایش یافته‌ها اجرایی والدگری ذهن آگاهانه (مک کافری و همکاران، 2015) و کنش‌ها اجرایی از طریق موج‌های بتا و دلتا از طریق امواج مغزی، با کنش‌های اجرایی در ارتباط است. نتایج این پژوهش حاصل تلاش‌های کاربردی برای ارتقاء کنش‌های اجرایی کودکان در رابطه با والدگری است.

کلیدواژه‌ها: والدگری ذهن آگاهانه، امواج مغزی، کنش‌های اجرایی

نویسنده مسئول: سکیت سلطانی کوهبنانی، استادیار گروه روان‌شناسی مشاوره و تربیتی، دانشگاه علوم تربیتی و روان‌شناختی، دانشگاه فردوسی مشهد، ایران
S.soltani@um.ac.ir
پیام‌های: تلفن: 0589-788-340-1

پردازش علمی مقالات و تحقیقات

مقدمه
کودکان در طی سال‌های دیستان دست‌خوش تغییرات شناختی مهمی می‌شوند و این دوره سنی، زمانی حساس برای تحول کنش‌های اجتماعی است. از آن‌ها برای کودکان، که مرکز مهار و هدیت کنش‌های اجتماعی است، در دوره کودک به‌طور بیشتری تحول را دارد (7). کنش‌های اجتماعی مجموعه‌ای از توانایی‌های شناختی سطح بالا است که افراد می‌توانند به سوی آن‌ها نزدیک شوند. خودمختاری و تکمیل موفقیت آمیزی رفتارهای هدفمندی‌ها قدرت‌های سازگار و وقتی افراد در موضع‌هایی قرار می‌گیرند که به فرآیندهای شناختی مانند برنامه‌ریزی ایجادی گروه ذهنی به هدف اجتماعی، اهمیت در بین زندگی می‌تواند نشان دهنده خاکی پژوهشی در تولید نشان‌دهنده ذهن کودکان است. کودکان در طی این دوره، نیاز به نگه‌داری و ارتقای توانایی‌های اجتماعی خود دارند.

1. Executive functions
2. Frontal
3. Tower of Hanoi
4. Cognitive flexibility
5. Working memory
6. Parenting
7. Mindful parenting
کنش‌های ایجادی مانند انعطاف‌پذیری شناختی، توجه اندازی، پذیرش و روزگار در نوبت نسبت به محرکه‌های مراحم و حفاظتی کاری کشفی. در همین راستا کاهش فعالیت‌های فیزیکی در لوب پیشانی باعث نارسایی در این کارکرد بیشتر شناختی خواهد گرفت (20). پذیرش یا نشناسی می‌تواند از امواج آگاهانه، رفاه و فعالیت‌های ورودی انتخابی شود.

روش‌های آگاهانه با کنش میانجی در این پژوهش با هدف بررسی رابطه والدگری ها و اجرایی کودکان ماانناد والدگری و امواج مغزی کودک درک همادلی کودک توساوی ارتباط می‌بندند. واکنش واکنش ایجاد می‌کند که به ابعاد مختلف، آگاهانه و رفاه مشاهده می‌کند. این پژوهش با هدف بررسی رابطه والدگری ها و اجرای و رفتار کودکان در هر مرحله به کودکان، والدین و نوجوانان رده سنی 12-22 ساله، که در شهر مشهد انتخاب شده‌اند.

3. Mindfulness training
4. Being in the present with the child

1. Mindfulness parenting questionnaire (MIPQ)
2. McCaffrey, Reitman & Black
مزاسنگان این میزان میزان انتقال کروناخ را برای کل پرسشنامه، گزارش کردند و روابط آن از طریق تحلیل عملکرد مربوط مورد تأیید قرار دادند (28). در ایران، زنگ زناد ساختن سلول‌های بافتی، ابزاری (29) برای آمار ملاقات آزمون را و ضرب آماری این تحقیق آن را برای خود میلی و ملی میکاسیس تمرین و بالاترین نمره به ترتیب 28 و 112 است که نمرات کمتر نشان‌دهنده ذهن آگاهی پایین در والدگری و نمره بالاتر نشان‌دهنده ذهن آگاهی بیشتر در والدگری است. مک کافی، ریتم و بلوک در پوشه‌هی که جهت اعتباریابی این مقیاس انجام داده، ضرب آماری این کروناخ برای خدمه مقیاس تریت ذهن آگاهانه و بودن در لحظه با کودک را به ترتیب 84 و 82 به‌دست آوردند. همچنین آنها جهت سنن‌شنل روابط مقیاس از روی روابط هم‌سرای استفاده کردن و در فنون‌پروری ذهن آگاهانه با پرسشنامه‌های مشابه، همبستگی مشت و معادل گزارش کردن (26). در ایران زاده و محمدی (27) در سال 1399 وزارت‌های روان‌سنجی این مقیاس را بررسی کرده و ضرب آماری کروناخ برای اعتبار کل آزمون را می‌گزارش کردن؛ همبستگی همبستگی مشت معنادار بین پرسشنامه کودک و خدمه مقیاس‌های مقیاس و ناهنجاری ذهن آگاهانه، با اینگونه روابط مقیاس بود.

۲ قسم طولانی پرسشنامه نظری کشتی اسرای ابزاری کودکان و نوجوانان: این مقیاس توسط بارکلی (30) در سال 2012 با هدف پاسخ‌گیری کنش‌های ابزاری در جمعیت‌های غیرباییونی و بالینی به ویژه کودکان و نوجوانان طراحی شد. مقیاس نظارتی کشتی اسرا ابزاری کودکان و نوجوانان شامل ۷۰ گامی است و نمره گام‌های پرسشنامه براساس طبقه‌بندی ۴ درجهی ۰ تا ۱۰ هرگز تا همیشه درجه‌بندی شده است. همچنین این مقیاس شامل نعمت خدمه مقیاس است که ۵ کنش ابزاری خود مدیریتی زمان (گروه‌های 13-17)، خود مسکونی‌متعال (جل مسلسل) (گروه‌هام 17-12)، خودمورگری (31، 32)، و خود‌نظری‌ها (33، 34) در انتظار گروه‌های 5-6 و 45-56 می‌کند. نمرات بین ۱۲۰ تا ۱۷۵ برون استانداردی ۱۴۰ تا ۱۷۵ استانداردی ۱۱۵ تا ۱۴۰ استانداردی ذهنی ابزاری و این استانداردی ۱۱۵ تا ۱۴۰ استانداردی ذهنی ابزاری.
پژوهشگران در کلینیک اندیشکده زبان و زبان‌شناسی علوم در دانشگاه تهران، ایران، با توجه به اینکه ژن‌هایی که در جریان بیماری‌های مزمن و سایر مشکلات سلولی و محیطی بازی نقش دارند، برای بررسی این امر، از ابزار ایموزنال بهره‌مند شدند.

جلوه ۱: شاخص‌های توصیفی متغیرهای پژوهش

متغیر	میانگین	انحراف معیار	چولگی	کشیدگی
کپیجکی	0.88	0.28	0.85	0.15
1. ولدگری ذهن اساسی	0.88	0.28	0.85	0.15
2. موج آلفا	0.62	0.21	0.74	0.17
3. موج بتا	0.43	0.18	0.65	0.14
4. موج تتا	0.28	0.12	0.55	0.11
5. کنشهای اجرایی	0.11	0.05	0.35	0.08

در جدول ۲ ماتریس همبستگی متغیرهای پژوهش آنها شده است. با توجه به جدول ۲ ارتباط والدگری ذهن اساسی (۰/۳۵)، موج آلفا (۰/۴۳)، موج بتا (۰/۱۳) و موج تتا (۰/۱۴) با کنشهای اجرایی در سطح از جمله ۲ نشان دهنده ارتباط بین متغیرهای پژوهش در نرم‌افزار LISREL ۸/۸ و SPSS استفاده شده است.

1. Mardia’s normalized multivariate kurtosis value
2. χ²/df
3. Bentler-Bonett index
4. Root mean square error of approximation (RMSEA)
5. Tucker-Lewis index (TLI)

6. Goodness of fit index (GFI)
7. Adjusted goodness of fit index (AGFI)
8. Normed fit index (NFI)
9. Incremental fit index (IFI)
شکل 1: ضرایب استاندارد الگوی رابطه داخلی والدگری ذهن آگاهانه با کنش‌های اجرایی با میانجی‌گری امواج مغزی

جدول 2: شاخص‌های نیکویی برای الگوی آزمون شده براخوردار است.

شاخص های براخوردار	شاخص های نیکویی	شاخص های براخوردار
IFI	CFI	NFI
TLI	AGFI	GFI
RMSEA	χ^2/df	df

جدول 4: ضرایب میزان عبارت اثر مستقیم، غیر مستقیم و کل الگو

در جدول 3 مشاهده می‌شود که تمام شاخص‌های دارد مقدار مناسب برای رازه مدل را کسب کرده‌اند. در جدول 4 اثرات مستقیم، غیر مستقیم، کل و سطح معناداری بین متغیرهای پژوهش‌آورده شده است.

همانطور که در جدول 4 ملاحظه می‌شود، والدگری ذهن آگاهانه و کنش‌های اجرایی رابطه مستقیم (b=34=1) و (b=31=1) و وجود دارد و رابطه غیرمستقیم و رابطه کلی از طریق موج امنا (b=34=1) و (b=31=1) وجود دارد و در مدل گزارش شده است.
جدول 6: روابطه‌ی آنالیز گزینه روابط مستقیم در مدل پیشنهادی

مسیر	براورد استاندارد	خطای معیار	نیتی بحرانی	مساحت معیاری
$p=0.01$	0.37	0.08	0.26	0.87
$p=0.01$	0.51	0.09	0.22	0.55
$p=0.01$	0.64	0.22	0.32	0.25
$p=0.01$	0.84	0.47	0.33	0.24
$p=0.01$	0.50	0.39	0.39	0.23
$p=0.01$	0.47	0.40	0.40	0.23
$p=0.01$	0.46	0.40	0.41	0.23
$p=0.01$	0.45	0.40	0.42	0.23
$p=0.01$	0.44	0.40	0.43	0.23

براساس ضوابع سیستم استاندارد و مقداری بحرانی مناظر ارائه شده در جدول 5 ملاحظه می‌شود که همه مسیرهای مستقیم معنادار هستند در جدول $p=0.01$. ولی مسیرهای معنادار هستند در جدول $p=0.01$. علاوه بر این، به وضوح می‌رسد رابطه میان والدگری ذهن آگاهانه و کنش‌های اجرایی با میانگین اجرایی (بر اساس میانگین اجرایی) از روش بود استرداد استفاده شد که تنا خانم در جدول 6 ارائه شده است.

جدول 7: نتایج آزمون میانگین گری (باه سیاستی) روابطه‌ی غیر مستقیم با استفاده از روش بود استرداد یرجه و هیژ

فرضه	داده‌های طبیعی	سطح اطمینان 95%	خطای استاندارد	حد بالا	حد پایین
$p=0.01$	0.37	0.08	0.26	0.87	
$p=0.01$	0.51	0.09	0.22	0.55	
$p=0.01$	0.64	0.22	0.32	0.25	
$p=0.01$	0.84	0.47	0.33	0.24	
$p=0.01$	0.50	0.39	0.39	0.23	
$p=0.01$	0.47	0.40	0.40	0.23	
$p=0.01$	0.46	0.40	0.41	0.23	
$p=0.01$	0.45	0.40	0.42	0.23	
$p=0.01$	0.44	0.40	0.43	0.23	
$p=0.01$	0.43	0.40	0.44	0.23	

همچنین با توجه به این که حد بالا و پایین برای دو موج آلفا و تنا به صورت جداگانه صرف را شامل نمی‌شود، میانگین بدون این دو موج درباره رابطه والدگری ذهن آگاهانه و کنش‌های اجرایی تأیید می‌شود. اما با توجه به این که حد بالا و پایین برای دو موج صرف را شامل می‌شود می‌توان گفت که موج تنا در رابطه میان والدگری ذهن آگاهانه و کنش‌های اجرایی نقش میانگین ایفا نمی‌کند.

مطابق با جدول 6، حد بالا و پایین فاصله اطمینان برای هر متوسط موج آلفا مانند موج تنا و موج تنا به صورت جداگانه صرف را شامل نمی‌شود، میانگین بدون این دو موج درباره رابطه والدگری ذهن آگاهانه و کنش‌های اجرایی تأیید می‌شود. اما با توجه به این که حد بالا و پایین برای دو موج صرف را شامل می‌شود می‌توان گفت که موج تنا در رابطه میان والدگری ذهن آگاهانه و کنش‌های اجرایی نقش میانگین ایفا نمی‌کند.

مطابق با جدول 6، حد بالا و پایین فاصله اطمینان برای هر متوسط موج آلفا مانند موج تنا و موج تنا به صورت جداگانه صرف را شامل نمی‌شود، میانگین بدون این دو موج درباره رابطه والدگری ذهن آگاهانه و کنش‌های اجرایی تأیید می‌شود. اما با توجه به این که حد بالا و پایین برای دو موج صرف را شامل می‌شود می‌توان گفت که موج تنا در رابطه میان والدگری ذهن آگاهانه و کنش‌های اجرایی نقش میانگین ایفا نمی‌کند.
بحث و نتیجه‌گیری
پژوهش حاضر با هدف بررسی رابطه مغزی والدگری و ذهن کودکان بود. نتایج نشان‌داد که به واسطهٔ امواج مغزی با کنش‌نوازی در کودکان وجود دارد؛ بنابراین کنش‌نوازی در کودکان در فرآیندهای اجرایی فنون ذهن با کنش‌نوازی مهم‌ترین و اهم‌ترین نقش‌های کششگری ذهن کودکان را در روند تربیتی در کودکان جلوگیری می‌نماید.

کنش‌نوازی در کودکان که به واسطهٔ امواج مغزی با کنش‌نوازی در کودکان وجود دارد، بهترین روش برای جلوگیری از رفتار نشان‌دارنده تبعیضی در کودکان علیه والدگری است. این نتایج هم‌نواز با نتایج دیگر پژوهش‌ها و تحقیقات اکثریت نتایج دربارهٔ امواج مغزی با کنش‌نوازی در کودکان وجود دارد. در نتیجه، این نتایج نشان‌دهندهٔ اهمیت امواج مغزی به عنوان یکی از مؤثرترین عوامل در جهت جلوگیری از رفتار نشان‌دارنده تبعیضی در کودکان علیه والدگری است. این نتایج نشان‌دهندهٔ اهمیت امواج مغزی به عنوان یکی از مؤثرترین عوامل در جهت جلوگیری از رفتار نشان‌دارنده تبعیضی در کودکان علیه والدگری است. این نتایج نشان‌دهندهٔ اهمیت امواج مغزی به عنوان یکی از مؤثرترین عوامل در جهت جلوگیری از رفتار نشان‌دارنده تبعیضی در کودکان علیه والدگری است.
فرار گردد. همچنین بیش‌نهرافته می‌شود در پژوهش‌های بعدی رابطه والدگری به ذهنیات نزدیکی به توانایی اجرایی کودکان دارای اختلالات پیادگیری و یا دیگر اختلالات رفتاری مورد بررسی و پژوهش قرار گیرد.

در مجموع با توجه به یافته‌های این پژوهش، توجه بیش‌تری به نشان امواج مغزی و والدگری ذهنیات نزدیکی به توانایی اجرایی کودکان بیش‌تری می‌شود که به اختلالات ارتباطی کودکان و تواناییهای ذهنی به معنی محدودیت‌های بدنی و میزان درآمد والدین به ثبت رسیده است.

ملاحظات اخلاقی

پیروی از اصول اخلاقی پژوهش: پژوهش حاضر در دانشگاه فردوسی مشهد IR.UM.REC.1399.061 به ثبت رسیده است. همین‌طور اطلاعات هویتی و مطالعات در این مطالعه کاملاً رعایت شده است.

هامرکی و سپاس‌گزاری: هدایت مدیر و مسئولین کلینیک اندیشه و رفتار شهر مشهد (کنیشرکت کردند، صمیمانه تشکر می‌کنیم.

تشرک و قدردانی: این مقاله بدون مدیر و مستند کلیک مشترک و رئیس فناوری مکانیک شده است.
References

1. Nejati V. Program for attention rehabilitation and strengthening (PARS) improves executive functions in children with attention deficit-hyperactivity disorder (ADHD). Research in Developmental Disabilities. 2021; 113: 103937. [Link]

2. Giovannoli J, Martella D, Federico F, Pirchio S, Casagrande M. The impact of bilingualism on executive functions in children and adolescents: a systematic review based on the PRISMA method. Frontiers in Psychology. 2020; 11: 23-98. [Link]

3. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howarter A. The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognitive Psychology. 2000; 41(1): 49-100. [Link]

4. Bock AM, Gallaway KC, Hund AM. Specifying links between executive functioning and theory of mind during middle childhood: Cognitive flexibility predicts social understanding. Journal of Cognition and Development. 2014; 16(3): 606-620. [Link]

5. Best JR, Miller PH, Jones L. Executive functions after age 5: Changes and correlates. Developmental Review. 2009; 29(3): 180-200. [Link]

6. Tang Y, Yang L, Leve L, Harold T. Improving executive function and its neurobiological mechanisms through a mindfulness-based intervention: advances within the field of developmental neuroscience. Child development perspectives. 2012; 1: 1-6. [Link]

7. De Coulon A, Meschi E, Vignoles A. Parents' Basic Skills and Children Cognitive Outcomes. Centre for the Economics of Education (NJ1). 2008; 104. [Link]

8. Börgels SM, Hellemans J, van Deursen S, Römer M, van der Meulen R. Mindful parenting in mental health care: effects on parental and child psychopathology, parental stress, parenting, co-parenting, and marital functioning. Mindfulness. 2014; 5(5): 536-551. [Link]

9. Moore A, Malinowski P. Meditation, mindfulness and cognitive flexibility. Consciousness and cognition. 2009; 18(1): 176-186. [Link]

10. Haydicky J, Sheeter C, Wiener J, Ducharme JM. Evaluation of MBCT for adolescents with ADHD and their parents: Impact on individual and family functioning. Journal of Child and Family Studies. 2015; 24(1): 76-94. [Link]

11. Duncan LG, Coatsworth JD, Greenberg MT. A model of mindful parenting: Implications for parent–child relationships and prevention research. Clinical child and family psychology review. 2009; 12(3): 255-270. [Link]

12. Richardson J, Joughin C. Parent-training programmes for the management of young children with conduct disorders: findings from research. RCPsych Publications; 2002, pp: 29-38. [Link]

13. Fay Stambach T, Hawes DJ, Meredith P. Parenting influences on executive function in early childhood: A review. Child development perspectives. 2014; 8(4): 258-264. [Link]

14. Van de Weijer-Bergsma E, Fornsma AR, de Bruin EI, Börgels SM. The effectiveness of mindfulness training on behavioral problems and attentional functioning in adolescents with ADHD. Journal of child and family studies. 2012; 21(5): 775-787. [Link]

15. Blair C, Raver CC, Berry DJ. Two approaches to estimating the effect of parenting on the development of executive function in early childhood. Developmental psychology. 2014; 50(2): 554. [Link]

16. Thatcher RW, North D, Biver C. Intelligence and EEG current density using low resolution electromagnetic tomography (LORETA). Human Brain Mapping. 2007; 28(2): 118-133. [Link]

17. Bian Z, Li Q, Wang L, Lu C, Yin S, Li X. Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes. Frontiers in aging neuroscience. 2014; 6: 11. [Link]

18. Sanei S, Chambers JA. EEG signal processing. John Wiley & Sons; 2013, pp:6-28. [Link]

19. Vecchiato G, Cherubino P, Trettel A, Babiloni F. Neuroelectrical brain imaging tools for the study of the efficacy of TV advertising stimuli and their application to neuromarketing. Berlin, Germany; 2013, pp: 89-112. [Link]

20. Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends in cognitive sciences. 2012; 16(12): 606-617. [Link]

21. Wang JR, Hsieh S. Neurofeedback training improves attention and working memory performance. Clinical Neurophysiology. 2013; 124(12): 2406-2420. [Link]

22. Bernier A, Calkins SD, Bell MA. Longitudinal associations between the quality of mother–infant interactions and brain development across infancy. Child development. 2016; 87(4): 1159-1174. [Link]

23. Wen DJ, Soe NN, Sim LW, Sanmugam S, Kwek K, Chong YS, ... Qiu A. Infant frontal EEG asymmetry in relation with postnatal maternal depression and parenting behavior. Translational psychiatry. 2017; 7(3): 1057-1057. [Link]

24. Hane AA, Fox NA. Ordinary variations in maternal caregiving influence human infants' stress reactivity. Psychological science. 2006; 17(6): 550-556. [Link]

25. Banich MT, & Compton RJ. Cognitive neuroscience. Cambridge University Press; 2018, pp: 46-52. [Link]

26. McCaffrey S, Reitman D, Black R. Mindfulness in Parenting Questionnaire (MIPQ): Development and validation of a measure of mindful parenting. Mindfulness. 2017; 8(1): 232-246. [Link]

27. Zare F, Mohammadi M. Psychometric properties of mindfulness parenting scale. Psychological Methods and Models. 2020; 11(40): 133-150. [Persian]. [Link]

28. Barkley RA. Barkley deficits in executive functioning scale-children and adolescents (BDEFS-CA). Guilford Press; 2012. [Link]
29. زارنژاد س., سولدانی کوه بانانی م. ه., آبانزی ک. روانشناسی ویژگی‌های معنایی سکال فنکشنال پارامتریک انجام شدگان کودکان و نوجوانان: نقش واسطه‌آگاهانه با کشورال بانوان ذهن. فصلنامه سلامت روان کودک، دوره 1، شماره 0، مستان 1022.

30. ماسترزپاسکوا ف., هیئلی ک. انجام کودکان و نوجوانان فنکشنال سکال در روانشناسی روانی. روانشناسی ویژگی‌های پژوهشی و روانی. 2003; 34(6): 652. [Link]