Cellularity of endomorphism algebras of Young permutation modules.

Stephen Donkin

Department of Mathematics, University of York, York YO10 5DD
stephen.donkin@york.ac.uk

3 June 2020

Abstract

Let E be an n-dimensional vector space. Then the symmetric group $\text{Sym}(n)$ acts on E by permuting the elements of a basis and hence on the r-fold tensor product $E^\otimes r$. Bowman, Doty and Martin ask, in [1], whether the endomorphism algebra $\text{End}_{\text{Sym}(n)}(E^\otimes r)$ is cellular. The module $E^\otimes r$ is the permutation module for a certain Young $\text{Sym}(n)$-set. We shall show that the endomorphism algebra of the permutation module on an arbitrary Young $\text{Sym}(n)$-set is a cellular algebra. We determine, in terms of the point stabilisers which appear, when the endomorphism algebra is quasi-hereditary.

1 Introduction

We fix a positive integer n. The symmetric group of degree n is denoted $\text{Sym}(n)$. For a partition $\lambda = (\lambda_1, \lambda_2, \ldots)$ of n we have the Young subgroup, i.e. the group $\text{Sym}(\lambda) = \text{Sym}(\lambda_1) \times \text{Sym}(\lambda_2) \times \cdots$, regarded as a subgroup of $\text{Sym}(n)$ in the usual way. By a Young $\text{Sym}(n)$-set we mean a finite $\text{Sym}(n)$-set such that each point stabiliser is conjugate to a Young subgroup. Let R be a commutative ring. Our interest is in the endomorphism algebra $\text{End}_{\text{Sym}(n)}(R\Omega)$ of the permutation module $R\Omega$ on a Young $\text{Sym}(n)$-set Ω. We shall show that $\text{End}_{\text{Sym}(n)}(k\Omega)$ has a cellular structure, Theorem 6.4, hence by base change so has $\text{End}_{\text{Sym}(n)}(R\Omega)$, for an arbitrary commutative ring R.

Taking the base ring now to be a field k of positive characteristic, we give a criterion for $\text{End}_{\text{Sym}(n)}(k\Omega)$ to be a quasi-hereditary algebra, in terms of the set of partitions λ of n for which $\text{Sym}(\lambda)$ occurs as a point stabiliser, and the characteristic p of k, see Theorem 6.4. This is applied to the case $\Omega = I(n, r)$, the set of maps from $\{1, \ldots, r\}$ to $\{1, \ldots, n\}$, for a positive integer r, with $\text{Sym}(n)$ acting by composition of maps. The permutation module $kI(n, r)$ may be regarded as the rth tensor power $E^\otimes r$ of an n-dimensional vector space E, and we thus determine when $\text{End}_{\text{Sym}(n)}(E^\otimes r)$ is quasi-hereditary, see Proposition 7.3.
Our procedure is to analyse the endomorphism algebra of a Young permutation module in the spirit of the Schur algebra $S(n, r)$ (which is a special case). Of particular importance to us will be the fact that the Schur algebras is quasi-hereditary. There are several approaches to this (see e.g. [5, Section A5] and [18]) but for us the most convenient is that of Green, [9]. This has the advantage of being a purely combinatorial account carried out over an arbitrary commutative base ring. So we regard what follows as a modest generalisation of some aspects of [9]: we follow Green’s approach and notation to a large extent.

2 Preliminaries

We write mod(S) for the category of finitely generated modules over a ring S.

Let G be a finite group and K a field of characteristic 0. Let X be a finitely generated KG-module. Suppose that all composition factors of X are absolutely irreducible. Let U_1, \ldots, U_d be a complete set of pairwise non-isomorphic composition factors of X. We write X as a direct sum of simple modules $X = X_1 \oplus \cdots \oplus X_h$. For $1 \leq i \leq d$ let m_i be the number of elements $r \in \{1, \ldots, h\}$ such that X_r is isomorphic to U_i. Let $S = \text{End}_G(X)$. Then S is isomorphic to the product of the matrix algebras $M_{m_1}(K), \ldots, M_{m_d}(K)$. Let the corresponding irreducible modules for S be L_1, \ldots, L_d. We have an exact functor from $f : \text{mod}(KG) \to \text{mod}(S)$, given on objects by $f(Z) = \text{Hom}_{\text{Sym}(n)}(X, Z)$. Moreover we have $S = f(X) = \bigoplus_{r=1}^h \text{Hom}_G(X, X_r)$. If follows that the modules $L_i = fU_i = \text{Hom}_G(X, U_i), 1 \leq i \leq d$, form a complete set of pairwise non-isomorphic irreducible S-modules.

The situation in positive characteristic is similar, cf. [3] (3.4) Proposition. Suppose now that F is any field which is a splitting field for G. Let Y be a finitely generated KG-module such that every indecomposable component is absolutely indecomposable. Let V_1, \ldots, V_e be a complete set of pairwise non-isomorphic indecomposable summands of Y. We write Y as a direct sum of indecomposable modules $Y = Y_1 \oplus \cdots \oplus Y_k$. For $1 \leq j \leq e$ let n_j be the number of elements $r \in \{1, \ldots, k\}$ such that X_r is isomorphic to V_j. Let $T = \text{End}_G(Y)$. Then each $P_j = \text{Hom}_G(Y, V_j)$ is naturally a T-module and the modules P_1, \ldots, P_e form a complete set of pairwise non-isomorphic projective T-modules. Let N_j be the head of $P_j, 1 \leq j \leq e$. Then the modules N_1, \ldots, N_e form a complete set of pairwise non-isomorphic irreducible T-modules. The dimension of N_j over F is n_j.

We now fix a positive integer n. We write Par(n) for the set of partitions of n. By the support $\zeta(\Omega)$ of a Young Sym(n)-set Ω we mean the set of $\lambda \in \text{Par}(n)$ such that the Young subgroup Sym(λ) is a point stabiliser. Let
R be a commutative ring. For a Young Sym(n)-set Ω we write $S_{\Omega,R}$ for the endomorphism algebra $\text{End}_{\text{Sym}(n)}(R\Omega)$ of the permutation module $R\Omega$. For $\lambda \in \text{Par}(n)$ we write $M(\lambda)_R$ for the permutation module $R\text{Sym}(n)/\text{Sym}(\lambda)$.

We have the usual dominance partial order \leq on $\text{Par}(n)$. Thus, for $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_a) \in \text{Par}(n)$, we write $\lambda \leq \mu$ if $\lambda_1 + \cdots + \lambda_a \leq \mu_1 + \cdots + \mu_a$ for all $1 \leq a \leq n$.

Recall that the Specht modules $\text{Sp}(\lambda)_Q$, $\lambda \in \text{Par}(n)$, form a complete set of pairwise irreducible $\mathbb{Q}\text{Sym}(n)$-modules. For $\lambda \in \text{Par}(n)$ we have $M(\lambda)_Q = \text{Sp}(\lambda)_Q \oplus C$, where C is a direct sum of modules of the form $\text{Sp}(\mu)$ with $\lambda \not\leq \mu$, and moreover every Specht module $\text{Sp}(\mu)_Q$ with $\lambda \not\leq \mu$ occurs in C (see for example [12, 14.1]).

For a Young Sym(n)-set Ω we define

$$\zeta^\supset(\Omega) = \{ \mu \in \text{Par}(n) \mid \mu \trianglerighteq \lambda \text{ for some } \lambda \in \zeta(\Omega) \}.$$

Thus the composition factors of $\mathbb{Q}\Omega$ are $\{ \text{Sp}(\mu)_Q \mid \mu \in \zeta^\supset(\Omega) \}$ and, setting $\nabla_{\Omega}(\lambda)_Q = \text{Hom}_{\text{Sym}(n)}(\mathbb{Q}\Omega, \text{Sp}(\mu)_Q)$, we have the following.

Lemma 2.1. The modules $\nabla_{\Omega}(\lambda)_Q$, $\lambda \in \zeta^\supset(\Omega)$, form a complete set of pairwise non-isomorphic irreducible $S_{\Omega,Q}$-modules.

Remark 2.2. Since $S_{\Omega,Q}$ is a direct sum of matrix algebras over \mathbb{Q} it is semisimple, all irreducible modules are absolutely irreducible and $\dim_\mathbb{Q} S_{\Omega,Q} = \sum_{\lambda \in \zeta^\supset(\Omega)} (\dim_\mathbb{Q} \nabla_{\Omega}(\lambda)_Q)^2$.

We now let k be a field of characteristic $p > 0$. For $\lambda \in \text{Par}(n)$ we have the Young module $Y(\lambda)$ for $k\text{Sym}(n)$, labelled by λ, as described in [5] Section 4.4 for example. Then we have $M(\lambda)_k = Y(\lambda) \oplus C$, where C is a direct sum of Young modules $Y(\mu)$, with $\lambda \not\leq \mu$, see for example [5, Section 4.4 (1) (v)]. A partition $\lambda = (\lambda_1, \lambda_2, \ldots)$ will be called p-restricted (also called column p-regular) if $\lambda_i - \lambda_{i+1} < p$ for all $i \geq 1$. A partition λ has a unique expression

$$\lambda = \sum_{i \geq 0} p^i \lambda(i)$$

where each $\lambda(i)$ is a p-restricted partition. This is called the base p (or p-adic) expansion of λ.

We write $\Lambda(n)$ for the set of all n-tuples of non-negative integers. An expression $\lambda = \sum_{i \geq 0} p^i \gamma(i)$, with all $\gamma(i) \in \Lambda(n)$ (but not necessarily restricted) will be called a weak p expansion.

For an n-tuple of non-negative integers γ we write $\overline{\gamma}$ for the partition obtained by arranging the entries in descending order.

Definition 2.3. For $\lambda, \mu \in \text{Par}(n)$ we shall say that μ p-dominates λ, and write $\mu \trianglerighteq_p \lambda$ (or $\lambda \triangleleft_p \mu$) if there exists a weak p expansion $\lambda = \sum_{i \geq 0} p^i \gamma(i)$, such that $\mu(i) \trianglerighteq_p \gamma(i)$ for all $i \geq 0$, where $\mu = \sum_{i \geq 0} p^i \mu(i)$ is the base p expansion of μ.

3
Note that $\lambda \preceq_{p} \mu$ implies $\lambda \preceq \mu$.

By [4, Section 3, Remark], for $\lambda, \mu \in \text{Par}(n)$, then module $Y(\mu)$ appears as a component of $M(\lambda)_{k}$ if and only if $\lambda \preceq_{p} \mu$. For a Young $\text{Sym}(n)$-set Ω we define

$$\zeta^{\preceq_{p}}(\Omega) = \{\mu \in \text{Par}(n) \mid \mu \preceq_{p} \lambda \text{ for some } \lambda \in \zeta(\Omega)\}.$$

Writing $P(\mu) = \text{Hom}_{\text{Sym}(n)}(k\Omega, Y(\mu))$ and writing $L(\mu)$ for the head of $P(\lambda)$, for $\mu \in \zeta^{\preceq_{p}}(\Omega)$ we have the following.

Lemma 2.4. The modules $L(\mu), \mu \in \zeta^{\preceq_{p}}(\Omega)$, form a complete set of pairwise non-isomorphic irreducible $S_{\Omega,k}$-modules.

3 Basic Constructions

We fix a positive integer n and a Young $\text{Sym}(n)$-set Ω. Here we assume the base ring R is either the ring integers \mathbb{Z} or the field of rational numbers \mathbb{Q}. We write $M_{\Omega,R}$, or just M_{R} for the permutation module $R\Omega$ over $R\text{Sym}(n)$. We also just write M for $M_{\Omega,\mathbb{Z}}$. We shall sometimes write simply S_{R} for $S_{\Omega,R}$ and just S for $S_{\mathbb{Q}}$. We identify S with a subring or $S_{\mathbb{Q}}$ in the natural way.

Let $\{\mathcal{O}_{\alpha} \mid \alpha \in \Lambda_{\Omega}\}$ be a complete set of orbits in Ω. For $\lambda \in \zeta(\Omega)$ we pick $\alpha(\lambda) \in \Lambda_{\Omega}$ such that $\text{Sym}(\lambda)$ is a point stabiliser of some element of \mathcal{O}_{α}.

We put $M_{\alpha,R} = R\mathcal{O}_{\alpha}$, and sometimes write just M_{α} for $M_{\alpha,\mathbb{Z}}$, for $\alpha \in \Lambda_{\Omega}$. For $\beta \in \Lambda_{\Omega}$ we define the element ξ_{β} of S_{R} to be the projection onto $M_{\beta,R}$ coming from the decomposition $M_{R} = \bigoplus_{\alpha \in \Lambda_{\Omega}} M_{\alpha,R}$. Then each ξ_{α} is idempotent and we have the orthogonal decomposition:

$$1_{S} = \sum_{\alpha \in \Lambda_{\Omega}} \xi_{\alpha}.$$

For a left S_{R}-module V and $\beta \in \Lambda_{\Omega}$ we have the β weight space $\beta V = \xi_{\beta}V$ and the weight space decomposition

$$V = \bigoplus_{\alpha \in \Lambda_{\Omega}} \alpha V.$$

For $\lambda \in \text{Par}(n)$ we define

$$\lambda V = \begin{cases} \xi_{\alpha}(\lambda) V, & \text{if } \lambda \in \zeta(\Omega); \\ 0, & \text{otherwise}. \end{cases}$$

Similar remarks apply to weight spaces of right S_{R}-modules.

Lemma 3.1. Let $\lambda \in \zeta^{\preceq_{p}}(\Omega)$. Then

(i) $\dim_{\mathbb{Q}} \lambda \nabla_{\Omega}(\lambda)_{\mathbb{Q}} = 1$; and

(ii) if $\mu \in \text{Par}(n)$ and $\mu \nabla_{\Omega}(\lambda)_{\mathbb{Q}} \neq 0$ then $\mu \preceq \lambda$.

4
Proof. Let $\mu \in \text{Par}(n)$ and suppose $\nabla_\Omega(\lambda)_Q \neq 0$. Thus $\xi_\mu \text{Hom}_{\text{Sym}(n)}(M_Q, \text{Sp}(\lambda)_Q) \neq 0$ i.e. $\text{Hom}_{\text{Sym}(n)}(M(\mu)_Q, \text{Sp}(\lambda)_Q) \neq 0$ and so $\mu \geq \lambda$, giving (ii). Moreover

$$
\xi_\lambda \text{Hom}_{\text{Sym}(n)}(M_Q, \text{Sp}(\lambda)_Q) = \text{Hom}_{\text{Sym}(n)}(M(\lambda)_Q, \text{Sp}(\lambda)_Q) = Q
$$
giving (i).

For $\lambda \in \text{Par}(n)$ we set $\xi_\lambda = \left\{ \begin{array}{ll} \xi_{\alpha(\lambda)}, & \text{if } \lambda \in \zeta(\Omega) ; \\
0, & \text{otherwise.} \end{array} \right.$

For $\lambda \in \text{Par}(n)$ we set $S_R(\lambda) = S_R \xi_\lambda S_R$ and for $\sigma \subseteq \text{Par}(n)$ set $S_R(\sigma) = \sum_{\lambda \in \sigma} S_R(\lambda)$.

We also write simply $S(\lambda)$ for $S_\zeta(\lambda)$ and $S(\sigma)$ for $S_\zeta(\sigma)$.

Let \leq be a partial order on $\text{Par}(n)$ which is a refinement of the dominance partial order. For $\lambda \in \zeta(\Omega)$ we set $S_R(\geq \lambda) = S_R(\sigma)$, where $\sigma = \{ \mu \in \text{Par}(n) \mid \mu \geq \lambda \}$, and $S_R(> \lambda) = S_R(\tau)$, where $\tau = \{ \mu \in \text{Par}(n) \mid \mu > \lambda \}$. Thus

$$
S_R(\geq \lambda) = S_R \xi_\lambda S_R + S(> \lambda).
$$

We set $V_R(\lambda) = S_R(\geq \lambda)/S_R(> \lambda)$. So we have

$$
V_R(\lambda)^\lambda = (S_R \xi_\lambda + S_R(> \lambda))/S_R(> \lambda),
$$

$$
\lambda V_R(\lambda) = (\xi_\lambda S_R + S_R(> \lambda))/S_R(> \lambda)
$$
and the multiplication map $S_R \xi_\lambda \times \xi_\lambda S_R \to S_R$ induces a surjective map

$$
\phi_R(\lambda) : V_R(\lambda)^\lambda \otimes_R \lambda V_R(\lambda) \to V_R(\lambda).
$$

For left S_R-modules P, Q and $\lambda \in \text{Par}(n)$ we define $\text{Hom}_\text{Sym}(n)^\lambda(P, Q)$ to be the R-submodule of $\text{Hom}_\text{Sym}(n)(P, Q)$ spanned by all composite maps $f \circ g$, with $f \in \text{Hom}_\text{Sym}(n)(M(\lambda)_R, Q)$ and $g \in \text{Hom}_\text{Sym}(n)(P, M(\lambda)_R)$. For a subset σ of $\text{Par}(n)$ we set

$$
\text{Hom}_{\text{Sym}(n)}^\sigma(P, Q) = \sum_{\lambda \in \sigma} \text{Hom}_\text{Sym}(n)^\lambda(P, Q).
$$

We note some similarity of our approach here via these groups of homomorphisms with the approach to Schur algebras due to Erdmann. [6] via stratification.
For $\lambda \in \text{Par}(n)$ we define $\text{Hom}_{\text{Sym}(n)}^{\geq \lambda}(P, Q) = \text{Hom}_{\text{Sym}(n)}^{\sigma}(P, Q)$, where
\[
\sigma = \{ \mu \in \text{Par}(n) \mid \mu \geq \lambda \},
\]
and $\text{Hom}_{\text{Sym}(n)}^{\geq \lambda}(P, Q) = \text{Hom}_{\text{Sym}(n)}^{\tau}(P, Q)$, where $\tau = \{ \mu \in \text{Par}(n) \mid \mu > \lambda \}$.

Note that if $\lambda \not\in \zeta(\Omega)$ then $V_{R}(\lambda) = 0$. Suppose $\lambda \in \zeta(\Omega)$. Then we have
\[
S_{R}\xi_{\lambda}S_{R} = \sum_{\alpha, \beta, \gamma, \delta \in \Omega} \text{Hom}_{\text{Sym}(n)}(M_{a, R}, M_{b, R}) \xi_{\lambda} \text{Hom}_{\text{Sym}(n)}(M_{\gamma, R}, M_{\delta, R})
= \sum_{\alpha, \beta \in \Omega} \text{Hom}_{\text{Sym}(n)}(M_{a, R}, M_{\alpha, R}) \xi_{\lambda} \text{Hom}_{\text{Sym}(n)}(M_{\alpha, R}, M_{\beta, R})
= \bigoplus_{\alpha, \beta \in \Omega} \text{Hom}_{\text{Sym}(n)}^{\lambda}(M_{a, R}, M_{\beta, R})
\]
and hence
\[
S_{R}(\sigma) = \bigoplus_{\alpha, \beta \in \Omega} \text{Hom}_{\text{Sym}(n)}^{\sigma}(M_{a, R}, M_{\beta, R})
\tag{1}
\]
for $\sigma \subseteq \text{Par}(n)$. In particular we have
\[
S_{R}(\geq \lambda) = \bigoplus_{\alpha, \beta \in \Omega} \text{Hom}_{\text{Sym}(n)}^{\geq \lambda}(M_{a, R}, M_{\beta, R})
\]
and
\[
S_{R}(> \lambda) = \bigoplus_{\alpha, \beta \in \Omega} \text{Hom}_{\text{Sym}(n)}^{> \lambda}(M_{a, R}, M_{\beta, R})
\]
and hence
\[
V_{R}(\lambda) = \bigoplus_{\alpha, \beta \in \Omega} \text{Hom}_{\text{Sym}(n)}^{\geq \lambda}(M_{a, R}, M_{\beta, R}) / \text{Hom}_{\text{Sym}(n)}^{\geq \lambda}(M_{a, R}, M_{\beta, R})
\tag{2}
\]

Example 3.2. Of crucial importance is the motivating example of the usual Schur algebra $S(n, r)$. Let R be a commutative ring and let E_{R} be a free R-module of rank n. Then $\text{Sym}(r)$ acts on the r-fold tensor product $E_{R}^{\otimes r} = E_{R} \otimes \cdots \otimes_{E_{R}} E_{R}$ by place permutation, and the Schur algebra $S_{R}(n, r)$ may be realised as $\text{End}_{\text{Sym}(r)}(E_{R}^{\otimes r})$.

We choose an R-basis e_{1}, \ldots, e_{n} of E_{R}. We write $I(n, r)$ for the set of maps from $\{1, \ldots, r\}$ to $\{1, \ldots, n\}$. We regard $i \in I(n, r)$ as an r-tuple of elements (i_{1}, \ldots, i_{r}) with entries in $\{1, \ldots, n\}$ (where $i_{a} = i(a)$, $1 \leq a \leq r$).
The group $\text{Sym}(r)$ acts on $I(n, r)$ composition of maps, i.e. by $w \cdot i = i \circ w^{-1}$, for $w \in \text{Sym}(r)$, $i \in I(n, r)$. Moreover, for $i \in I(n, r)$, $w \in \text{Sym}(r)$, we have $w \cdot e_{i} = e_{i \circ w^{-1}}$.

We may thus regard $E_{R}^{\otimes r}$ as the $R\text{Sym}(r)$ permutation module $R\Omega$ on $\Omega = I(n, r)$. Note that $\zeta(\Omega) = \Lambda^{+}(n, r)$, the set of partitions of r with at most n parts. We write $\Lambda(n, r)$ for the set of weights, i.e. the set of n-tuples of non-negative integers $\alpha = (\alpha_{1}, \ldots, \alpha_{n})$ such that $\alpha_{1} + \cdots + \alpha_{n} = r$. An element i of $I(n, r)$ has weight $\text{wt}(i) = (\alpha_{1}, \ldots, \alpha_{n}) \in \Lambda(n, r)$, where $\alpha_{a} = |i^{-1}(a)|$, for $1 \leq a \leq n$. For $\alpha \in \Lambda(n, r)$ we have the orbit Ω_{α} consisting or all $i \in I(n, r)$ such that $\text{wt}(i) = \alpha$. Then $R\Omega = \bigoplus_{\alpha \in \Lambda(n, r)} R\Omega_{\alpha}$.

6
4 Groups of homomorphisms between Young permutation modules

In the situation of the Example 3.2 it follows from the quasi-hereditary structure of S_n^Z that $V_n^Z(\lambda)$ is a free abelian group - indeed an explicit basis is given by Green in [9, (7.3) Theorem, (ii),(iii)]. Thus, taking $r = n$, from Section 3, (2), we have the following.

Lemma 4.1. For all $\lambda, \mu, \tau \in \text{Par}(n)$ the quotient

$\frac{\text{Hom}_{\text{Sym}(n)}^\geq \lambda (M(\mu), M(\tau))}{\text{Hom}_{\text{Sym}(n)}(M(\mu), M(\tau))}$

is torsion free.

We can improve on this somewhat. A subset σ of $\text{Par}(n)$ will be called co-saturated (also said to be a co-ideal) if whenever $\lambda, \mu \in \sigma, \lambda \in \sigma$ and $\lambda \triangleright \mu$ then $\mu \in \sigma$.

Proposition 4.2. Let σ, τ be co-saturated subsets of $\text{Par}(n)$ with the $\tau \subseteq \sigma$. Then, for all $\mu, \nu \in \text{Par}(n)$, the quotient

$\frac{\text{Hom}_{\text{Sym}(n)}^\sigma (M(\mu), M(\nu))}{\text{Hom}_{\text{Sym}(n)}^\tau (M(\mu), M(\nu))}$

is torsion free.

Proof. If there is a co-saturated subset θ with $\tau \subset \theta \subset \sigma$ (and $\theta \neq \sigma, \tau$) and if

$\frac{\text{Hom}_{\text{Sym}(n)}^\sigma (M(\mu), M(\nu))}{\text{Hom}_{\text{Sym}(n)}^\theta (M(\mu), M(\nu))}$

and

$\frac{\text{Hom}_{\text{Sym}(n)}^\theta (M(\mu), M(\nu))}{\text{Hom}_{\text{Sym}(n)}^\tau (M(\mu), M(\nu))}$

are torsion free then so is

$\frac{\text{Hom}_{\text{Sym}(n)}^\sigma (M(\mu), M(\nu))}{\text{Hom}_{\text{Sym}(n)}^\theta (M(\mu), M(\nu))}$.

Thus we are reduced to the case $\tau = \sigma \setminus \{\lambda\}$, where λ is a maximal element of σ. We choose a total order \leq on $\text{Par}(n)$ refining \leq such that, writing out the elements of $\text{Par}(n)$ in descending order $\lambda^1 \triangleright \lambda^2 \cdots \triangleright \lambda^h$ we have $\tau = \{\lambda^1, \ldots, \lambda^k\}, \sigma = \{\lambda^1, \ldots, \lambda^{k+1}\}$ (so $\lambda = \lambda^{k+1}$) for some k. Then we have

$\frac{\text{Hom}_{\text{Sym}(n)}^\sigma (M(\mu), M(\nu))}{\text{Hom}_{\text{Sym}(n)}^\tau (M(\mu), M(\nu))}$

$= \frac{\text{Hom}_{\text{Sym}(n)}^\geq \lambda (M(\mu), M(\nu))}{\text{Hom}_{\text{Sym}(n)}(M(\mu), M(\nu))}$

which is torsion free by the Lemma.

Returning to the general situation we have, by the Proposition and Section 3, (2), the following results.

Corollary 4.3. The S-module $V(\lambda)$ is torsion free.

Corollary 4.4. Let σ be cosaturated set (with respect to \leq). Then $S(\sigma)$ is a pure submodule of S.
5 Cosaturated Sym\((n)\)-sets

From Corollary 4.4, if \(\sigma\) is any co-saturated subset of \(\text{Par}(n)\) then we may identify \(\mathbb{Q} \otimes_{\mathbb{Z}} S(\sigma)\) with an \(S_{\Omega, \mathbb{Q}}\)-submodule of \(S_{\Omega, \mathbb{Q}}\) via the natural map \(\mathbb{Q} \otimes_{\mathbb{Z}} S(\sigma) \to S_{\Omega, \mathbb{Q}}\).

We now suppose that \(\Omega\) is cosaturated, by which we mean that \(\zeta(\Omega)\) is a cosaturated subset of \(\text{Par}(n)\). We check that much of the structure, described by Green for the Schur algebras in [9], still stands in this more general case.

Let \(\sigma\) be a co-saturated subset of the support \(\zeta(\Omega)\). Let \(\mu \in \zeta(\Omega)\). If \(\nabla_{\Omega}(\mu)\) is a composition factor of \(S(\sigma)\mathbb{Q}\) then it is a composition factor of \(S(\lambda)\mathbb{Q}\) and hence of \(S_{\mathbb{Q}}\xi_{\lambda}\), for some \(\lambda \in \sigma\). Hence we have \(\text{Hom}_{\text{Sym}(n)}(S\xi_{\lambda}, \nabla_{\Omega}(\mu)\mathbb{Q}) \neq 0\) and so \(\mu \geq \lambda\), Lemma 3.1(ii), and therefore \(\mu \in \sigma\).

We fix \(\lambda \in \zeta(\Omega)\). Then \(\text{Hom}_{\text{Sym}(n)}(S\xi_{\lambda}, \nabla_{\Omega}(\lambda)\mathbb{Q}) = \lambda \nabla_{\Omega}(\lambda)\mathbb{Q} = \mathbb{Q}\), by Lemma 3.1(i), so that \(\nabla_{\Omega}(\lambda)\mathbb{Q}\) is a composition factor of \(S(\geq \lambda)\mathbb{Q}\), but not of \(S(> \lambda)\mathbb{Q}\). Now we can write \(S(\geq \lambda)\mathbb{Q} = S(> \lambda) \oplus I\) for some ideal \(I\) which, as a left \(S_{\mathbb{Q}}\)-module, has only the composition factor \(\nabla_{\Omega}(\lambda)\mathbb{Q}\). Hence \(I\) is isomorphic to the matrix algebra \(M_{d}(\mathbb{Q})\), where \(d = \dim \nabla_{\Omega}(\lambda)\mathbb{Q}\), and, as a left \(S_{\mathbb{Q}}\)-module \(S(\geq \lambda)/S(> \lambda)\) is a direct sum of \(d\) copies of \(\nabla_{\Omega}(\lambda)\mathbb{Q}\).

Hence

\[
\dim_{\mathbb{Q}} \lambda V_{\mathbb{Q}}(\lambda) = \dim_{\mathbb{Q}} \text{Hom}_{\text{Sym}(n)}(S\xi_{\lambda}, V_{\mathbb{Q}}(\lambda)) = \dim_{\mathbb{Q}} \text{Hom}_{\text{Sym}(n)}(S\xi_{\lambda}, \nabla_{\Omega}(\lambda)\mathbb{Q}) = d \dim_{\mathbb{Q}} \lambda \nabla_{\Omega}(\lambda)\mathbb{Q} = d.
\]

Thus \(\dim V_{\mathbb{Q}}(\lambda)^{\lambda} \otimes_{\mathbb{Q}} \lambda V_{\mathbb{Q}}(\lambda) = \dim V_{\mathbb{Q}}(\lambda)\) and we have:

the natural map \(V_{\mathbb{Q}}(\lambda)^{\lambda} \otimes_{\mathbb{Q}} \lambda V_{\mathbb{Q}}(\lambda) \to V_{\mathbb{Q}}(\lambda)\) is an isomorphism. (1)

We now consider the integral version. We have the natural surjective map \(V(\lambda)^{\lambda} \otimes_{\mathbb{Z}} \lambda V(\lambda) \to V(\lambda)\). But the rank of \(V(\lambda)^{\lambda}\) is the dimension of \(V(\lambda)^{\lambda}\), the rank of \(\lambda V(\lambda)\) is the dimension of \(\lambda V_{\mathbb{Q}}(\lambda)\), and the rank of \(V(\lambda)\) is the dimension of \(V_{\mathbb{Q}}(\lambda)\) so that, by (1), \(V(\lambda)^{\lambda} \otimes_{\mathbb{Z}} \lambda V(\lambda)\) and \(V(\lambda)\) have the same rank. Thus the surjective map \(V(\lambda)^{\lambda} \otimes_{\mathbb{Z}} \lambda V(\lambda) \to V(\lambda)\) is an isomorphism.

We have shown the following.

Proposition 5.1. Assume \(\Omega\) is cosaturated. Then, for each \(\lambda \in \text{Par}(n)\), the map \(V(\lambda)^{\lambda} \otimes_{\mathbb{Z}} \lambda V(\lambda) \to V(\lambda)\) induced by multiplication in \(S\), is an isomorphism.

Remark 5.2. If \(k\) is a field then the corresponding algebras \(S_{\Omega, k}\) over \(k\) are Morita equivalent to those considered by Mathas and Soriano in [12]. There they determined blocks of such algebras (for the Schur algebras themselves this was done in [3]), and for the quantised case by Cox in [3]).
6 Cellularity of endomorphism algebras of Young permutation modules

We now establish our main result, namely that the endomorphism algebra of a Young permutation module has the structure of a cellular algebra. We first recall the notion of a cellular algebra due to Graham and Lehrer, [7]. (We have made some minor notational changes to be consistent with the notation above. The most serious of these is the reversal of the partial order from the definition given in [7].)

Definition 6.1. Let A be an algebra over a commutative ring R. A cell datum for $(\Lambda^+, N, C, *)$ for A consists of the following.

(C1) A partially ordered set Λ^+ and for each $\lambda \in \Lambda^+$ a finite set $N(\lambda)$ and an injective map $C : \coprod_{\lambda \in \Lambda^+} N(\lambda) \times N(\lambda) \to A$ with image an R-basis of A.

(C2) For $\lambda \in \Lambda^+$ and $t, u \in N(\lambda)$ we write $C(t, u) = C^\lambda_{t,u} \in R$. Then $*$ is an R-linear anti-involution of A such that $(C^\lambda_{t,u})^* = C^\lambda_{u,t}$.

(C3) If $\lambda \in \Lambda^+$ and $t, u \in N(\lambda)$ then for any element $a \in A$ we have

$$aC^\lambda_{t,u} = \sum_{t' \in N(\lambda)} r_a(t', t)C^\lambda_{t',u} \quad (\text{mod } A(> \lambda))$$

where $r_a(t', t) \in R$ is independent of u and where $A(> \lambda)$ is the R-submodule of A generated by $\{C^\mu_{t''',u'''} | \mu \in \Lambda^+, \mu > \lambda$ and $t''', u''' \in N(\mu)\}$.

We say that A is a cellular R-algebra if it admits a cell datum.

Let G be a finite group. Let Ω be a finite G-set and let R be a commutative ring. Now G acts on $\Omega \times \Omega$. If $A \subseteq \Omega \times \Omega$ is G-stable then we have an element $a_A \in \text{End}_G(R \Omega)$ satisfying

$$a_A(x) = \sum_y y$$

where the sum is over all $y \in \Omega$ such that $(y, x) \in A$. We write $\text{Orb}_G(\Omega \times \Omega)$ for the set of G-orbits in $\Omega \times \Omega$. Then $\text{End}_G(R \Omega)$ free over R on basis a_A, $A \in \text{Orb}_G(\Omega \times \Omega)$. We have an involution on $\Omega \times \Omega$ defined by $(x, y)^* = (y, x)$, $x, y \in \Omega$. For a G-stable subset A of $\Omega \times \Omega$ we write A^* for the G-stable set $\{(x, y)^* | (x, y) \in A\}$.

For $A, B \in \text{Orb}_G(\Omega \times \Omega)$ we have

$$a_{A}a_{B} = \sum_{C \in \text{Orb}_G(\Omega \times \Omega)} n_{A,B}^C a_{C}$$

where, for fixed $x \in A$, $y \in B$, the coefficient $n_{A,B}^C$ is the cardinality of the set $\{z \in C | (x, z) \in A$ and $(z, y) \in B\}$. It follows that $\text{End}_G(R \Omega)$ has an involutory anti-automorphism satisfying $a_{A}^* = a_{A^*}$, for a G-stable subset
of $\Omega \times \Omega$. The notion of cellularity has built into it an involutory anti-
automorphism \ast and in the case of endomorphism algebras of permutation
modules, we shall always use the one just defined.

We now restrict to the case $G = \text{Sym}(n)$ with Ω a Young $\text{Sym}(n)$-set as
usual and label by \mathcal{O}_α, $\alpha \in \Lambda_{\Omega}$, the G-orbits in Ω. Now, for $\alpha \in \Lambda_{\Omega}$
and $x \in \Omega$ we have

$$\xi_\alpha(x) = \begin{cases} x, & \text{if } x \in \mathcal{O}_\alpha; \\ 0, & \text{otherwise.} \end{cases}$$

Hence $\xi_\alpha = a_\mathcal{A}$, where $\mathcal{A} = \{ (x, x) | x \in \mathcal{O}_\alpha \}$ and therefore $\xi_\alpha^* = \xi_\alpha$. In
particular we have $\xi_\lambda^* = \xi_\lambda$ for $\lambda \in \zeta(\Omega)$. Thus we also have $S_{\Omega,R}(\sigma)^* = S_{\Omega,R}(\sigma)$, for $\sigma \subseteq \text{Par}(n)$.

Note that if Γ is a G-stable subset of Ω then we have the idempotent $e_\Gamma \in S_{\Omega,R}$ given on elements of Ω by

$$e_\Gamma(x) = \begin{cases} x, & \text{if } x \in \Gamma; \\ 0, & \text{if } x \not\in \Gamma. \end{cases}$$

Thus $e_\Gamma = a_\mathcal{C}$ where $\mathcal{C} = \{ (y, y) | y \in \Gamma \}$ and $e_\Gamma^* = e_\Gamma$.

So now let Γ be a Young $\text{Sym}(n)$-set and let Ω be a co-saturated Young
Sym(n)-set containing Γ. We have the idempotent $e = e_\Gamma \in S_{\Omega,R}$ as above
and $S_{\Gamma,R} = \text{End}_{\text{Sym}(n)}(R\Gamma)$ is naturally identified with $eS_{\Omega,R} e$.

Lemma 6.2. For $\lambda \in \zeta(\Omega)$ we have $e\nabla_\Omega(\lambda)_Q \neq 0$ if and only if $\lambda \in \zeta^\ast(\Gamma)$.

Proof. We have $e = \sum_{\alpha \in \Lambda_{\Gamma}} \xi_\alpha$. Hence $e\nabla_\Omega(\lambda)_Q \neq 0$ if and only if

$$\xi_\alpha \nabla_\Omega(\lambda)_Q \neq 0 i.e. \sum_{\beta \in \Lambda_{\Gamma}} \xi_\alpha \text{Hom}_{\text{Sym}(n)}(M_{\beta,Q}, \text{Sp}(\lambda)_Q) \neq 0, \text{for some } \alpha \in \Lambda_{\Gamma}.$$

Hence $e\nabla_\Omega(\lambda)_Q \neq 0$ if and only if $\text{Hom}_{\text{Sym}(n)}(M_{\beta,Q}, \text{Sp}(\lambda)_Q) \neq 0$ for some $\beta \in \Lambda_{\Gamma}$, i.e. if and only if $\text{Hom}_{\text{Sym}(n)}(M(\mu)_Q, \text{Sp}(\lambda)) \neq 0$ for some $\mu \in \zeta(\Gamma)$, i.e. if and only if there exists $\mu \in \zeta(\Gamma)$ such that $\mu \leq \lambda$. \hfill \Box

We fix a partial order \leq on $\zeta(\Omega)$ refining the partial order \subseteq.

Let $\lambda \in \zeta(\Omega)$. We have the section $V(\lambda) = S(\geq \lambda)/S(> \lambda)$ of $S = S_{\Omega}$.

We write J^op for the opposite ring of a ring J. We write S_{env} for the
enveloping algebra $S \otimes_{\mathbb{Z}} S^\text{op}$. We identify an (S, S)-bimodule with a left
S_{env}-module in the usual way.

We have the idempotent $\tilde{e} = e \otimes e \in S_{\text{env}}$ and hence the Schur functor $f : \text{mod}(S_{\text{env}}) \to \text{mod}(\tilde{e}S_{\text{env}} \tilde{e})$ as in [10] Chapter 6]. Moreover,

$$\tilde{e}S_{\text{env}} \tilde{e} = eS \otimes_{\mathbb{Z}} (eSe)^\text{op}. \text{ Now } f \text{ is exact so applying it to the isomorphism}$$

$$V(\lambda) \otimes_{\mathbb{Z}} \lambda V(\lambda) \to V(\lambda) \text{ of Proposition 5.1 we obtain an isomorphism}$$

$$eV(\lambda) \otimes_{\mathbb{Z}} \lambda V(\lambda) e \to eV(\lambda)e \quad (1).$$

Now $\xi_\lambda S + S(> \lambda) = (S\xi_\lambda + S(> \lambda))^*$ so that $eV(\lambda)e \neq 0$ if and only if

$eV(\lambda) \neq 0$. Moreover, $V(\lambda) \neq 0$ is a \mathbb{Z}-form of $\nabla(\lambda)_Q$ so that $eV(\lambda)e \neq 0$ if
and only if $e\nabla(\lambda)_Q \neq 0$. Hence by, Lemma 6.2.:
We now assemble our cell data. We have the set $\Lambda^+ = \zeta^\vee(\Gamma)$ with partial order induced from the partial order \leq on $\zeta(\Omega)$ (and also denoted \leq). Let $\lambda \in \Lambda^+$. We let $n_\lambda = \dim_{\mathbb{Q}} e \nabla(\lambda)_{\mathbb{Q}}$ and set $N(\lambda) = \{1, \ldots, n_\lambda\}$. The rank of $eV(\lambda)_\Lambda$ is n_λ. We choose elements $d_{\lambda,1}, \ldots, d_{\lambda,n_\lambda}$ of $eS\xi_\lambda$ such that the elements $d_{\lambda,1} + S(\lambda), \ldots, d_{\lambda,n_\lambda} + S(\lambda)$ form a \mathbb{Z}-basis of $eV(\lambda)_\Lambda = (eS\xi_\lambda + S(\lambda))/S(\lambda)$. Then $d_{\lambda,1}^*, \ldots, d_{\lambda,n_\lambda}^*$ are elements of $(eS\xi_\lambda)^* = \xi_\lambda N e$ and the elements $d_{\lambda,1}^* + S(\lambda), \ldots, d_{\lambda,n_\lambda}^* + S(\lambda)$ form a \mathbb{Z}-basis of $\lambda V(\lambda)_e = (\xi_\lambda Se + S(\lambda))/S(\lambda)$. Thus $d_{\lambda,tud_{\lambda,tu}^*}$ belongs to $eS\xi_\lambda Se$.

We define $C : \prod_{\lambda \in \Lambda^+} N(\lambda) \times N(\lambda) \to eSe$ by $C(t, u) = C_{t, u}^\lambda = d_{\lambda,1}^*, \ldots, d_{\lambda,n_\lambda}^*$, for $t, u \in N(\lambda)$.

Let M be the \mathbb{Z}-span of all $C_{t, u}^\lambda$, $\lambda \in \Lambda^+$, $t, u \in N(\lambda)$. We claim that $M = eSe$. We have $S = \sum_{\lambda \in \Lambda_\Omega} S\xi_\lambda$ so that if the claim is false then there exists $\lambda \in \Lambda_\Omega$ such that $eS\xi_\lambda Se \not\subseteq M$. In that case we choose λ minimal with this property. First suppose that $\lambda \not\in \zeta^\vee(\Gamma)$. Then we have $eV(\lambda)e = 0$, by (2), i.e., $eS\xi_\lambda Se \subseteq S(\lambda)$ and so $eS\xi_\lambda Se \subseteq eS(\lambda)e$. However, $eS(\lambda)e = \sum_{\mu > \lambda} eS\xi_\mu Se \subseteq M$, by minimality of λ and so $eS\xi_\lambda Se \subseteq M$. Thus we have $\lambda \in \Lambda^+ = \zeta^\vee(\Gamma)$.

Now by (1) the map

$$(eS\xi_\lambda + S(\lambda)) \otimes \mathbb{Z} (\xi_\lambda Se + S(\lambda)) \to eS\xi_\lambda Se + S(\lambda)$$

induced by multiplication is surjective. Moreover we have $eS\xi_\lambda + S(\lambda) = \sum_{t=1}^{n_\lambda} \mathbb{Z}d_{\lambda,t} + S(\lambda)$ and $\xi_\lambda Se + S(\lambda) = \sum_{u=1}^{n_\lambda} \mathbb{Z}d_{\lambda,u}^* + S(\lambda)$ so that

$$eS\xi_\lambda Se \subseteq \sum_{t, u=1}^{n_\lambda} \mathbb{Z}d_{\lambda,t}d_{\lambda,u}^* + S(\lambda) = \sum_{t, u=1}^{n_\lambda} \mathbb{Z}C_{t, u}^\lambda + S(\lambda)$$

and hence

$$eS\xi_\lambda Se \subseteq \sum_{t, u=1}^{n_\lambda} \mathbb{Z}C_{t, u}^\lambda + eS(\lambda)e.$$

But now $\sum_{t, u=1}^{n_\lambda} \mathbb{Z}C_{t, u}^\lambda \subseteq M$ by definition and again $eS(\lambda)e \subseteq M$ by the minimality of λ so that $eS\xi_\lambda Se \subseteq M$ and the claim is established.

The elements $C_{t, u}^\lambda$, $\lambda \in \Lambda^+$, $1 \leq t, u \leq n_\lambda$ form a spanning set of $eS\xi_\lambda e = S\Gamma$. But the rank of eSe is the \mathbb{Q}-dimension of $eS\xi_\lambda e$, i.e., the \mathbb{Q}-dimension of $S\Gamma_{\mathbb{Q}}$ and this is $\sum_{\lambda \in \Lambda^+} (\dim e \nabla(\lambda))^2$ by Remark 2.2. Hence the elements $C_{t, u}^\lambda$, with $\lambda \in \Lambda^+$, $1 \leq t, u \leq n_\lambda$, form a \mathbb{Z}-basis of eSe.

We have now checked the defining properties (C1) and (C2) of cell structure and it remains to check (C3). We fix $\lambda \in \Lambda^+$ and let $1 \leq t, u \leq n_\lambda$. Let $a \in eSe$. Then we have

$$aC_{t, u}^\lambda = ad_{\lambda,t}d_{\lambda,u}^*.$$
Now we have $\sum_{i=1}^{n_\lambda} Zd_{\lambda,i} + S(> \lambda) = eS\xi_\lambda + S(> \lambda)$ so we may write $ad_{\lambda,t} = \sum_{t' = 1}^{n_\lambda} ra(t', t)d_{\lambda,t'} + y$ for some integers $r_a(t', t)$ and an element y of $S(> \lambda)$. Thus we have

$$aC^\lambda_{t,u} = ad_{\lambda,t}d^*_{\lambda,u} = \sum_{t' = 1}^{n_\lambda} ra(t', t)d_{\lambda,t'}d^*_{\lambda,u} + yd^*_{\lambda,u}$$

$$= \sum_{t' = 1}^{n_\lambda} ra(t', t)C^\lambda_{t', u} + yd^*_{\lambda,u}$$

and hence

$$aC^\lambda_{t,u} = \sum_{t' = 1}^{n_\lambda} ra(t', t)C^\lambda_{t', u} \pmod{S(> \lambda)}.$$

We have thus checked defining property (C3) and hence proved the following.

Theorem 6.3. Let Γ be a Young $\text{Sym}(n)$-set. Then $(\Lambda^+, N, C, *)$ is a cell structure on $\text{St}_{\Gamma, \mathbb{Z}} = eS_{\Omega, \mathbb{Z}}e = \text{End}_{\text{Sym}(n)}(\mathbb{Z}\Gamma)$.

One now obtains a cell structure on $\text{End}_{\text{Sym}(n)}(R\Gamma)$, for any commutative ring R by base change.

There is also the question of when an endomorphism algebra over a field k is quasi-hereditary. If k has characteristic 0 then $\text{End}_{\text{Sym}(n)}(k\Gamma)$ is semisimple and there is nothing to consider. We assume now that the characteristic of k is $p > 0$. By [7, Remark 3.10] (see also [13], [14]) $\text{End}_{\text{Sym}(n)}(k\Gamma)$ is quasi-hereditary if and only if the number of irreducible $\text{End}_{\text{Sym}(n)}(k\Gamma)$-modules (up to isomorphism) is equal to the length of the cell chain, i.e., $|\zeta^p(\Gamma)|$. By Lemma 2.4, the number of irreducible $\text{End}_{\text{Sym}(n)}(k\Gamma)$-modules is $|\zeta^p(\Gamma)|$. Moreover, we have $\zeta^p(\Gamma) \subseteq \zeta(\Gamma)$ and so $\text{End}_{\text{Sym}(n)}(k\Gamma)$ is quasi-hereditary if and only if $\zeta(\Gamma) \subseteq \zeta^p(\Gamma)$. We spell this out in the following result.

Theorem 6.4. Let k be a field of characteristic $p > 0$ and let Γ be a Young $\text{Sym}(n)$-set. Then the endomorphism algebra $\text{End}_{\text{Sym}(n)}(k\Gamma)$ of the permutation module $k\Gamma$ is quasi-hereditary if and only if for every partition λ of n such that the Young subgroup $\text{Sym}(\lambda)$ appears as the stabiliser of a point of Γ and every partition $\mu \supseteq \lambda$ there exists a partition τ such that $\text{Sym}(\tau)$ appears as a point stabiliser and such that μ p-dominates τ, i.e., there exists a weak p expansion $\tau = \sum_{i \geq 0} p^i \gamma(i)$, with $\gamma(i) \in \Lambda(n)$, and $\gamma(i) \leq \mu(i)$ for all i (where $\mu = \sum_{i \geq 0} p^i \mu(i)$ is the base p-expansion of μ and where $\gamma(i)$ is the partition obtained by writing the parts of $\gamma(i)$ in descending order, for $i \geq 0$).

Remark 6.5. We emphasise that the above gives a criterion for the endomorphism algebra $\text{End}_{\text{Sym}(n)}(k\Gamma)$ of the Young permutation module $k\Gamma$ to be quasi-hereditary with respect to any labelling of the simple modules by a partially ordered set (which may have nothing to do with those considered
above) thanks to the result of König and Xi, [14, Theorem 3]. Thus if \(\Gamma \) does not satisfy the condition above then \(S_{I,k} \) can not have finite global dimension by [14, Theorem 3] and hence is not quasi-hereditary.

7 Example: Tensor Powers

Let \(R \) be a commutative ring and let \(E_R \) be a free \(R \)-module on basis \(e_{1,R}, \ldots, e_{n,R} \). Let \(r \) be a positive integer and let \(I(n, r) \) be the set described in Example 3.2. Then the \(r \)-fold tensor product \(E_R^{\otimes r} = E_R \otimes_R \cdots \otimes_R E_R \) has \(R \)-basis \(e_{i,R} = e_{i_1,R} \otimes \cdots \otimes e_{i_r,R}, i \in I(n, r), \) and we thus identify \(E_R^{\otimes r} \) with \(RI(n, r) \), the free \(R \)-module on \(I(n, r) \).

Remark 7.1. The symmetric group \(\text{Sym}(r) \) acts on \(E_R^{\otimes r} \) by place permutations, i.e. \(w \cdot e_{i,R} = e_{i \circ w^{-1},R} \), for \(w \in \text{Sym}(r) \), \(i \in I(n, r) \). Thus we may regard \(E_R^{\otimes r} \) as the permutation module \(RI(n, r) \), with \(\text{Sym}(r) \), acting on \(I(n, r) \) by \(w \cdot i = i \circ w^{-1} \). The endomorphism algebra \(\text{End}_{\text{Sym}(r)}(E_R^{\otimes r}) \) is the Schur algebra \(S_R(n, r) \).

The stabiliser of \(i \in I(n, r) \) is the direct product of the symmetric groups on the fibres of \(i \) (regarded as a subgroup of \(\text{Sym}(r) \) in the usual way). Hence \(I(n, r) \) is a Young \(\text{Sym}(r) \)-set. Hence \(E_R^{\otimes r} \) is a Young permutation module and hence \(S_R(n, r) \) is cellular. Moreover, \(\zeta(I(n, r)) \) is the set \(\Lambda^+(n, r) \) of all partitions of \(r \) with at most \(n \) parts. This is a co-saturated set and hence for a prime \(p \) we have \(\zeta(I(n, r)) = \zeta^p(I(n, r)) = \zeta^{\leq r}(I(n, r)) \). Hence, for a field \(k \) of characteristic \(p \) the Schur algebra \(S_k(n, r) \) is quasi-hereditary.

However, this is not a new proof since our treatment relies crucially on a detail from Green’s analysis of \(S_\leq(n, r) \) as in [4], at least in the case \(n = r \). (See Example 3.2 above and the proofs of the results of Section 4.)

We now regard \(E_R \) as an \(R \text{Sym}(n) \)-module with \(\text{Sym}(n) \) permuting the basis \(e_{1,R}, \ldots, e_{n,R} \) in the natural way. This action induces an action on the tensor product \(E_R^{\otimes r} \). Specifically, we have \(w \cdot e_{i,R} = e_{w \circ i,R} \), for \(w \in \text{Sym}(n) \), \(i \in I(n, r) \), and we thus regard \(E_R^{\otimes r} \) as the permutation module \(RI(n, r) \). For \(w \in \text{Sym}(n) \), \(i \in I(n, r) \) we have \(w \circ i = i \) if and only if \(w \) acts as the identity on the image of \(i \), so that the stabiliser of \(i \) is the group of symmetries of the complement of the image of \(i \) in \(\{1, \ldots, n\} \), identified with a subgroup of \(\text{Sym}(n) \) in the usual way. Thus \(I(n, r) \) is a Young \(\text{Sym}(n) \)-set so we have the following consequence of Theorem 6.3, answering a question raised in [1].

Proposition 7.2. The endomorphism algebra \(\text{End}_{\text{Sym}(n)}(E_R^{\otimes r}) = \text{End}_{\text{Sym}(n)}(RI(n, r)) \) is a cellular algebra.

The support of \(I(n, r) \) consists of hook partitions, more precisely we have

\[
\zeta(I(n, r)) = \{(a, 1^b) \mid a + b = n, 1 \leq b \leq r\}.
\]
Hence we have
\[\zeta^E(I(n,r)) = \{ \lambda = (\lambda_1, \lambda_2, \ldots) \in \text{Par}(n) \mid \lambda_1 \geq n - r \}. \]

Let \(k \) be a field of characteristic \(p > 0 \). Then \(\text{End}_{\text{Sym}(n)}(E_k^{\otimes r}) \) is quasi-hereditary if and only if \(\zeta^E(I(n,r)) \subseteq \zeta^E(I(n,r)) \), i.e., if and only for every \(\mu = (\mu_1, \mu_2, \ldots) \in \text{Par}(n) \) with \(\mu_1 \geq n - r \) there exists some \(\lambda = (a, 1^b) \), \(1 \leq b \leq r \), such that \(\lambda \leq_p \mu \).

We are able to give an explicit list of quasi-hereditary algebras arising in the above manner.

Proposition 7.3. Let \(k \) be a field of characteristic \(p > 0 \). Let \(n \) be a positive integer and \(E \) an \(n \)-dimensional \(k \)-vector space with basis \(e_1, \ldots, e_n \).

We regard \(E \) as a \(k\text{Sym}(n) \)-module with \(\text{Sym}(n) \) permuting the basis in the obvious way. For \(r \geq 1 \) we regard the \(r \)th tensor power \(E^{\otimes r} \) as a \(k\text{Sym}(n) \)-module via the usual tensor product action. Then \(\text{End}_{\text{Sym}(n)}(E^{\otimes r}) \) is quasi-hereditary if and only if:

(i) \(p \) does not divide \(n \); and

(ii) either \(n < 2p \) (and \(r \) is arbitrary) or \(n > 2p \) and \(r < p \).

Proof. We see this in a number of steps. We regard \(E^{\otimes r} \) as the permutation module \(kI(n,r) \), as above, with \(\text{Sym}(n) \) action by \(w \cdot i = w \circ i \), for \(w \in \text{Sym}(n), i \in I(n,r) \). We shall say that \(I(n,r) \) is quasi-hereditary if \(\text{End}_{\text{Sym}(n)}(E^{\otimes r}) \) is.

Step 1. If \(p \) divides \(n \) then \(I(n,r) \) is not quasi-hereditary.

We have \((n-1,1) \in \zeta(I(n,r))\) and \((n,0) \leq (n-1,1)\) so that \((n,0) \in \zeta^E(I(n,r))\).

Now \(n = pm \), for some positive integer \(m \), so that \(\mu = (n,0) = p(m,0) \) has base \(p \) expansion \((n,0) = \sum_{i \geq 0} p^i \mu(i)\), with restricted part \(\mu(0) = 0 \). Thus if \(\tau = (a, 1^b) \) has weak \(p \)-expansion \(\tau = \sum_{i \geq 0} p^i \gamma(i) \) and \(\gamma(0) \leq \mu(i) \), for all \(i \), then \(\gamma(0) = 0 \) and \(\tau \) is divisible by \(p \). However, this is not the case so no such weak \(p \)-expansion exists and \(\mu \in \zeta^E(I(n,r)) \setminus \zeta^E(I(n,r)) \). Thus \(\zeta^E(I(n,r)) \neq \zeta^E(I(n,r)) \) and \(I(n,r) \) is not quasi-hereditary.

Step 2. If \(p \) does not divide \(n \) then \(I(n,1) \) is quasi-hereditary.

We have \(\zeta(I(n,1)) = \{(n-1,1)\} \). If \(\mu \in \zeta^E(I(n,1)) \setminus \zeta^E(I(n,r)) \) then \(\mu = (n,0) \).

Now \(n \) has base \(p \) expansion \(n = \sum_{i \geq 0} p^i n_i \), with \(0 \leq n_i < p \) for all \(i \geq 0 \) and \(n_0 \neq 0 \) and \(\mu \) has base \(p \) expansion \(\mu = \sum_{i \geq 0} p^i \mu(i) \), with \(\mu(i) = (n_i,0) \), for all \(i \geq 0 \).

But now we write
\[
\tau = (n-1,1) = (n_0 - 1,1) + \sum_{i \geq 1} p^i (n_i,0)
\]
and τ has weak p-expansion $\tau = \sum_{i\geq 0} p^i \gamma(i)$, with $\gamma(0) = (n_0 - 1, 1)$, $\gamma(i) = (n_i, 0)$ for $i \geq 1$. Moreover $\gamma(i) \leq \mu(i)$, for all i so that $(n, 0) \in \zeta^{\geq r}(I(n, 1))$. Thus $\zeta^{\geq r}(I(n, 1)) = \zeta^{\geq r}(I(n, 1))$ and $I(n, 1)$ is quasi-hereditary.

Step 3. If $\mu \in \zeta^{\geq r}(I(n, r))$ is p-restricted then $\mu \in \zeta^{\geq r}(I(n, r))$

We have $\mu \geq (a, b)$ for some $n = a + b$, $1 \leq b \leq r$. The partition μ has base p expansion $\mu = \sum_{i\geq 0} p^i \mu(i)$, with $\mu(i) = 0$ for all $i \geq 1$.

But now $\tau = (a, 1^b)$ has week p-expansion $\tau = \sum_{i\geq 0} p^i \gamma(i)$, with $\gamma(0) = (a, 1^b)$ and $\gamma(i) = 0$ for all $i \geq 1$. Furthermore we have $\gamma(i) \leq \mu(i)$ for all $i \geq 0$ so $\mu \in \zeta^{\geq r}(I(n, r))$.

Step 4. If $n < p$ then $I(n, r)$ is quasi-hereditary.

This follows from Step 3 all since elements of $\text{Par}(n)$ are restricted.

Step 5. If $p < n < 2p$ then $I(n, r)$ is quasi-hereditary.

For a contradiction suppose not and let $\mu = (\mu_1, \mu_2, \ldots) \in \zeta^{\geq r}(I(n, n)) \cap \zeta^{\geq r}(I(n, r))$. We have $\mu \geq (a, 1^b)$ for some a, b with $n = a + b$, $1 \leq b \leq r$. Choose a, b with this property with $b \geq 1$ minimal. If $b = 1$ then $\mu \in \zeta^{\geq r}(I(n, 1))$, which by Step 2 is $\zeta^{\geq r}(I(n, 1))$. Thus we have $b \geq 2$.

We claim that $\mu_1 = a$. Since $\mu \geq (a, 1^b)$ the length l, say, of μ is at most $l = (a, 1^b)$, i.e. $b + 1$. Put $\xi = (\xi_1, \xi_2, \ldots) = (a + 1, 1^{b-1})$. If $\mu_1 > a$ then $\mu_1 \geq \xi_1$ and, for $1 < i \leq l$, we have

$$\mu_1 + \cdots + \mu_i \geq a + 1 + (i - 1) = a + i = \xi_1 + \cdots + \xi_i.$$

So $\mu \geq \xi = (a + 1, 1^{b-1})$, which is a contradiction, and the claim is established.

Note that μ is non-restricted, by Step 3, and, since μ is a partition of $n < 2p$ in the base p expansion $\mu = \sum_{i\geq 0} p^i \mu(i)$ of μ, we must have $\mu(1) = (1, 0)$ and $\mu(i) = 0$ for $i \geq 2$. Let $\tau = (a, 1^b)$. Then $\tau \leq \mu$ implies that $\tau - (p, 0) \leq \mu - (p, 0) = \mu(0)$. But now

$$\tau = (a, 1^b) = (a - p, 1^b) + p(1, 0)$$

so we have the weak p expansion $\tau = \sum_{i\geq 0} p^i \gamma(i)$ with $\gamma(0) = (a - p, 1^b)$, $\gamma(1) = (1, 0)$ and $\gamma(i) = 0$ for $i > 1$. Since $\gamma(i) \leq \mu(i)$ for all $i \geq 0$ we have $(a, 1^b) \leq_p \mu$ and so $\mu \in \zeta^{\geq r}(I(n, r))$, a contradiction.

Step 6. If $n > 2p$ and $r \geq p$ then $I(n, r)$ is not quasi-hereditary.

Note that $\zeta(I(n, r))$ contains $(n - p, 1^p)$ and hence $\zeta^{\geq r}(I(n, r))$ contains $\mu = (n - p, p)$. Now we have $\mu = (n - 2p, 0) + p(1, 1)$ and so $\mu = \mu(0) + p \xi$, where $\mu(0)$ has at most one part and ξ has two parts. Hence in the base p expansion $\mu = \sum_{i\geq 0} p^i \mu(i)$, there is for some $j \geq 1$, such that $\mu(j)$ has two parts.
Now if $\mu \in \zeta^\varphi(I(n,r))$ there there exists some $\tau = (a,1^b)$ with weak p expansion $\tau = \sum_{i \geq 0} p^i \gamma(i)$ such that $\gamma(i) \leq \mu(i)$ for all $i \geq 0$. But then $\gamma(j)$ must have at least two parts. Since $j \geq 1$, the partition $\tau = (a,1^b)$ has two parts of size at least p. This is not the case so there is no such weak p expansion and $\mu \not\in \zeta^\varphi(I(n,r))$. Thus $\zeta^\varphi(I(n,r)) \neq \zeta^\varphi(I(n,r))$ and $I(n,r)$ is not quasi-hereditary.

Step 7. If $n > 2p$, if p does not divide n and if $r < p$, then $I(n,r)$ is quasi-hereditary.

If not there exists $\mu = (\mu_1, \mu_2, \ldots) \in \zeta^\varphi(I(n,r)) \setminus \zeta^\varphi(I(n,r))$. Thus $\mu \geq (a,1^b)$, for some $n = a + b$, $b \geq 1$ and, as in Step 5, we choose such $(a,1^b)$ with b minimal. Again, by Step 2, we have $b \geq 2$.

We claim that $\mu_1 = a$. If not, we get $\mu \geq (a + 1,1^{b-1})$ as in Step 5, contradicting the minimality of b.

Thus we have $\mu_2 + \cdots + \mu_n = n - \mu_1 = b < p$, in particular we have $\mu_i < p$ for all $i \geq 1$. Hence in the base p expansion $\mu = \sum_{i \geq 0} p^i \mu(i)$, for all $i \geq 1$ we have $\mu(i) = (c_i,0,\ldots,0)$, for some $0 \leq c_i < p$. Also, $\mu(0) = (k,\mu_2,\ldots,\mu_n)$, for some $k > 0$.

Now we have

$$\tau = (a,1^b) = (k + \sum_{i \geq 1} p^i c_i,1^b) = (k,1^b) + \sum_{i \geq 1} p^i (c_i,0,\ldots,0).$$

Thus we have the weak p-expansion $\tau = \sum_{i \geq 0} p^i \gamma(i)$, with $\gamma(0) = (k,1^b)$ and $\gamma(i) = (c_i,0,\ldots,0)$, for $i \geq 1$. Furthermore, $\gamma(i) \leq \mu(i)$, for all $i \geq 1$ so that $\mu \in \zeta^\varphi(I(n,r))$ and therefore $\zeta^\varphi(I(n,r)) = \zeta^\varphi(I(n,r))$ and $I(n,r)$ is quasi-hereditary.

Let k be a field. Recall that, for $\delta \in k$, and r a positive integer we have the partition algebra $P_r(\delta)$ over k. One may find a detailed account of the construction and properties of $P_r(\delta)$ in for example the papers by Paul P. Martin, [16], [17], and [11], [1]. Suppose now that k has characteristic $p > 0$ and $\delta = n1_k$, for some positive integer n. Let E_n be an n-dimensional vector space with basis e_1,\ldots,e_n. Then $P_r(n) = P_r(n1_k)$ acts on $E_n^{\otimes r}$. By a result of Halverson-Ram, [11] Theorem 3.6 the image of the representation $P_r(n) \to \text{End}_k(E_n^{\otimes r})$ is $\text{End}_{\text{Sym}(n)}(E_n^{\otimes r})$. Moreover, for $n \gg 0$ the action of $P_r(n)$ is faithful. Let $N = n + ps$, for s suitably large, so that $P_r(n) = P_r(N)$ acts faithfully on $E_N^{\otimes r}$. Thus $P_r(n)$ is quasi-hereditary if and only if $\text{End}_{\text{Sym}(N)}(E_N^{\otimes r})$ is faithful. Hence from Proposition 7.3 we have the following, which is a special case of a result of König and Xi, [14] Theorem 1.4.

Corollary 7.4. The partition algebra $P_r(n)$ is quasi-hereditary if and only if n is prime to p and $r < p$.

16
References

[1] C. Bowman, S. R. Doty and S. Martin, *Integral Schur-Weyl duality for partition algebras*, arXiv:1906.00457v1, 2019.

[2] A. G. Cox, *The blocks of the q-Schur algebra*, J. of Algebra 207, 306-325, 1998.

[3] S. Donkin, *On Schur Algebras and Related Algebras IV: the blocks of the Schur algebras*, J. of Algebra, 168, 400-429, 1994.

[4] S. Donkin, *On tilting modules for algebraic groups*, Math. Z. 212, 39-60, 1993.

[5] S. Donkin, *The q-Schur algebra*, LMS Lecture Notes 253, Cambridge University Press 1998.

[6] Karin Erdmann, *Stratifying systems, filtration multiplicities and symmetric groups*, Journal of Algebra and Its Applications, 5, (2005), 551-555.

[7] J. J. Graham and G. I. Lehrer, *Cellular algebras*, Invent. Math. 123, (1996), 1-34.

[8] J. A. Green, *A theorem on modular endomorphism rings*, Illinois Journal of Mathematics 32, (1988), 510-519.

[9] J. A. Green, *Combinatorics and the Schur algebra*, Journal of Pure and Applied Algebra 88 (1993), 89-106.

[10] J. A. Green, *Polynomial Representations of GL_n, Second Edition with an Appendix on Schenstead Correspondence and Littelmann Paths by K. Erdmann, J. A. Green and M. Schocker*, Lecture Notes in Mathematics 830, Springer 2007.

[11] T. Halverson and A. Ram, *Partition Algebras*, European J. Combin. 28, (2005), 869-921.

[12] G. D. James, *The Representation Theory of the Symmetric Groups*, Lecture Notes in Mathematics 682, Springer 1970.

[13] Steffen König and Changchang Xi, *On the structure of cellular algebras*, In: I. Reiten, S. Smalø, Ø. Solberg (Eds.): Algebras and Modules II. Canadian Math. Society Conference Proceedings, vol. 24, (1998), 365-386.

[14] Steffen König and Changchang Xi, *When is a cellular algebra quasi-hereditary*, Mathematische Annalen, 315, (1999), 281-293.
[15] Andrew Mathas and Marcos Soriano *Blocks of truncated q-Schur algebras of type A*. Contemporary Mathematics, Recent Developments in Algebraic and Combinatorial Aspects of Representations Theory:: Eds Vyjayanthi Chari, Jacob Greenstein, Kallash C. Misra, K.N. Raghavan and Sankaran Viswananth 602, (2013), 123-142.

[16] P. Martin, *Potts models and related problems in statistical mechanics*, Series on Advances in Statistical Mechanics, vol 5. World Scientific Publishing Co., Inc., Teaneck, NJ, 1991.

[17] P. Martin, *Temperley-Lieb algebras for nonplanar statistical mechanics - the partition algebra construction*, J. Knot Theory Ramifications 3, (1994), no. 1, 51-82.

[18] B. Parshall, *Finite dimensional algebras and algebraic groups*, Contemporary Math. 82, (1989), 97-114.