Abstract

Introduction: Radical cystectomy (RC) is the historic gold standard treatment for muscle-invasive bladder cancer (MIBC), but trimodal therapy (TMT) has emerged as a valid therapeutic option for selected patients. Given that prospective clinical trials have been difficult to perform in this area, our aim was to compare these two primary treatment strategies using decision analytic methods.

Method: A two-dimensional Markov microsimulation model was constructed using TreeAge Pro to compare RC and TMT for patients with newly diagnosed MIBC. A comprehensive literature search was used to populate model probabilities and utilities. Our primary outcome was quality-adjusted life expectancy (QALE). Secondary outcomes included crude life expectancy (LE) and bladder cancer recurrences. The simulated patient for our model was an adult with MIBC (pT2-4 N0 M0) who was a candidate for either RC or TMT.

Results: A total of 500,000 patients were simulated. TMT resulted in an estimated mean QALE of 7.48 vs. 7.41 for RC. However, the average LE for patients treated with TMT was lower compared with RC (10.20 vs. 10.74 years). A sensitivity analysis evaluating the impact of age showed that younger patients treated with RC had greater QALE and longer LE than those
treated with TMT; inverse findings were observed for elderly patients. Overall, 39.4% of patients treated with TMT experienced a bladder recurrence.

Conclusions: RC results in a longer LE compared to TMT (0.54 years), but with a lower QALE (-0.07 years). The preferred treatment strategy varied with patient age.

Introduction

Bladder cancer represents a significant source of morbidity and mortality worldwide. Nearly 430,000 diagnoses of bladder cancer are made each year leading to approximately 165,000 deaths (1). Radical cystectomy (RC) has historically been accepted as the gold standard treatment for muscle invasive bladder cancer (MIBC) supported by a large body of long-term evidence (2, 3). However, RC is associated with significant risks of post-operative morbidity and even mortality (4). Due to the risks associated with RC and the appeal of bladder preservation, trimodal therapy (TMT) including debulking transurethral resection of the tumour, followed by concurrent radiosensitizing chemotherapy and external beam radiation has emerged as a valid treatment option, albeit in selected patients (5).

Evaluating the two modalities directly has been challenging. Retrospective studies which include the early years of TMT adoption are likely impacted by indication bias making conclusions regarding efficacy difficult to draw. The only randomized clinical trial in this space was closed early due to poor accrual due to issues with perceived lack of equipoise and patient reluctance to randomization (6).

Our group has previously compared the oncologic outcomes between patients treated with RC or TMT using a propensity score matched-cohort analysis and found that TMT yielded survival outcomes similar to those of matched patients who underwent RC (7). However, little literature has been published evaluating the quality of life impact from the two treatment types. Since these interventions and their downstream sequelae are complex, involving both benefits and harms to health, distillation of the relevant information to an overall estimation can contribute to better decision making (8). Decision models are an accepted tool used to guide clinical decision making and models have previously been used in the field of urologic oncology (9, 10). Therefore, the purpose of this study is to directly compare the effectiveness of TMT versus RC for patients with MIBC using decision analytic techniques.

Methods

Model overview

We constructed a two-dimensional Markov microsimulation model with trackers using TreeAge Pro 2019 (TreeAge Software Inc., Williamstown, MA) to compare treatment strategies for patients with newly diagnosed MIBC. A Markov model simulates patients over time and allows for transitions between various health states as disease progresses. Two management strategies
were modelled – TMT versus RC. Our primary outcome was quality adjusted life expectancy (QALE). Secondary outcomes included crude life expectancy, overall survival, distant recurrence rates and bladder cancer diagnoses in the TMT arm over a lifetime time horizon. The Markov cycle length mimicked the clinical experience: every 3 months in active treatment and during the first year of follow-up, then every 6 months for the second and third year and then yearly moving forward if patients had no evidence of recurrence. If evidence of recurrence developed, they returned to a cycle length of 3 months. Within cycle correction with a 1.5% discount rate was used to account for bias arising from discrete-time Markov models (11, 12).

Base case
The base case for our model was an adult patient with MIBC (pT2-4 N0 M0) appropriate for either RC or TMT. Distributions representative of the typical MIBC population were used to simulate real patients seen in clinical practice with individual level sampling for age, gender, and reconstruction type. Distributions for patient level variables are shown in Appendix S1.

Model structure
Figure 1 depicts the Markov state transition diagrams for both strategies. In both arms, patients may be treated with neoadjuvant chemotherapy (NAC), and experience adverse events, progression, or death, impacting their ability to complete chemotherapy.

Patients in the TMT arm (Figure 1A) could have a complete or incomplete response to therapy (requiring salvage cystectomy or systemic treatment). Following TMT, patients entered the surveillance phase where they could develop a local recurrence, treatment-related complication (minor and major, based on CTCAE grading), distant recurrence, or death. The bladder cancer recurrence could be non-muscle invasive (high [HG] or low grade [LG]) or muscle invasive. Patients diagnosed with MIBC or recurrent HG NMIBC (>1 recurrence) underwent a salvage cystectomy. Further details regarding the modelling of complications can be found in Appendix S2.

In the RC arm (Figure 1B) and for patients undergoing salvage cystectomy in the TMT arm, patients could experience peri-operative complications or mortality. Complications were similarly modelled as minor and major (based on Clavien Dindo grading), which increased peri-operative mortality rates (13, 14). Following treatment, patients entered a post-cystectomy surveillance state. With each cycle, each patient had a risk of distant recurrence, short or long term post-operative complications, and death.

If patients in either cohort developed a distant, metastatic recurrence, they could be treated with either first line (cisplatin based) chemotherapy or second line therapy. Eligibility for first line chemotherapy was modelled based on the probability of a simulated patient having adequate renal function for cisplatin (defined as GFR ≥ 60mL/min), which decreased with age (15). Patients ineligible for cisplatin were treated with gemcitabine/carboplatin (16). Second line therapy was modelled as pembrolizumab in keeping with the inclusion criteria from the
KEYNOTE-045 trial (17). Patients could also transition into a palliative state (best supportive care). Assumptions made in the development of the model are detailed in the Appendix S3.

Model parameters
Transition probabilities were determined from a comprehensive MEDLINE literature search as of March 1, 2019, supplemented by hand search of references from retrieved studies, review articles, previous decision analyses and expert consultation (Table 1). If there were multiple datapoints obtained for a given probability, we chose the value that was from the publication of the best methodological grade and represented the modelled cohort most accurately. In order to more closely approximate real-life events, equations representing survival and cumulative incidence curves from the published literature were calculated; these were then used to create per cycle probabilities for key transition probabilities (Appendix S4).

Utilities were obtained using the Tufts-New England Medical Center Cost Effectiveness Analysis registry (http://www.tufts-nemc.org/cearegistry/data/default.asp) and using a manual search of published urology decision models (Table 2). In cases where exact probabilities or utilities were not available, our search expanded to include other cancer sites and expert opinion. Transitional penalties to account for the inconvenience of procedures and potential short-term complications (e.g. transurethral resection of bladder tumour, chemotherapy and operative complications) were subtracted from a given health state’s baseline utility.

Model calibration
We calibrated the baseline non-cancer mortality rate using two- and ten- year survival in the RC arm to better model overall survival with MIBC. Calibrations in the TMT arm were completed for the probabilities of proceeding to immediate cystectomy following incomplete response to TMT, developing a distant or bladder recurrence. These uncertain probabilities were calibrated against the salvage cystectomy rate and two- and ten- year survival in TMT. Further details are available in Appendix S5.

Model validation
Internal model validity was assured through assessment of results’ face validity, placement of internal trackers and ensuring logical model flow through the stages. We assessed external validity by evaluating our model’s ability to reproduce overall survival rates, disease specific survival (DSS) rates and absolute benefit derived from NAC in both the TMT and RC arms by comparing model generated estimates with those published that were separate from those used to generate model probabilities.

Sensitivity analyses
Sensitivity analyses are used to assess how the change in one variable affects the overall outcome of the model. Scenario-based sensitivity analyses were utilized to evaluate the impact of neoadjuvant chemotherapy utilization and age on the primary outcome. One-way sensitivity
analyses where the variable of interest can vary across the range of clinically plausible values were completed on the surveillance utility values.

Results
A total of 500,000 patients were simulated. Based on our base case analysis, TMT was the preferred treatment pathway with an estimated QALE of 7.48 versus 7.41 for RC. The non-quality of life adjusted crude life expectancy for patients treated with TMT was 10.20 years versus 10.74 years with RC.

The model’s overall survival rates at 1, 5 and 15 years for TMT and RC were 90.2%, 58.8%, 24.1% and 93.5%, 56.9%, and 26.7%, respectively (Table 3).

DSS rates at 5 years were 69.5% in TMT and 65.7% in RC. Our validation cohort had DSS rates of 76.6% for TMT and 73.2% for RC (7).

Secondary outcomes of interest were analyzed. In the TMT arm, 6.3% of patients did not complete therapy. Overall, 39.4% of patients experienced a bladder recurrence, with 66.9% were NMIBC. The overall rate of salvage cystectomy was 26.6%; the 2- and 5-year salvage cystectomy rates were 11.2% and 17.9%, respectively. Over the course of the simulation, 31.8% of patients in the TMT arm had a distant recurrence.

In the RC arm, the perioperative mortality rate was 2.24%. Distant recurrence occurred in 41.3% of patients during the simulation. The overall incidence of complications during surveillance in the TMT arm was 44.3% and 38.9% in the RC arm.

Sensitivity analysis

Impact of neoadjuvant chemotherapy
As the use of NAC prior to TMT or RC is not universal, scenario-based analyses were undertaken to explore the impact of 100% utilization of NAC in both arms. If all patients received NAC in the TMT arm, the 5-year OS was 60.4% compared to 57.9% if none of the patients received it. This represents an absolute OS benefit of 2.5%. In the RC arm, if 100% of patients received NAC the 5-year OS was 59.2% and 55.6% if none of the patients received chemotherapy. The absolute OS benefit was 3.6%. The absolute OS benefit from published meta-analyzed data is 5% (23).

Impact of age
The impact of age on QALE and crude life expectancy was investigated using scenario-based analyses. The starting age distribution was replaced with distinct age thresholds. This analysis showed that younger patients treated with RC had both greater QALE and longer crude survival than those treated with TMT. However, for elderly patients, the inverse was true (Table 4).
Impact of utilities
One-way sensitivity analyses were completed around surveillance utility values for TMT and RC. Decreasing the TMT surveillance state utility from 0.91 to 0.899 results in a change in the preferred pathway; in the RC arm increasing the surveillance state utility for non-neobladder patients to 0.848 from 0.84 results in a change in the preferred treatment modality with respect to QALE (Appendix S6).

Discussion
This Markov microsimulation comparing two treatment modalities for patients with newly diagnosed MIBC revealed that TMT resulted in a net gain of 0.07 quality adjusted life years (QALYs) compared with RC. The quality-unadjusted life years however, reveal that patients treated with TMT have an average life expectancy of 10.20 compared to 10.74 years for those treated with RC (a net benefit for RC of 0.54 years).

As a composite measure, QALYs encompass overall survival and health related quality of life. In oncology decision analyses, the clinical interpretation of a meaningful change in QALYs can be challenging (48). In this setting, where TMT leads to a gain of 1 quality adjusted life month (QALM) in the setting of a 6-month crude life expectancy decrease, the gain in QALM is of questionable clinical significance. Our sensitivity analysis demonstrates that the model is exquisitely sensitive to changes in patient preference for both TMT and RC surveillance states.

In this decision analysis, the impact of age on the ultimate treatment choice was investigated. When patients are younger (≤55 years old), they derive greater QALYs and unadjusted life years from RC than they do from TMT because the impact of a longer follow up results in the need for salvage procedures (i.e. greater oncologic control from RC) and the occurrence of secondary malignancies in the TMT group. Whereas when patients are ≥81 years old, the inverse is true; the elderly have a longer unadjusted life expectancy and experience greater QALYs when treated with TMT, in large part because of the avoidance of post-operative mortality after RC. In the intermediate ranges of age (64-80), the results are mixed. TMT results in greater QALYs but RC lead to more unadjusted life years gained. Therefore, discussions about individual patient priorities are especially important in these age ranges. Since age and comorbidity are often correlated, we would expect similar findings in patients with high and low comorbidity states (i.e.: TMT favoured for highly comorbid patients regardless of age and RC favoured for patients with few comorbidities). As the literature is conflicted with respect to whether octogenarians face an increased risk of peri-operative mortality(49-52), all patients were modelled to have the same peri-operative risk of morbidity and mortality. If the true risks for elderly patients are in fact higher than those in younger age cohorts, our findings would be further reinforced.

It is worth noting that not all patients with MIBC are ideal candidates for TMT and the selection of these eligible patients is of utmost importance. Patients with preserved bladder
function with a unifocal tumour less than 7 cm in size, at maximum unilateral hydronephrosis and the absence of multifocal carcinoma in situ represent the best candidates when comparing oncological outcomes.

External validity of the model was evaluated by comparing our OS results to those from studies not used in the generation of our analysis. Overall, the generated OS results fall within 7% of the literature results; importantly our results follow the appropriate trend within the RC and TMT arms themselves and in relation to each other. Despite level 1 evidence to support the use of NAC in MIBC, there is consistent underutilization (53, 54).

Our model illustrates that when every patient is given NAC prior to definitive management (compared to when 0% receive NAC) an absolute OS benefit is achieved between 2.5-3.6% at 5 years. While this is slightly lower than the estimates of effect generated by the meta-analyzed data, the OS from that meta-analysis was 45-50% which is lower than contemporary data (23). As a result, they have more room for benefit to be derived from NAC and so these estimates of benefit from NAC are in largely in keeping with the meta-analyzed data.

Randomized clinical trials in this setting have been difficult to perform as evidenced by the SPARE trial which closed due to slow accrual (55). Given these circumstances, decision models are an increasingly accepted tool to guide clinical decision making in the field of urologic oncology when trials are not available or possible. Similar models have been developed to guide management in prostate cancer (56) and recurrent HG NMIBC (9).

Our analysis is the most robust evaluation of TMT versus RC for the treatment of muscle invasive bladder cancer to date. Royce and others have previously examined this research question with a decision analysis and demonstrated that TMT resulted in 0.59 more QALYs than RC but with identical unadjusted life years (41). Our analysis however, employs a more detailed modelling approach, necessary to ensure that patient characteristics and treatment options are realistic and reflective of the population and their disease experience. For example, we consider patient level sampling and variability; the potential for complications to develop during the treatment, peri-operative and surveillance phases; and multiple lines of systemic therapy and palliation during the clinical course. These nuances, along with a clinically appropriate cycle length, ensure that the experience is reflective of those from real-world patients. The difference in modelling details helps to explain the difference in QALYs between treatments produced in their paper compared to ours.

Our study demonstrates that the choice between TMT and RC is extremely preference sensitive, with a small shift in preference / utility, changing the recommendation from TMT to RC, or vice versa. As a result, incorporating cost within the model is unlikely to yield further benefit as the resulting incremental cost-effectiveness ratio (ICER) would become very unstable as the difference in effectiveness approaches zero. Given this, we believe the selection of treatment should be based on individual patient factors and their preference in a clinical setting.
Due to the nature of literature comparing the two treatment modalities, our study has some limitations. Stratifying patients by pathological details (presence of CIS, hydronephrosis, clinical tumour stage) would add more granularity to help decide which treatment is best suited for which patient, but insufficient data were available. Moreover, due to the inconsistencies in reporting comorbidities between radiation and surgical papers, the inclusion of comorbidity status was not possible, although age may represent a surrogate. Also, many of our input parameters were obtained from retrospective studies. Although bias is inherent in these studies, we chose values from the highest quality studies where possible. Since much of our current knowledge and clinical practice as it pertains to TMT and RC stems from retrospective studies, our confidence in the model inputs should not be undermined by the retrospective nature of the data.

Conclusions
We demonstrated that in patients with MIBC who are a candidate for either therapy, RC provides slightly longer unadjusted overall survival compared to TMT (0.54 years) but with slightly less quality of life (-0.07 QALYs) of questionable clinical significance. Differences in treatment preference were dependent on age with a larger survival benefit seen in younger patients treated with RC secondary to improved oncologic control. NAC with either TMT or RC provides a meaningful overall survival benefit.
References

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer. 2015;136(5):359.

2. Gakis G, Efstathiou J, Lerner SP, Cookson MS, Keegan KA, Guru KA, et al. ICUD-EAU International Consultation on Bladder Cancer 2012: Radical cystectomy and bladder preservation for muscle-invasive urothelial carcinoma of the bladder. Eur Urol. 2013;63(1):45-57.

3. Stenzl A, Cowan NC, De Santis M, Kuczyk MA, Merseburger AS, Ribal MJ, et al. Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU guidelines. Eur Urol. 2011;59(6):1009-18.

4. Shabsigh A, Korets R, Vora KC, Brooks CM, Cronin AM, Savage C, et al. Defining early morbidity of radical cystectomy for patients with bladder cancer using a standardized reporting methodology. Eur Urol. 2009;55(1):164-74.

5. Ploussard G, Daneshmand S, Efstathiou JA, Herr HW, James ND, Rodel CM, et al. Critical analysis of bladder sparing with trimodal therapy in muscle-invasive bladder cancer: a systematic review. Eur Urol. 2014;66(1):120-37.

6. Huddart RA, Birtle A, Maynard L, Beresford M, Blazeby J, Donovan J, et al. Clinical and patient-reported outcomes of SPARE - a randomised feasibility study of selective bladder preservation versus radical cystectomy. BJU Int. 2017;120(5):639-50.

7. Kulkarni GS, Hermanns T, Wei Y, Bhindi B, Satkunasivam R, Athanasopoulos P, et al. Propensity Score Analysis of Radical Cystectomy Versus Bladder-Sparing Trimodal Therapy in the Setting of a Multidisciplinary Bladder Cancer Clinic. J Clin Oncol. 2017;35(20):2299-305.

8. Neumann P. J. SGD, Russell L.B., Seigel J.E., Ganiats T.G. Cost-effectiveness in health and medicine. 2nd Edition ed. New York: Oxford University Press; 2017.

9. Kulkarni GS, Finelli A, Fleshner NE, Jewett MA, Lopushinsky SR, Alibhai SM. Optimal management of high-risk T1G3 bladder cancer: a decision analysis. PLoS Med. 2007;4(9):e284.

10. Klaassen Z, Li K, Kassouf W, Black PC, Dragomir A, Kulkarni GS. Contemporary cost-consequence analysis of blue light cystoscopy with hexaminolevulinate in non-muscle-invasive bladder cancer. Can Urol Assoc J. 2017;11(6):173-81.

11. Naimark DM, Bott M, Krahn M. The half-cycle correction explained: two alternative pedagogical approaches. Med Decis Making. 2008;28(5):706-12.

12. CADTH. Guidelines for the Economic Evaluation of Health Technologies. 4th edition ed. Canadian Agency for Drugs and Technologies in Health 2017. 2017.

13. Borgi J, Rubinfeld I, Ritz J, Jordan J, Velanovich V. The differential effects of intermediate complications with postoperative mortality. Am Surg. 2013;79(3):261-6.

14. Lyon TD, Boorjian SA, Shah PH, Tarrell R, Cheville JC, Frank I, et al. Comprehensive characterization of perioperative reoperation following radical cystectomy. Urol Oncol. 2019.
15. Dash A, Galsky MD, Vickers AJ, Serio AM, Koppie TM, Dalbagni G, et al. Impact of renal impairment on eligibility for adjuvant cisplatin-based chemotherapy in patients with urothelial carcinoma of the bladder. Cancer. 2006;107(3):506-13.
16. De Santis M, Bellmunt J, Mead G, Kerst JM, Leahy M, Maroto P, et al. Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J Clin Oncol. 2012;30(2):191-9.
17. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N Engl J Med. 2017;376(11):1015-26.
18. Krabbe LM, Westerman ME, Margulis V, Raj GV, Sagalowsky AI, Courtney K, et al. Changing trends in utilization of neoadjuvant chemotherapy in muscle-invasive bladder cancer. Can J Urol. 2015;22(4):7865-75.
19. Winquist E, Kirchner TS, Segal R, Chin J, Lukka H, Genitourinary Cancer Disease Site Group CCOPiE-bCPGI. Neoadjuvant chemotherapy for transitional cell carcinoma of the bladder: a systematic review and meta-analysis. J Urol. 2004;171(2 Pt 1):561-9.
20. Zargar H, Espiritu PN, Fairey AS, Mertens LS, Dinney CP, Mir MC, et al. Multicenter assessment of neoadjuvant chemotherapy for muscle-invasive bladder cancer. Eur Urol. 2015;67(2):241-9.
21. Niedersüss-Beke D, Puntus T, Kunit T, Grünberger B, Lamche M, Loidl W, et al. Neoadjuvant Chemotherapy with Gemcitabine plus Cisplatin in Patients with Locally Advanced Bladder Cancer. Oncology. 2017;93(1):36-42.
22. Galsky MD, Pal SK, Chowdhury S, Harshman LC, Crabb SJ, Wong YN, et al. Comparative effectiveness of gemcitabine plus cisplatin versus methotrexate, vinblastine, doxorubicin, plus cisplatin as neoadjuvant therapy for muscle-invasive bladder cancer. Cancer. 2015;121(15):2586-93.
23. Advanced Bladder Cancer Meta-analysis C. Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur Urol. 2005;48(2):202-5; discussion 5-6.
24. Wallace B, Breau RH, Cnossen S, Knee C, McIsaac D, Mallick R, et al. Age-stratified perioperative mortality after urological surgeries. Can Urol Assoc J. 2018;12(8):256-9.
25. Parekh DJ, Reis IM, Castle EP, Gonzalgo ML, Woods ME, Svatek RS, et al. Robot-assisted radical cystectomy versus open radical cystectomy in patients with bladder cancer (RAZOR): an open-label, randomised, phase 3, non-inferiority trial. Lancet. 2018;391(10139):2525-36.
26. Shimko MS, Tollefson MK, Umbrecht EC, Farmer SA, Blute ML, Frank I. Long-term complications of conduit urinary diversion. J Urol. 2011;185(2):562-7.
27. Nuhn P, May M, Sun M, Fritsche HM, Brookman-May S, Buchner A, et al. External validation of postoperative nomograms for prediction of all-cause mortality, cancer-specific mortality, and recurrence in patients with urothelial carcinoma of the bladder. Eur Urol. 2012;61(1):58-64.
28. Tunio MA, Hashmi A, Qayyum A, Mohsin R, Zaeem A. Whole-pelvis or bladder-only chemoradiation for lymph node-negative invasive bladder cancer: single-institution experience. Int J Radiat Oncol Biol Phys. 2012;82(3):e457-62.
29. Fahmy O, Khairul-Asri MG, Schubert T, Renninger M, Malek R, Kubler H, et al. A systematic review and meta-analysis on the oncological long-term outcomes after trimodality therapy and radical cystectomy with or without neoadjuvant chemotherapy for muscle-invasive bladder cancer. Urol Oncol. 2018;36(2):43-53.
30. Efstathiou JA, Bae K, Shipley WU, Kaufman DS, Hagan MP, Heney NM, et al. Late pelvic toxicity after bladder-sparing therapy in patients with invasive bladder cancer: RTOG 89-03, 95-06, 97-06, 99-06. J Clin Oncol. 2009;27(25):4055-61.
31. Rodel C, Grabenbauer GG, Kuhn R, Papadopoulos T, Dunst J, Meyer M, et al. Combined-modality treatment and selective organ preservation in invasive bladder cancer: long-term results. J Clin Oncol. 2002;20(14):3061-71.
32. Zelefsky MJ, Pei X, Teslova T, Kuk D, Magsanoc JM, Kollmeier M, et al. Secondary cancers after intensity-modulated radiotherapy, brachytherapy and radical prostatectomy for the treatment of prostate cancer: incidence and cause-specific survival outcomes according to the initial treatment intervention. BJU Int. 2012;110(11):1696-701.
33. Eswara JR, Efstathiou JA, Heney NM, Paly J, Kaufman DS, McDougal WS, et al. Complications and long-term results of salvage cystectomy after failed bladder sparing therapy for muscle invasive bladder cancer. J Urol. 2012;187(2):463-8.
34. Knap MM, Lundbeck F, Overgaard J. Early and late treatment-related morbidity following radical cystectomy. Scand J Urol Nephrol. 2004;38(2):153-60.
35. von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol. 2005;23(21):4602-8.
36. Wang F, Mishina S, Takai S, Le TK, Ochi K, Funato K, et al. Systemic Treatment Patterns With Advanced or Recurrent Non-small Cell Lung Cancer in Japan: A Retrospective Hospital Administrative Database Study. Clin Ther. 2017;39(6):1146-60.
37. Smith AB, Deal AM, Woods ME, Wallen EM, Pruthi RS, Chen RC, et al. Muscle-invasive bladder cancer: evaluating treatment and survival in the National Cancer Data Base. BJU Int. 2014;114(5):719-26.
38. Williams SB, Huo J, Chu Y, Baillargeon JG, Daskivich T, Kuo YF, et al. Cancer and All-cause Mortality in Bladder Cancer Patients Undergoing Radical Cystectomy: Development and Validation of a Nomogram for Treatment Decision-making. Urology. 2017;110:76-83.
39. Stevenson SM, Danzig MR, Ghandour RA, Deibert CM, Decastro GJ, Benson MC, et al. Cost-effectiveness of neoadjuvant chemotherapy before radical cystectomy for muscle-invasive bladder cancer. Urol Oncol. 2014;32(8):1172-7.
40. Truzzi JC, Teich V, Pepe C. Can hydrophilic coated catheters be beneficial for the public healthcare system in Brazil? - A cost-effectiveness analysis in patients with spinal cord injuries. Int Braz J Urol. 2018;44(1):121-31.
41. Royce TJ, Feldman AS, Mossanen M, Yang JC, Shipley WU, Pandharipande PV, et al. Comparative Effectiveness of Bladder-preserving Tri-modality Therapy Versus Radical Cystectomy for Muscle-invasive Bladder Cancer. Clin Genitourin Cancer. 2019;17(1):23-31 e3.
42. Joshi HB, Stainthorpe A, MacDonagh RP, Keeley FX, Jr., Timoney AG, Barry MJ. Indwelling ureteral stents: evaluation of symptoms, quality of life and utility. J Urol. 2003;169(3):1065-9; discussion 9.
43. Tam VC, Ko YJ, Mittmann N, Cheung MC, Kumar K, Hassan S, et al. Cost-effectiveness of systemic therapies for metastatic pancreatic cancer. Curr Oncol. 2013;20(2):e90-e106.
44. Ayvaci MU, Shi J, Alagoz O, Lubner SJ. Cost-effectiveness of adjuvant FOLFOX and 5FU/LV chemotherapy for patients with stage II colon cancer. Med Decis Making. 2013;33(4):521-32.
45. Aguiar PN, Jr., Perry LA, Penny-Dimri J, Babiker H, Tadokoro H, de Mello RA, et al. The effect of PD-L1 testing on the cost-effectiveness and economic impact of immune checkpoint inhibitors for the second-line treatment of NSCLC. Ann Oncol. 2017;28(9):2256-63.
46. Giacalone NJ, Shipley WU, Clayman RH, Niemierko A, Drumm M, Heney NM, et al. Long-term Outcomes After Bladder-preserving Tri-modality Therapy for Patients with Muscle-invasive Bladder Cancer: An Updated Analysis of the Massachusetts General Hospital Experience. Eur Urol. 2017;71(6):952-60.
47. Zehnder P, Studer UE, Skinner EC, Dorin RP, Cai J, Roth B, et al. Super extended versus extended pelvic lymph node dissection in patients undergoing radical cystectomy for bladder cancer: a comparative study. J Urol. 2011;186(4):1261-8.
48. Garau M, Shah KK, Mason AR, Wang Q, Towse A, Drummond MF. Using QALYs in cancer: a review of the methodological limitations. Pharmacoeconomics. 2011;29(8):673-85.
49. Elsayed AS, Aldhaam NA, Brownell J, Babar T, Siam A, Raheem S, et al. Perioperative and oncological outcomes of robot-assisted radical cystectomy in octogenarians. J Geriatr Oncol. 2020;11(4):727-30.
50. Froehner M, Koch R, Hubler M, Heberling U, Novotny V, Zastrow S, et al. Predicting 90-day and long-term mortality in octogenarians undergoing radical cystectomy. BMC Urol. 2018;18(1):91.
51. Haden TD, Prunty MC, Jones AB, Deroche CB, Murray KS, Pokala N. Comparative Perioperative Outcomes in Septuagenarians and Octogenarians Undergoing Radical Cystectomy for Bladder Cancer-Do Outcomes Differ? Eur Urol Focus. 2018;4(6):895-9.
52. Savin Z, Herzberg H, Schreter E, Ben-David R, Bar-Yosef Y, Sofer M, et al. Radical cystectomy and perioperative chemotherapy in octogenarians with bladder cancer. Can Urol Assoc J. 2021.
53. Grossman HB, Natale RB, Tangen CM, Speights VO, Vogelzang NJ, Trump DL, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 2003;349(9):859-66.
54. Reardon ZD, Patel SG, Zaid HB, Stimson CJ, Resnick MJ, Keegan KA, et al. Trends in the use of perioperative chemotherapy for localized and locally advanced muscle-invasive bladder cancer: a sign of changing tides. Eur Urol. 2015;67(1):165-70.
55. Huddart RA, Hall E, Lewis R, Birtle A, Group STM. Life and death of spare (selective bladder preservation against radical excision): reflections on why the spare trial closed. BJU Int. 2010;106(6):753-5.
56. Wallis CJD, Morton G, Jerath A, Satkunasviam R, Szumacher E, Herschorn S, et al. Adjuvant Versus Salvage Radiotherapy for Patients With Adverse Pathological Findings Following Radical Prostatectomy: A Decision Analysis. MDM Policy Pract. 2017;2(1):2381468317709476.
Figures and Tables

Fig. 1. Model schematics depicting state transitions for TMT (A) and RC (B). MIBC: muscle-invasive bladder cancer; NAC: neoadjuvant chemotherapy; RC: radical cystectomy; TMT: trimodal therapy.
Variable	Probability	Reference
Neoadjuvant chemotherapy		
Starting proportion of patients in NAC	36%	Krabbe et al, 2015 (18)
		Kulkarni et al, 2017 (7)
Death on chemotherapy	1.1%	Winquist et al, 2004 (19)
Completing NAC	90.3%	Zargar et al, 2015 (20)
Adverse event	36.7%	Neidersuss-Beke et al, 2017 (21)
Progression on NAC	3.0%	Galsky et al 2015 (22)
HR for distant recurrence if completed NAC	0.78	ABC meta-analysis Collaboration, 2005 (23)
Radical cystectomy		
Peri-operative mortality	2.4%	Wallace et al, 2018 (24)
Postoperative complication (grade III/IV)	68% (22%)	Parekh et al, 2018 (25)
Complication on surveillance	40% at 2 years*	Shimko et al, 2011 (26)
Composite long-term complication	10% over 1.1 years**	Shimko et al, 2011 (26)
Distant recurrence	38% at 5 years*	Nuhn et al, 2012 (27)
Trimodal therapy		
Complication on treatment (major)	55% (15.5%)	Tunio et al, 2012 (28)
Complete response	75.3%	Fahmy et al, 2018 (29)
Immediate salvage cystectomy	31.8%	Calibrated value
Complication on surveillance	39% over 31 months**	Efstathiou et al, 2009 (30)
Major complication on surveillance	9.58% over 22.1 months**	Efstathiou et al, 2009 (30) and Rodel et al, 2002 (31)
Bladder cancer recurrence	60% over 10 years	Calibrated value
Secondary malignancy	0.7% over 75 months**	Zelefsky et al, 2012 (32)
Distant recurrence on surveillance	28.8% at 5 years	Calibrated value
Complication post salvage cystectomy (grade III/IV)	69% (16%)	Eswara et al, 2012 (33)
Perioperative mortality from salvage cystectomy	2.2%	Eswara et al, 2012 (33)
Composite long-term complication post salvage cystectomy	20% at 1 year*	Knap et al, 2004 (34)
Systemic therapy

Condition	Outcome	Eligibility for first line chemotherapy	Survival on first line cisplatin-based chemotherapy (carboplatin-based)	Progression on first line cisplatin-based chemotherapy (carboplatin-based)	Receipt of second line systemic therapy after progression on first-line	Survival on second line systemic therapy:	Baseline mortality rates																																				
Distant recurrence post-salvage cystectomy	Immediate salvage cystectomy	22.4% at 2 years*	Eswara et al, 2012 (33)	Delayed salvage cystectomy	16.14% at 2 years*	Eswara et al, 2012 (33)																																					
Systemic therapy	Eligibility for first line chemotherapy	28% overall – age adjusted	Dash et al, 2006 (15)	Survival on first line cisplatin-based chemotherapy (carboplatin-based)	50% over 14 months** (50% over 9.3 months**)	Von der Maase et al, 2005 (35); De Santis et al, 2012 (16)	Progression on first line cisplatin-based chemotherapy (carboplatin-based)	50% over 7.7 months** (50% over 5.8 months**)	Von der Maase et al, 2005 (35); De Santis et al, 2012 (16)	Receipt of second line systemic therapy after progression on first-line	39.2%	Wang et al, 2017 (36)	Survival on second line systemic therapy:	Pembrolizumab	50% over 10.3 months**	Bellmunt et al, 2017 (17)	Survival on palliative therapy	50% over 5.3 months**	Smith et al, 2014 (37)		Non-bladder specific cancer related mortality	0.7% (adjusted based on gender & age) per year	Calibrated value		HR female	0.78	Williams et al, 2011 (38)		HR age 70–74	1.08	Williams et al, 2011 (38)		HR age 75–79	1.30	Williams et al, 2011 (38)		HR age≥80	1.76	Williams et al, 2011 (38)		Representative value – created equation from published data (see Appendix).	**Time to event probability.	*Average of percentages from Krabbe et al 2015 and Kulkarni et al 2017.
Table 2. Model utilities

Variable	(Dis)utility	Reference
Neoadjuvant chemotherapy		
NAC treatment state	0.64	Stevenson et al, 2014 (39)
Adverse Event	-0.17	Stevenson et al, 2014 (39)
Radical cystectomy		
RC postoperative state	0.8	Kulkarni et al, 2007 (9)
Major perioperative complication requiring return to OR	-0.25	Stevenson et al, 2014 (39)
Major perioperative complication	-0.2	Stevenson et al, 2014
Minor perioperative complication	-0.06	Truzzi et al, 2018 (40)
Cystectomy (ileal conduit) surveillance state	0.84	Royce et al, 2018 (41)
Neobladder surveillance state	0.88	Expert opinion
Long-term complication in surveillance state	0.88*	Joshi et al, 2003 (42)
Short-term complication in surveillance state	-0.06	Truzzi et al, 2018 (40)
Trimodal therapy		
TMT treatment state	0.8	Expert opinion
TMT surveillance state	0.91	Royce et al, 2018 (41)
Major treatment complication	-0.274	Tam et al, 2013 (43)
Minor treatment/surveillance complication	-0.06	Truzzi et al, 2018 (40)
BCG	-0.02	Kulkarni et al, 2007 (9)
TURBT	-0.1	Kulkarni et al, 2007 (9)
GI complication requiring OR	0.8*	Expert opinion
Salvage cystectomy utilities	0.8*	
Secondary malignancy	0.84*	Ayvaci et al, 2013 (44)
Progression		
First-line therapy	0.6	Kulkarni et al, 2007 (9)
Second-line therapy	0.5	Aguiar et al, 2017 (45)
Palliative therapy	0.3	Kulkarni et al, 2007 (9)
Death	0	

*Applied as a multiplicative factor to the current state utility.
Table 3. Overall survival (OS) of the simulated results and validation cohorts

Overall survival	TMT	RC		
	Simulated results	External validation	Simulated results	External validation
1-year	90.2%	90%^a	93.5%	90%^a
3-year	70.7%	70%^a	69.9%	65%^a
5-year	58.8%	62%^a	56.9%	59%^a
15-year	24.1%	25%^b	26.7%	30%^c

^aKulkarni et al, 2017(7); ^bGiacalone et al, 2017(46); ^cZehnder et al. 2011(47).

Table 4. Scenario based analysis varying starting age

Starting age	TMT (QALE/LY)	RC (QALE/LY)
45	8.26/11.56	8.45/12.87
55	8.10/11.20	8.13/12.17
65	7.68/10.45	7.57/11.08
75	6.67/8.97	6.41/9.13
80	6.03/8.08	5.69/8.00
85	5.58/7.43	5.19/7.26

LY: life years; QALE: quality adjusted life expectancy.