Trend of HDL increase among Japanese people continues in National Health and Nutrition Survey

Shinji Yokoyama

Nutritional Health Science Research Center, Chubu University, Kasugai, Japan

We recently reported that plasma HDL levels markedly increased among Japanese people over 20 years, from the late eighties to 2010. The overall increase was as high as 7%–10% in men and 13%–15% in women, as observed in National Health and Nutrition Survey and other cohort studies1,2). This increase was much higher than the moderate increase in HDL-cholesterol by 2%–6% as observed in the United States for the same time period with variations among various ethnic groups3,4), widening the gap of HDL-cholesterol levels between the two countries. To our knowledge, no such report has been found for any other population though similar data should be available and analyzable in many populations. Interestingly, non-HDL-cholesterol levels slightly decreased to the same extent over the same period in the both countries. These findings were unlikely to be an artifact such as failure in standardization of assay systems based on several circumstantial evidences, although we were unable to come up to any rational interpretation for this puzzling trend1). The data comparable between the two countries2) are rearranged and summarized in Table 1 to make direct comparison easier.

After these findings were reported, more recent results of National Health & Nutrition Survey (2011–2015) have accumulated and been made available5), I, therefore, analyzed these new plasma lipoprotein profiles to follow up our previous observation with the aim of finding whether the trend of the plasma HDL increase continues among Japanese people.

Longitudinal trends of HDL-cholesterol, non-HDL-cholesterol, and triglyceride levels are shown in Fig. 1, including these recent data, for all and for those who did not take lipid-lowering drugs separately when available. The trend of increase in HDL-cholesterol levels is extended beyond 2010 both in males and females causing a wider gap between the sexes (panel A). On the contrary, non-HDL-cholesterol levels show no difference between the sex groups with slight longitudinal decreasing tendencies (panel B). There was no significant difference noted in these trends after excluding those who take anti-hyperlipidemic drugs. Plasma triglyceride levels may reciprocally influence HDL-cholesterol levels through the exchange of cholesteryl ester in HDL and triglyceride in other lipoproteins by cholesteryl ester transfer protein6). However, it showed no apparent change throughout the period of the survey (Panel C), excluding the possibility that decrease in triglyceride caused the increase in HDL. Thus, the trend of change in plasma lipoprotein profile of Japanese people continues.

Panels D–G show age distribution profiles of HDL-cholesterol and non-HDL-cholesterol in 2015 in comparison with those in 1990 and 2000 that were shown in the previous report1). Even though these three sets of the data have been obtained from unrelated independent surveys, the age-dependent profiles are almost superimposable on each other, indicating reliability of the data. The profiles of HDL-cholesterol are consistent with its increasing trends both in men and women, though it is more visible in women. In contrast, non-HDL-cholesterol level shows no apparent change during this 25-year period.

It is thus obvious that the marked and puzzling increase in HDL-cholesterol level among Japanese people continues beyond the previously reported period1,2), without prominent change in other lipoprotein profiles. No clear reason has yet been implicated for this trend; however, the cause of this trend needs to be clarified. Change in lifestyle is one of the significant issues in our society, including food intake, preference consumption, level of exercise, social stress etc. The most prominent change took place in the
post-war period from 1945 to the early seventies, characterized by the drastic increase of fat and protein at the expense of relative decrease in carbohydrate consumption, resulting in the increase of total caloric intake\(^7\). These changes were gradually stabilized after this period. However, the second seemingly ongoing significant change in the past 20 years or so is the sharp decrease in fish intake and reciprocal increase in meat although overall protein and fat intake show no visible change\(^2\). Increase in fish oil intake represented by n-3 fatty acids is generally considered to increase in HDL along with decrease in triglyceride\(^8\)\(^\text{-}^\text{10}\) perhaps partly due to the above-mentioned mechanism\(^6\). The increase in HDL is thus contradictory to this change. Serum triglyceride level shows no change during this period (\textbf{Fig. 1}).

Nevertheless, we must focus on this phenomenon to monitor how long and to what extent this trend continues. This may influence our public health parameters, especially those involving cardiovascular or atherosclerotic diseases.

\textbf{Conflict of Interest}

The author has no conflict of interest.

\textbf{Funding Source}

This work was supported by a grant-in-aid from MEXT Japan 15H02903.

\textbf{References}

1) Yokoyama S, Ueshima H, Miida T, Nakamura M, Takata

\begin{table}
\centering
\caption{Change of HDL and nonHDL parameters in populations, mg/dl, *Mean 95 (CI). **Mean ± SE}
\begin{tabular}{ll|c|c|c|c}
\hline
 & & 1988-1994 & 2007-2010 & % Change & P \\
\hline
HDL-Cholesterol & US & All Ethnic & & & \\
 & Men & 45.7 (45.5-47.1)* & 47.7 (46.8-48.5) & 4.3 & <0.001 \\
 & Women & 55.5 (55.5-57.6) & 58.3 (57.4-59.1) & 5.0 & <0.001 \\
Hispanic & Men & 45.2 (44.3-46) & 46.0 (44.9-47.2) & 1.8 & 0.25 \\
 & Women & 52.1 (51.8-54.1) & 53.8 (52.1-55.4) & 3.3 & 0.07 \\
nonHispanic White & Men & 45.0 (45-46.8) & 47.2 (46.1-48.3) & 4.9 & 0.002 \\
 & Women & 55.8 (55.6-58.5) & 58.9 (57.6-60.2) & 5.6 & <0.001 \\
nonHispanic black & Men & 52.6 (50-53.1) & 53.5 (52.3-54.8) & 1.7 & 0.28 \\
 & Women & 57.4 (56.3-58.7) & 59.4 (57.9-60.9) & 3.5 & 0.03 \\
JAPAN & NHNS & Men & 51.3 ± 14.9* & 56.8 ± 15.4 & 10.6 & <0.001 \\
 & Women & 59.0 ± 15.1 & 66.6 ± 15.5 & 14.2 & <0.001 \\
SRL & Men & 49.4 ± 15.5 & 53.1 ± 14.2 & 7.3 & <0.001 \\
 & Women & 56.1 ± 15.7 & 63.9 ± 15.7 & 13.9 & <0.001 \\
ApoA-I & JAPAN & Men & 123.6 ± 4.8 & 134.9 ± 3.2 & 9.1 & 0.01 \\
 & Women & 133.2 ± 6.8 & 151.0 ± 3.5 & 13.4 & 0.02 \\
nonHDL-Cholesterol & US & All Ethnic & & & \\
 & Men & 158 (154-159) & 149 (148-151) & -5.7 & <0.001 \\
 & Women & 151 (145-149) & 142 (140-144) & -6.0 & <0.001 \\
Hispanic & Men & 159 (154-163) & 157 (153-160) & -1.3 & 0.28 \\
 & Women & 152 (143-149) & 144 (141-146) & -5.3 & <0.001 \\
nonHispanic White & Men & 159 (154-160) & 149 (147-151) & -6.3 & <0.001 \\
 & Women & 151 (146-151) & 143 (141-145) & -5.3 & <0.001 \\
nonHispanic black & Men & 148 (139-148) & 139 (135-142) & -6.1 & <0.001 \\
 & Women & 147 (139-147) & 134 (131-147) & -8.8 & <0.001 \\
JAPAN & NHNS & Men & 148 & 142 & -4.0 & \\
 & Women & 145 & 140 & -3.2 & \\
\hline
\end{tabular}
\end{table}

Data are extracted from references 1-4. NHNS, National Health and Nutrition Survey; SRL, commercially measured clinical data provided by SRL Co. Ltd.
Fig. 1. Changes in HDL-cholesterol, nonHDL-cholesterol and triglyceride among Japanese during the period from 1989 to 2015 are shown in panels A, B and C, respectively.

The data of total and those not taking lipid-lowering drugs are shown separately after 2003 when those data are available. Age distribution profiles of HDL-cholesterol and non-HDL-cholesterol are shown in panels D-E and panels F-G (M: men and W: Women), respectively, from the survey in 1990, 2000 and 2015. The former two sets of the data are duplication from the reference 1. HDL-cholesterol levels are listed with the legends for symbols.

K, Fukukawa T, Goto T, Harada-Shiba M, Sano M, Kato K, Matsuda K: High-density lipoprotein levels have markedly increased over the past twenty years in Japan. J Atheroscler Thromb, 2014; 21: 151-160
2) Yokoyama S: Unique features of high-density lipoproteins in the Japanese: in population and in genetic factors. Nutrients, 2015; 7: 2359-2381
3) Carroll MD, Kit BK, Lacher DA, Soroie ST, Mussolino ME: Trends in lipids and lipoproteins in US adults, 1988-2010. JAMA, 2012; 308: 1545-1554
4) Carroll MD, Lacher DA, Soroie PD, Cleeman JI, Gordon DJ, Wolz M, Grundy SM, Johnson CL: Trends in serum lipids and lipoproteins of adults, 1960-2002. JAMA, 2005; 294: 1773-1781
5) http://www.mhlw.go.jp/bunya/kenkou/kenkou_eiyou_chousa.html:
6) Foger B, Ritsch A, Doblinger A, Wessels H, Patsch JR: Relationship of plasma cholesteryl ester transfer protein to HDL cholesterol. Studies in normotriglyceridemia and moderate hypertriglyceridemia. Arterioscler Thromb Vasc Biol, 1996; 16: 1430-1436
7) Matsumura Y: Nutrition trends in Japan. Asia Pac J Clin Nutr, 2001; 10 Suppl: S40-47
8) Davidson MH: Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid. Curr Opin Lipidol, 2013; 24: 467-474
9) Ooi EM, Watts GF, Ng TW, Barrett PH: Effect of dietary fatty acids on human lipoprotein metabolism: a comprehensive update. Nutrients, 2015; 7: 4416-4425
10) Hunter PM, Hegele RA: Functional foods and dietary supplements for the management of dyslipidaemia. Nat Rev Endocrinol, 2017; 13: 278-288