Supplementary Information for

Coxiella burnetii inhibits host immunity by a protein phosphatase adapted from glycolysis

Yong Zhang¹, Jiaqi Fu², Shuxin Liu¹, Lidong Wang¹, Jiazhang Qiu³, Erin J. van Schaik⁴, James E Samuel⁴, Lei Song¹* and Zhao-Qing Luo²*

Corresponding authors:
Email: Lei Song (lsong@jlu.edu.cn); Zhao-Qing Luo (luoz@purdue.edu)

This PDF file includes:

- Supplementary Materials and Methods
- Figures S1 to S8
- Tables S1 to S2
- SI References
Supplementary Information Materials and Methods

Immunoprecipitation

Transfected cells were collected and lysed with the RIPA buffer (Thermo Fisher Scientific) at 16-18 h post transfection. Immunoprecipitation was performed with cleared lysates of transfected cells using agarose beads coated with Flag- or HA-specific antibody (Sigma) by incubating on a rotatory shaker at 4°C for 4 h. Beads were washed three times with pre-chilled RIPA buffer. Samples solubilized with the Laemmli buffer were resolved by SDS–PAGE, transferred to nitrocellulose membranes and proteins of interest were detected by immunoblotting with appropriate antibodies.

Bacterial strains, infection, and protein translocation assay

C. burnetii (strain Nine Mile RSA493 phase II) was axenically grown in liquid ACCM-D or ACCM-D agarose at 37°C in 5% CO₂ and 2.5% O₂ as previously described (1, 2). When appropriate, kanamycin and chloramphenicol were added to ACCM-D at 300 µg/ml and 3 µg/ml, respectively. *L. pneumophila* strains derived from the intracellular replication competent strain Lp02 or strain Lp03 defective in the Dot/Icm transporter were cultured in ACES-buffered yeast extract broth or charcoal yeast extract extract agar (3). Thymidine autotrophic was used to maintain plasmids derived from pZL507 (4). Infection with *L. pneumophila* was performed with bacteria grown to post-exponential phase (OD₆₀₀=3.2-3.6). HEK293 cells transfected with the NFκB reporter plasmid pGL4.32 and pRL-TK Renilla were infected with the relevant *L. pneumophila* strains for 2 h and the induction of the reporter was measured by determining luciferase activities. A portion of the samples were used to probe for the level of IκBα and other relevant proteins by immunoblotting.

To examine protein translocation into host cells by *C. burnetii*, we constructed a plasmid that expresses the TEM1-Flag-CinF fusion by inserting sequentially the TEM-1 gene, a Flag tag and *cinF* into pJB-Kan-P1169-3xFLAG (5). This plasmid, designated as pTEM1-CinF was introduced into wild-type or the icmD::Tn mutant of *C. burnetii* (6) by electroporation, respectively. The resulting strains were cultured in ACCM-D medium for 5 d. Twelve hours before infection, 2×10⁵ HeLa cells were seeded in 24-well plates without antibiotics, bacteria were added to cells at an MOI of 100. The plates were then centrifugated immediately at 250g for 10 min at 25°C to facilitate bacterial internalization. Infections were allowed to proceed for
24 h at 37°C in a CO₂ incubator (5%). Cells were then washed 3 times with PBS, CCF2-AM was added to the cells at a final concentration of 1 µM and the cells were further incubated for 1 h. Protein translocation was examined by the emission of blue fluorescence signals by infected cells using an Olympus IX-83 fluorescence microscope. Images were acquired to determine the rates of FRET in the samples by counting the number of blue fluorescence cells.

To construct the knock down C. burnetii strain, the antisense sequence of cinF was synthesized and inserted into pJB-Kan-P1169-3xFLAG (5) as a Sacl/Sall fragment to give pJBCinFKD, in which its expression was driven by the CBU1169 promoter (5). To evaluate the growth of C. burnetii strains in bacteriological medium, saturated cultures of wild-type C. burnetii and the cinF KD strain were diluted 1:100 in ACCM-D medium, this point was considered Day 0. Cultures were incubated in a 5% CO₂ and 2.5% O₂ incubator and samples were withdrawn at 1-day intervals for 9 days. Genomic DNA extracted from the samples using the Illustra Bacteria GenomicPrep Mini Prep Kit (GE Healthcare, Piscataway, NJ) was used to quantify genomic equivalents by the outer membrane protein com1-specific qPCR (7, 8).

Gene synthesis and codon optimization was performed by the Nanjing Jinsirui biological technology company. To complement the cinF knockdown strain, the codon optimized cinF gene and its Y362A mutant under the control of the CBU1169 promoter was inserted pJBCinFKD as Sacl/Sall fragments to give pCinFcW and pCinFcM, respectively. Electrocompetent cells of C. burnetii were prepared using a previously described protocol (9). Plasmids were electroporated in Coxiella RSA493 with a Gene Pulse (Bio-Rad, Gene Pulser Xcell) using the following parameters: 1.8 kV, 400 Ω, 25 μF for 0.1 cm cuvettes.

Antibodies, immunoblotting and immunostaining

Antibodies specific for CinF were produced using a standard protocol (10, 11). Briefly, 1 mg of His₆-CinF was emulsified with equal volumes of complete Freund’s adjuvant and was injected intracutaneously into mice 4 times a month at 7-day intervals. Sera of the immunized mice that contain CinF-specific antibodies were used for affinity purification of IgG with an established protocol (12).

For immunoblotting, cells were lysed by the RIPA buffer (50 mM Tris (pH 7.4), 150 mM NaCl, 1% sodium-deoxycholate, and 1% NP-40) supplemented with a protease inhibitor cocktail (Roche Molecular Biochemicals). The protein concentration was determined using the
BCA Protein Assay Kit (Thermo Scientific Pierce) prior to being denatured in the Laemmli buffer by boiling for 5 min. Samples were then resolved by SDS-PAGE, after which the proteins were transferred onto nitrocellulose membranes (Millipore). After blocking in 5% nonfat milk in TBST (150 mM NaCl, 20 mM Tris-HCl (pH 7.4, 0.1% Tween-20), the membranes were incubated with primary antibodies at the following dilutions: anti-Flag (Sigma, Cat# F1804, 1:3000); anti-IκBα (Cell signaling, Cat# 4814, 1:3000); anti-GAPDH (Cell signaling, Cat# 5174, 1:5000); anti-Phospho-IκBβ (Cell signaling, Cat# 4921S, 1:1000), anti-Phospho-IKKα/β (Cell signaling, Cat# 2697S, 1:3000); anti-IKKβ (Cell signaling, Cat# 8493S, 1:3000); anti-His (Sigma, Cat# H1029,1:3000); anti-GFP (Sigma, Cat# G7781 , 1:5000). Washed membranes were incubated in the same buffer containing IRDye 680- or 800-conjugated secondary antibodies (Abcam, 1:10,000), and after another 3x washes, signals were detected using an Odyssey infrared imaging system (Li-Cor’s Biosciences Lincoln, Nebraska, USA). Signal quantification was carried out using the same system following the instructions provided by the manufacturer.

Immunostaining was performed as follows: 5x10⁴ MLE-12 cells seeded on glass coverslips placed in 24-well plates were transfected with 2 µg DNA of the plasmid carrying the gene of interest for 23 h. Samples transfected with the empty plasmid were established as positive controls. Transfected samples were treated with 100 ng PMA for 4 h. For staining experiments using infected cells, Hela cells seeded at 2×10⁴ per well in 24-well plates were infected with the relevant C. burnetii strains at an MOI of 100 for 72 h. Cells washed with PBS were fixed by 4% formaldehyde solution for 15 min at room temperature and were permeabilized with 0.1% Triton X-100 for 5 min. After blocking with 4% goat serum for 30 min at 37 °C, bacteria were stained with anti-Mouse C. burnetii sera at a dilution of 1:1,000 for 2 h. p65 was stained with the p65 specific antibody (Cell Signaling, Cat# 4764, 1:500), followed by staining with secondary antibodies conjugated to Alexa Fluor 594 and Alexa Fluor 488 (Thermo Fisher Scientific), respectively.

For transfected cells, samples were then fixed with 4% paraformaldehyde for 10 min at room temperature and were permeabilized with 0.5% Triton X-100 in PBS for 10 min. The samples were first stained for p65 as described above then for Flag-tagged proteins with the Flag-specific antibody (Sigma, Cat# F1804, 1:1000), followed by Alexa Flour 488-labeled secondary antibody (Invitrogen, Cat# A11001, 1:5000). In each case, nuclei were stained with Hoechst. Samples were inspected using an Olympus IX-83 microscope for image acquisition.
To quantitate the rates of p65 nuclear localization, at least 300 cells were scored for each sample.

Protein expression and purification

The coding sequence of *cinF* (cbu0513) amplified from *C. burnetii* genomic DNA with the appropriate primers (Table S2) was digested with *Bam*HI and *Sal*I and inserted into similarly digested pET-28a(+) (Novagen) to give pETcinF. The gene was inserted into pCMV4Flag (13) to give pFlagCinF for transient expression of Flag-CinF in mammalian cells. The gene coding for WipA (Lpg2718), a protein phosphatase from *L. pneumophila* (14) was similarly cloned into pET-28a(+) to give pET28aWipA. When needed, substitution mutations were introduced using the Quikchange kit (Agilent) and fusion PCR. Plasmids directing protein expression were individually introduced into the *E. coli* strain BL21(DE3) and the resulting strains were grown in 50-100 mL broth to saturation prior to being diluted at 1:50 to larger volumes of medium. The expression of the protein was induced with 0.2 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) when the diluted cultures reached an OD$_{600}$ of 0.6-0.8. The induction was allowed to proceed for 16 h at 18°C.

To purify the protein, cell harvested by centrifugation were resuspended in a lysis buffer (250 mM NaCl, 40 mM Tris-HCl, pH 8.0, 10 mM imidazole, 1 mM β-mercaptoethanol, 1 mM PMSF) and were lysed by passing through a cell homogenizer system twice (JN-mini, JNBIO, Guangzhou, China). The soluble fraction of the lysates obtained by centrifugation at 12,000g for 60 min was loaded onto HisTrap Chelating columns (GE Healthcare, Wisconsin, USA). After washing with the lysis buffer containing 10 mM imidazole, His-tagged proteins were eluted using an imidazole gradient (40 mM Tris-HCl, pH 8.0, 250 mM NaCl, 0-200 mM imidazole). When necessary, the protein was further purified on an AKTA system equipped with a Superdex 200 increase column, and the protein was eluted with gradient NaCl. All purified proteins were more than 95% purity as assessed by SDS-PAGE and Coomassie brilliant blue staining. Proteins were dialyzed and saved at −80°C in a storage buffer (20 mM Tris-HCl pH 8.0, 200 mM NaCl and 1 mM DTT, 10% glycerol). Protein concentration was determined by the Bradford method.
Enzymatic assays

Phosphatase activity was measured by using p-nitrophenyl phosphate (pNPP) (Aladdin, Shanghai, China) as the substrate. The assays were carried out in 96-well plates with purified His6-CinF, His6-ST3108, His6-WipA and their mutants. 5 μg (83.4 pmol) protein and 2.5 mM pNPP were mixed in wells containing 200 μl reaction buffer (100 mM NaCl, 25 mM Tris-HCl, pH 6.0). The reaction was allowed to proceed for 30 min at 37°C prior to determining the amounts of the product by measuring the absorbance at OD405 with a microplate reader (BioTek, Synergy H1).

FBP-dependent fructose-6-phosphate formation (FBP phosphatase activity) was measured by coupling the reaction with exogenous phosphoglucose isomerase and glucose-6-phosphate dehydrogenase, in which NADP⁺ is reduced to NADPH. NADPH formation was monitored at 340 nm (ε340 nm NADPH = 6,300 M⁻¹ cm⁻¹). The assay mixture (0.2 mL) consisted of 0.1 M Tris-HCl (pH 7.8), 20 mM MgCl₂, 20 mM DTT, 0.5 mM NADP⁺(Sigma-Aldrich, Cat#10128031001), 0.01-0.2 mM FBP and 1 U each of phosphoglucose isomerase from baker’s yeast (Sigma-Aldrich, Cat#P5381) and glucose-6-phosphate dehydrogenase from baker’s yeast (Sigma-Aldrich, Cat#G7877). The reactions were started by the addition of 20 μg purified protein enzymes in 96-well plates at 48°C, and the increase in absorption at 340 nm was monitored at a one minute interval by a Synergy H1 microplate reader (BioTek). Plot with the Lineweaver-Burk Equation to obtain Km and Kcat values.

Intracellular growth of C. burnetii

HeLa cells seeded at a density of 2x10⁴/well in 24-well plates for 24 h were infected with C. burnetii strains axenically grown to the stationary phase. The concentration of the bacterial cultures was determined by qPCR using com1 specific primers (15), and the bacterial cell density was adjusted with DMEM containing 2% FBS to achieve an MOI of 100. After incubation for 4 h, infected samples were washed once with PBS and incubated with fresh DMEM containing 2% FBS. This point was considered Day 0 and samples were collected to determine the inoculum. Infection lysate were collected at the following time points: 24 h (Day 1), 48 h (Day 2), 72 h (Day 3), 96 h (Day 4), 120 h (Day 5), 144 h (Day 6) and 168 h (Day 7). Genomic DNA extracted from the samples using the Illustra Bacteria GenomicPrep Mini Prep Kit (GE
Healthcare, Piscataway, NJ) was used to quantify genomic equivalents by com1-specific qPCR (7, 8).

qRT-PCR analysis of cytokine gene expression and determination of cytokines in culture supernatants

To determine the expression of relevant cytokine genes, we extracted total RNA from THP-1 cells infected with the appropriate *C. burnetii* strains using the TRIzol reagent. Briefly, cell pellets suspended in 1 ml TRIzol were vortexed and incubated at room temperature (RT) for 10 min. After adding 200 μl chloroform, the mixtures were phase separated by centrifugation at 12,000g for 10 min at 4°C and the upper phase was transferred to a new set of tubes into which 500 μl isopropanol was added before precipitation by centrifugation at 12,000g for 10 min at 4°C. After carefully removing the supernatant, the pellets containing RNA were washed with 1 ml of 70% ice-cold ethanol. The samples were then centrifuged at 8,000g for 5 min at 4°C, followed by drying in a speed-vac for 5 min. The pellets were dissolved in 50 μl ddH₂O and the concentration of RNA and its purity was measured by spectrophotometry (NanoDrop 2000, Thermo Fisher Scientific)(16). The total RNA was reverse transcribed into cDNA using the TIANGEN Quant One Step RT-PCR kit (KR113). PCR reactions were performed in 25 µl volumes using SYBR Green One-Step Kit (Bio-Rad, USA) and the amplification was assessed using the 7000 Sequence Detection System (Applied Biosystems, Courtaboeuf, France). The following program was used for PCR: 3 min at 95°C followed by 40 cycles of 15 s at 95°C, 20 s at 60°C, and 20 s at 72°C. Cycle threshold (Ct) values for each transcript were normalized to the geometric mean of the expression of IL-1β, IL-6 and TNF-α, and GAPDH was used as control. The fold changes were determined by using the 2-ΔΔCt method (17). All samples were analyzed in triplicate, the primer pairs were listed in Table S2.

To quantitate cytokines released by THP-1 cells infected with the appropriate *C. burnetii* strains, supernatants were collected from infected THP-1 cells plated for 3 days. Similarly cultured uninfected cells were used as controls. The quantity of secreted cytokines was measured using an enzyme-linked immunosorbent assay (ELISA) by specific human ELISA kits (Elabscience Cat#E-EL-H0149c, E-EL-H0102c, E-EL-H0150c and E-EL-H0109c). The plates were read at 450 nm on a Biotek Synergy H1 plate reader. Values were calculated from a standard curve generated by two-fold dilutions of recombinant human IL-1β (1000 to 5 pg/ml),
IL-12 (2000 to 5 pg/ml), TNF-α (3000 to 50 pg/ml) according to the manufacturer’s recommendations.

In vitro protein dephosphorylation assay

To prepare of p-IκBα, cells were transfected with a plasmid that expresses Flag-IκBα for 16 h, and the samples were treated with 50 nM PMA for 4 h. Lysates of the cells were subjected to immunoprecipitation with agarose beads coated with the Flag-specific antibody (Sigma) by incubating at 4°C for 4 h. Beads were washed with pre-chilled Tris buffer (50 mM Tris, 150 mM NaCl, 10 mM MgCl₂, pH 7.5) for 3 times. To analyze p-IκBα dephosphorylation of, recombinant proteins of the indicated amounts were incubated with aliquots of the beads carrying the target protein in the Tris buffer. Unless otherwise noted, the reactions were allowed to proceed for 120 min at 37°C. Proteins of interest or its modification status were detected by immunoblotting with specific antibodies.
Fig. S1 Comparison of CinF and ST0318. The alignment of the two proteins was performed with the software Snapgene. Residues in blue background are identical and residues important for catalysis were highlighted in red background (left panel). The structure of CinF was modeled using the *pymol* software, the positioning the the predicted catalytic residues was highlighted as sticks (right panel).
Fig. S2 CinF does not detectably interact with IkBα

Combinations of plasmids that direct the expression of 4xFlag-CinF or HA-κBα were transfected into HEK293T cells for 16 cells and the cell lysates were subjected to immunoprecipitation with agarose beads coated with antibodies specific for either the Flag or HA tag. The presence of potential binding proteins was probed in the precipitates by immunoblotings. Note the successful enrichment of Flag-CinF by the antibody in the precipitates.
Fig. S3 Growth of *C. burnetii* strains in bacteriological medium

Saturated cultures of the RSA493 (WT) and the cinF KD strains were diluted at 1:100 in the ACCM-D medium in triplicate and the growth of the bacteria was monitored at the indicated time points by measuring the genome equivalents of the samples. The results shown were calculated as fold of growth using day 0 as the reference.
Fig. S4 Comparison of the nucleotide sequences of the endogenous *cinF* gene and the one optimized to the codon of *E. coli*. Changed nucleotides are in red.
Fig. S5 The impact of CinF on NFκB activation in cells infected with C. burnetii

A. Nuclear translocation of p65 in cells infected with relevant strains at day 2 after bacterial uptake. Infected cells on cover slips were fixed and sequentially with antibodies specific for the bacteria, p65. Nuclei were stained with Hoechst. Samples were inspected under an Olympus IX-81 fluorescence scope for acquiring representative images. Nuclear localization of p65 was scored from samples each done in triplicate (Fig. 6E).

B-E. NFκB activation and CinF translocation at day 1, 2, 5 and 6 postinfection. Lysates of cells infected with the indicated C. burnetii strains were probed for p-κBa, κBa and CinF by immunoblotting with specific antibodies. GAPDH was detected as a loading control (lower panel for each data set). Data shown are one representative experiment from three independent experiments with similar results.
Fig. S6 The expression of four cytokine genes and their secretion by cells infected with relevant *C. burnetii* strains at the 3rd postinfection.

Total RNA from THP-1 cells infected with the indicated *C. burnetii* strains for 3 days was isolated and used as templates for probing the expression of the 4 cytokine genes (A, IL1β; B, IL-6; C, IL-12; D, TNF-α). To detect the levels of these cytokines, culture supernatants of similarly infected THP-1 cells were collected and the levels of the indicated cytokines were measured using an enzyme-linked immunosorbent assay (ELISA) by specific human ELISA kits. Plates were read on a Biotek Synergy H1 at 450 nm to measure cytokine concentrations. In each case, similarly cultured cells without infection were included as controls. Data shown are one representative from an experiment done in triplicate. Similar results were obtained from two independent experiments.
Fig. S7 The expression of four cytokine genes in cells infected with relevant *C. burnetii* strains at several other infection time points. Infections were performed in THP-1 cells as described in Fig. S6 and samples collected at the indicated time points (A, 1 day; B, 2 day; C, 3 day; D, 5 day and E, 6 day) were probed for the expression of the four cytokine genes by qPCR. Data shown were one representative experiment done in triplicate from two independent experiments. Uninfected cells were used as controls.
Fig. S8 The levels of four cytokines secreted by cells infected with relevant C. burnetii strains at the 1^{st}, 2^{nd}, 5^{th} and 6^{th} days. Infections were performed in THP-1 cells as described in Fig. S7 and samples collected at the indicated time points (A, 1 day; B, 2 day; C, 3 day; D, 5 day and E, 6 day) were detected for the four cytokines by ELISA. Data shown were one representative experiment done in triplicate from two independent experiments. Uninfected cells were used as controls.
Table S1 Plasmids used in this study

name	source				
pET28a-CinF	This paper				
pET28a-CinF_{Y362A}	This paper				
pET28a-ST0318	This paper				
pET28a-ST0318_{Y347T}	This paper				
pET28a-WipA	This paper				
pET28a-WipA_{D180A}	This paper				
pJB-Kan-P1169-3xFLAG	(5)				
pTEM1-CinF	This paper				
pJB-CinFKD	This paper				
pCinFcW	This paper				
pCinFcM	This paper				
pcDNA3Flag-TRAF2 (1087)	Addgene, Cat# 66931 (a gift from Michael Karin)				
pcDNA3-TAK1	(18)				
pCMV2 Flag-IKKβ	(19)				
pCMV4-p65	(20)				
pGL4.32 (NFκB reporter)	(21, 22)				
pRL-SV40-Renilla	Promega				
pEGFPC1-LegK1	This paper				
pCMV4xFlag	(13)				
pCMV-Flag-CinF	This paper				
pCMV-Flag-ST0318	This paper				
2X_pX458_pSpCas9(BB)-2A-GFP	a gift from Alexander Meissner (Addgene Cat # 172221) (23)				
2X_pX458_pSpCas9(BB)-2A-GFP_p65KO-1	This paper				
2X_pX458_pSpCas9(BB)-2A-GFP_p65KO-2	This paper				
pCMV-Flag-Cbu0388	This paper				
pCMV-Flag-Cbu1757	This paper				
pCMV-Flag-Cbu1576	This paper				
pCMV-Flag-Cbu0021	This paper				
pCMV-Flag-Cbu0487	This paper				
pCMV-Flag-Cbu1686	This paper				
pCMV-Flag-Cbu1724	This paper				
pCMV-Flag-Cbu0069	This paper				
pCMV-Flag-Cbu0041	This paper				
pCMV-Flag-Cbu0626	This paper				
pCMV-Flag-Cbu2035	This paper				
pCMV-Flag-Cbu1379	This paper				
pCMV-Flag-Cbu1457	This paper				
pCMV-Flag-Cbu1213	This paper				
pCMV-Flag-Cbu1790	This paper				
-------------------	------------				
pCMV-Flag-Cbu0814	This paper				
pCMV-Flag-Cbu1863	This paper				
pCMV-Flag-Cbu1665	This paper				
pCMV-Flag-Cbu1556	This paper				
pCMV-Flag-Cbu1493	This paper				
pCMV-Flag-Cbu1569	This paper				
pCMV-Flag-Cbu2059	This paper				
pCMV-Flag-Cbu0062	This paper				
pCMV-Flag-Cbu1217	This paper				
pCMV-Flag-Cbu0635	This paper				
pCMV-Flag-Cbu0295	This paper				
pCMV-Flag-Cbu0937	This paper				
pCMV-Flag-Cbu1685	This paper				
pCMV-Flag-Cbu1063	This paper				
pCMV-Flag-Cbu0794	This paper				
pCMV-Flag-Cbu0425	This paper				
pCMV-Flag-Cbu0372	This paper				
pCMV-Flag-Cbu0886	This paper				
pCMV-Flag-Cbu1751	This paper				
pCMV-Flag-Cbu0270	This paper				
pCMV-Flag-Cbu0072	This paper				
pCMV-Flag-Cbu0534	This paper				
pCMV-Flag-Cbu1639	This paper				
pCMV-Flag-Cbu2007	This paper				
pCMV-Flag-Cbu1636	This paper				
pCMV-Flag-Cbu0885	This paper				
pCMV-Flag-Cbu1819	This paper				
pCMV-Flag-Cbu2013	This paper				
pCMV-Flag-Cbu1676	This paper				
pCMV-Flag-Cbu1130	This paper				
pCMV-Flag-Cbu1823	This paper				
pCMV-Flag-Cbu0006	This paper				
pCMV-Flag-Cbu0016	This paper				
pCMV-Flag-Cbu0781	This paper				
pCMV-Flag-Cbu0665	This paper				
pCMV-Flag-Cbu1370	This paper				
pCMV-Flag-Cbu2052	This paper				
pCMV-Flag-Cbu0009	This paper				
pCMV-Flag-Cbu1789	This paper				
pCMV-Flag-Cbu0020	This paper				
pCMV-Flag-Cbu1409	This paper				
pCMV-Flag-Cbu1794	This paper				
pCMV-Flag-Cbu0012	This paper				
pCMV-Flag-Cbu0077	This paper				
pCMV-Flag-Cbu1460	This paper				
----------------------------	------------				
pCMV-Flag-Cbu0637	This paper				
pCMV-Flag-Cbu2028	This paper				
pCMV-Flag-Cbu0175	This paper				
pCMV-Flag-Cbu1566	This paper				
pCMV-Flag-Cbu0013	This paper				
pCMV-Flag-Cbu0375	This paper				
pCMV-Flag-Cbu0023	This paper				
pCMV-Flag-Cbu1150	This paper				
pCMV-Flag-Cbu0015	This paper				
pCMV-Flag-Cbu0881	This paper				
pCMV-Flag-Cbu2056	This paper				
pCMV-Flag-Cbu1387	This paper				
pCMV-Flag-Cbu1314	This paper				
pCMV-Flag-Cbu1769	This paper				
pCMV-Flag-Cbu1079	This paper				
pCMV-Flag-Cbu1754	This paper				
pCMV-Flag-Cbu2016	This paper				
pCMV-Flag-Cbu1543	This paper				
pCMV-Flag-Cbu0447	This paper				
pCMV-Flag-Cbu1198	This paper				
pCMV-Flag-Cbu0773	This paper				
pCMV-Flag-Cbu0978	This paper				
pCMV-Flag-Cbu1434	This paper				
pCMV-Flag-Cbu1425	This paper				
pCMV-Flag-Cbu0801	This paper				
pCMV-Flag-Cbu1607	This paper				
pCMV-Flag-Cbu1825	This paper				
pCMV-Flag-Cbu2076	This paper				
pCMV-Flag-Cbu0183	This paper				
pCMV-Flag-CbuA0025	This paper				
pCMV-Flag-CbuA0014	This paper				
pCMV-Flag-Cbu0113	This paper				
pCMV-Flag-Cbu0469	This paper				
pCMV-Flag-Cbu0590	This paper				
pCMV-Flag-Cbu1634	This paper				
pCMV-Flag-Cbu0080	This paper				
pCMV-Flag-Cbu0129	This paper				
pCMV-Flag-Cbu0212	This paper				
pCMV-Flag-Cbu0329	This paper				
pCMV-Flag-Cbu0376	This paper				
pCMV-Flag-Cbu0393	This paper				
pCMV-Flag-Cbu0414	This paper				
pCMV-Flag-Cbu0606	This paper				
pCMV-Flag-Cbu1045	This paper				
pCMV-Flag-Cbu1102	This paper				
------------------	-----------				
pCMV-Flag-Cbu1108	This paper				
pCMV-Flag-Cbu1532	This paper				
pCMV-Flag-Cbu1599	This paper				
pCMV-Flag-Cbu1620	This paper				
pCMV-Flag-Cbu1776	This paper				
pCMV-Flag-Cbu1963	This paper				
pCMV-Flag-Cbu2064	This paper				
pCMV-Flag-CbuA0019	This paper				
Primer name	Sequence (Restriction enzyme sites are underlined)	Note			
--------------	---	------			
CinF-F	CGCGGATCCATGAAAATCTACCTAAAGGCT	CinF 5’ BamH I			
CinF-R	CTAGTCGACTTATCATCCATTTTTCGCAAT	CinF 3’ Sal I			
CinF_{Y362A}-F	CGTATCCTAAATGCGGCGCATTTTCTGCTTCG	CinF mutant Y362A			
CinF_{Y362A}-R	GCAGGAAGCAGAAATTGCGCCACTTTAGTGGA				
ST0318-F	CGCGGATCCATGAAAATCTACCTAAAGGCT	ST0318 5’ BamH I			
ST0318-R	CTAGTCGACTTATCATCCATTTTTCGCAAT	ST0318 3’ Sal I			
ST0318_{Y347T}-F	GTTTTTCTAAAAATGAAGTTAGTTATCTCTCTCTGCTTT	ST0318 mutant Y347T			
ST0318_{Y347T}-R	GCAGGAAGCAGAAATTGCGCCACTTTAGTGGA				
WipA-F	CGCGGATCCATGAAAATCTACCTAAAGGCT	WipA 5’ BamH I			
WipA-R	CTAGTCGACTTATCATCCATTTTTCGCAAT	WipA 3’ Sal I			
Wip_{D180A}-F	GATCGGCCACCTCAGCACCCAGCAATCGA	WipA mutant D180A			
Wip_{D180A}-R	TCAGTAATGATACTTTGGCAGCGTATTG				
P1169_{Promoter-F}	CTGCTCGAGATGGGCTTTCCGCAAGCG	P1169 Promoter 5’ Xho I			
P1169_{Promoter-R}	CTGAGCTCCTCCCTCTTGTATAGGATTA	P1169 Promoter 3’ Sac I			
TEM1-F	GTCGTCGCCAACCAGAAAACGTGCTGTAAGGT	TEM1 5’ Sal I			
TEM1-R	CTGGGATCTTACCAATGCTTTACATCGTGAG	TEM1 3’ BamH I			
Com1-F	AAAACCTCGCCGTGCTCTTCA	Quantify the amount of C. burnetii genomic			
Com1-R	GCTAATGATACTTTGGCAGCGTATTG				
Com1-probe	AGAACTGCTCCCATTTTTGCGCGGCA	5’6-FAM, 3’BHQ1			
IL1β-F	CCAGCTAGAATCTCCGACC	qRT-PCR analysis of Cytokine IL1β			
IL1β-R	TCTCCGTAGGAAGTTGCTGGG				
IFNγ-F	TTCAAGCCCACCACAACTG	qRT-PCR analysis of Cytokine IFNγ			
IFNγ-R	GTGACTCTTTCAAGGCGTCC				
TNFα-F	GGCCTGAGGCTGAGATAAC	qRT-PCR analysis of Cytokine TNFα			
TNFα-R	GGTGTGGGTGAGGACACAT				
LegK1-F	CTGAGTGAGCTGCTGACTGTTA	LegK1 5’ BamH I			
LegK1-R	CTGAGTGACTGCTGACTGTTA	LegK1 3’ Sal I			
1’_{p65}-sgRNA-F	CCACGGGCCGCTCCGGCTACAAGTGAG	p65-sgRNA 5’ Bbsl			
1’_{p65}-sgRNA-R	AAACCGCAGGCTGCTGCTGACGCGG	p65-sgRNA 3’ Bbsl			
2’_{p65}-sgRNA-F	CCACGGCTGCTGGCTGCTGACGCGG	p65-sgRNA 5’ Bbsl			
2’_{p65}-sgRNA-R	AAACCGCAGGCTGCTGCTGACGCGG	p65-sgRNA 3’ Bbsl			
CBU0388-F	CTGGGATCTGAGATCATGGTTGCG	CBU0388 5’ BamH I			
CBU0388-R	CTGGGATCTGAGATCATGGTTGCG	CBU0388 3’ Sal I			
CBU1525-F	CTGGGATCTGAGATCATGGTTGCG	CBU1525 5’ BamH I			
CBU1525-R	CTGGGATCTGAGATCATGGTTGCG	CBU1525 3’ Sal I			
CBU1686-F	CTGGGATCTGAGATCATGGTTGCG	CBU1686 5’ BamH I			
CBU1686-R	CTGGGATCTGAGATCATGGTTGCG	CBU1686 3’ Sal I			
Gene	Forward Primer	Reverse Primer	Restriction Site		
----------	----------------	----------------	------------------		
CBUD1108	CGGGATCCATGGAATAATTTTCTTA	CBUD1108 5’ BamH I			
CBUD1108-R	CTGGTCGACTTAAATAACGATTTTTGGT	CBUD1108 3’ Sal I			
CBU0041-F	CTGGGATCCATGAGGAGGATGGCACTACA	CBU0041 5’ BamH I			
CBU0041-R	CTGGTGCACTTATCCCTACGAAGATG	CBU0041 3’ Sal I			
CBUD2035-F	CTGGGATCCCCTGGGACAAATACACG	CBUD2035 5’ BamH I			
CBUD2035-R	CTGGTCGACCTTTAAGCTAAGCAAGGCTT	CBU1819 3’ Sal I			
CBU1457-F	CTGGGATCCATGGATGACTGCAAAAAACATA	CBU1493 5’ BamH I			
CBU1457-R	CTGGTGCACTTATCCCTACGAAGATG	CBU1493 3’ Sal I			
CBU2059-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU2059 5’ BamH I			
CBU2059-R	CTGGTGCACTTATCCCTACGAAGATG	CBU2059 3’ Sal I			
CBU1217-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU1217 5’ BamH I			
CBU1217-R	CTGGTGCACTTATCCCTACGAAGATG	CBU1217 3’ Sal I			
CBU0270-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU0270 5’ BamH I			
CBU0270-R	CTGGTGCACTTATCCCTACGAAGATG	CBU0270 3’ Sal I			
CBU0295-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU0295 5’ BamH I			
CBU0295-R	CTGGTGCACTTATCCCTACGAAGATG	CBU0295 3’ Sal I			
CBU1819-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU1819 5’ BamH I			
CBU1819-R	CTGGTGCACTTATCCCTACGAAGATG	CBU1819 3’ Sal I			
CBU1063-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU1063 5’ BamH I			
CBU1063-R	CTGGTGCACTTATCCCTACGAAGATG	CBU1063 3’ Sal I			
CBU0425-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU0425 5’ BamH I			
CBU0425-R	CTGGTGCACTTATCCCTACGAAGATG	CBU0425 3’ Sal I			
CBUD0886-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBUD0886 5’ BamH I			
CBUD0886-R	CTGGTGCACTTATCCCTACGAAGATG	CBUD0886 3’ Sal I			
CBU0270-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU0270 5’ BamH I			
CBU0270-R	CTGGTGCACTTATCCCTACGAAGATG	CBU0270 3’ Sal I			
CBU0354-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU0354 5’ BamH I			
CBU0354-R	CTGGTGCACTTATCCCTACGAAGATG	CBU0354 3’ Sal I			
CBU1819-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU1819 5’ BamH I			
CBU1819-R	CTGGTGCACTTATCCCTACGAAGATG	CBU1819 3’ Sal I			
CBU1676-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU1676 5’ BamH I			
CBU1676-R	CTGGTGCACTTATCCCTACGAAGATG	CBU1676 3’ Sal I			
CBU1823-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU1823 5’ BamH I			
CBU1823-R	CTGGTGCACTTATCCCTACGAAGATG	CBU1823 3’ Sal I			
CBU0006-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU0006 5’ BamH I			
CBU0006-R	CTGGTGCACTTATCCCTACGAAGATG	CBU0006 3’ Sal I			
CBU0781-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU0781 5’ BamH I			
CBU0781-R	CTGGTGCACTTATCCCTACGAAGATG	CBU0781 3’ Sal I			
CBU1370-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU1370 5’ BamH I			
CBU1370-R	CTGGTGCACTTATCCCTACGAAGATG	CBU1370 3’ Sal I			
CBUDA0009-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBUDA0009 5’ BamH I			
CBUDA0009-R	CTGGTGCACTTATCCCTACGAAGATG	CBUDA0009 3’ Sal I			
CBU1409-F	CTGGGATCCATGGAACAAGCAAAACAATCT	CBU1409 5’ BamH I			
CBU1409-R	CTGGTCGACTCAATCGCAGCTCCATAC	CBU1409 3' Sal I			
CBU1794-F	CTGGGATCCATGGAGCTGTATCATG	CBU1794 5' BamH I			
CBU1794-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU1794 3' Sal I			
CBU0077-F	CTGGGATCATGAGACAACTCCTTCA	CBU0077 5' BamH I			
CBU0077-R	CTGGTCGACTTACATAAGACACCC	CBU0077 3' Sal I			
CBUA0013-F	CTGGGATCATGACCATATTITTTITACA	CBUA0013 5' BamH I			
CBUA0013-R	CTGTTCGACCTATCGATGACTCGTTAA	CBUA0013 3' Sal I			
CBUA0023-F	CTGGGATCATGAGACAACTCCTTCA	CBUA0023 5' BamH I			
CBUA0023-R	CTGTTCGACCTATCGATGACTCGTTAA	CBUA0023 3' Sal I			
CBUA0015-F	CTGGGATCATGACCATATTITTTITACA	CBUA0015 5' BamH I			
CBUA0015-R	CTGTTCGACCTATCGATGACTCGTTAA	CBUA0015 3' Sal I			
CBU2056-F	CTGGGATCCATGTTAGTATTTTATTTT	CBU2056 5' BamH I			
CBU2056-R	CTGGTCGACCTATCGATGACTCGTTAA	CBU2056 3' Sal I			
CBU1314-F	CTGGGAATCTCGTATCCCAATTCGACG	CBU1314 5' BamH I			
CBU1314-R	CTGTTCGATCCCTGATTTGACGC	CBU1314 3' Sal I			
CBU1769-F	CTGGGATCATGAGACAACTCCTTCA	CBU1769 5' BamH I			
CBU1769-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU1769 3' Sal I			
CBU1754-F	CTGGGATCATGAGACAACTCCTTCA	CBU1754 5' BamH I			
CBU1754-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU1754 3' Sal I			
CBU1543-F	CTGGGATCATGAGACAACTCCTTCA	CBU1543 5' BamH I			
CBU1543-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU1543 3' Sal I			
CBU1198-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBU1198 5' BamH I			
CBU1198-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU1198 3' Sal I			
CBU0773-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBU0773 5' BamH I			
CBU0773-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU0773 3' Sal I			
CBU1434-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBU1434 5' BamH I			
CBU1434-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU1434 3' Sal I			
CBU1425-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBU1425 5' BamH I			
CBU1425-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU1425 3' Sal I			
CBU0801-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBU0801 5' BamH I			
CBU0801-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU0801 3' Sal I			
CBU1607-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBU1607 5' BamH I			
CBU1607-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU1607 3' Sal I			
CBUDA0023-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBUDA0023 5' BamH I			
CBUDA0023-R	CTGTTCGACCTATCGATGACTCGTTAA	CBUDA0023 3' Sal I			
CBU2076-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBU2076 5' BamH I			
CBU2076-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU2076 3' Sal I			
CBUA0025-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBUA0025 5' BamH I			
CBUA0025-R	CTGTTCGACCTATCGATGACTCGTTAA	CBUA0025 3' Sal I			
CBU0113-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBU0113 5' BamH I			
CBU0113-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU0113 3' Sal I			
CBU0469-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBU0469 5' BamH I			
CBU0469-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU0469 3' Sal I			
CBU1634a-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBU1634a 5' BamH I			
CBU1634a-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU1634a 3' Sal I			
CBU1576-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBU1576 5' BamH I			
CBU1576-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU1576 3' Xho I			
CBU0021-F	CTGGGATCCATGATTTAAGAGGCCTAACT	CBU0021 5' Bgl II			
CBU0021-R	CTGTTCGACCTATCGATGACTCGTTAA	CBU0021 3' Sal I			
Gene Name	Primer 1 Sequence	Primer 1 Restriction Site	Gene Name	Primer 2 Sequence	Primer 2 Restriction Site
---------------	------------------------------------	---------------------------	---------------	------------------------------------	---------------------------
CBU1863-F	CTGAGATCTATGCGAAATGTAGTAGAT	5' Bgl II	CBU1863-R	CTGTCGACTCTGTACGATGAGCAGA	3' Sal I
CBU1863-R	CTGTCGACTCTGTACGATGAGCAGA	3' Sal I	CBU0410-F	CTGAGATCTATGAAACAGAAGCATG	5' Bgl II
CBU0410-R	CTGAGATCTATGAAACAGAAGCATG	5' Bgl II	CBU0410-R	CTGTCGAGCTTGTACGACAGCTAA	3' Xho I
CBU2007-F	CTGATGCGACAGCTGAGTTGTACGAGAAG	5' BamH I	CBU2007-R	CTGTCGAGCTTGTACGACAGCTAA	3' Xho I
CBU2007-R	CTGTCGAGCTTGTACGACAGCTAA	3' Xho I	CBU0080-F	CTGGATCTCTGGCTACGAGAA	5' BamH I
CBU0080-R	CTGGATCTCTGGCTACGAGAA	5' BamH I	CBU0080-R	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU0129-F	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU0129-R	CTGGATCTCTGGCTACGAGAA	5' BamH I
CBU0129-R	CTGGATCTCTGGCTACGAGAA	5' BamH I	CBU0329-F	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU0329-R	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU0372-F	CTGGATCTCTGGCTACGAGAA	5' BamH I
CBU0372-R	CTGGATCTCTGGCTACGAGAA	5' BamH I	CBU0376-F	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU0376-R	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU0487-F	CTGGATCTCTGGCTACGAGAA	5' BamH I
CBU0487-R	CTGGATCTCTGGCTACGAGAA	5' BamH I	CBU0794-F	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU0794-R	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU1569-R	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU1569-R	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU1685-F	CTGGATCTCTGGCTACGAGAA	5' BamH I
CBU1685-R	CTGGATCTCTGGCTACGAGAA	5' BamH I	CBU1724-F	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU1724-R	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU0175-R	CTGGATCTCTGGCTACGAGAA	5' BamH I
CBU0175-R	CTGGATCTCTGGCTACGAGAA	5' BamH I	CBU1213-F	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU1213-R	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU0626-R	CTGGATCTCTGGCTACGAGAA	5' BamH I
CBU0626-R	CTGGATCTCTGGCTACGAGAA	5' BamH I	CBU1556-R	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU1556-R	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU1685-R	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU1685-R	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU0937-F	CTGGATCTCTGGCTACGAGAA	5' BamH I
CBU0937-R	CTGGATCTCTGGCTACGAGAA	5' BamH I	CBU0635-R	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU0635-R	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU0372-R	CTGGATCTCTGGCTACGAGAA	5' BamH I
CBU0372-R	CTGGATCTCTGGCTACGAGAA	5' BamH I	CBU0372-F	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU0372-F	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU1715-R	CTGGATCTCTGGCTACGAGAA	5' BamH I
CBU1715-R	CTGGATCTCTGGCTACGAGAA	5' BamH I	CBU1751-R	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU1751-R	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU0175-R	CTGGATCTCTGGCTACGAGAA	5' BamH I
CBU0175-R	CTGGATCTCTGGCTACGAGAA	5' BamH I	CBU0175-R	CTGGATCTCTGGCTACGAGAA	3' Sal I
CBU1751-R	CTGGATCTCTGGCTACGAGAA	3' Sal I	CBU0175-R	CTGGATCTCTGGCTACGAGAA	5' BamH I
CBU0072-F	CTGGGATCCTTCGAGGCGGACCGCCGT	CBU0072 5' BamH I			
CBU0072-R	CTGGTGCAGTTAAACAGTGTCGGGGGCC	CBU0072 3' Sal I			
CBU1639-F	CTGGGATCCATGATGAGTCAGTGCTCCTT	CBU1639 5' BamH I			
CBU1639-R	CTGGTGCAGTTGAGTCTCAGCCTTCG	CBU1639 3' Sal I			
CBU1636-F	CTGGGATCCATGACCTGGAAATTAAT	CBU1636 5' BamH I			
CBU1636-R	CTGGTGCAGTTAAAGACGACGGCCTT	CBU1636 3' Sal I			
CBU2013-F	CTGGGATCCATGACCTGGAAATTAAT	CBU2013 5' BamH I			
CBU2013-R	CTGGGATCCATGACCTGGAAATTAAT	CBU2013 3' Sal I			
CBUK1130-F	CTGGGATCCATGACCTGGAAATTAAT	CBUK1130 5' BamH I			
CBUK1130-R	CTGGGATCCATGACCTGGAAATTAAT	CBUK1130 3' Sal I			
CBUA0016-F	CTGGGATCCATGACCTGGAAATTAAT	CBUA0016 5' BamH I			
CBUA0016-R	CTGGGATCCATGACCTGGAAATTAAT	CBUA0016 3' Sal I			
CBU0685-F	CTGGGATCCATGACCTGGAAATTAAT	CBU0685 5' BamH I			
CBU0685-R	CTGGGATCCATGACCTGGAAATTAAT	CBU0685 3' Sal I			
CBU2052-F	CTGGGATCCATGACCTGGAAATTAAT	CBU2052 5' BamH I			
CBU2052-R	CTGGGATCCATGACCTGGAAATTAAT	CBU2052 3' Sal I			
CBU1789-F	CTGGGATCCATGACCTGGAAATTAAT	CBU1789 5' BamH I			
CBU1789-R	CTGGGATCCATGACCTGGAAATTAAT	CBU1789 3' Sal I			
CBUA0020-F	CTGGGATCCATGACCTGGAAATTAAT	CBUA0020 5' BamH I			
CBUA0020-R	CTGGGATCCATGACCTGGAAATTAAT	CBUA0020 3' Sal I			
CBU1460-F	CTGGGATCCATGACCTGGAAATTAAT	CBU1460 5' BamH I			
CBU1460-R	CTGGGATCCATGACCTGGAAATTAAT	CBU1460 3' Sal I			
CBU2028-F	CTGGGATCCATGACCTGGAAATTAAT	CBU2028 5' BamH I			
CBU2028-R	CTGGGATCCATGACCTGGAAATTAAT	CBU2028 3' Sal I			
CBU1566-F	CTGGGATCCATGACCTGGAAATTAAT	CBU1566 5' BamH I			
CBU1566-R	CTGGGATCCATGACCTGGAAATTAAT	CBU1566 3' Sal I			
CBU0881-F	CTGGGATCCATGACCTGGAAATTAAT	CBU0881 5' BamH I			
CBU0881-R	CTGGGATCCATGACCTGGAAATTAAT	CBU0881 3' Sal I			
CBU1387-F	CTGGGATCCATGACCTGGAAATTAAT	CBU1387 5' BamH I			
CBU1387-R	CTGGGATCCATGACCTGGAAATTAAT	CBU1387 3' Sal I			
CBU1079-F	CTGGGATCCATGACCTGGAAATTAAT	CBU1079 5' BamH I			
CBU1079-R	CTGGGATCCATGACCTGGAAATTAAT	CBU1079 3' Sal I			
CBU2016-F	CTGGGATCCATGACCTGGAAATTAAT	CBU2016 5' BamH I			
CBU2016-R	CTGGGATCCATGACCTGGAAATTAAT	CBU2016 3' Sal I			
CBU0447-F	CTGGGATCCATGACCTGGAAATTAAT	CBU0447 5' BamH I			
CBU0447-R	CTGGGATCCATGACCTGGAAATTAAT	CBU0447 3' Sal I			
CBU0978-F	CTGGGATCCATGACCTGGAAATTAAT	CBU0978 5' BamH I			
CBU0978-R	CTGGGATCCATGACCTGGAAATTAAT	CBU0978 3' Sal I			
CBU1825-F	CTGGGATCCATGACCTGGAAATTAAT	CBU1825 5' BamH I			
CBU1825-R	CTGGGATCCATGACCTGGAAATTAAT	CBU1825 3' Sal I			
CBU0183-F	CTGGGATCCATGACCTGGAAATTAAT	CBU0183 5' BamH I			
CBU0183-R	CTGGGATCCATGACCTGGAAATTAAT	CBU0183 3' Sal I			
CBUA0014-F	CTGGGATCCATGACCTGGAAATTAAT	CBUA0014 5' BamH I			
CBUA0014-R	CTGGGATCCATGACCTGGAAATTAAT	CBUA0014 3' Sal I			
CBUA0034-F	CTGGGATCCATGACCTGGAAATTAAT	CBUA0034 5' BamH I			
CBUA0034-R	CTGGGATCCATGACCTGGAAATTAAT	CBUA0034 3' Sal I			
CBU0590-F	CTGGGATCCATGACCTGGAAATTAAT	CBU0590 5' BamH I			
CBU0590-R	CTGGGATCCATGACCTGGAAATTAAT	CBU0590 3' Sal I			
CBU0393-F	CTGGGATCCATGACCTGGAAATTAAT	CBU0393 5' BamH I			
Gene	Primer	Sequence	Digestion Site		
----------	---------	---------------------------------	----------------		
CBU0393-R	CTGGTCGA	CTGGTCGACTTACCAGAGGGCGGTTTT	CBU0393 3’ Sal I		
CBU0414-F	CTGGGATC	CTGGGATCCATGGGAGAAAAGTCAGGAGAG	CBU0414 5’ BamHI		
CBU0414-R	CTGGTCGA	CTGGTCGACTTACGCGGAGAAAGCGG	CBU0414 3’ Sal I		
CBU0606-F	CTGGGATC	CTGGGATCCATGAACGCTTACTAC	CBU0606 5’ BamHI		
CBU0606-R	CTGGTCGA	CTGGTCGACTTACGCGGTTTTACTAC	CBU0606 3’ Sal I		
CBU1045-F	CTGGGATC	CTGGGATCCCTGGGCTGATTAGTGG	CBU1045 5’ BamHI		
CBU1045-R	CTGGTCGA	CTGGTCGACTTACGCGGTTTTACTAC	CBU1045 3’ Sal I		
CBU1102-F	CTGGGATC	CTGGGATCCCTGGCAGCCCTACTCTCAA	CBU1102 5’ BamHI		
CBU1102-R	CTGGTCGA	CTGGTCGACTTACGCGGTTTTACTAC	CBU1102 3’ Sal I		
CBU1108-F	CTGGGATC	CTGGGATCCCTTTAGTTATTCATTTTT	CBU1108 5’ BamHI		
CBU1108-R	CTGGTCGA	CTGGTCGACCTTTTGTTATATTTT	CBU1108 3’ Sal I		
CBU1532-F	CTGGGATC	CTGGGATCCCTTTGCGAGGCAATGCGCA	CBU1532 5’ BamHI		
CBU1532-R	CTGGTCGA	CTGGTCGACTTACGCGGTTTTACTAC	CBU1532 3’ Sal I		
CBU1599-F	CTGGGATC	CTGGGATCCCTTTGAGTGAAGAAGACCCT	CBU1599 5’ BamHI		
CBU1599-R	CTGGTCGA	CTGGTCGACCTTTGAGTGAAGAAGACCCT	CBU1599 3’ Sal I		
CBU1620-F	CTGGGATC	CTGGGATCCCTTTGAGTGAAGAAGACCCT	CBU1620 5’ BamHI		
CBU1620-R	CTGGTCGA	CTGGTCGACCTTTGAGTGAAGAAGACCCT	CBU1620 3’ Sal I		
CBU1776-F	CTGGGATC	CTGGGATCCCTTTGAGTGAAGAAGACCCT	CBU1776 3’ Sal I		
CBU1776-R	CTGGTCGA	CTGGTCGACCTTTGAGTGAAGAAGACCCT	CBU1776 5’ BamHI		
CBU1963-F	CTGGGATC	CTGGGATCCCTTTGAGTGAAGAAGACCCT	CBU1963 5’ BamHI		
CBU1963-R	CTGGTCGA	CTGGTCGACCTTTGAGTGAAGAAGACCCT	CBU1963 3’ Sal I		
CBU2064 -F	CTGGGATC	CTGGGATCCCTTTGAGTGAAGAAGACCCT	CBU2064 5’ BamHI		
CBU2064-R	CTGGTCGA	CTGGTCGACCTTTGAGTGAAGAAGACCCT	CBU2064 3’ Sal I		
CBUA0019-F	CTGGGATC	CTGGGATCCCTTTGAGTGAAGAAGACCCT	CBUA0019 5’ BamHI		
CBUA0019-R	CTGGTCGA	CTGGTCGACCTTTGAGTGAAGAAGACCCT	CBUA0019 3’ Sal I		
SI References:

1. Omsland A (2012) Axenic growth of Coxiella burnetii. Adv Exp Med Biol 984:215-229.
2. Sandoz KM, Beare PA, Cockrell DC, & Heinzen RA (2016) Complementation of Arginine Auxotrophy for Genetic Transformation of Coxiella burnetii by Use of a Defined Axenic Medium. Appl Environ Microbiol 82:3042-3051.
3. Berger KH & Isberg RR (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7:7-19.
4. Xu L, et al. (2010) Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog 6:e1000822.
5. Beare PA (2012) Genetic manipulation of Coxiella burnetii. Adv Exp Med Biol 984:249-271.
6. Beare PA, et al. (2011) Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. mBio 2:e00175-00111.
7. Howe D, Shannon JG, Winfree S, Dorward DW, & Heinzen RA (2010) Coxiella burnetii phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages. Infect Immun 78:3465-3474.
8. Ledbetter L, et al. (2020) Major Histocompatibility Complex Class II-Restricted, CD4(+) T Cell-Dependent and -Independent Mechanisms Are Required for Vaccine-Induced Protective Immunity against Coxiella burnetii. Infect Immun 88.
9. Martinez E, Cantet F, & Bonazzi M (2015) Generation and multi-phenotypic high-content screening of Coxiella burnetii transposon mutants. J Vis Exp:e52851.
10. J. Derrell Clark GFG, Janet C. Gonder, Michale E. Keeling, Dennis F. Kohn (1997) The 1996 Guide for the Care and Use of Laboratory Animals. ILAR 38:41-48.
11. Zhang J, et al. (2015) Prokaryotic Expression, Purification, and Polyclonal Antibody Production of a Truncated Recombinant Rabies Virus L Protein. Iran J Biotechnol 13:18-24.
12. Harlow EL, D. (1999) Using Antibodies: A Laboratory Manual. Cold Spring Harbor Lab. Press, Plainview, NY:311-343.
13. Li G, Liu H, Luo ZQ, & Qiu J (2021) Modulation of phagosome phosphoinositide dynamics by a Legionella phosphoinositide 3-kinase. EMBO Rep 22:e51163.
14. He L, et al. (2019) The Legionella pneumophila effector WipA disrupts host F-actin polymerisation by hijacking phosphotyrosine signalling. Cell Microbiol 21:e13014.
15. Brennan RE & Samuel JE (2003) Evaluation of Coxiella burnetii antibiotic susceptibilities by real-time PCR assay. J Clin Microbiol 41:1869-1874.
16. Sultan M, et al. (2014) Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genomics 15:675.
17. Livak KJ & Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.
18. Blonska M SP, Kobayashi M, Zhang D, Sakurai H, Su B, et al. (2005) TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation. The Journal of biological chemistry 280:43056-43063.
19. Mercurio F, et al. (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860-866.
20. Ballard DW DE, Peffer NJ, Bogerd H, Doerre S, Stein B, et al. (1992) The 65-kDa subunit of human NF-kappa B functions as a potent transcriptional activator and a target for v-Rel-mediated repression. Proceedings of the National Academy of Sciences of the United States of America:1875-1879.

21. Li X, et al. (2017) Negative Regulation of Hepatic Inflammation by the Soluble Resistance-Related Calcium-Binding Protein via Signal Transducer and Activator of Transcription 3. Front Immunol 8:709.

22. Gan N, Nakayasu ES, Hollenbeck PJ, & Luo ZQ (2019) Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat Microbiol 4:134-143.

23. Wu HJ, et al. (2021) Topological isolation of developmental regulators in mammalian genomes. Nat Commun 12:4897.