Study of the semileptonic decays $B \rightarrow \pi$, $D \rightarrow \pi$ and $D \rightarrow K$

C. Albertus1, J. M. Flynn1, E. Hernández2, J. Nieves3, J. M. Verde-Velasco2

1 School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom.
2 Grupo de Física Nuclear, Departamento de Física Fundamental e IUFFyM, Facultad de Ciencias, E-37008 Salamanca, Spain.
3 Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain.

Abstract. The semileptonic decay $B \rightarrow \pi$ is studied starting from a simple quark model that takes into account the effect of the B^* resonance. A novel, multiply subtracted, Omnès dispersion relation has been implemented to extend the predictions of the quark model to all q^2 values accessible in the physical decay. By comparison to the experimental data, we extract $|V_{ub}| = 0.0034 \pm 0.0003(\text{exp}) \pm 0.0007(\text{theory})$. As a further test of the model, we have also studied $D \rightarrow \pi$ and $D \rightarrow K$ decays for which we get good agreement with experiment.

PACS. 12.15.Hh – 11.55.Fv – 12.38.Jh – 13.20.He

1 Introduction

The exclusive semileptonic decay $B \rightarrow \pi l^+ \nu_l$ provides an important alternative to inclusive reactions $B \rightarrow X_u l^+ \nu_l$ in the determination of de Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{ub}|$.

This reaction has been studied in different approaches like lattice-QCD (both in the quenched and unquenched approximations), light-cone sum rules (LCSR) and constituent quark models (CQM), each of them having a limited range of applicability: LCSR are suitable for describing the low momentum transfer square (q^2) region, while lattice-QCD provides results only in the high q^2 region. CQM can in principle provide form factors in the whole q^2 range but they are not directly connected to QCD. A combination of different methods seems to be the best strategy.

The use of Watson’s theorem for the $B \rightarrow \pi l^+ \nu_l$ process allows one to write a dispersion relation for each of the form factors entering in the hadronic matrix element. This procedure leads to the so-called Omnès representation, which can be used to constrain the q^2 dependence of the form factors from the elastic $\pi B \rightarrow \pi B$ scattering amplitudes. The problem posed by the unknown $\pi B \rightarrow \pi B$ scattering amplitudes at high energies can be dealt with by using a multiply subtracted dispersion relation. The latter will allow for the combination of predictions from various methods in different q^2 regions.

In this work we study the semileptonic $B \rightarrow \pi l^+ \nu_l$ decay. The use of a multiply subtracted Omnès representation of the form factors will allow us to use the predictions of LCSR calculations at $q^2 = 0$ in order to extend the results of a simple nonrelativistic constituent quark model (NRCQM) from its region of applicability, near the zero recoil point, to the whole physically accessible q^2 range. To test our model we shall also study the $D \rightarrow \pi$ and $D \rightarrow K$ semileptonic decays for which the relevant CKM matrix elements are well known and there is precise experimental data.

2 $B \rightarrow \pi l^+ \bar{\nu}$

The matrix element for the semileptonic $B^0 \rightarrow \pi^- l^+ \nu_l$ decay can be parametrized in terms of two dimensionless form factors

$$
\langle \pi(p_\pi) | V^{\mu} | B(p_B) \rangle = \left(p_B + p_\pi - q \frac{m_B^2 - m_\pi^2}{q^2}\right) f^+(q^2) + q^2 \frac{m_B^2 - m_\pi^2}{q^2} f^0(q^2)
$$

(1)

where $q^\mu = p_B - p_\pi$ is the four momentum transfer and $m_B = 5279.4$ MeV and $m_\pi = 139.57$ MeV are the B^0 and π^- masses. For massless leptons, the total decay width is given by

$$
\Gamma(B^0 \rightarrow \pi^- l^+ \nu_l) = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_B} \int_0^{q^2_{\text{max}}} dq^2 |\lambda(q^2)|^2 |f^+(q^2)|^2
$$

(2)

with $q^2_{\text{max}} = (m_B - m_\pi)^2$, $G_F = 1.16637 \times 10^{-5}$ GeV$^{-2}$ and $\lambda(q^2) = (m_B^2 + m_\pi^2 - q^2)^2 - 4m_B^2 m_\pi^2 = 4m_B^2 |p_\pi|^2$, with p_π the pion three-momentum in the B rest frame.

2.1 Nonrelativistic constituent quark model: Valence quark and B^* resonance contributions

Figure 1 shows how the naive NRCQM valence quark description of the f^+ form factor fails in the whole q^2 range.
In the region close to \(q^2_{\text{max}} \), where a nonrelativistic model should work best, the influence of the \(B^* \) resonance pole is evident. Close to \(q^2 = 0 \) the pion is ultra relativistic, and thus predictions from a nonrelativistic model are unreliable.

As first pointed out in Ref. [5], the effects of the \(B^* \) resonance pole dominate the \(B \to \pi l^+\nu_l \) decay near the zero recoil point \((q^2_{\text{max}}) \). Those effects must be added coherently as a distinct contribution to the valence result. The hadronic amplitude from the \(B^* \)-pole contribution is given by

\[
-iT^\mu = -i\hat{g}_{B^*B^\pi}(q^2)p^\mu_{\pi^0}(i\frac{-q^2_B + q^2_{\pi^0}/m^2_B}{q^2 - m^2_B}) i\sqrt{q^2}\hat{f}_{B^*}(q^2)\]

with \(m_{B^*} = 5325 \text{ MeV} \). \(\hat{f}_{B^*} \) and \(\hat{g}_{B^*B^\pi} \) are respectively the off-shell \(B^* \) decay constant and off-shell strong \(B^*B^\pi \) coupling constant. See Ref. [11] and references therein for details on their calculation. From the above equation one can easily obtain the \(B^* \)-pole contribution to \(f^+ \) which is given by

\[
f^+_{\text{pole}}(q^2) = \frac{1}{2} \hat{g}_{B^*B^\pi}(q^2)\frac{\sqrt{q^2\hat{f}_{B^*}(q^2)}}{m^2_B - q^2} \]

The inclusion of the \(B^* \) resonance contribution to the form factor improves the simple valence quark prediction down to \(q^2 \) values around 15 GeV\(^2\). Below that the description is still poor.

2.2 Omnès representation

Now one can use the Omnès representation to combine the NRCQM predictions at high \(q^2 \) with the LCSR at \(q^2 = 0 \). This representation requires as an input the elastic \(B\pi \to B\pi \) phase shift \(\delta(s) \) in the \(f^P = 1^- \) and isospin \(I = 1/2 \) channel, plus the form factor at different \(q^2 \) values below the \(\pi B \) threshold where the subtractions will be performed. For a large enough number of subtractions, only the phase shift at or near threshold is needed. In that case one can approximate \(\delta(s) \approx \pi \), arriving at the result that

\[
f^+(q^2) \approx \frac{1}{s_{th} - q^2} \prod_{j=0}^{n}(f^+(q^2_j)(s_{th} - q^2_j))^{-\alpha_j(q^2)}, \ n \gg 1 \quad (5)
\]

with \(s_{th} = m_B + m_\pi \) and \(\alpha_j(q^2) = \prod_{j\neq k=0} Q^2_j q^2_j - q^2_k \)

Figure 2 shows with a solid line the form factor obtained using the Omnès representation with six subtraction points: we take five \(q^2 \) values between 18 GeV\(^2\) and \(q^2_{\text{max}} \) for which we use the \(f^+ \) NRCQM predictions (valence + \(B^* \) pole), plus the LCSR prediction at \(q^2 = 0 \). The \(\pm \sigma \) lines enclose a 68% confidence level region that we have obtained from an estimation of the theoretical uncertainties. The latter have two origins: (i) uncertainties in the quark–antiquark nonrelativistic interaction and (ii) uncertainties on the product \(g_{B^*B^\pi}f_{B^*} \), and on the input to the multiply subtracted Omnès representation. See Ref. [11] for details.

By comparison with the experimental value for the decay width, we obtain

\[
|V_{ub}| = 0.0034 \pm 0.0003(\text{exp.}) \pm 0.0007(\text{theo.}) \quad (6)
\]

in very good agreement with the value found by the CLEO Collaboration [4].

3 D → πlν_l and D → Klν_l

Our results for the \(f^+ \) form factor are depicted in Figures 8 and 11. As before we have considered valence quark plus resonant pole contributions (\(D^* \) and \(D^*_e \) respectively). In both cases, we obtain a good description in the physical region of the experimental data [7] and previous lattice...
We compare with experimental data by the FOCUS Collaboration [10]. Besides we have found for the decay widths $\Gamma(D^0 \rightarrow K^- e^+ \nu_e)$ of the $D \rightarrow \pi$ and $D \rightarrow K$ decays and q^2 in the physical region we have found good agreement with experimental and lattice data.

4 Concluding remarks

We have shown the limitations of a pure valence quark model to describe the $B \rightarrow \pi, D \rightarrow \pi$ and $D \rightarrow K$ semileptonic decays. As a first correction, we have included vector resonance pole contributions which dominate the relevant f^+ form factor at high q^2 transfers. Subsequently, for the $B \rightarrow \pi$ decay, we have applied a multiply subtracted Omnès dispersion relation. This has allowed us to extend the results of the NRCQM model to the whole q^2 range. Our result for $|V_{ub}|$ is in good agreement with recent experimental data by the CLEO Collaboration. For $f^+(q^2)$ of the $D \rightarrow \pi$ and $D \rightarrow K$ decays and q^2 in the physical region we have found good agreement with experimental and lattice data.

5 Acknowledgments

This work was supported by DGI and FEDER funds, under Contracts No. FIS2005-00810, BFM2003-00856 and FPA2004-05616, by the Junta de Andalucía and Junta de Castilla y León under Contracts No. FQM0225 and No. SA104/04, and it is a part of the EU integrated infrastructure initiative Hadron Physics Project under Contract No. RI3-CT-2004-506078. J.M.V.-V. acknowledges an E.P.LF contract with the University of Salamanca. C. A. acknowledges a research contract with the University of Granada.

References

1. C. Albertus, J. M. Flynn, E. Hernández, J. Nieves, J. M. Verde-Velasco, Phys. Rev. D 72 (2005) 033002-1.
2. K.C. Bowler et al. (UKQCD Collaboration), Phys. Lett. B 486 (2000) 111.
3. A. Abada et al., Nuc. Phys. B 619 (2001) 565.
4. A. Khodjamiriam et al., Phys. Rev. D 62 (2000) 114002.
5. N. Isgur, M. B. Wise, Phys. Rev. D 41 (1990) 151.
6. S. B. Athar et al. (CLEO Collaboration), Phys. Rev. D 68 (2003) 072003.
7. M. Ablikim et al. (BES Collaboration), Phys. Lett. B 597 (2004) 39.
8. C. Aubin et al. (Fermilab MILC and HPQCD Collaborations), Phys. Rev. Lett. 94 (2005) 011601.
9. K.C. Bowler et al. (UKQCD Collaboration), Phys. Rev. D 51 (1995) 4905.
10. J. M. Link et al. (FOCUS Collaboration), Phys. Lett. B 607 (2005) 233.