Original article:

SYNTHESIS OF NOVEL DOPAMINE DERIVED MULTIDIRECTIONAL LIGANDS FROM CYANURIC CHLORIDE: STRUCTURAL AND ANTIMICROBIAL STUDIES

Ziya Erdem Koç*a, Mustafa Onur Aladagb*, Ahmet Uysalb

* Corresponding author: Assist. Prof. O. Aladag, Department of Medicinal Laboratory, Vocational School of Health Services, Selçuk University, 42031 Campus, Konya, Turkey. E-mail: moaladag72@gmail.com, phone:+905383176017, fax: +903322416210

ABSTRACT

Two monopodal (2,4-dichloro-6-(3-hydroxytyramine)-1,3,5-triazine) and tripodal (2,4,6-(3-hydroxytyramine)-1,3,5-triazine) s-triazine derivatives were prepared through the reaction of cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) and 3-hydroxytyramine hydrochloride (dopamine hydrochloride). The structures of the compounds were identified by FT-IR, 1H NMR, 13C NMR, thermal analysis and elemental analysis. Their antimicrobial activities were carried out using the broth microdilution method in dimethyl sulfoxide (DMSO): Phosphate Buffered Saline (PBS) against eight bacteria and one yeast. The results of the test were compared with ampicillin. It was determined that CCDOP1, CCDOP3 and DOP have significant antibacterial and antifungal activity. These three chemicals revealed strong antibacterial activity against the E. coli and S. aureus strains used in the study. S. aureus was the most sensitive strain against dopamine hydrochloride and E. coli was the most sensitive bacteria against CCDOP1.

Keywords: Cyanuric chloride, dopamine, antimicrobial activity, broth microdilution

INTRODUCTION

Important classes of nitrogenous compounds, such as substituted triazines (Agarwal et al., 2005a), pyrimidines (Srivastava et al., 1999), and quinolines (Srivastava et al., 1997), have been synthesized and screened for antimalarial activity (Jensen et al., 2001; Agarwal et al., 2005b). In addition, s-triazine derivatives have received considerable attention because of their potent biological activity, for example, as antiprotozoals (Baliani et al., 2005), anticancer drugs (Menicagli et al., 2004), estrogen receptor modulators (Henke et al., 2002), cyclin-dependent kinase inhibitors (Kuo et al., 2005), antivirals (Pandey et al., 2004; Srinivas et al., 2005), and antimalarials (Jensen et al., 2001; Ojha et al., 2011). It has been reported that s-triazine derivatives possess potent antimicrobial activity (Srinivas et al., 2005; McKay et al., 2006; Ghaib et al., 2002; Lübbers et al., 2000; Lebreton et al., 2003; Koç et al., 2010). These derivatives have also been studied as part of research aiming to uncover new natural products with improved biological activities (Kumar and Menon, 2009; Solanke et al., 2010), including antioxidant, anti-human immunodeficiency virus (HIV), and tumor growth inhibition activities (Chang et al., 2010; Naicker et al., 2004). Besides, many of the dopamine containing compounds exhibit antibacterial activities (Hadjipavlou-
Litina et al., 2010; Pająk and Kańska, 2006). These are also used as bridging agents to synthesize herbicides and in the production of drugs or polymers (Patel and Patel, 2001; Xie et al., 2007; Koç, 2011). Because of these attractive characteristics, much effort has been devoted to the synthesis of s-triazine derivatives by different groups in the recent years (Koç and Uysal, 2010, 2011; Uysal and Koç, 2010; Mooibroek and Gamez, 2007).

The reaction of cyanuric chloride (C₃N₃Cl₃) with 3 or 1 equiv of dopamine hydrochloride in acetone gives the desired monopodal or tripodal in a single step, 2,4-dichloro-6-(3-hydroxytyramine)-1,3,5-triazine, 2,4,6-(3-hydroxytyramine)-1,3,5-triazine and 3-hydroxytyramine hydrochloride, coded to be CCDOP₁, CCDOP₃ and DOP (Koç, 2011). In this work, we have aimed to make two new s-triazine derivatives by using dopamine hydrochloride. We have called them “monopodal or tripodal s-triazine”. As part of our ongoing research, here we report the characterization and antimicrobial activities of these compounds against several microorganisms.

MATERIALS AND METHODS

All the other chemicals were purchased from Aldrich. The linking agent, 2,4,6-trichloro-1,3,5-triazine (abbreviated as cyanuric chloride or cc, mp 145-146 °C), was obtained from Aldrich Chem. Co. Cyanuric chloride was purified using recrystallizations from pure petroleum ether (60-90 °C) (Koç, 2011). All solvents and dopamine hydrochloride used were reagent grade and were used without further purification. Melting points were measured using an Optimelt Automated Melting Point System (Digital Image Processing Technology) SRS apparatus. Elemental analyses (C, H, N) were performed using a Leco CHNS-932 model analyzer. ¹H NMR spectra were recorded at room temperature with a Varian 400 MHz spectrometer using TMS as an internal standard. FT-IR spectra were recorded with a Perkin-Elmer Spectrum 100 with Universal ATR Polarization Accessory. Thermal analyses were performed on a Shimadzu DTA 50 and TG 50 H on 5 mg samples. The DTA and TG curves were obtained at the heating rate of 10°C/min from 22 to 900°C under dry N₂. The pH values were measured with a WTW pH 537 pH meter.

Antimicrobial activity

The antimicrobial activity of CCDOP₁, CCDOP₃ and DOP were determined using eight bacteria and one yeast including, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Proteus mirabilis ATCC 43071, Pseudomonas aeruginosa ATCC 15442, Klebsiella oxytoca ATCC 10031, Bacillus cereus ATCC 11778, Listeria monocytogenes Type 2 Pasteur Institute 5434, Streptococcus salivaruis RSHE 606 and Candida albicans as test organisms. Bacterial strains and yeast were cultured overnight at 37°C in nutrient broth. The broth microdilution method was employed for the determination of antimicrobial activity.

The minimal inhibition concentration (MIC) values of the chemical were studied for microorganisms. The inocula of microorganisms were prepared from 12 h broth cultures and suspensions were adjusted to 0.5 McFarland standard turbidity. The 96-well plates were prepared by dispensing into each well 100 µl of nutrient broth. 100 µl from chemicals initially prepared at the concentration of 10000 µg/ml were added into the first wells. Then, 100 µL from the first well was transferred into 11 consecutive wells and diluted and then, 100 µl inocula were distributed to each well. Ampicillin solution was used as the positive control. Then the plates were incubated at appropriate temperatures for 18 h and Candida was incubated for two days. Microbial growth was determined by adding 20 µl of 2,3,5-triphenyl-tetrazolium chloride (0.5%) after incubation to each well and incubating for 30 min at 37°C (Maltaş et al., 2010).
Synthesis of compounds

Synthesis procedure for 2,4-dichloro-6-(3-hydroxytyramine)-1,3,5-triazine (CCDOP1)

A solution of dopamine hydrochloride (1.90 g, 10 mmol) in ethanol (50 ml) was added dropwise to a cyanuric chloride suspension made by pouring slurry cyanuric chloride (1.84 g, 10 mmol) in 80 % (v/v) acetone/water (50 ml) and stirring for a further 5 h at 0 °C in an ice bath (Disley et al., 1999; Koç, 2011). The HCl generated during the reaction was neutralized through the periodic addition of NaHCO3 (1.68 g, 20 mmol) to a total of two equivalents in water. Then the mixture was washed with CHCl3 to remove excess cyanuric chloride (Naicker et al., 2004). The reaction was monitored by thin layer chromatography (TLC) (hexane–ethyl acetate, 4:2 v/v) (Teng et al., 2000) until substituted triazine could be detected and at these stages the Fujiwara Test (Fang et al., 2001; Koç, 2011) for dichlorotriazine was positive. The product was then precipitated out of solution by acidifying the pH 4 with (1 M) hydrochloric acid. A light yellow powder solid product was collected by filtration and was washed with cold water (3x100 ml) and acetone (Koç, 2011).

Data for (CCDOP1)
Yield: (72 %); m.p.: 400 °C >; Elemental analysis (Found: C, 43.92; H, 3.33; N, 18.78 %). Calc. for C11H10N4O2Cl2: C, 43.87; H, 3.35; N, 18. 61 %). IR (KBr) νmax/cm−1: 3367 (N–H), 3340 (O-H), 2837 (C–H), 1551 (C=N), 1H NMR (400 MHz, DMSO-d6), (δ: ppm): 6.84 (d, 1H, Ar-H), 6.81 (d, 1H, Ar-H), 6.65 (dd, 1H, Ar-H), 5.87 (s, 3H, NH and OH), 3.27 (t, 2H, Ar-C-CH2-N), 2.56 (t, 2H, Ar-CH2-C-N). 13C NMR (100 MHz, DMSO-d6), (δ: ppm): 170.78, 165.18, 164.26, 132.54, 122.44, 116.59, 115.63, 40.23, 35.50.

Synthesis of 2,4,6-(3-hydroxytyramine)-1,3,5-triazine (CCDOP3)

Cyanuric chloride (1.84 g, 10.00 mmol) was dissolved in THF (150 ml). N-ethyl-diisopropylamine (DIPEA) (5.22 ml, 30.00 mmol) was added and the two-necked round bottomed flask was cooled to 0 °C. Dopamine hydrochloride (5.67 g, 30.00 mmol) was added portionwise. After the completion of the addition, the suspension mixture was warmed to room temperature and then heated under reflux for 48 h. The solid obtained was filtered under reduced pressure and washed with THF (3x20 ml) and ethanol (3x25 ml) to remove N-ethyl-diisopropylamine. The brown product, 2,4,6-(3-hydroxytyramine)-1,3,5-triazine (CCDOP3), was dried overnight at 50 °C under reduced pressure.

Data for (CCDOP3)
Yield: (67 %); m.p.: 360 °C dec.; Elemental analysis (Found: C, 60.70; H, 5.86; N, 15.78 %). Calc. for C27H30N6O6: C, 60.66; H, 5.66; N, 15.72 %). IR (KBr) νmax/cm−1: 3378 (NH), 3358 (OH), 2897 (CH), 1567 (C=N), 1H NMR (400 MHz, DMSO-d6), (δ: ppm): 6.97 (d, 3H, Ar-H), 7.07 (d, 3H, Ar-H), 6.78 (dd, 3H, Ar-H), 5.91 (s, 9H, NH and OH), 3.38 (t, 6H, Ar-C-CH2-N), 2.78 (t, 6H, Ar-CH2-C-N).

RESULTS AND DISCUSSION

The usual strategy employed for the synthesis of CCDOP1 and CCDOP3 ligands based on 1,3,5-trichloro-sym-triazine or cyanuric chloride entails reacting the least reactive amine with the first chlorine atom and the most reactive amine with the last chlorine atom, since the chlorine atoms on cyanuric chloride become progressively deactivated as substitution of the triazine ring with amines ensues (Koç, 2011) (Figure 1). In the 1H NMR spectra of s-triazine derivatives signals at about 5.87 and 5.91 ppm for compounds CCDOP1 and CCDOP3 were detected, respectively. All signals appeared as singlet and were attributed to the N-H in the CCDOP1 and CCDOP3.
The NH was also identified by FT-IR spectroscopy as a sharp band at about 3367–3378 cm\(^{-1}\) (Koç, 2011). The vibrations of the triazine C=N and O-H of the CCDOP\(_1\) and CCDOP\(_3\) were observed at 1551, 1567 and 3340, 3358 cm\(^{-1}\) range, respectively (Disley et al., 1999; Koç, 2011).

The thermal stabilities of compounds CCDOP\(_1\) and CCDOP\(_3\) were also thermally investigated and their plausible degrading (Koç, 2011; Koç and Uysal, 2010, 2011; Uysal and Koç, 2010) schemes are presented in Table 1. Thermal decomposition of the anhydrous compounds starts in the range of 98–412 °C and completes in the range 900 °C. The observed weight losses for all compounds are in good agreement with the calculated values.

In this study, the antimicrobial activities of CCDOP\(_1\), CCDOP\(_3\) and DOP were investigated by microbroth dilution method according to Maltaş et al. (2010) against eight bacteria and one yeast. The obtained results are presented in Table 2 and Figure 2.

Table 1: Decomposition steps with the temperature range and weight loss for monopodal and tripodal s-triazines

Compound	Temp. Range (°C)	Weight loss Found (Calc.) (%)
C\(_{11}\)H\(_{10}\)N\(_4\)O\(_2\)Cl\(_2\) (CCDOP\(_1\))	98-125	11.07 (11.29)
	132-231	34.57 (34.92)
	235-397	28.30 (28.53)
C\(_{27}\)H\(_{30}\)N\(_6\)O\(_6\) (CCDOP\(_3\))	110-155	18.98 (19.09)
	165-225	58.85 (59.01)
	228-412	08.22 (08.43)

Figure 1: Proposed structures of the monopodal and tripodal s-triazines
Table 2: Results of antimicrobial activities of CCDOP$_1$, CCDOP$_3$, DOP and standard antibiotic

Tested microorganisms	MIC values of chemicals (µg/ml)	MIC values of Ampicillin (µg/ml)		
	CCDOP$_1$	CCDOP$_3$	DOP	Ampicillin
Escherichia coli ATCC 25922	39	625	156	39
Staphylococcus aureus ATCC 6538	39	625	19	39
Proteus mirabilis ATCC 43071	2500	2500	2500	2500
Pseudomonas aeruginosa ATCC 15442	2500	2500	2500	-
Klebsiella oxytoca ATCC 10031	2500	1250	1250	1250
Bacillus cereus ATCC 11778	2500	1250	1250	78
Listeria monocytogenes Type 2 Past. Inst. 5434	2500	1250	2500	-
Streptococcus salivarius RSHE 606	1250	1250	1250	-
Candida albicans	2500	1250	1250	2500

Figure 2: Graphic of antimicrobial activity test results

CCDOP$_1$ was found to be strongly antibacterial against *E. coli* and *S. aureus* at a 0.0396 mg/ml dose level. Ampicillin control antibiotic was equally effective against these two bacteria. The MIC value of chemical was determined as 1.25 mg/ml for *Streptococcus salivarius*. While Ampicillin had no effect on this strain, our chemical was found to be more effective than the antibiotic. For *P. mirabilis* the MIC value was determined as 2.50 mg/ml. The control antibiotic influenced this strain at a 1.25 mg/ml dose level. Although *P. aeruginosa* was found to be resistant to the
control antibiotic at all test doses, it was affected by CCDOP1 at a 2.50 mg/ml dose level. The MIC value was 2.50 mg/ml for *K. oxytoca* and *B. cereus*, too. It has been seen that CCDOP1 revealed a similar effect against *K. oxytoca* when compared with the standard antibiotic. Though *L. monocytogenes* was resistant to the antibiotic, CCDOP1 had antimicrobial capacity against this strain at a 2.50 mg/ml dose level. In addition to its antibacterial effect, our chemical had antifungal capacity against *Candida albicans* which is yeast and used in the study at a concentration of 2.50 mg/ml.

The MIC values of CCDOP3 were determined as 0.625 mg/ml against *E. coli* and *S. aureus*. CCDOP3 was more effective than CCDOP1 against *K. oxytoca*, *B. cereus*, *L. monocytogenes* and *Candida albicans* at a concentration of 1.25 mg/ml. This chemical had strong antibacterial and antifungal activities as well as the control antibiotic against *K. oxytoca* and *Candida albicans*, respectively. The MIC values were determined as 2.50 mg/ml for *P. mirabilis* and *P. aeruginosa*.

Dopamine hydrochloride exhibited strong antibacterial activity against *S. aureus* at a concentration of 0.0195 mg/ml. It was found to be more effective than Ampicillin. *E. coli* was affected by dopamine hydrochloride at a dose of 0.156 mg/ml. It had similar antimicrobial activity against other bacteria and *Candida* when compared with CCDOP3.

CONCLUSION

In this study, CCDOP1, CCDOP3 were synthesized by the reaction of cyanuric chloride and dopamine hydrochloride according to the literature (Naicker et al., 2004; Koç, 2011; Disley et al., 1999; Teng et al., 2000; Fang et al., 2001). The structures of the compounds were identified by FT-IR, 1H NMR, 13C NMR, thermal analysis and elemental analysis. According to the results obtained from the broth microdilution test, it has been determined that CCDOP1, CCDOP3 and DOP revealed strong antibacterial activity against the *E. coli* and *S. aureus* strains used in the study. CCDOP1 and DOP have significant antimicrobial activity and these effects are close to the control antibiotic used. *S. aureus* was the most sensitive strain against dopamine hydrochloride and *E. coli* was the most sensitive bacteria against CCDOP1. CCDOP3 was more effective against all microorganisms except for *E. coli* and *S. aureus*. Although they were resistant to the antibiotic, *P. aeruginosa*, *L. monocytogenes* and especially *Str. salivarius* were significantly affected by CCDOP1, CCDOP3 and DOP. It was determined that these chemicals have antifungal capacities, too.

REFERENCES

Agarwal A, Srivastava K, Puri SK, Chauhan PMS. Synthesis of 2,4,6-trisubstituted pyrimidines as antimalarial agents. Bioorg Med Chem Lett 2005a;13:4645-5031.

Agarwal A, Srivastava K, Puri SK, Chauhan PMS. Antimalarial activity and synthesis of new trisubstituted pyrimidines. Bioorg Med Chem Lett 2005b;15:3130-2.

Baliani A, Bueno, GJ, Stewart ML, Yardley V, Brun R, Barrett MP, Gilbert IHJ. Design and synthesis of a series of melamine-based nitroheterocycles with activity against trypanosomatid parasites. J Med Chem 2005; 48:5570-9.

Chang C, Huang C, Huang Y, Lin K, Lee Y, Wang C. Total synthesis of (±)-armepavines and (±)-nuciferines from (2-nitroethenyl)benzene derivatives. Synthetic Commun 2010;40:3452-66.

Disley DM, Morrill PR, Sproule K, Lowe CR. An optical biosensor for monitoring recombinant proteins in process media. Biosens Bioelectron 1999;14:481-93.
Fang Q, Ding X, Wu X, Jiang L. Synthesis and characterization of a novel functional monomer containing two allylphenoxy groups and one S-triazine ring and the properties of its copolymer with 4,4'-bismaleimidodiphenylmethane (BMDPM). Polymer 2001;42:7595-602.

Ghaib A, Ménager S, Vérité P, Lafont O. Synthesis of variously 9,9-dialkylated octahydroprymido [3,4-a]-s-triazines with potential antifungal activity. Farmaco 2002; 57:109-16.

Hadjipavlou-Litina DH, Magoulas GE, Bariamis SE, Drainers D, Avgoustakis K, Papaioannou D. Does conjugation of antioxidants improve their antioxidative/ anti-inflammatory potential? Bioorg Med Chem 2010;18:8204-17.

Henke BR, Consler TG, Go N, Hale RL, Hohman DR, Jones SA et al. A new series of estrogen receptor modulators that display selectivity for estrogen receptor beta. J Med Chem 2002;45:5492–505.

Jensen NP, Ager AL, Bliss RA, Canfield CJ, Kotecka BM, Rieckmann KH et al. Phenoxypropoxybiguanides, prodrugs of DHFR-inhibiting diaminotriazine antimalarials. J Med Chem 2001;44:3925–31.

Koç ZE. Complexes of iron(III) and chromium(III) salen and salophen Schiff bases with bridging 1,3,5-triazine derived multidirectional ligands. J Heterocyclic Chem 2011;48:769-75.

Koç ZE, Uysal S. Synthesis and characterization of dendrimeric bridged salen/saloph complexes and investigation of their magnetic and thermal behaviors. Helv Chim Acta 2010;93:910-9.

Koç ZE, Uysal S. Synthesis and characterization of tripodal oxy-schiff base (2,4,6-tris(4-carboxyphenoxy)limino-4'-formylphenoxy)-1,3,5-triazine) and the thermal and magnetic properties of its Fe(III)/Cr(III) complexes. J Inorg Organomet P 2011;21:400-6.

Koç ZE, Bingol H, Saf AO, Torlak E, Coskun A. Synthesis of novel tripodal-benzimidazole from 2,4,6-tris(p-formylphenoxy)-1,3,5-triazine: structural, electrochemical and antimicrobial studies. J Hazard Mater 2010;183:251-5.

Kumar A, Menon SK. Fullerene derivatized s-triazine analogues as antimicrobial agents. Eur J Med Chem 2009;44:2178-83.

Kuo GH, DeAngelis A, Emanuel S, Wang A, Zhang Y, Connolly PJ et al. Synthesis and identification of [1,3,5]triazine-pyridine biheteroaryl as a novel series of potent cyclin-dependent kinase inhibitors. J Med Chem 2005;48:4535-46.

Lebreton S, Newcombe N, Bradley M. Antibacterial single-bead screening. Tetrahedron 2003;59:10213-22.

Lübers T, Angehrn P, Gmünder H, Herzig S, Kulhanek. Design, synthesis, and structure–activity relationship studies of ATP analogues as DNA gyrase inhibitors. Bioorg Med Chem Lett 2000;10:821–6.

Maltaş E, Uysal A, Yıldız S, Durak Y. Evaluation of antioxidant and antimicrobial activity of Vitis agnus castus L. Fresen Environ Bull 2010;19:3094-9.

McKay GA, Reddy R, Arhin F, Belley A, Lehoux D, Moeck G et al. Triaminotriazine DNA helicase inhibitors with antibacterial activity. Bioorg Med Chem Lett 2006;16:1286-90.
Menicagli R, Samaritani S, Signore G, Vaglini F, Dalla Via L. In vitro cytotoxic activities of 2-alkyl-4,6-diheteroalkyl-1,3,5-triazines: new molecules in anticancer research. J Med Chem 2004;47:4649-52.

Mooibroek TJ, Gamez P. The s-triazine ring, a remarkable unit to generate supramolecular interactions. Inorg Chim Acta 2007;360:381-404.

Naicker KP, Jiang S, Lu H, Ni J, Chatenet LB, Wang LX et al. Synthesis and ant-HIV-1 activity of 4-[4-(4,6-bisphenylamino-triazin-2-ylamino)-5-methoxy-2-methylphenylazo]-5-hydroxynaphthalene-2,7-disulfonic acid and its derivatives. Bioorg Med Chem 2004;12:1215-20.

Ojha H, Gahlot P, Tiwari AK, Pathak M, Kakkar R. Quantitative structure activity relationship study of 2,4,6-trisubstituted-s-triazine derivatives as antimalarial inhibitors of Plasmodium falciparum dihydrofolate reductase. Chem Biol Drug Des 2011;77:57-62.

Pajk M, Kańska M. Synthesis of isotopomers of dopamine labeled with deuterium or tritium. J Labelled Compd Rad 2006;49:1061-7.

Pandey VK, Tusi S, Tusi Z, Joshi M, Bajpai S. Synthesis and biological activity of substituted 2,4,6-s-triazines. Acta Pharm 2004;54:1–12.

Patel HS, Patel VC. Polymides containing s-triazine ring. Eur Polym J 2001;37:2263-71.

Solankee A, Kapadia K, Ciric A, Sokovic M, Doytchinova I, Geronikaki A. Synthesis of some new S-triazine based chalcones and their derivatives as potent antimicrobial agents. Eur J Med Chem 2010;45:510-8.

Srinivas K, Srinivas U, Rao VJ, Bhanuprakash K, Kishore KH, Murty USN. Synthesis and antibacterial activity of 2,4,6-tri substituted s-triazines. Bioorg Med Chem Lett 2005;15:1121–3.

Srivastava S, Tewari S, Srivastava SK, Chauhan PMS, Bhaduri AP, Puri SK et al. Synthesis of 7-chloro-4-substituted aminoquinolines and their in-vitro ability to produce methemoglobin in canine hemolysate. Bioorg Med Chem Lett 1997;7:2741.

Srivastava S, Tewari S, Chauhan PMS, Puri SK, Bhaduri AP, Pandey VC. Synthesis of bisquinolines and their in vitro ability to produce methemoglobin in canine hemolysate. Bioorg Med Chem Lett 1999;9:653-8.

Teng SF, Sproule K, Husain A, Lowe CR. Affinity chromatography on immobilized "biomimetic" ligands. Synthesis, immobilization and chromatographic assessment of an immunoglobulin G-binding ligand. J Chromatogr B Biomed Sci Appl 2000;740:1–15.

Uysal Şi, Koç ZE. Synthesis and characterization of dendrimeric melamine cored [salen/salophFe(III)] and [salen/salophCr(III)] capped complexes and their magnetic behaviors. J Hazard Mater 2010;175:532-9.

Xie J, Xu C, Kohler N, Hou Y, Sun S. Controlled PEGylation of monodisperse Fe₃O₄ nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 2007;19:3163-6.