Introducing fully UP-semigroups*

Aiyared Iampan†

Department of Mathematics, School of Science
University of Phayao, Phayao 56000, Thailand

Monday 13th August, 2018

Abstract

In this paper, we introduce some new classes of algebras related to UP-algebras and semigroups, called a left UP-semigroup, a right UP-semigroup, a fully UP-semigroup, a left-left UP-semigroup, a right-left UP-semigroup, a left-right UP-semigroup, a right-right UP-semigroup, a fully-left UP-semigroup, a fully-right UP-semigroup, and find their examples.

Mathematics Subject Classification: 08A99, 03G25

Keywords: semigroup, UP-algebra, fully UP-semigroup

1 Introduction and Preliminaries

In the literature, several researches introduced a new class of algebras related to logical algebras and semigroups such as: In 1993, Jun, Hong and Roh [5] introduced the notion of BCI-semigroups. In 1998, Jun, Xin and Roh [6] renamed the BCI-semigroup as the IS-algebra. In 2006, Kim [7] introduced the notion of KS-semigroups. In 2011, Ahn and Kim [1] introduced the notion of BE-semigroups. In 2015, Endam and Vilela [2] introduced the notion of JB-semigroups. In 2016, Sultana and Chaudhary [8] introduced the notion of BCH-semigroups. In this paper, we introduce some new classes of algebras related to UP-algebras and semigroups, called a left UP-semigroup, a right UP-semigroup, a fully UP-semigroup, a left-left UP-semigroup, a right-left UP-semigroup, a left-right UP-semigroup, a right-right UP-semigroup, a fully-left UP-semigroup, a fully-right UP-semigroup, and find their examples.

Before we begin our study, we will introduce the definition of a UP-algebra.

Definition 1.1. [3] An algebra $A = (A, \cdot, 0)$ of type $(2, 0)$ is called a UP-algebra, where A is a nonempty set, \cdot is a binary operation on A, and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the following axioms: for any $x, y, z \in A$,

*This work was financially supported by the University of Phayao.
†Corresponding author. Email: aiyared.ia@up.ac.th
(UP-1) \((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0\),
(UP-2) \(0 \cdot x = x\),
(UP-3) \(x \cdot 0 = 0\), and
(UP-4) \(x \cdot y = y \cdot x = 0\) implies \(x = y\).

In a UP-algebra \(A = (A, \cdot, 0)\), the following assertions are valid (see [3][4]).

\[
\begin{align*}
(\forall x \in A)(x \cdot x = 0), & \quad (1.1) \\
(\forall x, y, z \in A)(x \cdot y = 0, y \cdot z = 0 \Rightarrow x \cdot z = 0), & \quad (1.2) \\
(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow (z \cdot x) \cdot (z \cdot y) = 0), & \quad (1.3) \\
(\forall x, y, z \in A)(x \cdot y \cdot z = 0 \Rightarrow (y \cdot z) \cdot (x \cdot z) = 0), & \quad (1.4) \\
(\forall x, y \in A)(x \cdot (y \cdot x) = 0), & \quad (1.5) \\
(\forall x, y \in A)((y \cdot x) \cdot x = 0 \Leftrightarrow x = y \cdot x), & \quad (1.6) \\
(\forall x, y \in A)(x \cdot (y \cdot y) = 0), & \quad (1.7) \\
(\forall a, x, y, z \in A)((x \cdot (y \cdot z)) \cdot (x \cdot ((a \cdot y) \cdot (a \cdot z))) = 0), & \quad (1.8) \\
(\forall a, x, y, z \in A)((((a \cdot x) \cdot (a \cdot y)) \cdot z) \cdot ((x \cdot y) \cdot z) = 0), & \quad (1.9) \\
(\forall x, y, z \in A)((x \cdot y) \cdot z \cdot (y \cdot z) = 0), & \quad (1.10) \\
(\forall x, y \in A)((x \cdot y = 0 \Rightarrow x \cdot (z \cdot y) = 0), & \quad (1.11) \\
(\forall x, y, z \in A)((x \cdot (y \cdot z)) \cdot (x \cdot (y \cdot z)) = 0), & \quad (1.12) \\
(\forall a, x, y, z \in A)((x \cdot (y \cdot z)) \cdot (y \cdot (a \cdot z)) = 0). & \quad (1.13)
\end{align*}
\]

Let \(X\) be a universal set. Define two binary operations \(\cdot\) and \(*\) on the power set of \(X\) by putting, for all \(A, B \in \mathcal{P}(X)\),

\[
\begin{align*}
A \cdot B & = A' \cap B; & \quad (1.14) \\
A * B & = A' \cup B. & \quad (1.15)
\end{align*}
\]

Then \((\mathcal{P}(X), \cdot, \emptyset)\) is a UP-algebra and we shall call it the \textit{power UP-algebra of type 1} [3], and \((\mathcal{P}(X), *, X)\) is a UP-algebra and we shall call it the \textit{power UP-algebra of type 2} [3].

Now, define four binary operations \(\odot, \otimes, \Box\) and \(\nabla\) on the power set of \(X\) by putting, for all \(A, B \in \mathcal{P}(X)\),

\[
\begin{align*}
A \odot B & = X, & \quad (1.16) \\
A \otimes B & = \emptyset, & \quad (1.17) \\
A \Box B & = B, & \quad (1.18) \\
A \nabla B & = A. & \quad (1.19)
\end{align*}
\]

Then \((\mathcal{P}(X), \odot), (\mathcal{P}(X), \otimes), (\mathcal{P}(X), \Box)\) and \((\mathcal{P}(X), \nabla)\) are semigroups. Furthermore, we know that \((\mathcal{P}(X), \cap, X)\) and \((\mathcal{P}(X), \cup, \emptyset)\) are monoids.

Definition 1.2. Let \(A\) be a nonempty set, \(\cdot\) and \(*\) are binary operations on \(A\), and \(0\) is a fixed element of \(A\) (i.e., a nullary operation). An algebra \(A = (A, \cdot, *, 0)\) of type \((2, 2, 0)\) in which \((A, \cdot, 0)\) is a UP-algebra and \((A, *, 0)\) is a semigroup is called

1. a \textit{left UP-semigroup} (in short, an \textit{l-UP-semigroup}) if the operation \(*\) is left distributive over the operation \(\cdot\),
2. a \textit{right UP-semigroup} (in short, an \textit{r-UP-semigroup}) if the operation \(*\) is right distributive over the operation \(\cdot\),
Introducing fully UP-semigroups

(3) a fully UP-semigroup (in short, an f-UP-semigroup) if the operation “∗” is distributive (on both sides) over the operation “·”,

(4) a left-left UP-semigroup (in short, an (l,l)-UP-semigroup) if the operation “·” is left distributive over the operation “∗” and the operation “∗” is left distributive over the operation “·”,

(5) a right-left UP-semigroup (in short, an (r,l)-UP-semigroup) if the operation “·” is right distributive over the operation “∗” and the operation “∗” is left distributive over the operation “·”,

(6) a left-right UP-semigroup (in short, an (l,r)-UP-semigroup) if the operation “·” is left distributive over the operation “∗” and the operation “∗” is right distributive over the operation “·”,

(7) a right-right UP-semigroup (in short, an (r,r)-UP-semigroup) if the operation “·” is right distributive over the operation “∗” and the operation “∗” is right distributive over the operation “·”,

(8) a fully-left UP-semigroup (in short, an (f,l)-UP-semigroup) if the operation “·” is distributive (on both sides) over the operation “∗” and the operation “∗” is left distributive over the operation “·”,

(9) a fully-right UP-semigroup (in short, an (f,r)-UP-semigroup) if the operation “·” is distributive (on both sides) over the operation “∗” and the operation “∗” is right distributive over the operation “·”,

(10) a left-fully UP-semigroup (in short, an (l,f)-UP-semigroup) if the operation “·” is left distributive over the operation “∗” and the operation “∗” is distributive (on both sides) over the operation “·”,

(11) a right-fully UP-semigroup (in short, an (r,f)-UP-semigroup) if the operation “·” is right distributive over the operation “∗” and the operation “∗” is distributive (on both sides) over the operation “·”, and

(12) a fully-fully UP-semigroup (in short, an (f,f)-UP-semigroup) if the operation “·” is distributive (on both sides) over the operation “∗” and the operation “∗” is distributive (on both sides) over the operation “·”.

In what follows, let A and B denote UP-algebras unless otherwise specified. The following proposition is very important for the study of UP-algebras.

The proof of Propositions 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8 can be verified by a routine proof.

Proposition 1.3. (The operations of a UP-algebra \(\mathcal{P}(X)\) is left distributive over the operations of a semigroup \(\mathcal{P}(X)\)) Let X be a universal set. Then the following properties hold: for any \(A, B, C \in \mathcal{P}(X)\),

1. \(A \cdot (B \cap C) = (A \cdot B) \cap (A \cdot C)\),
2. \(A \cdot (B \cup C) = (A \cdot B) \cup (A \cdot C)\),
3. \(A \ast (B \cap C) = (A \ast B) \cap (A \ast C)\),
4. \(A \ast (B \cup C) = (A \ast B) \cup (A \ast C)\),
5. \(A \cdot (B \otimes C) = (A \cdot B) \otimes (A \cdot C)\),
\((6) \quad A \ast (B \odot C) = (A \ast B) \odot (A \ast C), \)
\((7) \quad A \cdot (B \boxdot C) = (A \cdot B) \boxdot (A \cdot C), \)
\((8) \quad A \ast (B \boxtimes C) = (A \ast B) \boxtimes (A \ast C), \)
\((9) \quad A \cdot (B \boxtimes C) = (A \cdot B) \boxtimes (A \cdot C), \) and
\((10) \quad A \ast (B \boxtimes C) = (A \ast B) \boxtimes (A \ast C). \)

Proposition 1.4. (The operations of a UP-algebra \(\mathcal{P}(X) \) is right distributive over the operations of a semigroup \(\mathcal{P}(X) \)) Let \(X \) be a universal set. Then the following properties hold: for any \(A, B, C \in \mathcal{P}(X), \)
\((1) \quad (A \boxdot B) \cdot C = (A \cdot C) \boxdot (B \cdot C), \)
\((2) \quad (A \boxdot B) \ast C = (A \ast C) \boxdot (B \ast C), \)
\((3) \quad (A \boxtimes B) \cdot C = (A \cdot C) \boxtimes (B \cdot C), \) and
\((4) \quad (A \boxtimes B) \ast C = (A \ast C) \boxtimes (B \ast C). \)

Proposition 1.5. (The operations of a semigroup \(\mathcal{P}(X) \) is left distributive over the operations of a UP-algebra \(\mathcal{P}(X) \)) Let \(X \) be a universal set. Then the following properties hold: for any \(A, B, C \in \mathcal{P}(X), \)
\((1) \quad A \odot (B \ast C) = (A \odot B) \ast (A \odot C), \)
\((2) \quad A \odot (B \cdot C) = (A \odot B) \cdot (A \odot C), \)
\((3) \quad A \boxdot (B \cdot C) = (A \boxdot B) \cdot (A \boxdot C), \) and
\((4) \quad A \boxdot (B \ast C) = (A \boxdot B) \ast (A \boxdot C). \)

Proposition 1.6. (The operations of a semigroup \(\mathcal{P}(X) \) is right distributive over the operations of a UP-algebra \(\mathcal{P}(X) \)) Let \(X \) be a universal set. Then the following properties hold: for any \(A, B, C \in \mathcal{P}(X), \)
\((1) \quad (A \ast B) \odot C = (A \odot C) \ast (B \odot C), \)
\((2) \quad (A \cdot B) \odot C = (A \odot C) \cdot (B \odot C), \)
\((3) \quad (A \cdot B) \boxtimes C = (A \boxtimes C) \cdot (B \boxtimes C), \) and
\((4) \quad (A \ast B) \boxtimes C = (A \boxtimes C) \ast (B \boxtimes C). \)

Proposition 1.7. Let \(X \) be a universal set. Then the following properties hold: for any \(A, B, C \in \mathcal{P}(X), \)
\((1) \quad (A \cap B) \cdot C = (A \cdot C) \cap (B \cdot C), \)
\((2) \quad (A \cup B) \cdot C = (A \cdot C) \cup (B \cdot C), \)
\((3) \quad (A \cap B) \ast C = (A \ast C) \cup (B \ast C), \)
\((4) \quad (A \cup B) \ast C = (A \ast C) \cap (B \ast C), \)
\((5) \quad (A \odot B) \cdot C = (A \cdot C) \odot (B \cdot C), \) and
\((6) \quad (A \odot B) \ast C = (A \ast C) \odot (B \ast C). \)
Introducing fully UP-semigroups

Proposition 1.8. Let X be a universal set. Then the following properties hold: for any $A, B, C \in \mathcal{P}(X)$,

1. $(A \cdot B) \odot C = (A \odot C) \ast (B \odot C)$, and
2. $(A \ast B) \odot C = (A \odot C) \cdot (B \odot C)$.

Proposition 1.9. Let $A = (A, \cdot, \ast, 0)$ be an algebra of type $(2, 2, 0)$ in which $(A, \cdot, 0)$ is a UP-algebra and (A, \ast) is a semigroup. Then the following properties hold:

1. if A is an l-UP-semigroup, then $x \ast 0 = 0$ for all $x \in A$,
2. if A is an r-UP-semigroup, then $0 \ast x = 0$ for all $x \in A$,
3. if the operation “\cdot” is right distributive over the operation “\ast”, then $x \ast x = x$ for all $x \in A$, and
4. $A = \{0\}$ is one and only one (r, f)-UP-semigroup and (f, f)-UP-semigroup.

Proof. (1) Assume that A is an l-UP-semigroup. Then, by (1.1), we have

$$x \ast 0 = x \ast (0 \cdot 0) = (x \ast 0) \cdot (x \ast 0) = 0$$

for all $x \in A$.

(2) Assume that A is an r-UP-semigroup. Then, by (1.1), we have

$$0 \ast x = (0 \cdot 0) \ast x = (0 \ast x) \cdot (0 \ast x) = 0$$

for all $x \in A$.

(3) Assume that the operation “\cdot” is right distributive over the operation “\ast”. Then, by (UP-3), we have

$$0 = (0 \ast 0) \cdot 0 = (0 \cdot 0) \ast (0 \cdot 0) = 0 \ast 0.$$

Thus, by (UP-2), we have

$$x = 0 \cdot x = (0 \ast 0) \cdot x = (0 \cdot x) \ast (0 \cdot x) = x \ast x$$

for all $x \in A$.

(4) By (UP-2), (1.1), (1) and (2), we have

$$x = 0 \cdot x = (x \ast 0) \cdot x = (x \cdot x) \ast (0 \cdot x) = 0 \ast x = 0$$

for all $x \in A$.

Hence, $A = \{0\}$ is one and only one (r, f)-UP-semigroup and (f, f)-UP-semigroup.

Example 1.10. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the following Cayley table:

	0	1	2	3
0	0	1	2	3
1	0	0	2	3
2	0	0	0	1
3	0	1	2	0

Then $(A, \cdot, \ast, 0)$ is an f-UP-semigroup.
Let X be a universal set. Then, by above propositions and an example, we get:

Types of algebras	Examples
l-UP-semigroup	$(P(X), \ast, \odot, X)$ (see Proposition 1.5 (1))
	$(P(X), \cdot, \odot, \emptyset)$ (see Proposition 1.5 (2))
	$(P(X), \cdot, \boxplus, \emptyset)$ (see Proposition 1.5 (3))
	$(P(X), \ast, \boxplus, X)$ (see Proposition 1.5 (4))
r-UP-semigroup	$(P(X), \ast, \odot, X)$ (see Proposition 1.6 (1))
	$(P(X), \cdot, \odot, \emptyset)$ (see Proposition 1.6 (2))
	$(P(X), \cdot, \boxminus, \emptyset)$ (see Proposition 1.6 (3))
	$(P(X), \ast, \boxminus, X)$ (see Proposition 1.6 (4))
f-UP-semigroup	$(P(X), \ast, \odot, X)$ (see Propositions 1.5 (1) and 1.6 (1))
	$(P(X), \cdot, \odot, \emptyset)$ (see Propositions 1.5 (2) and 1.6 (2))
	$(A, \cdot, \ast, 0)$ (see Example 1.10)
(l, l)-UP-semigroup	$(P(X), \cdot, \boxplus, \emptyset)$ (see Propositions 1.5 (3) and 1.3 (7))
(r, l)-UP-semigroup	$(P(X), \cdot, \boxplus, \emptyset)$ (see Propositions 1.5 (3) and 1.4 (1))
(l, r)-UP-semigroup	$(P(X), \ast, \odot, X)$ (see Propositions 1.6 (1) and 1.3 (6))
(r, r)-UP-semigroup	$(P(X), \cdot, \boxminus, \emptyset)$ (see Propositions 1.6 (3) and 1.3 (9))
(r, f)-UP-semigroup	$(P(X), \cdot, \boxminus, \emptyset)$ (see Propositions 1.6 (4) and 1.3 (10))
(f, l)-UP-semigroup	$(P(X), \cdot, \boxplus, \emptyset)$ (see Propositions 1.5 (3), 1.3 (7), and 1.6 (1))
(f, r)-UP-semigroup	$(P(X), \cdot, \boxplus, \emptyset)$ (see Propositions 1.5 (3), 1.3 (5), and 1.6 (2))
(l, f)-UP-semigroup	$(P(X), \ast, \odot, X)$ (see Propositions 1.5 (1), 1.3 (6), and 1.6 (1))
(r, f)-UP-semigroup	$(P(X), \ast, \odot, X)$ (see Propositions 1.5 (1), 1.3 (10), and 1.4 (4))
(f, f)-UP-semigroup	$\{0\}$ is one and only one (r, f)-UP-semigroup
(f, f)-UP-semigroup	$\{0\}$ is one and only one (f, f)-UP-semigroup
Hence, we have the following diagram:

![Diagram showing relationships between different types of UP-semigroups](image)

Figure 1: New algebras of type (2,2,0)

Conclusion

We have introduced the notions of left UP-semigroups, right UP-semigroups, fully UP-semigroups, left-left UP-semigroups, right-left UP-semigroups, left-right UP-semigroups, right-right UP-semigroups, fully-left UP-semigroups, fully-right UP-semigroups, left-fully UP-semigroups, right-fully UP-semigroups and fully-fully UP-semigroups, and have found examples. We have that right-fully UP-semigroups and fully-fully UP-semigroups coincide, and it is only \(\{0\} \). In further study, we will apply the notion of fuzzy sets and fuzzy soft sets to the theory of all above notions.

Acknowledgment

The author wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

[1] S. S. Ahn and Y. H. Kim. On BE-semigroups. *Int. J. Math. Math. Sci.*, 2011:Article ID 676020, 2011.

[2] J. C. Endam and J. P. Vilela. On JB-semigroups. *Appl. Math. Sci.*, 9(59):2901–2911, 2015.

[3] A. Iampan. A new branch of the logical algebra: UP-algebras. *J. Algebra Relat. Top.*, 5(1):35–54, 2017.
[4] A. Iampan. *UP-algebras: the beginning*. Copy House and Printing, Thailand, 2018.

[5] Y. B. Jun, S. M. Hong, and E. H. Roh. BCI-semigroups. *Honam Math. J.*, 15(1):59–64, 1993.

[6] Y. B. Jun, X. L. Xin, and E. H. Roh. A class of algebras related to BCI-algebras and semigroups. *Soochow J. Math.*, 24(4):309–321, 1998.

[7] K. H. Kim. On structure of KS-semigroups. *Int. Math. Forum*, 1(2):67–76, 2006.

[8] F. Sultana and M. A. Chaudhary. BCH-semigroup ideals in BCH-semigroups. *Palestine J. Math.*, 5(1):1–5, 2016.

Received: Monday 13th August, 2018