Electron-phonon interaction in the normal and superconducting states of MgB$_2$

Y. Kong, O.V. Dolgov, O. Jepsen, and O.K. Andersen
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
(October 30, 2018)

For the 40K-superconductor MgB$_2$ we have calculated the electronic and phononic structures and the electron-phonon interaction throughout the Brillouin zone 	extit{ab initio}. In contrast to the isoelectronic graphite, MgB$_2$ has holes in the bonding σ-bands, which contribute 42 per cent to the density of states: $N(0)=0.355$ states/(MgB$_2$eV-spin). The total interaction strength, $\lambda=0.87$ and $\lambda_{tr}=0.60$, is dominated by the coupling of the σ-holes to the bond-stretching optical phonons with wavenumbers in a narrow range around 600 cm$^{-1}$. Like the holes, these phonons are quasi two-dimensional and have wave-vectors close to ΓA, where their symmetry is E. The π-electrons contribute merely 0.25 to λ and to λ_{tr}. With Eliashberg theory we evaluate the normal-state resistivity, the density of states in the superconductor, and the B-isotope effect on T_c and Δ_0, and find excellent agreement with experiments, when available. $T_c=40$ K is reproduced with $\mu^*=0.10$ and $2\Delta_0/k_BT_c=3.9$. MgB$_2$ thus seems to be an intermediate-coupling e-ph pairing s-wave superconductor.

The recent discovery of superconductivity with $T_c = 39$ K in the graphite-like compound MgB$_2$ has caused hectic activity. Density-functional (LDA) calculations show that, in contrast to intercalated graphite ($T_c \leq 5$ K) and alkali-doped fullerides, A$_3$C$_{60}$ ($T_c < 40$ K), in MgB$_2$ there are holes at the top of the B-B bond σ-bands, and that these couple rather strongly to optically allowed B-B bond-stretching modes with wavenumbers around 600 cm$^{-1}$. These are the same type of modes as those believed to couple most strongly to the π-electrons in graphite and C$_{60}$, where their wavenumbers are 2.5 times larger, however. Rough estimates of the electron-phonon coupling-strength for s-wave pairing in MgB$_2$ yield: $\lambda \sim 1$. Measurements of the B-isotope effect on T_c, tunneling transport, thermodynamic properties, and the phonon density of states confirm that MgB$_2$ is most likely an electron-phonon mediated s-wave superconductor with intermediate or strong coupling.

In order to advance, detailed comparisons between accurate results of Eliashberg theory and experiments are needed. Consider again the example of A$_3$C$_{60}$, also believed to be conventional s-wave superconductors, with T_c's described by the McMillan expression:

$$T_c^{\text{McM}} = \frac{\omega_{\text{ph}}}{1.2} \exp \left[\frac{-1.04(1+\lambda)}{\lambda - (1+0.62\lambda)\mu^*} \right].$$ \hspace{1cm} (1)

The LDA values for λ are 0.4–0.6 and the value of the Coulomb pseudopotential μ^* to be used in (1) is presumably considerably larger than the usual value, 0.1–0.2, for sp-materials due to the small width (\sim0.5 eV) of the t_{1u}-π-band compared with the on-ball Coulomb repulsion. For MgB$_2$, where the π-band is 15 eV broad, one expects μ^* to be 0.1–0.2 and the LDA plus generalized-gradient correction to give λ with an accuracy better than 0.1. The result of such a λ-calculation will be presented here and should allow us to reach conclusions about the superconductivity in MgB$_2$.

MgB$_2$ consists of graphite-like B$_2$-layers stacked on-top with Mg in-between. The primitive translations are: $a=(\sqrt{3}/2, 1/2, 0)$, $b=(0, a, 0)$, $c=(0, 0, c)$, with $a=3.083\AA=5.826a_0$ and $c/a=1.142$. In reciprocal space, and in units of $2\pi/a$, the primitive translations are: $\Gamma=(0, 0, 0)$, $A=(2/\sqrt{3}, 0, 0)$, $B=(-1/\sqrt{3}, 1, 0)$, $C=(0, 0, a/c)$, and the points of high symmetry are: $\Gamma=(0, 0, 0)$, $\Lambda=(0, 0, 2c)$, $M=(1/\sqrt{3}, 0, 0)$, $L=(1/\sqrt{3}, 0, a/2c)$, $K=(1/\sqrt{3}, 1, 0)$, $H=(1/\sqrt{3}, 1/3, a/2c)$. To reach a numerical accuracy exceeding 0.1 for λ requires careful sampling throughout the Brillouin-zone for electrons as well as for phonons, due to the small size of the cylindrical σ-hole sheets. We therefore used Savrasov’s linear-responce full-potential LMTO density-functional method, proven to describe the superconducting and transport properties of $e.g.$ Al and Pb with high accuracy. The Brillouin-zone integrations were performed with the full-cell tetrahedron method with the k-points placed on the (A, B, C)/24 sublattice. For the valence bands, a triple-kappa sp LMTO basis set was employed and the Mg $2p$-semicore states were treated as valence states in a separate energy window. The charge densities and potentials were represented by spherical harmonics with $l \leq 8$ inside the non-overlapping MT spheres, and by plane waves with energies ≤ 201 Ry in the interstitial region.

The resulting electronic structure is practically identical with that of previous calculations. Near and below the Fermi level there are two B p_z π-bands and three quasi-2D B-B bonding σ-bands. The σ and π bands do not hybridize when $k_z=0$ and π/c. The π-bands lie lower with respect to the σ-bands than in graphite and have more k_z-dispersion due to the influence of Mg, the
on-top stacking, and the smaller c/a-ratio. This causes the presence of $p_{st}=0.056$ light and $p_{sh}=0.117$ heavy holes near the doubly-degenerate top along ΓA of the σ-bands. For the density of states at $\varepsilon_F=0$, we find:

$$N(0) = N_{st}(0) + N_{sh}(0) + N_c(0) = 0.048 + 0.102 + 0.205 = 0.355\text{ states/(MgB}_2\text{eV-spin)}.$$

The σ and π-bands may be understood and described with reasonable accuracy near ε_F using the orthogonal tight-binding approximation with respective the B p_z orbitals and the B-B two-center bond-orbitals formed from the B sp^2 hybrids: With two p_z orbitals per cell and hopping between nearest neighbors only ($\varepsilon_z = 0.41\text{ eV}$, $t_z=0.92\text{ eV}$, and $t_z=1.60\text{ eV}$), the π-bands are respectively

$$\varepsilon_n(k) = \varepsilon_z + 2t_z^2 \cos k_z^2 + t_z \sqrt{1 + 4 \cos (ak_y/2) \cos (ak_z\sqrt{3}/2)}.$$

The bonding σ-band Hamiltonian is:

$$H_{\sigma}(k) = t_{sp^2} - 2t_b^2 \cos k_z,$$

in the representation of the three bond-orbitals per cell, with t_{sp^2} being the energy of the two-center bond, and the integrals for hopping between nearest and 2nd-nearest bond orbitals in the same layer being respectively $t_b=5.69\text{ eV}$ and $t_b'=0.91\text{ eV}$, and with $t_z=0.094\text{ eV}$ being an order of magnitude smaller than t_z. Moreover, $\alpha = \frac{1}{2}k \cdot a$, $\beta = \frac{1}{2}k \cdot b$, and $\gamma = \frac{1}{2}k \cdot (b-a)$. Along ΓA, $\alpha=\beta=\gamma=0$ so that there is a singly-degenerate band of symmetry A with dispersion $t_{sp^2} - 2t_b^2 \cos k_z - 4(t_b + t_b')$ and a doubly-degenerate band of symmetry E with dispersion $t_{sp^2} - 2t_b^2 \cos k_z + 2(t_b + t_b')$. The E-band is slightly above the Fermi level and its eigenvectors are given in the two inserts at the bottom of Fig. 1. The Fermi-surface sheets are warped cylinders, which may be described by expanding the two upper bands of $H_{\sigma}(k)$ to lowest order in $k^2 + k^2 \equiv k^2_F$. This yields:

$$\varepsilon_{\sigma n}(k) = \varepsilon_0 - 2t_b^2 \cos k_z - k^2/2m_{\sigma n},$$

where $\varepsilon_0 \equiv t_{sp^2} + 2(t_b + t_b') = 0.58\text{ eV}$ is the average energy along ΓA and the units of $k^2_F/m_{\sigma n}$ and k^2_F are respectively Ry and a_0^{-1}. The light and heavy-hole masses are respectively $m_{\sigma l} = 4/(t_b a^2) = 0.28$ and $m_{\sigma h} = 4/(3t_b a^2) = 0.59$ relatively to that of a free electron. For energies so closely below ε_F that $\varepsilon(\varepsilon) \equiv \sum_{n,k} \delta[\varepsilon_n(k)] \delta(\varepsilon - \varepsilon_n(k)) |g_{nk,k+q,m}^n|^2 \equiv \pi N(0)\omega_m(q) \lambda_m(q),$ the factor 2 is from spin degeneracy and \sum_k is the average over the Brillouin zone, so that $N(0) = \sum_{n,k} \delta[\varepsilon_n(k)]$. We have (safely) assumed that $\omega_m(q) \ll q \cdot v_n(k)$, where $v_n(k) \equiv \nabla_k \varepsilon_n(k)$ is the electron velocity. The e-ph matrix element is: $g_{nk,k+q,m} = \langle nk|\delta|v_n(k+q)|\delta Q\omega_m\rangle$, where the displacement in the i-direction of the jth atom is related to the phonon eigenvector $\epsilon_{ij,mq}$ and displacement $\delta Q\omega_m$ by: $\delta R_{ij} = \epsilon_{ij,mq} Q\omega_m/\sqrt{2M_j\omega_m}$. The Eliashberg spectral function is:

$$\alpha^2(\omega)F(\omega) \equiv \frac{1}{2\pi N(0)} \sum_{mq} \frac{\gamma_m(q)}{\omega_m(q)} \delta(\omega - \omega_m(q)),$$

and the strength of the e-ph interaction is finally: $\lambda \equiv 2 \int_0^\infty \omega^{-1} \alpha^2(\omega) F(\omega) \, d\omega = \sum_{mq} \lambda_m(q).$
The dominance of the σ-σ coupling via the optical bond-stretching mode is clearly seen in Fig. 1 where the area of a black circle is proportional to $\lambda_m(\mathbf{q})$. Along ΓA, except when $\mathbf{q} \cdot \mathbf{v} < \omega$, only the small k_z-dispersion (t_1^b) makes $\lambda_m(\mathbf{q})$ not diverge so that the numerical values are inaccurate due to the relative coarseness our k-mesh. The nearly cylindrical σ-sheets, whose diameters are of about the same size as the smallest, non-zero q_2 on the affordable (A,B,C)/6-mesh, require even more care in the numerical q-integration: In case of a single cylindrical sheet with μ holes, $\lambda(q_1)$ has the well-known $\text{Im} \chi(q_1,\omega \rightarrow 0)$-form: $\lambda(q_1) = (2\pi \rho x \sqrt{1-x^2})^{-1} \theta(1-x)$ with $x=q_{12}/2k_F$. This function vanishes when $q_{12}>2k_F$, has a flat minimum of value $(\pi p)^{-1}$ near $q_{12}=-\sqrt{2k_F}$, and has integrable divergencies at $q_{12}=2k_F$ and 0. The proper average of $\lambda(q_1)$ is λ. This means, that $\lambda(\mathbf{q})$ calculated on a coarse mesh scatter violently for small $|\mathbf{q}|$, but that weighting with $\lambda/\lambda(q_1)$ gives the same, correct result for all these points, provided that warping, as well as \mathbf{k}, \mathbf{k}'-dependence of g and ω, are neglected. In case of two cylindrical sheets, and no coupling between them, $\lambda_\alpha(q_1)/\lambda_\alpha$ should be weighted by $m_\alpha^2/(m_1^2 + m_2^2)$. In our numerical evaluation of the e-ph interaction with the linear-response code, we discarded the values of $\lambda_m(\mathbf{q})$ with \mathbf{q} along ΓA, and added those on the (A/12, B/12, C/6)-mesh for which $\sqrt{2k_F} \lesssim q_{12} \lesssim \sqrt{2k_F}$, where the result was: $\lambda > 0.62+0.25$, where 0.62 was the contribution from \mathbf{q}'s so small that the σ-σ coupling occurs, and 0.25 was the contribution from the remaining part of $|\mathbf{q}|$-space, which must involve a π-sheet. Had we included the inaccurate $\lambda_m(\mathbf{q})$-values along the ΓA-line, the σ-σ result would have been 0.72 instead of 0.62. The result was finally checked by using the approximate $\lambda(q_1)/\lambda$ correction for the point $\mathbf{q}=A/12$. This yielded 0.58 instead of 0.62. In conclusion: $\lambda = 0.87 \pm 0.05 = (0.62 \pm 0.05) + 0.25 \equiv \lambda_\sigma + \lambda_\pi$.

The Eliashberg function shown on the right-hand side of Fig. 1 is dominated by the large σ-σ peak around $\omega_{\text{obs}}=590 \text{ cm}^{-1}$. The facts that the σ-sheets are narrow, warped cylinders whose coupling is dominated by intra-sheet coupling via the optical bond-stretching mode, and that the coupling between σ- and π-sheets is negligible, lead to the following approximation:

$$\alpha^2(\omega) F(\omega) \approx \alpha_\sigma^2(\omega) F(\omega) \frac{[N_{\sigma}(0)/N(0)]}{\left[2\pi \right] \left[\omega - \omega_{\text{obs}} \right] + \left[g_{\sigma,\text{obs}} \right]^2 \left[\omega - \omega_{\text{obs}} \right] \left[N_{\sigma}^2(0) + N_{\sigma}^2(0) \right] / N(0),$$

where $\alpha_\sigma^2(\omega) F(\omega)$ is the usual expression, but with π-electrons only. In An’s and Picket’s estimate $\lambda_\pi=0.95$, a factor $[N_{\sigma}^2(0) + N_{\sigma}^2(0)] / N(0) = 0.24$ appears to be missing. The rigid-atomic-sphere estimate $\lambda=0.7$ by Kortus et al. is closer to our value 0.87.

Knowing $\alpha^2(\omega) F(\omega)$ and a value of the Coulomb pseudopotential $\mu^*(\omega_c)$, we solve the Eliashberg equation on the real frequency axis, and obtain $T_c=40$K if $\mu^*(\omega_c)=0.14$. Taking retardation effects into account, we find $\mu^* \equiv \mu^*(\omega_c) / [1 + \mu^*(\omega_c) \ln(\omega_c/\omega_{\text{in}})] = 0.10$, where $\omega_{\text{in}}=504 \text{ cm}^{-1}$ is obtained from: $0=\int_{\omega_{\text{in}}}^{\omega_{\text{c}}} \ln(\omega/\omega_{\text{in}}) \omega^{-1} \alpha^2(\omega) F(\omega) \, d\omega$, and the cut-off frequency is taken as $\omega_{\text{c}}=10 \text{ max} \omega=8000 \text{ cm}^{-1}$. This value
of μ^* is the lower end of what is found for simple sp-metals. The relation back to a screened Coulomb interaction U is: $\mu^* = \mu/[1 + \mu \ln(\omega_p/\omega_m)]$, where $\mu=UN(0)$ and $\omega_m \sim 7$ eV is the plasma frequency given below. We thus find: $\mu=0.19$ and $U=1.1$ eV, which are normal values. Had we used the approximate McMillan expression, the slightly higher value $\mu^*=0.14$ would be needed to reproduce the experimental T_c.

In Fig.2, we show our Eliashberg calculation with $\mu^*=0.10$ of the density of states, $N_s(\varepsilon)/N(0) = \text{Re} \left[\varepsilon/\sqrt{\varepsilon^2 - \Delta_{3K}^2(\varepsilon)} \right]$, in the superconductor. The BCS singularity is at $\varepsilon=\Delta_{3K}(0)=6.8$ meV, which is in accord with the 4.9-6.9 meV found in tunneling experiments. This yields: $2\Delta_0/k_BT_c=3.9$ which is slightly higher than the BCS value of 3.52. The distinct feature near 80 meV corresponds to the peak in $\alpha^2(\omega)F(\omega)$ at 73 meV, shifted by the 6.8 meV gap. The latter function is also shown in the figure together with the measurable quantity $-d^2I/dV^2 \sim -dN_s(\varepsilon)/d\varepsilon$.

We have calculated the change in T_c upon isotope substitution of ^{11}B for ^{10}B and get: $\delta T_c=-1.7$ K, which corresponds to the exponent $-\delta \ln T_c/\delta \ln M_B=0.46$. This agrees well with the measured value: $\delta T_c=-1$ K. For the change of the gap, which may be measured in tunneling and optical experiments, we calculate: $\delta\Delta_0=1.9$ cm$^{-1}$, which corresponds to the exponent $-\delta \ln \Delta_0/\delta \ln M_B=0.38$.

Finally, we have considered transport properties in the normal state. Here, solution of the kinetic equation leads to the transport e-ph spectral function $\alpha^2_F(\omega)F(\omega)$, and similarly for y and z. These components are given by the previous expressions, but with the additional factor $\left[\langle v_{nx}^2(\mathbf{k}) - v_{nz}(\mathbf{k}) \rangle v_{nx}(\mathbf{k} + \mathbf{q}) \right]_F/\langle v_z^2 \rangle$ inserted. $\langle v_z^2 \rangle = N(0)^{-1} \sum_{\mathbf{k}} v_{nx}(\mathbf{k}) \delta [\varepsilon_0(\mathbf{k})]$. In Fig. 2, the directional average, $\alpha^2_F(\omega)F(\omega)$, is seen to have the same shape as $\alpha^2(\omega)F(\omega)$, except for the $\sigma-\sigma$ interaction via the optical bond-stretching modes, whose $\alpha^2_F(\omega)F(\omega)$ is smaller, presumably due to the near two-dimensionality of the σ-bands. As a result, $\lambda_{tr} = 0.60$. For the plasma frequencies, $\omega_{p,x}^2 = 4\pi e^2 N(0) \langle v_z^2 \rangle / |abc|$, we find: $\omega_{p,x}^2=7.02$ eV and $\omega_{p,z}^2=6.68$ eV. Also the temperature dependence of the specific dc resistivity calculated with the standard Bloch-Grüneisen expression, $\rho_{dc,x}(T) = \langle \pi/\omega_{p,x}(T) \rangle \int_0^\infty \omega \sinh^{-1}(\omega/2T) \alpha^2_F(\omega)F(\omega)d\omega$, is nearly isotropic and, as shown in Fig. 2, in accord with recent measurements on dense wires over the entire temperature range. The crossover from power-law to linear temperature dependence is seen to occur near $\max\omega/5=160$ cm$^{-1}=230$ K, as expected.

![FIG. 2. Normalized density of states (full) and the negative of its energy-derivative (dotted) as obtained from the Eliashberg equation with $\mu^*=0.10$ and $T=3K$.](image)

![FIG. 3. Calculated dc-resistivities in different directions compared with the experiment in Ref. [2].](image)

In conclusion, we have presented an accurate $ab initio$ calculation of the e-ph interaction in MgB$_2$ and find $\lambda = 0.87 \pm 0.05$. Eliashberg theory with $\mu^*=0.10$ gives good agreement with available experiments and several predictions. The unexpected high T_c is due to the large λ-value caused by the presence of holes in the B-B binding σ-band and the relative softness of the optical bond-stretching modes. MgB$_2$ thus seems to be a simple and clear case of an intermediate-coupling e-ph pairing s-wave superconductor.

Useful discussions with R. K. Kremer, I. I. Mazin, S. Savrasov, D. Savrasov, and S. V. Shulga are acknowledged.

1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).
2. J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, and L.L. Boyer, cond-mat/0104140.
3. K.D. Belashchenko, M. van Schilfgaarde, and V.P. Antropov, cond-mat/0102290.
4. G. Satta, G. Profeta, F. Bernardini, A. Continenza, and S. Massidda, cond-mat/0102358.
5. J.M. An and W.E. Pickett, cond-mat/0102391.
6 C.T. Chan, K.M. Ho, and W.A. Kamitakahara, Phys. Rev. B 36, 3499 (1987).
7 O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997).
8 S.L. Bud’ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson, and P.C. Canfield, Phys. Rev. Lett. 86, 1877 (2001).
9 A. Sharoni, I. Felner, and O. Millo, cond-mat/0102322.
10 D.K. Finnemore, J.E. Ostenson, S.L. Bud’ko, G. Lapertot, and P.C. Canfield, Phys. Rev. Lett. 86, 2420 (2001).
11 C.U. Jung, M.-S. Park, W.N. Kang, M.-S. Kim, S.Y. Lee, and S.-I. Lee, cond-mat/0102213.
12 P.C. Canfield, D.K. Finnemore, S.L. Bud’ko, J.E. Ostenson, G. Lapertot, C.E. Cunningham, and C. Petrovic, Phys. Rev. Lett. 86, 2423 (2001).
13 S.L. Bud’ko, C. Petrovic, G. Lapertot, C.E. Cunningham, and P.C. Canfield, cond-mat/0102413.
14 R.K. Kremer, B.J. Gibson, and K. Ahn, cond-mat/0102432.
15 Ch. Wälti, E. Felder, C. Degen, G. Wigger, R. Monnier, B. Delly, and H.R. Ott, cond-mat/0102522.
16 T.J. Sato, K. Shibata, and Y. Takano, cond-mat/0102468.
17 R. Osborn, E.A. Goremychkin, A.I. Kolesnikov, and D.G. Hinks, cond-mat/0103064.
18 S.Y. Savrasov, Phys. Rev. B 54, 16470 (1996); S.Y. Savrasov and D.Y. Savrasov, ibid, 16487.
19 S.H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200 (1980).
20 J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
21 A. Lipp and M. Roder, Z. Anorg. Chem. 334, 225 (1966).
22 P.E. Blöchl, O. Jepsen, and O.K. Andersen, Phys. Rev. B 49, 16223 (1994).
23 P.B. Allen and B. Mitrović, Solid State Physics, 37, 1 (1982).
24 P.B. Allen, T.P. Beaulac, F.S. Khan, W.H. Butler, F.J. Pinski, and J.C. Swihart, Phys. Rev. B 34, 4331 (1986).
25 S.V. Shulga (unpublished).