LINK COMPLEXES OF SUBSPACE ARRANGEMENTS

AXEL HULTMAN

Abstract. Given a simplicial hyperplane arrangement \(H \) and a subspace arrangement \(A \) embedded in \(H \), we define a simplicial complex \(\Delta_{A,H} \) as the subdivision of the link of \(A \) induced by \(H \). In particular, this generalizes Steingrímsson’s coloring complex of a graph.

We do the following:

1. When \(A \) is a hyperplane arrangement, \(\Delta_{A,H} \) is shown to be shellable. As a special case, we answer affirmatively a question of Steingrímsson on coloring complexes.

2. For \(H \) being a Coxeter arrangement of type \(A \) or \(B \) we obtain a close connection between the Hilbert series of the Stanley-Reisner ring of \(\Delta_{A,H} \) and the characteristic polynomial of \(A \). This extends results of Steingrímsson and provides an interpretation of chromatic polynomials of hypergraphs and signed graphs in terms of Hilbert polynomials.

1. Introduction

In [10], Steingrímsson introduced the coloring complex \(\Delta_G \). This is a simplicial complex associated with a graph \(G \). The Hilbert polynomial of its Stanley-Reisner ring \(k[\Delta_G] \) is closely related to the chromatic polynomial \(P_G(x) \) in a way that is made precise in Section 5.

Answering a question of Steingrímsson, Jonsson [7] proved that \(\Delta_G \) is a Cohen-Macaulay complex by showing that it is constructible. In particular, \(\Delta_G \) being Cohen-Macaulay imposes restrictions on the Hilbert polynomial of \(k[\Delta_G] \), hence on \(P_G(x) \).

Since \(\Delta_G \) is a Cohen-Macaulay complex, a natural question, asked already in [10], is whether it is shellable — a stronger property than constructibility.

In [10], \(\Delta_G \) was defined in a combinatorially very explicit way. Another way to view \(\Delta_G \) is, however, as a simplicial decomposition of the link (i.e. intersection with the unit sphere) of the graphical hyperplane arrangement associated with \(G \). In this guise, \(\Delta_G \) appeared in work of Herzog, Reiner and Welker [6]. Adopting this point of view, one may define a similar complex \(\Delta_{A,H} \) for any subspace arrangement \(A \), as long as it has an embedding in a simplicial hyperplane arrangement \(H \).

This paper has two goals. The first is addressed in Section 4 where we show that \(\Delta_{A,H} \) is shellable whenever \(A \) consists of hyperplanes. In particular, this proves that the coloring complexes are shellable.

The chromatic polynomial of \(G \) is essentially the characteristic polynomial of the corresponding graphical hyperplane arrangement. Bearing this in mind, one may hope to extend the aforementioned connection between the Hilbert polynomial of \(k[\Delta_G] \) and \(P_G(x) \) to more general complexes \(\Delta_{A,H} \). Achieved in Section 5, our
second goal is to carry out this extension whenever \(H \) is a Coxeter arrangement of type \(A \) or \(B \). When \(A \) consists of hyperplanes and \(H \) is of type \(A \), Steingrímsson’s result is recovered.

We define the complexes \(\Delta_{A,H} \) in Section 3 after reviewing some necessary background in the next section.

2. Preliminaries

2.1. Subspace arrangements and characteristic polynomials. By the term subspace arrangement we mean a finite collection \(A = \{A_1, \ldots, A_t\} \) of linear subspaces, none of which contains another, of some ambient vector space. In our case, the ambient space will always be \(\mathbb{R}^n \) for some \(n \). To \(A \) we associate the intersection lattice \(L_A \) which consists of all intersections of subspaces in \(A \) ordered by reverse inclusion. (We emphasize the fact that \(A \) contains no strictly affine subspaces; in particular this implies that \(L_A \) is indeed a lattice.)

An important invariant of the arrangement \(A \) is its characteristic polynomial \(\chi(A; x) = \sum_{Y \in L_A} \mu(\hat{0}, Y)x^{\dim(Y)} \),

where \(\mu \) is the Möbius function of \(L_A \) which we think of as a function \(L_A \times L_A \to \mathbb{Z} \) with \(S \nleq T \Rightarrow \mu_A(S,T) = 0 \) (and similarly for \(A \setminus A \)).

Given a subspace \(A \in A \), we define two new arrangements, namely the deletion \(A \setminus A = A \setminus \{A\} \) and the restriction \(A/A = \max\{A \cap B | B \in A \setminus A\} \),

where \(\max\mathcal{S} \) denotes the collection of inclusion-maximal members of a set family \(\mathcal{S} \). Another way to think of \(A/A \) is as the set of elements covering \(A \) in \(L_A \). In this way, we may extend the definition of \(A/A \) to arbitrary \(A \in L_A \). We consider \(A \setminus A \) to be an arrangement in \(\mathbb{R}^n \), whereas \(A/A \) is an arrangement in \(A \).

When \(A \) is a hyperplane arrangement, the next result is standard. We expect the general case to be known, too, although we have been unable to find it in the literature.

Theorem 2.1 (Deletion-Restriction). For a subspace arrangement \(A \) and any subspace \(A \in A \), we have

\[
\chi(A; x) = \chi(A \setminus A; x) - \chi(A/A; x).
\]

Proof. Choose \(Y \in L_A \). We claim that

\[
\mu_A(\hat{0}, Y) = \begin{cases}
\mu_{A \setminus A}(\hat{0}, Y) - \mu_A(A, Y) & \text{if } Y \in L_{A \setminus A}, \\
-\mu_A(A, Y) & \text{otherwise,}
\end{cases}
\]

where \(\mu_A \) denotes the Möbius function of \(L_A \) which we think of as a function \(L_A \times L_A \to \mathbb{Z} \) with \(S \nleq T \Rightarrow \mu_A(S,T) = 0 \) (and similarly for \(A \setminus A \)).

The claim is true if \(Y = \hat{0} = \mathbb{R}^n \), so assume it has been verified for all \(Z < Y \) in \(L_A \). If \(Y \in L_A \setminus A \) we obtain

\[
\mu_A(\hat{0}, Y) = \sum_{\hat{0} \leq Z < Y} \mu_A(\hat{0}, Z) - \sum_{\hat{0} \leq Z < Y} \mu_{A \setminus A}(\hat{0}, Z) + \sum_{A \leq Z < Y} \mu_A(A, Z) = \mu_{A \setminus A}(\hat{0}, Y) - \mu_A(A, Y),
\]
as desired. If, on the other hand, \(Y \not\in L_{A\setminus A} \), then there is a unique largest element in \(L_{A\setminus A} \) which is below \(Y \) in \(L_A \), namely the join of all atoms (weakly) below \(Y \) except \(A \); call this element \(W \). If \(W = \hat{0} \), then \(Y = A \) and we are done. Otherwise,

\[
\mu_A(\hat{0}, Y) = - \sum_{\hat{0} \leq Z < Y} \mu_A(\hat{0}, Z) = - \sum_{\hat{0} \leq Z < W} \mu_{A\setminus A}(\hat{0}, Z) + \sum_{A \leq Z < Y} \mu_A(A, Z)
\]

\[
= \sum_{A \leq Z < Y} \mu_A(A, Z) = -\mu_A(A, Y),
\]

establishing the claim.

We conclude that

\[
\chi(A; x) = \sum_{Y \in L_{A\setminus A}} \mu_{A\setminus A}(\hat{0}, Y)x^{\dim(Y)} - \sum_{Y \geq A} \mu_A(A, Y)x^{\dim(Y)}.
\]

Not every \(Y \) in the last sum belongs to \(L_{A\setminus A} \) in general; the latter is join-generated by the elements covering \(A \) in \(L_A \). However, it follows from Rota’s Crosscut theorem \cite{8} that for every \(Y \geq A \) in \(L_A \),

\[
\mu_A(A, Y) = \begin{cases}
\mu_{A\setminus A}(A, Y) & \text{if } Y \in L_{A\setminus A}, \\
0 & \text{otherwise}.
\end{cases}
\]

Thus,

\[
\sum_{Y \geq A} \mu_A(A, Y)x^{\dim(Y)} = \chi(A\setminus A; x),
\]

and the theorem follows. \(\square \)

Two (families of) hyperplane arrangements are of particular importance to us. The first is the \textit{braid arrangement} \(S_n \). This is an arrangement whose ambient space is \(\{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1 + \cdots + x_n = 0 \} \cong \mathbb{R}^{n-1} \). The \(\binom{n}{2} \) hyperplanes in \(S_n \) are given by the equations \(x_i = x_j \) for all \(1 \leq i < j \leq n \).

The braid arrangement is the set of reflecting hyperplanes of a Weyl group of type \(A \). Considering type \(B \) instead, we find our second important family of arrangements. Explicitly, \(B_n \) is the arrangement of the \(n^2 \) hyperplanes in \(\mathbb{R}^n \) that are given by the equations \(x_i = \tau x_j \) for all \(1 \leq i < j \leq n \), \(\tau \in \{-1, 1\} \), and \(x_i = 0 \) for all \(i \in \{1, \ldots, n\} \).

2.2. \textbf{Stanley-Reisner rings and \textit{h}-polynomials.} Let \(\Delta \) be a simplicial complex on the vertex set \([n] \). Regarding the vertices as variables, we want to consider the ring of polynomials that live on \(\Delta \). To this end, for a field \(k \), we define the \textit{Stanley-Reisner ideal} \(I_\Delta \subseteq k[x_1, \ldots, x_n] \) by

\[
I_\Delta = \langle \{x_{i_1} \cdots x_{i_t} \mid \{i_1, \ldots, i_t\} \not\subseteq \Delta \} \rangle.
\]

The quotient ring

\[
k[\Delta] = k[x_1, \ldots, x_n]/I_\Delta
\]

is the \textit{Stanley-Reisner ring} of \(\Delta \), which is a graded algebra with the standard grading by degree. When speaking of algebraic properties, such as Cohen-Macaulayness, of \(\Delta \) we have the corresponding properties of \(k[\Delta] \) in mind.

Given a simplicial complex \(\Delta \) of dimension \(d - 1 \), its \textit{h}-polynomial is

\[
h(\Delta; x) = \sum_{i=0}^{d} f_{i-1}(x - 1)^{d-i},
\]
where \(f_i \) is the number of \(i \)-dimensional simplices in \(\Delta \) (including \(f_{-1} = 1 \) if \(\Delta \) is nonempty). One important feature of the \(h \)-polynomial is that it carries all information needed to compute the Hilbert series of \(k[\Delta] \). Specifically,

\[
\Hilb(k[\Delta]; x) = \frac{\overline{h}(\Delta; x)}{(1 - x)^d},
\]

where \(\overline{h} \) denotes the reverse \(h \)-polynomial:

\[
\overline{h}(\Delta; x) = x^d \overline{h}(\Delta; \frac{1}{x}).
\]

2.3. Shellable complexes. Suppose \(\Delta \) is a pure simplicial complex, meaning that all facets (maximal simplices) have the same dimension \(d - 1 \). A shelling order for \(\Delta \) is a total ordering \(F_1, \ldots, F_t \) of the facets of \(\Delta \) such that \(F_j \cap (\bigcup_{i<j} F_i) \) is pure of dimension \(d - 2 \) for all \(j = 2, \ldots, t \). We say that \(\Delta \) is shellable if a shelling order for \(\Delta \) exists.

One good reason to care about shellability is that it implies Cohen-Macaulayness.

3. The objects of study

Suppose \(\mathcal{H} \) is a hyperplane arrangement in \(\mathbb{R}^n \) such that \(\cap \mathcal{H} = \{0\} \). Then, \(\mathcal{H} \) determines a regular cell decomposition \(\Delta_{\mathcal{H}} \) of the unit sphere \(S^{n-1} \). In short, each point \(p \) on \(S^{n-1} \) has an associated sign vector in \(\{0, -, +\}^{|\mathcal{H}|} \) recording for each hyperplane \(h \in \mathcal{H} \) whether \(p \) is on, or on the negative, or on the positive side of \(h \) (for some choice of orientations of the hyperplanes). A cell in \(\Delta_{\mathcal{H}} \) consists of the set of points with a common sign vector. The face poset of \(\Delta_{\mathcal{H}} \) is the big face lattice of the corresponding oriented matroid, see [2].

If \(\Delta_{\mathcal{H}} \) is a simplicial complex, then \(\mathcal{H} \) is called simplicial. A prime example of a simplicial hyperplane arrangement is the collection of reflecting hyperplanes of a finite Coxeter group. In this case, \(\Delta_{\mathcal{H}} \) coincides with the Coxeter complex.

From now on, let \(\mathcal{H} \) be a simplicial hyperplane arrangement.

Consider an antichain \(A \) in \(L_{\mathcal{H}} \). We say that the subspace arrangement \(A \) is embedded in \(\mathcal{H} \). Observe that \(\cup A \cap S^{n-1} \), which is known as the link of \(A \), has the structure of a simplicial subcomplex of \(\Delta_{\mathcal{H}} \). This subcomplex is the principal object of study in this paper. We denote it \(\Delta_{A, \mathcal{H}} \).

Example 3.1. A graph \(G = ([n], E) \) determines a graphical hyperplane arrangement \(\tilde{G} \) in the \((n - 1)\)-dimensional subspace of \(\mathbb{R}^n \) given by the equation \(x_1 + \cdots + x_n = 0 \). There is one hyperplane in \(\tilde{G} \) for each edge in \(E \); the hyperplane corresponding to the edge \(\{i, j\} \) has the equation \(x_i = x_j \).

The arrangement \(\tilde{K}_n \) corresponding to the complete graph is nothing but the braid arrangement \(S_n \), which is simplicial. Any graph \(G \) thus determines a simplicial complex \(\Delta_{\tilde{G}, S_n} \). It coincides with Steinberg’s coloring complex of \(G \) which was denoted \(\Delta_G \) in the Introduction. The complex \(\Delta_{\tilde{G}, S_n} \) also appeared under the name \(\Delta_{m,J} \) in [6].

We remark that the homotopy type of the link of \(A \), hence of \(\Delta_{A, \mathcal{H}} \), can be computed in terms of the order complexes of lower intervals in \(L_A \) by a formula of Ziegler and Živaljević [13]. When \(A \) consists of hyperplanes we may simply note that \(\Delta_{A, \mathcal{H}} \) is homotopy equivalent to the \((n - 1)\)-sphere with one point removed for each connected region in the complement \(\mathbb{R}^n \setminus \cup A \). Denoting by \(R(A) \) the
number of such regions, $\Delta_{A,\mathcal{H}}$ is thus homotopy equivalent to a wedge of $R(A) - 1$ spheres of dimension $n - 2$ in this case. For the arrangements \tilde{G} of Example 3.1 it is not difficult to see that $R(\tilde{G})$ equals the number $AO(G)$ of acyclic orientations of G. Thus, $\Delta_{\tilde{G}, S_n}$ has the homotopy type of a wedge of $AO(G) - 1$ $(n - 3)$-spheres (6, 7). In particular, the reduced Euler characteristic of $\Delta_{\tilde{G}, S_n}$ is $\pm AO(G) - 1$ (10, Theorem 17).

4. Shellability in the hyperplane case

Our goal in this section is to show that $\Delta_{A,\mathcal{H}}$ is shellable whenever A consists of hyperplanes. Applied to the complexes $\Delta_{\tilde{G}, S_n}$ of Example 3.1 this answers affirmatively a question of Steingrímsson 10 which was restated in 7. The key tool is a particular class of shellings of $\Delta_{A,\mathcal{H}}$ determined by the poset of regions of \mathcal{H} which we now define.

The complement $\mathbb{R}^n \setminus \cup \mathcal{H}$ is cut into disjoint open regions by \mathcal{H}. Restricting to the unit sphere, their closures are the facets of $\Delta_{\mathcal{H}}$. Let $F = F(\mathcal{H})$ be the set of such facets. For $R, R' \in F$, say that $h \in \mathcal{H}$ separates R and R' if their respective interiors are on different sides of h.

Choose a base region $B \in F$ arbitrarily. We have a distance function $\ell : F \to \mathbb{N}$ which maps a region R to the number of hyperplanes in \mathcal{H} which separate R and B. Now, for two regions $R, R' \in F$, write $R \triangleleft R'$ if R and R' are separated by exactly one hyperplane in \mathcal{H} and $\ell(R) = \ell(R') - 1$. The poset of regions $P_{\mathcal{H}}$ is the partial order on F whose covering relation is \triangleleft. It was first studied by Edelman 6.

From the point of view of this paper, the most important property of $P_{\mathcal{H}}$ is the following.

Theorem 4.1 (Theorem 4.3.3 in 2). Any linear extension of $P_{\mathcal{H}}$ is a shelling order for $\Delta_{\mathcal{H}}$.

We are now ready to state and prove the main result of this section.

Theorem 4.2. If A consists of hyperplanes, then $\Delta_{A,\mathcal{H}}$ is shellable.

Proof. We proceed by induction over $|A|$. When $A = \{A\}$, we may apply Theorem 4.1 since $\Delta_{A,\mathcal{H}} = \Delta_{\mathcal{H}/A}$ in this case.

Now suppose $|A| \geq 2$ and that we have a shelling order for $\Delta_{A \setminus A,\mathcal{H}}$ for some $A \in A$. We will append the remaining facets to this order.

The remaining facets are the facets of $\Delta_{\{A\},\mathcal{H}} = \Delta_{\mathcal{H}/A}$. They are divided into equivalence classes in the following way: F and G belong to the same class iff their interiors belong to the same connected component of $\mathbb{R}^n \setminus \cup (A \setminus A)$ (or, equivalently, to the same connected component of $A \setminus \cup (A \setminus A)$). Observe that if F and G belong to different classes, then $F \cap G \in \Delta_{A \setminus A,\mathcal{H}}$. Thus, it is enough to show that the facets in any equivalence class can be appended to the shelling order for $\Delta_{A \setminus A,\mathcal{H}}$.

Without loss of generality, consider the class which contains the maximal element in $P_{\mathcal{H}/A}$, i.e. the region opposite to the base region. Call this class C. If $F \in C$ and $G \not\in C$ for $F, G \in P_{\mathcal{H}/A}$, then some hyperplane in $A/A \subseteq \mathcal{H}/A$ separates F from G, and G is on the positive side of this hyperplane. Thus, $F \not\triangleleft G$. This shows that C is an order filter in $P_{\mathcal{H}/A}$. According to Theorem 4.2, $\Delta_{\mathcal{H}/A}$ has a shelling order which ends with the facets in C. Now observe that $(\cup C) \cap (\cup (P_{\mathcal{H}/A} \setminus C)) = (\cup C) \cap \Delta_{A \setminus A,\mathcal{H}}$.
The facets in C may therefore be appended in this order to the shelling order for $\Delta_{A \setminus A, H}$.

5. The h-polynomial of $\Delta_{A, H}$

For brevity we write $h(A, H; x)$ meaning $h(\Delta_{A, H}; x)$ and similarly for \overline{h}. The following result of Steingrímsson serves as a motivating example for this section:

Theorem 5.1 (Theorem 13 in [10]). Recall the complex $\Delta_{\hat{G}, S_n}$ defined in Example 3.1. We have

$$\frac{x \overline{h}(\hat{G}, S_n; x)}{(1 - x)^n} = \sum_{m \geq 0} (m^n - P_G(m)) x^m,$$

where P_G is the chromatic polynomial of G.

This theorem is interesting because of the connection between the left hand side and the Hilbert series of the Stanley-Reisner ring $k[\Delta_{\hat{G}, S_n}]$. In [3], Brenti began a systematic study of which polynomials arise as Hilbert polynomials of standard graded algebras. A question left open in [3], and later answered affirmatively by Almkvist [1], was whether chromatic polynomials of graphs have this property. Theorem 5.1 implies something similar, namely that $(m + 1)^n - P_G(m + 1)$ is the Hilbert polynomial (in m) of a standard graded algebra; for details, see Corollary 5.7 below.

It is well-known that $P_G(x) = x \chi(\hat{G}; x)$; one way to prove it is to compare Theorem 2.1 with the standard deletion-contraction recurrence for P_G. The identity suggests the possibility of extending Theorem 5.1 to other complexes $\Delta_{A, H}$. This turns out to be possible at least if $H \in \{S_n, B_n\}$ and is the topic of this section.

Given a subspace T of \mathbb{R}^n, let $d(T)$ denote its dimension. For a subspace arrangement \mathcal{T}, we also write

$$d(\mathcal{T}) = \max_{T \in \mathcal{T}} d(T).$$

Lemma 5.2. Let $A \in A$. Then,

$$h(A, H; x) = (x - 1)^{d(A) - d(A \setminus A)} h(A \setminus A, H; x) + (x - 1)^{d(A) - d(A)} h(\{A\}, H; x) - (x - 1)^{d(A) - d(A/A)} h(A/A, H/A; x).$$

Proof. Each simplex in $\Delta_{A, H}$ belongs to $\Delta_{A \setminus A, H}$ or to $\Delta_{\{A\}, H}$ or to both. Also, observe that $\Delta_{A \setminus A, H} \cap \Delta_{\{A\}, H} = \Delta_{A/A, H/A}$. Denoting by $f_i(S, \mathcal{T})$ the number of i-dimensional simplices in $\Delta_{S, \mathcal{T}}$, we thus obtain for all i

$$f_i(A, H) = f_i(A \setminus A, H) + f_i(\{A\}, H) - f_i(A/A, H/A).$$

The lemma now follows from the fact that $\dim(\Delta_{S, \mathcal{T}}) = d(S) - 1$.

We may use Lemma 5.2 to recursively compute $h(A, H; x)$. As it turns out, this recursion is particularly useful when $H \in \{S_n, B_n\}$. The reason is given by the following two lemmata.

Lemma 5.3. We have

$$\frac{x \overline{h}(\Delta_{S_n}; x)}{(1 - x)^{n+1}} = \sum_{m \geq 0} m^n x^m.$$
and
\[\frac{h(\Delta_{B_n}; x)}{(1 - x)^{n+1}} = \sum_{m \geq 0} (2m + 1)^n x^m. \]

Proof. The complexes \(\Delta_{S_n} \) and \(\Delta_{B_n} \) coincide with the Coxeter complexes of types \(A_{n-1} \) and \(B_n \), respectively. For the \(h \)-polynomials this implies that \(xh(\Delta_{S_n}; x) = A_n(x) \) and \(h(\Delta_{B_n}; x) = B_n(x) \), where \(A_n \) is the \(n \)th Eulerian polynomial and \(B_n \) is the \(n \)th \(B \)-Eulerian polynomial, see [4]. The assertions are well-known properties of these polynomials [4, Theorem 3.4.ii]. \(\square \)

Lemma 5.4.

(i) For any subspace \(A \in L_{S_n} \), we have
\[xh(\{A\}, S_n; x) (1 - x)^{d(A) + 2} = \sum_{m \geq 0} m^{d(A) + 1} x^m. \]

(ii) For any subspace \(A \in L_{B_n} \), we have
\[\frac{h(\{A\}, B_n; x)}{(1 - x)^{d(A) + 1}} = \sum_{m \geq 0} (2m + 1)^{d(A)} x^m. \]

Proof. A key property of \(S_n \) (\(B_n \)), which is readily checked, is that its restriction to any subspace in the intersection lattice is again a type \(A \) (\(B \)) hyperplane arrangement. Thus, \(\Delta_{\{A\}, S_n} = \Delta_{S_n/A} \cong \Delta_{S_{d(A) + 1}} \) (\(\Delta_{\{A\}, B_n} = \Delta_{B_n/A} \cong \Delta_{B_{d(A)}} \)). The assertions now follow from Lemma 5.3. \(\square \)

The leading term of \(\chi(A; x) \) is always \(x^n \), where \(n \) is the dimension of the ambient space. It is convenient to introduce the tail \(T(A; x) = x^n - \chi(A; x) \).

When \(A \) consists of hyperplanes, the following result coincides with Theorem 5.1.

Theorem 5.5. Suppose \(A \) is a subspace arrangement embedded in \(S_n \). Then,
\[\frac{xh(\{A\}, S_n; x)}{(1 - x)^{d(A) + 2}} = \sum_{m \geq 0} mT(A; m)x^m. \]

Proof. We proceed by induction over \(|A| \), noting that \(|A \setminus A| < |A| \) and \(|A/A| < |A| \) for every \(A \in A \). If \(|A| = 1 \), we have \(\chi(A; m) = m^{n-1} - m^{d(A)} \), so that \(T(A; m) = m^{d(A)} \), and the theorem follows from part (i) of Lemma 5.3. \(\square \)
Theorem 5.6. Theorem 5.5 is easily adjusted to a proof of the next result. □

Now suppose $|A| \geq 2$ and pick a subspace $A \in \mathcal{A}$. Using Lemma 5.4 and the induction hypothesis, we obtain

$$\frac{x^{d(A)+1} h(A, S_n; \frac{1}{x})}{(1 - x)^{d(A)+2}} = \left(\frac{1 - x}{x}\right)^{d(A) - d(A^A)} \frac{x^{d(A)+1} h(A \setminus A, S_n; \frac{1}{x})}{(1 - x)^{d(A)+2}} + \left(\frac{1 - x}{x}\right)^{d(A) - d(A)} \frac{x^{d(A)+1} h(A, S_n_1; \frac{1}{x})}{(1 - x)^{d(A)+2}}$$

$$- \left(\frac{1 - x}{x}\right)^{d(A) - d(A^A)} \frac{x^{d(A)+1} h(A^A A, S_n / A; \frac{1}{x})}{(1 - x)^{d(A)+2}}$$

$$= \sum_{m \geq 0} m(m^{n-1} - \chi(A \setminus A; m)) x^m$$

$$+ \sum_{m \geq 0} m(m^{n-1} - (m^{n-1} - m^{d(A)})) x^m$$

$$- \sum_{m \geq 0} m(m^{d(A)} - \chi(A^A; m)) x^m$$

$$= \sum_{m \geq 0} m(m^{n-1} - \chi(A; m)) x^m,$$

where the last equality follows from Deletion-Restriction.

For completeness, we should also check the uninteresting case $|A| = 0$ which is not covered by the above arguments. Here, $\overline{h}()_n, 1; x = 0$ and $T()_n, 1; x = 0$, and the assertion holds. □

Corollary 5.7. Suppose A is a subspace arrangement embedded in \mathcal{B}_n. Then,

$$\overline{h}(A, B_n; x) \overline{h}(A, B_n; x) = \sum_{m \geq 0} T(A; 2m + 1) x^m.$$

For subspace arrangements covered by Theorem 5.5 or Theorem 5.6, we may now draw the promised algebraic conclusions. To this end, for a simplicial complex Γ and a subcomplex $\Gamma' \subseteq \Gamma$, let $\mathcal{J}_{\Gamma', \Gamma}$ be the ideal in the Stanley-Reisner ring $k[\Gamma]$ generated by the (equivalence classes of) monomials corresponding to simplices in Γ that do not belong to Γ'.

Theorem 5.6. Suppose A is a subspace arrangement embedded in \mathcal{B}_n. Then,

$$\overline{h}(A, B_n; x) = \sum_{m \geq 0} T(A; 2m + 1) x^m.$$
where the second equality follows from Theorem 5.6. This proves (i).

For (ii), we use that
\[k[\Gamma'] \cong k[\Gamma]/J_{\Gamma', \Gamma}. \]

For the Hilbert series, this implies
\[\text{Hilb}(k[\Gamma']; x) = \text{Hilb}(k[\Gamma]; x) - \text{Hilb}(J_{\Gamma', \Gamma}; x). \]

From part (i) and the fact that
\[\text{Hilb}(k[\Gamma]) = \frac{h(\Delta_{B_n}; x)}{(1 - x)^{n+1}} = \frac{1}{x} \sum_{m \geq 0} m^n x^m, \]
we conclude
\[\text{Hilb}(J_{\Gamma', \Gamma}; x) = \frac{1}{x} \sum_{m \geq 0} m^n x^m - \frac{1}{x} \sum_{m \geq 0} mT(A; m)x^m = \frac{1}{x} \sum_{m \geq 0} m\chi(A; m)x^m. \]

\[\square \]

The situation for \(B_n \) is analogous, although we use cones instead of double cones. This is a manifestation of the fact that \(B_n \) and \(S_n \) differ by one in dimension.

Corollary 5.8. Suppose \(A \) is a subspace arrangement embedded in \(B_n \). Let \(\Gamma \) denote the cone over \(\Delta_{B_n} \), and write \(\Gamma' \) for the cone over \(\Delta_{A, B_n} \) with the same cone point. Then, the following holds:

(i) The Hilbert polynomial of \(k[\Gamma'] \) is \(F(k[\Gamma']; m) = T(A; 2m + 1) \).

(ii) The Hilbert polynomial of \(J_{\Gamma', \Gamma} \) is \(F(J_{\Gamma', \Gamma}; m) = \chi(A; 2m + 1) \).

Proof. Proceeding as in the proof of Corollary 5.7 using Theorem 5.6 instead of Theorem 5.5 we prove (i) by observing
\[\text{Hilb}(k[\Gamma']; x) = \frac{h(A, B_n; x)}{(1 - x)^{d(A)+1}} = \sum_{m \geq 0} T(A; 2m + 1)x^m. \]

For (ii), note that
\[\text{Hilb}(k[\Gamma]; x) = \frac{h(\Delta_{B_n}; x)}{(1 - x)^{n+1}} = \sum_{m \geq 0} (2m + 1)^n x^m. \]

Thus,
\[\text{Hilb}(J_{\Gamma', \Gamma}; x) = \sum_{m \geq 0} (2m + 1)^n x^m - \sum_{m \geq 0} T(A; 2m + 1)x^m = \sum_{m \geq 0} \chi(A; 2m + 1)x^m. \]

\[\square \]

Any hypergraph (without inclusions among edges) \(G \) on \(n \) vertices corresponds to a subspace arrangement \(\hat{G} \) embeddable in \(S_n \). The construction is virtually the same as in Example 3.1 with the hyperedge \(\{i_1, \ldots, i_t\} \) is associated the subspace given by \(x_{i_1} = \cdots = x_{i_t} \). As for ordinary graphs (the hyperplane case), we have \(x\chi(\hat{G}; x) = P_G(x) \), cf. [9, Theorem 3.4]. In this way, Corollary 5.7 allows us to interpret chromatic polynomials of hypergraphs in terms of Hilbert polynomials. For ordinary graphs, this is the content of Steingrímsson’s [10 Corollary 10].
Corollary 5.8, too, has an impact on chromatic polynomials. Any signed graph (in the sense of Zaslavsky \[11\]) \(G \) on \(n \) vertices corresponds to a hyperplane arrangement \(\hat{G} \subseteq B_n \), and vice versa. A signed graph \(G \) has a chromatic polynomial \(P_G(x) \), and \(P_G(x) = \chi(\hat{G}; x) \) \[12\].

REFERENCES

[1] G. Almkvist, The chromatic polynomial is a Hilbert polynomial, preprint 1998.
[2] A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, *Oriented matroids.* 2nd ed., Encyclopedia of Mathematics and its Applications 46, Cambridge Univ. Press, Cambridge, 1999.
[3] F. Brenti, Hilbert polynomials in combinatorics, *J. Algebraic Combin.* 7 (1998), 127–156.
[4] F. Brenti, \(q \)-Eulerian polynomials arising from Coxeter groups, *European J. Combin.* 15 (1994), 417–441.
[5] P. H. Edelman, A partial order on the regions of \(R^n \) dissected by hyperplanes, *Trans. Amer. Math. Soc.* 283 (1984), 617–631.
[6] J. Herzog, V. Reiner and V. Welker, The Koszul property in affine semigroup rings, *Pacific J. Math.* 186 (1998), 39–65.
[7] J. Jonsson, The topology of the coloring complex, *J. Algebraic Combin.* 21 (2005), 311–329.
[8] G.-C. Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, *Z. Wahrscheinlichkeitstheorie und Verw. Gebiete* 2 (1964), 340–368.
[9] R. P. Stanley, Graph colorings and related symmetric functions: ideas and applications: a description of results, interesting applications, & notable open problems, *Discrete Math.* 193 (1998), 267–286.
[10] E. Steingrímsson, The coloring ideal and coloring complex of a graph, *J. Algebraic Combin.* 14 (2001), 73–84.
[11] T. Zaslavsky, The geometry of root systems and signed graphs, *Amer. Math. Monthly* 88 (1981), 88–105.
[12] T. Zaslavsky, Signed graph coloring, *Discrete Math.* 39 (1982), 215–228.
[13] G. M. Ziegler and R. T. Živaljević, Homotopy types of subspace arrangements via diagrams of spaces, *Math. Ann.* 295 (1993), 527–548.

DEPARTMENT OF MATHEMATICS, KTH, SE-100 44 STOCKHOLM, SWEDEN

E-mail address: axel@math.kth.se