On the Brezis–Nirenberg problem for the \((p, q)\)-Laplacian

Ky Ho\(^1\) · Kanishka Perera\(^2\) · Inbo Sim\(^3\)

Received: 16 October 2022 / Accepted: 23 January 2023 / Published online: 16 February 2023
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
We prove some existence and nonexistence results for a class of critical \((p, q)\)-Laplacian problems in a bounded domain. Our results extend and complement those in the literature for model cases.

Keywords \((p, q)\)-Laplacian · Critical Sobolev exponent · Existence · Nonexistence

Mathematics Subject Classification Primary 35J92 · Secondary 35B33

1 Introduction
Consider the critical \((p, q)\)-Laplacian problem

\[
\begin{cases}
-\Delta_p u - \Delta_q u = b |u|^{s-2} u + |u|^{p^*-2} u \quad \text{in } \Omega \\
u = 0 \quad \text{on } \partial \Omega,
\end{cases}
\]

where \(\Omega\) is a bounded domain in \(\mathbb{R}^N\), \(N \geq 2\), \(1 < q < p < N\), \(p^* = Np/(N - p)\) is the critical Sobolev exponent, \(1 < s < p^*\), and \(b > 0\). It was shown in Li and Zhang [1] that this problem has infinitely many solutions when \(1 < s < q\) and \(b > 0\) is sufficiently small. On the other hand, it was shown in Yin and Yang [2] that it has a nontrivial solution when \(p < s < p^*\) and \(b > 0\) is sufficiently large. Sufficient conditions for the existence of a nontrivial solution when \(s = p\) and \(b > 0\) is either small or large were given in Candito et
al. [3]. A rescaling of a result in Ho and Sim [4] shows that the related problem

\[
\begin{aligned}
\begin{cases}
-\Delta_p u - v \Delta_q u &= b |u|^{s-2} u + |u|^{p^*-2} u \quad \text{in } \Omega \\
u &= 0
\end{cases}
\end{aligned}
\tag{1.2}
\]

has a nontrivial solution when \(q < s < p \) and \(v, b > 0 \) are sufficiently small. The borderline case \(s = q \) does not seem to have been studied in the literature.

In the present paper we prove some existence results for a more general class of critical \((p, q)\)-Laplacian problems that, in particular, give a nontrivial solution of problem (1.1) for all \(b > 0 \) and a nontrivial solution of problem (1.2) for sufficiently small \(v > 0 \) and all \(b > 0 \). More specifically, our main results for the model problems (1.1) and (1.2) are the following:

Theorem 1.1 Problem (1.1) has a nontrivial weak solution for all \(b > 0 \) in each of the following cases:

(i) \(1 < q < N(p - 1)/(N - 1) \) and \(N^2(p - 1)/(N - 1)(N - p) < s < p^* \),

(ii) \(N(p - 1)/(N - 1) \leq q < p \) and \(Nq/(N - p) < s < p^* \).

In particular, problem (1.1) has a nontrivial weak solution for all \(b > 0 \) when \(N^2 - p(p + 1)N + p^2 \geq 0 \), \(q \leq (N - p)p/N \), and \(p < s < p^* \), and when \(N^2 - p(p + 1)N + p^2 > 0 \), \(q < (N - p)p/N \), and \(s = p \).

Theorem 1.2 There exists \(v_0 > 0 \) such that problem (1.2) has a nontrivial weak solution for all \(v \in (0, v_0) \) and \(b > 0 \) in each of the following cases:

(i) \(N \geq p^2 \) and \(q < s < p^* \),

(ii) \(N < p^2 \) and either \(q < s < p \) or \((Np - 2N + p)p/(N - p)(p - 1) < s < p^* \).

In particular, problem (1.2) has a nontrivial weak solution for all \(v \in (0, v_0) \) and \(b > 0 \) when \(q < s < p \), and when \(N \geq p^2 \) and \(s = p \).

In the borderline case \(s = q \) we show that problem (1.1) has no nontrivial weak solution for all sufficiently small \(b > 0 \) when \(\Omega \) is a star-shaped domain with \(C^1 \)-boundary (see Theorem 2.6). The proof of this nonexistence result will be based on a new Pohožaev type identity for the \((p, q)\)-Laplacian (see Theorem 2.8), which is of independent interest.

We refer the reader to Marano and Mosconi [5] for a survey of recent existence and multiplicity results for subcritical and critical \((p, q)\)-Laplacian problems in bounded domains.

2 Statement of results

We consider the critical \((p, q)\)-Laplacian problem

\[
\begin{aligned}
\begin{cases}
-\Delta_p u - \Delta_q u &= f(x, u) + |u|^{p^*-2} u \quad \text{in } \Omega \\
u &= 0
\end{cases}
\end{aligned}
\tag{2.1}
\]

where \(\Omega \) is a bounded domain in \(\mathbb{R}^N \), \(N \geq 2 \), \(1 < q < p < N \), \(p^* = Np/(N - p) \) is the critical Sobolev exponent, and \(f \) is a Carathéodory function on \(\Omega \times \mathbb{R} \) satisfying

\[
f(x, 0) = 0 \quad \text{for a.a. } x \in \Omega
\tag{2.2}
\]

and the subcritical growth condition

\[
|f(x, t)| \leq a_1 |t|^{r-1} + a_2 \quad \text{for a.a. } x \in \Omega \text{ and all } t \in \mathbb{R}
\tag{2.3}
\]
for some constants $a_1, a_2 > 0$ and $r \in (p, p^*)$. A weak solution of this problem is a function $u \in W_{0}^{1, p}(\Omega)$ satisfying

$$
\int_{\Omega} \left(|\nabla u|^{p - 2} \nabla u \cdot \nabla v + |\nabla u|^{q - 2} \nabla u \cdot \nabla v - f(x, u) v - |u|^{p - 2} u v \right) dx = 0
$$

\forall v \in W_{0}^{1, p}(\Omega),

where $W_{0}^{1, p}(\Omega)$ is the usual Sobolev space with the norm $\|u\| = \left(\int_{\Omega} |\nabla u|^{p} dx \right)^{1/p}$. Weak solutions coincide with critical points of the C^1-functional

$$
E(u) = \int_{\Omega} \left(\frac{1}{p} |\nabla u|^{p} + \frac{1}{q} |\nabla u|^{q} - F(x, u) - \frac{1}{p^*} |u|^{p^*} \right) dx, \quad u \in W_{0}^{1, p}(\Omega),
$$

where $F(x, t) = \int_{0}^{t} f(x, \tau) d\tau$ is the primitive of f. Recall that a sequence $(u_j) \subset W_{0}^{1, p}(\Omega)$ such that $E(u_j) \to c$ and $E'(u_j) \to 0$ is called a $(PS)_c$ sequence. Let

$$
c^* = \frac{1}{N} S^{N/p}, \quad (2.4)
$$

where

$$
S = \inf_{u \in W_{0}^{1, p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^{p} dx}{\left(\int_{\Omega} |u|^{p^*} dx \right)^{p/p^*}}, \quad (2.5)
$$

is the best Sobolev constant. If $0 < c < c^*$, then every $(PS)_c$ sequence has a subsequence that converges weakly to a nontrivial critical point of E (see Proposition 3.1).

Let

$$
\lambda_1 = \inf_{u \in W_{0}^{1, p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^{p} dx}{\int_{\Omega} |u|^{p} dx}, \quad \mu_1 = \inf_{u \in W_{0}^{1, q}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^{q} dx}{\int_{\Omega} |u|^{q} dx}, \quad (2.6)
$$

be the first Dirichlet eigenvalues of the p-Laplacian and the q-Laplacian, respectively. Assume that

$$
F(x, t) \leq \frac{\lambda}{p} |t|^p + \frac{\mu_1}{q} |t|^q \quad \text{for a.a.} \ x \in \Omega \text{ and } |t| < \delta \quad (2.7)
$$

for some $\lambda \in (0, \lambda_1)$ and $\delta > 0$. It follows from this and (2.3) that

$$
F(x, t) \leq \frac{\lambda}{p} |t|^p + \frac{\mu_1}{q} |t|^q + \alpha_3 |t|^r \quad \text{for a.a.} \ x \in \Omega \text{ and all } t \in \mathbb{R}
$$

for some constant $\alpha_3 > 0$, so

$$
E(u) \geq \int_{\Omega} \left[\frac{1}{p} \left(1 - \frac{\lambda}{\lambda_1} \right) |\nabla u|^{p} - \alpha_3 |u|^r - \frac{1}{p^*} |u|^{p^*} \right] dx.
$$

Since $p < r < p^*$, it follows that the origin is a strict local minimizer of E. On the other hand, it also follows from (2.3) that $E(tu) \to -\infty$ as $t \to +\infty$ for any $u \in W_{0}^{1, p}(\Omega) \setminus \{0\}$. So E has the mountain pass geometry. Let

$$
\Gamma = \left\{ \gamma \in C([0, 1], W_{0}^{1, p}(\Omega)) : \gamma(0) = 0, \ E(\gamma(1)) < 0 \right\}.
$$
be the class of paths in $W_0^{1,p}(\Omega)$ joining the origin to the set $\{u \in W_0^{1,p}(\Omega) : E(u) < 0\}$, and set

$$c := \inf_{\gamma \in \Gamma} \max_{u \in \gamma([0,1])} E(u). \tag{2.8}$$

Since the origin is a strict local minimizer of E, $c > 0$. A standard deformation argument then shows that E has a $(PS)_c$ sequence. The purpose of this paper is to give lower bounds on F to guarantee that $c < c^*$ holds and hence this $(PS)_c$ sequence has a subsequence that converges weakly to a nontrivial solution of problem (2.1).

We assume that there is a ball $B_p(x_0) \subset \Omega$ such that

$$F(x, t) \geq bt^s \text{ for a.a. } x \in B_p(x_0) \text{ and all } t \geq 0 \tag{2.9}$$

for some constants $b > 0$ and $s \in (q, p^*)$.

Theorem 2.1 Let $1 < q < p < N$ and assume (2.2), (2.3), (2.7), and (2.9). Then problem (2.1) has a nontrivial weak solution in each of the following cases:

(i) $q < N(p - 1)/(N - 1)$ and $s > N^2(p - 1)/(N - 1)(N - p)$,

(ii) $q \geq N(p - 1)/(N - 1)$ and $s > Nq/(N - p)$.

Remark 2.2 We note that the two cases in Theorem 2.1 can be combined as

$$s > \max \left\{ \frac{N^2(p - 1)}{(N - 1)(N - p)}, \frac{Nq}{N - p} \right\}.$$

In particular, we have the following corollary for the model problem

$$\begin{cases}
-\Delta_p u - \Delta_q u = b |u|^{s-2} u + |u|^{p^*-2} u & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases} \tag{2.10}$$

where $1 < p < N$.

Corollary 2.3 Problem (2.10) has a nontrivial weak solution for all $b > 0$ in each of the following cases:

(i) $1 < q < N(p - 1)/(N - 1)$ and $N^2(p - 1)/(N - 1)(N - p) < s < p^*$,

(ii) $N(p - 1)/(N - 1) \leq q < p$ and $Nq/(N - p) < s < p^*$.

Remark 2.4 It was shown in Yin and Yang [2] that problem (2.10) has a nontrivial solution when $p < s < p^*$ and $b > 0$ is sufficiently large. In contrast, Corollary 2.3 allows $s \leq p$ and gives a nontrivial solution for all $b > 0$. It also gives a nontrivial solution for all $s \in (p, p^*)$ and $b > 0$ when $N^2 - p(p + 1)N + p^2 \geq 0$ and $q \leq (N - p)\frac{p}{N}$, and for $s = p$ and all $b > 0$ when $N^2 - p(p + 1)N + p^2 > 0$ and $q < (N - p)\frac{p}{N}$.

When $p \leq 2 - 1/N$, case (i) in Corollary 2.3 cannot hold and the first inequality in case (ii) holds for $q > 1$, so we have the following corollary.

Corollary 2.5 If $1 < q < p \leq 2 - 1/N$ and $Nq/(N - p) < s < Np/(N - p)$, then problem (2.10) has a nontrivial weak solution for all $b > 0$.

For the borderline case $s = q$ of problem (2.10) we prove a Pohožaev type nonexistence result. Recall that the corresponding nonexistence result for the p-Laplacian states that the problem

$$\begin{cases}
-\Delta_p u = \lambda |u|^{p^*-2} u + |u|^{p^*-2} u & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}$$
has no nontrivial weak solution in $W^{1,p}_0(\Omega)$ for $\lambda \leq 0$ when Ω is a star-shaped domain with C^1-boundary (see Guedda and Véron [6, Corollaries 1.2 & 1.3]). In contrast, we will show that the problem
\[
\begin{cases}
-\Delta_p u - \Delta_q u = \mu |u|^{q-2} u + |u|^{p^*-2} u & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}
\]
(2.11)
has no nontrivial weak solution even for small positive μ.

Theorem 2.6 Let $1 < q < p < N$. If Ω is a star-shaped domain with C^1-boundary and
\[
\mu \leq \frac{N(p-q)}{N(p-q)+pq} \mu_1,
\]
(2.12)
then problem (2.11) has no nontrivial weak solution in $W^{1,p}_0(\Omega) \cap W^{2,p}(\Omega)$.

Remark 2.7 It was shown in Li and Zhang [1] that problem (2.10) has infinitely many solutions when $1 < s < q$ and $b > 0$ is sufficiently small. Theorem 2.6 shows that such a result cannot hold in general in the borderline case $s = q$.

To prove Theorem 2.6 we will first derive a Pohožaev type identity for the (p,q)-Laplacian operator that is of independent interest. Consider the problem
\[
\begin{cases}
-\Delta_p u - \Delta_q u = g(u) & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}
\]
(2.13)
where $1 < q < p < N$ and g is a continuous function on \mathbb{R}. Let $G(t) = \int_0^t g(\tau) \, d\tau$ be the primitive of g.

Theorem 2.8 If Ω has C^1-boundary and $u \in W^{1,p}_0(\Omega) \cap W^{2,p}(\Omega)$ is a weak solution of problem (2.13), then
\[
\left(\frac{1}{q} - \frac{1}{p}\right) \int_\Omega |\nabla u|^q \, dx - \int_\Omega \left[G(u) - \frac{1}{p^*} u \, g(u) \right] \, dx
\]
\[+ \frac{1}{N} \int_{\partial \Omega} \left[\left(1 - \frac{1}{p} \right) \left| \frac{\partial u}{\partial \nu} \right|^p + \left(1 - \frac{1}{q} \right) \left| \frac{\partial u}{\partial \nu} \right|^q \right] (x \cdot \nu) \, d\sigma = 0,
\]
(2.14)
where ν is the exterior unit normal to $\partial \Omega$.

Finally we prove a stronger existence result for the related problem
\[
\begin{cases}
-\Delta_p u - \nu \Delta_q u = f(x,u) + |u|^{p^*-2} u & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}
\]
(2.15)
when the parameter $\nu > 0$ is sufficiently small.

Theorem 2.9 Let $1 < q < p < N$ and assume (2.2), (2.3), (2.9), and
\[
F(x,t) \leq \frac{\lambda}{p} |t|^p + b_0 |t|^\tilde{s} \quad \text{for a.a. } x \in \Omega \text{ and } |t| < \delta
\]
(2.16)
for some $\lambda \in (0,\lambda_1)$, $b_0 > 0$, $\tilde{s} \in (q,s]$, and $\delta > 0$. Then there exists $\nu_0 > 0$ such that problem (2.15) has a nontrivial weak solution for all $\nu \in (0,\nu_0)$ in each of the following cases:

(i) $N \geq p^2$ and $q < s < p^*$,
(ii) $N < p^2$ and either $q < s < p$ or $(Np - 2N + p) \frac{p}{(N - p)(p - 1)} < s < p^*.$

Remark 2.10 We note that $p < (Np - 2N + p) \frac{p}{(N - p)(p - 1)}$ when $N < p^2.$

In particular, we have the following corollary for the model problem

$$
\left\{ \begin{array}{ll}
-\Delta_p u - v \Delta_q u = b |u|^{q-2} u + |u|^{p^*-2} u & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{array} \right.
$$

(2.17)

where $1 < q < p < N$.

Corollary 2.11 There exists $\nu_0 > 0$ such that problem (2.17) has a nontrivial weak solution for all $\nu \in (0, \nu_0)$ and $b > 0$ in each of the following cases:

(i) $N \geq p^2$ and $q < s < p^*$,

(ii) $N < p^2$ and either $q < s < p$ or $(Np - 2N + p) \frac{p}{(N - p)(p - 1)} < s < p^*$.

When $q < s < p$, we have the following corollary.

Corollary 2.12 If $q < s < p$, then there exists $\nu_0 > 0$ such that problem (2.17) has a nontrivial weak solution for all $\nu \in (0, \nu_0)$ and $b > 0$.

Remark 2.13 A rescaling of a result in Ho and Sim [4] shows that problem (2.17) has a nontrivial solution when $q < s < p$ and $\nu, b > 0$ are sufficiently small. In contrast, Corollary 2.12 gives a nontrivial solution for all $b > 0$.

3 Preliminaries

For $\nu \geq 0$, set

$$
E_\nu(u) = \int_{\Omega} \left(\frac{1}{p} |\nabla u|^p + \frac{v}{q} |\nabla u|^q - F(x, u) - \frac{1}{p^*} |u|^{p^*} \right) dx, \quad u \in W^{1, p}_0(\Omega).
$$

3.1 A compactness result

Our existence results will be based on the following proposition, which extends Gazzola and Ruf [7, Lemma 1] and Arioli and Gazzola [8, Lemma 1] to the (p, q)-Laplacian.

Proposition 3.1 Let $1 < q < p < N$ and assume (2.3). If $0 < c < c^*$, then every $(PS)_c$ sequence has a subsequence that converges weakly to a nontrivial critical point of E_ν.

Proof Let $(u_j) \subset W^{1, p}_0(\Omega)$ be a $(PS)_c$ sequence, i.e.,

$$
E_\nu(u_j) = \int_{\Omega} \left(\frac{1}{p} |\nabla u_j|^p + \frac{v}{q} |\nabla u_j|^q - F(x, u_j) - \frac{1}{p^*} |u_j|^{p^*} \right) dx = c + o(1) \quad (3.1)
$$

and

$$
(E'_\nu(u_j), v) = \int_{\Omega} \left(|\nabla u_j|^{p-2} \nabla u_j \cdot \nabla v + \frac{v}{q} |\nabla u_j|^{q-2} \nabla u_j \cdot \nabla v - f(x, u_j) v
- |u_j|^{p^*-2} u_j v \right) dx = o(\|v\|) \quad \forall v \in W^{1, p}_0(\Omega). \quad (3.2)
$$
Taking \(v = u_j \) in (3.2) gives
\[
\int_\Omega \left(|\nabla u_j|^p + v |\nabla u_j|^q - f(x, u_j) u_j - |u_j|^{p^*} \right) \, dx = o(\|u_j\|). \tag{3.3}
\]
Fix \(\sigma \in (p, p^*) \). Dividing (3.3) by \(\sigma \) and subtracting from (3.1) gives
\[
\left(\frac{1}{p} - \frac{1}{\sigma} \right) \int_\Omega |\nabla u_j|^p \, dx + \left(\frac{1}{q} - \frac{1}{\sigma} \right) v \int_\Omega |\nabla u_j|^q \, dx + \int_\Omega \left[\frac{1}{\sigma} - \frac{1}{p^*} \right] |u_j|^{p^*} - F(x, u_j) + \frac{1}{\sigma} f(x, u_j) u_j \right] \, dx = c + o(1) + o(\|u_j\|). \tag{3.4}
\]
Since \(q < p < \sigma < p^* \), it follows from this and (2.3) that \((u_j) \) is bounded in \(W^{1, p}(\Omega) \). So a renamed subsequence converges to some \(u \) weakly in \(W^{1, p}(\Omega) \), strongly in \(L^r(\Omega) \), and a.e. in \(\Omega \). Then \(u \) is a critical point of \(E_v \) by the weak continuity of \(E_v' \) (see Li and Zhang [1, Lemma 2.3]).

Suppose \(u = 0 \). Then (3.1) and (3.3) reduce to
\[
\int_\Omega \left(\frac{1}{p} |\nabla u_j|^p + \frac{v}{q} |\nabla u_j|^q - \frac{1}{p^*} |u_j|^{p^*} \right) \, dx = c + o(1) \tag{3.5}
\]
respectively. Equation (3.5) together with (2.5) gives
\[
\|u_j\|^p \leq \frac{\|u_j\|^{p^*}}{S^{p^*/p}} + o(1). \tag{3.6}
\]
If \(\|u_j\| \to 0 \) for a renamed subsequence, then (3.4) gives \(c = 0 \), contrary to our assumption that \(c > 0 \). So \(\|u_j\| \) is bounded away from zero and hence (3.6) implies that
\[
\|u_j\|^p \geq S^{N/p} + o(1).
\]
Now dividing (3.5) by \(p^* \) and subtracting from (3.4) gives
\[
c = \int_\Omega \left[\frac{1}{p} - \frac{1}{p^*} \right] |\nabla u_j|^p + \left(\frac{1}{q} - \frac{1}{p^*} \right) v |\nabla u_j|^q \right] \, dx + o(1) \geq \frac{1}{N} S^{N/p} + o(1),
\]
so \(c \geq c^* \), contrary to assumption. □

3.2 Some estimates

Let \(\rho > 0 \) be as in (2.9), take a cut-off function \(\psi \in C_0^\infty(B_{\rho}(0)) \) such that \(0 \leq \psi \leq 1 \) and \(\psi = 1 \) on \(B_{\rho/2}(0) \), and set
\[
u_\varepsilon(x) = \psi(x) \left. \psi(x) \right|_{(\varepsilon^p/(p-1))^p} + \left. |x|^{p/(p-1)} (N-p)/p \right|_{\varepsilon^p/(p-1)}^{p^*} \quad \text{for } \varepsilon > 0,
\]
where \(|\cdot|_{p^*} \) denotes the norm in \(L^{p^*}(\Omega) \). Then \(|v_\varepsilon|_{p^*} = 1 \). Recall that
\[
f(\varepsilon) = \Theta(g(\varepsilon))
\]
as \(\varepsilon \to 0 \) if there exist constants \(c, C > 0 \) such that
\[
|g(\varepsilon)| \leq |f(\varepsilon)| \leq C |g(\varepsilon)|
\]
for all sufficiently small \(\varepsilon > 0 \). We have the estimates
\[
\int_{\mathbb{R}^N} |\nabla v_\varepsilon|^p \, dx = S + \Theta(\varepsilon^{(N-p)/(p-1)}),
\]
where \(S \) is as in (2.5),
\[
\int_{\mathbb{R}^N} |\nabla v_\varepsilon|^q \, dx = \begin{cases}
\Theta(\varepsilon^{N(p-q)/p}), & q > \frac{N(p-1)}{N-1}, \\
\Theta(\varepsilon^{(N-p)/(N-1)} \log \varepsilon), & q = \frac{N(p-1)}{N-1}, \\
\Theta(\varepsilon^{(N-p)q/(p-1)}), & q < \frac{N(p-1)}{N-1},
\end{cases}
\]
and
\[
\int_{\mathbb{R}^N} v_\varepsilon^s \, dx = \begin{cases}
\Theta(\varepsilon^{(Np-(N-p)s)/p}), & s > \frac{N(p-1)}{N-p}, \\
\Theta(\varepsilon^{N/p} \log \varepsilon), & s = \frac{N(p-1)}{N-p}, \\
\Theta(\varepsilon^{(N-p)s/(p-1)}), & s < \frac{N(p-1)}{N-p},
\end{cases}
\]
as \(\varepsilon \to 0 \) (see Drábek and Huang [9]).

For \(\varepsilon > 0 \) and \(0 < \delta \leq 1 \), set
\[
u_{\varepsilon,\delta}(x) = \frac{v_{\varepsilon,\delta}(x)}{|u_{\varepsilon,\delta}|_{p^*}},
\]
and hence
\[
|u_{\varepsilon,\delta}|_{p^*} = \delta^{-(N-p)/(p-1)}|u_{\varepsilon,\delta}|_{p^*}.
\]

It follows from (3.10) and (3.11) that
\[
v_{\varepsilon,\delta}(x) = \delta^{-(N-p)/p} \nu_{\varepsilon,\delta}(x/\delta).
\]

Moreover,
\[
\nabla v_{\varepsilon,\delta}(x) = \delta^{-N/p} \nabla \nu_{\varepsilon,\delta}(x/\delta)
\]
and hence
\[
\int_{\mathbb{R}^N} \left| \nabla v_{\varepsilon,\delta} \right|^q \, dx = \delta^{-Nq/p} \int_{\mathbb{R}^N} \left| \nabla \nu_{\varepsilon,\delta}(x/\delta) \right|^q \, dx = \delta^{N(p-q)/p} \int_{\mathbb{R}^N} \left| \nabla \nu_{\varepsilon,\delta} \right|^q \, dx.
\]

Combining (3.12) and (3.13) with (3.7)–(3.9) gives us the following estimates.
Lemma 3.2 As $\varepsilon \to 0$ and $\varepsilon/\delta \to 0$,

\[
\int_{\mathbb{R}^N} |\nabla v_{\varepsilon,\delta}|^p \, dx = S + \Theta((\varepsilon/\delta)^{(N-p)/(p-1)}),
\]

(3.14)

and

\[
\int_{\mathbb{R}^N} |\nabla v_{\varepsilon,\delta}|^q \, dx = \begin{cases}
\Theta(\varepsilon^{N(p-q)/p}), & q > \frac{N(p-1)}{N-1} \\
\Theta(\varepsilon^{N(N-1)p}/(N-1)^p \log (\varepsilon/\delta)), & q = \frac{N(p-1)}{N-1} \\
\Theta((\varepsilon(N-p)/p-1) \delta^{N(p-1)-(N-1)q}/(p-1)), & q < \frac{N(p-1)}{N-1},
\end{cases}
\]

(3.15)

Next we prove the following proposition. Note that the first limit in (3.17) holds trivially when $\nu = 0$ and hence the second limit is sufficient for (3.18) to hold for E_0.

Proposition 3.3 If $(\varepsilon_j), (\delta_j)$ are sequences such that $\varepsilon_j \to 0$, $0 < \delta_j \leq 1$, $\varepsilon_j/\delta_j \to 0$,

\[
\frac{\nu}{j} \int_{\mathbb{R}^N} |\nabla \nu_{\varepsilon_j,\delta_j}|^q \, dx \to 0, \quad \frac{\varepsilon_j/\delta_j}{}(N-p)/(p-1) \int_{\mathbb{R}^N} v_{\varepsilon_j,\delta_j}^s \, dx \to 0,
\]

(3.17)

then

\[
\max_{t \geq 0} E_\nu(t \nu_{\varepsilon_j,\delta_j}(x - x_0)) < c^*
\]

(3.18)

for all sufficiently large j.

Proof Write $v_j(x) = \nu_{\varepsilon_j,\delta_j}(x - x_0)$. Since $v_j(x) = 0$ for all $x \in \Omega \setminus B_{\rho}(x_0)$,

\[
F(x, tv_j(x)) \geq bt^s v_j(x)^s
\]

for a.a. $x \in \Omega$ and all $t \geq 0$

by (2.9), so

\[
E_\nu(tv_j) \leq \frac{t^p}{p} \int_{\Omega} |\nabla v_j|^p \, dx + \frac{t^{q’}}{q} \int_{\Omega} |\nabla v_j|^q \, dx - bt^s \int_{\Omega} v_j^s \, dx - \frac{t^p}{p^*} =: \varphi(t).
\]

Suppose that the conclusion of the lemma is false. Then there are renamed subsequences $(\varepsilon_j), (\delta_j)$ and $t_j > 0$ such that

\[
\varphi(t_j) = \frac{t^p}{p} \int_{\Omega} |\nabla v_j|^p \, dx + \frac{t^{q’}}{q} \int_{\Omega} |\nabla v_j|^q \, dx - bt_j^s \int_{\Omega} v_j^s \, dx - \frac{t^p}{p^*} \geq c^* \quad (3.19)
\]

and

\[
t_j \varphi’(t_j) = \frac{t^{p’}}{p} \int_{\Omega} |\nabla v_j|^p \, dx + t_j^{q’} \int_{\Omega} |\nabla v_j|^q \, dx - sbt_j^s \int_{\Omega} v_j^s \, dx - t_j^{p^*} = 0. \quad (3.20)
\]

By Lemma 3.2,

\[
\int_{\Omega} |\nabla v_j|^p \, dx \to S, \quad \int_{\Omega} |\nabla v_j|^q \, dx \to 0, \quad \int_{\Omega} v_j^s \, dx \to 0.
\]
So (3.19) implies that the sequence \(\{t_j\} \) is bounded and hence converges to some \(t_0 > 0 \) for a subsequence. Passing to the limit in (3.20) gives
\[
S^p t_0^p - t_0^p = 0, \tag{3.21}
\]
so \(t_0 = S^{(N-p)/p^2} \).

Subtracting (3.21) from (3.20) and using (3.14) gives
\[
S(t_j^p - t_0^p) + v_j^q \int_\Omega |\nabla v_j|^q \, dx - sbt_j^p \int_\Omega v_j^p \, dx - (t_j^p - t_0^p) = \Theta((\varepsilon_j/\delta_j)^{(N-p)/(p-1)}).
\]

Then
\[
(p \sigma_j^{p-1} - p^* \tau_j^{p*-1}) (t_j - t_0) = sbt_j^p \int_\Omega v_j^p \, dx - vt_j^q \int_\Omega |\nabla v_j|^q \, dx + \Theta((\varepsilon_j/\delta_j)^{(N-p)/(p-1)}) \tag{3.22}
\]
for some \(\sigma_j \) and \(\tau_j \) between \(t_0 \) and \(t_j \) by the mean value theorem. Since \(t_j \to t_0, \sigma_j, \tau_j \to t_0 \) and hence
\[
p \sigma_j^{p-1} - p^* \tau_j^{p*-1} \to p \sigma_0^{p-1} - p^* \tau_0^{p*-1} = -(p^* - p) t_0^{p*-1}
\]
by (3.21). So (3.22) together with (3.17) gives
\[
t_j = t_0 - \left(\frac{sb t_0^{(p^*-s-1)}}{p^* - p} + o(1) \right) \int_\Omega v_j^p \, dx < t_0
\]
for all sufficiently large \(j \).

Dividing (3.20) by \(p^* \), subtracting from (3.19), using (3.14), and writing \(c^* \) in terms of \(t_0 \) gives
\[
\frac{1}{N} S^p t_j^p + \left(\frac{1}{q} - \frac{1}{p^*} \right) v_j^q \int_\Omega |\nabla v_j|^q \, dx - b \left(1 - \frac{s}{p^*} \right) t_j^s \times \int_\Omega v_j^s \, dx \geq \frac{1}{N} S^p t_0^p + \Theta((\varepsilon_j/\delta_j)^{(N-p)/(p-1)}).
\]

This together with \(t_j < t_0 \) and (3.17) gives
\[
b \left(1 - \frac{s}{p^*} \right) t_0^s \leq 0,
\]
a contradiction since \(s < p^* \) and \(t_0 > 0 \).

\[\square\]

4 Proofs

4.1 Proof of Theorem 2.1

Lemma 3.2 gives the following estimates for the quotients in (3.17).

Lemma 4.1 If \(s > N(p - 1)/(N - p) \), then
\[
\begin{align*}
\int_{\mathbb{R}^N} |\nabla v_{\varepsilon_j, \delta_j}|^q \, dx & = \begin{cases}
\Theta((N-p)s-Nq/p), & q > \frac{N(p-1)}{N-1} \\
\Theta(\varepsilon_j^{(N-p)s-Nq/p} |log(\varepsilon_j/\delta_j)|), & q = \frac{N(p-1)}{N-1} \\
\Theta(\varepsilon_j^{(N-p)(s+q/(p-1) - Np)/p} \delta_j^{(N(p-1) - (N-1)q)/(p-1)}), & q < \frac{N(p-1)}{N-1}
\end{cases}
\end{align*}
\]
and
\[\frac{(\varepsilon_j/\delta_j)^{(N-p)/(p-1)}}{\int_{\mathbb{R}^N} v_{\varepsilon_j, \delta_j}^s \, dx} = \Theta(\varepsilon_j^{[(N-p)(p-1)s-(Np-2N+p)p]/(p-1)} \delta_j^{-(N-p)/(p-1)}) \]

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 As we have noted in the introduction, it suffices to show that the mountain pass level \(c \) defined in (2.8) is below the threshold level \(c^* \) in (2.4). For any \(u \in W_0^1, p(\Omega) \setminus \{0\} \), \(E(tu) \to -\infty \) as \(t \to +\infty \) and hence \(\exists t_u > 0 \) such that \(E(t_u u) < 0 \). Then the line segment \(\{tu : 0 \leq t \leq t_u\} \) belongs to \(\Gamma \) and hence
\[c \leq \max_{0 \leq t \leq t_u} E(tu) \leq \max_{t \geq 0} E(tu). \quad (4.1) \]

In each of the two cases in the theorem, we will construct sequences \((\varepsilon_j) \), \((\delta_j) \) such that \(\varepsilon_j \to 0 \), \(0 < \delta_j \leq 1 \), \(\varepsilon_j/\delta_j \to 0 \), and (3.17) with \(\nu = 1 \) holds, and conclude from Proposition 3.3 and (4.1) that \(c < c^* \).

(i) Let \(q < N(p-1)/(N-1) \) and \(s > N^2(p-1)/(N-1)(N-p) \). We take a sequence \(\varepsilon_j \to 0 \) and set \(\delta_j = \varepsilon_j^2 \), where \(\kappa \in [0, 1) \) is to be determined. Since
\[s > \frac{N^2(p-1)}{(N-1)(N-p)} > \frac{N(p-1)}{N-p}, \]
Lemma 4.1 gives
\[
\frac{1}{\int_{\mathbb{R}^N} |\nabla v_{\varepsilon_j, \delta_j}|^q \, dx} = \Theta(\varepsilon_j^{[(N-p)q/(p-1)]-\kappa/[N(p-1)-(N-1)q]/(p-1)})
\]
where
\[\kappa = \frac{Np(p-1) - (N-p)(p-1)s - (N-p)q}{[N(p-1) - (N-1)q]p}, \]
and
\[(\varepsilon_j/\delta_j)^{(N-p)/(p-1)} \int_{\mathbb{R}^N} v_{\varepsilon_j, \delta_j}^s \, dx = \Theta(\varepsilon_j^{[(N-p)(p-1)s-(Np-2N+p)p]/(p-1)-\kappa(N-p)/(p-1)}) \]
where
\[\overline{\kappa} = \frac{(N-p)(p-1)s - (Np - 2N + p)p}{(N-p)p}. \]

We want to choose \(\kappa \in [0, 1) \) so that \(\kappa > \underline{\kappa} \) and \(\kappa < \overline{\kappa} \). This is possible if and only if \(\underline{\kappa} < \overline{\kappa} \), \(\underline{\kappa} < 1 \), and \(\overline{\kappa} > 0 \). Tedious calculations show that these inequalities are equivalent to
\[s > \frac{N^2(p-1)}{(N-1)(N-p)}, \]
\[s > \frac{Nq}{N-p}. \]
and

\[s > \frac{N^2(p-1)}{(N-1)(N-p)} - \frac{N-p}{(N-1)(p-1)}, \]

respectively, all of which hold under our assumptions on \(q \) and \(s \).

(ii) Let \(q \geq N(p-1)/(N-1) \) and \(s > Nq/(N-p) \). We take a sequence \(\varepsilon_j \to 0 \) and set \(\delta_j = 1 \). Since

\[s > \frac{Nq}{N-p} \geq \frac{N^2(p-1)}{(N-1)(N-p)} > \frac{N(p-1)}{N-p}, \]

Lemma 4.1 gives

\[
\int_{\mathbb{R}^N} |\nabla v_{\varepsilon_j, \delta_j}|^q \, dx \leq \begin{cases} \Theta \left(\varepsilon_j \frac{(N-p)s-Nq}{p} \right), & q > \frac{N(p-1)}{N-1} \\ \Theta \left(\varepsilon_j \frac{(N-p)s-Nq}{p} \log \varepsilon_j \right), & q = \frac{N(p-1)}{N-1} \end{cases}
\]

and

\[
\int_{\mathbb{R}^N} v_{\varepsilon_j, \delta_j}^q \, dx = \Theta \left(\varepsilon_j \frac{(N-p)(p-1)s-(Np-2N+p)p}{p(p-1)} \right).
\]

Since \(s > Nq/(N-p) \), the first limit in (3.17) holds. The second limit also holds since

\[
\frac{Nq}{N-p} \geq \frac{N^2(p-1)}{(N-1)(N-p)} > \frac{(Np-2N+p)p}{(N-p)(p-1)}.
\]

\[\square \]

4.2 Proofs of Theorems 2.6 and 2.8

First we prove Theorem 2.8.

Proof of Theorem 2.8 Integrating the easily verified identity

\[
[\text{div} \left(|\nabla u|^{p-2} \nabla u + |\nabla u|^{q-2} \nabla u \right) + g(u)] (x \cdot \nabla u) = \left(\frac{N}{p} - 1 \right) |\nabla u|^p + \left(\frac{N}{q} - 1 \right) |\nabla u|^q - NG(u) + \text{div} \left(|\nabla u|^{p-2} \nabla u + |\nabla u|^{q-2} \nabla u \right) (x \cdot \nabla u) - x \left(\frac{|\nabla u|^p}{p} + \frac{|\nabla u|^q}{q} \right) + x G(u)
\]

over \(\Omega \) gives

\[
\left(\frac{N}{p} - 1 \right) \int_{\Omega} |\nabla u|^p \, dx + \left(\frac{N}{q} - 1 \right) \int_{\Omega} |\nabla u|^q \, dx - N \int_{\Omega} G(u) \, dx + \int_{\partial \Omega} \left[(|\nabla u|^{p-2} \nabla u + |\nabla u|^{q-2} \nabla u) (x \cdot \nabla u) - x \left(\frac{|\nabla u|^p}{p} + \frac{|\nabla u|^q}{q} \right) \right] \cdot \nu \, d\sigma = 0
\]

(4.2)

since \(u \) is a weak solution of problem (2.13). On \(\partial \Omega \), tangential derivatives of \(u \) vanish since \(u = 0 \) and hence \(\nabla u \frac{\partial u}{\partial v} \). So \((\nabla u \cdot \nu)(x \cdot \nabla u) = |\nabla u|^2 (x \cdot \nu) \) and \(|\nabla u| = \left| \frac{\partial u}{\partial v} \right| \) on \(\partial \Omega \).
and hence (4.2) reduces to
\[
\left(\frac{N}{p} - 1\right) \int_{\Omega} |\nabla u|^p \, dx + \left(\frac{N}{q} - 1\right) \int_{\Omega} |\nabla u|^q \, dx - N \int_{\Omega} G(u) \, dx \\
+ \int_{\partial \Omega} \left[\left(1 - \frac{1}{p}\right) \left| \frac{\partial u}{\partial \nu} \right|^p + \left(1 - \frac{1}{q}\right) \left| \frac{\partial u}{\partial v} \right|^q \right] (x \cdot \nu) \, d\sigma = 0.
\]
(4.3)

On the other hand, testing problem (2.13) with \(u \) gives
\[
\int_{\Omega} |\nabla u|^p \, dx + \int_{\Omega} |\nabla u|^q \, dx - \int_{\Omega} u g(u) \, dx = 0.
\]
(4.4)

Multiplying (4.4) by \(\frac{N}{p} - 1 \) and subtracting from (4.3) gives (2.14).

Now we prove Theorem 2.6.

Proof of Theorem 2.6 Suppose problem (2.11) has a nontrivial weak solution \(u \in W^{1,p}_{0}(\Omega) \cap W^{2,p}(\Omega) \). Taking \(g(t) = \mu |t|^{q-2} t + |t|^{p^* - 2} t \) in (2.14) and combining with (2.12) and (2.6) gives
\[
\frac{1}{N} \int_{\partial \Omega} \left[\left(1 - \frac{1}{p}\right) \left| \frac{\partial u}{\partial \nu} \right|^p + \left(1 - \frac{1}{q}\right) \left| \frac{\partial u}{\partial v} \right|^q \right] (x \cdot \nu) \, d\sigma = \left(\frac{1}{q} - \frac{1}{p^*}\right) \mu \int_{\Omega} |u|^q \, dx \\
- \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\Omega} |\nabla u|^q \, dx \leq \left(\frac{1}{q} - \frac{1}{p}\right) \left(\mu_{1} \int_{\Omega} |u|^q \, dx - \int_{\Omega} |\nabla u|^q \, dx \right) \leq 0.
\]
(4.5)

Without loss of generality, we may assume that \(\Omega \) is star-shaped with respect to the origin. Then \(x \cdot \nu > 0 \) on \(\partial \Omega \), so the first integral in (4.5) is nonnegative and hence equality holds throughout (4.5). This implies that \(u \) is an eigenfunction of the \(q \)-Laplacian associated with the eigenvalue \(\mu_{1} \) and \(\partial u/\partial v = 0 \) on \(\partial \Omega \), contradicting the Hopf lemma (see Vázquez [10, Theorem 5]).

\(\square \)

4.3 Proof of Theorem 2.9

We have
\[
E_{\nu}(u) = E_{0}(u) + \frac{\nu}{q} \int_{\Omega} |\nabla u|^q \, dx, \quad u \in W^{1,p}_{0}(\Omega).
\]

Taking \(\nu = 0 \) and \(\delta_{j} = 1 \) in Proposition 3.3 and noting that \(v_{\varepsilon,1} = v_{\varepsilon} \) gives the following proposition.

Proposition 4.2 If
\[
\frac{\varepsilon^{(N-p)/(p-1)}}{\int_{\mathbb{R}^{N}} v_{\varepsilon} \, dx} \to 0 \text{ as } \varepsilon \to 0,
\]
(4.6)

then
\[
\max_{t \geq 0} E_{0}(tv_{\varepsilon}(x - x_{0})) < c^{*}
\]
for all sufficiently small \(\varepsilon > 0 \).

Equation (3.9) gives the following estimate for the quotient in (4.6).
Lemma 4.3 We have
\[
\epsilon^{(N-p)/(p-1)} \int_{\mathbb{R}^N} v_\epsilon^s \, dx = \begin{cases}
\Theta(\epsilon^{(N-p)(p-1)}s-(Np-2N+p)p/p(p-1)), & s > \frac{N(p-1)}{N-p} \\
\Theta(\epsilon^{(N-p^2)/p(p-1)}/\log \epsilon), & s = \frac{N(p-1)}{N-p} \\
\Theta(\epsilon^{(N-p)(p-s)/p(p-1)}), & s < \frac{N(p-1)}{N-p}.
\end{cases}
\]

We are now ready to prove Theorem 2.9.

Proof of Theorem 2.9 The proof is similar to that of Theorem 2.1, so we will be sketchy. Let
\[
\Gamma_v = \left\{ \gamma \in C([0,1], W^{1,p}_0(\Omega)) : \gamma(0) = 0, \ E_v(\gamma(1)) < 0 \right\},
\]
set
\[
c_v := \inf_{\gamma \in \Gamma_v} \max_{u \in \gamma([0,1])} E_v(u),
\]
and note that \(c_v > 0 \) by (2.16). It suffices to show that \(c_v < c^* \) for sufficiently small \(v \). We will show that
\[
c_0 := \inf_{\gamma \in \Gamma_0} \max_{u \in \gamma([0,1])} E_0(u) < c^*. \tag{4.7}
\]
Then there is a path \(\gamma_0 \in \Gamma_0 \) such that
\[
\max_{u \in \gamma_0([0,1])} E_0(u) < c^*.
\]
For all sufficiently small \(v > 0 \),
\[
E_v(\gamma_0(1)) = E_0(\gamma_0(1)) + \frac{v}{q} \int_{\Omega} |\nabla \gamma_0(1)|^q \, dx < 0
\]
and
\[
\max_{u \in \gamma_0([0,1])} E_v(u) \leq \max_{u \in \gamma_0([0,1])} E_0(u) + \frac{v}{q} \left(\max_{u \in \gamma_0([0,1])} \int_{\Omega} |\nabla u|^q \, dx \right) < c^*,
\]
so \(\gamma_0 \in \Gamma_v \) and
\[
c_v \leq \max_{u \in \gamma_0([0,1])} E_v(u) < c^*.
\]

To show that (4.7) holds, it suffices to show that
\[
\max_{t \geq 0} E_0(tu_0) < c^* \tag{4.8}
\]
for some \(u_0 \in W^{1,p}_0(\Omega) \setminus \{0\} \) as in the proof of Theorem 2.1. In each of the two cases in the theorem, we will show that (4.6) holds and conclude from Proposition 4.2 that (4.8) holds for \(u_0 = v_\epsilon(x - x_0) \) with \(\epsilon > 0 \) sufficiently small.

(i) Let \(N \geq p^2 \) and \(q < s < p^* \). If \(s > N(p-1)/(N-p) \), then
\[
(N-p)(p-1) - (Np-2N+p)p = N(p-1)^2 - (Np-2N+p)p = N - p^2,
\]
and if \(s < N(p-1)/(N-p) \), then
\[
(N-p)(p-s) > (N-p)p - N(p-1) = N - p^2.
\]
So (4.6) follows from Lemma 4.3.
(ii) Let \(N < p^2 \). Then
\[
P < \frac{N(p-1)}{N-p} < \frac{(Np - 2N + p)}{(N-p)(p-1)}.
\]
So if \(q < s < p \), then \(s < N(p-1)/(N-p) \), and if \((Np - 2N + p)/(N-p)(p-1) < s < p^* \), then \(s > N(p-1)/(N-p) \). In either case, (4.6) follows from Lemma 4.3.

Acknowledgements The third author was supported by the 2022-0461 Research Fund of the University of Ulsan.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Gongbao, L., Zhang, G.: Multiple solutions for the \(p & q \)-Laplacian problem with critical exponent. Acta Math. Sci. Ser. B (Engl. Ed.) 29(4), 903–918 (2009)
2. Yin, H., Yang, Z.: Multiplicity of positive solutions to a \(p - q \)-Laplacian equation involving critical nonlinearity. Nonlinear Anal. 75(6), 3021–3035 (2012)
3. Candito, P., Marano, S.A., Perera, K.: On a class of critical \((p, q)\)-Laplacian problems. NoDEA Nonlinear Diff. Equ. Appl. 22(6), 1959–1972 (2015)
4. Ho, K., Inbo, S.: An existence result for \((p, q)\)-Laplace equations involving sandwich-type and critical growth. Appl. Math. Lett. 111, 106646 (2021)
5. Marano, S.A., Mosconi, S.: Some recent results on the Dirichlet problem for \((p, q)\)-Laplace equations. Discrete Contin. Dyn. Syst. Ser. S 11(2), 279–291 (2018)
6. Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13(8), 879–902 (1989)
7. Gazzola, F., Ruf, B.: Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations. Adv. Diff. Equ. 2(4), 555–572 (1997)
8. Arioli, G., Gazzola, F.: Some results on \(p \)-Laplace equations with a critical growth term. Diff. Integral Equ. 11(2), 311–326 (1998)
9. Drabek, P., Huang, Y.X.: Multiplicity of positive solutions for some quasilinear elliptic equation in \(\mathbb{R}^N \) with critical Sobolev exponent. J. Diff. Equ. 140(1), 106–132 (1997)
10. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12(3), 191–202 (1984)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.